Modifications of superoxide dismutase (SOD1) in human erythrocytes: a possible role in amyotrophic lateral sclerosis (ALS)

Kyle C. Wilcox^{1,2,†}, Li Zhou^{1,3,†}, Joshua Jordon¹, Yi Huang⁵, Yanbao Yu⁵, Rachel L. Redler¹, Xian Chen^{1,2,3}, Michael Caplow¹, and Nikolay V. Dokholyan^{1,2,4}

From Department of Biochemistry and Biophysics¹, Program in Molecular and Cellular Biophysics², UNC-Duke Michael Hooker Proteomics Center³, and UNC Neuroscience Center⁴;

University of North Carolina at Chapel Hill, Chapel Hill NC 27510

From Fudan University, Shanghai, China⁵.

Running head: SOD1 modification pattern in erythrocytes

[†]Authors contributed equally to this work.

Address correspondence regarding mass spectrometry to Xian Chen, PhD, 120 Mason Farm Road, 3072 Genetic Medicine Building, Chapel Hill, NC 27599-7260 Email: xian_chen@med.unc.edu Address general correspondence to Nikolay V. Dokholyan, PhD, 120 Mason Farm Road, 3097 Genetic Medicine Building, Chapel Hill, NC 27599-7260 Email: dokh@med.unc.edu

Supplemental Figure 1:

Supplemental Figure 1 – MS/MS identification of singly-phosphorylated SOD1.

MS/MS analysis showing ions resulting from the fragmentation of SOD1 containing phosphorylated Thr-2. Ion signals corresponding to singly phosphorylated human SOD1 (precursor: m/z 1063.8 Da, 15+ charge state), are isolated for top-down experiments by μ ESI-FTICR-MS with (A) electron-capture dissociation (ECD) and (B) collision-induced dissociation (CID) respectively. Inspection of the fragment ions from the CID MS/MS spectrum of singly-phosphorylated human SOD1 (Figure 2 B) reveals the neutral losses of 80 or 98 Da in b_5 , b_6 , b_7 , b_8 , b_{10} and b_{11} . The ECD MS/MS spectrum of singly-phosphorylated SOD1 indicates 100% amino acid sequence coverage. 50 scans.

Supplemental Figure 2:

Supplemental Figure 2 – MS/MS identification of hydrated singly-phosphorylated SOD1.

MS/MS analysis showing ions resulting from the fragmentation of hydrated SOD1 containing phosphorylated Thr-2. Ion signals corresponding to hydrated singly-phosphorylated human SOD1 (precursor: m/z 1139.6 Da, 14+ charge state), are isolated for top-down experiments by μESI-FTICR-MS with (A) electron-capture dissociation (ECD) and (B) collision-induced dissociation (CID) respectively. Inspection of the fragment ions from the CID MS/MS spectrum of hydrated singly-phosphorylated human SOD1 (Figure 2 B) reveals the neutral loss of 80 or 98 Da in b₅, b₆, b₇, b₈, b₁₀ and b₁₁. The ECD MS/MS spectrum of hydrated singly-phosphorylated SOD1 indicates 100% amino acid sequence coverage. 50 scans.

Supplemental Figure 3:

Supplemental Figure 3. MS/MS spectrum showing the fragmentation products of the D92-R115 parent peptide \pm glutathione.

Upper panel: Observed y- and b-ions are identified in the spectrum and the sequence diagram. The parent peptide, DGVADVSIEDSVISLSGDHCIIGR, has a mass of 2457.24 Da.

Lower panel: Observed y- and b-ions are identified in the spectrum and the sequence diagram. The parent peptide DGVADVSIEDSVISLSGDHCIIGR, (glutathionylated at Cys-111), has a mass of 2762.29 Da.

Supplemental Figure 4:

Supplemental Figure 4 – MS/MS identification of hydrated doubly-phosphorylated SOD1.

MS/MS analysis showing ions resulting from the fragmentation of hydrated SOD1 containing phosphorylated Thr-2 and Thr-58/Ser-59. Ion signals corresponding to hydrated singly-phosphorylated human SOD1 (Precursor: m/z 1145.6 Da, 14+ charge state.), are isolated for top-down experiments by µESI-FTICR-MS with electron-capture dissociation (ECD). The ECD MS/MS spectrum of hydrated singly-phosphorylated SOD1 indicates 100% amino acid sequence coverage. 50 scans.

Supplemental Figure 5:

1	ACA-T-KJAJVJCJVJLJKJGJDJGJPJVJQJGJIJJJNJFJ	20
21	E-Q-K-E-S-N-G-P-V-K-V-W-G-S-I-K-G-L-T-E-	40
41	GLHGFHVHEFGDN-TAGCT-S-A-	60
61	GP-H-F-N-P-L-S-R-K-H-G-G-P-K-D-E-R-H-	80
81	V-G-D-L-G-N-V-T-A-D-K-D-G-V-A-D-V-S-I-E-	100
101	D-S-V-I-S-L-S-G-D-H- <u>C</u> -I –I -G-R-T-L-V-V-H-	120
121	E-K-A-D+D+L-G-K-G-G-N-E-E-S+T-K+T-G-N+A-	140
141	G-S-R-L-A- <u>C</u> -G-V-I-G-I-A-Q	

Supplemental Figure 5 – MS/MS identification of glutathionylated SOD1.

MS/MS analysis showing ions resulting from the fragmentation of Glutathionylated SOD1. Ion signals corresponding to hydrated singly-phosphorylated human SOD1 (Precursor: m/z 1794.1 Da, 9+ charge state.), are isolated for top-down experiments by μ ESI-FTICR-MS with electron-capture dissociation (ECD). The ECD MS/MS spectrum of hydrated singly-phosphorylated SOD1 indicates 73% amino acid sequence coverage. 50 scans.

Supplemental Figure 6:

Supplemental Figure 6. Mass spectrum of bovine erythrocyte SOD1. Deconvoluted μESI-FTICR mass spectrum of bovine erythrocyte SOD1. We observe a single peak at a monoisotopic mass of 15583.7891 Da (calculated mass is 15583.7930 Da).

Supplemental Figure 7:

Supplemental Figure 7. Mass spectrum of endogenous SOD1 from *S. cerevisiae***.** Deconvoluted μESI-FTICR mass spectrum of endogenous SOD1 isolated from *S. cerevisiae*. We observe monoisotopic mass peaks of 15756.9535 Da (calculated mass is 15756.8339 Da).

Supplemental Figure 8:

Supplemental Figure 8. Mass spectra of high/low charge SOD1 populations in yeast-isolated SOD1. Deconvoluted μESI -FTICR mass spectra of human SOD1 isolated from *S. cerevisiae* separated into high-and low-charge populations using anion exchange chromatography. We observe a shift due to glutathionylation in the highly-charge SOD1 population relative to the low-charge SOD1 population as in Fig. 1E. We do not observe phosphorylation.

Supplemental Figure 9:

Supplemental Figure 9. Mass spectra of SOD1 isolated from freshly-drawn human erythrocytes. Deconvoluted FTICR-MS spectra of SOD1 isolated from human erythrocytes processed immediately following removal from donors.