

Digitální technika (B2B32DITA) 2. cvičení – 2. října 2024

Hlavní témata

- Číselné soustavy, převody mezi soustavami
- Booleova algebra a její zákony
- Logické funkce
- Vyjadřování logických funkcí
 - pravdivostní tabulkou
 - zkráceným seznamem stavových indexů
 - algebraickým výrazem
 - mapou
 - tělesem

Booleova algebra

Obsahuje:

- dva prvky: log. 0 a log. 1
- definované operace:
 - disjunkce (log. sčítání): V +
 - konjunkce (log. násobení): ∧ •
 - negace: \bar{a}
- pravidla a zákony pro úpravu a zjednodušování výrazů

Některé zákony Booleovy algebry

	Součtová forma	Součinová forma		
	0 + 0 = 0	1 · 1 = 1		
Axiomy	0 + 1 = 1 + 0 = 1	$1 \cdot 0 = 0 \cdot 1 = 0$		
	1 + 1 = 1	$0 \cdot 0 = 0$		
Zákon komutativní	a + b = b + a	a · b = b · a		
Zákon asociativní	a + (b + c) = (a + b) + c	a · (b · c) = (a · b) · c		
Zákon distributivní	(a · b) + (a · c) = a · (b +	(a + b) · (a + c) = a + (b ·		
Zakon distributivili	c)	c)		
Zákon idempotence	a + a = a	a · a = a		
Zákon vyloučeného	a + ā = 1	a · ā = 0		
třetího	a + a - 1			
Zákon agresivních hodnot	a + 1 = 1	a · 0 = 0		
Zákon neutrálních hodnot	a + 0 = a	a · 1 = a		
Zákon absorpce	a + a · b = a	a · (a + b) = a		
Zákon absorpce negace	a + ā · b = a + b	a · (ā + b) = a · b		
Zákon dvojí negace	$\bar{a} = a$			
Zákony deMorganovy	$\overline{a+b}=\overline{a}\cdot\overline{b}$	$\overline{a \cdot b} = \overline{a} + \overline{b}$		

Logické funkce

- Logická proměnná (proměnná, může nabývat konečného počtu hodnot, např. dvou)
- Logická funkce (přiřazení hodnot závisle proměnné ke kombinacím hodnot nezávisle proměnných)

- pro n NP existuje:
 - 2ⁿ kombinací ZP
 - 2^{2ⁿ} funkcí

Příklady

- Funkce jedné proměnné
 - počet kombinací ZP
 - počet funkcí

а	f_0	f_1	f ₂	f ₃
0	0	1	0	1
1	0	1	1	0

Příklady

- Funkce dvou proměnných
 - počet kombinací ZP
 - počet funkcí

- Funkce tří a čtyř proměnných
 - dtto

Funkce dvou proměnných

a	b	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

- f₁₀, f₁₂ negace (b, a)
- f₃, f₅ identita (a, b)

- f₁ log. součin
- f₇ log. součet

- f₁₄ NAND
 (Shafferova fce)
- f₈ NOR (Piercova)
- f₆ XOR (neekv.)
- f₉ ekvivalence

Pravdivostní tabulka – úplná

stavový	index	N

N	b	a	f
0	0	0	X
1	0	1	1
2	1	0	1
3	1	1	0

na hodnotě nezáleží

Pravdivostní tabulka – **ne**úplná

N	b	а	f
1	0	1	1
2	1	0	1
3	1	1	0

Příklad

Ukažte pomocí tabulky, že platí:

- 1. platí zákon absorpce negace
- 2. de Morganova pravidla

N	b	а					
0	0	0					
1	0	1					
2	1	0					
3	1	1					

Zkrácený seznam stavových indexů

- seznam stavových indexů, pro něž nabývá funkce hodnoty 1
- f = (0), 1, 2

Algebraický zápis

- a) Úplná normální disjunktní forma (ÚNDF) součtová
- součet součinů
- tolik součinů, kolik má funkce jednotkových (podstatných) bodů
- $f_D = 1 \cdot \overline{a}\overline{b} + 1 \cdot a\overline{b} + 1 \cdot \overline{a}b + 0 \cdot ab$
- $f_D = \bar{a}\bar{b} + a\bar{b} + \bar{a}b$

b) Úplná normální konjunktní forma (ÚNKF) – součinová

- součin součtů
- tolik součtů, kolik má funkce nulových bodů

•
$$f_K = (0 + \overline{a}\overline{b}) \cdot (1 + \overline{a}\overline{b}) \cdot (1 + \overline{a}\overline{b}) \cdot (0 + \overline{a}\overline{b})$$

•
$$f_K = (0 + \overline{a}\overline{b}) \cdot (0 + \overline{a}\overline{b}) = \overline{a}\overline{b} \cdot \overline{a}\overline{b}$$

•
$$f_K = (a+b) \cdot (\bar{a} + \bar{b})$$

Otázka

Kdy je vhodné použít:

- součtovou formu a kdy
- součinovou formu?

Karnaughovy mapy

- číslování políček pomocí Grayova kódu
- velikost odpovídá počtu proměnných

Příklad – mapa pro dvě proměnné

• počet políček: 4

Příklad

Vyjádřete funkci pomocí KM

N	b	а	f
0	0	0	X
1	0	1	1
2	1	0	1
3	1	1	0

Mapa pro tři proměnné

- první řádek (N): 0, 1, 3, 2
- druhý řádek (N): 1. řádek +4

Mapa pro čtyři proměnné

- 1. a 2. řádek (N): jako pro 3 proměnné
- 4. řádek (N): 2. řádek +4
- 3. řádek (N): 4. řádek +4

Mapa pro pět proměnných

- 1. řádek (N): 0, 1, 3, 2, zbytek zrcadlově +4
- 2. řádek (N): 1. řádek +8
- 4. řádek (N): 2. řádek +8

• 3. řádek (N): 4. řádek +8

				ı				l
_	0	1	3	2	6	7	5	4
	8	9	11	10	14	15	13	12
d	24	25	27	26	30	31	29	28
е	16	17	19	18	22	23	21	20

Otázka

Máme Karnaughovu mapu pro 5 proměnných. Každé políčko má tedy 5 sousedních políček. V hodnotách kolika proměnných se liší sousední dvě políčka:

- a) nejméně a
- b) nejvíce?

Tělesa

- pro 2 proměnné
- vyjádření funkce f = (0), 1, 2

Tělesa

pro 3 a 4 proměnné (rovinný rozvoj)

