

Deadline: 23:00pm of next Monday (2022/04/18)

Please send your homework into TA's mailbox:

12132430@mail.sustech.edu.cn.

MECHANICS OF MATERIALS

YAHUI XUE (薛亚辉)

SPRING, 2022

Problem 1

6.89 A square box beam is made of two 20×80 -mm planks and two 20×120 -mm planks nailed together as shown. Knowing that the spacing between the nails is s=30 mm and that the vertical shear in the beam is V=1200 N, determine (a) the shearing force in each nail, (b) the maximum shearing stress in the beam.

Fig. P6.89

Problem 2

6.92 For the beam and loading shown, determine the minimum required width b, knowing that for the grade of timber used, $\sigma_{\rm all}=12$ MPa and $\tau_{\rm all}=825$ kPa.

Problem 3

6.33 The built-up wooden beam shown is subjected to a vertical shear of 8 kN. Knowing that the nails are spaced longitudinally every 60 mm at A and every 25 mm at B, determine the shearing force in the nails (a) at A, (b) at B. (Given: $I_x = 1.504 \times 10^9 \text{ mm}^4$.)

Problem 4

6.61 and **6.62** Determine the location of the shear center *O* of a thin-walled beam of uniform thickness having the cross section shown.

Average Mechanical Properties of Typical Engineering Materials^a (SI Units)

Materials	Density ρ (Mg/m³)	Moduls of Elasticity E (GPa)	Modulus of Rigidity G (GPa)	Yiel Tens.	d Strength (N σ_Y Comp. $^{ m b}$	1Pa) Shear	Ultin	nate Strength $\sigma_{ m u}$ Comp. $^{ m b}$	(MPa) Shear	% Elongation in 50 mm specimen	Poisson's Ratio v	Coef. of Therm. Expansion α (10 ⁻⁶)/°C
Metallic												
Aluminum 2014-T6 Wrought Alloys 6061-T6	2.79 2.71	73.1 68.9	27 26	414 255	414 255	172 131	469 290	469 290	290 186	10 12	0.35 0.35	23 24
Cast Iron Gray ASTM 20 Alloys Malleable ASTM A-197	7.19 7.28	67.0 172	27 68	-	=	-	179 276	669 572		0.6 5	0.28 0.28	12 12
Copper Red Brass C83400 Alloys Bronze C86100	8.74 8.83	101 103	37 38	70.0 345	70.0 345	_	241 655	241 655	-	35 20	0.35 0.34	18 17
Magnesium Alloy [Am 1004-T61]	1.83	44.7	18	152	152	-	276	276	152	1	0.30	26
Structural A-36 Steel — Structural A992 Alloys — Stainless 304 Tool L2	7.85 7.85 7.86 8.16	200 200 193 200	75 75 75 75	250 345 207 703	250 345 207 703	1 1 1	400 450 517 800	400 450 517 800	-	30 30 40 22	0.32 0.32 0.27 0.32	12 12 17 12
Titanium Alloy [Ti-6Al-4V]	4.43	120	44	924	924	-	1,000	1,000	-	16	0.36	9.4
Nonmetallic Concrete Low Strength High Strength	2.38 2.37	22.1 29.0	-	-	-	12 38	-	_	_	-	0.15 0.15	11 11
Plastic Kevlar 49 Reinforced 30% Glass	1.45 1.45	131 72.4		-	=	-	717 90	483 131	20.3	2.8	0.34 0.34	-
Wood Select Structural Grade White Spruce	0.47 3.60	13.1 9.65	-	-	-	-	2.1° 2.5°	26 ^d 36 ^d	6.2 ^d 6.7 ^d	-	0.29° 0.31°	-

^a Specific values may vary for a particular material due to alloy or mineral composition, mechanical working of the specimen, or heat treatment. For a more exact value reference books for the material should be consulted.

^b The yield and ultimate strengths for ductile materials can be assumed equal for both tension and compression.

^c Measured perpendicular to the grain.

^d Measured parallel to the grain.

^e Deformation measured perpendicular to the grain when the load is applied along the grain.