Aplicação de ferramentas de bioinformática ao estudo de metilação de DNA

Dra Patrícia Natália Silva

Curso de Introdução à análise bioinformática aplicada à genética

Sumário

- Conceito de Epigenética
- Mecanismo de metilação de DNA
- Métodos de obtenção DNA metilado:
 - Precipitação com anticorpos
 - Conversão com bissulfito de sódio
- Metodologias para estudo da metilação:
 - Métodos para avaliação de metilação global: LUMA e Pirosequenciamento.
 - Methylation Specific PCR (MSP), High Resolution
 Melting (HRM), Pirosequenciamento, MALDI-TOF,
 Sequenciamentos de Sanger, NGS e microarray.

Regulação Epigenética

• Epigenética:

"Alterações herdadas, mitoticamente ou meioticamente, na expressão gênica, que não resultaram de modificações na sequência de DNA"

Regulação Epigenética

PROCESSOS NORMAIS FISIOLÓGICOS:

- Desenvolvimento embrionário (embriogênese);
- Imprinting Genômico
- Inativação do X
- Na regulação da expressão gênica
- Estabilidade dos cromossomos

Modificações estáveis e reversíveis

• Presente em plantas, Drosophilas e mamíferos

genome.gov National Human Genome Research Institute National Institutes of Health

Research Funding Research at NHGRI Health

Education

Issues in Genetics | Newsroom | Careers & Training

About For You

Home > Research Funding > Research Funding Divisions > Division of Genome Sciences > ENCODE Project

The ENCODE Project: ENCyclopedia Of DNA Elements

- Overview
- Publications, Features and Press Releases
- Consortium Membership
- Data Release Policy
- Accessing ENCODE Data
- ENCODE Tutorials
- Common Cell Types
- Requests for Application (RFAs)
- Program Staff

Follow the ENCODE Project on:

Facebook

Faceboo

📙 Twitter 🗗

See Also:

Identification and analysis of functional elements in 1% of the human genome by the

ENCODE pilot project Nature, June 13, 2007

Major Findings from The **ENCODE Pilot Project** June 2007

The modENCODE Project

Grants Home

On Other Sites:

The ENCODE (ENCylopedia Of DNA Elements) Project. Science, October 22, 2004

nature Encode

Research Threads Additional Research News and Comment About Sponsor

Mecanismo de metilação de DNA

Metilação de DNA

- · Modificação epigenética mais estudada em humanos
- Ocorre pela adição de um grupo metil ao carbono 5' do anel pirimídico da citosina

Metilação de DNA

- 5-hydroxy-methylcytosine (5hmC): Produto da oxidação de 5-methylcytosine (5mC)
- Catalizada por uma família de enzimas chamada TET

Metilação de HMC

Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain

Junjie U. Guo^{1,2}, Yijing Su^{1,3}, Chun Zhong^{1,3}, Guo-li Ming^{1,2,3}, and Hongjun Song^{1,2,3}

¹ Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

- ² The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- ³ Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

Communication

Quantification of the Sixth DNA Base Hydroxymethylcytosine in the Brain[†]

Martin Münzel Dipl.-Chem. 1, Daniel Globisch Dipl.-Chem. 1, Tobias Brückl Dipl.-Chem. 1, Mirko Wagner Dipl.-Chem. 1, Veronika Welzmiller Dipl.-Chem. 1, Stylianos Michalakis Dr. 2, Markus Müller Dr. 1, Martin Biel Prof. Dr. 2 and Thomas Carell Prof. Dr. 1

Article first published online: 25 JUN 2010

DOI: 10.1002/anie.201002033

Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Issue

Angewandte Chemie International Edition Volume 49, Issue 31, pages 5375–5377, July 19, 2010

Metilação de DNA

- Ilhas CpGs dinucleotídeos CpG em regiões do genoma ricas em GC
 - Presentes em promotores
 - Regiões do DNA com aprox. 200pb
 - Conteúdo GC maior que 50%
- Outras regiões:
 - Elementos de transposição
 - Atuaria reprimindo seqüências de DNA parasitário, como transposons e retrovírus endógenos
 - GpG shores

Metilação de sequências repetitivas

genetics

DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape

Mingchao Xie^{1,13}, Chibo Hong^{2,13}, Bo Zhang^{1,13}, Rebecca F Lowdon¹, Xiaoyun Xing¹, Daofeng Li¹, Xin Zhou¹, Hyung Joo Lee¹, Cecile L Maire³, Keith L Ligon^{3,4}, Philippe Gascard⁵, Mahvash Sigaroudinia⁵, Thea D Tlsty⁵, Theresa Kadlecek⁶, Arthur Weiss^{6,7}, Henriette O'Geen⁸, Peggy J Farnham⁹, Pamela A F Madden¹⁰, Andrew J Mungall¹¹, Angela Tam¹¹, Baljit Kamoh¹¹, Stephanie Cho¹¹, Richard Moore¹¹, Martin Hirst^{11,12}, Marco A Marra¹¹, Joseph F Costello² & Ting Wang¹

Outos sítios de metilação

CpG island shores – sequências a 2Kb das ilhas CpGs

 Artigos relatam maior quantidade de alterações nas "shores" dos que nas ilhas em si Published in final edited form as:

Nat Genet. Feb 2009; 41(2): 178-186.

Published online Jan 18, 2009. doi: 10.1038/ng.298

Genome-wide methylation analysis of human colon cancer reveals similar hypoand hypermethylation at conserved tissue-specific CpG island shores

PMCID: PMC2729128

NIHMSID: NIHMS77908

Rafael A. Irizarry, #1,2,*† Christine Ladd-Acosta, #2,3,* Bo Wen, 2,3 Zhijin Wu, 6 Carolina Montano, 2,3 Patrick Onyango, 2,3 Hengmi Cui, 2,3 Kevin Gabo, 2,3 Michael Rongione, 2,3 Maree Webster, Hong Ji, 2,3 James Potash, 2,4 Sarven Sabunciyan, 2,5 and Andrew P. Feinberg #2,3,*†

Author information ► Copyright and License information ►

Genome Biol. 2012; 13(6): R43.

Published online Jun 15, 2012. doi: 10.1186/gb-2012-13-6-r43

PMCID: PMC3446315

Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood

Matthew N Davies, 1,2 Manuela Volta, 1 Ruth Pidsley, 1 Katie Lunnon, 1 Abhishek Dixit, 1 Simon Lovestone, 1 Cristian Coarfa, R Alan Harris, Aleksandar Milosavljevic, Claire Troakes, Safa Al-Sarraj, Richard Dobson, Leonard C Schalkwyk, 1 and Jonathan Mill^{⊠1}

Author information ▶ Article notes ▶ Copyright and License information ▶

This article has been cited by other articles in PMC.

Enzimas de metilação

- Mediadas por enzimas DNA metiltransferases (DNMTs);
 - DNMT1 manutenção baseada na replicação dos padrões de metilação
 - DNMT3a e DNMT3b capazes de promover a metilação de novo no DNA

Manutenção da Metilação

Metilação *de novo*

Estágio de Desenvolvimento

Metilação do DNA

- Distribuição no genoma:
 - Está associada a regiões não codificantes
 - Não em CpG de genes ativos
- Pode inibir a transcrição gênica de 2 maneiras:
 - Pontualmente inibindo fatores de transcrição
 - Compactando a cromatina

Metilação do DNA

 Pontualmente - inibe a ligação direta de fatores de transcrição ao DNA; como Sp1 (Specifity protein 1) e CTF (CCAAT-binding transcription factor)

- Além disso, atrai repressores transcricionais específicos ao DNA metilado
 - Família MDB (methyl-binding domain) age como repressora,
 recrutando histonas desacetilases, histonas metiltransferases
 e proteínas de heterocromatina compactação

Metilação e Silenciamento Gênico

Metilação e Doenças

Gene ativo

Perda ou Ganho de função

Genes supressores tumorais

Gene Inativo

• Proto-oncogenes = Oncogenes

- | Ilha CpG não metilada
- 보 Ilha CpG metilada

Methylated DNA immunoprecipitation - MeDIP

Precipitação com anticorpos

- Conversão com bissulfito de sódio
 - Desaminação

- Conversão com bissulfito de sódio
 - Desaminação

Metodologias para estudo da metilação

Métodos para avaliação de Metilação Global

- Métodos de screening
- Panorama geral da situação

- Dois métodos que utilizam pirosequenciamento
 - Sequenciamento de LINE1 e Alu
 - LUMA (Luminometric Methylation Assay)

Pirosequenciamento

- Sequenciamento de fragmentos curtos
- Detecção da atividade da polimerase pela ação de enzimas quimioluminescentes

- 1 Adiciona um nucleotideo por vez
 - 2 Adição libera PPi que é convertido em ATP
 - 3 ATP é convertido em luz pela luciferase

 PCR: Reação com um par de primers biotinilado e posteriormente um primer de sequenciamento;

 Isolar os produtos de PCR com beads de streptavidina

 Desnaturação e liberação das sequências sem o primer biotinilado

Processo de lavagem – wash station

 Separar o DNA e liberar as amostras no plate com o primer de sequenciamento;

 Inserir a placa no pirosequenciador com o dispenser de nucleotídeos e substrato

Metilação Global – LINE1 / Alu

LINE-1 retrotransposable elements make up about 15% of human genome. DNA methylation within the promoter region of human LINE-1 elements is important for maintaining transcriptional inactivation and for inhibiting transposition. Genome-wide losses of DNA methylation within the promoter region of human LINE-1 elements have been regarded as a common epigenetic event in malignancies and may play crucial roles in carcinogenesis. This methylation assay amplifies a region of the LINE-1 element and serves as a marker for global methylation.

LUMA (Luminometric Methylation Assay)

 Clivagem por enzimas de restrição seguido de extensão de nucleotídeos individuais

- DNA: 250ng a 500ng não tratado com bissulfito
- Digestão do DNA com 2 enzimas sensíveis e insensíveis à metilação de CCGG:
 - Mix A: com EcoR1 (AATT) e HapII sensível à metilação (não corta C^mCGG)
 - Mix B: com EcoR1 (AATT) e Mspl (não sensível à metilação)

LUMA (Luminometric Methylation Assay)

- Incubação por 37°C for 4 horas
- Amostras em duplicata, para cada tratamento, ou seja, 4 amostras de cada indivíduo;
- Qto mais dCTP incorporados, maior a quantidade de sítios clivados, e menor a metilação
- Metilação é determinada pela razão Hpall/Mspl.
 0% met = 1.0
 - 100% met = 0

Methylation Specific PCR (MSP)

 Amplificação usando conjuntos de primers para as sequências metiladas e não metiladas

High Resolution Melting (HRM)

- PCR em tempo Real análise de curva de dissociação do DNA
- Temperatura de melting = Temperatura onde metade do produto de PCR está dissociado (denaturado)

MALDI-TOF

- Ionização e dessorção a laser assistida por matriz (MALDI)
- Espectrometria de massa do tipo (MALDI-TOF)
- Amplificação e purificação das sequências gênicas por PCR convencional
- Transcrição in vitro do DNA para RNA
- Clivagem enzimática para a determinação da porcentagem de metilação baseada na massa dos fragmentos
- Diferenças na massa das moléculas

MALDI-TOF

 Amplificação por PCR: primer com T7 para iniciar a transcrição pela RNA polimerase

- RNAse A cleaves after "C" and "T" in RNA
- · For a C-only cleavage:
 - Incorporate deoxyTTP, rCTP, rGTP, & rATP with T7 R&DNA polymerase
 - Only C's available for Cleavage

Transcrição – RNA e Clivagem

Mix com Buffer, RNA polimerase e RNAseA.

Diferem em 16 Da de massa entre A e G

Spectrum

EpiGram

Sequence

Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N
102	ar2008	2	0	М	NA	NA	NA	0	0,1	0,02	NA	0,18	0,26
104	ar2082	2	0	М	NA	NA	NA	NA	NA	NA	NA	NA	NA
114	ar2093	2	0	F	0,03	NA	0,13	0,05	0,01	0,08	NA	0,04	0,1
115	ar2083	2	0	M	0,03	NA	0,13	0,05	0	0,03	NA	0	0,09
118	ar1108	2	0	M	0,05	NA	0,12	0,03	0,02	0,06	NA	0,02	0,09
119	ar1136	2	0	M	0,07	NA	0,11	0,04	0,01	0,02	NA	0,05	0,07
129	ar2138	2	0	M	0,01	NA	0,12	0,04	0,01	0,03	NA	0,03	0,03
131	ianc1303	2	0	M	0,03	NA	0,12	0,06	0,01	0,02	NA	0,02	0,07
134	ianc1328	2	0	M	0,03	NA	0,11	0,05	0	0,01	NA	0,04	0,08
146	sri1028	2	0	F	0,05	NA	0,11	0,08	0	0,01	NA	0,04	0,03
147	sri1085	2	0	F	0,05	NA	0,12	0,04	0	0,07	NA	0,03	0,08
150	sri1116	2	0	F	0,04	NA	0,11	0,03	0	0,05	NA	0,05	0,04
152	sri1122	2	0	M	NA	NA	0,03	0	0,03	0	NA	0,15	0,16
161	sri1162	2	0	F	0,04	NA	0,13	0,07	0	0,03	NA	0	0,08
163	sri1175	2	0	F	0,06	NA	0,15	0,09	0,01	0,05	NA	0,04	0,11
166	sri1180	2	0	F	0,03	NA	0,13	0,03	0	0,01	NA	0,03	0,08
168	sri1182	2	0	F	0	NA	0,1	0,02	0,05	0,02	NA	0,18	0,08
178	sri1188	2	0	F	0,04	NA	0,11	0,05	0	0,04	NA	0	0,06
179	sri1297	2	0	F	0,03	NA	0,12	0,05	0	0,05	NA	0,03	0,07
181	sri1157	2	0	M	0,04	NA	0,13	0,06	0,01	0,07	NA	0,03	0,05
/erage					0,0378		0,1153	0,0430	0,0160	0,0360		0,0485	0,0845
idard dev	l.				0,0166		0,0237	0,0234	0,0260	0,0230		0,0548	0,0505
135	positive control				0,96	NA	0,97	0,97	0,86	0,91	NA	0,72	0,78
136	egative control				NA	NA	NA	NA	NA	NA	NA	NA	NA
183	positive control				1	NA	0,98	1	0,9	0,98	NA	0,75	0,79
184	egative control				NA	NA	NA	NA	NA	NA	NA	NA	NA
			PSYCHOSIS	T_Test	0.1697		0,1139	0,1982	0,0159	0,1183		0,2405	0,0672
			SCHIZOPHRENIA	T_Test	0,2248		1,0000	0,5024	0,0744	0,5330		0,9125	0,2796
			BIPOLAR	T_Test	_ ′					0,1015		0,1447	0,0965

- Analisa um sítio CpG isolado ou a média dos CpGs
- CpGs isolados Fatores de transcrição específicos

Sanger - Capilaridade

- Conversão por bissulfito de sódio
- PCR do fragmento Alvo
- Inserção em um vetor
- Inserção do vetor em bactérias
- Crescimento da bactéria em meio de cultura
- Extração do DNA das bactérias
- PCR e sequenciamento

Vários clones bacterianos 5-10

In vivo cloning and amplification

Cycle sequencing

Electrophorsesis (1 read/capillary)

Sanger - Pós sequenciamento

- Alinhar a sequência dos clones com a sequência referência
- Verificação da metilação em cada sítio CG
- Quantificação das médias de CG e análise estatística

Next Generation Sequencing

- Ion Torrent
 - Amplificação das sequências por PCR
 - Construção das bibliotecas com os fragmentos
 - Carregamento do chip
 - Sequenciamento baseado em biocondutores

- Análise é bem mais complexa
- Muito reads x alinhamento

Array de metilação

450K da Illumina

- Permite investigação de 482.421 sítios CpGs
- Conversão por bissulfito
- Versão posterior ao 27K
- Incorporou ao array sondas Infinium I (135.501) e
 Infinium II (350.076)
- Infinium I: Duas sondas no array (M) e (U) assume que é tudo M ou U;
- Infinium II: Utiliza apenas uma sonda e inclui sítios degenerados, até 3 sítios por sonda

Array de metilação

- Dado bruto:
- $\beta = M/(M + U + \alpha)$

- M= sinal da intensidade da probe metilada
- U= sinal da intensidade da probe não metilada
- α = valor arbitrário compensatório, normalmente 100

Dado bruto não normalizado

Array de metilação

Briefings in Bioinformatics Advance Access published August 29, 2013
BRIEFINGS IN BIOINFORMATICS. page 1 of 13

doi:10.1093/bib/bbt054

Epigenetics 9:2, 318-329; February 2014;

of for the Inf

A comprehensive overview of Infinium Human Methylation 450 data processing

Sarah Dedeurwaerder*, Matthieu Defrance*, Martin Bizet, Emilie Calonne, Gianluca Bontempi and François Fuks
Submitted: 25th April 2013; Received (in revised form): 5th July 2013

Michael C Wu^{1,2,*}, Bonn

and Stephanie J London^{3,*}

¹Department of Biostatistics; The University of Nort Seattle, WA USA; ²Division of Intramural Research Pidsley et al. BMC Genomics 2013, 14:293 http://www.biomedcentral.com/1471-2164/14/293

epigenetics -

METHODOLOGY ARTICLE

Open Access

A data-driven approach to preprocessing Illumina 450K methylation array data

Ruth Pidsley^{1†}, Chloe C Y Wong^{1†}, Manuela Volta¹, Katie Lunnon¹, Jonathan Mill^{1,2} and Leonard C Schalkwyk^{1*}

Quach⁻, Lisa Barcellos⁻ & Nina Holland⁻

^a School of Public Health; University of California; Berkeley, CA USA Published online: 05 Nov 2014. 1

Obrigada

