1 Discrete Distributions

X	Range	$\mathbb{P}(X=k)$	$\mathbb{E}(X)$	$\operatorname{var}(X)$
Uniform (a, b)	ab	$\frac{1}{b-a+1}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2 - 1}{12}$
Bernoulli(p)	0,1	$\begin{cases} p & X = 1 \\ 1 - p & X = 0 \end{cases}$	p	p(1-p)
Binomial(n, p)	0n	$\binom{n}{k}p^k(1-p)^{n-k}$	np	np(1-p)
$\operatorname{Hypergeometric}(N,K,n)$	0n	$\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$	$n\frac{K}{N}$	$n\frac{K}{N}\frac{N-K}{N}\frac{N-n}{N-1}$
Geometric(p)	1∞	$(1-p)^{k-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$\operatorname{Poisson}(\lambda)$	0∞	$e^{-\lambda} \frac{\lambda^k}{k!}$	λ	λ

2 Continuous Distributions

X	Range	PDF(X = x)	CDF(X = x)	$\mathbb{E}(X)$	var(X)
Uniform (a, b)	[a,b]	$\frac{1}{b-a}$	$\frac{x-a}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$\operatorname{Exponential}(\lambda)$	$[0,\infty)$	$\lambda e^{-\lambda x}$	$1 - e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$\mathrm{Normal}(\mu,\sigma^2)$	$\left \ (-\infty,\infty) \right $	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$\Phi\left(\frac{x-\mu}{\sigma}\right)$	μ	σ^2