Bayesian Methods for Modelling the Star Formation History of Galaxy Zoo 2 Data

Becky Smethurst

January 22, 2014

First we define the properties of the star formation model, described through an exponentially decaying function of time, beginning when star formation is quenched, t_q at a quenching rate, τ . Prior to t_q the star formation rate is constant. We must consider these models across all possible values of $\underline{t_q}$ and $\underline{\tau}$ which will each be distributed with a mean and standard deviation, so that: $\underline{w} = (\mu_{t_q}, \sigma_{t_q}, \mu_{\tau}, \sigma_{\tau})$. For a given combinaton of t_q and τ we define:

$$\theta = \left(\begin{array}{c} t_q \\ \tau \end{array}\right),$$

so that,

$$\theta - \overline{\theta} = \left(\begin{array}{c} t_q - \mu_{t_q} \\ \tau - \mu_{\tau} \end{array}\right)$$

where $\overline{\theta} = (\mu_{t_q}, \mu_{\tau})$ and also:

$$\hat{C} = \begin{pmatrix} 1/\sigma_{t_q}^2 & 0\\ 0 & 1/\sigma_{\tau}^2 \end{pmatrix}.$$

We can then define the Bayesian probability $P(t_q, \tau) = P(t_q)P(\tau)$ assuming that $P(t_q)$ and $P(\tau)$ are independent of each other to give:

$$P(t_q, \tau) = \frac{1}{\sqrt{4\pi^2 \sigma_{t_q}^2 \sigma_{\tau}^2}} \exp\left(-\frac{(t_q - \mu_{t_q})^2}{2\sigma_{t_q}^2}\right) \exp\left(-\frac{(\tau - \mu_{\tau})^2}{2\sigma_{\tau}^2}\right).$$

If we work in the arrays we defined earlier then:

$$P(\theta) = \frac{1}{Z_{\theta}} \exp \left[-\frac{1}{2} [\theta - \overline{\theta}]^T \hat{C}^{-1} [\theta - \overline{\theta}] \right]$$

where,

$$\chi_{\theta}^2 = [\theta - \overline{\theta}]^T \hat{C}^{-1} [\theta - \overline{\theta}]$$

and if N is the dimension NxN of \hat{C} then,

$$Z_{\theta} = (2\pi)^{\frac{N}{2}} |\hat{C}|^{\frac{1}{2}}.$$

And so if we work in logarithmic probabilities:

$$\log (P(\theta)) = -\log (Z_{\theta}) - \frac{\chi_{\theta}^2}{2}.$$

We must then find the probability of the data given these values of theta, $P(\underline{d}|\theta,\underline{w})$:

$$P(\underline{d}|\theta,\underline{w}) = \prod_{k} P(d_k|\theta),$$

where d_k is a single data point (colour of one galaxy). We calculate $P(d_k|\theta)$ using the predicted values for the colour, $d_p(\theta)$, for a given combination of $\theta = (t_q, \tau)$.

$$P(d_k|\theta) = \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp\left(-\frac{(d_k - d_p(\theta))^2}{\sigma_k^2}\right),$$

where for one combination of $\theta = (t_q, \tau)$,

$$\chi_k^2 = \frac{(d_k - d_p(\theta))^2}{\sigma_k^2}$$

and

$$Z_k = \sqrt{2\pi\sigma_k^2}.$$

Again working in logarithmic probabilites:

$$\log \left(P(\underline{d}|\theta,\underline{w})\right) = \sum_{k} \log \left(P(d_{k}|\theta)\right)$$

$$\log \left(P(\underline{d}|\theta,\underline{w})\right) = \sum_{k} \log \left[\frac{1}{\sqrt{2\pi\sigma_{k}^{2}}} \exp\left(-\frac{(d_{k}-d_{p}(\theta))^{2}}{\sigma_{k}^{2}}\right)\right]$$

$$\log \left(P(\underline{d}|\theta,\underline{w})\right) = K - \sum_{k} \frac{\chi_{k}^{2}}{2},$$

where K is a constant:

$$K = -\sum_{k} \log Z_k.$$

What we want however is the probability of each combination of theta values given the data we have, $P(\theta|\underline{d})$, which we can find by:

$$P(\theta|\underline{d}) = \frac{P(\underline{d}|\theta)P(\theta)}{\int P(\underline{d}|\theta)P(\theta)d\theta},$$

where,

$$P(\underline{d}|\theta)P(\theta) = \exp \left[\log \left(P(\underline{d}|\theta)\right) + \log \left(P(\theta)\right],\right]$$

and the $\int P(\underline{d}|\theta)P(\theta)d\theta$ is given by the sum across all the array elements of $P(\underline{d}|\theta)P(\theta)$.