Lab Assignment 2: How to Load CSV, ASCII, and other data into Python - Rachel Holman

DS 6001: Practice and Application of Data Science

Instructions

Please answer the following questions as completely as possible using text, code, and the results of code as needed. Format your answers in a Jupyter notebook. To receive full credit, make sure you address every part of the problem, and make sure your document is formatted in a clean and professional way.

There are 11 data files attached to this lab assignment, with different extensions. First, download all of these data files, and save them in the same folder on your local machine. Your task in the following questions is to load each file into Python correctly, so that you can begin the process of data cleaning. If the variable names are included in the file, use those names to name the columns. If the variable names are not included, use these names in order:

If you loaded the data correctly, it will look like data_clean.csv, which is also attached to this lab.

Problem 0

Import the libraries you will need. Then write code to change the working directory to the folder in which you saved the data files, run the code displayed above to create the column_names list, load data_clean.csv, and display the output of the .info() method of data_clean. (1 point)

```
In [2]: import numpy as np
import pandas as pd
import os
# set working directory
os.chdir("/Users/rachelholman/Desktop/MSDS/MSDS-SummerCourses/DS6001 - Applicat

data_clean = pd.read_csv('data_clean.csv')
data_clean.info()
data_clean.head(3)
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 156 entries, 0 to 155
Data columns (total 11 columns):
```

#	Column	Non-Null Count	Dtype
0	Country	156 non-null	object
1	Happiness score	156 non-null	float64
2	Whisker-high	156 non-null	float64
3	Whisker-low	156 non-null	float64
4	Dystopia (1.92) + residual	156 non-null	float64
5	Explained by: GDP per capita	156 non-null	float64
6	Explained by: Social support	156 non-null	float64
7	Explained by: Healthy life expectancy	156 non-null	float64
8	Explained by: Freedom to make life choices	156 non-null	float64
9	Explained by: Generosity	156 non-null	float64
10	Explained by: Perceptions of corruption	156 non-null	float64
dtyp	es: float64(10), object(1)		
memo	ry usage 13 5+ KB		

memory usage: 13.5+ KB

\cap		+	$\Gamma \cap I$	
U	u	L	$L \angle J$	

	Country	Happiness score	Whisker- high	Whisker- low	Dystopia (1.92) + residual	Explained by: GDP per capita	Explained by: Social support	Explained by: Healthy life expectancy	Free to n
									cho
0	Finland	7.632	7.695	7.569	2.595	1.305	1.592	0.874	С
1	Norway	7.594	7.657	7.530	2.383	1.456	1.582	0.861	0
2	Denmark	7.555	7.623	7.487	2.370	1.351	1.590	0.868	0

Problem 1

Load data1.csv. Use the tools we discussed in class to decide whether the data file loaded correctly, and include that code in your lab report. In one or two sentences, describe how you decided on the right combination of parameters needed to load the data. (1 point)

```
In [3]: data1 = pd.read_csv('data1.csv', skiprows=2)
    data1.info()
    data1.head(3)
```

memory usage: 13.5+ KB

<class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 156 entries, 0 to 155
Data columns (total 11 columns):
    Column
                                                Non-Null Count Dtype
    _____
                                                 _____
 0
                                                156 non-null
                                                                object
    Country
 1
    Happiness score
                                                156 non-null
                                                                 float64
 2
    Whisker-high
                                                156 non-null
                                                                 float64
 3
    Whisker-low
                                                156 non-null
                                                                 float64
 4
    Dystopia (1.92) + residual
                                                156 non-null
                                                                 float64
    Explained by: GDP per capita
                                                156 non-null
                                                                 float64
    Explained by: Social support
                                                156 non-null
                                                                 float64
 7
    Explained by: Healthy life expectancy
                                                                 float64
                                                156 non-null
    Explained by: Freedom to make life choices
                                                156 non-null
                                                                 float64
    Explained by: Generosity
                                                156 non-null
                                                                 float64
 10 Explained by: Perceptions of corruption
                                                156 non-null
                                                                 float64
dtypes: float64(10), object(1)
```

Out[3]:

	Country	Happiness score	Whisker- high	Whisker- low	Dystopia (1.92) + residual	Explained by: GDP per capita	Explained by: Social support	Explained by: Healthy life expectancy	Free to n
0	Finland	7.632	7.695	7.569	2.595	1.305	1.592	0.874	С
1	Norway	7.594	7.657	7.530	2.383	1.456	1.582	0.861	0
2	Denmark	7.555	7.623	7.487	2.370	1.351	1.590	0.868	0

I first opened this dataset in a text editor to look at it and I noticed that the first two lines are not relevant to the code. Because of this, I utilized the skiprows function that I read about in the Mastering pandas - Second Edition textbook to ignore the first two lines when reading in the data.

Problem 2

Load data2.txt. Use the tools we discussed in class to decide whether the data file loaded correctly, and include that code in your lab report. In one or two sentences, describe how you decided on the right combination of parameters needed to load the data. (1 point)

```
In [4]: data2 = pd.read_csv('data2.txt', header=2, skiprows=range(3,4))
    data2.info()
    data2.head(3)
```

<class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 158 entries, 0 to 157
Data columns (total 11 columns):
    Column
                                                Non-Null Count Dtype
    _____
                                                 _____
 0
                                                                object
    Country
                                                158 non-null
 1
    Happiness score
                                                156 non-null
                                                                float64
 2
    Whisker-high
                                                156 non-null
                                                                float64
 3
    Whisker-low
                                                156 non-null
                                                                float64
 4
    Dystopia (1.92) + residual
                                                156 non-null
                                                                float64
    Explained by: GDP per capita
                                                156 non-null
                                                                float64
    Explained by: Social support
                                                156 non-null
                                                                float64
 7
    Explained by: Healthy life expectancy
                                                                float64
                                                156 non-null
    Explained by: Freedom to make life choices 156 non-null
                                                                float64
    Explained by: Generosity
                                                156 non-null
                                                                float64
 10 Explained by: Perceptions of corruption
                                                156 non-null
                                                                float64
```

dtypes: float64(10), object(1)
memory usage: 13.7+ KB

\cap		+	Γ	Л	1	
U	u	L	Ľ	4	J	

	Country	Happiness score	Whisker- high	Whisker- low	Dystopia (1.92) + residual	Explained by: GDP per capita	Explained by: Social support	Explained by: Healthy life expectancy	Free to n
									cho
0	Finland	7.632	7.695	7.569	2.595	1.305	1.592	0.874	С
1	Norway	7.594	7.657	7.530	2.383	1.456	1.582	0.861	0
2	Denmark	7.555	7.623	7.487	2.370	1.351	1.590	0.868	0

Once again, I opened this data file in text editor first and noticed we had to skip the first two lines AND the 4th line. I struggled for a while trying to do everything using the skiprows function, but finally realized with the help of a stack overflow post that I could use header and skiprows with the range() option to skip rows in the middle of a dataset.

Problem 3

Load data3.txt. Use the tools we discussed in class to decide whether the data file loaded correctly, and include that code in your lab report. In one or two sentences, describe how you decided on the right combination of parameters needed to load the data. (1 point)

```
In [5]: data3 = pd.read_csv('data3.txt', header=2, sep="\t")
    data3.info()
    data3.head(3)
```

dtypes: float64(10), object(1)

memory usage: 13.5+ KB

<class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 156 entries, 0 to 155
Data columns (total 11 columns):
    Column
                                                Non-Null Count Dtype
    _____
                                                 _____
 0
                                                156 non-null
                                                                object
    Country
 1
    Happiness score
                                                156 non-null
                                                                 float64
 2
    Whisker-high
                                                156 non-null
                                                                float64
 3
    Whisker-low
                                                156 non-null
                                                                 float64
 4
    Dystopia (1.92) + residual
                                                156 non-null
                                                                float64
    Explained by: GDP per capita
                                                156 non-null
                                                                float64
    Explained by: Social support
                                                156 non-null
                                                                 float64
 7
    Explained by: Healthy life expectancy
                                                                float64
                                                156 non-null
    Explained by: Freedom to make life choices
                                                156 non-null
                                                                float64
    Explained by: Generosity
                                                156 non-null
                                                                float64
 10 Explained by: Perceptions of corruption
                                                156 non-null
                                                                 float64
```

Out[5]:

	Country	Happiness score	Whisker- high	Whisker- low	Dystopia (1.92) + residual	Explained by: GDP per capita	Explained by: Social support	Explained by: Healthy life expectancy	Free to n
0	Finland	7.632	7.695	7.569	2.595	1.305	1.592	0.874	С
1	Norway	7.594	7.657	7.530	2.383	1.456	1.582	0.861	0
2	Denmark	7.555	7.623	7.487	2.370	1.351	1.590	0.868	0

I opened this data file in text editor, as I do before loading any code in Python, and realized that I not only had to skip the first 2 rows but also that the data was tab delineated, not comma separated. To read in correctly, I used the sep function that I read about in the Mastering pandas - Second Edition textbook.

Problem 4

Load data4.txt. Use the tools we discussed in class to decide whether the data file loaded correctly, and include that code in your lab report. In one or two sentences, describe how you decided on the right combination of parameters needed to load the data. (1 point)

```
In [6]: data4 = pd.read_csv('data4.txt', names=column_names, sep="$")
  data4.info()
  data4.head(3)
```

<class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 156 entries, 0 to 155
Data columns (total 11 columns):
#
    Column
                                                Non-Null Count Dtype
    _____
                                                 _____
 0
                                                                object
    Country
                                                156 non-null
 1
    Happiness score
                                                156 non-null
                                                                float64
 2
    Whisker-high
                                                156 non-null
                                                                float64
 3
    Whisker-low
                                                156 non-null
                                                                float64
 4
    Dystopia (1.92) + residual
                                                156 non-null
                                                                float64
    Explained by: GDP per capita
                                                156 non-null
                                                                float64
    Explained by: Social support
                                                156 non-null
                                                                float64
 7
    Explained by: Healthy life expectancy
                                                                float64
                                                156 non-null
    Explained by: Freedom to make life choices 156 non-null
                                                                float64
    Explained by: Generosity
                                                156 non-null
                                                                float64
```

10 Explained by: Perceptions of corruption dtypes: float64(10), object(1) memory usage: 13.5+ KB

Out[6]:

	Country	Happiness score	Whisker- high	Whisker- low	Dystopia (1.92) + residual	Explained by: GDP per capita	Explained by: Social support	Explained by: Healthy life expectancy	Free to n
0	Finland	7.632	7.695	7.569	2.595	1.305	1.592	0.874	С
1	Norway	7.594	7.657	7.530	2.383	1.456	1.582	0.861	0
2	Denmark	7.555	7.623	7.487	2.370	1.351	1.590	0.868	0

156 non-null

float64

When looking at the data in text editor, I saw that the variables were \$ delineated, so I once again employed the sep function. Also, there were no header column names, so I used the names function to assign them to the list given at the top of this assignment.

Problem 5

Load data5.csv. Use the tools we discussed in class to decide whether the data file loaded correctly, and include that code in your lab report. In one or two sentences, describe how you decided on the right combination of parameters needed to load the data. (1 point)

```
In [7]: data5 = pd.read_csv('data5.csv', skipfooter=2, engine="python")
   data5.info()
   data5.tail(3)
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 156 entries, 0 to 155
Data columns (total 11 columns):
```

#	Column	Non-Null Count	Dtype
0	Country	156 non-null	object
1	Happiness score	156 non-null	float64
2	Whisker-high	156 non-null	float64
3	Whisker-low	156 non-null	float64
4	Dystopia (1.92) + residual	156 non-null	float64
5	Explained by: GDP per capita	156 non-null	float64
6	Explained by: Social support	156 non-null	float64
7	Explained by: Healthy life expectancy	156 non-null	float64
8	Explained by: Freedom to make life choices	156 non-null	float64
9	Explained by: Generosity	156 non-null	float64
10	Explained by: Perceptions of corruption	156 non-null	float64
dtyp	es: float64(10), object(1)		
memo	ry usage: 13.5+ KB		

Out[7]:

		Country	Happiness score	Whisker- high	Whisker- low	Dystopia (1.92) + residual	Explained by: GDP per capita	Explained by: Social support	Explained by: Healthy life expectancy	Fre to
	153	South Sudan	3.254	3.385	3.123	1.691	0.337	0.608	0.177	
	154	Central African Republic	3.083	3.227	2.939	2.487	0.024	0.000	0.010	
	155	Burundi	2.905	3.074	2.735	1.752	0.091	0.627	0.145	

When I opened this file in text editor, at first it seemed perfectly normal and clean, but then I noticed the last two lines are not part of the data. I tried removing them with the skiprows function, but was removing data insted. so I looked at the pandas.read_csv API reference and discovered the skipfooter parameter. This worked, but gave warning advising me to inclide engine="python", so I did.

Problem 6

Load data6.dat. Use the tools we discussed in class to decide whether the data file loaded correctly, and include that code in your lab report. In one or two sentences, describe how you decided on the right combination of parameters needed to load the data. (1 point)

```
In [8]: data6 = pd.read_csv('data6.dat', na_values= 999.000)
    data6.info()
    data6.head(3)
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 156 entries, 0 to 155
Data columns (total 11 columns):
# Column
```

#	Column	Non-Null Count	Dtype
0	Country	145 non-null	object
1	Happiness score	142 non-null	float64
2	Whisker-high	135 non-null	float64
3	Whisker-low	136 non-null	float64
4	Dystopia (1.92) + residual	145 non-null	float64
5	Explained by: GDP per capita	137 non-null	float64
6	Explained by: Social support	134 non-null	float64
7	Explained by: Healthy life expectancy	142 non-null	float64
8	Explained by: Freedom to make life choices	140 non-null	float64
9	Explained by: Generosity	145 non-null	float64
10	Explained by: Perceptions of corruption	143 non-null	float64
dtyp	es: float64(10), object(1)		
memo	ry usage: 13.5+ KB		

Out[8]:

	Country	Happiness score	Whisker- high	Whisker- Iow	Dystopia (1.92) + residual	Explained by: GDP per capita	Explained by: Social support	Explained by: Healthy life expectancy	Free to n
0	Finland	7.632	7.695	7.569	2.595	NaN	NaN	NaN	С
1	Norway	7.594	7.657	7.530	NaN	NaN	1.582	NaN	0
2	Denmark	7.555	7.623	7.487	2.370	1.351	1.590	NaN	0

I opened this .dat file in text editor and noticed it was comma separated, so I used read_csv instead of read_fwf. This data loaded smoothly, but I had to turn to the pandas.read_csv API reference to find the na_values parameter which allowed me to replace the 999.000 values with NaN.

Problem 7

Load data7.xlsx, which is an Excel file. Keep only the sheet named "Data". Use the tools we discussed in class to decide whether the data file loaded correctly, and include that code in your lab report. In one or two sentences, describe how you decided on the right combination of parameters needed to load the data. (2 points)

```
In [9]: data7 = pd.read_excel('data7.xlsx', sheet_name =1)
    data7.info()
    data7.head(3)
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 156 entries, 0 to 155
Data columns (total 11 columns):
```

#	Column	Non-Null Count	Dtype
0	Country	156 non-null	object
1	Happiness score	156 non-null	float64
2	Whisker-high	156 non-null	float64
3	Whisker-low	156 non-null	float64
4	Dystopia (1.92) + residual	156 non-null	float64
5	Explained by: GDP per capita	156 non-null	float64
6	Explained by: Social support	156 non-null	float64
7	Explained by: Healthy life expectancy	156 non-null	float64
8	Explained by: Freedom to make life choices	156 non-null	float64
9	Explained by: Generosity	156 non-null	float64
10	Explained by: Perceptions of corruption	156 non-null	float64
dtyp	es: float64(10), object(1)		
	12 F. HD		

memory usage: 13.5+ KB

Out[9]:

	Country	Happiness score	Whisker- high	Whisker- low	Dystopia (1.92) + residual	Explained by: GDP per capita	Explained by: Social support	Explained by: Healthy life expectancy	Expla Free to n
0	Finland	7.632	7.695	7.569	2.595	1.305	1.592	0.874	С
1	Norway	7.594	7.657	7.530	2.383	1.456	1.582	0.861	0
2	Denmark	7.555	7.623	7.487	2.370	1.351	1.590	0.868	0

Because this is an .xlsx file, I opened it in Excel and noticed that the data was set up perfectly but was on its own sheet. For this type of data, I needed to use read_excel to load it in, and specify that the sheet_name I wanted to read was at index 1.

Problem 8

Load data8.dta, which is a Stata 13 file. Use the tools we discussed in class to decide whether the data file loaded correctly, and include that code in your lab report. In one or two sentences, describe how you decided on the right combination of parameters needed to load the data. (2 points)

```
In [10]: data8 = pd.read_stata('data8.dta')
    data8.info()
    data8.head(3)
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 156 entries, 0 to 155
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	country	156 non-null	object
1	happinessscore	156 non-null	float32
2	whiskerhigh	156 non-null	float32
3	whiskerlow	156 non-null	float32
4	dystopia192residual	156 non-null	float32
5	explainedbygdppercapita	156 non-null	float32
6	explainedbysocialsupport	156 non-null	float32
7	explainedbyhealthylifeexpectancy	156 non-null	float32
8	explainedbyfreedomtomakelifechoi	156 non-null	float32
9	explainedbygenerosity	156 non-null	float32
10	explainedbyperceptionsofcorrupti	156 non-null	float32
d+177	os: float32(10) object(1)		

dtypes: float32(10), object(1)

memory usage: 8.5+ KB

Out[10]:	country	happinessscore	whiskerhigh	whiskerlow	dystopia192residual	explainedbygdpperc
----------	---------	----------------	-------------	------------	---------------------	--------------------

0 Finland	7.632	7.695	7.569	2.595	
1 Norway	7.594	7.657	7.530	2.383	·
2 Denmark	7.555	7.623	7.487	2.370	

When I opened this data file in text editor it looked like nonsense, so I knew it would not use read_csv or read_excel. Then I remembered working with this sort of data file in our live coding lesson and implemented read_stata just like we did earlier today!

Problem 9

Load data9.sav, which is an SPSS file. Use the tools we discussed in class to decide whether the data file loaded correctly, and include that code in your lab report. In one or two sentences, describe how you decided on the right combination of parameters needed to load the data. (2 points)

```
In [11]: data9 = pd.read_spss('data9.sav')
    data9.info()
    data9.head(3)
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 156 entries, 0 to 155
Data columns (total 11 columns):
    Column
                 Non-Null Count Dtype
    _____
                 _____
0
                 156 non-null
                                object
    country
1
    happiness
                 156 non-null
                                float64
2
    whiskerhigh 156 non-null
                                float64
3
    whiskerlow
                 156 non-null
                                float64
4
                 156 non-null
                                float64
    dystopia
5
    gdpPC
                 156 non-null
                                float64
6
    socsupport
                 156 non-null
                                float64
7
                                float64
    lifeexp
                 156 non-null
    lifechoice
                 156 non-null
                                float64
9
    generous
                 156 non-null
                                float64
10 corrupt
                 156 non-null
                                float64
dtypes: float64(10), object(1)
memory usage: 13.5+ KB
```

Out[11]:

	country	happiness	whiskerhigh	whiskerlow	dystopia	gdpPC	socsupport	lifeexp	lifecho
0	Finland	7.632	7.695	7.569	2.595	1.305	1.592	0.874	0.6
1	Norway	7.594	7.657	7.530	2.383	1.456	1.582	0.861	0.6
2	Denmark	7.555	7.623	7.487	2.370	1.351	1.590	0.868	0.6

For this data set, I googled what .sav files needed to be loaded into Python and learned that they are SPSS, so I implemented read_spss. This turned out to be a bit tricky because I had to open my console and install pyreadstat in order for the function to run without error.

Problem 10

Load data10.xpt, which is a SAS file. Use the tools we discussed in class to decide whether the data file loaded correctly, and include that code in your lab report. In one or two sentences, describe how you decided on the right combination of parameters needed to load the data. (If some of the country names display as b'Finland', don't worry aout that.) (2 points)

```
In [12]: data10 = pd.read_sas('data10.xpt')
    data10.columns=column_names
    data10.info()
    data10.head(3)
```

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 156 entries, 0 to 155 Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Country	156 non-null	object
1	Happiness score	156 non-null	float64
2	Whisker-high	156 non-null	float64
3	Whisker-low	156 non-null	float64
4	Dystopia (1.92) + residual	156 non-null	float64
5	Explained by: GDP per capita	156 non-null	float64
6	Explained by: Social support	156 non-null	float64
7	Explained by: Healthy life expectancy	156 non-null	float64
8	Explained by: Freedom to make life choices	156 non-null	float64
9	Explained by: Generosity	156 non-null	float64
10	Explained by: Perceptions of corruption	156 non-null	float64
dtyp	es: float64(10), object(1)		

memory usage: 13.5+ KB

Out[12]:

	Country	Happiness score	Whisker- high	Whisker- low	Dystopia (1.92) + residual	Explained by: GDP per capita	Explained by: Social support	Explained by: Healthy life expectancy	Fr to
0	b'Finland'	7.632	7.695	7.569	2.595	1.305	1.592	0.874	
1	b'Norway'	7.594	7.657	7.530	2.383	1.456	1.582	0.861	
2	b'Denmark'	7.555	7.623	7.487	2.370	1.351	1.590	0.868	

I used Google to figure out what the .xpt extention is and determined that it should be read in using read_sas. Once the data was read in, I changed the column names by adding the line data6.columns = column_names just so I can refer to this if I forget how in the future.

Problem 11

Please load the data11.txt file, which is a fixed width file. The columns are defined as follows:

Variable	Width	Start	End
Country	24	1	24
Happiness score	5	25	29
Whisker-high	5	30	34
Whisker-low	5	35	39
Dystopia (1.92) + residual	5	40	44
Explained by: GDP per capita	5	45	49
Explained by: Social support	5	50	54
Explained by: Healthy life expectancy	5	55	59

Variable	Width	Start	End
Explained by: Freedom to make life choices	5	60	64
Explained by: Generosity	5	65	69
Explained by: Perceptions of corruption	5	70	74

Then save the this loaded data frame as a CSV file on your local machine. Be sure to use a unique filename so as not to overwrite any existing files. (5 points)

```
In [13]: widths = [24,5,5,5,5,5,5,5,5,5,5]
         data11 = pd.read fwf('data11.txt', widths=widths, header=None, names=column names
         data11.info()
         data11.head(3)
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 156 entries, 0 to 155
         Data columns (total 11 columns):
             Column
                                                        Non-Null Count Dtype
             ----
                                                         -----
          0
             Country
                                                        156 non-null
                                                                        object
             Happiness score
                                                                        float64
          1
                                                        156 non-null
                                                        156 non-null
          2
             Whisker-high
                                                                        float64
          3
             Whisker-low
                                                        156 non-null
                                                                        float64
             Dystopia (1.92) + residual
                                                        156 non-null
                                                                        float64
          5
             Explained by: GDP per capita
                                                        156 non-null
                                                                        float64
             Explained by: Social support
                                                        156 non-null
                                                                        float64
             Explained by: Healthy life expectancy
                                                        156 non-null
                                                                        float64
             Explained by: Freedom to make life choices 156 non-null
                                                                        float64
             Explained by: Generosity
                                                                        float64
                                                        156 non-null
          10 Explained by: Perceptions of corruption
                                                        156 non-null
                                                                        float64
         dtypes: float64(10), object(1)
         memory usage: 13.5+ KB
```

Out[13]:

	Country	Happiness score	Whisker- high	Whisker- low	Dystopia (1.92) + residual	Explained by: GDP per capita	Explained by: Social support	Explained by: Healthy life expectancy	Free to n
0	Finland	7.632	7.695	7.569	2.595	1.305	1.592	0.874	С
1	Norway	7.594	7.657	7.530	2.383	1.456	1.582	0.861	0
2	Denmark	7.555	7.623	7.487	2.370	1.351	1.590	0.868	0

I recognized this fixed-width file as being similar to an example we covered in the live coding session, so I utilized tools we learned in class to properly load it. This involved saving the widths as a list to initialize in read_fwf, as well as assigning the column names with the names parameter.