Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

2 SB211 . PSH3.

-Ж-

*

*

-X-

*

-)(-

UNITED STATES DEPARTMENT OF ACRICULTURE
Agricultural Research Service
Northeastern Region
Plant Genetics and Germplasm Institute
Vegetable Laboratory
Beltsville, Maryland

THE POTATO-BREEDING PROGRAM, USA, 1972

-X-

*

*

*

×

*

By
Raymon E. Webb and Others
and
State Cooperators

(Forty-third Annual Report by Cooperators)
Agricultural Research Center
Beltsville, Maryland

March 1973

This progress report includes tentative results of research not sufficiently complete to justify general release. Such findings, when adequately confirmed, will be released promptly through established channels. Therefore, this report is not intended for publication and should not be referred to in literature citations.

PGGI-73-2

DISCLAIMER

Trade names are used in this publication only to provide specific information. Their use does not constitute a guarantee of the products named and does not signify that they are approved by the U.S. Department of Agriculture to the exclusion of others of suitable composition.

PRECAUTIONS

This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended.

CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife--if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers.

TABLE OF CONTENTS

<u>P</u>	Page
JNITED STATES DEPARTMENT OF ACRICULTURE: Agricultural Research Center, Beltsville, Md., and Chapman and Aroostook Farms, Presque Isle, Maine	1
By R. E. Webb, USDA, Beltsville, Md.; David Wilson, Presque Isle, Maine; and James Frank, Orono, Maine	
True seed, clonal stocks, varieties, and germplasm distribution Chapman Farm	1 4 4
	15
	15 15
Early blight l	16 16
Inter-Regional Potato Introduction Project	24
North Central Regional Trial 2 By R. H. Johansen, N.D. Agr. Exp. Sta., Fargo, N.D., and Cooperators	26
Environmental conditions 2 Cultural practices 2	26 26
Yield 2	27 27 27
Total solids 22 Scab reactions 22	27 27
Overall merit ratings 2	27 27 27
ALABAMA	36
By J. L. Turner, Harrison Bryce and Hubert Harris, Ala. Agr. Exp. Sta., Auburn, Ala.; Frank E. Garrett, Gulf Coast Substation, Fairhope, Ala.; S. E. Gissendanner and John Eason, Sand Mountain Substation	
ALASKA	39
	41
By R. E. Voss, J. C. Bishop, K. G. Baghott, D. N. Wright, and W. A. Wright	
COLORADO 4 By James A. Twomey, San Luis Valley Branch Sta., Center, Colo.	48

	Pag
CONNECTICUT	51
DELAWARE By R. F. Stevens, Francis Webb and Roger Ginder	54
FLORIDA	57
By J. R. Shumaker Variety and seedling trials	57
By D. P. Weingartner and J. R. Shumaker Corky Ringspot Resistance	62
PACIFIC NORTHWEST (IDAHO)By J. J. Pavek and D. R. Douglas	65
MAINE	70
By D. C. Merriam and F. E. Manzer Ring rot resistance	70 71
By Hugh J. Murphy and Michael J. Goven	72
MICHIGAN	78
MINNESOTA	83
MISSISSIPPI By James M. Cannon and Gale R. Ammerman	88
NEW JERSEY	95
Ry Melvin R. Henninger	106

	Page
NEW YORKBy R. E. Anderson, B. B. Brodie and M. B. Harrison	109
By B. B. Brodie	110
By R. C. Cetas, Long Island Veg. Res. Farm, Riverhead, N.Y	112
By S. Dallyn, P. Schippers and D. Fricke, Long Island Veg. Res. Farm, Riverhead, N.Y.	122
By R. L. Plaisted and H. D. Thurston, Cornell Agr. Exp. Sta., Ithaca, N.Y.	128
By Joseph B. Sieczka	140
NORTH CAROLINABy F. L. Haynes	149
NORTH DAKOTA By R. H. Johansen and J. E. Huguelet, N.D. Agr. Exp. Sta., Fargo, N.D.	154
OHIOBy Floyd Lower, A. R. Mosley and E. C. Wittmeyer	164
By J. P. Sleesman and L. L. Sanford	- 168
PENNSYLVANIA	
By Clarence S. Bryner, Pa. Agr. Exp. Sta., Univ. Park, Pa.	TIC
By J. D. Harrington, F. J. McArdle and R. B. Beelman	175
SOUTH CAROLINA	182
TEXAS	184
By B. A. Perry, M. C. Fuqua, Texas Agr. Exp. Sta., College Sta., Texas; and R. E. Webb, USDA, Beltsville, Md	190
VERMONTBy S. C. Wiggans, W. R. Kelly, R. N. Jensen, Montpelier, Vt.; and H. J. Murphy, Univ. of Maine, Orono, Maine	194

	Page
VIRGINIA	198
WASHINGTON	201
By N. Holstad, R. Kunkel, and R. C. Holland, Agr. Exp. Sta., Pullman, Washington	213
WEST VIRGINIA	216
WISCONSINBy P. R. Rowe and R. W. Ruhde	222
WYOMING	224

AGRICULTURAL RESEARCH CENTER-WEST (BELTSVILLE, MARYLAND) AND CHAPMAN AND AROOSTOOK FARMS (PRESQUE ISLE, MAINE)

R. E. Webb, David R. Wilson, and James A. Frank

True Seed, Clonal Stocks, Varieties, and Germplasm Distribution

Summaries of true seed, seedling tubers, clonal lines, and named varieties furnished cooperating States and industry and foreign countries are given in Tables 1, 2, and 3. Most of the stocks sent to cooperating States were intended for adaptability studies and suitability for specific uses according to seasonal market preference (fresh market, processed products, storage, etc.). Seedlings from specific parental combinations were furnished to six cooperators for selection under their local environmental conditions. Parental stocks possessing specific characteristics (pest resistance, excellent processing quality, russet skin, etc.) were made available to several breeders. Stocks from parents segregating for resistance to ring rot, brown rot, leafhoppers, and the Northern root-knot and golden nematodes were sent to cooperators for resistance evaluation purposes.

Varieties and clones sent to foreign countries were for breeding purposes, adaptability studies, foundation stocks to begin in-country certified programs and/or evaluation for resistance to specific diseases such as brown rot, early blight, and late blight and the golden nematode. True seed of specific parental stocks were sent to Uganda for selection of seedlings for multigenic resistance to late blight and resistance to brown rot.

Table 1. Distribution of first-year seedling tubers and true seed of selected parental combinations in the U.S. from ARC-West,

Beltsville, Maryland--1972

Location	Cooperator	Progeny No.	Seedling No.	Seed No.
Alaska Colorado Idaho Kansas Maine North Carolina North Carolina Wisconsin	Curtis Dearborn James Twomey Joseph Pavek Thomas Wagner David Wilson Frank Haynes Frank Haynes Roger Rowe	15 26 22 16 2 ¹ ;7 29 22 7	2,237 3,384 2,495 2,164 43,000 4,363	10 , 200
Totals		384	58,128	19,200

Table 2. Distribution of varieties and advanced selections to cooperating States -- 19

Alabama Alaska California Delaware Florida Hawaii Idaho	J. L. Turner C. H. Dearborn R. E. Voss Robert Stevens James Shumaker D. P. Weingartner J. Henri M. D. Groskopp	3 2 16 2	22 77 26 23 108
California Delaware Florida Hawaii	R. E. Voss Robert Stevens James Shumaker D. P. Weingartner J. Henri	16 2	26 23 108
Delaware Florida Hawaii	Robert Stevens James Shumaker D. P. Weingartner J. Henri	16 2	23 108
Florida Hawaii	James Shumaker D. P. Weingartner J. Henri	16 2	108
Hawaii	D. P. Weingartner J. Henri	2	
	J. Henri		
	J. Henri		7
Idaho		10	
		2	4
	Joseph Pavek		100
Kansas	Thomas Wagner	50	35
Louisiana	James Fontenot		28
Maine	F. R. Holbrook		27
	Frank Manzer		18
	Robert Akeley		78
Ohio	J. P. Sleesman		65
	(Lind Sanford)		9)
Maryland	H. Heggestad		58
nary remote	Lind Sanford	1	8
	K. Deahl	1.	60
Mississippi	James Cannon	6	13
Minnesota	Orrin Turnquist	0	6
New Jersey	M. R. Henninger	25	93
New York	J. B. Sieczka	5	93 4
Mew IOIK	Robert Cetas)	19
	D. H. Fricke		19 14
	William Brodie		
			23 18
	R. L. Plaisted		10
	(parental stocks)		125
	M. D. Harrison	1	135
Norda Dolesto	(golden nematode eval	Luation	50
North Dakota	Robert Johansen		50
Ohio	C. A. John	2	_
	Floyd Lower	1	5 4
Pennsylvania	J. D. Harrington	-	
	Jim Watts	1	59
Rhode Island	Albert Griffiths	1	3
South Carolina	Wayne Sitterly	7+	32
Texas	Bruce Perry	1	53
Virginia	Boyett Graves		50
Washington	Robert Kunkel		10
	William Hoyman		76
Wisconsin	Melvin Rominsky		52
	Donald Kichefski		3
	(parents)		
Totals		131	1,466

Table 3. Varieties, clones, seedling tubers, and true seed sent to foreign countries

			Number	of		
Country	Cooperator	Varieties	Clones	Seedling	True	
				tubers	seed	
Afghanistan	Charles Duncan USAID	11	10	1,046		
Australia	H. Hyland	1				
Brazil	H. Hyland	1 3				
Bulgaria	H. Hyland	3	2			
Costa Rica	J. C. Iverson	10				
	M. A. Seligson	14				
El Salvador	Damon Boynton	6 3				
	K. Laurent	3	9			
Germany	H. Hyland	11	1			
Guatemala	J. S. Courand	2 8				
Hungary	Nat. Inst.	8				
	Agrobotany					
Israel	M. Susnoski		5 6			
Netherlands	H. T. Wiersema					
New Zealand	A. S. Bedi		14			
Nigeria	Richard Wurster				10,30	
Spain	P. de la Hera	33	62			
South Africa	J. J. du Toit	2	50			
South Vietnam	S. C. Litzenberger	10				
Thailand	H. Hyland	12				
USSR	N. I. Vavilov Inst.	10				
Venezuela	Jose A. Gonzales	2	27			
Totals		129	186	1,046	10,30	

CHAPMAN FARM

Approximately 43,000 seedlings, representing 251 parental combinations from Beltsville, were planted on Chapman Farm. From these, about 900 selections were made for observation in 12-hill lots in 1973.

Eleven hundred and sixty-five selections were grown in 12-hill lots for preliminary evaluation for tuber type, productivity, and specific gravity. Two hundred and forty-eight selections from the 1971 12-hill plots were increased for distribution to cooperators, included in preliminary yield trials, and evaluated for processing quality. Most of these were included in one or more of the disease evaluation trials conducted on Aroostook Farm. Approximately 400 additional clones were increased for tests by cooperators, used as breeding stocks, and as foundation seed for yield and other trials conducted on Aroostook Farm.

AROOSTOOK FARM

Experimental design for all yield tests was a randomized block with four replications. All plots received 800 pounds of 15-15-15 fertilizer banded in 36-inch rows by a two-row planter. Clones to be tested were hand planted in 16-hill rows with 9-inch spacing. A 14-inch seed spacing was used in the russet yield trial. Cultural methods and materials for weed, insect, and disease control were according to local recommendations. Rainfall and temperature during the season are given in Table 4. Temperatures were near normal throughout the growing and harvesting season, and rainfall was adequate. At harvest all entries were graded and samples hand selected for specific gravity and quality evaluations. Specific gravity was determined by the air and water method. After specific gravities were determined, the samples were divided and placed in 50° F and 40° F storage at 90 percent relative humidity.

Samples were fried after 4 months of storage. One set of samples from the advanced yield trials stored at 40° F were reconditioned for 2 weeks prior to frying. Potato chips were made from each sample by cutting the tubers in half and taking a 1/16-inch thick slice from each tuber with a rotary food slicer. Slices were rinsed in water and placed on paper towels to remove excess water. Chips were then fried at 340° F in Primex vegetable shortening until bubbling ceased.

A french fry plug 3/8-inch in diameter was cut from each half of the tubers in the sample. After plugs were trimmed, rinsed, and excess water removed, they were fried at 365° F in Primex shortening for 5 minutes.

Each potato chip and french fry was classified after frying into color classes. Chip classes ranged from 1 = very light to 10 = very dark. French fry classes ranged from 1 = very light to 5 = very dark. Weighted averages were calculated by multiplying the number of chips or fries in each color class by the color class, totaled, and divided by the number of chips or french fries in each sample. Color ratings were made using the PCII reference color chart 1206-U.

After color classification, each french fry plug was broken open and internal texture classified as 1 = mealy, 2 = intermediate, or 3 = salvey and a weighted texture index calculated.

Table 4. Weather data, Aroostook Farm, Presque Isle, Maine, May-October--1972

Date	High	Low	Precipitation	Total to date
5-15/5-21	69	50	.83	2.12
5-22/5-28	74	40	T	2.12
5-29/6-4·	77	56	3.02	5.14
6-5/6-11	64	45	1.58	6.72
6-12/6-18	77	51	.48	7.20
6-19/6-25	76	58	1.35	8.55
6-26/7-2	76	54	.13	8.68
7-3/7-9	76	48	2.02	10.70
7-10/7-16 7-17/7-23 7-24/7-30 7-31/8-6 8-7/8-13 8-14/8-20 8-21/8-27 8-28/9-3 9-4/9-10 9-11/9-17	83 76 73 73 72 72 78 77 66 68	62 56 52 48 53 45 54 55 50	.82 1.29 .10 .43 1.27 .69 .87 .12 2.70	11.52 12.81 12.91 13.34 14.61 15.30 16.17 16.29 18.99
9-18/9 - 24	65	37	T	19.30
9-25/10-1	64	Ա	•94	20.24

Early and Medium-Early Advanced Yield Trials. Sixteen clones and three varieties were included in the trial (Table 5). Planting was done May 20, vines killed August 29, and harvest was September 8. No clones significantly outyielded Cobbler, and 10 clones and the varieties Cherokee and Monona yielded significantly less than Cobbler. Lines B6535-10, B6595-12, B6708-1, B6928-8, B6929-10, B6951-1, and B6968-3 were selected as medium-early clones during the relatively dry season of 1971 and perhaps would have performed better in the medium-maturity trial. Tuber conformation of all clones except B6535-10 and B6731-2 equalled or exceeded that of the three check varieties. Specific gravity of clones and varieties were somewhat lower than in 1971. Lines B6535-10 and B6731-2 will be discarded because of low specific gravity and B6558-16, B6595-12, B6692-5, and B6952-3 will be dropped because of high tuber glycoalkaloids.

Advanced medium maturity yield trial. Twenty-four clones and five varieties were included in the trial (Table 6). Planting was done May 21, vines killed September 11, and harvest was done September 19. Yields were somewhat higher and specific gravities were lower than in 1971. Entries B6376-6 and B6705-10 performed as medium-early types and B6532-2, B6928-18, B6930-6, B6955-17 and Norchip responded as late-maturing clones during 1972. Within specific gravity groups only B6936-9, B6951-5 yielded considerably less than the low specific gravity variety Alamo. Clones B6936-9, B6951-5 and B6955-17 were significantly lower yielding than Superior but were similar in yields to Seminole. Of this group of clones, B6987-56 appears to have the wider range of adaptability and constancy in processing quality. It is resistant to virus X, common race of late blight and race A of the golden nematode.

Advanced late-maturity yield trial. Forty-five clones and four varieties were included in the trial (Table 7). Planting was done May 22, vines killed September 19 and harvest was completed September 28 and 29. Sixteen clones were lower in yield than Katahdin, but only five entries were significantly lower in specific gravity. Lines B6930-1, B6952-3, B6955-33, B6955-35, B7001-18 and B7013-4 appeared too late for a 120-day growing season. Lines B6814-16, B6815-19, B6952-3, B7024-7, B7024-17, B7033-24 and B7033-26 proved high in tuber glycoalkaloids and will be dropped from the program.

Yields of selected russet clones. Seventy-eight russet clones, Norgold Russet and Russet Burbank were included in the russet yield trial. Tuber russetting was of a heavy, coarse type in most clones in 1972. Consequently, only those showing acceptable tuber russetting are shown in Table 8. The earliest clone, B7147-6, and a late clone, B7147-8, yielded significantly less marketable tubers (2 in. min.) than either Norgold Russet or Russet Burbank. Only B7147-10 significantly outyielded the two check varieties. Lines B7147-6, B7196-1, and B7196-23 sized tubers earlier than Norgold Russet and equaled or exceeded that variety in specific gravity. Tuber conformation of all clones exceeded that of Russet Burbank, and only B7196-20 and B7196-37 were less attractive than Norgold Russet.

Chip and french fry yield trials. This trial was conducted primarily to determine the yield and maturity relationships among stocks with high specific gravity and promising processing quality during the 1972 growing season. Kennebec, Norchip and Superior, all popular processing types, were included as a base from which high-quality parental stocks might be selected. Excessive rainfall during June damaged the planting and a moist period, prior to and at harvest, favored lower specific gravities (Table 9) than shown by most entries following the 1971 harvest.

Yields of clones resistant to race A of the golden nematode. Clones shown in Table 10 are assembled in tabular form from preliminary yield trials of early, medium, and late clones showing some promise in 1971. The preliminary yield trials are not shown in this report. With few exceptions (B7152-3, B7154-6, B7155-56), yields were similar to that of Katahdin and a number appeared to significantly outyield that variety. In general, specific gravity was lower than hoped for in these stocks. There were notable exceptions. Lines B7151-4, B7151-6, B7151-7, and B7151-9 were highly acceptable in specific gravity. These clones also are quite acceptable in yield and maturity.

Clones with potential for starch production. Some interest has been shown in the production of starch from potatoes, particularly in the Western United States. In 1971 cooperative with Colorado, preliminary adaptability trials were conducted with a number of clones with relatively high specific gravity when grown in Maine. Most did not yield well in Colorado. Additional high specific gravity clones were evaluated at Presque Isle, Maine, in 1972 for their potential adaptability to starch production (Table 11). Kennebec, a widely adapted, high-yielding variety with a moderate level of specific gravity, was used as a comparison. Table 10 shows the results of the trial. Only five clones were within the yield range of Kennebec. However, all clones were higher in specific gravity than this variety. Also, though most clones produced significantly less tuber yields than Kennebec, only four clones produced slightly less starch per acre on a calculated basis than Kennebec.

Yields of advanced-early and medium-early clones and varieties harvested 100 days after planting. Table 5.

Tex	
50°3/	
Color	
Specific2/ gravity	886 886 887 77 77 77 70 70 75 70 73
Tuber1/ rating	n bn tn tt tn ttn ttn ttn ttn tt
and above $3\frac{1}{4}$ to $4^{\prime\prime}$	-4~4000040404008v40
of yield 2" $2^{\frac{1}{4}}$ to $3^{\frac{1}{4}}$ "	0225502222222222
Percent 2 to $2^{\frac{1}{4}}$	33 500 2 50 4 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60
Percent of total yield	53355888888888888888888888888888888888
CWT/A 2" and above	338 338 338 338 338 338 338 338 338 338
Pedigree	B6516-5 B6532-4 B6535-10 B6535-10 B6598-16 B6731-2 B678-10 B6929-10 B6928-3 B6929-10 B6952-3 B6969-1 Cobbler Cherokee Monona

/ l = very poor to 5 = outstanding

2/ 1.0 omitted

Chips, 1-7 satisfactory; FF, 1-3 satisfactory; Tex, 1-2 satisfactory

Yields of advanced medium-maturing clones harvested 110 days after planting. Table 6.

*		
3/ Tex		
50°3,		9.0
Color		٦.٦
Specific2/ gravity	3886656664705645546666666666666666666666666	90
${ m Tuber}^{1}/{ m rating}$	pana promer transparant pana pana pana pana pana pana pana p	
and above $3_{rac{1}{4}}$ to $1_{rac{1}{4}}$ "	18200844804984081984 1800844804984	
of yield 2" $2\frac{1}{\mu}$ to $3\frac{1}{\mu}$ "	0 4 2 2 5 2 5 4 2 2 2 2 2 2 2 2 2 2 2 2 2	
Percent 2 to $2\frac{1}{4}$	6 # 8 % 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
Percent of total yields	\$	\$ 2 ° 7 × 6 + 6 + 10 + 10
CWT/A 2" min.	000 LW G G G G G G G G G G G G G G G G G G	48
Pedigree		LSD 5%

__/ L = very poor to 5 = outstanding
__/ L.O omitted
__/ Chips, 1-7 satisfactory; FF, 1-3 satisfactory; Tex, 1-2 satisfactory

	Tex		
	50°3		
•00	Color	$\begin{array}{c} \infty \otimes \Gamma \vee \varphi \otimes \varphi \otimes \varphi \otimes \Gamma \wedge \Gamma \wedge \varphi \wedge \varphi \otimes \varphi \wedge \varphi$	
after planting	Specific2/ gravity	324545388648864856856864388643886666666666	
120 days	Tuber1/ rating	nowy the top of the to	
nes harvested	and above $3\frac{1}{4}$ to $4^{\prime\prime}$	24 20 4 40 6 40 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
e-maturing clones	of yield 2" $2\frac{1}{4}$ to $3\frac{1}{4}$ "	\$50000 \$2000	
advanced lat	Percent 2 to 24"	% T 2 % T 2 8 C 8 C 8 C 8 C 8 C 8 C 8 C 8 C 8 C 8	
of selected	Percent of total yield	8\$\$8\$	
7. Yields	CWT/A 2" min.	1 8 1 5 1 8 1 7 8 5 8 5 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	
Table	Pedigree	B6814-16 B6815-14 B6815-19 B6930-1 B6930-1 B6930-1 B6932-5 B6932-5 B6932-5 B6932-5 B6932-5 B6932-5 B6932-5 B6932-5 B6932-1 B6932-5 B6932-5 B6932-5 B6932-1 B6932-1 B6955-33 B6955-33 B6957-25 B6987-25	

Table 7 (continued).

The second secon	A STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED I										
Pedigree	CWT/A 2" min.	Percent of total yield	Percent 2 to $2\frac{1}{10}$	of yield 2" as $2\frac{1}{4}$ to $3\frac{1}{4}$ "	and above $3\frac{1}{4}$ to 4^{11}	${\tt Tuberl}/{\tt rating}$	Specific2/ gravity	Color	50°3	Tex	
B7024-4	421	46	17	63	20	N	79	8.1	2.5	1 .	1
B7024-6	385	. 84	50	9	디	CU	\ <u>@</u>		יר		
B7024-7	413	8	16	65	19	+ ←	828	6.7		- C.	
B7024-10	755	76	25	.89	_	+ ~	774		3.7		
B7024-17	894	93	11	09	29	- 4	8		- CJ		
B7033-14	794	26	25	61	13	CU	, 25		0,00		
B7033-24	457	8	15	62	19	CU	\& &		7.		
B7033-26	430	93	29	53	18	a	87		200		
B7033-33	301	85	21	747	33	ณ	85 85		0,		
B5141-6	391	な	27	57	16	<u>~</u>	101		() ()		
Katahdin	727	な	17	29	17) (M	46		7.5		
Abnaki	767	8	54	58	18	+	8		0.00		
Kennebec	505	93	12	73	15	+	81		์ เก		
Russet											
Burbank	384	84	69	30	٦	, G	98	8.5	3.5	2.0	
LSD 5%	26						92	<u>ר</u>	o		
		teres de la proposition de la constitución de la co					}				
											1

1 = very poor to 5 = outstanding

2/ 1.0 omitted

3/ Chips, 1-7 satisfactory; FF, 1-3 satisfactory; Tex, 1-2 satisfactory

	Table 8.	Yields of	some russet	clones,	1973 harvested	120 days	after plant	planting (14"		spacing,	planted May 21).
Pedigree	Yield CWT/A 2" min.	Percent total yield	Percent 3	yield 2" min. $2\frac{1}{4}$ to $3\frac{1}{4}$.	, and above 3 to μ"	Tuber1/ rating	Specific2/ gravity	Color3/	(U)FI	Tex	Other Characteristics
B7147-6 B7147-8	310 272	25	420	,57	32	m.±	87 85	000	3.6	2.0	Res.E.B., scab, vert., 1.b. Res. rootknot, virus A,
B7147-9	254	91	53	147	0	4	92	7.7	3.0	1.5	vert., rhiz. Res. rootknot,vert.,scab,
B7147-10 B7147-15	399	91	50	15 17 17	173	m d	87 97	ω ω ω π	4.0	0,80	Res. virus Y, vert., l.b. Res. virus A, rootknot,
B7147-40	257	8 8	500	51	0 (m	85	9.0) v
B7188-56	349	25	748	52	N O	nm	74	w o			Res. rootknot, rhiz. Res. vert., scab. l.b.
B7196-1 B7196-4	376 272	800	90 43	0.00	15	mπ	75	ν° α			· virus Y
B7196-20	345	, 00 C	81.	7 t-1	18) (U (828	- 00 (1 (1) = 5 (2) (3)	000	. rootknot, pink e
C2-06-10	100	2	- 1	0	_	n	0	ċ			Res. rootknot, virus Y,
B7196-25 B7196-37	345	95	27	77 69	サ 「	m 0	77	8 x 7 x	0,-		ork eye Virus Y, vert., scab
B7196-45	347	8	<u>'</u>	56	10	+ 1	73		<u>,</u>	90	Res. virus A, vert., scab,
B7196-64	288	06	50	64	ri	α	81	8.5	3.	2.5	1.b. Res. vert., scab, 1.b.
Russet Russet	354	35	28	63	σ	m	92	9.5	6.4	2.0	Ex. type, widely adapt.
Burbank	355	88	57	75	CU	, cv	89	9.8	3.2	2.0	Res. scab
LSD 5% 1%	34 46						10	1.0	1.0		
								The second secon	and delication of the latest state of the late	-	The street of the second of th

^{1/} l = very poor to 5 = outstanding
2/ l.0 omitted
3/ Chips, l-7 satisfactory; FF, l-3 satisfactory; Tex, l-2 satisfactory

V.
clones
õ
-
_
5
+3
0
_
9
-
r of selected o
ich frv quality
+-
g
fry quality
5
بغر
44
Ę
2
نو
f
p and french
ğ
a
ρ
::
chip
Yields.
Ä
ď
Ξ.
Yiel
Q,
ģ
Table
g
_

		l
)° F Tex		
40-70°		
Color	8 1 2 3 4 5 4 5 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
F (Tex (
40° 1		
Color	8 0 1 1 8 1 0 8 1 1 1 8 8 0 0 0 0 0 1 1 1 8 0 0 0 0	
ex		
50°3/ FF T		
lor	10	
GS Cc Gb	C	
Specific2/Color gravity Chip	8 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
Tuber 1/rating	ではならなるなるない トトトラットなっちょう	
d above $3\frac{1}{4}$ to 4^{11}	0,000 8 4 5 9 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
yield 2" and $2\frac{1}{4}$ to $3\frac{1}{4}$ " $3\frac{1}{4}$	0 £20023 67 500000000000000000000000000000000000	
Percent of 2 to $2^{\frac{1}{\mu}}$	60014040484848494814481 60014049484848491481	
Percent of total yield	7 \$	
Yields CWT/A 2" min.	433 450 450 450 450 450 450 450 450 450 450	
Pedigree	B6943-43 B6943-46 B6987-4 B6987-136 B6987-142 B6987-142 B6987-142 B698-41 B7024-64 B7024-64 B7024-64 B7024-64 B7024-64 B7024-64 B7024-64 B7024-64 B712-9 K219-5 S47156 B565-7 B6603-12 B6603-12 B6603-12 B6603-12 B6603-12 B6603-12 B6603-12 B6603-12 B6603-12 B6603-12	

/ 1 = very poor to 5 = outstanding

2/1.0 omitted

Chips, 1-7 satisfactory; FF, 1-3 satisfactory; Tex, 1-2 satisfactory 3/

	1	-13-
	•	
3/ Tex	040444040044040	
50°3/		-4.00.00.00.00.00.00.00.00.00.00.00.00.00
Color	たる たる で ため ため の の る の る の で で で で で で う で ら ら の の の ら ら ら ら ら ら ら ら ら ら ら ら ら ら	0 8 9 9 7 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Specific2/ gravity	101 104 99 77 88 87 77 77 77 77 77	- 64 64 64 64 64 64 64 64 64 64 64 64 64 6
${\tt Tuber}^{{\tt L}}_{\tt rating}$	t mm u t t t mm u t u mm u t	ม ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛ ๛
and above $3\frac{1}{4}$ to 4 "	2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200084490487800000
of yield 2" 2\frac{1}{4} to 3\frac{1}{4}"	2000 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	770887778870028890
Percent 2 to 2th	833 25 t t 1 8 6 7 8 8 6 7 8 8 6 7 8 8 6 7 8 8 8 7 8 8 8 8	25 26 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26
Percent of total yield	800 600 600 600 600 600 600 600 600 600	89988841144888666
CWT/A 2" min.	180 180 180 188 188 188 189 180 180 180 180 180 180 180 180 180 180	284 284 284 484 484 484 484 484 484 484
Pedigree	B7149-6 B7151-4 B7151-6 B7151-7 B7152-3 B7152-8 B7152-12 B7152-14 B7152-14 B7152-14 B7152-14 B7152-14	B7155-51 B7155-51 B7169-8 B7200-2 B7200-3 B7200-10 B7200-19 B7200-27 B7200-32 B7200-34 B7200-35 Katahdin

Table 10. Yields and other characteristics of selected clones resistant to race A of the golden nematode.

2/ 1.3 omitted

1 = very poor to 5 = outstanding

Chips, 1-7 satisfactory; FF, 1-3 satisfactory; Tex, 1-2 satisfactory

Table 11. Yields of clones with potential adaptation to starch production.

Pedigree	Total CWT/A	Specific <u>l</u> / gravity	Percent <u>2</u> / starch	Calculated starch production lbs/A
B6936-119 B6987-16	419 488	109 91	20.0 16.8	8380 8198
в6987-36	455	94	17.3	7 871
в6987-187 в6987-201	442 524	96 100	17.8 18.5	7867 9694
в6987-224 в6990-163	528 456	101	18.5	9768 7843
в6998-15	420	93 105	17.2 19.4	8148
в7024-60 в7024-81	433 528	99 97	18.3 17.9	7924 9451
B7572-3	495	106	19.6	9702 8216
в7583-7 в7589-6	459 457	97 93	17.9 17.2	7860
в7589-8 в7664-6	486 551	95 86	17.6 16.0	8553 8816
B5141-6	434	103	19.0	8246
Kennebec	551	79	14.8	8154
LSD 5%	58	07		

^{1/ 1.0} omitted

^{2/} Houghland, G. V. C. 1966. Am. Potato Jour. 43:138.

(Specific Gravity, Dry Matter, and Starch Conversion Table in Potatoes available from Vegetable Laboratory, ARC-West, Beltsville, Maryland 20705).

USDA, Presque Isle, Maine

James Frank, David Wilson, and R. E. Webb

Disease Resistance Evaluations

The USDA potato disease testing program is an important step in the development of new breeding materials. This testing is carried out on Aroostook Farm in Presque Isle, Maine. The tests are conducted in isolated plots to prevent interference from other disease tests. The purpose of these tests is to remove the very susceptible seedlings from the breeding stocks and to rate all other seedlings as to their degree of resistance or tolerance. These reactions are merely indications of how the seedlings respond to disease situations under Maine environmental conditions. The resultant reactions will vary somewhat from year to year in the same location and also in different locations in the same year.

Weather conditions were excellent for late and early blight development, average for scab development, and below average for Verticillium wilt. The moisture levels were above normal in the months of June and July, and the month of June was generally warmer than average. These conditions are not optimal for scab development, but due to high inoculum levels in the soil, the test was successful. In July and August the temperatures were below normal and coupled with above average rainfalls, there were many mornings with heavy dews. This led to a very severe late blight epiphytotic and also aided in the spread of early blight. The moisture levels kept the development of Verticillium wilt below normal. Procedures for each disease test and the results are presented in the following discussion and tables.

Resistance to Verticillium Wilt (Verticillium albo-atrum). Inoculum for this test was grown in potato dextrose broth in shake culture. The bud cells from each flask were pooled and adjusted to 80,000 cells per ml. Two isolates of the pathogen were used to insure pathogenicity. The tubers of the test clones were cut, dipped with the inoculum, and planted immediately. The inoculated seedpieces were covered with soil, and a full hill was made immediately after planting. The test consisted of two four-hill plots per pedigree.

Wilt readings were made on five separate days starting in late July. The final readings for the two replications were averaged and reported in the tables following. Readings were made on a 1-5 scale with one indicating no disease and five signifying plant death. The average rating for susceptible checks Cherokee and Kennebec were 4.6 and 3.8, respectively. The average for resistant variety Abnaki was 2.8.

After tubers were harvested, readings were taken to determine the percentage of tubers in each test showing pink eye, a bacterial disease which appears after harvest or storage. This organism has generally been associated with <u>Verticillium</u>, although this association has been suspect. The tubers harvested in the <u>Verticillium</u> plot were all washed and examined. In the following tables, the reading in the pink eye column is reported as the percentage of total tubers infected in a pedigree. The susceptible variety Kennebec averaged 34 percent.

Resistance to Late Blight (Phytophthora infestans). Test clones were planted along with the variety Green Mountain, which served as a susceptible spreader. The

Green Mountains were planted as guard rows and every third row in the plot. The plot consisted of two replications of a two-hill plot. The plot was inoculated with a race 0 (common race) zoospore suspension in the last week of July and twice a week thereafter until the Green Mountains showed a heavy infection. Readings were taken once a week until plants were ready for harvest. Readings were made on a 1-5 scale with one indicating no disease and five signifying complete susceptibility.

Resistance to Early Blight (Alternaria solani). This field test consisted of two-hill plots, replicated twice with the guard rows, and every third row throughout the plot planted with a susceptible spreader (B5281-1). The plot was not inoculated because a heavy natural infection spread over the plot in the second week of July. Readings were taken once a week until plants were ready to harvest. Readings were made on a 1-5 scale with one indicating no disease and five signifying susceptibility.

Resistance to Common Scab (Streptomyces scables). Tubers of the test clones were planted in the same field used in previous years for this test. The test consisted of two replications of a two-hill plot with susceptible Green Mountain planted as guard rows and every third row in the plot. The tubers were dug after Labor Day, and each tuber was rated and placed into a class. The two figures in the tables represent the number of tubers observed and the disease rating. The figure for disease rate is surface area affected/lesion type. For area: 0= none; 1=1-19%; 2=20-39%; 3=40-59%; 4=60-79%; and 5=80-100%. For type: 0=none; 1=small, superficial lesions; 2=medium-large but superficial: 3=large, slightly raised, or sunken; 4=large and rough; 5=coalesced and pitted. Green Mountain, the susceptible check averaged 1.6/2.7.

Presque Isle Table 1. Pedigrees tested in all disease trials, 1972.

		Pink	Late	Early	Sca	
Pedigree	Vert	eye	blight	blight	#Tubers	Rate
06607 10	2.7	90	5.0	4.0	28	.3/.9
B6603-12	2.7	89 0	5.0	5.0	13	
B6928-8 B6928-10	3.2 4.6	0	5.0	5.0	18	.6/2.4 .5/1.3
B6928-18	4.0	0	5.0	5.0	33	.4/1.1
B6929-10	4.3	14	5.0	5 . 0	18	.8/2.0
B6930-6	3.8	13	1.5	4.7	26	.5/1.8
B6930-7	4.0	9	5.0	4.5	13	.5/1.6
B6930-16	5.0	29	5.0	4.7	14	.2/.7
B6931-1	5.0	21	5.0	4.5	17	.5/1.7
B6932-5	5.0	3	5.0	4.2	14	1.1/2.7
B6934-4	4.8	21	1.5	4.5	21	.3/.9
B6936-16	4.5	0	5.0	5.0	17	.8/2.4
B6936-26	4.2	0	5.0	5.0	15	.5/1.8
B6951-1	3	0	5.0	5.0	26	.7/1.4
B6951-5	4	17	5.0	5.0	18	2.2/3.8
B6955-8	3.7	6	5.0	5.0	20	.9/1.9
B6955-14	3.7	6	5.0	5.0	21	1.3/2.5
B6955-17	4.5	4	5.0	5.0	22	.8/1.6
B6955-24	4.3	11	5.0	5.0	17	.6/2.0
B6955-25	4.1	11	5.0	5.0	20	2.9/3.6
B6955-33	4.0	6	5.0	5.0	25	.9/2.2
B6955-35	3.3	0	5.0	5.0	25	2.0/3.5
B6966-1	3.3	22	5.0	4.5	26	.9/2.7
B6967-9	3.0	0	5.0	5.0	21	.6/2.4
B6967-10	4.7	0	5.0	5.0	19	.2/.9
B6968-3	5.0	0	5.0	5.0	21	.3/1.0
B6969-1	4.5	11	5.0	5.0	32	.4/.9
B6969-2	3.5	0	5.0	5.0	24	1.4/2.5
B6969 - 9	2.8	24	1.5	5.0	15	1.1/1.8
B6995-19	4.0	71	5.0	5.0	18	1.0/2.6
B7013-4	4.1	11	5.0	5.0	19	1.5/2.3
B7024-4	4.7	6	5.0	5.0	20	1.1/1.9
B7024-6	4.1	4	5.0	5.0	20	1.7/3.1
B7024-7	4.1	0	5.0	5.0	24	2.0/3.0
B7024-10	4.6	10	5.0	5.0	17	1.3/2.9
B7024-17	3.7	9	5.0	5.0	15 16	1.2/2.6
B7033-14	4.8	26	5.0	5.0	16 25	1.9/3.7 2.3/3.0
B7033-24 B7033-26	4.5 4.3	0 36	5.0 5.0	5.0 5.0	29	2.3/2.2
B7130-7	4.1	7	5.0	5.0	17	.8/1.3
B7130-22	4.6	16	5.0	5.0	23	1.0/2.6
B7130=22	4.0	0	5.0	4.5	15	1.5/2.2
B7.132-14	4.2	22	5.0	5.0	19	.9/1.9
B7132-19	5.0	0	5.0	4.2	18	.6/1.7
B7132-21	4.5	0	5.0	5.0	16	.9/1.6
B7132-22	4.6	12	5.0	5.0	19	1.0/1.5
B7132-25	4.3	0	5.0	5.0	23	1.0/2.0
B7132-26	4.7	0	5.0	5.0	21	1.6/1.8
	-				_	-,

Table 1. continued.

		Pink	Late	Early		ab
Pedigree	Vert	eye	bligh†	blight	#Tubers	Rate
D7170 07	4 0	0	E 0	E O	17	E /1 1
B7132-27	4.2	0	5.0	5.0	17	:5/1.1
B7132-29	4.5	3	5.0	5.0	20	1.0/2.1
B7134-3	4.2	20	5.0	4.7	22	1.3/2.6
B7136-5	4.7	2	5.0	5.0	22	2.1/2.1
B7137-18 B7138-2	4.3	0	5.0	5.0	23	1.3/2.4
B7138-8	4.8	24	5.0	5.0	25	2.0/3.2
	4.6	38	5.0	5.0	26	1.6/2.5
B7139-4 B7139-6	3.0 3.1	0	5.0 5.0	4.0	8 12	1.3/2.1
B7139-12	4.6	14 43	5.0	4.7 4.7	19	1.6/3.1
B7139-15	4.6	4.5	5.0	5.0	13	.7/1.8
B7141-1	4.0	22	5.0	5.0	20	.5/1.2
B7145-3	4.2	0	5.0	5.0	18	1.4/2.0 1.2/2.8
B7147-5	4.1	0	5.0	5.0	20	.3/.9
B7147-6	4.0	0	5.0	4.7	13	• 2/ • 3
B7147-7	2.0	0	5.0	4.2	11	.9/1.3
B7147-9	3.0	3	5.0	5.0	10	.3/.6
B7147-89	3.5	5	5.0	4.7	16	. 5/ . 0
B7147-93	4.2	3	5.0	5.0	16	.2/1.0
B7147-94	3.6	3	5.0	5.0	24	. 2/1.0
B7147-100	4.5	14	5.0	5.0	22	1.9/2.9
B7147-102	4.6	0	5.0	5.0	11	.3/1.0
B7148-1	4.6	0	5.0	5.0	21	.3/1.0
B7148-4	4.7	0	2.0	5.0	22	1.0/2.4
B7148-9	4.8	0	1.5	5.0	29	2.1/3.1
B7149-4	3.8	0	5.0	4.2	25	1.8/3.6
B7149-6	4.8	2	1.7	5.0	15	.8/2.8
B7151-1	2.2	1	5.0	4.7	18	.6/1.5
B7151-6	3.6	15	5.0	5.0	21	1.8/2.7
B7151-7	4.7	11	5.0	5.0	27	.3/.7
B7151-9	4.1	3	5.0	4.7	18	.3/1.2
B7152-1	5.0	50	5.0	5.0	17	.3/.4
B7152-3	5.0	0	5.0	5.0	23	.2/.8
B7152-5	3.0	0	5.0	3.7	14	.3/2.2
B7152-8	4.5	25	5.0	5.0	22	.7/2.2
B7152-11	4.5	0	5.0	5.0	17	.7/2.5
B7152-12	4.5	0	5.0	5.0	30	.8/2.4
B7152-14	4.1	17	5.0	5.0	22	.3/.9
B7152-31	4.1	11	5.0	5.0	15	.2/.8
B7153-1	4.6	40	5.0	5.0	24	1.4/3.8
B7153-14	4.7	8	1.5	5.0	35	.9/2.9
B7153-21	4.6	18	1.5	5.0	23	1.1/3.1
B7153-29	4.2	11	1.5	5.0	26	.9/2.1
B7154-6	4.7	8	5.0	5.0	26	.9/2.4
B7154-8	4.6	0	5.0	5.0	26	.8/1.7
B7154-10	4.6	0	5.0	5.0	18	1.0/2.2
B7155-3	3.8	6	5.0	5.0	19	.6/2.4
B7155-14	2.1	7	5.0	4.2	27	.5/1.4
B7155-51	4.3	29	5.0	5.0	19	.3/1.5

Table 1. continued.

Podiano	Vort	Pink	Late	Early		cab Pato
Pedigree B7155-56 B7158-34 B7158-35 B7158-48 B7159-23 B7159-32 B7159-37 B7160-1 B7160-4 B7161-3 B7161-11 B7164-22 B7164-25 B7165-2 B7165-6 B7165-8	Vert 4.8 4.1 5.0 3.5 4.5 4.0 3.6 4.7 3.5 4.2 3 4.0 3.7 4.2 4.1	99e 50 3 0 25 4 0 78 0 14 11 8 2 5 0 31	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 1.5 5.0 1.5 5.0 1.5	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.5 5.0 4.5 5.0 4.7 4.7	#Tubers 20 15 18 10 14 19 19 20 16 27 25 14 17 31 20 21	Rate .7/1.8 1.5/3.4 .6/1.4 1.0/2.6 1.2/1.58/1.7 .9/1.9 1.0/2.2 1.0/1.2 1.6/2.8 1.0/2.2 1.6/2.9
B7165-10 B7165-15 B7165-17 B7165-18 B7167-2 B7167-9 B7167-14 B7167-26 B7167-30 B7168-2 B7169-7 B7169-8 B7178-3 B7181-21 B7183-1 B7188-37	4.7 1.6 4.5 5.0 4.1 3.2 4.0 3.3 3.3 3.6 3.6 3.5 3.0 4.1	0 0 5 17 23 0 0 7 0 47 0 0 0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	21 18 27 20 9 10 8 17 13 18 21 21 20 18 17	.7/2.3 2.1/3.2 .8/2.4 .5/2.3 1.2/3.7 1.5/2.7 1.6/2.1 1.0/2.3 .2/.8 1.0/2.0 .6/2.2 .5/1.6 .1/.3 .2/1.7
B7188-42 B7188-45 B7188-48 B7188-56 B7189-1 B7189-4 B7189-9 B7190-2 B7190-4 B7196-13 B7196-25 B7196-38 B7196-61 B7196-61 B7196-64 B7196-65 B7196-82 B7196-90	3.8 3.7 4.6 3.7 4.0 4.3 4.5 4.0 3.9 3.2 4.8 4.0 4.2 3.8 4.7 3.5 3.6	0 0 0 0 0 25 9 5 0 0 43 0 0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	17 22 21 24 19 28 21 12 21 16 16 29 11 21 22 20 12	.1/.2 .1/.2 .4/1.0 1.3/3.3 1./2.5 1.4/3.2 .1/.7 .1/.7

Table 1. continued.

Pedigree	Vert	Pink	Late	Early	Sca #Tubers	
reargree	VELL	eye	blight	blight	#Tubers	Rate
B7196-104	4.1	0	5.0	5.0	25	
B7198-5	3.7	0	5.0	5.0	23	.6/2.3
B7198-6	3.2	0	1.5	3.7	17	.8/3.0
B7200-2	4.3	0	5.0	5.0	22	.1/.3
B7200-3	2.5	0	1.5	4.0	20	.2/1.7
B7200-6	3.0	2	5.0	4.7	26	.1/.6
B7200-8	4.0	0	1.5	5.0	22	.2/.9
B7200-10	3.5	0	5.0	4.0	24	.3/.9
B7200-19	4.7	0	1.7	5.0	22	.5/1.4
B7200-26	3.6	0	5.0	5.0	15	.5/1.7
B7200-30	3.6	0	5.0	5.0	20	.4/1.3
B7200-32	3.3	0	1.2	5.0	19	.5/1.8
B7200-34	3.1	5	1.2	5.0	19	.5/1.8
B7200-35	4.5	0	2.0	4.7	20	
B7200-37	4.8	0	2.0	5.0	32	1.0/1.6
B7200-40	4.1	0	5.0	5.0	25	.9/2.5
B7221-7	3.8	0	5.0	4.7	25	1.2/2.3
B7221-8	4.2	0	5.0	5.0	22	1.8/4.0
B7221-16	4.6	8	5.0	4.7	25	1.4/3.0
B7233-12	4.7	28	5.0	5.0	18	1.2/3.2
B7252-3	4.5	6	1.5	4.5	28	.8/2.3
B7254-2	4.2	5	2.0	5.0	16	1.6/.6
B7262-7	4.4	7	1.7	5.0	28	1.0/2.1
BR7044-2	4.5	16	2.0	5.0	11	2.2/2.6
BR7047-11	4.0	0	5.0	5.0	21	1.4/1.9
BR7049-4	5	0	5.0	4.7	17	.3/.6
BR7051-3	3.5	7	1.2	5.0	27	2.1/2.0
BR7061-4	4.3	0	5.0	5.0	22	1.0/2.3
BR7076-3 BR7083-1	4.8 4.7	0	1.5	4.7	30	1.2/2.3
BR7089-1	2.6	0	5.0 5.0	5.0	29	.8/2.4
BR7102-4	4.7	0	5.0	4.7 5.0	14	.8/2.0
BR7106-5	4.7	0	5.0	5.0	28 16	.9/1.2
BR7110-3	3.3	0	1.5	4.0	36	1.3/2.3
BR7111-1	2.3	0	1.2	3.7	21	1.5/2.9 2.4/3.4
K112-9	3.1	30	5.0	4.5	19	1.0/2.3
K194-4	3.0	54	5.0	5.0	28	3.2/4.3
K195-9	4.1	54	5.0	5.0	27	3.3/4.4
K211-1	3.6	11	1.5	5.0	13	1.0/2.4
K214-2	3.6	2	5.0	5.0	30	.6/1.6
K219-5	3.0	0	5.0	5.0	26	.9/2.0
_		J	- • 0	J . U	20	• 7/ 2.0

Presque Isle Table 2. Pedigrees not included in all disease trials, 1972.

		Pink	Late	Early	Sc	ab
Pedigree	Vert	eye	blight	blight	#Tubers	Rate
B5288-5	4.1	74	2.5			
B5952-10	4 -	^	5.0			
B6327-3	4.6	0	3.0			
B6327-5	3.1	0	5.0			
B6328-8	3.2	52	5.0			
B6329-2	3.7 2.2	0	1.2 5.0			
B6330-3 B6330-5	2.2	29	5.0			
B6355-5	2.7	0	5.0			
B6907-2	2.1	U	5.0	5.0		
B6929-1				5.0	13	.5/2.0
B6930-1			5.0	5.0	1.0	. 3/ 2.0
B6934-7			5.0	5.0		
B6934-9			1.2	4.0		
B6934-12			1.7	4.0		
B6936-55	3.8	6	5.0	,,,,	20	.6/1.2
B6936-65	5.0	40	5.0		16	.5/1.6
B6936-119	5.0	9	5.0		18	.2/.9
B6943-22		_	5.0			, , ,
B6943-43			5.0		20	1.1/2.6
B6943-46			5.0		24	1.4/3.2
B6943-47					22	.9/1.4
B6943-64			5.0			
B6944-28				4.5		
B6952-3				4.7		
B6952-10	4.2	3		5.0	16	1.2/2.8
B6952-14			5.0		17	1.0/3.8
B6952-21			5.0		21	.9/1.0
B6955-4			5.0		22	1.5/3.3
B6955-10	2.8	25			22	2.0/3.0
B696 7- 1				5.0		
B6967-2	5.0	0			23	.9/3.1
B6967-8	3.1	0	5.0			
B6974-14				4.5		- 4
86980-47			1.5		27	.8/2.2
B6985-16			5.0		21	.1/.6
B6985-36			5.0		27	1.0/2.1
B6985-59	4 -	7.6	5.0		28	1.8/3.5
B6985-67	4.5	76		E 0	21	1.3/2.8
B6986-2			E	5.0		
B6986-10 B6987-1			5	5.0		
B6987-2				5.0		
B6987-18				5.0		
B6987-22				5.0		
B6987-25				5.0		
B6987-29				4.7		
B6987-33				4.5		
20701 22				7. 7		

Table 2. Continued.

Pedigree	Vert	Pink eye	Late blight	Early blight	Sc #Tubers	ab Rate
red igree	4611	еуе	Dirgin	Dilgiii	#1dbel3	Nave
B6987-43				5.0		
B7987-48				4.5		
B6987-54 B6987-56				5.0 5.0		
B6987-57				4.7		
B6987-86 B6987-131			5.0 5.0		16 25	.5/1.2 1.6/2.1
B6987-135	4.5	0	J.0		2.)	1.0/2.1
B6987-136			5.0		15	.9/2.5
B6987-142 B6987-144		1	5.0 5.0		22	1.2/1.9
B6987-145		•	J.0		13	.6/2.8
B6987-148	2.7	0	5.0		4.0	
B6987-158 B6987-162	2.3 27	3 26	5.0 5.0		19 8	1.4/1.7
B6987-168	2.6	26	5.0		O	• 1/ • 5
B6987-184	2.3	0	5.0		18	.9/2.2
B6987-187 B6987-201	2.7 2.0	0 0	5.0 5.0		20 17	.6/1.9 .5/2.0
B6987-221	3.7	0	5.0		28	1.2/2.1
B6987-224	3.0	11	5.0		23	.5/1.4
B6990-153 B6990-163	2.8 3.1	0 4	5.0 1.2		27 18	.5/1.9 1.2/1.9
B6998-15	3.7	0	5.0		21	1.3/2.8
B6998-19 B6998-41	1.7 2.5	38	1 =		15	1.6/3.5
B7001-4	2.9	0	1.5	5.0	23	.5/1.6
B7001-18				5.0		
B7007-30 B7008-4			5.0 5.0	4.7	25	1 1/2 0
B7008-4 B7008-14			9.0	5.0	25	1.1/2.8
B7009-4				4.2		
B7010-5 B7024-24	3.6	4	5.0	4.7	19 20	1.2/1.3
B7024-33	3.7	29	5.0		17	1.4/2.7 .9/1.5
B7024-35	3.0	10	5.0		11	.6/1.5
B7024-55 B7024-60	3.3 3.8	0 3 3	5.0 5.0		27 25	.5/1.7 .4/1.6
B7024-63	3.6	4	5.0		23	• 4/ 1 • 0
B7024-64	4.1	33	5.0		16	.9/1.6
B7024-81 B7024-85	4.1 3.8	0 4.5	5.0 5.0		24 24	.7/1.5 .7/2.6
B7024-88	4.1	7	5.0		20	.9/2.4
B7024-99 B7029-1	4.0	0	5.0	E O	25	1.2/2.6
B7033-33			5.0	5.0 5.0		
B7033-40	4.0	16	5.0	0	13	1.1/2.6
B7033-49	4.5	10	5.0		23	1.7/2.8

Table 2. Continued.

Pedigree	Vert	Pink eye	Late blight	Early blight	Sc #Tubers	ab Rate
B7033-75 B7068-4 B7138-11	4.0 4.3 2.6	5 0 41	5.0	5.0	24	1.5/2.7
B7139-8 B7143-6 B7143-12	4.0 4.6 3.1	0 0	5.0 5.0	5.0 4.0	20 12 15	2.1/3.3
B7143-18 B7146-1 B7147-20 B7147-76	4.1 4.1	0	5.0 5.0	5.0	18	
B7147 - 90 B7153 - 7 B7153 - 30	4.6	18	5.0		11 17 21	.6/1.5
B7154-16 B7155-34 B7155-61 B7158-1	3.8 4.2 4.1 3.8	3 0 10 6	5.0 5.0 5.0 5.0	5.0	20 19 22	.9/2 0 1.4/'.1 1.1/'.7
B7158-10 B7164-12 B7164-27	4.0	24	5.0	5.0	19	.5/2 3
B7173-7 B7173-8 B7178-3 B7181-21	3.6 4.2 3.6 3.5	10 65 0	1.5 5.0	5.0 5.0	15 19 23	.3/1/6 .6/1 8 .9/1 1
B7196-45 B7196-49 B7196-74	4.4	0	5.0	5.0	25 4	.6/1 0
B7196-86 B7196-101 B7200-27 B7212-13	3.6 3.5 5.0	0	5.0 5.0	5.0 5.0	17 34 21	.1/. :
B7213-3 B7222-29 BR7072-12	4.0	0	5.0	5.0 4.7	20 19	.7/1 1 .8/2 5
BR7085-1 BR7086-1 BR7088-1 BR7088-2	4.6	15	1.5	5.0 4.7	18	.9/1 6.
BR7091-1 BR7095-1 BR7095-6			5.0	4.7 5.0 4.0	25	1.3/2.2
BR7103-2 BR7103-7 BR7183-2 BR7183-7	4.0 3.3	25 7	5.0 1.7	5.0 5.0	19 15	1.3/2.9 .5/1 6

INTER-REGIONAL POTATO INTRODUCTION PROJECT (IR-1)

P. R. Rowe and R. W. Ross

Introduction of New Stocks. Two hundred four new stocks were received from 7 countries. Nearly all are introductions of 13 endemic species provided by K. A. Okada from the germplasm collection maintained at Balcarce, Argentina. Also added, contingent upon germination, were more than 350 seed packets containing the remnants of some of J. G. Hawkes original species collections and interspecific hybrids. Although many are duplicates, this sending may eventually provide as many as 100 species collections not introduced earlier.

Preservation and Increase of Stocks. Approximately 90% of the species introductions are being maintained as true seed. Satisfactory increases of 191 seed introductions were obtained under glass, plastic,or screen. Recently harvested seed samples of 136 introductions were sent to the National Seed Storage Laboratory. Five hundred seventy-four clonal selections were indexed for viruses, A, M, S, X and Y. A trial program to better utilize clonal introductions of varieties and advanced breeding stocks, restricted by U. S. Plant Quarantine to the production of true seed because of virus infection, was initiated. Thirteen of the 15 parental stocks submitted by U. S. potato breeders were crossed to one or more of the introduced stocks, and the F, seed obtained will be shared with each participant.

Classification. J. P. Hjerting spent two months in Sturgeon Bay plotting the site of collection for all stocks in the IR-1 Collection as well as recorded collections of herbarium specimens. This information will be used to plan future collecting expeditions.

Distribution of Stocks. Shipments were sent to 17 states and 26 countries. Shipments included 2045 seed and 1466 tuber samples of species introductions, and 89 seed and 1126 tuber samples of germplasm involving introductions developed by the cooperative USDA-Wisconsin Genetics and Cytogenetics Project.

Over 350 copies of the new "Inventory of Interspecific and Intervarietal Hybrids of Tuber-Bearing Solanum Species" were distributed to potato researchers and libraries around the world. This inventory includes nearly 500 representative interspecific or intervarietal cross combinations, and lists the screening data compiled for the parents through December 1971. More than 25 additional copies of the 1969 "inventory of Tuber-Bearing Solanum Species" were distributed. Mimeographed listings of 206 species introductions available in the form of tuber families (mainly for the benefit of potato workers without adequate greenhouse facilities) were distributed to 170 scientists.

Evaluation of Stocks. Evaluation results from cooperators were compiled for the newly released inventory and for further use in the revision of the 1969 inventory.

Foreign Visitors.

- J. P. Hjerting, Botanical Garden, Copenhagen, Denmark.
- D. R. Suchomel. Benue and Plateau State, Nigeria.
- H. De Jong, Canada Department of Agriculture, Fredericton.
- W. A. Russell, Canada Department of Agriculture, Morden.
- G. M. Weaver, Canada Department of Agriculture, Fredericton.

Usefulness of Findings. The major objective of the Potato Introduction Program is to promote and facilitate the improvement of the commercial potato in the United States by providing a readily available reservoir of useful breeding stocks. Breeders are constantly searching for new sources of superior germplasm and are conducting incessant researches to incorporate desirable new genes into adapted commercial varieties. Accomplishment of the major objective of this program must be measured largely by the success with which new, improved varieties meet the needs of commercial production.

One hundred twenty-four of the 128 potato varieties developed and released in the United States since 1932 have two or more foreign introductions in their pedigree. These varieties comprise approximately 65% of the annual seed potato production in the United States.

Basic research programs being conducted in several states and other countries, are developing information concerning the potential value and diversity of the Solanum species. In 1972, 32 papers, 8 abstracts and 3 theses were published that reported the use of Solanum introductions. These researches will provide the knowledge needed for more effective use of the Solanum species in the future.

NORTH DAKOTA

R. H. Johansen and Cooperators

North Central Regional Trials--1972

The year 1972 was the twenty-second year that the North Central Regional Trials have been conducted. This past season, nine states participated in the trials with Nebraska and Indiana growing two trials. The Louisiana trial was lost due to flooding and poor weather conditions.

The benefits derived during the years the trials have been in existence is evident in the number of clones that have been tested in the trial and are now popular named varieties. Some twenty varieties grown for certified seed in the U.S. were once tested in the North Central Trial.

No new varieties were introduced during 1972.

Environmental Conditions. Soil type at each location ranged from clay loam to course sand. Sandy loam or silt loam was the most common soil type.

Cultural Practices. Fertilizer applications, irrigation, spray programs, vine killing, spacing, etc. are based on local conditions.

For insect control, Thiodan, Di-Syston, Phorate, Guthion, Sevin and Thimet were all used. For late blight control, Polyram, Maneb, Dithane M45 and Dithane M22 were the most popular fungicides used. Eptam, Patoran, Lorox and Sencor were used the most for weed control.

			Total
State	Date Planted	Date Harvested	Days to Harvest
Indiana (early)	May 11	October 18	161
Indiana (late)	March 24	July 20	119
Kansas	March 23	August l	102
Michigan	May 16	September 20	127
Minnesota	May 25	September 15	114
Missouri	March 22	August 9	141
Nebraska (summer)	April 4	July 24	110
Nebraska (fall)	May 18	September 7	113
North Dakota	May 15	September 21	130
Ohio	May 22	October 27	159
Wisconsin	April	September	?

In comparison to 1971, the 1972 season was not as good a year for potato production. Temperatures and rainfall varied. Missouri, Michigan and North Dakota had it cool for part of the season, while Nebraska had quite high temperatures. Rainfall was about normal in most states. The only state reporting frost was Missouri where a few leaflets were damaged in June. Several states irrigated.

^{1/} Indiana, C. M. Jones; Kansas, J. Greig; Louisiana, J. Fontenot; Michigan,
N. Thompson; Minnesota, O. Turnquist and F. Lauer; Missouri, V. Lambeth; Nebraska,

R. O'Keefe; North Dakota, R. Johansen; Ohio, A. R. Mosley; Wisconsin, J. Scheennman,

D. Kichefski and S. Peloquin; USDA, R. Webb.

Entries. Entries were received from North Dakota, Nebraska, Louisiana, Wisconsin, Minnesota and the USDA, Beltsville, Maryland. North Dakota supplied the check varieties, Norland, Red Pontiac, Norchip and I. Cobbler. The three Minnesota entries were not planted at South Bend, Indiana.

Nebraska planted a trial at Center City and Alliance, while Indiana planted a trial at South Bend and Vincennes.

Yield. Total and U.S. No. 1 yield are reported in North Central Tables 1 and 2. Wisconsin reported the highest yields, which ranged from 400-900 cwt/A. Michigan, Ohio and South Bend, Indiana also reported high yields.

Norchip was the highest yielding entry in the early group, and Red Pontiac was the highest yielding in both the early and late groups. Several selections like W710, B6097-9, B6495-20, W623 and La71-110 all produced quite high U.S. No. 1 yields. Line ND7103-4 was one of the lowest yielding entries.

Maturity. Norland was again the earliest maturing entry in trial. Selections B6495-12 and B6495-20 were the latest maturing. Some selections reported to be late maturing were actually early at several locations. Maturity is reported in North Central Table 3.

Total Solids. In both the early and late group, Norchip produced the highest total solids, while W710 was the lowest. Several entries produced total solids averaging over twenty percent (North Central Table 4).

Scab Reactions. Indiana, Missouri and Wisconsin reported no scab. Norland and La71-82 were the most scab resistant entries in trial (North Central Tables 5 and 6). Line Neb 139.59-1 seemed to be the most susceptible entry.

Internal and External Defects. A summary of defects are found in North Central Table 6. A particular weakness of a variety is starred only to call it to the developer's attention.

Overall Merit Ratings. Merit ratings are presented for the 1970, 1971 and 1972 seasons.

	1970	1971	1972
B6097-9 W623 W629 Minn 3866	x x x	11 x 4	26 24 15
MD7196-18	14	17	13

x = Not Entered

Chip Quality. North Central Table 8 shows the chip quality of entries grown in Kansas, Michigan, Nebraska, North Dakota and Wisconsin. It is hoped all states will run chip tests in 1973. Selections ND7196-18, Neb 1.57-1, La71-82, W623, W629 and ND7103-4 all produced good to fair chip quality. Only W623 and ND7103-4 produced chips as light or lighter than the standard chip variety Norchip.

North Central Table 1. Total yield (cwt/A).

																				,						
A STATE OF THE PERSON NAMED IN COLUMN NAMED IN		Ave.	259	267	X 5	323		274	ひららら	2,5	339	329	564	355	314	255	306	3.70	340 334	220	434					,
The second name of the last of		Wisc.	455 655	542	453	ろくの	-	891	ンン4).7.5	202	704	650	550	992	563	200	562	742	700	413	968	,			603	
The same of the sa		Ohio	364 263	340	32 24 25 24 25 26 26 26 26 26 26 26 26 26 26 26 26 26	340	,	401	350 050	3/1/2	764	120	341	503	310	323	458	で 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	440	274	556				393	
Company of the Compan		N.D.	156 192	141	222	730 T		162	107 701	183	178	237	152	262	240	160	220	187	107 107	158	286		5	74Z	194	(
The state of the last of the l	Late fall	Neb.	209 201	204	249	314		209	7.5 2.5	0 2 2 2 3	283	268	208	286	243	231	263	350	500 000 000 000 000	207	366	127	129		239	
THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE OWNER	Late2/ summer	Neb.	1.97 203	180	2004 4000	233	,	143	14 25 20	128	188	177	138	239	569	209	204	225	100	158	152	176	153		184	
Separation of the Person of th		. OM	150 206	173	0 0 0 0	T00	-	204	143	9	180	201	135	181	156	28	161	250	TOL	16	280				176	
The second name of the second na		Minn。	295	287	3T./	310	(282	ر تارير تارير	1 0 1 0 0	314	271	256	364	390	354	423	307	280 580	208	328)			311	
STREET, STREET		Mich.	257 373	273	330	315	-	341	2000 0000	376	367	417	289	371	392	279	215	301	7 2	261	595				344	
Committee of the Street of the Street of Stree		Kansas	252 28 3	225	330	373	,	212	73T	300	358	320	274	328	332	244	0 X	336	300	145	369	`			287	
the section of the se	Ind.	early	225 311	223	267	239		177	702	7 0	229	214	181	268	544	228	267	307	Z Z Z Z	155	301)			540	
	Tnd.1/	late	292	353	350 	440	-	418	7.47.	554	430	426	381	340			-	542	א מ מ	349	268				395	
The same of the sa		Variety	ND6925-13 ND7196-18	Norland	I. Cobbler	druc	0		Neb 99.50-4	45.V°.V'.	_ [W623	W629			Minn 3915	Minn 3935	B6097-9	B6497-12	ND7103-4	Red Pontiac	BR6491-1	BR6863-3	BR7072-5 BR7072-5	Average	

March 24 at Vincennes and harvested July 20. Nebraska Trials--(a) planted late summer, April 4 at Central City and harvested July 24.; (b) planted late fall, May 18 at Alliance and harvested Sept. 7. Indiana Trials -- (a) planted (late) May 11 at South Bend and harvested Oct. 18.; (b) planted (early) 1 75

North Central Table 2. U.S. No. 1 yield (cwt/A).

	Ave.	191 225 226 256 256	233 2013 2013 2013 2013 2013 2013 2013 2	
	Wisc.	348 590 490 356 608	410 485 6633 710 6692 715 715 715 715 715 715 715 715 715 715	661
	Ohio	252 176 289 292 289	344 839 839 839 839 839 839 839 839 839 839	313
	N.D.	127 143 128 202 170	151 166 170 170 170 170 170 170 170 170 170 170	171
Late fall	Neb.	161 143 182 201 273	113 113 113 113 113 113 113 113 113 113	193
Late	Neb.	130 110 135 209 165	117 87 87 103 144 154 165 165 165 17 17 181 131 136	136
	Mo.	143 198 169 232 183	200 133 105 173 173 173 173 173 173 173 173 173 173	169
	Minn.	265 225 278 304 305	317 317 317 317 317 317 317	293
	Mich.	206 328 244 300 287	308 308 309 309 309 509 509 509 509 509 509 509 509 509 5	321
	Kansas	90 112 209 211	131 118 118 172 196 1152 1152 1152 1152 1152 1153 1153	182
Early	Ind.			
Late	Ind.			
	Variety	ND6925-13 ND7196-18 Norland I. Coboler Norchip	Med. to late Neb 1.57-1 Neb 139.59-1 La 71-82 La 71-82 La 71-110 W623 W629 W710 Minn 3935 Minn 3935 B6097-9 B6495-12 B6495-20 ND7103-4 Red Pontiac BR6491-1 BR6863-3 BR7093-23	Average

North Central Table 3. Maturity classification1/

Ave.	0,0	1.5	0.0	2.9		2.4	2.7	3.1	3.6	3.2	3.3	2.5	6.0	w w	2.9	2.6	œ. ش	4.4	4.1	2.4	3.9				
Wisc.	2.0	1.5	٠ ٦	3.0		2.2	2.0	2.3	3.0	2.4	2.3	3.0	3.7	2.3	2.4	2.3	5.0	4.7	0.4	ر 8 9	0.4				
Ohio	200	0	2.5	2.7		2.0	0.0	2.0	2.4	2.7	3°3	2.5	3°,0	2.7	3.1	2.7	4.7	6.9	0.4	ر ش	4.4				
·A.	000	φ	0	ಣಿ		5	ņ	φ	φ.	<u>ښ</u>		ċ	ņ	φ.	0.	٠.	φ.	φ.	0	0.	ŗ.		-	4. V.	•
Neb.	2.5) O.	2.0	2,5		2.5	2.5	ဝ က	0,0	3.0	O. W	2°0	2.5	3.0	0°°	3.0	3.5	2.0	0.8	1.5	4.0	2.5	2.5		
Neb.	2.0) O.	2.5	2.5		1.5	1.5	ر ن د	3.5	3.0	0.4	1.0	2.0	9,0	3.5	2.5	٥ ٠ ٤	5.0	4.5	0,0	2.0	0.0	3.0		
Mo.	H	0.1	7.2			2.4	1.8	ω	7.0	3.6	3.0	2.5	α ∞.	2.2	2.5	2.5	4.0	3.5	∞ ∞•	2.4	3.5				
Mi.nn.																									
Mich.	200	0 0	0.8	2.5		2.5	3.5	0.4	3.5	2.5	3.5	3.5	3.0	3.0	2.5	0.8	3.5	5.0	3.5	2.5	4.5				
Kansas	3.0	. ω . Η	0.5	4.8		2.3			4.3	4.5	4.3	3,5	3.5	დ ლ	ထ္	ص 0	4.5	4.8	5.0	ص س	5.0				
Early Ind.																									
Late Ind.																									
Variety	ND6925-13	Norland	I. Cobbler	Norchip	Med. to late	Neb 1.57-1	Neb 99.56-4	Neb 1.39.59-1	La 71-82	La 71-110	W623	W629		Minn 3866	Minn 3915	Minn 3935	B6097-9	B6495-12	B6495-20	ND7103-4	Red Pontiac	BR6491-1	BR6863-3	B7093-23	01018

1

l = very early--Norland maturity
2 = early--Irish Cobbler maturity
3 = medium--Red Pontiac maturity
4 = late--Katahdin maturity
5 = very late--Kennebec or Dugret Burbank maturity

North Central Table 4. Total solids.

And the second of the second o							Tato	Totol				
	Late	Early					Summer	רמן הארך				
Variety	Ind.	Ind.	Kansas	Mich.	Minn.	Mo.	Neb.	Neb.	N.D.	Ohio	Wisc.	Ave.
ND6925-13	15.2	19.1	16.7	17.1	20.5		17.1	17.3	22.7		16.7	18.4
ND7196-18	15.4	18.8	15.6	17.5	18.4			16.8	20.7		16.5	17.9
Norland	15.0	17.1	15.6	15.4	19.5	18.6	16.5	16.4	20.3	16.6	14.1	16.8
I. Cobbler	15.9	20.1	18.4	18.0	21.2	•		18.1	21.4		15.8	23.0
Norchip	16.6	20.5	17.5	19.5	21.8	•		18.8	22.4		17.7	23.6
Med. to late												
	L r	r C	,				(-			(
Neb I.577-I	1, 2, 1, 4, 0, 1,	LX.I	0.97 0.00	17.3	20.5	21.6	18.0	17.7	22.0	17.9	15.4	18.3
Neb 22.00-4	17.0	T(.)	TO.01	T•/T	•	179.4	0.0	†. j.⊥	7.02		0	21.6
Neb 139.59-1	15.1	18.0	14.1	16.7	•	18.2	15,4	18.2	19.7		\circ	17.2
La 71-82	15.7	17.5	14.0	17.7	•	18.6	16.7	16.9	19.4		/	17.4
La 71-110	15.0	19.0	13,1	16.7	•	16.9	15.0	15.9	19.4		S	16.7
W623	17.4	21.3	16.5	19.4		20.9	18.0	18.2	23.3		ω.	19.4
M629	15.8	19.9	17.2	17.3	•	19.2	18.0	17.2	23.3		10	18.4
	15.0	16.0	13.3	15.4	•	16 2	15.6	15.3	19.7		α	15.9
Minn 3866		20.8	18.8	19.0	•	21.6	19.2	19.8	23.1		α	20.5
Minn 3915		18.8	17.0	17.7		18.6	17.7	18,2	22.4		5	18.5
Minn 3935		18.5	15.4	16.2		19.4	18.0	16.9	20.7		, LO	17.7
B6097-9	17.0	20.9	17.5	19.4		23.7	19.0	19.2	22.2		(0)	20.5
B6495-12	16.4	20.2	16.2	20.5	•	22.0	17.7	19.4	20.3		0	19.5
B6495-20	16.4	20.3	17.2	21,8	•	22.7	19.2	20.5	23.1		\	0,00
ND7103-4		19.4	17.9	18.4	•	20.1	19.5	17.6	22.7		10	18.0
Red Pontiac	15.0	17.3	14.8	17.8		17.1	15.2	16.7	18.6		10	16.7
BR6491-1							19.7	20.5				-
BK0003-3							77.KT	20.2				
BR'/093-23									20.9			
SK (U (Z-5												
Average	15.8	19.0	16.2	17.9	20.6	19.9	17.8	18.0	21.3	18.1	16.7	

Scab reactions report \mathcal{I} (most representative scab--area type). North Central Table 5.

Ind. Kansas Mich. Minn. No. Neb. Neb. Ni.D. Ohi		Late2/	Early2/					Late	Late			
$\frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{2} = \frac{1}$	Variety		Ind.	Kansas	Mich.	Minn.	Mo.	Neb.	Neb.	H.	Ohio	Wisc.2/
1-1	ND6925-13			l i	1-1	0-0		T-1	1-3	T .1	1-1	
1-1	ND7196-18			1	1-5	0-0		T-1	↑-I	7-7	0-0	
to late 1.57-1 9).56-4 1-1 1-1 1-1 1-1 1-1 1-1 1-2 0-0 0-0	Norland			1	0-0	3-5		0-0	2-1	1-1	0-0	
to late 1-1 0-0 0-0 1-2 1-2 1-2 0-9 3-56-4 1-3 0-0 0-0 1-2 1-2 1-2 1-9 0-0 0-0 1-2 1-2 1-2 1-9 0-0 1-1 1-1 1-1 0-0 0-0 1-2 1-2 1-2 1-9 0-0 1-1 1-1 1-1 0-0 0-0 1-2 1-3 1-1 0-1 1-1 1-1 0-0 1-2 1-3 1-3 1-1 0-1 1-1 1-2 0-0 1-2 1-3 1-3 1-1 0-1 1-1 1-2 0-0 1-2 1-3 1-3 1-1 0-1 1-1 1-2 0-0 1-2 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3	I. Cobbler			1	1-5	S C1		T-t	7-7	2-1	0-0	
to late 1.57-1 1.0-0 0-0 0-0 1-2 1-2 1.0-1 0-0 0-0 0-0 1-2 1-2 1.0-1 1-1 0-0 0-0 0-0 1-2 2-3 1.0-1 1-1 1-1 0-0 0-0 0-0 1-2 1.0-1 1-1 1-1 0-0 0-0 1-3 1.0-1 1-2 0-0 0-0 1-3 1.0-1 1-5 0-0 1-3 1.0-1 1-5 0-0 1-2 1-2 1.0-1 1-5 0-0 1-2 1-2 1.0-1 1-5 0-0 1-2 1-2 1.0-1 1-5 0-0 1-2 1-2 1.0-1 1-5 0-0 1-2 1.0-1 1-5 0-0 1-2 1.0-1 1-3 0-0 1-2 1.0-1 1-3 0-0 1-4 1.0-1	Norchip			t	0-0	2-1		T-3	0-0	T-1	0-0	
1.57-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1												
199.56-14 199.56-14 199.56-14 199.59-1 1-182 1-193 1-190	Neb 1.57-1			[-[0-0	0-0		0-0	0,1	0,1		
199.59-1 1-1 1-1 1-1 1-1 1-1 1-2 0-0 0-0	Neb 99.56-4			- -		0-0		0-0	1 4	۱ ۳ ۱ ۵	0-0	
1-10 0-0 0-0 1-3 1-1 0-0 0-0 1-3 1-1 0-0 0-0 1-3 1-1 0-0 0-0 1-3 1-1 0-0 0-0 1-3 1-1 0-0 0-0 1-3 1-1 0-0 0-0 1-3 1-1 0-0 0-0 1-2 1-1 0-0 1-2 0-0 1-2 1-1 0-0 1-2 0-0 1-2 1-1 0-0 1-2 0-0 1-4 1-1 0-0 1-3 3-5 1-1 0-0 1-4 0-0 1-4 1-1 0-0 1-4 0-0 1-4 0-0 1-4 0-0 1-4 0-0 1-1 0-0 1-4 0-0 1-4 0-0 1-1 0-0 1-4 0-0 1-1 0-0 1-4 0-0 1-1 0-0 1-1 0-0 1-1 0-0 1-1 1-2 1-1 0-0 1-1 1-2 1-2 1-1 0-0 1-1 1-2 1-2 1-1 0-0 1-1 1-2 1-2 1-1 0-0 1-1 1-2 1-2 1-1 0-0 1-1 1-2 1-2 1-1 0-0 1-1 1-2 1-2 1-1 0-0 1-1 1-2 1-2 1-1 0-0 1-1 1-2 1-2 1-1 1-2 1-2 1-1 1-2 1-2 1-1 1-2 1-2	Neb 139.59-1			1-1	1-1	3-3		0-0	0	3-7	3-6	
1-110	-			1-1	0-0	0-0		0-0	T-3	T-1	0-0	
3866	La 71-110			1-1	1-5	0-0		1-3	2-3	T-1	0-0	
3866 3867 3868 2-1 1-2 0-0 0-0 1-2 0-0 1-2 0-0 1-2 0-0 1-2 0-0 1-2 0-0 1-2 0-0 1-2 0-0 1-1 0-0 1-4 0-0 1-4 0-0 1-4 0-0 1-4 0-0 1-4 0-0 1-4 0-0 1-4 0-0 1-4 0-0 1-1 0-0 1-4 0-0 1-4 0-0 1-4 0-0 1-4 0-0 1-1 0-0 1-4 0-0 1-4 0-0 1-4 0-0 1-4 0-0 1-4 0-0 1-4 0-0 1-1 0-0 1-4 0-0 1-1 0-0 1-1 0-0 1-1 0-0 1-1 0-0 1-1 0-0 1-1 0-0 1-1 0-0 1-1 0-0 1-1 0-0 1-1 0-0 1-1 0-0 1-1 1-1 1-2 1-2	W623			1-1	1-5	0-0		$T-\frac{1}{4}$	2-4	1-1	0-0	
3866	W629			1-1	1-5	0-0		0-0	1-2	1-1	0-0	
3866				1-2	0-0	0-0		1-2	0-0	T-1	0-0	
3915 3915 3-1 1-1 1-3 0-0 0-0 1-4 0-0 1-1 0-0 1-7 0-0 1-1 0-0				2-1	1-4	0-0		0-0	3-5	2-2	0-0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Minn 3915			1-1	1-3	0-0		0-0	5-4	1-1	0-0	
iac 1-1 1-5 0-0 1-4 2-4 1-1 0-1 1-1 0-0 0-0 1-5 1-1 0-1 0-1 1-2 1-3 0-0 1-1 0-1 0-1 1-2 1-3 0-0 1-1 1-1 0-1 1-2 1-3 0-0 1-1 1-1 0-1 1-2 1-3 0-0 1-1 1-1 0-1 1-3 0-0 1-1 1-1 0-1	Minn 3935			3-1	0-0	0-0		1-4	0-0	1-1	0-0	
iac $\frac{1-1}{3-1}$ 0-0 0-0 1-5 1-1 0-0 $\frac{1-1}{3-1}$ 0-0 $\frac{1-1}{3}$ 0-0 2-1 0-1 1-2 1-2 1-3 0-0 1-1 1-1 1-2 1-2 1-3 0-0 1-1 1-2 1-3 1-2 1-3 1-2 1-3 1-2 1-3 1-3 1-2 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3	B6097-9			1-1	1-5	0-0		1-4	2-4	1-1	0-0	
iac 3-1 1-5 1-2 1-3 0-0 2-1 0- 3-1 1-5 1-2 1-3 0-0 1-1 1- 1-3 0-0 1-1 1- 1-3 0-0 1-1 1- 1-3 0-0 1-1 1- 1-3 1-2 1-2 1-2 1-2 1-2 1-3 1-2 1-1 1-2 1-3 1-2 1-1 1-2 1-3 1-2 1-1 1-2 1-4-61 = 80%	B6495-12			1-1	0-0	0-0		0-0	1-5	1-1	0-0	
ac 3-1 1-5 1-2 1-3 0-0 1-1 1- 2-1 1-5 2-3 0-0 2-1 2-1 0- T-3 T-2 T-3 T-2 T-3 3-5 1-1 T-3 T-2 T-3 1-1 T-3 T-2 T-3 1-1 T-3 1-2 T-3 1-2 T-3 1-2 T-3 1-1 T-3 1-2 T-3 1-2 T-3 1-2 T-3 1-2 T-3 1-2 T-3 1-2 T-3 1-1 T-3 1-2 T-3 1-2 T-3 1-2 T-3 1-2 T-3 1-2 T-3 1-1 T-3 1-2 T-3 1-1 T-3 1-2 T-3 1-1 T-3 1-1 T-3 1-2 T-3 1-1 T-3 1-1 T-3 1-2 T-3 1-1 T-1 T-1 T-1 T-1 T-1 T-1 T-1	B6495-20			1-1	0-0	0-0		T-3	0-0	2-1	0-0	
ac 2-1 1-5 2-1 2-1 0-0 2-1 2-1 0-0 2-1 2-1 0-0 2-1 2-1 0-0 2-1 2-1 0-0 2-1 2-1 0-0 2-1 2-1 0-0 2-1 2-1 0-0 2-1 2-1 0-0 2-0 2-1 2-1 2-1 0-0 2-0 2-1 2-1 2-1 0-0 2-0 2-1 2-1 2-1 0-0 2-1 2-1 0-0 2-1 2-1 2-1 0-0 2-1 2-1 0-0 2-1 2-1 0-0 2-1 2-1 0-0 2-1 2-1 0-0 2-1 2-1 0-0 2-1 2-1 0-0 2-1 2-1 0-0 2-1 2-1 0-0 2-1 0-	ND7103-4			3-1	1-5	H-2		1-3	0-0	1-1	1-1	
Area s. han 15, $3-41=60\%$ l = small, superficial 4 = larger pust 0% 2 = larger, superficial 5 = very large $1/6\%$ $5-31=100\%$ 3 = larger, rough pustules	Red Pontiac			- 0	1-5	2-3		O 6	۲-۲ ۱-۲	2-1	0-0	
Area s han L_{c}^{c} 3-41 = 60% 1 = small, superficial 4 = larger pust 0% 2 = larger, superficial 5 = very large 0% 3 = larger, rough pustules	BKO421-1 ppC862 2							Υ - -) L			
Area s han 1% $3-41=60\%$ l = small, superficial $4= \text{larger pust}$ 0% $2= \text{larger}$, superficial $5= \text{very large}$ $6-31=100\%$ $3= \text{larger}$, rough pustules	BR0003-3							T-3	3-7			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DA (095-65									1		
Area T = less han 1% $3-41=60\%$ 1 = small, superficial 4 = larger pust 1-1 = 20% $4-61=80\%$ 2 = larger, superficial 5 = very large $2-71=10\%$ 3 = larger, rough pustules	BK/U/2-5									1		
T = less than 15 3-41 = 60% 1 = small, superficial 4 = larger pust 1-1 = 20% 2 = larger, superficial 5 = very large $2-71 = 140\%$ 5 = very large 3 = larger, rough pustules							Pype					
= 20%	T = less	1,5		50		small	3 0	icial		large	pustules,	es, shallow
= 1 0% 3 = Larger, rough	II C1			50		large	•	ficial	5	very	rge	pustules, deep
	11			8		Larger			£0			

2/ No scab readings reported.

5 = very large pustules, deep holes

holes

North Cenaral Table 6. Summary of grade defects.

			External				Ir	Internal	
Variety	Scab	Growth	Second	Sun Green	Totall/ Free of Ext.Def.	Hollow Heart	Internal	Vascular Discolora- tion	Total 1/ Free of Int. Def.
Early ND6925-13 ND7196-18 Norland I. Cobbler Norchip	1,0 w g g 2,0 w g g 2,0 w g g	7.1.0 0.1.0 0.0.0	6.40 4.000 4.000	13.0 44.5 1.0	889 893.3 87.3 87.3	ν.ι.ο. 	44.000 64.400	& C + 7 & & & & & & & & & & & & & & & & & &	89.8 89.4 4.49 87.1 7.58
Med. to late Neb 1.57-1 Neb 99.56-4 Neb 139.59-1 La 71-82 La 71-82 MC23 W623 W629 W710 Minn 3866 Minn 3915 Minn 3915 Minn 3935 B6097-9 B6495-12 B6495-12 B6495-20 ND7103-4 Red Pontiac	$\begin{array}{c} \omega \circ \omega $	1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0	1 0 1 4 1 1 0 0 1 0 0 4 0 0 0 0 0 0 0 0	4 0 1 0 m 0 1 m 0 4 1 0 0 0 0 m 0 5 m 1 5 7 m 1 5 m 1 5 m 2 5 5 6 7	88888888888888888888888888888888888888	ou wu a u o a o o o o a u o a ñ wa i n o a i i i i i i i i i i i i i i i i i i	00000000000000000000000000000000000000	0 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0	88888888888888888888888888888888888888

1/ Percent normal tubers showing no defects (some individual tubers had more than one type of defect).

Possible weakness of a variety.

-34-

North Central Table 7. Merit ratings $\frac{1}{2}$

		-34-	
Total	13 5 0 10	+ 10 + 20 + 20 + 20 + 20 + 20 + 20 + 20	
Wisc.	m	こうせ る	
Ohio	Н	0 m v ==	
N.D.	€	4 m u	
Late fall Neb.	e	r 0	nts
Late Summer Neb.	オ	0 1 6 6	Merit Points 5 4 3
Mo.	CV	2 1 4 3	
Minn.	ч	700 N	Merit Rating 1 2 3 4 5
Mich.	4	4 0 mv	Merit
Kansas	٦	こ ち よ ろ	follows:
Early Ind.	ю ч	N to	a a
Late Ind.	m	07 L 7	determined
Variety	Early ND695-13 Russ ND7196-18 Norland I. Cobbler Norchip Med. to late	Neb 1.57-1 Neb 99.56-4 Neb 139.59-1 La 71-82 La 71-10 W623 W623 W629 W710 Minn 3866 Minn 3915 Minn 3915 B6097-9 B6495-12 B6495-20 ND7103-4 Red Pontiac	1/ Merit points

North Central Table 8. Chip quality

Variety	Kansas Mic	chigan <u>l</u>	Late½ summer Nebraska	Latel/ fall Nebraska	No. Dakota ² /	Wisconsin3/
ND6925-13 Russ ND7196-18 Norland I. Cobbler Norchip	poor good good excellent	6 3 7 6 2	6 2 2 2 3	5 3 3 4 2	31 34 36 34 44	70 77 71 71 74
Neb 1.57-1 Neb 99.56-4 Neb 139.59-1 La 71-82 La 71-110 W623 W629 W710 Minn 3866 Minn 3915 Minn 3935 B6097-9 B6495-12 B6495-20 ND7103-4 Red Pontiac BR6491-1 BR6863-3 BR7093-23 BR7072-5	good good excellent good good excellent poor poor poor	4553532467867429	2 2 6 6 7 4 3 3 7 6 3 6 7 4 2 7 4 1	213333133434531421	43 40 37 32 28 37 46 24 29 26 36 23 26 27 47 18	72 70 70 70 70 70 70 70 70 74 73 70

^{1/} Chip color PCII values (the lower the number the lighter colored the chip).

^{2/} Agtron--the higher the number the lighter the chip.

³/ Chip score--80 or more is acceptable.

ALABAMA

- J. L. Turner, Harrison Bryce and Hubert Harris Auburn University Frank E. Garrett - Gulf Coast Substation
 - S. E. Gissendanner and John Eason Sand Mountain Substation

Irish Potato Variety Trial, Sand Mountain Substation Crossville, Alabama

Experimental Procedure. Six named varieties and 32 numbered selections from Louisiana, Wisconsin, USDA, and Frito-Lay Company were grown in replicated plots at the Sand Mountain Substation, Crossville, Alabama. Seedpieces were cut to approximately 1-1/2 ounces each, treated for rot control and planted on March 13. Fertilizer was applied as 600 pounds of 8-24-24 broadcast prior to planting with 236 pounds of NH4NO3 plus 25 pounds of magnesium as a sidedress 30 days after planting. Plots were dug June 29. Potatoes were graded into sizes A and B for yield data. Samples of each variety and breeding line were returned to Auburn for laboratory analysis.

Results. Growing conditions were favorable this year for potatoes in the mountain section of Alabama. Yields were considerably better this year than for 1971. Lines B6595-5, B6987-56, Wisconsin 709, and Wisconsin 710 produced the largest total yields of marketable potatoes. These lines produced over 200 cwt. per acre. Wisconsin 710 also had excellent eye appeal along with Frito-Lay 162. Line I22-111 had a very dark red skin. Lines B6967-9 and B7005-3 had light pink or rose-colored skin. Plant vigor was good to excellent for all entries.

Chip quality and other related factors are presented in Table 2. Wisconsin 629 and B7024-4 had the highest chip color rating. Lines B6987-56 and B6516-26 had the highest specific gravity.

Alabama Table 1. Potato variety trial, Crossville, Alabama--1972

	Yield :	Per Acre		Eye	Eye	Skin		Eye
Variety	No. 1	No. 2	Total		Size		Shape	Appeal
	Cwt.	Cwt.	Cwt.	1	2/	<u>3</u> /		4
Superior	124.78	30.87	155.65		M	Wh	Rd./flat	4
Kennebec	154.33	21.07	175.40		S	Wh	Rd./long	4
Norchip —	76.82	37.79	114.6		S	Wh	Round	4
La Chipper	102.40	36.55	138.99		S	Wh	Round	4
Red La Soda	118.65	27.68	146.33		L	Red	Round	4
Frito-Lay 162	107.84	36.31	144.19		S	Wh/SR	Round	5 3
Frito-Lay 282 (Seminole)	124.63	15.55	140.18		S	Wh	Round	3
Frito-Lay 96	144.31	33.98	178.29	9 S	S	Wh	Round	3.5
122-110	149.05	26.90	175.9	5 M	S	Wh	Rd./flat	4
I22-111	102.48	22.86	125.3		M	Dark Red	Round	3.5
Wis. 664	149.51	31.26	180.7	7 D	M	Wh	Rd./flat	2.5
Wis. 623	109.94	45.64	155.58	3 s	S	Wh	Round	4
Wis. 629	94.00	48.99	142.9	9 S	S	Wh	Round	3 4
Wis. 708	138.47	27.21	165.6	3 D	M	Wh	Rd./long	
Wis. 709	182.87	24.42	207.29	9 S	S	Wh/SR	Rd./long	4.5
Wis. 710	173.38	31.80	205.1		S	Wh	Rd./long	
в5665-7	90.74	30.79	121.5	3 S	M	Wh	Long	3.5
в5698-8	91.28	28.69	119.9		S	Wh	Round	4
в6495-12	148.03	41.60	189.6		M	Wh	Long/fla	t 4
B6503-5	108.85	15.48	124.3		S	Wh	Long	4
B6516-3	102.16		126.5	3 s	S	Wh	Round	3.5
B6567-12	179.84		198.8		M	Wh	Long	3.5
в6595-5	193.68	23.56	217.2		M	Wh	Round	3.0
в6603-6	138.63	23.79	162.4		L	Purple	Round	ì
B6603-12	85.22	68.97	154.1		M	Wh	Long	3
в6967-8	153.64	24.65	178.2		L	Pink	Round	3
B6967-9	115.93	39.65	155.5		M	Rose	Round	3 3 4
в6987-22	106.36		134.6		S		Round	4
B6987-37	117.79		138.8		S	Wh	Rd./flat	4
B6987-54	137.46	17.65	155.1		S	Wh/SR		4
B7005-3	116.62	22.94	189.5		S	Pink	Round	3
B7024-4	119.81		147.4		S	Wh	Round	3 3.5
B7024-6	137.55		168.2		S	Wh	Long	4
B6516-26	131.16		156.2		S	Wh/SR		4
B6532-4	159.00		181.1		S	Wh	Rd./flat	
B6562-14	127.43		162.0		S		Rd./flat	
B6515-14	169.73		199.1		M	Red	Round	3
B6987-56	186.29		214.9		S		Round	4.5
2-/	200 02 7			1.1		TILLY DI	1.0010.	

^{1/} S = Shallow; M = Medium depth; D = Deep

^{2/} S = Small; M = Medium; L = Large

^{3/} Wh = White; SR = Some Russet

 $[\]frac{4}{1}$ = Poor; 5 = Excellent

Alabama Table 2. Quality and processing evaluations, Crossville, Alabama -- 1972 1/

•	Raw tuber pr	operties 2/	Potato chip p	
	Specific	Total	Chip	Chip
Variety	gravity	solids	weight 3/	color
	1.0 omitted	Pct.	grams	4/
Superior	836	20.9	174	8.9
Kennebec	803	20.3	166	6.1
Norchip	836	20.9	163	6.8
La Chipper	821	20.6	162	6.1
Red La Soda	705	18.2	154	5.3
Frito-Lay 162	818	20.6	173	5.3
Seminole	856	21.4	175	7.3
Frito-Lay 96	819	20.6	166	6,6
122-110	718	18.5	153	5.6
I55-111	764	19.5	155	4.4
Wis. 664	860	21.5	164	6.1
Wis. 623	774	19.7	167	7.0
Wis. 629	784	19.9	166	9.3
Wis. 708	845	21.2	167	8.4
Wis. 709	671	17.5	146	5.1
Wis. 710	713	18.4	158	4.8
B5665-7	805	20.3	176	6.1
в5698-8	698	18.1	156	8.1
B6495-12	816	20.5	165	5.9
B6503-5	860	21.5	177	8.7
B6516-3	854	21.4	180	6.1
B6567-12	741	19.0	157	4.5
B6595-5	841	21.0	168	6.2
B6603-6	859	21.5	178	6.0
B6603-12	860	21.5	174	8.5
B6967-8	778	19.8	167	7.6
B6967-9	770	19.6	159	7.0
B6987-22	835	20.9	163 164	6.1
B6987-37	856 83 <i>c</i>	21.4		6.3
в 6987- 54 в 70 05-3	835	20.9	167 161	6.5
	729 83.1	18.8 20.4		5.1
B7024-4 B7024-6	811 820	20.4	169	9.1 8.6
B6516-26	928	22.9	170 177	
B6532-4	920 820	20.6	163	6.5
B6562-14	841	21.0	169	4.9
B6815-14	651	17.0	148	4.9 3.6
B6987-56	941	23.1	179	7.0

^{1/} Mean of tests on samples from four randomlized plots grown at Sand Mountain Substation, Crossville, Alabama. Potatoes were planted March 13, dug June 29, stored at 60° F for approximately two weeks before processing.

Determined by standard specific gravity method.

^{2/} Determined by standard specific gravity method.
3/ Weight of chips from 454 grams prepared slices (washed, friction peeled, sliced 1/20", washed, centrifuged, fried 2.5 to 3 min. 350° F down to 325° F, drained). Based on scale of 1 as very dark and unacceptable to 6 as barely acceptable to 10 as very bright and highly acceptable.

ALASKA

Curtis H. Dearborn

Our planting season ran from May 28 to June 16 due to wet, cold soil conditions. Soil moisture for normal growth lasted until August 10. From then on non-irrigated potatoes were very dry. Field frosting destroyed the vines September 15 and 16, 1972.

Tuber families (4-16 clones) of 34 species represented by 119 samples were obtained from IR-1 stocks of P.I. numbered clones. These 34 species planted June 8 were: S. acaule, S. acroglossum, S. acroscopicum, S. ambosinum, S. boliviense, S. brachycarpum, S. canasense, S. cardiophyllum, S. chacoense, S. chancayense, S. clarum, S. demissum, S. fendleri, S. hjertingii, S. huancabambense, S. immite, S. infundibuliforme, S. medians, S. megistacrolobum, S. multidissectum, S. phureja, S. raphanifolium, S. sanctae-rosae, S. sogarandinum, S. spegazzinii, S. stenotonum, S. stoloniferum, S. toralapanum, S. tuberosum ssp. andigena, S. venturii, S. vernei, S. verrucosum, S. violaceimarmoratum, S. weberbaueri. Harvest was delayed until early October to permit those that withstood frosting to continue growth. These species were: S. acaule, S. demissum, and S. multidissectum. Tubers were found only on S. phureja, S. sanctae-rosae, S. stoloniferu, and S. tuberosum ssp. andigena. It was a very short growing season for small tubers planted this late. Much genetic variation in plant type, leaf character, flower color and seedball formation was noted.

Four replications of 48 varieties and seedling clones were harvested August 18 to determine their merits for early production. Eleven clones; Alaska 114, Cariboo, Iopride, Kennebec and seven Alaska clones yielded at the rate of 100 or more cwt/A. Iopride was 143, Kennebec 113 and three Alaska clones were 119, 120 and 121 cwt/A. Clone Ak. 5, a red-skinned selection yielded 83 cwt. which was more than double that of Chieftain.

Four replications of 66 varieties and seedling clones were harvested September 21 for yield and chipping characteristics.

Eight clones exceeded the productivity of Green Mountain which was 269 cwt/A of 2 to $3\frac{1}{2}$ inch tubers. Clone Ak. 3-58-35-68, a desirable processing type produced at the rate of 281 cwt. and Ak. 5, a smooth red yielded at the rate of 327 cwt/A. Acceptable commercial grade chips have been made frequently since harvest from new selections held continually at 48 to 50° F.

We have detected, in chips of two imported clones, the bitterness that we detected in B-5141-6 in earlier years. These were B-6515-10 (B-3627-18 x B-5141-6) and BR-6820-29 (Wauseon x B-3819-17). In addition the objectionable flavor was detected in a selection from Ak. 14-58-6-60 x B-5141-6 and in a selection from Ak. 1-62-90-64 x B-5141-6.

Specific gravity readings for most clones were .008 to .014 higher than in a wet season. Clones that were under 1.095 just did not have the genetic potential to store at a higher ratio.

Three series of B numbered potato seedlings from Beltsville were grown and evaluated for tops and tubers. The series B-9196 through B-8304 (fourteen pedigrees) were definitely more sensitive to rhizoctonia than seedlings from the Alaskan crosses Of course, their parentages were quite different also.

Clone B-7623-l of another series has an irregular pattern of scar tissue of the leaves of all plants which David Wilson of Aroostook Farms, Maine, writes is common to this clone in Maine, also.

Topride under our conditions carries some genetic factor in its apical region that permits stem elongation at a very constant rate following emergence and until it is 14 to 18 inches tall. Rossetting, which is undesirable, takes place in other clones in response to light directly following emergence.

CALIFORNIA

R. E. Voss, J. C. Bishop, K. G. Baghott, D. N. Wright, W. A. Wright

In 1972, over 100 seedlings and named varieties were grown and evaluated at six sites in California, but not all entries were grown at all locations. Seed potatoes were obtained from the breeding programs in Washington, Idaho, Colorado, and Beltsville (grown in Maine), from the Western Regional trials in Aberdeen, and from foundation stock at California Stockton Delta.

Table 1 summarizes the averages of several yield and quality components from sites 1-5. Sites 1, 2, and 3 were in Kern County, site 4 was at Davis, and site 5 was at Tulelake. Site 6 was in Humboldt County, and only a few chipping varieties were grown there.

Table 2 summarizes the data from site 6. Table 3 lists the top seedlings from the various sites based only on No. 1 yield, percent No. 1's, specific gravity and a visual tuber rating taken at harvest. Each category was rated on a 1-5 scale, with 1 being very poor and 5 very good. Minimum requirements for a 4 rating in each category were 300 cwt/A, 81%, 1.081, for No. 1 yield, percent No. 1's, and specific gravity, respectively.

A primary objective of the California program is to find a russet that will be satisfactory in the San Joaquin and other hot interior valleys for spring and summer harvest. The current primary market is fresh market, but processing potential is also of interest.

The russets with the most promise appear to be WC285-18, WC316-1, WC316-3, WC325-1, WC330-7, WC285-141, WC284-7, WC285-110, WC285-20, Wn168-3, A63126-2, A64187-4, B7583-6, B7483-15, B7683-6, and B7781-13.

The top whites for chipping were A503-42, BR5960-5, BC7222-5, BR6316-5, Cascade M, in addition to Norchip, Monona and Shurchip.

The two top reds were Norchief and DT6063-IR.

The trial in Humboldt County produced some revealing information on late blight susceptibility. This coastal area has a high frequency of blight infestation. Cascade M, a selection by Dr. William Hoyman from a verticillium trial, was very tolerant, or perhaps even resistant to late blight infestation. In contrast, Cascade was very susceptible, as were Monona, BR5960-5, A503-42, Shurchip and Norchip. Kennebec was intermediate.

Yield and quality measurements and ratings from five California locations. California Table 1.

A503-42 A6305-20 A6334-19 A6382-10 A63126-2 A6477-4 A64187-4 A64206-4	<u>ი</u> ი ი ი ი ი ი ი ი ი ი ი	420 265	0 1	.20	S.G. 3/	H S	SR	NAL THE	Kaltiig	Karıng
1		265	85		82	5.8	6.4	4.1		
1-19 5-2 5-2 1-4 1-4 1-4 1-4	ი აი აი აი აი აი აი აი აი აი აი აი აი აი		84	6.5	77			2.7		
2-10 5-2 5-9 11 7-4 12 14	જં જે જે જે જે જે જે	285	84		81	7.0	8.0	3.8		
56-2 56-9 11 7-4 11	ઌ૽ <i>ઌ૽ઌ૽ઌ૽ઌ૽</i>	260	74		06			3.6		
-9 -4 -4 -4	က်က်က်က်က်	345	87		84	6.4	8.0	4.1		
7 -4 -4	ڏن ڏن ڏن	310	75	φ. ∞	84	8.5	8.0	4.1	2.0	
-4 -4	က် က် က်	295	9/		79			3.9		
1 1	ن نن	450	87		82			4.1		
	.5	255	74		86	7.2	7.5	4.0		
		260	83	5.9	82			3.6		
-75 1	-5	355	74		77			4.1		
1 1	5	235	9/		82	8.0	0.6	3.0	2.8	
-169 1	-5-	285	29	7.8	75			3.2		
7 1	5.	315	87	7.1	82			3.6		
)-25 1	.5	340	78		91			4.1		
122-3	.5	285	99		84	6.8	8.0	4.0		
-5 1	.5	460	87	9.2	80			4.0		
1	.5	330	91	9	82			3.6		
7-2	5.	330	75	9.6	73			3.5		
598-1 1	5	295	84		72			3.4		
44-14	-4	355	84		82			3.9		
47-17 1	-5	295	77	7.6	89	-		4.0		
7–36 1	.5	305	79		7.5	7.0	8.0			
7147-37	7,	140	63		78					
196-4	.5	240	9/		73					
7196-40 1	.5	250	79		79		8.0			
7196-56 1	.5	340	87		77	5.0	0.6			
	5-	220	78	7.2	85					
200-6	-5	395	87		78					
583-6 3	-4	470	95	9.1	92	4.5	6.5	4.0	3.0	4.5
83-15 3	ζ	325	87	•	98	•				

Table 1. (Continued)

B7584-10 B7607-3 B7608-2	Grown	Cwt/A	1 s	or I's, Oz.	S.G. ³ /	Chip Color-	SR SR	Vine-' Rating	Tuber Kating	Overall'' Rating
607-3 608-2	3-4	185	89	7.8	86	4.0	0.9	2.5	2.0	
7608-2	3-4	155	54	5.9	75	0.9	0.6	3.1	2.0	1.8
	3-4	325	78		77			3.1		
B7625-19	3-4	340	9/	10.0	74			3.6	2.0	2.8
B7631-7	3-4	310	82	7.2	70			2.9	1.0	
7636-6	3-4	160	80	5.8	79	0.9	0.6	2.0	2.0	2.2
7636-9	3-4	240	80	6.4	98	8.0	0.6	3.0	2.5	3.1
B7637-5	3-4	320	98	7.1	82			3.0	1.5	3.4
7655-3	3-4	335	82	6.7	73			3.2	2.0	3.0
7655-9	3-4	370	88	7.0	72			3.2	2.0	3.0
7656-6	3-4	190	84	0.9	73			2.7	1.5	2.1
9-0992	3-4	275	82	7.0	83	7.0	10.0	3.0	2.5	3.4
7663-15	3-4	350	83	7.4	78			3.1	2.0	3.2
7677-2	3-4	305	9/	9.6	78			3.0	2.0	
7678-2	3-4	270	29	7.5	9/			2.9		
7678-13	3-4	450	87	8.5	72			3.6	•	3.2
8-6297	3-5	380	98	7.9	9/			3.4	•	
7683-6	3-4	385	95	7.7	78	8.0	10.0	3.1	3.0	
7684-5	3-4	360	79	10.1	73			3.5	•	
7711-2	3-4	290	98	7.1	75			3.0		2.8
732-2	3-4	450	79	12.6	83	4.0	0.6	4.1	2.0	3.5
7778-1	3-4	280	87	6.8	70	0.9	10.0	2.6		2.6
7781-13	3-4	395	90	8.8	80			3.9		3.8
WC230-14	1,3-5	280	83	8.1	75			4.0	2.5	2.9
WC283-8	3-5	330	72	8.2	72			4.0	2.0	2.8
WC284-7	1,3-4	340	83	6.9	81	5.7	8.0	4.0		
- 1	3-4	455	82	11.4	29			4.2		
WC285-9	3-5	290	9/	9.2	72			4.2		
WC285-18	•	400	87	10.1	82	9.9	9.5	4.1		
WC285-20	1-4	310	91	9.8	77			4.0		
WC285-83	1,3-5	345	78	10.9	84	8.4		4.1		3.5
9-9	1	270	87	7.0	84	5.3	7.5		3.0	3.5
WC285-110	3-5	415	79	11.4	92	•	•	4.5	2.3	3.8

Table 1. (Continued)

Variety or Seedling No.	Sites 1/ Grown	$1^{\circ} \frac{2}{s^{-1}}$	% 1 s	Ave. Wt. Of 1's, Oz.	S. G. 3/	Chip Color4/ H SR	olor 4/ SR	Vine 5/ Rating	Tuber 6/ Rating	Overall ⁷ /Rating
WC285-141	1,3-5	395	85	0	82	5.4		9		
WC285-146	,3-	390	84		92	7.0	10.0		0	
WC300-4	- 1	415	72	6	80					
WC302-7	3-4	215	65		9/					
WC304-4	- 1	7460	83	ij	72					
WC314-2		370	77		84	7.0	9.5			
WC314-3		420	83	0	79					
1	- 1	315	73		63					
WC316-1		420	92		77					
2		480	88		81	6.7	9.7			1 .
WC325-1		420	81		87					
WC325-5		475	80	0	85					
WC330-4		325	99		89	0.9	0.6			
WC330-7		370	87		87	5.8				
BC7163-6	- 1	385	82		74					
BC7204-14	- 1	407	09		89					
BC7222-5	î	200	89		84	6.2	7.7			
BC7222-30	- 1	355	80		76					
BC7257-2	- 1	280	57		92	5.5	7.5		e	
BC7358-1		475	69		9/					
DT6063-IR	- 1	325	89	0	83	5.6	8.2			
Wn168-3	- 1	325	06		93	a				
Wn284-1		250	88		78					
ND6993-13	- 1	190	53	0	79					
ND7003-2		255	81	0	63					
Cascade		340	91		75	5.0	9.5			
Cascade M		465	98		78	0.9				
Chieftain		385	06	0	72					
Kennebec	2-5	375	80		81	4.4	7.6			
Norchief	-	420	98	7.4	9/					
Norchip	1	325	77	0.9	98	4.2	0.9	4.0	3.3	3.8
Nor. Russet	3-5	3	85	8.9	72					

Table 1. (Continued)

9.1 73 4.5 5.0 4.0 3.8 7.7 74 4.1 2.8 3.4 5.6 86 5.8 8.0 4.1 2.3 2.8 7.7 78 4.5 7.0 4.1 3.0 3.8 6.1 85 4.5 7.0 4.1 2.3 3.6 10.4 75 7.0 8.0 4.0 2.3 3.4 9.0 76 7.0 8.0 4.0 2.8 3.0	Sites $\frac{1}{1}$, $\frac{2}{s^2}$ Grown Cwt/A
78 74 74 86 5.8 8.0 4.1 2.3 78 4.1 2.3 75 70 80 4.1 2.3 4.1 2.3 75 70 80 70 70 70 70 70 70 70 70 70 7	89
74 4.1 2.8 86 5.8 8.0 4.1 2.3 78 4.5 7.0 4.1 3.0 85 4.1 2.3 75 4.1 3.7 76 7.0 8.0 4.0 2.8	87
86 5.8 8.0 4.1 2.3 78 4.5 7.0 4.1 3.0 85 4.1 2.3 75 4.1 3.7 76 7.0 8.0 4.0 2.8	85
78 4.5 7.0 4.1 3.0 85 4.1 2.3 75 4.1 3.7 76 7.0 8.0 4.0 2.8	65
85 4.1 2.3 75 4.1 3.7 76 7.0 8.0 4.0 2.8	98
75 4.1 3.7 76 7.0 8.0 4.0 2.8	84
76 7.0 8.0 4.0 2.8	06
	29

1/1-3 Kern County, 4 Davis, 5 Tulelake.

2/ Greater than 2" diameter.

 $\frac{3}{}$ 1.0 omitted (e.g. 82 is 1.082).

NPCI color chart: H = color at harvest, SR = color after 60 days at 45° F and reconditioned for 15 days at 65° F. 14

Vigor and size rating: 1 = very poor, 5 = exceptionally good. 5

Visual rating at harvest: 1 = very poor, 2 = unacceptable, 3 = questionable, 4 = good, 5 = outstanding. **9**1

Average of ratings for No. 1 yield, % No. 1's, specific gravity and tuber rating. 7

California Table 2. Yield, specific gravity, chip color and late blight index for several chipping varieties grown in Humboldt County.

Variety or	Seed		.Yield	$\operatorname{Spec.}^{\underline{1}/}$	Chip	Color ^{2/}		Index 3/
Seedling	Source	9"	12"	Grav.	H	SR	60 Dys	85 Dys
A503-42	Idaho	275	320	96	5	4	2-	8
BR5960-5	Idaho	230	230	97	4-	7	3+	9
Cascade	Idaho	330	245	85	5	10	1-	9
Cascade M	Wash.	420	505	90	5	9.5	0	1
Kennebec	Delta	290	280	84	4	5.5	1	5
Kennebec	Idaho	385	335	87	4	6	1+	5
Monona	Idaho	180	140	89	4	4-	2	10
Norchip	Idaho	215	335	87	4-	4	2+	7
Norchip	Delta	200	150	94	4-	5	2	7
Shurchip	Delta	250	215	88	4	6	1+	8

^{1/} 1.0 omitted (e.g., 96 = 1.096)

^{2/} NPCI color chart; 1 = white, 10 = black (6 maximum acceptable color), H = color at harvest, SR = color after storage and reconditioning.

^{3/} Blight index: 1 = few lesions, 10 = dead. 60 and 85 dys are days after emergence.

California Table 3. Top seedlings and varieties based on yield of No. 1's, percent No. 1's, specific gravity and visual tuber rating.

	2/	~,	3/	4/	5/
Variety or	No. 1's 2/	%	Spec. 3/	Tuber4/	Overall -
Seedling No.	Cwt/A	No. 1's	Grav.	Rating	Rating
$B7583-6^{1/2}$	470	95	92	3.0	4.5
A503-42	420	85	82	3.8	4.2
BR5960-5 _{1/}	460	87	80	3.6	4.2
WC285-18 $\frac{1}{1}$	400	87	82	3.8	4.2
BC7222-5 $\frac{1}{2}$	500	89	84	4.0	4.2
Wn168-3	325	90	93	4.0	4.2
BR6316-5/	330	91	82	3.4	4.1
WC316-1 $\frac{1}{1}$	420	92	77	3.3	4.1
WC316-3 $\frac{1}{1}$	480	88	81	3.3	4.1
WC325-1 $\frac{1}{1}$ /	420	81	87	2.3	4.1
WC330-7 [±]	370	87	87	3.3	4.1
A63126-2	345	87	84	4.0	4.0
A64187-4 1/	450	87	82	3.0	4.0
WC285-141 [±]	395	85	82	3.8	4.0
Norchief	420	86	76	4.0	4.0
Cascade M/	465	86	78	3.6	3.9
B7583-157	325	87	86	2.7	3.9
$B7683-6\frac{1}{1}$	385	95	78	3.0	3.8
B7781-13 [±] /	395	90	80	4.0	3.8
WC284-7 $^{\pm 1}$	340	83	81	3.3	3.8
$WC285-110^{-17}$	415	79	92	3.8	3.8
DT6063-IR	325	89	83	3.4	3.8
Norchip	325	77	86	3.3	3.8
Shurchip	400	86	78	3.0	3.8
Monona 1/	400	89	73	4.0	3.8
WC285-20-	310	91	77	3.2	3.8

^{1/} Data not from replicated plots.

^{2/} Greater than 2" diameter.

^{3/ 1.0} omitted (e.g. 82 is 1.082).

^{4/} NPCI color chart: H = color at harvest, SR = color after 60 days at 45° F and reconditioned for 15 days at 65° F.

^{5/} Vigor and size rating: 1 = very poor, 5 = exceptionally good.

COLORADO

James A. Twomey

Seedling Program: Approximately 15,000 first year seedlings were grown in 1972. Seedlings were obtained from Dr. Raymon E. Webb, Beltsville, Maryland; and Dr. William G. Hoyman, Prosser, Washington. The seedlings grown in 1972 were from crosses which produced primarily russet types.

Seedlings were planted the first week in May and harvested the second week in September. Approximately 230 first year seedlings were selected for testing in 1973. From 187 second year seedling, 17 were selected for further testing. Fourteen advanced seedlings are being increased and tested for fresh market and processing qualities.

Thirty-five varieties and advanced seedlings were tested for specific gravity and chip color, and these data may be found in Table 1.

Yield Trial: Nineteen varieties and advanced seedlings were included in the 1972 yield trial. Plots were planted May 4 on fall-plowed alfalfa ground. Each plot was two rows, 30 ft. long and 34 inches apart, with 12-inch spacing in the row. Fertilizer (18-46-0) was applied four inches below the seedpiece at planting at the rate of 430 lbs/A. Each selection was replicated four times, and harvest date was September 22. Data for the yield trial may be found in Table 2.

Colorado Table 1. Chip color- and specific gravity- of 1972 advanced seedlings.

					's 40 ⁰	10Wk's	s 50°
	Specific	Harvest	3 Wk's 70 ⁰	1Wk 70°	3Wk's 700	IWk 70°	3Wk's 70
Clone	Gravity	Color	Color	Color	Color	Color	Color
W168-3	1.092	41.0	28.0	15.0	19.5	16.0	22.5
WC316-7	1.093	31.0	25.0	16.0	19.0	19.0	22.0
BC7805-9	1.096	43.0	33.0	15.5	25.0	21.0	30.0
WC326-3	1.092	39.0	22.0	7.5	15.0	14.0	16.0
WC345-14	1.099	41.0	36.0	22.0	25.0	17.0	31.0
BC7635-2	1.090	38.5	36.0	18.0	19.0	16.5	25.0
BC7602-1	1.102	42.5	38.0	23.5	26.0	26.0	32.0
BC7021-1	1.088	43.0	30.0	23.0	24.0	24.5	29.0
BC7812-1	1.089	21.0	23.0	10.0	12.0	15.0	14.0
BC7679-4	1.086	30.0	15.0	12.0	14.0	12.0	13.0
WC331-1	1.087	32.0	27.0	15.0	15.0	14.5	16.5
WC300-4	1.096	26.0	18.0	7.0	13.5	16.5	17.0
BC7632-1	1.100	26.0	25.5	18.0	14.0	15.5	18.0
WC345-15	1.098	37.0	32.5	28.0	26.0	26.5	28.0
WC325-1	1.114	38.0	28.5	12.0	26.0	16.0	23.0
Oromonte	1.088	32.0	32.0	22.5	22.0	23.0	33.0
WC315-1	1.090	30.0	34.0	9.0	11.5	11.0	13.0
WC285-141	1.086	37.0	26.0	13.5	18.0	15.0	12.0
WC285-146	1.085	28.0	23.5	6.0	10.0	8.5	12.0
WC316-1	1.087	32.0	37.5	10.0	14.5	12.5	17.0
WC304-4	1.081	32.0	36.0	5.0	10.0	9.5	12.5
WC314-2	1.093	32.0	35.0	7.0	17.0	15.0	16.0
WC284-7	1.083	31.5	34.0	11.0	12.0	14.0	18.5
WC284-20	1.079	32.0	29.0	10.5	14.0	12.0	15.0
WC285-18	1.088	31.0	27.0	10.0	15.0	12.0	15.0
WC285-85	1.092	40.0	35.0	21.5	19.0	19.0	25.5
WC285-83	1.091	32.5	36.0	19.5	20.0	20.0	22.5
BC7163-2	1.082	34.0	26.0	21.0	25.0	20.5	32.0
BC7010-2	1.083	24.5	30.0	7.0	15.0	14.0	17.5
WC283-8	1.080	20.0	26.0	8.0	13.0	10.0	13.0
BC7222-5	1.085	34.0	20.0	11.0	14.0	20.0	23.0
B5141-6	1.106	41.0	36.0	27.0	31.5	31.0	32.5
Abnaki	1.090	36.0	30.0	12.0	15.0	18.0	24.0
Norchip	1.083	38.0	36.0	20.0	29.0	30.5	33.0
Jewel	1.089	32.5	34.0	23.0	25.0	28.5	31.0

^{1/} Chip color determined with Photovolt reflectance meter. Color readings of 25 or above acceptable.

^{2/} Specific gravity determined by potato hydrometer.

Colorado Table 2. Total yield & grade for variety trial.

				ield Per	r Acre			
•	U. S. N	0. 1	U.S.		B size		Total	U.S.
	4-10 oz.	>10 oz.	No. 2	Culls	<4 oz.	Total	U. S. No. 1	No. 1
	Cwt.	Cwt.	Cwt.	Cwt.	Cwt.	Cwt.	Cwt.	Pct.
WC285-141†	183.3	215.8	21.5	2.8	12.5	435.7	398.8	91.5
WC285-146†	256.3	78.8	9.5	0.5	26.4	371.5	335.1	90.2
WC283-8†	172.3	44.5	19.5	1.0	38.4	275.5	216.8	78.4
WC284-7+	203.0	29.2	31.0	1.0	51.2	315.1	232.2	73.6
WC284-20†	168.2	151.8	16.1	4.4	21.8	362.0	319.7	88.4
WC285-18†	275.2	95.0	20.0	0.5	41.2	431.9	370.2	85.7
WC285-83†	123.6	134.4	30.0	0.5	10.8	299.0	258.0	86.0
WC285-85†	202.5	85.2	10.5	0.3	20.5	318.7	287.7	90.2
R. Burbankt		13.6	19.2	3.3	92.4	408.6	293.4	71.9
WC230-14†	267.0	78.3	17.7	1.5	37.1	401.7	345.3	85.9
BT5215-2	261.9	79.1	14.3	0.5	24.6	380.7	341.5	90.2
UX123-4-2*	272.9	15.4	4.6	1.0	50 .7	344.3	288.0	83.7
67-64-6*	216.6	7 8.8	8.4	3.1	22.0	329.0	295.4	89.5
DT6063-1R*	225.8	75.5	20.2	4.1	20.7	346.1	301.1	87.0
R. McClure*		46.1	69.9	11.0	33.8	474.4	359.7	76.0
Kennebec	187.9	71.9	47.6	4.9	27.1	339.5	259.8	76.3
BC7257-2	278.5	61.4	34.0	5.4	28.2	407.3	340.0	83.6
BC7163-2	276.7	21.2	17.2	1.8	42.5	359.2	297.7	83.0
Oromonte	290.3	104.2	2 7. 6	4.4	42.8	469.0	394.2	84.1
LSD	42.0	35.9	18.9	6.9	13.9	52.2	49.3	16.8

[†]Russet Selection

^{*}Red Selection

CONNECTICUT

Arthur Hawkins

Potato Variety and Seedling Test in Connecticut--1972

The 1972 potato variety test was conducted on a commercial potato field in the Connecticut River Valley under good soil conditions and good insect control throughout the season. The fertilizer was applied in sidebands as rows were furrowed out.

Because of the record rainfall of 7 inches in May and 8 to 11 inches in June, an additional 60 lbs of nitrogen per acre was topdressed prior to final hilling. Irrigation was applied one time. Foliage of all longer-season varieties was dead by September 25.

Seed was supplied by the USDA National Potato Breeding Program from Presque Isle, Maine, except Hudson from Cornell.

Plots were single rows, 21 feet, replicated four times. Experimental procedures, total yields, yields over 1-7/8" with seriously off-shaped tubers removed, percent of tubers over 4", specific gravity, and chip color are given in Connecticut Table 1. Soil tests and fertilizer rates are also given in the footnotes.

Yields. Highest yields over 1-7/8" and free of off-shape were produced by B6567-12, Hudson, Abnaki, Cascade and Oramonte; followed by S47156, and Norchip slightly higher than Katahdin; and relatively low yields by Superior, Alamo, Peconic and B6562-14.

Specific Gravity. Highest specific gravity was produced by Oramonte, Hudson, Norchip, B6562-14, Abnaki, S47156, and Cascade; followed by Katahdin, B6567-12, Peconic, Superior, and Alamo lowest.

Chipping Quality. Abnaki and B6562-14 were superior to all varieties, followed by Peconic, Katahdin and Oramonte. Hudson, Norchip and S47156 chipped slightly better than Superior and Cascade. Alamo and B6567-12 chipped dark.

<u>Tuber Observations</u>. Presence of hollow heart, drought spot, stem-end discoloration and vascular discoloration was determined on 20 tubers (5 tubers from each of 4 replicates), size $2\frac{1}{2}$ -3" diameter.

Hollow heart: Tubers $2\frac{1}{2}$ -3" diameter: Alamo, 1 in 20 (1/20); others none. Tubers over 4": Abnaki, 6 of 11 (6/11); Katahdin, 1/1; S47156, 2/3; Hudson, 0/3, but a $3\frac{1}{2}$ " tuber had hollow heart.

Drought spot: None in 1972. In 1971 present in some varieties notably Oramonte, 7/20; Norchip, 3/20; Hudson, 1/20; Peconic, 1/20.

Stem-end discoloration: All had some less than 1/8" depth. Slight $(1/8-\frac{1}{4})$:

Abnaki, 10/20; Hudson, Oramonte and Peconic, 9/20; Superior and S47156, 8/20;

B6567-12, 7/20; Norchip, 6/20; Katahdin and Alamo, 3/20; Cascade, 3/20.

Moderate $(\frac{1}{4}-\frac{1}{2})$: Oramonte, 6/20; Abnaki, Katahdin, Norchip, Superior, 3/20;

Alamo, 1/20. Severe $(\frac{1}{2})$ +: Katahdin, 2/20.

Vascular discoloration: Very slight (just detectable): Superior, 9/20;
Alamo, 8/20; Oramonte and B6567-12, 7/20; Norchip, Peconic, 5/20; Katahdin, 3/20; Cascade, S47156, 2/20; Hudson, 1/20; Abnaki and B6562-14, 0/20.
Slight (1/3 of tuber length light discoloration): Alamo, 4/20; Katahdin, Oramonte, and Peconic, 3/20; Abnaki, 2/20; others, 0/20.
Moderate (darker and 2/3 tuber length): Oramonte, 1/20.

Connecticut Table 1. Yield , specific gravity, and chip color of potato varieties and seedlings - Connecticut, 19722/

Variety or seedling	Total yield	Yield	d per ac	re over	1-7/8"	Tubers	Specific	c, Chip
Spacing 9" except as noted	per acre			Free off-sha		over 4"	gravity	2/ color 2/15/73
***************************************	Cwt	9/2	Cwt	%	Cwt	%	1.0+	
Abnaki (8")	433	98	426	98 ·	426	5.1	82	6.3
Alamo	323	90	289	90	289	0.0	68	9.1
Cascade	461	91	420	90	415	0.0	81	8.3
Hudson (8")	487	96	467	95	464	1.4	84	7.4
Katahdin	370	96	354	96	354	0.7	77	6.9
Norchip(10")	416	93	387	89	371	0.0	84	7.4
Oramonte	440	94	413	93	411	0.0	86	7.0
Peconic(10")	297	94	278	93	275	0.0	75	6.8
Superior	318	93	294	92	291	0.0	75	8.1
\$47156	392	98	383	96	375	1.8	82	7.8
B6562-14	342	89	304	81	276	0.0	84	6.3
B6567-12	513	97	497	93	478	0.0	76	8.9

- Plots: 1 row 21 feet; rows 35" apart. Replication: four in randomized blocks (each 4 sections x 4 rows) not damaged by sprayer wheels. Soil:

 Narragansett silt loam; shade tobacco previous several years; pH 5.5;

 P = H; K = H; Mg = M. Fertilizer: 2500 lbs 8-10-10-3 per acre sidebands at planting. Following heavy rains May and June additional 60 lbs N per acre topdressed.
- 2/ Season and conditions: So. Windsor, 12 miles N.E. of Hartford.
 Planted: 5/11/72. Record rainfall 7 inches May, 8 to 10 inches June required topdressing additional 60 lbs N per acre. Control of insects good throughout season. Longer season varieties foliage practically dead by Sept. 25. Abnaki showed high degree of air pollution symptoms; Norchip lesser degree.
- 3/ Seed cut $1\frac{1}{2}$ -2 oz.; spaced 9" apart except as indicated.
- 4/ Considerable off-shape in B6562-14, B6567-12 and Norchip.
- Specific gravity: Average of 4 replicates; tubers $2\frac{1}{2}$ -3"; 8 lb samples, weight in air and water method.
- 6/ Harvested: 10/12/72. Storage: Farm storage about 50°F until 11/15/72, then stored at 55°F. Specific gravity run 1/9/73. Storage temperature raised to 70°F on 1/19/73. Chipped on 2/15/73. Chip color: Average of 20 chips, 5 from each of 4 replicates. Chips 6.0 and 7.0 light; 8.0 acceptable; higher reading, darker chip.

 Sprouts 2/15/73: Alamo, 1\frac{1}{4}-1\frac{1}{2}"; Superior, 1-1\frac{1}{4}"; Abnaki, 1"; Norchip, 3/4-1"; Cascade, Peconic & B6562-14, \frac{1}{2}-3/4"; Katahdin, Oramonte & B6567-12, \frac{1}{4}-\frac{1}{2}"; S47156, \frac{1}{4}"; Hudson, 1/8".

DELAWARE

R. F. Stevens, Francis Webb, and Roger Ginder $\frac{1}{2}$

Potato Varieties and Seedling Performance at Dover, Delaware, 1972

Twenty-nine different potato varieties and seedlings were planted on April 11 and April 12, 1972. Fertilizer (10-10-10) was applied in bands at planting at the rate of 1,600 pounds per acre. Row spacing was 36" and the standard in-row spacing 8" to 9".

Six USDA clones were subjected to excess soil moisture due to heavy rainfall, and results on these six clones cannot be considered dependable.

This study was carried out on the farm of John Tarburton, two miles east of Dover on Route 8.

Harvests of all the USDA clones were made on August 10 and August 21, 1972.

Twenty-seven clones and four standard varieties were tested for chip quality. Chips were made from two harvests and again after storage at 70° F.

^{1/2} Extension Horticulturist, Kent County Agent and Crops Marketing Specialist.

Delaware Table 1. Performance of 27 Potato Varieties and Clones

Clone	Comparative Maturity1	Yield U.S. No. Per Acre cwt.	-	Scab Rating2/	Comments
		· · · · · · · · · · · · · · · · · · ·			
B-5282-13	2	260	1.062	2	
B-6712-9	2	2 57	1.060	4	Growth
					Cracks
B-6692-19	4	209		1	
B-6097-9	1	291	1.069	2	2nd Growth
B-6547-8	1	122		2	
B-6516-5	2	252	1.070	2	
B-6516- 15	3	283	1.064	2	Appearance Good
B-5287-16	1	176		5	Scab Heavy
B-6815-14	4	342		4	Red Skins 2nd Growth
B-6516-26	3	297	1.069	2	Appearance Good
Norchip	3	232	1.063	2	
Superior	2	294	1.062	2	
BR-6320-1	1	137	1.063	2	
B-6692-9	2	365	1.061	1	Large
					Appearance Good
B-6739-2	1	272	1.065	1	Appearance Poor
*B-6743-3	5	201	1.069	3	
*B-6741-3	5	205		3	
*B-6712-1	7 1	178	1.064		
*B-6928-8	4	200	1.062	2	
*B-6969-1	1	190		2	
B-6968-3	2	205		2	Small
B-6929-10	2	223		2	Appearance Good
B-6558-10	2	240	1.062	2	
B-6951-1	4	279		1	Small
B-6692-5	2	223		2	Appearance Good
B-6598-8	2	242		1	
B-6815-1	2	233			Appearance Good

^{*}Severely damaged by excess moistures so results are questionable.

^{1/} Comparative maturity 1 = earliest, 5 = latest

^{2/} Scab Rating 1-5. 1 = None, 2 = Very Light, 3 = Light Infection,
4 = Moderate.

Delaware Table 2. Chip Color of Potato Clones $\frac{1}{2}$

Variety	1st Harvest	Storage 2 wks.	2nd Harvest
B-528-13	В	С	С
B-6712-9	В	C	В
B-6692-19	\mathbf{D}_{i}	D	D
B-6097-9	C	D	С
B-6547-8	В	В	B*
B-6516-5	A	A	A*
B-6516-15	В	В	A*
B-5287-16	C	С	C
B-6815-14	D	D	D
B-5616-26	В	A	B *
Norchip	C	В	В
Superior	В	C	С
BR-6320-1	C	В	C
B-6692-9	A	В	С
B-6739-2	С	С	С
B-6743-3		В	С
B-6741-3		В	D
B-6712-17	В	В	В
B-6928-8		D	A
B-6969-1	A	A	D
B-6968-3	C	С	A
B-6929-10	D	В	В
B-6558-10	В	В	B*
B-6951-1		C	D
B-6692-5	В	C	В
B-6598-8	A	B	C
B-6815-1	C	В	A

^{*}Excellent chip color.

^{1/} Chip Color Rating: A=Excellent, B=Good, C=Fair, D=Poor or unsatisfactory

FLORTDA

J. R. Shumaker

Variety and Seedling Trials

Methods. Potato varieties and seedlings were tested for desirable horticultural characteristics at the Agricultural Research Center, Hastings, Florida, in replicated, intermediate and observational trials. Two-ounce seedpieces were planted by hand in late January and early February on Rutledge fine sand following a sorghum cover crop. A total of 2,500 pounds of 6-8-8 fertilizer per acre was banded on each side of the row just prior to planting. A sidedressing of 190 pounds per acre of 15-0-15 was applied approximately four weeks after planting. Seedpieces were spaced 12 inches apart within a row and 40 inches between rows. All plots were a single row 15 feet long. Tubers were harvested and graded May 15-18. Tuber samples were shipped to James Watts, Horticulturist, Wise Foods, Berwick, Pennsylvania, for chip evaluation. Tubers were stored at an average temperature of 70° F and humidity of 50 percent during these evaluations.

Conditions. Unseasonably wet conditions prevailed during the growing season. Over 20 inches of rainfall was recorded during the course of these tests. Severe reduction in quality and severe to moderate reduction in yields were observed and attributed to both the wet conditions and sporadic incidences of corky ring spot disease.

Replicated Trials. Thirteen named varieties, ll seedling selections and Sebago, the standard variety to northeast Florida, were replicated five times. Florida Table l summarizes the results of these trials. LaChipper and Peconic were statistically superior to Sebago in yield response.

Intermediate Trials. Thirty-five seedlings and two varieties were replicated three times. Sebago check plots were planted so that each stock on trial was either flanked or only two rows removed from the check. Eleven of the entries were superior to Sebago yields. Florida Table 2 summarizes these results.

Observational Trials. Golden nematode-resistant, russet, and white clones were replicated two times in observational trials. Florida Table 3 summarizes the results of these trials. Golden nematode-resistant clones were planted in order to observe possible resistance to southern root-knot nematodes. However, nematode infestation of tubers was insufficient to draw a valid conclusion. In this test B6987-56 was the best performing clone followed by B6987-29. None of the russet seedlings were superior to Norgold Russet. In the white clone test, nine of the 52 entries were superior to Sebago yields.

Florida Table 1. Yield, specific gravity, and chip color results of 1972 replicated trials at Hastings, Florida

	Yi	eld	On a diffic	Chip Color2/
Stock	US "A"	Total3/	Specific Gravity	5/19 5/31
	CW	t/acre		
LaChipper Peconic BR6614-1 B6712-18 Red LaSoda B6987-57 Abnaki B6955-35 Chieftan Cascade NY 41 Pa 70A-12 Sebago Seminole Pungo B5141-6 Penn 71 Pa 71D-8 Wauseon NC64C2-3 B6987-54 Superior Norchip Anoka Minn 3915	228 225 209 203 193 193 193 192 187 183 180 176 175 171 168 162 161 159 158 155 155 155 154 117	251 240 223 219 217 208 210 217 205 210 195 196 205 193 192 181 188 182 184 188 189 181 188	1.061 1.059 1.053 1.056 1.048 1.061 1.063 1.052 1.053 1.057 1.063 1.052 1.065 1.048 1.064 1.056 1.056 1.056 1.059 1.059 1.069 1.054	5597937761856466444545569 6366726260514213254322269
LSD .05	141			

Chip color evaluations were determined by James Watts, Horticulturist, Wise Foods, Berwick, Pa.

^{2/} Chip color values are based: 1-4 = acceptable color; 5 = borderline; and 6-14 = color too dark for use.

^{3/} Includes both marketable and culls, size A and B.

Florida Table 2. Yield and specific gravity results of 1972 intermediate seedling trials at Hastings, Florida.

	Y	ield	a a
Stock	US "A"	Total ²	Specific Gravity
	CW	t/acre	- Andrew Martin - Andrew School - Andrew Joseph (Andrew Meny) - Andrew Joseph (Andrew Joseph Andrew
Pa 71R-1 NY-F9-31 Pa 7NS-2 B6967-8 B6969-1 B6987-22 B6987-37 BR6246-1 B6987-56 B7024-4 B7024-6 Minn 5522 Minn 5849 Minn 5891 Minn 5907 Minn 6051 Minn 6081 Minn 6082 Minn 6086 Minn 6086 Minn 6086 Minn 6090 Minn 6101 Minn 6102 Minn 6100 Minn 6100 Minn 6214 Minn 6243 Minn 6243 Minn 6256 Minn 6319 Minn 6376 Minn 6376 Minn 6700 Pungo Wauseon	86 110 87 144 105 107 122 92 158 90 97 52 101 70 48 38 100 77 45 28 58 127 81 33 109 40 40 53 60 67 49 39 90 85 127	108 139 133 177 135 124 167 132 198 125 125 76 121 101 82 66 119 104 79 56 146 171 92 63 145 54 52 63 89 71 75 80 56 111 60 120 149	1.058 1.062 1.061 1.051 1.051 1.060 1.064 1.054 1.063 1.058 1.058 1.054 1.052 1.051 1.061 1.053 1.060 1.054 1.050 1.055 1.057 1.050 1.055 1.057 1.059 1.066 1.054 1.054 1.054 1.054 1.056 1.055 1.057 1.059 1.066 1.059 1.056 1.050
Sebago (Mean of 9 plots)	100	131	1,052

^{1/} Mean of three replications.

^{2/} Includes both marketable and culls, size A and B.

Florida Table 3. Results of 1972 seedling observational trials $\frac{1}{a}$ at Hastings, Florida

	Yield		
Stock	US "A"	Total2/	Specific Gravity
	cwt/s	acre	
Golden Nematode-Res	istant Clor	nes	
B6731-3 B6986-2 B6987-18 B6987-22 B6987-29 B6987-43 B6987-56 B7152-8 B7154-10 B7154-57 Wauseon Peconic	36 97 117 49 177 73 213 103 162 111 103 145	103 136 153 71 226 124 262 138 217 161 142 184	1.053 1.057 1.058 1.067 1.062 1.067 1.072 1.065 1.049 1.057 1.060
Sebago (Mean of 16 plots) Russet Clones	127	171	1.053
Norgold Russet B7147-6 B7147-15 B7147-22 B7147-90 B7147-94 B7159-26 B7160-4 B7196-23 B7196-36 B7196-104	151 101 88 85 98 116 106 110 123 72 134	195 146 134 148 177 177 146 217 176 151	1.053 1.049 1.057 1.046 1.053 1.058 1.052 1.046 1.044
White Clones	127	206	
B5202-13 B5287-16 B5647-8 B6097-9 BR6320-1 B6516-5 B6516-15	127 68 122 31 135 39 166	206 179 170 140 212 132 211	- - - - -

	Yield		
Stock ·	UG"A"	Total 2/	Specific Gravity
		acre	
B6516-113	70	142	-
в6558-16	29	131	-
B6595-12	77	123	-
B6692-5	, 8	183	-
В6692-9	41 .	132	_
B6712-9	97	246	
B6712-17	140	179	-
B6739-2	93	220	-
B6761-11	133	199	-
B6761-12	69	143	-
B6774-6	84	211.	
В6815-19	126	264	•
B6959-10	183	252	-
B6951-1	169	250	-
B6968-3	110	226	-
B6969-1	150	184	-
B7132-1	122	257	-
B7132-14	121	257	-
B7132-22	91	189	-
B7132-25	80	554	-
B7132-26	83	219	-
B7132-27	122	217	-
B7132-29	84	196	-
B7134-3	112	224	-
В7136-5	125	234	-
B7138-11	96	195	-
B7139-4	206	301	-
B7139-12	66	135	-
B7139-15	56	138	-
B7145-1	84	161	-
B7145-3	178	244	-
B7152-40	107	181	-
87154-10	75	197	-
B7155-6	116	196	-
В7165-10	81	180	Ф
B7167-2	62	169	ed
B7167-14	72	161	-
B7169-7	48	173	-
B7196-61	106	196	_
B7198-6	170	220	-
B7200-2	156	220	qui
B7200-26	145	220	ege .
B7212-2	122	174	-
B7236-1	90	167	49
B7243-7	118	218	-
Sebago			
(Mean of 8 plots)	140	238	-

^{1/} Mean of two replications

^{2/} Includes both marketable and culls, size A and B.

FLORIDA

D. P. Weingartner and J. R. Shumaker

Corky Ringspot Resistance

Seven cultivars and 10 selections were evaluated for resistance to corky ringspot disease (CRS). The disease is caused by Tobacco Rattle Virus (TRV) and is transmitted in the Hastings, Florida area by Trichodorus christiei. All selections and cultivars except X9656 were evaluated in two separate replicated tests performed in a grower's field in which CRS had occurred each year for more than 15 years. Pungo and Sebago were included in the test as standard CRS resistant-and susceptible cultivars, respectively. A randomized block with four replications was used in both tests. Cultural practices recommended for the area were followed throughout the test period.

Potatoes were cut by hand and planted January 26, 1972. Plots were harvested May 26, 1972. Random samples of fifteen US "A" size tubers were taken from each plot for CRS indexing. Presence of CRS lesions on tuber surfaces was scored on a presence-absence basis. Internal necrosis was observed by cutting individual tubers with a commercial french fry cutter and scoring on a presence-absence basis. The 1972 season was unusually wet (20+ inches during the test period) and CRS was generally severe in the area.

Florida Table 1. Incidence of Corky Ringspot (CRS) in 17 potato varieties and selections. Agricultural Research Center, Hastings, Florida--1972

Selection 1/		Percei	nt Tubers W	ith CRS Sym	ptoms	
Variety	(Test	. 1)	(Test	.5)	Mean Both	
	Internal.	External	Internal	External	Internal	Extornal
Pungo	0	0	0	0	0	y
Green Mountain	0	0	0	0	0)
Merrimack	0	0	0	0	0)
B7158-32	0	0	0	0	0	7
B7152-1	0	0	0	0	0	.)
Plymouth	1.0	1.0	0	0	0.5	0.5
Mohawk	1.9	0.0	0.0	.3.1	1.0	1.6
X9656		**	4.3	0.0	4.3	0.0
Katahdin	5.7	5.7	0.0	3.1	2.9	1, 4
B7152-22	4.5	0.0	16.7	4.2	10.6	2.1
B7158-34	16.7	3.5	0.0	1.6	8.4	2.6
B7152-30	4.2	0.0	31.3	3.1.	17.8	1.6
B7152-5	14.7	18.6	18.8	.0.0	16.8	9.3
B7152-40	18.0	21.8	18.2	10.2	18.3	20.1
B7158-10	13.8	16.3	23.7	10.8	18.8	13.6
Sebago	26.0	24.1	8.3	8.3	17.2	16.2
B7158-35	22.2	35.1	47.8	21.6	35.0	28.4

^{1/} All differences among selections and varieties significant at 5% level of probability.

Florida Table 2. Yield and specific gravities of 17 potato cultivars and selections evaluated for corky ringspot (CRS) resistance.

Agricultural Research Center, Hastings, Florida--1972

Cultivar 1/						
Selection	Spec	ific Gravit	У	Yield V	JS "A" Size T	ubers
					cwt/acre	
	Test 1	Test 2	Mean	Test 1	Test 2	Mean
Pungo	1.063	1.065	1.064	187.3	152.5	169.9
Green Mountain	1.071	1.070	1.071	136.2	123.1	129.7
Merrimack	1.066	1.062	1.064	188.4	155.8	172.1
B7158-32	1.064	1.059	1.062	54.5	44.7	49.6
B7152-1	1.064	1.065	1.065	168.8	124.2	140.5
Plymouth	1.062	1.063	1.063	143.8	163.4	153.6
Mohawk	1.065	1.069	1.067	147.0	127.4	137.2
X9 656	-	1.069	1.069	date:	103.5	103.5
Katahdin	1.067	1.064	1.066	103.5	107.8	105.7
B7152-22	1.060	1.063	1.062	175.4	129.6	152.5
B7158-34	1.070	1.068	1.069	75.2	45.7	50.5
B7152-30	1.068	1.064	1.066	128.5	83.9	106.2
B7152-5	1.063	1.066	1.065	140.5	120.9	130.7
B7152-40	1.064	1.065	1.065	75.2	94.8	85.0
B7158-10	1.072	1.077	1.075	61.0	55.5	58.3
Sebago	1.059	1.067	1.063	101.3	118.7	110.0
B7158-35	1.063	1.065	1.064	65.4	85.0	75.2

^{1/} All differences among selections and varieties significant at 5% level of probability.

PACIFIC NORTHWEST

J. J. Pavek and D. R. Douglas

Breeding

Greenhouse. Sixty-seven superior tetraploid clones were crossed in 719 combinations averaging 2400 seeds per cross. Almost all crosses include long tubers, russet skin, medium to high solids, medium to low sugars, mealy cooked texture, and resistance to scab and Verticillium wilt. Many crosses also have resistance to corky ringspot, early blight, and PVX.

Two hundred sixteen families of seedlings were grown producing 24,000 tubers.

Field. Approximately 40,000 single hills of 329 families were grown in scab and Verticillium infested fields; 1466 were selected.

From 886 12-hill plots, 248 were selected, french fried, and specific gravities determined. This number will be reduced by about 50% by planting time, May 1973.

One hundred thirty-four species selections and 44 tuber families were screened for desirable characteristics. A number of andigena, phureja, and stenotomum selections were identified as tuberizing satisfactorily and being high in solids and low in sugars.

Yield Trials. Six yield trials were conducted with 223 clones at Aberdeen, Idaho. These included preliminary, intermediate, and advanced clones—early and regular harvest. In addition, the Advanced Early Harvest Trial was grown at the Malheur Experiment Station, Ontario, Oregon, by Luther Fitch. He also grew some of the other clones in observational trials.

The Aberdeen trials were planted May 9-12 at a 10-inch spacing in 36-inch rows in a field of Declo silt loam; a RCB design was used. One hundred seventy pounds of nitrogen, 90 pounds phosphate, and three pounds Temik were applied per acre in bands at planting. Irrigation water was applied nine times between June 14 through September 14 in furrows. Eptem and Lorax were applied to control weeds, Thiodan and Meta-systox-R were applied at two-week intervals after mid-July to control aphids, and dinitro was used to kill vines prior to harvest.

The weather during the growing season averaged 1.2 degrees below normal at Aberdeen, with July 3.8 degrees below. The first killing frost occurred on September 29.

The yields obtained in the Advanced Yield Trial (P.N.W. Table 1) were considerably lower than those obtained in 1970 and 1971. This probably is due partly to insufficient moisture at planting, delayed first irrigation, and over irrigation for the remainder of the season. Russet Burbank and several selections were particularily low yielding. The percentage of U.S. No. 1's and the specific gravities were good. The top yielding clone, A6789-7, has very attractive, smooth tubers, and even though its specific gravity equals that of Russet Burbank, its cooked texture was poor, i.e., non-mealy.

The results of the Advanced Early Harvest Trial are presented in P.N.W. Table 2. The yields at Ontario were much higher than at Aberdeen. Aberdeen's top yield of 227 cwt/A compares with 371 cwt/A in 1971. Apparently, getting fast, vigorous growth early in the season is very important in obtaining top yields.

Results in the intermediate and preliminary trials were similar to those of the two advanced trials.

<u>Distribution</u>. A summary of distribution of selections, varieties, seedling tubers, and true seeds is presented in P.N.W. Table 3.

Advanced Yield Trial, Aberdeen, Idaho, (Four replications of 20 hills)1/ P.N.W. Table 1.

	Total	Perce	Percent of T	Total Y	1eld		Se	September	123/				, ,
	Tuber		US NO. 1		US			Dead			French 4/	Tub	Tuber-5/
	Vield	and the special party of the s	Over	01-9	No. 2	Specific2/		Stems	Plent				Russet-
Clone	Out/A	Total	10 02	20	Proc.	Gravity	Hat.	2	Size	Scab 0/		Shape	Ing
A6789-7	351	97	62	27	m	82	3.5	7	2.2	4	4.5	0-I	(white)
A66107-107	345	06	48	33		97	3.9	0	2.8	m	3.5	0	M
A66107-44	319	80	31	34	12	87	3.2	1.5	3.4	٣	3.3	T-0	M
A67490-2	316	92	42	31	න	89	3.1	4	3.0	Ħ	4.5	T-0	Ħ
A66107-51	312	93	63	24	7	84	3.5	0	2.7	2	4.2	1-0	×
A66110-39	300	88	47	30	11	85	3.4	4	2.0	ı-i	3.5	0	M. Hv
A6536-5	275	06	44	35	10	06	3.6	7	2.9	2	3.2	1-0	İ
A66102-13	274	84	2.1	60	91	100	5.5	10	2.7	m	2.3	0	H
A66102-5	264	82	22	39	18	93	3.2	48	3.0	5	3,3	0-I	V. 1t
A67315-7	252	06	38	35	10	92	4.0	- -1	1.3	m	4.0	0	支
A66122-3	249	84	37	29	16	82	3.6	7	2.0	~	2.5	I'-0	主
A67315-6	247	91	42	34	6	66	4.1	0	1.4	2	3.8	0	M. Hv
A66122-4	245	98	25	34	14	86	3.2	33	3.0	2	2.2	1-0	H
A66119-7	243	81	13	36	13	92		7	2.5	e-I	3.7	μì	Z
A66110-25	237	06	20	31	10	92	3,3	10	2.7	٣	3.7	0	X
A6371-2	227	83	20	36	17	79	5.6	89	3.4	٣	3.8	, ii	×
A6621-13	225	79	21	39	20	84	3.2	17	2.3	'n	4.7	0	14
A661337	223	77	34	32	21	88	3.7	2	2.3	-	3.7	0	X
A5400-15	221	81	20	30	19	88	2.6	83	3.0	2	3,00	0-I	(white)
A63197-1	221	80	26	37	20	85	3.1	84	2.7	m	3.0	r-0	M
A6698-4	216	92	43	34	7	87	3.0	6	1.8	-	4.2	0	M. Hv
A66110-23	212	82	16	36	18	70	3.2	09	2.8	1	4.2	0	H+
A66107-207	208	85	16	42	15	හු	3.0	70	3.5	2	3.3	0	M
Russet Burbank	198	73	14	32	26	83	2.9	80	3.2	2	ന യ	<u>, , , , , , , , , , , , , , , , , , , </u>	×
A66133-8	184	85	25	04	15	95	3.4	7	1.5	П	2.7	0	Hv
A6354-39	167	85	15	44	15	96	3.1	17	2.0	2		0	M. Hv
A64206-4	162	29	2	29	32	68	3.1	57	2.9	1	7.0	T-0	ŧ
A6382-10	150	92	6	07	21	96	3.1	32	2.3	7	4.3	0	¥
LSD	7.7					.003							
1/ Dlemted How 1	2 hermosted		Ortohar Q										

1/ Planted May 12, hervested October 9.

2/ 1.0 omitted.

3/ Mat. = maturity: 1.0 (earliest) to 5.0 (latest); plant size: 1.0 (smallest) to 4.0 (largest).

4/ 1.0 (lightest) to 5.0 (darkest); in storage for two months - down to 40°F.

5/ 0 = oblong, L = long, 0-L = oblong-long, etc. M = medium, lt = light, V. = very, Hv = heavy.

0 = oblong, L = long, O-L = oblong-long, etc. M = medium, lt = light, V. = very, Hv = heavy. 6/1 (least) to 5 (most).

Advanced Early Harvest Trial, Ontario, Oregon and Aberdeen, Idaho, 1972. P.N.W. Table 2.

		100	Ontario!			Aberd	Aberdeen2/					Orry Control of the C	n d. veliki m-viya-velikmingibassaki iya velissaki ibas	
	Total	Percent	t of Tetal	al Yield	10101	Percent	Percent of Total	al Vield			French 4/	ch 4/		,
	Tuber	US	IO. I	US	Taber	US N	No. 1	us	Spec	Specific3/	V37		Tuber 5/	15-
	N. C.		TOAO	No. 2	Yield		Te Ao	No. 2	Gravity	rity	C/	2		Russet
Close	Cwt/A	Total	10 02	Proc.	Care/A	Total	10 02	Proc.	Ont.	Abd.	Out.	Abd.	Shape	
Pioneer	919	79	29	122	211	00	10	20	87	80 50	0.5	0.7	T-0	(red)
A6305-20	717	62	21	26	188	74		25	77	74		2.0	0	X
Cascade	402	×**	27	9	162	9	10	37	882	F=1 60	0.9	9.0	0	(white)
Hi-Plains	396	00	29	80	\$ 00 F	80	2	(A.) baq	83	80	0.5	0.5	O, flat	
A67284-5	391	26	22	88	081	98	91	1.6	9	900 000	0.8	6.0	1-0 1-0	المام إسماع
A6673-4	382	9	23		200	26	7	24	75	74	CED CED CED	9.0	0-R	Œ
A66110-7	381	74	10		173	69	2	30	\$00	00	0.5	0.8	T-0	-68
Norgold Russet	380		26	77	130	67	grand	50	83	90	2,2	1.7	0	}-
A63126-2	370	09	GO	21	Clicky diction region	CDD 625	Î	649	6	8	039 CO-0	CIR Sub-dis-	[سم]	
BR6316-5	361	92	6.8	5		8	93	etter case	06	cop one	ECON (CC) (DO)		0-R	(white)
Rushæore	359	72	35	19	174	84	5	25	***	8	0.5	0.7	7-0	V. le
Russet Burbank	357	200	7	23	165	55	m	30	र् १००	82	0.0	1.2	;-i	
A6673-1	354	70	6	0	212	67	60	(C)	78	78	0.5	9.0	0	
NDA7697-2	335	65	16	22	227	8%	22	57	78	77	0.5	0.5	0	V. 1t
NDA7746-1	335	72	91	12	129	63	2	ණ ආ	86	60	6.0	0.5	0	M. Hv
NDA7698-1	335	65	16	5	173	69	1	28	10	17	1.0	6.0	1-0	7
A6382-10	333	79	6	20	137	55	ന	63	06	06	9.0	9.0	7-0	Z
A6680-5	330	65	27	1.5	141	72	ന	27	80	82	1.0	0.5	T-0	I
A66107-101	326	55	හ	1.4	142	42	4	54	% %	83	9.0	9.0	0-F	M. Hv
A6698-4	325	39	4	17	166	တ္	90	25	80	(C)	1.0	1.2	7-0	P. C.
A6334-19	321	78	6	9	pris sito san	9	ğ	Ano Casa	78	5	COS AND GAR	din the	0	M. Hv
NDA7932-1	304	39	119	28	154	9	7	20	8	33	2.7	0.5	J-O	راب اسماء
A66107-197	304	75	21	9	143	7.1	7	29	80 \$7	84	0.5	0.8	0	7
101					36					C C				
50° 757					66					oro.			Andready a per digression or well an A. Williams of the editors	ett, 1220maille ett förnadskandbatelle ette förlitte et

Ontario, Oregon data obtained from Luther Fitch. 1/ Planted April 20, vines removed July 28, harvested August 2.

2/ Planted May 9, vines killed August 9, harvested August 21.

3/ 1.0 omitted.

4/ French fried two or three weeks after harvest.

5/ See footnotes P.N.W. Table 1.

P.N.W. Table 3. Distribution of Selections, Varieties, Seedlings, or Seeds, 1972.

Location	Cooperator	Number
Selections/Varieties		
Arizona	P. Bessey	247
California	H. Timm	7
Colorado	D. Denna	9
	K. Knutson	ĺ
Costa Rica	J. Iverson	20
Idaho	E. Anderson	9
	A. Boe	6
	R. Callihan	2
	W. Dazey	5
	R. DeRouche	724.
	W. Floyd	1
	J. Garner	2
	M. Groskopp	24
	G. Holm	1
	H. McKay	2
	R. Ohms	2
	E. Owens	3
	D. Robertson	1
	G. Vogt	2
	A. Walz	2
	D. West	1
aine	J. Frank	5
ilssouri	B. Tweedy	1
regon	L. Fitch	64
	J. B. Holladay	9
lashington	W. Hoyman	30
	R. Kunkel	5
lisconsin	P. R. Rowe	1
	J. Schoeneman	8
Seedlings		(Families)
lberta	S. Molnar	162
North Dakota	R. Johansen	33
Seeds		(Crosses)
llberta	S. Molnar	40
Colorado	D. Denna	50

MAINE

$\ensuremath{\text{D. C.}}$ Merriam and F. E. Manzer

Ring Rot Resistance

The results of these annual tests are reported one year behind in order that tubers of selections appearing disease-free or questionable in the field can be checked after a storage period of five or six months. As in recent years these tests are conducted only on selections shown in previous plantings to have commercial promise. Entries are replicated four times (unless otherwise noted) in five-hill lots, and inoculation is accomplished by dipping freshly cut seedpieces in a slurry made by grinding the vascular tissue of diseased tubers. Katahdin is used as the susceptible check unless otherwise stated.

Only two five-hill replications were planted in 1971. Of the 41 selections inoculated, none were completely free of disease symptoms in the field and 12 were saved for examination after a storage period. Plant and tuber readings of these 12 are shown in Maine Table 1. Katahdin checks were nearly 100 percent diseased in field readings.

Maine Table 1. Advanced selections showing low disease incidence in ring rot inoculation tests--1971.

Amount of disease by replication 1/

Pedigree	Plant	S	Tube	rs	Pedigree	Plant	ts	Tube	ers
Number	1	11	1	11	Number	1	11	1	11
в6928-8	1/5	5/5	1/17	***	BR7058-2	1/3	4/5	1/15	-
B6934-7	4/4	1/5	_	2/18	BR7068-5	4/5	?/5	-	4/16
B6934-9	1/5	5/5	0/21	-	BC6785-1	5/5	1/2	-	3/10
B6028-W.V.6	1/5	5/5	3/12	-	WC284-20	1/5	2/4	4/18	-
в6966-1	4/5	1/5?	-	1/19	BC7021-1	2/5?	4/4	0/13	-
B7001-18	1/5?	4/5	0/34	-	WC285-146	1/5	3/4	0/16	-

^{1/} Numerator = number diseased Denominator = number examined

MAINE

D. C. Merriam and F. E. Manzer

Spindle Tuber Resistance

Annual progress summaries of this work are delayed one year because of the necessity for replanting inoculated seedlings to obtain disease readings. As in recent years only selections showing commercial promise in previous plantings are included. Entries are inoculated by the top-switching method in four two-hill lots, and a tuber from each hill is harvested for the disease reading.

In 1971 all of the selections tested were obtained from Dr. R. V. Akeley of the Maine Agricultural Experiment Station. Of the 20 entries inoculated 19 were "BR" numbers and one a "B" number. All Kennebec checks were found to be completely infected in all replications (8/8), and none of the selections were found to be completely free of the disease. Those showing 50 percent infection or less were as follows: BR6820-24, 2/8; BR6820-26, 4/8; BR6824-1, (3/8); BR6831-5, 4/8; and BR6863-9, 4/8.

MAINE

Hugh J. Murphy and Michael J. Goven

Cooperative variety trials with 31 entries were conducted during 1972 at Presque Isle, Grande Isle, and Garland, Maine. Weather and soil conditions at planting time were cold and relatively dry, but the remainder of the growing season was almost ideal for maximum growth and yield.

Plots at all test locations were single rows, 25 feet long with six replicates per variety. Planting, killing and harvest dates, seedpiece spacing, and fertilizer used at each location are presented in Maine Table 5.

Yields and specific gravities for the varieties grown at all Maine locations are presented in Maine Table 1. The top five varieties in yielding ability were: BR6312-2, Cascade, BR6626-5, BR6820-26, and Kennebec. Line BR6491-1, Cariboo, Seminole, BR6862-2, and BR6863-2 were the five highest varieties in specific gravity. Of the 31 varieties in trial, 22 had specific gravities of 1.075 or higher, and only four varieties were below 1.070, which indicates that 1972 was a high, dry-matter year even though total moisture during the growing season was much higher than normal.

Size determinations for two market size classes are presented in Maine Table 2. Several varieties grown at all locations produced high percentages of tubers in the smaller size classes, namely Cariboo, B6097-9, and ND7196-18. Medium and late maturing varieties grown at Garland produced high percentages below $2\frac{1}{4}$ inches because of the error of the cooperator killing the vines too early.

Results of the first chipping and french fry tests are presented in Maine Tables 3 and 4, respectively. Only Seminole at Presque Isle; Seminole and BR6863-3 at Grande Isle; and Cariboo, Seminole, BR6491-1, and BR6863-3 at Garland were the only varieties that had satisfactory chip color (7.0 or less). All except eight of the varieties grown at Presque Isle made satisfactory french fry color (3.0 or less). Seven of the varieties were unsatisfactory in texture (rating higher than 1.2).

Many more details of the Maine Cooperative Variety Trials are presented in the Annual Maine, New Hampshire, Vermont Potato Variety Trial Report for 1972, which is available from Public Information and Central Services, University of Maine, Orono, Maine 04473.

Maine Table 1. Yield and specific gravity of potato varieties grown at three locations in Maine-- 1972.

	Presq	ue Isle	Gran	d Isle	Gar	land
Variety	Yield	Specific	Yield	Specific	Yield	Specific
	Cwt./A.	Gravity	Cwt./A.	Gravity	Cwt./A.	Gravity
Cariboo	369	1.094	378	1.090	235	1.083
Cascade	500	1.077	484	1.067	361	1.068
Cobbler	399	1.083	453	1.079	258	1.074
Desiree	339	1.086	308	1.075	152	1.074
Iopride	425	1.079	390	1.067	277	1.074
Katahdin	409	1.085	379	1.073	243	1.069
Kennebec	446	1.087	436	1.075	302	1.072
Oromonte	463	1.092	410	1.078	266	1.073
Russet Burbank	388	1.091	311	1.082	213	1.075
Seminole	322	1.089	411	1.083	184	1.090
Shurchip	448	1.081	372	1.065	261	1.067
Sioux	450	1.083	400	1.072	252	1.071
B6044-14	443	1.088	436	1.080	225	1.077
B6097-9	444	1.085	424	1.072	301	1.078
B6356-1	431	1.063	304	1.052	237	1.056
B6376-6	396	1.084		1.080	255	1.075
BR5957-7	414	1.081		1.075	183	1.068
BR6263-2	411	1.079	331	1.068	265	1.072
BR6306-22	467	1.069	409	1.066	281	1.067
BR6312-2	592	1.071	613	1.060	315	1.060
BR6316-5	416	1.086	407	1.079	260	1.075
BR6456-1	481	1.075	381	1.074	323	1.070
BR6463-2	386	1.086	414	1.078	234	1.079
BR6491-1	342	1.093	352	1.091	216	1.091
BR6626-5	507	1.084	477	1.073	324	1.074
BR6820-26	450	1.073	509	1.063	294	1.066
BR6859-3	336	1.084	311	1.075	193	1.080
BR6862-2	433	1.093	380	1.083	247	1.080
BR6863-3	409	1.092	343	1.083	223	1.081
F5748	399	1.085	421	1.072	263	1.075
ND7196-18	410	1.085	298	1.073	269	1.076

Maine Table 2. Percentage of yield between 1-7/8 and 4 inches in diameter for varieties grown at three locations in Maine -- 1972.

	Presque	Isle	Grand	Tsle .	Garla	nd
Variety	1-7/8	2-1/4	1-7/8	2-1/4	1-7/8	2-1/4
	to 4	to 4	to 4	to 4	to 4	to 4
	inches	inches	inches	inches	inches	inches
Cariboo	92.3	67.2	93.1	68.9	93.6	63.8
Cascade	94.3	78.0	97.2	82.8	95.6	78.5
Cobbler	93.5	71.4	95.9	81.8	93.6	71.8
Desiree	95.3	78.4	96.3	85.2	93.7	71.0
Iopride	97.4	79.7	98.5	88.5	97.5	88.3
Katahdin	95.7	82.5	97.0	87.7	94.8	80.3
Kennebec	94.8	85.1	95.1	88.1	95.5	85.2
Oromonte	92.5	76.2	95.7	79.4	88.8	69.7
Russet Burbank	55.9% 4		65.0% 4			- 10 oz.
Seminole	96.5	87.1	98.1	92.3	96.7	86.8
Shurchip	95.4	78.5	95.2	76.9	95.2	72.9
Sioux	97.4	83.6	93.5	87.4	95.0	79.7
B6044-14	94.8	79.0	96.7	81.7	89.4	65.5
B6097-9	90.2	65.5	92.1	64.1	92.2	69.9
B6356-1	87.5	81.6	97.0	91.6	93.9	81.5
B6376-6	95.6	83.4			95.6	87.7
BR5957-7	94.9	84.2			93.8	70.7
BR6263-2	94.7	73.4	94.6	72.0	94.7	76.3
BR6306-22	94.9	76.1	96.1	77.8	96.2	79.7
BR6312-2	94.6	86.3	96.6	91.0	95.3	81.7
BR6316-5	94.1	74.6	96.4	80.2	94.1	73.3
BR6456-1	95.3	74.2	96.3	81.5	95.9	78.9
BR6463-2	92.2	74.1	95.5	81.3	93.2	70.8
BR6491-1	93.8	71.8	96.8	86.5	95.7	76.7
BR6626-5	94.5	80.1	96.3	84.9	96.2	84.5
BR6820-26	94.4	80.3	96.4	84.2	93.4	73.5
BR6859-3	93.2	72.1	96.0	78.4	92.8	62.7
BR6862-2	97.5	87.0	97.3	85.2	97.1	79.7
BR6863-3	96.5	87.3	98.5	92.0	96.7	86.6
F5748	94.4	78.8	94.9	76.9	96.0	73.5
ND7196-18	90.3	51.9	93.1	64.3	89.4	57.0

Maine Table 3. Chip color indices for potato varieties grown at three locations in Maine -- 1972

Variety	Presque Isle	Grand Isle	Garland
Cariboo	7.4	8.2	6.7
Cascade	10.0	9.7	9.9
Cobbler	9.8	9.4	9.6
Desiree	7.5	8.0	7.5
Iopride	8.0	9.0	8.1
Katahdin	8.8	9.1	9.3
Kennebec	8.5	9.4	8.2
Oromonte	8.7	9.6	8.7
Russet Burbank	8.8	9.0	8.4
Seminole	6.8	6.8	4.8
Shurchip	8.8	8.4	8.7
Sioux	9.9	10.0	10.0
B6044-14	9.4	9.6	8.0
B6097-9	8.1	9.0	8.8
B6356-1	10.0	10.0	10.0
B6376-6	8.2	8.7	8.0
BR5957-7	7.9	8.4	7.9
BR6263-2	8.8	9.2	8.7
BR6306-22	8.6	8.6	8.4
BR6312-2	10.0	10.0	10.0
BR6316-5	8.2	7.6	6.6
BR6456-1	9.9	9.6	9.6
BR6463-2	9.4	8.7	7.4
BR6491-1	7.3	7.9	6.1
BR6626-5	9.5	9.5	9.1
BR6820-26	9.9	10.0	9.8
BR6859-3	9.7	9.1	9.0
BR6862-2	8.9	8.0	7.2
BR6863-3	7.3	6.6	6.0
F5748	9.3	8.8	8.4
ND7196-18	7.2	8.0	7.3

Thips with lower indices are lighter in color.

Maine Table 4. French fry color and texture indices for potato varieties grown at Presque Isle, Maine -- 1972.

/ariety	Color Index	Texture Index ² /
Cariboo	1.6	1.0
Cascade	4.1	1.2
Cobbler	2.9	1.0
Desiree	1.5	1.7
opride	2.0	1.2
atahdin	2.7	1.0
Tennebec	2.2	1.0
romonte	2.3	1.1
lusset Burbank	2.6	1.0
Seminole	1.1	1.0
hurchip	1.4	1.0
ioux	3.2	1.4
6044-14	2.5	1.0
6097-9	1.9	1.1
6356-1	4.3	1.9
6376-6	1.8	1.0
R5957-7	1.9	1.1
R6263-2	1.9	1.8
R6306-22	1.9	1.0
R6312-2	4.8	2.0
R6316-5	1.5	1.3
R6456-1	3.7	1.0
R6463-2	1.7	1.0
R6491-1	1.3	1.0
R6626-5	3.4	1.4
R6820-26	3.1	1.0
R6859-3	3.6	1.0
R6862-2	1.2	1.0
R6863-3	1.1	1.0
5748	1.9	1.0
D7196-18	1.1	1.2

^{1/} French fries with lower index numbers are lighter in color.

 $[\]frac{2}{L}$ Lower texture indices indicate mealier texture.

Maine Table 5. Pertinent information about Maine Cooperative Potato Variety Trials -- 1972.

	Presque Isle	Grand Isle	Garland
Planted			
	May 20	May 25	June 6
<u>Killed</u>			
Early varieties Medium varieties Late varieties		Sept. 2 Sept. 12 Sept. 22	Aug. 25 Aug. 25 Aug. 25
Harvested			
Early varieties Medium varieties Late varieties		Sept. 12 Sept. 22 Oct. 2	Sept. 14 Sept. 14 Sept. 14
Fertilization			
Pounds per Acre	130-130-130	138-172-172	130-130-130
Seedpiece Spacing			
	1/	1/	1/

Seedpieces of Desiree and Russet Burbank spaced 16 inches apart; all other varieties 8 inches.

MICHIGAN

N. R. Thompson and R. W. Chase

All experiments, with the exception of over-state trials, were located on the Montcalm Experiment Station where the soil is a Montcalm sandy loam. Average maximum temperatures for 1972 were below the five-year average in June, July, August, and September but were considerably higher in May. Rainfall was adequate and uniformly distributed throughout the growing season. Irrigation applications were reduced to five applications of approximately one incheach, and these were all applied in July.

Fertilizer Plowdown - 0-0-60 at 200 lbs/A

Planting time - 14-14-14+2 percent Mg at 800 lbs/A

Sidedress - 115 lbs nitrogen per acre

Seed Production

Two hundred and forty crosses were made in February and March. Parents with potential for yield, processing quality, and nutritional value were used. Some resistance to the most prevalent diseases was prevalent in the parental clones.

Two-Hill Clones

The large number of selections made in 1971 was planted in either five- or two-hill plots depending upon their initial evaluation as varieties. The average weight per hill, specific gravity, and chip color by families retained in 1972 are shown in Michigan Table 1.

Seedling Increase and Yield Trials

Twenty-four advanced seedling clones were planted in replicated yield trials for yield and quality evaluation. A cooler than average growing season with adequate moisture provided a good environment for growth. Samples were held at 55°F until chipped in November and December. Data on those yielding in excess of 400 cwt per acre are shown in Michigan Table 2.

Plant Spacing Studies -- New Varieties

Two seedlings and three recently named varieties were evaluated in a uniform spacing trial. The identification numbers and names were MS-709, MS-711-3, Abnaki, Jewel, and Shurchip.

Planted: May 11, 1972--Harvested: September 19, 1972

Cut seed of each was hand planted at row spacings of 3-4 inches and plant spacings within the row of 7, 10, 13, and 16 inches. Each plot was 10 feet long and replicated four times.

Michigan Table 3 gives a summary of yield, size distribution, and specific gravity response for each of the varieties. All were very favorable in terms of yields with MS-709, Abnaki, and Jewel showing exceptionally good yield potential. Without exception, the greatest total yield occurred at the 7-inch spacing, with decreasing yields at increasingly wider spacings.

The size distribution data shows that MS-709 and Abnaki have a tendency to develop oversize tubers, and for this reason a closer spacing of 7-8 inches would be important. To date there has been no evidence of hollow heart as a problem with MS-709, however, there has been some reported with Abnaki. Based on these observations, it appears that MS-709 and Abnaki should be spaced at a 7-8 inch plant spacing.

The 1972 data differed from that of 1971 in that the specific gravity readings did not relate to plant spacings. In 1971 the specific gravity readings for each of the seedlings MS-709, MS-603, and MS-711-3 were the lowest at the 16-inch spacing. In 1972, this occurred with Jewell variety only.

The increased plant vigor and initial growth of the closer plant spacings are quite apparent during the early stages of growth. Later in the season, when the rows are filled and vines begin to drop, this difference is less obvious.

Over State Yield Trials

In four areas, representing the largest centers of production in the state, 16 varieties were tested for adaptation to the Michigan environment, Michigan Table 4. Of the white varieties tested MS-709, Jewel, and Abnaki were outstanding. The variety Sioux was an exceptionally high yielding red. Chip color and specific gravities of the early varieties were as anticipated, but the wet August and September adversely affected those maturing later.

Line MS-709 was grown in commercial acreages on seven farms for market quality. Seed is being increased.

Michigan Table 1. Average yield and quality of seedling population at Montcalm Experimental Farm.

1972

Cross No.	Yield Lbs/Hill	Average Specific Gravity	Average Chip Color
001	3.5	1.078	4.4
002	3.5	1.079	3.9
003	3.7	1.083	3.0
004	3.0	1.078	5.0
005	3.4	1.068	5.8
006	3.8	1.065	6.6
007	4.1	1.065	5.5
008	4.7	1.066	7.0
009	4.8	1.066	7.0
010	5.3	1.071	5.0
		The second of th	
Avera	age 3.98	1.072	5.3

Michigan Table 2. Seedling yield trials, specific gravity, and chip color. Montcalm Experimental Farm.

1972

	19		
Cultivar	Total Yield Cwt/Acre	Specific 1/ Gravity	Chip Color
503-14	690	1.064	5
711-8	639	1.064	7
709	523	1.072	8
321-55	519	1.095	3
645-1	504	1.084	7
706-1	488	1.071	3
613-7	480	1.069	4
321-89	472	1.115	3
637	464	1.082	9
623	461	1.069	5
706-34	437	1.068	7
Mer. 249	436	1.083	5
735-1	434	1.080	8
Mer. 58	425	1.067	7

 $[\]underline{1}/$ Specific gravity weight in air-weight in water method.

Michigan Table 3. The yield, size distribution, and specific gravity of MS-709, MS-711-3, Abnaki, Jewel, and Shurchip when grown at different plant spacings.

	In-row	Total		the state of the s	istribution	Specific
Variety	space	cwt/A	-1-7/8	+3-1/4	1-7/8 - 3-1/4	Gravity
MS-709	. 7	582	2.3	40.0	57.7	1.067
	10	566	2.0	43.9	54.1	1.068
	13	498	2.4	47.8	49.8	1.065
	16	490	2.0	56.6	41.4	1.068
MS-711-3	7	426	7.8	6.4	85.8	1.074
	10	396	7.4	8.4	84.2	1.075
	13	395	5.0	7.9	87.1	1.078
	16	318	6.1	17.2	76.7	1.076
Abnaki	7	512	3.8	16.4	79.8	1.067
	10	440	3.1	24.0	72.9	1.067
	13	426	1.8	34.4	63.8	1.068
	16	396	2.5	35.5	62.0	1.067
Jewe1	7	576	6.8	7.8	85.4	1.085
	10	544	4.7	4.7	90.6	1.083
	13	490	3.6	14.7	81.7	1.084
	16	446	4.8	16.7	78.5	1.081
Shurchip	7	480	6.5	5.7	87.8	1.061
	10	454	3.9	3.0	93.1	1.061
	13	434	6.3	8.9	84.8	1.062
	16	362	4.9	11.9	83.2	1.062

Michigan Table 4. Over state trials, yield, specific gravity, and chip color. Average of four locations.

1972

Variety	Total Yield _Cwt/Acre	Specific Gravity	Chip Color
MS-709	501	1.070	5.0
Jewel	470	1.083	3.0
Sioux	432	1.070	7.0
Onaway	426	1.064	7.5
Abnaki	413	1.069	5.5
Raritan	400	1.083	5.0
Shurchip	341	1.064	4.5
Norchip	340	1.074	2.5
Hi Plains	340	1.068	3.5
Wauseon	340	1.068	4.5
MS 645-2	338	1.072	4.8
MS 711-3	304	1.078	3.8
Iall11-2	289	1.064	4.3
Superior	261	1.068	5.0
York	251	1.073	2.8
Rushmore	270	1.062	4.1

MINNESOTA

F. I. Lauer, O. C. Turnquist, E. B. Radcliffe and C. J. Eide

Breeding Program

In potato breeding, emphasis in crossing in 1972 was given to: (1) combining parents having low reducing sugars in cold storage with parents having early maturity, tuber type, high specific gravity, high protein content, yield, and resistance to common scab and late blight; (2) development of parents from unadapted germplasm; (3) and development of genetic stocks resistant to Verticillium wilt and to aphids. Most of the parents used were red or white skinned.

About 25,000 seedlings were grown as transplants in the field at Grand Rapids. Over 14,000 of these involved parents having low reducing sugars in cold storage. Testing of these is done by Roy Shaw at the Potato Processing Laboratory. The remaining 11,000 seedlings were devoted primarily to development of parents from unadapted germplasm, resistance to Verticillium wilt, field resistance to late blight, and adventitious bud producing capability.

Tubers from the Grand Rapids seedlings are grown as multiple-hill units at Crookston for initial selection. In 1972, emphasis was given to a comparison of heterzygous parents from inbred vs non-inbred backgrounds. Subsequent horticultural evaluation of new selections was made at Grand Forks, Elk River, and Grand Rapids. Red, white, and russet selections were included.

Adaptation Trials

To assess the potential of advanced selections as well as new varieties, replicated yield trials are conducted at Crookston, Baker, and Elk River. Variety plots are also grown at Big Lake, Osseo, Brooten, Staples, Fosston, Anoka, Argyle, Grand Rapids, and Hollandale. High-quality seed for these plots is obtained from an isolated 32-acre tuber-unit seed increase plot at Embarrass. All seedstock at Embarrass is screened in a tuber-index plot at Homestead, Florida, each winter. Cooking and baking tests are made on the advanced selections at St. Paul and chip tests at E. Grand Forks. In the past two years one of the most promising new varieties was Cascade. Its yield was high and tuber type acceptable. Of the advanced selections tested, Minn. 3866, Minn. 3915, Minn. 3935, Minn. 4536, Minn. 4537, and Minn. 4858 are promising. All have performed well in our trials in the Valley. Minn. 4536, Minn. 4537, and Minn. 4858 also showed promise for early-market use in the Sand Plains area. All are red except Minn. 3915 which is white. The performance of varieties and selections in adaptation plots at Crookston, Minnesota and Elk River, Minnesota is reported in Tables 1 and 2, respectively.

Minnesota Table 1. Potato Variety Adaptation Trial, Crookston, Minnesota 1972.

Variety	Total Yield Per Acre	U.S. No. l Size	Specific Gravity	Dry Matter
	cwt	%		. d
Minn 3935	423	96	1.081	19.9
4858	412	97	1.083	20.3
Kennebec	399 .	99 ·	1.084	20.5.
Norchief	396	95	1.086	20.9
4537	393	99	1.072	18.0
Minn 3866	390	91	1.095	22.9
Cascade	383	98	1.079	19.4
Wauseon	373	95	1.087	21.2
H 285-3	368	98	1.080	19.7
Wis 710	364	96	1.074	18.4
4536	362	96	1.074	18.4
Abnaki	357	98	1.091	22.0
3915	354	95	1.086	20.9
5562 5072	353	99 98	1.069	17.3
4729	344 342	100	1.084	20.5 19.9
B 6495-12	342	- 95	1.092	22.2
Nebr 139.59-1	341	94	1.082	20.1
Chieftain	339	96	1.076	18.8
4825	332	96	1.084	20.5
Red Pontiac	328	97	1.074	18.4
Nebr 99.56-4	325	97	1.081	19.9
Penn 71	323	99	1.083	20.3
Norgold	321	97	1.081	19.9
Norchip	318	96	1.090	21.8
Irish Cobbler	317	96	1.087	21.2
LA 71-110	314	94	1.082	20.1
В 6097-9	307	94	1.091	22.0
4928	303	94	1.075	18.6
Iopride	297	97	1.078	19.2
5522	296	99	1.089	21.6
ND 6925-13	295	90	1.084	20.5
5907	294	99	1.089	21.6
Early Gem	291	98	1.069	17.3
Norland	287	97	1.078	19.2
Nebr 1.57-1	282	94	1.084	20.5
B 6495-20	282	88	1.109	25.9
Anoka Raritan	280	96 97	1.080	19.7
Wis 623	272	94 95	1.109	25.9 20.9
ND 7196-18	271 266		1.086	
ער /דאס-דס	200	85	1.074	18.4

(Continued on next page)

Minnesota Table 1. Potato Variety Adaptation Trial, Crookston, Minnesota 1972, con't.

Variety	Total Yield Per Acre	U.S. No. 1 Size	Specific Gravity	Dry Matter
Bake-King	259	97	1.094	22.7
LA 71-82	259	93	1.080	19.7
5891	256	98	1.086	20.9
Wis 623	256	97	1.084	20.5
Superior	250	94	1.081	19.9
Н 245-2	242	96	1.090	21.8
5849	238	96	1.078	19.2
4929	238	92	1.078	19.2
H 284 5	237	95	1.070	17.5
ND 7103-4	208	96	1.081	19.9
Russet Burbank	194	96	1.086	20.9
A 6334-19	185	90	1.081	19.9
A 6334-20	164	96	1.077	19.0
Average	308	96	1.083	20.3

Cooperators: Dr. Larry Smith, Agronomist Northwest Experiment Station,

Crookston, Minnesota

Planted:

May 25, 1972

Harvested:

September 15, 1972

Vines Killed: Rotobeat, September 13, 1972

Specings 124 Hills /OH Dorr

Spacing:

12" Hills, 40" Rows

Fertilizer: 500 lbs per acre 13-13-13 With planter Insecticide: Thimet

Fungicide:

THITME

Herbicides:

Polyram Eptam, 1 lb per acre soil incorporated May 19, 1972

Patoran 6 lbs per acre preemergence May 31, 1972

Minnesota Table 2. Potato Variety Adaptation Trial, Elk River, Minnesota, 1972.

Variety	Total Yield Per Acre	U.S. No. 1 Size	Specific Gravity	Dry Matter
	cwt	%		%
Cascade	429	87	1.089	21.6
Norchip	410	88	1.092	22.2
Norchief	409	87	1.089	21.6
Minn 3935	399	97	1.088	21.4
5522	390	98	1.081	19.9
Minn 3866	382	86	1.093	22.4
Norland	378	96	1.076	18.8
Abnaki	373	96	1.077	19.0
4825	368	94	1.084	20.5
Chieftain	364	96	1.082	20.1
4537	362	99	1.081	19.9
Iopride .	360	88	1.080	19.7
5562	358	97	1.072	18.0
Minn 3915	348	94	1.082	20.1
4536	343	97	1.072	18.0
Penn 71	338	98	1.087	21.2
4928	336	94	1.083	20.3
Irish Cobbler	334	93	1.081	19.9
Norgold	32.2	96	1.082	20.1
4858	321	94	1.082	20.1
Kennebec	319	96	1.089	21.6
Н 285-3	315	93	1.080	19.7
Raritan	313	95	1.093	22.4
Anoka	311 .	95	1.076	18.8
Superior	309	97	1.089	21.6
5072	309	94	1.075	18.6
Bake-King	302	93	1.102	24.4
4929	302	91	1.073	18.2
4729	299	94	1.091	22.0
Red Pontiac	295	93	1.079	19.4
Wauseon	288	95	1.084	20.5
5907	274	91	1.086	20.9
H 245-2	267	93	1.093	22.4
5891	266	94	1.087	21.2
5849	260	96	1.090	21.8
Russet Burbank	253	93	1.095	22.9
A 6334-19	247	96	1.090	21.8
Early Gem	186	97	1.069	17.3
A 6334-19	173	93	1.090	21.8
H 284-5	154	82	1.077	19.0
Average	319	94	1.084	20.5

(Continued on next page)

Minnesota Table 2. Potato Variety Adaptation Trial, Elk River, Minnesota, 1972, con't.

Cooperator: Glenn Titrud, Sand Plain Experiment Farm, Elk River, Minnesota

Area Extension Agent, Soils, Curtis Klint, Anoka, Minnesota

Planted: April 27, 1972

Harvested: August 2, 1972 Spacing: 12" Hills, 36" Rows

Fertilizer: 1100 lbs per acre 8-16-16 banded

220 lbs per acre 34-0-0 side dressed June 5

100 lbs per acre 34-0-0 side dressed June 16 Eptam 3 lbs per acre soil incorporated April 24

Herbicide: Eptam 3 lbs per acre soil incorporated Insecticide: Thimet 14 lbs per acre banded April 27

Thiodan 1 application of 2 lbs Sevin 7 applications of 2 lbs each

Fungicide: Kocide 101 - 4 applications of 2 lbs each

Manzate D - 4 applications of 2 lbs each

Irrigation: April 27 .50 inches June 18 1.00 inches

 May
 19
 .50 inches
 June 25
 1.00 inches

 May
 22
 .50 inches
 July 1
 1.20 inches

 June 2
 .50 inches
 July 8
 1.00 inches

June 6 .50 inches July 16 .50 inches

June 13 1.00 inches

MISSISSIPPI

James M. Cannon and Gale R. Ammerman

1972 Replicated and Observational Irish Potato Trials

The 1972 trials were planted on February 23 in a Bosket silt loam soil. Chemical analysis of the soil indicated that the level of phosphorus and potassium were high and a soil pH of 6.30. Two days prior to planting a fertilizer application of 110-20-20 pounds of N-P₂05-K₂0 per acre was made in the furrow of the row and covered. Thimet was applied just prior to planting at the rate of 30 lbs per acre for insect control. The seedpieces were spaced one foot apart. Plots consisted of one row 40 inches wide and 30 feet long, with five replications. Enide was applied February 24 at the rate of 5 pounds active per acre for weed control. A regular spray schedule using Sevin and Maneb was used for insect and disease control, respectively. During the growing season, 12.4 inches of rain fell. Two supplemental furrow irrigations were made on May 25 and June 5, 1972. The plots were harvested on June 13 and 14, 1972, involving a 120-121 day growing season. After harvesting, the potatoes were graded, specific gravity readings were taken for each plot, and each entry was rated for the following: skin color, smoothness, shape, eye depth, size, internal necrosis, flesh color, tuber maturity, rot, vascular discolor, hollow heart and overall tuber rating. Samples from each entry were chipped, boiled, and canned. The appropriate quality evaluations were made.

Replicated Trials. Thirty-six entries were included in the replicated trials. The breeding lines were from the USDA and Campbell Soup Company breeding programs. Yields ranged from a low of 200 cwt/A for BR6491-1 to a high of 371 cwt/A for the variety Red LaSoda. The specific gravities ranged from 1.062 for BR7066-1 to 1.085 for B6523-3. Twenty-six of the 36 entries had specific gravities of 1.070 and above.

of 36 lots chipped in 1972, 20 scored in the 4, 5, and 6 range on the potato chip color reference standard or were excellent for color score. Thirty-four of the 36 lots scored in the range of 3 through 7 or were of acceptable color. The boiled potatoes were evaluated on a scale of 5 being too dark and 1 being perfectly white. The average score was 2.04 and the range from 1.20 to 3.90. A visual score of about 3.2 represents the darkest acceptable color, and the Hunter L value range for sample scoring 3.2 was 57 to 69. All of the 36 1972-samples of boiled potatoes had Hunter L values above 57 with the lowest value being 61.3 and the largest 78.0, and the average, 67.7.

The Hunter color values for canned Irish potatoes ranged from 63.80 to 70.45 with a mean of 68.27 for duplicate values in two replications. Commercially canned Irish potatoes ranged from a Hunter L value of 67 to 69. Twenty-nine of the 36 1972-samples had Hunter L scores above 67 or, in other words, were lighter than the commercial canned potatoes. Twenty-eight of the 36 lots scored grade A according to USDA standards. Only 3 of the 36 were off grade due to poor color.

Mississippi Table 1. Yield, % No. 1 tubers, specific gravity, after boiling rating, chip color, and tuber rating for replicated and observational entries at Stoneville, Mississippi--1972.

Entry	$\frac{\text{Yield}^{1}}{(\text{cwt})}$	% No. 1	Specific Gravity	After boiling 2/ darkening	Chip—color	Tuber-
Red LaSoda	371	78.0	1.065	1.54	6.58	2.5
B6097-9	364		1.080		6.	
BR-6446-2	323	56.7	1.069	2.50	6.75	
B6562-14	321	73.0	1.081		. 7	2.5
BR-6863-7	319	78.9	1.078	1.98	3.16	3.0
BR-6820-26	317	7.99	1.067	1.53	9.	2.5
Katadin	317	85.8	1.069	1.80		3.0
BR-5960-5	316	80.2	1.073	3.08	3.75	
BR-6626-5	31.6	74.1	1.074	1.75		2.5
BR-6863-1E	313	76.3	1.084	1.75		
B6603-12	312	77.4	1.078	1.43		3.0
Alamo	310	71.4	1.064	1.48		
BR-6863-8E	301	82.1	1.083	1.33		
B6751-3	299	64.1	1.071	1.20	5.57	2.5
LaChipper	294	77.3	1.069	1.85		
BR-6864-11E	293	70.3	1.068	1.80	5.41	
BR-6463-2	292	70.8	1.074	2.00		2.5
Superior	292	83.9	1.075	1.63		3.0
B6518-5	290	64.1	1.082	2.00	.5	
Seminole	288	69.5	1.081	1.88	7.66	2.5
Kennebec	285	6.69	1.065	2.25	00.6	
Norchip	284	40.4	1.076	0.	4.99	3.0
B6532-3	282	42.3	1.085	1.75		2.5

Table 1 (cont.)

Entry	$\frac{\text{Yield}^{1}}{(\text{cwt})}$	% No. 1	Specific Gravity	After boiling ² /darkening	Chip- color	Tuber 4/ rating
BR-7085-1	279	3	1.082	. 5	. 2	
BR-6862-5E	278	76.3	1.075	2.50	4.83	2.5
BR-6864-9	266	2	1.073	4.	∞	
BR-7066-1	266	9	1.062		∞	
BR-7108-1	261	2.	1,080	9.	∞	
B6527-33	258	0	1.075	4.	0.	
BR-6863-3	234	$\overset{\cdot}{\infty}$	1.082	. 7	ω,	
BR-6491-5	227	9	1,080	0.	<u>.</u>	
BR-7093-6	226	∞	1.070	. 2	Ξ.	
BR-5960-13	223	~	1.078		.5	
BR-6864-6E	216	0	1.071	Γ.	5.	
BR-6859-3	208	$\stackrel{\cdot}{\dashv}$	1.064	∞	6.75	
BR-6491-1	200	0	1.081	. 2	. 7	
LSD 5%	50	11.7	0.004			
Observational	Lines					
B6516-3	137		1.083	2.00	Ξ.	
B6516-5	223	$\stackrel{\cdot}{\infty}$	1.080	1.75	∞	
B6516-18	218	4.	1.071	2.00		
B6516-20	219	34.7	1.077	1.75	4.83	
B6516-26	2.35	9	1.077	1.50		
B6532-14	193	36.3	1.080	1.25	0.	
			Andrew ordered in the latter representation of the control of the	manda and the state of the stat		

Average of five replications.

Each visual rating is the average of 5-member panel based on two combined replications from the trials. 1 = no darkening; 5 = severe darkening.1/2

Visual ratings based on the International Potato Chip Institute Color Reference Standard. Each rating is the average of a 5-member panel based on two combined replications from the test. 3/

Based on yield, appearance at harvest, rotting, second growth, heat sprouts, cracking, etc. 1 = poor; 5 = excellent. 4/

Mississippi Table 2. The internal characteristics of 36 entries of potatoes grown in Stoneville, Mississippi--1972 $\frac{1}{2}$

		CCTLI	7//T TAdrester			
	Internal	Flesh	Tuber		Vascular	Hollow
Entry	necrosis	color	Maturity	Rot	discolor	heart
Red LaSoda	5.0	•	4.8			5.0
B6097-9	5.0	•	5.0			5.0
BR-6446-2	5.0	3.5	5.0	•	5.0	4.8
BR-6562-14	5.0	3.8	9.4		5.0	•
BR-6863-7	5.0	3.8	8.4	5.0	5.0	4.8
BR-6820-26	5.0	3.7	5.0		5.0	
Katadin	4.8	3.6	8.4		5.0	5.0
BR-5960-5	4.8	4.1	•	5.0	5.0	•
BR-6626-5	5.0	4.0	4.8	5.0	5.0	5.0
BR-6863-1E	5.0	3.7	5.0	5.0	5.0	•
B6603-12	9.4	3.6	•			
Alamo	5.0	4.0	5.0		8.4	5.0
BR-6863-8E	5.0	3.6			5.0	
B6751-3	5.0	3.2	4.4	4.8	4.8	5.0
LaChipper	5.0	3.9	•		5.0	
BR-6864-11E	5.0	3.9		5.0	5.0	8.4
BR-6463-2	5.0	3.7		5.0	5.0	
Superior	4.8	3.5	5.0	5.0	5.0	5.0
B6518-5	5.0	3.8	5.0	5.0	5.0	5.0
Seminole	4.8	3.6		. 5.0	5.0	4.4
Kennebec	5.0	4.0	4.6	5.0	5.0	5.0
Norchip	5.0	3.6	4.8	5.0	5.0	5.0
B6532-3	5.0	3.6	9.4	5.0	8.4	8.4

Table 2 (cont.)

Entry	Internal necrosis	Flesh	Tuber Maturity	Rot	Vascular discolor	Hollow heart
BR-7085-1	4.8	3.4	4.8	4.8	8.4	4.4
BR-6862-5E	4.4	3.5	8.4	8.4	4.8	4.8
BR-6864-9	5.0	3.5	5.0	5.0	5.0	5.0
BR-7066-1	5.0	3.8	5.0	5.0	5.0	9.4
BR-7108-1	5.0	3,8	5.0	5.0	5.0	5.0
B6527-33	4.8	3.4	4.8	4.8	4.8	4.0
BR-6863-3	4.8	0.4	5.0	5.0	5.0	5.0
BR-6491-5	4.8	3.9	5.0	5.0	5.0	5.0
BR-7093-6	7.6	3.6	5.0	5.0	5.0	5.0
BR-5960-13	5.0	4.0	4.4	5.0	5.0	5.0
BR-6864-6E	5.0	3.6	5.0	5.0	5.0	5.0
BR-6859-3	5.0	3.5	5.0	5.0	8.4	4.0
BR-6491-1	4.8	3.9	5.0	5.0	5.0	5.0
LSD 5%	0.4	0.3	NS	NS	NS	0.5

 $\underline{1}/$ 1 = poor to 5 = excellent. Average of five replications.

Mississippi Table 3. Quality evaluations of canned Irish potatoes from the replicated trials at Stoneville, Mississippi¹/

					(100)	Asco Firmness	ss Values
	(20)	(20)	(40)		Total		
Entry	Color	Uniformity	Defects	Texture	Score	Firmness-	Diameter
Red LaSoda	19.0	18.0	37.0	6	3	. 2	6
B6097-6	17.5	18.0	36.0	19.0	$\vec{}$	15.75	3.30
BR-6446-2	15.0	18.0	34.5	6		16.50	3.25
B6562-14	20.0	18.0	35.0		۰	11.25	3.50
BR-6863-7	19.0	18.0	35.0	19.5	91.5		.5
BR-6820-26	18.0	18.0	36.0			16.25	3,58
Katadin	18.0	18.0	36.5	19.0	-		3.19
BR-5960-5	15.0	18.0	34.5	19.5	7		n.J
BR-6626-5	19.5	18.0	38.0		r	15.75	(1)
BR-6863-1E	19.0	18.0	37.5	9	5	13.50	3.46
B6603-12	19.0	18.0		19.0	ä		9
Alamo	19.5	18.0		0	5		(*)
BR-6863-8E	20.0	18.0	35.0		2	15.25	3.56
B6751-3	19.0	18.0	35.0	6	91.0	15.25	3.23
LaChipper	20.0	18.0		20.0	4	14.00	0.
BR-6864-11E	19.5	18.0			0,	18.75	5
BR-6463-2	17.0	18.0	34.0	19.0	85.5	16.00	3.19
Superior	19.5	18.0	35.0	19.0		13.50	7.
B6518-5	19.0	18.0		20.0	94.5	P	3.26
Seminole	18.5	18.0	34.5	18.5	00	·	00
Kennebec	19.0	18.0	38.0	20.0	95.0	17.50	2
Norchip	18.5	18.0	34.5	18.5	6	5	
B6532-3	19.0	18.0	- 36.0	19.0	92.0	16,50	3,15
						A STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER. THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	to whether the tracket come of their strategies and the

Table 3 (cont.)

					(100)	Asco Firmness Values	ss Values
	(20)	(20)	(07)		Total	Unit ,,	
Entry	Color	Uniformity	Defects	Texture	Score	Firmness-	Diameter
BR-7085-1	17.0	18.0	27.0	19.5	80.0	13.25	3.43
BR-6862-5E	17.0	18.0	24.0	19.0	78.0	25.00	3.37
BR-6864-9	18.0	18.0	34.0	19.0	89.0	20.25	3.59
BR-7066-1	19.0	18.0	35.5	19.5	93.0	16.25	3.81
BR-7108-1	19.5	18.0	35.0	19.0	93.0	11.25	3.50
B6527-33	17.5	18.0	25.0	17.0	77.5	23.25	3.78
BR-6863-3	20.0	18.0	36.0	19.0	93.0	24.25	3.26
BR-6491-5	19.5	18.0	37.5	19.0	93.0	24.25	3.26
BR-7093-6	18.0	18.0	33.5	19.5	91.0	14.00	3,30
BR-5960-13	19.0	18.0	35.5	19.5	92.0	17.75	3. 38
BR-6864-6E	20.0	18.0	35.0	20.0	93.0	11.75	3.79
BR-6859-3	19.0	18.0	32.0	19.0	88.0	15.75	3.74
BR-6491-1	15.5	18.0	34.0	19.0	86.5	25.75	3.06

Subjective scores are the average of 5 panel members and 2 combined replications from the trials. The larger the number the less firm the potato.

NEW JERSEY

C. E. Cunningham, F. L. Merwarth, T. E. Snyder, and G. S. McWalter

Campbell Institute for Agricultural Research

Approximately 41,000 first-year seedlings were grown at Perham, Maine, from which 1219 clones were selected for planting in 16-hill rows in 1972. One hundred and seventy clones were saved from 1659 clones in 16-hill rows. One hundred and fifty-six clones were saved from 217 100-hill rows for selection following results of processing tests. Advanced selections were planted in seed-increase plots and variety trials.

Data reported are from replicated trials in California, Maine, New Jersey, South Carolina, and Virginia. Planting and harvest dates, fertilization, and cultural practices were similar to those for the different areas. Samples were evaluated for processing characters in laboratories at Cinnaminson, New Jersey, or Perham, Maine.

Campbell Table 1. Yield, specific gravity, chip color and tuber rating of selections and varieties grown for evaluation in soups at Shirley, New Jersey -- 1972

Selection	Yield above	21F	Specific / Gravity	Chip ² /	Tuber3/
BR6446- 2 BR6456- 1 BR6626- 5 BR6820-16 BR6820-26 BR6850-16E BR6862- 2 BR6862- 5E BR6864- 9 BR6864- 1E BR6864- 5E BR6864- 8E BR6864- 9E BR6864- 11E BR7066- 1 BR7068- 3 BR7104-10 Katahdin (check)	217 220 268 217 165 97 250 195 189 280 213 199 118 245 252 136 190 221 204	85 81 82 71 58 86 67 73 82 75 75 75 75 75 76	60 68 75 58 55 61 64 66 55 60 62 60 64 66 73 71 66 59	5.0 4.7 3.6 5.8 7.9 3.5 4.7 4.7 4.1 4.2 4.7 3.7	3 3 3 3 3 3 3 4 3 4 4 4 4 3 4 4 3 4 4 3 4 4 3 4 3 4 4 3 4 3 4 4 4 3 4 4 4 4 3 4 4 4 3 4 4 4 4 4 3 4
Mean	20L		63	4.3	
ISD (.05) (.01)	40 53		5 ?	0.8 1.1	

^{1/ 1.0} deleted

^{2/} l = Light to 10 = Dark brown PCT Color Scale

^{3/} 1 = Poor to 5 = Excellent

Campbell Table 2. Yield, specific gravity, chip color and tuber rating of selections and varieties grown for evaluation in frozen products at Shirley, New Jersey -- 1972

Selection	Yield abo	9VC 211	Specific / Gravity	Chip ² / Color	Tuber2/ Rating
BR5960-13 BR6316-5 BR6491-1 BR6626-5 BR6850-13E BR6850-23E BR6859-3 BR6863-3 BR7044-2 BR7061-3 BR7071-4 BR7082-2 BR7085-1 BR7093-4 BR7093-6 BR7093-9 BR7093-9 BR7108-1 BR7108-1 BR7108-3 Katahdin Kennebec (check Norchip Raritan	105 240 220 259 241 130 243 271 258 228 27 239 247 200 220 236 210 257 189 248 264 179 246 234 287	80 83 86 80 81 87 81 81 81 81 81 81 81 81 81 81	80 79 80 74 63 62 56 85 64 80 63 74 66 82 77 65 69 68 84	3.6 3.1 3.8 3.5 3.5 3.0 3.2 3.5 3.2 3.1 3.9 4.6 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	2+ 3 3+ 4 2+ 2+ 3+ 3+ 3+ 3 3+ 3 3+ 3 3+
Mean	223		71	3 . 7	
LSD (.05) (.01)	48 63		<u>l</u> , 6	0.6 0.8	

^{1/ 1.0} deleted

^{2/ 1 =} Light to 10 = Dark brown PCI Color Scale

^{3/1 =} Poor to 5 = Excellent

Campbell Table 3. Yield, specific gravity and chip color of selections and varieties grown at Parkesley, Virginia -- 1972.

Selection	Yield above 2" Cwt./A	Specific Gravity	Color
BR5960- 5	551	17	1, , ':
BR5960-13	182	83	7.
BR6316-5	233	73	
BR6491-1	130	8.5	3.
BR6491-5	146	63	11.0
BR6859-3	205	69	1.1
BR6863-3	185	74	3.0
BR6863- 7	233	77	3.2
BR6863-11E	162	78	3.1
BR7044-2	142	71	4.4
BR7046-1	189	70	4.0
BR7076-3	110	72	3.7
BR7083-3	102	76	3.9
TR7085-1	178	71	10.1
PR7088- 2	195	80	11.1
BR7089-1	182	70	4.1
BR7093- 6	123	69	3.9
BR7093-9	125	72	3.3
BR7093-20	111	78	3.4
BR7102- 4	174 206	75 80	4.0
BR7103- 7 BR7105-10	223	67	3.5
BR7108-1	169	77	3.0
Norland	76	58	2 = 7
Norchip	185	75	3.0 3.9 3.7 3.3
Kennebe c	230	66	2
Pungo (check)	265	71	3.7
Superior	210	67	4.2
Super 101	210	O1	4.06
Mean	175	74	3.7
ISD (.05)	52	ζ.	1.0
(.01)	68	5 8	1.3

^{1/ 1.0} deleted

^{2/} l = Light to 10 = Dark brown PCI Color Scale

Campbell Table 4. Yield, specific gravity and chip color of sclentions and varieties grown at Clemson University Truck Crops.

Experiment Station, Charleston, South Carolina -- 19721/

Selection	Yield Cwt./A	Specific2/ Gravity	Color
BR5960- 5	282	78	1, . I
BR5960-13	278	78	3.8
BR6316-5	290	75	3.1
BR6463-2	215	78	3.9
BR6491- 1	218	84	7.5
BR6491-5	203	88	3.6
BR6626-5	250	71.	6.2
3R6859-3	206	79	6.0
3R6863-3	181	81	3.1
BR6863- 7	250	78	3.5
BR6863- 8E	225	83	3.0
BR7046-1	2 72	77	4.0
BR7083-1	202	92	5.6
3R7083-3	184	78	71.5
BR7085-1	228	83	3.9
BR7093-6	216	70	3.2
BR7093-22	247	85	3.0
Kennebe c	289	76	5.4
LaChipper	307	72	4.0
Norchip (check)	292	80	3.3
Mean	24 1	79	4.0
ISD (.05)	38	5 7	0.8
(.01)	50	7	1.0

^{1/} Dr. W. R. Sitterly cooperating

^{2/ 1.0} deleted

^{3/} l = Light to 10 = Dark brown, PCT Color Scale

Campbell Table 5. Yields, specific gravity and chip color of selections grown at Arvin, California -- 1972.

Selection	Yield U.S. No. Cwt./A	1 %	Specific 1/ Cravity	Chip2/
BR6446- 2	231	88	75	j
BR6456-1	215	82	72	5.2
BR6626-5	200	73	74	4.9
BR6820-26	221	83	69	3.7
BR6862- 2	200	91	76	3.0
R6862-5E	227	87	72	13
R6863-3	163	88	78	3.0
R6864- 6E	230	88	71	3.7
R686L-9	221	90	70	3.2
R6864-11E	246	85	71	4.4
R7066- 1	209	85	65	11.3
R7085- 1	1.34	83	75	3.7
R7088- 2	1/12	65	83	
R7091-1	296	92	65	3.0
R7093-4	157	80	74	3.1
R7103-2	203	89	88	3.7
R7104-10	205	86	71	3.4
A25-1	225	88	81.	1,0
A46-15	153	80	72	3.9
A60- 2	1/11	88	72	4.5
ennebec (check)	261	91	81	3.6
hite Rose	95	56	69	5.7
lean	199	84	74	4.0
LSD (.05)	67	7	l_{4}	0.6
(.01)	89	9	4 5	0.8

^{1/ 1.0} deleted

^{2/} l = Light to 10 = Dark brown, PCI Color Scale

Campbell Table 6. Yield, specific gravity and tuber rating for selections evaluated for frozen products, Perham, Maine -- 1972

CA06- 5 372 90 73 3+ CA06- 7 255 85 73 2 CA10-14 373 93 75 3 CA23- 5 313 84 84 84 2+ CA23- 6 385 96 83 3+ CA24- 7 337 77 70 2+ CA25- 1 372 92 82 3+ CA25- 3 385 92 79 3 CA26- 2 418 93 79 3+ CA28- 2 373 86 74 3 CA28- 2 373 86 74 3 CA28- 1 355 94 77 3 CA44- 1 355 94 74 3 CA46-11 416 93 75 3 CA46-15 462 92 68 3+ CA46-15 462 92 68 3+ CA54-32 379 84 72 3 CA55- 8 294 79 78 3+	2/
CA60-24 351 93 76 2+ CA61-3 317 84 77 2+ BR6463-2 346 88 79 2+ BR6863-7 390 89 79 3+ BR6491-5 334 82 91 3 Norchip 397 88 72 2+ Kennebec (check) 474 95 71 2+ R. Burbank 361 83 79 2	
Mean 373 76	
LSD (.05) 53 5	

^{1/ 1.0} deleted

 $[\]frac{2}{1}$ = Poor to 5 = Excellent

Campbell Table 7. Yield, specific gravity and tuber rating for selections evaluated for frozen products, Perham, Maine -- 1972.

Selection	Yield abo	ve 211	Specific1/ Gravity	Tubor2/ mating
BR5960-13 BR6316- 5 BR6491- 1 BR6626- 5 BR6850-13E BR6850-23E BR6859- 3 BR6863- 3 BR7044- 2 BR7061- 3 BR7071- 4 BR7082- 2 BR7085- 1 BR7093- 6 BR7093- 6 BR7093- 9 BR7093-20 BR7096- 1 BR7097- 2 BR7102- 4 BR7103- 7 BR7108- 1 BR7108- 3 Katahdin Kennebec (check) Norchip Raritan R. Burbank	368 413 326 420 312 385 403 345 345 345 345 345 345 345 345 345 34	93 92 93 93 93 94 94 98 89 91 91 91 93 89 91 89 89 89 89 89 89 89 89 89 89 89 89 89	82 77 88 79 75 77 60 82 80 69 75 72 82 74 78 79 80 79 80 87 81	3 3 3 3 2 2 3 3 3 2 4 2 3 3 3 2 3 3 3 3
mean	371		77	
LSD (.05)	52		5	

^{1/ 1.0} deleted

 $[\]frac{2}{}$ 1 = Poor to 5 = Excellent

Campbell Table 8. Yield and specific gravity of selections evaluated for soups, Perham, Maine -- 1972.

Selection	Yield above Gwt./A	2.11	Specific1/ Gravity	Selection	Yield above 2 Gwt./A	2 28	Specific1/ Gravity
BR6446-2 BR6456-1 BR6820-16 BR6820-26 BR6820-26 BR6864-9 BR6864-9 BR6864-9 BR6864-5E BR6864-5E BR6864-9E BR6864-9E BR6864-9E BR6864-9E BR6864-9E BR6864-9E BR6864-9E BR6864-11E BR7068-3 BR7068-3	122 123 123 123 123 123 123 123 123 123	3553488555888858	71 72 64 72 70 70 71 70 70 70 70	BR6863-12E BR7056- 4 BR7056- 6 BR7062- 2 CA02- 7 CA02- 7 CA02- 7 CA02- 7 CA02- 8 CA2-13 CA11-15 CA11-15 CA16-11 CA27- 6 CA27- 6 CA26-11 CA27- 6 CA26-11 CA26-29 CA26-29 CA46-29 CA46-29 CA46-29 CA66	December of the second of the	EVE 83 E E 4 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	35,237,75,22,25,25,25,25,25,25,25,25,25,25,25,25
Mean	371		70		366		02
ISD (.05)	57		2		56	Audie Australia Franchischer der Australia (d. 1888).	To control the property of the control of the contr

1/ 1.0 deleted

Campbell Table 9. Yield and specific Eravity of selections in late maturity trials, Perham, Maine -- 1972.

Yie Selection Cwt	ld above //A	22 = PS	Specific1/ Gravity	Selection	Yield above Cwt./A	ve 2"	Specific1/ Gravity
7	7 ⁴ 47	94	61 78	BR6835- 1E	374	87	752
7	153	75	77.		398	18	89
. ,	377	716	2.2	BR6863- 5E	397	98	78
7	110	76	89.		332	76	75
7	453	89	73		352	%`	82
	324	0,000	£ €	BR7046- 1	364	96	χ ΓV (0
, ,	200	03	70	BR7076-3	+ / + / + / + / + / + / + / + / + / + / + /	V 0	60.6
- ~	127	000	85 75	BR7088- 2	343	80	777
1	369	96	72		368	89	98
~	134	26	779		413	93	82
~	170	96	70	-	393	16	98
7	+33	96	69	1	456	95	79
7	138	76	99	BR7093- 5	392	95	77
7	₁ 27	96	77	BR7093-23	401	16	77
	321	91	70	BR7117-25	1,15	76	7.7
, ,	350	89	75	В 6987-184	370	93	06
~	162	26	70	Katahdin (check	_	96	02
~	40 _t	96	72	Kennebec	797	95	72
7,	†62 282	25	70	Mauseon	366	91	92
	305	72	7)				
7	403		72		389		16
	35		w		50		9

Campbell Table 10. Yield, specific gravity and tuber rating of selections from several breeding programs, Perham, Maine -- 1972.

Selection	Yield abo	ve 2 ¹⁸	Specific / Gravity	Tuber2/ Rating
A63126-2 Rus A64206-4 Rus B6495-12 B6532-4 B6532-10 B6692-5 B6712-17 B6955-14 CA60-5 F5810 F6208 F6542 F6589 Variable r F65044 F6609 Neb. 1-57-1 Neb.49-62-5 Neb.93-55-16 Cascade Hudson Katahdin Kennebec Raritan R. Burbank	277 248 266 356 240 352 356 416 382 390 400 348 354 331 338 300 254 290 377 395 376 412 312 360	78 74 87 90 78 91 95 91 89 90 91 80 81 93 94 93 82	79 80 80 77 80 69 76 80 75 80 78 71 81 71 67 75 74 62 68 69 73 89 76	2+ 2+ 3 3 4 4 3+ 3+ 3+ 3+ 3+ 2+ 3+ 2+ 3+ 2+ 3+ 2+ 3+ 2+ 3+ 2+ 3+ 2+ 3+ 2+ 3+ 2+ 3+ 2+ 3+ 2+ 3+ 2+ 3+ 2+ 3+ 2+ 3+ 3+ 3+ 2+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+
Mean	339		75	
LSD (.05)	73		6	

^{1/ 1.0} deleted

^{2/1 =} Poor to 5 = Excellent

NEW JERSEY

Melvin R. Henninger

USDA Seedlings

Eighty USDA seedlings and five named varieties were planted in a two-replication, randomized block. Plots were ten feet long and seedpieces were spaced ten inches apart in 36-inch rows. All plots were planted on April 19 and harvested August 28. There were 1300 lbs/A of 16-8-8 fertilizer applied below and to the side of the row at planting time. Heavy rains until mid-July caused leaching of nitrogen which may have reduced yields of the late maturing varieties. Irrigation was needed weekly during late July and August. Extended periods of above 90° F temperature and 90% humidity, in addition to very poor air quality during July and August, produced severe speckle symptoms to many seedlings. Speckle leaf ratings were recorded and varied from one = little injury to five = severe injury. A rating of four or five may have caused yield reductions.

New Jersey Table 1. Yields, Specific Gravity, and Speckle Leaf Ratings for 80 USDA Potato Seedlings and Five Varieties in 1972.

Seedling Number	Yield (Over 1-7/8"	Cwt/A		ntage er 2-1/2"	Specific Gravity		Le Leaf ing 7/20
B6814-16	343	378	91	49	_	2	3
B6928-10	206	232	89	24	1.054	5	5
B6952-3	306	350	88	48	1.082	3	4
B6955-24	259	294	88	29	1.065	3	5
В6955-33	336	356	94	66	1.073	2	5 5
в6955-35	341	365	94	62	1.085	2	4
B6986-2	413	422	98	86	1.069	1	3
в6986-18	308	323	96	76	1.067	5	5
B6987-29	313	334	94	56	-	4	4
B6987-37	257	305	84	38	1.080	3	4
в6987-43	348	352	99	85	1.075	3	5
B6987-54	282	298	95	68	1.060	5	5 5
В6987-56	335	351	96	56	1.081	3	4
B7024-6	334	360	92	53	-	4	3
B7138-11	292	337	86	31	1.088	2	3
в7139-12	225	253	88	54	1.053	4	4
B7143-12	124	146	86	32	1.056	2	3
B7145-1	215	294	73	19	1.043	4	4
B7145-3	213	267	80	14	1.048	5 3	5 5
B7147-8	68	120	56	10	1.068	3	5

New Jersey Table 1. (Continued)

Seedling	Yield (Cwt/A		entage ver	Specific		le Leaf
Number	1-7/8"	Total	1-7/8"	2-1/2"	Gravity.	7/11	7/20
B7147-17 B7147-83	246 167	294 183	84 92	40 50	1.072	2	4 3
B7147-90 B7151-1	204 336	218 362	92 93	45 58	1.079 1.090	2 2	3 2
В7159-26	333	344	97	73	1.054	2	4
B7164-25 B7167-2	238 219	257 260	92 84	42 32	1.061 1.068	2 4	3 5
B7167-30	300	315	96	70	1.068	4	5
B7188-2	. 235	252	93	67	1.058	1	1
B7196-23	267	298	90	56	1.068	1	2
B7196-27	206	238 238	86 92	29 62	1.070	2 2	3 3
B7196-29 B7196-30	217 198	236	93	46	1.066	3	4
B7196-36	112	152	74	13	1.052	4	5 5
B7196-37	146	205	72	3	-	4	5
в7196-40	172	218	79	25	-	4	5
B7196-74	142 240	180 280	78 86	16 29	- 1.064	5 2	5 3
B7200-26 B7221-7	328	375	86	43	1.089	3	3
B7252-3	324	366	88	46	1.069	2	4
B7572-2	218	248	88	40	1.091	3	4
B7572-4	282	300	94	67	1.083 1.066	3 3	3 4
В7573-3 В7573-7	207 297	240 334	86 88	36 39	1.083	2	3
B7579-1	280	305	92	54	1.076	3	4
B7582-1	282	306	92	49	1.075	2	4
B7584-6	295	326	90	57	1.089	2 4	3 4
B7584-8	276	292 337	94 75	68 17	1.075 1.083	3	5
B7585-3 B7585-9	254 260	292	89	51	1.105	2	3
В7590-6	. 239	286	83	36	1.059	3	4
B7592-1	247	290	85	36	-	3 3	4 4
B7595-7	158	277	57 92	7 63	1.063	3 4	4
B7602-7 B7602-9	284 180	310 216	84	24	1.077	2	4
B7612-5	174	215	80	14	1.068	4	5
B7618-6	240	260	92	52	1.069	3 4	4 4
B7619-12	207	232	89 90	67 54	1.077 1.072	3	4
B7620-4 B7620-7	322 306	358 366	84	42	-	4	4

New Jersey Table 1. (Continued)

Seedling	Yield (Cwt/A		ntage er	Specific		e Leaf
Number	1-7/8"	Total	1-7/8"	2-1/2"	Gravity .	7/11	7/20
B7621-2	382	400	96	75	1.066	2	3
B7621-10	254	313	81	24	1.075	3	3
B7622-1	312	336	93	68	1.075	3	3
B7629-6	267	340	78	28	-	4	4
B7630-1	343	394	87	46	1.088	1	2
B7630-2	274	294	94	58	-	3	3
B7631-3	288	305	94	48	_	2	4
B7631-4	448	467	96	68	1.057	3	4
B7633-2	342	396	86	52	-	1	2
B7633-6	275	382	72	18	-	2	3
77604 1	1.60	000	0.0	0.0		•	-
B7634-1	160	200	80	20	1 057	3	5
B7634-2	290	302	96	64	1.057	3	5
B7635-1	260	304	86	22	1.055	5	5
B7635-4	252	290	85	41	1.067	3	4
В7636-4	396	448	90	86	1.074	2	4
B7642-1	230	273	87	36	1.061	4	5
B7650-17	79	140	52	0	1.001	5	5
B7659-17	272	360	75	18	1.072	2	3
B7673-2	292	366	80	23	1.059	3	4
B7766-2	307	328	93	46	-	2	4
B//00 2	307	320	75	40		-	,
Kennebec	376	422	88	42	1.071	2	2
Superior	312	330	95	56	1.063	3	4
Norchip	267	312	85	30	1.071	3	3
Norgold R.	357	400	90	50	1.065	4	5
Cascade	248	298	84	20	1.056	5	5
Duncan's							
Mod. LSD 5%	92	95	11	19			
Coef. of							
Variability	18	16	6	22			

NEW YORK

R. E. Anderson, B. B. Brodie and M. B. Harrison

Resistance to the Potato Cyst Nematode

Populations of clones derived from diploid species of potatoes are being screened for new sources of resistance to aggressive forms of the potato cyst nematode. The most advanced materials derive from Solanum vernei, S. multidissectum, S. spegazzinii, and S. Sanctae-Rosae. Each of these species contain one or more loci conferring resistance to race A, the golden nematode, based on trials at the USDA Nematology Laboratory in Ithaca and at the Nematode Research Laboratory on Long Island. Data from research in Peru indicate that certain clones selected for resistance to race A are also tolerant or resistant to one or more of the populations of nematodes used in screening trials at Huancayo and LaMolina. Tubers of 700 clones grown in 1971 or in the greenhouse in early 1972 are currently undergoing increase and screening for resistance in Peru. These results may indicate in which of these species the better sources of resistance are likely to be found.

It seems likely that clones giving resistance to the aggressive pathotypes in Peru will also be resistant to race A in New York. Thus progenies could be screened first in the New York laboratories, and only resistant clones need be sent to Peru for further screening. However, some clones which tested as susceptible to race A were sent to Peru to check on the possibility that there are two or more completely independent processes governing resistance.

Eighty-eight accessions of 25 diploid species have been received in the past year and will be added to the breeding program in 1973. Resistant diploid germplasm used as parents in hybrid crosses in 1972 included 10 vernei clones, 4 multidissectum clones, 3 Sanctae-Rosae clones, and 40 spegazzinii clones. Seed produced includes intra-specific hybrids, and crosses to diploid and tetraploid tuberosums. Resistant tetraploid clones used in seed production had been derived from the same four diploid species. Crosses were made with adapted varieties of S. tuberosum. The resistance from the Sanctae-Rosae parents is found in a high proportion of its progenies; in addition, many of the resistant clones receive zero ratings for cysts rather than the acceptable 1-5 rating level.

Seedlings from 75 interspecific crosses of diploid <u>Solanum</u> clones with resistance to race A (zero cyst ratings) were grown in the field in 1972. Approximately 6000 of the seedlings produced tubers; each clonal line will be tested at Ithaca and at Farmingdale for reaction to race A, and in Peru for reaction to the nematode populations indigenous in the Sierras. The Max-Planck-Institut is interested in testing the more promising lines for resistance to the cyst nematodes of Western Europe. Colombia is another possible testing location.

Two hundred fourteen diploid and tetraploid breeding lines were increased in the field to provide additional tubers for use by other interested potato breeding programs.

New York

B. B. Brodie

Field Performance of Potato Breeding Lines in Golden Nematode Infested Soil

Twenty-three breeding lines of potatoes were evaluated for yield, specific gravity and tuber appearance in golden nematode-infested soil at the Nematode Research Farm in Steuben County, New York. The breeding lines were planted in 10-hill plots with 12-inch spacing between hills. Each line was replicated three times. Golden nematode population density averaged 300 cysts per 150 ml of soil. Because of a lack of facilities at the farm, data on cyst development on root systems could not be taken. Consequently, only data on yield, specific gravity, and general appearance of tubers are given. The breeding lines were compared to Katahdin, a golden nematode-susceptible variety.

The 1972 growing season was characterized by above normal rainfall and below normal temperatures. Golden nematode development on the susceptible Katahdin was moderate and did not cause above-ground symptoms.

In the 1972 trial, 17 of the breeding lines yielded more than did Katahdin (New York Table 1). These lines were predominately in the B6987, B7151, B7155, and B7608 groups. Highest yields were obtained with lines B7151-7, B7151-9, B7151-10, and B7155-3. Specific gravity of these high yielding lines was equal to or higher than that of Katahdin. Increased yields can be attributed in part to golden nematode resistance or tolerance.

New York Table 1. Yield, specific gravity and general appearance of potatoes from <u>Heterodera rostochiensis</u> infested soil

	Total yield	Specific	Genera	1 appearance $\frac{1}{2}$	<i>,</i>
Variety	per acre	gravity	Size	Shape	Color
	cwt				
Katahdin	203	1.081	good	good	good
B6595-12	157	1.098	undersize	good	good
B6741-2	180	1.083	undersize	good	good
B6741-3	185	1.079	undersize	good	good
B6741-11	223	1.085	good	good	good
B6799-1	244	1.079	good	good	good
B6986-2	235	1.088	oversize	irregular	good
B6987-2	132	1.052	undersize	good	good
B6987-18	2-72	1.084	over & undersize	good	good
B6987-22	232	1.093	good	good	good
B6987-25	281	1.091	good	good	good
B6987-29	236	1.084	undersize	poor	good
B6987-43	216	1.094	good	good	good
B6987-56	241	1.094	good	good	good
B7151-7	310	1.089	good	good	good
B7151-9	295	1.082	undersize	good	good
B7151-10	317	1.074	over & undersize	good	good
B7155-3	364	1.088	good	good	good
B7200-2	247	1.081	good	good	poor
B7608-2	185	1.086	good	fair	poor
B7608-3	214	1.076	good	poor	poor
B7608-4	202	1.075	fair	fair	poor
B7610-1	223	1.095	good	poor	good
B7633-1	215	1.078	undersize	good	good

Determined from 8 lb. sample and based on U.S. No. 1 grade

NEW YORK (LONG ISLAND)

R. C. Cetas

Evaluation of Potato Cultivars and Breeding Lines for Scab and Verticillium Wilt Resistance on Long Island in 1972

Scab. Thirty-five cultivars and breeding lines of potatoes were evaluated for scab resistance in soils that were naturally infested with Streptomyces scabies at the Long Island Vegetable Research Farm, Riverhead, New York in 1972. The pH of the soil was 5.3 to 6.1 when determined in 0.01N CaCl₂ and 5.9 to 6.1 when determined in water on October 27, 1972. The seedpieces were cut and treated with 8% active Dithane M-45 dust on April 10. Two replicates of 10 hills of each cultivar and breeding line were planted by hand on April 21. Each plot was paired with one of the Chippewa cultivar, which was planted by machine. The hand-planted seedpieces were spaced 12 inches apart in the row and the machine-planted ones nine inches apart. All rows were 34 inches apart. The 8-16-8 grade fertilizer was applied at the rate of 2250 pounds per acre as the rows were marked with the two-row potato planter on April 21. Foliar diseases and insects were controlled with weekly applications of recommended fungicides and insecticides. The plants were rotocut on September 1, and the tubers were harvested on September 8.

Forty tubers, or all tubers if less than 40 were available, from each plot were washed and examined for scab lesions. Each tuber was scored 0 (no lesions) to 4 (deep pits) for type of scab present, and 0 (no lesions) to 5 (61% or more) for surface area covered by scab lesions. These values were converted to individual tuber indices that ranged from 0 (no scab) to 140 (61% or more of the surface area covered by deep pitted scab). The scab index for each plot was calculated by dividing the sum of the individual tuber indices by the number of tubers examined. The index for each cultivar and breeding line was determined by calculating the average of the two plots. A scab index ratio was calculated for each cultivar and breeding line by dividing the cultivar or breeding line index by the average index of their respectively paired Chippewa plots and multiplying the quotient by 100. The ratios allow one to determine quickly which cultivars and breeding lines were more or less resistant to scab than Chippewa and to compare one cultivar or breeding line with another.

The results of the 1972 test (New York (Long Island) Table 1) suggest that Abnaki, Alamo, Norchip, Norgold Russet, Superior, Wauseon, NY-49, and H413-5 were highly resistant to scab. In 1971, Abnaki showed less resistance to scab than in 1972. Other cultivars and breeding lines that appeared to be more resistant to scab than Katahdin were Reliance, B6879-5, BR6316-7, NY-48, NY-51, F12-61, J99-5, and J249-17. Two breeding lines, NY-47 and J59-10, appeared to be more susceptible to scab than Chippewa. The other cultivars and breeding lines included in this test were in the Katahdin-Chippewa range of susceptibility.

<u>Verticillium wilt</u>. Eighty-seven cultivars and breeding lines were selected for evaluation for resistance to <u>Verticillium</u> wilt in 1972. The seedpieces were cut and treated with 8% active Dithane M-45 dust on April 12 and 13. On May 1, 35 cultivars and breeding lines were planted in single-row, 20-hill plots that were replicated four times; and 52 breeding lines were planted in 20-hill nonreplicated plots. The seedpieces were spaced 12 inches apart in the row,

and the rows were 34 inches apart. All cultural practices were those employed by the grower-cooperator in whose field these tests were conducted.

Observations on plant growth and vine condition were made periodically during the growing season. On August 14, the cultivars and breeding lines were rated for the condition of the vines. The system that was used was as follows:

1 = plants normal or nearly so, 2 = slight wilting and yellowing of the foliage,
3 = 60 to 90% of the foliage green, 4 = 40 to 60% of the foliage green, 5 = 20 to 40% of the foliage green, 6 = trace to 20% of the foliage green, and 7 = all plants dead. The tubers were harvested on September 15.

The tubers were sized on a grader equipped with 1.5- and 2-inch chains. All tubers that passed over the 1.5- and 2-inch chains were counted and weighed. All tubers that passed over the 2-inch chain were washed and examined for growth cracks and knobs. Forty tubers (2-inch minimum), or all tubers if less than 40 were available, from each plot were examined for pinkeye, stem-end vascular browning, hollow heart, and internal necrosis (nectoric rust, brown flecks, and small spots in the flesh). Stem-end vascular browning was scored in a cross-sectional plane 1/8 to 1/4 inch above the stolen attachment as follows: 0 = no vascular browning, 1 = trace of vascular browning, 1 = trace of vascular browning, 1 = trace of vascular ring brown, 1 = trace of the vascular browning score was calculated for each cultivar and breeding line by dividing the sum of the individual tuber scores by the number of affected tubers. A potato hydrometer was used to measure the specific gravity of an 8-pound sample of tubers from each plot.

The vine-score yield, specific gravity, and stem-end vascular browning data from the replicated trial were subjected to the analysis of variance. Percentages were transformed to equivalent angles, and the transformed data were analyzed. Duncan's multiple range test was used to determine significant differences among means. The small letters in the tables indicate groups of cultivars and breeding lines that do not differ significantly at the 5% level.

Circumstances beyond our control made it necessary to conduct these tests at a new location in 1972. The new site was selected based upon the past history that was provided by the new grower-cooperator. Assays of soil and potato root samples in July 1972 showed that the light Sassafras loam soil was infested with the root-lesion nematode, Pratylenchus penetrans. Typical symptoms of Verticillium wilt, however, failed to develop in known susceptible cultivars either because the population of Verticillium dahliae and/or V. albo-atrum was very low in the soil, or because the adverse effects of the abnormal growing season (5.64 and 11.33 inches of rain in May and June, respectively, followed by 1.20 inches in July and 1.37 inches in August) masked and/or inhibited the development of Verticillium wilt symptoms. As the result of the quick change from excessively wet to dry soil conditions and from cloudy, cool, moist to bright, dry atmospheric conditions in mid-July, many cultivars and breeding lines, especially the early maturing ones, died prematurely. Consequently, the yield of tubers was much below normal for all cultivars and breeding lines. The specific gravity of the tubers, however, was higher than normal. The results (New York (Long Island) Tables 2-5) probably are a measure of the response of the cultivars and breeding lines to the adverse growing conditions rather than a measure of their reaction to the Verticillium root-lesion nematode complex.

This work was conducted in cooperation with Dr. H. D. Thurston and Dr. R. L. Plaisted, Departments of Plant Pathology and Plant Breeding, respectively, Cornell University, Ithaca, New York; Dr. R. E. Webb, United States Department of Agriculture, Agricultural Research Service, Northeastern Region, Agricultural Research Center, Beltsville, Maryland; and Mr. Halsey Reeve, Riverhead, New York.

New York (Long Island) Table 1. Results of growing varieties and breeding lines of potatoes in soils that were infested with Streptomyces scabies at Riverhead, New York in 1972.

	S	Scab index	ex	Type	of scab on af	ffected t	tubers	Percentag	tage of
Variety		Chipp-	1/	Majority	of lesions	Average	e lesions	tubers	with scab
or line	Line	ема	Ratio-/	Line	Chippewa	Line	Chippewa	Line	Chippewa
		-	c ·	c	7	,		0.7	
Abnakı	1.0	•	7.4	7 () (7.7	0.0	5 .	
Alamo	1.0	•	4	7	3 - 4	7.7	•		
Cascade	2,5	12.0	-	2	3 - 4	•	3,1		
Cascade M	, 4.9	32.4	19.8	ı	3 - 4	2.6	3.4	51	
Katahdin	3.0	13,1	22.6	2 - 3	2 - 4		•	65	72
Katahdin	4.8	21.0	22.7	ı	3 - 4			74	
Norchip	9.0		3.6	2	2 - 4	•	•	16	74
Norgold Russet	0.2	•	0.8	2	3 - 4		•	4	84
	9.6		87.4	ı	2 - 4	•	•	69	71
Raritan	0.9		17.1	2 - 4	3 - 4	2.2		7.1	96
Reliance	1,3		12.5	2	2 - 4	•	•	31	49
Superior	0.4		2.4	2	2 - 4	•	•	11	86
Wauseon	0.2		1,3	2	2 - 4	•	•	5	71
B6376-6	7.6		25.8	2 - 4	3 - 4	•	•	7 9	06
B6741-11	3.6		16.4	2	2 - 4	•	0	09	76
7			14,1	2	2 - 4	•	•	35	78
-5	2.2		9.7	2 - 3	2 - 4	•	•	28	92
BR6316-7	2.1	22.8	9,3	2	3 - 4	2.0	3.2	55	84
BR6820-29	2.2		19,6	2	2 - 4	•	•	58	55
NY-41	12.5		48°4	ı	3 - 4	•		98	82
NY-45	3.6		21.9	2 - 4	3 - 4	•	•	70	75
NY-47	14.3		174.1	ı	2 - 4			77	75
NY-48	1.2		8.2	2	2 - 4	•	•	28	71
NY-49	1.0		3.7	2	3 - 4		•	24	82
NY-51	1.9		13,3	ı	2 - 4	•	•	22	78
F12-61	2.0	16.2	12,5	2 - 3	3 - 4	•	•	55	88
F293-10	5.0	23.4	21.2	ı	3 - 4		3.4	58	92
G92-6		28.7	9	ı	3 - 4	•	3.4	71	76
H213-7	11,1	35.2	1.	1	3 - 4	•	•	65	95
H413-2		15,3	37.5	2 - 3	3 - 4	•	•	69	79
- 1	0.3	20.0	1.5	2	3 - 4	•	3,3	12	81
	17.9	ω ∞	204.3	1	3 - 4		•	79	51
199-5	2.4		12.6	2 - 3	3 - 4		3.4	20	84
J157-2	7.4	7	41.4	1	2 - 4	•	3.4	99	88
.1249-17	1.6	18.7	80	2	3 - 4	2.0	3.2	41	80
6-SH-9	0.9	4.8	0,1	2 - 4	7 - 1	2.6	3.0		76
x for	variety or	line	divided by i	index for pa	ired Chippewa	plots	multiplied b	by 100.	

New York (Long Island) Table 2. Percent stand, vine score, and yield of various varieties and breeding lines of potatoes grown in soils suspected to be infested with organisms associated with Verticillium wilt in 1972. (4 replicates 20 hills, 12-inch spacing)

	Verticillium wi	m wilt in 1972.	(4 replica	ates, 20	hills, 12-inch s	spacing).	
	Percent	□	Υı̂	er a		jo.	tubers/hill
Variety or	stand	score	Total	2-inch	minimum , ,		2-inch
line	5/31	8/14	cwt	Cwt	Percent1/	Total	minimum
Abnaki (1)	100	.3 c-	173 a	ab	<u>-</u>	5.4 a-d	•
Abnaki (2)	66	0	221 a-e	180 b-f	. g-2 c9	5.4 a-d	
Cascade	66	.5 a-	295 e	246 £	p-	.3 ef	4.5 c-h
Cascade M	89	2.8 ab	281 e	230 ef	<u>၂</u>	٤,	.3 b
Peconic	100	•0 e-	221 a-e	a	65 c-g	-4 /.	.4 c
Katahdin	66	-0 O.	227 a-e	184 b-f	2	-p 0.	.7 d
Raritan	86	.5 d-	225 a-e	p -	-p	.4 a-	7.
Reliance	100	.5 8	229 a-e	p -	-p	5.5 a-e	Ą
Wauseon	96	-0 e-	179 ab	ಹ	2		.5
B6376-6	86	.3 jk	190 a-d	169 a-f	۵0	6.	.8 b
B6567-12	100	.2 c	258 b-e	þ	-၁	.4 a-	.2 b
B6595-5	96	.5 d	269 de	229 ef	-p	-1	0
B6741-11	86	£.	188 a-d	a I	þ	.2 ab	۳,
B6741-16	66	.2 a	86 a	145 a-d	<mark>-</mark>		• 1 a
B6741-23	91	4.2 c-g	171 a	106 a		4.	.2
B6879-5	64	.2 c-	12	a I		9.	0
BR6316-7	96	.5 a-	268 de	C	p -	. 1	.7
BR6820-29	66	• 5	164 a	126 ab			,3 a
NY-6	98	•	221 a-e	167 a-f		8	.7
NY-41	86	.5 a-	270 de	213 c-f		,3	.7 d
NY-47	100	2.5 a	254 be	e e	67 c-g	.0 g	.4 B
04-KN	100	•	232 a-e	168 a-f		-3 8·	φ
NY-51	66	.5 a	197 a-d	130 ab			e 4.
F293-10	66	.8 h-	167 a	140 abc	-p	.0 ab	5
G92-6	66	φ	223 a-e	178 b-f	<u>-</u> 2	-p 0.	4.
H413-2	100		267 cde	236 ef	- p	.2 d	0
H413-5	96	3.8 b-e	266 cde	Ð	71 d-g	.4 fg	5.3 gh
199-5	100		221 a-e	181 b-f	ر 1	.0 a	
J249-17,	96		263 cd	216 c-f	2	7.6 fg	•
$3370-3\frac{2}{2}$	98	4.2	275	234	72	7.6	5.4
6-HS-9 ² /	98		258	208			•
1/ Based on 1	on number of tubers	rs.					

1/ Based on number of tubers. 2/ Two replications of each line, data not included in statistical analyses.

k (Long Island) Table 3. Specific gravity and percentage of tubers with various defects when varieties and breeding lines of potatoes were grown in soils suspected to be infested with organisms associated with Verticillium wilt in 1972.

(4 replicates, 20 hills, 12-inch spacing). New York (Long Island) Table 3.

		C+ TEPTIC	dres, 20 1	1113, 12-11101	- 1	11-11	14	
Variety or	Specific,		Stem-end	Drowning,	Incernal	MOTTOH	Growen	,
line	gravity±'	Pink eye	%	Score-	necrosis	heart	cracks	Knobs
Abnaki (1)					•		•	0.4
Abnaki (2)	82 f-j	0.0	9 a-d	1.3 a-d	0.0	9.0	9.0	0.0
Cascade			4	ф	•			1.4
Cascade M		9.0	48 jk	2.2 e-h			•	4.4
Peconic		•	7	ď	•	0.0	•	0.0
Katahdin		0.0	41 h-k		•	0.0	0.5	0.0
Raritan	Ξ	0.0	33 g-k	1.7 b-g	•	1.9	1.0	•
Reliance	72 ab	9.0	26 e-j	.5 a-	0.0	•	5.7	1.3
Wauseon	77 b-f	•	42 h-k		•	•	1,5	
. B6376-6	81 e-i	0.0		φ		•	7.2	
B6567-12		0.0	31 f-k	2.2 e-h	•	2.5	3,1	0.5
B6595-5	95 lm	0.0	24 d-h	9.		•	1.0	
B6741-11	78 cf	0.0	25 d-i	0		•	3.9	
B6741-16	75 a-d	9.0		•			0.0	•
B6741-23	76 b-e	0.0	46 ijk	۳,	•	0.0	0.5	1.6
B6879-5		0.0		•		9.0	1,3	
BR6316-7	88 k	0.0	52 k	۳,	•	9.0	1.9	
BR6820-29	71 a	0.0		1.0 ab	9.0	0.7	•	
NY-6	72 ab	0.0				0.0		
NY-41	87 jk	0.0	e	1.8 b-g	0.0	0.0	9.0	0.0
NY-47		0.0	15 b-g		•	0.0		0.0
04-YN	86 ijk	0.0	4 a	1.6 a-f	10.0	0.0	•	
NY-51	Ø	0.0	26 e-j	φ		0°0		
F293-10	72 ab	0.0	11 a-e	1.6 a-f	•	0.0	•	
G92-6		0.0	30 f-k	9.	•	0°0	0.0	-
H413-2	85 h-k	0.0	40 h-k	2.1 d-h	0.0	0.0	1.8	0.0
H413-5		0.0	13 a-f	1.5 a-e		0.0	0.5	
199-5	82 f-j	0.0	50 k	2.0 c-h		0.0	0.0	1.2
J249-17,		0.0	21 c-h	1.6 a-f		0°0	0°3	0.0
$3370 - 3\frac{3}{2}$		0.0	39 >	1.5		0.0	0.0	0.0
$6-HS-9\frac{3}{2}$	84	0.0		2.2		0.0		0.0
1/ 1.0 omit	.0 omitted from all s	specific grav	avity reading	ys.				

1.0 omitted from all specific gravity readings. Average score of affected tubers.

Two replications of each line, data not included in statistical analyses. 13151

New York (Long Island) Table 4. Percent stand, vine score and yield of breeding lines of potatoes grown in soils suspected to be infested with organisms associated with Verticillium wilt in 1972. (Nonreplicated, 20 hills, 12-inch spacing).

		.ca	ted, 20 hills,	, 12-inch	spacing).		
	Percent	Vine	Yield	Ω.		No. of tubers,	rs/hill
Breeding	stand	္ပ	Total	inch	minimum		2-inch
line	5/31	8/14	cwt	Cwt	Percent1/	Total	minimum
USDA-2511	100	9	161	142	77		
F12-61	95	5	180	150	71		
F21-14	100	3	311	258	89	7.6	5.2
H213-7	100	2	208	177	69		
J59-10	100	.9	284	265	83	•	•
J157-2	100	2	223	200	78	•	
J333-2	100	9	234	211	79		
K21-1	06	9	211	181	72	•	•
K21-15	100	5	288	246	71		•
K21-41	100	2	215	173	65		
K21-45	100	n	196	158	65		•
K36-17	100	2	242	196	79		•
K37-1	95	4	258	211	29		
K37-12	95	5	181	158	75	•	
K38-22	100	4	338	319	80	•	
K42-11	100	3	234	208	74	•	
K56-7	7.5	က	258	211	29	•	
K59-7	85	က	208	173	69	•	
K59-55	100	5	238	158	67		
K59-63	06	3	227	188	99		
K60-20	95	3	211	181	7.1	•	•
K60-30	95	4	265	238	92		
K60-52	100	3	211	177	89	•	
K81-10	95	3	292	250	99		
K290-6	95	က	192	154	63	•	
K292-6	100	4	292	258	72		
K297-3	100	4	292	208	09		
K313-10	95	4	273	231	70		
K341-10	100	2	296	284	85	•	4

(New York (Long Island) Table 4 continued on next page)

minimum 2-inch 0.4 0.4 3.0 5.7 4.8 4.8 No. of tubers/hill Total 5.5 7.4 7.8 6.9 6.7 2-inch minimum Percent1/ 71 74 74 75 77 77 77 71 73 Yield per acre 215 208 258 251 196 223 196 154 215 Cwt 169 261 254 111 219 250 208 Total cwt 338 215 215 254 238 292 227 242 242 215 1184 238 304 284 177 261 292 238 New York (Long Island) Table 4 (concluded). score 8/14 Percent stand 5/31 100 100 85 95 95 100 95 100 95 100 100 001 B6761-12 B6934-12 B6987-29 B6987-43 Breeding B6987-37 86747-5 B6775-4 K653-16 B6138-3 B6603-6 86712-9 K565-16 K567-18 B6750-7 K357-16 K635-15 K653-12 K562-5 K565-5 K586-3 K653-1 3460-1 K557-1 line

./ Based on number of tubers.

New York (Long Island) Table 5. Specific gravity and percentage of tubers with various defects when breeding lines of potatoes were grown in soils suspected to be infested with organisms associated with Verticillium wilt in 1972. (Nonreplicated, 20 hills, 12=inch sparing)

		(Nonrep	Nonreplicated,	20 hills, 12	-inch spacing	g).		
Breeding	Specifiç,		Stem-end	browning	Internal	Hollow	Growth	
line	gravity1/	Pink eye	%	Score2/	necrosîs	heart	cracks	Knobs
DA-	83	•	25	9		0.0	•	
2-	95.		2	3.0	0.0	0.0	0.0	0.0
-	85		18			0.0	•	
H213-7	82	0.0	20		2.5	0.0	0.0	
J59-10	71		12	1.4		0.0		0.0
J157-2	76	•	09	2.4		0.0		0.0
J333-2	89	•	25	1.8	0.0		_	
K21-1	78		0	ı	0.0	5.0	12.6	0.0
K21-15	83		48	2.6	0.0		_	
4-	7.5	•	30	2.4		2.5		
K21-45	83		07	2.0	0.0		3.0	1.5
	79		35	1.8	0.0			
	79	•	32	1.6	0.0			
딖	81		∞		0.0	0.0	10.3	0.0
K38-22	99	•	50	1.6	0.0			
L42-11	81		35	2.0	0.0			
R	7.5		35	•	0.0		1,1	1.1
K59-7	74	•	09	1.9	0.0	•	1,3	0.0
	73	•	22	2.0	0.0	0.0	1.3	•
	78		48	•	0°0	0.0	•	0.0
K60-20	97	•	30		5.0	0.0	1.3	1,3
K60-30	89	•	28	1.4	0.0	0.0		
K60-52	97	•	5	1.0	0.0	2.5		•
\vdash	7.5	•	30		0.0	0.0		•
	93	•	58	3.2	0.0	0.0	•	
2=	86		70		2,5	0.0	1.0	
K297-3	88		5		0.0	0.0		•
K313-10	84	•	22	•	0.0	0.0	0.0	

(New York (Long Island) Table 5 continued on next page)

New York	(Long Island)	Table 5 (cond	(concluded).					
Breeding	Specific		Stemend	browning,	Internal	Hollow	Growth	
line	$\frac{\text{gravity} 1}{}$	Pink eye	%	Score2/	necrosis	heart	cracks	Knobs
K341-10	78	5.0	7.5	2.6	2.5	•	•	•
K357-16	80	0.0	2	1.0		0.0	6.0	0.0
K460-1	79	0.0	35	1.8	0.0	0.0	2.2	0.0
K557-1	98	0.0	88	3.2	0.0	0.0	2.2	0.0
K562-5	75	0.0	32	1.4	0.0	0.0	4.3	1.7
K565-5	85	0.0	0	1	0.0	0.0	1.2	
K565-16	84	0.0	2	1.0	0.0	0.0	0.0	0.0
K567-18	98	0.0	20	1.9	•	0.0	23.0	0.0
K586-3	74	0.0	18	1.1	0.0	0.0	15.5	2.1
K635-15	75	0.0	80	2.3	0.0	0.0	1.0	0.0
K653-1	84	0.0	38	2.0	0.0	0.0	3.5	1,2
K653-12	83	0.0	20	1.6			•	0.0
K653-16	85	0.0	32	2.1	0.0	0.0	1.3	0.0
B6138-3	95	0.0	32	1.5	0.0	0.0	3,8	0.0
B6603-6	93	0.0	20	2.4	0.0	0.0	6.2	0.0
B6712-9	84	0.0	45	2.2	2.5	7.5	•	0.0
B6747-5	82	0.0	40	1.7		0.0		9.4
B6750-7	46	0.0	92	3.4	2.5	0.0	1.2	0.0
B6761-12	7.2		30	1.9	•	0.0	1.7	0.0
B6775-4	83		89	2.7	0.0	0.0	5.5	6.6
B6934-12	7.1	5.0	70	2.0		0.0	16.5	8.2
B6987-29	85	0.0	48	1.5	•	2.5		0.0
B6987-37	06		06	2.4	2.5	20.0	0.0	1.3
B6987-43	84	0.0	48	1.5	•	0.0	31.0	•

1/1.0 omitted from all specific gravity readings.

 $\frac{2}{}$ Average score of affected tubers.

NEW YORK (LONG ISLAND)

S. Dallyn, P. Schippers and D. Fricke

Potato Variety Trial - 1972

Methods. Seed hand cut, April 4, 33 pieces per replication, 6 replications.

April 19, planted with assist-feed planter, spacing approximately 9", 2250 lbs/A 8-16-8 banded. Two Norland seedpieces dropped between each plot as markers, plots 30' long by one row wide; rows 34" apart.

Stand counts taken May 30, June 5, June 13. Maturity ratings on vines made July 25, August 1, 9, 16, 23. Vines killed August 26, harvested September 14.

Storage. Samples were cured at 15-20° C to October 10 then placed in storage. Specific gravities were determined October 10 by weighing approximately 5 kg of tubers in air and in water. All determinations, except specific gravity, were done with the same tubers. November subsamples consisted of 25 tubers, the January samples of 10.

Chipping. Samples from 10° C storage were chipped November 16 and from 7.5, 10, and 12.5° C storage on January 10. Color was measured with an Agtron Color Meter with reference disks 05 and 56. Samples with color scores below 55 were considered unsatisfactory.

Black Spot. A 100 gram metal plug was dropped from a height of 30 cm onto the stem end of tubers at a temperature of 10° C. Intensity and size of the black spot was rated on a scale of 0 = no black spot to 5 = very severe. The scores were totaled and divided by the number of tubers involved. The January values are averages of the three temperatures involved since this factor did not influence susceptibility.

Cooking Quality. (11/16 10° C). Ten tubers were cut in half from stem to bud end and one half of each boiled. Color was rated immediately: 1 = white, 3 = light yellow, 5 = deep yellow. Ten minutes later they were rated for discoloration: 1 = none, 3 = moderate, 5 = severe. Mealiness of the mashed tubers was judged by their appearance of fluffiness and texture (mostly dryness) when tasted: 1 = soggy, 3 = fairly mealy, 5 = very mealy.

Sprouting.

- O = an occasional tuber with activity in one or more eyes.
- 1 = eye activity in at least 80% of the tubers.
- 2 = 80% or more tubers with sprouts 1-2 mm in length.
- 3 = 80% or more tubers with sprouts approximately 5 mm in length.
- 4 = 80% or more tubers with sprouts approximately 10 mm in length.
- 5 = 80% or more tubers with sprouts longer than 10 mm.

"bushy" = many sprouts from one eye, often branched.

"necrotic tips" = tips of several sprouts black and probably dead; often followed by multiple branching.

[&]quot;many" = many eyes in tuber showing activity.

Long Island Vegetable Research Farm, Riverhead, New York, potato variety trial -- 1972 New York Table 1.

3/ 1/10	1.00.00.333 1.00.00.333 1.00.00.333 1.00.00.333 1.00.00.333 1.00.00.333 1.0
Blackspot. 11/16 1/	
% Dry Matter 11/16	0.0000000000000000000000000000000000000
Specific Gravity 10/10	1. 0.00 0.
Date Vines 50% Dead	
Stand2/ 5/30 6/5	
1/ Star 5/30	00000000000000000000000000000000000000
Appear- ance Rating	$\begin{array}{c} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} u$
Jumbo Hollow Heart	00000 0 000000000000000000000000000000
Jumbo	ohooworn morrona tong noonowoodo
Pick Outs	でられてってれるででれるのらっしょうていてるららられるとれるので
"B"	2517188971080711897081189189189189189189189918999189
to 3-1/2"	333 333 333 333 333 333 333 333 333 33
Variety-Source	J249-17 - Cornell NY41 (Hudson) - Cornell BR6316-7 - USDA, Me. Cascade - USDA, Me. B6567-12 - USDA, Me. B6567-12 - USDA, Me. B6595-5 - USDA, Me. B7151-9 - USDA, Me. B7151-7 - USDA, Me. B7151-7 - USDA, Me. B7151-7 - USDA, Me. B6879-5 USDA, Me. Raritan - USDA, Me. B6879-5 USDA, Me. B6987-29 - USDA, Me. B6987-29 - USDA, Me. B6987-29 - USDA, Me. B676-7 - USDA, Me. B676-7 - USDA, Me. B674-1-23 - USDA, Me. B674-1-23 - USDA, Me. B674-1-23 - USDA, Me. B674-1-16 - USDA, Me. B674-1-10 - USDA, Me. B674-1-10 - USDA, Me. B6987-43 - USDA, Me. B6987-43 - USDA, Me. B6987-43 - USDA, Me. B6987-43 - USDA, Me. B6987-41 - USDA, Me. B6987-41 - USDA, Me. Superior - Staples, Me. J333-2 - Cornell BR6820-29 - USDA, Me. Katahdin - Cornell BR6820-29 - USDA, Me.

New York Table 1. (Continued)

				60		/ ۱		Date	0,4,0000	%		
		Ç	ç	dmu offor	Appear	Stan	\J	vines 50%	Gravity	Matter	Blackspot3/	pot3
9041108-1140 in 11	2 to 3-1/2" "B"		ts Ju	Outs Jumbo Heart	Rating	5/30 6/5	6/5	Dead	10/10	11/16	11/16	1/10
Alamo - Albair, Me. Alamo - Smith Packing, Me.	147 127		7 t	00	3.5	53.55	33	8/1 7/22	609 580	16.7 1.20 16.2 0.63	1.20	0.77
Norgold Russet - Malcolm & Mahan, Me. Norchip - Burbidge, N. D.	125	59 44	4	00	8. 8.	23	30	7/28 8/1	699	19.0	1.93	1.50
LSD, 5%	38											

' l = poor; 5 = excellent

2/ Plants per plot, 33 seedpieces planted

3/ 0 = none; 5 = severe

Long Island Vegetable Research Farm, Riverhead, New York, potato variety trial--1972 New York Table 2.

1.9		1-2																															
	uting l	П	.•. O	3-年	٦	4-5b	์ ใ	CV	2-3	1-2	3-4	1-2	2m	2-3	П	룄	퓌	1-2	П	1-2	0-1	1	CU	٦	1-2	3-4	CU	0-1	2-3	Ч	L H	2-3m	0-1
	Sproi	1 4)	2-3m	1	2-3) (U	0-1	Q	0-1	CJ.	0-1	\sim	٦	0-1	1-2	ı	ı	0-1	႕		1	П	0-1		3-4	٦	ı	1-2	ı	⊣ (מ ר	-l 1
Sprouting5/	11/16 Sprouting 1/ 10°C 7.5°C 10°C	ı		СЛ		ณ	1-2	ı	1-2	30	1-2	1	СЛ	0-1		03	1		1	ı		03	г			α	03	ı	0-1	ı	0.5	2 - 3	ı ı
	ality / Mealiness4/	۵.	4-7*·	7	3-4*	, ετ	3-4	3-4	**7	ĸ	*	2-3	4-5	* 7	CJ	CJ	m	2-3	CJ	1-2	a	m	CJ	CJ	m	ന	*^	СЛ	CU	m	സ്	ლ ი ი	3-4*
	ooking Qu Discol.3	니,	7-T	1-2	႕	Н	2-3	1-2	ന	႕	m	1-2	3-4	1-2	႕	П	a	٦	1-5	႕	Т	ด	2-3	7	ન	cu	1-5	Ч	Ч	1-2	CV (01 -	-1 <i>-</i> 1
	Color2/	cu o	Z-3	1-2	ณ	2-3	a	a	CU	CU	1-2	2-3	a	a	CU	CU	2-3	2-3	a	a	2-3	2-3	1-2	C)	2-3	CU	2-3	2-3	a	2-3	M (CU 0	2-3
,	1/10 12.5°C	26	ν '	26	58	足	65	68	54	δ.	54	26	72	9	98.	6,7	09	25	53	34	1 9	1	∞	54	9	(61 (61	62 6	58	55	57	28	- 69	51
l or	1/10 10 ° C	23	n-	94	4	35	63	65	59	† †	29	χ; 22;	7 9	1 9	29	38	2	20	20	. 58	24	ı	25	38	57	28	52.	41	22	5,0	000	200	36
i.	1/10 7.5°C	610	Z V	32	18	K K	71	26	오	21	9 .	알,	09 -	4	13	15	86	24	34	16	56	1 (38	19	37	0 -	34	30	35	35	: : : :	2 K	36
ر/ در	17/TD	54	5 /		28	었	49	89	65	<u>1</u> 2,	62	28	2,	63	36	22	26	53	45	30	57	알,	61	8	5. 0. 1.	ر ر ا	52	20	58	, 73 8, 6	00 -	7 t 1 %	77,0
	Variety	J249-17	ハ	BR6316-7	Cascade	B6567-12	B6595-5	B7151-9	1	B6879-5	Raritan	95 AN	B5141-6	B6987-29	Reliance	Wauseon	B6376-6	Katahdin	J59-10		Bo'(41-23	귀-	B6987-43	ALamo	Abnaki	Carlboo	Superior	J333-2	BR6820-29	Katahdin (NY)	⊣	Chippewa	Russet Burbank

New York Table 2. (Continued)

Chip Color1/ 1/16	
----------------------	--

1/ Agtron. Readings below 55 unsatisfactory

l = white, 5 = deep yellow

l = none, 5 = severe

3/

1 = soggy, 5 = very mealy, * = some sloughing

? = occasional tuber sprouting

/ See text; m = many, b = bushy, n = necrotic tips

New York Table 3. Long Island Vegetable Research Farm, Riverhead, New York, potato variety trial--1972

Variety	Comments
J249-17	Round white, irregular, flattened
NY41 (Hudson)	Round white
BR6316-7	Slightly elongated white, skinning
Cascade	Elongated, bright white skin, some skinning
B6567-12	Round white, pink eyes
B6595-5	Round, heavy net
B7151-9	Elongated, slight net, shallow eye
B71 1-7	Round, moderate net
в6879-5	Round, slight net
Raritan	Slightly elongated, heavy net
NY 46	Round white
B5141-6	Round, slightly flattened, some skinning
B6987-29	Flat irregular shape, growth cracks
Reliance	Round white, light net
Wauseon	Round irregular shape, slight net
B6376-6	Round white
Katahdin	Round white
J59-10	Round bright white
B6545-7	Elongated, bright white
B6741-23	Elongated, bright white, uniform, shallow eye
B6741-16	Elongated, bright white
в6987-43	Round, rough irregular, skinning, shatter bruise
Alamo	Slightly elongated white
Aunaki	Round white, slight net
Cariboo	Round white, red coloration around eyes
Superior	Round, flattened, white
J333-2	Round white, shallow eye
BR6320-29	Round, bright white
Katahdin (NY)	Round white
B6741-11	Elongated, some skinning
Norgold Russet	Elongated, medium net, uniform
Chippewa	Round, bright white
Russet Burbank	Elongated, heavy net, some knobs
Alamo (Albair)	Slightly elongated white, very shallow eye
Alamo	Slightly elongated white, very shallow eye
Norgold Russet (Me.)	Elongated, medium net, uniform
Norchip	Round white, irregular shape
	

Comments. Yields were well below normal due to adverse growing conditions. The following were considered among the more promising in the trial: J249-17, Hudson, BR6316-7, Cascade, B7151-9 (early), B6879-5, NY46, Reliance (early), B6545-7, B6741-23 (very attractive).

NEW YORK

R. L. Plaisted and H. D. Thurston
In cooperation with
Anderson, Brodie, Cetas, Dallyn,
Ewing, Fricke, Harrison, Jones, Sieczka

The N. Y. breeding program in 1972 was directed toward (1) the regular selection and seed multiplication program, (2) the advancement of two andigena breeding populations, (3) a multiplication of NY-41, and (4) trials to measure heterosis in andigena x tuberosum hybrids.

In the regular selection program, about 15,000 seedlings of tuberosum were planted in the greenhouses. From 3990 seedling hills from tuberosum x tuberosum crosses, 539 selections were made. From 8154 seedling hills of tuberosum x andigena crosses, 628 selections were made. Two thousand unreplicated 10-foot observation plots produced 307 for further test. In the yield selection phase, 62 entries in the first stage produced 35 selections (Table 1); 46 entries in the second stage produced 21 selections (Table 2); and 4 entries in the third stage produced 2 selections (Table 3). All of these numbers will be reduced by chipping and cooking tests during the winter. Line NY-6 will not be continued.

In the andigena program, approximately 30,000 seedlings of open-pollinated fruits from selections representing 600 original accessions were planted in the green-houses to become the first cycle of the new population. In the population now in its 5th cycle of selection, 6225 hills were planted and 415 selections made. In addition, 311 hills were saved from one family that in previous sampling proved to be valuable for late blight and root-knot resistance. These selections will be evaluated for late-blight resistance in the greenhouse, resistance to PVX, PVY, and root-knot nematodes, as well as for chipping quality and dormancy. The clones which prove to be resistant to late blight in the greenhouse test will be evaluated in Mexico during the summer. A preliminary screening of this population in 1972 identified 31 with fair to good resistance to late blight in Mexico and 42 resistant to root knot. A similar screening for aphid resistance did not produce any results encouraging further search at this time. Two years of evaluation of the parents of the present selections have identified 24 that appear to be resistant to PVY.

During the summer 5 seed growers produced a total of 6 acres of foundation seed of NY-41. In addition to replicated yield trials, 4 half-acre demonstration trials were planted on Long Island. On the basis of this experience as well as the accumulated information from past years (Tables 4-8), the decision has been made to release NY-41 as a variety. In 39 trials over a seven-year span, NY-41 has yielded 373 cwt/A compared with 269 for Katahdin. Even though NY-41 produces large tubers, only 2.5% of the jumbos in 9 trials have been hollow compared with 4.1% of the Katahdins. Specific gravity in 13 trials has measured .003 units better than Katahdin. In scab trials it has been only slightly more susceptible than Katahdin. In verticillium wilt trials it has been intermediate to Katahdin and Kennebec in vine score and percent pink eye, but less than Katahdin in stem-end browning. The total glycoalkaloids in 5 trials of NY-41 was 6.18 mg/100 g of fresh

wt. compared with 6.78 mg/100 g for Katahdin. Line NY-41 is resistant to race A of the golden nematode. It emerges from the ground and grows rapidly, producing a vigorous vine with large, flat leaves. The flower color is almost identical to Katahdin. The tubers are shaped similar to Katahdin, though they may be somewhat less regular and exhibit some scurviness under some growing conditions. It has not produced satisfactory chip color after storage, so it is intended for table stock use.

Selections saved Four replications of 15-foot plots at Ithaca. from 62 entries. First year yield trial - 1972. New York Table 1.

<u>~</u> .	[a]a										-	13	0-									2	2												
ACD ⁶	17 7	\sim	\sim	N	\sim	Н		П	N		N		Н	П		\sim	П	٦			\sim	Н		\sim	\sim	\sim	П				Н.	4		0 0	N
				Н		N	ω,	N		Μ	Н		N	П			П	N	Μ									\sim	\sim	\sim	Н		N	۲ ,	7
g/Growth7	cracks	၁၁၀			220	C	occ,many		000	000	many			occ, few	occ, few	000			few_2	deep ₂		000		,	few, many		few, many			0	2000	C	many	many	
Int.	x1/16 0.6	5	0	N	Н	П	0	0	0	0	0	0	7	0	П	N	0	0	ď	Μ	П	N	0	0	0	0	0	0	0	0	0	C)	9	0	0
,,hht _	=/ x1/16 =/ 3.4 0	Н	0	Н	0	0	7	0	0	Μ	Μ	0	7	Н	Н	7	N	0	Ч	Μ	5	0	7	_	Ч	M	7	N	0	7	Н	7	٦	⟨ .	†
	Appear 4.5		•	•		•	•	•			•	•	•	•		•	•	•	•	•		•	•	•		•			•	•	•	•	•	•	
₽%	22-1/4 77 71	. 99	73	62	82	71	81	99	47	83	4	77	73	81	10	20	02	68	73	65	18	65	01	87	87	47	89	81	91	4	88	83	81	84	7.7
Ą	239 238 238	204	255	208	313	238	261	203	214	278	309	230	230	219	218	217	201	258	253	203	270	182	207	375	332	218	319	327	569	257	324	261	321	293	226
eld cwt/	298 317	272	329	292	364	311	305	283	569	319	371	278	283	257	294	282	569	346	318	286	330	258	275	411	365	283	351	378	329	304	357	305	385	334	272
Υi	Total 312 336	307	347	334	381	333	321	307	288	334	392	299	317	271	312	310	288	378	345	311	345	282	296	430	381	293	359	404	353	325	368	315	396	348	293
11153/	1972 4 5	τ,	7	9	9	7	<u></u>	7	9	7	9	√	√	Ŋ	Ŋ	9	\sim	<u>\</u>	9	<u>\</u>	9		Ŋ	5	9	<u>\</u>	7	7	\sim	\sim	\sim	<u>\</u>	7	7	17
Vert.W	1 <u>971</u> 5 6	7	Μ	5			_		9	7		\	Μ	9	_	9	7	7	9	5			7	7	9	7	7	M	M	7	7		77	†7	† †
pecifi Gravit	77 76 1 80 1	.078 1.	.082 1.	.074 1.	.080 1.	.083 1.	.081 1.	.081 1.	.080 1.	.083 1.	.082 1.	.075 1.	.079 1.	.080 1.	.077 1.	.088 1.	.095 1.	.079 1.	.074 1.	.080 1.	.078 1.	.093 1.	.094 1.	.081 1.	.080 1.	.080 1.	79 1.	.076 1.	.078 1.	.079 1.	.085 1.	83 1.	.093 1.1	-	0.1 060.
50° <u>2</u> /	1971 A-I A	А	H	H	H	A	A	A	A	Н	A	Ą	н	Н	A	A	A	Н	Н	H	H	A	A	Н	H	A	D	D	D	Þ		H		Ą	A
Chip	1970 I I	D			D	А	D	Н		D			D	Þ	A	D	Þ		Þ			A	A	H	D		D	D	D	Þ	А	Н	A	Ą	ם
, -	+ 	ı	ı	ı		ı	ı		ı	ı		ı	ı	ı	ı	ı	1		ſ	ı	ı	+	ı	1	£	ı	1	ı	1	ı	ı	1	1	ı	I
	'크 : ',	36-20	Ś			H		Ġ	Ġ		71-9	74-17	78-14	78–20	80-13	165-5	176-23	186-1	188-10	197-4	197-11	235-1	241-3	262-3	265-5	287-13	298-9	298-12	521-5	521-7	529-20	532-5	551-5	551-7	554-8

Footnotes for all tables.

- 1/ Golden nematode resistance
- 2/ A = acceptable
 I = intermediate
 U = unsatisfactory
- 3/ 1 = no wilting 7 = severe wilting
- 1 = very rough 5 = very nice
- 5/ Hollow heart
- 6/ Internal necrosis
- 7/ Occasional, few, many
- 8/ Aftercooking darkening. 0 = none, 1 = gray, 2 = black

New York Table 2. Second year yield trial. Four replicates of 15-foot plots at Ithaca & Riverhead, 3 replicates of 20-foot plots at Cato. Selections from 46 entries.

	ir.				-132-	sev				
	Gr. Cr	000	few		few	few3 few,se	000	000		
	Appear.	w 4 w 6 % w	4.0.4.0	8 8 0 8 8 0	8.00.4 0.4	8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3.2	%. %.	3.5	0.4 k 0.0 c.
	Int. Necr.	000	000	000	6/16 0 0	000	1/16	00	1/16	3/16
	hht	0 0 0	000	5/16 0 0	2/16 0 1/12	000	000	00	00	4/16 0 0
, n	% > 2-1/¼	76 52 28	75 50 48	87 39 49	79 30 45	77 39 48	71 41 31	73 61	81 58	79 62 40
om to em	> 2-1/4	256 144 40	213 108 113	300 104 80	309 70 114	270 125 133	247 137 92	249 209	263 235	236 175 79
Yield in cwt/A	>1-7/8	315 235 98	263 181 191	338 192 130	364 167 203	333 242 229	321 288 210	321 270	301 352	282 252 156
Yie	Total	337 275 141	283 216 235	357 265 163	391 234 257	351 317 275	346 334 282	342 340	323 403	300 281 196
9	Loc.	LIth PRiv Cato	Ith Riv Cato	Ith Riv Cato	Ith Riv Cato	Ith Riv Cato	Ith Riv Cato	Ith Riv	Ith Riv	Ith Riv Cato
ACD	1970	06122 061178	1222	1,4 0,1,3	$0^{4}_{1}_{2}$	031 0212	013 013	0 ⁴ 1 ¹ 2 ³	0 ₃₁ 1	0313
V.W. 1970	1971	ろらみ	9	t 0/2	404	2 2 9	NVW	2 2 9	M 0/1	N N N
S.G. 1970	1971 1972	1.076 1.081 1.085	1.087	1.077 1.078 1.080	1.076 1.084 1.090	1.082 1.080 1.082	1.082 1.088 1.097	1.078 1.074 1.084	1.068 1.077 1.074	1.078 1.078 1.084
1971 50°	2 vk. 5 vk.	H 4	A A	A A	A A	ЬA	U A	ΙΥ	ΙΥ	A A
Chip 1970	50° 6 wk.	Н	A+	Ą	Þ	, H	А	Н	n	Ą
	NS	+	1	1	1	ı	1	1	1	ı
	Pedigree	Kat.	K21-1	K21-45	K37-1	K37-12	K56-2	K56-7	K59-7	K60-20

3.5

00

00

156 79 40

New York Table 2 continued.

1		G.				-133-			se v			M
		Gr. Cr.		ပ ပ	sev				occ, sev few, sev occ, few		၁၁၀	occ, few
;		Appear.	0. 8. 4. 0. 8. 6.	0.74	8.4 7.8 7.8	8°.4 8°.4	3.8 5.0	2.4	33.5	3.8 4.0	2.5	3.0
	- F	Necr.	2/16 0 0	1/16 0 0	000	1/16	1/16	00	1/16 0 0	1/16 0 1/12	00	0
		hht	000	000	0 0 1/12	1/16	0	00	1/8	000	1/16	0
	Yield in cwt/A)2-1/4	72 61 34	76 46 51	72 57 39	75	91 73	91	80 44 90	78 61 56	78	775
				273 136 139	266 ⁻ 219 85	264 121	290 182	312 189	312 122 163	298 206 208	310	91
		>1-7/8	278 259 145	335 230 227	342 329 170	327 224	313 234	334 275	367 224 292	359 311 314	370 296	168
		Total	305 284 182	358 294 271	370 381 219	353 266	321 248	342 307	391 280 354	384 340 369	398 359	217
		Loc.	Ith Riv Cato	Ith Riv Cato	Ith Riv Cato	Ith Riv	Ith Riv	Ith Riv	Ith Riv Cato	Ith Riv Cato	Ith Riv	Cato
	ACD 1970 1971 012 0311			120 0212	1,23	1222 0212	* * † † †	$\frac{123}{022}$	0.31	12 0212	7071	
V.W.	7.W. 1970 1971 1972 5 6			. 29	2	らすら	99	m 4	29		9	77
ა ა	1970 1971 1972 1.076			1.088	1.077 1.083 1.084	1.081 1.082 1.081	1.070 1.067 1.078	1.080 1.083 1.087	1.077 1.079 1.087	1.073	1.075	1.077
Chip,	00:	5 wk.	Ι	44	4 H	нн	Ηď	ם ם	ЧH	ΙΨ	A A	
	1970	50° 6 wk.	A+	n	Þ	n	A-	n	Þ	н	n	
		S	1	1	1	1	1	ı	1	1	ı	
		Pedigree	K60-30	K292-6	K297-3	K313-10	К349-7	K357-16	К460-1	K527-9	K562-5	

Gr. Cr. 900 S Appear. 8.4 4.5 3.8 Int.
Necr.
1/16 0 2/8 1/16 0 1/8 hht 0 242 78 200 60 76 52 76 85 52 30 252 154 243 100 299 144 56 Yield in cwt/A 292 268 307 237 298 196 346 243 137 Total 312 316 332 296 319 256 352 277 187 Loc.
Ith
Riv
Riv
Riv
Riv
Ith
Riv
Riv
Cato ACD 1970 1971 14 14 1321 1,4 1,1 1,0 0,1,1 V.W. 1970 1972 5 3 6 4 5 N N/0 5.G. 1970 1971 1972 1.082 1.097 1.080 1.081 1.084 1.081 1.080 1.088 1.082 Chip 1971 50° 2 wk. 5 wk. New York Table 2 continued. 1970 50° 6 wk. I \supset B 1 Pedigree USDA2511 K565-16 K653-12 K653-1

New York Table 3. Advanced yield trials. 1972. Ithaca and Riverhead - 6 replications of 20' plots. Cato - ? replications of 2.' plots.

	Notes occ gc sev gc		ر مدد ود (مدد ود)	occ K (occ gc) ²	occ gc, few gc few gc ² , sey h		occ gc, few gc few gc	(occ gc) ²	/28 22 20 C	occ gc, 3	
Int.	Necr. 0 0	0	1/24 0	000	000	00	00	0	0	0	0
	hht 9/48 1/24 0	0	1/24 2/12	1/24 0 0	4/48 0 2/12	00	4/24 0	3/24	0	0	0
	Appear. 3.8 4.8 3.3	2.7	2.4 5.5	644 4.0.6.	w 4 w v. w	3.3	3.0	2.3	7.4	3.2	0.4
	S.G. 1.080	1.080	1.085	1.084	1.089	1.074	1.074	1.072		1.080	
P6	2-1/4 80 57 28	7.7	83 80	91 80 67	74 74 60	88 73	98	87	65	72	55
	>2-1/4" 246 150 40	313	352 342	372 341 153	259 126 128	357 198	347 230	564	137	243	125
wt/A yield	290 224 224 98	372	401 395	397 389 204	314 224 184	391 255	383 312	288	152	304	200
		104	424 429	409 424 230	341 267 212	408 273	401 362	302	212	338	229
	Loc. Ith 2x Riv 2x Cato	Ith	Ith Rîv	Ith Riv Cato	Ith 2x Riv Cato	Ith Riv	Ith Riv	Ith	Riv	Ith	Riv
	<u>Pedigree</u> Katahdin	Cascade	"6 L4-YN	W-41 9"	NY-46	J59-10	J249-17	J333-2		J370-3	

New York Table 4. Yield of NY-41 in cwt/A.

	Tota	.1	> 1-7/8"		> 2-1/4"		% > 2-1/4	
	NY-41	Kat.	NY-41	Kat.	NY-41	Kat.	NY-41	Kat.
1966 Ithaca 10"	562	449			524	416	93	93
1967 Riverhead 10" Ithaca 10"	422 456	231 410	396	212	364 423	168 376	86 93	73 92
1968 Riverhead 9" Ithaca 10" Wainscott 9"	698 547 487	453 433 310	647 527	434 408	600 497 429	379 370 234	86 91 88	84 85 75
1969 Riverhead 9" Ithaca 9" 12" Wayland 9" 12" Cato 9" 12"	528 433 457 272 211 225 248	392 376 367 201 153 165 208	521 410 430 255 171 204 228	380 360 353 171 135 139 180	492 370 396 197 129 172 194	333 327 325 109 95 99 142	93 85 87 73 61 77 78	85 87 88 54 62 61 68
1970 Riverhead 9" 12" Freeville 9" Riverhead 12" v.w. soil	438 457 475 294	369 300 404 282	415 438 467 274	352 286 369 258	384 408	288 244	88 89	80 82
1971 Ithaca 6" 9" Riverhead 6" 9" Cato 9"	404 386 391 382 263	340 305 226	384 354 380 378 242	326 296 213	359 330 327 334 195	301 248 164	89 85 84 87 74	89 81 73
1972 Ithaca 6" 10" Riverhead 6" 9" Cato 9" L.I. #1 2 3 4	424 409 429 424 230 445 341 524 462	308 262 141 346 216 340 258	401 397 395 389 204 399 320 506 438	290 224 98 322 175 313 206	352 372 342 341 153 355 273 449	246 150 40 271 122 254 134	83 91 80 80 67 80 80 86	80 57 28 78 56 75 52

New York Table 5. Long Island Vegetable Research Farm. Dallyn and Fricke.

			Yi	eld-cwt/A				
1969	NY-1+I	Total 559	2 to 3½ 346	US #1 > <u>32</u> 213	"B" 13	Pickouts 0	% h.ht >-3 ¹ / ₂	Sp. Gr.
-,-,	Kat	359	319	40	16	0	Ö	1.052
1970	NY-41 Kat	592 396			9 14	0 1	10 2	1.067 1.059
1971	NY-41 Kat	370 345	313 303	57 42	9 11	14 1	5 0	1.074
1972	NY-41 Kat	371 178	340 175	31 3	17 12	2 1	t 33	

Long Island verticillium wilt trial. Cetas

1970	NY-41 Ka: Kenn	% Stand 100 100 100	Yield Total 294 282 204	-cwt/A >2" 274 258 175	h.ht 0 0.3 8.9	Vine score 5.8 4.9 6.8	Sp.Gr. <u>1</u> 1.064 1.059 1.059	% pink eye 20 5 49	% Stem-end browning 48 85 79
1971	NY-41	85	196	180	3.9	5.5	1.060	9.7	53
	Kat	95	224	196	1.9	5.2	< 1.060	3.8	64

New York Table 6. Vegetable Crops Research Farm at Freeville, N.Y. Sieczka and Ewing.

		Yield-cwt/A								
				US #1						
		Total	2 to $3\frac{1}{2}$	> 3 ¹ / ₄	> 2"	>4"	Mis.	Sun.	h.ht	Sp. Gr.
1970	NY-41 Kat	475 404	168 265	2 0 8 93	376 358	8.5 •9	3.6 .9	3.4 2.2		1.073 1.071
1971	NY-41 Kat	523 500	188 149	242 256	430 405	7.0 6.4	3.5 2.9	11.0	0 5	1.073 1.078
1972	NY-41-6" NY-41-9" Kat-9"	479 535 411	326 335 285	115 149 9	441 484 294	0 1 0				
197%	NY-41-10" Kat-10"	465 · 436	232 340	166 23	398 363	2	1 0	5 3		

Vegetable Crops Trial at Elba, N.Y. Sieczka and Ewing.

		Yield-cwt/A				
		Total	>2"			
1972	NY-41-6" Kat 9"	297 3 28	245 246			

New York Table 7. Ohio potato variety trials. Lower, Mosley and Wittmeyer.

	cwt/A <u>marketable</u> NY-41 Kat	% Stand NY-41 K	<u>% Size</u>		culls +1 Kat
1971 Farm #3 4 5 6 avg	428 33: 418 33: 220 23: 404 30:	79	85 2.0	4.0 8	.8 6.0
1972 Farm M B T	374 28' 422 30' 361 29'				

New York Table 8. Spacing Trials.

Long Island Vegetable Research Farm--1971--Planted April 2--Harvested October 12.

	Yield cwt/A						
	2 to 3½	Size B	Jumbo	Total"A"			
Killed August 2	256	11	14	270			
Killed August 23	293	10	36	329			
Die-down September 15	309	8	53	362			
1500 lbs. 8-16-8	317	10	28	345			
2200 lbs. 8-16-8	255	9	40	295			
Spaced 7"	298	10	31	329			
	274	9	37	311			

Long Island Vegetable Research Farm--1972

	Yield cwt/A					
	2 to 3½	Size B	Jumbo	Total"A"		
1600 lbs. 8-16-8	287	26	8	295		
2000 lbs. 8-16-8	303	25	12	315		
Onner 3 7 ¹¹	005	0.5	30	200		
Spaced 7"	295 295	25 27	10 11	320 322		
10	277	<u>~ (</u>		ےےر		

Vegetable Crops--Freeville Farm--1971

	Yield cwt/A						
	2 to $3\frac{1}{4}$	$3\frac{1}{4}$ to 4	> 4"	Total"A"	"B"		
Seedpiece size 1.5 to 2 oz. 2.5 to 3 oz.	278	221	31	566	3 ¹ 4		
	278	233	20	567	37		
Spacing 6"	292	227	18	5 7 6	38		
9"	264	227	3 ¹ 4	558	34		

Vegetable Crops--Freeville Farm--1972

			Yield	cwt/A (Grade	d for size	only)
	2 to $3\frac{1}{4}$	$3\frac{1}{4}$ to 4	> 4"	Total"A"	"B"	
Spacing 6"	326	115	0	441	38	
9"	335	\mathbf{J}_{1}	5	484	51	

Breeding Program Trials--1971 and 1972

	Yield in cwt/A						
	Total	>1-7/8"	> 2½"	$% > 2\frac{1}{4}"$			
Ishaca 6"	414	393	356	86			
9"	398	376	351	88			
Riverhead 6"	410	388	335	82			
9"	403	384	338	84			

NEW YORK

Joseph B. Sieczka

Results of Potato Variety Trials in Upstate New York, 1971-1972

Four variety trials were conducted by the Vegetable Crops Department of Cornell University in 1972. Another trial was planted on the Canastota muck but was lost when the rains from Hurricane Agnes saturated the mucklands. The four trials harvested were also exposed to a great amount of rainfall but were located on either a well-drained, gravelly mineral soil in Tompkins County, New York or a deep, well-drained muck soil in Elba, New York. Even though water did not collect on the trial sites for a long period of time, the excessive rainfall reduced yields of some, if not all, varieties. The differential effect on varieties is most likely due to the differing growth rates prior to the rains. The two trials initiated on muck soils were established in cooperation with Richard Ackerman and Kenneth Stone, Cooperative Extension Agent and Specialist, respectively.

Six newly named varieties, three standard varieties, and three seedlings were compared in Variety Trial I (see Table 1). Hudson, a variety recently released by the Cornell Potato Breeding Program and previously tested as NY41, produced the highest total and marketable yields. Tubers of this variety are smooth in the medium-size range, but large tubers are somewhat irregular in shape. Skin color is white, and lateral eye depth is shallow. Of the varieties tested, Hudson yielded the highest percentage (35%) of U.S. No. 1 tubers larger than 3-1/4 inches. Katahdin, which was the second highest yielding entry, produced about 78% of its total yield in the U.S. No. 1, 2 to 3-1/4" size range, and only 5% of the total yield was larger than 3-1/4 inches. In a normal year, U.S. No. 1 Katahdin tubers in the 2 to 3-1/4 inch range account for about 35% of the total yield and about 50% are larger than 3-1/4 inches.

Tubers of BR6316-5 are attractive and are oblong in shape. They have shallow eyes and a slightly netted skin. The specific gravity of this seedling was equal to that of NY46 and exceeded only by Russet Burbank. The specific gravity readings of the standard varieties in this trial were higher than they had been in the past, another effect of this year's weather.

Hudson, Katahdin, BR6316-5, Abnaki, Wauseon, Peconic, and B5698-8 tubers have the necessary characteristics to be acceptable on the tablestock market. Line B5698-8 produced uniformly round tubers with shallow eyes and a bright, smooth, white skin in the trial. Unfortunately this seedling did not yield well and proved to be extremely susceptible to scab (see Alba trial and Table 3). Entries not suited for tablestock were Penn 71 which produced irregularly shaped, somewhat flattened tubers and NY46 which had a high percentage of growth cracks.

Hollow heart and internal necrosis did not appear to be problems this year. Line BR6316-5 had the most hollow heart, but this only amounted to 4 hollow heart tubers of the 40 large tubers cut.

Norchip produced the lowest marketable yield in the trial. This low yield undoubtedly resulted from the wet conditions since in the past this variety has yielded about the same as Katahdin.

Variety Trial II. Four USDA seedlings and one seedling from each of the potato breeding programs of New York, Pennsylvania, and North Carolina were compared to Katahdin in Variety Trial II at Freeville, New York (see Table 2). Five of the entries produced higher marketable yields than Katahdin, but each has at least one drawback which the standard variety does not.

Line BR6626-5 produced round to oblong, irregularly shaped tubers with a scurfy white skin. Tubers of B6986-2 were the largest in the trial (average tuber weight = 7 oz) but were susceptible to growth cracks and hollow heart. Skin color of this seedling is white with pink eyebrows. Line J333-2 produced slightly irregular-shaped, round to oblong tubers with a scurfy white skin. This entry had the lowest specific gravity and matured the earliest in the trial. Tubers of NC6462-3 were slightly irregular in shape and had a tendency to growth crack. Tubers of B6987-25 were oblong and attractive in appearance even though the skin was slightly checked.

Elba Trial. Abnaki produced the highest total and marketable yields and the largest average-size tubers in a trial on the Elba muck (Table 3). Tubers of this variety tended to be oblong at this location rather than mostly round as they had been in other trials. Skin texture was exceptionally smooth giving the tubers a bright appearance. The variety showed its tendency toward hollow heart having almost 25% of the large tubers cut damaged by this disorder.

Wauseon produced the second highest yields, but average tuber size was almost 2 oz less than Abnaki. Tubers of this scab- and golden nematode-resistant variety were mostly round with a slightly scurfy white skin. The highest specific gravity was produced by Peconic, but this variety also produced the smallest tubers, having a high percentage less than 2 inches in diameter. All varieties were affected by scab, but Katahdin and Peconic tubers were most affected by this disease.

Trial with Alaskan Selections. This trial was conducted in cooperation with Curtis H. Dearborn, USDA Research Horticulturist in Alaska, to observe the performance of Alaskan selections under New York conditions. Seed of all entries were supplied by Dr. Dearborn. Line AK35 yielded and appeared much like Kennebec; however, the average tuber size was somewhat smaller than Kennebec. The specific gravity of AK90 was the highest recorded in any of the trials conducted in 1972. Tubers of this selection are slightly irregular in shape and have a white skin. The skin color of Alaska Frostless tubers is white with purple blotches. Tubers of Alaska Frostless were flattened, irregular in shape, and had a tendency to growth crack.

Storage Results. Samples of three field trials conducted in 1971 were subjected to tests for chip color in January 1972. In addition to the test for chip color, measurements on aftercooking darkening and sprout growth were taken on samples from two of the trials.

Chip color determinations are made in the following manner. For every variety, a ten-pound tuber sample is taken from each of four replications in the field. Treatments within a replication are stored together, and frying of all treatments in a given replication is completed before the next replication is started. Treatments are fried in random order within each replication.

Fifteen tubers from each sample are cut lengthwise from the stem end to the apical end. One-half is discarded, and from the other half the peeling is removed in a band next to the cut surface, taking care not to peel deeply. With a rotary hand slicer set to cut 18 slices per inch, one slice is cut and discarded from the tuber half. One more slice is cut and saved. When one slice has been obtained from each of the 15 tubers in the sample, all are dipped in tap water, drained briefly, and fried immediately. Oil temperature is 365° F before frying starts. Frying is continued until bubbling has subsided and chips are crisp.

After chips have cooled and excess oil has drained off, they are placed in cellophane bags until Agtron meter readings can be made. Chips are crushed to a granular consistency with the largest pieces being approximately 1/8-inch diameter. The chip fragments are poured into holders for light reflectance measurement on a Model F22 Agtron meter. The meter is set at zero with the 5005 standard and at 100 with the 5052.5. Minimum values for "generally acceptable chip color" would range from 55 to 65.

All but 4 varieties listed in Table 5 produced light-colored chips when tuber samples were stored at 50° F from time of harvest. Penn 71 (6HS9) produced the lightest chips when stored at this temperature. However, only BR5960-5 made acceptable colored chips when the storage temperature was 45° F. Line B6567-12 and Russet Burbank were virtually free from aftercooking darkening, while BR6316-5, B6529-12, B6518-4, and Penn 71 were susceptible to darkening. Line BR6316-5, Hudson, and Russet Burbank produced the least amount of sprout growth when stored at 50° F until March 13, 1972. Line B6567-12 generated the most sprout growth.

Line NY46 and Katahdin produced very light-colored chips and the most sprout growth at 50° F in the variety trial with New York selections (see Table 6). Line B6097-7, grown in the guard row, sprouted very rapidly in storage. Lines NY48 and BR6273-1 were relatively free from aftercooking darkening.

In the Madison County early variety trial, Cascade made the darkest chips shortly after harvest and after 7 weeks of 50° F storage (see Table 7). Norchip and B5698-8 produced very light-colored chips at both dates.

Acknowledgements. Seed for the trialswere obtained from the following sources: Hudson, NY46, J333-2, and J59-10 from R. L. Plaisted; Penn 71, 7NS2, and NC6462-3 from James Watts, Wise Foods; seedlings prefixed by BR from C. E. Cunningham, Campbell Institute for Agricultural Research; Alaskan selections from Curtis Dearborn, USDA; all other seed obtained from R. E. Webb, USDA.

The cooperation of J. Coulter, A. Vigneri, R. Ackerman, and K. Stone is appreciated.

Upstate New York Table 1. Variety trial I, Freeville, N.Y., $1972^{1/2}$

	Total		U.S. No. 1		
Variety	Yield	_cwt/A	% of To	otal Yield	
	cwt/A	2" to 4"	2" to 3-1/4"	3-1/4"to 4"	> 4"
			-		
Hudson (NY41)	468	389	50	33	1.8
Katahdin	435	362	78	5	0
BR6316-5	404	345	77	8	0
Abnaki	372	344	76	17	0
Kennebec	451	320	55	16	0
Wauseon	374	319	73	13	0.5
Penn 71	371	305	71	12	0
Peconic	372	279	71	4	0
NY46	390	273	63	7	0
Russet Burbank	330	258	78	0	0
B5698-8	337	237	68	3	0
Norchip	358	233	62	3	0
D(.05) ^{Tukey}	84	78			

	Mean	Specific	Vine <u>2</u> /	% of To	tal Yield	
Variety	Tuber	Gravity	Maturity	Mis.	Sunburn	Hollow,
	Wt.(oz)					Heart3/
Hudson (NY41)	6.4	1.090	5	1.1	5.0	0/40
Katahdin	4.9	1.082	6	0.2	3.0	1/40
BR6316-5	5.4	1.091	4	0.8	1.8	4/40
Abnaki	5.5	1.081	8	0.4	0.2	0/40
Kennebec	6.7	1.085	6	16.5	6.3	0/40
Wauseon	4.9	1.075	7	0.4	1.2	1/40
Penn 71	- 5.4	1.083	6	3.0	2.8	3/40
Peconic	4.0	1.088	7	-	1.6	0/40
NY46	4.2	1.091	3	9.9	1.2	0/40
Russet Burbank	5.1	1.093	3	4.4	-	0/40
B5698-8	3.6	1.072	8	1.0	0.2	0/40
Norchip	3.6	1.086	7	3.3	0.6	0/40
D(.05) ^{Tukey}	0.5	0.007				

^{1/}Planted May 11, 1972; within row spacing 10"; between row spacing 34"; 1500 1b/A of 10-20-20 applied at planting; killed September 10, 1972; harvested September 21, 1972; 4 replications.

 $[\]frac{2}{\text{Vines}}$ rated for maturity on September 6, 1972; 1-9: 9 = completely dead; 1 = completely green.

^{3/}Numerator = number of tubers with hollow heart; denominator = total number of tubers observed.

Upstate New York Table 2. Variety trial II, Freeville, N.Y., $1972^{1/2}$

	Total		U.S. No.	1	
Variety	Yield	cwt/A		Total Yield	
	cwt/A	2" to 4"	2" to 3-1/	4" 3-1/4" to	4" > 4"
BR6626-5	451	383	60	. 25	0.4
B6986-2	472	3 64	-44	33	1.5
J333-2	376	341	72	19	0.9
NC6462-3	417	324	72	6	0
B6987-25	374	313	75	9	0
Katahdin	408	305	73	2	0
7NS2	340	251	70	8	0.4
B6955-24	319	241	72	4	0
D(0.5) Tukey	58	78			
Guard4/					
J59-10	479	429	63	26	-

Variety	Mean Tuber	Specific	Vine2/	% of To	otal Yield	Hollow,
	Wt. (oz)	Gravity	Maturity	Mis.	Sunburn	Heart 3/
BR6626-5	6.5	1.091	6	4.2	2.9	0/40
в6986-2	7.0	1.092	7	17.1	0.7	10/40
J333-2	6.1	1.077	9	1.8	0.7	0/40
NC 64 62-3	4.2	1.082	7	4.9	0.8	1/40
B6987-25	5.2	1.091	8	0.9	0.2	5/40
Katahdin	4.0	1.089	6	0.2	2.6	1/40
7NS2	4.8	1.093	7	14.9	0.6	1/40
B6955-24	4.1	1.091	9	1.0	1.9	0/40
D(0.5) Tukey	0.5	0.004				
Guard4/						
J59-10	6.2	-	9	1.0	0.5	0/10

 $[\]frac{1}{Planted}$ May 15, 1972; within row spacing 10"; between row spacing 34"; 1500 1b/A of 10-20-20 applied at planting; killed September 10, 1972; harvested September 25, 1972; 4 replications.

 $[\]frac{2}{\text{Vines}}$ rated for maturity on September 6, 1972; 1-9: 9 = completely dead; 1 = completely green.

 $[\]frac{3}{N}$ Numerator = number of tubers with hollow heart; denominator = total number of tubers observed.

 $[\]frac{4}{\text{Guard}}$ row not replicated.

Variety trial on muck soil, Elba, N.Y., 19721/ Upstate New York Table 3.

	Yiel	d (cwt/A)	% of Tc	tal Yie	1d	Mean	0,000	Ho110tt
Variety	Total	otal U.S. No. 1	U.S. No. 1 Scab Sunburn	Scab	Sunburn	Tuber Wt.(oz)	Gravity	Heart-1
Abnaki Wauseon Katahdin Hudson (NY41)	374 368 328 297 339	334 318 245 245 207	89 86 75 82 61	4.9 2.4 11.9 3.2 9.3	0.6 0.2 3.2 2.0	۲ کر کر کر کر کر کر کر کر کر کر گر کر	1.069 1.071 1.070 1.067	9/40 2/40 1/40 1/40 0/40
D(.05) Tukey	26	09				0.8	0.002	

1/ Planted June 14, 1972; within-row spacing 9" for all varieties except Hudson, which was 6"; between-row spacing 34"; 1500 1b/A of 5-10-10 broadcast prior to planting; harvested October 18, 1972; 4 replications.

 $\frac{2}{N_{\text{umerator}}}$ number of tubers with hollow heart; denominator = total number of tubers observed.

Upstate New York Table 4. Variety trial with Alaskan selections, Freeville, N.Y., $1972^{1/2}$

Variety	Yield Total	Yield (cwt/A) Total U.S. No. 1	% of Total Yield U.S. No. 1	Mean Tuber	Specific Gravity	Vine Maturity $\frac{2}{}$
AK35 Kennebec AK90 Alaska Frostless	466 412 376 312	2-4" 352 352 266 202	66 11 83 15 62 9 65 1		1.087 1.086 1.118 1.095	
D(.05) Tukey	104	118		1.9	0.007	

1/Planted May 11, 1972; within row spacing 10"; between row spacing 34"; 1500 lb/A of 10-20-20 applied at planting; killed September 10, 1972; harvested September 21, 1972; 4 replications.

 $\frac{2}{\sqrt{\text{vines rated for maturity on September 6, 1972; 1-9; 9 = completely dead; 1 = completely green.}$

Upstate New York Table 5. Variety trial, Freeville, N.Y., 1971

Chip Color and Storage Results

Variety <u>1</u> /	Chip Agtron Met 45°	Color ² / er Readings 50°	Aftercooking 3/ Darkening Rating 1/12/72	Sprout Weight as ₄ % of Total Weight 3/13/72
BR5960-5	59	69	4.4	6
BR6312-2	9	16	4.6	4
BR6316-5	44	68	3.7	1
B6567-12	25	50	4.9	8
B6518-4	24	50	3.6	3
Hudson (NY41)	25	53	4.3	1
Katahdin	45	69	4.5	5
Penn 71 (6HS9)	49	74	3.6	2
B6139-11	46	71	4.4	2 3
Kennebec	45	63 –	3.9	3
Russet Burbank	46	60	4.7	1
B6529-12	40	62	3.7	3
D _(.05) Tukey	14	13	0.8	3

Varieties ranked in descending order of U.S. No. 1 (2-4") yields. (See 1971 report).

^{2/} Color of crushed chips on Agtron F reflectance colorimeter set so that discs 5005 and 5052.2 gave readings of 0 and 100, respectively. Higher values indicate lighter chip color. Minimum values for "generally acceptable color" would probably range from 55 to 65. Samples were stored at temperatures indicated from shortly after harvest until time of frying on January 3 and 4, 1972.

^{3/} Five tubers of each of 4 field replications were peeled and dipped in 0.5% sodium bisulfide, cooked for 7 minutes in an autoclave at 15 p.s.i., and rated 1-5: 1 = severe aftercooking darkening; 5 = no darkening.

⁴/ Stored at 50° F.

Upstate New York Table 6. Trial with N.Y. selections, Freeville, N.Y., 1971

Chip Color and Storage Results

onip color and t	Storage Resurts	
Chip Color ² /Agtron meter readings 50°	Aftercooking darkening 1/13/72	Sprout weight as 4/3 of total weight—3/13/72
54 57 69 50 58 52 63 54	4.2 4.0 4.4 4.9 4.1 4.3 4.3 4.7	6 2 2 2 2 1 1 6 3
55 54	4.4 4.2	11 7
	Chip Color 2/ Agtron meter readings 50° 54 57 69 50 58 52 63 54 11	Agtron meter readings darkening 1/13/72 54

 $[\]frac{1}{\text{Varieties ranked in descending order of U.S. No. 1 (2-4") yields.}}$ (See 1971 report).

^{2/}Color of crushed chips on Agtron F reflectance colorimeter set so that discs 5005 and 5052.2 gave readings of 0 and 100, respectively. Higher values indicate lighter chip color. Minimum values for "generally acceptable color" would probably range from 55 to 65. Samples were stored at temperatures indicated from shortly after harvest until time of frying on January 5, 1972.

^{3/}Five tubers of each of 4 field replications were peeled and dipped in 0.5% sodium bisulfide, cooked for 7 minutes in an autoclave at 15 p.s.i., and rated 1-5: 1 = severe aftercooking darkening; 5 = no darkening.

 $[\]frac{4}{}$ Stored at 50° F.

Upstate New York Table 7. Early variety trial, Madison County, N.Y., 1971

Chip Color Results

O.	HIP GOLDI KEBULES	
Variety	Agtron mete	r readings <u>1</u> / 10/28/71
Cascade	57	31
Norchip	74	67
B5698-8	76	69
B6448-8	68	54
D(.05) Tukey	15	16
Guard 2/		
в6097-7	87	51
Sable	-	-
Abnaki	68	60

½ Color of crushed chips of Agtron F reflectance colorimeter set so that discs 5005 and 5052.2 gave readings of 0 and 100, respectively. Higher values indicated lighter chip color. Minimum values for "generally acceptable color" would probably range from 55 to 65. Samples were stored at temperatures indicated from shortly after harvest until time of frying on October 28, 1971.

^{2/}Guard row not replicated.

NORTH CAROLINA

F. L. Haynes

Breeding Program

The primary objectives continue to be the production of early-maturing varieties with superior chipping quality, adaptation to the Coastal Plain, and the incorporation of resistance to major diseases, principally common scab.

Hybridization. Crossing was done during July in the crossing room. Using the cut-stem technique with inflorescences harvested from field plots and pollen previously collected and stored, crosses were successfully made in quantity in a minimum of time. Fourteen selected parents produced 61 crosses from which seed was harvested. Fruits were mature in 45 days.

Seedling Production and Maintenance. Approximately 10,000 single hills were grown in the field from which 740 clones were selected for further trial. From previously selected clones, 423 were grown at one or more locations either in the mountains or both there and on the coast. From these, 108 were reselected for evaluation in 1973. All breeding clones are grown for seed maintenance and increase at Waynesville in the mountains.

Eastern Trials. Selected clones were tested at four locations in the early commercial area. A primary trial of 78 clones was conducted at the Tidewater Station. Advanced trials for field performance and processing quality were conducted at three locations. The design was RCB and included augmented entries at one location. In addition to the North Carolina clones, the trials included USDA breeding lines. The USDA (B) clones included were all selections made in North Carolina from segregating families provided by the National Program. The results of the advanced trials are presented in North Carolina Tables 1-3. Rainfall distribution was near normal for the season. A cold wave on March 26 froze the soil to a depth of two inches, however, and a subsequent frost on April 16 further delayed the early emerging varieties. The early-maturing varieties appeared to be severely penalized and normal maturity altered so that ratings for this attribute are probably not reliable. Despite the early season freezes, yields were normal.

Adaptation Study

This project is a study of the adaptation to the temperate zone of cultivated diploid Andean species. The two species S. phureja and S. stenotomum are being grown in large populations and mass selected for several tuber attributes as well as for responses to photoperiod. The selected families are potential sources of new germplasm for commercial exploitation. Two populations were grown at Fletcher. These were: (1) 7,500 segregating seedlings of 45 families from which 2,400 tuber clones were selected; (2) a tuber planting of 2,040 clones from 56 families (40 completing the 3rd cycle and 16 new families). This planting produced seed for the 1973 segregating population. In addition, 25-hill rows of 23 clonal selections from 1971 were grown and evaluated for tuberization in August. All tuberized under long days. Tuber size and number and percentage of segregates tuberizing continued to improve in the selected families. These segregating families will be evaluated in 1973 and clonal selections isolated.

North Carolina Table 1. Potato performance trial at Aurora. Plots were 2 rows by 20 ft., 4 replications. Planted 3/6/72, harvested 6/27/72 (112 days). Spacing: 10-inch hills, 40-inch rows. Fertilized 2000 1bs/A 8-8-8.

Variety	US#1-A cwt/A	Percent US#1-A	Specific Gravity	Chip <u>l</u> / Color	Appear-2/ ance	Maturity
68C5-13 Penn-71 Pungo LaChipper B7127-N9 Superior B6597-N3 B6973-N4 B7031-N2 58C19-2 B7124-N1 B7127-N10 Norchip B7127-N2 68C5-1 B7012-N25 64C2-3 58C19-2W 64C2-5 68C5-18 B6546-N4 68C5-22 B6937-N3 B6930-N4 L.S.D05 C.V. (PCT)	242 239 232 224 220 212 211 203 202 201 200 198 197 195 194 192 189 188 185 174 144 143 125	88.3 93.6 94.1 90.1 96.5 87.1 91.7 91.0 94.0 93.2 91.5 94.0 93.2 91.5 93.0 85.6 85.9 88.3 3.7 2.9	1.074 75 81 75 81 79 85 71 76 81 75 83 84 77 83 76 73 84 77 86 74 -	7.6 2.2 2.8 2.1.8 1.6 5.0 2.6 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	7.0 7.2 8.0 7.2 8.0 8.0 7.7 8.2 7.7 8.2 7.0 8.2 8.0 7.0 8.2 8.0 7.0 8.2	Med. early Med. late Mid-season Med. early Mid-season Early Med. early Mid-season

^{1/} Chip color determined by Wise Foods, Borden, Inc., Berwick, Pa. Average of 5 samples, 1 per week for 5 weeks following harvest. 1-4 acceptable with grade 1=perfect; 5 usuable but not desirable, 6-14 unacceptable with 14=black.

 $[\]frac{2}{}$ Appearance

^{1 =} Very poor 7 = Good 3 = Poor 9 = Excel

^{3 =} Poor

^{9 =} Excellent

^{5 =} Fair

North Carolina Table 2. Potato performance trial at Pasquotank. Plots were 2 rows by 20 ft., 4 replications. Planted 3/9/72, harvested 6/29/72 (110 days). Spacing: 10-inch hills, 40-inch rows. Fertilized 1500 lbs/A 10-20-20.

Variety	US#1-A cwt/A	Percent US#1-A	Specific Gravity	Chip <u>l</u> / Color	Appear- <u>2</u> / ance	Maturity
B7031-N2	356	92.9	-	_	8.0	Med. early
68C5-13	350	85.7	1.060	9.4	7.0	Mid-season
B6973-N4	350	81.6	57	6.0	8.8	Med. early
64C2-3	346	90.3	66	3.6	7.0	Mid-season
58019-2	331	89.5	69	5.2	7.0	Med. early
B7127-N9	330	92.2	70	6.2	9.0	Med. early
LaChipper	322	88.9	67	2.2	8.2	Med. early
68c5-18	316	91.9	71	5.2	8.2	Med. early
B7124-N1	313	92.6	-	6.6	8.5	Med. early
64C2-5	308	86.5	71	4.2	7.0	Mid-season
Katahdin	307	85.4	-		8.0	Late
68c5-1	306	86.0	69	6.8	6.7	Mid-season
B7012-N25	292	92.8	69	5.8	8.5	Med. early
B6937-N3	279	83.8	62	2.6	8.7	Med. early
Pungo	278	84.5	72	5.4	7.0	Mid-season
Penn-71	278	88.6	66	3.8	8.0	Med. late
B7012-N18	277	89.9	62	5.8	9.0	Early
Superior	272	89.7	69	3.2	8.7	Early
Norchip	272	81.3	72	3.0	8.0	Med. early
B7127-N2	270	93.2	64	2.8	7.7	Mid-season
58C19-2W	270	82.0	70	5.0	7.0	Med. early
B6597-N3	249	84.4	72	2.4	7.7	Med. early
B6930-N4	226	85.3	-	-	7.0	Med. early
68c5 - 22	175	83.7	-	-	8.0	Early
L.S.D05	46	4.2				
c.v. (PCT)	11	3.4				

^{1/} and 2/, See footnotes, N. C. Table 1.

North Carolina Table 3. Potato performance trial at Columbia. Plots were 1 row by 30 ft., 47 entries in 4 replications, RCB design with 20 augmented entries. Planted 3/7/72, harvested 6/30/72 (114 days). Spacing: 10-inch hills, 40-inch rows. Fertilized 1300 lbs/A 10-20-20.

Variety	US#1-A cwt/A	Percent US#1-A	Specific Gravity	Chip <u>l</u> / Color	Appear-2/ ance	Maturity
Red Pontiac B6973-N4 64C2-3 B7031-N2 Pungo	403 393 359 340 333	93.0 90.5 94.5 92.4 89.5	1.062 64 66 70	5.2 2.2 5.2 4.0	7.0 9.0 7.5 8.2 7.0	Med. early Med. early Mid-season Med. early Mid-season
62C8-6	331	90.0	66	5.0	8.7	Med. early
68C5-13	326	88.7	66	8.4	7.2	Mid-season
B7127-N10	325	95.6	72	6.0	9.0	Med. early
B7127-N9	321	93.9	73	5.0	8.5	Med. early
58C19-2	313	91.5	70	5.0	7.0	Med. early
B7012-N20	310	90.8	75	4.2	7.0	Mid-season
69C36-1	298	89.6	77	3.0	7.0	Mid-season
Penn-71	295	86.8	70	3.0	7.0	Med. late
B7127-N22	290	90.6	70	4.4	8.5	Mid-season
B7127-N18	282	91.3	70	3.6	8.2	Mid-seasor
Katahdin	278	77.3	-	-	7.0	Med. early
LaChipper	277	90.5	68	2.2	8.0	Med. early
B7127-N2	274	93.2	65	2.0	8.5	Med. early
58C19-2W	261	87.0	74	5.2	7.0	Med. early
Norchip	258	83.6	76	1.8	8.0	Med. early Med. early Early Med. early Early
B7033-N4	254	85.5	71	3.0	8.7	
B7008-N4	253	84.9	64	5.6	9.0	
B7012-N18	253	90.1	67	5.8	7.7	
B7335-N3	251	79.4	78	5.4	7.7	
B7120-N13	246	84.1	65	2.4	7.7	Med. early Early Med. early Mid-season
B6546-N4	243	85.2	60	4.0	8.0	
B6937-N3	230	88.0	68	2.6	8.2	
69C7-9	230	90.8	77	5.8	7.0	
Superior	228	90.3	71	1.8	9.0	Early Med. early Med. early Med. early Med. early
B6930-N4	226	84.3	67	4.6	7.7	
B6598-N3	217	91.9	74	1.6	8.0	
B6955-N4	214	84.8	82	4.0	8.0	
B7012-N12	208	88.5	67	4.0	8.0	
68C5-1 B6937-N12 69C3-3 B6943-N1	206 203 199 198	84.0 63.5 87.8 87.4	72 6 5 69 79	6.2 4.2 4.4 5.4 3.8	6.5 7.0 7.5 7.7 7.0	Med. early Mid-seaso Med. early Mid-seaso Med. early
68C5-9 B7126-N1	186 177	75.6 75.0	78 65	4.4	7.7	Med. earl

North Carolina Table 3 continued.

B6987-N24	176	90.2	74	3.6	8.0	Med. early
69014-4	165	89.2	7 4 78	5.4	7.2	Med. early
	162	82.4			8.5	
B7034-N6			70	4.6		Early
68C5-22	161	80.9	-	-	7.0	Med. early
B6987-N29	159	90.6	73	4.2	7.2	Med. early
B7335-N9	149	73.6	74	4.8	8.2	Early
6907-12	148	81.9	87	4.4	8.5	Early
B6987-N36	113	83.3	79	1.2	8.0	Early
	_		~			·
	Augmented	entries -	Rep. 1 -	adjusted	yields	
B7335-N5	303	88.1			8.1	Early
B7127-N3	255	90.5			8.1	Med. early
69038-4	237	81.0			8.0	Med. early
	211	68.2			7.2	Med. early
B7335-N6					-	Mid-season
B7031-N1	190	82.6			5.1	niu-season
	Augmented	entries -	Rep. 2 -	adiusted	vields	
	//agiiio//coo	0		,	,	
B7340-N7	344	78.5			7.0	Mid-season
B7335-N16	236	88.1			8.0	Mid-season
B7587-N4	205	79.6			7.0	Med. late
		87.9			9.0	Early
B6987-N30	196				7.0	Mid-season
B7340-N12	170	57.2			7.0	1110-36a3011
	Augmented	entries -	Rep. 3 -	adiusted	vields	
	Adgilletted	Cite 103			,	
6806-1	232	86.4			8.0	Med. early
B7335-N8	223	86.8			8.0	Med. early
	163	83.1			5.0	Mid-season
B7335-N1		88.0			8.0	Early
69C2O-10	106				9.0	Very early
64C2-9	75	91.5			3.0	very carry
	Augmented	entries -	Rep. 4 -	adjusted	yields	
B6959-N1	292	85.4			7.9	Med. early
					6.8	Mid-season
B7335-N17	271	86.9			6.9	Mid-season
B7587-N3	236	90.9			5.0	Mid-season
68C5-8	210	85.3			7.8	Early
B6990-N3	144	86.6			/.0	Lairy
		(OF) P==1:	antad ant	ries (RF)	augmented (AF	()
	L.S.D.	(.US) Kepli	cated ent	TIES (NE)	, augmented (AE	.,
RE	41	5.6			.5	
AE same rep	. 83	11.3			1.1	
AE idf rep.		11.4			1.1	
RE VS AE	66	9.0			.9	
11P A3 VP	•	,				
CV (PCT)	11.8	4.6			4.9	
01 (101)	11.0					

^{1/} and 2/ See footnotes, N. C. Table 1.

NORTH DAKOTA

Robert H. Johansen and Joseph E. Huguelet

Potato Breeding Program

Potato Crossing Program. During February and March, 257 potato crosses were made in the greenhouse. Material used in the breeding program involved parents with good processing quality, type, bright red skin color, russeting, disease resistance, high yield and good quality. Seed was extracted from the berries during June and was ready for planting in the greenhouse during July.

Greenhouse and Field Seedlings. Thirty-five thousand seedlings representing 192 families were transplanted into greenhouse benches during July and August. Seedlings were harvested during July and August.

At Langdon, approximately 30,000 seedling tubers were planted on May 17 and May 18. At harvest on September 18, 19, and 20, 737 clones were saved for further study and testing. Again all of these clones will be tested for spindle tuber virus in the greenhouse and in the Florida test plot. The diseased and poor type clones naturally will be discarded.

Advanced Selections. The advanced selections grown at Grand Forks were harvested on September 14 and 15 and at Casselton on September 26 and 27. From the 578 advanced selections that were tested, 148 were saved at harvest.

The amount of seed both planted and harvested was much less this year. The reason for this is that most of the seed planted now has been tuber indexed in Florida and in the greenhouse. It is hoped that in a few years all seed will be completely free of spindle tuber virus and that larger amounts of seed will be available for both increase and testing.

Several hundred advanced breeding lines from the USDA, Campbell Soup Company and Frito-Lay, Inc. were planted in test plots at Grand Forks. Several of these selections looked good and will be included in the breeding and testing program.

Promising Selections. The advanced selections ND6634-2R, ND7641-2 Russ, ND7103-4 and ND7196-18 have been tested in the program for the past four to five years and all appear promising. Line ND7196-18 has been tested in the North Central Regional trial for three years and has been in the state-wide trial for four years. Line ND7196-18 is a medium early, white-skinned selection that has good chip quality and some late blight resistance. This selection is much like Norchip in that it sets many tubers and under dry conditions it could produce many small sized tubers. Its shape is round-oval and very smooth.

Line ND6634-2R is a smooth, bright red selection. Its type is oblong-round, has excellent shape and the yield and specific gravity are quite good.

Line ND7642-2 Russ is an oblong-long russet that has beautiful russet skin. It is a sister selection of ND7642-3 Russ. Hollow heart has been observed but the degree has not been determined. Hollow heart resistance seems to be the most difficult characteristic to obtain in a russet variety.

Selection ND7103-4 is an oblong-round white that has good chipping quality. Yield is satisfactory and the specific gravity is high. The future of this selection is unknown.

Selection ND6925-13 Russ and ND6993-13 Russ were grown commercially for both processing and fresh use during 1972. The future of these selections does not look promising and unless additional tests prove otherwise there is a possibility that they will be dropped from the program and from commercial testing.

Processing and Culinary Tests. Again the processing laboratory at East Grand Forks, Minnesota, Wise Potato Chip Company, and the Pillsbury Company conducted tests on several advanced selections. These tests are valuable in that it shows how a certain selection will perform when compared to a good check variety or a good processed product.

One hundred ninety advanced selections were tested for chipping by the processing laboratory at East Grand Forks. From these tests twenty-two of the North Dakota selections and thirteen Campbell Soup selections had an Agtron reading of 40 or above. In 1972-73 several hundred new selections will be tested for chips and some of the more promising new and old selections will be tested for flake and french-fry quality.

Two replicates of eleven varieties and selections stored at 40° F were tested for chip quality on January 10 and then stored at 70° F and chipped every seven or fourteen days until the final tests on February 8 (Tables 1 and 2). Norchip was similar to Monona in whiteness of the chip. However when comparing the two varieties in trial for yield and specific gravity, Norchip is much superior to Monona. Because of its low yield and specific gravity and its susceptibility to wilts, Monona is not considered as a highly recommended variety for North Dakota. Lines ND7196-18 and ND7103-4 produced very white chips after reconditioning at 70° F for two to three weeks.

The Wise Potato Chip Company tested for chip quality seven selections and three check varieties. Samples were chipped on arrival on October 13 and at 3 monthly intervals. For the first test on January 25, the samples were stored at 45° F and at 70° F on February 29 and March 24. Lines MD7103-4 and MD8603-6 had the best chip color and ND7196-18 appeared to be the least affected by the low temperature storage. Twelve North Dakota selections will be tested during the winter of 1973.

The Pillsbury Company tested for flake quality six advanced North Dakota selections. All samples were processed into instant mashed potato flakes and its quality determined. In addition, total solids, total sugar, reducing sugar, ash and nitrogen were determined.

Twenty-three varieties and North Dakota selections were tested by the Horticulture Department for boiling and baking quality (Tables 3 and 4). A wide range of tests and determinations were made but in general the high, dry matter selections were better for baking and much mealier when boiled. The whiteness of a particular selection or variety was probably the most important test or evaluation taken.

Variety Trials. Replicated variety trials were grown at Grand Forks, Park River, Williston, Minot, and under dry land and irrigation at Carrington. Ben Hoag was in charge of the trial at Minot and Ernest French was responsible for the Williston trial. Howard Olson and Frank Sobolik conducted the trial at Carrington; while at Park River, Wayne Grinde and Jerry Huebner were in charge. At Grand Forks, Don Uhler was in charge of the maintenance of the trial.

The varieties were grown in plots of 25 hills and replicated four times in a randomized block.

Twenty-eight varieties and selections were planted at Grand Forks and Park River and eighteen were tested in trial at Carrington. The trials at Minot and Williston consisted of sixteen entries. Marketable yields consisted of all U.S. No. 1 tubers over 1-7/8 inches in diameter. Specific gravity was determined by the use of a potato hydrometer.

Spacing, fertilizer, soil type, planting and harvest dates of each location were as follows:

Location	Row	Plant	Fertilizer	Soil Type	Planting Date	Harvest Date
Grand Forks	38"	12"	200# 20 - 20 - 10	Bearden clay loam	5 - 15	9-21
Park River	36"	12"	300# 20 - 20 - 10	Glyndon silt loam	5-10	9-11
Minot	42"	14"	None	Williams loan	m 5 - 18	9-21
Williston	38"	14"	None	Williams loam	m 5 - 23	9-16
Carrington (Irr.)	36"	8"	300# 15 - 38-10	Kief loam	5 - 9	9 - 22
Carrington (dry)	36"	12"	300# 15-38 - 10	Kief loam	5 - 9	9-21

The 1972 growing season was for the most part dry and quite cool. This dry condition can be reflected in the yields which were somewhat lower than those obtained in 1971. At Grand Forks, 1.90 inches were received in June while July and August had 1.85 and 1.80 inches, respectively. At Minot it was wet at the start of the season, dry during late June and July and then wet during August. At Williston it was cool and had above normal rainfall while at Park River ample moisture occurred early in the season but it was dry during July and August. The irrigated trial at Carrington yielded much more than the dry land trial reflecting the dryness at this station during part of the season.

The late maturing varieties Kennebec, Red Pontiac, Chieftain and Viking produced the highest yields. For these varieties most of the yield was obtained during the very last two weeks of the season. Selection ND7196-18, Norchip and Cascade also produced good yields (Table 5).

Because they were seriously infected with virus diseases, data was not taken on several advanced selections. This included the russet selections ND7642-2 Russ and ND7642-3 Russ. No doubt the spread of virus disease to other selections and varieties grown in trial also reduced their yields.

Of the varieties grown only in trials at Grand Forks, Park River and Carrington, the white chipping selection ND8608-2 looked the best. This selection produced yields comparable to Norchip and other early-maturing varieties. Line DT6063-1R, a selection originating as a seedling in North Dakota and now being considered for introduction by Colorado looked only fair in trial. Yield was satisfactory but the selection seemed quite susceptible to silver scurf which dulled its color.

The irrigated trial at Carrington again outyielded the dry land trial by an average of a little over 200 cwt/A. The Grand Forks trial yielded less than the Park River trial. This can be contributed to the dryness at Grand Forks and that the first two replications in the Grand Forks trial were planted in poor soil.

The Park River trial produced the highest specific gravity (Table 6). Williston also produced fairly high specific gravity and the dry land trial at Carrington was higher in specific gravity than the irrigated trial.

Norchip produced the highest specific gravity followed by Kennebec and ND7196-18. All three of these varieties and selections are good for chipping and this indicates the degree of quality potato chip manufacturers receive when they buy potatoes from the Red River Valley.

Potato Disease Testing--1972. The level of resistance of 12 advanced potato lines to potato virus X (PVX) and potato spindle tuber virus (PSTV) was determined. Two advanced lines 6647-1R and 7196-18 were determined to be resistant to PVX and three newer lines showed some resistance.

A total of 2,178 tubers of 928 selections were indexed for PSTV and PVX, ll percent of the tubers from 15 percent of the new seedling selections were found to be infected with PSTV; older selections had 15 percent PSTV. Florida observations were correlated with the tomato assay test in the greenhouse for PSTV; 7 selections were identified as PSTV infected in Florida, but were not identified by the tomato test. A total of 68 lines were identified as virus infected in Florida while 208 were shown to be infected with PSTV or PVX in the greenhouse.

Scab and silver scurf resistance was evaluated on 568 potato selections. Eight new white selections were scab resistant, two older selections 8724-3 Russ and 8850-2 have repeatedly shown resistance. Resistance to late blight and verticillium wilt was evaluated in advanced selections and resistance was apparent in 6634-2R, 7196-18, 8105-1R and 6673-4 to late blight. Wilt resistance was apparent in 6647-1R, 8106-1 and 8168-6R.

1972 chip tests of varieties and selections grown at Grand Forks, North Dakota, during 1971 North Dakota Table 1.

	January 10	.y 10	Jan	January 24		자 관	February 1		Į	неринам 8	
	Color	Yield	Color Chartl	Photo Volt2	Yield3/	Color Chart	Photo Volt	Yield	Color	Photo Volt	Yield
740	, 0 0 5		(000	000	C	- (
CODDIE	0.01	33.7	٧. ن.	0.7	34.0	0.0	74.0	33.1	m x	T./ °O	% %
Kennebec	10.5	33.0	7.8	17.7	33.0	7.5	21.9	32.0	7.8	30.5	33.8
Monona	9.3	32.5	6.3	24.3	32.8	5.8	30.9	31.0	4.0	31.0	33.8
Norchip	φ. ∞.	35°8	7.8	22.5	33.5	6.5	29.8	34.2	0.4	31.5	35.5
MD6925-13 Russ	10.3	33.8	9.5	6.51	32.5	9.5	11.9	33.7	0.6	16.8	35.8
	10.3	36.0	7.8	19.6	33.3	6.8	26.8	34.8	0.9	28.3	35.0
ND7103-4	0 س•ر	36.5	8.9	24.3	34.0	6.9	29.5	35.3	6.5	34.0	35.3
MD7196-18	0.0	35.0	7.8	19.3	34.0	5.5	34.8	32.2	0.9	35.8	32.3
ND7642-3 Russ	10.0	34.8	ω . Θ	14.3	34.0	10.0	12.0	31.5	9.5	15.7	33.4
MD7755-3 Russ	φ. ω.	34.3	ω	16.2	34.3	8.5	19.4	33.2	8.9	23.0	34.5
ND7761-33 Russ	11.0	36.3	ω	14.4	34.8	0.6	16.5	34.4	9.5	20.5	34.5

1/ Color Chart - 1 = light 11 = dark

2/ Photovolt - higher numbers are lighter in color

3/ Yield - percent chip yield

North Dag ta Table 2. 1972 chip tests of varieties and selections grown at Grand Forks during 1971

	January 10	y 10	۱۰ ۲۰	January 24			February 1			February 8	
	Color	٥. ٥	Color (Chart)	Photo Vol +2/	15,010,1	Color	Photo	27.5	Color	Photo	
	Cilar o	1 TC TC	Cilai (- 1	TATATI	ollar	ηтсл	ттета	Cnart	VOLT	Yleld
Cobbler	6.6	33.8	8.8	14.5	33.0	7.5	24.1	31.6	0.9	20.8	32.8
Kennebec	ლ დ	34.0	5.5	27.5	33.0	4.5	34.6	32.4	۳ 9	29.4	33.3
Monona	ς Θ. Θ.	31.7	3.0	36.1	35.8	5.0	32.5	30.9	3.5	33.1	34.8
Norchip	7.3	35.3	7.0	34.4	34.8	5.0	33.6	33.4	က	34.6	35.5
MD6925-13 Russ	10.5	34.8	۰, 8	10.0	34.5	9.5	11.0	31.0	7.5	17.3	33.8
	0.6	34.5	6.3	26.2	34.3	6.5	29.5	33.1	5.3	26.5	35.0
ND7103-4	7.8	35.0	6.1	35.5	35.3	6.8	33.5	33.2	7.0	27.6	36.0
ND7196-18	6.8	35.3	5.4	24.5	32.5	6.5	33.9	31.4	3. 5.	31.9	35.0
ND7642-3 Russ	9.3	33.8	9.5	15.0	34.0	8.5	10.9	31.0	8.5	15.4	33.8
ND7755-3 Russ	9.5	34.5	0°0	15.1	34.5	6.5	25.7	31.8	7.8	17.9	35.0
ND7761-33 Russ	9.3	37.0	8.3	16.3	33.0	8.0	19.4	34.0	7.0	20.4	34.0

 2/ Photovolt - higher numbers are lighter in color

3/ Yield - percent chip yield

1 = poor flavor, 10 = good flavor

/9

1 = poor texture, 10 = good texture

3

1972 cooking tests of varieties and selections grown at Grand Forks, North Dakota during 1971 North Dakota Table 3.

			Boiling				Baking	0,8	
	Sloughing ¹ /	/Mealiness2/	Texture 3/	Color $\frac{\mu}{4}$ / After Cooking	Color 4 hrs.5/ After Cooking	Mealiness	Texture	Color	Flavor6/
Chieftain	0.8	0.8	0.8			١ ٠	1 .		
Cobbler	7.3				•				
Kennebec	, co	. co	·						
Monona	7.8				•				
Norchief	7.8	7.8	7.5	0	7.5	0	0.00	0	0 0
Norchip	00	00.00			•				
Norgold Russet	8.3	œ • ۳							
Norland	7.5	7.3	7.3						
Red Pontiac	7.5	7.3	•						
Russet Burbank		8.5			•				
Viking	8.5	0.0	7.5						0
ND6634-2R		6.5	6.8						٣,
ND6647-1R	6.8	7.0	7.0						
ND719-36R	7.0	7.3	7.0						5.
ND6925-13 Russ	ω	ω	8.3						
ND6993-13 Russ		8.5	0°8		•				
ND7103-4	φ. Φ.	0.6	8.5		•				
MD7196-18	7.0	ω. Θ.	0.8		•				
MD7642-3 Russ	0.0		8 7.						
ND7688-3R	. 7.5	7.5	7.0						
ND7755-3 Russ	8.0	0 0	7.8						
MD7761-33 Russ	0.8	<u>ښ</u> دن	•		7.5				
ND7824-1R	7.3	7.3	7.8			6.5		7:3	
1/1 = severe	sloughing, l	10 = no sloughing	hing		$\frac{h}{1}$ $1 = d$	dark color, 10	= very	white color	
2/l = not mealy,	10	= very dry and mealy	aly		5/1=d	dark color, 10	0 = very white	ite color	

Park River, North Dakota, during 1971

a t

grown

1972 cooking tests of varieties and selections

North Dakota Table 4.

Flavor6/ very white color very white color Color good flavor Baking Texture ₩₩< Ħ 11 2 9 dark color, 10 poor flavor, Mealiness color, dark 11 Color 4 hrs. 5/ 11 lf Н Cooking After S তা -₹) Cooking Color 4/ After Texture3/ Boiling sloughing = very dry and mealy good texture Mealiness2/ g Ħ 2 11 Sloughing sloughing, 2 $\begin{array}{c} \mathsf{F},\mathsf{F},\mathsf{Q} \otimes \otimes \otimes \mathsf{Q} & \mathsf{P},\mathsf{F} \otimes \mathsf{F},\mathsf{Q} \otimes \otimes \mathsf{Q} \otimes \mathsf{Q} \otimes \mathsf{Q} \otimes \mathsf{Q} \otimes \mathsf{P} \otimes \mathsf{Q} \otimes \mathsf{Q} \\ \otimes \mathsf{w},\mathsf{w},\mathsf{w},\mathsf{o} \otimes \mathsf{w},\mathsf{w},\mathsf{v},\mathsf{o} \otimes \mathsf{o} & \mathsf{v},\mathsf{w},\mathsf{o} \otimes \mathsf{v},\mathsf{v},\mathsf{v},\mathsf{o} \otimes \mathsf{v} \otimes \mathsf{v},\mathsf{v},\mathsf{v},\mathsf{w},\mathsf{o} \\ \end{array}$ not mealy, 10 poor texture, severe Norgold Russet M6925-13 Russ ND6993-13 Russ MD7761-33 Russ Russet Burbank W7755-3 Russ M7642-3 Russ Red Pontiac ND6719-36R ND7688-3R M7196-18 ND6647-1R M7824-1R MD6634-2R Chieftain M7103-4 Norchief Kennebec fl 11 fl Norchip Norland Cobbler Viking Monona ળો സി

Marketable yield and percent United States No. 1 of varieties and selections grown in state-wide potato trials--1972 North Dakota Table 5.

															-16	ó2·	-												1	
		cwt/A		279	227	216	211	208	206	199	160	151	135	126	75	112	274	183	146	182	170	155	144	137	136	129	125	117		
	Williston % US	No.1	26	78	な	.8	91	95	18	76	85	95	88	93	88	8							-							
	Willis	cwt/A	193	168	133	138	148	138	130	119	131	26	8	77	37	46														117
				\8	88	95	88	8	87	28	85	78	• 65	87	4	83											٠			
	itM	cwt/A	140	139	10¢	20	9	109	77	61	76	53	55	27	30	43														92
	% US	No.1	26	; S4	95	18	84	88	91	۲,	85	88	77	88	63	84	46	85	87											
	Carrington US Dryland	cwt/A	263	261	506	2 02	222	201	165	181	213	122	129	145	64	128	253	162	136											179
•	Carr % US	No.1	66	76	, 84	8,	97	95	93	93	85	26	98	8	84	84	75	98	87											
	Irrig.	cwt/A	199	634	419	644	451	473	433	†2†	328	350	350	564	152	239	451	313	564											382
	River % US		95	:8	89	91,	78	84	, 823	83	61	89	77	82	78	71	8	55	83	75	8	88	8	85	92	87	83	77		
	Park	cwt/A	303	291	248	212	181	220	234	199	147	191	163	127	105	95	560	140	129	192	168	147	178	168	136	158	160	115		180
	Grand Forks cwt/A		218	183	250	231	198	106	194	210	448	125	59	115	42	118	132	115	53	171	171	163	109	901	135	100	68	118		138
			Kennebec	Red Pontiac	Chieftain	Viking	ND7196-18	Norchip	Norland	ರ	Russet Burbank	1	MD6925-13 Russ		ND6647-1R	ND6647-4R	Cascade	ND8105-1R	ND7688-3R	D.T.6063-1R	ND8608-2	ND8243-4R	ND7878-1	ND8202-2R	ND8297-1	ND8243-11R	ND3168-6R	ND7710-5		Average

North Dakota Table 6. Specific gravity of varieties and selections grown in state-wide potato trials--1972

**************************************			Carringt	on			
	Grand Forks	Park River	Irrigation	Dryland	Minot	Williston	Average
Norchip Kennebec ND7196-18 ND6925-13 Russ ND7103-4 Norgold Russet Russet Burbank Viking Chieftain ND6647-1R ND6647-1R ND7642-2 Russ ND6634-2R Norland Red Pontiac ND7642-3 Russ ND7688-3R ND8105-3R D.T.6063-1R ND8297-1 ND8297-1 ND8202-2R ND8243-4R ND710-5 ND7878-1 ND710-5 ND7878-1 ND8168-6R	92 84 91 96 97 84 81 80 81 81 81 81 81 81 81 81 81 81 81 81 81	99 93 92 89 97 93 87 91 88 86 82 85 81 82 77 77 93 88 86 87 73	76 73 73 72 72 71 79 72 69 66 63 62 67 62	90 91 84 87 86 84 88 81 82 80 83 80 77 78 82 79 76	88 90 87 83 76 83 86 82 78 72 77 72 81	100 97 93 92 91 9 0 94 89 80 79 77 88 80 81 77 90	91 88 87 86 86 85 85 83 80 79 79 77 76 83 75 71 92 89 88 87 86 85 87
Average	84	88	70	83	79	87	

^{1/ 1.0} omitted from specific gravity readings

OHIO

Floyd Lower, A. R. Mosley, E. C. Wittmeyer

Potato Variety Trials - 1972

The work was done under a cooperative arrangement between the Department of Horticulture of the Ohio Agricultural Research and Development Center and the Ohio State University, the Ohio Potato Growers Association and local growers. The purpose is to test promising new varieties under various farm practices and conditions.

Eight varieties were each planted in three replicates on each of seven Ohio farms. The plots could not be harvested on two of the farms because of the extremely wet fall. In addition to the main study on seven farms, ten varieties were planted in a similar manner on an eighth farm in southern Ohio for early market; and 28 selections were planted in small duplicated plots on two of the seven farms to find the most promising new cultivars for the main study the following year. This report concerns only the main study on the seven farms. The data in the tables are the averages of the five farms harvested.

Each plot consisted of two rows, in each of which 50 seedpieces were planted. Seed spacing varied from 9 to 11 inches in the row and 32 to 34 inches between rows. Each grower followed his usual field practices in planting, fertilization, culture, and spraying. Planting dates varied from May 2 to May 29. The seed was cut shortly before planting in each case and was dusted with polyram.

Fertilizer practices varied somewhat but were generally equivalent to about 1,000 to 1,400 pounds of 10-20-20 per acre with additional nitrogen plowed down on three of the seven farms. Farm one had a sandy loam while the other six farms had various types of silt loam.

Rainfall was adequate and in some cases excessive throughout the season except during late July and early August when it was somewhat deficient on some of the farms. Of the five farms prepared to irrigate, one applied water once and another twice during that period. It was extremely wet in late September and in October and November. On some of the farms, the amount of moisture during the growing season was about double the usual amount. In general, temperatures were below normal during the season. The prolonged periods of high temperature common to Ohio did not occur this year, except for one short period of but a few days.

Superior, Katahdin, and Kennebec were used as standard varieties with which to compare the new varieties. Very little virus disease of any kind was present in any of the varieties, except for some mosaic in Norchip. Vigor was generally good and in many cases very good. Less than one percent of fusarium and/or verticillium wilt was found in any of the plots on the two farms closely observed. A slight amount of surface scab and tuber rot was present in one or more replicates of several varieties.

A 50-pound sample of each variety was graded on a 1-7/8 inch screen to obtain the percentage of size B and cull tubers and to determine the marketable grade. The term "Marketable grade" would nearly meet the requirements of US#1. Specific gravity and chip tests were made at Ohio State University by Doctor Wilbur A. Gould, and will be reported separately. The tables summarize the average data for the five farms harvested, including stand, size, grade, and yield.

NY 41 led in average yield with Shurchip second and Abnaki third. This is exactly the same position these three varieties occupied in 1971.

Summary of average yield and other data $\frac{1}{2}$, Ohio Potato Variety Trials--1972 (Listed in order of maturity) Ohio Table 1.

Variety	Percent Stand	Weight of 40 Tubers, lbs.	Percent Size "B"	Percent Culls	Major Defects2/	Percent Marketable	Mkt. yield Cwt./Acre
Superior Haig (L) Abnaki Shurchip Norchip Kennebec Katahdin	888788888 0.0000000000000000000000000000	113.9 13.9 14.0 15.0 15.0 15.0	6.05 6.24 5.07 5.07 4.15	6.53 5.14 5.14 10.10 15.91 7.06	Sh Gr Sh Gr Sh Gr Sh Gr Sh Gr Cr Sh Gr Cr Gr	88.5 88.4 92.1 89.1 4.4 87.8 87.8	227.80 289.40 297.60 305.00 283.80 285.20 277.20
Average	85.1	15.6	4.65	7.83		87.5	290.00

 $\frac{1}{2}$ Not including farms No. 5 and 6 on which the plots could not be harvested.

Sh-rough shape; Gr-sun greening; Cr-growth cracks; Sc-scab /s

Ohio Table 2. Average yields of marketable potatoes by variety and by farm in cwt. per acre Ohio Potato Variety Trials--1972

	age	352.14 304.72 297.67 289.54 285.67 285.18 277.35	290.01
	Average	NY 41 Shurchip Abnaki Haig (L) Norchip Kennebec Katahdin Superior	
		108.78 104.78 384.67 357.76 344.87 335.98 324.17	358.60
	7	Shurchip Kennebec NY 41 Norchip Abnaki Haig (L) Katahdin Superior	
		360.60 309.23 296.56 291.21 285.61 247.60 227.54 186.16	275.56
Farm Number	4	NY 41 Kennebec Shurchip Katahdin Abnaki Haig (L) Norchip	
Farm		373.82 293.44 287.30 271.46 258.98 226.51 219.38	268.65
	3	NY 41 Haig (L) Katahdin Abnaki Norchip Shurchip Kennebec	
		219.16 208.32 208.07 201.96 1189.37 1178.71	189.57
	a	NY 41 Norchip Abnaki Shurchip Haig (L) Katahdin Kennebec Superior	
		422.45 389.79 381.31 378.34 365.76 326.77 305.36	356.44
	1	NY 41 Shurchip Haig (L) Abnaki Norchip Kennebec Katahdin Superior	Average

Resistance to Potato Leafhoppers

J. P. Sleesman and L. L. Sanford

The leafhopper resistance of 94 clones was measured in a trial at the Ohio Agricultural Research and Development Center, Wooster, Ohio in 1972. The test was planted in an augmented, randomized, complete block design with six replications. The replicated clones (12) had been previously tested for leafhopper resistance, whereas the clones in single plots (82) were being tested for the first time.

A plot consisted of two 10-hill segments one of which had a systemic insecticide placed in the row at planting time (treated plot); the remaining 10-hill segment was left untreated. The plot segments were planted end-to-end in the row. Row spacing was 42 inches and seedpiece spacing was 12 inches.

Leafhopper infestation levels were measured by counting nymphs for 45 seconds on the untreated plot segments; five such counts were taken on each.

The differential effect of leafhoppers on yield was measured in two ways:

1) percentage yield loss relative to yield in treated plot segments; and

2) yield in untreated plots after adjustment for innate differences among the clones in yielding ability as estimated from the treated plot segments. The differences among the adjusted untreated plot yields are mostly due to leafhopper resistance and susceptibility.

The results of the trial are presented in Tables 1 and 2.

Table 1. Yield trial - Wooster, Ohio--1972 1/

P	Leafhopper Nymphs	Hoppe	rburn	Total Yield Per A	cre
Clone	Per 45 Sec. Count		iation	Untreated Plots 2	Loss 3
		July 18	Aug. 1	. Adjusted	
	No.	Pct.	Pct.	Cwt.	Pct.
в6558-2	1.1 a	2	10	339 bcdef	17
B5052-7	l.l a	2	4	301 ef	23
в6936-4	1.1 a	3	5	358 abcde	6
B6936-5	1.7 ab	2	3	378 ab	12
B6553-15	1.7 ab	3	1 5	310 def	22
в6930-16	2.2 abc	8	37	369 abc	0
B5141-6	2.8 bc	3	6	335 cdef	19
в6990-12	3.1 bcd	3	12	365 abcd	4
B6930-1	4.1 cd	3	14	408 a	0
в6987-18	7.3 de	7	7	387 ab	4
Cobbler	8 . 1 e	24	63	289 f	2 7
B6955-25	12.5 e	21	50	313 cdef	20

^{1/} Clones replicated 6 times. Duncans multiple range test used, P = .05

^{2/} Adjusted for innate differences in clonal yielding abilities estimated from treated plots.

^{3/} Yield; treated plot - Yield untreated plot/Yield treated plot

Table 2. Yield trial - Wooster, Ohio--1972 1

Per 45 Sec. Count Defoliation July 18 Aug. 1 Adjusted No. Pet. Pet. Cwt.	ere
No. Pet. Pet. Cwt.	Loss 3
B7151-1 1.2 6 12 296 OB2905-1 1.4 12 24 258 OB5515 1.8 2 6 256 OB5516-3 1.8 2 2 201 B7139-4 2.0 6 12 290 B6929-114 2.1 2 12 234 BR7044-2 2.5 2 24 332 B7132-19 2.5 2 24 332 B7132-19 2.5 2 12 282 B7141-4 2.5 6 24 329 B7147-21 2.6 40 76 234 B7158-3 2.8 12 24 334 B7158-1 3.0 12 40 309 Erie <th>Pct.</th>	Pct.
B7151-1 1.2 6 12 296 OB2905-1 1.4 12 24 258 OB5515 1.8 2 6 256 OB5516-3 1.8 2 2 201 B7139-4 2.0 6 12 290 B6929-114 2.1 2 12 234 BR7044-2 2.5 2 24 332 B7132-19 2.5 2 24 332 B7132-19 2.5 2 12 282 B7141-4 2.5 6 24 329 B7147-21 2.6 40 76 234 B7158-3 2.8 12 24 334 B7158-1 3.0 12 40 309 Erie <td>27</td>	27
OB2905-1 1.4 12 24 258 OB5515 1.8 2 6 256 OB5516-3 1.8 2 2 201 B7139-4 2.0 6 12 290 B6929-14 2.1 2 12 234 B7140-4-2 2.5 2 24 332 B7132-19 2.5 2 12 282 B7141-4 2.5 6 24 329 B7147-21 2.6 40 76 234 B7158-34 2.8 12 24 334 B7158-34 2.8 12 24 334 B7158-1 3.0 12 40 309 Erie 3.6 2 6 337 B7168-2 3.7 6 24 259 B3692-4 3.8 12 60 262 0B7167-14 3.9 12 60 24 B7132-1	
OB5515 1.8 2 6 256 OB5516-3 1.8 2 2 201 B7139-4 2.0 6 12 290 B6929-14 2.1 2 12 234 BR7044-2 2.5 2 24 332 B7132-19 2.5 2 24 332 B7147-21 2.6 40 76 234 B7147-21 2.6 40 76 234 B7158-34 2.8 12 24 334 B7158-1 3.0 12 40 309 Erie 3.6 2 6 337 B7168-2 3.7 6 24 259 B3692-4 3.8 12 60 262 B85516-6 3.9 2 2 381 B7167-14 3.9 12 60 240 B7132-1 4.1 2 12 328 B7147-10	32
OB5516-3 1.8 2 2 201 B7139-4 2.0 6 12 290 B6929-14 2.1 2 12 234 BR7044-2 2.5 2 24 332 B7132-19 2.5 2 12 282 B7141-4 2.5 6 24 329 B7152-15 2.5 2 24 342 B7147-21 2.6 40 76 234 B7158-34 2.8 12 24 334 B7158-1 3.0 12 40 309 Brie 3.6 2 6 337 B7168-2 3.7 6 24 259 B3692-4 3.8 12 60 262 085516-6 3.9 2 2 381 B7167-14 3.9 12 60 240 B7132-1 4.1 2 12 328 B7147-10	35
B6929-14 2.1 2 12 234 BR7014-2 2.5 2 24 332 B7132-19 2.5 2 12 282 B7147-14 2.5 6 24 329 B7147-21 2.6 40 76 234 B7158-34 2.8 12 24 334 B7158-1 3.0 12 40 309 Erie 3.6 2 6 337 B7168-2 3.7 6 24 259 B3692-4 3.8 12 60 262 B7168-1 3.9 2 2 381 B7167-14 3.9 12 60 262 B7132-1 4.1 2 12 328 B7147-10 4.4 12 12 276 B6929-1 4.6 12 60 284 B6929-1 4.6 12 60 284 B696-5	13 32 35 48
B6929-14 2.1 2 12 234 BR7014-2 2.5 2 24 332 B7132-19 2.5 2 12 282 B7147-14 2.5 6 24 329 B7147-21 2.6 40 76 234 B7158-34 2.8 12 24 334 B7158-1 3.0 12 40 309 Erie 3.6 2 6 337 B7168-2 3.7 6 24 259 B3692-4 3.8 12 60 262 B7168-1 3.9 2 2 381 B7167-14 3.9 12 60 262 B7132-1 4.1 2 12 328 B7147-10 4.4 12 12 276 B6929-1 4.6 12 60 284 B6929-1 4.6 12 60 284 B696-5	
BR7044-2	29
B7132-19 2.5 2 12 282 B7141-4 2.5 6 24 329 B7165-15 2.5 2 24 342 B71758-34 2.8 12 24 334 B7158-1 3.0 12 40 309 Erie 3.6 2 6 337 B7168-2 3.7 6 24 259 B3692-4 3.8 12 60 262 B5516-6 3.9 2 2 381 B7167-14 3.9 12 60 240 B7132-1 4.1 2 12 328 B7147-10 4.4 12 12 276 B6929-1 4.6 24 40 264 B7132-22 4.7 6 6 376 B7132-22 4.7 12 24 272 B7134-3 6.1 40 88 285 B7154-2 5.6 40 88 285 B7130-22 6.2 6	30
B7165-15 2.5 2 24 342 B7147-21 2.6 40 76 234 B7158-34 2.8 12 24 334 B7158-1 3.0 12 40 309 Erie 3.6 2 6 337 B7168-2 3.7 6 24 259 B3692-4 3.8 12 60 262 0B5516-6 3.9 2 2 381 B7167-14 3.9 12 60 240 B7132-1 4.1 2 12 328 B7147-10 4.4 12 12 276 B6929-1 4.6 12 60 284 B67196-4 4.6 12 60 284 B67196-5 4.7 6 6 376 B7132-22 4.7 12 26 287 B7188-37 4.9 40 88 285 B7181-21 5.6 6 24 324 B718-2 5.6 6 <td>70</td>	70
B7165-15 2.5 2 24 342 B7147-21 2.6 40 76 234 B7158-34 2.8 12 24 334 B7158-1 3.0 12 40 309 Erie 3.6 2 6 337 B7168-2 3.7 6 24 259 B3692-4 3.8 12 60 262 0B5516-6 3.9 2 2 381 B7167-14 3.9 12 60 240 B7132-1 4.1 2 12 328 B7147-10 4.4 12 12 276 B6929-1 4.6 12 60 284 B67196-4 4.6 12 60 284 B67196-5 4.7 6 6 376 B7132-22 4.7 12 26 287 B7188-37 4.9 40 88 285 B7181-21 5.6 6 24 324 B718-2 5.6 6 <td>29 38 18 2 10</td>	29 38 18 2 10
B7147-21 2.6 40 76 234 B7158-34 2.8 12 24 334 B7158-1 3.0 12 40 309 Erie 3.6 2 6 337 B7168-2 3.7 6 24 259 B3692-4 3.8 12 60 262 0B5516-6 3.9 2 2 381 B7167-14 3.9 12 60 240 B7132-1 4.1 2 12 328 B7147-10 4.4 12 12 276 B6929-1 4.6 12 60 284 B6929-1 4.6 12 60 284 B696-4 4.6 12 60 284 B696-5 4.7 6 6 376 B7132-22 4.7 12 24 272 B7188-37 4.9 40 88 285 B7165-2 5.6 6 24 324 B7134-3 6.1 40	10
B7158-34 2.8 12 24 334 B7158-1 3.0 12 40 309 Erie 3.6 2 6 337 B7168-2 3.7 6 24 259 B3692-4 3.8 12 60 262 0B5516-6 3.9 2 2 381 B7167-14 3.9 12 60 240 B7132-1 4.1 2 12 328 B7147-10 4.4 12 12 276 B6929-1 4.6 24 40 264 B7196-4 4.6 12 60 284 B6916-5 4.7 6 6 376 B7132-22 4.7 12 24 272 B7188-37 4.9 40 88 285 B7188-29 5.6 6 24 324 B7181-21 5.6 40 60 325 B7130-22 6.1 2 24 259 B7139-6 6.4 2 <td>11</td>	11
B7158-1 3.0 12 40 309 Erie 3.6 2 6 337 B7168-2 3.7 6 24 259 B3692-4 3.8 12 60 262 0B5516-6 3.9 2 2 381 B7167-14 3.9 12 60 240 B7132-1 4.1 2 12 328 B7147-10 4.4 12 12 276 B6929-1 4.6 24 40 264 B7196-4 4.6 12 60 284 B6516-5 4.7 6 6 376 B7132-22 4.7 12 24 272 B7186-20 4.7 12 60 287 B7188-37 4.9 40 88 285 B7165-2 5.6 6 24 324 B7181-21 5.6 40 60 325 B7134-3 6.1 2 24 259 B7139-6 6.4 2	39
Erie 3.6 2 6 337 B7168-2 3.7 6 24 259 B3692-4 3.8 12 60 262 OB5516-6 3.9 2 2 381 B7167-14 3.9 12 60 240 B7132-1 4.1 2 12 328 B7147-10 4.4 12 12 276 B6929-1 4.6 24 40 264 B7196-4 4.6 12 60 284 B6516-5 4.7 6 6 6 376 B7132-22 4.7 12 24 272 B7196-20 4.7 12 60 287 B7188-37 4.9 40 88 285 B7165-2 5.6 6 24 324 B7181-21 5.6 40 60 222 B7134-3 6.1 40 60 325 B7167-2 6.1 2 24 259 B7188-45 6.1 24 76 253 B7130-22 6.2 6 6 402 B7024-6 6.4 2 12 330 B7139-6 6.4 2 6 298 B4829-7 6.8 40 60 336 OB5516-4 6.9 12 12 339	20
Erie 3.6 2 6 337 B7168-2 3.7 6 24 259 B3692-4 3.8 12 60 262 OB5516-6 3.9 2 2 381 B7167-14 3.9 12 60 240 B7132-1 4.1 2 12 328 B7147-10 4.4 12 12 22 276 B6929-1 4.6 24 40 264 B7196-4 4.6 12 60 284 B6516-5 4.7 6 6 6 376 B7132-22 4.7 12 24 272 B7196-20 4.7 12 60 287 B7188-37 4.9 40 88 285 B7165-2 5.6 6 24 324 B7181-21 5.6 40 60 325 B7167-2 6.1 2 24 259 B7188-45 6.1 24 76 253 B7130-22 6.2 6 6 402 B7024-6 6.4 2 12 330 B7139-6 6.4 2 6 298 B4829-7 6.8 40 60 336 OB5516-4 6.9 12 12 339	17
B3692-4 3.8 12 60 262 0B5516-6 3.9 2 2 381 B7167-14 3.9 12 60 240 B7132-1 4.1 2 12 328 B7147-10 4.4 12 12 276 B6929-1 4.6 24 40 264 B7196-4 4.6 12 60 284 B7132-22 4.7 6 6 376 B7132-22 4.7 12 24 272 B7188-37 4.9 40 88 285 B7165-2 5.6 6 24 324 B7181-21 5.6 40 60 222 B7134-3 6.1 40 60 325 B7167-2 6.1 2 24 259 B7188-45 6.1 24 76 253 B7130-22 6.2 6 402 253 B7139-6 6.4 2 12 330 B7139-6 6.4	15
B3692-4 3.8 12 60 262 0B5516-6 3.9 2 2 381 B7167-14 3.9 12 60 240 B7132-1 4.1 2 12 328 B7147-10 4.4 12 12 276 B6929-1 4.6 24 40 264 B7196-4 4.6 12 60 284 B7132-22 4.7 6 6 376 B7132-22 4.7 12 24 272 B7188-37 4.9 40 88 285 B7165-2 5.6 6 24 324 B7181-21 5.6 40 60 222 B7134-3 6.1 40 60 325 B7167-2 6.1 2 24 259 B7188-45 6.1 24 76 253 B7130-22 6.2 6 402 253 B7139-6 6.4 2 12 330 B7139-6 6.4	29 .
0B5516-6 3.9 2 2 381 B7167-14 3.9 12 60 240 B7132-1 4.1 2 12 328 B7147-10 4.4 12 12 276 B6929-1 4.6 24 40 264 B7196-4 4.6 12 60 284 B6516-5 4.7 6 6 376 B7132-22 4.7 12 24 272 B7196-20 4.7 12 60 287 B7188-37 4.9 40 88 285 B7165-2 5.6 6 24 324 B7181-21 5.6 40 60 222 B7134-3 6.1 40 60 325 B7167-2 6.1 2 24 259 B7188-45 6.1 24 253 B7130-22 6.2 6 40 253 B7139-6 6.4 2 12 330 B7139-6 6.8 40 6	29 · 33
B7167-14 3.9 12 60 240 B7132-1 4.1 2 12 328 B7147-10 4.4 12 12 276 B6929-1 4.6 24 40 264 B7196-4 4.6 12 60 284 B6516-5 4.7 6 6 376 B7132-22 4.7 12 24 272 B7196-20 4.7 12 60 287 B7188-37 4.9 40 88 285 B7165-2 5.6 6 24 324 B7181-21 5.6 40 60 222 B7134-3 6.1 40 60 325 B7167-2 6.1 2 24 259 B7188-45 6.1 24 76 253 B7130-22 6.2 6 6 402 B7139-6 6.4 2 12 330 B74829-7 6.8 40 60 336 B95516-4 6.9 <td< td=""><td>0</td></td<>	0
B7132-1 4.1 2 12 328 B7147-10 4.4 12 12 276 B6929-1 4.6 24 40 264 B7196-4 4.6 12 60 284 B6516-5 4.7 6 6 376 B7132-22 4.7 12 24 272 B7196-20 4.7 12 60 287 B7188-37 4.9 40 88 285 B7165-2 5.6 6 24 324 B7181-21 5.6 40 60 222 B7134-3 6.1 40 60 325 B7167-2 6.1 2 24 259 B7188-45 6.1 24 76 253 B7130-22 6.2 6 6 402 B7139-6 6.4 2 12 330 B7139-6 6.8 40 60 336 B4829-7 6.8 40 60 336 B95516-4 6.9 1	37
B7147-10 4.4 12 12 276 B6929-1 4.6 24 40 264 B7196-4 4.6 12 60 284 B6516-5 4.7 6 6 376 B7132-22 4.7 12 24 272 B7196-20 4.7 12 60 287 B7188-37 4.9 40 88 285 B7165-2 5.6 6 24 324 B7181-21 5.6 40 60 222 B7134-3 6.1 40 60 325 B7167-2 6.1 2 24 259 B7188-45 6.1 24 76 253 B7130-22 6.2 6 6 402 B7024-6 6.4 2 12 330 B7139-6 6.4 2 6 298 B4829-7 6.8 40 60 336 0B5516-4 6.9 12 12 12 339	21
B6929-1 4.6 24 40 264 B7196-4 4.6 12 60 284 B6516-5 4.7 6 6 376 B7132-22 4.7 12 24 272 B7196-20 4.7 12 60 287 B7188-37 4.9 40 88 285 B7165-2 5.6 6 24 324 B7181-21 5.6 40 60 222 B7134-3 6.1 40 60 325 B7167-2 6.1 2 24 259 B7188-45 6.1 24 76 253 B7130-22 6.2 6 6 402 B7024-6 6.4 2 12 330 B7139-6 6.4 2 6 298 B4829-7 6.8 40 60 336 0B5516-4 6.9 12 12 12 339	
B7196-4 4.6 12 60 284 B6516-5 4.7 6 6 376 B7132-22 4.7 12 24 272 B7196-20 4.7 12 60 287 B7188-37 4.9 40 88 285 B7165-2 5.6 6 24 324 B7181-21 5.6 40 60 222 B7134-3 6.1 40 60 325 B7167-2 6.1 2 24 259 B7188-45 6.1 24 76 253 B7130-22 6.2 6 6 402 B7024-6 6.4 2 12 330 B7139-6 6.4 2 6 298 B4829-7 6.8 40 60 336 OB5516-4 6.9 12 12 12 339	22
B6516-5 4.7 6 6 376 B7132-22 4.7 12 24 272 B7196-20 4.7 12 60 287 B7188-37 4.9 40 88 285 B7165-2 5.6 6 24 324 B7181-21 5.6 40 60 222 B7134-3 6.1 40 60 325 B7167-2 6.1 2 24 259 B7188-45 6.1 24 76 253 B7130-22 6.2 6 6 402 B7024-6 6.4 2 12 330 B7139-6 6.4 2 6 298 B4829-7 6.8 40 60 336 OB5516-4 6.9 12 12 339	31
B7132-22 4.7 12 24 272 B7196-20 4.7 12 60 287 B7188-37 4.9 40 88 285 B7165-2 5.6 6 24 324 B7181-21 5.6 40 60 222 B7134-3 6.1 40 60 325 B7167-2 6.1 2 24 259 B7188-45 6.1 24 76 253 B7130-22 6.2 6 6 402 B7024-6 6.4 2 12 330 B7139-6 6.4 2 6 298 B4829-7 6.8 40 60 336 OB5516-4 6.9 12 12 339	0
B7196-20 4.7 12 60 287 B7188-37 4.9 40 88 285 B7165-2 5.6 6 24 324 B7181-21 5.6 40 60 222 B7134-3 6.1 40 60 325 B7167-2 6.1 2 24 259 B7188-45 6.1 24 76 253 B7130-22 6.2 6 6 402 B7024-6 6.4 2 12 330 B7139-6 6.4 2 6 298 B4829-7 6.8 40 60 336 OB5516-4 6.9 12 12 339	0
B7188-37 4.9 40 88 285 B7165-2 5.6 6 24 324 B7181-21 5.6 40 60 222 B7134-3 6.1 40 60 325 B7167-2 6.1 2 24 259 B7188-45 6.1 24 76 253 B7130-22 6.2 6 6 402 B7024-6 6.4 2 12 330 B7139-6 6.4 2 6 298 B4829-7 6.8 40 60 336 0B5516-4 6.9 12 12 339	31
B7165-2 5.6 6 24 324 B7181-21 5.6 40 60 222 B7134-3 6.1 40 60 325 B7167-2 6.1 2 24 259 B7188-45 6.1 24 76 253 B7130-22 6.2 6 6 402 B7024-6 6.4 2 12 330 B7139-6 6.4 2 6 298 B4829-7 6.8 40 60 336 OB5516-4 6.9 12 12 339	0
B7165-2 5.6 6 24 324 B7181-21 5.6 40 60 222 B7134-3 6.1 40 60 325 B7167-2 6.1 2 24 259 B7188-45 6.1 24 76 253 B7130-22 6.2 6 6 402 B7024-6 6.4 2 12 330 B7139-6 6.4 2 6 298 B4829-7 6.8 40 60 336 0B5516-4 6.9 12 12 339	0
B7181-21 5.6 40 60 222 B7134-3 6.1 40 60 325 B7167-2 6.1 2 24 259 B7188-45 6.1 24 76 253 B7130-22 6.2 6 6 402 B7024-6 6.4 2 12 330 B7139-6 6.4 2 6 298 B4829-7 6.8 40 60 336 0B5516-4 6.9 12 12 339	24
B7134-3 6.1 40 60 325 B7167-2 6.1 2 24 259 B7188-45 6.1 24 76 253 B7130-22 6.2 6 6 402 B7024-6 6.4 2 12 330 B7139-6 6.4 2 6 298 B4829-7 6.8 40 60 336 0B5516-4 6.9 12 12 339	42
B7167-2 6.1 2 24 259 B7188-45 6.1 24 76 253 B7130-22 6.2 6 6 402 B7024-6 6.4 2 12 330 B7139-6 6.4 2 6 298 B4829-7 6.8 40 60 336 0B5516-4 6.9 12 12 339	15
B7188-45 6.1 24 76 253 B7130-22 6.2 6 6 402 B7024-6 6.4 2 12 330 B7139-6 6.4 2 6 298 B4829-7 6.8 40 60 336 0B5516-4 6.9 12 12 339	31
B7130-22 6.2 6 6 402 B7024-6 6.4 2 12 330 B7139-6 6.4 2 6 298 B4829-7 6.8 40 60 336 0B5516-4 6.9 12 12 339	26
B4829-7 6.8 40 60 336 0B5516-4 6.9 12 12 339	0
B4829-7 6.8 40 60 336 0B5516-4 6.9 12 12 339	15
B4829-7 6.8 40 60 336 0B5516-4 6.9 12 12 339	17
0B5516-4 6.9 12 12 339	20
0.9 12 12 339	25
	1,6
B7147-76 7.3 6 12 209 B7155-14 7.3 2 6 111 B7159-26 7.3 6 40 230 B6955-33 7.5 40 94 246	60
B7155-14 7.3 2 6 111 B7159-26 7.3 6 40 230	62
B7159-26 7.3 6 40 230	39
B6955-33 7.5 40 94 246	36
085516-5 7.7 6 12 341	25 46 62 39 36 1 26 35
B7147-40 7.7 24 76 244	26
B7147-7 7.9 12 24 243	35
B7132-26 8.1 12 12 372	0
B7164-25 8.3 12 12 471	0
B6516-18 8.5 12 40 356	8
B7152-1 8.8 6 40 279	0 0 8 32 36
B7132-29 9.2 40 76 242	36

Table 2. (Continued)

	Leafhopper Nymphs	Норре	rburn	Total Yield Per A	
Clone	Per 45 Sec. Count		iation	Untreated Plots 2/	Loss 3
		July 18	Aug. 1	Adjusted	
	No.	Pct.	Pct.	Cwt.	Pct.
B7024-7	9•4	24	40	340	12
B7147-94	9.4	.6	60	308	0
B7183-1	9.4	40	76	346	16
B7138-11	9•7	6	40	133	61
B3139-11	9•9	24	24	151	5 7
в7167-26	9•9	40	60	292	23
B7190-2	9•9	24	60	219	42
Chippewa	. 10.8	40	76	267	29
B6955-34	11.3	12	76	266	26
в6990-19	11.3	1	6	288	23
B7161-3	11.3	24	60	346	18
B7153-14	12.5	24	60	297	25
B7196-1	13.1	40	76	212	44
B7152-12	13.8	40	88	260	32
B7138-2	16.4	60	88	319	0
B7148-4	16.8	40	88	225	40
B7154-3	18.0	24	60	258	33
B7189-1	18.5	12	40	249	30
B6955-17	19.0	40	88	242	34
B7151-9	19.0	12	24	384	5
OB5526	19.4	6	24	314	27
B7153-1	21 . 4	40	60	235	39
в7165-8	21.9	12	40	5/1/1	38
B7149-6	22.4	24	76	164	51
B7139-15	23.0	60	94	228	36
B7147-28	23.0	60	88	299	0
B7152-8	23.0	60	88	272	27
в7169-8	23 . 6	60	98	205	46
B7155-3	24.1	60	94	252	36
B7136-5	24.7	24	94	319	5
B7196-36	24.7	60	98	235	35
B7153-30	31.4	60	98	125	64
B7196-40	59•3	60	94	377	15
LSD .05	4.4			177	

^{1/} Clones replicated once in augmented, randomized block design.

^{2/} Adjusted for innate differences in clonal yielding abilities estimated from treated plots.

^{3/} Yield; treated plot - Yield untreated plot/Yield treated plot

PENNSYLVANIA

Clarence S. Bryner

In 1972, Extension variety demonstrations were conducted in cooperation with county extension agents and potato growers in the following counties and regions: Potter county, north central region; Somerset county, southwestern region; York county, southeastern region; and Schuylkill, and Lehigh counties, east central region. Eleven varieties and three seedlings were evaluated for yield.

Cultural Information

County	Grower	Planting Date	Harvest Date	Planting to Harvest - Days
Lehigh	R. Ringer	5/6	9/26	143
Potter	F. Irish	5/7	9/28	144
Schuylkill	E. Dresher	4/27	9/27	153
Somerset	R. & T. Croner	5/30	10/2	125
York	C. Flinchbaugh	4/28	9/21	146

All demonstrations were planted as randomized blocks with four replications. Cut seedpieces of each variety were hand planted in single 25-foot row plots, 9 inches apart within the row. Rows were 34 inches apart. Seedpieces of Norland were planted in 5-foot breaks between plots to identify the plots at harvest time. Total yields were recorded at harvest and tubers were graded for size over 1-7/8 inches.

Specific fertilizer recommendations at each location were made on the basis of soil-test results obtained from the University Soil Testing Laboratory.

Fertilizer applications were:

County	Plow Down	Row
Lehigh	4 tons poultry manure	800 lbs. 16-8-8
Potter	•	1300 lbs. 16-8-8
Schuylkill	700 lbs. 10-10-10	1300 lbs. 16-8-8 1500 lbs. 10-10-10 <u>1</u> /
Somerset	600 lbs. 15-15-15	1000 lbs. 10-20-20
York .	10 tons cattle manure	1200 lbs. 10-5-5- 8% Mg

1/ In excess of recommendations

Specific Gravity Determinations and Chip Color Rating

Specific gravity was determined by the weight in air-and-water method. Single varietal samples were composited from four replications at each location.

Chip color ratings are an average of four fries made during the period 10/6/72 to 12/22/72 on potatoes stored at 70° F. Ratings are on a scale of 1 to 14 with 1 being white and 4 acceptable. Chips rating 5 are borderline in color.

The specific gravity determinations and chip color ratings were made by James Watts, Horticulturist, Wise Foods Division, Borden Foods, Incorporated, Berwick, Pennsylvania.

Pennsylvania Table 1, 2, 3. Yield, size distribution, specific gravity and chip color rating of potato varieties and seedlings in County Extension trials in 1972.

	0	Total	Yield :	1/	Percen	tage	Specific	Chip
Variety	Stånd	1 Cwt./A 1	7/8" U		"-2 1/4"		Gravity 1.0+	Color
Lehigh							······································	
Kennebec	95	334	324 a		27	73	827	4.0
Line 6RF-1	92	337	317 a		36	64	767	3.8
Cascade	95	333	312 a		43	57	884	3.8
Viking	91	274	271 b		13	87	791	3.5
B5141-6	95	282	268 b		36	64	991	1.8
Katahdin	98	276	267 b		29	71	822	3.0
Superior	92	251	242 b		39	61	814	2.3
Penn 71	77	243	235 b		42	58 .	857	2.0
Line 6CX-6	94	238	224 c		35	65	836	2.8
Chieftain	94	244	223 c		52	48	712	4.0
Norchip	94	231	220 c		35	65	848	3.0
Norland	100	209	198 d		55	45	645	3.8
Peconic	92	. 205	183 de	Э	53	47	851	2.0
Monona	76	159	150 e		47	53	781	1.5
Potter								
Cascade	92	379	357 a		22	78	839	6.0
Kennebec	89	334	324 al	b .	14	86	902	4.8
Line 6RF-1	89	328	316 al	b	12	88	817	6.0
Viking	97	321	315 al	b	5	95	813	7.0
Penn 71	84	323	313 al	b	13	87	832	4.0
Katahdin	95	307	294 Ъ		23	77	902	5.0
Chieftain	7 7	294	284 b	С	15	85	792	6.5
Line 6CX-6	95	294	272 b	cd	21	79	959	3.3
Superior	89	279	269 b	cd	19	81	870	4.5
Norchip	91	241	229 c	de	18	82	962	2.5
B5141-6	92	243	215 de	е	37	63	975	2.8
Monona	76	196	185 e	f	21	79	825	2.0
Norland	89	195	183 e	f	26	74	755	5.0
Peconic	91	169	153 f		30	70	847	4.8
Schuylkill								
Cascade	95	37 7	341 a		36	64	803	4.3
Line 6RF-1	95	341	306 al	b	35	65	789	4.0
Kennebec	93	324	302 al		27	73	789	2.5
Chieftain	98	327	291 b		44	56	660	3.8
Norchip	95	290	266 b		36	64	822	3.3
Superior	94	288	265 b		33	67	765	3.3
Line 6CX-6		283	259 c		36	64	885	2.0
Viking	92	265	253 d		25	75	748	4.5
Penn 71	88	269	247 d		28	72	782	2.0
Katahdin	92	256	233 e:		39	61	757	3.0
B5141-6	89	253	229 e		36	64	984	2.0
Norland	97	231	197 f		54	. 46	602	3.8
Monona	92	159	140 g		53	47	676	1.8
Peconic 2/		128	115 g		42	58	870	2.8
_		infected with	_					

^{1/} Yield differences at .05 level, Duncan's Modified (Bayesian) L. S. D. test.

Pennsylvania Table 4, 5, 6. Yield, size distribution, specific gravity and chip color rating of potato varieties and seedlings in County Extension trials in 1972.

	0.	m - 1	V: - 1	1 1/					
17 .	% C+ - 1	Total	Yiel			ercent		Specific	Chip
Variety	Stand	Cwt./A	1 7/8''	up	1 7/8"-2	1/4"	2 3/8" Up	Gravity 1.0+	Color
Somerset	92	369	351	2	15		85 .	744	F
Cascade	92 81,5%	345	326		19		81	833	5.8
Line 6KF-1	94	338		abc	17		83	857	3.3
Kennebec	94	304		bcd	19		81	791	2.8
Penn 71	98	301		cde	37		63	894	2.3
Peconic	97	276		def	25		75	949	1.5
Line 6CX-6 Chieftain	77	253		def	10		90	754	2.0 5.3
	89	256		def	23		77 ·	790	
Katahdin	96	247		def	11		89	790 792	3.5
Viking	93	245		efg	20		80	791	4.5
Superior B5141-6	84	243		efg	30		70	.1046	2.3
-	75	217	201		20		80	847	2.5
Norchip	88	185	170	g	24		76	792	1.5
Monona	95	118	95		47		53	658	3.8
Norland	55	110	33	**	7,		33	038	3.0
York									
Cascade	95	433	383	a	. 37		63	879	4.8
Line 6RF-1	97	401	346	ab	41		59	857	3.8
Viking	94	342	332	bc	17		83	768	3.8
Kennebec	97	360	330	bc	28		72	847	3.3
Penn 71	8 6	326	301	cd	35		65	794	2.0
Superior	96	320	300	cd	25		75	737	2.8
B5141-6	93	322	293	cde	32		68	.1027	2.0
Katahdin	95	305	281	def	25		75	770	3.5
Norchip	93	291		def	30		70	814	3.5
Line 6CX-6	96	287	251	ef	37		63	927	2.5
Chieftain	97	296	246	fg	45		55	701	3.8
Norland	98	235	204		44		56	599	4.0
Monona	86	199	175		36		64	722	2.3
Peconic 2/	55	166	156	i	22		78	823	2.5
0/ 0 1.		C . 1 .:	1		. C4				
2/ Seedp	ieces in	ifected wi	ith rus	arıum	arter cu	itting.			
Five County	y Averag	re			 				
Cascade	94	378	349	2	71		60	0.70	4.0
Line 6RF-1	91	350	349		31 29		69	830	4.9
Kennebec	94	338	320		23		71	813	4.2
Viking	94	290	282		23 14		77 96	844	3.5
Penn 71	86	293	277		27		86 73	782	4.7
Katahdin	94	280	263		28		73 72	811	2.5
Superior	93	277	260		28		72	808	3.6
Chieftain	89	283	258		33		67	795 724	
Line 6CX-6	96	276	252		31		69	724	4.7
DE31:3 6	0 -	270	232	CI	31		09	911	2.5

34

28

37

45

36

66

72

63

55

64

2.2

3.0

2.7

4.1

1.8

859

857

652

759

.1004

244 ef

237 f

183 g

175 g

164 g

269

254

194

198

180

91

89

80

96

84

B5141-6

Norchip

Peconic

Norland

Monona

^{1/} Yield differences at .05 level, Duncan's Modified (Bayesian) L. S. D. test.

PENNSYLVANIA

J. D. Harrington, F. J. McArdle, and R. B. Beelman

Potato variety trials were conducted at the Agronomy Research Farm near Rock Springs in Centre County (central) and at the Henry G. Shenk Farm near Manheim in Lancaster County (southeast) in 1972.

Soils at the experimental sites were deep, heavy, well-drained and slightly acidic in pH. Prior to varietal hand planting, rows were furrowed-out three feet apart and simultaneously treated with systemic insecticide and commercial fertilizer. The Centre County site received N, P₂O₅, and K₂O totaling 210-140-140 lb/A, and the Lancaster County site received 180-90-90 lb/A.

Seed for 20 varieties and seedling numbers were Maine grown and obtained from either the United States Department of Agriculture or the Maine Department of Agriculture. Seed of Penn 71, 6CX6, and 6RF1 were obtained in Pennsylvania. Seedpieces (four-cut) were planted nine inches apart within 25-foot single-row plots, with a three-foot break between plots. A randomized block design with four replications for each of the three maturity groups (early, medium, and late) was employed. Planting in Centre County was done on May 1; planting in Lancaster County on April 28.

Varieties were mechanically harvested with a "Braco" single-row harvester and bagger attachment on October 4 (156 days after planting) in Centre County and on September 19 (144 days after planting) in Lancaster County. In both Centre and Lancaster counties an extremely wet spring and dry summer characterized the growing season. Average night and day temperatures were lower in Centre County than in Lancaster County.

Production and Quality Indices. Varietal maturity, tuber production, and tuber quality indices were obtained as follows:

Maturity--final grouping determined by percent vegetative tops naturally dead 119 and 133 days after planting in Centre County and 116 days after planting in Lancaster County.

Percent stand--based on the total number of plants emerged about 38 days after planting.

Total yield, cwt/A--tubers $l_2^{\frac{1}{2}}$ inches in diameter and larger were harvested from plots, weighed, and total plot weights converted to hundredweight yields per acre.

Percent of total yield 1-7/8 to 4 inches in size and $2\frac{1}{4}$ to 4 inches in size-harvested tubers from each plot were graded and grouped into the two size distribution classes. Size A (round or intermediate varieties) included potatoes of 1-7/8 inches minimum in size with 60 percent or more $2\frac{1}{4}$ inches and larger.

Specific gravity--determined from approximately eight-pound tuber samples by the air-and-water method.

Percent total solids--values obtained directly from specific gravity readings by employing the conversion table reported by G. V. C. Houghland.

Chip yield, lb/100 lb--an estimate of the pounds of chips obtained from 100 pounds of raw peeled potatoes. Eight-ounce samples of peeled, washed 1/16-inch slices sliced when raw and fried were used to obtain chip yield.

Chip color, Rd--determined with the Gardner Color Difference Meter. Instrument was standardized against color standard C-LY-1047-57. Rd (reflectance) values 20.0 and above may be considered acceptable for marketing.

All tuber-quality indices were determined within 52 days after harvest at the Department of Horticulture's Food Processing Laboratory. Tubers were stored in dry barns until grading and chipping without facilities for control of temperature or humidity.

Centre County Trials (central)

Summarized highlights of the research results in Centre County were as follows:

The 10 late-maturing varieties averaged highest in total yields per acre, 243 cwt, whereas the seven medium- and six early-maturing varieties averaged 220 and 208 cwt, respectively. Late-maturing varieties produced tubers highest in specific gravity, 1.097, but chips dark in color, 14.9 Rd 34 days after harvest. Tuber specific gravity of medium- and early-maturing varieties was 1.088 and 1.085, whereas chip color was 13.9 and 15.6 Rd, respectively. Highest total yields per acre of early-, medium-, and late-maturing varieties were obtained for B6974-2 (236 cwt), Abnaki (262 cwt), and BR6316-5 (298 cwt). Lowest yields per acre were produced by B6987-43 (166 cwt), Wauseon (179 cwt), and BR5957-7 (183 cwt).

Of the 23 varieties, only Seminole produced 60 percent or more of the total yield $2\frac{1}{4}$ inches or larger in size thus meeting the past minimum requirement for Size A potatoes.

Varieties with the highest percentage of the total yield $2\frac{1}{4}$ inches or larger in size for each maturity group were Seminole (68%), B6974-10 (51%), and BR6316-5 (56%). Varieties producing the lowest total yield $2\frac{1}{4}$ inches or larger in size were B7196-18 (27%), Norchip (35%), and Peconic (33%).

Varieties showing high specific gravity and solids content produced high yields of chips. Varieties of low specific gravity produced fewer pounds of chips per 100 pounds of potatoes.

Highest specific gravity tubers for each maturity group were as follows: Seminole, 1.098; Norchip, 1.097; and B6097-9, 1.106. Lowest specific gravity varieties were B6974-2, 1.062; B6974-10, 1.073; and BR5957-7, 1.089. Of these six varieties, chip color did not appear commercially acceptable.

Of the 23 varieties, only Monona produced chips sufficiently light in color (20.0 Rd and higher) after harvest to be considered commercially acceptable.

Varieties which produced chips lightest in color for each maturity group were Monona, Norchip, and BR6316-5. Varieties which produced the darkest colored chips were B6974-2, B6974-10, and Cascade.

Lancaster County Trials (southeast)

Summarized highlights of the research results in Lancaster County were as follows:

The six early-maturing varieties averaged highest in total yields per acre, 239 cwt, whereas the seven medium- and 10 late-maturing varieties averaged 198 and 188 cwt, respectively. Late-maturing varieties produced tubers highest in specific gravity, 1.078, but chips dark in color, 15.7, Rd 51 days after harvest. Tuber specific gravity of early- and medium-maturing varieties was 1.070 and 1.069, whereas chip color was 13.1 and 12.0 Rd, respectively.

Highest total yields per acre of early-, medium-, and late-maturing varieties were obtained for BR6306-22 (310 cwt), Norchip (232 cwt), and BR6316-5 (240 cwt). Lowest yields per acre were produced by B7196-18 (202 cwt), Wauseon (163 cwt), and 6RF1 (124 cwt).

Of the twenty-three varieties, only Seminole produced 60 percent or more of the total yield $2\frac{1}{4}$ inches or larger in size thus meeting the past minimum requirement for Size A potatoes.

Varieties with the highest percentage of the total yield $2\frac{1}{4}$ inches or larger in size for each maturity group were Seminole (62%), Abnaki and Norchip (52%), and Penn 71 (48%). Varieties producing the lowest total yield $2\frac{1}{4}$ inches or larger in size were B7196-18 (24%), B6930-7 (33%), and Cascade (30%),

Varieties showing high specific gravity and solids content produced high yields of chips. Varieties of low specific gravity produced fewer pounds of chips per 100 pounds of potatoes.

Highest specific gravity tubers for each maturity group were as follows: Seminole, 1.081; Norchip, 1.078; and B6097-9, 1.092. Lowest specific gravity varieties were B6974-2, 1.042; B6974-10, 1.044; and Katahdin, 1.065. Of these six varieties, chip color did not appear commercially acceptable.

None of the twenty-three varieties produced chips sufficiently light in color (20.0 Rd and higher) after harvest to be considered commercially acceptable.

Varieties which produced chips lightest in color for each maturity group were Monona, B6987-18, and 6RF1. Varieties which produced the darkest colored chips were B6974-2, B6974-10, and BR5957-7.

Production and tuber quality indices of potato varieties grown at two locations in Pennsylvania, 1972. Pennsylvania Table 1.

	Chip Color, Rd		8.8	16.6	21.2	16.2	3.5		11.6	12.0	18.1	15.8	17.8	3.9
/	ec. Solids, Chip yld., av. % 1b/100 1b		26.7				2.2	-	31.2	Ĺ.	2	· .		2.6
7 YHE E 411	Solids, %		17.8	24.4			1.1		22.8	2.	4.6		2.	0.9
C	Spec.		1.062	1.098	1.090	1.096	0.006		1.089	1.088	1.097	1.091	1.088	0.005
tral)	yeild, 2-1/4" to 4"		54 38	68	33	56	11 15.5		50	45	35	47	70	10 14.8
CENTRE COUNTY (central)	% of y 1-7/8" to 4"		82 76	91	99	98	11 9.6		85	79	72	79	92	5.9
CENTRE COUNTY (cen	Total yield, cwt/A		236	223	176	166	NS 17.1		262 248	238	215	185	179	38
	Stand,		92	96	99	93	6.4.3		97	92	96	86	96	5 4.0
, ,	Origin		USDA USDA	Pri. (F-L)	USDA Pri. (F-L)	USDA			USDA, NY., ME. USDA	USDA	N.D.	USDA	USDA, N.Y.	
	VAR IETY or SEEDLING	EARLY MATURITY	B6974-2 BR6306-22	Seminole	b/170-10 Monona	B6987-43	L.S.D. (.05) C.V., %	MEDIUM MATURITY	Abnaki B6974-10	B6930-7	Norchip R6932_9	B6987-18	Wauseon	L.S.D. (.05) C.V., %

Pennsylvania Table 1. (Continued)

CENTRE COUNTY (central)

	Chip Color, Rd		17.8	12.0	10.8	13.6	16.2	15.7	15.7	14.2	15.7	17.2	3.0	13.9
QUALITY & CHIP INDICES1/	Chip yld., 1b/100 1b.		33.8	33.4	32.6	33.8	34.2	32.4	33.6	34.2	35.5	32.3	NS	4.5
UALITY & C	Solids,		25.4	24.2	24.1	24.3	25.2	23.5	23.5	24.3	25.9	22.8	0.8	2.4
0	Spec.		1.103	1.096	1.096	1.097	1.102	1.093	1.093	1.097	1.106	1.089	0.004	0.3
1	1eld, 2-1/4" to 4"		56	47	42	55	949	51	47	33	36	777	6	14.1
PRODUCTION INDICES	% of yield, 1-7/8" 2-1/4" to 4" to 4"		85	80	97	84	82	84	80	72	64	92	5	4.7
ODUCTION	Total yield, cwt/A		298	288	279	262	246	245	230	203	192	183	59	16.8
PR	Stand,		94	86	96	95	86	86	96	91	94	06	7	5.1
	Origin		USDA	USDA	USDA, Wash.	Pa.	Pa.	Pa.	USDA	N.Y.	USDA	USDA		
	VARIETY or SEEDLING	LATE MATURITY	BR 6316-5	Kennebec	Cascade	6RF1	6CX6	Penn 71	Katahdin	Peconic	B6097-9	BR5957-7	L.S.D. (.05)	C.V., %

1/ Specific gravity determined 10/24; chipped 11/7, 34 days after harvest

Pennsylvania Table 1. (Continued)

LANCASTER COUNTY (southeast)

/	Chip Color, Rd		10.4 13.3 18.7 6.8 12.3 17.0	2.5		14.1 10.4 6.6	10.4 10.4 12.2 12.7	3.3
QUALITY & CHIP INDICES 2/	Chip yld., 1b/100 1b.		27.8 27.9 26.9 30.3	1.8	-	30.5 29.3 22.0	28.6 28.8 26.6	2.0
UALITY &	Solids,		19.0 21.0 18.9 14.0 21.4	0.7		20.7 20.5 14.4	20.4 19.3 18.3 19.5	1.2
)-	Spec.		1.069 1.079 1.068 1.042 1.081	0.004		1.078 1.076 1.044	1.070 1.050 1.065 1.071	0.006
	yield, 2-1/4" to 4"		48 56 42 52 62 24	6 8.3		52 52 42	41 33 37	NS 24.0
INDICES	% of 1-7/8" to 4"		84 86 82 88 88	5.2		85 86 76	92 76 68 72	12 10.0
PRODUCTION	Total yield, cwt/A		310 242 238 228 214 202	39		232 221 201	186 180 163	NS 15.7
PF	Stand, %		95 98 99 84 98	6.4.3		95 97 94	90 94 91	NS 4.5
	Origin		USDA USDA Pri. (F-L) USDA Pri. (F-L)			N.D. USDA, N.Y., ME. USDA	USDA USDA USDA, N.Y.	
	VARIETY or SEEDLING	EARLY MATURITY	BR6306-22 B6987-43 Monona B6974-2 Seminole B7196-18	L.S.D. (.05) C.V., %	MEDIUM MATURITY	Norchip Abnaki B6974-10 R6987-18	B6932-9 B6930-7 Wauseon	L.S.D. (.05) C.V., %

Pennsylvania Table 1. (Continued)

LANCASTER COUNTY (Southeast)

-	Chip Color, Rd		16.2	15.0	15.6	18.0	14.0	16.1	15.7	14.7	13.5	18.3	NS	19.8
QUALITY & CHIP INDICES \mathbb{Z}'	Chip yld., 1b/100 1b.		32.0	28.3	30.4	30.3	29.1	29.1	31.7	26.8	27.8	26.6	19	4°4
UALITY & C	Solids,		22.6	19.8	21.0	21.1	20.6	21.3	23.2	18.3	18.6	20.2	0.8	2.7
	Spec. grav.		1.088	1.073	1.079	1.080	1.077	1.081	1.092	1.065	1.066	1.075	0.004	0.3
!	teld, 2-1/4" to 4"		35	48	30	38	32	36	31	38	07	33	7	13.4
PRODUCTION INDICES	% of yield, 1-7/8" 2-1/4" to 4" to 4"		78	83	99	73	73	7.5	58	69	72	57	œ	7.9
ODUCTION	Total yield, cwt/A		240	223	210	205	191	186	177	166	159	124	35	12.9
PR	Stand, %		86	76	76	26	96	86	88	92	86	06	8	5.9
	Origin		USDA	Pa.	USDA, WASH.	USDA	N.Y.	Pa.	USDA	USDA	USDA	Pa.		-
	VARIETY or SEEDLING	LATE MATURITY	BR6316-5	Penn 71	Cascade	Kennebec	Peconic	9X29	B6097-9	Katahdin	BR5957-7	6RF1	L.S.D. (.05)	%v. D

2/ Specific gravity determined 10/25; chipped 11/9, 51 days after harvest

SOUTH CAROLINA

W. R. Sitterly

Irish Potato Variety Trials (Spring 1972)

Purpose: To obtain varieties suitable to coastal South Carolina.

Procedure: On February 14, field F-10 (sandy loam) was sprayed with 3 lbs./A of Parathion for wireworm control, fertilized with 1000 lbs/A of granular 10-10-10 and bedded. On February 22, beds were opened, seedpieces planted according to a randomized block design, the area sprayed with 3 lbs/A of Eptam, and re-bedded. Plot size was 1/300 A. On March 20 the area was dragged, and again bedded. The test was harvested June 2.

I. Replicated Variety Trial

Results: B6597-20, Alamo, LaChipper, and Superior had the best external tuber appearance in this test.

South Carolina Table 1. Horticultural characteristics of varieties in the Irish potato yield trials (Spring 1972).

Variety	Yield (cwt/A)	D.M. (%)	Maturity	Remarks
B6597-20 B6987-22 B7012-17 Alamo LaChipper Penobscot Superior	140 132 156 168 188 180 108	16.1 19.6 17.8 17.0 19.0 20.3 18.7	ME ML E ME ME ML ML	Susceptible early blight, ozone Susceptible ozone Internal brown flecks on 80% of tubers
LSD ₅	92	2.0		

As shown in Table 1, no significant yield differences occurred, and no variety produced a higher yield than the LaChipper control.

Although all the DM contents, except B6597-20, were very good, no item produced a significantly greater amount of DM than the LaChipper standard as shown in Table 1.

B6987-22 was too late for South Carolina.

B6597-20 and LaChipper were susceptible to ozone.

Conclusion: In this test the presently recommended LaChipper standard was the best performing variety in the trial. The only minus factor to this item was the apparent susceptibility to ozone.

II. Observational Trial

Results and Conclusions: Line B6692-9 had the best external tuber appearance in this test.

As shown in Table 2, B6518-8 had the highest yield in the test. Lines B6712-9 and B6097-9 also had excellent yields. Line B7151-1 had the highest DM content, followed by B6595-12, B6516-5, and B6712-17. The most frequent defects were internal browning and susceptibility to early blight. Items to be advanced to replicated yield trial are B6712-9 and B6097-9.

South Carolina Table 2. Horticultural characteristics of items in the Irish potato observational trials (Spring 1972).

Entry	Yield (cwt/A)	Maturity	D.M. (%)	Remarks
B4784-1	142	ME	15.8	40% internal browning
B5282-12	115	ME	18.2	
B5647-8	93	L	16.8	
B6097-9	168	ML	19.3	10% internal browning Susceptible early blight
BR6320-1	123	L	17.8	
B6516-5	90	ME	20.0	50% internal browning Susceptible to ozone Susceptible to early blight
B6516-15	126	E	18.3	
B6518-8	190	L	19.4	
B6558-16	123	L	18.7	
B6595-12	90	E	20.0	
B6692-9 B6712-9 B6712-17 B6761-12 B6815-14	150 174 57 90 162	E ME E ML L	19.1 18.2 19.9 15.4 16.0	30% internal browning All stalk and no leaves 50% growth cracks, 20% hollow heart
B6815-19	141	L	17.0	10% hollow heart, 10% internal browning 40% internal browning Susceptible to ozone
B6928-8	153	L	17.8	
B6929-10	138	ML	19.4	
B6951-1	132	ML	17.0	
B6968-3	147	ML	16.5	
B6969-1	105	L	17.1	20% internal browning, skin cracks 70% internal browning Skin cracks Susceptible early blight
B7132-25	87	E	18.7	
B7151-1	123	ML	22.0	
B7151-7	120	L	19.3	
B7153-30	111	L	18.1	
B7155-65	102	E	17.6	Susceptible early blight Susceptible to ozone. Poor flesh Susceptible early blight
B7157-11	57	ME	16.1	
B7163-8	72	L	18.6	
B7167-9	96	E	18.6	

TEXAS

R. D. Peel 1, S. B. Norrell 1, C. E. Cunningham 2

Cooperative Testing of Potato Varieties for Use in Soups. Potato variety trials were grown in replicated tests in five (5) locations in Texas in 1972: Pearsall (south central Texas); Castroville (south central Texas); Munday (north central Texas); Hereford (northwest Texas); and Hart (northwest Texas).

Pearsall (Frio County). Only one (1) of the numbered varieties outyielded the standard variety Kennebec although only two (2) were lower in yield. Many of the new varieties were higher in specific gravity and had an overall higher rating than Kennebec. (Table 1)

Castroville (Medina County). Four (4) of the numbered varieties were higher yielding, eight (8) were lower yielding and eight (8) produced the same yield as the standard variety, Kennebec. Thirteen (13) of the new varieties were higher in specific gravity and only two (2) were lower than the standard. All but four (4) of the numbered varieties had a higher overall tuber rating than Kennebec. (Table 2)

Munday (Knox County). Only one (1) variety was higher yielding than Kennebec at this location. This was BR-6863-lE, which was also the high yielder at Castroville. Only four (4) numbered varieties were higher in specific gravity than Kennebec. These were the two (2) highest yielders and the two (2) lowest yielders. Fifteen (15) of the new varieties received a higher overall rating than the standard. (Table 3)

Hereford (Deaf Smith County). None of the new varieties were significantly higher in yield than Kennebec at this location, and thirteen (13) were lower in yield. Eleven (11) numbered varieties were higher in specific gravity, and nineteen (19) had a higher overall tuber rating than the standard, Kennebec. (Table 4)

Hart (Hale County). Excellent yields and grades were recorded at this location, but none of the new varieties outyielded the standard. Nine (9) of the numbered varieties were lower yielding than Kennebec, but thirteen (13) were higher in specific gravity. All but five (5) of the new varieties had higher overall tuber ratings, and those five (5) had the same rating as the standard. (Table 5)

^{1/} Campbell Institute for Agricultural Research, Paris, Texas

^{2/} Campbell Institute for Agricultural Research, Riverton, New Jersey

Texas Table 1 - Total, % No. 1, specific gravity and overall rating of varieties grown at Pearsall, Texas, 1972.

	Total Yield	%	Specific	Overall,
Variety	100# Bags/A	No. 1	Gravity	Rating 1/
2/				
BR-5960-5 2/	259	87	1.054	3.0
BR-6491-5	219	80	1.064	3.5
BR-7108-1	217	88	1.061	3.0
Norchip	213	82	1.059	2.5
BR-6463-2	209	83	1.062	3.5
BR-6863-7	204	81	1.062	3.0
BR-6863-8E	203	82	1.064	2.5
BR-6446-2	199	79	1.053	3.0
BR-6863-1E	198	79	1.061	2.5
BR-6862-5E	193	76	1.057	3.0
Kennebec	188	80	1.053	2.5
BR-6820-26	183	74	1.050	2.5
BR-6626-5	182	70	1.053	3.0
Alamo	177	80	1.051	3.0
BR-7085-1	176	75	1.063	3.5
BR-6864-6E	175	85	1.051	2.5
BR-7066-1	174	75	1.044	2.5
BR-5960-13	171	87	1.063	3.0
BR-6491-1	170	83	1.064	3.0
BR-6864-9	156	75	1.046	3.0
BR-6859-3	153	80	1.053	3.0
BR-6863-3	152	81	1.062	3.0
BR-6864-11E	142	69	1.047	2.5
BR-7093-6	139	83	1.049	3.0
L.S.D05	41	8	0.004	
C.V.	15.6	7.4	0.250	

 $[\]frac{1}{2}$ /1 = Poor to 5 = Excellent $\frac{1}{2}$ /BR selections are the result of cooperative investigations between U.S.D.A. and Campbell Soup Company

Planting date - February 9, 1972 Harvest date - May 31, 1972 Row spacing - 36 inches Plant spacing - 12 inches Plot size - 2 rows, 12 feet long Plot design - Randomized block Replications - 4

Fertilizer - 700# 16-20-6

Texas Table 2 - Total, % No. 1, specific gravity and overall rating of varieties grown at Castroville, Texas, 1972.

	Total Yield	%	Specific	Overall ,
Variety	100# Bags/A	No. 1	Gravity	Rating 1/
BR-6863-1E 2/	017	0.6		2 0
	217	86 95	1.080	3.0
BR-5960-5	215		1.074	3.0
BR-7108-1	215	91	1.079	3.5
BR-6862-5E	214	85	1.072	2.5
BR-6463-2	209	88	1.075	4.0
BR-7085-1	206	89	1.077	3.5
BR-6820-26	194	85	1.065	3.0
BR-6446-2	194	92	1.063	2.5
BR-7066-1	190	89	1.058	3.0
Norchip	186	89	1.068	2.5
Kennebec	181	88	1.066	2.5
BR-6491-5 -	177	89	1.083	3.0
Alamo	172	92	1.060	3.5
BR-6863-7	170	90	1.078	3.0
BR-6863-8E	163	95	1.077	2.5
BR-6864-9	158	92	1.068	3.5
BR-6491-1	149	93	1.078	3.0
BR-5960-13	141	90	1.072	3.0
BR-6863-3	138	93	1.075	3.0
BR-6864-11E	135	84	1.066	3.0
BR-6864-6E	135	91	1.065	3.0
BR-6626-5	133	81	1.073	2.5
BR-6859-3	121	94	1.066	3.0
BR-7093-6	116	88	1.057	3.5
T.C.D. OF	20	7	0.00/	
L.S.D05	29	7	0.004	
C • V •	12.0	5.4	0.264	

^{1/1 =} Poor to 5 = Excellent 2/BR selections are the result of cooperative investigations between U.S.D.A. and Campbell Soup Company

Planting date - February 26, 1972

Harvest date - June 13, 1972

Row spacing - 36 inches

Plant spacing - 12 inches

Plot size - 2 rows, 12 feet long

Plot design - Randomized block

Replications - 4

Fertilizer - 300# 18-18-10 Broadcast 200# 8-16-8 At Planting

Texas Table 3 - Total, % No. 1, specific gravity and overall rating of varieties grown at the Texas A & M Center, Munday, Texas, 1972

Variety	Total Yield 100# Bags/A	% No. 1	Specific Gravity	Overall Rating 1/
BR-6863-1E 2/	0.66		*	
	266	83	1.086	2.5
BR-6863-8E	232	85	1.084	2.5
BR-5960-5	214	91	1.075	3.0
BR-6864-11E	211	81	1.071	3.0
BR-6820-26	210	91	1.077	3.0
BR-7108-1	208	91	1.081	2.5
BR-6863-7	203	82	1.079	2.5
Norchip	185	74	1.080	2.5
Kennebec	184	88	1.078	2.5
BR-6463-2	178	77	1.080	3.0
BR-5960-13	177	87	1.080	2.5
BR-6864-9	172	87	1.074	3.0
BR-6862-5E	166	72	1.076	2.5
Alamo	162	89	1.071	3.5
BR-6859-3	158	92	1.071	3.0
BR-6626-5	153	72	1.075	3.0
Norgold Russet	147	77	1.071	3.0
BR-6864-6E	146	84	1.070	3.0
BR-6491-5	146	71	1.084	3.0
BR-7066-1	143	81	1.067	3.0
BR-6446-2	141	88	1.069	3.0
BR-6491-1	129	88	1.079	3.0
BR-6863-3	126	82	1.083	3.0
BR-7085-1	124	84	1.084	3.0
BR-7093-6	86	77	1.069	3.0
L.S.D05	52	8	0.005	
C • V •	21.8	7.0	0.322	

Planting date - February 18, 1972

Harvest date - June 19, 1972

Row spacing - 40 inches

Plant spacing - 12 inches

Plot size - 1 row, 24 feet long

Plot design - Randomized block

Replications - 4

Fertilizer - 300# Ammonium Sulfate + 200# 16-20-6

 $[\]frac{1}{2}$ = Poor to 5 = Excellent $\frac{2}{8}$ R selections are the result of cooperative investigations between U.S.D.A. and Campbell Soup Company

Texas Table 4 - Total, % No. 1, specific gravity and overall rating of varieties grown at Hereford, Texas, 1972

	Total Yield	% No. 1	Specific	Overall/
Variety	100# Bags/A	No. 1	Gravity	Rating 1
BR-6863-1E 2/	360	88	1.087	2.5
Kennebec	348	94	1.073	2.0
BR-5960-5	346	96	1.081	2.0
BR-6863-8E	331	92	1.086	3.0
BR-5960-13	323	96	1.087	2.0
BR-6864-11E	321	90	1.073	3.0
Norchip	296	89	1.079	2.5
BR-6463-2	290	90	1.077	3.0
BR-6626-5	282	91	1.081	3.0
BR-6820-26	270	88	1.031	3.0
	256	94		
BR-6446-2	25 2	85	1.070	3.0
Norgold Russet			1.077	3.0
Alamo	252	85	1.067	2.5
BR-6863-7	251	83	1.078	3.0
BR-6862-5E	234	88	1.072	2.5
BR-6864-9	230 88 218 85 213 91		1.072	3.0
BR-6491-5			91 1.085 3	
BR-7108-1				3.0
BR-6864-6E	212		1.070	3.0
BR-7066-1	211	92	1.069	2.5
BR-6863-3	190	92	1.084	3.0
BR-6859-3	178	86	1.066	2.5
BR-6491-1	169	89	1.084	3.0
BR-7085-1	169	85	1.088	2.5
BR-7093-6	145	87	1.070	2.5
L.S.D05	84	5	0.005	
C . V .	23.5	4.3	0.227	

Planting date - March 27, 1972

Harvest date - August 2, 1972

Row spacing - 40 inches

Plant spacing - 9 inches

Plot size - 1 row, 24 feet long

Plot design - Randomized block

Replications - 4

Fertilizer - 800# 10-10-10 + 40# N Sidedress

 $[\]frac{1}{2}$ 1 = Poor to 5 = Excellent $\frac{2}{2}$ BR selections are the result of cooperative investigations between U.S.D.A. and Campbell Soup Company

Texas Table 5 - Total, % No. 1, specific gravity and overall rating of varieties grown at Hart, Texas, 1972.

	Total Yield	%	Specific	Overall.
Variety	100# Bags/A	No. 1	Gravity	Rating 1
				-
Norchip ,	394	93	1.076	3.0
BR-7066-1 2/	383	95	1.064	3.0
BR-6863-8E	380	86	1.084	3.0
Kennebec	357	93	1.070	2.5
BR-6626-5	351	93	1.075	3.0
Alamo	340	92	1.061	3.5
BR-7085-1	335	93	1.085	3.0
BR-6446-2	328	95	1.066	3.0
BR-7108-1	321	96	1.081	3.0
BR-6864-6E	313	91	1.065	3.0
BR-6463-2	305	92	1.076	3.0
BR-5960-5	304	95	1.076	2.5
BR-6491-5	301	90	1.082	3.5
Norgold Russet	296	91	1.070	4.0
BR-6864-11E	294	90	1.065	3.0
BR-6862-5E	287	8.8	1.071	3.0
BR-6859-3	274	94	1.060	2.5
BR-6863-1E	266	82	1.084	2.5
BR-5960-13	244	94	1.078	2.5
BR-6863-3	230	93	1.078	3.0
BR-6863-7	228	91	1.080	3.0
BR-7093-6	208	94	1.063	3.0
BR-6491-1	194	91	1.079	2.5
	4.0			
L.S.D05	63	6	0.003	
C • V •	15.0	4.9	0.208	

Planting date - April 13, 1972

Harvest date - September 6, 1972 Row spacing - 38 inches

Plant spacing - 12 inches

Plot size - 2 rows, 10 feet long

Plot design - Randomized block

Replications - 4

Fertilizer - 500# 16-30-0 + 500# 21-6-0

 $[\]frac{1}{2}$ / 1 = Poor to 5 = Excellent $\frac{2}{2}$ / BR selections are the result of cooperative investigations between U.S.D.A. and Campbell Soup Company

TEXAS

B. A. Perry, R. E. Webb and M. C. Fuqua

Screening and Evaluation of Potato Varieties and Breeding Lines

<u>Yield Tests</u>. Materials were provided for planting in three locations, but data are reported for only two. The varieties were planted in a randomized design with four replications. A replication consisted of 25 seedpieces, planted at 12-inch intervals with 40-inch row spacing. Dacthal at 12-14 pounds per acre was applied preemergence for weed control. The yields and other data are reported in Texas tables 1 and 2. The color ratings in Texas table 1 were provided by the Foods Laboratory at Texas A&M University.

Observation Lines. New breeding lines were also included consisting of a single row 10 to 25 feet in length, depending on the number of seedpieces available. The evaluation of these new lines is reported in Texas table 3. The yields reported are for Munday only, but the remainder of the data reported in this table is a composite of the results from College Station and Munday.

<u>Summary and Conclusions</u>. Overall yields are only moderately good. The best variety in the planting was BR5960-5, followed by BR5960-13. This line has the potential of becoming an excellent white variety for Texas.

Texas Table 1. Yield Test, College Station, 1972.

		CWT/Acre1/	Specific,	Color R	atings
Variety	US #1	Tota1	Gravity <u>2</u> /	Chip-3/	Fry4/

Red Pontiac	97	110	62	4	4
Kennebec	100	110	77	3	3
Cascade	81	93	74	4	2
DT6063-1R	81	96	73	2	2
B:5408-2	97	103	65	4	3
B 5458-6	96	112	73	5	4
B 6044-14	111	117	96	3	2
BR6265-8	62	71	67	4	3
B 6544-4	76	9 6	82	4	3
B 6548-1	66	76	69	4	4
B 6708-1	57	72	83	4	3
B 6775-4	89	104	74	5	3
BR5960-5	121	134	84	3	2
BR5960-13	101	108	88	2	2

Planted: 2/23/72. Harvested: 6/6/72; 104 days

 $[\]frac{1}{2}$ Yields are based on average from four replications

 $[\]frac{2}{-}$ Determined with potato hydrometer; 1.0 omitted from all ratings

 $[\]frac{3}{\text{Color}}$ ratings made using NPCI reference color chart

^{4/}U.S.D.A. Color French Fries

Texas Table 2. Yield Test, Munday, 1972.

	Yield CW	T/Acre1/	-	Ratings	
Variety	US #1	Total	Maturity ^{2/}	Wind & Heat 3/	Disease 4
	,	100			
B 6544-4	45 de	100	2	-3	3
BR5960-13	155 bc	213	5	2	1
В 6708-1	43 de	103	1	2	2
В 6775-4	96 cde	168	4	2	1
B 6548-1	1 3 6 bc	182	3	3	2
Pontiac	129 bc	166	2	3	3
B 5408-2	63 de	130	2	3	3
BR5960-5	220a	263	4	1	2
В 5458-6	33 e	57	1	3	3
Cascade	82 cd	133	3	3	2
Kennebec	193a b	225	5	2	1
BR6265-8	69 de	97	1	4	1

Planted: 2/18/72. Harvested: 6/23/72.

 $[\]frac{1}{2}$ Yields are averages for 3 replications; significant differences indicated by use of Duncans Multiple Range Test.

 $[\]frac{2}{M}$ Maturity rated 1 to 5: 1 = early; 5 = late.

 $[\]frac{3}{\text{Resistance}}$ rated 1 to 5: 1 = no burn; 5 = severe leaf burn.

 $[\]frac{4}{}$ Disease damage rated 1 to 5: 1 = apparently free; 5 = severe damage.

Texas Table 3. Observation Test, 1972

Variety or	US #1 Yield		Ratings	
Breeding Line	CWT/Acre Munday	Appearance ^{2/}	Maturity 3/	Disease4/
B7169-7	273	1	4	2
B7169-8	208	1	3	3
B7200-6	241	1	4	2
B7200-8	221	2	4	2
B7200-30	294	2	3	2
B7200-34	-	2	3	2
B7200-35	305	2	2	2
B7781-13	-	2	3	2
B7791-2	-	2	4	2
B7808-1	-	2	3	3
66-129-6	-	2	4.	2
70-535-2	-	2	4	2
UX-123-4-2	•	1	4	2
67-64-6	-	1	5	2
WC314-2	•	2	3	2
65-15-7	-	2	3	2
WC285-141	•	2	3	2
UX1-41-5	-	2	4	1
WC284-7	-	2	3	2

Planted February 18, 1972; Harvested June 23, 1972.

 $[\]frac{1}{2}$ Yields are for a single replication.

 $[\]frac{2}{4}$ Appearance rated 1 to 5: 1 = very good; 5 = rough.

 $[\]frac{3}{4}$ Maturity rated 1 to 5: 1 = early; 5 = late.

 $[\]frac{4}{\text{Disease}}$ rated 1 to 5: 1 = apparently free; 5 = severe.

VERMONT

S. C. Wiggans, W. R. Kelly, R. N. Jensen, and H. J. Murphy

During 1972 three potato variety trials were conducted in Vermont by the Plant Pest Control Division of the Vermont Department of Agriculture, the Plant and Soil Science Department at the University of Vermont, and the Plant and Soil Science Department at the University of Maine. These trials were located at Rutland, Wolcott, and South Burlington. There were 17 varieties at Rutland and Wolcott, and 20 varieties at south Burlington. There were five replicates in a randomized block at each location. Seedpieces of all varieties were planted by hand. They were 9 inches apart for all varieties except Desiree and Russet Burbank which were planted 18 inches apart. These plantings were part of the tri-state cooperative variety trial of the National Potato Breeding Program.

The plots at Rutland were planted on May 19 and harvested September 15. Fertilizer was applied at the rate of 100-200-200 per acre. Potatoes were grown in a very light soil. The plots suffered severe hail damage in July. Rainfall was above normal and seasonal temperatures below normal (Vermont Table 1).

The plots at Wolcott were planted May 26, killed September 9, and harvested September 29. Fertilizer was applied at the rate of 144-216-216 per acre. The potatoes were grown in a medium loamy soil. There was adequate moisture with a cooler than normal season. Yields were satisfactory (Vermont Table 2).

The plots in south Burlington were planted May 26 and harvested September 26. Fertilizer was broadcast at a rate of 100-100-100 and sidedressed at 50-50-50. The potatoes were planted in a light sandy soil. No irrigation was necessary due to the above normal rains and a below normal temperature (Vermont Table 3).

Abnaki, although relatively low yielding at Burlington, is of interest to Vermont growers. Cascade yielded well at all three locations and appears to be adapted to Vermont growing conditions. Line BR6305-22 also yielded well at all three locations; however, the tubers are slightly rough and have some growth cracks. Line BR6316-5 had yielded well at all three locations. This variety is medium early and has good disease resistance, especially to verticillium wilt. Line F59103 yielded well at Rutland and appears to have possibilities for Vermont growers. Line BR6312-2, a late variety, yielded well in Burlington and was the best yielding variety at Rutland and Wolcott; however, it has a low specific gravity

Table 1. Yield, percentage of yield between 1-7/8 and 4 inches, specific gravity, total solids and chip color for 17 potato varieties grown at Rutland, Vermont - 1972.

e 316abc 86.0 39.4 1.074d-g 18.9 r 291bc 91.6 45.4 1.080b-e 20.2 e 260b-e 72.2 15.8 1.085b 21.2 th 285bcd 85.1 37.4 1.082bcd 20.4 se 285bcd 85.1 37.6 1.082bcd 20.4 te 285bcd 79.3 35.8 1.085b 20.2 255cde 91.1 41.6 1.078b-f 19.7 2 255cde 84.0 28.3 1.093a 22.9 190e 77.5 86.8 1.093a 22.9 1938ab 92.4 43.2 1.078b-f 19.3 338ab 92.4 443.2 1.078b-f 19.3 338ab 92.4 43.2 1.078b-f 19.3 338ab 95.3 70.0 1.075c-g 19.3 313abc 83.3 35.8 1.084b 21.0 321abc 96.7 77.5	Variety 1/	Yield above 1½ inches Cwt./A.	Percentage of yield 1-7/8 to 4 inches	Percentage of yield 2-1/4 to 4 inches	Specific Gravity	Percentage total solids	Chip color
316abc 86.0 39.4 1.074d-g 18. 291bc 91.6 45.4 1.080b-e 20. 260b-e 72.2 15.8 1.085b 21. 213de 85.1 37.4 1.074d-g 18. 285bcd 85.1 37.6 1.082bcd 20. 285bcd 92.6 55.8 1.080b-e 20. 193e 79.3 33.2 1.085b 21. 255cde 91.1 41.6 1.078b-f 19. 314abc 84.0 28.3 1.093a 22. 1 301abc 95.5 68.8 1.078b-f 19. 22 338ab 92.4 43.2 1.076c-e 19. 332ab 95.3 70.0 1.076c-e 21. 305abc 83.3 35.8 1.084b 21. 321abc 96.7 77.5 1.073fc 138.						of the above for the factor of	en de despublica communicación de description de description de description de description de la companya de d La companya de description de
291bc 91.6 45.4 1.080b-e 20. 260b-e 72.2 15.8 1.085b 21. 213de 87.2 37.4 1.074d-g 18. 213de 85.1 37.6 1.074d-g 18. 285bcd 85.1 37.6 1.081bcd 20. 285bcd 78.6 36.6 1.080b-e 20. 193e 79.3 33.2 1.085b 21. 255cde 91.1 41.6 1.078b-f 19. 255cde 91.1 41.6 1.078b-f 19. 314abc 84.0 28.3 1.093a 22. 33aab 92.4 43.2 1.078b-f 18. 22 33abc 92.4 43.2 1.078c-g 19. 23 33abc 95.3 70.0 1.076c-g 19. 24 335ab 95.3 35.8 1.084b 21. 25 305abc 83.3 35.8 1.075fc 21.	Cascade	31.6abc	86.0	0	1.074d-g	- 10	9.2bcd
ree 260b-e 72.2 15.8 1.085b 21. ide 213de 87.2 37.4 1.074d-g 18. 285bcd 85.1 37.6 1.082bcd 20. 285bcd 92.6 55.8 1.081bcd 20. 285bcd 78.6 36.6 1.080b-e 20. 193e 79.3 33.2 1.085b 21. 7.2 255cde 91.1 41.6 1.078b-f 19. 7.9 314abc 84.0 28.3 1.093a 22. 57-7 190e 77.5 34.0 1.078b-f 19. 60-13 301abc 95.5 68.8 1.078cd 20. 10-2 338ab 92.4 43.2 1.075c-g 19. 11-2 382a 95.3 70.0 1.075c-g 19. 11-2 382bc 95.3 70.0 1.092a 21. 11-2 313abc 95.3 1.095c-g 19. 11-2 313abc 95.7 77.5 1.073fc 21.	Cobbler	291bc	91.6	5		20	8,8cde
ide 213de 87.2 37.4 1.074d-g 18. 285bcd 85.1 37.6 1.082bcd 20. 285bcd 92.6 55.8 1.081bcd 20. 285bcd 78.6 36.6 1.080b-e 20. 193e 79.3 33.2 1.085b 21. 7.2 255cde 91.1 41.6 1.078b-f 19. 7.9 314abc 84.0 28.3 1.093a 22. 57-7 190e 77.5 34.0 1.078b-f 19. 57-7 301abc 95.5 68.8 1.081bcd 20. 12-2 382a 95.3 70.0 1.092a 22. 16-5 313abc 95.3 1.0735c 21. 16-5 305abc 83.3 35.8 1.0735c 21. 28-5 321abc 96.7 77.5 1.0735c 21.	Desiree	260b-e	72.2		1,0855	S	7.6gh
adin 285bcd 85.1 37.6 1.082bcd 20. 285bcd 78.6 36.6 1.080b-e 20. 193e 79.3 33.2 1.085b 21. 7.2 255cde 91.1 41.6 1.078b-f 19. 7.9 314abc 84.0 28.3 1.093a 22. 57-7 190e 77.5 34.0 1.078b-f 19. 50-13 301abc 95.5 68.8 1.071g 18. 12-2 382a 95.3 70.0 1.075c-g 19. 16-5 305abc 83.3 35.8 1.092a 22. 26-5 305abc 83.3 35.8 1.075fc 21. 28.3 1.075fc 22.	Lopride	213de	87.2			6.	8.2efg1
sebec 378bc 92.6 55.8 1.081bcd 20. 285bcd 78.6 36.6 1.080b-e 20. 193e 79.3 33.2 1.085b 21. 7-2 255cde 91.1 41.6 1.078b-f 19. 7-9 314abc 84.0 28.3 1.093a 22. 57-7 190e 77.5 34.0 1.078b-f 19. 50-13 301abc 95.5 68.8 1.078b-f 19. 12-2 382a 92.4 43.2 1.071g 18. 16-5 313abc 94.8 52.0 1.092a 27. 26-5 305abc 83.3 35.8 1.075c-g 21. 26-5 321abc 96.7 77.5 1.073fc 18.	Katahdin	285bcd	85.1	37.6	0		2bc
285bcd 78.6 36.6 1.080b-e 20. 193e	Kennebec	378bc	92.6	55.8	1.081bcd	- 5	8.2efgh
193e 79.3 33.2 1.085b 21. 7-2 255cde 91.1 41.6 1.078b-f 19. 7-9 314abc 84.0 28.3 1.093a 22. 57-7 190e 77.5 34.0 1.078b-f 19. 50-13 301abc 95.5 68.8 1.081bcd 20. 12-2 382a 92.4 43.2 1.071g 18. 12-2 382a 95.3 70.0 1.076c-g 19. 16-5 313abc 94.8 52.0 1.092a 21. 26-5 305abc 83.3 35.8 1.073fc 18. 331abc 96.7 77.5 1.073fc 18.	Oromonte	285bcd	78.6	36.6	1,080b-e	20.21	8.1fgh
255cde 91.1 41.6 1.078b-f 19. 314abc 84.0 28.3 1.093a 22. 190e 77.5 34.0 1.078b-f 19. 301abc 95.5 68.8 1.081bcd 20. 338ab 92.4 43.2 1.071g 18. 313abc 95.3 70.0 1.092a 22. 305abc 83.3 35.8 1.075f 18.	York	193e	79.3	33.2	1.0855	21.27	7,9£gh
314abc 84.0 28.3 1.093a 22. 190e 77.5 34.0 1.078b-£ 19. 3 301abc 95.5 68.8 1.081bcd 20. 3 38ab 92.4 43.2 1.071g 18. 382a 95.3 70.0 1.076c-£ 19. 313abc 94.8 52.0 1.092a 27. 305abc 83.3 35.8 1.084b 21. 321abc 96.7 77.5 1.073fc 18.	B5267-2	255cde	91.1	41.6	0785-	19,79	9,4abc
190e 77.5 3 301abc 95.5 68.8 1,081bcd 20,0 2 338ab 92.4 43.2 1,071g 18. 382a 95.3 70.0 1,071g 19. 313abc 94.8 52.0 1,092a 27. 305abc 83.3 35.8 1,084b 21. 321abc 96.7 77.5 1.073fc 18.	B6097-9	314abc	84.0	28.3		22.95	9.2bcd
3 301abc 95.5 68.8 1.081bcd 20. 2 338ab 92.4 43.2 1.071g 18. 382a 95.3 70.0 1.076c~g 19. 313abc 94.8 52.0 1.092a 27. 305abc 83.3 35.8 1,084b 21.	BR5957-7	190e	77.5	34.0	\circ	19.79	8,5de£
2 338ab 92.4 43.2 1.071g 18. 382a 95.3 70.0 1.076c-g 19. 313abc 94.8 52.0 1.092a 23. 305abc 83.3 35.8 1,084b 21. 321abc 96.7 77.5 1.073fc 18.	BR5960-13	301abc	95.5	68,8	30.	20,43	7.5%
382a 95.3 70.0 1.076c-g 19. 313abc 94.8 52.0 1.092a 22. 305abc 83.3 35.8 1.084b 21. 321abc 96.7 77.5 1.073fc 18.	BR6306-22	338ab	7.76	43.2	.03	18,32	9.4850
-5 313abc 94.8 52.0 1.092a 27. -5 305abc 83.3 35.8 1.084b 21. 321abc 96.7 77.5 1.073fc 18.	BR6312-2	382a	95.3	70.0	.0760-	19,37	10.03
-5 305abc 83.3 35.8 1,084b 21. 321abc 96.7 77.5 1.073fc 18.	BR6316-5	313abc	- 6	- 4	.0922	Section of the sectio	8.3ef
321abc 96.7 77.5 1.073fc 18.7	BR6626-5	305abc	- 10	(a)	,084	21.05	9.9ab
	F59103	32labc	96.7	77.5	1.07368	18.74	7.8gh

1/planted - May 19; harvested - September 15, 1972.

Seedpieces of all varieties spaced 9 inches apart.

Fertilizer: 100-200-200.

Table 2. Yield, percentage of yield between 1-7/8 and 4 inches, specific gravity, total solids and chip color for 17 potato varieties grown at Wolcott, Vermont - 1972.

Cascade 311abc 94.4 71.6 1.072d Cobbler 282bcd 96.2 70.0 1.075cd Desiree 216de 93.2 55.5 1.081ab Iopride 195e 95.0 70.2 1.076de Katahdin 272bcd 95.9 83.9 1.075cd Kennebec 287bc 95.9 79.3 1.078bc Oromonte 311abc 96.2 74.1 1.085a York 250cde 95.1 76.6 1.078bc BS267-2 295bc 97.0 77.1 1.075cd BR5960-13 291bc 94.5 64.7 1.085a BR5960-13 291bc 96.9 76.4 1.085a BR6306-22 324ab 97.2 77.3 1.065f BR6312-2 287bc 97.0 82.1 1.083a BR6316-5 314abc 97.0 67.1 1.077bc	of yield of yield of yield 1-7/8 to 4 2-1/4 to 4 inches	Specific Gravity	Percentage total solids	Chip color
282bcd 96.2 70.0 216de 93.2 70.0 216de 93.2 70.0 215ce 95.0 70.2 272bcd 95.9 83.9 287bc 95.9 79.3 311abc 96.2 74.1 250cde 95.1 76.6 295bc 97.0 77.1 281bcd 97.5 82.1 324ab 97.5 82.1 314abc 97.0 82.1 314abc 94.7 67.1		1.0724	19,53	6 9
216de 93.2 55.5 195e 95.0 70.2 272bcd 95.9 83.9 287bc 95.9 79.3 311abc 96.2 74.1 250cde 95.1 76.6 295bc 97.0 77.1 292bc 94.5 64.7 281bcd 97.5 82.1 3 291bc 96.9 76.4 3 291bc 96.9 76.4 3 287bc 97.0 82.1 314abc 94.7 67.1		1.075cd	19,16	9.5ab
195e 95.0 70.2 1 272bcd 95.9 83.9 1 287bc 95.9 79.3 1 311abc 96.2 74.1 1 250cde 95.1 76.6 1 295bc 97.0 77.1 1 292bc 94.5 64.7 1 281bcd 97.5 82.1 1 324ab 97.2 77.3 1 287bc 97.0 82.1 1 314abc 94.7 67.1 1		1.081ab	20,43	8.8bc
272bcd 95.9 83.9 1 287bc 95.9 79.3 1 311abc 96.2 74.1 1 250cde 95.1 76.6 1 295bc 97.0 77.1 1 292bc 94.5 64.7 1 281bcd 97.5 82.1 1 3 291bc 96.9 76.4 1 2 324ab 97.2 77.3 1 287bc 97.0 82.1 1 314abc 94.7 67.1 1	.0 70.2	1.070de	18,10	9.4ab
287bc 95.9 79.3 1 311abc 96.2 74.1 1 250cde 95.1 76.6 1 295bc 97.0 77.1 1 292bc 94.5 64.7 1 281bcd 97.5 82.1 1 3 291bc 96.9 76.4 1 2 324ab 97.2 77.3 1 3 324ab 97.2 77.3 1 3 370a 94.2 86.2 1 314abc 94.7 67.1 1	.9 83.9	1.075cd	19,16	9.2abc
311abc 96.2 74.1 1 250cde 95.1 76.6 1 295bc 97.0 77.1 1 292bc 94.5 64.7 1 281bcd 97.5 82.1 1 3 291bc 96.9 76.4 1 2 324ab 97.2 77.3 1 370a 94.2 86.2 1 314abc 94.7 67.1 1	.9 79.3	1.078bc	19.79	9.2abc
250cde 95.1 76.6 1 295bc 97.0 77.1 1 292bc 94.5 64.7 1 33 291bc 96.9 76.4 1 2 324ab 97.2 77.3 1 3 370a 94.2 86.2 1 314abc 94.7 67.1 1		1.085a	21.27	9.3ab
295bc 97.0 77.1 1 292bc 94.5 64.7 1 281bcd 97.5 82.1 1 3 291bc 96.9 76.4 1 2 324ab 97.2 77.3 1 370a 94.2 86.2 1 314abc 94.7 67.1 1	.1 76.6	1.078bc	19.79	8.7bc
292bc 94.5 64.7 1 281bcd 97.5 82.1 1 3 291bc 96.9 76.4 1 2 324ab 97.2 77.3 1 370a 94.2 86.2 1 287bc 97.0 82.1 1 314abc 94.7 67.1 1		1.075cd	19.16	9.0bc
281bcd 97.5 82.1 1 291bc 96.9 76.4 1 2 324ab 97.2 77.3 1 370a 94.2 86.2 1 287bc 97.0 82.1 1 314abc 94.7 67.1 1		1.081ab	20.43	8.7bc
3 291bc 96.9 76.4 2 324ab 97.2 77.3 370a 94.2 86.2 287bc 97.0 82.1 314abc 94.7 67.1		1.071de	18,32	9.6ab
2 324ab 97.2 77.3 1 370a 94.2 86.2 1 287bc 97.0 82.1 1 314abc 94.7 67.1 1		1.085a	21.27	9.2abc
370a 94.2 86.2 1 287bc 97.0 82.1 1 314abc 94.7 67.1 1		1.065£	17.05	8.3c
287bc 97.0 82.1 1 314abc 94.7 67.1 1		1.062f	16.42	9.7ab
314abc 94.7 67.1 1		1.083a	20.85	10.0a
		1.077bc	19.58	8.8bc
F59103 280bcd 96.5 78.1 1.067ef	ζ,	1.067ef	17.47	10.0a

1/Planted - May 26; killed - September 9; harvested - September 29, 1972.

Seedpieces of all varieties spaced 9 inches apart.

Fertilizer: 144-216-216

Yield, percentage of yield between 1-7/8 and 4 inches, specific gravity, total solids and chip color for 20 potato varieties grown at Burlington, Vermont - 1972. Table 3.

$Variety^{\frac{1}{2}}$	Yield above 1½ inches Cwt./A.	Percentage of yield 1-7/8 to 4 inches	Percentage of yield 2-1/4 to 4 inches	Specific	Percentage total solids	Chip color
Abnaki	150cd	80.3	33.3	1 0824	20 64:	797 0
Bake King	189abc	82.3	16,7	1.107a	25.91	9.4ab
Cascade	225a	88.9	33,3	1.088de	21,90	9,4ab
Cobbler	186abc	85.3	28.7	1.086e	21.48	7.8ef
Destree	110de	7.69	3,3	1.089de	22.11	7.0gh
Green Mountain	221a	83.4	26.5	1.103b	25.07	9.6ab
Iopride	155cd	92.3	45.4	1.070h	18.10	8.7cd
Katahdin	163bc	89.7	36.2	1.089de	22.11	7.8ef
Kennebec	189abc	88.8	30.8	1.089de	22.11	7.0gh
Norland	140cde	83.7	27.9	1.070h	18,10	8,4cde
Oromonte	154cd	81.8	26.2	1.094c	23.17	7.5fg
Russet Burbank	101e	47.7% 4 to	10 oz. size	1.092cd	22.75	9.1bc
Superior	101e	81.5	34.6	1.093cd	22.96	8.0def
Wauseon	142cde	93.2	44.3	1.077g	19.58	8.5cde
B6356-1	146cde	76.2	12.9	1.074gh	18,95	9.9a
BR6263-2	207ab	92.3	31.6	1.078fg	19.79	7.9def
BR6306-22	231a	95.3	64.2	1.082f	20.64	9.7ab
BR6312-2	220a	97.7	55.8	1.099b	24.22	9.8ab
BR6316-5	147cde	8.96	69.2	1.100b	24.44	6.9gh
BR6863-3	156cd	91.3	39.1	1.077g	19.58	6.7h

Planted - May 26; harvested - September 26, 1972.

Seedpieces of Russet Burbank and Desiree spaced 18 inches apart; all others 9 inches.

Fertilizer: 100-100-100 broadcast; 50-50-50 sidedressed.

VIRGINIA

Boyett Graves

Variety and Seedling Evaluations

Procedure. Trials were grown at the Virginia Truck and Ornamentals Research Station at Painter, Virginia. All selections were grown in five-replicate plots except the long, white-skinned types which were grown in single, 20-foot plots. Fertilizer was band placed at planting at 1,000 lbs. of 10-10-10 per acre. Phorate (Thimet) systemic insecticide was applied at planting at the rate of 2.5 lbs. active ingredient per acre. The plots received one inch of irrigation on June 9. Seed were cut, treated, and planted on March 14, 1972, and harvested on July 10. Samples for chipping were removed on day of harvest and shipped to Wise Potato Chip Company, Berwick, Pennsylvania, for chip evaluations. Specific gravity determinations were made 2 days later.

Air Pollution. Air pollution problems are noteworthy to mention in this report. Serious economic losses due to air pollution--mostly ozone damage--were experienced by a few growers in 1971. In 1972, losses were not as significant; however, fields with severely damaged spots were not uncommon. Generally the earlier maturing varieties used in eastern Virginia (Superior, La Chipper, Alamo) have been most adversely affected. The more tolerant varieties (Pungo, Penn 71, Katahdin) occasionally are damaged to the point that yields are significantly reduced. Resistance-susceptibility ratings on the selections grown in 1972 are shown in Virginia Tables 1 and 2 under the heading "Speckle Leaf Rating."

Virginia Table 1. Yield, specific gravity, plant vigor, chip color and air pollution ratings on potato selections grown for 2 or more years on the Eastern Shore of Virginia. 1972.

		Specific			Chip C	olor <u>3</u> /	
		Gravity		Speckle	2 Days	Av. 6	
	Cwt/A	at	Appearance	Leaf	After	Cookings	Plant
	Size A	Harvest	Rating1/	Rating2/	Harvest	30 Days	Vigor4/
Wauseon	213	1.060	1.5	MT	1.0	2.1	2.0
Alamo	200	1.057	2.0	MS	3.0	4.3	1.5
Pungo	238	1.069	3.0	MR	5.0	3.8	1.5
Superior	23 6	1.066	2.0	MT	6.0	4.5	2.0
Nor. Russet	230	1.071	2.0	MT			2.0
LaChipper	190	1.067	3.0	MS	1.0	2.8	2.0
Norchip	266	1.073	3.0	T	1.0	2.0	2.0
Katahdin	197	1.057	2.0	T	4.0	4.6	3.0
Shurchip	25 8	1.060	2.5	T	4.0	4.5	2.5
Abnaki	257	1.065	1.5	T			2.0
FL 162	236	1.071	3.0	S	5.0	4.1	2.0
Cobbler	189	1.069	3.5	S			2.5
70 A 12	260	1.075	3.0	T	1.0	2.3	1.5
Penn 71	254	1.070	2.0	MR	2.0	3.3	1.5
64 C2-3W	242	1.068	2.0	MS	3.0	3.1	2.0
B 6044-14	215	1.076	1.5	MS	2.0	3. 3	4.0
B 6097-9	214	1.074	1.5	MS			4.0
B 6139-11	224	1.072	1.5	T	2.0	3.0	3.0
B 6495-20	281	1.085	2.0	T	1.0	3.0	1.0
B 6516-20	239	1.081	2.5	T			1.5
В 6516-27	201	1.063	1.5	MS	4.0	4.0	2.5
В 6516-28	239	1.074	2.0	MS	3.0	3.5	2.0
в 6518-10	281	1.071	1.5	Т	6.0	4.6	1.0
B 6595- 5	280	1.070	1.5	T	2.0	2.6	1.0
Pennchip	17 8	1.067	3.0	T			1.0
58C 19-2H	223	1.065	3.0	MT	4.0	4.6	1.5
64C2-3H	260	1.065	1.5	T	5.0	3.3	1.0
1./							

1/Appearance or eye appeal: 1.0=exceptionally good; 5.0=very, very unattractive.

^{2/}Rating of resistance or susceptibility to air pollution injury: VS=very susceptible; S=susceptible; MS=moderately susceptible; MT=moderately tolerant; T=tolerant; MR=moderately resistant; R=resistant.

^{3/}Chip color rating: 1.0-3.0=light color and desirable; 4.0=barely marketable; 5.0=medium brown; 6.0-10.0=dark brown to black and unmarketable.

^{4/}Plant vigor rating: 1.0=plants thrifty and fast growing; 5.0=plants unthrifty, thin and slow growing.

Virginia Table 2. Yield, specific gravity, plant vigor chip color, and pollution ratings of seedlings grown for the first time on the Eastern Shore of Virginia. 1972.

		Specific			Chip Co	lor3/	
		Gravity		Speck1e	2 Days	Av. 6	
	Cwt/A	at	Appearance	Leaf	After	Cookings	Plant
	Size A	Harvest	Rating1/	Rating ² /	Harvest	30 Days	Vigor4/
B 6692-9	280	1.073			-	-	-
NY 41	271	1.064	1.5	MT	-	-	1.5
B 7164-25	243	1.067	1.0	S	3.0	2.8	1.5
71-110	243	1.058	2.0	MT	6.0	5.3	1.0
F 9-31	241	1.069	2.0	MS	4.0	3.5	1.0
BR 6246-1	239	1.061	2.5	MR		-	1.0
B 7154-10	236	1.057	1.5	S	1.0	1.5	2.0
В 7165-10	227	1.065	2.5	S	4.0	3.1	2.5
B 7132-26	227	1.071	3.5	MS	-	•	2.0
B 6516-15	226	1.074	2.5	MS	-	-	2.0
B 7012-N18	219	1.063	2.0	MT	5.0	6.0	2.0
B 7132-14	213	1.057	2.0	MS	3.0	3.0	3.5
71-82	21 0	1.062	2.0	S	-	-	2.0
B 6515-18	209	1.069	2.0	MS	2.0	3.1	2.5
B 6761-11	204	1.050	1.5	VS	-	-	4.0
B 5282-13	203	1.067	2.0	MT	2.0	4.5	2.0
B 6516-5	202	1.074	2.0	VS	1.0	1.6	3.5
B 7145-1	198	1.050	1.0	VS	3.0	3.5	3.0
B 6558-16	194	1.067	3.0	S	-	-	3.5
B 7167-2	192	1.067	2.0	S	1.0	1.5	3.0
B 6712-9	190	1.067	1.5	MS	-	-	2.0
B 6761-12	188	1.060	2.0	S	-	-	1.5
B 7138-2	186	1.080	3.0	VS	-	-	2.0
B 6712-17	183	1.067	1.5	MS	2.0	2.6	2.5
B 7155-65	181	1.059	1.5	VS	-	-	3.5
B 7167-14	176	1.059	2.0	vs	1.0	1.5	4.0
B 5287-16	173	1.055	1.0	S	5.0	5.5	3.5
B 7145-3	171	1.059	1.5	S	4.0	3.8	3.0
B 6815-19	161	1.054	1.0	VS	5.0	4.6	2.0
B 7152-40	158	1.057	1.0	S	2.0	2.5	2.5
B 7132-27	151	1.066	2.0	VS	-	-	2.0
B 6597-N3	143	1.066	2.5	VS	1.0	2.5	2.5
B 7139-12	140	1.060	3.0	S	-	-	3.5
B 6739-3	137	1.066	1.0	S	-	-	5.0
B 5647-8	134	1.055	1.0	VS	-	-	4.0
BR 6320-1	118	1.070	1.0	VS	-	-	4.0
B 6595-12	110	1.079	1.5	S	-	-	2.5

1/Appearance or eye appeal: 1.0=exceptionally good; 5.0=very, very unattractive.

^{2/}Rating of resistance or susceptibility to air pollution injury: VS=very susceptible; S=susceptible; MS=moderately susceptible; MT=moderately tolerant; T=tolerant; MR=moderately resistant; R=resistant.

^{3/}Chip color rating: 1.0-3.0=light color and desirable; 4.0=barely marketable; 5.0=medium brown; 6.0-10.0=dark brown to black and unmarketable.

^{4/}Plant vigor rating: 1.0=plants thrifty and fast growing; 5.0=plants unthrifty, thin and slow growing.

WASHINGTON

William G. Hoyman

The potato processing industry in Washington has had a phenomenal increase the past few years. Approximately 75 percent of the 1972 crop was processed. The potato breeding program is oriented to obtain new russet-skin varieties for the processing and fresh market industries. Russet Burbank has been the principal processing variety. A new variety could alleviate some of its disadvantages. A new, early russet is needed for the fresh market to replace the hollow heart-susceptible Norgold Russet. The data in Tables 1 and 2 indicate progress has been made in replacing these two varieties.

August Harvest Trial (Table 1). Two russets with yields comparable to Norgold Russet were 284-1 and 330-1. Each had a higher specific gravity than Norgold Russet and was more resistant to Verticillium albo-atrum (Table 2). White selections with high yields were B4147-21, BR5960-5 and BR7093-20. The latter had the highest specific gravity (1.092) and chips made from it were the lightest in color (No. 3).

October Harvest Trial (Table 2). The long growing season in eastern Washington is one factor contributing to the highest yields in the United States. Allowing the vines to grow two months longer--August to October--increased the yields considerably. October harvest average yield was 725 cwt. per acre compared to 369 for the August harvest. Selection 352-1 increased its yield 773 cwt. and had a high specific gravity of 1.096. It made light-colored chips directly from harvest. Resistance to V. albo-atrum was a factor contributing to the large increase of 352-1. This selection was extremely resistant to V. albo-atrum. Ninety-four percent of the total Russet Burbank yield consisted of No. 2 tubers compared to 2.9 percent for 330-1 and 10.7 percent for Norgold Russet.

Reaction to Diporotheca rhizophila, V. albo-atrum and Meloidogyne hapla (Table 3). Most all selections were infected with \underline{D} . rhizophila (blackroot), and in many instances the infections were moderate to severe. Root infection by \underline{M} . hapla (root-knot) was seldom more than slight. There appeared to be no complimentary action between \underline{V} . albo-atrum and \underline{M} . hapla. Some of the most wilt-resistant selections were the most susceptible to root-knot and vice versa.

Reaction of Solanum species to Diporotheca rhizophila and Meloidogyne hapla (Table 4). Many Solanum species were free of root-knot and blackrooot symptoms. S. microdontem (320312) had the most extensive root system and was free of blackroot and root-knot symptoms. Very few species formed tubers under the long days at Prosser.

Observational Trial (Table 5). Advanced selections from various sources were planted in soil infested with \underline{V} . albo-atrum. The wilt readings show many were dead by September 1^{14} , while a few were free of vine symptoms. Eight selections will be included in the 1973 variety trials.

Washington Table 1. August harvest trial, Prosser, Washington, planted April 10 and harvested August 1.

Selection	/ [- 1		acre	Percent $3/$			-
or variety	Number±/ tubers	Total yield	No.2/	Hollow	tubers scab	Specific gravity	Chip Color	Tuber $^{4}\!\!/$ characteristics
284-1	54b	t9t1	21			1.082	80	R. Ob. nice
300-6	279	292	192		· 0	1.079	6	้ำ
316-3	176	131	85			1.072	.0	
327-3	187	506	62		5	1.074	.0	R, L, rough
330-1	295	664	84			1.084	.ω	o,
352-I	318	358	34		디	1.087	8	
A503-42	[]	044	2,		13	1.077	7	W, rough, DSE
A6371-2	367	289	265		†	1,081	ω	R, L, small
A6334-19	240	217	69			1.072	σ	
Abzigo	250	272	45			1,064	ω	
A66107-180	320	354	69		†	1.080	10	
B7147-8	305	389	62			1.086	9	
B7147-15	189	303	39		7	1.096	ω	R, blocky
B7147-21	455	488	131			1.083	8	W, L, small
BR5960-5	356	530	38		7	1,086	2	
BR6316-5	215	361	38		α	1.086	5	W, blocky
BR6316-7	464	358	137		a	1,086	8	W, rough
BR6835-1E	403	382	700		ч	1,089	ω	
BR6835-5E	336	378	65		6	1.078	7	Ro
BR6863-3	236	385	27	7	CU	1.088	4	W, Ro
BR7093-4	274	382	34	7	25	1,086	2	W, blocky
BR7093-5	225	364	38	70	CU	1.085	5	W, Ro
BR'7093-20	240	423	34		6	1.092	ന	
	337	7+88	84			1.075	6	
Cascade M	328	320	45		α	1,069	8	
O	549	419	34	ന		1.076	ω	W, blocky
て	326	664	31		٦	1.075	6	R, Ob
Russet Burbank	251	333	148			1.082	ω	R, L, rough
T / L					1.			
Trom 40 hills					$\frac{3}{2}$ Incl	Includes tubers with		slight to severe scab

^{2/} Scabby tubers not included in No. 2's

 $[\]frac{1}{4}$ R = russet, W = white, Ro = round Ob = oblong, L = long, and DSE = deep seed end

October harvest tria., Prosser, Washington. Planted April 10 and harvested October 5, 1972 Washington Table 2.

		Chip Color	5	5	5	C -	· 10	. 🕠		o O	4	9	2	7	· m	י ער	vo	~	4ر	7	m	m	CU	5	5	m	ന	ιΛ	9	5	9	severe scab	
		Specific gravity	1.097	1.076	1.072	1.079	1.076	1.080	1,096	1.080	1.094	1.080	1.074	1.082	1,091	1,092	1,085	1.075	1,091	1.092	1.085	1.080	1.092	1.082	1.085	1.084	1.085	1.093	1.083	1.072	1.081	slight to sev	ug. 28, 1972
	$Verti-\frac{4}{4}$	cillium wilt	1.25	3.50	0.50	00.00	0.75	7.00	0.25	1.25	0.25	0.50	00.00	1.00	3.75	20.00	4.25	2.25	3.50	0.25	4.00	3.50	3.00	4.25	0.25	4.50	3.00	00.00	2.50	4.75	•	tubers with	ings taken Aug.
	Percent $3/$	tubers scab	,	N					72	2	4			٦	7	35	77	19	'全	8	28	25	,	18	41	56	13	8	31			3/ Includes	$\frac{1}{4}$ Vine readings
acre		Ноллом				27	7			7			17	†									ന		47	4			14	4			
t. per		No.K	62	7 .	24	62	52	14	54	52	52	34	31	72	14	34	62	72	21	52	45	58	70	17	17	<u>.</u>	34	52	172	69	870		ß
CW		Total yield	873	550	757	790	591	729	1131	832	818	657	489	022	471	550	619	829	554	1048	519	215	215	757	646	485	736	286	801	049	922		in No. 2
	, ,	Number≟/ tubers	419	305	291	497	320	338	445	689	515	403	341	435	311	211	389	367	291	599	436	413	239	341	233	554	382	470	258	405	366		Scabby tubers not included in
	Selection	or variety	168-3	T:+02	300-6	316-3	327-3	330-1	352-1	A503-42	A6371-2	A6334-19	A62180-2	A66107-180	B7147-8	B7147-15	B7147-21	BR5960-5	BR6316-5	BR6316-7	BR6835-1E	BR6835-5E	BR6863-3	BR7093-4	BR7093-5	BR7093-20	Cascade	Cascade M	Kennebec	Norgold Russet	Russet Burbank	1/ From 40 hills	2/ Scabby tubers

Reaction of cultivars to Diporotheca rhizophila (blackroot), Verticillium albo-atrum (wilt) and Washington Table 3.

lbers lesion es 21-30			9	-	122	4		1
Galless tubers internal lesi categories 11-20			7 N	c	1 O 10	H, M	. 9	= =
Gal. In in:	12	T 9 9 9 9 9	6 14 14	∞ -	i - 1 9	18 13 1	16 10 15	14 21 10 10
tubers Galless with internal lesions		I.a S	17 4 16	0 8 %	19 26	.23 20 1	16 10 21 3	16 22 1 10
Number of tub Galled	11 21	9 17 21	2 11 22	40 11 31	19 16	14 5 38	0 0 0 0 0	0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nt. Total	77 77	77 74 77	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	44 38 7,	† 07 † †	777 777 777	77 77 77 77 77 77 77 77 77 77 77 77 77	† 0 † 7 † 7 † 7 † 7 † 7 † 7 † 7 † 7 † 7
Vine wilt index <u>1</u> /	1.5	3.5 0.0 0.0	0.5 1.0 0.5	0.5 2.0	000	1.000	0.0000	000000
disease idex1/ Root- knot	• •	0.5 1.5 1.0	0.0 1.5 0.5	1.0 0.5	0.5	0.0	0.0000000000000000000000000000000000000	
Root diser index1 Black-	3.5	3°0 8°0 8°0	3.55 1.55 1.55	2.0 1.5		2.0	0 0 0 1 4 0 0 4 4 0 0	0 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Gultivar	168-3 245-2	284 -1 300 -6 316-1	316-3 320-1 326-1	327-2 327-3 330-1	352-1 352-1 356-1	A477-8 A483-6 A503-42	A6305-20 A6334-19 A6353-6 A6371-2 A6371-3	A6477-4 A6477-4 A6536-5 A6673-15 A6698-2

Washington Table 3, continued.

				Nu	Number of tubers	ers			
	Root disease index $1/$	sease 1/	Vine			Galless	Gal In in	Galless tubers	S
	Black-	Root-	wilt , ,			internal	ł	ᅄ	
Cultivar	root	knot	index_/	Total	Galled	lesions	1-10	11-20	21-30
A63126-2	1.5	0.5	3.5	44	13	16	12	7	
A63126-9	3.0	0.5	0.5	777	0	23	21	2	
A63134-45	0.4	0.5	2.0	44	0	6	6		
A64187-4	2.5	0.5	0.0	4 7	19	0			
A64206-4	3.0	0.5	2.5	44	0	16	16		
A64206-5	3.0	1.0	0.5	04	22	7	7		
A66107-44	1.0	0.5	0.0	7 77	0	80	∞		
A66107-69	3.0	0.5	0.0	44	œ	16	16		
A66107-75	2.0	0.0	0.5	4 4	6	29	20	9	က
A66107-98	1.0	0.0	0.0	04	7	2	2		
A66107-101	2.5	0.5	0.0	44	0	0			
A66107-116	1.5	1.0	0.5	97	11	29	20	7	7
A66107-180	0.5	0.5	1.5	44	7	12	10	2	
A66119-7	1.0	0.0	0.0	7 77	0	က	೮		
A66122-3	0.0	0.5	0.0	4 4	0	28	24	ო	
Ala 2-70	1.0	0.5	0.0	4 7	~	26	∞	7	14
Ala 5-70	1.0	0.5	3.0	7 7	0	2	2		
Ala 16-70	1.0	0.0	0.0	4 4	0	6	6		
Ala 24-70	2.0	1.0	2.5	4 4	0	2	7		
B6936-73	1.5	0.5	0.5	45	ო	7	7		
B6936-91	1.5	0.5	1.0	44	29	ო	ന		
B6936-121	2.5	0.5	3.5	42	14	9	9		
B6943-58	1.5	0.0	2.0	43	S	22	20		2
B6990-126	1.5	1.0	1.5	44	2	14	14		
B7024-33	1.0	0.0	2.5	44	9	~ -4	Н,		
B7024-63	2.0	0.0	4.5	42	7		rel :		
B7024-88	2.0	0.0	2.5	44	5	2	2		
B7033-49	2.5	0.5	6. 0	44	7	7	7		

 ∞

~

21-30

11-20

In internal lesion Galless tubers categories 122 18 internal Galless lesions 18 with Number of tubers Galled **45** 74 $\frac{\text{wilt}}{\text{index}}$ Vine 3.0 5.0 5.0 2.5 5.0 4.5 1.0 1.0 2.0 0.0 3.0 4.0 2.5 4.5 4.0 3.0 1.0 5.0 4.5 Root knot 1.5 Root disease 0.0 1.0 1.0 1.0 index Washington Table 3, continued. Black 0.0 root 2.0 2.0 1.0 1.0 3.0 1.0 1.0 3.5 Cultivar BR6835-1E BR6835-5E BR7072-12 B7033-103 B7147-15 BR6863-3 BR7070-3 BR7082-2 BR7093-4 B7196-82 BR5960-5 BR7066-1 BR7088-2 B7147-25 B7147-43 B7155-66 B7167-32 B7196-23 BR6316-5 BR6316-7 BR6491-1 B7147-80 B7155-51 B7196-25 B7196-27 BR7085-1 B7196-4 B7154-3 B7160-4

Washington Table 3, continued.

	Galless tubers	In internal lesion	1-10 11-20 21-30				21		7	7	2	4	6 1	2	<u>ش</u>	13		11	7		10	ന	. 5	10		11	7	10	6	13	13
ers	Galless	with	internal lesions	5	0	0	21	0	7	4	2	4	7	2	ന	13	0	11	7	0	10	ന	2	10	0	11	4	10	6	13	13
Number of tubers			Galled	34	0	34	5	0	ന	0	0	0	0	18	4	2	0	0			0	4	5	12	20	2	24	9	20	22	22
No			Total	777	77	75	44	7 77	7 7	7 7	77	40	44	07	42	77	77	77	77	77	7 7	7 7	07	77	42	5 77	77	7,	7 7	45	43
. 4	•	Vine	wilt $\frac{1}{1}$	0.5	4.5	5.0	0.5	5.0	2.0	3.0	6. 0	1,5	1.5	3,5	0.5	1.0	4.0	3.0	2.5	0.0	2.5	3.5	2.0	0.0	0.0	0.0	2.5	3.0	0.0	2.5	1.0
	Root disease		Roo t - knot	1.5	0.0	1.0	0.0	0.0	0.5	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.5	0.5	0.0	1.0	0.5	0.5	2.0	0.0	0.5	0.5	0.5	2.0	0.5	1.0
	Root d	index	Black-	1.5	2.5	2.5	1.5	2.5	1.5	2.0	2.0	3.0	1.5	0.0	3.5	2.5	1.5	3.5	1.5	3.0	3.0	1.5	1.5	2.5	1.0	2.0	0.5	3.0	2.5	1.0	1.5
			Cultivar	BR7093-5	BR7093-6	BR7093-20	BR7093-23	BR7096-1	BR7103-2	CA06-5	CA23-5	CA25-1	CA28-2	CA61-3	NDA7938-3	WC300-4	WC302-7	WC304-4	WC314-2	WC314-3	WC315-1	WC316-1	WC316-3	WC3 25-1	WC325-5	WC330-4	WC330-7	Cascade	Cascade M	Kennebec	B5141-6

Washington Table 3, continued.

	Root d	Root disease	;			Galless	Gal	Galless tubers	CS
	index-/	ex=/	Vine			with	ut uT	In internal lesion	lon
•	Black-	KOOC -	WILE 1/	8		incernai	1	caregories	01 20
Cultivar	roor	Knor	Tudex.	TOCAL	Garred	Teslons	7-10	07=11 01=	77-20
ıîp	2.0	1.0	3.5	43	15	10	10		
Norgold Russet	3.5	0.5	4.5	777	19	ന	က		
et Burbank	1.0	1.0	1.0	77	0	42	9	œ	28

0 = no symptoms, 5 = severe symptoms.

Washington Table 4. Incidence of <u>Diporotheca rhizophila</u> (blackroot) and <u>Meloidogyne hapla</u> (root-knot) on roots of <u>Solanum</u> species. Dug July 30, 1972.

Species	Introduction number	Black_1/ root	Root - 1/ knot
S. acaule	275129	0	0
	365310	1	0
S. berthaultii	283070	0	0
	310971	0	0
S. boliviense	265860	0	1
	265861	0	0
S. brachycarpum	230459	0	0
	275180	1	0
S. bulbocastanum	243504	0	0
	243510	1	0
	255516	0	0
S. canasense	230511	1	0
11	283074	0	0
	283084	0	0
S. cardiophyllum	255519	0	0
11	275212	0	0
	275216	0	0
S. chacoense	320282	0	0
	320285	2	1
S. demissum	365380	0	0
tt.	365384	0	0
	365391	1	0
S. fendleri	275164	0	0
S. gandarillasii	265866	0	0
S. gourlayi	210038	0	0
	265579	0	1
S. guerreroense	161730	0	0
S. hjertingii	251065	1	0
S. hougasii	1569	1	0
S. infundibuliforme	265867	1	0
•	310976	0	0
S. iopetalum	275181	0	0
·	275182	0	0
S. jamesii	275262	0	1
·	275265	1	1 0
S. kurtzianum	175434	0	0
	320271	_	0
S. marinasense	310945	0	0
11	310946	0 2	0
11	365332		0
S. megistacrolobum	265873	0	0
	275147	0	1
11	320302	0	0
S. microdontum	320306	2	0
11	320312	0	0
11	320315	U	U

Washington Table 4, continued.

Spec ies	Introduction number	Black-1/ root	Root - 1/ knot
	-		
S. mochicense	388616	. 0	0
S. multidissectum	210055	0	0
11	265876	0	0
11	283072	1	0
S. multiinterruptum	275272	0	0
S. pampasense	275275	3	0
S. papita	275227	1	0
11	275228	4	0
	275229	1	0
S. phureja	320375	0	0
11	320380	4	4
	320381	2	0
S. pinnatisectum	186554	0	0
	230489	3	0
	275234	1	0
S. polyadenium	275238	1	1 0
11	310963	1 0	0
	320342 255545	0	0
S. polytrichon	255545 365393	0	0
S. raphanifolium	296126	0	0
5. raphanilolium	310951	0	0
11	320262	1	3
S. sparsipilum	265871	1	0
2. sharathirm	275276	0	0
11	310972	Ö	Ö
S. spegazzinii	205394	Ö	Ö
11	208876	0	0
11	275143	Ō	0
S. stenotomum	195214	1	0
11	234013	2	0
11	365344	ō	0
S. stoloniferum	365397	0	0
11	265398	1	0
S. tarijense	208881	0	0
S. tuberosum	232841	1	0
ssp. andigena			
11	365402	0	0
11	365403	1	0
S. venturii	320327	0	0
11	320328	0	0
S. vernei	320329	0	0
S. verrucosum	275258	0	1
11	310966	0	0
11	365404	0	0
S. violaceimarmoratum	258856	0	0

 $[\]frac{1}{2}$ 0 = no symptoms, 5 = severe symptoms.

Washington Table 5. Observational trial of selections from various sources. Ten hills of each. Underlined selections to be tested in 1973.

326-1 0	Selection	Vertici wil 8/14		Tuber characteristics
328-2B		0	0	
Ala 2-70 Ala 5-70 Ala 5-70 Ala 5-70 Ala 5-70 Ala 16-70 Ala 16-70 Ala 16-70 Ala 24-70 B6936-73 B6936-73 B6936-73 B6936-73 B6936-73 B6936-91 B6943-58 Albert		=		
Ala 5-70 Ala 16-70 Ala 16-70 Ala 16-70 O O O O O O O O O O O O O O O O O O O				
Ala 16-70 Ala 24-70 B6936-12 B6936-73 B6936-91 Ala 16-70 B6936-91 Ala 24-70 Ala 24-70 B6936-91 Ala 24-70 Ala 24-				
Ala 24-70 B6934-121 0 3 W, Small, PT B6936-73 B6936-73 B6936-73 B6936-91 B6943-58 B6990-126 1 5 W, Hollow, PT B6990-126 1 5 W, Cracks, PT B7024-33 B7024-63 B7024-63 B7024-88 B7033-49 B7033-103 B7147-15 B7147-25 B7147-25 B7147-43 B7147-80 B7153-66 B7154-3 B7155-51 B7160-4 B7160-4 B7160-25 B7196-25 B7196-27 B7583-6 B7575-1 B7583-6 B7583-19 B7583-19 B768-17 B7655-3 B768-17 B7655-3 B7676-17 B7675-3 B7676-17 B77676-17 B77676-17 B77676-17 B77676-17 B77			•	
B6934-121 0 3 W, Cracks, PT B6936-73 2 4 W, Scab, PT B6936-91 0 3 W, TT B6945-58 1 5 W, Hollow, PT B6990-126 1 5 W, Cracks, PT B7024-33 1 5 W, Cracks, PT B7024-63 5 5 5 W, Small, PT B7024-88 2 5 W, Small, PT B7033-49 3 5 W, Cracks, PT B7033-103 1 3 W, PT B7147-15 1 5 R B7147-25 4 5 R, Small B7147-80 4 5 R, PT B7153-66 3 5 W, Hollow, PT B7154-3 3 5 W, Hollow, PT B7160-4 3 5 W, Scab, PT B7160-4 3 5 R, PT B7196-23 5 5 R, PT B7196-25 4 5 R, PT B7575-1 5 5 <t< td=""><td></td><td></td><td></td><td></td></t<>				
B6936-73 2 4 W, Scab, PT B6936-91 0 3 W, PT B6943-58 1 5 W, Hollow, PT B6990-126 1 5 W, Cracks, PT B7024-33 1 5 W, Cracks, PT B7024-68 2 5 W, Small, PT B7033-49 3 5 W, Cracks, PT B7033-103 1 3 W, PT B7147-15 1 5 R, Small B7147-25 4 5 R, Small B7147-80 4 5 R, PT B7153-66 3 5 W, Hollow, PT B7155-51 3 5 W, Hollow, PT B7155-51 3 5 W, PT B7160-4 3 5 R, PT B7160-4 3 5 R, PT B7196-25 4 5 R, PT B7196-27 4 5 R, PT B7575-1 5 5 R, PT B7583-19 0 1 R, Hollow, PT				
B6936-91 0 3 W, PT B6943-58 1 5 W, Hollow, PT B6990-126 1 5 W, Cracks, PT B7024-33 1 5 W, Cracks, PT B7024-88 2 5 W, Small, PT B7033-49 3 5 W, Cracks, PT B7033-103 1 3 W, PT B7147-15 1 5 R B7147-25 4 5 R, Small B7147-80 4 5 R, PT B7153-66 3 5 W, Hollow, PT B7154-3 3 5 W, Hollow, PT B7160-4 3 5 R, PT B7167-32 1 3 W, Nice type, Big yield B7196-25 4 5 R, PT B7196-27 4 5 R, PT B7574-2 4 5 R, PT B7583-19 0 1 R, Hollow, PT B768-5-5 0 2 R B7655-2 2 5 R, PT				
B6943-58 1 5 W, Hollow, PT B6990-126 1 5 W, Cracks, PT B7024-63 5 5 W, Cracks, PT B7024-88 2 5 W, Small, PT B7033-49 3 5 W, Cracks, PT B7033-103 1 3 W, PT B7147-15 1 5 R B7147-25 4 5 R, Small B7147-80 4 5 R, Small B7147-80 4 5 R, PT B7153-66 3 5 W, Hollow, PT B7154-3 3 5 W, Hollow, PT B7155-51 3 5 W, Hollow, PT B7160-4 3 5 R, PT B7196-23 5 5 R, PT B7196-25 4 5 R, PT B7196-25 4 5 R, PT B7196-27 4 5 R, PT B7575-1 5 5 R, PT B7583-6 2 4 R, PT				
B6990-126 1 5 W, Cracks, PT B7024-33 1 5 W, Cracks, PT B7024-68 5 5 W, Small, PT B7033-49 3 5 W, Cracks, PT B7033-103 1 3 W, PT B7147-15 1 5 R B7147-25 4 5 R, Small B7147-80 4 5 R, PT B7153-66 3 5 W, Hollow, PT B7154-3 3 5 W, Hollow, PT B7154-3 3 5 W, Hollow, PT B7160-4 3 5 W, Nice type, Big yield B7167-32 1 3 W, Nice type, Big yield B7196-25 4 5 R, PT B7196-25 4 5 R, PT B7196-27 4 5 R, PT B7574-2 4 5 R, PT B7583-6 2 4 R, PT B7685-5 0 2 R B7645-5 0 2 R <td></td> <td></td> <td></td> <td></td>				
B7024-33 B7024-63 B7024-63 B7024-68 B7024-88 B7033-49 B7033-103 B7147-15 B7147-15 B7147-25 B7147-43 B7147-80 B7147-80 B7153-66 B7153-66 B7153-66 B7167-32 B7167-32 B7167-32 B7196-25 B7196-27 B7196-27 B7196-28 B7196-29 B7574-2 B7575-1 B7583-6 B7583-19 B7608-2 B7625-3 B7645-5 B7645-5 B7645-17 B7655-2 B7655-2 B7655-3 B7678-17 B7 Small B7167-32 B7196-25 B7655-3 B7196-25 B7655-3 B7196-27 B7196				
B7024-63 B7024-88 B7033-49 B7033-49 B7033-103 B7147-15 B7147-25 B7147-25 B7147-25 B7147-80 B7153-66 B7153-66 B7153-66 B7153-66 B7153-66 B7167-32 B7167-32 B7167-32 B7196-25 B7196-27 B7196-82 B7				
B7024-88 2 5 W, Scab, PT B7033-49 3 5 W, Cracks, PT B7033-103 1 3 W, PT B7047-15 1 5 R B7147-25 4 5 R, Small B7147-80 4 5 R, PT B7153-66 3 5 W, Hollow, PT B7154-3 3 5 W, Hollow, PT B7155-51 3 5 W, Hollow, PT B7160-4 3 5 R, PT B7167-32 1 3 W, Nice type, Big yield B7196-23 5 5 R, PT B7196-25 4 5 R, PT B7196-25 4 5 R, PT B7575-1 5 5 R, PT B7575-2 4 5 R, PT B7583-6 2 4 R, PT B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2 2 5 R, PT B7655-3 <td></td> <td></td> <td></td> <td>•</td>				•
B7033-49 3 5 W, Cracks, PT B7033-103 1 3 W, PT B7147-15 1 5 R B7147-25 4 5 R, Small B7147-80 4 5 R, FT B7153-66 3 5 W, Hollow, PT B7154-3 3 5 W, Hollow, PT B7155-51 3 5 W, Hollow, PT B7160-4 3 5 R, PT B7196-23 1 3 W, Nice type, Big yield B7196-25 4 5 R, PT B7196-27 4 5 R, PT B7196-28 1 4 R, PT B7575-1 5 5 R, PT B7583-6 2 4 R, PT B7583-19 0 1 R, Hollow, PT B7609-7 2 5 R, PT B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2 2 5 R, PT B7655-3<				
B7033-103 1 3 W, PT B7147-15 1 5 R B7147-25 4 5 R, Small B7147-43 5 5 R, Small B7154-80 4 5 R, PT B7153-66 3 5 W, Hollow, PT B7154-3 3 5 W, Hollow, PT B7155-51 3 5 W, Scab, PT B7160-4 3 5 R, PT B7167-32 1 3 W, Nice type, Big yield B7196-23 5 5 R, PT B7196-25 4 5 R, PT B7196-27 4 5 R, PT B7196-82 1 4 R, PT B7575-1 5 5 R, PT B7583-6 2 4 R, PT B7583-19 0 1 R, Hollow, PT B7645-5 0 2 R B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2				
B7147-15 1 5 R B7147-25 4 5 R, Small B7147-43 5 5 R, Small B7147-80 4 5 R, PT B7153-66 3 5 W, Hollow, PT B7154-3 3 5 W, Hollow, PT B7155-51 3 5 W, Scab, PT B7160-4 3 5 R, PT B7196-32 1 3 W, Nice type, Big yield B7196-23 5 5 R, PT B7196-25 4 5 R, PT B7196-27 4 5 R, PT B7196-82 1 4 R, PT B7575-1 5 5 R, PT B7583-6 2 4 R, PT B7583-19 0 1 R, Hollow, PT B7608-2 2 5 R, Small, PT B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2 2 5 R, Small B7678-				
B7147-25		1		
B7147-43 5 5 R, Small B7147-80 4 5 R, PT B7153-66 3 5 W, Hollow, PT B7154-3 3 5 W, Hollow, PT B7155-51 3 5 W, Hollow, PT B7160-4 3 5 R, PT B7167-32 1 3 W, Nice type, Big yield B7196-23 5 5 R, PT B7196-25 4 5 R, PT B7196-25 4 5 R, PT B7196-82 1 4 R, PT B7574-2 4 5 R, PT B7575-1 5 5 R, PT B7583-6 2 4 R, PT B7608-2 2 4 R, PT B7608-2 2 5 R, Small, PT B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2 2 5 R, Small B7678-17 1 5 R		4		R, Small
B7147-80 4 5 R, PT B7153-66 3 5 W, Hollow, PT B7154-3 3 5 W, Hollow, PT B7155-51 3 5 W, Scab, PT B7160-4 3 5 R, PT B7196-32 1 3 W, Nice type, Big yield B7196-23 5 5 R, PT B7196-25 4 5 R, PT B7196-26 4 5 R, PT B7196-82 1 4 R, PT B7574-2 4 5 W, Small B7575-1 5 5 R, PT B7583-6 2 4 R, PT B7608-2 2 5 R, Small, PT B7645-5 0 2 R B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2 2 5 R, Small B7678-17 1 5 R		5		R, Small
B7153-66 3 5 W, Hollow, PT B7154-3 3 5 W, Hollow, PT B7155-51 3 5 W, Scab, PT B7160-4 3 5 R, PT B7196-4 4 5 R, Small B7196-23 5 5 R, PT B7196-25 4 5 R, PT B7196-27 4 5 R, PT B7196-82 1 4 R, PT B7574-2 4 5 W, Small B7575-1 5 5 R, PT B7583-6 2 4 R, PT B7608-2 2 4 R, PT B7629-7 2 5 R, PT B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2 2 5 R, PT B7678-17 1 5 R		4	5	R, PT
B7155-51 3 5 W, Scab, PT B7160-4 3 5 R, PT B7167-32 1 3 W, Nice type, Big yield B7196-23 5 5 R, Small B7196-25 4 5 R, PT B7196-82 1 4 R, PT B7574-2 4 5 W, Small B7575-1 5 5 R, PT B7583-6 2 4 R, PT B7608-2 2 4 R, PT B7608-2 2 5 R, Small, PT B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2 2 5 R, Small B7678-17 1 5 R		3	5	
B7160-4 3 5 R, PT B7167-32 1 3 W, Nice type, Big yield B7196-4 4 5 R, Small B7196-23 5 5 R, PT B7196-25 4 5 R, PT B7196-82 1 4 R, PT B7574-2 4 5 W, Small B7575-1 5 5 R, PT B7583-6 2 4 R, PT B7608-2 2 4 R, PT B7608-2 2 5 R, Small, PT B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2 2 5 R, Small B7678-17 1 5 R	B7154-3	3	5	
B7167-32 1 3 W, Nice type, Big yield B7196-23 5 5 R, Small B7196-25 4 5 R, PT B7196-27 4 5 R, PT B7196-82 1 4 R, PT B7574-2 4 5 W, Small B7575-1 5 5 R, PT B7583-6 2 4 R, PT B7608-2 2 4 R, PT B7629-7 2 5 R, Small, PT B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2 2 5 R, PT B7678-17 1 5 R, Small	B7155-51			
B7196-4 4 5 R, Small B7196-23 5 5 R, PT B7196-25 4 5 R, PT B7196-27 4 5 R, PT B7196-82 1 4 R, PT B7574-2 4 5 W, Small B7575-1 5 5 R, PT B7583-6 2 4 R, PT B7683-19 0 1 R, Hollow, PT B7608-2 2 5 R, Small, PT B7629-7 2 5 R, PT B7645-5 0 2 R B7655-2 2 5 R, PT B7655-3 4 5 R, Small B7678-17 1 5 R	B7160-4			
B7196-23 5 5 R, PT B7196-25 4 5 R, PT B7196-82 1 4 R, PT B7574-2 4 5 W, Small B7575-1 5 5 R, PT B7583-6 2 4 R, PT B7583-19 0 1 R, Hollow, PT B7608-2 2 5 R, Small, PT B7629-7 2 5 R, PT B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2 2 5 R, Small B7678-17 1 5 R				
B7196-25 4 5 R B7196-27 4 5 R, PT B7196-82 1 4 R, PT B7574-2 4 5 W, Small B7575-1 5 5 R, PT B7583-6 2 4 R, PT B7583-19 0 1 R, Hollow, PT B7608-2 2 5 R, Small, PT B7629-7 2 5 W, PT B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2 2 5 R, Small B7678-17 1 5 R				
B7196-27 4 5 R, PT B7196-82 1 4 R, PT B7574-2 4 5 W, Small B7575-1 5 5 R, PT B7583-6 2 4 R, PT B7583-19 0 1 R, Hollow, PT B7608-2 2 5 R, Small, PT B7629-7 2 5 W, PT B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2 2 5 R, Small B7678-17 1 5 R				
B7196-82 1 4 R, PT B7574-2 4 5 W, Small B7575-1 5 5 R, PT B7583-6 2 4 R, PT B7583-19 0 1 R, Hollow, PT B7608-2 2 5 R, Small, PT B7629-7 2 5 W, PT B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2 2 5 R, Small B7678-17 1 5 R				
B7574-2 4 5 W, Small B7575-1 5 5 R, PT B7583-6 2 4 R, PT B7583-19 0 1 R, Hollow, PT B7608-2 2 5 R, Small, PT B7629-7 2 5 W, PT B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2 2 5 R, Small B7678-17 1 5 R				
B7583-6 2 4 R, PT B7583-19 0 1 R, Hollow, PT B7608-2 2 5 R, Small, PT B7629-7 2 5 W, PT B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2 2 5 R, PT B7678-17 1 5 R			4	K, FI U Cmall
B7583-6 2 4 R, PT B7583-19 0 1 R, Hollow, PT B7608-2 2 5 R, Small, PT B7629-7 2 5 W, PT B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2 2 5 R, PT B7678-17 1 5 R			5	
B7583-19 0 1 R, Hollow, PT B7608-2 2 5 R, Small, PT B7629-7 2 5 W, PT B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2 2 5 R, PT B7678-17 1 5 R				
B7608-2 2 5 R, Small, PT B7629-7 2 5 W, PT B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2 2 5 R, PT B7655-3 4 5 R, Small B7678-17 1 5 R				R. Hollow, PT
B7629-7 2 5 W, PT B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2 2 5 R, PT B7655-3 4 5 R, Small B7678-17 1 5 R				
B7645-5 0 2 R B7645-17 0 0 R, PT B7655-2 2 5 R, PT B7655-3 4 5 R, Small B7678-17 1 5 R				
B7645-17 0 0 R, PT B7655-2 2 5 R, PT B7655-3 4 5 R, Small B7678-17 1 5 R				
B7655-2 2 5 R, PT B7655-3 4 5 R, Small B7678-17 1 5 R				
B7655-3 4 5 R, Small B7678-17 1 5 R				
B7678-17 1 5 R			5	
			5	
B/0/y→y 4 3 R, 11	B7679-9	4	5	R, PT

Washington Table 5 continued.

	Vertici		Tuber
	wil 8/14	9/14	characteristics
	0/14	7/14	
B7684-4	3	5	R
B7711-12	4	5	R, Small
B7807-9	2	4	W, Hollow, Cracks, PT
B7813-1	5	5	R, Small
B8125	0	4	W, PT
в8157	4	5	W, Small
B9196-4	4	5	R, Small
BR6491-1	2	5	W, Cracks, PT
BR7066-1	2	5	W, Hollow, Cracks
BR7072-12	2	5	W, PT
BR7082-2	0	4	W, Hollow, PT
BR7085-1	3	5	W, PT
BR7088-2	0	5	W, Hollow, PT
BR7093-6	4	5	W, Small
BR7093-23	0	0	W, PT
BR7096-1	5	5	W, Hollow, PT
BR7103-2	1	5	W, Cracks, PT
CA06-5	1	3	W, PT
CA23=5	3	5	W, PT
CA25-1	2	5	W, Hollow, PT
CA28-2	0	0	W, Hollow, PT
CA61-3	3	5	W, Cracks, PT
WC309-4	0	2	R, Hollow, PT
WC302-7	4	5	R, Small
WC304-4	1	5	Slight R
WC314-2	3	5	R
WC314-3	0	0	R, Cracks, PT
WC315-1	2	5	R, Hollow, PT
WC316-1	3	5	R, Hollow, PT
WC316-3	Ö	4	R, Small
WC325-1	0	0	R, Hollow, PT
WC325-5	0	0	R, Hollow, PT
WC330-4	0	0	R, PT
WC330-7	2	5	R, PT
	_	•	.,

 $[\]frac{1}{2}$ /vine readings, 0 = no symptoms, 5 = dead.

^{2/}R = russet, W = white, PT = poor type including knobby, rough, pointed, flat and tubers with deep seed end.

WASHINGTON

N. Holstad, R. Kunkel and R. Holland

Results of the 1972 Potato Variety Trials

The 1972 potato variety trial was conducted near Othello, Washington, on a hill-irrigated 400 feet long area that had not been previously used for potato production. Eptam-Treflan was used for weed control. Insects and diseases were controlled on a preventive basis with WSU recommended materials.

The rows were 32 inches apart, and the seed was spaced 8.2 inches apart within the rows. Each plot consisted of two rows 28.5 feet long. Each selection was grown at three fertilizer levels--275, 350 and 425 pounds per acre of N, P_2O_5 and K_2O . The varieties were not randomized, but the fertilizer rates were randomized within each variety. The seed was grown in cooperation with the Washington State Department of Natural Resources at Bellingham, Washington.

The seed was planted on May 2, and most of the vine growth was killed by an early frost on September 26. The plot was harvested on November 2. Samples were held in storage at 40° F until January 5 then moved to 70° F and specific gravity readings were taken on January 7. On January 25 (20 days reconditioning at 70° F) two slices were cut from the middle of five tubers from each plot. These were rinsed in cold water and fried at 375° F until bubbling ceased. The chips were rated using the American Potato Chip Institute color chart.

Washington Table 1. Total yield in cwt/acre (two replications).

Pounds/acre N, P205 and K20							
Variety	275	350	425	Ave.			
A 503-42	659	738	697	698			
A 63184-6	677	680	767	708			
A 6334-19	598	621	656	625			
A 63126-9	581	677	551	603			
A 6334-20	569	493	543	535			
Norchip	610	478	458	515			
A 6135-4	443	467	452	454			

79 .

Washington Table 2. Percent U.S. No. 1 potatoes (two replications).

Pounds/acre N, P,O5 and K,O 275 350 425 Variety Ave. 79 . 88 83 A 503-42 82 94 95 93 93. A 63184-6 84 86 82 A 6334-19 83 A 63126-9 85 69 75 76. 77 83 87 84 A 6334-20 71 78 68 67 Norchip

81

A 6135-4

Washington Table 3. Specific gravity (coded omitting 1.0) -- two replications.

Pounds/acre N, P205 and K20

Variety	275	350	425	Aye.
A 503-42	76	75	74	75
A 63184-6	79	73	73 -	75
A 6334-19	80	75	75	77
A 63126-9	78	79	71	76
A 6334-20	79	73	75	76
Norchip	74	72	74	73
A 6135-4	72	68	66	69

Washington Table 4. Chip color $\frac{1}{2}$ (two replications).

Pounds/acre N, P_2O_5 and K_2O

Variety	275	350	425	Ave.
A 503-42	5.3	6.5	4.8	5.5
A 63184-6	7.5	7.0	8.0	7.5
A 6334-19	6.3	7.0	6.5	6.6
A 63126-9	7.3	6.0	8.0	7.1
A 6334-20	6.0	6.5	5.8	6.1
Norchip	6.0	6.5	6.5	6.3
A 6135-4	9.0	7.8	8.8	8.5

 $\frac{1}{T}$ The lower the value, the lighter the chip color.

 $\frac{2}{\text{Held}}$ at 40° F until January 5, reconditioned for 20 days at 70° F, and then fried at 375° F until bubbling ceased.

Washington Table 5. Total yield in cwt/acre (one replication).

Pounds/acre N, P_2O_5 and K_2O

Variety	275	350	425	Aye.	
A 66122-3	674	697	758	710	
A 6371-2	694	636	703	678	
A 64206-4	665	688	683	679	
Russet Burbank			653	653	
A 59197-4	490	583	665	579	
321-65	476	560	467	501	
168-3			478	.478	

Washington Table 6. Percent U.S. No. 1 potatoes (one replication).

Pounds/acre N, P_2O_5 and K_2O

Variety	275	350	425	Ave.
				-
A 66122-3	78	79	75	77
A 6371-2	67	93	95	85
A 64206-4	69	74	72	72
Russet Burbank			82	82
A 59197-4	83	85	82	83
321-65	80	94	86	87
168-3		- 3 - 3 - 7 - 7 - 3 - 3	89	89

Washington Table 7. Specific gravity (coded omitting 1.0) -- one replication.

Pounds/acre N, P_2O_5 and K_2O

Variety	275	350	425	Ave.
A 66122-3	78	73	73	75
A 6371-2	87	84	90	87
A 64206-4	84	81	80	82
Russet Burbank			85	85
A 59197-4	81	80	79	80
321-65	95	97	90	94
168-3		90	88	89

Washington Table 8. Chip color (one replication).

Pounds/acre N, P_2O_5 and K_2O

· · · · · · · · · · · · · · · · · · ·				
Variety	275	350	425	Ave.
A 66122-3	6.0	6.0	6.0	6.0
A 6371-2	7.0	6.5	8.0	7.2
A 64206-4	7.5	8.0	8.0	7.8
Russet Burbank			5.5	5.5
A 59197-4	4.0	4.0	4.0	4.0
321-65	4.0	4.0	4.5	4.2
168-3		6.0	6.0	6.0

WEST VIRGINIA

R. J. Young $\frac{1}{}$ and K. L. Deah $1\frac{2}{}$

Potato Late Blight

Late blight of potato, caused by <u>Phytophthora infestans</u> (Mont.) de Bary, is perhaps the limiting factor to potato production in the Northeast, North Central, and Mid-Atlantic Regions of the United States. Cox and Large have observed that in a 10-year period, 5 or 6 are blight years in which average losses approach 10 percent (1). To minimize losses, potato growers in these regions will make 8 to 15 applications of protective fungicides to the crop each year primarily to control <u>P. infestans</u>. In some years, environmental conditions are less conducive to the development of the blight pathogen, consequently, fewer applications are necessary. Nevertheless, the use of fungicides to control late blight is one of the largest for any agricultural enterprise.

The development of blight resistance, both major gene resistance and multigenic resistance, have been of major importance in potato breeding programs in Europe and the United States. The successes of these programs are well documented. But the selection methods used in these programs have been seriously challenged (2). Renwick has hypothesized a possible relationship between late blight of potato and two birth defects in man, anencephaly and spina bifida cystica. He speculates further that blight-resistant clones may have a greater potential to produce certain toxic compounds in response to the host-parasite interaction. These compounds are suspected to be teratogenic and may be responsible for the birth defects. Preliminary data of Poswillo indicates some substances in rotted tuber tissue can cause microscopically recognizable defects in Marmosets (3). Those compounds implicated as teratogenic-like substances are: (1) the glycoalkaloids, solanine and chaconine; (2) the toxic coumarins, coumarin, scopletin, and umbelleferone; and (3) the phytoalexins, phytuberin and rishitin. Each of these materials have been shown to be present in diseased tissue and in certain instances in healthy tissue in low concentrations.

^{1/}Assistant Plant Pathologist, West Virginia University Agricultural Experiment Station.

^{2/}Research Plant Pathologist, U.S. Department of Agriculture, Agricultural Research Service, Plant Genetics and Germplasm Institute, Vegetable Laboratory.

⁽¹⁾ Cox, A. E., and E. C. Large. 1960. Potato Blight Epidemics Throughout the World. Agr. Handbook No. 174. U.S. Dept. Agr., Agr. Res. Service, Washington, D.C.

⁽²⁾ Renwick, J. H. 1972. Hypothesis anencephaly and Spina Bifida are usually preventable by avoidance of a specific but unidentified substance present in certain potato tubers. Brit. J. Prev. Soc. Med. 26:67-88.

⁽³⁾ Poswillo, D. E., D. Sopher, and S. Mitchell. 1972. Experimental induction of foetal malformation with blighted potato: A preliminary report.

Nature 239:462-464.

The purpose of this research was to determine the association between multigenic resistance to P. infestans and the glycoalkaloid level in tuber and leaf tissues, and to characterize selected measurable components considered to be operative in the expression of multigenic resistance. Lesion area, width of the sporulating annulus (SA), and the number of spores produced on the SA were the paramiters selected in this study. Data was also obtained on the yield potential of 28 clones when exposed to an epiphytotic of P. infestans. One block of plants was sprayed with a commercial fungicide providing partial protection while another block was left unsprayed as a control.

Methods and Materials. Late blight test plots were planted in the Tygart River Valley near Huttonsville, West Virginia. Twenty-eight test lines, including appropriate controls, were arranged in a randomized block experimental design with 5 replications. Two identical plots were planted. A 10-20-10 fertilizer and the systemic insecticide (Disulfoton), respectively, were incorporated into preformed planting rows at rates of 200 lb. N and 18 lb. 10 percent granular per acre. Thirty seedpieces were hand dropped evenly over 25 ft. of row, and hilled. Border rows were planted with a "blight-resistant" seedling. Every third row was planted with either Pentland Ace (R-3), or 3Rc-8(R-2) to serve as sources of inoculum. The candidate seedlings were planted in the intervening rows. Since Phytophthora infestans (Race 1,4) is usually present every year in the Tygart Valley, the R-2 and R-3 differentials were planted to insure adequate foliage for the establishment and buildup of a selected race. addition, two center rows were planted with Kennebec, Sebago, and Katahdin to provide for a continual release of inoculum over an extended period of time. The foliage of both Kennebec (R-1) and Sebago (R-0) possess a moderate to low level of multigenic resistance to P. infestans while the Katahdin foliage (R-0) provided for a rapid buildup of the pathogen.

Beginning with the first week in July, both plots were sprayed weekly with an insecticide. Plot B, however, was sprayed also with a fungicide (Maneb, initially at 1.5 lb. 80 W per acre and later increased to 3.0 lb. 80 W per acre). Unusually heavy rains in late August and September, in addition to mechanical difficulties with the sprayer, prevented good protection of B plot late in the season.

Inoculations were made during the evening of July 21 using a mixed zoospore-sporangial suspension of Race 1,2,3,4 of P. infestans (W.V. isolate 167). Inoculum was produced both on lima bean agar slants and potato tuber slices. Release of zoospores was only moderate after incubation for 2 hours at 15° C. This inoculum was applied with hand atomizers to approximately 5 percent of the plants in the inoculator rows only. Prior to inoculation, a natural dew had formed and the air temperature was 23° C.

For the following 10 days, nearly optimal weather conditions favoring the development of the pathogen prevailed, i.e., warm humid days and cool nights accompanied by heavy dews which lasted well into the next morning. Frequent rains also occurred throughout the test period. "Blight spots" appeared on inoculated plants July 25th. The first evaluations were made 10 days later, August 4. At this time, Kennebec, Katahdin, and Irish Cobbler were 50, 75, and 80 percent defoliated, respectively. Plants were evaluated weekly through September 1 according to the following scale: 0 = no late blight, 5 = plants dead from late blight.

Results. The results of our study showed no apparent association between multigenic resistance to P. infestans and glycoalkaloid levels in tuber and leaf tissues, West Virginia Table 1. Several of the highly susceptible clones had very high levels of total glycoalkaloid (TGA), especially in the leaf tissues, while some of the more resistant clones were lower. There was an association between TGA in tubers and leaves. Our results provide evidence that relatively high multigenic resistance is not necessarily accompanied by correspondingly high levels of TGA, and that it should be possible to select blight-resistant clones without high TGA levels.

West Virginia Table 2 gives the results of our evaluation of selected components of multigenic resistance. This type of resistance is highly correlated with smaller lesions, narrower sporulating annuli, and fewer numbers of spores (Table 2). As expected, a negative relationship occurred between yield and disease index. Clone B6028-WV6 has demonstrated a high level of multigenic resistance for several years of testing in Maine and West Virginia. The clone also performed well in the Toluca Valley of Mexico (3+). The component evaluation provided a good profile of the nature of its resistance, while the greatest number of spores were found on Kennebec (R-1).

West Virginia Table 3 gives the mean yield in pounds of U.S. No. 1 tubers per 25-ft. of row for both the protected and unprotected plots. Unusually heavy precipitation throughout the test period, accompanied by several floodings of the plots, were at least partially responsible for the low yields. Kennebec and Irish Cobbler, under more normal conditions, are capable of producing more typical yields of 200 to 250 cwt/A. A 25-ft. plot should produce 50 pounds of U.S. No. 1 tubers to approximate this yield.

-219-

West Virginia Table 1. Late blight readings and glycoalkaloid contents of the leaves and tubers of 15 clones from the 1972, West Virginia blight test.

	1,	Glycoalkaloid Cont (mg/100 g fresh w	
Clone	Field Index/	Tubers ² / Leave	<u>s3</u> 7
B6028-WV6	1+ a	2.0 25	
B6960-WV2	2- ab	3.0 78	
B6960-WV5	2 - ab	2.2 51	
B6039-WV6	2+ bc	8.2 119	
B6928-WV2	2+ bc	2.2 48	
B6960-WV4	2+ bc	1.3 56	
B6992A-WV8	3- cđ	11.1 132	
B3720-WV4	3- cd	4.1 87	
B6039-WV2	3- cd	9.2 271	
B6981-WV4	3 de	9.8 183	
Katahdin -	4- e	4.8 82	
Kennebec	4 - e	4.6 101	
B6975-WV1	4- e	0.7 50	
Irish Cobbler	4+ f	3.2 36	
B6981-WV3	4+ f	5.6 114	
	The state of the s		

^{1/}Means of five readings, means not followed by same letter are not significantly different at the 5% level-Duncan Multiple Range test. Clones ranked from most resistant to most susceptible.

 $[\]frac{2}{\text{Means}}$ of two, 6 tuber samples. TGA sampling error = 0.68. $\frac{3}{\text{Means}}$ of 4, 5 g leaf samples. TGA sampling error = 14.3.

Components of multigenic resistance in selected clones from the 1972 West Virginia late blight test. West Virginia Table 2.

		Width of sporulating			
Clone	Lesion $\frac{2}{2}$ Area in $(CM)^2$	anning=/ in mm	No. of Spores $1x10^{-4}$ $\frac{3}{4}$	Yield4/	Field Index 5/
B6928-WV2	6.72	4.1	4.1	19.9	2+
B6028-WV6	4.34	0.0	2.8	18.6	2
B6960-WV2	6.48	0.8	1.8	17.3	က
B6960-WV5	5.40	6.0	1.5	15.6	က
B6975-WV1	9.75	7.1	6.3	13.6	4
B6039-WV2	7.4	2.9	2.9	13.1	3+
Kennebec	10.36	6.5	8.7	13.0	+ +
B6981-WV3	6.6	7.6	8.1	11.9	4
B6039-WV6	5.9	3.0	3.0	11.5	3+
BR5991-WV25	9,45	3.8	6.4	9.2	- 47
LSD.05				1.03	
.01				1,36	

 $\frac{4}{2}$ /Means of 5 replications, yield given in pounds of U.S. No. 1 tubers per 25' row. F = 7.61. $\frac{5}{2}$ /Disease reading, means of 5 replications of 30 plants each taken on 8-16-72. Rating 1/Means of readings, lesion diameter compared to sporulating annulus, r=89. Weans of ten readings, lesion diameter compared to number of spores, r=0.916. 3/Means of ten readings, sporulating annulus compared to number of spores, r=0.916. based on a scale of 1 to 5; 1 = no blight, 5 = plants dead.

-221-

West Virginia Table 3. Yield and late blight index of 28 potato clones from the 1972 West Virginia late blight test.

	, Pi	rotected	Unp:	rotected
Clone	Yield1/	Disease Index ² /	Yield	Disease Index
Katahdin	13.4	4	9.1	5-
Kennebec	17.0	4-	13.0	4+
I. Cobbler	14.7	4+	13.0	5 -
B3720-WV4	20.5	2-	12.6	3+
B5662 - WV4	23.1	1+	16.4	3-
B5662-WV13	28.4	2-	20.4	3+
B5670 - WV1	28.4	3	16.0	4+
BR5991-WV25	16.9	2+	9.2	4-
B6038 - WV3	19.3	2-	14.7	3 -
B6039-WV2	13.9	2+	13.1	3+
B6039-WV6	19.2	2	11.5	3+
B6086-WV21	26.1	2	17.0	3+
B6928-WV2	31.8	3-	19.9	2 +
B6928-WV4	16.4	5 -	13.4	5
B6028-WV6	18.6	1	18.6	2
B6935-WV2	25.4	3 -	15.2	2 4+
B6960-WV2	26.7	1+	17.3	3
B6960-WV4	33.6	1	16.2	4
B6960-WV5	19.5	2-	15.6	3
B6964-WV3	22.5	3-	10.7	4+
B6975 - WV1	23.6	3	13.6	4
B6975-WV2	31.9	1+	18.1	3
B6981 - WV3	16.5	4	11.9	4
B6981-WV4	21.6	3+	14.7	3-
B6988 - WV5	40.5	2-	21.0	3+
B6988-WV15	35.0	2+	16.5	4
B6992A-WV8	19.9	2	15.2	4
R. Rural	15.4	4	10.3	5 -
LSD.05	13.4	4	1.03	,
.01			1.36	

^{1/}Yield expressed as mean number of pounds of U.S. #1/25 row. F = 7.6114. 2/Late Blight readings 8-16-72. O = no blight, 5 = plants dead from late blight.

WISCONSIN

P. R. Rowe and R. W. Ruhde

Genetics and Cytogenetics of the Tuber-Bearing Solanum Species (Cooperative ARS, USDA and Wisconsin Station)

Crossability of S. stoloniferum

The tetraploid clones produced by crossing the original progeny (which are hexaploid) from <u>sto</u> x Tbr crosses with diploid Tbr clones were crossed with <u>sto</u> and Tbr. No seed was set in crosses with <u>sto</u>, 60 seeds per fruit were set in crosses with <u>4X Tbr</u>, and I seed per fruit was set in crosses to <u>2X Tbr</u>. Thus, after one backcross to Tbr, the hybrids have a crossability pattern similar to tetraploid Tuberosum and not like <u>sto</u> even though they should have at least one set of <u>sto</u> chromosomes.

If it were necessary to use a bridge cross to utilize the germplasm of sto, S. polytrichon, another tetraploid species from Mexico, appears to be suitable. It crosses well with sto and tetraploid Tbr, and the crosses of the hybrids set seed very well. Chc, as the figures indicate, does not work.

(sto x plt) x (plt x Tbr) 40-80 seeds/fruit (sto x chc) x (chc x Tbr) no seed set

Genetic Markers

The inheritance of three traits was studied in progenies from crosses between the interspecific aneuploids and established marker gene stocks. "Pigmented whorl" (Pw) was determined to be due to a single dominant gene linked to the already established F Ow I B linkage group. A preliminary genetic map was established as F Ow Pw I with the map distance between the genes being 7, 3 and 8 units, respectively. "Under-leaf pigmentation (UI)" also was controlled by a single dominant gene but independent of any linkage group. The "split stigma" characteristic which was frequently found among the aneuploids produced from interspecific triploid-diploid crosses was found to be unrelated to the aneuploid nature of these plants. It occurred as a result of genes which are prevalent in the diploid species, S. berthaultii. A two loci hypothesis is proposed as the mode of inheritance with the mutant characteristic being expressed when the recessive allele is homozygous at one or both loci.

Clones with known genotypes are available for the genes: \underline{P} , \underline{R} , \underline{F} , \underline{I} , $\underline{Ii^{sp}}$, \underline{Ac} , \underline{A} , \underline{Pw} , \underline{Ow} , \underline{Ul} , $\underline{B^{d}}$, \underline{df} and \underline{L}_{1} . Other clones are available that have a known breeding behavior for traits that are not so well understood. These traits include pigmented stigma, split stigma, pigmented pollen, pigmented anther, variegated flower, yellow tuber flesh, anthocyanin development in tuber flesh, tuber shape, verrucose berry, and one or two dwarf mutants. New variation that was observed this year included: pigmented receptacle, pigment on outer ovary wall, and various patterns of pigmentation in flowers.

Development of trisomics

One of the most important, and yet difficult, steps in establishing a trisomic series is to identify the particular extra chromosome. The majority of the extra chromosomes that have been identified, especially among the trisomics, are isochromosomes.

Secondary trisomics can be used to associate genes with chromosomes, but more factors have to be considered in calculating expected genetic ratios than with primary trisomics. Consideration has to be given to the genetic output to be expected with and without crossing over, from non-random pairing, from internal crossing over in a heterozygous isochromosome, and from non-random segregation of the isochromosome. To establish trisomic ratios with any degree of confidence, one must know the genotype of the aneuploid and the expected pairing and distribution of the chromosomes.

Chromosome pairing at metaphase I seems to vary between genotypes. Observations of 24 intraspecific chc trisomics and 36 interspecific trisomics showed that cells with 12 bivalents and one univalent were the most frequent. Cells with one trivalent and 11 bivalents occurred 30% of the time. Other combinations made up about 10% of the cells that were observed. However, individual clones differed in their pattern of pairing.

Some preliminary attempts have been made to detect distorted ratios in crosses between trisomics and tester stocks. Several tests will be required to substantiate any suspected gene-chromosome association.

WYOMING

K. E. Bohnenblust

The potato variety trials in Wyoming were planted at Torrington, Laramie, Powell, and Afton in 1972. The Powell nursery was not harvested for yield because of a very poor stand.

The highest yield at Torrington was 329.1 cwt/A of the variety Wyred. The yield of Wyred was significantly greater than that of any other entry. La Rouge and Red La Soda were second and third with identical yields of 285.6 cwt/A. Surchip yielded 283.7. The next in rank were two experimental lines from the breeding project in Alaska.

The three entries from Alaska were highest in specific gravity at Torrington. The readings were Ak. 5-3 at 1.090, Ak. 35 at 1.084, and Alaska Frostless at 1.083.

The best chip color at Torrington was a No. 3 which was shared by six entries. These were Ak. 35, Hi-Plains, Monona, New Haig, Norchip, and Shurchip.

At Laramie, the total yield of Wyred was significantly greater than any other variety. The next highest yield obtained was 228.1 cwt/A of Cascade. The yield of Cascade was not significantly different from that of W721, Red La Soda, W701, La Rouge, and New Haig. The specific gravity readings at Laramie were generally high. Alaska Frostless had the highest specific gravity, 1.098. La Rouge and Russet Burbank each had 1.095. New Haig was next at 1.094, and Cascade had 1.092. The best chip color (No. 3) was common to Shurchip, Monona, Norchip, and Hi-Plains.

A nursery was planted at Afton where the elevation is above 6000 feet, and the average number of days between the last spring frost and the first fall frost is 18. The plots were not large enough to get an accurate estimate of yield but adequate to encourage us to repeat the experiment on a larger scale in the future. The tubers were generally small which may be due to the short growing season. The surface of most of the tubers was roughened by what appeared to be insect damage.

Wyoming Table 1. Potato variety trial, Torrington, $1972.\frac{1}{}$

•			•	
•	Total yield	% -	Specific	Chip
Variety	cwt/acre	No.1	Gravity	Color
	200 1	0.0		_
Wyred	329.1	83	1.074	7
La Rouge	285.6	86	1.073	6
Red La Soda	285.6	. 87	1.072	6
Shurchip	283.7	94	1.079	3
Ak. 5-3	275.3	86	1.090	5
Ak. 35	271.0	89	1.084	3
Russet Burbank	268.0	81	1.081	5
New Haig	267.4	83	1.079	3
W705	265.6	87	1.071	4
W701	260.8	89	1.078	4
W721	251.7	81	1.072	5
Norgold	242.0	78	1.074	8
Norchip	234.7	86	1.078	3 .
Monona	208.7	87	1.075	3
W704	197.2	85	1.073	6
Ak. Frostless	186.3	73	1.083	8
Hi-Plains .	184.5	78	1.077	3
Overall Mean	252.8			
LSD.05	38.1			

1/ Date planted - May 25.

Spacing - rows 36 inches apart, hills 12 inches apart.

Planted in 1-row plots, 30 ft long.

Previous crop - alfalfa

Fertilizer - none

Irrigation - furrow

Date of killing frost - September 23.

Date harvested - October 3.

Specific gravity obtained - October 26, potato hydrometer

Chipping date - November 3. PCII color standard.

Wyoming Table 2. Potato variety trial, Laramie, 1972. $\frac{1}{2}$

Variety	Total yield cwt/acre	% No. 1	Specific Gravity	Chip Color
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			014,120	00101
Wyred	268.6	94	1.083	9
Cascade	228.1	91	1.092	5
W721	220.2	94	1.086	7
Red La Soda	217.2	94	1.087	6
W701	212.4	91	1.087	5
La Rouge	203.3	88	1.095	6
New Haig	192.4	97	1.093	4
Shurchip	173.6	93	1.086	3
w704	165.2	85	1.090	6
Monona	145.8	92	1.087	3
Norchip	144.6	85	1.091	3 .
Russet Burbank	144.0	68	1.095	5
Norgold	131.3	78	1.086	8
Hi-Plains	131.3	80	1.090	3
Ak. Frostless	99.8	75	1.098	6
Overmean	178.5			
LSD.05	50,6			

 $[\]frac{1}{}$ Date planted - May 30.

Spacing - rows 36 inches apart, hills 12 inches apart.

Planted in 1-row plots, 30 ft long.

Previous crop - alfalfa

Fertilizer - none Irrigation - furrow

Date of killing frost - September 18.

Date harvested - September 22.

Specific gravity obtained - October 26.

Chipping date - November 9. PCII color standard.

Wyoming Table 3. Potato variety yield trial, Afton, $1972.\frac{1}{}$

Variety	Total yield cwt/acre	Specific Gravity
Red La Soda	105.3	1.079
New Haig	74.8	1.083
Ak. Frostless	69.0	1.091
Norgold Russet	61.7	1.078
Overall Mean	77.7	
LSD.05	49.4	

 $[\]frac{1}{}$ Date planted - May 30.

Spacing - rows 36 inches apart, hills 12 inches apart.

Planted in 1-row plots, 5 ft long. Previous crop - Furrow.

Fertilizer - none.

Irrigation - furrow

Date of killing frost - September 21.

Date harvested - September 25.

Specific gravity obtained - October 12, potato hydrometer.

