ASSIGNMENT # 1

MATH 661, DIFFERENTIAL GEOMETRY

- (1) Let $f: M \to B$ be a submersion and g a metric on M such that the fibers are constant distance apart, i.e., $d(x, F_q)$ is independent of $x \in F_p$ for all $p, q \in B$. Show that there exists a metric on B such that f is a Riemannian submersion. Conversely, show that for every Riemannian submersion the fibers are constant distance apart.
- (2) Determine the full isometry group of \mathbb{CP}^n with its Fubini Study metric obtained from the Riemannian submersion $\mathbb{S}^{2n+1}(1) \to \mathbb{CP}^n$.
- (3) Determine all totally geodesic submanifolds of \mathbb{CP}^n with its Fubini Study metric.
- (4) Show that multiplication by *i* defines a complex structure J on \mathbb{CP}^n . Show that $\nabla J = 0$, i.e. if V is parallel along a curve, then JV is parallel as well.
- (5) Develop the geometry of \mathbb{HP}^n as the base of the Riemannian submersion $\mathbb{S}^{4n+1}(1) \to \mathbb{HP}^n$. Show that the sectional curvature again lies between 1 and 4 and that \mathbb{HP}^1 is isometric to $\mathbb{S}^4(\frac{1}{2})$.
- (6) Show that \mathbb{CP}^n and \mathbb{HP}^n are Einstein metrics.