ФГАОУ ВПО «УрФУ имени первого президента России Б.Н.Ельцина» Институт математики и компьютерных наук

Кафедра алгебры и дискретной математики

Вычислительный эксперимент с разбиениями Линдона и Лемпеля-Зива

Отчет по учебной практике студента 2 курса группы МК-240014 Борзунова Александра Александровича

Научный руководитель: доктор физико-математических наук профессор Шур Арсений Михайлович

Екатеринбург 2016

1. Поставленная задача

Пусть Z(S) - число сегментов в разбиении Лемпеля-Зива определённой строки, а L(S) - число различных сегментов в разбиении Линдона. Существует следующая гипотеза:

$$L(S) = O(Z(S))$$

Была известна только одна серия бинарных строк, для которой L(S) > Z(S). Предлагалось перебором коротких строк найти ещё серии с этим свойством.

2. Алгоритмы и техники, используемые в переборе

Для написания программы для перебора был выбран язык программирования Go. Это сравнительно новый язык (появился в 2009 году), который:

- Является компилируемым (программы на нём могут достигать производительности программ, написанных на Си);
- Безопасно управляет памятью (это упрощает отладку программ по сравнению с Си);
- Позволяет легко распараллелить вычисления между ядрами процессора.

Реализованная программа параллельно на всех ядрах процессора перебирает и проверяет все строки, начиная от меньших длин к большим. Выводятся все строки, где L(S) > Z(S). С программой для перебора прилагается вспомогательная утилита, которая показывает разбиения произвольных строк и величины L(S), Z(S) для них.

Для вычисления количества различных сегментов в разбиении Линдона используется алгоритм Дюваля [1].

Для вычисления количества сегментов в разбиении Лемпеля-Зива используется алгоритм [2] (Goto, Bannai, 2012). Для его использования требуется предварительно построить суффиксный массив строки, что делается одним из следующих способов:

- Алгоритм [3] (Larsson, Sadakane, 2007), строящий суффиксный массив за $O(n \log n)$, где n длина строки. Этот алгоритм уже реализован в стандартной библиотеке Go. Данная реализация была модифицирована так, чтобы работать только со статическими буферами и избежать регулярных выделений памяти (что значительно ускорило программу).
- Для коротких бинарных строк (чья длина не больше 64) можно использовать другой способ. Бинарную строку можно представить в виде переменной, содержащей одно целое 64-битное число. Суффиксы такой строки можно быстро сравнивать между собой, если выделить их с помощью операции битового сдвига влево (справа они дополнятся нулями), а затем сравнить как 64-битные числа (если они равны, следует также учесть длины суффиксов). Тогда суффиксы будут сравниваться лексикографически с помощью простых для процессора операций за O(1).

Используя описанный метод сравнения суффиксов по их смещениям, достаточно отсортировать массив со смещениями суффиксов за $O(n \log n)$ и получить

искомый суффиксный массив. На практике этот метод оказался существенно быстрее предыдущего.

В итоге первый метод использовался для вычисления разбиений длинных строк (их понадобилось строить, чтобы проверить свойства полученных серий), а второй метод — для разбиения коротких строк во время перебора.

Построение разбиения Лемпеля-Зива всё равно являлось узким местом в программе (оно выполняется значительно медленнее, чем построение разбиения Линдона). Для ускорения программы был использован тот факт, что $Z(S)=Z(\bar{S})$, где \bar{S} — строка, полученная из S заменой всех 0 на 1 и всех 1 на 0. Это позволяет вычислять в два раза меньше разбиений Лемпеля-Зива, что ускорило программу ещё в 1,5–2 раза.

Итоговая версия программы требует $O(2^n \cdot n \log n)$ времени, чтобы проверить все строки длины n. На четырёхядерном процессоре ноутбука Intel Core i5-3317U проверка всех бинарных строк длины 25 занимает около 22 секунд.

Исходный код доступен по ссылке: https://github.com/borzunov/course-work-2016

3. Полученные результаты

3.1. Слова, где L(S) > Z(S)

С помощью перебора, описанного в предыдущем разделе, были проверены все бинарные слова длиной до 34 символов включительно. Оказалось, что самое короткое слово с данным свойством имеет длину 14. На проверенных длинах разность L(S) - Z(S) не превысила 2. Таблицы с кратчайшими словами, где L(S) > Z(S), и их количеством представлены в приложении A.

Список всех найденных слов с данным свойством доступен по ссылке: https://raw.githubusercontent.com/borzunov/course-work-2016/master/bruteforce/result.txt

Простого закона для зависимости кол-ва слов длины n с данным свойством от числа n (рис. 1 ниже) найдено не было. По графику на рис. 2 можно предположить, что доля слов с данным свойством среди всех слов определённой длины стремится к нулю.

3.2. Построенные серии строк

После поиска закономерностей в кратчайших словах с заданным свойством по аналогии были построены несколько серий строк, где L(S) существенно превышает Z(S). Тем не менее, во всех сериях не нарушается гипотеза о том, что L(S) = O(Z(S)). Серии перечислены ниже:

1)

$$S_n = \prod_{i=n}^{1} (10)^i 0$$

Для n=2k имеем:

$$L(S_n) = 2k + 2$$
 $Z(S_n) = k + 3$ $\frac{L(S_n)}{Z(S_n)} \to 2$

Рис. 1. Кол-во слов с указанными свойствами.

Рис. 2. Доля слов с указанными свойствами среди всех слов заданной длины.

Пример для n=6:

- Слово: 101010101010 0 1010101010 0 10101010 0 101010 0 1010 0 10 0
- Разбиение Линдона (8 различных сегментов):
 1 01 01 01 01 00101010101 0010101 0010101 00101 001 0 0
- Разбиение Лемпеля-Зива (6 сегментов):
 1 0 1010101010 01010101010101010 01010101010 0100

Похожая серия с чуть более сложной формулой при n=2 даёт слово наименьшей длины, у которого L(S)>Z(S):

$$S_n = \left(\prod_{i=n+1}^{2} (10)^i 0\right) \cdot 10$$

Упомянутое слово имеет длину 14:

- Слово: 101010 0 1010 0 10
- Разбиение Линдона (5 различных сегментов):
 1 01 01 00101 001 0
- Разбиение Лемпеля-Зива (4 сегмента): 1 0 1010 01010010

2)

$$S_n = \prod_{k=n}^{1} \prod_{i=k}^{1} (10)^i 0$$

Для n=2k имеем:

$$L(S_n) = 4k$$
 $Z(S_n) = 3k$ $\frac{L(S_n)}{Z(S_n)} = \frac{4}{3}$

Пример для n=4:

- Слово: 10101010 0 101010 0 10100 10 0 101010 0 1010 0 10 0 1010 0 10 0 10 0

3)

$$S_n = \prod_{k=n}^{1} \prod_{j=k}^{1} \prod_{i=j}^{1} (10)^i 0$$

Для n=2k имеем:

$$L(S_n) = 6k - 2$$
 $Z(S_n) = 5k - 3$ $\frac{L(S_n)}{Z(S_n)} \to \frac{6}{5}$

Пример для n=4:

- 4) Аналогично предыдущим сериям, можно составить:

$$S_n = \prod_{m=n}^{1} \prod_{k=m}^{1} \prod_{j=k}^{1} \prod_{i=j}^{1} (10)^i 0$$

Для n=2k имеем:

$$L(S_n) = 8k - 4$$
 $Z(S_n) = 7k - 6$ $\frac{L(S_n)}{Z(S_n)} \to \frac{8}{7}$

Список литературы

- [1] Duval, Jean-Pierre (1988), "Génération d'une section des classes de conjugaison et arbre des mots de Lyndon de longueur bornée Theoretical Computer Science (in French) 60 (3): 255–283, doi:10.1016/0304-3975(88)90113-2, MR 979464
- [2] Keisuke Goto, Hideo Bannai (2012), Simpler and Faster Lempel Ziv Factorization, arXiv:1211.3642
- [3] N. Jesper Larsson, Kunihiko Sadakane (2007), Faster suffix sorting, doi:10.1016/j.tcs.2007.07.017

Приложение. Таблицы с кратчайшими словами, где L(S) > Z(S), и их количеством

Таблица 1. Кратчайшие слова, где L(S) - Z(S) = 1.

Длина	Слово	L(S)	Z(S)
14	10101001010010	5	4
16	1010101001010010	5	4
18	101001000100100010	6	5
	101010101001010010	5	4
	101010010100100010	6	5
	101010100101010010	5	4
19	1010110100110100110	6	5
	1010010001001000100	6	5
	1010100101001010010	5	4
	1010100101001000100	6	5
	10101101001011010010	6	5
20	10101001010010001000	6	5
	10101010010101001010	5	4
	10101010101001010010	5	4
	10101001000100100010	6	5
	10101010010100100010	6	5
	10101001010010001010	6	5
	1010101010010101010010	5	4

Таблица 2. Кратчайшие слова, где L(S)-Z(S)=2.

Длина	Слово	L(S)	Z(S)
27	101010010100100010100100010	7	5
	10101001010010001010010001010	7	5
29	10101101001101001100100110010	8	6
	10101010010100100010100100010	7	5
30	101010100101010010100010100010	7	5
	101010010100100010100100010100	7	5
	101011010011010011001001100100	8	6
31	1010101001010010001010010001010	7	5
	1010101010010100100010100100010	7	5
	1010100101001000101000100100010	8	6
	1010101101001101001100100110010	8	6
	1010101001010100101001001010010	7	5

Таблица 3. Кол-во слов определённой длины с исследуемыми свойствами.

	Слов, где Слов, где		
Длина	L(S) - Z(S) = 1	L(S) - Z(S) = 2	
1.4	. , , ,	. , . , ,	
14	1	0	
15	0	0	
16	1	0	
17	0	0	
18	4	0	
19	4	0	
20	8	0	
21	8	0	
22	16	0	
23	25	0	
24	43	0	
25	63	0	
26	110	0	
27	158	1	
28	264	0	
29	392	3	
30	645	3	
31	960	5	
32	1575	10	
33	2395	15	
34	3596	33	