Coordinated Sampling

- Lets start with sampling 1 element..
- We get a stream of items want to stay with 1 uniformly random

1 2 3 4 5 6 7 8

- Lets start with sampling 1 element..
- We get a steam of items want to stay with 1 uniformly random

1

Sample: 1

- Start with 1 element...
- We get a steam of items want to stay with 1 uniformly random

1 2

Sample: 1

- Start with 1 element...
- We get a steam of items want to stay with 1 uniformly random

1 2 3

Sample: 1

- Start with 1 element...
- We get a steam of items want to stay with 1 uniformly random

1 2 3

Sample: 3

Reservoir sampling (Vitter 85)

- Start with 1 element...
- We get a steam of items want to stay with 1 uniformly random

1 2 3 4

Sample: 3

If an item appears more than once?

Min hash

Choose at random a hash function h from some family H

Your sample is the item x with min h(x)

Need h to be min-wise independent..

"Permanent random numbers"

We shall assume that $h(x) \in U[0,1]$

h(x_i) are independent

Ok, so lets sample k items

 k-mins: Repeat the experiment k times with h₁,h₂,...,h_k

Bottom-k: Take the k smallest

Ok, so lets sample k items

 k-mins: Repeat the experiment k times with h₁,h₂,...,h_k Sampling with replacement

Bottom-k: Take the k smallest Sampling without replacement

Develop estimators

Develop estimators

For the size of the set = # of distinct items?

 For the size of selected subsets (say, the number of green items)?

Estimators (# greens: |G|)

Let n = #distinct items (assume it is known)

Estimate the total # of green items to be g·(n/k)

Adjusted weights (HT 52)

- Let p (=k/n) be the probability that item x is sampled
- Let the adjusted weight of x be

$$a(x) = \begin{cases} 1/p = \frac{n}{k} & \text{if } x \text{ is sampled} \\ 0 & \text{otherwise} \end{cases} E[a(x)] = 1$$

Estimate | G | by

$$g\frac{n}{k} = \sum_{x \in S \cap G} \frac{1}{p} = \sum_{x \in G} a(x)$$

Adjusted weights (HT 52)

- Let p (=k/n) be the probability that item x is sampled
- Let the adjusted weight of x be

$$a(x) = \begin{cases} 1/p = \frac{n}{k} & \text{if } x \text{ is sampled} \\ 0 & \text{otherwise} \end{cases} E[a(x)] = 1$$

Unbiased:

$$E\left[g\frac{n}{k}\right] = E\left[\sum_{x \in S \cap G} \frac{1}{p}\right] = E\left[\sum_{x \in G} a(x)\right] = \sum_{x \in G} E\left[a(x)\right] = |G|$$

Caveats

- We do not really know n = #distinct items
- So we do not know the adjusted weight (n/k)
- In fact, often we want to estimate n itself?

Terminology

When items are unweighted I refer to h(x)=r(x)
as the rank of x

- Recall: a ``point'' in our sample space is an assignment of ranks ∈ U[0,1] to the elements
- Lets condition on the ranks assigned to all elements but x
- What is the probability that we sample x?

Conditioned adjusted weights

• Let p be the probability that item x is sampled conditioned on $r(x_i) = \beta_i$, $x_i \neq x$

•
$$p = r_k^{(-x)}$$

$$a(x) = \begin{cases} 1/p = 1/r_k & \text{if } x \text{ is sampled} \\ 0 & \text{otherwise} \end{cases} E[a(x)] = 1$$

Estimate | G | by

$$g\frac{1}{r_k^{(-x)}} = \sum_{x \in S \cap G} \frac{1}{p} = \sum_{x \in G} a(x)$$

- How do we know $r_k^{(-x)}$?
- Lets keep with the sample the k+1 smallest hash value, \mathbf{r}_{k+1}
- $r_k^{(-x)} = r_{k+1}$ if x is in the sample

Conditioned adjusted weights

- Let p be the probability that item x is sampled conditioned on $r(x_i) = \beta_i$, $x_i \neq x$
- $p = r_{k+1}$

$$a(x) = \begin{cases} 1/p = 1/ & \text{if } x \text{ is sampled} \\ 0 & \text{otherwise} \end{cases} E[a(x)] = 1$$

Estimate | G | by

$$g\frac{1}{r_k} = \sum_{x \in S \cap G} \frac{1}{p} = \sum_{x \in G} a(x)$$

Coordinated sampling

Coordinated sampling

- Say we have two sets A and B
- We have a bottom-k sketches s(A) of A and s(B) of B, prepared with the same hash function!
- Want to estimate |A∩B|?

Multiple set scenario

item	Router 1	Router 2
132.169.1.1	✓	
132.66.235.47		✓
157.166.238.17	✓	✓
128.112.132.86	✓	
170.149.172.130		
72.52.4.119	✓	\checkmark
192.115.76.44		
128.139.199.7		✓
107.23.224.136	✓	✓

Coordinated sampling

Give adjusted weights to the elements in $A \cap B$:

$$a(x) = \begin{cases} \frac{1}{p} & \text{if } x \in s(A) \cap s(B) \\ 0 & \text{otherwise} \end{cases}$$

p is the probability that $x \in s(A) \cap s(B)$

Estimating A \cap B with coordination

$$a(x) = \begin{cases} \frac{1}{p} & if \ x \in s(A) \cap s(B) \\ 0 & otherwise \end{cases}$$

p is the probability that $x \in S(A) \cap S(B)$ conditioned on all ranks of $y \neq x$

What is p??

Estimating A \cap B with coordination

$$a(x) = \begin{cases} \frac{1}{p} & \text{if } x \in s(A) \cap s(B) \\ 0 & \text{otherwise} \end{cases}$$

$$p = \min\{r_{k+1}, r_{k+1}\}$$

rather than $p = r_{k+1} \cdot r_{k+1}$ without coordination !

Homework

Develop an estimate for | B-A | ?

Weighted items

- Each item has a weight w(x)
- Want to estimate total weight of a selected subset: w(G)=sum of the weights of the greens

Multiple set scenario

item	Router 1	Router 2
132.169.1.1	30	
132.66.235.47		40
157.166.238.17	100	100
128.112.132.86	1000	1000
170.149.172.130		
72.52.4.119	440	440
192.115.76.44		
128.139.199.7		515
107.23.224.136	w	w

Weighted items

Assign adjusted weights:

$$a(x) = \begin{cases} \frac{w(x)}{p} = \frac{w(x)}{r_{k+1}} & \text{if } x \text{ is sampled} \\ 0 & \text{otherwise} \end{cases} E[a(x)] = w(x)$$

Estimate w(G)=weight of greens by

$$\sum_{x \in S \cap G} \frac{w(x)}{r_{k+1}} = \sum_{x \in S \cap G} \frac{1}{p} = \sum_{x \in G} a(x)$$

Weighted items

Assign adjusted weights:

$$a(x) = \begin{cases} \frac{w(x)}{p} = \frac{w(x)}{r_{k+1}} & \text{if } x \text{ is sampled} \\ 0 & \text{otherwise} \end{cases} E[a(x)] = w(x)$$

This is an unbiased estimator

$$E\left[\sum_{x \in S \cap G} \frac{w(x)}{r_{k+1}}\right] = E\left[\sum_{x \in S \cap G} \frac{1}{p}\right] = E\left[\sum_{x \in G} a(x)\right] = \sum_{x \in G} E\left[a(x)\right] = \sum_{x \in G} w(x)$$

HT Variance

$$Var[a(x)] = p\left(\frac{w(x)}{p}\right)^2 - w^2(x) = w^2(x)\left(\frac{1}{p} - 1\right)$$

- Want p to be large
- In particular if w(x) is large

Weighted items

→ Draw the random rank of x proportionally to w(x)

There are different ways to do it

Priority ranks

• Set r(x) = h(x)/w(x), $h(x) \in U[0,1]$

Draw from: Exp(w)

- PDF: we^{-wx} , $x \ge 0$
- CDF: $1 e^{-wx}$
- $\mu = \sigma = \frac{1}{w}$

Exp(w) ranks

- Larger weight smaller rank
- Equivalent to weighted sampling with replacement
- Can draw using the following:

$$h(x) \in U[0,1], r(x) = -\frac{\ln(1-h(x))}{w} \sim Exp(w)$$

Partition the sample space

- A ``point'' in our sample space is an assignment of ranks ∈ U[0,1]/w(x) to each element x
- Lets condition on the ranks assigned to all elements but one, say x
- What is the probability that we sample x?

Partition the sample space

Weighted items

Adjusted weights for weighted sampling

$$a(x) = \begin{cases} \frac{w(x)}{p(h(x) < r_{k+1}w(x))} & \text{if } x \text{ is sampled} \\ 0 & \text{otherwise} \end{cases}$$

Estimate w(G)=weight of greens by

$$\sum_{x \in S \cap G} \frac{w(x)}{p(h(x) < r_{k+1} w(x))} = \sum_{x \in S \cap G} \frac{1}{p} = \sum_{x \in G} a(x)$$

Multiple weights

Multiple set scenario

item	Router 1	Router 2	Router 3
132.169.1.1	30		200
132.66.235.47		40	
157.166.238.17	100	200	90
128.112.132.86	1000	500	
170.149.172.13	102		9999
72.52.4.119		440	450
192.115.76.44			330
128.139.199.7		515	111
107.23.224.136	$\mathbf{w_1}$	W ₂	W ₃

Weighted sampling and Coordination

- We want the samples to be weighted
- We also want coordination, that is if we sampled x at router 1 then x is more likely to be sampled also at router 2
- How could we achieve this?

Coordinated priority ranks

$$h(x) \sim U[0,1]$$

$$r_1 = h(x)/w_1$$

 $r_2 = h(x)/w_2$
 $r_3 = h(x)/w_3$

• Estimate $\sum_{x} \max\{w_1(x), w_2(x), w_3(x)\}$?

• Estimate $\sum_{\mathbf{x}} \max\{\mathbf{w_1(x)}, \mathbf{w_2(x)}, \mathbf{w_3(x)}\}$?

• Estimate $\sum_{\mathbf{x}} \max\{\mathbf{w_1(x)}, \mathbf{w_2(x)}, \mathbf{w_3(x)}\}$?

• Estimate $\sum_{\mathbf{x}} \max\{\mathbf{w_1(x)}, \mathbf{w_2(x)}, \mathbf{w_3(x)}\}$?

• We know $\max\{\mathbf{w_1(x)}, \mathbf{w_2(x)}, \mathbf{w_3(x)}\}$ for all x such that $\exists \mathbf{i} \ r_i(x) < \mathbf{r_{k+1}}$

Coordinated sampling

$$a(x) = \begin{cases} \frac{\max\{w_i(x)\}}{p} & \min\{r_1(x), r_2(x), r_3(x)\} < \\ p & \min\{r_{k+1}, r_{k+1}, r_{k+1}\} \\ 0 & otherwise \end{cases}$$

$$p = P(min\{r_1(x), r_2(x), r_3(x)\} < min\{r_{k+1}, r_{k+1}, r_{k+1}\})$$

$$p = P(h(x) < min\{r_{k+1}, r_{k+1}, r_{k+1}\} max\{w_1(x), w_2(x), w_3(x)\})$$

Homework

• Develop an estimator for $\sum_{\mathbf{x}} \text{median}\{\mathbf{w}_1(\mathbf{x}), \mathbf{w}_2(\mathbf{x}), \mathbf{w}_3(\mathbf{x})\}$?

Using partial information

• Estimate $\sum_{\mathbf{x}} \max\{\mathbf{w_1(x)}, \mathbf{w_2(x)}\}$?

We may not know max{w₁(x),w₂(x)} but we do know w₂(x) which is a lower bound

• Estimate $\sum_{\mathbf{x}} \max\{\mathbf{w_1(x)}, \mathbf{w_2(x)}\}$?

h(x) 1

• Estimate $\sum_{\mathbf{x}} \max\{\mathbf{w_1(x)}, \mathbf{w_2(x)}\}$?

 $h(x) = r_{k+1} w_2(x)$ 1

Estimate: $w_2(x)/(r_{k+1}w_2(x))=1/r_{k+1}$

• Estimate $\sum_{\mathbf{x}} \max\{\mathbf{w_1(x)}, \mathbf{w_2(x)}\}$?

 $h(x) = r_{k+1} w_1(x)$

Estimate: ??

• Estimate $\sum_{\mathbf{x}} \max\{\mathbf{w_1(x)}, \mathbf{w_2(x)}\}$?

$$r_{k+1}$$
 s(A) 0 0 0 0 0 0 r_{k+1} s(B) 0 0 0 0

$$h(x) = r_{k+1} w_1(x)$$

$$(1/r_{k+1})(r_{k+1}w_2(x)-r_{k+1}w_1(x))+E\times r_{k+1}w_1(x)=w_1(x)$$

All Distances (coordinated) Sketches (ADS)

ads(v)

Properties of the ADS

Properties of the ADS

- Includes a bottom-k sketch for every ball around v
- → Estimate how many vertices are there in every ball around v

Estimating using the ADS

Expected size of the ADS

Do we use the most out of the ADS?

Give adjusted weights to all elements

a(•)=1ads(v)

Estimating

More material

- Edith Cohen: All-distances sketches, revisited: HIP estimators for massive graphs analysis. PODS 2014
- Estimation for Monotone Sampling: Competitiveness and Customization. PODC 2014
- Edith Cohen: Distance Queries from Sampled Data: Accurate and Efficient. KDD 2014
- Edith Cohen, Haim Kaplan: What You Can Do with Coordinated Samples. APPROX-RANDOM 2013
- Edith Cohen, Haim Kaplan: Leveraging discarded samples for tighter estimation of multiple-set aggregates. SIGMETRICS/Performance 2009
- And earlier refs that you can find in the above