

Machine Learning

Model representation

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Training set of housing prices (Portland, OR)

Size in feet ² (x)	Price (\$) in 1000's (y)	
> 2104	460	
1416	232	m=47
> 1534	315	
852	178	1
<u>.</u>		J
C	~	

Notation:

$$\begin{array}{c} x^{(1)} = 2104 \\ x^{(2)} = 1416 \\ y^{(1)} = 460 \end{array}$$

How do we represent h?

$$h_{\mathbf{g}}(x) = \Theta_0 + \Theta_1 \times Shorthand: h(x)$$

Linear regression with one variable. Univariate linear regression.

Machine Learning

Cost function

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$
 θ_i 's: Parameters

How to choose θ_i 's ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

minimize
$$\frac{1}{2m} \approx (h_{\bullet}(x^{(i)}) - y^{(i)})^2$$

$$h_{\bullet}(x^{(i)}) = \theta_{\bullet} + \theta_{1}x^{(i)}$$

$$J(0_0,0_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_0(x^{(i)}) - y^{(i)})^2$$

Idea: Choose $\underline{\theta_0}, \underline{\theta_1}$ so that $\underline{h_{\theta}(x)}$ is close to \underline{y} for our training examples (x,y)

Machine Learning

Cost function intuition I

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal: $\underset{\theta_0,\theta_1}{\operatorname{minimize}} J(\theta_0,\theta_1)$

Simplified

$$h_{\theta}(x) = \underbrace{\theta_{1}x}$$

$$\theta_{1}$$

$$h(x)$$

$$J(\theta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^{2}$$

$$\min_{\theta_{1}} \text{minimize } J(\theta_{1})$$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1)$$

(function of the parameter θ_1)

(for fixed θ_1 , this is a function of x)

$$T(0) = \frac{1}{2m} (1^{\frac{1}{2}} + 3^{2})$$

= $\frac{1}{6} \cdot 14 \% ? ? ?$

Machine Learning

Cost function intuition II

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Goal: $\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$

$h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x) 500 × 400 Price (\$) 300 in 1000's 200 6.:50 100 01=0.06 0 1000 2000 3000 0 Size in feet2 (x)

 $h_{\theta}(x) = 50 + 0.06x$

$$J(\theta_0,\theta_1)$$
 (function of the parameters θ_0,θ_1)

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (function of the parameters $heta_0, heta_1$) (for fixed θ_0, θ_1 , this is a function of x) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 000 \$ 200 000 \$ 2 0.2 0.1 h(x) ${\boldsymbol{\theta}}_1$ -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 2000 1000 3000 4000 -500 θ_0 1000 0 1500 2000 Size (feet²)

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (function of the parameters $heta_0, heta_1$) (for fixed θ_0, θ_1 , this is a function of x) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 300 - 200 -0.2 hlx 0.1 ${\boldsymbol{\theta}}_1$ 0 -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 ${ 500 \atop \theta_0 }$ 1000 0 1500 2000 Size (feet²)

Machine Learning

Gradient descent

Have some function
$$J(\theta_0,\theta_1)$$
 $J(\theta_0,\theta_1)$ $J(\theta_0,\theta_1)$

Outline:

- Start with some θ_0, θ_1 (Say $\Theta_0 = 0, \Theta_1 = 0$)
- Keep changing $\underline{\theta}_0,\underline{\theta}_1$ to reduce $\underline{J}(\theta_0,\theta_1)$ until we hopefully end up at a minimum

Gradient descent algorithm

a = b < 0 $a = a + 1 \times 0$

repeat until convergence
$$\{\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \}$$

(for
$$j = 0$$
 and $j = 1$)

Correct: Simultaneous update

$$\rightarrow$$
 temp0 := $\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$

$$\rightarrow$$
 temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

$$\rightarrow \theta_0 := \text{temp}0$$

$$\rightarrow \theta_1 := \text{temp1}$$

Incorrect:

0,0,

$$\rightarrow \text{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\rightarrow \theta_0 := \text{temp} 0$$

$$\rightarrow \text{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\rightarrow \theta_1 := \text{temp1}$$

Machine Learning

Gradient descent intuition

Gradient descent algorithm

$$\theta_1 := \theta_1 - \bigcirc \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Machine Learning

Gradient descent for linear regression

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ (for j = 1 and j = 0) }

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{2}{30j} \underbrace{\frac{1}{2m}}_{\text{in}} \underbrace{\frac{2}{30i}}_{\text{in}} (h_{0}(x^{(i)}) - y^{(i)})^{2}$$

$$= \frac{2}{30j} \underbrace{\frac{2}{3m}}_{\text{in}} \underbrace{\frac{2}{30i}}_{\text{in}} (0. + 0. x^{(i)} - y^{(i)})^{2}$$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\text{E}}{\rightleftharpoons} \left(h_{\bullet} (\mathbf{x}^{(i)}) - \mathbf{y}^{(i)} \right)$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\text{E}}{\rightleftharpoons} \left(h_{\bullet} (\mathbf{x}^{(i)}) - \mathbf{y}^{(i)} \right). \quad \mathbf{x}^{(i)}$$

Gradient descent algorithm

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x^{(i)}$$

update θ_0 and θ_1 simultaneously

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (function of the parameters $heta_0, heta_1$) (for fixed θ_0, θ_1 , this is a function of x) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 000 \$ 200 000 \$ 2 0.2 0.1 ${\boldsymbol{\theta}}_1$ -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 2000 1000 3000 4000 -500 ${ 500 \atop \theta_0 }$ 1000 0 1500 2000 Size (feet²)

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (function of the parameters $heta_0, heta_1$) (for fixed θ_0, θ_1 , this is a function of x) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 300 - 200 -0.2 0.1 -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 2000 1000 3000 4000 -500 ${ 500 \atop \theta_0 }$ 1000 0 1500 2000 Size (feet²)

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (function of the parameters $heta_0, heta_1$) (for fixed θ_0, θ_1 , this is a function of x) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 000 \$ 200 000 \$ 200 0.2 0.1 θ -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 2000 1000 3000 4000 -500 ${ 500 \atop \theta_0 }$ 1000 0 1500 2000 Size (feet²)

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (function of the parameters $heta_0, heta_1$) (for fixed θ_0, θ_1 , this is a function of x) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 000 \$ 200 000 \$ 2 0.2 0.1 ${\boldsymbol{\theta}}_1$ -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 2000 1000 3000 4000 -500 ${ 500 \atop \theta_0 }$ 1000 0 1500 2000 Size (feet²)

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (function of the parameters $heta_0, heta_1$) (for fixed θ_0, θ_1 , this is a function of x) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 000 \$ 200 000 \$ 200 0.2 0.1 -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 2000 1000 3000 4000 -500 ${ 500 \atop \theta_0 }$ 1000 0 1500 2000 Size (feet²)

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (function of the parameters $heta_0, heta_1$) (for fixed θ_0, θ_1 , this is a function of x) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 000 \$ 200 000 \$ 200 0.2 0.1 θ -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 2000 1000 3000 4000 -500 ${ 500 \atop \theta_0 }$ 1000 0 1500 2000 Size (feet²)

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (function of the parameters $heta_0, heta_1$) (for fixed θ_0, θ_1 , this is a function of x) 700 0.5 0.4 600 0.3 Price \$ (in 1000s) 300 - 200 -0.2 0.1 θ -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 2000 1000 3000 4000 -500 ${ 500 \atop \theta_0 }$ 1000 0 1500 2000 Size (feet²)

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$ (function of the parameters $heta_0, heta_1$) (for fixed θ_0, θ_1 , this is a function of x) 700 0.5 0.4 600 0.3 0.2 0.1 θ -0.1 -0.2 -0.3 100 Training data -0.4 Current hypothesis -0.5 -1000 1000 2000 3000 4000 -500 ${ 500 \atop \theta_0 }$ 1000 0 1500 2000 Size (feet²) 1250

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.