Package 'Centaur'

April 5, 2017

Type Package
Title Centaur Propensity Score Balancing Workflow and Toolkit
Version 1.0.0
Date 2017-04-06
Author Sara Dempster Stephen Kottmann Alex Bayeh
Maintainer Alex Bayeh <alex.bayeh.centaur@gmail.com></alex.bayeh.centaur@gmail.com>
Description Performs propensity score based population balancing. This package is a toolkit to calculate propensity scores, balancea population dataset via either weighting or matching, and perform a variety of diagnostics to assess the scientific validity of the approach. The authors acknowledge the following team from AstraZeneca Pharmaceuticals, Robert Lo-Casale, Michael Goodman, Ramin Arani, Yiduo Zhang, and Sudeep Karve for contributing to the requirements with their expertise in epidemiology, safety informatics, health economics and biostatics and for reviewing the final product. The authors also acknowledge Jonathan Herz and Pramod Kumar for help with testing early versions of the package.
License Apache License 2.0
LazyData no
RoxygenNote 6.0.1
Imports AUC, broom, data.table, dplyr, ff, gtools, Hmisc, MASS, MatchIt, plyr, RJDBC, SDMTools, sm, survival, twang, vioplot
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
ps.accuracy ps.auc ps.balance ps.compare ps.compute.survival ps.connect.to.netezza ps.covariate.biasplot ps.covariate.qq
ps.covariate.residualplot

ps.accuracy

	ps.getCohortMethodData	
	ps.matched.boxplot	
	ps.matched.scatterplot	12
	ps.matched.summary	13
	ps.matched.violinplot	13
	ps.percent.reduction	
	ps.regression	
	ps.roc	
	ps.score	
	ps.score.summary	
	ps.sensitivity	
	ps.specificity	
	ps.sql2df	
	ps.strata.regression	
	ps.strata.survival	
	ps.stratify	
	ps.survival	
	ps.trim	
Index		25

ps.accuracy

Accuracy

Description

Calculates the accuracy curve of calculated propensity scores.

Usage

ps.accuracy(data)

Arguments

data

Data Frame - containing the dataset with previously calculated PS. The data frame must contain a treatment indicator variable called 'treat' and a propensity score value called 'ps_values'.

Details

This function uses the 'AUC' R package to calculate the accuracy of the propensity scores. For this to work properly, the argument . . . should be a data frame containing the dataset with previously calculated propensity scores in a variable called ps_values.

Value

Calculated accuracy of propensity scores

ps.auc 3

Examples

```
ps.accuracy(myData)
```

ps.auc

AUC

Description

Calculates the area under the curve for a set of calculated propensity scores.

Usage

```
ps.auc(data)
```

Arguments

data

Data Frame - containing the dataset with previously calculated PS. The data frame must contain a treatment indicator variable called 'treat' and a propensity score value called 'ps_values'.

Details

This function uses the 'AUC' R package to generate a AUC value of the propensity scores. For this to work properly, the argument . . . should be a data frame containing the dataset with previously calculated propensity scores in a variable called ps_values.

Value

The area under the curve

Examples

```
ps.auc(myData)
```

ps.balance

Propensity Score Population Balancing

Description

Calculates the weights and/or perform matching of subject to balance the population

Usage

```
ps.balance(data, covariates, estimand = "ATT", match.subjects = TRUE,
  match.exact = NULL, match.ratio = 1, caliper.sigma = 0,
  use.logit = FALSE, truncate.quantile = 0.95, truncate.method = "cap",
  max.matching = 50000)
```

4 ps.balance

Arguments

covariates

Data Frame - containing the dataset with previously calculated PS. The data frame must contain a treatment indicator variable called 'treat' and a propensity score value called 'ps_values'.

Vector, containing the variable names to be included as potential confounding

variables

estimand String, specifying the desired estimand. Options are "ATT" (default) for the

Average Treatment Effect in the Treated, or "ATE" for the Average Treatment

Effect.

match.subjects Boolean, indicating if matching should be used (default TRUE). This is only

applicable when the estimand is "ATT" as "ATE" can only be estimated via IPTW. If the estimand is "ATT", SMRW will always be used to generate weights,

but if match.subjects is set to TRUE, matches will also be generated.

match.exact Vector, containing the list of covariate names to perform exact matching on.

match.ratio Number, indicating the match ratio of control:treat

caliper.sigma Number, indicating the width of the caliper to use in matching. A value of 0

indicates that calipers will not be used. A non-zero value will turn on calipers

use.logit Boolean, indicating if the propensity score should be converted to logit before

matching. This is generally recommended when using calipers and leads to

better balance in most cases.

truncate.quantile

Number, indicating the upper quantile at which to apply weight trimming.

truncate.method

String, indicating the approach to use to trim the dataset. Large weights can adversely affect the ultimate balance of the population. Two approaches appear in the literature, capping weights at a quantile value or dropping subjects from the dataset. The default for this parameter is "cap", which will downwardly adjust any weights larger than the specified quantile to the value at that quantile. Alternatively, set this parameter to "drop" to remove the subjects from the dataset completely. User will be notified of how many subjects are lost in this step.

max.matching The maximum number of samples that can be used in matching (default 50k)

Details

This function performs propensity score based population balancing. The details of how the population is balanced depend on the parameters specified by the user, including the requested estimand.

Value

psBalanceData - Object containing parameters used in balancing, along with the resulting data frame. The dataframe has additional variable(s) added for the weights and matches. When matching is used, the is_matched is [0,1] indicating if the subject was matched or not.

```
ps.balance(myData, covariates)
ps.balance(myData, covariates, match.subjects = TRUE, match.exact = c("GENDER"))
```

ps.compare 5

ps.compare	Propensity Score Comparison	

Description

Generates a graph used to compare the distribution of propensity score values in the cotnrol and treatment groups

Usage

```
ps.compare(data)
```

Arguments

data Data Frame - containing the dataset with previously calculated PS. The data

frame must contain a treatment indicator variable called 'treat' and a propensity

score value called 'ps_values'.

Details

This function uses sm.density.compare to plot an overlapping density distribution plot of the propensity scores for the two groups allowing one to visually assess the area of common support

Examples

```
ps.compare(myData)
```

ps.compute.survival Compute Survival Objects

Description

Compute survival information using the survival package to be used in a response model

Usage

```
ps.compute.survival(data, outcome.dates, index.dates,
  obs.end.dates = "OBSEND", death.dates = "DEATHDATE")
```

Arguments

data	Data frame, containing the dataset to be analyzed
outcome.dates	String, containing the variable name with outcome dates
index.dates	String, containing the variable name for the index dates
obs.end.dates	String, containing the variable name for observation end dates (default = "OBSEND")
death.dates	String, containing the variable name for death dates (default = "DEATHDATE")

6 ps.connect.to.netezza

Details

This function leverages the survival package Surv function to compute survival information to be used as an outcome variable in outcome analysis. See survival::Surv documentation for more information.

Value

Vector, containing computed survival objects based on the outcome dates specified

Examples

```
ps.compute.survival(myData, "outcome")
```

```
ps.connect.to.netezza Connect to Netezza
```

Description

Establishes a connection to the Netezza database

Usage

```
ps.connect.to.netezza(user.name, password, driver.location, db.prefix, db.host)
```

Arguments

user.name Your user name (prid)
password Your password

driver.location

Location of your netezza driver, usually "nzjdbc.jar". Can be specified as com-

plete path or the directory where the driver file is located.

db.prefix This + prid = your database
db.host URL of netezza appliance

Details

This function creates a connection to the Netezza database using the supplied credentials. This connection can then be used to pull data from the database into R.

Value

Database connection object

```
ps.connect.to.netezza("user123", "password123", "/users/user123/Documents/databaseDrivers")
```

ps.covariate.biasplot 7

ps.covariate.biasplot Covariate Standard Differences of Means Plot

Description

Visualization of the covariate standardized differences of means

Usage

```
ps.covariate.biasplot(balanced, unbalanced, abs = FALSE)
```

Arguments

balanced Matrix, containing the summary statistics for covariates in the balanced popula-

tion

unbalanced Matrix, containing the summary statistics for covariates in the unbalanced / total

population

abs Boolean, indicating if the absolute percent reduction should be calculated. De-

fault (FALSE)

Details

This function creates a plot of each covariate's standardized differences of means before and after balancing

Examples

```
ps.covariate.biasplot(summary.balanced, summary.unbalanced)
ps.covariate.biasplot(summary.balanced, summary.unbalanced, abs = TRUE)
```

ps.covariate.qq

QQ Plots

Description

Create QQ plots for each of the continuous covariates

Usage

```
ps.covariate.qq(data, covariates, weights = NULL)
```

Arguments

data Data frame, containing the balanced population data. The data frame must con-

tain a treatment indicator variable called 'treat'.

covariates Vector, containing the list of covariate names

weights Vector, containing the weights to use in balanced population calculations. De-

faults to unweighted.

Details

This function identifies each of the continuous covariates and creates a QQ plot, which allows one to visually inspect the similarity of distributions of covariates in the control and treatment populations

Examples

```
ps.covariate.qq(myData, covariates)
ps.covariate.qq(myData, covariates, myData$is_matched)
```

```
ps.covariate.residualplot
```

Covariate Residuals Plot

Description

A graphical balance diagnostic examining the ratio of residuals orthogonal to the propensity scores

Usage

```
ps.covariate.residualplot(data, covariates, weights = NULL,
    dichotomous = FALSE)
```

Arguments

data Data Frame, containing the dataset. The data frame must contain a treatment

indicator variable called 'treat'.

covariates Vector, containing the list of covariates to include in the plot

weights Vector, containing the weights to use in assessment of balanced population. De-

faults to unweighted

dichotomous Boolean value indicating if dichotomous covariates should be included in the

calculation or not

Details

This function creates a plot of the residuals orthogonal to the propensity scores. Each covariate is regressed on the propensity scores for the control and treatment populations. The variance of the residuals of this regression are then compared. For a balanced population, the ratio of variances should be close to 1. An imbalance in the variances indicates that there is additional variance potentially attributed to the covariate in one of the populations that has not been captured in the propensity scores.

```
ps.covariate.residualplot(myData, covariates)
```

ps.covariate.statistics 9

```
ps.covariate.statistics
```

Covariate Summary Matrix

Description

Calculate the summary statistics for covariates

Usage

```
ps.covariate.statistics(data, covariates, weights = NULL, outputs = c("all",
   "dichotomous", "continuous"))
```

Arguments

data	Data Frame - containing the dataset with previously calculated weights or matches. The data frame must contain a treatment indicator variable called 'treat'.
covariates	Vector - containing the set of covariates for which to evaluate statistics.
weights	Vector, containing the weights to use in evaluating statistics for population. Defaults to equal weighting.
outputs	String - indicates which covariate type(s) to output. Accepted inputs are "all"

String - indicates which covariate type(s) to output. Accepted inputs are "all" (Default), "dichotomous", and "continuous"

Details

This function calculates a variety of summary statistics and organizes them into a matrix. Included summary statistics are the mean and sd in the treatment and control populations, the difference in means between the treat and control populations and the standardized difference of the means between the populations.

Value

Matrix - containing summary statistics for covariates

```
ps.covariate.statistics(myData, covariates)
ps.covariate.statistics(myData, covariates, weights = myData$weights)
ps.covariate.statistics(myData, covariates, weights = myData$is_matched)
ps.covariate.statistics(myData, covariates, outputs = "dichotomous")
```

```
ps.disconnect.from.netezza
```

Disconnect from Netezza

Description

Close a connection to Netezza, freeing resources

Usage

```
ps.disconnect.from.netezza(conn)
```

Arguments

conn

Database connection object created by ps.connect.to.netezza

Details

This function closes an existing connection to the netezza appliance to free resources

Examples

```
ps.disconnect.from.netezza(nzconn)
```

```
ps.getCohortMethodData
```

Cohort Method Data

Description

Reformat a data frame into a CohortMethodData object for use with OHDSI package

Usage

```
ps.getCohortMethodData(data, outcomes, covariates, treat.name = "treat",
    person.id.name = "PERSON_ID")
```

Arguments

data Data Frame - containing the dataset to reformat.

outcomes - outcome vector, or list of outcome vectors to include in data object. For TTE

outcomes, include event times (NA for no event), for dichtomous data include

1/0 indicator

covariates Vector of covariate names to include in the data object

treat.name Name of the treatment indicator [0,1] variable (default "treat")

person.id.name Name of the subject id variable (default "PERSON_ID")

ps.km.plot

Details

This function takes a data frame containing an observational study dataset and reformats into an object of type CohortMethodData that can be used with the OHDSI CohortMethod library.

Value

CohortMethodData - reformatted data object

Examples

```
ps.getCohortMethodData(myData)
```

ps.km.plot

Kaplan-Meier Plot

Description

Creates a basic Kaplan-Meier plot for the survival analysis

Usage

```
ps.km.plot(km.analysis, title = "Kaplan-Meier Curves")
```

Arguments

km. analysis A survival analysis object. See ps. survival()
title Chart title (default "Kaplan-Meier Curves")

Details

This function creates a basic Kaplan-Meier plot for the supplied survival analysis. Basic assumptions are included about extent of axes, labels, etc.

```
ps.km.plot(model$km)
```

12 ps.matched.scatterplot

ps.matched.boxplot

Matched Sample Box and Whisker

Description

Simple visual representation of matched samples

Usage

```
ps.matched.boxplot(data)
```

Arguments

data

Data Frame - containing the dataset with previously calculated matches. The data frame must contain a treatment indicator variable called 'treat' and a variable indicating whether the subject was matched called 'is_matched'.

Details

This function creates a box and whisker plot of matched and unmatched samples.

Examples

```
ps.matched.boxplot(myData)
```

```
ps.matched.scatterplot
```

Matched Sample Scatterplot

Description

Simple visual representation of matched samples

Usage

```
\verb|ps.matched.scatterplot(data)| \\
```

Arguments

data

Data Frame - containing the dataset with previously calculated matches. The data frame must contain a treatment indicator variable called 'treat' and a variable indicating whether the subject was matched called 'is_matched'.

Details

This function creates a simple scatter plot of matched and unmatched samples. Works best for smaller sample sizes.

```
ps.matched.scatterplot(myData)
```

ps.matched.summary 13

ps.matched.summary

Simple population summary of matched samples

Description

Summarize the matched samples.

Usage

```
ps.matched.summary(data)
```

Arguments

data

Data Frame - containing the dataset with previously calculated is_matched. The data frame must contain a treatment indicator variable called 'treat' and a variable indicating whether the subject was matched called 'is_matched'.

Details

This function does a simple summary counting of the matched vs unmatched samples. Print the resulting table to see counts of the original population, vs the populations that result from previously completed matching. (Not really useful for weighting as all subjects will have a non-zero weight)

Value

Matrix - containing the summary counts of treat and control in original and matched populations

Examples

```
ps.matched.summary(myData)
```

```
ps.matched.violinplot Matched Sample Violinplot
```

Description

Simple visual representation of matched samples

Usage

```
ps.matched.violinplot(data)
```

Arguments

data

Data Frame - containing the dataset with previously calculated matches. The data frame must contain a treatment indicator variable called 'treat' and a variable indicating whether the subject was matched called 'is_matched'.

14 ps.percent.reduction

Details

This function creates a violin plot of matched and unmatched samples. This plot shows the kernel density for the two populations - with an inner box and whisker plot of summary statistics. This plot tends to work better for large populations than the matched scatter plot.

Examples

```
ps.matched.violinplot(myData)
```

Description

Calculate the percent reduction in the standardized differences of the means for covariates

Usage

```
ps.percent.reduction(balanced, unbalanced, abs = FALSE)
```

Arguments

balanced Matrix, containing the summary statistics for covariates in the balanced popula-

tion

unbalanced Matrix, containing the summary statistics for covariates in the unbalanced / total

population

abs Boolean, indicating if the absolute percent reduction should be calculated. De-

fault (FALSE)

Details

This function uses the calculated covariate summary information for a balanced and total / unbalanced population and computes the percent reduction in the standardized differences of the means

Value

Matrix, containing the percent reduction in standardized differences of means for all covariates

```
ps.percent.reduction(summary.balanced, summary.unbalanced)
```

ps.regression 15

|--|

Description

Fits a regression model to the specified outcome variable

Usage

```
ps.regression(data, outcome, covariates = character(), family = binomial(),
    w = NULL)
```

Arguments

data	Data frame, containing the dataset to be analyzed. The data frame must contain a treatment indicator variable called 'treat' and propensity score values called 'ps_values'.	
outcome	String, containing the outcome variable name to be analyzed	
covariates	Vector, containing the set of covariate variable names to include in the regression	
family	Model family, passed through to glm. Defaults to binomial() - see ?glm for additional documentation	
W	Vector, containing the subject weights. Defaults to equally weighted. If analysis of matched data is desired, set this value to myData\$is_matched.	

Details

This function uses the glm package to fit a regression model to the specified outcome variable. By default, the regression model will fit outcome ~ treat + ps_values. Inclusion of the PS values in the outcome model is recommended by literature producing a "doubly robust" analysis. In addition, any unbalanced covariates be included in the vector of covariate names parameter. These will also be included in the regression model. Weights for the regression model can be specified, or default to use the calculated weights in the data frame.

Value

Object, containing fitted model values. In addition to standard glm/lm output, the treatment effect is appended to the model object as model\$treatment.effect. For dichotomous outcome variables, this is the odds ratio with confidence interval.

```
ps.regression(myData, "outcome")
ps.regression(myData, "outcome", covariates, w = myData$is_matched)
```

ps.score

Description

Generates a ROC curve for a set of calculated propensity scores.

Usage

```
ps.roc(data)
```

Arguments

data

Data Frame - containing the dataset with previously calculated PS. The data frame must contain a treatment indicator variable called 'treat' and a propensity score value called 'ps_values'.

Details

This function uses the 'AUC' R package to generate a ROC curve of the propensity scores. For this to work properly, the argument . . . should be a data frame containing the dataset with previously calculated propensity scores in a variable called ps_values.

Examples

```
ps.roc(myData)
```

ps.score

Centaur Propensity Score Calculation

Description

Performs propensity score Calculation.

Usage

```
ps.score(data, covariates, ps.method = "glm", max.covariates = 200,
   max.twang = 30000, min.twang = 25, control.ratio = 5,
   random.seed = 43762116, odds.ratio = FALSE, lr.summary.file = NULL)
```

Arguments

data	Data Frame - containing the dataset to be balanced. Must include treatment indicator as 0, 1 factor.
covariates	Vector - containing the list of variable names to be included as confounding variables
ps.method	String - name of the method to use for calculation of propensity scores. Options are glm (default) and twang

ps.score.summary 17

max.covariates	The maximum number of covariates that can be used to calculate propensity scores (default 200)
max.twang	The maximum number of samples that can be used with the twang ps.method (default $30k$)
min.twang	The minimum number of covariates required to use the twang ps.method (default 25)
control.ratio	The desired ratio of control to treatment subjects. A large imbalance between control and treatment subjects can cause problems with algorithm convergence. If the control population exceeds control.ratio times as many subjects as the treatment group, the control population will be randomly sampled to the desired size.
random.seed	Sets the random number generator seed, which determines how the control population is sampled. Override the default (43762116) to generate a different sample of control subjects.
odds.ratio	A logical argument indicating if the odds ratio and 95 This is an intensive calculation that can take a while.
lr.summary.file	

The file name where the logistic regression summary should be written to. If directory is provided as part of the file name, it has to already exist. Default value is NULL. If not given, no file will be written.

Details

This function calculates the propensity score based on the specified options. In order for this function to work correctly, the data argument must be a data frame containing the collection of confounding variables and a treatment indicator factor variable. Additionally, the covariates argument must contain a vector of the variable names to be included as covariates or confounding variables. See list of arguments for additional options.

Value

Data Frame - containing the original dataset, trimmed of any incomplete cases with additional variable added for ps_values (the calculated propensity scores)

Examples

```
ps.score(myData, myCovariates)
ps.score(myData, myCovariates, ps.method = "twang")
```

ps.score.summary

Propensity Score Balance

Description

Summarizes the balance of the propensity scores in treatment and control populations

Usage

```
ps.score.summary(data, weights = NULL)
```

18 ps.sensitivity

Arguments

data Data frame, containing the balanced population, including weights and/or matches.

The data frame must contain a treatment indicator variable called 'treat'.

weights Vector, containing the weights to use in assessing the balanced population (de-

faults to unweighted).

Details

This function calculates key summary statistics based on the propensity scores in the treatment and control populations. For a balanced population, one should observe similar mean values of the propensity scores in the two populations. Similarly to covariate diagnostics, one should observe a decrease in the standardized difference of the mean propensity score after balancing. Finally, one should see the ratio of variances in the propensity score move closer to 1 after balancing.

Value

Matrix, containing the summary statistics for the calculated propensity score

Examples

```
ps.score.summary(myData)
ps.score.summary(myData, weights = myData$is_matched)
```

ps.sensitivity

Sensitivity

Description

Calculates the sensitivity curve of calculated propensity scores.

Usage

```
ps.sensitivity(data)
```

Arguments

data

Data Frame - containing the dataset with previously calculated PS. The data frame must contain a treatment indicator variable called 'treat' and a propensity score value called 'ps_values'.

Details

This function uses the 'AUC' R package to calculate the sensitivity of the propensity scores. For this to work properly, the argument . . . should be a data frame containing the dataset with previously calculated propensity scores in a variable called ps_values.

Value

Calculated sensitivity of propensity scores

```
ps.sensitivity(myData)
```

ps.specificity 19

Description

Calculates the specificity curve of calculated propensity scores.

Usage

```
ps.specificity(data)
```

Arguments

data

Data Frame - containing the dataset with previously calculated PS. The data frame must contain a treatment indicator variable called 'treat' and a propensity score value called 'ps_values'.

Details

This function uses the 'AUC' R package to calculate the specificity of the propensity scores. For this to work properly, the argument . . . should be a data frame containing the dataset with previously calculated propensity scores in a variable called ps_values.

Value

Calculated specificity of propensity scores

Examples

```
ps.specificity(myData)
```

ps.sql2df

SQL to Data.Frame

Description

Execute a sql query and return the results as a data.frame

Usage

```
ps.sql2df(conn, sql.query)
```

Arguments

conn Database connection object created by ps.connect.to.netezza sql.query SQL query string, just as you might type into Aginity

Details

This function uses a database connection to execute a sql query string. The results returned by the query are returned as an R data frame.

20 ps.strata.regression

Value

Calculated accuracy of propensity scores

Examples

```
myData <- ps.sql2df(nzconn, "select * from database.table limit 100")</pre>
```

ps.strata.balance

Strata Balance

Description

Visualize the covariate balance within each stratum

Usage

```
ps.strata.balance(data, strata, covariates)
```

Arguments

data Data Frame, containing the dataset. The data frame must contain a treatment

indicator variable called 'treat'.

strata Vector, containing the strata for the dataset

covariates Vector, containing the covariate variable names to include

Details

This function creates a bar or box-and-whisker plot visualizing the summary statistics for each covariate in each of the strata

Examples

```
ps.strata.balance(myData, myData$strata, covariates)
```

Description

Evaluate a regression outcome model for the stratified dataset.

Usage

```
ps.strata.regression(data, strata, outcome, estimand = "ATT",
    covariates = character(), family = binomial())
```

ps.strata.survival 21

Arguments

data	Data Frame - containing the stratified dataset. The data frame must contain a treatment indicator variable called 'treat' and a propensity score value called 'ps_values'.
strata	Vector - containing the stratum that each subject is assigned to
outcome	The outcome variable name
estimand	String, the desired estimand ("ATT" or "ATE"), default (ATT).
covariates	Vector, containing the names of the additional covariates to include in the outcome analysis
family	- Model family, passed through to glm

Details

This function evaluates an outcome model for each strata and then pools the models to evaluate the overall treatment effect

Value

An object of type "strata.model". This object contains the model information for each strata in object\$models, as well as the pooled treatment effect information in object\$treatment.effect.

Examples

```
ps.strata.regression(myData, strata, "outcome")
```

ps.strata.survival Evaluate a survival model

Description

Evaluate a survival outcome model for the stratified dataset.

Usage

```
ps.strata.survival(data, strata, outcome, estimand = "ATT",
    covariates = character())
```

Arguments

data	Data Frame - containing the stratified dataset. The data frame must contain a treatment indicator variable called 'treat' and a propensity score value called 'ps_values'.
strata	Vector - containing the stratum that each subject is assigned to
outcome	The outcome variable name. The variable must contain a precomputed survival object
estimand	String, the desired estimand ("ATT" or "ATE"), default (ATT).
covariates	Vector, containing the names of the additional covariates to include in the outcome analysis

ps.stratify

Details

This function evaluates an outcome model for each stratum and then pools the models to evaluate the overall treatment effect

Value

An object of type "strata.model". This object contains the model information for each strata in object\$models, as well as the pooled treatment effect information in object\$treatment.effect.

Examples

```
ps.strata.survival(myData, myData$strata, "MISURVIVAL")
```

ps.stratify

Compute Strata

Description

Stratifies the popultion.

Usage

```
ps.stratify(data, n = 5)
```

Arguments

data Data Frame - containing the dataset with previously calculated PS. The data

frame must contain propensity scores in a variable called 'ps_values'.

n Number of strata to divide the dataset into (default 5)

Details

This function stratifies a popultion based on an estimated propensity score. The stratum of each subject is added to the dataset as a categorical value.

Value

Vector - containing the categorical strata number for each subject

```
ps.stratify(myData)
ps.stratify(myData, n = 10)
```

ps.survival 23

Description

Performs survival analysis of an outcome variable

Usage

```
ps.survival(data, outcome, covariates = character(), w = NULL)
```

Arguments

data	Data frame, containing the dataset to be analyzed. The data frame must contain a treatment indicator variable called 'treat' and propensity score values called 'ps_values'.
outcome	String, containing the outcome variable name to be analyzed. The variable must be a Surv object
covariates	Vector, containing the set of covariate variable names to include in the model
W	Vector, containing the subject weights. Defaults to equal weighting. If analysis of matched data is desired, set this value to myData\$is_matched.

Details

This function uses the survival package to do basic survival analysis for an outcome variable. The outcome variable should be previously computed as a survival object (see ps.compute.survival). The analysis will automatically perform survival::survfit and survival::coxph.

Value

Object, containing fitted model values. In addition to standard glm/lm output, the treatment effect is appended to the model object as model\$treatment.effect. For dichotomous outcome variables, this is the odds ratio with confidence interval.

Examples

```
ps.survival(myData, "outcome")
```

ps.trim Trim Population

Description

Trims the population based on the propensity scores

Usage

```
ps.trim(data, trim.method = "overlap", trim.quantile = 0.95,
   quantile.group = "all")
```

24 ps.trim

Arguments

data Data Frame - containing the dataset with previously calculated PS. The data

frame must contain a treatment indicator variable called 'treat' and propensity

score values called 'ps_values'.

trim.method String, specifying the method to use to trim the dataset. Available options are

"overlap" (default) to trim the non-overlapping tails of the control and treatment

distributions, or "quantile" to trim to an interquantil range.

trim.quantile Number, specifying the interquantile range to be trimmed. For example, 0.95

indicates that the dataset should be trimmed to the 0.025 / 0.975 interquantile

range.

quantile.group Specifies the group on which to determine the quantile values. Options are "all"

(default) to determine the quantile values based on the propensity scores for the entire population, or "treat" to determine the quantile values based on the

propensity scores for only the treatment group

Details

This function trims the supplied population based on propensity scores. Trimming can be based on the overlapping regions, or a specified interquantile range.

Value

Data Frame - trimmed dataset

```
ps.trim(myData)
ps.trim(myData, trim.method = "quantile", trime.quantile = 0.90)
```

Index

```
ps.accuracy, 2
ps.auc, 3
ps.balance, 3
ps.compare, 5
ps.compute.survival, 5
ps.connect.to.netezza, 6
ps.covariate.biasplot, 7
ps.covariate.qq, 7
ps.covariate.residualplot,8
{\tt ps.covariate.statistics}, 9
{\tt ps.disconnect.from.netezza,}\ 10
ps.getCohortMethodData, 10
ps.km.plot, 11
ps.matched.boxplot, 12
ps.matched.scatterplot, 12
ps.matched.summary, 13
ps.matched.violinplot, 13
ps.percent.reduction, 14
ps.regression, 15
ps.roc, 16
ps.score, 16
ps.score.summary, 17
ps.sensitivity, 18
ps.specificity, 19
ps.sql2df, 19
ps.strata.balance, 20
ps.strata.regression, 20
ps.strata.survival, 21
ps.stratify, 22
ps.survival, 23
ps.trim, 23
```