DATA STRUCTURE AND ALGORITHM

CLASS 5

Seongjin Lee

Updated: 2021-02-14 DSA_2017_05

insight@gnu.ac.kr http://resourceful.github.io Systems Research Lab. GNU

Table of contents

1. Stack

2. Queues

3. Circular Queues

4. A Mazing Problem

5. Evaluation of Expressions

STACK

Stack and Queue is

special cases of the more general data type, Ordered List

ADT Stack

- Ordered List
- Insertions and deletions are made at one end called the top

Given stack $S = (a_0, \ldots, a_{n-1})$

- \bigcirc a_0 : Bottom element
- \bigcirc a_{n-1} : Top element
- a_i : On top of element a_{i-1} (0 < i < n)

A.K.A Last-In-First-out (LIFO)

Inserting and deleting elements in a stack

stack state

Given stack $S = (a_0, \ldots, a_{n-1})$

- \bigcirc a_0 : Bottom element
- \bigcirc a_{n-1} : Top element
- \bigcirc a_i : On top of element a_{i-1} (0 < i < n)

A.K.A Last-In-First-out (LIFO)

Inserting and deleting elements in a stack push A stack state

 $A \leftarrow top$

Given stack $S = (a_0, \ldots, a_{n-1})$

- \bigcirc a_0 : Bottom element
- \bigcirc a_{n-1} : Top element
- a_i : On top of element a_{i-1} (0 < i < n)

A.K.A Last-In-First-out (LIFO)

Inserting and deleting elements in a stack push $A \rightarrow push B$ stack state

$$\begin{array}{ccc} & & B & \leftarrow top \\ A & \leftarrow top & A \end{array}$$

Given stack $S = (a_0, \ldots, a_{n-1})$

- \bigcirc a_0 : Bottom element
- \bigcirc a_{n-1} : Top element
- \bigcirc a_i : On top of element a_{i-1} (0 < i < n)

A.K.A Last-In-First-out (LIFO)

Inserting and deleting elements in a stack push A \rightarrow push B \rightarrow push C stack state

Given stack $S = (a_0, \ldots, a_{n-1})$

- \bigcirc a_0 : Bottom element
- \bigcirc a_{n-1} : Top element
- \bigcirc a_i : On top of element a_{i-1} (0 < i < n)

A.K.A Last-In-First-out (LIFO)

Inserting and deleting elements in a stack push $A \rightarrow \text{push } B \rightarrow \text{push } C \rightarrow \text{push } D$ stack state

Given stack $S = (a_0, \ldots, a_{n-1})$

- \bigcirc a_0 : Bottom element
- \bigcirc a_{n-1} : Top element
- a_i : On top of element a_{i-1} (0 < i < n)

A.K.A Last-In-First-out (LIFO)

Inserting and deleting elements in a stack push A \rightarrow push B \rightarrow push C \rightarrow push D \rightarrow push E

stack state

Given stack $S = (a_0, \ldots, a_{n-1})$

- \bigcirc a_0 : Bottom element
- \bigcirc a_{n-1} : Top element
- \bigcirc a_i : On top of element a_{i-1} (0 < i < n)

A.K.A Last-In-First-out (LIFO)

Inserting and deleting elements in a stack push $A \to push B \to push C \to push D \to push E \to pop E$ stack state

 \leftarrow top

Stack is used by a program at run-time to process function calls Activation record (stack frame) initially contains only

- a pointer to the previous stack frame
- a return address

If this invokes another function

- local variables
- parameters of the invoking function

System Stack after function call

System Stack after function call
Run-time program simply creates a new stack frame

also for each recursive call

Frequent function calls may occupy all of the stack memory and may cause a stack overflow.

The source of the picture is the "Stack Overflow" company's logo.

```
Structure: Stack is
  Objects: a finite ordered list with zero or more elements
  Functions:
  For all stack ∈ Stack,
  item ∈ element,
  max_stack_size ∈ positive integer:
    Stack CreateS(max_stack_size);
    Boolean IsFull(stack, max_stack_size);
    Stack Push(stack, item);
    Boolean IsEmpty(stack);
    Element Pop(stack);
```

Stack Abstract Data Type: Implementation

- Using a one-dimensional array
 - stack[MAX_STACK_SIZE]
 - where MAX_STACK_SIZE: maximum number of entries

Stack Abstract Data Type: implementation

IsEmpty(stack)

```
return(top < 0);
```

IsFull(stack);

```
return(top >= MAX_STACK_SIZE-1);
```

Stack Abstract Data Type: implementation

Push(stack, item)

```
void push(int *ptop, element item){
   if (*ptop >= MAX_STACK_SIZE -1) {
      stack_full();
      return;
   }
   stack[++*ptop] = item;
}
```

Pop(int *ptop);

```
element pop(int *ptop){
   if(*ptop == -1)
      return stack_empty();
   return stack[(*ptop)--];
}
```

Stack Abstract Data Type: Application of Stack

- Procedure calls/returns
- Syntactic analyzer
- Converting non-recursive procedures to recursive procedures
- O Save return address when calling subfunction

QUEUES

Queue Abstract Data Type: Characteristics

- Ordered list
- All insertions are made at one end, called rear
- All deletions are made at the other end, called front
- which item is to be removed first?
 - FIF0 (First In First Out)
- All items except front/rear items are hidden

Operation

Queue state

Operation insert A

Queue state

 $A \leftarrow front, rear$

Operation insert A \rightarrow insert B Queue state

$$\begin{array}{ccc} & & B & \leftarrow \text{rear} \\ A & \leftarrow \text{front, rear} & A & \leftarrow \text{front} \end{array}$$

Operation insert A \rightarrow insert B \rightarrow insert C Queue state

$$\begin{array}{ccc} & C & \leftarrow \text{rear} \\ B & \leftarrow \text{rear} & B \end{array}$$

 $A \quad \leftarrow \text{front, rear} \quad A \quad \leftarrow \text{front} \quad A \quad \leftarrow \text{front}$

Operation insert A \rightarrow insert B \rightarrow insert C \rightarrow insert D

Queue state $\begin{array}{ccccccc}
D & \leftarrow \text{rear} \\
C & \leftarrow \text{rear} & C \\
B & \leftarrow \text{rear} & B \\
A & \leftarrow \text{front, rear} & A & \leftarrow \text{front} & A & \leftarrow \text{front}
\end{array}$

Queue Abstract Data Type: Implementation

Simplest scheme

 \odot one-dimensional array, and two variables: front and rear

```
#define MAX_QUEUE_SIZE 100
typedef struct {
    int key;
    /* other fields */
} element;

element queue[MAX_QUEUE_SIZE];
int rear = -1;
int front = -1;
```

Queue Abstract Data Type: Implementation

IsEmptyQ(queue)

return (front == rear)

IsFullQ(queue)

return rear == (MAX_QUEUE_SIZE-1)

Queue Abstract Data Type: Application of Queue

- Buffer
- Job scheduling

Queue Abstract Data Type

addq(*prear, element item)

```
void addq(int *prear, element item){
if(*prear == MAX_QUEUE_SIZE - 1){
    queue_full();
    return;
}
queue[++*prear] = item;
}
```

deleteg(*pfront, int rear)

```
1 element deleteq(int *pfront, int rear){
2    if(*pfront == rear){ // rear is used to check for an empty queue
3         return queue_empty();
4    }
5    return queue[++*pfront];
6 }
```

Queue Abstract Data Type: Example - Sequential Queue

Job Scheduling: Creation of job queue

 in the OS which does not use priorities, jobs are processed in the order they enter the system

front	rear	Q[o]	Q[1]	Q[2]	Q[3]	Comments
-1	-1					Queue is empty
-1	О	J1				Job 1 is added
-1	1	J1	J2			Job 2 is added
-1	2	J1	J2	J3		Job 3 is added
O	2		J2	J3		Job 1 is deleted
1	2			J ₃		Job 2 is deleted

Queue Abstract Data Type: Example - Sequential Queue

Problem

- Queue gradually shifts to the right
- o queue_full(rear == MAX_QUEUE_SIZE-1) signal does not always mean that there are MAX_QUEUE_SIZE items in queue
- There may be empty spaces available
- data movement: O(MAX_QUEUE_SIZE)

Solution:

Queue Abstract Data Type: Example - Sequential Queue

Problem

- Queue gradually shifts to the right
- o queue_full(rear == MAX_QUEUE_SIZE-1) signal does not always mean that there are MAX_QUEUE_SIZE items in queue
- There may be empty spaces available
- data movement: O(MAX_QUEUE_SIZE)

Solution:

Circular Queue

CIRCULAR QUEUES

Circular Queues

More efficient Queue representation

- oregard the array queue[MAX_QUEUE_SIZE] as circular
- initially front and rear to 0 rather than -1
- the front index always points one position counterclockwise from the first element in the queue
- the rear index point to the current end of the queue

Circular Queues

empty and nonempty circular queues

Circular Queues

full circular queues

front =
$$0$$

rear = 7

Circular Queues: Quiz

What is the result?

$$front = 0$$

 $rear = 0$

addq(A)
addq(B)
addq(C)
deleteq()
addq(D)
deleteq()

Circular Queues: Quiz Result

Circular Queues: Thinking

Why do not fill data in the empty space in front?

- If all the data is filled in such a state, front and rear become the same, so it is impossible to distinguish whether it is empty or full.
- So, before all queue is filled, the size of the queue must be expanded.

Circular Queues: Implementation

Use modulus operator for circular rotation

Circular rotation of the rear

rear = (rear + 1) % MAX_QUEUE_SIZE;

Circular rotation of the front

front = (front + 1) % MAX_QUEUE_SIZE;

Circular Queues: Implementation

Add to a circular queue

rotate rear before we place the item in the rear of the queue

Circular Queues: Implementation

Delete from a circular queue

```
element deleteq(int *pfront, int rear){
element item;
if (*pfront == rear)
return queue_empty();
/* queue_empty returns an error key */
*pfront = (*pfront + 1) % MAX_QUEUE_SIZE;
return queue[*pfront];
}
```

Circular Queues: Implementation notes

Tests for a full queue and an empty queue are the same

 To distinguish between the case of full and empty, permit a maximum of MAX_QUEUE_SIZE - 1

No data movement necessary

- Ordinary queue: 0(n)
- Circular queue: 0(1)

A MAZING PROBLEM

A Mazing Problem

The representation of the maze

- two-dimensional array
- element o : open path
- element 1 : barriers

A Mazing Problem: Allowable Movements

A Mazing Problem: Conditions

[row][col] which is on border

- has only three (or two) neighbors
- surround the maze by a border of 1's

m*p maze

- \bigcirc require (m+2)*(p+2) array
- entrance position: [1][1]
- o exit position: [m][p]

A Mazing Problem: Data Type

```
typedef struct {
short int vert;
short int horiz;
} offsets

offsets move[8]; /* array of moves for each direction */
```

name	dir	move[dir].vert	move[dir].horiz
N	О	-1	0
NE	1	-1	1
E	2	0	1
SE	3	1	1
S	4	1	0
SW	5	1	-1
W	6	0	-1
NW	7	-1	-1

A Mazing Problem: Positioning of moves

Position of next move

 move from current position: maze[row][col] to the next position maze[next_row][next_col]

```
next_row = row + move[dir].vert;
next_col = col + move[dir].horiz;
```

A Mazing Problem: Approach

Maintain a second two-dimensional array, mark

- avoid returning to a previously tried path
- initially, all entries are 0
- mark to 1 when the position is visited

A Mazing Problem: Initial maze algorithm

```
initialize a stack to the maze's entrance coordinates
        and direction to north:
    while (stack is not empty) {
        /* move to position at top of stack */
        <row,col,dir> = delete from top of the stack;
        while (there are more moves from current position) {
            <next_row, next_col> = coordinates of next move;
 7
            dir = direction of move;
            if ((next row == EXIT ROW) &&
 9
                (next col == EXIT COL))
 10
                success;
            if (maze[next_row][next_col] == 0 &&
 12
                mark[next_row][next_col] == 0) {
 13
                mark[next_row][next_col] = 1;
 14
                add <row, col, dir> to the top of the stack;
 15
                row = next row:
 16
                col = next_col;
 17
                dir = north:
 18
 19
 20
 21
    printf("no path found\n");
Data Structure and Algorithm
```

A Mazing Problem: Data Type

```
#define MAX_STACK_SIZE 100
typedef struct {
    short int row;
    short int col;
    short int dir;
} element;
element stack[MAX_STACK_SIZE];
```

bound for the stack size

 the stack need only as many positions as there are zeroes in the maze

EVALUATION OF EXPRESSIONS

Expressions

$$x = a/b - c + d * e - a * c$$

To understand the meaning of a expressions and statements

figure out the order in which the operations are performed
 Operator precedence hierarchy

associativity

 $\, \bigcirc \,$ how to evaluate operators with the same precedence

Precedence hierarchy for C

token	precedence	associativity
() [] -> .	17	left-to-right
++	16	left-to-right
++!~-+&* sizeof	15	right-to-left
(type)	14	right-to-left
* / %	13	left-to-right
+-	12	left-to-right
« »	11	left-to-right
>>= < <=	10	left-to-right
==!=	9	left-to-right
&	8	left-to-right
^	7	left-to-right
	6	left-to-right
&&	5	left-to-right
	4	left-to-right
?:	3	right-to-left
= += -= /= *= %= «= »= &= ^= =	2	right-to-left
,	1	left-to-right

Evaluation of Expressions

Human Style

- 1. assign priority to each operator
- 2. use parenthesis and evaluate inner-most ones (((A*(b+c))+(d/e))-(a/(c*d)))

Compiler Style (in postfix form)

- 1. translation (infix to postfix)
- 2. evaluation (postfix)

```
prefix form: (operator) operand operand
infix form: operand (operator) operand
postfix form: operand operand (operator)
```

Prefix, Infix, and Postfix Notation

Prefix	Infix	Postfix
+2 *34	2+3*4	2 3 4 *+
+ * a b 5	a*b+5	a b *5+
* + 1 2 7	(1+2)*7	12 +7*
/*a b c	<i>a</i> * <i>b</i> / <i>c</i>	a b * c /
*/a + -b c d * -e a c	((a/(b-c+d))*(e-a)*c	abc-d+/ea-*c*
+-/abc-*de*ac	a/b - c + d * e - a * c	a b /c - d e * +a c * -

Evaluation of postfix expression

- scan left-to-right
- oplace the operands on a stack until an operator is found
- perform operations

$$62/3 - 42* +$$

token	[o]	[1]	[2]	top
6	6			0

$$62/3 - 42* +$$

token	[o]	[1]	[2]	top
6	6			0
2	6	2		1

$$62/3 - 42* +$$

token	[o]	[1]	[2]	top
6	6			О
2	6	2		1
/	6/2			0

$$62/3 - 42* +$$

token	[o]	[1]	[2]	top
6	6			0
2	6	2		1
/	6/2			О
3	6/2	3		1

$$62/3 - 42* +$$

token	[o]	[1]	[2]	top
6	6			О
2	6	2		1
/	6/2			О
3	6/2	3		1
-	6/2-3			О

$$62/3 - 42* +$$

token	[o]	[1]	[2]	top
6	6			0
2	6	2		1
/	6/2			0
3	6/2	3		1
-	6/2-3			0
4	6/2-3	4		1

$$62/3 - 42* +$$

token	[o]	[1]	[2]	top
6	6			0
2	6	2		1
/	6/2			0
3	6/2	3		1
-	6/2-3			0
4	6/2-3	4		1
2	6/2-3	4	2	2

$$62/3 - 42* +$$

token	[o]	[1]	[2]	top
6	6			0
2	6	2		1
/	6/2			0
3	6/2	3		1
-	6/2-3			0
4	6/2-3	4		1
2	6/2-3	4	2	2
*	6/2-3	4*2		1

$$62/3 - 42* +$$

token	[o]	[1]	[2]	top
6	6			0
2	6	2		1
/	6/2			0
3	6/2	3		1
-	6/2-3			0
4	6/2-3	4		1
2	6/2-3	4	2	2
*	6/2-3	4*2		1
+	6/2-3+4*2			0

How many times integer pushes have occurred?

```
get_token()
```

used to obtain tokens from the expression string

```
eval()
```

- if the token is operand, convert it to number and push to the stack
- otherwise
 - pop two operands from the stack
 - perform the specified operation
 - push the result back on the stack

represent stack by a global array

- accessed only through top
- o assume only the binary operator +, -, *, /, and %
 - assume single digit integer

Function to evaluate a postfix expression I

```
int eval(){
       precedence token;
2
       char symbol;
3
       int op1, op2;
       int n = 0:
7
       int top = -1;
9
       token = get_token(&symbol, &n);
10
       while (token != eos) {
12
           if (token == operand)
13
               push(&top, symbol-'0');
14
15
           else {
               op2 = pop(\&top):
16
               op1 = pop(\&top);
17
18
               switch (token) {
19
                   case plus: push(&top, op1+op2);
20
```

Function to evaluate a postfix expression II

```
break;
21
                    case minus: push(&top, op1-op2);
22
                               break;
23
                    case times: push(&top, op1*op2);
24
                              break:
25
                    case divide: push(&top, op1/op2);
26
                              break;
27
                    case mod: push(&top, op1%op2);
28
29
30
             token = get_token(&symbol, &n);
31
32
         return pop(&top);
33
34
```

Function to get a token I

```
precedence get_token(char *psymbol, int *pn) {
       *psymbol = expr[(*pn)++];
2
       switch (*psymbol)
3
           case '(' : return lparen;
           case ')' : return rparen;
           case '+' : return plus;
           case '-' : return minus;
7
           case '*' : return times;
           case '/' : return divide;
9
           case '%' : return mod:
10
           case ' : return eos;
11
           default : return operand; /* no error checking */
12
13
14 }
```

Complexity

- time: O(n) where n: number of symbols in expression
- space: stack expr[MAX_EXPR_SIZE]

Algorithm for producing a postfix expression from an infix one

- 1. fully parenthesize the expression
- 2. move all binary operators so that they replace their corresponding right parentheses
- 3. delete all parentheses

e.g.
$$a/b - c + d * e - a * c$$

1.
$$((((a/b) - c) + (d * e)) - (a * c))$$

2. ab/c-de*+ac*-

Requires two pass

Form a postfix in one pass

- order of operands is the same in infix and postfix
- order of operators depends on precedence
- we can use stack

Simple expression: a + b * c

 \bigcirc a b c *+

 Output operator with higher precedence before those with lower precedence

token	[o]	[1]	[2]	top	output
a				- 1	a

 Output operator with higher precedence before those with lower precedence

token	[o]	[1]	[2]	top	output
a				- 1	a
+	+			0	a

 Output operator with higher precedence before those with lower precedence

token	[o]	[1]	[2]	top	output
a				-1	a
+	+			0	a
b	+			О	ab

 Output operator with higher precedence before those with lower precedence

token	[o]	[1]	[2]	top	output
a				- 1	a
+	+			0	a
b	+			0	ab
*	+	*		1	ab

 Output operator with higher precedence before those with lower precedence

token	[o]	[1]	[2]	top	output
a				- 1	a
+	+			0	a
b	+			0	ab
*	+	*		1	ab
С	+	*		1	abc

 Output operator with higher precedence before those with lower precedence

token	[o]	[1]	[2]	top	output
a				- 1	a
+	+			0	a
b	+			0	ab
*	+	*		1	ab
С	+	*		1	abc
eos				-1	abc*+

parentheses make the translation process more difficult

- \bigcirc equivalent postfix expression is parenthesis-free expression a*(b+c)*d
- \bigcirc yield $a \ b \ c + *d*$ in postfix

right parenthesis

Opop operators from a stack until left parenthesis is reached

token	[o]	[1]	[2]	top	output
a				- 1	a

token	[o]	[1]	[2]	top	output
a				-1	a
*	*			0	a

token	[o]	[1]	[2]	top	output
a				- 1	a
*	*			0	a
(*	(1	a

token	[o]	[1]	[2]	top	output
a				- 1	a
*	*			0	a
(*	(1	a
b	*	(1	ab

token	[o]	[1]	[2]	top	output
a				- 1	a
*	*			0	a
(*	(1	a
b	*	(1	ab
+	*	(+	2	ab

token	[o]	[1]	[2]	top	output
a				-1	a
*	*			О	a
(*	(1	a
b	*	(1	ab
+	*	(+	2	ab
С	*	(+	2	abc

token	[o]	[1]	[2]	top	output
a				- 1	a
*	*			0	a
(*	(1	a
b	*	(1	ab
+	*	(+	2	ab
С	*	(+	2	abc
)	*			0	abc+

token	[o]	[1]	[2]	top	output
a				-1	a
*	*			0	a
(*	(1	a
b	*	(1	ab
+	*	(+	2	ab
С	*	(+	2	abc
)	*			0	abc+ abc+*
*	*			О	abc+*

token	[o]	[1]	[2]	top	output
a				-1	a
*	*			0	a
(*	(1	a
b	*	(1	ab
+	*	(+	2	ab
С	*	(+	2	abc
)	*			0	abc+
*	*			0	abc+*
d	*			О	abc+*d

token	[o]	[1]	[2]	top	output
a				-1	a
*	*			0	a
(*	(1	a
b	*	(1	ab
+	*	(+	2	ab
С	*	(+	2	abc
)	*			0	abc+
*	*			0	abc+*
d	*			0	abc+*d
eos	*			О	abc+*d*

A precedence-based scheme for stacking and unstacking operators


```
isp[stack[top]] < icp[token]: push
isp[stack[top]] > icp[token]: pop and print
```

Use two types of precedence (because of the '(' operator)

- in-stack precedence (isp)
- incoming precedence (icp)

```
precedence stack[MAX_STACK_SIZE];
/* isp and icp arrays
-- index is value of precedence
lparen, rparen, plus, minus,
times divide, mode, eos */

static int isp[] = {0, 19, 12, 12, 13, 13, 13, 0};
static int icp[] = {20, 19, 12, 12, 13, 13, 13, 0};
```

Infix to Postfix: the function I

Function to convert from infix to postfix

```
void postfix(void) {
       char symbol;
2
       precedence token;
       int n = 0:
       int top = 0;
5
       stack[0] = eos;
       for (token = get_token(&symbol, &n);
8
           token != eos;
           token = get_token(&symbol, &n)) {
10
11
           if (token == operand)
12
               printf("% c", symbol);
13
           else if (token == rparen) {
14
               while (stack[top] != lparen)
15
                   print_token(pop(&top));
16
17
               pop(&top);
18
```

Infix to Postfix: the function II

```
} else {
19
               while (isp[stack[top]] >= icp[token])
20
                   print_token(pop(&top));
21
22
               push(&top, token);
23
24
25
       while ((token = pop(&top)) != eos)
26
           print_token(token);
27
28
       printf("\n");
29
30
```

postfix

- no parenthesis is needed
- no precedence is needed

complexity

- time: O(r) where r: number of symbols in expression
- \bigcirc space: S(n) = n where n: number of operators