- 자신이 선택한 유형('가'형/'나'형)의 문제지인지 확인하시오.
- 문제지에 성명과 수험 번호를 정확히 써 넣으시오.
- 답안지에 성명과 수험 번호를 써 넣고, 또 수험 번호, 문형(홀수/짝수),
 답을 정확히 표시하시오.
- 단답형 답의 숫자에 '0'이 포함되면 그 '0'도 답란에 반드시 표시 하시오.
- 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오.
 배점은 2점, 3점 또는 4점입니다.
- 계산은 문제지의 여백을 활용하시오.
- 1. $3^{\frac{2}{3}} \times 9^{\frac{3}{2}} \div 27^{\frac{8}{9}}$? [2]
- $1 \sqrt{3} 3 3\sqrt{3} 9$

- 2. $A = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}, B = \begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix}$ A X = B
 - 2 1 0 1 2

3. $\{a_n\}$

$$a_1 + a_2 = 10, \quad a_3 + a_4 + a_5 = 45$$

- 가 , a₁₀ ? [2]
 - 47 45 43 41 39

- 4. $\lim_{n\to\infty} (\sqrt{n^2+6n+4}-n)$? [3]
 - $\frac{1}{3} \qquad \frac{1}{2} \qquad 1 \qquad 2 \qquad 3$

5. < > ? [3]

- 7. $2^{\log_2 1 + \log_2 2 + \log_2 3 + \dots + \log_2 10} = 10!$ $\vdash \cdot \cdot \log_2 (2^1 \times 2^2 \times 2^3 \times \dots \times 2^{10})^2 = 55^2$
- Γ . $(\log_2 2^1)(\log_2 2^2)(\log_2 2^3)\cdots(\log_2 2^{10}) = 55$
- フ フ, C フ, し, C

7. $(A + B)^2 = A^2 + 2AB + B^2$ $V \cdot A^2 + A - 2E = O \qquad A$ $V \cdot A \neq O \qquad A^2 = A \qquad A = E$

가	가	다			
가	<i>a</i> ₁₁	<i>a</i> ₁₂	카	b ₁₁	<i>b</i> ₁₂
가	a_{21}	a 22	U U	b ₂₁	b_{22}

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \qquad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

$$A B \qquad A B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad .$$

$$7 \dagger \qquad \qquad 7 \dagger$$

$$, < \qquad > \qquad \qquad ?$$

$$[3]$$

フ. a + b フト ・ レ. c + d 1 ・ エ. d - b

フ レ フ, C レ, C フ, L, C

9. 가

가

? [3]

- $\frac{1}{3} \qquad \frac{1}{2} \qquad \frac{3}{5} \qquad \frac{2}{3} \qquad \frac{3}{4}$

10. $f(x) = \frac{4^x}{4^x + 2}$? [4]

- $7. f\left(\frac{1}{2}\right) = \frac{1}{2}$
- \vdash . f(x) + f(1 x) = 1
- $\sum_{k=1}^{100} f\left(\frac{k}{101}\right) = 50$
- 7 7,レ
- フ, ロ
- レ, ロ フ, レ, ロ

11.

 $\left[\frac{n}{1}\right], \left[\frac{n}{2}\right], \left[\frac{n}{3}\right], \cdots, \left[\frac{n}{n}\right]$

 $(\quad,\quad [x\]\qquad x$

? [4]

て

 $1 \qquad \qquad \left[\frac{n+1}{2}\right]$ 7. n

- レ. 100 て.3
- フ,レ
- フ,レ,ㄷ

	(가), (), ()		? [3]
<u>(가)</u>	()	()	
$\frac{1}{k+1}$	>	$\frac{2}{3k+3}$	
$\frac{1}{k+1}$	<	$\frac{2}{3k+3}$	
$\frac{1}{k+1}$	<	$\frac{4}{3k+3}$	
$\frac{2}{k+1}$	>	$\frac{4}{3k+3}$	
$\frac{2}{k+1}$	<	$\frac{1}{k+1}$	

13. , ,

$$(7\dagger), (), ()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

$$()$$

 $P (0 \le Z \le z)$

0.1915

0.3413

0.4332

0.4772

0.5

1.0

1.5

2.0

14.

a

? [4]

12

(가) b

() 가 b

70 105

140

b

175 210

15. 가

,

•

r (m)

P ()

 $P = 10 \log \frac{\alpha W}{I_0} - 20 \log r - 11$

W(

 $(, I_0 = 10^{-12} (/m^2) r > 1$

100 () 가

 $\frac{1}{100}$ 가

59() 가 ?(,

가 ,

가 .) [4]

 $10^2 \,\mathrm{m}$

 $10^{\frac{17}{8}}$ m $10^{\frac{5}{2}}$ m

 $10^{\frac{13}{6}}$ m

16.

(%) 20 28 25 27 100

192

, C 42

? [3]

0.8332

0.7745

0.8256 0.8413

0.6915

12

17. 65 가 20%

2000 1000

50 . 0.3%

2048 2050 2038 2040

 2048
 2050

 2028
 2030

2018 2020

65

[4]

2008 2010

18.
$$x^{2} - 4x - 1 = 0$$

$$\binom{\alpha}{0} \binom{\beta}{\alpha} \binom{\beta}{\alpha} \binom{\beta}{\beta}$$

[3]

19.

$$\log_{3} |x - 3| < 4$$

$$\log_{2} x + \log_{2} (x - 2) \ge 3$$

. [3]

20.
$$X$$
 $7 \mid ,$ $Y = 10X + 5$. [3]

X	0	1	2	3	
P (X)	10	3 10	3 10	<u>2</u> 10	1

21. 7
$$r$$
 $a_2 = 1$ $\{a_n\}$

10 $\omega = a_1 a_2 a_3 \cdots a_{10}$, $\log_r \omega$

. (, $r > 0$ $r \neq 1$.) [3]

. , 1

$$A_{1}, A_{2}, A_{3}, \dots, A_{n}, \dots$$

$$A_{1} = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}, A_{2} = \begin{pmatrix} 3 & 6 \\ 12 & 9 \end{pmatrix} \qquad .$$

$$A_{15} \qquad \qquad . [4]$$

凹

23. a (a > 1) $b = \sum_{n=1}^{\infty} \left(\frac{1}{a}\right)^n$ [1]

x, y, z $\frac{xz}{y}$.

24. 360

			(:)
10	а	b	120
10	с	d	240
	150	210	360

25. $7 + \frac{1}{2}$ $A_1 \qquad .$

 $\lim_{n\to\infty} S_n = \frac{q}{p} \qquad , p+q \qquad .$ $(, p q \qquad .) [4]$

 A_3

5

 $\{a_n\}$ 26. ? [3]

 $\sum_{n=1}^{\infty} a_n \qquad \sum_{n=1}^{\infty} a_{2n}$ $\sum_{n=1}^{\infty} a_n \qquad \sum_{n=1}^{\infty} a_{2n}$ $\sum_{n=1}^{\infty} a_n \qquad \sum_{n=1}^{\infty} \left(a_n + \frac{1}{2}\right)$ *7* . て.

L フ,レ フ, に **レ**, に

가 2 27. 가 a, 가 - 2 가 b? [4] , ab0.9 0.99 1 9.99 10

 $28. f(x) = 3x^2$ P(n, f(n)) a_n , Q(n + 1, f(n + 1)) $\lim_{n\to\infty}\frac{a_n}{n} \qquad ? (, n$.) [4] 9 8 7 6 5

29. 가 가 ? [4]

30. 1, 2, 2, 4, 5, 5 . [4]

, 300000

()