

Machine Learning

Problem formulation

Example: Predicting movie ratings

User rates movies using one to five stars

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	→ * * * * * *
Love at last	5	5	0	6	L
Romance forever	5	34.5	(3)0	0	n_u = no. users
Cute puppies of love	(3)5	4		(3)0	n_m = no. movies
Nonstop car chases					r(i,j) = 1 if user j
Swords vs. karate		0 /	5	41	rated movie
Swords vs. Karate	0	0	5	(?)4	$y^{(i,j)}$ = rating give
		_			\sim user j to mo
$n_{u} =$	4	n _m = 5		L	(defined onl
				6,	r(i,j) = 1

 n_u = no. users n_m = no. movies r(i, j) = 1 if user j has rated movie i $y^{(i,j)}$ = rating given by user j to movie i(defined only if

In our notation, r(i,j)=1 if user j has rated movie i, and $y^{(i,j)}$ is his rating on that movie. Consider the following example (no. of movies $n_m=2$, no. of users $n_u=3$):

	User 1	User 2	User 3
Movie 1	0	1	?
Movie 2	?	5	5

What is r(2,1)? How about $y^{(2,1)}$?

$$r(2,1) = 0, y^{(2,1)} = 1$$

$$r(2,1) = 1, y^{(2,1)} = 1$$

$$r(2,1) = 0, \ y^{(2,1)} =$$
undefined

$$r(2,1) = 1, y^{(2,1)} =$$
undefined

Machine Learning

Content--based recommendations

Content--based recommender systems

Movie Alice (1) Bob (2) Carol (3) Dave (4)
$$x_1$$
 x_2 (romance) (action)

Love at last 5 5 0 0 0 0.99

For each user j, learn a parameter $\theta^{(j)} \in \mathbb{R}^3$. Predict user j as rating movie i with $(\theta^{(j)})^T x^{(i)}$ stars. $\subseteq \triangle^{(i)} \in \mathbb{R}^{n-1}$

$$\chi^{(3)} = \begin{bmatrix} 0.99 \\ 0.99 \end{bmatrix} \longrightarrow \Theta^{(1)} = \begin{bmatrix} 0 \\ \frac{5}{0} \end{bmatrix} \quad (\Theta^{(1)})^{T} \chi^{(3)} = 54.95$$

Consider the following set of movie ratings:

Movie	Alice (1)	Bob (2)	Carol (3)	David (4)	(romance)	(action)
Love at last	5	5	0	0	0.9	0
Romance forever	5	?	?	0	1.0	0.01
Cute puppies of love	?	4	0	?	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	?	0	0.9

$$\theta^{(3)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}$$

$$\theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$heta^{(3)} = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}$$

$$heta^{(3)} = egin{bmatrix} 0 \ 0 \ 5 \end{bmatrix}$$

Which of the following is a reasonable value for $\theta^{(3)}$? Recall that $x_0=1$.

Problem formulation

r(i,j)=1 if user j has rated movie i (0 otherwise) $y^{(i,j)}=$ rating by user j on movie i (if defined)

 $\theta^{(j)}$ = parameter vector for user j

 $x^{(i)}$ = feature vector for movie i

For user j , movie i , predicted rating: $(\theta^{(j)})^T(x^{(i)})$

Q(1) E TRATI

 $m^{(j)}$ = no. of movies rated by user j

To learn $\theta^{(j)}$:

$$\min_{\Theta_{(i)}} \frac{1}{2^{N}} \sum_{(i:r(i,j)=1)} \left((\Theta_{(i)})_{i}(x_{(i)}) - A_{(i,i)} \right)_{5} + \frac{5^{N}}{2^{N}} \sum_{k=1}^{K=1} (\Theta_{(i)}^{k})_{5}$$

Optimization objective:

To learn $\theta^{(j)}$ (parameter for user j):

$$\min_{\theta^{(j)}} \frac{1}{2} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

To learn $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{i=1}^{n_u} \sum_{i: r(i, i)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i, j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2$$

Optimization algorithm:

$$\min_{\theta^{(1)},...,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ (for } k = 0)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \text{ (for } k \neq 0)$$

Machine Learning

Collaborative filtering

Problem motivation

					_		
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1	x_2	
					(romance)	(action)	
Love at last	5	5	0	0	0.9	0	
Romance forever	5	?	?	0	1.0	0.01	
Cute puppies of love	?	4	0	?	0.99	0	
Nonstop car chases	0	0	5	4	0.1	1.0	
Swords vs. karate	0	0	5	?	0	0.9	

Problem motivation

					*	•	X ₆ =
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)	
Love at last	5	5	<u> , 0</u>	7 0	1.10	<i>A</i> 0-	Ö
Romance forever	5	?	?	0	[3	Ş	x0= [[]
Cute puppies of love	?	4	0	?	?	?	(0.0)
Nonstop car chases	0	0	5	4	?	?	~(0)
Swords vs. karate	0	0	5	?	?	?	×
$\Rightarrow \boxed{\theta^{(1)} =}$	$\theta^{(2)}$, $\theta^{(2)}$	$\mathbf{C}^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix},$	$\theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$\theta^{(4)} =$	$= \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$	(#	(のい) ^T x ⁽⁾ なり (ので) ^T x ⁽⁾ なり のはいな ⁽⁾ x ^T ((い))

Consider the following movie ratings:

	User 1	User 2	User 3	(romance)
Movie 1	0	1.5	2.5	?

Note that there is only one feature x_1 . Suppose that:

$$heta^{(1)} = egin{bmatrix} 0 \ 0 \end{bmatrix}, \ heta^{(2)} = egin{bmatrix} 0 \ 3 \end{bmatrix}, \ heta^{(3)} = egin{bmatrix} 0 \ 5 \end{bmatrix}$$

What would be a reasonable value for $x_1^{(1)}$ (the value denoted "?" in the table above)?

- 0.5
- 0 1
- 2
- Any of these values would be equally reasonable.

Optimization algorithm

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, to learn $x^{(i)}$:

$$\min_{x^{(i)}} \frac{1}{2} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^n (x_k^{(i)})^2$$

Given $\theta^{(1)}, \ldots, \theta^{(n_u)}$, to learn $x^{(1)}, \ldots, x^{(n_m)}$:

$$\min_{x^{(1)},\dots,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Suppose you use gradient descent to minimize:

$$\min_{x^{(1)},\dots,x^{(n_m)}} rac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} \left((heta^{(j)})^T x^{(i)} - y^{(i,j)}
ight)^2 + rac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Which of the following is a correct gradient descent update rule for $i \neq 0$?

$$x_k^{(i)} := x_k^{(i)} + lpha \left(\sum_{j: r(i,j)=1} \left((heta^{(j)})^T (x^{(i)}) - y^{(i,j)}
ight) heta_k^{(j)}
ight)$$

$$x_k^{(i)} := x_k^{(i)} - lpha \left(\sum_{j: r(i,j) = 1} \left((heta^{(j)})^T (x^{(i)}) - y^{(i,j)}
ight) heta_k^{(j)}
ight)$$

$$x_k^{(i)} := x_k^{(i)} + lpha \left(\sum_{j: r(i,j)=1} \left((heta^{(j)})^T (x^{(i)}) - y^{(i,j)}
ight) heta_k^{(j)} + \lambda x_k^{(i)}
ight)$$

$$x_k^{(i)} := x_k^{(i)} - lpha \left(\sum_{j: r(i,j)=1} \left((heta^{(j)})^T (x^{(i)}) - y^{(i,j)}
ight) heta_k^{(j)} + \lambda x_k^{(i)}
ight)$$

Collaborative filtering

Given $x^{(1)}, \ldots, x^{(n_m)}$ (and movie ratings), can estimate $\theta^{(1)}, \ldots, \theta^{(n_u)}$

Given
$$\theta^{(1)}, \dots, \theta^{(n_u)}$$
, can estimate $x^{(1)}, \dots, x^{(n_m)}$

Machine Learning

Collaborative filtering algorithm

Collaborative filtering optimization objective

Given $x^{(1)}, \ldots, x^{(n_m)}$, estimate $\theta^{(1)}, \ldots, \theta^{(n_u)}$:

$$\min_{\theta^{(1)},...,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, estimate $x^{(1)}, \dots, x^{(n_m)}$:

 $\theta^{(1)},\ldots,\theta^{(n_u)}$

$$\min_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Minimizing $x^{(1)}, \ldots, x^{(n_m)}$ and $\theta^{(1)}, \ldots, \theta^{(n_u)}$ simultaneously:

$$J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}) = \frac{1}{2} \sum_{(i,j): r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2$$

$$\min_{x^{(1)}, \dots, x^{(n_m)}} J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)})$$

Collaborative filtering algorithm

- 1. Initialize $x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)}$ to small random values.
- 2. Minimize $J(x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)})$ using gradient descent (or an advanced optimization algorithm). E.g. for every $j=1,\ldots,n_u, i=1,\ldots,n_m$:

$$x_{k}^{(i)} := x_{k}^{(i)} - \alpha \left(\sum_{j:r(i,j)=1} ((\theta^{(j)})^{T} x^{(i)} - y^{(i,j)}) \theta_{k}^{(j)} + \lambda x_{k}^{(i)} \right)$$

$$\theta_{k}^{(j)} := \theta_{k}^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^{T} x^{(i)} - y^{(i,j)}) x_{k}^{(i)} + \lambda \theta_{k}^{(j)} \right)$$
For a user with parameters θ , and a movie with (learned)

3. For a user with parameters θ and a movie with (learned) features x, predict a star rating of $\theta^T x$.

$$\left(\bigotimes^{(i)} \right)^{\mathsf{T}} \left(\times^{(i)} \right)$$

XOCI XER, OER

In the algorithm we described, we initialized $x^{(1)}, \ldots, x^{(n_m)}$ and $\theta^{(1)}, \ldots, \theta^{(n_u)}$ to small random values. Why is this?

- This step is optional. Initializing to all 0's would work just as well.
- Random initialization is always necessary when using gradient descent on any problem.
- lacksquare This ensures that $x^{(i)}
 eq heta^{(j)}$ for any i,j.
- This serves as symmetry breaking (similar to the random initialization of a neural network's parameters) and ensures the algorithm learns features $x^{(1)}, \ldots, x^{(n_m)}$ that are different from each other.

Machine Learning

Vectorization:
Low rank matrix
factorization

Collaborative filtering

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	,	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ 2 & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

Collaborative filtering

$$(Q_{\partial J})_{\perp}(x_{(i,j)})$$

Predicted ratings:

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix} \qquad \begin{bmatrix} (\theta^{(1)})^T(x^{(1)}) & (\theta^{(2)})^T(x^{(1)}) & \dots & (\theta^{(n_u)})^T(x^{(1)}) \\ (\theta^{(1)})^T(x^{(2)}) & (\theta^{(2)})^T(x^{(2)}) & \dots & (\theta^{(n_u)})^T(x^{(2)}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (\theta^{(1)})^T(x^{(n_m)}) & (\theta^{(2)})^T(x^{(n_m)}) & \dots & (\theta^{(n_u)})^T(x^{(n_m)}) \end{bmatrix}$$

Let
$$X=egin{bmatrix} -&(x^{(1)})^T&-\ dots&\ \vdots&\ -&(x^{(n_m)}&-\ \end{bmatrix},\;\Theta=egin{bmatrix} -&(heta^{(1)})^T&-\ dots&\ \vdots&\ -&(heta^{(n_u)}&-\ \end{bmatrix}.$$

What is another way of writing the following:

$$egin{bmatrix} (x^{(1)})^T(heta^{(1)}) & \dots & (x^{(1)})^T(heta^{(n_u)}) \ dots & \ddots & dots \ (x^{(n_m)})^T(heta^{(1)}) & \dots & (x^{(n_m)})^T(heta^{(n_u)}) \end{bmatrix}$$

Finding related movies

For each product i, we learn a feature vector $x^{(i)} \in \mathbb{R}^n$.

How to find movies j related to movie i?

small
$$\|x^{(i)} - x^{(j)}\| \rightarrow \text{movie } j \text{ ord } i \text{ cre "similar"}$$

5 most similar movies to movie i: Find the 5 movies j with the smallest $\|x^{(i)} - x^{(j)}\|$.

Machine Learning

Implementational detail: Mean normalization

Users who have not rated any movies

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	Eve (5)		Γ⊷	_	0	0	
Love at last	5	5	0	0	5,0		5	5	0	0	
Romance forever	5	?	?	0	3 ♥	T 7	$\frac{1}{2}$		•	0	9
Cute puppies of love	?	4	0	?	? D	Y =	.	4	0		
Nonstop car chases	0	0	5	4	Ş <mark>□</mark>		$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	5	4	
Swords vs. karate	0	0	5	?	? D		Γ_0	U	5	U	

$$\min_{\substack{x^{(1)}, \dots, x^{(n_m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} \frac{1}{2} \sum_{(i,j): r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2$$

$$N=5$$
 $\Theta_{(2)} \in \mathbb{R}_{3}$ $\Theta_{(2)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Mean Normalization:

$$u = \begin{bmatrix} 2.5 \\ 2.5 \\ 2.25 \\ 1.25 \end{bmatrix} \rightarrow Y = \begin{bmatrix} 2.5 & 2.5 & -2.5 & -2.5 \\ 2.5 & ? & ? & -2.5 \\ ? & 2 & -2 & ? \\ -2.25 & -2.25 & 2.75 & 1.7 \\ -1.25 & -1.25 & 3.75 & -1 \end{bmatrix}$$

For user j, on movie i predict:

User 5 (Eve):

We talked about mean normalization. However, unlike some other applications of feature scaling, we did not scale the movie ratings by dividing by the range (max – min value). This is because:

- This sort of scaling is not useful when the value being predicted is real-valued.
- All the movie ratings are already comparable (e.g., 0 to 5 stars), so they are already on similar scales.
- Subtracting the mean is mathematically equivalent to dividing by the range.
- This makes the overall algorithm significantly more computationally efficient.