ESP32 IoT

Mode Fast Track

Modul Ini Merupakan Modul Sample Digunakan Untuk Pelatihan IoT Sederhana

(Oleh: Wahyu Firmansyah)

DAFTAR ISI

Basic ESP32	3
Pengenalan ESP32	3
Produk ESPRESSIF	3
Pin Out ESP32	3
Instalasi Varian ESP Arduino IDE	4
Telegram BOT	6
Pengenalan	6
Fungsi Telegram BOT	6
Pembuatan BOT	6
Protokol	7
Library	7
Program	8
Hasil Program	9
Blynk Platfrom	10
Pengenalan	10
Fungsi Blynk	10
Instalasi Blynk	10
Konfigurasi Blynk	11
Protokol	12
Library	12
Program	13
Hasil Program	14
HTTP	16
Pengenalan	16
Debugging	16
Program	17
Hasil Program	18

Basic ESP32

Pengenalan ESP32

ESP32 merupakan salah satu varian produk dari **Espressif System.**Produk ini sendiri adalah salah satu contoh tipe mikrokontroler yang dapat digunakan untuk belajar tentang perangkat IoT.

Produk ESPRESSIF

Berikut adalah macam macam product dan services dari Espressif System.

Pin Out ESP32

Menampilkan pin apa saja yang tersedia dalam ESP32.

ESP32 DEVKIT V1 – DOIT version with 36 GPIOs

Instalasi Varian ESP Arduino IDE

Cara instalasi varian ESP di Arduino IDE

https://dl.espressif.com/dl/package_esp32_index.json https://arduino.esp8266.com/stable/package_esp8266com_index.json

Setelah berhasil instalasi pada board ESP32 pada Arduino IDE klik **Tools > Board > ESP**. Pengecekan ini dilakukan apakah **Board ESP** sudah masuk dan terinstal tanpa error.

Telegram BOT

Pengenalan

Telegram merupakan salah satu contoh platform messaging yang dapat berjalan pada aplikasi smartphone maupun desktop. Aplikasi ini juga menyediakan Telegram BOT dan API BOT secara gratis dan mudah.

Fungsi Telegram BOT

Fungsi dari telegram bot sendiri biasanya untuk monitoring pada server, notifikasi urgent, callback, message broadcast dan lain lain.

Pembuatan BOT

Langkah selanjutnya kita akan membuat custom bot.

➤ Berikut adalah tutorial menggunakan BotFather untuk membuat BOT, setting nama BOT, mendapatkan API.

➤ Berikut adalah tutorial menggunakan **IDBot** untuk mendapatkan ID tujuan yang akan menerima pesan.

Setelah melalui tahap diatas kita otomatis sudah mendapatkan konfigurasi BOT yang sudah kita buat seperti:

- 1. Username BOT
- 2. Nama BOT
- **3.** Token API BOT [Catat Token]
- **4. ID Tujuan** [Catat ID Tujuan]

Protokol

Untuk komunikasinya sendiri **ESP32** mengambil dan menerima data menggunakan protokol **HTTP** dengan kombinasi **JSON** (Untuk Menerima Data)

Library

Untuk library kita menggunakan beberapa library dari kontributor open source.

Program

Berikut adalah program yang akan kita uji coba.

```
#include "CTBot.h"
#include "key.h"
CTBot myBot;
//Config-----
#define chatID your chatID
String msg = your msg;
String ssid = your ssid;
String pass = your pass;
String token = your_token;
void setup() {
 Serial.begin (115200);
 myBot.wifiConnect(ssid, pass); //WIFI CONECT
 myBot.setTelegramToken(token); //TOKEN SETT
 delay(100);
 if (myBot.testConnection()) {
   Serial.println("\nSIGNAL OK");
  }
 else {
   Serial.println("\nSIGNAL ERR");
  }
void loop() {
  //Sending BYWAHJOE 10 sec
 myBot.sendMessage(chatID, msg);
 delay(10000);
```

Hasil Program

Berikut adalah hasil dari program diatas.

Blynk Platfrom

Pengenalan

Blynk merupakan suatu platform pendukung IoT yang dapat digunakan pada smartphone. Melalui platform **Blynk** kita dapat membuat sejenis dashboard aplikasi mobile tanpa program yang rumit hanya dengan drag and drop.

Fungsi Blynk

Fungsi aplikasi Blynk ini biasanya digunakan untuk monitoring sensor pada device IoT, melakukan action tertentu.

Instalasi Blynk

Untuk instalasi dapat di download melalui google play store untuk android.

Source: https://github.com/bywahjoe/kelasIOT

Konfigurasi Blynk

Pada blynk terdapat banyak menu pilihan untuk drag & drop modul. Melalui panel yang telah tersedia, user dimanjakan dengan pilihannya. Namun semua modul yang telah dipilih terbatas oleh **energy.** Aplikasi blynk akan memberikan **token** untuk berkomunikasi dengan aplikasi mobile seperti mengirim data sensor.

Pada tahap ini kita telah mendapatkan token dan alamat pin virtual.

Protokol

Blynk mengunakan protokol campuran jaringan dasar seperti TCP/IP, UDP, Socket dll.

Library

Untuk library kita menggunakan beberapa library dari kontributor open source.

Program

Berikut adalah program yang akan kita uji coba.

```
#include <BlynkSimpleEsp32.h>
#include "key.h"
#define BLYNK PRINT Serial
//Config-----
const char* ssid = your ssid;
const char* pass = your pass;
const char* token = your_token;
BlynkTimer sendSensor;
void pushSensor() {
 //Push Sensor Virtual Pin 33, Random Value 20 - 39
 int sensor=random(20, 40);
 Blynk.virtualWrite(33, sensor);
void setup() {
 Serial.begin (115200);
 randomSeed(analogRead(0));
 //Blynk Config
 Blynk.begin(token, ssid, pass);
 sendSensor.setInterval(3000L, pushSensor);
}
void loop() {
 //Run Blynk
 Blynk.run();
 sendSensor.run();
```

Hasil Program

Berikut adalah hasil dari program diatas.

HTTP

Pengenalan

Protokol **HTTP** (Hypertext Transfer Protocol) merupakan standar protokol native yang banyak digunakan dalam pembuatan **API** (**Application Programming Interface**). Namun pada dasarnya menggunakan protokol **HTTP** ini membutuhkan waktu yang <u>lebih lama</u> dibandingkan **MQTT**, protokol **HTTP** sendiri masih kurang efektif untuk aplikasi IoT yang membutuhkan data realtime sangat cepat.

Debugging

Pemecahan masalah error pada protokol **HTTP** terkadang kita harus membaca **kode errornya**. Paling sering kita dengar adalah status error dengan kode **'404'** yang mempunyai keterangan bahwa situs/URL tidak valid (Not Found). Protokol bisa anda pelajari lebih lengkap disini : https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

Program

Berikut adalah program yang akan kita uji coba.

```
#include <WiFi.h>
#include "key.h"
#include <HTTPClient.h>
#define URLWEB "https://iot.bywahjoe.com/post.php"
//Config-----
const char* ssid = your ssid;
const char* pass = your pass;
String token = your token;
void setup() {
 Serial.begin (115200);
 randomSeed(analogRead(0));
 //Wifi Connect
 WiFi.begin(ssid, pass);
 while (WiFi.status() != WL CONNECTED) {
   delay(500);
   Serial.print(".");
  }
 //Cek Status
 Serial.println("");
 Serial.println("WiFi connected");
 Serial.println("IP address: ");
 Serial.println(WiFi.localIP());
void loop() {
 // put your main code here, to run repeatedly:
 pushWeb();
 delay(10000);
void pushWeb() {
 //Randomize Value Sensor
 int suhu = random(20, 40);
 int humid = random(50, 90);
 int lux = random(200, 4000);
 int gas = random(1, 15);
 int air = random(1, 15);
  //Casting
 String d1 = String(suhu);
 String d2 = String(humid);
 String d3 = String(lux);
 String d4 = String(gas);
 String d5 = String(air);;
```

```
//Process HTTP
  HTTPClient postWeb;
 postWeb.begin(URLWEB);
 postWeb.addHeader("Content-Type", "application/x-www-form-
urlencoded");
  String dataku = "apiKEY=" + token + "&d1=" + d1 + "&d2=" + d2 +
"\&d3=" + d3 + "\&d4=" + d4 + "\&d5=" + d5;
  Serial.println(dataku);
  int httpResponseCode = postWeb.POST(dataku);
      UNCOMENT TO CEK ERROR
  //
         if (httpResponseCode>0) {
  //
            Serial.print("HTTP Response code: ");
  //
            Serial.println(httpResponseCode);
  //
  //
          else {
  //
            Serial.print("Error code: ");
  //
            Serial.println(httpResponseCode);
  //
          }
  postWeb.end();
}
```

Hasil Program

Berikut adalah hasil dari program diatas.

Log Data : https://iot.bywahjoe.com/index_1.php

➤ Dashboard : https://iot.bywahjoe.com/

TERIMA KASIH SEMOGA BISA KETEMU KEMBALI PADA LAIN KESEMPATAN

*Bismillah Otw Skripsi ^_^