On the Entropy of a Discrete Black Hole

Vid Homsak, Stefano Veroni

The Causal Set Approach to Quantum Gravity

GEOMETRY = ORDER + NUMBER!

Causal structure and the discreteness scale uniquely define spacetime (HKMM theorem 1,2).

Causal Set Theory³ assumes that the continuous spacetime emerges as a macroscopic approximation to an underlying causal set, a discrete partially ordered set of events C with an order relation \prec . A causal set (causet) satisfies $(\forall x, y, z \in C)$:

- Transitivity: $x \prec y \land y \prec z \Rightarrow x \prec z$.
- Acyclicity: $x \prec y_1 \prec y_2 \prec ... \prec y_N \neq x$.
- Local finiteness: $|\{z \mid x \prec z \prec y\}|$ is finite.

Hasse diagram of a generic causet

How to study it? **Poisson Sprinkling!**

To embed a causet in a spacetime region of volume V:

- 1. Pick the sprinkling density $\rho = \ell^{-4}$.
- 2. Distribute $N = Poiss(\rho V)$ points uniformly such that the probability of having n points in a volume

$$Poiss(n; V) = \frac{(\rho V)^n}{n!} e^{-\rho V}.$$

Note: $dV(x) \propto \sqrt{-g_{\mu\nu}(x)}$

3. Connect the elements according to the causal structure of the spacetime region.

Black Holes: the Testing Arena of Quantum Gravity

Black holes arise from **General Relativity** and combined with Quantum Mechanics yield a full set of Thermodynamic laws.

(2+1)D black hole. Inside the horizon, light cones Causal set of a (1+1)D Schwarzschild black hole. converge on the singularity, the only possible future. Connections form only within the light cones.

From Entropy to Horizon Molecules

"If your theory is found to be against the second law of thermodynamics, I can give you no hope; there is nothing for it but to collapse in deepest humiliation." Arthur Eddington, 1915.

The entropy^{4,5} of a black hole with event horizon area A is given by

$$S_{BH} = \frac{1}{4} \frac{A}{\ell_p^2}, \qquad \ell_p = \sqrt{\frac{\hbar G}{c^3}} \sim 10^{-35} \text{ m}.$$

Where is the black hole entropy? On the horizon⁶, embodied by "horizon molecules". In analogy to statistical physics, we can define

$$S = -N_{mol} \sum p_n \ln(p_n)$$

Aims

- First-ever study of causal sets in Schwarzschild spacetime (750k elements)!
- Test different molecule models of black hole entropy.
- Compare our simulations with analytic results⁸ in flat spacetime (for Rindler horizon).

- Discretise more complex black holes.
- Investigate other entropy models $(SMI^9, SSEE^{10})$.
- Explore curvature features and corrections in causets^{9,11}.

Further Work

References

- [1] Hawking SW, King AR, McCarthy PJ. 1976. J. Math. Phys. 17:174-181.
- [2] Malament DB. 1977. J. Math. Phys. 18:1399-1404.
- [3] Bombelli L, et al. 1987. Phys. Rev. Lett. 59:521-524.

Results

Desired scaling $N_{n\Lambda} \propto A$.

As are localised on the horizon.

Distribution of n-As $p_n \propto e^{-\chi n}$.

For the n- Λ s, we found that the entropy scales as

$$S_{\Lambda} = 0.0929(6) \frac{A}{\ell^2}.$$

Setting $S_{\Lambda} = S_{BH}$ gives a discreteness scale

$$\ell = 0.610(2)\ell_n$$
.

Writing $p_n \propto e^{-E_n/k_BT}$ we obtain, as for the energy of *n*-atomic molecules in 3D space,

$$E_n \approx \frac{3n}{2} k_B T.$$

This result was confirmed to within the uncertainty. The entropy and discreteness scale for HRVs are

We confirm analytical calculations⁸ for the scaling of

single-link molecules when accounting for curvature

 $\Delta S_{\Lambda} = 0.173(1) \frac{\sqrt{A}}{\ell}$.

For HRVs, we analytically found $N_{HRV} = 0.0742 \ A/\ell^2$.

corrections. Extending these to As yields

 $S_{HRV} = 0.0098(3) \frac{A}{\ell^2}, \quad \ell = 0.198(3)\ell_p.$

Our Code

- [4] Bekenstein JD. 1972. Lett. Nuovo Cimento 4:737–740.
- [5] Hawking SW. 1975. Commun.Math. Phys. 43:199–220.
- [6] Dou D, Sorkin RS. 2003. Found. Phys. 33:279-296.
- [7] He S, Rideout D. 2009. Class.Quant.Grav. 26:125015.
- [8] Barton C, et al. 2019. Phys. Rev. D 100:126008. [9] Benincasa DMT. 2013. PhD Thesis. Imperial College London.
- [10] Sorkin RS, Yazdi YK. 2018. Class. Quantum Grav. 35:074004.
- [11] Roy M, Sinha D, Surya S. 2013. Phys. Rev. D 87:044046.