GCSE Maths Knowledge Sheet

Eason's Mathematics Toolbox

Yicheng Shao

Version 1. April 6, 2023

Contents

0	Prior Knowledge and Notations	2
1	Functions	4
2	Quadratic	5
3	Equations, inequalities and graphs	6
4	Indices and surds	8
5	Factors of polynomials	9
6	Simultaneous equations	9
7	Logarithmic and exponential functions	10
8	Straight line graphs	11
9	Circular measure	11
10	Trigonometry	12
11	Differentiation and integration	13
12	Vectors in two dimensions	16
13	Permutations and combinations	16
14	Series	16

What is this and why this?

Mathematics is one of my favourite subjects and it is very important whatever you are doing in the future. It is mostly about techniques solving problems, but the knowledge behind all those techniques are vital for understanding. To aid practice, I produced this document based on the syllabus.

This is more of an extension of the syllabus and the structure is exactly the same. However, it provides some sample answers for those questions in the syllabus and is a good way to refer to your self assessment based on the syllabus.

I am also an IGCSE student so errors are inevitable in this document. Feel free to email eason.syc@icloud.com to point out any mistakes or submit an issue on the GitHub page!

This document assumes prior knowledge in CIE IGCSE Mathematics.

Section 0 Prior Knowledge and Notations

§0.1 Set Notations

Definition 0.1 (set and elements). If x is an element of set S, we denote $x \in S$. Otherwise, $x \notin S$.

Definition 0.2 (set constructers). We have two set constructer notations:

$${x \mid P(x)} = {x : P(x)}$$

defines a set containing all x satisfying condition P(x).

$$\{x_1, x_2, \ldots\}$$

defines a set with elements x_1, x_2, \ldots

Definition 0.3 (empty set, universal set). We use \emptyset or \emptyset to define the empty set (set with no elements) and use \mathcal{E} to denote the universal set.

Definition 0.4 (cardinality). We use n(S) to denote the number of elements in set S.

Definition 0.5 (complement). We use S' to define the complement of set S,

$$S' = \{ x \in \mathcal{E} \mid x \notin S \}$$

Definition 0.6 (subset, proper subset). We denote

$$A \subseteq B$$

if $x \in A \implies x \in B$.

Furthermore, if $A \neq B$, we denote it as

$$A \subset B$$
.

Definition 0.7 (union, intersection). We denote

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\},\$$

and

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$$

Definition 0.8 (number sets). The set \mathbb{N} is the natural numbers, $\mathbb{N} = \{1, 2, 3, \ldots\}$.

The set \mathbb{Z} is the integers, $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$.

The set \mathbb{Q} is the rational numbers,

$$\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \right\}.$$

The set \mathbb{R} is the set of real numbers.

Definition 0.9 (intervals). We define the intervals as follows:

$$(a,b) = \{x \mid a < x < b\},\$$

$$(a,b] = \{x \mid a < x \le b\},\$$

$$[a,b) = \{x \mid a \le x < b\},\$$

$$[a,b] = \{x \mid a \le x \le b\},\$$

$$(a,+\infty) = \{x \mid x > a\},\$$

$$[a,+\infty) = \{x \mid x \ge a\},\$$

$$(-\infty,b) = \{x \mid x < b\},\$$

$$(-\infty,b) = \{x \mid x \le b\},\$$

$$(-\infty,b] = \{x \mid x \le b\},\$$

$$(-\infty,+\infty) = \mathbb{R}.$$

§0.2 Relationship Symbols and Operations

Definition 0.10 (implies, implied by, equivilent). A implies B is denoted by $A \implies B$, B implies A is denoted by $A \iff B$, A and B are equivilent is denoted by $A \iff B$.

Definition 0.11 (sum and product). We define

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \ldots + a_n,$$

and

$$\prod_{i=1}^{n} a_i = a_1 \cdot a_2 \cdots a_n.$$

Definition 0.12 (binominal coefficient and factorial). We define

$$n! = n \cdot (n-1) \cdot \cdot \cdot 1$$
,

with 0! = 1, hence defining

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

§0.3 Functions

Definition 0.13 (composite of two functions). We define

$$gf(x) = g(f(x)).$$

Definition 0.14 (derivative). We denote

$$\frac{\mathrm{d}^n f(x)}{\mathrm{d} x^n} = f^{(n)}(x)$$

as the *n*th derivative of f(x).

§0.4 Triangles

Theorem 0.15 (sine rule, cosine rule, area). In $\triangle ABC$ with side lengths a, b, c and angles A, B, C, we have

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C},$$

$$a^2 = b^2 + c^2 - 2bc\cos A,$$

$$b^2 = a^2 + c^2 - 2ac\cos B,$$

$$c^2 = a^2 + b^2 - 2ab\cos C,$$

$$\operatorname{area} = \frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B.$$

Section 1 Functions

Definition 1.1 (function, domain, image). A function $f: A \to B$ is defined as a mapping which maps each element in A to exactly one element in B. Basically, a function is an operation on a thing which definitely produces another thing.

We call A the **domain** (the set which this function can operate on). (And B the co-domain.) We define the set

$$\{f(x) \mid x \in A\}$$

as the range of the function, which is all the outputs of the function.

At this stage, B will be \mathbb{R} and A will be a subset of \mathbb{R} .

Definition 1.2 (one-to-one, many-to-one). We call a function f one-to-one, or injective, when

$$f(x_1) = f(x_2) \implies x_1 = x_2.$$

This means that each output a function will produce can only appear by opeating on exactly one element. If a function is not one-to-one, we call it **many-to-one**.

Definition 1.3 (function notations). The result that f maps an element of the domain x to is denoted as f(x). As an example, if function f maps x to $\sin x$, then the following are equivilent:

- 1. $f(x) = \sin x$,
- 2. $f: x \mapsto \sin x$.

Definition 1.4 (inverse). A function's inverse, denoted as $f^{-1}(x)$, is defined from the range of f(x) to the domain of f(x), and satisfies that:

$$f^{-1}(f(x)) = f(f^{-1}(x)) = x.$$

Theorem 1.5 (unique inverse). If the inverse of a function exists, then it is unique.

Theorem 1.6 (condition for existance of inverse). The inverse of a function exists if and only if such function is one-to-one.

Remark. The previous theorem is true if and only if such inverse is defined from the range. If such inverse is defined from the co-domain then we also require the function to surjective (i.e. range equals to co-domain) hence bijective. This is a very useful concept (isomorphism)!

Theorem 1.7 (inverse graphs). The graph of a inverse of a function and the function itself is symmetric by the line y = x.

Definition 1.8 (composite). The composite of f with f denoted as f^2 is defined as follows:

$$f^2(x) = f(f(x)).$$

Definition 1.9 (modulus). The graph of |f(x)| and f(x) has a relationship as follows:

The graph of |f(x)| reflects the part of the graph of f(x) below the x axis with regards to the x axis (basically flip it up).

Section 2 Quadratic

Definition 2.1 (quadratic). A quadratic function f is defined as an element of $\mathbb{P}[x]$ where $\deg f(x) = 2$. Just kidding. A quadratic function f is defined as

$$f(x) = ax^2 + bx + c$$

where $a \neq 0$.

Theorem 2.2 (extremum property). A quadratic function f(x) has a maximum if and only if a < 0, and it has a minimum if and only if a > 0. The turning point (extremum point in this case) of a quadratic is

$$\left(-\frac{b}{2a}, \frac{4ac-b^2}{4ac}\right).$$

Proof. We can show this by **completing the square**.

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a} \cdot x\right) + c$$

$$= a\left[x^{2} + 2 \cdot \frac{b}{2a} \cdot x + \left(\frac{b}{2a}\right)^{2}\right] - a \cdot \left(\frac{b}{2a}\right)^{2} + c$$

$$= a \cdot \left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a} + c.$$

If a > 0, then we have

$$ax^2 + bx + c \ge -\frac{b^2}{4a} + c,$$

where the equal sign holds if and only if $x = -\frac{b}{2a}$.

Similar argument holds for a < 0.

Proof. We can also show this by **differentiation**.

Theorem 2.3 (roots). The roots (solutions) to the quadratic will be

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Theorem 2.4 (discriminant). The **discriminant** for the quadratic $ax^2 + bx + c$ is defined as

$$\Lambda = b^2 - 4ac$$

When $\Delta > 0$, the quadratic has two distinct real roots; when $\Delta = 0$, the quadratic has two equal real roots; when $\Delta < 0$, the quadratic has two complex roots which are complex conjugate of each other (i.e. sum to a real number).

Theorem 2.5 (quadratic and a line). The intersections for a quadratic and a line (which is not perpendicular to the x axis) can be found by equating their equations and solve the corresponding equation (which is a quadratic).

Theorem 2.6 (quadratic inequalities). A quadratic inequality can be solved by finding the two solutions (known as **critical values**).

For the quadratic $f(x) = ax^2 + bx + c$ where a > 0 (a < 0 can be considered similarly),

1. $\Delta > 0$. Let the two roots be x_1 and x_2 .

The solution set to f(x) > 0 is

$$(-\infty, x_1) \cup (x_2, +\infty).$$

The solution set to f(x) < 0 is

$$(x_1, x_2).$$

2. $\Delta = 0$. Let the root be x_r .

The solution set to f(x) > 0 is

$$(-\infty, x_r) \cup (x_r, +\infty).$$

The solution set to f(x) < 0 is \emptyset .

3. $\Delta < 0$. The solution set to f(x) > 0 is \mathbb{R} and the solution set to f(x) < 0 is \emptyset .

Section 3 Equations, inequalities and graphs

Theorem 3.1 (type $|ax+b|=c, a\neq 0, c\geq 0$). The solutions to the equation

$$|ax + b| = c$$

is

$$x_1 = \frac{c-b}{a}, x_2 = \frac{-c-b}{a}.$$

Proof. The solution to this can be shown by dividing it into cases, where ax + b = -c or ax + b = c.

Proof. This solution can also be shown by squaring both sides to get rid of the absolute value and using quadratic solving methods. I would not prefer it in the first place. \Box

Theorem 3.2 (generalise: $|f(x)| = c \ge 0$). The solution to this equation is the same as the solutions to $f(x) = \pm c$.

Theorem 3.3 (type |ax + b| = |cx + d|). The solutions to the equation

$$|ax + b| = |cx + d|$$

is

$$x_{1,2} = \frac{(cd - ab) \pm 2(ad - bc)}{a^2 - c^2}$$

Proof. We can show it by squaring both sides getting

$$(ax + b)^2 = (cx + d)^2 \implies (a^2 - c^2)x^2 + 2(ab - cd)x + (b^2 - d^2) = 0.$$

The discriminant will be

$$\begin{split} \Delta &= [2(ab-cd)]^2 - 4(a^2-c^2)(b^2-d^2) \\ &= 4[(a^2b^2-2abcd+c^2d^2) - a^2b^2 - c^2d^2 + a^2d^2 + b^2c^2] \\ &= 4[a^2d^2-2abcd+b^2c^2] \\ &= 4(ad-bc)^2. \end{split}$$

Hence, solutions will be

$$x_{1,2} = \frac{-2(ab - cd) \pm \sqrt{\Delta}}{2(a^2 - c^2)}$$
$$= \frac{(cd - ab) \pm 2(ad - bc)}{a^2 - c^2}.$$

Proof. We can also show this by considering order relationship between $-\frac{b}{a}, -\frac{d}{c}, x$ and expanding absolute values. I would not prefer it in the first place.

Theorem 3.4 (type |f(x)| = |g(x)|). This solution will be the same as $[f(x)]^2 = [g(x)]^2$.

Theorem 3.5 (type $|ax + b| > / \le c, c \ge 0$). Solutions to |ax + b| > c with previous mentioned restrictions will be the same as the solution to

$$(ax+b)^2 - c^2 > 0$$
.

I would prefer to square everything if this is a inequality, but we should be careful whether this operation is equivilent or not (will it introduce more solutions? will it ignore certain solutions?)

Theorem 3.6 (type $|ax + b| \le |cx + d|$). Solutions to this will be equivilent to

$$(a^2 - c^2)x^2 + 2(ab - cd)x + (b^2 - d^2) \le 0.$$

We can also do this by considering the relationship between $x, -\frac{b}{a}, -\frac{d}{c}$, but I think this way is easier.

Theorem 3.7 (graph of $p(x) = k(x-a)(x-b)(x-c), k \neq 0$). The graph of p(x) will satisfies the follows:

$$\lim_{x \to +\infty} p(x) = -\lim_{x \to -\infty} p(x) = +\infty \text{ (if } k > 0), = -\infty \text{ (if } k < 0),$$

which shows the trends of the graph of p(x) when it approaches infinity (go further to the left/right) has the same symbol as k.

Furthermore, the intersections of p(x) and x-axis will be a, b, c, since intersection with x-axis implies p(x) = 0 (and they are the only ones due to the fundamental theorem of algebra).

Section 4 Indices and surds

In this section we will recall the full definition of the power of a positive number.

Definition 4.1 (a^b where $a > 0, b \in \mathbb{N}$). We inductively define it by base case

$$a^0 = 1$$
,

and

$$a^b = a^{b-1} \cdot a \text{ for } b \ge 1,$$

in the positive direction, and

$$a^b = a^{b+1} \cdot \frac{1}{a}$$
 for $b \le -1$

in the negative direction.

Definition 4.2 (a^b where $a>0, b=\frac{p}{q}, p\in\mathbb{Z}, q\in\mathbb{N}$). We define it as

$$a^b = a^{\frac{p}{q}} = \sqrt[q]{a^p}.$$

Theorem 4.3 (calculation properties of powers). We have

$$a^{b} \cdot a^{c} = a^{b+c},$$

$$\frac{a^{b}}{a^{c}} = a^{b-c},$$

$$(a^{b})^{c} = (a^{c})^{b} = a^{bc},$$

$$(ab)^{c} = a^{c}b^{c},$$

$$\left(\frac{a}{b}\right)^{c} = \frac{a^{c}}{b^{c}}$$

$$a^{0} = 1,$$

$$a^{-n} = \frac{1}{a^{n}},$$

$$a^{\frac{1}{n}} = \sqrt[n]{a},$$

$$a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^{m} = \sqrt[n]{a^{m}}.$$

Readers should verify that the previous two definitions are actually well-defined under those properties (because I believe those properties are the reason why we define it as previously defined).

Theorem 4.4 (calculation properties of roots). We have

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b},$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}},$$

$$\sqrt{a} \cdot \sqrt{a} = a.$$

For those $b \in \mathbb{Q}'$ (i.e. b is a irrational number), we define it by a limit of rational numbers (Cauchy Sequence).

To rationalise a fraction, we use the following theorem (in fact, a method, by conjugate roots)

Theorem 4.5 (rationalising denominator). We have

$$\frac{k}{\sqrt{a}} = \frac{k\sqrt{a}}{a},$$

$$\frac{k}{\sqrt{a} - \sqrt{b}} = \frac{k(\sqrt{a} + \sqrt{b})}{a - b},$$

$$\frac{k}{\sqrt{a} + \sqrt{b}} = \frac{k(\sqrt{a} - \sqrt{b})}{a - b}.$$

Section 5 Factors of polynomials

Definition 5.1 (polynomial). A polynomial is an element of the linear space/communicative ring $\mathbb{P}[x]$. Just kidding. A **polynomial** p(x) can be expressed as a sum

$$p(x) = \sum_{i=0}^{n} k_i x^i$$

for some non-negative integer n which we call it the degree (DANGER ZONE! degree of the polynomial 0 is negative infinity), and real number k_i s which are not all 0.

Definition 5.2 (root). A **root** x_0 of a polynomial p(x) satisfies that $p(x_0) = 0$.

Theorem 5.3 (factor theorem). x_0 is a root of p(x) if and only if $(x - x_0)$ is a factor of p(x).

Proof. By basic properties of division, let $p(x) = q(x)(x - x_0) + r(x)$.

If x_0 is a root of p(x), then by definition we have $p(x_0) = r(x) = 0$ which means p(x) has a remainder of 0 upon division by $x - x_0$.

If $x - x_0$ is a factor of p(x), we have r(x) = 0 and $p(x) = q(x)(x - x_0)$. Plugging in $x = x_0$ will give use p(x) = 0 hence x_0 is a root of p(x).

Theorem 5.4 (remainder theorem). The remainder of p(x) divided by $(x-x_0)$ will be equal to $p(x_0)$.

Proof. Proof is similar to previous one. The reader should verify so.

Section 6 Simultaneous equations

This section does not have a lot to do.

Two ways of solving simultaneous equations are elimination or substitution.

There is an advanced way of dealing with Linear Equations (i.e. unknown maximum power of 1) by using matrices, ranks (linear algebra) and Gaussian Elimination. But it's just elimination, using more advanced way to express so.

Section 7 Logarithmic and exponential functions

Definition 7.1 (exponential functions). An exponential function f(x) has the form of follows

$$f(x) = a^x$$

where a > 0 and $a \neq 1$.

Exponential functions are defined on \mathbb{R} and has a range of $(0, +\infty)$.

Definition 7.2 (logarithm). We define the function $\log_a x$ as the inverse of a^x where $a>0, a\neq 1$. In fact,

$$y = a^x \iff x = \log_a y, a > 0, a \neq 1.$$

Definition 7.3 (logarithm functions). A logarithmic function f(x) has the form of follows

$$f(x) = \log_a x$$

where a > 0 and $a \neq 1$.

In the case of a = e, we denote it as

$$f(x) = \ln x$$

and in the case of a = 10, we denote it as

$$f(x) = \lg x$$
.

Logarithmic functions are defined on $(0, +\infty)$ and has a range of \mathbb{R} .

Theorem 7.4 (logarithm calculation basics). We have

$$\log_a a = 1, \log_a 1 = 0, \log_a a^x = x, a^{\log_a x} = x.$$

Theorem 7.5 (logarithm calculation rules). We have

$$\log_a(xy) = \log_a x + \log_a y,$$

$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y,$$

$$\log_a(x^m) = m \log_a x.$$

Corollary 7.6.

$$\log_a\left(\frac{1}{x}\right) = -\log_a x.$$

Theorem 7.7 (change of base). We have

$$\log_b a = \frac{\log_c a}{\log_c b}.$$

Corollary 7.8.

$$\log_b a = \frac{1}{\log_a b}.$$

Theorem 7.9 (graphs of exponentials). For a exponential a^x where a > 1, we have

$$\lim_{x \to +\infty} a^x = +\infty, \lim_{x \to -\infty} a^x = 0.$$

For a exponential a^x where a < 1, we have

$$\lim_{x \to +\infty} a^x = 0, \lim_{x \to -\infty} a^x = +\infty.$$

Theorem 7.10 (graphs of logarithms). For a logarithm $\log_a x$ where a > 1, we have

$$\lim_{x \to 0^+} \log_a x = -\infty, \lim_{x \to +\infty} \log_a x = +\infty.$$

For a logarithm $\log_a x$ where a < 1, we have

$$\lim_{x \to 0^+} \log_a x = +\infty, \lim_{x \to +\infty} \log_a x = -\infty.$$

Section 8 Straight line graphs

Definition 8.1 (straight line). A **straight line** is an equation of the form y = mx + c, where m is the **gradient** and c is the y-interception.

Definition 8.2 (expression forms). Other forms of expressing lines include

$$ax + by + c = 0,$$

and when we know a gradient and a point, we can use

$$(y - y_0) = m(x - x_0).$$

Theorem 8.3 (mid-point). The mid-point of a ling segment with points $A(x_1, y_1)$ and $B(x_2, y_2)$ is

$$M\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right).$$

Theorem 8.4 (length/distance). The distance between two points $A(x_1, y_1)$ and $B(x_2, y_2)$ is

$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}.$$

Theorem 8.5 (parallel condition). Two lines $l_1: y = m_1x + c_1$ and $l_2: y = m_2x + c_2$ are parallel if and only if $m_1 = m_2$.

Theorem 8.6 (perpendicular condition). Two lines $l_!: y = m_1 x + c_1$ and $l_2: y = m_2 x + c_2$ are perpendicular if and only if $m_1 m_2 = -1$.

Theorem 8.7 (area of a triangle). The area of a triangle of three vertices $A(x_1, y_1), B(x_2, y_2), C(x_3, y_3)$ is equal to

$$S = \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = \frac{1}{2} |x_1 y_2 + x_2 y_3 + x_3 y_1 - x_2 y_1 - x_3 y_2 - x_1 y_3|.$$

Section 9 Circular measure

Definition 9.1 (radians). In a circle with radius of 1, 1 radian is defined as the angle at the centre when it has a corresponding arc length of 1.

Corollary 9.2.

$$\pi = 180^{\circ}$$
.

Corollary 9.3. Multiply $\frac{180}{\pi}$ to convert degree to radian.

Multiply $\frac{\pi}{180}$ to convert radian to degree.

Corollary 9.4 (arc length).

$$l = r\theta$$

where l is arc length, r is radius and θ is the angle at the centre.

Corollary 9.5 (sector area).

$$A = \frac{1}{2}r^2\theta$$

where A is area of sector, r is radius and θ is the angle at the center.

Section 10 Trigonometry

Definition 10.1 (trig functions, prior knowledge). In a right-angle triangle with hypotenuse r, angle θ , oppopsite edge y and adjacent edge x, we define

$$\sin \theta = \frac{y}{r}, \cos \theta = \frac{x}{r}, \tan \theta = \frac{y}{x}.$$

Theorem 10.2 (value of important angles).

$$\sin 0 = 0, \cos 0 = 1, \tan 0 = 0,$$

$$\sin \frac{\pi}{6} = \frac{1}{2}, \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}, \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}},$$

$$\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}, \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}, \tan \frac{\pi}{4} = 1,$$

$$\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}, \cos \frac{\pi}{3} = \frac{1}{2}, \tan \frac{\pi}{3} = \sqrt{3},$$

$$\sin \frac{\pi}{2} = 1, \cos \frac{\pi}{2} = 0, \tan \frac{\pi}{2} = \infty.$$

Definition 10.3 (angle). An **angle** is a measure of the rotation of a line OP around O(0,0) from the positive x-direction, with anti-clockwise taken as positive angle and clockwise as negative.

Definition 10.4 (trig functions). Trigonometric ratios of any angle θ can be defined as

$$\sin \theta = \frac{y}{r}, \cos \theta = \frac{x}{r}, \tan \theta = \frac{y}{x},$$

where P(x, y) and $r = OP = \sqrt{x^2 + y^2}$.

Theorem 10.5. All trig functions are positive in the first quadrant. Only sin is positive in the second quadrant. Only tan is positive in the third quadrant. Only cos is positive in the fourth quadrant.

Definition 10.6 (cot, sec, cosec). We define the three extra trig functions as follows:

$$\cot \theta = \frac{x}{y}, \sec \theta = \frac{r}{x}, \csc \theta = \frac{r}{y}.$$

Theorem 10.7 (trig identities). The following trig identities are very basic and important:

$$\begin{aligned}
\cos \theta &= \frac{1}{\sin \theta}, \sec \theta = \frac{1}{\cos \theta}, \cot \theta = \frac{1}{\tan \theta}, \\
\sin^2 \theta + \cos^2 \theta &= 1, 1 + \tan^2 \theta = \sec^2 \theta, \cot^2 \theta + 1 = \csc^2 \theta, \\
\tan \theta &= \frac{\sin \theta}{\cos \theta}, \cot \theta = \frac{\cos \theta}{\sin \theta}.
\end{aligned}$$

In this case I feel I have to make the following clear while dealing with ∞ of tan, cot, sec, cosec. We treat $0 \cdot \infty = 1, 0 = \frac{1}{\infty}, \infty = \frac{1}{0}$. DANGER! Informal use of notation.

Definition 10.8 (periodic function). For a function $f:A\to B$, if for a certain real number T, we have $x\in A\implies x+T\in A$, and

$$f(x) = f(x+T)$$

for all $x \in A$, we say T is a **period** of the function f. We say T is a **minimum positive period** if T is the smallest positive number which is a period of that function.

Theorem 10.9 (trig as functions). The function $y = \sin x$ has a domain of \mathbb{R} and a range of [-1,1]. It has a minimum positive period of 2π , and an amplitude of 1. Restricting its domain onto $[-\frac{\pi}{2}, \frac{\pi}{2}]$, its inverse, defined from [-1,1] to $[-\frac{\pi}{2}, \frac{\pi}{2}]$ is denoted as $\arcsin x$.

The function $y = \cos x$ has a domain of \mathbb{R} and a range of [-1,1]. It has a minimum positive period of 2π , and an amplitude of 1. Restricting its domain to $[0,\pi]$, its inverse, defined from [-1,1] onto $[0,\pi]$ is denoted as $\arccos x$.

The function $y = \tan x$ has a domain of $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\}$ (all real numbers except for $\{\dots, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \dots\}$), and a range of \mathbb{R} . It has a minimum positive period of π . Restricting its domain to $(-\frac{\pi}{2}, \frac{\pi}{2})$, its inverse, defined from \mathbb{R} onto $(-\frac{\pi}{2}, \frac{\pi}{2})$ is denoted as $\arctan x$.

Notice that since $\forall k \in \mathbb{Z}$, we have

$$\lim_{x \to k\pi + \frac{\pi}{2}} \tan x = \infty,$$

we know that the lines $x = k\pi + \frac{\pi}{2}, k \in \mathbb{Z}$ are the vertical asymptotes for $y = \tan x$.

The function $y = \cot x$ has a domain of $\mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$ (all real numbers except for $\{\ldots, -\pi, 0, \pi, 2\pi, \ldots\}$), and a range of \mathbb{R} . It has a minimum positive period of π .

Notice that since $\forall k \in \mathbb{Z}$, we have

$$\lim_{x \to k\pi} \cot x = \infty,$$

we know that the lines $x = k\pi, k \in \mathbb{Z}$ are the vertical asymptotes for $y = \cot x$.

The function $y = \sec x$ has a domain of $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\}$ and a range of $(-\infty, -1] \cup [1, +\infty)$. It has a minimum positive period of 2π .

The function $y = \csc x$ has a domain of $\mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$ and a range of $(-\infty, -1] \cup [1, +\infty)$. It has a minimum positive period of 2π .

Theorem 10.10 (trig function manipulations). The function $y = a \sin bx + c$ has an amplitude of a, a period of $\frac{2\pi}{b}$ and is translated upwards by c units.

The function $y = a \cos bx + c$ has an amplitude of a, a period of $\frac{2\pi}{b}$ and is translated upwards by c units.

The function $y = a \tan bx + c$ stretches the graph vertically by a factor of a, has a period of $\frac{\pi}{b}$ and is translated upwards by c units.

Section 11 Differentiation and integration

§11.1 Differentiation

Definition 11.1 (derivative). We define the **gradient** or **derivative** of a function $f: A \to B$ at a point x_0 , given that it is defined at a neighbourhood of x_0 (i.e. $\exists \delta, (x_0 - \delta, x_0 + \delta) \subseteq A$), is equal to

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

We will denote the previous value as

$$f'(x_0), \frac{\mathrm{d}f(x)}{\mathrm{d}x}\Big|_{x=x_0}, \frac{\mathrm{d}}{\mathrm{d}x}f(x)\Big|_{x=x_0}.$$

The **derivative function** or **gradient function** of f(x) is denoted as

$$f'(x), \frac{\mathrm{d}f(x)}{\mathrm{d}x}, \frac{\mathrm{d}}{\mathrm{d}x}f(x).$$

Theorem 11.2 (linearality of differential operator). Given functions f(x) and g(x) and a constant k, we have

$$\frac{\mathrm{d}}{\mathrm{d}x}(f(x)+g(x)) = \frac{\mathrm{d}}{\mathrm{d}x}f(x) + \frac{\mathrm{d}}{\mathrm{d}x}g(x),$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(kf(x)) = k\frac{\mathrm{d}}{\mathrm{d}x}f(x).$$

Theorem 11.3 (chain rule). The chain rule states that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}.$$

Theorem 11.4 (product rule). We have

$$\frac{\mathrm{d}}{\mathrm{d}x}(uv) = u\frac{\mathrm{d}}{\mathrm{d}x}v + v\frac{\mathrm{d}}{\mathrm{d}x}u.$$

Theorem 11.5 (quotient rule). We have

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{u}{v} \right) = \frac{v \frac{\mathrm{d}u}{\mathrm{d}x} - u \frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}.$$

Definition 11.6 (tangents and normals). For a function y = f(x), the **gradient** at the point $P(x_0, f(x_0))$ is equal to $f'(x_0)$.

The tangent has the equation of

$$y - f(x_0) = f'(x_0)(x - x_0),$$

and the normal has the equation of

$$y - f(x_0) = -\frac{1}{f'(x_0)}(x - x_0).$$

Theorem 11.7 (small increments). For two points P(x,y) and $Q(x+\delta x,y+\delta y)$ on the curve, if δx is sufficiently small (i.e. P and Q are sufficiently close), then we have

$$\frac{\delta y}{\delta x} \approx \frac{\mathrm{d}y}{\mathrm{d}x}.$$

Theorem 11.8 (rate of change). When we do rate of change questions, note that the rate of change of variable v will be

$$\frac{\mathrm{d}}{\mathrm{d}t}v,$$

and we may use the chain rule and the rule that

$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}}.$$

Theorem 11.9 (differentiation of polynomials/power functions). The power function $y = x^n$ satisfies that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = nx^{n-1}.$$

Theorem 11.10 (differentiation of trig functions). We have

$$\frac{\mathrm{d}}{\mathrm{d}x}\sin x = \cos x,$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\cos x = -\sin x,$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\tan x = \sec^2 x.$$

Theorem 11.11 (differentiation of exponential and logarithmic). We have

$$\frac{\mathrm{d}}{\mathrm{d}x}e^x = e^x,$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln x = \frac{1}{x}.$$

Definition 11.12 (second derivative). The **second derivative** is obtained by differentiating the first derivative. We denote it as

$$f''(x), \frac{\mathrm{d}^2}{\mathrm{d}x^2} f(x), \frac{\mathrm{d}^2 f(x)}{\mathrm{d}x^2}, \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}f(x)}{\mathrm{d}x}.$$

From now on, we will consider derivatives and the graph of the function. To make things easier, we will assume that the function f(x) is differentiable.

Definition 11.13 (stationary point, turning point). The **stationary point** or **turning point** is a point where the gradient is zero.

Definition 11.14 (maximum point, minimum point). A point $(x_0, f(x_0))$ is a **maximum point** if for a certain neighbourhood $(x_0 - \delta, x_0 + \delta)$ within its domain we have

$$\forall x \in (x_0 - \delta, x_0 + \delta) : f(x) \le f(x_0).$$

A minimum point is defined similarly.

Lemma 11.15 (maximum/minimum and stationary point). A maximum point/minimum point must be a stationary point.

Theorem 11.16 (maximum, minimum, point of inflextion). For a point $P(x_0, f(x_0))$, it is a **maximum point** if and only if (in our discussion domain):

$$f'(x_0) = 0$$
,

and f'(x) turns from positive to negative at the point $x = x_0$.

The condition of a minimum point is defined similarly.

If a point which is a stationary point but is not a maximum or a minimum, we call it a **point of inflextion**. It must satisfy that f'(x) breifly 'touches' 0 from positive to positive or from negative to negative.

Theorem 11.17 (second derivative test). If for a stationary point $P(x_0, f(x_0))$, consider the second derivative at that point,

- If $f''(x_0) > 0$, it is a minimum;
- if $f''(x_0) < 0$, it is a maximum;
- if $f''(x_0) = 0$, it is indeterminable by this method.

Notice that one can use this method if and only if the point investigating is a stationary point.

§11.2 Integration

Section 12 Vectors in two dimensions

Section 13 Permutations and combinations

Section 14 Series

Afterwords