Lecture #22 03/03/2023 Trapezoid method Area of trapezoid = $\frac{1}{2}$ x distance between parallel sides X sum of the lengths of paroullel sides

Here N=4

For non-uniform spacings: 1x, 1x2, ..., 1x length Nth length of rou first Sub-interval subjecterval Then: $\times (\Delta \times_{K}) \times (f(x_{k-1}) + f(x_{k}))$ area of the Kth trapezoid $\int_{\alpha}^{b} f(x) dx \approx \sum_{K=1}^{\infty} \frac{1}{2}$ Special case: Uniformly spaced points: {x = a, x, ..., x_n=6} where $\Delta x_1 = \Delta x_2 = - \cdot \cdot = \Delta x_N = \frac{b-a}{N}$

Then: $\frac{N}{p-\alpha} \left\{ \frac{5}{f(x^{\circ})} + \frac{1}{2} \left\{ \frac{1}{k^{-1}} \right\} \right\}$ $\int_{\mathbb{R}} f(x) \, dx \approx$ Special can of the more general formula in the prev. Slide In-built MATLAB command for trapezoid method:

In-built MATLAB Command for (rapezoto mello)

>> trapz (.) = please look up the documentation in MATLAB

>> trapz (x,y) \leftare 1 D integration

For multi-dimensional integration using trapz(.) Suppose you want to do: y = +5 f(x, y) dx dy, where f(x, y) = -1 $f(x,y) = x^2 sin(y) + y cos(x)$ y=-5 x=-3 $\rangle = -3:0.1:3; \leftarrow vector$ >> y = -5:0:1:5; «vector $\rangle\rangle [X,Y] = meshgrid(x,y)$ >> Fr = (X.12).* Sin(Y) + Y.* Cos(X)

= trajz(y, trajz(x, F, 2))1 desimed integral Mong (scalar) ron dimension 1 x 5

Simpson's three point method to approximate $I := \int_{C} \int_{C} f(x) dx$ $C_0 + C_1 \times + C_2 \times^2$ Fit a quadratic IDEA: through 3 points: (a, f(a)) quas ratio (d) f(d) (m, f(m))

Where m:=

by solving the square linear system:

$$\begin{pmatrix}
1 & a & a^2 \\
1 & m & m^2
\end{pmatrix}
\begin{pmatrix}
c_1 \\
1 & b & b^2
\end{pmatrix}
\begin{pmatrix}
c_2 \\
c_2
\end{pmatrix}
= \begin{pmatrix}
f(m) \\
f(b)
\end{pmatrix}$$
Then: b
$$T = \int f(x) dx \approx \int Y(x) dx$$

$$= \begin{cases}
c_0 (b-a) + \frac{c_1}{2} (b^2-a^2) + \frac{c_2}{3} (b^3-a^3) \\
= \frac{b-a}{6} \left[6e_0 + 3c_1(b+a) + 2e_2(b^2+ab+a^2)\right]$$

We need to determine the coefficients Co, C, C2

plugging

in the

in the

solved

Solved

Co,Ci,C2

Extend this for n subintervals with uniform

spacings within the domain [a,b] where n

is an even integen:

$$x_0=a^{-x}$$
, x_2 , x_3 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7 , x_8 , x

 $=\frac{b-a}{6}$ [f(a) + 4 f(m) + f(b)]

Then:
$$b$$

$$I = \int_{a}^{b} f(x) \approx \frac{4x}{3} \sum_{i=1}^{\frac{w}{2}} \left[f(x_{2i-2}) + 4 f(x_{2i-1}) + 4 f(x_{2i-1}) + 4 f(x_{2i-1}) \right]$$
Errors in approximating $\int_{a}^{b} f(x) dx$ for uniform spacing with $dx = \frac{b-a}{h}$

Midpoint rule: O((x)3)

Trapezoid rule: $O((4x)^3)$ Simpson's rule: $O((4x)^4)$

Example: Compute
$$I = \int \frac{\log(1+x)}{1+x^2} dx$$

True value: $I = \frac{\pi}{8} \log 2$

• Midpoint method with
$$x$$
-axis partition: $[0, \frac{1}{2}], [\frac{1}{2}, 1]$

 $I_{\text{midpoint}} = \frac{1}{2} \times \frac{\log(1+\frac{1}{4})}{1+(\frac{1}{4})^2} + \frac{1}{2} \times \frac{\log(1+\frac{3}{4})}{1+(\frac{3}{4})^2}$

$$= \frac{8}{17} \log(5/4) + \frac{8}{25} \log(7/4) \approx 0.28408578$$

· Trapezoid method with the same partition: [0,42], [42,1] $T_{\text{trapz}} = \left\{ \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{\log(1)}{1 + \log(1 + \frac{\log(1 + \frac{1}{2})}{1 + (\frac{1}{2})^2})} \right\}$

 $+ \left\{ \frac{1}{2} \times \frac{1}{2} \times \left(\frac{\log (1 + \frac{1}{2})}{1 + (\frac{4}{2})^2} \right) \right\}$

 $= \frac{1}{4} \left[\frac{8 \log (3/2)}{5} + \frac{1}{2} \log (2) \right]$

≈ 10°24882944

· Simpson's method with the same pantition:

$$I_{Sempson} = \frac{1}{6} \left[\frac{\log(1)}{1} + 4 \cdot \frac{\log(1+4_2)}{1+4_4} + \frac{4}{2} \log(2) \right]$$

$$1 - 16 - 136 + 4 \cdot \frac{\log(1+4_2)}{1+4_4} + 4 \cdot \frac{\log(2)}{1+4_4}$$

 $= \frac{1}{6} \left[\frac{16}{5} \log(3/2) + \frac{1}{2} \log(2) \right]$

≈ 0.27401032

×ample

(oDE5) means determining œurves/trajectories/signals: ODE initial value problems (IVPs): Wase look like (for scalar ODEs): y(to) = your given $\frac{dy}{dy} = f(t, \lambda(t)),$ initial value given ODE Cuven f, to, y_0 , so |ve for y(t) where $t \in [t_0, t_{final}]$

Solving Ordinary Differential Equations:

when y is sedam one option is to uniformly discretize t;