ECE368 Homework #11

IMPORTANT: Write your user (login) ID at the TOP of EACH page. Also, be sure to *read* and *sign* the *Academic Honesty Statement* that follows:

	"In signing this statement, I hereby certify that the work on this exercise is my own and that I have not copied the work of any other student while completing it. I understand that, if I fail to honor this agreement, I will receive a score of ZERO for this exercise and will be subject to possible disciplinary action."
	Printed Name: No submission required
	Login:
	Signature:
Ì	Please acknowledge those people who have helped you with this homework.

1. Dijkstra's

We are given a directed graph G = (V, E) on which each edge $(u, v) \in E$ has an associated value r(u, v), which is a real number in the range $0 \le r(u, v) \le 1$ that represents the reliability of a communication channel from vertex u to vertex v. We interpret r(u, v) as the probability that the channel from u to v will not fail, and we assume that these probabilities are independent. Give an efficient algorithm to find the most reliable path between two given vertices.

2. Dijkstra's

Suppose we change line 4 of Dijkstra's algorithm to the following:

4 while
$$|Q| > 1$$

This change causes the while loop to execute |V|-1 times instead of |V| times. Is this proposed algorithm correct?

3. **Max flow graph**. Following the example shown in the lecture slides, show how *Ford-Fulkerson* works on the following graph to find the max s-t flow. In each step: show the flow on the input graph; show the residual graph; highlight the augmenting path on the residual graph. Describe how you identify the augmenting path in each step.

4. Min spanning Tree.

Suppose that we represent the graph G=(V,E) as an adjacency matrix. Give a simple implementation of Prims algorithm for this case that runs in $O(V^2)$ time.

5. Min spanning tree

Professor Borden proposes a new divide-and-conquer algorithm for computing minimum spanning trees, which goes as follows. Given a graph G = (V, E), partition the set V of vertices into two sets V_1 and V_2 such that $|V_1|$ and $|V_2|$ differ by at most 1. Let E_1 be the set of edges that are incident only on vertices in V_1 , and let E_2 be the set of edges that are incident only on vertices in V_2 . Recursively solve a minimum-spanning-tree problem on each of the two subgraphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$. Finally, select the minimum-weight edge in E that crosses the cut V_1, V_2 , and use this edge to unite the resulting two minimum spanning trees into a single spanning tree.

Either argue that the algorithm correctly computes a minimum spanning tree of G, or provide an example for which the algorithm fails.