MATH 18.01 - FINAL EXAM REVIEW: SUMMARY OF SOME KEY CONCEPTS

18.01 Calculus, Fall 2017 Professor: Jared Speck

a. Polar coordinates

- (a) $x = r \cos \theta$, $y = r \sin \theta$
- (b) In the standard formulation, $r=\sqrt{x^2+y^2},\,\theta$ is the polar angle, and $0\leq\theta<2\pi$
- (c) Area in polar coordinates: Area under the curve $r = f(\theta)$ in between the angles θ_1 and θ_2 is given by Area $=\frac{1}{2}\int_{\theta_1}^{\theta_2} r^2 d\theta = \frac{1}{2}\int_{\theta_1}^{\theta_2} [f(\theta)]^2 d\theta$

b. L'Hôpital's rule

- (a) Sometimes allows one to evaluate limits of the form $\frac{0}{0}$, $\frac{\infty}{\infty}$, $0 \times \infty$, 0^0 , 1^∞ (b) Many of the above limits can be massaged into the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$, where L'Hôpital's rule can sometimes directly be applied. For example, the 0^0 case can be massaged into the $\frac{0}{0}$ case with the help of ln.
- (c) In the " $\frac{0}{0}$ " case: If f, g are differentiable functions, a is a finite number, f(a) = g(a) = 0, and $\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$, then $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)} = L$. Furthermore, it is sometimes true that $L = \frac{f'(a)}{g'(a)}$ (for example, when f'(x) and g'(x) are continuous at x = a and $q'(a) \neq 0$).
- (d) In the " $\frac{\infty}{\infty}$ " case: If f, g are differentiable functions, a is a finite number, $\lim_{x\to a} f(x) =$ $\lim_{x\to a} g(x) = \infty$, and $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ exists, then $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$.
- (e) Analogous statements hold if we replace $\lim_{x\to a}$ with $\lim_{x\to\infty}$ or $\lim_{x\to -\infty}$.

c. Improper integrals

- (a) If f(x) is continuous for $0 \le x < \infty$, then by definition, $\int_0^\infty f(x) dx = \lim_{M \to \infty} \int_0^M f(x) dx$
 - (i) If the limit exists, we say the improper integral converges. Otherwise, we say it
- (b) If f(x) is continuous for $a < x \le b$ but is not continuous at x = a, then by definition, $\int_{a}^{b} f(x) \, dx = \lim_{x_0 \to a^{+}} \int_{x_0}^{b} f(x) \, dx$
 - (i) If the limit exists, we say the improper integral converges. Otherwise, we say it diverges.

d. Infinite series

- (a) Are series of the form $\sum_{k=0}^{\infty} a_k = a_0 + a_1 + a_2 + a_3 + \cdots$ (b) By definition, $\sum_{k=0}^{\infty} a_k = \lim_{M \to \infty} S_M$, where $S_M = \sum_{k=0}^{M} a_k = a_0 + a_1 + a_2 + \cdots + a_M$ is the M^{th} partial sum.
 - (i) If $\lim_{M\to\infty} S_M$ exists, we say the series converges. Otherwise, we say it diverges.

- (c) Geometric series: $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$ if |x| < 1. $\sum_{k=0}^{\infty} x^k$ diverges if $|x| \ge 1$. (d) Comparison: If $0 \le a_k \le b_k$ for all large k, and if $\sum_{k=0}^{\infty} a_k$ diverges, then $\sum_{k=0}^{\infty} b_k$ diverges too (divergence of smaller \implies divergence of bigger). If $0 \le a_k \le b_k$ for all large k, and if $\sum_{k=0}^{\infty} b_k$ converges, then $\sum_{k=0}^{\infty} a_k$ converges too (convergence of bigger \implies convergence of smaller).
- (e) Limit comparison test: If $a_k \geq 0, b_k \geq 0$ for all large k and $a_k \sim b_k$, then $\sum_{k=0}^{\infty} a_k$ converges if and only if $\sum_{k=0}^{\infty} \overline{b_k}$ converges. Here, $a_k \sim b_k$ means that there exists a non-zero number L such that $\lim_{k\to\infty} \frac{a_k}{b_k} = L$.
- (f) Integral comparison: If f(x) is continuous, $f(x) \ge 0$ for all x, and f(x) is decreasing for all large x, then $\sum_{k=0}^{\infty} f(k)$ converges if and only if the improper integral $\int_{x=0}^{\infty} f(x) dx$ converges.
- e. Taylor's series with base point b=0
 - (a) For x near $0: f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots$

 - (a) For x flear 0 : $f(x) = a_0 + a_1x + a_2x + a_3x$ (b) $a_n = \frac{f^{(n)}(0)}{n!}$, where $f^{(n)}$ is the n^{th} derivative of f (c) $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$ (d) $\ln(1+x) = \sum_{k=1}^{\infty} (-1)^{k+1} x^k = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} \pm \cdots$ (e) $\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!} = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \mp \cdots$ (f) $\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!} = x \frac{x^3}{3!} + \frac{x^5}{5!} \mp \cdots$
- **f**. Taylor's series with base point b
 - (a) For x near $b: f(x) = a_0 + a_1(x-b) + a_2(x-b)^2 + a_3(x-b)^3 + \cdots$
 - (b) $a_n = \frac{f^{(n)}(b)}{n!}$
 - (c) $x^A = b^A + Ab^{A-1}(x-b) + \frac{A(A-1)b^{A-2}}{2!}(x-b)^2 + \frac{A(A-1)(A-2)b^{A-3}}{2!}(x-b)^3 + \cdots$