Preliminaries

Notation

• $\mathbf{A}_i \in \{0,1\}^{n_i \times n_i}$: adjacency matrix where

$$a_{ts}^{i} = \begin{cases} 1, & \text{if } e_{st}^{i} \in E_{i} \\ 0, & \text{otherwise} \end{cases}$$

- $\mathbf{X}_i = \begin{bmatrix} \mathbf{x}_0^{i\intercal}, \mathbf{x}_1^{i\intercal}, \dots, \mathbf{x}_{n_i-1}^{i\intercal} \end{bmatrix}^{\mathsf{T}}$: feature matrix extracted from c_i
 - \mathbf{x}_0^i : feature vector of r_i
 - \mathbf{x}_{j}^{i} : feature vector of w_{j}^{i}

Preliminaries

Notation

- Each c_i is associated with a ground-truth label $y_i \in \{F, T\}$ (False Rumor, True Rumor)
 - In some cases, $y_i \in \{N, F, T, U\}$ (Non-rumor, False Rumor, True Rumor, Unverified Rumor)
- Given the dataset, the goal of rumor detection is to learn a classifier $f\colon C o Y$