导数公式:

$$(\tan x)' = \sec^2 x$$

$$(\cot x)' = -\csc^2 x$$

$$(\sec x)' = \sec x \cdot \tan x$$

$$(\csc x)' = -\csc x \cdot \cot x$$

$$(a^x)' = a^x \ln a$$

$$(\log_a x)' = \frac{1}{x \ln a}$$

$$(\operatorname{arccos} x)' = -\frac{1}{\sqrt{1 - x^2}}$$

$$(\operatorname{arccos} x)' = \frac{1}{1 + x^2}$$

$$(\operatorname{arccot} x)' = -\frac{1}{1 + x^2}$$

基本积分表:

1.
$$\int \frac{\mathrm{d}x}{ax+b} = \frac{1}{a} \ln |ax+b| + C$$

2.
$$\int (ax+b)^{\mu} dx = \frac{1}{a(\mu+1)} (ax+b)^{\mu+1} + C \quad (\mu \neq -1)$$

3.
$$\int \frac{x}{ax+b} dx = \frac{1}{a^2} (ax+b-b \ln |ax+b|) + C$$

5.
$$\int \frac{\mathrm{d}x}{x(ax+b)} = -\frac{1}{b} \ln \left| \frac{ax+b}{x} \right| + C$$

6.
$$\int \frac{dx}{x^2(ax+b)} = -\frac{1}{bx} + \frac{a}{b^2} \ln \left| \frac{ax+b}{x} \right| + C$$

10.
$$\int \sqrt{ax+b} dx = \frac{2}{3a} \sqrt{(ax+b)^3} + C$$

$$19. \int \frac{\mathrm{d}x}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

21.
$$\int \frac{\mathrm{d}x}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

23.
$$\int \frac{x}{ax^2 + b} dx = \frac{1}{2a} \ln |ax^2 + b| + C$$

$$24. \int \frac{x^2}{ax^2 + b} dx = \frac{x}{a} - \frac{b}{a} \int \frac{dx}{ax^2 + b}$$

31.
$$\int \frac{\mathrm{d}x}{\sqrt{x^2 + a^2}} = \operatorname{arsh} \frac{x}{a} + C_1 = \ln(x + \sqrt{x^2 + a^2}) + C$$

32.
$$\int \frac{\mathrm{d}x}{\sqrt{(x^2 + a^2)^3}} = \frac{x}{a^2 \sqrt{x^2 + a^2}} + C$$

33.
$$\int \frac{x}{\sqrt{x^2 + a^2}} dx = \sqrt{x^2 + a^2} + C$$

34.
$$\int \frac{x}{\sqrt{(x^2 + a^2)^3}} dx = -\frac{1}{\sqrt{x^2 + a^2}} + C$$

35.
$$\int \frac{x^2}{\sqrt{x^2 + a^2}} dx = \frac{x}{2} \sqrt{x^2 + a^2} - \frac{a^2}{2} \ln(x + \sqrt{x^2 + a^2}) + C$$

39.
$$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln(x + \sqrt{x^2 + a^2}) + C$$

43.
$$\int \frac{\sqrt{x^2 + a^2}}{x} dx = \sqrt{x^2 + a^2} + a \ln \frac{\sqrt{x^2 + a^2} - a}{|x|} + C$$

44.
$$\int \frac{\sqrt{x^2 + a^2}}{x^2} dx = -\frac{\sqrt{x^2 + a^2}}{x} + \ln(x + \sqrt{x^2 + a^2}) + C$$

47.
$$\int \frac{x}{\sqrt{x^2 - a^2}} dx = \sqrt{x^2 - a^2} + C$$

53.
$$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln \left| x + \sqrt{x^2 - a^2} \right| + C$$

57.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|} + C$$

$$59. \int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$$

61.
$$\int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2} + C$$

67.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$$

83.
$$\int \sin x dx = -\cos x + C$$

84.
$$\int \cos x dx = \sin x + C$$

85.
$$\int \tan x \, \mathrm{d}x = -\ln\left|\cos x\right| + C$$

86.
$$\int \cot x \mathrm{d}x = \ln|\sin x| + C$$

87.
$$\int \sec x dx = \ln \left| \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right| + C = \ln \left| \sec x + \tan x \right| + C$$

88.
$$\int \csc x dx = \ln \left| \tan \frac{x}{2} \right| + C = \ln \left| \csc x - \cot x \right| + C$$

$$89. \quad \int \sec^2 x \mathrm{d}x = \tan x + C$$

$$90. \quad \int \csc^2 x \mathrm{d}x = -\cot x + C$$

91.
$$\int \sec x \tan x dx = \sec x + C$$

92.
$$\int \csc x \cot x dx = -\csc x + C$$

$$122. \quad \int a^x \mathrm{d}x = \frac{1}{\ln a} a^x + C$$

$$132. \quad \int \ln x \mathrm{d}x = x \ln x - x + C$$

$$133. \int \frac{\mathrm{d}x}{x \ln x} = \ln \left| \ln x \right| + C$$

134.
$$\int x^n \ln x dx = \frac{1}{n+1} x^{n+1} (\ln x - \frac{1}{n+1}) + C$$