PRBS

Ports:

Signal	In	Width	Description
	/Out		
Clk_50mhz	In	1	Input clock to the block of frequency 50MHz
rst	In	1	Reset
Ready_in	In	1	Signal to identify that input is ready
Data_in	In	1	Input data
Valid_out	Out	1	Signal to identify that output is valid
Data_out	Out	1	Output data

Block Diagram:

Timing and functionality:

- The handshaking signals are in phase with the input data
- No warmup cycles
- Total timing of the block = n cycles.

RTL:

Waveform:

Modulator

Ports:

Signal	In	Width	Description
	/Out		
Clk_50mhz	In	1	Input clock to the block of frequency 50MHz
Clk_100mhz	In	1	Input clock to the block of frequency 100MHz
rst	In	1	Reset
ready_in	In	1	Signal to identify that input is ready
Data_in	In	1	Input data
Valid_out	Out	1	Signal to identify that output is valid
Q	Out	16	Output data Q
I	Out	16	Output data I

Block Diagram:

Timing and functionality:

- Output frequency is double the input frequency.
- Output bits and handshaking signals is late by two cycles (smaller clock frequency) due to the serialization of the input bits.
- Thus, total timing of the block = n + 2 cycles, where n is the number of bits.

Wavefom:

RTL

Results:

F4 F4

Interleaver

Ports:

Signal	In	Width	Description
	/Out		
Clk_100mhz	In	1	Input clock to the block of frequency 100MHz
rst	In	1	Reset
Ready_in	In	1	Signal to identify that input is ready
Data_in	In	1	Input data
Valid_out	Out	1	Signal to identify that output is valid
Data_out	Out	1	Output data

Block Diagram:

Timing and functionality

- The data are made parallel, then the wires were permuted and serialized
- Delay of serialization = n, where n is the number of bits
- Delay of interleaving = 0, it just wires re-ordering
- Delay of serialization = 2, one cycle for loading and one cycle for shifting. Since, the input is parallel. Thus, there is no output warmup cycles wasted
- Total delay of the block = n+2

Waveform:

RTL:

1- Parallelization

- Serial in Parallel output shift register

2- Permuting

- Simple rewiring between registers

3- Serializing

- Parallel in Serial shift register

FEC

Ports:

Signal	In	Width	Description
	/Out		
Clk_50mhz	In	1	Input clock to the block of frequency 50MHz
Clk_100mhz	In	1	Input clock to the block of frequency 100MHz
reset	In	1	Reset
Data_in_valid	In	1	Signal to identify that input is ready
Data_in	In	1	Input data
Data_out_valid	Out	1	Signal to identify that output is valid
Data_out	Out	1	Output data

Block Diagram:

State Machine Diagram:

RTL:

Memory interface:

Timing and Functionality:

- 1- The data are received and processed in parallel then saved in dual-port RAM.
- 2- The output data is extracted from RAM after receiving and processing all the input bits.

Waveform:

PLL

Ports:

Signal	In /Out	Description
refclk	In	Reference clock of frequency 50MHz
reset	In	Reset
locked	Out	Identifies when the signal is valid
Outclk_0	Out	Signal to identify that output is valid
Outclk_1	Out	Output data

Block Diagram:

RTL:

Phase 2

Top Module

Ports:

Signal	In	Width	Description
	/Out		
Clk_50mhz	In	1	Input clock to the block of frequency 50MHz
Data_in	In	1	Input data
Ready_in	In	1	Signal to identify that input is ready
Rst	In	1	Reset
Valid_out	In	1	Signal to identify that output is valid
Q	Out	1	Output data
I	Out	1	Output data

Block Diagram:

RTL:

Timing and Functionality:

- 1- The data are processed in the four blocks
- 2- The output stream is valid and continuous as long as the input stream is ready and continuous.

Waveform:

