

AD-A090 321

NAVAL RESEARCH LAB WASHINGTON DC
THREE DIMENSIONAL NON-LINEAR THEORY OF THE FREE ELECTRON LASER. (U)
SEP 80 P SPRANGLE, C TANG
NRL-MR-4280

F/6 20/5

UNCLASSIFIED

NL

| L ca |
AD
A090321

END
DATE FILMED
11 80
DTIC

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NRL Memorandum Report 4280	2. GOVT ACCESSION NO. 4D-A090 321 14 11. 11 -	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) THREE DIMENSIONAL NON-LINEAR THEORY OF THE FREE ELECTRON LASER	5. TYPE OF REPORT & PERIOD COVERED Interim report on a continuing NRL problem.	
7. AUTHOR(s) P. Sprangle ■ Cha-Mei Tang*	8. CONTRACT OR GRANT NUMBER(s)	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Research Laboratory Washington, D.C. 20375	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 62301E; 67-0867-0-0; N60921-80-WR-W0190	
11. CONTROLLING OFFICE NAME AND ADDRESS Defense Advanced Research Projects Agency Arlington, Virginia 22209	12. REPORT DATE Sept 1980 / 11 / 80	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES 19	
16. DISTRIBUTION STATEMENT (of this Report)	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
18. SUPPLEMENTARY NOTES *Present address: JAYCOR, Alexandria, Virginia 22304		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Free electron laser 3-Dimensional non-linear theory		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This paper deals primarily with 3-D effects and efficiency enhancement methods in a steady state FEL amplifier configuration. We treat finite transverse dimension effects associated with i) the wiggler field, ii) electron beam and iii) radiation beam. Our formulation includes efficiency enhancement schemes such as spatially contouring the wiggler field as well as accelerating the electron beam. Finally, a 3-D example of a 10.6 μ FEL with enhanced efficiency is given.		

CONTENTS

Three Dimensional Non-Linear Theory of the Free Electron Laser.....	1
References.....	8

Accession For	
NTIS Serial	<input checked="" type="checkbox"/>
DOC TAB	<input type="checkbox"/>
Unnumbered	<input type="checkbox"/>
Justification	<input type="checkbox"/>
By _____	
For _____	
Number of Copies	
Microfilm and/or	
Digitized Material	
A	

THREE DIMENSIONAL NON-LINEAR THEORY OF THE FREE ELECTRON LASER

Numerous publications have treated the 1-D Free Electron Laser (FEL) mechanism.⁽¹⁻¹⁰⁾ As of the writing of this paper, 3-D effects in the FEL have received little attention.⁽¹¹⁾ It is the purpose of this paper to present a general non-linear 3-D formulation of the steady state FEL amplifier configuration including the various efficiency improvement schemes.

When a cold, axially propagating electron beam enters a physically real wiggler field, a shear in the axial electron velocity results.⁽¹²⁾ The axial velocity shear across the electron beam is equivalent to a beam temperature, which if large would significantly reduce the fraction of electrons trapped in the ponderomotive buckets.

The radiation beam, which experiences both diffraction as well as refraction, can be represented as the superposition of the input field and excited field. In the absence of a detailed 3-D analysis, it could be argued that these two fields could destructively interfere on axis. This would result in a decrease in the depth of the ponderomotive potential buckets and could cause detrapping of the electrons. The results of our analysis, however, indicate that destructive interference does not take place. A number of efficiency enhancement schemes for the FEL have been identified.^(7,9,10) These include: i) contouring, spatially, the amplitude and/or wavelength of the magnetic wiggler field, ii) accelerating the electron beam by applying an external D.C. accelerating electric field. Our formulation will include and show the equivalence of the above enhancement schemes.

A generalized pendulum like equation for the phase of the particles is obtained. The wiggler field has transverse spatial gradients as well as an amplitude and wavelength which are arbitrary functions of axial position. The infinitely long highly relativistic electron beam is assumed to

be initially cold and tenuous enough so that space charge effects can be neglected. The inclusion of beam temperature and space charge are straightforward and have been included in 1-D formalisms.^(7,9) The evolution of the radiation field governed by the particle dynamics is determined as a function of x, y, z .

Then, simplifying assumptions are made which result in an analytic expression for the field on axis. Finally, the field off axis is numerically evaluated and applied to specific examples.

The generalized linearly polarized wiggler and radiation field are represented by the following vector potentials

$$\tilde{A}_w(y, z) = A_w(z) \cosh(k_w(z)y) \cos(\int_0^z k_w(z') dz') \hat{e}_x \quad (1a)$$

$$\tilde{A}_R(x, y, z, t) = A(x, y, z) \sin(\frac{\omega}{c} - \omega t + \varphi(x, y, z)) \hat{e}_x \quad (1b)$$

where $A_w(z)$ and $k_w(z) = 2\pi/\lambda_w(z)$ are the slowly varying amplitude and wave-number of the wiggler field, λ_w is the wiggler wavelength and A and φ are the slowly varying amplitude and phase of the total radiation field. We also include an external accelerating D.C. electric field $E_{ac}(z) = -\partial\phi_{ac}(z)/\partial z \hat{e}_z$. The equation (in Lagrangian independent variables) which describes the relative phase between the electrons and the ponderomotive wave

can be shown to be governed by

$$\frac{d^2\tilde{\psi}}{dz^2} = \frac{d^2\varphi}{dz^2} + \frac{\partial k_w}{\partial z} + \frac{|e|\omega/c}{\tilde{\gamma}_z^2 m_o c^2} \frac{\partial \phi_{ac}}{\partial z} - \frac{|e|^2 \omega/c}{2\tilde{\gamma}_m^2 m_o^2 c^4} \left[\frac{\partial}{\partial z} (A_w \cosh(k_w \tilde{y}) \cos \int_0^z k_w dz')^2 \right. \\ \left. + 2k_w A_w \cosh(k_w \tilde{y}) A(\tilde{x}, \tilde{y}, z) \cos \tilde{\psi} \right] \quad (2)$$

where $\tilde{\psi} = \tilde{\psi}(z, t_o, x_o, y_o) = \int_0^z (\omega/c + k_w(z')) dz' - \omega t + \varphi(x, y, z)$ is the phase,

$\tilde{t} = t_o + \int_0^z dz' \tilde{V}_z$, $\tilde{\gamma} = \tilde{\gamma}_z \gamma_{0\perp}$, $\tilde{\gamma}_z = (1 - \tilde{V}_z^2/c^2)^{-1/2}$,
 $\gamma_{0\perp} = (1 + (|e|\tilde{A}_w(z)/(m_o c^2))^2)^{1/2}$, $\tilde{V}_z = \omega/(\omega/c + k_w(z) - d\tilde{\gamma}/dz + d\varphi/dz)$ is the
 electron axial velocity, $\tilde{x} \approx x_o + \beta_{0\perp} k_w^{-1} \sin \int_0^z k_w dz'$ and $\tilde{y} \approx y_o \cos K_o z$ are
 the zeroth order transverse electron coordinates, $\beta_{0\perp} = v_{0\perp}/c$,
 $v_{0\perp} = |e|\tilde{A}_w/(Y_o m_o c)$ is the wiggle velocity, $Y_o = (1 - v_o^2/c^2)^{-1/2}$, v_o is the
 magnitude of the total particle velocity and $K_o = \beta_{0\perp} k_w / 2$. The Lagrangian
 independent variables t_o, x_o, y_o are the time and transverse coordinates of a par-
 ticle at the entrance to the interaction region, i.e. $z = 0$. In obtaining
 (2) we have used the fact that $\omega \approx \tilde{\gamma}_z^2 (1 + \tilde{V}_z/c) ck_w$, the x component of elec-
 tron momentum is $\approx (|e|/c) (\tilde{A}_w(\tilde{y}, z) + \tilde{A}_R(\tilde{x}, \tilde{y}, z, \tilde{t})) \hat{e}_x$, $|\tilde{A}_w| \gg |\tilde{A}_R|$ and
 $V_z \approx v_o \approx c$. Equation (2) clearly shows the relationship between the various
 efficiency enhancement schemes. In the equation for the phase $\tilde{\gamma}$, containing
 the wiggler wavelength or amplitude, i.e., $\partial k_w/\partial z$ or $\partial A_w^2/\partial z$ is equivalent to
 introducing an accelerating field, i.e. $\partial \phi_{ac}/\partial z$.

The axial velocity shear, due to the wiggler gradient is given by $\Delta V_{shear} = c(\beta_{0\perp} k_w y_o/2)^2$, while the energy shear is $\Delta E_{shear} = Y_o^3 (\Delta V_{shear}/c) m_o c^2$. The
 initial depth of the trapping potential is $|e|\phi_{trap} = 2\sqrt{2} Y_o \gamma_{0z} \beta_{0\perp} (A/A_w)^{1/2} m_o c^2$.

In order to trap a substantial fraction of the electrons we require

$\Delta E_{shear} < |e|\phi_{trap}$, this places a limit on the electron beam radius given by

$$r_b < (\gamma_0 k_w)^{-1} \left(\frac{8\sqrt{2} \gamma_{0z}}{\beta_{0\perp}} \right)^{1/2} \left(\frac{A}{A_w} \right)^{1/4}. \quad (3)$$

An axially symmetric electron beam injected into the wiggler field in (1a)
 experiences a periodic focusing in the y-direction. The focusing wavelength
 along z is $2\pi K_o^{-1} \gg l_w$. A comment is in order concerning the neglect of
 space charge waves. It can be shown that the ponderomotive term in (2) (term
 proportional to $A_w A$) will dominate the space charge term if the beam density
 satisfies

$$n_o \ll (k_w^2 \gamma_{zo}^{-4} A_w A) (2\pi \gamma_o m_o c^2)^{-1} \quad (4)$$

The radiation field satisfies the wave equation $(\nabla^2 - c^{-2} \partial^2 / \partial t^2) \tilde{A}_R = -4\pi e^{-1} \omega_x \hat{e}_x$ where the current density is given by

$$J_x(x, y, z, t) = -\frac{\omega_b^2}{4\pi c} \int_{-\infty}^{\infty} dt_o \int_{-\infty}^{\infty} dx_o \int_{-\infty}^{\infty} dy_o \theta(x_o, y_o) \delta(x - \tilde{x}) \delta(y - \tilde{y}) \delta(t - \tilde{t}) \frac{A_w(\tilde{y}, z)}{\tilde{\gamma}} \quad (5)$$

where $\omega_b = (4\pi |e|^2 n_o / m_o)^{1/2}$, n_o is the density on axis outside of the interaction region, and $\theta(x_o, y_o)$ is a function which describes the initial electron beam profile. The integrations in (5) are over all initial entrance times and transverse coordinates. The radiation field in (1b) can be represented in the form $\tilde{A}_R(x, y, z, t) = (2i)^{-1} a(x, y, z) \exp i(\omega z/c - \omega t) \hat{e}_x + c.c.$ where $a = A \exp(i\varphi)$ is the complex field amplitude which is a slowly varying function of z . Substituting (5) into the wave equation yields an equation for $a(x, y, z)$ which can readily be solved using Fourier transform techniques. We find that $a = a_1 + a_2$ where a_1 is the homogeneous solution (input field) given by

$a_1(x, y, z) = \frac{1}{c} \int_{-\infty}^{\infty} \bar{a}(k_x, k_y, 0) \exp(i(k_x x + k_y y - \frac{k_z^2}{2\omega/c})) dk_x dk_y$ where
 $k^2 = k_x^2 + k_y^2$ and $\bar{a}(k_x, k_y, 0) = \iint_{-\infty}^{\infty} a(x, y, 0) \exp(-i(k_x x + k_y y)) dx dy$. At $z = 0$ the only field is the input signal. The expression for a_1 can be shown to give the well known Gaussian radiation beam modes. The particular solution (excited field) is

$$a_2(x, y, z) = -\frac{i}{4\pi} \frac{\omega_b^2}{c^2} \int_0^z dz' \int_0^{2\pi/\omega} \frac{dt}{2\pi/\omega} \int_{-\infty}^{\infty} dx_o \int_{-\infty}^{\infty} dy_o \theta(x_o, y_o) \frac{A_w}{\tilde{\gamma}'} \cosh(k_w \tilde{y}') \frac{i((x - \tilde{x}')^2 + (y - \tilde{y}')^2)}{2(z - z')} \frac{\omega/c}{z - z'} e^{-i(\tilde{\psi}' - \varphi')} \quad (6)$$

where primes on quantities denote that they are functions of z' . The

expression for the excited field in (6) completes the formal part of our analysis. Equations (2) and (6) describe self-consistently the non-linear 3-D steady state FEL amplifier configuration.

Considering the case where $k_w y_o \ll 1$, \tilde{x} and \tilde{y} can be replaced by x_o and y_o in (6). Assuming a low gain situation, i.e. $|a_1| > |a_2|$, and a plane wave form for the input field, we can take the phase $\tilde{\psi}(z, t_o, x_o, y_o)$ to be very nearly only a function of z and t_o . Choosing a Gaussian electron beam profile, i.e. $\theta(x_o, y_o) = \exp(-(x_o^2 + y_o^2)/r_b^2)$, (6) reduces to

$$a_2(r, z) = -\frac{i}{4} \frac{\omega_b^2/c^2}{\gamma_o} r_b^2 \int_0^{2\pi/\omega} dt \int_0^z dz' A_w(z') e^{i\phi(r, z')} \left(\frac{z-z'+iz_o}{(z-z')^2+z_o^2} \right) \exp -i \left(\tilde{\psi}(z', t_o) - z_o \left(\frac{z-z'+iz_o}{(z-z')^2+z_o^2} \right) \frac{r^2}{r_b^2} \right) \quad (7)$$

where $z_o = r_b \omega/2c$ is the effective Rayleigh length associated with the excited radiation. The 1-D limit of (7) is obtained by letting z_o or r_b approach ∞ . We will limit ourselves at this point to a constant parameter wiggler and consider only an external accelerating potential. Furthermore, we will make the constant phase resonant particle approximation. In this approximation all particles are assumed to have the same constant phase, $\tilde{\psi}_R$. To obtain the total radiation field we first evaluate $a_2(r, z)$ under the assumption that $|\phi| \ll 1$ (this will be shown to be valid). Taking a plane wave input field of amplitude A_{in} , the amplitude and phase of the total field, on axis, becomes

$$A(r=0, z) = A_{in} + a_o^2 A_w \left[\tan^{-1} \left(\frac{z}{z_o} \right) \cos \tilde{\psi}_R - 2n \left(\frac{z^2+z_o^2}{z_o^2} \right)^{1/2} \sin \tilde{\psi}_R \right] \quad (8a)$$

$$\varphi(r=0, z) = -\alpha_0^2 (A_w/A) \left[\tan^{-1} \left(\frac{z}{z_0} \right) \sin \tilde{\gamma}_R + \ln \left(\frac{z^2 + z_0^2}{z_0^2} \right)^{1/2} \cos \tilde{\gamma}_P \right] \quad (8b)$$

where $\alpha_0 = \omega_b r_b / 2c / \gamma_0$ and $\tilde{\gamma}_R$ is obtained from the stationary solution of (2).

As an example of a $10.6 \mu\text{m}$ FEL utilizing a high power CO_2 laser beam as an input field we choose an electron beam energy of 25 MeV ($\gamma_0 = 50$), beam current of $I = 5 \text{ A}$ and beam radius (Gaussian profile) of $r_0 = 0.5 \text{ mm}$. Such a beam has a peak density on axis of $n_0 = 1.3 \times 10^{11} \text{ cm}^{-3}$ ($\omega_b = 2.0 \times 10^{10} \text{ sec}^{-1}$). The constant parameter wiggler is taken to have a magnitude of $k_w = 5.0 \text{ kG}$ and wavelength of $\lambda_w = 2.8 \text{ cm}$ which gives $A_w = 7.0 \times 10^3 \text{ statvolt}$. The wiggle velocity is $v_{01} = 2.6 \times 10^7 \text{ cm/sec}$ and the input field power density is taken to be $P_{in} = 4 \times 10^6 \text{ W/cm}^2$ which gives $A_{in} = 0.30 \text{ statvolt}$. Note that the inequalities in (3) and (4) are well satisfied.

Our first numerical illustration is one in which the accelerating potential is zero, the stationary phase is, therefore, $\tilde{\gamma}_R = -\pi/2$. The particle energy remains constant and the total radiation amplitude and phase on axis is given by (8a, b). To obtain the radial dependence of the radiation amplitude and phase, (7) is solved numerically and the results are shown in Figs. (1) and (2).

The index of refraction, in this case, is greater than unity, $n = 1 + (c/\omega) \partial \varphi / \partial z > 1$. The input field, therefore, tends to focus along the axis and tends to defocus the electron beam. The net radiation energy flux along the z axis (integrated from $r = 0$ to $r = \infty$) is constant since for large r the radiation amplitude is less than the input field amplitude. The gain in the radiation amplitude at $z = 4 \text{ m}$ is maximum on axis and is 0.17. The maximum value of φ is along the z axis and is approximately 0.067 rad which certainly satisfies our small phase approximation.

Our next illustration is one involving efficiency enhancement. An accelerating potential $\phi_{ac}(z)$ is chosen such that $\cos \tilde{\Psi}_R = 0.3$. The gain in radiation amplitude on axis at $z = 4m$ is 0.185, see Fig. 1. Since the energy gained in propagating the electron beam through the potential ϕ_{ac} is converted into radiation, the efficiency can be defined as

$$\eta = |e| (\phi_{ac}(z) - \phi_{ac}(0)) / \gamma_0 m_e c^2 = - \left(\frac{|e|}{m_e c^2} \right)^2 \frac{\omega/c}{2\gamma_0^2} \int_0^z A_w A(r=0, z') \cos \tilde{\Psi}_R dz'.$$

The efficiency at the end of $z = 4m$ is $\sim 3.6\%$. Figure (2) shows the phase φ as a function of z . Notice that the index of refraction $n = 1 + (c/\omega) \partial \varphi / \partial z$ for large z is less than unity on axis (defocusing of radiation) and becomes greater than unity for large r (focusing of radiation). Equations (8a,b) are in excellent agreement with the above numerical illustrations for $r = 0$.

The authors appreciate useful discussions with I. B. Bernstein and W. M. Manheimer. The authors would also like to acknowledge support for this work by DARPA under Contract No. 3817.

References

1. J.M.J. Madey, *J. Appl. Phys.* 42, 1906 (1971).
2. P. Sprangle and V. L. Granatstein, *Appl. Phys. Lett.* 25, 377 (1974).
3. W. B. Colson, *Phys. Lett. A*, 59, 187 (1976).
4. P. Sprangle, R. A. Smith and V. L. Granatstein, NRL Report No. 3911 (1978) and Infrared and Millimeter Waves, Edited by K. Button (Academic Press, New York, 1979), Vol. 1.
5. N. M. Kroll and W. A. McMullin, *Phys. Rev. A* 17, 500 (1978).
6. P. Sprangle and A. T. Drobot, *J. Appl. Phys.* 50, 2652 (1979).
7. P. Sprangle, Cha-Mei Tang and W. M. Manheimer, *Phys. Rev. Lett.* 43, 1980 (1979) and *Phys. Rev. A* 21, 302 (1980).
8. P. Sprangle and R. A. Smith, NRL Report No. 4033 (1979) and *Phys. Rev. A* 21, 293 (1980).
9. Free-Electron Generators of Coherent Radiation, *Physics of Quantum Electronics*, Vol. 7, (1980), Edited by S. F. Jacobs, H. S. Pilhoff, M. Sargent III, M. O. Scully and R. Spitzer, Addison-Wesley Publishing Co.
10. N. M. Kroll, P. Morton and M. N. Rosenbluth, JASON Tech. Report JSR-79-15, 1980.
11. 3-D effects in the FEL have been discussed by i) J. Slater, DARPA FEL Review, Arlington, Va., Dec. 3-4, 1979, ii) P. Sprangle and Cha-Mei Tang, DARPA/CNR/AFOSR FEL Program Review, LASL, April 24-25, 1980, and iii) Y. P. Ho, Y. C. Lee and M. N. Rosenbluth, Sherwood Meeting, Tucson, Arizona, April 23-25, 1980.
12. The velocity shear can in principle be reduced if the electron beam distribution is injected into the wiggler with an appropriate initial velocity shear.

Fig. 1 — Normalized radiation amplitude, A/A_{IN} , as a function of z at various radial positions (solid curves for $\tilde{\Psi}_R = -\pi/2$ and dashed curves for $\tilde{\Psi}_R = -1.27$).

Fig. 2 — Radiation phase, ψ , as a function of z at various radial positions (solid curves for $\tilde{\psi}_R = -\pi/2$ and dashed curves for $\tilde{\psi}_R = -1.27$).

DISTRIBUTION LIST*

Naval Research Laboratory
4555 Overlook Avenue, S.W.
Washington, D.C. 20375

Attn: Code 1000 - CAPT E. E. Henifin
1001 - Dr. A. Berman
4700 - Dr. T. Coffey (25 copies)
4701 - Mr. J. Brown
4740 - Dr. V. L. Granatstein (20 copies)
4740 - Dr. R. K. Parker (20 copies)
4740 - Dr. K. R. Chu
4740 - Dr. C. W. Roberson
4790 - Dr. P. Sprengle (100 copies)
4790 - Dr. M. Lampe
4790 - Dr. W. M. Manheimer
6603S- Dr. W. W. Zachary
6650 - Dr. L. Cohen
6656 - Dr. N. Seeman
6850 - Dr. L. R. Whicker
6805 - Dr. S. Y. Ahn
6875 - Dr. R. Wagner

On Site Contractors:

Code 4740 - Dr. L. Barnett (B-K Dynamics)
4740 - Dr. D. Dialetis (SAI)
4740 - Dr. Y. Y. Lau (SAI)
4790 - Dr. A. T. Drobot (SAI)
4790 - Dr. C. M. Tang (JAYCOR) (50 copies)
4790 - Dr. J. Vomvoridis (JAYCOR)
4790 - Dr. H. Freund (SAI)

* Every name listed on distribution gets one copy except for those where extra copies are noted.

Dr. Tony Armstrong
SAI, Inc.
P. O. Box 2351
La Jolla, CA 92038

Dr. Fred Bureskirk
Physics Department
Naval Postgraduate School
Monterey, CA 93940

Dr. Robert Behringer
ONR
1050 E. Green
Pasadena, CA 91106

Dr. K. J. Button
Massachusetts Institute of Technology
Francis Bitter National Magnet Laboratory
Cambridge, MA 02139

Dr. G. Bekefi (5 copies)
Massachusetts Institute of Technology
Bldg. 26
Cambridge, MA 02139

Dr. Gregory Canavan
Director, Office of Inertial Fusion
U. S. Department of Energy
M.S. C404
Washington, D.C. 20545

Dr. Arden Bement (2 copies)
Deputy Under Secretary of
Defense for R&AT
Room RE114, The Pentagon
Washington, D.C. 20301

Dr. C. D. Cantrell
T-DOT, MS210
Los Alamos Scientific Laboratory
Los Alamos, NM 87545

MAJ Rettig P. Benedict, USAF
DARPA/STO
1400 Wilson Boulevard
Arlington, VA 22209

Dr. Maria Caponi
TRW, Building R-1, Room 1070
One Space Park
Redondo Beach, CA 90278

Dr. T. Berlincourt
Code 420
Office of Naval Research
Arlington, VA 22217

Dr. J. Cary
Los Alamos Scientific Laboratory
MS 608
Los Alamos, NM 87545

Dr. I. B. Bernstein (2 copies)
Yale University
Mason Laboratory
400 Temple Street
New Haven, CT 06520

Dr. Weng Chow
Optical Sciences Center
University of Arizona
Tucson, AZ 85721

Dr. Charles Brau (2 copies)
Applied Photochemistry Division
Los Alamos Scientific Laboratory
P. O. Box 1663, M.S. - 817
Los Alamos, NM 87545

Dr. Peter Clark
TRW, Building R-1, Room 1096
One Space Park
Redondo Beach, CA 90278

Dr. R. Briggs (L-71)
Lawrence Livermore Laboratory
P. O. Box 808
Livermore, CA 94550

Dr. Robert Clark
P. O. Box 1925
Washington, D.C. 20013

Dr. William Colson
Quantum Institute
Univ. of California at Santa Barbara
Santa Barbara, CA 93106

Dr. William Condell
Code 421
Office of Naval Research
Arlington, VA 22217

Dr. Richard Cooper
Los Alamos Scientific Laboratory
P. O. Box 1663
Los Alamos, NM 87545

Cmdr. Robert Cronin
NFOIO Detachment, Suitland
4301 Suitland Road
Washington, D.C. 20390

Dr. R. Davidson (5 copies)
Plasma Fusion Center
Massachusetts Institute of Technology
Cambridge, MA 02139

Dr. John Dawson (2 copies)
Physics Department
University of California
Los Angeles, CA 90024

Dr. David Deacon
Physics Department
Stanford University
Stanford, CA 94305

Defense Technical Information Center
(12 copies)
Cameron Station
5010 Duke Street
Alexandria, VA 22313

Dr. Francesco De Martini
Instituto de Fisica
"G. Marconi" Univ.
Piazzo delle Science, 5
ROMA00185 ITALY

Prof. P. Diament
Columbia University
Dept. of Electrical Engineering
New York, NY 10027

Prof. H. J. Doucet (5 copies)
Ecole Polytechnique
91128 Palaiseau
Paris, France

Dr. John Elgin (2 copies)
Imperial College
Dept. of Physics (Optics)
London SWF, England

Dr. Luis R. Elias (2 copies)
Quantum Institute
University of California
Santa Barbara, CA 93106

Dr. David D. Elliott
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

Dr. Jim Elliot (2 copies)
X-Division, M.S. 531
Los Alamos Scientific Laboratory
Los Alamos, NM 87545

Director (2 copies)
National Security Agency
Fort Meade, MD 20755
ATTN: Mr. Richard Foss, A42

Dr. Robert Fossum, Director (2 copies)
DARPA
1400 Wilson Boulevard
Arlington, VA 22209

Dr. Edward A. Frieman
Director, Office of Energy Research
U. S. Department of Energy
M.S. 6E084
Washington, D.C. 20585

Dr. George Gamota (3 copies)
OUSDRE (R&AT)
Room 3D1067, The Pentagon
Washington, D.C. 20301

Dr. Richard L. Garwin
IBM, T. J. Watson Research Center
P. O. Box 218
Yorktown Heights, NY 10598

Dr. Edward T. Gerry, President
W. J. Schafer Associates, Inc.
1901 N. Fort Myer Drive
Arlington, VA 22209

Dr. Avraham Gover
Tel Aviv University
Fac. of Engineering
Tel Aviv, ISRAEL

Dr. Benjamin Huberman
Associate Director, OSTP
Room 476, Old Executive Office Bldg.
Washington, D.C. 20506

Mr. Donald L. Haas, Director
DARPA/STO
1400 Wilson Boulevard
Arlington, VA 22209

Dr. S. F. Jacobs
Optical Sciences Center
University of Arizona
Tucson, AZ 85721

Dr. P. Hammerling
La Jolla Institute
P. O. Box 1434
La Jolla, CA 92038

Mr. Eugene Kopf
Principal Deputy Assistant
Secretary of the Air Force (RD&L)
Room 4E964, The Pentagon
Washington, D.C. 20330

Director
National Security Agency
Fort Meade, MD 20755
ATTN: Mr. Thomas Handel, A243

Prof. N. M. Kroll
La Jolla Institutes
P. O. Box 1434
La Jolla, CA 92038

Dr. William Happer
560 Riverside Drive
New York City, NY 10027

Dr. Tom Kuper
Optical Sciences Center
University of Arizona
Tucson, AZ 85721

Dr. Robert J. Hermann
Assistant Secretary of the
Air Force (RD&L)
Room 4E856, The Pentagon
Washington, D.C. 20330

Dr. Thomas Kwan
Los Alamos Scientific Lab
MS608
Los Alamos, NM 87545

Dr. Rod Hiddleston
KMS Fusion
Ann Arbor, MI 48106

Dr. Willis Lamb
Optical Sciences Center
University of Arizona
Tucson, AZ 85721

Dr. J. L. Hirshfield (2 copies)
Yale University
Mason Laboratory
400 Temple Street
New Haven, CT 06520

Mr. Mike Lavan
BMDATC-O
ATTN: ATC-O
P. O. Box 1500
Huntsville, AL 35807

Dr. R. Hofland
Aerospace Corp.
P. O. Box 92957
Los Angeles, CA 90009

Dr. John D. Lawson (2 copies)
Rutherford High Energy Lab
Chilton
Didcot, Oxon OX11 0OX
ENGLAND

Dr. Fred Hopf
University of Arizona
Tucson, AZ 85721

Mr. Ray Leadabrand
SRI International
2851 Ravenswood Avenue
Menlo Park, CA 94025

Mr. Harry Leven
NSIC/Code 20
1301 Sultani Road
Washington, D.C. 20390

Dr. Donald M. LeVine (3 copies)
SRI International
1611 N. Kent Street
Arlington, VA 22209

Dr. Anthony T. Lin
University of California
Los Angeles, CA 90024

Director (2 copies)
National Security Agency
Fort Meade, MD 20755
ATTN: Mr. Robert Madden, R/SA

Dr. John Maidey
Physics Department
Stanford University
Stanford, CA 94305

Dr. Joseph Mangano
DARPA
1400 Wilson Boulevard
Arlington, VA 22209

Dr. S. A. Mani
W. J. Schafer Associates, Inc.
10 Lakeside Office Park
Wakefield, MA 01880

Dr. Mike Mann
Hughes Aircraft Co.
Laser Systems Div.
Culver City, CA 90230

Dr. T. C. Marshall
Applied Physics Department
Columbia University
New York, NY 10027

Mr. John Meson
DARPA
1400 Wilson Boulevard
Arlington, VA 22209

Dr. Pierre Meystre
Projektgruppe fur Laserforschung
Max Planck Gesellschaft
Garching, MUNICH WEST GERMANY

Dr. Gerald T. Moore
Optical Sciences Center
University of Arizona
Tucson, AZ 85721

Dr. Philip Morton
Stanford Linear Accelerator Center
P. O. Box 4349
Stanford, CA 94305

Dr. Jesper Munch
TRW
One Space Park
Redondo Beach, CA 90278

Dr. George Neil
TRW
One Space Park
Redondo Beach, CA 90278

Dr. Kelvin Neil
Lawrence Livermore Laboratory
Code L-321, P. O. Box 808
Livermore, CA 94550

Dr. Brian Newnam
MS 564
Los Alamos Scientific Laboratory
P. O. Box 1663
Los Alamos, NM 87545

Dr. Milton L. Noble (2 copies)
General Electric Company
G. E. Electronic Park
Syracuse, NY 13201

Prof. E. Ott (2 copies)
University of Maryland
Dept. of Physics
College Park, Md. 20742

Dr. Richard H. Pantell
Stanford University
Stanford, CA 94305

Dr. Claudio Parazzoli
Hughes Aircraft Company
Building 6, MS/V-129
Centinela & Teale Streets
Culver City, CA 90230

Dr. Richard M. Patrick
AVCO Everett Research Lab., Inc.
2385 Raynre Beach Parkway
Everett, MA 02149

Dr. Claudio Pellegrini
Brookhaven National Laboratory
Associated Universities, Inc.
Upton, L.I., NY 11973

The Honorable William Perry
Under Secretary of Defense (R&E)
Office of the Secretary of Defense
Room BE1006, The Pentagon
Washington, D.C. 20301

Dr. Alan Pike
DARPA/STO
1400 Wilson Boulevard
Arlington, VA 22209

Dr. Hersch Pilloff
Code 421
Office of Naval Research
Arlington, VA 22217

Dr. Charles Planner
Rutherford High Energy Lab
Chilton
Didcot, Oxon, OX11 0OX,
ENGLAND

Dr. Michal Poole
Daresbury Nuclear Physics Lab.
Daresbury, Warrington
Cheshire WA4 4AD
ENGLAND

Dr. Don Prosnitz
Lawrence Livermore Laboratory
Livermore, CA 94550

Dr. D. A. Reilly
AVCO Everett Research Lab.
Everett, MA 02149

Dr. James P. Reilly
W. J. Schafer Associates, Inc.
10 Lakeside Office Park
Wakefield, MA 01880

Dr. A. Renieri
C.N.E.N.
Div. Nuove Attività
Dentro di Frascati
Frascati, Roma
ITALY

Dr. Daniel N. Rogovin
SAI
P. O. Box 2351
La Jolla, CA 92038

Dr. Michael Rosenthal
MIT - Magnet Lab.
Cambridge, MA 02139

Dr. Marshall N. Rosenbluth
Institute for Advanced Study
Princeton, NJ 08540

Dr. Eugene Ruane (2 copies)
P. O. Box 1925
Washington, D.C. 20013

Dr. Antonio Sanchez
MIT/Lincoln Laboratory
Room B231
P. O. Box 73
Lexington, MA 02173

Prof. S. P. Schlesinger
Columbia University
Dept. of Electrical Engineering
New York, NY 10027

Dr. Howard Schlossberg
AFOSR
Bolling AFB
Washington, D.C. 20332

Dr. Stanley Schneider
Potomac Corporation
26628 Fourt Du Lac Road
Malibu Viejas Peninsula, CA 90274

Dr. Marlan O. Scully
Optical Science Center
University of Arizona
Tucson, AZ 85721

Dr. Steven Siegel
KMS Fusion
3621 S. State Street
P. O. Box 1167
Ann Arbor, MI 48106

Dr. Robert Sepucha
DARPA/STD
1410 Wilson Boulevard
Arlington, VA 22209

Dr. A. M. Sessler
Lawrence Berkeley Laboratory
University of California
1 Cyclotron Road
Berkeley, CA 94720

Dr. Earl D. Shaw
Bell Labs
600 Mountain Avenue
Murray Hill, NJ 07974

Dr. Chan-Ching Shih
R&D Associates
P. O. Box 9695
Marina del Rey, CA 92091

Dr. Jack Slater
Mathematical Sciences, NW
P. O. Box 1887
Bellevue, WA 98009

Dr. Kenneth Smith
Physical Dynamics, Inc.
P. O. Box 656
La Jolla, CA 92038

Mr. Todd Smith
Hansen Labs
Stanford University
Stanford, CA 94305

Dr. Joel A. Snow
Senior Technical Advisor
Office of Energy Research
U. S. Department of Energy, M.S. E084
Washington, D.C. 20585

Dr. Richard Spitzer
Stanford Linear Accelerator Center
P. O. Box 4347
Stanford, CA 94305

Mrs. Alma Spring
DARPA/Administration
1400 Wilson Boulevard
Arlington, VA 22209

SRI/MP Reports Area G037 (2 copies)
333 Ravenswood Avenue
Menlo Park, CA 94025
ATTN: D. Leitner

Dr. Abraham Szoke
Lawrence Livermore Laboratory
MS/L-470, P. O. Box 808
Livermore, CA 94550

Dr. Milan Tekula
AVCO Everett Research Lab.
2385 Revere Beach Parkway
Everett, MA 02149

Dr. John E. Walsh
Department of Physics
Dartmouth College
Hanover, NH 03755

Dr. Wasneski (2 copies)
Naval Air Systems Command
Department of the Navy
Washington, D.C. 20350

Ms. Bettie Wilcox
Lawrence Livermore Laboratory
ATTN: Tech. Info. Dept. L-3
P. O. Box 808
Livermore, CA 94550

Dr. A. Yariv
California Institute of Tech.
Pasadena, CA 91125