```
import numpy as np
import pandas as pd
\hbox{import scipy.stats as sp}\\
import statistics as stats
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
{\it from \ sklearn.preprocessing \ import \ Polynomial Features}
from sklearn.model_selection import train_test_split
import statsmodels.api as stats
df=pd.read_csv('advertising.csv')
df
\Box
              TV Radio Newspaper Sales
                   37.8
          230.1
                                     22.1
       0
                               69.2
       1
            44.5
                   39.3
                              45.1
                                      10.4
       2
            17.2
                   45.9
                              69.3
                                      12.0
       3
           151.5
                   41.3
                              58.5
                                      16.5
           180.8
       4
                   10.8
                              58.4
                                      17.9
       ...
                                ...
                                       ...
      195
            38.2
                    3.7
                               13.8
                                      7.6
            94.2
                    4.9
                                      14.0
      196
                               8.1
      197 177.0
                    9.3
                                      14.8
      198 283.6
                   42.0
                               66.2
                                      25.5
      199 232.1
                    8.6
                                8.7
                                      18.4
     200 rows × 4 columns
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 200 entries, 0 to 199
     Data columns (total 4 columns):
      # Column
                     Non-Null Count Dtype
                      -----
                                      float64
      0
         TV
                      200 non-null
      1
          Radio
                      200 non-null
                                      float64
          Newspaper 200 non-null
                                      float64
                      200 non-null
                                      float64
      3
          Sales
     dtypes: float64(4)
     memory usage: 6.4 KB
df.isnull().sum()
                  0
     Radio
                  0
     Newspaper
                   0
     Sales
     dtype: int64
df.describe()
```

	TV	Radio	Newspaper	Sales
count	200.000000	200.000000	200.000000	200.000000
mean	147.042500	23.264000	30.554000	15.130500
std	85.854236	14.846809	21.778621	5.283892
min	0.700000	0.000000	0.300000	1.600000
25%	74.375000	9.975000	12.750000	11.000000
50%	149.750000	22.900000	25.750000	16.000000
75%	218.825000	36.525000	45.100000	19.050000
max	296.400000	49.600000	114.000000	27.000000

plt.boxplot(df['TV'])

plt.boxplot(df['Radio'])

plt.boxplot(df['Newspaper'])

plt.boxplot(df['Sales'])

df[df['Newspaper'] >=100]

	TV	Radio	Newspaper	Sales
16	67.8	36.6	114.0	12.5
101	296 4	36.3	100 9	23.8

sns.pairplot(df)

sns.heatmap(df.corr(),annot= True)

X= df[['TV','Newspaper','Radio']]
X

	TV	Newspaper	Radio
0	230.1	69.2	37.8
1	44.5	45.1	39.3
2	17.2	69.3	45.9
3	151.5	58.5	41.3
4	180.8	58.4	10.8
195	38.2	13.8	3.7
196	94.2	8.1	4.9
197	177.0	6.4	9.3
198	283.6	66.2	42.0
199	232.1	8.7	8.6

200 rows × 3 columns

```
y=df['Sales']
y
     0
            22.1
            10.4
     1
            12.0
     3
            16.5
            17.9
             7.6
     195
     196
            14.0
     197
            14.8
     198
            25.5
     199
            18.4
     Name: Sales, Length: 200, dtype: float64
LR= LinearRegression()
LR.fit(X,y)
      ▼ LinearRegression
      LinearRegression()
```

```
y_predict= LR.predict(X)
y_predict
```

```
array([21.22097209, 11.26824775, 10.49620897, 17.31244651, 15.64413685,
       10.35633677, 11.2732847, 13.27062458, 5.31839603, 15.78871013,
       8.8527202 , 18.88400523, 9.69879662, 10.74921373, 19.27328852,
       20.38554445,\ 12.27105794,\ 24.20214502,\ 10.5924398\ ,\ 15.20872794,
       19.49794066, 18.10414656, 7.06177654, 18.87221072, 9.37145421,
       19.31996936, 15.54479137, 19.49216302, 21.07865408, 10.19471067,
       23.61492832,\ 12.64683045,\ 10.08782551,\ 21.2260486\ ,\ 9.98787085,
       20.89407055, 23.84503494, 13.99342411, 9.8404516 , 21.08344935,
       18.04712878, 17.84885818, 23.57494339, 16.79762772, 8.75617872,
       16.57668108,\ 10.58020572,\ 22.13342743,\ 18.70257411,\ \ 9.53181337,
       15.84670856, 11.11990058, 20.88243422, 19.53008343, 22.01500291,
       20.76038994, 8.04320903, 14.10063486, 21.4222098, 19.25650785,
       7.75915886, 23.43911942, 19.32168181, 13.3867616 , 16.35231896,
       9.37729644, 8.97313482, 13.7643628, 20.49677834, 21.13545307,
       18.75250649, 12.14402868, 9.62178972, 12.29082115, 18.88048094,
       10.25121926, 6.30053312, 14.24014196, 8.1216232 , 11.77249775,
       11.64919966,\ 18.13231302,\ 10.90792515,\ 13.12271953,\ 20.86169623,
       17.13492417,\ 11.72724142,\ 15.01773541,\ 12.18585509,\ 15.73518229,
       12.46462002, 6.35385195, 20.08231542, 22.21538326, 11.97427675,
       16.91511512, 15.76009495, 16.94655913, 24.94140428, 16.4635515 ,
       17.21068667,\ 24.68086584,\ 20.96872721,\ 16.70191561,\ 21.26603007,
       17.117858 , 7.17325114, 9.58691025, 5.38975714, 21.41075554,
       17.81535602, 21.85850312, 15.83987218, 18.24477648, 13.90202178,
       12.47673434, \ 13.74268711, \ \ 8.87535042, \ 15.4438881 \ , \ \ 7.40087704,
       15.20145315, 7.98754856, 17.08301809, 15.03380429, 20.60147616,
       10.64410416, \quad 9.22913323, \quad 8.99476371, \ 21.86366378, \quad 9.16857418,
       8.90340499, 19.38888188, 7.99360692, 20.19198592, 10.78643994,
       12.28676609, 10.19510558, 22.63930843, 9.74450543, 19.3900734,
       10.44479522, 18.98449095, 20.19558086, 10.94160634, 11.45948342,
       12.47019032, 18.48158513, 23.12426769, 11.01020756, 9.8263967,
       21.40779104, 12.12822036, 17.88150523, 18.21228932, 17.11095629,
       6.09147928, 14.40908701, 12.92836006, 9.22565677, 13.77606971,
       15.96404812, 13.13831936, 16.82802417, 17.46713823, 12.58090014,
       17.78492754, \quad 9.63019994, \ 16.4474296 \ , \ 18.89730805, \ 21.24042066,
       8.59480345, 15.8336908 , 7.84869225, 14.55779863, 17.10206692,
       24.94755122, 21.38770686, 14.73822063, 19.94432942, 14.71726516,
       13.43232243, 17.10853074, 8.30485298, 24.90888356, 20.73265903,
       20.61884334, 12.45394152, 18.10675693, 21.68517626, 6.94582943,
      11.1754297, 9.89340771, 6.01090333, 18.20194019, 16.58691507, 7.10548051, 10.28004143, 15.25028683, 24.58221052, 18.185120481\
```

sns.regplot(x=y, y=y_predict)
plt.xlabel('Actual Sales')
plt.ylabel('Predicted Sales')
plt.title('Actual vs Predicted Sales')
plt.show()

Actual vs Predicted Sales

