Type Author Citation Literature Cutoff Date Full Evaluation Alan L. Nichols, Balraj Singh, Jagdish K. Tuli NDS 113,973 (2012) 15-Apr-2012

 $Q(\beta^{-}) = -9181.1 \ 4$; $S(n) = 12890 \ 16$; $S(p) = 6472.6 \ 11$; $Q(\alpha) = -3364.3 \ 6$ 2012Wa38

Note: Current evaluation has used the following Q record -9181.07 38 12896 16 6472.7 11-3364.3 6 2011AuZZ.

S(2n)=23136.4 7, S(2p)=11272.9 5 (2011AuZZ).

Values in 2003Au03: $Q(\beta^-)=-9171\ 26$, $S(n)=12897\ 19$, $S(p)=6477\ 10$, $Q(\alpha)=-3369\ 10$, $S(2n)=23126\ 15$, $S(2p)=11277\ 10$.

Other reactions:

1997Fo03: 62 Ni(π^+,π^-),E=140-230 MeV, measured $\sigma(\theta)$.

1993Be02: 62 Ni(π^+ , π^-),E=293.4 MeV, measured $\sigma(\theta)$.

1979ShZN: 58 Ni(14 N, 10 B) E=155 MeV, measured $\sigma(\theta)$, DWBA.

1977Gr03: 58 Ni(α ,p) E=6.26-9.12 MeV in steps of 20 keV, excitation functions measured to find resonances of large α width. The spectra show a large number of alpha-particle resonances, but their energies are not listed. Differential cross sections were measured at three angles. No evidence was found for levels with very large α widths; observed α width was concentrated in a small number of states, in qualitative agreement with the predictions of a weak coupling shell model.

1976Ca06: 64 Zn(γ ,2n) E=8-30 MeV; measured σ , GDR width.

1970Co25: 64 Zn(γ ,2n) E=12-40 MeV; measured σ , GDR.

Mass measurement: 2006Er03 (Penning trap method).

Additional information 1.

62Zn Levels

Cross Reference (XREF) Flags

Α	62 Ga ε decay (116.121 ms)	G	⁵⁸ Ni(¹² C, ⁸ Be)	M	61 Ni(3 He,2n γ)
В	40 Ca(28 Si,α2pγ) E=122 MeV	H	⁵⁸ Ni(¹⁶ O, ¹² C)	N	Coulomb excitation
C	40 Ca(28 Si, α 2p γ) E=125 MeV	I	60 Ni(3 He,n)	0	63 Cu(p,2n γ)
D	⁵⁸ Ni(⁶ Li,pnγ)	J	60 Ni(α ,2n γ),(3 He,n γ)	P	64 Zn(p,t)
E	⁵⁸ Ni(⁶ Li,d),(pol ⁶ Li,D)	K	⁶⁰ Ni(¹² C, ¹⁰ Be)		
F	58 Ni(7 Li,t)	L	60 Ni(16 O, 14 C)		

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF
0.0 ^b	0+	9.193 h <i>15</i>	ABCDEFGHIJKLMNOP

Comments

 $%\varepsilon + \%\beta^{+} = 100$ $T_{1/2}$: weighted average of 9.186 h 13 (1982Gr10, from decay curve for two γ rays followed over 8 to 11 half-lives, but no details); 9.231 h 20, 9.23 h 6 (1972Cr02,γ counting, average of measurements for four γ rays of 260, 394, 548 and 597 keV at two different energies of $E(^{3}He)$ beam in $^{64}Zn(^{3}He,X)$ reaction; 9.34 h 4 and 9.39 h 5 at two other beam energies not used in the averaging procedure because of low counting rates and apparent discrepant results); 9.3 h 2 (1967Ro01, γ decay curve, but no details); 9.2 h I (1967An01, from decay curves for several conversion lines, but no other details); 9.13 h 3 (1964Ru06, $\gamma\gamma$ counting method, eight runs, but no other details); 9.3 h 2 $(1954Nu27, \gamma \text{ counting, but no details})$. Others: 8.4 h 2 (1953Ku08,preliminary value from a composite decay curve of several activities produced), 9.33 h (1950Ha65, from positron decay curve), 9.5 h (1948Mi12, from electron counting using GM counter). Reduced χ^2 =1.5. Uncertainty is obtained by multiplying uncertainty of 0.0125 by (reduced χ^2)^{1/2}.

953.84 b 9 2 $^{+}$ 2.93 ps 14 ABCDEFGHIJKLMNOP

 μ =+0.74 20 (2002Ke02,2011StZZ)

 μ : from g factor=+0.37 10 (2002Ke02) using projectile Coulomb excitation in inverse kinematics and transient magnetic fields. Data

Continued on next page (footnotes at end of table)

⁶²Zn produced and identified in deuteron and ³He bombardment of Cu (1948Mi12), who also measured half-life.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
				reanalyzed in 2010Mo14 with the same result of $g=+0.37$ 10.
				J^{π} : E2 γ to 0^{+} . $T_{1/2}$: from evaluation by 2011PrZZ, based on mean lifetime
				measurements of 4.2 ps 7 (2007St16), 4.3 ps 3 (2002Ke02),
1004 676 11	2+	2.6242	1D0DE 11 111 1110D	4.2 ps 3 (1981Wa09) and 2.5 ps $+10-20$ (1977BrYO).
1804.67 ^c 11 2186.06 ^b 13	2 ⁺ 4 ⁺	2.63 ps 42	ABCDE H JKLMNOP	J^{π} : E2 γ to 0^+ .
2180.00° 13	4	0.53 ps +24-14	BCDE GH JK MNOP	J^{π} : ΔJ=2, E2 γ to 0 ⁺ . $T_{1/2}$: other: 1.0 ps 7 from (α ,2n γ).
2341.95 23	0_{+}		A E H M P	XREF: E(2360).
1				J^{π} : $L(p,t)=L(^{6}Li,d)=0$.
2384.50 ^d 15	3+	1.7 ps 11	CD IJ MNO	J^{π} : $\Delta J=1$, M1+E2 γ to 2 ⁺ ; not 1 from excitation function.
2743.60 ^c 15	4+	2.36 ps 21	BCDE H J M OP	$T_{1/2}$: >0.7 ps from DSAM, <2.8 ps from RDM, ⁵⁸ Ni(⁶ Li,pnγ). J^{π} : ΔJ =2, E2 γ to 2 ⁺ ; ΔJ =0, M1+E2 γ to 4 ⁺ ; L(p,t)=4.
2803.14 <i>17</i>	2+	0.146 [@] ps 21	A E H LM P	XREF: E(2840).
		1		J^{π} : L(⁶ Li,d)=L(p,t)=2.
				$T_{1/2}$: DSA in (3 He,2n γ).
				E(level): identified as one component of one-phonon mixed-symmetry 2 ⁺ state (2010Al28).
2884.05 25	2+	0.132 [@] ps 21	M P	J^{π} : $\gamma \gamma(\theta)$ in (³ He,2n γ); L(p,t)=(2).
		1		$T_{1/2}$: DSA in (3 He, 2 n γ).
				E(level): identified as second component of one-phonon
3042.9? 8	(0^+)		A	mixed-symmetry 2 ⁺ state (2010Al28).
3060 10	2+		P	J^{π} : L(p,t)=2.
3160 10	(2^{+})		I P	J^{π} : L(³ He,n)=2+(3). L(p,t)=2 for doublet.
3181.2 <i>4</i> 3209.86 <i>21</i>	(1 ⁺) 4 ⁺	0.250 [@] ps 35	A CD GH kLM	E(level): 2010Al28 identify the 3209 4+ state as a good
3209.80 21	4	0.230 ps 33	CD GH KLH	candidate for a two-phonon mixed symmetry state. However,
				non-observation of expected transition to the one-phonon
				mixed symmetry 2 ⁺ state at 2803 keV does not allow a confirmed identification of such an excitation.
				J^{π} : from $\gamma\gamma(\theta)$ (2010Al28). $J^{\pi}=3^{-}$ is ruled out since such an
				adoption would give a large quadrupole (M2) admixture for
3223.5 4	3(-)		E M P	1023.7γ which is inconsistent with RUL. XREF: E(3190).
3223.3 4	3.		L II I	J^{π} : L(p,t)=3 for 3216 6 group; L(6 Li,d)=3 if the 3190 level
2210 50	2415			corresponds to 3223 level.
3310 50	(4^{+})		k	J^{π} : based on systematic trends and shell-model calculation (1990Bo27).
3374.2 3	(1-)		A P	J^{π} : L(p,t)=(1).
3470 10	2+		E P	$J^{\pi}: L(p,t)=2.$
3586.55 ^d 23	(5^+)	0.63 ps +63-21	CDE J M O	XREF: E(3540).
3590 10	(2 ⁺)		Р	J^{π} : $\gamma(\theta)$ and excit function, (6 Li,pn γ). J^{π} : L(p,t)=(2).
3640 <i>10</i>	2+		E P	XREF: E(3680).
h	-1			J^{π} : L(p,t)=2.
3707.60 ^b 24	6+	0.250 [@] ps 35	BCD J M O	J^{π} : $\Delta J=2$, E2 γ to 4 ⁺ .
				$T_{1/2}$: from DSAM in (3 He,2n γ). Others: 0.17 ps +14–7 from (α ,2n γ); 0.25 ps +17–7 in (6 Li,pn γ).
3730 10	$(3^-,4^+)$ 2^+		P	J^{π} : L(p,t)=(3,4).
3830 10	2+		P	J^{π} : L(p,t)=2.
				E(level): not the same as 3840 level seen in (⁶ Li,d) with L=1; evaluators assume 3840 is same as 3870 <i>30</i> L=1 level in
				The state of the s

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
				(³ He,n).
3870 20	1-		E HI	J^{π} : L(³ He,n)=L(⁶ Li,d)=1.
3920 10	$(3^-,4^+)$		Р.	J^{π} : L(p,t)=(3,4).
3960.5 <i>4</i>	(1 ⁺) 0 ⁺		A EG M P	$I\overline{A}$, $I(x,t)=0$
4008.4 7 4021.6 5	(1^+)		EG MP	$J^{\pi}: L(p,t)=0.$
4040 20	(1^{-})		E	J^{π} : L(⁶ Li,d)=(1).
4043.20 ^e 24	(5)	0.270 [@] ps 42	CD HIJKLM O	XREF: K(4170).
1013.20 27	(3)	0.270 ps 12	CD HISKEH O	J^{π} : 3,5 from $\gamma(\theta)$, linear polarization; 5 from excitation
				function in (6 Li,pn γ); π =– from L(6 Li,d); gammas to 4 $^+$
				states.
				$T_{1/2}$: from DSAM in (³ He,2n γ). Other: 0.69 ps +14-49 in
4000 10	(4+)		_	$(^{6}\text{Li},\text{pn}\gamma).$
4090 <i>10</i> 4217.6 <i>8</i>	(4^+) (3^-)		P M P	J^{π} : L(p,t)=(4). J^{π} : L(p,t)=(3).
4330 20	(2^{+})		P	J^{π} : L(p,t)=(2).
4347.86 ^c 24	6^{+a}	0.48 [@] ps 13	BCD M	$T_{1/2}$: from DSAM in (³ He,2n γ). Other: 0.28 ps +28–14 in
		r		$\binom{6}{\text{Li},\text{pn}\gamma}$.
4380 20	(4^{+})		P	J^{π} : $L(p,t)=(4)$.
4448.0 <i>3</i>	(1^+)		A P	6-1 6
4515 20	6+		E H k P	J^{π} : L(6Li,d)=6.
4535.4? <i>8</i> 4600	(7-)		C M k	J^{π} : systematic trends (1990Bo27).
4620 20	(0^{+})		н Р	J^{π} : $L(p,t)=(0)$.
4680 10	4+		P	J^{π} : L(p,t)=4.
4810 30	$(2^+,3^-)$		P	J^{π} : L(p,t)=(2,3).
4860 <i>30</i> 4895.3 <i>4</i>	$(3^-,4^+)$		P A P	J^{π} : L(p,t)=(3,4).
4904.7 ^e 3	(1^+) $(7^-)^a$	8.3 ps <i>35</i>	BCD J M O	$T_{1/2}$: other: 0.7 ps +7-3 from $(\alpha, 2n\gamma)$.
4910 30	(2^{+})	0.5 ps 55	E P	XREF: E(4960).
				J^{π} : L(p,t)=(2).
5050 30	(2^{+})		G P	J^{π} : L(p,t)=(2).
5090 20	$\frac{1^{-}}{(7)^{-a}}$	2.1 14	E P	J^{π} : $L(^{6}Li,d)=1$.
5123.5 4	(/)	2.1 ps <i>14</i>	D K M	XREF: K(5190). T _{1/2} : <3.5 ps from RDM, >0.7 ps from DSAM in
				⁵⁸ Ni(⁶ Li,pnγ).
				J^{π} : 3,5,7 from $\gamma(\theta)$ and $\gamma(\text{lin pol})$; yrast population
				disfavors 3; transition strength arguments (RUL) restrict
				parity to be the same as that of 4042; 7 ⁻ supported by
5131.0 ^f 4	(6-\ <mark>a</mark>	. 0.7	CD M	shell-model calculations (1990Bo27).
	$(6^{-})^{a}$	>0.7 ps	CD M	
5143.3 ^d 5 5211.5 5	$(7)^{+a}$ (1^+)	0.42 ps +21-14	CD M	
5240 20	(0^+)		P P	J^{π} : L(p,t)=(0).
5340 ^{&} 30	0+		EI	J^{π} : L(³ He,n)=0.
5370 20	(4 ⁺)		H P	J^{π} : L(p,t)=(4).
5470			E	
5481.5 ^b 6	(8+)	0.28 ps +14-7	CD M	
5560 20			P	
5700 & 30	(1+)		HI	
5920.8? <i>17</i> 6081.6 ^e 5	(1 ⁺) (9 ⁻)	3.9 ps <i>32</i>	A BCD	J^{π} : (7,9) from $\gamma(\theta)$, linear polarization and excitation
0001.0 3	$(\mathcal{I}_{\mathcal{I}_{\mathcal{I}_{\mathcal{I}_{\mathcal{I}}}}})$	3.7 ps 32	DCD	s. (1,2) from y(0), finear polarization and excitation

E(level) [†]	$J^{\pi \ddagger}$		XREF	Comments	
				function in (6 Li,pn γ); same parity as that of 4904 level. $T_{1/2}$: 0.7 ps< $T_{1/2}$ <7 ps from RDM and DSA, 58 Ni(6 Li,pn γ).	
6113.7 ^f 6 6300 50	(8 ⁻) (8 ⁺)	BCD	K	J^{π} : systematic trends (1990Bo27).	
6400 6629.5 <i>21</i>		D	I H		
7200 7400	(11-)			P P	
7422.5 ^e 7 7422.7 ^f 8	(11^{-}) (10^{-})	BCD BC		J^{π} : $\Delta J=2$, Q γ to (9).	
7500.0^{b} 9	(10^{+})	С			
7540 <i>50</i>	(8 ⁺)		K	J^{π} : from shell-model calculations (1990Bo27).	
7629.7 9	, ,	C			
7701.5? 12		С			
7976.1 ^{<i>i</i>} 7 8300 <i>50</i>	(9 ⁺) (6 ⁺)	ВС	K	J^{π} : from shell-model calculations (1990Bo27).	
8437.2 ^j 8	(10^+)	BC			
9024.7^{f} 8	(12-)	В			
9048.6 ⁱ 7 9214.0 ^e 8	(11^+)	BC			
9465.2 ^j 8	(13^{-}) (12^{+})	BC BC			
9800	(12)	БС		P	
9823.7 ^k 10	(12^{+})	В			
9960.4 ⁱ 8	(13^+)	В			
10247.4 ^g 8 10300	(11^{+})	С		P	
10316.4 10	(13^+)	С			
10375.1 ^j 8	(14^{+})	ВС			
10635.8 ^h 8	(12^+)	C			
10725.9 ^f 10	(14^{-})	В			
10800	(12+)	6		P	
11182.8 ^g 8 11546.8 ^k 9	(13^+)	С			
11546.8 9 11651.6 8	(14^+) (13^-)	B			
11051.0 8 11755.8 ^h 9	(13^{+})	BC C			
11733.8 <i>j</i> 11788.3 <i>i</i> 11	(14°) (15^{+})	В			
11961.6 ^j 9	(16^+)	BC			
12329.3 ^m 8	(14^{-})	BC			
12536.78 9	(15^+)	C			
12812.9 10	(15 ⁻)	BC			
12993.0 ^l 8	(15^{-})	BC			
13156.3 ^k 10 13236.6 ^h 9	(16^+)	В			
13236.6 ⁿ 9 13400	(16^{+})	С		P	
13726.7 ^m 8	(16^{-})	BC			
14125.5 ⁸ 9	(17^{+})	C			
14445.8 <i>9</i> 14541.8 <i>l</i> 8	(17^{-})	BC BC			
14541.8° 8 14646.3 <i>12</i>	(17^{-}) (16^{+})	BC BC			
1.0.0.0	(10)	_			

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
14832.3 12	(16^+)	В	20474.9 ^P 11	(21^{-})	В
15041.8 ⁿ 11	(16^{+})	В	20858.9 ⁿ 16	(22^{+})	В
15049.6 ^h 9	(18^{+})	С	21042.0 ^l 11	(23-)	ВС
15295.5 ^k 13	(18^{+})	В	21617.5° 11	(22^{-})	BC
15415.6 ^m 8	(18^{-})	BC	21853.8 ^q 17	(22^{+})	В
15482.7 9 16	(16^{+})	В	22784.4 ^p 12	(23^{-})	В
15705.8 <i>14</i>	(19^{-})	C	23185.7 ^m 14	(24^{-})	BC
16372.9 <mark>8</mark> 9	(19^+)	C	23344.0 ⁿ 19	(24^{+})	В
16374.6 ^l 9	(19^{-})	BC	24057.0° 14	(24^{-})	BC
16574.8? P 15	(17^{-})	В	24469.8 <mark>9</mark> 20	(24^{+})	В
16717.2 10	(18^{+})	В	25349.4 ^p 16	(25^{-})	В
16807		В	26176.1 ⁿ 21	(26^+)	В
16818.5 ⁿ 11	(18^{+})	В	26746.8° 17	(26^{-})	BC
17350.7 9 12	(18^{+})	В	27318.9 9 22	(26^+)	В
17365.8 <i>11</i>	(18^{-})	В	28165.5 ^p 19	(27^{-})	В
17408.6° 10	(18^{-})	BC	29475.2 ⁿ 24	(28^{+})	В
17480.5 ^m 9	(20^{-})	BC	29686.0° 21	(28^{-})	BC
17509.7 <i>14</i>	(18^{-})	В	30437.0 <mark>9</mark> 24	(28^{+})	В
17590.7 <mark>h</mark> 11	(20^+)	C	31216.6 ^p 21	(29^{-})	В
18416.8 <i>P</i> 12	(19^{-})	В	32922° 3	(30^{-})	BC
18504.6 ^l 9	(21^{-})	BC	33362 ⁿ 3	(30^+)	В
18678.9 ⁿ 12	(20^+)	В	33800 ^q 3	(30^+)	В
19400.7 ⁰ 9	(20^{-})	BC	34603.7 ^p 24	(31^{-})	В
19478.7 9 <i>13</i>	(20^{+})	В	36501° 3	(32^{-})	В
19507.7 <mark>8</mark> 15	(21^{+})	C	38369 <i>P</i> 3	(33^{-})	В
19602.4 <i>15</i>		В	40459° 3	(34^{-})	В
19679.7 ^m 10	(22^{-})	BC	42521? P 3	(35 ⁻)	В

 $^{^{\}dagger}$ From least-squares fit to the E γ data of gamma-ray studies. Others are from particle data, averages taken when values of comparable precision are available.

[‡] For levels populated in high-spin studies; assignments above J=8 are based on $\gamma\gamma(\theta)$ (DCO) data for selected transitions, band assignments, and comparisons with cranked-shell model calculations. Since full details of most high-spin studies are not available, no separate arguments for J^{π} assignments are given in this evaluation.

[#] From DSA and/or RDM in ⁵⁸Ni(⁶Li,pnγ) and (³He,2nγ), except as noted.

[@] Values from DSAM in (3 He,2n γ) are effective half-lives, thus should be considered as upper limits. The Be(λ)(W.u.) deduced from these half-lives should be considered as lower limits.

[&]amp; From ⁶⁰Ni(³He,n).

^a From $\gamma(\theta)$, excitation, transition strength, linear polarization in ⁵⁸Ni(⁶Li,pn γ).

^b Band(A): g.s. band.

^c Band(B): $K^{\pi} = 2^{+}, \alpha = 0$.

^d Band(b): $K^{\pi} = 2^{+}, \alpha = 1$.

^e Band(C): $K^{\pi}=3^{-}, \alpha=1$.

f Band(c): $K^{\pi}=3^{-}$.α=0.

^g Band(D): K^{π} =(11⁺), α =1. High-j valence configuration= $\pi f_{7/2}^{-1} \pi g_{9/2}^1 \nu g_{9/2}^1$ gives maximum (terminating) spin of 21⁺ with remaining three valence neutrons in $f_{5/2}p_{3/2}$ orbits. Experimental Q(intrinsic) from Doppler-shift data decrease from 1.0 2 (J=15) to 0.25 5 (for J=21) as the spin increases (1998Sv01).

^h Band(d): $K^{\pi}=(11^{+}), \alpha=0$. See comments for $\alpha=1$ signature partner.

ⁱ Band(E): $K^{\pi} = (9^{+}), \alpha = 1$.

⁶²Zn Levels (continued)

$\gamma(^{62}Zn)$

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.#	δ#	Comments
953.84	2+	953.8 <i>1</i>	100	$0.0 0^{+}$	E2		B(E2)(W.u.)=16.8 8 (2011PrZZ)
1804.67	2+	850.8 <i>1</i>	100 5	953.84 2+	M1+E2	-3.6 + 7 - 10	B(M1)(W.u.)=0.00057 23;
							B(E2)(W.u.)=18 4
							δ: from (3 He,2nγ). Others: $-1.2 + 4-5$ from 63 Cu(p,2nγ), $-5.1 + 29-34$ from
							(⁶ Li,pnγ).
		1804.8 2	70 <i>6</i>	$0.0 0^{+}$	E2		B(E2)(W.u.)=0.32 6
2186.06	4+	1232.2 <i>I</i>	100	953.84 2+	E2		B(E2)(W.u.)=26 +7-12
2341.95	0+	1388.3 <i>3</i>	100	953.84 2+			
2384.50	3 ⁺	579.8 2	64 7	1804.67 2 ⁺	M1+E2	-1.9 + 3 - 5	B(M1)(W.u.)=0.006 4; B(E2)(W.u.)=110 70
		1430.7 2	100 6	953.84 2+	M1+E2	-0.5 1	B(M1)(W.u.)=0.0022 15;
							B(E2)(W.u.)=0.5 4
							δ : +3.4 +9-6 (³ He,2n γ).
2743.60	4+	359.1 2	11 3	2384.50 3+	M1+E2	-0.32 22	B(M1)(W.u.)=0.010 4; B(E2)(W.u.)=15 +19-15
		557.5 2	100 4	2186.06 4+	M1+E2	-0.35 3	B(M1)(W.u.)=0.025 3; B(E2)(W.u.)=17
		938.9 2	79 10	1804.67 2 ⁺	E2		B(E2)(W.u.)=9.3 16 Mult.: δ (M3/E2)=-0.13 +11-5.
		1789.7 9	2 1	953.84 2 ⁺			V(u)(1.00) = 0.13 + 11 - 3.
2803.14	2+	998.4 <i>4</i>	9 2	1804.67 2 ⁺	(M1+E2)		
2005.11.	-	1849.2 ^{&} 2	100‡ 7	953.84 2+	(M1(+E2))	+0.03 16	B(M1)(W.u.)=0.020 4;
		1049.2 2	100. /	955.04 2	(WII(+E2))	+0.03 10	B(E2)(W.u.)=0.01 +10-1
		2803.0 ^{&} 5	8 [‡] 5	$0.0 0^{+}$	[E2]		B(E2)(W.u.)=0.11 7
		2803.0	8, 3	0.0	[E2]		E_{γ} : from ⁶² Ga decay only.
2884.05	2+	1079.4 <i>4</i>	5 2	1804.67 2 ⁺	[M1+E2]		E_{γ} : from ${}^{\circ}$ -Ga decay only.
2004.03	2						D. G. C.
		1930.1 ^{&} 4	100‡ 7	953.84 2+	(M1(+E2))	-0.32 +30-36	B(M1)(W.u.)=0.020 5; B(E2)(W.u.)=1.0 +17-10
		$(2884.0 \frac{\&}{5})$	<2 [‡]	$0.0 0^{+}$	[E2]		B(E2)(W.u.)=0.014 + 15-14
3042.9?	(0^+)	2089.0 ^a 8	100	953.84 2+			
3181.2	(1^{+})	2227.2 4	100 4	953.84 2+			
		3181.3 6	16.0 <i>19</i>	$0.0 0^{+}$			
3209.86	4+	(325.7)	<2	2884.05 2+	[E2]		
		(406.7)	<2	$2803.14 \ 2^{+}$	[E2]		
		1023.7 ^{&} 2	100 [‡] 5	2186.06 4+	(M1(+E2))	+0.01 18	B(M1)(W.u.)=0.058 <i>10</i> ; B(E2)(W.u.)=0.01 +35-1
		2256.5 ^{&} 8	40 [‡] 8	953.84 2+	[E2]		B(E2)(W.u.)=0.75 19
3223.5	3(-)	2269.6 4	100	953.84 2 ⁺	D(+Q)	-0.10 19	_ (/(/
5225.5	5	2207.0 1	100	755.01 2	2(10)	0.10 17	
						_	

^j Band(e): $K^{\pi} = (9^+), \alpha = 0$.

^k Band(F): Band based on (12⁺).

¹ Band(g): Band based on $(13^{-}), \alpha=1$.

^m Band(G): Band based on $(14^{-}), \alpha=0$.

ⁿ Band(H): Well-deformed band based on 16⁺. Percent population=2. Possible configuration=[22,02].

^o Band(I): SD-1 band,α=0. Possible configurations=[22,23] or [22,13]; former is preferred. Band intensity ≈1%; Q(transition)=2.7 +7-5 (1997Sv02), corresponding to $β_2$ =0.45 +10-7. Probable configuration= $vf_{7/2}^{-2}vg_{9/2}^{+2}$ with possible contribution from configuration= $vf_{7/2}^{-2}vg_{9/2}^{+3}$ (1997Sv02).

 $[^]p$ Band(i): SD-2 band, α =1. Possible configurations=[22,23] or [22,13]; former is preferred.

^q Band(J): SD-3 band, α =0. Possible configurations=[22,22] or [22,24].

γ ⁽⁶²Zn) (continued)</sup>

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J_f^{π}	Mult.#	δ#	Comments
3374.2	(1-)	1032.0 5	20 17	2341.95 0+			
		1569.8 <i>4</i>	100 17	1804.67 2+			
		3373.5 8	60 13	$0.0 0^{+}$			
3586.55	(5 ⁺)	843.0 <i>3</i>	97 8	2743.60 4+	M1+E2	-2.5 +10-33	B(M1)(W.u.)=0.004 +3-4; B(E2)(W.u.)=61 +23-61
		1202.1 <i>3</i> 1400	100 5	2384.50 3 ⁺ 2186.06 4 ⁺	E2		B(E2)(W.u.)=12 +5-12
3707.60	6+	1521.5 <mark>&</mark> <i>3</i>	100 [‡]	2186.06 4+	E2		B(E2)(W.u.)=19 3
3960.5	(1^{+})	1156.7 <i>4</i>	54 <i>14</i>	2803.14 2+			
		1619.2 <i>4</i>	100 <i>14</i>	2341.95 0+			
4008.4	0+	2203.7 7	100	1804.67 2 ⁺			
4021.6	(1^{+})	1679.3 6	5.4 34	2341.95 0+			
		3068.1 8	10.7 27	953.84 2+			
		4021.7 8	100 7	0.0 0+			
4043.20	$(5)^{-}$	833.2 ^{&} 3	18 [‡] 8	3209.86 4+	[E1]		B(E1)(W.u.)=0.00031 15
		1299.4 <mark>&</mark>	41 [‡] 6	2743.60 4+	(E1)		B(E1)(W.u.)=0.00019 5
		1857.5 <mark>&</mark> 4	100 [‡] 5	2186.06 4+	(E1)		B(E1)(W.u.)=0.00016 3
4217.6	(3^{-})	2031.5 7	100	2186.06 4+			
4347.86	6+	640.3 2	13 5	3707.60 6 ⁺	[M1+E2]		
		761.7 <i>6</i>	<5	3586.55 (5 ⁺	[M1+E2]		
		1604.2 <mark>&</mark> 3	100 [‡] 6	2743.60 4+	E2		B(E2)(W.u.)=6.6 19
4448.0	(1^{+})	1644.7 <i>5</i>	19 5	2803.14 2+			
		2105.9 4	56 6	2341.95 0+			
		2643.9 6	24 5	1804.67 2+			
		3493.9 7	53 6	953.84 2+			
4535.4?		4447.8 <i>9</i> 2349.3 <i>8</i>	100 <i>7</i> 100	$0.0 0^{+}$ $2186.06 4^{+}$			
4895.3	(1^+)	2092.5 4	100 13	2803.14 2 ⁺			
1075.5	(1)	3089.0 10	19 8	1804.67 2 ⁺			
		4894.4 10	89 11	$0.0 0^{+}$			
4904.7	(7^{-})	370 ^a		4535.4?			
		557.2 <i>5</i>	56 10	4347.86 6+	[E1]		B(E1)(W.u.)=0.00010 5
		861.5 <i>3</i>	14 2	4043.20 (5)			B(E2)(W.u.)=0.8 4
		1196.9 5	100 4	3707.60 6 ⁺	(E1(+M2))	-0.01 <i>13</i>	B(E1)(W.u.)= $1.8 \times 10^{-5} 8$; B(M2)(W.u.)= $0.006 + 149 - 6$
5123.5	(7)-	1080.3 3	100	4043.20 (5)		. = .	B(E2)(W.u.)=13 9
5131.0	(6 ⁻)	1087.8 3	100	4043.20 (5)		-4.7 26	B(M1)(W.u.)<0.0022; B(E2)(W.u.)<37
5143.3	$(7)^{+}$	795.6 <i>6</i> 1556.7 <i>5</i>	23 <i>3</i> 100 <i>6</i>	4347.86 6 ⁺ 3586.55 (5 ⁺	[M1+E2]) (E2)		B(E2)(W.u.)=8 +3-5
5211.5	(1^+)	2408.3 7	25 8	2803.14 2 ⁺) (E2)		B(E2)(W.u.)=8 +3=3
3211.3	(1)	2869.8 7	33 8	2341.95 0 ⁺			
		4256.6 9	57 8	953.84 2 ⁺			
		5211.5 <i>11</i>	100 <i>I</i>	$0.0 0^{+}$			
5481.5	(8^{+})	1773.7 6	100	3707.60 6+	[E2]		B(E2)(W.u.)=7.9 +20-40
5920.8?	(1^{+})	5920.5 ^a 17	100	$0.0 0^{+}$			
6081.6	(9-)	1176.9 <i>4</i>	100	4904.7 (7			B(E2)(W.u.)=4 4
6113.7	(8^{-})	983		5131.0 (6-			
6620.5		1208.7 7		4904.7 (7			
6629.5 7422.5	(11^{-})	1506.0 <i>20</i> 1341.5 <i>6</i>	100	5123.5 (7) ⁻⁶			
7422.7	(10^{-})	1341.5 0	100	6113.7 (8			
,	(10)	1341		6081.6 (9			
7500.0	(10^+)	2018		5481.5 (8+			
7629.7		1548		6081.6 (9-)		

γ (62Zn) (continued)

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$
7701.5?		279		7422.5 (11-)
7976.1	(9^+)	1862		6113.7 (8 ⁻)
7770.1	()	1894		6081.6 (9 ⁻)
		2833		5143.3 (7)+
8437.2	(10^+)	2355		6081.6 (9 ⁻)
9024.7	(12^{-})	1602		7422.7 (10 ⁻)
7021.7	(12)	1603		7422.5 (11 ⁻)
9048.6	(11^{+})	611		8437.2 (10 ⁺)
70.10.0	(11)	1072		7976.1 (9 ⁺)
		1626		7422.5 (11 ⁻)
9214.0	(13^{-})	1791		7422.5 (11 ⁻)
9465.2	(12^{+})	416		9048.6 (11+)
	()	1028		8437.2 (10 ⁺)
		2043		7422.5 (11 ⁻)
9823.7	(12^+)	2402		7422.5 (11 ⁻)
9960.4	(13^{+})	495		9465.2 (12 ⁺)
	(-)	911		9048.6 (11+)
		936		9024.7 (12 ⁻)
10247.4	(11^{+})	2747		7500.0 (10 ⁺)
10316.4	(13+)	851		9465.2 (12+)
	` /	1268		9048.6 (11+)
10375.1	(14^{+})	415		9960.4 (13+)
	. ,	910		9465.2 (12+)
		1160.8 <i>4</i>		9214.0 (13-)
10635.8	(12^{+})	388.3 <i>3</i>		10247.4 (11+)
		3006		7629.7
		3213		7422.5 (11 ⁻)
10725.9	(14^{-})	1512		9214.0 (13-)
		1701		9024.7 (12-)
11182.8	(13^{+})	546.9 <i>3</i>	100 6	10635.8 (12+)
		935.5 5	24 2	$10247.4 (11^{+})$
11546.8	(14^{+})	1724		9823.7 (12+)
		2333		9214.0 (13 ⁻)
11651.6	(13^{-})	2627		9024.7 (12 ⁻)
		4229		7422.5 (11 ⁻)
11755.8	(14^{+})	573.1 <i>3</i>	100 6	$11182.8 (13^+)$
		1119.8 <i>4</i>	64 <i>4</i>	$10635.8 (12^+)$
11788.3	(15^{+})	1827		9960.4 (13 ⁺)
11961.6	(16^{+})	1586		$10375.1 \ (14^+)$
12329.3	(14^{-})	677.7 <i>4</i>	100 10	11651.6 (13 ⁻)
		3116		9214.0 (13 ⁻)
		3305		9024.7 (12 ⁻)
12536.7	(15^+)	780.6 <i>3</i>	100 7	11755.8 (14 ⁺)
		1353.8 5	68 5	11182.8 (13+)
12812.9	(15^{-})	2437		10375.1 (14+)
12993.0	(15^{-})	663.6 <i>3</i>	100 7	12329.3 (14 ⁻)
		1342.0 10	95 23	11651.6 (13 ⁻)
101560	(1.54)	1447		11546.8 (14+)
13156.3	(16^+)	1610	00 /	11546.8 (14 ⁺)
13236.6	(16^{+})	699.6 3	88 6	12536.7 (15+)
12726 7	(16=)	1481.2 4	100 6	11755.8 (14 ⁺)
13726.7	(16^{-})	733.6 <i>3</i> 913	100 8	12993.0 (15 ⁻) 12812.9 (15 ⁻)
		913 1397.6 <i>4</i>	76.6	
14125.5	(17^+)	888.7 <i>3</i>	76 <i>6</i> 100 <i>6</i>	12329.3 (14 ⁻) 13236.6 (16 ⁺)
17123.3	(1/)	000.7 3	100 0	13230.0 (10)

γ (62Zn) (continued)

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}
14125.5	(17^+)	1589.0 <i>6</i>	79 <i>6</i>	12536.7	(15^+)
14445.8	(17^{-})	719		13726.7	(16^{-})
		1633		12812.9	(15^{-})
		2483		11961.6	(16^{+})
14541.8	(17^{-})	815.0 <i>3</i>	100 8	13726.7	(16^{-})
		1385		13156.3	(16^{+})
		1549.3 5	92 8	12993.0	(15^{-})
		2581		11961.6	(16^{+})
14646.3	(16^{+})	2858		11788.3	(15^{+})
14832.3	(16^{+})	3043		11788.3	(15^{+})
15041.8	(16^{+})	3495		11546.8	(14^{+})
15049.6	(18^{+})	924.1 <i>4</i>	75 6	14125.5	(17^{+})
		1813.0 <i>5</i>	100 6	13236.6	(16^{+})
15295.5	(18^{+})	2140		13156.3	(16^{+})
15415.6	(18^{-})	873.7 <i>3</i>	78 <i>7</i>	14541.8	(17^{-})
		969		14445.8	(17^{-})
4.550.50	40.	1689.2 5	100 7	13726.7	(16^{-})
15705.8	(19-)	1260	0.4.10	14445.8	(17^{-})
16372.9	(19^+)	1323.3 6	94 12	15049.6	(18^+)
160746	(10=)	2246.7 8	100 12	14125.5	(17^{+})
16374.6	(19^{-})	959.0 8	81 22	15415.6	(18^{-})
		1833.1 5	100 8	14541.8	(17^{-})
16717.0	(10±)	1928		14445.8	(17^{-})
16717.2	(18^{+})	1675		15041.8	(16^+)
		1884		14832.3	(16^+)
		2071		14646.3	(16^{+})
16818.5	(18^+)	4757		11961.6	(16^+) (16^+)
10616.3	(18)	1777 4856		15041.8 11961.6	(16^+)
17350.7	(18^+)	1868		15482.7	(16^+)
17330.7	(10)	5388		11961.6	(16^+)
17365.8	(18^{-})	3639		13726.7	(16^{-})
17408.6	(18^{-})	2963		14445.8	(17^{-})
17100.0	(10)	3682 ^a		13726.7	(16^{-})
17480.5	(20^{-})	1105.9 4	48 <i>4</i>	16374.6	(19^{-})
17.00.0	(20)	2065.4 6	100 8	15415.6	(18^{-})
17590.7	(20^+)	1217.5 7	33 6	16372.9	(19^{+})
	(==)	2541.4 9	100 11	15049.6	(18^{+})
18416.8	(19^{-})	1842 ^a		16574.8?	(17^{-})
	(-)	3001 ^a		15415.6	(18^{-})
18504.6	(21^{-})	1024.3 <i>4</i>	57 6	17480.5	(20^{-})
		2130.3 8	100 11	16374.6	(19^{-})
18678.9	(20^+)	1860		16818.5	(18^{+})
		1962		16717.2	(18^{+})
19400.7	(20^{-})	1891		17509.7	(18^{-})
		1992.7 <mark>&</mark> <i>12</i>	0.14 [‡] 7	17408.6	(18^{-})
		2035		17365.8	(18^{-})
		3027		16374.6	(19^{-})
		3983 <mark>&</mark>	≈0.08 [‡]	15415.6	(18^{-})
19478.7	(20^+)	2127	-0.00	17350.7	(18^+)
->	(=3)	4184		15295.5	(18^{+})
19507.7	(21^+)	3134.7 12	100	16372.9	(19^+)
19679.7	(22^{-})	1174.6 12	40 20	18504.6	(21^{-})
	` /	2199.5 7	100 8	17480.5	(20^{-})
20474.9	(21^{-})	2058		18416.8	(19-)

$\gamma(^{62}Zn)$ (continued)

$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
20474.9	(21^{-})	2994		17480.5	(20^{-})
20858.9	(22^{+})	2180		18678.9	(20^{+})
21042.0	(23^{-})	1362.3 7	56 7	19679.7	(22^{-})
		2537.4 9	100 11	18504.6	(21^{-})
21617.5	(22^{-})	2015		19602.4	
		2215.3 8	0.93 [‡] <i>13</i>	19400.7	(20^{-})
		3115 [@]		18504.6	(21^{-})
21853.8	(22^{+})	2375		19478.7	(20^+)
22784.4	(23^{-})	2309		20474.9	(21^{-})
		3105 ^a		19679.7	(22^{-})
23185.7	(24^{-})	2143.8 <i>12</i>	40 10	21042.0	(23^{-})
		3505.7 <i>14</i>	100 20	19679.7	(22^{-})
23344.0	(24^{+})	2485		20858.9	(22^{+})
24057.0	(24^{-})	2439.5 <mark>&</mark> 9	1.02 [‡] <i>15</i>	21617.5	(22^{-})
24469.8	(24^{+})	2616		21853.8	(22^{+})
25349.4	(25^{-})	2565		22784.4	(23^{-})
26176.1	(26^{+})	2832		23344.0	(24^{+})
26746.8	(26^{-})	2689.7 ^{&} 10	0.86 [‡] <i>13</i>	24057.0	(24^{-})
27318.9	(26^+)	2849		24469.8	(24^{+})
28165.5	(27^{-})	2816		25349.4	(25^{-})
29475.2	(28^{+})	3299		26176.1	(26^+)
29686.0	(28^{-})	2939.1 ^{&} <i>12</i>	0.43 [‡] 11	26746.8	(26^{-})
30437.0	(28^{+})	3118		27318.9	(26^+)
31216.6	(29^{-})	3051		28165.5	(27^{-})
32922	(30^{-})	3235.6 ^{&} 14	0.10 [‡] 5	29686.0	(28^{-})
33362	(30^+)	3887		29475.2	(28^{+})
33800	(30^+)	3363		30437.0	(28^{+})
34603.7	(31^{-})	3387		31216.6	(29^{-})
36501	(32^{-})	3579		32922	(30^{-})
38369	(33^{-})	3765		34603.7	(31^{-})
40459	(34^{-})	3958		36501	(32^{-})
42521?	(35^{-})	4152		38369	(33^{-})

[†] Weighted averages of all available data. Intensities are relative branching ratios, unless stated otherwise.

[‡] Relative intensity within the SD-1 band.

[#] From $\gamma(\theta)$ and RUL, 60 Ni(α ,2n γ), 58 Ni(6 Li,pn γ), 61 Ni(3 He,2n γ). @ Level-energy difference=3113.

[&]amp; Be(λ)(W.u.) values should be considered as lower limit since the level half-lives are effective values, not corrected for side

^a Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{62}_{30}{\rm Zn}_{32}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

 $^{62}_{30}{
m Zn}_{32}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

 $^{62}_{30}{
m Zn}_{32}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{62}_{30}{\rm Zn}_{32}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

7 Decay (Uncertain)

 $^{62}_{30}{
m Zn}_{32}$


```
History
                                                              Author
                                  Type
                                                                                             Citation
                                                                                                                  Literature Cutoff Date
                                                  Balraj Singh and Jun Chen
                                                                                     NDS 178, 41 (2021).
                             Full Evaluation
                                                                                                                       12-Nov-2021
Q(\beta^{-}) = -7171.2 \ 15; S(n) = 11861.9 \ 15; S(p) = 7713.1 \ 6; Q(\alpha) = -3955.7 \ 7
                                                                                        2021Wa16
Q(2\varepsilon)=1095.0 7, S(2n)=20978.6 8, S(2p)=13835.5 6 (2021Wa16).
Mass excess measurements: 2018Ki21, 2008Go23, 2007Ke09, 2005Ch60, 1977De20, 1976De21.
Other reactions:
<sup>59</sup>Co(<sup>6</sup>Li,n) E=39.7, 90 MeV: 1984Bo45: Measured \sigma(\theta), reaction mechanism.
^{60}Ni(\alpha,p):IAR E=7.260-7.450 MeV: 1976Fo06: Measured resonance strengths. Other: 1961No04.
^{60}Ni(\alpha,\alpha'):IAR E=14.6-20.9 MeV: 1975Lu06: Si telescope, \sigma(\theta), deduced isospin mixing for ^{64}Zn at excitations of 17.6-23.5
^{61}Ni(\alpha,n) E=53 MeV: 1984Bo45, 1979Bo45: \sigma(\theta), reaction mechanism.
Additional information 1.
^{64}Zn(t,t) E=12 MeV: 1972Hu06: measured \sigma(\theta). Deduced optical model-parameters.
<sup>64</sup>Zn(<sup>6</sup>Li, <sup>6</sup>Li), (<sup>7</sup>Li, <sup>7</sup>Li): 1991Bo48.
<sup>27</sup>Al(<sup>37</sup>Cl,X) and <sup>48</sup>Ti(<sup>16</sup>O,X): 1984Mi09 (scission mechanism for excited <sup>64</sup>Zn nucleus).
<sup>63</sup>Cu(<sup>16</sup>O, <sup>15</sup>N): 1975We20 E=38-51 MeV. Reaction mechanism.
<sup>60</sup>Ni(<sup>18</sup>O, <sup>14</sup>C): 1973RoYT, 1972HeYV.
^{64}Zn(\pi^+,\pi^-): 1993Be02: E=293.4 MeV, measured \sigma(\theta).
^{64}Zn(\pi^+,\pi^-): 1997Fo03: E=140-230 MeV, measured \sigma(\theta).
<sup>64</sup>Zn(K<sup>-</sup>,X): 1980De11, calculated atomic level shifts.
^{64}Zn(^{7}Li,t\alpha) E=42 MeV: 2001To07 (also 1999Ut03): measured triton and \alpha spectra, \sigma(\theta), deduced astrophysical S factors.
^{64}Zn(^{10}Be,^{10}Be),((^{11}Be,^{11}Be),E(c.m.)=24.5 MeV: 2014DiZV: measured \sigma(\theta) for elastic scattering at REX-ISOLDE facility of
    CERN, and analyzed using CDCC with optical model calculations.
Giant-dipole resonances: 1981Do12 (^{64}Zn(e,p)); 1977TaYW (^{64}Zn(\gamma,\alpha)); 1973Ya04 (^{64}Zn(\gamma,\gamma,\alpha)); 1972ClZK (^{64}Zn(\gamma,\alpha)); 1972ClZK (^{64}Zn(\gamma,\alpha));
    1970Co25 (^{64}Zn(\gamma,n), (\gamma,2n), (\gamma,np)).
Isotope shifts: 1970Le23. Theory: 1982Fo09.
There are several high-spin studies: {}^{12}\text{C}({}^{54}\text{Fe},2\text{p}\gamma) from 1994Cr05; {}^{40}\text{Ca}({}^{28}\text{Si},4\text{p}\gamma) E=115 MeV from 1998Ga11; {}^{40}\text{Ca}({}^{28}\text{Si},4\text{p}\gamma)
    E=120 MeV from 1997Fu08; ^{40}Ca(^{28}Si,4p\gamma) E=122 MeV from 2004Ka18; ^{51}V(^{16}O,p2n\gamma),^{59}Co(^{7}Li,2n\gamma) from 1977We10,
    1978We15, and 1977Al14; {}^{61}Ni(\alpha, n\gamma), {}^{56}Fe({}^{11}B,2np\gamma) from 1980Si02 and 1978Si02; {}^{61}Ni(\alpha, n\gamma),(HI,xn\gamma) from 1978Ne02 and
     1976Ch11. While there is general agreement between all these studies below about 5 MeV excitation, above this energy, there are
    major differences even when the same reaction is used as in 2004Ka18, 1998Ga11 and 1997Fu08. Since the statistics in \gamma\gamma
    coincidences is the highest in 2004Ka18, where Gammasphere array has been used, evaluators have adopted the high-spin level
    scheme from 2004Ka18 with the exception of few cases where results of 2004Ka18 are in clear disagreement with other
    experiments, the results of which are considered by evaluators as more definitive. Such cases are noted in comments. It should also
    be mentioned that complete details of data are not available from 2004Ka18. Requests by evaluators for obtaining such details from
    the authors of 2004Ka18 were unsuccessful. Full details of data are also missing in 1998Ga11 and 1997Fu08, although, some were
    obtained as priv. comm. (1996GaZZ) from authors of 1998Ga11. Several levels proposed by 1998Ga11, 1997Fu08 and 1994Cr05,
```

In the opinion of the evaluators, there are several incomplete or discrepant aspects of the high-spin portion of the level scheme which need to be resolved in further experiments.

but not reported by 2004Ka18 have been omitted here. See individual datasets for details.

⁶⁴Zn Levels

Cross Reference (XREF) Flags

Α	64 Cu $β^-$ decay (12.7006 h)	N	62 Ni(3 He,n)	Other	rs:
В	⁶⁴ Ga ε decay (2.627 min)	0	63 Cu(p, γ) E=1.3-3.2 MeV	AA	64 Zn(μ^{-} ,X)
C	$^{12}\text{C}(^{54}\text{Fe},2\text{p}\gamma)$	P	63 Cu(p, γ) E=2050 keV	AB	64 Zn(n,n')
D	40 Ca(28 Si, 4 p γ) E=115 MeV	Q	63 Cu(p, γ) E=2.1-3.1 MeV	AC	64 Zn(n,n' γ)
E	40 Ca(28 Si, 4 p γ) E=120 MeV	R	63 Cu(p, γ) E=2098 keV	AD	64 Zn(p,p'),(pol p,p')
F	40 Ca(28 Si,4p γ) E=122 MeV	S	63 Cu(p, γ) E=3217,3251 keV	AE	64 Zn(p,p' γ)
G	$^{51}V(^{16}O,p2n\gamma),^{59}Co(^{7}Li,2n\gamma)$	T	63 Cu(p, γ) E=3.46 MeV	AF	64 Zn(d,d'),(pol d,d)
H	⁶⁰ Ni(⁶ Li,d)	U	⁶³ Cu(p,n):resonances	AG	64 Zn(3 He, 3 He')
I	60 Ni(7 Li,t)	V	63 Cu(d,n),(pol d,n)	AH	64 Zn(α,α')

```
60Ni(16O,12C)
                                                                 ^{63}Cu(^{3}He,d)
                                                                                                            ^{64}Zn(^{16}O,^{16}O'),(^{12}C,^{12}C')
                 J
                                                           W
                                                                                                    ΑI
                                                                 ^{63}Cu(\alpha,t)
                       ^{61}Ni(\alpha,n\gamma),^{56}Fe(^{11}B,2np\gamma)
                 K
                                                           X
                                                                                                    ΑJ
                                                                                                            Coulomb excitation
                                                                 ^{64}Zn(\gamma, \gamma')
                       ^{61}Ni(\alpha,n\gamma),(HI,xn\gamma)
                                                                                                            ^{66}Zn(p,t)
                 L
                                                           Y
                                                                                                    AK
                       <sup>62</sup>Ni(<sup>12</sup>C, <sup>10</sup>Be),(<sup>16</sup>O, <sup>14</sup>C)
                                                                 ^{64}Zn(e,e')
                                                        XREF
                                                                                                               Comments
                      stable @
               0^{+}
                                         ABCDEFGHIJKLMNOPQRST VWXYZ
                                                                                 XREF: Others: AB, AC, AD, AE, AF, AG, AH, AI, AJ, AK
                                                                                 Evaluated rms charge radius \langle r^2 \rangle^{1/2} = 3.9283 fm 15
                                                                                   (2013An02).
                                                                                 Evaluated \delta < r^2 > (^{66}Zn, ^{64}Zn) = -0.162 \text{ fm}^2 2 (2013An02).
                                                                                 Measured change in isotope shift \delta v(^{68}\text{Zn},^{64}\text{Zn}) = -141.2 \text{ MHz}
                                                                                    12(stat) 66(syst) (2019Xi07, collinear laser spectroscopy at
                                                                                   ISOLDE, CERN), with laser wavelength of 480.7254 nm to
                                                                                   match the Doppler shifted transition.
                                                                                 Measured change in charge radius \delta < r^2 > (^{68}Zn, ^{64}Zn) = -0.279
                                                                                   fm<sup>2</sup> 4(stat) 34(syst) (2019Xi07, collinear laser spectroscopy
                                                                                   at ISOLDE, CERN), with laser wavelength of 480.7254 nm
                                                                                   to match the Doppler shifted transition.
                                                                                 J^{\pi}: hyperfine structure measurements: 1929Sc01, 1931Mu02.
                                                                                 T_{1/2}: see footnote for lower limits for double \beta decay.
                                                                                 Additional information 2.
991.54  5
                           1.94 ps 5
                                          BCDEFGHIJKLMNOPQRST VWXYZ
                                                                                 XREF: Others: AB, AC, AD, AE, AF, AG, AH, AI, AJ, AK
                                                                                 \beta_2 = 0.260 \ 18 \ (1987 \text{Ja}04)
                                                                                 \mu=+0.89 14 (2005Le12,2010Mo14,2020StZV)
                                                                                 Q=-0.143 21 (1976Ne06,1977Ne05,1981Ko06,2016St14,
                                                                                   2021StZZ)
                                                                                 XREF: J(960)N(1024)AB(920).
                                                                                 Additional information 3.
                                                                                 E(level): level energy held fixed in least-squares adjustment.
                                                                                 J^{\pi}: E2 \gamma to 0^+.
                                                                                 \beta_2: from (p,p'). Others: see (e,e'); (n,n'); (p,p'); (d,d');
                                                                                   ({}^{3}\text{He}, {}^{3}\text{He}') and (\alpha, \alpha'). \beta_2(\text{pol p,p'})=0.26, 0.25 (1993Mo15).
                                                                                   Negative sign is indicated by 1991Ku30 from an analysis of
                                                                                   \sigma(\theta)(\alpha,\alpha') data.
                                                                                 \mu: from transient fields in Coul. ex. (2005Le12,2010Mo14).
                                                                                   Others: +0.89 9 (2002Ke02), +0.92 20 (1979Fa06), +0.84
                                                                                    18, +1.04 24 (1978BeZJ,1979BrZP), 2010Mo14 reanalyzed
                                                                                   their previously measured g factor of +0.45 3 in 2005Le12
                                                                                   using a different procedure for precession effect, and
                                                                                   obtained the same value. Uncertainty of 0.06 in 2010Mo14
                                                                                   increased to 0.14 in 2020StZV evaluation.
                                                                                 Q: from electron scattering (1976Ne06,1977Ne05, value of
                                                                                    −0.124 11 reanalyzed by 1981Ko06 to −0.143 21. Others:
                                                                                   -0.32\ 6 or -0.26\ 6 (1988Sa32, reorientation method in
                                                                                   Coulomb excitation; -0.135 \ 14 \ ((e,e'), 1972Li12); -0.01 +9-5
                                                                                   (Coul. ex., 2003KoZO).
                                                                                 T_{1/2}: weighted average of 1.97 ps 6 (DSA in Coul.
                                                                                   Ex.,2005Le12); 1.87 ps 6 (DSA in Coul. Ex.,2002Ke02);
                                                                                   2.06 ps 17 ((\gamma, \gamma'), 1981\text{Ca}10); 2.8 ps 7 (RDDS in
                                                                                   (16O,p2ny),1977Al14); 1.71 ps 21 (line shape in Coul. ex.,
                                                                                   1973Fi15) and 2.16 ps 15 ((\gamma, \gamma'),1971ImZY). Values
                                                                                   deduced from B(E2) values in Coul. Ex. and (e,e') are
                                                                                   somewhat lower: 1.76 ps 4 (from B(E2)=0.168 4,1988Sa32);
                                                                                   1.82 ps 10 (from B(E2)=0.162 9 and 1.83 ps 13 from
                                                                                   B(E2)=0.161 12,1975Th01); 1.73 ps 15 (from B(E2)=0.170
                                                                                   15, 1962St02). Weighted average of all the values is 1.84 ps
                                                                                   4. 2001Ra27 evaluation quotes 1.86 ps 17 from weighted
                                                                                   average of 15 values (B(E2) in Coul. Ex.:
                                                                                   1988Sa32,1975Th01,1962St02,1960An07, 1956Te26;
                                                                                   Doppler-shift method in Coul. Ex.: 1973Fi15; Doppler-shift
```

E(level) [†]	$J^{\pi \ddagger}$	${\rm T_{1/2}}^{\#}$	XREF	Comments
1799.41 ^a 4	2+	2.0 ps 2	BCDEFGH JKLM OPQRST VW Z	in (16 O,p2n γ): 1977Al14; (γ , γ'): 1981Ca10,1977Ca14,1972ArZD,1965Ta13; (e,e'): 1977Ne05,1976Ne06,1970Af04. XREF: Others: AC, AD, AE, AF, AH, AJ, AK XREF: J(1750). J $^{\pi}$: E2 γ to 0 $^{+}$. T _{1/2} : from B(E2)(\uparrow)=0.00170 <i>12</i> ((e,e'), 1977Ne05). Others (from (α ,n γ), (11 B,2np γ)): 1.4 ps 7 (1977Al14), 2.1 ps <i>14</i> (1977We10), 1.8 ps +6-3 (1976Ch11), >1.0 ps (1978Si02).
1910.26 4	0+	0.95 ns <i>5</i>	B H KL OPQR T W	XREF: Others: AC, AD, AE, AF, AH, AK XREF: AF(1960)AK(1940). J^{π} : E0 transition to 0 ⁺ . $T_{1/2}$: γ ce(t) in $(p,p'\gamma)$ (1985Pa07). Others (from $(\alpha,n\gamma)$,(11 B,2 $np\gamma$)): 2.4 ps +10-6 (1976Ch11), >1.0 ps (1978Si02).
2306.72 ^{&} 5	4+	0.776 ps 28	CDEFGH JKLM OPQRST VW Z	XREF: Others: AC, AD, AE, AF, AH, AJ, AK μ =+2.0 6 (2005Le12,2010Mo14,2020StZV) XREF: M(2400)V(2230). μ : from transient fields in Coul. ex. (2005Le12, 2010Mo14 reanalyzed previously measured g factor in 2005Le12 of +0.53 $I6$ using a different procedure for precession effect, and obtained g factor=+0.49 $I5$. J ^{π} : γ (θ) and γ (lin pol) in (α , $\eta\gamma$),(11 B,2 $\eta\gamma$). B(E4)=0.00034 $I0$ from (e,e'). T _{1/2} : from DSA method in Coul. ex. (2005Le12). Others: 0.21 ps + II -8 ((η , $\eta'\gamma$),1985Ko27); 0.29 ps 8 (α , $\eta\gamma$),((11 B,2 $\eta\gamma$),1978Si02); 1.0 ps 6 (1977We10) and 0.8 ps 3 (1976Le31) in (16 O, η 2 η),(7 Li,2 $\eta\gamma$);
2609.52 7	0+	0.20 ps 8	B H KL OPQR T W	0.44 ps 9 (1976Ch11) in $(\alpha, n\gamma)$. XREF: Others: AC, AD, AE, AK J^{π} : E0 transition to 0 ⁺ . $T_{1/2}$: weighted average of 0.15 ps +6-3 ((n,n' γ), 1985Ko27); 0.36 ps 10 $(\alpha, n\gamma)$,((¹¹ B,2np γ), 1978Si02); 1.0 ps +6-4 (($\alpha, n\gamma$), 1976Ch11).
2736.57 ^a 6	4+	1.5 ps <i>3</i>	CDEFGh KL OPQRST w	XREF: Others: AC, AD, AE, AH, AJ, AK XREF: AH(2780). J^{π} : 937 $\gamma(\theta, \text{lin pol})$ in $(\alpha, n\gamma), (^{11}B, 2np\gamma)$. $T_{1/2}$: from $(\alpha, n\gamma), (^{11}B, 2np\gamma)$. Weighted average of 1.2 ps 3 (1980Si02); 3.5 ps 21, 1.7 ps 7 (1977We10);
2793.5 4	2+	0.049 ps <i>14</i>	h KL OPQRST w	3.5 ps $I4$ (1977Al14); 2.1 ps 7 (1976Ch11). XREF: Others: AC, AD, AE, AK J^{π} : L(p,t)=2 from 0 ⁺ . $T_{1/2}$: from $(\alpha, \eta \gamma)$, (¹¹ B,2np γ) (1978Si02). Other:
2979.94 <i>15</i>	3+	0.30 ps +39-11	jKL nOPQRST	<0.009 ps (1976Ch11). XREF: Others: AC, AD, AE XREF: $j(2960)n(2930)$. J^{π} : $\gamma(\theta, \text{ lin pol) in } (\alpha, n\gamma), (^{11}B, 2np\gamma)$. $T_{1/2}$: from $(n, n'\gamma)$ (1985Ko27). Others: >2.6 ps (1976Ch11), >1.0 ps (1978Si02) in $(\alpha, n\gamma), (^{11}B, 2np\gamma)$.
2998.54 ^b 17	3-	0.152 ps <i>4</i>	CDEFGH jKL nOP rST wX Z	XREF: Others: AB, AC, AD, AE, AF, AG, AH, AJ, AK μ =+1.5 9 (2005Le12,2020StZV) B(E3) \uparrow =0.040 7 (1976Ne06)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	X	REF	Comments
					β ₃ =0.235 <i>16</i> (1987Ja04) XREF: H(2980)j(2960)n(2930)X(3040)AB(3300)AK(3020). μ: from transient fields in Coul. ex. (2005Le12). B(E3)↑: from (e,e'). Others: see (e,e') and (α,α'). 2002Ki06 quote 0.034 <i>5</i> from average of 0.040 <i>7</i> (1976Ne06) and 0.0307 <i>23</i> (1970Af04). β ₃ : from (p,p'). Others: see (e,e'); (n,n'); (p,p'); (d,d'); (³ He, ³ He'); (α,α'). β ₃ (pol p,p')=0.22, 0.21 (1993Mo15). J ^π : L(e,e')=3. Strong population in (p,p') and other inelastic scattering experiments identifies this as an octupole state. T _{1/2} : from DSA method in Coul. ex. (2005Le12). Others: 0.097 ps 21 ((n,n'γ),1985Ko27); 0.080 ps 21
3005.73 14	2+	0.057 ps 8	KL	OP r T w	$(\alpha, n\gamma), ((^{11}B, 2np\gamma), 1978Si02); >1.0 \text{ ps } (1976Ch11).$ XREF: Others: AC, AD, AE J ^{π} : $\gamma(\theta, \text{lin pol})$ in $(\alpha, n\gamma), (^{11}B, 2np\gamma)$. T _{1/2} : weighted average of 0.069 ps +2 <i>1</i> -14 ((n,n' γ), 1985Ko27); 0.080 ps 2 <i>1</i> $(\alpha, n\gamma), ((^{11}B, 2np\gamma), 1978Si02);$
3071.4 7	(1,2+)			0	0.056 ps 15, 0.045 ps 12 ((α ,n γ), 1976Ch11). XREF: Others: AE J^{π} : prominent γ to 0 ⁺ ; 1 ⁺ proposed in (p, γ) E=1.3-3.2
3077.77 13	4+	0.55 ps 6	CDEFG KL	M OPQ ST w	MeV. XREF: Others: AC, AD, AH, AJ, AK XREF: AK(3110). J ^{π} : $\gamma(\theta, \text{lin pol})$ in $(\alpha, \text{n}\gamma), (^{11}\text{B}, 2\text{np}\gamma)$. Also $L(p, p') = L(\alpha, \alpha') = 4$.
					$T_{1/2}$: from DSA in Coul. ex. (2005Le12). Others: 0.42 ps +28-10 ((n,n' γ), 1985Ko27); 0.42 ps 11 (α ,n γ),((11 B,2np γ),1978Si02); 1.0 ps 3 ((7 Li,2n γ),1977We10); 1.4 ps +10-6 ((α ,n γ), 1976Ch11).
3094.64 9	(3)+	0.090 ps <i>11</i>	KL	OPQR T Vw	XREF: Others: AC, AD, AE XREF: V(3120). J^{π} : $\gamma(\theta, \text{ lin pol})$ in $(\alpha, n\gamma), (^{11}B, 2np\gamma)$. J=3 is favored over J=2.
3186.84 <i>6</i>	1+	0.042 ps <i>10</i>	B KL	PRT	T _{1/2} : weighted average of 0.083 ps $+2I-7$ ((n,n' γ), 1985Ko27); 0.087 ps $2I$ (α ,n γ),((11 B,2np γ), 1978Si02); 0.13 ps 3 ((α ,n γ), 1976Ch11). XREF: Others: AC, AD, AE
					J ^{π} : log ft =5.14 from 0 ^{$+$} . $T_{1/2}$: from DSA in $(n,n'\gamma)$ (1985Ko27). Others: from $(\alpha,n\gamma)$, (11 B,2np γ): 0.26 ps $I3$ (1980Si02), 0.40 ps $+2I-I2$ (1976Ch11). Noting a large discrepancy in $T_{1/2}$ results, 1985Ko27 repeated their measurement and obtained a consistent $T_{1/2}$ =0.042 ps.
3196.9 4	(2,3)		K	P ST	XREF: Others: AD, AE
3205.98 9	(3)+	0.18 ps 5	KL	PRT	J ^{π} : $\gamma(\theta)$ in $(\alpha, n\gamma)$, ($^{11}B, 2np\gamma$) for 2205 γ . XREF: Others: AC, AD J ^{π} : $\gamma(\theta)$, lin pol) in $(\alpha, n\gamma)$, ($^{11}B, 2np\gamma$) gives 3 ⁺ (poor fit for 2 ⁺), but a 1295 γ to 0 ⁺ (reported in (p, γ) and $(n, n'\gamma)$, not in $(\alpha, n\gamma)$, ($^{11}B, 2np\gamma$)) is inconsistent with J=3.
3240 20	(0 ⁺)				T _{1/2} : weighted average of 0.16 ps $+15-6$ ((n,n' γ), 1985Ko27); 0.15 ps 5 (α ,n γ),((¹¹ B,2np γ), 1980Si02); 0.33 ps $+14-8$ ((α ,n γ), 1976Ch11). XREF: Others: AK
			Contin	nued on next pa	ge (footnotes at end of table)

⁶⁴Zn Levels (continued)

E(level) [†]	${\rm J}^\pi {\ddagger}$	T _{1/2} #			XR	EF	Comments
3261.94 9	1	0.4 ps +7-2	В	Н	KL	PRT W	J^{π} : L(p,t)=0. XREF: Others: AC, AD, AE
							J ^π : log ft =6.1 from 0 ⁺ ; γ to 0 ⁺ . $T_{1/2}$: from (n,n' γ) (1985Ko27). Others (from (α ,n γ),(1 ¹ B,2np γ)): 0.042 ps $I4$ (1980Si02); 0.014 ps 8 (1976Ch11). Noting a large discrepancy in $T_{1/2}$ results, 1985Ko27 repeated their measurement and obtained a consistent $T_{1/2}$ =0.4 ps.
3285 <i>3</i> 3297.17 <i>14</i>	$(1^- \text{ to } 5^-)$ $(2)^+$	0.27 ps <i>5</i>			KL	S PRT	J^{π} : I^{-} ,2,3,4,5 $^{-}$ from primary γ from (3 $^{-}$). XREF: Others: AC, AD, AK J^{π} : $\gamma(\theta, \text{lin pol})$ in $(\alpha, n\gamma), (^{11}B, 2np\gamma)$ and $L(p,p')=2$. $T_{1/2}$: from $(\alpha, n\gamma), (^{11}B, 2np\gamma)$. Weighted average
2206.05.15	(4+)	0.26		_			of 0.23 ps 7 (1980Si02), 0.31 ps 7 ((α ,n γ) (1976Ch11)).
3306.85 <i>15</i>	(4 ⁺)	0.26 ps 8		F	K	P	XREF: Others: AD, AK XREF: AD(3305). J^{π} : $\gamma(\theta, \text{lin pol})$ in $(\alpha, n\gamma), (^{11}B, 2np\gamma)$.
3321.8? 12	(1)		В				T _{1/2} : from (¹¹ B,2npγ) 1980Si02. XREF: B(?).
3365.99 6	1+	0.023 ps 8	В		KL	P RST vw Y	J ^{π} : weak ε branch (log ft =7.1) from 0 ⁺ ; γ to 0 ⁺ . XREF: Others: AC, AD, AE XREF: L(?)AC(?). J ^{π} : log ft =5.04 from 0 ⁺ .
3369.86 <i>13</i>	3 ⁺	0.35 ps +14-10			K	P T vw	$T_{1/2}$: from $(\alpha, n\gamma)$, $(^{11}B, 2np\gamma)$ (1980Si02). Others: 0.026 ps +19-15 (1976Ch11), 0.028 ps 5 (in (γ, γ')). XREF: Others: AC, AD, AK
							XREF: AK(3340). J ^{π} : $\gamma(\theta, \text{lin pol})$ in ($^{11}\text{B}, 2\text{np}\gamma$); but L(p,p')=(1)+2 for a 3367 doublet and L(p,t)=2 for a 3340 group suggest 2 ⁺ . E(level): there may be an additional 2 ⁺ level near this energy as suggested by L(p,t) and L(p,p'). T _{1/2} : from (α, ny) , ($^{11}\text{B}, 2\text{np}\gamma$) (1980Si02).
3414 <i>3</i>	(1 ⁻ to 5 ⁻)					S v	XREF: Others: AK XREF: AK(3410). J^{π} : 1 ⁻ ,2,3,4,5 ⁻ from primary γ from (3 ⁻).
3425.13 10	1+	0.031 ps 7	В		KL	PQR T v Y	XREF: Others: AC, AD, AE XREF: L(?)AC(?). J^{π} : log fi =5.63 from 0 ⁺ . $T_{1/2}$: from $(\alpha, n\gamma)$,(¹¹ B,2np γ) (1980Si02). Others: <0.010 ps (1976Ch11), 0.044 ps II (in
3452.0 10	(1,2+)					Т	(γ, γ')). XREF: Others: AE XREF: T(3454).
3458.66 17	(2,3)	0.24 ps 6			K	PRT	J^{π} : γ to 0^{+} . XREF: Others: AC J^{π} : $\gamma(\theta, \text{lin pol})$ in $(\alpha, n\gamma), (^{11}B, 2np\gamma)$. $T_{1/2}$: from $(\alpha, n\gamma), (^{11}B, 2np\gamma)$ (1980Si02). Other:
3465 5	(5,4,6)						XREF: Others: AD
3500 <i>10</i> 3538.7? <i>10</i>	(2 ⁺ to 6 ⁺)					W	XREF: Others: AK XREF: Others: AE
3500 <i>10</i>						W	0.17 ps $+42-8$ (1985Ko27) in $(n,n'\gamma)$. XREF: Others: AD $J^{\pi}: L(p,p')=5.$ XREF: Others: AK

Continued on next page (footnotes at end of table)

E(level) [†]	$J^{\pi \ddagger}$	${{ m T}_{1/2}}^{\#}$		XI	REF	Comments
3545.9? 9	$(0 \text{ to } 3^+)$				P T	J^{π} : 2+,3,4,5,6+ from γ to 4+. XREF: Others: AD, AE
3552.3 <i>3</i>	4+	>1.0 ps		K	R T	J^{π} : 0,1,2,3 ⁺ from γ to 1 ⁺ . XREF: Others: AD
3332.3	·	7 1.0 po		•		J ^{π} : $\gamma(\theta, \text{lin pol})$ in $(\alpha, n\gamma), (^{11}\text{B}, 2np\gamma)$ and γ to 2^+ ; but J=4 inconsistent with a tentative 3551 γ to 0^+ (in (p, γ)). There may be two different levels near 3552. $T_{1/2}$: from 1980Si02.
3586.9 <i>21</i>						XREF: Others: AD, AE XREF: AD(3576).
3597.24 20	(2+,3,4+)			K	PQ T	XREF: Others: AC, AD, AE, AK J^{π} : γ s to 4 ⁺ , 2 ⁺ . Excitation function in (p,γ) suggests 4 ⁺ , whereas, $L(p,t)=(2)$ suggests 2 ⁺ .
3601.9 <i>10</i>	$(1,2^+)$				R	XREF: Others: AK J^{π} : γ to 0^{+} .
3606.5 5	$(0^+ \text{ to } 4^+)$			jК		J^{π} : 0 ⁺ ,1,2,3,4 ⁺ from γ to 2 ⁺ .
3620.7 10	$(2^+ \text{ to } 6^+)$			jК		J^{π} : 2 ⁺ ,3,4,5,6 ⁺ from γ to 4 ⁺ .
3628.4 5	$(4)^{+}$	0.16 ps 5		jК	T	XREF: Others: AD
						J^{π} : L(p,p')=4; γ to 2 ⁺ . T _{1/2} : from 1980Si02.
3630? <i>3</i>	$(0^+,6^-)$			j	PQ	$E(\text{level})$: in (p, γ) E=2050 keV, 1980Er05 adopted
3030: 3	(0',0')			J	14	this energy from (p,p') (1967Br10,1974Au04). This level is most likely different from that in (p,p') (E=3633 5 in 1987Ja04) due to different J^{π} values for the two levels.
						J^{π} : comparison of measured yield in (p,γ) ,E=2050 keV with Hauser-Feshbach calculations.
3680 <i>3</i> 3698.9 <i>7</i>	(1 ⁻ to 5 ⁻)				n S w w	J^{π} : 1 ⁻ ,2,3,4,5 ⁻ from primary γ from (3 ⁻). XREF: Others: AD, AE, AH XREF: ah(3720).
						J^{π} : L(α,α')=3 for a 3720 group suggests 3 ⁻ for
3701.4 4	1-	0.025 ps 4		Н	n P w Y	3699 or 3718. XREF: Others: AC
						XREF: H(3680)Y(3704).
						J^{π} : from $\gamma(\theta)$ in (γ, γ') ; $L(^{6}Li, d)=1$. $T_{1/2}$: from (γ, γ') .
3710.0 7	(2^{+})				n T w	XREF: Others: AD, AE
	(-)					XREF: T(3707).
						J^{π} : γs to 0^{+} , 4^{+} .
3718.4 <i>3</i>	$(0^+ \text{ to } 4^+)$	0.031 ps <i>10</i>		K	n P T w	XREF: Others: AD, AE, AH
						XREF: ah(3720). J^{π} : 0 ⁺ ,1,2,3,4 ⁺ from γ to 2 ⁺ ; $L(\alpha,\alpha')$ =3 for a 3720
						group suggests 3 ⁻ for 3699 or 3718.
						$T_{1/2}$: from 1980Si02.
3759 <i>3</i>	(1 ⁻ to 5 ⁻)				n S	XREF: Others: AD
3780 10	2+				n	J^{π} : 1 ⁻ ,2,3,4,5 ⁻ from primary γ from (3 ⁻). XREF: Others: AK
3795.03 <i>10</i>	1+		В		PQR T	J^{π} : $L(p,t)=2$. XREF: Others: AD, AE
3815.4 5	$(0^+ \text{ to } 4^+)$			h K	W	J^{π} : log ft =5.58 from 0^{+} . XREF: Others: AD
3819.65 <i>21</i>	$(0^+ \text{ to } 4^+)$			h	PQ T w	J^{π} : 0 ⁺ ,1,2,3,4 ⁺ from γ to 2 ⁺ . XREF: Others: AD
2950 5 4	(≤3) ⁽⁺⁾	<0.7 ns				J^{π} : 0 ⁺ ,1,2,3,4 ⁺ from γ to 2 ⁺ .
3850.5 4	(>3), /	<0.7 ps		K1	sT Vw	XREF: Others: AC, AD

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		XR	EF			Comments
								J ^{π} : γ to 2 ⁺ . L(d,n)=1 from 3/2 ⁻ for a 3850 50 group suggests 0 ⁺ to 3 ⁺ . T _{1/2} : from 1980Si02.
3853.27 <i>21</i>	5 ⁺	>2 ps		K1	P	sT	W	XREF: Others: AD
3863.7 10	(2 ⁺ to 6 ⁺)			K			W	J ^{π} : $\gamma(\theta, \text{lin pol})$ in $(\alpha, n\gamma), (^{11}\text{B}, 2np\gamma)$. T _{1/2} : from 1980Si02. XREF: Others: AD
3880 <i>3</i>	$(0^+ \text{ to } 4^+)$		h		R	!		J ^{π} : γ to 4 ⁺ . J ^{π} : 0 ⁺ ,1,2,3,4 ⁺ from primary γ from (2 ⁺).
3898.5 3	$(2^+,3,4^+)$	0.038 ps <i>10</i>	h	K	PQR			XREF: Others: AC, AD J^{π} : γ s to 2^+ , 4^+ .
3924.69 ^b 16	5-	<1.4 mg	CDEEC	17.1	DO.			T _{1/2} : from 1980Si02.
3924.09* 10	3	<1.4 ps	CDEFG	KL	PQ			XREF: Others: AD J^{π} : $\gamma(\theta, \text{lin pol})$ in $(\alpha, n\gamma), (^{11}B, 2np\gamma)$. Also $L(p,p')=5$.
								$T_{1/2}$: from 1977Al14. Others: <1.7 ps (1977We10), >0.35 ps (1980Si02). $T_{1/2}$ (3924.7 level) not lower than \approx 0.7 ps from RUL=1 for B(M2)(W.u.).
3932.0 4	(4,5)			K				XREF: Others: AD, AK XREF: AK(3920). J^{π} : $\gamma(\theta, \text{lin pol})$ in $(\alpha, n\gamma), (^{11}B, 2np\gamma)$.
3951.9 6	$(4^+,3^+)$			K		T		L(p,t)=(2) is inconsistent. There may be an additional 2 ⁺ level near this energy. XREF: Others: AC, AD, AH, AK
								XREF: AC(?)AK(3920). J^{π} : L(p,p')=4; γ to 2 ⁺ .
3993.36 <mark>&</mark> 8	6+	0.12 ps <i>3</i>	CDEFG	KL				XREF: Others: AD
		r.						J ^{π} : $\gamma(\theta, \text{lin pol})$ in $(\alpha, n\gamma), (^{11}\text{B}, 2np\gamma)$. Also L(p,p')=6. T _{1/2} : from 1980Si02. Others: 0.15 ps <i>3</i>
4020.4 <i>4</i>	(2) ⁺			K	P	Т		(1977We10), <0.14 ps (1976Le31). XREF: Others: AD, AK
								XREF: AK(4010). J^{π} : L(p,p')=2 and γ to 4 ⁺ . L(p,t)=(0) is inconsistent. There may be an additional 0 ⁺
4039.7 <i>4</i>	$(0^+ \text{ to } 4^+)$			K	P	Т		level near this energy. XREF: Others: AD
4039.7 4	(0 104)			K	r	1		J^{π} : 0 ⁺ ,1,2,3,4 ⁺ from γ to 2 ⁺ .
4076.55 20	$(5)^{+}$	0.49 ps +24-17	CDEF	KL		T		XREF: Others: AD
								J ^π : $\gamma(\theta, \text{lin pol})$ in $(\alpha, n\gamma), (^{11}\text{B}, 2np\gamma)$; L(p,p')=4. Assignment of 6 ⁺ by 2004Ka18 in $(^{28}\text{Si}, 4p\gamma)$ on the basis of ΔJ =2 deduced from $\gamma\gamma(\theta)$ of 1340 γ is inconsistent with $\gamma(\theta, \text{pol})$ data for 1340 γ in 1980Si02 from $(\alpha, n\gamma), (^{11}\text{B}, 2n2p\gamma)$.
4110 <i>3</i>	(2) ⁺					Т		T _{1/2} : from 1980Si02. XREF: Others: AD, AK
								XREF: AD(4107)AK(4120). E(level): from 63 Cu(p, γ) E=3.46 MeV.
								J^{π} : L(p,p')=2.
4140 3	$(2,1)^+$			1	n	T		XREF: Others: AD, AE XREF: AD(4132).
								E(level): from ⁶³ Cu(p, γ) E=3.46 MeV. J ^{π} : L(p,p')=2; possible γ to 0 ⁺ .

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		XREF			Comments
4153.1? 22 4156.53 <i>19</i>	5-	0.11 ps 3	CDEF	n P KLmn	ST	W	XREF: Others: AD XREF: Others: AD, AH XREF: AD(4164)AH(4190). J^{π} : ΔJ =2, E2 γ from 7 ⁻ ; ΔJ =1 γ to (4 ⁺); analyzing
4159.5 <i>18</i>	1	7.7 fs 25		n P		w y	power in (pol p,p') for a group at 4164 10. $T_{1/2}$: from 1980Si02. XREF: Others: AD XREF: AD(4159). J^{π} : from $\gamma(\theta)$ in (γ,γ') .
4181.7 5				jK n		W	$T_{1/2}$: from (γ, γ') . XREF: Others: AC, AD
4205.2 <i>4</i>	$(4,3)^+$			n PC	T (W	XREF: AC(?). XREF: Others: AC, AD, AK
							XREF: AC(?)ak(4230). J^{π} : L(p,p')=4; γ to 2 ⁺ .
4219 <i>10</i>	$(4)^{+}$			n			XREF: Others: AD, AK XREF: ak(4230).
							J^{π} : L(p,p')=4.
4236.71 ^a 10	6+	0.13 ps 4	CDEFG	KL n			XREF: Others: AD J^{π} : $\gamma(\theta, \text{lin pol})$ in $(\alpha, n\gamma), (^{11}B, 2np\gamma)$. Also $L(p, p') = 6$.
							$T_{1/2}$: from 1980Si02. Others: 1.3 ps 2 (1977We10), 42
4260 <i>3</i>					T		ps 21 (1977Al14).
4288.6 <i>4</i>	$(4)^{+}$			K		Z	XREF: Others: AD, AK J^{π} : $L(p,p')=4$. Also $L(e,e')=2+4$.
4304.1 22	(1 ⁻ to 5 ⁻)				S		XREF: Others: AK
4310 <i>3</i>					Т		J^{π} : 1 ⁻ ,2,3,4,5 ⁻ from primary γ from (3 ⁻).
4319.1 22	$(4,3)^+$				T	W	XREF: Others: AC, AD, AK XREF: AC(?)AK(4340).
4362.1 22	$(2,1,3)^+$				ST	W	J^{π} : L(p,p')=4; γ to 2 ⁺ .
4302.1 22	(2,1,3)				31	w	XREF: Others: AD, AK XREF: AD(4351).
							E(level): from 63 Cu(p, γ) E=3.46 MeV. J^{π} : L(p,p')=2.
4370 <i>3</i>	3-				T	W	XREF: Others: AD, AH, AK
							XREF: AD(4385)AH(4370)AK(4410). E(level): from ⁶³ Cu(p,γ) E=3.46 MeV.
4380 <i>3</i>					Т		J^{π} : L(α,α')=3; L(p,t)=(3). L(p,p')=(1).
4420 3	$(4,3)^+$					VW	XREF: Others: AD
							E(level): from 63 Cu(p, γ) E=3.46 MeV. J ^{π} : L(p,p')=4. L(d,n)=1 from 3/2 ⁻ for 4420 50 gives 0 ⁺ to 3 ⁺ .
4454.68 <i>15</i>	1+	3.2 fs 6	В			vw Y	XREF: Others: AC, AD J^{π} : log ft =5.44 from 0 ⁺ ; but $L(p,p')$ =1 for a 4453 $I0$
							group gives negative parity, unless an unnatural parity state is populated in (p,p').
4470 <i>3</i>	(0^+)				Т	VW	$T_{1/2}$: from (γ, γ') . XREF: Others: AD, AK
							XREF: $AK(4480)$. J^{π} : $L(p,t)=(0)$.
4488 10	$(4,3,5)^+$					W	XREF: Others: AD
4504 10							J^{π} : L(p,p')=4. XREF: Others: AD
4522 10							XREF: Others: AD

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		XREF			Comments
4538 10	$(4,3,5)^+$						XREF: Others: AD
4560 <i>3</i>					Т		J^{π} : L(p,p')=4. XREF: Others: AC, AD
							XREF: AC(?).
4573 10	$(1^-,0^-,2^-)$			J			E(level): from 63 Cu(p, γ) E=3.46 MeV. XREF: Others: AD, AK
							J^{π} : $L(p,p')=(1)$.
4608.75 20	(1)		В				XREF: Others: AD XREF: AD(4593).
							J^{π} : log $ft \approx 6.3$ from 0^+ .
4615 10	$(4,3,5)^+$						XREF: Others: AD
4626 10							J^{π} : $L(p,p')=4$. XREF: Others: AD
4634.87 9	7-	94 ps 6	CDEFG	KLM			XREF: Others: AD, AH
							μ=1.6 3 (1983Ba69,2020StZV) XREF: M(4650)AD(4648).
							J^{π} : $\gamma(\theta, \text{lin pol})$ in $(\alpha, n\gamma)$, $(^{11}B, 2np\gamma)$ and $L(p, p')=7$.
							$T_{1/2}$: weighted average of 105 ps 13, 99 ps 10
							(1977We10); 90 ps 10, 80 ps 14 (1977A114). µ: integral PAC method, recoil into gas and vacuum
							(1983Ba69).
4638.2 5	(1)	41 6 10					XREF: Others: AD
4664 <i>3</i>	(1)	41 fs <i>12</i>				Y	XREF: Others: AD, AK XREF: Y(?).
							J^{π} : from $\gamma(\theta)$ in (γ, γ') .
4668.93 19	(6-)		CDEE				$T_{1/2}$: from (γ, γ') for $\% I \gamma$ (to g.s.)=100.
4008.93 19	(6-)		CDEF	L			XREF: Others: AD, AK J^{π} : $\Delta J = 1 \ \gamma s$ to 5 ⁻ and (5) ⁺ . Negative parity proposed
							in $(^{28}\text{Si}, 4\text{p}\gamma)$ (2004Ka18), (1998Ga11), but positive
4684 <i>3</i>	(1 ⁻ to 5 ⁻)				S		parity proposed by 1998Ga11. XREF: Others: AD, AK
4064 3	(1 10 3)				3		XREF: AD(4702).
							J^{π} : 1 ⁻ ,2,3,4,5 ⁻ from primary γ from (3 ⁻).
4713.15 <i>21</i>	(1)		В				XREF: Others: AD J^{π} : weak ε branch (log $ft \approx 6.0$) from 0^+ .
4729 10							XREF: Others: AD
4751 <i>10</i>	$(4^+,3^+,5^+)$					W	XREF: Others: AD, AK
4761 <i>10</i>						W	J^{π} : $L(p,p')=4$. XREF: Others: AD, AH, AK
4786 10	$(4^+,3^+,5^+)$					W	XREF: Others: AD, AK
4797 10						W	J^{π} : $L(p,p')=4$. XREF: Others: AD
4816 10	$(2^+,1^+,3^+)$					W	XREF: Others: AD, AK
1922 5 6	(5 (7)						J^{π} : $L(p,p')=2$.
4823.5 6	(5,6,7)			L			XREF: Others: AD, AK XREF: AD(4831).
							J^{π} : γ to (5 ⁺) and heavy-ion excitation.
4851 <i>10</i>	$(4^+,3^+,5^+)$						XREF: Others: AD, AK J^{π} : $L(p,p')=4$.
4902 10	$(4^+,3^+,5^+)$						XREF: Others: AD, AK
							J^{π} : $L(p,p')=4$.
4935 10	(3-,2-,4-)						XREF: Others: AD, AK J^{π} : $L(p,p')=3$.
4947 10	(2+)						XREF: Others: AD, AK
							XREF: $ak(4980)$. J^{π} : $L(p,t)=2$ for a 4980 30 group.
							J. 12(p,t)=2 101 a 4700 30 group.

4980.87 th 17	E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		XREF		Comments
JF: Al=2, E2 y to 5; L(pp*)=7. Tigs: from 1977Well. Other: 3.1 ps 7 (1977A114).	4980.87 ^b 17	7-	1.3 ps 4	CDEFG	KL		XREF: Others: AD
T1,2: from 1977We10. Other: 3.1 ps 7 (1977A114). Substitution Substitution			-				XREF: AD(4970).
Solo 10 2°							J^{π} : $\Delta J = 2$, E2 γ to 5 ⁻ ; L(p,p')=7.
Substitute							$T_{1/2}$: from 1977We10. Other: 3.1 ps 7 (1977Al14).
5038 10	5005 10	2+				W	XREF: Others: AD, AK
Soss 10							
Sob 10							J^{π} : L(p,p')=2; L(p,t)=2 for a 4980 30 group.
Fi. L(d,n)=1 from 3/2	5038 10					W	XREF: Others: AD, AK
Sobe	5050 10	$(0 \text{ to } 3)^{(+)}$				VW	XREF: Others: AD, AH, AK
Need to Need							J^{π} : L(d,n)=1 from 3/2 ⁻ for a 5050 50 group.
Solit 10	5066.8 20					VW	XREF: Others: AC, AD, AK
Silo 10							XREF: AC(?).
Si21 10	5081 <i>10</i>					W	XREF: Others: AD, AK
Si38 10					n	W	· · · · · · · · · · · · · · · · · · ·
Si38 / O	5121 10	$(2,1,3)^+$			n	W	XREF: Others: AD
S151.71 12 (7") C F L n							
JF: \(\text{Al} = 2\) \(\text{y} \) \(\text{STE} \) \(\text{VKEF} \) \(\text{Others: AD, AK} \) \(\text{STE} \) \(\text{VKEF} \) \(\text{Others: AD, AK} \) \(\text{STE} \) \(\text{VKEF} \) \(\text{Others: AD, AK} \) \(\text{JF: Clopers: AD, AK} \) \(\text{SZEF} \) \(\text{Others: AD, AK} \) \(\text{XREF: Others: AD} \) \(XREF:					n	W	
Side 10	5151.71 <i>12</i>	(7^{-})		C F	L n	W	
Signature Sign							
Signature Sign					n	W	· · · · · · · · · · · · · · · · · · ·
5197 10						W	· · · · · · · · · · · · · · · · · · ·
5197 10 5211 10 5214 10 5224 10 7 5224 10 7 5234 10 7 5256 10 7 526 10 7 7 527 10 7 7 527 10 7 7 529 10 7 7 7 7 7 7 7 7 7 7 7 7 7	5191 <i>10</i>	$(3,2,4)^{-}$			n	W	
S211 10	#40# #0						
S224 10							
5234 10 n XREF: Others: AD 5256 10 n XREF: Others: AD 5267 10 n XREF: Others: AD 5292 10 n W XREF: Others: AD 5307 10 M W XREF: Others: AD 5319 10 W XREF: Others: AD 5329 10 W XREF: Others: AD 5337 10 XREF: Others: AD 5351 10 XREF: Others: AD 5375 10 XREF: Others: AD 5384 10 XREF: Others: AD 5398 10 XREF: Others: AD 5425 10 XREF: Others: AD 5443 10 XREF: Others: AD 5447 10 XREF: Others: AD 5485 10 (0 to 3)(+) 5495 10 (4+) 7 XREF: Others: AD							•
S256 10							
S267 10							
S292 10							
M W XREF: Others: AD XREF: (Others: AD XREF: (Others: AD XREF: Others: AD XREF: Z(5500), F*: L=4, E4 excitation in (e,e'). XREF: Others: AD XREF							
XREF: M(5300).							
5319 10 W XREF: Others: AD 5329 10 W XREF: Others: AD 5337 10 XREF: Others: AD 5351 10 XREF: Others: AD 5361 10 XREF: Others: AD 5375 10 (3 $^-$) XREF: Others: AD, AH J $^+$: $L(\alpha, \alpha') = 3$ for 5370 45 group. 5384 10 XREF: Others: AD 5398 10 XREF: Others: AD 5413 10 XREF: Others: AD 5425 10 XREF: Others: AD 5443 10 XREF: Others: AD 5457 10 XREF: Others: AD 5474 10 XREF: Others: AD 5485 10 (0 to 3)(+) V XREF: Others: AD XREF: Others: AD XREF: Others: AD	5307 10				M	W	
S329 10	5210 10						
5337 10 XREF: Others: AD 5351 10 XREF: Others: AD 5361 10 XREF: Others: AD 5375 10 (3 $^-$) 5375 10 XREF: Others: AD, AH 1^{7} : $L(\alpha,\alpha')=3$ for 5370 45 group. 5384 10 XREF: Others: AD 5413 10 XREF: Others: AD 5425 10 XREF: Others: AD 5431 0 XREF: Others: AD 5457 10 XREF: Others: AD 5457 10 XREF: Others: AD 5485 10 (0 to 3) $^{(+)}$ V XREF: Others: AD							
5351 10 XREF: Others: AD 5361 10 XREF: Others: AD 5375 10 (3 $^-$) 5384 10 XREF: Others: AD 5398 10 XREF: Others: AD 5413 10 XREF: Others: AD 5425 10 XREF: Others: AD 5443 10 XREF: Others: AD 5477 10 XREF: Others: AD 5485 10 (0 to 3)($^+$) V XREF: Others: AD J $^+$: L(d,n)=(1) from 3/2 $^-$ for 5480 $^-$ group. 5495 10 (4 $^+$) Z XREF: Others: AD						W	
S361 10 STREF: Others: AD STREF: Others: AD STREF: Others: AD AH J ^r : L(α,α')=3 for 5370 45 group.							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(3-)					
5384 10 XREF: Others: AD 5398 10 XREF: Others: AD 5413 10 XREF: Others: AD 5425 10 XREF: Others: AD 5443 10 XREF: Others: AD 5457 10 XREF: Others: AD 5474 10 XREF: Others: AD 5485 10 (0 to 3)(+) V XREF: Others: AD Jπ: L(d,n)=(1) from 3/2- for 5480 50 group. XREF: Others: AD	3373 10	(3)					
5398 10 XREF: Others: AD 5413 10 XREF: Others: AD 5425 10 XREF: Others: AD 5443 10 XREF: Others: AD 5457 10 XREF: Others: AD 5474 10 XREF: Others: AD 5485 10 (0 to 3)(+) V XREF: Others: AD J ^{π} : L(d,n)=(1) from 3 /2 ⁻ for 5480 50 group. 5495 10 XREF: Others: AD XREF: Others: AD XREF: Others: AD	5384 10						
5413 10 XREF: Others: AD 5425 10 XREF: Others: AD 5443 10 XREF: Others: AD 5457 10 XREF: Others: AD 5474 10 XREF: Others: AD 5485 10 (0 to 3)(+) V XREF: Others: AD Jπ: L(d,n)=(1) from 3/2 for 5480 50 group. 5495 10 (4+) Z XREF: Others: AD XREF: Others: AD XREF: Others: AD 5517 10 XREF: Others: AD 5530 10 XREF: Others: AD 5545 10 XREF: Others: AD 5553 10 XREF: Others: AD XREF: Others: AD XREF: Others: AD							
$5425\ 10$ XREF: Others: AD $5443\ 10$ XREF: Others: AD $5457\ 10$ XREF: Others: AD $5474\ 10$ XREF: Others: AD $5485\ 10$ $(0\ to\ 3)^{(+)}$ V XREF: Others: AD J^{π} : $L(d,n)=(1)\ from\ 3/2^-\ for\ 5480\ 50\ group.$ $5495\ 10$ XREF: Others: AD $XREF$: Others: AD XREF: Others: AD							
$5443\ 10$ XREF: Others: AD $5457\ 10$ XREF: Others: AD $5474\ 10$ XREF: Others: AD $5485\ 10$ (0 to 3)(+) V XREF: Others: AD J^{π} : $L(d,n)=(1)$ from $3/2^-$ for $5480\ 50$ group. $5495\ 10$ XREF: Others: AD $XREF$: $Z(5500)$. J^{π} : $L=4$, $E=4$ excitation in (e,e') . $XREF$: Others: AD XREF: Others: AD $XREF$: Others: AD XREF: Others: AD $XREF$: Others: AD XREF: Others: AD							
$5457\ 10$ XREF: Others: AD $5474\ 10$ XREF: Others: AD $5485\ 10$ $(0\ to\ 3)^{(+)}$ V $5495\ 10$ (4^+) Z XREF: Others: AD XREF: Others: AD XREF: Z(5500). J ^{π} : L=4, E4 excitation in (e,e'). XREF: Others: AD XREF: Others: AD							
5474 10 XREF: Others: AD 5485 10 (0 to 3)(+) Y XREF: Others: AD J ^{π} : L(d,n)=(1) from 3/2 ⁻ for 5480 50 group. 5495 10 (4 ⁺) Z XREF: Others: AD XREF: Z(5500). J ^{π} : L=4, E4 excitation in (e,e'). XREF: Others: AD XREF: Others: AD							
$5485\ 10$ $(0\ \text{to}\ 3)^{(+)}$ V XREF: Others: AD $5495\ 10$ (4^+) Z XREF: Others: AD XREF: Z(5500). XREF: Z(5500). J^π : L=4, E4 excitation in (e,e'). XREF: Others: AD							
J^{π} : L(d,n)=(1) from 3/2 ⁻ for 5480 50 group. Z XREF: Others: AD XREF: Z(5500). J^{π} : L=4, E4 excitation in (e,e'). XREF: Others: AD		$(0 \text{ to } 3)^{(+)}$				V	
5495 10 (4 ⁺) Z XREF: Others: AD XREF: Z(5500). J^{π} : L=4, E4 excitation in (e,e'). 5517 10 XREF: Others: AD	3 103 10	(0 to 3)				•	
XREF: Z(5500). J^{π} : L=4, E4 excitation in (e,e'). 5517 10 XREF: Others: AD 5530 10 XREF: Others: AD 5545 10 XREF: Others: AD 5553 10 XREF: Others: AD	5495 10	(4^{+})				7.	
J^{π} : L=4, E4 excitation in (e,e').	0.5010	(.)				_	
5517 10 XREF: Others: AD 5530 10 XREF: Others: AD 5545 10 XREF: Others: AD 5553 10 XREF: Others: AD							. ,
5530 10 XREF: Others: AD 5545 10 XREF: Others: AD 5553 10 XREF: Others: AD	5517 10						
5545 10 XREF: Others: AD 5553 10 XREF: Others: AD							
5553 10 XREF: Others: AD							

E(level)	${\rm J}^{\pi \ddagger}$	$T_{1/2}^{\#}$		XREF	Comments
5576 10					XREF: Others: AD
5588 10					XREF: Others: AD
5601 <i>10</i>					XREF: Others: AD
5613 <i>10</i>					XREF: Others: AD
5623.75 <i>21</i>	(8^{-})		CDEF	L	XREF: Others: AD
					J^{π} : $\Delta J=2 \gamma$ to (6^{-}) .
5642 10					XREF: Others: AD
5652 10					XREF: Others: AD
5665 10					XREF: Others: AD
5676 10					XREF: Others: AD
5689 <i>10</i>					XREF: Others: AD
5699.38 18	(8^{-})		C F	LM	XREF: Others: AD
					XREF: M(5700).
					J^{π} : $\Delta J=1$ γ to (7^{-}) ; $\Delta J=2$ γ to (6^{-}) .
5719 <i>10</i>					XREF: Others: AD
5729 10					XREF: Others: AD
5737 10					XREF: Others: AD
5760 <i>10</i>					XREF: Others: AD
5770 10					XREF: Others: AD
5780 10					XREF: Others: AD
5792 10					XREF: Others: AD
5812 10					XREF: Others: AD, AH
3612 10					· · · · · · · · · · · · · · · · · · ·
					J^{π} : $L(\alpha, \alpha') = 5$ for a 5800 45 group suggests 5 ⁻ for one of
					the levels.
5822 10					XREF: Others: AD
5833 10					XREF: Others: AD
5844 10					XREF: Others: AD
5860 10					XREF: Others: AD
5872 10					XREF: Others: AD
5882 10					XREF: Others: AD
5893 <i>10</i>					XREF: Others: AD
5909 <i>10</i>					XREF: Others: AD
5920 10					XREF: Others: AD
5933 10					XREF: Others: AD
5936.0 7	(8^+)		CDEE		J^{π} : $\Delta J=(2) \gamma$ to 6^+ .
			CDEF	•	
5951.7 5	(9-)		EF	L	XREF: Others: AD
					J^{π} : $\Delta J=2 \gamma$ to 7^- ; γ to (8^-) .
6031.5 ^a 4	(8^{+})		CDEF		J^{π} : $\Delta J=2 \gamma$ to 6^+ ; γ to 7^- .
6124.0 <i>4</i>	(8^{+})		CDEF		E(level): see comment for 6126 level.
	,				J^{π} : $\Delta J=2 \gamma$ to 6^+ ; $\Delta J=1 \gamma$ to 7^- .
6124.7 ^b 4	(0=)		CD.E		
6124.7 4	(9-)		CDE	L	E(level), J^{π} : only one level proposed by 2004Ka18 in
					$(^{28}\text{Si},4\text{p}\gamma)$ E=122 MeV. 1998Ga11, 1997Fu08 and
					1994Cr05 proposed two levels near this energy with
					$J^{\pi}=8^{+}$ and 9^{-} , respectively, with the placement of
					1144γ from 9 ⁻ . This placement also proposed by
					1978Ne02 in $(\alpha, n\gamma)$ and 56 Fe $(^{14}N, \alpha pn\gamma)$ based on
					1144 $\gamma(\theta)$ result consistent with $\Delta J=2$, Q γ to 7 ⁻ level.
6262.1 <i>6</i>	$(7,8,9^{-})$		C		J^{π} : γ to 7^{-} .
6300 <i>50</i>				M	•
6377.0 22	$(7,8,9^{-})$		F	j	XREF: J(6390).
0311.0 44	(1,0,5)		r	J	J^{π} : γ to 7^{-} ; yrast pattern of population.
(700 50				M.	J. y to /, yrast pattern of population.
6700 50				M	
6830				J	
6963.0 <i>4</i>	(9)		C		J^{π} : $\Delta J=1 \gamma$ to (8^-) ; γ to (9^-) .
6998.1 5	(11^{-})	0.97 ps 21	CDEFG	KL	E(level): in $(\alpha, n\gamma)$, $(^{11}B, 2np\gamma)$; $(^{28}Si, 4p\gamma)$ E=115 MeV;
	` /	I			and $(^{54}\text{Fe},2\text{py})$, this level corresponds to 5681, 9 ⁻ where
					and (10,2py), this level confesponds to 3001, 9 where

E(level) [†]	$J^{\pi \ddagger}$		XREF		Comments
7000 7062.4 4 7118.9 4 7212.4 7 7334.7 5 7380 7556.2 22 7579.1 4 7806.0 10 7900 3 7946.5 21 8157.1 21 8181.1 11 8302.8 6 8322.1 22 8426.1 4 8580.4 5 8995.4 10 9363.7 8 9440.3 6 9666 3 9772 2	(4 ⁺) (10 ⁻) (10 ⁺) (11 ⁻) (10 ⁺) (10 ⁻) (10 ⁺) (9,10,11 ⁻) (10 ⁺) (10 ⁻) (10 ⁻) (12 ⁻) (11) (11 ⁻) (12 ⁺) (12 ⁺) (11 ⁻)	F CDEF F C F C C C C C C F F F DEF CDEF C	M M	Z	the placement of 1046γ was differently ordered. J ^π : ΔJ=2, E2 γ to (9 ⁻). T _{1/2} : from 1977We10. Other: 4.0 ps 5 (1977A114). This half-life was assigned (1977We10,1977A114) to 5681, 9 ⁻ level; but with the reassignment of the 1314-1046 cascade, evaluators assign the half-life to 6998 level. J ^π : L=4, E4 excitation in (e,e'). J ^π : ΔJ=2 γ to (8 ⁻). J ^π : ΔJ=2 γ to (9 ⁻). J ^π : ΔJ=2 γ to (9 ⁻). J ^π : ΔJ=2 γ to (9 ⁻). J ^π : ΔJ=2 γ to (8 ⁺). XREF: M(7400). J ^π : ΔJ=2 γ to (8 ⁺). J ^π : ΔJ=2 γ to (8 ⁺). J ^π : γ to (9 ⁻). J ^π : ΔJ=2 γ to (8 ⁺). J ^π : γ to (9 ⁻). J ^π : γ to (11 ⁻). J ^π : γ to (10 ⁺). J ^π : γ so (9 ⁻) and (11 ⁻). J ^π : γ so (9 ⁻) and (10 ⁻). J ^π : γ to (10 ⁺).
9803.5 7	(11-)	F			J^{π} : γ s to 0^+ and 4^+ . J^{π} : γ to (10^-) ; $\Delta J = 2 \gamma$ from (13^-) .
9948.4 $\frac{d}{6}$ 10.31×10 3 50	(12 ⁻)	F	Q		 J^π: ΔJ=1 γ to (11⁻); ΔJ=2 γ to (10⁻). Additional information 5. E(level): average proton-resonance, E(p)=2.1-3.1 MeV range in the c.m. system.
10460.2 ^c 6 10872	(13 ⁻) (3 ⁻)	D F	S		J ^π : ΔJ=2 γ to (11 ⁻); γ to (12 ⁻). Additional information 6. E(level),J ^π : proton resonance state, E(p)=3217 resonance, identified as g _{9/2} IAR of 1546 level in ⁶⁴ Cu, with γ decay similar to the decay of 3251 keV resonance (1976Fo06).
10906	(3 ⁻)		S		Additional information 7. E(level), J^{π} : proton resonance state, E(p)=3251 resonance, identified as $g_{9/2}$ IAR of 1589 level in 64 Cu; spin from $I\gamma(90^{\circ})/I\gamma(0^{\circ})$ of primary transitions. Parity from decay modes and lack of 3^{+} in the parent nucleus 64 Cu.
11023.4 ^d 6 11120	(14 ⁻) (2 ⁺)	D F	Т		J^{π} : $\Delta J=1 \ \gamma$ to (13^-) ; γ to (12^-) . Additional information 8. E(level): proton-resonance state from E(p)(lab)=3.46 MeV and $S(p)(^{64}Zn)=7713.1 \text{ keV } 6 \ (2021Wa16)$. J^{π} : γ rays to 0^+ and 4^+ .
11464 ^e 4 11626.4 ^c 7 12335.7 ^d 7	(15) (15 ⁻) (16 ⁻)	F D F D F			J^{π} : γ to (14). J^{π} : $\Delta J=1 \ \gamma$ to (14 ⁻); $\Delta J=2 \ \gamma$ to (13 ⁻). J^{π} : γ s to (14 ⁻) and (15 ⁻).

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
12468 ^f 4	(16)		F	J^{π} : γ to (15).
13082.1° 7	(10) (17^{-})		D F	J^{π} : $\Delta J = 1 \ \gamma$ to (16 ⁻); γ to (15 ⁻).
13324 ^e 4	(17)		F	J^{π} : γ s to (15) and (16).
13948.1 ^d 8	(18 ⁻)		D F	J^{π} : $\Delta J=1$ γ to (17 ⁻); $\Delta J=2$ γ to (16 ⁻).
14391 ^f 3	(18)		F	J^{π} : γ s to (16) and (17).
14857 6	(10)		F	J^{π} : γ from (19).
14862.5° 8	(19^{-})		D F	J^{π} : $\Delta J=1$ γ to (18 ⁻); $\Delta J=2$ γ to (17 ⁻).
$15.42 \times 10^3 94$	1-	4.6 MeV +16-15		XREF: Others: AH
13.12/(10) /	1			%EWSR=19 for E1 isoscalar giant dipole resonance (ISGDR) strength.
15423.6 ^e 25	(19)		F	J^{π} : γ s to (17) and (18).
$15.7 \times 10^3 \ 5$	2+	6.43 MeV 65		XREF: Others: AH
101///10	_	0.10 1.10 .		%EWSR=113 for E2 isoscalar giant quadrupole resonance (ISGQR) strength.
15939 7			F	J^{π} : γ from (20).
15945.0 ^d 9	(20^{-})		D F	J^{π} : $\Delta J = 2 \gamma$ to (18 ⁻); γ to (19 ⁻).
16686.8 ^f 25	(20)		F	J^{π} : γ s to (18) and (19).
17084 5	(=0)		F	J^{π} : γ from (21).
17087.2 ^c 10	(21^{-})		D F	J^{π} : $\Delta J = 2 \gamma$ to (19 ⁻); γ to (20 ⁻).
17853 ^e 4	(21)		F	J^{π} : γ s to (19) and (20).
$18.34 \times 10^3 70$	0+	9.21 MeV 114		XREF: Others: AH
				%EWSR=64 for E0 isoscalar giant monopole resonance (ISGMR) strength.
18483.3 ^d 11	(22^{-})		D F	J^{π} : $\Delta J=2 \ \gamma$ to (20 ⁻); γ to (21 ⁻).
19365 ^f 4	(22)		F	J^{π} : γ to (20).
19775.6 ^c 13	(23^{-})		D F	J^{π} : $\Delta J = 2 \gamma$ to (21 ⁻); γ to (22 ⁻).
20657 ^e 5	(23)		F	J^{π} : γ to (21).
21297.5 ^d 15	(24^{-})		F	J^{π} : γ s to (22 ⁻) and (23 ⁻).
22892.7 ^c 17	(25^{-})		F	J^{π} : γ to (23^{-}) .
24868.6 ^d 18	(26^{-})		F	J^{π} : γ to (24^{-}) .
$25.6 \times 10^3 12$	1-	12.6 MeV 32		XREF: Others: AH
				%EWSR=68 for E1 isoscalar giant dipole resonance (ISGDR) strength.

[†] From a least-squares fit to E γ data for levels populated in γ -ray studies, assuming Δ E γ =3 keV for high-energy γ rays from proton capture and resonance states. Normalized χ^2 =0.92. Energies of levels populated only in particle-transfer reactions are primarily from (p,p'). Due to high level density and limited resolution, correspondence of levels, above \approx 3.5 MeV excitation, from different reactions is somewhat ambiguous.

[‡] In cases where L(p,p') is used, parity is $(-1)^L$ and spin is L for levels up to 3.2 MeV, with the possibility of L-1, L, L+1 for higher levels, although J=L is the most likely choice, which is listed first, followed by less likely J=L−1 and J=L−2. For levels above ≈5 MeV populated in in-beam high-spin studies, J^{π} values are based on $\gamma(\theta)$, $\gamma\gamma(\theta)$ (DCO), band associations, and assumption of ascending spins with excitation energy.

[#] Mainly from DSA method in $(\alpha, n\gamma)$, $(^{11}B, 2np\gamma)$ (also $(\alpha, n\gamma)$ and $(n, n'\gamma)$). Values quoted from 1977A114 are from recoil distance method (RDDS) in $(^{11}B, 2np\gamma)$. Above 3458 values are available from $(^{11}B, 2np\gamma)$ only. For some of the levels, values from different studies are in disagreement and are noted under comments.

[®] Double β decay to ⁶⁴Ni is possible with Q value=1095.7 7. From measurements of double β decay, lower limits of half-life for decay to ⁶⁴Ni g.s. have been determined (generally at 90% confidence level): $T_{1/2}(2\nu 2K)$: ≥1.1×10¹⁹ y (2011Be39, also 2010Be41, 2009Be27, 2008Be02); $T_{1/2}(\varepsilon\beta^+)$: ≥1.1×10¹⁸ y (2009Da16), ≥1.3×10²⁰ y (2007Ki13); $T_{1/2}(2\varepsilon)$: ≥3.3×10¹⁷ y

```
 \begin{array}{l} (2009Da16); \ T_{1/2}(2\beta^+):>10\times 10^{17} \ y \ (1952Fr23); \ T_{1/2}(0\nu2\epsilon):\geq 3.2\times 10^{20} \ y \ (2011Be39), \geq 1.19\times 10^{17} \ y \ (2007B115), \\ \geq 9.52\times 10^{16} \ y \ (2006Zu02,2006Wi12), \geq 1.0\times 10^{18} \ y \ (2005Da47); \ T_{1/2}(0\nu\epsilon\beta^+):>1.2\times 10^{22} \ y \ (2020Az05), \geq 8.5\times 10^{20} \ y \\ (2011Be39), \geq 5.07\times 10^{18} \ y \ (2006Zu02,2006Wi12), \geq 3.6\times 10^{18} \ y \ (2005Da47), >2.8\times 10^{16} \ y \ (2003Ki08), \ 1.1\times 10^{19} \ y \ 9 \\ (1995Bi24, \ from \ observed \ 511 \ keV \ peak, \ but \ systematic \ effects \ were \ not \ estimated); \ T_{1/2}(2\nu\epsilon\epsilon):>6.0\times 10^{16} \ y \ (2003Ki08, \ also \ 2005Zu01,2001Zu03); \ T_{1/2}(2\nu\epsilon\beta^+): \geq 9.4\times 10^{20} \ y \ (2011Be39), \geq 8.9\times 10^{18} \ y \ (2005Da47); \ T_{1/2}(0\nu+2\nu,\beta^+\epsilon)>2.3\times 10^{18} \ y \ (1985No03); \ T_{1/2}(0\nu+2\nu,2\epsilon)>8\times 10^{15} \ y \ (1953Be33). \ Others \ T_{1/2}: \ 1999TsZZ, \ 2002Tr04 \ (evaluation). \end{array}
```

- & Band(A): g.s. band.
- ^a Band(B): Band based on 2⁺.
- ^b Band(C): Band based on 3⁻.
- ^c Band(D): Collective (strongly coupled) band, $\alpha=1$. Configuration= $\pi[(f_{7/2}^{-1})(p_{3/2}f_{5/2}^2(g_{9/2}^1)] \otimes \nu[(p_{3/2}f_{5/2})^4(g_{9/2}^2)]$; also [11,02] in the notation used by 2004Ka18, implying one proton hole in $f_{7/2}$ and one proton in $g_{9/2}$ orbitals, no neutron hole in $f_{7/2}$ orbital and 2 neutrons in $g_{9/2}$ orbital.
- ^d Band(d): Collective (strongly coupled) band based, $\alpha=0$. See configuration listed above for its signature partner.
- ^e Band(E): Strongly coupled band, α =1.
- ^f Band(e): Strongly coupled band, α =0.

γ (64Zn)

							/ ·		
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f J	J_f^{π} Mu	ılt. [‡] δ [‡]	$\alpha^{@}$	${\rm I}_{(\gamma+ce)}$	Comments
991.54	2+	991.53 5	100	0.0	D ⁺ E2				B(E2)(W.u.)=20.0 5 E _{γ} : NRM weighted average of 10 values from different datasets where uncertainties are given. This procedure increases the uncertainty in one of the discrepant values (991.16 4 in (28 Si,4p γ) E=115 MeV) from 0.04 keV to 0.15 keV. Regular weighted average is 991.37 7, but with reduced χ^2 =6.9, while unweighted average is 991.41 8. Removal of the 991.16 4 value gives weighted average of 991.56 5.
1799.41	2+	807.85 6	100.0 16	991.54 2	2+ E2·	+M1 -3.9 2	7		gives weighted average of 991.30 3. B(M1)(W.u.)=0.00099 +47-27; B(E2)(W.u.)=39 4 E _{\gamma} : NRM weighted average of ten values. δ: from weighted average of -4.6 10 in (n,n' γ) (1985Ko42); -3.3 7 in (α ,n γ),(11B,2np γ) (1978Si02); -5.5 40 in ⁵¹ V(16O,p2n γ), ⁵⁹ Co(⁷ Li,2n γ) (1977We10); and -4.5 15 (1964Se02) in (p,p' γ). Others: -1.3 3 (1978We15), -0.08 3 (1977We10), -0.45 5 (1977Al14) in ⁵¹ V(16O,p2n γ), ⁵⁹ Co(⁷ Li,2n γ); -0.57 +13-27 (1976Br12) in (α ,n γ),(HI,xn γ). Evaluators prefer high value of δ (E2/M1) (dominant E2) for transition from the second 2+ to first 2+ from a trend in other
		1799.34 11	29.6 7	0.0)+ E2				even-even nuclei. B(E2)(W.u.)=0.225 +25-22 E _{γ} : weighted average of ten values. I _{γ} : NRM weighted average of ten values. Weighted average is 30.3 16, but with reduced χ^2 =15.
1910.26	0+	110.7 <i>I</i>	3.4 11	1799.41 2	2 ⁺ [E2	2]	0.447		B(E2)(W.u.)=76 24 $E_{\gamma}I_{\gamma}$: from ⁶⁴ Ga ε decay.
		918.77 5	100.0 34	991.54 2	2 ⁺ E2				B(E2)(W.u.)=0.057 3 E _{γ} : weighted average of five values. I _{γ} : from ⁶⁴ Ga ε decay.
		1910		0.0)+ E0			0.64 13	Mult.: from ce data in $(p,p'\gamma)$. Mult.: transition seen only in ce data from $(p,p'\gamma)$. $I_{(\gamma+ce)}$: $I(ce+pair)$. $q_K^2(E0/E2)=6.0$ 5, $X(E0/E2)=2.25$ 19, $\rho^2(E0)=0.0038$ 4 (1985Pa07,1986Pa23,2005Ki02).
2306.72	4+	1315.15 5	100	991.54 2	2+ E2				B(E2)(W.u.)= $12.2 + 5-4$ E _{γ} : weighted average of seven values.
2609.52	0+	809 ^a	< 0.5	1799.41 2	2 ⁺ [E2	2]			B(E2)(W.u.)<4.5 E _{γ} ,I _{γ} : from $(\alpha, n\gamma)$,(¹¹ B,2np γ). I γ <2.0 in (p,p' γ) (1985Pa07).
		1617.93 <i>19</i>	100	991.54 2	2 ⁺ E2				E_{γ}, I_{γ} : from $(a, i \gamma), (-B, 2i p \gamma)$. $I_{\gamma} < 2.0$ in (p, p, γ) (1983Fa07). $B(E2)(W.u.) = 17 + II - 5$ E_{γ} : NRM weighted average of five values. Mult.: from ce data in $(p, p' \gamma)$.
		2610		0.0)+ E0			0.0030 6	Mult.: transition seen only in ce data from $(p,p'\gamma)$.

15

γ (64Zn) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \mathrm{J}_f^\pi$	Mult.‡	δ^{\ddagger}	$\alpha^{@}$	Comments
								$I_{(\gamma+ce)}$: I(pair+ce). q_K^2 (E0/E2)=0.027 6, X(E0/E2)=0.031 7, ρ^2 (E0)=0.015 7
								(1985Pa07,1986Pa23,2005Ki02).
2736.57	4+	429.77 <i>13</i>	9.3 6	2306.72 4+	M1+E2	-0.259		B(M1)(W.u.)=0.014 +4-3; $B(E2)(W.u.)=8 +7-5$
								E_{γ} : NRM weighted average of eight values.
								I_{γ} : weighted average of eight values.
								δ: Other: $+1.7 5$ or $-0.2 3$ (1977We10) in 51 V(16 O,p2n γ).
		937.17 6	100.0 <i>19</i>	1799.41 2+	E2			B(E2)(W.u.)=30 +8-5
								E_{γ} : weighted average of nine values.
		1745.4 <i>5</i>	4.8 8	991.54 2+	(E2)			B(E2)(W.u.)=0.064 +20-15
								E_{γ} : weighted average of three values with consistent I γ values.
								I_{γ} : NRM weighted average of three values. Others: 23 6 (n,n' γ);
								33 (p,p' γ); 42 4 in (p, γ) E=2050 keV; 154 13 in (p, γ) E=2098
								keV are too high and in severe disagreement.
2793.5	2+	1802.1 <i>4</i>	100	991.54 2 ⁺	M1+E2	+0.7 5		B(M1)(W.u.)=0.052 +26-23; $B(E2)(W.u.)=13 +13-10$
		2793.0 ^a 15		$0.0 0^{+}$				γ reported in $(p,p'\gamma)$ only.
2979.94	3 ⁺	1180.58 <i>15</i>	100 4	1799.41 2 ⁺	M1+E2	-0.05 3		B(M1)(W.u.)=0.028 +17-14; B(E2)(W.u.)=0.08 +16-7
								E_{γ} : weighted average of three values.
		1987.0 <i>7</i>	61 <i>14</i>	991.54 2 ⁺	M1+E2	+0.26 3		B(M1)(W.u.)=0.0033 +20-17; $B(E2)(W.u.)=0.10 +6-5$
								E_{γ} , I_{γ} : unweighted average of three values.
2998.54	3-	1197 <i>1</i>	≈4	1799.41 2+	[E1]			B(E1)(W.u.)≈0.000062
					. ,			E_{γ}, I_{γ} : from $(n, n'\gamma)$.
		2007.03 18	100 <i>3</i>	991.54 2+	(E1)			$B(E1)(W.u.)=3.29\times10^{-4}$ 11
		2007.03 10	100 5))1.5 · 2	(E1)			E_{γ} : NRM weighted average of eight values.
		2997	0.5 3	$0.0 0^{+}$	[E3]			B(E3)(W.u.)=72 +44-35
		2221	0.5 5	0.0 0	[23]			γ from ⁶¹ Ni(α ,n γ), ⁵⁶ Fe(¹¹ B,2np γ) only.
								B(E3)(W.u.) from $B(E3)=0.040$ 7 ((e,e'),1976Ne06). Other: 70 50
								from $T_{1/2}$ and E3 γ branching.
3005.73	2+	1092 ^a 1	7.5	1910.26 0 ⁺	[E2]			B(E2)(W.u.) \approx 12.6
3003.73	4	1074 1	1.5	1710.20 0	[1:4]			γ reported in $(p,p'\gamma)$ only. Considered as uncertain by evaluators.
		1206.2 2	77 5	1799.41 2 ⁺	M1+E2	+0.6 5		B(M1)(W.u.)=0.050 +15-21; $B(E2)(W.u.)=21 +24-16$
		1200.2 2	113	1/99.41 2	WII+EZ	+0.0 €		E_{γ}, I_{γ} : weighted average of three values.
		2014.3 2	100 7	991.54 2 ⁺	M1(+E2)	-0.06 10		B(M1)(W.u.)=0.019 +5-4; B(E2)(W.u.)<0.25
		2014.3 2	100 /	991.34 2	W11(+E2)	-0.00 10		E_{γ} : weighted average of three values.
		3005.5 4	65 7	0.0 0+	E2			E_{γ} . Weighted average of three values. B(E2)(W.u.)=0.69 +13-11
		3003.3 4	03 /	0.0	EZ			
								E_{γ} : weighted average of three values.
3071.4	(1.2±)	1070 1	100	1799.41 2+				I_{γ} : weighted average of two values.
	$(1,2^+)$	1272 <i>I</i>	100					
3077.77	4+	3071 1	39	$0.0 0^{+}$	M1(+E2)	-0.5	0.0026.0	$D(M1)/W_{11} = 0.055 + 24 - 20, D/E2V/W_{} > 220$
30/7.//	4	341.2 <i>3</i>	11 <i>I</i>	2736.57 4+	M1(+E2)	< 0.5	0.0036 9	B(M1)(W.u.)=0.055 +24-20; B(E2)(W.u.)<230
								E_{γ} : weighted average of three values.

$\gamma(^{64}Zn)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f J	$\frac{\pi}{f}$ Mult. ‡	δ^{\ddagger}	Comments
							I_{γ} : from ⁵⁴ Fe,2pγ). Others: 120 <i>13</i> (α,nγ),(¹¹ B,2npγ); 38 <i>10</i> (α,nγ),(HI,xnγ); 24 6 (p,γ) E=2050 keV.
							δ : from RUL(E2)<300. In (α,nγ),(11 B,2npγ) reaction, 1980Si02 quote δ =-1.2 2
							but in a footnote also state that δ for this transition is not determined from
							experiment.
3077.77	4+	770.95 <i>15</i>	100 10	2306.72 4	+ M1+E2	-0.19 8	B(M1)(W.u.)=0.045 6; B(E2)(W.u.)=4.6 +45-30
							E _y : weighted average of seven values.
							δ: others: $-0.4 \ 1 \ (1978\text{Ne}02)$ in $(\alpha, \text{n}\gamma)$, (HI,xn γ), $-0.54 \ 12 \ (1978\text{We}15)$ in
		2006 0 3	70.0	001.54.2	+ F2		$^{51}V(^{16}O,p2n\gamma)$.
		2086.8 <i>3</i>	78 9	991.54 2	+ E2		B(E2)(W.u.)= $0.71 + 11-9$ E _y : weighted average of seven values. Level-energy difference= 2086.2 .
							I_{γ} : weighted average of seven values. Level-energy difference=2000.2. I_{γ} : weighted average of four values. Others: 190 8 in (28 Si,4p $_{\gamma}$) E=122 MeV;
							13. 9 in $(\alpha, \eta\gamma)$, (11 B, 2np γ); 141 9 (p, γ) E=2025 keV are in disagreement.
3094.64	$(3)^{+}$	1295.1 2	19 9	1799.41 2	+ [M1+E2]		B(M1)(W.u.)=0.018 +8-7; $B(E2)(W.u.)=18 8$
3054.04	(3)	1293.1 2	199	1/99.41 2			E_{γ} : weighted average of two values.
							I _y : unweighted average of three values.
							B(M1)(W.u.) for pure M1; B(E2)(W.u.) for pure E2.
		2103.1 <i>1</i>	100 7	991.54 2	+ M1+E2		B(M1)(W.u.)=0.022 +4-3; B(E2)(W.u.)=8.4 +14-11
							E_{γ} : weighted average of two values.
							δ: +9.4 15 or +0.40 5 (for J=3); +0.6 4 (for J=2).
							B(M1)(W.u.) for pure M1; B(E2)(W.u.) for pure E2.
3186.84	1+	577.3 <i>1</i>	0.76 15	2609.52 0	+ [M1]		B(M1)(W.u.)=0.0090 +35-24
							E_{γ},I_{γ} : from ⁶⁴ Ga ε only.
		1276.52 <i>16</i>	47.6 <i>11</i>	1910.26 0	$^+$ (M1)		B(M1)(W.u.)=0.052 + 16-10
							E_{γ} : weighted average of five values.
							I_{γ} : from ⁶⁴ Ga ε decay. Other three available values are either imprecise or in
		1207.24.10	100 0 26	1700 41 2	+ [M1.F2]		disagreement.
		1387.34 <i>10</i>	100.0 26	1799.41 2	+ [M1+E2]		B(M1)(W.u.)= $0.085 + 26 - 16$; B(E2)(W.u.)= $75 + 24 - 15$ E _y : weighted average of four values.
							I_{γ} : weighted average of four values. I_{γ} : in $(\alpha, n\gamma)$, $(^{11}B, 2np\gamma)$ value is low by a factor of ≈ 9 .
							B(M1)(W.u.) for pure M1; $B(E2)(W.u.)$ for pure E2.
		2195.34 <i>10</i>	80.4 18	991.54 2	+ [M1+E2]		B(M1)(W.u.)=0.017 +5-3; $B(E2)(W.u.)=6.1 +19-12$
		2175.51 10	00.170))1.51 Z	[1111 122]		E_{γ} : weighted average of five values.
							I_{γ} : from ⁶⁴ Ga ε decay. Other three available values are either imprecise or in
							disagreement.
							B(M1)(W.u.) for pure M1; B(E2)(W.u.) for pure E2.
		3186.8 2	1.5 3	0.0 0	+ [M1]		$B(M1)(W.u.)=1.1\times10^{-4}+4-3$
							E_{γ} , I_{γ} : from ⁶⁴ Ga ε decay. Other I_{γ} : 41 8 (p, γ) 2098 keV; 18 in (p, $'\gamma$) are in
							disagreement.
3196.9	(2,3)	1397.4 4	52 5	1799.41 2	+		
		2205.2.0	100 5	001 51 0	_		
		2205.3 8 3200 ^a 3	100 <i>5</i> 18	991.54 2	т		γ reported in $(p,p'\gamma)$ only.

17

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	Comments
3205.98	(3) ⁺	898.8 <i>5</i>	13 2	2306.72 4+	[M1+E2]		B(M1)(W.u.)=0.017 +7-4; B(E2)(W.u.)=36 +15-8
		1295.1 <mark>a</mark> 7	10 5	1910.26 0+			B(M1)(W.u.) for pure M1; B(E2)(W.u.) for pure E2. γ not reported in $(\alpha, \eta\gamma)$, (¹¹ B,2np γ). It is considered (by evaluators) as highly
		1293.1" /	10 3	1910.20			questionable since it involves M3 transition, with unrealistically large $B(M3)(W.u.)=1.9\times10^7 +7-4$.
		1406.57 8	100.0 10	1799.41 2+	M1+E2	-0.25 9	B(M1)(W.u.)=0.033 + 13-8; $B(E2)(W.u.)=1.8 + 16-10$
		2214.0 5	3.1 10	991.54 2+	[M1+E2]		B(M1)(W.u.)=0.00028 +11-6; B(E2)(W.u.)=0.096 +36-21 γ reported in $(\alpha, \eta\gamma)$, (11B, 2np γ) only.
							γ reported in $(\alpha, \eta\gamma)$, $(^{-1}B, 2\eta\gamma)$ only. B(M1)(W.u.) for pure M1; B(E2)(W.u.) for pure E2.
		3205 ^a 3		0.0 0+			γ reported in (p,γ) E=2098 keV only, highly questionable as required mult=[M3]
3261.94	1	1352 ^a 1	<6	1910.26 0 ⁺			I_{γ} : from ⁶⁴ Ga ε decay.
020117	-	1461.3 ^a 1	<4.5	1799.41 2+			$E_{\gamma}I_{\gamma}$: from ⁶⁴ Ga ε decay. This γ was reported in (p,γ) E=2050 keV; and in $(p,p'\gamma)$, with I_{γ} =24 in the latter work. It fits poorly in the decay scheme.
		2270.40 10	100 5	991.54 2+			(p,p,γ) , with $r\gamma=24$ in the latter work. It has poorly in the decay scheme. E_{γ} : weighted average of four values.
		3261.7 2	6.2 4	$0.0 0^{+}$			E _γ . Weighted average of roth values. E _γ ,I _γ : from ⁶⁴ Ga ε decay. Other I _γ =90 10 (p,γ) 2098 keV; ≈67 (n,n'γ) are in
		3201.7 2	0.2 7	0.0			disagreement.
3297.17	$(2)^{+}$	1498 <i>1</i>	29 11	1799.41 2+	[M1+E2]		B(M1)(W.u.)=0.0041 +17-15; $B(E2)(W.u.)=3.1 +14-12$
							γ reported only in (p,γ) E=2098 keV.
			100 74	004 74 04			B(M1)(W.u.) for pure M1; B(E2)(W.u.) for pure E2.
		2305.54 14	100 14	991.54 2+	[M1+E2]		B(M1)(W.u.)=0.0039 +11-8; B(E2)(W.u.)=1.24 +35-25 B(M1)(W.u.) for your M1, B(E2)(W.u.) for your E2
		3299 <i>1</i>	42 19	0.0 0+	[E2]		B(M1)(W.u.) for pure M1; $B(E2)(W.u.)$ for pure E2. $B(E2)(W.u.)=0.087 +37-34$
		32)) 1	72 17	0.0 0	[12]		γ reported only in (p,γ) E=2098 keV.
3306.85	(4^{+})	512 ^a	0.5 5	2793.5 2 ⁺	[E2]		B(E2)(W.u.)<59
							γ from $(\alpha, n\gamma)$, $(^{11}B, 2np\gamma)$ only.
		1000.15 <i>15</i>	100	2306.72 4+	M1(+E2)	+0.07 20	B(M1)(W.u.)=0.084 +39-24; $B(E2)(W.u.)<14$
							E_{γ} : from (p,γ) E=2050 keV. In several in-beam studies (1998Ga11,1994Cr05,
							1978Ne02), a 1000y deexcited a level at 4078, but in $(\alpha, n\gamma)$, $(^{11}B, 2np\gamma)$,
							1980Si02 reported the placement from 4078 level as incorrect and placed it from 3307 level, as also proposed in (p,γ) . In $(^{28}Si,4p\gamma)$ study of 2004Ka18, a
							170m 3307 level, as also proposed in (p,γ) . In $(-51,4p\gamma)$ study of 2004 ka18, a 999.9 γ is placed from both the 3307 and 4078 levels.
							δ: from 1980Si02. Other: -0.1 2 (1978Ne02).
3321.8?	(1)	1411.3 <i>15</i>	100 29	1910.26 0+			(17,01,000)
		3322 2	58 16	$0.0 0^{+}$			
3365.99	1+	756.58 10	9.0 5	2609.52 0 ⁺	[M1]		B(M1)(W.u.)=0.11 +6-3
							γ reported in 64 Ga ε decay only.
							Eγ and Iγ data for four higher energy γ rays from the 3366 level have been taken from ⁶⁴ Ga ε decay. These are reported in other datasets, but with
		1455 04 13	12 0 7	1010.26 0+	FM(1)		imprecise energies and intensities, as compared to the data in ε decay.
		1455.84 <i>12</i>	13.9 7	1910.26 0 ⁺	[M1]		B(M1)(W.u.)= $0.023 + 12 - 6$ E _{γ} ,I _{γ} : from ⁶⁴ Ga ε decay.
							This γ reported in (p,γ) E=2050 keV; and $(p,p'\gamma)$ but with imprecise energies
							and intensities.

γ (64Zn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	Comments
3365.99	1+	1566.50 <i>18</i>	15.7 9	1799.41 2+	[M1+E2]		B(M1)(W.u.)=0.021 +11-6; B(E2)(W.u.)=14 +8-4
		2374.30 10	50.5 13	991.54 2 ⁺	[M1+E2]		E _γ ,I _γ : from ⁶⁴ Ga ε decay. This γ reported in (p,γ) E=2050 keV; (p,p'γ); and (α,nγ),(HI,xnγ), but with imprecise energies and intensities. B(M1)(W.u.) for pure M1; B(E2)(W.u.) for pure E2. B(M1)(W.u.)=0.019 +10-5; B(E2)(W.u.)=5.7 +30-15 E _γ ,I _γ : from ⁶⁴ Ga ε decay.
		3365.80 <i>10</i>	100 3	0.0 0+	[M1]		This γ reported in (p,γ) E=2050 keV; (p,γ) E=2098 keV; $(p,p'\gamma)$; $(\alpha,n\gamma),(^{11}B,2np\gamma)$ and $(\alpha,n\gamma),(HI,xn\gamma)$, but with imprecise energies and intensities. B(M1)(W.u.) for pure M1; B(E2)(W.u.) for pure E2. B(M1)(W.u.)=0.013 +7-4 E $_{\gamma}$ I $_{\gamma}$: from 64 Ga ε decay.
							This γ reported in (p,γ) E=2050 keV; (p,γ) E=2098 keV; $(p,p'\gamma)$; $(\alpha,n\gamma)$, $(^{11}B,2np\gamma)$ and $(\alpha,n\gamma)$, $(HI,xn\gamma)$, but with imprecise energies and intensities.
3369.86	3+	633.40 <i>15</i>	25 6	2736.57 4+	[M1+E2]		B(M1)(W.u.)= $0.034 + 16 - 12$; B(E2)(W.u.)= $1.4 \times 10^2 + 7 - 5$ γ reported in (p, γ) E= 2.05 MeV only. B(M1)(W.u.) for pure M1; B(E2)(W.u.) for pure E2.
		1570.3 2	100 5	1799.41 2+	M1+E2	-0.40 6	B(M1)(W.u.)=0.0077 +31-22; B(E2)(W.u.)=0.84 +42-31
		2377.8 6	57 5	991.54 2+	[M1+E2]		B(M1)(W.u.)=0.0015 +6-4; B(E2)(W.u.)=0.44 +18-13 I _{γ} : weighted average of values from $(\alpha, n\gamma)$, $(^{11}B, 2np\gamma)$; (p, γ) E=2050 keV; and $(n, n'\gamma)$.
3425.13	1+	419.5 ^a 4	0.5 5	3005.73 2 ⁺	[M1+E2]		B(M1)(W.u.) for pure M1; B(E2)(W.u.) for pure E2. B(M1)(W.u.)<0.092; B(E2)(W.u.)<890 γ reported in $(\alpha, n\gamma)$, (¹¹ B, 2np γ) only.
		1514.7 2	4.8 8	1910.26 0 ⁺	[M1]		B(M1)(W.u.) for pure M1; B(E2)(W.u.) for pure E2. B(M1)(W.u.)= $0.0068 + 23 - 16$
		1625.87 20	24.9 17	1799.41 2 ⁺	[M1+E2]		$E_{\gamma}I_{\gamma}$: from ⁶⁴ Ga ε decay. γ reported in $(p,p'\gamma)$. B(M1)(W.u.)=0.029 +9-6; B(E2)(W.u.)=18 +6-4
							E_{γ} , I_{γ} : from ⁶⁴ Ga ε decay. Other: I_{γ} : 71 5 in (p, γ) E=2.05 MeV. Tentative γ also reported in (n, n' γ).
		2433.6 2	13.2 12	991.54 2+	[M1+E2]		B(M1)(W.u.) for pure M1; B(E2)(W.u.) for pure E2. B(M1)(W.u.)=0.0045 +14-9; B(E2)(W.u.)=1.3 +4-3 E _γ ,I _γ : from ⁶⁴ Ga ε decay. γ reported in (p,γ) E=2098 keV.
		3424.97 <i>15</i>	100 5	0.0 0+	[M1]		$E_{\gamma,1\gamma}$: from 6 Ga ε decay. γ reported in (p,γ) E=2098 keV. B(M1)(W.u.) for pure M1; B(E2)(W.u.) for pure E2. B(M1)(W.u.)=0.0123 +37-23 $E_{\gamma,1\gamma}$: from 64 Ga ε decay. γ reported in (p,γ) E=2050 keV; (p,γ) E=2098 keV;
3452.0	$(1,2^+)$	1542 <i>1</i>	100	1910.26 0 ⁺			$(p,p'\gamma)$; $(\alpha,n\gamma)$, $(^{11}B,2np\gamma)$ and $(\alpha,n\gamma)$, $(HI,xn\gamma)$, but with imprecise energies.
3458.66	(2,3)	1659.2 2	100 7	1799.41 2 ⁺			
		2467.1 3	82 9	991.54 2 ⁺			I_{γ} : from $(\alpha, n\gamma)$, $(^{11}B, 2np\gamma)$. Other: 144 11 in (p, γ) E=2.05 MeV.

19

E_i (level)	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f J	$\frac{\pi}{f}$ Mult. \ddagger	δ^{\ddagger}	Comments
3458.66	(2,3)	3455 ^a 1		0.0 0+			γ reported only in (p, γ) E=2.098 keV as the strongest transition from a 3458 level. The placement is considered tentative by evaluators.
3538.7?	$(2^+ \text{ to } 6^+)$	1232 <i>I</i>	100	2306.72 4+			a pilo is the placement is constanted tenantic by constanting
3545.9?	$(0 \text{ to } 3^+)$	284 <i>1</i>	52	3261.94 1			
		359 2	100	3186.84 1+			
		1747.65 ^a 15		1799.41 2+			γ reported only in (p,γ) E=2.05 MeV.
3552.3	4+	1246.7 <i>4</i>	100 6	2306.72 4+	M1+E2	-0.16 <i>10</i>	B(M1)(W.u.)<0.0057; B(E2)(W.u.)<0.39
							γ reported in (¹¹ B,2np γ). This γ may correspond to a 1245 γ (unplaced) in (p,p' γ) and a 1247.2 2 (unplaced) in (p, γ) E=2050 keV.
		2559.7 4	85 <i>6</i>	991.54 2+	[E2]		B(E2)(W.u.)<0.15
							This γ may correspond to a 2560 γ (unplaced) in $(p,p'\gamma)$.
		3551 ^a I	42 15	0.0 0+			γ reported in (p,γ) E=2.098 keV. Evaluators treat this γ as highly questionable as ΔJ^{π} requires mult=E4 and an unrealistic large B(E4)(W.u.)<2.1×10 ⁶ .
3586.9		390 2	100	3196.9 (2,	3)		
3597.24	$(2^+,3,4^+)$	860.5 <i>3</i>	57 14	2736.57 4+			γ reported only in (p,γ) E=2.05 MeV.
		1290.5 <i>3</i>	100 9	2306.72 4+			
		2606.0 5	82 9	991.54 2+			
3601.9	$(1,2^+)$	3602 <i>1</i>	100	$0.0 0^{+}$			
3606.5	$(0^+ \text{ to } 4^+)$	2614.9 5	100	991.54 2+			
3620.7	$(2^+ \text{ to } 6^+)$	1314.0 <i>10</i>	100	2306.72 4+			
3628.4	$(4)^{+}$	2636.8 5	100	991.54 2+			B(E2)(W.u.)=1.8 +8-5
3698.9		502.0 5	100	3196.9 (2,			
3701.4	1-	3701.3 4	100	$0.0 0^{+}$			$B(E1)(W.u.)=3.3\times10^{-4}+6-5$
3710.0	(2^{+})	1099 <i>1</i>	7	2609.52 0+			
		1406 <i>I</i>	100	2306.72 4+			E_{γ} : fits poorly. E_{γ} =1403 from level-energy difference.
		≈3710		$0.0 0^{+}$			
3718.4	$(0^+ \text{ to } 4^+)$	2726.8 <i>3</i>	100	991.54 2+			
3795.03	1+	1185.4 <i>1</i>	4.4 24	2609.52 0+			γ reported in ⁶⁴ Ga ε decay only.
		1995.9 2	100 6	1799.41 2+			E_{γ} , I_{γ} : from ⁶⁴ Ga ε decay. γ reported in (p,γ) E=2050 keV.
		2803.3 3	39 4	991.54 2+			E_{γ} , I_{γ} : from ⁶⁴ Ga ε decay. γ reported in (p,γ) E=2098 keV.
		3795.1 3	74 5	$0.0 0^{+}$			$E_{\gamma, 1\gamma}$: from ⁶⁴ Ga ε decay. γ reported in (p, γ) E=2050 keV and (p, γ) E=2098 keV.
3815.4	$(0^+ \text{ to } 4^+)$	2016.0 5	100	1799.41 2+			
3819.65	$(0^+ \text{ to } 4^+)$	2020.2 2	100	1799.41 2+			
3850.5	(≤3) ⁽⁺⁾	1116 <mark>a</mark>		2736.57 4+			γ reported in $(\alpha, n\gamma)$, (11B, 2np γ).
	/	2051.0 4	22.0 25	1799.41 2+			γ reported in $(\alpha, n\gamma)$, $(^{11}B, 2np\gamma)$.
		2859.2 6	100 4	991.54 2+			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
3853.27	5 ⁺	1116.7 2	100.0 5	2736.57 4+		-1.00 15	B(M1)(W.u.)<0.0046; B(E2)(W.u.)<6.1
		1547 ^a	0.5 5	2306.72 4+			$B(M1)(W.u.)<3.0\times10^{-5}$; $B(E2)(W.u.)<0.021$
				· · · ·	[]		γ reported in $(\alpha, \eta\gamma)$, (¹¹ B,2np γ).
							B(M1)(W.u.) for pure M1; B(E2)(W.u.) for pure E2.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	Comments
3863.7	$(2^+ \text{ to } 6^+)$	1557.0 10	100	2306.72 4+			
3898.5	$(2^+,3,4^+)$	1162.5 <i>5</i> 2906.5 <i>4</i>	20 <i>7</i> 100 <i>13</i>	2736.57 4 ⁺ 991.54 2 ⁺			γ reported in (p, γ) E=2.09 MeV.
3924.69	5-	617.9 5	8.3 5	3306.85 (4 ⁺)	[E1]		$B(E1)(W.u.) > 6.7 \times 10^{-5}$
		848		3077.77 4+	[E1]		
		926.2 5	19 4	2998.54 3	E2		B(E2)(W.u.)>4.1
		1187.4 10	16 <i>I</i>	2736.57 4+	[E1]	0.45.4	B(E1)(W.u.)>1.8×10 ⁻⁵
		1618.4 5	100 <i>I</i>	2306.72 4+	E1+M2	+0.12 4	B(E1)(W.u.)>4.6×10 ⁻⁵ ; B(M2)(W.u.)>0.53
							Mult., δ : from 1978We15 in ${}^{51}V({}^{16}O,p2n\gamma)$. RUL(M2)=1 for B(M2)(W.u.) suggests $T_{1/2}(3924.7 \text{ level})$ not lower than
							≈ 0.7 ps.
3932.0	(4,5)	935 ^a		2998.54 3-			· · · · · · ·
		1625.3 4	100	2306.72 4+			
3951.9	$(4^+,3^+)$	2960.4 6	100	991.54 2+	F-2		D/E0/(W.) 22 · 0 · 5
3993.36 4020.4	6 ⁺ (2) ⁺	1686.60 <i>6</i> 1283.4 <i>7</i>	100 100 <i>20</i>	2306.72 4 ⁺ 2736.57 4 ⁺	E2		B(E2)(W.u.)=23 +8-5 γ reported in (p, γ) E=2.05 MeV.
4020.4	(2)	3029.0 5	100 20	991.54 2+			y reported in (p,y) E=2.03 we v.
4039.7	$(0^+ \text{ to } 4^+)$	3048.1 <i>4</i>	100 20	991.54 2+			
4076.55	(5)+	999.7 ^a 6		3077.77 4+			I _y : <39 from 2004Ka18 in (28 Si,4py). Others: 33 5 (1994Cr05), 77 19 (1998Ga11), 127 21 (1978Ne02) in (α ,ny),(HI,xny) where a 999.7 3 γ was assigned from only the 4077 level. But 1980Si02 in (α ,ny),(11 B,2np γ) do not support the placement of this γ from 4077 level, based on the absence of ($^{1000}\gamma$)($^{771}\gamma$) coincidences.
		1340.2 4	100.0 16	2736.57 4+	M1+E2	-0.49 11	B(M1)(W.u.)= $0.015 +8-5$; B(E2)(W.u.)= $3.4 +22-16$ E _{γ} : unweighted average of all available values.
		1771.5 ^a 2		2306.72 4+			 L_γ: 26 4 (1994Cr05,2004Ka18), 100 19 (1998Ga11). But this γ was not detected by 1980Si02 in (α,nγ) and (11B,2npγ), the authors gave an upper limit of 0.1 for branching ratio. Placement or existence of 1773.2 10 γ in 2004Ka18 is considered uncertain. If M1, B(M1)(W.u.)=0.0014 4. If E2, B(E2)(W.u.)=0.8 3.
4140	$(2,1)^+$	≈4140		$0.0 0^{+}$			
4156.53	5-	851	40.77	3306.85 (4+)	(E1)		D/E1/W/ \ 0.00070 \ 20.20
		1079.2 <i>4</i>	43 11	3077.77 4+	(E1)		B(E1)(W.u.)= $0.00070 + 30 - 20$ I _y : unweighted average of two available intensities.
		1159.0 ^a 4	46 10	2998.54 3-	[E2]		B(E2)(W.u.)=39 + 16-11
		1107.0	.0 10	2770.01	[]		E_{γ} : reported in $(\alpha, n\gamma)$, (¹¹ B,2np) (1980Si02) only, considered as uncertain (evaluators).
		1850.4 8	100 10	2306.72 4+	[E1]		B(E1)(W.u.)= $0.00032 + 13 - 7$ E _y : unweighted average of available values.
4159.5	1	3168	85	991.54 2+			E_{γ},I_{γ} : from (γ,γ') .
		4159	100	0.0 0+			If E1, B(E1)(W.u.)=0.00041 12. If M1, B(M1)(W.u.)=0.021 6. E_{γ} , I_{γ} : from (γ, γ') .
4181.7		1875.0 <i>5</i>		2306.72 4+			γ reported in $(\alpha, n\gamma)$, $(^{11}B, 2np\gamma)$.

						
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	Comments
4181.7	(1 a) ±	2381 ^a 2	100	1799.41 2+		γ reported in $(n,n'\gamma)$.
4205.2	$(4,3)^+$	3213.6 4	100	991.54 2+	77.0	DOTAL VILLA CONTRACTOR OF THE
4236.71	6+	1500.1 3	100.0 22	2736.57 4+	E2	B(E2)(W.u.)=26 +12-6
		1935.3 ^a 7	45 3	2306.72 4+	(E2)	B(E2)(W.u.)=3.3 + 15-8
						E _{γ} : γ from (²⁸ Si,4p γ) study of 2004Ka18 only. It is treated as uncertain due to poor fit in level scheme (level-energy difference gives 1930.0) and non-observation in other γ -ray studies.
4288.6	$(4)^{+}$	1552.0 <i>4</i>	100	2736.57 4+		
4319.1	$(4,3)^+$	3327 <i>3</i>		991.54 2 ⁺		E_{γ} : from $(n,n'\gamma)$.
4454.68	1+	2544.4 2	20 4	1910.26 0 ⁺	[M1]	B(M1)(W.u.)=0.052+16-12
		2655.2 2	34 6	1799.41 2+	[M1+E2]	B(M1)(W.u.)=0.078 +22-17; $B(E2)(W.u.)=19 +5-4$
						B(M1)(W.u.) for pure M1; $B(E2)(W.u.)$ for pure E2.
		3462.4 10	5.8 12	991.54 2+	[M1+E2]	B(M1)(W.u.)=0.0060 +19-15; B(E2)(W.u.)=0.85 +27-21
						B(M1)(W.u.) for pure M1; B(E2)(W.u.) for pure E2.
		4454.3 10	100 6	$0.0 0^{+}$	[M1]	B(M1)(W.u.)=0.049 +12-8
						B(M1)(W.u.)=0.049 +12-8
4560		3564 ^a 3		991.54 2+		
4608.75	(1)	3617.1 2	100 18	991.54 2 ⁺		
		4609 2	≈32	$0.0 0^{+}$		
4634.87	7-	398.17 6	20.7 9	4236.71 6+	E1	$B(E1)(W.u.)=1.23\times10^{-5} 9$
		641.48 5	100.0 6	3993.36 6 ⁺	E1	$B(E1)(W.u.)=1.42\times10^{-5}$ 9
4664	(1)	4664		$0.0 0^{+}$		If E1, B(E1)(W.u.)=0.00010 3. If M1, B(M1)(W.u.)=0.0053 13.
4668.93	(6^{-})	512.2 2	19 <i>4</i>	4156.53 5	D	I_{γ} : from (²⁸ Si,4p $_{\gamma}$) E=115 MeV. Other: 102 15 in (⁵⁴ Fe,2p $_{\gamma}$).
	,	592.4 <i>1</i>	67 11	$4076.55 (5)^{+}$	D(+Q)	I_{γ} : unweighted average of two values.
		744.8 <i>6</i>	100 8	3924.69 5	D(+Q)	E_{γ} : unweighted average of available values.
4713.15	(1)	2103.6 2	100 23	2609.52 0 ⁺		,
	, ,	2913 ^a 2	6	1799.41 2+		
		4712 2	≈11	$0.0 0^{+}$		
4823.5	(5,6,7)	746.9 <i>5</i>		$4076.55 (5)^{+}$		
4980.87	7-	743.5 10	7.0 9	4236.71 6+	[E1]	$B(E1)(W.u.)=4.3\times10^{-5}+21-11$
		824.7 2	21.0 11	4156.53 5	E2	B(E2)(W.u.)=12 +6-3
						I_{γ} : other: 100 10 in (54Fe,2p γ).
		1056.1 <i>I</i>	100.0 17	3924.69 5-	E2	B(E2)(W.u.)=17 +8-4
5066.8		2760^{a} 2		2306.72 4+		
5151.71	(7^{-})	516.8 <i>I</i>	57 <i>7</i>	4634.87 7		I_{γ} : from (⁵⁴ Fe,2p γ).
0101.71	(1)	1227.3 2	100 14	3924.69 5	Q	-y (,- <u>P</u> /).
5623.75	(8-)	954.8 <i>I</i>	100 3	4668.93 (6 ⁻)	Q	
2 3 2 3 . 1 3	(0)	990 <i>I</i>	100 5	4634.87 7	~	
5699.38	(8-)	547.8 2	7 2	5151.71 (7-)	D	I_{γ} : from (⁵⁴ Fe,2p γ). Other: 46 2 in (²⁸ Si,4p γ) E=122 MeV.
5077.50	(0)	1030.4 2	88 11	4668.93 (6 ⁻)	Q	I_{γ} : If the value of two values.
		1064.0 4	100 5	4634.87 7	V	ry. unweighted average of two values.
5936.0	(8^{+})	1698.5 10	33 7	4236.71 6 ⁺		
3730.0	(0)	1942.8 10	100 6	3993.36 6 ⁺	(Q)	
		1742.0 10	100 0	3973.30 0	(4)	

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
5951.7	(9-)	328		5623.75			
		971.1 5	≈12	4980.87	7-	Q	
		1313.50 [#] <i>16</i>	100	4638.2			E_{γ} : from 1996GaZZ. Other: 1315 (2004Ka18).
6031.5	(8^+)	1395.6 10	22 3	4634.87	7-		I_{γ} : from (²⁸ Si,4p γ) E=115 MeV. Other: 74 3 in (²⁸ Si,4p γ) E=122 MeV.
		1794.5 <i>17</i>	67 <i>6</i>	4236.71	6+		I_{γ} : from (54Fe,2p γ). Other: 112 6 in (28Si,4p γ) E=115 MeV.
		2038.9 5	100 6	3993.36	6+	Q	
6124.0	(8^{+})	502		5623.75			
		1488.5 <i>10</i>	47 <i>3</i>	4634.87	7-		
		1887.0 <i>4</i>	19 <i>4</i>	4236.71		Q	I_{γ} : from (⁵⁴ Fe,2p γ). Other: 51 3 in (²⁸ Si,4p γ) E=115 MeV.
		2130.6 6	100 4	3993.36		Q	
6124.7	(9-)	1143.8 <i>4</i>	100	4980.87	7-	Q	Mult.: $\Delta J=2 \gamma$ from $\gamma(\theta)$ in $(\alpha,n\gamma)$, (HI,xn γ) (1978Ne02) and DCO ratio
							(1994Cr05) in (54 Fe,2p γ). 2004Ka18, in (p, γ) E=122 MeV, propose ΔJ =1 from
							$\gamma\gamma(\theta)$ (DCO) and γ (anisotropy) ratio, but their results seem consistent with $\Delta J=2$
							also.
6262.1	$(7,8,9^{-})$	1627.2 6	100	4634.87			
6377.0	$(7,8,9^{-})$	1741		4634.87			
6963.0	(9)	838.3 <i>3</i>	100 11	6124.7		ъ	M.L. C. DGO
		1263.4 5	36 7	5699.38		D	Mult.: from DCO ratio.
6998.1	(11^{-})	1046.45 [#] 10	100	5951.7		E2	B(E2)(W.u.)=31 +9-6
7062.4	(10^{-})	1363.0 4	100	5699.38		Q	
7118.9	(10^+)	993.0 <mark>&</mark> <i>10</i>	134 <mark>&</mark> 6	6124.0	(8^{+})		I_{γ} : from (²⁸ Si,4p γ) E=115 MeV. I γ <25 for 997.6 γ in (⁵⁴ Fe,2p γ).
		993.0 <mark>&</mark> <i>10</i>	101 <mark>&</mark> 5	6124.7	(9^{-})		I_{γ} : from (²⁸ Si,4p γ) E=115 MeV. I γ <25 for 997.6 γ in (⁵⁴ Fe,2p γ).
		1088.0 5	100 5	6031.5	(8+)	Q	E _y : unweighted average of two values.
		1166		5951.7	(9^{-})		,
		1181.8 <i>13</i>	29 <i>1</i>	5936.0	(8^{+})	Q	E_{γ} : unweighted average of two values.
							I_{γ} : from (⁵⁴ Fe,2p γ). Other: 55 3 in (²⁸ Si,4p γ) E=115 MeV.
7212.4	(11^{-})	1260.3 7	100	5951.7	(9^{-})	Q	
7334.7	(10^+)	1210.7 <i>3</i>	100	6124.0	(8^{+})	Q	
7556.2	(10^{-})	1605		5951.7	(9-)		
7579.1	(11^{-})	1454.3 2	100	6124.7	(9-)	Q	
7806.0	(10^+)	1869.9 7	100	5936.0	(8+)	Q	
7902	$(9,10,11^{-})$	1776.9	100	6124.7	(9-)	0	
7946.5	(10^{+})	1915 2	100	6031.5	(8^+)	Q (O)	
8157.1	(10^{+})	2221 2	100	5936.0	(8^+)	(Q)	
8181.1 8302.8	(10^{-})	2229.8	100	5951.7	(9^{-})		
8302.8	(12 ⁻) (11)	1304.9 <i>5</i> 1204	100	6998.1 7118.9	(11^{-}) (10^{+})		
8426.1	(11) (11^{-})	1307.15 9	100 3		(10^{+})		
0420.1	(11)	1429.1 10	16.7 <i>18</i>		(10°) (11^{-})		E_{γ} : γ not reported in (²⁸ Si,4p γ) E=122 MeV.
		2048	10./ 10		$(7,8,9^{-})$		Ey. y not reported in $(S1, +py) = -122$ ivie v.
8580.4	(12^{+})	154.30 5	2.5 3	8426.1	$(1,0,9)$ (11^{-})		
83804							

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}^{π}_f	Mult.‡	Comments
8580.4	(12+)	1462.5 10	100 4	7118.9	(10^+)	Q	E_{γ} : unweighted average of available values.
	, ,	1583.3 [#] <i>10</i>	87 <i>3</i>	6998.1	(11^{-})		
8995.4	(12 ⁺)	1189.4 <i>3</i>	100	7806.0	(10^{+})	Q	
9363.7		1808		7556.2	(10^{-})		
		3414		5951.7	(9-)		
9440.3		2321.9 9	100	7118.9	(10^{+})		
9666	(14)	1086		8580.4	(12^{+})		
9772	(2^{+})	5873	7.4 16	3898.5	$(2^+,3,4^+)$		
		5892 5975	10 <i>4</i> 11 <i>3</i>	3880 3795.03	$(0^+ \text{ to } 4^+)$		
		6172	11 3				
		6224	17.4 23	3552.3	(1,2) 4 ⁺		
		6313	11 4	3458.66			
		6344	12.3 23	3425.13	1+		
		6407	11 <i>3</i>	3365.99			
		6469	16 <i>4</i>	3297.17			
		6514	8.0 28	3261.94			
		6569	19.6 22	3205.98			
		6585 6681	12.4 <i>13</i> 21 <i>6</i>	3186.84 3094.64			
		6768	20.7 14	3005.73			
		6795	20.9 26	2979.94			
		6977	17.1 <i>14</i>	2793.5			
		7040	9.7 26	2736.57	4+		
		7162	7.9 29	2609.52			
		7464	16 6	2306.72			
		7861	10.0 7	1910.26			
		7972	93 29	1799.41			
		8782 9772	100 <i>9</i> 36 <i>7</i>	991.54 0.0	0 ⁺		
9803.5	5 (11-)	1622.5 8	100 62	8181.1	(10^{-})		
7603.	(11)	2743	100 02	7062.4	(10^{-})		
9948.4	(12-)	508.1 5		9440.3	(11^{-})		
	. /	584.8 <i>5</i>	86 5	9363.7	(11-)	D	
		2886 <i>1</i>	25 2	7062.4	(10^{-})	Q	
_		2950 <i>1</i>	100 5	6998.1	(11^{-})	D	
10.31×10^3		6110	6.9 12	4205.2	$(4,3)^+$		
		6390	3.4 11	3924.69			
		6410	8.6 14	3898.5	$(2^+,3,4^+)$		
		6490 6510	12.2 <i>16</i> 9.5 <i>19</i>	3819.65 3795.03	$(0^+ \text{ to } 4^+)$		
		6680	2.3 9	3630?	$(0^+,6^-)$		
		6710	11.2 17		$(0^{+},0^{+})$ $(2^{+},3,4^{+})$		
					(' '-'')		

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Mult.‡	Comments
0.31×10^3	-	6890	12.4 19	3425.13			
		7220	22 4	3094.64			
		7230	14 4	3077.77			
		7330	25 4	2979.94			
		7520 7570	25 3	2793.5	21		
		7570 7700	20 <i>3</i> 6.9 <i>12</i>	2736.57	4 ·		
		8000	6.9 12 26 3	2609.52 2306.72	4+		
		8400	11.0 <i>17</i>	1910.26			
		8510	60 7	1799.41			
		9320	100 12	991.54			
		10310	45 6		0^{+}		
10460.2	(13^{-})	512.0 5			(12^{-})		
		656.7 <i>5</i>	50.0 17	9803.5	(11^{-})	Q	
		1020.0 5	100 <i>3</i>	9440.3	(11^{-})		
		2158.3 9	72 3	8302.8	(12^{-})		
		3247 1	48.3 17		(11^{-})	Q	
10073	(2-)	3461 <i>1</i>	92 <i>3</i>		(11^{-})	Q	
10872	(3-)	6568 6719	26	4304.1 4156.53	(1 ⁻ to 5 ⁻)		
		7113	16 11		$(1^- \text{ to } 5^-)$		
		7113	16		(1 to 5) (1 to 5)		
		7458	21		(1 to 5) (1 to 5)		
		7513	11	3365.99			E_{γ} : 7506 from level-energy difference.
		7588 <mark>a</mark>			$(1^- \text{ to } 5^-)$,
		7674	26		(2,3)		
		7799	32	3077.77	4+		
		7871	74	2998.54			
		7891	26	2979.94			
		8080 8134	47	2793.5 2736.57			
		8134 8568	42 26	2306.72			
		9073	47	1799.41			
		9881	100	991.54	2+		
		10872 ^a	5.3		0+		
10906	(3^{-})	6222	7.7	4684	$(1^- \text{ to } 5^-)$		
		6541	12		$(2,1,3)^+$		
		6601	15	4304.1	$(1^- \text{ to } 5^-)$		
		6752	19	4156.53	5-		
		7051	12	3853.27	5+		
		7061	12	3850.5	$(\leq 3)^{(+)}$		
		7621	12	3285	$(1^- \text{ to } 5^-)$		
		7707	15	3196.9	(2,3)		

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
10906	(3-)	7832	19	3077.77			
		7904	58	2998.54			
		7924	12	2979.94			
		8113	19	2793.5			
		8167	12	2736.57			
		8601	15	2306.72			
		9106	38	1799.41			
		9914	100	991.54			
		10906 ^a	3.9		0^{+}		
11023.4	(14^{-})	563.3 <i>3</i>	100.0 5		(13^{-})	D	
		1074.7 5	24.3 6		(12^{-})		
		2720 <i>1</i>	1.68 <i>15</i>		(12^{-})		
1120	(2^{+})	6560	≥6.1	4560			
		6650	≥5.3	4470	(0^+)		
		6700	≥3.4		$(4,3)^+$		
		6740	≥2.6	4380	_		
		6750	≥5.3		3-		
		6760	≥2.5		$(2,1,3)^+$		
		6800	3.4 2		$(4,3)^+$		
		6810	≥1.9	4310			
		6860	≥6.7	4260	(4.2)±		
		6910	9.9 3		$(4,3)^+$		
		6960	6 4	4156.53			
		6980	≥2.3	4140	$(2,1)^+$		
		7010	≥1.1		(2) ⁺		
		7040	1.5 3	4076.55			
		7080	11.5 24	4039.7	$(0^+ \text{ to } 4^+)$		
		7100	4 4	4020.4	$(2)^{+}$		
		7170	1.29 14		$(4^+,3^+)$		
		7220 7268	10.6 10	3898.5 3853.27	$(2^+,3,4^+)$		
			≥2.5				
		7270	98	3850.5			
		7300	11.0 24		$(0^+ \text{ to } 4^+)$		
		7320	6.2 24	3795.03			
		7400 7420	≥6.7 9.5 <i>4</i>		$(0^+ \text{ to } 4^+)$		E_{γ} : 7410 from level-energy difference.
		7420			(2^+)		E_{γ} . 7410 from level-energy difference.
		7490 7520	3.2 13		$(4)^{+}$		
		7520 7570	7 5 7 5	3597.24			
		7570 7575	7 <i>5</i> 8 <i>6</i>	3552.3 3545.9?	4 ⁺ (0 to 3 ⁺)		
		7575 7660	8 0 13 <i>4</i>	3343.9 <i>?</i> 3458.66			
		7670	13 4 ≥1.8				
		7670 7690	≥1.8 8.6 24	3452.0 3425.13	(1, <i>\(\(\)\)</i>		

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^π	Mult.‡	Comments
11120	(2^{+})	7750	29 11	3369.86	3 ⁺		
	. ,	7755	16 <i>3</i>	3365.99	1+		
		7820	37 <i>3</i>	3297.17	$(2)^{+}$		
		7860	15.3 24	3261.94	ì		
		7910	32 7	3205.98			
		7920	3.5 3	3196.9			
		7930	13.4 19	3186.84			
		8020	25 11	3094.64			
		8040	20 8	3077.77			
		8110	25 3	3005.73			
		8120	35 16	2998.54			
		8140	36.4 24	2979.94	3+		
		8330	37.0 6	2793.5	2+		
		8380	19.6 <i>15</i>	2736.57			
		8510	6.5 13	2609.52			
		8810	36.8 15	2306.72			
		9210	27 4	1910.26			
		9320	57 <i>9</i>	1799.41			
		10130	100 4	991.54			
		11120	48 3	0.0	0+		
11464	(15)	1792 ^a	40 3	9666	(14)		
11626.4	(15) (15^{-})	603.0 3	100.0 4	11023.4	(14) (14^{-})	D	
11020.4	(13)	1166 <i>I</i>	51.0 4	1023.4			
12335.7	(16^{-})	709.5 3	100 6	11626.4	(13^{-}) (15^{-})	Q	
12333.7	(10)	1312.5 9	88 6	11020.4	(13^{-}) (14^{-})		
12468	(16)	1003	00 0	11023.4	(14)		
13082.1		746.4 3	100.0 5	12335.7	(15) (16^{-})	D	
13062.1	(17^{-})	1455.2 5	100.0 5	11626.4	(10°) (15^{-})	D	
13324	(17)	856	100 0	12468			
13324	(17)				(16)		
12040 1	(10=)	1860	45.0.5	11464	(15)	ъ	1 1 100 10: 28c: 4 > F 115 M M
13948.1	(18^{-})	865.8 5	45.0 5	13082.1	(17^{-})	D	I_{γ} : other: 122 10 in (28 Si,4p γ) E=115 MeV.
1.4201	(10)	1613.3 6	100.0 19	12335.7	(16^{-})	Q	
14391	(18)	1067		13324	(17)		
1.4060.5	(10=)	1924	07.1.10	12468	(16)	ъ	
14862.5	(19^{-})	914.5 5	97.1 10	13948.1	(18^{-})	D	
15100 6	(10)	1779.6 <i>6</i>	100.0 10	13082.1	(17^{-})	Q	
15423.6	(19)	561		14862.5	(19^{-})		
		1032		14391	(18)		
		2099		13324	(17)		
15945.0	(20^{-})	1082.1 5	45.8 10	14862.5	(19^{-})		
		1997.4 6	100.0 <i>13</i>	13948.1	(18^{-})	Q	
16686.8	(20)	742		15945.0	(20^{-})		
		1263		15423.6	(19)		

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	Comments
16686.8	(20)	2296		14391 (18)		
17087.2	(21^{-})	1142.0 5	19 4	15945.0 (20-)		I_{γ} : other: 68 16 in (28 Si,4p γ) E=115 MeV.
		2225.1 <i>10</i>	100.0 <i>18</i>	14862.5 (19 ⁻)	Q	
17853	(21)	769		17087.2 (21 ⁻)		
		1167		16686.8 (20)		
		2429		15423.6 (19)		
18483.3	(22^{-})	1395.6 9	28.4 14	17087.2 (21 ⁻)		
		2538.6 <i>10</i>	100.0 20	15945.0 (20-)	Q	
19365	(22)	2678		16686.8 (20)		
19775.6	(23^{-})	1292		18483.3 (22 ⁻)		
		2688.5 10	100 5	17087.2 (21 ⁻)	Q	
	. ,			. ,		
21297.5	(24^{-})			, ,		
		2814 <i>I</i>	100 4	18483.3 (22 ⁻)		
	, ,		100	, ,		
24868.6	(26^{-})	3571 <i>I</i>		21297.5 (24 ⁻)		
20657 21297.5 22892.7 24868.6	(23) (24 ⁻) (25 ⁻) (26 ⁻)	2804 1523		17853 (21) 19775.6 (23 ⁻)		

[†] When a level is populated in two or more datasets, averages of values are taken where uncertainties are given. Additional comments are also provided for certain individual γ rays.

[‡] From $\gamma(\theta)$ and/or $\gamma(\text{lin pol})$ in $(\alpha, n\gamma)$, (11B,2np γ). (1980Si02,1978Si02). RUL (for E2 and M2) also used when $T_{1/2}$ known. Mult=Q (most likely E2) from $\Delta J=2$, quadrupole transition; mult=D or D+Q for $\Delta J=1$ (or in rare cases $\Delta J=0$), dipole or dipole+quadrupole transition. For some of the transitions, especially, for high-spin (J \geq 4) levels, multipolarities are also established in $^{51}V(^{16}O,p2n\gamma),^{59}Co(^{7}Li,2n\gamma)$ from $\gamma(\theta)$, $\gamma(pol)$ and level lifetimes.

[#] Ordering of 1314-1046-1583 cascade above the 4636, 7⁻ level is from (²⁸Si,4py) (2004Ka18 and 1997Fu08). Others: 1046-1314-1583 cascade in 1998Ga11, 1047-1582 cascade in 1994Cr05 with no 1314 γ reported, only the 1046 γ (placed above 4636, 7⁻ level) reported in $(\alpha, n\gamma)$, (11B,2np γ) (1980Si02,1978Ne02).

[®] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&]amp; Multiply placed with intensity suitably divided.

^a Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{64}_{30}$ Zn₃₄

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

____ → γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Band(C): Band based on 3-

Band(e): Strongly coupled band, α =0

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 111,1093 (2010)	3-Mar-2009

 $Q(\beta^-)=-5175\ 3;\ S(n)=11058.6\ 10;\ S(p)=8924.6\ 10;\ Q(\alpha)=-4578.1\ 8$ 2012Wa38 Note: Current evaluation has used the following Q record -5175 3 11058.9 108924.5 10-4578.1 8 2009AuZZ,2003Au03. Additional information 1.

⁶⁶Zn Levels

Configuration: configurations used in DWBA analysis of $(\alpha,^2\text{He})$, $(^{12}\text{C},^{10}\text{C})$, and $(^{12}\text{C},^{10}\text{Be})$ data.

Cross Reference (XREF) Flags

				Cro	oss Reference (Ar	(EF) Flags			
	A B C D E F G H I J	66 Cu $β^-$ decay 66 Ga $ε$ decay 64 Ni($α$,2n $γ$), 55 Mn 66 Zn(p,p') 66 Zn(p,p' $γ$) 66 Zn(p,p' $γ$) 65 Cu(p, $γ$) 65 Cu(p, $γ$) 65 Cu(p,n), (p,n $γ$) I 63 Cu($α$,p), ($α$,p $γ$)		K L M N O P Q R S T	69 Ga(p,α) 65 Cu(d,n) 67 Zn(p,d) 68 Zn(p,t) 64 Zn(t,p) 65 Cu(3 He,d) 66 Zn(α,α') Inelastic scatter 66 Zn(e,e') 66 Zn(α,α'γ), (32		U V W X Y Z Othe AA AB AC	Coulomb excitation 67 Zn(d,t) 62 Ni(6 Li,d) 64 Ni(16 O, 14 C) 64 Ni(3 He,n) 65 Cu(α ,t) rs: 64 Zn(α , 2 He) 64 Ni(12 C, 10 Be), 64 Zn(12 C, 10 C) 63 Cu(6 He,p2n γ)	
E(level) [†]	_Τ π‡	* T _{1/2} ‡		XRE	(F			Comments	
0.0	$\frac{1}{0^{+}}$	stable	ABCDEFGHI			XREF: O	thers:		
0.0 1039.2279 <i>21</i>	0 ⁺ 2 ⁺			XREF ABCDEFGHIJKLMNOPQRSTUVWXYZ BCDEFGH JKLMNOPQRSTUVWX Z		XREF: Others: AA, AB, AC Configuration=(v f _{5/2} 0 ⁺) XREF: Others: AA, AB, AC μ =+0.80 8 ; μ =+0.9 2 (2005St24); Q=+0.24 8 (2003Ko51) μ =+0.80 8 , transient field integral perturbed angular correlation (tf) (2002Ke02). μ =+1.06 10 , transient field integral perturbed angular correlation (tf) (2004An14). μ =+0.9 2 , perturbed angular correlation after ion implantation (IMPAC) (1979Fa06). Q: from Coulomb excitation (2003Ko51). Other: +0.24 9 (2020Ro06, from Coul. ex., preliminary value as stated by authors). Comment added March 30, 2021 by B. Singh. T _{1/2} : weighted average of 1.73 ps 7 DSAM (2006Le24), 1.68 ps 3 DSAM (2002Ke02), 1.61 ps 10 Coul ex. (2003Ko51), 1.74 ps 11 66 Zn(γ , γ) (1998Ba02,1981Ca10,1972Ka22,1972ArZD,1967Be39), 1.56 ps 10 Coul ex. (1973Fi15), 1.66 ps 10 66 Zn(α , γ) (1977Ne05). Other measurements: 1.3 ps α			
1872.7653 24	2+	0.19 ^a ps 7	ABCDEFGH	JKLM	OPQRSTU VWX	Isotope si XREF: O $T_{1/2}$: oth	hift: < thers: ers: <	53En06). $r^2 > \frac{1}{2} = 3.9496 \ 13 \ (2004An14)$. AB , AC 1.4 ps from $(\alpha, \alpha' \gamma)$, and 0.83 ps $+35-21$ $2n\gamma$), 1.7 ps 5 (2003Ko51).	

2372.353 4 0+ >0.21 ps AB DEFGH K1 OP $T_{1/2}$: from $(n,n'\gamma)$; other: <60 ps from 2451.01 5 4+@ 0.34 ps 5 CD FGH JK1M OPQR TUVW XREF: Others: AB, AC J^{π} : 4 from $\gamma(\theta)$ in 64 Ni $(\alpha,2n\gamma)$; π from 2^+ . $T_{1/2}$: weighted average of 0.19 ps 6 (α)	
2451.01 5 4+@ 0.34 ps 5 CD FGH JK1M OPQR TUVW XREF: Others: AB, AC $J^{\pi}: 4 \text{ from } \gamma(\theta) \text{ in } ^{64}\text{Ni}(\alpha,2\text{n}\gamma); \pi \text{ from } 2^{+}.$ $T_{1/2}: \text{ weighted average of } 0.19 \text{ ps } 6 (\alpha)$	
J ^{π} : 4 from $\gamma(\theta)$ in ⁶⁴ Ni(α ,2n γ); π from 2 ⁺ . T _{1/2} : weighted average of 0.19 ps 6 (α	E2 γ to
$T_{1/2}$: weighted average of 0.19 ps 6 (α	
14 Coul ex. (2006Le24), and 0.35 ps (2003Ko51). Others: 0.83 ps +42-28 from (α,2nγ), (α,pγ), 0.17 ps +5-3 from (n,n'γ), a	2 Coul. ex. 0.19 ps 6 from
from $(\alpha, \alpha' \gamma)$. μ =+2.6 δ , transient field integral pertur correlation (tf) (2004An14).	-
μ =+2.6 8, from γ -factor=+0.65 20 in 6	Coul. ex.
2703.6 4 (3) CD FGH K VW E(level): possible doublet indicated by	conflicting
parity measurements. J^{π} : $(1^-,3^-)$ from proton-capture yield in $(2^-,3^-)$ from L= (0) for a level at 270 (3^+) from Hauser-Feshbach analysis	04 in 67 Zn(d,t);
2762.8 6 (2) E J^{π} : from $\gamma(\theta)$ in 66 Zn (γ, γ') .	ш 2п(р,р).
2765.56 7 4 ⁺ >7 ps CD FGH JK mm U XREF: Others: AC	
J^{π} : 4 from $\gamma(\theta)$ in 64 Ni $(\alpha, 2n\gamma)$; π from	
$T_{1/2}$: by DSA from 64 Ni(α ,2n γ). Other DSA from 63 Cu(α ,p γ).	r: >2.1 ps by
2780.157 7 2 ⁺ 0.26 ps 7 B DEFGH K mnOp V $T_{1/2}$: weighted average of 0.25 ps 8 fro 0.28 ps 14 from $(n,n'\gamma)$.	om (γ, γ') and
2826.69 5 $3^{-@}$ 0.180 ps 7 BCD FGH JK OpQRSTU WX Z XREF: Others: AB, AC $T_{1/2}$: From Coul. ex. (2006LeZU).	
T _{1/2} : Others: 0.18 ps 4 from 66 Zn(α , α) 14 from 63 Cu(α ,p γ), and 0.17 ps 4 fr Other: 1.0 ps +6-3 from 64 Ni(α ,2n γ) μ =+2.1 9, transient field integral perture correlation (tf) (2004An14). μ =+2.1 9, from γ -factor=+0.7 3 in Co	from $(n, n'\gamma)$. The angular
2938.074 3 2 ⁺ 0.044 ps 16 B DEFGH JKLM OP V $T_{1/2}$: unweighted average of 0.06 ps 5 and 0.028 ps 3 from $(n,n'\gamma)$.	from $(\alpha, p\gamma)$
3030 (0^+) \mathbb{W} \mathbb{J}^{π} : from $\mathbb{L}(^6\mathrm{Li}, d) = (0)$.	
3077.73 23 4 ⁺ 1.04 ps 7 CD FGH JK M OPQR TUV XREF: Others: AB, AC	
Configuration= $(\pi f_{5/2}4^+)$ $T_{1/2}$: Coul. ex. (2006Le24).	
$T_{1/2}$: 1.7 ps +10-3 in ⁶⁴ Ni(α ,2n γ), 0.5 (α ,p γ), 0.13 ps +56-10 in (α , α ' γ), a +5-3 in (n,n' γ).	6 ps +3-2 in and 0.09 ps
3105.040 4 0 ⁺ B DEFGH K O	
3212.582 8 2^+ 0.083 ps $+21-14$ B DEFGH K m 0 $T_{1/2}$: from DSAM in $(n,n'\gamma)$. 3226.2 11 DE K m R	
3228.885 3 1 0.12 ps 3 B D FGH K P V $T_{1/2}$: from DSAM in $(n,n'\gamma)$. J^{π} : from log $fi=6.14$ 4 in ε decay from 0^+ ; $\pi=+$ from M1,E2 to 2^+ .	0^+ and γ to
3241.2? 11 E	
3331.441 6 2+ 0.083 ps +21-14 B DEFGH KLm 0 R V $T_{1/2}$: from DSAM in $(n,n'\gamma)$.	
3380.944 4 1 20 fs 5 B DEFGH K p V $T_{1/2}$: other: 42 fs +21-14 from DSA in J^{π} : 1 from $\gamma(\theta)$ in 66 Zn(γ,γ'); π from L	

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	XREF	Comments
3427.406 <i>18</i> 3432.408 <i>4</i>	1,2 ⁻ 1 ⁻	30 fs +19-8	B GH p B DEFGH K R	J ^{π} : log ft =8.9 I from ε decay from 0 ⁺ ; γ to 2 ⁺ . J ^{π} : 0,1,2 ⁻ from log ft =7.03 4 in ε decay from 0 ⁺ ; J=0 ruled out by γ to 0 ⁺ , J^{π} =2 ⁻ ruled out by T _{1/2} ; π =(-) from L(p,p')=(1).
3507.249 <i>23</i> 3523.6 <i>8</i> 3531.692 <i>14</i>	2 ⁺ 0 ⁺		B DEFGH K m V CD FG K m o B DEFG K o	$J^{\pi} \colon L(p,p')=2.$
3576.370 22 3670.72 <i>5</i>	4 ⁺ 2 ⁺		B DEFGH K R B D GH K m OP	$J^{\pi} \colon L(p,p') = 4.$
3689.01 <i>16</i> 3709.4 <i>3</i> 3725.3 <i>5</i>	1 ⁺ ,2 ⁺ ,3 ⁺ (5)	$0.6^a \text{ ps } +6-2$	D G KLm V CD G JK D F K	J ^π : L(d,t)=L(d,n)=1. J ^π : from $\gamma(\theta)$ in ⁶⁴ Ni(α ,2n γ).
3731.6 <i>5</i> 3738.207 <i>21</i>	+	14 fs 2	G B DEFGH K O	Lower J^{π} member of a $J^{\pi}=(2^+)+(4^+)$ level doublet at 3737 10 reported in 64 Zn(t,p). J^{π} : $J^{\pi}=(2^+)$ from L(t,p)=(2) not adopted for this lower J^{π} member of 3737 10 doublet since J=1 from $\gamma(\theta)$ and reduced dipole γ rays in 66 Zn(γ,γ') reported for a 3739.1 level. $T_{1/2}$: from (γ,γ') with $\Gamma_{\gamma0}/\Gamma=0.75$ 3 from adopted gammas.
3738.24 <i>4</i>	(4 ⁺)		0	E(level): higher J^{π} member of a $J^{\pi}=(2^+)+(4^+)$ level doublet reported in ⁶⁴ Zn(t,p).
3747.03 19	5-	46 ps <i>3</i>	CD GH JK p	XREF: Others: AB, AC Configuration= $((\pi p_{3/2})(\pi g_{9/2}))5^-$ J ^{π} : 5 from $\gamma(\theta)$ in 64 Ni $(\alpha,2pn\gamma)$; π from E2 to 3^- . T _{1/2} : by recoil distance in 55 Mn(14 N,np γ). DSA measurements of 0.8 ps +11-4 from 63 Cu(α ,p γ) and 6 ps +14-3 from 64 Ni(α ,2n γ) do not take fully into account strong feeding from the 4252 (T _{1/2} =133 ps 11) and 4076 (T _{1/2} =29.8 ps 14) levels. Other: 0.21 ps +14-7 from (n,n' γ).
3753.01 4	4+		B D FGH K p	J^{π} : L(p,p')=4.
3770 <i>30</i> 3791.123 <i>3</i> 3806.4 <i>10</i>	(1 ⁻) 1 ⁺		QR W BDFGH Km V D Km	J^{π} : from L(⁶ Li,d)=(1). J^{π} : 1 ⁺ from log ft =5.00 4 from 0 ⁺ .
3825.0 <i>3</i> 3874 <i>5</i>	0_{+}		B DEF K D K	J^{π} : from $\gamma(\theta)$ in (γ, γ') .
3882.424 <i>10</i> 3898.3 <i>6</i>	(2) ⁺ 5 ⁻		B DE G K CD G K O q X	J^{π} : from $\gamma(\theta)$ in 66 Zn(γ,γ').
3924.71 20			D FGH K q	J^{π} : 6+ from L(p,p')=6; γ 's to 0+ and 2+ levels rule it out; level could be a doublet.
3946 2 3969 2 4005 10	(1 ⁻) (4 ⁺) 4 ⁺		D K pqR D K m Op D m	J^{π} : $L(p,p')=(1)$. J^{π} : $L(p,p')=4$.
4011.7 4019.2 <i>15</i> 4075.7 <i>3</i>	2 ⁺ (6 ⁻)	29.8 ps <i>14</i>	E m V DFG K m O C E J L	E(level): from 66 Zn(γ,γ'). XREF: Others: AC μ =0.9 2; Q=-0.081 13 (2005St24) μ : By recoil into gas and or vacuum (RIGV) (1983Ba69). Q: From electron scattering (Es); recalculated

E(level) [†]	J^{π}	T _{1/2} ‡	XREF	Comments
				value (1981Ko06). $T_{1/2}$: by recoil distance in $^{55}Mn(^{14}N,2pn\gamma)$. Other: >1.4 ps from $(\alpha,p\gamma)$. J^{π} : (6) from $\gamma(\theta)$, γ yields and decay systematics in
4081.0 <i>15</i> 4085.983 <i>4</i> 4108.5 <i>10</i>	1+		DFKM BDFGHKMV dF m R	64 Ni(α,2nγ); π from (M1) to 5 ⁻ . J ^π : log ft =5.99 4 from 0 ⁺ . π=+ from L(p,d)=1 for a level at 4100 30 ; π=– from
4119.0 5	(1-)		d G K Oq	L(p,p')=3 for a level at 4110 10, indicating a possible doublet.
4182.7 5	(6+)	0.15 ps 6	CD JK	XREF: Others: AC J ^{π} : (6) from $\gamma(\theta)$ and γ yields in ⁶⁴ Ni(α ,2n γ); π from (E2) to 4 ⁺ . L(p,p')=4 at 4189 7. T _{1/2} : unweighted mean of DSA measurements 0.08 ps +6-4 in ⁶³ Cu(α ,p γ) and 0.21 ps +10-3 in ⁶⁴ Ni(α ,2n γ).
4186 7	(3-)		K O	E(level): weighted average of 4184 10 in (t,p) and 4188 10 in (p, α).
4223 2	(1-)		D K	XREF: Others: AB
4251.9 3	(7-)	133 ps <i>10</i>	C J Op	J ^π : L(p,p')=(1). XREF: Others: AA μ =1.0 2 (2005St24,1989Ra17) Configuration=((ν F _{5/2})(ν G _{9/2}) ₇ -+(ν P _{1/2})(ν G _{9/2}) ₅ -) E(level): unresolved doublet in (α , ² He) at 4220 50; L=7 assigned to the main level at 4220 with a tentative L=5 assigned to the 4400 level visible at some backward angles. μ : From recoil into gas and/or vacuum (RIGV) (1981Ko06). J ^π : (7) from ν (θ) and ν yields in ⁶⁴ Ni(ν ,2n ν); ν from (E2) to 5 ⁻ . T _{1/2} : by recoil distance in ⁵⁵ Mn(¹⁴ N,2pn ν). Other: >0.55 ps in (ν ,p ν).
4258 2 4267 7 4295.339 4 4321.83 20 4332 7 4393.7 16 4424 6 4433 6 4439 7 4454 5 4461.409 5 4472 7 4497.6 5 4511 5 4511 5 4527 5 4538 7 4565 2	4 ⁺ 1 ⁺ 2 ⁺ 3 ⁻ 1 1 ⁻ 2 ⁺ 1 ⁺ 3 ⁻ 0 ⁺ (2 ⁺) 4 ⁺ 3 ⁻	4.2 fs +18-9 0.07 ps +4-2 7.0 fs 12 7 fs +12-3	D K p D K p D K p B DE K m D H K m D K O D K OPQ T DE H m D H m O D m D m B DE H m D m q D H p D Opq D Opq D pq D pq D pq	J ^{π} : L(p,p')=4. J ^{π} : 1 ⁺ from log ft =5.23 ft from 0 ⁺ in ft decay. J ^{π} : L(t,p)=2. T _{1/2} : from DSA in ft decay. J ^{π} : 1 from ft from ft in ft from 0 ⁺ in ft decay. J ^{π} : L(p,p')=2. J ^{π} : L(p,p')=3.
4567 <i>10</i> 4609? 2	5 ⁻ (1)	8.4 fs +33-18	D q Oq E p	J ^{π} : from $\gamma(\theta)$ in ⁶⁶ Zn(γ,γ').
	. /		•	***

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF		Comments		
4610 <i>5</i> 4622 <i>6</i>	4+		D II	p	J^{π} : $L(p,p')=4$.		
4635.3 11	(2)		D H DE	0p	XREF: Others: AA		
4638.24 <i>14</i>	1		В		J^{π} : (2) from $\gamma(\theta)$ in $^{66}Zn(\gamma,\gamma')$. XREF: Others: AA		
4645 <i>10</i> 4655 <i>7</i>	(3-,4+)		D D		J^{π} : log $ft=7.96$ 11 from 0^+ ; γ to 0^+ . XREF: Others: AA XREF: Others: AA J^{π} : L(p,p')=3+4; probable doublet.		
4675.6 5	1+		B 1		XREF: Others: AA J^{π} : log ft =8.35 I 5 from 0 ⁺ rules out 0 ⁺ to 0 ⁺ transition; γ to 2 ⁺ .		
4680 <i>50</i> 4683 <i>10</i>	(1)	7.1 fs +24–14	DE 1		XREF: Others: AA XREF: Others: AA J^{π} : (1) from $\gamma(\theta)$ in 66 Zn(γ,γ').		
4694 7	4+		D 1		XREF: Others: AA J^{π} : $L(p,p')=4$.		
4730 7	2+		D 1		XREF: Others: AA J^{π} : $L(p,p')=2$.		
4745 10 4758 10 4780 7 4796 7 4806.199 5 4814.1 4	5 ⁻ (1 ⁻) 1 ⁺ (7 ⁻)	3.8 fs +13-8 0.6 ^a ps 4	D 1 D 1 D 5 D 6 D 7 D 7 D 7 D 7 D 7 D 7 D 7 D 7 D 7 D 7	q q q	J ^π : L(p,p')=5. J ^π : L(p,p')=(1). J ^π : 1 ⁺ from log ft =4.89 ft from 0 ⁺ in ft decay. XREF: Others: AB J ^π : (7) from ft (θ) and ft yields in ft 64Ni(ft 0,2n ft 1); ft 7 from (M1) to (6 ⁻).		
4832 <i>10</i> 4849.93 <i>3</i>	1+		D B D		J^{π} : log ft =6.62 6 from 0 ⁺ rules out a 0 ⁺ to 0 ⁺		
4866.056 <i>16</i> 4875 <i>10</i> 4885 <i>10</i> 4907 <i>10</i> 4918 <i>10</i> 4945 <i>10</i>	1+		B D D D D D	q q q	transition; γ to 2^+ . J^{π} : log ft =6.42 θ from 0^+ ; γ to 0^+ .		
4958.2 <i>4</i>	1+		B D 1		J^{π} : log ft =7.48 II from 0^+ rules out a 0^+ to 0^+ transition; γ to 2^+ .		
4984 10 5005.8 3 5025 10 5038 10	1+		D 1m B D 1m D 1m D		J^{π} : log ft =7.47 7 from 0 ⁺ ; γ to 0 ⁺ .		
5059 10 5073 10 5086 10 5097 10			D D D	q q q q			
5106 <i>10</i> 5111.9 <i>4</i>	(8-)		D CD	q q	J^{π} : from $\gamma(\theta)$ and γ decay systematics in $^{64}{\rm Ni}(\alpha,2n\gamma)$.		
5124 10 5143 10 5159 10 5169 10 5180 10 5198 10 5207.3 5	(8+)	>6 ps	D D D D D C	q q	XREF: Others: AA		

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$		XREF		Comments
5222 10 5234 10 5245 10 5263 10 5274 10 5285 10 5305 10 5322 10 5331 10 5352 10 5364 10 5375 10 5389 10 5403 10 5420 10 5446 10 5464.4 5	(9-)	1.9 ps 8	D D D D D D D D D D C C		q q q q q	Configuration=(ν g9/28 ⁺) configuration from (12 C, 10 Be), (12 C, 10 C) reaction where this level is seen strongly excited (1990Bo27). This level was seen weakly excited in the (α , 2 He) reaction (1990Fi07). J ^{π} : (8) from $\gamma(\theta)$, γ yields and decay systematics in 64 Ni(α ,2n γ); π from (E2) to (6) ⁺ . T _{1/2} : by DSA in 64 Ni(α ,2n γ). XREF: Others: AA XREF: Others: AA XREF: Others: AA XREF: Others: AA
5500 <i>45</i>					q	ps $+2I-14$ by DSA in ⁶⁴ Ni(α ,2n γ).
5650 30	3-		D		q	XREF: Others: AB E(level): from 66 Zn(p,p'). J^{π} : L(p,p')=3.
5740 <i>50</i> 6000 <i>50</i>			A	J	q	XREF: Others: AB
6292.6 6	(10+)	1.6 ps +7-3	С	J		J^{π} : (10) from $\gamma(\theta)$ in $^{64}Ni(\alpha,2n\gamma)$; π from (E2) to (8 ⁺).
6419.0 8 6850 <i>50</i>	(8+)		С			$T_{1/2}$: by DSA in 64 Ni(α ,2n γ). XREF: Others: AB Configuration=(π g _{9/2} 8 ⁺) J ^{π} : from DWBA analysis of (12 C, 10 Be), (12 C, 10 C)
7.17×10 ³ 18				J		data.
7367.4 <i>4</i> 7517.3 <i>10</i> 7550 <i>50</i>	1 (6 ⁺)	1.47 fs 16 1.5 ps +6-3	E C			J ^π : from $\gamma(\theta)$ in ⁶⁶ Zn(γ,γ'). T _{1/2} : by DSA in ⁶⁴ Ni(α ,2n γ). XREF: Others: AB Configuration=((π g _{9/2})(π d _{5/2}))6 ⁺ J ^π : from DWBA analysis of (¹² C, ¹⁰ Be), (¹² C, ¹⁰ C) data.
7693.3 <i>3</i> 11059.9 <i>10</i> 11395 <i>10</i> 11411 <i>10</i> 11457 <i>10</i>	1 2 ⁻ ,3 ⁻	2.2 fs 4	E	I I I		J^{π} : 1 from $\gamma(\theta)$ in $^{66}Zn(\gamma,\gamma')$. J^{π} : from $n(\theta)$ in $^{65}Cu(p,n)$ IAR.

E(level) [†]	$J^{\pi \#}$	XREF	Comments
11514 10		I	
11593 <i>10</i>		I	
11654 10		I	
11698 <i>10</i>		I	
11757 10		I	
11841 <i>10</i>	(2^{+})	I	J^{π} : from $n(\theta)$ and $\gamma(\theta)$ in 65 Cu(p,n),(p,n γ) IAR.
11916 <i>10</i>		I	*********
12194? 10		I	
12218 <i>10</i>		I	
12293 <i>10</i>		I	
12324 10		I	
12401 <i>10</i>		I	
12433? 10		I	
12552 <i>10</i>		I	
12602 <i>10</i>		I	
12651 <i>10</i>		I	
12688 <i>10</i>		I	
12714 <i>10</i>		I	

[†] Except as noted, levels with E<10000 are as follows: 1) from a least-squares fit to adopted Ey data; 2) energies with Δ E=2-10 are from 66 Zn(p,p'); 3) energies with Δ E>10 are from 66 Zn(α,α'). Levels with E>10000 are from 65 Cu(p,n),(p,n γ) IAR. ‡ Except as noted, $T_{1/2}$ is from measured widths in 66 Zn(γ,γ') and adopted γ branchings.

[#] From L-transfer in ⁶⁴Zn(t,p), except as noted.

[@] Consistent with angular distribution and analyzing-power data in (pol p,p') (1993Mo15). [&] Doublet reported in 64 Zn(t,p). E=4511 5 given for one level in 66 Zn(p,p').

^a By DSA from 63 Cu(α ,p γ).

$\gamma(^{66}Zn)$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ^a	α^{\dagger}	$\mathrm{I}_{(\gamma+ce)}$	Comments
1039.2279	2+	1039.220 3	100.0 3	0.0	0+	E2 [@]		0.000269 4		$\alpha(K)$ =0.000241 4; $\alpha(L)$ =2.41×10 ⁻⁵ 4; $\alpha(M)$ =3.46×10 ⁻⁶ 5; $\alpha(N+)$ =1.384×10 ⁻⁷ 20 $\alpha(N)$ =1.384×10 ⁻⁷ 20 B(E2)(W.u.)=17.5 4
1872.7653	2+	833.5324 21	100.0 4	1039.2279	2+	M1+E2	-1.6 2	0.000434 9		B(E2)(W.u.)=17.5 4 $\alpha(K)=0.000389 \ 8; \ \alpha(L)=3.91\times10^{-5} \ 8;$ $\alpha(M)=5.60\times10^{-6} \ II; \ \alpha(N+)=2.24\times10^{-7} \ 5$ $\alpha(N)=2.24\times10^{-7} \ 5$ B(M1)(W.u.)=0.056 23; B(E2)(W.u.)=3.3×10 ² 13 Mult.: D+Q from $\gamma(\theta)$ in ⁶⁶ Cu β ⁻ decay; M1+E2 from RUL. δ : From $\gamma\gamma(\theta)$ in ⁶⁶ Ga ε DECAY (2002Ga20).
		1872.740 6	0.39 3	0.0	0+	[E2]		0.000328 5		Other value: -1.9 3, as given by 1974Kr16 from analysis of 1969Ha46 data. $\alpha(K)=7.04\times10^{-5}$ 10; $\alpha(L)=6.99\times10^{-6}$ 10; $\alpha(M)=1.001\times10^{-6}$ 14; $\alpha(N+)=0.000250$ 4 $\alpha(N)=4.05\times10^{-8}$ 6; $\alpha(IPF)=0.000250$ 4
2372.353	0+	499.590 <i>6</i>	0.41 10	1872.7653	2+	E2		0.00199 3		B(E2)(W.u.)=0.032 12 α (K)=0.001782 25; α (L)=0.000182 3; α (M)=2.61×10 ⁻⁵ 4; α (N+)=1.013×10 ⁻⁶ 15 α (N)=1.013×10 ⁻⁶ 15
		1333.112 5	100.0 4	1039.2279	2+	E2		0.000190 3		B(E2)(W.u.)<22 B(E2)(W.u.)<40 α (K)=0.0001383 20; α (L)=1.379×10 ⁻⁵ 20; α (M)=1.98×10 ⁻⁶ 3; α (N+)=3.61×10 ⁻⁵ 5
		2372.375 ^d		0.0	0+	E0			6.6×10 ⁻³ 13	$\alpha(N)=7.96\times10^{-8}$ 12; $\alpha(IPF)=3.61\times10^{-5}$ 5 Mult.: Q from $\gamma(\theta)$ in 66 Zn(p,p' γ); E2 from RUL. E $_{\gamma}$: from level energy difference; 2372.2 from (p,p' γ).
2451.01	4+	1411.75 ^b 5	100 f	1039.2279	2+	E2 [@]		0.000194 3		Mult.: from internal conversion data and absence of γ ray in $(p,p'\gamma)$. $I_{(\gamma+ce)}$: for 100 transitions of 1333 γ from $(p,p'\gamma)$. $\alpha(K)=0.0001227\ 18;\ \alpha(L)=1.222\times10^{-5}\ 18;$ $\alpha(M)=1.751\times10^{-6}\ 25$
2703.6	(3)	2450 ^d 2 830.7 ^c 8	2 ^f 100 ^g 11	0.0 1872.7653	0 ⁺ 2 ⁺					$\alpha(N)=7.06\times10^{-8}\ 10$; $\alpha(IPF)=5.69\times10^{-5}\ 8$ B(E2)(W.u.)=18 3 $\delta(M3/E2)=+0.04\ 4$. E _y : not confirmed by any other ⁶⁶ Zn data.

γ (66Zn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ι _γ #	\mathbb{E}_f	J_f^{π}	Mult.	δ^a	α^{\dagger}	Comments
2703.6	(3)	1664.4 ^b 4	7.1 <mark>8</mark> 10	1039.2279	2+	(D+Q)	8.5 15		Mult., δ : from $\gamma(\theta)$ in ⁶⁶ Zn(n,n' γ).
2762.8	(2)	2762	100	0.0	0^{+}				E_{γ} : reported only in 66 Zn(γ,γ').
2765.56	4+	314.6 ^b 1	36 <mark>b</mark> 2	2451.01	4+				, -
		892.7 ^b 1	100 ^b 3	1872.7653	2+	E2 [@]		0.000388 6	B(E2)(W.u.)<4.0 α (K)=0.000348 5; α (L)=3.50×10 ⁻⁵ 5; α (M)=5.01×10 ⁻⁶ 7; α (N+)=2.00×10 ⁻⁷ 3 α (N)=2.00×10 ⁻⁷ 3 δ (M3/E2)=-0.04 6.
		1726.4 ^b 2	87 ^b 3	1039.2279	2+	E2 [@]		0.000274 4	B(E2)(W.u.)<0.13 α (K)=8.21×10 ⁻⁵ 12; α (L)=8.16×10 ⁻⁶ 12; α (M)=1.169×10 ⁻⁶ 17; α (N+)=0.000183 3 α (N)=4.73×10 ⁻⁸ 7; α (IPF)=0.000183 3 δ (M3/E2)=+0.00 3.
2780.157	2+	328.8 ^b 5	11 ^b 3	2451.01	4+				
		907.394 19	17.7 12	1872.7653					
		1740.904 <i>16</i>	23.1 3	1039.2279	2'	M1+E2	0.33 28	0.000241 8	$\alpha(K)=7.74\times10^{-5}$ 13; $\alpha(L)=7.67\times10^{-6}$ 13; $\alpha(M)=1.100\times10^{-6}$ 19; $\alpha(N+)=0.000155$ 7 $\alpha(N)=4.47\times10^{-8}$ 8; $\alpha(IPF)=0.000155$ 7 B(M1)(W.u.)=0.0022 7; B(E2)(W.u.)=0.13 +20-13
		2780.095 16	100.0 24	0.0	0+	E2		0.000722 11	$\alpha(K)=3.51\times10^{-5}$ 5; $\alpha(L)=3.47\times10^{-6}$ 5; $\alpha(M)=4.98\times10^{-7}$ 7; $\alpha(N+)=0.000683$ 10 $\alpha(N)=2.02\times10^{-8}$ 3; $\alpha(IPF)=0.000683$ 10 B(E2)(W.u.)=0.54 15 Mult.: Q from $\gamma(\theta)$ in $^{66}Zn(n,n'\gamma)$; E2 from RUL.
2826.69	3-	953.93 9	11.3 <i>g</i> 13	1872.7653	2+				21(1),11 / (1) 11 21(1),11 / (1) 22 110 11 110 21
		1787.44 9	100 ^g 9	1039.2279	2+	(E1)&		0.000526 8	$\alpha(K)=4.21\times10^{-5}$ 6; $\alpha(L)=4.16\times10^{-6}$ 6; $\alpha(M)=5.95\times10^{-7}$ 9; $\alpha(N+)=0.000479$ 7 $\alpha(N)=2.41\times10^{-8}$ 4; $\alpha(IPF)=0.000479$ 7 B(E1)(W.u.)=0.00036 5 $\delta(M2/E1)=-0.04$ 5.
2938.074	2+	1065.305 9	0.60 12	1872.7653	2+				0(N12/L1)= 0.04 3.
		1898.823 8	100.0 8	1039.2279		(M1+E2)	0.03 1	0.000288 4	$\alpha(K)=6.58\times 10^{-5}\ 10;\ \alpha(L)=6.52\times 10^{-6}\ 10;\ \alpha(M)=9.35\times 10^{-7}\ 13;\ \alpha(N+)=0.000215\ 3$ $\alpha(N)=3.80\times 10^{-8}\ 6;\ \alpha(IPF)=0.000215\ 3$ $\alpha(M)=0.043\ 17;\ \beta(E2)(W.u.)=(0.017\ 14)$ Mult.: D+Q from $\gamma(\theta)$ in $^{66}Zn(n,n'\gamma);\ M1+E2$ from ΔJ^π . δ : from $\gamma(\theta)$ in $(n,n'\gamma)$; sign convention not specified.
		2941 ^h	71 24	0.0	0+				E <i>γ</i> ,I <i>γ</i> : reported only in 66 Zn(γ , γ').
3077.73	4+	312.0 ^c 8	10 ^c 3	2765.56	4+				E_{γ} : doublet. E_{γ} is from level energy difference in

9

γ (66Zn) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\sharp}$	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ^a	$lpha^\dagger$	$\mathrm{I}_{(\gamma+ce)}$	Comments
3077.73	4+	627.6 ^c 4	100° 10	2451.01	4+	(M1+E2)&	-0.25 12	0.000688 23		⁶⁴ Ni(α,2nγ). Eγ=312.8 from level energy difference in ⁶⁵ Cu(p,γ). α(K)=0.000617 2 <i>I</i> ; α(L)=6.19×10 ⁻⁵ 2 <i>I</i> ; α(M)=8.9×10 ⁻⁶ 3; α(N+)=3.57×10 ⁻⁷ 12 α(N)=3.57×10 ⁻⁷ 12
		1204.2 ^c 5	33° 6	1872.7653	2+	(E2)&		0.000201 3		B(M1)(W.u.)=(0.056 9); B(E2)(W.u.)=(15 14) α (K)=0.0001723 25; α (L)=1.721×10 ⁻⁵ 25; α (M)=2.47×10 ⁻⁶ 4; α (N+)=9.43×10 ⁻⁶ 1 α (N)=9.91×10 ⁻⁸ 14; α (IPF)=9.33×10 ⁻⁶ 15 B(E2)(W.u.)=3.1 7
3105.040	0+	1232.264 8	100 4	1872.7653						δ (M3/E2)=-0.15 <i>15</i> .
		2065.778 <i>7</i> 3105.064	6.2 3	1039.2279	2 ⁺ 0 ⁺	EO			2.4×10^{-2} 5	E_{γ} : from level energy difference; 3107.0 from
3212.582	2+	2173.319 <i>15</i>	100 6	0.0	2+	EO			2.4×10 - 5	E _γ : from level energy difference; 3107.0 from (p,p'γ). Mult.: from internal conversion data and absence of γ ray in (p,p'γ). I _(γ+ce) : for 100 transitions of 1234γ from (p,p'γ). E _γ : placed as depopulating the 3213 level in ⁶⁵ Cu(p,γ), ⁶⁶ Zn(p,p'γ), ⁶⁶ Zn(n,n'γ) and by 1971Ca14, 1994En02 in ⁶⁶ Ga ε decay. Placed as depopulating a proposed level at 4047 by 1970Ph01 in ε decay, which level, however, is not observed by 1994En02.
3228.885	1+	3212.499 <i>19</i> 290.8105 <i>11</i>	2.2 <i>5</i> 0.92 <i>3</i>	0.0 2938.074	0 ⁺ 2 ⁺					
		448.73 2	2.01 7	2780.157	2+	M1+E2	-0.02 3	0.001419 20		$\alpha(K)$ =0.001272 18; $\alpha(L)$ =0.0001283 19; $\alpha(M)$ =1.84×10 ⁻⁵ 3; $\alpha(N+)$ =7.39×10 ⁻⁷ $\alpha(N)$ =7.39×10 ⁻⁷ 11
		856.527 <i>10</i> 1356.104 <i>9</i>	2.09 <i>12</i> 6.7 <i>7</i>	2372.353 1872.7653	0^{+}					
		2189.616 <i>6</i>	100.0 5	1039.2279		M1+E2	0.12 2	0.000398 6		$\alpha(K)=5.12\times10^{-5} 8$; $\alpha(L)=5.07\times10^{-6} 7$; $\alpha(M)=7.26\times10^{-7} 11$; $\alpha(N+)=0.000341 5$ $\alpha(N)=2.95\times10^{-8} 5$; $\alpha(IPF)=0.000341 5$ B(M1)(W.u.)=0.012 3; B(E2)(W.u.)=0.060 25
		3228.800 6	28.3 2	0.0	0+	M1		0.000812 12		Mult.: from ce measurement in ε decay. $\alpha(K)=2.68\times10^{-5}\ 4;\ \alpha(L)=2.64\times10^{-6}\ 4;\ \alpha(M)=3.79\times10^{-7}\ 6;\ \alpha(N+)=0.000782\ 11$

10

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ} #	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.	δ^a	$lpha^\dagger$	Comments
2221 447	2+	551 204 22	72.7	2790 157 24				$\alpha(K)=2.68\times10^{-5}$ 4; $\alpha(L)=2.64\times10^{-6}$ 4; $\alpha(M)=3.79\times10^{-7}$ 6; $\alpha(N+)=0.000782$ 11 $\alpha(N)=1.544\times10^{-8}$ 22; $\alpha(IPF)=0.000782$ 11 B(M1)(W.u.)=0.0011 3
3331.44	1 2+	551.284 22	7.2 7	2780.157 2 ⁺		0.01.0	0.0001741.25	$\alpha(K)=0.0001070\ 15;\ \alpha(L)=1.062\times10^{-5}\ 15;\ \alpha(M)=1.523\times10^{-6}$
		1458.662 <i>12</i>	100.0 23	1872.7653 2 ⁺	(M1+E2)	-0.01 9	0.0001741 25	22
								$\alpha(N)=6.18\times10^{-8} \ 9; \ \alpha(IPF)=5.49\times10^{-5} \ 8$ B(M1)(W.u.)=(0.058 +10-15)
		2292.171 <i>13</i>	17.6 12	1039.2279 2+				
		3331.351 <i>14</i>	23 3	$0.0 0^{+}$				
3380.944	1 1 -	442.873 <i>14</i>	1.06 8	2938.074 2+				
		600.788 <i>21</i>	0.92 6	2780.157 2+				
		1008.588 12	4.0 5	$2372.353 0^{+}$				
		1508.158 7	37.8 2	1872.7653 2+				
		2341.673 <i>11</i>	0.22 5	1039.2279 2+				
		3380.850 <i>6</i>	100.0 6	$0.0 0^{+}$				
3427.406	$1,2^{-}$	1554.62 <i>3</i>	100	1872.7653 2+				
3432.408	3 1-	494.336 <i>1</i>	32.0 <i>3</i>	2938.074 2+				
		1060.051 <i>1</i>	15.4 <i>4</i>	$2372.353 0^{+}$				
		1559.627 <i>1</i>	7.6 6	1872.7653 2+				
		2393.129 7	82 3	1039.2279 2+	E1		0.000924 13	$\alpha(K)=2.73\times10^{-5} 4$; $\alpha(L)=2.70\times10^{-6} 4$; $\alpha(M)=3.86\times10^{-7} 6$; $\alpha(N+)=0.000894 13$
								α (N)=1.569×10 ⁻⁸ 22; α (IPF)=0.000894 13 B(E1)(W.u.)=0.00035 +10-23
		3432.309 7	100.0 <i>13</i>	$0.0 0^{+}$				
3507.249	9 2 ⁺	680.56 10	18 5	2826.69 3				
		1634.46 7	42 7	1872.7653 2+				
		2467.97 <i>7</i>	100 9	1039.2279 2+				
3523.6		758.0 ^c 8	100	2765.56 4+				
3531.692		2492.42 3	100	1039.2279 2+				
3576.370) 4 ⁺	749.68 <i>10</i>	25 8	2826.69 3				
		796.21 5	53 12	2780.157 2+				
		1703.59 5	100 4	1872.7653 2+				
1		2537.09 5	93 20	1039.2279 2+				
3670.72	2+	441.822	100 9	3228.885 1+				E_{γ} : from level energy difference; 440.5 <i>I</i> from $(n,n'\gamma)$. I_{γ} : from $(n,n'\gamma)$.
1		1219.1 <mark>b</mark> 2	39 <mark>b</mark> 7	2451.01 4+				
1		1797.94 9	18 5	1872.7653 2 ⁺				
1		2631.44 9	28 11	1039.2279 2+				
		2031.117	20 11	1007.2217 2				

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_f	J_f^{π}	Mult.	δ^a	α^{\dagger}	Comments
3689.01	1+,2+,3+	1815.4 ^h 5	100	1872.7653	2+				E_{γ} : reported only in 65 Cu(p, γ).
3709.4	(5)	943.8 ^c 3	100 ^c	2765.56	4+	$(D+Q)^{\&}$	-1.5 + 2 - 1		
3725.3	. ,	293.0 ^d 5	11 <i>f</i>	3432.408	1-				
		962 ^d 1	100^{f}	2765.56	4+				
3731.6		966.0 ^e 5	100 ^g	2765.56	4 ⁺				E_{γ} : reported only in 65 Cu(p, γ).
3738.207	+	800.13 5	7 4	2938.074	2 ⁺				Ly. reported only in Cu(p,y).
		2698.92 5	27 5	1039.2279					
		3738.10 5	100 6	0.0	0_{+}				
3747.03	5-	669.5 ^c 3	21 ^c 2	3077.73	4+	(E1)&		0.000294 5	$\alpha(K)$ =0.000264 4; $\alpha(L)$ =2.63×10 ⁻⁵ 4; $\alpha(M)$ =3.77×10 ⁻⁶ 6; $\alpha(N+)$ =1.511×10 ⁻⁷ 22 $\alpha(N)$ =1.511×10 ⁻⁷ 22 B(E1)(W.u.)=4.9×10 ⁻⁶ 7 $\delta(M2/E1)$ =-0.04 6.
		919.9 ^c 3	4.9 ^c 5	2826.69	3-	E2 [@]		0.000360 5	$\alpha(K)$ =0.000323 5; $\alpha(L)$ =3.24×10 ⁻⁵ 5; $\alpha(M)$ =4.65×10 ⁻⁶ 7; $\alpha(N+)$ =1.85×10 ⁻⁷ 3 $\alpha(N)$ =1.85×10 ⁻⁷ 3 B(E2)(W.u.)=0.045 7 $\delta(M3/E2)$ =-0.00 6.
		981.5 ^c 5	<6 ^c	2765.56	4+				
		1295.6 ^c 4	100 ^c 10	2451.01	4+	(E1+M2)&	-0.04 2	0.000193 3	$\alpha(K)=7.15\times10^{-5}$ 11; $\alpha(L)=7.09\times10^{-6}$ 11; $\alpha(M)=1.015\times10^{-6}$ 16; $\alpha(N+)=0.0001134$ $\alpha(N)=4.10\times10^{-8}$ 7; $\alpha(IPF)=0.0001134$ 17 B(E1)(W.u.)=(3.2×10 ⁻⁶ 5); B(M2)(W.u.)=(0.014+15-14)
3753.01	4+	2713.73 5	100	1039.2279	2+				(13 17)
3791.123	1+	283.87 3	0.016 4	3507.249	2+				
		410.178 12	0.289 12	3380.944	1-				
		459.683 <i>14</i>	0.387 17	3331.441	2+				
		562.241 10	0.029 3	3228.885	1+				
		578.540 19	0.26 4	3212.582	2 ⁺ 0 ⁺				
		686.080 <i>6</i> 853.038 <i>8</i>	1.11 <i>4</i> 0.334 <i>9</i>	3105.040 2938.074	2+	M1+E2	0.37 18	0.000357 11	$\alpha(K)=0.000321 \ 10; \ \alpha(L)=3.20\times10^{-5} \ 11;$
					2	WII+E2	0.57 16	0.000337 11	$\alpha(\text{K})=0.000521 \text{ To}; \ \alpha(\text{L})=3.20 \times 10^{-1} \text{ II};$ $\alpha(\text{M})=4.59 \times 10^{-6} \text{ I5}; \ \alpha(\text{N}+)=1.85 \times 10^{-7} \text{ 6}$ $\alpha(\text{N})=1.85 \times 10^{-7} \text{ 6}$
		1010.957 <i>19</i>	0.119 7	2780.157	2+				
		1418.754 <i>5</i>	2.703 13	2372.353	0+				
		1918.329 5	8.76 <i>4</i>	1872.7653	2+	M1+E2	-0.07 3	0.000295 5	$\alpha(K)=6.47\times10^{-5} 9$; $\alpha(L)=6.40\times10^{-6} 9$; $\alpha(M)=9.18\times10^{-7} 13$; $\alpha(N+)=0.000223 4$ $\alpha(N)=3.73\times10^{-8} 6$; $\alpha(IPF)=0.000223 4$

$\gamma(^{66}\mathrm{Zn})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ^a	α^{\dagger}	Comments
3791.123	1+	2751.835 5	100.0 5	1039.2279	2+	(M1+E2)	-0.12 2	0.000626 9	$\alpha(K)=3.48\times10^{-5} 5$; $\alpha(L)=3.43\times10^{-6} 5$; $\alpha(M)=4.92\times10^{-7} 7$; $\alpha(N+)=0.000588 9$ $\alpha(N)=2.00\times10^{-8} 3$; $\alpha(IPF)=0.000588 9$
		3791.004 8	2.941 24	0.0	0+	M1		0.001017 15	$\alpha(K)=2.08\times10^{-5}$ 3; $\alpha(L)=2.05\times10^{-6}$ 3; $\alpha(M)=2.95\times10^{-7}$ 5; $\alpha(M+)=0.000994$ 14 $\alpha(N)=1.200\times10^{-8}$ 17; $\alpha(IPF)=0.000994$ 14
3825.0	0^{+}	2785.7 <i>3</i>	100	1039.2279	2+				u(11)=1.200×10 17, u(111)=0.000774 14
3882.424	(2)+	1507 ^h 2009.628 <i>16</i> 2843.130 <i>16</i>	100 <i>21</i> 54 <i>11</i>	2372.353 1872.7653 1039.2279					Eγ,Iγ: reported only in 66 Zn(γ,γ').
3898.3	5-	1071.3 ^c 7	100°	2826.69	3-	(E2(+M3))&	-0.04 20	0.00025 4	$\alpha(K)$ =0.00023 4; $\alpha(L)$ =2.3×10 ⁻⁵ 4; $\alpha(M)$ =3.2×10 ⁻⁶ 6 $\alpha(N+)$ =1.30×10 ⁻⁷ 21 $\alpha(N)$ =1.30×10 ⁻⁷ 21
3924.71		1555 ^d 1	100 ^f	2372.353	0+				E _{γ} : possible doublet. E γ =1553.0 in ⁶⁵ Cu(p, γ). I _{γ} : I γ (1555)/I γ (2888)<0.6 from ⁶⁵ Cu(p, γ).
		2885.3 ^b 2	33	1039.2279	2+				I_{γ} : relative branching from 66 Zn(p,p' γ).
4019.2	2+	1239.0 ^d 15	100 <i>f</i>	2780.157	2+				
4075.7	(6-)	328.6 ^c 2	100 ^c	3747.03	5-	(M1+E2) [@]	+0.10 2	0.00299 5	$\alpha(K)$ =0.00268 5; $\alpha(L)$ =0.000272 5; $\alpha(M)$ =3.91×10 ⁻⁵ 7; $\alpha(N+)$ =1.559×10 ⁻⁶ 25 $\alpha(N)$ =1.559×10 ⁻⁶ 25 B(M1)(W.u.)=(0.0206 10); B(E2)(W.u.)=(3.1 13)
4085.983	1+	347.77 5 554.28 3 653.568 14 658.57 3 705.031 15 857.093 9 873.392 21 980.934 13	0.14 5 0.35 4 0.10 4 0.59 6 0.30 4 1.2 4 1.34 9 3.80 15	3738.207 3531.692 3432.408 3427.406 3380.944 3228.885 3212.582 3105.040	+ 0+ 1- 1,2- 1- 1+ 2+ 0+				
		1147.896 <i>10</i>	6.15 21	2938.074	2+	M1+E2	-0.18 5	0.000192 3	$\alpha(K)=0.0001708 \ 25; \ \alpha(L)=1.700\times10^{-5} \ 25; \ \alpha(M)=2.44\times10^{-6} \ 4; \ \alpha(N+)=2.28\times10^{-6} \ 4 \ \alpha(N)=9.87\times10^{-8} \ 14; \ \alpha(IPF)=2.18\times10^{-6} \ 4$
		1305.807 21	0.31 4	2780.157	2+				
		1713.602 <i>12</i> 2213.181 <i>9</i>	1.92 <i>9</i> 10.3 <i>4</i>	2372.353 1872.7653	0 ⁺ 2 ⁺	M1+E2	-0.23 5	0.000410 6	$\alpha(K)=5.03\times10^{-5}$ 7; $\alpha(L)=4.98\times10^{-6}$ 7; $\alpha(M)=7.14\times10^{-7}$ 10; $\alpha(N+)=0.000354$ 6
		3046.684 9	4.47 18	1039.2279	2+	M1+E2	-0.8 2	0.000778 16	$\alpha(N)=2.90\times10^{-8} \ 4; \ \alpha(IPF)=0.000354 \ 6$ $\alpha(K)=2.97\times10^{-5} \ 5; \ \alpha(L)=2.94\times10^{-6} \ 5;$

γ (66Zn) (continued)

$E_i(level)$	J_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	δ^a	α^{\dagger}	Comments
4085.983	1+	4085.853 9	100.0 6	0.0	0+	M1		0.001117 16	$\alpha(M)=4.21\times10^{-7} 6$; $\alpha(N+)=0.000745 16$ $\alpha(N)=1.712\times10^{-8} 25$; $\alpha(IPF)=0.000745 16$ $\alpha(K)=1.86\times10^{-5} 3$; $\alpha(L)=1.83\times10^{-6} 3$; $\alpha(M)=2.63\times10^{-7} 4$; $\alpha(N+)=0.001096 16$ $\alpha(N)=1.070\times10^{-8} 15$; $\alpha(IPF)=0.001096 16$
4119.0	(1^{-})	3079.7 ^e 5	100 <mark>8</mark>	1039.2279	2+				E_{γ} : reported only in ⁶⁵ Cu(p, γ).
4182.7	(6+)	1732.9 ^c 5	100 ^c	2451.01	4+	(E2) [@]		0.000276 4	$\alpha(K)=8.15\times10^{-5}$ 12; $\alpha(L)=8.10\times10^{-6}$ 12; $\alpha(M)=1.161\times10^{-6}$ 17; $\alpha(N+)=0.000186$ 3 $\alpha(N)=4.69\times10^{-8}$ 7; $\alpha(IPF)=0.000186$ 3 B(E2)(W.u.)=15 6 $\delta(M3/E2)<5.3\times10^{-4}$ from RUL. $\delta=-0.10$ 5 from $\gamma(\theta)$ in $(d,2n\gamma)$.
4251.9	(7-)	175.9 ^c 3	87 ^c 9	4075.7	(6-)	(M1+E2) [@]	+0.09 2	0.0144 4	$\alpha(K)$ =0.0128 3; $\alpha(L)$ =0.00133 4; $\alpha(M)$ =0.000190 5; $\alpha(N+)$ =7.48×10 ⁻⁶ 17 $\alpha(N)$ =7.48×10 ⁻⁶ 17 B(M1)(W.u.)=(0.0139 21); B(E2)(W.u.)=(6 3)
4205 220	1+	504.7° 3	100 ^c 10	3747.03	5-	(E2) [@]		0.00193 3	$\alpha(K)$ =0.001726 25; $\alpha(L)$ =0.0001766 25; $\alpha(M)$ =2.52×10 ⁻⁵ 4; $\alpha(N+)$ =9.82×10 ⁻⁷ 14 $\alpha(N)$ =9.82×10 ⁻⁷ 14 B(E2)(W.u.)=4.4 7 $\delta(M3/E2)$ =-0.00 2.
4295.339	1+	412.916 <i>16</i> 557.13 <i>5</i>	0.088 <i>13</i> 0.161 <i>17</i>	3882.424 3738.207	(2)++	M1+E2		0.0011 3	$\alpha(K)=0.00103\ 25;\ \alpha(L)=0.00010\ 3;\ \alpha(M)=1.5\times10^{-5}\ 4;$ $\alpha(N+)=5.9\times10^{-7}\ 14$ $\alpha(N)=5.9\times10^{-7}\ 14$
		718.97 5 763.64 3 862.926 13 867.93 3 914.388 14 963.892 15 1066.450 12 1082.75 2 1190.287 7	0.260 20 0.233 20 0.398 20 0.114 14 0.71 4 0.38 3 0.062 12 0.348 20 3.35 19	3576.370 3531.692 3432.408 3427.406 3380.944 3331.441 3228.885 3212.582 3105.040	4 ⁺ 0 ⁺ 1 ⁻ 1,2 ⁻ 1 ⁻ 2 ⁺ 1 ⁺ 2 ⁺ 0 ⁺				u(1)-5.7/10 17
		1357.250 12	4.3 13	2938.074	2+	M1+E2	-0.18 5	0.0001689 24	$\alpha(K)$ =0.0001231 18; $\alpha(L)$ =1.223×10 ⁻⁵ 18; $\alpha(M)$ =1.753×10 ⁻⁶ 25 $\alpha(N)$ =7.11×10 ⁻⁸ 10; $\alpha(IPF)$ =3.18×10 ⁻⁵ 5
									B(M1)(W.u.)=0.054 +20-29; $B(E2)(W.u.)=1.5 +10-12$

$\gamma(^{66}\text{Zn})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.	δ^a	$lpha^\dagger$	Comments
4295.339	1+	2422.525 7	49.37 24	1872.7653	2+	M1+E2	0.01 3	0.000491 7	$\alpha(K)=4.30\times10^{-5} 6$; $\alpha(L)=4.25\times10^{-6} 6$; $\alpha(M)=6.10\times10^{-7} 9$; $\alpha(N+)=0.000443 7$ $\alpha(N)=2.48\times10^{-8} 4$; $\alpha(IPF)=0.000443 7$ $\alpha(M)=0.112 + 24-48$; $\alpha(M)=0.003 + 19-3$
		3256.021 9	2.47 10	1039.2279	2+	M1+E2	1.5 2	0.000889 14	$\alpha(\text{K})=2.70\times10^{-5} \ 4; \ \alpha(\text{L})=2.66\times10^{-6} \ 4; \ \alpha(\text{M})=3.81\times10^{-7} \ 6; \ \alpha(\text{N}+)=0.000859 \ 14$ $\alpha(\text{N})=1.552\times10^{-8} \ 22; \ \alpha(\text{IPF})=0.000859 \ 14$ $\alpha(\text{M})=0.00071 \ +21-34; \ \beta(\text{E}2)(\text{W.u.})=0.24 \ +6-11$
		4295.187 <i>10</i>	100.0 8	0.0	0^{+}				D(W1)(W.d.)=0.00071 +21 34, D(D2)(W.d.)=0.24 +0 11
4321.83		3282.5^{b} 2	100.0 0	1039.2279					
4393.7	3-	1565.2 20	≈100 ≈100		3-				E_{γ} : reported only in $^{66}Zn(\alpha,\alpha'\gamma)$.
4373.7	3	1303.2 20	~100	2620.09	3				I_{γ} : from 66 Zn($\alpha,\alpha'\gamma$).
		3357.0 25	≈100	1039.2279	2+				E_{γ} : reported only in $^{66}Zn(\alpha,\alpha'\gamma)$.
		3331.0 23	≈100	1039.2279	2				I_{γ} : from 66 Zn($\alpha, \alpha' \gamma$).
4424	1	4424 6	100	0.0	0+				E_{γ} : from 66 Zn(n,n' γ). E_{γ} =4426 in 66 Zn(γ , γ ').
4424	1	4424 0	100	0.0	U				I_{γ} : from 66 Zn(n,n' γ).
4.422	1 -	4433 ^h 6	100	0.0	0+				
4433 4461.409	1- 1+	4433" 6 375.398 <i>17</i>	100 0.25 7		1+				Eγ,Iγ: reported only in 66 Zn(n,n'γ).
4401.409	1	670.251 14	0.23 / 0.48 8		1 1 ⁺				
		708.36 5	1.01 9	3753.01	4 ⁺				
		708.30 5	0.40 6		+				
		885.00 <i>5</i>	0.22 6		4+				
		929.68 <i>3</i>	0.53 7		0+				
		954.12 7	0.52 8		2+				
		1129.923 18	1.59 9		2+				
		1232.480 <i>15</i>	6.5 22	3228.885	1+				
		1248.779 22	0.12 4		2+				
		1356.320 <i>15</i>	14.3 22		0_{+}				
		1523.279 <i>15</i>	0.64 6		2+				
		2088.985 <i>13</i>	1.3 3		0+				
		2588.553 <i>13</i>	3.07 18	1872.7653	2+	M1+E2	0.35 27	0.000568 16	$\alpha(K)=3.86\times10^{-5} \ 6; \ \alpha(L)=3.81\times10^{-6} \ 6; \ \alpha(M)=5.47\times10^{-7} \ 9; \ \alpha(N+)=0.000525 \ 16$
									$\alpha(N)=2.22\times10^{-8} \ 4; \ \alpha(IPF)=0.000525 \ 16$
		2422.040.0	100 0 7	1020 2270	2+	MILEO	0.06.3	0.000005.13	B(M1)(W.u.)=0.0022 +10-22; B(E2)(W.u.)=0.06 +10-6
		3422.040 8	100.0 7	1039.2279	2'	M1+E2	-0.06 2	0.000885 13	$\alpha(K)=2.44\times10^{-5} 4$; $\alpha(L)=2.41\times10^{-6} 4$; $\alpha(M)=3.46\times10^{-7} 5$; $\alpha(N+)=0.000858 12$
									$\alpha(N)=1.408\times10^{-8}$ 20; $\alpha(IPF)=0.000858$ 12 B(M1)(W.u.)=0.034 +15-34; B(E2)(W.u.)=0.017 +14-17
		4461.202 9	97.7 <i>13</i>	0.0	0^{+}				(),()

γ (66Zn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ^a	α^{\dagger}	Comments
4609?	(1)	4609 ^h	100	0.0	0+				E_{γ},I_{γ} : reported only in 66 Zn(γ,γ').
4622		4622 6	100	0.0	0_{+}				E γ ,I γ : reported only in 66 Zn(n,n' γ).
4635.3	(2)	2762 ^h	100	1872.7653	2+				E γ , I γ : reported only in 66 Zn(γ , γ').
4638.24	1	1106.53 24	77 24	3531.692	0^{+}				Σ_{f} , Γ_{f} , reported only in Σ_{f} Γ_{f}
.050.2	•	1409.35 24	$1.0 \times 10^2 \ 5$	3228.885	1+				
		2265.84 24	$9 \times 10^{1} 4$	2372.353	0+				
4675.6	1+	2802.8 5	100	1872.7653					
4683	(1)	4685 ^h	100	0.0	0+				Eγ,Iγ: reported only in 66 Zn(γ,γ').
4806.199	(1) 1 ⁺	1015.081 18	0.66 16	3791.123	1 ⁺				Ey, ry. Teported only in \mathbb{Z} $\mathbb{I}(y,y)$.
4000.199	1	1135.47 9	0.25 5	3670.72	2+				
		1274.50 3	0.23 3	3531.692	0^{+}				
		1298.95 7	0.205 24	3507.249	2 ⁺				
		1425.25 2	0.32 3	3380.944	$\overline{1}^-$				
		1577.308 20	0.21 4	3228.885	1+				
		1868.105 20	1.5 3	2938.074	2+				
		2026.016 25	0.14 4	2780.157	2+				
		2433.807 18	0.40 4	2372.353	0_{+}				
		2933.358 9	11.45 16	1872.7653	2+	M1+E2	1.6 2	0.000762 12	$\alpha(K)=3.19\times10^{-5} 5$; $\alpha(L)=3.15\times10^{-6} 5$; $\alpha(M)=4.52\times10^{-7} 7$; $\alpha(N+)=0.000727 12$ $\alpha(N)=1.84\times10^{-8} 3$; $\alpha(IPF)=0.000727 12$ B(M1)(W.u.)=0.0060 +17-24; B(E2)(W.u.)=2.9 +7-10
		3766.850 9	8.0 3	1039.2279	2+	M1+E2	0.11 4	0.001009 15	$\alpha(K)=2.11\times10^{-5} \ 3; \ \alpha(L)=2.08\times10^{-6} \ 3;$ $\alpha(M)=2.98\times10^{-7} \ 5; \ \alpha(N+)=0.000986 \ 14$ $\alpha(N)=1.212\times10^{-8} \ 17; \ \alpha(IPF)=0.000986 \ 14$ $\alpha(M)=0.0069 \ 15-24; \ B(E2)(W.u.)=0.010 \ 8$
		4806.007 9	100.0 6	0.0	0+				E_{γ} : γ -ray, in 66 Ga decay, often used for the efficiency calibration of germanium detectors.
4814.1	(7-)	738.4 ^c 3	100 ^c 9	4075.7	(6-)	(M1+E2) [@]	+0.11 2	0.000472 7	$\alpha(K)=0.000423$ 6; $\alpha(L)=4.24\times10^{-5}$ 6; $\alpha(M)=6.08\times10^{-6}$ 9; $\alpha(N+)=2.45\times10^{-7}$ 4 $\alpha(N)=2.45\times10^{-7}$ 4 B(M1)(W.u.)=(0.06 5); B(E2)(W.u.)=(2.2 18)
		915.5 <mark>°</mark> 8	45 ^c 9	3898.3	5-				()() ()
4849.93	1+	1468.97 <i>5</i>	6.0 17	3380.944	1-				
		2977.08 4	100 10	1872.7653					
		3810.59 <i>5</i>	40 4	1039.2279					
4866.056	1+	1195.32 9	2.9 11	3670.72	2+				
		1433.63 <i>4</i>	5.9 12	3432.408	1-				
		1534.60 <i>4</i>	19 5	3331.441	2+				
		1927.96 4	7.2 24	2938.074	2+				

$\gamma(^{66}\text{Zn})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ \ \sharp}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.	δ^a	$lpha^\dagger$	Comments
4866.056	1+	2085.86 4	7 5	2780.157					
		2993.21 <i>3</i> 4865.87 <i>4</i>	100 <i>10</i> 8.8 <i>7</i>	1872.7653 0.0	2 ⁺ 0 ⁺				
4958.2	1+	3085.4 4	100	1872.7653					
5005.8	1+	5005.6 <i>3</i>	100	0.0	0_{+}	0			
5111.9	(8-)	860.8 ^c 8	11 ^c 3	4251.9	(7-)	(M1+E2)&	+0.21 15	0.000344 8	$\alpha(K)$ =0.000308 7; $\alpha(L)$ =3.08×10 ⁻⁵ 8; $\alpha(M)$ =4.42×10 ⁻⁶ 11; $\alpha(N+)$ =1.78×10 ⁻⁷ 4 $\alpha(N)$ =1.78×10 ⁻⁷ 4
		1036.0 ^c 3	100° 3	4075.7	(6-)				. ,
5207.3	(8+)	954.2 ^c 5	82 ^c 16	4251.9	(7-)	(E1) ^{&}		0.0001395 20	B(E1)(W.u.)<3.6×10 ⁻⁵ α (K)=0.0001252 <i>I8</i> ; α (L)=1.244×10 ⁻⁵ <i>I8</i> ; α (M)=1.78×10 ⁻⁶ <i>3</i> α (N)=7.18×10 ⁻⁸ <i>10</i> δ (M2/E1)=-0.00 <i>8</i> . E _{γ} : doublet reported in ⁶⁴ Ni(α ,2n γ).
		1025.8 ^c 5	100 ^c 11	4182.7	(6 ⁺)	(E2) [@]		0.000277 4	$\alpha(K)$ =0.000248 4; $\alpha(L)$ =2.49×10 ⁻⁵ 4; $\alpha(M)$ =3.56×10 ⁻⁶ 5; $\alpha(N+)$ =1.427×10 ⁻⁷ 20 $\alpha(N)$ =1.427×10 ⁻⁷ 20 B(E2)(W.u.)<2.9 $\delta(M3/E2)$ =-0.04 6.
5464.4	(9-)	1212.5 ^c 4	100 ^C	4251.9	(7-)	(E2) [@]		0.000200 3	$\alpha(K)$ =0.0001697 24; $\alpha(L)$ =1.695×10 ⁻⁵ 24; $\alpha(M)$ =2.43×10 ⁻⁶ 4; $\alpha(N+)$ =1.073×10 ⁻⁵ $\alpha(N)$ =9.76×10 ⁻⁸ 14; $\alpha(IPF)$ =1.063×10 ⁻⁵ 17 B(E2)(W.u.)=7 3 $\delta(M3/E2)$ =-0.04 4.
6292.6	(10^{+})	828 ^{ch} 1	<22 ^c	5464.4	(9-)				
		1085.3 ^c 4	100 ^c 9	5207.3	(8 ⁺)	(E2) [@]		0.000243 4	$\alpha(K)$ =0.000218 3; $\alpha(L)$ =2.18×10 ⁻⁵ 3; $\alpha(M)$ =3.12×10 ⁻⁶ 5; $\alpha(N+)$ =1.252×10 ⁻⁷ 18 $\alpha(N)$ =1.252×10 ⁻⁷ 18 B(E2)(W.u.)=13 +4-7 $\delta(M3/E2)$ =+0.04 6.
6419.0 7367.4	1	1307.1 ^c 7 2732	100 ^c 1.9 <i>12</i>	5111.9 4635.3	(8-)				
/30/.4	1	3071 ^h	2.1 12		(2) 1 ⁺				
		3071 3293^{h}	≈0.5	4075.7	(6 ⁻)				
		3356 ^h	0.4 2	4011.7	()				
		3485	2.1 7	3882.424	$(2)^{+}$				
		3544	1.6 5	3825.0	0_{+}				

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
7367.4	1	3793 ^h	≈0.5	3576.370	4+	
		3835	1.6 7	3531.692	0_{+}	E_{γ} : rounded-off value from level energy difference; 3840 from (γ, γ') .
		4141	1.0 6	3226.2		
		4262	8.1 20	3105.040	0_{+}	
		4428	2.1 6	2938.074	2+	
		4587	3.8 12	2780.157	2+	E_{γ} : rounded off value from level energy difference; 4591 from (γ, γ') .
		4995 <mark>h</mark>	≤0.4	2372.353	0^{+}	
		5495	14.3 7	1872.7653		
		6326	≈0.3	1039.2279	2+	
		7368	100	0.0	0_{+}	
7517.3		1224.7 ^c 7	100 ^c	6292.6	(10^{+})	
7693.3	1	4187	8 2	3507.249	2+	
		4263	25 3	3432.408	1-	
		4361	13 2	3331.441	2+	
		4452	7 2	3241.2?		
		4480	21 2	3212.582	2+	
		4587	8 <i>1</i>	3105.040	0+	
		4755	24 2	2938.074	2+	
		4930	<2	2762.8	(2)	I_{γ} : relative branching also reported as 8 in 66 Zn(γ,γ').
		5321	<3	2372.353	0+	
		5819	<2	1872.7653		
		6654	42 <i>1</i>	1039.2279		
		7693	100 <i>I</i>	0.0	0_{+}	

[†] Additional information 2.

[‡] From ⁶⁶Ga ε decay, except as noted. Energies of γ 's depopulating levels above 7 MeV are from ⁶⁶Zn(γ , γ ').

[#] Relative-photon branching from each level from 66 Ga ε decay, except as noted. Branchings for γ 's depopulating levels above 7 MeV are from 66 Zn(γ,γ').

[@] From $\gamma(\theta)$ in ⁶⁴Ni(α ,2n γ) and RUL.

[&]amp; From $\gamma(\theta)$ in ⁶⁴Ni(α ,2n γ) and ΔJ^{π} .

^a From $\gamma(\theta)$ in ⁶⁴Ni(α ,2n γ), except as noted.

^b From 66 Zn(n,n' γ).

^c From ⁶⁴Ni(α ,2n γ).

^d From 66 Zn(p,p' γ).

^e From level energy differences in 65 Cu(p, γ). Uncertainty not given, but has been chosen by the evaluators to be 0.5 keV (an approximate upper limit).

^f From ⁶⁶Zn(p,p' γ). Uncertainties not given in the source data but are estimated as $\approx 2-20\%$.

^g From 65 Cu(p, γ).

^h Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

____ γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	E. A. Mccutchan	NDS 113,1735 (2012)	1-Mar-2012

Q(β^-)=-2921.1 *12*; S(n)=10198.10 *19*; S(p)=9977.0 *16*; Q(α)=-5333.3 9 2012Wa38 Note: Current evaluation has used the following Q record -2921.1 1210198.1019 *9977.0 15* -5333.3 8 2011AuZZ. S(2n)=17250.4 *3*, S(2p)=18578.5 *17* (2011AuZZ). α : Additional information 1.

⁶⁸Zn Levels

Cross Reference (XREF) Flags

	A B C D F G	68 Cu $β^-$ dec 68 Cu $β^-$ dec 68 Ga $ε$ deca 65 Cu($α$,p $γ$) 66 Zn(t,p) 67 Zn(d,p) 68 Zn($γ$, $γ'$)	ay (3.75 min) J 68Zn(p,p' y K 68Zn(e,e' L Coulomb M Coulomb) R 68 Zn(d,d'),(3 He, 3 He')) S 26 Mg(48 Ca, α 2n γ) excitation T 65 Cu(α ,p) excitation: projectile U 64 Ni(6 Li,d) V 66 Zn(α , 2 He) ') W 69 Ga(d, 3 He)
E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0 [‡] 1077.37 [‡] 4	0 ⁺ 2 ⁺ @	stable 1.61 ps 2	ABCDEFGHIJKLMNOP R TUVWX ABCDEFGHIJKLMNOPQR TUVWX	
1655.91 8	0+	96 ps <i>16</i>	A C EF HIJ MNOP R W	T _{1/2} : weighted average of 103 ps 18 from B(E2) \uparrow in Coul. Ex.:Projectile and 70 ps 35 from centroid-shift measurement in $(p,p'\gamma)$. J^{π} : L(p,t)=L(t,p)=0.
1883.20 5	2+	1.01 ps 5	A CDEFG IJK MNOP R TU W	μ =+1.12 20 J ^π : L(p,t)=2. T _{1/2} : from DSAM in Coul. Ex.:Projectile. Others: 1.6 ps 3 from B(E2)↑ in (e,e'), 1.47 ps 12 from B(E2)↑ in Coul. Ex.:Projectile, >0.11 ps from DSAM in (α ,p γ). μ : from C- γ (θ ,H,t) in Coul. Ex.: Projectile.
2338.45 5	2+@	0.31 ps <i>3</i>	ABC EFG IJ MNO U W	$T_{1/2}$: from DSAM in Coul. Ex.:Projectile. Others: 0.24 ps $+1I-6$ from DSAM in $(n,n'\gamma)$ and 0.043 ps 4 from B(E2) \uparrow in Coul. Ex.:Projectile.
2370.3 <i>15</i> 2417.40 [‡] <i>6</i>	4+	0.73 ps 7	AB RTV B DEFG IJ MNO U WX	J^{π} : 1293 γ to 2 ⁺ .

2510.2 15 2750.76 8 3 - 0 0.257 ps 6 A EFG JKLNNO QR UV Fig. 14339 to 2°. μ=1.08 72 T _{1/2} ; from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in (n,n'y). If DS = 15 ps + 14-8 from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in (n,n'y). If DS = 15 ps + 14-8 from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in Coul. Ex. Projectile. Others: 0.45 ps + 14-8 from DSAM in Coul. Ex. Projectile. Othe	E(level) [†]	J^π	T _{1/2}			XREF				Comments
2750.76 8 3 - © 0.257 ps 6 A EFG IJKLNN CR UV F 1/12. Trom DSAM in Coul. Ext. Projectile. Others: 0.45 ps +1/4-8 from DSAM in (n,n'γ) and 0.42 ps 1/4 from DSAM in Coul. Ext. Projectile. 2821.79 8 2 + © 0.15	2510.2 <i>15</i>			AB		N				
2821.79 8 2+6 0.15	2750.76 8	3-@	0.257 ps 6	A	EFG I	JKLMNO	QR	UV		μ =1.08 72 $T_{1/2}$: from DSAM in Coul. Ex.:Projectile. Others: 0.45 ps +14-8 from DSAM in (n,n' γ) and 0.42 ps 14 from DSAM in Coul. Ex. B(E3) \uparrow : 0.038 8 from (e,e') and 0.0220 17 from (d,d').
2955.9 22	2821 79 8	2+@	0.15& ps 3	ARC	FEGHT	1 N		II W	ī	μ : from C- $\gamma(\theta, H, t)$ in Coul. Ex.: Projectile.
2959.49 13 (4+)b			0.15 ps 5							
		$(A^{+})^{b}$		Ъ						I^{π}_{i} , proposed by (2000Wi18) (1007Pe77) in
3102.51 II 0 0 II 0 II 0 II 126 II 0 II 17 II 18 II 18 II 19 II 18 II 19 II 10 II 19 II 19 II 19 II 10	2939.49 13	(4')	0		erg 1	no		UW	IX	
3102.51 II 0+	3009.27 7	3+	0.28^{44} ps $+14-8$		FG I	J		W	I	
3160.1 3 3164.4 14 236.7 1 1 0	3102.51 11	0^{+}			EF I		P			
3164.4 14 3164.4 14 3164.4 14 3164.4 14 3164.8 13 1,2+d 3186.6 11 (1,2+) 3281.58 16 4+d 3287.09 13 2+ 0.08	3153.8? 4				e I					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3164.4 <i>14</i>				I.	J o				E=3170 <i>30</i> discrepant.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3184.18 <i>13</i>	1.2 + d	22& fs 6		Fa T		r	W	7	
3281.58 16 4^{+} 6^{-} 3287.09 13 2^{+} 0.08 3287.09 13 2^{+} 0.08 3287.09 14 $3334.7?$ 3346.09 20 1^{+} 6.1 3287 3346.09 20 1^{+} 3287 3487		,		Α		J				J^{π} : 1530 γ to 0 ⁺ .
3287.09 $I3$ $I3$ $I3$ $I3$ $I4$ $I5$ $I5$ $I5$ $I5$ $I5$ $I5$ $I5$ $I5$						n	r	W	1	•
3334.7? 3346.09 20 1+ 6.1 a fs 16 HIJ N T W J $^\pi$: J from $\gamma\gamma(\theta)$ in (γ,γ') ; π from L(d, 3 He). L(p,t)=(0) for 3345 discrepant. T _{1/2} : Other: 15 fs +7-6 from DSAM in $(n,n'\gamma)$. 3386? 3 3400.9 5 1,2+ e 45 $^\otimes$ fs +17-14 I S425.07 15 f eFG I W 4545.0 3 3458.83 16 5- $^\odot$ B DEFG IJ no r S486.84 10 f A e W J $^\pi$: 3+,4+,5+ from L(p,p')=4; f +5 from primary f from 2-,3- capture state. S586.64 10 f 4+ $^\odot$ BD G O X J $^\pi$: D transition to 5- and yield function favor J=6; f from L(d,p)=4. T _{1/2} : upper limit from f from L(d,p)=3. 3624.32 21 (1.2+)			0.08 ps $+2-1$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3334.7?				F					
3386? 3 3400.9 5	3346.09 20	1+	6.1 ^a fs 16		HI.	J N		T W	Ī	L(p,t)=(0) for 3345 discrepant.
3400.9 5 1,2+e 45& fs +17-14	22070 2				-					$T_{1/2}$: Other: 15 fs +7–6 from DSAM in $(n,n'\gamma)$.
3425.07 15		1.0+0	45& C 15 14							
3429.46 15 1,2*df			45 ^{cc} is +1/-14							
3451.0 3 3458.83 16 5-@ 3496.08 11 3+,4+ 62& fs 10 EFG IJ N R 3586.64 10 4+@ 3610.8 6 (6)- <2.5 ns B D G EFG IJ N R EFG IJ N R XREF: J(3465). W J ^{π} : 3+,4+,5+ from L(p,p')=4; \neq 5+ from primary γ from 2-,3- capture state. XREF: J(3595)N(3577). XREF: J(3595)N(3577). XREF: J(3595)N(3577). XREF: J(3695)N(3577). Elevel): from L(d,p)=4. T1/2: upper limit from $\gamma\gamma$ (t) of 152 γ in 65 Cu(α ,p γ). Elevel): from (p,p'). Other: 3620 10 in (t,p). J ^{π} : L(t,p)=(p,p')=3. J ^{π} : γ to g.s. J ^{π} : γ to γ to γ from L(d,p)=1.		•			eFG I			W	I	
3458.83 16 5^{-} $\frac{0}{3}$ $\frac{1}{3}$ $\frac{1}{4}$ 1		$1,2^{+af}$						W	I	
3487.7 15 3496.08 11 3+,4+ 62 fs 10 eF IJ w J^{π} : 3+,4+,5+ from L(p,p')=4; \neq 5+ from primary γ from 2-,3- capture state. 3586.64 10 4+@ 3610.8 6 (6)- <2.5 ns B D G EFG IJ N R XREF: J(3595)N(3577). X J^{π} : D transition to 5- and yield function favor J=6; π from L(d,p)=4. T _{1/2} : upper limit from $\gamma\gamma$ (t) of 152 γ in 65 Cu(α ,p γ). 3622 5 3- E J E(level): from (p,p'). Other: 3620 10 in (t,p). J ^{π} : L(t,p)=(p,p')=3. J ^{π} : γ to g.s. J ^{π} : 1213 γ to 4+, 3630 γ to 0+. 3664.7 3 (1,2)+ FG IJ W XREF: J(3658). J ^{π} : J from γ to 0+; π from L(d,p)=1.		@			I	no	r			
3496.08 11 3^{+} , 4^{+} 62 $\frac{\&}{}$ fs 10 $\frac{\text{eF}}{}$ IJ $\frac{\text{V}}{}$ $\frac{\text{J}^{\pi}}{}$: 3^{+} , 4^{+} , 5^{+} from L(p,p')=4; $\neq 5^{+}$ from primary γ from 2 ⁻ ,3 ⁻ capture state. 3586.64 10 $\frac{4^{+}}{}$ $\frac{\text{EFG}}{}$ IJ $\frac{\text{N}}{}$ R $\frac{\text{KREF}}{}$: J(3595)N(3577). 3610.8 6 (6) ⁻ <2.5 ns $\frac{\text{B}}{}$ D G $\frac{\text{D}}{}$ C $\frac{\text{J}}{}$ D transition to 5 ⁻ and yield function favor J=6; π from L(d,p)=4. T _{1/2} : upper limit from $\gamma\gamma$ (t) of 152 γ in $\frac{65}{}$ Cu(α ,p γ). 3622 5 $\frac{3^{-}}{}$ E J $\frac{\text{E}}{}$ J $\frac{\text{E}}{}$ E(level): from (p,p'). Other: 3620 10 in (t,p). $\frac{\text{J}^{\pi}}{}$: L(t,p)=(p,p')=3. 3624.32 21 (1,2 ⁺) $\frac{\text{J}^{\pi}}{}$: γ to g.s. 3630.32 11 (2 ⁺) $\frac{\text{J}^{\pi}}{}$: γ to g.s. 364.7 3 (1,2) ⁺ $\frac{\text{F}}{}$ I R $\frac{\text{J}^{\pi}}{}$: γ to g.s. 37: 1213 γ to 4 ⁺ , 3630 γ to 0 ⁺ . 3658. $\frac{\text{J}^{\pi}}{}$: J from γ to 0 ⁺ ; π from L(d,p)=1.		5-w				J no				XREF: J(3465).
from 2 ⁻ ,3 ⁻ capture state. 3586.64 10 4 ⁺ @ 3610.8 6 (6) ⁻ <2.5 ns B D G 0 X J^{π} : D transition to 5 ⁻ and yield function favor J=6; π from L(d,p)=4. $T_{1/2}$: upper limit from γγ(t) of 152γ in 65 Cu(α,pγ). 3622 5 3 ⁻ E J E(level): from (p,p'). Other: 3620 10 in (t,p). J^{π} : L(t,p)=(p,p')=3. 3624.32 21 (1,2 ⁺) 3630.32 11 (2 ⁺) 3664.7 3 (1,2) ⁺ F I R J ^{\pi} : 1213γ to 4 ⁺ , 3630γ to 0 ⁺ . 37: J from γ to 0 ⁺ ; π from L(d,p)=1.		-1 -1	&r	Α						
3610.8 6 (6) $^-$ <2.5 ns B D G 0 X J^π : D transition to 5 $^-$ and yield function favor J=6; π from L(d,p)=4. T _{1/2} : upper limit from $\gamma\gamma$ (t) of 152 γ in 65 Cu(α ,p γ). 3622 5 3 $^-$ E J E(level): from (p,p'). Other: 3620 10 in (t,p). J^π : L(t,p)=(p,p')=3. 3624.32 21 (1,2 $^+$) I J^π : γ to g.s. 3630.32 11 (2 $^+$) F I R J^π : 1213 γ to 4 $^+$, 3630 γ to 0 $^+$. 3664.7 3 (1,2) FG IJ W XREF: J(3658). J^π : J from γ to 0 $^+$; π from L(d,p)=1.	3496.08 11	,	62 ^{cc} fs 10		eF I]		W	Ī	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			<2.5 ns	В					X	J^{π} : D transition to 5 ⁻ and yield function favor J=6; π from L(d,p)=4.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3622.5	3-			E.	1				65 Cu(α ,p γ).
3630.32 II (2 ⁺) F I R J^{π} : 1213 γ to 4 ⁺ , 3630 γ to 0 ⁺ . 3664.7 3 (1,2) ⁺ FG IJ W XREF: J(3658). J^{π} : J from γ to 0 ⁺ ; π from L(d,p)=1.										J^{π} : L(t,p)=(p,p')=3.
3664.7 3 $(1,2)^+$ FG IJ W XREF: J(3658). J^{π} : J from γ to 0^+ ; π from L(d,p)=1.							D			
							K		Ī	XREF: J(3658).
	3687.5 [‡] 5	(6 ⁺)		1	DE T				х	

E(level) [†]	J^π	T _{1/2}	XI	REF	Comments
3709.8 3	(2+)		e IJ	N	4 ⁺ . L(t,p)=(5) for 3682 <i>10</i> discrepant. E(level): possible multiplet of levels in this region. XREF: J(3701)N(3701). J ^π : L(p,t)=2 for a level at 3701; however, L(t,p)=0+4 for a level at 3712 <i>10</i> . γ's to 2 ⁺ and 0 ⁺ favor J=2.
3717.47 20	1,2 ⁺ e	a	e HI	0	$T_{1/2}$: adopted value of $\Gamma_0/\Gamma = 0.63$ 4 gives $T_{1/2} = 22$ fs +8-5 for J=1 and 35 fs +11-6 for J=2.
3725.79 <i>17</i> 3732.4? <i>10</i>		33 ^{&} fs +9-6	B F IJ B	o V	J^{π} : 2648 γ to 2 ⁺ .
3776.32 <i>23</i> 3814 <i>4</i>	1,2 ⁺ d (3) ⁻		FG IJ E G	R U	XREF: G(3769)J(3783). XREF: E(3806)G(3815). J ^π : J from L(t,p)=(3); π from L(d,p)=4. E(level): weighted average of 3806 10 from (t,p) and 3815 4 from (d,p).
3814.83 <i>21</i>	1,2 ⁺ ^e	24 ^{&} fs +8-6	FI		E(level): γ -decay modes imply this level is distinct from the 3814 4, (3 ⁻) level.
3849.30 22	4+	$0.16^{\&}$ ps $+15-6$	EFG IJ	0	XREF: $E(3841)J(3840)$. J^{π} : $L(t,p)=4$.
3895.83 17	4+		EF IJ	N	XREF: $E(3886)J(3888)$. J^{π} : $L(t,p)=4$.
3910.99 <i>24</i> 3929? <i>4</i>	(3)-		FG I e I	r r	J ^{π} : 1494γ to 4 ⁺ , 2028γ to 2 ⁺ ; π from L(d,p)=4.
3935.08 <i>18</i> 3942.9 <i>8</i>	3 ⁺ (7 ⁻)	<6 ns	eF IJ D G	o TVX	J ^{π} : 3 ⁺ ,4 ⁺ ,5 ⁺ from L(p,p'); \neq 4 ⁺ ,5 from γ to 0 ⁺ g.s. T _{1/2} : upper limit from $\gamma\gamma$ (t) of 332 γ in ⁶⁵ Cu(α ,p γ). J ^{π} : L(α , ² He)=(7), L(d,p)=4. This conflicts with yield function and γ (θ) in ⁶⁵ Cu(α ,p γ) which suggests J ^{π} =(8 ⁻).
3970.7? <i>12</i> 3989? <i>5</i>			В Ј		Configuration: $(f_{5/2}g_{9/2})_{7-}$ (1990Fi07,1985Ja02).
4027.7 4	(1 ⁻ ,2 ⁺)		FG I	N	XREF: N(4017). J^{π} : 4028 γ to g.s., 1277 γ to 3 $^{-}$, primary γ from 2^{-} , 3 $^{-}$ capture state. E(level): doublet in (d,p) with L=(4)+(1).
4061.0 3	(2) ⁺	62 ^{&} fs +21–17	E G IJ		XREF: E(4049). J^{π} : J from L(t,p)=(2); π from L(d,p)=1.
4096 <i>10</i> 4102? <i>5</i> 4110	4+		J I	N	J^{π} : L(p,t)=4.
4124 <i>10</i> 4139.2 <i>17</i> 4148 <i>7</i>	(4 ⁻ ,5 ⁻ ,6 ⁻) 1 ⁻ 0 ⁺	33 & fs +12-9	FG I E J	R	J^{π} : L(p,p')=5. J^{π} : 3062γ to 2 ⁺ , 4139γ to 0 ⁺ , π =– from L(d,p)=2. XREF: R(4170). E(level): weighted average of 4145 <i>10</i> from (t,p) and 4150 <i>10</i> from (p,p').
4215.4 6	1+,2+		FG IJ		J^{π} : L(t,p)=0. XREF: J(4205). J^{π} : 3138γ to 2 ⁺ , 4216γ to 0 ⁺ , π =+ from L(d,p)=1.
4229? <i>4</i> 4234 <i>4</i>	(0,1,2)		I IJ	o o	XREF: J(4240).
4252			e	N	J^{π} : $L(p,p')=(1)$.

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XRE	F	Comments
4284.0 <i>4</i>	$(2,3)^+$		eFG IJ		XREF: J(4278).
	()- /				J^{π} : 1 ⁺ ,2 ⁺ ,3 ⁺ from L(p,p'); 1533 γ to 3 ⁻ .
4325 6			GI	R	XREF: G(4303).
4339.1 20	(1)	12.0^{a} fs $+43-25$	HI	0	J^{π} : from $\gamma(\theta)$ in (γ, γ') .
4345 10	3+,4+,5+		J		J^{π} : L(p,p')=4.
4355 10			G		J^{π} : $\pi = -$ from L(d,p).
4393 7	$3^{+},4^{+}$		G J		J^{π} : 1 ⁺ to 4 ⁺ from $L(d,p)=1$ and 3 ⁺ ,4 ⁺ ,5 ⁺ from
					L(p,p')=4.
					E(level): weighted average of 4396 10 from (d,p) and 4389 10 from (p,p').
4396.8 [‡] 7	(8^{+})		D	V X	J^{π} : L(α , ³ He)=(8); E2(+M3) 709 γ to the (6 ⁺) 3688
	,				level and the yield function of the 709γ .
					Configuration: $(g_{9/2})^2$ (1990Fi07,1985Ja02).
4408.4 <i>4</i>			F Ij		(89/2)
4414 6	$1^+, 2^+$		Ιj		J^{π} : L(p,p')=2, γ to g.s.
4437 5	,		G Ij		XREF: G(4425).
					J^{π} : $\pi = -$ from $L(d,p)$.
4444 6	$(1,2^+)$		Ij		J^{π} : γ to g.s.
4466.2 20	1-	7.0^{a} fs $+29-16$	GHI		XREF: G(4452).
					J^{π} : J from $\gamma(\theta)$ in (γ, γ') ; π from L(d,p)=2 for
					4452 10.
4496 <i>6</i>	$(1,2^+)$		IJ		J^{π} : γ to g.s.
4503.2 20	(1)	a	HI		J^{π} : from $\gamma(\theta)$ in (γ, γ') .
					$T_{1/2}$: adopted value of $\Gamma_0/\Gamma > 0.29$ gives 1 fs
					<T _{1/2} $<$ 12 fs.
4512.2 <i>3</i>	(2+)		F		J^{π} : 2095 γ to 4 ⁺ , 4513 γ to 0 ⁺ , primary γ from 2 ⁻ ,3 ⁻ capture state.
4520.6 <i>4</i>	$1,2^{+d}$		F IJ		
4535.6 <i>4</i>	$1,2^{+d}$		F IJ	u	XREF: J(4545).
4578 6	$(1,2^+)$		I	u	J^{π} : γ to g.s.
4587 <i>4</i>	$(1^+,2^+)$		IJ		J^{π} : L(p,p')=2, γ to g.s.
4608 <i>6</i>	(1-)		G IJ		J^{π} : L(d,p)=2, γ to g.s.
4642 <i>4</i>	1.2^{+d}		F IJ		
4656 10	2-,3-		G		J^{π} : L(d,p)=0.
4670 <i>6</i>	$(1,2^+)$		I		J^{π} : γ to g.s.
4680 <i>6</i>	(1,2)		IJ		
4724.1 5	$1^+, 2^+$		F IJ		XREF: I(4718).
	, :				J^{π} : L(p,p')=2, γ to g.s.
4732.8 11	1.2^{+d}		F		
4743 5	2-,3-		G IJ		J^{π} : L(d,p)=0.
4792 6	- ,=		IJ		XREF: J(4782).
4851.2 6	2-,3-		FG J		XREF: J(4841).
	,-				J^{π} : L(d,p)=0.
4857.9 <i>6</i>	1,2+		FI		J^{π} : γ to 0^+ ; primary γ from $2^-,3^-$ capture state.
4865.9 8	(9^{-})			X	J^{π} : 923 γ to (7 ⁻). J^{π} =(10 ⁻) proposed by
					2000Wi18,1997Be77 in 208 Pb(64 Ni,X γ).
4873 <i>4</i>	2-,3-,4-		IJ		J^{π} : L(p,p')=3.
4910.6 <i>4</i>	$1,2^{+d}$		FI		W. I. 7
4910.0 <i>4</i> 4951.5 <i>4</i>	1-,2-,3-		FG I		J^{π} : $\pi=-$ from L(d,p)=2; γ to 2 ⁺ ; primary γ from
1751.5 1	1 ,2 ,5				2^{-} , 3^{-} capture state.
4963.0 7			F		= ,- enposite source.
4982 6			I		
4992.0 10	1,2 ⁺ <i>d</i>		FI		XREF: I(4998).
1772.0 10	1,2		1 1		11111.1(1770).

E(level) [†]	J^{π}	T _{1/2}	XREF	7	Comments
5019 10	_		G	U	J^{π} : L(d,p)=2.
					E(level): from ⁶⁷ Zn(d,p). Other 5030 20 in ⁶⁴ Ni(⁶ Li,d).
5120 <i>10</i>	-		G	V	J^{π} : L(d,p)=2.
5146 <i>5</i>			I		* **
5162 <i>10</i>			G		
5187.7 7			F		
5200 <i>10</i>	$2^{-},3^{-}$		G		J^{π} : L(d,p)=0.
5283.4 6			FG		
5298.0 <i>4</i>	$1^{-},2^{+}$		F		J^{π} : 2547 γ to 3 ⁻ 2751, γ to g.s.
5307.5 10	_		FG		XREF: G(5317).
5400 4 5					J^{π} : from L(d,p)=2.
5400.4 5	1211		F		
5403.2 5	$1,2^{+d}$		F I		
5415.3 8	$1,2^{+d}$		FG		
5420?			G		
5565.0 8			F		
5610?	(=)		G		IT 1 (1) (2)
5635 10	(-)		G		$J^{\pi}: L(d,p)=(2).$
5693.8 <i>6</i> 5860	_		F		J^{π} : L(d,p)=2.
5990.7 <i>9</i>	(11^{-})		G	Х	
3990.1 9	(11)			A	$(2000\text{Wi}18), (1997\text{Be}77) \text{ in } ^{208}\text{Pb}(^{64}\text{Ni}, \text{X}\gamma).$
6760	_		G		J^{π} : L(d,p)=2.
7110	$2^{-},3^{-}$		G		J^{π} : L(d,p)=0.
7362.3 5	1-,5	0.240^{a} fs $+14-12$	Н		J^{π} : from $\gamma(\theta)$ and polarization data in (γ, γ') .
x#	J	0.2.0 15 .17 12		S	J^{π} : based on observed feeding into known
					levels, the estimated spin of the lowest level in the super-deformed band is 17 2
#					(1999De20).
1506.0+x [#] 10	J+2			S	
3223.0+x [#] 15	J+4			S	
5141.1+x# <i>18</i>	J+6			S	
7262.1+x [#] 20	J+8			S	
9593.1+x [#] 23	J+10			S	
12148.2+x [#] 25	J+12			S	
14943+x [#] 3	J+14			S	
18016+x?#	J+16			S	

 $^{^{\}dagger}$ From least squares fit to $E\gamma$ by evaluator, except where noted. ‡ Yrast band (2000Wi18,1997Be77).

^{*} Super-deformed band (1999De20).

[@] From L transfer in (t,p) and (p,t).

[&]amp; From DSAM in $(n,n'\gamma)$.

^a From Γ measurement in (γ, γ') . For the 4339 and 4466 levels, $\Gamma_{\gamma o}/\Gamma_{\gamma}$ is assumed to be 1. Thus, the deduced half-life may be an upper limit.

b L(t,p)=4 for E=2955 10, L(p,t)=4, 4+(2) for E=2957, L(d,p)=(1)+(3) for E=2958 4. c L(t,p)=0 for possible doublet at 3157 10.

^d γ' s to 0⁺ and 2⁺; primary γ from 2⁻,3⁻ capture state.

 $^{^{}e}$ D,E2 γ to g.s. f L(t,p)=2 for 3427 10, L(d,p)=1 for 3424 4.

γ (68Zn)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f .	J_f^{π}	Mult.	δ	α	$I_{(\gamma+ce)}$	Comments
1077.37	2+	1077.34‡ 5	100	0.0)+	E2		0.000247 4		$\alpha(K)$ =0.000221 4; $\alpha(L)$ =2.22×10 ⁻⁵ 4; $\alpha(M)$ =3.18×10 ⁻⁶ 5; $\alpha(N+)$ =1.273×10 ⁻⁷ 18 B(E2)(W.u.)=14.69 19
										Mult.: Q from $\gamma\gamma(\theta)$ in (n,γ) and 68 Ga ε decay; E2 from comparison to RUL.
1655.91	0+	578.52 [‡] 13	100‡ 5	1077.37 2	2+	E2		0.001272 18		$\alpha(K)$ =0.001139 16; $\alpha(L)$ =0.0001160 17; $\alpha(M)$ =1.659×10 ⁻⁵ 24 $\alpha(N+)$ =6.50×10 ⁻⁷ 10 B(E2)(W.u.)=5.5 10
										Mult.: Q from $\gamma \gamma(\theta)$ in (n,γ) and ⁶⁸ Ga ε decay; E2 from comparison to RUL.
		1659 [‡] 7		0.0)+	E0#			4.2×10 ⁻² 10	$I_{(\gamma+ce)}$: from ce(K)(1659)/ I_{γ} (578 γ)=2.2×10 ⁻⁴ 4 and and $I_{\gamma+ce}$ (1656)/ I_{ce} (K)(1656)=0.55.
1883.20	2+	227.31 [‡] 15	0.049 16	1655.91 ()+	(E2) ^d		0.0300		$\alpha(K)$ =0.0268 4; $\alpha(L)$ =0.00286 4; $\alpha(M)$ =0.000406 6; $\alpha(N+)$ =1.476×10 ⁻⁵ 21 B(E2)(W.u.)=16 6 I _{γ} : weighted average of 0.043 16 from (n, γ),
										E=thermal and 0.09 4 from 68 Ga ε decay.
		805.83 [‡] 7	68.0 <i>17</i>	1077.37 2	2+	M1+E2 [@]	-1.55 5	0.000471 7		$\alpha(K)$ =0.000422 6 ; $\alpha(L)$ =4.24×10 ⁻⁵ 7 ; $\alpha(M)$ =6.08×10 ⁻⁶ 9 ; $\alpha(N+)$ =2.43×10 ⁻⁷ 4 B(E2)(W.u.)=28.6 18 ; B(M1)(W.u.)=0.0050 4 I _{γ} : weighted average of 65 3 from (n, γ), E=thermal and 68.9 17 from ⁶⁸ Ga ε decay.
										δ: from ⁶⁸ Ga ε decay. Others: -1.45 15 from (n,γ) , E=thermal and -1.5 3 from $(n,n'\gamma)$.
		1883.16‡ 6	100.0‡ 19	0.0)+	(E2) ^d		0.000333 5		$\alpha(K)=6.97\times10^{-5}\ 10;\ \alpha(L)=6.91\times10^{-6}\ 10;$ $\alpha(M)=9.91\times10^{-7}\ 14;\ \alpha(N+)=0.000255\ 4$ B(E2)(W.u.)=0.85 5
2338.45	2+	682.57 [‡] <i>16</i>	0.331 [‡] 21	1655.91 ()+	(E2) ^d		0.000789 11		$\alpha(K)=0.00707 \ 10; \ \alpha(L)=7.16\times10^{-5} \ 10;$ $\alpha(M)=1.025\times10^{-5} \ 15; \ \alpha(N+)=4.05\times10^{-7}$ B(E2)(W.u.)=2.4 3
		1261.08 [‡] 6	100.0‡ 21	1077.37	2+	M1+E2 [@]	-0.16 2	0.0001725 25		$\alpha(K)=0.0001418\ 20;\ \alpha(L)=1.410\times10^{-5}\ 20;\ \alpha(M)=2.02\times10^{-6}\ 3$ $\alpha(N+)=8.20\times10^{-8}\ 12$ $\alpha(M)=2.02\times10^{-8}\ 12$
		2338.40 [‡] 8	1.19 [‡] <i>17</i>	0.0)+	$(E2)^{d}$		0.000529 8		$\alpha(K)=4.71\times10^{-5} \ 7; \ \alpha(L)=4.67\times10^{-6} \ 7;$

$\gamma(^{68}\text{Zn})$ (continued)

						y(Zii)	(continued)	
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	α	Comments
2370.3		1292.9 <i>15</i>	100	1077.37 2+				$\alpha(M)=6.69\times10^{-7}\ 10;\ \alpha(N+)=0.000476\ 7$ B(E2)(W.u.)=0.019 4 E _{γ} ,I _{γ} : from ⁶⁸ Cu β - decay (30.9 s + 3.75 min).
2417.40	4+	534.22 20	0.56 16	1883.20 2 ⁺	$(E2)^d$		0.001618 23	$\alpha(K)$ =0.001448 21; $\alpha(L)$ =0.0001478 21; $\alpha(M)$ =2.11×10 ⁻⁵ 3; $\alpha(N+)$ =8.25×10 ⁻⁷ B(E2)(W.u.)=6.0 19
		1339.96 5	100 3	1077.37 2+	E2		0.000190 3	$\alpha(K)$ =0.0001368 20; $\alpha(L)$ =1.364×10 ⁻⁵ 20; $\alpha(M)$ =1.95×10 ⁻⁶ 3 $\alpha(N+)$ =3.77×10 ⁻⁵ 7 B(E2)(W.u.)=10.8 12 Mult.: Q from $\gamma\gamma(\theta)$ in (n, γ), E2 from comparison to RUL. δ : $\delta(M3/E2)$ =-0.05 δ from $\gamma\gamma(\theta)$ in (n, γ),E=thermal and +0.02 +5-2 from $\gamma(\theta)$ in $\delta(L)$ From RUL, one expects $\delta<2.4\times10^7$.
2510.2 2750.76	3-	1432.8 <i>15</i> 412.41 <i>12</i>	100 7.7 <i>6</i>	1077.37 2 ⁺ 2338.45 2 ⁺	(E1)		0.000964 14	E _γ ,I _γ : from ⁶⁸ Cu β - decay (30.9 s + 3.75 min). α (K)=0.000865 $l3$; α (L)=8.65×10 ⁻⁵ $l3$; α (M)=1.237×10 ⁻⁵ $l8$; α (N+)=4.92×10 ⁻⁷ B(E1)(W.u.)=0.00161 $l7$ Mult.: D from RUL; $\Delta \pi$ =yes from level scheme.
		1673.29 10	100 7	1077.37 2+	(E1)		0.000445 7	$\alpha(K)$ =4.66×10 ⁻⁵ 7; $\alpha(L)$ =4.61×10 ⁻⁶ 7; $\alpha(M)$ =6.60×10 ⁻⁷ 10; $\alpha(N+)$ =0.000393 6 B(E1)(W.u.)=0.00031 3 Mult.: D,E2 from RUL; $\Delta\pi$ =yes from level scheme.
2821.79	2+	483.35 [‡] <i>16</i>	2.8 [‡] 3	2338.45 2+	M1+E2 [@]		0.0017 5	$\alpha(K)=0.0015\ 5;\ \alpha(L)=0.00016\ 5;\ \alpha(M)=2.2\times10^{-5}\ 7;$ $\alpha(N+)=9.E-7\ 3$ δ : $-0.12\ 6$ or $+1.7\ 9$ from $\gamma\gamma(\theta)$ in 68 Ga ε decay.
		938.61 [‡] 20	1.86 [‡] <i>17</i>	1883.20 2+	M1+E2 [@]	-0.7 3	0.000304 12	$\alpha(K)=0.000272\ 11;\ \alpha(L)=2.72\times10^{-5}\ 11;\ \alpha(M)=3.90\times10^{-6}\ 16$ $\alpha(N+)=1.57\times10^{-7}\ 6$ $B(E2)(W.u.)=1.8\ 11;\ B(M1)(W.u.)=0.0020\ 8$ δ : from $\gamma\gamma(\theta)$ in 68 Ga ε decay.
		1165.92 [‡] <i>15</i>	0.17 [‡] 10	1655.91 0+	E2 ^d		0.000211 3	$\alpha(K)$ =0.000185 3; $\alpha(L)$ =1.85×10 ⁻⁵ 3; $\alpha(M)$ =2.65×10 ⁻⁶ 4; $\alpha(N+)$ =4.67×10 ⁻⁶ 7 B(E2)(W.u.)=0.16 11
		1744.42 [‡] <i>13</i>	100‡ 5	1077.37 2+	M1+E2 [@]	+0.27 5	0.000241 4	$\alpha(K)=7.70\times10^{-5}\ 11;\ \alpha(L)=7.63\times10^{-6}\ 11;\ \alpha(M)=1.094\times10^{-6}\ 16;\ \alpha(N+)=0.0001550$ B(E2)(W.u.)=0.9 4; B(M1)(W.u.)=0.023 5 δ : from $\gamma\gamma(\theta)$ in 68 Ga ε decay. Others: +0.24 13 from (n, γ) and +0.15 5 from (n, $\eta'\gamma$).
		2821.73 [‡] <i>14</i>	4.9 [‡] 4	0.0 0+	(E2) ^d		0.000740 11	$\alpha(K)=3.43\times10^{-5}$ 5; $\alpha(L)=3.39\times10^{-6}$ 5; $\alpha(M)=4.86\times10^{-7}$ 7; $\alpha(N+)=0.000702$ 10

 ∞

γ (68Zn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	δ	α	Comments
								B(E2)(W.u.)=0.057 13
055.0		505 6 15	100	2270.2				I_{γ} : Other: 10 3 in (n,γ) , E=thermal.
2955.9 2959.49	(4 ⁺)	585.6 <i>15</i> 542.05 <i>16</i>	100 12.0 <i>20</i>	2370.3 2417.40 4 ⁺				E_{γ} , I_{γ} : from ⁶⁸ Cu β - decay (3.75 min).
4737. 4 7	(4)	1883.1 ^{&} 5	100 27	1077.37 2 ⁺				
3009.27	3 ⁺	591.71 16	5.7 6	2417.40 4 ⁺				
3009.21	3	670.89 17	4.8 6	2338.45 2+				I_{γ} : Other: 18 3 in $(n,n'\gamma)$.
		1126.07 6	100 5	1883.20 2+	M1+E2 [@]	-0.36 +20-27	0.000201 6	$\alpha(K)=0.000179 \ 5; \ \alpha(L)=1.79\times10^{-5} \ 5; \ \alpha(M)=2.56\times10^{-6}$
		1120.07 0	100 5	1003.20 2	1411 132	0.30 120 27	0.000201 0	7; $\alpha(N+)=1.39\times10^{-6}$ 10
								B(E2)(W.u.)=6 +7-6; $B(M1)(W.u.)=0.040 +13-21$
								δ : from $\gamma\gamma(\theta)$ in (n,γ) , E=thermal.
		1932.1 <i>3</i>	11.7 12	1077.37 2+	(M1+E2)	-0.15 3	0.000301 5	$\alpha(K)=6.39\times10^{-5} 9$; $\alpha(L)=6.33\times10^{-6} 9$; $\alpha(M)=9.07\times10^{-6}$
								13; α(N+)=0.000230 4
								B(E2)(W.u.)=0.010 +5-7; B(M1)(W.u.)=0.0010 +4-6
								Mult., δ : D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta \pi$ =no from level scheme.
								δ : from $\gamma(\theta)$ in (n,n' γ).
3102.51	0^{+}	1219.3 ^a 1	100 <mark>a</mark>	1883.20 2+	[E2]		0.000199 3	$\alpha(K)=0.0001676 \ 24; \ \alpha(L)=1.674\times10^{-5} \ 24;$
					. ,			$\alpha(M)=2.40\times10^{-6} \ 4; \ \alpha(N+)=1.185\times10^{-5}$
		2025.1 ^f	≤3	1077.37 2+				E_{γ}, I_{γ} : from $(p, p'\gamma)$.
3153.8?		815.7 <i>af</i> 5	100 ^a 21	2338.45 2+				
		1270.0^{af} 5	<79 ^a	1883.20 2+				I_{γ} : the 1270 γ is a doublet with I_{γ} =68 11.
3160.1		2082.7 ^a 3	100 <mark>a</mark>	1077.37 2 ⁺				ly. the 12707 is a doublet with 17 00 11.
3164.4		747.0 <i>af</i> 14	100 <mark>a</mark>	2417.40 4+				
3184.18	1,2+	845.2 6	6.5 15	2338.45 2+				
		1300.87 20	25.5 20	1883.20 2+				
		2106.83 <i>18</i>	100 15	1077.37 2+				
21066	(4. a ±)	3184.3 6	32 4	$0.0 0^{+}$				5. 68 5. 6. (20.0.)
3186.6	$(1,2^+)$	1529.7 <i>15</i>	56 17	1655.91 0 ⁺				E_{γ} , I_{γ} : from ⁶⁸ Cu β- decay (30.9 s).
2201 50	4+	2110.1 <i>15</i> 864.17 <i>14</i>	100 28 100 ^a 9	1077.37 2 ⁺				E_{γ} , I_{γ} : from ⁶⁸ Cu β- decay (30.9 s).
3281.58	4	864.17 14 1397.0 ^a f 6		2417.40 4+				I_{γ} : weighted average of (n,γ) and $(n,n'\gamma)$.
2207.00	2+		18 ^a 3	1883.20 2 ⁺				I_{γ} : weighted average of (n,γ) and $(n,n'\gamma)$.
3287.09	2+	465.20 ^f 18 1403.7 3	1.6 3	2821.79 2 ⁺ 1883.20 2 ⁺				
		1403.7 3 1630.9 3	4.3 <i>14</i> 14.5 <i>14</i>	1883.20 2 1655.91 0+				I_{γ} : Other: 38 15 in $(n,n'\gamma)$.
		2209.75 16	100 12	1077.37 2 ⁺	(M1+E2) [@]		0.00044 4	$\alpha(K)=5.12\times10^{-5}$ 12; $\alpha(L)=5.07\times10^{-6}$ 12;
		2209.13 10	100 12	10/1.5/ 2	(1VII T L: 2)		0.00044 4	$\alpha(\mathbf{K}) = 5.12 \times 10^{-12}$, $\alpha(\mathbf{L}) = 5.07 \times 10^{-12}$, $\alpha(\mathbf{M}) = 7.27 \times 10^{-7}$ 16; $\alpha(\mathbf{N} +) = 0.00038$ 4
								δ : -0.07 10 for $J^{\pi}(3287)=1^+$ and +0.63 +22-37 for
								$J^{\pi}=2^{+}$ from (n,γ) E=thermal.

γ (68Zn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	δ	α	Comments
3287.09	2+	3287.2 3	48 5	0.0 0+				I_{γ} : Other: 5 4 in $(n,n'\gamma)$.
3334.7?		996.2 ^f 5	52 14	2338.45 2+				,
		1451.8 ^f 6	62 14	1883.20 2+				
		2257.2 ^f 7	100 19	1077.37 2+				
3346.09	1+	1462.0 <i>af</i> 23	27 <mark>a</mark> 10	1883.20 2+				
		2270 ^a 3	34 <mark>a</mark> 11	1077.37 2+				
		3346.0 ^a 2	100 ^a 17	0.0 0+	(M1)		0.000856 12	$\alpha(K)$ =2.53×10 ⁻⁵ 4; $\alpha(L)$ =2.50×10 ⁻⁶ 4; $\alpha(M)$ =3.58×10 ⁻⁷ 5; $\alpha(N+)$ =0.000828 12 B(M1)(W.u.)=0.060 21 Mult.: D,E2 from comparison to RUL, from level scheme transition is 1 ⁺ to 0 ⁺ .
3386?		$2310^{af} 3$	100 <mark>a</mark> 50	1077.37 2+				
		$3383^{af} 5$	30 a 17	$0.0 0^{+}$				
3400.9	1,2+	1517.7 <mark>a</mark> 5	89 ^a 22	1883.20 2+				
		$2322^{af} 3$	100 a 45	1077.37 2+				
		3402 ^a 5	24 ^a 12	0.0 0+				
3425.07		1542.0 2	53 5	1883.20 2 ⁺				
2420.46	1,2+	2347.5 2 1091.04 <i>f</i> 18	100 <i>15</i> 28 2	1077.37 2 ⁺ 2338.45 2 ⁺				
3429.46	1,2	1546.13 <i>16</i>	28 Z 100 8	1883.20 2 ⁺				
		2352.4 3	50 10	1077.37 2 ⁺				
		3430.2 11	12 4	$0.0 0^{+}$				
3451.0		630.0 ^a 13	46 ^a 19	2821.79 2+				
		1114.0 ^a f 18	95 <mark>a</mark> 40	2338.45 2+				
		2373.5^{af} 3	100 ^a 26	1077.37 2+				
3458.83	5-	499.9 ^{&} f 5		2959.49 (4+)				E_{γ} : observed only in 208Pb(⁶⁴ Ni,X γ) as sole depopulating transition from a 3459 level.
		1041.26 <i>16</i>		2417.40 4+	(E1+M2)	+0.07 5	0.000120 4	$\alpha(K)=0.000108 \ 4; \ \alpha(L)=1.07\times10^{-5} \ 4; \ \alpha(M)=1.53\times10^{-6} \ 6; \ \alpha(N+)=6.17\times10^{-8} \ 22$
								Mult.: D+Q from $\gamma(\theta)$ in 65 Cu(α ,p γ), $\Delta\pi$ =yes from level scheme.
								$ δ$: from $ γ(θ)$ in $ ^{65}$ Cu($ α$,p $ γ$).
3487.7		736.9 15	100	2750.76 3-				E_{γ} , I_{γ} : from ⁶⁸ Cu β - decay (30.9 s).
3496.08	3+,4+	744.8 6	3.1 15	2750.76 3-				
		1612.2 <i>6</i> 2418.7 <i>1</i>	5.4 <i>15</i> 100 <i>12</i>	1883.20 2 ⁺ 1077.37 2 ⁺				
3586.64	4+	835.87 ^a 6	100 12 100 ^a 19	2750.76 3 ⁻				
2200.01	•	2508 ^a 4	46 ^a 13	1077.37 2 ⁺				

γ (68Zn) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${ m I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	α	Comments
3610.8	(6)	152.0 5	100	3458.83 5	M1(+E2)	-0.05 +8-6	0.0205 12	$\alpha(K)$ =0.0183 10; $\alpha(L)$ =0.00190 12; $\alpha(M)$ =0.000272 16; $\alpha(N+)$ =1.07×10 ⁻⁵ 6 B(M1)(W.u.)>0.0024 E _γ : from ⁶⁵ Cu(α ,pγ). Mult.: D+Q from $\gamma(\theta)$ in ⁶⁵ Cu(α ,pγ), $\Delta\pi$ =no from level scheme. δ: from $\gamma(\theta)$ in ⁶⁵ Cu(α ,pγ).
3624.32	$(1,2^+)$	2546.9 ^a 2 3626 ^a 5	100 ^a 25 26 ^a 12	$1077.37 2^+ \\ 0.0 0^+$				
3630.32	(2+)	348.7 ^f 3 621.06 14 879.59 15 1212.7 3 3630.2 6	3.5 7 42 4 100 13 23 3 68 9	3281.58 4 ⁺ 3009.27 3 ⁺ 2750.76 3 ⁻ 2417.40 4 ⁺ 0.0 0 ⁺				
3664.7	(1,2)+	1781.5 <i>3</i> 2587.2 <i>7</i> 3664.8 <i>10</i>	100 <i>10</i> 65 <i>19</i> 36 <i>9</i>	1883.20 2 ⁺ 1077.37 2 ⁺ 0.0 0 ⁺				
3687.5	(6 ⁺)	1270.1 5	100	2417.40 4+	(E2+M3)	+0.14 5	0.000201 8	$\alpha(K)$ =0.000161 7; $\alpha(L)$ =1.61×10 ⁻⁵ 7; $\alpha(M)$ =2.30×10 ⁻⁶ 10; $\alpha(N+)$ =2.13×10 ⁻⁵ 5 E _γ : from ⁶⁵ Cu(α ,pγ). Mult.: Q+O from $\gamma(\theta)$ in ⁶⁵ Cu(α ,pγ), $\Delta\pi$ =no from level scheme. δ: from $\gamma(\theta)$ in ⁶⁵ Cu(α ,pγ).
3709.8	(2+)	1371.6 ^a 3 3708.2 ^a 8	100 ^a 19 71 ^a 10	2338.45 2 ⁺ 0.0 0 ⁺				
3717.47	1,2+	2061.5 ^a 2 3717.5 ^a 5	58 ^a 9 100 ^a 10	1655.91 0 ⁺ 0.0 0 ⁺				
3725.79		904.6 <i>4</i> 975.4 <i>f 4</i>	11 <i>3</i> 13 <i>3</i>	2821.79 2 ⁺ 2750.76 3 ⁻				E_{γ} : Other: 978.0 17 in $(n,n'\gamma)$. I_{γ} : Other: 30 17 in $(n,n'\gamma)$.
		1387.21 <i>19</i> 2648.1 <i>6</i>	63 <i>5</i> 100 <i>30</i>	2338.45 2 ⁺ 1077.37 2 ⁺				
3732.4? 3776.32	1,2+	1222.2 ^f 15 1437.76 24 2699.5 10 3777.0 ^f 9	100 62 5 35 11 100 18	2510.2 2338.45 2 ⁺ 1077.37 2 ⁺ 0.0 0 ⁺				E_{γ} , I_{γ} : from ⁶⁸ Cu β^- decay (3.75 min).
3814.83	1,2+	2737.4 ^a 2 3817 ^a 5	100 18 100 27 37 6	$ \begin{array}{cccc} 0.0 & 0^{+} \\ 1077.37 & 2^{+} \\ 0.0 & 0^{+} \end{array} $				
3849.30	4+	1431.86 22	100 9	2417.40 4+				

γ (68Zn) (continued)

	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α	Comments
	3849.30	4+	1511.1 7	13 6	2338.45	2+	[E2]	0.000210 3	$\alpha(K)$ =0.0001068 15; $\alpha(L)$ =1.063×10 ⁻⁵ 15; $\alpha(M)$ =1.523×10 ⁻⁶ 22 $\alpha(N)$ =6.15×10 ⁻⁸ 9 B(E2)(W.u.)=3.1 +19-31
	3895.83	4+	936.7 <i>3</i>	22 5	2959.49				2(22)(
			1478.31 <i>18</i>	100 8	2417.40				
			1557.1 6	8 4	2338.45				I_{γ} : Other: 47 20 in $(n,n'\gamma)$.
	3910.99	(3)	629.3^{f} 3	29 7	3281.58				
			1493.5 <i>3</i> 1572.5 <i>9</i>	95 <i>12</i> 22 <i>7</i>	2417.40 2338.45				
			2027.9 4	100 15	1883.20				
	3929?		2852^{af} 4	100 ^a	1077.37				
	3935.08	3 ⁺	1113.34 20	9.6 12	2821.79				
			1184.5 ^f 3	12 <i>3</i>	2750.76				
			1596.3 5	7.6 20	2338.45				I_{γ} : Other: 29 14 in $(n,n'\gamma)$.
			2857.6 4	100 28	1077.37				
			3935.1 <i>13</i>	6 3	0.0				
	3942.9	(7^{-})	332.1 5	100		(6)		0.00771 12	E_{γ},I_{γ} : from ⁶⁵ Cu(α ,p γ).
1	3970.7?		$1014.5 \frac{f}{f}$ 15	100 45	2955.9				E_{γ},I_{γ} : from ⁶⁸ Cu β^- decay (3.75 min).
			1149.4 ^f 20	32 13	2821.79				E_{γ},I_{γ} : from ⁶⁸ Cu β^- decay (3.75 min).
	3989?		$3989^{af} 5$	100 ^a	0.0	0+			
	4027.7	$(1^-,2^+)$	1018.3 4	16 5	3009.27				
			1276.9 <i>6</i> 4028.3 <i>8</i>	27 <i>11</i> 100 <i>14</i>	2750.76 0.0				
	4061.0	$(2)^{+}$	1724 ^a 3	65^{a} 20	2338.45				
	.001.0	(-)	2983.5 ^a 3	100^{a} 15	1077.37				
	4102?		4102 <i>af</i> 5	100 <mark>a</mark>	0.0	0^{+}			
	4139.2	1-	3062.4 ^f 5	100 10	1077.37				
			4139.1 17	19 9	0.0	0_{+}			
	4215.4	$1^+, 2^+$	3137.8 6	100 16	1077.37				
			4215.9 <i>15</i>	27 12	0.0				
	4229?		$3152^{af} 4$	100 ^a	1077.37				
	4234	$(0,1,2)^{-}$	$3157^{af} 4$	100 ^a	1077.37				
	4284.0	$(2,3)^+$	1274.8 8	20 8	3009.27 2750.76				
			1533.2 <i>4</i> 3206.4 <i>9</i>	39 8 100 <i>14</i>	2/50.76 1077.37				
	4325		$4325^{a} 6$	100^{-14}	0.0				
	4339.1	(1)	4339^{b} 2	100 ^b		0+			
	1337.1	(1)	1337 2	100	0.0	3			

γ (68Zn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f J	$\frac{\pi}{f}$ Mu	lt. δ	α	Comments
4396.8	(8+)	709.3 5	100	3687.5	E2(+1	M3) +0.05 +2-8	0.000716 12	$\alpha(K)$ =0.000642 11; $\alpha(L)$ =6.49×10 ⁻⁵ 11; $\alpha(M)$ =9.30×10 ⁻⁶ 16 $\alpha(N+)$ =3.67×10 ⁻⁷ 7 $E_{\gamma}I_{\gamma}$: from ⁶⁵ Cu(α ,p γ). Mult.: Q+O from $\gamma(\theta)$ in ⁶⁵ Cu(α ,p γ), $\Delta\pi$ =no from level scheme. δ: from $\gamma(\theta)$ in ⁶⁵ Cu(α ,p γ).
4408.4		1448.8 <i>5</i> 3331.0 <i>4</i>	13 <i>3</i> 100 <i>10</i>	2959.49 (4 1077.37 2	·+)			o. Hom $y(0)$ in $Cu(\alpha, py)$.
4414	$1^+, 2^+$	4414 <mark>a</mark> 6	100 <mark>a</mark>	0.0				
4437		3360 ^{af} 5	100 ^a 17	1077.37 2	ŀ			
		4440 ^a 6	<164 ^a	0.0	+			
4444	$(1,2^+)$	4444 <mark>a</mark> 6	100 <mark>a</mark>	$0.0 0^{-1}$	+			
4466.2	1-	4466 ^b 2	100 ^b	0.0 0			0.00186 3	$\alpha(K)=1.208\times10^{-5}\ 17;\ \alpha(L)=1.188\times10^{-6}\ 17;$ $\alpha(M)=1.702\times10^{-7}\ 24;\ \alpha(N+)=0.00184\ 3$ $B(E1)(W.u.)=0.00065\ +15-27$
4496	$(1,2^+)$	4496 ^a 6	100 ^a	$0.0 0^{-1}$	ŀ			
4503.2	(1)	3427 ^{af} 5	≤150 ^a	1077.37 2	+			
		4503 ^b 2	100 ^a 40	0.0	ŀ			
4512.2	(2^{+})	2094.6 <i>3</i>	100 12	2417.40 4	ŀ			
		3434.9 8	78 <i>16</i>	1077.37 2				
		4513.3 8	80 14	0.0	ŀ			
4520.6	1,2+	1698.0 ^f 8	25 7	2821.79 2	+			I _{γ} : Other: 200 120 in (n,n' γ), relative to I γ (4521 γ)=100 65.
		2181.7 5	46 8	2338.45 2	+			I _{γ} : Other: 300 130 in (n,n' γ), relative to I γ (4521 γ)=100 65.
		4521.0 6	100 9	$0.0 0^{-1}$	+			
4535.6	$1,2^{+}$	3458.1 <i>4</i>	100 12	1077.37 2				
		4535.5 9	30 6	$0.0 0^{-1}$				
4578	$(1,2^+)$	4578 ^a 6	100 ^a	$0.0 0^{-1}$				
4587	$(1^+,2^+)$	3511 ^a 5	100 ^a 16	1077.37 2	ŀ			
		4585 ^a 6	28 ^a 9	0.0				
4608	(1^{-})	4608 ^a 6	100 ^a	0.0				
4642	$1,2^{+}$	$2300^{af} 3$	37 <mark>a</mark> 30	2338.45 2				
		3567 ^a 5	100 ^a 18	1077.37 2				
		4639 ^a 6	42 ^a 18	$0.0 0^{-1}$	ŀ			
4670	$(1,2^+)$	3592 <i>af</i> 5	100 ^a 56	1077.37 2	+			
	` ' '	4670 ^a 6	62 ^a 41	0.0				

γ (68Zn) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}
4680		4680 ^a 6	100 <mark>a</mark>	0.0	0+
4724.1	$1^+, 2^+$	1902.2 5	61 <i>16</i>	2821.79	2+
		4724.3 8	100 14	0.0	0_{+}
4732.8	1,2+	1723.5 ^f 5	42 9	3009.27	3+
		3077.2 ^f 8	100 20	1655.91	0^{+}
		3655.2 16	44 22	1077.37	2+
		4732.8 <i>14</i>	38 11	0.0	0_{+}
4743	2-,3-	3666 ^{af} 5	100 <mark>a</mark>	1077.37	2+
4792	,	4792 <mark>a</mark> 6	100 <mark>a</mark>	0.0	0^{+}
4851.2	2-,3-	916.1 ^f 4	9 4	3935.08	3 ⁺
		1186.9 ^f 6	16 5	3664.7	$(1,2)^{+}$
		2512.7 6	100 <i>30</i>	2338.45	2+
4857.9	$1,2^{+}$	3201.1 9	88 <i>21</i>	1655.91	0_{+}
		4858.4 8	100 18	0.0	0_{+}
4865.9	(9-)	923.0 ^{&} 5	100 ^{&}	3942.9	(7^{-})
4873	2-,3-,4-	$2122^{af} 3$	100 ^a 58	2750.76	3-
		2990 ^a 4	≤344 ^a	1883.20	2+
4910.6	1,2+	3027.7 ^f 14	11 6	1883.20	2+
		3254.4 10	13 6	1655.91	0+
		3833.1 <i>4</i>	100 12	1077.37	2+
4951.5	1-,2-,3-	1767.2 <i>4</i>	30 6	3184.18	1,2+
		3068.8 8	37 9	1883.20	2+
4062.0		3874.1 8	100 23	1077.37	2 ⁺
4963.0		3885.5 7	100 100 ^a	1077.37	2 ⁺ 0 ⁺
4982		4982 ^a 6		0.0	-
4992.0	1,2+	3107.5 ^f 15	85 41	1883.20	2+
		3913.9 18	100 29	1077.37	2 ⁺ 0 ⁺
5146		4992.0 <i>11</i> 2732 <i>af 4</i>	76 <i>18</i> 100 <i>47</i>	0.0 2417.40	0 · 4 ⁺
3140		4069^{af} 5			-
5107.7			<6	1077.37	2+
5187.7		2770.4 <i>7</i> 4109.8 <i>13</i>	100 <i>30</i> 31 <i>14</i>	2417.40 1077.37	4 ⁺ 2 ⁺
5283.4		2866.1 7	100 30	2417.40	4 ⁺
3203.4		2800.1 / 2944.5 f 9			
			52 <i>15</i> 52 <i>17</i>	2338.45	2 ⁺ 2 ⁺
5298.0	$1^{-},2^{+}$	3399.8 <i>11</i> 2547.0 <i>4</i>	52 17 100 30	1883.20 2750.76	3-
3298.0	1 ,2	2547.04 $2959.7f$ 8			
		_, , , , ,	43 13	2338.45	2 ⁺
		3415.6 9	91 26	1883.20	2+

 γ ⁽⁶⁸Zn) (continued)

 $\Gamma_0/\Gamma=0.85$ from (γ,γ') .

Mult.: from $\gamma(\theta)$ (lin pol) in (γ, γ') .

Mult.

2+

 0^{+}

 0^{+}

3+

4+

2+

 0^{+}

2+

3-

4+

2+

 (9^{-})

2+

 0^{+}

2+

 0^{+}

J

E1

Qe

Qe

 Q^e

 Q^e

Qe

1077.37

1655.91

3009.27

2417.40

1883.20

1077.37

2750.76

2417.40

2338.45

2417.40

4865.9

2821.79

1655.91

1077.37

X

1506.0+x J+2

3223.0+x J+4

5141.1+x J+6

7262.1+x J+8

9593.1+x J+10

12148.2+x J+12

14943+x J+14

0.0

0.0

0.0

0.0

Comments

 E_{γ}^{\dagger}

4221.7 17

5297.3 11

3651.5 10

2391.2 6

2982.9 6

3519.4 6

5403.9 8

4337.3 15

5415.3 9

2814.4 11

3147.3 11

 3226.4^{f} 7

1124.7[&] 5

3276.3 6

4540<mark>b</mark>

5706^b

6285^b

7362^b

1506^c

1717^c

1918^c

2121^c

2331^c

2555^c

2795^c

3073*cf*

[@] D+Q from $\gamma\gamma(\theta)$, M1+E2 from comparison to RUL. & From 208 Pb(64 Ni,X γ). Δ E γ =0.5 keV assumed by evaluator.

^c From 26 Mg(48 Ca, α 2n γ). Δ E γ =1 keV assumed by evaluator.

[†] From (n,γ) E=thermal, except where noted.

From ce data in $(p,p'\gamma)$ or ⁶⁸Ga ε decay.

 E_i (level)

5298.0

5307.5

5400.4

5403.2

5415.3

5565.0

5693.8

5990.7

7362.3

1506.0+x J+2

3223.0+x J+4

5141.1+x J+6

7262.1+x J+8

9593.1+x J+10

12148.2+x J+12

[‡] From ⁶⁸Ga ε decay.

^a From $(n,n'\gamma)$. ^b From (γ, γ') .

J+14

J+16

14943 + x

18016+x?

15

 $1,2^{+}$

 1.2^{+}

 (11^{-})

1-

 I_{γ}^{\dagger}

29 15

30 7

50 11

100 30

100 22

76 10

100 37

57 12

58 18

52 16

100 14

100

100<mark>&</mark>

 γ (68Zn) (continued)

 $[^]d$ D,E2 from RUL; ΔJ^{π} =2,no from level scheme. e From $\gamma(\theta)$ in $^{26}{\rm Mg}(^{48}{\rm Ca},\alpha 2{\rm n}\gamma)$. f Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

	Histo	ory	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	G. Gürdal, E. A. Mccutchan	NDS 136, 1 (2016)	1-Jul-2016

 $\begin{array}{lll} Q(\beta^-) = -654.6 \ 16; \ S(n) = 9218.4 \ 21; \ S(p) = 11117.5 \ 24; \ Q(\alpha) = -5983.3 \ 24 & 2012Wa38 \\ S(2n) = 15700.5 \ 21; \ S(2p) = 20679 \ 4 \ (2012Wa38). & \end{array}$

 α : Additional information 1.

⁷⁰Zn Levels

Cross Reference (XREF) Flags

_		A B C D E F	⁷⁰ Cu $β$ ⁻ decay (44.5 s) ⁷⁰ Cu $β$ ⁻ decay (33 s) ⁷⁰ Cu $β$ ⁻ decay (6.6 s) ⁷⁰ Ga $ε$ decay ⁶⁸ Zn(t,p) ⁷⁰ Zn(p,p'),(pol p,p')	$\begin{array}{llll} \textbf{G} & ^{70}\textbf{Z}n(\textbf{p},\textbf{p}'\gamma) & \textbf{M} & ^{208}\textbf{Pb}(^{64}\textbf{Ni},\textbf{X}\gamma) \\ \textbf{H} & ^{70}\textbf{Z}n(\alpha,\alpha') & \textbf{N} & ^{238}\textbf{U}(^{76}\textbf{Ge},\textbf{X}\gamma) \\ \textbf{I} & ^{70}\textbf{Z}n(\textbf{n},\textbf{n}'\gamma) & \textbf{0} & ^{70}\textbf{Z}n(\textbf{d},\textbf{d}') \\ \textbf{J} & ^{70}\textbf{Z}n(\textbf{e},\textbf{e}') & \textbf{P} & ^{70}\textbf{Z}n(^{3}\textbf{He},^{3}\textbf{He}') \\ \textbf{K} & \textbf{Coulomb excitation} & \textbf{Q} & ^{73}\textbf{Ge}(\textbf{n},\alpha) \\ \textbf{L} & ^{71}\textbf{Ga}(\textbf{d},^{3}\textbf{He}) & & & & & & & & & & & & & & & & & & &$
E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0‡	0+	≥3.8×10 ¹⁸ y	ABCDEFGHIJKLMNOPQ	$\%2\beta^-$ =? T _{1/2} : from 2011Be39 for 2ν2β ⁻ decay; also determined T _{1/2} ≥3.2×10 ¹⁹ for 0ν2β ⁻ decay. Others: ≥2.3×10 ¹⁷ for 2ν2β ⁻ decay and ≥1.8×10 ¹⁹ for 0ν2β ⁻ decay (2010Be41, 2010BeZO, 2009Be27, earlier results by same group as 2011Be39), ≥2.2×10 ¹⁷ (2007B115, 2006Zu02), ≥1.3×10 ¹⁶ for 2ν2β ⁻ decay and ≥0.7×10 ¹⁸ for 0ν2β ⁻ decay (2005Da47), ≥1.3×10 ¹⁶ (2003Ki08), >4.8×10 ¹⁴ y (1952Fr23).
884.92 [‡] 8	2+	3.65 ps <i>21</i>	ABC EFGHIJKLMNOPQ	Q=-0.233 22 (1976Ne06); μ =+0.76 4 (2009Mu06) β_2 =0.20 (1993Mo15) μ : from transient field technique in Coulomb Excitation. Others: +0.76 8 (2002Ke02), 0.82 20 (1979BrZP), 0.60 18 (1977HaZW), all from transient field technique in Coulomb Excitation, and 0.60 14 (1979Fa06) from IMPAC. T _{1/2} : weighted average of 3.67 ps 21 from DSAM and 3.60 ps 35 from RDDS, both in Coulomb Excitation. Others: 3.7 ps 12 from RDDS in ²³⁸ U(⁷⁶ Ge,X γ), 2.5 ps 2 from B(E2)=0.205 19 in (e,e'), 3.3 ps 3 from B(E2)=0.160 14 in Coulomb Excitation. J ^{π} : L(t,p)=2. Q: from (e,e'); extracted using anharmonic-vibrator model and is model dependent. β_2 : from (pol p,p'). Other: 0.220 from (α , α ').
1070.76 9	0+	3.90 ns <i>20</i>	CEGIKL	$T_{1/2}$: from $(p,p'\gamma)$. J^{π} : $L(t,p)=0$.
1554 [@] 5 1759.16 <i>10</i>	2+	1.32 ps <i>21</i>	F H BC EF HIJKL	 μ=+0.94 44 (2009Mu06) XREF: E(1767)F(1764). J^π: L(p,p')=2, L(d, ³He)=1(+3), strong population in Coulomb excitation. T_{1/2}: from DSAM in Coulomb Excitation. Others: 1.4 ps 4 from B(E2)=0.0050 <i>13</i> from (e,e'), 0.24 ps +24-12 from DSAM in (n,n'γ). μ: from transient field technique in Coulomb excitation. Other: +0.84 38 from reanalysis of transient field data (2010Mo14).
1786.75 [‡] 10	4+	2.9 ps 8	AB EF I KLMN	μ =+1.48 56 (2009Mu06)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$	XREF		Comments
					$\overline{J^{\pi}\colon L(t,p)=4}.$
					$T_{1/2}$: weighted average of 2.0 ps +9-11 from RDDS in 238 U(76 Ge,X γ) and 3.4 ps 8 from RDDS in Coulomb Excitation. Other: 1.32 ps 14 from DSAM in Coulomb Excitation (2009Mu06).
					μ: from transient field technique in Coulomb excitation. Other: +0.84 52 from reanalysis of transient field data (2010Mo14).
1957.28 <i>12</i>	2+		C EF HI KL	Q	XREF: H(1945). J^{π} : L(t,p)=2.
2140.64 17	0_{+}		C EF I L		XREF: $F(2150)L(2126)$. J^{π} : $L(t,p)=0$.
2375 [@] 5	$(2,1,3)^+$		FΗ	Q	XREF: Q(2300?).
2538.31 <i>11</i>	2+	0.21 ps +28-8	B F I KL		J^{π} : L(p,p')=2. T _{1/2} : from DSAM in (n,n' γ).
		·			J ^{π} : from L(d, 3 He)=1+3 and J=2 from $\gamma(\theta)$ in (n,n' γ). 2004Va08 in 70 Cu β^- decay (33 s) assign (3 ⁺) to this level, however, this is unlikely given its direct population in Coulomb excitation. L(p,p')=(0) is discrepant.
2665 [@] 5 2693.40 <i>11</i>	2 ⁺ 4 ⁺	0.28 ps +35-14	EF L AB EF I K		J^{π} : L(t,p)=2. T _{1/2} : from DSAM in (n,n' γ).
	•	0.20 ps 135 17			J^{π} : $L(p,p')=4$.
2805 [@] 5 2859.49 <i>11</i>	3-	0.201 ps <i>14</i>	F B EF HI K		β_3 =0.20 (1993Mo15) J ^{π} : L(t,p)=3; analyzing power consistent with 3 ⁻ in (pol p,p').
					β_3 : from (pol p,p'). T _{1/2} : from DSAM in Coulomb Excitation.
2895.10 [‡] <i>13</i> 2949.67 <i>18</i>	(6 ⁺) 1 ⁺ ,2 ⁺ ,3 ⁺	0.042 ps +21-14	A K MN I KL		J^{π} : 1108 γ to 4 ⁺ , band assignment. XREF: L(?). J^{π} : M1+E2 2064 γ to 2 ⁺ . $T_{1/2}$: from DSAM in (n,n' γ).
2954 [@] 5			F		E(level): possibly the same as 2949.2-keV level, although $L(p,p')=(1)$ is discrepant with Adopted J^{π} .
2978.26 23	4 ⁺		B EF K		$J^{\pi} \colon L(t,p)=4.$
3022 [#] 10			L		E(level): possibly the same as 3037.6-keV level, although $L(d,^3He)=(1)$ is discrepant with Adopted J^{π} .
3038.15 11	5-	1.04 ps 7	AB EF HIK MN		J^{π} : L(p,p')=5, L(t,p)=(5), population in Coulomb Excitation makes $J^{\pi}=4^-$ or 6^- unlikely. $J^{\pi}=4^-$ proposed in $(n,n'\gamma)$ based on population strength and $J^{\pi}=4^+$ proposed in $^{208}\text{Pb}(^{64}\text{Ni},X\gamma)$.
					$T_{1/2}$: from DSAM in Coulomb Excitation. Configuration= $((\pi 2p_{3/2})^2(\nu 2p_{1/2})^{-1}(\nu 1g_{9/2}))$
2222 09 10	1		.		(2004Va08). J^{π} : from $\gamma(\theta)$ in $(n,n'\gamma)$.
3222.08 <i>10</i> 3235 <i>5</i>	3 ⁺ ,4 ⁺ ,5 ⁺		I EF		E(level): from (p,p') . J^{π} : from $L(p,p')=4$.
3246.71 <i>11</i>	(3-,4+)		В		J ^{π} : from L(p,p) =4. J ^{π} : strong β feeding from J ^{π} =3 ⁻ parent, 209 γ to 5 ⁻ , 708 γ to 2 ⁺ .
@					E(level): possibily the same as the 3235-keV level.
3328 [@] 5 3342.0 <i>3</i>	(0^+) 3 ⁻		EF A E H		$J^{\pi}: L(t,p)=(0).$ $J^{\pi}: L(\alpha,\alpha')=3.$
3419 [@] 5	(3)-		EF		J^{π} : $L(t,p)=(3)$, $L(p,p')=3$.

E(level) [†]	J^π	XREF	Comments
3464 [@] 5	4+	EF H	J^{π} : $L(t,p)=4$.
3476.68 <i>14</i> 3506 [@] 5		A M	777 7 / / / / / / / / / / / / / / / / /
3506 3 3598.98 <i>14</i>	5-	EF H L A M	J^{π} : L(t,p)=5, L(p,p')=5; L=1 in (d, 3 He) is discrepant.
3634.99 22	2+	C EF L	J^{π} : L(t,p)=2.
3680 [@] 5	0^{+}	EF H L	J^{π} : L(t,p)=0; L=1(+3) in (d, ³ He) is discrepant.
3710.7 6	2+	EF I	$J^{\pi}: L(t,p)=2.$
3750 [@] 5	$(0^-,1^-,2^-)$	EF	J^{π} : $L(p,p')=(1)$.
3755.4‡ 10	(8^{+})	MN	J^{π} : 860 γ to (6 ⁺), band assignment.
3788.16 22		A M	
3813 [@] 5	1-	EF	E(level): possible doublet; $L(p,p')=(1)+4$.
3844 [@] 5 3848.4 6	1 ⁻ (5,6 ⁺)	EF h A	J ^{π} : L(t,p)=1. J ^{π} : direct β ⁻ feeding from J ^{π} =6 ⁻ parent, 2062 γ to 4 ⁺ .
3888 [@] 5	(3,0°) (4) ⁺	EF h	J. threat p Teeting from $J = 0$ parent, 2002y to 4. J^{π} : L(p,p')=4.
3904.0 <i>4</i>	$(5,6^+)$	A A	J^{π} : direct β^{-} feeding from $J^{\pi}=6^{-}$ parent, 2117 γ to 4 ⁺ .
3914 <i>10</i>	(- /- /	E	
3948 [@] 5	1-	EF	J^{π} : $L(t,p)=1$.
3999 10	2+	Е Н	J^{π} : L(t,p)=2.
4001.46 <i>15</i>	$(5,6,7^{-})$	A	E(level): from (t,p). J^{π} : direct β^{-} feeding from $J^{\pi}=6^{-}$ parent, 963 γ to 5 $^{-}$.
4016 <i>10</i>	3 ⁺ ,4 ⁺ ,5 ⁺	EF	E(level): doublet in (t,p).
	- , - ,-		J^{π} : $L(p,p')=4$.
4061.40 16	$(5,6,7^{-})$	A	J^{π} : direct β^{-} feeding from $J^{\pi}=6^{-}$ parent, 1023 γ to 5 ⁻ .
4066 [@] 10	4+	EF	J^{π} : $L(t,p)=4$.
4136 [@] 10	$2^+,1^+,3^+$	EF	J^{π} : L(p,p')=2.
4146.1 <i>3</i> 4172 [@] <i>10</i>	<u>-</u>	I	J^{π} : proposed as 3 ⁻ in (n,n' γ) based on population strength.
4172 10	5-	F H	XREF: H(4200). J^{π} : L(p,p')=5, L(α,α')=5.
4264.5 7	$(5,6,7^{-})$	A	J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent, 1226 γ to 5 ⁻ .
4291 <i>10</i>	2+	EF	E(level): weighted average of 4297 10 from (t,p) and 4284 10 from (p,p').
			J^{π} : $L(t,p)=L(p,p')=2$.
4308.99 <i>18</i> 4367 <i>10</i>	$(5,6,7^{-})$ $3^{+},4^{+},5^{+}$	A F F	J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent, 1271 γ to 5^- . J^{π} : L(p,p')=4.
4444 10	3 ⁺ ,4 ⁺ ,5 ⁺	F	J^{π} : $L(p,p')=4$. J^{π} : $L(p,p')=4$.
4464.77 <i>17</i>	$(5,6,7^{-})$	A	J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent, 1426.5 γ to 5 ⁻ .
4514.27 23	$(5,6,7^{-})$	A	J^{π} : direct β^{-} feeding from $J^{\pi}=6^{-}$ parent, 1476 γ to 5 ⁻ .
4558.2 3	$(5,6^+)$	A	J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent, 2771 γ to 4 ⁺ .
4588.8 <i>3</i> 4710.1 <i>5</i>	$(5,6,7^{-})$ (5,6,7)	A A	J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent, 1551 γ to 5 ⁻ . J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent.
4791.7 <i>10</i>	(5,6,7)	A	J^{π} : direct β^{-} feeding from $J^{\pi}=6^{-}$ parent.
4849.2 <i>3</i>	$(5,6^+)$	A	J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent, 3062γ to 4^+ .
4935.9 [‡] <i>14</i>	(10^+)	MN	J^{π} : 1180.5 γ to (8 ⁺), band assignment.
5061.3 5	(5,6,7)	A	J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent.
6116.2 [‡] <i>17</i>	(12^{+})	MN	J^{π} : 1180.3 γ to (10 ⁺), band assignment.

 $^{^{\}dagger}$ From a least-squares fit to E γ , by evaluators, for levels connected by γ rays. For levels from transfer reactions, corresponding † Band(A): yrast band. # From (d,³He). @ From (p,p'),(pol p,p').

Adopted Levels, Gar	mmas (continued)

						zaspita Beri	out, cuminas (co		Ī
							γ (⁷⁰ Zn)		
$E_i(level)$	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_j^r$	Mult.‡	$\delta^{\#}$	α	$\mathrm{I}_{(\gamma+ce)}$	Comments
884.92	2+	884.88 9	100	0.0	E2		3.97×10 ⁻⁴		$\alpha(K)$ =0.000356 5; $\alpha(L)$ =3.58×10 ⁻⁵ 5; $\alpha(M)$ =5.12×10 ⁻⁶ 8; $\alpha(N)$ =2.04×10 ⁻⁷ 3 B(E2)(W.u.)=16.7 10 Mult.: from Coulomb Excitation from 0 ⁺ ground state.
1070.76	0+	185.85 [@] 3	100	884.92 2	F [E2]		0.0634		$\alpha(K)$ =0.0563 8; $\alpha(L)$ =0.00613 9; $\alpha(M)$ =0.000871 13; $\alpha(N)$ =3.07×10 ⁻⁵ 5 B(E2)(W.u.)=37.3 19 E _Y : other: 184.4 2 in (n,n' γ).
		1067		0.0 0	F E0			<0.3	$I_{(\gamma+ce)}$: for 100 transitions of 185.9 γ as measured in $(p,p'\gamma)$. Mult.: from internal conversion data in $(p,p'\gamma)$. E_{γ} : from $(p,p'\gamma)$.
1759.16	2+	874.33 [@] 8	100 [@] 9	884.92 2	+ M1+E2	+0.75 15	3.58×10 ⁻⁴ 9		$\alpha(K)$ =0.000321 9; $\alpha(L)$ =3.21×10 ⁻⁵ 9; $\alpha(M)$ =4.61×10 ⁻⁶ 12; $\alpha(N)$ =1.85×10 ⁻⁷ 5 B(E2)(W.u.)=10 4; B(M1)(W.u.)=0.0095 23 Mult: D+Q from $\gamma(\theta)$ in (n,n' γ), $\Delta\pi$ =no from level scheme.
		1759.6 [@] 2	68 [@] 7	0.0	F [E2]		2.86×10^{-4}		$\alpha(K)=7.92\times10^{-5}\ 11;\ \alpha(L)=7.86\times10^{-6}\ 11;$ $\alpha(M)=1.127\times10^{-6}\ 16;\ \alpha(N)=4.56\times10^{-8}\ 7$ B(E2)(W.u.)=0.60 12
1786.75	4+	901.7 <i>1</i>	100	884.92 2	F [E2]		3.78×10^{-4}		$\alpha(K)$ =0.000339 5; $\alpha(L)$ =3.41×10 ⁻⁵ 5; $\alpha(M)$ =4.88×10 ⁻⁶ 7; $\alpha(N)$ =1.95×10 ⁻⁷ 3 B(E2)(W.u.)=19 6
1957.28	2+	1072.2 [@] 1	100	884.92 2					
2140.64	0+	1255.6 ^a 2	100	884.92 2					(T) 0000740 0 (T) 740 40 5 0 (T) 700 40 6
2538.31	2+	751.5 ^a 2	≈18 ^a	1786.75 4 ⁻	F [E2]		6.06×10^{-4}		$\alpha(K)$ =0.000543 8; $\alpha(L)$ =5.49×10 ⁻⁵ 8; $\alpha(M)$ =7.86×10 ⁻⁶ 11; $\alpha(N)$ =3.11×10 ⁻⁷ 5 B(E2)(W.u.)=73 44
		779.1 [@] 2	40 [@] 4	1759.16 2					I_{γ} : other: 58 in $(n,n'\gamma)$.
		1653.9 [@] 2	100 [@] 7	884.92 2	+ M1+E2	-1.5 3	2.39×10 ⁻⁴ 5		$\alpha(K)=8.78\times10^{-5}$ 14; $\alpha(L)=8.72\times10^{-6}$ 14; $\alpha(M)=1.250\times10^{-6}$ 19; $\alpha(N)=5.06\times10^{-8}$ 8 B(E2)(W.u.)=4.9 +49-21; B(M1)(W.u.)=0.0040 +40-20 Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta\pi=$ no from level scheme.
		2537.9 ^a 3	20 ^a	0.0	F [E2]		6.18×10 ⁻⁴		$\alpha(K)=4.09\times10^{-5}\ 6$; $\alpha(L)=4.05\times10^{-6}\ 6$; $\alpha(M)=5.81\times10^{-7}$ 9; $\alpha(N)=2.36\times10^{-8}\ 4$ B(E2)(W.u.)=0.17 10
2693.40	4+	735.5 ^a 2	11 ^a	1957.28 2	F [E2]		6.43×10^{-4}		$\alpha(K)$ =0.000576 8; $\alpha(L)$ =5.82×10 ⁻⁵ 9; $\alpha(M)$ =8.33×10 ⁻⁶ 12; $\alpha(N)$ =3.30×10 ⁻⁷ 5 B(E2)(W.u.)=26 +26-14
		906.5 1	92 12	1786.75 4	ŀ				A Maria Maria

γ (70Zn) (continued)

	$E_i(level)$	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	$\delta^{\#}$	α	Comments
	2693.40	4+	934.9 ^a 3	30 ^a	1759.16	2+	[E2]		3.46×10 ⁻⁴	$\alpha(K)$ =0.000310 5; $\alpha(L)$ =3.12×10 ⁻⁵ 5; $\alpha(M)$ =4.46×10 ⁻⁶ 7; $\alpha(N)$ =1.782×10 ⁻⁷ 25 B(E2)(W.u.)=21 +21-12
			1809.2 ^a 3	100 ^a 16	884.92	2+	[E2]		3.04×10^{-4}	$\alpha(K)=7.51\times10^{-5}\ 11;\ \alpha(L)=7.46\times10^{-6}\ 11;\ \alpha(M)=1.069\times10^{-6}\ 15;$ $\alpha(N)=4.32\times10^{-8}\ 6$
	2859.49	3-	902		1957.28	2+				B(E2)(W.u.)= $2.6 + 26 - 15$ E _y : observed only in Coulomb Excitation.
			1072.2 ^{&} 1	100 ^{&} 13	1786.75	4+	[E1]		1.12×10^{-4}	$\alpha(K)$ =0.0001001 14; $\alpha(L)$ =9.94×10 ⁻⁶ 14; $\alpha(M)$ =1.423×10 ⁻⁶ 20; $\alpha(N)$ =5.74×10 ⁻⁸ 8
			1100.5 & 2	45 & 5	1759.16	2+	[E1]		1.15×10 ⁻⁴	B(E1)(W.u.)=0.00068 11 α (K)=9.54×10 ⁻⁵ 14; α (L)=9.47×10 ⁻⁶ 14; α (M)=1.356×10 ⁻⁶ 19; α (N)=5.47×10 ⁻⁸ 8 B(E1)(W.u.)=0.00028 5
			1975.0 ^{&} 4	93 & 7	884.92	2+	[E1]		6.56×10 ⁻⁴	$\alpha(K)=3.61\times10^{-5} 5$; $\alpha(L)=3.57\times10^{-6} 5$; $\alpha(M)=5.11\times10^{-7} 8$; $\alpha(N)=2.07\times10^{-8} 3$ B(E1)(W.u.)=0.000100 13
	2895.10	(6^+)	1108.4 <i>I</i>	100	1786.75					D(E1)(W.u.)=0.000100 13
ı	2949.67	1+,2+,3+	1191.9 ^a 3	72 ^a	1759.16				101 10-1	gr) 7 or 40-5 o gr) 7 or 40-6 o gr o 24 40-7 to
			2064.1 ^a 2	100 ^a	884.92	2*	M1+E2	+3.8 5	4.04×10^{-4}	$\alpha(K)=5.87\times 10^{-5}~9;~\alpha(L)=5.82\times 10^{-6}~9;~\alpha(M)=8.34\times 10^{-7}~12;~\alpha(N)=3.38\times 10^{-8}~5$ B(E2)(W.u.)=11 +4-6; B(M1)(W.u.)=0.0022 +10-13 Mult.: D+Q from $\gamma(\theta)$ in (n,n' γ), E1+M2 excluded by comparison to RUL.
	2978.26	4+	1191.5 <mark>&</mark> 2	100	1786.75	4+				
	3038.15	5-	1251.7 <i>I</i>	100	1786.75	4+	[E1]		1.68×10^{-4}	$\alpha(K)=7.56\times10^{-5}$ 11; $\alpha(L)=7.49\times10^{-6}$ 11; $\alpha(M)=1.073\times10^{-6}$ 15; $\alpha(N)=4.34\times10^{-8}$ 6 B(E1)(W.u.)=0.000195 14
	3222.08	1	2155.0 ^{ac} 1	≈33 ^a	1070.76					E_{γ} : level energy difference gives E_{γ} =2151.3, transition not included in least-squares fitting.
			3222.0^a 1	$\approx 100^{a}$	0.0					
	3246.71	$(3^-,4^+)$	208.75 ^{&} 7	55 <mark>&</mark> 4	3038.15					
			387.10 ^{&} 5	54& 4	2859.49					
			553.2 ^{&} 1	28 ^{&} 4	2693.40					
			708.42 ^{&} 7 1460.4 ^{&} 2	100 ^{&} 5 20 ^{&} 4	2538.31					
	3342.0	3-	1460.4 ² 2 1555.2 <i>3</i>	100	1786.75 1786.75					
	3476.68	5	438.2 2	22.2 10	3038.15					
			783.1 2	7.8 10	2693.40	4+				
	2500 00		1690.3 2	100.0 16	1786.75					
ļ	3598.98		560.82 8	100	3038.15	3				

S

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\underline{\hspace{1cm}}^{\hspace{1cm}} E_f \hspace{1cm} \underline{\hspace{1cm}}^{\hspace{1cm}} J_f^{\pi}$
3634.99	2+	1875.8 [@] 2	100	1759.16 2 ⁺	4464.77	$(5,6,7^{-})$	988.0 <i>3</i>	28 <i>3</i>	3476.68
3710.7	2+	1951.5 ^a 6	100	1759.16 2+			1426.5 2	100 4	3038.15 5
3755.4	(8^{+})	860.3 ^b	100	2895.10 (6+)			1569.8 2	32 <i>3</i>	2895.10 (6 ⁺)
3788.16		750.0 2	63 4	3038.15 5	4514.27	$(5,6,7^{-})$	1476.1 2	100	3038.15 5
		893.1 <i>6</i>	100 5	2895.10 (6 ⁺)	4558.2	$(5,6^+)$	1520.1 <i>3</i>	67 5	3038.15 5
3848.4	$(5,6^+)$	2061.6 6	100	1786.75 4 ⁺			2771.2 6	100 4	1786.75 4 ⁺
3904.0	$(5,6^+)$	2117.2 4	100	1786.75 4 ⁺	4588.8	$(5,6,7^{-})$	1550.6 <i>3</i>	100	3038.15 5
4001.46	$(5,6,7^{-})$	963.3 <i>1</i>	100	3038.15 5-	4710.1	(5,6,7)	1815.0 <i>5</i>	100	2895.10 (6+)
4061.40	$(5,6,7^{-})$	584.7 <i>1</i>	100 8	3476.68	4791.7	(5,6,7)	1315 <i>1</i>	100	3476.68
		1023.3 2	70 7	3038.15 5	4849.2	$(5,6^+)$	1954.2 <i>3</i>	100 4	$2895.10 (6^{+})$
4146.1		1107.9 ^a 3	100	3038.15 5			3062.1 6	85 <i>4</i>	1786.75 4+
4264.5	$(5,6,7^{-})$	1226.3 7	100	3038.15 5-	4935.9	(10^+)	1180.5 ^b	100	$3755.4 (8^+)$
4308.99	$(5,6,7^{-})$	1270.8 2	100 5	3038.15 5	5061.3	(5,6,7)	2166.2 5	100	2895.10 (6 ⁺)
		1413.9 2	43 4	2895.10 (6 ⁺)	6116.2	(12^{+})	1180.3 ^b	100	4935.9 (10 ⁺)

 $^{^{\}dagger}$ From $^{70}\mathrm{Cu}~\beta^-$ decay (44.5 s), except where noted.

From $\gamma(\theta)$ in $(n,n'\gamma)$, except where noted.

From $\gamma(\theta)$ in $(n,n'\gamma)$.

@ From γ^{0} Cu β^{-} decay (6.6 s).

& From γ^{0} Cu β^{-} decay (33 s).

^a From $(n,n'\gamma)$. ^b From ²⁰⁸Pb(⁶⁴Ni,X γ).

^c Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Band(A): Yrast band

