

NON-DESTRUCTIVE EVALUATION TECHNIQUES
HIGH TEMPERATURE CERAMIC COMPONENT
PARTS FOR GAS TURBINES

H. Reiter, S. Hirsekorn, J. Lottermoser, K. Goebbel

Translation of "ZfP von Hochtemperatur-Keramik-Bauteilen für
KfZ-Turbinen", Fraunhofer-Institut für Zerstörungsfreie
Prüfverfahren, Saarbruecken, West Germany, Report Izfp-800305-TW.
March 6, 1980

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D.C. 20546

September 1984

STANDARD TITLE PAGE

1. Report No. NASA TM-77755	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle NON-DESTRUCTIVE EVALUATION TECHNIQUES - HIGH TEMPERATURE CERAMIC COMPONENT PARTS FOR GAS TURBINES		5. Report Date <u>September 1981</u>	
7. Author(s) H. Reiter, S. Hirsekorn, J. Lottermoser, K. Goebbel Fraunhofer Institute for NDE		6. Performing Organization Code	
9. Performing Organization Name and Address Leo Kanner Associates, Redwood City, California 94063		8. Performing Organization Report No.	
12. Sponsoring Agency Name and Address National Aeronautics and Space Adminis- tration, Washington, D.C. 20546		10. Work Unit No.	
		11. Contract or Grant No. <u>NASW-3199</u>	
		13. Type of Report and Period Covered Translation	
		14. Sponsoring Agency Code	
15. Supplementary Notes Translation of "Zfp von Hochtemperatur-Keramik-Bauteilen für KfZ-Turbinen", Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren, Saarbruecken, West Germany, Report Izfp-800305-TW, March 6, 1980			
16. Abstract <p>This report concerns studies conducted on various tests undertaken on material without destroying the material, including microradiographic techniques, vibration analysis, high-frequency ultrasonic tests with the addition of evaluation of defects and structure through analysis of ultrasonic scattering data, microwave tests and analysis of sound emission.</p>			
17. Key Words (Selected by Author(s))		18. Distribution Statement Unclassified-Unlimited	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages	22. Price

NON-DESTRUCTIVE EVALUATION TECHNIQUES
HIGH TEMPERATURE CERAMIC COMPONENT
PARTS FOR GAS TURBINES

H. Reiter, S. Hirsekorn, J. Lottermoser, K. Goebbel
Fraunhofer Institute for NDE

Contents

The present report deals with the studies conducted in 1979 within the second phase on the techniques appearing to be most promising in the first phase: /1*

- Microradiographics
- Vibration analysis
- High frequency ultrasound

as well as several studies not conducted up to that time:

- Defect and structure assessment through analysis of ultrasonic scattering data
- Microwave tests
- Analysis of sound emission.

The resolution capacity was optimized through micro-radiographic techniques. This includes, on the one hand, mechanical means for adjusting the sample (sample table with horizontal and vertical movement capabilities, rotation of the sample) and film cassette mounts or image amplification adjustment (setting of the geometric distance relationships, direct enlargement). On the other hand, the correct adjustment of energy and exposure parameters (mA x time) in relation to film and foil combinations as well as type, geometry and wall thickness of the irradiated object also belong to optimization.

An improvement in the test arrangement for the vibration analysis - design and construction of an appropriate support and an impact transmitter - led to results which could be reproduced even for complex geometries (turbine blades).

*Numbers in the margin indicate pagination in the foreign text.

In addition to the RH heads with piezoelectrically vaporized layers [2] a further possibility was tested of generating ultrasonic waves of high frequency through the electrical excitation of LiTaO_3 single crystals. Tests with the ultrasonic microscope SLAM demonstrated the suitability for describing structural inhomogeneities and defect detection in Si_3N_4 and SiC with ultrasonic waves of 100 MHz.

The studies on ultrasonic propagation in multiple-phase systems is a possibility for recognizing defects and assessing structure. Reflection, scattering, bending and absorption supply statements on the scattering object and the structure of the observed medium.

The studies with microwaves and the sound emission test did not supply any satisfactory results on defect detection and characterisation of the material with the presently employed experimental set-up and evaluation techniques.

Both measurement set-ups (RF and SLAM) are necessary for the /23 evaluation of structure and the detection of defects and the set-ups supplement one another. The RF measurement set-up is suitable for detecting very minute individual defects and offers the possibility of signal processing on the receiver side. Digitalisation and subsequent inverse filtration first via software and later via hardware in a black box will improve the resolution capacity. The commercially available SLAM, however, provides more rapid scanning of components with large surface areas and therefore permits a fast description of the structure and a corresponding quicker location of defects. It analyzes macroscopic volumes with microscopic resolution, somewhat comparable to microradiographic techniques.

In addition to this activity in the area of ultrasonics, there is a plan to supplement the series of studies conducted with one further method before concluding the project. Application of the heat conduction procedure for non-destructive techniques of high temperature ceramics SiC and Si_3N_4 will be tested.

Concept for a classification of defects in high temperature ceramics in relation to components and load:

(See following page for key)

<u>1 Belastung</u>	<u>Temperature</u>	<u>25 Zug, Druck, Scher (z.B. Flieh-, Einsp.-Kräfte)</u>	<u>29 Korrosion</u>
<u>2 Bauteil</u>	<u>15 (z.B. Thermoschock)</u>		<u>(z.B. Heißgasangriff)</u>
<u>3 Brennkammer,</u> <u>4 Flammrohr</u>		<u>26 Einspannung</u>	<u>30 amorphe SiO₂- Schichten</u>
<u>5 Wandstärke- änderungen</u>	<u>16</u>		<u>innere Oxidation</u>
<u>6 Bohrungen</u>	<u>Risse</u>		
<u>7 Einlaufkonus, -spirale</u>	<u>17 Geometrieunter- schiede</u>	<u>26 Einspannung</u>	<u>30 amorphe SiO₂- Schichten</u>
<u>5 Wandstärke- änderungen</u>	<u>16 Risse</u>		<u>innere Oxidation</u>
<u>8 Kanten</u>	<u>18 Klebestelle</u>		
<u>9 Leitkranz</u>	<u>7 (Einlaufspirale)</u>		
<u>9 Leitkranz</u>	<u>17 Geometrieunter- unterschiede</u>		<u>30 amorphe SiO₂- Schichten</u>
<u>10 innerer, äußerer Ring</u>	<u>19 Ungleichmäßige thermische Aus- dehnung</u>		<u>innere Oxidation</u>
<u>11 Schaufeln</u>	<u>leading-, trailing edge</u>		<u>31 Oberflächenfehler</u>
<u>Rotor</u>	<u>20 Thermoschockrisse</u>	<u>Exzentrität, Reibung</u>	
<u>12 HP-Nabe + Schaufeln</u>	<u>21 Kriechen, langsames RiBwachstum</u>		
	<u>22 Geometrieänderungen</u>	<u>23</u>	
<u>13 HP-RB-Verbund</u>	<u>23 Bindefehler</u>	<u>Bindefehler</u>	
	<u>24 unterschiedliche Wärmeausdehnung</u>	<u>26 Einspannung</u>	<u>31 Oberflächenfehler</u>
<u>14 RB-Schaufeln</u>	<u>lead ing-, trailing edge</u>	<u>28 Schaufelkante, -fuß</u>	<u>30 amorphe SiO₂- Schichten</u>
			<u>innere Oxidation</u>

- Key:
1. load
 2. component
 3. combustion chamber
 4. flue
 5. alteration in wall thickness
 6. holes
 7. inlet cone, spiral
 8. edges
 9. guide rim
 10. inner and outer ring
 11. blades
 12. HP hub + blades
 13. HP-RB combination
 14. RB blades
 15. e.g. thermal shock
 16. cracks
 17. geometrical differences
 18. adhesion point
 19. uneven thermal expansion
 20. thermal shock cracks
 21. crawling, slow formation of cracks
 22. alterations in geometry
 23. defects in binding
 24. differing heat expansion
 25. push, pull, cutting
(e.g. centrifugal, clamping forces)
 26. clamping
 27. eccentricity, friction
 28. blade edge, base
 29. corrosion (e.g. attack by hot gas)
 30. amorphous SiO₂ layers, internal oxidation
 31. surface defects

Fig. 1: Sketch of the Microradiographic Set-Up

Abb. 2a

a HPSC - Scheibe, 5,7mm Dicke, WC - Einschluß

Abb. 2b

b 2 HPSN - Proben, Fe - und C - Einschluß

c 1 HPSC - Probe , Fe - Einschluß (von links nach rechts)

Fig. 2: Microradiogram of HPSC and HPSN Samples with artificially applied Defect Points

Key: a. HPSC disc, 5.7 mm thickness, WC Inclusion
b. 2 HPSN Samples, Fe and C Inclusion
c. 1 HPSC Sample, Fe Inclusion (from the left to the right)

Abb. 3a

Abb. 3b

Abb. 3c

Fig. 3: SiC Pipes with different Content of Silicon,
increasing from a to c.

Abb. 4a

a ohne Optimierung

Abb. 4b

b nach erfolgter Optimierung

Fig. 4: RBSN Centrifugal Disc with Saw Cuttings

Key: a. without optimizing
b. after optimizing

Izfp

Fig. 5: Support and Impact Transmitter in the Vibration Analysis

Abb. 5

Izfp

Fig. 6: Vibration Analysis with RBSN Blades

Key: a. series

Abb. 6

Fig. 7: High Frequency Ultrasound with a LiTaO₃ Converter

LiTaO₃

Fig. 8: Block Diagram of High Frequency Ultrasonic Measurement Set-Up ($\leq 150 \text{ MHz}$)

See following page for key.

- Key for Fig. 8:
- a. generation of impulse
 - b. receiver amplification
 - c. unit
 - d. store
 - e. computer
 - f. generation of burst
 - g. limiter
 - h. output amplification
 - i. sample
 - j. manipulator control
 - k. already present
 - l. under construction

0,1 μ s
20 mV

Abb. 9 a

a HPSC - Probe, fehlerfreie Stelle

0,1 μ s
20 mV

Abb. 9 b

b HPSC - Probe, Fe - Einschluß

Fig. 9: Ultrasonic Test of a 3.5 mm thick HPSC rod with Fe Inclusion, 16 MHz

Key: a. HPSC sample, free of defects
b. HPSC sample, Fe inclusion

0,1 μ s
20 mV

Abb.10 a

a HPSN-Probe, fehlerfreie Stelle

0,1 μ s
20 mV

Abb.10 b

b HPSN-Probe, C- Einschluß

Fig. 10: Ultrasonic Test of a 3.5 thick HPSN rod
with C inclusion, 16 MHz

Key: a. HPSN sample free of defects
b. HPSN sample, C inclusion

Fig. 11: Mode of Function of SAM

Schematisches Diagramm SLAM

(Kessler, Yuhas /4/)

Abb.

Fig. 12: Schematic Diagram of the SLAM

PHOTODETECTOR

LASER
SCANNER

KNIFE-
EDGE

SIN θ

DYNAMIC
RIPPLE

OBJECT

INCIDENT
SOUND

SLAM

Fig. 13: Detection of acoustic energy at the boundary surface by means of the laser.

Abb. 14 a

a
Einschluß

Abb. 14 b

b
Oberflächenschäden

Fig. 14: SLAM Photos of defect points in a HPSC disc.

Key: a. Inclusion
b. Surface damage

Abb. 15a

a Sägeschnitt $150 \cdot 50 \mu\text{m}^2$

Abb. 15b

b interferometrische Darstellung

Fig. 15: SLAM Photo of a saw cutting in a HPSN sample.

Key: a. saw cutting
b. interferometric representation

Fig. 16: SLAM Photos of defects in HPSN samples.

Key: a. Knoop impression
b. C inclusion

Abb. 17a

a
HPSC-Probe mit Fe-Einschluß

Abb. 17b

b
HPSC-Probe mit Fe-Einschluß,
interferometrische Darstellung

Fig. 17: SLAM Photo of an Fe inclusion in an HPSC sample.

Key: a. HPSC sample with Fe inclusion
b. HPSC sample with Fe inclusion, interferometric representation

Izfp

Fig. 18: Standardized scattering cross-section σ_N for pores in the case of incident longitudinal wave

Abb.

Fig. 20: Standardized longitudinal group and phase velocity
 v_g and v_{ph} for various volume parts of scattering.

Abb. 20

Fig. 21: Standardized dispersion coefficient α_N in the case of incident longitudinal wave.

Fig. 22: Standardized longitudinal group velocity,
theoretical and experimental values; Si_3N_4

Key: a. measurements
 b. theoretical results
 c. experimental values of various RBSN qualities

Fig. 23: Microwave tests with an RBSN rod.

Fig. 24: Microwave test with an RBSN centrifugal disc

Key:

- a. scanning track
- b. defect area

Fig. 25: Energy (E_{ges}) and Event Rate (n_{ges}) as a function of Fracture Load

Key: a. load

Fig. 26: Energy rate as a function of fracture load with different Knoop loads

Key: a. Knoop load b. total energy c. load

Fig. 27: Rate of Events as a Function of Fracture Load with varying Knoop Loads.

Key: a. Knoop load b. total events c. load

Fig. 28: Energy rate with the first SE signal as well as maximum energy rate as a function of fracture load.

Key: a. energy with the first SE signal
 b. load

Fig. 29: Energy rate with the first SE signal with varying Knoop load as a function of fracture load.

Key: a. Knoop load b. energy with first SE signal
c. load

Fig. 30: Maximum energy rate with varying Knoop load as a function of fracture load.

Key: a. Knoop load b. load

Abb. 31 a

Abb. 31 b

Abb. 31 c

Fig. 31: Sound emission signals, differences in signal form.
Key: a. at the probe b. time

REFERENCES

- [1] Reiter, H., K. Goebbel, W. Deuble, "Non-destructive evaluation of high temperature ceramic components for car turbines" IzfP Report No. 790204-TW, Saarbrücken, 1979.
- [2] Khuri-Yakub, B.T. and G.S. Kino, "1976 IEEE Ultrasonics Symposium Proceedings," pp. 564-566.
- [3] Goebbel, K. and H. Reiter, "Characterization of Defects and Heterogeneities in Si_3N_4 and SiC by Different NDT Methodes", Proceedings of the ARPA/AFML Review of Progress in Quantitative NDE, San Diego, 1979.
- [4] Kessler, L.C. and D.E. Yuhas, "Acoustic-Microscopy", 1979 Proc. of the IEEE, 67, 4, pp. 526-536, 1979.
- [5] Lemmons, R.A., C.F. Quate, "A Scanning Acoustic Microscope", 1973 IEEE Ultrasonics Symposium Proceedings, pp. 18-21, 1973.
- [6] Quate, C.F., "The Ultrasonic Microscope", Spektrum der Wissenschaft 1979, no. 12, pp. 24-33 (1979).
- [7] Kupperman, D.S., C. Sciammarella, N.P. Lapinski, A. Sather, D. Yuhas, L. Kessler, N.F. Fiore, "Preliminary Evaluation of Several Nondestructive Evaluation Techniques for Silicon Nitride Gas Turbine Rotors", ANL Report 77-89, January 1978.
- [8] Kupperman, D.S., D. Yuhas, C. Sciammarella, N.P. Lapinski, N. Fiore, "Nondestructive Evaluation Techniques for Silicon Carbide Heat-Exchanger Tubes", ANL Report 79-4, March 1979.
- [9] Kupperman, D.S., A. Sather, N.P. Lapinski, C. Sciammarella, D. Yuhas, "Preliminary Evaluation of NDE Techniques for Structural Ceramics," Report AFML-TR 78-205, Proceedings ARPA/AFML Meeting, p. 214, 1978.
- [10] Truell, R., Ch. Elbaum, B.B. Chick, Ultrasonic Methods in Solid State Physics, Academic Press, New York, 1969.
- [11] Hirsekorn, S., "Scattering of even ultrasonic waves at spherical isotropic inclusions in an isotropic medium", IzfP Report No. 780157-TW, Saarbrücken, 1978.
- [12] Hirsekorn, S., "Scattering of even ultrasonic waves at spherical isotropic inclusions in an isotropic medium, taking multiple scattering into account", IzfP Report No. 790218-TW, Saarbrücken, 1979.
- [13] Tittmann, B.R., Cohen, E.R., Richardson, J.M., J. Acoust. Soc. Am. 63, 68 (1978).

- [14] Gubernatis, J.E., E. Domany, J.A. Krumhansl, J. Appl. Phys. 48, 2804 (1977).
- [15] Bahr, A.J., "Microwave Techniques for Nondestructive Evaluation of Ceramics", Report AD/A-048 582, AMMRC-CTR-77-29, Nov. 1977.
- [16] Lange, E., N. Müller, "Large Scale Production Test of Gas Turbine Components by Injection Molding", Sixth AMMRC Materials Technology Conference Ceramics for High Performance Applications III - Reliability, Orcas Island, Washington, July 1979.