Studying the elecumposition theorem over the integers Crendie Welliamson

XCIPN proj. whiety, X smo, th:

H*(X)Z) satisfies (denied) Poincaré duality.

H + (x; a) hard Lefsihetz, pine Hodge structures, Hodge-Riemann relations

X singular, all statements above on H*(X) fail.

Instead, he can consider IH*(X) (Corresby Man Phenson)

IH*(x, a) PD. hL, pure Hodge Str., Hodge - Riemann

am: (Derived) Privaré duality does not hold for IH* (X) Z)

Ex. $C \subset X \subset Pergs smooth surface H²(<math>X;Z$) free Lune configuration.

X \downarrow^{π} X XMap contracting C to a point.

det ((-,-) poisso , IH2 (x; Z)) = det (Cartan mat.)

=> PD fails over Z.

Local variant. Determine p-torsion in the stalks and costalks of IC(X; Z) (integral IC sheaf)

Rmk. No p-torsion => IH*(X; Zp) satisfied PD NOT CONVERSELY.

(in stack or costack)

Ic (X; Z)

X = U X, stratification, i'x: X, -1 X.

IC (X) Z) Satisfies

2)
$$\mu^{j}(i_{\lambda}^{j} \text{ Ic }(x; z))$$
 should be torsion for $j = \dim X_{\lambda}$

and ranish below din Xx.

Exercise $X = xy = \delta^2 \subset \mathbb{C}^3$

$$f = \mathbb{Z}[2] \quad \text{satisfies}$$

$$i_0^1 f = \frac{0}{2\sqrt{2}} \cdot \frac{1}{2} \cdot \frac{2}{2}$$

liale is

S3/MZ = IRIP3. IC (x; Ge) has no self-dual Z-form.

Minimal self-dual extension is the "parity sheet" fx 2[2].

Ruh. If X has isolated singularities x1, ..., xcm,

Q at p-torsion (=) understanding p-torsion in the integral cohomology of the links at X1, --, xm.

So Q is very hard in general.

f resolution of singularities

(For dCM: assume f is projectice.)

Chaose a stratification of X, X= LANX. Xx connected

For each XX, chasse a point XX EXX and a normal slive to Xx through XX.

$$\begin{array}{ccccc}
F_{\lambda} & \longrightarrow & \widetilde{\nu_{\lambda}} & \longrightarrow & \widetilde{x} \\
\downarrow & & & \downarrow & & \downarrow \\
\downarrow x_{\lambda} & \longrightarrow & \nu_{\lambda} & \longrightarrow & X
\end{array}$$

The embedding $F_{\lambda} \hookrightarrow \widetilde{N_{\lambda}}$ equips $H_{\star}(F_{\lambda})$ u/ an intersection from $H_{\star}(F_{\lambda}) \times H_{\star}(F_{\lambda}) \xrightarrow{IF_{\lambda}} Z$.

Basic observation. Assume we know DT one a, k field fx k[dimex] splits into Ic's as predicted by DT

(=) IF w k has the same rank as over Q.

B'asic observation says nothing about semi-simplicity of local systems occurring in direct shage.

In the Small case, no IF's except for open stratum.

In the Semi-small case, those is only one piece of IF that can contribute for each stratum. Here

DT (=) each IF is non-degenerate on top homology.

dem prou this case as follows ..

Assume Xx = {xx} is a pt stratum, 1/2= x, 1/4= x.

Seni-snew => dim Fx = \frac{1}{2} dim \times

A some equality: $H_{a}(F_{\lambda}) \times H_{a}(F_{\lambda}) \xrightarrow{\Sigma F_{\lambda}} \mathbb{Z}$ $\downarrow (\lambda \qquad \downarrow \qquad \qquad \downarrow$ $H^{a}(\widetilde{X}) \times H^{a}(\widetilde{X}) \longrightarrow \mathbb{Z}$

Miracle: pullbacks of ample classes under semismall maps settists he and HR.

de cataldo and Miglimh use the penesse filtration to

In general, piedict the radical of $H^*(F_A) \times H^*(F_A) \longrightarrow Z$.

 \underline{Rmh} : 1) In the semismall case, relevant buck systems furtor through $\pi_1(\lambda_1) \longrightarrow \text{Perm} \left(\text{top. dim. components} \right)$, hence is semisimple.

Q in general is much hander (use Delgne's theorem).

penerse filtration = not filtration w.r.t. the action of an ample class pulled back from X.

Schubert varieties

Thm. The quantity $m_n := \max_{x \in \mathcal{G}_n} \{ \text{thre exists } p - \text{torsion in a } \}$

grows at least as fact as c", where c>1. (c is provably ~ 1.29).

- Rmk 1) This is a new proof of an earlier result obtained using Sourger bimodele techniques, partly joint with Xuhun He.
 - 2) News applications to representation theory.
 - a) Expected bounds for Luzzi's character formula:

Soegel Mr grows liverly in n. Page 4

6) James consultane (simple 1Fp On-modules) =) My grows quadratically in n.

 p_{S}) B minimal parabolic for S $W = S_{1}S_{2}\cdots S_{m}$ expression

BS(w) = Ps, x Psz x .. x Psm/Bm

T \(BS(\w) \) | tixed pt \(\simeq \) \(\overline \) \(\ove

(elka class + c+1* (BS(w))

combinatorial: if 3 for the HT (pt) set.

f= siei (t, szez (... (sem tm)...)).

P

wind at e + BS(y)

Ex. V & B -m. dule, Lv := (Ps, x -- x Psm) xm V

vector bundle on BS(w). Then Euler (LV) is combinational w/
fi = det (res BMV) ith copy.

Eula class lemma:

p: BS (4) -> pt, p! f = ds, (4, ds, (... ds, tm)...))