

# Deep Dive (3)

Text Vectors, Word Embeddings, Word2vec, Glove, Implement with Gensim, Use-cases and overview of BERT



## Agenda

- 1. Recap Week 3
- 2. Text Vectorization & Challenges
- 3. Word Embeddings
  - Word2vec
  - Stanford GloVe
- 4. Use-cases
  - Doc Similarity, Question Answering,
     Information Retrieval
- 5. State of NLP today intro to BERT
- 6. Theory Wrap-up
- 7. Implement with Google Colab





TF-IDF

Bag-of-Words

**Document Similarity - Use Cases** 



## Recap TF-IDF

$$W_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

TF-IDF

Term x within document y

 $tf_{x,y}$  = frequency of x in y

 $df_x = number of documents containing x$ 

N = total number of documents



Credit: http://trimo-nlp.b/ogspot.com/2013/04/tfdf-with-google-in-grams-and-postags.html



# Recap Bag-of-Words





## Recap Document Similarity





# What is Word Embedding?



#### **Word Vectorization Review**



- Vectorization is the process of converting text into numerical representation
- Few techniques available, each one with its own pros and cons
  - o simplest encoding techniques do not retain word order
  - fast and intuitive, but the size of document vectors grows quickly with the size of the dictionary
  - optimize dimension but lose in interpretability
- Not only words sentences, documents etc.



### **Word Embeddings**



- Embeddings are types of knowledge representation where each textual variable is represented with a vector
  - where words or phrases from the vocabulary are mapped to vectors of real numbers
  - mathematical embedding from a space with many dimensions per word to a continuous vector space with a lower dimension.
- Methods to generate this mapping include:
  - neural networks
  - dimensionality reduction on the word co-occurrence matrix
  - probabilistic models

#### Word embeddings in a nutshell



### What is a Vector Space



Vector space model is a statistical model for representing text information for -

- how many documents contain a term
- what are important terms each document has etc.
- o dimensionality whether vectors are sparse
- e.g. vocabulary size |V|=105, but documents may contain only 500 distinct words
- lexicon of document, word correlations etc.





## Google Word2Vec



#### Word2Vec: Idea



Fundamental idea behind Word2vec?

# You shall know a word by the company it keeps - J.R. Firth (1957)

It's all about **Context** 

The baseline pre-trained word2vec model has -

- 300 dimensions
- 3 million 'unique' words from google news data in the training corpus





Type of Similarity 1: Semantic Relatedness

**Def**: some relation between words **Eg**: Truck -- Road, Bee -- Honey

Type of Similarity 2: Semantic Similarity

**Def**: words used in a same way and interchangeable context

**Eg**: Car -- Auto, Doctor -- Surgeon

#### **Word2Vec: Definition**





- A word2vec model is a feed forward shallow neural network model with a single hidden layer.
- Each word is represented by a vector (Array of numbers based on Embedding Size)
- Word2Vec finds relation (Semantic or Syntactic)
   between the words which was <u>NOT</u> possible by the
   Traditional TF-IDF or Frequency based approach
- Transforms the unlabeled raw corpus into labeled data (by mapping the target word to its context word), and learns the representation of words in a classification task

#### Word2Vec: General Process



- When we train a model, each one hot encoded word gets a point in a dimensional space where it learns and groups the words with similar meaning
- Create an Embedding Look up Layer

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 8 & 2 & 1 & 9 \\ 6 & 5 & 4 & 0 \\ 7 & 1 & 6 & 2 \\ \hline 1 & 3 & 5 & 8 \\ \hline 0 & 4 & 9 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 5 & 8 \end{bmatrix}$$
Hidden layer output

**Embedding Weight Matrix** 

#### Word2Vec: General Process



#### **Key Points:**

- a) The embedding layer is just a hidden layer
- b) The lookup table is just a embedding weight matrix
- c) The lookup is just a shortcut for matrix multiplication
- d) The lookup table is trained just like any weight matrix

Word2vec falls under <u>prediction based embeddings</u> which tends to predict a word in a given context



#### Word2Vec: Example (1)



Eq 1: Vector of the words similar

1. Cat

2. Dog

Eq 2: Vector of the words not similar

1. Cat

2. Pencil

**Similarity** is defined by the frequency of the two words in discussion

- [cat,dog]
- [cat,pencil]

And how many time they are used in the **same context** 



My \_\_\_\_\_ does not like the postman

### Word2Vec: Example (2)





Word2Vec allows some mathematical operations on vectors

king — man + woman = queen







#### Word2Vec: SOTA Applications



- 1. Topic Modeling
- 2. Document Similarity
- 3. Speech Recognition
- 4. Chatbots
- 5. Information Retrieval
- 6. Machine Translation
- 7. Question Answering
- 8. Recommendation Engines



#### Word2Vec: Architecture (CBOW)





- CBOW <u>predict</u> the current word based on context.
   Here the *input* will be the <u>context neighboring</u> words and *output* will be the *target word*.
- Based on Window Method, where we have to assign a Window size
- If window size is set to 1. So, 1 word from both the sides of target are being considered. Similarly, in each iteration, window will slides by single stride and our neighbors will keep changing

#### Word2Vec: Architecture (CBOW)



| Source Text                                                    | Training<br>Samples                                         |                                                            |
|----------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|
| The quick brown fox jumps over the lazy dog. $\Longrightarrow$ | (the, quick) • (the, brown)                                 | Model: CBOW                                                |
| The quick brown fox jumps over the lazy dog. $\Longrightarrow$ | (quick, the)<br>(quick, brown)<br>(quick, fox)              | INPUT Layer: White box content TARGET Layer: blue box word |
| The quick brown fox jumps over the lazy dog. $\Longrightarrow$ | (brown, the) (brown, quick) (brown, fox) (brown, jumps)     | Window Size: 5                                             |
| The quick brown fox jumps over the lazy dog. $\Longrightarrow$ | (fox, quick)<br>(fox, brown)<br>(fox, jumps)<br>(fox, over) |                                                            |

CBOW architecture predicts the current word based on the context

#### Word2Vec: Architecture (skip-grams)





- Skip gram predicts the <u>surrounding context words</u>
   within specific window <u>given current word</u>
- The input layer contains the current word
- The output layer contains the context words
- The hidden layer contains the number of dimensions in which we want to represent current word present at the input layer

### Word2Vec: Architecture (skip-grams)



| Source Text                                                    | Training<br>Samples                                                                                      |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| The quick brown fox jumps over the lazy dog. $\Longrightarrow$ | (the, quick) (the, brown)  • Model: Skip Gram                                                            |
| The quick brown fox jumps over the lazy dog. $\Longrightarrow$ | (quick, the) (quick, brown) (quick, fox)  • INPUT Layer: Blue box word                                   |
| The quick brown fox jumps over the lazy dog. $\Longrightarrow$ | (brown, the) (brown, quick) (brown, fox) (brown, jumps)  TARGET Layer: White box content  Window Size: 5 |
| The quick brown fox jumps over the lazy dog. $\Longrightarrow$ | (fox, quick) (fox, brown) (fox, jumps) (fox, over)                                                       |

Skip-gram architecture predicts surrounding words given the current word

#### **Embedding Projector (projector.tensorflow.org)**





#### Let's take a few deep breaths now!







# Stanford gloVe



#### gloVe: Idea



#### Fundamental idea behind gloVe?

Word2vec: relies only on **local information** of language. The semantics learnt for a given word, is only affected by the surrounding words

Eg: "The cat sat on the mat"

Con: is "the" a special context of the words "cat" and "mat"?

**gloVe**: You can derive semantic relationships between words from the co-occurrence matrix.

It's all about Global Context. GloVe stands for "Global Vectors"

### gloVe: Definition



- Unsupervised learning algorithm for obtaining vector representations for words.
- Training is performed on aggregated global word-word co-occurrence statistics from a corpus
- Resulting representations showcase linear substructures of the word vector space



#### gloVe: Process



The relationship of these words can be examined by studying the ratio of their co-occurrence probabilities with various probe words, k.

Eg:

**P(k|w)**: probability that the <u>word k</u> appears in the context of word w

Consider a word strongly related to ice, but not to steam, such as solid

P(solid | ice) will be relatively high P(solid | steam) will be relatively low

Ratio of P(solid | ice) / P(solid | steam) will be large

#### gloVe: Process



Consider the word **gas** that is related to **steam** but not to **ice**,

For a word **related** to both *ice* and *steam*, such as <u>water</u>, the ratio would be close to one

Ratio of P(gas | ice) / P(gas | steam) will be small

For words related to **neither** ice nor steam, such as **fashion**, the ratio would be close to one

| Probability and Ratio | k = solid            | k = gas              | k = water            | k = fashion          |
|-----------------------|----------------------|----------------------|----------------------|----------------------|
| P(k ice)              | $1.9 \times 10^{-4}$ | $6.6 \times 10^{-5}$ | $3.0 \times 10^{-3}$ | $1.7 \times 10^{-5}$ |
| P(k steam)            | $2.2 \times 10^{-5}$ | $7.8 \times 10^{-4}$ | $2.2 \times 10^{-3}$ | $1.8 \times 10^{-5}$ |
| P(k ice)/P(k steam)   | 8.9                  | $8.5\times10^{-2}$   | 1.36                 | 0.96                 |

**gloVe** falls under <u>count based embeddings</u> capturing global co-occurrences and needs an upfront pass of full data during training

#### Word2vec vs gloVe





- Word2Vec and GloVe models are very similar in how they work
- Both aim to build a vector space where the position of each word is influenced by its neighboring words based on their context and semantics.
- Word2Vec starts with local individual examples of word co-occurrence pairs
- GloVe starts with global aggregated co-occurrence statistics across all words in the corpus.







#### Let's take a few deep breaths now!







# Use-case: Similarity Scoring





#### **Building Phrase/ Document Similarity Model**





#### **Similarity Metrics - Word Mover Distance**

Obama
speaks
to
the
media
in
Illinois



The
President
greets
the
press
in
Chicago

## Combination of various pre-processing & word-embedding techniques



| Pre-Process                                                                                     | Feature Extraction                                 | Similarity<br>Threshold | Questions<br>Answered | Precision |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------|-----------------------|-----------|
| Stop words removal  + Punctuation removal  + Lemmatization  + Spell Correction  + Abbreviations | TF-IDF (KB vocab)                                  | 0.7                     | 56.85%                | 90.40%    |
|                                                                                                 | word2vec<br>(custom trained)                       | 0.7                     | 27.60%                | 97.80%    |
|                                                                                                 | TF-IDF (KB vocab) + word2vec (custom trained)      | 0.7                     | 40.12%                | 96.48%    |
|                                                                                                 | SIF                                                | 0.7                     | 87.50%                | 73.72%    |
|                                                                                                 | SIF + Clustering                                   | 0.8                     | 68.75%                | 90.62%    |
|                                                                                                 | SIF with word2vec or custom trained phrases        | 0.8                     | 64.11%                | 93.08%    |
| + Custom stop words.                                                                            | SIF + TF-IDF (KB vocab) + word2vec(custom trained) | 0.8                     | 74.60%                | 92.70%    |



#### **Evaluation - Confusion Matrix**





## Use-case: Question Answering





#### **Building QA Model**





#### **Applications - Chat Assistant**





#### **Applications - Information Retrieval**

Sentence having the right answer

'context': 'Beyoncé Giselle Knowles-Carter (/bi: 'jpnser/ bee-YON-say) (bor n September 4, 1981) is an American singer, songwriter, record producer an d actress. Born and raised in Houston, Texas, she performed in various sin ging and dancing competitions as a child, and rose to fame in the late 1990 s as lead singer of R&B girl-group Destiny\'s Child. Managed by her father Mathew Knowles, the group became one of the world\'s best-selling girl g roups of all time. Their hiatus saw the release of Beyoncé\'s debut album, Dangerously in Love (2003), which established her as a solo artist worldwi de, earned five Grammy Awards and featured the Billboard Hot 100 number-on e singles "Crazy in Love" and "Baby Boy".', 'text': 'in the late 1990s' 'question': 'When did Beyonce start becoming popular?' **Exact Answer** 

#### Let's take a few deep breaths now!







# State of NLP today



#### **NLP Growth Curve**











# Overview of BERT





#### **Base Concept**



An important concept we learnt - **Word Embeddings** is the base Word Embedding = Feature Vector representation of a word



#### **BERT Mountain - by Chris McCormick**





#### **General Idea of Transformers**





#### Attention is all you need!



#### BERT: Bidirectional Encoder Representations from Transformer



| Trained Model:                                              | Concept:                                                                                                                                   | Architecture:                                                                              |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Wikipedia<br>(2,500M words),<br>Book Corpus<br>(800M words) | Bidirectional means<br>that BERT learns<br>information from both<br>the left and the right<br>side of a token's<br>context during training | BERT Base12 layers (transformer blocks), -768-hidden -12 attention heads, -110M parameters |

Trend Setter: First deeply bidirectional, unsupervised, pre-trained on plain text





Goal of BERT: Contextual Input Representation and Word Piece Embeddings







#### Three embedding layers

- Token
- Position word to word relations
- Segment Sentence to sentence relations





#### **BERT: Pre-trained on two NLP tasks**

- Masked Language Modeling
- Next Sentence Prediction

#### MLM: The Strength of Bidirectionality

```
Input: The man went to the [MASK]_1. He bought a [MASK]_2 of milk . Labels: [MASK]_1 = store; [MASK]_2 = gallon
```

Next Sentence: model relationships between sentences

```
Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence
```

```
Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence
```



#### Some important applications









#### Let's take a few deep breaths now!









## NLP Workflow







# Theory Wrap-up & Next Steps



#### Recap





#### Recap







## Google Colab Project

https://bit.ly/introtonlp-week4-notebook



# Homework #1

**Additional Resources** 

- (Jalammar) The Illustrated Word2vec
- (TowardsDataScience) Intuitive Guide to
   Understanding Word2vec
- (Chris McCormick) Applying word2vec to Recommenders and Advertising
- (AnalyticsVidhya) Word2Vec using Gensim
- (TowardsDataScience) word2vec-Predict
   Article Success



# See you next week!

#### **Questions?**

Join us on <u>Slack</u> and post your questions to the #help-me channel