國立成功大學

Data Mining 資料探勘 Project 2 Classification

姓名:金雅倫

學號: P96074105

目錄

—	`	目標說明		 •	•	 	•			•		•	•	•	•	 •	•		•	•	 •	S
二	`	資料說明		 • (•	 	•	•	• •	•	• •	•	•	•	•	 •	•	•	•	•		5
三	`	內容說明	• •	 • •	•	 	•	•		•	• •	•	•	•	•	 	•	•	•	•		8
四	`	分析比較		 		 	•									 						G

一、目標說明<Goal Description>

概述

□ Goal

 Understand what classification systems do and the difference between real behavior of classification model and observed data

Description

Construct a classification model to observe the difference between real 'right' data and modeled data

◆ 目標:

瞭解分類系統的作用,以及分類模型的實際行為與觀察到的資料之間的差異。

◆ 描述:

構建分類模型以觀察真實 (絕對) "正確" 資料與建模資料之間的差異。

◇ 流程:

- Step 1: Design a set of rules to classify data, e.g., classify students with good performance.
 - You should design k features/attributes for your problems first.
 - Use 'absolutely right' rules to generate your positive and negative data (the number of data = \mathbb{M})
- Step 2: Use the data generated in Step 1 to construct your classification model
 - Decision tree is basic requirement, you can add more classification models.
- □ <u>Step 3</u>: Compare the rules in the decision tree from Step 2 and the rules you used to generate your 'right' data
- □ **Step 4**: Discuss anything you can

Stepl:設計一資料集,需要 k 個特徵或屬性,使用 "絕對正確"的規則來產生正負資料(數據數量=M)。

Step2:根據此資料集,產生新的分類模型。 (決策樹是基本要求,可以再依據個人需求新增額外更多的分類模型)

Step3:比較步驟2中決策樹所產生之規則和所自訂 "正確" 資料的規則之間的 差異。

Step4: 盡可能的針對結果討論任何想法。

二、資料說明 < Data Description >

資料介紹

設計資料時,礙於憑空想像資料有些抽象,因此到政府資料開放平台 (https://data.gov.tw/) 上尋找適合用來分析決策樹之資料。本次研究運用之資料為台南市 106 年度溺水地點水域之統計。戲水為國人夏秋之際一大放鬆休閒娛樂之活動,然而卻有很多因戲水意外溺斃的意外發生之事件。因此本研究預計運用此政府開放資料之相關資料屬性,例如:溺水的時間、地點、年齡、地標等稍作修改後訓練決策樹模型,以分析溺水之人員是否會被獲救。

◆ 資料來源:https://data.gov.tw/dataset/85838

原始之資料:

	А	В	С	D	Е	F	G	Н	I I	J
1	年	月	日	時	溺水地點或降	水域種類	弱水結果	性別	年齡(歲)	
2	2017	1	5	20	五王大橋急れ	溪河	死亡	男	34	
3	2017	1	7	16	玉港里西埔戸	魚塭	死亡	男	78	
4	2017	1	30	16	秋茂園外海	外海(海岸線	獲救	女	29	
5	2017	1	30	16	秋茂園外海	外海(海岸線	獲救	女	26	
6	2017	1	30	16	秋茂園外海	外海(海岸絲	獲救	男	25	
7	2017	1	30	16	秋茂園外海	外海(海岸線	獲救	女	24	
8	2017	1	30	16	秋茂園外海	外海(海岸線	獲救	女	29	
9	2017	1	30	16	秋茂園外海	外海(海岸絲	獲救	男	54	
10	2017	2	2	20	金華新橋	溪河	獲救	女	43	
11	2017	2	3	21	四草大橋下と	近海(海岸線	獲救	女	21	
12	2017	2	13	16	中華西路一段	溪河	獲救	女	50	
13	2017	2	13	18	天鵝湖	池塘	死亡	男	71	
14	2017	2	14	21	台84線東向西	魚塭	死亡	男	33	
15	2017	3	1	19	竹門里58-3號	圳溝	死亡	男	89	
16	2017	3	21	18	麻善大橋	溪河	死亡	男	35	
17	2017	3	26	6	環河街56號前	溪河	死亡	女	79	

◆ 轉換動作:將資料欄位修改並轉換為可分析之屬性。(將欄位之字串轉換為數字)

◆ 欄位說明:

欄位屬性	內容
time	時間:0為晚上/1為白天
	17-24、01-07:晚上 / 8-16:白天
溺水地點	地點描述
water	溺水之水域或溪流名稱:
	近海:1/溪河:2/碼頭:3/外海:4/圳溝:5
age	年齡:壯年:1 / 老幼:0
	18-65 歲:壯年 / 其餘年齡:老幼
性別	男/女
survive	是否獲救
	獲救:1 / 死亡:0

轉換後之資料:

Α	В	С	D	E	F	G	Н
time	溺水地點或附刻	water	age	性別	survive		
	0 黄金海岸喜樹岡	1	0	男	0		
	0鹽水溪出海口	1	0	男	0		
	0 蔡姑娘廟附近曾	2	0	男	0		
	0 環河街56號前	2	0	女	0		
	0 急水溪五王大林	2	0	男	0		
	0 台南市安平區3	2	0	女	0		
	0 安平區安平運河	2	0	女	0		
	0 營頂里新城橋	2	0	女	0		
	0 安平商港21號码	3	0	男	0		
	1 汴頭里福如宮征	5	0	男	1		
	1 汴頭里福如宮征	5	0	男	1		
	1 嘉田里上茄苳頭	5	0	男	1		
	0 竹門里58-3號	5	0	男	1		
	0 176線9.5K(大寮	5	0	女	1		
	1 三榮里嘉南大均	5	0	男	1		
	1台南市安平區四	1	0	男	1		

◇ 説明:

- 1. 所設計資料屬性欄位影響之因素:溺水時間(time)、溺水地點之水域或 溪流名稱(water)、溺水人員之年齡(age)。
- 2. 不採納屬性原因:溺水之地點及溺水人員之性別,認為對於是否獲救並 無太大直接影響,因此本次研究並不採納,但依然將欄位存放在資料裡。

◆ 設計之absolutely right rule:

觀察原始資料後發現:時間愈夜晚、光線較昏暗、溺水水域愈深、溺水人員 年齡愈長者愈不容易獲救。因此以時間、水域、年齡為主要影響之屬性。

◆ 規則:

- 1. 時間是否為夜晚。
- 2. 年齡是否為老幼。
- 3. 水域是否為近海、溪河、碼頭。

三、內容說明<Description>

程式語言主要選擇使用 python,套件使用 sklearn 進行資料的前處理,首 先將相關套件安裝並導入,再設定產生之 doc 資料檔案位置。

```
DM1110.py

import numpy as np
import pandas as pd
import os
from sklearn import tree
from sklearn import preprocessing
from IPython.display import Image

mypath = 'C:\\Users\\ellen\\Desktop'
os.chdir(mypath)

import numpy as np

導入套件
使用 sklearn 套件處理

使用 sklearn 套件處理

產生之資料位置
```

開始訓練決策樹,首先給定資料的屬性欄位,並設定樹的深度,最後設定訓練所要觀察的欄位以及輸出的資料數據檔案(doc)。→以本研究來說:要看是否會獲救,因此欄位為(survive)。

```
train = pd.read_csv("106.csv")

features = ["time", "water", "age"]

trainer=pd.DataFrame([train["time"],

train["age"]

train["age"]

pata 欄位

10

17

tree_model = tree.DecisionTreeClassifier(max_depth = 3)

tree_model.fit(X = trainer, y = train["survive"])

tree_model.score(X = trainer, y = train["survive"])

with open ("tree3.dot", 'w') as f:

f = tree.export_graphviz(tree_model, feature_names=features , out_file = f)
```

接著再把資料數據檔案 doc 檔之內容匯入,以產生決策樹之圖。 產生圖之線上資源:(http://www.webgraphviz.com/)

四、分析比較<Analyse & Compare>

此資料欄位屬性包括:時間、地點、水域、性別及年齡,分析時並無將所有的欄位都納入考量,因此,在分析時一開始將樹之深度設定 5 ,發現深度過於大,並無法看出有何異同,將數值一步一步往下修正後,可發現在max_depth = 2 及 max_depth = 3 之分析結果存在些微差異。

✓ 深度為2之結果:

✓ 深度為3之結果:

可以發現若設定決策樹之深度為 2, 會造成決策樹還沒有分完的情形發生,因此只比較時間和年齡,並沒有比較到水域,出現還有 2個屬於存活未分完之情形。而深度為 3 之決策樹,先比較年齡及時間,最後比較水域欄位是否為大於等於 4, 挑選出最後有 9 筆資料為溺斃。

設計之正確規則中,決定是否存活之資料欄位為溺水水域(即 water 欄位),因只要 water 數值大於等於 4 之資料,不管年齡或溺水時間都可以獲 救(water = 4 外海、5 圳溝、6 魚塭),預期決策樹如下圖所示。而決策樹 則是先以年齡 (age) 為區分依據,只要 age 為大於等於 0.5,(age = 壯年:數值 1)之 ID,都會存活。因原始規則設定為交集合論,因此只要針對 水域小於 4 之欄位中比較年齡與時間,若年齡為老幼、時間為夜晚兩者存在 交集,就會溺斃。

發現決策樹訓練結果與原本所設計之 absolutely right 規則有些微落差,在設計之規則中,只要先比較水域是否為大於等於 4 之資料(即 water = 4、5、6),再進一步比較時間、年齡屬性欄位,即可將存活數據判斷出來,而造成此一現象判斷原因為:所設計之規則不同所產生的先後判斷依據不同之現象,可以從程式碼訓練進行優化,給定主要決定結果之欄位值,依本研究為例,即為 water 屬性,因此,從水域屬性中往下進行條件決策,即可省去程式對資料進行重複篩選之過程。