مدار منطقی فصل ۶: ثباتها و شمارندهها (Registers & Counters) بخش اول: ثبات

شکلهای این درس از اسلایدهای ویرایش ۶ کتاب مانو اخذ شده است.

Register

4-bit register

• ثبات (Register): تعدادی FF با Register) مشترک

• Load/Update (بارگذاری): نوشتن بیتها در ثبات

 $I_3I_2I_1I_0$: inputs

 $A_3A_2A_1A_0$: outputs

clear_b: asynchronous active-low reset

PIPO (Parallel Input/Parallel Output)

مثال

PS	input	NS	output	
$A_1 A_0$	X	$A_1^+ A_0^+$	У	
0 0	0	0 0	0	
0 0	1	0 1	0	
01	0	0 1	0	
01	1	0 0	1	
10	0	10	0	
10	1	0 1	0	
11	0	11	0	
11	1	0 0	1	

• برای جدول حالت مقابل، مدار طرح کنید: A,A, 0 1 1 10
10000 1 100 / 100
At-D-AX A-D-AX+AX

Four-bit register with parallel load

Four-bit shift register

• ثبات انتقالی (shift register): ثباتی که قابلیت انتقال اطلاعات به چپ یا راست (unidirectional) یا هر دو جهت (bidirectional)

Serial transfer from register A to register B

Timing Pulse	Shift Register A			Shift Register <i>B</i>				
Initial value	1	0	1	1	0	0	1	0
After T_1		l	0	1			0	1
After T_2	l	l		0	1	1	0	5
After T_3	0		(0	1	1	0
After T_4	()	0	1	1

Serial Adder

- 1. Reset Register A and carry FF, 1st number in B
- 2. Shift 1st number from B through the adder
 - ❖ Input 2nd number to B
 (through SI), simultaneously
- 3. $RegA + RegB \rightarrow RegA$

طراحی جمع کننده سری با روش طراحی FSM

Present State	Inp	uts	Next State	Output	Flip-Flop Inputs		
Q	X	y	Q	S	JQ	K _Q	
0	0	0	0	0	0	X	
0	0	1	0	1	0	X	
0	1	0	0	1	0	X	
0	1	1	1	0	1	X	
1	0	0	0	1	X	1	
1	0	1	1	0	X	0	
1	1	0	1	0	X	0	
1	1	1	1	1	X	0	

$$J_{Q} = xy$$

$$K_{Q} = x'y' = (x + y)'$$

$$S = x \oplus y \oplus Q$$

Second form of serial adder

Four-bit universal shift register

Mode Control

s ₁	s ₀	Register Operation
0	0	No change
0	1	Shift right
1	0	Shift left
1	1	Parallel load

Parallel inputs