C SC 355 Fall 2016

LillAnne Jackson

Introduction

CSC 355 Fall 2016 Jackson

Today's Overview:

- Course Introduction & Outline
- Digital systems
- Intro Boolean Algebra

Today's Readings:

Mano/Kime/Martin:
Chapter 1

Course Information

https://heat.csc.uvic.ca/coview/outline/2016/Fall/CSC/355

Email: lillanne at uvic.ca

Office: ECS 563

Phone Number: < Please E-mail >

Office Hours:

Tuesday or Wednesday 9:30-10 am (EOW 206 lobby) Friday 12:30pm-01:45pm (Somewhere in this building)

Textbook: Logic and Computer Design Fundamentals, 4th or 5th Edition, M. Morris Mano, Charles R. Kime, Prentice-Hall

CSC 355 Fall 2016 Jackson

Course Objectives:

At the end of the course, you will be able to:

- design, analyze and implement (build!) a digital circuit.
- understand the fundamentals of digital design.
- appreciate the need for the testing of all digital systems.
- explain the structure of hardware components in microprocessor systems.
- remember an enjoyable and stimulating course!

Course Topics:

- Boolean algebra, logic gates, combinational circuits
- Simplification and design algorithms
- Registers, memory organization and buses
- Mealy and Moore finite state machines, bubble graphs, ASM charts
- Sequential machines analysis and synthesis, counters
- Arithmetic logic units and control units
- Testing of circuits
- Computer organization
- Design of a microprocessor
- Memory organization
- VHDL programming
- Programmable devices (FPGAs)

				Your	S	chedu	ıle	
aft Sch	edule: Subject to	hange						
Veek	Reading: Le	ture 1 Topic	Lectur	re 2 Topic	Lecture 3	В Торіс	Lab Topic	Assignment
1		Sep-06 No Class	Sep	-07 Intro	Sep-09	Combinational Logic I		
2		Sep-13 Combinational	Logic II Sep	-14 Cannonical Forms (Minterms)	Sep-16	Cannonical Forms (Maxterms)	Lab 1: Intro to Logic Gates and Design Works	
		Karnaugh Map						
3		Sep-20 Variables)		-21 Combinational Circuits I		Combinational Circuits II	Lab 2: Combinational Circuits	
4		Sep-27 Combinational		-28 Karnaugh Maps 5 Variables		Karnaugh Maps 6 Variables	NO LABS this week -Complete Assignment 1	Assignment 1 Due - Thursday in class
5		Oct-04 Arithmethic Co		-05 Arithmetic Ccts Subtractors		Arithmetic Ccts	Lab 3: Multiplexers and Demultiplexers	
6		Oct-11 Review		-12 VHDL		VHDL & Timing	NO LABS: prepare for Midterm	
7		Oct-18 Midterm Exam		-19 Sequential Circuits I		Sequential Circuits II	Lab 4: VHDL for Combinational Circuits	
8		Oct-25 Sequential Circ		-25 FSM Analysis		FSM Design I	Lab 5: Intro to Sequential Circuits	
9	- 1	lov-01 FSM Design II	Nov	-02 FSM Design III	Nov-04	VHDL3 Sequential	Lab 6: Finite State Machines	
10		lov-08 Mealy-Moore	Nov	-09 HOLIDAY: REading Break	Nov-11	HOLIDAY: REading Break	NO LABS: Complete Assignment 2	Assignment 2 Due - Tuesday in Class
11		lov-15 FSM Game Day	Nov	-16 Registers	Nov-18	Small Computer Systems	Lab 7: VHDL for Sequential Circuits	
				Testing, Programmable Logic				
12		lov-22 Small Compute	Systems Nov	-23 Arrays, Gate Arrays	Nov-25		Lab 8: Very Small Computer System - Implementati	on
13		Inv-29 Review	N	-30 Review	B 0	No Classe Day of Days and Days	NO. LARG. Complete Andrews 2	Andrews 2 Day Westernstein in Class
13		10V-29 REVIEW	NOV	-30 Review	Dec-02	No class: Day or Rememberance	NO LABS: Complete Assignment 3	Assignment 3 Due -Wednesday in Clas
14	FINAL E	(AM December 5 th	rough 10 Don't o	an anything until the final Final Exam	Schodulo ic	norted!		
14	PERIOD	December 3 th	ough 19 Doilt p	an anything until the final Final Exam	Scriedule is	posteur	Onto 124 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
							October 31: Last day for withdrawing from courses	
				ay class, for the lab that will be comp				
CSC 355 Fall 2016 Jackson								

Grading

Coursework	Weight		
Assignments (3 @ 4%)	12%		
Lab Exercises(8 @ 2%)	16%		
Midterm Exam	25%		
Finite State Machine Game	2%		
Final Exam	45%		

CSC 355 Fall 2016 Jackson

Administrivia

- You have to attend your lab
- failure to submit the prelab implies you cannot attend the lab: Grade for the lab = 0.
- Late assignments will be evaluated (eventually) but not included in your grade
- Do not make plans for Final Exam period until the final final exam schedule has been posted.
- to pass the course, you must obtain pass:
 - (a) the course overall;
 - (b) the final exam; and
 - (c) the labs overall.
- Web site: connex.csc.uvic.ca
 Use your UVic NetLink ID to log in

Please find your Course Outline:

- www.csc.uvic.ca
 - Current students
 - Undergraduate
 - Undergraduate Courses
 - CSC 355
 - Fall 2016 Outline

And now for some Digital Logic!!

QUESTIONS?

AKA: A Switching Network

switching? Were once based on switches, open and closed

Ė

COMBINATIONAL:

current output of the network depends entirely on current inputs ==> no memory

SEQUENTIAL:

network with memory of any type ==> output depends on current inputs plus previous state of inputs

For now, lets focus on Combinational Logic

GATES:

- AND ______
- OR
- NOT
- NAND (NOT AND)
- NOR (NOT OR)

CSC 355 Fall 2016 Jackson

Signal:

A variable that represents a physical quantity. Two discrete levels, or binary values, are the usual in digital systems.

Binary values are represented by:

- binary digits: 0 and 1
- labels: False (F) and True (T)
- heights: Low (L) and High (H)
- Switch values: Off and On

Ħ

Example #1

IF the garage door is open

AND the car is running

THEN the car can be backed out of the garage

Is garage door open?	Is the car running?	Can the car be backed out?	
false (0)	false (0)	false (0)	
false (0)	true (1)	false (0)	
true (1)	false (0)	false (0)	
true (1)	true (1)	true (1)	

CSC 355 Fall 2016 Jackson

Boolean Algebra and Logical Operators

Algebra: a branch of mathematics in which symbols (as letters and numbers) are combined according to the rules of arithmetic. (Merriam-Webster Dictionary)

Boolean Algebra: the branch of *algebra* in which the values of the variables are the truth values true and false, usually denoted 1 and 0 respectively. (Wikipedia)

Values used: 0 and 1
Operators: AND, OR, NOT

Example #2

Turn on the furnace if, the internal temperature is less than 20°C and the door and the window are both closed.

A: internal temperature <20

B: door closed

C: window closed

 $A \cdot B \cdot C$

Α	В	С	Furnace
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Example #1

What is this expression?

F(light on) = A AND [(B AND C) OR D]

CSC 355 Fall 2016 Jackson

Example #2: A Boolean Expression

$$A \overline{B} + C$$

Build the truth table

3 variables
$$\Rightarrow$$
 2³ = 8 rows

Α	В	С	\overline{B}	$A \overline{B}$	$A \overline{B} + C$
0	0	0	1	0	0
0	0	1	1	0	1
0	1	0	0	0	0
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	1	0	0	1

Build the circuit:

Boolean Algebra: The Rules

Precedence:

For an expression with *n* inputs:

1. brackets

2. NOT

3. AND

4. OR

> How many rows in its truth table?

 2^n

➤ How many possible functions? 2^{2^n}

CSC 355 Fall 2016 Jackson

Boolean Algebra

- The set of elements, B, that contains at least two elements, a, b where $a \neq b$
- The binary operations {AND, OR}, also written as $\{\cdot, +\}$
- The unary operation {NOT}, also written as { }

Туре	for a, b, c, 0, 1 ∈ B			
Closure:	$a + b \in B$	$a\cdot b\in B$		
Identity:	a + 0 = a	a ·1 = a		
	a + 1 = 1	a ·0 = 0		
Commutative:	a + b = b + a	$a \cdot b = b \cdot a$		
Distributive:	$a + (b \cdot c) = (a+b)(a+c)$	$a \cdot (b + c) = a \cdot b + a \cdot c$		
Complement:	a + a = 1	$\mathbf{a} \cdot \overline{\mathbf{a}} = 0$		
Involution:	$\overline{\overline{\mathbf{a}}}$ = a			
Idempotent:	a + a = a	a ·a = a		
Associative:	a + (b + c) = (a + b) + c	$a \cdot (b \cdot c) = (a \cdot b) \cdot c$		
Absorption:	a + a ·b = a	$a \cdot (a + b) = a$		
de Morgan's Law:	$\overline{(a+b)} = \overline{a} \cdot \overline{b}$	$\overline{\mathbf{a} \cdot \mathbf{b}} = \overline{\mathbf{a}} + \overline{\mathbf{b}}$		
Simplification Laws	a + ab = a	$a\overline{b} + b = a + b$		

For Friday (pre-lab):

• Please Simplify:

$$F = (P\overline{R} + R)(PR + \overline{P}Q + QR)$$

- You should show ALL the steps and indicate which Boolean Algebra rule was used at each step.
- Draw the circuit, before & after simplification.