MẠCH RLC NÓI TIẾP (CUỘN DÂY THUẦN CẨM) CÓ R THAY ĐỔI

Dạng bài	Chứng minh	Công thức cần nhớ
Dạng 1. R thay đổi để I_{\max} ; $U_{L\max}$; $U_{C\max}$.	$I = \frac{U}{\sqrt{R^2 + (Z_L - Z_C)^2}} \Rightarrow I_{\text{max}} \Leftrightarrow R = 0.$	$R=0; I_{\text{max}} = \frac{U}{ Z_L - Z_C }$
Dạng 2. R thay đổi để công suất mạch đạt cực đại.	$P = I R = \frac{1}{I R}$	$R = Z_L - Z_C $; $P_{\text{max}} = \frac{U^2}{2 Z_L - Z_C }$
	Áp dụng BĐT Cauchy: $R + \frac{\left(Z_L - Z_C\right)^2}{R} \ge 2\sqrt{R \cdot \frac{\left(Z_L - Z_C\right)^2}{R}} = 2\left Z_L - Z_C\right $	
	$\Rightarrow P \le \frac{U^2}{2 Z_L - Z_C } \to P_{\text{max}} = \frac{U^2}{2 Z_L - Z_C }. \text{ Khi d\'o } R = \frac{\left(Z_L - Z_C\right)^2}{R} \Rightarrow R = Z_L - Z_C .$	
Dạng 3. Có hai giá trị $R_1; R_2$ để mạch có cùng	$P = \frac{U^2 R}{R^2 + (Z_L - Z_C)^2} \Rightarrow P \cdot R^2 - U^2 \cdot R + P(Z_L - Z_C)^2 = 0$	$\begin{cases} R_1 + R_2 = \frac{U^2}{P} \\ R_1 R_2 = (Z_L - Z_C)^2 \end{cases}$
công suất P.	Theo Viète: $R_1 + R_2 = \frac{-b}{a} = \frac{U^2}{P}$ và $R_1 R_2 = \frac{c}{a} = (Z_L - Z_C)^2$.	$ \left[R_1 R_2 = \left(Z_L - Z_C \right)^2 \right] $ • $\tan \varphi_1 \cdot \tan \varphi_2 = 1$
	• Gọi $\varphi_1; \varphi_2$ lần lượt là độ lệch pha u ; i khi $R = R_1$ và $R = R_2$, ta có: $\tan \varphi_1 \cdot \tan \varphi_2 = \frac{\left(Z_L - Z_C\right)}{R_1} \cdot \frac{\left(Z_L - Z_C\right)}{R_2} = \frac{\left(Z_L - Z_C\right)^2}{R_1 R_2} = 1$	hay $\varphi_1 + \varphi_2 = \pm \frac{\pi}{2}$. • $P_{\text{max}} = \frac{U^2}{2\sqrt{R_1 R_2}}$
	$\Rightarrow \tan \varphi_1 = \frac{1}{\tan \varphi_2} = \cot \varphi_2 \qquad (Z_L \neq Z_C) \Rightarrow \varphi_1 + \varphi_2 = \pm \frac{\pi}{2}.$	$2\sqrt{R_1R_2}$ khi $R_0 = \sqrt{R_1R_2}$.
	• Chứng minh từ Dạng 2 ta có $P_{\text{max}} = \frac{U^2}{2 Z_L - Z_C } = \frac{U^2}{2\sqrt{R_1 R_2}}$ khi $R = Z_L - Z_C = \sqrt{R_1 R_2}$	

MẠCH RLC NÓI TIẾP (CUỘN DÂY KHÔNG THUẦN CẨM) CÓ R THAY ĐỔI

Dạng bài	Chứng minh	Công thức cần nhớ		
Dạng 1. R thay đổi để	$I = \frac{U}{\Box} \Rightarrow I_{\text{max}} \Leftrightarrow R = 0.$	R=0		
$I_{ m max}$; $U_{L{ m max}}$; $U_{C{ m max}}$.	$I = \frac{U}{\sqrt{(R+r)^2 + (Z_L - Z_C)^2}} \Rightarrow I_{\text{max}} \Leftrightarrow R = 0.$	$I_{\text{max}} = \frac{U}{\sqrt{r^2 + (Z_L - Z_C)^2}}$		
Dạng 2. R thay đổi để	$U^{2}(R+r) = U^{2}(R+r)$	$R = Z_L - Z_C - r \; ; \; P_{\text{max}} = \frac{U^2}{2 Z_L - Z_C }$		
công suất mạch đạt cực	$P = I^{2}(R+r) = \frac{U^{2}(R+r)}{(R+r)^{2} + (Z_{L} - Z_{C})^{2}} = \frac{U^{2}}{(R+r) + \frac{(Z_{L} - Z_{C})^{2}}{(R+r)}}$	$ R - Z_L - Z_C $, r , $r_{\text{max}} - 2 Z_L - Z_C $		
đại.		* Nếu $r > Z_L - Z_C $ thì $P_{\text{max}} = \frac{U^2 r}{r^2 + (Z_C - Z_C)^2}$ khi		
	Áp dụng BĐT Cauchy: $(R+r) + \frac{(Z_L - Z_C)^2}{(R+r)} \ge 2\sqrt{(R+r) \cdot \frac{(Z_L - Z_C)^2}{(R+r)}} = 2 Z_L - Z_C $	R = 0.		
	$\Rightarrow P \le \frac{U^2}{2 Z_L - Z_C } \to P_{\text{max}} = \frac{U^2}{2 Z_L - Z_C }$			
	Khi đó $(R+r) = \frac{(Z_L - Z_C)^2}{(R+r)} \Rightarrow R+r = Z_L - Z_C \Rightarrow R = Z_L - Z_C - r$			
	* Nếu $r > Z_L - Z_C $ thì $P_{\text{max}} = \frac{U^2 r}{r^2 + (Z_L - Z_C)^2}$ khi $R = 0$.			
		O R		

Dạng 3. Có hai giá có cùng công suất

Theo Viète: $\begin{cases} R_1 + r + R_2 + r = \frac{-b}{a} = \frac{U^2}{P} \\ (R_1 + r) \cdot (R_2 + r) = \frac{c}{a} = (Z_L - Z_C)^2 \end{cases}.$

• Gọi φ_1 ; φ_2 lần lượt là độ lệch pha u; i khi $R = R_1$ và $R = R_2$, ta có:

$$\tan \varphi_1 \cdot \tan \varphi_2 = \left(\frac{Z_L - Z_C}{R_1 + r}\right) \cdot \left(\frac{Z_L - Z_C}{R_2 + r}\right) = \frac{\left(Z_L - Z_C\right)^2}{\left(R_1 + r\right) \cdot \left(R_2 + r\right)} = 1$$

$$\Rightarrow \tan \varphi_1 = \frac{1}{\tan \varphi_2} = \cot \varphi_2 \qquad \left(Z_L \neq Z_C\right) \Rightarrow \varphi_1 + \varphi_2 = \pm \frac{\pi}{2}.$$

• Chứng minh từ Dạng 2 ta có $P_{\text{max}} = \frac{U^2}{2|Z_L - Z_C|} = \frac{U^2}{2\sqrt{(R+r)\cdot(R+r)}}$ khi

$$R = \left| Z_L - Z_C \right| - r = \sqrt{\left(R_1 + r \right) \cdot \left(R_2 + r \right)} - r.$$

$$\begin{cases} R_1 + r + R_2 + r = \frac{U^2}{P} \\ (R_1 + r) \cdot (R_2 + r) = (Z_L - Z_C)^2 \end{cases}$$

hay
$$\varphi_1 + \varphi_2 = \pm \frac{\pi}{2}$$
.

khi $R_0 = \sqrt{(R_1 + r) \cdot (R_2 + r)} - r$

Dạng 4. R thay đổi để công suất tiêu thu trên R cưc đại.

$$P_{R} = I^{2}R = \frac{U^{2}R}{\left(R+r\right)^{2} + \left(Z_{L}-Z_{C}\right)^{2}} = \frac{U^{2}R}{R^{2} + r^{2} + \left(Z_{L}-Z_{C}\right)^{2} + 2rR} = \frac{U^{2}}{R + \frac{r^{2} + \left(Z_{L}-Z_{C}\right)^{2}}{R}} + 2r$$

$$P_{R \max} = \frac{U^{2}}{2\left(R_{0}+r\right)} \text{ khi } R = R_{0} = \sqrt{r^{2} + \left(Z_{L}-Z_{C}\right)^{2}}.$$

Áp dung BĐT Cauchy:

$$R + \frac{r^2 + (Z_L - Z_C)^2}{R} \ge 2\sqrt{r^2 + (Z_L - Z_C)^2}$$

$$\Rightarrow P_R \le \frac{U^2}{2(R_0 + r)} \text{ v\'oi } R_0 = \sqrt{r^2 + (Z_L - Z_C)^2}$$

$$\Rightarrow P_{R \max} = \frac{U^2}{2(R_0 + r)}.$$

MẠCH RLC NÓI TIẾP CÓ L THAY ĐỔI

Dạng bài	Chứng minh	Công thức cần nhớ	
Dạng 1. L thay đổi để I_{\max} ; P_{\max} ; $U_{R\max}$; $U_{C\max}$.	$I = \frac{U}{\sqrt{R^2 + (Z_L - Z_C)^2}} \Rightarrow I_{\text{max}} = \frac{U}{R} \text{ khi } Z_L = Z_C.$	Hiện tượng cộng hưởng $\left\{ egin{aligned} Z_L = Z_C \\ I_{ m max} = rac{U}{R} \end{aligned} ight$	
$m{Dang 2.} \;\; L \; thay d \mathring{o} i \; d \mathring{e} \ U_{L ext{max}} \; .$	$\frac{U_L}{\sin\alpha} = \frac{U}{\sin\beta} \Rightarrow U_L = \frac{U \cdot \sin\alpha}{\sin\beta} \text{ v\'oi } \sin\beta = \frac{R}{\sqrt{R^2 + Z_C^2}} = const$ $U_L \Rightarrow U_L \text{ max} = \frac{U\sqrt{R^2 + Z_C^2}}{R} \text{ khi } \sin\alpha = 1 \Leftrightarrow \alpha = \frac{\pi}{2}.$ $* \text{ Hệ quả:}$ $U_C \cdot U_{L\text{max}} = U_R^2 + U_C^2 \Rightarrow U_{L\text{max}} = \frac{U_R^2 + U_C^2}{U_C} \Rightarrow Z_L = \frac{R^2 + Z_C^2}{Z_C}.$	$U_{L \text{ max}} = \frac{U\sqrt{R^2 + Z_C^2}}{R} = \frac{U_R^2 + U_C^2}{U_C}$ Khi $Z_L = \frac{R^2 + Z_C^2}{Z_C}$.	
$m{Dạng~3.}~~L~~thay~~dổi~~dể~~U_{RL}~~cực~~đại~~hoặc~~cực~~tiểu.$	$U_{RL} = I \cdot Z_{RL} = \frac{U\sqrt{R^2 + Z_L^2}}{\sqrt{R^2 + (Z_L - Z_C)^2}} = \frac{U}{\sqrt{1 + \frac{Z_C(Z_C - 2Z_L)}{R^2 + Z_L^2}}} \text{ v\'oi } Z_L \in [0; +\infty)$ $\bullet \text{Khi } Z_L = 0 \Rightarrow \begin{cases} Z_C(Z_C - 2Z_L)_{\text{max}} = Z_C^2 \\ \left(R^2 + Z_L^2\right)_{\text{min}} = R^2 \end{cases} \Rightarrow \left[1 + \frac{Z_C(Z_C - 2Z_L)}{R^2 + Z_L^2}\right]_{\text{max}} = \frac{Z_C^2 + R^2}{R^2}$ $\Rightarrow U_{RL\min} = \frac{U \cdot R}{\sqrt{R^2 + Z_C^2}}.$ $\bullet \text{Khi } Z_L \to +\infty$	• $U_{RL \min} = \frac{U \cdot R}{\sqrt{R^2 + Z_C^2}}$ khi $Z_L = 0$ • $U_{RL \max} = \frac{U \cdot Z_L}{R}$ với $Z_L = \frac{Z_C + \sqrt{Z_C^2 + 4R^2}}{2}$.	

sangluongphys@gmail.com 4

$$\lim_{Z_L \to +\infty} \left(\frac{Z_C^2 - 2Z_L Z_C}{R^2 + Z_L^2} \right)^{l'Hopital} = \lim_{Z_L \to +\infty} \left[\frac{\left(Z_C^2 - 2Z_L Z_C \right)'}{\left(R^2 + Z_L^2 \right)'} \right] = \lim_{Z_L \to +\infty} \left(\frac{-Z_C}{Z_L} \right) = 0 \implies U_{RL} \to U$$

• Xét hàm số $f(Z_L) = \frac{Z_C(Z_C - 2Z_L)}{R^2 + Z_L^2}$, ta có $f'(Z_L) = \frac{2Z_C(Z_L^2 - Z_L Z_C - R^2)}{(R^2 + Z_L^2)^2}$

$$f' = 0 \Leftrightarrow Z_L^2 - Z_L Z_C - R^2 = 0 \qquad (*) \Leftrightarrow \begin{bmatrix} Z_L = \frac{Z_C + \sqrt{Z_C^2 + 4R^2}}{2} & (n) \\ Z_L = \frac{Z_C - \sqrt{Z_C^2 + 4R^2}}{2} < 0 & (\ell) \end{bmatrix}$$

Từ (*) ta có: $Z_L - Z_C = \frac{R^2}{Z_L} \Rightarrow U_{RL} = \frac{U\sqrt{R^2 + Z_L^2}}{\sqrt{R^2 + \left(\frac{R^2}{Z_L}\right)^2}} = \frac{U \cdot Z_L}{R}$

Z_{L}	0		$\frac{Z_C + \sqrt{Z_C^2 + 4R^2}}{2}$		+∞
$U_{ extit{ iny RL}}$	$\frac{U \cdot R}{\sqrt{R^2 + Z_C^2}}$	7	$\frac{U \cdot \left(Z_C + \sqrt{Z_C^2 + 4R^2}\right)}{2R}$	`\	U

6

Dạng 4. Có hai giá trị $L_1; L_2$ để mạch có cùng	$I = \frac{U}{\sqrt{R^2 + \left(Z_L - Z_C\right)^2}}$	$Z_C = \frac{Z_{L_1} + Z_{L_2}}{2}, \varphi_1 = -\varphi_2.$
cường độ dòng điện I hoặc có cùng công suất	$\left \begin{array}{cc} C6 & I_1 = I_2 \Rightarrow Z_1 = Z_2 \Leftrightarrow \left Z_{L_1} - Z_{C} \right = \left Z_{L_2} - Z_{C} \right \end{array} \right $	$\vec{\text{D\'e}} \ I_{\text{max}} \ \text{hoặc} \ P_{\text{max}} \ \text{thì} \ L_0 = \frac{L_1 + L_2}{2} \ .$
P . Tìm L_0 để $I_{ m max}$ hoặc $P_{ m max}$.	$\Rightarrow \begin{bmatrix} Z_{L_1} - Z_C = Z_{L_2} - Z_C & (\ell) \\ Z_{L_1} - Z_C = Z_C - Z_{L_2} & (n) \end{bmatrix} \Rightarrow Z_C = \frac{Z_{L_1} + Z_{L_2}}{2}.$	
HIGA		
	* $H\hat{e} qu\dot{a}$: $\tan \varphi_1 = -\tan \varphi_2 \Rightarrow \varphi_1 = -\varphi_2$.	
Dạng 5. Có hai giá trị $L_1; L_2$ để có cùng U_L . Tìm L_0 để $U_{L\max}$.	$U_{L} = I \cdot Z_{L} = \frac{U \cdot Z_{L}}{\sqrt{R^{2} + (Z_{L} - Z_{C})^{2}}} \Rightarrow (R^{2} + Z_{C}^{2}) \cdot \frac{1}{Z_{L}^{2}} - 2Z_{C} \cdot \frac{1}{Z_{L}} + 1 - \frac{U^{2}}{U_{L}^{2}} = 0$	$\frac{2}{L_0} = \frac{1}{L_1} + \frac{1}{L_2} .$
	Theo Viète:	
	$\frac{1}{Z_{L_1}} + \frac{1}{Z_{L_2}} = \frac{-b}{a} = \frac{2Z_C}{R^2 + Z_C^2} = \frac{2}{Z_{L_0}}$	
	Với $Z_{L_0} = \frac{R^2 + Z_C^2}{Z_C}$ là giá trị của Z_L để $U_{L \max}$.	
	$\Rightarrow \frac{2}{L_0} = \frac{1}{L_1} + \frac{1}{L_2}.$	

MẠCH RLC NÓI TIẾP CÓ C THAY ĐỔI (chứng minh tương tự L thay đổi)

Dạng bài	Chứng minh	Công thức cần nhớ
	$I = \frac{U}{\sqrt{R^2 + (Z_L - Z_C)^2}}$ $I_{\text{max}} = \frac{U}{R} \text{ khi } Z_C = Z_L.$	Hiện tượng cộng hưởng $ \begin{cases} Z_C = Z_L \\ I_{\max} = \frac{U}{R} \end{cases} . $
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{U_{RL}}{\sin \alpha} = \frac{U}{\sin \beta} \Rightarrow U_{C} = \frac{U \cdot \sin \alpha}{\sin \beta} \text{ v\'oi } \sin \beta = \frac{R}{\sqrt{R^{2} + Z_{L}^{2}}} = const$ $U_{C} \Rightarrow U_{C \text{ max}} = \frac{U \sqrt{R^{2} + Z_{L}^{2}}}{R} \text{ khi } \sin \alpha = 1 \Leftrightarrow \alpha = \frac{\pi}{2}.$ $* \text{ Hệ quả:}$ $U_{L} \cdot U_{C \text{max}} = U_{R}^{2} + U_{L}^{2} \Rightarrow U_{C \text{max}} = \frac{U_{R}^{2} + U_{L}^{2}}{U_{L}} \Rightarrow Z_{C} = \frac{R^{2} + Z_{L}^{2}}{Z_{L}}.$	$U_{C \text{ max}} = \frac{U\sqrt{R^2 + Z_L^2}}{R} = \frac{U_R^2 + U_L^2}{U_L}$ Khi $Z_C = \frac{R^2 + Z_L^2}{Z_L}$.
Dạng 3. C thay đổi để U_{RC} cực đại hoặc cực tiểu.	$U_{RC} = I \cdot Z_{RC} = \frac{U\sqrt{R^2 + Z_C^2}}{\sqrt{R^2 + (Z_L - Z_C)^2}} = \frac{U}{\sqrt{1 + \frac{Z_L(Z_L - 2Z_C)}{R^2 + Z_C^2}}} \text{ v\'oi } Z_C \in [0; +\infty)$ $\bullet \text{Khi } Z_C = 0 \Rightarrow \begin{cases} Z_L(Z_L - 2Z_C)_{\text{max}} = Z_L^2 \\ \left(R^2 + Z_C^2\right)_{\text{min}} = R^2 \end{cases} \Rightarrow \left[1 + \frac{Z_L(Z_L - 2Z_C)}{R^2 + Z_C^2}\right]_{\text{max}} = \frac{Z_L^2 + R^2}{R^2}$ $\Rightarrow U_{RC \min} = \frac{U \cdot R}{\sqrt{R^2 + Z_L^2}}.$ $\bullet \text{Khi } Z_C \to +\infty$	• $U_{RC \min} = \frac{U \cdot R}{\sqrt{R^2 + Z_L^2}}$ khi $Z_C = 0$ • $U_{RC \max} = \frac{U \cdot Z_C}{R}$ với $Z_C = \frac{Z_L + \sqrt{Z_L^2 + 4R^2}}{2}$.

sangluongphys@gmail.com 7

$$\lim_{Z_C \to +\infty} \left(\frac{Z_L^2 - 2Z_C Z_L}{R^2 + Z_C^2} \right)^{l' Hopital} = \lim_{Z_C \to +\infty} \left[\frac{\left(Z_L^2 - 2Z_L Z_C \right)'}{\left(R^2 + Z_C^2 \right)'} \right] = \lim_{Z_C \to +\infty} \left(\frac{-Z_L}{Z_C} \right) = 0 \implies U_{RC} \to U$$

• Xét hàm số $f(Z_C) = \frac{Z_L(Z_L - 2Z_C)}{R^2 + Z_C^2}$, ta có $f'(Z_C) = \frac{2Z_L(Z_C^2 - Z_L Z_C - R^2)}{(R^2 + Z_C^2)^2}$

$$f' = 0 \Leftrightarrow Z_C^2 - Z_L Z_C - R^2 = 0 \qquad (*) \Leftrightarrow \begin{bmatrix} Z_C = \frac{Z_L + \sqrt{Z_L^2 + 4R^2}}{2} & (n) \\ Z_C = \frac{Z_L - \sqrt{Z_L^2 + 4R^2}}{2} < 0 & (\ell) \end{bmatrix}$$

Từ (*) ta có: $Z_C - Z_L = \frac{R^2}{Z_C} \Rightarrow U_{RC} = \frac{U\sqrt{R^2 + Z_C^2}}{\sqrt{R^2 + \left(\frac{R^2}{Z_C}\right)^2}} = \frac{U \cdot Z_C}{R}$

Z_{C}	0		$\frac{Z_L + \sqrt{Z_L^2 + 4R^2}}{2}$		+∞
$U_{\scriptscriptstyle RC}$	$rac{U\cdot R}{\sqrt{R^2+Z_L^2}}$	7	$\frac{U \cdot \left(Z_L + \sqrt{Z_L^2 + 4R^2}\right)}{2R}$	\	U

Dạng 4. Có hai giá trị C_1 ; C_2 để	$I = \frac{U}{\sqrt{R^2 + \left(Z_L - Z_C\right)^2}}$	$Z_L = \frac{Z_{C_1} + Z_{C_2}}{2}, \ \varphi_1 = -\varphi_2.$
mạch có cùng cường độ dòng	Có $I_1 = I_2 \Rightarrow Z_1 = Z_2 \Leftrightarrow Z_{C_1} - Z_L = Z_{C_2} - Z_L $	\vec{D} ể I_{max} hoặc P_{max} thì $\frac{1}{C_0} = \frac{1}{2} \left(\frac{1}{C_1} + \frac{1}{C_2} \right)$.
điện I hoặc có cùng công suất	$\Rightarrow \begin{bmatrix} Z_{C_1} - Z_L = Z_{C_2} - Z_L & (\ell) \\ Z_{C_1} - Z_L = Z_L - Z_{C_2} & (n) \end{bmatrix} \Rightarrow Z_L = \frac{Z_{C_1} + Z_{C_2}}{2}.$	0 (1 2)
	* $H\hat{e} qu\dot{a}$: $\tan \varphi_1 = -\tan \varphi_2 \Rightarrow \varphi_1 = -\varphi_2$.	
Dạng 5. Có hai giá trị C_1 ; C_2 để có cùng U_C .	$U_{C} = I \cdot Z_{C} = \frac{U \cdot Z_{C}}{\sqrt{R^{2} + (Z_{L} - Z_{C})^{2}}} \Rightarrow (R^{2} + Z_{L}^{2}) \cdot \frac{1}{Z_{C}^{2}} - 2Z_{L} \cdot \frac{1}{Z_{C}} + 1 - \frac{U^{2}}{U_{C}^{2}} = 0$	$C_0 = \frac{C_1 + C_2}{2} \ .$
$Tim C_0 d\hat{e}$	Theo Viète:	
	$\frac{1}{Z_{C_1}} + \frac{1}{Z_{C_2}} = \frac{-b}{a} = \frac{2Z_L}{R^2 + Z_L^2} = \frac{2}{Z_{C_0}}$	
	$ \mbox{V\'oi} \ \ Z_{C_0} = \frac{R^2 + Z_L^2}{Z_L} \ \ \mbox{là giá trị của} \ \ Z_C \ \ \mbox{để} \ \ U_{C {\rm max}} \ . $	
	$\Rightarrow C_0 = \frac{C_1 + C_2}{2} \ .$	

sangluongphys@gmail.com 9