

DLD Lab-12 FlipFlops

Instructor: Mazhar Iqbal

EL227 – Digital Logic Design-Lab

SEMESTER SPRING 2021

Contents

1.	Objectives:	. 2
2.	Equipment Required:	. 2
	Description:	
	Flops	
	JK- FLIP FLOP	
5	T- FLIP FLOP	4

1. Objectives:

- Getting familiar with characteristic tables and characteristic functions of flip-flops
- Gaining a close insight into the functioning and properties of basic static memory circuits
- . Developing skills in the composition and testing of sequential logic circuits

2. Equipment Required:

- DEV-2765E Trainer Board/ Multisim 14.2 /Logic.ly
- 7486 XOR Gate IC
- 7408 AND Gate IC
- 7432 OR Gate IC
- 7404 Inverter Gate IC
- 7474 Dual +ve edge triggered D-Flip Flop
- 74112 Dual –ve edge triggered JK-Flip Flop

3. Description:

Flip Flops

A flip-flop is usually constructed by combining two same or different types of latches. Flip-flop circuits are constructed in such a way as to make them operate properly when they are a part of a sequential circuit that employs a single clock. Note that the problem with the latch is that as soon as an input changes, shortly thereafter the corresponding output changes to match it. This is what allows a change on a latch output to produce additional changes at other latch outputs while the clock pulse is at logic 1. The key to the proper operation of flip-flops is to prevent them from being transparent. In a flip-flop, before an output can change, the path from its inputs to its outputs is broken. So a flip-flop cannot "see" the change of its output or of the outputs of other, like flip-flops at its input during the same clock pulse. Thus, the new state of a flip-flop depends only on the immediately preceding state, and the flip-flops do not go through multiple changes of state. The edge triggered D flip flop avoids the problem of the RS invalid output states by not allowing the invalid states. The JK flip flop is a clocked RS flip flop with additional logic to replace the RS invalid output states with a new mode called toggle. Toggle causes the flip flop to change to the state opposite to its present state.

4. JK-FLIP FLOP

Positive Edge Triggered JK Flip Flop

Circuit Diagram using D-flip Flop and basic gates

Characteristic Table for JK Flip Flop:

Inputs		Out	puts	Next State of Q
J	K	Q	~Q	
0	0			
0	1			
1	0			
1	1			

5. T- FLIP FLOP

Positive Edge Triggered

Negative Edge Triggered

Positive Edge Triggered T-Flip Flop

Circuit Diagram using D-flip Flop and basic gates

Characteristic Table for T Flip Flop:

T	Output
0	
1	

Negative Edge Triggered JK Flip Flop

Pin Configuration of 74112 (JK-FFP):

Description of PINS:

The 74F112, Dual Negative Edge-Triggered JK-Type Flip-Flop, feature individual J, K, Clock (CPn), Set (SD) and Reset (RD) inputs, true (Qn) and complementary (~Qn) outputs. The SD and RD inputs, when Low, set or reset the outputs as shown in the Function Table, regardless of the level at the other inputs. A High level on the clock (CPn) input enables the J and K inputs and data will be accepted. The logic levels at the J and K inputs may be allowed to change while the CPn is High and flip-flop will perform according to the Function Table as long as minimum setup and hold times are observed. Output changes are initiated by the High-to-Low transition of the CPn. **Function Table:**

	IN	PUTS	5		OUTPUTS		OPERATING
SD	RD	CP	J	K	Q	Q	MODE
0	1	X	X	X	1	0	Asynchronous Set
1	0	X	X	X	0	1	Asynchronous Reset
0	0	X	X	X	1*	1*	Undetermined *
1	1	\downarrow	1	1	~q	q	Toggle
1	1	\downarrow	0	1	0	1	Load "0" (Reset)
1	1	\downarrow	1	0	1	0	Load "1" (Set)
1	1	\downarrow	0	0	q	q	Hold "no change"
1	1	1	X	X	Q	Q	Hold "no change"

^{* =} Both outputs will be High while both SD and RD are Low, but the output states are unpredictable if SD and RD go High simultaneously

Procedure

1. Connect the trainer with the power supply

- 2. Mount the IC 74LS112 on the trainer board
- 3. Supply the VCC and GND to the pin 16 and 8 respectively
- 4. Connect only one of the two flip-flops available on the IC. Refer to the pin configuration and characteristic table (function table) for this IC is given above.
- 5. Drive the J, K and CK inputs input switch on the trainer board and CP input from the clock on the trainer board. Connect output Q₀ & ~Q₀ with the LED.
- 6. Be sure to connect the set (SD) and reset (RD) inputs to a logical 1.
- 7. Using the different input combinations, verify the JK flip-flop characteristic table.
- 8. Observe and record the output on the LED.

Tasks:

- a) Implement JK-Flip Flop using D-flip Flop IC and basic Gates on Trainer Board and verify its truth table.
- b) Modify part (a) to implement T-Flip Flop.
- c) Verify JK-Flip Flop truth table using 74LS112 IC.
- d) Modify part (c) to design a T-Flip Flop.