SECTION 2-2: THE LIMIT OF A FUNCTION

Read Section 2.2. Work the embedded problems.

, why? f(z)= ??

1. EXAMPLE 1: What does the function $f(x) = \frac{x-2}{x^2-x-2}$ look like around x=2?

tak	ole of val	ues c	102402	-	<u> </u>	closer-	to 2	-
X	1.9	1.99	1.999	2	2.001	2.01	2.1	
f(x)	0.34483	0.33445	0.33344	M20	0.33322	99	0.322	? 5 8
y- when	values d n X-va	table, I an clos lues an othsides	2 to 1/3)	lim ;	$\frac{3}{3}$ = $\frac{x-2}{x^2-x-2}$ = $\frac{3}{3}$	2	<u>_</u> \$

2. EXAMPLE 2: What does the function $f(x) = \frac{2|x-5|}{(x-5)}$ look like around x = 5?

X	4.9	4.99	4.9999	5	5.000/	5.0/	5./	
f(x)	-2	-2	-2		2	2	2	_

For the 2-sided limit to exist, we need the on-sided limits tobe.

As x gets close to 5, f(x) gets close to 2 or -2

DEPENDING on which side!!

Uses a calculator

X Note: We found a limit on fri when calculating m

3. DEFINITION: two-sided limit

Say: "the limit of f(x), as x approaches a is L"

lim f(x) = L

It means:

it means:

As x gets closert closer to a, y=fbx) gets closer and closer to L.

on both side!

- 4. | DEFINITION: | one-sided limits
 - Say: "the limit of f(x), as x approaches a on the left is L"

Write: $\lim_{x \to a^{-}} f(x) = L$

As x gets closer to a from the left (#)s smaller than a) y=fa) gets closer toL

• Say: "the limit of f(x), as x approaches a on the right is L"

Write: lim fG) = L X->at

As x gets closer to a from right (#'s larger than a), y=f(x) gets closer + L.

5. EXAMPLE 3: What does the function $f(x) = \frac{8-x}{(x-2)^2}$ look like around x = 2?

 \times 1.9 | 1.99 | 1.999 | 2 | 2.001 | 2.0/ | 2.1 f(x) | 610 | 60,100 | 6,001,000 | $\frac{1}{2}$ | 5,999,000 | 59900 | 590

As x gets close to 2, f(x) goes to + ps. (y-values) get larger without any bound.)

6. DEFINITION: infinite limits

one-sided infinite limits, too!

7. The function g(x) is graphed below. Use the graph to fill in the blanks.

(a)
$$\lim_{x \to 4^{-}} f(x) = 16$$
(b) $\lim_{x \to 4^{+}} f(x) = 4$
(c) $\lim_{x \to 4} f(x) = 50$
(d) $\lim_{x \to 4} f(x) = 16$

(b)
$$\lim_{x \to 4^+} f(x) = 4$$

(c)
$$\lim_{x \to 4} f(x) =$$
DNE

(d)
$$f(4) = 16$$

(d)
$$f(4) = 16$$

(e) $\lim_{x \to 8} f(x) = -2$

(f)
$$f(8) =$$

8. The function g(x) is graphed below. Use the graph to fill in the blanks.

(a)
$$\lim_{x \to 4^{-}} f(x) =$$

(b)
$$\lim_{x \to 4^+} f(x) = \underline{\qquad \qquad }$$
(c)
$$\lim_{x \to 4} f(x) = \underline{\qquad \qquad }$$
(d)
$$f(4) = \underline{\qquad \qquad }$$

(c)
$$\lim_{x \to A} f(x) =$$
DVE

(d)
$$f(4) = DNE$$

(e)
$$\lim_{x \to 8} f(x) =$$

Write the equation of any vertical asymptote:

9. What is the relationship between limits and vertical asymptoes?

What is the relationship between limits and vertical asymptoes?

If
$$\lim_{X \to a} f(x) = \frac{1}{20}$$
, then $x = a$ is an asymptote.

or $x \to a^+$
or $x \to a^-$

10. Sketch the graph of an function that satisfies *all* of the given conditions.

$$\lim_{x \to 0^{-}} f(x) = 1 \quad \lim_{x \to 0^{+}} f(x) = -2 \quad \lim_{x \to 4^{-}} f(x) = 3$$

$$\lim_{x \to 4^{+}} f(x) = 0 \quad f(0) = -2 \quad f(4) = 1 \quad (4, 1)$$

11. Some General Principles

(a)
$$\lim_{x\to 0} \frac{1}{x} = -\infty$$

(b)
$$\lim_{x \to 0^+} \frac{1}{x} = +\infty$$

(c)
$$\lim_{x\to 0} \frac{1}{x} =$$
 DNE

(d)
$$\lim_{x\to 0^{-}} \frac{1}{x^2} = +\infty$$

(e)
$$\lim_{x \to 0^+} \frac{1}{x^2} = + 2$$

(f)
$$\lim_{x \to 0} \frac{1}{x^2} = -$$

$$(g) \lim_{x \to a^{-}} \frac{1}{x - a} = - \omega$$

(h)
$$\lim_{x \to a^+} \frac{1}{x - a} = + 0$$

(i)
$$\lim_{x \to a} \frac{1}{x - a} = DNE$$

None of these limits exist. But some don't exist in coherent ways.

Caveat: Very Kooky things can happen.