

Winter - 2012 Examination

Model Answer Subject & Code: Applied Maths (12062) **Page No:** 1/22

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
1)	a)	$\int \sin^2 x dx$		
		$\int_{1-\cos 2x}$	1	
		$=\int \frac{1-\cos 2x}{2} dx$		
		$= \frac{1}{2} \left(x - \frac{\sin 2x}{2} \right) + c$	1	2
		Note: In solution of integration problems, if the constant 'c' is not added, ½ mark may be deducted.		
	b)	$\int \frac{1}{x \log x} dx$ Put $\log x = t$ $\therefore \frac{1}{x} dx = dt$	1/2	
		$=\int \frac{1}{t}dt$	1/2	
		$=\log t + c$	1/2	2
		$= \log(\log x) + c$	1/2	
	c)	$\int \frac{1}{\sqrt{4x^2 + 25}} dx$ $= \frac{1}{\sqrt{4x^2 + 25}} dx$	1	
		$=\frac{1}{2}\int \frac{1}{\sqrt{x^2 + \left(\frac{5}{2}\right)^2}} dx$		
		$= \frac{1}{2} \log \left[x + \sqrt{x^2 + \left(\frac{5}{2}\right)^2} \right] + c$	1	2
		OR		
		$\int \frac{1}{\sqrt{4x^2 + 25}} dx$		
		$=\int \frac{1}{\sqrt{(2x)^2+5^2}} dx$	1	
		$= \frac{\log\left[2x + \sqrt{(2x)^2 + 5^2}\right]}{2} + c$	1	2
		$\frac{2}{2}$		
	d)	$\frac{1}{(x+1)(x+3)} = \frac{A}{x+1} + \frac{B}{x+3}$		
		$\therefore A = \frac{1}{2} \& B = \frac{-1}{2}$	1/2 +1/2	

Subject & Code: Applied Maths (12062) **Page No:** 2/22

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
1)		$\therefore \frac{1}{(x+1)(x+3)} = \frac{1/2}{x+1} - \frac{1/2}{x+3}$ $\therefore \int \frac{1}{(x+1)(x+3)} dx = \int \left[\frac{1/2}{x+1} - \frac{1/2}{x+3} \right] dx$ $= \frac{1}{2} \log(x+1) - \frac{1}{2} \log(x+3) + c$	1/2 + 1/2	2
		Note: In the solution of the problem of partial fractions, if one of the values A or B in the partial fraction is wrong but other values are correct and all the further solution is correct, it is advised to give appropriate marks.		
		OR		
		$\int \frac{1}{(x+1)(x+3)} dx = \int \frac{1}{x^2 + 4x + 3} dx$		
		$=\int \frac{1}{\left(x+2\right)^2 - 1} dx$	1	
		$= \frac{1}{2} \log \left(\frac{x+1}{x+3} \right) + c$	1	2
	e)	Put $\sin x = t$ $\therefore \cos x dx = dt$ $x \qquad t$ $0 \qquad 0$	1/2	
		$\pi/2$ 1	1/2	
		$\int_0^{\pi/2} \sin x \cos x dx = \int_0^1 t dt$		
		$= \left[\frac{t^2}{2}\right]_0^1$	1/2	
		$=\frac{1}{2}$ OR	1/2	2
		$\int_0^{\pi/2} \sin x \cos x dx = \int_0^{\pi/2} \frac{\sin 2x}{2} dx$	1/2	
		$=\frac{1}{2}\left[\frac{-\cos 2x}{2}\right]_0^{\pi/2}$	1/2	
		$=\frac{1}{2}\left[\frac{-\cos\pi}{2}\right]-\frac{1}{2}\left[\frac{-\cos0}{2}\right]$	1/2	
		$=\frac{1}{2}$	1/2	2

Subject & Code: Applied Maths (12062)

Page No: 3/22

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
1)	f)	$\int \tan^{-1} \left(\frac{\sin x}{1 - \cos x} \right) dx$		Widiks
		$= \int \tan^{-1} \left(\frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{2\sin^2\frac{x}{2}} \right) dx$		
		$= \int \tan^{-1} \left(\cot \frac{x}{2} \right) dx$	1/2	
		$= \int \tan^{-1} \left[\tan \left(\frac{\pi}{2} - \frac{x}{2} \right) \right] dx$	1/2	
		$=\int \left(\frac{\pi}{2} - \frac{x}{2}\right) dx$	1/2	
		$=\frac{\pi}{2}x-\frac{x^2}{4}+c$	1/2	2
	g)	$\frac{d^2y}{dx^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^3}$		
		$Order = 2$ $(d^2v)^2 \qquad (dv)^3$	1	
		$\left(\frac{d^2y}{dx^2}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^3$ $Degree = 2$	1	2
	h)	$\frac{dy}{dx} + y \tan x = \cos^2 x$		
		$\therefore P = \tan x and Q = \cos^2 x$ $IF = e^{\int pdx}$		
		$=e^{\int \tan x dx}$	1/2	
		$= e^{\log \sec x}$ $= \sec x$	1/ ₂ 1	2
	i)	$\left(\frac{\Delta^2}{E}\right)x^3 = \frac{\left(E-1\right)^2}{E}x^3$	1/2	
		$= \frac{E^2 - 2E + 1}{E}x^3$ $= \left(E - 2 + \frac{1}{E}\right)x^3$	1/	
			1/2	

Subject & Code: Applied Maths (12062) **Page No:** 4/22

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
1)		$= E(x^{3}) - 2(x^{3}) + \frac{1}{E}(x^{3})$ $= (x+1)^{3} - 2x^{3} + (x-1)^{3}$ $= 6x$	1/2 1/2	2
	j)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2	
	k)	Note: For marks, only the first two rows are to be considered. The third row of y_i 's is just written for the sake of convenience. $\int_0^2 (1+x^3) dx = \frac{h}{2} \Big[y_0 + y_4 + 2 \big(y_1 + y_2 + y_3 \big) \Big]$ $= \frac{0.5}{2} \Big[1 + 9 + 2 \big(1.125 + 2 + 4.375 \big) \Big]$ $= 6.25$ $\frac{x}{2} \frac{y}{0} \frac{\Delta y}{0} \frac{\Delta^2 y}{0} \frac{\Delta^3 y}{0} \frac{\Delta^4 y}{0}$ $= \frac{3}{2} 3$	1 ½ 1	2
		But $\Delta^4 y = 0$ $\therefore 96 - 4a = 0$ $\therefore 96 = 4a$ $\therefore a = 24$ Note: In the above problem, backward difference table can also be used to find the value of the unknown.	1/2	2
	<i>l</i>)	$A = \{1, 2, 3, 4\} and B = \{4, 5, 7\}$ $\therefore A - B = \{1, 2, 3\}$ $and B - A = \{5, 7\}$ $\therefore (A - B) \cup (B - A) = \{1, 2, 3, 5, 7\}$	1/2 1/2 1	2

Subject & Code: Applied Maths (12062)

Page No: 5/22

Que.	Sub.	Model answers	Marks	Total
No.	Que.		Warks	Marks
2)	a)	$y = e^{m \tan^{-1} x}$ $\therefore \frac{dy}{dx} = e^{m \tan^{-1} x} \cdot m \cdot \frac{1}{1 + x^2}$	2	
		$\therefore \left(1+x^2\right) \frac{dy}{dx} = my$	1	
		$\therefore \left(1+x^2\right) \frac{dy}{dx} - my = 0$	1	4
		OR		
		$y = e^{m \tan^{-1} x}$		
		$\therefore \log y = m \tan^{-1} x$		
		$\therefore \frac{1}{y} \frac{dy}{dx} = m \cdot \frac{1}{1 + x^2}$		
			2	
		$\therefore (1+x^2)\frac{dy}{dx} = my$	4	
			1	
		$\therefore \left(1+x^2\right) \frac{dy}{dx} - my = 0$	1	4
	b)	$y^2 + x^2 \frac{dy}{dx} = xy \frac{dy}{dx}$		
		$\therefore y^2 = xy \frac{dy}{dx} - x^2 \frac{dy}{dx}$		
		$\therefore y^2 = \left(xy - x^2\right) \frac{dy}{dx}$		
		$\therefore \frac{dy}{dx} = \frac{y^2}{xy - x^2}$		
		$Put \frac{y}{x} = v or y = vx$		
		$\therefore \frac{dy}{dx} = v + x \frac{dv}{dx}$	1	
		$\therefore v + x \frac{dv}{dx} = \frac{\left(vx\right)^2}{x \cdot vx - x^2}$		
		$\therefore v + x \frac{dv}{dx} = \frac{v^2}{v - 1}$		
		$\therefore x \frac{dv}{dx} = \frac{v^2}{v - 1} - v$		
		$\therefore x \frac{dv}{dx} = \frac{v}{v - 1}$	1	
		$\therefore \frac{v-1}{v} dv = \frac{dx}{x}$		

Subject & Code: Applied Maths (12062)

Page No: 6/22

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
2)		$\therefore \int \frac{v-1}{v} dv = \int \frac{dx}{x}$	1/2	
		$\therefore \int \left(1 - \frac{1}{v}\right) dv = \int \frac{dx}{x}$		
		$\therefore v - \log v = \log x + c$	1	
		$\therefore \frac{y}{x} - \log\left(\frac{y}{x}\right) = \log x + c$	1/2	4
	c)	$(2xy + y - \tan y)dx + (x^2 - x \tan^2 y + \sec^2 y)dy = 0$		
		$M = 2xy + y - \tan y$	1	
		$\therefore \frac{\partial M}{\partial y} = 2x + 1 - \sec^2 y$	1	
		$N = x^2 - x \tan^2 y + \sec^2 y$		
		$\therefore \frac{\partial N}{\partial x} = 2x - \tan^2 y$	1	
		$=2x+1-\sec^2 y$	1	
		:.the equation is exact.		
		:. the solution is,		
		$\int_{y \ constant} Mdx + \int_{terms \ free \ from \ x} Ndy = c$		
		$\int (2xy + y - \tan y) dx + \int \sec^2 y dy = c$	1	
		$\therefore 2y \cdot \frac{x^2}{2} + yx - \tan y \cdot x + \tan y = c$		
		$\therefore x^2 y + xy - x \tan y + \tan y = c$	1	4
	d)	$\frac{dy}{dx} + x\sin 2y = x^3\cos^2 y$		
		$\therefore \frac{1}{\cos^2 y} \frac{dy}{dx} + \frac{2x \sin y \cos y}{\cos^2 y} = x^3$		
		$\therefore \sec^2 y \frac{dy}{dx} + 2x \tan y = x^3$	1/2	
		$Put \tan y = t$		
		$\therefore \sec^2 y \frac{dy}{dx} = \frac{dt}{dx}$	1/2	
		$\therefore \frac{dt}{dx} + 2xt = x^3$		
		$P = 2x$ and $Q = x^3$		
		$\therefore IF = e^{\int pdx} = e^{\int 2xdx} = e^{x^2}$	1/2	

Subject & Code: Applied Maths (12062)

Page No: 7/22

Que.	Sub.	Model answers	Marks	Total Marks
No. 2)	Que.	$ \therefore \text{the solution is,} t \cdot IF = \int Q \cdot IF \cdot dx + c \therefore t \cdot e^{x^2} = \int x^3 \cdot e^{x^2} \cdot dx + c Put x^2 = u \therefore 2xdx = du \therefore t \cdot e^{x^2} = \frac{1}{2} \int u \cdot e^u \cdot du + c \therefore t \cdot e^{x^2} = \frac{1}{2} \left[u \cdot e^u - e^u \right] + c \therefore t \cdot e^{x^2} = \frac{1}{2} \left[u - 1 \right] e^u + c \therefore t \cdot e^{x^2} = \frac{1}{2} \left[x^2 - 1 \right] e^{x^2} + c $	1/2 1/2 1/2 1/2	Marks 4
	e)	$\frac{dy}{dx} = \frac{x+y+1}{2x+2y+3}$ Put $x + y = t$ $\therefore 1 + \frac{dy}{dx} = \frac{dt}{dx}$ $\therefore \frac{dt}{dx} - 1 = \frac{t+1}{2t+3}$ $\therefore \frac{dt}{dx} = 1 + \frac{t+1}{2t+3} = \frac{3t+4}{2t+3}$ $\therefore \frac{2t+3}{3t+4} dt = dx$ $\therefore \int \frac{2t+3}{3t+4} dt = \int dx$	1	
	f)	$ \therefore \int \frac{3t+4}{3t+4} dt = \int dx $ $ \therefore \int \left(\frac{2}{3} + \frac{1/3}{3t+4}\right) dt = \int dx $ $ \therefore \frac{2}{3}t + \frac{1}{3} \cdot \frac{\log(3t+4)}{3} = x + c $ $ \therefore \frac{2}{3}(x+y) + \frac{1}{9}\log(3x+3y+4) = x + c $ $ \frac{dq}{dt} + \frac{1}{RC}q = \frac{E}{R} $ $ P = \frac{1}{RC} and Q = \frac{E}{R} $ $ \therefore IF = e^{\int pdt} = e^{\int \frac{1}{RC}dt} = e^{\frac{1}{RC}t} $	1 1	4

Subject & Code: Applied Maths (12062) **Page No:** 8/22

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
2)		$\therefore the \ solution \ is,$ $q \cdot IF = \int Q \cdot IF \cdot dx + c$ $\therefore q \cdot e^{\frac{1}{RC}t} = \int \frac{E}{R} \cdot e^{\frac{1}{RC}t} \cdot dt + c$ $\therefore q \cdot e^{\frac{1}{RC}t} = \frac{E}{R} \cdot \frac{e^{\frac{1}{RC}t}}{\frac{1}{RC}} + c$ $\therefore q \cdot e^{\frac{1}{RC}t} = EC \cdot e^{\frac{1}{RC}t} + c$ $At \ q = 0, \ t = 0,$	1	
		$\therefore 0 = EC \cdot e^{0} + c$ $\therefore c = -EC$ $\therefore q \cdot e^{\frac{1}{RC}t} = EC \cdot e^{\frac{1}{RC}t} - EC \text{OR}$	1	
		$\therefore q \cdot e^{\frac{1}{RC}^t} = EC \cdot \left(e^{\frac{1}{RC}^t} - 1\right)$		4
3)	a)	$t(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} \times y_0 + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} \times y_1 + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} \times y_2$ $= \frac{(x-2)(x-3)}{(1-2)(1-3)} \times 7 + \frac{(x-1)(x-3)}{(2-1)(2-3)} \times 18 + \frac{(x-1)(x-2)}{(3-1)(3-2)} \times 35$ $= 3x^2 + 2x + 2$ $t(2.5) = 3(2.5)^2 + 2(2.5) + 2 (i)$	1 1 1 1 (2)	4
		 =25.75		I

Subject & Code: Applied Maths (12062)

Page No: 9/22

Que.	Sub.				Model	answers	7			Marks	Total
No.	Que.				WIOGEI	answer	•			IVIAINS	Marks
3)	b)	Г	v	37	∇y	$\nabla^2 v$	$\nabla^3 y$	$\nabla^4 y$]		
		<u> </u>	x 1921	y 46	v y	v y	v y	v y	<u> </u> -		
		<u> </u>	1921	66	20				<u> </u>	1	
			1941	81	15	- 5			-		
			1951	93	12	-3	2		-		
			<mark>1961</mark>	<mark>101</mark>	8	<mark>-4</mark>	<mark>-1</mark>	<mark>-3</mark>			
		(i.e., first table the results table the results table the results are table to the second the second table	erence to the last number erence to the last number erence to the last erence tended	able is t number) as slotten in ample a cert op $\frac{-1961}{0} = \frac{m(m+1)}{2!}$	generation	ally write the property of the control of the cont	ten in uxactly cone backy differed differed entral v $\frac{(m+2)}{!}$	pward opposite ward dift on as shore table last number of $\nabla^3 y_n$	direction to the fference lown in e is nber is center of	1/2	
		=101-	$=101+(-0.6)(8)+\frac{-0.6(-0.6+1)}{2!}(-4)+\frac{-0.6(-0.6+1)(-0.6+2)}{3!}(-1)$ $+\frac{-0.6(-0.6+1)(-0.6+2)(-0.6+3)}{4!}(-3)$ $=101-4.8+0.48+0.056+0.1008$							1 ½	
	c)	r – r		x y 0 5 1 9 2 15 3 23 4 33	10	$\begin{array}{c c} \Delta^2 y \\ \hline 2 \\ 2 \\ 2 \\ \end{array}$	$\begin{array}{c c} \Delta^3 y \\ \hline 0 \\ 0 \\ \end{array}$			1	
		$m = \frac{x - x_0}{h} =$	$=\frac{x-0}{1}$	= <i>x</i>						1	

Que.

No.

3)

Sub.

Que.

d)

e)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(ISO/IEC - 27001 - 2005 Certified)

Model answers

 ∇y

117

387

<mark>819</mark>

270

432

 $\Delta^2 y$

0.326

0.375

 $\Delta^3 y$

0.047

0.049

 $\Delta^4 y$

0.002

162

 $f(x) = y_0 + m\Delta y_0 + \frac{m(m-1)}{2!}\Delta^2 y_0 + \frac{m(m-1)(m-2)}{3!}\Delta^3 y_0$

125

512

1331

 $f(x) = y_n + m\nabla y_n + \frac{m(m+1)}{2!}\nabla^2 y_n + \frac{m(m+1)(m+2)}{3!}\nabla^3 y_n$

 $+\frac{0.333(0.333+1)(0.333+2)}{31}\times162$

3.685 1.169 0.279

1.448

1.774

2.149

 $+\frac{0.2(0.2-1)(0.2-2)(0.2-3)}{41}\times0.002$

= 3.685 + 0.234 - 0.0223 + 0.002 - 0.000

 $=1331+0.333\times819+\frac{0.333(0.333+1)}{21}\times432$

= 1331 + 272.727 + 95.88 + 27.961

4.854

6.302

8.076

10.225

Subject & Code: Applied Maths (12062)

 $=5+x\cdot 4+\frac{x(x-1)}{2!}\times 2+0$

 $=5+4x+x^2-x$

 $m = \frac{x - x_n}{h} = \frac{12 - 11}{3} = 0.333$

=1727.568

 $\overline{140}$

150

160

170

180

=3.898

 $m = \frac{x - x_0}{h} = \frac{142 - 140}{10} = 0.2$

 $\therefore f(x) = x^2 + 3x + 5$

Page No: 10/22 Total Marks Marks 1 4 1 1 $1/_{2}$ $1\frac{1}{2}$ 1 $1\frac{1}{2}$ $\frac{1}{2}$ $f(x) = y_0 + m\Delta y_0 + \frac{m(m-1)}{2!}\Delta^2 y_0 + \frac{m(m-1)(m-2)}{3!}\Delta^3 y_0 + \frac{m(m-1)(m-2)(m-3)}{4!}\Delta^4 y_0$ $=3.685+0.2(1.169)+\frac{0.2(0.2-1)}{2!}\times0.279+\frac{0.2(0.2-1)(0.2-2)}{3!}\times0.047$ 1

1

Page No: 11/22

Subject & Code: Applied Maths (12062)

Que. No.	Sub.	Model answers	Marks	Total Marks
3)	Que.	$L\frac{di}{dt} + Ri = E$		Marks
		$\therefore \frac{di}{dt} + \frac{R}{L}i = \frac{E}{L}$		
		$P = \frac{R}{L} and Q = \frac{E}{L}$		
		$\therefore IF = e^{\int pdt} = e^{\int \frac{R}{L}dt} = e^{\frac{R}{L}t}$	1	
		∴the solution is,		
		$i \cdot IF = \int Q \cdot IF \cdot dt + c$		
		$\therefore i \cdot e^{\frac{R}{L}t} = \int \frac{E}{L} \cdot e^{\frac{R}{L}t} \cdot dt + c$		
		$\therefore i \cdot e^{\frac{R}{L}t} = \frac{E}{L} \cdot \frac{e^{\frac{R}{L}t}}{\frac{R}{L}} + c$		
		$\therefore i \cdot e^{\frac{R}{L}t} = \frac{E}{R} \cdot e^{\frac{R}{L}t} + c$	1	
		At i = 0, t = 0,		
		$\therefore 0 = \frac{E}{R} \cdot e^0 + c$		
		$\therefore c = -\frac{E}{R}$		
		$\therefore i \cdot e^{\frac{R}{L}t} = \frac{E}{R} \cdot e^{\frac{R}{L}t} - \frac{E}{R} or i = e^{-\frac{R}{L}t} \left[e^{\frac{R}{L}t} - 1 \right] \frac{E}{R}$	1	
		Given $R = 100$, $L = 0.1$, $E = 20$.		
		$\therefore i \cdot e^{1000t} = \frac{1}{5} \cdot e^{1000t} - \frac{1}{5} or i = e^{-1000t} \left[e^{1000t} - 1 \right] \frac{1}{5}$	1	
		Note: In the above example, L, R, E are arbitrary constants whereas i and t are variables. Also the values of L, R, E are given in advance. Thus these values can be substituted directly in the given differential equation and then the equation can be solved as illustrated below.		
		$0.1\frac{di}{dt} + 100i = 20$		
		$\therefore \frac{di}{dt} + 1000i = 200$	1	
		P = 1000 and $Q = 200$		
		$\therefore IF = e^{\int pdt} = e^{\int 1000dt} = e^{1000t}$	1	

Subject & Code: Applied Maths (12062)

Page No: 12/22

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
3)	Que.	∴the solution is,		TVICTIO
		$i \cdot IF = \int Q \cdot IF \cdot dt + c$		
		$\therefore i \cdot e^{1000t} = \int 200 \cdot e^{1000t} \cdot dt + c$		
		$\therefore i \cdot e^{1000t} = 200 \cdot \frac{e^{1000t}}{1000} + c$		
			1	
		$\therefore 0 = 0.2 \cdot e^0 + c$		
		$\therefore c = -0.2$		
			1	4
4)	a)	Given example is $\int \frac{\log(\tan x/2)}{\sin x} dx$		
		Taking as $\int \frac{\log\left(\tan\frac{x}{2}\right)}{\sin x} dx$		
		$Put \log \left(\tan \frac{x}{2}\right) = t$		
		$\therefore \frac{1}{\tan\frac{x}{2}} \cdot \sec^2\frac{x}{2} \cdot \frac{1}{2} dx = dt$	1	
		$\therefore \frac{1}{\sin x} dx = dt$		
		$\therefore \int \frac{\log\left(\tan\frac{x}{2}\right)}{\sin x} dx = \int t dt$	1	
		$\sin x$ $\int \frac{dx}{\sin x} = \int \frac{dx}{x}$		
		$=\frac{t^2}{2}+c$	1	
		$= \frac{\left[\log\left(\tan\frac{x}{2}\right)\right]^2}{2} + c$	1	4
	b)	$Put \tan \frac{x}{2} = t$	1	
		$\therefore dx = \frac{2dt}{1+t^2} and \sin x = \frac{2t}{1+t^2}$	1	
		$\therefore \int \frac{1}{3 + 2\sin x} dx = \int \frac{1}{3 + 2\left(\frac{2t}{1 + t^2}\right)} \cdot \frac{2dt}{1 + t^2}$		

Subject & Code: Applied Maths (12062)

Page No: 13/22

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
4)	Que.	$\therefore \int \frac{1}{3+2\sin x} dx = 2\int \frac{1}{3(1+t^2)+2(2t)} \cdot dt$		TTATES
		$= 2\int \frac{1}{3t^2 + 4t + 3} \cdot dt$ $= \frac{2}{3} \int \frac{1}{\left(t + \frac{2}{3}\right)^2 + \left(\frac{\sqrt{5}}{3}\right)^2} \cdot dt$	1	
		$= \frac{2}{3} \cdot \frac{1}{\sqrt{5}} \tan^{-1} \left[\frac{t + \frac{2}{3}}{\frac{\sqrt{5}}{3}} \right] + c$	1	
		$= \frac{2}{\sqrt{5}} \tan^{-1} \left[\frac{\tan \frac{x}{2} + \frac{2}{3}}{\frac{\sqrt{5}}{3}} \right] + c$	1	4
		$OR \frac{2}{\sqrt{5}} \tan^{-1} \left[\frac{3 \tan \frac{x}{2} + 2}{\sqrt{5}} \right] + c$		
	c)	$I = \int_0^{\pi/2} \frac{1}{1 + \sqrt[3]{\cot x}} dx$		
		$= \int_0^{\pi/2} \frac{\sqrt[3]{\sin x}}{\sqrt[3]{\sin x} + \sqrt[3]{\cos x}} dx$		
		$= \int_0^{\pi/2} \frac{\sqrt[3]{\sin\left(\frac{\pi}{2} - x\right)}}{\sqrt[3]{\sin\left(\frac{\pi}{2} - x\right)} + \sqrt[3]{\cos\left(\frac{\pi}{2} - x\right)}} dx$	1/2	
			1	
		$I = \int_0^{\pi/2} \frac{\sqrt[3]{\cos x}}{\sqrt[3]{\cos x} + \sqrt[3]{\sin x}} dx$		
		$\therefore 2I = \int_0^{\pi/2} \frac{\sqrt[3]{\sin x} + \sqrt[3]{\cos x}}{\sqrt[3]{\sin x} + \sqrt[3]{\cos x}} dx$	1/2	
		$= \int_0^{\pi/2} 1 \cdot dx$	1/ ₂ 1/ ₂	
		$= \left[x\right]_0^{\pi/2}$	1/2	4
		$=\frac{\pi}{2}$	/2	
		$\therefore I = \frac{\pi}{4}$	1/2	
		OR		

Subject & Code: Applied Maths (12062) Page No: 14/22

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
4)		$I = \int_0^{\pi/2} \frac{1}{1 + \sqrt[3]{\cot x}} dx$		
		$= \int_0^{\pi/2} \frac{\sqrt[3]{\sin x}}{\sqrt[3]{\sin x} + \sqrt[3]{\cos x}} dx$ $ \text{Re place } x \to \frac{\pi}{2} - x$ $\therefore \sin x \to \cos x \text{ and}$ $\cos x \to \sin x$	1/2	
		$I = \int_0^{\pi/2} \frac{\sqrt[3]{\cos x}}{\sqrt[3]{\cos x} + \sqrt[3]{\sin x}} dx$	1	
		$\therefore 2I = \int_0^{\pi/2} \frac{\sqrt[3]{\sin x} + \sqrt[3]{\cos x}}{\sqrt[3]{\sin x} + \sqrt[3]{\cos x}} dx$	1/2	
		$= \int_0^{\pi/2} 1 \cdot dx$ $= \left[x \right]_0^{\pi/2}$	1/2 1/2	
		$= [x]_0$ $= \frac{\pi}{2}$	1/2	
		$\therefore I = \frac{\pi}{4}$	1/2	4
	d)	$\int_0^1 x \sin^{-1} x dx$		
		$= \left[\sin^{-1} x \int x dx - \int \left(\int x dx \right) \frac{d}{dx} \left(\sin^{-1} x \right) dx \right]_0^1$	1/2	
		$= \left[\sin^{-1} x \cdot \frac{x^2}{2} - \int \frac{x^2}{2} \cdot \frac{1}{\sqrt{1 - x^2}} dx \right]_0^1$	1/2	
		$= \left[\frac{x^2 \sin^{-1} x}{2} + \frac{1}{2} \int \frac{1 - x^2 - 1}{\sqrt{1 - x^2}} dx \right]_0^1$		
		$= \left[\frac{x^2 \sin^{-1} x}{2} + \frac{1}{2} \int \left(\sqrt{1 - x^2} - \frac{1}{\sqrt{1 - x^2}} \right) dx \right]_0^1$	1	
		$= \left[\frac{x^2 \sin^{-1} x}{2} + \frac{1}{2} \left(\frac{x}{2} \sqrt{1 - x^2} + \frac{1}{2} \sin^{-1} x - \sin^{-1} x \right) \right]_0^1$	1	
		$= \left[\frac{x^2 \sin^{-1} x}{2} + \frac{1}{2} \left(\frac{x}{2} \sqrt{1 - x^2} - \frac{1}{2} \sin^{-1} x \right) \right]_0^1$		
		$= \left[\frac{1.\sin^{-1}1}{2} + \frac{1}{2} \left(\frac{1}{2} \sqrt{1 - 1^2} - \frac{1}{2} \sin^{-1}1 \right) \right] - \left[0 + \frac{1}{2} \left(0 - \frac{1}{2} \sin^{-1}0 \right) \right]$		
		$= \left[\frac{\pi/2}{2} + \frac{1}{2}\left(0 - \frac{1}{2} \cdot \frac{\pi}{2}\right)\right] - 0$	1/2	
		$=\frac{\pi}{8}$	1/2	4

Subject & Code: Applied Maths (12062)

Page No: 15/22

Que. Su	b.		Total
No. Qu	e. Model answers	Marks	Marks
No. Qu 4) e)	$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ $\therefore y^{2} = b^{2} \left(1 - \frac{x^{2}}{a^{2}} \right)$ $\therefore y^{2} = \frac{b^{2}}{a^{2}} \left(a^{2} - x^{2} \right)$ $\therefore y = \frac{b}{a} \sqrt{a^{2} - x^{2}}$ $Now \ y = 0 \ gives \ a^{2} - x^{2} = 0 \ i.e., \ x = a, -a$ $\therefore A = 4 \int_{0}^{a} y dx$ $= 4 \int_{0}^{a} \frac{b}{a} \sqrt{a^{2} - x^{2}} dx$ $= 4 \cdot \frac{b}{a} \left[\frac{x}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \sin^{-1} \left(\frac{x}{a} \right) \right]_{0}^{a}$ $= \frac{4b}{a} \left[0 + \frac{a^{2}}{2} \sin^{-1} (1) \right] - 0$ $= \frac{4b}{a} \left[\frac{a^{2}}{2} \cdot \frac{\pi}{2} \right]$ $= \pi ab$	1 1 1	
f)	Given $y^2 = 4x$ and $2x - y = 4$ $\therefore (2x - 4)^2 = 4x$ $\therefore x = 1, 4$ $\therefore A = \int_1^4 (y_2 - y_1) dx$ $= \int_1^4 (2\sqrt{x} - 2x + 4) dx$ $= \left[2 \cdot \frac{2}{3} x^{3/2} - x^2 + 4x\right]_1^4$ $= \left[\frac{4}{3} \cdot 4^{3/2} - 16 + 16\right] - \left[\frac{4}{3} - 1 + 4\right]$ $= \frac{19}{3} \text{ or } 6.333$ Note: The above example could be solved by taking, $\therefore A = \int_1^4 (y_2 - y_1) dx = \int_1^4 (2x - 4 - 2\sqrt{x}) dx$ In this case, we get $A = -\frac{19}{3} \text{ or } -6.333$ and thus the final answer would become $A = \frac{19}{3} \text{ or } 6.333$.	1 1 1	4

Subject & Code: Applied Maths (12062)

Page No: 16/22

Que.	Sub.											Total
No.	Que.				Moc	lel ansv	vers				Marks	Marks
5)	a)	_										
			x	y	Δy	Δ^2	,	$\Delta^3 y$	$\Delta^4 y$			
			0	0	0.1736	-0.00	52	-0.0052	0.0004			
			<mark>10</mark>	0.1736	0.1684	-0.01		-0.0048		1		
			20	0.3420	0.1580	-0.01	52				2	
			30	0.5	0.1428							
			40	0.6428								
	b)	Com	$mon \ d$ $0^{\circ} = \frac{1}{10}$ $= 0.0$	$\Delta y_1 - \frac{1}{2}\Delta^2$ ifference of $0.1684 - \frac{7-2}{5} = 1$	f x is h = 1	10.		_			1 1 1/2	4
							I _	1 .	_	Ì		
			X	2	3	4	5	6	7		4.1/	
			f(x)	() 0.5	0.333	0.25	0.2	0.167	0.143		$1\frac{1}{2}$	
				y_0	y_1	y_2	y_3	y_4	y_5			
			$\frac{1}{x}dx = $	$= \frac{h}{2} \left[y_0 + y_0 \right]$ $= \frac{1}{2} \left[y_0 + y_5 \right]$ $= \frac{1}{2} \left[0.5 + 0.01 \right]$ 1.2715	$+2(y_1+y_1)$	$y_2 + y_3 +$	$y_4)$)]		1 1	4
	c)	f	x = 1 x $f(x)$	0 1 1 0.	$\frac{1}{6}$ $\frac{2}{6}$ $\frac{1}{6}$ $\frac{1}{973}$	73 1 9 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.8 (2)	2/3 0.692 0.4	5/6 6/ 5/6 1 0.59 0. y ₅ y	5	1	

Subject & Code: Applied Maths (12062)

Page No: 17/22

Que. No.	Sub. Que.		Model	answer	S			Marks	Total Marks
5)	2.000						0.692)]	1/2 1/2	
								1/2	
		$\therefore \frac{\pi}{4} = 0.7853$						1/2	
		$\therefore \frac{\pi}{4} = 0.7833$ $\therefore \pi = 3.141$						1/2 1/2	4
	d)	Here $h=1$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	3	4	5	6		
		$f(x) \qquad 1 \qquad 0.5$	0.333	0.25	0.2	0.167	0.143	1 ½	
		$\int_{a}^{b} f(x) dx = \frac{h}{3} \left[y_0 + y_n - \frac{h}{3} \right] \left[y_0 + y_n - \frac{h}{3} \right] \left[y_0 + y_n - \frac{h}{3} \right] $ $= \frac{h}{3} \left[1 + 0.1 \right] $ $= 1.959$	$+4(y_1+y_1)$	$(y_3 + y_5) +$	· 2(y ₂ +	$-y_4$		1 ½ 1	4
	e)	Given $\frac{dy}{dx} = y' = x^2 + xy$ $\therefore f(x, y) = x^2 + xy$ Here $x_0 = 0$, $y_0 = 1$ $x_1 = 0.2$, $y_1 = ?$ $\therefore h = x_1 - x_0 = 0.2$ $K_1 = h \cdot f(x_0, y_0)$ $= 0.2 \cdot f(0, 1)$ $= 0.2 \left[0^2 + 0(1)\right]$ = 0						1	

Page No: 18/22

Subject & Code: Applied Maths (12062)

Que.	Sub.	Model answers	Marks	Total
No.	Que.		Widiks	Marks
5)		$K_2 = h \cdot f(x_0 + h, y_0 + K_1)$		
		$= 0.2 \cdot f(0+0.2, 1+0)$		
		$=0.2 \cdot f(0.2, 1)$		
		$=0.2\Big[\big(0.2\big)^2+0.2\big(1\big)\Big]$		
		=0.048	1	
		$\therefore K = \frac{K_1 + K_2}{2} = \frac{0 + 0.048}{2} = 0.024$	1	
		$\therefore y = y_0 + K = 1 + 0.024 = 1.024$	1	
		OR .		
		$\therefore y = y_0 + \frac{1}{2} \left(K_1 + K_2 \right)$		
		$=1+\frac{1}{2}(0+0.048)$		
		=1.024	2	4
	f)	Given $\frac{dy}{dx} = y' = x + y$		
		$\therefore f(x, y) = x + y$		
		Here $x_0 = 0$, $y_0 = 1$		
		$x_1 = 0.2, y_1 = ?$		
		$\therefore h = x_1 - x_0 = 0.2$		
		$K_1 = h \cdot f\left(x_0, y_0\right)$		
		$= 0.2 \cdot f(0,1)$ $= 0.2 \cdot [0.1]$		
		= 0.2[0+1] = 0.2	1/2	
		$K_2 = h \cdot f\left(x_0 + \frac{h}{2}, \ y_0 + \frac{K_1}{2}\right)$		
		$=0.2 \cdot f\left(0 + \frac{0.2}{2}, 1 + \frac{0.2}{2}\right)$		
		$=0.2 \cdot f(0.1, 1.1)$		
		=0.2[0.1+1.1]		
		= 0.24	1	
		$K_3 = h \cdot f\left(x_0 + \frac{h}{2}, \ y_0 + \frac{K_2}{2}\right)$		
		$=0.2 \cdot f\left(0+\frac{0.2}{2},1+\frac{0.24}{2}\right)$		
		$=0.2 \cdot f(0.1, 1.12)$		

Subject & Code: Applied Maths (12062)

Page No: 19/22

Que.	Sub.	Model answers	Marks	Total
No.	Que.		IVIAINS	Marks
5)		= 0.2[0.1+1.12]	1	
		=0.244		
		$K_4 = h \cdot f\left(x_0 + h, \ y_0 + K_3\right)$		
		$=0.2 \cdot f(0,1)$		
		= 0.2[0+1] = 0.2	1/2	
			1/2	
		$\therefore K = \frac{K_1 + K_2}{2} = \frac{0 + 0.048}{2} = 0.024$	/2	
		$\therefore y = y_0 + K = 1 + 0.024 = 1.024$	1/2	
		OR		
		$\therefore y = y_0 + \frac{1}{2} \left(K_1 + K_2 \right)$		
		$=1+\frac{1}{2}(0+0.048)$		4
		=1.024	1	4
		-1.021		
6)	a)	Given $\frac{dy}{dx} = y' = x - y^2$		
		$\therefore f(x, y) = x - y^2$		
		Given $h = 0.1$		
		Stage I) Here $x_0 = 0$, $y_0 = 1$		
		$x_1 = 0.1, y_1 = ?$		
		$K_1 = h \cdot f\left(x_0, \ y_0\right)$		
		$=0.1 \cdot f(0,1)$		
		$=0.1\Big[0-\left(1\right)^2\Big]$	1/	
		=-0.1	1/2	
		$K_2 = h \cdot f\left(x_0 + h, \ y_0 + K_1\right)$		
		$=0.1 \cdot f(0+0.1, 1-0.1)$		
		$=0.1 \cdot f(0.1, 0.9)$		
		$=0.1 \left[0.1 - \left(0.9 \right)^2 \right]$	1/	
		=-0.071	1/2	
		$\therefore y_1 = y_0 + \frac{1}{2} \left(K_1 + K_2 \right)$		
		$=1+\frac{1}{2}(-0.1-0.071)$		
		=0.9145	1	

Subject & Code: Applied Maths (12062)

Page No: 20/22

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
6)	-	Stage II) Now $x_1 = 0.1$, $y_1 = 0.9145$		
		$x_2 = 0.2, y_2 = ?$		
		$K_1 = h \cdot f\left(x_1, \ y_1\right)$		
		$=0.1 \cdot f(0.1, 0.9145)$		
		$=0.1 \left[0.1 - \left(0.9145 \right)^2 \right]$		
		= -0.0736	1/2	
		$K_2 = h \cdot f\left(x_1 + h, \ y_1 + K_1\right)$		
		$= 0.1 \cdot f \left(0.1 + 0.1, 0.9145 - 0.0736 \right)$		
		$=0.1 \cdot f(0.2, 0.8409)$		
		$=0.1 \left[0.2 - (0.8409)^{2}\right]$	1/2	
		=-0.0507	72	
		$\therefore y_2 = y_1 + \frac{1}{2} (K_1 + K_2)$		
		$= 0.9145 + \frac{1}{2}(-0.0736 - 0.0507)$		4
		= 0.8523	1	4
	b)	n(X) = 200		
	·	A = numbers divisible by 4.		
		$\therefore n(A) = \frac{200}{4} = 50$	1/2	
		B = numbers divisible by 5.		
		$\therefore n(B) = \frac{200}{5} = 40$	1/2	
		$A \cap B$ = numbers divisible by 4 and 5.		
		$\therefore n(A \cap B) = \frac{200}{4 \times 5} = 10$	1	
		$\therefore n(A \cup B) = n(A) + n(B) - n(A \cap B)$		
		=50+40-10	1	
		= 80		
		$(A \cup B)'$ = number not divisible by 4 nor by 5.		
		$\therefore n[(A \cup B)'] = n(X) - n(A \cup B)$		
		= 200 - 80		
		=120	1	4

Subject & Code: Applied Maths (12062)

Page No: 21/22

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
6)	c)	$X = \{0, 1, 2, 3, 4, 5\}, A = \{0, 1, 2, 3, 5\}, B = \{0, 1, 2, 3\}$ $i) A \cup B = \{0, 1, 2, 3, 5\}$ $\therefore (A \cup B)' = \{4\}$ $ii) A - B = \{5\}$ $B - A = \{\}$ $\therefore A \oplus B = (A - B) \cup (B - A) = \{5\}$ $\therefore (A \oplus B)' = \{0, 1, 2, 3, 4\}$	1 1 1/2 1/2 1/2 1/2	4
	d)	$\begin{array}{c c} A & B \\ \hline C & B \\ \hline B \cap C & \end{array}$	1	
		$A \cup B \cap C$ $A \cup (B \cap C)$	1	
		$A \longrightarrow B$ C $A \cup B$	1/2	
		$\begin{array}{c c} A & B \\ \hline C & \\ \hline A \cup C & \\ \end{array}$	1/2	
		$ \begin{array}{c c} A & B \\ \hline & C \end{array} $	1	4
		$(A \cup B) \cap (A \cup C)$ $\therefore A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	1	

Subject & Code: Applied Maths (12062) Page No: 22/22

Que. No.	Sub. Que.	Model answers	Marks	Total Marks
6)	e)	$I = \int_{4}^{5} \frac{\sqrt{5-x}}{\sqrt{x-4} + \sqrt{5-x}} dx$ Replace $x \to 9-x$ $\therefore 5-x \to x-4$ $\& x-4 \to 5-x$	1/2	
		$I = \int_{4}^{5} \frac{\sqrt{x-4}}{\sqrt{5-x} + \sqrt{x-4}} dx$	1	
		$\therefore 2I = \int_{4}^{5} \frac{\sqrt{x-4} + \sqrt{5-x}}{\sqrt{x-4} + \sqrt{5-x}} dx$	1/2	
		$=\int_4^5 1 \cdot dx$	1/2	
		$= \begin{bmatrix} x \end{bmatrix}_4^5$ $= 5 - 4$	1/2	
		=1	1/2	
		$\therefore I = \frac{1}{2}$	1/2	4
	f)	$\int \frac{\log x}{x(1+\log x)(2+\log x)} dx \qquad \boxed{\begin{array}{c} Put & \log x = t \\ \therefore \frac{1}{x} dx = dt \end{array}}$	1	
		$=\int \frac{t}{(1+t)(2+t)}dt$	1/2	
		$= \int \left[\frac{-1}{1+t} + \frac{2}{2+t} \right] dt$	1	
		$=-\log(1+t)+2\log(2+t)+c$	1 1/2	4
		$= -\log(1 + \log x) + 2\log(2 + \log x) + c$	/2	4
		In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.		