K-means & K-medoid clustering in product segmentation: ASDS 6303 Final Project

Submitted by Utkarsh Pant

2024-05-02

Loading the dataset

```
product_data = read_excel('./dataset/sku_data.xlsx')
kable(head(product_data),
    booktabs = TRUE,
    format = "latex",
    caption = "Dataset head") %>% kable_styling(latex_options = "hold_position")
```

Table 1: Dataset head

ID	Unitprice	Expire date	Outbound number	Total outbound	Pal grossweight	Pal height	Units per pal
1	0.058	547	9	2441	105.60	1.56	1920
2	0.954	547	0	0	207.68	1.00	384
3	2.385	547	12	23	165.78	1.02	108
4	5.100	547	0	0	221.04	1.05	72
5	0.000	547	0	0	0.00	0.00	0
6	1.110	547	1	1	207.68	1.00	384

summary(product_data)

```
##
                       Unitprice
                                         Expire date
                                                         Outbound number
##
    Min.
               1.0
                     Min.
                            : 0.000
                                        Min.
                                               : 0.0
                                                         Min.
   1st Qu.: 570.5
                     1st Qu.:
                               0.000
                                        1st Qu.:365.0
                                                         1st Qu.:
   Median :1140.0
                     Median :
                               1.294
                                        Median :547.0
                                                         Median :
    Mean
           :1140.0
                     Mean
                               4.269
                                        Mean
                                               :410.4
                                                         Mean
                                                                : 236
   3rd Qu.:1709.5
                     3rd Qu.: 4.545
                                                         3rd Qu.:
##
                                        3rd Qu.:547.0
                                                                   45
   Max.
           :2279.0
                     Max.
                             :518.592
                                        Max.
                                                :734.0
                                                         Max.
                                                                :6325
    Total outbound
                                         Pal height
##
                      Pal grossweight
                                                         Units per pal
   Min.
                0.0
                      Min.
                              : 0.0
                                       Min.
                                              :0.0000
                                                         Min.
##
                                                                      0.0
                                                                     32.0
##
   1st Qu.:
                0.0
                      1st Qu.: 60.0
                                       1st Qu.:0.0000
                                                         1st Qu.:
  Median :
                3.0
                      Median :167.7
                                       Median :0.8400
                                                         Median :
                                                                    108.0
              731.7
                                                                    755.6
  Mean
                      Mean
                              :192.9
                                       Mean
                                              :0.6728
                                                         Mean
    3rd Qu.:
             419.5
                      3rd Qu.:277.6
                                       3rd Qu.:1.0200
                                                         3rd Qu.:
                                                                    384.0
   Max.
           :26411.0
                      Max.
                              :907.2
                                              :2.1600
                                                                :200000.0
                                       Max.
                                                         Max.
```

```
product_data <- select(product_data, -c("ID"))</pre>
```

Checking correlation

```
library(ggcorrplot)
```

```
## Warning: package 'ggcorrplot' was built under R version 4.3.2

correlation = cor(product_data)
ggcorrplot(correlation, hc.order = TRUE, type = "lower",
    lab = TRUE)
```


Let's only consider the Outbound number and Total outbound features in our dataset to perform the clustering, due to high correlation.

```
product_subset <- select(product_data, c("Outbound number", "Total outbound"))</pre>
```

Scaling data

```
product_subset_scaled = scale(product_subset)
```

K-means clustering

Checking a scree-plot for the ideal number of clusters, we see:

```
fviz_nbclust(product_subset_scaled, kmeans, method = "wss") +
geom_vline(xintercept = 3, linetype = 2)
```

Optimal number of clusters


```
set.seed(8093)
model.kmeans <- kmeans(product_subset_scaled, nstart = 20, centers = 3)</pre>
print(model.kmeans)
## K-means clustering with 3 clusters of sizes 34, 173, 2072
##
## Cluster means:
##
 Outbound number Total outbound
## 1
    5.679717
        6.3389854
## 2
    1.971275
        1.4644906
## 3
   -0.257790
        -0.2262946
##
##
Clustering vector:
##
  ##
 ##
 ##
 ##
 ##
```

```
##
##
##
##
##
##
##
##
##
##
##
##
##
## [1148] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3 3 3 2 2 2 2
## [1185] 2 1 2 2 2 1 1 2 1 1 1 1 1 2 3 2 2 2 1 1 1 2 3 2 1 3 2 1 3 2 1 2 2 1 2 3 2 2 3 3
##
```

Within cluster sum of squares by cluster:

cluster	Unitprice	Expire date	Outbound number	Total outbound	Pal grossweight	Pal height	Units per pal
1	1.903088	568.5882	4213.0882	14335.3529	207.2529	0.9700000	310.3529
2	3.590896	561.8902	1616.3237	3874.5416	248.1189	1.0087283	250.9480
3	4.364883	395.1245	55.4638	246.0661	188.0976	0.6398726	805.0014

```
## [1] 260.0769 306.0841 239.7081
## (between_SS / total_SS = 82.3 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
## [6] "betweenss" "size" "iter" "ifault"
```

Aggregating cluster characteristics

Cluster plot

Silhouette scores

[TODO]

K-medoid clustering

Visualizing the ideal number of clusters for pam (k-medoid clustering) using fvz_nbclust:

```
fviz_nbclust(product_subset_scaled, pam, method = "wss") +
  geom_vline(xintercept = 5, linetype = 2)
```


It appears that k-medoid clustering for the same product-data does best with 5 clusters. Performing clustering with 5 clusters:

```
set.seed(8093)
model.kmedoid <- pam(product_subset_scaled, k = 5)</pre>
model.kmedoid
## Medoids:
##
    ID Outbound number Total outbound
 [1,] 1325
              0.1320107
##
        0.1499844
 [2,]
       -0.3369980
              -0.3409557
 [3,] 1980
        1.2710435
              0.7722628
## [4,] 1195
        5.7409990
              6.0210248
## [5,] 1364
        3.0133265
              2.0867832
 Clustering vector:
##
  ##
##
  ##
 ##
 ##
```

cluster	Unitprice	Expire date	Outbound number	Total outbound	Pal grossweight	Pal height	Units per pal
1	4.079924	468.8511	273.70922	1317.3794	228.9536	0.9068972	1633.4681
2	4.402425	381.2756	11.01358	55.2077	180.2633	0.5913531	680.7040
3	4.216886	552.6591	1129.59091	2706.6818	258.6896	1.0346970	237.7652
4	1.944063	569.9375	4257.06250	14698.8750	209.1037	0.9628125	312.1250
5	2.750076	577.5455	2360.77273	5618.9045	239.1029	0.9886364	259.3030

```
## Objective function:
##
    build
          swap
## 0.1805800 0.1718847
##
## Available components:
 [1] "medoids"
            "id.med"
                    "clustering" "objective"
                                   "isolation"
  [6] "clusinfo"
            "silinfo"
                    "diss"
                            "call"
                                    "data"
```

Aggregating cluster characteristics

fviz_cluster(model.kmedoid, product_subset_scaled)

Cluster plot

