

**US Army Corps
of Engineers®**

Engineer Research and
Development Center

Diesel-Powered Equipment Properties and Activity Database for DoD Off-Road Sources

SERDP Project WP-1338

Michael R. Kemme, William T. Brown,
Edwin A. Frame, and Ruben A. Alvarez

March 2006

Diesel-Powered Equipment Properties and Activity Database for DoD Off-Road Sources

SERDP Project WP-1338

Michael R. Kemme and William T. Brown

*U.S. Army Engineer Research and Development Center
Construction Engineering Research Laboratory
PO Box 9005
Champaign, IL 61826-9005*

Edwin A. Frame and Ruben A. Alvarez

*U.S. Army Tank-Automotive Research, Development and Engineering Center
Fuels and Lubricants Research Facility, Southwest Research Institute
P.O. Drawer 28510
San Antonio, TX 78228-0510*

Final Report

Approved for public release; distribution is unlimited.

Prepared for: Strategic Environmental Research and Development Program
901 North Stuart Street, Suite 203
Arlington, VA 22203-1821

Under: SERDP Project WP-1338

ABSTRACT: A database of Department of Defense diesel engine powered off-road equipment was developed using Microsoft® Access database development tools. The database contains information about fuels, equipment, engines, inventories, usage, and fuel consumption that was obtained from many disparate sources. This database was developed to support the SERDP-funded project Characterization of Off-Road Emissions of Criteria Pollutants (WP-1336). The database was used to prioritize the equipment contained in the WP-1336 test matrix and will later be used as a source of information for the WP-1336 engine emission estimation tool. Data analysis has shown that the top ten fuel consuming engines account for more than 90 percent of fuel usage for the Army and more than 80 percent for the U.S. Marine Corps. Therefore, emission tests performed on a limited number of off-road diesel engines can provide a fairly complete picture of emissions from the entire population of military off-road sources. The database includes an interface that allows users to view data in onscreen forms or analyze data using built-in reports. The database and interface are intended as resources for anyone interested in examining, filtering, querying, or analyzing the collected data.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

Executive Summary

Emissions from combat and tactical equipment engines during training activities contribute to local and regional air pollution. The emissions from these Department of Defense (DoD) sources are not well understood, and they will likely differ significantly from the emissions of similar civilian sources. Emission differences are probable because the fuels, vehicle usage patterns, and engine technologies are different. Although many DoD sources are exempt from regulations that limit diesel engine emissions from comparable civilian sources, DoD installations still must be able to answer regulatory questions about the impacts these sources have on air pollution problems. An emissions estimation capability will be useful to installation managers and designers of military training ranges in preventing excessive emissions from off-road sources and developing recommendations for reducing these emissions.

To further the creation of an off-road diesel engine emission estimation capability, the Strategic Environmental Research and Development Program (SERDP) funded the project WP-1336, *Characterization of Off-Road Diesel Emissions of Criteria Pollutants* and WP-1338, which is described in this report. The objective of WP-1338 was to develop a database of DoD off-road sources and their activity. The WP-1338 database was designed to directly support WP-1336 by serving as input during the selection of off-road equipment to be tested. The selection will be based on equipment inventories, usage levels, fuel consumption, and planned future use. Detailed tactical equipment information ensures that the equipment tested represents a larger population of the equipment types. Fuel consumption data allow an estimate of engine use that should correspond better with engine emissions than with other activity measurements such as vehicle miles driven or hours of operation. The database will also be used as a component of the base-wide emissions estimation software tool being developed in WP-1336. The database can serve as a source of equipment characteristics and activity level information that is required by the emission estimation methods used in the software tool.

Another objective of this work was to develop a database that could function independently from the base-wide emission estimation tool mentioned above. This objective was achieved by including a simple user interface that allows onscreen filtering and sorting of data and also allows users to generate reports that group and summarize the data.

To accomplish the project's objectives, researchers (1) collected data on DoD fuels, equipment, diesel engines, and equipment activity, (2) designed and populated a database to store the collected data, (3) developed a user interface, and (4) analyzed data to determine which off-road sources were likely to be major emission contributors. Fuel information was obtained from fuel surveys completed between 1998 and 2003 and performed first by TRW Petroleum Technologies and later by Northrop Grumman Mission Systems. Equipment data were collected from a wide variety of sources including the Federal Logistic (FED LOG) Interactive Database system, technical manuals for equipment; Supply Bulletins listing Army equipment and fuel consumption; a U.S. Air Force equipment database; and the Navy Construction, Automotive and Specialized Equipment Management Information System (CASEMIS). Engine information sources included the FED LOG Interactive Database, equipment technical manuals, and engine manufacturers' Internet sites. The sources of equipment activity and inventory information for this work were the Operating and Support Management Information System (OSMIS) for the Army and the U.S. Marine Corps (USMC) section of the Navy Visibility and Management of Operating and Support Costs (VAMOSC) system. Activity information was collected for Fiscal Years (FY) 2001 through 2003 for both the Army and USMC. References to specific data sources and a more detailed description of the data collection process are included.

The database was designed and developed using Microsoft (MS) Access 2000 since Access is readily available to military personnel as one of the MS Office software applications. The database contains tables for installations, fuels, equipment, engines, and equipment activity and inventory. The tables are linked to one another and referential integrity is activated for each of the relationships in the database so that data integrity will be maintained. The database file containing the originally collected data is encrypted and password protected to prevent this information from being changed so that a baseline of information is maintained. This report gives more details of the overall database design and the design and population of each of the database tables.

The user interface was also developed using MS Access 2000 and is contained in a separate database file. The user interface is a collection of MS Access tables, forms, queries, reports, and Visual Basic for Applications code. The user interface is linked to a temporary database that contains either the originally collected dataset or a dataset previously created by a user. In either case, the temporary database allows the initially opened version of the data to be maintained until the user specifically requests that the dataset be saved to an existing database name or a new file name. However, the interface will not allow the originally collected dataset to be overwritten.

The interface contains individual forms for viewing and editing data from the Installation, Fuels, Engine, Equipment, and Equipment Activity and Inventory tables. Each form uses the same custom toolbar that provides users the ability to sort, search, filter, edit, and navigate data. The interface also contains a report generation form, which allows users to select among several reports and presents options for setting conditions on a selected report. The conditions will vary depending on the report that has been selected, and the conditions default to the most inclusive. The form provides users the choice of previewing the report onscreen or printing it immediately. The form includes reports for engine, equipment, and installation fuel usage with varying degrees of detail.

The report generation feature of the user interface was used to perform preliminary data analysis to determine which off-road diesel-powered sources are likely to be the largest air pollutant emitters. Engine fuel consumption reports were generated for combined Army and USMC use and for individual service use for FY2001 through FY2003 and for just FY2003. The engine fuel usage reports are useful because they tend to group and summarize data from many similar types of equipment that use the same diesel engine. The reports for FY2003 are probably more representative of current usage patterns since FY2003 is the most recent dataset.

The engine fuel consumption reports did show that a relatively small number of engines account for a large percentage of fuel usage with the top ten fuel-consuming engines accounting for over 90 percent of fuel usage for the Army and over 80 percent for the USMC. Therefore, emission tests on a limited number of off-road diesel engines can provide a fairly complete picture of emissions from the entire population of military off-road sources. For vehicles, the High-Mobility Multipurpose Wheeled Vehicle, Heavy Expanded Mobility Tactical Truck, 5-ton trucks, Light Armored Vehicle, Stryker, Family of Medium Tactical Vehicles, and the Bradley Fighting Vehicle all show up as important engine emission sources. M1A1 and M1A2 tanks are also large emissions sources but are powered by a turbine engine that would not likely be classified as a diesel off-road source. Although generator sets are not prominent in combined Army and USMC usage reports, they are artificially underrepresented because Army generator usage is not recorded correctly in OSMIS. The data from the USMC portion of the Navy VAMOSC system indicate that 60-, 30-, and 10-kW generator sets are major engine emission sources, and it is very likely that this same level of usage occurs within the Army and throughout DoD.

Because of the user interface, the database is potentially useful to a wide population that is not necessarily familiar with databases or MS Access. The interface allows database access to anyone interested in obtaining or analyzing data about DoD fuels, off-road equipment, diesel engines, and off-road equipment usage. The data-

base, the interface, and this report are available to anyone with DoD menu privileges in the permanent shared file library section of the Defense Environmental Network and Information Exchange website.

Contents

Executive Summary	iii
List of Figures and Tables	ix
Conversion Factors.....	xii
Preface.....	xii
Acronyms and Abbreviations	xiii
1 Introduction	1
Background.....	1
Objectives	3
Approach	3
Mode of Technology Transfer	4
2 Data Collection	6
Fuels Data.....	6
Equipment Data	12
Engines Data	16
Equipment Activity and Inventory	16
<i>Army Activity Information</i>	17
<i>Marine Corps Activity Information</i>	20
Summary	23
3 Database Design and Population	24
Overall Structure	24
Fuels Data.....	25
Equipment Data	26
Engine Data	29
Equipment Activity and Inventory Data.....	30
Installations Data	32
Summary	34
4 User Interface	35
Opening Screen.....	36
Forms for Data Display and Editing.....	37

Reports Generation	46
Summary	47
5 Data Analysis.....	49
Army and USMC Emission Testing Priority	49
Fuel Consumption Comparison with HQRADDS.....	53
Summary	55
6 Summary and Conclusions.....	57
References	58
Appendix: Engine Fuel Consumption With Equipment List Reports for All Services With Equipment Usage in FY2003.....	60
Report Documentation Page.....	83

List of Figures and Tables

Figures

1	Examples of wheeled vehicles	12
2	Examples of tracked vehicles.....	13
3	Examples of generator sets	13
4	Example of OSMIS data imported into an MS Excel spreadsheet	19
5	First page of query results showing activity and fuel usage information from the Navy VAMOSC system	22
6	First page of query results showing inventory information from the Navy VAMOSC system.....	23
7	Overall database design	25
8	Fuels table MS Access design screen	26
9	Data from the Fuels table.....	26
10	MS Access design screen for the Equipment table.....	27
11	Data from the Equipment table	28
12	MS Access design screen for the Engines table.....	29
13	Data from the Engines table.....	30
14	MS Access design screen for the Equipment Activity and Inventory table	31
15	Data from the Equipment Activity and Inventory table	31
16	Data from the Installation table	34
17	Data set selection screen.....	35
18	Opening screen of the user interface.....	36
19	Engines form	37
20	Custom toolbar displayed on the top of forms	38
21	Datasheet view of the Engines table.....	39
22	MS Access Find and Replace form.....	40
23	Filter by form conditions and results for the Engines table	42
24	Installation form.....	44
25	Fuels form	44
26	Equipment form.....	45
27	Equipment Activity and Inventory form.....	45
28	Report selection and criteria form	46

29	Report preview screen of the Engine Fuel Consumption report for 2003 Army data	47
30	Installation fuel consumption in FY2003	54

Tables

1	Pollutant contributions from highway and off-road engines	1
2	Summarized data for aviation turbine fuels (averaged analyses results of 30 samples from 6 different companies throughout the United States).....	6
3	Summarized national data for 1-D on-highway diesel fuels for 2003	7
4	Summarized 2003 on-highway diesel fuel data for eastern, southern, and central regions.....	8
5	Summarized 2003 on-highway 2-D diesel fuel data for the nation and the rocky mountain and western regions	8
6	Summarized 2003 off-highway 2-D diesel fuel data	9
7	Summarized 2002 data for summer motor gasoline grades (averaged analyses results of 551 motor gasoline samples from service stations throughout the United States).....	10
8	Summarized 2002 and 2003 data for winter motor gasoline grades (averaged analyses results of 359 motor gasoline samples from service stations throughout the United States)	11
9	Actions performed by each of the buttons in the custom toolbar.....	38
10	Top 20 Army and USMC off-road diesel engine fuel consumptions for FY2001–2003	50
11	Top 20 Army and USMC off-road diesel engine fuel consumptions for FY2003.....	51
12	Top 10 Army off-road diesel engine fuel consumptions for FY2003	52
13	Top 10 USMC off-road diesel engine fuel consumptions for FY2003	52
14	Installation fuel usage in gallons as reported in OSMIS and HQRADDS	55

Conversion Factors

Non-SI* units of measurement used in this report can be converted to SI units as follows:

Multiply	By	To Obtain
degrees Fahrenheit	$(5/9) \times (^{\circ}\text{F} - 32)$	degrees Celsius
gallons (U.S. liquid)	0.003785412	cubic meters
horsepower (550 ft-lb force per second)	745.6999	watts
cubic inches	0.016387	liters
miles (U.S. statute)	1.609347	kilometers
pounds (mass)	0.4535924	kilograms
tons (2,000 pounds, mass)	907.1847	kilograms

* *Système International d'Unités* ("International System of Measurement"), commonly known as the "metric system."

Preface

This work was conducted for the Strategic Environmental Research and Development Program (SERDP) as Compliance Project WP-1338 “Tailpipe Emission Estimation for DoD Off-Road Sources.” The authors thank Dr. Robert W. Holst, SERDP Compliance Program Manager and Bradley P. Smith, SERDP Executive Director, for their support during this program.

The work was performed by the Environmental Processes Branch (CN-E) of the Installations Division (CN), Construction Engineering Research Laboratory (CERL) and the U.S. Army Tank-Automotive Research, Development and Engineering Center, Fuels and Lubricants Research Facility (TFLRF), Southwest Research Institute. The CERL Principal Investigator is Michael R. Kemme. Dr. K. James Hay is Acting Chief, CN-E, and Dr. John T. Bandy is Chief, CN. The associated Technical Director is William D. Severinghaus, CV-T. The Acting Director of CERL is Dr. Ilker R. Adiguzel.

CERL is an element of the U.S. Army Engineer Research and Development Center (ERDC), U.S. Army Corps of Engineers. The Commander and Executive Director of ERDC is COL James R. Rowan, and the Director of ERDC is Dr. James R. Houston.

Acronyms and Abbreviations

AAV	Assault Amphibian Vehicle
AMDF	Army Master Data File
AOAP	Army Oil Analysis Program
APC	Armored Personnel Carrier
CASEMIS	Construction, Automotive and Specialized Equipment Management Information System
CBS-X	Continuing Balance System – Extract
CDROM	Compact Disc – Read Only Memory
CERL	Construction Engineering Research Laboratory
CONUS	Continental United States
DENIX	Defense Environmental Network and Information Exchange
DMFA	Depot Maintenance Float Allowance
DoD	Department of Defense
DVD	Digital Video Disk
EEAP	Enhanced Equipment Allowance Pool
EPA	Environmental Protection Agency
ERDC	Engineer Research and Development Center
FED LOG	Federal Logistics (Interactive Database)
FLIS	Federal Logistics Information System
FMTV	family of medium tactical vehicles
FORSCOM	U.S. Forces Command
HEMTT	heavy expanded mobility tactical truck
HMMWV	high mobility multi-purpose wheeled vehicle
IAV	interim armored vehicles
LIF	Logistic Integrated Database
LIN	Line Item Number
LOGSA	Logistics Support Activity

MDS	Mission Design Series
MEF	Marine Expeditionary Force
MOB	Mobilization Allowance
MPF	Maritime Prepositioning Force
Net WRMR	Net War Reserve Materiel Requirement
NIIN	National Item Identification Number
NITC	Naval Facility Information Technology Center
OCONUS	outside the Continental United States
O&S	operating and support
OSD	Office of the Secretary of Defense
OSMIS	Operating and Support Management Information System
PMR	Provisioning Master Record
POL	Petroleum, Oils, and Lubricants
PU	power unit
Reserve T/A	Reserve Training Allowance (Pool)
SERDP	Strategic Environmental Research and Development Program
TARDEC	Tank-Automotive Research, Development and Engineering Center
TAMCN	table of authorized material control number
TFLRL	TARDEC Fuels and Lubricants Research Facility
TQG	tactical quiet generator
ULLS-G	Unit Level Logistics System – Ground
USAF	U.S. Air Force
USMC	U.S. Marine Corps
VAMOSC	Visibility and Management of Operating and Support Costs

1 Introduction

Background

Emissions from combat and tactical equipment engines during training activities contribute to local and regional air pollution. The emissions from these Department of Defense (DoD) sources are not well understood, and they likely differ significantly from the emissions of similar civilian sources. Emission differences are probable because the fuels, vehicle usage patterns, and engine technologies are different. Although many DoD sources are exempt from regulations that limit diesel engine emissions from comparable civilian sources, DoD installations still must be able to answer regulatory questions about the impacts these sources have on air pollution problems. For example, the General Conformity provisions of the Clean Air Act require DoD installations to estimate engine emission impacts from combat and tactical equipment after obtaining new missions that include these sources. An emissions estimation capability will also be useful to installation managers and designers of military training ranges in preventing excessive emissions from off-road sources and developing recommendations for reducing these emissions.

In 1998, the U.S. Environmental Protection Agency (EPA) adopted more stringent standards for off-road diesel engines to reduce harmful emissions (63 FR 56968, 23 October 1998). The stricter standards were a response to growing concerns about the contributions these sources make to air pollution problems. Table 1 compares off-road and highway emission contributions to the national emission inventory for 2000 and shows that off-road engines contribute almost as much air pollution as highway engines. Most civilian off-road engines are diesel and virtually all of the military's off-road engines are diesel.

Table 1. Pollutant contributions from highway and off-road engines.

Pollutant	Emissions (thousands of tons)	
	Highway	Off-Road
Nitrogen oxides	7,988	5,461
Hydrocarbons	3,772	3,677
Carbon monoxide	49,701	29,514
Particulate matter	459	240

Source: EPA 2000.

Air pollutant emissions from off-road sources are currently estimated using the U.S. EPA's NONROAD model. The NONROAD model contains steady-state engine emission factors based on engine power and model year. The emission factors are then adjusted to account for deterioration with age, adjustment for transient-use, and fuel sulfur levels. The NONROAD model estimates emissions of carbon monoxide (CO), carbon dioxide (CO₂), hydrocarbons (HC), particulate matter (PM), nitrogen oxides (NO_x), and sulfur dioxide (SO₂). Many of the emission factors are based on data from the 1970s and early 1980s (EPA 1998). NONROAD has been updated recently to correct errors and improve emission estimation for these sources (Craig et al. 2003).

The estimation methods found in NONROAD were developed for civilian sources, however, and the emission estimations from this model and other civilian emission estimation methods will not apply to military off-road sources. Military sources differ from civilian sources in the fuels being used, the usage cycles applied to the compression ignition engines, and the engine technology. These differences are well known to affect emissions from diesel engine powered sources (Clark et al. 2002). The primary fuel used by the military during training is JP-8, which is used almost exclusively as a way of reducing fuel distribution problems in the battlefield and during training scenarios. The occasional exception to JP-8 usage is the use of diesel fuels by some Army National Guard and Reserve units during training. In general, JP-8 has a lower boiling temperature and lower density than diesel fuel. JP-8 also contains corrosion inhibitor, static dissipater, and fuel-system icing inhibitor additives. These fuel differences obviously affect emissions, and a few studies indicate some of these effects (Montalvo and Ullmann 1993; Yost et al. 1996). These effects are not accounted for in current emission estimation methods, however. Military equipment usage is also different than usage of civilian counterparts in the trucking, construction, mining, and agricultural industries. Military activity will vary depending on the type of vehicle and equipment and the type of training. Until these usage patterns are studied and documented, the prediction of military engine emissions will be problematic.

Civilian off-road sources include compression ignition engines used in farm, construction, and industrial equipment. Military sources that fall into the off-road category include tactical/combat vehicles and non-vehicular equipment such as generator sets that use diesel engines. Diesel engine emissions include criteria air pollutants such as PM less than 2.5 micrometers in aerodynamic diameter (PM2.5), PM less than 10 micrometers in aerodynamic diameter (PM10), NO_x, SO₂, and CO. Diesel exhaust also contains hundreds of gas-phase, semi-volatile, and particulate-phase organic compounds. Some of these organic emissions are individually listed by regulators as hazardous air pollutants and the California Air Resources Board (ARB) has listed particulate emissions from diesel-fueled engines as a toxic air con-

taminant. Diesel engine emissions have been associated with increased cases of lung cancer and noncancer health effects that impair respiratory function (ARB 1998; EPA 2001).

Objectives

The development of the WP-1338 database described in this report was funded by SERDP to support SERDP project WP-1336, *Characterization of Off-Road Diesel Emissions of Criteria Pollutants*. The objective of this work was to develop a database of DoD off-road sources and their activity. The WP-1338 database directly supports WP-1336 by serving as input during the selection of off-road equipment that will be tested. This selection is based on equipment inventories, usage levels, fuel consumption, and planned future usage. Detailed tactical equipment information ensures that the equipment tested represents a larger population of the equipment type. Fuel consumption data allow an estimate of engine use that should more closely correspond with engine emissions than do other activity measurements such as vehicle miles driven or hours of operation. The database will also be a component of the base-wide emissions estimation software tool being developed in WP-1336. The database can serve as a source of equipment characteristics and activity level information that will be required by the emission estimation methods used in the emission software tool.

Another objective of this work was to develop a database that can function independently from the base-wide emission estimation tool being developed in WP-1336. This objective was achieved by including a simple user interface that allows on-screen filtering and sorting of data and also allows users to generate reports that group and summarize the data.

Approach

The general approach used during this work included the following activities:

Collect data. Data were gathered for fuels, equipment, engines, and activity/inventory of equipment. The U.S. Army Tank-Automotive Research, Development and Engineering Center (TARDEC) Fuels and Lubricants Research Facility (TFLRF) collected information on fuels, equipment and engines and the U.S. Army Engineer Research and Development Center (ERDC) Construction Engineering Research Laboratory (CERL) collected information on equipment inventory and activity. Chapter 2 discusses the major information sources and some data limitations that were encountered.

Design and populate database. CERL was responsible for the database design and population. Microsoft® Access was used to create the database and referential integrity is enforced between related tables to maintain data integrity. Chapter 3 discusses overall database design and the methods used to transfer data into each appropriate data table.

Design and develop user interface. CERL created the user interface for the database. The user interface is a separate MS Access database containing forms, queries, reports, and associated Visual Basic® for Applications code. The user interface database contains linkages to the information database described above. Chapter 4 describes the design and use of the user interface.

Analyze data. CERL used the built-in queries and reports of the user interface to perform some general data analyses and to draw some initial conclusions and inferences from the data analysis results. Chapter 5 summarizes these results in tables and discusses the data analyses.

Mode of Technology Transfer

The primary means of technology transfer has been to provide the database to the investigators working on SERDP project WP-1336. The equipment portion of the database has also been provided to investigators working on SERDP project SI-1195, *Development of a GIS-Based Complex Terrain Model for Atmospheric Dust Dispersion*, as a source of equipment information, such as weight and maximum speed, that is useful in predicting soil-based PM emissions from moving vehicles. The database has also been placed into the permanent shared file library section of the Defense Environmental Network and Information Exchange (DENIX) website, which can be accessed at the following URL:

<https://www.denix.osd.mil/denix/DOD/dod.html>.

This site is restricted to DENIX users with DoD-level logins and passwords.

This work was published in a peer reviewed conference paper at the annual Air and Waste Management Association 97th Annual Conference and Exhibition in Minneapolis, MN (Kemme 2005). The work was presented as part of the Partners in Environmental Technology Technical Symposium and Workshop in Washington, DC, 29 November–1 December 2005.

This report will also be made accessible through the World Wide Web at the following URLs:

<http://docs.serdp-estcp.org/> and

<http://www.cecer.army.mil>

2 Data Collection

This chapter describes the types of data collected during this project and the sources used to obtain these data. TFLRF researchers collected data for fuels, equipment, and engines, and CERL researchers collected data for equipment activity levels. The different data types were stored in separate spreadsheets in preparation for the consolidation of the data into a database.

Fuels Data

Fuel information was obtained from fuel surveys completed between 1998 and 2003 and performed first by TRW Petroleum Technologies and later by Northrop Grumman Mission Systems (Dickson 1999–2004). The fuel surveys contain chemical and physical information for aviation turbine fuels (Jet A and JP-8), on-road and off-road diesel fuels (1-D and 2-D), and winter and summer grade gasolines. Tables 2 through 8 contain the most recently documented information about these fuels from the fuel survey reports. Only information that was common to all fuel types was included in the database. Since not all the fuel property information is contained in the database, all the collected fuel information is shown in the following tables. The data in these tables are the starting point for that data that were ultimately included in the database. Some of these fuel property data may be shown to be useful for engine emission estimates if specific fuel characteristics are found to impact emission levels.

Table 2. Summarized data for aviation turbine fuels.

Year	2001			2002		
Number of fuels	7			28		
Test	JP-8			Jet A		
	Min	Avg	Max	Min	Avg	Max
Gravity, °API	37.3	43.1	46	39.6	42.2	46.7
Distillation Temperature:						
10% recovered, °F	333	355	388	341	369	386
50% recovered, °F	375	396	417	368	413	431
90% recovered, °F	455	465	474	410	473	510
Freezing point, °F	-81	-65	-54	-74	-52	-41
Viscosity, kinematic, -4 °F, cSt	3.71	4.59	6.5	3.11	5.28	6.85
Aniline point, °F	134.1	NR	134.1	129.7	139.7	154
Aniline-gravity product No.	5,941	NR	5,941	5,136	5,904	6,405

Year	2001			2002		
Number of fuels	7			28		
	JP-8			Jet A		
Test	Min	Avg	Max	Min	Avg	Max
Acidity, KOH, mg/g	0.001	0.002	0.003	<0.001	0.012	0.03
Sulfur:						
Total, wt.%	0.004	0.033	0.08	<0.001	0.05	0.205
Mercaptan, wt.%	<0.001	<0.001	0.001	<0.001	0.001	0.002
Naphthalenes, vol.%	0.54	1.17	1.6	0.19	1.78	2.7
Aromatic content, vol.%	15	19.8	22.1	12.1	18.6	24.8
Olefin content, vol.%	0.7	1.3	2.6	0	1.5	3.8
Smoke point, mm	19	20.9	25	18	22.3	26
Gum, mg/100ml:						
Existent, at 450 °F	<0.1	0.3	1	<0.1	0.7	6.4
Heat of combustion, net, Btu/lb	18,565		18,565	18,616	18,477	18,605
Thermal stability:						
Pressure drop, mm Hg	<0.1	0.9	3	<0.1	1.2	14
Water separometer index, No.	94	97	98	90	96	99

NR – Not Reported; API – American Petroleum Institute gravity degrees; cSt – centistokes;
KOH – potassium hydroxide;

Source: Dickson, April 2003.

Table 3. Summarized national data for 1-D on-highway diesel fuels for 2003.

Number of fuels	3		
	National		
Test	Min	Avg	Max
Gravity, °API	41.4	43.1	44.1
Flash Point, °F	120	138	144
Color, Saybolt chromometer	30	30	30
Viscosity (kinematic), cSt at 104 °F	NR	NR	NR
Cloud point, °F	NR	NR	NR
Pour point, °F	NR	NR	NR
Sulfur content, wt. %	0.002	0.014	0.131
Carbon residue on 10%, wt. %	0.02	0.078	0.12
Ash, wt. %	<0.001	<0.001	<0.001
Cetane number	NR	NR	NR
Cetane index	42.7	46.8	49.2
Aromatics, vol. %	14.2	16.5	21
Distillation temperature, °F			
Initial Boiling Point	285	322	338
10% volume recovered	366	376	380
50% volume recovered	417	418	418
90% volume recovered	453	462	465
End point	480	496	500

NR – Not Reported; API – American Petroleum Institute gravity degrees;
cSt – centistokes

Source: Dickson 2004.

Table 4. Summarized 2003 on-highway diesel fuel data for eastern, southern, and central regions.

Number of fuels	21			14			17		
	Eastern Region			Southern Region			Central Region		
Test	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max
Gravity, °API	31.5	34.5	38.5	31.4	34.5	39	31.4	33.6	36
Flash Point, °F	144	1157	190	153	1168	179	154	1168	190
Viscosity (kinematic), cSt at 104°F	2.28	2.61	3.2	2.44	2.67	3.1	2.35	2.63	3.2
Cloud point, °F	-22	NR	14	-24	NR	14	-22	NR	10
Pour point, °F	-5	NR	10	-30	NR	5	-30	NR	5
Sulfur content, wt. %	0.02	0.037	0.047	0.019	0.034	0.042	0.02	0.034	0.046
Carbon residue on 10%, wt. %	0.05	0.056	0.06	0.04	NR	0.110	0.05	0.107	1.16
Ash, wt. %	0.001	NR	0.001	0.001	NR	0.001	0.001	NR	0.001
Cetane number	41.6	45.8	53.7	41.4	44.7	50.5	40.3	43	46.7
Cetane index	39.1	45	53.2	42.5	45.5	54.9	39.1	43.6	49.3
Aromatics, vol. %	23.1	32.7	40.5	23.6	34.9	43.2	32.2	36.9	39.2
Distillation temperature, °F									
Initial Boiling Point	317	347	397	324	357	398	300	355	398
10% volume recovered	386	409	465	399	415	442	399	418	465
50% volume recovered	487	506	538	498	509	525	485	507	538
90% volume recovered	586	606	627	590	607	628	583	605	634
End point	638	658	675	635	653	668	635	656	683

¹ Median valueNR – Not Reported; API – American Petroleum Institute gravity degrees; cSt – centistokes;
Source: Dickson 2004.**Table 5. Summarized 2003 on-highway 2-D diesel fuel data for the nation and the Rocky Mountain and western regions.**

Number of fuels	7			13			72		
	Rocky Mtn Region			Western Region			National		
Test	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max
Gravity, °API	32.7	34.8	36.3	32.5	36.4	41.2	31.4	34.7	41.2
Flash Point, °F	145	NR	145	144	1149	162	144	1155	190
Viscosity (kinematic), cSt at 104 °F	2.32	2.55	2.93	2	2.6	3.43	2	2.6	3.43
Cloud point, °F	-22	NR	-10	-22	NR	26	-24	NR	26
Pour point, °F	-25	NR	-25	-25	NR	15	-30	NR	15
Sulfur content, wt. %	0.021	0.034	0.043	0.003	0.023	0.049	0.003	0.033	0.049
Carbon residue on 10%, wt. %	0.11	NR	0.11	0.06	NR	0.11	0.4	0.078	0.16
Ash, wt. %	NR	NR	NR	<0.001	NR	<0.001	<0.001	0.001	0.001
Cetane number	43.1	45.3	47.4	40.3	49.1	55.6	40.3	45.6	55.6
Cetane index	42.8	45	47.5	40	47.3	56	39.1	45.2	56
Aromatics, vol. %	32.7	35.1	38.2	8.9	27.8	40.1	8.9	33.4	43.2
Distillation temperature, °F									
Initial Boiling Point	328	352	376	302	346	396	300	350	398
10% volume recovered	377	407	431	374	403	463	374	410	465
50% volume recovered	484	501	523	437	496	541	437	504	541
90% volume recovered	585	601	610	585	610	624	583	606	634
End point	639	654	668	639	648	693	635	659	693

¹ Median valueNR – Not Reported; API – American Petroleum Institute gravity degrees; cSt – centistokes;
Source: Dickson 2004.

Table 6. Summarized 2003 off-highway 2-D diesel fuel data.

Number of fuels	5			8		
	Southern Region			National		
Test	Min	Avg	Max	Min	Avg	Max
Gravity, °API	31.2	34.8	39	31.2	34.2	39
Flash Point, °F	142	156	199	142	162	199
Viscosity (kinematic), cSt at 104 °F	2.1	3.05	4	2.1	3.06	4
Cloud point, °F	-4	NR	22	-4	NR	22
Pour point, °F	-1	NR	15	-10	NR	15
Sulfur content, wt. %	0.2	0.482	1	0.2	0.435	1
Carbon residue on 10%, wt. %	0.001	0.097	0.240	0.001	0.113	0.240
Ash, wt. %	0.001	NR	0.001	0.001	NR	0.001
Cetane number	NR	NR	NR	NR	NR	NR
Cetane index	40.5	48.2	51.8	40.2	46.7	51.8
Aromatics, vol. %	3	NR	3	3	NR	3
Distillation temperature, °F						
Initial Boiling Point	324	368	424	324	371	424
10% volume recovered	390	425	474	390	430	474
50% volume recovered	478	514	556	478	515	556
90% volume recovered	592	612	639	591	613	639
End point	637	651	671	626	652	688

¹ Median valueNR – Not Reported; API – American Petroleum Institute gravity degrees; cSt – centistokes
Source: Dickson, April 2003.

Table 7. Summarized 2002 data for summer motor gasoline grades (averaged analyses results of 551 motor gasoline samples from service stations throughout the United States).

Test	(R+M)/2			(R+M)/2		
	Below 88.0			90.0 and Above		
	Min	Avg	Max	Min	Avg	Max
Gravity, °F	50.3	56.5	61.8	47.8	55.7.	63.6
Sulfur content, wt. %	<0.001	0.027	0.095	0	0.007	0.039
Gum, mg/100 ml	<0.1	<0.1	1	<0.1	<0.1	1
Saturates, vol. %	39.9	54.3	71.9	39.2	58.2	82.1
Olefins, vol. %	0.7	12.5	25.4	0.7	5.9	15.1
Aromatics, vol. %	17	31	42	16.4	31.5	55.4
Benzene, vol. %	0.3	1.15	3.2	0.17	0.77	2.81
Octane number, Research	89.9	92	98.5	93.9	97.5	99.7
Octane number, Motor	81.3	82.6	87.8	85.6	87.5	88.9
Antiknock index, (R+M)/2	85.7	87.3	93.2	90.2	92.5	93.7
Vapor pressure, 100 °F, psi	6.6	7.6	9	6.3	7.6	9
Vapor-liquid ratio of 20, °F	133	147	158	133	151	165
Distillation temperature, °F						
Initial Boiling Point	NR	98	NR	NR	97	NR
5% Evaporated	NR	120	NR	NR	121	NR
10% Evaporated	NR	133	NR	NR	137	NR
20% Evaporated	NR	150	NR	NR	159	NR
30% Evaporated	NR	168	NR	NR	182	NR
50% Evaporated	NR	212	NR	NR	224	NR
70% Evaporated	NR	266	NR	NR	263	NR
90% Evaporated	NR	337	NR	NR	328	NR
95% Evaporated	NR	367	NR	NR	357	NR
End point	NR	415	NR	NR	409	NR
Residue, vol. %	NR	0.6	NR	NR	0.6	NR
Loss, vol. %	NR	1.7	NR	NR	1.8	NR
Ethers, vol. %						
MTBE	<0.1	1	13.3	<0.1	3.7	14.3
TAME	<0.1	0.1	3.6	<0.1	0.2	3.4
ETBE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
DIPE	<0.1	<0.1	0.1	<0.1	<0.1	0.2

NR – Not Reported

Source: Dickson, March 2003.

Table 8. Summarized 2002 and 2003 data for winter motor gasoline grades (averaged analyses results of 359 motor gasoline samples from service stations throughout the United States).

Test	(R+M)/2			(R+M)/2		
	Below 88.0			90.0 and Above		
	Min	Avg	Max	Min	Avg	Max
Gravity, °F	56.7	61.7	67.2	52.4	59.6	68.1
Sulfur content, wt. %	<0.001	0.029	0.079	<0.001	0.008	0.028
Gum, mg/100 ml	<0.1	1	1	<0.1	1	1
Saturates, vol. %	49.8	61.6	73.1	37.3	62.7	86.1
Olefins, vol. %	1.2	11.7	22.6	1	5.5	19.2
Aromatics, vol. %	18.7	26.2	32.6	11.6	29.5	39.5
Benzene, vol. %	0.46	1.1	2.51	0.14	0.71	2.88
Octane number, Research	89	91.7	93.9	92.7	97.4	100
Octane number, Motor	80	82.7	84.8	85.9	87.8	89.7
Antiknock index, (R+M)/2	84.9	87.2	89.4	90.4	92.6	94.1
Vapor pressure, 100 °F, psi	10.2	13.1	14.7	10.2	13	14.9
Vapor-liquid ratio of 20, °F	108	116	130	110	120	133
Distillation temperature, °F						
Initial Boiling Point	NR	83	NR	NR	83	NR
5% Evaporated	NR	93	NR	NR	94	NR
10% Evaporated	NR	105	NR	NR	107	NR
20% Evaporated	NR	123	NR	NR	130	NR
30% Evaporated	NR	143	NR	NR	159	NR
50% Evaporated	NR	192	NR	NR	215	NR
70% Evaporated	NR	250	NR	NR	258	NR
90% Evaporated	NR	327	NR	NR	321	NR
95% Evaporated	NR	358	NR	NR	349	NR
End point	NR	407	NR	NR	402	NR
Residue, vol. %	NR	0.7	NR	NR	0.7	NR
Loss, vol. %	NR	2.5	NR	NR	2.7	NR
Ethers, vol. %						
MTBE	<0.1	4	11.2	<0.1	2	15.8
TAME	<0.1	<0.1	3	<0.1	0.2	7.2
ETBE	<0.1	<0.1	0.2	<0.1	<0.1	<0.1
DIPE	<0.1	<0.1	0.1	<0.1	<0.1	0.6

Source: Dickson, August 2003.

Equipment Data

The DoD off-road diesel-powered equipment list is comprised of combat, tactical, and ground support equipment found in the U.S. Army, Marine Corps, Air Force, and Navy. The list contains the following types of equipment:

- wheeled vehicles
- tracked vehicles
- generator sets
- power plants
- construction equipment
- material handling equipment.

The EPA definition of off-road diesel-powered equipment excludes equipment that will be used exclusively in a single location. Equipment used in a single location is categorized as a stationary air pollution source, and off-road diesel-powered equipment includes only mobile sources.

Wheeled vehicles, tracked vehicles, and generator sets make up most of the equipment found in the database. Figure 1 shows examples of wheeled vehicles; Figure 2, examples of tracked vehicles; Figure 3, examples of generator sets used in the field.

Figure 1. Examples of wheeled vehicles: top left, a heavy equipment transporter (HET); top right, a heavy expanded mobility tactical truck (HEMTT); bottom left, a high mobility multi-purpose wheeled vehicle (HMMWV); and bottom right, an interim armored vehicle (IAV) also known as the Stryker.

Figure 2. Examples of tracked vehicles: Top left, a Bradley fighting vehicle; top right, an M9 combat earthmover; bottom left, an M88 Hercules recovery vehicle; bottom right, an M113 armored personnel carrier (APC).

Figure 3. Examples of generator sets: Top left, a 3-kW mobile electric power (MEP), tactical quiet generator (TQG); top right, a 30-kW trailer mounted power unit (PU); bottom left, a 200-kW MEP TQG; bottom right, a 200-kW MEP TQG.

The FED LOG Interactive Database was used to gather equipment information for all four services. The FED LOG Interactive Database is a logistics information system that allows the retrieval of data from the Federal Logistics Information System (FLIS) and service specific databases. The FED LOG Interactive Database was primarily used to gather equipment characteristics data, cross-referencing table of authorized material control number (TAMCN) to national stock number for the USMC equipment, and obtaining nomenclature information for USMC and U.S. Air Force (USAF) equipment. The FED LOG Interactive Database is updated routinely and distributed on CDROM or DVD media. The FED LOG Interactive Database used in this work had an effective date of August 2003.

Another common information source for diesel-powered equipment was technical manuals that describe the maintenance and operation of DoD equipment. These technical manuals were downloaded mainly from Internet sites, and the Internet site used most was <https://www.losga.army.mil/etms/online.htm>. The technical manuals were found through searches using the line item numbers, national identification numbers (last nine digits of the equipment national stock number), or equipment nomenclature. The technical manuals were the principal source for equipment data such as weight and fuel consumption.

The Army equipment information came from a variety of sources. The starting point was a TFLRF report that included a listing of U.S. Army fuel-consuming mobility and combat support equipment (TARDEC 1996). The equipment list was updated by adding new equipment and deleting old equipment no longer found in the Army's inventory. The following information sources were used to obtain Army equipment data:

- Chapter 2, of Army Supply Bulletin (SB) 700-20, Army Adopted/Other Items Selected for Authorization/List of Reportable Items
- Chapter 3, SB 710-2, Supply Control: Combat Consumption Rates for Ground and Aviation-Type Petroleum Products
- various Army technical manuals for individual pieces of equipment
- the FED LOG Interactive Database.

SB 700-2 and SB 710-2 provide an updated list of diesel-powered Army equipment and the technical manuals for the individual pieces of equipment and the FED LOG Interactive Database provides more detailed information about this equipment.

The USMC equipment information was collected from the following information sources:

- the Navy Visibility and Management of Operating and Support Cost (VAMOSC) Database (FMB-6 2003)
- Army technical manuals on equipment applicable to the USMC
- the FED LOG Interactive Database.

The VAMOSC management information system collects and reports U.S. Navy and Marine Corps historical weapon system operating and support (O&S) costs. The cost information includes fuel usage information for USMC ground combat systems. For the equipment database, VAMOSC provides a list of USMC equipment that uses diesel fuel, while technical manuals and the FED LOG Interactive Database provide details about each piece of diesel-powered equipment.

The USAF equipment information was collected from the following information sources:

- equipment database from the Warner Robins Air Logistic Center, Support Equipment and Vehicle Directorate
- Army technical manuals on equipment applicable to the USAF
- the FED LOG Interactive Database.

The initial list of USAF equipment came from a spreadsheet containing a database that included diesel-powered equipment from 2002 (Intellimotive Env. Systems 2002). Intellimotive Environmental Systems (Austin, TX) developed the database for the Warner Robins Air Logistics Center, Support Equipment and Vehicle Directorate. The equipment list was expanded by adding diesel-powered equipment that Army technical manuals identified as USAF equipment. Some of the nonvehicular equipment found in the USAF list would not be classified as an off-road source by regulators at many Air Force facilities because the equipment supports aircraft operations and is always used in the same general location.

The U.S. Navy equipment information was collected from the following sources:

- Construction, Automotive and Specialized Equipment Management Information System (CASEMIS)
- Army technical manuals on equipment applicable to the U.S. Navy
- the FED LOG Interactive Database.

The Navy CASEMIS database was obtained from the Naval Facility Information Technology Center (NITC), Seabee Readiness Support Branch, Port Hueneme, CA. The equipment information in the database was from 2002. The equipment list was expanded by adding diesel-powered equipment that Army technical manuals identified as Navy equipment. Just as with USAF equipment, some of the nonvehicular

equipment found in the Navy list would not be classified as an off-road source by regulators at many Navy facilities because the equipment supports port operations and is always used at the same general location.

Engines Data

Engine displacement and horsepower data were collected for each engine with a unique manufacturer and model number. The FED LOG Interactive Database and technical manuals were the primary information sources for the displacement and horsepower data. Also, specific engine manufacturers' (e.g., Detroit Diesel, Cummins, Caterpillar, Onan) Internet sites were consulted to find missing information and as a secondary source for information collected from the FED LOG Interactive Database and technical manuals. In some cases, a specific engine's horsepower output varies with the type of equipment it is powering. When this horsepower variation occurred, the horsepower was averaged so that a single horsepower value was associated with each diesel engine.

Equipment Activity and Inventory

Equipment activity and inventory information is an important component of estimating emissions from the DoD off-road diesel-powered equipment. The EPA's NO-OAD model typically calculates engine emissions based partly on either miles driven or hours of operation. A measure of activity that is more directly related to engine emissions is fuel usage. Fuel usage increases with engine size and horsepower while vehicle miles driven and hours of operation do not. If no measure of equipment activity is available, then equipment inventory numbers may provide some insight as to which locations have the largest level of activity.

The sources of equipment activity and inventory information for this work were the Army Operating and Support Management Information System (OSMIS) and the Navy VAMOSC system. These tools are both examples of systems that support DoD policy requiring the explicit consideration of O&S costs from the beginning of the acquisition process throughout the operational life of a program to manage and control these costs. The Office of the Secretary of Defense (OSD) VAMOSC program was established as a means of responding to this requirement. Each service provides information for the DoD VAMOSC program. Although the USAF and Navy VAMOSC systems report on ships, aircraft, missiles, torpedoes, ship systems, and aircraft subsystems, they do not report on the diesel-powered support equipment that might be classified as off-road sources. No other national database of Air Force and Navy activity information was found. Therefore, only Army and Marine Corps

activity information was collected. However, the Army and Marine Corps off-road sources are a large majority of these sources within DoD.

Army Activity Information

OSMIS is the core of the Army portion of the DoD VAMOSC program. OSMIS, managed by the U.S. Army Cost and Economic Analysis Center (USACEAC), is the Army's source of historical O&S cost information for over 1,000 major Army weapon/materiel systems deployed in tactical units belonging to the Active Army, National Guard, and Army Reserve.

The OSMIS Relational Database contains the following commodity group of weapon systems:

- Aviation Systems consisting of rotary and fixed wing aircraft
- Combat Systems consisting of tanks and combat vehicles
- Artillery/Missile Systems consisting of artillery weapons, artillery support vehicles, air defense artillery and missiles, surface-to-surface missiles, and detection systems
- Tactical Systems consisting of wheeled vehicles
- Engineer/Construction Systems consisting of engineer, construction, electrical power generation, and floating equipment
- Communications/Electronics Systems consisting of radio receivers, teletype-writers and terminal sets, switches (voices and message), etc., and communications and data processing systems, radar sets, and terminals, etc.

OSMIS captures data from 30 different data sources throughout the Army, with a large majority of the data coming from Logistics Support Activity (LOGSA). OSMIS was developed under guidance that no new data collection efforts be required of the field. All input data must come from an existing Army database. OSMIS is not a real-time system. OSMIS interfaces with the data sources on a monthly, quarterly, or annual basis. Some of the major data sources used by OSMIS are the Logistic Integrated Database (LIF), the Army Master Data File (AMDF), the Continuing Balance System – Extract (CBS-X), and the Provisioning Master Record (PMR).

Ground activity is captured from the Unit Level Logistics System – Ground (ULLS-G) as the primary source, and Army Oil Analysis Program (AOAP) data as a secondary source. As units use their vehicle systems, the activity of those systems is tracked. Ground vehicle odometers are checked on a regular basis and this information is also fed through an OSMIS process to generate vehicle mileage across the entire Army fleet of vehicles. For aircraft, flight hours are logged and captured through an OSMIS process. Other systems in the Army are tracked only by the number of systems. For systems that consume fuel, fuel consumption is calculated

by multiplying the vehicle activity by the fuel consumption rate. Fuel cost is calculated by multiplying fuel consumption by the unit price of the fuel.

A major end item is known by National Item Identification Number (NIIN) from the Army Master Data File (AMDF). Each OSMIS system is also known by Mission Design Series (MDS) and Army Line Item Number (LIN). A list of OSMIS-approved MDS and MDS Names is kept to ensure that the naming of OSMIS-tracked systems and end items is consistent. For example, while a Bradley Fighting Vehicle may be tracked by NIIN or LIN, the MDS is “M2” and the MDS Name is “Bradley.” The OSMIS-approved MDS is not necessarily consistent with federally approved naming conventions because the MDS may have to apply to an entire series of systems. For example, the MDS of a specific type of HMMWV is “M966,” and the MDS Name is “HMMWV Series.” The primary NIIN indicates which major end item is most commonly used within the entire series of major end items that make up an OSMIS system.

The OSMIS system can be accessed at <http://www.osmisweb.com/OSMISWeb/>. The system requires a user login available to DoD employees or sponsored contractors. Users access data by first selecting predefined data queries. For this work, the “Fuel Consumption” data query was used, which provides inventory, activity (hours of operation or miles driven), and fuel consumption information. The query interrogates the user through a series of screens to define the data set being requested.

Because of the way the query interrogation screens were structured, a separate query needed to be run for each system that used fuel. A list of fuel consuming equipment was generated by running summary reports listing all Army equipment in OSMIS and looking at the activity basis. Systems that showed an activity basis of “MILES” or “HOURS” indicated that the equipment consumed fuel, and queries were run for each of these systems. For Fiscal Year (FY) 2003, OSMIS reported 222 different equipment systems that consumed fuel. The query results included installations both in the Continental United States (CONUS) and outside CONUS (OCONUS). Since this project’s focus was on equipment affected by EPA regulations during training operations, results for installations OCONUS were removed from the data set in a later step. Queries were run for FY2001, 2002, and 2003.

After a query request is run in OSMIS, the results are presented in a tabular form on the screen. To save the results, the page must be saved as a web page file with an “.htm” extension. The file can then be imported into an MS Excel spreadsheet. For this work, separate MS Excel spreadsheet files were created for FY2001, 2002, and 2003 and a separate MS Excel sheet was created for each system. Figure 4 shows example OSMIS data imported into a spreadsheet. The image shows only some of the column headings and a small number of equipment systems.

	A	B	C	D	E	F	G	H	I
1	MDS	MDSNAME	FY	QTR	INSTALLATION	ACTIVITY BASIS	FUELTYPE	FUEL NOMEN	FUEL COST PER MILE
2	M927A2	M939 SERIES	2003	1	ADA	MILE	JP8	TURBINE FUEL,AVIATION, KEROSINE	
3									
4	M927A2	M939 SERIES	2003	2	ADA	MILE	JP8	TURBINE FUEL,AVIATION, KEROSINE	
5									
6	M927A2	M939 SERIES	2003	3	ADA	MILE	JP8	TURBINE FUEL,AVIATION, KEROSINE	
7									
8	M927A2	M939 SERIES	2003	4	ADA	MILE	JP8	TURBINE FUEL,AVIATION, KEROSINE	
9									
10	M927A2	M939 SERIES	2003	1	ALBUQUERQUE	MILE	JP8	TURBINE FUEL,AVIATION, KEROSINE	
11									
12	M927A2	M939 SERIES	2003	2	ALBUQUERQUE	MILE	JP8	TURBINE FUEL,AVIATION, KEROSINE	
13									
14	M927A2	M939 SERIES	2003	3	ALBUQUERQUE	MILE	JP8	TURBINE FUEL,AVIATION, KEROSINE	
15									
16	M927A2	M939 SERIES	2003	4	ALBUQUERQUE	MILE	JP8	TURBINE FUEL,AVIATION, KEROSINE	
17									
18	M927A2	M939 SERIES	2003	1	ATHENS	MILE	JP8	TURBINE FUEL,AVIATION, KEROSINE	
19									
20	M927A2	M939 SERIES	2003	2	ATHENS	MILE	JP8	TURBINE FUEL,AVIATION, KEROSINE	
21									
22	M927A2	M939 SERIES	2003	3	ATHENS	MILE	JP8	TURBINE FUEL,AVIATION, KEROSINE	
23									
24	M927A2	M939 SERIES	2003	1	AVON PARK	MILE	JP8	TURBINE FUEL,AVIATION, KEROSINE	
25									
26	M927A2	M939 SERIES	2003	3	AVON PARK	MILE	JP8	TURBINE FUEL,AVIATION, KEROSINE	
27									
28	M927A2	M939 SERIES	2003	4	AVON PARK	MILE	JP8	TURBINE FUEL,AVIATION, KEROSINE	
29									
30	M927A2	M939 SERIES	2003	1	BETHLEHEM	MILE	JP8	TURBINE FUEL,AVIATION, KEROSINE	
31									
32	M927A2	M939 SERIES	2003	1	CHATTANOOG	MILE	JP8	TURBINE FUEL,AVIATION, KEROSINE	
33									
34	M927A2	M939 SERIES	2003	3	CHATTANOOG	MILE	JP8	TURBINE FUEL,AVIATION, KEROSINE	
35									

Figure 4. Example of OSMIS data imported into an MS Excel spreadsheet.

The following column headings are included in the OSMIS query results:

- MDS
- MDSNAME
- FY
- QUARTER
- INSTALLATION
- ACTIVITY BASIS
- FUEL TYPE
- FUEL NOMEN
- FUEL COST PER MILE
- ACTIVITY MILES
- FUEL PRICE (Then Years \$)
- TOTAL POL COST (Then Years \$)
- DENSITY
- FUEL COST PER SYSTEM (Then Years \$).

Fuel consumption is not directly reported in the query results, but it can be calculated by dividing the TOTAL POL COST by the FUEL PRICE.

The query results show activity and inventory information by quarter for each location where the equipment is found. Combining all query runs results in a large amount of data. Each fiscal year contained more than 100,000 unique rows (MDS, FY, INSTALLATION) of information. Part of the reason for this is that OSMIS contains information from many small National Guard and Army Reserve facilities.

One of the query interrogation screens asks for a fuel type selection. However, the fuel type information is a bit misleading in that the activity information does not change with different fuel type selections. Instead, the purpose of the fuel type selection is to set a fuel price for cost calculations. Therefore, the total activity and density levels are always reported regardless of which fuel was selected for the query.

The OSMIS data query results showed a problem with most nonaviation activity results presented in hours. Almost all of the query results showed zero or very trivial amounts of activity. Equipment types that had their activity reported in hours included generator sets, forklifts, cranes, and earth/material handling equipment. Only the density numbers give any indication of potential activity for these sources.

Marine Corps Activity Information

The Navy VAMOSC system, briefly described in the **Equipment** section of this chapter, can be accessed at either of these sites: www.navyvamosc.com or <http://www.usmcvamosc.com/>. Both Internet sites contain a system overview briefing that updates as the system is updated. This report includes information found in the August 2004 FMB-6 briefing.

The Navy VAMOSC system contains information on the following systems:

- Ships Universes
- Aviation Universes
- USMC Ground Equipment
- Weapons
- Personnel Universe.

The system uses 133 different data sources, and the information is updated at least annually with historic information dating back to 1984.

The USMC ground equipment component of the system was used for the work reported here. This section of the system tracks individual pieces of equipment by their table of authorized material control number (TAMCN). For FY2003 USMC data, the Navy VAMOSC system increased its coverage from 176 to 343 separate TAMCNs. The following data sources are used to update the USMC information:

- Defense Finance and Accounting Service/Under Secretary of Defense (DFAS/USD) Comptroller
- USMC Logistics Command (LOGCOM)
- Navy Petroleum Office
- Asset Tracking, Logistics and Supply System (ATLASS II+) Program Office
- USMC Systems Command (SYSCOM).

The Navy VAMOSC system allows users to create custom queries from data stored in one of eleven data “universes.” For this work, the “USMC Ground Equipment” universe was used. Two separate queries had to be run. The first query contained equipment activity and fuel usage information for all the ground equipment. Figure 5 shows the first page of results from this query. The query contains columns for the fiscal year, TAMCN, TAMCN description, average activity per item, the units for the activity (hours or miles), and the total fuel cost. As Figure 5 shows, not all of the reported equipment uses fuel, with only the very last item on the screen showing a fuel usage. Figure 5 also demonstrates that this query did not report the activity or fuel consumption data by location but provided a summary for all locations. For this reason, a separate query was run to show the inventory of equipment at different locations. Figure 6 shows the first page of results for this new query. The query contains columns for the fiscal year, TAMCN, TAMCN description, location, and inventory. Both of these queries were run for FY2001, 2002, and 2003, and the download feature of the Navy VAMOSC system was used to save the query results into two MS Excel spreadsheet files.

Since a single query could not be designed that would generate activity results by location, the two query results were combined into a single spreadsheet to apportion the summary activity information for individual locations. The first step was the elimination of all equipment that did not report any activity. For activity information, the spreadsheet calculated activity at individual locations by multiplying the average activity per item by the number of items found at a location. For fuel consumption information, the spreadsheet first calculated the total gallons of fuel by dividing the total Petroleum, Oils, and Lubricants (POL) cost by the price of JP-8 fuel for the year the activity was recorded. The POL costs were obtained from the Navy VAMOSC, USMC Ground Equipment User Manual (IBM 2004). The usage for each location was then apportioned by the number of items at a location divided by the total number of items throughout the USMC. The Navy VAMOSC system did not exhibit the same problem as the OSMIS system with regard to reporting activity for equipment when the activity is measured in hours.

My InfoView < Download Drill Refresh Edit Save Send >

Last refresh: 10/21/2004 08:35:44 PM ▲

Fiscal Year	TAMCN	TAMCN Description	Average Optempo (per item)	Avg Optempo
2001	A0010	Air Mobile, DASC, AN/UYQ-3A(V)2		
2001	A0011	Fire Support Command & Control System (FSCCS), AN/UYK-102(V)1		
2001	A0021	Multi-Source Correlations System, AN/TYQ-101		
2001	A0025	Air Defense Communications Platform (ADCP), AN/MSQ124		
2001	A0248	Central Office, Telephone, Automatic, AN/TTC-42(V)		
2001	A0274	Communications, Central, AN/TSC-120		
2001	A0283	Communications, Team Portable System, AN/PSQ-9		
2001	A0311	Communications, Technical Control Center, AN/TSQ-84		
2001	A0412	Communications, Jamming System, AN/ULQ-19(V)1		
2001	A0465	Decoder Group, AN/UPA-60(V)2		
2001	A0517	Lightweight Mantransportable Radio Direction Finder System (LMRDFS), AN/PRD-12		
2001	A0655	Satellite Communications Terminal, AN/TSC-96A		
2001	A0812	Ground Mobile Force Satellite Communications Terminal, AN/TSC-85A/B	0 hc	0 hc
2001	A0814	Communications, Terminal, AN/TSC-93B(V)1	0 hc	0 hc
2001	A0821	Communications, Central Air Support (CASC), AN/TSQ-207		
2001	A0881	Interrogator Set, AN/UPX-27		
2001	A0891	Tactical Defense Alert Radar Set (TDAR), AN/UPS-3		
2001	A0917	Radio Set, AN/PSC-3		
2001	A0918	Radio Set, Satellite, Tactical, Portable, AN/PSC-5		
2001	A0966	Mobile EW Support System, AN/MLQ-36	236 hc	236 hc

Figure 5. First page of query results showing activity and fuel usage information from the Navy VAMOSC system.

Fiscal Year	TAMCN	TAMCN Description	Location	Inventory
2001	A0010	Air Mobile, DASC, AN/UYQ-3A(V)2	1 MEF	2
2001	A0010	Air Mobile, DASC, AN/UYQ-3A(V)2	2 MEF	2
2001	A0010	Air Mobile, DASC, AN/UYQ-3A(V)2	3 MEF	2
2001	A0010	Air Mobile, DASC, AN/UYQ-3A(V)2	DMFA	1
2001	A0010	Air Mobile, DASC, AN/UYQ-3A(V)2	EEAP	0
2001	A0010	Air Mobile, DASC, AN/UYQ-3A(V)2	General Support	1
2001	A0010	Air Mobile, DASC, AN/UYQ-3A(V)2	MOB	0
2001	A0010	Air Mobile, DASC, AN/UYQ-3A(V)2	MPF	0
2001	A0010	Air Mobile, DASC, AN/UYQ-3A(V)2	Net WRMR	0
2001	A0010	Air Mobile, DASC, AN/UYQ-3A(V)2	Norway	0
2001	A0010	Air Mobile, DASC, AN/UYQ-3A(V)2	Reserve Stores	0
2001	A0010	Air Mobile, DASC, AN/UYQ-3A(V)2	Reserve TA	2
2001	A0010	Air Mobile, DASC, AN/UYQ-3A(V)2	Special Mission	0
2001	A0011	Fire Support Command & Control System (FSCCS), AN/UYK-102(V)1	1 MEF	156
2001	A0011	Fire Support Command & Control System (FSCCS), AN/UYK-102(V)1	2 MEF	150
2001	A0011	Fire Support Command & Control System (FSCCS), AN/UYK-102(V)1	3 MEF	81
2001	A0011	Fire Support Command & Control System (FSCCS), AN/UYK-102(V)1	DMFA	0
2001	A0011	Fire Support Command & Control System (FSCCS), AN/UYK-102(V)1	EEAP	0
2001	A0011	Fire Support Command & Control System (FSCCS), AN/UYK-102(V)1	General Support	32
2001	A0011	Fire Support Command & Control System (FSCCS), AN/UYK-102(V)1	MOB	0
2001	A0011	Fire Support Command & Control System (FSCCS), AN/UYK-102(V)1	Net WRMR	0

Figure 6. First page of query results showing inventory information from the Navy VAMOSC system.

Summary

For the most part, the data collection objectives of this project were met. Data were collected for fuels, equipment, engines, and equipment activity levels. Equipment and engine information came from many different sources, but the data were consolidated and entered into engine and equipment spreadsheets that contain information from all the services. This information should prove useful to the WP-1336 research group as they develop an emission estimation tool. Equipment activity level information was successfully gathered for the Army and USMC but not for the Air Force and Navy who do not centrally account for the off-road diesel equipment that support aircraft and ships. Therefore, the WP-1336 research group cannot use the activity information to prioritize Air Force and Navy off-road emission sources. However, the inventory of off-road diesel-powered equipment owned by the Air Force and Navy is much smaller than the Army and USMC inventory since their mission is more oriented towards off-road training. The Army and USMC activity data should prove very useful in determining the diesel-powered off-road equipment used most often by these services.

3 Database Design and Population

As mentioned in the **Introduction**, two MS Access databases were developed during this project. This chapter describes the database that stores the information that was collected, and Chapter 4 describes the database that provides a user interface for displaying data and viewing reports on the collected information. Researchers used MS Access 2000 for this work, and earlier versions of Access will not be able to read the database files.

Database information is kept in tables designed to store related data. Tables contain records that are similar to rows in a spreadsheet and fields that are like columns in a spreadsheet. The fields and field names describe the types of data contained in a table and each record stores an individual instance of this data. A table also has a primary key that defines what makes each record unique. The primary key is composed of one or more fields in the table, and the data in the primary key fields are unique for every record in the table.

Overall Structure

The following tables are included in the database:

- Installations
- Fuels
- Equipment
- Engines
- Equipment Activity and Inventory.

Figure 7 is the MS Access relationships diagram that shows the overall design of the database. The diagram shows all the database tables and their relationships with each other. Multiple tables are used in a database to avoid storage of repetitive information that is common to many records in another table. Tables are linked to each other using fields that occur in both tables. For example, the Engines table is linked to the Equipment table using the fields “Engine_Manufacturer” and “Model_Number.” The “1” symbol in the diagram indicates the table that contains a single record that is related to many records in the other table of the relationship.

Figure 7. Overall database design.

For all the relationships in the database, referential integrity was enforced and the cascade update feature was activated. Enforcing referential integrity ensures that data remain consistent within the database. Activating the cascade update feature will automatically change the data on the many side of a one-to-many relationship when a datum is changed in one of the linked fields in the table on the one side of the relationship. The cascade delete feature was activated between the Equipment Activity and Inventory table and the Equipment table and between the Equipment table and the Engines table. In this way, if any piece of equipment is deleted, then the associated records in the Equipment Activity and Inventory table are also deleted. If an Engine table record is deleted, then the associated records in the Equipment table are deleted and the Equipment deletions will again cause deletions of associated records in the Equipment Activity and Inventory table.

Fuels Data

The Fuels table in the database includes a subset of the data found in the fuels spreadsheet tables shown in Chapter 2. The fields included in the table were selected because they contain information that is common to all the fuels. Figure 8 shows the Fuels table design screen that lists the field names and data types. When a field contains a numeric property of the fuel, the field name includes the units of that property enclosed in parenthesis at the end of the field name. The fields "Fuel_Name" and "Year_Test" are both included in the primary key because different fuel testing years are included in the table. The "Reference" field contains citations for the fuel testing reports used as data sources for each record.

	Field Name	Data Type	
	Fuel_Name	Text	
	Year_Test	Text	
	API Gravity (oF)	Number	
	Sulfur Content (wt %)	Number	
	Aromatic Content (vol %)	Number	
	Olefin Content (vol %)	Number	
	Distillation Temp 10% (oF)	Number	
	Distillation Temp 50% (oF)	Number	
	Distillation Temp 90% (oF)	Number	
	Reference	Memo	

Figure 8. Fuels table design screen.

Figure 9 contains some of the data from the Fuels table. The figure shows all of the records in the table but not all of the fields. Figure 9 illustrates that some fuel types have more than one record because multiple testing years are included in the data set.

Fuels : Table							
Fuel_Name	Year_Test	API Gravity (oF)	Sulfur Content	Aromatic Content	Olefin Content	Distillation Temp 10%	
Jet A	1999	42.4	0.04	18.1	1.3	368	
Jet A	2002	42.2	0.05	18.6	1.5	369	
JP8	1999	43.5	0.043	18.5	1.7	354	
► JP8	2001	43.1	0.033	19.8	1.3	355	
Off-Highway 2-D	2003	34.2	0.435	3		430	
On-Highway 1-D	2003	42.6	0.008	17.6		388	
On-Highway 2-D	2001	34.3	0.035	31.8		421	
On-Highway 2-D	2003	34.7	0.033	33.4		410	
Summer Gasoline < 88 antikn	1999	57.6	0.028	30.3	10.4	131	
Summer Gasoline < 88 antikn	2002	56.5	0.027	31	12.5	133	
Summer Gasoline >= 90 antikn	1999	60.3	0.008	27.1	3.7	136	
Summer Gasoline >= 90 antikn	2002	55.7	0.007	31.5	5.9	137	
Winter Gasoline < 88 antikn	1999	61.7	0.028	24.6	9.5	105	
Winter Gasoline < 88 antikn	2003	61.7	0.029	26.2	11.7	105	
Winter Gasoline >= 90 antikn	1999	55.7	0.009	33.8	5.3	107	
Winter Gasoline >= 90 antikn	2003	59.6	0.008	29.5	5.5	107	
*		0	0	0		0	

Figure 9. Data from the Fuels table.

Equipment Data

The Equipment table in the database contains a list of off-road diesel-powered equipment used by DoD and properties and attributes of this equipment. The fields included in the table either help identify the equipment or contain properties that may be important in predicting engine emissions. Figure 10 shows the Equipment table design screen that lists the field names and data types. When a field contains a numeric property of the fuel, the field name includes the units of that property enclosed in parenthesis at the end of the field name. The exceptions to this are the fields containing fuel consumption information. In this case, the field

“Fuel_Consumption_Units” contains the fuel consumption units that were either km/hr for vehicular equipment or gal/hr for nonvehicular equipment. The fields “Service” and “Nomenclature” both are included in the primary key because the same equipment with the same Nomenclature may be shared by different services. The field “LIN” contains a service-specific identification number while the field “NSN” contains the service independent national stock number. A few records are missing the NSN, LIN, or both the NSN and LIN.

Equipment : Table		
	Field Name	Data Type
PK	Service	Text
	LIN	Text
	NSN	Text
PK	Nomenclature	Text
	Engine_Manufacturer	Text
	Model_Number	Text
	Idle_Fuel_Consumption	Number
	Cross_Country_Fuel_Consumption	Number
	Secondary_Roads_Fuel_Consumption	Number
	Average_Fuel_Consumption	Number
	Weight(pounds)	Number
	Max_Speed(mph)	Text
	Fuel_Consumption_Units	Text

Figure 10. Equipment table design screen.

Figure 11 contains a snapshot of data from the Equipment table. The figure shows records containing data for HEMTT and cargo trucks used by the Army. Figure 11 shows that there are 1,103 records in the Equipment table, which includes equipment with a wide range of introduction dates since the DoD has consistently developed new versions of equipment over time but still uses equipment that was introduced decades earlier.

Equipment : Table					
Service	LIN	NSN	Nomenclature	Engine_Manufacturer	Model_Number
USA	X39187	2320000508927	TRUCK BOLSTER 5TON WW M815	CUMMINS ENGINE	NHC 250
USA	T59278	2320010996426	TRUCK CARGO 10TON HEMTT M977	DETROIT DIESEL	8V92TA
USA	T59278	2320014933779	TRUCK CARGO 10TON HEMTT M977A2	DETROIT DIESEL	8V92TA DDEC IV
USA	T59278	2320014933785	TRUCK CARGO 10TON HEMTT M977A2R1	DETROIT DIESEL	8V92TA DDEC IV
USA	T39586	2320011007673	TRUCK CARGO 10TON HEMTT M985	DETROIT DIESEL	8V92TA
USA	T39586	2320014928201	TRUCK CARGO 10TON HEMTT M985A2	DETROIT DIESEL	8V92TA DDEC IV
USA	T39586	2320014933789	TRUCK CARGO 10TON HEMTT M985A2R1	DETROIT DIESEL	8V92TA DDEC IV
USA	T41721	2320011947032	TRUCK CARGO 10TON HEMTT M985E1	DETROIT DIESEL	8V92TA
USA	T41721	2320014933790	TRUCK CARGO 10TON HEMTT M985E1A2	DETROIT DIESEL	8V92TA DDEC IV
USA	T41721	2320014933792	TRUCK CARGO 10TON HEMTT M985E1A2R1	DETROIT DIESEL	8V92TA DDEC IV
USA	T39518	2320010970261	TRUCK CARGO 10TON HEMTT WW M977	DETROIT DIESEL	8V92TA
USA	T39518	2320014933774	TRUCK CARGO 10TON HEMTT WW M977A2	DETROIT DIESEL	8V92TA DDEC IV
USA	T39518	2320014933782	TRUCK CARGO 10TON HEMTT WW M977A2R1	DETROIT DIESEL	8V92TA DDEC IV
USA	T39654	2320010970261	TRUCK CARGO 10TON HEMTT WW M985	DETROIT DIESEL	8V92TA
USA	T39654	2320014928214	TRUCK CARGO 10TON HEMTT WW M985A2	DETROIT DIESEL	8V92TA DDEC IV
USA	T39654	2320014933787	TRUCK CARGO 10TON HEMTT WW M985A2R1	DETROIT DIESEL	8V92TA DDEC IV
USA	X41790	2320007400493	TRUCK CARGO 10TON WW M125A1	CUMMINS ENGINE	V8-300
USA	X40077	2320009260873	TRUCK CARGO 21/2TON D/S M35A2C	CONTINENTAL	LD465-1
USA	X40077	2320013832050	TRUCK CARGO 21/2TON D/S M35A3C	CATERPILLAR	3116 ATAAC
USA	X40214	2320009260875	TRUCK CARGO 21/2TON D/S WW M35A2C	CONTINENTAL	LD465-1
USA	X40214	2320013832049	TRUCK CARGO 21/2TON D/S WW M35A3C	CATERPILLAR	3116 ATAAC
USA	X40283	2320013832048	TRUCK CARGO 21/2TON LWB M36A3	CATERPILLAR	3116 ATAAC
USA	X40420	2320013832046	TRUCK CARGO 21/2TON LWB WW M36A3	CATERPILLAR	3116 ATAAC
USA	X40009	2320005425633	TRUCK CARGO 21/2TON M35A1	CONTINENTAL	LDS465-1
USA	X40009	2320000771616	TRUCK CARGO 21/2TON M35A2	CONTINENTAL	LDS465-1
USA	X40009	2320013832047	TRUCK CARGO 21/2TON M35A3	CATERPILLAR	3116 ATAAC
USA	X40146	2320005425634	TRUCK CARGO 21/2TON WW M35A1	CONTINENTAL	LDS465-1
USA	X40146	2320000771617	TRUCK CARGO 21/2TON WW M35A2	CONTINENTAL	LD465-1
USA	X40146	2320013833860	TRUCK CARGO 21/2TON WW M35A3	CATERPILLAR	3116 ATAAC
USA	X40283	2320000771618	TRUCK CARGO 21/2TON XLWB M36A2	CONTINENTAL	LD465-1

Figure 11. Data from the Equipment table.

When the equipment data were collected, it was discovered that some equipment had the same Nomenclature names but different NSNs. It was decided to enter all of these equipment data in case users should want to search for equipment by its NSN. These records are distinguished from one another in the table by adding sequential numbers, starting with one, enclosed in parenthesis at the end of the Nomenclature name. For example, the table includes records with the Nomenclature names “GEN ST DED 10KW 400HZ TQ PU799(1)” and “GEN ST DED 10KW 400HZ TQ PU799(2)” with NSNs of “6115013134283” and “6115014133819.”

Some of the records for tracked vehicles in the Equipment table contain fuel consumption rates specified for idle, cross country, and secondary road conditions. In these cases, an average fuel consumption rate was not published and the average fuel consumption value in the table was calculated by averaging the three available fuel consumption values from the Equipment table.

Engine Data

The Engines table in the database contains a list of engines used in DoD off-road diesel-powered equipment. Engine manufacturers and model numbers identify each of the engines. The engine displacements and horsepower are also recorded in the Engine table. Figure 12 shows the Engines table design screen that lists the field names and data types. The engine displacement is measured in cubic inches. The fields “Engine_Manufacturer” and “Model_Number” both are included in the primary key because the same manufacturer often makes several diesel engines used in DoD equipment.

	Field Name	Data Type
1	Engine_Manufacturer	Text
2	Model_Number	Text
3	Displacement	Number
4	HP	Number

Figure 12. Engines table design screen.

Figure 13 contains a snapshot of data from the Engines table. The figure shows records containing data for engines manufactured by Continental and Cummins Engine. The figure also shows that there are 175 records in the Engines table. Although not shown in Figure 13, a few records are missing the displacement and horsepower information. As mentioned in Chapter 2, some of the horsepower fields contain averages of horsepower values varied by different equipment types that used the same engine.

Engine_Manufacturer	Model_Number	Displacement	HP
CONTINENTAL	AVDS1790-2A	1790	783
CONTINENTAL	AVDS1790-2A, D, D	1790	783
CONTINENTAL	AVDS1790-2C	1790	783
CONTINENTAL	AVDS1790-2D	1790	783
CONTINENTAL	AVDS1790-2DA	1790	783
CONTINENTAL	AVDS1790-2DR	1790	783
CONTINENTAL	LD465-1	478	160
CONTINENTAL	LDS465-1	478	160
CONTINENTAL	TMD27	299	101
CUMMINS ENGINE	4B3.9	239	74
CUMMINS ENGINE	6BT5.9	359	152
CUMMINS ENGINE	6BT5.9-C	359	152
CUMMINS ENGINE	6CTA8.3	506	240
CUMMINS ENGINE	C180	300	130
CUMMINS ENGINE	JN-6-I	401	101
CUMMINS ENGINE	KT1150	1150	380
CUMMINS ENGINE	KTA2300G	2300	1235
CUMMINS ENGINE	N855/235	855	235
CUMMINS ENGINE	NHC 250	854	250
CUMMINS ENGINE	NT-380-1	1015	335
CUMMINS ENGINE	NTC 400	855	400
CUMMINS ENGINE	NTTA-855-P450	855	450
CUMMINS ENGINE	QSM 11	661	400
CUMMINS ENGINE	V8 265 2380	785	265
CUMMINS ENGINE	V8-300	785	300
CUMMINS ENGINE	V903C	903	295
CUMMINS ENGINE	VT400	854	400
CUMMINS ENGINE	VTA28G1	1710	750
CUMMINS ENGINE	VTA-903T	903	500
CUMMINS ENGINE	VTA903-T525	903	525

Figure 13. Data from the Engines table.

Equipment Activity and Inventory Data

The Equipment Activity and Inventory table contains activity information for Army and USMC diesel-powered off-road equipment. The fields describe inventory, activity, and fuel consumption information for equipment used at specific locations over either a quarter (Army) or year (USMC). Figure 14 shows the MS Access Equipment Activity and Inventory table design screen that lists the field names and data types. “Fuel_Consumption” is always reported in gallons, and activity is either reported in miles traveled or hours of operation, with the appropriate units shown in the “Activity Units” field. Since the table records information from varying services, equipment types, and time periods, the primary key is a combination of the “Location,” “Service,” “FY,” “Quarter,” and “Service_Equip_Name.”

Equipment Activity and Inventory : Table		
	Field Name	Data Type
Y	Location	Text
Y	Service	Text
Y	FY	Text
Y	Quarter	Text
Y	Service_Equip_Name	Text
	Nomenclature	Text
	Density	Number
	Activity	Number
	Activity Units	Text
	Fuel Consumption	Number
	Fuel_Name	Text
	Year_Test	Text

Figure 14. Equipment Activity and Inventory table design screen.

Figure 15 contains a small sample of data from the Equipment Activity and Inventory table. The figure shows usage and inventory data for a variety of Army equipment used at Fort Lewis, WA, during the first quarter of FY2002. The records show a wide variation of density and activity. The first record contains the largest inventory value at Fort Lewis, and the second record, the largest activity level. Figure 15 shows that the Equipment Activity and Inventory table has 311,605 records. The large number of records reflects the many types of equipment used and the large number of Army Reserve and National Guard locations included in the table.

Equipment Activity and Inventory : Table								
Service	Location	FY	Quarter	Service_Equip_Name	Nomenclature	Density	Activity	Activity Un
USA	FT LEWIS	2002	1	M1037	TRUCK UTIL S250 SHELTER HMMWV M1037	229	34321 miles	
USA	FT LEWIS	2002	1	M1038	TRUCK UTIL TROOP/CGO HMMWV M1038	171	97099 miles	
USA	FT LEWIS	2002	1	M1064A3	CARRIER MORTAR 120MM M1064A3	4	704 miles	
USA	FT LEWIS	2002	1	M106A2	CARRIER MORTAR 107MM SP M106A2	6	1 miles	
USA	FT LEWIS	2002	1	M1070	TRUCK TRACTOR HET M1070	4	1496 miles	
USA	FT LEWIS	2002	1	M1074	TRUCK CARGO HEAVY PLS TRANS M1074	28	15615 miles	
USA	FT LEWIS	2002	1	M1075	TRUCK CARGO HEAVY PLS TRANS M1075	14	9712 miles	
USA	FT LEWIS	2002	1	M1078-1898	TRUCK CARGO LMTV WW M1078	6	4083 miles	
USA	FT LEWIS	2002	1	M1078-3385	TRUCK CARGO LMTV M1078	109	73951 miles	
USA	FT LEWIS	2002	1	M1079-3384	TRUCK VAN LMTV M1079	10	1402 miles	
USA	FT LEWIS	2002	1	M1081-1899	TRUCK CARGO LMTV LAPES/AD WW M1081	3	333 miles	
USA	FT LEWIS	2002	1	M1081-3064	TRUCK CARGO LMTV LAPES/AD M1081	30	21793 miles	
USA	FT LEWIS	2002	1	M1083-1895	TRUCK CARGO MTV WW M1083	9	5528 miles	
USA	FT LEWIS	2002	1	M1083-3386	TRUCK CARGO MTV M1083	2	2410 miles	
USA	FT LEWIS	2002	1	M1083A1-3884	TRUCK CARGO MTV WW M M1083A1	26	16511 miles	
USA	FT LEWIS	2002	1	M1083A1-3890	TRUCK CARGO MTV M1083A1	111	92216 miles	
USA	FT LEWIS	2002	1	M1084	TRUCK CARGO MTV WMHE M1084	1	233 miles	
USA	FT LEWIS	2002	1	M1084A1-3887	TRUCK CARGO MTV WMHE M1084A1	15	22344 miles	
USA	FT LEWIS	2002	1	M1085A1-3891	TRUCK CARGO MTV LWB M1085A1	2	450 miles	
USA	FT LEWIS	2002	1	M1089-4528	TRUCK WRECKER MTV WW M1089	5	493 miles	
USA	FT LEWIS	2002	1	M1090-4529	TRUCK DUMP MTV M1090	87	37068 miles	
USA	FT LEWIS	2002	1	M1093-3063	TRUCK CARGO MTV LAPES/AD M1093	4	653 miles	
USA	FT LEWIS	2002	1	M1097	TRUCK UTIL HVY VARIANT HMMWV M1097	50	15497 miles	
USA	FT LEWIS	2002	1	M1097A1	TRUCK UTIL HVY VARIANT HMMWV M1097	32	28308 miles	
USA	FT LEWIS	2002	1	M1097A2	TRUCK UTIL HVY VARIANT HMMWV M1097A2	99	56088 miles	
USA	FT LEWIS	2002	1	M109A3-1636	TRUCK VAN SHOP 21/TON M109A3	10	461 miles	
USA	FT LEWIS	2002	1	M109A3-1637	TRUCK VAN SHOP 21/TON WW M109A3	4	88 miles	
USA	FT LEWIS	2002	1	M109A6	HOWITZER MEDIUM SP 155MM M109A6	1	135 miles	
USA	FT LEWIS	2002	1	M1114	TRUCK UTIL EXP CAPACITY UP-ARMORED HMMWV	9	5899 miles	
USA	FT LEWIS	2002	1	M113A2	CARRIER PERSONNEL FT M113A2	1	65 miles	
USA	FT LEWIS	2002	1	M113A3	CARRIER PERSONNEL FT (RISE) M113A3	27	3115 miles	

Figure 15. Data from the Equipment Activity and Inventory table.

One of the most challenging aspects encountered during the population of the Equipment Activity and Inventory table was matching the MDS and MDS Name information obtained from OSMIS with a corresponding representative record from the Equipment table. This task was challenging because the MDS information was often not part of the Nomenclature information found in the Equipment table or multiple records in the Equipment table had this information. In many instances, the confusion could be resolved by using the OSMIS facility for looking up equipment by LIN and NSN, but this was a very tedious process. In other cases, references to the MDS or MDS Name had to be found from technical manuals and other Internet resources.

One outcome of resolving OSMIS equipment identification with the equipment table was the creation of three “generic” equipment names. These names were “Generic TRUCK CARGO 21/2TON M35-LD465-1”, “Generic TRUCK CARGO 5TON M54-LD465-1”, and “Generic TRUCK CARGO 5TON M54-LDS465-1.” The generic names were created because there were a large number of MDS designations that were related to a single vehicle type. For example, the Nomenclature name “Generic TRUCK CARGO 21/2TON M35-LD465-1” corresponded to MDS designations of M109, M109A1-8365, M109A2-8308, M109A2-8313, M185, M185A2, M185A3, M275A2-1640, M275A2-1641, M756A2, and M764.

Two new names were also created in the Equipment table when none of the existing records corresponded to an MDS designation reported by OSMIS or the TAMCN description reported by the Navy VAMOSC system. For the Army, the new Nomenclature names are “SMALL UNIT SUPPORT VEHICLE (SUSV)” and “BRADLEY – LINEBACKER.” For the USMC, the new Nomenclature names are “AN/TWQ-1 – Avenger,” “Mobile EW Support System, AN/MLQ-36,” “Radio Set, AN/MRC-145A,” and “Radio Terminal Set, AN/MRC-142.” In all other cases, the OSMIS and Navy VAMOSC equipment identifications were resolved with records from the Equipment table. In some instances, more than one record from the Equipment table could have been linked with an Army or USMC equipment designation, but in these cases only one of the Equipment records was selected. Some records were also created in the Equipment table that did not have any linked records in the Equipment Activity and Inventory table.

Installations Data

The Installations table was created to link a location to the Army and USMC activity and inventory information. Figure 16 shows some data from the Installation table including some major Forces Command (FORSCOM) installations where a large volume of training occurs. The table includes fields for the Service, Command, In-

stallation, City, and State. An extraction from the service and installation name information from the Equipment Activity and Inventory table initially populated this table. Unfortunately, the data from OSMIS indicated only a location name. For smaller facilities, the name usually was that of the nearest town or city. These location names were occasionally a contraction of the full name, and these contractions were not always consistent. For the first cut, the command, city, and state data were taken from the DoD FY2002 Base Structure Report (ODUSD 2002). For many of the small National Guard and Army Reserve facilities, information on city, state, and command was found through Internet resources that list government entities within cities.

The locations reported from the Navy VAMOSC system are not physical locations but organizational structures within the USMC logistics system. The following locations are reported in the USMC portion of the Navy VAMOSC system:

- I Marine Expeditionary Force (MEF)
- II MEF
- III MEF
- Depot Maintenance Float Allowance (DMFA)
- Enhanced Equipment Allowance Pool (EEAP)
- General Support
- Mobilization Allowance (MOB)
- Maritime Prepositioning Force (MPF)
- Net War Reserve Materiel Requirement (Net WRMR)
- Norway Air-Landed Marine Expeditionary Brigade
- Reserve, In Stores Assets
- Reserve Training Allowance Pool (Reserve T/A)
- Special Mission Forces.

After the Installation table was created, it contained locations that were not in the United States. These installations and the associated records in the Equipment Activity and Inventory table needed to be removed because the database was developed to look at diesel-powered off-road equipment that was regulated in the United States. Since MS Access has a cascade delete capability for linked tables, this feature was temporarily activated so that any record deleted in the Installation table would also cause the deletion of all related records in the Equipment Activity and Inventory table.

	Service	Command	Installation	City	State
+ USA	FORSCOM	FT BRAGG	Fayetteville	NC	
+ USA	FORSCOM	FT CAMPBELL	Clarksville	TN	
+ USA	FORSCOM	FT CARSON	Colorado Spring	CO	
+ USA	FORSCOM	FT DRUM	Watertown	NY	
+ USA	FORSCOM	FT GILLEM	Forest Park	GA	
+ USA	FORSCOM	FT HOOD	Killeen	TX	
+ USA	FORSCOM	FT IRWIN	Barstow	CA	
+ USA	FORSCOM	FT LEWIS	Tacoma	WA	
+ USA	FORSCOM	FT MCPHERSON	Forest Park	GA	
+ USA	FORSCOM	FT POLK	Leesville	LA	
+ USA	FORSCOM	FT RILEY	Junction City	KS	
+ USA	FORSCOM	FT STEWART	Hinesville	GA	
+ USA	FORSCOM	HARTFORD	Hartford	AL	
+ USA	FORSCOM	HUNTER AAF	Savannah	GA	
+ USA	FORSCOM	MIDLAND	Midland City	AL	
+ USA	FORSCOM	NEW BROCKTON	New Brockton	AL	
+ USA	FORSCOM	OZARK	Ozark	AL	
+ USA	FORSCOM	VANCOUVER	Vancouver	WA	
+ USA	FORSCOM	YAKIMA FC	Yakima	WA	
+ USA	MDW	FT AP HILL	Bowling Green	VA	
+ USA	MDW	FT BELVOIR	Alexandria	VA	
+ USA	MDW	FT HAMILTON	New York	NY	
+ USA	MDW	FT MCNAIR	Washington	DC	
+ USA	MDW	FT MEADE	Baltimore	MD	
+ USA	MDW	FT MYER	Arlington	VA	
+ USA	MDW	FT RITCHIE	Waynesboro	MD	
+ USA	MEDCOM	FT DETRICK	Frederick	MD	
+ USA	MEDCOM	FT SAM HOUSTON	San Antonio	TX	
+ USA	MEDCOM	WALTER REED	Silver Spring	MD	
+ USA	MTMC	SUNYPTMOT	Wilmington	NC	
+ USA	TRADOC	CARLSLE B	Carlisle	PA	
+ USA	TRADOC	FT BENNING	Columbus	GA	

Figure 16. Data from the Installation table.

Summary

This chapter describes the work done to create and populate a database that contains DoD installation, fuel, equipment, engine, and equipment activity information. Each of these data categories were placed in their own tables and relationships were set up among the tables as shown in Figure 7. Since engine, equipment, and activity information came from different sources; a large effort was undertaken to standardize equipment name and engine manufacturer and model number information across the database. The database was designed to provide a structure for developing queries and reports to analyze information across all the services. Chapter 6 describes the data analysis that was performed for this project using this database.

4 User Interface

The user interface was designed as a tool for users to browse through data and display or print reports that summarize the information in useful ways. The user interface is actually a separate MS Access database containing the forms, queries, reports, and associated Visual Basic for Applications code that constitute the interface. The interface requires the user to have MS Access 2000 or above. The user begins by opening: “DoD_Diesel_Off_Road_Activity_Interface.mde.” An MS Access file with the mde extension contains working versions of the database objects but does not allow users to modify or delete any of the database objects. When the interface file is opened, the user is prompted to select a data set file as shown in Figure 17.

The highlighted file (Figure 17) is “Original_DoD_Diesel_Off_Road_Data.org” and contains the original data included in the database described in Chapter 3. For ease of use, this file should be in the same Windows folder as the user interface database. The file is password protected and encrypted to prevent changes to the information. However, users are allowed to create their own versions of this database. The files “Test1.scn” and “Test2.scn” are examples of user-created datasets.

Figure 17. Data set selection screen.

After a user selects a file, the file selection screen disappears, the hourglass cursor appears, and the message “Creating temporary database. Please wait...” is displayed on the bottom of the screen. At this point, the user interface application is creating a temporary database that is an exact copy of the selected file. The user interface interacts with the temporary database and users are able to save changes upon exiting the interface or selecting another file. The use of a temporary database allows users to make live changes to the database while maintaining a copy of the original information if the user wants to maintain that dataset. Because of the large amount of information, the creation of the temporary database may take several minutes. The amount of time required will improve with faster processors or more system memory.

Opening Screen

After the temporary database is created, the opening screen of the user interface appears as shown in Figure 18. This screen contains push button controls for viewing and modifying data, report generation, saving and loading case study files, and exiting the user interface. The top of the opening screen displays the name of the case study database file name.

Figure 18. Opening screen of the user interface.

If a user elects to save a file, a screen similar to Figure 17 is displayed except that the file “Original_DoD_Diesel_Off_Road_Data.org” is not shown so that users will not try to overwrite the original data file. However, users do have the option to overwrite an existing case study file or save the information in a new file name. The saving operation could take several minutes, and the top of the opening screen will show the name of the saved file. If a user chooses to load a new file, again a screen similar to Figure 17 is displayed and the original dataset file is displayed since users may want to load this file. However, if a user has modified information before choosing to load a new file, the interface will first provide the option of saving the modified file.

Forms for Data Display and Editing

The buttons for Locations, Fuels, Engines, Equipment, and Equipment Activity and Inventory open up forms that allow display and modification of data found in the tables with names the same as the buttons. For example, Figure 19 shows the Engines form that is displayed after selecting the Engines button. All the forms will display the form name on the top of the form and display information from more than one record at a time. On the top right of each form will be standard buttons for minimizing, maximizing/restoring, and closing the form. The bottom of each form will include record navigation and new record entry buttons.

The screenshot shows a Windows application window titled "Engines". The main area is a data grid with four columns: "Engine Manufacturer", "Model Number", "Displacement", and "HP". The data grid contains 17 rows of engine specifications, all of which belong to the CATERPILLAR manufacturer. The columns are headered in red. The "Model Number" column contains entries like 3046T, 3116, 3116 ATAAC, etc. The "Displacement" column shows values such as 638, 403, 290, etc. The "HP" column shows values like 250, 170, 265, etc. At the bottom of the grid, there is a "Filter Setting" input field and a "Record:" navigation bar with buttons for navigating between records and a total count of 175.

Engine Manufacturer	Model Number	Displacement	HP
CATERPILLAR	3046T	638	250
CATERPILLAR	3116	403	170
CATERPILLAR	3116 ATAAC	403	290
CATERPILLAR	3126 HEUI	439	265
CATERPILLAR	3126B	439	330
CATERPILLAR	3208	636	250
CATERPILLAR	3208 V8	636	210
CATERPILLAR	3304	425	135
CATERPILLAR	3304T	425	155
CATERPILLAR	3306	638	200
CATERPILLAR	3306T	638	250
CATERPILLAR	3406	893	330
CATERPILLAR	3408T	1099	393

Figure 19. Engines form.

The Enter or Tab key will move from field to field and the Page Up and Page Down key will move to the next and previous records respectively. The Delete key will either delete information found in a field or attempt to delete the entire record if the entire record has been previously selected by clicking on the bar to the left of a record. The interface will ask for confirmation before deleting a record. Changes are not actually stored in the linked table until the user moves to another record.

The custom toolbar shown in Figure 20 is also displayed at the top of each form. This toolbar gives users access to some useful functions built in to MS Access. Table 9 briefly describes the actions that each of these buttons will perform. As was discussed in the previous paragraph, some of these actions can also be performed using the keyboard or buttons included on the form.

Figure 20. Custom toolbar displayed on the top of forms.

Table 9. Actions performed by each of the buttons in the custom toolbar.

Icon	Action	Icon	Action
	Switch to the form view		Go to the first record
	Switch to the datasheet view		Go to the previous record
	Search and replace text		Go to the next record
	Find the next occurrence of text		Go to the last record
	Order the records in ascending order by the current field(s)		Enter a new record
	Order the records in descending order by the current field(s)		Delete the current record
	Filter records using the highlighted data		Cut the highlighted data into the clipboard
	Filter records by entering conditions on the form		Copy the highlighted data into the clipboard
	Toggle the current filter on or off		Paste the clipboard data at the cursor point
	Open the advanced filter/sort screen		Undo the previous change
			Exit the form

The and buttons cause the form view and datasheet view to be displayed, respectively. Figure 19 shows the Engines form view and Figure 21 shows the datasheet view of the same form. The datasheet view is similar to a spreadsheet table with the field names as the column headings. In the datasheet view, users can modify the width of columns and change the relative position of columns. Several columns can be selected and be used together to change the display order with the leftmost column being used as the primary sort key followed in order by selected columns to the right.

	Engine_Manufacturer	Model_Number	Displacement	HP
	CATERPILLAR	3046T	638	250
	CATERPILLAR	3116	403	170
	CATERPILLAR	3116 ATAAC	403	290
	CATERPILLAR	3126 HEUI	439	265
	CATERPILLAR	3126B	439	330
	CATERPILLAR	3208	636	250
	CATERPILLAR	3208 V8	636	210
	CATERPILLAR	3304	425	135
	CATERPILLAR	3304T	425	155
	CATERPILLAR	3306	638	200
	CATERPILLAR	3306T	638	250
	CATERPILLAR	3406	893	330
	CATERPILLAR	3408T	1099	393
	CATERPILLAR	342	1286	486
	CATERPILLAR	343T/A	893	334
	CATERPILLAR	7BJ TYPE II	243	85
	CATERPILLAR	9RM TYPE I	243	85
	CATERPILLAR	C-12	830	425

Record: 26 * of 175

Figure 21. Datasheet view of the Engines table.

The button is used to search for text or to search and replace text. Pressing this button opens up the MS Access Find and Replace form as shown in Figure 22. This single form can be used for both finding and replacing data and the form offers several options for improving the search through the table. The button will repeat the most recently performed search.

Figure 22. MS Access Find and Replace form.

The and buttons will sort the records in the current view in ascending and descending order respectively. In the form view, the order will be based on the field where the cursor is located when one of the buttons are pushed. In the datasheet view, several columns can be used to affect the sort order. After a sort operation is performed, the record pointer will move to the first record in the new view.

A number of MS Access features allow users to filter the display of data in the form and datasheet views. A filter allows users to view a subset of the data based on conditions placed on the view. The “filter by selection” button places a simple condition on the current view that is based on the field where the cursor is located when the button is selected. The filter will be $X = Z$ where X is the name of the field and Z is the value of the field where the cursor is located. For example, if the Engines form is displayed and the cursor is in the Engine_Manufacturer field and the value for the current record is “CATERPILLAR” then the filter becomes Engine_Manufacturer = “CATERPILLAR” and only records where the engine manufacturer is Caterpillar are displayed. The button also toggles the “apply filter button” so that the results of the filter are viewed immediately. If users

continue to press the button in different fields, the original condition will be expanded by adding new “AND” conditions based on each of the new fields and their values. A new condition will be started if a user untoggles the button and selects the button again.

The button activates the “filter by form” feature that allows users to enter filter conditions in a form or datasheet view. The conditions can be the value of a field or users can enter more complex conditions. Figure 23 shows an example of conditions entered in the “Look for” and “Or” tabs of the Engines filter-by form screens and the results of these conditions shown in the Engines form view window. In this example, engines manufactured by both Caterpillar and Continental are displayed on the form. The form view shown in Figure 23 also illustrates the “Filter Setting” text box that will display the current filter settings. This text box is included on the bottom of all forms that display data from database tables. The forms will also display the text “(Filtered)” to the right of the record navigation buttons on the bottom of the form. Printed or online MS Access help can advise users further on ways of filtering data using the filter-by form feature.

Engines: Filter by Form				
	Engine_Manufacturer	Model_Number	Displacement	HP
▶	"CATERPILLAR"			>300
Look for / Or / Or /				

Engines: Filter by Form				
	Engine_Manufacturer	Model_Number	Displacement	HP
▶	"CUMMINS ENGINE"			>300
Look for / Or / Or /				

Engines				
	Engine Manufacturer	Model Number	Displacement	HP
▶	CATERPILLAR	3126B	439	330
	CATERPILLAR	3406	893	330
	CATERPILLAR	3408T	1099	393
	CATERPILLAR	342	1286	486
	CATERPILLAR	343T/A	893	334
	CATERPILLAR	C-12	830	425
	CATERPILLAR	D342	1246	486
	CATERPILLAR	D342N	1246	411
	CATERPILLAR	D343T/A	893	334
	CATERPILLAR	D398TA	2946	938
	CUMMINS ENGINE	KT1150	1150	380
	CUMMINS ENGINE	KTA2300G	2300	1235
	CUMMINS ENGINE	NT-380-1	1015	335
	CUMMINS ENGINE	NTC 400	855	400
	CUMMINS ENGINE	NTTA-855-P450	855	450
	CUMMINS ENGINE	QSM 11	661	400
	CUMMINS ENGINE	VT400	854	400
	CUMMINS ENGINE	VTA28G1	1710	750
	CUMMINS ENGINE	VTA-903T	903	500
	CUMMINS ENGINE	VTA903-T525	903	525
*			0	0

Filter Setting: [Engines.Engine_Manufacturer="CATERPILLAR"] AND [Engines.HP>300] OR ([Engines.Engine_Manufacturer="CUMMINS ENGINE"] AND [Engines.HP>300])

Record: 14 | 1 | 1 | ▶ | ▷ | ▷* | of 20 (Filtered)

Figure 23. Filter by form conditions and results for the Engines table.

The button opens the advanced filter/sort screen. This screen is the MS Access query design screen that allows users to enter very complicated filter and sort conditions. Additional information about using query design screens can be found in an MS Access user manual or from online help.

The , , , and buttons are used for navigating the records on a form and are used to go to the last record, the next record, the previous record, and the first record, respectively. The navigation buttons will apply to the currently active sort and filter. The button is used to enter a new record. Selecting this button will move the record pointer to a blank record on the screen where the user fills in the appropriate information. This can also be accomplished using the same record navigation button on the bottom of the form or manually using the keyboard or mouse. The button will attempt to delete the current record or multiple records if more than one is selected. Users will be asked for confirmation before deleting records since the deletion operation is permanent.

The , , and buttons perform the MS Windows cut, copy, and paste operations, respectively. These operations should be familiar to everyone who has worked with other MS Windows applications. The button performs an undo operation on the most recent database change. There is only one level of undo, and record deletions cannot be undone. The button exits the form and returns to the opening screen of the user interface.

The remaining forms for displaying and editing data from the tables work the same way as the Engines form and use the same custom toolbar. Figure 24 shows the Installations form, Figure 25 shows the Fuels form, Figure 26 shows the Equipment form, and Figure 27 shows the Equipment Activity and Inventory form.

Service	Installation	Command	City	State
USA	PRES MONT	TRADOC	Monterey	CA
USA	FT STORY	TRADOC	Norfolk	VA
USA	FT KNOX	TRADOC	Radcliff	KY
USA	FT SILL	TRADOC	Lawton	OK
USA	FT GORDON	TRADOC	Augusta	GA
USA	FT BENNING	TRADOC	Columbus	GA
USA	FT MONROE	TRADOC	Hampton	VA
USA	CARLSLE B	TRADOC	Carlisle	PA
USA	HAMPTON	TRADOC	Hampton	VA
USA	FT BLISS	TRADOC	El Paso	TX
USA	FT LEAVENWORTH	TRADOC	Leavenworth	KS
USA	FT LEE	TRADOC	Petersburg	VA
USA	FT LEONARD WOOD	TRADOC	Waynesville	MO
USA	FT MCCLELLAN	TRADOC	Anniston	AL
USA	FT HUACHUCA	TRADOC	Sierra Vista	AZ
USA	FT JACKSON	TRADOC	Columbia	SC
USA	FT EUSTIS	TRADOC	Newport News	VA
USA	FT RUCKER	TRADOC	Daleville	AL

Filter Setting

Record: [◀◀] [◀] 983 [▶] [▶▶] [▶*] of 1179

Figure 24. Installation form.

Fuel Name	Year Test	API Gravity	Sulfur Content	Aromatic Content	Olefin Content	Distillation Temperature			Reference
						10%	50%	90%	
Jet A	1999	42.4	0.04	18.1	1.3	368	413	477	TRW Petroleum Technologies Report No. 209 TRW-209 PPS
Jet A	2002	42.2	0.05	18.6	1.5	369	413	473	Northrop Grumman Mission Systems Report No. 229 NGMS
JP8	1999	43.5	0.043	18.5	1.7	354	396	460	TRW Petroleum Technologies Report No. 209 TRW-209 PPS
JP8	2001	43.1	0.033	19.8	1.3	355	396	465	Northrop Grumman Mission Systems Report No. 229 NGMS
Off-Highway 2-D	2003	34.2	0.435	3		430	515	613	Northrop Grumman Mission Systems Report No. 232 NGMS
On-Highway 1-D	2003	42.6	0.008	17.6		388	426	476	Northrop Grumman Mission Systems Report No. 232 NGMS
On-Highway 2-D	2001	34.3	0.035	31.8		421	508	606	TRW Petroleum Technologies Report No. 222 TRW-222 PPS
On-Highway 2-D	2003	34.7	0.033	33.4		410	504	606	Northrop Grumman Mission Systems Report No. 232 NGMS
Summer Gasoline < 88 antiknock	1999	57.6	0.028	30.3	10.4	131	211	339	TRW Petroleum Technologies Report No. 208 TRW-208 PPS
Summer Gasoline < 88 antiknock	2002	56.5	0.027	31	12.5	133	212	337	Northrop Grumman Mission Systems Report No. 228 NGMS
Summer Gasoline > = 90 antikn	1999	60.3	0.008	27.1	3.7	136	230	330	TRW Petroleum Technologies Report No. 208 TRW-208 PPS
Summer Gasoline > = 90 antiknock	2002	55.7	0.007	31.5	5.9	137	224	328	Northrop Grumman Mission Systems Report No. 228 NGMS

Filter Setting

Record: [◀◀] [◀] 4 [▶] [▶▶] [▶*] of 16

Figure 25. Fuels form.

Equipment

Service	USA	Nomenclature	TRUCK CARGO 10TON HEMTT M977	LIN	T59278	NSN	2320-01-099-6426
Engine Manufacturer	DETROIT DIESEL	Model Number	8V92TA	Max Speed (mph)	55	Weight (pounds)	59500
Fuel Consumption	Units	km/gal	Average	3.33	Idle	Cross Country	Secondary Roads
Service	USA	Nomenclature	TRUCK CARGO 10TON HEMTT M977A2	LIN	T59278	NSN	2320-01-493-3779
Engine Manufacturer	DETROIT DIESEL	Model Number	8V92TA DDEC IV	Max Speed (mph)	55	Weight (pounds)	59500
Fuel Consumption	Units	km/gal	Average	3.33	Idle	Cross Country	Secondary Roads
Service	USA	Nomenclature	TRUCK CARGO 10TON HEMTT M977A2R1	LIN	T59278	NSN	2320-01-493-3785
Engine Manufacturer	DETROIT DIESEL	Model Number	8V92TA DDEC IV	Max Speed (mph)	55	Weight (pounds)	59500
Fuel Consumption	Units	km/gal	Average	3.33	Idle	Cross Country	Secondary Roads
Service	USA	Nomenclature	TRUCK CARGO 10TON HEMTT M985	LIN	T39586	NSN	2320-01-100-7673
Engine Manufacturer	DETROIT DIESEL	Model Number	8V92TA	Max Speed (mph)	55	Weight (pounds)	60800
Fuel Consumption	Units	km/gal	Average	3.16	Idle	Cross Country	Secondary Roads
Service	USA	Nomenclature	TRUCK CARGO 10TON HEMTT M985A2	LIN	T39586	NSN	2320-01-492-8201
Engine Manufacturer	DETROIT DIESEL	Model Number	8V92TA DDEC IV	Max Speed (mph)	55	Weight (pounds)	60800
Fuel Consumption	Units	km/gal	Average	3.16	Idle	Cross Country	Secondary Roads
Service	USA	Nomenclature	TRUCK CARGO 10TON HEMTT M985A2R1	LIN	T39586	NSN	2320-01-493-3789
Engine Manufacturer	DETROIT DIESEL	Model Number	8V92TA DDEC IV	Max Speed (mph)	55	Weight (pounds)	60800
Fuel Consumption	Units	km/gal	Average	3.16	Idle	Cross Country	Secondary Roads

Filter Setting

Record: 14 | 1 | 1 | > | >> | * | of 1103 | < | << | <<< | > | >> | >>> |

Figure 26. Equipment form.

Equipment Activity and Inventory

FY	2003	Quarter	1	Service	USA	Location	FT HOOD			
Nomenclature	TRUCK CARGO 5TON DROPSIDE M923A2	Service Name	M923A2							
Inventory	281	Activity	137721	miles	Fuel Consumption	26306.26	Fuel	JP8	Test Year	2001
FY	2003	Quarter	1	Service	USA	Location	FT HOOD			
Nomenclature	TRUCK CARGO 5TON DROPSIDE WW M925	Service Name	M925							
Inventory	32	Activity	7932	miles	Fuel Consumption	1515.10	Fuel	JP8	Test Year	2001
FY	2003	Quarter	1	Service	USA	Location	FT HOOD			
Nomenclature	TRUCK CARGO 5TON DROPSIDE WW M925A1	Service Name	M925A1							
Inventory	47	Activity	19620	miles	Fuel Consumption	3747.64	Fuel	JP8	Test Year	2001
FY	2003	Quarter	1	Service	USA	Location	FT HOOD			
Nomenclature	TRUCK CARGO 5TON DROPSIDE WW M925A2	Service Name	M925A2							
Inventory	149	Activity	45823	miles	Fuel Consumption	8752.71	Fuel	JP8	Test Year	2001
FY	2003	Quarter	1	Service	USA	Location	FT HOOD			
Nomenclature	TRUCK CARGO 5TON XLWB M927	Service Name	M927							
Inventory	8	Activity	837	miles	Fuel Consumption	159.88	Fuel	JP8	Test Year	2001
FY	2003	Quarter	1	Service	USA	Location	FT HOOD			
Nomenclature	TRUCK CARGO 5TON XLWB M927A1	Service Name	M927A1							
Inventory	35	Activity	4469	miles	Fuel Consumption	853.63	Fuel	JP8	Test Year	2001

Filter Setting

Record: 14 | 1 | 1 | > | >> | * | of 311605 | < | << | <<< | > | >> | >>> |

Figure 27. Equipment Activity and Inventory form.

Reports Generation

The opening screen of the user interface also has a button for opening a report generation form. When the Reports button is selected, there will be a delay as the system fills in temporary tables that allow the selection of criteria for some of the reports. The Reports form first requires the selection of a report from a pick list and then presents users several options for setting conditions on the reports. The conditions will vary depending on the report that is selected and the conditions will default to the most inclusive. Figure 28 shows the Reports form after a user has selected the Engine Fuel Consumption report and has also elected to create a report showing only Army information from FY2003. Some condition selection lists will appear only after another related selection is made. For example, in Figure 28 the Installation selection list only appears after an individual service is selected. Users generate report previews by selecting the Preview button. Users can also send reports directly to a printer by selecting the Print button. When users select the Print or Preview button, report generation will cause a delay before the report results are printed or displayed.

Figure 28. Report selection and criteria form.

The Reports form allows users to select from the following fuel consumption and inventory reports:

- Engine Fuel Consumption
- Engine Fuel Consumption with Equipment List
- Equipment Fuel Consumption
- Equipment Fuel Consumption with Installation List
- Installation Fuel Consumption
- Installation Fuel Consumption with Equipment List.

Each report summarizes fuel consumption as indicated by the name of the report. For example, the Engine Fuel Consumption report shows total fuel consumption by engine models. The Engine Fuel Consumption with Equipment List also summarizes engine fuel consumption, but also lists fuel consumption of equipment that uses a particular engine type.

Figure 29 shows the report preview screen for the report and criteria conditions shown in Figure 28. As in all the reports, the report criteria are shown at the top of the page. The report preview is an MS Access feature that allows the user to view the report on the screen, set the zoom level of the report on the screen, create an MS Word document containing the report, modify the page setup for the report, and send the report to a printer.

Fuel Consumption and Inventory Summary by Engine Model					
Report Criteria:	Service: USA	Year: 2003	Installation: All		
Manufacturer	Model	Inventory	Fuel Consumption	% of Total	Running %
GENERAL MOTORS	6.2L	82,877	13,004,748	21.4%	21.4%
ALLIED SIGNAL	AGT 1500	4,570	11,023,169	18.1%	39.5%
DETROIT DIESEL	8V92TA	12,693	10,223,560	16.8%	56.4%
CUMMINS ENGINE	NHC 250	17,521	4,939,199	8.1%	64.5%
CUMMINS ENGINE	6CTA8.3	12,142	4,409,017	7.3%	71.7%
CATERPILLAR	3126B	5,017	3,822,348	6.3%	78.0%
CATERPILLAR	3116 ATAAC	11,952	3,536,020	5.8%	83.8%
CUMMINS ENGINE	VTA-903T	3,493	2,566,129	4.2%	88.1%
CUMMINS ENGINE	NTC 400	3,820	1,893,010	3.1%	91.2%
CONTINENTAL	LDS465-1	10,036	1,018,161	1.7%	92.9%
GENERAL MOTORS	6.5L	5,701	823,044	1.4%	94.2%
DETROIT DIESEL	6V53T	4,772	659,400	1.1%	95.3%
CONTINENTAL	AVDS1790-2DR	1,827	628,636	1.0%	96.3%
DETROIT DIESEL	DDEC II	1,375	618,550	1.0%	97.3%
CONTINENTAL	LD465-1	6,278	610,581	1.0%	98.4%
DETROIT DIESEL	6V53	8,420	442,514	0.7%	99.1%
DETROIT DIESEL	8V71T	1,592	278,067	0.5%	99.5%

Figure 29. Report preview screen of the Engine Fuel Consumption report for 2003 Army data.

Summary

This chapter described the user interface that was designed as a tool for users to browse through data and display or print reports that summarize the information in useful ways. The user interface is an MS Access database that links to the information database described in Chapter 3 and the interface uses many of MS Access's built in controls. The interface allows users to connect to the original data or to

modify this data and create new data sets. There are separate forms for viewing installation, fuel, engine, equipment, and equipment activity and inventory data. The forms allow user-specified views by filtering the data using options found in a tool bar. The interface also contains a report generation feature that allows users to select from several built-in reports and set criteria for the report that filter the results. The interface allows users without detailed knowledge of the MS Access database system a way to easily and safely interact with the large amount of provided data.

5 Data Analysis

This chapter describes two types of data analyses that were performed using the developed database and user interface. The objective of the first analysis was to provide activity information that would show the types of diesel-powered off-road equipment used most frequently. The usage patterns provide information that is useful in determining the priority for engine emission testing. The objective of the second data analysis was to compare fuel usage reported by OSMIS with fuel usage information found in the Headquarters Redesigned Army Defense Utilities Energy Reporting System (DUERS) Data System (HQRADDS). This type of comparison could help to validate the OSMIS fuel usage information that is calculated from expected fuel usage rates and either vehicle miles driven or hours of operation.

Army and USMC Emission Testing Priority

One of the primary purposes of developing the DoD diesel-powered off-road equipment activity database was to help prioritize this equipment by the potential to generate engine emissions. The database report that is most useful for this purpose is the Engine Fuel Consumption report that totals fuel usage for each engine and presents the results in descending order of the totals. This report will tend to group similar types of equipment together since each diesel engine model will most often be used in different pieces of equipment that share a similar function. The data displayed in all the tables in this section were extracted from much more detailed reports. The Appendix contains the complete report results obtained when generating the Engine Fuel Consumption report and the Engine Fuel Consumption with Equipment List report for all services and for FY2003. These results were used to create Table 11.

Table 10 shows results from this report for both the Army and the USMC for FY2001–2003. Table 10 includes a column displaying typical equipment that uses each engine type. The data indicates that the top five ranked engines account for more than 50 percent of the fuel usage, the top ten almost 78 percent, and the top 20 almost 92 percent. High mobility multi-purpose wheeled vehicles (HMMWVs); tanks (M1A1, M1A2); trucks (HEMTT, 5-ton, family of medium tactical vehicles [FMTV], 10-ton); the amphibious assault vehicle (AAV); the logistics vehicle system (LVS); and the Bradley fighting vehicle (M2A2, M3A2) use almost 80 percent of the fuel. Three generator sets and a forklift are included in Table 10, but the reported

fuel usage is only from the USMC. This is because of the OSMIS problem (discussed in Chapter 2) of not reporting activity correctly for equipment that has usage measured in hours. If OSMIS did report activity for nonvehicular equipment correctly, then this type of equipment would certainly be more prominent in Table 10.

Table 10. Top 20 Army and USMC off-road diesel engine fuel consumptions for FY2001–2003.

Rank	Manufacturer	Model	Representative Equipment	Average Inventory	Fuel Usage (gallons)	Percent of Total	Running Total (%)
1	GENERAL MOTORS	6.2L	HMMWV	99,398	44,906,900	17.5	17.5
2	ALLIED SIGNAL	AGT 1500	M1A1, M1A2	4,673	40,630,794	15.8	33.3
3	DETROIT DIESEL	8V92TA	HEMTT	13,694	29,108,653	11.3	44.6
4	CUMMINS ENGINE	NHC 250	5-ton truck	25,985	20,375,687	7.9	52.5
5	DETROIT DIESEL	6V53T	LAV, APC	5,395	18,513,284	7.2	59.7
6	CUMMINS ENGINE	6CTA8.3	5-ton truck	13,866	12,007,328	4.7	64.4
7	CATERPILLAR	3116 ATAAC	FMTV	12,944	10,041,649	3.9	68.3
8	CUMMINS ENGINE	VT400	AAV	1,147	9,449,304	3.7	72.0
9	DETROIT DIESEL	8V-92	MK48 LVS	1,308	8,379,559	3.3	75.2
10	CUMMINS ENGINE	NTC 400	10-ton truck tractor	4,103	6,020,515	2.3	77.6
11	CUMMINS ENGINE	VTA-903T	M2A2, M3A2	3,528	5,628,003	2.2	79.8
12	JOHN DEERE	6466 6.8L	Tractor, Loader	513	5,501,174	2.1	81.9
13	CATERPILLAR	3126B	Stryker, FMTV	3,018	4,840,063	1.9	83.8
14	ALLIS CHALMERS	3500	60-kW generator	1,023	4,504,264	1.8	85.6
15	CONTINENTAL	LDS465-1	M35A2, 2.5-ton truck	11,227	3,851,595	1.5	87.1
16	CONTINENTAL	AVDS1790-2DR	M88A1 recovery vehicle	1,799	3,196,994	1.2	88.3
17	HERCULES ENGINE	D298ERX37	30-kW generator	1,089	2,928,512	1.1	89.4
18	CONTINENTAL	LD465-1	M35A2 2.5-ton truck	7,798	2,388,461	0.9	90.4
19	ONAN DIV	DN4M1	10-kW generator	2,977	2,209,545	0.9	91.2
20	JOHN DEERE	6059T	Truck forklift	2,291	2,093,352	0.8	92.0

Since the activity information in the database includes FY2001–2003, the data might reflect changes in equipment usage that occurred within DoD over that time period. To illustrate that change, the Engine Fuel Consumption report was run for both the Army and USMC but only for FY2003. Table 11 shows these results. The order of the top six engines remained the same in Table 11 as it was in Table 10, and the total fuel consumption for these six engines accounted for almost the same percentage of consumption. The engine that showed the largest increase in fuel consumption was the Caterpillar 3126B. This increase is due to the increased deployment and usage of the Stryker vehicle between FY2001 and FY2003. Engines employed in generator sets also showed increases over this time period as the

engines powering 10-kW, 30-kW, and 60-kW generator sets all had larger inventories and fuel consumptions. Engines showing marked decreases included the Cummins Engine VT 400, which powers the USMC AAV, the Cummins Engine NTC 400, which powers Army 10 ton trucks, and the John Deere 6466 6.8L, which powers a USMC tractor/loader.

Table 11. Top 20 Army and USMC off-road diesel engine fuel consumptions for FY2003.

Rank	Manufacturer	Model	Representative Equipment	Average Inventory	Fuel Usage	Percent of Total	Running Total (%)
1	GENERAL MOTORS	6.2L	HMMWV	94,928	14,743,248	17.3	17.3
2	ALLIED SIGNAL	AGT 1500	M1A1, M1A2	4,973	14,129,437	16.5	33.8
3	DETROIT DIESEL	8V92TA	HEMTT	12,693	10,223,560	12.0	45.8
4	CUMMINS ENGINE	NHC 250	5-ton truck	23,525	7,112,306	8.3	54.1
5	DETROIT DIESEL	6V53T	LAV, APC	5,451	4,812,455	5.6	59.7
6	CUMMINS ENGINE	6CTA8.3	5-ton truck	12,142	4,409,017	5.2	64.9
7	CATERPILLAR	3126B	Stryker, FMTV	5,017	3,822,348	4.5	69.3
8	CATERPILLAR	3116 ATAAC	FMTV	11,952	3,536,020	4.1	73.5
9	CUMMINS ENGINE	VTA-903T	M2A2, M3A2	3,493	2,566,129	3.0	76.5
10	ALLIS CHALMERS	3500	60-kW generator	1,215	2,554,053	3.0	79.5
11	DETROIT DIESEL	8V-92	MK48 LVS	1,298	2,175,720	2.5	82.0
12	CUMMINS ENGINE	VT400	AAV	1,161	2,167,047	2.5	84.6
13	CUMMINS ENGINE	NTC 400	10-ton tractor	3,820	1,893,010	2.2	86.8
14	HERCULES ENGINE	D298ERX37	30-kW generator	1,439	1,127,779	1.3	88.1
15	CONTINENTAL	LDS465-1	M35A2, 2.5 ton truck	10,036	1,018,161	1.2	89.3
16	ONAN DIV	DN4M1	10-kW generator	3,864	1,004,081	1.2	90.5
17	CONTINENTAL	AVDS1790-2DR	M88A1 recovery vehicle	1,889	899,277	1.1	91.5
18	GENERAL MOTORS	6.5L	Heavy HMMWV	5,701	823,044	1.0	92.5
19	JOHN DEERE	6059T	Truck forklift	2,453	660,040	0.8	93.2
20	DETROIT DIESEL	DDEC II	20-ton truck	1,375	618,550	0.7	94.0

The Engine Fuel Consumption report can also illustrate differences and similarities between the diesel engine activity in the Army and USMC. Table 12 shows the top ten engines ranked by their fuel consumptions in FY2003 for the Army and Table 13 shows the same information for the USMC. A similarity between the services is that the top ten engines account for a large percentage of the overall fuel usage with overall percentages of 92.9 and 84.5 for the Army and USMC, respectively. The M1 tank, powered by the Allied Signal AGT 1500 turbine engine, accounts for the second highest percentage of fuel usage for both services. One difference between the services is the larger amount of overall fuel usage by the Army. Table 12 reports

individual fuel usages that correspond to a total fuel usage of about 61 million gallons for the Army; while, the individual fuel usages shown in Table 13 corresponds to a total fuel usage of 25 million gallons for the USMC. The tables also indicate a larger reliance on trucks for the Army with their engines accounting for 42.8 percent of overall fuel consumption in Table 12. Table 13 also lists three generator sets in the top ten, and the Army fuel usage list may have shown similar activity if the fuel usage information for this type of equipment was reported correctly in OSMIS.

Table 12. Top 10 Army off-road diesel engine fuel consumptions for FY2003.

Rank	Manufacturer	Model	Representative Equipment	Average Inventory	Fuel Usage (gallons)	Percent of Total	Running Total (%)
1	GENERAL MOTORS	6.2L	HMMWV	82,877	13,004,748	21.4	21.4
2	ALLIED SIGNAL	AGT 1500	M1A1, M1A2	4,570	11,023,169	18.1	39.5
3	DETROIT DIESEL	8V92TA	HEMTT	12,693	10,223,560	16.8	56.4
4	CUMMINS ENGINE	NHC 250	5-ton truck	17,521	4,939,199	8.1	64.5
5	CUMMINS ENGINE	6CTA8.3	5-ton truck	12,142	4,409,017	7.3	71.7
6	CATERPILLAR	3126B	Stryker, FMTV	5,017	3,822,348	6.3	78.0
7	CATERPILLAR	3116 ATAAC	FMTV	11,952	3,536,020	5.8	83.8
8	CUMMINS ENGINE	VTA-903T	M2A2, M3A2	3,493	2,566,129	4.2	88.1
9	CUMMINS ENGINE	NTC 400	10-ton tractor	3,820	1,893,010	3.1	91.2
10	CONTINENTAL	LDS465-1	M35A2, 2.5-ton truck	10,036	1,018,161	1.7	92.9

Table 13. Top 10 USMC off-road diesel engine fuel consumptions for FY2003.

Rank	Manufacturer	Model	Representative Equipment	Average Inventory	Fuel Usage (gallons)	Percent of Total	Running Total (%)
1	DETROIT DIESEL	6V53T	LAV	679	4,153,055	16.8	16.8
2	ALLIED SIGNAL	AGT 1500	M1A1, M1A2	403	3,106,268	12.6	29.4
3	ALLIS CHALMERS	3500	60-kW generator	609	2,553,774	10.4	39.8
4	DETROIT DIESEL	8V-92	5-ton truck, MK48 LVS	1,298	2,175,720	8.8	48.6
5	CUMMINS ENGINE	NHC 250	5-ton truck, M923A1	6,004	2,173,107	8.8	57.4
6	CUMMINS ENGINE	VT400	AAV	1,161	2,167,047	8.8	66.2
7	GENERAL MOTORS	6.2L	HMMWV	12,051	1,738,500	7.0	73.2
8	HERCULES ENGINE	D298ERX37	30-kW generator	1,010	1,127,608	4.6	77.8
9	ONAN DIV	DN4M1	10-kW Generator	1,343	1,004,037	4.1	81.9
10	JOHN DEERE	6059T	Truck forklift, 60-kW generator	613	659,871	2.7	84.5

Fuel Consumption Comparison with HQRADDS

HQRADDS is a database of fossil fuel use within the Army. DUERS applies only to the Army-wide database maintained at the Assistant Chief of Staff Installation Management System (ACSIM) and is accessed by authorized users of the Army energy program. Authorized users can access HQRADDS at:
<https://hqradds.hqda.pentagon.mil/index1.html>.

At one of this project's review presentations, it was suggested that a comparison be made between the fuel usage information generated from OSMIS and the information contained in HQRADDS. It was believed that this type of comparison would provide a validation of OSMIS fuel consumption data which, as was mentioned in Chapter 2, are not reported directly to OSMIS but are calculated from activity information and the expected fuel consumption rate.

Unfortunately, the comparison between the two systems is not exact or straightforward. One difference is that HQRADDS reports fuel usage based on what installations purchase and use at their locations while OSMIS fuel usage is based on an installation's activity information, regardless of where it is used. Another difference is that the mobility fuel usage reported in HQRADDS includes aviation systems that were not included in the diesel-powered off-road equipment activity database developed during this project. A final difference, described in Chapter 2, is the OSMIS problem of incorrectly reporting the activity of non-aviation-related equipment, for which activity is reported in hours.

A major problem was discovered with HQRADDS when mobility fuel usage reports were generated. Many of the top fuel-consuming installations from the OSMIS data did not show any usage in HQRADDS. Figure 30 is the Installation Fuel Consumption report for the Army in FY2003 showing installation fuel consumption data from OSMIS. The top six installations on this report did not show any mobility fuel consumption in HQRADDS for FY2001–2003 when these installations obviously used large amounts of fuel in their vehicles during this time period. For this reason, it was impossible to do a broad-based comparison of Major Army Commands. Instead, comparisons were done for installations that did show usage in both HQRADDS and OSMIS.

Fuel Consumption and Inventory Summary by Installation

Report Criteria:	Service: USA	Year: 2003	Installation: All
	Manufacturer: All		Model #: All
	Equipment: All		

Location:	Service	Average Inventory	Fuel Consumption (gal)	% of Total	Running Total
FT HOOD	USA	14,804	9,572,482	15.7%	15.7%
FT CARSON	USA	4,666	5,333,873	8.8%	24.5%
FT LEWIS	USA	5,023	3,225,402	5.3%	29.8%
FT RILEY	USA	2,786	2,195,537	3.6%	33.4%
FT BRAGG	USA	10,170	2,126,286	3.5%	36.9%
FT STEWART	USA	3,606	2,125,031	3.5%	40.4%
FT CAMPBELL	USA	5,887	2,028,769	3.3%	43.8%
FT IRWIN	USA	3,776	1,565,684	2.6%	46.4%
FT SILL	USA	3,015	1,006,598	1.7%	48.0%
FT POLK	USA	3,326	1,006,546	1.7%	49.7%
FT KNOX	USA	2,000	815,362	1.3%	51.0%
FT BLISS	USA	2,791	780,603	1.3%	52.3%
FT BENNING	USA	1,840	699,263	1.2%	53.4%
FT LEONARD WOOD	USA	1,704	453,170	0.7%	54.2%

Figure 30. Installation fuel consumption in FY2003.

HQRADDS Annual Mobility reports were generated for Forts Campbell, Irwin, Sill, Polk, Knox, and Benning. These installations had the largest fuel consumptions in OSMIS from FY 2001–2003 and, in HQRADDS, also had reported fuel usage. Reports were also generated from HQRADDS that showed the type of petroleum product consumed for mobility purposes. With one exception, the installations all reported a much larger consumption of JP8 compared with diesel or gasoline. The exception to this consumption was Fort Polk, which reported larger usage of gasoline than JP8 and less overall usage than might have been expected from the OSMIS results. Since Fort Polk's data were not consistent with the other installations' data, it was not part of the comparison.

To achieve a better comparison, OSMIS fuel consumption reports for aviation systems were run for each of the installations being compared. The fuel consumptions were totaled from these reports and added to the fuel consumption reported in the installation fuel consumption report shown in Figure 30. HQRADDS reports fuel consumption in million British thermal units (MBtus), which was converted to gallons (gal) by assuming a heat content of 5.67 MBtu/barrel and 42 gal/barrel. Table 14 shows the results of this comparison. Most of the fuel consumption reported by OSMIS is lower than the HQRADDS data. This would be expected both because

OSMIS does not report generator and other nonvehicular equipment activity correctly and because many major training facilities purchase fuel used by equipment that belongs to visiting units using the training facilities. A conspicuous exception to this trend is the fuel usage information for Fort Campbell in FY2003, which showed a dramatic increase in usage in OSMIS and a dramatic decrease in usage in HQRADDS. Most of the usage data were in general agreement with each other and HQRADDS values were usually no more than twice the amount reported by OSMIS.

Table 14. Installation fuel usage in gallons as reported in OSMIS and HQRADDS.

	FY 2001	FY 2002	FY 2003
Fort Campbell			
OSMIS aviation	7,019,000	8,322,897	14,100,163
OSMIS off-road	1,419,316	1,156,600	2,028,769
OSMIS total	8,438,316	9,479,497	16,128,932
HQRADDS total mobility	11,525,111	12,853,519	7,960,770
Fort Irwin			
OSMIS aviation	480,832	587,172	629,282
OSMIS off-road	3,314,238	2,013,449	1,565,684
OSMIS total	3,795,070	2,600,621	2,194,966
HQRADDS total mobility	5,712,970	5,529,059	3,785,615
Fort Benning			
OSMIS aviation	331,049	591,795	363,130
OSMIS off-road	1,067,990	575,028	699,263
OSMIS total	1,399,039	1,166,823	1,062,393
HQRADDS total mobility	1,895,793	1,243,244	1,500,193
Fort Knox			
OSMIS aviation	275,321	274,944	0
OSMIS off-road	865,137	797,607	815,362
OSMIS total	1,140,458	1,072,551	815,362
HQRADDS total mobility	2,036,200	1,889,770	2,162,289
Fort Sill			
OSMIS aviation	NR	NR	NR
OSMIS off-road	863,823	908,681	1,006,598
OSMIS total	863,823	908,681	1,006,598
HQRADDS total mobility	1,207,237	1,445,733	1,257,074

NR – Not reported

Summary

The fuel consumption information for diesel engines used in Army and USMC off-road equipment provided useful information for developing an emission testing priority. Although there are more than 800 equipment items for the Army and USMC in the database, there are fewer than 200 engines used in this equipment. The data

analysis showed that the top ten most frequently used engines in the Army and USMC account for a large majority of the fuel usage. It should therefore be possible to develop engine-specific emission information that can estimate emissions from a large percentage of military equipment.

The fuel usage comparison with HQRADDS was complicated by missing data in the HQRADDS system. However, a comparison with installations showing fuel usage in both OSMIS and HQRADDS provides some evidence that the OSMIS information is accurate.

6 Summary and Conclusions

The database for diesel-powered off-road equipment was prepared to allow researchers working on SERDP project WP-1336 to select and prioritize the equipment to be tested for air pollution emissions and to be a source of information for their engine emission estimation tool. The database has proved useful as a prioritization tool. The database contains activity information for all the military off-road equipment used by the Army and USMC, which represents the large majority of the DoD's off-road equipment. The database provides a link between the large population of specific equipment items and the much smaller population of diesel engines that power this equipment. Table 11 provides useful information for prioritizing DoD usage of off-road equipment. For vehicles, the HMMWV, HEMTT, 5-ton trucks, LAV, Stryker, FMTV, and the Bradley Fighting Vehicle all show up as important engine emission sources. M1A1 and M1A2 tanks are also large sources but are powered by a turbine engine that would probably not be classified as a diesel off-road source. Although generators are not listed as prominently in Table 11, they are artificially underrepresented because Army generator usage is not reported correctly in OSMIS. The data from the USMC portion of the Navy VAMOSC system indicate that 60-kW, 30-kW, and 10-kW generator sets are major engine emission sources and it is very likely that a similar level of usage occurs within the Army and throughout DoD.

The database will also be useful for the engine emission estimation tool being developed under WP-1336. The engine emission factors developed from WP-1336 will require data on equipment characteristics such as engine power and equipment usage such as vehicle miles traveled, hours of operation, or fuel consumption in order to estimate emissions. The database developed under this project will serve as the source of much of this required data.

Because of the user interface, the database will also be useful to a wider population not necessarily familiar with databases or MS Access. The interface allows users to view, find, sort, and filter data from all the database tables and analyze data through reports based upon user-provided criteria. The interface allows database access to anyone interested in obtaining or analyzing data about DoD fuels, off-road equipment, diesel engines, and off-road equipment usage. The database, the interface, and this report will be made available to anyone with DoD menu privileges in the permanent shared file library section of the DENIX website.

References

- Clark, N., J. Kern, C. Atkinson, and R. Nine, Factors Affecting Heavy Duty Diesel Vehicle Emissions, *Journal of the Air and Waste Management Association*, January 2002, 52:84-94.
- Craig Harvey C., P. Carey, and J. Warila,, "EPA's Newest Draft Nonroad Emission Inventory Model," presented at the 12th International Emission Inventory Conference, San Diego, California, April 28-May 1, 2003.
- Dickson, C. L., "Aviation Turbine Fuels, 1998," TRW Petroleum Technologies Report No. 209 TRW-209 PPS 99/2, March 1999.
- _____. "Aviation Turbine Fuels, 2002," Northrop Grumman Mission Systems Report No. 229 NGMS-229 PPS 2003/2, April 2003.
- _____. "Diesel Fuel Oils 2003," Northrop Grumman Mission Systems Report No. 232 NGMS-232 PPS 2003/5, January 2004.
- _____. "Diesel Fuel Oils, 2001," TRW Petroleum Technologies Report No. 222 TRW-222 PPS 2001/5, November 2001.
- _____. "Motor Gasolines, Summer 1998," TRW Petroleum Technologies Report No. 208 TRW-208 PPS 99/1, February 1999
- _____. "Motor Gasolines, Summer 2002," Northrop Grumman Mission Systems Report No. 228 NGMS-228 PPS 2003/1, March 2003.
- _____. "Motor Gasolines, Winter 1998-99," TRW Petroleum Technologies Report No. 210 TRW-210 PPS 99/3, July 1999
- _____. "Motor Gasolines, Winter 2002-03," Northrop Grumman Mission Systems Report No. 230 NGMS-230 PPS 2003/3, August 2003.
- U.S. Environmental Protection Agency (EPA), 1998. Exhaust Emission Factors for Nonroad Engine Modeling--Compression-Ignition, Report No. NR-009A, June 1998.
- _____. 2000. Reducing Air Pollution from Nonroad Engines, EPA420-F-00-048, November 2000.
- _____. 2001. Control of Emissions of Hazardous Air Pollutants from Mobile Sources (40 CFR Parts 80 and 86); Federal Register, 2001, 66 (61), 17229-17273.
- IBM, Naval Visibility and Management of Operating and Support Costs (VAMOSC) 3.3, USMC Ground Equipment User Manual, 30 September 2004

Intellimotive Environmental Systems, "Robins AGE with Motor.xls," developed for Warner Robins Air Logistics Center, Support Equipment and Vehicle Directorate, received from Ann Smith 10-17-2002.

Kemme, M.R. and E.A. Frame, Tailpipe Emission Estimations for Army Off-Road Sources, Air and Waste Management Association 97th Annual Conference and Exhibition in Minneapolis, MN, June 21-24, 2005.

Montalvo D.A. and T.L. Ullman, "Heavy-Duty Emissions Using California Reference Fuel and Military Grade JP-8," ASME Paper 93-ICE-31, presented at the Energy-Sources Technology Conference and Exhibition, Houston, Texas, January 31-February 4, 1993.

Naval Cost Analysis Division (FMB-6), Visibility and Management of Operating and Support Costs (VAMOSC) system, Copyrighted © 2000/2003, Available at <http://www.navyvamosc.com/>.

Naval Cost Analysis Division, FMB-6, "Naval VAMOSC Overview, August 2004", Available at: http://www.navyvamosc.com/docs/VAMOSC_Overview_August_2004.ppt

Office of the Deputy Under Secretary of Defense (Installations & Environment), Base Structure Report (A Summary of DoD's Real Property Inventory), Fiscal Year 2002 Baseline.

Resolution 98-35: Identification of Particulate Emissions from Diesel-Fueled Engines as a Toxic Air Contaminate; California Air Resources Board: Sacramento , CA, 1998.

SB 700-20, Army Adopted/Other Items Selected for Authorization/List of Reportable Items, Logistics Supply Agency, effective 1 December 2003.

SB 710-2, Department of the Army Supply Bulletin, Supply Control Combat Consumption Rates for Ground and Aviation Type Petroleum Products, Army Petroleum Center, 12 December 2002.

TARDEC, "Listing of U.S. Army Fuel-Consuming Mobility & Combat Support Equipment," Special Bulletin, compiled by U.S. Army TARDEC Fuels and Lubricants Research Facility, SwRI, San Antonio, TX, for U.S. Army TARDEC, Fuels and Lubricants Business Area, Warren MI, contract no. DAAK70-92-C-0059, 1996.

Yost, D., Montalvo, D., Frame, E., SAE Paper 961981 "U.S. Army Investigation of Diesel Exhaust Emissions Using Fuels with Varying Sulfur Content," October 1996.

Appendix: Engine Fuel Consumption With Equipment List Reports for All Services With Equipment Usage in FY2003

Fuel Consumption and Inventory Summary by Engine Model

Report Criteria:	Service:	All	Year:	2003	Installation:	All
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running %	
GENERAL MOTORS	6.2L	94,928	14,743,248	17.3%	17.3%	
ALLIED SIGNAL	AGT 1500	4,973	14,129,437	16.5%	33.8%	
DETROIT DIESEL	8V92TA	12,693	10,223,560	12.0%	45.8%	
CUMMINS ENGINE	NHC 250	23,525	7,112,306	8.3%	54.1%	
DETROIT DIESEL	6V53T	5,451	4,812,455	5.6%	59.7%	
CUMMINS ENGINE	6CTA8.3	12,142	4,409,017	5.2%	64.9%	
CATERPILLAR	3126B	5,017	3,822,348	4.5%	69.3%	
CATERPILLAR	3116 ATAAC	11,952	3,536,020	4.1%	73.5%	
CUMMINS ENGINE	VTA-903T	3,493	2,566,129	3.0%	76.5%	
ALLIS CHALMERS	3500	1,215	2,554,053	3.0%	79.5%	
DETROIT DIESEL	8V-92	1,298	2,175,720	2.5%	82.0%	
CUMMINS ENGINE	VT400	1,161	2,167,047	2.5%	84.6%	
CUMMINS ENGINE	NTC 400	3,820	1,893,010	2.2%	86.8%	
HERCULES ENGINE	D298ERX37	1,439	1,127,779	1.3%	88.1%	
CONTINENTAL	LDS465-1	10,036	1,018,161	1.2%	89.3%	
ONAN DIV	DN4M1	3,864	1,004,081	1.2%	90.5%	
CONTINENTAL	AVDS1790-2DR	1,889	899,277	1.1%	91.5%	
GENERAL MOTORS	6.5L	5,701	823,044	1.0%	92.5%	
JOHN DEERE	6059T	2,453	660,040	0.8%	93.2%	
DETROIT DIESEL	DDEC II	1,375	618,550	0.7%	94.0%	
JOHN DEERE	6466 6.8L	499	615,823	0.7%	94.7%	
CONTINENTAL	LD465-1	6,278	610,581	0.7%	95.4%	
DETROIT DIESEL	6V53	8,420	442,514	0.5%	95.9%	
CUMMINS ENGINE	V903C	408	429,250	0.5%	96.4%	
MERCEDES BENZ	OM 352	1,901	409,317	0.5%	96.9%	
CATERPILLAR	3306	278	400,886	0.5%	97.4%	
CATERPILLAR	3208	126	321,888	0.4%	97.7%	
JI CASE	G188D	152	285,250	0.3%	98.1%	
DETROIT DIESEL	8V71T	1,592	278,067	0.3%	98.4%	
ONAN DIV	Q106M	3,737	241,344	0.3%	98.7%	
PERKINS	704-30T	431	206,630	0.2%	98.9%	
CATERPILLAR	3304	1,590	199,456	0.2%	99.2%	

Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running %
CATERPILLAR	3408T	421	160,027	0.2%	99.3%
CONTINENTAL	AVDS1790-2DA	24	125,688	0.1%	99.5%
JOHN DEERE	4039T	795	109,676	0.1%	99.6%
CONTINENTAL	AVDS1790-2D	415	105,966	0.1%	99.7%
CUMMINS ENGINE	4B3.9	2,385	72,946	0.1%	99.8%
JI CASE	6T590	76	37,084	0.0%	99.9%
MERCEDES BENZ	OM 603-950	501	35,841	0.0%	99.9%
CATERPILLAR	3406	907	28,081	0.0%	100.0%
MERCEDES BENZ	OM402AT	70	23,293	0.0%	100.0%
DEUTZ	F4L-912	50	8,279	0.0%	100.0%
ONAN DIV	DJC-12315T	308	5,487	0.0%	100.0%
YORK SHIPLEY	VY-7-8DD	192	1,226	0.0%	100.0%
CUMMINS ENGINE	6BT5.9-C	1,437	325	0.0%	100.0%
CATERPILLAR	3306T	888	309	0.0%	100.0%
DETROIT DIESEL	453N	346	294	0.0%	100.0%
CATERPILLAR	D342	167	227	0.0%	100.0%
JI CASE	504BD	1,000	166	0.0%	100.0%
DETROIT DIESEL	6V92TC/6-71	9	144	0.0%	100.0%
CATERPILLAR	D333CT	1,183	126	0.0%	100.0%
ONAN DIV	DJC99E/9487	1,486	123	0.0%	100.0%
CONTINENTAL	AVDS1790-2C	7	119	0.0%	100.0%
CATERPILLAR	C240	870	84	0.0%	100.0%
HERCULES ENGINE	D198ERX51	949	77	0.0%	100.0%
ISUZU	C240	1,416	76	0.0%	100.0%
CATERPILLAR	3046T	55	67	0.0%	100.0%
INTER HARV	DT-817C	59	67	0.0%	100.0%
CUMMINS ENGINE	6BT5.9	1,262	52	0.0%	100.0%
DETROIT DIESEL	4-71	6	21	0.0%	100.0%
CUMMINS ENGINE	V8 265 2380	24	14	0.0%	100.0%
ONAN DIV	DN2M	3,761	12	0.0%	100.0%
CATERPILLAR	3126 HEUI	242	9	0.0%	100.0%
CONTINENTAL	AVDS1790-2A, D,	2	4	0.0%	100.0%
ONAN DIV	Q106D	3,989	3	0.0%	100.0%
CATERPILLAR	3208 V8	12	2	0.0%	100.0%
YANMAR	L70A-D/DE	11	0	0.0%	100.0%
CATERPILLAR	D333C (T)	0			100.0%

Fuel Consumption, Activity, and Inventory for Engines and Equipment

Report Criteria: Year: 2003

Service: All

Installation: All

Manufacturer: All

Model #: All

Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
GENERAL MOTORS	6.2L	94,928	14,743,248	17.3%	17.3%

Equipment using this Engine

Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory
TRUCK UTIL TROOP/CGO HMMWV M998	USA	6,786,528	100,666,834 miles	41,752
TRUCK UTIL ARMT CARR ARMORED HMMWV M1025	USA	987,357	14,645,802 miles	5,782
TRUCK UTIL TROOP/CGO HMMWV M998A1	USA	939,319	13,933,233 miles	5,668
AN/TWQ-1 - Avenger	USMC	856,541	77,837 hours	213
TRUCK UTIL TACTICAL CUCV M1009	USA	848,751	10,791,262 miles	4,631
TRUCK UTIL TROOP/CGO HMMWV M1038	USA	678,580	10,065,601 miles	4,140
TRK CARGO, HMMWV M998/1038	USMC	544,077	11,670,216 miles	7,634
TRUCK UTIL HVY VARIANT HMMWV M1097	USA	490,096	7,269,759 miles	2,527
TRUCK UTIL ARMT CARR ARMORED HMMWV M1026	USA	421,208	6,247,923 miles	2,268
TRUCK UTIL TOW CARRIER ARMORED HMMWV M966	USA	376,614	5,586,441 miles	2,045
TRUCK CARGO TAC CUCV M1008	USA	359,257	4,567,690 miles	2,605
TRUCK AMBULANCE 4LTR HMMWV M997	USA	313,435	4,649,292 miles	2,755
TRUCK UTIL S250 SHELTER HMMWV M1037	USA	285,787	4,239,177 miles	5,048
TRUCK CARGO TAC CUCV M1008A1	USA	237,710	3,022,312 miles	1,880
TRUCK TAC SHELTER CUCV M1028	USA	224,487	2,854,197 miles	1,236
Radio Set, AN/MRC-145A	USMC	151,759	133,576 hours	1,196
TRUCK ARMT HMMWV M1043/1044	USMC	71,965	1,457,577 miles	1,158
TRUCK HMMWV TOW CARR M1045/10	USMC	44,258	880,498 miles	603
TRUCK AMBULANCE 2LTR HMMWV M996	USA	28,054	416,140 miles	277
TRUCK UTILITY SHELTER M1037	USMC	27,377	513,171 miles	194
TRUCK AMBULANCE 4LTR HMMWV M997	USMC	20,578	394,436 miles	425
TRUCK TAC SHELTER CUCV M1028A1	USA	19,933	253,439 miles	133
TRUCK AMB SOFT TOP HMMWV, M10	USMC	13,322	271,045 miles	253
Radio Terminal Set, AN/MRC-142	USMC	6,003	56,301 hours	355
TRUCK AMBULANCE: TACTICAL 5/4 TON 4X4 M1010	USA	4,431	56,333 miles	70
TRUCK UTIL HVY VARIANT HMMWV M1097	USMC	2,620	2,397 hours	20
TRUCK AMBULANCE 4LTR HMMWV M997A1	USA	1,205	17,870 miles	11
TRUCK UTIL TROOP/CGO HMMWV M1038A1	USA	986	14,621 miles	16
TRUCK UTIL ARMT CARR ARMORED HMMWV M1025A1	USA	799	11,852 miles	25

Nomenclature		Service	Fuel Usage (gal)	Activity	Inventory
TRUCK UTIL ARMT CARR ARMORED HMMWV M1026A1 USA			124	1,832 miles	5
TRUCK AMBULANCE 2LTR HMMWV M996A1 USA			86	1,283 miles	3
Manufacturer	Model	Average Inventory	Fuel Consumption		Running Total
ALLIED SIGNAL	AGT 1500	4,973	14,129,437		16.5% 33.8%
Equipment using this Engine					
Nomenclature		Service	Fuel Usage (gal)	Activity	Inventory
TANK COMBAT 120MM M1A1 USA			5,991,002	778,393 miles	3,199
TANK COMBAT 120MM M1A2 USA			4,726,652	600,960 miles	598
TANK COMBAT FULL TRACKED 120MM M1A1 USMC			3,106,268	358,218 hours	403
TANK COMBAT 105MM M1IP USA			305,515	43,645 miles	773
Manufacturer	Model	Average Inventory	Fuel Consumption		Running Total
DETROIT DIESEL	8V92TA	12,693	10,223,560		12.0% 45.8%
Equipment using this Engine					
Nomenclature		Service	Fuel Usage (gal)	Activity	Inventory
TRUCK TRACTOR HET M1070 USA			1,971,948	5,484,481 miles	2,008
TRUCK TANK FS 2500GL HEMTT M978 USA			1,593,120	3,832,100 miles	1,945
TRUCK CARGO 10TON HEMTT M977 USA			1,510,790	3,634,062 miles	1,742
TRUCK WRECKER 10TON HEMTT M984A1 USA			1,382,979	3,326,625 miles	1,590
TRUCK TANK FS 2500GL HEMTT WW M978 USA			1,058,844	2,546,948 miles	1,124
TRUCK CARGO HEAVY PLS TRANS M1074 USA			894,569	2,151,802 miles	1,252
TRUCK CARGO 10TON HEMTT M985 USA			746,071	1,794,603 miles	1,198
TRUCK CARGO 10TON HEMTT WW M977 USA			405,229	974,740 miles	639
TRUCK CARGO PALLETALIZED LOAD HNDG M1120 USA			273,079	656,866 miles	284
TRUCK TRACTOR 10TON HEMTT WW M983 USA			179,322	431,343 miles	345
TRUCK CARGO 10TON HEMTT WW M985 USA			138,393	332,892 miles	254
TRUCK TRACTOR HET 22.5 TON WW M911 USA			25,869	74,268 miles	218
TRUCK CARGO 10TON HEMTT M985E1 USA			23,079	55,515 miles	55
TRUCK WRECKER 10TON HEMTT M984 USA			20,268	48,752 miles	39

Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CUMMINS ENGINE	NHC 250	23,525	7,112,306	8.3%	54.1%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
TRUCK CARGO 5TON DROPSIDE M923A1	USMC	1,770,496	11,532,135 miles	4,481	
TRUCK CARGO 5TON DROPSIDE M923	USA	1,030,758	5,396,320 miles	2,556	
TRUCK TRACTOR 5TON M818	USA	745,689	2,885,491 miles	3,127	
TRUCK TRACTOR 5TON M931	USA	412,067	2,157,290 miles	1,255	
TRUCK CARGO 5TON DROPSIDE M813A1	USA	297,024	1,149,354 miles	1,248	
TRUCK CARGO 5TON DROPSIDE M923A1	USA	249,332	1,305,327 miles	759	
TRUCK CARGO 5TON DROPSIDE WW M925	USA	245,067	1,282,998 miles	922	
TRUCK DUMP 5TON M817	USA	244,412	945,767 miles	836	
TRUCK DUMP 5TON M929	USA	234,666	1,228,545 miles	661	
TRUCK TRACTOR 5TON M931A1	USA	214,718	1,124,111 miles	623	
TRUCK, 5TON M927/M928	USMC	179,238	1,217,848 miles	553	
TRUCK WRECKER 5TON WW M816	USA	164,582	636,861 miles	799	
TRUCK DUMP 5TON WW M817	USA	145,216	561,923 miles	450	
TRUCK CARGO 5TON DROPSIDE WW M925A1	USA	137,840	721,635 miles	400	
TRUCK TRACTOR 5TON WW M818	USA	95,077	367,905 miles	566	
TRUCK VAN EXPANSIBLE 5TON M934	USA	91,878	481,007 miles	331	
TRUCK WRECKER 5TON WW M936	USA	90,277	472,626 miles	395	
TRUCK, MAINTENANCE/TELEPHONE	USMC	87,047	27,046 hours	14	
TRUCK CARGO 5TON LWB WW M813	USA	76,303	295,260 miles	298	
TRUCK CARGO 5TON LWB M813	USA	65,909	255,040 miles	497	
TRUCK CARGO 5TON DROPSIDE WW M813A1	USA	61,495	237,957 miles	419	
TRUCK TRACTOR 5TON WW M932A1	USA	59,759	312,855 miles	93	
TRUCK CARGO 5TON XLWB M927A1	USA	49,522	259,261 miles	180	
TRK TRACTOR, M818/931	USMC	49,175	460,112 miles	288	
WRECKER M816/M936	USMC	49,048	462,931 miles	233	
TRUCK VAN EXPANSIBLE 5TON M820	USA	42,016	162,585 miles	174	
TRUCK TRACTOR 5TON M932	USA	41,415	216,821 miles	149	
TRK DUMP M817/M929/M930	USMC	38,103	502,279 miles	435	
TRUCK CARGO 5TON XLWB M814	USA	35,763	138,388 miles	149	
TRUCK CARGO 5TON XLWB M927	USA	32,077	167,935 miles	169	
TRUCK CARGO 5TON XLWB WW M928	USA	21,823	114,249 miles	85	
TRUCK DUMP 5TON M929A1	USA	21,461	112,353 miles	172	
TRUCK VAN EXPANSIBLE 5TON M934A1	USA	14,552	76,186 miles	90	

Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
TRUCK VAN EXPANSIBLE 5TON M820A2	USA	6,065	23,467 miles	34	
TRUCK CARGO 5TON XLWB WW M814	USA	5,632	21,792 miles	14	
TRUCK CARGO 5TON XLWB WW M928A1	USA	4,451	23,300 miles	30	
TRUCK WRECKER 5TON WW M936A1	USA	1,294	6,772 miles	18	
TRUCK DUMP 5TON WW M930	USA	900	4,713 miles	12	
TRUCK VAN EXPANSIBLE 5TON M935A1	USA	77	402 miles	1	
TRUCK VAN EXPANSIBLE 5TON M935	USA	43	226 miles	4	
TRUCK CARGO 5TON LWB M924	USA	40	207 miles	3	
TRUCK TRAC/WRECKER 5TON WW M819	USA	2	8 miles	2	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
DETROIT DIESEL	6V53T	5,451	4,812,455	5.6%	59.7%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
LIGHT ARMORED VEHICLE (25)	USMC	1,995,654	479,418 hours	361	
LIGHT ARMORED VEHICLE LOGISTICS	USMC	700,066	122,354 hours	91	
LIGHT ARMORED VEHICLE ANTI-TANK	USMC	458,437	78,665 hours	90	
LIGHT ARMORED VEHICLE COMMAND	USMC	441,783	59,941 hours	49	
CARRIER PERSONNEL FT (RISE) M113A3	USA	429,299	734,762 miles	3,066	
LIGHT ARMORED VEHICLE MORTAR	USMC	245,779	43,182 hours	47	
LIGHT ARMORED VEHICLE RECOVERY	USMC	190,808	40,343 hours	35	
Mobile EW Support System, AN/MLQ-36	USMC	120,528	7,246 hours	6	
CARRIER ARMORED COMMAND POST M1068A3	USA	87,542	149,831 miles	451	
CARRIER COMMAND POST FT M577A3	USA	72,163	123,510 miles	351	
CARRIER CARGO TRACKED 6TON M548A3	USA	46,033	78,787 miles	773	
ARMORED RECON AB ASSAULT VEH M551A1	USA	20,043	27,444 miles	77	
CARRIER SMOKE GENERATOR FT M1059A3	USA	4,320	7,393 miles	54	
CARRIER MORTAR 120MM M1064A3	USA	0	117,741 miles	0	

Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CUMMINS ENGINE	6CTA8.3	12,142	4,409,017	5.2%	64.9%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
TRUCK CARGO 5TON DROPSIDE M923A2	USA	2,040,788	10,684,124 miles	5,687	
TRUCK TRACTOR 5TON M931A2	USA	1,091,093	5,712,191 miles	2,755	
TRUCK DUMP 5TON M929A2	USA	369,062	1,932,149 miles	912	
TRUCK CARGO 5TON DROPSIDE WW M925A2	USA	358,786	1,878,350 miles	1,108	
TRUCK WRECKER 5TON WW M936A2	USA	175,667	919,670 miles	629	
TRUCK TRACTOR 5TON WW M932A2	USA	114,609	600,012 miles	251	
ARMORED SECURITY VEHICLE M1117	USA	90,763	77,672 miles	32	
TRUCK VAN EXPANSIBLE 5TON M934A2	USA	85,543	447,843 miles	461	
TRUCK CARGO 5TON XLWB M927A2	USA	32,458	169,925 miles	116	
TRUCK DUMP 5TON WW M930A2	USA	32,282	169,006 miles	103	
TRUCK CARGO 5TON XLWB WW M928A2	USA	17,967	94,060 miles	88	

Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CATERPILLAR	3126B	5,017	3,822,348	4.5%	69.3%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
LIGHT ARMORED VEH INFANTRY CARRIER M1126	USA	1,131,193	264,242 miles	122	
TRUCK CARGO MTV M1083A1	USA	720,045	3,769,647 miles	1,584	
TRUCK TRACTOR MTV M1088A1	USA	653,007	3,418,682 miles	1,315	
LIGHT ARMORED VEHICLE MORTAR CARR IVC M1129	USA	228,754	53,436 miles	30	
TRUCK CARGO LMTV M1078A1	USA	172,944	1,184,003 miles	857	
LIGHT ARMORED VEHICLE RECON ICV M1127	USA	168,304	39,315 miles	32	
LIGHT ARMORED VEHICLE ATGM ICV M1134	USA	166,386	38,867 miles	32	
LIGHT ARMORED VEHICLE COMMANDER'S VEH M1130	USA	130,653	30,520 miles	20	
TRUCK WRECKER MTV WW M1089A1	USA	90,551	474,059 miles	229	
TRUCK CARGO MTV W/MHE M1084A1	USA	76,795	402,042 miles	217	
LIGHT ARMORED VEHICLE MEDEVAC M1133 ICV	USA	61,324	14,325 miles	16	
TRUCK CARGO MTV WW M M1083A1	USA	60,383	316,124 miles	169	
LIGHT ARMORED VEHICLE FIRE SPT (FSV)(ICV) M1131 USA	USA	59,098	13,805 miles	14	
TRUCK CARGO MTV LWB M1085A1	USA	40,741	213,291 miles	66	
LIGHT ARMORED VEHICLE ENGINEER SPT VEH M1132 USA	USA	24,662	5,761 miles	7	
TRUCK CARGO LMTV WW M1078A1	USA	19,864	135,995 miles	149	
TRUCK CARGO LMTV WW M1079A1	USA	10,352	70,871 miles	111	
TRUCK DUMP MTV M1090A1	USA	5,517	28,881 miles	40	
TRUCK DUMP MTV WW M1090A1	USA	1,776	9,297 miles	7	

Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CATERPILLAR	3116 ATAAC	11,952	3,536,020	4.1%	73.5%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
TRUCK CARGO LMTV M1078	USA	1,251,038	8,564,797 miles	4,043	
TRUCK CARGO 21/2TON M35A3	USA	512,820	4,149,179 miles	2,665	
TRUCK CARGO MTV M1083	USA	403,504	2,112,463 miles	770	
TRUCK TRACTOR MTV M1088	USA	302,283	1,582,538 miles	818	
TRUCK CARGO LMTV LAPES/AD M1081	USA	212,884	1,457,440 miles	608	
TRUCK CARGO 21/2TON WW M35A3	USA	126,307	1,021,939 miles	671	
TRUCK CARGO LMTV WW M1078	USA	111,270	761,771 miles	382	
TRUCK CARGO MTV WW M1083	USA	104,476	546,960 miles	249	
TRUCK CARGO MTV LAPES/AD M1093	USA	89,858	470,434 miles	267	
TRUCK CARGO MTV W/MHE M1084	USA	89,388	467,971 miles	154	
TRUCK DUMP MTV M1090	USA	63,454	332,200 miles	228	
TRUCK WRECKER MTV WW M1089	USA	60,336	315,876 miles	208	
TRUCK CARGO LMTV LAPES/AD WW M1081	USA	57,677	394,863 miles	147	
TRUCK DUMP MTV LAPES/AD M1094	USA	50,194	262,781 miles	150	
TRUCK CARGO 21/2TON D/S M35A3C	USA	31,343	253,593 miles	200	
TRUCK CARGO MTV LAPES/AD WW M1093	USA	15,098	79,044 miles	72	
TRUCK CARGO MTV LWB W/MHE M1086	USA	14,160	74,132 miles	36	
TRUCK TRACTOR MTV WW M1088	USA	9,351	48,955 miles	50	
TRUCK CARGO 21/2TON LWB M36A3	USA	7,827	63,329 miles	66	
TRUCK CARGO MTV LWB M1085	USA	7,818	40,930 miles	42	
TRUCK CARGO 21/2TON D/S WW M35A3C	USA	5,363	43,391 miles	77	
TRUCK DUMP MTV LAPES/AD WW M1094	USA	5,025	26,309 miles	15	
TRUCK DUMP MTV WW M1090	USA	2,467	12,915 miles	6	
TRUCK CARGO 21/2TON LWB WW M36A3	USA	1,540	12,457 miles	24	
TRUCK CARGO MTV LWB WW M1085	USA	540	2,827 miles	4	

Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CUMMINS ENGINE	VTA-903T	3,493	2,566,129	3.0%	76.5%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
INFANTRY FIGHTING VEHICLE M2A2 HS	USA	1,615,043	1,382,104 miles	1,626	
CAVALRY FIGHTING VEHICLE M3A2	USA	267,809	229,183 miles	621	
INFANTRY FIGHTING VEHICLE M2A3	USA	252,017	215,668 miles	171	
MULTIPLE LAUNCH ROCKET SYSTEM M993	USA	177,110	151,565 miles	425	
CAVALRY FIGHTING VEHICLE M3A3	USA	124,989	106,962 miles	67	
BRADLEY - LINEBACKER	USA	95,819	81,999 miles	85	
INFANTRY FIGHTING VEHICLE M2	USA	31,705	27,132 miles	418	
CAVALRY FIGHTING VEHICLE M3A1	USA	1,637	1,401 miles	80	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
ALLIS CHALMERS	3500	1,215	2,554,053	3.0%	79.5%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
GEN ST DED 60KW 60HZ MEP006A	USMC	2,553,774	766,395 hours	609	
GEN ST DED 60KW 400HZ MEP115A	USA	279	48 hours	606	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
DETROIT DIESEL	8V-92	1,298	2,175,720	2.5%	82.0%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
LOGISTICS VEHICLE SYSTEM 12 1/2 TON MK 48	USMC	2,175,720	1,858,209 hours	1,298	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CUMMINS ENGINE	VT400	1,161	2,167,047	2.5%	84.6%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
ASSAULT AMPHIBIOUS VEHICLE, PERSONNEL AAVP7A1 (2)	USMC	1,942,158	403,284 hours	1,040	
ASSAULT AMPHIBIOUS VEHICLE, RECOVERY AAVR7A1 (2)	USMC	124,603	24,229 hours	51	
ASSAULT AMPHIBIOUS VEHICLE, COMMAND AAVC7A1 (1)	USMC	100,286	19,840 hours	70	

Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CUMMINS ENGINE	NTC 400	3,820	1,893,010	2.2%	86.8%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
TRUCK TRACTOR LINE HAUL M915A1	USA	1,112,346	6,187,423 miles	1,803	
TRUCK TRACTOR LINE HAUL M915	USA	380,276	2,115,284 miles	764	
TRUCK TRACTOR MET M920	USA	215,250	1,197,327 miles	707	
TRUCK DUMP 20TON 12 CU YD C/S M917	USA	153,608	501,978 miles	408	
CONCRETE MOBILE MIXER TM 8 CU YD M919	USA	28,956	161,066 miles	87	
DISTRIBUTOR BITUMIN MDL D63 TM M918	USA	2,575	14,324 miles	51	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
HERCULES ENGINE	D298ERX37	1,439	1,127,779	1.3%	88.1%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
GEN ST DED 30KW 60HZ MEP 005A	USMC	1,127,608	719,144 hours	1,010	
GEN ST DED 30KW 400HZ MEP114A	USA	171	60 hours	429	

Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CONTINENTAL	LDS465-1	10,036	1,018,161	1.2%	89.3%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
TRUCK CARGO 21/2TON M35A2	USA	1,004,378	8,126,330 miles	9,700	
TRUCK TRACTOR 5TON M52A2	USA	5,364	26,522 miles	157	
TRUCK DUMP 5TON M51A2	USA	3,427	16,946 miles	66	
TRUCK DUMP 5TON WW M51A2	USA	2,717	13,432 miles	37	
TRUCK CARGO 21/2TON M35A1	USA	1,266	10,241 miles	8	
TRUCK CARGO 5TON LWB M54A2	USA	431	2,133 miles	19	
TRUCK TRACTOR 5TON WW M52A2	USA	263	1,299 miles	11	
TRUCK CARGO 5TON LWB WW M54A2	USA	261	1,292 miles	11	
TRUCK CARGO 5TON XLWB WW M55A2	USA	48	236 miles	3	
TRUCK CARGO 5TON LWB M54	USA	2	9 miles	7	
TRUCK TRACTOR 5TON WW M52	USA	2	9 miles	3	
TRUCK CARGO 5TON DROPSIDE M54A1C	USA	1	4 miles	2	
TRUCK CARGO 5TON LWB WW M54	USA	0	2 miles	2	
TRUCK CARGO 5TON LWB M54A1	USA	0	2 miles	2	
TRUCK TRACTOR 5TON M52	USA	0	2 miles	2	
TRUCK TRACTOR 5TON M52A1	USA	0	2 miles	2	
Generic TRUCK CARGO 5TON M54-LDS465-1	USA	0	2 miles	2	
TRUCK CARGO 21/2TON WW M35A1	USA	0	2 miles	2	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
ONAN DIV	DN4M1	3,864	1,004,081	1.2%	90.5%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
GEN ST DED 10KW 60HZ MEP803A	USMC	993,789	1,316,152 hours	1,213	
GEN ST DED 10KW 400HZ MEP-813A	USMC	10,248	19,573 hours	130	
GEN ST DED 10KW 60HZ TQ MEP803A	USA	32	32 hours	2,278	
GEN ST DED 10KW 400HZ TQ MEP813A	USA	12	12 hours	243	

Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CONTINENTAL	AVDS1790-2DR	1,889	899,277	1.1%	91.5%
Equipment using this Engine					
Nomenclature	Service		Fuel Usage (gal)	Activity	Inventory
RECOVERY VEHICLE MEDIUM M88A1	USA		524,348	263,655 miles	1,706
RECOVERY VEH MEDIUM FULL TRACK M88A1	USMC		270,641	24,676 hours	62
RECOVERY VEHICLE HEAVY M88A2	USA		104,289	52,439 miles	121
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
GENERAL MOTORS	6.5L	5,701	823,044	1.0%	92.5%
Equipment using this Engine					
Nomenclature	Service		Fuel Usage (gal)	Activity	Inventory
TRUCK UTIL HVY VARNT HMMWV M1097A2	USA		338,584	5,022,335 miles	3,562
TRUCK UTIL EXP CAPACITY UP-ARMORED HMMWV M1114	USA		334,581	4,962,948 miles	1,402
TRUCK UTIL ARMT CARR ARMORED HMMWV M1025A2 USA			149,878	2,223,185 miles	732
TRUCK AMBULANCE 4LTR HMMWV M997A2	USA		1	8 miles	2
TRUCK UTIL UP-ARMORED HMMWV M1109	USA		0	4 miles	3
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
JOHN DEERE	6059T	2,453	660,040	0.8%	93.2%
Equipment using this Engine					
Nomenclature	Service		Fuel Usage (gal)	Activity	Inventory
TRUCK FORKLIFT EXTENDABLE B	USMC		357,544	227,183 hours	492
MEP-816A 400HZ (60 KW GENERATOR)	USMC		302,327	158,341 hours	121
GEN ST DED 60KW 60HZ TQ MEP806A	USA		92	20 hours	623
GEN ST DED 60KW 400HZ TQ MEP816A	USA		41	8 hours	200
TRUCK FL DED 10000 LB ROUGH TERRAIN(1)	USA		37	33 hours	1,017
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
DETROIT DIESEL	DDEC II	1,375	618,550	0.7%	94.0%
Equipment using this Engine					
Nomenclature	Service		Fuel Usage (gal)	Activity	Inventory
TRUCK TRACTOR LINE HAUL M915A2	USA		384,676	2,139,761 miles	763
TRUCK DUMP 20TON 12 CU YD C/S M917A1	USA		188,327	1,047,569 miles	462
TRUCK DUMP 20TON 12 CU YD C/S M917A1 W/MCS	USA		45,547	253,356 miles	150

Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
JOHN DEERE	6466 6.8L	499	615,823	0.7%	94.7%
Equipment using this Engine					
Nomenclature		Service	Fuel Usage (gal)	Activity	Inventory
TRACTOR RT ARTICULAT, STR 6 LOADER SCOOP	TYPE	USMC	615,823	182,300 hours	499
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CONTINENTAL	LD465-1	6,278	610,581	0.7%	95.4%
Equipment using this Engine					
Nomenclature		Service	Fuel Usage (gal)	Activity	Inventory
TRUCK CARGO 21/2TON WW M35A2		USA	362,237	2,930,823 miles	3,715
TRUCK VAN SHOP 21/2TON M109A3		USA	134,003	1,084,203 miles	1,174
TRUCK CARGO 21/2TON D/S M35A2C		USA	85,722	693,572 miles	962
TRUCK VAN SHOP 21/2TON WW M109A3		USA	12,361	100,009 miles	46
TRUCK CARGO 21/2TON XLWB M36A2		USA	6,434	52,057 miles	114
Generic TRUCK CARGO 21/2TON M35-LD465-1		USA	5,156	41,719 miles	90
TRUCK CARGO 21/2TON D/S WW M35A2C		USA	1,967	15,912 miles	44
TRUCK CARGO 21/2TON XLWB WW M36A2		USA	1,176	9,511 miles	37
TRUCK TANK FS 21/2TON M49A2C		USA	1,110	8,983 miles	54
TRUCK TANK WATER 21/2TON M50A3		USA	414	3,349 miles	33
TRUCK TANK WATER 21/2TON M50A2		USA	2	13 miles	5
TRUCK TANK FS 21/2TON M49A1C		USA	0	4 miles	2
TRUCK TANK FS 21/2TON WW M49A2C		USA	0	2 miles	2

Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
DETROIT DIESEL	6V53	8,420	442,514	0.5%	95.9%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
CARRIER PERSONNEL FT M113A2	USA	225,921	386,672 miles	3,344	
CARRIER COMMAND POST FT M577A2	USA	114,252	195,547 miles	2,866	
CARRIER PERSONNEL FIRE SPT M981	USA	46,693	74,208 miles	792	
CARRIER MORTAR 120MM M1064	USA	39,838	68,185 miles	553	
COMBAT VEHICLE ANTI-TANK ITV M901A1	USA	9,641	16,501 miles	527	
CARRIER SMOKE GENERATOR FT M1059	USA	4,998	8,555 miles	102	
CARRIER FT COMMAND AND CONTROL VEHICLE	USA	932	798 miles	10	
C2V M4					
CRANE TRUCK MOUNTED 25TON MT250	USA	232	68 hours	220	
CARRIER MORTAR 107MM SP M106A2	USA	6	10 miles	6	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CUMMINS ENGINE	V903C	408	429,250	0.5%	96.4%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
ARMORED COMBAT EARTHMOVER M9	USMC	316,284	76,624 hours	101	
ARMORED COMBAT EARTHMOVER M9	USA	112,966	84,487 miles	307	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
MERCEDES BENZ	OM 352	1,901	409,317	0.5%	96.9%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
TRACTOR WHEEL DED 4X4 EXCAVATOR FLU419	USMC	409,178	124,308 hours	120	
TRACTOR WHEEL DED 4X4 EXCAVATOR	USA	101	32 hours	1,669	
TRACTOR WHEEL DED 4X4 HMMH FLU10344	USA	38	12 hours	112	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CATERPILLAR	3306	278	400,886	0.5%	97.4%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
TRACTOR, MED, FULL TRACK, D	USMC	400,861	88,939 hours	245	
TRACTOR FT DED D7H	USA	25	4 hours	33	

Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CATERPILLAR	3208	126	321,888	0.4%	97.7%
Equipment using this Engine					
Nomenclature	Service		Fuel Usage (gal)	Activity	Inventory
CRANE HIGH SPEED	USMC		321,888	92,948 hours	126
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
JI CASE	G188D	152	285,250	0.3%	98.1%
Equipment using this Engine					
Nomenclature	Service		Fuel Usage (gal)	Activity	Inventory
TRACTOR, FULL TRACK, 1150E	USMC		285,250	83,431 hours	152
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
DETROIT DIESEL	8V71T	1,592	278,067	0.3%	98.4%
Equipment using this Engine					
Nomenclature	Service		Fuel Usage (gal)	Activity	Inventory
HOWITZER MEDIUM SP 155MM M109A6	USA		211,409	235,193 miles	623
HOWITZER MEDIUM SP 155MM M109A5	USA		40,704	45,283 miles	556
CARRIER CARGO AMMO FT M992A1	USA		21,660	21,906 miles	34
RECOVERY VEHICLE LIGHT M578	USA		4,290	4,492 miles	377
HOWITZER HEAVY SP 8IN M110A2	USA		4	3 miles	2
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
ONAN DIV	Q106M	3,737	241,344	0.3%	98.7%
Equipment using this Engine					
Nomenclature	Service		Fuel Usage (gal)	Activity	Inventory
GEN ST DED 3KW 60HZ MEP 16B	USMC		241,309	768,720 hours	1,359
GEN ST DED 3KW 60HZ	USA		22	36 hours	376
GEN ST DED 3KW 60HZ MEP016B	USA		13	40 hours	2,002
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
PERKINS	704-30T	431	206,630	0.2%	98.9%
Equipment using this Engine					
Nomenclature	Service		Fuel Usage (gal)	Activity	Inventory
TRUCK, FORKLIFT LCRT 4000 LBS	USMC		206,630	106,193 hours	431

Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CATERPILLAR	3304	1,590	199,456	0.2%	99.2%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
GRADER RD MOTOR, 130-G	USMC	186,098	70,922 hours	105	
ROLLER COMPACTOR 563D	USMC	13,064	6,750 hours	45	
GRADER ROAD MTRZD DED MDL CAT130G	USA	176	28 hours	1,270	
LOADER SCOOP TYPE DED 950BNS	USA	118	14 hours	170	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CATERPILLAR	3408T	421	160,027	0.2%	99.3%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
TRUCK FL 50000 LB CONTAINER HANDLER	USMC	159,964	31,630 hours	87	
TRUCK FL 50000LB CONT HDLR DV43 RT	USA	63	12 hours	334	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CONTINENTAL	AVDS1790-2DA	24	125,688	0.1%	99.5%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
BRIDGE ARMORED, M60A1 SCISS	USMC	125,688	17,032 hours	24	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
JOHN DEERE	4039T	795	109,676	0.1%	99.6%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
GEN, MEP-114A (30 KW GENERATOR)	USMC	109,618	91,802 hours	64	
GEN ST DED 30KW 50/60HZ TQ MEP805A	USA	27	11 hours	637	
TRACTOR FT DED MDL 550C	USA	22	7 hours	20	
GEN ST DED 30KW 400HZ TQ MEP815A	USA	8	3 hours	74	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CONTINENTAL	AVDS1790-2D	415	105,966	0.1%	99.7%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
BRIDGE LAUNCHER M48/M60 TANK SERIES	USA	105,966	50,704 miles	415	

Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CUMMINS ENGINE	4B3.9	2,385	72,946	0.1%	99.8%
Equipment using this Engine					
Nomenclature	Service		Fuel Usage (gal)	Activity	Inventory
CRANE, RT, LIGHT HYDRAULIC	USMC		72,700	75,729 hours	144
TRUCK FL DED 4000LB RT MDL MK4	USA		126	24 hours	1,626
CRANE WHEEL MTD HYD LT 7-1/2 TON LRT 110 W/CAB USA			120	49 hours	615
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
J/I CASE	6T590	76	37,084	0.0%	99.9%
Equipment using this Engine					
Nomenclature	Service		Fuel Usage (gal)	Activity	Inventory
LOADER SCOOP TYPE FT	USMC		37,084	23,816 hours	76
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
MERCEDES BENZ	OM 603-950	501	35,841	0.0%	99.9%
Equipment using this Engine					
Nomenclature	Service		Fuel Usage (gal)	Activity	Inventory
CARRIER CARGO FT SUSV M973A1	USA		35,841	109,996 miles	501
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CATERPILLAR	3406	907	28,081	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service		Fuel Usage (gal)	Activity	Inventory
SCRAPER-TRACTOR, WHEELED, 6	USMC		27,980	5,596 hours	44
SCRAPER EARTH MVG SP 621B	USA		101	16 hours	863
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
MERCEDES BENZ	OM402AT	70	23,293	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service		Fuel Usage (gal)	Activity	Inventory
FOX NBC RECON SYSTEM VEHICLE M93A1	USA		23,293	71,486 miles	70

Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
DEUTZ	F4L-912	50	8,279	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service		Fuel Usage (gal)	Activity	Inventory
DITCHING MACHINE	USMC		8,279	25,968 hours	50
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
ONAN DIV	DJC-12315T	308	5,487	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service		Fuel Usage (gal)	Activity	Inventory
SEMITRAILER TANK 5000 GAL M970	USMC		5,487	9,430 hours	308
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
YORK SHIPLEY	VY-7-8DD	192	1,226	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service		Fuel Usage (gal)	Activity	Inventory
BATH, SHOWER UNIT	USMC		1,226	514 hours	192
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CUMMINS ENGINE	6BT5.9-C	1,437	325	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service		Fuel Usage (gal)	Activity	Inventory
TRUCK FL DED 6000LB AMMO HDLG VRRTF	USA		325	62 hours	1,437
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CATERPILLAR	3306T	888	309	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service		Fuel Usage (gal)	Activity	Inventory
TRACTOR FT DED D7F DV29	USA		309	49 hours	888
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
DETROIT DIESEL	453N	346	294	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service		Fuel Usage (gal)	Activity	Inventory
TRUCK FL DED 6000LB MLT-6	USA		294	56 hours	346

Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CATERPILLAR	D342	167	227	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
TRACTOR FT DED CAT D8K-8 S-8	USA	227	36 hours	167	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
JI CASE	504BD	1,000	166	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
LOADER SCOOP TYPE DED JI CASE MW24C	USA	166	45 hours	1,000	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
DETROIT DIESEL	6V92TC/6-71	9	144	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
CRANE TRUCK MOUNTED 140T	USA	144	4 hours	9	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CATERPILLAR	D333CT	1,183	126	0.0%	100.0%
Equipment using this Engine					
Fuel Usage					
Nomenclature	Service	(gal)	Activity	Inventory	
TRACTOR FT DED LW SP(1)	USA	126	20 hours	1,165	
TRACTOR FT DED D7R	USA	0	0 hours	18	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
ONAN DIV	DJC99E/9487	1,486	123	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
GEN ST DED 10KW 60HZ MEP003A	USA	123	100 hours	1,486	

Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CONTINENTAL	AVDS1790-2C	7	119	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
TANK COMBAT 105MM M60A3 (TTS)	USA	119	57 miles	7	

Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CATERPILLAR	C240	870	84	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
TRUCK FL DED 4000LB CBD HYS H40XL	USA	84	16 hours	870	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
HERCULES ENGINE	D198ERX51	949	77	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
GEN ST DED 15KW 60HZ PU405	USA	77	50 hours	949	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
ISUZU	C240	1,416	76	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
TRUCK FL DED 6000LB CBD HYSTER H60X	USA	47	9 hours	572	
GEN ST DED 15KW 50/60HZ TQ MEP804A	USA	15	10 hours	472	
GEN ST DED 15KW 400HZ TQ MEP814A	USA	14	8 hours	372	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
INTER HARV	DT-817C	59	67	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
LOADER SCOOP TYPE DED BUCK H100CRB	USA	67	8 hours	59	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CATERPILLAR	3046T	55	67	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
TRACTOR FT DED D5BS1	USA	67	16 hours	55	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CUMMINS ENGINE	6BT5.9	1,262	52	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
TRUCK FL DED 4000LB AMMO HDLG VRRTF	USA	52	10 hours	1,262	

Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
DETROIT DIESEL	4-71	6	21	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
CRANE SHOVEL CRAWLER 40T PH5060	USA	21	2 hours	6	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CUMMINS ENGINE	V8 265 2380	24	14	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
CRANE WHEEL MOUNTED M320RT	USA	14	4 hours	24	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
ONAN DIV	DN2M	3,761	12	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
GEN ST DED 5KW 60HZ TQ MEP802A	USA	12	20 hours	3,715	
GEN ST DED 5KW 400HZ TQ MEP812A	USA	0	0 hours	46	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CATERPILLAR	3126 HEUI	242	9	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
TRACTOR FULL TRACKED HIGH SPEED (DEUCE)	USA	9	8 hours	242	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
CONTINENTAL	AVDS1790-2A, D,	2	4	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
COMBAT ENGINEER VEHICLE M728	USA	4	2 miles	2	
Manufacturer	Model	Average Inventory	Fuel Consumption	% of Total	Running Total
ONAN DIV	Q106D	3,989	3	0.0%	100.0%
Equipment using this Engine					
Nomenclature	Service	Fuel Usage (gal)	Activity	Inventory	
GEN ST DED 3KW 60HZ MEP831	USA	3	8 hours	3,989	

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.