Formale Grundlagen der Informatik I 2. Übungsblatt

Fachbereich Mathematik
Prof. Dr. Ulrich Kohlenbach

SoSe 2014 30. April 2014

Davorin Lešnik, Daniel Günzel, Daniel Körnlein

Gruppenübung

Aufgabe G4 (Induktionsbeweise)

- (a) Sei Σ ein endliches Alphabet. Zeige $|\Sigma^n| = |\Sigma|^n$ für alle $n \in \mathbb{N}$. (Σ^n ist die Menge der Wörter der Länge n über dem Alphabet Σ).
- (b) Zeige $|\mathcal{P}(M)| = 2^{|M|}$ für alle endlichen Mengen M.
- (c) Bestimme eine Formel für $|\Sigma^{\leq n}|$ und beweise ihre Richtigkeit für alle $n \in \mathbb{N}$. Dabei ist

$$\Sigma^{\leq n} := \bigcup_{0 \leq i \leq n} \Sigma^i$$

die Menge der Σ-Wörter mit einer Länge $\leq n$.

Aufgabe G5 (Sprachen)

Beweisen oder widerlegen Sie (mit einem Gegenbeispiel) die folgenden Gleichungen für beliebige Σ -Sprachen L_1, L_2 .

- (a) $(L_1 \cup L_2)^* = (L_1^* L_2^*)^*$
- (b) $(L_1L_2)^* \setminus \{\varepsilon\} = L_1(L_2L_1)^*L_2$
- (c) $(L_1L_2)^*(L_1L_2) = L_1(L_2L_1)^*L_2$

Aufgabe G6 (DFA)

Sei $\Sigma := \{0, 1\}$. Finden Sie DFA \mathscr{A}_i mit $L(\mathscr{A}_i) = L_i$ für

- (a) L_1 : {0, 1}-Wörter von gerader Länge mit genau dreimal 0.
- (b) L_2 : {0, 1}-Wörter die 10 und 01 als (nicht notwendigerweise disjunkte) Teilwörter enthalten.
- (c) L₃: {0, 1}-Wörter, in denen alle 1-Blöcke Länge 3n + 2 haben (für ein n ∈ N).
 (Ein 1-Block ist ein Teilwort, das nur aus dem Buchstaben 1 besteht und durch 0 bzw. Wortanfang oder Wortende begrenzt ist.)

Hausübung

Aufgabe H4 (Induktion)

(12 Punkte)

Sei t ein aus den Operationen + und · und der Konstanten 1 gebildeter Term. (Ein solcher Term kann als Wort über dem Alphabet $\{+,\cdot,1,(,)\}$ aufgefasst werden.) Beweisen Sie per Induktion über den Termaufbau, dass der Wert von t (bzgl. der üblichen Interpretation von $+,\cdot$ und 1) kleiner als $2^{|t|}$ ist.

Änderung: |t| ist die Länge des Terms t. Beispiel: Betrachte den Term $(1+(1+1))\cdot(1+1)$, mit Länge 15.

Aufgabe H5 (DFA) (12 Punkte)

Betrachten Sie das Alphabet $\Sigma = \{a, b, c, d\}$.

Geben Sie DFA an, die die folgenden Sprachen erkennen:

- (a) $L_1 = L((a(b+c+d))^*)$
- (b) $L_2 = L(a^+b^+c^+)$ (wobei $a^+ := a(a^*)$)
- (c) $L_3 = \overline{L_2}$

Aufgabe H6 (NFA) (12 Punkte)

Betrachten Sie den folgenden NFA \mathscr{A} :

Geben Sie zu ${\mathscr A}$ einen DFA ${\mathscr A}^{\det}$ an, der die gleiche Sprache akzeptiert.