efficiently finding all maximal α -gapped repeats

Paweł Gawrychowski Tomohiro I Shunsuke Inenaga Dominik Köppl Florin Manea

TU Dortmund

28th TCS mini-workshop 2015

- \blacksquare string w = TTCTACTAGAGACTAGCGA
- \blacksquare substring u = ACTA
- ightharpoonup substring v = GAG

TTCTACTAGAGACTAGCGA

- \blacksquare string w = TTCTACTAGAGACTAGCGA
- \blacksquare substring u = ACTA
- ightharpoonup substring v = GAG

TTCTACTAGAGACTAGCGA				
TTCT	ACTA	GAG	ACTA	GCGA

- \blacksquare string w = TTCTACTAGAGACTAGCGA
- \blacksquare substring u = ACTA
- ightharpoonup substring v = GAG

gaprep substring uvu of w

ACTA GAG ACTA

TTCT	ACTA	GAG	ACTA	GCGA
	и	V	и	
	·	× ×		\rightarrow
	left arm	gap	right arm	

- \blacksquare string w = TTCTACTAGAGACTAGCGA
- \blacksquare substring u = ACTA
- ightharpoonup substring v = GAG
- $\alpha \in \mathbb{R}, \alpha \geq 1$

gaprep substring uvu of w

 α -gaprep $|uv| \leq \alpha |u|$

ACTA GAG ACTA

$$\mid$$
 ACTA GAG \mid = 7, \mid ACTA \mid = 4

TTCTACTAGAGACTAGCGA							
TTCT	TTCT ACTA GAG ACTA GCGA						
	и	V	и				
←							
	$\leq \alpha$	u					

- \blacksquare string w = TTCTACTAGAGACTAGCGA
- \blacksquare substring u = ACTA
- ightharpoonup substring v = GAG
- $\alpha \in \mathbb{R}, \alpha \geq 1$

gaprep substring uvu of w

ACTA GAG ACTA

$$\alpha$$
-gaprep $|uv| \leq \alpha |u|$

$$lpha$$
-gaprep $|uv| \le lpha |u|$ | ACTA GAG | = 7, | ACTA | = 4

max α -gaprep cannot extend u to a longer α -gaprep

TTCTACTAGAGACTAGCGA						
TTCT	ACTA	GAG	ACTA	GCGA		
	и	V	и			
←	$\leq \alpha$	u				

- \blacksquare string w = TTCTACTAGAGACTAGCGA
- \blacksquare substring u = ACTA
- ightharpoonup substring v = GAG
- $\alpha \in \mathbb{R}, \alpha \geq 1$

gaprep substring uvu of w

ACTA GAG ACTA

$$\alpha$$
-gaprep $|uv| \leq \alpha |u|$

$$\mid$$
 ACTA GAG \mid = 7, \mid ACTA \mid = 4

 $\max \alpha$ -gaprep cannot extend u to a longer α -gaprep

- \blacksquare string w = TTCTACTAGAGACTAGCGA
- \blacksquare substring u = ACTA
- ightharpoonup substring v = GAG
- $\alpha \in \mathbb{R}, \alpha \geq 1$

gaprep substring uvu of w

ACTA GAG ACTA

$$\alpha$$
-gaprep $|uv| \leq \alpha |u|$

$$lpha$$
-gaprep $|uv| \le lpha |u|$ | ACTA GAG | = 7, | ACTA | = 4

max α -gaprep cannot extend u to a longer α -gaprep

	TTCTACTAGAGACTAGCGA					
TTCT	CT ACTA GAG ACTA GCGA					
	и	X	и	X		
		\longrightarrow		\longrightarrow		
	extend <i>u</i>		extend <i>u</i>			

why?

generalization:

- $\alpha = 1$: squares ACGT ACGT
- ightharpoonup lpha = 2: long armed repeats ACGT CATG ACGT

Problem

highest number of # max α -gaprep?

Crochemore et al.'06: $occ = \Omega(\alpha n)$ $\alpha = 1$: Bannai et. al'15: $occ \le n$

n: string length

Question

$$occ = \Theta(?)$$

where?

in genomics:

```
base pairs
C-G
A-T
A-U (RNA)
```

inverted repeats in DNA sequences

```
...AAATCGG ...CCGATTT...
```

hairpin structures (RNA stem-loop)

```
CUGAUCC
```

Observation

DNA contains copies with small gaps.

substring u has

 \blacksquare length |u|

AACAACACACAC	substring <i>u</i>	length	per	exp
ACACACAC	AC AC AC AC	8		

substring u has

- length |*u*|
- minimal period per(u)

AACAACACACAC	substring <i>u</i>	length	per	exp
ACACACAC	AC AC AC AC	8	2	

substring u has

- length |*u*|
- \blacksquare minimal period per(u)
- ightharpoonup exponent $\exp(u) = |u| / \operatorname{per}(u)$

AACAACACACAC	substring <i>u</i>	length	per	exp
ACACACAC	AC AC AC AC	8	2	4

rule: $\exp(u) \ge 1$

def:

AACAACACACAC	substring	length	per	exp

```
rule: \exp(u) \ge 1 def: \operatorname{primitive } \exp(u) = 1
```

substring	length	per	exp
AACAC	5	5	1

AACAACACACAC	substring	length	per	exp
AACAC	AACAC	5	5	1
AA	A A	2	1	2
AACAACA	AAC AAC A	7	3	7/3
			,	

AACAACACACAC	substring	length	per	exp
AACAC	AACAC	5	5	1
AA	A A	2	1	2
AACAACA	AAC AAC A	7	3	7/3
AACA	AAC A	4	3	4/3

max δ-subrepetition (0 \leq δ < 1)

$$1 + \delta \le \exp(u) < 2$$

Kolpakov et al'13

$$\#\mathsf{max}\ \delta\text{-subrep} \leq \#\mathsf{max}\ 1/\delta\text{-gaprep}$$

AACAACACACAC	substring	length	per	exp
AACA	AAC A	4	3	4/3

AAC A is $\frac{1}{3}$ -subrepetition

history

catching all max α -gaprep

authors	when	time	particularity	
Brodal et al.	'99	$\mathcal{O}(n \lg n + occ)$	$\alpha \equiv {\rm const.}$	
Kolpakov et al.	'00	$\mathcal{O}(n \lg \alpha + occ)$	$ \mathbf{v} = \alpha$	
Kolpakov et al.	'14	$\mathcal{O}(\alpha^2 n + occ)$	$\operatorname{occ} = \mathcal{O}(\alpha^2 n)$	
Tanimura et al.	Sep'15	$\mathcal{O}(lpha \mathit{n} + occ)$	$\Sigma \equiv const$	
Crochemore et al.	Sep'15	$\mathcal{O}(\alpha n + occ)$	$\Sigma \equiv const$	
we	Sep'15	$\mathcal{O}(\alpha n)$	Σ integer	

integer alphabets

w string

- alphabet Σ
- length n

Lemma

transform any Σ to **effective** alphabet by sorting

recently

I, Inenaga, Köppl: Aug'15 # maximal α -gapped repeats = $\Theta(\alpha n)$

```
Gawrychowski, Manea: FCT'15 compute \arg\max{\{|u|: uvu \text{ is } \alpha-\text{gapped repeat}\}}
```

in $\mathcal{O}(\alpha n + \text{occ})$ time, integer alphabet

joint work

all max α -gaprep in $\mathcal{O}(\alpha n)$ time, integer alphabet.

- given string w
- construction in linear time
- lacktriangle answers in $\mathcal{O}(1)$ time

W

- given string w
- construction in linear time
- lacktriangle answers in $\mathcal{O}(1)$ time
 - □ **longest common prefix** $lcp(i,j) := max \{ \ell : w[i,i+\ell-1] = w[j,j+\ell-1] \}$

- given string w
- construction in linear time
- lacktriangle answers in $\mathcal{O}(1)$ time
 - □ longest common prefix $lcp(i,j) := max \{ \ell : w[i,i+\ell-1] = w[j,j+\ell-1] \}$

- given string w
- construction in linear time
- lacktriangle answers in $\mathcal{O}(1)$ time
 - □ longest common prefix $lcp(i,j) := max \{ \ell : w[i,i+\ell-1] = w[j,j+\ell-1] \}$

- given string w
- construction in linear time
- lacktriangle answers in $\mathcal{O}(1)$ time
 - □ longest common prefix $lcp(i,j) := max \{ \ell : w[i,i+\ell-1] = w[j,j+\ell-1] \}$

- given string w
- construction in linear time
- lacktriangle answers in $\mathcal{O}(1)$ time
 - □ longest common prefix $lcp(i,j) := max \{ \ell : w[i,i+\ell-1] = w[j,j+\ell-1] \}$

- given string w
- construction in linear time
- lacktriangle answers in $\mathcal{O}(1)$ time
 - longest common prefix $lcp(i,j) := max \{ \ell : w[i,i+\ell-1] = w[j,j+\ell-1] \}$
 - □ **longest common suffix** $lcs(i,j) := max \{ \ell : w[i-\ell+1,i] = w[j-\ell+1,j] \}$

- given string w
- construction in linear time
- lacktriangle answers in $\mathcal{O}(1)$ time
 - □ longest common prefix $lcp(i,j) := max \{ \ell : w[i,i+\ell-1] = w[j,j+\ell-1] \}$
 - longest common suffix $lcs(i,j) := max \{ \ell : w[i-\ell+1,i] = w[j-\ell+1,j] \}$

- given string w
- construction in linear time
- lacktriangle answers in $\mathcal{O}(1)$ time
 - □ longest common prefix $lcp(i,j) := max \{ \ell : w[i,i+\ell-1] = w[j,j+\ell-1] \}$
 - □ **longest common suffix** $lcs(i,j) := max \{ \ell : w[i-\ell+1,i] = w[j-\ell+1,j] \}$

- given string w
- construction in linear time
- ightharpoonup answers in $\mathcal{O}(1)$ time
 - □ longest common prefix $lcp(i,j) := max \{\ell : w[i,i+\ell-1] = w[j,j+\ell-1]\}$
 - □ **longest common suffix** $lcs(i,j) := max \{ \ell : w[i-\ell+1,i] = w[j-\ell+1,j] \}$

- given string w
- construction in linear time
- lacktriangle answers in $\mathcal{O}(1)$ time
 - □ longest common prefix $lcp(i,j) := max \{ \ell : w[i,i+\ell-1] = w[j,j+\ell-1] \}$
 - □ **longest common suffix** $lcs(i,j) := max \{ \ell : w[i-\ell+1,i] = w[j-\ell+1,j] \}$

basic factors

```
w string, |w| = m.

basic factor := 2^q-gram partition, q \ge 1
```

$$\sum_{a=1}^{q=\lfloor \lg m
floor} (m/2^q) \leq m$$
 many

W								
2	2	2	2	2	2	2	2	
	4 4		4		4			
8			8					
16								

getOcc(y, w): return where y found in w

y occurs in w

W

getOcc(y, w): return where y found in w

y occurs in w

lonely

w y y

getOcc(y, w): return where y found in w

y occurs in w

- lonely
- in a repetition

getOcc(y, w): return where y found in w

y occurs in w

- lonely
- in a repetition

neglected here

- $2 \le \gamma < \beta$ const.
- \mathbf{x} string, $|\mathbf{x}| = \beta \lg n$

P. Gawrychowski, F. Manea: FCT'15

- $2 \le \gamma < \beta$ const.
- \mathbf{x} x string, $|\mathbf{x}| = \beta \lg n$

P. Gawrychowski, F. Manea: FCT'15

- ightharpoonup construction time $\mathcal{O}(\beta \lg n)$
- lacksquare answers getOcc(y,z) in $\mathcal{O}(d)$ time for

- $2 \le \gamma < \beta$ const.
- \mathbf{x} x string, $|\mathbf{x}| = \beta \lg n$

P. Gawrychowski, F. Manea: FCT'15

- ightharpoonup construction time $\mathcal{O}(\beta \lg n)$
- answers getOcc(y, z) in $\mathcal{O}(d)$ time for
 - $\ ^{\square}$ y basic factor of x, y contained in last $\gamma \lg n$ characters of x

- $2 \le \gamma < \beta$ const.
- \mathbf{x} x string, $|\mathbf{x}| = \beta \lg n$

P. Gawrychowski, F. Manea: FCT'15

- ightharpoonup construction time $\mathcal{O}(\beta \lg n)$
- \blacksquare answers getOcc(y,z) in $\mathcal{O}(d)$ time for

 - \square substring z of x
 - $|z| = d|y|, d \equiv \text{const.}$

later: $d = \mathcal{O}(\alpha)$

- $2 \le \gamma < \beta$ const.
- \mathbf{x} string, $|\mathbf{x}| = \beta \lg n$

P. Gawrychowski, F. Manea: FCT'15

- ightharpoonup construction time $\mathcal{O}(\beta \lg n)$
- \blacksquare answers getOcc(y,z) in $\mathcal{O}(d)$ time for

 - \square substring z of x
 - $|z| = d|y|, d \equiv \text{const.}$

later: $d = \mathcal{O}(\alpha)$

task: search left arm u_λ

 $\lambda: \mathsf{left}, \ \rho: \mathsf{right}$

task: search left arm u_λ

 λ : left, ρ : right

ightharpoonup assume: $|u_{\rho}| \leq \gamma \lg n$

W

$$\leq \gamma \lg n$$
 u_{ρ}

task: search left arm u_{λ}

- ightharpoonup assume: $|u_{\rho}| \leq \gamma \lg n$
- **blocks** of length w in $2\gamma \lg n$

task: search left arm u_{λ}

- ightharpoonup assume: $|u_{\rho}| \leq \gamma \lg n$
- **blocks** of length w in $2\gamma \lg n$
- by def: $|u_{\lambda}v| \leq \alpha |u_{\lambda}| \Leftrightarrow |v| \leq \alpha (\gamma 1) \lg n$

task: search left arm u_{λ}

- ightharpoonup assume: $|u_{\rho}| \leq \gamma \lg n$
- **blocks** of length w in $2\gamma \lg n$
- by def: $|u_{\lambda}v| \leq \alpha |u_{\lambda}| \Leftrightarrow |v| \leq \alpha(\gamma 1) \lg n$
- **x**: block extended to left : $u_{\lambda}vu_{\rho} \subset x$

task: search left arm u_{λ}

- ightharpoonup assume: $|u_{\rho}| \leq \gamma \lg n$
- **blocks** of length w in $2\gamma \lg n$
- by def: $|u_{\lambda}v| \leq \alpha |u_{\lambda}| \Leftrightarrow |v| \leq \alpha (\gamma 1) \lg n$
- **x**: block extended to left : $u_{\lambda}vu_{\rho} \subset x$
- x: m-th superblock

task: search left arm u_{λ}

- ightharpoonup assume: $|u_{\rho}| \leq \gamma \lg n$
- **blocks** of length w in $2\gamma \lg n$
- by def: $|u_{\lambda}v| \leq \alpha |u_{\lambda}| \Leftrightarrow |v| \leq \alpha (\gamma 1) \lg n$
- **x**: block extended to left : $u_{\lambda}vu_{\rho} \subset x$
- x: m-th superblock
- lacksquare $u_
 ho$ contained in last $2\gamma \lg n$ chars of x

W

ightharpoonup create $2\gamma \lg n$ -partition

- ightharpoonup create $2\gamma \lg n$ -partition
- ightharpoonup create $\{x_m\}_m$

- ightharpoonup create $2\gamma \lg n$ -partition
- ightharpoonup create $\{x_m\}_m$
- ightharpoonup on each superblock x_m build
 - □ lcp-DS
 - □ getOcc-DS

x_m

 u_{ρ} in the last $2\gamma \lg n$ characters of x_m

 $u_{
ho}$

- u_{ρ} in the last $2\gamma \lg n$ characters of x_m
- $\exists q: 2^{q+1} \leq |u_{\rho}| \leq 2^{q+2}$

- u_{ρ} in the last $2\gamma \lg n$ characters of x_m
- $\exists q: 2^{q+1} \leq |u_0| \leq 2^{q+2}$
- $\exists 2^q$ -basic factor y_ρ : $\mathsf{b}(y_\rho) \in [\mathsf{b}(u_\rho), \mathsf{b}(u_\rho) + 2^q]$

- u_{ρ} in the last $2\gamma \lg n$ characters of x_m
- $\exists q: 2^{q+1} \leq |u_0| \leq 2^{q+2}$
- $\exists 2^q$ -basic factor y_ρ : $\mathsf{b}(y_\rho) \in [\mathsf{b}(u_\rho), \mathsf{b}(u_\rho) + 2^q]$
- use getOcc-index:
 - $\exists y_{\lambda} \equiv y_{\rho} : y_{\lambda} \subset u_{\lambda}$
 - $= \#y_{\lambda} = \mathcal{O}(\alpha)$ many.

- u_{ρ} in the last $2\gamma \lg n$ characters of x_m
- $\exists q: 2^{q+1} < |u_0| < 2^{q+2}$
- $\exists 2^q$ -basic factor y_ρ : $\mathsf{b}(y_\rho) \in [\mathsf{b}(u_\rho), \mathsf{b}(u_\rho) + 2^q]$
- use getOcc-index:
 - $\exists y_{\lambda} \equiv y_{\rho} : y_{\lambda} \subset u_{\lambda}$
- \supseteq extend right lcp(e(y_{λ}), e(y_{α}))

- u_{ρ} in the last $2\gamma \lg n$ characters of x_m
- $\exists q: 2^{q+1} < |u_0| < 2^{q+2}$
- $\exists 2^q$ -basic factor y_ρ : $\mathsf{b}(y_\rho) \in [\mathsf{b}(u_\rho), \mathsf{b}(u_\rho) + 2^q]$
- use getOcc-index:
 - $\exists y_{\lambda} \equiv y_{\rho} : y_{\lambda} \subset u_{\lambda}$
 - $= \# y_{\lambda} = \mathcal{O}(\alpha)$ many.
- \blacksquare for each y_{λ} use lcp-DS
 - Arr extend right $lcp(e(y_{\lambda}), e(y_{\rho}))$
 - ightharpoonup extend left $-\operatorname{lcs}(b(y_{\lambda}),b(y_{\rho}))$

$$\mathsf{lcs}(\mathsf{b}(y_\lambda), \overset{\longleftrightarrow}{\mathsf{b}}(y_\rho)) - 1$$

$$lcs(b(y_{\lambda}), \overrightarrow{b}(y_{\rho})) - 1$$

- u_{ρ} in the last $2\gamma \lg n$ characters of x_m
- $\exists q: 2^{q+1} < |u_0| < 2^{q+2}$
- $\exists 2^q$ -basic factor y_ρ : $\mathsf{b}(y_\rho) \in [\mathsf{b}(u_\rho), \mathsf{b}(u_\rho) + 2^q]$
- use getOcc-index:
 - $\exists y_{\lambda} \equiv y_{\rho} : y_{\lambda} \subset u_{\lambda}$
 - = $\#y_{\lambda}=\mathcal{O}(\alpha)$ many.
- \blacksquare for each y_{λ} use lcp-DS
 - ightharpoonup extend right $lcp(e(y_{\lambda}), e(y_{\rho}))$
 - \supseteq extend left $lcs(b(y_{\lambda}), b(y_{\rho}))$

time complexity

total
$$\mathcal{O}\left(\frac{n}{\lg n} \cdot \alpha \lg n\right) = \mathcal{O}(\alpha n)$$
 time

- $\gamma = \mathcal{O}(1)$
- constr. time of lcp-DS and getOcc-DS: linear

summary

in $\mathcal{O}(\alpha |w|)$ time we

- **** find $\{$ maximal α -gapped repeats of $w\}$
- find $\{\text{maximal } \alpha\text{-gapped palindromes of } w\}$ (paper)

due to

- lacktriangle # maximal lpha-gapped repeats = $\mathcal{O}(lpha \, |w|)$
- lacktriangle # maximal lpha-gapped palindroms = $\mathcal{O}(lpha \, |w|)$

summary

in $\mathcal{O}(\alpha |w|)$ time we

- **** find $\{$ maximal α -gapped repeats of $w\}$
- **** find $\{$ maximal α -gapped palindromes of $w\}$ $\{$ paper $\}$

due to

- lacktriangle # maximal lpha-gapped repeats = $\mathcal{O}(lpha \, |w|)$
- lacktriangledown # maximal lpha-gapped palindroms = $\mathcal{O}(lpha \, |w|)$

Thank you for listening. Any questions are welcome!