Examenul de bacalaureat 2012

Proba E.c)

Proba scrisă la MATEMATICĂ

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 5

Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$(1, \cdot)^2$	
	$\left(1+i\right)^2 = 2i$	3 p
	2i = 2	2p
2.	$f(x) = g(x) \Rightarrow x^2 + 3x + 2 = 0$	1p
	$x_1 = -1 \Rightarrow y_1 = -1$	2p
	$x_2 = -2 \Rightarrow y_2 = 0$	2 p
3.	$2^{x+1} \le 2^2$	1p
	$x+1 \le 2$	2 p
	$S = (-\infty, 1]$	2 p
4.	$p = \frac{\text{nr.cazuri favorabile}}{\text{nr.cazuri favorabile}}$	1p
	nr.cazuri posibile	
	Submulțimile cu 3 termeni consecutivi ai unei progresii aritmetice sunt: {1,2,3}, {2,3,4},	
	$\{3,4,5\}$ și $\{1,3,5\} \Rightarrow 4$ cazuri favorabile	2p
	Numărul submulțimilor cu 3 elemente este $C_5^3 = 10 \Rightarrow 10$ cazuri posibile	1p
	$p = \frac{2}{5}$	1p
	$\frac{\nu-\overline{5}}{5}$	тр
5.	$\vec{u} \cdot \vec{v} = 3 \Leftrightarrow a + 2 = 3$	4p
	a=1	1p
6.	$\cos A = \frac{AB^2 + AC^2 - BC^2}{2 \cdot AB \cdot AC}$	2p
	$2 \cdot AB \cdot AC$	•
	$\cos A = -\frac{1}{-}$	3р
	5	r

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & 3 \\ 1 & 1 & m \end{pmatrix}$	2p
	$\det A = 3m - 6$	3 p
b)	Sistemul are o soluție unică dacă și numai dacă $\det A \neq 0$	2p
	Finalizare: $m \in \mathbb{R} \setminus \{2\}$	3p

Probă scrisă la **Matematică** Varianta 5

		_
c)	$\det A = 0$ și $\begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} \neq 0$, deci matricea sistemului are rangul doi	1p
	$z = \alpha \Rightarrow \begin{cases} 2x + y = -3\alpha \\ x + 2y = -3\alpha \end{cases} \Rightarrow x = -\alpha, \ y = -\alpha$	2 p
	$x_0^2 + y_0^2 + z_0^2 = 3 \Rightarrow (-\alpha)^2 + (-\alpha)^2 + \alpha^2 = 3 \Rightarrow \alpha \in \{-1, 1\}$	1p
	Soluția este $(x_0, y_0, z_0) = (1, 1, -1)$	1p
2.a)	$X(p) \cdot X(q) = X(p+q+pq)$	3р
	$p,q \in \mathbb{R} \setminus \{-1\} \Rightarrow (p+1)(q+1) \neq 0 \Rightarrow p+q+pq \neq -1$, deci $X(p+q+pq) \in G$	2p
b)	Pentru orice $X(p) \in G$, există $X\left(-\frac{p}{1+p}\right)$ astfel încât $X(p) \cdot X\left(-\frac{p}{1+p}\right) = X(0)$	3р
	$-\frac{p}{1+p} \neq -1 \Rightarrow X\left(-\frac{p}{1+p}\right) \in G \text{ si } X\left(-\frac{p}{1+p}\right) \text{ este inversul lui } X\left(p\right)$	2p
c)	$(X(p))^3 = X(7)$	1p
	$(X(p))^3 = X((p+1)^3 - 1)$	3 p
	$(p+1)^3 = 8$, deci $p=1$ și soluția este $X(1)$	1p
		_

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 3x^2 - 12$	3 p
	$f'(x) \ge 0$ pentru orice $x \in [2, +\infty)$, deci f este crescătoare pe $[2, +\infty)$	2 p
b)	$\lim_{x \to +\infty} f(x) = +\infty$	2p
	$\lim_{x \to +\infty} \frac{e^x}{f(x)} = \lim_{x \to +\infty} \frac{e^x}{3x^2 - 12} = \lim_{x \to +\infty} \frac{e^x}{6x} = \lim_{x \to +\infty} \frac{e^x}{6} = +\infty$	3 p
c)	Şirul lui Rolle pentru funcția $g: \mathbb{R} \to \mathbb{R}, g(x) = f(x) - a$ este $-\infty, 16 - a, -16 - a, +\infty$	3 p
	Ecuația are trei soluții reale distincte dacă și numai dacă $a \in (-16,16)$	2 p
2.a)	$F'(x) = f(x)$, pentru orice $x \in (-1, +\infty)$	2p
	$f(x) > 0$ pentru orice $x \in (-1, +\infty)$	1p
	F este strict crescătoare	2p
b)	$\int_{0}^{1} \frac{f(x)}{x+1} dx = \int_{0}^{1} \frac{2x+3}{(x+1)(x+2)} dx = \int_{0}^{1} \frac{dx}{x+1} + \int_{0}^{1} \frac{dx}{x+2} =$	3р
	$= \ln(x+1) \Big _{0}^{1} + \ln(x+2) \Big _{0}^{1} = \ln 3$	2p
c)	$\int_{x}^{2x} f(t)dt = (2t - \ln(t+2)) \Big _{x}^{2x} = 2x - \ln\frac{2x+2}{x+2}, \text{ pentru } x > 0$	3 p
	$\lim_{x \to +\infty} \frac{2x - \ln \frac{2x + 2}{x + 2}}{x} = 2$	2 p