

1) Arduino Uno 보드의 외형

2) Arduino 시작하기

- http://arduino.cc/en/Guide/HomePage
 - 1 Arduino 개발환경(IDE) 다운로드 및 설치
 - ② Arduino 보드와 컴퓨터 (PC)를 USB 케이블로 연결
 - ③ 필요시, 디바이스 드라이버 설치하기
 - 4 Arduino 개발환경(IDE) 실행하기

2) Arduino 시작하기

- http://arduino.cc/en/Guide/HomePage
 - 5 Arduino 보드 선택하기
 - 6 시리얼 포트 선택하기
 - 7 Blink 예제 Open 하기
 - 8 프로그램 업로드하기

3) Arduino 통합개발환경(IDE)

4) Arduino 사용방법 및 입출력

🔷 Arduino 사용하기

- 프로그램 작성하기
- setup()과 loop() 함수 구별
- Compile 버튼 클릭하여 컴파일
 - 에러 발생 시, 체크 및 수정
- Upload 버튼 누르기

Output Transducers
Actuators (e.g., motors, buzzers)

Input Transducers
Sensors (e.g., switches, levers, sliders, etc.)

5) 디지털(Digital) 입출력(Input/Output)

이진 값

- Digital IO is binary valued
 - on or off, 1 or 0
- ▶ 모든 현대 마이크로프로세서는 디지털 방식으로 동작함

- pinMode(pin, mode)
 - 해당 pin을 입력(Input) 또는 출력(Output)으로 설정함
- digitalRead(pin)
 - 해당 pin으로부터 값을 읽어서 디지털 High or Low 값으로 반환함
- digitalWrite(pin, value)
 - 해당 pin에 High or Low를 디지털 출력함

6) 첫 번째 Arduino 프로그램

```
0 0
                          Blink | Arduino 1.0
  Blink
 Blink
 Turns on an LED on for one second, then off for one second, repeatedly.
 This example code is in the public domain.
void setup() {
 // initialize the digital pin as an output.
 // Pin 13 has an LED connected on most Arduino boards:
 pinMode(13, OUTPUT);
void loop() {
 digitalWrite(13, HIGH); // set the LED on
 delay(1000);
                          // wait for a second
 digitalWrite(13, LOW); // set the LED off
 delay(1000);
                          // wait for a second
                                     Arduino Uno on /dev/tty.usbmodemfd131
```


7) 스위치 바운스(Bounce) 현상 제거

♦ RC 적분회로와 적분회로 동작 전후의 파형 비교

노드 A에서의 전압변화 측정

Vs.

노드 B에서의 전압변화 측정

7) 스위치 바운스(Bounce) 현상 제거

❤ SW방법 - 스위치 바운스 현상 제거를 위한 SW 알고리즘

8) Arduino 아날로그(Analog) 입력(Input)

CD에 저장되어 있는 음악을 가정함

• 아날로그 신호가 디지털 미디어(CD)에 저장되어 있는 것

[샘플링 속도(Sample Rate)]

8) Arduino 아날로그(Analog) 입력(Input)

Resolution

입력 신호를 디지털화하는 서로 다른 전압 수준 (Voltage Level)의 수(States)

➡ Arduino(Arduino)에서 Resolution은 1,024개 상태를 가지며, 최대 가능한 샘플링 속도는 초당 10,000회임

1) 아날로그 출력

디지털 장치가 아날로그 신호를 출력하는 것이 가능할까?

디지털 장치에서 아날로그 출력은 펄스폭 모듈레이션(PWM)을 통하여 실현가능함

2) Pulse Width Modulation (PWM)

디지털 출력을 매우 빠른 속도로 On-Off함

On-Off 펄스 변화가 사람이 인지하기 어려운 속도로 매우 빠르게 변화함

100%, 75%, 50%, 25% 밝기를 표현할 수 있음

2) Pulse Width Modulation (PWM)

3) PWM Pins

Arduino 보드는 PWM 회로를 내장하고 있으며, pin 3, 5, 6, 9, 10, 11번 포트에서 사용 가능함

3) PMW Pins

- 명령어
 - analogWrite(pin,value)
- value 값은 듀티사이클(Duty Cycle) between 0 and 255
- 예 analogWrite(9, 128) (50% duty cycle일 때) analogWrite(11, 64) (25% Duty Cycle일 때)

시리얼(Serial)

데이터가 비트로 쪼개진 뒤, 각 비트가 한 번에 하나씩 단일회선(Single Wire)을 통해서 직렬로 이동함

에 Single ASCII 문자 'B'는 다음과 같이 전송될 수 있음

데이터를 보내기 위해서 핀을 토글(Toggle)하는 것은 LED를 깜박이는 것과 유사함

DigitalWrite() 함수와 delay() 함수를 사용하여 직렬데이터를 전송하는 기능을 구현할 수 있음

보내는 측과 받는 측 모두 단일 데이터 회선(Single Data Wire)만 필요함

컴파일(Compiling)

프로그램을 이진(Binary) 데이터로 바꾸는 것

업로딩(Uploading)

Arduino에 대해 USB 케이블을 통해 해당 비트들을 전송하는 것

- ➡ Arduino에서는 USB 케이블 근처에 있는 두 개의 LED 램프가 이러한 데이터 전송 상황에서 깜박이면서 송수신 상황을 나타냄
 - X Arduino가 데이터를 받을 때 깜박임

Arduino가 데이터를 보낼 때 깜박임

Arduino 개발환경에서 시리얼모니터 (Serial Monitor)를 클릭하고 프로그램 업로드 하기

```
00FC0M13
                                                  AnalogReadSerial
                                                                        Reads on analog imput on pin 0, prints the result to the serial a
                                                                        Attach the center pin of a potenticaeter to pin AC, and the outsi
                                                                        This example code is in the public Schain.
                                                                       // the setup routine must once when you press resets
                                                                        // initialize serial communication at 9600 bits per second:
                                                                        Serial, begin(9600);
                                                                       // the loop routine runs over and over again forever)
- Supposed
                           No line ending - 9600 boud
                                                                        // read the input on enalog pin 0:
                                                                        int sensorValue = smalagRead(AO);
                                                                        // print out the value you read:
                                                                        Serial printin (sensor Value) ;
                                                                      Binary sketch size: 2,596 bytes (of a 14,336 byte maximum)
                                                                                                Ardsine Discimils or Osemilanove of ATmagathic on COM12
```

Serial.begin()

Serial.begin (9600)

Serial.print() or Serial.println()

Serial.print(value)

Serial.read()

Serial.available()

Serial.write()

Serial.parseInt()

일부 Arduino 제품은 USB와 TTY 커넥터를 연결하기 위한 별도의 케이블을 필요로 하는 경우도 있음

