Problemas de Valor Inicial.
 Teorema de Existencia y Unicidad (P.V.l. de 1^{er} Orden).
 Campos Direccionales y Métodos de las Isoclinas.
 Análisis Cualitativo para E.D. Autónomas.

3. Problemas de Valor Inicial de 1^{er} Orden.

Sandra Elizabeth Delgadillo Alemán.

Universidad Autónoma de Aguascalientes.

April 8, 2022

3. Problemas de Valor Inicial.

Cuando modelamos matemáticamente un fenómeno a través de ecuaciones diferenciales, generalmente nos interesa resolver la ecuación diferencial, sujeta a condiciones prescritas sobre la función y sus derivadas, la cuál nos conduce a:

Problema de Valor Inicial.

Este problema consiste en resolver la E.D.

$$F(x, y(x), y'(x), \ldots, y^{(n)}(x)) = 0$$
, en un intervalo I ,

que contiene a t_0 , sujeto a las condiciones:

$$y(t_0) = y_0$$
, $y'(t_0) = y_1$, ..., $y^{(n-1)}(t_0) = y_{n-1}$,

donde y_0 , y_1 , ..., y_{n-1} , son constantes reales específicas. A los valores dados de la función y sus derivadas se les conoce como **condiciones iniciales**.

P.V.I. de 1^{er} Orden.

Definition

Se define un **Problema de Valor Inicial** de Primer Orden, como el sistema,

$$F(x, y(x), y'(x)) = 0, y(x_0) = y_0.$$

ó, en forma normal,

$$y'(x) = f(x, y(x)), y(x_0) = y_0.$$

Example

Sea $y(x) = ce^{-2x} + e^x$ una familia monoparamétrica de soluciones de la E.D.

$$y' + 2y = 3e^x.$$

Determine la solución del P.V.I. formado pr la E.D. y la C.I. y(0) = 1/3. y esboza su curva integral. Luego, determina la curva integral que pasa por (-1,2) y esboza su gráfica.

Solución. Debemos determinar el valor de c en la solución general de tal forma que y(0)=-1/3. $y(0)=ce^{-2(0)}+e^0=-\frac{1}{3}$

$$\iff$$
 $c+1 = -\frac{1}{3} \iff c = -\frac{4}{3}.$

 $\therefore y(x) = -\frac{4}{3}e^{-2x} + e^{x} \text{ es una solución particular que satisface}$ el P.V.I dado.

Debemos ver el valor de c en la solución general, de tal forma que

$$y(-1) = 2$$
. $y(-1) = ce^{-2(-1)} + e^{-1} = 2$
 $\iff ce^2 + \frac{1}{e} = 2$
 $\iff c = \frac{2}{e^2} - \frac{1}{e^3} = \frac{2e - 1}{e^3} = \frac{2 - e^{-1}}{e^2} \approx 0.22$

 $\therefore y(x) = \frac{2e-1}{e^3}e^{-2x} + e^x \text{ es una sol. particular que satisface el P.V.I.}$

Example

Resuelve el P.V.I. dado por $y' = -\frac{y}{y}$, y(2) = -3, $y \neq 0$, y esboza su gráfica de su curva solución.

Solución. Sabemos que la solución general de la E.D. es

$$x^2 + y^2 = c.$$

Observamos que la ec. es equivalente a $x^2 + y(x)^2 = c$.

Debemos determinar el valor de c en la sol. gral. de tal forma que y(2) = -3. Evaluamos en x = 2

$$(2)^2 + y(2)^2 = c$$

$$\iff$$
 $(2)^2 + (-3)^2 = c$

$$\iff$$
 $c = 13.$

6. Análisis Cualitativo para E.D. Autónomas.

Ejemplo.

... La solución implícita que satisface la condición inicial es

$$x^2 + y^2 = 13$$

y la solución particular explícita que satisface la C.I. y(2) = -3 es

$$y(x) = -\sqrt{13 - x^2}.$$

Ejercicio.

Ejercicio.

Sea $xy = 3(y-1) + ce^{-y}$ la sol. gral de la E.D.

$$y + (xy + x - 3y)y' = 0.$$

Determina la solución imlpícita y explícita (si es posible) que satisface la condición inicial y(2) = 1/3.

Solución. Sustituimos x = 2 y y = 1/3 en la solución general $xy = 3(y-1)ce^{-y}$, para determinar el valor de c.

$$(2)(1/3) = 3(1/3 - 1) + ce^{-1/3}$$

$$2/3 = -2 + ce^{-1/3}$$

$$8 = ce^{-1/3}$$

$$c = 8e^{1/3}/3 \approx 3.72$$

Ejercicio.

... la solución particular implícita que cumple con la condición inicial dada es $xy = 3(y-1) + \frac{8e^{1/3}}{2}e^{-y}$. Gráficamente

No es posible determinar de manera algebraica la solición explícita que pasa por (2,1/3).

Observamos que existen E.D. que pueden tener una única solución que satisface una condición inicial dada, o puede tener un número infinito de soluciones, o no puede existir ninguna solución.

Example

Por ejemplo. Sea y(x) = kx la solución general de la E.D.

$$\frac{dy}{dx} = \frac{y}{x}$$

1 Determine la solución que satisface la C.I. y(0) = 1.

Solución.
$$y(0) = k(0) = 1 \iff 0 = 1!!!!$$

$$\therefore$$
 No existe k tal que $y(0) = 1$.

$$\therefore$$
 No existe solución que pase por $(0,1)$.

2 Determine la solución que satisface y(1) = 1.

Solución.

Sandra Elizabeth Delgadillo Alemán.

$$y(1) = k(1) = 1$$
$$k = 1$$

Por lo tanto y(x) = x es la solución única que pasa por (1,1).

3 Determine la solución que satisface y(0) = 0.

Solución. Encontremos $k \in \mathbb{R}$, para y(x) = kx tal que y(0) = 0.

$$y(0) = 0.$$

$$y(0) = k(0) = 0$$

$$\iff 0 = 0$$

 \therefore y(x) = kx, $k \in \mathbb{R}$, satisface la condición inicial dada.

4. Teorema de Existencia y Unicidad (P.V.I. de 1^{er} Orden).

Theorem

Dado el P.V.I. $\frac{dy}{dx} = f(x, y)$ con $y(x_0) = y_0$. Suponga qe f y $\frac{df}{dy}$ son continuas en un rectángulo R definido por

$$R = \{(x, y) \mid a < x < b , \ c < y < d\},$$
 que contiene a (x_0, y_0) .

Entonces el P.V.I. tiene solución y es única, $\varphi(x)$ en el intervalo I_0 definido por $x_0 - h < x < x_0 + h$ con h > 0 y además $I_0 \subseteq (a, b)$.

- 1 La continuidad de f nos asegura la existencia de la solución del P.V.I.
- 2 La continuidad de $\frac{df}{dv}$ nos da la unicidad de la solución del P.V.I.

Example

Considere la E.D. $\frac{dy}{dx} = \frac{y}{x}$, $x \neq 0$, con la condición inicial y(0) = 1.

$$y(0) = 1$$

2
$$y(1) = 1$$
.

$$y(0) = 0$$

Veamos que nos dice el T. E. Y U. acerca de la solución del P.V.I.

Solución. La E.D. en su forma normal es:

$$\frac{dy}{dx} = \underbrace{\frac{y}{x}}_{f(x,y)}.$$
 Decimos que $f(x,y) = \frac{y}{x}$. $D_f = \mathbb{R}^2 \setminus \{(x,y) \mid x = 0\}.$

Además
$$\frac{df}{dy} = \frac{1}{x}$$
, con $D_{\frac{df}{dy}} = \mathbb{R} \setminus \{(x,y) \mid x = 0\}$.

Se tienen las siguientes regiones de continuidad

$$R_1 = \{(x, y) \mid -\infty < x < 0, \\ -\infty < y < \infty\}$$
 $R_2 = \{(x, y) \mid 0 < x < \infty, \\ -\infty < y < \infty\}$

1
$$y(0) = 1 \implies (0,1) \in Im y$$
.

No es posible construir un rectángulo que contenga a (0,1) en donde, tanto f, como $\frac{df}{dv}$ sean continuas.

En este caso, sí es posible construir un rectángulo qu contenga a (1,1) donde tanto f , $\frac{df}{dv}$ son continuas.

... por el T. E. Y U., existe $\frac{dy}{dx}$ y es única, la sol. que pasa por (1,1) en un intervalo $l_0 \subseteq (a,b)$.

3
$$y(0) = 0 \implies (0,0) \in \text{Im} y$$
.

No es posible construir un rectángulo cerrado que contenga a (0,0) en el cuál f, $\frac{df}{dv}$ sean continuas.

.: T. E. Y U. no es posible aplicarlo.

5. Campos Direccionales y Métodos de las Isoclinas.

Forma Analítica

$$y' = f(x,y)$$

 $y = y(x)$

Geométricamente

Campo de direccines o pendientes.

Curva Integral.

Example

Considere la E.D. $\frac{dy}{dx} = xy^2$, esboce el campo de pendientes y algunas curvas solución o integrales.

Puntos	Pendientes
(1,1)	$dy/dx = (1)(1)^2 = 1$
(1, -2)	$dy/dx = (1)(-2)^2 = 4$
(-1, 1)	dy/dx = (-1)(1) = -1
(0,0)	dy/dx=(0)(0)=0
(-1, -2)	$dy/dx = (-1)(-2)^2 = -4$
(1, 2)	$dy/dx = (1)(2)^2 = 4$

6. Análisis Cualitativo para E.D. Autónomas.

Considere el campo direccional hecho por computadora de la E.D. $\frac{dy}{dx} = \sin x \cos y$ y trace a mano las gráfias de las curvas solución que satisfacen las sig. condiciones iniciales.

$$y(1) = -1/2.$$

2
$$y(0) = \pi/2$$
.

3
$$y(-1) = 3$$
.

4
$$y(\pi) = -2$$
.

Notamos que
$$\dfrac{dy}{dx}=\sin x\cos y=0$$
 implica que $\sin x=0$ o $\cos y=0$ $x=k\pi\;,\;k\in\mathbb{Z}$ o $y=k\pi+\frac{\pi}{2}\;,\;k\in\mathbb{Z}.$

Método de las Isoclinas (igualación)

Definition

Una **isoclina** para una E.D. es un conjunto de puntos (x, y) del plano donde la ecuación diferencial y' = f(x, y) = c. Es decir, que las isoclinas son las curvas de nivel de f, es decir f(x, y) = c.

Example

Considere la E.D. y' = 1 + x - y. Obtenga el campo direccional de la E.D. usando el método de las isoclinas.

- **1** Bosquea la solución que satisface la C.I. y(2) = 1 y la sol. que pasa por (-1,2).
- **2** ¿Qué se puede decir acerca de las soluciones del inciso anterior cuando $x \longrightarrow \infty$ o $x \longrightarrow -\infty$?.

Solución.

1 Isoclinas $y' = 1 + x - y = c \iff y = 1 + x - c$.

С	Isoclina
-2	$y_{-2} = 1 + x + 2 = x + 3$
-1	$y_{-1} = 1 + x + 1 = x + 2$
-0	$y_{-2} = 1 + x + 2 = x + 3$ $y_{-1} = 1 + x + 1 = x + 2$ $y_{-1} = 1 + x + 0 = x + 1$ $y_{-1} = 1 + x - 1 = x$ $y_{-1} = 1 + x - 2 = x - 1$
1	$y_{-1} = 1 + x - 1 = x$
1	$y_{-1} = 1 + x - 2 = x - 1$
	•

2 La solución que pasa por (2, -1) tiende a la recta y = xcuando $x \longrightarrow \infty$ y tiende a $-\infty$ cuando $x \longrightarrow -\infty$.

La solución que pasa por (-1,2) tiende asintóticamente a la recta y = x cuando $x \longrightarrow -\infty$ y tiende a ∞ cuando

Example

Utilice el método de las isoclinas para dibujar el campo de pendientes de la ecuación diferencial $y' + y = x^2$.

Esboce algunas curvas solución, incluyendo la que satisface la condición inicial y(0) = 1 y predice el comportamiento de esta cuando $x \longrightarrow \infty$ y $x \longrightarrow -\infty$.

Solución.
$$y' = x^2 - y = c$$

$$y = x^2 - c$$

$$\begin{array}{c|c} c & \text{Isoclina} \\ \hline -2 & y_{-2} = x^2 + 2 \\ -1 & y_{-1} = x^2 + 1 \\ 0 & y_0 = x^2 \\ 1 & y_1 = x^2 - 1 \\ 2 & y_2 = x^2 - 2 \\ \end{array}$$

6. Análisis Cualitativo para E.D. Autónomas.

La solución que pasa por (0,1) tiende a ∞ cuando $x \longrightarrow \infty$, y tiende a $-\infty$ cuando $x \longrightarrow -\infty$.

Example

Trace el campo direccional de la E.D. $\frac{dy}{dx} - y^2 = x^2$. Y bosqueje las curvas solución.

Solución. La E.D. en forma normal es $\frac{dy}{dx} = x^2 + y^2$

$$x^2 + y^2 = c.$$

С	Isoclina		
0	$I_0 = x^2 + y^2 = 0$		
1	$I_1 = x^2 + y^2 = 1$		
2	$I_1 = x^2 + y^2 = 2$		
4	$I_1 = x^2 + y^2 = 1$ $I_1 = x^2 + y^2 = 2$ $I_4 = x^2 + y^2 = 4$		
Note que $\frac{dy}{dy} = x^2 + y^2 \ge 0$			

Note que
$$\frac{dy}{dx} = x^2 + y^2 \geqslant 0$$
,

 $\forall (x,y) \in \mathbb{R}^2$. Por lo tanto, todas las soluciones y(x) de la E.D. son crecientes $\forall x \in \mathbb{R}$.

6. Análisis Cualitativo para E.D. Autónomas.

Definition

Se dice que una E.D. de Primer Orden es una ecuación diferencial **autónoma** si tiene la forma y' = f(y), donde f es una función de valor real $(f: \Omega \longrightarrow \mathbb{R})$, esto es, independiente de x.

Example

Veamos si las sig. E.D. son autónomas.

- **1** $\frac{dA}{dt} = kA$, con A = A(t). (Desintegración Radioactiva). **Solución.** k es constante. E.D. autónoma.
- ② $\dot{x} = k(x)(n+1-x)$, con x = x(t), $k, n \in \mathbb{R}$. (Poblaciones). Solución. E.D. autónoma.
- 3 $\frac{dN}{dt} = 6t \frac{N}{100}$. (Mezclas). Solución. E.D. no autónoma.

Problemas de Valor Inicial.
 Teorema de Existencia y Unicidad (P.V.I. de 1^{er} Orden).
 Campos Direccionales y Métodos de las Isoclinas.
 Análisis Cualitativo para E.D. Autónomas.

4
$$\frac{dT}{dt} = k(T - T_n)$$
. (Ley de Enfriamiento de Newton). Solución. $T = T(t)$, k , $T_n \in \mathbb{R}$, E.D. autónoma.

El bosquejo del cambio de dirección de una E.D. de la forma y' = f(y), autónoma, es particularmente sencillo, dado que f es independiente de x. Por lo cual, las pendientes son idénticas a lo largo de rectas (ecuaciones) horizontales.

Example

Considere la E.D. y' = y. Usemos el método de las isoclinas para esbozar su gráfica de las soluciones de la E.D.

$$y' = y$$
.
 $c \mid \text{Isoclinas}$
 $1 \mid y_{-1} = -1$
 $0 \mid y_0 = 0$
 $1 \mid y_1 = 1$

Definition

Se dice que $a \in \mathbb{R}$ es un **punto de equilibrio** de una ecuación diferencial autónoma y' = f(y) si a es un cero o raíz de f. A un punto de equilibrio también se le conoce como **punto** estacionario, punto fijo, o punto crítico.

Todo punto de equilibrio *a* define una solución constante de la E.D. autónoma.

$$y(x) \equiv a, \quad \forall x \in \mathbb{R}.$$

a tal solución se le conoce como **solución de equilibrio** o **estacionaria**. Veamoslo.

Sea $a \in \mathbb{R}$, un punto de equilibrio de E.D. f(a) = 0. Luego, sea $y(x) \equiv a$, veamos si es solución de la E.D.

$$y' = f(y)$$

0 = (a)' = f(a) = 0

Para las E.D. autónomas su interpretación geométrica queda determinada por f(y). Así pues, averigüar cómo es la pendiente sobre el eje y a partir de la gráfica de f, es de gran utilidad para esbozar las soluciones de la ecuación diferencial y obtener información acerca de su comprtamiento.

Para ilustrar lo anterior, consideremos una E.D. y' = f(y) donde la gráfica de f tiene la siguiente forma.

Imaginemos que y = y(x) es la posición de una partícula que se mueve a lo largo de una línea recta con el tiempo.

La gráfica de f proporciona información sobre la característica de monotonía y concavidad de las soluciones y = y(x).

Monotonía

- 1) Si y' = f(y) > 0 entonces y(x) es creciente.
- 2 Si y' = f(y) < 0 entonces y(x) es decreciente.

Concavidad

- 1 $y'' = f'(y) \cdot y' > 0$ entonces y(x) es convexa (cóncava hacia arriba).
- 2 $y'' = f'(y) \cdot y' < 0$ entonces y(x) es cóncava (cóncava hacia abajo).

También es posible encontrar puntos de inflexión.

$$y: y'' = f'(y) \cdot y' = 0.$$
 $f'(y) \cdot f(y) = 0.$ $\iff f'(y) = 0 \text{ o } y' = f(y) = 0.$ Pts. Inflexión Pts. de Equilibrio

Para este ejemplo, los puntos de inflexión son $y_1 = b_1$, $y_2 = b_2$ para soluciones.

Intervalos de y	Signo de $y' = f(y)$	Pts. Inflexión	Subintervalos	Signo y''	Características y
$(-\infty, a_1)$ (a_1, a_2)	(+) (-)	$y_1 = b$	(a_1, b_1)	y'' = (+)(-) = (-) y'' = (-)(-) = (+)	Creciente, cóncava. Decreciente, convexa
(a_2, a_3)	(-)	$y_2 = b_2$	(b_1, b_2) (a_2, b_3)	y'' = (-)(+) = (-) y'' = (-)(-) = (+)	Decreciente, cóncava Decreciente, convexa
(a_3,∞)	(+)	_	(b_2, a_3) —	y'' = (-)(+) = (-) y'' = (+)(+) = (+)	Decreciente, cóncava Creciente, convexa

Definition

- 1 Un punto de equilibrio se dice que un **pozo** o **sumidero** cuando el flujo local a su alrededor del punto se dirige hacia él.
- 2 Un punto de equilibrio se dice que es una **fuente** cuando el flujo local alrededor del punto se aleja de él.
- Y un punto de equilibrio se dice silla o nodo cuando el flujo local por un lado se dirige hacia él, y por el otro lado se aleja,

Definition

Al punto de equilibrio pozo o sumidero, se le conoce como **punto** de equilibrio estable, a la fuente como **punto** de equilibrio inestable y a los puntos silla como semiestables.

Definition

El **retrato fase** es el conjunto de todas las soluciones y se acostumbra a representarlo con una recta real, donde las flechas representan al campo vectorial y los puntos corresponden a los puntos de equilibrio y su estabilidad.

También se le conoce como **línea fase** o **retrato fase unidimensional**.

Example

Considere la E.D. autónoma $y' - y^3 + 2y^2 - y = 0$.

- ① Determine las soluciones de equilibrio y utilice la línea fase para clasificarlas como pozos, fuentes o sillas.
- 2 Esboza algunas curvas solución de la E.D. incluyendo las soluciones de equilibrio.
- 3 Indica el comportamiento de la solución que satisface la condición inicial y(0) = 1/2, cuando $t \longrightarrow \infty$.

Solución.

1 La forma normal de la E.D. es

$$y' = y^3 - 2y^2 + y = y(y^2 - 2y + 1) = y(y - 1)^2 = f(y).$$

Encontremos y tal que f(y) = 0, es decir

$$y(y-1)^2 = 0$$

 $\iff y_1 = 0 \quad \text{\'o} \quad (y-1)^2 = 0.$
 $\iff y_2 = 1.$

∴ se tienen 2 puntos.

Luego, las soluciones de equilibrio son $y_1(x) = 0$ y $y_2(x) = 1$.

Grafiquemos f(y), para determinar la línea fase.

Por lo tanto
$$y_1 = 0$$
 es fuente, y $y_2 = 1$ es silla.

Los puntos de inflexión son los y tal que f(y) = 0, pero no son puntos de equilibrio. Derivemos.

$$f'(y) = 3y^2 - 4y + 1$$

= $(3y - 1)(y - 1) = 0$

$$\iff$$
 $3y - 1 = 0$ ó $y - 1 = 0$
 \iff $y_1 = \frac{1}{3}$ $y_2 = 1$

pto. inflexión pto. de equlibrio

Example

Considere la E.D. $y' = -(y-1)^{5/3}(y-2)^2(y-3)$. Encuentre la solución de equilibrio de la ecuación diferencial y clasifíquelos usando la línea fase. Esboce algunas soluciones incluyendo las soluciones de equilibrio, considerando su característica de monotonía y concavidad. Por último, predecir el comportamiento que tiene la solución que satisface y(0) = 2.1 cuando $t \longrightarrow \infty$.

Solución. La forma normal de la E.D. es

$$y' = -(y-1)^{5/3}(y-2)^2(y-3) = f(y).$$

Encontremos y tal que f(y) = 0, es decir

$$-(y-1)^{5/3}(y-2)^{2}(y-3) = 0$$

$$\iff (y-1)^{5/3} = 0 \text{ ó } (y-2)^{2} = 0 \text{ ó } y-3=0$$

$$\iff y_{1} = 1 \text{ ó } y_{2} = 2 \text{ ó } y_{3} = 3.$$

... se tienen 3 puntos de equilibrio.

Luego, las soluciones de equilibrio son

$$y(x) = 1$$
, $y(x) = 2$, $y_3(x) = 3$.

grafiquemos para determinar la línea fase.

$$f'(y) = -\frac{2}{3}(y-2)(y-1)^{2/3}(7y^2 - 29y + 27) = 0$$

 $\tilde{y}_1 = 2, \ \tilde{y}_2 = 1, \ \tilde{y}_3 = 2.73, \ \tilde{y}_4 = 1.41.$

Intervalos de y	Signo de $y' = f(y)$	P.I.	Subintervalos	Signo de	Características $y(x)$
$(-\infty, 1)$ $(1, 2)$	y = I(y) $(-)$ $(+)$	$ y_4 = 1.41$	$(-\infty, 1)$ $(1, 1.41)$	(-)(+) = (-) (+)(+) = (+)	Decreciente, cóncava Creciente, convexa
(2, 3)	(+)	$y_3 = 2.73$	(1.41, 2) (2, 273)	(+)(-) = (-) (+)(+) = (+)	Creciente, cóncava Creciente, cóncava
(3, ∞)	(-)	_	$(2.73, 3)$ $(3, \infty)$	(+)(-) = (-) (-)(-) = (+)	Creciente convexa Decreciente, convexa

La solución que pasa por (0, 2.1) tiende a la recta y = 3, cuando $t \longrightarrow \infty$.

Ejercicio

Considere la E.D.
$$\frac{y'}{v+2} y^2 - 2y + \frac{3}{4}$$
.

- 1 Determine los puntos de equilibrio de la E.D. autónoma y clasifícalos usando la línea fase.
- 2 Indica cuál es el comportamiento de la solución de la E.D. que satisface la C.I. y(2/3) = 1, cuando $x \longrightarrow \infty$, usando la línea fase.
- 3 ¿Qué ocurre con la solución que pasa por y(1) = 0 cuando $x \longrightarrow \infty$? Usando la línea fase.