

oppaWord: DAG-BiMM-LM based Myanmar Word Segmenter

(8th Seminar for Intern-3)

Ye Kyaw Thu Lab Leader, LU Lab., Myanmar

Contents

- 1. Myanmar Word Segmentation
- 2. Core Algorithms
- 3. Overview of oppWord
- 4. Smart Space Remover
- 5. Syllable Breaking
- 6. DAG Construction
- 7. Bi-MM
- 8. N-gram LM
- 9. Viterbi Algorithm

Myanmar Word Segmentation

- Challenge: No explicit word boundaries in Myanmar script (e.g., "ကျောင်းသား" = "ကျောင်း" + "သား").
- Agglutinative morphology: Words formed by combining syllables.
- Applications: NLP tasks like machine translation (MT), search engines, text-to-speech (TTS), automatic speech recognition (ASR), and Summarization.

Core Algorithms

- Hybrid Approach
- DAG Construction: Represent all possible segmentations.
- Bi-MM Fallback: Bidirectional Maximum Matching for robustness.
- N-gramLanguage Model
- Syllable-level processing.
- Multi-feature scoring (dictionary, frequency, LM).

Overview of oppaWord

Smart Space Remover

- Word Segmenter တွေကို input လုပ်တဲ့အခါမှာ space ဖြုတ်ပေးကြရတယ်
- သို့သော် လက်တွေ့မှာ space အကုန်ဖြုတ်လိုက်ရင် နံပါတ် ကိစ္စတွေ၊ မြန်မာစာနဲ့အတူ ရောပါနေတဲ့ အင်္ဂလိပ်စာလုံးတွေ၊ တရုတ်စာလုံးတွေ၊ ဂျပန်စာလုံးတွေ၊ ထိုင်းစာလုံးတွေ ကိုရော ဘယ်လို လုပ်ကြမလဲ။
- မော်ဒ်တွေထဲကို input လုပ်ရတဲ့အခါမှာ preprocessing တွေ လုပ်ပေးကြရတယ်
- အဲဒီ ကိစ္စကို ဒီတခါမှာတော့ smart_space_remover.py နဲ့ ရှင်းခဲ့တယ်

Smart Space Remover

- Chonburi ကိုသွားမယ့်နောက်လေယာဉ်မှာလက်မှတ်တစ်စောင်ပေးပါ domain name တိုင်း Top level domain TLD name နဲ့အဆုံးသတ်ရပါတယ် ဝမ် ၈၁၀၀ မှာမှတ်ပုံတင်ကြေးဝမ် ၈၀၀ ပေါင်းရင်စုစုပေါင်းဝမ် ၈၉၀၀
- ဂျပန်တို့ကစင်္ကာပူကိုရှိုးနန်တိုး 昭南島 Shōnantō ဟုအမည်ပေးခဲ့ပြီး 昭和の 時代に得た南の島
- သို့ရှိဝါခေတ်တွင်ရရှိခဲ့သောတောင်ဘက်ကျွန်းဟုအဓိပ္ပါယ်ရသည် အမျိုးသားဦးရေ ၂၉ ဒသမ ၇၂ သန်းနှင့်အမျိုးသမီးဦးရေ ၃၀ ဒသမ ဝ၆
- သန်းရှိသည် ဒီကြီးတဲ့ပစ္စည်းအတွက်ဆိုရင်တစ်နေ့ကို ၁.၅၀ ကျတယ်

Syllable Breaking (edited-sylbreak)

Original <u>sylbreak.py</u> ရဲ့ Other words ဆိုတာကို ဖြုတ်လိုက်တယ်

DAG (Directed Acyclic Graph)

Definition:

- A Directed Acyclic Graph (DAG) is a graph with directed edges and no cycles.
- Nodes: Represent syllable positions in the input text.
- Edges: Represent candidate words (valid dictionary entries or single syllables).

Key Property:

 No cycles → Ensures linear progression from start to end of the sentence.

DAG Consturction

In mathematics,
 particularly graph theory,
 and computer science, a
 directed acyclic graph
 (DAG) is a directed graph
 with no directed cycles.

Fig. Transitive reduction (from wiki)

DAG Construction

Fig. (from wiki)

 Adding the red edges to the blue directed acyclic graph produces another DAG, the transitive closure of the blue graph. For each red or blue edge $u \rightarrow v$, v is reachable from u: there exists a blue path starting at u and ending at v.

DAG Construction (Why DAGs for Word Segmentation?)

Problem:

- Myanmar text has no explicit word boundaries (e.g., "ကျေးဇူးပြု၍" → "ကျေးဇူး" + "ပြု" + "၍").
- Exponentially many possible segmentations.

Solution:

- DAG compactly encodes all valid segmentations in a single structure.
- Enables efficient search for the best path (e.g., using Viterbi).

DAG Construction (Step by Step)

- Input: Syllable list (e.g., ["ကျွန်တော်", "မ", "သိ", "ပါ"]). Sliding Window: For each syllable position i, check substrings of length 1 to max word len (e.g., 6).
- Validation: Keep substrings that exist in the dictionary or are single syllables.

```
for i in range(len(syllables)):
for j in range(i+1, min(i+max word len+1, len(syllables)+1):
word = syllables[i:j]
if word in dictionary or j-i == 1:
dag[i].append((j, word))  # Edge to node j
```

DAG Construction (Example)

- Input Sentence: "ကျေးဇူးပြု၍" (syllables: ["ကျေးဇူး", "ပြု", "၍"]).
- **DAG Edges:**

 - 0 → 1: ကျေးဇူး
 0 → 2: ကျေးဇူးပြု
 1 → 2: ပြု
 2 → 3: ၍

DAG Construction (vs Other Approaches)

Approach	Pros	Cons
DAG	Captures all possibilities	Requires scoring to pick best path
Bi-MM	Fast, simple	Greedy; may miss optimal splits
Pure LM	Context-aware	Slow for long sentences

DAG Construction (Scoring in oppaWord)

Edge Weights: Combine:

- Dictionary membership (dict_weight).
- 2. Syllable frequency (log probability).
- Language model score (n-gram probability).

Example:

Edge 0 → 1 ("ຕຸງ:ຕູ:"):
 score = 10.0 (dict) + -1.2 (freq) + -0.5 (LM) = 8.3

DAG Construction (Path Finding with Viterbi)

- **Input Sentence:** Find the highest-scoring path from start (node 0) to end (node N).
- Dynamic Programming:
 - o scores[j] = max(scores[i] + edge score) for all edges $i \rightarrow j$.
- Implementation:

```
for i in range(n):
    for (j, word, is_bimm) in dag[i]:
        scores[j] = max(scores[j], scores[i] + get_score(word))
```

DAG Construction (Visualization)

Tool: Graphviz (dot).

```
Example:
digraph DAG {
  0 -> 1 [label="ကျေးဇူး (8.3)"];
  0 -> 2 [label="ကျေးဇူးပြု (5.1)"];
  1 -> 2 [label="ပြု (7.0)"];
  2 -> 3 [label="၍ (1.0)"];
}
```


Fig. Visualization

DAG Construction (Limitation)

- Memory: Can grow large for long sentences (O(N × max_word_len) edges).
- Ambiguity: Multiple valid paths may exist
- Mitigation:
 - Limit max_word_len (default: 6).
 - Fall back to Bi-MM for low-confidence paths.

Bi-MM (Bidirectional Maximum Matching)

- **MM Definition:** A greedy algorithm that segments text by matching the longest possible word from a dictionary.
- **Directions:**
 - Forward Maximum Matching (FMM): Left-to-right.
 - Backward Maximum Matching (BMM): Right-to-left.
- Why Bidirectional?
- Unidirectional MM can be direction-sensitive.
 - Example: "အပြင်သွား" → FMM: "အပြင်" + "သွား",
 BMM: "အ" + "ပြင်" + "သွား".

Bi-MM (Bidirectional Maximum Matching)

Solution:

 Run both FMM and BMM, then pick the better result (fewer segments or higher score).

Advantage:

More robust to dictionary gaps and ambiguities.

Bi-MM (Algorithm Steps)

Forward Pass (FMM):

- Start at the first syllable.
- Match longest valid word from the dictionary.
- Move to the next unmatched syllable.

Backward Pass (BMM):

- Start at the last syllable.
- Match longest valid word backwards.

Conflict Resolution:

Choose the segmentation with fewer words (or apply scoring).

Bi-MM (Implementation)

```
def forward mm(syllables):
result = []
\mathbf{j} = 0
while i < len(syllables):</pre>
 for j in range (min (max word len, len (syllables) -i), 0, -1):
word = ''.join(syllables[i:i+j])
 if word in word dict:
   result.append((i, i+j, word)) # (start, end, word)
|----i-+=-j
  else: # No match → single syllable
result.append((i, i+1, syllables[i]))
  i += 1
return result
```

Bi-MM (Integration with DAG in oppaWord)

Role of Bi-MM:

- Fallback Path: When DAG edges are missing (low-confidence/no dictionary match).
- Score Boosting: Bi-MM paths get a bonus (bimm_boost parameter).

```
bif use_bimm_fallback:
    bimmpath = self._get_bimm_segmentation(syllables)
    for start, end, word in bimmpath:
        dag[start].append((end, word, True))  # Mark as Bi-MM edge
```

Bi-MM (vs. DAG Scoring)

Feature	Bi-MM	DAG
Approach	Greedy, rule-based	Exhaustive, probabilistic
Speed	Faster	Slower (scales with sentence length)
Accuracy	Lower (dictionary-dependent)	Higher (LM + frequency-aware)
Use Case	Fallback for DAG gaps	Primary segmentation

Bi-MM (Configuration in oppaWord)

• Parameters:

- --use-bimm-fallback: Enable/disable Bi-MM.
- --bimm-boost 0.5: Boost Bi-MM path scores (default: 0.0).

• Trade-offs:

→ Higher boost → Prefer Bi-MM over DAG paths (useful for noisy text).

Bi-MM (Limitations)

Dictionary Bias:

Fails if dictionary is incomplete (e.g., missing compound words).

Directional Bias:

BMM and FMM may disagree (requires heuristic resolution).

No Context Awareness:

Ignores LM/frequency scores (fixed in DAG).

Bi-MM (Practical Tips)

Dictionary Quality:

Ensure coverage of common words and compounds.

• Tuning bimm_boost:

- Increase if DAG often produces unnatural splits.
- Decrease to rely more on LM.

Visualization:

Use --visualize-dag to see Bi-MM fallback edges (marked with *).

N-gram LM

Definition:

Predicts the probability of a word given its preceding n-1 words.

• Example (Trigram: n=3):

P("သွား" | "ကျောင်း" + "ကို") = probability of "သွား" after "ကျောင်းကို".

Types:

- o **Unigram:** Single word frequency (P("ကျေးဇူး")).
- o **Bigram:** Conditional probability (P("ပြု" | "ကျေးဇူး")).
- Higher-order: Trigram, 4-gram, etc.

N-gram LM (for Segmentation?)

Problem:

- Dictionary-based methods (e.g., Bi-MM) lack context awareness.
- o Example: "ဘုန်းကြီးကျောင်းသား" vs. "ဘုန်းကြီး" + "ကျောင်းသား"
- LM picks the more probable sequence.

Solution:

 LMs score candidate segmentations using real-world word co-occurrence statistics.

N-gram LM (Implementation in oppaWord)

Supported Formats:

- ARPA: Human-readable n-gram counts and probabilities.
- KenLM Binary: Efficient memory-mapped format.

N-gram LM (Scoring)

- Input Syllables: ["နေ", "ကောင်း", "လား"]
- Candidate Paths:
 - a. ["နေ", "ကောင်း"] + ["လား"]
 - Bigram score: P("ကောင်း" | "နေ") + P("လား" | "ကောင်း")
 - b. ["နေကောင်း"] + ["လား"]
 - Unigram score: P("နေကောင်း") + P("လား")
- Result: Higher-probability path wins.

N-gram LM (Integration with DAG)

- Step-by-Step:
- DAG Construction: All possible segmentations (edges).
- Viterbi Decoding: Scores paths using:

```
total_score = dict_weight + syl_freq + lm_score + (bimm_boost if fallback)
```

Visualization:

o DAG edges show LM scores (e.g., "နေကောင်း (LM:-1.2)").

N-gram LM (Configuring LM in oppaWord)

- Parameters:
- Candidate Paths:
 - --arpa lm.arpa: Path to ARPA/KenLM file.
 - --max-order 5: Max n-gram order (default: 5).
- Trade-offs: \
 - → Higher max-order → More context but slower.

N-gram LM (Limitations & Mitigations)

- Sparsity: Rare n-grams → fallback to lower-order models.
- oppaWord's Solution: Uses unk_logprob for unknown words.
- Memory:
 - Large LMs need KenLM binaries.
- Summary:
 - n-gram LMs add context awareness to segmentation.
 - oppaWord Hybrid: Combines DAG, Bi-MM, and LM for optimal accuracy.

Viterbi Algorithm

Definition:

 A dynamic programming algorithm to find the most likely sequence of states (here, word segments) in a probabilistic model (DAG + LM).

Key Properties:

- Optimal: Guarantees the highest-scoring path.
- Efficient: O(N×M) time (N = syllables, M = max word length).

Viterbi Algorithm (for Word Segmentation?!)

Challenge:

Exponentially many possible segmentations

Solution:

 Viterbi efficiently explores all paths in the DAG using memoization.

Viterbi Algorithm (Core Component in oppaWord)

DAG Representation:

- Nodes = syllable positions.
- \circ Edges = candidate words (e.g., $0 \to 2$: "ကျေးဇူး").

• Scoring:

Each edge has a score:

```
score = dict_weight + syl_freq + lm_score + (bimm_boost if fallback)
```

Viterbi Algorithm (Step by Step)

Initialization:

- **scores[0] = 0** (start node), others = $-\infty$.
- paths[j] stores the best path to node j.

Recursion:

 \circ For each node **i**, update all outgoing edges $i \rightarrow j$:

```
scores[j] < scores[i] + edge_score:
    scores[j] = scores[i] + edge_score # Update best score
    paths[j] = (i, word) # Track best path</pre>
```

Termination:

Backtrack from the end node (e.g., node N) using paths.

Viterbi Algorithm (Example Walkthrough)

- Input Syllables: ["နေ", "ကောင်း", "လား"]
- DAG Edges:
 - \circ 0 \rightarrow 1: "နေ" (score=8), 0 \rightarrow 2: "နေကောင်း" (score=12)
 - \circ 1 \rightarrow 2: "ကောင်း" (score=7), 2 \rightarrow 3: "လား" (score=5)

Viterbi Steps:

- 1. Scores: $[0, 8, 12, -\infty]$
- 2. Update node 2: $max(8+7=15, 12+5=17) \rightarrow scores=[0,8,17]$
- 3. Best path: $0 \rightarrow 2 \rightarrow 3 \rightarrow$ "နေကောင်း လား"

Viterbi Algorithm (Implementation)

```
# Initialize
scores = [-float('inf')] * (n+1)
scores[0] = 0
paths = [None] * (n+1)
# Recursion
for i in range(n):
for (j, word, is bimm) in dag[i]:
edge score = dict score + syl score + lm score
if scores[j] < scores[i] + edge score:
scores[j] = scores[i] + edge score
paths[j] = (i, word)
# Backtracking
segmented = []
idx = n
while idx > 0:
i, word = paths[idx]
segmented.append(word)
idx = i
```

Viterbi Algorithm (Summary)

- Viterbi finds the globally optimal segmentation in O(N×M) time.
- oppaWord Hybrid: Combines DAG, LM scores, and Viterbi for accuracy.

References

- 1. DAG: https://en.wikipedia.org/wiki/Directed_acyclic_graph
- 2. Viterbi Algorithm: https://en.wikipedia.org/wiki/Viterbi_algorithm
- 3. Viterbi AJ (April 1967). "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm". IEEE Transactions on Information Theory. 13 (2): 260–269.
- 4. Gai, R. L., Gao, F., Duan, L. M., Sun, X. H., & Li, H. Z. (2014). Bidirectional Maximal Matching Word Segmentation Algorithm with Rules. Advanced Materials Research, 926–930, 3368–3372.
- 5. N-gram: https://en.wikipedia.org/wiki/N-gram
- Word n-gram Language Model: https://en.wikipedia.org/wiki/Word_n-gram_language_model
- 7. KenLM: https://github.com/kpu/kenlm
- 8. KenLM website: https://kheafield.com/code/kenlm/

References

- 9. Sylbreak: https://github.com/ye-kyaw-thu/sylbreak
- 10. oppaWord: https://github.com/ye-kyaw-thu/oppaWord
- 11. Dynaic Programming: https://en.wikipedia.org/wiki/Dynamic_programming
- 12. myWord Segmentation Tool: https://github.com/ye-kyaw-thu/myWord
- 13. Ngram Format:

 http://www.speech.sri.com/projects/srilm/manpages/ngram-format.5.ht
 ml
- 14. ARPA Language Models: https://cmusphinx.github.io/wiki/arpaformat/