1 Distance

How should we define distance in a graph?

Definition:

The smallest possible number of $\underline{\mathcal{C}}$ in a path between two vertices S and T is the $\underline{\mathcal{C}}$ between vertices S and T.

How can we find the shortest path between vertices?

Example: Using the graph below, find the distance from A to G. What is a shortest path from A to G? Is the graph connected? Why or why not?

Example: If there is a path from one vertex to all others in the graph, is that sufficient to say the graph is connected? Why or why not?

Example: Must the shortest path between two vertices in a graph be unique? Why or why not?

Example: Using the graph below, find the distance from B to D. What is a shortest path from B to D? Is the graph connected? Why or why not?

2 Weighted Graphs

Definitions:

A weight of a path is the sum of the weights of the edges in the path. A path of smallest weight is called a shortest path between those two vertices and the weight of that path is called the distance between them.

Example: Determine the weight of the path A, B, D, G and the weight of the path C, G, F, B, D, H in the graph below.

How can we find the shortest path between two vertices, when the weights are important?

Example: What is the distance from B to every other vertex? What is the shortest path from

Example: What is the distance from B to every other vertex? What is the shortest path from B to C?

Example: Find a shortest path from A to G that goes through the vertex C in the weighted graph.

Example: Find a shortest path from A to G that goes through the vertex C in the weighted graph.

