

Tarea 2

27 de marzo de 2024

 $1^{\underline{0}}$ semestre 2025 - Profesores P. Barceló - P. Bahamondes - D. Bustamante

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 23:59 del 03 de abril a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template L^AT_FX publicado en la página del curso.
 - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
 - Los archivos que debe entregar son el archivo PDF correspondiente a su solución con nombre numalumno.pdf, junto con un zip con nombre numalumno.zip, conteniendo el archivo numalumno.tex que compila su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas.
- Si tiene alguna duda, el foro de Github (issues) es el lugar oficial para realizarla.

Problemas

Problema 1

- (a) [1 pt.] Sea P un conjunto de variables proposicionales. Defina inductivamente el conjunto de variables proposicionales mencionadas en φ , denotado como P_{φ} , para toda fórmula φ en $\mathcal{L}(P)$.
- (b) [5 pts.] Sea P un conjunto de variables proposicionales y sean φ y ψ fórmulas en $\mathcal{L}(P)$. Suponga que $P_{\varphi} \cap P_{\psi} \neq \emptyset$.

Demuestre que si $\varphi \to \psi$ es una tautología, entonces existe una fórmula θ tal que $P_{\theta} = P_{\varphi} \cap P_{\psi}$ y que cumple que tanto $\varphi \to \theta$ como $\theta \to \psi$ son tautologías.

Solución

- (a) Definimos inductivamente a P_{φ} para toda fórmula $\varphi \in \mathcal{L}(P)$ como
 - Si $\varphi = p$ para alguna variable proposicional $p \in P$, entonces $P_{\varphi} = \{p\}$
 - Si $\varphi=(\neg\psi)$ para alguna fórmula $\psi\in\mathcal{L}(P),$ entonces $P_{\varphi}=P_{\psi}$
 - Si $\varphi = (\psi_1 \star \psi_2)$ para dos fórmulas $\psi_1, \psi_2 \in \mathcal{L}(P)$ y $\star \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, entonces $P_{\varphi} = P_{\psi_1} \cup P_{\psi_2}$
- (b) Sea Θ la fórmula sobre $P_{\varphi} \cap P_{\psi}$ que es cierta precisamente en aquellas valuaciones $\sigma: P_{\varphi} \cap P_{\psi} \to \{0, 1\}$ que cumplen que toda valuación $\sigma': P_{\psi} \to \{0, 1\}$ que extiende a σ cumple que $\sigma'(\psi) = 1$. Observemos que $\Theta \to \psi$ es una tautología. Para mostrar esto, consideremos una valuación $\sigma': P_{\psi} \to \{0, 1\}$ tal que $\sigma'(\Theta) = 1$. Entonces la restricción σ de σ' a $P_{\varphi} \cap P_{\psi}$ también satisface $\sigma(\Theta) = 1$, y entonces $\sigma'(\psi) = 1$ ya que σ' es una extensión de σ .

Observamos además que $\varphi \to \Theta$. Para mostrar esto, consideremos una valuación σ : $P_{\varphi} \to \{0,1\}$ tal que $\sigma(\varphi) = 1$. Luego, toda valuación $\sigma': P_{\varphi} \cup P_{\psi} \to \{0,1\}$ que extiende a σ satisface $\sigma'(\psi) = 1$, ya que $\varphi \to \psi$ es una tautología. Esto quiere decir que la restricción σ'' de σ' a $P_{\varphi} \cap P_{\psi}$ satisface a Θ por definición. Luego, σ también satisface a Θ .

Pauta (6 pts.)

- (a) 1.0 pt. por definir correctamente a P_{φ}
- (b) 1.0 pt. por explicar cómo construir la fórmula Θ que cumple lo pedido
 - 4.0 pts. por demostrar que efectivamente cumple lo pedido.

Puntajes parciales y soluciones alternativas a criterio del corrector.

Problema 2

Definimos el conectivo binario de disyunción exclusiva \oplus (XOR), definido por la siguiente tabla de verdad:

$$\begin{array}{c|cccc} \varphi & \psi & \varphi \oplus \psi \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

Definimos de igual modo el operador de disyunción exclusiva generalizada \bigoplus de manera análoga a la conjunción generalizada y la disyunción generalizada, es decir:

$$\bigoplus_{i=1}^{n} \varphi_i = \varphi_1 \oplus \cdots \oplus \varphi_n$$

- (a) [1 pt.] Dé dos fórmulas equivalentes a $p \oplus q$ en DNF y CNF respectivamente.
- (b) [3 pts.] Demuestre que $\{\oplus\}$ no es un conjunto funcionalmente completo.
- (c) [2 pts.] Demuestre la siguiente propiedad distributiva para ⊕:

$$\left(\bigoplus_{i=1}^{n} \varphi_i\right) \wedge \psi \equiv \bigoplus_{i=1}^{n} \left(\varphi_i \wedge \psi\right)$$

Solución

(a) • DNF: Podemos construirla directamente a partir de la tabla

$$p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$$

• CNF: Tomamos la fórmula anterior y usamos distributividad

$$p \oplus q \equiv (p \vee (\neg p \wedge q)) \wedge (\neg q \vee (\neg p \wedge q))$$
$$\equiv ((p \vee \neg p) \wedge (p \wedge q)) \wedge ((\neg q \vee \neg p) \wedge (\neg q \vee q))$$
$$\equiv (p \wedge q) \wedge (\neg q \vee \neg p)$$

(b) Consideraremos el conjunto $P = \{p\}$ y mostraremos que no es posible encontrar una fórmula en $\mathcal{L}(P)$ que solo use \oplus como conectivo que sea equivalente a la tautología $p \lor p$. Para esto, notemos que para una única variable proposicional, solo hay $2^{2^1} = 4$ tablas de verdad posibles, es decir, toda fórmula en $\mathcal{L}(P)$ es equivalente a p, $\bar{p} := \neg p$, $\tau := p \lor \neg p$ o $\bot := p \land \neg p$. Por inducción estructural, mostraremos que toda fórmula que solo utiliza \oplus como conectivo será equivalente a p o \bot .

BI: Si $\varphi = p$, la propiedad es trivial pues $p \equiv p$ (identidad).

HI: Sean ψ_1 y ψ_2 dos fórmulas que solo usan el conectivo \oplus y supongamos que son equivalentes a p o a \bot .

TI: Queremos demostrar que $\varphi = \psi_1 \oplus \psi_2$ también es equivalente a p o a \perp . Hay 4 posibilidades:

- 1. $\psi_1 \equiv p$ y $\psi_2 \equiv p$, en cuyo caso $\varphi \equiv \perp$
- 2. $\psi_1 \equiv p$ y $\psi_2 \equiv \perp$, en cuyo caso $\varphi \equiv p$
- 3. $\psi_1 \equiv \perp$ y $\psi_2 \equiv p$, en cuyo caso $\varphi \equiv p$
- 4. $\psi_1 \equiv \perp \ \ \psi_2 \equiv p$, en cuyo caso $\varphi \equiv \perp$

Por el principio de inducción estructural, concluimos que toda fórmula que solo utiliza el conectivo \oplus será necesariamente equivalente a p o \bot . En particular, esto implica que ninguna fórmula construida solo con este conectivo es equivalente a $\neg p$, por lo que el conjunto \oplus **no** es funcionalmente completo.

(c) Lo demostraremos por inducción sobre la cantidad de fórmulas en la disyunción exclusiva generalizada.

BI: Para n = 1 fórmulas, la propiedad se cumple trivialmente.

HI: Sea $n \in \mathbb{N}$ y supongamos que

$$\left(\bigoplus_{i=1}^{n} \varphi_i\right) \wedge \psi \equiv \bigoplus_{i=1}^{n} \left(\varphi_i \wedge \psi\right)$$

TI: Queremos demostrar que:

$$\left(\bigoplus_{i=1}^{n+1} \varphi_i\right) \wedge \psi \equiv \bigoplus_{i=1}^{n+1} \left(\varphi_i \wedge \psi\right)$$

Utilizaremos la siguiente

$$(A \oplus B) \wedge C \equiv (A \wedge C) \oplus (B \wedge C)$$

Podemos demostrarla con la siguiente tabla de verdad:

A	B	C	$A \oplus B$	$(A \oplus B) \wedge C$	$A \wedge C$	$B \wedge C$	$(A \wedge C) \oplus (B \wedge C)$
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	1	0	1	1
1	0	0	1	0	0	0	0
1	0	1	1	1	1	0	1
1	1	0	0	0	0	0	0
1	1	1	0	0	1	1	0

Luego, tenemos que

que es lo que queríamos demostrar. Por principio de inducción simple, concluimos la propiedad distributiva generalizada.

Pauta (6 pts.)

- (a) 0.5 pt. por la fórmula en DNF
 - 0.5 pt. por la fórmula en CNF
- (b) 3 pts. por la inducción correctamente demostrada
- (c) 2 pts. por la inducción correctamente demostrada. Se debe descontar 1 punto si se usa pero no se demuestra la propiedad distributiva simple usada en la inducción.

Puntajes parciales y soluciones alternativas a criterio del corrector.