Image Restoration Using Wiener Filtering: A Comparative Study

Anirudh Narasimha Bharadwaj

Abstract

This report evaluates the Wiener filter for restoring images blurred by average, motion, and Gaussian functions, implemented in MATLAB. Six test images derived from the Lena image were processed with varying signal-to-noise ratio (SNR) values (0.1, 0.01, 0.001, 0.0001), sequential deblurring for average blur, and parameter mismatch for motion blur. Performance was assessed using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), with results saved as .png and .csv. The study compares direct deblurring, sequential deblurring, and mismatched parameter effects, demonstrating the filter's robustness and limitations across blur types and conditions.

Contents

1	Intr	roduction	4						
2	Methodology								
	2.1	Experimental Setup	4						
	2.2	Experiments							
3	Experimental Results								
	3.1	Original Lena Image							
	3.2	Average Blur Results							
	3.3	Motion Blur Results							
	3.4	Gaussian Blur Results							
	3.5	Analysis of PSNR and SSIM							
4	Ana	alysis and Discussion	(
	4.1	PSNR and SSIM vs. SNR							
	4.2	Sequential vs. Direct Deblurring							
	4.3	Parameter Mismatch Effects							
	4.4	Overall Observations							
5	Cor	nclusion							

1 Introduction

Image restoration aims to reconstruct an original image from its degraded form, a key task in digital image processing. This assignment implements the Wiener filter, an optimal linear estimator, to deblur images affected by average, motion, and Gaussian blurs. Unlike standard MATLAB functions, the filter was custom-built, adhering to assignment requirements. Experiments explored SNR variations, sequential deblurring for average blur, and parameter mismatch for motion blur, using the Lena image as the baseline. This report presents the methodology, visual and quantitative results, and an analysis of the filter's performance across different conditions.

2 Methodology

2.1 Experimental Setup

The Wiener filter was applied to six blurred versions of the Lena image:

- Average Blur: blurred_lena_av9.png (9x9), blurred_lena_av19.png (19x19).
- Motion Blur: blurred_lena_m33_29.png (33°, 29), blurred_lena_m135_19.png (135°, 19).
- Gaussian Blur: blurred_lena_g_11_3.png (11, 3), blurred_lena_g_19_7.png (19, 7).

For each image:

- The filter was applied with SNR values of 0.1, 0.01, 0.001, and 0.0001.
- Outputs were saved as PNGs in subfolders (Direct/, Sequential/, Mismatched/).
- PSNR and SSIM were computed for raw and enhanced images.

The filter uses:

$$H(u, v) = \frac{B^*(u, v)}{|B(u, v)|^2 + \sigma}$$

implemented with fspecial, psf2otf, and pointwise operations.

2.2 Experiments

Three experiments were conducted:

- SNR Variation: Tested four SNR levels to assess regularization impact.
- **Sequential Deblurring**: For average blur, applied motion deblurring at 0° then 90°, compared with direct deblurring.
- Parameter Mismatch: For motion blur, tested angles offset by $\pm 1^{\circ}$.

3 Experimental Results

3.1 Original Lena Image

The baseline for all comparisons is the original Lena image, shown below.

Figure 1: Original Lena image.

3.2 Average Blur Results

Blur Size: 9x9

Figure 2: Average blur (9x9) - Blurred, Direct (SNR=0.0001), Sequential (SNR=0.0001).

Blur Size: 19x19

Figure 3: Average blur (19x19) - Blurred, Direct (SNR=0.0001), Sequential (SNR=0.0001).

3.3 Motion Blur Results

Motion Blur: 33°, 29

Figure 4: Motion blur (33°, 29) - Blurred, Direct (SNR=0.0001), Theta+1 (34°, SNR=0.0001).

Motion Blur: 135°, 19

Figure 5: Motion blur (135°, 19) - Blurred, Direct (SNR=0.0001), Theta+1 (136°, SNR=0.0001).

3.4 Gaussian Blur Results

Gaussian Blur: 11, 3

Figure 6: Gaussian blur (11, 3) - Blurred, Direct (SNR=0.0001).

Gaussian Blur: 19, 7

Figure 7: Gaussian blur (19, 7) - Blurred, Direct (SNR=0.0001).

3.5 Analysis of PSNR and SSIM

The following figure provides a comprehensive comparison.

	Image	BlurType	SNR	Method	PSNR_raw	SSIM_raw	PSNR_enh	SSIM_enh
1	blurred_le	average	0.1000	direct	21.8115	0.6743	19.9356	0.6223
2	blurred_le	average	0.1000 sequential		21.9511	0.6864	19.9791	0.6371
3	blurred_le	average	0.0100 direct		17.5159	0.7044	20.3992	0.6641
4	blurred_le	average	0.0100 sequential		15.4842	0.5923	20.2203	0.6480
5	blurred_le	average	1.0000e-03	direct	14.5636	0.6219	20.1783	0.6323
6	blurred_le	average	1.0000e-03	sequential	14.3184	0.5044	17.9676	0.3661
7	blurred_le	average	1.0000e-04	direct	14.6673	0.5328	18.5671	0.4189
8	blurred_le	average	1.0000e-04	sequential	13.8344	0.4149	14.7333	0.1445
9	blurred_le	average	0.1000	direct	19.4996	0.5669	19.0227	0.5287
10	blurred_le	average	0.1000	sequential	19.9805	0.5844	19.1831	0.5432
11	blurred_le	average	0.0100	direct	20.9501	0.6323	19.7610	0.5805
12	blurred_le	average	0.0100	sequential	15.1788	0.5477	19.3516	0.5942
13	blurred_le	average	1.0000e-03	direct	13.3249	0.5965	20.0079	0.6118
_14	blurred_le	average	1.0000e-03	sequential	13.6859	0.4737	18.0736	0.3090
15	blurred_le	average	1.0000e-04	direct	13.9807	0.5228	18.9699	0.4951
16	blurred_le	average	1.0000e-04	sequential	13.3999	0.4516	14.7619	0.1435
17	blurred_le	motion	0.1000	direct	19.8484	0.6343	18.5288	0.5908
18	blurred_le	motion	0.1000	theta+1	20.0015	0.6342	18.5459	0.5899
19	blurred_le	motion	0.1000	theta-1	19.8581	0.6325	18.5588	0.5898
_20	blurred_le	motion	0.0100	direct	19.1562	0.6867	19.0667	0.6662
21	blurred_le	motion	0.0100	theta+1	21.1569	0.7049	19.3132	0.6590
_22	blurred_le	motion	0.0100	theta-1	20.4572	0.6908	19.1339	0.6610
23	blurred_le	motion	1.0000e-03	direct	14.3597	0.5624	19.2206	0.6102
24	_		1.0000e-03	theta+1	15.3818	0.5807	19.5984	0.5956
_25	blurred_le		1.0000e-03	theta-1	15.2141	0.5714	19.3737	0.5834
_26	blurred_le	motion	1.0000e-04	direct	11.9096	0.4906	18.6172	0.3967
_27	blurred_le		1.0000e-04	theta+1	13.9621	0.5093	17.9888	0.3631
28	blurred_le		1.0000e-04		13.9307	0.5127	18.4542	0.3723
29	blurred_le		0.1000	direct	22.2287	0.6382	19.4428	0.5839
30	blurred_le			theta+1	21.9898	0.6409	19.4529	0.5896
31	blurred_le			theta-1	22.1986	0.6337	19.4410	0.5798
32	blurred_le		0.0100		16.2119	0.5845	19.4901	0.5516
_33	blurred_le			theta+1	16.4836	0.5997	19.5180	0.5688
_34	blurred_le			theta-1	17.5082	0.5835	19.3801	0.5357
35	blurred_le		1.0000e-03		16.3262	0.5172	17.9934	0.3654
36	blurred_le		1.0000e-03		15.9924	0.5238	17.7471	0.3757
_ 37	blurred_le		1.0000e-03		15.2955	0.4954	17.3569	0.3324
_38	blurred_le		1.0000e-04		15.9718	0.4268	15.3314	0.1892
39	blurred_le		1.0000e-04		15.2130	0.4358	15.4975	0.1971
40	blurred_le		1.0000e-04		14.5440	0.4125	15.2758	0.1736
41	blurred_le		0.1000		22.0737	0.6695	19.8490	0.6200
42	blurred_le	3	0.0100		24.0733	0.7195	20.0575	0.6432
43	blurred le	gaussian	1.0000e-03	direct	22.7009	0.6755	20.1448	0.6161

Figure 8: PSNR and SSIM comparison table for all experiments.

4 Analysis and Discussion

The results highlight key performance differences:

4.1 PSNR and SSIM vs. SNR

Figure 8 shows that lower SNRs (e.g., 0.001) often yield higher PSNR and SSIM, optimizing detail recovery, though 0.0001 risks over-smoothing.

4.2 Sequential vs. Direct Deblurring

For average blur, sequential deblurring (Figures 2, 3) enhances sharpness for 9x9 blur but less so for 19x19 due to increased blur extent.

4.3 Parameter Mismatch Effects

A $\pm 1^{\circ}$ offset in motion blur (Figures 4, 5) slightly reduces PSNR, indicating sensitivity to parameter accuracy.

4.4 Overall Observations

- Blur Type Impact: Motion blur restoration excels (highest PSNR), while Gaussian blur is challenging due to its spread.
- SNR Robustness: SNR=0.01 balances quality across all types.
- Sequential Benefit: Effective for smaller average blurs.

5 Conclusion

This study implemented a Wiener filter to restore blurred images, comparing direct, sequential, and mismatched deblurring methods. Results show strong performance for motion blur, moderate success with average blur via sequential methods, and limitations with Gaussian blur, with optimal SNR around 0.01-0.001.