Лекція 5

ОСНОВНІ ПРАВИЛА КОМБІНАТОРИКИ

Нехай B — довільна скінчена множина. Позначимо через $\operatorname{card}(B)$ кількість елементів множини B.

1. Правило вієкції

Нехай X і Y дві довільні множини. Якщо задано правило, згідно з яким кожному елементу $x \in X$ відповідає елемент $y \in Y$, то говорять, що задано відображення множини X на множину Y. Якщо позначити правило буквою f, то відображення множини X в множину Y позначають $f: X \to Y$. Якщо згідно з відображенням f елемент $y \in Y$ відповідає елементу $x \in X$, то y називається образом x, а x — npoofpasom y.

Приклад 1. Нехай X — множина всіх людей, які живуть на нашій планеті, Y — множина всіх країн світу. Визначимо правило f наступним чином: f(x) — це країна, в якій проживає людина x. Ясно, що f — це відображення множини X в множину Y. Зауважимо, що для різних $x_1 \neq x_2$ цілком можливо, що $f(x_1) = f(x_2)$.

Відображення називається *бієкцією*, якщо кожному елементу $x \in X$ відповідає тільки один елемент $y \in Y$, а кожний елемент $y \in Y$ відповідає тільки одному елементу $x \in X$.

⁰Printed from the file [discretka_L=04.tex] on 25.7.2013

Приклад 2. Обидві множини X і Y співпадають з множиною дійсних чисел. Відображення f(x) = x є бієкцією, а $f(x) = x^2$ — ні.

Правило 1. Нехай множини X і Y мають скінчену кількість елементів. Якщо існує бієкція між X і Y, то $\operatorname{card}(X) = \operatorname{card}(Y)$.

Доведення правила бієкції. Для зручності позначимо $m = \operatorname{card}(X)$ та $n = \operatorname{card}(Y)$. Нехай $X = \{x_1, \ldots, x_m\}$ і $Y = \{y_1, \ldots, y_n\}$. Запишемо таблицю з елементів множини X і елементів множини Y, які їм відповідають згідно відображення f:

(1)
$$\begin{array}{cccc} x_1 & \dots & x_m \\ \downarrow & \dots & \downarrow \\ f(x_1) & \dots & f(x_m) \end{array}$$

Зафіксуємо $i \leq m$. Оскільки $f(x_i) \in Y$, то існує $y_j \in Y$, для якого $y_j = f(x_i)$. Оскільки f — бієкція, всі елементи $f(x_1), \ldots, f(x_m)$ різні. Їх сукупність є підмножиною Y. Тому $m \leq n$. Як би m < n, то знайшовся б такий елемент $y_0 \in Y$, який відрізнявся б від всіх елементів другого рядка таблиці. Позначимо елемент з X, який відповідає y_0 , через x_0 . Знайдемо x_0 в таблиці. Якщо елемент x_0 знаходиться в таблиці на позиції i, то йому відповідає елемент $f(x_i)$. Таким чином, і y_0 , і $f(x_i)$ відповідають x_0 . З означенням бієкції це неможливо. Тобто m = n. \square

2. Правило додавання

O6'еднанням множин A і B називається сукупність елементів, кожний з яких належить хоча б одній з множин A

і B (позначається $A \cup B$). Перетином множин A і B називається сукупність елементів, кожний з яких належить кожній з множин A і B (позначається $A \cap B$).

Нехай A_1,\ldots,A_n скінчені множини. Тобто $\mathrm{card}(A_i)<\infty,$ $1\leq i\leq n.$ Утворимо їхнє об'єднання

$$A = \bigcup_{i=1}^{n} A_i.$$

Правило 2. Припустимо, що множини $A_1, ..., A_n$ попарно не перетинаються, тобто $A_i \cap A_j = \emptyset$, $i \neq j$. Тоді

(2)
$$\operatorname{card}(A) = \operatorname{card}(A_1) + \dots + \operatorname{card}(A_n) = \sum_{i=1}^n \operatorname{card}(A_i).$$

Доведення правила додавання. Дійсно, за означенням об'єднання кожний елемент $a \in A$ входить принаймні в одну із множин A_1, \ldots, A_n . Оскільки вони попарно не перетинаються, то існує тільки одна множина серед A_1, \ldots, A_n , яка містить a. Тому a рахується тільки один раз в правій частині (2). \square

Задача 1. Квадрат із стороною довжини 4 розбили на 16 однакових частин 4-ма лініями, паралельними вісі Ох, і 4-ма лініями, паралельними вісі Оу. Скільки квадратів можна нарахувати в такій картинці?

Розв'язання задачі 1. Очевидно, що паралельні прямі проведені на однаковій відстані одна від одної. Позначимо через A множину всіх квадратів на цій картинці, а через A_i , $1 \le i \le 4$, — множину квадратів, довжина сторони яких дорівнює i. Наприклад, A_1 — це множина квадратів, довжина сторони яких дорівнює 1. Зрозуміло,

що $A=A_1\cup A_2\cup A_3\cup A_4$ і, крім цього, $\operatorname{card}(A_1)=16$ та $\operatorname{card}(A_4)=1$ Нескладно також побачити, що $\operatorname{card}(A_2)=9$, $\operatorname{card}(A_3)=4$. Оскільки множини A_1,A_2,A_3,A_4 попарно не перетинаються, то згідно з правилом додавання $\operatorname{card}(A)=16+9+4+1=30$.

Задача 2. Скільки ходів на шаховій дошці 8×8 може зробити король?

Розв'язання задачі 2. Кількість ходів, які король може зробити з фіксованої клітинки, залежить від положення цієї клітинки на шаховій дошці. Клітинки на дошці позначимо через K_{ij} , $1 \le i, j \le 8$, в залежності від їх положення, причому K_{11} — це ліва нижня клітинка. З клітинки K_{11} король може зробити 3 ходи, з клітинки K_{12} — 5 ходів, з клітинки K_{22} — 8 ходів. Розглянемо множину клітинок A_3 , A_5 і A_8 , з яких король може зробити 3, 5 і 8 ходів відповідно. Якщо A — це множина всіх клітинок дошки, то $A = A_3 \cup A_5 \cup A_8$. Оскільки множини попарно не перетинаються, то згідно з правилом додавання $\operatorname{card}(A) = \operatorname{card}(A_3) + \operatorname{card}(A_5) + \operatorname{card}(A_8)$. А оскільки $\operatorname{card}(A_3) = 4$, $\operatorname{card}(A_5) = 24$ і $\operatorname{card}(A_8) = 64 - 4 - 24 = 36$, то кількість можливих ходів короля ε 4 × 3 + 24 × 5 + 36 × 8 = 12 + 120 + 288 = 420.

3. Правило множення

Нехай X і Y — дві довільні множини. Сукупність векторів $(x,y), x \in X, y \in Y$, називається декартовим добутком множин X і Y. Позначення: $X \times Y$. Декартовим добутком множин X_1, \ldots, X_n називається сукупність векторів $(x_1, \ldots, x_n), x_1 \in X_1, \ldots, x_n \in X_n$. Позначення: $X_1 \times \cdots \times X_n$

Правило 3. Припустимо, що кожна з множин X_1, \ldots, X_n є скінченою. Тоді їхній декартів добуток $X_1 \times \cdots \times X_n$

також має скінчену кількість елементів, причому

(3)
$$\operatorname{card}(X_1 \times \cdots \times X_n) = \operatorname{card}(X_1) \ldots \operatorname{card}(X_n).$$

Наслідок 1. *Нехай множини X та Y є скінченими. Тоді* $\operatorname{card}(X \times Y) = \operatorname{card}(X) \operatorname{card}(Y)$.

Доведення правила множення. Позначимо $n_i = \operatorname{card}(X_i)$, $1 \leq i \leq n$. Спочатку розглянемо випадок n=2. Будемо користуватись позначеннями $X=X_1, Y=X_2$. Всі елементи $X \times Y$ можна розмістити у вигляді таблиці

В цій таблиці n_1 рядків і n_2 стовпців. Тому кількість елементів в ній дорівнює n_1n_2 . Це і доводить правило множення для n=2.

Нехай тепер n>2. Скористаємось методом математичної індукції. Базою індукції є випадок n=2, який ми вже розглянули вище. Припустимо, що правило множення є справедливим для $k=1,2,\ldots,n-1$. Доведемо його для k=n. Позначимо

$$X = X_1 \times \cdots \times X_{n-1}, \qquad Y = X_n.$$

Тоді $X_1 \times \cdots \times X_n = X \times Y$. Згідно з вже розглянутим випадком $\operatorname{card}(X \times Y) = \operatorname{card}(X) \times \operatorname{card}(Y)$. Згідно з припущенням математичної індукції

$$\operatorname{card}(X) = \operatorname{card}(X_1 \times \cdots \times X_{n-1}) = \operatorname{card}(X_1) \dots \operatorname{card}(X_{n-1}).$$

Це і доводить правило множення (3). \square

4. ОСНОВНЕ ПРАВИЛО КОМБІНАТОРИКИ

Правило множення часто зручно формулювати наступним чином. Нехай деяка операція O здійснюється за допомогою дій D_1, \ldots, D_k , які виконуються послідовно. Цей факт ми записуємо так: $O = D_1 \otimes \cdots \otimes D_k$.

Приклад 3. Нехай $O = \{$ записати слово з 4-х літер $\}$, а $D_i = \{$ записати i-у літеру $\}$, $1 \le i \le 4$. Оскільки кожне слово отримується послідовним записом літер у позиціях 1, 2, 3 та 4, то $O = D_1 \otimes D_2 \otimes D_3 \otimes D_4$.

Правило 4. Нехай дію D_i , $1 \le i \le k$, можна виконати n_i способами. Тоді операцію O можна здійснити $n_1 \dots n_k$ способами.

Це правило називається основним правилом комбінаторики.

Доведення. Доведемо, що основне правило комбінаторики є еквівалентним правилу множення. Для цього розглянемо k множин $X_1 = \{1, \ldots, n_1\}, \ldots, X_k = \{1, \ldots, n_k\}.$

Кожний вектор $(x_1,\ldots,x_k)\in X_1\times\cdots\times X_k$ можна інтерпретувати як певний результат виконання дій D_1,\ldots,D_k . Цей результат отримується, якщо дія D_i виконується способом номер $x_i,\ 1\leq i\leq k$. Тоді операція O закінчується результатом, який відповідає вектору (x_1,\ldots,x_k) . Таким чином, ми співставляємо кожному способу, яким реалізується операція O, вектор із декартового добутку $X_1\times\cdots\times X_k$. Таке співставлення є взаємно однозначною відповідністю між $X_1\times\cdots\times X_k$ і множиною способів реалізації операції O. Згідно з правилом бієкції це означає, що ці множини мають однакову кількість елементів, що і доводить необхідне твердження. \square

Задача 3. З міста A в місто B веде 5 доріг, а з B в C — 4 дороги. Скільки існує різних шляхів з A в C?

Розв'язання задачі 3. Операцію $O = \{$ вибрати шлях з A в $C \}$ можна представити як результат виконання двох дій $O = D_1 \otimes D_2$, де $D_1 = \{$ вибрати дорогу з A в $B \}$ і $D_2 = \{$ вибрати дорогу з B в $C \}$. Дію D_1 можна здійснити 5 способами, а дію $D_2 - 4$ способами. Згідно з правилом множення операцію O можна здійснити 20 способами.

Задача 4. Нехай X i Y ∂si cкінчені множини. Скільки існує різних відображень X s Y?

Розв'язання задачі 4. Нехай $m = \operatorname{card}(X)$ і $n = \operatorname{card}(Y)$. Кожне відображення f можна представити у вигляді таблиці (1). Розглянемо дії D_i , 1 < i < m:

 $D_{i} = \{$ вибрати образ елемента x_{i} , тобто вибрати $f(x_{i})\}$.

Кількість способів здійснити дію D_i однакова для всіх $1 \leq i \leq m$ і дорівнює n. Тому згідно з основним правилом комбінаторики операцію

$$O = \{$$
вибрати відображення $\} = D_1 \otimes \cdots \otimes D_m$

можна здійснити n^m способами. Це означає, що існує n^m різних відображень множини X в множину Y.

Задача 5. Скільки існує способів вибрати пару полів на шаховій дошці 8×8 так, щоб одне поле було білим, а друге — чорним?

Розв'язання задачі 5. Нехай X — це множина білих полів, а Y — множина чорних полів. Якщо використовувати спосіб нотації в шахах, то $X = \{a1, a3, \ldots, h8\}, \ Y = \{a2, a4, \ldots, h7\}$. Зрозуміло, що $\operatorname{card}(X) = \operatorname{card}(Y) = 32$. Запитання задачі можна сформулювати так: скільки існує пар (x,y), таких, що $x \in X$, а $y \in Y$? Ясно, що це запитання стосується кількості елементів декартового дрбутку $X \times Y$. Тобто відповідь в задачі така: $32 \cdot 32 = 1024$.