				First-order	Norm of
Iter	F-count	f(x)	Feasibility	optimality	step
0	457	0.000000e+00	1.571e+00	8.018e-17	1
1	914	8.923198e+02	3.360e-01	1.689e+00	2.129e+02
2	1372	4.708596e+02	3.749e-01	1.701e+00	1.017e+02
3	1829	4.279558e+02	2.219e-02	1.655e+00	1.494e+01
4	2286	4.167426e+02	2.935e-03	1.620e+00	2.631e+00
5	2749	3.925246e+02	3.234e-04	1.283e+00	5.267e+00
6	3216	3.509910e+02	1.513e-03	1.245e+00	9.229e+00
7	3677	3.409529e+02	1.303e-03	1.219e+00	2.304e+00
8	4140	3.212990e+02	1.695e-04	1.166e+00	4.610e+00
9	4607	2.879639e+02	7.841e-04	1.142e+00	8.071e+00
10	5072	2.567281e+02	7.129e-04	1.049e+00	8.075e+00
11	5537	2.277727e+02	6.737e-04	9.942e-01	8.078e+00
12	6002	2.013092e+02	6.404e-04	9.000e-01	8.082e+00
13	6467	1.775163e+02	6.295e-04	8.179e-01	8.085e+00
14	6932	1.565363e+02	6.280e-04	7.212e-01	8.089e+00
15	7397	1.384626e+02	6.465e-04	6.204e-01	8.092e+00
16	7862	1.233240e+02	6.873e-04	5.171e-01	8.095e+00
17	8327	1.110705e+02	8.120e-04	4.130e-01	8.097e+00
18	8792	1.015636e+02	9.850e-04	3.102e-01	8.100e+00
19	9257	9.456854e+01	1.565e-03	2.112e-01	8.102e+00
20	9722	9.189920e+01	3.440e-04	1.662e-01	4.050e+00
21	10187	8.969570e+01	5.472e-04	1.250e-01	4.051e+00
22	10652	8.874922e+01	1.020e-04	1.113e-01	2.025e+00
23	11117	8.789051e+01	1.213e-04	1.025e-01	2.025e+00
24	11580	8.711059e+01	1.613e-04	9.384e-02	2.026e+00
25	12043	8.639845e+01	1.983e-04	8.532e-02	2.026e+00
26	12506	8.574282e+01	2.184e-04	7.712e-02	2.026e+00
27	12969	8.513283e+01	2.685e-04	6.940e-02	2.026e+00
28	13431	8.455866e+01	3.141e-04	6.757e-02	2.026e+00
29	13893	8.401230e+01	3.144e-04	6.658e-02	2.026e+00
30	14355	8.348792e+01	3.467e-04	6.625e-02	2.026e+00
				First-order	Norm of
	F-count	f(x)	Feasibility	optimality	step
31	14817	8.298202e+01	3.625e-04	6.447e-02	2.026e+00
32	15279	8.249331e+01	3.254e-04	6.248e-02	2.026e+00
33	15741	8.202245e+01	3.421e-04	6.099e-02	2.026e+00
34	16203	8.157161e+01	3.326e-04	5.804e-02	2.026e+00
35	16665	8.114418e+01	2.871e-04	5.371e-02	2.026e+00
36	17127	8.074430e+01	2.870e-04	5.191e-02	2.026e+00
37	17589	8.037655e+01	2.760e-04	4.950e-02	2.026e+00
38	18051	8.004564e+01	2.437e-04	4.568e-02	2.026e+00
39	18513	7.975614e+01	2.128e-04	4.200e-02	2.026e+00
40	18975	7.951217e+01	2.083e-04	3.866e-02	2.026e+00
41	19438	7.931723e+01	1.900e-04	3.349e-02	2.026e+00
42	19901	7.917388e+01	1.596e-04	2.620e-02	2.026e+00
43	20364	7.908342e+01	1.189e-04	1.633e-02	2.025e+00

44	20825	7.907556e+01	9.374e-05	1.450e-02	2.843e-01
45	21288	7.906136e+01	1.718e-06	1.098e-02	5.687e-01
46	21755	7.905381e+01	6.011e-07	8.157e-03	4.111e-01
47	22220	7.904837e+01	5.463e-07	5.355e-03	4.111e-01
48	22684	7.904503e+01	4.744e-07	2.618e-03	4.111e-01
49	23147	7.904409e+01	5.789e-08	1.241e-03	2.223e-01
50	23610	7.904384e+01	6.865e-09	5.871e-04	1.168e-01
51	24073	7.904377e+01	7.985e-10	2.802e-04	6.010e-02
52	24536	7.904376e+01	9.242e-11	1.355e-04	3.052e-02
53	24999	7.904375e+01	1.078e-11	6.683e-05	1.528e-02
54	25462	7.904375e+01	1.119e-12	3.378e-05	7.384e-03
55	25925	7.904375e+01	1.772e-13	1.693e-05	4.013e-03
56	26388	7.904375e+01	2.376e-14	8.987e-06	2.039e-03
57	26851	7.904375e+01	3.109e-15	5.477e-06	1.055e-03
58	27314	7.904375e+01	1.776e-15	4.687e-06	5.811e-04
59	27772	7.904375e+01	3.331e-15	1.461e-05	6.481e-04
60	28230	7.904375e+01	1.554e-15	1.145e-05	9.894e-05
				First-order	Norm of
	F-count	f(x)	Feasibility	optimality	step
61	28688	7.904375e+01	1.443e-15	optimality 2.501e-05	step 3.165e-04
61 62	28688 29146	7.904375e+01 7.904375e+01	1.443e-15 1.776e-15	optimality 2.501e-05 2.193e-05	step 3.165e-04 1.257e-04
61 62 63	28688 29146 29604	7.904375e+01	1.443e-15 1.776e-15 1.776e-15	optimality 2.501e-05 2.193e-05 7.687e-06	step 3.165e-04 1.257e-04 3.359e-04
61 62 63 64	28688 29146 29604 30062	7.904375e+01 7.904375e+01 7.904375e+01 7.904375e+01	1.443e-15 1.776e-15 1.776e-15 2.442e-15	optimality 2.501e-05 2.193e-05 7.687e-06 8.325e-06	step 3.165e-04 1.257e-04 3.359e-04 6.007e-05
61 62 63 64 65	28688 29146 29604 30062 30520	7.904375e+01 7.904375e+01 7.904375e+01 7.904375e+01 7.904375e+01	1.443e-15 1.776e-15 1.776e-15 2.442e-15 2.442e-15	optimality 2.501e-05 2.193e-05 7.687e-06 8.325e-06 8.112e-06	step 3.165e-04 1.257e-04 3.359e-04 6.007e-05 2.751e-05
61 62 63 64 65 66	28688 29146 29604 30062 30520 30978	7.904375e+01 7.904375e+01 7.904375e+01 7.904375e+01 7.904375e+01 7.904375e+01	1.443e-15 1.776e-15 1.776e-15 2.442e-15 2.442e-15 2.665e-15	optimality 2.501e-05 2.193e-05 7.687e-06 8.325e-06 8.112e-06 1.604e-05	step 3.165e-04 1.257e-04 3.359e-04 6.007e-05 2.751e-05 1.271e-04
61 62 63 64 65 66	28688 29146 29604 30062 30520 30978 31436	7.904375e+01 7.904375e+01 7.904375e+01 7.904375e+01 7.904375e+01 7.904375e+01 7.904375e+01	1.443e-15 1.776e-15 1.776e-15 2.442e-15 2.442e-15 2.665e-15 2.220e-15	optimality 2.501e-05 2.193e-05 7.687e-06 8.325e-06 8.112e-06 1.604e-05 8.947e-06	step 3.165e-04 1.257e-04 3.359e-04 6.007e-05 2.751e-05 1.271e-04 3.887e-05
61 62 63 64 65 66 67 68	28688 29146 29604 30062 30520 30978 31436 31894	7.904375e+01 7.904375e+01 7.904375e+01 7.904375e+01 7.904375e+01 7.904375e+01 7.904375e+01 7.904375e+01	1.443e-15 1.776e-15 1.776e-15 2.442e-15 2.442e-15 2.665e-15 2.220e-15 1.221e-15	optimality 2.501e-05 2.193e-05 7.687e-06 8.325e-06 8.112e-06 1.604e-05 8.947e-06 3.299e-06	step 3.165e-04 1.257e-04 3.359e-04 6.007e-05 2.751e-05 1.271e-04 3.887e-05 6.169e-05
61 62 63 64 65 66 67 68	28688 29146 29604 30062 30520 30978 31436 31894 32352	7.904375e+01 7.904375e+01 7.904375e+01 7.904375e+01 7.904375e+01 7.904375e+01 7.904375e+01	1.443e-15 1.776e-15 1.776e-15 2.442e-15 2.442e-15 2.665e-15 2.220e-15 1.221e-15	optimality 2.501e-05 2.193e-05 7.687e-06 8.325e-06 8.112e-06 1.604e-05 8.947e-06 3.299e-06 3.121e-06	step 3.165e-04 1.257e-04 3.359e-04 6.007e-05 2.751e-05 1.271e-04 3.887e-05 6.169e-05 2.578e-05
61 62 63 64 65 66 67 68 69 70	28688 29146 29604 30062 30520 30978 31436 31894 32352 32810	7.904375e+01	1.443e-15 1.776e-15 1.776e-15 2.442e-15 2.442e-15 2.665e-15 2.220e-15 1.221e-15 1.776e-15 1.554e-15	optimality 2.501e-05 2.193e-05 7.687e-06 8.325e-06 8.112e-06 1.604e-05 8.947e-06 3.299e-06 3.121e-06 2.620e-06	step 3.165e-04 1.257e-04 3.359e-04 6.007e-05 2.751e-05 1.271e-04 3.887e-05 6.169e-05 2.578e-05 1.762e-05
61 62 63 64 65 66 67 68 69 70	28688 29146 29604 30062 30520 30978 31436 31894 32352 32810 33275	7.904375e+01	1.443e-15 1.776e-15 1.776e-15 2.442e-15 2.442e-15 2.665e-15 2.220e-15 1.221e-15 1.776e-15 1.554e-15 2.220e-15	optimality 2.501e-05 2.193e-05 7.687e-06 8.325e-06 8.112e-06 1.604e-05 8.947e-06 3.299e-06 3.121e-06 2.620e-06 1.739e-06	step 3.165e-04 1.257e-04 3.359e-04 6.007e-05 2.751e-05 1.271e-04 3.887e-05 6.169e-05 2.578e-05 1.762e-05 1.323e-05
61 62 63 64 65 66 67 68 69 70 71	28688 29146 29604 30062 30520 30978 31436 31894 32352 32810 33275 33733	7.904375e+01	1.443e-15 1.776e-15 1.776e-15 2.442e-15 2.442e-15 2.665e-15 2.220e-15 1.221e-15 1.776e-15 1.554e-15 2.220e-15 1.332e-15	optimality 2.501e-05 2.193e-05 7.687e-06 8.325e-06 8.112e-06 1.604e-05 8.947e-06 3.299e-06 3.121e-06 2.620e-06 1.739e-06 4.730e-06	step 3.165e-04 1.257e-04 3.359e-04 6.007e-05 2.751e-05 1.271e-04 3.887e-05 6.169e-05 2.578e-05 1.762e-05 1.323e-05 5.247e-05
61 62 63 64 65 66 67 68 69 70	28688 29146 29604 30062 30520 30978 31436 31894 32352 32810 33275	7.904375e+01	1.443e-15 1.776e-15 1.776e-15 2.442e-15 2.442e-15 2.665e-15 2.220e-15 1.221e-15 1.776e-15 1.554e-15 2.220e-15	optimality 2.501e-05 2.193e-05 7.687e-06 8.325e-06 8.112e-06 1.604e-05 8.947e-06 3.299e-06 3.121e-06 2.620e-06 1.739e-06	step 3.165e-04 1.257e-04 3.359e-04 6.007e-05 2.751e-05 1.271e-04 3.887e-05 6.169e-05 2.578e-05 1.762e-05 1.323e-05

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>
>>