(

ArcGIS Supported Map Projections

Suitable Extent Location or Shape **Properties General Purpose** Medium Scale True Direction Straight Rhu Equidistant' Midlatitude **East/West** Equal Projection Aitoff Modified Azimuthal Alaska Grid¹ Modified Planar $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ Alaska Series E Pseudocylindrical Albers equal area conic $\sqrt{}$ √ √ $\sqrt{}$ Conic 1 √ √ $\sqrt{}$ Azimuthal equidistant Planar $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ Behrmann equal area Cylindrical $\sqrt{}$ $\sqrt{}$ cylindrical Interrupted, faceted Berghaus Star V √ √ √ √ Bipolar oblique Conic (Oblique) $\sqrt{}$ √ $\sqrt{}$ conformal conic Bonne Pseudoconic √ Cassini-Soldner Cylindrical √ √ Chamberlin Trimetric Modified Planar $\sqrt{}$ Craster Parabolic Pseudocylindrical Cube² Faceted $\sqrt{}$ Cylindrical equal area Cylindrical Double Stereographic Planar √ √ $\sqrt{}$ Eckert I Pseudocylindrical $\sqrt{}$ Eckert II Pseudocylindrical Eckert III $\sqrt{}$ Pseudocylindrical √ Eckert IV Pseudocylindrical $\sqrt{}$ $\sqrt{}$ Pseudocylindrical Eckert V $\sqrt{}$ Eckert VI Pseudocylindrical $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ Conic Equidistant conic √ √ √ √ Equidistant cylindrical³ Cylindrical Faceted $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ √ Gall's Stereographic Cylindrical Gauss-Kruger Cylindrical $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ (Transverse) Geocentric⁴ Spherical Geographic⁴ Spherical $\sqrt{}$ $\sqrt{}$ Gnomonic Planar V V √ Goode Homolosine⁵ Interrupted Pseudo- $\sqrt{}$ $\sqrt{}$ cylindrical Equal-Area Great Britain National Grid Cylindrical $\sqrt{}$ √ Hammer-Aitoff Modified Planar √ √ Hotine Oblique Mercator Cylindrical (Oblique) Krovak $\sqrt{}$ $\sqrt{}$ Lambert Azimuthal equal area Planar √ √ √ √ √ √ √ $\sqrt{}$ √ √ √ √ Lambert conformal conic Conic $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ √ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ √ $\sqrt{}$ $\sqrt{}$ Local Cartesian System Planar Loximuthal Pseudocylindrical $\sqrt{}$ $\sqrt{}$ McBryde-Thomas Flat Pseudocylindrical √ √ Polar Quartic Mercator Cylindrical $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ Miller Cylindrical Cylindrical $\sqrt{}$ $\sqrt{}$ Mollweide Pseudocylindrical √ √ New Zealand Grid Modified Cylindrical √ $\sqrt{}$ √ √ Oblique Mercator Cylindrical (Oblique) √ √ Orthographic Perspective⁵ $\sqrt{}$ √ √ √ $\sqrt{}$ √ √ $\sqrt{}$ $\sqrt{}$ Plate-Carée Cylindrical $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ Polar Stereographic Planar $\sqrt{}$ Polyconic $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ Quartic Authalic Pseudocylindrical 1 1 Robinson Pseudocylindrical √ √ Rectified Skew Orthomorphic Cylindrical (Oblique) $\sqrt{}$ Simple Conic Conic √ Sinusoidal $\sqrt{}$ √ Pseudocylindrical √ ~ √ √ $\sqrt{}$ Space Oblique Mercator Modified Cylindrical $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ State Plane ⁶ $\sqrt{}$ Stereographic Planar $\sqrt{}$ √ √ $\sqrt{}$ $\sqrt{}$ √ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ Times Pseudocylindrical √ Cylindrical (Transverse) Transverse Mercator $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ Two Point Equidistant Modified Planar $\sqrt{}$ $\sqrt{}$ √ √ $\sqrt{}$ Universal Polar Stereographic Planar Universal Transverse Cylindrical $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ Mercator (UTM) (Transverse) Van der Grinten I Circular $\sqrt{}$ $\sqrt{}$ Vertical Near-side Perspective⁷ Planar √ √ √ √ √ √ Winkel I $\sqrt{}$ Pseudocylindrical 1 Winkel II Pseudocylindrical $\sqrt{}$ $\sqrt{}$ Modified Planar Winkel Tripel $\sqrt{}$

Adapted from Map Projections, a USGS poster

Modified Stereographic Conformal Used in ArcGlobe - true direction in limited areas Also known as Equirectangular Not a map projection. The earth is modeled as a sphere or spheroid

Combination of the Mollweide and Sinusoidal projections See Lambert Conformal Conic, Transverse Mercator, and Hotine Oblique Mercator Also known as Perspective or Vertical Perspective

 $[\]sqrt{}$ = Minimal Distortion

^{~ =} Distortion is moderate for most of the area
* = Distortion is minimal in certain directions or at particular points