UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: KJM 1110 – Organisk kjemi I

Eksamensdag: 13. august 2015 Tid for eksamen: 14:30-18:30

Oppgavesettet er på 4 sider + 2 sider vedlegg

Vedlegg: 2 sider med spektroskopiske data og

periodesystemet (bakerst i oppgavesettet)

Tillatte hjelpemidler: Molekylbyggesett og enkel kalkulator

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Alle 8 oppgaver teller likt.

Oppgave 1

En dikarbonylforbindelse **A** (molekylformel $C_7H_{12}O_2$) har 1H NMR-spekteret som er vist nedenfor. Foreslå en struktur for forbindelsen **A** som er i overensstemmelse med NMR-spekteret. Diskuter kort hvordan den foreslåtte strukturen er i overensstemmelse med NMR-spekteret.

Oppgave 2

a) Hvilke(n) av de følgende Newman-projeksjonene viser ikke 2-metylheksan?

b) Tegn de to stolkonformasjonene til mentylklorid, og avgjør hvilken konformasjon som er mest stabil. Grunngi svaret.

c) En E2-eliminasjon skjer fortrinnsvis fra en konformasjon der de to gruppene som elimineres er orientert anti-periplanart i forhold til hverandre. Med utgangspunkt i dette og svaret ditt i b), hva blir strukturen til produktet som dannes når mentylklorid undergår eliminasjon ved behandling med natriumetoksid (NaOCH₂CH₃) i etanol?

Oppgave 3

- a) Aspartam er et søtningsstoff som brukes i bl. a. NutraSweet®. Aspartam inneholder to nitrogenatomer. Ett av disse nitrogenatomene er mye sterkere base enn det andre.
 - i) Identifiser hvilket nitrogenatom som er mest basisk, og begrunn valget.
 - ii) Tegn strukturen til forbindelsen som dannes når aspartam protoneres med HCl.
 - iii) Hva blir dannet ved fullstendig hydrolyse av aspartam i sur vandig løsning?

b) Aminer vil i surt miljø undergå protonering slik at det dannes ammonium-ioner. En slik syre/base-reaksjon er vist under. p K_a -verdiene til tre ammonium-ioner, med substituentene Y = H, CN og NH₂, har blitt bestemt ved titreranalyse. De tre p K_a -verdiene, i tilfeldig rekkefølge, er 1,74, 4,63 og 6,15.

$$Y \longrightarrow NH_2 + H^+ \longrightarrow Y \longrightarrow NH_3^+$$
 amin ammonium-ion

Hvilken p K_a -verdi hører sammen med hvilken substituent Y? Hvilket amin er den sterkeste basen, og hvilket er den svakeste? Begrunn svarene.

Oppgave 4

a) En forbindelse $\bf A$ med molekylformel C_8H_{14} reagerer med H_2 i nærvær av Pt. I denne reaksjonen dannes hydrokarbonet $\bf B$.

Den samme forbindelsen A reagerer med ozon, etterfulgt av Zn i eddiksyre, under dannelse av disse tre forbindelsene:

$$H$$
 H_3C CH_3 H

Hva er strukturen til forbindelsen **A** (C₈H₁₄) ?

b) Vis mekanismen for den syrekatalyserte reaksjonen under ved bruk av elektronparforskyvningspiler. Pass på å vise syrekatalysatorens funksjon. Beskriv kort, med dine egne ord, hva som skjer i hvert trinn.

Oppgave 5

Vi ønsker å gjennomføre disse to flertrinns syntesene. Angi reagenser og strukturer for mellomprodukter i hvert tilfelle. Reaksjonsmekanismer trengs ikke.

Oppgave 6

Gi entydige IUPAC-navn på forbindelsene A-E.

Oppgave 7

a) Angi for hvert av parene hvilken forbindelse som er minst reaktiv i elektrofil aromatisk substitusjon. Gi en kort forklaring.

b) Angi hva som blir hovedproduktet i denne reaksjonen. Gi en kort forklaring.

- c) Av de tre isomerene av dimetylbenzen (dvs. orto-, meta- og para-xylen) er det én isomer som acetyleres med CH₃COCl i nærvær av AlCl₃ mye hurtigere enn de to andre isomerene.
 - i) Hvilken isomer er det som reagerer hurtigst, og hvorfor?
 - ii) Hva blir hovedproduktet fra reaksjonen mellom denne isomeren og CH₃COCl/AlCl₃? Gi en kort forklaring.

Oppgave 8

Angi hva som blir organiske hovedprodukter i hver av reaksjonssekvensene under.

b)
$$\frac{1.2 \text{ CH}_3 \text{MgBr, THF}}{2. \text{ H}^+, \text{ H}_2 \text{O}}$$
?

¹H NMR kjemiske skift av protoner i forskjellige omgivelser.
Dersom protonet er omgitt av flere funksjonelle grupper, vil effektene være omtrent additive (forsterkende).

Type proton		Kjemisk skift (δ)
Referanse	Si(CH ₃) ₄	0,0
Alkyl (primær)	—СН ₃	0,7-1,3
Alkyl (sekundær)	—с н ₂ —	1,2-1,6
Alkyl (tertiær)	> сн—	1,4-1,8
Allylisk	C=C-CH	1,6-2,2
Metylketon	—с О С н ₃	2,0-2,4
Aromatisk metyl	Aryl—C H ₃	2,4-2,7
Alkynyl	—с≡с—н	2,5-3,0
Alkylhalid	C H —Halogen	2,5-4,0
Alkohol	>c OH	2,5-5,0
Alkohol, eter	>c< H	3,3-4,5
Vinylisk	C=C(H	4,5-6,5
Aromatisk	Aryl—— H	6,5-8,0
Aldehyd	—c(h	9,7-10,0
Karboksylsyre	—c_о_н	11,0-12,0

hydrogen 1	Periodesystemet											helium 2					
H													He				
1.0079																	4.003
lithium 3	beryllium	vilium 4 element name atomic number										boron 5	carbon 6	nitrogen	oxygen	fluorine	neon 10
li	Be									ibol		B	Č	Ń	Ô	F	Ne
6.044	_											· -	_		•	-	_
6.941 sodium	9.0122 magnesium											10.811	12.011 silicon	14.007	15.999 sulphur	18.998 chlorine	20.180 argon
11	12	um aluminium silicon phosphorus sulphur chlorine 13 14 15 16 17												18			
Na	Mg											ΑI	Si	Р	S	CI	Ar
22.990	24.305											26.982	28.086	30.974	32.065	35.453	39.984
potassium	calcium 20	scandium	titanium	vanadium 23	chromium 24	manganese	iron 26	cobalt 27	nickel 28	copper	zinc 30	gallium 31	germanium	arsenic	selenium 34	bromine 35	krypton
19		21	22		_	25 N#	-			29			32	33	_		36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.867	50.942	51.996	54.939	55.845	58.933	58.693	63.546	65.409	69.723	72.64	74.922	78.96	79.904	83.798
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52 —	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.47	87.62	88.91	91.23	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium	barium 56	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
55		_		_		-	_		-	-		_			-	_	
Cs	Ва	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
francium 87	radium 88	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	darmstadtium 110	roentgenium 111	ununbium 112						
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub						
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[285]						

lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]