Standard Representations of Regular Languages

When we say: We are given a Regular Language L

We mean: Language L is in a standard representation

Elementary Questions

about

Regular Languages

Membership Question

Question:

Given regular language L and string w how can we check if $w \in L$?

Answer:

Take the DFA that accepts L and check if w is accepted

 $w \notin L$

Question: Given regular language L how can we check if L is empty: $(L = \emptyset)$?

Answer: Take the DFA that accepts L

Check if there is any path from the initial state to a final state

DFA

$$L \neq \emptyset$$

DFA

$$L = \emptyset$$

Question: Given regular language L how can we check if L is finite?

Answer: Take the DFA that accepts L

Check if there is a walk with cycle from the initial state to a final state

DFA

L is infinite

L is finite

Question: Given regular languages L_1 and L_2 how can we check if $L_1 = L_2$?

Answer: Find if $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$

$$(L_{1} \cap \overline{L_{2}}) \cup (\overline{L_{1}} \cap L_{2}) = \emptyset$$

$$\downarrow$$

$$L_{1} \cap \overline{L_{2}} = \emptyset \quad \text{and} \quad \overline{L_{1}} \cap L_{2} = \emptyset$$

$$(L_{1}) \quad L_{2} \quad \overline{L_{2}} \quad (L_{2}) \quad L_{1} \quad \overline{L_{1}}$$

$$L_{1} \subseteq L_{2} \quad \downarrow$$

$$\downarrow$$

$$\downarrow$$

$$L_{2} \subseteq L_{1}$$

 $L_1 = L_2$

$$(L_{1} \cap \overline{L_{2}}) \cup (\overline{L_{1}} \cap L_{2}) \neq \emptyset$$

$$\downarrow L_{1} \cap \overline{L_{2}} \neq \emptyset \quad \text{or} \quad \overline{L_{1}} \cap L_{2} \neq \emptyset$$

$$\downarrow L_{1} \quad L_{2} \qquad \qquad L_{2} \downarrow L_{1}$$

$$\downarrow L_{1} \neq L_{2} \qquad \qquad \downarrow L_{2} \downarrow L_{1}$$

$$\downarrow L_{1} \neq L_{2}$$

Non-regular languages

Non-regular languages

$$\{a^n b^n : n \ge 0\}$$

 $\{vv^R : v \in \{a,b\}^*\}$

Regular languages

$$a*b$$
 $b*c+a$ $b+c(a+b)*$ $etc...$

How can we prove that a language L is not regular?

Prove that there is no DFA that accepts $\,L\,$

Problem: this is not easy to prove

Solution: the Pumping Lemma!!!

The Pigeonhole Principle

4 pigeons

3 pigeonholes

A pigeonhole must contain at least two pigeons

n pigeons

The Pigeonhole Principle

n pigeons

m pigeonholes

n > m

There is a pigeonhole with at least 2 pigeons

The Pigeonhole Principle

and

DFAs

DFA with 4 states

In walks of strings: a no state is repeated aab

In walks of strings: aabb

bbaa

abbabb

abbabbabbabb...

If string w has length $|w| \ge 4$:

Then the transitions of string w are more than the states of the DFA

Thus, a state must be repeated

In general, for any DFA:

String w has length \geq number of states

A state q must be repeated in the walk of w

In other words for a string w:

 \xrightarrow{a} transitions are pigeons

(q) states are pigeonholes

The Pumping Lemma

Take an infinite regular language L

There exists a DFA that accepts L

Take string w with $w \in L$

There is a walk with label w:

$$\longrightarrow$$
 walk w

If string w has length $|w| \ge m$ (number of states of DFA)

then, from the pigeonhole principle:

a state is repeated in the walk w

Let q be the first state repeated in the walk of w

Write w = x y z

Observations:

 $| length \ | \ x \ y \ | \le m \ number \\ of \ states \\ | length \ | \ y \ | \ \ge 1 \qquad of \ DFA$

Observation: The string xz is accepted

Observation: The string x y y z is accepted

Observation: The string x y y y z is accepted

In General:

The string $xy^{l}z$ is accepted i=0,1,2,...

In General:
$$x y^i z \in L$$

 $i = 0, 1, 2, \dots$

Language accepted by the DFA

In other words, we described:

The Pumping Lemma!!!

The Pumping Lemma:

- \cdot Given a infinite regular language L
- \cdot there exists an integer m
- for any string $w \in L$ with length $|w| \ge m$
- we can write w = x y z
- with $|xy| \le m$ and $|y| \ge 1$
- such that: $x y^{l} z \in L$ i = 0, 1, 2, ...

Applications

of

the Pumping Lemma

Theorem: The language
$$L = \{a^nb^n : n \ge 0\}$$
 is not regular

Proof: Use the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Let m be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$

length $|w| \ge m$

We pick
$$w = a^m b^m$$

Write:
$$a^m b^m = x y z$$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a^m b^m = \underbrace{a...aa...aa...ab...b}_{m}$$

Thus:
$$y = a^k$$
, $k \ge 1$

$$x y z = a^m b^m$$

$$y = a^k, \quad k \ge 1$$

$$x y^{i} z \in L$$

 $i = 0, 1, 2, ...$

Thus:
$$x y^2 z \in L$$

$$x y z = a^m b^m \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = \underbrace{a...aa...aa...aa...ab...b}_{m+k} \in L$$

Thus:
$$a^{m+k}b^m \in L$$

$$a^{m+k}b^m \in L$$

$$k \ge 1$$

BUT:
$$L = \{a^n b^n : n \ge 0\}$$

$$a^{m+k}b^m \notin L$$

CONTRADICTION!!!

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

Non-regular languages $\{a^nb^n: n \ge 0\}$

