Exam Topics

Exam #1

- machine learning overview
 - features, training data, instances, attributes, test data, class label, target attribute, loss functions
 - supervised, unsupervised, reinforcement
 - regression, classification
 - pros and cons of each algorithm
- o decision tree
 - entropy and information gain (be able to calculate, can use calculator)
 - be able to generate tree
 - categorical features, continuous features, inconclusive leaves
 - rule representation of tree, overfit, underfit, pruning, Occam's razor
- Bayes optimal classifier
 - representation bias, inductive bias, no free lunch theorem
 - parameters and hyperparameters, train/test/validation
 - reasons classifier may not perform well, accuracy, error
- o geometric algorithms
 - k nearest neighbors, distance function, normalization, inductive bias
 - decision boundaries, boundaries for specific classifiers
 - features as dimensions, one hot encoding
- o k means clustering
 - algorithm, iterative refinement, convergence
 - computational complexity, optimality
 - sum of squared error, elbow method, the curse of dimensionality
 - variations on clustering, density, hierarchical
- o perceptron
 - algorithm, weighted sum of inputs, neuron, activation function, bias term
 - impact of weights, training, modify weights
 - number of iterations, order of training instances, overfit, convergence
 - voting perceptron, averaged perceptron
 - decision boundary, linear separability
 - data preparation, imbalanced class distribution

• Exam #2

- o SVMs
 - support vector machines, hard margin, soft margin
 - slack parameters, support vectors, kernels
- evaluation
 - performance measures, TP, FP, TN, FN, accuracy
 - precision, recall, TP rate, FP rate, PRC, ROC, AUC, confusion matrix
 - macro averaging, micro averaging
 - paired t-test, calculate p-value from t-test, statistical significance
 - confidence intervals, resampling, bootstrapping
- o multi-class classification
 - one vs. all, all vs. all, confusion matrix
- ranking
 - input, output, preference pairs, bipartite
 - loss functions, Kemeny distance measure
 - weighted inputs, probability distribution over class values
 - naive Rank train/test, ranking classifier with cost function
- o linear regression
 - classification vs. regression
 - gradient descent, learning rate, local minimum
 - mean squared error loss function, derivative
- o regularization
 - relationship between margin and loss, surrogate loss functions
 - role of regularization, types of regularization
 - p-norm, l1 norm, l2 norm, infinity norm
 - lower values of p push toward sparse vectors
 - higher values sensitive to outliers
- o bias
 - bias errors
 - estimation error, approximation error
 - bias and variance, high and low bias and variance
 - regularization and role in bias-variance trade-off
- o naïve Bayes classifier
 - probability, axioms of probability, conditional probability
 - Bayes' rule, naive Bayes assumption and motivation
 - naive Bayes classifier, handle many features, 0 values, continuous values
 - text mining, stop words, tf-idf
- logistic regression
 - classification, sigmoid function, log loss, loss function convexity
 - return probability of class

• Exam #3

- multi-layer neural networks
 - tanh and sigmoid activation functions and motivations
 - forward propagation to compute output
 - backward propagation to compute weights
 - inductive bias, hyperparameters and impact on underfitting, overfitting
- deep networks
 - RNN, CNN, autoencoder, variational autoencoder, GAN
 - convolution, softMax, pooling, dropout, ReLU, RNN
- o ensemble classifiers
 - voting, resampling, bagging, boosting, AdaBoost, random forest
 - ways to establish diversity
- o k means++
 - cluster initiation, furthest first, probabilistic selection of cluster means
 - theoretical guarantees
- dimensionality reduction
 - principal component analysis, principal components
 - projection error, variance, explanation of variance
 - selecting components, skree plot
- o overall
 - remember highlights of algorithms discussed throughout semester
 - be prepared to compare and contrast methods