

Politecnico di Milano

Dip. di Elettronica, Informazione e Bioingegneria

prof. prof.

Luca Breveglieri Gerardo Pelosi prof.ssa Donatella Sciuto prof.ssa Cristina Silvano

AXO – Architettura dei Calcolatori e Sistemi Operativi PRIMA PARTE – martedì 30 agosto 2022

Cognome_	Nome
Matricola_	Firma

Istruzioni

Si scriva solo negli spazi previsti nel testo della prova e non si separino i fogli.

Per la minuta si utilizzino le pagine bianche inserite in fondo al fascicolo distribuito con il testo della prova. I fogli di minuta, se staccati, vanno consegnati intestandoli con nome e cognome.

È vietato portare con sé libri, eserciziari e appunti, nonché cellulari e altri dispositivi mobili di calcolo o comunicazione. Chiunque fosse trovato in possesso di documentazione relativa al corso – anche se non strettamente attinente alle domande proposte – vedrà annullata la propria prova.

Non è possibile lasciare l'aula conservando il tema della prova in corso.

Tempo a disposizione 1 h : 30 m

Valore indicativo di domande ed esercizi, voti parziali e voto finale:

esercizio	1	(6	punti)	
esercizio	2	(2	punti)	
esercizio	3	(6	punti)	
esercizio	4	(2	punti)	
	. ,	4.6	•••	
voto fina	ıle: (16	punti)	

esercizio n. 1 - linguaggio macchina

prima parte - traduzione da C a linguaggio macchina

Si deve tradurre in linguaggio macchina simbolico (assemblatore) *MIPS* il frammento di programma C riportato sotto. Il modello di memoria è quello **standard** *MIPS* e le variabili intere sono da **32 bit**. Non si tenti di accorpare od ottimizzare insieme istruzioni C indipendenti. Si facciano le ipotesi sequenti:

- il registro "frame pointer" fp non è in uso
- le variabili locali sono allocate nei registri, se possibile
- vanno salvati (a cura del chiamante o del chiamato, secondo il caso) solo i registri necessari

Si chiede di svolgere i quattro punti seguenti (usando le varie tabelle predisposte nel seguito):

- 1. **Si descriva** il segmento dei dati statici dando gli spiazzamenti delle variabili globali rispetto al registro global pointer *gp*, e **si traducano** in linguaggio macchina le dichiarazioni delle variabili globali.
- 2. **Si descriva** l'area di attivazione della funzione chksum, secondo il modello MIPS, e l'allocazione dei parametri e delle variabili locali della funzione chksum usando le tabelle predisposte.
- 3. Si traduca in linguaggio macchina il codice degli statement riquadrati nella funzione main.
- 4. **Si traduca** in linguaggio macchina il codice **dell'intera funzione** chksum (vedi tab. 4 strutturata).

```
/* costanti e variabili globali
                                                             */
#define N 7
int code = 18
char LETTERS [N]
/* funzione chksum
                                                             */
int chksum (char * byte, int weight) {
   int idx
   int * ptr
   int partial
   ptr = &partial
   *ptr = 0
   for (idx = N - 1; idx >= 0; idx--) {
      *ptr = *ptr + byte [idx] - weight
      weight++
   } /* for */
   return *ptr
  /* chksum */
/* programma principale
                                                             */
int main ( ) {
   code = chksum (LETTERS, code)
```

/* main */

punto 1 – segmento dati statici (numero di righe non significativo)

contenuto simbolico	indirizzo assoluto iniziale (in hex)	spiazzamento rispetto a $gp = \mathbf{0x} \ 1000 \ 8000$	
			indirizzi alti
LETTERS [N - 1]			
LETTERS [1]			
LETTERS [0]			
CODE			indirizzi bassi

punto 1 – codice l	punto 1 – codice MIPS della sezione dichiarativa globale (numero di righe non significativo)				
.data	0x 1000 0000	// segmento dati statici standard			

	punto 2 – area di attivazione della fu	HZIOHE CHKSUM	
	contenuto simbolico	spiazz. rispetto a stack pointer	
			indirizzi alti
			indirizzi bassi
	punto 2 – allocazione dei pa e delle variabili locali di CHKSUM		
	parametro o variabile locale	registro	
			1
pun	to 3 – codice MIPS degli statement riqua	ndrati in MAIN (num	. righe non significativo)
MAIN	I: // code = chksum (LETTER	RS, code)	

HKSUM:	<pre>addiu \$sp, \$sp, // COMPLETARE - crea area attivazione</pre>
	// direttive EQV e salvataggio registri - DA COMPLETARE
	. eqv
	. eqv
	. eqv
	// ptr = &partial
	// *ptr = 0
	// Fan /
	// for (idx = N - 1; idx >= 0; idx)
'OR:	
OK.	
	// *ptr = *ptr + byte [idx] - weight
	// *pti = *pti + byte [idx] - weight
	// weight++
	// idx
NDFOR:	
	// return *ptr
	// chiusura funzione - NON RIPORTARE

seconda parte - assemblaggio e collegamento

Dati i due moduli assemblatore sequenti, si compilino le tabelle relative a:

- 1. i due moduli oggetto MAIN e TASK
- 2. le basi di rilocazione del codice e dei dati di entrambi i moduli
- 3. la tabella globale dei simboli e la tabella del codice eseguibile

	m	odulo MAIN		modulo TASK
	. eqv	CONST, 0x14A7B921		.data
	.data		RESERV	VED: .space 24
WEIGHT:	.word	. 30	LOCAL:	: .word 0
REF:	word	40		.text
	. text		III	.globl TASK
			TASK:	<pre>bne \$a0, \$zero, AFTER</pre>
	-	1 MAIN		andi \$a0, \$a1, 0x 1234
MAIN:	addi	\$a0, \$s0, 0		sw \$a0, REF
	li	\$a1, CONST	AFTER:	
FUNCT:	jal	TASK		ir \$ra
	beq	\$v0, \$zero, NEXT	III	jt για
	sw	\$v0, WEIGHT	III	
NEXT:	sw	\$v0, LOCAL		
	j	MAIN		

Regola generale per la compilazione di **tutte** le tabelle contenenti codice:

- i codici operativi e i nomi dei registri vanno indicati in formato simbolico
- tutte le costanti numeriche all'interno del codice vanno indicate in esadecimale, con o senza prefisso 0x, e di lunghezza giusta per il codice che rappresentano

esempio: un'istruzione come addi \$t0, \$t0, 15 è rappresentata: addi \$t0, \$t0, 0x000F

• nei moduli oggetto i valori numerici che non possono essere indicati poiché dipendono dalla rilocazione successiva, vanno posti a zero e avranno un valore definitivo nel codice eseguibile

	(1) – moduli oggetto				
	modulo M	AIN		modulo 1	PASK
dimension	e testo:		dimension	e testo:	
dimension	e dati:		dimension	e dati:	
	testo			testo	
indirizzo di parola	istruzione	e (COMPLETARE)	indirizzo di parola	istruzion	e (COMPLETARE)
0	addi \$a0, \$s	0, 0	0	bne \$a0, \$z	ero,
4	lui \$a1,		4	andi \$a0, \$a	1, 0x 1234
8	addi \$a1, \$a	1,	8	sw \$a0,	
С	jal		С	beq \$s0, \$a	0,
10	beq \$v0, \$ze	ero,	10	jr \$ra	
14	sw \$v0,		14		
18	sw \$v0,		18		
1C	j		1C		
20			20		
24			24		
28			28		
2C			2C		
	dati			dati	
indirizzo di parola	C	ontenuto	indirizzo di parola	(contenuto
tipo	tabella dei so può essere \mathcal{T} (testo		tipo	tabella dei s può essere T(testo	
simbolo	tipo	valore (hex)	simbolo	tipo	valore (hex)
WEIGHT			RESERVED		
REF			LOCAL		
MAIN			TASK		
FUNCT			AFTER		
NEXT					
tabella di rilocazione			tabella di rilo	ocazione	
indirizzo di parola	cod. operativo	simbolo	indirizzo di parola	cod. operativo	simbolo
			_[]		
			_[]		

(2) – posizione in memoria dei moduli			
	modulo main	modulo task	
base del testo:	0x 0040 0000	base del testo:	
base dei dati:	0x 1000 0000	base dei dati:	

(3) — tabella globale dei simboli				
simbolo	valore finale (hex)		simbolo	valore finale (hex)
WEIGHT			RESERVED	
REF			LOCAL	
MAIN			TASK	
FUNCT			AFTER	
NEXT				

NELLA TABELLA DEL CODICE ESEGUIBILE SI CHIEDONO SOLO LE ISTRUZIONI DEI MODULI MAIN E TASK CHE ANDRANNO COLLOCATE AGLI INDIRIZZI SPECIFICATI

(3) – codice eseguibile				
	testo			
indirizzo (hex)	codice (con codici operativi e registri in forma simbolica)			
С				
14				
18				
1C				
28				
2C				

esercizio n. 2 - logica digitale

logica sequenziale

Sia dato il circuito sequenziale composto da due bistabili master-slave di *tipo D* (D1, Q1 e D2, Q2, dove D è l'ingresso del bistabile e Q è lo stato / uscita del bistabile), un ingresso \mathbf{I} e un'uscita \mathbf{U} , e descritto dalle equazioni nel riquadro.

D1 = I xor Q1

D2 = I nand Q2

U = D1 xor (not Q2)

Si chiede di completare il diagramma temporale riportato qui sotto. Si noti che:

- si devono trascurare completamente i ritardi di propagazione delle porte logiche e i ritardi di commutazione dei bistabili
- i bistabili sono il tipo master-slave la cui struttura è stata trattata a lezione, con uscita che commuta sul fronte di discesa del clock

tabella dei segnali (diagramma temporale) da completare

- per i segnali D1, Q1, D2, Q2 e U, **si ricavi**, per ogni ciclo di clock, l'andamento della forma d'onda corrispondente riportando i relativi valori 0 o 1
- notare che nel primo intervallo i segnali Q1 e Q2 sono già dati (rappresentano lo stato iniziale)

esercizio n. 3 - microarchitettura del processore pipeline

prima parte – pipeline e segnali di controllo

Sono dati il seguente frammento di codice **macchina** MIPS (simbolico), che inizia l'esecuzione all'indirizzo indicato, e i valori iniziali per alcuni registri e parole di memoria.

indirizzo		codice MIPS
0x 0040 0800	lw	\$t1, 0x 1B29(\$t0)
	lw	\$t2, 0x 193A(\$t3)
	add	\$t3, \$t3, \$t3
	subi	\$t4, \$t1, 32
	addi	\$t5, \$t2, 4

registro	contenuto iniziale
\$t0	0x 1001 2E9B
\$t1	0x 1001 ABAB
\$t2	0x 1001 ABCD
\$t3	0x 1001 2E8A
memoria	contenuto iniziale
0x 1001 4004	0x 1001 AB40
0x 1001 47C4	0x 1001 1A1A
0x 1001 49C4	0x 1001 A0A0

La pipeline è ottimizzata per la gestione dei conflitti di controllo, e si consideri il **ciclo di clock 5** in cui l'esecuzione delle istruzioni nei vari stadi è la seguente:

ciclo di clock 11 2 3 5 6 7 8 9 10 1 1 - lw \$t1 IF ID EX MEM WB 2 - lw \$t2 IF ID ΕX MEM WB 3 – add \$t3 IF ID MEM WB ΕX 4 - subi \$t4 IF ID EX MEM WB 5 - addi \$t5 IF ID ΕX MEM WB

- **1) Calcolare** il valore dell'indirizzo di memoria dati nell'istruzione *lw \$t1* (prima load):
- _____
- **2) Calcolare** il valore dell'indirizzo di memoria dati nell'istruzione *lw \$t2* (seconda load):
- ______
- **3) Calcolare** il valore del risultato (\$t3 + \$t3) dell'istruzione *add* (addizione):
- **4) Calcolare** il valore del risultato (\$t1 32) dell'istruzione *subi* (sottrazione con immediato):
- **5) Calcolare** il valore del risultato (\$t2 + 4) dell'istruzione *addi* (addizione con immediato):

Completare le tabelle.

I campi di tipo *Istruzione* e *NumeroRegistro* possono essere indicati in forma simbolica, tutti gli altri in esadecimale (prefisso 0x implicito). Utilizzare **n.d.** se il valore non può essere determinato. N.B.: <u>tutti</u> i campi vanno completati con valori simbolici o numerici, tranne quelli precompilati con *******.

segnali all'ingresso dei registri di interstadio							
(subito prima del fronte di SALITA del clock ciclo $oldsymbol{5}$)							
IF	<u> </u>	ID		X	MEM		
registro IF/ID	r	egistro ID/EX	registro	EX/MEM	registro MEM/WB		
	.WB.M	lemtoReg	.WB.Memto	Reg	.WB.MemtoReg		
	.WB.R	egWrite	.WB.RegWi	rite	.WB.RegWrite		
	.M.Me	mWrite	.M.MemWr	ite			
	.M.Me	mRead	.M.MemRea	d			
	.M.Brai	nch	.M.Branch				
.PC	.PC		.PC ******	*****			
.istruzione	.(Rs)						
	.(Rt) ****	*****	.(Rt) ******	*****			
	.Rt		.R		.R		
	.Rd ****	*****					
	.imm/	offset esteso	.ALU_out .Zero		.ALU_out *******		
	.EX.AL	USrc			.DatoLetto		
	.EX.Re	egDest					
segnali relativi al I	RF (subi	to prima del fronte	di DISCESA i	nterno al ci	clo di clock – ciclo 5)		
RF.RegLettura1		RF.DatoLetto1	. d. 5155E5A I	RF.RegScri			
RF.RegLettura2 RF.DatoLetto2 ***********************************		RF.DatoScr		ritto			
segnali relativi al I	RF (subi	to prima del fronte	e di DISCESA i	nterno al ci	clo di clock – ciclo 6)		
RF.RegLettura1		RF.DatoLetto1		RF.RegScri			
RF.RegLettura2 ********		RF.DatoLetto2 *******		RF.DatoSci	ritto		

seconda parte - gestione di conflitti e stalli

Si consideri la sequenza di istruzioni sotto riportata eseguita in modalità pipeline:

ciclo di clock

	istruzione	1	2	3	4	5	6	7	8	9	10
1	lw \$s1, 0x AA(\$s0)	IF	ID	EX	MEM	WB					
2	lw \$s2, 0x BB(\$s0)		IF	ID	EX	MEM	WB				
3	add \$s3, \$s1, \$s2			IF	ID	EX	MEM	WB			
4	subi \$s4, \$s3, 8				IF	ID	EX	MEM	WB		
5	addi \$s5, \$s4, 4					IF	ID	EX	MEM	WB	

La pipeline è ottimizzata per la gestione dei conflitti di controllo.

punto 1

- a. Definire **tutte** le dipendenze di dato completando la **tabella 1** della pagina successiva (colonne *punto 1A*), indicando quali generano un conflitto, e per ognuna di queste quanti stalli sarebbero necessari per risolvere tale conflitto (stalli teorici), **considerando la pipeline senza percorsi di propagazione.**
- b. Disegnare in **diagramma A** il diagramma temporale della pipeline senza propagazione di dato, con gli stalli **effettivamente** risultanti, e riportare il loro numero in **tabella 1** (colonne *punto 1B*).

diagramma A 1 2 3 5 6 8 10 11 12 13 14 15 16 1. lw 2. lw 3. add 4. subi 5. addi

punto 2

Si faccia l'ipotesi che la pipeline sia **ottimizzata** e dotata dei percorsi di propagazione: **EX / EX, MEM / EX** e **MEM / MEM**:

- a. Disegnare in **diagramma B** il diagramma temporale della pipeline, indicando **i percorsi di propagazione** che devono essere attivati per risolvere i conflitti e gli eventuali **stalli** da inserire affinché la propagazione sia efficace.
- b. Indicare in **tabella 1** (colonne *punto 2B*) i percorsi di propagazione attivati con gli stalli associati, e il ciclo di clock nel quale sono attivi i percorsi di propagazione.

diagramma B

1 2 3 5 6 7 8 9 10 11 12 13 14 15 1. lw 2. lw 3. add 4. subi 5. addi

tabella 1

					 	_		
punto 1A			punto 1B		punto 2B			
n° istruzione	n° istruzione da cui dipende	registro coinvolto	conflitto (si / no)	n° stalli teorici	n° stalli effettivi		stalli + percorso di propagazione	ciclo di clock in cui è attivo il percorso
						_		
						_		

esercizio n. 4 - domande su argomenti vari

memoria cache

Si consideri un sistema di memoria costituito da una memoria centrale di **16 M parole** e da una cache dati set-associativa (associativa a gruppi o a insiemi) a **4 vie** di **8 K parole** con blocchi da **32 parole**, che utilizza un algoritmo di sostituzione del blocco di tipo **LRU**.

La cache dati è inizialmente vuota. La CPU esegue un ciclo che preleva sequenzialmente dalla memoria un array di **8256** elementi di una parola, partendo dall'indirizzo **0**. Il ciclo viene eseguito per **5** volte.

Si risponda alle domande seguenti.

1) Si mostri la struttura dell'indirizzo di memoria.

etichetta	indice	spiazzamento

- 2) **Si indichi** il numero di MISS che si verificano durante la prima esecuzione del ciclo, spiegandone il motivo.
 - n. di miss nella prima iterazione del ciclo:

- 3) Si calcoli il numero di MISS che si verificano durante ciascuna iterazione del ciclo dopo la prima, mostrandone chiaramente il calcolo.
 - n. di miss per ciascuna iterazione del ciclo dopo la prima:

spazio libero per continuazione o	o brutta copia	

spazio libero per continuazione o	o brutta copia	