MASTER THESIS No. 3010 DEFENSE PRESENTATION

A Heuristic Algorithm for Scheduling Aerial Resources for the Extinction of Large-scale Wildfires

Luka Mesarić

Mentor: prof. Lea Skorin-Kapov Co-mentor: assoc. prof. Nina Skorin-Kapov

Motivation

- Increase in the annual total area burned
- Wildfire near Málaga, Spain
 - September 2021
 - 80 km² burned
 - 51 aerial resources active in one day
- Scalable scheduling algorithms are required
 - Integer linear programming (ILP) models
 - Too slow, but can find optimal solutions
 - Model designed by prof. Nina Skorin-Kapov

The annual total area burned in the western United States between 1950 and 2019 [1]

The Problem

- Discrete time 45 slots of 20-minute intervals
- Multiple fire fronts
- Helicopters and airplanes
 - Capacity, availability, drops per hour, rest time, etc.
- Attempt to meet the target water content
- Large-scale wildfires
 - More than 20 resources
 - Lasting several days
- Obey Spanish regulation of civil aviation

Output:

- Flight schedule for one day
- Set of takeoffs: $\{(k_1, f_1, t_1), ...\}$
- $\sim 10^{200}$ valid solutions

A flight path which includes takeoff and repeated filling and dropping of water [2]

Constraint Examples

- Helicopters and airplanes cannot fly at the same front at the same time
 - Different flight paths
- Airplanes cannot be assigned to some fronts
 - Inaccessible water refilling points

An illustration of water scooping by an amphibious aircraft [2]

Photograph by Hustvedt, CC BY-SA 3.0 license

Objectives

- 1. Maximize the total negative water surplus $WS_n \ge 0$
- 2. Maximize the minimal water surplus $-Z \in \mathbb{R}$
- 3. Maximize the total water output $WO \ge 0$
- A continuous flow of water is desired
- Cost is not optimized
 - Handled during the resource allocation phase

Targets Dropped Surplus
$$\begin{bmatrix} -4 & -2 \\ -3 & -2 \\ -3 & -1 \end{bmatrix} + \begin{bmatrix} 5 & 0 \\ 5 & 2 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 2 & 0 \\ -3 & 1 \end{bmatrix}$$

$$WO = 14$$

$$Z = -3$$

$$WS_n = -5$$

Heuristic Algorithm

- GRASP
 - Randomized greedy algorithm
 - Restricted candidate list (RCL)
 - Local search
 - Large neighborhood search
 - Implicit neighborhood via destroy and repair methods (DFS)
 - Simulated annealing
 - Accept non-improving neighbors

Implementation

- CLI application written in C++20
- Thread pool
 - Each GRASP iteration is a task
- Focused on performance
 - Polynomial time complexity
 - Avoided copying the schedule
 - ~5x performance increase
 - Cached constraint violations

Test Scenarios

- 420 instances divided into 84 scenarios
 - Seven scenario sizes
 - Four distributions of the target water content over time and fronts

Scenario	Aircraft	Fronts
K07_F02	7	2
K10_F03	10	3
K15_F03	15	3
K20_F04	20	4
K25_F04	25	4
K30_F05	30	5
K35_F05	35	5

- Average-sized drop of water is ~3000 L
- Up to ~ 1000 drops and ~ 110 flights

Aircraft subtype	Capacity (C_k)	Avg. drops
Light helicopter	$900\mathrm{L}$	5
Medium helicopter	$1500\mathrm{L}$	5
Heavy helicopter	$4500\mathrm{L}$	4
Military helicopter	$2100\mathrm{L}$	5
Airplane	$5500\mathrm{L}$	3

Results (1/2)

- ILP executed for 2h on 8 threads
- 240 instances with $K \ge 20$
 - Heuristic outperformed ILP in all of them
- 60 instances with K = 15
 - Heuristic outperformed ILP in 50 instances (~83%)
- 120 instances with $K \leq 10$
 - ILP found 80 optimal solutions
 - Heuristic found 61 optimal solutions (~75%)

		NUOF + IA		NUOF + MUOT				UOF + IA			UOF + MUOT			
		Н	ILP	Deviation (no. of dls.)	Н	ILP	Deviation (no. of dls.)	Н	ILP	Deviation (no. of dls.)	Н	ILP	Deviation (no. of dls.)	
02	WS_n	-2989^*	-2883**	-0.035	-2012^*	-1844**	-0.056	-2301^*	-2274**	-0.009	-1823**	-1823**	0.000	$\overline{WS_n}$
K07_F02	Z	-1019*	-973 **	-0.015	-763^*	-881**	0.039	-1318*	-1318**	0.000	-1015**	-1015**	0.000	Z
K0	WO	449896*	442592**	2.435	493192*	487790**	1.801	442313*	438901**	1.137	491523**	491225**	0.099	WO
03	WS_n	-896*	-1127^{*}	0.082	-2854	-2948*	0.033	-1542	-2207^*	0.236	-4599	-6554	0.694	$\overline{WS_n}$
K10_F03	Z	-444*	-536*	0.033	-1205	-1225^{*}	0.007	-546	-777*	0.082	-1698	-1927	0.082	Z
K1	WO	720051*	716686*	1.195	652713	654070*	-0.482	710147	707986*	0.767	641558	635346	2.205	WO
03	WS_n	-2542	-2973^{*}	0.152	-2721	-4002	0.453	-3527	-4486	0.339	-3573	-5769	0.777	$\overline{WS_n}$
K15_F03	Z	-1296	-1444^{*}	0.052	-1271	-1745	0.168	-1446	-1606	0.057	-1232	-1821	0.208	Z
\mathbf{K}	WO	980092	975986*	1.452	914063	897083	6.004	977230	968173	3.203	900147	910705	-3.734	WO
40	WS_n	-1715	-10184	3.145	-1470	-9855	3.114	-1466	-7625	2.287	-1708	-13600	4.416	$\overline{WS_n}$
K20_F04	Z	-777	-2880	0.781	-588	-2921	0.866	-353	-2185	0.680	-790	-1988	0.445	Z
\aleph	WO	1210731	1135203	28.049	1251442	1237540	5.163	1246658	1205878	15.144	1239359	1197545	15.528	WO
	WS_n	-152	-13990	5.104	-88	-18996	6.973	-656	-37551	13.607	-63	-13246	4.862	$\overline{WS_n}$
K25_F04	Z	-55	-3156	1.144	86	-3476	1.314	-120	-4562	1.639	190	-2907	1.142	Z
X	WO	1611245	1606310	1.820	1605835	1515948	33.150	1666759	1472142	71.774	1629678	1546952	30.509	WO
05	WS_n	-470	-89250	32.474	-284	-26813	9.704	-625	-62326	22.569	-595	-61670	22.340	WS_n
K30_F05	Z	-24	-6762	2.465	-106	-4317	1.541	-365	-5088	1.728	-159	-4129	1.452	Z
	WO	1937631	1689280	90.842	1927256	1767732	58.351	1971345	1655500	115.530	2044985	1749104	108.228	WO
305	WS_n	-968	-134787	48.814	-175	-124334	45.291	-696	-142156	51.602	-365	-132965	48.370	WS_n
K35_F05	Z	-561	-8363	2.846	57	-6597	2.427	-273	-5479	1.899	-158	-4322	1.519	Z
	WO	2121506	1819684	110.099	2148979	1785340	132.648	2252157	1659594	216.155	2162483	1690788	172.065	WO
		Н	ILP	Deviation (no. of dls.)	Н	ILP	Deviation (no. of dls.)	Н	ILP	Deviation (no. of dls.)	Н	ILP	Deviation (no. of dls.)	

1U	TC		UOF + IA			UOF + IA UOF + MUOT					
þ	Deviation	Н	ILP	Deviation	H	ILP	Deviation				
	(no. of dls.)	11	121	(no. of dls.)		1121	(no. of dls.)				
1 **	-0.056	-2301^{*}	-2274**	-0.009	-1823**	-1823**	0.000	$\overline{WS_n}$			
<u> </u> **	0.039	-1318^{*}	-1318**	0.000	-1015**	-1015**	0.000	Z			
)**	1.801	442313*	438901**	1.137	491523**	491225**	0.099	WO			
8*	0.033	-1542	-2207^*	0.236	-4599	-6554	0.694	$\overline{WS_n}$			
5*	0.007	-546	-777^{*}	0.082	-1698	-1927	0.082	Z			
)*	-0.482	710147	707986*	0.767	641558	635346	2.205	WO			
2	0.453	-3527	-4486	0.339	-3573	-5769	0.777	WS_n			
5	0.168	-1446	-1606	0.057	-1232	-1821	0.208	Z			
3	6.004	977230	968173	3.203	900147	910705	-3.734	WO			
5	3.114	-1466	-7625	2.287	-1708	-13600	4.416	$\overline{WS_n}$			
1	0.866	-353	-2185	0.680	-790	-1988	0.445	Z			
)	5.163	1246658	1205878	15.144	1239359	1197545	15.528	WO			

0.100	1110	1000	0.001	1202	1021	0.200	
6.004	977230	968173	3.203	900147	910705	-3.734	WO
3.114	-1466	-7625	2.287	-1708	-13600	4.416	WS_n
0.866	-353	-2185	0.680	-790	-1988	0.445	Z
5.163	1246658	1205878	15.144	1239359	1197545	15.528	WO
6.973	-656	-37551	13.607	-63	-13246	4.862	WS_n
1.314	-120	-4562	1.639	190	-2907	1.142	Z
33.150	1666759	1472142	71.774	1629678	1546952	30.509	WO
9.704	-625	-62326	22.569	-595	-61670	22.340	WS_n
7 1.541	-365	-5088	1.728	-159	-4129	1.452	Z
58.351	1971345	1655500	115.530	2044985	1749104	108.228	WO
45.291	-696	-142156	51.602	-365	-132965	48.370	WS_n
2.427	-273	-5479	1.899	-158	-4322	1.519	Z
132.648	2252157	1659594	216.155	2162483	1690788	172.065	WO
Deviation	Н	ILP	Deviation	Н	II D	Deviation	
(no. of dls.)	П	ILF	(no. of dls.)	П	ILP	(no. of dls.)	

		NUOF + IA		NUOF + MUOT				UOF + IA			UOF + MUOT			
		Н	ILP	Deviation (no. of dls.)	Н	ILP	Deviation (no. of dls.)	Н	ILP	Deviation (no. of dls.)	Н	ILP	Deviation (no. of dls.)	
02	WS_n	-2989^*	-2883**	-0.035	-2012*	-1844**	-0.056	-2301^*	-2274**	-0.009	-1823**	-1823**	0.000	$\overline{WS_n}$
K07_F02	Z	-1019*	-973 **	-0.015	-763*	-881**	0.039	-1318*	-1318**	0.000	-1015**	-1015**	0.000	Z
K0	WO	449896*	442592**	2.435	493192*	487790**	1.801	442313*	438901**	1.137	491523**	491225**	0.099	WO
03	WS_n	-896*	-1127^{*}	0.082	-2854	-2948*	0.033	-1542	-2207^*	0.236	-4599	-6554	0.694	$\overline{WS_n}$
K10_F03	Z	-444*	-536*	0.033	-1205	-1225^{*}	0.007	-546	-777^{*}	0.082	-1698	-1927	0.082	Z
Ξ	WO	720051*	716686*	1.195	652713	654070*	-0.482	710147	707986*	0.767	641558	635346	2.205	WO
03	WS_n	-2542	-2973^{*}	0.152	-2721	-4002	0.453	-3527	-4486	0.339	-3573	-5769	0.777	$\overline{WS_n}$
K15_F03	Z	-1296	-1444^{*}	0.052	-1271	-1745	0.168	-1446	-1606	0.057	-1232	-1821	0.208	Z
Ξ	WO	980092	975986*	1.452	914063	897083	6.004	977230	968173	3.203	900147	910705	-3.734	WO
40	WS_n	-1715	-10184	3.145	-1470	-9855	3.114	-1466	-7625	2.287	-1708	-13600	4.416	$\overline{WS_n}$
K20_F04	Z	-777	-2880	0.781	-588	-2921	0.866	-353	-2185	0.680	-790	-1988	0.445	Z
Σ	WO	1210731	1135203	28.049	1251442	1237540	5.163	1246658	1205878	15.144	1239359	1197545	15.528	WO
40	WS_n	-152	-13990	5.104	-88	-18996	6.973	-656	-37551	13.607	-63	-13246	4.862	$\overline{WS_n}$
K25_F04	Z	-55	-3156	1.144	86	-3476	1.314	-120	-4562	1.639	190	-2907	1.142	Z
Σ	WO	1611245	1606310	1.820	1605835	1515948	33.150	1666759	1472142	71.774	1629678	1546952	30.509	WO
05	WS_n	-470	-89250	32.474	-284	-26813	9.704	-625	-62326	22.569	-595	-61670	22.340	$\overline{WS_n}$
K30_F05	Z	-24	-6762	2.465	-106	-4317	1.541	-365	-5088	1.728	-159	-4129	1.452	Z
\mathcal{K}	WO	1937631	1689280	90.842	1927256	1767732	58.351	1971345	1655500	115.530	2044985	1749104	108.228	WO
.05	WS_n	-968	-134787	48.814	-175	-124334	45.291	-696	-142156	51.602	-365	-132965	48.370	WS_n
K35_F05	Z	-561	-8363	2.846	57	-6597	2.427	-273	-5479	1.899	-158	-4322	1.519	Z
\aleph	WO	2121506	1819684	110.099	2148979	1785340	132.648	2252157	1659594	216.155	2162483	1690788	172.065	WO
		Н	ILP	Deviation (no. of dls.)	Н	ILP	Deviation (no. of dls.)	Н	ILP	Deviation (no. of dls.)	Н	ILP	Deviation (no. of dls.)	

Results (2/2)

- Linear solver executed for 6h on 16 threads
 - Effectively 6x longer execution
- Execution was not extended for the heuristic algorithm

CF	=	50%
----	---	-----

		Н	ILP	Deviation
				(no. of dls.)
03	WS_n	-1357	-1653	0.10
K15_F03	Z	-545	-545	0.00
K1	WO	833730	830704	1.07
.040	WS_n	-978	-4868	1.44
K20_F04	Z	-433	-2174	0.65
K 2	WO	1133633	1142120	-3.15
0,00	WS_n	0	-124	0.05
K25_F04	Z	161	-124	0.11
K 2	WO	1427212	1507580	-29.64
0.05	WS_n	0	-37635	13.77
K30_F05	Z	12	-4960	1.82
K 3	WO	2162213	2041240	44.25
0.0	WS_n	-378	-16843	6.01
K35_F05	Z	-244	-4000	1.37
K 3	WO	2031193	1888430	52.08

Negative Water Surplus (CF = 50%)

Execution time

- Runs in under 5 minutes
- Uses under 10 MB of RAM
- Executable has 440 KB

Next Steps

Publish an article

Co-authored with prof. Nina Skorin-Kapov

Present the results

Spanish Ministry of Development (MITMA)

References

[1] K. T. Weber and R. Yadav, "Spatiotemporal Trends in Wildfires across the Western United States (1950-2019)," *Remote Sensing*, vol. 12, no. 18, 2020.

[2] Viking Air, "Viking's Aerial Firefighter – Firefighting Technique." https://aerialfirefighter.vikingair.com/firefighting/firefighting-technique. Accessed on: 2022-06-18.

Thank you!

github.com/LMesaric/MSc-Thesis-FER-2022