Quantum Cryptography

from basics of quantum mechanics to secure key distribution

Christoph Hamsen

Berlin Crypto Meetup

Who am I?

- Studied Physics @ TU Ilmenau, MIT, TU Munich and Harvard
- Researched on quantum optics for PhD @ MPQ
- Developed software for robots @ Magazino
- Bringing IT security to software @ SSE

Podcasts enthusiast (Logbuch Netzpolitik, Lage der Nation) and frequent visitor to c3!

Cryptography and Key Distribution

Enter the photon!

David Nadlinger @ Ion Trap Quantum Computing Group at University of Oxford

Rempe Group @ Max Planck Institute of Quantum Optics

Quantum Key Distribution á la "BB84"

Attacks & Vulnerabilities

Hardware/Implementation attacks

Attack	Target component	Tested system	
Intersymbol interference	intensity modulator in Alice	research system	
K. Yoshino et al., poster at QCrypt (2016)			
Laser damage	any	ID Quantique, research system	
V. Makarov et al., Phys. Rev. A 94, 030302 (2016)			
Spatial efficiency mismatch	receiver optics	research system	
M. Rau et al., IEEE J. Quantum Electron. 21, 6600905 (2015); S. Sajeed et al., Phys. Rev. A 91, 062301 (2015)	15)		
Pulse energy calibration	classical watchdog detector	ID Quantique	
S. Sajeed et al., Phys. Rev. A 91, 032326 (2015)			
Trojan-horse	phase modulator in Alice	SeQureNet	
I. Khan et al., presentation at QCrypt (2014)			
Trojan-horse	phase modulator in Bob	ID Quantique	
N. Jain et al., New J. Phys. 16, 123030 (2014); S. Sajeed et al., arXiv:1704.07749			
Detector saturation	homodyne detector	SeQureNet	
H. Qin, R. Kumar, R. Alleaume, Proc. SPIE 88990N (2013)			
Shot-noise calibration	classical sync detector	SeQureNet	
P. Jouguet, S. Kunz-Jacques, E. Diamanti, Phys. Rev. A 87, 062313 (2013)			
Wavelength-selected PNS	intensity modulator	(theory)	
MS. Jiang, SH. Sun, CY. Li, LM. Liang, Phys. Rev. A 86, 032310 (2012)			
Multi-wavelength	beamsplitter	research system	
HW. Li et al., Phys. Rev. A 84, 062308 (2011)			
Deadtime	single-photon detector	research system	
H. Weier et al., New J. Phys. 13, 073024 (2011)			
Channel calibration	single-photon detector	ID Quantique	
N. Jain et al., Phys. Rev. Lett. 107, 110501 (2011)			
Faraday-mirror	Faraday mirror	(theory)	
SH. Sun, MS. Jiang, LM. Liang, Phys. Rev. A 83, 062331 (2011)			
Detector control	single-photon detector	ID Quantique, MagiQ,	
I. Gerhardt et al., Nat. Commun. 2, 349 (2011); L. Lydersen et al., Nat. Photonics 4, 686 (2010)		research system	

Real world QKD

Handle losses due to e.g. sources, quantum channel, detector, Eve, ...

→ Key Distillation

→ Transmission losses ultimately limit QKD distance!

"Applications"

- Many research groups world-wide
 - Components
 - Theory
- Commercial systems
 - IDQuantique, MagiQ Technologies,
 QuintessenceLabs, SeQureNet, ...
- Several long-distance test networks...

Quantum Backbone

- Total Length 2000 km
- **2013.6-2016.12**
- 32 trustable relay nodes31 fiber links
- Metropolitan networks

Existing: Hefei, Jinan

New: Beijing, Shanghai

- Customer: China Industrial
- & Commercial Bank; Xinhua

News Agency; CBRC

Q. Zhang, talk at QCrypt 2014

Challenges & Developments

Developments

- Quantum Relays and Repeaters
- Device-independent QKD (E91 protocol)
- Multi-mode, quantum signatures, quantum one-way functions, ...

the end

Thank you for your attention!

You're welcome ;-)

Bob

Eve

