Advanced Signal Processing

Minimum Variance Unbiased Estimation

Danilo Mandic

room 813, ext: 46271

Department of Electrical and Electronic Engineering Imperial College London, UK

d.mandic@imperial.ac.uk, URL: www.commsp.ee.ic.ac.uk/ \sim mandic

Objectives

- Learn the concept of a minumum variance unbiased (MVU) estimator
- Investigate how the accuracy of an estimator depends upon the relationship between the unknown parameter(s) and the PDF of noise
- Study the requirements for the design of an efficient estimator
- Analyse the Cramer–Rao Lower Bound (CRLB) for the scalar case
- Extension to the Cramer–Rao Lower Bound (CRLB) for the vector case
- Dependence on data length (motivation for 'sufficient statistics')
- Examples:
 - DC level in WGN (frequency estimation in power, bioengineering)
 - Parameters of a sinusoid (scalar case, vector case)
 - A new view of Fourier analysis
 - System identification

Example 1: Consider a single observation x[0] = A + w[0], where $w[0] \sim \mathcal{N}(0, \sigma^2)$

The simplest estimator of the DC level A in white noise $w[0] \sim \mathcal{N}(0, \sigma^2)$ is $\hat{A} = x[0] \quad \Rightarrow \quad \hat{A} \quad \text{is unbiased, with variance } \sigma^2$

To show that the estimator accuracy improves as σ^2 decreases:

Consider

$$p_i(x[0]; A) = \frac{1}{\sqrt{2\pi\sigma_i^2}} exp\left[-\frac{1}{2\sigma_i^2} (x[0] - A)^2\right]$$

o For

$$x[0] = 3$$

 $\underline{x[0]} = \underline{3}$ and i = 1, 2 with $\sigma_1 = \frac{1}{3}$ and $\sigma_2 = 1$

fundamental step, we are fixing the data value

Clearly, as $\sigma_1 < \sigma_2$, the DC level A is estimated more accurately with $p_1(x[0];A)$

Likely candidates for values of $A \in 3 \pm 3\sigma \implies$ therefore [2, 4] for I and [0, 6] for II.

Likelihood function

When the PDF is viewed as a function of an unknown parameter (with the dataset $\{x\} = x[0], x[1], \dots$ fixed) it is termed the "likelihood function".

- The "sharpness" of the likelihood function determines the accuracy with which the unknown parameter may be estimated.
- Sharpness is measured by the "curvature" a negative of the second derivative of the logarithm of the likelihood function at its peak.

Example 2: One sample of a DC level in WGN

$$\ln p(x[0]; A) = -\ln \sqrt{2\pi\sigma^2} - \frac{1}{2\sigma^2} (x[0] - A)^2$$

then

$$\frac{\partial \ln p(x[0]; A)}{\partial A} = \frac{1}{\sigma^2} (x[0] - A)$$

and the curvature

$$-\frac{\partial^2 \ln p(x[0];A)}{\partial A^2} = \frac{1}{\sigma^2}$$

Therefore, as expected, the curvature increases as σ^2 decreases

Likelihood function: Curvature

Since we know the variance of the estimator equals σ^2 , then

$$Var(\hat{A}) = \frac{1}{-\frac{\partial^2 \ln p(x[0];A)}{\partial A^2}}$$

and the variance decreases as the curvature increases.

Generally, the second derivative does depend upon x[0], and hence a more appropriate measure of curvature is the statistical measure

$$-E\left[\frac{\partial^2 \ln p(x[0];A)}{\partial A^2}\right]$$

which measures the average curvature of the log-likelihood function

Recall: The likelihood function is a random variable due to x[0]

Recall: The Mean Square Error \hookrightarrow MSE = Bias² + variance

it makes perfect sense to look for a minimum variance unbiased (MVU) solution

Link with human perception

In the 50's phychologist Fred Attneave recorded eye dwellings on objects

Example 3: The drawing of a bean (top) and the histogram of eye dwellings (bottom)

histogram of eye dwellings (bottom)

Example 4: Read the words below ... now read letter by letter ... are you still sure?

THE

LHT

Example 3: Is the drawing on the left still a penguin?

So, what is the sufficient information to 'estimate' an object?

THE KEY: Cramer-Rao Lower Bound (CRLB) for scalar parameter (performance of theoretically best estimator)

Cramer–Rao Lower Bound (CRLB)

Theorem: [CRLB] Assumption: The PDF $p(\mathbf{x}; \theta)$ satisfies the "regularity" condition

$$E\left[\frac{\partial \ln p(\mathbf{x}; \theta)}{\partial \theta}\right] = 0, \quad \forall \theta$$

where the expectation is taken with respect to $p(\mathbf{x}; \theta)$.

Then, the variance of any **unbiased** estimator $\hat{\theta}$ must satisfy

$$Var(\hat{\theta}) \ge \frac{1}{-E\left\{\frac{\partial^2 \ln p(\mathbf{x}; \theta)}{\partial \theta^2}\right\}}$$

where the derivative is evaluated at the true value of θ .

CRLB for scalar parameter, continued

Moreover, an unbiased estimator may be found that attains the bound for all θ , if and only if for some functions g and \mathcal{I}

$$\frac{\partial \ln p(\mathbf{x}; \theta)}{\partial \theta} = \mathcal{I}(\theta) (g(\mathbf{x}) - \theta)$$

 $\frac{\partial \ln p(\mathbf{x};\theta)}{\partial \theta} = \mathcal{I}(\theta) \big(g(\mathbf{x}) - \theta\big)$ That estimator is the **minimum variance unbiased (MVU) estimator**,

for which

$$\hat{\theta} = g(\mathbf{x})$$

and its minimum variance

$$\frac{1}{\mathcal{I}(\theta)}$$

—— end of CRI B theorem ——

Remark: Since the variance $Var(\hat{\theta}) \geq \frac{1}{-E\left\{\frac{\partial^2 \ln p(\mathbf{x};\theta)}{\partial \theta^2}\right\}}$, the evaluation of

the "curvature term" gives

$$E\left[\frac{\partial^2 \ln p(\mathbf{x}; \theta)}{\partial \theta^2}\right] = \int \frac{\partial^2 \ln p(\mathbf{x}; \theta)}{\partial \theta^2} p(\mathbf{x}; \theta) d\mathbf{x}$$

Obviously, in general the bound depends on the parameter θ and the data length

Example 5: Estimation of a DC level in WGN

Consider the estimation of a DC level in WGN, assume N observations

$$x[n] = \underbrace{A}_{unknown\ DC\ level} + \underbrace{w[n]}_{noise\ with\ known\ pdf} \qquad n = 0, 1, 2, \dots, N-1$$

where $w[n] \sim \mathcal{N}(0, \sigma^2)$.

Determine the CRLB for the unknown DC level A, starting from $(\theta = A)$

$$p(\mathbf{x}; \theta) = p(\mathbf{x}; A) = \prod_{n=0}^{N-1} \frac{1}{\sqrt{2\pi\sigma^2}} exp \left[-\frac{1}{2\sigma^2} (x[n] - A)^2 \right]$$
$$= \frac{1}{(2\pi\sigma^2)^{N/2}} exp \left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - A)^2 \right]$$

Estimation of a DC level is very useful, e.g. in the time-frequency plane a sinusoid of frequency f is represented by a straight line

Example 5: DC level in WNG \hookrightarrow continued

Taking the first derivative

$$\frac{\partial \ln p(\mathbf{x}; A)}{\partial A} = \frac{\partial}{\partial A} \left[-\ln \left[2\pi\sigma^2 \right]^{N/2} - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} \left(x[n] - A \right)^2 \right]$$
$$= \frac{1}{\sigma^2} \sum_{n=0}^{N-1} \left(x[n] - A \right) = \frac{N}{\sigma^2} (\bar{x} - A)$$

where \bar{x} denotes the sample mean.

Connection with CRLB:
$$\bar{x} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) = g(\mathbf{x})$$
, $\mathcal{I}(A) = N/\sigma^2$

Differentiating again

$$\frac{\partial^2 \ln p(\mathbf{x}; A)}{\partial A^2} = -\frac{N}{\sigma^2}$$

Therefore $Var(\hat{A}) \geq \frac{\sigma^2}{N}$ is the CRLB, which implies that the sample mean estimator attains the Cramer-Rao lower bound and must, therefore, be an MVU estimator in WGN.

Efficient estimator \hookrightarrow **concept**

An estimator which is unbiased and attains the CRLB is said to be **efficient** in that it is an Minimum Variance Unbiased (MVU) etimator and that it efficiently uses the data.

 $\hat{\theta}_1$ is efficient and MVU, $\hat{\theta}_2, \hat{\theta}_3$ are not

 $\hat{ heta}_1$ may be MVU but is not efficient

Fisher information

The denominator in the CRLB

$$\mathcal{I}(\theta) = -E \left[\frac{\partial^2 \ln p(\mathbf{x}; \theta)}{\partial \theta^2} \right]$$

is referred to as the Fisher information.

Intuitively:

the more information available \rightarrow the lower the bound \rightarrow less variance

Essential properties of an information measure:

№ Non–negative

Additive for independent observations

General CRLB for arbitrary signals in WGN (see the next slide)

$$Var(\hat{\theta}) \ge \frac{\sigma^2}{\sum_{n=0}^{N-1} \left(\frac{\partial s[n;\theta]}{\partial \theta}\right)^2}$$

Accurate estimators: signals change rapidly with the parameter changes.

General case: Arbitrary signal in noise

Consider a deterministic signal $s[n;\theta]$ observed in WGN, $w \sim \mathcal{N}(0,\sigma^2)$

$$x[n] = s[n; \theta] + w[n], \qquad n = 0, 1, \dots, N - 1$$

Then the PDF for ${f x}$ parametrised by ${m heta}$ has the form

$$p(\mathbf{x};\theta) = \frac{1}{(2\pi\sigma^2)^{N/2}} e^{-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - s[n;\theta])^2}$$

so that

$$\frac{\partial \ln p(\mathbf{x}; \theta)}{\partial \theta} = \frac{1}{\sigma^2} \sum_{n=0}^{N-1} (x[n] - s[n; \theta]) \frac{\partial s[n; \theta]}{\partial \theta}$$

$$\frac{\partial^2 \ln p(\mathbf{x}; \theta)}{\partial \theta^2} = \frac{1}{\sigma^2} \sum_{n=0}^{N-1} \left[\left(\underbrace{x[n] - s[n; \theta]}_{E\{x[n]\} = s[n; \theta]} \right) \frac{\partial^2 s[n; \theta]}{\partial \theta^2} - \left(\frac{\partial s[n; \theta]}{\partial \theta} \right)^2 \right]$$

and the Fisher information

$$\mathcal{I}(\theta) = -E\left[\frac{\partial^2 \ln p(\mathbf{x}; \theta)}{\partial \theta^2}\right] = \frac{1}{\sigma^2} \sum_{n=0}^{N-1} \left(\frac{\partial s[n; \theta]}{\partial \theta}\right)^2$$

Example 6: Sinusoidal frequency estimation

(the CRLB depends both on the unknown parameter f_0 and the data length N)

Consider a general sinewave in noise: $x[n] = A\cos(2\pi f_0 n + \Phi) + w[n]$

$$x[n] = A\cos(2\pi f_0 n + \Phi) + w[n]$$

If only the frequency f_0 is unknown, then (for normalised frequency)

$$s[n; f_0] = \underbrace{A}_{known} \cos(2\pi f_0 n + \underbrace{\Phi}_{known}), \quad 0 < f_0 < \frac{1}{2}$$

and
$$Var(\hat{f}_0) \ge \frac{\sigma^2}{A^2 \sum_{n=0}^{N-1} \left[2\pi n \sin(2\pi f_0 n + \Phi) \right]^2}$$

Note the preferred frequencies, e.g.

$$f \approx 0.03$$
, and that

for
$$f_0 \to \{0, 1/2\}$$
 the CRLB $\to \infty$

Paramet.: N = 10,
$$\Phi$$
 = 0, SNR= $A^2/\sigma^2=1$

Extension to a vector parameter

we now have the Fisher Information Matrix \mathcal{I} , s.t. $[\mathcal{I}(\theta)]_{ij} = -E\left[\frac{\partial^2 \ln p(\mathbf{x};\theta)}{\partial \theta_i \partial \theta_i}\right]$

Formulation: Estimate a vector parameter $\theta = [\theta_1, \theta_2, \dots, \theta_n]^T$

$$\boldsymbol{\theta} = \left[\theta_1, \theta_2, \dots, \theta_p\right]^T$$

- \circ Recall that an unbiased estimator $\hat{ heta}$ is efficient (and therefore an MVU estimator) when it satisfies the conditions of the CRLB
- \circ It is assumed that the PDF $p(\mathbf{x}; \boldsymbol{\theta})$ satisfies the **regularity conditions**

$$E\left[\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right] = \mathbf{0}, \quad \forall \boldsymbol{\theta}$$

 \circ Then the covariance matrix of any unbiased estimator $\hat{ heta}$ satisfies

$$\mathbf{C}_{\hat{oldsymbol{ heta}}} - \mathcal{I}^{-1}(oldsymbol{ heta}) \geq \mathbf{0}$$

 $\mathbf{C}_{\hat{\boldsymbol{\rho}}} - \boldsymbol{\mathcal{I}}^{-1}(\boldsymbol{\theta}) \geq \mathbf{0}$ (symbol $\geq \mathbf{0}$ means that $\mathbf{C}_{\hat{\boldsymbol{\theta}}}$ is positive semidefinite)

• The Fisher Information Matrix is given by $[\mathcal{I}(\boldsymbol{\theta})]_{ij} = -E\left[\frac{\partial^2 \ln p(\mathbf{x};\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right]$

In An unbiased estimator $\hat{m{ heta}} = \mathbf{g}(\mathbf{x})$ exists that satisfies the bound $\mathbf{C}_{\hat{oldsymbol{ heta}}} = \mathcal{I}^{-1}(oldsymbol{ heta})$ if and only if

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \boldsymbol{\mathcal{I}}(\boldsymbol{\theta}) \big(\mathbf{g}(\mathbf{x}) - \boldsymbol{\theta} \big)$$

Extension to a vector parameter: Fisher information

Some observations:

 \circ Elements of the Information Matrix $\mathcal{I}(\theta)$ are given by

$$[\mathcal{I}(\boldsymbol{\theta})]_{ij} = -E\left[\frac{\partial^2 \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right]$$

where the derivatives are evaluated at the true values of the parameter vector.

 The CRLB theorem provides a powerful tool for finding MVU estimators for a vector parameter.

MVU estimators for linear models are found with the Cramer–Rao Lower Bound (CRLB) theorem.

Example 7: Sinusoid parameter estimation → **vector case**

Consider again a general sinewave

$$s[n] = A\cos\left(2\pi f_0 n + \Phi\right)$$

where A, f_0 and Φ are all unknown. Then, the data model becomes

$$x[n] = A \cos(2\pi f_0 n + \Phi) + w[n]$$
 $n = 0, 1, ..., N - 1$

where A > 0, $0 < f_0 < 1/2$, and $w[n] \sim \mathcal{N}(0, \sigma^2)$.

Task: Determine CRLB for the parameter vector $\boldsymbol{\theta} = [A \quad f_0 \quad \Phi]^T$

Solution: The elements of the Fisher Information Matrix become

$$\mathcal{I}(\boldsymbol{\theta}) = \frac{1}{\sigma^2} \begin{bmatrix} N/2 & 0 & 0\\ 0 & 2A^2 \pi^2 \sum_{n=0}^{N-1} n^2 & \pi A \sum_{n=0}^{N-1} n\\ 0 & \pi A \sum_{n=0}^{N-1} n & \frac{NA^2}{2} \end{bmatrix}$$

Example 7: Sinusoid parameter estimation \hookrightarrow **continued**

After inversion, the diagonal components yield (where $\eta = \frac{A^2}{2\sigma^2}$ is SNR):

$$Var(\hat{A}) \ge \frac{2\sigma^2}{N}$$
 $Var(\hat{f}_0) \ge \frac{12}{(2\pi)^2 \eta N(N^2 - 1)}$ $Var(\hat{\Phi}) \ge \frac{2(2N - 1)}{\eta N(N + 1)}$

CRLB for Sinusoidal Parameter Estimates at SNR = -3dB (Dashed Lines) and 10dB (Solid Lines)

the variance of the estimated parameters of a sinusoid behaves $\propto 1/\eta$ and $\propto 1/N^3$, thus exhibiting strong sensitivity to data length

Linear models

Generally it is difficult to determine the MVU estimator.

 \circ In signal processing, however, a **linear data model** can often be employed \Rightarrow straightforward to determine the MVU estimator.

Example 8: Linear model of a straight line in noise

$$x[n] = A + Bn + w[n]$$

$$n = 0, 1, \dots, N - 1$$

where

$$\circ w[n] \sim \mathcal{N}(0, \sigma^2)$$
,

- \circ B slope and
- $\circ A$ intercept.

Linear models: Compact notation (Example 8 contd.)

This data model can be written more compactly in matrix notation as

$$\underline{x} = H\underline{\theta} + \underline{w}$$
 or $\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}$

where

$$\mathbf{x} = \begin{bmatrix} x[0] \\ x[1] \\ \vdots \\ x[N-1] \end{bmatrix} = [x[0], x[1], \dots, x[N-1]]^T \qquad \mathbf{H} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ \vdots & \vdots \\ 1 & N-1 \end{bmatrix}$$

and

$$\boldsymbol{\theta} = [A \ B]^{T}$$

$$\mathbf{w} = [w[0], w[1], \dots, w[N-1]]^{T}$$

$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^{2}\mathbf{I})$$

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 \end{bmatrix} = \operatorname{diag}(1, 1, \dots, 1)$$

Linear models: Fisher information matrix

NB:
$$p(\mathbf{x}; \boldsymbol{\theta}) = \frac{1}{(2\pi\sigma^2)^{N/2}} e^{-\frac{(\mathbf{x} - \mathbf{H}\boldsymbol{\theta})^T (\mathbf{x} - \mathbf{H}\boldsymbol{\theta})}{2\sigma^2}}$$

The CRLB theorem can be used to obtain the MVU estimator for θ

The MVU estimator, $\hat{\boldsymbol{\theta}} = g(\mathbf{x})$, will satisfy

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \boldsymbol{\mathcal{I}}(\boldsymbol{\theta}) (g(\mathbf{x}) - \boldsymbol{\theta})$$

where $\mathcal{I}(\theta)$ is the **Fisher information matrix**, whose elements are

$$[\mathcal{I}]_{ij} = -E\left[\frac{\partial^2 \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right]$$

Applying the Linear Model

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \frac{\partial}{\partial \boldsymbol{\theta}} \left[-\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} (\mathbf{x} - \mathbf{H}\boldsymbol{\theta})^T (\mathbf{x} - \mathbf{H}\boldsymbol{\theta}) \right]
= -\frac{1}{2\sigma^2} \frac{\partial}{\partial \boldsymbol{\theta}} \left[\mathbf{x}^T \mathbf{x} - 2\mathbf{x}^T \mathbf{H}\boldsymbol{\theta} + \boldsymbol{\theta}^T \mathbf{H}^T \mathbf{H}\boldsymbol{\theta} \right]$$

Note that the only quadratic term in θ involves the matrix H

Linear models: Some useful matrix/vector derivatives

Use the identities

$$\frac{\partial \mathbf{b}^{T} \boldsymbol{\theta}}{\partial \boldsymbol{\theta}} = \mathbf{b} \quad \looparrowright \quad \frac{\partial \mathbf{x}^{T} \mathbf{H} \boldsymbol{\theta}}{\partial \boldsymbol{\theta}} = (\mathbf{x}^{T} \mathbf{H})^{T} = \mathbf{H}^{T} \mathbf{x}$$

$$\frac{\partial \boldsymbol{\theta}^{T} \mathbf{A} \boldsymbol{\theta}}{\partial \boldsymbol{\theta}} = 2\mathbf{A} \boldsymbol{\theta} \quad \looparrowright \quad \frac{\partial \boldsymbol{\theta}^{T} \mathbf{H}^{T} \mathbf{H} \boldsymbol{\theta}}{\partial \boldsymbol{\theta}} = 2\mathbf{H}^{T} \mathbf{H} \boldsymbol{\theta}$$

(which you should prove for yourself), that is, the follow the rules of vector/matrix differentiation.

As a rule of thumb, watch for the position of the $(\cdot)^T$ operator

Then, for **A** symmetric:

$$rac{\partial \ln p(\mathbf{x}; oldsymbol{ heta})}{\partial oldsymbol{ heta}} = rac{1}{\sigma^2} ig[\mathbf{H}^T \mathbf{x} - \mathbf{H}^T \mathbf{H} oldsymbol{ heta} ig]$$

Linear models: Cramer-Rao lower bound Find the MVU estimator: $\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathcal{I}(\boldsymbol{\theta})$

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \boldsymbol{\mathcal{I}}(\boldsymbol{\theta}) (g(\mathbf{x}) - \boldsymbol{\theta})$$

Similarly (recall that $(\mathbf{H}^T\mathbf{H})^T = \mathbf{H}^T\mathbf{H}$),

$$\mathcal{I}(\boldsymbol{\theta}) = -\frac{\partial^T}{\partial \boldsymbol{\theta}} \left[\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right] = \frac{1}{\sigma^2} \mathbf{H}^T \mathbf{H}$$

Therefore

$$\frac{\partial \ln p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \underbrace{\frac{1}{\sigma^2} \mathbf{H}^T \mathbf{H}}_{\mathcal{I}(\boldsymbol{\theta})} \left[\underbrace{\left(\mathbf{H}^T \mathbf{H}\right)^{-1} \mathbf{H}^T \mathbf{x}}_{\mathbf{g}(\mathbf{x})} - \boldsymbol{\theta} \right]$$

By inspection, the **linear estimator**

$$\hat{\boldsymbol{\theta}} = g(\mathbf{x}) = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{x}$$

provided $(\mathbf{H}^T\mathbf{H})^{-1}$ is invertible (it is, as \mathbf{H} is full rank, with orthogonal rows and columns).

The covariance matrix of $\hat{\boldsymbol{\theta}}$ now becomes $\mathbf{C}_{\hat{\boldsymbol{\theta}}} = \boldsymbol{\mathcal{I}}^{-1}\left(\boldsymbol{\theta}\right) = \sigma^2 \left(\mathbf{H}^T\mathbf{H}\right)^{-1}$

CRLB for linear models – continued

- The MVU estimator for the linear model is efficient it attains the CRLB
- \circ The columns of ${\bf H}$ must be **linearly independent** for $({\bf H}^T{\bf H})$ to be invertible

Theorem: (Minimum Variance Unbiased Estimator for the Linear Model) If the observed data can be modeled as

$$x = H\theta + w$$

 \mathbf{x} is an N×1 "observation vector"

 ${f H}$ is an ${f N} imes{f p}$ "observation matrix" of rank ${f p}$

heta is a pimes 1 "parameter vector"

 ${f w}$ is an Nimes 1 "noise vector" $\sim \mathcal{N}ig({f 0}, \sigma^2 {f I}ig)$

CRLB for linear models: Theorem

Then, the MVU estimator is given by

$$\hat{oldsymbol{ heta}} = \left(\mathbf{H}^T\mathbf{H}\right)^{-1}\mathbf{H}^T\mathbf{x}$$

for which the covariance matrix

$$\mathbf{C}_{\hat{\boldsymbol{\theta}}} = \sigma^2 \left(\mathbf{H}^T \mathbf{H} \right)^{-1}$$

Note the statistical performance of $\hat{\theta}$ is completely satisfied because $\hat{\theta}$ is a **linear transformation** of a Gaussian vector \mathbf{x} , i.e.

$$\hat{oldsymbol{ heta}} \sim \mathcal{N}\left(oldsymbol{ heta}, \sigma^2\left(\mathbf{H}^T\mathbf{H}
ight)^{-1}
ight)$$

Example 9: Fourier analysis

Data model $(n = 0, 1, ..., N - 1, \text{ where } w[n] \sim \mathcal{N}(0, \sigma^2))$

$$x[n] = \sum_{k=1}^{M} a_k \cos\left(\frac{2\pi kn}{N}\right) + \sum_{k=1}^{M} b_k \sin\left(\frac{2\pi kn}{N}\right) + w[n]$$

where the amplitudes a_k, b_k of the cosines and sines are to be estimated.

- \circ Frequencies **harmonically related**, i.e. $f_1 = \frac{1}{N}$, and $f_k = \frac{k}{N}$.
- \circ Parameter vector $\boldsymbol{\theta} = [a_1, a_2, \dots, a_M, b_1, b_2, \dots, b_M]^T$

Observation matrix \mathbf{H} ($N \times 2M$ —dimensional)

$$\mathbf{H} = \begin{bmatrix} 1 & \dots & 1 & 0 & \dots & 0 \\ \cos \frac{2\pi}{N} & \dots & \cos \frac{2\pi M}{N} & \sin \frac{2\pi}{N} & \dots & \sin \frac{2\pi M}{N} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \cos \frac{2\pi(N-1)}{N} & \dots & \cos \frac{2\pi M(N-1)}{N} & \sin \frac{2\pi(N-1)}{N} & \dots & \sin \frac{2\pi M(N-1)}{N} \end{bmatrix}_{N \times 2M}$$

Example 9: Fourier analysis → continued

For **H** to satisfy $N > P \Rightarrow M < \frac{N}{2}$.

Columns of **H** have to be **orthogonal**.

If we write

$$\mathbf{H} = [\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_{2M}]$$

where $\underline{h}_i = \mathbf{h}_i$ is the i-th column of \mathbf{H} then

$$\mathbf{h}_i^T \mathbf{h}_j = 0$$
 for $i \neq j$

That is, $\mathbf{h}_i \perp \mathbf{h}_j$ and the columns of matrix \mathbf{H} are orthogonal

Example 9: Fourier analysis \hookrightarrow **contd. contd.**

The **orthogonality of the columns** follows from the discrete Fourier transform (DFT) relationships

$$\sum_{n=0}^{N-1} \cos\left(\frac{2\pi in}{N}\right) \cos\left(\frac{2\pi jn}{N}\right) = \frac{N}{2}\delta_{ij}$$

$$\sum_{n=0}^{N-1} \sin\left(\frac{2\pi in}{N}\right) \sin\left(\frac{2\pi jn}{N}\right) = \frac{N}{2}\delta_{ij}$$

$$\sum_{n=0}^{N-1} \cos\left(\frac{2\pi i n}{N}\right) \sin\left(\frac{2\pi j n}{N}\right) = 0 \quad \forall i, j, \text{ s.t. } i, j = 1, 2, \dots, M < \frac{N}{2}$$

where

$$\delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

In other words: (i) $\cos i\alpha \perp \sin j\alpha$, $\forall i, j$, (ii) $\cos i\alpha \perp \cos j\alpha$, $\forall i \neq j$, (iii) $\sin i\alpha \perp \sin j\alpha$, $\forall i \neq j$

Example 9: Fourier analysis \rightarrow **observation matrix**

Therefore

$$\mathbf{H}^T\mathbf{H} = \begin{bmatrix} \mathbf{h}_1^T \\ \vdots \\ \mathbf{h}_{2M}^T \end{bmatrix} \begin{bmatrix} \mathbf{h}_1, \dots, \mathbf{h}_{2M} \end{bmatrix} = \begin{bmatrix} \frac{N}{2} & 0 & \dots & 0 \\ 0 & \frac{N}{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \frac{N}{2} \end{bmatrix} = \frac{N}{2} \mathbf{I}$$

The MVU estimator of the amplitudes is

$$\hat{\boldsymbol{\theta}} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{x}$$
 that is

$$\hat{\boldsymbol{\theta}} = \frac{2}{N} \mathbf{H}^T \mathbf{x} = \frac{2}{N} \begin{bmatrix} \mathbf{h}_1^T \\ \vdots \\ \mathbf{h}_{2M}^T \end{bmatrix} \mathbf{x} = \begin{bmatrix} \frac{2}{N} \mathbf{h}_1^T \mathbf{x} \\ \vdots \\ \frac{2}{N} \mathbf{h}_{2M}^T \mathbf{x} \end{bmatrix}$$

and finally the estimates of Fourier coefficients become

$$\hat{a}_k = \frac{2}{N} \sum_{n=0}^{N-1} x[n] \cos(\frac{2\pi kn}{N})$$
 $\hat{b}_k = \frac{2}{N} \sum_{n=0}^{N-1} x[n] \sin(\frac{2\pi kn}{N})$

Example 9: Finally \hookrightarrow Fourier coefficients

$$\hat{a}_k = \frac{2}{N} \sum_{n=0}^{N-1} x [n] \cos \left(\frac{2\pi kn}{N}\right)$$

$$\hat{b}_k = \frac{2}{N} \sum_{n=0}^{N-1} x [n] \sin\left(\frac{2\pi kn}{N}\right)$$

namely the discrete Fourier transform coefficients.

Their covariance matrix is:

$$\mathbf{C}_{\hat{\boldsymbol{\theta}}} = \sigma^2 (\mathbf{H}^T \mathbf{H})^{-1} = \frac{2\sigma^2}{N} \mathbf{I}$$

- i) Note, as $\hat{\theta}$ is Gaussian and the covariance matrix is diagonal, the amplitude estimates are statistically independent;
- ii) The orthogonality of the columns of ${f H}$ is fundamental in the computation of the MVU estimator.

Example 10: System Identification (SYS ID)

Aim: to identify the model of a system from input/output data Assume an FIR filter system model given in the figure below

- \circ The input u[n] "probes" the system, then the output of the FIR filter is given by $x[n] = \sum_{k=0}^{p-1} h(k) x[n-k]$
- We wish to estimate the filter coefficients $[h(0),...,h(p-1)]^T$ from x(n)
- In practice, the output is corrupted by additive WGN

Example 10: SYS ID \hookrightarrow data model in noise w

Data model

$$x[n] = \sum_{k=0}^{p-1} h(k)u[n-k] + w[n] \qquad n = 0, 1, \dots, N-1$$

Equivalently, in the matrix-vector form

$$\underbrace{\begin{bmatrix} x[0] \\ x[1] \\ \vdots \\ x[N-1] \end{bmatrix}}_{\text{obs. vec. } \mathbf{x}} = \underbrace{\begin{bmatrix} u[0] & 0 & \dots & 0 \\ u[1] & u[0] & \dots & 0 \\ u[N-1] & u[N-2] & \dots & u[N-p] \end{bmatrix}}_{\text{measurement matrix } \mathbf{H}} \underbrace{\begin{bmatrix} h(0) \\ h(1) \\ \vdots \\ h(p-1) \end{bmatrix}}_{\text{coeff. vec. } \boldsymbol{\theta}} + \underbrace{\begin{bmatrix} w[0] \\ w[1] \\ \vdots \\ w[N-1] \end{bmatrix}}_{\text{noise vec. } \mathbf{w}$$

that is

$$\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}$$
 where $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

The MVU estimator

$$\hat{\boldsymbol{\theta}} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{x}$$
 with $\mathbf{C}_{\hat{\boldsymbol{\theta}}} = \sigma^2 (\mathbf{H}^T \mathbf{H})^{-1}$

This representation also lends itslef to state-space modelling

Example 10: SYS ID \hookrightarrow more about H

With this assumption $\mathbf{H}^T\mathbf{H}$ becomes a symmetric Toeplitz autocorrelation matrix

$$\mathbf{H}^{T}\mathbf{H} = N \begin{bmatrix} r_{uu}(0) & r_{uu}(1) & \dots & r_{uu}(p-1) \\ r_{uu}(1) & r_{uu}(0) & \dots & r_{uu}(p-2) \\ \vdots & \vdots & \ddots & \vdots \\ r_{uu}(p-1) & r_{uu}(p-2) & \dots & r_{uu}(0) \end{bmatrix}$$

where, e.g.

$$r_{uu}(0) = \frac{1}{N} \sum_{n=0}^{N-1-k} u[n]u[n+k]$$

For $\mathbf{H}^T\mathbf{H}$ to be diagonal, $r_{uu}(k)=0$ for $k\neq 0$, which holds for a pseudorandom (PRN) sequence.

Finally, when $\mathbf{H}^T\mathbf{H} = N \, r_{uu}(0)\mathbf{I}$

$$Var(\hat{h}(i)) = \frac{\sigma^2}{N r_{uu}(0)}, \qquad i = 0, 1, \dots, p-1$$

Example 10: SYS ID \hookrightarrow **MVU estimator**

For a PRN sequence, the MVU estimator becomes

$$\hat{\boldsymbol{\theta}} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{x}$$
Then
$$\hat{h}(i) = \frac{1}{N r_{uu}(0)} \sum_{n=0}^{N-1} u[n-i]x[n]$$
and
$$\frac{r_{ux}(i)}{r_{uu}(0)} = \frac{\frac{1}{N} \sum_{n=0}^{N-1-i} u[n]x[n+i]}{r_{uu}(0)}$$

$$i = 0, 1, \dots, p-1$$

Thus the MVU estimator is the ratio of the input-output cross-correlation to the input autocorrelation.

Compare with the Wiener filter in Lecture 7.

Theorem: The MVU Estimator for a General Linear Model (GLM)

i) Data model

ii) Then, the MVU estimator

$$\hat{oldsymbol{ heta}} = \left(\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^T \mathbf{C}^{-1} \left(\mathbf{x} - \mathbf{s}\right)$$

iii) with covariance matrix

$$\mathbf{C}_{\hat{\boldsymbol{\theta}}} = (\mathbf{H}^T \mathbf{C} \mathbf{H})^{-1}$$

Things to remember about MVU estimators

- An estimator is a random variable and as such its performance can only be described statistically by its PDF
- The use of computer simulations for assessing the performance of an estimator is rarely conclusive
- \circ Unbiased estimators **tend to have symmetric PDFs** centred about the true value of θ
- The minimum mean square error (MMSE) criterion is natural to search for optimal estimators, but it most often leads to unrealisable estimators (those that cannot be written solely as a function of data)
- \circ Since MSE= Bias² + variance, any criterion that depends on bias ought to be abandoned we need to consider an alternative approach
- Remedy: Constrain the bias to zero and find an estimator which minimises the variance – the minimum variance unbiased (MVU) estim.
- Minimising the variance of an unbiased estimator also has the effect of concentrating the PDF of the estimation error, $\hat{\theta} \theta$, about zero \hookrightarrow estimation error less likely to be large

A few things about CRLB to remember

Even if the MVU estimator exists, there is no "turn of the crank" procedure to find it.

The CRLB sets a lower bound on the variance of any unbiased estimator!

This can be extremely useful in several ways:

- \circ If we find an estimator that achieves the CRLB \Rightarrow we known we have found an MVU estimator
- The CRLB can provide a benchmark against which we can compare the performance of any unbiased estimator
- The CRLB enables us to rule out impossible estimators. It is physically impossible to find an unbiased estimator that beats the CRLB
- We may require the estimator to be linear, which is not necessarily a severe restriction, as shown on the example of the estimation of Fourier coefficients

Notes:

0

Notes:

0

Notes:

0

