SECOND SEMESTER 2018-2019 Course Handout Part II

Date: 7.01.2019

Course No. : PHY F215

Course Title : INTRODUCTION TO ASTRONOMY & ASTROPHYSICS

Instructor in Charge : Sarmistha Banik

Objectives & Scope of the Course:

The course aims to give Physics/non-Physics major students an elementary introduction and overview of Astronomy & Astrophysics. This is for students who were always curious about the sky out there but never had a chance to know it deeper. And of course, for students who want to pursue their career in Astro. The course covers a broad spectra of topics, from the era of Kepler to recent observation of gravitational waves, using basic principles of physics, keeping rigorous mathematics to minimum. We plan to have some hands-on session with telescope.

Text Book: Fundamental Astronomy: Karttunen, H., Kröger, P., Oja, H., Poutanen, M., Donner, K.J **Reference Book:** An Introduction to Modern Cosmology by Andrew Liddle **Detailed Course Plan:**

Lect	Learning	Topics to be covered	Chapte	
ure	objectives		r in the	
No.			Text	
			Book	
1	Scope of the	pe of the Brief historical timeline of astronomy and discussion of		
	Course	the course.	notes	
1	Basic Concept	Celestial coordinates, Constellations, Telescopes, Photometric	TB 2-4	
5	of Astronomy	concepts (Intensity, radiation, luminosity), Magnitude scale, Optical Thickness.		
6-10	Radiation	Radiation of Atoms and Molecules, Blackbody Radiation,	TB-5	
	Mechanism &	Temperatures, Radiative Transfer, Stellar Spectra, The	& 8	
	Stellar Spectra	HertzsprungRussell Diagram ,Model Atmospheres,What Do		
		the Observations Tell Us?		
11 to	Celestial	Equations of Solution of the Equation of Motion Equation of	TB 6,	
15	Mechanics	the Orbit and Kepler's First Law Orbital Elements Kepler's	class	
		Second and Third Law Systems of Several Bodies, Orbit	notes	
		Determination, Position in the Orbit, Escape Velocity, Virial		
		Theorem, The Jeans Limit		
	Solar System	An overview of solar system, planets, minor bodies of solar	TB 7,	
22		system, Energy sources of the sun, Internal Structure ,The	12,	
		Atmosphere, Solar Activity	class	
			notes	
23-	Binary stars,	Visual Binaries, Astrometric Binary Stars, Spectroscopic	TB 9,	
24	Variable Stars	Binaries, Photometric Binary Stars	13	

25-	Stellar	Evolutionary Time Scales, The Contraction of Stars Towards	TB 11,			
27	Evolution	the Main Sequence. The Main Sequence Phase. The Giant				
		Phase, The Final Stages of Evolution, The Evolution of Close				
		Binary Stars, Comparison with Observations, The Origin of				
		the Elements				
28 to	Compact Stars	Degenerate Fermi Gas, Equation of state, TOV equation.	TB 14,			
35		Newtonian Stars: Hydrostatic equilibrium, equation of state.	class			
		White dwarf: Electron degeneracy pressure, Chandrasekhar				
		mass limit				
		Neutron star: composition, radius, maximum mass				
		Pulsars: Discovery, rotation period, energy loss from a pulsar				
		magnetic field strength, ages of pulsars, mergers of NS-NS.				
		Black holes: Creation of black holes, black hole binaries,				
		observational evidence, Gravitational waves				
36-	The Interstellar	Interstellar Dust, Interstellar Gas, Interstellar Molecules,	TB15			
38	Medium	The Formation of Protostars, Planetary Nebulae, Supernova				
		Remnants, The Hot Corona of the Milky Way, Cosmic Rays				
		and the Interstellar Magnetic Field.				
39 to	Galaxies	Our Galaxy (Milky Way), Classification of Galaxies	TB 17,			
42		Distribution of Galaxies: Luminosity and mass, Spectra of	18,			
		Galaxies, Local Group of Galaxies, Cluster of Galaxies,				
		Radio Galaxies, AGN, Quasars.	notes			

5. Evaluation Scheme:

	Evaluation	Duration	Weight age	Date, Time	Nature of
			(%)		Component
1.	Mid-Sem	90 mins.	30.00%	13/3 3.30 - 5.00 PM	Open Book
3.	Quiz(BEST 2 out of 3)	25 mins each	20.00%		Closed Book
4	Seminar	10 mins. each	10.00%		Open Book
5	Comprehensive Examination	180 mins.	40.00%	07/05 AN	Closed Book

6. Chamber Consultation Hour: TBA

- **7. Notices:** Notices for the course will be displayed on CMS.
- **8. Make-up Policy:** Make up for Mid-Sem and Compre will be given only against the application forwarded by chief warden. No make up requests after completion of examination will be entertained.
- **9. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor PHY F215