

Disciplina: Amplificadores operacionais e semicondutores – ET74E - turmas S21 e S22

Prof. Alceu André Badin

Objetivo:

Gerar as bases, teóricas e práticas, para que o aluno compreenda os princípios fundamentais da Eletrônica Analógica.

- Plano de aula: Sistema acadêmico
- Moodle: https://moodle.utfpr.edu.br/course/view.php?id=27863

Diodos semicondutores

Prof. Alceu André Badin

Objetivos da aula

- Estudo das características dos materiais construtivos do diodo
- Análise da operação do diodo semicondutor
- Apresentação das não idealidades do componente

Materiais com condutividade entre um isolante e um condutor. (determinado pelo número de portadores de cargas livre)

Estruturas atômicas

Ligações covalentes do Si

Material intrínseco é o material puro.

Aumento da temperatura aumenta o numero de cargas livres.

Silício e Germânio apresentam coeficiente negativo de temperatura.

Quanto mais longe o elétron estiver no núcleo maior será o estado de energia.

- Materiais geralmente utilizados no desenvolvimento de dispositivos semicondutores:
- o Silício (Si).
- o Germânio (Ge).
- o Arseneto de gálio (GaAs).

Dopagem

- As características elétricas do silício e do germânio são melhoradas pela adição de materiais em um processo denominado dopagem.
- Há somente dois tipos de materiais semicondutores dopados:

tipo n

Materiais do **tipo** *n* contêm excesso de elétrons na banda de condução.

tipo p

Materiais do **tipo** *p* contêm um excesso de lacuna na banda de valências.

Dopagem

Material tipo n – impureza de antimônio - Sb

Material tipo p – impureza de boro - B

Junções p-n

• Uma estremidade de um cristal de semiconductor é dopada como um material do tipo p e a outra estremidade com um material do tipo

n.

• O resultado é a formação de uma região de depleção em torno da junção.

Diodo

Se terminais forem ligados às extremidades de uma junção pn teremos um dispositivo de dois terminais denominado diodo.

junção de cristais P (ânodo) e N (cátodo) que permite a passagem de corrente elétrica no sentido ânodo-cátodo e apresenta alta impedância no sentido cátodo-ânodo.

Cristais

• Um diodo tem três condições de operação:

o Sem polarização.

o Polarização direta.

o Polarização reversa.

• Ausência de polarização

o Nenhuma tensão externa é aplicada: $V_D = 0$ V.

- o Não há corrente no diodo: $I_D = 0$ A.
- o Só uma modesta depleção.

Sem polarização

Polarização reversa

o Uma tensão externa é aplicada ao longo da junção p-n na polaridade oposta dos materias do tipo p e n.

Polarização reversa ou inversa

Polarização reversa

o A tensão reversa faz com que a área da região de depleção aumente.

o Os elétrons no material do tipo *n* são atraídos para perto do terminal positivo da fonte de tensão.

• As lacunas no material do tipo p são atraídos para perto do terminal negativo da fonte de tensão.

Polarização direta

o Uma tensão externa é aplicada ao longo da junção p-n na mesma polaridade dos materiais do tipo p e n.

Polarização direta

Polarização direta

o A tensão direta faz com que a área da região de depleção diminua.

o Os elétrons e lacunas são empurrados em direção à junção *p-n*.

• Os elétrons e lacunas têm energia suficiente para cruzar a junção *p-n*.

Características do diodo ideal

Região de condução

- A tensão no diodo é 0V
- A corrente é infinita
- •O diodo se comporta como um curto

Região de não condução

- Toda a tensão fica no diodo
- A corrente é de 0 A
- •O diodo se comporta como aberto

Diodo Ideal

 $\stackrel{\hat{a}_{modo}}{\longrightarrow} \stackrel{\hat{a}_{modo}}{\longrightarrow} \stackrel{\hat{c}_{atodo}}{\longleftarrow} \stackrel{\hat{c}_{atodo$

Característica tensão x corrente

- $V_F>0 => Resistência nula$ entre A e C
- V_F <0 => Resistência infinita entre A e C.
- Bloqueia tensões reversas infinitas.
- Não apresenta perdas.

Característica não linear

Características do diodo real

Característica tensão x corrente

máxima

 $V_F > V_{(TO)} = > Resistência r_T$ entre A e C.

 $V_F < V_{(TO)} => Resistência$ elevada entre A e C.

- Bloqueia tensões reversas menores que V_{RRM} .
- Apresenta perdas de condução e comutação.
- Corrente reversa não nula.

Características reais do diodo

Referências

- 1. BOYLESTAD, Robert L.; NASHELSKY, Louis. Dispositivos eletrônicos e teoria de circuitos. 11. ed. São Paulo, SP: Pearson Education do Brasil, c2013. xii, 766 p. ISBN 9788564574212. URL
- 2. SEDRA, Adel S.; SMITH, Kenneth Carless. Microeletronica. 5.ed. São Paulo, SP: Pearson Prentice Hall, 2007. 848 p. ISBN 9788576050223. URL
- 3. Barbi, Ivo. Eletrônica de potência. Edição do autor. 2011.