Power-Management des Heidi-Trackers

Der Arduino wird von 2 Akkus versorgt. Das ist einerseits die reguläre Bordspannungsversorgung und andererseits ein Stütz-Akku, der ab einer Bordspannung von U_{batt} < ca. 3,8V dafür sorgt, dass die Spannungseinbrüche, verursacht durch die hohen Spitzenströme des GSM-Moduls, nicht zu einem Brown-Out des Arduiono führen. Beide Versorgunggstränge sind über eine Stromweiche, 2 Schottky-Dioden, zusammengeführt. Diese Schaltung sorgt dafür, dass beide Akkus beim Entladen immer das gleiche Spannungsniveau haben.

Der Arduino bezieht also seine Versorgungsspannung über je 1 Schottky-Diode Typ 1N5817. Diese hat einen Spannungsverlust von etwa 0.3V in Durchlassrichtung, das heißt am Arduino kommt U_{batt} – 0.3V an.

Der ESP32 arbeitet bis etwa 2,6V korrekt, soweit keine internen Verbraucher wie GPIO's zusätzlichen Strom benötigen. Sobald sich der Strombedarf erhöht, kann es zu einem Brownout-Reset kommen (ein Puffer-Kondensator ändert daran nichts).

Im Bereich unter 2,6V Ist das Verhalten des ESP32 unbestimmt – er bootet im Kreis.

Der Tiefenentladeschutz der Lademodule schaltet die Versorgung erst bei $U_{\text{batt}} < 2,4V$ ab und erst bei $U_{\text{batt}} \ge 3,0V$ wieder zu.

Folgende Spannungsgrenzen sind fest eingestellt:

- $U_{batt} \ge 3,6V$ normale Funktion
- 3,6V > U_{batt} ≥ 3,5V verdoppelte Zeiten zwischen den regulären Datenübertragungen, Alarme normal
- 3,5V > U_{batt} ≥ 3,4V keine regulären Datenübertragungen, Alarme normal
- U_{batt} < 3,4V deep sleep 15 Minuten
- U_{batt} < 3,3V deep sleep 60 Minuten

Ziel des Power-Management ist es, bei Unterversorgung der Akkus so lange wie möglich Alarme senden zu können und später eine Versorgungsspannung des Arduino von unter 2.6 V zu vermeiden.

Ab 3,5 V Batteriespannung hat der Akku nur noch sehr wenig Energiegehalt. Deshalb wird die reguläre Übertragung der Daten eingestellt. Alarme werden ab 3,4 V nicht mehr abgesetzt, da die Spannung dabei so stark einbricht, dass die Übertragung nicht sicher gewährleistet ist.

Um das relativ schnelle Entladen des Akkus bei $U_{batt} < 2.8 \text{ V}$ auf $U_{batt} < 2.4 \text{ V}$ zu vermeiden, kann eine Schmitt-Tigger-Schaltung mit entsprechender Hysterese für eine Abschaltung des Arduino ab $U_{batt} < 3.0 \text{ V}$ eingebaut werden.

Extremes Unterversorgungs-Szenario:

Pos	U _{batt}	Betriebszustand	Ladezustand
1	< 3,6 V	Strom sparen durch Verdopplung der Zeitspanne zwischen den Datenübertragungen	
2	< 3,5 V	Einstellung der Datenübertragungen (messungen laufen weiter), nur noch Alarme werden abgesetzt (mit Übertragung des Standorts)	
3	< 3,4 V	keine Aktivitäten mehr, alle 15 Minuten Überprüfung des Batteriezustandes	
4	< 3,3 V	keine Aktivitäten mehr, alle 60 Minuten Überprüfung des Batteriezustandes	
5	< 3,0 V	Der ESP32 löst bei der Überprüfung des Battriezustandes einen Brown-Out-Reset aus, beim nächsten Bootvorgang wir der Brown-Out erkannt und ein Deep-Sleep von 60 Minuten ausgesöst	
6	< 2,8 V	Der ESP32 bootet im Kreis und verbraucht dabei dauerhaft 30 mA, der Akku wird weiter entladen	
7	< 2,4 V	Der Laderegler des Akkus schaltet alle Lasten ab	
8	> 2,4 V	Der Laderegler des Akkus schaltet alle Lasten weiterhin ab	
9	> 3,0 V	Der Laderegler des Akkus schaltet alle Lasten wieder zu → Position 5 – der ESP32 bootet zumindest kontrolliert	
10	> 3,3 V	→ Position 4	
		usw.	

Discharge, capacity: Samsung INR18650-35E 3500mAh (Pink)

Abbildung 1: Quelle: https://lygte-info.dk