	Anotações
Paralelismo: Conceitos básicos	
Taralelismo. Gonceitos basicos	
Yuri Kaszubowski Lopes	
UDESC	
YKL (UDESC) Paralelismo: Concettos básicos 1/26	
No processador MIPS estudado	Anotações
 Temos um paralelismo a nível de instrução Através do pipeline, múltiplas instruções são executadas "ao mesmo tempo 	Allotações
na CPU" * em estágios diferentes	
Porém: ► Somente uma instrução é enviada a cada ciclo de clock ► Somente uma instrução é (pode ser) completada a cada ciclo	
 Somerite uma instrução e (pode ser) completada a cada ciclo Ganho está na redução do tempo de cada ciclo de clock Note também que as instruções operam em apenas um dado 	
► Fazem a operação e armazenam o resultado em um registrador	
YKL (UDESC) Paralelismo: Conceitos básicos 2/26	
SISD	
A CPU MIPS estudada é um exemplo de uma CPU SISD	Anotações
 SISD: Single Instruction Single Data ▶ Uma instrução para um dado 	
 Processadores que executam uma instrução por vez, e cada instrução é capaz de operar em apenas um dado 	

Multiprocessadores

- Um multiprocessador é um processador composto de múltiplos
 - ▶ Nossas máquinas x86-64 atuais são exemplos de multiprocessadores
 - A indústria os chama de microprocessadores multicore

Anotações		

i9-9900k

• Multiprocessador composto de 8 processadores (8 cores)

Anotações

Anotações

Multiprocessadores

- Em um sistema multiprocessado, cada processador pode executar uma tarefa independente
 - ► Paralelismo a nível de tarefa/processo
- $\bullet\,$ Se você escrever um programa sequencial, ele vai usar somente ${\bf um}$ dos n processadores disponíveis
 - Saber criar programas que executam em paralelo não é opcional
 - * fork
 * Pthreads (POSIX Threads)

 Em Python temos que considerar o Global Interpreter Lock (GIL)!

 - Efetivamente só usa uma CPU
 Pois (quase) todo código em Python só pode ser executado se "em controle" do GIL
 Então, devemos dividir o trabalho entre multiplos processos e não multiplas

 - threads

 concurrent.futures.ProcessPoolExecutor

 multiprocessing: API de mais baixo nível

3		

MIMD

- MIMD: Multiple Instruction Multiple Data

 Multiplas instruções e múltiplos dados

 Multiprocessadores podem ser considerados MIMD

 Possuem n processadores, cada um operando uma instrução diferente

 Multiple Instruction

 Paralelismo a nível de instrução

 Cada instrução opera em um dado diferente

 Multiple data

 Paralelismo a nível de dados

Anotações			

MISD

- MISD: Multiple instruction single data
 - Múltiplas instruções operando em um dado único
- E.g., uma instrução que executa múltiplas operações em um único dado
- Não existem computadores puramente MISD atualmente

Anotações			
			_
			_

SIMD

- SIMD: Single instruction Multiple Data
 - ► Uma instrução operando em múltiplos dados
- E.g., uma instrução que soma um valor imediato em múltiplos registradores ao mesmo tempo
- Comum em nossos processadores atuais

Anotações			
-			

Resumo e exemplos

• Taxonomia de Flynn

		Dado		
		Único	Múltiplos	
Instrução	Única	SISD: MIPS estudado	SIMD: um único "core" de uma CPU i7 atual	
	Múltiplas	MISD: ????	MIMD: Intel i7	

	<u> </u>			
			•	
YKL (UDESC)	Paralelismo: Conceitos básicos	10/2	26	

Anotações

SIMD

- Como poderíamos adicionar capacidades SIMD no processador MIPS estudado
- É comum termos de carregar múltiplos endereços de memória para os registradores, somar um imediado, e depois armazenar os resultados
 - Comum quando fazemos operações em vetores ou matrizes
- Um exemplo dessas operações em 4 endereços consecutivos de memória
 - ▶ Como podemos criar instruções que operam com os dados de 4 em 4?

 - Uma instrução que carrega os dados da memória de 4 em 4
 Uma instrução que adiciona um imediato em 4 registradores
 Uma instrução que armazena os dados de 4 registradores na memória

Anotações		

SIMD

1	lw	\$s	ΙΟ,	0	(\$t	0)	
2	lw	\$5	1,	4	(\$t	0)	
3	lw	\$5	2,	8	(\$t	0)	
4	lw	\$s	3,	12	2 (\$	t0))
5	ado	li	\$s	٥,	\$s	0,	1
6	ado	li	\$s	1,	\$s	1,	1
7	ado	li	\$s	2,	\$s	2,	1
8	ado	li	\$s.	3,	\$s	3,	1
			0,				
0	sw	\$5	1,	4	(\$t	0)	
1	sw	\$5	2,	8	(\$t	0)	
_		٠.	. 2	11	10	+01	

Anotações		

SIMD

- Uma primeira ideia
 - ▶ Vamos adicionar um s no final dos mnemônicos de nossas instruções para indicar que são SIMD
 - As instruções podem ficar na forma:

```
:lws $s0, $s1, $s2, $s3, 0($t0)
2 addis $s0, $s1, $s2, $s3, $s0, $s1, $s2, $s3, 1
3 sws $s0, $s1, $s2, $s3, 0($t0)
    0 lws
          ...
     • addis
          ► $s0 = $s0 + 1
► $s1 = $s1 + 1
     • sws
          ► MEMÓRIA[$t0 + 0] = $s0

► MEMÓRIA[$t0 + 4] = $s1

► ...
```

Anotações			

Problema

- lws \$s0, \$s1, \$s2, \$s3, 0(\$t0)
- Problemas com uma instrução desse tipo?
- opcode, regBase, reg1, reg2, reg3, reg4, imediato
- Temos apenas 32 bits por instrução!

Anotações			

Anotações

Criando registradores "grandes"

- Outra solução é adicionar registradores "grandes" em nossa CPU
- Exemplo:

 - Registradores xmm0, xmm1, ... xmm7
 Cada registrador com capacidade para 128 bits
- Agora temos a operação

 - ► 1ws xmm0, 0 (\$t0)

 ► ... que carrega 128 bits (16 bytes) a partir de \$t0 + 1
- 6+5+5+16=32 bits
- Problemas?
 - ► Sim: com 5 bits para endereço dos registradores no máximo 32 registradores, e já estão todos ocupados:
 - \$zero, \$at, \$s0, ..., \$s7, \$t0,..., \$t9, \$sp, \$ra, ...
 ► Solução: o opcode dessas instruções (final s) indica o uso de outro banco de registradores

Instruções SIMD

- Utilizando os registradores de 128 bits do exemplo
 - Carregamos os 128 bits para o registrador
 - * lws xmm0, 0(\$t0)
 - Agora podemos realizar uma adição de imediato em paralelo
 - * addis xmm0, xmm0, 10
 - ► Como addis faz os cálculos para inteiros, ele pode pegar os primeiros 32 bits de xmm0, somar com 10, e armazenar nos primeiros 32 bits de xmm0
 - ⋆ O primeiro inteiro foi salvo nos primeiros 32 bits
 - ▶ Os próximos 32 bits de xmmo são somados com 10, e armazenados nos próximos 32 bits de xmm0 ▶ Repetimos ...

 - A instrução segmenta o registrador e guarda cada resultado "em pedaços" (de 32 bits) no registrador

```
1 lws xmm0, 0 ($t0)
2 addis xmm0, xmm0, 10
3 sws xmm0, 0 ($t0)
```

Instruções SIMD

- addis xmm0, xmm0, 10
- Para que o addis efetivamente faça os cálculos em paralelo, precisamos adicionar hardware
- O que precisamos modificar/adicionar na CPU MIPS?

Anotações

Anotações

Anotações

-			

Instruções SIMD

- O que precisamos modificar/adicionar na CPU MIPS?
- Na CPU MIPS vamos precisar no mínimo:
 - Adicionar os registradores SIMD no banco de registradores
 - ⋆ Novo banco de registradores
 - Precisamos de 4 ALUS, para que cada ALU faça o cálculo de um dos inteiros
 - * Caso contrário criaríamos uma fila na ALU, executando o cálculo de um inteiro por vez

Instruções SIMD

- É exatamente essa a estratégia utilizada nas CPUs x86 atuais
 - Um dos conjuntos de instruções especializados do x86-64 para realizar esse tipo de operação é o SSE (Streaming SIMD Extensions)
- Execute Iscpu em sua máquina e verifique a versão do SSE que ela é

capaz de executar	
Então se olharmos para um único processador (core) de seu multiprocessador x86-64, veremos um processador com capacidades	
SIMD	

Anotações

SSE

- SSE do x86-64 funciona utilizando 8 registradores de 128 bits
 - xmm0, xmm1, ..., xmm7
- Dependendo da operação que executamos nesses registradores, podemos operar em paralelo:
 - ▶ 2 doubles ou
 - 2 longs ou4 floats ou

 - ▶ 4 ints ou
- As operações SSE exigem que o vetor no qual estamos operando comece em um endereço de memória múltiplo de 16
 - Restrição de alinhamento de memória

Anotações		

Anotações

SSE: Exemplo

!float* vetor;
2int ret = posix_memalign((void**)&vetor, 16, TAM_VETOR * sizeof(float));

- posix_memalign é uma função que aloca a memória (malloc) de maneira alinhada, e armazena o endereço no ponteiro vetor
- Devemos passar o endereço do vetor
- A função retorna 0 em caso de sucesso, ou EINVAL/ENOMEM em caso de erro
 - ▶ Ver códigos em errno.h
- Mais detalhes: man posix_memalign
- Funções e tipos prontos para lidar com SSE em C estão disponíveis na biblioteca emmintrin.h
- O tipo __m128 representa uma variável de 128 bits, que o compilador vai carregar em um dos registradores ${\tt xmm}$

SSE: Exemplo

```
printf("Tamanhos: %lu %lu %lu\n",
sizeof(__m128),
       sizeof(__miles),
sizeof(float),
sizeof(__miles) / sizeof(float));
    • Para compilar: gcc sse.c -o sse -1m -03 -msse2
    • Imprimindo na tela o tamanho dos tipos das variáveis que serão
       envolvidas no programa
    • __m128 ocupa 16 bytes (128 bits)
          ► Cabem 4 floats dentro de um __m128
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <math.h>
4 #include <errno.h>
5 #include <emmintrin.h>
7 #define TAM VETOR 1073741824
```

(UDESC)

Anotações

SSE: Exemplo

```
svoid normal(float* a, int N) {
9    for (int i = 0; i < N; ++i)
10    a[i] = sqrt(a[i]);</pre>
11 }
19
roint main(int argc, char** argv) {
21    float* vetor;
22    int ret = posix_memalign((void**)&vetor, 16, TAM_VETOR
               * sizeof(float));
        for (int i = 0; i < TAM_VETOR; ++i)
  vetor[i] = 3141592.65358;</pre>
         // normal(vetor, TAM_VETOR);
        // normal(vetor, ind_velok);
sse(vetor, TAM_VETOR);
printf("%f %f %f %f\n", vetor[0], vetor[10], vetor[TAM_VETOR-1]);
```

Ohear	vações
Onsei	vaçocs

- As instruções SIMD são executadas em uma única CPU
 - Único "núcleo de processamento"
- Se você possui, por exemplo, um i7 com 6 processadores (núcleos), somente 1 deles está operando
 - Os demais estão "sem fazer nada" (a respeito deste código)
 - ► Imagine quanto poderíamos otimizar se executarmos o programa em paralelo em múltiplos processadores, levando em consideração o pipeline, instruções SIMD, memória cache,
- dados são totalmente independentes uns dos outros, e nossa operação é simples
 - ▶ Temos independência de dados e um problema trivialmente paralelizável
- Entenda como lidar com problemas mais interessantes e também com paralelismo via múltiplos processos/threads nas disciplinas de:
 - Sistemas Operacionais
 - Processamento Paralelo

Anotações		

Anotações

Referências

- D. Patterson; J. Henessy. Organização e Projeto de Computadores: Interface Hardware/Software. 5a Edição. Elsevier Brasil, 2017.
- J. Henessy; D. Patterson. Arquitetura de computadores: Uma abordagem quantitativa. 6a Edição, 2017.
- STALLINGS, William. Arquitetura e organização de computadores.
 10. ed. São Paulo: Pearson Education do Brasil, 2018.
- software.intel.com/sites/landingpage/IntrinsicsGuide/
- docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/kcwz153a(v=vs.100)
- felix.abecassis.me/2011/09/cpp-getting-started-with-sse

Anotações				
Anotações	Anotações			
Anotações				
	Anotações			
	3			
		<u> </u>		

Anotações