Math 416 Lecture Note: Week 4

Daesung Kim

1 Bases and dimensions: definitions

Let V be a vector space over \mathbb{R} . It is interesting to select a few vectors in V that describe the whole space V. In other words, we want to find a subset $S \subseteq V$ that spans V. This means that every vector in V can be written as a linear combination of S. The goal of this section is to characterize an "optimal" spanning set S. If a spanning set S is optimal, one expects that the linear combination of a vector will be "unique". This leads to linear independence.

Definition 1.1. Let V be a vector space over \mathbb{R} . A basis β for V is a linearly independent subset of V that generates V. We say that the vectors of β form a basis for V.

Example 1.2. Let $V = \mathbb{R}^n$ and $e_i \in V$ be such that the *i*-th entry is 1 and others are zero. Then $E = \{e_1, \dots, e_n\}$ is a basis for V. This basis is called the standard basis for \mathbb{R}^n . To see $\operatorname{Span}(E) = \mathbb{R}^n$, pick an arbitrary vector $x \in \mathbb{R}^n$ and describe it as a linear combination of E. It is easy to see that

$$x = (x_1, \dots, x_n) = x_1 e_1 + \dots + x_n e_n.$$

To prove E is linearly independent, consider a linear equation

$$a_1e_1 + \cdots + a_ne_n = 0$$

and see if it has the only trivial solution $(a_1 = \cdots = a_n = 0)$.

Example 1.3. Let $V = \mathcal{P}_n(\mathbb{R})$ be the set of all real polynomials p(x) with $\deg(p) \leq n$. Then, $\{1, x, x^2, \dots, x^n\}$ is a basis for V.

Theorem 1.4. Let V be a vector space over \mathbb{R} and $\beta = \{v_1, \dots, v_n\}$ a subset of V. Then, β is a basis for V if and only if $v \in V$ can be uniquely expressed as a linear combination of v_1, \dots, v_n .

Proof. (\Rightarrow): Let $v \in V$. Since β is a basis for V, $\operatorname{Span}(\beta) = V$ and v is a linear combination of v_1, \dots, v_n . Suppose there are two linear combinations

$$v = a_1v_1 + \cdots + a_nv_n = b_1v_1 + \cdots + b_nv_n$$

for some $a_i, b_i \in \mathbb{R}$. It then follows that

$$(a_1 - b_1)v_1 + \dots + (a_n - b_n)v_n = 0.$$

Since β is linearly independent, we have $(a_i - b_i) = 0$ for all i (see Problem 2 in HW 3). (\Leftarrow) : Since every vector in V is a linear combination of β , $\mathrm{Span}(\beta) = V$. Let

$$a_1v_1 + \dots + a_nv_n = 0.$$

Since 0 has a unique linear combination representation and $0 = 0v_1 + \cdots + 0v_n$, we have $a_1 = a_2 = \cdots = a_n = 0$, which implies that β is linearly independent. Thus, β is a basis for V.

Notation 1.5. For a finite set G, we use the notation |G| to denote the number of elements in G.

Theorem 1.6. Let V be a vector space over \mathbb{R} , S a finite subset of V, and $\mathrm{Span}(S) = V$. Then, there exists a subset β of S that is a basis for V.

Proof. If S is linearly independent, then $S \subseteq S$ is a basis for V. (Note: If $S = \emptyset$ or $S = \{v\}$ with $v \neq 0$, then S is linearly independent.) If $S = \{0\}$, then $V = \{0\}$. Let $\beta = \emptyset$. Suppose $n \geq 2$ and $S = \{v_1, v_2, \dots, v_n\}$ is linearly dependent. Then, there exist a_i , not all zero, such that

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = 0.$$

After relabeling and manipulating, we get

$$v_n = a_1v_1 + a_2v_2 + \dots + a_{n-1}v_{n-1}.$$

By the previous lemma, we have $\text{Span}(\{v_1, v_2, \cdots, v_{n-1}\}) = V$. Repeat this procedure finitely many times until we get a linearly independent subset of S.

Definition 1.7. The dimension of a vector space V is the number of vectors in a basis for V. The dimension is denoted by $\dim(V)$.

Question 1.8. Is the definition well-defined? Since the definition depends on the choice of a basis, we need to justify that the dimension is consistent regardless of the choice of a basis.

2 Bases and dimensions: Replacement theorem

The goal of this section is to show that the definition of dimension is well-defined. Indeed, we prove more stronger result, which is called Replacement theorem.

Theorem 2.1 (Replacement Theorem). Let V be a vector space over \mathbb{R} , G a subset of V with |G| = n and $\mathrm{Span}(G) = V$. Let L be a linearly independent subset of V with |L| = m. Then,

- (i) $m \leq n$, and
- (ii) there exists a subset $H \subseteq G$ such that |H| = n m and $\operatorname{Span}(L \cup H) = V$.

Proof. We use an induction on m. If m=0, then $L=\varnothing$ and $0\le n$. We choose H=G then $\mathrm{Span}(L\cup H)=V$. Let $m\ge 1$ and assume that the conclusions are true for k< m. Let $L=\{w_1,\cdots,w_m\}$. We apply the induction hypothesis to $L'=\{w_1,\cdots,w_{m-1}\}$ so that $m-1\le n$ and there exists a subset $H'=\{h_1,\cdots,h_{n-m+1}\}$ of G such that |H'|=n-m+1 and $\mathrm{Span}(L'\cup H')=V$. (Note that L' is linearly independent.) Then, w_m can be written as a linear combination of $L'\cup H'$

$$w_m = a_1 w_1 + \dots + a_{m-1} w_{m-1} + b_1 h_1 + \dots + b_{n-m+1} h_{n-m+1}.$$

There exists a nonzero b_i since $\{w_1, \dots, w_m\}$ is linearly independent. If |H'| = 0, then w_m is a linear combination of w_1, \dots, w_{m-1} , which is a contradiction. Thus, $m \le n$. Define $H = H' \setminus \{h_i\}$. Since

$$\operatorname{Span}(L' \cup H') = \operatorname{Span}(L \cup H') = \operatorname{Span}((L \cup H) \cup \{h_i\})$$

and $h_i \in \operatorname{Span}(L \cup H)$, it follows from the lemma that $\operatorname{Span}(L \cup H) = V$.

Corollary 2.2. Let V be a vector space over \mathbb{R} having a finite basis. If β and γ are bases for V, then $|\beta| = |\gamma|$.

Proof. Suppose $|\beta| \neq |\gamma|$. Without loss of generality, we assume $n = |\beta| < |\gamma| = m$. Let S be a subset of γ with |S| = n + 1, then S is linearly independent and β generates V. By Replacement theorem, $n + 1 \leq n$, a contradiction.

Definition 2.3. A vector space is called finite-dimensional if $\dim(V) < \infty$ and infinite-dimensional otherwise.

Example 2.4. $\dim(\{0\}) = 0$, $\dim(\mathbb{R}^n) = n$, $\dim(\mathcal{M}_{m \times n}(\mathbb{R})) = mn$, and $\dim(\mathcal{P}_n(\mathbb{R})) = n + 1$.

Corollary 2.5. Let V be a vector space over \mathbb{R} with $\dim(V) = n$ and S a subset of V.

- (i) If Span(S) = V, then |S| > n.
- (ii) If Span(S) = V and |S| = n, then S is a basis for V.
- (iii) If S is linearly independent and |S| = n, then S is a basis for V.
- (iv) If S is linearly independent, then there exists a basis \widetilde{S} for V such that $S \subseteq \widetilde{S}$.

Proof. Let β be a basis for V, then $|\beta| = n$.

- (i) By Theorem 1.6, there exists a subset S' of S that is a basis for V. Thus, $n = |S'| \le |S|$.
- (ii) If $n = |S'| \le |S| = n$, then S' = S so that S is a basis for V.
- (iii) By Theorem 2.1, there exists a subset H of β such that |H| = n n = 0 and $S \cup H$ generates V. Since $H = \emptyset$, the result follows.
- (iv) By Theorem 2.1, there exists a subset H of β such that $S \cup H$ generates V and |H| = n |S|. Since $|S \cup H| < |S| + |H| = n$, (i) implies $|S \cup H| = n$. Let $\widetilde{S} = S \cup H$, then the result follows from (ii).

Theorem 2.6 (The dimension of subspaces). Let V be a finite dimensional vector space over \mathbb{R} and W a subspace of V. Then, $\dim(W) \leq \dim(V)$. Moreover, if $\dim(W) = \dim(V)$, then V = W.

Proof. Let $\dim(V) = n$ and β a basis for V. Since β spans W, there exists a subset $\gamma \subset \beta$ that is a basis for W by [FIS, Theorem 1.9]. Therefore, $\dim(W) = |\gamma| \le |\beta| = \dim(V)$.

Suppose $\dim(W) = \dim(V) = n$. Since γ is linearly independent, [FIS, Corollary 2, p. 47] implies that γ is a basis for V. In particular, we have $W = \operatorname{Span}(\gamma) = V$.

Corollary 2.7 (Basis Extension). Let V be a finite dimensional vector space over \mathbb{R} and W a subspace of V. If β is a basis for W, then there exists a basis γ for V such that $\beta \subseteq \gamma$.

Proof. By the corollary (iv) above.

Example 2.8. Let $V = \mathcal{M}_{2\times 2}(\mathbb{R})$ be the set of all (2×2) matrices with real entries. Consider a subspace

$$W = \{ A \in \mathcal{M}_{2 \times 2}(\mathbb{R}) : A^t = A \} < V.$$

Every $S \in W$ can be written as

$$\begin{pmatrix} a & b \\ b & d \end{pmatrix}$$
.

Let

$$\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

Then, one can see that β is a basis for W and the dimension of W is 3. We already know that the dimension of V is 4. Note that

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \notin W = \operatorname{Span}(\beta).$$

By [FIS, Theorem 1.7], $\beta \cup \{A\}$ is linearly independent. Since $|\beta \cup \{A\}| = 4 = \dim(V)$, it is actually a basis for V.

Corollary 2.9 (Change of Bases). Let V be a vector space over \mathbb{R} with $\dim(V) = n \in \mathbb{N}$ and S a basis for V. Let $A = (A_{ij}) \in \mathcal{M}_{n \times n}(\mathbb{R})$ and define $T = \{w_1, \dots, w_n\}$ where

$$w_j = A_{1j}v_1 + \dots + A_{nj}v_n = \sum_{i=1}^n A_{ij}v_i$$

for each $j = 1, 2, \dots, n$. If the linear system associated to (A, 0) has exactly one (trivial) solution, then T is a basis for V.

Proof. By Problem in Homework 3, T is linearly independent. Let $j \neq k$, suppose $w_j = w_k$. Then,

$$0 = w_j - w_k = \sum_{i=1}^{n} (A_{ij} - A_{ik})v_i.$$

Since S is linearly independent, $A_{ij} = A_{ik}$ for all $i = 1, 2, \dots, n$. This is a contradiction. Thus, |T| = n. By Corollary 2.5, T is a basis for V.

3 Bases and dimensions: Linear systems

Definition 3.1. A system of linear equations

$$(*) \begin{cases}
 a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
 a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
 \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
 \end{cases}$$

is called *homogeneous* if $b_i = 0$ for all $i = 1, 2, \dots, m$.

Definition 3.2. Let $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. The null space of A is the set of all solutions to a homogenous linear system LS(A,0), denoted by $\mathcal{N}(A)$.

Remark 3.3. In Problem in Homework 2, it is shown that $\mathcal{N}(A)$ is a subspace of \mathbb{R}^n .

Question 3.4. Find the basis and the dimension of $\mathcal{N}(A)$.

Example 3.5. Consider (3×4) matrix

$$\begin{pmatrix}
1 & 0 & 8 & 0 \\
0 & 1 & -3 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

and the linear system LS(A,0)

$$\begin{cases} x_1 + 8x_3 = 0 \\ x_2 - 3x_3 = 0 \\ x_4 = 0. \end{cases}$$

The solution set is $\{t(-8,3,1,0): t \in \mathbb{R}\}$, which is a line passing through the origin and (-8,3,1,0). The basis is $\{(-8,3,1,0)\}$ (when t=1) and the dimension is 1.

Theorem 3.6. Let $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. If a RREF of A has p pivot columns, then the dimension of $\mathcal{N}(A)$ is n-p.

Proof. Let R be a RREF of A and $R = (C_1, C_2, \dots, C_n)$ where C_i is the i-th row of R for each i. Suppose that $C_{j(1)}, C_{j(2)}, \dots, C_{j(n-p)}$ are non-pivot columns of R. Let e_i be the standard basis for \mathbb{R}^n . Let $x = (x_1, x_2, \dots, x_n) \in \mathcal{N}(A)$. If C_l is a pivot column, then x_l is a linear combination of $x_{j(k)}$ for $j(k) \geq l$ because the matrix R is in reduced row-echelon form. Thus,

$$x = x_1 e_1 + x_2 e_2 + \dots + x_n e_n$$

= $x_{j(1)} v_{j(1)} + x_{j(2)} v_{j(2)} + \dots + x_{j(n-p)} v_{j(n-p)}$

for some $v_{j(1)}, \dots, v_{j(n-p)} \in \mathbb{R}^n$. Since x_l is a linear combination of $x_{j(k)}$ for $j(k) \geq l$, for each $k = 1, 2, \dots, n-p$, $v_{j(k)}$ looks like

$$v_{i(k)} = (*, \cdots, *, 1, 0 \cdots, 0)$$

where 1 appears exactly at the j(k)-entry of $v_{j(k)}$ and 0 after that. Let $\beta = \{v_{j(k)} : k = 1, 2, \dots, n - p\}$. We claim that β is a basis for $\mathcal{N}(A)$. By the observation above, β spans $\mathcal{N}(A)$. We need to show that β is linearly independent. Let

$$a_{j(1)}v_{j(1)} + a_{j(2)}v_{j(2)} + \dots + a_{j(n-p)}v_{j(n-p)} = 0$$

If we look at the j(n-p)-th entry of $v_{j(k)}$, then $v_{j(n-p)}$ only has a nonzero entry, which means that $a_{j(n-p)} = 0$. Thus, we have

$$a_{j(1)}v_{j(1)} + a_{j(2)}v_{j(2)} + \dots + a_{j(n-p-1)}v_{j(n-p-1)} = 0.$$

If we look at the j(n-p-1)-th entry of $v_{j(k)}$ for $k \leq n-p-1$, then $v_{j(n-p-1)}$ only has a nonzero entry so that $a_{j(n-p-1)} = 0$. Repeating this procedure, we get $a_{j(1)} = \cdots = a_{j(n-p)} = 0$.

Definition 3.7. The row space of a matrix $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ is the space spanned by its rows in \mathbb{R}^n , denoted by $\mathcal{R}(A)$.

Example 3.8. Consider

$$A = \begin{pmatrix} 1 & 0 & -2 & 7 \\ 0 & 1 & 4 & -4 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & -2 \end{pmatrix}$$

The set of rows spans $\mathcal{R}(A)$ by definition but is not linearly independent (because the 3rd and 4th columns are same). It is row-equivalent to

$$P = \begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Then the set of all nonzero rows are linearly independent (Exercise).

Theorem 3.9. Let $A, B \in \mathcal{M}_{m \times n}(\mathbb{R})$. If $A \sim B$, then $\mathcal{R}(A) = \mathcal{R}(B)$.

Proof. It is enough to assume that B is obtained from A by a single row operation. Let A_i be the i-th row of A and write $A = (A_1, A_2, \dots, A_m)^t$. Then $\mathcal{R}(A) = \mathrm{Span}(\{A_1, A_2, \dots, A_m\})$. It is trivial that the first two operations does not change $\mathcal{R}(A)$. Thus, it suffices to show that for $S = \{A_1, A_2, \dots, A_m\}$ and $T = \{A_1 + A_2, A_2, \dots, A_m\}$,

$$\operatorname{Span}(S) = \operatorname{Span}(T).$$

Since $A_1 + A_2 \in \text{Span}(S)$, $T \subset \text{Span}(S)$. Since Span(T) is the smallest subspace containing T, $\text{Span}(T) \subset \text{Span}(S)$. Similarly, it follows from

$$(A_1 + A_2) - A_2 = A_1 \in \text{Span}(T)$$

that $\operatorname{Span}(S) \subset \operatorname{Span}(T)$.

Theorem 3.10. Let $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ and P a RREF of A. Then, the set of nonzero rows of P forms a basis for $\mathcal{R}(A)$.

Proof. Let $P = (R_1, R_2, \dots, R_s, 0, \dots, 0)^t$ where s < m and R_i is a nonzero row of P for each $i = 1, 2, \dots, s$. By definition, we have $\text{Span}(\{R_1, R_2, \dots, R_s\}) = \mathcal{R}(P) = \mathcal{R}(A)$. It is enough to show that the nonzero rows of P is linearly independent. Consider a system of linear equations

$$x_1R_1 + \dots + x_sR_s = 0.$$

Since P is in RREF, R_1 looks like

$$R_1 = (0, \cdots, 0, 1, *, \cdots, *).$$

Suppose the leading 1 of R_1 appears at the *i*-th entry. Then the *i*-th entries of all other rows R_2, \dots, R_s are zero, which means that $x_1 = 0$. In the same reason, we see that x_i are all zero. Thus, it is linearly independent.

References

[FIS] Freidberg, Insel, and Spence, *Linear Algebra*, 4th edition, 2002.

[Bee] Beezer, A First Course in Linear Algebra, Version 3.5, 2015.

Department of Mathematics, University of Illinois at Urbana-Champaign $E\text{-}mail\ address$: daesungk@illinois.edu