Josh H

A First Course in Calculus by Serge Lang

Notes for Self Study

March 15, 2024

Springer Nature

Powers

Theorem 4.1. Let n be an integer ≥ 1 and let $f(x) = x^n$. Then

$$\frac{df}{dx} = nx^{n-1}$$
.

Remarks on the proof. When we have some number $(x + h)^n$, writing each factor yields

$$(x+h)(x+h)\cdots(x+h)$$
.

If we were to distribute we would get many terms that we do not need to think about. We are able to select which terms from each factor we wish to distribute to find a particular number. There exists n number of x and we multiply them by each other, giving us x^n .

If we choose x from all but one factor, then the remaining factor has h and we get hx^{n-1} . But we do this for each factor. The idea is that it is not the h from one particular factor, but it could be the h from any factor. Since the terms are added when we distribute $(x + h)^n$, then we add the n instances of hx, and get nhx^{n-1} .

Now we have the term x^n and the only term nhx^{n-1} having a factor of h^1 . We conclude that every other term must choose h from at least two factors. Hence we have

$$(x+h)^n = x^n + nhx^{n-1} + h^2g(x,h),$$

where g(x, h) is some expression involving powers of x and h with numerical coefficients. Of course h^2 is factored from the expression.

The rest of the proof follows very naturally using the Newton quotient.