Elliptic Curve Cryptography in Bitcoin

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

January 23, 2024

Elliptic Curves Over Real Numbers

Elliptic Curves over Reals

The set E of real solutions (x, y) of

$$y^2 = x^3 + ax + b$$

along with a "point of infinity" \mathcal{O} . Here $4a^3 + 27b^2 \neq 0$.

Point Addition (1/3)

Point Addition (2/3)

$$P = (x_1, y_1), Q = (x_2, y_2)$$

 $x_1 = x_2, y_1 = -y_2$
 $P + Q = \mathcal{O}$

Point Addition (3/3)

Elliptic Curves Over Finite Fields

Fields

Definition

A set F together with two binary operations + and * is a field if

- F is an abelian group under + whose identity is called 0
- $F^* = F \setminus \{0\}$ is an abelian group under * whose identity is called 1
- For any $a, b, c \in F$

$$a*(b+c)=a*b+a*c$$

Definition

A finite field is a field with a finite cardinality.

Prime Fields

- $\mathbb{F}_p = \{0, 1, 2, ..., p-1\}$ where p is prime
- + and * defined on \mathbb{F}_p as

$$x + y = x + y \mod p$$
,
 $x * y = xy \mod p$.

F₅

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

*	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

• In fields, division is multiplication by multiplicative inverse

$$\frac{x}{y} = x * y^{-1}$$

Characteristic of a Field

Definition

Let F be a field with multiplicative identity 1. The characteristic of F is the smallest integer p such that

$$\underbrace{1+1+\cdots+1+1}_{p \text{ times}}=0$$

Examples

- F₂ has characteristic 2
- F₅ has characteristic 5
- ■ R has characteristic 0

Theorem

The characteristic of a finite field is prime

Elliptic Curves over Finite Fields

For char(F) \neq 2, 3, the set E of solutions (x, y) in F² of

$$y^2 = x^3 + ax + b$$

along with a "point of infinity" \mathcal{O} . Here $4a^3 + 27b^2 \neq 0$.

$$y^2 = x^3 + 10x + 2$$
 over \mathbb{F}_{11}

$$y^2 = x^3 + 9x \text{ over } \mathbb{F}_{11}$$

Point Addition for Finite Field Curves

- Point addition formulas derived for reals are used
- Example: $y^2 = x^3 + 10x + 2$ over \mathbb{F}_{11}

+	0	(3,2)	(3,9)	(5,1)	(5, 10)	(6,5)	(6,6)	(8,0)
0	0	(3, 2)	(3,9)	(5,1)	(5, 10)	(6,5)	(6,6)	(8,0)
(3, 2)	(3, 2)	(6, 6)	\mathcal{O}	(6,5)	(8,0)	(3, 9)	(5, 10)	(5,1)
(3,9)	(3, 9)	0	(6, 5)	(8,0)	(6,6)	(5,1)	(3, 2)	(5, 10)
(5, 1)	(5, 1)	(6,5)	(8,0)	(6,6)	O	(5, 10)	(3,9)	(3,2)
(5, 10)	(5, 10)	(8,0)	(6,6)	O	(6,5)	(3,2)	(5,1)	(3,9)
(6,5)	(6,5)	(3,9)	(5,1)	(5, 10)	(3, 2)	(8,0)	0	(6,6)
(6,6)	(6, 6)	(5, 10)	(3, 2)	(3,9)	(5,1)	O	(8,0)	(6,5)
(8,0)	(8,0)	(5, 1)	(5, 10)	(3,2)	(3,9)	(6,6)	(6,5)	0

- The set $E \cup \mathcal{O}$ is closed under addition
- · In fact, its a group

Bitcoin's Elliptic Curve: secp256k1

• $y^2 = x^3 + 7$ over \mathbb{F}_p where

$$\rho = \underbrace{\text{FFFFFFF}}_{\text{48 hexadecimal digits}} \text{FFFFFFFE FFFFFC2F}$$

$$= 2^{256} - 2^{32} - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1$$

• $E \cup \mathcal{O}$ has cardinality n where

- Private key is $k \in \{1, 2, ..., n-1\}$
- Public key is kP where P = (x, y)

Point Multiplication using Double-and-Add

- Point multiplication: kP calculation from k and P
- Let $k = k_0 + 2k_1 + 2^2k_2 + \cdots + 2^mk_m$ where $k_i \in \{0, 1\}$
- Double-and-Add algorithm
 - Set N = P and $Q = \mathcal{O}$
 - for i = 0, 1, ..., m
 - if $k_i = 1$, set $Q \leftarrow Q + N$
 - Set N ← 2N
 - Return Q

Why ECC?

 For elliptic curves E(F_q), best DL algorithms are exponential in n = [log₂ q]

$$C_{EC}(n)=2^{n/2}$$

- In \mathbb{F}_p^* , best DL algorithms are sub-exponential in $N = \lceil \log_2 p \rceil$
 - $L_p(v, c) = \exp\left(c(\log p)^v(\log \log p)^{(1-v)}\right)$ with 0 < v < 1
- Using GNFS method, DLs can be found in $L_p(1/3, c_0)$ in \mathbb{F}_p^*

$$\textit{C}_{\textit{CONV}}(\textit{N}) = \exp\left(\textit{c}_{0}\textit{N}^{1/3}\left(\log\left(\textit{N}\log2\right)\right)^{2/3}\right)$$

- Best algorithms for factorization have same asymptotic complexity
- For similar security levels

$$n = \beta N^{1/3} (\log (N \log 2))^{2/3}$$

- Key size in ECC grows slightly faster than cube root of conventional key size
 - 173 bits instead of 1024 bits, 373 bits instead of 4096 bits

Elliptic Curve Digital Signature Algorithm

Digital Signatures

Digital signatures prove that the signer knows private key

Schnorr Identification Scheme

- Let G be a cyclic group of order q with generator g
- Identity corresponds to knowledge of private key x where $h = g^x$
- A prover wants to prove that she knows x to a verifier without revealing it
 - 1. Prover picks $k \leftarrow \mathbb{Z}_q$ and sends initial message $I = g^k$
 - 2. Verifier sends a challenge $r \leftarrow \mathbb{Z}_q$
 - 3. Prover sends $s = rx + k \mod q$
 - 4. Verifier checks $g^s \cdot h^{-r} \stackrel{?}{=} I$
- Passive eavesdropping does not reveal x for uniform r
 - (I, r) is uniform on $G \times \mathbb{Z}_q$ and $s = \log_q(I \cdot h^r)$
 - Transcripts with same distribution can be simulated without knowing x
 - Choose r, s uniformly from \mathbb{Z}_q and set $I = g^s \cdot h^{-r}$
- We can prove that a prover which generates correct proofs must know x by constructing an extractor for x
 - Section 19.1 of Boneh-Shoup

Schnorr Signature Algorithm

- · Based on the Schnorr identification scheme
- Let G be a cyclic group of order q with generator g
- Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
- Signer knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$

Signer:

- 1. On input $m \in \{0,1\}^*$, chooses $k \leftarrow \mathbb{Z}_q$
- 2. Sets $I := g^k$
- 3. Computes r := H(I, m)
- 4. Computes $s = rx + k \mod q$
- 5. Outputs (r, s) as signature for m

Verifier

- 1. On input m and (r, s)
- 2. Compute $I := g^s \cdot h^{-r}$
- 3. Signature valid if $H(I, m) \stackrel{?}{=} r$
- Example of Fiat-Shamir transform
- Patented by Claus Schnorr in 1988

Digital Signature Algorithm

- Part of the Digital Signature Standard issued by NIST in 1994
- Based on the following identification protocol
 - 1. Suppose prover knows $x \in \mathbb{Z}_q$ such that public key $h = g^x$
 - 2. Prover chooses $k \leftarrow \mathbb{Z}_q^*$ and sends $I := g^k$
 - 3. Verifier chooses uniform $\alpha, r \in \mathbb{Z}_q$ and sends them
 - 4. Prover sends $s := [k^{-1} \cdot (\alpha + xr) \mod q]$ as response
 - 5. Verifier accepts if $s \neq 0$ and

$$g^{\alpha s^{-1}} \cdot h^{rs^{-1}} \stackrel{?}{=} I$$

- Digital Signature Algorithm
 - 1. Let $H: \{0,1\}^* \mapsto \mathbb{Z}_q$ be a cryptographic hash function
 - 2. Let $F: G \mapsto \mathbb{Z}_q$ be a function, not necessarily CHF
 - 3. Signer:
 - 3.1 On input $m \in \{0,1\}^*$, chooses $k \leftarrow \mathbb{Z}_q^*$ and sets $r := F(g^k)$
 - 3.2 Computes $s := [k^{-1} \cdot (H(m) + xr)] \mod q$
 - 3.3 If r = 0 or s = 0, choose k again
 - 3.4 Outputs (r, s) as signature for m
 - 4. Verifier
 - 4.1 On input m and (r, s) with $r \neq 0, s \neq 0$ checks

$$F\left(g^{H(m)s^{-1}}h^{rs^{-1}}\right)\stackrel{?}{=} r$$

ECDSA in Bitcoin

- Signer: Has private key k and message m
 - 1. Compute e = SHA-256(SHA-256(m))
 - 2. Choose a random integer j from \mathbb{F}_n^*
 - 3. Compute jP = (x, y)
 - 4. Calculate $r = x \mod n$. If r = 0, go to step 2.
 - 5. Calculate $s = j^{-1}(e + kr) \mod n$. If s = 0, go to step 2.
 - 6. Output (r, s) as signature for m
- **Verifier:** Has public key kP, message m, and signature (r, s)
 - 1. Calculate e = SHA-256(SHA-256(m))
 - 2. Calculate $j_1 = es^{-1} \mod n$ and $j_2 = rs^{-1} \mod n$
 - 3. Calculate the point $Q = j_1 P + j_2(kP)$
 - 4. If $Q = \mathcal{O}$, then the signature is invalid.
 - 5. If $Q \neq \mathcal{O}$, then let $Q = (x, y) \in \mathbb{F}_p^2$. Calculate $t = x \mod n$. If t = r, the signature is valid.
- As *n* is a 256-bit integer, signatures are 512 bits long
- As *j* is randomly chosen, ECDSA output is random for same *m*

Transaction Malleability

Transaction ID

Regular Transaction

Refund Protocol

- Alice wants to teach Bob about transactions
- Bob does not own any bitcoins
- Alice decides to transfer some bitcoins to Bob
- Alice does not trust Bob
- She wants to ensure refund

Refund Protocol

Exploiting Transaction Malleability

- If (r, s) is a valid ECDSA signature, so is (r, n s)
- The t₁ transaction cannot be spent by t₂
- SegWit = Segregated Witness
 - Activated in August 2017
 - Solves problems arising from transaction malleability

References

- Sections 9.3 of Introduction to Modern Cryptography, J. Katz, Y. Lindell, 2nd edition
- Chapters 2, 5 of An Introduction to Bitcoin, S. Vijayakumaran, www.ee.iitb.ac.in/~sarva/bitcoin.html
- Section 19.1 of A Graduate Course in Applied Cryptography,
 D. Boneh, V. Shoup, www.cryptobook.us