Package 'RKUM'

March 4, 2019

Type Package

Title Robust Kernel Unsupervised Methods		
Version 0.1.1		
Author Md Ashad Alam		
Maintainer Md Ashad Alam <malam@tulane.edu></malam@tulane.edu>		
Description Robust kernel center matrix, robust kernel cross-covariance operator for kernel unsupervised methods, kernel canonical correlation analysis, influence function of identifying significant outliers or atypical objects from multi-modal datasets. Alam, M. A, Fukumizu, K., Wang YP. (2018) <doi:10.1016 j.neucom.2018.04.008="">. Alam, M. A, Calhoun, C. D., Wang YP. (2018) <doi:10.1016 j.csda.2018.03.013="">.</doi:10.1016></doi:10.1016>		
License GPL-3		
Encoding UTF-8		
LazyData true		
Imports stats, graphics		
NeedsCompilation no		
Repository CRAN		
Date/Publication 2019-03-04 16:40:06 UTC		
R topics documented:		
gkm 2 gm3edc 3 gmedc 4 gmi 4 hadr 5 halfun 5 halofun 6 hudr 7 hulfun 8 hulofun 8		

2	gkı	n
	ifcca	1
	ifmkcca	2
	ifrkcca	3
	lev	4
	lkm	4
	mdbw	6
	medc	7
	mvnod	7
	ranuf	8
	rkcca	8
	rkcco	0
	rkcm	1
	rlogit	2
	snpfmridata	2
	snpfmrimth3D	4

Index

gkm

Kernel Matrix Using Guasian Kernel

Description

Many radial basis function kernels, such as the Gaussian kernel, map X into a infinte dimensional space. While the Gaussian kernel has a free parameter (bandwidth), it still follows a number of theoretical properties such as boundedness, consistence, universality, robustness etc. It is the most applicable kernel of the positive definite kernel based methods.

26

Usage

gkm(X)

Arguments

Χ

a data matrix.

Details

Many radial basis function kernels, such as the Gaussian kernel, map input sapce into a infinite dimensional space. The Gaussian kernel has a a number of theoretical properties such as boundedness, consistence, universality and robustness, etc.

Value

Κ

a Gram/ kernel matrix

gm3edc 3

Author(s)

Md Ashad Alam <malam@tulane.edu>

References

Md. Ashad Alam, Hui-Yi Lin, HOng-Wen Deng, Vince Calhour Yu-Ping Wang (2018), A kernel machine method for detecting higher order interactions in multimodal datasets: Application to schizophrenia, Journal of Neuroscience Methods, Vol. 309, 161-174.

Md Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.

M. Romanazzi (1992), Influence in canonical correlation analysis, Psychometrika vol 57(2) (1992) 237-259.

Examples

```
##Dummy data:
X<-matrix(rnorm(1000),100)
gkm(X)</pre>
```

gm3edc

A helper function

Description

#An matrices dicomposition function

Usage

```
gm3edc(Amat, Bmat, Cmat)
```

Arguments

```
Amat a square matrix
Bmat a square matrix
Cmat a square matrix
```

Author(s)

Md Ashad Alam <malam@tulane.edu>

4 gmi

gmedc

A helper function

Description

#An matrices dicomposition function

Usage

```
gmedc(A, B = diag(nrow(A)))
```

Arguments

A a square matrix
B a diagonal matrix

Author(s)

Md Ashad Alam <malam@tulane.edu>

gmi

A helper function

Description

###An function to adjust

Usage

```
gmi(X, tol = sqrt(.Machine$double.eps))
```

Arguments

X a square matrix tol a real value

Author(s)

Md Ashad Alam <malam@tulane.edu>

hadr 5

hadr

Hampel's psi function

Description

##The ratio of the first derivative of the Hampel loss fuction to the argument. Tuning constants are fixed in different quintiles.

Usage

hadr(u)

Arguments

u

vector values

Value

a real value

Author(s)

Md Ashad Alam <malam@tulane.edu>

References

Md Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.

M. Romanazzi (1992), Influence in canonical correlation analysis, Psychometrika vol 57(2) (1992) 237-259.

See Also

#See Also as gkm, hudr

halfun

A Hampel loss function

Description

#Tuning constants of the Hampel loss fuction are fixed in different quintiles of the arguments.

Usage

halfun(u)

6 halofun

Arguments

u vector of values.

Value

comp1 a real number

Author(s)

Md Ashad Alam <malam@tulane.edu>

References

Md Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.

M. Romanazzi (1992), Influence in canonical correlation analysis, Psychometrika vol 57(2) (1992) 237-259.

See Also

See Also as hulfun, hadr, hudr

halofun

Objective function

Description

Objective function of Hampel's loss fucntion

Usage

halofun(x)

Arguments

x vector values

Value

a real value

Author(s)

Md Ashad Alam <malam@tulane.edu>

hudr 7

References

Md Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.

M. Romanazzi (1992), Influence in canonical correlation analysis, Psychometrika vol 57(2) (1992) 237-259.

See Also

See also as hulofun

hudr

Huber's psi function

Description

The ratio of the first derivative of the Huber loss fuction to the argument. Tuning constants is fixed as a meadian vlue.

Usage

hudr(x)

Arguments

x vector values

Value

y a real value

Author(s)

Md Ashad Alam <malam@tulane.edu>

References

Md Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.

M. Romanazzi (1992), Influence in canonical correlation analysis, Psychometrika vol 57(2) (1992) 237-259.

See Also

See also as hadr

8 hulfun

hulfun

A Huber loss function

Description

Tuning constants of the Huber loss fuction are fixed in different quintiles of the arguments.

Usage

hulfun(x)

Arguments

Χ

a vector values

Details

Tuning constants of the Huber fuction is fixed as a median.

Value

a real number

Author(s)

Md Ashad Alam <malam@tulane.edu>

References

Md Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.

M. Romanazzi (1992), Influence in canonical correlation analysis, Psychometrika vol 57(2) (1992) 237-259.

See Also

See also as halfun

hulofun 9

hulofun

Objective function

Description

Objective function of Huber's loss fucntion

Usage

hulofun(x)

Arguments

Х

vector values

Value

a real value

Author(s)

Md Ashad Alam <malam@tulane.edu>

References

Md Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.

M. Romanazzi (1992), Influence in canonical correlation analysis, Psychometrika vol 57(2) (1992) 237-259.

See Also

See Also as halofun, ~~~

ibskm

Kernel Matrix Using Identity-by-state Kernel

Description

For GWASs, a kernel captures the pairwise similarity across a number of SNPs in each gene. Kernel projects the genotype data from original high dimensional space to a feature space. One of the more popular kernels used for genomics similarity is the identity-by-state (IBS) kernel (non- parametric function of the genotypes)

10 ibskm

Usage

```
ibskm(Z)
```

Arguments

Z a data matrix

Details

For genome-wide association study, a kernel captures the pairwise similarity across a number of SNPs in each gene. Kernel projects the genotype data from original high dimensional space to a feature space. One popular kernel used for genomics similarity is the identity-by-state (IBS) kernel, The IBS kernel does not need any assumption on the type of genetic interactions.

Value

K a Gram/ kernel matrix

Author(s)

Md Ashad Alam <malam@tulane.edu>

References

Md. Ashad Alam, Hui-Yi Lin, HOng-Wen Deng, Vince Calhour Yu-Ping Wang (2018), A kernel machine method for detecting higher order interactions in multimodal datasets: Application to schizophrenia, Journal of Neuroscience Methods, Vol. 309, 161-174.

Md Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.

M. Romanazzi (1992), Influence in canonical correlation analysis, Psychometrika vol 57(2) (1992) 237-259.

See Also

See also as gkm, 1km

Examples

```
##Dummy data:
X <- matrix(rnorm(200),50)
ibskm(X)</pre>
```

ifcca 11

ifcca

Influence Funciton of Canonical Correlation Analysis

Description

##To define the robustness in statistics, different approaches have been pro- posed, for example, the minimax approach, the sensitivity curve, the influence function (IF) and the finite sample breakdown point. Due to its simplic- ity, the IF is the most useful approach in statistical machine learning

Usage

```
ifcca(X, Y, gamma = 1e-05, ncomps = 2, jth = 1)
```

Arguments

X a data matrix index by row Y a data matrix index by row gamma the hyper-parameters

ncomps the number of canonical vectors

jth the influence function of the jth canonical vector

Value

iflccor Influence value of the data by linear canonical correlation

Author(s)

Md Ashad Alam <malam@tulane.edu>

References

Md Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.

M. Romanazzi (1992), Influence in canonical correlation analysis, Psychometrika vol 57(2) (1992) 237-259.

See Also

See also as rkcca, ifrkcca

Examples

```
##Dummy data:

X <- matrix(rnorm(500),100); Y <- matrix(rnorm(500),100)

ifcca(X,Y, 1e-05, 2, 2)</pre>
```

12 ifmkcca

ifmkcca

Influence Function of Multiple Kernel Canonical Analysis

Description

To define the robustness in statistics, different approaches have been pro- posed, for example, the minimax approach, the sensitivity curve, the influence function (IF) and the finite sample breakdown point. Due to its simplic- ity, the IF is the most useful approach in statistical machine learning.

Usage

```
ifmkcca(xx, yy, zz, kernel = "rbfdot", gamma = 1e-05, ncomps = 1, jth=1)
```

Arguments

XX	a data matrix index by row
уу	a data matrix index by row
ZZ	a data matrix index by row
kernel	a positive definite kernel
ncomps	the number of canonical vectors
gamma	the hyper-parameters.

jth the influence function of the jth canonical vector

Value

iflccor Influence value of the data by multiple kernel canonical correalation

Author(s)

Md Ashad Alam <malam@tulane.edu>

References

Md Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.

M. Romanazzi (1992), Influence in canonical correlation analysis, Psychometrika vol 57(2) (1992) 237-259.

See Also

See also as ifcca

ifrkcca 13

Examples

```
##Dummy data:

X <- matrix(rnorm(500),100); Y <- matrix(rnorm(500),100); Z <- matrix(rnorm(500),100)
ifmkcca(X,Y, Z, "rbfdot", 1e-05, 2, 1)</pre>
```

ifrkcca

Influence Function of Robust Kernel Canonical Analysis

Description

##To define the robustness in statistics, different approaches have been pro- posed, for example, the minimax approach, the sensitivity curve, the influence function (IF) and the finite sample breakdown point. Due to its simplic- ity, the IF is the most useful approach in statistical machine learning.

Usage

```
ifrkcca(X, Y, lossfu = "Huber", kernel = "rbfdot", gamma = 0.00001, ncomps = 10, jth = 1)
```

Arguments

X a data matrix index by row Y a data matrix index by row

lossfu a loss function: square, Hampel's or Huber's loss

kernel a positive definite kernel gamma the hyper-parameters

ncomps the number of canonical vectors

jth the influence function of the jth canonical vector

Value

ifrkcor Influence value of the data by robust kernel canonical correlation

ifrkxcv Influence value of cnonical vector of X dataset ifrkycv Influence value of cnonical vector of Y dataset

Author(s)

Md Ashad Alam <malam@tulane.edu>

References

Md Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.

M. Romanazzi (1992), Influence in canonical correlation analysis, Psychometrika vol 57(2) (1992) 237-259.

14 lkm

See Also

See also as rkcca, ifrkcca

Examples

```
##Dummy data:
X <- matrix(rnorm(500),100); Y <- matrix(rnorm(500),100)
ifrkcca(X,Y, lossfu = "Huber", kernel = "rbfdot", gamma = 0.00001, ncomps = 10, jth = 2)</pre>
```

lcv

A helper function

Description

#A function

Usage

```
lcv(X, Y, res)
```

Arguments

X a matrix
Y a matrix
res a real value

Author(s)

Md Ashad Alam <malam@tulane.edu>

1km

Kernel Matrix Using Linear Kernel

Description

The linear kernel is used by the underlying Euclidean space to define the similarity measure. Whenever the dimensionality is high, it may allow for more complexity in the function class than what we could measure and assess otherwise

Usage

1km(X)

15

Arguments

X a data matrix

Details

The linear kernel is used by the underlying Euclidean space to define the similarity measure. Whenever the dimensionality of the data is high, it may allow for more complexity in the function class than what we could measure and assess otherwise.

Value

K a kernel matrix.

Author(s)

Md Ashad Alam <malam@tulane.edu>

References

Md. Ashad Alam, Hui-Yi Lin, HOng-Wen Deng, Vince Calhour Yu-Ping Wang (2018), A kernel machine method for detecting higher order interactions in multimodal datasets: Application to schizophrenia, Journal of Neuroscience Methods, Vol. 309, 161-174.

Md Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.

Md Ashad Alam, Vince D. Calhoun and Yu-Ping Wang (2018), Identifying outliers using multiple kernel canonical correlation analysis with application to imaging genetics, Computational Statistics and Data Analysis, Vol. 125, 70-85

See Also

See also as gkm, ibskm

Examples

```
##Dummy data:
X <- matrix(rnorm(500),100)
lkm(X)</pre>
```

16 mdbw

mdbw

Bandwidth of the Gaussian kernel

Description

A median of the pairwise distance of the data

Usage

mdbw(X)

Arguments

Χ

a data matrix

Details

While the Gaussian kernel has a free parameter (bandwidth), it still follows a number of theoretical properties such as boundedness, consistenc, universality, robustness, etc. It is the most applicable one. In a Gaussian RBF kernel, we need to select an appropriate a bandwidth. It is well known that the parameter has a strong influence on the result of kernel methods. For the Gaussian kernel, we can use the median of the pairwise distance as a bandwidth.

Value

S

a median of the pairwise distance of the X dataset

Author(s)

Md Ashad Alam <malam@tulane.edu>

References

Md. Ashad Alam, Hui-Yi Lin, HOng-Wen Deng, Vince Calhour Yu-Ping Wang (2018), A kernel machine method for detecting higher order interactions in multimodal datasets: Application to schizophrenia, Journal of Neuroscience Methods, Vol. 309, 161-174.

Md. Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.

Md. Ashad Alam and Kenji Fukumizu (2015), Higher-order regularized kernel canonical correlation analysis, International Journal of Pattern Recognition and Artificial Intelligence, Vol. 29(4) 1551005.

Arthu Gretton, Kenji. Fukumizu, C. H. Teo, L. Song, B. Scholkopf and A. Smola (2008), A Kernel statistical test of independence, in Advances in Neural Information Processing Systems, Vol. 20 585–592.

medc 17

See Also

See also as 1km, gkm

Examples

```
##Dummy data:
X <- matrix(rnorm(1000),100)
mdbw(X)</pre>
```

medc

A helper function

Description

A function

Usage

```
medc(A, fn = sqrt)
```

Arguments

A a matrix fn a funciton

Author(s)

Md Ashad Alam <malam@tulane.edu>

mvnod

A helper function

Description

A function

Usage

```
mvnod(n = 1, mu, Sigma, tol = 1e-06, empirical = FALSE, EISPACK = FALSE)
```

18 rkcca

Arguments

n an integer number

mu a real value Sigma a real value

tol a curection factor empirical a logical value

EISPACK a logical value. TRUE for a complex values.

Author(s)

Md Ashad Alam <malam@tulane.edu>

ranuf

A helper function

Description

A function

Usage

ranuf(p)

Arguments

p a real value

Author(s)

Md Ashad Alam <malam@tulane.edu>

rkcca

Robust kernel canonical correlation analysis

Description

#A robust correlation

Usage

```
rkcca(X, Y, lossfu = "Huber", kernel = "rbfdot", gamma = 1e-05, ncomps = 10)
```

rkcca 19

Arguments

X	a data matrix index by row
Υ	a data matrix index by row

lossfu a loss function: square, Hampel's or Huber's loss

kernel a positive definite kernel gamma the hyper-parameters

ncomps the number of canonical vectors

Value

An S3 object containing the following slots:

rkcor	Robsut kernel canonical correlation
rxcoef	Robsut kernel canonical coficient of X dataset
rycoef	Robsut kernel canonical coficient of Y dataset
rxcv	Robsut kernel canonical vector of X dataset

Robsut kernel canonical vector of Y dataset

Author(s)

rycv

Md Ashad Alam <malam@tulane.edu>

References

Md Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.

M. Romanazzi (1992), Influence in canonical correlation analysis, Psychometrika vol 57(2) (1992) 237-259.

See Also

```
See also as ifcca, rkcca, ifrkcca
```

Examples

```
##Dummy data:
X <- matrix(rnorm(1000),100); Y <- matrix(rnorm(1000),100)
rkcca(X,Y, "Huber", "rbfdot", 1e-05, 10)</pre>
```

20 rkcco

r	k	С	С	c
	n	L	L	u

Robust kernel cross-covariance opetator

Description

A function

Usage

```
rkcco(X, Y, lossfu = "Huber", kernel = "rbfdot", gamma = 1e-05)
```

Arguments

X a data matrix index by row
Y a data matrix index by row

lossfu a loss function: square, Hampel's or Huber's loss

kernel a positive definite kernel gamma the hyper-parameters

Value

rkcmx	Robust kernel center matrix of X dataset
rkcmy	Robust kernel center matrix of Y dataset
rkcmx	Robust kernel covariacne operator of X dataset
rkcmy	Robust kernel covariacne operator of Y dataset
rkcmx	Robust kernel cross-covariacne operator of X and Y datasets

Author(s)

Md Ashad Alam <malam@tulane.edu>

References

Md Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.

M. Romanazzi (1992), Influence in canonical correlation analysis, Psychometrika vol 57(2) (1992) 237-259.

See Also

See also as rkcca snpfmridata, ifrkcca

rkcm 21

Examples

```
##Dummy data:

X <- matrix(rnorm(2000),200); Y <- matrix(rnorm(2000),200)

rkcco(X,Y, "Huber","rbfdot", 1e-05)</pre>
```

rkcm

Robsut Kernel Center Matrix

Description

A functioin

Usage

```
rkcm(X, lossfu = "Huber", kernel = "rbfdot")
```

Arguments

X a data matrix index by row

lossfu a loss function: square, Hampel's or Huber's loss

kernel a positive definite kernel

Value

rkcm a square robust kernel center matrix

Author(s)

Md Ashad Alam <malam@tulane.edu>

References

Md Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.

Md Ashad Alam, Vince D. Calhoun and Yu-Ping Wang (2018), Identifying outliers using multiple kernel canonical correlation analysis with application to imaging genetics, Computational Statistics and Data Analysis, Vol. 125, 70-85

See Also

```
See also as ifcca, rkcca, ifrkcca
```

22 snpfmridata

Examples

```
##Dummy data:
X <- matrix(rnorm(2000),200); Y <- matrix(rnorm(2000),200)
rkcm(X, "Huber","rbfdot")</pre>
```

rlogit

A helper fuction

Description

#A function to calcualte generalized logit function.

Usage

```
rlogit(x)
```

Arguments

Х

a real value to be tranformed

Author(s)

Md Ashad Alam <malam@tulane.edu>

snpfmridata

An example of imaging genetics data to calcualte influential observations from two view data

Description

#A function

Usage

```
snpfmridata(n = 300, gamma=0.00001, ncomps = 2, jth = 1)
```

Arguments

n the sample size gamma the hyper-parameters

ncomps the number of canonical vectors

jth the influence function of the jth canonical vector

snpfmridata 23

Value

IFCCAID	Influence value of canonical correlation analysis for the ideal data
IFCCACD	Influence value of canonical correlation analysis for the contaminated data
IFKCCAID	Influence value of kernel canonical correlation analysis for the ideal data
IFKCCACD	Influence value of kernel canonical correlation analysis for the contaminated data
IFHACCAID	Influence value of robsut (Hampel's loss) canonical correlation analysis for the ideal data
IFHACCACD	Influence value of robsut (Hampel's loss) canonical correlation analysis for the contaminated data
IFHUCCAID	Influence value of robsut (Huber's loss) canonical correlation analysis for the ideal data
IFHUCCACD	Influence value of robsut (Huber's loss) canonical correlation analysis for the contaminated data

Author(s)

Md Ashad Alam <malam@tulane.edu>

References

Md Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.

Md Ashad Alam, Vince D. Calhoun and Yu-Ping Wang (2018), Identifying outliers using multiple kernel canonical correlation analysis with application to imaging genetics, Computational Statistics and Data Analysis, Vol. 125, 70-85

See Also

See also as rkcca, ifrkcca, snpfmrimth3D

Examples

```
##Dummy data:
n<-100
snpfmridata(n, 0.00001, 10, jth = 1)</pre>
```

24 snpfmrimth3D

•	An example of imaging genetics and epi-genetics data to calcualte influential observations from three view data
---	---

Description

#A function

Usage

```
snpfmrimth3D(n = 500, gamma = 1e-05, ncomps = 1, jth=1)
```

Arguments

n the sample size

gamma the hyper-parameters

ncomps the number of canonical vectors

jth the influence function of the jth canonical vector

Value

IFim Influence value of multiple kernel canonical correlation analysis for the ideal

data

IFcm Influence value of multiple kernel canonical correlation analysis for the contam-

inated data

Author(s)

Md Ashad Alam <malam@tulane.edu>

References

Md Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.

Md Ashad Alam, Vince D. Calhoun and Yu-Ping Wang (2018), Identifying outliers using multiple kernel canonical correlation analysis with application to imaging genetics, Computational Statistics and Data Analysis, Vol. 125, 70-85

See Also

See also as rkcca, snpfmridata, ifrkcca

udtd 25

Examples

```
##Dummy data:
n<-100
snpfmrimth3D(n, 0.00001, 10, 1)
```

udtd

A helper function

Description

A function to a measure of a system's real point computing power

Usage

udtd(x)

Arguments

Х

a real value

Author(s)

Md Ashad Alam <malam@tulane.edu>

Index

```
gkm, 2, 5, 10, 15, 17
gm3edc, 3
gmedc, 4
gmi, 4
hadr, 5, 6, 7
halfun, 5, 8
halofun, 6, 9
hudr, 5, 6, 7
hulfun, 6, 8
hulofun, 7, 9
ibskm, 9, 15
ifcca, 11, 12, 19, 21
ifmkcca, 12
ifrkcca, 11, 13, 14, 19-21, 23, 24
1cv, 14
1km, 10, 14, 17
mdbw, 16
medc, 17
mvnod, 17
\texttt{ranuf}, \textcolor{red}{18}
rkcca, 11, 14, 18, 19-21, 23, 24
rkcco, 20
rkcm, 21
rlogit, 22
snpfmridata, 20, 22, 24
snpfmrimth3D, 23, 24
udtd, 25
```