Fabbricazione delle fibre ottiche

Classificazione delle fibre ottiche in base al materiale costituente

<u>Fibre di materiale plastico</u>

(nucleo di polistirene e mantello di polimetilmetacrilato)

Fibre di vetri multicomponenti

(borosilicati, etc.)

Fibre in vetro di silice

Fabbricazione di fibre di plastica

estrusione

L'estrusione è un processo di produzione industriale di tipo deformazione plastica che consente di produrre pezzi a sezione cilindrica (tubi, profilati). Essa è utilizzata per i materiali metallici, la gomma la plastica e altre produzioni. Consiste essenzialmente nel forzare per compressione il materiale, allo stato pastoso, a passare attraverso una sagoma (matrice) che riproduce la forma esterna del pezzo che si vuole ottenere. All'uscita dalla matrice il materiale viene raffreddato. La compressione del materiale a monte della matrice è ottenuta, per la gomma e la plastica, da apparecchiature a semplice o doppia vite senza fine, che spingono il materiale verso la testa di estrusione; nel caso della plastica si introduce il materiale in granuli, il calore prodotto dall'attrito e da resistenze elettriche ne causa la fusione. Per i metalli si usano macchine a pistone.

http://it.wikipedia.org/wiki/Estrusione

Tecnologia delle fibre ottiche di vetri multicomponenti

Metodo del doppio crogiolo

Tecnologia delle fibre di silice

Metodo della preforma

Sistema di "tiraggio" delle fibre ottiche di silice

Realizzazione della preforma Chemical vapour deposition (CVD)

Obbiettivo: realizzazione di silice sintetica drogata opportunamente:

Le principali reazioni di deposizione che hanno luogo sono:

$$SiCl_4 + O_2 ---> SiO_2 + 2Cl_2$$
 $GeCl_4 + O_2 ---> GeO_2 + 2Cl_2$
 $4BCl_3 + 3O_2 ---> 2B_2O_3 + 6Cl_2$
 $SiF_4 + O_2 ---> SiO_2(F) + F_2$
 $4POCl_3 + 3O_2 ---> 2P_2O_5 + 6Cl_2$

Processo di "Soot deposition" -

OVPO (Outside Vapour Phase Oxidation)

Outside Vapor Deposition

Modified CVD - IVPO (Inside Vapour Phase Oxidation)

Collapsing the preform

fabrication of silica optical fibers

(2) collapsing the preform: under the influence of surface tension at the outside and inside wall of the preform tube

Preform: material depositing Modified Chemical Vapor Deposition

Fig. 3-4
MCVDdeposition at
Acreo Fiber
Lab
in Hudiksvall
Sweden

CVD ATTIVATO MEDIANTE PLASMA (PCVD)

- → Processo IVPO
- → Formaz. ossidi provocata da un plasma (cavità rison. f=2-3 GHz; P=100-550 W)

Fig. 4 - Schema del processo VAD