SATCOM

Satellite Communication

Presented by

Na TAO

ALTRAN on behalf of ENAC

Objectives

• List the principles of SATCOM in civil aviation

Outlines

- General Introduction
- Satellite in aeronautical communication
- Implementation
 - IMARSAT
 - IRIDIUM

Introduction

History General Introduction

Introduction - History

- 1957 Sputnik, first artificial satellite, Soviet Union
- 1960 Echo 1, "satelloon", first artificial communications satellite, NASA
- 1962 Telstar, first live transatlantic television feed, NASA
- 1964 Syncom 3, first geostationary satellite, NASA
- 1965 Intelsat I, "Early Bird", first commercial communications satellite

Telstar

Syncom

Intelsat 1 " Early Bird"

Sputnik

Introduction - Orbits

LEO: Low Earth Orbit

MEO: Medium Earth Orbit

GEO: Geostationary Orbit

Comparison	LEO	MEO	GEO
Orbit	500 - 1500 Km	6000 - 20000 Km	36000 Km
Coverage	small	large	global
Nb. Handovers	High	Low	Least (none)
Propagation	Least	High	Highest
Propagation delay	10 ms	80 ms	250 ms
Lifetime	Short (5-8years)	Long	Long (~15years)

Introduction - Constellations

- Constellation: A group of satellites, of a similar type and function, designed to be in similar, complementary, orbits for a shared purpose, under shared control
- Gain : Coverage
- LEO often deployed in constellations
- Examples: GPS,GLONASS,COMPASS (Beidou), ...

Introduction - Frequency Bands

Band	Frequency Range	Total Bandwidth	General Application
L	1 - 2 GHz	1 GHz	MSS (Mobile Satellite Service)
S	2 - 4 GHz	2 GHz	MSS, NASA, deep space research
С	4 - 8 GHz	4 GHz	FSS (Fixed Satellite Service)
X	8 - 12.5 GHz	4.5 GHz	FSS military, terrestrial earth exploration and meteorological satellites
Ku	12.5 - 18 GHz	5.5 GHz	FSS, BSS (Broadcast Satellite Service)
K	18 - 26.5 GHz	8.5 GHz	FSS, BSS
Ка	26.5 - 40 GHz	13.5 GHz	FSS

• ITU (International Telecommunication Union) is in charge of Frequency Allocation

Introduction - Conclusion

- Advantages
 - Wide aera coverage (remote incl.)
 - Mobile and wireless communication
 - Cost of transmission independent of distance
 - High bandwidth
 - Uniform service / single service provider facility

- ...

- But
 - Costs
 - Lifetime
 - Propagation delay

- ...

SATCOM (in aviation)

History
AMSS
Implementation

Satellite in Aeronautical Communication

- History
 - -60's
 - Need for a long distance communication system
 - In replacement of vocal HF
 - NASA ATS 3 used for feasibility study
 - 1968 : ICAO launches ASTRA
 - Application of Space Techniques Relating to Aviation
 - 1974 AEROSAT
 - 1983 : FANS Committee starts
 - 1991(resp 1993): FANS work approved by ANC

Satellite in Aeronautical Communication

- History
 - Until 2007:
 - Only GEO satellites for AMSS
 - Limited to INMARSAT and MTSAT
 - Since 2007:
 - SARPs independent from LEO, MEO or GEO
 - Includes IRIDIUM

Satellites

Inmarsat 3

Inmarsat 4

MTSAT - 2

Iridium

SCOPE of SATCOM in ATM

- ICAO Standards and Recommended Practices (SARPs): GEO and LEO systems
- Targeted at Oceanic and Remote areas
- Maybe a complement link for continental regions
- A/G Communication
- Service : voice , date or both

Communication service

- Packet mode
 - For data transmission only
- Circuit mode
 - Primarily for voice transmissions
 - May also be used for data transmission

AMSS

- Aeronautical Mobile-Satellite Service
- Defined by ICAO
- Annex-10: general architecture, communication protocols
- System consists of 3 segments
 - Ground
 - Aerospace
 - Space (transparent from network func. point of view)
- Mobile earth station is located on board aircraft

AES: Airborne Earth Station GES: Ground Earth Station

ATN: Aeronautical Telecom Network PSDN: Packet Switched Data Network

STN: Packet Switched Telephony Network
FIN Aeronautical Fixed Telecom Network

Onboard architecture

Transmission channels (Physical)

- P channel
 - From ground station to the aircraft
 - TDM (super frame lasts 8 sec –500 ms slots)
 - continuous transmission
 - Signaling data and user data
 - Synchronizes all the other channels
- R channel
 - From the aircraft to the ground
 - Slotted-ALOHA
 - Signaling data and user data
- T channel
 - From the aircraft to the ground
 - TDMA (Time Division Multiple Access) with reservation (contiguous slots allowed)
 - C channel
 - Single circuit for voice and signaling

Canal T : AES → GES
Canal R : AES → GES
Canal C : Bidirectionnel

Connection establishment

- GES regularly sends data on P_{smc}
- AES receives these data
- AES request connection to the GES
- Depending on needs
 - Establish channels C and T
 - Establish level 3

- ...

Performances

- Connection establishment delay
 - 10 to 17 seconds from the aircraft
 - 9 to 11 seconds to the aircraft

Implementation

Inmarsat

- Founded in 1979
- International governmental organization
 - 75 members (at the beginning)
- Private company since 1999
- GEO based
- Four generations : I-2 (not ope.), I-3, I-4 and I-6 (under construction)

Inmarsat

- In 2015: 1.3 billion\$ revenues (10% for aeronautical services, CAGR 10% for safety services)
- Inmarsat AMSS 'safety services':
 - Fully managed ICAO SARPs compliant aeronautical services have been available since 1990
 - Approx. 7700 Aero L, I, H/H+ terminals currently activated
 - Classic Aero services (over I-3 and I-4 systems)
 - New concept : SwiftBroadband Safety services

Converage

Offered services

- I-3 and I-4 "Classic Aero" services/ICAO compliant
 - Aero L Low gain antenna
 - 600 to 1200 bit/s
 - 1 single voice channel
 - Aero I Intermediate gain antenna (I-3 regional beams)
 - multi-channel voice
 - 4,8 Kbit/s in circuit mode
 - Aero H/H+ High gain antenna: H with global coverage,
 H+ with beam
 - 10,5 Kbit/s in circuit mode
 - 9.6 Kbps per channel for multi-channel voice
 - Fax

ICAO channels

Service Antenna	Antonna	C-Channels	P Channels	R Channels	T Channels
	Supported	Supported	Supported	Supported	
Aero-L	LGA	None	600*, 1200	600*, 1200*	600#, 1200#
Aero-H	HGA	21000	600*, 1200	600*, 1200*	600#, 1200#
Aero-I	IGA	8400	600*, 1200	600*, 1200*	600#, 1200#
Aero-H+ HG	ЦСΛ	21000, 8400	600*, 1200,	600*,1200*,	600#,1200#,
	поа		10500	10500	10500

*: mandatory

#: only mandatory if AES provides data packet service

- Swift64 (I-3)
 - Since 2002
 - 64 Kbit/s per channel
 - ISDN supported (channel allocation: per user)
 - IP allowed

- SwiftBroadband (constellation of 3 I-4)
 - IP-based voice and data
 - up to 650 Kbit/s per channel
 - Commercial name: BGAN
 - Inmarsat is owner and operator of the ground stations

• Timeline of of Inmarsat's Aeronautical Services

Roadmap of AERO safety services

Antennas

Classic/Swift 64	Antenna Type	SwiftBroadband (bearer rates)
Swift64 – Regional Beams 64 kpps ISDN and MPDS Aero H/H+ in Global beam Voice, fax, PM data Safety services support	High Gain	High Gain – Class 6 UT 266 – 500 kbps Rx 332 – 492 kbps Tx Voice, fax PM data Safety Services potential
Aero-I – Regional Beam voice Global beam for 2.4 kbps fax and data 4.8 kbps X.25 PM data Safety services support	Intermediate Gain	Intermediate Gain – Class 7 UT 200 – 344 kbps Rx 192 – 332 kbps Tx Voice, fax PM data Safety Services Potential
Aero-L – Global data only 1.2 kbps PM Data Safety services support	Low gain	Low gain – Class 4 UT 36 – 50 kbps Rx 21 – 55 kbps Tx Voice, PM data. Safety services potential

Implementation

33

Iridium

- Founded in 1998, bankrupt nine month later and restarted in 2001. In 2015: 411.4 million\$ revenues
- Designed with 77 satellites
 - Hence the name Iridium
- Now 66 active on 6 orbital planes (30° apart)
- Global coverage (LEO: ~780 km)
- Initial aim: mobile phones (MOTOROLA)
- Communication between satellites
 - Rapid handoffs and Doppler shifts
 - Required only 2 ground stations
 - 1 reserved for military communications

Iridium - System overview

Constellation

Provided service

- Connection oriented
 - Data rate: 2400 bits/s
 - Voice
 - Strong vocoding (AMBE), MOS = 3,5
 - To be compared with GSM: MOS = 3,5
 - MOS = Mean Opinion Score
- New mode (packet)
 - SBD: Short Burst Data
 - Transfer of messages of up to 1900 bytes
 - Data rate: 1200 bits/s

Provided service

- Latency:
 - About 0,5 s for data (128 bytes)
 - Less than 0,38 s for voice
- Integrity
 - RER for 128 bytes: 3.10-7
- Connection delay: < 20s
- Low retrofit costs compared to others (< 50 k\$)

Offers

- SITA
 - 80 % of the aeronautical SATCOM market
 - Iridium for AOC since 2008
 - Mainly Inmarsat
 - AIRCOM global offer
 - IP connectivity over Swift64/SwiftBroadband for airlines
- ARINC
 - GLOBALink offer
 - Inmarsat Classic Aero (Aero L/I/H/H+)

Obstacles

- Cost
- Market for passengers to be demonstrated
 - Example: Connexion By Boeing
 - 1 milliard US \$ invested from 2000 to 2006
 - Annual cost: 150 millions US \$
 - Hardly 156 equipped aircraft 11 airlines
 - Halted mid august 2006

Conclusion

- The principles of SATCOM
- The problem of costs

Bibliography

- Annex 10 Volume 3 Chapter 4
- Manual for AMS(R)S
- ARINC 781 : Aviation Satellite Communication System

