All Pairs Shortest Paths (Floyd Warshall)

All Pairs Shortest Paths (APSP)

- given : directed graph G = (V, E), |V| = n
- goal : create an $n \times n$ matrix $D = (d_{ij})$ of shortest path distances i.e., $d_{ij} = \delta(v_i, v_i)$
- Solution : run a Single Source Shortest Pair algorithm n times, one for each vertex as the source.

2

Adjacency Matrix Representation of Graphs

► $n \times n$ matrix **W** = (ω_{ij}) of edge weights :

$$\omega_{ij} = \begin{cases} \omega(v_i, v_j) & \text{if } (v_i, v_j) \in E \\ \\ \infty & \text{if } (v_i, v_j) \notin E \end{cases}$$

- ► assume $\omega_{ii} = 0$ for all $v_i \in V$, because
 - no neg-weight cycle
 - ⇒ shortest path to itself has no edge, i.e., δ (v_i , v_i) = 0

3

Dynamic Programming

- (1) Characterize the structure of an optimal solution.
- (2) Recursively define the value of an optimal solution.
- (3) Compute the value of an optimal solution in a bottom-up manner.
- (4) Construct an optimal solution from information constructed in (3).

4

Shortest Paths

Assumption: negative edge weights may be present, but no negative weight cycles.

(1) Structure of a Shortest Path:

- Consider a shortest path p_{ij}^m from v_i to v_j such that |p_{ij}^m| ≤ m
 i.e., path p_{ij}^m has at most m edges.
- no negative-weight cycle ⇒ all shortest paths are simple
 ⇒ m is finite ⇒ m ≤ n − 1
- $i = j \implies |p_{ii}| = 0 \& \omega(p_{ii}) = 0$
- $i \neq j \Rightarrow$ decompose path p_{ij}^{m} into $p_{ik}^{m-1} & v_k \rightarrow v_j$, where $|p_{ik}^{m-1}| \leq m-1$ p_{ik}^{m-1} should be a shortest path from v_i to v_k by optimal substructure property.
 - ► Therefore, $\delta(\mathbf{v_i}, \mathbf{v_i}) = \delta(\mathbf{v_i}, \mathbf{v_k}) + \omega_{ki}$

Shortest Paths

(2) A Recursive Solution to All Pairs Shortest Paths Problem:

- $d_{ij}^{\ m} = minimum$ weight of any path from v_i to v_j that contains at most "m" edges.
- m = 0: There exist a shortest path from v_i to v_j with no edges $\leftrightarrow i = j$.

• $m \ge 1$:

$$\begin{split} d_{ij}^{\ m} &= min \; \{ \; d_{ij}^{\ m-1} \;, \; min_{1 \leq k \leq n \, \Lambda \; k \neq j} \; \{ \; d_{ik}^{\ m-1} + \omega_{kj} \; \} \} \\ &= min_{1 \leq k \leq n} \; \{ d_{ik}^{\ m-1} + \omega_{kj} \; \} \; \text{for all} \; v_k \; \boldsymbol{\in} \; V, \; \text{since} \; \omega_{j \; j} = 0 \; \; \text{for all} \; v_j \; \boldsymbol{\in} \; V. \end{split}$$

Shortest Paths

(3) Computing the shortest-path weights bottom-up:

- given $W = D^1$, compute a series of matrices D^2 , D^3 , ..., D^{n-1} , where $D^m = (d_{ij}^m)$ for m = 1, 2, ..., n-1
 - \blacktriangleright final matrix $D^{n\text{--}1}$ contains actual shortest path weights,

i.e.,
$$d_{ij}^{n-1} = \delta(v_i, v_j)$$

SLOW-APSP(W)

$$D^1 \leftarrow W$$

for $m \leftarrow 2$ to n-1 do

 $D^m \leftarrow EXTEND(D^{m-1}, W)$

 $\underset{return}{return}\ D^{n\text{-}1}$

Shortest Paths

EXTEND (D, W

ightharpoonup D = (d_{ij}) is an n x n matrix

for $i \leftarrow l$ to n do
for $j \leftarrow l$ to n do

101 j ← 1 to n do

for $k \leftarrow 1$ to n do

 $d_{ij} \leftarrow \min\{d_{ij}, d_{ik} + \omega_{kj}\}$

return D

Shortest Paths

- $\begin{array}{l} \bullet \quad \text{relation to matrix multiplication } C = A \times B : \ c_{ij} = \sum_{1 \leq k \leq n} a_{ik} \ x \ b_{k \ j}, \\ \bullet \quad D^{m \cdot l} \leftrightarrow A \quad \& \quad W \leftrightarrow B \quad \& \quad D^m \leftrightarrow C \\ \end{array}$

 $D^{n\text{-}1}\!\!=D^{n\text{-}2}\,x\,\,W=\,\,W^{n\text{-}1}$

Shortest Paths • Example 11

Shortest Paths

	1	2	3	4	5	
1	0	3	8	8	-4	
2	8	0	∞	1	7	
3	oc	4	0	8	∞	
4	2	oc	-5	0	∞	
5	8	∞	∞	6	0	

 $D^I = D^0 W$

CS 473 All Pairs Shortest Paths

