

Linear and Discrete Optimization

How efficient is the simplex method?

- Graphs of polyhedra
- and their diameter

Graphs

An *undirected graph* G = (V, E) consists of a finite set V of *nodes* or *vertices* and a set E of *edges*, where each edge $e \in E$ is a two-element subset of vertices, $e = \{u, v\}$, $u \neq v \in V$. We also write e = uv.

Walks and paths

A *walk* from node $i_1 \in V$ to $i_t \in V$ is a sequence i_1, i_2, \ldots, i_t of nodes such that $i_k i_{k+1} \in E, k = 1, \ldots, t-1$. A walk is called a *path* if it has no repeated nodes.

Distance and diameter

The distance of $u, v \in V$ is the smallest t such that there exists a path i_0, \ldots, i_t in G with $i_0 = u$ and $i_t = v$.

The *diameter* of G is the largest distance of two nodes of G.

what is the diameter of this greph?

Graphs of polyhedra

A polyhedron $P = \{x \in \mathbb{R}^n : Ax \le b\}$ with vertices defines a graph $G_P = (V, E)$ as follows. The set of nodes V is the set of vertices of P and $v_1v_2 \in E$ iff v_1 and v_2 are adjacent.

Diameter and simplex algorithm

If a version of the simplex algorithm requires only a polynomial number of iterations (in n and m), then the diameter of each polyhedral graph is polynomial.

Linear programming, simplex algorithm and diameter

Linear Program

$$\max\{c^T x \colon x \in \mathbb{R}^n, Ax \leq b\}$$

- ▶ Simplex algorithm walks along edges of graph G_P of $P = \{x \in \mathbb{R}^n : Ax \leq b\}$.
- Big mystery: Is there a version of Simplex requiring a polynomial number of iterations?
- ▶ Necessary condition: The *diameter* of the graph G_P must be polynomial.
- ▶ We define $\Delta(n, m)$: Largest diameter of a graph G_P of a polyhedron $P \subseteq \mathbb{R}^n$ described by m inequalities.

Theorem (Kalai and Kleitman 1992)

$$\Delta(n,m) \leq m^{1+\log n}$$

An important property of G_P

11. AB . 9 + T. AT. AC. 9 < 11. bB + 17. AT. bc ABREDB

Theorem

Proof:

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ be a polyhedron with vertices. Then G_P is connected.

Furthermore, for each pair of vertices u, y there exists a path connecting u and v such that each inequality of $Ax \le b$ active at both u and v is also active at each vertex of that path. basis associated with co

C = dlimms CT= MT. AB + M. MT. AC

Bc dlinims

ineq. active at both u and v.

, CT. X & AIT. bB + M. AIT. bc VAlid for 9 and active at o and inactive at any other y* #0 EP.
Simplex: unique opt. sol.

An important property of G_P

JEDO S.h. for each yerker w with Ac. W & bc Some strict.

ON POS 11T. Ac. W = 11T. bc - &

1) large enough s.l. for each sun werkx w:

CT.W = MT.AB.W + TI. MT.AC.W = MT.AB.W + TI.MT.bc - TI.E

2 CT.U = AIT. AB.U + TT. AC.U - 17. br

Simpler does not exist suit a w

11T. Ac. W < 11T.bc

Degeneracy

Theorem

 $\Delta(n, m)$ is attained at a non-degenerate polyhedron.

Identify vertices with their feasible basis

The connectivity condition

 $G_P = (V, E)$ with $V \subseteq {[m] \choose n}$ is a graph such that for each $u, v \in V$, there exists a path i_0, i_1, \ldots, i_t in G such that $u = i_0$ and $v = i_t$ and

 $i_i \ge u \cap v, \ j = 1, \ldots, t-1$

P non-degenerate.