2009~2010 学年第一学期

《复变函数与积分变换》课程考试试卷(A卷)(闭卷)

院(系)_		ŧ	业班组	ž	!	学号		_ 姓名	.			
考试	考试日期:2009.11.23					考试时间: 19: 00~21: 30						
题号	_	=	Ξ	四	五	六	七	八	九	总		
										分		
得分												
得分 一、填空题(每空 2 分,共 24 分) 评卷人 (将答案填在题中横线上,不填解题过程) 1. 设 z = (1+i) ¹⁰⁰ ,则 Im z =。 2. 满足 z-1 < 2 的点集是											,它	
是否为区域? (填"是"或"否")。												
3. $3^{3-i} = $												
4. 若 $f(z)$ 在 z_0 解析,则 $f^{(n)}(z)$ 在 z_0 解析,对吗?												
$5.$ 若 $f(z)$ 在 z_0 处可展开为幂级数,则 $f(z)$ 在 z_0 处一定解析,对吗?												

第1页共15页

8. 在映射 $f(z) = 2z^2 + 4z$ 下,曲线 C 在 z = i 处的旋转角是________, f(z)

- 9. 函数 $f(t) = \frac{1}{2} [\delta(t+a) + \delta(t-a) + \delta(t+\frac{a}{2}) + \delta(t-\frac{a}{2})]$ 的傅氏变换为_____
- 二、(6分)设 $f(z) = x^2 + axy + by^2 + i(cx^2 + dxy + y^2)$, z = x + iy, 问常数 a,b,c,d 为何值时, f(z) 在复平面上处处解析? 并求此时的导数。

三、(10 分)求 $u = x^2 + 2xy - y^2$ 的共轭调和函数v(x,y),使v(0,0) = 1,并以此构造解析函数。

四、(12 分)将 $f(z) = \frac{1}{1+z^2}$ 在其有限孤立奇点处展开为 Laurent 级数。

五、计算下列各题(每题4分,共20分)

$$1. \oint_{|z|=2} \frac{dz}{z(z+1)(z-3)}$$

$$2. \oint_{|z|=1} z^2 \sin \frac{1}{z} dz$$

$$3. I = \int_0^\pi \frac{d\theta}{1 + \cos^2 \theta}$$

4.
$$I = \int_{-\infty}^{+\infty} \frac{\cos x}{x^4 + 10x^2 + 9} dx$$
 的值。

5.
$$f(z) = \oint_{|\xi|=2} \frac{\xi^3}{\xi^2 - z^2} d\xi$$
 $(|z| < 2)$, $\Re f'(1+i)$

六、(6分)求区域 $0 < \arg z < \frac{\pi}{4}$,在映射 $w = \frac{z}{z-1}$ 下的像。

七、(8分)求一共形映射,将|z|<2与|z-1|>1所构成的区域映射为单位圆内部。

八、(10分)利用 Laplace 变换解常微分方程初值问题:

$$\begin{cases} y'' - 2y' + y = 1 \\ y(0) = 0, y'(0) = -1 \end{cases}$$

九、(4分)设f(z)在|z|<1内解析,在闭圆|z|≤1上连续,证明:

$$\oint_{|z|=1} \left(\frac{1}{2} + z + \frac{1}{z^2}\right) f(z) \frac{dz}{z} = \pi i [f(0) + f''(0)]$$

2009~2010 学年第一学期

《复变函数与积分变换》课程考试试卷(A卷)(闭卷)

院(系)专		业班级	፟	学号			姓名				
考试	日期:2	009.11.	23	ź	考试时	间: 19					
题号	_	_	Ξ	四	五	六	七	八	九	总	
										分	
得分											
	得分 一、填空题(每空2分, 共24分) 评卷人 (将答案填在题中横线上,不填解题过程)										
1. 设 z = (2. 满足 $\begin{vmatrix} z \\ z \end{vmatrix}$	$\left. \frac{(1+i)^{100}}{z+1} \right < 2$,则Ir ² 的点氛	nz= 以 集是	$\frac{0}{(-\frac{5}{3},0)}$	· 为圆心	$\frac{4}{3}$	习半径的	勺圆外			,
'	ı				是						
是否为	为区域?	(填	"是"写	龙 "否"	')	•					

第7页共15页

3.
$$3^{3-i} = \underline{27e^{2k\pi}(\cos \ln 3 - i\sin \ln 3)}_{\bullet}$$

对

4. 若 f(z) 在 z_0 解析,则 $f^{(n)}(z)$ 在 z_0 解析,对吗? ______

对

5. 若 f(z) 在 z_0 处可展开为幂级数,则 f(z) 在 z_0 处一定解析,对吗? ____

6. 映射
$$w = iz^2$$
 将角形域 $0 < \arg z < \frac{\pi}{4}$ 映射为________。

9. 函数
$$f(t) = \frac{1}{2} [\delta(t+a) + \delta(t-a) + \delta(t+\frac{a}{2}) + \delta(t-\frac{a}{2})]$$
 的傅氏变换为_____。

二、(6分)设
$$f(z) = x^2 + axy + by^2 + i(cx^2 + dxy + y^2)$$
, $z = x + iy$, 问常数 a,b,c,d 为何

值时,f(z)在复平面上处处解析?并求此时的导数。

解: 因
$$\frac{\partial u}{\partial x} = 2x + ay$$
, $\frac{\partial u}{\partial y} = ax + 2by$, $\frac{\partial v}{\partial x} = 2cx + dy$, $\frac{\partial v}{\partial y} = dx + 2y$ (1')

则对任意的(x,y)有

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}, \quad \text{III} \begin{cases} 2x + ay = dx + 2y \\ ax + 2by = -2cx - dy \end{cases}$$
 (2')

当 a=d=2, b=c=-1时C-R方程在整个复平面处处成立且偏导连续, 故 f(z)在复

这时,
$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = 2(x+y) - 2i(x-y) = 2z + 2iz$$
 (1′)

三、(10 分)求 $u = x^2 + 2xy - y^2$ 的共轭调和函数v(x,y), 使v(0,0) = 1, 并以此构造解

析函数。

解: 因
$$\frac{\partial u}{\partial x} = 2x + 2y$$
 , $\frac{\partial u}{\partial y} = 2x - 2y$, (1')

由 C-R 条件,有
$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x}$$
 , $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ (1′)

故
$$v = \int \frac{\partial v}{\partial y} dy = \int (2x + 2y) dy = 2xy + y^2 + \varphi(x)$$
 (2')

再由
$$\frac{\partial v}{\partial x} = 2y + \varphi'(x) = 2y - 2x = -\frac{\partial u}{\partial y}$$
 (1')

得
$$\varphi'(x) = -2x$$
, 于是 $\varphi(x) = -x^2 + c$ (1′)

由
$$v(0,0) = 1$$
, 得 $c = 1$, 故 $v = 2xy + y^2 - x^2 + 1$ (2′)

由此构造的解析函数 $f(z) = u(x,y) + iv(x,y) = x^2 + 2xy - y^2 + i(2xy + y^2 - x^2 + 1)$ (2′)

四、(12 分)将 $f(z) = \frac{1}{1+z^2}$ 在其有限孤立奇点处展开为 Laurent 级数。

解: 当0 < |z-i| < 2

$$\frac{1}{1+z^2} = \frac{1}{(z-i)(z+i)} = \frac{1}{z-i} \frac{1}{2i+(z-i)} = \frac{1}{z-i} \frac{1}{2i} \frac{1}{1+\frac{z-i}{2i}} = \frac{1}{2i} \frac{1}{z-i} \sum_{n=0}^{\infty} (-1)^n (\frac{z-i}{2i})^n$$
 (3')

当 $2 < |z-i| < +\infty$

$$\frac{1}{1+z^2} = \frac{1}{z-i} \frac{1}{z-i} \frac{1}{1+\frac{2i}{z-i}} = \frac{1}{(z-i)^2} \sum_{n=0}^{\infty} (-1)^n \left(\frac{2i}{z-i}\right)^n$$
(3')

$$\frac{1}{1+z^2} = \frac{1}{z+i} \frac{1}{z-i} = \frac{1}{z+i} \frac{1}{-2i+z+i} = \frac{1}{z+i} \frac{1}{-2i} \frac{1}{1-\frac{(z+i)}{2i}} = \frac{1}{z+i} \frac{1}{-2i} \sum_{n=0}^{\infty} \left(\frac{z+i}{2i}\right)^n$$
(3')

当 $2 < |z+i| < +\infty$

$$\frac{1}{1+z^2} = \frac{1}{z+i} \frac{1}{-2i+z+i} = \frac{1}{z+i} \frac{1}{z+i} \frac{1}{1-\frac{2i}{z+i}} = \frac{1}{(z+i)^2} \sum_{n=0}^{\infty} \left(\frac{2i}{z+i}\right)^n$$
 (3')

五、计算下列各题(每题4分,共20分)

1.
$$\oint_{|z|=2} \frac{dz}{z(z+1)(z-3)}$$

解: 原式=
$$2\pi i \{ \text{Re } s(f,0) + \text{Re } s(f,-1) \}$$
 (2′)

$$=2\pi i \left[\lim_{z \to 0} \frac{1}{(z+1)(z-3)} + \lim_{z \to -1} \frac{1}{z(z-3)} \right] = -\frac{\pi i}{6}$$
 (2')

$$2. \oint_{|z|=1} z^2 \sin \frac{1}{z} dz$$

解: 原式=
$$2\pi i \operatorname{Re} s(f,0)$$
 (1')

Re
$$s(f(z),0) = -\frac{1}{6}$$
,原式 = $-\frac{\pi}{3}i$ (1′)

3.
$$I = \int_0^{\pi} \frac{d\theta}{1 + \cos^2 \theta}$$

解:
$$I = \int_0^\pi \frac{d\theta}{1 + \frac{1}{2}(1 + \cos 2\theta)} = \int_0^{2\pi} \frac{d\theta}{3 + \cos \theta}$$

$$\frac{2z = e^{i\varphi}}{2\pi} \int_0^{2\pi} \frac{dz}{3 + \frac{z^2 + 1}{2z}iz} = \int_{|z| = 1} \frac{dz}{6z + z^2 + 1} \cdot ix$$

$$=-2i\oint_{|z|=1} \frac{dz}{z^2 + 6z + 1} \tag{2'}$$

 $\frac{1}{z^2+6z+1}$ 有两个简单极点 $z_{1,2}=-3\pm2\sqrt{2}$, $z_1=-3+2\sqrt{2}$ 在单位圆内

$$I = -2i \cdot 2\pi i \operatorname{Re} s \left[\frac{1}{z^2 + 6z + 1}, -3 + 2\sqrt{2} \right] = 4\pi \left. \frac{1}{2z + 6} \right|_{z = -3 \pm 2\sqrt{2}} = \frac{\sqrt{2}}{2}\pi$$
 (2')

4.
$$I = \int_{-\infty}^{+\infty} \frac{\cos x}{x^4 + 10x^2 + 9} dx$$
 的值。

解: 在上半平面内,
$$f(z) = \frac{e^{iz}}{(z^2+1)(z^2+9)}$$
有一阶极点 $z=i$ 和 $z=3i$ 。 (1′)

$$= \operatorname{Re} \{ 2\pi \operatorname{Re} s[f(z), i] + 2\pi \operatorname{Re} s[f(z), 3i] \}$$
 (2')

Re
$$s[f(z),i] = \frac{1}{16ei}$$
, Re $s[f(z),3i] = -\frac{1}{48e^3i}$ (1')
$$I = \frac{\pi}{24e^3}(3e^2 - 1)$$

5.
$$f(z) = \oint_{|\xi|=2} \frac{\xi^3}{\xi^2 - z^2} d\xi$$
 $(|z| < 2)$, $\Re f'(1+i)$

解:
$$\frac{\xi^3}{\xi^2 - z^2} = \frac{1}{2} \left(\frac{\xi^2}{\xi - z} + \frac{\xi^2}{\xi + z} \right)$$

有
$$f(z) = \frac{1}{2} \oint_{|\xi|=2} \frac{\xi^2}{\xi-z} d\xi + \frac{1}{2} \oint_{|\xi|=2} \frac{\xi^2}{\xi+z} d\xi = \frac{1}{2} 2\pi i z^2 + \frac{1}{2} 2\pi i (-z)^2 = 2\pi i z^2$$
 , $(|z|<2)$ (2')

$$\therefore f'(z) = 4\pi i z , \quad (|z| < 2)$$

$$|\nabla |1+i| < 2$$
, $f'(1+i) = 4\pi i(1+i) = 4\pi (i-1)$ (2')

六、(6分)求区域
$$0 < \arg z < \frac{\pi}{4}$$
,在映射 $w = \frac{z}{z-1}$ 下的像。

第12页共15页

(解法二)

$$w = \frac{z}{z - 1} \Rightarrow z = \frac{w}{w - 1} \Rightarrow x + iy = \frac{u + iv}{u - 1 + iv} = \frac{u^2 - u + v^2 - iv}{(u - 1)^2 + v^2}$$

$$x = \frac{u^2 - u + v^2}{(u - 1)^2 + v^2}, y = \frac{-v}{(u - 1)^2 + v^2}$$

曲
$$0 < \arg z < \frac{\pi}{4}$$
,得
$$\begin{cases} u^2 - u + v^2 > -v \\ -v > 0 \end{cases} \Rightarrow \begin{cases} (u - \frac{1}{2})^2 + (v + \frac{1}{2})^2 > \frac{1}{2} \\ \operatorname{Im} w < 0 \end{cases}$$

七、(8分)求一共形映射,将|z|<2与|z-1|>1所构成的区域映射为单位圆内部。

解:如图所示,区域的边界为 $C_1:|z|=2$ 与 $C_2:|z-1|=1$

$$W = \frac{W_4 - i}{W_4 + i}$$

故
$$W = \frac{e^{2\pi i \frac{z}{z-2}} - i}{e^{2\pi i \frac{z}{z-2}} + i}$$
即为所求。 (2')

八、(10分)利用 Laplace 变换解常微分方程初值问题:

$$\begin{cases} y'' - 2y' + y = 1\\ y(0) = 0, y'(0) = -1 \end{cases}$$

解:记L[y(t)] = Y(s),对方程两端取拉氏变换,

有
$$S^2Y(s) + 1 - 2SY(s) + Y(s) = \frac{1}{s}$$
 (2′)

$$Y(s)(s^2 - 2s + 1) = \frac{1}{s} - 1 = \frac{1 - s}{s}$$

$$Y(s) = \frac{1-s}{(s-1)^2 s} = \frac{-1}{s(s-1)} = \frac{1}{s} - \frac{1}{s-1}$$
 (4')

再求拉氏逆变换,得

$$y(t) = L^{-1} \left[\frac{1}{s} - \frac{1}{s-1} \right] = 1 - e^{t}$$
 (4')

九、(4分)设f(z)在|z|<1内解析,在闭圆|z|<1上连续,证明: