STCS1

1.5 A max constant current LED driver

Features

- Up to 40 V input voltage
- Less than 0.5 V voltage overhead
- Up to 1.5 A output current
- PWM dimming pin
- Shutdown pin
- LED disconnection diagnostic

Applications

- Supplying LEDs with constant current for varying input voltages
- Low voltage lighting
- Small appliance LED lighting
- Car LED lights

Description

The STCS1 is a BiCMOS constant current source designed to provide a precise constant current starting from a varying input voltage source. The main target is to replace discrete components solution for driving LEDs in low voltage applications such as 5 V, 12 V or 24 V giving benefits in terms of precision, integration and reliability.

The current is set with external resistor up to 1.5 A with a $\pm 10\%$ precision; a dedicated pin allows implementing PWM dimming.

An open-drain pin output provides information on load disconnection condition.

Table 1. Device summary

Order code	Package	Packaging
STCS1PUR	DFN8 (3mm x 3mm)	3000 parts per reel
STCS1PHR	Power SO-8	2500 parts per reel

Contents

1	App	Application diagram 3							
2	Pin o	Pin configuration							
3	Max	imum ratings							
4	Elec	trical characteristics 6							
5	Timi	ng							
6	Турі	cal performance characteristics 8							
7	Deta	il description 9							
	7.1	Current setting 9							
	7.2	Enable 9							
	7.3	PWM Dimming 9							
	7.4	Diagnostic							
8	Арр	lication information							
	8.1	Reverse polarity protection							
	8.2	Thermal considerations							
9	Pack	kage mechanical data							
10	Povi	sion history 16							

1 Application diagram

Figure 1. Typical application diagram for 0.5 A LED current

(*) The $R_{\mbox{\scriptsize IN}}$ resistor must be inserted when $dV_{\mbox{\scriptsize CC}}/dt$ is higher than 10 V/ μs

Pin configuration STCS1

2 Pin configuration

Figure 2. Pin connections (top view)

Table 2. Pin description

Pln N°	Symbol	Note		
1	V_{CC}	Supply voltage		
2	PWM	PWM dimming input		
3	EN	hutdown pin		
4	DRAIN	Internal N-MOSFET drain		
5	FB	External resistor connection for current set (N-MOSFET source)		
6	GND	Ground		
7	N.C.	Not connected		
8	DISC	oad disconnection flag (open drain)		
	Exp-pad	Internally connected to ground.		

STCS1 Maximum ratings

3 Maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{CC}	DC supply voltage	-0.3 to +45	V	
V _D	Drain voltage	-0.3 to +45]	
PWM, EN, DISC	Logic pins	-0.3 to + V _{CC} + 0.3	٧	
FB	Configuration pins	-0.3 to + 3.3	٧	
ESD	Human body model (all pins)	±2	kV	
T _J ⁽¹⁾	Junction temperature	-40 to 150	°C	
T _{STG}	Storage temperature range	-55 to 150	°C	

T_J is calculated from the ambient temperature T_A and the power dissipation P_D according the following formula: T_J = T_A + (P_D x R_{thJA}). See *Figure 12*. and *Figure 13*. for details of max power dissipation for ambient temperatures higher than 25°C.

Note:

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 4. Thermal data

Symbol	Parameter	DFN8	Power SO-8	Unit
R _{thJC}	Thermal resistance junction-case	10	12	°C/W
R _{thJA}	Thermal resistance junction-ambient	37.6 ⁽¹⁾	45 ⁽²⁾	°C/W

^{1.} This value is referred to four-layer PCB, JEDEC standard test board.

^{2.} With two sides, two planes PCB following EIA/JEDEC JESD51-7 standard.

Electrical characteristics STCS1

4 Electrical characteristics

Table 5. Electrical characteristics $(V_{CC}=12 \text{ V}; \text{ I}_O=100 \text{ mA}; \text{ T}_A=-40 ^{\circ}\text{C to } 85 ^{\circ}\text{C}; \text{ V}_{DRAIN}=1 \text{ V}; \text{ C}_{DRAIN}=1 \text{ } \mu\text{F}; \text{ C}_{BYP}=100 \text{ nF} \\ \text{typical values are at T}_A=25 ^{\circ}\text{C}, \text{ unless otherwise specified})$

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{CC}	Supply voltage range		4.5		40	V	
	Output current range		1		1500	mA	
I _O	Output current	$R_{FB} = 0.2 \Omega$		500		mA	
	Regulation (percentage with respect to V _{CC} =12V)	V _{CC} = 4.5 to 40 V, I _O = 100 mA; V _{DRAIN} = 1 V	-1		+1	%	
V _{FB}	Feedback voltage	All the current range	90	100	110	mV	
	Quincoant augrent (managered on	On Mode		450	650		
I _{CC}	Quiescent current (measured on V _{CC} pin)	Shutdown Mode; V _{CC} = 5 to 40 V			1	μΑ	
V	Dropout voltage (V to CND)	I _O = 100 mA		0.12	0.16		
V _{DROP}	Dropout voltage (V _{DRAIN} to GND)	I _O = 1.5 A		0.58	0.9	V	
LEAK _{DRAIN}	Drain leakage current	Shutdown; V _{DRAIN} = 40 V			10	μΑ	
т	Delay on PWM signal	V _{PWM} rising, V _{CC} = 12 V		3		μs	
T _D	(see Figure 3.)	V _{PWM} falling, V _{CC} = 12 V		1.2			
	Low level voltage	I _{SINK} = 5 mA		0.2	0.5	V	
DISC	Leakage current	V _{DISC} = 5 V			1	μΑ	
DISC	Load disconnection threshold	DISC Turn-ON		75		- mV	
	(V _{DRAIN} -GND)	DISC Turn-OFF		110			
Thermal	Shutdown temperature			155		°C	
Protection	Hysteresis			25			
Logic Input	Logic Inputs (PWM and EN)						
V _L	Input low level				0.4	V	
V _H	Input high level		1.2			V	
	EN, PWM leakage current	V _{EN} = 5 V; V _{PWM} = 5 V			2		
	EN input leakage current	V _{EN} = 40 V			50	μΑ	
	PWM input leakage current	V _{PWM} = 40 V			100		

Note: All devices 100% production tested at $T_A = 25$ °C. Limits over the operating temperature range are guaranteed by design.

6/17

STCS1 Timing

5 Timing

Figure 3. PWM and output current timing

Figure 4. Block diagram

6 Typical performance characteristics

Figure 5. I_{DRAIN} vs V_{CC} , $T_A = 25$ °C

Figure 6. I_{DRAIN} vs R_{SET}

Figure 7. I_{DRAIN} vs Temperature

Figure 8. V_{DROP} (including V_{FB}) vs temperature

Figure 9. I_{CC} vs Temperature

Figure 10. I_{CC} vs V_{CC}

57

8/17

STCS1 Detail description

7 Detail description

The STCS1 is a BicMOS constant current source designed to provide a precise constant current starting from a varying input voltage source. The main target is to replace discrete components solution for driving LEDs in low voltage applications such as 5 V, 12 V or 24 V giving benefits in terms of precision, integration and reliability.

7.1 Current setting

The current is set with an external sensing resistor connected to the FB pin. The feedback voltage is 100 mV, then a low resistor value can be chosen reducing power dissipation. A value between 1 mA and 1.5 A can be set according to the resistor value, the resulting output current has a tolerance of $\pm 10\%$.

7.2 Enable

When the enable pin is low the device completely off thus reducing current consumption to less than 1 μ A. When in shutdown mode, the internal main switch is off.

7.3 PWM dimming

The PWM input allows implementing PWM dimming on the LED current; when the PWM input is high the main switch will be on and vice versa. A typical frequency range for the input is from few Hertz to 50 kHz. The maximum dimming frequency is limited by the minimum rise/fall time of the current which is around 4 µs each. Above 50 kHz the current waveforms starts assuming a triangular shape.

While the PWM input is switching, the overall circuitry remains on, this is needed in order to implement a short delay time TD (see *Figure 3*.).

Since the PWM pin is controlling just the main switch, the overall circuitry is always on and it is able to control the delay time between the PWM input signal and the output current in the range of few μ s, this is important to implement synchronization among several light LED sources.

7.4 Diagnostic

When STCS1 is in on mode (EN is high), the device is able to detect disconnection or fail of the LED string monitoring V_{DRAIN} pin. If V_{DRAIN} is lower than 75 mV the DISC pin is pulled low regardless the PWM pin status. This information can be used by the system to inform that some problem happens in the LEDs.

8 Application information

8.1 Reverse polarity protection

STCS1 must be protected from reverse connection of the supply voltage. Since the current sunk from V_{CC} pin is in the range of 450 μA a small diode connected to V_{CC} is able to protect the chip. Care must be taken for the whole application circuit, especially for the LEDs, in fact, in case a negative voltage is applied between V_{IN} and GND, a negative voltage will be applied to the LED string that must have a total breakdown voltage higher than the negative applied voltage in order to avoid any damage.

Figure 11. Reverse polarity condition

8.2 Thermal considerations

The STCS1 is able to control a LED current up to 1.5 A and able to sustain a voltage on the drain pin up to 40 V. Those operating conditions are however limited by thermal constraints, the thermal resistances shown in the THERMAL DATA section are the typical ones, in particular R_{thJA} depends on the copper area and the number of layers of the printed circuit board under the pad. DFN8 and PowerSO-8 have an exposed die attach pad which enhances the thermal conductivity enabling high power application.

The power dissipation in the device can be calculated as follow:

$$P_{D} = (V_{DRAIN} - V_{FB}) \times I_{LED} + (V_{CC} \times I_{CC})$$

basing on this and on the thermal resistance and ambient temperature, the junction temperature can be calculated as:

$$T_J = R_{thJA} \times P_D + T_A$$

A typical application could be:

- Input Voltage: 12 V;
- 3 white LEDs with an typical V_F = 3.6 V;
- LEDs current: 500mA;

- Package: DFN8 3x3 mm;
- $T_A = 50^{\circ}C;$

In this case $V_{DRAIN} = 12 - 3 \times 3.6 = 1.2 \text{ V}$

$$P_D = (1.2 - 0.1) \times 0.5 + 12 \times 0.5 \times 10^{-3} = 0.55 + 6 \times 10^{-3} = 556 \text{ mW}$$

The junction temperature will be:

$$T_{J} = 37.6 \times 0.556 + 50 = 70.9$$
°C.

The following pictures show the maximum power dissipation according to the ambient temperature for both packages:

Figure 12. Maximum power dissipation vs T_A Figure 13. Maximum power dissipation vs T_A for DFN8 3x3mm for PowerSO-8

9 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

DFN8 (3x3 mm) mechanical data

Dim.	mm.			mils.			
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.80	0.90	1.00	31.5	35.4	39.4	
A1		0.02	0.05		0.8	2.0	
A2		0.70			27.6		
А3		0.20			7.9		
b	0.18	0.23	0.30	7.1	9.1	11.8	
D		3.00			118.1		
D2	2.23	2.38	2.48	87.8	93.7	97.7	
E		3.00			118.1		
E2	1.49	1.64	1.74	58.7	64.6	68.5	
е		0.50			19.7		
L	0.30	0.40	0.50	11.8	15.7	19.7	

47/

PowerSO-	2 mag	chan	leai	data
Power5U-	o me	HISIN	ıcaı	ดลเล

Dim.		mm.			inch.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.70			0.067	
A1	0.00		0.15	0.00		0.006	
A2	1.25			0.049		0.142	
b	0.31		0.51	0.012		0.020	
С	0.17		0.25	0.007		0.010	
D	4.80	4.90	5.00	0.189	0193	0.197	
D1	2.24	3.10	3.20	0.088	0.122	0.126	
Е	5.80	6.00	6.20	0.228	0.236	0.244	
E1	3.80	3.90	4.00	0.150	0.154	0.157	
E2	1.55	2.41	2.51	0.061	0.095	0.099	
е		1.27			0.050		
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
k	0°		8°	0°		8°	
ccc			0.10			0.004	

Tape & reel QFNxx/DFNxx (3x3) mechanical data

Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			180			7.087
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao		3.3			0.130	
Во		3.3			0.130	
Ko		1.1			0.043	
Po		4			0.157	
Р		8			0.315	

Revision history STCS1

10 Revision history

Table 6. Document revision history

Date	Revision Changes	
10-Apr-2007	1	Initial release.
07-May-2007	2	PowerSO-8 mechanical data has been updated and the R_{thJC} for PowerSO-8 value on <i>Table 4</i> . is changed.
24-May-2007	3	Change value C_{BYP} 0.1 μ F ==> 1 μ F on <i>Figure 1</i> . typical application.
27-Sep-2007	4	Add R _{IN} on <i>Figure 1</i> . application diagram.
02-Oct-2007	5	Figure 1. updated.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time. without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

