

?????

OFFICE DU BACCALAUREAT

Téléfax (221) 825.24.58 – Tél. : 824.95.92 – 824.65.81

MATHEMATIQUES

Durée : 4 heures Séries : S2-S2A-S4-S5 – Coef. 5 Epreuve du 1^{er} groupe

CORRIGÉ

EXERCICE 1

1. a. Soit α une solution réelle de (E) alors α vérifie $\alpha^3 - 13\alpha^2 + 59\alpha - 87 = 0$. Une solution évidente est 3.

D'où
$$\alpha = 3$$
.

1. b.
$$(z-3)(z^2-10z+29)=0$$
.

D'où
$$z = 3$$
 ou $z^2 - 10z + 29 = 0$.

Après calculs
$$z = 3$$
 ou $z = 5 - 2i$ ou $z = 5 + 2i$.

L'ensemble des solutions est : $S = \{3; 5 - 2i; 5 + 2i\}$.

2. a.
$$\frac{b-a}{c-a} = -i.$$

$$\begin{cases} arg\left(\frac{b-a}{c-a}\right) = -\frac{\pi}{2} \Leftrightarrow \left(\overrightarrow{AC}, \overrightarrow{AB}\right) = -\frac{\pi}{2}[2\pi] \\ AB = AC \end{cases}$$

ABC est rectangle et isocèle en A et direct.

2. b. Arg
$$Z = (\overrightarrow{MB}, \overrightarrow{MA})$$
 $[2\pi]$.

Z réel non nul sssi arg
$$Z \equiv O(\pi)$$
.

$$(\overrightarrow{MB}, \overrightarrow{MA}) \equiv 0 \ (\pi).$$

M décrit la droite (AB) privée de A et de B.

3. a. Soit M'(Z') l'image de M(Z) par la rotation r de centre I et d'angle $-\frac{\pi}{2}$.

Donc
$$Z' - Z_i = e^{-\frac{\pi}{2}} (Z - Z_i)$$
.

On obtient
$$Z' = -i Z + 3 + i$$
.

3. b. Soit Ω centre du cercle circonscrit à ABC.

 Ω est le milieu de [BC].

On a
$$Z_{\Omega} = \frac{Z_B + Z_C}{2}$$
 ce qui donne $Z_{\Omega} = 5$.

Soit
$$r(\Omega) = \Omega'$$
, $Z_{\Omega'} = -i Z_{\Omega} + 3 + i$. D'où $Z_{\Omega'} = 3 - 4 i$.

Donc (C') est le cercle de centre Ω ' et de même rayon que (C).

16 G 26 A 01 Séries : S2-S2A-S4-S5 **Epreuve du 1**^{er} **groupe**

Figure:

EXERCICE 2

1.
$$p(A) = \frac{C_4^2}{C_5^2}$$
 $p(A) = \frac{3}{5}$.

$$p(B) = \frac{C_4^1 \times C_1^1}{C_5^2} \qquad p(B) = \frac{2}{5}.$$

$$p(C) = \frac{4}{5} \times \frac{4}{5} + \frac{1}{5} \times \frac{1}{5}.$$

$$p(C) = \frac{17}{25}.$$

$$p(D) = \frac{4}{5} \times \frac{3}{4}.$$

$$p(D) = \frac{3}{5}.$$

$$p(E) = \frac{4}{5} \times \frac{1}{4} + \frac{1}{5} \times 1.$$
 $p(E) = \frac{2}{5}.$

$$p(F) = \frac{2}{5} \times \frac{4}{5} \times \frac{1}{4} + \frac{2}{5} \times \frac{1}{5} \times 1.$$
 $p(F) = \frac{4}{25}.$

16 G 26 A 01 Séries: S2-S2A-S4-S5 Epreuve du 1er groupe

2. a. $X(\Omega) = \{(R,R), (R,J), (J,R), (J,J)\}.$

Les différentes valeurs prises par X sont 0 ; 1000 et 2000.

a	0	1000	2000
P(X=a)	3	44	78
, ,	$\overline{125}$	$\overline{125}$	$\overline{125}$

b. Fonction de répartition

-
$$\sin x < 0$$
, $F(x) = 0$.

- si
$$0 \le x < 1000$$
, $F(x) = \frac{3}{125}$.

- si
$$1000 \le x < 2000$$
, on a $F(x) = \frac{3}{125} + \frac{44}{125}$

D'où si
$$1000 \le x < 2000$$
, $F(x) = \frac{47}{125}$.

- si x
$$\ge$$
 2000 F(x) = $\frac{3}{5} + \frac{44}{125} + \frac{78}{125} = 1$.

3.
$$p(G) = \left(\frac{78}{125}\right)^{50}$$

$$p(H) = \left(\frac{3}{125}\right)^{50}$$

$$p(G) = \left(\frac{78}{125}\right)^{50}$$

$$p(H) = \left(\frac{3}{125}\right)^{50}$$

$$p(I) = \left(\frac{44}{125}\right)^{50} + C_{50}^{25} \left(\frac{3}{125}\right)^{25} \left(\frac{78}{125}\right)^{25}.$$

PROBLEME

PARTIE A

1. a. g(x) existe si et seulement si:

$$\begin{cases} x+1>0\\ x+1\neq 0 \end{cases} \text{ ce que donne } x \rangle -1.$$

$$D_g =]-1, +\infty[.$$

$$\lim_{x \mapsto -1^{+}} \frac{-2(x+1)\ln(x+1)+x}{(x+1)},$$

$$\begin{array}{|c|c|}
\hline
\lim_{x \mapsto -1^+} g(x) = -\infty \\
\hline
\text{par quotient.}
\end{array}$$

$$\lim_{x \mapsto +\infty} g(x) = -\infty \text{ car } \begin{cases} -2\ln(x+1) \to -\infty \text{ par composée puis produit} \\ \frac{x}{x+1} \to 1 \end{cases}$$

Tableau de Variation

16 G 26 A 01 Séries : S2-S2A-S4-S5 **Epreuve du 1**er groupe

2. a.
$$g(0) = 0$$
.

La restriction de g à] -1; $-\frac{1}{2}$ [est strictement croissante et continue et prend ses valeurs dans]- ∞ , 2ln 2-1[qui contient 0 donc l'équation g(x)=0 admet sur] -1; $-\frac{1}{2}$ [une solution unique α . Idem sur] $-\frac{1}{2}$; + ∞ [, l'équation g(x)=0 admet un solution unique 0.

]
$$-0.72$$
; -0.71 [\subset] -1 ; $-\frac{1}{2}$ [et g(-0.72) x g(-0.71) < 0 donc $\alpha \in$] -0.72 ; -0.71 [.

2. b. 0 étant l'autre zéro de g :

PARTIE B

1. a. Domaine de définition de f.

f(x) existe si et seulement si :

$$\begin{cases} x+1 > 0 \\ \ln(x+1) \neq 0, \\ - \text{ ou } x \in]-\infty, -1], \\ - \text{ ou } x = 0. \end{cases}$$

$$d'où \begin{cases} x > -1 \\ x \neq 0 \end{cases} \text{ ou } x \in]-\infty, -1] \text{ ou } x = 0$$

$$D_f = (]-1, +\infty[\setminus \{0\}) \cup]-\infty, -1] \cup \{0\}$$

$$D_f = IR.$$

Limites aux bornes du domaine de définition de f.

$$\lim_{\substack{x \mapsto -\infty}} f(x) = -\infty; \lim_{\substack{x \mapsto +\infty}} f(x) = \lim_{\substack{x \mapsto +\infty}} \frac{x^2}{x+1} x \frac{(x+1)}{\ln(x+1)} = +\infty$$

$$\lim_{\substack{x \mapsto +\infty}} f(x) = +\infty.$$

1.b. Etudions la nature de la branche infinie au voisinage $de-\infty$.

$$\lim_{\mathbf{X} \mapsto -\infty} \frac{f(x)}{x} = \lim_{\mathbf{X} \mapsto -\infty} \left(\frac{\mathbf{x} + \mathbf{1}}{\mathbf{x}} \right) e^{-\mathbf{X} - \mathbf{1}} = +\infty.$$

$$\lim_{x \mapsto -\infty} \frac{f(x)}{x} = +\infty$$

Donc (C_f) admet au voisinage de $-\infty$ une branche parabolique de direction celle de l'axe des ordonnées. Etudions la nature de la branche infinie au voisinage de $+\infty$.

$$\lim_{x \mapsto +\infty} \frac{f(x)}{x} = \frac{x}{x+1} \frac{(x+1)}{\ln(x+1)} = +\infty.$$

Donc (C_f) admet au voisinage de $+\infty$ une branche parabolique de direction celle de l'axe des ordonnées.

2. a.
$$f(-1) = 0$$
.

$$\lim_{\substack{x \mapsto -1^+ \\ \text{D'où}}} f(x) = 0 \text{ par quotient et } \lim_{\substack{x \mapsto -1^- \\ \text{X} \mapsto -1^+ \\ x \mapsto -1^-}} f(x) = f(-1) = 0.$$

Donc f est continue en -1.

Epreuve du 1er groupe

On a
$$f(0) = 0$$
.

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x \times \frac{x}{\ln(x+1)} = 0.$$
D'où
$$\lim_{x \to 0} f(x) = f(0).$$

Donc f est continue en 0.

2. b. Dérivabilité de f en -1.

$$\lim_{x \mapsto -1^{-}} \frac{f(x) - f(-1)}{x + 1} = \lim_{x \mapsto -1} \frac{(x + 1)}{(x + 1)} e^{-x - 1} = 1.$$

f dérivable en -1 à gauche et
$$f'_g(-1) = 1$$
.

$$\lim_{x \mapsto -1^+} \frac{f(x) - f(-1)}{x + 1} = \lim_{x \mapsto -1^+} \frac{x^2}{(x + 1)\ln(x + 1)} = -\infty.$$

Donc f non dérivable en -1 car non dérivable en -1 à droite.

Interprétation au point d'abscisse -1.

Au point d'abscisse -1, (C_f) admet une demi-tangente verticale et une demi-tangente de pente 1 à gauche.

$$\lim_{x \mapsto 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \mapsto 0} \frac{x}{\ln(x + 1)} = 1.$$

Donc f est dérivable en 0 et f'(0) = 1.

Interprétation au point d'abscisse 0.

 (\mathbf{C}_f) admet à l'origine une tangente de coefficient directeur 1.

3. a. Pour tout $x \in]-1, +\infty[\setminus \{0\}$ on a:

$$f'(x) = \left(\frac{x^2}{\ln(x+1)}\right)' = \frac{2x\ln(x+1) - \frac{x^2}{x+1}}{\left(\ln(x+1)\right)^2} = \frac{-x(-2\ln(x+1) + \frac{x}{x+1})}{\left(\ln(x+1)\right)^2}$$

$$f'(x) = \frac{-x g(x)}{(\ln(x+1))^2}.$$

Pour x < -1, $f'(x) = -xe^{-x-1}$.

- **4. a.** h est continue et strictement croissante sur $[0, +\infty]$, elle réalise donc une bijection de $[0, +\infty]$ vers $[0,+\infty]=J.$
- **4. b.** h^{-1} a le même sens de variation que h, elle est strictement croissante sur J.

4. c. <u>Figure</u>:

PARTIE C

1. a. Posons
$$u'(x) = \frac{1}{x^2}$$
 et $v'(x) = \frac{1}{x+1}$

Avec u (x) =
$$-\frac{1}{x}$$
 et v(x) = ln (x + 1).

Sur]0, +
$$\infty$$
[on a m (x) = $\frac{1}{x^2} \ln(x+1) + (-\frac{1}{x})(\frac{1}{x+1})$. (R

1. b. On a m (x) = (u (x)
$$v(x)$$
)'.

Pour tout $x \in]0, +\infty[$, on a H'(x) = m(x) avec m(x) = (u(x)v(x))'.

D'où on a:
$$H(x) = u(x)v(x) + c = -\frac{\ln(x+1)}{x} + c$$
.

On a sur]0, +
$$\infty$$
[, $\frac{1}{f(x)} = \frac{\ln(x+1)}{x^2}$.

On a sur
$$]0, +\infty[$$
 , $\frac{1}{f(x)}=\frac{\ln(x+1)}{x^2}$.
Or d'après (R): $\frac{\ln(x+1)}{x^2}=m$ (x) $+\frac{1}{x}\times\frac{1}{x+1}=m$ (x) $+\frac{1}{x}-\frac{1}{x+1}$.
Soit G une primitive de la fonction $x\mapsto\frac{\ln(1+x)}{x^2}$.

$$\int_{1}^{2} \frac{1}{f(x)} dx = \left[G(x) \right]_{1}^{2} = \left[H(x) + \ln(\frac{x}{x+1}) \right]_{1}^{2} = \left[-\frac{\ln(x+1)}{x} + c + \ln(\frac{x}{x+1}) \right]_{1}^{2} = -\frac{3 \ln 3}{2} + 3 \ln 2.$$

$$\int_{1}^{2} \frac{1}{f(x)} dx = 3 \left(\ln 2 - \ln \sqrt{3} \right) = 3 \ln \left(\frac{2\sqrt{3}}{3} \right).$$