Synthetic Lie Theory Lie's Second Theorem

Matthew Burke

Algebra Seminar, Masayrk University 2015

Main Idea

Idea

The passage from local data to global data in Lie theory is effected by the integration of 'infinitesimal' paths to macroscopic paths.

Example

- A path in a Lie algebra that lies in the domain of the exponential map induces a path in the Lie group starting at the identity.
- ▶ It turns out that paths in the Lie group starting at the identity are homotopic iff the corresponding paths in the Lie algebra are homotopic.
- ▶ If the Lie group is simply connected then homotopy classes of paths starting at the identity are the same thing as elements of the Lie group.

Summary

1. Multi-object Lie Theory

- 2. Path and Weinstein Categories
- 3. The Integral Factorisation System

4. Connectedness of Categories and Lie's Second Theorem

Multi-object Lie Theory

Definition

A *Lie groupoid* is a groupoid in *Man* such that the source and target maps are submersions.

Definition

A Lie algebroid is a vector bundle $A \to M$ in Man together with a bundle homomorphism $\rho: A \to TM$ such that the space of sections $\Gamma(A)$ is a Lie algebra satisfying $(\forall X, Y \in \Gamma(A))(\forall f \in C^{\infty}(M))$:

$$[X, fY] = \rho(X)(f) \cdot Y + f[X, Y]$$

The analogue of Lie's second theorem holds: the functor

$$LieAlgd \xleftarrow{T_e} LieGpd_{sc}$$

is full and faithful. However T_e is not essentially surjective.

Multi-object Lie Theory

For every Lie algebroid there is a topological groupoid called the Weinstein groupoid that is the 'obvious' candidate for the integral of the algebroid

$$LieAlgd \xrightarrow{W} TopGpd -- ?? \rightarrow LieGpd$$

but there can be obstructions to putting a smooth structure on it see [Crainic and Fernandes 2003]. However if we enlarge our category of smooth spaces to a smooth topos \mathcal{E} , we can construct both a Weinstein category and a path category from every category:

$$Cat_{\infty}(\mathcal{E}) \xrightarrow{\bot} Cat(\mathcal{E}) \xrightarrow{P} Cat(\mathcal{E})$$

(Note that this is mildly more general than the classical case in which the domain of W is simply LieAlgd.)

Path and Weinstein Categories

Definition

The category I has underlying reflexive graph

$$\{(x,y)\in I^2:x\leq y)\}\stackrel{\pi_2}{\leftarrow \Delta \xrightarrow[\pi_1]{}} I$$

and the only possible composition. The category $\partial \mathbb{I}^2$ is the full subcategory of \mathbb{I}^2 on the boundary of I^2 .

Definition

The Weinstein category $W\mathbb{C}$ of a category \mathbb{C} has the same object space as \mathbb{C} and arrow space given by the coequaliser

$$\mathbb{C}^{\mathbb{I}_{\infty}^{2}} \xrightarrow{\mathbb{C}^{\iota_{1}}} \mathbb{C}^{\mathbb{I}_{\infty_{1}}+_{0}\mathbb{I}_{\infty}} \longrightarrow (W\mathbb{C})^{2}$$

Path and Weinstein Categories

Definition

The path category $P\mathbb{C}$ of a category \mathbb{C} has the same object space as \mathbb{C} and arrow space given by the coequaliser

$$\mathbb{C}^{\mathbb{I}^2} \xrightarrow{\mathbb{C}^{\iota_1}} \mathbb{C}^{\mathbb{I}_1 +_0 \mathbb{I}} \longrightarrow (P\mathbb{C})^2$$

In fact there are the following endofunctors and natural transformations on $Cat(\mathcal{E})$:

$$W \stackrel{V}{\longleftarrow} P \stackrel{L}{\Longrightarrow} 1_{Cat(\mathcal{E})}$$

where the natural transformation V is induced by the inclusion

$$\iota_{\mathbb{I}}^{\infty}:\mathbb{I}_{\infty}\rightarrowtail\mathbb{I}$$

and the natural transformation L is induced by the inclusion

$$(0,1):\mathbf{2}\to\mathbb{I}$$

The Integral Factorisation System

In the synthetic setting we cannot assume that we always have solutions to time-dependent left-invariant vector fields.

Definition

An arrow $r: \mathbb{X} \to \mathbb{Y}$ is in the right class R_{int} (and is called integral closed) iff the following square is a pullback of categories:

$$\begin{array}{ccc} \mathbb{X}^{\mathbb{I}} & \xrightarrow{\mathbb{X}^{\iota_{\infty}}} & \mathbb{X}^{\mathbb{I}_{\infty}} \\ \downarrow^{r_{\mathbb{I}}} & & \downarrow^{r_{\mathbb{I}_{\infty}}} \\ \mathbb{Y}^{\mathbb{I}} & \xrightarrow{\mathbb{Y}^{\iota_{\infty}}} & \mathbb{Y}^{\mathbb{I}_{\infty}} \end{array}$$

and an arrow $I: \mathbb{A} \to \mathbb{B}$ is in the left class L_{int} iff for all $r \in R_{int}$ the following square is a pullback:

$$\begin{array}{ccc} \mathbb{X}^{\mathbb{B}} & \xrightarrow{\mathbb{X}^{I}} & \mathbb{X}^{\mathbb{A}} \\ \downarrow^{r^{\mathbb{B}}} & & \downarrow^{r^{\mathbb{A}}} \\ \mathbb{Y}^{\mathbb{B}} & \xrightarrow{\mathbb{Y}^{I}} & \mathbb{Y}^{\mathbb{A}} \end{array}$$

Integral Complete Categories

Definition

A category $\mathbb C$ in $\mathcal E$ is integral complete iff the following arrow is an isomorphism

$$\mathbb{C}^{\mathbb{I}} \xrightarrow{\mathbb{C}^{\iota_{\mathbb{C}}^{\infty}}} \mathbb{C}^{\mathbb{I}_{\infty}}$$

Proposition

If $\mathbb C$ is integral complete then $V_{\mathbb C}$ is an isomorphism.

Proposition

The category $Cat_{int}(\mathcal{E})$ of integral complete categories is a reflective subcategory of $Cat(\mathcal{E})$.

$$Cat_{\infty}(\mathcal{E}) \xrightarrow{\bot} Cat(\mathcal{E}) \xrightarrow{\bot} Cat_{int}(\mathcal{E})$$

Connectedness of Categories

Definition

Let $\mathbb C$ be a category in $\mathcal E$. Then $\mathbb C$ is path connected iff the following arrow is an epimorphism:

$$\mathbb{C}^{\mathbb{I}} \xrightarrow{\mathbb{C}^{(0,1)}} \mathbb{C}^2$$

and $\mathbb C$ is simply connected iff it is path connected and the following arrow is an epimorphism:

$$\mathbb{C}^{\mathbb{I}^2} \xrightarrow{\mathbb{C}^\iota} \mathbb{C}^{\partial \mathbb{I}^2}$$

Lemma

If $\mathbb C$ is path connected then $L_{\mathbb C}$ is an epimorphism. If $\mathbb C$ is simply connected then $L_{\mathbb C}$ is an isomorphism.

Lie's Second Theorem

Theorem

Let $\mathbb C$ be a simply-connected category such that the jet part $\mathbb C_\infty$ is path connected. Then $\iota_\mathbb C^\infty:\mathbb C_\infty\rightarrowtail\mathbb C$ is in the left class of the integral factorisation system.

Corollary

For all $\phi: \mathbb{C}_{\infty} \to \mathbb{X}$ there exists a unique lift ψ making

commute. Proof: On the next slide.

Lie's Second Theorem

$$\mathbb{C} \stackrel{\iota^{\mathbb{C}}_{\infty}}{\longleftarrow} \mathbb{C}_{\infty} \stackrel{\phi}{\longrightarrow} \mathbb{X}$$

$$L_{\mathbb{C}^{-1}} \downarrow \qquad \qquad \downarrow L_{\mathbb{C}_{\infty}} \uparrow \qquad \qquad \downarrow L_{\mathbb{X}}$$

$$P(\mathbb{C}) \stackrel{P(\iota^{\mathbb{C}}_{\infty})}{\longleftarrow} P(\mathbb{C}_{\infty}) \stackrel{P(\phi)}{\longrightarrow} P(\mathbb{X})$$

$$V_{\mathbb{C}} \downarrow \qquad \qquad \downarrow V_{\mathbb{C}_{\infty}}$$

$$W(\mathbb{C}) \xrightarrow{W(\iota^{\mathbb{C}}_{\infty})^{-1}} W(\mathbb{C}_{\infty}) \xrightarrow{W(\phi)} W(\mathbb{X})$$