

Prof. Celso Setsuo Kurashima

Sistema de tradução de Libras para texto utilizando técnicas de visão computacional

Aplicação em contextos clínicos e hospitalares

Etapa 2: Modelagem Funcional do Sistema (MF)

Leonardo Severgnine Maioli, Ricardo Javurek Rihan, Tiago Luiz Silva de Araújo Pereira

{l.severgnine, ricardo.javurek, luiz.tiago}@aluno.ufabc.edu.br

1. Modelagem Funcional do Sistema

Este documento traz uma breve visão geral sobre o cenário de aplicação escolhido pelo grupo para o sistema de tradução de Libras para texto. Na sequência, é apresentado um diagrama de blocos seguido da descrição de cada parte do mesmo, com o objetivo de apresentar as etapas do funcionamento do sistema, seu fluxo de dados e o detalhamento das informações de entrada, de saída e do processamento realizado em cada bloco.

Visão Geral do Sistema

O sistema a ser desenvolvido pela equipe será um protótipo que utilizará técnicas de Visão Computacional e Processamento de Vídeo para traduzir sinais específicos de Libras para texto escrito em português. Além disso, o sistema terá como foco a utilização em clínicas e hospitais, sendo capaz de reconhecer sinais usados em triagem de pronto-socorro ou em consultas clínicas básicas como sintomas, dores, respostas simples como "sim", "não", "febre", "dor de cabeça", entre outras.

O sistema será composto por alguns módulos que atuam de forma sequencial. A entrada principal será um vídeo capturado em tempo real de uma pessoa sinalizando em Libras. O processamento envolverá a captura desse vídeo, pré-processamento de frames, extração de características, classificação dos sinais e, por fim, a exibição do texto traduzido.

Diagrama de Blocos

Descrição de cada Bloco do Diagrama

Bloco	Entrada	Processamento	Saída
Captura de vídeo com câmera	Vídeo em tempo real	Captura contínua de frames	Sequência de frames
Pré-processamento dos frames	Frames	Aplicação de técnicas de remoção de ruído, filtros, ajuste de contraste	Imagem tratadas
Detecção de regiões de interesse	Imagem tratada	Uso de métodos de segmentação para isolar as mãos e braços	Região de interesse da imagem
Extração de características	Região de interesse da imagem	Extração de formas, contornos, pontos	Vetor de características
Classificação de sinais	Vetor de características	Aplicação de modelo de Machine Learning para reconhecer sinais específicos	Rótulo do sinal
Geração de texto	Rótulo do sinal	Conversão do rótulo reconhecido para uma string de texto	Texto em português
Exibição do Texto	Texto	Exibição do texto na interface do sistema	Exibição do texto na tela

Tecnologias Previstas

Para que as etapas descritas no diagrama de blocos sejam realizadas com sucesso, a equipe precisará utilizar de algumas tecnologias como linguagens de programação e dispositivos de captura de vídeo. Nesta seção, são listadas algumas das tecnologias previstas com base nas etapas existentes no sistema e no conteúdo estudado em sala.

- Linguagem de programação: Python
- **Bibliotecas:** OpenCV, TensorFlow/Keras, ...
- Dispositivo de Entrada: Webcam ou câmera de celular
- Dispositivo de Saída: Tela de computador ou de smartphone