Solución de preguntas

Taller de Álgebra

semana 1

POR MILLER SILVA

1.

a) Sean $a, b \in G$, entonces

$$(ab)^2 = a^2b^2$$

 $(ab)(ab) = (aa)(bb)$
 $abab = aabb$
 $a^{-1}abab = a^{-1}aabb$
 $bab = abb$
 $babb^{-1} = abbb^{-1}$
 $ba = ab$.

b) Supongamos que existe $j \in \mathbb{Z}$ tal que

$$(ab)^j = a^j b^j, (ab)^{j+1} = a^{j+1} b^{j+1}$$
 y $(ab)^{j+2} = a^{j+2} b^{j+2}$ $\forall a, b \in G.$

Entonces

$$(ab)^{j+1} = a^{j+1}b^{j+1}$$

$$ab(ab)^{j} = aa^{j}b^{j}b$$

$$b(ab)^{j} = (ab)^{j}b \qquad \dots(\alpha)$$

$$(ab)^{j}ab = a(ab)^{j}b$$

$$(ab)^{j}a = a(ab)^{j} \qquad \dots(\beta)$$

$$(ab)^{j+2} = a^{j+2}b^{j+2}$$

$$ab(ab)^{j}ab = aaa^{j}b^{j}bb$$

$$b(ab)^{j}a = a(ab)^{j}b$$

ahora usamos α en la izquierda y β en la derecha

$$(ab)^j ba = (ab)^j ab$$

$$ba = ab.$$

2. Notemos lo siguiente, sea P_n un polígono de nlados y rotémos lo $2\pi/n$ de forma antihoraria:

Los vértices mantienen la secuencia inicial en forma antihoraria 1 2 3 ... n. Ahora obsevamos que pasa si lo reflejamos respecto a la recta L_1 y luego lo rotamos:

Los vértices ahora mantienen a secuencia antihoraria $1, n, n-1, n-2, \ldots, 3, 2$.

Por lo tanto si tenemos una simetría de \mathcal{P}_n sus vertíces deben seguir, en forma

antihoraria, la secuencia 1, 2, 3, ..., n o la secuencia 1, n, n-1, n-2, ..., 3, 2. Es claro que cada simetría lo podemos ver como una permutación $\sigma: \{1, ..., n\} \rightarrow \{1, ..., n\}$, donde $\sigma(i) = j$ significa que el vértice j se pone en el lugar del vértice i.

Ahora veamos cuántas simetrías hay, sea $\sigma: \{1, \dots, n\} \to \{1, \dots, n\}$ una simetría tal que $\sigma(1) = i$, si i = 1 como σ es simetría entonces $\sigma(2) = 2$ o $\sigma(2) = n$. Luego

si $i \neq 1$ entonces $\sigma(2) = i + 1$ o $\sigma(2) = i - 1$, luego

$$\sigma(1) = i$$

$$\sigma(2) = i+1$$

$$\sigma(2) = i-1$$

$$\sigma(3) = i-1$$

$$\sigma(3)$$

Entonces basta conocer $\sigma(1)$ y $\sigma(2)$ para determinar toda la simetría, $\sigma(1)$ tiene n opciones $\{1, 2, ..., n\}$ y para cada elección de $\sigma(1)$, $\sigma(2)$ tiene 2 opciones, entonces hay en total $n \times 2 = 2n$ simetrías.

Veamos explícitamente cuáles son estas simetrías. Consideremos las siguientes simetrías de P_n :

$$1 = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}, r = \begin{pmatrix} 1 & 2 & \dots & n \\ n & 1 & \dots & n-1 \end{pmatrix}, s = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & n & \dots & 2 \end{pmatrix}$$

luego $r^2, \ldots, r^{n-1}, sr, \ldots, sr^{n-1}$ también son simetrías y todos distintos, además son 2n permutaciones, entonces

 $D_{2n} = \{1, r, \dots, r^{n-1}, s, sr, \dots, sr^{n-1}\}$ es el conjunto de todas las simetrías de P_n

Para probar que D_{2n} es un subgrupo con la operación composición, hagamos lo

siguiente:

Luego de las tablas se tiene que para todo $x, y \in D_{2n}$ se cumple $x \circ y^{-1} \in D_{2n}$. Como S_n es un grupo, entonces D_{2n} es un subgrupo de S_n .

3. El grupo lineal general 2 es el conjunto

$$\operatorname{GL}_2(\mathbb{R}) := \{ A \in \mathbb{R}^{2 \times 2} : \det(A) \neq 0 \}$$

con la multiplicación usual de matrices «·».

Sea

$$G := \left\{ \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) : a, b, c \in \mathbb{R}, a \neq 0, c \neq 0 \right\} \neq \emptyset(I_2 \in G).$$

Como $\det\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = ac \neq 0$, entonces $G \subset \operatorname{GL}_2(\mathbb{R})$. Sean $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, $\begin{pmatrix} a' & b' \\ 0 & c' \end{pmatrix} \in G$, luego

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} a' & b' \\ 0 & c' \end{pmatrix}^{-1} = \frac{1}{a'b'} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} c' & -b' \\ 0 & a' \end{pmatrix} = \frac{1}{a'b'} \begin{pmatrix} ac' & -ab' + ba' \\ 0 & ca' \end{pmatrix}$$

$$= \begin{pmatrix} \frac{ac'}{a'b'} & -\frac{a}{a'} + \frac{b}{b'} \\ 0 & \frac{c}{b'} \end{pmatrix} \in G.$$

Por lo tanto $G \leq GL_2(\mathbb{R})$.