# Sayısal Sistemler-H2CD2 Giriş

Dr. Meriç Çetin

versiyon160925

#### Bu derste öğreneceklerimiz

| 1 | Digital Systems and Binary Numbers |                               |    |  |  |  |
|---|------------------------------------|-------------------------------|----|--|--|--|
|   | 1.1                                | Digital Systems               | 1  |  |  |  |
|   | 1.2                                | Binary Numbers                | 3  |  |  |  |
|   | 1.3                                | Number-Base Conversions       | 6  |  |  |  |
|   | 1.4                                | Octal and Hexadecimal Numbers | 8  |  |  |  |
|   | 1.5                                | Complements of Numbers        | 10 |  |  |  |
|   | 1.6                                | Signed Binary Numbers         | 14 |  |  |  |
|   | 1.7                                | Binary Codes                  | 18 |  |  |  |
|   | 1.8                                | Binary Storage and Registers  | 27 |  |  |  |
|   | 1.9                                | Binary Logic                  | 30 |  |  |  |

# 1.6 İşaret Bitli Sayılar

#### İşaret Bitli Sayılar

- Bir sayı için işaret bitli denilirse, bu sayıdaki en yüksek değerlikli bit (Most Significant Bit- MSB) işaret biti olarak adlandırılır.
- İşaret bitli 8 bitlik bir sayıdan bahsedilmişse;



#### Section 1.6 Signed Binary Numbers

Table 1.3
Signed Binary Numbers

| Decimal | Signed-2's<br>Complement | Signed-1's<br>Complement | Signed<br>Magnitude |  |
|---------|--------------------------|--------------------------|---------------------|--|
| +7      | 0111                     | 0111                     | 0111                |  |
| +6      | 0110                     | 0110                     | 0110                |  |
| +5      | 0101                     | 0101                     | 0101                |  |
| +4      | 0100                     | 0100                     | 0100                |  |
| +3      | 0011                     | 0011                     | 0011                |  |
| +2      | 0010                     | 0010                     | 0010                |  |
| +1      | 0001                     | 0001                     | 0001                |  |
| +0      | 0000                     | 0000                     | 0000                |  |
| -0      | -                        | 1111                     | 1000                |  |
| -1      | 1111                     | 1110                     | 1001                |  |
| -2      | 1110                     | 1101                     | 1010                |  |
| -3      | 1101                     | 1100                     | 1011                |  |
| -4      | 1100                     | 1011                     | 1100                |  |
| -5      | 1011                     | 1010                     | 1101                |  |
| -6      | 1010                     | 1001                     | 1110                |  |
| -7      | 1001                     | 1000                     | 1111                |  |
| -8      | 1000                     | _                        |                     |  |

#### İşaret bitli sayılarda tümleyen

#### Kural:

• İşaret bitli sayılarda tümleyen alınırken işaret bitinin tümleyeni alınmaz.

#### Örnek

• (10101100)<sub>2</sub> işaret bitli sayının 2'ye tümleyeni nedir?



# İşaret Bitli Sayılarla İşlem

#### İşaret bitli sayılarda aritmetik işlemler

- Örnek: işaret bitli iki pozitif sayının toplanması
  - $(01001)_2 + (00101)_2 = (01110)_2$
- Örnek: işaret bitli pozitif ve bu sayıdan büyük negatif bir sayının toplanması
  - $(11001)_2$  +  $(00100)_2$  =  $(10101)_2$
- Örnek: işaret bitli pozitif ve bu sayıdan küçük negatif bir sayının toplanması
  - $(01001)_2 + (10100)_2 = (00101)_2$
- Örnek: işaret bitli iki negatif sayının toplanması
  - $(11001)_2$  +  $(10100)_2$  =  $(11101)_2$

## İşaret bitli sayılarda aritmetik işlemler

| + | 6  | 00000110 | - 6 | 11111010 |
|---|----|----------|-----|----------|
| + | 13 | 00001101 | +13 | 00001101 |
| + | 19 | 00010011 | + 7 | 00000111 |
| + | 6  | 00000110 | - 6 | 11111010 |
| _ | 13 | 11110011 | -13 | 11110011 |
| _ | 7  | 11111001 | -19 | 11101101 |

# 1.8 İkili Depolama Kavramı ve Kaydediciler

#### İkili Depolama ve Kaydediciler

- Bir sayısal bilgisayardaki ayrık bilgi unsurları bazı bilgi depolama ortamlarında fiziksel bir varlığa sahiptir.
- Ayrık bilgi öğeleri ikili (binary) biçimde temsil edildiğinde, bilgi depolama ortamı, ayrık bitleri depolamak için ikili depolama öğeleri içermelidir.
- İkili hücre (binary cell), iki kararlı duruma sahiptir ve bir bit bilgi depolayabilir.
- Bir hücrede depolanan bilgi, bir kararlı durumda olduğunda 1 ve diğer kararlı durumda olduğunda 0'dır.
- İkili hücrelere örnek olarak elektronik flip-flop devreleri, belleklerde kullanılan ferrit çekirdekler ve bir kartta delikli veya deliksiz konumlar verilebilir.

#### Kaydediciler

- Kaydediciler ikili hücreler grubu olarak bilinir. Bir hücre bir bit bilgi depoladığından, n hücreli bir kaydedici, n bit içeren bilgiyi depolayabilir.
- Bir kaydedicinin içeriği, içinde depolanan bilgilere verilen yorumun bir fonksiyonudur. Aşağıdaki gibi 16 hücreli kaydediciyi düşünelim:



- n hücreli bir kaydedici **2**<sup>n</sup> olası durumdan birinde olabilir. Kaydedici içeriğinin ikili bir tamsayıyı temsil ettiği varsayıldığında kaydedici **0** ile **2**<sup>16</sup>-**1** arasında herhangi bir ikili sayıyı saklayabilir. Verilen örnek için, kaydedici içeriği 50121 ondalık sayısının ikili eşdeğeridir.
- Kullanıcının anlamlı bilgileri kaydedicilerde saklaması ve bilgisayarın bu bilgileri depolanan bilgi türüne göre işleyecek şekilde programlanması önemlidir.

#### Kaydediciler-devam

- Sayısal bir bilgisayar, kaydedicilerle karakterize edilir.
- Bellek birimi, sayısal bilgilerin depolanması için binlerce kaydediciden oluşur.
- İşlemci birimi, işlenen verileri depolayan çeşitli kaydedicilerden oluşur.
- Kontrol ünitesi, çeşitli bilgisayar sekanslarını takip etmek için kaydedicileri kullanır.
- Dijital sistemlerde temel bir işlem olan kaydediciler arası transfer, bir kaydedicide depolanan bilgilerin diğerine aktarımından oluşur.



Transfer of information with registers

## 1.9 İkili Mantık

## İkili Mantık (Binary Logic)

- İkili mantık, iki ayrı değer alan değişkenlerle ve mantıksal anlam üstlenen işlemlerle ilgilenir.
- Değişkenlerin aldığı iki değer farklı isimlerle çağrılabilir (örneğin, doğru ve yanlış, evet ve hayır, vb.).
- İkili mantıkta amacımız için bit cinsinden düşünmek ve değişkenlere 1 ve 0 değerlerini atamak daha uygun olur.
- İkili mantık, ikili bilginin işlenmesini matematiksel bir şekilde tanımlamak için kullanılır. Özellikle dijital sistemlerin analizi ve tasarımı için uygundur.
- Burada tanıtılacak ikili mantık, Boole cebri adı verilen bir cebire eşdeğerdir.
- Bu bölümün amacı, Boole cebirini sezgisel bir şekilde tanıtmak ve bunu dijital mantık devreleri ve ikili sinyallerle ilişkilendirmektir.

#### İkili Mantığın Tanımı

- İkili mantık, ikili değişkenlerden ve mantıksal işlemlerden oluşur.
- Değişkenler A, B, C, x, y, z, vb. gibi alfabe harfleri ile belirtilir ve her değişken ancak ve ancak iki farklı olası değere sahiptir:
  - 1 ve 0.
- Üç temel mantıksal işlem vardır:
  - **VE**,
  - VEYA ve
  - DEĞİL.

## İkili Mantıkta Ve İşlemi

- Bu işlem bir nokta ile veya bir operatörün olmamasıyla temsil edilir.
- Örneğin, x y = z veya xy = z
- "x VE y eşittir z" olarak okunur.
- AND mantıksal işlemi,
  - ancak ve ancak x = 1 ve y = 1 ise z = 1 anlamına gelecek şekilde yorumlanır;
  - aksi takdirde z = 0.
- (x, y ve z'nin ikili değişkenler olduğunu ve 1 veya 0'a eşit olabileceğini ve başka hiçbir şey olmadığını unutmayın.)

## İkili Mantıkta Veya İşlemi

- Bu işlem bir artı işaretiyle temsil edilir.
- Örneğin, x + y = z,
- "x OR y eşittir z" olarak okunur.
- OR mantıksal işlemi,
  - x = 1 veya y = 1 ise veya hem x = 1 hem de y = 1 ise z = 1'dir.
  - Hem x = 0 hem de y = 0 ise, z = 0.

#### İkili Mantıkta Değil İşlemi

- Bu işlem bir tümleme operatörü (bazen bir çubuk/bar) ile temsil edilir.
- Örneğin, x' = z (veya  $\overline{x} = z$ )
- "x not eşittir z" olarak okunur, yani z, x değildir.
- NOT mantıksal işlemi,
  - Eğer x = 1 ise z = 0 ama
  - x = 0 ise z = 1.

#### İkili Mantık

- İkili mantık, ikili aritmetiğe benzer ve AND ve OR işlemlerinin sırasıyla çarpma ve toplamayla bazı benzerlikleri vardır.
- Aslında VE ve VEYA için kullanılan semboller, çarpma ve toplama için kullanılanlarla aynıdır.
- Bununla birlikte, ikili mantık, ikili aritmetik ile karıştırılmamalıdır.
- Bir aritmetik değişkenin, birçok basamaktan oluşabilen bir sayıyı gösterdiğinin farkına varılmalıdır. Mantık değişkeni ise her zaman ya 1 ya da 0'dır.
- Örneğin, ikili aritmetikte 1 + 1 = 10 (okuyun: "bir artı bir 2'ye eşittir"), ikili mantıkta ise 1 + 1 = 1 (okuyun: "bir VEYA bir, bire eşittir").

- x ve y değerlerinin her kombinasyonu için mantıksal işlemin tanımıyla belirlenen bir z değeri vardır.
- Bu tanımlar, doğruluk tabloları kullanılarak kompakt bir biçimde listelenebilir.
- Doğruluk tablosu, değişkenlerin alabileceği değerler ile işlemin sonucu arasındaki ilişkiyi gösteren tüm olası değişken kombinasyonlarının bir tablosudur.

|   | AND |             | OR |   | NOT |   |    |
|---|-----|-------------|----|---|-----|---|----|
| x | у   | $x \cdot y$ | x  | у | x+y | X | x' |
| 0 | 0   | 0           | 0  | 0 | 0   | 0 | 1  |
| 0 | 1   | 0           | 0  | 1 | 1   | 1 | 0  |
| 1 | 0   | 0           | 1  | 0 | 1   |   |    |
| 1 | 1   | 1           | 1  | 1 | 1   |   |    |