International Institute of Information Technology, Hyderabad

(Deemed to be University)

Statistical Methods in AI (CSE/ECE 471) - Spring-2019

Mid-semester Examination 2

Maximum Time:	: 90 Minutes				Total Marks: 75
Roll No	I	Programme			Date
Room No		Seat No	I	Invigilator Sign.	
Marks secured					

Multiple Choice Questions

Question:	1	2	3	4	5	6	7	8	9	10	11	Total
Points:	2	2	2	2	2	2	2	2	2	2	3	23
Score:												

Long Questions-1

Question:	12	13	14	15	16	17	18	19	20	Total
Points:	5	5	15	6	4	5	5	3	4	52
Score:										

General Instructions to the students

- 1. QUESTION BOOKLET NEEDS TO BE RETURNED ALONG WITH ANSWER SHEETS. PLEASE TIE TOGETHER YOUR ANSWER SHEETS AND QUESTION BOOKLET, WITH THE BOOKLET ON TOP.
- 2. Multiple-choice and True/False questions MUST be answered clearly within the question booklet itself. NO MARKS FOR WRITING THE CHOICES IN ANSWER SHEET.
- 3. No questions will be answered during the exam. Make necessary <u>reasonable</u> assumptions, state them and proceed.

True or False

Circle True or False. **NOTE: This section (True or False) has negative marking for incorrect answers.** (2 points each)

- 1. (2 points) True False Two random variables A, B are independent if p(A, B) = p(A|B)p(B).
- 2. (2 points) True False By minimizing its loss function, k-means clustering always reaches the global minimum.
- 3. (2 points) True False Naive Bayes classifier finds a Maximum Aposteriori Probability (MAP) estimate of its parameters.
- 4. (2 points) True False Any boolean function can be learnt by a linear classifier (perceptron).
- 5. (2 points) True False Suppose x_1, x_2 are two data points with the same class label \mathcal{A} and $x_1 \neq x_2$. Suppose $x_3 = \frac{x_1 + x_2}{2}$ is a datapoint that belongs to a different class \mathcal{B} . No perceptron exists that classifies x_1, x_2 into \mathcal{A} and classifies x_3 into class \mathcal{B} .
- 6. (2 points) True False Suppose we have a model from a fixed hypothesis set. As the amount of training data decreases, the possibility of overfitting the model increases.
- 7. (2 points) True False For a given dataset, a random forest classifier tends to have a lower bias than a decision tree.

Multiple Choice

Mark all answers you think are correct. No marks for partially correct answers.

- 8. (2 points) Consider the following regression model : $\arg\min_{\theta} \|y X\theta\|_{2}^{2} + \lambda \|\theta\|_{2}^{2}$. What does increasing λ do?
 - A. Bias of the model increases, Variance decreases
 - B. Bias of the model increases, Variance stays the same
 - C. Bias of the model decreases, Variance increases
 - D. Bias of the model decreases, Variance stays the same
- 9. (2 points) Which of the following activation functions has an unbounded range?
 - A. ReLU (max(x,0)) B. Linear C. Sigmoid D. Tanh
- 10. (2 points) For which of the following machine learning approaches can we have a kernel-ized version (similar to SVM)?
 - A. k-NN B. k-means C. PCA D. None of the above
- 11. (3 points) A 1-nearest neighbor classifier has than a _____ than a 5-nearest neighbor classifier.
 - A. larger variance B. larger bias C. smaller variance D. smaller bias

Long Questions

Write detailed answers. Adequately explain your assumptions and thought process.

12. (5 points) Figure 1 shows two plots, corresponding to the 2-D distribution of two different datasets. Suppose PCA is performed on the given data. Clearly draw the <u>directions</u> of the first and second principal component vectors in each plot. **NOTE:** Draw directly on the plots in the question paper.

Figure 1:

- 13. (5 points) Suppose the month of the year is one of the attributes in your dataset. Currently, each month is represented by an integer $k, 0 \le k \le 11$ and let's say k = 0 corresponds to December, k = 1 to January etc. Come up with a feature representation f(k) such the representation for December is at equal Euclidean distance from representations of January and November, i.e. $||f(0) f(1)||_2 = ||f(0) f(11)||_2$. Hint: f(k) can be a vector.
- 14. (15 points) Figure 2 shows a 2-D dataset (circles). Suppose the k-means algorithm is run with k=2 and the squares represent the initial locations of the estimated means. Indicate the new locations of the cluster means after 1 iteration of the k-means algorithm. Draw a triangle at the location of each cluster mean. Also write 1, 2 alongside each data point and the new cluster mean to show which data points belong to cluster 1 and which datapoints belong to cluster 2. Assume that datapoints whose locations do not align with integer axes coordinates have coordinates of 0.5. For e.g. the coordinates of top-left datapoint are (0,7). The coordinates of datapoint immediately to its right are (0.5,7)
- 15. (6 points) The loss function for k-means clustering with k > 1 clusters, data-points $x_1, x_2 \dots x_n$, centers $\mu_1, \mu_2, \dots \mu_k$ and Euclidean distance is given by

$$L = \sum_{j=1}^{k} \sum_{x_i \in S_j} \|x_i - \mu_j\|_2^2$$

where S_j refers to points with cluster center μ_j . Suppose **stochastic** gradient descent with a learning rate of η is used. Derive the update rule for parameter μ_1 for a given data-point x_p . NOTE: x_p may or may not be a sample in S_1 .

Figure 2:

Consider the following dataset (row is a data sample, each sample has two dimensions)

$$X = \begin{bmatrix} 6 & -4 \\ -3 & 5 \\ -2 & 6 \\ 7 & -3 \end{bmatrix}$$

Suppose PCA is used to determine the principal components.

- 16. (4 points) What are the unit vectors in the directions corresponding to the principal components? HINT: There might be a faster way to guess the vectors instead of computing the covariance matrix.
- 17. (5 points) What is sum of eigenvalues corresponding to the principal components?
- 18. (5 points) Figure 3 shows the truth table for a NAND logic gate. Implement the NAND function via a neural network architecture with a single neuron and an appropriate choice of weights, bias and activation function.

x_1	x_2	y
0	0	1
0	1	1
1	0	1
1	1	0

Figure 3:

In the lecture on SVM, we saw that one could use a mapping function $\phi: \mathbb{R}^n \longrightarrow \mathbb{R}^d$ to transform points from the original \mathbb{R}^n space to another space \mathbb{R}^d . We also saw that one could define a kernel function K(x,z) such that $K(x,z) = \phi(x)^T \phi(z)$. Suppose α is a positive real constant value. Suppose $\phi_1: \mathbb{R}^n \longrightarrow \mathbb{R}^d$, $\phi_2: \mathbb{R}^n \longrightarrow \mathbb{R}^d$ are feature mappings of K_1 and K_2 respectively. In terms of ϕ_1, ϕ_2

- 19. (3 points) Write the formula for the feature mapping ϕ_3 corresponding to $K(x,z) = \alpha K_1(x,z)$
- 20. (4 points) Write the formula for the feature mapping ϕ_3 corresponding to $K(x,z) = K_1(x,z)K_2(x,z)$