COMPUTER SCIENCE E-20, SPRING 2014 In-class Problems - Group 5 (Rachna Sha) 4.2

1. Let S be the sequence a_1, a_2, a_3, \ldots where $a_1 = 1, a_2 = 2, a_3 = 3,$ and $a_n = a_{n-1} + a_{n-2} + a_{n-3}$. Use strong induction to prove that $a_n < 2^n \ \forall \ n \ge 4.$

Solution:

- Proof: By strong induction on n that $a_n < 2^n \forall n \ge 4$.
- The Induction hypothesis P(n), is: $a_n < 2^n \forall n \ge 4$
- Base Case (n = 4): $a_4 < 2^4$. $a_4 = a_3 + a_2 + a_1 < 16$. 3 + 2 + 1 = 166 < 16.
- Base Case (n = 5): $a_5 < 2^5$. $a_5 = a_4 + a_3 + a_2 + a_1 < 32$. 16 + 3 + 2 + 1 = 3222 < 32.
- Inductive Step : Assume P(n) is true \forall n \geq 4, and prove P(n+1) : $a_{n+1} < 2^{n+1}$ substituting (n+1) in

$$a_n = a_{n-1} + a_{n-2} + a_{n-3}$$
$$a_{n+1} = a_n + a_{n-1} + a_{n-2} < 2^{n+1}$$

From the inductive hypothesis P(n):

$$a_n < 2^n, a_{n-1} < 2^{n-1}, a_{n-2} < 2^{n-2}$$

$$(< (2^n + 2^{n-1} + 2^{n-2})) < 2^{n+1}$$

$$(< 2^{n-2}(2^2 + 2^1 + 1)) < 2^{n-2}(2^3)$$

$$(< 7) < 8$$

This proves P(n+1), completing the proof by induction.