

Team Project

Heart Disease Prediction

Context:

Cardiovascular diseases (CVDs) are the number 1 cause of death globally, taking an estimated 17.9 million lives each year, which accounts for 31% of all deaths worldwide. Four out of 5CVD deaths are due to heart attacks and strokes, and one-third of these deaths occur prematurely in people under 70 years of age. Heart failure is a common event caused by CVDs and this dataset contains 13 features that can be used to predict a possible heart disease.

People with cardiovascular disease or who are at high cardiovascular risk (due to the presence of one or more risk factors such as hypertension, diabetes, hyperlipidaemia or already established disease) need early detection and management wherein a machine learning model can be of great help.

```
Data Contains
   age- Age in Years
    sex - (1 = Male, 0 = Female)
    cp - chest pain type
    trestbps - resting blood pressure(in mm Hg on admission to the hospital)
    chol - serum cholestoral in mg/dl
    restecg - resting electrocardiographic results
    thalach - maximum heart rate achieved
    exang - exercise induced angina (1 = yes; 0 = no)
    oldpeak - ST depression induced by exercise relative to rest
   slope - the slope of the peak exercise ST segment
    ca - number of major vessels (0-3) colored by flourosopy
    thal - 3 = normal; 6 = fixed defect; 7 = reversable defect
    target - have disease or not (1=yes, 0=no)
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rcParams
from matplotlib.cm import rainbow
import warnings
warnings.filterwarnings('ignore')
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import seaborn as sns
import scipy.stats as stats
#Algorithms
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, BaggingClassifier, ExtraTreesClassifier
from xgboost import XGBClassifier
from sklearn.naive bayes import GaussianNB
from sklearn.linear model import LogisticRegression
# metrics score
from sklearn.metrics import classification report, confusion matrix, roc auc score, f1 score, recall score
from sklearn.model selection import cross val score
# PipeLine, GridSearch
from sklearn.pipeline import Pipeline
from sklearn.model selection import GridSearchCV
# Discretization
from feature engine.discretisation import EqualFrequencyDiscretiser, EqualWidthDiscretiser
# Scaling
from sklearn.preprocessing import StandardScaler, Normalizer, RobustScaler, OneHotEncoder, MinMaxScaler, MaxAbsScal
# Missing value imputation
from feature engine.imputation import MeanMedianImputer, RandomSampleImputer, EndTailImputer, ArbitraryNumberImpute
# Transformation
import feature engine.transformation as vt
# Feature-selection
from feature engine.selection import (DropConstantFeatures,
                                      DropDuplicateFeatures,
                                      SmartCorrelatedSelection)
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
 # Column Non-Null Count Dtype

v	uge	4 7 7	mon-nurr	TTOUCUT
1	sex	300	non-null	float64
2	ср	297	non-null	float64
3	trestbps	299	non-null	float64
4	chol	297	non-null	float64
5	fbs	299	non-null	float64
6	restecg	300	non-null	float64
7	thalach	291	non-null	float64
8	exang	298	non-null	float64
9	oldpeak	300	non-null	float64
10	slope	297	non-null	float64
11	ca	298	non-null	float64
12	thal	300	non-null	float64
13	target	303	non-null	int64

294 non-null

float64

dtypes: float64(13), int64(1)

memory usage: 33.3 KB

Data Information

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	63.0	1.0	3.0	145.0	233.0	1.0	0.0	150.0	0.0	2.3	0.0	0.0	1.0	1
1	37.0	1.0	2.0	130.0	250.0	0.0	1.0	187.0	0.0	3.5	0.0	0.0	2.0	1
2	41.0	0.0	1.0	130.0	204.0	0.0	0.0	NaN	0.0	1.4	2.0	0.0	2.0	1
3	56.0	1.0	1.0	120.0	236.0	0.0	1.0	178.0	0.0	8.0	2.0	NaN	2.0	1
4	57.0	0.0	0.0	120.0	354.0	0.0	1.0	163.0	1.0	0.6	2.0	0.0	2.0	1
5	57.0	NaN	0.0	140.0	192.0	0.0	1.0	148.0	0.0	0.4	1.0	0.0	1.0	1
6	56.0	0.0	1.0	140.0	294.0	0.0	0.0	NaN	0.0	1.3	1.0	0.0	2.0	1
7	44.0	1.0	1.0	120.0	263.0	0.0	1.0	173.0	0.0	0.0	2.0	0.0	3.0	1
8	52.0	1.0	2.0	172.0	199.0	1.0	1.0	162.0	0.0	0.5	2.0	0.0	3.0	1
9	57.0	1.0	2.0	150.0	168.0	0.0	1.0	174.0	0.0	1.6	2.0	0.0	2.0	1

```
1 ##### Types of Variable
2 dataset.dtypes
```

float64 age float64 sex float64 float64 trestbps float64 chol fbs float64 float64 restecq float64 thalach float64 exang oldpeak float64 float64 slope float64 ca float64 thal int64 target dtype: object

All variables in dataset numerical

Data Describe

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	
ount	294.000000	300.000000	297.000000	299.000000	297.000000	299.000000	300.000000	291.000000	298.000000	300.000000	297.000000	298.000000	300.00
nean	54.394558	0.683333	0.966330	131.505017	246.084175	0.147157	0.526667	149.505155	0.328859	1.046000	1.404040	0.734899	2.31
std	9.106168	0.465953	1.035947	17.502516	52.016723	0.354856	0.526192	22.824574	0.470589	1.163729	0.613792	1.028315	0.61
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	0.000000	0.000000	0.000000	0.000000	0.00
25%	47.250000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.500000	0.000000	0.000000	1.000000	0.000000	2.00
50%	56.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.000000	0.000000	0.800000	1.000000	0.000000	2.00
75%	61.000000	1.000000	2.000000	140.000000	274.000000	0.000000	1.000000	166.000000	1.000000	1.600000	2.000000	1.000000	3.00
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	195.000000	1.000000	6.200000	2.000000	4.000000	3.00

Correlation Matrics

Count plot histogram for the feature "Age" to find out Age Distribution

Target Count 0 = No Disease 1 = Have Disease

Percentage of Patients Haven't Heart Disease: 45.54% Percentage of Patients Have Heart Disease: 54.46%

In this graphs we can see the frequency of heart disease by Age

Frequency of heart by Sex

Impute Missing Values

Impute missing values:

EndTailImputer

```
1 endTailImpute = EndTailImputer(
2   imputation_method = 'gaussian',
3   tail = 'right'
4 )
5   endTailImpute.fit(X_train)
```

EndTailImputer()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

EndTail Imputer

```
endTailImpute.variables
['age',
 sex',
 'cp',
 'trestbps',
 'chol',
 'fbs',
 'restecg',
 'thalach',
 'exang',
 'oldpeak',
 'slope',
 'ca',
 'thal']
    endTailImpute.imputer dict
{'age': 82.18659080810232,
 'sex': 2.0826960696630894,
 'cp': 4.009833273341641,
 'trestbps': 186.22514160368743,
 'chol': 402.3367006620612,
 'fbs': 1.228433700824096,
 'restecg': 2.082977941606012,
 'thalach': 216.35208813034708,
 'exang': 1.7843474629507259,
 'oldpeak': 4.542578580266698,
 'slope': 3.2423135429602743,
 'ca': 3.6070212966202324,
 'thal': 4.177213690998737}
```


Arbitrary Number Imputer

```
imputer = ArbitraryNumberImputer(imputer dict = {
        'age': 99,
        'sex': -1,
        'cp': -1,
        'trestbps': 99,
        'chol': 222,
        'fbs': -1,
        'restecg': -1,
        'thalach': 99,
       'exang': -1,
10
       'oldpeak': -1,
11
       'slope': -1,
12
       'ca': 2,
13
        'thal': 3
14
15
   imputer.fit(X train)
```

Arbitrary Number Imputer

```
imputer.imputer dict
{'age': 99,
 'sex': -1,
 'cp': -1,
 'trestbps': 99,
 'chol': 222,
 'fbs': -1,
 'restecg': -1,
 'thalach': 99,
 'exang': -1,
 'oldpeak': -1,
 'slope': -1,
 'ca': 2,
 'thal': 3}
    tmp_arbTrain = imputer.transform(X_train)
    tmp arbTest = imputer.transform(X test)
    tmp arbTrain[imputer.variables_].isnull().mean()
            0.0
age
            0.0
sex
            0.0
ср
trestbps
            0.0
chol
            0.0
fbs
            0.0
            0.0
restecg
thalach
            0.0
            0.0
exang
oldpeak
            0.0
slope
            0.0
            0.0
ca
thal
            0.0
dtype: float64
```


Histogram after Arbitrary Number Imputer

Transformation with:

Log Transformer

Exponential Transformer

Yeo-Johnson Transformer

```
def diagnostics_plots(dataset, variable):
    plt.figure(figsize = (15, 6))
    plt.subplot(1, 2, 1)
    dataset[variable].hist()
    plt.subplot(1, 2, 2)
    stats.probplot(dataset[variable], dist = 'norm', plot = plt)
    plt.show()
```


Before Transformation

```
1 # Log Transform
 2 lt = vt.LogCpTransformer(variables = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak'])
 3 lt.fit(imputer_MeanMedian)
LogCpTransformer(variables=['age', 'trestbps', 'chol', 'thalach', 'oldpeak'])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
 1 lt.variables_
['age', 'trestbps', 'chol', 'thalach', 'oldpeak']
 1 data_tf = lt.transform(imputer_MeanMedian)
 diagnostics_plots(data_tf, 'chol')
                                                                                                Probability Plot
 70
                                                                      6.4
 60
 50
                                                                    Ordered Values
 30
                                                                      5.8
 20
 10
                                                                      5.6
                  5.8
                            6.0
                                       6.2
       5.6
                                                  6.4
                                                                                              Theoretical quantiles
```

Log Transfomer

```
#Exponential Transofrmer
 2 et = vt.PowerTransformer(variables = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak'])
 3 et.fit(imputer MeanMedian)
PowerTransformer(variables=['age', 'trestbps', 'chol', 'thalach', 'oldpeak'])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    data tf = et.transform(imputer MeanMedian)
    diagnostics_plots(data_tf, 'age')
                                                                                                 Probability Plot
                                                                       9.0
                                                                       8.5
 50
                                                                       8.0
                                                                    Ordered Values
 30
 20
                                                                       6.5
                                                                       6.0
 10
                                                                       5.5
       5.5
                       6.5
                               7.0
                                               8.0
                                                      8.5
                                                                                    -2
                                                                                                Theoretical quantiles
```

Exponential Transformer

```
#Yeo-Johnson
yjt = vt.YeoJohnsonTransformer(variables = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak'])
yjt.fit(imputer_MeanMedian)
```

```
YeoJohnsonTransformer(variables=['age', 'trestbps', 'chol', 'thalach', 'oldpeak'])
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Yeo-Johnson Transformer

Scaling with Unit Norm, Robust Scaler

```
scaler = Normalizer(norm = '12')
 scaler.fit(imputer MeanMedian)
 X train scaled = scaler.transform(imputer MeanMedian)
 X test scaled = scaler.transform(imputer MeanMedianTest)
 np.round(np.linalg.norm(imputer MeanMedian, ord = 2, axis = 1), 1)
ray([332. , 406.3, 323. , 470.4, 323.9, 296.7, 271.8, 364.8, 411.8,
    296.6, 333.4, 315.1, 308.4, 364.9, 325.2, 395.4, 291.6, 255.8,
    309.9, 301.5, 317.4, 359.3, 363.8, 323.1, 297.1, 224.8, 295.8,
    364.4, 304.8, 289.1, 333.5, 331.2, 304.6, 288.5, 325.1, 366.
    379.2, 338.3, 321.4, 324.8, 319.6, 283. , 363.6, 383.1, 328.6,
    450.9, 288.5, 290.5, 262.9, 281.2, 291.2, 341.4, 339.1, 325.8,
    284.9, 339.5, 317.9, 367.6, 392.5, 374.5, 345.3, 329.5, 299.1,
    281.3, 307.6, 370.5, 324.4, 383.7, 255.8, 351.5, 336.3, 320.5,
    317.8, 322.8, 359.8, 324.4, 331.2, 373.3, 297. , 337.3, 261.4,
    295.5, 364.5, 338.3, 327.5, 298.9, 340.2, 340.9, 334.1, 331.5,
    296.9, 303.4, 281.6, 280.3, 299.7, 397.8, 281.5, 309.8, 327.4,
    325.3, 384.8, 263.6, 326.9, 304.3, 339.8, 296.1, 283.5, 320.9,
    274.7, 322.3, 324.9, 298.9, 267.4, 331.7, 334.1, 347.7, 279.9,
    256.2, 309.4, 300.6, 396.6, 340.9, 375.2, 278.2, 306.2, 317.3,
    339. , 322.1, 281.6, 320.6, 395.1, 403.1, 377.1, 346.5, 328.4,
    326.3, 318.6, 327.1, 333.3, 261.3, 299.6, 316.9, 308.3, 401.1,
    329.8, 363.5, 309.2, 331.1, 291.9, 371.2, 287.9, 242.7, 326.6,
    406.2, 355.1, 267.6, 459.2, 373.2, 233.3, 308.9, 358.6, 319.8,
    304.2, 345.7, 376.2, 304., 302.5, 382.5, 347.8, 284., 331.6,
 X train scaled = pd.DataFrame(X train scaled, columns = imputer MeanMedian.columns)
 X test scaled = pd.DataFrame(X test scaled, columns = imputer MeanMedian.columns)
 X train scaled
```

UNIT NORM SCALER

```
fig, (ax1, ax2) = plt.subplots(ncols = 2, figsize = (12, 5))
#before scaling
ax1.set_title('Before Scaling')
sns.kdeplot(imputer_MeanMedian['age'], ax = ax1)
sns.kdeplot(imputer_MeanMedian['sex'], ax = ax1)
sns.kdeplot(imputer_MeanMedian['cp'], ax = ax1)

#after scaling
ax2.set_title('After UnitNorm Scaling')
sns.kdeplot(X_train_scaled['age'], ax = ax2)
sns.kdeplot(X_train_scaled['sex'], ax = ax2)
sns.kdeplot(X_train_scaled['cp'], ax = ax2)
sns.kdeplot(X_train_scaled['cp'], ax = ax2)
```

xesSubplot: title={'center': 'After UnitNorm Scaling'}, xlabel='age', ylabel='Density'>

Robust Scaler

-0.078431

0.156863

242 rows x 13 columns

0.0 -0.5

0.0 -0.5

0.0 -0.421053 0.0

-1.5 -0.145749 0.0

scaler = RobustScaler()

```
scaler.fit(imputer MeanMedian)
  X train scaled = scaler.transform(imputer MeanMedian)
6 X_test_scaled = scaler.transform(imputer_MeanMedianTest)
  X train scaled = pd.DataFrame(X train scaled, columns = imputer MeanMedian.columns)
2 X test scaled = pd.DataFrame(X test scaled, columns = imputer MeanMedianTest.columns)
1 X train scaled
                                                                  oldpeak slope ca thal
                  cp trestbps
                                  chol fbs restecg
                                                     thalach
                                                            exang
        age sex
0 1.019608
             0.0 0.5
                              0.178138 0.0
                                               0.0 -0.188034
                                                                    0.7500
                                                                             0.0 3.0 1.0
                                                               0.0
                                                                   -0.5000
                                                                             1.0 0.0
    0.627451 -1.0 -0.5
                              1.327935 0.0
                                                   0.000000
                                                               1.0
 2 -0.862745
            -1.0
                          0.0 -0.145749 0.0
                                                   0.803419
                                                                   -0.1250
                                                                             0.0 0.0
                 0.0
                                                               0.0
                                                                                    0.0
                                                                    0.0000
    0.000000
            -1.0
                 0.5
                              2.817814 1.0
                                                   0.188034
                                                                             0.0 1.0
                                                                                    0.0
                                                               0.0
            0.0 0.0
                                                                             0.0 3.0 -1.0
   0.784314
                              0.048583 0.0
                                               1.0 -1.076923
                                                                   -0.5000
    0.392157
             0.0
                              0.000000 1.0
                                               1.0 -0.495726
                                                                    0.1250
                                                                             0.0 0.0
                 0.5
                                                               1.0
    0.941176
             0.0
                              0.550607 0.0
                                                                             1.0 1.0 1.0
                                                  -0.017094
                                                                    0.1250
                 0.5
                                                               0.0
   -0.862745 -1.0
                         -0.9 -1.344130 0.0
                                               1.0 -0.461538
                                                                    0.0000
                                                                             0.0 0.0
                 0.0
                                                                                    0.0
                                                               0.0
```

1.0 -1.384615

1.0 0.153846

-1.0 0.0 1.0

1.0 1.0 1.0

3.0000

0.0 -0.4375

1.0

Scaler

Robust

```
fig, (ax1, ax2) = plt.subplots(ncols = 2, figsize =(12, 5))

#before scaling

ax1.set_title('Before Scaling')
sns.kdeplot(X_train['age'], ax = ax1)
sns.kdeplot(X_train['sex'], ax = ax1)
sns.kdeplot(X_train['cp'], ax = ax1)

#after Scaling
ax2.set_title('After Robust Scaling')
sns.kdeplot(X_train_scaled['age'], ax = ax2)
sns.kdeplot(X_train_scaled['sex'], ax = ax2)
sns.kdeplot(X_train_scaled['cp'], ax = ax2)
sns.kdeplot(X_train_scaled['cp'], ax = ax2)
```


Discretization With EqualFrequency, EqualWidthDisc

```
# EqualFrequencyDiscretizer
disc = EqualFrequencyDiscretiser(
    q = 10,
    variables = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']

disc.fit(imputer_MeanMedian)
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
1 disc.binner dict
{'age': [-inf, 42.0, 47.0, 51.0, 54.0, 56.0, 58.0, 60.0, 63.0, 66.0, inf],
 'trestbps': [-inf,
 110.0,
 120.0,
 122.0,
 128.0,
 130.0,
 132.0,
 140.0,
 144.8,
 154.9,
 inf],
 chol': [-inf,
 196.0,
 206.0,
 218.3,
 229.4,
 243.0,
 252.600000000000000,
 266.70000000000005,
 283.0,
 309.0,
 inf],
 'thalach': [-inf,
 116.0,
 130.2,
 140.0,
 145.4,
 151.5,
 156.0,
 162.0,
 166.8,
 174.9,
 inf],
```

Equal Frequency


```
#EqualWidthDiscretizer
   disc = EqualWidthDiscretiser(
        bins = 10,
        variables = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']
 5 )
 7 disc.fit(imputer MeanMedian)
EqualWidthDiscretiser(variables=['age', 'trestbps', 'chol', 'thalach',
                                    'oldpeak'])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
   disc.binner dict
{ 'age': [-inf,
  33.8,
  38.6,
  43.4,
  48.2,
  53.0,
  57.8,
  62.6,
  67.4,
 72.19999999999999,
 inf],
 'trestbps': [-inf,
 104.6,
 115.2,
  125.8,
  136.4,
  147.0,
 157.6,
  168.2,
```

178.8,

inf],

174.3, 217.6, 260.9, 304.2, 347.5,

477.4, 520.7, inf],

189.3999999999998,

390.7999999999995, 434.0999999999997,

'thalach': [-inf,

'chol': [-inf,

EqualWidth Discretization

Model Results

metrics_score(X_train, X_test, y_train, y_test, best_DT_model)

Roc-auc score

Train set: 82.039% Test set: 81.944%

Accuracy score

Train set: 75.583% Test set: 85.238%

Standart deviation

Train set: 7.773% Test set: 17.236%

Classification report

		precision	recall	f1-score	support
	0	0.72	0.72	0.72	25
	1	0.81	0.81	0.81	36
accur	acy			0.77	61
macro	avg	0.76	0.76	0.76	61
weighted	avg	0.77	0.77	0.77	61

Best Results Decision Tree

Model

1 y_pred_train = best_DT_model.predict(X_train)

Confusion Matrics
Decision Tree

1 metrics_score(X_train, X_test, y_train, y_test, rf_best_model)

Roc-auc score

Train set: 90.170% Test set: 90.556%

Accuracy score

Train set: 81.417% Test set: 85.000%

Standart deviation

Train set: 5.101% Test set: 12.877%

Classification report

	precision	recall	f1-score	support
0	0.90	0.72	0.80	25
1	0.83	0.94	0.88	36
accuracy			0.85	61
macro avg	0.86	0.83	0.84	61
weighted avg	0.86	0.85	0.85	61

Best Results Random Forest Classifier

Confusion Matrics Random Forest

metrics_score(X_train, X_test, y_train, y_test, best_model_KNNeighbors)

Roc-auc score

Train set: 87.669% Test set: 89.444%

Accuracy score

Train set: 80.567% Test set: 76.667%

Standart deviation

Train set: 7.313% Test set: 10.869%

Classification report

		precision	recall	f1-score	support
	0	0.81	0.68	0.74	25
	1	0.80	0.89	0.84	36
accu	racy			0.80	61
macro	avg	0.80	0.78	0.79	61
weighted	avg	0.80	0.80	0.80	61

Best Results KNNeighbors Classifier

y_pred_train = best_model_KNNeighbors.predict(X_train)

Confusion Matrics
KNNeighbors Classifier

metrics_score(X_train, X_test, y_train, y_test, best_model_SVC)

Roc-auc score

Train set: 89.604% Test set: 89.722%

Accuracy score

Train set: 82.217% Test set: 86.667%

Standart deviation

Train set: 7.627% Test set: 10.833%

Classification report

support	f1-score	recall	precision	
25	0.75	0.80	0.71	0
36	0.81	0.78	0.85	1
61	0.79			accuracy
61	0.78	0.79	0.78	macro avg
61	0.79	0.79	0.79	weighted avg

Best Results Support Vector Classifier

Confusion Matrics Support Vector Classifier

metrics_score(X_train, X_test, y_train, y_test, best_model_logit)

Roc-auc score

Train set: 90.058% Test set: 89.444%

Accuracy score

Train set: 82.633% Test set: 83.333%

Standart deviation

Train set: 6.117% Test set: 11.167%

Classification report

support	f1-score	recall	precision	
25	0.78	0.80	0.77	0
36	0.85	0.83	0.86	1
61	0.82			accuracy
61	0.81	0.82	0.81	macro avg
61	0.82	0.82	0.82	weighted avg

Best Results Logistic Regression

1 y_pred_test = best_model_logit.predict(X_train)

y_pred_test = best_model_logit.predict(X_test)

2 cm = confusion_matrix(y_test, y_pred_test)

Confusion Matrics Logistic Regression

metrics_score(X_train, X_test, y_train, y_test, best_model_ada)

Roc-auc score

Train set: 89.704% Test set: 90.278%

Accuracy score

Train set: 83.083% Test set: 86.667%

Standart deviation

Train set: 5.739% Test set: 14.540%

Classification report

	precision	recall	fl-score	support
0	0.81	0.84	0.82	25
1	0.89	0.86	0.87	36
accuracy			0.85	61
macro avg	0.85	0.85	0.85	61
weighted avg	0.85	0.85	0.85	61

Best Results AdaBoost Classifier

AdaBoost Classifier

Roc-auc score

Train set: 87.068% Test set: 90.694%

Accuracy score

Train set: 80.200% Test set: 83.333%

Standart deviation

Train set: 5.586% Test set: 12.851%

Classification report

		precision	recall	fl-score	support
	0	0.90	0.76	0.83	25
	1	0.85	0.94	0.89	36
accui	cacy			0.87	61
macro	avg	0.88	0.85	0.86	61
weighted	avg	0.87	0.87	0.87	61

Best Results XGBoost Classifier

XGBoost Classifier

Roc-auc score

Train set: 88.946% Test set: 94.167%

Accuracy score

Train set: 81.333% Test set: 85.000%

Standart deviation

Train set: 5.485% Test set: 9.497%

Classification report

		precision	recall	f1-score	support
	0	0.91	0.80	0.85	25
	1	0.87	0.94	0.91	36
accur	асу			0.89	61
macro	avg	0.89	0.87	0.88	61
weighted	avg	0.89	0.89	0.88	61

Best Results Bagging Classifier

1 y_pred_train = best_model_Bagg.predict(X_train)

2 cm = confusion_matrix(y_train, y_pred_train)

3 sns.heatmap(cm, annot = True)

1 y pred test = best model Bagg.predict(X test)

2 cm = confusion_matrix(y_test, y_pred_test)

3 sns.heatmap(cm, annot = True)

Confusion Matrics
Bagging Classifier

1 metrics_score(X_train, X_test, y_train, y_test, best_model_Extra)

Roc-auc score

Train set: 90.420% Test set: 91.806%

Accuracy score

Train set: 82.183% Test set: 85.000%

Standart deviation

Train set: 4.041% Test set: 10.476%

Classification report

support	f1-score	recall	precision	
25	0.78	0.72	0.86	0
36	0.87	0.92	0.82	1
61	0.84			accuracy
61	0.83	0.82	0.84	macro avg
61	0.83	0.84	0.84	weighted avg

Best Results ExtraTree Classifier

1 metrics_score(X_train, X_test, y_train, y_test, best_model_NB)

Roc-auc score

Train set: 88.903% Test set: 92.917%

Accuracy score

Train set: 80.967% Test set: 80.000%

Standart deviation

Train set: 5.608% Test set: 9.470%

Classification report

		precision	recall	f1-score	support
	0	0.80	0.80	0.80	25
	1	0.86	0.86	0.86	36
accur	асу			0.84	61
macro	avg	0.83	0.83	0.83	61
weighted	avg	0.84	0.84	0.84	61

Best Results GaussianNB Classifier

1 y_pred_test = best_model_NB.predict(X_test)

1 y_pred_train = best_model_NB.predict(X_train)

Confusion Matrics
GaussianNB Classifier

All Best Results

Decision Tree by accuracy: 77% Random Forest by accuracy: 85% KNeighbor Classifier by accuracy: 80% SVC by accuracy: 79% Ada Boost by accuarcy: 85% Bagging Classifier by accuracy: 89% Extra Tree Classifier by accuarcy: 84% XGBoost Classifier by accuarcy: 83% GaussianNB Classifier by accuary: 84% Logistic Regression by accuracy: 82%

Conclusion

1 Goal summary:

find the best machine learning model, in this project we solved the problem of binary classification

Where there is heart disease or not

2 Main Results

as a results of our project, not bad scores were achived for the following metrics such as Accuracy,

roc_auc score, precision, recall, f1-score and Standart Deviation

3 Models

Of all the algorithms, Bagging Classifier give us the highest accuracy score