Exercises in Physics Assignment # 3

Date Given: April 21, 2022 Date Due: April 28, 2022

P1. (2 points) A particle which moves with curvilinear motion has coordinates in millimeters which vary with the time t in seconds according to $x = 3t^2 - 4t$ and $y = 4t^2 - t^3/3$. Determine the magnitudes of the velocity \boldsymbol{v} and acceleration \boldsymbol{a} and the angles which these two vectors make with x-axis when t = 2s.

Solution: Here we have $x = 3t^2 - 4t$, $v_x = dx/dt = 6t - 4$, $a_x = dv_x/dt = 6\text{mm/s}^2$, and $y = 4t^2 - t^3/3$, $v_y = dy/dt = 8t - t^2$, $a_y = dv_y/dt = 8 - 2t\text{mm/s}^2$. When t = 2s, one obtains

- $v_x = 8 \text{mm/s}, \ v_y = 12 \text{mm/s}, \ v = \sqrt{v_x^2 + v_y^2} \approx 14.42 \text{mm/s}, \ \text{and the angle between } \boldsymbol{v} \ \text{and } \boldsymbol{i} \ \text{is defined as follows:} \ \cos(\widehat{\boldsymbol{v}, \boldsymbol{i}}) = v_x/v = \cos\alpha, \ \cos(\widehat{\boldsymbol{v}, \boldsymbol{j}}) = v_y/v = \cos(\frac{\pi}{2} (\widehat{\boldsymbol{v}, \boldsymbol{i}})) = \sin(\widehat{\boldsymbol{v}, \boldsymbol{i}}) = \sin\alpha. \ \text{Therefore,} \ \alpha = \arctan v_y/v_x \approx 56.3^{\text{o}}$
- $a_x = 6 \text{mm/s}$, $a_y = 4 \text{mm/s}$, $a = \sqrt{a_x^2 + a_y^2} \approx 7.21 \text{mm/s}$, and the angle between \boldsymbol{a} and \boldsymbol{i} is defined as follows: $\cos(\widehat{\boldsymbol{a}, \boldsymbol{i}}) = a_x/a = \cos\beta$, $\cos(\widehat{\boldsymbol{a}, \boldsymbol{j}}) = a_y/a = \cos(\frac{\pi}{2} (\widehat{\boldsymbol{a}, \boldsymbol{i}})) = \sin(\widehat{\boldsymbol{a}, \boldsymbol{i}}) = \sin\beta$. Therefore, $\beta = \arctan a_y/a_x \approx 33.7^{\circ}$
- **P2.** (2 points) The position of a point that moves in the xy plane is given by $\mathbf{r} = \left(\frac{2}{3}t^3 \frac{3}{2}t^2\right)\mathbf{i} + \frac{t^4}{12}\mathbf{j}$, where \mathbf{r} is in meters and t is in seconds. Determine the angle between the velocity \mathbf{v} and the acceleration \mathbf{a} when (a) t = 2s and (b) t = 3s.

Solution: Here we have $\mathbf{r} = \left(\frac{2}{3}t^3 - \frac{3}{2}t^2\right)\mathbf{i} + \frac{t^4}{12}\mathbf{j}$, $\mathbf{v} = d\mathbf{r}/dt = \left(2t^2 - 3t\right)\mathbf{i} + \frac{t^3}{3}\mathbf{j}$, $\mathbf{a} = d\mathbf{v}/dt = \left(4t - 3\right)\mathbf{i} + t^2\mathbf{j}$,

- For t=2s one obtains $\mathbf{v}=2\mathbf{i}+\frac{8}{3}\mathbf{j}$, $\mathbf{a}=5\mathbf{i}+4\mathbf{j}$, and $\theta=\arccos\frac{\mathbf{v}\cdot\mathbf{a}}{|\mathbf{v}||\mathbf{a}|}\approx 14.47^{\circ}$.
- For t=3s one obtains $\boldsymbol{v}=9\boldsymbol{i}+9\boldsymbol{j},~\boldsymbol{a}=9\boldsymbol{i}+9\boldsymbol{j},$ and $\theta=0^{\circ}$ because $\boldsymbol{v}\parallel\boldsymbol{a}.$
- **P3.** (2 points) The basketball player likes to release his foul shots at an angle $\theta = 50^{\circ}$ to the horizontal as shown. What initial speed¹ v_0 will cause the ball to pass through the center of the rim?

Figure 1: Illustration to Problem 3.

Solution: Use the conventional xy coordinate system with the origin at the release point. Then $x(t) = x_0 + v_{0x}t$ and $y(t) = y_0 + v_{y0}t - \frac{1}{2}gt^2$, where $x_0 = y_0 = 0$, $v_{0x} = v_0\cos\theta$, $v_{0x} = v_0\sin\theta$, and $\theta = 50^{\circ}$.

¹By the speed v_0 we understand the magnitude of the vector \boldsymbol{v}_0 shown in Figure 1.

Exercises in Physics 2 of 2

Let t_f be the moment the ball reaches the hoop. Then $x(t_f)=4$ and $y(t_f)=3-2.1=0.9$. From equation for x coordinate, $4=v_0\cos 50^{\rm o}t_f$, one obtains $t_f=6.22/v_0$. Substitute this t_f into equation for y coordinate, $0.9=v_0\sin 50^{\rm o}\left(\frac{6.22}{v_0}\right)-\frac{9.81}{2}\left(\frac{6.22}{v_0}\right)^2$. By solving this equation, one obtains $v_0\approx 7.01 {\rm m/s}$.

P4. (4 points) A projectile is launched from point A with an initial speed² $v_0 = 30 \text{m/s}$. Determine the value of the launch angle α for which the projectile will land at point B.

Figure 2: Illustration to Problem 4.

Solution: Use the conventional xy coordinate system with the origin at point A. Then $x(t) = x_0 + v_{0x}t$ and $y(t) = y_0 + v_{y0}t - \frac{1}{2}gt^2$, where $x_0 = y_0 = 0$, $v_{0x} = v_0 \cos \alpha$, $v_{0x} = v_0 \sin \alpha$, and $v_0 = 30$. Let t_f be the moment the projectile reaches point B. Then $x(t_f) = 110$ and $y(t_f) = -24$. By solving the system

$$110 = 30(\cos \alpha)t_f$$

$$-24 = 30(\sin \alpha)t_f - \frac{9.81}{2}t_f^2$$

with respect to α and t_f , one obtains two³ possible solutions

- (a) $t_f \approx 4.26 \text{s}, \ \alpha \approx 30.5^{\circ}$
- (b) $t_f \approx 5.39 \text{s}, \ \alpha \approx 47.2^{\circ}$

To discriminate between these two solutions, let us check at what y coordinate the projectile will be when it reach the coordinate x = 85. Assume it will reach it some moment of time t_c .

- (a) From $x(t_c) = 85 = (30\cos 30.5^{\circ})t_c$ one obtains $t_c \approx 3.29$ s. At this moment of time $y(t_c) = 30(\sin 30.5^{\circ})t_c \frac{9.81}{2}t_c^2 \approx -2.93$ m. Therefore, conditions (a) are not possible.
- (b) From $x(t_c) = 85 = (30\cos 47.2^{\circ})t_c$ one obtains $t_c \approx 4.17$ s. At this moment of time $y(t_c) = 30(\sin 47.2^{\circ})t_c \frac{9.81}{2}t_c^2 \approx 6.50$ m. Therefore, conditions (b) represent positive clearance at the corner

Answer: $\alpha \approx 47.2^{\circ}$.

²By the speed v_0 we understand the magnitude of the vector \boldsymbol{v}_0 shown in Figure 2.

³From 1st equation we have $t_f = \frac{110}{30\cos\alpha}$. Substitute it to 2nd equation, $-24 = 30\sin\alpha\frac{110}{30\cos\alpha} - \frac{9.81}{2}\left(\frac{110}{30\cos\alpha}\right)^2 \Longrightarrow -24 = 110\tan\alpha - \frac{9.81}{2}\left(\frac{110^2}{30^2}\right)(1+\tan^2\alpha)$. Solve this quadratic (with respect to $\tan\alpha$) equation and define two possible solutions for α and t_f .