Boyce-Codd Normal Form Proof

1. Trader Relation

Attributes:

```
Trader(Login_ID, Profile_Picture, Address, PAN_No, Mobile_No, Type, Wallet_Amount, Demat_Account_No)
```

Functional Dependencies:

```
Login_ID → Pan_No.
Login_ID → Profile_Picture
Login_ID → Address
Login_ID → Mobile_No.
Login_ID → Type
Login_ID → Wallet_Amount
Login_ID → Demat_Account_No.

Pan_No. → Login_ID
Pan_No. → Profile_Picture
Pan_No. → Address
Pan_No. → Mobile_No.
Pan_No. → Type
Pan_No. → Wallet_Amount
Pan_No. → Demat_Account_No.
```

• Computing the Attribute Closure:

```
Login_ID<sup>+</sup> → {Login_ID, Profile_Picture, Address, Pan_No, Mobile_No, Type, Wallet_Amount, Demat_Account_No}
```

Pan_No.⁺ → {Pan_No., Login_ID, Profile_Picture, Address, Mobile No, Type, Wallet Amount, Demat Account No}

Here, 'Login_ID' and 'Pan_No.' infers all the attributes of the relation 'Trader'.

Primary Keys: Login_ID, Pan_No.

All the FDs in the minimal set of FDs for the relation '**Trader**' are inferred only by either of the primary keys '**Login_ID**' or '**Pan_No**.' Therefore, the relation '**Trader**' is in BCNF.

2. IPO Relation

• Attributes:

IPO(Company_Name, Stock_Exchange, Start_Date, End_Date, Listing_Date, Min_Investment, Max_Investment, Lot_Size)

• Functional Dependencies:

```
{Company_Name, Stock_Exchange, Start_Date, End_Date} → Listing_Date
```

{Company_Name, Stock_Exchange, Start_Date, End_Date} → Max_Investment

{Company_Name, Stock_Exchange, Start_Date, End_Date} → Min_Investment

 $\label{lem:company_Name, Stock_Exchange, Start_Date, End_Date} \rightarrow Lot_Size$

• Computing the Attribute Closure:

```
{Company_Name, Stock_Exchange, Start_Date, End_Date}<sup>+</sup> → {Company_Name, Stock_Exchange, Start_Date, End_Date, Listing_Date, Min_Investment, Max_Investment, Lot_Size}
```

Here, '{Company_Name, Stock_Exchange, Start_Date, End_Date}' together infers all the attributes of the relation 'IPO'.

```
Primary Key: {Company_Name, Stock_Exchange, Start_Date, End_Date}
```

All the FDs in the minimal set of FDs for the relation 'IPO' are inferred only by the primary key '{Company_Name, Stock_Exchange, Start_Date, End_Date}'. Therefore, the relation 'IPO' is in BCNF.

3. Blogs Relation

• Attributes:

Blogs(Blog_ID, Blog_Title, Description, Publish_Date, Publish_Time)

• Functional Dependencies:

```
Blog\_ID \rightarrow Blog\_Title
Blog\_ID \rightarrow Description
Blog\_ID \rightarrow Publish\_Date
Blog\_ID \rightarrow Publish\_Time
```

Computing the Attribute Closure:

```
Blog_ID<sup>+</sup> → { Blog_ID, Blog_Title, Description, Publish_Date, Publish_Time}
```

Here, 'Blog_ID' infers all the attributes of the relation 'Blogs'.

Primary Key: Blog_ID

All the FDs in the minimal set of FDs for the relation 'Blogs' are inferred only by the primary key 'Blog_ID'. Therefore, the relation 'Blogs' is in BCNF.

4. Company Relation

• Attributes:

Company(Name, Sector, Revenue)

• Functional Dependencies:

Name → Sector Name → Revenue

• Computing the Attribute Closure:

 $Name^+ \rightarrow \{Name, Sector, Revenue\}$

Here, 'Name' infers all the attributes of the relation 'Company'.

Primary Key: Name

All the FDs in the minimal set of FDs for the relation 'Company' are inferred only by the primary key 'Name'. Therefore, the relation 'Company' is in BCNF.

5. Stocks Relation

• Attributes:

```
Stock( Stock_Symbol, Stock_Exchange, Curr_Price, Total_Quantity, Company_Name)
```

Functional Dependencies:

```
{Stock_Symbol, Stock_Exchange} → Curr_price
{Stock_Symbol, Stock_Exchange} → Total_Quantity
{Stock_Symbol, Stock_Exchange} → Company Name
```

• Computing the Attribute Closure:

```
{Stock_Symbol, Stock_Exchange}<sup>+</sup> → { Stock_Symbol, Stock_Exchange, Curr_price, Total_Quantity, Company_Name}
```

Here, '{Stock_Symbol, Stock_Exchange}' together infers all the attributes of the relation 'Stocks'.

Primary key: {Stock_Symbol, Stock_Exchange}

All the FDs in the minimal set of FDs for the relation 'Stocks' are inferred only by the primary key '{Stock_Symbol, Stock_Exchange}'. Therefore, the relation 'Stocks' is in BCNF.

6. Transaction Relation

Attributes:

```
Transaction(Transaction_ID, Bank_Name, Bank_Account_No., Mode_Of_Transaction, Credit_OR_Debit, Amount, Transaction_Date, Transaction_Time, Status)
```

• Functional Dependencies:

```
\begin{split} & Transaction\_ID \rightarrow Bank\_Name \\ & Transaction\_ID \rightarrow Bank\_Account\_No \\ & Transaction\_ID \rightarrow Mode\_Of\_Transaction \\ & Transaction\_ID \rightarrow Credit\_Or\_Debit \\ & Transaction\_ID \rightarrow Amount \\ & Transaction\_ID \rightarrow Transaction\_Date \\ & Transaction\_ID \rightarrow Transaction\_Time \\ & Transaction\_ID \rightarrow Status \end{split}
```

• Computing the Attribute Closure:

```
Transaction_ID<sup>+</sup> → {Transaction_ID, Bank_Name, Bank_Account_No., Mode_Of_Transaction, Credit_OR_Debit, Amount, Transaction Date, Transaction Time, Status}
```

Here, 'Transaction_ID' infers all the attributes of the relation 'Transaction'.

Primary key: Transaction_ID

All the FDs in the minimal set of FDs for the relation '**Transaction**' are inferred only by the primary key '**Transaction_ID**'. Therefore, the relation '**Transaction**' is in BCNF.

7. Promoter Relation

• Attributes:

Promoter(Company_Name, Promoter_Name)

Primary key: {Company_Name, Promoter_Name}

Here, '{Company_Name, Promoter_Name}' will together be a primary key. So, all the tuples of the relation 'Promoter' will be unique. Therefore, the relation 'Promoter' is in BCNF.

8. Stock Watchlist Relation

• Attributes:

Stock Watchlist(Stock_Symbol, Stock_Exchange, Login_ID)

Primary key: {Stock_Symbol, Stock_Exchange, Login_ID}

Here, '{Stock_Symbol, Stock_Exchange, Login_ID}' will together be a primary key. So, all the tuples of the relation 'Stock Watchlist' will be unique. Therefore, the relation 'Stock Watchlist' is in BCNF.

9. Stock Order Relation

• Attributes:

Stock Order(Stock_Symbol, Stock_Exchange, Login_ID, Purchase_Time, Purchase_Date, Threshold_Value, Quantity, Buy_OR_Sell, Status)

• Functional Dependencies:

```
{Stock_Symbol, Stock_Exchange, Login_ID, Purchase_Time, Purchase_Date} → Threshold_Value {Stock_Symbol, Stock_Exchange, Login_ID, Purchase_Time, Purchase_Date} → Quantity {Stock_Symbol, Stock_Exchange, Login_ID, Purchase_Time, Purchase_Date} → Buy_OR_Sell {Stock_Symbol, Stock_Exchange, Login_ID, Purchase_Time, Purchase_Date} → Status
```

• Computing the Attribute Closure:

```
Stock_Symbol, Stock_Exchange, Login_ID, Purchase_Time,
Purchase_Date}<sup>+</sup> → {Stock_Symbol, Stock_Exchange, Login_ID,
Purchase_Time, Purchase_Date, Threshold_Value, Quantity,
Buy_OR_Sell, Status}
```

Here, '{Stock_Symbol, Stock_Exchange, Login_ID, Purchase_Time, Purchase_Date}' together infers all the attributes of the relation 'Stock Order'.

```
Primary key: {Stock_Symbol, Stock_Exchange, Login_ID, Purchase_Time, Purchase_Date}
```

All the FDs in the minimal set of FDs for the relation 'Stock Order' are inferred only by the primary key '{Stock_Symbol, Stock_Exchange, Login_ID, Purchase_Time, Purchase_Date}'. Therefore, the relation 'Stock Order' is in BCNF.

10. Owns Relation

• Attributes:

Owns(Login_ID, Stock_Symbol, Stock_Exchange, Quantity)

• Functional Dependencies:

{Login_ID, Stock_Symbol, Stock_Exchange} → Quantity

• Computing the Attribute Closure:

 $\{Login_ID, Stock_Symbol, Stock_Exchange\}$ ⁺ → $\{Login_ID, Stock_Symbol, Stock_Exchange, Quantity\}$

Here, '{Login_ID, Stock_Symbol, Stock_Exchange}' together infers all the attributes of the relation 'Owns'.

Primary key: {Login_ID, Stock_Symbol, Stock_Exchange}

All the FDs in the minimal set of FDs for the relation 'Owns' are inferred only by the primary key '{Login_ID, Stock_Symbol, Stock_Exchange}'. Therefore, the relation 'Owns' is in BCNF.

11. Bank Account Relation

• Attributes:

Bank Account(Login_ID, Bank_Name, Bank_Account_No., IFSC Code)

• Functional Dependencies:

```
{Bank_Name, Bank_Account_No.}→ Login_ID {Bank_Name, Bank_Account_No.}→ IFSC Code
```

• Computing the Attribute Closure:

{Bank_Name, Bank_Account_No.}⁺ → {Transaction_ID, Bank_Name, Bank_Account_No., Mode_Of_Transaction, Credit_OR_Debit, Amount, Transaction_Date, Transaction_Time, Status}

Here, '{Bank_Name, Bank_Account_No.}' together infers all the attributes of the relation 'Bank Account'.

Primary key: {Bank_Name, Bank_Account_No.}

All the FDs in the minimal set of FDs for the relation 'Bank Account' are inferred only by the primary key '{Bank_Name, Bank_Account_No.}'. Therefore, the relation 'Bank Account' is in BCNF.

12. Admin Relation

• Attributes:

```
Admin(Login_ID)
```

Here, the relation 'Admin' has only one attribute 'Login_ID' which itself is a primary key. Therefore, the relation 'Admin' is in BCNF.

13. Has Written Relation

Attributes:

```
Has Written(Login_ID, Blog_ID)
```

Primary key: {Login_ID, Blog_ID}

Here, '{Login_ID, Blog_ID}' will together be a primary key. So, all the tuples of the relation 'Has Written' will be unique. Therefore, the relation 'Has Written' is in BCNF.

14. <u>User Relation</u>

• Attributes:

User(Login_ID, Name, Password, E-Mail)

Functional Dependencies:

```
Login_ID → Name
Login_ID → Password
Login_ID → E-Mail
```

Computing the Attribute Closure:

Login_ID⁺ → {Login_ID, Name, Password, E-Mail}

Here, 'Login_ID' infers all the attributes of the relation 'User'.

Primary Keys: Login_ID

All the FDs in the minimal set of FDs for the relation 'User' are inferred only by the primary key 'Login_ID'. Therefore, the relation 'User' is in BCNF.

15. IPO Watchlist Relation

• Attributes:

IPO Watchlist(Login_ID, Company_Name, Stock_Exchange, Start_Date, End_Date)

Primary key: {Login_ID, Company_Name, Stock_Exchange, Start_Date, End_Date}

Here, '{Login_ID, Company_Name, Stock_Exchange, Start_Date, End_Date}' will together be a primary key. So, all the tuples of the relation 'IPO Watchlist' will be unique. Therefore, the relation 'IPO Watchlist' is in BCNF.

16. <u>Bidded Relation</u>

• Attributes:

Bidded(Login_ID, Company_Name, Stock_Exchange, Start_Date, End Date, Bidded Lots, Status)

Functional Dependencies:

```
{Login_ID, Company_Name, Stock_Exchange, Start_Date, End_Date} → Bidded_Lot {Login_ID, Company_Name, Stock_Exchange, Start_Date, End_Date} → Status
```

• Computing the Attribute Closure:

```
{Login_ID, Company_Name, Stock_Exchange, Start_Date, End_Date}<sup>+</sup> → {Login_ID, Company_Name, Stock_Exchange, Start_Date, End_Date, Bidded_Lots, Status}
```

Here, '{Login_ID, Company_Name, Stock_Exchange, Start_Date, End_Date}' together infers all the attributes of the relation 'User'.

```
Primary key: {Login_ID, Company_Name, Stock_Exchange,
Start_Date, End_Date}
```

All the FDs in the minimal set of FDs for the relation 'Bidded' are inferred only by the primary key '{Login_ID, Company_Name, Stock_Exchange, Start_Date, End_Date}'. Therefore, the relation 'Bidded' is in BCNF.

17. Mutual Fund Relation

Attributes:

Mutual Fund(MF_Symbol, Stock_Exchange, MF_Name, Curr_Price, Total_Quantity)

• Functional Dependencies:

```
{MF_Symbol, Stock_Exchange} → MF_Name
{MF_Symbol, Stock_Exchange} → Curr_price
{MF_Symbol, Stock_Exchange} → Total_Quantity
```

Computing the Attribute Closure:

```
{MF_Symbol, Stock_Exchange}<sup>+</sup> → {MF_Symbol, Stock_Exchange, MF_Name, Curr_price, Total_Quantity}
```

Here, '{MF_Symbol, Stock_Exchange}' together infers all the attributes of the relation 'Mutual Fund'.

```
Primary key: {MF_Symbol, Stock_Exchange}
```

All the FDs in the minimal set of FDs for the relation 'Mutual Fund' are inferred only by the primary key '{MF_Symbol, Stock_Exchange}'. Therefore, the relation 'Mutual Fund' is in BCNF.

18. Mutual Fund Invest Relation

• Attributes:

Mutual Fund Invest(Login_ID, MF_Symbol, Stock_Exchange, Quantity)

• Functional Dependencies:

{Login_ID, MF_Symbol, Stock_Exchange} → Quantity

Computing the Attribute Closure:

```
{Login_ID, MF_Symbol, Stock_Exchange}<sup>+</sup> → {Login_ID, MF_Symbol, Stock_Exchange, Quantity}
```

Here, '{Login_ID, MF_Symbol, Stock_Exchange}' together infers all the attributes of the relation 'Mutual Fund Invest'.

Primary key: {Login_ID, MF_Symbol, Stock_Exchange}

All the FDs in the minimal set of FDs for the relation 'Mutual Fund Invest' are inferred only by the primary key '{Login_ID, MF_Symbol, Stock_Exchange}'. Therefore, the relation 'Mutual Fund Invest' is in BCNF.

19. Mutual Fund Watchlist Relation

• Attributes:

Mutual Fund Watchlist(MF_Symbol, Stock_Exchange, Login_ID)

Primary key: {MF_Symbol, Stock_Exchange, Login_ID}

Here, '{MF_Symbol, Stock_Exchange, Login_ID}' will together be a primary key. So, all the tuples of the relation 'Mutual Fund Watchlist' will be unique. Therefore, the relation 'Mutual Fund Watchlist' is in BCNF.

20. Mutual Fund Orders Relation

• Attributes:

Mutual Fund Orders(MF_Symbol, Stock_Exchange, Login_ID, Purchase_Date, Purchase_Time, Threshold_Value, Quantity, Buy_OR_Sell, Status)

• Functional Dependencies:

```
{MF_Symbol, Stock_Exchange, Login_ID, Purchase_Date, Purchase_Time} → Threshold_Value 
{Stock_Symbol, Stock_Exchange, Login_ID, Purchase_Date, Purchase_Time} → Quantity 
{Stock_Symbol, Stock_Exchange, Login_ID, Purchase_Date, Purchase_Time} → Buy_OR_Sell 
{Stock_Symbol, Stock_Exchange, Login_ID, Purchase_Date, Purchase_Time} → Status
```

• Computing the Attribute Closure:

```
{MF_Symbol, Stock_Exchange, Login_ID, Purchase_Time, Purchase_Date}<sup>+</sup> → {MF_Symbol, Stock_Exchange, Login_ID, Purchase_Date, Purchase_Time, Threshold_Value, Quantity, Buy_OR_Sell, Status}</sup>
```

Here, '{MF_Symbol, Stock_Exchange, Login_ID, Purchase_Time, Purchase_Date}' together infers all the attributes of the relation 'Mutual Fund Orders'.

```
Primary key: {MF_Symbol, Stock_Exchange, Login_ID,
Purchase_Date, Purchase_Time}
```

All the FDs in the minimal set of FDs for the relation 'Mutual Fund Orders' are inferred only by the primary key '{MF_Symbol, Stock_Exchange, Login_ID, Purchase_Date, Purchase_Time}'. Therefore, the relation 'Mutual Fund Orders' is in BCNF.

21. Collection Relation

Attributes:

Collection(MF_Symbol, MF_StockExchange, Stock_Symbol, Stock_StockExchange, Duration, Quantity)

• Functional Dependencies:

{MF_Symbol, MF_StockExchange, Stock_Symbol, Stock_StockExchange, Duration} → Quantity

• Computing the Attribute Closure:

{MF_Symbol, MF_StockExchange, Stock_Symbol, Stock_StockExchange, Duration}⁺ → {MF_Symbol, MF_StockExchange, Stock_Symbol, Stock_StockExchange, Duration, Quantity}

Here, '{MF_Symbol, MF_StockExchange, Stock_Symbol, Stock_StockExchange, Duration}' together infers all the attributes of the relation 'Collection'.

Primary key:{MF_Symbol, MF_StockExchange, Stock_Symbol, Stock StockExchange, Duration}

All the FDs in the minimal set of FDs for the relation 'Collection' are inferred only by the primary key '{MF_Symbol, MF_StockExchange, Stock_Symbol, Stock_StockExchange, Duration}'. Therefore, the relation 'Collection' is in BCNF.