

Accessible and Reproducible Analyses with the CoLoMoTo notebook

Pedro T. Monteiro

INESC-ID / IST - Universidade de Lisboa

WTAC 2024 - Computational Systems Biology

Cellular interaction networks

Cell is tightly **regulated** at several levels

Cellular interaction networks

Methods of integrating data to uncover genotypephenotype interactions

Marylyn D. Ritchie ☑, Emily R. Holzinger, Ruowang Li, Sarah A. Pendergrass & Dokyoon Kim

Nature Reviews Genetics 16, 85–97 (2015) Cite this article

102k Accesses | 592 Citations | 170 Altmetric | Metrics

Key Points

- Technological advances have vastly expanded the amount of omic data currently available. Historically, each type of data was analysed separately, although approaches to integrate omic data sets to predict complex phenotypic traits are now emerging.
- Such systems genomics approaches to combine multiple data types provide a more comprehensive understanding of complex genotype-phenotype associations than analysis of one data set.
- Data from multiple sources that point to the association of the same gene or pathway are less likely to result in false positives.
- There are various strengths and weaknesses of the available strategies. The approach used needs to be selected according to specific types of data, different types of scientific questions or different types of underlying genomic models.

Pedro T. Monteiro

Networks to Models

$\textbf{Structural} \rightarrow \textbf{Dynamical view}$

Network components need to be quantified:

Values change over time (created / consumed)

Networks to Models

Structural → **Dynamical view**

Network components need to be quantified:

- Values change over time (created / consumed)
 - \Rightarrow We need something to describe the system' evolution!

(Kitano, Science 2002)

Networks to Models

Structural → Dynamical view

Network components need to be quantified:

- Values change over time (created / consumed)
 - ⇒ We need something to describe the system' evolution!

(Kitano, Science 2002)

Rely on models to analyse networks

- Understand of the way in which particular molecular mechanisms control a cellular process
- Predict novel phenomena that can be confronted with experimental data

(King, Garrett and Coghill, Bioinformatics 2005)

Modeling formalisms

Formalisms

A variety of physical and mathematical approaches are used:

- Non-linear
- Piecewise-linear
- Logical (Boolean networks)
- Petri nets
- Statistical-mechanical
- Stochastic

Hierarchy of modeling formalisms

Describe the system at different levels of detail (e.g. continuous vs qualitative)

(de Jong, J. Comput. Biol. 2002) (Hasty et al., Nat. Rev. Genet. 2001)
(Smolen et al., Bull. Mat. Biol. 2000) (Szallassi et al., Systems Modeling in Cellular Biology 2006)

Qualitative framework

Well established qualitative formalisms for modeling gene regulatory networks:

• Piecewise-linear differential equations (PLDEs)

(Glass and Kauffman, J. Theor. Biol. 1973)

• Logical formalism (Boolean networks) (Thomas et al., Bull. Math. Biol. 1995)

• Petri nets, ...

- Lack of quantitative data (ON/OFF mechanisms, thresholds)
- Discrete time

Qualitative framework

Well established qualitative formalisms for modeling gene regulatory networks:

Piecewise-linear differential equations (PLDEs)

(Glass and Kauffman, J. Theor. Biol. 1973)

• Logical formalism (Boolean networks) (Thomas et al., Bull, Math, Biol, 1995)

Petri nets, ...

- Lack of quantitative data (ON/OFF mechanisms, thresholds)
- Discrete time

Implicit assumptions

- Ignore intermediate gene products (mRNA)
- Ignore gene expression machinery (RNA polymerase, ribosome)
- Simplification of complex interactions of regulators with DNA to single response function

Gene regulatory networks

 consist of genes, gene products (RNA, proteins), and the regulatory effect of the latter on the expression of other genes

(Bolouri et al., Computational Modeling of Gene Regulatory Networks 2008)

 cannot be reduced to direct interactions (transcriptional regulation), but also include indirect interactions (mediated by metabolism)

(Brazhnik et al., Trends Biotechnol 2002)

Different levels

Qualitative Dynamical Models in Biology

	Wet lab Lab book	Dry lab Program
	Biological material:	Dataset:
Material	- Cell type	- Source
	- Genetic background	- Format
Tools	Reagents & Equip.:	Software:
TOOIS	- Provider, brand,	- Version
Protocol	- Steps	- Commands
FIOLOCOI	- Conditions	- Parameters

	Wet lab Lab book	Dry lab Program
	Biological material:	Dataset:
Material	- Cell type	- Source
	- Genetic background	- Format
Tools	Reagents & Equip.:	Software:
TOOIS	- Provider, brand,	- Version
Protocol	- Steps	- Commands
Protocoi	- Conditions	- Parameters

The (reproducibility) devil is in the details!

Regulatory graph

- Is a tuple (G, E) where G denotes a set of nodes/vertices (eg. gene expression) and E a set of edges
- An edge $(i, j) \in E$ indicates that i regulates the expression of j
- Edges can have sign information about interactions:

 - . (i,j,+) for "i activates j" . (i,j,-) for "i inhibits j"

Boolean model (regulatory graph + logical rules) $\mathcal{M}=(G, K)$

(Thomas and d'Ari, Biological Feedback 1989)

- $G = \{g_i\}_{i=1,...,n}$ is a set of n regulatory components
- $\prod_{g_i \in G} \{0,1\}$ defines the state space $\mathcal S$
- ullet K is the set of regulatory functions $K_{g_i} \in K: \mathcal{S}
 ightarrow \{0,1\}$

$$K_{g_1}(x) = x_1 \lor (\neg x_1 \land \neg x_2) \lor (\neg x_1 \land x_3)$$

$$K_{g_2}(x) = \neg x_1 \lor \neg x_3$$

$$K_{g_3}(x) = x_1 \land x_2$$

- Gene expression has two (or more) levels: 0 (Inactive) and 1 (Active)
- K_{g_i} is a combination of basic Boolean operators: \neg , \land and \lor

Logical (Boolean) models

Boolean model (regulatory graph + logical rules) $\mathcal{M} = (G, K)$

(Thomas and d'Ari, Biological Feedback 1989)

- $G = \{g_i\}_{i=1,...,n}$ is a set of n regulatory components
- $\prod_{g_i \in \mathcal{G}} \{0,1\}$ defines the state space \mathcal{S}
- ullet K is the set of regulatory functions $K_{\mathbf{g}_i} \in K: \mathcal{S}
 ightarrow \{0,1\}$

$$K_{g_1}(x) = x_1 \lor (\neg x_1 \land \neg x_2) \lor (\neg x_1 \land x_3)
K_{g_2}(x) = \neg x_1 \lor \neg x_3
K_{g_3}(x) = x_1 \land x_2$$

- Gene expression has two (or more) levels: 0 (Inactive) and 1 (Active)
- K_{g_i} is a combination of basic Boolean operators: \neg , \wedge and \vee

No quantitative parameters but requires a precise description of competing effects (rates, updating scheme, etc.)

Gene regulatory networks dynamics

State transition graph (STG)

- Represents the dynamics of the Boolean model
- ullet Nodes are states in ${\mathcal S}$
- Arcs $(i,j) \in S^2$ denote transitions between states

Successor state: $\forall_{g_i \in G}, g_i^{t+1} = K_{g_i}(g_1^t, \dots, g_n^t)$

State transition graph (STG)

- Represents the dynamics of the Boolean model
- ullet Nodes are states in ${\cal S}$
- Arcs $(i,j) \in S^2$ denote transitions between states

Successor state:
$$\forall_{g_i \in G}, g_i^{t+1} = K_{g_i}(g_1^t, \dots, g_n^t)$$

Attractors

Correspond to (biologically relevant) asymptotic behaviours

- **Stable state**: all gene levels are maintained e.g., differentiated states, death, ...
- Complex attractor: long-lasting oscillatory behaviour e.g., cell cycle, ...

Gene regulatory network dynamics

Interesting properties

- What are the attractors of the system? (stable states, complex attractors) Is there multistability?
- Are these attractors reachable from initial conditions?
- Are these attractors maintained under input variations?
- What is the likelihood of reaching an attractor from a given portion of the state space?
- ...

	# States	
# Components	Boolean	3-valued
3	8	27
10	1 024	59 049
20	1 048 576	3 486 784 401
30	1 073 741 824	205 891 132 094 649
40	1 099 511 627 776	12 157 665 459 056 928 801

	# States	
# Components	Boolean	3-valued
3	8	27
10	1 024	59 049
20	1 048 576	3 486 784 401
30	1 073 741 824	205 891 132 094 649
40	1 099 511 627 776	12 157 665 459 056 928 801

ullet As the model size increases \Rightarrow manually intractable

	# States	
# Components	Boolean	3-valued
3	8	27
10	1 024	59 049
20	1 048 576	3 486 784 401
30	1 073 741 824	205 891 132 094 649
40	1 099 511 627 776	12 157 665 459 056 928 801

- As the model size increases ⇒ manually intractable
- State transitions graphs are not practical for most current models

	# States	
# Components	Boolean	3-valued
3	8	27
10	1 024	59 049
20	1 048 576	3 486 784 401
30	1 073 741 824	205 891 132 094 649
40	1 099 511 627 776	12 157 665 459 056 928 801

- As the model size increases ⇒ manually intractable
- State transitions graphs are not practical for most current models
- Logical models enable efficient analytical methods

Explosion of number of transitions

In absence of kinetic knowledge, many alternative trajectories are possible

Explosion of number of transitions

(Pauleve et al., Nat. Comm. 2020)

Useful to compute over-approximations of reachability properties

Methods: identification of attractors

Methods

- Stable states: fixed points of the dynamics Constraint solving ∃x : f(x) = x
- Complex attractors: cycles of the dynamics Symbolic exploration $\exists C : \forall x \in C : F(x) = C$
- Trap spaces: stable patterns of the dynamics Constraint solving ∃C: ∀x ∈ C: f(x) ∈ C

(Naldi et al., CMSB 2007)

(Garg et al., Bioinformatics 2008)

(Klarner et al., Nat Comput 2015)

Identification of reachabilities (A \rightarrow B)

- Explicitly generating the whole STG memory inefficient
- Symbolic model-checking (NuSMV, ...)

(Monteiro et al., WODES 2014)

• Static analysis on prime-implicant graph (Pint) efficient/approximation

(Pauleve et al., Math Structures Comput Sci 2012)

Identification of reachabilities (A \rightarrow B)

- Explicitly generating the whole STG memory inefficient
- Symbolic model-checking (NuSMV, ...)

(Monteiro et al., WODES 2014)

See Ben Hall's lecture!

• Static analysis on prime-implicant graph (Pint) efficient/approximation

(Pauleve et al., Math Structures Comput Sci 2012)

• Avatar (Mendes et al., Frontiers in Physiology 2018) @(bioLQM&GINsim)

11100

• MaBoSS (Stoll et al., BMC Syst Biol 2012)

11**0**10

01000

Quantification of reachability

11**0**10

01000

Probabilities of transition (firing rates)

11000

Stochastic simulations

Estimated distribution of state's probabilities

• Avatar (Mendes et al., Frontiers in Physiology 2018) @(bioLQM&GINsim)

11100

• MaBoSS (Stoll et al., BMC Syst Biol 2012)

See Vincent Noel's lecture!

Gene Interaction Network simulation - GINsim

Gene Interaction Network simulation is a computer tool for the modeling and simulation of genetic regulatory networks implementing the logical formalism http://ginsim.org

Gene Interaction Network simulation is a computer tool for the modeling and simulation of genetic regulatory networks implementing the logical formalism http://ginsim.org

Analysis methods

Static Analysis:

- Stable state search
 (Naldi et al., CMSB 2007)
- Circuit analysis
 (Thieffry, Brief, Bioinform, 2007)
- Model reduction

```
(Naldi et al., Theor, Comput. Sci. 2011)
```

Dynamics:

- STG construction
- HTG construction
 (Bérenguier et al., Chaos 2013)
- Priority classes
 (Fauré et al., Bioinform. 2006)
- Perturbations
- Reachability (explicit)

Gene Interaction Network simulation - GINsim

Gene Interaction Network simulation is a computer tool for the modeling and simulation of genetic regulatory networks implementing the logical formalism http://ginsim.org

Analysis methods

Static Analysis:

- Stable state search
 (Naldi et al., CMSB 2007)
- Circuit analysis

(Thieffry, Brief. Bioinform. 2007)

Model reduction

(Naldi et al., Theor. Comput. Sci. 2011)

Dynamics:

- STG construction
- HTG construction
 (Bérenguier et al., Chaos 2013)
- Priority classes
 (Fauré et al., Bioinform. 2006)
- Perturbations
- Reachability (explicit)

Many other tools exist, though!

Software tools

Trajectory analysis
NuSMV

Network editor Cell Designer

Model building CaSO

Knowledge base Simulations

The Cell Collective

Attractors Reachability **Pint** Modification Visualization Attractors bioLQM GINsim

Exchange format qual

BoolNet Simulation Generation Delays

MaBoSS

Stochastic simulations Attractors

PyBoolNet Attractors Simulations **BoolSim** Attractors Symbolic reachability

CellNoptModel fitting
(data analysis)

Consortium for Logical Models and Tools

Install

Conda packages, Docker image

Perform analysis

Python API for all tools Jupyter: semi-interactive interface

Share

Analysis: Jupyter notebooks

Models: SBML qual exchange format

Try it online (No installation) Limited resources, download to save

tmpnb.colomoto.org

colomoto-docker (requires docker and Python) Python wrapper hiding complex docker commands

Pure Docker Raw Docker commands

Conda packages Linux only, less reproducible

(Naldi et al., Frontiers in Physiology 2018)

Maintained by:

Aurélien Naldi

Sporadically

Pedro Monteiro

Loic Paulevé

CoLoMoTo software tools - https://colomoto.github.io/colomoto-dock

BoNesis	https://github.com/ bnediction/bonesis	Synthesis of Boolean Networks from architecture and dynamical properties	Python module bonesis
BooleanNet	https://github.com/ialbert/ booleannet	Simulation of Boolean regulatory networks	Python module boolean2
boolSim	https://www.vital-it.ch/ research/software/boolSim	Attractors and reachable sets in synchronous and asynchronous Boolean networks	Python module boolsim
CABEAN	https://satoss.uni.lu/ software/CABEAN/	A Software Tool for the Control of Asynchronous Boolean Networks	Python module cabean
Caspo	https://bioasp.github.io/ caspo/	Reasoning on the response of logical signaling networks with Answer Set Programming	Python module caspo_control
CaSQ	https://github.com/soli/casq	Convert static interaction maps into executable models	Python module casq
CellCollective	https://cellcollective.org	Model repository and knowledge base	Python module cellcollective
ERODE	https://github.com/colomoto/ ERODE-CoLoMoTo	Backward Boolean Equivalence of Boolean networks	Python module erode
GINsim	http://ginsim.org	Boolean and multi-valued network modelling	Python module
MaBoSS	http://maboss.curie.fr	Markovian Boolean Stochastic Simulator	Python module maboss
mpbn	https://github.com/pauleve/ mpbn	Most Permissive Boolean Networks	Python module
NORDic	https://github.com/clreda/ NORDic	Network Oriented Repurposing of Drugs	Python module

Pedro T. Monteiro

Software tools

Problems

- Installation problems (OS, dependencies, ...)
- Interaction between tools (formats, versions, ...)
- Correct order of steps/commands
- Which parameters each tool

Software tools

Problems

- Installation problems (OS, dependencies, ...)
- Interaction between tools (formats, versions, ...)
- Correct order of steps/commands
- Which parameters each tool
- . .

CoLoMoTo docker/notebook

- Integrated access to (pre-installed) tools
- Interoperability between tools
- Reproducibility of analyses

CoLoMoTo docker

https://github.com/colomoto/colomoto-docker

Support: Linux, MacOS, Windows

Requirements: Docker, Python

Installation (or update)

pip install -U colomoto-docker

Usage (start the notebook)

colomoto-docker
colomoto-docker -V latest
colomoto-docker -V 2018-05-29

uses the most recently fetched image fetches the latest published image fetches a specific image

Load model

```
[1]: import ginsim

2  # Model URL: http://ginsim.org/node/4

3  lrg = ginsim.load("http://ginsim.org/sites/default/files/boolean_cell_cycle.zginml")

This notebook has been executed using the docker image colomoto/colomoto-docker:2024-04-01

Downloading http://ginsim.org/sites/default/files/boolean_cell_cycle.zginml

Do not forget attaching "boolean_cell_cycle.zginml" file with your notebook

Using local file boolean_cell_cycle.zginml
```

colomoto-docker --bind .

(model is saved in a local directory)

the notebook uses the current directory

Show LRG

Attractor identification

bioLQM

O

[9]: 1 from colomoto_jupyter import tabulate
2 import biolqm
3 lqm = ginsim.to_biolqm(lrg)
4 lqm_fixpoints = biolqm.fixpoints(lqm)
5 tabulate(lqm_fixpoints)

[9]: CycD Rb E2F CycE CycA p27 Cdc20 cdh1 UbcH10 CycB

0

Attractor identification

bioLQM

```
[9]: 1 from colomoto_jupyter import tabulate
2 import biolqm
3 lqm = ginsim.to_biolqm(lrg)
4 lqm_fixpoints = biolqm.fixpoints(lqm)
5 tabulate(lqm_fixpoints)

[9]: CycD Rb E2F CycE CycA p27 Cdc20 cdh1 UbcH10 CycB
```

Pint

O

O

0

0

Attractor identification (trapspaces)

bioLQM

- 1 trapspaces = biolgm.trapspaces(lgm) 2 tabulate(trapspaces)

[12]:		CycD	Rb	E2F	CycE	CycA	p27	Cdc20	cdh1	UbcH10	CycB	
	0	0	1	0	0	0	1	0	1	0	0	
	1	1	0	254	254	254	0	254	254	254	254	

Map attractors on model LRG (stable states)

Map attractors on model LRG (trap spaces)

Model perturbations

bioLQM

```
[18]: 1 lqm_p27_KO = biolqm.perturbation(lqm, "p27%0")
2 # lqm_p27_range = biolqm.perturbation(lqm, "p27%1:2")
3 lqm_CycD_p27 = biolqm.perturbation(lqm, "CycD:p27%0")
```

Pint

```
[20]: 1 pm_p27_KO = pm.lock(p27=0)
```

MaBoSS

```
[21]: 1 mb_p27_KO = mb.mutate("p27", "OFF")
```


Model reduction

bioLQM

```
[24]: 1 lqm_reduced = biolqm.reduce(lqm, "fixed,outputs")
2 tabulate(biolqm.fixpoints(lqm_reduced))
```

```
(Naldi et al., TCS 2011)
(Naldi et al., CMSB 2012)
```


Formal reachability analysis

Pint

```
1 an = biolgm.to pint(lgm)
2 target state = {"Apoptosis":1}
3 an.reachability(goal=target state)
```

True

NuSMV model checker

```
1 \text{ smv} = \text{an.to nusmv}()
2 ctl specs = {
       "stable-apoptosis": EF(AG(S(Apoptosis=1)))
5 smv.add ctls(ctl specs)
6 smv.verify()
{'stable-apoptosis': False}
```


Estimation of reachability probabilities

```
masim = biolqm.to_maboss(lqm)
mares = masim.run()
mares.plot piechart()
```


Mechanisms Underlying Lineage Commitment and Plasticity of Helper CD4⁺ T Cells

John J. O'Shea* and William E. Paul

CD4⁺ T cells are critical for host defense but are also major drivers of immune-mediated disease. These T cells specialize to become distinct subsets and produce restricted patterns of cytokines, which are tailored to combat various microbial pathogens. Although classically viewed as distinct lineages, recent work calls into question whether helper CD4⁺ T cell subsets are more appropriately viewed as terminally differentiated cells or works in progress. Herein, we review recent advances that pertain to this topic and the mechanisms that contribute to helper CD4⁺ T cell commitment and plasticity. The therapeutic implications of these new findings are also considered.

(O'Shea and Paul, Science 2010)

Case study - T-helper cell differentiation

- T-helper (CD4+) lymphocytes play a role in the regulation of immune responses
- Faced with pathogens, naive CD4+ T cells differentiate into distinct Th cell populations expressing distinct cytokine profiles
- Polarization into cell types is governed by transcription factors

Case study - T-helper cell differentiation

Objective

 Model capable of reproducing Th cell differentiation (Naldi et al., PLoS Comput. Biol. 2010)

Capable of exhibiting plasticity behaviours

Logical modelling of the Th network

(Naldi et al., PLoS Comp Biol 2010)

Model size: 64 components (13 inputs + 51 internal) and 138 interactions

Logical modelling of the Th network

(Naldi et al., PLoS Comp Biol 2010)

Model size: 64 components (13 inputs + 51 internal) and 138 interactions

STG size: 2⁶⁴ states!!

 \Rightarrow Too large to perform meaningful simulations!

Logical modelling of the Th network

Approach to analyse the T-helper cell differentiation model:

- Identify the biologically relevant states corresponding to Th cell subtypes
- Compute the reprogramming and plasticity between Th cell subtypes

Case study - T-helper cell differentiation

Start by computing the set of biologically relevant Th cell subtypes

	Master regulators				
Cell lineage	TBET	GATA3	RORGT	FOXP3	
Th0	0	0	0	0	
Th1	1	0	0	0	
Th17	0	0	1	0	
Th2	0	1	0	0	
Treg	0	0	0	1	
Th1 Foxp3+	1	0	0	1	
Th2 Foxp3+	0	1	0	1	
Treg ROR γ t+	0	0	1	1	
Th1 Foxp3+ RORγt+	1	0	1	1	
Th2 Foxp3+ ROR γ t+	0	1	1	1	
Th1 ROR γ t+	1	0	1	0	
Th2 ROR γ t+	0	1	1	0	

(Naldi et al., PLoS Comp Biol 2010)

Case study - T-helper cell differentiation

Then characterize the set of prototypic environmental conditions

		Inputs							
Tile code	description	APC	IL2_e	IL4_e	1L6_e	IL10_e	IL12_e	TGFB_e	IFNG_e
	no stimulation								
	APC only								
•	pro-Th1 (i)								
•	pro-Th1 (ii)								
	pro-Th2								
	pro-Th17								
•	pro-Treg (i)								
•	pro-Treg (ii)								

(Naldi et al., PLoS Comp Biol 2010)

Case study - Reachability analysis of relevant Th cell subtypes

Use **model checking** to systematically explore the reachability of all **Th cell subtypes** under all **environmental/input conditions**. Obtaining a "reprogramming map" between Th cell subtypes.

Gene Interaction Network simulation - GINsim

Differentiation

Model repository

http://ginsim.org/models_repository

Browse Models

Search by Keywords	Submitter	Taxon Process	
			∨ Apply
Title		Taxon - All terms	Process - All terms
Asymmetric Cell Division in Caulob	eacter Crescentus	Bacterium, C. Crescentus	Cell cycle, Asymmetric cell division
Boolean model of geroconversion		Mammal	Senescence
Budding yeast cell cycle (adapted	rom Irons, 2009)	Budding yeast, Yeast	Cell cycle
Budding yeast cell cycle (Fauré et	al. 2009)	Budding yeast, Yeast	Cell cycle
Budding yeast cell cycle (Orlando	et al. 2008)	Budding yeast, Yeast	Cell cycle
Budding yeast exit module		Budding yeast, Yeast	Cell cycle, Mitosis exit control
Cell fate decision network in the A	GS gastric cancer cell line (Flobak et al 2015)	Mammal	Cancer
Cell-Fate Decision in Response to	Death Receptor Engagement	Mammal	Cell fate decision
Contribution of ROS and metabolic	status to neonatal and adult CD8+ T cell activation	Mammal, Human	T-cell activation
Control of proliferation by oncogen	es and tumor suppressors	Mammal	Cell fate decision
Control of Th1/Th2 cell differentiati	on	Mammal	Differentiation

Hands On

- Load the Th model from GINsim model repository
 http://ginsim.org/sites/default/files/Frontiers-Th-Full-model-annotated.zginml
 but for pratical reasons (time/memory) we'll use the older/simpler model
 http://ginsim.org/sites/default/files/Th_17.zginml (Mendoza 2006)
 http://ginsim.org/sites/default/files/Th_differentiation_reduced_model.zginml (Naldi 2010)
- Display the regulatory graph
- Compute all stable states using the biolqm (and then Pint) python modules
- Visualise attractor on LRG
- Perform reachability analysis using boolsim, NuSMV, Pint, ...

Curie, Paris

INRIA, Paris

12M. Marseille

IGC, Oeiras

CoLoMoTo

IBENS, Paris

LaBRI, Bordeaux

Contacts

http://pedromonteiro.org

 ${\tt Pedro.Tiago.Monteiro@tecnico.ulisboa.pt}$