$11a_{108} \ (K11a_{108})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -4u^{40} + 4u^{39} + \dots + 4b + 4, \ -2u^{40} + 4u^{39} + \dots + 4a - 2, \ u^{41} - 2u^{40} + \dots - 4u + 2 \rangle \\ I_2^u &= \langle 46u^4a^2 + 10u^4a + \dots - 33a + 56, \\ &- 2u^3a^2 - u^4a - 2a^2u^2 + 2u^3a + 3u^4 + a^3 - 2a^2u + u^2a + u^3 - 2a^2 + au + 2u^2 + 2a + 3u + 1, \\ u^5 + u^4 + 2u^3 + u^2 + u + 1 \rangle \\ I_3^u &= \langle u^3 + b + u - 1, \ u^3 - 2u^2 + 2a - 4, \ u^4 + 2u^2 + 2 \rangle \\ I_1^v &= \langle a, \ b + 1, \ v - 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 61 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -4u^{40} + 4u^{39} + \dots + 4b + 4, -2u^{40} + 4u^{39} + \dots + 4a - 2, u^{41} - 2u^{40} + \dots - 4u + 2 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{40} - u^{39} + \dots + \frac{1}{2}u + \frac{1}{2} \\ u^{40} - u^{39} + \dots + \frac{1}{2}u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{4}u^{33} - 2u^{31} + \dots - \frac{1}{2}u^{3} + 1 \\ \frac{1}{4}u^{35} + \frac{9}{4}u^{33} + \dots - \frac{3}{2}u^{2} - \frac{1}{2}u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ -u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{4}u^{36} - \frac{9}{4}u^{34} + \dots - \frac{1}{2}u + \frac{1}{2} \\ -\frac{1}{4}u^{36} - \frac{9}{4}u^{34} + \dots - \frac{1}{2}u^{2} - u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{4}u^{36} - \frac{9}{4}u^{34} + \dots - \frac{1}{2}u + \frac{1}{2} \\ \frac{1}{4}u^{38} + \frac{5}{2}u^{36} + \dots + u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{4}u^{36} - \frac{9}{4}u^{34} + \dots - \frac{1}{2}u + \frac{1}{2} \\ \frac{1}{4}u^{38} + \frac{5}{2}u^{36} + \dots + u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$\begin{split} & = 2u^{40} - 4u^{39} + 22u^{38} - 40u^{37} + 114u^{36} - 196u^{35} + 364u^{34} - 604u^{33} + 786u^{32} - 1280u^{31} + \\ & 1188u^{30} - 1918u^{29} + 1256u^{28} - 1996u^{27} + 904u^{26} - 1290u^{25} + 434u^{24} - 232u^{23} + \\ & 184u^{22} + 468u^{21} + 136u^{20} + 520u^{19} + 84u^{18} + 194u^{17} + 4u^{16} - 120u^{15} - 4u^{14} - 258u^{13} + \\ & 52u^{12} - 234u^{11} + 84u^{10} - 128u^{9} + 90u^{8} - 30u^{7} + 64u^{6} + 2u^{5} + 24u^{4} - 10u^{3} - 4u^{2} - 2u \end{split}$$

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{41} + 2u^{40} + \dots + 5u - 1$
c_2	$u^{41} + 14u^{40} + \dots + u + 1$
c_3, c_8	$u^{41} + 2u^{40} + \dots - 4u - 2$
c_4, c_7	$u^{41} - 2u^{40} + \dots - 24u - 16$
c_6, c_{10}, c_{11}	$u^{41} - 2u^{40} + \dots - 7u - 1$
<i>c</i> ₉	$u^{41} - 22u^{40} + \dots + 8u + 4$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{41} - 14y^{40} + \dots + y - 1$
c_2	$y^{41} + 34y^{40} + \dots + 737y - 1$
c_3, c_8	$y^{41} + 22y^{40} + \dots + 8y - 4$
c_4, c_7	$y^{41} - 34y^{40} + \dots - 16448y - 256$
c_6, c_{10}, c_{11}	$y^{41} - 46y^{40} + \dots - 47y - 1$
<i>c</i> ₉	$y^{41} - 6y^{40} + \dots + 160y - 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.503278 + 0.876227I		
a = -1.01864 - 1.35377I	-1.85795 + 5.19311I	-2.06190 - 8.35313I
b = -0.184951 - 0.697202I		
u = -0.503278 - 0.876227I		
a = -1.01864 + 1.35377I	-1.85795 - 5.19311I	-2.06190 + 8.35313I
b = -0.184951 + 0.697202I		
u = 0.595879 + 0.924278I		
a = -1.261860 + 0.541147I	3.43135 - 8.38206I	3.46275 + 8.23571I
b = -0.683532 + 0.365288I		
u = 0.595879 - 0.924278I		
a = -1.261860 - 0.541147I	3.43135 + 8.38206I	3.46275 - 8.23571I
b = -0.683532 - 0.365288I		
u = 0.012198 + 0.896132I		
a = 1.24032 + 1.28683I	1.35320 - 1.46651I	7.22861 + 4.90542I
b = 0.765320 + 0.507138I		
u = 0.012198 - 0.896132I		
a = 1.24032 - 1.28683I	1.35320 + 1.46651I	7.22861 - 4.90542I
b = 0.765320 - 0.507138I		
u = 0.662080 + 0.589897I		
a = 0.314575 + 0.870590I	2.46953 + 3.52956I	2.12209 - 2.66433I
b = 0.143067 + 0.847335I		
u = 0.662080 - 0.589897I		
a = 0.314575 - 0.870590I	2.46953 - 3.52956I	2.12209 + 2.66433I
b = 0.143067 - 0.847335I		
u = -0.860560 + 0.141859I		
a = -0.542033 + 0.556076I	7.79923 - 9.18843I	3.80065 + 5.17633I
b = -0.51707 - 2.21472I		
u = -0.860560 - 0.141859I		
a = -0.542033 - 0.556076I	7.79923 + 9.18843I	3.80065 - 5.17633I
b = -0.51707 + 2.21472I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.861859 + 0.085768I		
a = 0.673275 + 0.352479I	9.69240 + 2.90753I	6.01430 - 0.84016I
b = 0.26299 - 1.41656I		
u = 0.861859 - 0.085768I		
a = 0.673275 - 0.352479I	9.69240 - 2.90753I	6.01430 + 0.84016I
b = 0.26299 + 1.41656I		
u = -0.053677 + 1.146820I		
a = 0.37845 - 1.62203I	8.20281 + 2.94250I	9.69079 - 2.88880I
b = 0.571996 - 0.725064I		
u = -0.053677 - 1.146820I		
a = 0.37845 + 1.62203I	8.20281 - 2.94250I	9.69079 + 2.88880I
b = 0.571996 + 0.725064I		
u = -0.547888 + 1.013950I		
a = 1.410510 - 0.051509I	4.68586 + 3.37196I	6.53621 - 2.75945I
b = 1.097590 + 0.770395I		
u = -0.547888 - 1.013950I		
a = 1.410510 + 0.051509I	4.68586 - 3.37196I	6.53621 + 2.75945I
b = 1.097590 - 0.770395I		
u = -0.423966 + 1.085320I		
a = 0.889067 - 0.156517I	4.21251 + 3.60145I	9.92786 - 4.45844I
b = 1.100080 + 0.649290I		
u = -0.423966 - 1.085320I		
a = 0.889067 + 0.156517I	4.21251 - 3.60145I	9.92786 + 4.45844I
b = 1.100080 - 0.649290I		
u = -0.683105 + 0.455196I		
a = 0.331321 + 0.649818I	3.06237 + 1.36624I	3.26071 - 2.82351I
b = -0.675612 + 0.983763I		
u = -0.683105 - 0.455196I		
a = 0.331321 - 0.649818I	3.06237 - 1.36624I	3.26071 + 2.82351I
b = -0.675612 - 0.983763I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.800093 + 0.101020I		
a = -0.166855 - 0.995960I	1.51266 + 5.04411I	1.12155 - 5.34007I
b = -0.60540 + 1.90379I		
u = 0.800093 - 0.101020I		
a = -0.166855 + 0.995960I	1.51266 - 5.04411I	1.12155 + 5.34007I
b = -0.60540 - 1.90379I		
u = -0.500958 + 0.624025I		
a = -0.051668 - 0.512607I	-2.57302 - 1.04199I	-5.23599 + 1.20683I
b = -0.589638 - 0.765864I		
u = -0.500958 - 0.624025I		
a = -0.051668 + 0.512607I	-2.57302 + 1.04199I	-5.23599 - 1.20683I
b = -0.589638 + 0.765864I		
u = 0.465698 + 1.112630I		
a = 1.14618 + 1.00180I	0.77731 - 3.72567I	-1.87519 + 3.76789I
b = 1.113240 - 0.021535I		
u = 0.465698 - 1.112630I		
a = 1.14618 - 1.00180I	0.77731 + 3.72567I	-1.87519 - 3.76789I
b = 1.113240 + 0.021535I		
u = 0.405488 + 1.211450I		
a = 1.31179 - 1.91130I	5.40261 + 0.90249I	5.70583 - 2.02309I
b = -0.56018 - 2.51021I		
u = 0.405488 - 1.211450I		
a = 1.31179 + 1.91130I	5.40261 - 0.90249I	5.70583 + 2.02309I
b = -0.56018 + 2.51021I		
u = 0.497123 + 1.201300I		
a = -0.84019 + 2.50910I	4.75069 - 9.79224I	4.22259 + 8.17334I
b = 1.40879 + 2.64017I		
u = 0.497123 - 1.201300I		
a = -0.84019 - 2.50910I	4.75069 + 9.79224I	4.22259 - 8.17334I
b = 1.40879 - 2.64017I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.373001 + 1.250030I		
a = 1.33745 + 1.92758I	12.10740 - 4.99417I	8.18458 + 2.23571I
b = -0.56709 + 2.23140I		
u = -0.373001 - 1.250030I		
a = 1.33745 - 1.92758I	12.10740 + 4.99417I	8.18458 - 2.23571I
b = -0.56709 - 2.23140I		
u = 0.410502 + 1.250480I		
a = -0.850292 + 1.066310I	13.77940 - 1.51388I	9.75388 + 2.25000I
b = 0.602301 + 1.153840I		
u = 0.410502 - 1.250480I		
a = -0.850292 - 1.066310I	13.77940 + 1.51388I	9.75388 - 2.25000I
b = 0.602301 - 1.153840I		
u = -0.526084 + 1.215280I		
a = -1.27954 - 2.55127I	11.0125 + 14.2368I	6.63638 - 8.24449I
b = 0.88088 - 2.96625I		
u = -0.526084 - 1.215280I		
a = -1.27954 + 2.55127I	11.0125 - 14.2368I	6.63638 + 8.24449I
b = 0.88088 + 2.96625I		
u = 0.502214 + 1.228010I		
a = 0.78343 - 1.80145I	13.1184 - 7.8365I	8.99343 + 4.06275I
b = -0.41247 - 2.19576I		
u = 0.502214 - 1.228010I		
a = 0.78343 + 1.80145I	13.1184 + 7.8365I	8.99343 - 4.06275I
b = -0.41247 + 2.19576I		
u = 0.526691 + 0.260209I		
a = 0.059135 - 0.159552I	-1.66678 - 0.31810I	-5.86833 + 0.81571I
b = -0.942509 - 0.266856I		
u = 0.526691 - 0.260209I		
a = 0.059135 + 0.159552I	-1.66678 + 0.31810I	-5.86833 - 0.81571I
b = -0.942509 + 0.266856I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.534614		
a = 1.27118	1.42690	6.75840
b = -0.415627		

II.
$$I_2^u = \langle 46u^4a^2 + 10u^4a + \cdots - 33a + 56, \ -u^4a + 3u^4 + \cdots + 2a + 1, \ u^5 + u^4 + 2u^3 + u^2 + u + 1 \rangle$$

$$\begin{aligned} a_4 &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_9 &= \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_1 &= \begin{pmatrix} -0.630137a^2u^4 - 0.136986au^4 + \dots + 0.452055a - 0.767123 \end{pmatrix} \\ a_3 &= \begin{pmatrix} 1 \\ -u^2 \end{pmatrix} \\ a_2 &= \begin{pmatrix} 0.328767a^2u^4 - 0.232877au^4 + \dots + 0.0684932a + 1.09589 \\ -0.739726a^2u^4 + 0.273973au^4 + \dots + 1.09589a - 0.465753 \end{pmatrix} \\ a_8 &= \begin{pmatrix} u \\ u \end{pmatrix} \\ a_{10} &= \begin{pmatrix} u^3 \\ u^3 + u \end{pmatrix} \\ a_5 &= \begin{pmatrix} -u^3 \\ -u^4 - u^3 - u^2 - 1 \end{pmatrix} \\ a_7 &= \begin{pmatrix} -u^3 \\ -u^4 - u^3 - u^2 - 1 \end{pmatrix} \\ a_{11} &= \begin{pmatrix} 0.328767a^2u^4 - 0.232877au^4 + \dots + 0.0684932a + 1.09589 \\ -0.739726a^2u^4 + 0.273973au^4 + \dots + 1.09589a - 0.465753 \end{pmatrix} \\ a_6 &= \begin{pmatrix} 0.328767a^2u^4 - 0.232877au^4 + \dots + 0.0684932a + 1.09589 \\ 1.21918a^2u^4 - 0.821918au^4 + \dots + 1.28767a + 1.39726 \end{pmatrix} \\ a_6 &= \begin{pmatrix} 0.328767a^2u^4 - 0.232877au^4 + \dots + 0.0684932a + 1.09589 \\ 1.21918a^2u^4 - 0.821918au^4 + \dots + 0.0684932a + 1.09589 \end{pmatrix} \\ 1.21918a^2u^4 - 0.821918au^4 + \dots + 0.0684932a + 1.09589 \end{pmatrix} \\ 1.21918a^2u^4 - 0.821918au^4 + \dots + 0.0684932a + 1.09589 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^3 + 4u^2 + 4u + 6$

Crossings	u-Polynomials at each crossing
$c_1, c_5, c_6 \\ c_{10}, c_{11}$	$u^{15} - 5u^{13} + \dots - u + 1$
c_2	$u^{15} + 10u^{14} + \dots - u + 1$
c_3, c_8	$(u^5 - u^4 + 2u^3 - u^2 + u - 1)^3$
c_4, c_7	$(u^5 + u^4 - 2u^3 - u^2 + u - 1)^3$
<i>c</i> 9	$(u^5 - 3u^4 + 4u^3 - u^2 - u + 1)^3$

Crossings	Riley Polynomials at each crossing
$c_1, c_5, c_6 \\ c_{10}, c_{11}$	$y^{15} - 10y^{14} + \dots - y - 1$
c_2	$y^{15} - 10y^{14} + \dots - y - 1$
c_3, c_8	$(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^3$
c_4, c_7	$(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^3$
<i>C</i> 9	$(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)^3$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.339110 + 0.822375I		
a = 0.987461 - 0.368120I	0.32910 - 1.53058I	2.51511 + 4.43065I
b = 0.550313 - 0.577492I		
u = 0.339110 + 0.822375I		
a = -0.519621 - 0.051702I	0.32910 - 1.53058I	2.51511 + 4.43065I
b = -1.65077 + 0.68097I		
u = 0.339110 + 0.822375I		
a = -0.21028 + 2.63515I	0.32910 - 1.53058I	2.51511 + 4.43065I
b = 0.480628 + 0.996348I		
u = 0.339110 - 0.822375I		
a = 0.987461 + 0.368120I	0.32910 + 1.53058I	2.51511 - 4.43065I
b = 0.550313 + 0.577492I		
u = 0.339110 - 0.822375I		
a = -0.519621 + 0.051702I	0.32910 + 1.53058I	2.51511 - 4.43065I
b = -1.65077 - 0.68097I		
u = 0.339110 - 0.822375I		
a = -0.21028 - 2.63515I	0.32910 + 1.53058I	2.51511 - 4.43065I
b = 0.480628 - 0.996348I		
u = -0.766826		
a = 0.584967 + 0.856589I	2.40108	3.48110
b = -0.40069 - 1.38845I		
u = -0.766826		
a = 0.584967 - 0.856589I	2.40108	3.48110
b = -0.40069 + 1.38845I		
u = -0.766826		
a = -0.429363	2.40108	3.48110
b = -1.63410		
u = -0.455697 + 1.200150I		
a = -0.33284 - 1.93140I	5.87256 + 4.40083I	6.74431 - 3.49859I
b = 1.58159 - 1.67595I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.455697 + 1.200150I		
a = 1.19834 + 1.66866I	5.87256 + 4.40083I	6.74431 - 3.49859I
b = -0.22205 + 2.42247I		
u = -0.455697 + 1.200150I		
a = 1.50666 - 1.48655I	5.87256 + 4.40083I	6.74431 - 3.49859I
b = 1.47803 - 0.30819I		
u = -0.455697 - 1.200150I		
a = -0.33284 + 1.93140I	5.87256 - 4.40083I	6.74431 + 3.49859I
b = 1.58159 + 1.67595I		
u = -0.455697 - 1.200150I		
a = 1.19834 - 1.66866I	5.87256 - 4.40083I	6.74431 + 3.49859I
b = -0.22205 - 2.42247I		
u = -0.455697 - 1.200150I		
a = 1.50666 + 1.48655I	5.87256 - 4.40083I	6.74431 + 3.49859I
b = 1.47803 + 0.30819I		

III.
$$I_3^u = \langle u^3 + b + u - 1, \ u^3 - 2u^2 + 2a - 4, \ u^4 + 2u^2 + 2 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{2}u^{3} + u^{2} + 2 \\ -u^{3} - u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u^{3} + u^{2} + 3 \\ -u^{3} - u^{2} - u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} \\ -u^{3} - u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}u^{3} + u^{2} + 2 \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{3} + u^{2} + 2 \\ -u^{3} - u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{3} + u^{2} + 2 \\ -u^{3} - u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^2 + 8$

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_{10} \\ c_{11}$	$(u+1)^4$
c_3,c_8	$u^4 + 2u^2 + 2$
c_4, c_7	$u^4 - 2u^2 + 2$
c_5, c_6	$(u-1)^4$
<i>C</i> 9	$(u^2 - 2u + 2)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6, c_{10}, c_{11}	$(y-1)^4$
c_3, c_8	$(y^2 + 2y + 2)^2$
c_4, c_7	$(y^2 - 2y + 2)^2$
c_9	$(y^2+4)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.455090 + 1.098680I		
a = 1.77689 + 1.32180I	2.46740 - 3.66386I	4.00000 + 4.00000I
b = 2.09868 - 0.45509I		
u = 0.455090 - 1.098680I		
a = 1.77689 - 1.32180I	2.46740 + 3.66386I	4.00000 - 4.00000I
b = 2.09868 + 0.45509I		
u = -0.455090 + 1.098680I		
a = 0.223113 - 0.678203I	2.46740 + 3.66386I	4.00000 - 4.00000I
b = -0.098684 - 0.455090I		
u = -0.455090 - 1.098680I		
a = 0.223113 + 0.678203I	2.46740 - 3.66386I	4.00000 + 4.00000I
b = -0.098684 + 0.455090I		

IV.
$$I_1^v = \langle a, b+1, v-1 \rangle$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_{10}, c_{11}	u-1
c_2, c_5, c_6	u+1
c_3, c_4, c_7 c_8, c_9	u

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_{10}, c_{11}$	y-1
c_3, c_4, c_7 c_8, c_9	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0	0	0
b = -1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)(u+1)^4(u^{15}-5u^{13}+\cdots-u+1)(u^{41}+2u^{40}+\cdots+5u-1)$
c_2	$((u+1)^5)(u^{15}+10u^{14}+\cdots-u+1)(u^{41}+14u^{40}+\cdots+u+1)$
c_3, c_8	$u(u^4 + 2u^2 + 2)(u^5 - u^4 + \dots + u - 1)^3(u^{41} + 2u^{40} + \dots - 4u - 2)$
c_4, c_7	$u(u^{4} - 2u^{2} + 2)(u^{5} + u^{4} - 2u^{3} - u^{2} + u - 1)^{3}$ $\cdot (u^{41} - 2u^{40} + \dots - 24u - 16)$
c_5	$((u-1)^4)(u+1)(u^{15}-5u^{13}+\cdots-u+1)(u^{41}+2u^{40}+\cdots+5u-1)$
	$((u-1)^4)(u+1)(u^{15}-5u^{13}+\cdots-u+1)(u^{41}-2u^{40}+\cdots-7u-1)$
c_9	$u(u^{2} - 2u + 2)^{2}(u^{5} - 3u^{4} + 4u^{3} - u^{2} - u + 1)^{3}$ $\cdot (u^{41} - 22u^{40} + \dots + 8u + 4)$
c_{10}, c_{11}	$(u-1)(u+1)^4(u^{15}-5u^{13}+\cdots-u+1)(u^{41}-2u^{40}+\cdots-7u-1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_5	$((y-1)^5)(y^{15}-10y^{14}+\cdots-y-1)(y^{41}-14y^{40}+\cdots+y-1)$
c_2	$((y-1)^5)(y^{15}-10y^{14}+\cdots-y-1)(y^{41}+34y^{40}+\cdots+737y-1)$
c_3, c_8	$y(y^{2} + 2y + 2)^{2}(y^{5} + 3y^{4} + 4y^{3} + y^{2} - y - 1)^{3}$ $\cdot (y^{41} + 22y^{40} + \dots + 8y - 4)$
c_4, c_7	$y(y^{2} - 2y + 2)^{2}(y^{5} - 5y^{4} + 8y^{3} - 3y^{2} - y - 1)^{3}$ $\cdot (y^{41} - 34y^{40} + \dots - 16448y - 256)$
c_6, c_{10}, c_{11}	$((y-1)^5)(y^{15}-10y^{14}+\cdots-y-1)(y^{41}-46y^{40}+\cdots-47y-1)$
<i>c</i> 9	$y(y^{2}+4)^{2}(y^{5}-y^{4}+8y^{3}-3y^{2}+3y-1)^{3}$ $\cdot (y^{41}-6y^{40}+\cdots+160y-16)$