REVIEW FOR ELECTRICAL ENGINEERING

Elec 4309 Senior Design

Wendell H Chun Aug. 24, 2017

Semiconductor Revolution

- Led to the creation of integrated circuit (IC) technology.
- Effective, miniaturized, power electronics could amplify and deliver needed amount of power to actuators.
- Signal conditioning electronics could filter and encode sensory data in analog/digital format.
- Hard-wired, on-board, discrete analog/digital ICs provided rudimentary computational and decision-making circuits for control of mechanical devices.

An Integrated Circuit

An A2D Converter

An Operational Amplifier

Overview of Packaging

Courtesy of Intel Corp.

Overview of Packaging

Courtesy of Intel Corp.

DENVER | ANSCHUTZ MEDICAL CAMPUS

Overview of Packaging

- "Packaging engineers today must solve complex, coupled problems that require fundamental understanding of electrical, thermal, mechanical, material science, and manufacturing principles."
 - Dr. Nasser Grayeli, Intel Corporation

Electrical Functions of the Package

Power Delivery

 Supply a clean power and reference voltage to active devices on the die.

Signal Input/Output

 Transmit signals from the die to the motherboard faithfully and in minimum time.

EMI/EMC

 Minimize radiation of electromagnetic energy into the environment, and the impact of ambient electromagnetic energy on circuit performance.

Foundations of Electrical Engineering

- Electrophysics.
- Information (Communications) Theory.
- Digital Logic.

Foundations of Electrical Engineering

• Electrophysics:

- Fundamental theories of physics and important special cases.
- Phenomenological/behavioral models for situations where the rigorous physical theories are too difficult to apply.

Hypothesis, Model, and Theory

- A *hypothesis* is an idea or suggestion that has been put forward to explain a set of observations. It may be expressed in terms of a mathematical *model*. The *model* makes a number of predictions that can be tested in experiments. After many tests have been made, if the *model* can be refined to correctly describe the outcome of all experiments, it begins to have a greater status than a mere suggestion.
- A theory is a well-tested and well-established understanding of an underlying mechanism or process.

Hypothesis, Model, and Theory

- Maxwell's equations are 'just a theory' and yet my cell phone works!
- At one time, a theory would have been referred to as a 'law'.
 - Newton's laws
 - Boyle's law
- But remember no theory is a complete description of all reality; all theories are incomplete.
- Electrical engineers make use of a number of theories – some of which are special cases of others.

Four Fundamental Forces of Physics

Gravitational Force

- Associated particle is graviton (hypothesized)
- Always attractive
- Varies inversely as the square of the distance

Electromagnetic Force

- Associated particle is photon
- 10⁴² times stronger than gravity
- Force can be attractive or repulsive
- Varies inversely as the square of the distance

Strong Interaction

- Associated particle is gluon
- About 100X stronger than electromagnetic force but only acts over distances the size of an atomic nucleus
- Responsible for holding the protons and neutrons together

Weak Interaction

- Associated particles are the weak gauge bosons (Z and W particles)
- Acts only over distances the size of an atomic nucleus
- Responsible for certain types of radioactive decay

The Standard Model

- Physicists call the theoretical framework that describes the interactions between elementary building blocks (quarks and leptons) and the force carriers (bosons) the <u>Standard Model</u>.
- Most of the standard model is a theory; some of it is still hypothesis.
- Physicists use the Standard Model to explain and calculate a vast variety of particle interactions and quantum phenomena. High-precision experiments have repeatedly verified subtle effects predicted by the Standard Model.

The Standard Model

- The biggest success of the Standard Model is the unification of the electromagnetic and the weak forces into the so-called *electroweak force*.
- Many physicists think it is possible to eventually describe all forces with a Grand Unified Theory or a so-called *Theory of Everything* (ToE).
 - M-theory (a generalization of superstring theory) is the current embodiment of the ToE.

Information Theory

- Originally developed by Claude Shannon of Bell Labs in the 1940s.
- Information is defined as a symbol that is uncertain at the receiver.
- The fundamental quantity in information theory is channel capacity – the maximum rate that information can be exchanged between a transmitter and a receiver.

Information Theory

- Defines relationships between elements of a communications system. For example,
 - Power at the signal source
 - Bandwidth of the system
 - Noise
 - Interference
- Mathematically describes the principals of data compression.

Information Revolution

- Development of VLSI technology led to the introduction of microprocessor, microcomputer, and microcontroller.
- Now computing hardware is ubiquitous, cheap, and small.
- As computing hardware can be effortlessly interfaced with real world electromechanical systems,
 it is now routinely embedded in engineered products/processes for decision-making.
 - Microcontrollers are replacing precision mechanical components, e.g., precision-machined camshaft that
 in many applications functions as a timing device.
 - Programmability of microcontrollers is providing a versatile and flexible alternative to the hard-wired analog/digital computational hardware.
 - Integrated computer-electrical-mechanical devices are now capable of converting, transmitting, and processing both the *physical energy* and the *virtual energy* (information).
- Result: Highly efficient products and processes are now being developed by judicious selection
 and integration of sensors, actuators, signal conditioning, power electronics, decision and control
 algorithms, and computer hardware and software.

Digital Logic

- Digital logic signals are really analog signals, and digital circuits are ultimately designed using circuit theory.
- However, in many situations the function of a digital circuit is more easily synthesized using the principles of digital logic.

Digital Logic

- Based on logic gates, truth tables, and combinational and sequential logic circuit design
- Uses Boolean algebra and Karnaugh maps to develop minimized logic circuits.

Power Systems

- Generation of electrical energy
- Storage of electrical energy
- Distribution of electrical energy
- Rotating machinery-generators, motors

Electromagnetics

- Propagation of electromagnetic energy
- Antennas
- Very high frequency signals
- Fiber optics

Solid State

- Devices
 - Transistors
 - Diodes (LED's, Laser diodes)
 - Photodetectors
- Miniaturization of electrical devices
- Integration of many devices on a single chip

Communications/Signal Processing

- Transmission of information electrically and optically
- Modification of signals
 - enhancement
 - compression
 - noise reduction
 - filtering

Controls

- Changing system inputs to obtain desired outputs
- Feedback
- Stability

Digital Design

- Digital (ones and zeros) signals and hardware
- Computer architectures
- Embedded computer systems
 - Microprocessors
 - Microcontrollers
 - DSP chips
 - Programmable logic devices (PLDs)

Microprocessors for Embedded Systems

- Computing systems are everywhere
- Most of us think of "desktop" computers
 - PC's

Laptops

- Mainframes
- Servers
- But there's another type of computing system
 - Far more common...

Embedded Systems

- Embedded computing systems:
 - Computing systems embedded within electronic devices
 - Hard to define. Nearly any computing system other than a desktop computer
 - Billions of units produced yearly, versus millions of desktop units
 - Perhaps 50 per household and per automobile

Lots more of these, though they cost a lot less each.

"Short List" of Embedded Systems

Anti-lock brakes

Auto-focus cameras

Automatic teller machines

Automatic toll systems

Automatic transmission

Avionic systems

Battery chargers

Camcorders

Cell phones

Cell-phone base stations

Cordless phones

Cruise control

Curbside check-in systems

Digital cameras

Disk drives

Electronic card readers

Electronic instruments

Electronic toys/games

Factory control

Fax machines

Fingerprint identifiers

Home security systems

Life-support systems

Medical testing systems

Modems

MPEG decoders

Network cards

Network switches/routers

On-board navigation

Pagers

Photocopiers

Point-of-sale systems

Portable video games

Printers

Satellite phones

Scanners

Smart ovens/dishwashers

Speech recognizers

Stereo systems

Teleconferencing systems

Televisions

Temperature controllers

Theft tracking systems

TV set-top boxes

VCR's, DVD players

Video game consoles

Video phones

Washers and dryers

And the list goes on and on

Some Common Characteristics of Embedded Systems

- Single-functioned
 - Executes a single program, repeatedly
- Tightly-constrained
 - Low cost, low power, small, fast, etc.
- Reactive and real-time
 - Continually reacts to changes in the system's environment
 - Must compute certain results in real-time without delay

Embedded System Example: Digital Camera

- Single-functioned -- always a digital camera
- Tightly-constrained -- Low cost, low power, small, fast
- Reactive and real-time -- only to a small extent

Mechatronics

The synergistic combination of mechanical, electrical, and computer engineering

- Emphasis on integrated design for products
- Optimal combination of appropriate technologies

DENVER | ANSCHUTZ MEDICAL CAMPUS

Mechatronic Systems

Electronic

Stealth Bomber

Consumer **Electronics**

Micro to Macro Applications

CONSUMER PRODUC

MECHATRONICS

Mechanical

High Speed **Trains**

Mechatronic Systems: Door System/Module

DENVER | ANSCHUTZ MEDICAL CAMPUS

Mechatronic Systems: Space Exploration Applications

Phoenix Mars Lander's

System Can

- Collect specimens
- Has automated onboard lab for testing specimens

Advantages

 Robot that can travel to other planets and take measurements automatically.

Mechatronic Systems: Sanitation Systems Uses Operations

- Motion sensors
- Control circuitry
- Electromechanical actuators
- Independent power source

Soap Dispenser

Advantages

- Reduces spread of germs by making device hands free
- Reduces wasted materials by controlling how much is dispensed

Mechatronic Systems: Sports

Applications

Cable

Running Shoes

Advantages

 Automatically changes cushioning in shoe for different running styles and conditions for improved comfort

DENVER | ANSCHUTZ MEDICAL CAMPUS

Midsofe

Cushioning element

Motor

Microprocessor

Mechatronic Systems: Smart Home Applications

General Mechatronic Model

A Model for Robotics

DENVER | ANSCHUTZ MEDICAL CAMPUS

Summary

- Types of Projects:
 - Power
 - Electronics
 - RF/Communications/Signal Processing
 - Controls
 - Embedded Systems
 - Mechatronics (Mechanical/Electrical Integration)
 - Hardware/Software Integration