

MyGIS 1.0 系统 设计与开发报告

GIS007 项目组

项目经理: 尹伟

项目成员: 吴梓杭、唐琳杰

指导老师: 左泽均

2019-1-8

目 录

1	引言		2
	1.1	项目背景	2
	1.2	课程设计目的	2
	1.3	课程设计任务	2
	1.4	参考资料	3
	1.5	定义、缩写词	3
2	总体设	计	3
	2.1	系统设计的原则	3
	2.2	设计中应用的关键技术	3
	2.3	总体结构错误!未定义书签。	
3	空间数	ɪ据建库	4
4	系统功]能设计	5
5	系统界	'面设计	6
6	模块设	计与功能实现	7
	6.1	模块汇总表	7
	6.2	模块关系图	8
7	项目进	程及人员分工安排1	0
	7.1	项目整体进程规划1	0
	7.2	人员分工安排1	0
	7.	2.1 王晶——统筹项目进展,协调项目组成员任务安排。1	0
	7.	2.2 刘德华——设计数据库,建立数据类,对数据库的数据进行管理。1	0
	7.	2.3	1
	7.	2.4 郭富城——设计与 GIS 线相关的各项功能。	
	7.	2.5 黎明——设计与 GIS 区相关的各项功能。错误!未定义书签。	
	7.	2.6 张艺谋——设计功能集模块的各函数及相关接口。. 错误!未定义书签。	
	7.	2.7 周润发——会议记录,项目相关文档的编写整理工作,项目组周报。 \$	昔
	讵	! 未定义书签。	
8	实习成	3.果展示1	1
9	开发工		2
10	总结利	1体会1	3

1 引言

1.1 项目背景

本系统是在地理信息系统工程课程中进行的一次综合实战演练。地理信息系统工程主要是研究: GIS 分析、设计与项目管理的相关内容。在老师的指导下,我们 3 人组成一个项目开发团队,取名为 07 GIS 项目组,选出项目经理尹伟,按照 GIS 项目开发的的模式流程实施开发过程。经项目组反复讨论研究,决定开发一个武汉市出租车 GPS 轨迹处理与可视化的系统,系统取名为 07 GIS 1.0。系统主要实现对武汉市 GPS 的数据进行了可视化和数据分析处理,实现了 GPS 轨迹数据和道路网的地图匹配算法和分上下班高峰期、平峰期、深夜三个时段标注热点区域和热点路段,并从中选出了热点路段的十字路口,画出了该路口的24 小时交通流量图和 24 小时行车速度折线图。

1.2 课程设计目的

本次地理信息系统课程设计是在完成《地理信息系统原理》、《GIS软件工程》等课程后开展的实践性课程设计。

本次课程设计主要完成地图矢量化(空间数据库设计与建库)、系统功能设计、系统界面设计和部分功能的实现;通过这次课程设计也进一步熟悉了基于GIS平台提供的组件进行应用系统开发的一般方法、思路和流程。其主要的目的概括为:

- 1、 使学生对所学 GIS 理论知识进行一次综合性复习, 熟练掌握 GIS 功能与应用开发的基本 流程;
 - 2、 培养学生对实际问题的分析能力、迁移与开放思维的创新能力;
 - 3、 培养学生独立的构思 GIS 应用的能力与开发 GIS 软件的动手能力;
 - 4、 培养学生撰写 GIS 软件设计课程报告与文字总结开发工作的能力。
 - 5、 培养学生口头汇报设计与开发工作成果的能力。

1.3 课程设计任务

任务: 武汉市出租车 GPS 轨迹处理与可视化

己知武汉市 2014 年 5 月的三天的出租车轨迹数据、来自 OSM 网的武汉市道路数据,请将 GPS 轨迹数据与武汉市道路数据进行可视化,并完成以下功能:

- (1) 实现数据可视化;
- (2) 实现轨迹数据与道路网的地图匹配算法;
- (3) 分上下班高分期、平峰期、深夜三个时段标注热点区域和热点路段;
- (4) 针对某个热点路段的十字路口,从以下方面分析道路服务能力:
 - 1) 24 小时交通流量图;
 - 2) 24 小时行车速度折线图;

测试数据: wuhan_GPS3Day.zip、wuhan_china.imposm-shapefiles.rar

1.4 参考资料

数据库系统概论 (第四版) 王珊 萨师煊 编著

数据结构、算法与应用----C++语言描述 (美) Sartaj Sahni 著 汪诗林 孙晓东 等译 计算机图形学 (第三版), Donald Hearn,M.Pauline Baker 著, 北京: 电子工业出版社, 2004

计算机图形学实习指导(第二版), 郭际元、黄晓萍、曾文、龚君芳, 中国地质大学(武汉)信息工程学院, 2005

GIS 分析、设计与项目管理 孙云峰 林珲 著中地标准软件过程系列文档

1.5 定义、缩写词

DB: 英文全称 Database,数据库,是依照某种数据模型组织起来并存放二级存储器中的数据集合。

Flask: Flask 是一个使用 Python 编写的轻量级 Web 应用框架,能够根据需求开发出满足用户条件的 web 应用出来。

Echarts: ECharts 提供了常规的折线图、柱状图、散点图、饼图、K 线图,用于统计的 盒形图,用于地理数据可视化的地图、热力图、线图,用于关系数据可视化的关系图、treemap、 旭日图,多维数据可视化的平行坐标,还有用于 BI 的漏斗图,仪表盘,并且支持图与图之间的混搭。

2 总体设计

2.1 系统设计的原则

项目组尽可能开发出一个比较成型的 GIS 功能平台,应用所学技术使其优化,系统设计的首要原则为简单易用,效率尽可能优化,技术比较全面。

2.2 设计中应用的关键技术

由于项目组成员知识技术能力有限,缺乏项目开发经验,应用的关键技术比较少,都是课堂内外学到的知识,具体来讲主要使用了以下的关键技术。

- (1) 数据处理:由于给定的数据存在数据不准的情况,所以我们需要对数据进行清洗, 具体使用的工具使用 python 的 pandas 模块对数据进行清洗。
- (2) 读取文件 shp 文件: 这一部分要阅读官方文档中的 SAMPLE CODE
- (3) 匹配武汉市道路:对每一个出租车轨迹点找到离它最近的要素,再获得要素中离它最近的 Vertex,然后用这个 Vertex 的坐标替换轨迹点的坐标。
- (4) 数据聚类:使用聚类的方法找到热点区域和热点路段,然后通过百度地图的 API 可以得到该热点路段或者热点区域的经纬度。
- (5) 数据库的设计:首先是经度和纬度数据类型的设计,是使用 decimal 这种类型的设计,如果使用 varchar 来设计也可,查询的时候需要用字符串匹配

(6) 千万级别的数据库的查询和优化:由于数据库数据量上千万条,所以查询必须要优化,本次我是用的是视图和建立索引的方式来给数据库查询优化的。优化后的数据库查询由原来的 15s 左右优化到 5s 左右,缩短时间 2/3。

2.3 总体结构

3 空间数据建库

(1) 数据库字段的设计如下

列名	数据类型	允许Null值
编号	Varchar(50)	Yes
时间	Varchar(50)	Yes
经度	Decimal(10,7)	Yes
维度	Decimal(10,7)	Yes
方向	Varchar(50)	Yes
速度	Float	No
空调	Varchar(50)	Yes

载人	Varchar(50)	Yes
----	-------------	-----

(2) 数据库的视图

由于视图是把经常需要查询的数据先查出来放到一张虚拟表中,这样就可以加快查询速率。由于第四问需要对24小时内每个小时的交通流量进行分析, 所以可以把每一个小时时间段内的记录建立视图查询。其中一个例子为:

create view liuliangtu20140507_1
as
select * from taxi0507
where 经度>114.261 and 经度<114.289
and 维度>30.561 and 维度<30.589
and 时间>'2014-05-07 00:00:00' and 时间<'2014-05-07 01:00:00' and 速度>0

(3) 数据库的索引

为了加快查询速率,所以可以在经度纬度和时间上建立索引,提高查询速度。

4 系统功能设计

系统采用B/S和C/S混合架构的方式来构建,总体架构图如下。

首先系统总体根据题目要求分为四大部分,分别是数据可视化层、路网匹配层、热点标注层和道路能力分析层。其中数据的可视化和路网的匹配采用B/S架构,热点标注层和道路能力分析层采用的是三层B/S架构+MVC架构来完成的。下面详细介绍这些模块。

数据导入:主要是数据的处理,把数据处理成我们需要的格式,然后在导入SQL Server数据库,对数据进行操作。

道路可视化:根据数据库中的数据信息,把点打印在地图上,实现数据的可视化。 展示出数据在地图上的位置。

GPS轨迹匹配:由于老师给我们的数据中GPS数据不能完全匹配上路网信息,所以我们需要设计数据匹配算法,获取每一个车辆轨迹的经纬度坐标,从道路图层中获得所有线要素,对每一条线要素进行比较点到线的距离,距离点最近的线,找到其垂足即为更新的点并将数据匹配到路网上。

标注热点道路和路段:我们需要找到上下班高峰期、平峰期和深夜三个时段标注热点区域和路段,这里可以使用聚类的方法实现,然后通过调用百度地图的API可以将热点区域和热点路段找到。

道路能力分析:主要有两点指标,一是24小时交通流量图,二是24小时行车速度折线图。通过查询数据库内24小时时间段内的行车记录和车辆总数,统计得出24小时记录图。分析道路服务能力。

5 系统界面设计

模块设计与功能实现

模块汇总表 6.1

模块名称	功能简述
数据处理	去除脏数据
数据展示	将数据库中的数据进行可视化,打印到地图中去
GPS 轨迹匹配	将数据库中的数据匹配到实际路网中,对于错误的数据要
	设计正确的匹配算法来完成。
标注热点道路	对热点道路进行标注
标注热点路段	对热点路段进行标注
24 小时流量图	统计分析某十字路口 24 小时的流量图
24 小时行车速度折	统计分析某十字路口 24 小时的速度折线图
线图	

6.2 模块关系图

主要功能实现的技术思路及部分源代码:

(1) 数据的预处理,按照GB18030编码标准逐行读入原始数据,将经纬度不符合武 汉市经纬度的点去除点,将错误的数据的顺序调整正确,对于每一行的字符串 切割,统一重整属性的顺序和数量,写入CSV文件,将正确的文件导入数据库。

```
wuhan_cars_csv = pd.read_csv('D:/GIS/wuhan_GPS3Day/20140507.csv',
encoding = 'gb18030', delimiter="\t", header=None)[0].tolist()
wuhan_cars = pd.DataFrame()
cac = [[], [], [], [], [], [], []]
locate = 0
for value in wuhan_cars_csv:
     value_list = value.split(',')
     cac[0].append(value_list[0])
     cac[1].append(value_list[1])
     cac[2].append(value_list[2])
     cac[3].append(value_list[3])
     cac[4].append(value_list[4])
     cac[5].append(value_list[5])
     if 'ACC开' in value_list:
         cac[6].append(1)
     else:
```

```
cac[6].append(0)
              if '空车' in value_list:
                  cac[7].append(0)
              else:
                  cac[7].append(1)
              locate += 1
          wuhan_cars.to_csv('taxi0507.csv', header=0, index=0)
     通过查询数据库,统计得出24小时内的数据
create view liuliangtu20140507_1
select * from taxi0507
where 经度>114.261 and 经度<114.289
and 维度>30.561 and 维度<30.589
and 时间>'2014-05-07 00:00:00' and 时间<'2014-05-07 01:00:00' and 速度>0
create view liuliangtu20140507_2
select * from taxi0507
where 经度>114.261 and 经度<114.289
and 维度>30.561 and 维度<30.589
and 时间>'2014-05-07 01:00:00' and 时间<'2014-05-07 02:00:00' and 速度>0
select AVG(速度) from taxi0507
where 经度>114.261 and 经度<114.289
and 维度>30.561 and 维度<30.589
and 时间>'2014-05-07 00:00:00' and 时间<'2014-05-07 23:59:59' and 速度>0
create view sudu20140507_1
as
select AVG(速度) 平均速度 from taxi0507
where 经度>114.261 and 经度<114.289
and 维度>30.561 and 维度<30.589
and 时间>'2014-05-07 00:00:00' and 时间<'2014-05-07 01:00:00' and 速度>0
for i in range (24):
       sql = liuliang[i]
       print('-----
       print(sql)
       cursor. execute (sql)
       print('----')
       row = cursor.fetchone()
```

print(row[0])
result.append(row[0])
remember.append(row[0])

7 项目进程及人员分工安排

7.1 项目整体进程规划

第一次实习:项目组成立,确定选题、平台、分工、编程语言、工具

第二次实习: 搭建开发环境,清洗数据,按照分工进行开发

第三次实习:系统开发及测试 第四次实习:系统开发及测试

第五次实习:整理代码、文档、工程项目提交解题报告

7.2 人员分工安排

7.2.1 尹伟——协调项目组成员任务安排,设计数据库,建立数据类,对数据库的数据进行管理

第一次实习:确定开发语言和整个项目的开发思路,对整个项目有一个基本的了解,对项目人员进行分工,确定基本的项目开发进度。

第二次实习:设计数据库,建立数据库类,并将数据导入导数据库,检验前两题的结论是否 正确

第三次实习:设计优化查询数据库的方法,完善数据库的设计

第四次实习: 完成数据可是化的所有功能

第五次实习:对所有代码、文档、工程项目进行整理,验收结题。

7.2.2 唐琳杰——完成一二两题。

第一次实习: ArcGIS for java 开发环境搭建; 查看 ArcGIS for java 开发文档,对开发环境有一个基本认识。

第二次实习: 查看官方文档中的相应功能的接口,可视化武汉市道路数据和出租车轨迹数据; 完成对轨迹数据和道路网匹配算法的设计,绘制 UML 图,编码实现匹配算法并可视化匹配结果;组织对算法进行测试,该过程中加强与其他项目组的交流,对算法进行优化,统一规范各项资料,准备汇报。

第三次实习:对项目进行完善,准备汇报 PPT;向老师汇报这几次实习完成的情况,并展示完成的结果。

第四次实习:对匹配算法进行优化,对项目中不足的地方进行改善,最后编写实习报告。

第五次实习:验收,对所有代码、文档、工程项目进行整理,验收结题。

7.2.3 吴梓杭——设计并完成第三题。

第一次实习: 开发环境的搭建, 确定基本开发路线和方向。

第二次实习:查看百度地图 API 并设计出初级的开发方法,并进行尝试。

第三次实习: 完成整个系统第二部分的全部内容。

第四次实习:设计完善和优化整个系统。

第五次实习:验收,对所有代码、文档、工程项目进行整理,验收结题。

8 实习成果展示

9 开发工具与系统运行环境

Java Idea 、pycharm 及 SQL Server 2012。 客户端操作系统: Windows 10 及其以上操作系统。 数据库服务器系统: SQL Server 2012。

10总结和体会

- (1)通过这次实习,我深刻体会到了GIS整个系统的设计与开发的艰难,再本次开发过程中,我所做的工作主要是数据库的设计,但即便是这样看起来非常简单的工作,我任然花费了大量的时间重复设计,直到最后整个系统完成,所以通过这次实习,我深刻理解了老师上课讲的国产GIS系统的苦衷,我想这样一批默默无闻发展国产GIS系统的老师和教授们致以诚挚的敬意,我对他们所做的工作深感敬佩,我觉得在信工学院,我最大的收获不仅仅是知识的增长,更是我看到了一群为祖国地理信息产业默默奉献的一群人,他们也许不被当下主流媒体所报道,但是他们所做的工作绝对是富有意义的,通过这次实习,我个人的出路也许多了一条,我也可以去开发GIS相关的系统,而不是在软件工程一棵树上吊死。
- (2)通过这次实习加深了我对课堂知识的了解,充分地使用到了以前学到过的知识,我觉得这次实习是一次非常好的实习,锻炼了同学们的能力,让同学们和我体会到了GIS系统的开发过程中。
- (3) 在完成第四问的过程中,一开始查询速度很慢,这时我想到数据库中可以 查询优化的方法,于是便通过建立视图、索引等工具实现了加速查询。
- (4) 但是我也觉得这堂课还是有需要完善的地方,一是课程实习的时间安排上不够合理,一个星期完成本次实习时间上稍显紧张,如果真的只有这么短的时间安排实习,可以提前发题。二是课堂内容还可以更加贴近专业化,软工的同学不是不愿意学GIS,老师可以通过考试等方式来提高同学们的参与率,在课堂上讲述专业知识也是非常有必要的。另外我的建议就是上课的时候可以通过及时出练习题给同学们做,加深同学们对知识的理解,在一个,就是可以设立学生讲堂,因为老师和学生看问题的方法往往不一样,而学生讲过的东西学生容易理解,没有代沟。