# Теоремы по матану, семестр 4

# 25 марта 2018 г.

# Содержание

| 1         | Характеризация измеримых функций с помощью ступенчатых (формулировка).        |                |
|-----------|-------------------------------------------------------------------------------|----------------|
|           | Следствия                                                                     | 3              |
| 2         | Измеримость монотонной функции                                                | 3              |
| 3         | Теорема Лебега о сходимости почти везде и сходимости по мере                  | 4              |
| 4         | Теорема Рисса о сходимости по мере и сходимости почти везде                   | 4              |
| 5         | Простейшие свойства интеграла Лебега         5.1 Для определения (5)          | <b>5</b><br>5  |
| 6         | Счетная аддитивность интеграла (по множеству)                                 | 8              |
| 7         | Теорема Леви                                                                  | 9              |
| 8         | Линейность интеграла Лебега                                                   | 9              |
| 9         | Теорема об интегрировании плоложительных рядов                                | 10             |
| 10        | Теорема о произведении мер                                                    | 11             |
| 11        | <b>Абсолютная непрерывность интеграла</b> 11.1 Следствие                      | <b>12</b>      |
| <b>12</b> | Теорема Лебега о мажорированной сходимости для случая сходимости по мере.     | 12             |
| 13        | Теорема Лебега о мажорированной сходимости для случая сходимости почти везде. | 14             |
| 14        | Теорема Фату. Следствия.         14.1 Следствие 1                             | 14<br>15<br>15 |

| 15        | Теорема о вычислении интеграла по взвешенному образу меры         15.1 Лемма | 15<br>15<br>16<br>16 |
|-----------|------------------------------------------------------------------------------|----------------------|
| 16        | Критерий плотности                                                           | 16                   |
| 17        | Лемма о единственности плотности                                             | 17                   |
| 18        | Лемма о множестве положительности                                            | 17                   |
| 19        | Теорема Радона—Никодима                                                      | 18                   |
| 20        | Лемма об оценке мер образов кубов из окрестности точки дифференцируемости    | 19                   |
| 21        | Лемма «Вариации на тему регулярности меры лебега»                            | 19                   |
| 22        | Теорема о преобразовании меры при диффеоморфизме                             | 19                   |
| 23        | Теорема о гладкой замене переменной в интеграле Лебега                       | 19                   |
| 24        | Теорема (принцип Кавальери)                                                  | 19                   |
| <b>25</b> | Теорема Тонелли                                                              | 21                   |
| 26        | Формула для Бета-функции                                                     | 22                   |
| 27        | Объем шара в $\mathbb{R}^m$                                                  | 22                   |
| 28        | Теорема о вложении пространств $L^p$                                         | 22                   |
| 29        | Теорема о сходимости в $L_p$ и по мере                                       | 23                   |
| 30        | Полнота $L^p$                                                                | 24                   |

# 1 Характеризация измеримых функций с помощью ступенчатых (формулировка). Следствия

 $(X, \mathbb{A}, \mu)$  — пространство с мерой.

f — измеримая функция на  $X, \forall x \ f(x) \geq 0$ . Тогда  $\exists$  ступенчатые функции  $f_n$ , такие что:

- 1.  $\forall x \ 0 \le f_n(x) \le f_{n+1}(x) \le f(x)$ .
- 2.  $f_n(x)$  поточечно сходится к f(x).

#### Следствие 1:

 $f: X \to \overline{\mathbb{R}}$  измеримая. Тогда  $\exists$  ступенчатая  $f_n: \forall x: lim f_n(x) = f(x)$  и  $|f_n(x)| \leq |f(x)|$ . Доказательство:

- 1. Рассмотрим  $f = f^+ f^-.f^+ = max(f,0), f^- = max(-f,0)$ . Срезки измеримы:  $E(f^+ < a) = E(f < a) \cap E(0 < a)$ , при этом f и  $g \equiv 0$  измеримы  $(f^-$  измерима аналогично).
- 2. Срезки измеримы и неотрицательны, тогда по теореме существуют ступенчатые функции  $f_n^+ \to f^+, f_n^- \to f^-$ . Тогда и  $f_n^+ f_n^-$  это ступенчатая функция, при этом по свойству пределов:  $f_n^+ f_n^- \to f^+ f^- = f$ . Неравенство с модулем верно при правильных эпсилон-неравенствах.

#### Следствие 2:

f,g — измеримые функции. Тогда fg – измеримая функция. При этом считаем, что  $0\cdot\infty=0$ . Доказательство:

1. Рассмотрим  $f_n \to f: |f_n| \le |f|, g_n \to g: |g_n| \le |g|$  из первого следствия. Тогда  $f_n g_n \to fg$  и fg измерима по теореме об измеримости пределов и супремумов (произведение ступенчатых функций – ступенчатая функция, значит, измеримая)

#### Следствие 3:

f,g — измеримые функции. Тогда f+g — измеримая функция. При этом считаем, что  $\forall x$  не может быть, что  $f(x)=\pm\infty, g(x)=\mp\infty$ 

Доказательство:

Доказывается как следствие 2.

# 2 Измеримость монотонной функции

Пусть  $E \subset R^m$  — измеримое по Лебегу,  $E' \subset E, \lambda_m(E \setminus E') = 0, f: E \to \mathbb{R}$ . Пусть сужение  $f: E' \to R$  непрерывно. Тогда f измерима на E.

#### Доказательство:

- 1.  $E(f < a) = E'(f < a) \cup e(f < a), e := E \setminus E', \lambda_m(e) = 0.$
- 2. E'(f < a) открыто в E', так как f непрерывна. Поэтому  $E' = G \cap E' \Rightarrow$ , где G открытое в E множество. Значит, E'(f < a) измеримо по Лебегу, так как оно является борелевским.
- 3. Но и e(f < a) измеримо, так  $\lambda_m(e) = 0$ , следовательно E(f < a) измеримо как объединение измеримых множеств

#### Следствие:

 $f: \langle a,b \rangle \to \mathbb{R}$  монотонна. Тогда f измерима.

#### Доказательство:

Множество разрывов монотонной функции НБЧС множество, поэтому можно воспользоваться доказанной теоремой.

# 3 Теорема Лебега о сходимости почти везде и сходимости по мере

 $(X,a,\mu)$  - пространство с мерой,  $\mu \cdot X < +\infty$ 

 $f_n, f: X o \overline{R}$  - п.в. конечны, измеримы

 $f_n \to f$  (поточечно, п.в.)

#### Доказательство:

1. подменим значения  $f_n$  и f на некотором множестве меры 0 так, чтобы сходимость  $f_n \to f$  была всюду. (Так можно сделать. Действительно,  $f_n \to f$  на  $X \setminus e$ ,  $\mu e = 0$ 

 $f_n$  - конечно на  $X \setminus e_n$ ,

f - конечно на  $X \setminus e_0$ .

Тогда на  $(X \setminus \bigcup_{n=0}^{+\infty} e_n)$  функции конечны и есть сходимость  $f_n \to f$ . По свойствам меры  $\mu \bigcup_{n=0}^{+\infty} e_n =$ 

- 0. Тогда определим на  $\bigcup_{n=0}^{+\infty} e_n \ f_n = f = 0$ . Это очевидно даст нам необходимую конечность и поточечную сходимость. )
- 2. (частный случай)  $f_n \to f \equiv 0$ . Тогда пусть  $\forall x f_n(x)$  монотонно (по n).  $|f_n(x)|$  убывает с ростом n и  $X(|f_n| \ge \epsilon) \supset X(|f_{n+1}| \ge \epsilon)$ . А также  $\bigcap_{n=0}^{+\infty} X(|f_n| \ge \epsilon) = \emptyset$ .

$$\begin{cases} \mu X < +\infty \\ \dots \supset E_n \supset E_{n+1} \supset \dots \end{cases}$$

 $\Rightarrow \mu E_n \to \mu \cup E_n$  - Th о непрерывности меры сверху.

$$\Rightarrow \mu X(|f_n \ge \epsilon|) \to \mu \emptyset = 0$$

3. (общий случай)  $f_n \to f$ . Рассмотрим  $\phi_n(x) := \sup_{k \ge n} |f_k(x) - f(x)|$ . Заметим свойства  $\phi$ :

$$\begin{cases} \phi_n(x) \to 0 \\ \phi_n \downarrow_n \end{cases}$$

 $X(|f_n-f|\geq\epsilon)\subset X(|\phi_n\geq\epsilon|)\Rightarrow$  по монотонности меры имеем  $\mu X(|f_n-f|\geq\epsilon)\leq\mu X(\phi_n\geq\epsilon)\stackrel{part.case}{\longrightarrow}0$ , ч.т.д.

# 4 Теорема Рисса о сходимости по мере и сходимости почти везде

 $(X,a,\mu)$  - пространство с мерой

 $f_n, f: X \to R$  - п.в. конечны, измеримы

$$f_n \stackrel{\mu}{\Rightarrow} f$$
.

Тогда  $\exists n_k \uparrow : f_{n_k} \to f$  п.в.

<u>Доказательство:</u>  $\forall k \ \mu X(|f_n - f| \ge \frac{1}{k}) \stackrel{n \to +\infty}{\to} 0$ 

Тогда  $\exists n_k : \forall n \geq n_k \mu X(|f_n - f| \geq \frac{1}{k}) < \frac{1}{2k}$  (можно считать  $n_1 < n_2 < \ldots$ ) Проверим  $f_{n_k} \to f$  п.в.  $: E_k := \bigcap j = k^{+\infty} X(|f_{n_j} - f| \geq \frac{1}{j})$ 

 $E_1 \supset E_2 \supset E_3 \supset \dots$ 

 $E_0 := \bigcap k \in NE_k$ .

 $\mu E_k \geq \sum_{j=k}^{+\infty} \mu X(|f_{n_j} - f| \geq \frac{1}{j}) \geq \sum_{j=k}^{+\infty} \frac{1}{2^j} = \frac{1}{2^{(k-1)}}$  - конечно  $\Rightarrow \mu E_k \rightarrow \mu E_0 \Rightarrow \mu E_0 = 0$  (т.к.

Рассмотрим  $X \notin E_0$ , т.е. если  $X \notin E_0$ , то  $\exists k : X \notin E_k$ , тогда  $\forall j \geq k |f_n(x) - f(x)| < \frac{1}{j}$  при  $n \geq n_j$ , т.е.  $f_{n_k} \to f$ , ч.т.д. Следствие:  $f_n \Rightarrow f |f_n| \le g$  п.в. Док-во: Рассмотрим последовательность  $f_{n_k}$  где  $f_{n_k} o f$  п.в. и вдоль нее применим Th о двух городовых.

$$\begin{cases} f_{n_k}(x) \to f(x) \forall x \in X \setminus e_1 \\ |f_n(x)| \le g(x) \forall x \in X \setminus e_2 \end{cases}$$

$$\Rightarrow |f| \leq g$$
 на  $(X \setminus e_1) \setminus e_2$ 

#### 5 Простейшие свойства интеграла Лебега

#### Для определения (5) 5.1

1.  $\int f$  не зависит от представления f как ступенчатой функции, то есть если f реализуется как  $\overline{f} = \sum_{k} (\lambda_k \cdot \chi_{E_k})$  и как  $f = \sum_{l} (\alpha_l \cdot \chi_{G_l})$ , интегралы по этим функциям равны

#### Доказательство:

Выпишем общее разбиение для этих двух разбиений

Пусть 
$$F_{ij} = E_i \cap G_j$$

Тогда 
$$f = \sum_k (\lambda_k \cdot \chi_{E_k}) = \sum_l (\alpha_l \cdot \chi_{G_l}) = \sum_{i,j} (\lambda_i (= \alpha_j) \cdot \chi_{F_{i,j}})$$

$$\int f = \sum_{i,j} (\lambda_i \cdot \mu F_{i,j}) = \sum_i (\lambda_i \cdot \sum_j (\mu F_{i,j})) = \sum_i (\lambda_i \cdot \mu E_i) = \int f$$
 для первого разбиения

Аналогично для второго разбиения получаем

$$\int f = \sum_{i,j} (\lambda_i \cdot \mu F_{i,j}) = \sum_j (\alpha_i \cdot \sum_i (\mu F_{i,j})) = \sum_j (\lambda_j \cdot \mu G_i) = \int f$$
 для второго разбиения, что и требовалось доказать

2. f,g -измеримые ступенчатые функции,  $f\leqslant g$ , тогда  $\int\limits_{\mathbb{R}^d}f\leqslant\int\limits_{\mathbb{R}^d}g$ 

#### Доказательство:

Пусть 
$$f = \sum_{k} (\lambda_k \cdot \chi_{E_k}), g = \sum_{l} (\alpha_l \cdot \chi_{G_l})$$

Аналогично доказательству предыдущей теоремы, строим общее ступенчатое разбиение

Пусть 
$$F_{ij} = E_i \cap G_j$$

Тогда  $\int f = \sum_{i,j} (\lambda_i \cdot \mu F_{i,j}) \leqslant \sum_j (\alpha_j \cdot \mu F_{i,j}) = \int g$ , что и требовалось доказать

# 5.2 Для окончательного определения

1. Монотонность  $f \leqslant g \Rightarrow \int\limits_{\mathbb{X}} f \leqslant \int\limits_{\mathbb{X}} g$ 

#### Доказательство:

(a)  $f,g\geqslant 0$ , тогда доказательство тривиально (по свойствам супремума)

(b) 
$$\int_{\mathbb{X}} f = \int_{\mathbb{X}} f^+ - \int_{\mathbb{X}} f^-$$
  
 $\int_{\mathbb{X}} g = \int_{\mathbb{X}} g^+ - \int_{\mathbb{X}} g^-$   
Из того, что  $\int_{\mathbb{X}} f^+ \leqslant \int_{\mathbb{X}} g^+$ , а  $\int_{\mathbb{X}} f^- \geqslant \int_{\mathbb{X}} g^-$  следует, что  $\int_{\mathbb{X}} f \leqslant \int_{\mathbb{X}} g$ 

2. 
$$\int_{\mathbb{E}} 1 \cdot d\mu = \mu E$$
$$\int_{\mathbb{E}} 0 \cdot d\mu = 0$$

Очевидно из определения интеграла ступенчатой функции

3.  $\mu E=0, f$ -измерима, тогда  $\int\limits_{\mathbb{E}}f=0$ , даже если  $f=\infty$  на  $\mathbb{E}$ 

#### Доказательство:

(a) f-ступенчатая  $\Rightarrow$  ограниченная

$$f=\sum_{k=1}^n (\lambda_k\cdot\chi_{E_k})$$
, тогда  $\int\limits_{\mathbb{E}} f=\sum \lambda_k\cdot\mu(E\cap E_k)$   
Но  $\mu(E\cap E_k)=0$  (так как  $\mu E=0$ ), тогда  $\int\limits_{\mathbb{E}} f=0$ 

(b) 
$$f$$
 - измеримая,  $f\geqslant 0$ . 
$$\int\limits_{\mathbb{E}} f=\sup(\int\limits_{\mathbb{E}} g), \ \text{где } 0\leqslant g\leqslant f, \ g$$
 - ступенчатая Тогда  $\int\limits_{\mathbb{E}} f=\sup(0)=0$ 

(с) f - произвольная измеримая

Тогда 
$$\int\limits_{\mathbb{E}} f = \int\limits_{\mathbb{E}} f^+ - \int\limits_{\mathbb{E}} f^- = 0 - 0 = 0$$

4. (a) 
$$\int_{\mathbb{E}} -f = -\int_{\mathbb{E}} f$$

(b) 
$$\forall c \in \mathbb{R} : \int_{\mathbb{E}} (c \cdot f) = c \cdot \int_{\mathbb{E}} f$$

#### Доказательство:

(а) 
$$(-f)^+ = f^ (-f)^- = f^+$$
 Тогда  $\int_{\mathbb{E}} -f = \int_{\mathbb{E}} (-f)^+ - \int_{\mathbb{E}} (-f)^- = \int_{\mathbb{E}} f^- - \int_{\mathbb{E}} f^+ = -\int_{\mathbb{E}} f$ 

(b) Пусть 
$$c>0$$
. Если  $c<0$ , то по предыдущему случаю можем рассматривать для  $-c<0$ . Если  $c=0$ , то по предыдущей теореме  $\int\limits_{\mathbb{E}} (0\cdot f) = \int\limits_{\mathbb{E}} 0 = 0 = 0 \cdot \int\limits_{\mathbb{E}} f$ 

і. Пусть 
$$f\geqslant 0$$
 
$$\int\limits_{\mathbb{E}}(c\cdot f)=\sup(\int\limits_{\mathbb{E}}g), \text{ где }0\leqslant g\leqslant c\cdot f, \text{ }g\text{ - ступенчатая}$$
 Пусть  $g=c\cdot \widetilde{g},$  тогда  $\int\limits_{\mathbb{E}}(c\cdot f)=\sup(\int\limits_{\mathbb{E}}(c\cdot \widetilde{g})), \text{ где }0\leqslant c\cdot \widetilde{g}\leqslant c\cdot f, \ \widetilde{g}\text{ - ступенчатая}$  Тогда  $\int\limits_{\mathbb{E}}(c\cdot f)=\sup(\int\limits_{\mathbb{E}}(c\cdot \widetilde{g}))=\sup(c\cdot \int\limits_{\mathbb{E}}\widetilde{g})=c\cdot \sup(\int\limits_{\mathbb{E}}\widetilde{g})=c\cdot \int\limits_{\mathbb{E}}f$  ...  $\Gamma$ 

іі. Если 
$$f$$
 - произвольная:

іі. Если 
$$f$$
 - произвольная: 
$$\int\limits_{\mathbb{E}} (c \cdot f) = \int\limits_{\mathbb{E}} (c \cdot f)^+ - \int\limits_{\mathbb{E}} (c \cdot f)^- = \int\limits_{\mathbb{E}} c \cdot f^+ - \int\limits_{\mathbb{E}} c \cdot f^- = c \cdot \int\limits_{\mathbb{E}} f^+ - c \cdot \int\limits_{\mathbb{E}} f^- = c \cdot (\int\limits_{\mathbb{E}} f^+ - \int\limits_{\mathbb{E}} f^-) = c \cdot \int\limits_{\mathbb{E}} f$$

5. Если существует 
$$\int\limits_{\mathbb{E}} f d\mu$$
, то  $|\int\limits_{\mathbb{E}} f| \leqslant \int\limits_{\mathbb{E}} |f|$ 

## Доказательство:

$$-|f|\leqslant f\leqslant |f|$$
 
$$\int_{\mathbb{E}}-|f|\leqslant \int_{\mathbb{E}}f\leqslant \int_{\mathbb{E}}|f|$$
 
$$-\int_{\mathbb{E}}|f|\leqslant \int_{\mathbb{E}}f\leqslant \int_{\mathbb{E}}|f|$$
 Тогда  $|\int_{\mathbb{E}}f|\leqslant \int_{\mathbb{E}}|f|$ 

6. 
$$f$$
 - измеримая на  $\mathbb{E},\,\mu\mathbb{E}<\infty$ 

$$a\leqslant f\leqslant b,$$
тогда  $a\cdot \mu E\leqslant \int\limits_{\mathbb{E}}f\leqslant b\cdot \mu E$ 

# Доказательство:

$$a \leqslant f \leqslant b \Rightarrow \int_{\mathbb{E}} a \leqslant \int_{\mathbb{E}} f \leqslant \int_{\mathbb{E}} b$$
$$a \cdot \int_{\mathbb{E}} 1 \leqslant \int_{\mathbb{E}} f \leqslant b \cdot \int_{\mathbb{E}} 1$$
$$a \cdot \mu \mathbb{E} \leqslant \int_{\mathbb{E}} f \leqslant b \cdot \mu \mathbb{E}$$

#### Следствие:

Если f - Измеримая и ограниченная на  $\mathbb{E}, \mu \mathbb{E} < \infty$ , тогда f - суммируемая на  $\mathbb{E}$ 

# 7. f - суммируемая на $\mathbb{E} \Rightarrow f$ почти везде конечная на $\mathbb{E}$ (то есть $f \in \alpha^0(\mathbb{E})$ )

#### Доказательство:

(a) Пусть 
$$f \geqslant 0$$

Пусть 
$$f = +\infty$$
 на  $A$  и пусть  $\mu A > 0$ 

Тогда 
$$\forall n \in \mathbb{N} : f \geqslant n \cdot \chi_A$$

Тогда 
$$\forall n \in \mathbb{N}: \int\limits_{\mathbb{R}} f \geqslant n \cdot \int\limits_{\mathbb{R}} \chi_A = n \cdot \mu A \Rightarrow \int\limits_{\mathbb{R}} f = +\infty$$

# (b) f любого знака

Распишем  $f=f^+-f^-$ , по предыдущему пункту  $f^+,f^-$  конечны почти везде  $\Rightarrow f$  тоже конечно почти везде

# 6 Счетная аддитивность интеграла (по множеству)

$$(X,\mathbb{A},\mu)$$
 — пространство с мерой,  $A=\bigsqcup_{i=1}^\infty A_i$ — измеримы.  $f:X o\overline{\mathbb{R}}$ — изм.,  $f\geqslant 0$ 

$$\underline{ ext{Тогда:}}\int\limits_{A}f=\sum_{i=1}^{\infty}\int\limits_{A_{i}}f$$

Доказательство:

1. Для начала докажем это для ступенчатых функций. Пусть  $f = \sum\limits_k (\lambda_k \cdot \chi_{E_k})$ 

$$\int_A f d\mu = \sum_k (\lambda_k \cdot \mu(E_k \cap A)) = \sum_k (\lambda_k \cdot (\sum_i \mu(E_k \cap A_i))) = \sum_i (\sum_k (\lambda_k \cdot \mu(E_k \cap A_i))) = \sum_i (\int_A f d\mu)$$

2. Докажем, что  $\int\limits_A f \leqslant \sum\limits_i \int\limits_{A_i} f$ 

(a) Рассмотрим 
$$0\leqslant g\leqslant f$$
— ступенчатая.  $\int\limits_A g=\sum\limits_i\int\limits_{A_i}g\leqslant\sum\limits_i\int\limits_{A_i}f$ 

- (b) Переходя к *sup* получаем желаемое
- 3. Теперь докажем, что  $\int\limits_A f \geqslant \sum\limits_i \int\limits_{A_i} f$

(a) 
$$A = A_1 \sqcup A_2$$

- і. Рассмотрим  $g_1,g_2$  ступенчатые такие, что  $0\leqslant g_i\leqslant f\cdot\chi_{A_i}$
- ії. Рассмотрим их общее разбиение  $E_k$  :  $g_i = \sum_k (\lambda_k^i \cdot \chi_{E_k})$
- і<br/>іі.  $g_1+g_2$  ступенчатая и  $0\leqslant g_1+g_2\leqslant f\cdot\chi_A$

iv. 
$$\int_{A_1} g_1 + \int_{A_2} g_2 \stackrel{lemma}{=} \int_A (g_1 + g_2) \stackrel{iii}{\leqslant} \int_A f$$

- v. Поочерёдно переходя к sup по $g_1$  и  $g_2$  получаем:  $\int\limits_{A_1}f+\int\limits_{A_2}f\leqslant\int\limits_Af$
- (b)  $\forall n \in \mathbb{N}$ , что  $A = \bigsqcup_{i=1}^n A_i$  будем последовательно отщеплять последнее множество по (a)

(c) 
$$A = \bigsqcup_{i=1}^{\infty} A_i$$

i. Фиксрируем  $n \in \mathbb{N}$ 

іі. 
$$A=(\coprod_{i=1}^n A_i)\sqcup B$$
, где  $B=\coprod_{i=n+1}^\infty A_i$ 

iii. 
$$\int\limits_A f \geqslant \sum\limits_{i=1}^n \int\limits_{A_i} f + \int\limits_B f \geqslant \sum\limits_{i=1}^n \int\limits_{A_i} f$$

iv. Переходим к lim по n

Следсвие 1:  $0\leqslant f\leqslant g$  - измеримы и  $A\subset B$  - измеримы  $\Rightarrow\int\limits_A f\leqslant\int\limits_B g$ 

$$\smallint_B g \geqslant \smallint_B f = \smallint_A f + \smallint_{B \backslash A} f \geqslant \smallint_A f$$

Следствие 2: 
$$f$$
 - суммируема на  $A\Rightarrow \int\limits_A f=\sum\limits_i \int\limits_{A_i} f$ 

Достаточно рассмотреть срезки  $f^+$  и  $f^-$ 

Следствие 3: 
$$f\geqslant 0$$
 - изм.  $\delta:\mathbb{A}\to\overline{\mathbb{R}}(A\longmapsto\int\limits_A fd\mu)\Rightarrow \delta$  - мера

# 7 Теорема Леви

 $(X, \mathbb{A}, \mu), f_n \geqslant 0$  - изм.

$$f_1(x) \leqslant \ldots \leqslant f_n(x) \leqslant f_{n+1}(x) \leqslant \ldots$$
 при почти всех  $x$ 

 $f(x) = \lim_{n \to \infty} f_n(x)$  при почти всех x (считаем, что при остальных  $x : f \equiv 0$ )

Тогда: 
$$\lim_{n\to\infty} \int\limits_X f_n(x) d\mu = \int\limits_X f(x) d\mu$$

Доказательство:

$$N.B. \int_X f_n \leqslant \int_X f_{n+1} \Rightarrow \exists \lim$$

f - измерима как предел последовательности измеримых функций

1. ≤

Очевидно  $f_n\leqslant f$  при п.в  $x\Rightarrow\int\limits_X f_n\leqslant\int\limits_X f.$  Делаем предельный переход по n

 $2. \geqslant$ 

- (a) Логичная редукция:  $\lim_{n\to\infty}\int\limits_X f_n(x)\geqslant \int\limits_x g$ , где  $0\leqslant g\leqslant f$  ступенчатая
- (b) Наглая редукция:  $\forall c \in (0,1): \lim \int\limits_X f_n(x) \geqslant c \cdot \int\limits_X g$ 
  - і.  $E_n = \{x \mid f_n(x) \geqslant c \cdot g\}$ . Очевидно  $E_1 \subset ... \subset E_n \subset E_{n+1} \subset ...$
  - ii.  $\bigcup_{n=1}^{\infty} E_n = X$  т.к. c < 1
  - iii.  $\int\limits_X f_n \geqslant \int\limits_{E_n} f_n \geqslant \int\limits_{E_n} g \Rightarrow \lim \int\limits_X f_n \geqslant c \cdot \lim \int\limits_{E_n} g = c \cdot \int\limits_X g$
  - iv. Последний знак равно обусловлен тем, что интеграл неотрицательной и измеримой функции по множеству мера (см. следствие 3 предыдущей теоремы), и мы используем неперрывность меры снизу

# 8 Линейность интеграла Лебега

$$f,g\geqslant 0$$
, измеримые

Тогда 
$$\int_{\mathbb{E}} (f+g) = \int_{\mathbb{E}} f + \int_{\mathbb{E}} g$$

Доказательство:

1. Пусть f,g - ступенчатые, тогда у них имеется общее разбиение

$$f = \sum_k (\lambda_k \cdot \chi_{E_k})$$
 
$$g = \sum_k (\alpha_k \cdot \chi_{E_k})$$
 
$$\int_{\mathbb{E}} (f+g) = \sum_k (\lambda_k + \alpha_k) \cdot \mu E_k = \sum_k \lambda_k \cdot \mu E_k + \sum_k \alpha_k \cdot \mu E_k = \int_{\mathbb{E}} f + \int_{\mathbb{E}} g, \text{ что и требовалось доказать}$$

2.  $f, g \ge 0$ , измеримые

Тогда 
$$\exists h_n: 0 \leqslant h_n \leqslant h_{n+1} \leqslant f, h_n$$
 ступенчатые  $\exists \widetilde{h_n}: 0 \leqslant \widetilde{h_n} \leqslant \widetilde{h_{n+1}} \leqslant g, \, \widetilde{h_n}$  ступенчатые  $\lim_{n \to +\infty} h_n = f$   $\lim_{n \to +\infty} \widetilde{h_n} = g$   $\int_{\mathbb{E}} (h_n + \widetilde{h_n}) = \int_{\mathbb{E}} h_n + \int_{\mathbb{E}} \widetilde{h_n}$   $\int_{\mathbb{E}} (h_n + \widetilde{h_n}) \to \int_{\mathbb{E}} (f + g)$   $\int_{\mathbb{E}} h_n \to \int_{\mathbb{E}} f$   $\int_{\mathbb{E}} \widetilde{h_n} \to \int_{\mathbb{E}} g$  Тогда  $\int_{\mathbb{E}} (f + g) = \int_{\mathbb{E}} f + \int_{\mathbb{E}} g$ , что и требовалось доказать

3. Если f,g - любые измеримые, распишем обе через срезки и докажем для них

# 9 Теорема об интегрировании плоложительных рядов

$$u_n(x) \geq 0$$
 почти всюду на  $\mathbb{E}$ , тогда  $\int\limits_{\mathbb{E}} (\sum_{n=1}^{+\infty} u_n(x)) d\mu(x) = \sum_{n=1}^{+\infty} \int\limits_{\mathbb{E}} u_n(x) d\mu(x)$ 

Доказательство:

$$\overline{S_N(x)} = \sum_{n=1}^{N} u_n(x); S(x) = \sum_{n=1}^{+\infty} u_n(x)$$

1. 
$$S_N$$
 - возрастает к  $S$  при почти всех х  $\xrightarrow{\mathrm{T. \ Леви}} \int\limits_{\mathbb{E}} S_N \xrightarrow[N \to +\infty]{} \int\limits_{\mathbb{E}} S = \int\limits_{\mathbb{E}} \sum_{n=1}^{+\infty} u_n(x)$ 

2. С другой стороны 
$$\int_{\mathbb{E}} S_N = \int_{\mathbb{E}} \sum_{n=1}^N u_n = \sum_{n=1}^N \int_{\mathbb{E}} u_n(x) d\mu \xrightarrow[N \to +\infty]{} \sum_{n=1}^{+\infty} \int_{\mathbb{E}} u_n(x) d\mu$$

3. Найденные пределы совпадают в силу единственности предела последовательности, что и требовалось доказать.

# 10 Теорема о произведении мер

$$<$$
  $\mathbb{X}, \alpha, \mu>, <$   $\mathbb{Y}, \beta, \nu>$  - пространства с мерой  $\alpha \times \beta = \{A \times B \subset \mathbb{X} \times \mathbb{Y} : A \in \alpha, B \in \beta\}$   $m_0(A \times B) = \mu A \cdot \nu B$ 

Тогда:

- 1.  $m_0$  мера на полукольце  $\alpha \times \beta$
- 2.  $\mu$ ,  $\nu$   $\sigma$ -конечны  $\Rightarrow m_0$   $\sigma$ -конечна

#### Доказательство:

1. Неотрицательность  $m_0$  очевидна. Необходимо доказать счетную аддитивность

Пусть 
$$P=\coprod_{i=1}^{\infty}P_k$$
, где  $P\in\alpha imes\beta$   $P=A imes B;\ P_k=A_k imes B_k$  Заметим, что:

- $\chi_P(x,y) = \sum \chi_{P_k}(x,y)$ , в силу дизъюнктности  $P_k$  ((x, y) входит максимум в одно множество из всех  $P_k$ )
- $\chi_{A\times B}(x,y)=\chi_A(x)\cdot\chi_B(y)$ , так как  $(x,y)\in A\times B\Leftrightarrow x\in A$  И  $y\in B$

Воспользовавшись вышесказанным получим:

$$\chi_P(x,y) = \chi_{A\times B}(x,y) = \chi_A(x) \cdot \chi_B(y)$$
  
$$\chi_P(x,y) = \sum \chi_{P_k}(x,y) = \sum \chi_{A_k\times B_k}(x,y) = \sum \chi_{A_k}(x) \cdot \chi_B(y)$$

Имеем следующее равенство:

$$\chi_A(x) \cdot \chi_B(y) = \sum \chi_{A_k}(x) \cdot \chi_{B_k}(y)$$

Проинтегрируем его по мере  $\mu$  по x, затем по мере  $\nu$  по y, получим:

$$\mu A \cdot \nu B = \sum \mu A_k \cdot \nu B_k$$
, то есть  $m_0(P) = \sum m_0(P_k)$ , что и требовалось доказать.

2. 
$$\mu$$
,  $\nu$  -  $\sigma$ -конечны  $\Rightarrow X = \bigcup_{k=1}^{\infty} A_k$ , где  $\mu A_k < +\infty$ ;  $Y = \bigcup_{k=1}^{\infty} B_k$ , где  $\nu B_k < +\infty$ 

$$X \times Y = \bigcup_{i,j} (A_i \times B_j)$$

$$m_0(A_i \times B_j) = \mu A_i \cdot \nu B_j < +\infty$$
, так как  $\mu A_i < +\infty$  и  $\nu B_j < +\infty$  все  $(A_i \times B_j) \in \alpha \times \beta$  по определению

Что и требовалось доказать.

# 11 Абсолютная непрерывность интеграла

<  ${
m X}, lpha, \mu>$  - пространство с мерой  $f:X 
ightarrow \overline{\mathbb{R}}$  - суммируема

Тогда  $\forall \epsilon > 0 \; \exists \delta > 0 : \; \forall E$  — измеримое  $\mu E < \delta \; |\int\limits_E f d\mu| < \epsilon$ 

#### Доказательство:

 $\overline{X_n := X(|f| \ge n)}$ 

 $X_n \subset X_{n+1} \subset \dots$ 

 $\mu(\cap X_n) = 0$ , т.к. f – суммируема

- 1. Мера :  $(A \mapsto \int\limits_A |f|)$  непрерывна сверху, т.е.  $\forall \ \epsilon \ \exists \ n_\epsilon \ \int\limits_{X_{n_\epsilon}} |f| < \epsilon/2$
- 2. Зафиксируем  $\epsilon$  в доказываемом утверждении, возьмем  $\delta:=\frac{\epsilon/2}{n_\epsilon}$
- 3.  $\left| \int_{E} f d\mu \right| \leq \int_{E} |f| = \int_{E \cap X_{n_{\epsilon}}} |f| + \int_{E \cap X_{n_{\epsilon}}^{c}} |f| \stackrel{*}{\leq} \int_{X_{n_{\epsilon}}} |f| + n_{\epsilon} \cdot \mu(E \cap X_{n_{\epsilon}}^{c}) \stackrel{**}{<} \epsilon/2 + n_{\epsilon} \cdot \mu E < \epsilon/2 + n_{\epsilon} \cdot \frac{\epsilon/2}{n_{\epsilon}} < \epsilon$ 
  - \* В первом слагаемом увеличили множество, во втором посмотрели на определние  $X_n$ , взяли дополнение, воспользовались 6-м простейшим свойством интеграла
  - \*\* Воспользовались непрерывностью сверху

# 11.1 Следствие

f - суммируема

 $e_n$  - измеримые множества

$$\mu e_n \to 0 \Rightarrow \int_{e_n} f \to 0$$

# 12 Теорема Лебега о мажорированной сходимости для случая сходимости по мере.

 $< X, A, \mu >$  пространство с мерой,

 $f_n, f$  – измеримы,

 $f_n \stackrel{\mu}{\Rightarrow} f$  (сходится по мере),

 $\exists g: \mathbb{X} o \overline{\mathbb{R}}$  такая, что:

- $\bullet$   $\forall n$ , для «почти всех»  $x \mid f_n(x) \mid \leq g(x) \ (g$  называется мажорантой)
- g суммируемая

### Тогда:

- $f_n, f$  суммируемы
- $\bullet \int\limits_{\mathbb{X}} |f_n f| d\mu \to 0$

• 
$$\int_{\mathbb{X}} f_n \to \int_{\mathbb{X}} f$$
 («уж тем более»)

#### Доказательство:

- 1.  $f_n$  суммируема, так как существует мажоранта g
- 2. f суммируема по теореме Рисса ( $f_{nk} \to f$  почти везде,  $|f_{nk}| \le g$ , тогда  $|f| \le g$  почти везде)
- 3. «уж тем более»:

$$\left| \int_{\mathbb{X}} f_n - \int_{\mathbb{X}} f \right| \le \int_{\mathbb{X}} |f_n - f|$$

Допустим, что  $\int\limits_{\mathbb{X}}|f_n-f|d\mu \to 0$  уже доказано.

Тогда «уж тем более» очевидно.

4. Докажем основное утверждение:

Разберем два случая:

(а) 
$$\mu \mathbb{X} < \infty$$
 Фиксируем  $\epsilon \ge 0$   $X_n := X(|f_n - f| \ge \epsilon)$   $\mu X \to 0$  (так как  $f_n \Rightarrow f$ ) 
$$\int\limits_{\mathbb{X}} |f_n - f| = \int\limits_{X_n} |f_n - f| + \int\limits_{X_n^c} |f_n - f| \le \int\limits_{X_n} 2g + \int\limits_{X_n^c} \epsilon < \epsilon + \epsilon \mu \mathbb{X} \text{ (прим. } \int\limits_{X_n} 2g \to 0 \text{ по след. } \kappa$$
 т. об абс. сходимости )

(b) 
$$\mu \mathbb{X} = \infty$$

Докажем «Антиабсолютную непрерывность» для g:

$$\forall \epsilon \; \exists A \subset \mathbb{X} \mid \mu A$$
 - конеч.  $\int\limits_{X \backslash A} g < \epsilon$ 

доказательство:

$$\begin{split} & \int\limits_{\mathbb{X}} = \sup(\int\limits_{\mathbb{X}} g_k \mid 0 \leq g_k \leq g) \ (g_k - \text{ступен.}) \\ & \exists g_n \int\limits_{\mathbb{X}} g - \int\limits_{\mathbb{X}} g_n < \epsilon \\ & A := \sup g_n \ (\sup p \ f := \text{замыкание} \ \{x \mid f(x) \neq 0 \ \}) \\ & A = \bigcup_{k \mid \alpha_k \neq 0} E_k \\ & g = \sum_{k \mid \alpha_k \neq 0} E_k \\ & g = \sum_{k \mid \alpha_k \neq 0} \alpha_k \mathcal{X}_{E_k} \ (X = \bigsqcup E_k) \\ & \int\limits_{\mathbb{X}} g_n = \sum \alpha_k \mu E_k < +\infty \ (\mu A \text{ - конеч.}) \\ & \int\limits_{\mathbb{X}} g = \int\limits_{\mathbb{X} \setminus \mathbb{A}} g - g_n \leq \int\limits_{\mathbb{X}} g - g_n < \epsilon \end{split}$$

Теперь докажем основное утверждение:

$$\int\limits_{\mathbb{X}} |f_n - f| = \int\limits_{\mathbb{A}} |f_n - f| + \int\limits_{\mathbb{X} \setminus \mathbb{A}} |f_n - f| \le \int\limits_{\mathbb{A}} |f_n - f| + 2\epsilon < 3\epsilon \; \left(\int\limits_{\mathbb{A}} |f_n - f| \to 0 \text{ по п. (a)}\right)$$

## 13 Теорема Лебега о мажорированной сходимости для случая сходимости почти везде.

 $< X, A, \mu >$  – пространство с мерой,  $f_n, f$  – измеримы,  $f_n \stackrel{\mu}{\Rightarrow} f$  почти везде,  $\exists g \mid \mathbb{X} \to \overline{\mathbb{R}}$  такая, что:

- $\forall n$ , для «почти всех» $x |f_n(x)| \le g(x) (g$  называется мажорантой)
- *q* суммируемая

#### Тогда:

- $f_n, f$  суммируемы
- $\bullet \int\limits_{\mathbb{W}} |f_n f| d\mu \to 0$
- $\int_{\mathbb{X}} f_n \to \int_{\mathbb{X}} f$  («уж тем более»)

#### Доказательство:

- 1. «уж тем более» см. пред. теорему.
- 2. Докажем основное утверждение:

$$h_n(x) := \sup(|f_n - f|, |f_{n+1} - f|, \dots)$$

Заметим, что при фикс. x выпол.  $0 \le h_n \le 2g$  почти везде

$$\lim_{n \to +\infty} h_n = \overline{\lim}_{n \to +\infty} |f_n - f| = 0$$
 почти везде

$$2g-h_n\uparrow,\ 2g-h_n o 2g$$
 почти везде

$$\int\limits_{\mathbb{X}} (2g-h_n) d\mu \to \int\limits_{\mathbb{X}} 2g$$
 (по т. Леви)

$$\int\limits_{\mathbb{X}} 2g - \int\limits_{\mathbb{X}} h \Rightarrow \int\limits_{\mathbb{X}} h_n \to 0$$

$$\int\limits_{\mathbb{X}} |f_n - f| \le \int\limits_{\mathbb{X}} h_n \to 0$$

#### Теорема Фату. Следствия. 14

 $< X, A, \mu >$  пространство с мерой

$$f_n, f$$
 – измеримы,

$$f_n > 0$$

$$f_n \ge 0$$
  $f_n \stackrel{\mu}{\Rightarrow} f$  «почти везде»,

$$\exists C > 0 \ \forall n \ \int_{\mathbb{X}} f_n d\mu \le C$$

## Тогда:

$$\bullet \int\limits_{\mathbb{X}} f \leq C$$

#### Доказательство:

$$g_n:=\inf(f_n,f_{n+1},\dots)\quad (g_n\leq g_{n+1}\leq\dots)$$
  $\lim g_n=\varliminf(f_n)=no$ чти вез $de=\lim f_n=f$   $(g_n\to f$  почти вез $de=\lim f_n=f$   $(g_n\to f)$   $(g_n\to f)$  почти вез $de=\lim f_n=f$   $(g_n\to f)$   $(g_n\to f)$  почти вез $de=\lim f_n=f$   $(g_n\to f)$   $(g_n\to f$ 

### 14.1 Следствие 1

$$f_n, f \geq 0$$
 – измер.  $f_n \stackrel{\mu}{\Rightarrow} f$   $\exists C \ \forall n \int\limits_{\mathbb{X}} f_n \leq C$  Тогда:

• 
$$\int_{\mathbb{X}} f \leq C$$

#### Доказательство:

 $\exists f_{n_k} o f$  почти везде

# 14.2 Следствие 2

 $f_n \ge 0$  – измер. Тогда:

• 
$$\int_{\mathbb{X}} \underline{lim}(f_n) \ge \underline{lim}(\int_{\mathbb{X}} f_n)$$

## Доказательство:

$$\exists n_k \mid \int\limits_{\mathbb{X}} f_{n_k} \underline{k} \to + \infty \underbrace{\lim_{n \to +\infty} \int\limits_{\mathbb{X}} f_n}_{n \to +\infty}$$
 Рассмотрим  $g_{n_k}$  такое, что  $g_{n_k} \uparrow$  и  $g_{n_k} \to \underline{\lim} f$  Применяем теорему Леви к нер-ву 
$$\int\limits_{\mathbb{X}} g_{n_k} \leq \int\limits_{\mathbb{X}} f_{n_k}$$
 
$$\int\limits_{\mathbb{X}} \underline{\lim} f \leq \underline{\lim} \int\limits_{\mathbb{X}} f_n$$

# 15 Теорема о вычислении интеграла по взвешенному образу меры

#### 15.1 Лемма

Пусть у нас есть  $< X, \mathbb{A}, \mu > \mathsf{u} < Y, \mathbb{B}, \_ > \mathsf{u} \ \Phi : X \to Y$  Пусть  $\Phi^{-1}(B) \subset \mathbb{A}(Koxacv \ cкaзал, \ umo \ это \ легко, \ u \ вроде \ это \ следует \ us \ предыдущих \ теорем) Для <math>\forall E \subset B \ \mathsf{u} \ \nu(E) := \mu(\Phi^{-1}(E))$  Тогда:

$$\nu$$
 - мера на  $B,\,\nu(E)=\int\limits_{\Phi^{-1}(E)}d\nu$ 

#### Доказательство:

Докажем по определению меры:

$$\nu(\bigsqcup E_i) = \mu(\Phi^{-1}(\bigsqcup E_i)) = \mu(\bigsqcup \Phi^{-1}(E_i) = \sum \mu\Phi^{-1}(E_i) = \sum \nu E_i$$

## 15.2 Следствие

Из этого следует что f - измерима относительно  $B\Rightarrow f\odot\Phi$  — измерима относительно  $\Gamma$ 

## 15.3 Теорема

Есть пространства  $\langle X, \mathbb{A}, \mu \rangle$  и  $(Y, \mathbb{B}, \nu)$ .

 $\Phi: X \to Y; w \ge 0$  — измеримо

u - взвешенный образ  $\mu$ 

Тогда:

Для  $\forall f \geq 0$  - измеримо на  $Y, f \odot \Phi$  - измерима(относительно  $\mu$ )

 $\int_Y f d\nu = \int_X f(\Phi(x)) * \omega(x) d\mu(x)$ 

Замечание: Тоже верно для f - сумм.

Доказательство:

- $f \odot \Phi$  измерима(из леммы)
- Возьмем в качестве  $f=\chi_E, E\in B$   $(f\odot\Phi)(x)=\chi_{\Phi^{-1}(E)}$  определение взвешенного образа меры  $\nu(E)=\int\limits_{\Phi^{-1}(E)}\omega d\mu$  доказали первый пункт
- — f ступенчатая  $\Rightarrow f = \sum \alpha_k * \chi_{E_k}$   $\int_Y \sum \alpha_k * \chi_{E_k} d\mu = \sum \alpha_k \chi_{E_k} d\nu = /*firstcase*/ = \sum \alpha_k \int_X \chi_{E_k} (\Phi(x)) *\omega(x) dx = \int_X \sum \alpha_k \chi_{E_k} (\Phi(x)) *\omega(x) d\mu(x) = \int_X \int_X \Phi(x) d\mu(x) d\mu(x) d\mu(x) = \int_X \int_X \Phi(x) d\mu(x) d\mu(x) d\mu(x) = \int_X \Phi(x) d\mu(x) d\mu(x) d\mu(x) = \int_X \Phi(x) d\mu(x) d\mu(x) d\mu(x) d\mu(x) d\mu(x) = \int_X \Phi(x) d\mu(x) d\mu(x$

# 16 Критерий плотности

Есть пространство  $\langle X, \mathbb{A}, \mu \rangle$ 

u - еще одна мера

 $\omega \geq 0$  - измерима на X

Тогда:

 $\omega$  - плотность  $\nu$  относительно  $\mu \Longleftrightarrow Для$  любого  $A \in \mathbb{A} : \mu A * inf(\omega) \le \nu(A) \le \mu A * sup_A(\omega)$  Доказательство:

- ullet  $\Rightarrow$  очевидно из стандартного свойства интеграла
- =

- Достаточно доказать, что  $\omega>0$  (когда  $\omega=0$ , отсюда следуется что интеграл =0 из оценок, что  $\nu(E)=0$ )
- Давайте брать такие  $A\subset X(\omega>0),$  тогда  $\nu A=\int\limits_{\it A}\omega(x)d\mu$
- Тогда для любого  $A \in \mathbb{A}$   $A = A_1 \sqcup A_2$ , где  $A_1 \subset A(\omega > 0) \& A_2 \subset A(\omega = 0)$
- Получаем, что  $\nu A=\nu A_1+\nu A_2=\int\limits_{A_1}\omega+0=\int\limits_{A_1}\omega+\int\limits_{A_2}\omega=\int\limits_A\omega$
- Пусть  $q \in (0,1)$  и  $A_j := A(q^j \le \omega(x) < q^{j-1}), j \in Z$ . Получается, что  $A = \bigsqcup_{j \in Z} A_j$
- Рассмотрим  $q^j \mu A_j <= \nu A_j <= q^{j-1} * \mu A_j$  и  $\nu A_j = \int\limits_{A_j} \omega d\mu$
- $q * \int_{A} \omega d\mu = q * \sum_{A_{j}} \int_{A_{j}} \leq \sum_{A_{j}} q^{j} * \mu A_{j} \leq \sum_{A_{j}} j * A_{j} = \nu(A) \leq 1/q * \sum_{A_{j}} q^{j} * \mu A_{j} \leq 1/q * \sum_{A_{j}} \int_{A_{j}} \omega = 1/q * \int_{A} \omega$
- $-q * \int_A \omega d\mu \le \nu(A) \le 1/q * \int_A \omega d\mu$
- Устремим q к 1 и мы победили

# 17 Лемма о единственности плотности

 $f, g \in L(x)$ .

Пусть  $\forall A$  - измерима и  $\int\limits_A f = \int\limits_A g$ .

Тогда:

f=g почти везде

Следствие:

Плостность  $\nu$  относительно  $\mu$  определена однозначно с точностью до  $\mu$  почти везде.

Доказательство:

- Вместо двух функций давайте рассмотрим одну h=f-g и  $\forall \int\limits_A h=0.$  Пусть  $A_+=X(h\geq 0)$  и  $A_-=X(h<0)$
- $\bullet \int_{A_{+}} |h| = \int_{A_{+}} h = 0$   $\int_{A} |h| = -\int_{A} h = 0$
- Пусть  $X=A_+\sqcup A_-$ . Тогда  $\int\limits_X|h|=\int\limits_{A_+}|h|+\int\limits_{A_-}|h|=0\Rightarrow h=0$  почти везде.

# 18 Лемма о множестве положительности

Пусть пространство  $< X, \mathbb{A} > \mathsf{и} \ \phi$  - заряд

Тогда:

 $\forall A \in \mathbb{A} \exists B \subset A : \phi(B) \leq \phi(A)$ , где B - множество положительности

Доказательство:

- Пусть  $(\phi(A) \ge 0) \&\& (B = \emptyset) \to \phi(A) \ge 0$
- Е множество  $\epsilon$  положительности(MeII), если  $\forall C \subset E$  измеримого  $\phi(C) \geq -\epsilon$
- Утверждение: Пусть Е МеП. Тогда для любого измеримого  $C \subset E$  выполнено  $\phi(C) \ge \phi(A)$ 
  - 1. Если A Ме $\Pi \Rightarrow C = A$
  - 2. Пусть A не МеП. Тогда существеут  $c_1 \subset A : \phi(C_1) < -\epsilon$  и  $\phi(A) = \phi(A_1) + \phi(C)$  Тогда  $A_1 = A C_1$  и  $\phi(A_1) > \phi(A)$
  - 3.  $A_1$  Ме $\Pi \Rightarrow$  хорошо
  - 4. Иначе повторяем тоже самое с  $C_2$  и так далее пока не будет хорошо
  - 5. Процесс конечен так как все  $C_i$  дизьюнктны и  $\phi(| | C_i) \neq -\infty$ .
- ullet Построим B:  $C_1$  множество 1 положительности.  $C_2-1/2$ . Тогда  $B=\cap C_i$  МеП
- $\phi(B) = \lim_{i \to \infty} \phi(C_i) \ge \phi(A)$

# 19 Теорема Радона—Никодима

Пусть есть пространство  $(X, \mathbb{A}, \mu)$ 

u - мера из  $\mathbb A$ 

Обе меры конечные и  $\nu \prec \mu$ .

#### Тогда:

 $\overline{\exists!f:X}->R^\infty$  (с точн до почти везде), которая является плотностью  $\nu$  относительно  $\mu$  и при этом  $(f-\mu)$  суммируема

#### Доказательство:

- единственность из леммы
- строим кандидата на роль f.  $P = \{p(x) \geq 0, | \forall E: \int\limits_E p*d\mu \leq \nu(E) \}$ 
  - 1.  $P \neq \emptyset$  и  $0 \in P$
  - 2.  $p1, p2 \in P \Rightarrow h = max(p_1, p_2) \in P$  $\forall E \int_E h d\mu = \int_{E(p_1 \ge p_2)} h d\mu + \int_{E(p_1 < p_2)} h d\mu = \int_{E(p_1 \ge p_2)} p1 + \int_{E(p_1 < p_2)} p_2 \le \nu(E(p_1 \ge p_w)) + \nu(E(p_1 < p_w)) = \nu E$

По индукции  $max(p_1...p_n) \in P$ 

3.  $I = \sup\{\int_X pd\mu | p \in P\}$ 

 $\exists$  последовательсность  $f_1 \leq f_2 \leq ... \in P: \int\limits_X f_n \to I$ 

- 4. Рассмотрим  $p_1,p_2...:\int\limits_X p_n \to I,$  а также  $f_n=\max(p_1...p_n)\in P$
- 5. Из предыдущих двух получаем, что  $f=\lim f_n$  и  $\int_E =/*thLevi*/=\lim \int_E f_n \leq \nu E$ , а следовательно  $\int_X f=\lim \int_X f_n=I \leq \nu(X)$

- 6. Отлично, проверим, что f плотность  $\nu$  относительно  $\mu$ .
  - Докажем, что это не так:  $\exists E_0: \nu E_0 > \int\limits_{E_0} f d\mu$
  - $-\mu E_0 > 0$  (иначе интеграл равено нулю и мера равна нулю из абстрактной непрерывности)
  - Тогда  $\mu E_0$  конечна. Возьмем  $a>0: \nu E_0-\int\limits_{E_0}fd\mu>a*\mu E_0$
  - Тут недостаточно термина мер, поэтому рассмотрим заряд  $\phi(E) = \nu E \int\limits_E f d\mu a * \mu E$
  - Пусть  $\phi(E_0)>0$ . Возьмем МП  $B\subset E_0:\phi(B)\geq\phi(E_0)>0$ . Тогда  $\nu(B)=\phi(B)+\int\limits_B f*d\mu+a*\mu B\geq\phi(B)>0$
  - Проверим, что  $f + a * \chi_B \in P$ . Тогда по определению  $\int\limits_E (f + a * \chi_B) d\mu = \int\limits_{E \setminus B} F * d\mu + \int\limits_{E \cap B} f * d\mu + a * \mu(B \cap E) = / * E \leftrightarrow E \cap B * / = \int\limits_{E \setminus B} f + \nu(E \cap b) \phi(E \cap B) \le / * def\_class\_P\_and\_f \in P * / \le \nu(E \setminus B) + \nu(E \cap B) \phi(E \cap B) = \nu E \phi(E \cap B) \le / * \phi \ge 0 * / \le \nu E$
  - Проверим, что  $\int_X f + a * \chi_B = I + a * \mu B > I$ , что противоречит определению I

# 20 Лемма об оценке мер образов кубов из окрестности точки дифференцируемости

TODO: Илья

- 21 Лемма «Вариации на тему регулярности меры лебега» торо: илья
- 22 Теорема о преобразовании меры при диффеоморфизме торо: илья
- 23 Теорема о гладкой замене переменной в интеграле Лебега торо: илья
- 24 Теорема (принцип Кавальери)

 $(X,\alpha,\mu)$  и  $(Y,\beta,\nu)$  - пространства с мерами, причем  $\mu,\nu-\sigma$ -конечные и полные  $m=\mu\times\nu$ ,  $C\in\alpha\times\beta$ , тогда:

1. При п.в.  $x \, C_x$  - измеримо ( $\nu$ -измеримо), т.е.  $C_x \in \beta$ 

2. Функция  $x \to \nu C_x$  — измеримая (в широком смысле) на X

NB:  $\phi$  — измерима в широком смысле, если она задана при п.в. x, и  $\exists f: X \to R'$  - измеримая и  $\phi = f$  п.в. При этом  $\int_X \phi = \int_X f$  (по опр.)

3. 
$$mC = \int_X \nu(C_x) \cdot d\mu(x)$$

<u>Доказательство:</u> Рассмотрим D — совокупность все множеств, для которых утв. теоремы верно.  $\rho = \alpha \otimes \beta - \pi/\kappa$  изм. пр-ков.

- 1.  $\rho \subset D$   $C = A \times B. \text{ то есть} \forall x C_x = \emptyset if x \not\in A, Bif x \in A$   $(\mu A < +\infty, \nu B < +\infty)$   $x \to \nu(C_x), \text{ функция } \nu(B) \cdot \Xi_A(x) \text{изм.}$   $\int_{\mathbf{Y}} \nu(C_x) d\mu = \nu B \int_{\mathbf{Y}} \Xi_A(x) d\mu(x) = \nu B \cdot \mu A = mC$
- 2.  $E_i \in D, E_i dis \Rightarrow E := \sqcup E_i \in D$  при п.в.  $x \ (E_i)_x$  измеримы при п.в.  $x \ \text{все} \ (E_i)_x$  измеримы,  $E_x = \sqcup (E_i)_x$  изм.  $\nu E_x = \sum \nu(E_i)_x \ (\nu(E_i)_x$  изм. как функция от  $x) \Rightarrow$  функция  $x \to \nu E_x$  измерима  $\int_X \nu E_x d\mu(x) = \sum_i \int \nu(E_i)_x d\mu(x) = \sum_i m E_i = m E$
- 3.  $E_i \in D, \ E_1 \sup E_2 \sup \ldots; mE_i < +\infty.$  Тогда  $E := \cap E_i \in D$   $\int_X \nu(E_i)_x d\mu = mE_i < +\infty(*)$  функция  $x \to \nu(E_i)_x \text{суммируема} \Rightarrow \text{п.в.}$  конечна. при всех  $x \ (E_i)_x \downarrow E_x$ , т.е.  $(E_1)_x \sup(E_2)_x \sup \ldots$  и  $\cap (E_i)_x = E_x$  при п.в.  $x \ \nu(E_i)_X \text{конечны}$  (для таких x). Тогда  $E_x \text{измерима}$  и  $\lim \nu(E_i)_x = \nu E_x$  по непр-ти меры  $\nu$  сверху. (Th. Лебега)  $|\nu(E_i)_x| \leq \nu(E_1)_x \text{сумм.} \Rightarrow \text{функция } x \to \nu E_x \text{изм.}$   $\int_X \nu E_x d\mu = \lim \int_X \nu(E_i)_x d\mu = \lim mE_i = mE$  (нерп. сверху меры m). Этот предельный переход корректен как раз по теореме Лебега  $(f_n \to f \text{ п.в. } g : |f_n| \leq g \text{сумм.}$  Тогда  $\int f_n \to \int f$ ). NB: мы доказали про пересечения и про объединения (пусть пересечения убывающие, а объединения дизъюнктные, но это лечится). Поэтому  $\cap_i(\cup_i A_{i,i}) \in D$ , если  $A_{i,i} \in \rho \ (\rho \subset D)$ .
- 4.  $mE=0\Rightarrow E\in D$   $\exists H\in D, H$  имеет вид  $\cap(\cup A_{i,j})$ , где все  $A_{i,j}\in \rho$   $E\subset H, mH=0$  из п.5 т. о продолжении (ЧТО?! поясните плез)  $0=mH=\int_X \nu H_x d\mu(x)\Rightarrow \nu H_x\ 0\ (=0$  при п.в. x).  $E_x\subset H_x\Rightarrow E_x-\nu$ -изм. (из полноты  $\nu$ ) и  $\nu E_x=0$  п.в. x  $\int_X \nu E_x d\mu=0=mE$
- 5. C неизм,  $mC < +\infty$ . Тогда  $C \in D$ .  $C = H \setminus e$ , где me = 0, H вида  $\cap (\cup A_{i,j})$ .  $C_x = H_x \setminus e_x$  изм. при п.в. x  $\nu e_x = 0$  п.в.x (проверено в п.4)  $\nu C_x = \nu H_x = \nu e_x$  изм. п.в.x  $\int_X \nu C_x = \int_X \nu H_x \int_X \nu e_x = \int \nu H_x = mH = mC$ .

6. C-m-изм. произвольное  $X=\sqcup X_k, Y=\sqcup Y_n \ (\mu X_k-\text{ кон, } \nu Y_n-\text{ кон.}).$   $C=\sqcup_{k,n}(\subset\cap(X_k\times Y_n))\in D \ (\text{по п.2}) \ (\text{т.к.}\subset\cap(X_k\times Y_n)\in D \ \text{по п.5})$ 

# 25 Теорема Тонелли

<  $X, \alpha, \mu>, <$   $Y, \beta, \nu>$  - пространства с мерой  $\mu, \nu$  -  $\sigma$ -конечны, полные  $m=\mu \times \nu$   $f: X \times Y \to \overline{R}, \ f \geq 0, \ f$  - измерима относительно т Тогда:

- 1. при *почти всех*  $x \in X$   $f_x$  измерима на Y, где  $f_x : Y \to \overline{R}$ ,  $f_x(y) = f(x,y)$  (симметричное утверждение верно для у)
- 2. Функция  $x \mapsto \phi(x) = \int\limits_{\mathbb{Y}} f_x d\nu = \int\limits_{\mathbb{Y}} f(x,y) d\nu(y)$  измерима\* на  $\mathbb{X}$  (симметричное утверждение верно для у)

3. 
$$\int_{\mathbb{X}\times\mathbb{Y}} f(x,y)dm = \int_{\mathbb{X}} \phi(x)d\mu = \int_{\mathbb{X}} (\int_{\mathbb{Y}} f(x,y)d\nu(y))d\mu(x) = \int_{\mathbb{Y}} (\int_{\mathbb{X}} f(x,y)d\mu(x))d\nu(y)$$

#### Доказательство:

Докажем в 3 пункта, постепенно ослабляя ограничения на функцию f

- 1. Пусть  $C\subset \mathbb{X}\times \mathbb{Y}$  измеримо относительно m,  $f=\chi_C$ 
  - (a)  $f_x(y) = \chi_{C_x}(y)$ , где  $C_x$  сечение по х  $C_x$  измеримо при noumu scex х, так как это одномерное сечение, таким образом  $f_x$  измеримо, при noumu scex х.
  - (b)  $\phi(x) = \int_{\mathbb{Y}} f_x d\nu = \nu C_x$  по принципу Кавальери это измеримая\* функция.

(c) 
$$\int_{\mathbb{X}} \phi(x) d\mu = \int_{\mathbb{X}} \nu C_x d\mu \stackrel{\text{Кавальери}}{=} mc \stackrel{\text{опр.инт}}{=} \int_{\mathbb{X} \times \mathbb{Y}} \chi_C dm = \int_{\mathbb{X} \times \mathbb{Y}} f(x,y) dm$$

- 2. Пусть f ступенчатая,  $f \ge 0, f = \sum_{\text{кон}} a_k \chi_{C_k}$ 
  - (a)  $f_x = \sum a_k \chi_{(C_k)_x}$  измерима при почти всех х
  - (b)  $\phi(x) = \sum a_k \nu(C_k)_x$  измерима\* как конечная сумма измеримых

(c) 
$$\int\limits_{\mathbb{X}} \phi(x) = \int\limits_{\mathbb{X}} \sum_{\text{koh}} a_k \nu(C_k)_x d\mu = \sum_{\text{koh}} \int\limits_{\mathbb{X}} a_k \nu(C_k)_x d\mu = \sum_{\mathbb{X} \times \mathbb{Y}} f dm$$

3. Пусть f - измеримая,  $f \ge 0$   $f = \lim_{n \to +\infty} g_n$ , где  $g_n \ge 0$  - ступенчатая,  $g_n$  - монотонно возрастает к f (из Теоремы об апроксимации измеримой функции ступенчатыми)

(a) 
$$f_x = \lim_{n \to +\infty} (g_n)_x \Rightarrow f_x$$
 - измерима при *noчmu всех* х.

(b) 
$$\phi(x) = \int\limits_{\mathbb{Y}} f_x d\nu \stackrel{\text{т.Леви}}{=} \lim \int\limits_{\mathbb{Y}} (g_n)_x d\nu$$

$$\phi_n(x) := \int\limits_{\mathbb{Y}} (g_n)_x d\nu - \text{измерима по пункту 1}$$

$$0 \le (g_n)_x - \text{возрастает, тогда } \phi(x) - \text{измерима, } \phi_n(x) \le \phi_{n+1}(x) \le \dots \text{ и } \phi_n(x) \to \phi(x)$$
(c)  $\int\limits_{\mathbb{Y}} \phi(x) d\mu \stackrel{\text{т.Леви}}{=} \lim_{n \to +\infty} \int\limits_{\mathbb{Y} \times \mathbb{Y}} \phi_n(x) d\mu \stackrel{\text{п.2}}{=} \lim_{n \to +\infty} \int\limits_{\mathbb{Y} \times \mathbb{Y}} g_n dm \stackrel{\text{т.Леви}}{=} \int f dm$ 

# 26 Формула для Бета-функции

$$B(s,t) = \int\limits_0^1 x^{s-1}(1-x)^{t-1}, \ \text{где s u t} > 0 \text{ - Бета-функция}$$
 
$$\Gamma(s) = \int\limits_0^{+\infty} x^{s-1}e^{-x}dx, \ \text{где s} > 0, \ \text{тогда} \ B(s,t) = \frac{\Gamma(s)\Gamma(t)}{\Gamma(s+t)}$$
 
$$\underline{\underline{Loka3ateльсtbo:}}$$
 
$$\Gamma(s)\Gamma(t) = \int\limits_0^{+\infty} x^{s-1}e^{-x}(\int\limits_0^{+\infty} y^{t-1}e^{-y}dy)dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int\limits_0^{+\infty} x^{s-1}(\int\limits_x^{+\infty} (u-x)^{t-1}e^{-u}du)dx = \\ = \int\limits_0^{+\infty} \dots = \text{меняем порядок интегрирования}$$
 
$$x \ge 0$$
 
$$u \ge x$$
 
$$= \int\limits_0^{+\infty} du \int\limits_0^u dx(x^{s-1}(u-x)^{t-1}e^{-u}) = \begin{bmatrix} x \to v = \\ x = uv \end{bmatrix} = \int\limits_0^{+\infty} e^{-u}(\int\limits_0^1 u^{s-1}v^{s-t}u^{t-1}(1-v)^{t-1}udv)du = \\ = \int\limits_0^{+\infty} u^{s+t-1}e^{-u}(\int\limits_0^1 v^{s-1}(1-v)^{t-1}dv)du = B(s,t)\Gamma(s+t), \ \text{чтд.}$$

# $\mathbf{27}$ Объем шара в $\mathbb{R}^m$

$$\begin{split} &B(0,R)\subset R^{m}\\ &\lambda_{m}(B(0,R))=\int\limits_{B(0,R)}1d\lambda_{m}=\int\int\limits_{0}^{R}\int\limits_{0}^{\pi}d\sigma\int\limits_{0}^{\pi}d\phi_{1}...\int\limits_{0}^{\pi}d\phi_{m-2}\int\limits_{0}^{2\pi}d\phi_{m-1}r^{m-1}(sin\phi_{1})^{m-2}...(sin\phi_{m-2})=\rightarrow\\ &\int\limits_{0}^{\pi}(sin\phi_{k})^{m-2-(k+1)}=B(\frac{m-k}{2};\frac{1}{2})=\frac{\Gamma(\frac{m-k}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{m-k}{2}+\frac{1}{2})}\\ &\rightarrow=\frac{R^{m}}{m}\frac{\Gamma(\frac{m-1}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{m}{2})}\frac{\Gamma(\frac{m-2}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{m-1}{2})}...\frac{\Gamma(1)\Gamma(\frac{1}{2})}{\Gamma(\frac{3}{2})}2\pi=\\ &=\frac{\pi R^{m}}{m}\frac{\Gamma(\frac{1}{2})^{m-2}}{\Gamma(\frac{m}{2})}=\frac{\pi^{\frac{m}{2}}}{\Gamma(\frac{m}{2}+1)}R^{m} \end{split}$$

# 28 Теорема о вложении пространств $L^p$

$$\mu E < +\infty \ 1 \le s < r \le +\infty$$
 Тогда:

1. 
$$L_r(E,\mu) \subset L_s(E,\mu)$$

2.  $\forall f$ — измеримы  $||f||_s \leq \mu E^{1/s-1/r} ||f||_r$ 

#### Доказательство:

- 2 => 1 (Это очевидно: достаточно рассмотреть неравенство из пункта 2. Из него следует, что  $||f||_s < ||f||_r$ . см. опред.  $L_p$ )
- Рассмотрим два случая:

1.  $r = +\infty$  (очев.)

$$||f||_s \le (\int |f|^s * 1)^{1/s} \le ((esssup|f|)^s \int 1d\mu)^{1/s} = ||f||_\infty * \mu E^{1/s}$$

(последнее по опред. esssup)

 $2. r < +\infty$ 

$$(||f||_s)^s = \int |f|^s * 1d\mu \le \left(\int |f|^r\right)^{\frac{s}{r}} * \left(\int 1^{\frac{r}{r-s}}\right)^{\frac{(r-s)}{r}} = (||f||_r)^s * \mu E^{1-\frac{s}{r}}$$

(существенный шаг: применить неравество Гельдера)

# 29 Теорема о сходимости в $L_p$ и по мере

 $1 \le p < +\infty$ 

 $f_n \in L_p(\mathbb{X}, \mu)$ 

Тогда:

1.  $\bullet$   $f \in L_p$ 

•  $f_n \to f$  в  $L_p$ 

**Тогда:**  $f_n \stackrel{\mu}{\Rightarrow} f$  (по мере)

2. •  $f_n \stackrel{\mu}{\Rightarrow} f$  (либо если  $f_n \to f$  почти везде)

•  $|f_n| \le g$  почти при всех n ,  $g \in L_p$ 

**Тогда:**  $f_n \to f$  в  $L_p$ 

## <u>Доказательство:</u>

1.

$$X_n(\epsilon) := X(|f_n \to f| \ge \epsilon)$$

$$\mu X_n(\epsilon) = \int_{X_n} \left(\frac{f_n - f}{\epsilon}\right)^p = \frac{1}{\epsilon^p} \int_{X_n} |f_n - f|^p \le \frac{1}{\epsilon^p} \int_X |f_n - f|^p = \frac{1}{\epsilon^p} (||f_n - f||_p)^p \stackrel{n \to \infty}{\to} 0$$

2.  $f_n \stackrel{\mu}{\Rightarrow} f$  Тогда  $\exists n_k \mid f_{n_k} \to f$  почти везде.

Тогда  $|f| \leq g$  п. в.

$$|f_n-f|^p \leq (2g)^p$$
 – сумм. функции т. к.  $g \in L_p$ 

$$||f_n-f||_p=\int\limits_{\mathbf{X}}|f_n-f|^pd\mu\stackrel{n\to\infty}{\to}0$$
 (по теореме Лебега)

# 30 Полнота $L^p$

$$L_p(E,\mu)$$
  $1 \le p < \infty$  – полное

То есть любая фундаментальная последовательность сходиться по норме  $||f||_p$ .

$$\forall \epsilon > 0 \ \exists N \ \forall n, k \ ||f_n - f_k|| < \epsilon \Rightarrow \exists f \ | \ ||f_n - f|| \to 0$$

## Доказательство:

## 1. Построим f.

Рассмотрим фундаментальную последовательность  $f_n$ .

$$\exists N_1$$
 при  $n=n_1$   $k>N_1$   $||f_{n_1}-f_k||<rac{1}{2}$ 

$$\exists N_2$$
 при  $n=n_2$   $k>N_2,N_1$   $||f_{n_2}-f_k||<rac{1}{4}$ 

. . .

Тогда: 
$$\sum_{k=1}^{\infty} ||f_{n_{k+1}} - f_{n_k}|| < 1$$

$$f = \lim_{k \to \infty} f_{n_k}$$

Докажем, это функция f корректно задана:

• 
$$S_N(x) := \sum_{k=1}^N |f_{n_{k+1}} - f_{n_k}|$$

$$||S_N||_p \le \sum_{k=1}^N ||f_{n_{k+1}} - f_{n_k}|| < 1$$

Тогда по Теореме Фату:  $||S||_p \le 1$ 

Тогда  $|S|^p$  – суммируема

Тогда S(x) конечна при п. в. x и ряд  $\sum f_{n_{k+1}} - f_{n_k}$  абс. сход., а значит и просто сходиться при п. в. x

$$f:=f_{n_1}+\sum f_{n_{k+1}}-f_{n_k}$$
 т. е.  $f=$  п. в.  $\lim_{k o\infty}f_{n_k}$ 

# 2. Проверим, что $f_n \to f$ в $L_p$

Т. к. 
$$f_n$$
 – фунд., то  $\forall \epsilon > 0 \; \exists N \; \forall n, n_k > N \; ||f_n - f_{n_k}|| < \epsilon \Rightarrow ||f_n - f_{n_k}||^p = \int\limits_E |f_n - f_{n_k}|^p d\mu < \epsilon^p$ 

Тогда по теореме Фату:  $\int\limits_{E}|f-f_n|^p\leq \epsilon^p$ 

Тогда 
$$\forall \epsilon > 0 \; \exists N \; \forall n > N \; ||f - f_n||_p < \epsilon$$

**Замечание:**  $L_{\infty}$  – полное (упражнение)