Basis flavio (EFT WET-3)

Sectors

The effective Lagrangian is defined as

$$\mathcal{L}_{\text{eff}} = -\mathcal{H}_{\text{eff}} = \sum_{O_i = O_i^{\dagger}} C_i O_i + \sum_{O_i \neq O_i^{\dagger}} \left(C_i O_i + C_i^* O_i^{\dagger} \right).$$

sdsd

WC name	Operator	Type
CVLL_sdsd	$(\bar{d}_L \gamma^\mu s_L)(\bar{d}_L \gamma_\mu s_L)$	С
CVRR_sdsd	$(\bar{d}_R \gamma^\mu s_R)(\bar{d}_R \gamma_\mu s_R)$	\mathbf{C}
CSLL_sdsd	$(ar{d}_R s_L)(ar{d}_R s_L)$	\mathbf{C}
CSRR_sdsd	$(ar{d}_L s_R)(ar{d}_L s_R)$	\mathbf{C}
CTLL_sdsd	$(\bar{d}_R \sigma^{\mu\nu} s_L)(\bar{d}_R \sigma_{\mu\nu} s_L)$	\mathbf{C}
CTRR_sdsd	$(\bar{d}_L \sigma^{\mu\nu} s_R)(\bar{d}_L \sigma_{\mu\nu} s_R)$	\mathbf{C}
CVLR_sdsd	$(\bar{d}_L \gamma^\mu s_L)(\bar{d}_R \gamma_\mu s_R)$	\mathbf{C}
CSLR_sdsd	$(ar{d}_R s_L)(ar{d}_L s_R)$	\mathbf{C}

sd

WC name	Operator	Type
C9_sdee	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{e}\gamma_{\mu}e)$	С
C9p_sdee	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^{\mu}s_R)(ar{e}\gamma_{\mu}e)$	\mathbf{C}
C10_sdee	$rac{4 G_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_L \gamma^\mu s_L) (ar{e} \gamma_\mu \gamma_5 e)$	\mathbf{C}
C10p_sdee	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^\mu s_R)(ar{e}\gamma_\mu\gamma_5 e)$	\mathbf{C}
CS_sdee	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_L s_R)(ar{e}e)$	\mathbf{C}
CSp_sdee	$rac{4\dot{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}rac{e^{2}}{16\pi^{2}}m_{s}(ar{d}_{R}s_{L})(ar{e}e)$	\mathbf{C}
CP_sdee	$rac{4\dot{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}rac{e^{2}}{16\pi^{2}}m_{s}(ar{d}_{L}s_{R})(ar{e}\gamma_{5}e)$	\mathbf{C}
CPp_sdee	$rac{4\dot{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}rac{e^{2}}{16\pi^{2}}m_{s}(ar{d}_{R}s_{L})(ar{e}\gamma_{5}e)$	\mathbf{C}
C9_sdmumu	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^\mu s_L)(ar{\mu}\gamma_\mu\mu)$	\mathbf{C}
C9p_sdmumu	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^\mu s_R)(ar{\mu}\gamma_\mu\mu)$	\mathbf{C}
C10_sdmumu	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^\mu s_L)(ar{\mu}\gamma_\mu\gamma_5\mu)$	\mathbf{C}
C10p_sdmumu	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^\mu s_R)(ar{\mu}\gamma_\mu\gamma_5\mu)$	\mathbf{C}
CS_sdmumu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\mu}\mu)$	\mathbf{C}
CSp_sdmumu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{\mu}\mu)$	\mathbf{C}
CP_sdmumu	$\frac{4\dot{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}m_{s}(\bar{d}_{L}s_{R})(\bar{\mu}\gamma_{5}\mu)$	\mathbf{C}

WC name	Operator	Type
CPp_sdmumu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{\mu}\gamma_5\mu)$	С
C7_sd	$\frac{4 \check{G}_F}{\sqrt{2}} V_{ts} V_{td}^* \frac{e}{16\pi^2} m_s (\bar{d}_L \sigma^{\mu\nu} s_R) F_{\mu\nu}$	\mathbf{C}
C7p_sd	$rac{4 \tilde{G}_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e}{16\pi^2} m_s (\bar{d}_R \sigma^{\mu u} s_L) F_{\mu u}$	\mathbf{C}
C8_sd	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{g_s}{16\pi^2}m_s(\bar{d}_L\sigma^{\mu\nu}T^as_R)G_{\mu\nu}^a$	\mathbf{C}
C8p_sd	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*rac{g_s}{16\pi^2}m_s(ar{d}_R\sigma^{\mu u}T^as_L)G_{\mu u}^a$	\mathbf{C}
CVLL_sdss	$rac{4\widetilde{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\gamma^\mu s_L)(ar{s}_L\gamma_\mu s_L)$	$^{\mathrm{C}}$
CVLR_sdss	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\gamma^\mu s_L)(ar{s}_R\gamma_\mu s_R)$	\mathbf{C}
CVRL_sdss	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R\gamma^\mu s_R)(ar{s}_L\gamma_\mu s_L)$	$^{\mathrm{C}}$
CVRR_sdss	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R\gamma^\mu s_R)(ar{s}_R\gamma_\mu s_R)$	$^{\mathrm{C}}$
CSLL_sdss	$\frac{4\ddot{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Rs_L)(\bar{s}_Rs_L)$	$^{\mathrm{C}}$
CSLR_sdss	$\frac{4\widetilde{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Rs_L)(\bar{s}_Ls_R)$	$^{\mathrm{C}}$
CSRL_sdss	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_Ls_R)(ar{s}_Rs_L)$	\mathbf{C}
CSRR_sdss	$\frac{4G_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}(\bar{d}_{L}s_{R})(\bar{s}_{L}s_{R})$	$^{\mathrm{C}}$
CTLL_sdss	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R\sigma^{\mu u}s_L)(ar{s}_R\sigma_{\mu u}s_L)$	$^{\mathrm{C}}$
CTRR_sdss	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\sigma^{\mu u}s_R)(ar{s}_L\sigma_{\mu u}s_R)$	$^{\mathrm{C}}$
CVLL_sddd	$rac{4\ddot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\gamma^\mu s_L)(ar{d}_L\gamma_\mu d_L)$	\mathbf{C}
CVLR_sddd	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\gamma^\mu s_L)(ar{d}_R\gamma_\mu d_R)$	$^{\mathrm{C}}$
CVRL_sddd	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R\gamma^\mu s_R)(ar{d}_L\gamma_\mu d_L)$	$^{\mathrm{C}}$
CVRR_sddd	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R\gamma^\mu s_R)(ar{d}_R\gamma_\mu d_R)$	\mathbf{C}
CSLL_sddd	$rac{4ar{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_Rs_L)(ar{d}_Rd_L)$	\mathbf{C}
CSLR_sddd	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_Rs_L)(ar{d}_Ld_R)$	\mathbf{C}
CSRL_sddd	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(d_Ls_R)(d_Rd_L)$	\mathbf{C}
CSRR_sddd	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_Ls_R)(ar{d}_Ld_R)$	\mathbf{C}
CTLL_sddd	$rac{4ar{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R\sigma^{\mu u}s_L)(ar{d}_R\sigma_{\mu u}d_L)$	\mathbf{C}
CTRR_sddd	$rac{4ar{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\sigma^{\mu u}s_R)(ar{d}_L\sigma_{\mu u}d_R)$	\mathbf{C}
CVLL_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\gamma^\mu s_L)(\bar{u}_L\gamma_\mu u_L)$	\mathbf{C}
CVLR_sduu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\gamma^\mu s_L)(ar{u}_R\gamma_\mu u_R)$	$^{\mathrm{C}}$
CVRL_sduu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R\gamma^\mu s_R)(ar{u}_L\gamma_\mu u_L)$	\mathbf{C}
CVRR_sduu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R\gamma^\mu s_R)(ar{u}_R\gamma_\mu u_R)$	$^{\mathrm{C}}$
CSLL_sduu	$\frac{\sqrt{2}}{\sqrt{2}}V_{ts}V_{td}(\bar{u}_R\gamma^*S_R)(\bar{u}_R\gamma_\mu u_R)$ $\frac{4G_F}{2}V_{ts}V_{td}^*(\bar{d}_Rs_L)(\bar{u}_Ru_L)$ $\frac{4G_F}{2}V_{ts}V_{ts}^*(\bar{d}_Rs_L)(\bar{u}_Lu_R)$	$^{\mathrm{C}}$
CSLR_sduu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_Rs_L)(ar{u}_Lu_R)$	$^{\mathrm{C}}$
CSRL_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Ls_R)(\bar{u}_Ru_L)$	\mathbf{C}
CSRR_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Ls_R)(\bar{u}_Lu_R)$	\mathbf{C}
CTLL_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\sigma^{\mu\nu}s_L)(\bar{u}_R\sigma_{\mu\nu}u_L)$	\mathbf{C}
CTRR_sduu	$ \frac{\sqrt{2}}{\sqrt{2}} V_{ts} V_{td}^* (\bar{d}_R s_L) (\bar{u}_R u_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^* (\bar{d}_L s_R) (\bar{u}_L u_R) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^* (\bar{d}_L s_R) (\bar{u}_R u_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^* (\bar{d}_L s_R) (\bar{u}_L u_R) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^* (\bar{d}_R \sigma^{\mu\nu} s_L) (\bar{u}_R \sigma_{\mu\nu} u_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^* (\bar{d}_L \sigma^{\mu\nu} s_R) (\bar{u}_L \sigma_{\mu\nu} u_R) \\ 4G_F V_{ts} V_{ts}^* (\bar{d}_R s_L^{\mu} s_R^{\beta}) (\bar{s}_R^{\beta} s_L s_L^{\alpha}) $	С
CVLLt_sduu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L^\alpha\gamma^\mu s_L^\beta)(\bar{u}_L^\beta\gamma_\mu u_L^\alpha)$	\mathbf{C}

WC name	Operator	Type
CVLRt_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L^{\alpha}\gamma^{\mu}s_L^{\beta})(\bar{u}_R^{\beta}\gamma_{\mu}u_R^{\alpha})$	
CVRLt_sduu	$\frac{4\tilde{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R^{lpha}\gamma^{\mu}s_R^{eta})(\bar{u}_L^{eta}\gamma_{\mu}u_L^{lpha})$	\mathbf{C}
CVRRt_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R^{lpha}\gamma^{\mu}s_R^{eta})(\bar{u}_R^{eta}\gamma_{\mu}u_R^{lpha})$	\mathbf{C}
CSLLt_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R^{\alpha}s_L^{\beta})(\bar{u}_R^{\beta}u_L^{\alpha})$	\mathbf{C}
CSLRt_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R^{lpha}s_L^{eta})(\bar{u}_L^{eta}u_R^{lpha})$	\mathbf{C}
CSRLt_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L^{\alpha}s_R^{\beta})(\bar{u}_R^{\beta}u_L^{\alpha})$	\mathbf{C}
CSRRt_sduu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^{lpha}s_R^{eta})(ar{u}_L^{eta}u_R^{lpha})$	\mathbf{C}
CTLLt_sduu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R^{lpha}\sigma^{\mu u}s_L^{eta})(\bar{u}_R^{eta}\sigma_{\mu u}u_L^{lpha})$	\mathbf{C}
CTRRt_sduu	$\frac{4\bar{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L^\alpha\sigma^{\mu\nu}s_R^\beta)(\bar{u}_L^\beta\sigma_{\mu\nu}u_R^\alpha)$	С

sdnunu

WC name	Operator	Type
CL_sdnuenue	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_L \gamma^\mu d_L) (\bar{\nu}_e \gamma_\mu (1-\gamma_5) \nu_e)$	С
CL_sdnumunumu	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CL_sdnutaunutau	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\tau})$	\mathbf{C}
CL_sdnuenumu	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CL_sdnumunue	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CL_sdnumunutau	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CL_sdnutaunumu	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_L\gamma^\mu d_L)(\bar{\nu}_\mu\gamma_\mu(1-\gamma_5)\nu_ au)$	\mathbf{C}
CL_sdnuenutau	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CL_sdnutaunue	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{\tau})$	\mathbf{C}
CR_sdnuenue	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CR_sdnumunumu	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	$^{\mathrm{C}}$
CR_sdnutaunutau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\tau})$	\mathbf{C}
CR_sdnuenumu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CR_sdnumunue	$\frac{4\dot{G}_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CR_sdnumunutau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CR_sdnutaunumu	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{\tau})$	\mathbf{C}
CR_sdnuenutau	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_e)$	$^{\mathrm{C}}$
CR_sdnutaunue	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{ au})$	\mathbf{C}

sdemu

WC name	Operator	Type
C9_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{\mu}\gamma_{\mu}e)$	С
C9p_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{\mu}\gamma_{\mu}e)$	\mathbf{C}
C10_sdemu	$rac{4 G_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_L \gamma^\mu s_L) (ar{\mu} \gamma_\mu \gamma_5 e)$	$^{\mathrm{C}}$
C10p_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{\mu}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
CS_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\mu}e)$	\mathbf{C}
CSp_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{\mu}e)$	\mathbf{C}
CP_sdemu	$\frac{4\ddot{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}m_{s}(\bar{d}_{L}s_{R})(\bar{\mu}\gamma_{5}e)$	\mathbf{C}
CPp_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{\mu}\gamma_5e)$	C

sdmue

WC name	Operator	Type
C9_sdmue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{e}\gamma_{\mu}\mu)$	С
C9p_sdmue	$rac{4ar{G}_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^\mu s_R)(ar{e}\gamma_\mu\mu)$	\mathbf{C}
C10_sdmue	$rac{4 G_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_L \gamma^\mu s_L) (ar{e} \gamma_\mu \gamma_5 \mu)$	\mathbf{C}
C10p_sdmue	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^\mu s_R)(ar{e}\gamma_\mu\gamma_5\mu)$	\mathbf{C}
CS_sdmue	$rac{4 \overset{\sim}{G_F}}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16 \pi^2} m_s(ar{d}_L s_R)(ar{e} \mu)$	\mathbf{C}
CSp_sdmue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_R s_L)(\bar{e}\mu)$	\mathbf{C}
CP_sdmue	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_Ls_R)(ar{e}\gamma_5\mu)$	\mathbf{C}
CPp_sdmue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_R s_L)(\bar{e}\gamma_5\mu)$	\mathbf{C}

usenu

WC name	Operator	Type
CVL_suenue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L\gamma^{\mu}s_L)(\bar{e}_L\gamma_{\mu}\nu_{eL})$	
CVR_suenue	$-rac{4\check{G}_F}{\sqrt{2}}V_{us}(ar{u}_R\gamma^\mu s_R)(ar{e}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_suenue	$-rac{4reve{G}_F}{\sqrt{2}}V_{us}(ar{u}_L s_R)(ar{e}_R u_{eL})$	\mathbf{C}
CSL_suenue	$-rac{4G_F}{\sqrt{2}}V_{us}(ar{u}_Rs_L)(ar{e}_R u_{eL})$	\mathbf{C}
CT_suenue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\sigma^{\mu\nu}s_L)(\bar{e}_R\sigma_{\mu\nu}\nu_{eL})$	\mathbf{C}
CVL_suenumu	$-rac{4 \overleftarrow{G_F}}{\sqrt{2}} V_{us} (ar{u}_L \gamma^\mu s_L) (ar{e}_L \gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_suenumu	$-rac{4G_F}{\sqrt{2}}V_{us}(ar{u}_R\gamma^\mu s_R)(ar{e}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_suenumu	$-rac{4G_F}{\sqrt{2}}V_{us}(ar{u}_L s_R)(ar{e}_R u_{\mu L})$	\mathbf{C}
CSL_suenumu	$-rac{4G_F}{\sqrt{2}}V_{us}(ar{u}_Rs_L)(ar{e}_R u_{\mu L})$	\mathbf{C}
CT_suenumu	$-rac{4G_F}{\sqrt{2}}V_{us}(ar{u}_R\sigma^{\mu u}s_L)(ar{e}_R\sigma_{\mu u} u_{\mu L})$	\mathbf{C}
CVL_suenutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{us}(ar{u}_L\gamma^\mu s_L)(ar{e}_L\gamma_\mu u_{ au L})$	$^{\mathrm{C}}$

WC name	Operator	Type
CVR_suenutau	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\gamma^{\mu}s_R)(\bar{e}_L\gamma_{\mu}\nu_{\tau L})$	C
CSR_suenutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{us}(ar{u}_Ls_R)(ar{e}_R u_{ au L})$	\mathbf{C}
CSL_suenutau	$-\frac{4\tilde{G_F}}{\sqrt{2}}V_{us}(\bar{u}_Rs_L)(\bar{e}_R\nu_{\tau L})$	\mathbf{C}
CT_suenutau	$\begin{split} &-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\gamma^{\mu}s_R)(\bar{e}_L\gamma_{\mu}\nu_{\tau L})\\ &-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_Ls_R)(\bar{e}_R\nu_{\tau L})\\ &-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_Rs_L)(\bar{e}_R\nu_{\tau L})\\ &-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\sigma^{\mu\nu}s_L)(\bar{e}_R\sigma_{\mu\nu}\nu_{\tau L}) \end{split}$	\mathbf{C}

usmunu

WC name	Operator	Type
CVL_sumunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L\gamma^{\mu}s_L)(\bar{\mu}_L\gamma_{\mu}\nu_{eL})$	
CVR_sumunue	$-rac{4\check{G}_F}{\sqrt{2}}V_{us}(\bar{u}_R\gamma^\mu s_R)(\bar{\mu}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_sumunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L s_R)(\bar{\mu}_R \nu_{eL})$	\mathbf{C}
CSL_sumunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R s_L)(\bar{\mu}_R \nu_{eL})$	\mathbf{C}
CT_sumunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\sigma^{\mu\nu}s_L)(\bar{\mu}_R\sigma_{\mu\nu}\nu_{eL})$	\mathbf{C}
CVL_sumunumu	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L\gamma^\mu s_L)(\bar{\mu}_L\gamma_\mu\nu_{\mu L})$	\mathbf{C}
CVR_sumunumu	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\gamma^{\mu}s_R)(\bar{\mu}_L\gamma_{\mu}\nu_{\mu L})$	\mathbf{C}
CSR_sumunumu	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L s_R)(\bar{\mu}_R \nu_{\mu L})$	\mathbf{C}
CSL_sumunumu	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R s_L)(\bar{\mu}_R \nu_{\mu L})$	\mathbf{C}
CT_sumunumu	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{us}(\bar{u}_R\sigma^{\mu\nu}s_L)(\bar{\mu}_R\sigma_{\mu\nu}\nu_{\mu L})$	\mathbf{C}
CVL_sumunutau	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{us}(ar{u}_L\gamma^\mu s_L)(ar{\mu}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_sumunutau	$-\frac{4\check{G}_F}{\sqrt{2}}V_{us}(\bar{u}_R\gamma^\mu s_R)(\bar{\mu}_L\gamma_\mu u_{\tau L})$	\mathbf{C}
CSR_sumunutau	$-rac{4\check{G}_F}{\sqrt{2}}V_{us}(\bar{u}_Ls_R)(\bar{\mu}_R u_{ au L})$	$^{\mathrm{C}}$
CSL_sumunutau	$-rac{4rac{G_F}{\sqrt{2}}}{\sqrt{2}}V_{us}(ar{u}_Rs_L)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CT_sumunutau	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{us}(ar{u}_R\sigma^{\mu u}s_L)(ar{\mu}_R\sigma_{\mu u} u_{ au L})$	C

udenu

WC name	Operator	Type
CVL_duenue	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{e}_L\gamma_\mu\nu_{eL})$	С
CVR_duenue	$-rac{4Q_F^2}{\sqrt{2}}V_{ud}(ar{u}_R\gamma^\mu d_R)(ar{e}_L\gamma_\mu u_{eL})$	$^{\mathrm{C}}$
CSR_duenue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{e}_R\nu_{eL})$	$^{\mathrm{C}}$
CSL_duenue	$-rac{4\overset{\circ}{G_F}}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{e}_R u_{eL})$	\mathbf{C}
CT_duenue	$-\frac{4G_F^2}{\sqrt{2}}V_{ud}(\bar{u}_R\sigma^{\mu\nu}d_L)(\bar{e}_R\sigma_{\mu\nu}\nu_{eL})$	\mathbf{C}
CVL_duenumu	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{ud}(ar{u}_L\gamma^\mu d_L)(ar{e}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_duenumu	$-rac{4\overset{Q^{r}}{G_{F}}}{\sqrt{2}}V_{ud}(ar{u}_{R}\gamma^{\mu}d_{R})(ar{e}_{L}\gamma_{\mu} u_{\mu L})$	\mathbf{C}
CSR_duenumu	$-rac{4\overset{Q^{r}}{G_{F}}}{\sqrt{2}}V_{ud}(ar{u}_{L}d_{R})(ar{e}_{R} u_{\mu L})$	$^{\mathrm{C}}$
CSL_duenumu	$-rac{4reve{G}_F}{\sqrt{2}}V_{ud}(ar{u}_Rd_L)(ar{e}_R u_{\mu L})$	\mathbf{C}

WC name	Operator	Type
CT_duenumu	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_R\sigma^{\mu\nu}d_L)(\bar{e}_R\sigma_{\mu\nu}\nu_{\mu L})$	C
CVL_duenutau	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{e}_L\gamma_\mu u_{\tau L})$	\mathbf{C}
CVR_duenutau	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\gamma^\mu d_R)(\bar{e}_L\gamma_\mu\nu_{\tau L})$	\mathbf{C}
CSR_duenutau	$-\frac{4\tilde{G_F}}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{e}_R\nu_{\tau L})$	\mathbf{C}
CSL_duenutau	$-rac{4reve{G_F}}{\sqrt{2}}V_{ud}(ar{u}_Rd_L)(ar{e}_R u_{ au L})$	\mathbf{C}
CT_duenutau	$-rac{4G_F}{\sqrt{2}}V_{ud}(ar{u}_R\sigma^{\mu u}d_L)(ar{e}_R\sigma_{\mu u} u_{ au L})$	\mathbf{C}

udmunu

WC name	Operator	Type
CVL_dumunue	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{\mu}_L\gamma_\mu\nu_{eL})$	
CVR_dumunue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\gamma^\mu d_R)(\bar{\mu}_L\gamma_\mu\nu_{eL})$	\mathbf{C}
CSR_dumunue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{\mu}_R\nu_{eL})$	\mathbf{C}
CSL_dumunue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{\mu}_R\nu_{eL})$	\mathbf{C}
CT_dumunue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\sigma^{\mu\nu}d_L)(\bar{\mu}_R\sigma_{\mu\nu}\nu_{eL})$	\mathbf{C}
CVL_dumunumu	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{\mu}_L\gamma_\mu\nu_{\mu L})$	\mathbf{C}
CVR_dumunumu	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\gamma^\mu d_R)(\bar{\mu}_L\gamma_\mu\nu_{\mu L})$	\mathbf{C}
CSR_dumunumu	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{\mu}_R\nu_{\mu L})$	\mathbf{C}
CSL_dumunumu	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{\mu}_R\nu_{\mu L})$	\mathbf{C}
CT_dumunumu	$-rac{4\check{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\sigma^{\mu u}d_L)(\bar{\mu}_R\sigma_{\mu u} u_{\mu L})$	\mathbf{C}
CVL_dumunutau	$-rac{4\check{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{\mu}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_dumunutau	$-rac{4\check{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\gamma^\mu d_R)(\bar{\mu}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_dumunutau	$-\frac{4\check{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{\mu}_R u_{\tau L})$	\mathbf{C}
CSL_dumunutau	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{ud}(ar{u}_Rd_L)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CT_dumunutau	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{ud}(ar{u}_R\sigma^{\mu u}d_L)(ar{\mu}_R\sigma_{\mu u} u_{ au L})$	С

dF=0

WC name	Operator	Type
CG	$\frac{4G_F}{\sqrt{2}}f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	R
CGtilde	$\frac{4G_F}{\sqrt{2}}f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	${ m R}$
C7_uu	$\frac{4G_F}{\sqrt{2}}\frac{e}{16\pi^2}m_u\bar{u}_L\sigma^{\mu\nu}u_RF_{\mu\nu}$	\mathbf{C}
C7_dd	$\frac{4G_F}{\sqrt{2}}\frac{e}{16\pi^2}m_d\bar{d}_L\sigma^{\mu\nu}d_RF_{\mu\nu}$	$^{\mathrm{C}}$
C7_ss	$\frac{4G_F}{\sqrt{2}}\frac{e}{16\pi^2}m_s\bar{s}_L\sigma^{\mu\nu}s_RF_{\mu\nu}$	$^{\mathrm{C}}$
C7_ee	$\frac{4G_F}{\sqrt{2}}\frac{e}{16\pi^2}m_ear{e}_L\sigma^{\mu\nu}e_RF_{\mu\nu}$	$^{\mathrm{C}}$
C7_mumu	$ \frac{\frac{4G_F}{\sqrt{2}} \frac{e}{16\pi^2} m_d \bar{d}_L \sigma^{\mu\nu} d_R F_{\mu\nu}}{\frac{4G_F}{\sqrt{2}} \frac{e}{16\pi^2} m_s \bar{s}_L \sigma^{\mu\nu} s_R F_{\mu\nu}} \\ \frac{\frac{4G_F}{\sqrt{2}} \frac{e}{16\pi^2} m_e \bar{e}_L \sigma^{\mu\nu} e_R F_{\mu\nu}}{\frac{4G_F}{\sqrt{2}} \frac{e}{16\pi^2} m_\mu \bar{\mu}_L \sigma^{\mu\nu} \mu_R F_{\mu\nu}} $	\mathbf{C}

Operator	Type
$\frac{4G_F}{\sqrt{6}}\frac{g_s}{16-2}m_u\bar{u}_L\sigma^{\mu\nu}T^Au_RG^A_{\cdots}$	C
$\frac{\sqrt{2}}{4G_F} \frac{10\pi^2}{g_s} \frac{d}{2} m_d \bar{d}_L \sigma^{\mu\nu} T^A d_R G_{\cdots}^A$	$^{\mathrm{C}}$
$\frac{\sqrt{2}}{4G_F} \frac{16\pi^2}{\frac{g_s}{2}} \frac{\sigma}{2} m_s \bar{s}_L \sigma^{\mu\nu} T^A s_R G_{}^A$	$^{\mathrm{c}}$
$\frac{\sqrt{2}}{4G_F}(\bar{e}_L\sigma^{\mu\nu}e_R)(\bar{u}_L\sigma_{\mu\nu}u_R)$	$^{\mathrm{C}}$
	$^{\mathrm{C}}$
$\frac{4G_F}{\bar{\epsilon}}(\bar{e}_L\sigma^{\mu\nu}e_R)(\bar{d}_L\sigma_{\mu\nu}d_R)$	$^{\mathrm{c}}$
$\frac{4G_F}{2}(\bar{e}_L\sigma^{\mu\nu}e_R)(\bar{s}_L\sigma_{\mu\nu}s_R)$	$^{\mathrm{c}}$
$\frac{4G_F}{G_F}(\bar{\mu}_L\sigma^{\mu\nu}\mu_B)(\bar{d}_L\sigma_{\mu\nu}d_B)$	$^{\mathrm{C}}$
$\frac{4G_F}{\bar{\epsilon}_E}(\bar{\mu}_L\sigma^{\mu\nu}\mu_R)(\bar{s}_L\sigma_{\mu\nu}s_R)$	$^{\mathrm{C}}$
$\frac{4G_F}{\bar{\epsilon}}(\bar{u}_L u_R)(\bar{u}_L u_R)$	$^{\mathrm{C}}$
$\frac{\sqrt{2}}{4G_F}(\bar{u}_L T^A u_B)(\bar{u}_L T^A u_B)$	$^{\mathrm{C}}$
$\frac{\sqrt{2}}{4G_F}(\bar{u}_L u_R)(\bar{d}_L d_R)$	$^{\mathrm{C}}$
	$^{\mathrm{C}}$
	$^{\mathrm{C}}$
$\frac{\sqrt{2}}{4G_{\overline{E}}}(\bar{u}_L T^A u_R)(\bar{s}_L T^A s_R)$	$^{\mathrm{C}}$
$\frac{4G_F}{\sqrt{G}}(\bar{d}_L d_R)(\bar{d}_L d_R)$	$^{\mathrm{C}}$
$\frac{4G_F}{\bar{c}_{\bar{c}_{\bar{c}_{\bar{c}}}}}(\bar{d}_L d_R)(\bar{s}_L s_R)$	$^{\mathrm{C}}$
$\frac{\sqrt{2}}{4G_F}(\bar{d}_L s_R)(\bar{s}_L d_R)$	$^{\mathrm{C}}$
$\frac{\sqrt{2}}{\sqrt{6}}(\bar{s}_L s_R)(\bar{s}_L s_R)$	$^{\mathrm{C}}$
$\frac{\sqrt{2}}{4G_F}(\bar{d}_L T^A d_R)(\bar{d}_L T^A d_R)$	$^{\mathrm{C}}$
$\frac{4\check{G}_{F}}{\sqrt{2}}(\bar{d}_{L}T^{A}d_{R})(\bar{s}_{L}T^{A}s_{R})$	$^{\mathrm{C}}$
$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{d}_L T^A s_R)(\bar{s}_L T^A d_R)$	$^{\mathrm{C}}$
$\frac{\sqrt[4]{G_F}}{\sqrt{G}}(\bar{s}_L T^A s_R)(\bar{s}_L T^A s_R)$	\mathbf{C}
$\frac{\sqrt{2}}{\sqrt{2}}(\bar{u}_L d_R)(\bar{d}_L u_R)$	$^{\mathrm{C}}$
$\frac{\sqrt[4]{G}}{\sqrt[6]{S}}(\bar{u}_L s_R)(\bar{s}_L u_R)$	$^{\mathrm{C}}$
$\frac{\sqrt[4]{G_F}}{\sqrt{G_F}}(\bar{u}_L T^A d_R)(\bar{d}_L T^A u_R)$	$^{\mathrm{C}}$
$\frac{\sqrt[4]{G_F}}{\sqrt{2}}(\bar{u}_L T^A s_R)(\bar{s}_L T^A u_R)$	$^{\mathrm{C}}$
$rac{4G_F}{\sqrt{2}}(ar{e}_L e_R)(ar{d}_R d_L)$	\mathbf{C}
$rac{4G_F}{\sqrt{2}}(ar{e}_L e_R)(ar{s}_R s_L)$	\mathbf{C}
$\frac{4\ddot{G}_F^2}{\sqrt{2}}(\bar{e}_L e_R)(\bar{u}_R u_L)$	\mathbf{C}
$4G_F(\bar{u}_r,u_r)(\bar{d}_r,d_r)$	\mathbf{C}
$rac{4ar{G}_F^2}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{s}_Rs_L)$	\mathbf{C}
$\frac{4\ddot{G}_F^2}{\sqrt{2}}(\bar{\mu}_L\mu_R)(\bar{u}_Ru_L)$	\mathbf{C}
$\frac{4\ddot{G}_F^2}{\sqrt{2}}(\bar{e}_L e_R)(\bar{d}_L d_R)$	\mathbf{C}
$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{e}_L e_R)(\bar{e}_L e_R)$	\mathbf{C}
$\frac{4\ddot{Q}_F^2}{\sqrt{2}}(\bar{e}_L e_R)(\bar{\mu}_L \mu_R)$	$^{\mathrm{C}}$
$\frac{4\tilde{G}_F^2}{\sqrt{2}}(\bar{e}_Le_R)(\bar{s}_Ls_R)$	\mathbf{C}
v -2	
7	
	$\begin{array}{c} \frac{4G_{F}}{\sqrt{2}} \frac{g_{s}}{16\pi^{2}} m_{u} \bar{u}_{L} \sigma^{\mu\nu} T^{A} u_{R} G_{\mu\nu}^{A} \\ \frac{4G_{F}}{\sqrt{2}} \frac{g_{s}}{16\pi^{2}} m_{d} \bar{d}_{L} \sigma^{\mu\nu} T^{A} d_{R} G_{\mu\nu}^{A} \\ \frac{4G_{F}}{\sqrt{2}} \frac{g_{s}}{16\pi^{2}} m_{s} \bar{s}_{L} \sigma^{\mu\nu} T^{A} s_{R} G_{\mu\nu}^{A} \\ \frac{4G_{F}}{\sqrt{2}} (\bar{e}_{L} \sigma^{\mu\nu} e_{R}) (\bar{u}_{L} \sigma_{\mu\nu} u_{R}) \\ \frac{4G_{F}}{\sqrt{2}} (\bar{e}_{L} \sigma^{\mu\nu} e_{R}) (\bar{d}_{L} \sigma_{\mu\nu} u_{R}) \\ \frac{4G_{F}}{\sqrt{2}} (\bar{e}_{L} \sigma^{\mu\nu} e_{R}) (\bar{d}_{L} \sigma_{\mu\nu} u_{R}) \\ \frac{4G_{F}}{\sqrt{2}} (\bar{e}_{L} \sigma^{\mu\nu} e_{R}) (\bar{d}_{L} \sigma_{\mu\nu} d_{R}) \\ \frac{4G_{F}}{\sqrt{2}} (\bar{e}_{L} \sigma^{\mu\nu} \mu_{R}) (\bar{d}_{L} \sigma_{\mu\nu} d_{R}) \\ \frac{4G_{F}}{\sqrt{2}} (\bar{\mu}_{L} \sigma^{\mu\nu} \mu_{R}) (\bar{d}_{L} \sigma_{\mu\nu} d_{R}) \\ \frac{4G_{F}}{\sqrt{2}} (\bar{u}_{L} u_{R}) (\bar{u}_{L} u_{R}) \\ \frac{4G_{F}}{\sqrt{2}} (\bar{u}_{L} u_{R}) (\bar{u}_{L} u_{R}) \\ \frac{4G_{F}}{\sqrt{2}} (\bar{u}_{L} u_{R}) (\bar{d}_{L} d_{R}) \\ \frac{4G_{F}}{\sqrt{2}} (\bar{u}_{L} u_{R}) (\bar{d}_{L} T^{A} d_{R}) \\ \frac{4G_{F}}{\sqrt{2}} (\bar{u}_{L} u_{R}) (\bar{d}_{L} T^{A} d_{R}) \\ \frac{4G_{F}}{\sqrt{2}} (\bar{d}_{L} d_{R}) (\bar{d}_{L} T^{A} d_{R}) \\ \frac{4G_{F}}{\sqrt{2}} (\bar{d}_{L} T^{A} d_{R}) (\bar{d}_{L} T^{A} d_{R}) \\ \frac{4G_{F}}{\sqrt{2}} (\bar{u}_{L} d_{R}) (\bar{d}_{L} u_{R}) \\ \frac{4G_{F}}{\sqrt{2}} (\bar{u}_{L} d_{R}) (\bar{d}_{L} T^{A} u_{R}) \\ \frac{4G_{F}}{\sqrt{2}} (\bar{u}_{L} T^{A} d_{R}) (\bar{d}_{L} T^{A} u_{R}) \\ \frac{4G_{F}}{\sqrt{2}} (\bar{u}_{L} u_{R}) (\bar{d}_{R} d_{L}) \\ \frac{4G_{F}}{\sqrt{2}} (\bar{e}_{L} e_{R}) (\bar{d}_{R} d_{L}) \\ \frac{4G_{F}}{\sqrt{2}} (\bar{e}_{L} e_{R}) (\bar{d}_{L} d_{R}) \\ \frac{4G_{F}$

WC name	Operator	Type
CSRR_eeuu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L e_R)(\bar{u}_L u_R)$	
CSRR_emumue	$rac{4 ar{G}_F^e}{\sqrt{2}} (ar{e}_L \mu_R) (ar{\mu}_L e_R)$	\mathbf{C}
CSRR_mumudd	$rac{4\widetilde{Q}_F^2}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{d}_Ld_R)$	\mathbf{C}
CSRR_mumumumu	$rac{4\widetilde{V_F}}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{\mu}_L\mu_R)$	\mathbf{C}
CSRR_mumuss	$rac{4\widetilde{Q}_F^2}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{s}_Ls_R)$	\mathbf{C}
CSRR_mumuuu	$rac{4G_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{u}_Lu_R)$	\mathbf{C}
CV1LL_uudd	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(d_L\gamma_\mu d_L)$	${ m R}$
CV1LL_uuss	$rac{4G_F}{\sqrt{2}}(ar{u}_L\gamma^\mu u_L)(ar{s}_L\gamma_\mu s_L)$	R
CV1LR_dddd	$rac{4ar{G}_F}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{d}_R\gamma_\mu d_R)$	R
CV1LR_ddss	$\frac{4\widetilde{G_F}}{\sqrt{2}}(\bar{d}_L\gamma^\mu d_L)(\bar{s}_R\gamma_\mu s_R)$	R
CV1LR_dduu	$rac{4reve{G_F}}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{u}_R\gamma_\mu u_R)$	R
CV1LR_dssd	$\frac{4 \breve{G}_F}{\sqrt{2}} (ar{d}_L \gamma^\mu s_L) (ar{s}_R \gamma_\mu d_R)$	\mathbf{C}
CV1LR_ssdd	$\frac{4\widetilde{G_F}}{\sqrt{2}}(ar{s}_L\gamma^\mu s_L)(ar{d}_R\gamma_\mu d_R)$	R
CV1LR_ssss	$\frac{4\widetilde{G_F}}{\sqrt{2}}(\bar{s}_L\gamma^{\mu}s_L)(\bar{s}_R\gamma_{\mu}s_R)$	R
CV1LR_ssuu	$\frac{4\widetilde{G_F}}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{u}_R\gamma_\mu u_R)$	${ m R}$
CV1LR_uddu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu d_L)(\bar{d}_R\gamma_\mu u_R)$	\mathbf{C}
CV1LR_ussu	$rac{4ar{G}_F}{\sqrt{2}}(ar{u}_L\gamma^\mu s_L)(ar{s}_R\gamma_\mu u_R)$	\mathbf{C}
CV1LR_uudd	$\frac{4\widetilde{G_F}}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{d}_R\gamma_\mu d_R)$	${ m R}$
CV1LR_uuss	$rac{4rac{\zeta_F}{\sqrt{2}}}{\sqrt{2}}(ar{u}_L\gamma^\mu u_L)(ar{s}_R\gamma_\mu s_R)$	R
CV1LR_uuuu	$\frac{4\widetilde{G_F}}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{u}_R\gamma_\mu u_R)$	R
CV1RR_uudd	$rac{4rac{\zeta}_F}{\sqrt{2}}(ar{u}_R\gamma^\mu u_R)(ar{d}_R\gamma_\mu d_R)$	R
CV1RR_uuss	$\frac{4\widetilde{G_F}}{\sqrt{2}}(\bar{u}_R\gamma^\mu u_R)(\bar{s}_R\gamma_\mu s_R)$	R
CV8LL_uudd	$\frac{4\widetilde{G_F}}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Au_L)(\bar{d}_L\gamma_{\mu}T^Ad_L)$	R
CV8LL_uuss	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Au_L)(\bar{s}_L\gamma_{\mu}T^As_L)$	R
CV8LR_dddd	$\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R)$	R
CV8LR_ddss	$\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{s}_R\gamma_\mu T^A s_R)$	${ m R}$
CV8LR_dduu	$\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{u}_R\gamma_\mu T^A u_R)$	${ m R}$
CV8LR_dssd	$\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A d_R)$	\mathbf{C}
CV8LR_ssdd	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^{\mu}T^As_L)(\bar{d}_R\gamma_{\mu}T^Ad_R)$	R
CV8LR_ssss	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A s_R)$	\mathbf{R}
CV8LR_ssuu	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^{\mu}T^As_L)(\bar{u}_R\gamma_{\mu}T^Au_R)$	\mathbf{R}
CV8LR_uddu	$\frac{\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^{\mu}T^As_L)(\bar{s}_R\gamma_{\mu}T^As_R)}{\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^{\mu}T^As_L)(\bar{u}_R\gamma_{\mu}T^Au_R)}$ $\frac{\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Ad_L)(\bar{d}_R\gamma_{\mu}T^Au_R)}{\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Ad_L)(\bar{d}_R\gamma_{\mu}T^Au_R)}$	\mathbf{C}
CV8LR_ussu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A u_R)$	\mathbf{C}
CV8LR_uudd	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Au_L)(\bar{d}_R\gamma_{\mu}T^Ad_R)$	\mathbf{R}
CV8LR_uuss	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Au_L)(\bar{s}_R\gamma_{\mu}T^As_R)$	\mathbf{R}
CV8LR_uuuu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Au_L)(\bar{u}_R\gamma_{\mu}T^Au_R)$	\mathbf{R}
CV8RR_uudd	$\begin{array}{c} \frac{4G_{F}}{\sqrt{2}}(\bar{u}_{L}\gamma^{\mu}T^{A}s_{L})(\bar{s}_{R}\gamma_{\mu}T^{A}u_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{u}_{L}\gamma^{\mu}T^{A}u_{L})(\bar{d}_{R}\gamma_{\mu}T^{A}d_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{u}_{L}\gamma^{\mu}T^{A}u_{L})(\bar{s}_{R}\gamma_{\mu}T^{A}s_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{u}_{L}\gamma^{\mu}T^{A}u_{L})(\bar{u}_{R}\gamma_{\mu}T^{A}u_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{u}_{R}\gamma^{\mu}T^{A}u_{L})(\bar{u}_{R}\gamma_{\mu}T^{A}d_{R}) \end{array}$	\mathbf{R}

VC name	Operator	Type
V8RR_uuss	$\frac{4G_F}{\sqrt{2}}(\bar{u}_R\gamma^{\mu}T^Au_R)(\bar{s}_R\gamma_{\mu}T^As_R)$	R
VLL_dddd	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{d}_L\gamma_\mu d_L)$	R
VLL_ddss	$rac{4Q_F^2}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{s}_L\gamma_\mu s_L)$	\mathbf{R}
VLL_dssd	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu s_L)(ar{s}_L\gamma_\mu d_L)$	R
VLL_eedd	$rac{4G_F}{2}(ar{e}_L\gamma^{\mu}e_L)(ar{d}_L\gamma_{\mu}d_L)$	\mathbf{R}
VLL_eeee	$\frac{4\widetilde{G}_F^2}{\sqrt{2}}(ar{e}_L\gamma^\mu e_L)(ar{e}_L\gamma_\mu e_L)$	${ m R}$
VLL_eemumu	$\frac{4\widetilde{G}_F^2}{2}(ar{e}_L\gamma^\mu e_L)(ar{\mu}_L\gamma_\mu\mu_L)$	${ m R}$
VLL_eess	$rac{4\overset{\sim}{G_F}}{\tilde{G}}(ar{e}_L\gamma^{\mu}e_L)(ar{s}_L\gamma_{\mu}s_L)$	${ m R}$
VLL_eeuu	$\frac{4\widetilde{G}_F^2}{\sqrt{2}}(\bar{e}_L\gamma^\mu e_L)(\bar{u}_L\gamma_\mu u_L)$	${ m R}$
VLL_mumudd	$rac{4\widetilde{Q}_F^2}{2}(ar{\mu}_L\gamma^\mu\mu_L)(ar{d}_L\gamma_\mu d_L)$	${ m R}$
VLL_mumumumu	$rac{4G_F}{\sqrt{2}}(ar{\mu}_L\gamma^\mu\mu_L)(ar{\mu}_L\gamma_\mu\mu_L)$	R
VLL_mumuss	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{s}_L\gamma_\mu s_L)$	R
VLL_mumuuu	$\frac{4\overset{\sim}{Q_F}}{\sqrt{2}}(ar{\mu}_L\gamma^\mu\mu_L)(ar{u}_L\gamma_\mu u_L)$	${ m R}$
VLL_ssss	$rac{4igned{Q_F^2}}{\sqrt{2}}(ar{s}_L\gamma^\mu s_L)(ar{s}_L\gamma_\mu s_L)$	R
VLL_uuuu	$rac{4\overset{\sim}{Q_F}}{\sqrt{2}}(ar{u}_L\gamma^\mu u_L)(ar{u}_L\gamma_\mu u_L)$	${ m R}$
VLR_ddee	$\frac{4\widetilde{Q}_F^2}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{e}_R\gamma_\mu e_R)$	${ m R}$
/LR_ddmumu	$rac{4\widetilde{Q}_F^2}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{\mu}_R\gamma_\mu\mu_R)$	\mathbf{R}
/LR_eedd	$rac{4\widetilde{Q}_F^2}{\sqrt{2}}(ar{e}_L\gamma^\mu e_L)(ar{d}_R\gamma_\mu d_R)$	R
/LR_eeee	$\frac{4\widetilde{Q}_F^2}{\sqrt{2}}(ar{e}_L\gamma^\mu e_L)(ar{e}_R\gamma_\mu e_R)$	${ m R}$
LR_eemumu	$\frac{4\widetilde{Q}_F^2}{\sqrt{2}}(\bar{e}_L\gamma^\mu e_L)(\bar{\mu}_R\gamma_\mu\mu_R)$	${ m R}$
LR_eess	$rac{4\overset{\sim}{Q_F}}{\sqrt{2}}(ar{e}_L\gamma^{\mu}e_L)(ar{s}_R\gamma_{\mu}s_R)$	${ m R}$
LR_eeuu	$\frac{4\widetilde{Q}_F^2}{\sqrt{2}}(\bar{e}_L\gamma^\mu e_L)(\bar{u}_R\gamma_\mu u_R)$	${ m R}$
/LR_emumue	$\frac{4\widetilde{Q}_F^2}{\sqrt{2}}(ar{e}_L\gamma^\mu\mu_L)(ar{\mu}_R\gamma_\mu e_R)$	$^{\mathrm{C}}$
/LR_mumudd	$rac{4\overset{f{V}^2}{G_F}}{2}(ar{\mu}_L\gamma^\mu\mu_L)(ar{d}_R\gamma_\mu d_R)$	${ m R}$
/LR_mumuee	$\frac{4\widetilde{G}_F^2}{\sqrt{2}}(ar{\mu}_L\gamma^\mu\mu_L)(ar{e}_R\gamma_\mu e_R)$	${ m R}$
LR_mumumumu	$\frac{4\widetilde{G}_F^2}{\sqrt{2}}(ar{\mu}_L\gamma^\mu\mu_L)(ar{\mu}_R\gamma_\mu\mu_R)$	${ m R}$
LR_mumuss	$\frac{4\widetilde{G}_F^2}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{s}_R\gamma_\mu s_R)$	${ m R}$
VLR_mumuuu	$\frac{4\widetilde{G}_F^2}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{u}_R\gamma_\mu u_R)$	${ m R}$
/LR_ssee	$rac{4\widetilde{Y}_F^{\sigma}}{\sqrt{2}}(ar{s}_L\gamma^{\mu}s_L)(ar{e}_R\gamma_{\mu}e_R)$	${ m R}$
/LR_ssmumu	$\frac{4\widetilde{G}_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\mu}_R\gamma_\mu\mu_R)$	${ m R}$
LR_uuee	$\frac{4\widetilde{G}_F^2}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{e}_R\gamma_\mu e_R)$	R
LR_uumumu	$rac{4\check{G}_F^r}{\sqrt{2}}(ar{u}_L\gamma^\mu u_L)(ar{\mu}_R\gamma_\mu\mu_R)$	R
/RR_dddd	$\frac{4\check{G}_F^r}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{d}_R\gamma_\mu d_R)$	R
/RR_ddss	$\frac{4\check{G}_F^r}{\sqrt{2}}(\bar{d}_R\gamma^\mu d_R)(\bar{s}_R\gamma_\mu s_R)$	R
/RR_dssd	$\frac{4\breve{G_F}}{\sqrt{2}}(\bar{d}_R\gamma^\mu s_R)(\bar{s}_R\gamma_\mu d_R)$	R
VRR_eedd	$\begin{array}{l} \frac{1}{\sqrt{2}}(s_{L}\gamma^{\mu}s_{L})(e_{R}\gamma_{\mu}e_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{s}_{L}\gamma^{\mu}s_{L})(\bar{\mu}_{R}\gamma_{\mu}\mu_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{u}_{L}\gamma^{\mu}u_{L})(\bar{e}_{R}\gamma_{\mu}e_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{d}_{L}\gamma^{\mu}u_{L})(\bar{\mu}_{R}\gamma_{\mu}\mu_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{d}_{R}\gamma^{\mu}d_{R})(\bar{d}_{R}\gamma_{\mu}d_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{d}_{R}\gamma^{\mu}d_{R})(\bar{s}_{R}\gamma_{\mu}s_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{d}_{R}\gamma^{\mu}s_{R})(\bar{s}_{R}\gamma_{\mu}d_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{e}_{R}\gamma^{\mu}e_{R})(\bar{d}_{R}\gamma_{\mu}d_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{e}_{R}\gamma^{\mu}e_{R})(\bar{e}_{R}\gamma_{\mu}e_{R}) \end{array}$	R
RR_eeee	$\frac{4\tilde{G_F}}{\tilde{G_F}}(\bar{e}_D\gamma^{\mu}e_D)(\bar{e}_D\gamma_{}e_D)$	${ m R}$

WC name	Operator	Type
CVRR_eemumu	$rac{4G_F}{\sqrt{2}}(ar{e}_R\gamma^\mu e_R)(ar{\mu}_R\gamma_\mu\mu_R)$	R
CVRR_eess	$\frac{4G_F}{\sqrt{2}}(\bar{e}_R\gamma^{\mu}e_R)(\bar{s}_R\gamma_{\mu}s_R)$	R
CVRR_eeuu	$rac{4G_F^c}{\sqrt{2}}(ar{e}_R\gamma^\mu e_R)(ar{u}_R\gamma_\mu u_R)$	R
CVRR_mumudd	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_R\gamma^\mu\mu_R)(d_R\gamma_\mu d_R)$	R
CVRR_mumumumu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_R\gamma^\mu\mu_R)(\bar{\mu}_R\gamma_\mu\mu_R)$	R
CVRR_mumuss	$rac{4G_F}{\sqrt{2}}(ar{\mu}_R\gamma^\mu\mu_R)(ar{s}_R\gamma_\mu s_R)$	R
CVRR_mumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_R\gamma^\mu\mu_R)(\bar{u}_R\gamma_\mu u_R)$	R
CVRR_ssss	$\frac{4\overset{\sim}{G_F}}{\sqrt{2}}(\bar{s}_R\gamma^{\mu}s_R)(\bar{s}_R\gamma_{\mu}s_R) \\ \frac{4\overset{\sim}{G_F}}{\sqrt{2}}(\bar{u}_R\gamma^{\mu}u_R)(\bar{u}_R\gamma_{\mu}u_R)$	R
CVRR_uuuu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_R\gamma^\mu u_R)(\bar{u}_R\gamma_\mu u_R)$	R

${\tt mue}$

WC name	Operator	Type
Cgamma_mue	$ar{e}_L \sigma^{\mu u} \mu_R F_{\mu u}$	С
Cgamma_emu	$ar{\mu}_L \sigma^{\mu u} e_R F_{\mu u}$	$^{\mathrm{C}}$
CVLL_eemue	$(ar{e}_L \gamma^\mu e_L) (ar{e}_L \gamma_\mu \mu_L)$	\mathbf{C}
CVLL_muemumu	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{\mu}_L \gamma_\mu \mu_L)$	\mathbf{C}
CVLL_mueuu	$(ar{e}_L \gamma^\mu \mu_L) (ar{u}_L \gamma_\mu u_L)$	\mathbf{C}
CVLL_muedd	$(ar{e}_L \gamma^\mu \mu_L) (ar{d}_L \gamma_\mu d_L)$	$^{\mathrm{C}}$
CVLL_muess	$(ar{e}_L \gamma^\mu \mu_L) (ar{s}_L \gamma_\mu s_L)$	\mathbf{C}
CVRR_eemue	$(ar{e}_R\gamma^\mu e_R)(ar{e}_R\gamma_\mu\mu_R)$	\mathbf{C}
CVRR_muemumu	$(\bar{e}_R \gamma^\mu \mu_R)(\bar{\mu}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVRR_mueuu	$(\bar{e}_R\gamma^\mu\mu_R)(\bar{u}_R\gamma_\mu u_R)$	\mathbf{C}
CVRR_muedd	$(ar{e}_R \gamma^\mu \mu_R) (ar{d}_R \gamma_\mu d_R)$	\mathbf{C}
CVRR_muess	$(\bar{e}_R \gamma^\mu \mu_R)(\bar{s}_R \gamma_\mu s_R)$	\mathbf{C}
CVLR_eemue	$(ar{e}_L \gamma^\mu e_L) (ar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_mueee	$(ar{e}_L \gamma^\mu \mu_L) (ar{e}_R \gamma_\mu e_R)$	\mathbf{C}
CVLR_muemumu	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{\mu}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_mumumue	$(\bar{\mu}_L \gamma^\mu \mu_L)(\bar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_mueuu	$(\bar{e}_L\gamma^\mu\mu_L)(\bar{u}_R\gamma_\mu u_R)$	\mathbf{C}
CVLR_muedd	$(ar{e}_L \gamma^\mu \mu_L) (d_R \gamma_\mu d_R)$	\mathbf{C}
CVLR_muess	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{s}_R \gamma_\mu s_R)$	\mathbf{C}
CVLR_uumue	$(\bar{u}_L \gamma^\mu u_L)(\bar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_ddmue	$(d_L \gamma^\mu d_L) (ar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_ssmue	$(ar{s}_L \gamma^\mu s_L) (ar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
CSRL_mueuu	$(ar{e}_L\mu_R)(ar{u}_Ru_L)$	\mathbf{C}
CSRL_emuuu	$(ar{\mu}_L e_R)(ar{u}_R u_L)$	\mathbf{C}
CSRL_muedd	$(ar{e}_L \mu_R) (ar{d}_R d_L)$	\mathbf{C}
CSRL_muess	$(ar{e}_L\mu_R)(ar{s}_Rs_L)$	\mathbf{C}
CSRL_emudd	$(ar{\mu}_L e_R)(ar{d}_R d_L)$	$^{\mathrm{C}}$
CSRL_emuss	$(ar{\mu}_L e_R)(ar{s}_R s_L)$	\mathbf{C}

WC name	Operator	Type
CSRR_eemue	$(\bar{e}_L e_R)(\bar{e}_L \mu_R)$	\overline{C}
CSRR_eeemu	$(ar{e}_L e_R)(ar{\mu}_L e_R)$	$^{\mathrm{C}}$
CSRR_muemumu	$(ar{e}_L\mu_R)(ar{\mu}_L\mu_R)$	$^{\mathrm{C}}$
CSRR_emumumu	$(ar{\mu}_L e_R)(ar{\mu}_L \mu_R)$	$^{\mathrm{C}}$
CSRR_mueuu	$(ar{e}_L\mu_R)(ar{u}_Lu_R)$	$^{\mathrm{C}}$
CSRR_emuuu	$(ar{\mu}_L e_R)(ar{u}_L u_R)$	$^{\mathrm{C}}$
CTRR_mueuu	$(\bar{e}_L \sigma^{\mu u} \mu_R) (\bar{u}_L \sigma_{\mu u} u_R)$	$^{\mathrm{C}}$
CTRR_emuuu	$(\bar{\mu}_L \sigma^{\mu u} e_R) (\bar{u}_L \sigma_{\mu u} u_R)$	$^{\mathrm{C}}$
CSRR_muedd	$(ar{e}_L\mu_R)(ar{d}_Ld_R)$	$^{\mathrm{C}}$
CSRR_muess	$(ar{e}_L\mu_R)(ar{s}_Ls_R)$	$^{\mathrm{C}}$
CSRR_emudd	$(ar{\mu}_L e_R)(ar{d}_L d_R)$	$^{\mathrm{C}}$
CSRR_emuss	$(ar{\mu}_L e_R)(ar{s}_L s_R)$	C
CTRR_muedd	$(ar{e}_L\sigma^{\mu u}\mu_R)(ar{d}_L\sigma_{\mu u}d_R)$	$^{\mathrm{C}}$
CTRR_muess	$(\bar{e}_L \sigma^{\mu u} \mu_R)(\bar{s}_L \sigma_{\mu u} s_R)$	\mathbf{C}
CTRR_emudd	$(\bar{\mu}_L \sigma^{\mu u} e_R)(\bar{d}_L \sigma_{\mu u} d_R)$	\mathbf{C}
CTRR_emuss	$(\bar{\mu}_L \sigma^{\mu\nu} e_R)(\bar{s}_L \sigma_{\mu\nu} s_R)$	C

nunumue

WC name	Operator	Type
CVLL_nuenuemue	$(\bar{\nu}_{eL}\gamma^{\mu}\nu_{eL})(\bar{e}_L\gamma_{\mu}\mu_L)$	C
CVLL_numunueemu	$(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{\mu}_{L}\gamma_{\mu}e_{L})$	$^{\mathrm{C}}$
CVLL_numunuemue	$(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\mu L})(\bar{e}_L\gamma_{\mu}\mu_L)$	$^{\mathrm{C}}$
CVLL_numunumumue	$(\bar{ u}_{\mu L} \gamma^{\mu} u_{\mu L}) (\bar{e}_L \gamma_{\mu} \mu_L)$	$^{\mathrm{C}}$
CVLL_nutaunueemu	$(\bar{ u}_{eL}\gamma^{\mu} u_{ au L})(\bar{\mu}_{L}\gamma_{\mu}e_{L})$	$^{\mathrm{C}}$
CVLL_nutaunuemue	$(\bar{ u}_{eL}\gamma^{\mu} u_{ au L})(\bar{e}_{L}\gamma_{\mu}\mu_{L})$	$^{\mathrm{C}}$
CVLL_nutaunumuem	$\mathrm{u}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{\mu}_{L}\gamma_{\mu}e_{L})$	$^{\mathrm{C}}$
CVLL_nutaunumumu	e $(ar{ u}_{\mu L} \gamma^{\mu} u_{ au L}) (ar{e}_L \gamma_{\mu} \mu_L)$	$^{\mathrm{C}}$
CVLL_nutaunutaum	$u otin ar{ u}_{ au L} \gamma^{\mu} u_{ au L}) (ar{e}_{L} \gamma_{\mu} \mu_{L})$	$^{\mathrm{C}}$
CVLR_nuenuemue	$(\bar{\nu}_{eL}\gamma^{\mu}\nu_{eL})(\bar{e}_R\gamma_{\mu}\mu_R)$	$^{\mathrm{C}}$
CVLR_numunueemu	$(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\mu L})(\bar{\mu}_R\gamma_{\mu}e_R)$	$^{\mathrm{C}}$
CVLR_numunuemue	$(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\mu L})(\bar{e}_R\gamma_{\mu}\mu_R)$	$^{\mathrm{C}}$
CVLR_numunumumue	$(\bar{ u}_{\mu L} \gamma^{\mu} u_{\mu L}) (\bar{e}_R \gamma_{\mu} \mu_R)$	$^{\mathrm{C}}$
CVLR_nutaunueemu	$(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\tau L})(\bar{\mu}_R\gamma_{\mu}e_R)$	\mathbf{C}
CVLR_nutaunuemue	$(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\tau L})(\bar{e}_R\gamma_{\mu}\mu_R)$	$^{\mathrm{C}}$
CVLR_nutaunumuem	$\mathrm{u}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{\mu}_{R}\gamma_{\mu}e_{R})$	$^{\mathrm{C}}$
CVLR_nutaunumumu	e $(ar{ u}_{\mu L} \gamma^{\mu} u_{ au L}) (ar{e}_R \gamma_{\mu} \mu_R)$	$^{\mathrm{C}}$
CVLR_nutaunutaum	$u otin ar{ u}_{ au L} \gamma^{\mu} u_{ au L}) (ar{e}_R \gamma_{\mu} \mu_R)$	$^{\mathrm{C}}$

${\tt ffnunu}$

WC name	Operator	Type
CVLL_nuenuedd	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{eL})(\bar{d}_L\gamma_{\mu}d_L)$	R
CVLL_nuenueee	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{eL})(\bar{e}_L\gamma_{\mu}e_L)$	\mathbf{R}
CVLL_nuenuemumu	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{ u}_{eL}\gamma^{\mu} u_{eL})(\bar{\mu}_L\gamma_{\mu}\mu_L)$	\mathbf{R}
CVLL_nuenuess	$\frac{4\check{G}_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{eL})(ar{s}_L\gamma_\mu s_L)$	\mathbf{R}
CVLL_nuenueuu	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{eL})(\bar{u}_L\gamma_{\mu}u_L)$	\mathbf{R}
CVLL_nuenumudd	$\frac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{\mu L})(ar{d}_L\gamma_\mu d_L)$	\mathbf{C}
CVLL_nuenumuee	$\frac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{\mu L})(ar{e}_L\gamma_\mu e_L)$	\mathbf{C}
CVLL_nuenumumumu	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\mu L})(\bar{\mu}_L\gamma_{\mu}\mu_L)$	\mathbf{C}
CVLL_nuenumuss	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\mu L})(\bar{s}_L\gamma_{\mu}s_L)$	\mathbf{C}
CVLL_nuenumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\mu L})(\bar{u}_L\gamma_{\mu}u_L)$	\mathbf{C}
CVLL_nuenutaudd	$\frac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{ au L})(ar{d}_L\gamma_\mu d_L)$	\mathbf{C}
CVLL_nuenutauee	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\tau L})(\bar{e}_L\gamma_{\mu}e_L)$	\mathbf{C}
CVLL_nuenutaumumu		\mathbf{C}
CVLL_nuenutauss	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu} u_{\tau L})(\bar{s}_L\gamma_{\mu}s_L)$	\mathbf{C}
CVLL_nuenutauuu	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\tau L})(\bar{u}_L\gamma_{\mu}u_L)$	\mathbf{C}
CVLL_numunumudd	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{d}_L\gamma_\mu d_L)$	\mathbf{R}
CVLL_numunumuee	$\frac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{e}_L\gamma_\mu e_L)$	\mathbf{R}
CVLL_numunumumumumumumumumumumumumumumumumum		\mathbf{R}
CVLL_numunumuss	$rac{4ar{G}_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{\mu L})(ar{s}_L\gamma_{\mu}s_L)$	\mathbf{R}
CVLL_numunumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{ u}_{\mu L}\gamma^\mu u_{\mu L})(\bar{u}_L\gamma_\mu u_L)$	\mathbf{R}
CVLL_numunutaudd	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{d}_L\gamma_{\mu}d_L)$	С
CVLL_numunutauee	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\mu L}\gamma^{\mu}\nu_{\tau L})(\bar{e}_L\gamma_{\mu}e_L)$	С
CVLL_numunutaumum	$\lim_{N \to \infty} \frac{4G_F}{\sqrt{2}} (\bar{ u}_{\mu L} \gamma^\mu u_{\tau L}) (\bar{\mu}_L \gamma_\mu \mu_L)$	С
CVLL_numunutauss	$\frac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{s}_L\gamma_{\mu}s_L)$	С
CVLL_numunutauuu	$\frac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{u}_L\gamma_{\mu}u_L)$	С
	$A \frac{4\widetilde{\zeta_F}}{\sqrt{2}} (\bar{ u}_{ au L} \gamma^\mu u_{ au L}) (\bar{d}_L \gamma_\mu d_L)$	R
	$+\frac{4G_F}{\sqrt{2}}(\bar{ u}_{ au L}\gamma^\mu u_{ au L})(\bar{e}_L \gamma_\mu e_L)$	\mathbf{R}
	$\lim_{N \to \infty} \frac{4G_F}{2} (\bar{ u}_{ au L} \gamma^\mu u_{ au L}) (\bar{\mu}_L \gamma_\mu \mu_L)$	R
	$s \frac{4\widetilde{G_F}}{\sqrt{2}} (\bar{ u}_{ au L} \gamma^\mu u_{ au L}) (\bar{s}_L \gamma_\mu s_L)$	\mathbf{R}
	$1 \frac{4 \overline{G_F}}{\sqrt{2}} (\bar{\nu}_{\tau L} \gamma^{\mu} \nu_{\tau L}) (\bar{u}_L \gamma_{\mu} u_L)$	\mathbf{R}
CVLR_nuenuedd	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{eL})(\bar{d}_R\gamma_{\mu}d_R)$	R
CVLR_nuenueee	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{eL})(\bar{e}_R\gamma_{\mu}e_R)$	\mathbf{R}
CVLR_nuenuemumu	$\frac{4G_F}{\sqrt{2}}(\bar{ u}_{eL}\gamma^{\mu} u_{eL})(\bar{\mu}_R\gamma_{\mu}\mu_R)$	R
CVLR_nuenuess	$\frac{\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{eL})(\bar{\mu}_R\gamma_{\mu}\mu_R)}{\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{eL})(\bar{s}_R\gamma_{\mu}s_R)}$ $\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{eL})(\bar{u}_R\gamma_{\mu}u_R)$	\mathbf{R}
CVLR_nuenueuu	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{eL})(\bar{u}_R\gamma_{\mu}u_R)$	R
CVLR_nuenumudd	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{\mu L})(d_R\gamma_\mu d_R)$	С
CVLR_nuenumuee	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\mu L})(\bar{e}_R\gamma_{\mu}e_R)$	С

WC name	Operator	Type
CVLR_nuenumumumu	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\mu L})(\bar{\mu}_R\gamma_{\mu}\mu_R)$	C
CVLR_nuenumuss	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\mu L})(\bar{s}_R\gamma_{\mu}s_R)$	\mathbf{C}
CVLR_nuenumuuu	$\frac{4\check{G}_F^c}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^\mu\nu_{\mu L})(\bar{u}_R\gamma_\mu u_R)$	\mathbf{C}
CVLR_nuenutaudd	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{ u}_{eL}\gamma^\mu u_{\tau L})(\bar{d}_R\gamma_\mu d_R)$	\mathbf{C}
CVLR_nuenutauee	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{ u}_{eL}\gamma^{\mu} u_{\tau L})(\bar{e}_R\gamma_{\mu}e_R)$	\mathbf{C}
CVLR_nuenutaumumu	$-rac{4ar{G}_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{ au L})(ar{\mu}_R\gamma_\mu\mu_R)$	\mathbf{C}
CVLR_nuenutauss	$\frac{4G_F}{\sqrt{2}}(\bar{ u}_{eL}\gamma^{\mu} u_{\tau L})(\bar{s}_R\gamma_{\mu}s_R)$	$^{\mathrm{C}}$
CVLR_nuenutauuu	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\tau L})(\bar{u}_R\gamma_{\mu}u_R)$	\mathbf{C}
${\tt CVLR_numunumudd}$	$rac{4ar{G}_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{d}_R\gamma_\mu d_R)$	R
CVLR_numunumuee	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{e}_R\gamma_\mu e_R)$	\mathbf{R}
CVLR_numunumumumu	$-\frac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{\mu}_R\gamma_\mu\mu_R)$	R
CVLR_numunumuss	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{s}_R\gamma_\mu s_R)$	\mathbf{R}
CVLR_numunumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\mu L}\gamma^{\mu}\nu_{\mu L})(\bar{u}_R\gamma_{\mu}u_R)$	R
${\tt CVLR_numunutaudd}$	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{d}_R\gamma_{\mu}d_R)$	$^{\mathrm{C}}$
CVLR_numunutauee	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{e}_R\gamma_\mu e_R)$	$^{\mathrm{C}}$
CVLR_numunutaumum	$\sin rac{dG_F}{\sqrt{2}} (ar{ u}_{\mu L} \gamma^\mu u_{ au L}) (ar{\mu}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_numunutauss	$rac{4ar{G}_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{s}_R\gamma_\mu s_R)$	\mathbf{C}
CVLR_numunutauuu	$\frac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{u}_R\gamma_\mu u_R)$	\mathbf{C}
CVLR_nutaunutaudd	$-rac{4ar{G_F}}{\sqrt{2}}(ar{ u}_{ au L}\gamma^\mu u_{ au L})(ar{d}_R\gamma_\mu d_R)$	R
CVLR_nutaunutauee	$+rac{4\ddot{G_F}}{\sqrt{2}}(ar{ u}_{ au L}\gamma^{\mu} u_{ au L})(ar{e}_R\gamma_{\mu}e_R)$	R
CVLR_nutaunutaumu	$\frac{dG_F}{\sqrt{2}}(ar{ u}_{ au L}\gamma^\mu u_{ au L})(ar{\mu}_R\gamma_\mu\mu_R)$	R
CVLR_nutaunutauss	$-rac{4ar{G}_F}{\sqrt{2}}(ar{ u}_{ au L}\gamma^\mu u_{ au L})(ar{s}_R\gamma_\mu s_R)$	R
CVLR_nutaunutauuu	$-rac{4G_F}{\sqrt{2}}(ar u_{ au L}\gamma^\mu u_{ au L})(ar u_R\gamma_\mu u_R)$	R