Práctica 14: Cadenas de Markov

Probabilidad Aplicada y Simulación Estocástica

I.I.M.A.S.

U.N.A.M.

Martínez Ostoa Néstor Iván LCD32

14 de enero del 2021

1 Introducción

La cadena de Markov que se trabajará en esta práctica son las urnas de Ehrenfest. Sean A y B dos urnas dentro de las cuales se encuentran distribuidas un total de N bolas de acuerdo a cierta configuración inicial, por ejemplo, la urna A hay i bolas y en la urna B hay Ni bolas. En cada unidad de tiempo se escoge una bola al azar y se cambia de urna. Para tal efecto puede considerarse que las bolas se encuentran numeradas y que se escoge un n numero al azar, se busca la bola con ese n numero y se cambia de urna.

Sea X_n el número de bolas en la urna A al tiempo n, entonces la colección $\{X_n : n = 0, 1, \ldots\}$ constituye una cadena de Markov con espacio de estados finito $\{0, 1, \ldots, N\}$. Este modelo fue propuesto por Ehrenfest para describir el intercambio aleatorio de moléculas en dos regiones separadas por una membrana porosa.

2 Ejercicios

2.1 Escriba todos los estados de la Cadena de Markov

Estado 3: X₋8

Estado 6:
$$X_{-5}$$
 ['o', 'o', 'o', 'o', 'o']

Estado 7:
$$X_{-4}$$
 ['o', 'o', 'o', 'o']

2.2 Escriba la matriz de transición (y explique claramente de dónde viene la expresión)

Si tenemos N = 10:

$$P_{0,1} = 1$$

 $P_{10,9} = 1$

Para i = 1, ..., 9:

$$P_{i,j} \begin{cases} (10-i)/10 & \text{si } j=i+1, \\ i/10 & \text{si } j=i-1, \\ 0 & \text{en otro caso} \end{cases}$$

Por lo que nos queda la siguiente matriz de transición:

2.3 A partir de este ejercicio elige un N y déjalo fijo. Haga un programa que simule y grafique la trayectoria del proceso: Empieza inicialmente como una distribución inicial π_0 , y simula la trayectoria X_0, X_1, \ldots, X_n hasta un tiempo n dado por el usuario

Figura 1: Urna de Ehrenfest hasta un tiempo n

2.4 Haga otro programa que simule la trayectoria del proceso: Empieza inicialmente con una distribución inicial π_0 , y simula la trayectoria $X_0, X_1, ... X_T$ hasta un tiempo aleatorio T, definido como la primera vez que el proceso toma el estado fijo i_0 (el estado i_0 está dado por el usuario). Úsalo para contestar las preguntas siguientes

Figura 2: Urna de Ehrenfest hasta un tiempo aleatorio 100

Figura 3: Urna de Ehrenfest hasta un tiempo aleatorio 185

2.5 Dado que el proceso empezó en 0, ¿Cuánto tarda en promedio en llegar al estado $\lfloor \frac{N}{2} \rfloor$?

En promedio para llegar a $\frac{N}{2}=50,$ toma un tiempo de 165 segundos:

Figura 4: Urna de Ehrenfest desde 0 hasta $\frac{N}{2}=50$

2.6 Dado que el proceso empezó en 0, ¿Cuánto tarda en promedio en llegar al estado N?

En promedio para llegar a N=100, toma un tiempo de 259.44 segundos:

Figura 5: Urna de Ehrenfest desde 0 hasta = 100

2.7 Dado que el proceso empezó en N, ¿cuánto tiempo tarda en promedio en llegar al estado $\lfloor \frac{N}{2} \rfloor$?

El proceso empezó en N=100y tomó en promedio 154.324 iteraciones para llegar a $\frac{N}{2}=50$

Figura 6: Urna de Ehrenfest desdeN=100hasta $\frac{N}{2}=50$

2.8 Dado que el proceso empezó en N, ¿cuánto tiempo tarda en promedio en llegar al estado 0?

El proceso empezó en N=100 y tomó en promedio 2322.656 iteraciones para llegar a 0

Figura 7: Urna de Ehrenfest desde ${\cal N}=100$ hasta 0

2.9 Dado n muy grande, calcule la densidad de probabilidades de la variable aleatoria X_n (aproxime por un histograma y después conjeture una densidad conocida con sus parámetros)

Para un n = 100:

Figura 8: Histograma para n = 100

Lo que podemos observar que se comporta con una distribución uniforme.

2.10 ¿Qué observas en los resultados de las preguntas 2,5-2,8?

Lo que se observa es que el tiempo promedio mínimo ocurre para los casos en donde empecemos ya sea en 0 o en N y queramos llegar a $\lfloor \frac{N}{2} \rfloor$. Por otro lado, el tiempo promedio más grande ocurre cuando empecemos en un estado N y queramos llegar a un estado 0, es decir, esperar que la urna A se vacíe por completo. Y en efecto, esperamos que esta sea la que toma más tiempo porque la probabilidad va disminuyendo conforme una bola pasa de la urna A a la urna B.

Referencias

[1] RINCÓN, L. Introducción a los Procesos Estocásticos. México: Las prensas de ciencias. 2012