1. FORMAL FUNCTORS AND REPRESENTABILITY

Example 1.1 (Formal schemes from algebraic ones). Let Z be a **G**-scheme and \mathcal{I} be the ideal of $Z^{\mathbf{G}}$. Then $Z_n = V(\mathcal{I}^{n+1})$ is a closed **G**-stable subscheme of Z for every $n \in \mathbb{N}$ and this yields to a formal **G**-scheme $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$. We denote this formal **G**-scheme by \widehat{Z} .

Now we define morphisms of formal **G**-schemes.

Definition 1.2. Let $\mathcal{Z} = \{Z_n\}$ and $\mathcal{W} = \{W_n\}$ be formal **G**-schemes. A *morphism* $\varphi : \mathcal{W} \to \mathcal{Z}$ *of formal* **G**-schemes is a family of **G**-equivariant morphisms $\varphi = \{\varphi_n : W_n \to Z_n\}$ such that for every $n \in \mathbb{N}$ we have a commutative square

Remark 1.3 (Morphisms of formal \overline{G} -schemes are \overline{G} -equivariant). Let \mathcal{W} and \mathcal{Z} be formal \overline{G} schemes and consider their morphism $\varphi: \mathcal{W} \to \mathcal{Z}$ (as formal **G**-schemes). Then for every $n \in \mathbb{N}$ the morphism $\varphi_n: W_n \to Z_n$ is $\overline{\mathbf{G}}$ -equivariant. To see this, consider Diagram (1).

(1)

Since W_0 and Z_0 are equipped with trivial $\overline{\mathbf{G}}$ -actions, also the pullback $W_0 \times_{Z_0} Z_n$ is a $\overline{\mathbf{G}}$ -scheme and q_n is $\overline{\mathbf{G}}$ -equivariant. Recall that π_{Z_n} , π_{W_n} are affine morphisms. Therefore, p_n is affine. Hence r_n is a **G**-equivariant morphism between $\overline{\mathbf{G}}$ -schemes separated (even affine) over W_0 . Thus r_n is

Definition 1.4. A locally linear \overline{G} -scheme is a \overline{G} -scheme which admits an open cover by affine $\overline{\mathbf{G}}$ -stable subschemes. The category of locally linear $\overline{\mathbf{G}}$ -schemes consists of those schemes and $\overline{\mathbf{G}}$ -equivariant morphisms.

Let Z be a locally linear $\overline{\mathbf{G}}$ -scheme. By Proposition \ref{G} , the map $\mathcal{D}_Z \to Z$ is an isomorphism. In particular, there is a canonical morphism $\pi_Z: Z \to Z^G$, which is the multiplication by zero. For an affine open $\overline{\mathbf{G}}$ -stable cover $\{V_i\}_i$ of Z, we have $V_i = \pi_Z^{-1}(\pi_Z(V_i))$ by Proposition ??, hence the canonical morphism $\pi_Z: Z \to Z^G$ is affine.

Definition 1.5. Let \mathcal{Z} be a formal $\overline{\mathbf{G}}$ -scheme. An *algebraization* of \mathcal{Z} is a $\overline{\mathbf{G}}$ -scheme Z such that

- (1) Z is a locally linear $\overline{\mathbf{G}}$ -scheme.
- (2) \mathbb{Z} and $\widehat{\mathbb{Z}}$ are isomorphic formal $\overline{\mathbf{G}}$ -schemes.

By the above discussion, the morphism $\pi_Z: Z \to Z^G$ is affine for any algebraization Z.

Theorem 1.6 (Algebraization of a formal $\overline{\mathbf{G}}$ -scheme). Let $\mathcal{Z} = \{Z_n\}$ be a formal $\overline{\mathbf{G}}$ -scheme. Then there exists a colimit

$$Z = \operatorname{colim}_n Z_n$$

in the category of locally linear $\overline{\mathbf{G}}$ -schemes and Z is the unique algebraization of Z. If in addition Z is locally Noetherian, then π_Z is of finite type. If Z is locally Noetherian and Z_0 is of finite type, then also Z is of finite type.

Now we spell out the main idea of the proof: the $\overline{\mathbf{G}}$ -scheme Z required in Theorem 1.6 is equal to Spec $Z_0\mathcal{A}$, where \mathcal{A} is the limit of \mathcal{A}_n in the category of $\overline{\mathbf{G}}$ -algebras; in other words each isotypic component of \mathcal{A} is the limit of isotypic components of \mathcal{A}_n . Our first goal is to prove a stabilization result. We denote by $\mathrm{Irr}(\mathbf{G})$ the set of isomorphism types of irreducible \mathbf{G} -representations and by $\mathrm{Irr}(\overline{\mathbf{G}}) \subset \mathrm{Irr}(\mathbf{G})$ the subset of $\overline{\mathbf{G}}$ -representations. For $\lambda \in \mathrm{Irr}(\mathbf{G})$ and a quasi-coherent $\overline{\mathbf{G}}$ -module \mathcal{C} on Z_0 we denote by $\mathcal{C}[\lambda] \subset \mathcal{C}$ the $\overline{\mathbf{G}}$ -submodule such that $H^0(\mathcal{U}, \mathcal{C}[\lambda]) \subset H^0(\mathcal{U}, \mathcal{C})$ is the union of all \mathbf{G} -subrepresentations of $H^0(\mathcal{U}, \mathcal{C})$ isomorphic to λ (i.e., the isotypic component of λ).

Lemma 1.6.1 (stabilization on an isotypic component). Let $\lambda \in \operatorname{Irr}(\overline{\mathbf{G}})$. Then there exists a number $n_{\lambda} \in \mathbb{N}$ such that the following holds. Let $\mathcal{Z} = \{Z_n\}$ be a formal $\overline{\mathbf{G}}$ -scheme and $\{A_{n+1} \twoheadrightarrow A_n\}$ be the associated sequence of quasi-coherent $\overline{\mathbf{G}}$ -algebras. Then for every $n > n_{\lambda}$ the surjection

$$\mathcal{A}_n[\lambda] \twoheadrightarrow \mathcal{A}_{n-1}[\lambda]$$

is an isomorphism. If $\lambda_0 \in \operatorname{Irr}(\overline{\mathbf{G}})$ is the trivial representation, then we may take $n_{\lambda_0} = 0$.

Proof of Lemma 1.6.1. The claims are preserved under field extension, so we may assume our field is algebraically closed (hence perfect) so we may use the Kempf's torus. Fix a grading on $k[\overline{\mathbf{G}}]$ induced by a Kempf's torus for k as in Corollary ??. Denote by $A_{\lambda} \subseteq \mathbb{N}$ the set of weights which appear in $k[\mathbf{G}]_{\lambda}$. Since $\dim_k k[\mathbf{G}]_{\lambda}$ is finite by Proposition ??, the set A_{λ} is finite. Put

$$n_{\lambda} = \sup A_{\lambda}$$
.

Fix $n > n_{\lambda}$ and let $\mathcal{I}_n = \ker(\mathcal{A}_n \to \mathcal{A}_0)$. Then we have a decomposition with respect to the chosen torus

$$\mathcal{A}_n = \bigoplus_{i \geq 0} (\mathcal{A}_n)[i],$$

By Corollary **??**, we have $\mathcal{I}_n = \bigoplus_{i \geq 1} (\mathcal{A}_n)[i]$. Since $n > n_\lambda$ we have

$$\mathcal{I}_n^n \subset \bigoplus_{i \geq n} (\mathcal{A}_n)[i] \subseteq \bigoplus_{i \notin A_{\lambda}} (\mathcal{A}_n)[i]$$

Hence, $\mathcal{I}_n^n[\lambda] = 0$. But $\mathcal{I}_n^n[\lambda] = \ker(\mathcal{A}_n[\lambda] \to \mathcal{A}_{n-1}[\lambda])$, thus $\mathcal{A}_n[\lambda] \to \mathcal{A}_{n-1}[\lambda]$ is an isomorphism. Finally note that $A_{\lambda_0} = \{0\}$. This implies that $n_{\lambda_0} = 0$.

Proof of Theorem **1.6**. Let A_n be the quasi-coherent $\overline{\mathbf{G}}$ -algebras as in (??). For $\lambda \in \operatorname{Irr}(\overline{\mathbf{G}})$ we define $A[\lambda] := A_n[\lambda]$, where $n \geq n_\lambda$ as in Lemma **1.6.1**.

$$\mathcal{A} = \bigoplus_{\lambda \in \operatorname{Irr}(\overline{\mathbf{G}})} \mathcal{A}[\lambda] = \bigoplus_{\lambda \in \operatorname{Irr}(\overline{\mathbf{G}})} \mathcal{A}_{n_{\lambda}}[\lambda].$$

Clearly $\mathcal{A}[\lambda_0] = \mathcal{A}_0 = \mathcal{O}_{Z_0}$ canonically (where λ_0 is the trivial representation), hence \mathcal{A} is an \mathcal{O}_{Z_0} -module. Actually $\mathcal{A} = \lim_n \mathcal{A}_n$ in the category of quasi-coherent $\overline{\mathbf{G}}$ -modules on Z_0 . We construct the algebra structure on \mathcal{A} . For this pick $\eta_1, \eta_2 \in \operatorname{Irr}(\overline{\mathbf{G}})$. Fix the finite set $\{\lambda_1, \ldots, \lambda_s\} \subseteq \operatorname{Irr}(\overline{\mathbf{G}})$ of representations which appear in $k[\overline{\mathbf{G}}]_{\eta_1} \otimes_k k[\overline{\mathbf{G}}]_{\eta_2}$. Then, for every $n \in \mathbb{N}$, we have the multiplication

$$\mathcal{A}_n[\eta_1] \otimes_k \mathcal{A}_n[\eta_2] \to \mathcal{A}_n[\eta_1] \cdot \mathcal{A}_n[\eta_2] \subseteq \bigoplus_{i=1}^s \mathcal{A}_n[\lambda_i]$$

and by Lemma 1.6.1 these morphisms can be identified for $n \ge \sup\{n_{\eta_1}, n_{\eta_2}, n_{\lambda_1}, ..., n_{\lambda_s}\}$. We define

$$\mathcal{A}[\eta_1] \otimes_k \mathcal{A}[\eta_2] \to \bigoplus_{i=1}^s \mathcal{A}[\lambda_i] \subseteq \mathcal{A}$$

as a morphism induced by the multiplication morphism for any $n \ge \sup\{n_{\eta_1}, n_{\eta_2}, n_{\lambda_1}, \dots, n_{\lambda_s}\}$. This gives an \mathcal{O}_{Z_0} -algebra structure on \mathcal{A} , so \mathcal{A} is in fact the limit of \mathcal{A}_n is the category of $\overline{\mathbf{G}}$ -algebras. Note that from the description of \mathcal{A} it follows that for every $n \in \mathbb{N}$ we have a surjective morphism $p_n : \mathcal{A} \twoheadrightarrow \mathcal{A}_n$ of $\overline{\mathbf{G}}$ -algebras. We denote its kernel by \mathcal{J}_n and we put $\mathcal{J} := \mathcal{J}_0$. The natural injection $\mathcal{O}_{Z_0} = \mathcal{A}_0 \to \mathcal{A}$ is a section of p_0 , so that we have

$$\mathcal{J} = \bigoplus_{\lambda \in \operatorname{Irr}(\overline{\mathbf{G}}) \setminus \{\lambda_0\}} \mathcal{A}[\lambda].$$

We also denote by \mathcal{I}_n the kernel of $\mathcal{A}_n \twoheadrightarrow \mathcal{A}_0 = \mathcal{O}_{Z_0}$ for $n \in \mathbb{N}$. Then $\mathcal{I}_n = \mathcal{J}/\mathcal{J}_n$. Fix $m \in \mathbb{N}$ and consider $n \in \mathbb{N}$ such that $n \ge m$. Since \mathcal{Z} is a formal $\overline{\mathbf{G}}$ -scheme, the sheaf \mathcal{I}_n^{m+1} is the kernel of the morphism $\mathcal{A}_n \twoheadrightarrow \mathcal{A}_m$. Thus

$$\mathcal{J}_m/\mathcal{J}_n = \mathcal{I}_n^{m+1} = (\mathcal{J}^{m+1} + \mathcal{J}_n)/\mathcal{J}_n.$$

Both \mathcal{J}_m and \mathcal{J}^{m+1} are $\operatorname{Irr}(\overline{\mathbf{G}})$ -graded and for given $\lambda \in \operatorname{Irr}(\overline{\mathbf{G}})$ and $n \gg 0$ the isotypic component $\mathcal{J}_n[\lambda]$ is zero by Lemma 1.6.1. Hence $\mathcal{J}_m = \mathcal{J}^{m+1}$ for every $m \in \mathbb{N}$. We define

$$Z = \operatorname{Spec}_{Z_0}(\mathcal{A})$$

and we denote by $\pi: Z \to Z_0$ the structural morphism. The scheme Z inherits a $\overline{\mathbf{G}}$ -action from \mathcal{A} . For every $n \in \mathbb{N}$ the zero-set of $\mathcal{J}^{n+1} \subseteq \mathcal{A}$ is a $\overline{\mathbf{G}}$ -scheme isomorphic to Z_n . Hence Z is isomorphic to \widehat{Z} . Thus Z is an algebraization of Z. Since $\mathcal{A} = \lim \mathcal{A}_n$, we have $Z = \operatorname{colim} Z_n$ in the category of locally linear $\overline{\mathbf{G}}$ -schemes.

It remains to prove uniqueness of algebraization. Let $Z' = \operatorname{Spec}_{Z_0} \mathcal{A}'$ be an algebraization of $Z = \{Z_n\}$. Then $Z_n \hookrightarrow Z'$, so by the universal property of colimit, we obtain a $\overline{\mathbf{G}}$ -morphism $Z \to Z'$, corresponding to $\mathcal{A}' \to \mathcal{A}$. It induces epimorphisms $\mathcal{A}' \twoheadrightarrow \mathcal{A}_n$ for all n. For each $\lambda \in \operatorname{Irr}(\overline{\mathbf{G}})$, the composition

$$\mathcal{A}'[\lambda] \to \mathcal{A}[\lambda] \simeq \mathcal{A}_{n_{\lambda}}[\lambda]$$

is an epimorphism, hence $\mathcal{A}' \to \mathcal{A}$ is an epimorphism. The kernel of $\mathcal{A}' \to \mathcal{A}$ is equal to

$$\bigcap_{n} \ker(\mathcal{A}' \to \mathcal{A}_n) = \bigcap_{n} \ker(\mathcal{A}' \to \mathcal{A}_0)^n.$$

To prove that this kernel is zero, we may enlarge the field to an algebraically closed field, so the result follows from Corollary ??.

Assume that each scheme Z_n is locally Noetherian over k. Then \mathcal{I}_n is a coherent \mathcal{A}_n -module, thus $\mathcal{I}_n^i/\mathcal{I}^{i+1}$ is a coherent \mathcal{A}_0 -module for all i. The series

$$0 = \mathcal{I}_n^{n+1} \subset \mathcal{I}^n \subset \ldots \subset \mathcal{I} \subset \mathcal{A}_n$$

has coherent subquotients, hence \mathcal{A}_n is a coherent \mathcal{O}_{Z_n} -algebra. Thus $\mathcal{A}[\lambda]$ is a coherent \mathcal{O}_{Z_0} -module for every $\lambda \in \operatorname{Irr}(\overline{\mathbf{G}})$. The claim that π is of finite type is local on $Z^{\mathbf{G}}$, hence we may assume that $Z^{\mathbf{G}}$ is quasi-compact. The sheaf $\mathcal{J}/\mathcal{J}^2 \subseteq \mathcal{A}_1$ is coherent so there exists a finite set $\lambda_1, \ldots, \lambda_r \in \operatorname{Irr}(\overline{\mathbf{G}}) \setminus \{\lambda_0\}$ such that the morphism

$$\bigoplus_{i=1}^r \mathcal{A}[\lambda_i] \to \mathcal{J}/\mathcal{J}^2$$

induced by $\mathcal{A} \twoheadrightarrow \mathcal{A}_2$ is surjective. Let $\mathcal{B} \subset \mathcal{A}$ be the quasi-coherent \mathcal{O}_{Z_0} -subalgebra generated by the coherent subsheaf $\mathcal{M} := \bigoplus_{i=1}^r \mathcal{A}[\lambda_i] \subseteq \mathcal{A}$. Let \overline{k} be an algebraic closure of k and let $\mathcal{A}' = \mathcal{A} \otimes \overline{k}$. Fix a Kempf's torus over \overline{k} and the associated grading $\mathcal{A}' = \bigoplus_{i \geq 0} \mathcal{A}'[i]$ as in Corollary ??. Then $\mathcal{J} = \bigoplus_{i \geq 1} \mathcal{A}'[i]$ is a graded ideal and $\mathcal{J}/\mathcal{J}^2$ is generated by the graded (coherent) subsheaf $\mathcal{M}' = \bigoplus_{i=1}^r \mathcal{A}'[\lambda_i]$. By graded Nakayama's lemma, the ideal \mathcal{J} itself is generated by (the elements of) \mathcal{M}' . Then by induction on the degree, \mathcal{A}' is generated by \mathcal{M}' as an algebra. In other words, $\mathcal{A}' = \mathcal{B} \otimes \overline{k}$. Thus also $\mathcal{A} = \mathcal{B}$ and so \mathcal{A} is of finite type over \mathcal{O}_{Z_0} .

With the proof of Theorem 1.6 in hand, we can easily algebraize also equivariant mappings between formal schemes.

Proposition 1.7 (Algebraization of morphisms of formal $\overline{\mathbf{G}}$ -schemes). Let $\mathcal{W} = \{W_n\}$ and $\mathcal{Z} = \{Z_n\}$ be formal $\overline{\mathbf{G}}$ -schemes. Let W and Z be algebraizations of W and Z respectively (see Theorem 1.6). Then every $\overline{\mathbf{G}}$ -morphism $\widehat{\varphi}: \mathcal{W} \to \mathcal{Z}$ is the formalization of a unique $\overline{\mathbf{G}}$ -equivariant morphism $\varphi: W \to Z$.

Proof. The map $\widehat{\varphi}$ induces maps $W_n \to Z_n \hookrightarrow Z$. By Theorem 1.6, the scheme W is a colimit of W_n in the category of locally linear $\overline{\mathbf{G}}$ -schemes. By the universal property of the colimit, we obtain a unique $\overline{\mathbf{G}}$ -equivariant morphism $W \to Z$.

It turns out that for each $n \in \mathbb{N}$ the functor P_n admits a right adjoint. We construct this right adjoint now. Let X be an object of C_n . For every $m \in \mathbb{N}$ we define

$$X_m = \begin{cases} G_{m-1}...G_{n+1}G_n(X) & \text{if } m > n \\ X & \text{if } m = n \\ F_m...F_{n-2}F_{n-1}(X) & \text{if } m < n \end{cases}$$

and

$$u_{m} = \begin{cases} \xi_{G_{m-1}...G_{n+1}G_{n}(X)} & \text{if } m \ge n \\ 1_{F_{m}...F_{n-2}F_{n-1}(X)} & \text{if } m < n \end{cases}$$

where $\xi_{G_{m-1}...G_{n+1}G_n(X)}: F_mG_mG_{m-1}...G_{n+1}G_n(X) \to G_{m-1}...G_{n+1}G_n(X)$ is a counit of the adjoint functors F_m and G_m , which is an isomorphism as G_m is full and faithful. We define $Q_n(X) = (\{X_n\}_{n\in\mathbb{N}}, \{u_n\}_{n\in\mathbb{N}})$.

Proposition 1.8. Let $Q_n : C_n \to C(\mathbb{T})$ be a that sends X

2. THICK SUBCATEGORIES

Definition 2.1. Let C be an abelian category and let S be its full subcategory. Suppose that for every exact sequence in C

$$0 \longrightarrow X' \longrightarrow X \longrightarrow X'' \longrightarrow 0$$

we have $X \in \mathcal{S}$ if and only if X', $X'' \in \mathcal{S}$. Then \mathcal{S} is called a *thick subcategory of* \mathcal{C} .

Definition 2.2. A category C is called *well-powered* if the class of subobjects of X is a set for every object X in C.

Proposition 2.3. Let C be an **Ab**3-category and let S be a thick subcategory. Assume that S is closed under small direct sums. For every object X in C there exists a unique subobject S(X) such that for every morphism $f: Y \to X$ in C with Y in S we have $f(Y) \subseteq S(X)$.

Proof. One can prove the result invoking general adjoint functor theorems [Mac Lane, 1998, Chapter V, Sections 5 and 6]. For self-containment we present the complete proof below.

Fix an object X of C. Since C is well-powered, the class $\{Y_i\}_{i\in I}$ of subobjects of X that belong to S is a set. Since S is closed under small direct sums we derive that $\sum_{i\in I} Y_i \subseteq X$ is in S. Indeed, this is the image of the canonical morphism

$$\bigoplus_{i \in I} Y_i \longrightarrow X$$

and since S is a thick subcategory closed under small direct sums, we deduce that this image is an object of S. Thus $S(X) = \sum_{i \in I} Y_i$ is the largest subobject of X contained in S. This implies the statement.

Fact 2.4. Let C be an **Ab**3-category and let S be a thick subcategory. Assume that S is closed under small direct sums. For every X in C let S(X) be the largest subobject of X contained in S. Then $S: C \to S$ is a left exact functor.

Proof. Left to the reader. \Box

3. Existence of the algebraization

Definition 3.1. Let **M** be a affine monoid k-scheme. Let $\mathcal{K} : \mathbf{Rep}(\mathbf{M}) \to \mathbf{Rep}(\mathbb{A}^1_k)$ be an exact functor such that the triangle

is commutative. Then we say that K is a Kempf functor for M.

4. FORMAL M-SCHEMES

Let **M** be a affine monoid *k*-scheme.

Definition 4.1. Let X be a M-scheme. We say that X is a locally linear M-scheme if there exists an open cover of X consisting of affine and M-stable subchemes of X.

Definition 4.2. A formal M-scheme consists of a sequence $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ of M-schemes together with M-equivariant closed immersions

$$Z_0 \longrightarrow Z_1 \longrightarrow ... \longrightarrow Z_n \longrightarrow Z_{n+1} \longrightarrow ...$$

satisfying the following assertions.

- (1) **M**-scheme Z_0 is locally linear.
- (2) Let \mathcal{I}_n be an ideal of \mathcal{O}_{Z_n} defining Z_0 . Then for every $m \le n$ the subscheme $Z_m \subset Z_n$ is defined by \mathcal{I}_n^{m+1} .

Definition 4.3. Let $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ and $\mathcal{W} = \{W_n\}_{n \in \mathbb{N}}$ are formal **M**-schemes. Then *a morphism* $f: \mathcal{Z} \to \mathcal{W}$ of formal **M**-schemes consists of a family of **M**-equivariant morphisms $f = \{f_n: Z_n \to W_n\}_{n \in \mathbb{N}}$ such that the diagram

$$Z_{0} \longleftrightarrow Z_{1} \longleftrightarrow \dots \longleftrightarrow Z_{n} \longleftrightarrow Z_{n+1} \longleftrightarrow \dots$$

$$f_{0} \downarrow \qquad f_{1} \downarrow \qquad f_{n} \downarrow \qquad f_{n+1} \downarrow$$

$$W_{0} \longleftrightarrow W_{1} \longleftrightarrow \dots \longleftrightarrow W_{n} \longleftrightarrow W_{n+1} \longleftrightarrow \dots$$

is commutative.

Definition 4.4. Let $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ be a formal **M**-scheme. A quasi-coherent sheaf \mathcal{F} on \mathcal{Z} consists of a family $(\{\mathcal{F}_n\}_{n \in \mathbb{N}}, \{\phi_{n,m}\}_{n,m \in \mathbb{N},m \leq n})$ such that the following are satisfied.

- (1) \mathcal{F}_n is a quasi-coherent sheaf on Z_n with **M**-linearization.
- (2) $\phi_{n,m}: \mathcal{F}_{n|Z_m} \to \mathcal{F}_m$ is an isomorphism of quasi-coherent sheaves with **M**-linearizations for any pair $n, m \in \mathbb{N}$ such that $m \le n$.

(3) The composition

$$\phi_{m,l} \cdot \phi_{n,m|Z_l} : (\mathcal{F}_{n|Z_m})_{|Z_l} \to \mathcal{F}_l$$

and the morphism

$$\phi_{n,l}: \mathcal{F}_{n|Z_l} \to \mathcal{F}_l$$

are canonically isomorphic for any $n, m, l \in \mathbb{N}$ such that $l \le m \le n$.

Definition 4.5. Let $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ be a formal **M**-scheme. Suppose that $\mathcal{F} = (\{\mathcal{F}_n\}_{n \in \mathbb{N}}, \{\phi_{n,m}\}_{n,m \in \mathbb{N}, m \leq n})$ and $\mathcal{G} = (\{\mathcal{G}_n\}_{n \in \mathbb{N}}, \{\psi_{n,m}\}_{n,m \in \mathbb{N}, m \leq n})$ are quasi-coherent sheaves on \mathcal{Z} . A morphism $\theta : \mathcal{F} \to \mathcal{G}$ of quasi-coherent sheaves on \mathcal{Z} consists of a family $\{\theta_n : \mathcal{F}_n \to \mathcal{G}_n\}_{n \in \mathbb{N}}$ of morphisms of quasi-coherent sheaves with **M**-linearizations such that squares

$$\begin{array}{ccc}
\mathcal{F}_{n|Z_{m}} & \xrightarrow{\phi_{n,m}} \mathcal{F}_{m} \\
\theta_{n|Z_{m}} & \xrightarrow{\psi_{n,m}} \mathcal{F}_{m}
\end{array}$$

are commutative for any $n, m \in \mathbb{N}$ and $m \le n$.

If \mathcal{Z} is a formal **M**-scheme, then we denote by $\mathfrak{Qcoh}(\mathcal{Z})$ its category of quasi-coherent sheaves.

Definition 4.6. Let $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ be a formal **M**-scheme. A pair (Z, \mathcal{I}) consisting of a **M**-scheme Z together with a quasi-coherent ideal \mathcal{I} equipped with **M**-linearization is called *an algebraization of* \mathcal{Z} if the following two conditions are satisfied.

- (1) \mathcal{Z} is isomorphic to $\widehat{\mathcal{Z}}_{\mathcal{I}} = \{V(\mathcal{I}^n)\}_{n \in \mathbb{N}}$ in the category of formal **M**-schemes.
- (2) The canonical functor $\mathfrak{Qcoh}_{\mathbf{M}}(Z) \to \mathfrak{Qcoh}(\widehat{Z}_{\mathcal{I}})$ is an equivalence of categories.

5. Telescopes of categories and their 2-limits

Definition 5.1. A diagram

$$\dots \xrightarrow{F_{n+1}} C_{n+1} \xrightarrow{F_n} C_n \xrightarrow{F_{n-1}} \dots \xrightarrow{F_2} C_2 \xrightarrow{F_1} C_1 \xrightarrow{F_0} C_0$$

of categories and functors is called a telescope of categories.

We fix a telescope

$$\dots \xrightarrow{F_{n+1}} \mathcal{C}_{n+1} \xrightarrow{F_n} \mathcal{C}_n \xrightarrow{F_{n-1}} \dots \xrightarrow{F_2} \mathcal{C}_2 \xrightarrow{F_1} \mathcal{C}_1 \xrightarrow{F_0} \mathcal{C}_0$$

of categories. Our goal is to construct its 2-categorical limit. Consider pairs $\mathcal{X} = (\{X_n\}_{n \in \mathbb{N}}, \{u_n\}_{n \in \mathbb{N}})$ such that the following assertions hold.

- **(1)** X_n is an object of C_n for every $n \in \mathbb{N}$.
- (2) $u_n : F_n(X_{n+1}) \to X_n$ is an isomorphism in C_n for every $n \in \mathbb{N}$.

If $\mathcal{X} = (\{X_n\}_{n \in \mathbb{N}}, \{u_n\}_{n \in \mathbb{N}})$ and $\mathcal{Y} = (\{Y_n\}_{n \in \mathbb{N}}, \{w_n\}_{n \in \mathbb{N}})$ are two such pairs, then a morphism $f : \mathcal{X} \to \mathcal{Y}$ consists of a family $\{f_n : X_n \to Y_n\}_{n \in \mathbb{N}}$ of morphisms such that squares

$$F_{n}(X_{n+1}) \xrightarrow{u_{n}} X_{n}$$

$$F_{n}(f_{n+1}) \downarrow \qquad \qquad \downarrow f_{n}$$

$$F_{n}(Y_{n+1}) \xrightarrow{w_{n}} Y_{n}$$

are commutative for $n \in \mathbb{N}$. This data gives rise to a category $\lim_{n \in \mathbb{N}} C_n$. Next for every $n \in \mathbb{N}$ we define a functor $\pi_n : \lim_{n \in \mathbb{N}} C_n \to C_n$ that sends a morphism $f : \mathcal{X} \to \mathcal{Y}$ to $f_n : X_n \to Y_n$. Finally we define a natural isomorphism

by setting its component on $\mathcal{X} = (\{X_n\}_{n \in \mathbb{N}}, \{u_n\}_{n \in \mathbb{N}})$ to be $u_n : F_n(X_{n+1}) \to X_n$. Since $F_n\pi_{n+1}(\mathcal{X}) = F_n(X_{n+1})$ and $\pi_n(\mathcal{X}) = X_n$ this makes sense. The next result states that the data above form a 2-categorical limit over the telescope.

Theorem 5.2. Let

$$\dots \xrightarrow{F_{n+1}} \mathcal{C}_{n+1} \xrightarrow{F_n} \mathcal{C}_n \xrightarrow{F_{n-1}} \dots \xrightarrow{F_2} \mathcal{C}_2 \xrightarrow{F_1} \mathcal{C}_1 \xrightarrow{F_0} \mathcal{C}_0$$

be a telescope a categories. Suppose that C is a category, $\{P_n : C \to C_n\}_{n \in \mathbb{N}}$ is a family of functors and $\{\tau_n : F_n P_{n+1} \Rightarrow P_n\}_{n \in \mathbb{N}}$ is a family of natural isomorphisms. Then there exists a unique functor $F: C \to \lim_{n \in \mathbb{N}} C_n$ such that $P_n = \pi_n F$ and $(\sigma_n)_F = \tau_n$ for every $n \in \mathbb{N}$.

Proof. Suppose that $F: \mathcal{C} \to \lim_{n \in \mathbb{N}} \mathcal{C}_n$ is a functor such that $P_n = \pi_n F$ and $(\sigma_n)_F = \tau_n$ for every $n \in \mathbb{N}$. Pick an object X of \mathcal{C} . Then we have $\pi_n F(X) = P_n(X)$ and $(\sigma_n)_{F(X)} = (\tau_n)_X$. This implies that

$$F(X) = (\{P_n(X)\}_{n \in \mathbb{N}}, \{(\tau_n)_X : F_n P_{n+1}(X) \to P_n(X)\}_{n \in \mathbb{N}})$$

Next if $f: X \to Y$ is a morphism in \mathcal{C} , then we derive that $\pi_n F(f) = P_n(f)$ for $n \in \mathbb{N}$. Hence $F(f) = \{P_n(f)\}_{n \in \mathbb{N}}$. This implies that the functor F can be completely recovered from the fact that $P_n = \pi_n F$ and $(\sigma_n)_F = \tau_n$ for every $n \in \mathbb{N}$. Note also that formulas

$$F(X) = (\{P_n(X)\}_{n \in \mathbb{N}}, \{(\tau_n)_X : F_n P_{n+1}(X) \to P_n(X)\}_{n \in \mathbb{N}}), F(f) = \{P_n(f)\}_{n \in \mathbb{N}}$$

for an object X in C and a morphism $f: X \to Y$ in C, give rise to a functor that satisfy $P_n = \pi_n F$ and $(\sigma_n)_F = \tau_n$ for every $n \in \mathbb{N}$. This establishes existence and the uniqueness of F.

Assume now that the telescope consists of monoidal categories and that for each $n \in \mathbb{N}$ functor F_n is monoidal. Then there exists a canonical monoidal structure on $\lim_{n \in \mathbb{N}} C_n$. We define $(-) \otimes_{\lim_{n \in \mathbb{N}} C_n} (-)$ by formula

$$\mathcal{X} \otimes_{\lim_{n \in \mathbb{N}} \mathcal{C}_n} \mathcal{Y} = \left(\left\{ X_n \otimes_{\mathcal{C}_n} Y_n \right\}_{n \in \mathbb{N}}, \left\{ \left(u_n \otimes_{\mathcal{C}_n} w_n \right) \cdot m_{X_{n+1}, Y_{n+1}} \right\}_{n \in \mathbb{N}} \right)$$

where

$$m_{X_{n+1},Y_{n+1}}:F_n\left(X_{n+1}\otimes_{\mathcal{C}_{n+1}}Y_{n+1}\right)\to F_n(X_{n+1})\otimes_{\mathcal{C}_n}F_n(Y_{n+1})$$

is the tensor preserving isomorphism of F_n . We also define the unit

$$I_{\lim_{n\in\mathbb{N}}C_n} = (\{I_{C_n}\}_{n\in\mathbb{N}}, \{F_n(I_{C_{n+1}}) \cong I_{C_n}\}_{n\in\mathbb{N}})$$

where isomorphisms $F_n(I_{\mathcal{C}_{n+1}}) \cong I_{\mathcal{C}_n}$ are precisely the unit preserving isomorphisms of monoidal functors F_n for every $n \in \mathbb{N}$. The associativity natural isomorphism for $(-) \otimes_{\lim_{n \in \mathbb{N}} \mathcal{C}_n} (-)$ and

right, left units for $I_{\lim_{n\in\mathbb{N}}\mathcal{C}_n}$ in $\lim_{n\in\mathbb{N}}\mathcal{C}_n$ are defined as tuples of the corresponding natural isomorphisms of \mathcal{C}_n for $n\in\mathbb{N}$. With respect to this monoidal structure functors $\{\pi_n\}_{n\in\mathbb{N}}$ are **strict monoidal functors** and $\{\sigma_n\}_{n\in\mathbb{N}}$ are monoidal natural isomorphisms. The next result states that the data with these extra monoidal structure form a 2-categorical limit over the telescope in the 2-category of monoidal categories.

Theorem 5.3. Let

$$\dots \xrightarrow{F_{n+1}} \mathcal{C}_{n+1} \xrightarrow{F_n} \mathcal{C}_n \xrightarrow{F_{n-1}} \dots \xrightarrow{F_2} \mathcal{C}_2 \xrightarrow{F_1} \mathcal{C}_1 \xrightarrow{F_0} \mathcal{C}_0$$

be a telescope of a monoidal categories and monoidal functors. Suppose that C is a monoidal category, $\{P_n : C \to C_n\}_{n \in \mathbb{N}}$ is a family of monoidal functors and $\{\tau_n : F_n P_{n+1} \Rightarrow P_n\}_{n \in \mathbb{N}}$ is a family of natural monoidal isomorphisms. Then there exists a unique monoidal functor $F: C \to \lim_{n \in \mathbb{N}} C_n$ such that $P_n = \pi_n F$ and $(\sigma_n)_F = \tau_n$ for every $n \in \mathbb{N}$ as monoidal functors and monoidal transformations, respectively.

Proof. Note that *F* must be defined precisely as it was detected in the proof of Theorem 5.2. Namely we must have

$$F(X) = (\{P_n(X)\}_{n \in \mathbb{N}}, \{(\tau_n)_X : F_n P_{n+1}(X) \to P_n(X)\}_{n \in \mathbb{N}}), F(f) = \{P_n(f)\}_{n \in \mathbb{N}}$$

for an object X in $\mathcal C$ and a morphism $f:X\to Y$ in $\mathcal C$. Suppose also that F admits a structure of a monoidal functor such that $P_n=\pi_n F$ as monoidal functors for every $n\in\mathbb N$. Let

$$\left\{m_{X,Y}^F: F(X \otimes_{\mathcal{C}} Y) \to F(X) \otimes_{\lim_{n \in \mathbb{N}} \mathcal{C}_n} F(Y)\right\}_{X,Y \in \mathcal{C}}, \phi^F: F(I_{\mathcal{C}}) \to I_{\lim_{n \in \mathbb{N}} \mathcal{C}_n}$$

be the data forming that structure. Since $\{\pi_n\}_{n\in\mathbb{N}}$ are strict monoidal functors and $P_n = \pi_n F$ as monoidal functors for every $n \in \mathbb{N}$, we derive that for any objects X, Y of C

$$\pi_n(m_{X,Y}^F): P_n(X \otimes_{\mathcal{C}} Y) \to P_n(X) \otimes_{\mathcal{C}_n} P_n(Y)$$

is the tensor preserving isomorphism $m_{X,Y}^{P_n}: P_n(X \otimes_{\mathcal{C}} Y) \to P_n(X) \otimes_{\mathcal{C}_n} P_n(Y)$ of the monoidal functor P_n for every $n \in \mathbb{N}$. By the same argument

$$\pi_n(\phi_F): P_n(I_C) \to I_{C_n}$$

is the unit preserving isomorphism $\phi^{P_n}: P_n(I_{\mathcal{C}}) \to I_{\mathcal{C}_n}$ of P_n . Thus we deduce that for any objects X,Y of \mathcal{C} we have $m_{X,Y}^F = \{m_{X,Y}^{P_n}\}_{n \in \mathbb{N}}$ and $\phi^F = \{\phi^{P_n}\}_{n \in \mathbb{N}}$. This implies the uniqueness of a monoidal structure on F such that $P_n = \pi_n F$ as monoidal functors for every $n \in \mathbb{N}$. On the other hand define

$$m_{X,Y}^F = \{m_{X,Y}^{P_n}\}_{n \in \mathbb{N}}$$

for objects X, Y in C and

$$\phi^F = \{\phi^{P_n}\}_{n \in \mathbb{N}}$$

Then

REFERENCES

[Mac Lane, 1998] Mac Lane, S. (1998). Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition.