Inhalt Lineare Unabhängigkeit, Basis eines Vektorraumes, Dimension eines Vektorraumes, Anwendung auf lineare Gleichungssysteme

Sei V ein reeller Vektorraum.

1 Lineare Unabhängigkeit

Definition Endlich viele $v_1, \ldots, v_m \in V \ (m \in \mathbb{N})$ heißen *linear unabhängig*, falls für alle $a_1, \ldots, a_m \in \mathbb{R}$ gilt: Aus $\sum_{i=1}^m a_i v_i = 0$ folgt $a_1 = \ldots = a_m = 0$.

Eine Teilmenge M von V heißt $linear\ unabhängig$, falls M leer ist oder je endlich viele verschiedene Vektoren aus M linear unabhängig sind.

 $v_1, \ldots, v_m \in V$ heißen *linear abhängig*, wenn $v_1, \ldots, v_m \in V$ nicht linear unabhängig sind, d. h. es gibt $a_1, \ldots, a_m \in \mathbb{R}$, die nicht alle gleich Null sind, mit $\sum_{i=1}^m a_i v_i = 0$.

Lemma 1 $v_1, \ldots, v_m \in V$ sind genau dann linear abhängig, wenn ein $i \in \{1, \ldots, m\}$ existiert mit $v_i \in \text{Lin}(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_m)$.

Beweis: " \Rightarrow ": Sind v_1, \ldots, v_m linear abhängig, so existieren $a_1, \ldots, a_m \in \mathbb{R}$ und ein i mit $a_i \neq 0$ und $\sum_{j=1}^m a_j v_j = 0$. Dann ist $v_i = -a_i^{-1} \sum_{j \neq i} a_j v_j \in \text{Lin}(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_m)$. " \Leftarrow ": Aus $v_i = \sum_{j \neq i} a_j v_j$ folgt $\sum_{j \neq i} a_j v_j + (-1)v_i = 0$, also sind v_1, \ldots, v_m linear abhängig.

2 Basis eines Vektorraumes

Definition Eine Teilmenge B von V heißt Basis von V, falls B linear unabhängig und ein Erzeugendensystem von V ist (also B linear unabhängig und V = Lin(B)).

Für paarweise verschiedene $v_1, \ldots, v_n \in V$ gilt: $\{v_1, \ldots, v_n\}$ ist genau dann eine Basis von V, wenn jedes $v \in V$ eindeutig als Linearkombination der v_1, \ldots, v_n darstellbar ist.

Z. B. bilden die Einheitsvektoren
$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$
 eine Basis des \mathbb{R}^n .

Lemma 2 Sei E ein Erzeugendensystem von V und B eine linear unabhängige Teilmenge von V mit $B \subseteq E$. Jede Menge B' mit $B \subsetneq B' \subseteq E$ sei linear abhängig. Dann ist B eine Basis von V.

Beweis: Zu zeigen ist V = Lin(B). Wegen V = Lin(E) genügt es, $E \subset \text{Lin}(B)$ zu zeigen. Sei $v \in E$. Für $v \in B$ ist $v \in \text{Lin}(B)$ trivial. Sei also $v \notin B$. Nach Voraussetzung ist dann $B' := B \cup \{v\}$ linear abhängig, also gibt es $v_1, \ldots, v_m \in B$ und $a_1, \ldots, a_m, a \in \mathbb{R}$, die nicht alle Null sind, mit $\sum_{i=1}^m a_i v_i + av = 0$. Dann ist $a \neq 0$ (sonst wären $v_1, \ldots, v_m \in B$ linear abhängig). Also ist $v = -a^{-1} \sum_{i=1}^m a_i v_i \in \text{Lin}(B)$.

Satz 1 (Basissatz) V sei endlich erzeugt. Dann gilt:

a) Sind $M \subset V$ linear unabhängig und E ein Erzeugendensystem von V mit $M \subset E$, so existiert eine Basis B von V mit $M \subset B \subset E$.

Insbesondere (für $M = \emptyset$, E = V) folgt: V besitzt eine Basis.

- b) Jede Basis von V ist endlich.
- c) Je zwei beliebige Basen von V haben gleichviele Elemente.

Der Beweis des Basissatzes beruht auf folgender Aussage:

Lemma 3 (Fundamentallemma) Sei E ein endliches Erzeugendensystem von V. Dann hat jede linear unabhängige Teilmenge M von V höchstens |E| Elemente.

Beweis des Basissatzes (Satz 1) mit Hilfe des Fundamentallemmas (Lemma 3):

- a) V werde von m_0 Elementen erzeugt. Nach dem Fundamentallemma hat dann jede linear unabhängige Teilmenge von V höchstens m_0 Elemente. Sei B mit $M \subset B \subset E$ eine linear unabhängige Teilmenge mit maximaler Elementezahl. Dann ist jedes B' mit $B \subsetneq B' \subset E$ linear abhängig. Nach Lemma 2 ist B dann eine Basis von V.
- b) Jede Basis von V ist linear unabhängig, hat also (nach Lemma 3) höchstens m_0 Elemente.
- c) Seien B, B' Basen von V mit n bzw. n' Elementen. Dann wird V von n Elementen erzeugt. Nach Lemma 3 folgt $n' \le n$. Analog folgt $n \le n'$, also n = n'.

3 Die Dimension eines Vektorraumes

Definition Sei V endlich erzeugt. Nach dem Basissatz (Satz 1) besitzt V eine Basis, und die Anzahl der Elemente einer Basis hängt nicht von der gewählten Basis ab. Diese Anzahl heißt die Dimension von V, geschrieben dim V.

Ist V nicht endlich erzeugt, so setzt man dim $V := \infty$.

Beispiel dim $\mathbb{R}^n = n$.

Satz 2 Sei V endlich-dimensional und U ein Untervektorraum von V. Dann gilt:

- a) U ist endlich-dimensional mit dim $U \leq \dim V$.
- b) $\dim U = \dim V$ genau dann, wenn U = V.

4 Anwendung auf lineare Gleichungssysteme

Sei V ein endlich-dimensionaler reeller Vektorraum.

Definition Für $M \subset V$ heißt rang $M := \dim \text{Lin}(M) \det Rang \text{ von } M$.

Satz 3 (Rangkriterium für lineare Gleichungssysteme)

Sei G $\sum_{j=1}^{n} x_j v_j = w$ ein lineares Gleichungssystem mit m Gleichungen in n Unbekannten (also $v_1, \ldots, v_n, w \in \mathbb{R}^m$). Dann sind äquivalent:

(:) *O* :-4 1::-1 ---

- (i) G ist lösbar.
- (ii) $w \in \operatorname{Lin}(v_1, \dots, v_n)$.
- (iii) rang $\{v_1, \dots, v_n, w\} = \text{rang}\{v_1, \dots, v_n\}$.

Beweis: G ist lösbar \iff Es gibt $x_1, \ldots, x_n \in \mathbb{R}$ mit $w = \sum_{j=1}^n x_j v_j \iff w \in \text{Lin}(v_1, \ldots, v_n)$.

Damit ist (i) äquivalent zu (ii).

- (ii) \Rightarrow (iii): Ist $w \in \text{Lin}(v_1, \dots, v_n)$, so ist $\text{Lin}(v_1, \dots, v_n, w) = \text{Lin}(v_1, \dots, v_n)$, also rang $\{v_1, \dots, v_n, w\} = \text{rang}\{v_1, \dots, v_n\}$.
- (iii) \Rightarrow (ii): Aus rang $\{v_1, \ldots, v_n, w\} = \text{rang}\{v_1, \ldots, v_n\}$ folgt nach Aussage b) von Satz 2 $\text{Lin}(v_1, \ldots, v_n, w) = \text{Lin}(v_1, \ldots, v_n)$, insbesondere $w \in \text{Lin}(v_1, \ldots, v_n)$.