CMPT331 - Theory of Programming Languages ${\it Lambda~Calculus}$

1. Beta-reduce the following expressions to their normal form:

- (a) $(\lambda a \lambda y.ya)(zz)$ $(\lambda y.ya)[(zz)/a]$ $\lambda y.yzz$
- (b) $(\lambda x \lambda y.(xy))(\lambda z.y)$ $(\lambda x \lambda a.(xa))(\lambda z.y)$ $(\lambda a.(xa))[(\lambda z.y)/x]$ $(\lambda a.(\lambda z.y)a)$ $(\lambda a.(y))[a/z]$ $\lambda a.y$

Renaming bound variable y to a

There is no z to substitute here

(c) $(\lambda x.(xx))(\lambda y.(yy))$ $(xx)[(\lambda y.(yy))/x]$ $(\lambda y.(yy))(\lambda y.(yy))$ $(yy)[(\lambda y.(yy))/y]$ $(\lambda y.(yy))(\lambda y.(yy))$ $(yy)[(\lambda y.(yy))/y]$...

self-application - infinite recursion

(d) K x y $(\lambda ab.a)xy$ $(\lambda b.a)[x/a]$ $(\lambda bx)y$ (x)[y/b]x

 $K \equiv \lambda a b. a$

 $S \equiv \lambda xyz.xz(yz)$

There is no b to substitute here

(e) S K $(\lambda xyz.xz(yz))K$ $(\lambda yz.xz(yz))[K/x]$ $\lambda yz.Kz(yz)$ $\lambda yz.z \equiv K'$ K'

K beta-reduces to only the first expression, z

(f) $(S\ K)\ y\ y\ z$ (K')yyz As found in part $e,\ SK \equiv K'$ $(\lambda xy.y)yyz$ $K' \equiv \lambda xy.y$ $(\lambda y.y)[y/x]$ There is no x to substitute, K' beta-reduces to only second expression, y $(\lambda y.y)yz$

No more functions to evaluate

(g) K' y y zyz As shown in part f, K' beta-reduces to only the second expression, y

No more functions to evaluate

2. What is the normal form of (K S)(K I)?

```
Evaluating (KS):
(\lambda xy.x)S
(\lambda y.x)[S/x]
\lambda y.S
S
K beta-reduces to only the first expression, S
Given any input, this expression outputs S
\lambda y.S
S
K beta-reduces to only the first expression outputs S
Given any input, this expression outputs S
(S)[(KI)/y]
Given any input, this expression outputs S
There is no y to substitute here
```

3. Prove the following equivalencies by reducing each side to its normal form.

(a)
$$I = S K K$$

 $I = (\lambda epz.ez(pz))KK$
 $I = (\lambda pz.ez(pz))[K/e]$
 $I = (\lambda pz.Kz(pz))K$
 $I = (\lambda z.Kz(pz))[K/p]$
 $I = (\lambda z.Kz(Kz))$
 $I = \lambda z.K(z)(Kz)$
 $I = \lambda z.z \equiv I$
 $I = I$

K beta-reduces to only the first expression, z

(b) S K K = K I I I = KII $I = (\lambda xy.x)II$ $I = (\lambda y.x)[I/x]$ $I = (\lambda y.I)I$ I = (I)[I/y]I = I

 $As shown in part a, SKK = I \\ K beta-reduces to only the first expression, I$

 $There\ is\ no\ y\ to\ substitute\ here$

4. Given the definition of Church numerals below, what does (m n) do when m and n are Church numerals? For example $(\bar{2}\ \bar{3})$. It may be easier to work out as $\lambda m \lambda n.(mn)$. Show your work (or at least an example).

Church Numerals

Let
$$\overline{0} = \lambda f \times . \times$$

Let $\overline{1} = \lambda f \times . (f \times x)$
Let $\overline{2} = \lambda f \times . (f (f \times x))$
Let $\overline{3} = \lambda f \times . (f (f (f \times x)))$
...

YF) = (F (YF))

YF) = (F (YF))

YF) = (F (YF))

Let $\overline{n} = \lambda f \times . (f^{n} \cdot x)$

$$m = 2, n = 3$$

Evaluating
$$(\bar{2} \ \bar{3})$$
: $m \equiv \lambda f x. f^m(x)$

$$(\bar{m} \ \bar{n}) = (\lambda f x. f^m(x)) n$$

$$(\bar{2} \ \bar{3}) = (\lambda f x. f^2(x)) 3$$

$$= (\lambda f x. f(f(x))) 3$$

$$= (\lambda x. f(f(x))) [3/f]$$

$$= (\lambda x. 3(3(x)))$$

$$= 3 \text{ applied twice to } x$$

$$= 3^2$$

Evaluating
$$(\bar{3} \ \bar{2})$$
: $n \equiv \lambda f x. f^n(x)$

$$(\bar{n} \ \bar{m}) = (\lambda f x. f^n(x)) m$$

$$(\bar{3} \ \bar{2}) = (\lambda f x. f^3(x)) 2$$

$$= (\lambda f x. f(f(f(x)))) 2$$

$$= (\lambda x. f(f(f(x)))) [2/f]$$

$$= (\lambda x. 2(2(2(x))))$$

$$= 2 \text{ applied three times to } x$$

$$= 2^3$$

Applying Church numerals to each other results in exponentiation.

Let successor =
$$\overline{succ}$$
 = $\lambda n f x \cdot n f (f x)$
($\overline{succ} \ \overline{0}$) $\equiv (\lambda n f x \cdot n f (f x)) (\overline{0})$
[$\overline{0}/n$] in $\lambda f x \cdot n f (f x)$
 $\rightarrow_{\beta} \lambda f x \cdot \overline{0} f (f x)$
The result is going to be $\lambda f x \cdot something$.
something is $\overline{0} f (f x)$
 $\equiv (\lambda f x \cdot x) f (f x)$
[$f/f \text{ in } \lambda x \cdot x$]
 $\rightarrow_{\beta} \lambda x \cdot x (f x)$
[$(f x) / x \text{ in } x$]
 $\rightarrow_{\beta} (f x)$
plugging something back into the above...
 $\lambda f x \cdot (f x)$
 $\equiv \overline{1}$