Numerical Methods for IVP ODEs CS/SE 4X03

Ned Nedialkov

McMaster University

November 16, 2021

Outline

The problem

ODE examples

ODEs

Euler's method

Backward Euler

Stability

The problem

Given

$$y' = f(t, y), \qquad y(a) = c$$

compute y(t) on [a, b]

- $y' \equiv y'(t) \equiv \frac{dy}{dt}$
- This is an Initial Value Problem (IVP) in Ordinary Differential Equations (ODEs)
- ullet We approximate y(t) at points t_i in [a,b] using a numerical method

The problem Examples ODEs Euler's method Backward Euler Stability ODE examples

$$y' = -y + t$$

• Solution is $y(t) = t - 1 + \alpha e^{-t}$:

$$y'(t) = 1 - \alpha e^{-t}$$

-y + t = -(t - 1 + \alpha e^{-t}) + t = 1 - \alpha e^{-t}

• Given y(0) = c, e.g. c = 5,

$$y(0) = -1 + \alpha = c = 5,$$
 $\alpha = 6$
$$y(t) = t - 1 + 6e^{-t}$$

is the solution with this initial condition

The problem Examples ODEs Euler's method Backward Euler Stability

Motion of a pendulum

$$\theta'' = -g\sin\theta, \qquad \theta'' = \frac{d^2\theta(t)}{dt^2}$$

- \bullet ball of mass 1 attached to the end of a rigid, massless rod of length r=1
- $g \approx 9.81$ is gravity
- t is time
- This is a second-order ODE. To write as a first-order ODE, set $y_1 = \theta$, $y_2 = \theta' = y_1'$:

$$y_1' = y_2$$

$$y_2' = -g\sin(y_1)$$

• Needed initial conditions are $y_1(0)$ and $y_2(0)$

The problem Examples ODEs Euler's method Backward Euler Stability ODEs

System of n first-order equations in n variables

$$y' = f(t, y), \qquad f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$$

the system is

Nonlinear: if f is nonlinear in y, linear otherwise

The problem Examples ODEs Euler's method Backward Euler Stability

Autonomous ODE

$$y' = f(y), \qquad y(a) = c$$

is an autonomous ODE, does not depend on time explicitly

$$y' = f(t, y), \qquad y(a) = c$$

is non-autonomous

To convert a non-autonomous ODE to an autonomous set $\boldsymbol{x} = \boldsymbol{t}$ and then

$$x' = 1$$

 $y' = f(x, y),$ $x(a) = a, y(a) = c$

Set
$$z = (z_1, z_2)^T = (x, y)^T$$
. Then $z' = f(z)$:

$$z_1' = 1$$

$$z_2' = f(z)$$

Copyright © 2021 N. Nedialkov. All rights reserved.

The problem Examples ODEs Euler's method Backward Euler Stability High-order ODEs

$$y^{(n)} = f(t, y, y', \dots, y^{(n-1)})$$

can be converted to first-order by setting

$$y_1 = y$$

 $y_2 = y' = y'_1$
 $y_3 = y'' = y'_2$
 \vdots
 $y_n = y^{(n-1)} = y'_{n-1}$

Then

$$y'_1 = y_2$$

$$y'_2 = y_3$$

$$\vdots$$

$$y'_n = f(t, y_1, y_2, \dots, y_n)$$

To solve, we need initial values for

$$y_1(a), y_2(a), \ldots, y_n(a)$$

Euler's method

- Let h = (b-a)/N, N > 1 is an integer
- *h* is stepsize
- Let $t_0 = a$, $t_i = a + ih$, i = 0, 1, ..., N
- From $y'(t_i) = f(t_i, y(t_i))$, we write

$$\underline{y(t_{i+1})} = y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(\xi_i), \quad \xi_i \text{ between } t_i \text{ and } t_{i+1}$$

$$= \mathbf{y(t_i)} + hf(t_i, y(t_i)) + \frac{h^2}{2}y''(\xi_i)$$
apply Taylor Series
$$\approx y(t_i) + hf(t_i, y(t_i))$$

Euler's method:

$$y_0 = c$$

 $y_{i+1} = y_i + hf(t_i, y_i), i = 0, 1, ..., N - 1$

• Example: Euler's method on y' = -y + t, $y(0) = y_0 = 5$, with h = 0.1: $t = a + h^*i$

$$y_{-1} = a + n$$

$$y_{-0} = c$$

$$y_{-1} = y_{-1} + h$$

$$y_{-0} = c$$

$$y_{i+1} = y_i + h$$

$$y_i + h$$

$$y_i = y_0 + h$$

$$y_i + h$$

$$y_i = y_0 + h$$

$$y_0 = c$$

$$y_i + h$$

$$y_1 = y_0 + h$$

$$y_0 = c$$

$$y_1 + h$$

$$y_1 = y_0 + h$$

$$y_0 = c$$

$$y_1 + h$$

$$y_1 = y_0 + h$$

$$y_0 = c$$

$$y_1 + h$$

$$y_1 = y_0 + h$$

$$y_0 = c$$

$$y_1 + h$$

$$y_1 = y_0 + h$$

$$y_2 = y_1 + h$$

$$y_1 = y_0 + h$$

$$y_2 = y_1 + h$$

$$y_1 = y_0 + h$$

$$y_2 = y_1 + h$$

$$y_1 = y_0 + h$$

$$y_2 = y_1 + h$$

$$y_1 = y_0 + h$$

$$y_2 = y_1 + h$$

$$y_1 = y_0 + h$$

$$y_2 = y_1 + h$$

$$y_1 = y_0 + h$$

$$y_2 = y_1 + h$$

$$y_1 = y_0 + h$$

$$y_2 = y_1 + h$$

$$y_1 = y_0 + h$$

$$y_2 = y_1 + h$$

$$y_1 = y_0 + h$$

$$y_2 = y_1 + h$$

$$y_1 = y_0 + h$$

$$y_2 = y_1 + h$$

$$y_1 = y_0 + h$$

$$y_2 = y_1 + h$$

$$y_3 = y_2 + h$$

$$y_2 = y_1 + h$$

$$y_3 = y_2 + h$$

$$y_1 = y_0 + h$$

$$y_2 = y_1 + h$$

$$y_3 = y_2 + h$$

$$y_1 = y_0 + h$$

$$y_2 = y_1 + h$$

$$y_3 = y_2 + h$$

$$y_1 = y_0 + h$$

$$y_1 = y_0 + h$$

$$y_2 = y_1 + h$$

$$y_3 = y_2 + h$$

$$y_1 = y_0 + h$$

$$y_1 = y_0 + h$$

$$y_2 = y_1 + h$$

$$y_3 = y_2 + h$$

$$y_1 = y_0 + h$$

$$y_1 = y_0 + h$$

$$y_2 = y_1 + h$$

$$y_3 = y_2 + h$$

$$y_1 = y_1 + h$$

$$y_1 = y_1 + h$$

$$y_2 = y_1 + h$$

$$y_3 = y_2 + h$$

$$y_1 = y_1 + h$$

$$y_1 = y_1 + h$$

$$y_1 = y_1 + h$$

$$y_2 = y_1 + h$$

$$y_1 = y_1 + h$$

$$y_1 = y_1 + h$$

$$y_2 = y_1 + h$$

$$y_1 = y_1 + h$$

$$y_1 = y_1 + h$$

$$y_2 = y_1 + h$$

$$y_1 = y_1 + h$$

$$y_1 = y_1 + h$$

$$y_2 = y_1 + h$$

$$y_1 = y_1 + h$$

$$y_1 = y_1 + h$$

$$y_2 = y_1 + h$$

$$y_1 = y_1 + h$$

$$y_2 = y_1 + h$$

$$y_1 = y_1$$

- Exact solution is $y(t) = t 1 + 6e^{-t}$
- The corresponding exact values are $y(0.1)\approx 4.5290$, $y(0.2)\approx 4.1124$, $y(0.3)\approx 3.7449$

Example: Forward Euler on y' = -y + t

Backward Euler

• We can write

$$\begin{aligned} & = \mathbf{y}(\mathbf{t_{-}(i+1) - h}) \\ & = \mathbf{y}(\mathbf{t_{-}(i+1) - h}) \\ & \approx y(t_{i+1}) - hf(t_{i+1}, y(t_{i+1})) \\ & \approx y(t_{i+1}) = hf(t_{i+1}, y(t_{i+1})) \end{aligned}$$
 apply Taylor Series $y(t_{i+1}) \approx y(t_i) + hf(t_{i+1}, y(t_{i+1}))$

Backward Fuler

$$\label{eq:y0} \begin{aligned} \mathbf{y}_\mathbf{0} &= \mathbf{c} \\ y_{i+1} &= y_i + hf(t_{i+1}, y_{i+1}) \end{aligned}$$

This is an implicit method; forward Euler is explicit

solve for
$$y_(i + 1)$$

• Example: Backward Euler method on y' = -y + t, $y(0) = y_0 = 5$, with h = 0.1:

$$y_{i+1} = y_i + h f(t_{i+1}, y_{i+1})$$

= $y_i + h(-y_{i+1} + t_{i+1})$

• We need to solve for y_{i+1} .

$$y_{i+1} = y_i - hy_{i+1} + ht_{i+1}$$
$$y_{i+1} + hy_{i+1} = y_i + ht_{i+1}$$
$$y_{i+1} = \frac{y_i + ht_{i+1}}{1 + h}$$

• We compute

$$y_1 = \frac{y_0 + ht_1}{1 + h} = \frac{5 + 0.1 \cdot 0.1}{1 + 0.1} \approx 4.5545$$

$$y_2 = \frac{y_1 + ht_2}{1 + h} \approx \frac{4.5545 + 0.1 \cdot 0.2}{1 + 0.1} \approx 4.1586$$

$$y_3 = \frac{y_2 + ht_3}{1 + h} \approx \frac{4.1586 + 0.1 \cdot 0.3}{1 + 0.1} \approx 3.7987$$

- The corresponding exact values are $y(0.1) \approx 4.5290$, $y(0.2) \approx 4.1124$, $y(0.3) \approx 3.7449$
- Here it was easy to solve for y_{i+1} : f(t,y) = -y + t is linear in y
- In general, it is non-linear: apply Newton's method

Example: FE and BE on y' = -y + t

Stability

Forward Euler

- Consider $y' = \lambda y$, $y(0) = y_0$
- The exact solution is $y(t) = e^{\lambda t} y_0$
- ullet Forward Euler with constant stepsize h is

$$y_{i+1} = y_i + hf(t_i, y_i) = y_i + h\lambda y_i$$

$$= (1 + h\lambda)y_i$$

$$= (1 + h\lambda)^2 y_{i-1}$$

$$\vdots$$

$$= (1 + h\lambda)^{i+1} y_0$$

• If $\lambda < 0$, y(t) is decaying. Since $|y(t_{i+1})| < |y(t_i)|$, we want $|y_{i+1}| \le |y_i|$

• For the method to be numerically stable, we require

$$|y_{i+1}| = |1 + h\lambda| \cdot |y_i| \le |y_i|$$

• That is $|1 + h\lambda| \le 1$, or

$$-1 \le 1 + h\lambda \le 1$$
$$-2 \le h\lambda \le 0$$

forward Euler Stability condition

$$h \le \frac{2}{|\lambda|}$$

• If $|\lambda|$ is large, we can have a severe restriction on the stepsize If e.g. $y'=-10^6y$, $h\leq 2\cdot 10^{-6}$

Example 1.

- Consider y' = -10y, $y(0) = y_0$
- Euler's method is

$$y_{i+1} = y_i + h\lambda y_i = (1 - 10h)y_i$$

- For stability $h \leq 0.2$
- If e.g. h = 0.21 then

$$y_1 = (1 - 10 \cdot 0.21)y_0 = -1.1y_0$$

$$y_2 = -1.1y_1 = 1.21y_0$$

$$y_3 = -1.1y_2 = -1.331y_0$$

$$\vdots$$

$$y_i = (-1.1)^i y_0$$

The problem Examples ODEs Euler's method Backward Euler Stability Stability

Example 1. cont.

The problem Examples ODEs Euler's method Backward Euler Stability

Backward Euler

ullet Consider the backward Euler on $y'=\lambda y$, where $\lambda<0$

$$\begin{aligned} y_{i+1} &= y_i + h\lambda y_{i+1} \\ y_{i+1} &= \frac{1}{1-h\lambda}y_i \\ |y_{i+1}| &= \frac{1}{|1-h\lambda|}|y_i| \\ &\leq |y_i| \qquad \text{for any } h>0 \\ &\qquad \qquad \text{backward Euler Stability condition} \end{aligned}$$

Example 2.

- y' = -10y
- Backward Euler is

$$y_{i+1} = \frac{1}{1 + 10h} y_i$$

- Stable for any h > 0
- Backward Euler is absolutely (for any h > 0) stable

The problem Examples ODEs Euler's method Backward Euler Stability

Example 2. cont.

