Math 600 Fall 2017 Homework #5

Due Nov. 1, Wed. in class

Note: For the Euclidean space \mathbb{R}^n , consider the usual metric induced by the Euclidean norm $\|\cdot\|_2$ on \mathbb{R}^n , unless otherwise stated.

- 1. Let $f: M \to N$ be a continuous function on M. Use the sequential argument *only* to show that if A is a sequentially compact set in M, then f(A) is sequentially compact.
- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} . Which of the following four sets are necessarily open, closed, compact, and connected (no proof is needed)?

$$(1) \{x \in \mathbb{R} \mid f(x) = 0\}; \ (2) \{x \in \mathbb{R} \mid f(x) > 1\}; \ (3) \{f(x) \in \mathbb{R} \mid x \ge 0\}; \ (4) \{f(x) \in \mathbb{R} \mid 0 \le x \le 1\}.$$

- 3. Let $\|\cdot\|_2$ be the standard Euclidean norm on \mathbb{R}^n , and $\|\cdot\|_{\alpha}$ be an arbitrary norm on \mathbb{R}^n . Recall that both $\|\cdot\|_2$ and $\|\cdot\|_{\alpha}$ are continuous on $(\mathbb{R}^n, \|\cdot\|_2)$.
 - (1) Let $\mathbb{S}^{n-1} := \{x \in \mathbb{R}^n : ||x||_2 = 1\}$. Show that \mathbb{S}^{n-1} is closed in $(\mathbb{R}^n, ||\cdot||_2)$. (*Hint*: write \mathbb{S}^{n-1} as a suitable inverse image.)
 - (2) Show that \mathbb{S}^{n-1} is compact in $(\mathbb{R}^n, \|\cdot\|_2)$.
 - (3) Show that there exist $x^* \in \mathbb{S}^{n-1}$ and $y^* \in \mathbb{S}^{n-1}$ such that

$$||x^*||_{\alpha} = \max_{x \in \mathbb{S}^{n-1}} ||x||_{\alpha}, \qquad ||y^*||_{\alpha} = \min_{x \in \mathbb{S}^{n-1}} ||x||_{\alpha}.$$

Further show that $||x^*||_{\alpha} > 0$ and $||y^*||_{\alpha} > 0$.

(4) Let $c_1 := ||x^*||_{\alpha}$ and $c_2 := ||y^*||_{\alpha}$. Use (3) to show that

$$c_2 ||x||_2 \le ||x||_{\alpha} \le c_1 ||x||_2, \quad \forall \ x \in \mathbb{R}^n.$$

(*Hint*: for any $0 \neq x \in \mathbb{R}^n$, $\frac{x}{\|x\|_2} \in \mathbb{S}^{n-1}$.)

(5) Let $\|\cdot\|_{\beta}$ be another norm on \mathbb{R}^n . Use (4) to show that there exist $\kappa_1, \kappa_2 > 0$ such that

$$\kappa_2 ||x||_{\beta} \le ||x||_{\alpha} \le \kappa_1 ||x||_{\beta}, \quad \forall x \in \mathbb{R}^n.$$

- * This result shows that all norms on \mathbb{R}^n are equivalent.
- 4. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be continuous on \mathbb{R}^n . Define the function $g: \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^m$ as:

$$g(x) := (x, f(x)), \quad \forall \ x \in \mathbb{R}^n.$$

- (1) Show g is continuous on \mathbb{R}^n . (Hint: consider the sequential criterion.)
- (2) For the function f given above, define the following set (called the graph of f):

$$\mathcal{S} := \{(x, f(x)) \mid x \in \mathbb{R}^n\} \subseteq \mathbb{R}^n \times \mathbb{R}^m.$$

Show that S is closed and connected.

5. Show that a metric space (M, d) is connected if and only if the only open and closed sets in M are M and the empty set.

Miscellaneous practice problems: Do not submit

- 1. Let $f:[a,b] \to [a,b]$ be continuous on [a,b], where the real numbers a < b. Show that f has a fixed point on [a,b], namely, there exists $c \in [a,b]$ such that f(c) = c.
- 2. Let $f,g:(M,d)\to\mathbb{R}$ be continuous on M. Then (i) the set $\{x\in M:f(x)=g(x)\}$ is closed in (M,d); and (ii) the set $\{x\in M:f(x)>2g(x)\}$ is open in (M,d).