Colles - Semaine 6

I. Série 1

Exercice 1

Soient (u_n) et (v_n) les suites définies par $u_0=1,\,v_0=2,$ et :

$$\begin{cases} \forall n \in \mathbb{N}, \ u_{n+1} = 3u_n + 2v_n \\ \forall n \in \mathbb{N}, \ v_{n+1} = 2u_n + 3v_n \end{cases}$$

- **a.** Montrer que la suite $(u_n v_n)$ est constante.
- **b.** En déduire que (u_n) est arithmético-géométrique.
- c. Calculer u_n et v_n .
- d. Sans utiliser le résultat de la question précédente, déterminer la nature de la suite $(u_n + v_n)$. En déduire, en utilisant une autre méthode, le calcul de u_n et v_n .

Exercice 2

Résoudre l'inéquation suivante : $\sqrt{x+5} \geqslant \sqrt{x^2-4}$

II. Série 2

Exercice 1

On considère la suite (u_n) définie par : $\begin{cases} u_0 \in \mathbb{R} \\ u_1 \in \mathbb{R} \\ \forall n \geq 2, \ u_n = 4(u_{n-1} - u_{n-2}) \end{cases}$

- 1) Donner les valeurs de u_2 , u_3 et u_4 en fonciton de u_0 et u_1 .
- 2) On note (v_n) la suite définie par : $\forall n \in \mathbb{N}, \ u_n = 2^n v_n$.
 - **a.** Montrer que (v_n) vérifie la relation : $\forall n \geq 2, \ v_n v_{n-1} = v_{n-1} v_{n-2}$.
 - **b.** Quelle est la nature de la suite (v_n) ?
 - c. Exprimer (v_n) en fonction de n, u_0 et u_1 .
 - **d.** En déduire l'expression de u_n .
- 3) Déterminer la suite (u_n) dans le cas où : $u_0 = 1$ et $u_1 = 8$.
- 4) a. Déterminer la suite (u_n) dans le cas où : $u_0 = 1$ et $u_1 = 2$.
 - **b.** Que peut-on dire dans ce cas des suites (v_n) et (u_n) ?
 - c. Calculer alors la somme : $S_n = \sum_{k=1}^n u_k$.

Exercice 2

Résoudre l'inéquation suivante : $\ln(3x+1) \leq \ln(2x-1)$

III. Série 3

Exercice 1

- 1) Dresser le tableau de variation de la fonction f définie sur \mathbb{R}^+ par $f(x) = \ln(1+x)$. En déduire le signe de f.
- 2) Soit a un réel strictement positif et (u_n) la suite définie par :

$$\begin{cases} u_0 = a \\ \forall n \in \mathbb{N}, \ u_{n+1} = \ln(1 + u_n) \end{cases}$$

- $\pmb{a}.$ Démontrer que pour tout $n\in\mathbb{N},$ u_n est défini et $u_n>0.$
- **b.** Quel est le sens de variation de (u_n) ?

Exercice 2

Résoudre l'inéquation suivante : $5\left(\frac{1}{3}\right)^x \leqslant 10^{-10}$