Virtual Erythrocyte

S. Litvinov,

collaborators: A. Economides, L. Kulakova, L. Amoudruz, D. Alexeev, P. Hadjidoukas, G. Arampatzis, D. Rossinelli,

P. Koumoutsakos

cse-lab ethz ch

DPD (Dissipative Particle Dynamics)

- 3D membranes immersed in the "ocean" of DPD particles
- walls are made from DPD particles
- solvent-solvent, membranes-solvent interactions

$$m_i \frac{d\mathbf{v}_i}{dt} = \sum_i \left(F_{ij}^C + F_{ij}^D + F_{ij}^R \right) \mathbf{e}_{ij}$$

between particles i and j; m_i is a mass, $F_i^{\{C,D,R\}}$ are conservative, dissipative, and random force, and \mathbf{e}_{ij} is a unit vector in direction from i to j.

RBC model

RBC model

RBC: elastic

$$E^{spring} \propto (x - x_0)^2 + E^{nonlin}$$
 $E^{tot}_{area} \propto (A^{tot} - A^{tot}_0)^2 \quad E^{local}_{area} \propto (A - A_0)^2$
 $E^{tot}_{vol} \propto (V^{tot} - V^{tot}_0)^2 \quad E_{bnd} \propto (\theta - \theta_0)^2$

Parameters

- [...]₀ are fixed by geometry and mesh
- volume and area constrains should be strong
- k_{spring}, k_{nonlin}, k_{bnd}

RBC: viscous

Note

- from experiment: energy dissipate on the membrane
- \mathbf{v}_{ij} of connected points is small

$$\mathbf{F}_{ij}^D = -\gamma^T \mathbf{v}_{ij} - \gamma^C \mathbf{v}_{ij} \cdot \mathbf{e}_{ij}$$

needs a random force $\mathbf{F}_{ij}^D \propto T$

RBC: inner and outer fluid

- viscosity is different
- DPD interaction with membrane
- penetrated particles "reset"

TTF

TTF

Bead

Shape

Performance

