Customer Churn Analysis

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

Data source: https://www.kaggle.com/datasets/ankitverma2010/ecommerce-customer-churn-analysis-and-prediction/data

1. Data Loading:

```
c=pd.read_csv('/content/customer .csv')

c_copy=c.copy() # copy of the original dataset is created which can be used for future references
```

c.head(2) # reading first 2 rows

	CustomerID	Churn	Tenure	PreferredLoginDevice	CityTier	WarehouseToHome	Prefer
0	50001	1	4.0	Mobile Phone	3	6.0	
1	50002	1	NaN	Phone	1	8.0	

c.tail(2) #reading last 2 rows

	CustomerID	Churn	Tenure	PreferredLoginDevice	CityTier	WarehouseToHome	Pre
5628	55629	0	23.0	Computer	3	9.0	
5629	55630	0	8.0	Mobile Phone	1	15.0	

2. Exploratory Data Analysis

c.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5630 entries, 0 to 5629
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype		
0	CustomerID	5630 non-null	int64		
1	Churn	5630 non-null	int64		
2	Tenure	5366 non-null	float64		
3	PreferredLoginDevice	5630 non-null	object		
4	CityTier	5630 non-null	int64		
5	WarehouseToHome	5379 non-null	float64		
6	PreferredPaymentMode	5630 non-null	object		
7	Gender	5630 non-null	object		
8	HourSpendOnApp	5375 non-null	float64		
9	NumberOfDeviceRegistered	5630 non-null	int64		
10	PreferedOrderCat	5630 non-null	object		
11	SatisfactionScore	5630 non-null	int64		
12	MaritalStatus	5630 non-null	object		
13	NumberOfAddress	5630 non-null	int64		
14	Complain	5630 non-null	int64		
15	OrderAmountHikeFromlastYear	5365 non-null	float64		
16	CouponUsed	5374 non-null	float64		
17	OrderCount	5372 non-null	float64		
18	DaySinceLastOrder	5323 non-null	float64		
19	CashbackAmount	5630 non-null	int64		
dtypes: float64(7), int64(8), object(5)					

 $https://colab.research.google.com/drive/14q5R60EVIA-5Yi-i4-QvxJHoTCXeJkD_\#scrollTo=mif4vLVauIKp\&printMode=truewards.google.com/drive/14q5R60EVIA-5Yi-i4-QvxJHoTCXeJkD_\#scrollTo=mif4vLVauIKp\&printMode=truewards.google.com/drive/14q5R60EVIA-5Yi-i4-QvxJHoTCXeJkD_\#scrollTo=mif4vLVauIKp\&printMode=truewards.google.com/drive/14q5R60EVIA-5Yi-i4-QvxJHoTCXeJkD_\#scrollTo=mif4vLVauIKp\&printMode=truewards.google.com/drive/14q5R60EVIA-5Yi-i4-QvxJHoTCXeJkD_\#scrollTo=mif4vLVauIKp\&printMode=truewards.google.com/drive/14q5R60EVIA-5Yi-i4-QvxJHoTCXeJkD_\#scrollTo=mif4vLVauIKp\&printMode=truewards.google.com/drive/14q5R60EVIA-5Yi-i4-QvxJHoTCXeJkD_\#scrollTo=mif4vLVauIKp\&printMode=truewards.google.com/drive/14q5R60EVIA-5Yi-i4-QvxJHoTCXeJkD_\#scrollTo=mif4vLVauIKp\&printMode=truewards.google.com/drive/14q5R60EVIA-5Yi-i4-QvxJHoTCXeJkD_\#scrollTo=mif4vLVauIKp\&printMode=truewards.google.com/drive/14q5R60EVIA-5Yi-i4-QvxJHoTCXeJkD_\#scrollTo=mif4vLVauIKp\&printMode=truewards.google.com/drive/14q5R60EVIA-14q6R60EVIA-14q6R6$

memory usage: 879.8+ KB

	CustomerID	Churn	Tenure	CityTier	WarehouseToHome	HourSpend(
count	5630.000000	5630.000000	5366.000000	5630.000000	5379.000000	5375.00
mean	52815.500000	0.168384	10.189899	1.654707	15.639896	2.90
std	1625.385339	0.374240	8.557241	0.915389	8.531475	0.72
min	50001.000000	0.000000	0.000000	1.000000	5.000000	0.00
25%	51408.250000	0.000000	2.000000	1.000000	9.000000	2.00
50%	52815.500000	0.000000	9.000000	1.000000	14.000000	3.00
75%	54222.750000	0.000000	16.000000	3.000000	20.000000	3.00
max	55630.000000	1.000000	61.000000	3.000000	127.000000	5.00

c.columns

c.nunique() # count of unique values per column

CustomerID	5630
Churn	2
Tenure	36
PreferredLoginDevice	3
CityTier	3
WarehouseToHome	34
PreferredPaymentMode	7
Gender	2
HourSpendOnApp	6
NumberOfDeviceRegistered	6
PreferedOrderCat	6
SatisfactionScore	5
MaritalStatus	3
NumberOfAddress	15
Complain	2
OrderAmountHikeFromlastYear	16
CouponUsed	17
OrderCount	16
DaySinceLastOrder	22
CashbackAmount	220
dtype: int64	

a. No.of customers based on login device

c['PreferredLoginDevice'].value_counts()

Mobile Phone 2765 Computer 1634 Phone 1231

Name: PreferredLoginDevice, dtype: int64

Most of the customers prefer mobile phone

b. Customers based on gender

```
c['Gender'].value_counts()
```

Male 3384 Female 2246

Name: Gender, dtype: int64

Comparatively, male customers are more

c. customers churned based on login device

```
plt.figure(figsize=(5,3))
sns.set(font_scale=0.7)
s=sns.countplot(data=c,x='PreferredLoginDevice',hue='Churn')
plt.ylabel('Number of customers')
for i in s.containers:
    s.bar_label(i)
```


Only small amount of customers have churned

d. gender vs churn

```
plt.figure(figsize=(5,3))
sns.set(font_scale=0.7)
s=sns.countplot(data=c,x='Gender',hue='Churn')
plt.ylabel('Number of customers')
for i in s.containers:
    s.bar_label(i)
```


e. customers churned from different cities

```
sns.set_style('whitegrid')
f=sns.FacetGrid(data=c,col ='Gender',row='Churn')
f.map_dataframe(sns.countplot,x='CityTier')
```


City 1 has more customers than from other 2 city tiers

f. customers churned from different devices used

```
sns.set_style('whitegrid')
h=sns.FacetGrid(data=c,col='Gender',row='Churn')
h.map_dataframe(sns.countplot,x='PreferredLoginDevice')
```


g. time spent on app by different customers based on their gender

```
plt.figure(figsize=(5,3))
sns.set(font_scale=0.7)
s=sns.countplot(data=c,x='HourSpendOnApp',hue='Gender')
plt.ylabel('Number of customers')
for i in s.containers:
    s.bar_label(i)
```


Maximum hours spent is 4, but 3 hrs is the maximum duration spent by each customer

h. time spent vs satisfaction score

```
plt.figure(figsize=(6,4))
sns.set(font_scale=0.5)
s=sns.barplot(data=c,x='SatisfactionScore',y='HourSpendOnApp',hue='Gender',errorbar=None)
sns.move_legend(s,"center")
for i in s.containers:
    s.bar_label(i)
```


i.no.of complains raised by customers

```
plt.figure(figsize=(4,3))
sns.set(font_scale=0.6)
s=sns.countplot(data=c,x='Complain',hue='Gender')
for i in s.containers:
    s.bar_label(i)
```


j. coupons used

```
plt.figure(figsize=(7,6))
sns.set(font_scale=0.6)
s=sns.countplot(data=c,x='CouponUsed',hue='Gender')
for i in s.containers:
    s.bar_label(i)
```


k. payment mode vs gender

```
plt.figure(figsize=(5,4))
sns.set(font_scale=0.5)
s=sns.countplot(data=c,x='PreferredPaymentMode',hue='Gender')
for i in s.containers:
    s.bar_label(i)
```


Majority prefers debit card for payment

I. cashback amount vs order categories based on gender

```
plt.figure(figsize=(7,6))
sns.set(font_scale=0.5)
s=sns.barplot(data=c,x='PreferedOrderCat',y='CashbackAmount',hue='Gender',errorbar=None)
for i in s.containers:
    s.bar_label(i)
```


m. payment mode vs cashback amt

```
plt.figure(figsize=(7,6))
sns.set(font_scale=0.5)
s=sns.barplot(data=c,x='PreferredPaymentMode',y='CashbackAmount',hue='Gender',errorbar=None)
for i in s.containers:
    s.bar_label(i)
```


n. order count vs gender

```
plt.figure(figsize=(5,4))
sns.set(font_scale=0.5)
s=sns.countplot(data=c,x='OrderCount',hue='Gender')
for i in s.containers:
    s.bar_label(i)
```



```
Data Cleaning
print('null values:',c.isnull().any().sum())
print('nan values:',c.isna().any().sum())
print('duplicates:',c.duplicated().any().sum())
     null values: 7
     nan values: 7
    duplicates: 0
Null values are dropped
c=c.dropna()
1=[]
for i in range(len(c)):
 1.append(i)
c.index=1
print('null values:',c.isnull().any().sum())
print('nan values:',c.isna().any().sum())
print('duplicates:',c.duplicated().any().sum())
    null values: 0
     nan values: 0
    duplicates: 0
Removing unnecessary columns
c=c.drop(columns=['CustomerID'])
Feature Engineering
c1=c.loc[:,['PreferredLoginDevice','PreferredPaymentMode','Gender','PreferedOrderCat','MaritalStatus']]
c_f=c.drop(columns=c1.columns)
from sklearn.preprocessing import LabelEncoder
c_cd=c1.apply(LabelEncoder().fit_transform)
C=pd.concat([c_f,c_cd],axis=1)
Feature Selection
# separate data into feature and target:
x=C.drop(columns='Churn') # feature
y=C['Churn'] # Target is churn
correlation_values = x.apply(lambda feature: np.abs(np.corrcoef(feature, y)[0, 1]))
```

https://colab.research.google.com/drive/14q5R60EVIA-5Yi-i4-QvxJHoTCXeJkD_#scrollTo=mif4vLVauIKp&printMode=true

```
correlation_values
```

```
0.340013
Tenure
CityTier
                               0.073858
WarehouseToHome
                               0.087318
HourSpendOnApp
                               0.060845
NumberOfDeviceRegistered
                               0.149041
SatisfactionScore
                               0.095759
NumberOfAddress
                               0.076336
Complain
                               0.238137
OrderAmountHikeFromlastYear
                               0.017193
CouponUsed
                               0.010982
                               0.001962
OrderCount
DaySinceLastOrder
                               0.139254
                               0.058866
{\it Cashback Amount}
PreferredLoginDevice
                               0.003295
PreferredPaymentMode
                               0.024731
Gender
                               0.033792
PreferedOrderCat
                               0.131023
MaritalStatus
                               0.134036
dtype: float64
```

sorted_features = correlation_values.sort_values(ascending=False)

sorted_features

```
0.340013
Tenure
Complain
                              0.238137
NumberOfDeviceRegistered
                              0.149041
DaySinceLastOrder
                              0.139254
MaritalStatus
                              0.134036
PreferedOrderCat
                              0.131023
SatisfactionScore
                              0.095759
WarehouseToHome
                              0.087318
NumberOfAddress
                              0.076336
CityTier
                              0.073858
HourSpendOnApp
                              0.060845
{\sf CashbackAmount}
                              0.058866
Gender
                              0.033792
PreferredPaymentMode
                              0.024731
OrderAmountHikeFromlastYear
                              0.017193
CouponUsed
                              0.010982
PreferredLoginDevice
                              0.003295
OrderCount
                              0.001962
```

dtype: float64

k = 10

selected_features = sorted_features.index[:k] # why .index because:- x[columns in selected_features. corr gives the values,we need only

selected_features

 $sns.heatmap(x[selected_features].corr(), \ annot=True, \ fmt='.2f', \ linewidths=0.5)$

<Axes: >

sorted_features[:k]

0.340013 Tenure 0.238137 Complain NumberOfDeviceRegistered 0.149041 DaySinceLastOrder 0.139254 MaritalStatus 0.134036 PreferedOrderCat 0.131023 ${\tt SatisfactionScore}$ 0.095759 WarehouseToHome 0.087318 NumberOfAddress 0.076336 CityTier 0.073858

dtype: float64

selected_features

v.bar_label(i)

plt.ylabel('Values')

plt.xlabel('Selected featues')

Above are the top 10 features that act as factors of customers' churn

Model Building

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)
print('x_train.shape:',x_train.shape,'x_test.shape:',x_test.shape)
     x_train.shape: (3019, 10) x_test.shape: (755, 10)
print('y_train.shape:',y_train.shape,'y_test.shape:',y_test.shape)
     y train.shape: (3019,) y test.shape: (755,)
from sklearn.model_selection import GridSearchCV
models={
    'log_r':{
        'model':LogisticRegression(),
        'params':{
        }
    },
    'KNC':{
        'model':KNeighborsClassifier(),
        'params':{
            'n_neighbors':[2,5,10,12,15,20]
    'RFC':{
        'model':RandomForestClassifier(),
        'params':{
            'n_estimators':[1,2,3,4,5,6,7,8,9,10,12,15,20]
    }
}
from sklearn.model_selection import ShuffleSplit
scores=[]
cv=ShuffleSplit(n_splits=5,test_size=0.2,random_state=0)
for i,j in models.items():
 gs=GridSearchCV(j['model'],j['params'],cv=cv,return_train_score=False)
 gs.fit(x,y)
scores.append({
    'model':i,
    'best score':gs.best_score_,
    'best parameter':gs.best_params_
})
     /usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:458: ConvergenceWarning: lbfgs failed to converge (status-
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
       n_iter_i = _check_optimize_result(
df=pd.DataFrame(scores,columns=['model','best score','best parameter'])
df
        model best score
                           best parameter
                                              RFC
                  0.965828 {'n_estimators': 20}
```