NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for materialteknologi

Faglig kontakt under eksamen: Dagfinn Bratland, tlf. 93976

EKSAMEN I EMNE TMT4110 KJEMI

Fredag 18. mai 2007 kl. 0900-1300

Hjelpemidler: C

Trykte hjelpemidler: Aylward & Findlay: "SI Chemical Data" Formelark (siste ark i oppgaveteksten).

Sensuren faller uke 24 2007.

Skriv kort! Angi fremgangsmåte og vesentlig mellomregning ved løsning av regneoppgaver. Nødvendige data hentes fra "SI Chemical Data" dersom annet ikke er angitt.

Oppgave 1

- a) Definer begrepene pH og p K_a .
 - Du har en vandig løsning av salpetersyrling, HNO₂, med konsentrasjon 0,036 M.
 - Hva er de dominerende spesier i løsningen ved likevekt?
 - Beregn pH i løsningen.
- b) Beregn likevektskonstanten for følgende reaksjon:

$$CH_3COOH(aq) + NO_2^-(aq) \rightleftharpoons CH_3COO^-(aq) + HNO_2(aq)$$

ved å benytte syrekonstanter gitt i SI Chemical Data

Oppgave 2

a) - Beregn ΔH° og ΔS° ved 25 °C for oppløsningsprosessen

$$NH_4NO_3(s) = NH_4^+(aq) + NO_3^-(aq)$$

- Er dette en frivillig prosess når alle spesier foreligger i standardtilstand? Er den eksoterm eller endoterm? Begrunn svarene.
- Hva blir temperaturen i løsningen når 40 g NH₄NO₃ (s) løses i 0,5 L vann og utgangstemperaturen er 25 °C? Gå ut fra at den molare varmekapasiteten i ammoniumnitratløsningen er den samme som for rent vann, og at ammoniumionene ikke dissosierer. Det antas at ingen varme utveksles med omgivelsene. Anta også at ΔH° er uavhengig av temperaturen
- b) For vannets egendissosiasjon

$$H_2O(1) \rightleftharpoons H^+(aq) + OH^-(aq)$$

er $K_{\rm w} = 1.0 \times 10^{-14}$ ved 25 °C. Hva er ΔG° for prosessen?:

- Beregn ΔG for prosessen under f
 ølgende betingelser:
- $[H^+] = 1.0 \times 10^{-7} M, [OH^-] = 1.0 \times 10^{-7} M$
- $-[H^{+}] = 1.0 \times 10^{-3} \text{ M}, [OH^{-}] = 1.0 \times 10^{-4} \text{ M}$
- $-[H^+] = 1.0 \times 10^{-12} \text{ M}, [OH^-] = 2.0 \times 10^{-8} \text{ M}$

Oppgave 3

- a) Komplettér og balansér følgende reaksjonsligninger:
 - I sur løsning

$$Cr_2O_7^{2-} + C_2O_4^{2-} = Cr^{3+} + CO_2$$

- I basisk løsning

$$Mn^{2+} + H_2O_2 = MnO_2 + H_2O$$

- Angi endring av oksidasjonstall ved hver reaksjon. Bruk formularet:

Grunnstoff _____ oksideres/reduseres fra oksidasjonstall ___ til ___

b) I en galvanisk celle foregår følgende to halvreaksjoner:

$$\frac{1}{2}$$
 O₂ (g) + 2 H⁺ + 2 e⁻ = H₂O
Fe³⁺ + e⁻ = Fe²⁺

- Skriv balansert ligning for cellereaksjonen.
- Angi hvilken elektrode som vil være positiv pol i cellen.
- Beregn cellepotensialet når det forutsettes at $[Fe^{3+}] = 0.10 \text{ M}, [Fe^{2+}] = 0.10 \text{ M}, [H^+] = 1.0 \text{ M}, og <math>P_{O_2} = 1 \text{ atm}.$

Oppgave 4

a) Nitrogen(II)oksid reagerer med hydrogen ifølge reaksjonsligningen

$$2 \text{ NO (g)} + 2 \text{ H}_2 \text{ (g)} \rightarrow \text{N}_2 \text{ (g)} + 2 \text{ H}_2 \text{O (g)}$$

Tabellen nedenfor gir data for reaksjonen ved 1280 °C. Ved hjelp av dataene skal du bestemme:

- Hastighetsloven
- Hastighetskonstanten
- Reaksjonshastigheten når [NO] = 12.0×10^{-3} M og [H₂] = 6.0×10^{-3} M.

Husk benevninger!

Forsøk	[NO]/M	$[H_2]/M$	Starthastighet/M s ⁻¹
1	5,0×10 ⁻³	2,0×10 ⁻³	1,3 ×10 ⁻⁵
2	10,0×10 ⁻³	2,0×10 ⁻³	5,0×10 ⁻⁵
3	10,0×10 ⁻³	4,0 ×10 ⁻³	10,0×10 ⁻⁵

- b) Hva mener vi med aktiveringsenergien for en reaksjon?
 - Skriv opp en ligning som gir sammenhengen mellom en reaksjons hastighetskonstant og aktiveringsenergi.
 - Hastighetskonstanten for en første ordens reaksjon er $3,46 \times 10^{-2}$ s⁻¹ ved 298 K. Hva er hastighetskonstanten ved 350 K hvis aktiveringsenergien for reaksjonen er 50,2 kJ mol⁻¹?
 - Hvordan kan man senke aktiveringsenergien for en reaksjon?

Oppgave 5

a) Vi skal betrakte reaksjonen mellom kvikksølv-damp og oksygen:

$$2 \text{ Hg(g)} + O_2(g) = 2 \text{ HgO(s)}$$

- Beregn ΔH° og ΔS° for reaksjonen ved 298 K.
- Beregn likevektskonstanten K for reaksjonen ved 298 K og ved 600 K. Anta at ΔH° og ΔS° er uavhengig av temperaturen

- Ved hvilken temperatur er likevektskonstanten *K* lik 1?
- b) Hva forstår vi med elektronegativitet?
 - Hvordan endres elektronegativiteten over periodesystemet?
 - Hvorledes kan verdiene for elektronegativitet benyttes til å forutsi bindingens natur i en forbindelse?

Oppgave 6

- a) Gjennom studiet av tallrike kjemiske forbindelser har det vist seg at elektronkonfigurasjonen i atomene nesten alltid følger visse enkle regler. Hva går disse regler ut på?
 - Tegn lewisstrukturen for følgende spesier: SiCl₄, AlCl₃ (monomer), H₂C=CH₂ samt det negative ionet I₃.
 - Bruk elektronparfrastøtnings-modellen for molekylstrukturer (VSEPR) og foreslå molekylgeometri og bindingsvinkler for de samme spesier.
- b) Hva er en homopolymer og en kopolymer?
 - Hva er strukturen til polyetylen, polyvinylklorid og polystyren?
 - Hva er nylon?
 - Hvilke av disse forbindelser er homopolymere eller kopolymere?

FORMEL	KOMMENTAR
PV = nRT	Ideell gass
$P_i = n_i RT/V (P_T = \sum_i P_i)$	Partialtrykk av i
$C = q / \Delta T$	Varmekapasitet
$\Delta E = q + w$	Endring i indre energi
H = E + PV	Entalpi
$\Delta H = q_p$	Konstant <i>P</i> . Bare volumarb.
$\Delta H^{\circ} = \sum \Delta H_{\rm f}^{\circ}$ (produkter) - $\sum \Delta H_{\rm f}^{\circ}$ (reaktanter)	Husk støkiometriske koeffisienter
$\Delta H_T^{\circ} = \Delta H_{298}^{\circ} + \Delta C_P^{\circ} \times \Delta T$	ΔC_p^o konstant
$ \ln\left(\frac{K_2}{K_1}\right) = \frac{\Delta H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) $	ΔH og ΔS konstant
$dS = \frac{\mathrm{d}q_{\mathrm{rev}}}{T}$	Entropiendring
$\Delta S_T^\circ = \Delta S_{298}^\circ + \Delta C_P^\circ \ln \left(\frac{T}{298,15} \right)$	ΔC_p^o konstant
G = H - TS	Gibbs energi. Fri energi.
$\Delta G = \Delta H - T \Delta S$	Endring i fri energi ved konstant <i>T</i>
$\Delta G_T^{\circ} = \Delta H_{298}^{\circ} - T\Delta S_{298}^{\circ}$	$\Delta C_p^o \approx 0$
$\Delta G = \Delta G^o + RT \ln Q$	Reaksjonskvotient, Q
$G = G^{\circ} + RT \ln a$	Aktivitet (relativ), a
$\Delta G^o = -RT \ln K$	Likevektskonstant, K
$\Delta G = -nFE$	Cellepotensial, E
$Q = It = n_{e}F$	Elektrisk ladning
$E = E^o - \frac{RT}{nF} \ln Q = E^o - \frac{0,0592}{n} \log Q, 25^{\circ} \text{ C}$	Nernsts ligning
$r = -\frac{1}{a} \frac{d[A]}{dt} = \frac{1}{c} \frac{d[C]}{dt} = k[A]^{l} [B]^{m} [C]^{n} [D]^{p}$ $Total orden = l + m + n + p$	Reaksjonshastighet for $aA + bB \rightarrow cC + dD$
$k = A e^{-\frac{E_a}{RT}}$	Hastighetskonstant, k Aktiveringsenergi, E_a