DATA SCIENCE!

By Eric Schles

DIFFERENCE BETWEEN MACHINE LEARNING AND ENGINEERING

- Science is about falsifiability
- Software Engineering is an art not a science
 - Readability over correctness
 - Convention over creativity
 - You do the same thing again and again, aka web dev, mobile dev
- Data Science and Computer Science are similar which makes this difference subtle and non-obvious, especially to students

PROBLEM DEFINITION

- The way you define your problem defines your solution
 - Falsifiability is essential
- Your problem should indicate what kind of modeling you will do
 - o Time series?
 - o Classification?
 - Regression?
 - o NIP?
 - o Image processing?
- Your problem should be solvable with standard tools or it should be clear the problem is novel, from the definition

An example of good problem definition:

https://yorko.github.io/2023/scaling-laws-near-dups/?trk=feed-detail comments
-list_comment-text

DEFINING ACCEPTANCE CRITERIA

- Defines what's good enough -
 - An MSE of 0.5, an F1 score of 80%, etc
 - The measures you use to define acceptance matter, a lot
 - But the more important thing is how this affects business value
 - An MSE of 1.0 would lead to a loss in business value of 1 billion dollars a year, because of the cost of an error, therefore an MSE of 0.5 is required to cover the costs of the system (the stakes are almost never this high)
 - It's important that acceptance criteria allows for success or failure based on the particulars of the system
 - Never build a system that costs more to build and maintain then it makes or saves over the medium or long term

ACCEPTANCE CRITERIA CASE STUDY - REAL WORLD

- Hopkins maintains a system that pulls information from an upstream system
- The upstream system has data that isn't always correct, so we monitor the volume of records passing into our database tables, using time series forecasting
- We need to measure acceptance of the models based on:
 - Precision (type 1 error)
 - Recall (type 2 error)
 - F1 score (type 1 & type 2 error)
 - This is because missing errors (type 2) is as important as flagging non-errors (type 1)

HOW TO MODEL

- Train, test and validation data sets are important (if at all possible)
 - Train with hyperparameter tuning
 - Validate hyperparameter tuning with test data
 - Final validation inspection should only happen with the 'best model' with the best hyperparameters
 - Repeat this for at least a few random seeds don't bet on one train test split!
 - https://github.com/EricSchles/randomizer_ml &&
 https://github.com/EricSchles/randomness experiments/blob/master/scik
 it-learn-experiments-breast_cancer.ipynb

HOW TO MODEL

- Assume your data will drift
 - Once your model goes to production, make sure you are monitoring your model through acceptance criteria
 - Your data is almost definitely going to drift, have a plan ready for when that happens
- Don't leak information between train, test, validation
 - o Do separate preprocessing on train, test and validation
 - o Don't rebalance test or validation if you rebalance train
 - Act as though you won't have test or validation data, so make sure you can't cheat by adjusting
- Always check for simpson's paradox
 - Look for subgroups in your data that reverse the relationship with your overall population relationship

Many more gotchas: https://www.youtube.com/watch?v=BDEBF62iZx0&ab_channel=PyData

DEALING WITH UNBALANCED DATA

 https://github.com/EricSchles/datascience book/blob/maste r/9/unbalanced%20data.ipynb

TIME SERIES MODELS

https://github.com/EricSchles/datascience book/blob/master/6
/Introduction%20to%20timeseries%20modeling.ipynb

THE IMPORTANCE OF HYPOTHESIS TESTING AND MODELING

We don't build models only as engineering end products, we build them to learn about and better understand our systems. Models are a forcing function for understanding your system in detail