

JUHO VASTAPUU TERÄSRAKENTEISEN HALLIN PITUUSSUUNTAISTEN JÄYKIS-TERAKENTEIDEN OPTIMOINTI

Diplomityö

TkT Kristo Mela lähetetty tarkastukseen 6.6.2016.

TIIVISTELMÄ

JUHO VASTAPUU: Teräsrakenteisen hallin pituussuuntaisen jäykistysjärjestel-

män optimointi

Tampereen teknillinen yliopisto

Diplomityö, x sivua, x liitesivua

Joulukuu 2018

Rakennustekniikan diplomi-insinöörin tutkinto-ohjelma

Pääaine: Rakennesuunnittelu Tarkastaja: TkT Kristo Mela

Avainsanat:

ALKUSANAT

SISÄLLYSLUETTELO

1 Johdanto			1
	1.1	Tutkimuksen tausta	1
	1.2	Työn tavoitteet	1
	1.3	Työn rajaukset	1
2 Optimointi		zimointi	1
	2.1	Optimointitehtävän matemaattinen määrittely	1
	2.2	Optimointitehtävän luokittelu	4
	2.3	Rakenteiden optimointi	6
3	Teräshallin jäykistäminen		6
	3.1	Puristetun sauvan stabiliteetti EN 1993 mukaisesti	6
	3.2	Ristikon yläpaarteen tuenta hallin pituussuunnassa	8
	Viit	teet.	10

1 JOHDANTO

- 1.1 Tutkimuksen tausta
- 1.2 Työn tavoitteet
- 1.3 Työn rajaukset
- 2 OPTIMOINTI

2.1 Optimointitehtävän matemaattinen määrittely

Matemaattisella optimoinnilla tarkoitetaan prosessia, jolla löydetään jollekkin funktiolle paras mahdollinen arvo sille asetetut reunaehdot huomioiden. Asettamalla optimoitava kohde sekä halutut rajoite-ehdot matemaattiseen muotoon, voidaan optimoimalla löytää matemaattisin keinoin paras käypä ratkaisu. Käyvällä ratkaisulla tarkoitetaan ratkaisua, joka kuuluu annettujen rajoite-ehtojen joukkoon.

Matemaattisesti optimoinnissa on tavoitteena etsiä funktiolle käyvästä joukosta minimitai maksimiarvo. Optimointitekniikoita ja algoritmeja on kehitetty lukuisia ja kukin niistä soveltuu käytettäväksi eri tavalla eri optimointitehtäviin. Optimointi ja erilaisten optimoitimenetelmien tutkiminen on yksi matemaattisen operaatiotutkimuksen osa-alueista. Optimoinnista voidaan joissain yhteyksissä käyttää myös nimitystä matemaattinen ohjelmointi (mathematical programming), jolla viitataan matemaattisten algoritmien kehittämiseen ja ohjelmoimista optimointitarkoituksiin. (Rao 1999, s. 1)

Optimointitehtävä kirjoitetaan matemaattisesti seuraavanlaisessa muodossa.

Etsi
$$\mathbf{x} = \begin{cases} x_1 \\ x_2 \\ \vdots \\ x_n \end{cases}$$
 joka minimoi $f(\mathbf{x})$, siten että

$$g_i(\mathbf{x}) \le 0, \quad j = 1, 2, \cdots, m$$

 $h_j(\mathbf{x}) = 0, \quad j = 1, 2, \cdots, p$

$$(1)$$

missä \mathbf{x} on vektori, joka sisältää n-kappaletta suunnittelumuuttujia, $f(\mathbf{x})$ on tavoitefunktio, $g_i(\mathbf{x})$ ja $h_j(\mathbf{x})$ ovat rajoite-ehtoja. Rajoite-ehdot voivat olla joko epäyhtälötai yhtälömuotoisesti ilmoitettuja. Suunnittelumuuttujien lukumäärä (n) sekä rajoite-ehtojen lukumäärä (m ja/tai p) eivät ole riippuvaisia toisistaan. Tällaista optimointitehtävää kutsutaan rajoitetuksi optimointiongelmaksi. Optimointiongelman ei kuitenkaan tarvitse olla rajoitettu, vaan se voidaan ilmoittaa myös rajoittamattomana. Kaavassa (1) on esitetty optimointitehtävän standardimuotoinen asettelu (standard design optimization model). (Rao 1999, s. 6)

Vektori \mathbf{x} sisältää optimointitehtävän kaikki suunnittelumuuttujat (design variables). Muuttamalla jonkin suunnittelumuuttujan x_i arvoa, muuttuu myös tavoitefunktion $f(\mathbf{x})$ arvo. Suunnittelumuuttujista voidaan käyttää myös nimitystä optimointimuuttujat tai vapaat muuttujat, eli niiden arvoja voidaan muutella vapaasti kun haetaan tavoitefunktiolle arvoa. Toisistaan riippumattomien eli itsenäisten suunnittelumuuttujien lukumäärä on optimointiongelman vapausasteluku (design degree of freedom). Yleisesti ottaen suunnittelumuuttujien tulee olla toisistaan riippumattomia, mutta joissain tapauksissa niiden määrä voi olla ongelman vapausastelukua suurempi. Tämä on perusteltua esimerkiksi silloin, kun kohdefunktion määrittely pelkillä itsenäisillä suunnittelumuuttujilla olisi hankalaa. Jokaiselle suunnittelumuuttujalle täytyy myös pystyä asettamaan jokin numeerinen lähtöarvo, jotta optimointitehtävä pystytään suorittamaan.

Kohde- tai tavoitefunktio $f(\mathbf{x})$ (objective function) on optimointitehtävän matemaattinen muoto ilmoitettuna suunnittelumuuttujavektorin \mathbf{x} funktiona. Optimointitehtävän tavoitteena on joko minimoida tai maksimoida kohdefunktion arvo. Mikäli optimointitehtävässä on useampi kuin yksi kohdefunktio, käytetään tehtävästä nimitystä monitavoiteoptimointi (multiobjective design optimization). Tällöin kohdefunktio ilmaistaan matemaattisesti kohdefunktioiden joukkona

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) & f_2(\mathbf{x}) & \cdots & f_p(\mathbf{x}) \end{bmatrix}, \tag{2}$$

jossa jokainen kohdefunktio koostuu kuitenkin samasta suunnittelumuuttujavektorista \mathbf{x} .

Optimoitavalle kohteelle asetettavat rajoite-ehdot esitetään rajoitefunktioina $g_i(\mathbf{x})$ ja $h_j(\mathbf{x})$. Optimointialgoritmi ratkaisee optimointitehtävän siten, että kohdefunktion arvo toteuttaa rajoite-ehdot. Rajoite-ehtojen muodostamaa joukkoa kutsutaan täten optimointiongelman käyväksi joukoksi (feasible region). Mitä tahansa käyvässä joukossa olevaa kohdefunktion arvoa kutsutaan käyväksi ratkaisuksi (feasible

design) huolimatta siitä onko kyseessä optimiratkaisu. Kaksiuloitteisessa tapauksessa käypää joukkoa voidaan havainnollistaa piirtämällä rajoitefunktioiden käyrät koordinaatistoon. Käypä joukko muodostuu näiden käyrien rajoittamana alueena. Käyvän joukon negaatiota kutsutaan ei-käyväksi joukoksi (unfeasible region). Sekä tavoitefunktion $f(\mathbf{x})$, että rajoite-ehtojen $g_i(\mathbf{x})$ ja $h_j(\mathbf{x})$ on oltava toisitaan joko implisiittisesti tai eksplisiittisesti riippuvia. Mikäli riippuvuutta funktioiden välillä ei ole, ei optimointitehtävää voi muodostaa eikä varsinaista optimointiongelmaa voi edes osoittaa. (Arora 2004, s. 43)

Kuten optimointitehtävän määrittelevä kaava (1) osoittaa, optimointiongelmalle voidaan asettaa rajoite-ehtoja sekä yhtälö- että epäyhtälömuodossa. Epäyhtälörajoitteita kutsutaan käypään joukkoon nähden toispuoleisiksi rajoite-ehdoiksi (unilateral constraints tai one-sided constraints). Epäyhtälörajoitteiden rajoittama käypä joukko on täten paljon laajempi kun verrataan yhtälörajoitteista käypää joukkoa. Esimerkiksi kakisuloitteisessa tapauksessa yhtälörajoite tarkoittaisi, että käypä ratkaisu löytyisi rajoitefunktion käyrältä. (Arora 2004, s. 16–18)

Yhtälömuotoisten rajoite-ehtojen määrän tulee olla maksimissaan suunnittelumuuttujien määrä, toisin sanottuna optimointitehtävän kaavan (1) tulee toteuttaa ehto

$$p \le n. \tag{3}$$

Tapaus, jossa yhtälömuotoisia rajoite-ehtoja on annettuja suunnittelumuuttujia enemmän, on kyseessä ylimääritetty yhtälöryhmä (overdetermined system). Tällaisessa tapauksessa rajoite-ehtojen joukossa on ylimääräisiä eli redundatteja ehtoja, jotka toteuttavat suoraan jonkun muun rajoite-ehdon, eikä niiden ilmoittaminen täten ole tarpeellista. Triviaalitapauksessa jossa suunnittelumuuttujien määrä ja yhtälömuotoisten rajoite-ehtojen määrä on yhtäsuuri, löytyy tehtävälle ratkaisu analyyttisin keinoin eikä optimointi ole tarpeellista. Kaksiuloitteisessa tapauksessa tämä tarkoittaisi kahden käyrän leikkauspistettä.

Standardimuotoisessa optimointitehtävässä epäyhtälörajoitteet ilmoitetaan aina kaavan (1) osoittamassa muodossa, eli siten että rajoite-ehto on pienempi tai yhtäsuuri kuin nolla (≤ 0). Tästä huolimatta voidaan optimointitehtävässä käsitellä myös \geq -tyyppisiä rajoite-ehtoja. Standardimuotoista tehtävää aseteltaessa nämä voidaan muuttaa \leq -muotoon yksinkertaisesti kertomalla ehto luvulla -1. Epäyhtälömuotoisten rajoite-ehtojen määrää ei ole rajoitettu, toisin kuin yhtälömuotoiset rajoitteet kaavassa (3). Niiden määrää ei ole siis rajoitettu. (Arora 2004, s. 43)

2.2 Optimointitehtävän luokittelu

Tähän alustus

- 1. Rajoitetuksi tai ei-rajoitetuksi
- 2. Staattiseksi tai dynaamiseksi
- 3. Kohdefunktion tai rajoite-ehtojen matemaattisen muodon perusteella
- 4. Säätöongelmaksi
- 5. Diskreetiksi tai jatkuvaksi tehtäväksi
- 6. Deterministiseksi tai stokastiseksi tehtäväksi
- 7. Kohdefunktion separoituvuuden perusteella
- 8. Kohdefunktioiden määrän perusteella

(Rao 1999)

Rajoitefunktioiden perusteella tehtävä voidaan luokitella joko rajoitetuksi- tai eirajoitetuksi tehtäväksi. Mikäli tehtävällä on yksikin rajoitefunktio, on kyseessä rajoitettu optimointitehtävä. Luokittelua voidaan tarkentaa edelleen osittain rajoitetuksi tai täysin suljetuksi systeemiksi. Suljetulla systeemillä tarkoitetaan tilannetta, jossa rajoitefunktiot muodostavat äärellisen kokoisen käyvän joukon.

Suunnittelumuuttujien perusteella tehtävä voidaan jakaa staattiseksi tai dynaamiseksi tehtäväksi. Staattisessa tai parametrisessa tehtävässä kohdefunktio on määritelty suunnittelumuuttujien suhteessa ja tehtävänä on ratkaista suunnittelumuuttujat. Kaavan (1) määrittelyssä kyseessä on staattinen optimointitehtävä, jossa siis etsitään suunnittelumuuttujille arvo siten, että se minimoi kohdefunktion. Dynaamisessa tehtävässä kohdefunktio puolestaan muodostuu funktioista, jotka on määritelty jonkun tietyn parametrin suhteen, kuten esimerkiksi seuraavasti.

Etsi
$$\mathbf{x}(t) = \begin{cases} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{cases}$$
 joka minimoi $f[\mathbf{x}(t)]$. (4)

Dynaamisessa tehtävässä etsitään siis kohdefunktioon sijoitettavien suunnittelumuuttujien sijasta funktiot, jotka esitetään jonkin parametrin suhteen. (Rao 1999, s. 15)

Optimointitehtävä luokitellaan myös kohdefunktion tai rajoite-ehtojen matemaattisen muodon perusteella. Tämä luokittelutapa on erityisen kriittinen optimointitehtävän ratkaisun kannalta, sillä monet optimointialgoritmit toimivat vain tietyn-

tyyppisille optimointitehtäville juurikin kohdefunktioiden tai rajoite-ehtojen matemaattisen muodon mukaan. Yksi yleisin optimointitehtävän muoto on epälineaarinen ongelma (nonlinear programming problem, NLP). Optimointitehtävä on epälineaarinen mikäli sen kohdefunktio tai yksikin rajoitefunktioista on muodoltaan epälineaarinen. Optimoinnissa muodostuvat ongelmat ovat hyvin usein muodoltaan epälineaarisia ja matematiikan osa-aluetta, joka tutkii epälineaaristen optimointiongelmien ratkaisua, kutsutaan epälineaariseksi matemaattiseksi ohjelmoinniksi (nonlinear programming). Muita optimoinnin tehtävätyyppejä ovat esimerkiksi geometrinen ja kvadraattinen ongelma. (Rao 1999, s. 19)

Säätöongelmassa tai säätöoptimointitehtävässä (optimal control) on kyse tehtävästä, joka jakautuu useampiin osioihin tai sekvensseihin . Jokainen sekvenssi kehittyy edellisestään määritetyllä tavalla. Tehtävän määrittelyyn käytetään suunnittelumuuttujien lisäksi tilamuuttujia (state variables). Säätöoptimointitehtävässä suunnittelumuuttujat määrittävät systeemin kussakin sekvenssissä sekä tavan, jolla systeemi siirtyy seuraavaan sekvenssiin. Tilamuuttujat puolestaan määrittävät kussakin sekvenssissä systeemin tilan, eli tutkittavan ongelman käyttäytymisen kussakin sekvenssissä. Säätöongelmassa tehtävänä on löytää suunnittelu- tai tilamuuttujille sellaiset arvot kussakin eri sekvenssissä, että kohdefunktioiden summa eri sekvensseissä saadaan minimoitua rajoite-ehdot huomoiden. (Rao 1999, s. 19) Tämänkaltaiset tehtävät ovat tavallisia sellaisissa teknisissä sovelluksissa, joiden tila muuttuu jatkuvasti ja tilan ylläpitoon vaaditaan resursseja. Yksi yleinen säätöoptimointitehtäviä soveltava tekniikan ala on säätötekniikka.

Suunnittelumuuttujien saadessa vain diskreettejä arvoja, käytetään optimointitehtävästä nimitystä diskreetti tai ei-jatkuva tehtävä. Tämän kaltainen tehtävä voidaan yleistää kokonaislukuoptimoinniksi (integer programming problem). Tehtävän vastakohta on jatkuva tehtävä, jossa siis sallitaan kaikille suunnittelumuuttujille reaalilukuarvo (real-valued programming problem). (Rao 1999, s. 28) Insinööritieteissä suunnittelumuuttujat valitaan yleensä ennalta määritellystä joukosta käytössä olevien resurssien mukaan, eli käsiteltävät optimointitehtävät ovat usein diskreettejä.

Suunnittelumuuttujat tai kohdefunktion parametrit voivat saada määriteltyjen eli deterministisien arvojen sijasta todennäköisyyteen perustuvia arvoja. Tällöin optimointitehtävä on stokastinen eli siinä käsitellään determinististen muuttujien sijasta satunnaismuuttujia. (Rao 1999, s. 29)

tarkista oikea suc menkielinen term

tarkista termin of keellisuus

tähän lis

2.3 Rakenteiden optimointi

3 TERÄSHALLIN JÄYKISTÄMINEN

3.1 Puristetun sauvan stabiliteetti EN 1993 mukaisesti

Puristetun sauvan stabiliteetti perustuu Eulerin nurjahdukseen, jossa ideaalisuoraa homogeenisesta materiaalista koostuvaa hoikkaa pilaria kuormitetaan keskeisesti. Voimaa, joka aiheuttaa pilarin nurjahduksen kutsutaan nurjahduskuormaksi tai kriittiseksi voimaksi ja se määritellään kaavalla

$$N_{cr} = \frac{\pi^2 EI}{L^2},\tag{5}$$

missä E on materiaalin kimmokerroin, I on poikkileikkauksen neliömomentti tarkasteltavan akselin ympäri ja L on pilarin kyseeseen tulevaa nurjahdusmuotoa vastaava nurjahduspituus.

Puristetun sauvan todellisen aksiaalisen puristuskapasiteetin määrittämiseksi on Eulerin teoreettisen nurjahduskapasiteetin lisäksi huomioitava epätarkkuustekijät, joita ovat esimerkiksi poikkeama ideaalisuorasta rakenteesta, materiaalin epälineaarisuus tai materiaalin muokkaamisen seurauksena syntyneet jäännösjännitykset. Näiden tekijöiden huomioiminen vaatii poikkeuksetta epälineaarista analyysia ja niiden laskentaan on historian aikana kehitetty laskentakaavoja, jotka perustuvat niin kokeelliseen tutkimukseen, kuin erilaisiin lujuusopin teorioihin. (Ziemian 2010, s. 27) Teräsrakenteiden suunnittelustandardi (SFS-EN 1993-1-1)esittää näiden poikkeamien huomioon ottamiseksi viisi (5) erilaista epätarkkuustekijää rakenteen valmistustavasta ja profiilin muodosta riippuen. Nämä epätarkkuustekijät on esitetty taulukossa (1).

Taulukko 1. Nurjahduskäyrien epätarkkuustekijät standardin (SFS-EN 1993-1-1) mukaan.

Nurjahduskäyrä
$$a_0$$
 a b c d Epätarkkuustekijä α 0,13 0,21 0,34 0,49 0,76

Epätarkkuustekijöiden perusteella standardiin on määritetty ja kuvaajin esitetty nurjahduskäyrät, jotka esittävät puristuskapasiteetin laskentaa varten tarvittavan pienennystekijän χ rakenteen hoikkuuden λ funktiona. Kutakin epätarkkuustekijää vastaa oma nurjahduskäyränsä, ja ne on esitetty kuvaajassa (1).

jotain nu jahdusm doista y: tähän.

viittaus kuntoon!

Kuva 1. SFS-EN 1993-1-1 mukaiset nurjahduskäyrät verrattuna Eulerin nurjahduskeen.

Standardin mukaan rakenteen nurjahduskapasiteetin $N_{b,Rd}$ ja plastisen puristuskapasiteetin $N_{pl,Rd}$ suhdetta kuvaa nurjahduksen pienennystekijä Φ , joka määritetään kaavalla

$$\chi = \frac{N_{b,Rd}}{N_{pl,Rd}} = \frac{1}{\Phi + \sqrt{\Phi^2 - \lambda^2}},\tag{6}$$

missä λ on poikkileikkauksen muunnettu hoikkuus ja χ epätarkkuuden huomioon ottava kerroin. Muunnettu hoikkuus määritetään kaavalla

$$\lambda = \sqrt{\frac{Af_y}{N_{cr}}},\tag{7}$$

missä N_{cr} Eulerin nurjahdusvoima (kaava 5), A on rakenteen poikkileikkauksen pinta-ala ja f_y materiaalin myötölujuus. Mikäli rakenteen muunnettu hoikkuus täyttää ehdon $\lambda \leq 0$, 2 ei nurjahdusta tarvitse standardin mukaan ottaa huomioon (kohta 6.3.1.2(4)). Edelleen kaavan (6) termi Φ määritellään kaavalla

$$\Phi = \frac{1 + \alpha(\lambda - 0.2) + \lambda^2}{2},\tag{8}$$

symbolit käyrän la beleihin missä α on aiemmin mainuttu rakenteen muodosta ja valmistustavasta riippuva epätarkkuustekijä.

Tässä diplomityössä käsiteltävät profiilit rajautuvat lujuusluokan S355 -rakenneputkiin, joiden nurjahduskäyrä on kylmämuovattuna c ($\alpha = 0, 49$) ja kuumavalssattuna a ($\alpha = 0, 21$).

3.2 Ristikon yläpaarteen tuenta hallin pituussuunnassa

Teräsristikon puristettu yläpaarre on tuettava ristikon tasoon nähden poikittaisessa suunnassa rakennuksen pituussuuntaisin tukirakentein. Tukirakenteet on kuvattu ristikon tuentaa esittävässä kuvassa (2). Näistä tukirakenteista käytetään nimitystä kattositeet tai ristikon (nurjahdus)siteet ja ne kuuluvat osana rakennuksen jäykistysjärjestelmää. (Kaitila 2010)

Kuva 2. Putkiristikon puristetun yläpaarteen nurjahdusmuoto ja nurjahdustuennat.

Ristikon tuenta suunnitellaan siten, että kuvassa (2) esitetty yläpaarteen nurjahduspituus L_{cr} ei muodostu niin suureksi, että nurjahduksen kaavan (8) esittämä yläpaarteen nurjahduskapasiteetti $N_{b,Rd}$ ei alita paarteeseen ristikon pystykuormista aiheutuvaa aksiaalista puristusvoimaa. Puristusvoiman ylittäessä yläpaarteen nurjahduskapasiteetin, on yläpaarteeseen muodostuvan nurjahtavan sauvan nurjahdusmuoto kuvan (2) mukainen. Suunnittelustandardin (SFS-EN 1993-1-1 liite BB) mukaan kaavassa (5) tarvittavaksi nurjahduspituudeksi voidaan putkiristikon paarteelle asettaa 0,9 kertaa ristikon poikittaistukien väli.

Ristikko kannattelee pystykuormaa palkin tavoin. Ristikon paarteet toimivat taivutuksessa kuten palkin laipat vastaanottaen taivutusmomentista aiheutuvan veto- ja puristusrasituksen. Uumasauvat välittävät leikkausrasituksia palkin uuman tavoin. Koska ristikko ei kuitenkaan ole jatkuva rakenne, paarteille kohdistuvan normaali-

voiman jakauma on jatkuvan jakauman sijasta portaittainen. Tätä porrastusta on havainnollistettu kuvassa (3), jossa on esitettynä ristikon yläpaarteen puristusvoiman porrastuksen periaate. Normaalivoima paarteella muttuu aina ristikon diagonaalin kohdalla, kuten kuva esittää.

Kuva 3. Periaatekuva normaalivoiman portaittaisesta jakautumisesta ristikon yläpaarteelle pystykuormasta Pratt-tyypin ristikossa.

VIITTEET

- Arora, J. S. (2004). Introduction to optimum design. 2. painos. ISBN: 0-12-064155-0.
- Kaitila, O. (2010). Teräsrakenteiden suunnittelu ja mitoitus : Eurocode 3 -oppikirja. Teräsrakenneyhdistys. ISBN: 7978-952-9683-50-5.
- Rao, S. S. (1999). Engineering optimization: theory and practice. 4. painos. ISBN: 978-0-470-18352-6.
- SFS-EN 1993-1-1 (2010). Eurocode 3: Teräsrakenteiden suunnittelu, Osa 1-1: Yleiset säännöt ja rakennuksia koskevat säännöt. Helsinki: Suomen standardoimisliitto SFS.
- Ziemian, R. D. (2010). Stability design criteria for metal structures. 6. painos. ISBN: 978-0-470-08525-7.