5. Associative property is true. $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is the identity element. $(M_2(z), +$ is a monoid.

5.2 Groups

If G is a non-empty set and * is a binary operation, then (G *) is called a group if the following conditions are satisfied,

- 1) Closure Property, If $a, b \in G$, then $a * b \in G$.
- 2) Associative Property, If $a,b,c \in G$, then a*(b*c) = (a*b)*c
- 3) Existence of Identity element

There exists an identity element $e \in G$ such that for any $a \in G$, a * e = a = e * a

4) Existence of Inverse element

For each $a \in G$, there exist $a^{-1} \in G$ such that $a * a^{-1} = e = a^{-1} * a$

Furthermore if a*b=b*a for all $a,b\in G$, then G is called a commutative or Abelian group.

Example: The set Z of all integers with usual addition as operation is an abelian group.

Order of an element of a group

144

40

de.

the

lian

g,

The order of an element a of a group G is the smallest positive integer n such that $a^n = e$. It is denoted by o(a). If no such integer exists, we say that G is infinite order. Let $\{1,-1,l,-l\}$ be a multiplication group with identity 1. Then the order of the element 1 is 1 since $1^1 = 1$, order of the element -1 is 2 since $(-1)^2 = 1$ order of the element l is 4 since $(l)^4 = 1$, order of the element -l is 4 since $(-l)^4 = 1$.

5.2.1 Sub Group

Let G be a group, $\varphi \neq H$ is a subset of G then H is a subgroup of G if H itself is a group under the same binary operation of G. The group (Z, +) is a subgroup of the group (Q, +).

5.2.2 Cyclic Group

A Group (G,*) is called a cyclic group if every element of G can be expressed as some power of a particular element $\alpha \in G$. The element α is called the generator of the group G because for any $x \in G, x = \alpha^n$ for some $x \in G$.

For example, consider the group $G = \{1, -1, i, -i\}$ then (G, .) is a cyclic group generated by i. Since $(i)^1 = i$, $(i)^2 = -1$, $(i)^3 = -i$, $(i)^4 = 1$.

—I is also a generator of this group.

5.2.4 Symmetric Group

Let X be a non empty set. A permutation of X is a one-to-one function from X to X. The set G of all permutations on a nonempty set X under the binary operation \ast of right composition of permutations, is a group called permutation group.

If $X = \{1,2,3...n\}$, the permutation group is also called symmetric group denoted by S_n . The number of elements of S_n is n!.

For example, let S_3 be the set all permutations on the set $S=\{1,2,3\}$ is a group under the operation of right composition of permutations.

5.2.5 Direct Produce of two groups

Let (G, .) and (H, *) be groups. Define a binary operation, * on $G \times H$ by

 $(g_1, h_1) \cdot (g_2, h_2) = (g_1, g_2, h_1, *h_2)$ where $g_1, g_2 \in G$, $h_1, h_2 \in H$. Then $(G \times H, \bullet)$ is a group called direct product of G and H.

rheorem 5.2.1

For every group G prove that

- b) The inverse of each element of G is unique. a) The identity element of G is unique, **Proof:**
- a) Assume that e_1, e_2 be the two identity elements in the group G.

Since e_1 is the identity element in G, and $e_2 \in G$, $e_1e_2 = e_2 = e_2e_1$ (1)

Since e_2 is the identity element in G, and $e_1 \in G$, $e_1e_2 = e_1 = e_2e_1$ (2)

From (1) and (2) $e_1=e_2$. Hence the identity element in a group is unique.

b) Let $a \in G$, and suppose b and c are inverse elements of a. Since b is the inverse of a. ab = e = ba, Since c is the inverse of a, ac = e = ca where e is the identity element of G. Then b = eb = (ca)b = c(ab) = ce = c. Hence the inverse element of G is unique.

Theorem 5.2.2

Let H is a nonempty subset of G. Then H is subgroup of G if and only if

a) for all $a, b \in H \Rightarrow ab \in H$ b) $a \in H \Rightarrow a^{-1} \in H$.

Proof:

Assume that H is a subgroup of G. Then H is a group under the same binary operation in G. Hence H satisfies all conditions of a group.

So, $a, b \in H \Rightarrow ab \in H$ (Closure property)

 $a \in H \Rightarrow a^{-1} \in H$ (Existence of identity)

Conversely, assume that $\phi \neq H \subseteq G$ and H satisfying conditions $a, b \in H \Rightarrow ab \in H$, $a \in H \Rightarrow a^{-1} \in H$.

For all $a, b, c \in H \Rightarrow (ab)c = a(bc)$ in G so (ab)c = a(bc) in H. So associative property is true in H.

If $a \in H \Rightarrow a^{-1} \in H$ by closure property, $aa^{-1} \in H \Rightarrow e \in H$ identity element exists in H. So H satisfies all the properties of a group. Therefore, H is a sub group of G.

Theorem 5.2.3

If G is a group and $\phi \neq H \subseteq G$ with H is finite, then H is a subgroup of G if and only if H is closed under binary operation of G.

Inique.

Assume that $\phi \neq H \subseteq G$ and H is a finite subgroup of G. Prove that H is closed under binary operation of G. Since $H \subseteq G$ and H is a subgroup of G then H itself is a group under the same operation on G. Therefore, H is closed under the binary operation of G.

Conversely, assume that H is a finite subset of G and is closed under binary operation f G. ie, $a, b \in H \Rightarrow ab \in H$ for all $a, b \in H$. To prove that H is a subgroup of G.

Let $a \in H, a \in H \Rightarrow a, a \in H \Rightarrow a^2 \in H, a^3 \in H, a^4 \in H, \dots, a^n \in H, \dots$ (by closure

property). Since H is finite there must be repetitions in the collection.

That is, for some r>s>0, $a^r=a^s$. By cancellation in G, $a^{r-s}\in e\in H$ is the identity element in H. So, identity element exists in H. Since $r-s-1 \ge 0$, $a^{r-s-1} \in H \Rightarrow$ a^{r-s} $a^{-1} \in H$, $e. a^{-1} \in H \Rightarrow a^{-1} \in H$. Hence inverse exist in H. Therefore, H is a subgroup

Theorem 5.2.4

Let $(G, \cdot), (H, *)$ be groups with respective identities e_G, e_H . If $f: G \to H$ is a homomorphism, then

$$a) \ f(e_G) = e_H$$

a)
$$f(e_G) = e_H$$
 b) $f(a^{-1}) = [f(a)]^{-1}$ for all $a \in G$

c)
$$f(a^n) = [f(a)]^n$$
 for all $a \in G$ and $n \in Z$.

d) f(S) is a subgroup of H for each subgroup S of G.

Proof:

a) $e_H * f(e_G) = f(e_G)$ since e_H is the identity element in H. = $f(e_G \cdot e_G)$ since e_G is the identity element in G. $= f(e_G) * f(e_G)$ since f is a homomorphism.

Therefore, by right cancellation, $e_H = f(e_G)$.

b) Let $a, a^{-1} \in G$, $a \cdot a^{-1} = e_G$ is the identity in $G \cdot f(a, a^{-1}) = f(e_G) = e_H$ is the identity in H. Since f is a homomorphism $f(a \cdot a^{-1}) = f(a) * f(a^{-1}) = e_H$. So the inverse of f(a) is $f(a^{-1})$. So $[f(a)]^{-1} = f(a^{-1})$ for all $a \in G$

c) For all $a \in G$, by closure property, $a.a \in G$, $a.a.a \in G$, $a^n = a.a....a \in G$ by theorem 5.3.3.

tion in G.

e of a,

nent of G

16.

Η,

operty is

sts in H.

if H is

Since f is a homomorphism, f(a.a....ntimes) = f(a) * f(a) *ntimes, ie, $f(a^n) = [f(a)]^n$.

d) If S is a subgroup of $G, S \neq \emptyset$, $f(S) \neq \emptyset$. Let $x, y \in f(S)$. Then x = f(a) and y = f(b). for $a, b \in S$. Since S is a subgroup of G, $x * y = f(a) * f(b) = f(a \cdot b) \in f(S)$.

Finally, $x^{-1} = [f(a)]^{-1} = f(a^{-1}) \in f(S)$ since $a^{-1} \in S$. By theorem 5.2.2 f(S) is a

a166 f(H) => a-f(h), b=f(h2) ab = F(h) (ALW).

Prove that every subgroup of a cyclic group is cyclic.

Proof:

Let G be a cyclic group and a be the generator of G. Let H be the subgroup of G. Then each element of H has the form a^k for some $k \in \mathbb{Z}$.

For $H \neq \{e\}$, let t be the smallest positive integer such that $a^t \in H$.

Let $b \in H \Rightarrow b = a^s$ for some $s \in H$. By division algorithm, s = qt + r where $q, r \in Z$, $0 \le r < t$.

So $a^s = a^{qt+r} = a^{qt} a^r$. Consequently, $a^r = a^s \cdot a^{-qt} = b \cdot (a^t)^{-q}$. Since H is a subgroup of G, $a^t \in H \Rightarrow (a^t)^{-q} \in H$,

That is, $(a^t)^{-q}$, $b \in H \Rightarrow (a^t)^{-q}a^s \in H \Rightarrow a^{s-qt} \in H \Rightarrow a^r \in H$ which is a contradiction since $0 \le r < t$ and a^t is the smallest integer such that $a^t \in H$. There fore the only possibility is r=0. Thus, we have $s=qt\Rightarrow a^s=a^{qt}=(a^t)^q$. So, every element in H is generated by a^t . Thus H is cyclic.

Worked Example. 5.2

Example 5.2.1

Show that (A,*) be an abelian group where $A=\{a\in Q|a\neq -1\}$ and for any $a,b\in A$, a*b=a+b+ab

Solution:

- 1. For any $a, b \in A$, $a * b = a + b + ab \in A$: Closure property is satisfied
- 2. For any $a, b, c \in A$, (a * b) * c = (a + b + ab) * c= a+b+ab+c+(a+b+ab)c= a + b + c + ab + ac + bc + abc

$$a*(b*c) = a*(b+c+bc) = a+b+bc+c+(b+c+bc)a$$

= $a+b+c+ab+ac+bc+abc=(a*b)*c$

Associative property is true

- 3. For all $a \in A$ there exist $e \in A$ such that a * e = a. So a * e = a + e + ae = a. Then e(1 + a) = 0. Since a is arbitrary and $a \neq -1$, $1 + a \neq 0$. Therefore e = 0 is the identity element. So, identity element exists.
- 4. For any $a \in A$ there exist $b \in A$ such that a*b=0. ie. a+b+ab=0. Thus $b=\frac{-a}{1+a}$ is the inverse of a. So inverse exist.
- 5. a*b=a+b+ab=b+a+ba=b*a. So * is commutative... (A,*) is an abelian group.

Example 5.2.2

Show that Q^+ of all positive rational numbers from an abelian group under the operation * defined by $a*b=\frac{1}{2}ab,\ a,b\in Q^+$.

Solution:

- 1. For any $a, b \in Q^+$, $a * b = \frac{1}{2} ab \in Q^+$, Closure property is satisfied.
- 2. For any $a,b,c \in A$, $(a*b)*c = \left(\frac{1}{2}ab\right)*c = \frac{1}{4}(ab)c = \frac{1}{4}a(bc) = a*(b*c)$ Associative property is true
- 3. For all $a \in A$ there exist $e \in A$ such that $a * e = \frac{1}{2} ae$. So $a * e = \frac{1}{2} ae = a$. So $e = 2 \in Q^+$ is the identity element.
- 4. For any $a \in A$ there exist $b \in A$ such that a*b=2. ie. $\frac{1}{2}$ ab=2. Thus $b=\frac{4}{a}\in Q^+$ is the inverse element of a. So inverse exist.
- 5. $a * b = \frac{1}{2} ab = \frac{1}{2} ba = b * a$. So * is commutative. $(Q^+,*)$ is an abelian group.

Example 5.2.3

Show that (A,*) be a non abelian group where $A=R\times R$ and for any $a,b\in A$,

$$(a,b).(c,d) = (ac,bc+d)$$

Solution:

1.
$$(a,b)$$
. $(c,d) = (ac,bc+d) \in A$ Closure property is satisfied

2.
$$[(a,b).(c,d)].(e,f) = (ac,bc+d).(e,f) = (ace,(bc+d)e+f)$$

= $(ace,bce+de+f)$

$$(a,b).[(c,d).(e,f)] = (a,b).(ce,de+f) = (ace,bce+de+f)$$

= $[(a,b).(c,d)].(e,f).$

Associative property is true

3. For all
$$(a, b) \in A$$
 there exist $(e_1, e_2) \in A$ such that $(a, b) \cdot (e_1, e_2) = (ae_1, be_1 + e_2) = (a, b)$

So
$$ae_1 = a$$
, $be_1 + e_2 = b$. ie, $e_1 = 1$ and $e_2 = 0$.

Thus (1,0) $\in A$ is the identity element. So, identity exist in A.

4. For any
$$(a, b) \in A$$
 there exist $(c, d) \in A$ such that $(a, b) \cdot (c, d) = (1, 0)$

$$\Rightarrow$$
 $(ac, bc + d) = (1,0)$. Thus $ac = 1$, $bc + d = 0$ ie, $c = a^{-1}$ and $d = -ba^{-1}$

So the inverse of (a, b) is $(a^{-1}, -ba^{-1}) \in A$. Inverse exists.

$$5.(a,b).(c,d) = (ac,bc+d) \neq (ca,ad+b) = (c,d).(a,b)$$

∴ (A,*) is a non abelian group.

Example 5.2.4

Let * be a binery operation on N with m*n=m+n+k where k is a constant and $m,n\in N$. Show that * is commutative and associative.

Solution:

For any $m, n \in \mathbb{N}$, m * n = m + n + k = n + m + k = n * m. Therefore * satisfies commutative property.

For any $m, n, p \in N$,

$$(m*n)*p = (m+n+k)*p = m+n+k+p+k = m+n+2k+p$$

 $m*(n*p) = m*(n+p+k) = m+n+p+k+k = m+n+2k+p$

Therefore * satisfies the associative property.

Example 5.2.5

Show that any group G is abelian if and only if $(ab)^2 = a^2 b^2$ for all $a, b \in G$.

Solution:

Suppose G is abelian

Now
$$(ab)^2 = (ab)(ab)$$

= $a(ba)b$ by associative property
= $a(ab)b$ since G is abelian
= $(aa)(bb)$ by associative property
= $a^2 b^2$
Suppose $(ab)^2 = a^2 b^2$
 $(ab)(ab) = (aa)(bb)$

a(ba)b = a(ab)b by associative property (ba)b = (ba)b by cancellation property

(ba) = (ab) by cancellation property

Therefore, G is abelian.

Example 5.2.6

Prove that commutative property is invariant under homomorphism.

Solution:

Let $f: A \to B$ be a group homomorphism.

Suppose A is abelian

Then for any $a_1, a_2 \in A$ there exist $b_1, b_2 \in B$ such that $f(a_1) = b_1$ and $f(a_2) = b_2$.

Now $b_1 b_2 = f(a_1) f(a_2)$

= $f(a_1a_2)$ since f is a homomorphism

= $f(a_2a_1)$ since G is abelian

= $f(a_2)f(a_1)$ since f is a homomorphism

 $=b_2b_1.$

∴ B is commutative.

Example 5.2.7

If G is a group, prove that for all a) $(a^{-1})^{-1} = a$, b) $(ab)^{-1} = b^{-1}a^{-1}$.

Solution:

For any $a \in G$, $aa^{-1} = e$, the identity element in G. Which means the inverse of a^{-1} is a ie, $(a^{-1})^{-1} = a$.

Consider
$$(ab) (b^{-1}a^{-1}) = a(bb^{-1})a^{-1}$$
 by associative property
 $= (ae)a^{-1}$ Inverse exist in G
 $= aa^{-1}$ Identity exists in G
 $= e$ Inverse exists in G

Therefore, the inverse of ab is $b^{-1}a^{-1}$. So $(ab)^{-1} = b^{-1}a^{-1}$

Example 5.2.8

Prove that if H and K are subgroup of G then $H \cap K$ is a subgroup of G.

Solution:

Since H and K are subgroups of G, $e \in H$, $e \in K \Rightarrow e \in H \cap K$. The identity element exists. Let $x, y \in H \cap K \Rightarrow x, y \in H$ and $x, y \in K$

$$\Rightarrow xy \in H$$
 and $xy \in K$ by closure property of H and K .
 $\Rightarrow xy \in H \cap K$

Closure property is satisfied.

Let $a \in H \cap K \Rightarrow a \in H$ and $a \in K$

$$\Rightarrow a^{-1} \in H \text{ and } a^{-1} \in K \text{ since } H \text{ and } K \text{ are subgroups}$$

 $\Rightarrow a^{-1} \in H \cap K$

Therefore, the inverse element exists in $H \cap K$. $\therefore H \cap K$ is a subgroup of G.

Example 5.2.9

Prove that every cyclic group is abelian.

Solution:

Let (G,*) be a cyclic group with $a \in G$ as generator. Let $x,y \in G$. Then $x=a^m$ and $y=a^n$ where m and n are integers.

Now,
$$x * y = a^m * a^n = a^{m+n} = a^{n+m} = a^n * a^m = y * x. : G$$
 is abelian.

Example 5.2.10

In the group S_4 , let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$

Determine $\propto \beta$, $\beta \propto$, \propto^2 , \propto^{-1} , β^{-1} , $(\propto \beta)^{-1}$

Solution:

$$\propto \beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

$$\beta \propto = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$$
$$\alpha^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

$$\alpha^{-1} = \begin{pmatrix} 2 & 3 & 4 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$$

$$\beta^{-1} = \begin{pmatrix} 4 & 3 & 2 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

$$(\alpha \beta)^{-1} = \begin{pmatrix} 3 & 2 & 1 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

Example 5.2.11

solution:

Consider (S_3, \circ) where $X = \{1,2,3\}$ is a group under the operation of composition of permutation.

$$S_{3} = (f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}) \text{ where } f_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, f_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$f_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, f_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, f_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, f_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_{2} \circ f_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = f_{6}$$

$$f_{3} \circ f_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = f_{5}$$

•	f_1	f_2	f_3	f ₄	f_5	f_6
f_1	f_1	f_2	f_3	f ₄	f_5	f_6
f_2	f_2	f_3	f_1	f ₆	f ₄	f_5
f_3	f_3	f_1	f_2	f ₅	f ₆	f ₄
f_4	f ₄	f_5	f_6	f_1	f_2	f_3
f_5	f_5	f ₆	f ₄	f_3	f_1	f_2
f_6	f ₆	f ₄	f_5	f_2	f_3	f_1

From the table closure property, Associative property are true . For example

$$(f_3 \circ f_4) \circ f_5 = f_5 \circ f_5 = f_1 = f_3 \circ (f_4 \circ f_5)$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$
 is the identity element.

Also
$$f_1^{-1} = f_1$$
, $f_2^{-1} = f_3$, $f_3^{-1} = f_2$, $f_4^{-1} = f_4$, $f_5^{-1} = f_5$, $f_6^{-1} = f_6$.

Thus the inverse element for each element exist. So (S_3, \circ) is a group.

The symmetric group $(S_3 \circ)$ is not abelian since $f_2 \circ f_3 = f_1 \neq f_3 \circ f_4 = f_5$.

5.3 Cosets

If H is a subgroup of G, then for each $a \in G$ the set $aH = \{ah: h \in H\}$ is called the left coset of H in G. The set $Ha = \{ha: h \in H\}$ is the right cosets of H in G.

If the operation in G is addition then aH is a + H. Then the cosets are

$$a + H = \{a + h: h \in H\}$$
 and $H + a = \{h + a: h \in H\}$

Theorem: 5.3.1

If H is a subgroup of a finite group G, then for all $a,b\in G$ a) |aH|=|H| a) Either aH=bH or $aH\cap bH=\varphi$.

Proof:

- a) Since $aH = \{ah: h \in H\}$ then $|aH| \le |H|$. If |aH| < |H| we have $ah_i = ah_j$ where h_i and h_j are distinct elements of H. By left cancellation $h_i = h_j$. So |aH| = |H|.
- b) If $aH \cap bH \neq \emptyset$. Let $c \in aH \cap bH$ then $c \in aH$ and $c \in bH$. Let $c = ah_1 = bh_2$, for some $h_1, h_2 \in H$. Then $a = h_1^{-1} b h_2$ and $b = h_2^{-1} ah_1$ If $x \in aH$ then x = ah for some $h \in H$. So $x = ah = (bh_2h_1^{-1})h = b(h_2h_1^{-1}h) \in bH$ Then $aH \subseteq bH$

If $y \in bH$ then y = bh for some $h \in H$. So $y = bh = (h_2^{-1}ah_1)h = (ah_2^{-1}h_1)h \in aH$ Then $aH \subseteq bH$. There fore aH and bH are either identical or disjoint.

Theorem 5.3.2

Lagrange's Theorem

Statement

If G is a finite group of order n with H is a subgroup of G of order m, then m divides n.

Proof

If H = G the result follows. If m < n there exist an element $a \in G - H$. Since $a \notin H$, $aH \neq H$ so that $aH \cap H = \phi$.

If $G = aH \cup H$, |G| = |aH| + |H|, n = m + m = 2m Then m divides n and the theorem follows.

 $G \neq aH \cup H$ there exist an element $b \in G - \{aH \cup H\}$ with $bH \cap H = \varphi = bH \cap aH$ |G| = |aH| + |bH| + |H| = m + m + m. That is n = 3m. Then m divides n and the theorem follows

Otherwise there exist $c \in G - \{aH \cup bH \cup H\}$

Since the group is finite, this process terminates and $G = a_1 H \cup a_2 H \cup \cup a_k H$. So $n = m + m + m + \cdots \cdot k$ times = km. Therefore m divides n. Thus, the theorem follows in all cases.

Deductions from Lagrange's Theorem

a) The order of any element of a finite group is a divisor of the order of the group. Proof

Let G be the finite group and $a \in G$. Let the order of a is m. Then $a^m = e$ Let H be a cyclic subgroup of G generated by a. Then $H = \{a, a^2, a^3, \dots, a^m = e\}$.: O(H) = m.

By Lagrange's Theorem, O(H) is a divisor of O(G). ie, m is a divisor of O(G)

ie, o(a) is a divisor of O(G)

b) If G is a finite group of order n, then $a^n = e$ for any $a \in G$.

If m is the order of a, then $a^m = e$. Then m is a divisor of n. ie, n = km.

Now,
$$a^n = a^{km} = (a^m)^k = e^k = e$$
.

c) Every group of prime order is cyclic.

Let G be a group with o(G) = p where p is prime. Let $a \neq e \in G$. H is a cyclic sub group of G generated by a. By Lagrange's theorem $O(H) \mid p$. So O(H) = 1 or p since p is prime. If O(H) = 1, then a = e which is not possible since $a \neq e$. Hence o(H) = p Therefore G = H and H is cyclic. Hence G is cyclic.