MAIII4 19/1/22

Carderian Product of vectors pass and their dimensions.

Definition

Let vand whe vector spaces. The careterian product of v and wis the set vxw = {(v,w) | vev, wew}

doll formal pairs with vA and SM given by:

 $VA:(V_1,W_1) + (V_2,W_2) = (V_1 + V_2, W_1 + W_2)$ for all V_1 , $V_2 \in V$ $W_1 \in W$ $SM: \lambda(V_1,W_1) = (\lambda V_1, \lambda W_1)$ for all $v \in V_1$, $w \in W$ and $\lambda \in R$

Escercise

check (UxW, +, .) is a vector space.

cocomple v=R, w=R, n, m & N

 $v_x w = \mathbb{R}^{n + m}$ (note if n = m = 1) $v_x w = \{(x, y), x, y \in \mathbb{R}\}$ is the æy-plane.

Theoren

Let v, w be a finite dimensional vector spaces their dim(vxw)=dim(v) , dim(w)

Proof

Let {v, v, v, v, ..., vn} and {w, w, w, ..., w, be boses for v and w respectively.

note
$$R = \langle 1 \rangle$$
 it supplies to show $B : \{(U_1, 0), (U_2, 0), \dots, (U_n, 0), (0, W_n), (0, W_n), (0, W_n)\}$ is a bases for $V \times W$.

first check & spans vxw

suppose (U,W) & VXW

80 now
$$v = \widehat{\mathcal{L}} \lambda_i V_i$$
, some $\lambda_i \in \mathbb{R}$

$$W = \widehat{\mathcal{L}} \lambda_i W_j , \text{ some } \mu_i \in \mathbb{R}$$

$$(V, W) = (\widehat{\mathcal{L}} \lambda_i V_i , \widehat{\mathcal{L}} \mu_j W_j)$$

$$= \widehat{\mathcal{L}} \lambda_i (V, 0) + \widehat{\mathcal{L}} \lambda_i (0, W_j)$$

we have written (v, w) as a linear combination of elements of $\mathcal B$ so $\mathcal B$ spans

suppose
$$\widehat{\Sigma} \lambda_i(V_i, 0) + \widehat{\Sigma} \mu_j(0, W_j)$$

thun $Q = (\widehat{\Sigma}_i \lambda_i V_i, \widehat{\Sigma}_i \mu_j W_j)$
 $\Rightarrow \widehat{\Sigma} \lambda_i V_i = 0$ $k : \widehat{\Sigma} \mu_j W_j = 0$
 $\Rightarrow \lambda_i = 0 = \lambda_i = \lambda_i = \lambda_3 = \cdots = \lambda_m$

Mj=0 = M. = Mz = M3 = -- = Mm