

Quadratic Equations

$$\alpha + \beta = \frac{-b}{a}$$

$$\alpha\beta = \frac{c}{a}$$

$$|\alpha - \beta| = \frac{\sqrt{D}}{|a|}$$

Sameer Chincholikar B.Tech, M.Tech - IIT-Roorkee

- **⊘ 10+** years Teaching experience
- Taught 1 Million+ Students
- **100+** Aspiring Teachers Mentored

Q Search

livedaily.me/jee

Unacademy Subscription

- **+** LIVE Polls & Leaderboard
- **+ LIVE Doubt** Solving
- **+ LIVE** Interaction

Performance Analysis

Weekly Test Series DPPs & Quizzes

♣ India's BEST Educators

Unacademy Subscription

If you want to be the BEST "Learn" from the BEST

Top Results T

99.95

Ashwin Prasanth 99.94

Tanmay Jain 99.86

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Aravindan K Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

Vaishnovi Arun 99.58

Devashish Tripathi 99.52

Maroof 99.50

Tarun Gupta 99.50

Siddharth Kaushik 99.48

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

Shrish 99.28

Yash Bhaskar 99.10

99.02

98.85

Ayush Gupta 98.67

Megh Gupta 98.59

Naman Goyal 98.48

MIHIR PRAJAPATI 98.16

LET'S BEGIN!!

Homework Questions

If α , β , γ' are the roots of the cubic $x^3 + qx + r = 0$ then find the

equation whose roots are $\alpha\beta$, $\beta\gamma$, $\gamma\alpha$.

$$\begin{array}{c}
\alpha \beta 7 = -2 \\
\beta 7 = -2
\end{array}$$

$$\begin{array}{c}
\beta 7 = -2
\end{array}$$

$$\begin{array}{c}
7 \times = -2
\end{array}$$

$$\alpha^3 + 2\alpha + 2 = 0$$

$$\frac{\Delta}{M^{2}} = \frac{\Delta}{N} = \Delta = \left(-\frac{\Delta}{N}\right)$$

$$= \left(\frac{-\lambda}{\lambda}\right)^{2} + 2\left(\frac{-\lambda}{\lambda}\right) + \lambda = 0$$

$$-x^3 - 2xx^2 + xx^3 = 0$$

$$\pi^{3} - 9\pi^{2} - 8^{2} = 0$$

If $x^2 - 3x + 2$ is one of the factors of the expression $x^4 - px^2 + q$, then:

jee

A.
$$p = 4, q = 5$$

C.
$$p = -5$$
, $q = -4$

$$1 - p + 9 = 0$$

$$\frac{1}{2^2 - 3n + 2} = 2(1)$$

$$Q(\lambda)$$

The roots of the quadratic equation, $\frac{1}{2}x^2 + bx + c = 0$ is given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The expression

D = b² - 4ac

is called the

discriminant of
the quadratic
equation.

$$59: n^{2} + 2n + 2 = 0$$

$$\chi = -2 \pm \sqrt{4 - 8}$$

- A. Real and equal
- 🕰 Real and unequal

- B. Complex
- **D.** None of these.

$$D = (-2a)^{2} - 4(1)(a^{2} - 5^{2} - 6^{2})$$

$$= 4a^{2} - 4a^{2} + 45^{2} + 46^{2}$$

$$= 4(6)^{2} + 46^{2}$$

If $\sin^2 \alpha \cos^2 \alpha = \sin^2 \beta$ then the roots of the equation

jee

- $x^2 + 2x \cot \beta + 1 = 0$ are always
 - A. Equal
 - **B.** Jmaginary
- C. Real and distinct
 - D. Greater than 1

$$= 4 \left(\frac{1}{\sin^2 \beta} - 2 \right)$$

$$D = 9\left(\frac{4}{\sin^2 2\alpha} - 2\right)$$

$$= 8\left(\frac{2 - \sin^2 2\alpha}{\sin^2 2\alpha}\right)$$

Let $p, q \in \{1, 2, 3, 4\}$. The number of equations of the form

 $px^2 + qx + 1 = 0$ having real roots is

$$9 = 1 | 9 = 2,3,4$$

$$= 2$$
 $q = 3, 4$
 $= 3$ $q = 4$

Let **S** be the set of all non-zero real numbers a such that the quadratic equation $ax^2 - x + a = 0$ has two distinct real roots x_1 and x_2 satisfying the inequality $|x_1 - x_2| < 1$. Which of the following intervals is (are) a subset (s) of S?

$$\left(-\frac{1}{2}, -\frac{1}{\sqrt{5}}\right)$$

$$\mathbf{B.} \quad \left(0, \frac{1}{\sqrt{5}}\right)$$

$$\mathbf{c.} \ \left(\frac{1}{\sqrt{5}}, 0\right)$$

$$\left(\frac{1}{\sqrt{5}},\frac{1}{2}\right)$$

$$\alpha x^2 - x + \alpha = 0$$

$$4a^{2}-1<0$$
 $(2a+1)(2a-1)<0$

jee

$$|n_1-x_2| = \sqrt{D} < |sa^2-170|$$
 $(5sa-1)(5sa+1) > 0$

$$\int D < |a|$$

$$D < a^2$$

Important Results For the quadratic: $ax^2 + bx + c = 0$

If <u>a, b and</u> c are rational and **D > 0** but is NOT a perfect square then roots are **conjugate surds** of each other

$$8: n^{2} - 2n - 2 = 0$$

$$N = 2 \pm \sqrt{48}$$

$$1 + \sqrt{5}$$

Important Results For the quadratic: $ax^2 + bx + c = 0$

If **a, b, c** are real and **D < 0** then roots are complex conjugate of each other.

$$\frac{\xi g}{x^2 + 2x + 2} = 0$$

Important Results For the quadratic: $ax^2 + bx + c = 0$

If **a, b and c** are rational and **D > 0** and is a perfect square then roots are rational.

$$\pi = -.5 \pm JD = -.5 \pm Jp^2 = (-.5 \pm p)$$
 $2a = 2a = 2a$

Important Results For the quadratic: $ax^2 + bx + c = 0$

If **a, b, c** are **odd integers** then the quadratic cannot have rational roots

$$5^{2} - 4ac = p^{2}$$

 $5^{2} - p^{2} = 4ac$
 $(5+p)(b-p) = 4ac$

$$(b+p)(b-p) = 4(a)(c)$$
odd
even
$$(odd)$$

$$(odd)$$

$$(odd)$$

$$(6+p)(b-p) = 4aC$$

$$\begin{cases}
6 = 2M + 1 \\
p = 2n + 1
\end{cases}$$

$$6+p = 2(M+n+1)$$

$$6-p = 2(M-n)$$

$$2(m+n+1) 2(m-n) = 4aC$$
 $(m+n+1)(m-n) = a-C$
 $(0+1) > E$ odd odd $(E+1) > 0 \cdot E$

If $2 + i\sqrt{3}$ is a root of the equation $x^2 + px + q = 0$, where p and q are real, then (p, q) =

$$\pi^2 + p\pi + q = 0$$

$$\alpha = 2 + i \int_3$$

$$\begin{cases} \alpha + \beta = -P \\ \alpha \beta = 2 \end{cases}$$

$$(2+i53)(2-i53)$$

$$=(2)^{2}-(LS_{3})^{2}$$

If D₁ and D₂ are the discriminant of two quadratic equations then

1. If $D_1 + D_2 \ge 0 \Rightarrow$ at least one of the equation has real roots

$$2 + 9 = 6$$

Nature of Roots

If D₁ and D₂ are the discriminant of two quadratic equations then

2. If $D_1 + D_2 < 0 \Rightarrow$ at least one of the equation has imaginary roots

Nature of Roots

If D₁ and D₂ are the discriminant of two quadratic equations then

If $D_1D_2 < 0 \Rightarrow$ one equation has real and distinct root and other has imaginary roots

Nature of Roots

If D₁ and D₂ are the discriminant of two quadratic equations then

If $D_1D_2 > 0 \Rightarrow$ either both equation has real and distinct roots or both has imaginary roots

Consider the equations $x^2 + 2bx + (c - 1) = 0$, and $4x^2 + cx + (b - 1) = 0$

- A. Both equations have real roots
- **B.** At least one equation has real roots
- **C.** Both equations have imaginary roots
- D. At least one equation has imaginary roots

$$\begin{cases} D_1 = 4b^2 - 4(c-1) \\ D_2 = c^2 - 4(4)(b-1) \end{cases}$$

$$D_{1} + D_{2} = \frac{4b^{2} - 4c + 4}{4c^{2} - 16b + 4}$$

$$= \frac{4(b^{2} - 4b + 4)}{4(b^{2} - 4c + 4)}$$

$$= \frac{4(b^{2} - 4c + 4)}{4(b^{2} - 4c + 4)}$$

* D, +D2 < O

atleast one of D, &D, is negative

=) atleast one son has imag. roots.

If α and β are the roots of $x^2 + px + q = 0$ and α^4 , β^4 are the roots of $x^2 - rx + s = 0$, then the equation $x^2 - 4qx + 2q^2 - r = 0$ has always

- A two real roots
- **B.** two positive roots
- **C.** two negative roots
- one positive and one negative root

$$\begin{cases} \alpha + \beta = -P - D \\ \alpha \beta = 2 \end{cases}$$

$$x'+\beta'=x-3$$

$$x'+\beta'=S+5$$

2-49x+29-2=0 $=9((x^2+\beta^2)^2$

$$D = 169^{2} - 4(29^{2} - 2)$$

$$= 89^{2} + 42$$

$$= 4(29^{2} + 2)$$

= 4(2(xB) + 4, + b)

NoW:

#JEELive Daily Schedule

Namo Sir | Physics

6:00 - 7:30 PM

Ashwani Sir | Chemistry

7:30 - 9:00 PM

Sameer Sir | Maths

9:00 - 10:30 PM

12th

Jayant Sir | Physics

1:30 - 3:00 PM

Anupam Sir | Chemistry

3:00 - 4:30 PM

Nishant Sir | Maths

4:30 - 6:00 PM

livedaily.me/jee

- **+** LIVE Polls & Leaderboard
- **LIVE Doubt** Solving
- + LIVE Interaction

Performance Analysis

- Weekly Test Series
- DPPs & Quizzes

♣ India's BEST Educators

Unacademy Subscription

If you want to be the BEST "Learn" from the BEST

Top Results T

Ashwin Prasanth 99.94

Tanmay Jain 99.86

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

99.58

Devashish Tripathi 99.52

Maroof 99.50

Tarun Gupta 99.50

Siddharth Kaushik 99.48

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

99.28

Yash Bhaskar 99.10

98.85

Ayush Gupta 98.67

Megh Gupta 98.59

Naman Goyal 98.48

MIHIR PRAJAPATI 98.16

Step 1

ALL STARS BATCH FOR JEE MAIN 2021

Batch Starting from 9th June

EMERGE 3.0 BATCH

JEE Main & Advanced 2023 Started on 12th May

All Stars Batch: JEE Main 2021

Upcoming Batches in June

Evolve Batch (Class 12th): JEE Main & Advanced 2022 Starts on 2nd June 2021

Emerge Batch (Class 11th): JEE Main & Advanced 2023 Starts on 8th June 2021

Evolve Batch (Class 12th): JEE Main & Advanced 2022 Starts on 9th June 2021

Starts on 9th June 2021

Emerge Batch (Class 11th): JEE Main & Advanced 2023 Starts on 16th June 2021

INDIA'S BIGGEST WEEKLY SCHOLARSHIP TEST

SCAN NOW TO ENROLL

For IIT-JEE Aspirants

Enroll for Free

Win Scholarship from a pool of

₹ 4 Crore
Terms and conditions apply

Take it live from android

IIT-JEE COMBAT

Every Sunday at 11 AM

SAMEERLIVE

Thank you

#JEE Live Daily

Download Now!