Examen PHY 1120 : Mécanique du point Licence Fondamental TC/ Semestre 1 Durée : 2h

Les supports de cours ne sont pas autorisés. L'étudiant n'aura pas besoin d'une calculatrice pour cette épreuve.

Questions de cours (5 pts)

Pour cet exercice, l'étudiant choisira la bonne réponse en inscrivant le numéro, la lettre correspondante et la réponse sur la copie au besoin.

- 1. Lorsque l'amplitude de l'oscillateur harmonique est multipliée par 2 : (a) sa période est multipliée par : 2, $\sqrt{2}$, 1, $\frac{1}{2}$; (b) son énergie est multipliée par : 2, 1, 4, 8. (2 pts)
- 2. La trajectoire d'un oscillateur harmonique spatial est : (a) plane; (b) fermée; (c) les deux. (1 pt)
- 3. La période d'oscillation d'un pendule simple est : (a) $\sqrt{\frac{g}{l}}$; (b) $\sqrt{\frac{l}{g}}$; (c) $2\pi\sqrt{\frac{g}{l}}$; (d) $2\pi\sqrt{\frac{l}{g}}$; (e) supérieur à $2\pi\sqrt{\frac{l}{g}}$. $(1\,pt)$
- 4. Le décrément logarithmique d'un oscillateur harmonique amorti par frottement fluide, de facteur de qualité Q : (a) est indépendant de Q; (b) défini pour $Q > \frac{1}{2}$; (c) défini pour $Q < \frac{1}{2}$; (d) fonction croissante de Q; (e) fonction décroissante de Q. (1 pt)

Exercice (5 pts)

Une masse m est en mouvement dans un plan (xoy) sans frottement et sous l'effet de deux forces $\overrightarrow{F_1} = -\gamma \overrightarrow{OM}$ et une autre force $\overrightarrow{F_2} = -\eta \overrightarrow{v}$ tel que γ et η sont des constantes.

- 1. Dans la base polaire et en utilisant le Principe fondamental de la dynamique, montrer que l'équation horaire du mouvement est donnée par $r=r_0e^{\frac{-\eta}{2m}t}$ (on suppose que $\theta=\omega t$, et à t=0 $r=r_0$, r_0 et ω sont constants). $(2\,pts)$
- 2. retrouver l'expression de cette équation horaire en utilisant le théorème du moment cinétique. $(3\,pts)$

Problème (10 pts)

On se propose d'étudier dans cet exercice le mouvement des chaises volantes d'un manège, voir photo ci-dessous (figure 1a). Pour ce faire, on considère une chaise comme un point matériel M de masse m suspendu à un disque D par un fil de longueur inextensible L. Le disque (D) de rayon R tourne à une vitesse angulaire constante ω et reste à tout instant horizontal et à une hauteur h constante du sol, voir figure 1b.

Considérons R(O,xyz) un référentiel fixe, supposé galiléen, muni de la base orthonormée directe $(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$. Soit $R_1(O,x_1y_1z_1)$ un référentiel lié au disque (D), que l'on utilise comme référentiel relatif, muni de la base $(\overrightarrow{i_1},\overrightarrow{j_1},\overrightarrow{k_1}\equiv\overrightarrow{k})$. R_1 tourne autour de l'axe Oz et le vecteur rotation de R_1 par

rapport à R est donné par $\overrightarrow{\Omega}(R_1/R) = \omega \overrightarrow{k}$. Le vecteur \overrightarrow{AM} reste constamment dans le plan $(O_1x_1z_1)$ et sa direction par rapport à la verticale est repérée par l'angle θ .

On donne $\overrightarrow{OO_1} = \overrightarrow{h} \overrightarrow{k}$; $\overrightarrow{O_1A} = \overrightarrow{Ri_1}$ et $\overrightarrow{AM} = L\overrightarrow{u_1}$. On pose $\overrightarrow{u_3} = -\overrightarrow{j_1}$ ainsi la famille des vecteurs unitaires $(\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3})$ forme une base orthonormée directe.

(a) Manège de chaises volantes

(b) Schéma utilisé pour résoudre l'exercice.

FIGURE 1 – Figure d'étude du problème

Toutes les expressions des grandeurs demandées doivent être exprimées dans la base $(\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3})$

- 1. Déterminer les expressions des vecteurs $\overrightarrow{i_1}$ et \overrightarrow{k} en fonction de $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$. (2 pts)
- 2. Établir les expressions des vecteurs vitesse relative $\overrightarrow{V_r} = \overline{V(M/R_1)}$ et accélération relative $\overrightarrow{a_r} = \overline{a(M/R_1)}$. $(2\,pts)$
- 3. Déterminer les expressions des accélérations d'entraînement $\overrightarrow{a_e}$ et de Coriolis $\overrightarrow{a_c}$. $(2 \, pts)$
- 4. Donner les expressions des différentes forces exercées sur M dans R_1 . $(1\,pts)$
- 5. Écrire le principe fondamental de la dynamique (PFD) appliqué à M dans le référentiel R_1 . $(1\,pts)$
- 6. Par projection du PFD sur la base : (a) Déterminer l'expression de la tension \overrightarrow{T} exercée par le fil sur M. (b) établir l'équation différentielle du mouvement de M. $(2\,pts)$