统计整理

杨弘毅

创建: 2020 年 4 月 9 日 修改: 2021 年 10 月 18 日

目录

1	TODO	2
2	基础	2
	2.1 期望	2
	2.2 方差	3
	2.3 协方差	3
	2.4 相关系数	4
3	矩	4
	3.1 理解	4
	3.2 定义	5
	3.3 分类	6
	3.4 矩母函数	8
	3.4.1 定义	8
	3.4.2 性质	9
4	假设检验(Statistical hypothesis testing)	10
5	Chi-square distribution	11
6	Probability vs Likelihood	11
	6.1 Probability	11
	6.2 Likelihood	12
	6.3 Maximum likelihood	12

7 Time series 12

1 TODO

- 参数与非参数方法
- conditional probability projection
- likelihood, log-likelihood, goodness-of-fit, quasi-maximum likelihood, ratio test
- Chi-square, joint hypothesis
- Newey West 1987
- Durbin Watson

2 基础

2.1 期望

对于随机变量 X, 其概率空间为 (Ω, \mathcal{F}, P) , 期望值 $\mathbb{E}[X]$, 应有:

$$\mathbb{E}[X] = \int_{\Omega} X(\omega) dP(\omega)$$

在离散以及连续情形下有如下定义,其中 f(x) 为变量 X 的概率密度函数 (PDF)。

$$\mathbb{E}[X] = \sum_{i=1}^{n} x_i p_i = x_1 p_1 + x_2 p_2 + \dots + x_n p_n$$
$$\mathbb{E}[X] = \int x f(x) dx$$

其性质有:

$$\begin{split} \mathbb{E}[X+Y] &= \mathbb{E}[X] + \mathbb{E}[Y] \\ \mathbb{E}[aX] &= a\mathbb{E}[X] \\ \mathbb{E}[XY] &= \mathbb{E}[X]\mathbb{E}[Y] \quad (\mathbf{X},\mathbf{Y} \text{ are independent}) \end{split}$$

2.2 方差 2 基础

2.2 方差

对于方差(Variance), 定义有:

$$Var(X) = Cov(X, X) = \sigma_X^2$$

$$= \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$= \mathbb{E}[X^2 - 2X\mathbb{E}[X] + \mathbb{E}[X]^2]$$

$$= \mathbb{E}[X^2] - 2\mathbb{E}[X]^2 + \mathbb{E}[X]^2$$

$$= \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

其性质有:

$$\operatorname{Var}(X + a) = \operatorname{Var}(X)$$

$$\operatorname{Var}(aX) = a^{2} \operatorname{Var}(X)$$

$$\operatorname{Var}(aX \pm bY) = a^{2} \operatorname{Var}(X) + b^{2} \operatorname{Var}(Y) \pm 2ab \operatorname{Cov}(X, Y)$$

$$\operatorname{Var}(\sum_{i=1}^{N} X_{i}) = \sum_{i,j=1}^{N} \operatorname{Cov}(X_{i}, X_{j}) = \sum_{i=1}^{N} \operatorname{Var}(X_{i}) + \sum_{i \neq j} \operatorname{Cov}(X_{i}, X_{j})$$

$$\operatorname{Var}(\sum_{i=1}^{N} a_{i}X_{i}) = \sum_{i,j=1}^{N} a_{i}a_{j} \operatorname{Cov}(X_{i}, X_{j})$$

$$= \sum_{i=1}^{N} a_{i}^{2} \operatorname{Var}(X_{i}) + \sum_{i \neq j} a_{i}a_{j} \operatorname{Cov}(X_{i}, X_{j})$$

$$= \sum_{i=1}^{N} a_{i}^{2} \operatorname{Var}(X_{i}) + 2 \sum_{1 \leq i \leq j \leq N} a_{i}a_{j} \operatorname{Cov}(X_{i}, X_{j})$$

2.3 协方差

对于协方差(Covariance)其定义有:

$$\begin{aligned} \operatorname{Cov}(X,Y) &= \mathbb{E}[(X - E(X))(Y - E(Y))] \\ &= \mathbb{E}[XY - X\mathbb{E}[Y] - Y\mathbb{E}[X] + \mathbb{E}[X]\mathbb{E}[Y]] \\ &= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] - \mathbb{E}[X]\mathbb{E}[Y] + \mathbb{E}[X]\mathbb{E}[Y] \\ &= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] \end{aligned}$$

2.4 相关系数 3 矩

性质有:

$$\operatorname{Cov}(X,a) = 0$$

$$\operatorname{Cov}(X,X) = \operatorname{Var}(X)$$

$$\operatorname{Cov}(X,Y) = \operatorname{Cov}(Y,X)$$

$$\operatorname{Cov}(aX,bY) = ab\operatorname{Cov}(X,Y)$$

$$\operatorname{Cov}(X+a,Y+b) = \operatorname{Cov}(X,Y)$$

$$\operatorname{Cov}(aX+bY,cW+dV) = ac\operatorname{Cov}(X,W) + ad\operatorname{Cov}(X,V) + bc\operatorname{Cov}(Y,W) + bd\operatorname{Cov}(Y,V)$$

2.4 相关系数

相关系数(Correlation Coefficient),为研究变量间线性相关程度的量。最早由统计学家卡尔•皮尔逊设计,也称为皮尔逊积矩相关系数(Pearson product-moment correlation coefficient),或皮尔逊相关系数:

$$\rho_{X,Y} = \frac{\mathrm{Cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{\mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]}{\sigma_X \sigma_Y}$$

3 矩

3.1 理解

在物理学中,矩(Moment)源于阿基米德的杠杆原理,可简单认为是物理量与参照点距离的乘积,如力与力臂(参考点的距离)的乘积,得到的是力矩(或扭矩)。如一杆"秤","秤"的平衡的两边重量与距离的乘积相同,则能保持平衡。

具体而言, n 阶矩 μ_n 为物理量 Q 与某参考点 x 的 n 次方的乘积, 即 $\mu_n = x^n Q$ 。常见的物理量如力或电荷等,若物理量并非集中在单点上,矩就应该是在物理量在空间上的积分,因有: $\mu_u = \int x^n f(x) dr$,其中 f(x) 为物理量的密度分布函数。

而物理中的矩与数学中的矩概念相通,而在概率论上,如一端秤砣重量为中奖金额 500 元,中 奖概率为百分之一,即离中心点距离为 0.01,那么其期望应为为 5 元。可以理解为了使得秤保持平衡,则另一端,在距离中心距离为 1,对应其秤砣重量中奖金额应为 5 元。

3.2 定义 3 矩

图 1: 矩匹配

3.2 定义

根据上述理解,物理学中与数学中的矩概念相通,即距离(概率)乘以物理量(随机变量)的大小。 p_i 为概率质量函数(Probability mass function,PMF),则对于 n 阶矩的离散形式有:

$$E[x^n] = \sum_i x_i^n p_i$$

在连续形式下,n 阶矩可以表示为 $(x-c)^n$ 的期望,其中 f(x) 为概率密度函数(Probability density function,PDF),其中 c 为均值。当 c 为 0 时,即称为中心距(Central moment)。相反,则称为非中心矩,或原始矩(Raw moment):

$$E[x^n] = \mu_n = \int_{-\infty}^{\infty} (x - c)^n f(x) dx$$

除了根据 c 是否为零,根据是否进行标准化处理,可细分为标准矩。常用的矩有:

- 均值 $Mean(x) = \mathbb{E}(x)$ 为一阶非中心矩
- 方差 $Variance(x) = \mathbb{E}(x \mu)^2$ 为二阶中心矩
- 偏度 Skewness $(x) = \frac{\mathbb{E}[(x-\mu)^4]}{\sigma^3}$ 为三阶标准矩
- 峰度 $\operatorname{Kurtosis}(x) = \frac{\mathbb{E}[(x-\mu)^4]}{\sigma^4}$ 为四阶标准矩

3.3 分类 3 矩

3.3 分类

根据如上定义,从零阶至四阶的原始矩与中心矩有如下定义,其中定义 $\sigma = \left(\mathbb{E}[(x-\mu)^2]\right)^{\frac{1}{2}}$:

阶	原始矩	中心矩	标准矩
0	$\mathbb{E}(x^0) = 1$	$\mathbb{E}[(x-\mu)^0] = 1$	$\frac{\mathbb{E}[(x-\mu)^0]}{\sigma^0} = 1$
1	$\mathbb{E}(x^1) = \mu(均值)$	$\mathbb{E}[(x-\mu)^1] = 0$	$\frac{\mathbb{E}[(x-\mu)^1]}{\sigma^1} = 0$
2	$\mathbb{E}(x^2)$	$\mathbb{E}[(x-\mu)^2] = \sigma^2 \ (方差)$	$\frac{\mathbb{E}[(x-\mu)^2]}{\sigma^2} = 1$
3	$\mathbb{E}(x^3)$	$\mathbb{E}[(x-\mu)^3]$	$\frac{\mathbb{E}[(x-\mu)^3]}{\sigma^3}$ (偏度)
4	$\mathbb{E}(x^4)$	$\mathbb{E}[(x-\mu)^4]$	$\frac{\mathbb{E}[(x-\mu)^4]}{\sigma^4}(峰度)$

原始矩(Raw/crude moment)

当 c=0 时,称为原始矩。此时则有**平均数(mean)**或**期望(expected value)**的连续形式为:

$$\mu = E(x) = \int_{-\infty}^{\infty} (x - 0)^1 f(x) dx = \int_{-\infty}^{\infty} x f(x) dx$$

其离散形式为:

$$\mu = E(x) = \sum_{i} x_i p_i$$

中心矩(Central moment)

期望值可以成为随机变量的中心,即当 c = E(x)时

$$\mu_n = E[(x - E(x))^n] = \int_{-\infty}^{\infty} (x - E(x))^n f(x) dx$$

同时可知任何变量的一阶中心矩为 0:

$$\mu_1 = \int_{-\infty}^{\infty} (x - E(x))^1 f(x) dx$$

$$= \int_{-\infty}^{\infty} x f(x) dx - \int_{-\infty}^{\infty} E(x) f(x) dx$$

$$= E(x) - E(x) \int_{-\infty}^{\infty} f(x) dx$$

$$= E(x) - E(x) \times 1 = 0$$

3.3 分类

而二阶中心矩(second central moment)为方差(Variance)

$$\begin{split} \mu_2 &= \int_{-\infty}^{\infty} (x - E(x))^2 f(x) dx \\ &= \int_{-\infty}^{\infty} x^2 f(x) dx - 2E(x) \int_{-\infty}^{\infty} x f(x) dx + [E(x)]^2 \int_{-\infty}^{\infty} f(x) dx \\ &= \int_{-\infty}^{\infty} x^2 f(x) dx - 2E(x) E(x) + [E(x)]^2 \times 1 \\ &= \int_{-\infty}^{\infty} x^2 f(x) dx - [E(x)]^2 \\ &= E(x^2) - [E(x)]^2 = \sigma^2 \end{split}$$

其离散形式则有:

$$Var(x) = \sigma^2 = \sum p_i(x_i - \mu)^2$$

标准矩(Standardized moment)

标准矩为标准化(除以标准差)后的中心矩,第n 阶中心矩(standardized moment of degree n)有:

$$\mu_n = E[(x-\mu)^n] = \int_{-\infty}^{\infty} (x-\mu)^n f(x) dx$$

已知标准差的 n 次方有:

$$\sigma^n = \left(\sqrt{E[(x-\mu)^2]}\right)^n = \left(E\left[(x-\mu^2)\right]\right)^{\frac{n}{2}}$$

此时,第 n 阶标准矩有:

$$\widetilde{\mu}_n = \frac{\mu_n}{\sigma^n} = \frac{\mathbb{E}\left[(x-\mu)^n\right]}{\sigma^n}$$

由一阶中心矩为 0,可知一阶标准矩(first standardized moment) 也为 0。而二阶标准矩(second standardized moment)则有:

$$\widetilde{\mu}_2 = \frac{\mu_2}{\sigma^2} = \frac{E[(x-\mu)^2]}{(E[(x-\mu)^2])^{2/2}} = 1$$

偏度(skewness)

三阶标准矩(third standardized moment)为偏度:

$$\widetilde{\mu}_3 = \frac{\mu_3}{\sigma^3} = \frac{E[(x-\mu)^3]}{(E[(x-\mu)^2])^{3/2}}$$

3.4 矩母函数 3 矩

偏度分为两种:

• 负偏态或左偏态: 左侧的尾部更长,分布的主体集中在右侧

• 正偏态或右偏态:右侧的尾部更长,分布的主体集中在左侧

峰度(kurtosis)

四阶标准矩(third standardized moment)为峰度:

$$\widetilde{\mu}_4 = \frac{\mu_4}{\sigma^4} = \frac{E[(x-\mu)^4]}{(E[(x-\mu)^2])^{4/2}}$$

定义**超值峰度(excess kurtosis**)为峰度 -3,使得正态分布的峰度为 0:

excess kurtosis =
$$\tilde{\mu}_4 - 3$$

- 如果超值峰度为正,即峰度值大于 3, 称为高狭峰(leptokurtic)
- 如果超值峰度为负,即峰度值小于 3,称为低阔峰(platykurtic)

3.4 矩母函数

3.4.1 定义

矩母函数或称为矩生成函数(Moment generating fuction,MGF)或动差生成函数,顾名思义就是产生矩的函数。对于随机变量 X,其矩生成函数定义为:

$$\boxed{M_X(t) = \mathbb{E}(e^{tX})}$$

离散形式下有:

$$\mathbb{E}[e^{tx}] = \sum e^{tx} P(x)$$

而在连续形势下有:

$$\mathbb{E}[e^{tx}] = \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

定理 3.1. 将矩母函数进行 n 次求导, 并令 t=0 则可得到 $\mathbb{E}(X^n)$

$$\mathbb{E}(X^n) = \left. \frac{d^n}{dt^n} M_X(t) \right|_{t=0}$$

3.4 矩母函数 3 矩

证明. 对于 e^x 使用泰勒展开有:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$$

那么 e^{tx} 的期望为:

$$\mathbb{E}[e^{tx}] = \mathbb{E}\left[1 + tx + \frac{(tx)^2}{2!} + \frac{(tx)^3}{3!} + \dots + \frac{(tx)^n}{n!}\right]$$
$$= \mathbb{E}(1) + t\mathbb{E}(x) + \frac{t^2}{2!}\mathbb{E}(x^2) + \frac{t^3}{3!}\mathbb{E}(x^3) + \dots + \frac{t^n}{n!}\mathbb{E}(x^n)$$

对其求一阶导:

$$\frac{d}{dt}\mathbb{E}[e^{tx}] = \frac{d}{dt} \left[\mathbb{E}(1) + t\mathbb{E}(x) + \frac{t^2}{2!}\mathbb{E}(x^2) + \frac{t^3}{3!}\mathbb{E}(x^3) + \dots + \frac{t^n}{n!}\mathbb{E}(x^n) \right]$$

$$= 0 + \mathbb{E}(x) + t\mathbb{E}(x^2) + \frac{t^2}{2}\mathbb{E}(x^3) + \dots + \frac{t^{n-1}}{(n-1)!}\mathbb{E}(x^n)$$

$$(\text{R}\lambda \ t = 0)$$

$$= 0 + \mathbb{E}(x) + 0 + 0 + \dots + 0$$

$$= \mathbb{E}(x)$$

3.4.2 性质

对于标准正态分布 $N \sim (0,1)$ 的矩母函数,则有:

$$M_X(t) = \mathbb{E}(e^{xt}) = \int e^{xt} \frac{1}{\sqrt{\pi}} e^{-\frac{1}{2}x^2} dx$$

$$= \int \frac{1}{\sqrt{\pi}} e^{xt - \frac{1}{2}x^2} dx$$

$$= \int \frac{1}{\sqrt{\pi}} e^{-\frac{1}{2}(x^2 - 2xt + t^2 - t^2)} dx$$

$$= \int \frac{1}{\sqrt{\pi}} e^{-\frac{1}{2}(x - t)^2 + \frac{1}{2}t^2} dx$$

$$= e^{\frac{1}{2}t^2} \int \frac{1}{\sqrt{\pi}} e^{-\frac{1}{2}(x - t)^2} dx$$

$$= e^{\frac{1}{2}t^2}$$

对于正态分布 $N \sim (\mu, \sigma)$ 的矩母函数,则有:

$$M_X(t) = \mathbb{E}(e^{xt}) = \int e^{xt} \frac{1}{\sigma\sqrt{\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)} dx$$

此时代换 $z = \frac{x-\mu}{\sigma}$, 即 $x = \sigma z + \mu$, 并有 $dx = \sigma dz$:

$$M_X(t) = \int e^{(\sigma z + \mu)t} \frac{1}{\sigma \sqrt{\pi}} e^{-\frac{1}{2}z^2} dx$$

$$= e^{\mu t} \int e^{\sigma z t} \frac{1}{\sigma \sqrt{\pi}} e^{-\frac{1}{2}z^2} dx$$

$$= e^{\mu t} \int \frac{1}{\sigma \sqrt{\pi}} e^{-\frac{1}{2}(z^2 - 2\sigma t z + (\sigma t)^2 - (\sigma t)^2)} dx$$

$$= e^{\mu t} e^{\frac{1}{2}\sigma^2 t^2} \int \frac{1}{\sigma \sqrt{\pi}} e^{-\frac{1}{2}(z - \sigma t)^2} dx$$

$$= e^{\mu t + \frac{1}{2}\sigma^2 t^2}$$

$$= e^{\mu t + \frac{1}{2}\sigma^2 t^2}$$

4 假设检验(Statistical hypothesis testing)

原假设(H_0 , null hypothesis),也称为零假设或虚无假设。而与原假设相反的假设称为**备** 择假设(H_a , althernative hypothesis)。假设检验的核心为**反证法**。在数学中,由于不能穷举 所有可能性,因此无法通过举例的方式证明一个命题的正确性。但是可以通过举一个反例,来证明 命题的错误。在掷骰子的例子中,在每次掷的过程相当于一次举例,假设进行了上万次的实验,即 便实验结果均值为 3.5,也无法证明总体的均值为 3.5,因为无法穷举。

可以理解为原假设为希望拒绝的假设,或反证法中希望推翻的命题。我们先构造一个小概率事件作为原假设(H_0),并假设其正确。如样本均值等于某值,两个样本均值是否相等,样本中的不同组直接是否等概率发生,一般使用等式(小概率)作为原假设。如果抽样检验中小概率事件发生,则说明原假设的正确性值得怀疑。如此时假设实验的结果(样本)远大于或小于理论计算结果3.5,即发生了小概率事件,那么就有理由相信举出了一个反例,这时就可以否定原命题(reject the null hypothesis)。而相反,如果原假设认为均值为3.5,在实验的过程中结果大概率不会偏离这个理论值太多,可以认为我们并没办法举出反例。由于不能直接证明原命题为真,只能说"We can not(fail to) reject the null hypothesis ",无法拒绝原命题。

在需要评估总体数据的时候,由于经常无法统计全部数据,需要从总体中抽出一部分样本进行评估。假设掷骰子一个骰子,其期望为 3.5,但假设掷骰子了 100 次,计算均值为 3.47,由于总体的理论值和样本呢的实验值可能存在偏差,误差永远存在,无法避免。那么是否可以认为么 3.47 "等于" 3.5? 这时候就需要要界定一个显著水平(α , significant level),相当于设定一个等于的

阈值范围。即多小概率的事情发生,是 10% 还是 5% 的概率,使我们认为举出了一个反例,值得去怀疑原命题的正确性。当我们知道随机变量的分布时候,根据所进行的检验,我们可以根据计算出的**统计量(test statistic)**,由于分布已知,统计量对应了一个 **p 值(p-value)**,即小概率(极端)事件发生的概率,因此在图形上表示为统计量向两侧延申的线下区域。如果这个概率足够低,如小于 $\alpha = 5\%$,那么就有理由拒绝原假设。

用 1-显著水平($1-\alpha$),得到值称为**置信水平(confidence level)**(概率大小)。置信水平越大,对应的置信区间也越大(随机变量范围)。此时有置信水平为 $1-\alpha$,假设置信区间为 (a,b),那么有 P(a < 随机变量 $< b) = 1-\alpha$ 。对于双侧检验,有置信水平为 $1-\alpha$ (概率大小),两侧拒绝域分别为 $\alpha/2$ 。对于单侧检验,则有单侧拒绝域大小为 α 。

5 Chi-square distribution

假设有随机变量 X 服从标准正态分布,即有 $X \sim N(0,1)$,此时有随机变量 $Q_1 = X^2$,则有随机变量 Q_1 服从卡方分布(χ^2 -distribution),由于此时只有一个随机变量,因此卡方分布自由度 (degree of freedom) 为 1,即 $Q_1 \sim \chi^2(1)$ 。如随机变量 $Q_2 = X_1^2 + X_2^2$,且 X_1 与 X_2 同时服从标准正态分布。则此时 Q_2 服从自由度为 2 的卡方分布,即 $Q_2 \sim \chi^2(2)$ 。

Goodness of fit

Pearson's chi-squared test

$$\chi^2 = \sum_{i}^{n} \frac{(O_i - E_i)^2}{E_i}$$

- O_i the number of observations of type i
- E_i the expected (theoretical) number of type i

6 Probability vs Likelihood

6.1 Probability

P(data | distribution) = area under curve

P(weight between 32g and 34g | mean = 32 and standard deviation = 2.5) = 0.29

6.2 Likelihood 7 TIME SERIES

P(weight $> 34g \mid mean = 32$ and standard deviation = 2.5) = 0.21

6.2 Likelihood

L(distribution | data) = value of the curve (y)

L(mean = 32 and standard deviation = 2.5 | mouse weights 34g) = 0.12

L(mean = 34 and standard deviation = 2.5 | mouse weights 34g) = 0.21

在调整了分布的 mean 之后, likelihood 最大,在 mean=34 sigma=2.5 的正态分布中,抽中一只 34g 的老鼠的概率最大

6.3 Maximum likelihood

测量了数只老鼠的重量,尝试找到其分布, miximizes the likelihood 找到最大化所有观察重量 likelihood 的分布, 找到 mean 和 standard deviation

7 Time series

Autoregressive (AR) model

vector autoregressive model (VAR) (more than one random variable)

Moving-average (MA) model

ARMA / ARIMA

autoregressive-moving-average (ARMA) / autoregressive integrated moving average (ARIMA)

TODO: Autocorrelation (serial correlation) - $cov(u_i, u_j) \neq 0$, for $i \neq j$ - some other estimator will have a lower variance, no longer best estimate - Unit root processes, autoregressive processes, and moving average processes are specific forms of processes with autocorrelation.

Autocorrelation and Partial Autocorrelation

The coefficient of correlation between two values in a time series is called the autocorrelation function (ACF), $Corr(x_t, x_{t-k}), k = 1, 2, 3, ...$

$$\rho_k = \frac{cov(x_t, x_{t-k})}{\sigma_{x_t}\sigma_{x_{t-k}}} = \frac{\gamma_k}{\gamma_0}$$

$$\gamma_k = \sum_{t=1}^{T-k} (x_t - \bar{x})(x_{t+k} - \bar{x})/T$$

$$\gamma_0 = \sum_{t=1}^{T} (x_t - \bar{x})^2/T$$

Durbin-Watson test

- H0: $\rho = 0$, no autocorrelation / serial correlation in residual - H1: $\rho \neq 0$, autocorrelation in residual, follow first order autoregressive process

Test statistic - resitual at lag 1,
$$\epsilon_t = \rho \epsilon_{t-1} + u_t$$
 - $DW = \frac{\sum_{t=2}^{T} (\epsilon_t - \epsilon_{t-1})^2}{\sum_{t=1}^{T} \epsilon_t^2}$

2 -> no autocorrelation 0-2 -> positive autocorrelation 2-4 -> negative autocorrelation

Ljung-Box test

Test the null hypothesis that a series of residuals exhibits no autocorrelation for a fixed number of lags L. (See Box & Pierce 1970, Q test)

- H0: No residual autocorrelation - H1: There is residual autocorrelation

Test statistic

$$Q = T(T+2) \sum_{k=1}^{L} \frac{\rho(k)^2}{T-k} > \chi_L^2$$

- Q is chi-square with L degrees of freedom

Dickey-Fuller test H0: there is unit root, $\delta = \rho - 1 = 0$, no stationary, random walk H1: stationary, mean and variance do not change over time

A simple AR(1) model $y_t = \alpha + \rho y_{t-1} + u_t$, then we have $\Delta y_t = \alpha + (\rho - 1)y_{t-1} + u_t = \alpha + \delta y_{t-1} + u_t$,

Augmented Dickey-Fuller

H0: there is unit root, $\delta = 0$ H1: stationary, $\delta < 0$

ADF test:
$$\Delta y_t = \alpha + \delta y_{t-1} + \beta_1 \Delta y_{t-1} + \dots + \beta_p \Delta y_{t-p} + u_t$$

AR(1) model: $\Delta y_t = \alpha + \delta y_{t-1} + u_t$ AR(2) model: $\Delta y_t = \alpha + \delta y_{t-1} + \beta \Delta y_{t-1} + u_t$

Test statistics: (negative, more negative -> reject H0)

-
$$DF_{\delta} = \frac{\hat{\delta}}{SE(\hat{\delta})}$$