CHAPTER 6 SEQUENTIAL LOGIC

INTRODUCTION

Combinational Circuits: A circuit whose output, at any instant of time are dependent upon the input present at that time.

i.e. Half Adder, Full Adder

Sequential Circuits: A circuit whose output depends not only on the present inputs but also on the past history of inputs.

i.e. Flipflop

- The memory element is devices capable of storing binary information within them.
- The input is provided by external input.
- These inputs, together with the present state of the memory elements, determine the binary value at the Output terminal as well as the condition for changing the state in the memory elements.

Types of Sequential Circuits:

- **Synchronous Sequential Circuit:** is a system whose behavior can be defined from the knowledge of its signals at discrete instant of time.
- **Asynchronous Sequential Circuit:** is a system whose behavior depends upon the order in which its input signals change and can be affected at any instant of time.
- Clocked Sequential Circuit: Synchronous Sequential Circuits that use clock pulses in the inputs of memory elements are called Clocked Sequential Circuit.

FlipFlops:

- The memory elements used in sequential circuits are called as FlipFlops.
- These circuits are binary cells capable of storing one bit of information.
- A FlipFlop has two outputs, one for the normal value and one for the complement value of the bit stored in it.

- FlipFlop circuit can be constructed from two NAND gates or two NOR gates.
- The cross-coupled connection from the output of one gate to the input of the other gate constitutes a feedback path.
- Each FlipFlop has two outputs, Q and Q', and two inputs SET and RESET.
- This type of FlipFlop is called DIRECT COUPLED RS FLIPFLOPS or SR LATCH.

S	R	Q	Q'	
1 1 0 1 0	0 1 1 1 0	1	0	(after $S = 1$, $R = 0$) (after $S = 0$, $R = 1$) (forbidden)
		-	_	(10101000)

(b) Function table

СР	S	R	Next state of Q
0 1 1 1 1	X 0 0 1	X 0 1 0	No change No change Q = 0; reset state Q = 1; set state Indeterminate

(b) Function table

SR latch with control input

D FLIP-FLOP

JK FLIP-FLOP

Q	J	K	Q(t+1)
0	0	0	0
0 0	0	1	0
	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Characteristic table

T FLIP FLOP

$\frac{Q}{0}$	T	Q(t+1)
0	0	0
0	1	1
1	0	1
1	l	0

Characteristic table

TRIGGERING OF FLIP FLOPS

MASTER SLAVE FLIP-FLOP

MASTER SLAVE FLIP-FLOP

EDGE-TRIGGERED FLIP-FLOP

- CP = 0 => S & R = 1 => STEADY STATE OUTPUT
- D = 0 & CP = 1 => S = 1, R = 0 => Q = 0
- $D = 1 \& CP = 1 \Rightarrow S = 0, R = 1 \Rightarrow Q = 1$

Graphic Symbols

Analysis of Clocked Sequential Circuit

State - Table

State Table for the Circuit

Present State		Input	Next State		Output	
A	В	X	Α	В	У	
0	0	0	0	0	0	
0	0	1	0	I	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
l	0	1]	0	0	
1	1	0	0	0	1	
1	1	1	1	0	O	

State - Table

Second Form of the State Table

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
AB	AB	AB	у	у	
00	00	01	0	0	
01	00	11	1	0	
10	00	10	1	0	
11	00	10	1	0	

State Diagram

Flip – Flop Input Function

$$JA = BC'x + B'Cx'$$

$$KA = B + y$$

$$y = (A + B)x'$$

Flip – Flop Characteristic Tables

Flip-Flop Characteristic Tables

	JK Flip-	Flop
J K	Q(t+1)	
0 0	Q(t)	No change
0 1	0	Reset
1 0	1	Set
1 1	Q'(t)	Complement

	RS Flip	-Flop
S R	Q(t+1)	
0 0	Q(t)	No change
0 1	0	Reset
1 0	1	Set
1 1	?	Unpredictable

	D Flip-Flop	
D	Q(t + 1)	
0	0	Reset
1	1	Set
	l · · -	

	T Flip-Flop								
Τ	Q(t+1)								
0	Q(t)	No change							
1	Q'(t)	Complement							

Sequential Circuit With J-K Flip-Flop

$$JA = B$$
 $JB = x'$
 $KA = Bx'$ $KB = A'x + Ax' = A \oplus x$

Sequential Circuit With J-K Flip-Flop

State Table for Sequential Circuit with JK flip-Flops

Present state		Next Input state		Flip-flop inputs			rts	
Α	В	X	Α	В	JA	KA	JB	KB
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

Sequential Circuit With J-K Flip-Flop

Mealy & Moore Models

Mealy Model

- The outputs are functions of both the Present state& Inputs
- ➤ In figure 6.16, output Y is function of both input X & the present state of A & B
- The outputs may change if the inputs change during the clock pulse period.

Mealy & Moore Models

Moore Model

- > The outputs are a function of the **Present state only**
- ➤ In figure 6.19, the output is taken from flipflop and are a function of present state only
- ➤ The outputs of sequential circuit are synchronized with the clock because they depend on only flipflop outputs that are synchronized with the clock

State Table

	Next	State	Output		
Present State	x = 0	x = 1	<i>x</i> = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
C	а	d_{\perp}	0	0	
đ	e	f '	0	1	
e	а	f	0	1	
f	8.	f	0	1	
g	a	f	0	1	

Reducing the State Table

	Next	State	Output	
Present State	x = 0	x = 1	x = 0	<i>x</i> = 1
а	а	ь	0	0
b	c	d	0	0
c	а	d	0	0
d	e	fd	0	1
e	а	fd	. 0	1
1	ģе	f	0	1
ģ	a	f	0	1

Reduced State Table

	Next state		Output	
Present State	x = 0		<i>x</i> = 0	x = 1
а	а	b	0	0
\boldsymbol{b}	c	d	0	0
c	a	d	0	0
d	e	d	0	1
e	a	d	0	1

Three Possible Binary State Assignments

State	Assignment 1	Assignment 2	Assignment 3
a	001	000	000
b	010	010	100
C	011	011	010
d	100	101	101
e	101	111	011

Reduced State Table with Binary Assignment 1

	Next State		Output	
Present state	x = 0	x = 1	x = 0	x = 1
001	001	010	0	0
010	011	100	0	0
011	001	100	0	0
100	101	100	0	1
101	001	100	0	1

Flip Flop Excitation Tables

Flip-Flop Excitation Tables

Q(t)	O(t+1)	S	R	Q(t)	Q(t + 1)	J	κ
O	0	0	X	0	0	0	X
0	1	1	0	0	1	1	\boldsymbol{X}
1	0	0	1	1	0	X	1
1	1	X	0	1	1	X	0
		<u> </u>				L	

(a) RS (b) JK

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

O(t)	Q(t + 1)	T
0	0	0
0	1	1
1	0	1
1	1	0

(c) D

(b) *T*

Design Procedure

- 1. The word description of the circuit behavior is stated. This may be accompanied by a state diagram, a timing diagram, or other pertinent information.
- 2. From the given information about the circuit, obtain the state table.
- 3. The number of states may be reduced by state-reduction methods if the sequential circuit can be characterized by input—output relationships independent of the number of states.
- 4. Assign binary values to each state if the state table obtained in step 2 or 3 contains letter symbols.
- 5. Determine the number of flip-flops needed and assign a letter symbol to each.
- **6.** Choose the type of flip-flop to be used.
- 7. From the state table, derive the circuit excitation and output tables.
- **8.** Using the map or any other simplification method, derive the circuit output functions and the flip-flop input functions.
- 9. Draw the logic diagram.

Circuit Design Using JK Flip Flop

State Table

			Next	State		
Present State		X =	= 0	<i>x</i> =	x = 1	
Α	В	А	В	<i>A</i>	В	
0	0	0	0	0	1	
0	i	1	0	0	1	
1	0	1	0	1	1	
1	1	1	1	0	0	

Excitation Table

Inputs of Combinational Circuit				Cor	Outp obinatio	uts of onal Cir	rcuit	
Pres Stat	sent e	Input	Next	State		flip-Flo	p Input	Ś
A	В	Х	А	В	JA	KA	JB	КВ
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	j	X
1	1	0	1	1	X	0	X	0
ŀ	1	1	0	0	X	1	X	J

X	X	X	X
		1	

$$Bx'$$
 $KA = Bx$

1	X	X
1	X	Χ

$$JB = x$$

$$KB = (A \oplus x)'$$

$$DA(A, B, x) = \Sigma (2, 4, 5, 6)$$

 $DB(A, B, x) = \Sigma (1, 3, 5, 6)$
 $y(A, B, x) = \Sigma (1, 5)$

State Table for Design with D Flip-Flops

Present State		Input	Nex Stat		Output		
A	В	<u> </u>	Α	В	УУ		
0	0	0	0	0	0		
o	O	1	O	1	1		
O	1	0	1	0	0		
O	1	1	O	1	0		
1	O	O	1	0	o		
1	O	1	1	1	1		
1	1	0	1	1	0		
1	1	1	O	O	0		

Design With Unused States Using SR Flip Flop

State Table with Unused States

Preser State	nt	Input		lexi tate			Flip	-Flop	o Inp	uts		Output
A B	C	<u> </u>	A	В	C	5.4	RA	SB	RB	SC	RC`	y
0 0	1	0	0	0	1	0	X	0	X	X	0	0
0 0	1	1	0	1	0	0	X	1	0	0	1	0
0 1	0	0	0	1	1	0	X	X	0	1	0	0
0 1	0	1	1	0	0	1	0	0	1	0	X	0
0 1	1	0	0	0	1	0	X	0	1	X	0	0
0 1	1	1	1	0	0	1	0	0	1	0	1	0
1 0	0	0	1	0	1	X	0	0	X	1	0	0
1 0	0	1	1	0	0	X	0	0	X	0	X	1
1 0	1	0	0	0	1	0	1	0	X	X	0	0
1 0	l	1	1	0	0	X	0	0	X	0	1	1

Design With Unused States Using SR Flip Flop

X	X	X	X
X			X
X	X	X	[X]
			1

X	X	Ī	
X			
X	X	X	Х

$$RA = Cx^{\prime}$$

X	Х		X
=			X
X	Ж	X	X
			X

$$SB = A^{\dagger}B^{\dagger}X$$

Х	X		
	X	1	
Ж	X	X	Ж
	\mathcal{X}		

$$RB = BC + Bx$$

$$SC=X'$$

$$RC = x$$

$$y = Ax$$

Design With Unused States Using SR Flip Flop

Excitation Table for 3-Bit Counter

Pres	ent :	State	Ne	xt St	ate	Flip-Flop In		puts
A_{λ}	A;	Au	A)	Αı	A_0	TA ₂	TA	TAo
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	I	1
0	1	0	0	1	1	0	0	1
O	1	1	1	0	0	1	1	1
1	()	0	1	0	1	O	0	1
l	0	1	Į.	I	0	0	İ	Ē
1	ŀ	0	1	Ī	ŧ	0	Œ	1
1	1	1	0	O	0	1	1	1

Counter for Non-Binary Sequence

Excitation Table for Counter

Present State			Next State			Flip-Flop Inputs					
Α	В	C	Α	В	C	JA	KA	JB	KB	JC	KC
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	0	0	X	1	X	X	1
0	1	0	1	0	0	1	X	X	1	0	X
1	0	0	1	0	1	X	0	0	X	1	X
1	0	1	1	1	0	X	0	1	X	X	1
1	1	0	0	0	0	X	1	X	1	0	X

Counter for Non-Binary Sequence

