Notas de Análise Básico

Pablo D. Carrasco

2 de fevereiro de 2021

Conteúdo

Ι	Espaços métricos completos e Espaços de Banach		1
	I.1	Espaços Normados	1
	I.2	Funções continuas, espaços compactos e espaços completos	3
		I.2.1 Espaços métricos completos	
		I.2.2 Completação	12
	I.3	Espaços de Banach	
		I.3.1 Extenção de operadores lineares: o teorema BLT e a integral de Riemann.	
	I.4	Apêndice: compacidade em espaços topológicos	
II	Funções diferenciáveis em \mathbb{R}^n		17
	•	II.0.1 A regra de Leibnitz	23
		II.0.2 O teorema do valor médio	
	II.1	Apêndice: notação "o" de Landau	
III	Os teoremas da função inversa e função implícita		27
	III.1	O teorema da função implícita	30
	III.2	Forma local as imersões e submersões: o teorema do posto.	31

iv *CONTEÚDO*

CAPÍTULO I

Espaços métricos completos e Espaços de Banach

I.1 Espaços Normados

Para nós dizer que V é um espaço vetorial quer dizer que V é um \mathbb{K} espaço vetorial onde $\mathbb{K} = \mathbb{R}, \mathbb{C}$. Uma função $\|:\|V \to \mathbb{R}_{>0}$ é uma norma se satisfaze as propriedades

- $||v|| = 0 \Leftrightarrow v = 0$.
- $\|\lambda\| = |\lambda| \|v\|$, para todo $\lambda \in \mathbb{K}, v \in V$.
- $||v + w|| \le ||v|| + ||w||$.

Definição I.1.1. *O par* $(V, \|\cdot\|)$ *é chamado de espaço normado.*

A seguinte propriedade (consequência da desigualdade triangular) é útil:

$$\forall v, w \in V, \quad |||v|| - ||w||| \le ||v + w||. \tag{I.1}$$

Se $(V, \|)\|$ é um espaço normado a função $d: V \times V \to \mathbb{R}_{\geq 0}$ definida por $d(v, w) = \|v - w\|$ é uma distância em V. Escreveremos $(V, d) = (V, \|)\|$ indistintamente.

Notação: Se (M,d) é um espaço métrico, denotamos para $x \in M, \epsilon > 0$

$$D(x,\epsilon)=\{y\in M: d(x,y)<\epsilon\} \quad \text{ disco (ou bola) aberto}$$

$$\overline{D}(x,\epsilon)=\{y\in M: d(x,y)\leq\epsilon\} \quad \text{ disco (ou bola) fechado}$$

Lembremos que d define uma topología em M ($U \subset M$ é aberto see $U = \bigcup_{i \in I} D_i$, onde cada D_i é um disco aberto).

Por enquanto trabalharemos em espaços normados. Em este caso temos

- 1. $\forall v \in V$ a traslação $T_v : V \to V, T_v(w) = w + v$ é uma isometria; por tanto a topologia é invariante por traslações. Na prática isto quer dizer que o espaçõ V é homogéneo e em cada ponto as propriedades locais são as mesmas que perto do ponto 0.
- 2. $||:||V \to \mathbb{R}_{\geq 0}$ é uniformemente continua (ver eq. (I.1)).

Figura I.1: Forma dos discos em \mathbb{R}^2 com suas diferentes normas.

3. Os mapas $P: \mathbb{K} \times V \to V, S: V \times V \to V$ dados por

$$P(\lambda, v) = \lambda v$$

$$S(v, w) = v + w$$

são continuos.

Exemplo I.1.1. Em \mathbb{R}^n consideramos as normas

- $\|v\|_2 = \sqrt{\sum_{i=1}^n v_i^n}$ onde $v = (v_1, \dots, v_n)$; esta é a norma <u>euclidea</u>, e em geral escrevemos $\|v\| = \|v\|_2$.
- $\|v\|_1 = \sum_{i=1}^n |v_i|$; esta é a norma da soma (ou norma ℓ^1).
- $||v||_0 = \max_{i=1,\cdots,n} |v_i|$; esta é a norma do máximo.

É claro que

$$||v||_0 < ||v|| < ||v||_1 < n \cdot ||v||_0$$

Similarmente para \mathbb{C}^n (trocando valor absoluto pelo módulo).

Exemplo I.1.2. Seja I = [0,1] e $V = \mathcal{C}(I) = \{f : I \to \mathbb{R} \text{ (ou } \mathbb{C}) : f \text{ \'e continua}\}$. Consideramos

$$||f||_{\mathcal{C}^0} = \max_{x \in I} |f(x)|$$
$$||f||_{\mathcal{L}^1} = \int_0^1 f(x) \, \mathrm{d}x.$$

Então $(V, \|\cdot\|_{\mathcal{C}^0}), (V, \|\cdot\|_{\mathcal{L}^1})$ são espaçõs normados.

Definição I.1.2. Seja (M,d) espaço métrico, e $(x_n)_n \subset M$ sequência. Dezimos que $(x_n)_n$ converge a x, para certo $x \in M$ (Notação: $x_n \xrightarrow[n \to \infty]{} x$ ou $\lim_n x_n = x$) se para todo $\epsilon > 0$ existe $n_\epsilon \in \mathbb{N}$ tal que $n \geq n_\epsilon \Rightarrow x_n \in D(x,\epsilon)$.

Equivalentemente, $\lim_n d(x_n, x) = 0$.

Figura I.2: Convergencia em $\|\cdot\|_{\mathscr{L}^1}$ não implica convergencia em $\|\cdot\|_{\mathscr{C}^0}$.

Exemplo I.1.3. Voltando ao exemplo I.1.2, consideramos $(f_n)_n \subset V$ onde o gráfico da f_n está dado na seguinte figura.

Temos que $f_n \xrightarrow[n \to \infty]{\|\cdot\|_{\mathcal{L}^1}} 0$, mais não converge não norma $\|\cdot\|_{\mathcal{C}^0}$. Notar que como $\|\cdot\|_{\mathcal{L}^1} \leq \|\cdot\|_{\mathcal{C}^0}$, converência na norma $\|\cdot\|_{\mathcal{C}^0}$ implica convergência na norma $\|\cdot\|_{\mathcal{L}^1}$.

Por outro lado, consideremos a sequência $(g_n)_n$ com g_n como segue: A sequência $(g_n)_n$ não converge em nenhuma das duas normas; por outra parte observar que para todo $x \in I$ existe $g(x) = \lim_n g_n(x)$ (porém $g \notin V$).

I.2 Funções continuas, espaços compactos e espaços completos

Sejam $(M, d_M), (N, d_N)$ espaços métricos e $f: M \to N$ uma função.

Definição I.2.1.

- 1. f é continua em $x_0 \in M$ see 1 para todo $\epsilon > 0$ existe $\delta = \delta(\epsilon, x_0) > 0$ talque $f(D_M(x_0, \delta)) \subset D_N(fx_0, \epsilon)$.
- 2. f é continua (em M) se é continua em cada ponto $x_0 \in M$

¹see= se e somente se

Notação: Se M espaço metrico (ou topológico) e $x \in M$ denotamos

$$\mathcal{N}_x = \{ U \subset M : \exists \epsilon > 0 \text{ com } D(x, \epsilon) \subset U \}$$
 (I.2)

$$\mathcal{N}_x^{\text{ab}} = \{ U \subset M : U \text{ aberto } ex \in U \}. \tag{I.3}$$

Se verifica facilmente que f é continua em x_0 see dado $V \in \mathcal{N}_{fx_0,N}$ existe $U \in \mathcal{N}_{x_0,M}^{ab}$ tal que $f(U) \subset V$; com isto f é continua see para todo aberto $V \subset N$ temos que $f^{-1}(U)$ é aberto.

Definição I.2.2. f é uniformemente continua se dado $\epsilon > 0$ existe $\delta = \delta(\epsilon) > 0$ tal que

$$\forall x, y \in M, \quad d_M(x, y) < \delta \Rightarrow d_N(fx, fy) < \epsilon.$$

Se verifica fácilmente que

- f é continua em x_0 see para toda sequência $(x_n)_n \subset M$ temos $x_n \xrightarrow[n \to oo]{} x_0 \Leftrightarrow fx_n \xrightarrow[n \to oo]{} fx_0$.
- f é uniformemente continua see para todo par de sequências $(x_n)_n, (y_n)_n \subset M$ com temos $d_M(x_n, y_n) \xrightarrow[n \to \infty]{} 0 \Leftrightarrow d_N(fx_n, fy_n) \xrightarrow[n \to \infty]{} 0.$

Compacidade

Seja (M,d) espaço métrico (ou topológico).

Definição I.2.3. $K \subset M$ é compacto se todo cobrimento aberto do K tem um subcobrimento finito. Isto é, se $\mathcal{U} = \{U_i\}_{i \in \Lambda}$ é uma familia de conjuntos abertos com $K \subset \bigcup_{i \in \Lambda} U_i$, então existe $\Lambda_F \subset \Lambda$ finito tal que $K \subset \bigcup_{i \in \Lambda_F} U_i$.

Observação I.2.1. Se $K \subset M$ é compacto e $F \subset K$ é fechado, então F é compacto: $F = \tilde{F}M$ fechado, e por tanto se $\{U_i\}_{i\in\Lambda}$ é um cobrimento aberto de F, $\{U_i\}_{i\in\Lambda} \cup \{M\setminus \tilde{F}\}$ é um cobrimento aberto de K, por tanto admite um recobrimento finito.

Observe também que se $K \subset M$ é compacto, então é fechado. Considere $x \in M \setminus K$, e para cada $y \in K$ seja ϵ_y tal que $D(x, \epsilon_y) \cap D(y, \epsilon_y) = \emptyset$. Sejam $y_1, \dots, y_k \in K$ tais que $K \subset \bigcup_{i=1}^k D_{y_i}$. Se $\epsilon = \min_{i=1,\dots,k} \epsilon_{y_i}$, então $D(x,\epsilon) \cap K = \emptyset$ e $M \setminus K$ aberto, por tanto K é fechado.

Proposição I.2.1. $K \subset M$ é compacto see toda familia de fechados \mathcal{F} em K tal que toda sub familia finita de \mathcal{F} tem interseção não vazía*, satisfaz tambem que $\cap_{f \in \mathcal{F}} F \neq \emptyset$.

(*) Abreviaremos esta propriedade com as siglas PIF.

Demonstração. Utilizando a topologia relativa podemos supor K=M. Suponha então que M é compacto e considere uma familia $\mathcal{F}=\{F_j\}_{j\in\Lambda}$ de conjuntos fechados tais que toda sub-familia finita tem interseção não vazía. Se $\cap_{i\in\Lambda}F_i=\emptyset$ então $\mathcal{U}=\{M\setminus F_i:i\in\Lambda\}$ é um cobrimento aberto de M, por tanto para un conjunto finito temos $M=\cup_{i\in\tilde{\Lambda}}M\setminus F_i$, e por tanto $\emptyset=\cup_{i\in\tilde{\Lambda}}F_i$, uma contradição.

O recíproco é similar.

Proposição I.2.2. Se $f: M \to N$ é uma função continua, então para todo compacto $K \subset M$ temos que $f(K) \subset N$ é compacto

Demonstração. Imediato.

Notação: Denotamos

$$\mathcal{K}(M) = \{K \subset M : K \text{ compacto}\}.$$

Corolário I.2.3. Seja M espaço métrico (o espaço topológico Hausdorf). Considere $(K_i)_{i\in\Lambda}\subset\mathcal{K}(M)$ familia indexada por um conjunto dirigido Λ tal que $i\geq i'\Rightarrow K_i\subset K_{i'}$. Então $K=\cap_{i\in\Lambda}K_i$ é compacto e não vazío.

Em geral o corolário anterior se utiliza na situação onde $(K_n)_n \subset \mathcal{K}(M)$ é uma sequência decrescente de compactos.

Corolário I.2.4. Seja M espaço métrico. Então $K \subset M$ é compacto see para toda sequência $(x_n)_n \subset K$ existe uma sub-sequência $(\phi(n))_n \subset \mathbb{N}$ e $x \in K$ tais que $\lim_n x_{\phi(x)} = x$.

Demonstração. Novamente podemos assumir M=K. Suponha que M é compacto e $(x_n)_n\subset M$ e considere $K_n=\operatorname{cl}(x_m:m\geq n)$. Então $(K_n)_n\subset \mathcal{K}(M)$ é uma sequência decrescente de conjuntos compactos, por tanto existe $x\in \cap_n K_n$. Para cada n podemos encontrar $x_{\phi(n)}\in D(x,\frac{1}{n})$, e claramente $(\phi(n))_n$ satisfaz $\lim_n x_{\phi(x)}=x$.

Reciprocamente, suponha que toda sequência em M tenha alguma sub-sequência convergente. **Afirmação:** M é separável, isto é, tem um subconjunto $N \subset M$ denso e enumerável.

Fixamos k e consideramos $x_{1,k} \in M$; se $M = D(x_{1,k}, \frac{1}{k})$ terminamos, de outra forma escolhemos $x_{2,k} \notin D(x_{1,k}, \frac{1}{k})$. Por indução, tendo escolhido $x_{1,k}, \cdots, x_{n,k}$ temos que $M = \bigcup_{i=1}^n D(x_{i,k}, \frac{1}{k})$, ou podemos escolher $x_{n+1,k} \in M \setminus \bigcup_{i=1}^n D(x_{i,k}, \frac{1}{k})$. Por outro lado, necessáriamente o processo tem que terminar, pois a sequencia $(x_{n,k})_n$ não tem pontos de acumulação.

Definimos $N = \{x_{n,k} : n, k\}$ e temos o conjunto denso e enumerável.

Afirmação: *M* tem uma base enumerável.

$$\mathcal{B} = \{D(x, \frac{1}{m}) : x \in N, m \in \mathbb{N}_{>0}\}$$
 é base da topología.

Afirmação: M é Lindelöf: todo cobrimento aberto tem um sub-cubrimento enumerável. Claro do anterior.

Para mostrar compacidade é suficente então demostrar que toda família de fechados enumerável com a PIF tem interseção não vacía. Consideramos então uma tal familia $\mathcal{F}=\{F_n\}_{n=1}^\infty$ e definimos

$$\mathcal{G} = \{G_n = \bigcap_{k=1}^n F_k\}_n.$$

Então \mathcal{G} é uma família de fechados decrescente. Para cada n seja $x_n \in G_n$; existe $(\phi(n))_n \subset \mathbb{N}$ sub-sequência e $x \in M$ tais que $\lim_n x_{\phi(n)} = x$, e sem pérdida de generalidade podemos supor $\phi(n) \geq n$. Como $G_k \subset G_n$ para todo $k \geq n$ temos que $(x_{\phi(k)})_{k \geq n} \subset G_n$, e por tanto $x \in G_n$ (G_n fechado). Isto mostra que $x \in \bigcap_{n=1}^{\infty} G_n$.

É possível dar uma demostração mais direta da proposição anterior; por outra parte os argumentos utilizados podem ser generalizados ao caso quando M é um espaço topológico. Veja o appéndice.

Teorema I.2.5 (Heine-Borel). $I = [0, 1] \subset \mathbb{R}$ é compacto.

Demonstração. É suficente mostrar que $(x_n)_n\subset I$ tem alguma sub-sequência convergente. Para cada $n\geq 1$ defina $\mathcal{J}^{(n)}=\{J_{j,n}=[\frac{j}{2^n},\frac{j+1}{2^n}],j=0,\cdots,2^n-1\}$ e observe que $\mathcal{J}^{(n+1)}$ se obtem a partir de $\mathcal{J}^{(n)}$, dividindo cada um de seus intervalos pela metade. Dano n definimos indutivamente $I_n\in\mathcal{J}^{(n)}$ tal que

- $I_n \subset I_{n-1}$
- I_n contem infinitos elementos $(x_n)_n$

Escrevendo $I_n = [a_n, b_n]$ temos $b_n - a_n = \frac{1}{2^n}$ e por tanto $x = \sup_n a_n = \inf_n b_n$. Pela definição de supremo, claramente existe uma sub-sequencia da $(x_n)_n$ convergindo a x.

Exemplo I.2.1. Seja (V, ||)|| espaço normado e $K \subset V$.

Afirmação: se K é compacto, então é fechado e limitado (propriedade de Heine-Borel).

Já vimos que é fechado. Para mostrar que é limitado suponha que existe uma sequência de vetores $(v_n)_n \subset K$ tais que $\|v_n\| > n$ e observe que tal sequência não pode ter sub-sequências convergentes.

Em geral, a propriedade de Heine-Borel $n\tilde{a}o$ implica que o sub-conjunto é compacto. Como exemplo considere a sequência dada em example I.1.3 e observe que $||g_n||_{\mathcal{C}^0} = 1$ para todo n, e por tanto $(g_n) \subset \overline{D}(0,1)$, porém $(g_n)_n$ não tem nenhuma sub-sequência convergente (se tivesse, o limite coincidiría com a g, que não é continua); concluimos que $\operatorname{cl}(D(0,1))$ não é compacto em $(\mathcal{C}(I), \|\cdot\|_{\mathcal{C}^0})$.

Num espaço normado, o disco fechado $\overline{D}(0,1)$ (e por tanto, qualquer disco) é compacto se e somente se $\dim_{\mathbb{K}} V < \infty$.

Lema I.2.6 (Lema de Riesz's). Seja V espaço normado e $W \subset V$ um sub-espaço fechado, $W \neq V$. Então existem vetores "quase perpendiculares" ao W: dado $\epsilon > 0$ podemos encontrar $u \in V$, ||u|| = 1 tal que

$$||u + W|| = \inf\{||u + w|| : w \in W\} \ge 1 - \epsilon.$$

Demonstração. Consider qualquer vetor $v \notin W$; como W é fechado temos que $a = \|v + W\| > 0$ e por tanto dado $n \in \mathbb{N}_{>0}$ existe $w \in W$ com $\|v + w\| < a + \frac{1}{n}$. Definimos $u = \frac{v+w}{\|v+w\|}$ e calculamos

$$||u+W|| = \inf_{w' \in W} \left\{ \frac{v+w'}{||v+w||} \right\} = \frac{||v+W||}{||v+w||} > \frac{a}{a+\frac{1}{n}} \xrightarrow[n \to \infty]{} 1$$

e de aqui queda.

Proposição I.2.7. V espaço normado, $\overline{D}=\{v:\|v\|\leq 1\}$. Então D é compacto see $\dim_{\mathbb{K}}V<\infty$.

Demonstração. Suponha que \overline{D} é compacto e escolha v_1 com $\|v_1\|=1$ e defina $W_1=\operatorname{span}\{v_1\}$. Se $V=W_1$ então $\dim V=1$; se não pelo lema de Riesz ($\epsilon=\frac{1}{2}+$ o fato de que qualquer subespaço de dimensão finita em um espaço normado é fechado) existe v_2 de norma 1 em $V\setminus W_1$ tal que $\|v_1-v_2\|\geq \frac{1}{2}$. Por indução, tendo escolhido v_1,\cdots,v_n denotamos $W_n=\operatorname{span}\{v_1,\cdots,v_n\}$ e temos que

• $V = W_n$, e por tanto dim $V = n < \infty$; ou

• podemos escolher v_{n+1} de norma 1 tal que $||v_{n+1} - v_i|| \ge \frac{1}{2}$, para todo $i = 1, \dots, n$.

Pela compacidade do \overline{D} o processo tem que terminar em uma quantidade finita de pasos (pois se não teriamos uma sequência em \overline{D} sem pontos de acumulação), o por tanto $\dim V < \infty$

Recíprocamente, se $\dim V$ é finita fixamos uma base $\{v_1, \dots v_n\}$ e definimos o mapa linear

$$A(\sum_{i=1}^{n} a_i v_i) = (a_1, \cdots, a_i).$$

Usando sequências se verifica diretamente que A é um homeomorfismo, e por tanto $A(\overline{D})$ é um conjunto fechado e limitado em \mathbb{R}^n (ou $\mathbb{C}^n \approx \mathbb{R}^{2n}$). Por tanto $A(\overline{D}) \subset [-a,a]^n$ para algum a positivo, o qual é compacto como consequência quasi-direta do teorema de Heine-Borel. Sabemos tambem que subconjuntos fechados são compactos, assim que $A(\overline{D})$ é compacto, e por tanto \overline{D} é compacto.

Definição I.2.4. Um espaço métrico é localmente compacto se cada ponto tem uma base local de conjuntos (pre)-compactos.

Corolário I.2.8. Se $(V, \|\cdot\|)$ é um espaço normado de dimensão infinita, então não é localmente compacto.

Para finalizar esta parte, observe os seguintes fatos.

Proposição I.2.9. Seja M compacto e $f: M \to \mathbb{R}$ continua. Então f tem máximo e mínimo em M.

Demonstração. f(M) é compacto em \mathbb{R} , por tanto e fechado e limitado. De aquí queda queda a primeira parte.

Proposição I.2.10. Seja $f:M\to N$ função continua entre espaços métricos. Então f é uniformemente continua.

Demonstração. Sejam $(a_n)_n, (b_n)_n \subset M$ sequências com $\lim_n d_M(a_n, b_n) = 0$. Então $((fa_n, fb_n))_n \subset f(M) \times f(M)$, e por tanto $x_n = d_N(fa_n, fb_n)$ é uma sequência em um compacto de \mathbb{R} , e tem alguma sub-sequência convergente. Suponha que $\alpha = \lim_n d_N(fa_{\phi(n)}, fb_{\phi(n)})$ e cualquer sub-sequencia convergente da $(x_n)_n$: para alguma sub-sequencia $(\varphi(n) = \phi \circ \psi(n))_n$ da $(\phi(n))_n$ temos que existe $\lim_n a_{\varphi(n)} = a, \lim_n b_{\varphi(n)} = b$ (pela compacidade de M, e como $\lim_n d_M(a_n, b_n) = 0$ temos a = b. Então $\alpha = \lim_n d_N(fa_{\phi(n)}, fb_{\phi(n)}) = \lim_n d_N(fa_{\phi(n)}, fb_{\phi(n)}) = d_N(fa, fb) = 0$.

Concluimos que toda sub-sequência de $(x_n)_n$ converge a 0, e como existe ao menos uma sub-sequência convertente, $\lim_n x_n = 0$, o que implica que f é uniformemente continua.

Norma de uma transformação limear

Sejam $(V, \|\cdot\|_V), (W, \|\cdot\|_W)$ espaços normados e $T: V \to W$ linear. A norma de operador da transformação T (respeito ás normas $\|\cdot\|_W, \|\cdot\|_W$) é

$$||T||_{\mathrm{OP}} = \sup_{x \in V, v \neq 0} \left\{ \frac{||T(x)||_W}{||v||_V} \right\} = \sup_{\substack{x \in V \\ ||x||_V = 1}} \{||T(x)||_W\}.$$

Exercício I.2.1. Mostrar que $\|T\|=\sup_{x\in V,\|x\|_V\leq 1}\{\|T(x)\|_W\}$. Mostrar também que se $T:(V,\|\cdot\|_V)\to (W,\|\cdot\|_W), \hat{T}:(W,\|\cdot\|_W)\to (U,\|\cdot\|_U)$ são lineares, então $\|\hat{T}\circ T\|\leq \|\hat{T}\|\cdot\|T\|.$

Lema I.2.11. São equivalentes

- 1. T é continua em 0.
- 2. *T* é continua em todo ponto.
- 3. T é uniformemente continua.
- 4. $||T||_{0P} < \infty$.

Demonstração. $1) \Rightarrow 2):$ Fixamos $a \in V$ e seja $L_a: V \to V$ a traslação $L_a(x) = x + a$ (que sabemos é um homeomorfismo). Pela hipótese, $S = T \circ L_{-a}$ é continua em a, por tanto $T = S \circ L_a$ é continua em a.

- $3) \Rightarrow 2) \Rightarrow 1, 4) \Rightarrow 3) \checkmark$.
- $(1) \Rightarrow (4)$ Seja δ corrrespondente a $\epsilon = 1$ na definição de continuidade; então se $x \neq 0$ temos

$$||T(\delta \frac{1}{||x||_V}x)||_W < 1 \Rightarrow ||T(x)|| < \delta^{-1}||x||_V$$

$$e \|T\|_{\mathrm{OP}} \leq \delta^{-1} < \infty$$
.

Definição I.2.5. Se $||T||_{\mathbb{OP}} < \infty$ diremos que T é limitada. Denotamos

$$Lin(V)(V, W) = \{T : V \rightarrow W : T \text{ linear e limitada}\},\$$

e se V = W escrevemos Lin(V)V = Lin(V)V, V.

É direto verificar que $(\text{Lin}(V)V, W, \|\cdot\|_{\text{OP}})$ é um espaço vetorial normado Consideremos agora $V = \mathbb{R}^n$ e $\|\cdot\|_V = \|\cdot\|$ a norma euclídea, é dizer

$$||x|| = \sqrt{x_1^2 + \cdots x_n^2}.$$

Claramente, para toda componente $x_i, |x_i| \leq ||x||$.

Proposição I.2.12. $T: \mathbb{R}^n \to (W, \|\cdot\|_W)$ é limitada, por tanto continua.

 $\textit{Demonstração}. \;\; \mathsf{Consideramos} \; \mathsf{a} \; \mathsf{base} \; \mathsf{canônica} \; \{e_i = \underbrace{(0 \cdots, i, \cdots, 0)}_{\mathsf{posição} \; i} \} \; \mathsf{e} \; \mathsf{tomamos} \; M = \max\{\|T(e_i)\|_W\};$

se
$$x \in \mathbb{R}$$
, $x = \sum_{i=1}^{n} x_i e_i$ e

$$||T(x)||_W \le \sum_{i=1}^n |x_i|||T(e_i)||_W \le M \sum_{i=1}^n |x_i| \le M \sum_{i=1}^n ||x|| = nM||x||.$$

Concluímos que $||T||_{\text{op}} \leq nM$.

Suponhamos que $T: \mathbb{R}^n \to (W, \|\cdot\|_W)$ é um isomorfismo linear; vamos mostrar que T é um homeomorfismo. Já sabemos que T é continua; por tanto a função $F: \mathbb{R}^n \to \mathbb{R}$

$$F(x) = ||T(x)||_W$$

é continua (composição de funções continuas), e como $S = \{x : ||x|| = 1\}$ é compacto (proposition I.2.7), temos que existe $m = \min_{x \in S} \{F(x)\}$; como $T(x) \neq 0$ para $x \in S$, vale m > 0. Então para $y \in W$,

$$||y|| = ||T \circ T^{-1}(y)|| \ge m \cdot ||T^{-1}y|| \Rightarrow ||T^{-1}y|| \le \frac{1}{m} ||y||_W$$

e T^{-1} é limitada.

Corolário I.2.13. Se $(V, \|\cdot\|_V)$ é um espaço vetorial de dimensão finita e $T: (V, \|\cdot\|_V) \to (W, \|\cdot\|_W)$ é linear, então T é continua. Se além disso T é um isomorfismo linear, então T é um homeomorfismo.

Demonstração. Como $\mathbb{C}^n \approx \mathbb{R}^{2n}$ é suficente considerar o caso real. Fixamos uma base $\{v_1, \cdots, v_n\}$ de V de definimos $A: \mathbb{R}^n \to V$ com

$$A(\sum_{i=1}^{n} x_i e_i) = \sum_{i=1}^{n} x_i v_i.$$

A é claramente um isomorfismo, e pelo que vimos antes, é um homeomorfismo de $(\mathbb{R}^n, \|\cdot\|)$ em $(V, \|\cdot\|_V)$. Se $T: V \to W$ é linear, então $B = T \circ A: \mathbb{R}^n \to W$ é continua, e por tanto $T = B \circ A^{-1}$ é continua. A segunda parte é direta da primeira.

Corolário I.2.14. Sejam $\|\cdot\|, \|\cdot\|'$ normas em \mathbb{R}^n (ou em um espaço vetorial de dimensão finita). Então as normas são equivalentes, é dizer existem a, b > 0 tais que

$$\forall x \in \mathbb{R}^n, \quad a||x|| \le ||x||' \le b||x||.$$

Demonstração. A identidade $I:(\mathbb{R}^n,\|\cdot\|)\to(\mathbb{R}^n,\|\cdot\|')$ é um homeomorfismo e por tanto ela e sua inversa são limitadas.

Exemplo I.2.2. Seja $V=\{f:[0,1]\to\mathbb{R}:f \text{ tem derivada continua}\}$ e utilizamos a norma $\|f\|=\|f\|_{\mathcal{C}^0}$. Definimos $T:(V,\|\cdot\|_{\mathcal{C}^0})\to(\mathcal{C}(I),\|\cdot\|_{\mathcal{C}^0})$ o operador T(f)=f'; é um resultado básico do cálculo que T é linear, porém se $f_n(x)=x^n$ temos $\|f_n\|_{\mathcal{C}^0}=1$ para todo n, mas $\|Tf_n\|_{\mathcal{C}^0}=n$. Concluimos que T não é limitada.

Exemplo I.2.3. Consideremos o operador linear identidade $\mathrm{Id}:(V=\mathcal{C}(I),\|\cdot\|_{\mathcal{C}^0})\to (V,\|\cdot\|_{\mathcal{L}^1}).$ Temos que $\|\mathrm{Id}\|_{\mathrm{OP}}=1$, por tanto se $U\subset V$ é aberto com a norma $\|\cdot\|_{\mathcal{L}^1}$, é também aberto com a norma do máximo. Isto nos diz que a topologia dada pela norma do máximo é mais fina que a topología \mathcal{L}^1 .

Observe, por outra parte, que a inversa $\mathrm{Id}:(V,\|\cdot\|_{\mathscr{L}^1})\to (V,\|\cdot\|_{\mathscr{C}^0})$ não é continua: a sequência dada em $fig.\ I.2$ converge á função nula na norma \mathcal{L}^1 , porém não converge na norma \mathcal{C}^0 .

I.2.1 Espaços métricos completos

Nesta parte (M, d) espaço métrico.

Definição I.2.6. Dezimos que M é completo se toda sequência de Cauchy em M é convergente em M.

Exemplo I.2.4. \mathbb{R} é completo. Se $(x_n)_n$ é de Cauchy, então é limitada e por tanto contida dentro de um intervalo compacto. Assim, $(x_n)_n$ tem uma sub-sequência convergente; mas é simples de ver que se uma sequência de Cauchy tem uma sub-sequência convergente, então ela mesma converge.

A propriedade de completitude de \mathbb{R} é equivalente ao axioma do supremo (exercício).

Como no caso da compacidade, existe uma caracterização da completitude em termos de sequências de fechados.

Proposição I.2.15. M espaço métrico é completo see para toda sequência de fechados $(F_n)_n$ en M com

- a) $F_{n+1} \subset F_n$ para todo $n \in \mathbb{N}$
- b) diam $F_n \xrightarrow[n \to \infty]{} 0$

temos que $\cap_n F_n \neq \emptyset$ (e por tanto consiste de um único ponto).

Demonstração. Se consideramos $(F_n)_n$ como na hypotése, escolhemos para cada n um $x_n \in F_n$. O fato de que $\lim_n \operatorname{diam} F_n = 0$ leva a que $(x_n)_n$ é de Cauchy e como $(x_n)_{n \geq m} \subset F_m$, $x \in F_m$ (pois o conjunto é fechado). Concluimos que $x \in \cap_{m \geq 0} F_m$.

Reciprocamente, assumimos a condição nas familias decrescentes de fechados e consideramos $(x_n)_n$ de Cauchy. Definimos $F_n = \operatorname{cl}(x_m : m \ge n)$: a sequência de fechados (F_n) é decrescente, e pela condição de Cauchy temos $\lim_n \operatorname{diam} F_n = 0$. Se $\{x\} = \cap_n F_n$ é claro que $\lim_n x_n = x$.

Completitude e Funções continuas Observe que a propriedade de completitude não é invariante por funções continuas (homeomorfismos). Por exemplo $\mathbb R$ é completo, e é homeomorfo ao intervalo aberto (0,1) que não é.

Lema I.2.16. Se $f: M \to N$ é uniformemente continua, então leva sequências de Cauchy em sequências de Cauchy. Por tanto, se f é invertivél, uniformemente continua e com inversa uniformemente continua temos que M é completo see N é completo.

Demonstração. O fato de que $(a_n)_n$ de Cauchy implica que $((f(x_n))_n$ também é de Cauchy seque diretamente da definição de continuidade uniforme. A segunda parte é consequência da primeira.

Proposição I.2.17. Seja $f: M_0 \to N$ função uniformemente continua, onde $M_0 \subset M$ e N completo. Então f tem uma única extensão continua $F: \overline{M_0} \to N$. Além disso, F é uniformemente continua.

Demonstração. Dado $x\in \overline{M}_0$ seja $(a_n)_n\subset M_0$ com $\lim_n a_n=x$. Então $(f(a_n))_n\subset N$ é de Cauchy, e por tanto converge a um ponto $F(x;(a_n)_n)$. Observe que se $(b_n)_n\subset M_0$ é outra sequência convergindo a x, temos $d_M(a_n,b_n)\xrightarrow[n\to\infty]{}0$ e por tanto $d_N(f(a_n),f(b_n))\xrightarrow[n\to\infty]{}0$. Concluimos que $F(x;(a_n)_n)=F(x)$, e assim temos bem definida uma função $F:\overline{M_0}\to N$ que extende á f (se $x\in M_0$ podemos tomar a sequência constante $a_n=x$).

A unicidade da tal extensão é clara (funções continuas enviam sequências convergentes em sequências convergentes). Por último, fixamos $\epsilon > 0$ e consideramos $\delta > 0$ tal que

$$x, y \in M_0, d_M(x, y) < \delta \Rightarrow d_N(fx, fy) < \frac{\epsilon}{3}.$$

Se $x,y\in \overline{M_0}$ com $d_M(x,y)<\frac{\delta}{2}$ e tomamos $(a_n)_n,(b_n)_n\subset M_0$ com $\lim_n a_n=x,\lim_n b_n=w$. Seja n sufficentemente grande tal que

- $d_M(a_n, x), d_M(b_n, y) < \frac{\delta}{4}$, e por tanto $d_N(fa_n, fb_n) < \frac{\epsilon}{3}$.
- $d_N(fa_n, Fx), d_N(Fy, fb_n) < \frac{\epsilon}{3}$.

Então temos

$$d_N(Fz, Fw) \le d_N(Fx, fa_n) + d_N(fa_n, fb_n) + d_N(fb_n, Fy) < \epsilon,$$

e F é uniformemente continua.

Observação I.2.2. Na proposição anterior, note que $\operatorname{Im}(F) \subset \operatorname{cl}(f(M_0))$: a igualdade não é necessáriamente válida.

Compacidade e completitude A fato de um espaço ser compacto, de alguma forma nos diz que o espaço é "topológicamente pequeno". A ideia é que, dada uma escala ϵ podemos encontrar uma boa approximação finita do espaço com esta escala.

Definição I.2.7. Se M é um espaço métrico diremos que $S \subset M$ é uma ϵ -rede se $M = \bigcup_{x \in S} D(x, \epsilon)$.

Se M é compacto, para cada $\epsilon>0$ podemos encotnrar uma ϵ -rede finita (certo?). Por outro lado, esta ϵ -rede não consegue detectar escalas menores; para controlar estas podemos utilizar o conceito de completitude.

Proposição I.2.18. M espaço métrico é compacto $\Leftrightarrow M$ é completo e para todo $\epsilon > 0$ existe uma ϵ -rede finita²

Demonstração. \Rightarrow Já vimos isto: dada $(a_n)_n \subset M$ de Cauchy, pela compacidade existe uma sub-sequência convergente e isto implica que $(a_n)_n$ converge. A existência de ϵ -redes finitas é obvia.

 \Leftarrow Seja $(a_n)_n \subset M$ sequência. Para $\epsilon=1$ consideramos uma ϵ -rede finita S_1 , e tomamos $x_1 \in S_1$ tal que $\#F_1 = \overline{D}(x_1,1) \cap \{a_n:n\} = \infty$. Por indução, se construimos $F_1 \supset F_2 \supset \cdots F_n$ conjuntos fechados com diam $F_n = \frac{2}{n}$ e $F_n \cap \{a_n:n\} = \infty$ utilizamos uma $\frac{1}{n+1}$ rede finita com $\overline{D}(x_{n+1},\frac{1}{n+1}) \cap \{a_n:n\} = \infty$, $x_{n+1} \in F_n$ e definimos $F_{n+1} = \overline{D}(x_{n+1},\frac{1}{n+1}) \cap F_n$. Assim temos uma sequência de fechados decrescente com $\lim_n \operatorname{diam} F_n = 0$, por tanto pela completitude, $\{x\} = \cap_n F_n$. Por construção, x é um ponto de acumulação da $(a_n)_n$, e itemos uma sub-sequência desta que converge a x.

 $^{^2}$ = M é totalmente limitado.

I.2.2 Completação

Seja (M, d_M) espaço métrico. No espaço

$$C = \{(a_n)_n : (a_n)_n \text{ \'e de Cauchy em } M\}$$

definimos a relação $(a_n)_n \equiv (a'_n)_n \Leftrightarrow \lim_n d_M(a_n, a'_n) = 0$. E imediato que \equiv é uma relação de equivalência: denotamos $\tilde{M} = \mathcal{C}/\equiv$.

Observação I.2.3. Se $(a_n)_n, (b_n)_n \in \mathcal{C}$ então $(d_M(a_n, b_n)) \subset \mathbb{R}$ é de Cauchy, e por tanto existe $\tilde{d}((a_n)_n, (b_n)_n) = \lim_n d_M(a_n, b_n)$. Com isto se verifica diretamente que \tilde{d} define uma distância em \tilde{M}

Definimos agora $\iota:(M,d)\to (\tilde{M},\tilde{d})$ a função

$$\iota(x) = [(x, x, \cdots x, \cdots)_x]$$

e observamos que ι é uma imersão isométrica: $d_M(x,y) = d_{\tilde{M}}(\iota(x).\iota(y))$. Definimos $N = \iota(M)$.

Afirmação. N é denso em \tilde{M} .

Para ver isto consideramos $\alpha = [(a_n)_n] \in \mathcal{C}, \epsilon > 0$ e tomamos n_{ϵ} tal que

$$n, m \ge n_{\epsilon} \Rightarrow d_M(a_n, a_m) < \frac{\epsilon}{2}.$$

Seja $\beta = \iota(a_{n_{\epsilon}})$; temos

$$\tilde{d}(\alpha, \beta) = \lim_{n} d(a_n, a_{n_{\epsilon}}) \le \frac{\epsilon}{2} < \epsilon.$$

Afirmação. \tilde{M} é completo.

Consideramos $(\alpha_m)_m\subset \tilde{M}$ de Cauchy, $\alpha_m=[(a_m^n)_n]$. Notemos primeiro que se $(\alpha_m)_m\subset N$, então ela converge. Perceba que neste caso $\alpha_m=[(a_m^n=a_m]$ para todo m, e a sequência $(a_1,a_2,\cdots,a_m,\cdots)_m\subset M$ é de Cauchy. Definimos $\alpha=[(a_1,a_2,\cdots,a_m,\cdots)]\in \tilde{M}$, e temos

$$\lim_{m} d_{\tilde{M}}(\alpha, \alpha_{m}) = \lim_{m} \lim_{n} d_{M}(a_{n}, a_{m}) = 0$$

pois $(a_n)_n \in \mathcal{C}$. Em general, para cada m consideremos $\beta_m \in N$ com $\tilde{M}(\alpha_m, \beta_m) < \frac{1}{m}$ (afirmação anterior.) Então $(\beta_m)_m \subset N$ é de Cauchy e pelo que vimos existe $\alpha = \lim_m \beta_m$. Como $\lim_m \tilde{M}(\alpha_m, \beta_m) = 0$, $(\alpha_m)_m$ converge a α .

Mostramos:

Teorema I.2.19. Se (M, d_M) existe um espaço métrico, então existe um espaço métrico completo $(\tilde{M}, d_{\tilde{M}})$ e uma imersão isométrica $\iota: (M, d_M) \to (\tilde{M}, d_{\tilde{M}})$ com $\mathtt{cl}(\iota(M)) = \tilde{M}$

Um espaço métrico satisfazendo a tese do teorema anterior é chamado de completação do M.

Exercício I.2.2. Mostrar que se $(\tilde{M}, d_{\tilde{M}}), (\hat{M}, d_{\hat{M}})$ são duas completações do espaço M, então existe uma isometría entre elas.

Exemplo I.2.5. Consideremos o caso quando $(M, d_M) = (V, ||)||$ é um espaço normado. Seguindo os argumentos anteriores podemos ver que \tilde{V} é um espaço normado, e $\iota : V \to \tilde{V}$ é linear (e continua, claro).

I.3 Espaços de Banach

Definição I.3.1. Um espaço normado $(V, \|\cdot\|)$ é de Banach (um B-espaço) se é completo com a distância induzida pela norma.

Do theorem I.2.19 e o exemplo depois dele deduzimos:

Corolário I.3.1. Se $(V, \|\cdot\|)$ espaço normado, então existe um B-espaço $(\tilde{V}, \|\cdot\|_{\tilde{V}})$ e uma imersão isométrica linear $\iota: V \to \tilde{V}$. O espaço $(\tilde{V}, \|\cdot\|_{\tilde{V}})$ é unico modulo isometrías lineares.

Exemplo I.3.1. Seja V um B-espaço, X um conjunto não vazío e defina

$$\mathfrak{B}(X,V) = \{f: X \to V: f \text{ limitada}\}\$$

Claramente este é um espaço vetorial definindo a soma e multiplicão por escalares de forma pontual. Em $\mathfrak{B}(X,V)$ definimos a norma (verificar que é uma norma!)

$$||f||_0 = \sup_x ||fx||.$$

Afirmamos que $(\mathfrak{B}(X,V),\|\cdot\|_0)$ é de Banach. Para ver isto, considere $(f_n)_n\subset \mathfrak{B}(X,V)$ de Cauchy. Então para cada $x\in X$, $(f_n(x))_n\subset V$ é de Cauchy, e assim

$$\exists f(x) := \lim_{n} f(x_n).$$

Podemos definir assim $f: X \to V$; mostraremos agora que f é limitada (e por tanto $f \in \mathfrak{B}(X,V)$). Como $|\|f_n\|_0 - \|f_m\|_0| \le \|f_n - f_m\|_0$, temos que $(\|f_n\|_0)_n \subset \mathbb{R}$ é de Cauchy, e em particular é limitada: $R := \sup_n \|f_n\|_0$. Seja n_1 tal que se $n \ge n_1$ então $\sup_x \{\|f_n(x) - f_{n_1}(x)\|\} < 1$: então para cada x,

$$||f(x) - f_{n_1}(x)|| = \lim_{n} ||f_n(x) - f_{n_1}(x)|| \le 1$$

e

$$||f(x)|| \le ||f(x) - f_{n_1}(x)|| + ||f_{n_1}(x)|| \le 1 + ||f_{n_1}||_0 \le 1 + R \Rightarrow ||f||_0 \le 1 + R.$$

Afirmamos agora que $\lim_n ||f - f_n||_0 = 0$; se $x \in X$,

$$||f(x) - f_n(x)|| = \lim_{m} ||f_m(x) - f_n(x)|| \le \lim_{m} \sup ||f_m - f_n||_0 \Rightarrow ||f - f_n||_0 \le \lim_{m} \sup ||f_m - f_n||_0$$

e

$$\lim \sup_{n} ||f - f_n||_0 \le \lim \sup_{n,m} ||f_m - f_n||_0 = 0$$

pois $(f_n)_n$ é de Cauchy. Mostramos que toda sequência de Cauchy em $(\mathfrak{B}(X,V),\|\cdot\|_0)$ é convergente, e por tanto $(\mathfrak{B}(X,V),\|\cdot\|_0)$ é de Banach.

Notação: Escrevemos $f_n \rightrightarrows f$ para indicar convergência na norma $\|\cdot\|_0$ (convergência uniforme). Suponha agora que X = M onde M é um espaço métrico (ou topológico), e definamos

$$\mathcal{C}(M,V)_b = \mathcal{C}(M,V) \cap \mathfrak{B}(M,V).$$

Então $(\mathcal{C}(M,V)_b,\|\cdot\|_{\mathcal{C}^0})\subset (\mathfrak{B}(M,V),\|\cdot\|_0)$ é um sub-espaço. Afirmamos que $\mathcal{C}(M,V)$ é fechado. Seja então $(f_n)_n\subset\mathcal{C}(M,V)$ que converge uniformemente a uma função $f\in\mathfrak{B}(M,V)$, queremos mostrar que f é continua. Fixamos $\epsilon>0, a\in M$ e tomamos n tal que $\|f-f_n\|_0<\frac{\epsilon}{3}$. Como f_n é continua em a existe $\delta>0$ tal que $d_M(a,x)<\delta$ implica $\|f_nx-f_na\|<\frac{\epsilon}{3}$, e por tanto

$$||fx - fa|| \le ||fx - f_n x|| + ||f_n x - f_n a|| + ||f_n a - fa|| < \epsilon.$$

Em outras palavras: limite uniforme de funçoes continuas e limitadas é continua e limitada. O exemplo da example I.1.3 mostra que convergencia pontual não é sufiente para garantir continuidade.

I.3.1 Extenção de operadores lineares: o teorema BLT e a integral de Riemann

Vamos utilizar agora a proposition I.2.17 para o caso partiular de transformações limitadas entre espaços normados. O seguinte teorema é simples, porém muito útil.

Teorema I.3.2 (BLT). Seja $(V, \|\cdot\|_V)$ espaço normado, $(W, \|\cdot\|_W)$ B-espaço e $T: V \to W$ transformação linear. Suponha que $V' \subset V$ é um sub-espaço denso tal que $T: V' \to W$ é limitada.

Então T extende de forma única a uma transformação linear limitada $\tilde{T}:V\to W$, a além disso $\|\tilde{T}\|_{\text{op}}=\|T\|_{\text{op}}$.

Demonstração. Pela proposition I.2.17 sabemos que existe uma única extensão continua \tilde{T} da T definida por: $(x_n)_n \subset V', \lim_n x_n = x \Rightarrow \tilde{T}(x) = \lim_n T(x_n)$. Claramente então \tilde{T} é linear e limitada, e como extende á T temos $\|\tilde{T}\|_{\mathbb{OP}} \geq \|T\|_{\mathbb{OP}}$. Por outra parte

$$\|\tilde{T}(x)\|_{W} = \lim_{n} \|T(x_{n})\|_{n} \leq \limsup_{n} \|T\|_{\mathrm{OP}} \|x_{n}\|_{V} = \|T\|_{\mathrm{OP}} \|x\| \forall x \in V \Rightarrow \|\tilde{T}\|_{\mathrm{OP}} \leq \|T\|_{\mathrm{OP}}.$$

Consdidere \mathbb{E} espaço de Banach (real ou complexo) e para um intervalo $[a,b] \subset \mathbb{R}$ defina

$$Step([a,b], \mathbb{E}) := \{ \sum_{k=0}^{n-1} \mathbb{1}_{[t_i, t_{i+1}]} w_i : w_i \in \mathbb{E}, n \in \mathbb{N}_{>0}, a = t_0 < t_1 < \dots t_n = b \}$$

Acima $\mathbb{1}_{[t_i,t_{i+1}]}$ denota a função característica do intervalo $[t_i,t_{i+1}]$. Cada elemento de $\mathrm{Step}([a,b],\mathbb{E})$ é limitado, e $\mathrm{Step}([a,b],\mathbb{E})\subset \mathfrak{B}([a,b],E)$ é um sub-espaço. Como exercício você pode mostrar (usar continuidade uniforme) que

$$\mathcal{C}([a,b],\mathbb{E}) \subset \mathsf{cl}(\mathrm{Step}([a,b],\mathbb{E})).$$

Definimos agora o mapa $\operatorname{Int}:\operatorname{Step}([a,b],\mathbb{E})\to\mathbb{E}$ com

$$f = \sum_{i=0}^{n-1} \mathbb{1}_{[t_i, t_{i+1}]} w_i \Rightarrow \text{Int}(f) := \sum_{i=0}^{n-1} (t_{i+1} - t_i) w_i$$

Observe que em princípio poderiamos representar f como duas somas diferentes:

$$f = \sum_{i=0}^{n-1} \mathbb{1}_{[t_i, t_{i+1}]} w_i = \sum_{k=0}^{m-1} \mathbb{1}_{[s_k, s_{k+1}]} e_k.$$
(I.4)

Como primer caso imagine que divimos o intervalo i-ésimo em duas partes, sem mexer nos outros: tomamos $t_i < s < t_{i+1}$ e escrevemos

$$\mathbb{1}_{[t_i,t_{i+1}]}w_i = \mathbb{1}_{[t_i,s]}w_i + \mathbb{1}_{[s,t_{i+1}]}w_i$$

Como $t_{i+1}-t_i=(t_{i+1}-s)+(s-t_i)$ neste caso particular vemos que Int tem o mesmo valor nas duas representações (I.4). Por indução vemos que se $\{s_k:k=0,\cdots m\}\subset\{t_i:i=0,\cdots n\}$, então $\mathrm{Int}(\sum_{i=0}^{n-1}\mathbbm{1}_{[t_i,t_{i+1}]}w_i)=\mathrm{Int}(\sum_{k=0}^{m-1}\mathbbm{1}_{[s_k,s_{k+1}]}e_k)$. Mais isto implica o caso geral pois dadas duas representações da f, o valor de Int em elas é igual ao valor do refinamento comum $\{s_k:k=0,\cdots m\}\cup\{t_i:i=0,\cdots n\}$.

Da mesma observação obtemos que Int é uma transformação linear, e claramente

$$\|\text{Int}(f)\|_{E} \le \|f\|_{0} \Rightarrow \|\text{Int}\|_{\text{OP}} \le 1.$$

Pelo teorema BLT Int extende a um operador linear acotado Int : $\operatorname{cl}(\operatorname{Step}([a,b],\mathbb{E})) \to \mathbb{E}$. Denotamos

$$Int(f) = \int f = \int_{a}^{b} f(t)dt.$$

Definição I.3.2. $\int f$ é a integral de Riemann da função f.

Suponha agora que $U \subset \mathbb{C}$ é um aberto, e $\gamma: [a,b] \to U$ é \mathcal{C}^1 por partes, isto é, existe $\gamma'(t)$ para todo $t \in [a,b] \setminus S_{\gamma}$ onde S_{γ} é finito, e γ' é continua neste conjunto (em particular tem derivadas laterais em todo ponto de $[a,b] \setminus S_{\gamma}$). Para tal curva definimos

$$l(\gamma) := \int \|\gamma'(t)\| dt$$

Seja $I_{\gamma}: \mathcal{C}(U, \mathbb{E}) \to \mathbb{E}$ definido por

$$I_{\gamma}(f) = \int \gamma'(t) \dot{f}(\gamma(t)) dt$$

Então I_{γ} é linear e

$$\|I_\gamma\|_{\mathrm{OP}} \leq l(\gamma)\|f\|_0.$$

Denotamos $I_{\gamma}(f) = \int_{\gamma} f(z)dz$.

Suponha que $t:[c,d] \to [a,b]$ é um homeomorfismo crescente, \mathcal{C}^1 por partes e considere a curva $\alpha(s) = \gamma(t(s))$. Fixemos $f \in \mathcal{C}(U,\mathbb{E}) \to \mathbb{E}$ e seja $(\phi_n)_n \in \mathrm{Step}([a,b],\mathbb{E})$ com $\lim_n \|f \circ \gamma - \phi_n\|_0 = 0$. Definimos $\psi_n = \phi_n \circ t:[c,d] \to \mathbb{E}$: cada ϕ_n é da forma

$$\phi_n = \sum_{i=0}^{N_n - 1} \mathbb{1}_{[t_i^n, t_{i+1}^n]} w_i^n$$

e por tanto

$$\psi_n(s) = \sum_{i=0}^{N_n - 1} \mathbb{1}_{[t_i^n, t_{i+1}^n]}(t(s)) w_i^n = \sum_{i=0}^{N_n - 1} \mathbb{1}_{[s_i^n, s_{i+1}^n]}(s) w_i^n.$$

onde $s_i^n = t^{-1}(t_i^n)$. Concluímos que $(\phi_n)_n \subset \operatorname{Step}([c,d],\mathbb{E})$ converge uniformemente á $f \circ \alpha$. Assim, $\gamma' \cdot \phi_n \rightrightarrows \gamma' \cdot f \circ \gamma$ e $\alpha' \cdot \phi_n \rightrightarrows \alpha' \cdot f \circ \alpha$. Note que

$$\alpha'(s) \cdot \phi_n(s) = \sum_{i=0}^{N_n - 1} \alpha'(\theta_i^n) \mathbb{1}_{[s_i^n, s_{i+1}^n]}(s) w_i^n + R_n(t)$$

onde $\theta_i^n\in(s_i^n,s_{i+1}^n)$ é tal que $\alpha'(\theta_i^n)=\frac{\alpha(s_{i+1}^n)-\alpha(s_i^n)}{s_{i+1}^n-s_i^n}$ e

$$R_n(t) = \sum_{i=0}^{N_n - 1} (\alpha'(t) - \alpha'(\theta_i^n)) \mathbb{1}_{[s_i^n, s_{i+1}^n]}(s) w_i^n.$$

Não é perdida de generalidade assumir que os pontos $S_{\alpha'}$ onde α' não é continua estão contidos em extremos de intervalos $(s_i^n:i=1,\cdots,N_n-1)_n$, com isto podemos garantir que α' , obtemos que

$$\lim_{n} \max_{i=0...N_n-1} \|\alpha'(t)\cdot) \mathbb{1}_{[s_i^n, s_{i+1}^n]} - \alpha'(\theta_i^n)\| = 0,$$

e por tanto $R_n \rightrightarrows 0$. Como Int é continuo, deduzimos

$$I_{\alpha}(f) = \lim_{n} \operatorname{Int}(\alpha' \cdot \phi_{n}) = \lim_{n} \sum_{i=0}^{N_{n}-1} (s_{i+1}^{n} - s_{i}^{n}) \alpha'(\theta_{i}^{n}) w_{i}^{n} + \operatorname{Int}(R_{n}) = \lim_{n} \sum_{i=0}^{N_{n}-1} (s_{i+1}^{n} - s_{i}^{n}) \alpha'(\theta_{i}^{n}) w_{i}^{n}$$

$$= \lim_{n} \sum_{i=0}^{N_{n}-1} (s_{i+1}^{n} - s_{i}^{n}) \frac{dt}{ds} (\theta_{i}^{n}) \gamma'(t(\theta_{i}^{n})) w_{i}^{n} = \lim_{n} \sum_{i=0}^{N_{n}-1} (t_{i+1}^{n} - t_{i}^{n}) \frac{\frac{dt}{ds}(\theta_{i}^{n})}{\frac{dt}{ds}(\zeta_{i}^{n})} \gamma'(t(\theta_{i}^{n})) w_{i}^{n}$$

para algum $\zeta_i^n \in (s_i^n, s_{i+1}^n)$, pelo Teorema de Valor méio para o mapa t. Novamente temos uniformidade, e concluimos que

$$\lim_{n} \max_{i=0,\dots N_n-1} \frac{\frac{dt}{ds}(\theta_i^n)}{\frac{dt}{ds}(\zeta_i^n)} = 1,$$

e assim,

$$I_{\alpha}(f) = I_{\gamma}(f).$$

Mostramos que $I_{\gamma}(f)$ so depende do sentido da parametrização de γ : para re-parametrizações no mesmo sentido (t crescente) temos que a integral é a mesma, e se tomamos uma parametrização em sentido oposto (t decrescente) se ve diretamente que $I_{\alpha}(f)=-I_{\gamma}(f)$.

I.4 Apêndice: compacidade em espaços topológicos

.

CAPÍTULO II

Funções diferenciáveis em \mathbb{R}^n

Seja $f:U\subset\mathbb{R}^n\to\mathbb{R}^m$ função definida no aberto U, e seja $p\in U$.

Definição II.0.1. f é diferenciável em p se existe $T_p \in \text{Lin}(\mathbb{R}^n, \mathbb{R}^m)$ tal que

$$f(p+v) = f(p) + T_n(v) + o(||v||) \quad v \sim 0.$$

Observação II.0.1. Veja o Apêndice para a notação "o" de Landau.

Proposição II.0.1. Se f é diferenciável em p então T_p é a única transformação linear que satisfaz a definição. Alem disso, f é continua em p.

Demonstração. Seja S_p outra tal transformação. Então

$$T_p(v) - S_p(v) = (f(p+v) - f(p) + o(||v||) - (f(p+v) - f(p) + o(||v||) = o(v)$$

e em particular T_p-S_p é uma transformação linear que converge a zero quando $v\mapsto 0$, o que implica que é a transformação nula.

Para mostrar que f é continua em p note que T(v)=o(1) quando $v\mapsto 0$ (é dizer, $\lim_{v\to 0}\|Tv\|=0$), e por tanto

$$f(p+v) = f(p) + T_p(v) + o(\|v\|) = o(1) + o(\|v\|) = o(1) \Rightarrow \lim_{v \to 0} f(p+v) = f(p).$$

Definição II.0.2. No caso de que f é diferenciável em p, chamamos T_p a (aplicação) diferéncial da f em p, e denotamos $D_p f = T_p$.

Exemplo II.0.1. Cualquer função constante é diferenciável em todo ponto, com diferencial $D_p f \equiv 0$; pois se $f(p) \equiv c$,

$$f(p+v) - f(p) = 0 = D_p f(v) + o(||v||).$$

Da mesma forma, se f é uma transformação linear, é diferenciável em todo ponto p com $D_p f = f$.

Podemos escrever $f=(f_1,\cdots,f_m)$ onde $f_i:U\to\mathbb{R}$ é a i-ésima função componente da f.

Lema II.0.2. f é diferenciável em $p \Leftrightarrow \text{cada } f_i$ é diferenciável no ponto p. Neste caso $D_p f = (D_p f_1, \dots, D_p f_m)$ onde $D_p f_i \in \mathbb{R}^n$, \mathbb{R} são as funções compomentes do mapa linear $D_p f$.

Demonstração. \Rightarrow Fixamos i; seja $T_i \in \mathbb{R}^n$, \mathbb{R} a i-esima componente do mapa $T = D_p f$. Como $f_i(p+v) - f_i(p) - T_i(v)$ é a i-ésima componente do vetor f(p+v) - f(p) - T(v) podemos escrever,

$$|f_i(p+v) - f_i(p) - T_i(v)| \le ||f(p+v) - f(p) - T(v)|| = o(||v||) \Rightarrow$$

 $|f_i(p+v) - f_i(p) - T_i(v)| = o(||v||).$

Concluímos que f_i é diferenciável em p com diferencial T_i .

 \Leftarrow Seja T a transformação linear $T=(D_pf_1,\cdots,D_pf_m)$. Calculamos, utilizando para qualquer vetor $w=(w_1,\cdots,w_m)$ temos $\|w\|\leq \sum_{i=1}^m w_i$,

$$||f(p+v) - f(p) - T(v)|| \le \sum_{i=1}^{m} |f_i(p+v) - f_i(p) - T_i(v)| \le \sum_{i=1}^{m} o(||v||) = o(||v||).$$

Por tanto f é diferenciável em p com $D_p f = T$.

Suponhamos que f é diferenciável em p; então para $v \in \mathbb{R}^n \setminus \{0\}$ temos

$$||f(p+tv) - f(p) - tD_p f(v)|| = o(||tv||) = o(|t|) \quad t \sim 0.$$

(notar: v é fixo, t aproxima a 0, por tanto ||tv|| aproxima a 0). Concluímos que existe

$$\frac{\partial f}{\partial v}(p) = \partial_v f(p) := \lim_{t=0} \frac{f(p+tv) - f(p)}{t}$$
(II.1)

e coincide com $D_p f(v)$.

Definição II.0.3. $\partial_v f(p)$ é a derivada direcional da f no ponto p na direção v. Quando $v = e_i$ em geral se escreve

$$\frac{\partial f}{\partial x_i}(p) = \partial_{x_i} f(p).$$

e se de denomina i-ésima derivada parcial da f em p.

Mostramos acima que se f é diferenciável no ponto p, então f tem derivada direcional em p, para toda direção.

Exercício II.0.1. Considere a função

$$f(x,y) = \begin{cases} 0 & (x,y) = (0,0) \\ \frac{x^3y}{x^6 + y^2} & (x,y) \neq (0,0). \end{cases}$$

Mostre que para todo $v \neq (0,0)$ existe $\partial_v f(0,0)$. Mostre também que f não é diferenciável na origem.

Para entender a relação entre diferenciavilidade e derivadas direcionais vamos a fazer algumas considerações. Suponhamos que f é diferenciável em p e consideremos $A=(a_{ij})_{1\leq i\leq m,1\leq j\leq n}$ a matriz asociada á transformação linear D_pf nas bases canônicas de $\mathbb{R}^n, \mathbb{R}^m$. Então se $v=\sum_{i=1}^n v_i e_i \neq 0$, temos

$$\partial_v f(p) = D_p f(v) = A \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$

Em particular para $v = e_i$ obtemos

$$\partial_{x_j} f(p) = A \cdot \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{ij} \\ \vdots \\ a_{mj} \end{bmatrix}$$

Isto nos diz que $\frac{\partial f_i}{\partial x_j}(p) = a_{ij}$. Observemos tambem que $D_p f_i$ tem matriz asociada (nas bases escolhidas),

$$A_i = \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_i}{\partial x_1}(p) & \frac{\partial f_i}{\partial x_2}(p) & \cdots & \frac{\partial f_i}{\partial x_n}(p) \end{bmatrix}$$

Definição II.0.4. Se f é diferenciável em p a matriz

$$A_{p} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\ \vdots & & \vdots & & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{m}} \end{bmatrix}_{p}$$

é a matriz jacobiana da f no ponto p. Se m=n o determinante desta matriz é o jacobiano da f em p e se denota

$$\operatorname{Jac}_p(f) = \left(\frac{\partial f_1 \cdots \partial f_n}{\partial x_1 \cdots \partial x_n}\right)(p).$$

Utilizando as observações acima agora podemos mostrar o seguinte.

Teorema II.0.3. Seja $f:U\subset\mathbb{R}^n\to\mathbb{R}^m$ para a qual existem as derivadas parciais $\partial_{x_i}f:U\to\mathbb{R}^m$ e são continuas no ponto p. Então f é diferenciável em p.

Demonstração. Consideremos $A=(\frac{\partial f_i}{\partial x_j}(p))_{1\leq i\leq m, 1\leq j\leq m}$ e seja $T:\mathbb{R}^n\to\mathbb{R}^m$ a transformação linear que define, $T(v)=A\cdot v$. Vamos a mostrar que T é a diferencial da f em p (pelo que vimos antes, esta é a única possibilidade se $D_p f$ existe). Pelo lemma II.0.2 é suficente mostrar que cada

função componente da f é diferenciável, e por tanto podemos assumir que $f:U\subset\mathbb{R}^n\to\mathbb{R}$ (considerando as componentes). Então o que queremos mostrar é que a transformação

$$T(v) = \sum_{j=1}^{n} \partial_{x_i} f(p) \cdot v_j$$

é a diferencial da f no ponto p. Para poder disenhar consideremos o caso n=3 (e deixamos como exercício quase-trivial escrever o caso geral); escrevemos $p=(a,b,c), v=(\alpha,\beta,\gamma)$ e queremos calcular f(p+v)-f(p).

Temos (ver figura)

$$f(p+v) - f(p) = (f(p+v) - f(u)) + (f(u) - f(q)) + (f(q) - f(p))$$

onde cada termo é calculado entre pontos que diferem em uma única coordenada. Por exemplo, $f(q)-f(p)=f(a+\alpha,b,c)-f(a,b,c)$; consideremos a função g(t)=f(a+t,b,c) com $t\in[0,\alpha]$ e notemos que esta função é derivável, com derivada

$$g'(t) = \partial_x f(a+t,b,c).$$

Pelo teorema de valor médio temos $f(q)-f(p)=g'(t_x)(\alpha-0)=\partial_x f(k_x)\cdot \alpha$ onde $t_x\in (0,\alpha), k_x=p+t_xe_1$. Observemos também que quando $v\mapsto 0, k_x\mapsto p$. Assim,

$$f(p+v) - f(p) = \partial_x f(k_x) \cdot \alpha + \partial_y f(k_y) \cdot \beta + \partial_z f(k_z) \cdot \gamma$$

onde $k_x, k_y, k_z \mapsto p$ quando $v \mapsto 0$. Pela hipotêse de continuidade das derivadas parciais no ponto p temos que $v \mapsto 0$ implica $\partial_x f(k_x) \mapsto \partial_x f(p)$, por tanto se fixamos $\epsilon > 0$ existe $\delta > 0$ tal que $\|v\| < \delta$ implica

$$|\partial_x f(k_x) - \partial_x f(p)| < \frac{\epsilon}{3}$$

e similarmente para as outras derivadas. Finalmente podemos escrever assim:

$$|f(p+v) - f(p) - (\partial_x f(p) \cdot \alpha + \partial_y f(p) \cdot \beta + \partial_z f(p) \cdot \gamma)|$$

$$= |(\partial_x f(k_x) - \partial_x f(p)) \cdot \alpha + (\partial_y f(k_y) - \partial_y f(p)) \cdot \beta + (\partial_z f(k_z) - \partial_z f(p)) \cdot \gamma|$$

$$\leq |\partial_x f(k_x) - \partial_x f(p)| \cdot |\alpha| + |\partial_y f(k_y) - \partial_y f(p)| \cdot |\beta| + |\partial_z f(k_z) - \partial_z f(p)| \cdot |\gamma|$$

$$< \frac{\epsilon}{3} (|\alpha| + |\beta| + |\gamma|) \leq \frac{\epsilon}{3} 3||v|| = \epsilon||v||$$

se v é suficentemente pequeno. Isto implica que

$$|f(p+v) - f(p) - (\partial_x f(p) \cdot \alpha + \partial_y f(p) \cdot \beta + \partial_z f(p) \cdot \gamma)| = o(||v||)$$

quando $v \sim 0$, e f é diferenciável em p com diferencial dada pela T, o que queriamos mostrar.

Proposição II.0.4. Sejam $f, g: U \subset \mathbb{R}^n \to \mathbb{R}^m$ funções diferenciáveis no ponto p, e $\lambda \in \mathbb{R}$. Então $h = f + \lambda g$ é diferenciável em p, e $D_p h = D_p f + \lambda D_p g$.

A demostração fica como exercício.

Proposição II.0.5 (Regra da cadeia). Suponha que $f:U\subset\mathbb{R}^n\to\mathbb{R}^m,g:V\subset\mathbb{R}^m\to\mathbb{R}^l$ são funçoes diferenciáveis em p e q=f(p), respectivamente. Então $h=g\circ f$ é diferenciável em p, e

$$D_p h = D_{fp} g \circ D_p f.$$

Se A_p, B_q são as matrizes jacobianas de f e g nos pontos p, q então a matriz jacobiana da h no ponto p é $B_q \cdot A_p$.

Demonstração. Podemos escrever

$$f(p+v) = f(p) + D_p f(v) + o(||v||) \quad v \sim 0$$

$$g(q+w) = g(q) + D_q g(w) + o(||w||) \quad w \sim 0$$

Fazemos $w = D_p f(v) + o(||v||)$: observe que $\lim_{v\to 0} ||D_p f(v) + o(||v||)|| = 0$, por tanto obtemos substituindo a primeira na segunda fórmula,

$$g(f(p+v)) = g(f(p) + D_p f(v) + o(||v||))$$

= $g(q) + D_q g(0) + D_q g(0) + D_q g(0) + O(||v||) +$

Oueda enteder os termos de erro:

- $D_q g(o(\|v\|))$: como $\|D_q g(u)\| \le \|D_q g\|_{\mathbb{Q}^p} \|u\|$ temos $D_q g(o(\|v\|)) = o(\|v\|)$
- $o(\|D_pf(v)+o(\|v\|\|))$: vamos utilizar a seguinte observação. Suponha que $\phi(x)=o(\psi(x))$ quando $x\sim 0$, e suponha que $\frac{\psi(x)}{\varphi(x)}$ é limitada perto do x=0. Então $\phi(x)=o(\varphi(x))$ (exercício de uma linha). Como $\frac{\|D_pf(v)+o(\|v\|)\|}{\|v\|}\leq \|D_pf\|_{\mathbb{OP}}+O(1)$, é limitada perto de v=0 e temos $o(\|D_pf(v)+o(\|v\|\|))=o(\|v\|)$

Concluimos que

$$h(p+v) = g(f(p+v)) = h(p) + D_q g \circ D_p f(v) + o(||v||) \quad v \sim 0.$$

a primeira parte queda demostrada. A segunda é consequência direta da primeira.

Mapas Multilineares

Consideramos V_1, \dots, V_k, W espaços vetoriais sobre o mesmo corpo \mathbb{K} . Um mapa $M: V_1 \times \dots V_k \to W$ é dito <u>multilinear</u> se é linear fixando todas menos uma coordenada, culaquera seja esta coordenada. Isto é,

$$\forall 1 \leq i, \forall \leq M(v_1, \cdots, v_i + \lambda v_i', \cdots, v_k) = M(v_1, \cdots, v_i, \cdots, v_k) + \lambda M(v_1, \cdots, v_i', \cdots, v_k).$$

Denotamos $\mathtt{Mult}(V_1 \times \cdots, V_k, W)$ o conjunto de aplicações multilineares de $V_1 \times \cdots, V_k$ em W. Clarameente $\mathtt{Mult}(V_1 \times \cdots, V_k, W)$ é um $\mathbb K$ espaço vetorial. Para entender melhor a estrutura de este conjunto, considermos primeiro as aplicações bilineares (k=2):

$$Bil(V_1 \times V_1, W) = \{B : V_1 \times V_2 \to W : B \text{ linear em cada coordenada}\}.$$

Lema II.0.6. Os espaços vetoriais $Bil(V)(V_1 \times V_1, W)$ e $Lin(V_1, Lin(V_2, W))$ são isomorfos.

Demonstração. Seja $\Phi: \mathrm{Bil}(V)(V_1 \times V_1, W) \to \mathrm{Lin}(V_1, \mathrm{Lin}(V_2, W)), \ \Phi(B): V_1 \to \mathrm{Lin}(V_2, W)$ definida por $\Phi(B)(v_1) = B(v_1, \cdot)$. Claramente Φ é linear, e $\Phi(B) = 0 \Leftarrow B(v_1, \cdot) = 0 \forall v_1 \in V_1 \Leftrightarrow B(v_1, v_2) = 0 \forall v_1 \in V_1, v_2 \in V_2 \Leftrightarrow B \equiv 0$. Por tanto, Φ é injetora. É também sobrejetora: dada $T: V_1 \to \mathrm{Lin}(V_2, W)$ linear defina $B_T(v_1, v_2) = T(v_1)(v_2)$. Temos $B_T \in \mathrm{Bil}(V_1 \times V_2, W)$ e $\Phi(B_T) = T$.

Concluimos que Φ é um isomorfismo linear, o que termina a prova.

Por indução obtemos:

Corolário II.0.7. Os espaços vetoriais $\operatorname{Mult}(V_1 \times \cdots \times V_k, W)$ e $\operatorname{Lin}(V_1, \operatorname{Mult}(V_2 \times \cdots \times V_k, W))$ são isomorfos.

Pelo isomorfismo anterior temos uma forma natural de definir uma norma em $Bil(V)(V_1 \times V_1, W)$: dada $B \in Bil(V)(V_1 \times V_1, W)$ definimos

$$\|B\|_{\text{OP}} := \|\Phi(B)\|_{\text{OP}} = \sup_{\substack{\|v_1\|_{V_1} = 1 \\ \|v_2\|_{V_2} = 1}} \|B(v_1, v_2)\|_W$$

Claramente $||B||_{\tt OP} < \infty$, e se $v_1 \in V_1, v_2 \in V_2$ temos

$$||B(v_1, v_2)||_2 \le ||B||_{\mathsf{OP}} ||v_1||_{V_1} ||v_2||_{V_2}.$$

Similar para o caso de Mult $(V_1 \times \cdots \times V_k, W)$.

Produto tensorial Em vez de pensar em mapas bilineares de $V_1 \times V_2$ em W podemos pensar em mapas lineares desde outro espaço.

Teorema II.0.8. Existe um espaço vetorial $V_1 \otimes V_2$ e uma aplicação linear $\Gamma: V_1 \times V_2 \to V_1 \otimes V_2$ tal que: dado qualquer espaço vetorial W e cualquer $B \in \text{Bil}(V_1 \times V_2, W)$ existe uma única transformação linear $T_B: V_1 \otimes V_2 \to W$ tal que

II.0.1 A regra de Leibnitz

Considere $B\in \mathrm{Bil}(\mathbb{R}^{m_1}\times\mathbb{R}^{m_2},\mathbb{R}^l)$ e sejam $f:U\subset\mathbb{R}^n\to\mathbb{R}^{m_1},g:U\to\mathbb{R}^{m_2}$ funções diferenciáveis em $p\in U$.

Proposição II.0.9 (Regra de Leibnitz). A função $h = B \circ (f, q)$ é diferenciável em p, e temos

$$D_p h(v) = B(D_p f(v), g(p)) + B(f(p), D_p g(v)).$$

Demonstração. Calculamos,

$$h(p+v) = B(f(p+v), g(p+v)) = B(f(p) + D_p f(v) + o(||v||), g(p) + D_p g(v) + o(||v||))$$

$$B(f(p), D_p g(v)) + B(D_p f(v), g(p)) + B(f(p), g(p)) + B(o(||v||), \dots) + B(\dots, o(||v||)).$$

Observe que $||B(o(||v||), \cdots)|| \le ||B||_{\mathbb{OP}}o(||v||)||\cdots||$ onde termo $||\cdots||$ é limitado, e por tanto $B(o(||v||), \cdots) = o(||v||)$. Similarmente para o outro termo de erro. Por fim,

$$h(p+v) = h(p) + B(D_p f(v), g(p)) + B(f(p), g(p)) + o(||v||)$$

o que conclui a demostração.

Por indução você pode verificar o seguinte.

Corolário II.0.10. Sejam $f_i:U\subset\mathbb{R}^n\to\mathbb{R}^{m_i}, i=1,\cdots k$ diferenciáveis no ponto $p\in U$, e seja $M\in \mathrm{Mult}(\mathbb{R}^{m_1}\times\cdots\times\mathbb{R}^{m_k},\mathbb{R}^k)$. Então a função $H=M\circ(f_1,\cdots,f_k)$ é diferenciável em p, e

$$D_pH(v) = \sum_{i=1}^k M(f_1(p), \cdots, \underbrace{D_pf_i(v)}_i, \cdots f_k(p)).$$

Exemplo II.0.2. Considere $H=\det: \operatorname{Mat}_n(\mathbb{R})=\mathbb{R}^n \times \cdots \mathbb{R}^n \to \mathbb{R}$ o determinante, onde pensamos cada matriz cuadrada A de dimensão n da forma $A=(A^1,\cdots,A^n)$ sendo $A^i\in\mathbb{R}^n$ a i-ésima coluna do A. A função H é multilinear, por tanto é diferenciável em todo ponto do seu domínio, e

$$B, A \in \operatorname{Mat}_n(\mathbb{R}), \ D_A H(B) = \sum_{i=1}^n \det(A^1, \cdots, B^i, \cdots A^n).$$

II.0.2 O teorema do valor médio

Considere uma função clase \mathcal{C}^1 , $f:U\subset\mathbb{R}^n\to\mathbb{R}^m$. Então temos uma função $Df:U\to\mathbb{E}=\mathrm{Lin}(\mathbb{R}^n,\mathbb{R}^m)$ continua, e por tanto podemos integrar esta função em curvas γ contidas dentro de U. Isto é, se $\gamma:[a,b]\to U$ curva continua, a função $H:[a,b]\to\mathbb{E}$ dada por $H(t)=D_{\gamma(t)}f$ é continua, e por tanto podemos aplicar nossa teoria de integrais para funções a valores vetoriais (section I.3.1). Alternativamente, se representamos H(t) em forma matricial, temos $H(t)\sim(a_{i,j}(t))_{1\leq i\leq m,1\leq j\leq n}$ e podemos integrar as funções continuas $a_{i,j}:[a,b]\to\mathbb{R}$. Em todo caso, faz sentido

$$\int_0^1 H(t)dt \in \mathbb{E}.$$

Teorema II.0.11 (TVM). Nas hipóteses anteriores, suponha que o segmento $[p,q] \subset U$. Então

$$f(q) - f(p) = T(q - p)$$
 $T = \int_0^1 D_{tp+(1-t)q} f dt$.

Em particular,

$$||f(q) - f(p)|| \le M_{p,q} \cdot ||q - p||$$

onde $M_{p,q} = \max_{r \in [p,q]} ||D_z f||_{OP}$.

Demonstração. Seja $\gamma(t)=tp+(1-t)q, t\in [0,1]$. Então temos

$$f(q) - f(p) = f(\gamma(1)) - f(\gamma(0)) = (f^{1}(\gamma(1)) - f^{1}(\gamma(0)), \dots, f^{m}(\gamma(1)) - f^{m}(\gamma(0)))$$

$$= \left(\int_{0}^{1} \frac{d}{dt} f^{1} \circ \gamma(t) dt, \dots, \int_{0}^{1} \frac{d}{dt} f^{m} \circ \gamma(t) dt\right) =$$

$$= \left(\int_{0}^{1} D_{\gamma(t)} f^{1}(q_{1} - p_{1}), \dots, \int_{0}^{1} D_{\gamma(t)} f^{1}(q_{1} - p_{1})\right) = T(q - p).$$

A segunda parte é consequência da primeira, utilizando que $\|\int_0^1 H(t)dt\|_{\text{op}} \leq \max_{t \in [0,1]} \|H(t)\|_{\text{op}}$.

Temos também o recíproco.

Teorema II.0.12 (Recíproco do TVM). Suponha que $f:U\subset\mathbb{R}^n\to\mathbb{R}^n$ é dada, e existe $T:U\times U\to \mathrm{Lin}(\mathbb{R}^n,\mathbb{R}^m)$ continua tal que

$$f(q) - f(p) = T(p,q)(q-p).$$

Então f é C^1 em U, com $D_p f = T(p,p)$.

Demonstração. Podemos escrever

$$f(p+v) - f(p) = T(p, p+v)v = T(p, p)v + (T(p, p+v) - T(p, p))v = T(p, p)v + o(\|v\|)$$

pois $\lim_{v\to 0} T(p,p+v) - T(p,p) = 0$. Isto mostra que f é diferenciável em p com $D_p f = T(p,p)$; como T é continua, f é \mathcal{C}^1 .

Observemos a seguinte consequência

Corolário II.0.13. Suponha que U é (aberto e) conexo, e $Df \equiv 0$. Então f é constante em U.

Demonstração. Fixamos $p \in U$: então para qualqer outro $q \in U$ existe um caminho poligonal contido em U que começa em p e termina em q. Aplicando o TVM em cada um dos segmentos de este caminho, deduzimos que f(q) = f(p).

II.1 Apêndice: notação "o" de Landau

Sejam $\phi, \psi: I_a = (a - \delta, a + \delta) \to \mathbb{R}$ funções definidas numa vizinhança do a. Escreveremos

$$\phi(x) = o(\psi(x)), \quad x \sim a \Leftrightarrow \lim_{x \to a} \frac{\phi(x)}{\psi(x)} = 0.$$

Se a=0 em geral omitimos a refêrencia ao ponto a: notar que

$$\phi(x) = o(\psi(x)), \quad x \sim a \Leftrightarrow \phi(x-a) = o(\psi(x-a)) \quad x-a \sim 0.$$

Dizer que $\phi(x) = o(\psi(x))$ indica que $\phi(x)$ converge (quando $x \mapsto 0$) á zero mais rapidamente do que o mapa ψ .

Exemplo II.1.1. Pelo teorema de Taylor (com resto de Lagrange) podemos escrever

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cos(\theta_x) \frac{x^6}{6!}$$

para algum $\theta_x \in (-|x|,|x|)$. Como $\lim_{x\to 0} \frac{-\cos(\theta_x)\frac{x^6}{6!}}{x^5} = 0$ podemos escrever

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5).$$

Esta notação é muito útil pois nos permite saber a manitude do erro, sem nos preocupar pela sua forma específica. Para simplificar podemos utilizar as seguintes propriedades.

1.
$$\lambda \neq 0, \phi(x) = o(\lambda \psi(x)) \Rightarrow \phi(x) = o(\psi(x))$$
.

Demonstração.
$$\lim_{x\to 0} \frac{\phi(x)}{\lambda \psi(x)} = 0 \Rightarrow \lim_{x\to 0} \frac{\phi(x)}{\psi(x)} = 0.$$

Podemos então escrever $o(\lambda \psi(x)) = o(\psi(x))$. As outras propriedades se demostram de forma similar.

- 2. $o(\psi(x)) + o(\psi(x)) = o(\psi(x))$.
- 3. Se $\phi(x) = o(\psi(x)), \psi(x) = o(\varphi(x))$ então $\phi(x) = o(\varphi(x))$. Em particular para n > m temos $o(x^n) = o(x^m)$
- 4. Se $\phi(x)=o(\psi(x))$ e $\frac{\psi(x)}{\varphi(x)}$ é limitada numa vizinhança de x=0, então $\phi(x)=o(\varphi(x))$.

CAPÍTULO III

Os teoremas da função inversa e função implícita

Começamos com a seguintes definições.

Definição III.0.1. Considere $U, V \subset \mathbb{R}^n$ abertos e seja $f: U \to V$ clase \mathcal{C}^r com $r \geq 1$

- 1. $f \notin um \text{ difeomorfismo clase } C^r \text{ se } f \notin invertivel e f^{-1} : V \to U \notin de \text{ clase } C^r$.
- 2. f é um difeomorfismo local (clase C^r) perto de $p \in U$ se existe $A \subset U$ vizinhança aberta de p e $B \subset V$ vizinhança aberta de f(p) tais que $f|: A \to B$ é um difeomorfismo (clase C^r).

O teorema mais importante de esta parte é o seguinte.

Teorema III.0.1 (Teorema da função inversa). Suponha que $f: U \subset \mathbb{R}^n \to \mathbb{R}^n$ é um mapa clase C^r e $p \in U$ é tal que $D_p f \in \text{Lin}(\mathbb{R}^n)$ é um isomorfismo linear. Então f é un difeomorfismo local em p clase C^r .

Denotemos M a matriz asociada a $D_p f$ na base canônica: podemos escrever para x perto de p

$$f(x) = M \cdot x + \alpha(x)$$

onde α é uma função \mathcal{C}^r (note que $\alpha(x)=f(x)-M\cdot x$), com $\alpha(p)=0, D_p\alpha=O_n$ (a transformação linear nula). Considere

$$m := \inf\{\|M \cdot x\| : \|x\| = 1\}$$

e perceba que como M é um isomorfismo, m>0. Pode arguemtar assim¹ M é continua, $B=\{x:\|x\|=1\}$ é compacto, e por existe um $x\in B$ com $\|M\cdot x\|=m$; se m=0 então $x\in \ker(M)=\{0\}$ o que contradiz o fato de $\|x\|=1$.

Como a diferencial de α é continua e se anula em p, existe uma vizinhança $A\subset U$ do p tal que

$$\forall x \in A, \|D_x \alpha\|_{\mathrm{OP}} \le \frac{m}{2}.$$

 $^{^1}$ De fato, não é necessário utilizar a compacidade de B: mostre diretamente que $m=\frac{1}{\|M^{-1}\|_{\mathsf{OP}}}$

Isto implica, pelo teorema do valor médio que a constante de Lipschitz de α em A é $\leq \frac{m}{2}$. Agora, para $x,y\in A$ temos

$$||f(x) - f(y)|| = ||M \cdot (x - y) + (\alpha(x) - \alpha(y))|| \ge ||M \cdot (x - y)|| - ||\alpha(x) - \alpha(y)||$$

$$\ge (m - \sup_{z \in A} \operatorname{Lip}(\alpha))||x - y||$$

$$\ge \frac{m}{2}||x - y||.$$

Deduzimos duas coisas:

- f|A injetora.
- $f^{-1}|f(A)$ é Lipschitz: se z = f(x), w = f(y)

$$||f^{-1}(z) - f^{-1}(w)|| = ||x - y|| \le \frac{2}{m} ||fx - fy|| = \frac{2}{m} ||z - w||$$

e por tanto

$$\operatorname{Lip}(f^{-1}) \le \frac{2}{m}.\tag{III.1}$$

Vamos mostrar agora que f(A) é aberto. Lembremos o seguinte teorema abstracto de espaços métricos.

Teorema III.0.2 (Banach). Seja X espaço métrico completo, e seja $F: M \to M$ uma contração, isto é, um mapa Lipschitz com $\operatorname{Lip}(F) = \lambda < 1$.

Então existe um único ponto $x_0 \in X$ tal que $F(x_0) = x_0$. Além disso, para todo $x \in X$ temos

$$F^n(x) = \underbrace{F \circ \cdots F}_{n \text{ vezes}}(x) \xrightarrow[n \to \infty]{} x_0.$$

Lema III.0.3. f(A) é aberto.

Demonstração. Seja $y_0 \in f(A), y_0 = f(x_0) = M \cdot x_0 + \alpha(x_0)$. Queremos mostrar que se $\epsilon > 0$ é suficentemente pequeno, então $D(y_0, \epsilon) \subset f(A)$, é dizer, se $\|y - y_0\| < \epsilon \Rightarrow \exists x \in A \text{ com } f(x) = y$. Fixamos um tal y: a equação f(x) = y é equivalente a $M^{-1}(y - r(x)) = x$, assim definimos $h = h_y : \overline{D}(x_0, 2\epsilon) \to \mathbb{R}^n$ pela fórmula

$$h(x) = M^{-1}(y - r(x)).$$

Queremos encontrar x com h(x) = x, e para isto vamos utilizar o teorema de Banach. Acima, escolhimos ϵ de forma tal que $\overline{D}(x_0, 2\epsilon) \subset A$.

1. *h* é uma contração:

$$||h(x) - h(x')|| = ||M^{-1}(\alpha(x') - \alpha(x))|| \le ||M^{-1}|| \operatorname{Lip}(\alpha) ||x - x'|| \le ||M^{-1}|| \frac{m}{2} ||x - x'||.$$

Agora se $\|x\|=1$ temos $1=\|M(M^{-1}x)\|\geq m\|M^{-1}x\|$, e pelo tanto $\|M^{-1}\|\leq \frac{1}{m}$; na equação acima concluimos $\|h(x)-h(x')\|\leq \frac{1}{2}\|x-x'\|$ para todo $x,x'\in A$ e h contração.

2. h envía $\overline{D}(x_0, 2\epsilon)$ em se mesmo: seja $x/\|x - x_0\| \le \epsilon$, então como $h(x_0) = y_0$,

$$||h(x) - x_0|| \le ||h(x) - h(x_0)|| + ||y_0|| \le \frac{1}{2}||x - x_0|| + \epsilon \le 2\epsilon.$$

Pelo teorema de Banach, existe um único $x \in \overline{D}(x_0, 2\epsilon)$ com h(x) = x, o que queríamos demostrar.

Definimos B=f(A): já mostramos que B é uma vizinhança aberta de f(p), e também sabemos que f^{-1} é Lipschitz. Vamos agora mostrar que f^{-1} é clase \mathcal{C}^1 e depois por indução mostraremos que é clase \mathcal{C}^r .

Se $f(p) + w = f(p+h) \in B$ podemos escrever

$$f^{-1}(f(p) + w) - f^{-1}(f(p)) = h$$

e

$$f(p+h) = M \cdot (p+h) + \alpha(p+h) = f(p) + M \cdot h + (\alpha(p+h) - \alpha(p))$$

por tanto

$$w = M \cdot h + (\alpha(p+h) - \alpha(p)) \Rightarrow f^{-1}(f(p) + w) - f^{-1}(f(p)) = M^{-1}w - (\alpha(p+h) - \alpha(p))$$

Como $D_0\alpha = O$,

$$\alpha(p+h) - \alpha(p) = o(\|h\|) \Rightarrow \alpha(p+h) - \alpha(p) = o(\|w\|)$$

e

$$f^{-1}(f(p)+w)-f^{-1}(f(p))=M^{-1}w+o(\|w\|)$$

o que mostra que f^{-1} é diferenciável p com derivada dada pela transformação inducida M^{-1} , o que no final nos diz que $D_{fp}f^{-1}=(D_pf)^{-1}$.

Agora p é um ponto qualquer do A, assim que deduzimos que f^{-1} é diferenciável em B. Mas $p\mapsto (D_pf)^{-1}$ é continua, por tanto f^{-1} é \mathcal{C}^1 .

Para finalizar a demostração do teorema da função inversa, mostremos agora que f^{-1} é \mathcal{C}^r . Considere o mapa $F:A\times\mathbb{R}^n\to B\times\mathbb{R}^n$ dado por

$$F(x,v) = (fx, D_x f(v))$$

Este mapa é C^{r-1} . Suponemos por indução que mostramos que inversas de difeomorfismos locais são C^{r-1} , e calculamos a matriz associada a F em um ponto (p, v): temos

$$\begin{bmatrix} D_p f & O \\ * & D_p f \end{bmatrix}$$

que é uma matriz não singular, assim pela hipôtese de indução temos que F^{-1} é um difeomorfismo \mathcal{C}^{r-1} . Mas $F^{-1}(y,w)=(f^{-1}y,D_yf^{-1}w)$, o que nos diz que $y\mapsto D_yf^{-1}$ é \mathcal{C}^{r-1} , e f^{-1} é clase \mathcal{C}^r . A prova do teorema está completa.

III.1 O teorema da função implícita

Consideramos uma função $F:U\subset\mathbb{R}^n\times\mathbb{R}^m\to\mathbb{R}^m$, onde escreveremos as coordenadas de $\mathbb{R}^n\times\mathbb{R}^m$ coomo (x,y), isto é, $x=(x_1,\cdots,x_n)\in\mathbb{R}^n,y=(y_1,\cdots,y_m)$. A pergunta que queremos responder é a seguinte.

Pergunta. Suponha que $F(x_0, y_0) = 0$. A equação F(x, y) = 0 define implícitamente y em função de x perto de (x_0, y_0) ?

Isto é, existem vizinhanças abertas $x_0 \in A, y_0 \in B$ e $\phi: A \to B$ tal que $F(x,\phi(x)) = 0$? Alternativamente, a equação F(x,y) = 0 permite a solução como um gráfico perto do ponto considerado.

Exemplo III.1.1. Considere $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, F(x,y) = x^2 + y^2 - 1$. Então dado (x_0, y_0) com $F(x_0, y_0) = 0$ temos

$$\begin{cases} y_0>0 & \phi:(-1,1)\to(0,1), \phi(x)=\sqrt{1-x^2}\\ y_0<0 & \phi:(-1,1)\to(-1,0), \phi(x)=-\sqrt{1-x^2}\\ y_0=0 & \text{n\~ao} \text{ pode se escrever a solu\~ao como um gr\'afico perto do } (x_0,y_0). \end{cases}$$

Imaginemos que existe uma tal solução $\phi:A\to B$ com $F(x,\phi(x))=0$, e ainda mais, suponhamos que ϕ é diferenciável. Então pela regra da cadeia temos

$$0 = \partial_x F(x, \phi(x)) + \partial_y F(x, \phi(x)) \circ \partial_x \phi(x)$$

onde $\partial_x F$ refere-se á derivada de F respecto as variáveis x a similarmente nos outros casos,

$$\partial_x F(x,\phi(x)) \in \operatorname{Lin}(\mathbb{R}^n, \mathbb{R}^m)$$
$$\partial_y F(x,\phi(x)) \in \operatorname{Lin}(\mathbb{R}^m, \mathbb{R}^m)$$
$$\partial_x \phi(x) \in \operatorname{Lin}(\mathbb{R}^n, \mathbb{R}^m).$$

Assim, se $\partial_y F$ é não singular, temos

$$\partial_x \phi(x) = (\partial_y F(x, \phi(x)))^{-1} \circ \partial_x F(x, \phi(x)). \tag{III.2}$$

Teorema III.1.1 (Teorema da função implícita). Suponha que $F:U\subset\mathbb{R}^n\times\mathbb{R}^m\to\mathbb{R}^m$ é clase $\mathcal{C}^r, r\geq 1$ e seja $p_0=(x_0,y_0)$ tal que $\det\partial_y F(p_0)\neq 0$. Então existem vizinhanças $x_0\in A,y_0\in B$ e $\phi:A\to B$ de clase \mathcal{C}^r tal que $F(x,\phi(x))=0$ para todo $x\in A$.

Demonstração. A demostração é uma aplicação direta do teorema da função inversa. Defina $G:U\to\mathbb{R}^n\times\mathbb{R}^m$ por

$$G(x,y) = (x, F(x,y)).$$

Temos que G é classe C^r e sua differencial em p_0 pode se escrever em forma de bloque como

$$D_{p_0}G = \begin{bmatrix} I & O \\ \partial_x F & \partial_y F \end{bmatrix}_{p_0}$$

que é não singular, e por tanto podemos encontrar $A \times B$ vizinhança aberta de p_0 de forma tal que $G: A \times B \to G(A \times B)$ é um difeomorfismo clase \mathcal{C}^r . Note que G^{-1} tem a forma

$$G^{-1}(x,y) = (x,g(x,y))$$

para certa g clase \mathcal{C}^r . Definimos $\phi:A\to B$ com $\phi(x)=g(x,0)$ e observamos que

$$(x,0) = G(x, q(x,0)) = (x, F(x, \phi(x))) \Rightarrow F(x, \phi(x)) = 0.$$

III.2 Forma local as imersões e submersões: o teorema do posto.

Teorema III.2.1 (Forma local das imersões). Considere um mapa $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ de clase C^r com $0 \in U$, f(0) = 0. Suponha que $D_0 f$ é injetora (f imersão em 0). Então existe $\psi: V \subset \mathbb{R}^m \to V' \subset \mathbb{R}^m$ diffeomorfismo, $\psi(0) = 0$ e tal que

$$\psi \circ f(x_1, \cdots, x_n) = (x_1, \cdots, x_n, 0, \cdots, 0)$$

onde estiver definido (é dizer, em $f^{-1}(V)$).

Demonstração. Claramente $m \ge n$; defina $g: U \times \mathbb{R}^{m-n} \to \mathbb{R}^m$, g(x,y) = f(x) + (0,y). Observe que $D_0g = \begin{bmatrix} D_0f \ I_{m-n} \end{bmatrix}$ e por tanto é invertível em 0; pelo teorema de função inversa, g é um difeomorfismo local numa vizinhança do 0. Seja $\psi = g^{-1}$ e observe,

$$\psi(f(x)) = \psi(g(x,0) = (x,0))$$

como queriamos mostrar.

Observação III.2.1. O fato de f(0)=0 no teorema anterior não é importante. Suponha que dada tal f temos que f é uma imersão em $p \in U$. Sejam $T_p: \mathbb{R}^n \circlearrowleft, T_{-f(p)}: \mathbb{R}^m \circlearrowleft$ as traslações $T_p(x)=x+p, T_{-fp}(z)=z-f(p)$. Defina $\tilde{f}: U-p \to \mathbb{R}^m$ com $\tilde{f}=T_{-f(p)}\circ f\circ T_p$.

Então \tilde{f} tem a mesma clase de diferenciabilidade que f, $\tilde{f}(0)=0$ e $D_0\tilde{f}=T_{-f(p)}\circ D_pf\circ T_p$. Podemos então aplicar o teorema a \tilde{f} e encontrar um difeo local perto de $0\in\mathbb{R}^m$ tal que $\tilde{\psi}\circ\tilde{f}(x)=(\tilde{\psi}\circ T_{-fp})\circ f\circ T_p(x)=(x,0)$. Se denotamos $\psi=\tilde{\psi}\circ T_{-fp}$, então ψ é um difeomorfismo de uma vizinhança de f(p) em 0, e

$$\psi \circ f(x+p) = (x,0) \quad x \sim 0.$$

Considerações similares serão utilzadas nos outros casos (i.e. fazer p=0, f(p)=0), ja que modulo uma mudança de coordenadas é exatamente o mesmo.

Teorema III.2.2 (Forma local das submersões). Considere um mapa $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ de clase C^r com $0 \in U$, f(0) = 0. Suponha que $D_0 f$ é sobrejetora (f imersão em 0). Então existe $\phi: A \subset \mathbb{R}^n \to A' \subset \mathbb{R}^n$ diffeomorfismo, $\phi(0) = 0$ e tal que

$$f \circ \phi(x_1, \cdots, x_n) = (x_1, \cdots, x_m)$$

onde estiver definido.

Demonstração. Defina $g: U \to \mathbb{R}^m \times \mathbb{R}^{n-m}$ por $g(x) = (f(x), x_{m+1}, \cdots x_n)$. Novamente g(0) = 0, e g é um difemorfismo numa vizinhança do 0 (verifique!). Definimos $\psi = g^{-1}$ e verificamos

$$x = g \circ \phi(x) = (f(\phi(x)), *, \cdots, *) \Rightarrow f(\phi(x)) = (x_1, \cdots, x_m).$$

Teorema III.2.3 (Teorema do posto). Seja $f:U\subset\mathbb{R}^n\to\mathbb{R}^m$ tal que $\mathrm{rk}(D_pf)=k$ para todo $p\in U$. Então...

Demonstração. Sem pérdida de generalidade vamos supor que f(0) = 0 (aplicando traslações). Como o posto de $D_0 f = k$, pelo teorema da dimensão da algebra linear temos

$$n = \dim(\operatorname{dom'inio} \operatorname{da} D_0 f) = \dim \ker(D_0 f) + k \Rightarrow \dim \ker(D_0 f) = n - k.$$

Escrevemos $(x,y) \in \mathbb{R}^k \times \mathbb{R}^{n-k}$ (isto é, $x=(x_1,\cdots,x_k)$, e similar para y). Consideramos um isomorfismo linear $S:\mathbb{R}^n \to \mathbb{R}^n$ que envia $0 \times \mathbb{R}^{n-k}$ em $\ker(D_0f)$: para isto fixamos $\mathcal{B}=\{v_1,\cdots,v_{n-k}\}$ base de $\ker(D_0f)$, $\mathcal{B}'=\{v_{n-k+1},\cdots,v_n\}$ base de $\ker(D_0f)^\perp$ e definimos S linear e tal que $S(e_i)=v_i,1\cdots i\cdots n$, onde e_i denota o i-ésimo vetor da base canônica de \mathbb{R}^n . Observamos que $\ker(D_0(f\circ S))=0\times\mathbb{R}^{n-k}$, e como $f\sim_{\mathcal{C}^r}f\circ S$ não é pérdida de generalide trocar f por $f\circ S$. Assim, suponemos $\ker(D_0f)=0\times\mathbb{R}^{n-k}$.

Da mesma forma, consideramos um isomorfismo linear $\tilde{S}:\mathbb{R}^m\to\mathbb{R}^m$ que envia $\mathrm{Im}(D_0f)$ em $\mathbb{R}^k\times 0\subset\mathbb{R}^m$: temos $\tilde{S}\circ f\sim_{\mathcal{C}^r}f$, e $\mathrm{Im}(D_0(\tilde{S}\circ f))=\mathbb{R}^k\times 0\subset\mathbb{R}^m$. Novamente trocamos f por $\tilde{S}\circ f$.

Podemos escrever $f(x,y)=(f_X(x,y),f_Y(x,y))\in\mathbb{R}^k\times\mathbb{R}^{m-k}$, onde $f_X:\mathbb{R}^n\to\mathbb{R}^k,f_Y:\mathbb{R}^n\to\mathbb{R}^{m-k}$; como $D_0f=(D_0f_X,D_0f_Y)$ tem imagem $\mathbb{R}^k\times 0$ deduzimos que $D_0f_Y\equiv 0$, e como D_0f tem posto k, necessáriamente D_0f_X é sobrejetora. Pela forma local das submersões podeos encontrar um difeomorfismo \mathcal{C}^r de \mathbb{R}^n tal que

$$f_X \circ \phi(x,y) = x,$$

e por tanto $f\circ\phi(x,y)=(x,g(x,y))$ para certa função $g:\mathbb{R}^n\to\mathbb{R}^{m-k}$. Trocando f por $f\circ\phi(x,y)$ assumimos que f é da forma anterior.

Agora observamos que

$$D_p f = \begin{pmatrix} I_{k \times k} & O \\ * & \frac{\partial g}{\partial u}(p) \end{pmatrix}$$

tem posto k. Necessáriamente então $\frac{\partial g}{\partial y}(p)$ é a matrix nula, e g(x,y)=g(x), f(x,y)=(x,g(x)). Considere $\psi: \mathbb{R}^k \times \mathbb{R}^{m-k} \to \mathbb{R}^m$, $\psi(x,z)=(x,z-g(x))$ e observe que ψ é um difeomorfismo (sua inversa é $(x,z) \to (x,z+g(x))$); temos $\psi \circ f(x,y)=\psi(x,g(x))=(x,0)$.