

Projeto ROBOSTEM

Acordo nº: 2019-1-RO01-KA202-063965

Plano de Aula de Física

Tópico/Disciplina: Oscilador Harmónico Simples

Grupo Alvo: 10º ano

Objetivos:

- Obj1. Modernizar o ensino da Física no ensino secundário.
- Obj2. Aumentar a eficiência didática no ensino da Física.
- Obj3. Cultivar o interesse dos alunos pela Física.
- Obj4. Compreender os princípios básicos de um Oscilador Harmónico, estudar a cinemática e a dinâmica do sistema.
- Obj5. Prever os valores das quantidades físicas, bem como a sua variação através do tempo, utilizando uma abordagem teórica (matemática).
- Obj6. Mostrar graficamente a relação entre a deslocação do objeto em relação ao tempo, e extrair valores para quantidades como período, frequência e amplitude.

Abordagem/Metodologia utilizada: Os alunos ligam diferentes objetos a uma mola vertical e definem-no para oscilar estendendo-os um pouco acima do sensor de proximidade. O sensor transfere os dados para o Arduíno que retrata no computador, construindo um gráfico em tempo real.

Meios/Ferramentas/Tecnologia Educacional

Objetos com massas variantes Mola de extensão Computador baseado no Windows com escritório instalado (Excel) Arduíno UNO BreadBoard Cabos Sensor Supersónico

Plano de trabalho

Hora	Atividades	Métodos/ meios
10 minutos.	Abordagem teórica do problema.	Projetor, Quadro-Negro
5 min.	Montar a configuração experimental.	Mola, Peso, Suporte, Arduíno,

Projeto ROBOSTEM

Acordo nº: 2019-1-RO01-KA202-063965

		Sensor
		Supersónico
10 minutos.	Descrever a posição em função do tempo e compará-la	Excel
	com uma função seno.	
5 min.	Calcular a frequência, o período e a frequência angular	Software de
	utilizando dados experimentais.	Análise
10 minutos.	Comparar os dados experimentais com os valores teóricos.	Quadro-negro
5 min.	Explicar as diferenças e discutir com os alunos.	Discussão em
		sala de aula

Avaliação/Feedback:

Houve desenvolvimento pessoal e aquisição de novos conhecimentos por parte dos professores e alunos que participaram no programa. Os alunos renovaram o seu interesse pela Física, principalmente através dos exercícios laboratoriais, e em segundo lugar dos trabalhos sintéticos. Através da formação prática de técnicas de STEM laboratoriais, os alunos ganharam autoconfiança, aumentando a cooperação entre eles e reforçando a sua capacidade de trabalho em equipa, melhorando a comunicação entre o professor e os alunos.

Bibliografia:

Hugh D. Young, Roger A. Freedman. University Physics with Modern Physics with Mastering Physics: