Lecture #4 Recursion (2)

Algorithm
JBNU
Jinhong Jung

In This Lecture

☐ How to obtain the closed solution of a recursive time complexity?

```
def power(a, n):
    if n == 0:
        return 1
    else:
        return power(a, n-1) * a
```

$$T(n) = \begin{cases} C & n = 0 \\ T(n-1) + C & n > 0 \end{cases}$$

Q. What is its closed solution?

- Method 1) Subsitute method
- Method 2) Mathematical induction
- Method 3) Master theorem

Outline

□ Repeated Substitution

■ Mathematical Induction

☐ Master Theorem

Repeated Substitution (1)

☐ Basic idea of repeated substitution

 Repeatedly substitute the function whose input size decreases toward a base case

$$\square$$
 Example: $T(n) = T(n-1) + C$

■ T(1) = C as its base case

$$T(n) = T(n-1) + C$$

$$= T(n-1) + C$$

$$= T(n-2) + 2C$$

$$= T(n-3) + 3C$$

$$= \cdots$$

$$= T(1) + (n-1)C = Cn = \Theta(n)$$

Repeated Substitution (2)

$$\square$$
 Example: $T(n) \le 2T\left(\frac{n}{2}\right) + n$

■ T(1) = C as its base case

$$T(n) \le 2T\left(\frac{n}{2}\right) + n$$

$$\le 2\left(2T\left(\frac{n}{4}\right) + \frac{n}{2}\right) + n = 2^2T\left(\frac{n}{2^2}\right) + 2n$$

$$\le 2^2\left(2T\left(\frac{n}{2^3}\right) + \frac{n}{2^2}\right) + 2n = 2^3T\left(\frac{n}{2^3}\right) + 3n$$

$$= \cdots$$

Assume
$$n = 2^k \rightarrow \leq 2^k T\left(\frac{n}{2^k}\right) + kn = nT(1) + n\log n$$

 $\leq nC + n\log n = O(n\log n)$

Assumption on $n = 2^k$

Details

- $\square n = 2^k$ is often assumed for computational ease.
 - Fact: $n \le 2^k \le 2n$ (see the appendix)
 - If $T(n) = O(n^r)$, then $T(2n) = O((2n)^r) = O(2^r n^r) = O(n^r)$.
 - i.e., T(n) = T(2n)

- Suppose T(n) is monotonically increasing as $n \to \infty$.
 - \circ e.g., T(n) is polynomial & its leading coefficient is positive.
 - $n \le 2^k \le 2n \Leftrightarrow T(n) \le T(2^k) \le T(2n)$
 - $\circ \Leftrightarrow T(n) = T(2^k) = T(2n)$ because T(n) = T(2n).

■ Thus, it's okay that we assume the size n of input is 2^k .

Repeated Substitution

☐ Pros

- Intuitive and easy to calculate
- Effective for a recursive complexity in a simple form

☐ Cons

- Prone to make mistakes
- Require a lot of efforts when we apply the method to a complicated complexity function
 - Try to solve the following problem using repeated substitution

$$T(n) = 3T\left(\frac{n}{4}\right) + \sqrt{n} \times \log n$$

Outline

☐ Repeated Substitution

■ Mathematical Induction

■ Master Theorem

Mathematical Induction (1)

☐ Basic idea of mathematical induction

 Estimate the closed solution of a recursive complexity, and then prove it by induction

□ Example

■ Given $T(n) \le 2T(n/2) + n$, let its closed solution be $T(n) \le cn \log n$ for positive c and large n

Base case

• If n = 2, there is always positive c such that $T(2) \le c2 \log 2$

Inductive step

- **Previous case**: assume the claim holds for n = k/2
- Next case: does the claim hold for n = k?

Mathematical Induction (2)

☐ Inductive step

- Previous case: assume it's true for $\frac{k}{2} \Rightarrow T\left(\frac{k}{2}\right) \le c\left(\frac{k}{2}\right)\log\frac{k}{2}$
- Next case: does the claim hold for n = k?

$$T(k) \leq 2T\left(\frac{k}{2}\right) + k$$

$$\leq 2c\left(\frac{k}{2}\right)\log\frac{k}{2} + k = ck\log k - ck\log 2 + k$$

$$= ck\log k + (-c\log 2 + 1)k$$
Also true for $k \to \leq ck\log k$ Set c such that $-c\log 2 + 1 < 0 \Leftrightarrow c > \frac{1}{\log 2} = 1$

- Note that there is always c satisfying $T(n) \le cn \log n$ for any n.
- Implying $T(n) = O(n \log n)$.

No Consideration of Base Case

Don't need to consider the part of base case when proving a recursive complexity by induction.

☐ Why?

- Suppose we should show $T(n) \le cf(n)$.
- Then, we show $T(a) \le cf(a)$ for constant a as a base case.
- In general, T(a) and f(a) return positive numbers.
- In other words, there is always c satisfying $T(a) \le cf(a)$.
- ☐ Thus, it's okay that we only consider the inductive step for such proving.

Examples (1) – Wrong Version

- \square Claim: $T(n) \le 2T(n/2) + 1$ and it's O(n).
 - 1) Estimate $T(n) \le cn$
 - 2) Inductive step
 - **Previous case**: assume the claim holds for $n = \frac{k}{2}$

$$T\left(\frac{k}{2}\right) \le c \, \frac{k}{2}$$

• Next case: does the claim hold for n = k?

$$T(k) \le 2T\left(\frac{k}{2}\right) + 1$$
$$\le 2c\frac{k}{2} + 1$$
$$= ck + 1$$

• Note that we cannot say $ck + 1 \le ck$; the proving fails

Examples (1) – Correct Version

- \square Claim: $T(n) \le 2T(n/2) + 1$ and it's O(n).
 - 1) Estimate $T(n) \le cn 2$
 - 2) Inductive step
 - **Previous case**: assume the claim holds for $n = \frac{k}{2}$

$$T\left(\frac{k}{2}\right) \le c\,\frac{k}{2} - 2$$

• Next case: does the claim hold for n = k?

$$T(k) \le 2T\left(\frac{k}{2}\right) + 1$$

$$\le 2c\frac{k}{2} - 4 + 1$$

$$= ck - 3 \le ck - 2$$

Now the proving is correct since the result has the same form

Examples (2)

- \square Claim: $T(n) \le 2T(\frac{n}{2} + 10) + n$ and it's $O(n \log n)$.
- ☐ Proof by strong induction
 - 1) Estimate $T(n) \le cn \log n$
 - 2) Inductive step
 - **Previous cases**: Assume all $T(i) \le ci \log i$ are true for $n_0 \le i < k$
 - Next case: is $T(k) \le ck \log k$ true too?

$$T(k) \leq 2T\left(\frac{k}{2} + 10\right) + k \quad \text{Pick } i = \frac{k}{2} + 10 < k \Rightarrow k > 20; \text{ and then} \\ \leftarrow \text{use } T(i) \text{ for the derivation.}$$

$$\leq 2c\left(\frac{k}{2} + 10\right)\log\left(\frac{k}{2} + 10\right) + k$$

 $\leq \cdots \leftarrow$ See the derivation in the textbook (66p).

 $\leq ck \log k$. \leftarrow this holds for k > 20.

Mathematical Induction

☐ Pros

For a complicated function, it's easier than the repeated substitution method.

☐ Cons

- Need to estimate "effective" bound.
 - Loose bound is meaningless.
 - Excessively tight bound will not be proved.
- Intuition for such estimate is from experience.
 - Need to solve a lot of problems in this way.

Outline

☐ Repeated Substitution

■ Mathematical Induction

■ Master Theorem

Generalization of Recursive Alg.

■ Most recursive algorithms are based on Divide & Conquer as follows:

```
def procedure(n):
    if n <= some constant k
        solve the input directly without recursion
    else:
        create a sub-problems, each having size n/b
        call procedure recursively on each sub-problem
        aggregate the results from the sub-problems</pre>
```


$$T(n) = \frac{a}{a}T\left(\frac{n}{b}\right) + f(n)$$

f(n): remaining cost to divide the problem and aggregate the results

Solution tree

Master Theorem

 \square Easily find Θ if T(n) is represented as follows:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- *n*: input size for problem
- $a \ge 1$: number of sub-problems
- n/b: size of input for each sub-problem where $b \ge 1$
- f(n): remaining cost (overhead) to divide/aggregate

- ☐ There is an exact version of Master Theorem.
 - But not discussed in this lecture since it's complicated.
 - Instead, let's check its approximate (easier) version.

Master Theorem [Approx. Version]

$$\Box T(n) = aT(n/b) + f(n)$$
 is bounded as follows:

- $h(n) = n^{\log_b a}$ is the cost for solving all of problems of size 1.
 - See the appendix for details.
- Case 1) $\lim_{n\to\infty} \frac{f(n)}{h(n)} = 0 \Rightarrow T(n) = \Theta(h(n))$

■ Case 2) $\lim_{n\to\infty} \frac{f(n)}{h(n)} = \infty \& af\left(\frac{n}{b}\right) < f(n) \Rightarrow T(n) = \Theta(f(n))$

■ Case 3) $\frac{f(n)}{h(n)} = \Theta(1) \Rightarrow T(n) = \Theta(h(n) \log_2 n)$

Examples (1)

$$\Box \operatorname{Case} \mathbf{1}: T(n) = 2T\left(\frac{n}{3}\right) + c$$

- a = 2 and b = 3.
- $h(n) = n^{\log_3 2}$ and f(n) = c.

$$\lim_{n \to \infty} \frac{f(n)}{h(n)} = \lim_{n \to \infty} \frac{c}{n^{\log_3 2}} = 0$$

■ Thus, $T(n) = \Theta(h(n)) = \Theta(n^{\log_3 2})$.

Examples (2)

$$\square$$
 Case 2: $T(n) = 2T\left(\frac{n}{4}\right) + n$

- a = 2 and b = 4.
- $h(n) = n^{\log_4 2} = \sqrt{n}$ and f(n) = n.

$$\lim_{n \to \infty} \frac{f(n)}{h(n)} = \lim_{n \to \infty} \frac{n}{\sqrt{n}} = \infty$$

$$af\left(\frac{n}{b}\right) < f(n) \Rightarrow 2\frac{n}{4} = \frac{n}{2} < n$$

■ Thus, $T(n) = \Theta(f(n)) = \Theta(n)$.

Examples (3)

$$\square$$
 Case 3: $T(n) = 2T\left(\frac{n}{2}\right) + n$

- a = 2 and b = 2.
- $h(n) = n^{\log_2 2} = n$ and f(n) = n.

$$\frac{f(n)}{h(n)} = 1 = \Theta(1)$$

Thus, $T(n) = \Theta(h(n) \log_2 n) = \Theta(n \log_2 n)$.

Master Theorem + Variable Trick

- ☐ Changing variables makes an equation simple.
 - $T(n) = 2T(\sqrt{n}) + \log_2 n.$
 - \circ Let $m = \log_2 n \Rightarrow 2^m = n$.
 - $\blacksquare \Rightarrow T(2^m) = 2T\left(2^{\frac{m}{2}}\right) + m.$
 - Let P(m) denote $T(2^m)$.
 - $ightharpoonup P(m) = 2P\left(\frac{m}{2}\right) + m.$
 - By Master theorem, $P(m) = \Theta(m \log m)$.

■ Thus, $T(n) = P(m) = \Theta(m \log m) = \Theta(\log n \log(\log n))$.

Master Theorem [Approx. Version]

☐ Pros

- Easy to apply it to an arbitrary complexity function in form of T(n) = aT(n/b) + f(n).
 - Do not need to calculate or prove something.

☐ Cons

- For some cases, this approximate version cannot be applied.
 - In these cases, need to use the exact version (see the textbook).
- Hard to apply it when the function does not follow the form.
 - Variable trick can be helpful.

What You Need To Know

□ Repeated substitution

 Repeatedly substitute the complexity function whose input size decreases toward a base case.

■ Mathmetical induction

Estimate the closed solution of a recursive complexity, and then prove it by induction.

■ Master theorem

■ Can solve any function in form of T(n) = aT(n/b) + f(n).

In Next Lecture

☐ Sorting problem and basic sorting algorithms

- Selection Sort
- Bubble Sort
- Insertion Sort

Thank You

Appendix: Proof for $n \le 2^k \le 2n$

- \square Claim: there exists positive integer k s.t. $n \leq 2^k \leq 2n$
 - Note that $n=2^{\log_2 n}$ for a natural number n, $2^{\lfloor \log_2 n \rfloor} < n < 2^{\lceil \log_2 n \rceil} \Leftrightarrow 2^{\lfloor \log_2 n \rfloor + 1} < 2n < 2^{\lceil \log_2 n \rceil + 1}.$
 - Note that $2^{\lceil \log_2 n \rceil} \le 2^{\lceil \log_2 n \rceil + 1}$.
 - Because $\lceil \log_2 n \rceil \lfloor \log_2 n \rfloor 1 = \begin{cases} -1, & \log_2 n \text{ is integer} \\ 0, & \log_2 n \text{ is not integer} \end{cases}$
 - Thus, $n \le 2^{\lceil \log_2 n \rceil} \le 2^{\lceil \log_2 n \rceil + 1} \le 2n$.
 - In other words, $k = \lceil \log_2 n \rceil$ or $\lceil \log_2 n \rceil + 1$.
 - If $\log_2 n$ is not integer, $\lceil \log_2 n \rceil = \lfloor \log_2 n \rfloor + 1$.

Appendix: Interpretation of MT (1)

■ Master Theorem [approximate version]

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- $\circ \Rightarrow \#$ of problems where the input size is 1.
- $\circ \Rightarrow$ cost for solving all problems where the input size is 1.
- The depth of the solution tree is $k = \log_b n$.
 - Size changes as $n \to \frac{n}{b} \to \cdots \to \frac{n}{b^k}$; when $\frac{n}{b^k} = 1$, it reaches at a leaf
- The number of leaf nodes at level k is $a^k = a^{\log_b n} = n^{\log_b a}$

$$a^{\log_b n} = x \Leftrightarrow \log_b n \times \log_b a = \log_b x \Leftrightarrow \log_b n^{\log_b a} = \log_b x$$

Solution tree

Appendix: Interpretation of MT (2)

■ Master Theorem [approximate version]

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1) $\lim_{n\to\infty} \frac{f(n)}{h(n)} = 0 \Rightarrow T(n) = \Theta(h(n)).$
 - Condition 1) $\lim_{n\to\infty} \frac{f(n)}{h(n)} = 0$ meaning h(n) overwhelms f(n).
 - h(n): cost for solving all problems where the input size is 1.
 - f(n): remaining cost (overhead) to split the problem & combining the results at the top level
 - Then, h(n) determines the complexity T(n).
 - The condition is called "the solution tree is leaf-heavy."

Appendix: Interpretation of MT (3)

■ Master Theorem [approximate version]

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 2) $\lim_{n\to\infty} \frac{f(n)}{h(n)} = \infty \& af\left(\frac{n}{b}\right) < f(n) \Rightarrow T(n) = \Theta(f(n)).$
 - ∘ Condition 1) $\lim_{n\to\infty} \frac{f(n)}{h(n)} = \infty$ meaning if f(n) overwhelms h(n).
 - Condition 2) $af\left(\frac{n}{h}\right) < f(n)$.
 - $af\left(\frac{n}{b}\right)$: the sum of remaining costs of all sub-problems at the children level
 - f(n): remaining cost (overhead) of problem at the root level
 - When the recursion goes to the below level, the overhead cost should decrease!
 - Then, f(n) determines the complexity T(n).
 - These conditions are called "the solution tree is root-heavy."

Appendix: Interpretation of MT (4)

■ Master Theorem [approximate version]

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 3) $\frac{f(n)}{h(n)} = \Theta(1) \Rightarrow T(n) = \Theta(h(n) \log n)$
 - \circ Condition 1) $\frac{f(n)}{h(n)} = \Theta(1)$ meaning if their weights are comparable by a constant
 - Work to split/recombine a problem is comparable to sub-problems
 - Then, $h(n) \log n$ determines the complexity T(n).
 - It is hard to interpret $\log n$ in this case because $\log n$ is attached during the derivation.