Quiz

Module 3 Quiz

0.99			
Given the following confusion	matrix:		
	Predicted Positive	Predicted Negative	
Condition Positive	96	4	
Condition Negative	8	19	
0.906			
0.906 Given the following confusion	matrix:		
	matrix: Predicted Positive	Predicted Negative	
		Predicted Negative	
Given the following confusion	Predicted Positive		
Given the following confusion Condition Positive	Predicted Positive 96 8	4	

4. Given the following confusion matrix:

1 point

	Predicted Positive	Predicted Negative
Condition Positive	96	4
Condition Negative	8	19

Compute the recall to three decimal places.

0.960

5. Using the fitted model `m` create a precision-recall curve to answer the following question:

1 point

For the fitted model `m`, approximately what precision can we expect for a recall of 0.8?

(Use y_test and X_test to compute the precision-recall curve. If you wish to view a plot, you can use `plt.show()`)

```
1 #print(m)
2 pre,rec, = precision_recall_curve(y_test,m.predict(X_test))
3 plt.plot(rec,pre)
4 plt.xlabel('Recall')
5 plt.ylabel('Precision')
6 plt.ylim([0.0, 1.05])
7 plt.xlim([0.0, 1.0])
8 plt.show()

Run

Run

Run

0.6

0.7

0.8

Reset
```

0.6

- Model 1 test set AUC score: 0.91
- Model 2 test set AUC score: 0.50
- Model 3 test set AUC score: 0.56

\bigcirc	Model 1: Roc 1
	Model 2: Roc 2
	Model 3: Roc 3
•	Model 1: Roc 1
	Model 2: Roc 3
	Model 3: Roc 2
\bigcirc	• Model 1: Roc 2
	Model 2: Roc 3
	Model 3: Roc 1
\bigcirc	• Model 1: Roc 3
	Model 2: Roc 2
	Model 3: Roc 1
\bigcirc	Not enough information is given.

 $7. \quad \text{Given the following models and accuracy scores, match each model to its corresponding ROC curve.} \\$

1 point

- Model 1 test set accuracy: 0.91
- Model 2 test set accuracy: 0.79
- Model 3 test set accuracy: 0.72

	\bigcirc	Model 1: Roc 1	
		Model 2: Roc 2	
		Model 3: Roc 3	
	\bigcirc	Model 1: Roc 1	
		Model 2: Roc 3	
		Model 3: Roc 2	
	\bigcirc	Model 1: Roc 2	
		Model 2: Roc 3	
		Model 3: Roc 1	
	\bigcirc	Model 1: Roc 3	
		Model 2: Roc 2	
		Model 3: Roc 1	
	•	Not enough information is given.	
8.	Using t	he fitted model `m` what is the micro precision score?	1 point
8.		he fitted model `m` what is the micro precision score? test and X_test to compute the precision score.)	1 point
8.	(Use y_		1 point
8.	(Use y_	test and X_test to compute the precision score.) #print(m)	1 point
8.	(Use y_	<pre>#print(m) print(precision_score(y_test,m.predict(X_test),average='micro')) </pre>	1 point
8.	(Use y_	<pre>#print(m) print(precision_score(y_test,m.predict(X_test),average='micro')) </pre>	1 point
8.	(Use y_	<pre>#print(m) print(precision_score(y_test,m.predict(X_test),average='micro')) </pre>	1 point
8.	(Use y_	<pre>#print(m) print(precision_score(y_test,m.predict(X_test),average='micro')) Run Reset 44 44 46</pre>	1 point
8.	0.7 0.7 Non	<pre>#print(m) print(precision_score(y_test,m.predict(X_test),average='micro')) Run Reset 44 44 46</pre>	1 point
9.	0.742	<pre>#print(m) print(precision_score(y_test,m.predict(X_test),average='micro')) Run Reset 44 44 46</pre>	1 point
	(Use y	<pre>#print(m) print(precision_score(y_test,m.predict(X_test),average='micro')) Run Reset 44 44 46</pre>	
	0.744 Which	test and X_test to compute the precision score.) #print(m) print(precision_score(y_test,m.predict(X_test),average='micro')) Run Reset 44 44 45 65 67 67 67 67 67 68 68 68 68 68 68 68 68 68 68 68 68 68	
	(Use y	test and X_test to compute the precision score.) #print(m) print(precision_score(y_test,m.predict(X_test),average='micro')) Run Reset 44 44 45 67 The following is true of the R-Squared metric? (Select all that apply) model that always predicts the mean of y would get a score of 0.0	
	(Use y	test and X_test to compute the precision score.) #print(m) print(precision_score(y_test,m.predict(X_test),average='micro')) Run Reset 44 44 45 67 67 the following is true of the R-Squared metric? (Select all that apply) model that always predicts the mean of y would get a score of 0.0 e worst possible score is 0.0	

10.	In a future society, a machine is used to predict a crime before it occurs. If you were responsible for tuning this machine, what evaluation metric would you want to maximize to ensure no innocent people (people not about to commit a crime) are imprisoned (where crime is the positive label)? Accuracy Precision Recall AUC	1 point
	Consider the machine from the previous question. If you were responsible for tuning this machine, what evaluation metric would you want to maximize to ensure all criminals (people about to commit a crime) are imprisoned (where crime is the positive label)?	1 point
	Accuracy	
	O Precision	
	Recall	
	○ F1	
	○ AUC	
12.	A classifier is trained on an imbalanced multiclass dataset. After looking at the model's precision scores, you find that the micro averaging is much smaller than the macro averaging score. Which of the following is most likely happening?	1 point
	The model is probably misclassifying the infrequent labels more than the frequent labels.	
	The model is probably misclassifying the frequent labels more than the infrequent labels.	

1 point

13. Using the already defined RBF SVC model `m`, run a grid search on the parameters C and gamma, for values [0.01, 0.1, 1, 10]. The grid search should find the model that best optimizes for recall. How much better is the recall of this model than the precision? (Compute recall - precision to 3 decimal places)

(Use y_test and X_test to compute precision and recall.)

```
1  #print(m)
2  parameters = {'gamma':[0.01, 0.1, 1, 10], 'C':[0.01, 0.1, 1, 10]}
3  clf = GridSearchCV(m,parameters,scoring='recall')
4  clf.fit(X_train,y_train)
5  y_pred = clf.best_estimator_.predict(X_test)
6  rec = recall_score(y_test, y_pred, average='binary')
7  pre = precision_score(y_test, y_pred, average='binary')
8  print(rec-pre)

0.52
0.52
None
Reset
```

```
0.52
```

14. Using the already defined RBF SVC model `m`, run a grid search on the parameters C and gamma, for values [0.01, 0.1, 1, 10]. The grid search should find the model that best optimizes for precision. How much better is the precision of this model than the recall? (Compute precision - recall to 3 decimal places)

1 point

(Use y_test and X_test to compute precision and recall.)

```
#print(m)
parameters = {'gamma':[0.01, 0.1, 1, 10], 'C':[0.01, 0.1, 1, 10]}

clf = GridSearchCV(m,parameters,scoring='precision')
clf.fit(X_train,y_train)
y_pred = clf.best_estimator_.predict(X_test)
rec = recall_score(y_test, y_pred, average='binary')
pre = precision_score(y_test, y_pred, average='binary')
print(pre-rec)

Run

Reset

0.15
0.15
None
```

0.15