

- 1 Komunikacja sieciowa dziś
- Podstawy konfiguracji

 przełącznika i urządzenia końcowego
- 3 Protokoły i modele
- 4 Warstwa fizyczna
- 5 Systemy liczbowe
- Warstwa łącza danych
- 7 Przełączanie w sieciach Ethernet
- 8 Warstwa sieci ∨
- 9 Odwzorowanie adresów 🔻

🏫 / Budowanie małej sieci / Urządzenia w małej sieci

Urządzenia w małej sieci

17.1.1

 \vee

 \vee

Topologie małych sieci

Większość przedsiębiorstw jest niewielka, dlatego nie jest zaskakujące, że większość sieci biznesowych jest również niewielka.

Mały projekt sieci jest zwykle prosty. Liczba i rodzaj znajdujących się tam urządzeń jest znacznie zmniejszona w porównaniu do większej sieci.

Na przykład, zapoznaj się z przykładową siecią małych przedsiębiorstw przedstawioną na rysunku.

- 1 Komunikacja sieciowa dziś
- Podstawy konfiguracji

 przełącznika i urządzenia końcowego
- 3 Protokoły i modele
- 4 Warstwa fizyczna

 \vee

 \vee

- 5 Systemy liczbowe
- 6 Warstwa łącza danych
- 7 Przełączanie w sieciach Ethernet
- 8 Warstwa sieci 🗸
- 9 Odwzorowanie adresów

Ta mała sieć wymaga routera, przełącznika i bezprzewodowego punktu dostępu do połączenia użytkowników przewodowych i bezprzewodowych, telefonu IP, drukarki i serwera. Małe sieci zazwyczaj mają pojedyncze połączenie WAN zapewniane przez DSL, modem kablowy lub połączenie Ethernet.

Duże sieci wymagają działu IT w celu utrzymania, zabezpieczania i rozwiązywania problemów z urządzeniami sieciowymi oraz ochrony danych organizacyjnych. Zarządzanie małą siecią wymaga w wielu przypadkach takich samych umiejętności jak w przypadku zarządzania większą siecią. Małe sieci są zarządzane przez lokalnego technika informatycznego lub przez zlecanie specjalistom.

17.1.2

Wybór urządzeń do małej sieci

- 1 Komunikacja sieciowa dziś
- Podstawy konfiguracji

 2 przełącznika i urządzenia końcowego
- 3 Protokoły i modele
- 4 Warstwa fizyczna
- 5 Systemy liczbowe
- Warstwa łącza danych
- Przełączanie w sieciach Ethernet
- 8 Warstwa sieci V
- 9 Odwzorowanie adresów V

Podobnie jak duże sieci, małe sieci wymagają planowania i projektowania, aby spełnić wymagania użytkowników. Planowanie zapewnia, że wszystkie wymagania, czynnik finansowy i opcje wdrożenia są wzięte pod uwagę.

Jednym z pierwszych rozważań projektowych jest rodzaj urządzeń pośrednich, które będą używane do obsługi sieci.

Kliknij każdy przycisk, aby uzyskać więcej informacji o czynnikach, które należy wziąć pod uwagę przy wyborze urządzeń sieciowych.

Koszt

Szybkość oraz typ portów/ interfejsów Możliwość rozbudowy Funkcje i usługi systemu operacyjnego

Koszt

 \vee

 \vee

 \vee

 \vee

Cena przełącznika lub routera zależy od jego możliwości i funkcji. Obejmuje to liczbę i typy dostępnych portów oraz szybkość płyty podzespołów. Innymi czynnikami wpływającymi na koszt są możliwości zarządzania siecią, wbudowane technologie bezpieczeństwa i opcjonalne zaawansowane technologie przełączania. Koszty prowadzenia przewodów potrzebnych do podłączenia każdego urządzenia w sieci też muszą zostać uwzględnione. Innym kluczowym elementem wpływającym na względy kosztów jest stopień nadmiarowości uwzględnionej w sieci.

17.1.3

Adresowanie IP dla małej sieci

Podczas wdrażania sieci utwórz schemat adresowania IP i użyj go. Wszystkie hosty w intersieci muszą mieć unikalny adres.

Urządzenia, które będą uwzględnione w schemacie adresowania IP, obejmują:

- 1 Komunikacja sieciowa dziś
- Podstawy konfiguracji przełącznika i urządzenia końcowego
- 3 Protokoły i modele
- 4 Warstwa fizyczna
- 5 Systemy liczbowe
- 6 Warstwa łącza danych
- Przełączanie w sieciach Ethernet
- 8 Warstwa sieci
- 9 Odwzorowanie adresów

- Urządzenia użytkownika końcowego liczba i rodzaj połączenia (tj. przewodowy, bezprzewodowy, zdalny dostęp)
- Serwery i urządzenia peryferyjne (np. drukarki i kamery bezpieczeństwa)
- Urządzenia pośredniczące, w tym przełączniki i punkty dostępu

Zaleca się planowanie, dokumentowanie i utrzymywanie schematu adresowania IP w oparciu o typ urządzenia. Zastosowanie planowanego schematu adresowania IP ułatwia identyfikację typu urządzenia i rozwiązywanie problemów, na przykład z ruchem sieciowym za pomocą analizatora protokołów.

Dla przykładu, należy zapoznać się z topologią małej i średniej wielkości organizacji na rysunku.

- 1 Komunikacja sieciowa dziś
- Podstawy konfiguracji
 2 przełącznika i urządzenia
 końcowego
- 3 Protokoły i modele ∨
- 4 Warstwa fizyczna

 \vee

- 5 Systemy liczbowe
- 6 Warstwa łącza danych V
- 7 Przełączanie w sieciach Ethernet
- 8 Warstwa sieci 🗸
- 9 Odwzorowanie adresów V

Organizacja wymaga trzech sieci LAN użytkowników (tj. 192.168.1.0/24, 192.168.2.0/24 i 192.168.3.0/24). Organizacja podjęła decyzję o wdrożeniu spójnego schematu adresowania IP dla każdej sieci LAN 192.168.x.0/24 przy użyciu następującego planu:

Typ urządzenia	Przypisywalny zakres adresów IP	W formie skóconej
Brama domyślna (router)	192.168.x. 1 - 192.168.x. 2	192.168.x. 0/30
Przełączniki (maks. 2)	192.168.x. 5 - 192.168.x. 6	192.168.x. 4/30
Punkty dostępu (maks. 6)	192.168.x. 9 - 192.168.x. 14	192.168.x. 8/29
Serwery (maks. 6)	192.168.x. 17 - 192.168.x. 22	192.168.x. 16/29
Drukarki (maks. 6)	192.168.x. 25 - 192.168.x. 30	192.168.x. 24/29
Telefony IP (maks. 6)	192.168.x. 33 - 192.168.x. 38	192.168.x. 32/29
Urządzenia przewodowe (maks. 62)	192.168.x. 65 - 192.168.x. 126	192.168.x. 64/26
Urządzenia bezprzewodowe (maks. 62)	192.168.x. 193 - 192.168.x. 65 536 (minus 2 = 65 534)	192.168.x. 192/26

Na rysunku przedstawiono przykład urządzeń sieciowych 192.168.2.0/24 z przypisanymi adresami IP przy użyciu wstępnie zdefiniowanego schematu adresowania IP.

- 1 Komunikacja sieciowa dziś
- Podstawy konfiguracji

 2 przełącznika i urządzenia końcowego
- 3 Protokoły i modele
- 4 Warstwa fizyczna
- 5 Systemy liczbowe
- 6 Warstwa łącza danych 🗸
- 7 Przełączanie w sieciach Ethernet
- 8 Warstwa sieci V
- 9 Odwzorowanie adresów

Na przykład adres IP bramy domyślnej to 192.168.2.1/24, przełącznik to 192.168.2.5/24, serwer to 192.168.2.17/24 itp.

Należy zauważyć, że przypisane zakresy adresów IP zostały celowo przydzielone na granicach podsieci, aby uprościć podsumowanie typu grupy. Na przykład załóżmy, że do sieci dodano inny przełącznik z adresem IP 192.168.2.6. Aby zidentyfikować wszystkie przełączniki w polityce sieciowej, administrator może określić sumaryczny adres sieciowy 192.168.x.4/30.

17.1.4

 \vee

 \vee

 \vee

Nadmiarowość w małych sieciach

Kolejnym ważnym elementem projektowania sieci jest niezawodność. Nawet małe firmy często opierają się w dużym stopniu na

1 Komunikacja sieciowa dziś

Podstawy konfiguracji Przełącznika i urządzenia końcowego

3 Protokoły i modele

4 Warstwa fizyczna

5 Systemy liczbowe

Warstwa łącza danych

Przełączanie w sieciach
Ethernet

3 Warstwa sieci ∨

9 Odwzorowanie adresów

sieci w prowadzeniu swojej działalności. Awaria sieci może być bardzo kosztowna.

W celu utrzymania wysokiego stopnia niezawodności sieci wymagane jest *zwielokrotnienie* w jego projekcie. Nadmiarowość pozwala wyeliminować pojedyncze punkty awarii.

Istnieje wiele sposobów, aby osiągnąć zwielokrotnienie w sieci. Można ja osiągnąć przez zainstalowanie zapasowych urządzeń, ale może być również osiągnięta przez dostarczenie dodatkowych łączy w krytycznych obszarach, jak to pokazano na rysunku.

- 1 Komunikacja sieciowa dziś
- Podstawy konfiguracji
 przełącznika i urządzenia końcowego
- 3 Protokoły i modele
- 4 Warstwa fizyczna
- 5 Systemy liczbowe
- 6 Warstwa łącza danych
- 7 Przełączanie w sieciach Ethernet
- 8 Warstwa sieci 🗸
- 9 Odwzorowanie adresów

Małe sieci zapewniają zazwyczaj pojedynczy punkt wyjścia do Internetu za pośrednictwem jednej lub kilku bram domyślnych. Jeśli router zawiedzie, cała sieć traci połączenie z Internetem. Z tego powodu może być wskazane, aby mała firma płaciła za dostęp od drugiego usługodawcy jako łącze zapasowe.

Podstawowa konfiguracja

17.1.5

Zarządzanie ruchem

Wprowadzenie do sieci

1 Komunikacja sieciowa dziś

Podstawy konfiguracji przełącznika i urządzenia końcowego

3 Protokoły i modele

Warstwa fizyczna

5 Systemy liczbowe

Warstwa łącza danych

Przełączanie w sieciach
Ethernet

B Warstwa sieci ∨

Odwzorowanie adresów

Celem dobrego projektowania sieci, nawet małej, jest zwiększenie produktywności pracowników i zminimalizowanie przestojów sieci. Administrator sieci powinien brać pod uwagę różne rodzaje ruchu i mechanizmy ich obsługi w projektowanej sieci.

Routery i przełączniki w małej sieci powinny być skonfigurowane do obsługi ruchu w czasie rzeczywistym, takiego jak głos i wideo, w odpowiedni sposób w stosunku do innego ruchu danych. W rzeczywistości dobry projekt sieci wdroży jakość usług (QoS), aby ostrożnie klasyfikować ruch zgodnie z priorytetem, jak pokazano na rysunku.

- 1 Komunikacja sieciowa dziś
- Podstawy konfiguracji

 przełącznika i urządzenia
 końcowego
- 3 Protokoły i modele
- 4 Warstwa fizyczna
- 5 Systemy liczbowe
- 6 Warstwa łącza danych
- Przełączanie w sieciach Ethernet
- B Warstwa sieci ∨
- 9 Odwzorowanie adresów

17.1.6

Sprawdź, czy zrozumiałeś - Urządzenia w małej sieci

Sprawdź swoją wiedzę na temat urządzeń w małej sieci, wybierając NAJLEPSZĄ odpowiedź na poniższe pytania.

1	Komunikacja sieciowa dziś	\
	Podstawy konfiguracji	

(i)

dostępność

integralność

możliwość rozbudowy

- przełącznika i urządzenia końcowego
- 3 Protokoły i modele
- 4 Warstwa fizyczna 🔍
- 5 Systemy liczbowe V
- Warstwa łącza danych
- 7 Przełączanie w sieciach Ethernet
- 8 Warstwa sieci
- 9 Odwzorowanie adresów V

Które stwierdzenie poprawnie odnosi się do małej sieci?		
Małe sieci są skomplikowane.		
Małe sieci wymagają działu IT do utrzymania.		
Większość przedsiębiorstw to małe firmy.		
Który czynnik należy wziąć pod uwagę przy wyborze urządzeń sieciowych?		
kolor		
połączenie konsoli		
koszt		
elastyczność		
3. Co jest konieczne do zaplanowania i użycia podczas wdrażania sieci?		
Nazwy urządzeń		
Schemat adresowania IP		
Schemat adresacji MAC		
Lokalizacja drukarki		
Co jest wymagane, aby utrzymać wysoki stopień niezawodności i wyeliminować pojedyncze punkty awarii?		

Wprowadzenie do sieci Komunikacja sieciowa dziś Podstawy konfiguracji przełącznika i urządzenia \vee końcowego Protokoły i modele \vee Warstwa fizyczna Systemy liczbowe Warstwa łącza danych 6 \vee Przełączanie w sieciach Ethernet Warstwa sieci Odwzorowanie adresów

