Neural Networks in Practice

Many ways to improve weight learning in NNs

• Use regularized squared loss (cost) prediction (can still use backpropagation in this setting)

$$C(y_{\text{true}}, y_{\text{pred}}) = \frac{1}{2}(y - f(x; w, b))^2 + \frac{\lambda}{2}||w||_2^2$$

- L_1 regularization can also be useful
- $\lambda > 0$ should be chosen with a validation set
- Try other loss functions, e.g., the cross entropy

•
$$C(y_{\text{true}}, y_{\text{pred}}) - y \log f(x) - (1 - y) \log(1 - f(x))$$

- Initialize weights of the network more cleverly
 - Random initializations are likely to be far from optimal
- Learning procedure can have numerical difficulties if there are a large number of layers
 - Early stopping: stop the learning early in the hopes that this prevents overfitting

Drop out: A **heuristic bagging-style approach** applied to neural networks to **counteract overfitting**

- Randomly remove a certain percentage of neurons from the network and then train only on the remaining neurons
- networks recombined using an approximate averaging
- keeping around too many networks and doing proper bagging can be costly in practice

(b) After applying dropout.

CS6375: Machine Learning

Neural Nets

Parameter Tying

Parameter tying: Assume some of the weights in the model are the same to reduce the dimensionality of the learning problem;

- Also a way to learn "simpler" models
- Can lead to significant compression in neural networks (i.e., >90%)

Convolutional neural networks

- Instead of the output of every neuron at layer ℓ being used as an input to every neuron at layer $\ell+1$, edges between layers are chosen more locally
- Many tied weights and biases
 - convolution nets apply the same process to many different local chunks of neurons
- Often combined with pooling layers
 - layers that replacing small regions of neurons with their aggregated output
- Used extensively for image classification tasks

Topological Visualization of a Convolutional Neural Network by Terence Broad http://terencebroad.com/nnvis.html

CS6375: Machine Learning

Neural Nets

Activation Functions

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z)=z$	Adaline, linear regression	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	-
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer Neural Networks	-
Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = \max(0,z)$	Multi-layer Neural Networks	
Rectifier, softplus Copyright © Sebastian Raschka 2016 (http://sebastianraschka.com)	$\phi(z) = \ln(1 + e^z)$	Multi-layer Neural Networks	

CS6375: Machine Learning

Neural Nets

Example: Self Driving Cars

