

Every line of code is worth the SWEat

SAL intermedio primo sprint

20 novembre 2024

Uso Esterno

Destinatari | Prof. Tullio Vardanega

Prof. Riccardo Cardin

Sync Lab S.r.l.

Responsabile | Klaudio Merja

Redattori | Andrea Perozzo

Verificatori | Davide Picello

Riassunto del verbale

Durante l'incontro sono state discusse le tecnologie che utilizzeremo e i dubbi riguardo al PoC inoltre sono state definite le priorità, tra cui simulazione dati, visualizzazione su Grafana e casi d'uso.

Registro delle modifiche

Ver.	Data	Redattori	Verificatori	Descrizione
1.0.0	25/11/2024	Andrea Perozzo	Davide Picello	Stesura del verbale

Indice

1. Ir	ıformazioni generali	4
1.	1. Luogo e data della riunione	4
	2. Partecipanti interni	
	3. Partecipanti esterni	
2. Si	intesi dell'incontro	4
3. R	isposte alle domande	4
3.	1. Grafana	4
3.	2. Logica del sistema	4
3.	3. Apache Kafka e Apache NiFi	5
3.	4. PostGIS e Time Scale	5
3.	5. PoC	5
4. C	onclusioni	5
5. T	abella delle decisioni	5

1. Informazioni generali

1.1. Luogo e data della riunione

Luogo: Google Meet Data: 20/11/2024

• Ora: 16:00

• Durata: 40 minuti

1.2. Partecipanti interni

• Andrea Perozzo

· Andrea Precoma

• Davide Marin

• Davide Martinelli

· Davide Picello

· Riccardo Milan

· Klaudio Merja

1.3. Partecipanti esterni

- · Fabio Pallaro
- · Andrea Dorigo

2. Sintesi dell'incontro

L'incontro aveva l'obiettivo di fare il punto della situazione a metà <u>sprint</u>, valutare l'implementazione delle tecnologie individuate, definire i prossimi *step* e risolvere eventuali dubbi. Durante la *call*, sono state discusse le tecnologie scelte per il progetto, poste alcune domande chiave per chiarire punti critici, e condivisi appunti sulle esperienze utente, casi d'uso e priorità per il <u>PoC</u>^g.

Le tecnologie che abbiamo scelto di utilizzare e che abbiamo discusso durante la riunione sono:

- <u>Data generator^g</u>: <u>Faker^g</u> o <u>SimPy^g</u>.
- <u>Database^g</u>: <u>**PostGIS**^g</u> e/o <u>Timescale</u>^g.
- <u>Data broker^g</u>: <u>Apache Kafka^g</u> (ottima gestione di grandi volumi di dati).
- <u>Stream Processing^g</u>: <u>Apache Nifi^g</u> (versatile e adatto a integrare logica).
- <u>Data visualization^g</u>: <u>**Grafana**^g</u> (intuitivo e ben documentato).
- <u>LLM^g</u>: <u>LangChain^g</u>.

Focus particolare è stato dato all'utilizzo di Grafana per visualizzare dati <u>GPS^g</u> e annunci pubblicitari e all'integrazione logica all'interno del sistema tramite Apache NiFi.

3. Risposte alle domande

3.1. Grafana

Nel PoC, sarà sufficiente ricevere la notifica riguardante l'annuncio pertinente. Tuttavia, per rappresentare visivamente i dati su Grafana, si ipotizza di mostrare punti in movimento su una mappa: quando un punto raggiunge una determinata posizione, verrà visualizzato un messaggio o un annuncio.

3.2. Logica del sistema

La logica del sistema, che comprende incrocio dati, profilazione utenti, verifica della vicinanza a negozi e valutazione di interessi, potrebbe essere integrata direttamente in Apache NiFi. Questo approccio valorizzerebbe le capacità di Apache NiFi come *tool* per elaborazioni complesse.

3.3. Apache Kafka e Apache NiFi

Apache Kafka gestirà l'invio e la ricezione di grandi quantità di dati in tempo reale. Apache NiFi sarà utilizzato per elaborare questi dati, integrando logica personalizzata per analizzare i percorsi GPS, generare notifiche, e gestire gli annunci pubblicitari.

3.4. PostGIS e Time Scale

È possibile utilizzarli in combinazione. PostGIS sarà utile per gestire dati spaziali e Time Scale per ottimizzare la gestione di dati temporali, mantenendo una visione relazionale classica con un *database* aggiuntivo.

3.5. PoC

Il PoC dovrebbe essere strutturato in modo da includere:

- Il codice necessario per la simulazione dei dati.
- Prevedere alcune rappresentazioni iniziali su Grafana, in modo da offrire una visualizzazione dei dati simulati.
- Documentare i casi d'uso principali, così da chiarire come il sistema potrebbe essere applicato nella pratica.

4. Conclusioni

Priorità:

- **Simulazione dati:** Iniziare a studiare l'avvio dello sviluppo di un simulatore di dati GPS, generando percorsi realistici e mantenendo lo storico degli spostamenti.
- Confidenza con strumenti: Gestire parallelamente l'integrazione con Apache Kafka e Apache NiFi.
- **Visualizzazione su Grafana:** Creare una rappresentazione iniziale con punti in movimento su una mappa.
- Casi d'uso: Documentare almeno due casi d'uso pratici, pensando al percorso dell'utente tra due punti e all'interazione con i messaggi/annunci.

Nel prossimo <u>SAL^g</u> programmato per il prossimo mercoledì, si presenterà:

- Codice iniziale del simulatore.
- *Mockup^g* dei dati su Grafana.
- Primi casi d'uso definiti.

5. Tabella delle decisioni

ID	Assegnatari	Descrizione
ORG	Gruppo	SAL fissato per mercoledì 27/11

Firma dell'azienda proponente