Redes de Bravais

Juan Diego Figueroa Hernández Juan Andrés Guarín Rojas

15 de noviembre de 2021

Universidad Industrial de Santander

Redes aplicadas a mosaicos

ndustrial de

Santander

En estos casos, se buscaron patrones que generara toda la red por medio de celdas primitivas, que al trasladarlas construyeran la figura.

- Son celdas mínimas
- Se pueden trasladar, más no rotar para generar toda la figura
- Cuando se trasladan no se solapan
- Se hicieron coincidir con Redes de Bravais bidimensionales [1].

Volúmenes Redes de Bravais **Tridimensionales**

Universida ndustrial de Santander

Un resultado general [2] que sirvió de ayuda fue

$$V = a \cdot (b \times c) = \begin{vmatrix} c^1 & c^2 & c^3 \\ b^1 & b^2 & b^3 \\ a^1 & a^2 & a^3 \end{vmatrix}$$

$$V^2 = det(M) \ det(M^T) = det(MM^T) = \begin{vmatrix} a \cdot a & a \cdot b & a \cdot c \\ b \cdot a & b \cdot b & b \cdot c \\ c \cdot a & c \cdot b & c \cdot c \end{vmatrix}$$
 Triclínico

$$V^2 = det(M) \ det(M^T) = det(MM^T) = \begin{vmatrix} a \cdot a & a \cdot b & a \cdot c \\ b \cdot a & b \cdot b & b \cdot c \end{vmatrix}$$

La expresión general se cumple también para cualquier paralelepípedo

$$V = |a|^3 \sqrt{1 - 3\cos^2\alpha + 2\cos^3\alpha}$$

Romboédrico

Triclínico

|a|, |b|, |c| y α , β , γ son parámetros libres

Romboédrico

|a|=|b|=|c|, con ángulos iguales a α entre cada vector

Bases Sistemas cúbico simple, bcc, y fcc

Se abordó el problema de hallar los vectores que describen una base primitiva de la red cúbica simple (cP) y sus variaciones *bcc* (cI) y *fcc* (cF).

Universidad Industrial de Santander

Ejemplares para variación bcc

Ejemplar para variación fcc

Bases recíprocas

Universidad Industrial de Santander

Las bases recíprocas generan un sistema de bases donde el volumen de la celda pasa a ser el inverso del original. Las bases reciprocas se obtienen mediante las siguientes ecuaciones [3]:

$$\mathbf{a}' = \frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}, \quad \mathbf{b}' = \frac{\mathbf{c} \times \mathbf{a}}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}, \quad \mathbf{c}' = \frac{\mathbf{a} \times \mathbf{b}}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}$$

Sistema fcc angulos entre vectore iguales a 60° $|a|=|b|=|c|=\sqrt{2}$ a

$$|a|=|b|=|c|=\frac{\sqrt{2}}{2}a$$
 $|a|=|b|=|c|=\frac{\sqrt{3}}{a}$

$$\mathbf{a} = a(\hat{\mathbf{j}} + \hat{\mathbf{k}})/2, \quad \mathbf{b} = a(\hat{\mathbf{i}} + \hat{\mathbf{k}})/2, \quad \mathbf{c} = a(\hat{\mathbf{i}} + \hat{\mathbf{j}})/2$$

$$\mathbf{a}' = \frac{1}{a}(\hat{\mathbf{k}} + \hat{\mathbf{j}} - \hat{\mathbf{i}}) \quad \mathbf{b}' = \frac{1}{a}(\hat{\mathbf{k}} - \hat{\mathbf{j}} + \hat{\mathbf{i}}) \quad \mathbf{c}' = \frac{1}{a}(-\hat{\mathbf{k}} + \hat{\mathbf{i}} + \hat{\mathbf{j}})$$

^[3] Hernándes H, Núñez L (2021) Matemáticas avanzadas: de los espacios lineales al análisis vectorial, con aplicaciones en Maxima (Universidad industrial de Santander - Universidad de los Andes), Chapter 1,

Conclusiones

B

- Se logró una comprensión geométrica de una aplicación del álgebra vectorial enfocada en redes de Bravais.
- Se obtuvieron expresiones volumétricas para los distintos sistemas de las redes de Bravais con ayuda gráfica del software GeoGebra.
- Se obtuvieron vectores base para las redes tridimensionales de Bravais en los casos cúbico simple y sus variaciones Bcc y Fcc.
- Finalmente, se halló una estrecha relación entre el triple producto escalar, el volúmen de las celdas primitivas, y los vectores recíprocos.

Monoclínico	all his begin-8	$ a b c \sin\beta$
Ortorrómbrico		a b c

Gracias!

