BAB 6 BENTUK – BENTUK NORMALISASI

Ketika merancang basisdata menggunakan model relasional, kita sering menemui beberapa alternatif dalam pendefinisian himpunan skema relasi. Beberapa pilihan lebih nyaman dibanding pilihan – pilihan lain untuk beragam alasan.

Aturan-aturan normalisasi dinyatakan dalam istilah bentuk normal. *Bentuk Normal* adalah suatu aturan yang dikenakan pada relasi-relasi dalam basis data dan harus dipenuhi oleh relasi tersebut pada level-level normalisasi. Suatu relasi dikatakan dalam bentuk normal tertentu jika memenuhi kondisi-kondisi tertentu.

6.1. Bentuk Normalisasi

Bentuk – bentuk Normalisi yang ada dalam mendesain basis data adalah sebagai berikut :

- 1). Bentuk normal pertama (1NF)
- 2). Benatuk normal kedua (2NF)
- 3). Bentuk normal ketiga (3NF)
- 4). Bentuk normal Boyce-Codd (BCNF)
- 5). Bentuk normal keempat (4 NF)
- 6). Bentuk normal kelima (5NF)

Bentuk normal pertama (1NF) s/d normal ketiga (3NF), merupakan bentuk normal yang umum dipakai. **Artinya** adalah pada kebanyakan relasi, bila ketiga bentuk normal tersebut telah dipenuhi, maka persoalan anomali tidak akan muncul lagi didalam kita melakukan perancangan database.

Kriteria dalam proses normalisasi adalah kebergantungan fungsional, kebergantungan banyak nilai dan kebergantungan join. Ketiga tipe kebergantungan tersebut digunakan untuk menilai relasi – relasi yang dihasilkan dari konversi diagram ER menjadi kumpulan relasi – relasi. Proses normalisasi

membentuk relasi – relasi bentuk normal menggunakan dekomposisi yang memecah relasi menjadi relasi – relasi berbentuk normal lebih tinggi.

Berikut ini adalah gambar untuk langkah – langkah melakukan normalisasi data, seperti tampak berikut ini:

Gambar 6.1. Langkah – langkah Normalisasi

6.1.1. Bentuk Normal Pertama (1 NF)

Bentuk normal pertama dikenakan pada tabel yang belum ternormalisasi (masih memiliki atribut yang berulang).

Berikut ini adalah contoh data – data yang belum ternormalisasi

NIP	Nama	Jabatan	Keahlian	Lama (tahun)
107	Daffa	Analis Senior	Access	6
			Oracle	1
109	Revan	Analis Yunior	Access	2
			Clipper	2
112	Dilla	Pogrammer	Access	1
			Clipper	1
			Visual Basic	1

Gambar 6.2. Relasi Pegawai

Keahlian menyatakan atribut yang berulang (misal, fika punya tiga keahlian, dan Rian punya 2 keahlian).

a. Definisi Bentuk_Normal Pertama (1NF)

Suatu relasi dikatakan bentuk normal pertama, jika dan hanya jika setiap atribut bernilai tunggal untuk setiap baris. Tiap field hanya satu pengertian, bukan merupakan kumpulan kata yang mempunyai arti mendua, hanya satu arti saja dan juga bukanlah pecahan kata – kata sehingga artinya lain. Tidak ada set atribut yang berulang-ulang atau atribut bernilai ganda.

Pada data tabel sebelumnya, contoh data belum ternormalisasi sehingga dapat diubah ke dalam bentuk normal pertama dengan cara membuat setiap baris berisi kolom dengan jumlah yang sama dan setiap kolom hanya mengandung satu nilai.

b. Contoh Normal Pertama (1NF)

Berikut ini adalah contoh data pada relasi pegawai yang telah memenuhi bentuk normal pertama

NIP	Nama	Jabatan	Keahlian	Lama
107	Daffa	Analis Senior	Access	6
107	Daffa	Analis Senior	Oracle	1
109	Revan	Analis Yunior	Access	2
109	Revan	Analis Yunior	Clipper	2

112	Dilla	Pogrammer	Access	1
112	Dilla	Pogrammer	Clipper	1
112	Dilla	Pogrammer	Visual Basic	1

Gambar 6.3. Relasi pegawai memenuhi 1NF

Berikut ini adalah contoh data pada relasi mahasiswa yang belum memenuhi bentuk normal pertama.

NIM	Nama	Dosen Wali	Kode_mk1	Kode_mk2	Kode_mk3
9820001	Nia Dela	Didik	1234	1435	
9810004	Andik P	Primadina	1234	1435	1245
9810006	Rini	Tukino	1324	1545	1245
9820008	Basuki	Djuwadi	1324	1545	

Gambar 6.4. Relasi Mahasiswa belum 1NF

Relasi mahasiswa yang mempunyai NIM, nama dan Dosen Wali mengikuti 3 mata kuliah, tabel tersebut belum memenuhi normal pertama karena ada perulangan Kode_mk 3 kali padahal hal tersebut bisa dijadikan 1 atribut saja. Jadi bentuk **normal pertama** dari data di atas adalah :

NIM	Nama	Dosen Wali	Kode_mk
9820001	Nia Dela	Didik	1234
9820001	Nia Dela	Didik	1435
9810004	Andik P	Primadina	1234
9810004	Andik P	Primadina	1435
9810004	Andik P	Primadina	1245
9810006	Rini	Tukino	1324
9810006	Rini	Tukino	1545
9810006	Rini	Tukino	1245

9810006	Rini	Tukino	1324
9820008	Basuki	Djuwadi	1324
9820008	Basuki	Djuwadi	1545

Gambar 6.5. Relasi Mahasiswa memenuhi 1NF

Berikut ini adalah contoh data pada relasi matakuliah yang telah memenuhi bentuk normal pertama.

Kode_mk	Matakuliah	Sks	Pengasuh
1234	Sistem Basis Data	2	Didik Setiyadi,M.Kom.
1435	Alghoritma	4	Tukino,S.Kom,MM.Si
1545	Jaringan Komputer	2	Djuwadi,M.Kom.
1245	Bahasa Inggris I	2	Dra. Siti Azizah

Gambar 6.6. Relasi matakuliah memenuhi 1 NF

Relasi matakuliah tersebut merupakan bentuk 1 NF, karena tidak ada atribut yang bernilai ganda, dan tiap atribut satu pengertian yang bernilai tunggal.

6.1.2. Bentuk Normal Kedua (2 NF)

Definisi Bentuk Normal Kedua (2 NF) adalah:

- 1). Memenuhi bentuk 1 NF (normal pertama).
- Atribut bukan kunci haruslah bergantung secara fungsi pada kunci utama / primary key.

Sehingga untuk membentuk normal kedua tiap tabel / file haruslah ditentukan kunci-kunci atributnya. Kunci atribut haruslah unik dan dapat mewakili atribut lain yang menjadi anggotanya. Pada contoh tabel Mahasiswa yang memenuhi **normal pertama (1 NF)**, terlihat bahwa **NIM** merupakan *Primery Key* (PK).

 $\operatorname{NIM} \to \operatorname{Nama}$, Dosen Wali. Artinya adalah bahwa atribut Nama dan Dosen Wali bergantung pada NIM.

Tetapi **NIM** → Kode_mk. Artinya adalah bahqa atribut Kode_mk tidak tergantung pada NIM.

Untuk memenuhi normal kedua, maka pada relasi mahasiswa tersebut dipecah menjadi 2 relasi sebagai berikut:

NIM	Nama	Dosen Wali
9820001	Nia Dela	Didik
9810004	Andik P	Primadina
9810006	Rini	Tukino
9820008	Basuki	Djuwadi

Gambar 6.7. Relasi mahasiswa memenuhi 2NF

NIM	Kode_mk
9820001	1234
9820001	1435
9810004	1234
9810004	1435
9810004	1245
9810006	1324
9810006	1545
9810006	1245
9810006	1324
9820008	1324
9820008	1545

Gambar 6.8. Relasi ambil_kuliah memenuhi 2NF

6.1.3. Bentuk Normal Ketiga (3 NF)

Definisi Bentuk_Normal Ketiga (3 NF) adalah:

1). Memenuhi bentuk 2 NF (normal kedua).

2). Atribut bukan kunci tidak memiliki dependensi transitif terhadap kunci utama / primary key.

Berikut Contoh relasi yang memenuhi bentuk 2 NF, tetapi tidak memenuhi bentuk 3 NF.

No Pesanan	No Urut	Kode Item	Nama Item
50001	0001	P1	Pensil
50001	0002	P2	Buku Tulis
50001	0003	P3	Penggaris
50001	0004	P4	Penghapus
50002	0001	P3	Penggaris
50002	0002	P5	Bulpen
50002	0003	P6	Spidol
50003	0001	P1	Pensil
50003	0002	P2	Buku Tulis

Gambar 6.9. Relasi pesanan_barang belum memenuhi 3NF

Atribut No Pesanan dan No Urut merupakan kunci primer, baik kode item dan nama item mempunyai dependensi fungsional terhadap kunci primer tersebut.

Pada relasi di atas, setiap kode item sama, maka nilai nama item juga sama, sehingga menunjukkan adanya dependensi dua atribut tersebut, tapi manakah yang menentukan, apakah kode item bergantung pada nama item, atau sebaliknya? Jadi nama item memiliki dependensi fungsional terhadap Kode item.

Pada relasi ini menunjukkan bahwa nama item tidak memiliki dependensi secara langsung terhadap kunci primer (No pesanan dan No Urut). Dengan kata lain Nama Item memiliki dependensi transitif terhadap kunci primer.

Sehingga untuk memenuhi bentuk 3 NF, maka relasi di atas didekomposisi menjadi dua buah relasi sebagai berikut:

No Pesanan	No Urut	Kode Item
50001	0001	P1
50001	0002	P2
50001	0003	P3
50001	0004	P4
50002	0001	P3
50002	0002	P5
50002	0003	P6
50003	0001	P1
50003	0002	P2

Gambar 6.10. Relasi pesanan_barang memenuhi 3NF

Kode Item	Nama Item
P1	Pensil
P2	Buku Tulis
P3	Penggaris
P4	Penghapus
P5	Bulpen
P6	Spidol

Gambar 6.11. Relasi barang memenuhi 3NF

6.1.4. Bentuk Normal Boyce-Codd (BCNF)

Definisi Bentuk BCNF adalah:

- 1). Memenuhi bentuk 3 NF (normal ketiga).
- Semua penentu (determinan) adalah kunci kandidat (atribut yang bersifat unik).
 Setiap atribut harus bergantung fungsi pada atribut superkey.

BCNF merupakan bentuk normal sebagai perbaikan terhadap 3 NF. Suatu relasi yang memenuhi BCNF selalu memenuhi 3 NF, tetapi tidak untuk sebaliknya. Suatu

relasi yang memenuhi 3 NF belum tentu memenuhi BCNF. Karena bentuk 3 NF masih memungkinkan terjadi anomali.

Pada contoh berikut ini terdapat tabel SEMINAR, kunci primer adalah no_siswa + seminar, dengan pengertian bahwa :

- Siswa dapat mengambil satu atau dua seminar.
- Setiap seminar membutuhkan 2 instruktur.
- Setiap siswa dibimbing oleh salah satu dari 2 instruktur seminar.
- Setiap instruktur boleh hanya mengambil satu seminar saja.

Pada contoh ini, no_siswa dan seminar menunjukkan seorang instruktur.

No_siswa	Seminar	Instruktur
2201001	2281	Budi
2201002	2281	Kardi
2201003	2291	Joni
2201002	2291	Rahmad
2201004	2291	Rahmad

Gambar 6.12. Relasi seminar

Bentuk tabel SEMINAR adalah memenuhi bentuk normal ketiga (3 NF), tetapi tidak BCNF karena nomor seminar masih bergantung fungsi pada instruktur, jika setiap instruktur dapat mengajar hanya pada satu seminar. Seminar bergantung fungsi pada satu atribute bukan superkey seperti yang disyaratkan oleh BCNF.

Maka relasi SEMINAR harus didekomposisi menjadi dua relasi, yaitu relasi pengajar dan seminar_instruktur, seperti berikut ini :

Instruktur	Seminar
Budi	2281

Kardi	2281
Joni	2291
Rahmad	2291

Gambar 6.13. Relasi pengajar

No_siswa	Instruktur
2201001	Budi
2201002	Kardi
2201003	Joni
2201002	Rahmad
2201004	Rahmad

Gambar 6.14. Relasi seminar_instruktur

6.1.5. Bentuk normal keempat (4 NF)

Suatu relasi dikatakan dalam bentuk normal keempat dengan ketentuan sebagai berikut ini :

- Bila dan hanya bila telah berada dalam bentuk BCNF dan tidak ada multivalued dependency nontrivial.
- Multivalued dependency (MVD) dipakai dalam bentuk normal keempat (4 NF).
- Dependensi ini dipakai untuk menyatakan hubungan satu ke bantak (one to many).

Contoh:

Matakuliah	Dosen	Isi
Pengenalan Komputer	Budi	Dasar Komputer
	Sanjaya	Pengenalan pengolahan kata
		Pengenalan lembaran kerja
Matematika	Sugeng Paijo	Differensial
		Integral

Relasi tersebut menggambarkan mengenai dosen yang mengajar matakuliah tertentu dengan isi matakuliah yang bersangkutan. Contoh dua dosen yang mengajar pengenalan komputer, yaitu Budi dan Sanjaya. Adapun isi matakuliah

Pengenalan Komputer adalah Dasar Komputer, Pengenalan Pengolahan Kata dan Pengenalan Lembaran Kerja.

Relasi berikut ini memperlihatkan relasi yang telah dinormalisasikan berdasarkan relasi sebelumnya.

Matakuliah	Dosen	Isi
Pengenalan Komputer	Budi	Dasar Komputer
Pengenalan Komputer	Budi	Pengenalan pengolahan kata
Pengenalan Komputer	Budi	Pengenalan lembaran kerja
Pengenalan Komputer	Sanjaya	Dasar Komputer
Pengenalan Komputer	Sanjaya	Pengenalan pengolahan kata
Pengenalan Komputer	Sanjaya	Pengenalan lembaran kerja
Matematika	Sugeng Paijo	Differensial
Matematika	Sugeng Paijo	Integral

Relasi tersebut memenuhi bentuk BCNF karena *primary key* nya adalah gabungan dari matakuliah, dosen dan isi. Masalah tersebut dapat dipecahkan melalui dekompoisi, hal ini disebabkan karena terdapat kenyataan bahwa antara Dosen dengan Isi tidak ada ketergantungan. Solusi masalah tersebut diajukan oleh R. Fagin melalui konsep dependensi nilai banyak. Secara umum dependensi nilai banyak muncul pada relasi yang paling tidak memiliki tiga atribut dan dua diantaranya bernilai banyak, dan nilai – nilainya tergantung hanya pada atribut ketiga.

Pada suatu relasi R dengan atribut A, B, C, atribut B dikatakan bersifat multidependen terhadap A jika :

- Sekumpulan nilai B yang diberikan pada pasangan (A, C) hanya tergantung pada nilai A, dan, tidak tergantung pada nilai C.
- Hubungan diatas dinyatakan dengan :

A →→, dibaca " A menentukan banyak nilai B" atau "B multidependen terhadap

Teorema Faqin yang berkaitan dengan multivalued dependency adalah:

- Bila R (A, B, C) merupakan suatu relasi, dengan A, B, C adalah atribut atribut relasi tersebut, maka proyeksi dari R berupa (A, B) dan (A, C) jika R memenuhi MVD A → → B | C
- Perlu diketahui bahwa bila terdapat : A →→ B, A →→ C, maka keduanya dapat ditulis menjadi : A →→ B | C

Berdasarkan teorema Faqin diatas, maka relasi tersebut diatas dapat didekomposisi menjadi dua relasi sebagai berikut :

Matakuliah	Dosen
Pengenalan Komputer	Budi
Pengenalan Komputer	Sanjaya
Matematika	Sugeng Paijo

Matakuliah	Isi
Pengenalan Komputer	Dasar Komputer
Pengenalan Komputer	Pengenalan pengolahan kata
Pengenalan Komputer	Pengenalan lembaran kerja
Matematika	Differensial
Matematika	Integral

6.1.5. Bentuk normal kelima (5 NF)

Dependensi gabungan mendasari bentuk normal kelima. Suatu relasi R (X,W,Z) memenuhi dependensi gabungan jika gabungan dari proyeksi A, B, C dengan A, B, C merupakan sub himpunan dari atribut – atribut R. Dependensi gabungan sesuai dengan definisi diatas dinyatakan dengan notasi:

- * (A, B, C)
- dengan A = XY, B = YZ, C = ZX

Sebagai contoh terdapat hubungan dealer yang mengageni suatu perusahaan distributor kendaraan. Dalam hal ini distributor memiliki sejumlah produk kendaraan.

Dealer	Distributor	Kendaraan
Sumber Jaya	Nissan	Truk Nissan
Sumber Jaya	Toyota	Toyota Kijang
Sumber Jaya	Toyota	Truk Dyna
Asterindo	Nissan	Sedan Nissan

Relasi tersebut memenuhi dependensi gabungan :

*(Dealer Distributor, Distributor Kendaraan, Dealet Kendaraan)

Sehingga relasi tersebut dapat didekomposisi menjadi tiga buah relasi yaitu :

- Deal_Dist (Dealer_Distributor).
- Dist_Kend (Distributor_Kendaraan).
- Deal_Kend (Dealer_Kendaraan).

Gabungan ketiga relasi tersebut akan membentuk relasi DDK dan gabungan kedua proyeksi diatas bisa jadi menghasilkan relasi antara yang salah, namum ketiganya akan menghasilkan relasi sesuai aslinya.

Bentuk normal Kelima (5 NF) yang terkadang disebut PJ/NF (Projection Join / Normal Form), menggunakan acuan dependensi gabungan. Suatu relasi berada dalam 5 NF jika dan hanya jika setiap dependensi gabungan dalam R tersirat oleh kunci kandidat relasi R.

Dealer Distributor

Sumber Jaya	Nissan	
Sumber Jaya	Toyota	
Asterindo ,	Nissan	
	Distributor Nissan Nissan Toyota Toyota	Kendaraan Truk Nissan Sedan Nissan Toyota Kijang Truk Dyna
Dealer	Distributor	Kendaraan
Sumber Jaya	Nissan	Truk Nissan
Sumber Jaya	Nissan	Sedan Nissan
Sumber Jaya	Toyota	Toyota Kijang
Sumber Jaya	Toyota	Truk Dyna
Asterindo	Nissan	Truk Nissan
Asterindo	Nissan	Sedan Nissan

Dealer	Kendaraan
Sumber Jaya	Truk Nissan
Sumber Jaya	Sedan Nissan
Sumber Jaya	Toyota Kijang
Sumber Jaya	Truk Dyna
Asterindo	Sedan Nissan

6.2. Dependensi Transitif

Definisi bentuk dependensi transitif adalah sebagai berikut :

Atribut Z mempunyai dependensi transitif terhadap X, bila :

- 1). Y memiliki Dependensi fungsional terhadap X.
- 2). Z memiliki dependensi fungsional terhadap Y.

Sehingga: $X \rightarrow Y \rightarrow Z$

Berikut ini adalah contoh tabel relasi yang menunjukkan terjjadinya dependensi transitif pada tabel relasi kuliah berikut ini :

Kuliah	Ruang	Tempat	Waktu
Jaringan Komputer	Merapi	Gedung Utara	Senin, 08.00 – 09.50
Basis Data	Rama	Gedung Selatan	Selasa, 07.00 – 08.45
Sistem Pakar	Sinta	Gedung Selatan	Rabu, 10.00 – 11.45
Sistem Operasi	Merapi	Gedung Utara	Selasa, 08.00 - 08.50

Gambar 6.15. Relasi kuliah

Pada tabel tersebut diatas menunjukkan bahwa:

Kuliah → { Ruang, Waktu }

Ruang → Tempat

Terlihat bahwa Kuliah → Ruang → Tempat

Dengan demikian Tempat mempunyai dependensi transitif terhadap Kuliah.

Pertanyaan Soal

- 1. Jelaskan pengertian bentuk normalisasi, dan sebutkan bentuk bentuk normalisasi yang saudara ketahui?.
- 2. Jelaskan dan berikan contoh bentuk normal pertama (1 NF) ?.
- 3. Jelaskan dan berikan contoh bentuk normal kedua (2 NF) ?.
- 4. Jelaskan dan berikan contoh bentuk normal ketiga (3 NF) ?.
- 5. Jelaskan dan berikan contoh bentuk normal BNCF?.
- 6. Jelaskan dan berikan contoh bentuk normal keempat (4 NF) dan normal kelima (5 NF)?.
- 7. Jelaskan dan berikan contoh pengertian dari ketergantungan fungsional dan ketergantungan transitif?.