

Printed Page: 1 of 2 Subject Code: REC202

Roll !	No:
--------	-----

MCA(Integrated) (SEM II) THEORY EXAMINATION 2021-22 DIGITAL ELECTRONICS

Time: 3 Hours

Total Marks: 70

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

Attempt all questions in brief.

2*7 = 14

a .	convert
	a) (0110) BCD to Excess-3.
-	b) convert (10011010) xs-3 to BCD.
<u>b.</u>	Define the difference between canonical form and standard form.
c.	Define the following terms by giving suitable example (a) POS (b) SOP.
d.	Draw three variable K-map format.
e.	Derive the Boolean expression for the logic circuit shown below:
f.	Differentiate between sequential circuit and combinational circuit.
g.	Define modulus of a counter? Write down the number of flip flops required for mod-5 counter?

SECTION B

Attempt any three of the following:

7*3 = 21

a.	Convert the following:	
i	i) $(5C7)_{16} = (?)_{10}$	
	ii) ii) $(2598)_{10} = (?)_{16}$	
_	iii) iii) $(10110)_2 = (?)_{10} = (?)_{16}$	
b.	Explain the Basic theorems and Properties of Boolean algebra in detail.	
Ic.	Simplify the Boolean function by means of Tabulation method:	
Ĺ	$F(A, B,C,D) = \sum m(9,12,13,15) + \sum d(1,4,5,7,8,11,14)$	
đ.	Define Decimal Adder with truth table and logic diagram.	
c.	Discuss the features of ripple counter in detail and design a 3-bit Ripple counter using a JK flip-flop along with its truth table.	

SECTION C

3. Attempt any one part of the following:

7*1 = 7

a. Define digital computer. Draw the functional parts of a digital computer and explain its block.
 b. If X= 1010100 and Y=1000011, Compute X-Y and Y - X using I's complement and 2's complement.

Printed Page. -Subject Code: REC202

Roll No:

MCA(Integrated) (SEM II) THEORY EXAMINATION 2021-22 DIGITAL ELECTRONICS

Attempt any one part of the following: 4.

7*1 = 7

- Realize the Boolean expression Z=ABC + AD + CD' using NAND gates only.
- b. For the Boolean function

F = xy'z + x'y'z + w'xy + wx'y + wxy

- a. Obtain the truth table of F.
- b. Draw the logic diagram, using the original Boolean expression.
- c. Use Boolean algebra to simplify the function to a minimum number of literals.

Attempt any one part of the following: 5.

7*1 = 7

- Minimise the following function in SOP minimal form using K-Maps: F(A, B, (C, D) = m(1, 2, 6, 7, 8, 13, 14, 15) + d(0, 3, 5, 12)
- Reduce the expression $f = \sum m (0,1,2,3,5,7,8,9,10,12,13)$ using K-maps and implement the real minimal expression using NAND logic.

Attempt any one part of the following: 6.

7*1 = 7

- Differentiate between full adder and half adder. Implement a full adder with two half adders and an OR gate.
- Realize the following function $F(A, B,C,D) = \sum m(1,3,4,10,11,12,13)$ using
 - a) 4 X I MUX
 - b) 8 X 1 MUX

Attempt any one part of the following: **シ**

7*1 = 7

- Describe the working of Master-Slave JK Flip-Flop with Truth Table and Logic diagram.
- Discuss the different types of shift registers with their block diagram.

https://www.aktuonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने प्राने पेपर्स भेजे और 10 रुपये पायें,

Paytm or Google Pay से