Learning Semantic Representations for Novel Words: Leveraging Both Form and Context

Timo Schick

Sulzer GmbH, Munich, Germany timo.schick@sulzer.de

Hinrich Schütze CIS, LMU Munich, Germany

inquiries@cislmu.org

Motivation

Novel and rare words are important for many NLP tasks ...

... but standard learning algorithms learn **no or poor embeddings** for them.

Motivation

Novel and rare words are important for many NLP tasks ...

... but standard learning algorithms learn **no or poor embeddings** for them.

- Two recent approaches to address this problem:
 - learning based on the surface-form of novel words
 - learning based on the context of novel words
- We present the first model to combine form and context
- Our combined model outperforms previous models

Motivational Examples

We should write no one off as being unemployable.

Motivational Examples

We should write no one off as being unemployable.

A cardigan is a knitted jacket or sweater with buttons up the front.

Motivational Examples

We should write no one off as being unemployable.

A cardigan is a knitted jacket or sweater with buttons up the front.

Unlike the grapefruit, the **pomelo** has very little importance in the marketplace.

Unlike the grapefruit, the **pomelo** has very little importance in the marketplace.

 $\mathbf{w} = \mathsf{pomelo}$

Unlike the grapefruit, the **pomelo** has very little importance in the marketplace.

 $\mathbf{w} = \mathsf{pomelo}$

Surface-Form:

 $S_{\mathbf{w}} = \{\langle s \rangle \mathsf{p}, \mathsf{po}, \mathsf{om}, \mathsf{me}, \mathsf{el}, \mathsf{lo}, \mathsf{o} \langle e \rangle, \langle s \rangle \mathsf{po}, \mathsf{pom}, \mathsf{ome}, \mathsf{mel}, \mathsf{elo}, \mathsf{lo} \langle e \rangle\}$

Unlike the grapefruit, the **pomelo** has very little importance in the marketplace.

 $\mathbf{w} = \mathsf{pomelo}$

Surface-Form:

 $S_{\mathbf{w}} = \{\langle s \rangle \mathsf{p}, \mathsf{po}, \mathsf{om}, \mathsf{me}, \mathsf{el}, \mathsf{lo}, \mathsf{o} \langle e \rangle, \langle s \rangle \mathsf{po}, \mathsf{pom}, \mathsf{ome}, \mathsf{mel}, \mathsf{elo}, \mathsf{lo} \langle e \rangle\}$

Context:

 $C = \{unlike, the, grapefruit, the, has, very, little, ..., marketplace\}$

$$\mathcal{S}_{\mathbf{w}} = \{s_1, \dots, s_n\}$$

$$\mathcal{C} = \{c_1, \dots, c_m\}$$

 $\mathcal{C} = \{c_1, \ldots, c_m\}$

$$\mathcal{S}_{\mathbf{w}} = \{s_1, \dots, s_n\}$$

$$e_{\operatorname{ngram}}(s_1) \quad \cdots \quad e_{\operatorname{ngram}}(s_n)$$

$$\mathcal{S}_{\mathbf{w}} = \{s_1, \dots, s_n\}$$
 $e_{\mathsf{ngram}}(s_1) \qquad e_{\mathsf{ngram}}(s_n)$
 avg
 $\mathsf{v}^{\mathsf{form}}_{(\mathbf{w}, \mathcal{C})}$

$$\mathcal{C} = \{c_1, \ldots, c_m\}$$

$$\mathcal{S}_{\mathbf{w}} = \{s_1, \dots, s_n\}$$
 $\mathcal{C} = \{c_1, \dots, c_n\}$
 $e_{\mathsf{ngram}}(s_1) \cdots e_{\mathsf{ngram}}(s_n)$
 $e(c_1) \cdots$
 $e(c_1) \cdots$
 $e(c_n) \cdots$

$$\mathcal{C} = \{c_1, \ldots, c_m\}$$

$$e(c_1)$$
 \cdots $e(c_m)$

$$\mathcal{S}_{\mathbf{w}} = \{s_1, \dots, s_n\}$$
 $e_{\mathsf{ngram}}(s_1) \qquad e_{\mathsf{ngram}}(s_n)$
 avg
 $\mathsf{v}^{\mathsf{form}}_{(\mathbf{w}, \mathcal{C})}$

Composition Functions

(i) single-parameter

$$\textit{v}_{(\mathbf{w},\mathcal{C})} = \alpha \cdot \hat{\textit{v}}_{(\mathbf{w},\mathcal{C})}^{\text{context}} + (1-\alpha) \cdot \textit{v}_{(\mathbf{w},\mathcal{C})}^{\text{form}}.$$

Composition Functions

(i) single-parameter

$$\textit{v}_{(\mathbf{w},\mathcal{C})} = \alpha \cdot \hat{\textit{v}}_{(\mathbf{w},\mathcal{C})}^{\text{context}} + (1-\alpha) \cdot \textit{v}_{(\mathbf{w},\mathcal{C})}^{\text{form}}.$$

(ii) gated

As above, except:

$$\alpha = \sigma(\mathbf{w}^{\top}[\mathbf{v}_{(\mathbf{w},\mathcal{C})}^{\mathsf{context}} \circ \mathbf{v}_{(\mathbf{w},\mathcal{C})}^{\mathsf{form}}] + b)$$

Training

$$\begin{split} \mathcal{B} &= \{ (\mathbf{w}_1, \mathcal{C}_1), (\mathbf{w}_2, \mathcal{C}_2), \dots, (\mathbf{w}_k, \mathcal{C}_k) \} \\ &= \{ (\text{pomelo}, \{\text{unlike}, \text{the}, \text{grapefruit}, \dots \}), (\mathbf{w}_2, \mathcal{C}_2), \dots, (\mathbf{w}_k, \mathcal{C}_k) \} \end{split}$$

$$L_{\mathcal{B}} = rac{1}{|\mathcal{B}|} \sum_{(\mathbf{w}, \mathcal{C}) \in \mathcal{B}} \|v_{(\mathbf{w}, \mathcal{C})} - e(\mathbf{w})\|^2$$

Evaluation

- We train the form-context model using skipgram embeddings trained on Wikipedia
- ullet For each word $oldsymbol{w}$, we create $\mathcal C$ by randomly sampling sentences in which $oldsymbol{w}$ occurs
- We evaluate the model on two tasks:
 - the Definitional Nonce Task
 - the Contextual Rare Words Task

spies most commonly refers to people who engage in spying, espionage or clandestine operations

spies most commonly refers to people who engage in spying, espionage or clandestine operations

	form	context	frm-ctx
neighbours	pies, cakes, spied, sandwiches	espionage, clandestine, covert, spying	espionage, spying, clandestine, covert
rank	668	8	6

hygiene which comes from the name of the greek goddess of health hygieia is a set of practices performed for the preservation of health

hygiene which comes from the name of the greek goddess of health hygieia is a set of practices performed for the preservation of health

	form	context	frm-ctx
neighbours	hygienic,	hygieia,	hygienic,
	hygiene,	goddess,	hygieia,
	cleansers,	eileithyia,	health, hygiene
	hypoallergenic	asklepios	
rank	2	465	4

perception (from the latin percipio) is the organization, identification and interpretation of sensory information in order to represent and understand the environment

perception (from the latin percipio) is the organization, identification and interpretation of sensory information in order to represent and understand the environment

	form	context	frm-ctx
neighbours	interception,	sensory,	sensory,
	interceptions,	perceptual,	perceptual,
	fumble,	auditory,	perception,
	touchdowns	contextual	auditory
rank	115	51	3

Model	Туре	Median Rank	MRR
Mimick	form	85573	0.00006
Skipgram	context	111012	0.00007
Additive	context	3381	0.00945
Nonce2Vec	context	623	0.04907
A La Carte	context	165.5	0.07058
surface-form	form	404.5	0.12982
context	context	184	0.06560
single-parameter	both	55	0.16200
gated	both	49	0.17537

The Gated Model

Words with high form weights:

cookstown, feltham, sydenham, wymondham, cleveland, banbury, highbury, shaftesbury

Words with high context weights:

poverty, hue, slang, flax, rca, bahia, atari, snooker, icq, bronze, esso

Adding Context Information

Adding Subword Information

Related Work

Bojanowski, P.; Grave, E.; Joulin, A.; and Mikolov, T. 2017. **Enriching word vectors with subword information**. *Transactions of the ACL*

Herbelot, A., and Braoni, M. 2017. **High-risk learning: acquiring new word vectors from tiny data**. In *Proceedings of the 2017 Conference on EMNLP*

Khodak, M.; Saunshi, N.; Liang, Y.; Ma, T.; Steward, B.; and Arora, S. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. In *Proceedings of the 56th Annual Meeting of the ACL*

Pinter, Y.; Guthrie, R.; and Eisenstein, J. 2017. Mimicking word embeddings using subword RNNs. In *Proceedings of the 2017 Conference on EMNLP*

Conclusion and Future Work

The **form-context model** generates high-quality representations for novel words by using both subword-form and context.

Possible directions for future work include:

- investigating the model's performance for other languages;
- using more complex composition functions or ways to obtain surface-form and context embeddings.