COTS in Military Systems A Ten Year Perspective

Presentation by:
Mr. Gregory Saunders
Director
DSPO

1776 - 1781

Even George Weskington Octon time Intellar Army went to war with civilian clothing, equipment, and weapons. They went to

COTS - War of 1812

By the war of 1812, we had advanced little on the situation that existed in 1776.

COTS - U.S Civil War

By the U.S. Civil War, military unique equipment was increasingly replacing commercial off-the-shelf items.

COTS - World War I

By World War I, the proliferation of technology-driven standardized military unique equipment was on a roll.

COTS - World War II

 World War II, military unique technology increasingly replaced commercial products across a broad spectrum of requirements.

COTS - Korea, Viet Nam, & Gulf

MIL Spec components assured quality and performance

BUT

Some COTS products began to outperform Mil Spec products on the battlefield

The Movement Back to

- 1949 President Truman's Scientific Advisory Board urges greater use of commercial products
- 1972 Report of the Commission on Government Procurement Congressional Commission asserts the Government can make much greater use of the commercial marketplace
- 1982 ADCoP Policy After several years of pilots, DoD issues first formal policy on commercial acquisition invents CIDs

The Movement Back to

- 1991 SecDef Perry, announces the *Dop Strategic Acquisition Initiative* (SAI) mandates that U.S. defense contractors look first at COTS products when developing new technology and upgrades.
- 1994 SecDef Perry memorandum "Specs and Standards A New Way of Doing Business" mandates preference for commercial standards and products
- 1997 SecDef Cohen launches *Defense*Acquisition Reform Initiative accelerated COTS

Why COTS?

- Latest technology
- Shorter development cycle
- Ready availability
- Reduced acquisition cost
- Lower support cost
- Faster technology refresh cycle
- Leverage commercial investment
- Benefit from best commercial practices
- Open system architectures
- More flexible, scalable, and configurable

Additional Factors Driving Move to COTS

Microcircuits and Components

- rapidly evolving technology
- dramatic worldwide market growth
- explosion of commercial use
- shrinking DoD market share
- declining supplier base for "Mil-Spec" components
- need for latest technology to maintain technological lead

What is a COTS Product?

- Sold, leased, or licensed to the general public
- Offered by a vendor trying to profit from it
- Listed for sale with a list price
- May conform to industry standards
- Supported and evolved by the vendor, who retains the intellectual property rights
- Available in multiple, identical copies
- Used without modification of the internals
- Not developed or owned by the Government

COTS Challenges

- COTS may add new complexity to parts management.
- Increased need for technology refresh, insertion, and obsolescence management.
- Some COTS products may not hold up to harsh military environment and use.

1994 – 2004 The COTS Revolution Did We make the Right Decision?

COTS Success Story

Acoustic - Rapid COTS Insertion Program

- Replace existing submarine acoustic systems
 - Installed A-RCI on the first ship less than 2 years after it started the program
 - Completed three major submarine upgrades in the first 3 years
 - Savings of \$3 million per hull over the legacy sonar systems
 - U.S. regained a clear acoustic advantage through improved sonar performance
 - 200 times increase in computing power at one-tenth the cost
 - Reduced scheduled maintenance actions by 56 percent
 - Reduced the training time from 20 weeks to 4 weeks
 - An \$8 million inventory reduction over 4 years

NASA - Control Center System (CCS)

- Ground-based command and control system for the Hubble Space Telescope.
 - Successfully integrated 30 COTS and GOTS components with one million lines of legacy code and one half million lines of custom code.
 - prototype built in three months
 - first production release one year after proof of concept
 - greater productivity than previous systems
 - new and enhanced capabilities

Airborne Warning and Control System (AWACS)

- Mission Computer Upgrade
 - COTS operating system software
 - 22 COTS central processing units (CPUs)
 - Higher availability
 - Increased capability
 - Lower cost

U-2 Reconnaissance Fleet

Radar Computer Upgrade

Crusader Field Artillery System

• Integrated Data Environment (IDE) development

CMstat V5

 Configuration management for F-22, Paladin, Crusader, and DDG-51

AN/PPS-5

Ground Surveillance Radar Modernization

Defense Dissemination System (DDS)

Laser Beam Recorder

Aviation and Missile Research and Development Engineering Center

Avenger Training System Upgrade

Electronic Miniaturization for Missile Applications Program

Standard Missile Electronics Assembly Unit

Why COTS is a Success

- The COTS business model works because the incentives and market pressures compel economically rational decisions, resulting in constant innovation, little waste, and a rising standard of development.
 - COTS products adapt or become obsolete
 - Open market success brings competition and lower prices
 - Competitive market creates broader choice
 - Inferior products lose market share and die
 - Commercial developer is motivated to minimize cost and

chartan davialanment avalee

Exactly the rationale for pursuing COTS in the first place

Ongoing COTS Issues

- Obsolescence
- Inconsistent and short term availability
- Fast turning commercial technology
- Constantly changing IC design and processes
- IC changes "react differently" in some DoD applications

Meeting COTS Challenges

COTS challenges require a new mindset and new practices.

- COTS-Based System Tradeoffs
 - Leverage the Marketplace
 - Engineer an Evolvable Architecture
 - Avoid COTS Modification
- Think More Like a Business
 - Negotiate Licenses & Supplier Relationships
 - Realign Budgets for COTS Realities
- Establish Evolution as a Way of Life
 - Evolve COTS-Based Systems Continuously
 - Take the Long View on System Acquisition
 - Change the Culture

Lessons Learned

- We see many benefits from using COTS
- We must adapt to COTS life cycle and design
- We Can Adapt
- Using COTS is good for Government and Industry
- Using COTS changes the way we build systems

Conclusion

- Ample experience
- Right thing to do
- It is working

There are no permanent victories or win is to stay alert and maneuve