Integer congruence

MTH 350 -- Module 2B

If $x \equiv y \operatorname{mod} 9$, then

$$9|(y-x)|$$

$$9|(x-y)|$$

$$|x|(9-y)$$

$$x/y \equiv 1 \mod 9$$

Which of these is the smallest, nonnegative integer that is congruent to 100 mod 12?

If a,b are integers and n is a natural number, then $a \equiv b \bmod n$ if and only if

a|b

n|a

a and b are both multiples of n

a and b have the same remainder when divided by n

None of the above

If $a\equiv 0\, \mathrm{mod}\, n$, then

$$a = 0$$

$$a = n$$

Proving properties of integer congruence

(a) If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $(a + c) \equiv (b + d) \pmod{n}$.

Solution: Using the definition of congruence, the given result is equivalent to the following:

If $n \mid (a - b)$ and $n \mid (c - d)$, then $n \mid [(a + c) - (b + d)]$.

Thus, assume that $n \mid (a - b)$ and $n \mid (c - d)$. Then there exist integers j and k such that a - b = nj and c - d = nk. Simple algebra (in particular, the associative and distributive axioms) then implies that

$$(a+c) - (b+d) = (a-b) + (c-d)$$

= $nj + nk$
= $n(j+k)$.

Thus, $n \mid [(a+c)-(b+d)]$, as desired.

If $a \equiv b \mod n$ and $c \equiv d \mod n$, then $ac \equiv bd \mod n$.

Use a direct proof. So assume...

By definition of congruence, we can rephrase this as....

We want to show that ac \equiv bd mod n. By definition of congruence, we can rephrase this as....

[Now take the last statement and do some math!]

For every integer a, $a \equiv a \mod n$. (i.e. integer congruence is a relation that satisfies the **reflexive** property.)

Use a direct proof. So assume...

By definition of congruence, we can rephrase this as....

We want to show that...

[Now complete the proof]

For all integers a and b, if $a \equiv b \mod n$ then $b \equiv a \mod n$. (i.e. integer congruence is a relation that satisfies the symmetric property.)

Use a direct proof. So assume...

By definition of congruence, we can rephrase this as....

We want to show that...

[Now complete the proof]

For all integers a, b, and c, if $a \equiv b \mod n$ and $b \equiv c \mod n$, then $a \equiv c \mod n$. (i.e. integer congruence is a relation that satisfies the transitive property.)

Use a direct proof. So assume...

By definition of congruence, we can rephrase this as....

We want to show that...

[Now complete the proof]

BONUS PROOF

For all integers a,b and natural numbers m, if $a \equiv b \mod n$, then $a^m \equiv b^m \mod n$.

Question: What method of proof should we use? Can you make an outline of the proof once you've selected the method?

Recap

- **Definition of integer congruence:** Integers that are congruent mod n aren't necessarily *equal* but their difference is divisible by n.
- **Properties of integer congruence:** We proved some potentially useful algebra properties of integer congruence.
- **Equivalence relation:** We proved that "congruence mod n" is an equivalence relation on the set of integers (reflexive, symmetric, transitive).

NEXT UP: Greatest common divisors

Feedback:

http://gvsu.edu/s/1zN