

Thermodynamique générale

Daniel Portinha (MCF)

daniel.portinha@insa-lyon.fr

Bâtiment : Jules Verne, 3ème étage

Organisation du module

13h de cours (vendredi 10h-11h, en général) Sauf exceptions (prévenues sue ADE)

28 h de TD (26h en face à face, 2h en autonomie) 6h TP (Avril et Mai)

Conférenciers de TD

- Gr 91: Denise Blanc (Ven 14-16)

- Gr 92: Daniel Portinha (Ven 8 – 10)

- Gr 93: Sébastien Livi (Ven 14-16)

Evaluations

Vendredi 11/03: test 1 (30 minutes) coeff 0,5

Vendredi 15/04 : IE longue (2 heures) coeff 2

Vendredi 20/05 : test 2 (30 minutes) coeff 0,5

Lundi 13/06 : IEFS (3 heures) coeff 3

Documents

- 1 polycopié de cours + TD + TP
- Documents sur Moodle

https://moodle.insa-lyon.fr/course/index.php?categoryid=175

Amphis linéaires

- Chapitre 1 : Energies et notions fondamentales
- Chapitre 2: Changements d'états
- Chapitre 3 : Premier principe
- Chapitre 4: Second principe
- Chapitre 5: Thermochimie
- Chapitre 6: Fonction G et Clapeyron

Polycopié « non linéaire »

- Introduction générale:
- Résumé des chapitres + objectifs d'apprentissage

3 items

- Outils: notions à connaître et à maîtriser

- Repères méthodologiques savoir-faire, application des outils, démonstration,

démarche de raisonnement

- Enjeux éclairage technologique sur les grands enjeux

liés à l'énergie (pour aller plus loin)

- Exercices
- Enoncé des TP de thermo
- Données à consulter pour les exercices

Une même fiche pourra être utilisée lors de différents chapitres donc à différents moments du semestre

A l'inverse le contenu d'un chapitre se retrouve dans plusieurs fiches

Chapitre 1 : Energies et notions fondamentales

- Energies primaires, finales, utiles, pertes énergétiques, rendement
- Transformations de l'énergie, chaines énergétiques, stockage de l'énergie
- Unités, ordres de grandeur
- Enjeux énergétiques
- Organes et fonctionnement d'une machine à vapeur et d'une machine frigorifique
- Notions fondamentales : système, conventions de signe, états, variables d'état, transformations

2h – semaine 1

Thermodynamique = Science des énergies

Energie: n.f. grandeur caractérisant un système physique, gardant la même valeur au cours de toutes les transformations internes du système (loi de conservation) et exprimant sa capacité à modifier l'état d'autres systèmes avec lesquels il entre en interaction.

(Unité SI le joule.)

L'energie caracterise le changement d'etat d'un systeme (vitesse, temperature, forme d'un objet, composition chimique, altitude, lumière...) Notre consommation d'énergie correspond à la vitesse à laquelle nous transformons notre monde

Dès que quelque chose change, une énergie est mise en jeu ; elle mesure l'ampleur du changement Poly — Fiche O1

Cours de Thermodynamique

Unités d'énergie

❖ USI : le joule

- Travail d'une force d'1N dont le point d'application se déplace d'1m dans la direction de la force).
- Quantité d'énergie perçue comme petite dans l'activité courante d'un être humain, ce qui handicape son usage dans certaines circonstances → kilojoule (1 kJ soit 10³ J), mégajoule (1 MJ = 10⁶ J)...

Cours de Thermodynamique

- ❖ USI : le joule
- ❖ l'eV: énergie cinétique gagnée par un électron accéléré par une différence de potentiel d'1V volt, ordre de grandeur de l'énergie d'un électron au sein d'un atome. 1 eV = 1,602.10⁻¹⁹ J

Cours de Thermodynamique

- ❖ USI: le joule
- ❖ l'eV : énergie cinétique gagnée par un électron accéléré par une différence de potentiel d'1V volt, ordre de grandeur de l'énergie d'un électron au sein d'un atome. 1 eV = 1,602.10⁻¹⁹ J
- calorie (cal) : quantité de chaleur nécessaire pour élever d'1°C la température d'1 g d'eau. 1 cal = 4,1855 J

Cours de

Thermodynamique

- ❖ USI : le joule
- ❖ l'eV : énergie cinétique gagnée par un électron accéléré par une différence de potentiel d'1V volt, ordre de grandeur de l'énergie d'un électron au sein d'un atome. 1 eV = 1,602.10⁻¹⁹ J
- calorie (cal) : quantité de chaleur nécessaire pour élever d'1°C la température d'1 g d'eau. 1 cal = 4,1855 J
- kilowatt-heure (kW.h ou kWh): énergie consommée par un appareil de 1 000 watts pendant une durée d'1 heure. 1 kWh = 3,6.10⁶ J
 - o Il est fait usage également du watt-heure (Wh) et des multiples par milliers du kWh que sont le mégawatt-heure (MWh) et le gigawatt-heure (GWh).

- ❖ USI : le joule
- ❖ l'eV: énergie cinétique gagnée par un électron accéléré par une différence de potentiel d'1V volt, ordre de grandeur de l'énergie d'un électron au sein d'un atome. 1 eV = 1,602.10⁻¹⁹ J
- calorie (cal) : quantité de chaleur nécessaire pour élever d'1°C la température d'1 g d'eau. 1 cal = 4,1855 J
- kilowatt-heure (kW.h ou kWh): énergie consommée par un appareil de 1 000 watts pendant une durée d'1 heure. 1 kWh = 3,6.10⁶ J
 - o Il est fait usage également du watt-heure (Wh) et des multiples par milliers du kWh que sont le mégawatt-heure (MWh) et le gigawatt-heure (GWh).
- tonne d'équivalent pétrole (tep) : énergie calorifique d'1 tonne de pétrole « moyen ». 1 tep = 4,186.10¹0 J

Cours de Thermo-

Quelques ordres de grandeur d'énergie

Pour fournir **1 kWh**, on peut utiliser :

10 cyclistes à 20 km/h pendant 1h

1 petit tas de charbon

Uranium: quelques atomes

Cours de Thermodynamique

Energie / puissance

La Puissance se mesure en kilowatt (kW)

L'Énergie se mesure en kilowatt-heure (kWh)

La distance parcourue par le cycliste

Puissance (kW) x Temps (h) Energie (kWh)

FIMI Cours de

Quelques ordres de grandeur de puissance

Source : Demain l'énergie, Paroles de chercheurs, Béatrice Méténier, PUG, 2015

Thermo-

Energies primaires vs. énergies finales

Énergies primaires = énergies stockées existantes

- ❖ Energie Nucléaire (Epot-micro): uranium, hélium (soleil)
- ❖ Energie Chimique (E_{pot-micro}) : pétrole, charbon, gaz, biomasse
- Energie Mécanique : vents, marées (E_{cin-macro}), barrage (E_{pot-macro})
- Energie (géo)Thermique (E_{cin-micro}): nappes souterraines vapeur ou eau chaude

Energies primaires vs. énergies finales

Énergies primaires = énergies stockées existantes

- ❖ Energie Nucléaire (E_{pot-micro}): uranium, hélium (soleil)
- ❖ Energie Chimique (E_{pot-micro}) : pétrole, charbon, gaz, biomasse
- ❖ Energie Mécanique : vents, marées (E_{cin-macro}), barrage (E_{pot-macro})
- Energie (géo)Thermique (E_{cin-micro}): nappes souterraines vapeur ou eau chaude

Aucun stock n'est inépuisable mais les ordres de grandeur des temps sont très différents ; on distingue donc les énergies non renouvelables (durée des réserves < 100 ans) et les énergies renouvelables (durée des réserves > 10^{10} ans) :

Non renouvelables	Renouvelables	
Nucléaire : uranium	Nucléaire (ou rayonnante) : hélium (soleil)	
Chimique : pétrole, charbon gaz	Chimique : biomasse	
	Mécanique : éolien, hydraulique	
	Géothermique	

Rq : pour déplacer une énergie primaire, il faut déplacer le stock ! Ce qui est souvent difficile.

Etat des lieux de la consommation d'énergie mondiale

FIMI

Cours de Thermodynamique

N.B. 1 exajoule (1 EJ) = 10^{18} J

FIMI Cours de Thermo-

Energies primaires vs. énergies finales

N.B. 1 tep (tonne équivalent pétrole) = $41,868 \text{ GJ} = 41,868 \text{ } 10^9 \text{ J}$ C'est la chaleur dégagée par la combustion d'1 tonne de pétrole_{ynamique - Chapitre I}

Cours de Thermodynamique

Energies primaires vs. énergies finales

Énergie finale = dont dispose l'utilisateur final

	Part de la consommation finale en 2012	Consommation mondiale en 2012 en millions de tonnes d'équivalent pétrole (Mtep)
Consommation finale	100%	8 979
Industrie	28,3%	2 541
Transports	27,9%	2 507
Résidentiel, agriculture et autres secteurs	34,8%	3 122
Usage hors énergie	9,0%	809

Consommation finale d'énergie par secteur dans le monde en 2012 (d'après données du Key World Energy Statistics 2014)

https://www.connaissancedesenergies.org/fiche-pedagogique/consommation-d-energie-finale-dans-le-monde-0

Cours de

Energies primaires vs. énergies finales

Production totale d'énergie primaire dans le monde (en 2012):

13 371 Mtep

FIMI Cours de

Energies primaires vs. énergies finales

Production totale d'énergie primaire dans le monde (en 2012) :

FIMI Cours de Thermo-

Energies primaires vs. énergies finales : cas de l'électricité

FIMI Cours de Thermo-

Energies primaires vs. énergies finales : cas de l'électricité

World electricity generation¹ from 1971 to 2015 by fuel (TWh)

Source: Key word energy statistics 2017 - IEA

Electricité provenant du charbon : 2350 TWh en 1973 9650 TWh en 2015 × 4!

N.B. 1 Wh (watt heure) = 3600 J 1 tera = 10¹²

Excludes electricity generation from pumped storage.
 Includes geothermal, solar, wind, tide/wave/ocean, biofuels, waste, heat and other.
 In these graphs, peat and oil shale are aggregated with coal.

INSA

FIMI

Cours de Thermodynamique

Energies primaires vs. énergies finales : cas de l'électricité

Source: Europe's dark cloud - CAN, Heal, Sandbag, WWF - 2016

Electricité provenant du charbon : 2350 TWh en 1973 9650 TWh en 2015 × 400%!

1973 and 2015 source shares of electricity generation¹

Excludes electricity generation from pumped storage.
 Includes geothermal, solar, wind, tide/wave/ocean, biofuels, waste, heat and other.
 In these graphs, peat and oil shale are aggregated with coal.

Cours de Thermo-Ivnamique

Energies utiles

Énergie utile = procure le service énergétique recherché

Source: https://www.gazprom-energy.fr/gazmagazine/2017/09/consommation-energetique-secteur-activite/

Cours de Thermodynamique

Energies utiles

- ❖ Secteur résidentiel et tertiaire (42%) :
 - o Besoins de chaleur à basse et moyenne température

Cours de Thermodynamique

Energies utiles

- ❖ Secteur résidentiel et tertiaire (42%) :
 - o Besoins de chaleur à basse et moyenne température
 - Besoins de cuisson

Cours de Thermodynamique

Energies utiles

- ❖ Secteur résidentiel et tertiaire (42%) :
 - o Besoins de chaleur à basse et moyenne température
 - Besoins de cuisson
 - Besoins en électricité

Cours de Thermodynamique

Energies utiles

- ❖ Secteur résidentiel et tertiaire (42%) :
 - Besoins de chaleur à basse et moyenne température
 - Besoins de cuisson
 - Besoins en électricité
- Secteur agricole (3%) :
 - o Énergie mécanique
 - Chauffage des locaux d'élevage
 - Séchage
 - Engrais et pesticides (dérivés pétrole)

Cours de Thermo-dynamique

Energies utiles

- ❖ Secteur résidentiel et tertiaire (42%) :
 - Besoins de chaleur à basse et moyenne température
 - Besoins de cuisson
 - Besoins en électricité
- Secteur agricole (3%):
 - o Énergie mécanique
 - Chauffage des locaux d'élevage
 - o Séchage
 - Engrais et pesticides (dérivés pétrole)
- ❖ Secteur industriel (25%):
 - Part de l'énergie dans les coûts industriels 5 à 15%
 - Électrolyse (ex : aluminium)
 - Sidérurgie (acier et fonte)

Cours de Thermo-dynamique

Energies utiles

- ❖ Secteur résidentiel et tertiaire (42%) :
 - Besoins de chaleur à basse et moyenne température
 - Besoins de cuisson
 - Besoins en électricité
- Secteur agricole (3%):
 - o Énergie mécanique
 - Chauffage des locaux d'élevage
 - o Séchage
 - Engrais et pesticides (dérivés pétrole)
- Secteur industriel (25%):
 - Part de l'énergie dans les coûts industriels 5 à 15%
 - Électrolyse (ex : aluminium)
 - Sidérurgie (acier et fonte)
 - Chimie (hydrocarbures)
 - Métallurgie (chaleur à température élevée)
 - Cimenteries (pétrole remplacé par charbon)

Cours de Thermodynamique

Energies utiles

- Secteur des transports (30%) :
 - Marché captif pour le pétrole (sauf ferroviaire)
 - o Maritime: fioul lourd
 - o Routier : essence et gazole
 - o Aérien: kérosène

Cours de Thermo-dynamique

Energies utiles

Énergie utile = procure le service énergétique recherché

- Secteur des transports (30%) :
 - Marché captif pour le pétrole (sauf ferroviaire)
 - o Maritime: fioul lourd
 - Routier : essence et gazole
 - o Aérien: kérosène

Energie distribuée par des réseaux commerciaux formalisés

Cours de Thermo-dynamique

Energies utiles

Énergie utile = procure le service énergétique recherché

- ❖ Secteur des transports (30%) :
 - Marché captif pour le pétrole (sauf ferroviaire)
 - Maritime: fioul lourd
 - Routier : essence et gazole
 - o Aérien: kérosène

Energie distribuée par des réseaux commerciaux formalisés

- Cas des sociétés rurales :
 - o Besoins en énergie prélevés sur la nature environnante

Cours de Thermo-dynamique

Energies utiles

Énergie utile = procure le service énergétique recherché

- Secteur des transports (30%) :
 - Marché captif pour le pétrole (sauf ferroviaire)
 - o Maritime: fioul lourd
 - o Routier : essence et gazole
 - o Aérien: kérosène

Energie distribuée par des réseaux commerciaux formalisés

- Cas des sociétés rurales :
 - Besoins en énergie prélevés sur la nature environnante
 - Surexploitation du couvert végétal : désertification et déforestation

Cours de Thermo-dynamique

Energies utiles

Énergie utile = procure le service énergétique recherché

L'être humain consomme de l'énergie sous différentes formes :

- ❖ W_{mécanique}: transport (+ machines mécaniques)
- ❖ W_{électrique}: ordinateurs (toutes machines sans mouvement)
- Q_{chaleur}: chauffage, cuisson
- Q_{rayonnement}: éclairage

FIMI

Cours de Thermo-dynamique

Energies utiles

Énergie utile = procure le service énergétique recherché

L'être humain consomme de l'énergie sous différentes formes :

- ❖ W_{mécanique}: transport (+ machines mécaniques)
- ❖ W_{électrique}: ordinateurs (toutes machines sans mouvement)
- Q_{chaleur}: chauffage, cuisson
- Q_{rayonnement}: éclairage

travail W et chaleur Q

Conversion et stockage de l'énergie

FIMI

Cours de Thermodynamique

Transformation de l'énergie – notion de rendements

E_{finale} = **E**_{primaire} × rendement de conversion × rendement de transport

Transformations de l'énergie

1^{er} principe de la

dans un système

avec l'extérieur)

transformation se

d'autres formes

soumis à un

processus de

retrouve

pris fin

Transformations de l'énergie

Source: http://www.energieplanete.fr/conversion-energie-types.html

Transformations de l'énergie

principe:
Absence de prise en compte de la qualité de l'énergie
Formes d'énergie équivalentes mais possibilités de conversion inégales

Limites du 1er

Transformations de l'énergie

Limites du 1^{er} principe :

Absence de prise en compte de la qualité de l'énergie
Formes d'énergie équivalentes mais possibilités de conversion inégales

Transformations de l'énergie

Limites du 1^{er} principe :

Absence de prise en compte de la qualité de l'énergie
Formes d'énergie équivalentes mais possibilités de conversion inégales

Transformations de l'énergie

La conversion de l'énergie dégrade sa qualité La quantité d'énergie utilisable diminue du

2nd principe de la

d'irréversibilités

fait de l'existence

FIMI

Cours de Thermodynamique

Chaine énergétique

http://www.cotentin-energies.fr/les-chauffe-eaux/

Stockage de l'énergie

Poly – Fiche E4

Exemples:

Machine à vapeur

Machine frigorifique

Centrale à vapeur

Centrale nucléaire

Centrale thermique

Poly – Fiche E3

Centrale à vapeur

4 composants

Centrale à vapeur

Fluide de travail = eau = **SYSTÈME** σ

Centrale à vapeur

Tout ce qui n'est pas le système = milieu extérieur σ_1

Centrale à vapeur

SYSTÈME σ + milieu extérieur σ_1 = UNIVERS

Centrale à vapeur

Fluide de travail = eau = SYSTEME

Centrale à vapeur

Fluide de travail = eau

FIMI

Cours de

Centrale à vapeur

Énergie primaire :

nucléaire, fossile, biomasse, déchets ménagers, géothermie...

FIMI Cours de dynamique

FIMI Cours de dynamique

FIMI Cours de Thermodynamique

FIMI Cours de Thermodynamique

Machine frigorifique

Généralisation Définitions

Poly – Fiches O2 03

FIMI

Cours de Thermo-dynamique

Bilan des notions introduites

- * Énergie primaire vs. énergie finale, notion de rendement
- Energie utile = chaleur et travail
- ❖ Énoncés du 1^{er} et du 2nd principes de la thermodynamique
- Différents états physique, changements d'état physique, chaleurs associées
- ❖ P et T constants lors d'un changement d'état
- Notion de source
- Système, milieu extérieur, univers
- États du système, variables d'état

Généralisation Système, milieu extérieur

Cours de Thermodynamique La Thermodynamique « classique » est la science qui étudie :

- o {quoi ?} les transferts d'énergie et de matière entre
- {qui ?} des systèmes macroscopiques et le milieu extérieur (environnement)

Système = ensemble de choses que l'on choisit de séparer du reste par la pensée

• Défini par :

- des constituants
- une frontière
- Soumis à des conditions : T, P

Système σ + milieu extérieur σ_1 = univers

Généralisation Echanges σ/σ_1 , conventions de signe

- **—** Le système σ et le milieu extérieur σ₁ échangent :
 - de la matière
 - de l'énergie → travail (W)→ chaleur (Q)

- Convention du banquier
 - Ce qui entre dans le système est compté positivement
 - Ce qui sort du le système est compté négativement

Echanges σ/σ_1 , type de système

Aucun échange avec l'extérieur

Échange d'énergie avec l'extérieur

Système fermé
(pas d'échange de matière)

Échange d'énergie et de matière avec l'extérieur

Système ouvert

FIMI Cours de Thermodynamique

Echanges σ/σ_1 , W et Q

Travail Chaleur

On considère uniquement les **forces extérieures** au système

- Travail mécanique : forces mécaniques et de pression
- Autres travaux : forces électriques, magnétiques...

Seul à intervenir dans les systèmes thermoélastiques

A condition que le système ne soit pas <u>isolé thermiquement</u>

Ou que la transformation ne soit pas <u>trop rapide</u> pour que des échanges de chaleur ne se fassent

• Système isolé <u>thermiquement</u>: conditions <u>adiabatiques</u>, $Q_{\sigma/\sigma 1} = 0$

Transformation trop rapide:

$$Q_{\sigma/\sigma 1} = 0$$

FIMI

Cours de Thermo-dynamique

Variables d'état

La thermodynamique s'intéresse aux échanges d'énergie entre le système et le milieu extérieur lors de son évolution entre deux états d'équilibre

description

Décrire l'état d'un système, c'est préciser la valeur d'un minimum de grandeurs macroscopiques aisément mesurables : les variables d'état
 Nombre minimum variables d'états indépendantes

Un système est en <u>équilibre</u> (interne) lorsque les valeurs des variables d'état qui le caractérisent sont uniformes et constantes.

= transformation