Όνομα Άσκησης: Παλινδρομικά Τετράγωνα (Palindromic Squares)

Πηγή: Usaco

Εκφώνηση

Παλινδρομικός, ή παλίνδρομος, καλείται ένας αριθμός ο οποίος όταν τα ψηφία του διαβάζονται από το τελευταίο προς το πρώτο προκύπτει πάλι ο ίδιος αριθμός με αυτόν. Π.χ. ο αριθμός 12321. Αν δοθεί η βάση Β (2 <= B <= 20 με βάση δέκα) να βρεθούν όλοι οι ακέραιοι N (1 <= N <= 300 με βάση 10) των οποίων το τετράγωνο τους είναι ένας παλινδρομικός αριθμός. Να χρησιμοποιηθούν οι χαρακτήρες 'Α', 'Β' για τα ψηφία 10, 11...κλπ.

Δεδομένα εισόδου (palsquare.in)

Ο αριθμός B, η βάση (2 \leq B \leq 20) Π.χ. 2 για δυαδικό, 10 για δεκαδικό

Δεδομένα εξόδου (palsquare.out)

Ζευγάρια ακεραίων εκ των οποίων ο δεύτερος είναι το παλινδρομικό τετράγωνο του πρώτου

Παράδειγμα εισόδου

10

Παράδειγμα εξόδου

11 121 22 484

26 676

101 10201

111 12321

121 14641 202 40804

212 44944

264 69696

Επεξήγηση

Υπολογίζουμε τα τετράγωνα των αριθμών από το 1 μέχρι το 300 και ελέγχουμε ποια είναι παλίνδρομοι.

Hints

Μετατρέψτε τους αριθμούς σε strings.

Λύση

```
#include <fstream>
#include <string>
using namespace std;
string num_to_string(int N, int B) {
  if (N == 0)
    return "0";
  char numbers[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
  string result = "";
  do {
     result.push back(numbers[N % B]);
    N /= B;
  } while (N);
  return string(result.rbegin(), result.rend());
bool is palindrome(const string &snum) {
  string r(snum.rbegin(), snum.rend());
  return r == snum;
int main() {
  ifstream fin("palsquare.in");
  ofstream fout("palsquare.out");
  int base;
  fin >> base;
  for (int i = 1; i \le 300; i++) {
    string square = num to string(i * i, base);
    if (is palindrome(square)) {
      fout << num to string(i, base) << " " << square << endl;</pre>
  }
  fin.close();
  fout.close();
 return 0;
}
```