- גבריאל ניבש Gabriel Nivasch

Search this site

Navigation

Home

CV

Academic

Teaching

Publications

Fun

Game of Life Impartial games

Inverse Ackermann without pain

Cycle detection and the stack algorithm

Hole in a cube

Photos

Contact

Fun >

Inverse Ackermann without pain

(Updated June 2009)

The inverse Ackermann function is an extremely slow-growing function which occasionally turns up in computer science and mathematics. The function is denoted $\alpha(n)$ (alpha of n).

This function is most well-known in connection with the <u>Union-Find problem</u>: The optimal algorithm for the Union-Find problem runs in time $O(m\alpha(n) + n)$, where n is the number of elements and m is the total number of Union and Find operations performed. (See Cormen et al., <u>Introduction to Algorithms, Second Edition</u>, Chapter 21, MIT Press, 2001.) (A more precise bound is $O(m\alpha(m, n) + n)$, with a two-parameter version of the inverse Ackermann function, which we will explain below.)

The inverse Ackermann function also arises in <u>computational</u> <u>geometry</u>. For example, the maximum complexity of the <u>lower</u> envelope of *n* segments in the plane is $\Theta(n\alpha(n))$. (See J. Matoušek, <u>Lectures on Discrete Geometry</u>, Chapter 7, Springer-Verlag, New York, 2002.)

For some reason the inverse Ackermann function gets much less attention than it deserves. This is probably due to the perception that just **defining** $\alpha(n)$ is **complicated**, never mind working with it.

It may come as a surprise, then, that there is a very **simple and elegant way** to define the inverse Ackermann function and derive its asymptotic properties. Moreover, there is no need to make any mention of *A*, the very quickly-growing <u>Ackermann function</u>.

In other words, dealing with $\alpha(n)$ does not have to be painful!

There are several different versions of the inverse Ackermann function in the literature. In fact, usually one needs to define a specific version of the function for each application. However, at the end of the day, all definitions yield equivalent asymptotic behavior; namely, we have $|\alpha(n) - \alpha'(n)| = O(1)$ for any two versions α and α' . Thus, it is convenient to have a **canonical definition** of $\alpha(n)$, which we would like to be as simple and elegant as possible.

The inverse Ackermann hierarchy

The **inverse Ackermann hierarchy** is a sequence of functions $\alpha_k(n)$, for k = 1, 2, 3, ..., where each function in the hierarchy grows much more slowly than the previous one.

Let [] denote the <u>ceiling</u> function (rounding *up* to the nearest integer). Then the inverse Ackermann hierarchy is defined as follows. We first let

$$\alpha_1(n) = [n / 2].$$

Then, for each $k \ge 2$, we let $\alpha_k(n)$ be the number of times we have to apply the function α_{k-1} , starting from n, until we reach 1. Formally, for $k \ge 2$, we let

$$\alpha_k(1) = 0;$$
 $\alpha_k(n) = 1 + \alpha_k(\alpha_{k-1}(n)), n \ge 2.$

The following table shows the first values of $\alpha_k(n)$:

We have $\alpha_2(n) = [\log_2 n]$, and $\alpha_3(n)$ is the <u>iterated logarithm</u> function, denoted $\log^* n$.

Claim 1: If $n \ge 4$ then $\alpha_k(n) \le n - 2$.

Proof: By induction on k. The case k = 1 is clear. So assume $k \ge 2$.

If n = 4, then $\alpha_k(n) = 2$; and if n = 5 or 6, then $\alpha_k(n) = 3$. So let $n \ge 7$. Then, by induction on k and n,

$$\alpha_k(n) = 1 + \alpha_k(\alpha_{k-1}(n)) \le 1 + \alpha_k(n-2) \le 1 + n - 4 < n - 2.$$
 QED

Claim 2: We have $\alpha_{k+1}(n) \le \alpha_k(n)$ for all k and n. Moreover, for $k \ge 2$ the inequality is strict if and only if $\alpha_k(n) \ge 4$.

Proof: The claim is easily established for $\alpha_k(n) \le 3$, so suppose $\alpha_k(n) \ge 4$. By Claim 1,

$$\alpha_{k+1}(n) = 1 + \alpha_{k+1}(\alpha_k(n)) \le 1 + \alpha_k(n) - 2 < \alpha_k(n)$$
. QED

Corollary 3: We have $\alpha_k(n) = o(n)$ for all $k \ge 2$.

Proof: By Claim 2, since $\alpha_2(n) = \Theta(\log n) = o(n)$. QED

Claim 4:We have $\alpha_{k+1}(n) = o(\alpha_k(n))$ for all $k \ge 1$.

Proof: By Corollary 3 we have

$$\alpha_{k+1}(n) = 1 + \alpha_{k+1}(\alpha_k(n)) = 1 + o(\alpha_k(n)).$$
 QED

In fact, Claim 4 can be strengthened. Given an integer $r \ge 1$, let $f^{(r)}$ denote the r-th-fold composition of the function f. Then,

Claim 5: $\alpha_{k+1}(n) = o(\alpha_k^{(r)}(n))$ for all fixed k and r.

Proof: Iterating *r* times the definition of $\alpha_{k+1}(n)$, and applying Corollary 3,

$$\alpha_{k+1}(n) = r + \alpha_{k+1}(\alpha_k^{(r)}(n)) = r + o(\alpha_k^{(r)}(n)).$$
 QED

Thus, we have $\log^* n = o(\log \log \log n)$, $\alpha_4(n) = o(\log^* \log^* \log \log^* \log^* n)$, etc.

The inverse Ackermann function

By Claim 2, for every fixed $n \ge 5$, the sequence

$$\alpha_1(n)$$
, $\alpha_2(n)$, $\alpha_3(n)$, ...

decreases strictly until it settles at 3. For example, for n = 9876! we obtain the sequence

The **inverse Ackermann function** $\alpha(n)$ assigns to each integer n the smallest k for which $\alpha_k(n) \le 3$:

$$\alpha(n) = \min \{ k : \alpha_k(n) \le 3 \}.$$

Thus, $\alpha(9876!) = 5$.

Claim 6: We have $\alpha(n) = o(\alpha_k(n))$ for every fixed k.

Proof: Let $m = \alpha_{k+1}(n)$. Then the (m-2)-nd term of the sequence

$$\alpha_{k+1}(n), \alpha_{k+2}(n), \alpha_{k+3}(n), ...,$$

namely $\alpha_{k+m-2}(n)$, already equals 3. Thus,

$$\alpha(n) \le k + m - 2 = k - 2 + \alpha_{k+1}(n) = o(\alpha_k(n))$$
. QED

The two-parameter version of the inverse Ackermann function

There is also a **two-parameter version** of the inverse Ackermann function that sometimes comes up (for example, in the running time of the Union-Find algorithm mentioned above). This two-parameter function can be defined as:

$$\alpha(m, n) = \min \{ k : \alpha_k(n) \le 3 + m / n \}.$$

This definition differs by at most a small additive constant from the "usual" definition of $\alpha(m,n)$ found in the literature. And as before, we defined it directly, without making mention of the rapidly-growing Ackermann function.

The function $\alpha(m, n)$ satisfies the following properties:

- ∘ $\alpha(m, n) \leq \alpha(n)$ for every m and n.
- $\alpha(m, n)$ is nonincreasing in m.
- ∘ If $m = n\alpha_k(n)$ then $\alpha(m, n) \le k$.

See also

R. Seidel, <u>Understanding the inverse Ackermann function</u> (PDF presentation).