# Boundary Element Methods

Lecture 6: Fast Methods for Integral Equations

November 8, 2017

#### Outline

Cost of Boundary Element Methods

• Circulant and Toeplitz matrices and the Fast Fourier Transform (FFT)

• Fast Multipole Method

# How expensive are integral equation methods?

Let the number of unknowns ( $\propto$  #elements) be n.

Let the typical element size be h.

Then  $n = \mathcal{O}(1/h^{d-1})$ , where d = 2, 3 is the problem dimension.

### Naïve approach

Assemble entire dense matrix -  $n^2$  entries.

Invert matrix by Gaussian elimination -  $\mathcal{O}(n^3)$  operations.

#### Less naïve approach

Iterative method -  $\mathcal{O}(n^2)$  operations if well-conditioned (iteration count  $m \ll n$ ), and using standard matrix-vector product.

Main bottleneck: dense matrix storage.

### Computational cost - some example numbers

Typical industrial application:  $> (\gg)100,000$  unknowns.

More than 160 Gb to store matrix (my laptop has 16 Gb).



Noise control on Airbus

Heat conduction in engine

[Images from "FastBEM"]

# Fast algorithms

- Fast algorithms rely on iterative methods (GMRES, CG).
- Need to compute matrix-vector product (MVP) **Ax**.
- Dense MVP costs  $\mathcal{O}(n^2)$ .
- "Sparse" MVP can cost  $\mathcal{O}(n)$  or  $\mathcal{O}(n \log n)$ .
- Furthermore, requires  $\mathcal{O}(n)$  storage.
- Can solve 10,000 of previous problem on my laptop!
- 2 main types of sparse MVP: FFT and FMM.

#### FFT-acceleration

Consider the exterior Dirichlet problem we solved last time.

The arising matrix is **circulant** 

$$\mathbf{C} = \begin{pmatrix} c_0 & c_{n-1} & \dots & c_2 & c_1 \\ c_1 & c_0 & c_{n-1} & & c_2 \\ \vdots & c_1 & c_0 & \ddots & \vdots \\ c_{n-2} & & \ddots & \ddots & c_{n-1} \\ c_{n-1} & c_{-2} & \dots & c_1 & c_0 \end{pmatrix}$$

and is defined by the n-vector  $\mathbf{c} = [c_0, c_1, \dots, c_{n-1}].$ 

 ${f C}$  has the property of being diagonalized by the DFT matrix

$$\mathbf{C} = \mathbf{F}^{-1} \mathbf{\Lambda} \mathbf{F},$$

where **F** is the DFT matrix and  $\Lambda = \text{diag}(\mathbf{Fc})$  is diagonal.

### FFT-acceleration

Hence MVP is

$$\mathbf{C}\mathbf{x} = \mathbf{F}^{-1}\mathrm{diag}(\mathbf{F}\mathbf{c})\mathbf{F}\mathbf{x}.$$

This can be computed using the following four steps:

- i) compute  $\mathbf{f} = FFT(\mathbf{x})$ ,
- ii) compute  $\mathbf{g} = FFT(\mathbf{c})$ ,
- iii) compute element-wise vector-vector product  $\mathbf{h} = \mathbf{g}. * \mathbf{f}$ ,
- iv) compute y = IFFT(h) to obtain Cx.

FFT and IFFT can be done in  $\mathcal{O}(n \log n)$  operations.

Also, since we only need the defining vector  $\mathbf{c}$ , storage is  $\mathcal{O}(n)$ .

So far shown applicability to

### Non-circular geometries

Circulant matrices will not arise in general.

Consider another simple geometry, a straight line.

The matrix for this problem is not circulant, but Toeplitz:

$$\mathbf{T} = \begin{pmatrix} a_0 & a_{-1} & a_{-2} & \dots & a_{-(n-1)} \\ a_1 & a_0 & a_{-1} & & a_{-(n-2)} \\ a_2 & a_1 & \ddots & & \vdots \\ \vdots & & \ddots & a_{-1} & a_{-2} \\ a_{n-2} & \ddots & & a_1 & a_0 & a_{-1} \\ a_{n-1} & \dots & \dots & a_2 & a_1 & a_0 \end{pmatrix}.$$

Matrix is determined by first column and row  $\rightarrow 2n-1$  entries.

### Fast MVP with Toeplitz matrix

Embed Toeplitz matrix in a  $2n \times 2n$  circulant matrix

$$\mathbf{C}_{2n} = \left( \begin{array}{cc} \mathbf{T}_n & \mathbf{S}_n \\ \mathbf{S}_n & \mathbf{T}_n \end{array} \right),$$

where

$$\mathbf{S}_{n} = \begin{pmatrix} 0 & a_{n-1} & \dots & a_{1} \\ a_{-(n-1)} & \ddots & \ddots & a_{2} \\ \vdots & \ddots & & \vdots \\ a_{-2} & & \ddots & \ddots & a_{n-1} \\ a_{-1} & a_{-2} & \dots & \dots & 0 \end{pmatrix}.$$

Then

$$\mathbf{T}_n \mathbf{x} = (\mathbf{I}_n \quad \mathbf{0}_n) \mathbf{C}_{2n} (\mathbf{x} \quad \mathbf{0}_n)^{\mathrm{T}}.$$

So can use FFT again! Cost  $\mathcal{O}(2n\log(2n))$ .

# What about shapes that aren't circles or lines?



#### Algorithm outline

- (i) Project panel charges onto grid
- (ii) Calculate grid-charge potentials on grid
- (iii) Interpolate grid potentials onto panels
- (iv) Local corrections (compute nearby interactions directly)

Exploit translation invariance of the uniform grid by using FFT.

Overheads of projection and interpolation are not expensive so achieve  $\mathcal{O}(n\log n)$ .

## Fast multipole method

Pioneering work by Greengard and Rokhlin in 1980s. Regarded as "one of the top ten algorithms of the 20th century" - Cipra.

#### Problem:

Wish to evaluate the sum

$$u(\mathbf{x}_i) = \sum_{j=1}^n G(\mathbf{x}_i, \mathbf{x}_j) g_j, \quad j = 1, \dots n,$$

where

 $\{\mathbf{x}_i\}_{i=1}^n$  is a set of points in the plane,

 $\{\mathbf{q}_i\}_{i=1}^n$  is a set of real numbers called *sources*,

 $u(\mathbf{x})$  is called the *potential*.

The kernel is our Green's function. In 2D,  $G(\mathbf{x}, \mathbf{y}) = \log |\mathbf{x} - \mathbf{y}|$ .

## Fast multipole method

Evaluating the sum

$$u(\mathbf{x}_i) = \sum_{j=1}^n G(\mathbf{x}_i, \mathbf{x}_j) g_j, \quad j = 1, \dots n.$$

Direction evaluation -  $\mathcal{O}(n^2)$ .

Single-level fast multipole -  $\mathcal{O}(n^{3/2})$ 

Multi-level fast multipole -  $\mathcal{O}(n)$ .

Implementing the FMM is not easy, and the constant in the  $\mathcal{O}(n)$  can sometimes be large.

Let's discuss the ideas behind the single-level FMM.

For more details, see "A short course on fast multipole methods" - Beatson and Greengard.

# Preconditioning large systems

- FFT- and FMM-accelerated methods rely on iterative methods.
- For them to be efficient, we require that the number of iterations is relatively low.
- Thus require matrix to be well conditioned.
- Provides further motivation for second kind equations which tend to more better conditioned than first kind.
- Can still become ill-conditioned for large systems. "Preconditioning" becomes necessary.
- Solve modified problem  $M^{-1}Ax = M^{-1}b$ , for example, where M is the preconditioner.

## Summary

- Motivation for fast solvers.
- Use iterative solvers concentrate on accelerating matrix-vector product.
- Circulant and Toeplitz matrices FFT acceleration for the matrix-vector product.
- FFT methods for more general geometries.
- FFT relies on transsation invariance of grid.
- Fast multipole method uses multi-resolution.
- Can achieve  $\mathcal{O}(n \log n)$  or  $\mathcal{O}(n)$  cost instead of  $\mathcal{O}(n^2)$ .