DATA605 - Assignment 7

Nick Oliver

Assignment 7

- 1. Let $X1, X2, \ldots, Xn$ be n mutually independent random variables, each of which is uniformly distributed on the integers from 1 to k. Let Y denote the minimum of the Xi's. Find the distribution of Y.
- 2. Your organization owns a copier (future lawyers, etc.) or MRI (future doctors). This machine has a manufacturer's expected lifetime of 10 years. This means that we expect one failure every ten years. (Include the probability statements and R Code for each part.).
- a. What is the probability that the machine will fail after 8 years?. Provide also the expected value and standard deviation. Model as a geometric. (Hint: the probability is equivalent to not failing during the first 8 years..)

Probability

$$Pr(X = x) = (1 - p)^k p$$

```
geomProb \leftarrow (1 - (.1))^(8) * .1 geomProb
```

[1] 0.04304672

dgeom(8,.1)

[1] 0.04304672 Answer: **0.04304672**

Expected Value

$$E[X] = \frac{1}{p}$$

1/geomProb

[1] 23.23057

$$StdDev = \frac{\sqrt{1-p}}{p}$$

sqrt(1 - geomProb) / geomProb

[1] 22.72507

b. What is the probability that the machine will fail after 8 years?. Provide also the expected value and standard deviation. Model as an exponential.

Probability

$$Pr(X=k) = \lambda e^{-\lambda x}$$

prob <- .1
prob * exp(-prob * 8)</pre>

[1] 0.0449329

dexp(8,.1)

[1] 0.0449329

Answer: **0.0449329**

Expected Value

$$E[x] = \frac{1}{\lambda}$$

1 / .1

[1] 10

Answer: 10

Standard Deviation

$$StdDev = \sqrt{\frac{1}{\lambda^2}}$$

sqrt(1/(.1²))

[1] 10

Answer: 10

c. What is the probability that the machine will fail after 8 years?. Provide also the expected value and standard deviation. Model as a binomial. (Hint: 0 success in 8 years)

Probability

$$Pr(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Answer: ****

Expected Value

$$E[x] = np$$

Answer: ****

Standard Deviation

$$StdDev = \sqrt{np(1-p)}$$

Answer: ****

d. What is the probability that the machine will fail after 8 years?. Provide also the expected value and standard deviation. Model as a Poisson

Probability

$$Pr(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

```
k <- 0
prob <- 1/10

lambda <- 8 * prob / 1

((lambda ^ k) * exp(-lambda))/factorial(k)</pre>
```

[1] 0.449329

dpois(0,.8)

[1] 0.449329

Answer: ****

Expected Value

 $E[X] = \lambda$

Answer: 0.8

Standard Deviation

 $StdDev = \sqrt{\lambda}$

Answer: $r{sqrt(.8)}$