

Bedienungsanleitung

KSW-7B

VNC / FeldBus

*** SICHERHEITSHINWEISE ***

Das zugehörige Gerät/System darf nur in Verbindung mit dieser Dokumentation eingerichtet und betrieben werden. Inbetriebsetzung und Betrieb eines Gerätes/Systems dürfen nur von **qualifiziertem Personal** vorgenommen werden. Qualifiziertes Personal im Sinne der sicherheitstechnischen Hinweise dieser Dokumentation sind Personen, die die Berechtigung haben, Geräte, Systeme und Stromkreise gemäß den Standards der Sicherheitstechnik in Betrieb zu nehmen, zu erden und zu kennzeichnen.

Inhaltsverzeichnis

1 Allgemeine Beschreibung	6
1.1 Symbole	6
1.2 Hardware- Aufbau Basisgerät KSW-7B	6
1.3 Optionales Operatorpanel TP-7B	8
2 . Betriebsart / Einzelwaage - Varianten	10
2.1 Einfache Istgewichtsmessung eines Behälters (Statische Waage)	11
2.2 Chargierung in Gewichtsbehälter (Charge positiv)	12
2.3 Chargierung aus gewogenem Vorratsbehälter (Charge negativ)	13
2.4 Mehrere Einzelwaagen in einer KSW-7B	14
3 Betriebsart – Plate Scale	15
4 VNC Verbindung	17
4.1 Netzwerkeinstellung am PC	17
4.2 VNC Starten	18
5 Allgemeine Bedienung der KSW-7B	19
5.1 Navigation der KSW-7B	19
5.2 Übersicht	20
6 Parametrierung	21
6.1 Px1000 Waagendaten - Parameter	21
6.2 Px1500 Zusatzantriebe XD0 – XD3	22
6.3 Px2000 Grenzen	23
6.4 Px4000 Sonderfunktionen	24
6.5 Px5000 Analog E/A	25
7 FELDBUS Kommunikation	26
7.1 FB Status	27
7.2 ProfibusDP - Allgemein	28
7.3 ProfibusDP Datenübertragungsrate / Steckerbelegung	28
7.4 ProfibusDP - Stationsadresse	28
7.5 ProfiNet – IP-Adresse	29
7.6 ProfibusDP - LED Statusmeldungen	29
7.7 Datenaufbau / Konsistenz	29
7.8 ProfibusDP - GSD-Datei	30
7.9 ProfiNet - GSDML-Datei	30
7.10 DeviceNet - EDS-Datei	30
7.11 EthernetIP - EDS-Datei	30
8 Allgemeiner Datenaufbau	31
8.1 Sollwert - und Prozessdatenfelder	31
8.2 Empfohlene Datenstruktur (nur für Standardanwendungen)	32
8.3 Steuer und Statusbits (Byte Reihenfolge / Endianness)	33

9 PARAMETERBESCHREIBUNG	34
9.1 Allgemeiner Parameter bis 9xxxx	34
9.2 Ändern der IP-Adresse	35
9.3 Datum und Uhrzeit einstellen	36
9.4 Parameterliste erstellen / USB oder FTP	37
9.5 Allgemeine Feldbusparameter 97xxx	38
9.6 Sollwerte und Kommandos per Feldbus (P972x)	38
9.7 Istwerte und Steuer/Statusbits per Feldbus (P974xx)	40
10 Kommunikation mit S7 – Steuerungen (ProfiBus / ProfiNetIO)	44

Revisionsliste

Revision	Datum	Autor	Kapitel	Beschreibung
FB_KSW7_V01_00_de	17.12.2018	Krichbaum		Erstausgabe
FB_KSW7_V01_01_de	7.01.2018	Krichbaum		Tabelle korrigiert Kommunikation mit S7 hinzugefügt
FB_KSW7_V01_01de	23.1.2019	Krichbaum		Hinzufügen von allgemeiner Bedienung der KSW-7B Überarbeitung von Kapitel 6 Parameterbeschreibung , IP Setzen, Parameterliste
FB_KSW7_V01_02de	13.2.2019	Krichbaum		Al Filter hinzugefügt
FB_KSW7_V01_10de	08.04.2020	Ratzinger	komplett	Erweiterung der allgemeinen Funktionsbeschreibung
FB_KSW7_V01_11de	29.07.2021	Ratzinger	komplett	Plattenwaage eingefügt

Softwarehinweis

Diese Beschreibung basiert auf folgende Softwareversionen

V1.11

Im Zuge des technischen Fortschrittes können bei der Software Veränderungen durchgeführt werden. Bei nachfolgenden Softwareversionen sind daher Abweichungen gegenüber dieser Beschreibung möglich.

Diese deutsche Ausgabe gilt als

ORIGINA HANDBUCH

Alle anderen Sprachen gelten als Übersetzungen

KUKLA WAAGENFABRIK GmbH & Co KG Stefan-Fadingerstrasse 1-11 A-4840 VOECKLABRUCK

Tel. +43 (0)7672-26666-0

Homepage: www.kukla.co.at email: office@kukla.co.at

1 Allgemeine Beschreibung

Dieses Handbuch beschreibt das KSW-7B System allgemein sowie im Besonderen die Kommunikationsmöglichkeiten per Feldbussysteme des KSW-7B Waagensystems.

1.1Symbole

Dieses Handbuch verwendet folgende Symbolik als besondere Hinweise:

WICHTIGER HINWEIS!

Kennzeichnet einen wichtigen Hinweis.

WARNUNG!

Kennzeichnet eine allgemeine Warnung.

GEFAHR!

bedeutet, dass Tod oder schwere Körperverletzung eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden

SPS PLC Ist eine dem Waagensystem übergeordnete zentrale Steuerung (SPS)

1.2 Hardware- Aufbau Basisgerät KSW-7B

Grundsätzlich erlaubt die KSW-7 folgende Anwendung, welche im Parameter P93000 festgelegt wird:

00: Einzelwaage	In dieser Betriebsart können eine oder mehrere Einzelwagen mit einer einzelnen KSW-7B realisiert werden.
01: Plattenwaage	Diese Betriebsart erlaubt eine Messung des Gewichts einzelner Gipskartonplatten.

Jede Waage hat grundsätzlich ihren eigenen Eingang oder Eingänge für den Kraftaufnehmer (Gewichtssignal) sowie eine digitale Eingangs- und Ausgangskarte.

Hier ist ein üblicher Minimalaufbau mit Zusatzkarten dargestellt:

KSW-7B ist das eigentliche CPU-Modul PM2 ist das Spannungsversorgungsmodul (24VDC)

Zur 1. Waage gehören:

WC00 ist der mV-Gewichtssignal-Eingang vom Kraftaufnehmer.

DI00 ist eine digitale Eingangskarte für Steuerkommandos

DI01 ist eine optionale Eingangskarte,hier können optional nach Bedarf eine oder mehrere analoge und digitale Karten gesteckt werden (DIxx,Doxx,AIxx,AOxx)

Eine KSW-7B kann derzeit bis zu 5 Waagen je nach Ausbaustufe beinhalten. Ein weiterer Ausbau auf 8 Waagen ist mittelfristig geplant. Dazu werden einfach die Karten WC10,DI10,DI11,... usw. rechts erweitert. Die KSW-7B kann so bis zu etwa 70cm breit werden.

Für die Details in Bezug auf ATEX im Besonderen sowie alle anderen technischen Details sind die Vorgaben des originalen Betriebshandbuchs des Herstellers genauestens zu befolgen!

Download unter: https://download.br-automation.com/ (Product X20 – CP0482 + Komponenten)

1.3 Optionales Operatorpanel TP-7B

Jede KSW-7B kann ein optionales Operatorpanel ansteuern.

Die Kommunikation erfolgt dabei über das VNC-Protokoll. Das bedeutet, dass das Terminal eigentlich nur ein VNC_Client ist.

Aus diesem Grund kann die Display-Anzeige auch auf jedem anderen verfügbaren Gerät, welches eine VNC-Client Kommunikation unterstützt dargestellt werden.

Dies gilt auch für PC's und Notebook's mit einem VNC-Client

Falls als VNC-Client ein Mobiltelefon oder Tablet ohne Ethernet RJ45 Stecker verwendet, muss eine WLAN Drahtlosverbindung eingerichtet werden.

Nennspannung: 24VDC 8 bis 32 VDC erlaubt / verpolungssicher

Max Leistungsaufnahme: 9,34 W

Schutzarten: EN60529 IP65 frontseitig, IP20 rückseitig – UL50 Front: Type 4X indoor use only

Temperatur: -20 bis 60°C

Abmessungen: B: 197mm / H: 140mm / T: 47,8mm 0,6kg

Zulassungen: CE, Zone 22 II 3D Ex tc IIIC T70°C Dc, UL cULus E115267

Achtung:

Gegeben falls muss das TP-7B per integrierte Serviceseite konfiguriert werden. Diese Serviceseite kann auf unterschiedliche Weise aufgerufen werden.

Die Serviceseite kann durch Drücken des Hand-Buttons vorne an der Frontseite aufgerufen werden, wenn dieser wie üblich konfiguriert und nicht gesperrt ist.

Die Serviceseite kann auch durch gleichzeitiges Betätigen der rechten und linken Maustaste für mind. 2 Sekunden, falls eine USBMaus angeschlossen ist

Es muss zumindest das "Network" und "VNC" Eingabeelement parametriert werden.

Die Parametrierung muss per "Save&Exit" abgeschlossen werden.

Maße des Einbauausschnitts für diese Power Panel Variante: 186,8 ±1 mm x 129,8 ±1 mm

Für die Details in Bezug auf ATEX im Besonderen sowie alle anderen technischen Details sind die Vorgaben des originalen Betriebshandbuchs des Herstellers genauestens zu befolgen!

Download unter: https://download.br-automation.com/ (HMI – PowerPanels T30-Series)

2. Betriebsart / Einzelwaage - Varianten

Jede Waage kann derzeit prinzipiell in 3 verschieden Betriebsarten arbeiten.

Diese sind:

- 1. Einfache Gewichtsmessung (statische waage)
- 2. Chargierung in Gewichtsbehälter (Charge positiv)
- 3. Chargierung aus gewogenem Vorratsbehälter (Charge negativ)
- 4. Stückgutwaage (Diese Option ist für die nahe Zukunft geplant)

Die erste Waage arbeitet immer mit der Gruppennummer 00, die nächsten Waagen haben dann die Gruppennummern 10,20,30..... usw.

Diese Gruppennummer ist sehr wichtig in der visuellen Darstellung sowie für die Parametrierung der verschiedenen Waagen.

Die dafür notwendigen Messkanäle und I/O's können sowohl zentral direkt neben der CPU gesteckt werden als auch über mehrere hundert Meter verteilt aufgebaut werden.

In diesem Fall müssen zusätzliche Bus-Transmitter / Receiver Module erworben werden.

Die Länge der einzelnen Kabelsegmente zwischen den verschiedenen Wagen darf 100 Meter nicht übersteigen.

Eine KSW-7B -CPU kann gleichzeitig bis zu 5 (später 8) Einzelwaagen auswerten, sofern die dafür notwendige Hardware verbaut ist.

2.1 Einfache Istgewichtsmessung eines Behälters (Statische Waage)

In dieser Betriebsart wird einfach das aktuelle Gewicht in einem Behälter oder Silo angezeigt.

Die Gewichtsanzeige ist in weiten Bereichen von skalierbar (g,kg,t,%, usw.)

Eine Tariermöglichkeit per Taste oder externe IO's ist enthalten.

Grenzwerte können individuell geschaltet werden

Das Ist-Gewicht kann über analoge IO's oder Feldbus an übergeordnete Systeme weitergegeben werden.

2.2 Chargierung in Gewichtsbehälter (Charge positiv)

Diese Betriebsart kommt zur Dosierung von Chargen zum Einsatz, wenn der Wiegebehälter am Chargenbeginn immer leer ist. Dies ist die klassische Art einer Chargenabfüllung.

- Der komplette Chargenablauf wird von der KSW-7B gesteuert.
- Ein Chargensollwert muss entweder analog oder per Feldbus vorgegeben werden.
- Es ist eine lokale (PANel) und eine ferngesteuerte (REMote) Betriebsart möglich.
- Der Prozess kann über Steuersignale (Bildschirm-Taste, Tasten, digitale Eingänge oder Feldbuskommandobits) gestartet oder gestoppt werden.
- Es werden diverse Steuersignale (Grobstrom, Feinstrom, viele Grenzwerte, usw. generiert welche auch wieder über physikalische Ausgänge oder Feldbus ausgegeben werden.
- Die Grob- und Feinstromsteuerung kann über 2 digitale Signale oder alternativ über ein analoges Signal zur Drehzahlsteuerung eines FU's realisiert werden.
- Es werden 2 summierende Zähler (A= nicht rückstellbar, B= rückstellbar) zur Verfügung gestellt
- Der komplette Prozess wird im Übersichtsbild dargestellt und kann wenn in der Parametrierung erlaubt auch darüber gesteuert werden.

2.3 Chargierung aus gewogenem Vorratsbehälter (Charge negativ)

Diese Betriebsart kommt zur Dosierung von Chargen zum Einsatz, wenn der Vorratsbehälter gewogen wird und die Charge über ein Austragsorgan (Schnecke, Zellenradschleuse) abgegeben wird.

- Der komplette Chargenablauf wird von der KSW-7B gesteuert.
- Ein Chargensollwert muss entweder analog oder per Feldbus vorgegeben werden.
- Es ist eine lokale (PANel) und eine ferngesteuerte (REMote) Betriebsart möglich.
- Der Prozess kann über Steuersignale (Bildschirm-Tasten, digitale Eingänge oder Feldbuskommandobits) gestartet oder gestoppt werden.
- Es werden diverse Steuersignale (Grobstrom, Feinstrom, viele Grenzwerte, usw. generiert welche auch wieder über physikalische Ausgänge oder Feldbus ausgegeben werden.
- Es werden 2 summierende Zähler (A= nicht rückstellbar, B= rückstellbar) zur Verfügung gestellt
- Der komplette Prozess wird im Übersichtsbild dargestellt und kann wenn in der Parametrierung erlaubt auch darüber gesteuert werden.

.

2.4 Mehrere Einzelwaagen in einer KSW-7B

Diese Bauformen dürfen innerhalb einer KSW-7B auch gemischt werden. Es ist möglich, dass die Waage 00 in der Betriebsart "Statisch" arbeitet und gleichzeitig die Waage 01 als summierende Chargenwaage "Charge positiv" sowie die dritte Waage 02 als subtrahierende Chargenwaage arbeitet.

Statisch	Cha	rge pos.	Cha	rge neg.	Gesamtübersicht
PAN WC00: 0.00% WC00: 01	BSV:	0g 0.00% auf Charge start	PAN SBT: BT: I: BSV:	0g 0g 0g 0.00% üllen ein	WC 00 WC 10 WC 20 WC 30 WC 40 WC 50
					WC 60 WC 70 FB Status

3 Betriebsart – Plate Scale

P93116 Filterdeaktivierung

P93116 Filterdeaktivierung

P93120 Wiegezeit

In der Anwendung Plattenwaage die im Parameter P93000 bestimmt wir können mehrere Kraftaufnehmer zu einer Gesamtwaage zusammengeschaltet werden.

Diese Anwendung ist primär zur Messung des Plattengewichts in der Gipsindustrie gedacht.

Es sind aber auch Anwendungen im Bereich von Holzfaserplatten oder Dämmstoffen denkbar.

1030		
P93000 Waagenart:	01: Plattenwaage ▼	Gesamtübersicht
P93100 Anzahl Messpunkte:	3	WC 00
P93101 Anzahl WC pro Messpunkt:	2	WC 10
P93105 Messstrecke:	2000 mm	WC 20
P93106 Plattenbreite:	01: Bus 1 ABS ▼	WC 30
P93110 Start Wiegung:	00: mmer aktiv ▼	WC 40
rest to start wileguing.	ou. miner aktiv	WC 50
P93115 Beruhigungszeit:		WC 60
	0.5 s	WC 70
P93116 Filterdeaktivierung:	00: Alle Filter aktiv 💌	ED Co
P93120 Wiegezeit:	0.6 s	FB Status
P91xxx P93xx Waagendaten Waagenan	P95xxx P96xxx P97xxx t Analog E/A Digitale E/A Feldbus	PA
P93000 Waagenart P93100 Anzahl Messpunkte P93101 Anzahl WC pro Messpunkte	Bestimmt mit der gezeigten Einstellung die grundsätzliche An Plattenwaage Hier wird die Anzahl der Messpunkte in Förderrichtung einge Dieser Parameter bestimmt die Anzahl der Messpunkte quer	geben.
P93105 Messstrecke	Bestimmt die Länge des Messbereichs in Förderrichtung in M	lillimeter
P93106 Plattenbreite	Quelle der Information über die Arbeitsbreite des Systems	
P93110 StartWiegung	es kann ausgewählt werden ob die Messung immer aktiv ist, eines Grenzwertes oder wenn ein Startbit aktiviert wird.	nur beim Erreichen
P93115 Beruhigungszeit	Die eigentliche Messung beginnt erst nach dem Ablauf der hi Beruhigungszeit	er eingestellten

deaktiviert werden.

deaktiviert werden.

den Anfang der Messstrecke erreicht.

Üblicherweise werden alle Gewichts Signale von der Elektronik Hardware und

Üblicherweise werden alle Gewichts Signale von der Elektronik Hardware und softwaremäßig gefiltert, mithilfe dieses Parameters können einzelne Filter

Dieser Parameter bestimmt die Dauer der eigentlichen Messung. Er ist so zu wählen das keinesfalls die nächste Platte vor Abschluss der gesamten Messung

softwaremäßig gefiltert, mithilfe dieses Parameters können einzelne Filter

Musterbeispiel einer Darstellung der Prozesswerte

(intern / Bild mit realen anzeigewerten tauschen)

4 VNC Verbindung

Falls das das KSW-7B Basisgerät mit keinem eigenen Operatorpanel verbunden ist muss der virtuelle Bildschirm per VNC Client (z.B. ein PC mit passendem VNC-Client) dargestellt werden. Dieses Gerät dient dann als virtueller Bildschirm. Eine Nachrüstung mit einem realen Terminal kann jederzeit auch später durchgeführt werden da sich die eigentliche Datenkommunikation zwischen Terminal Panel und PC vollkommen ident ist.

4.1 Netzwerkeinstellung am PC

Die IP Adresse unter Internetprotokoll Version 4(TCP/IPv4) muss wie folgt eingestellt werden:

IP Adresse: xxx.xxx.xxx (IP Adresse darf nicht wie KSW-7B sein!!)

Subnetzmaske: xxx.xxx.xxx Standardgateway: wird nicht benötigt DNS-Server: wird nicht benötigt

4.2 VNC Starten

Nach Installation von VNC Viewer muss eine neue Verbindung erstellt werden.

Unter VNC Server muss die IP Adresse 10.0.1.40 eingegeben werden. Der Name ist frei wählbar.

Es darf nur die untere Schnittstelle verwendet werden. Das obere Ethernet- Interface ist für zukünftige Verwendungen reserviert

Die Visualisierung der KSW-7B wird mit einem Doppelklick auf die erstellte Verbindung geöffnet.

5 Allgemeine Bedienung der KSW-7B

5.1 Navigation der KSW-7B

Auf der rechten Seite des Übersichtsbildes befindet sich die Navigationsleiste. Diese bleibt auf allen Seiten unverändert. Über der Navigationsleiste wird der Name der aktuellen Seite in Klartext angezeigt. Die Taste der aktuellen Seite wird in der Navigationsleiste immer gesperrt, dies erkannt man an der Farbänderung die Texte.

- 1 Taste der aktuellen Seite. Unbenützte Datenpunkte sind weiß eingefärbt
- 2 Navigationstaste für Feldbusübersicht
- 3 Navigationstasten in den Parametermodus

5.2 Übersicht

Das Übersichtsbild kann je nach Parametrierung des Systems sehr unterschiedlich aussehen. Grundsätzlich unterscheidet das System ob mehrere Waagen in einer KSW-7B realisiert wird oder ob eine einzelne Waage mit mehreren Messpunkten parametriert wurde.

	Batch pes	Batch neg.	Overview
PAN WC00: 0.40% AVC00: 0.00%	PAN SBT: 0g BT: BSV: 0.00%	PAN SBT: 0g BT: 0g t: 0.00% BSV: 0.00%	WC 10 WC 10
	00: Preparing batch	05: Filling on	Witten
			WC70
			FB Status

Beispiel 1:

KSW-7B mit 3 Waagen, jede für sich mit unterschiedlicher Funktionalität

Beispiel 2:

KSW-7B mit einer Waage welche aus 3-6 Messpunkten besteht.

6 Parametrierung

Die Parametrierung erfolgt über die Taste "PA" rechts unten

Parameter sind folgenden Waagen zugeordnet

P ₀ 1xxx- ₀ 9xxx	WC00	(erste Waage)
P11000-19999	WC10	(zweite Waage)
P21000-29999	WC20	(dritte Waage)
P31000-39999	WC <mark>30</mark>	(vierte Waage)
P41000-49999	WC40	(fünfte Waage)

usw.

Die Parametergruppe P9xxxx ist für allgemeine Waagen-übergreifende Parameter vorgesehen.

6.1 Px1000 Waagendaten - Parameter

Hier werden die generellen Einstellungen für eine Waage getroffen.

Beispiel der Programmierung einer statischen Gewichtsmessung:

Px1010 Waagenname	Hier ist die Bezeichung der Waage als freier Text einzugeben
Px1020 Waagentyp	Dieser Parameter bestimmt die Funktion der Waage
Px1300 WC Einheit	Hier kann die Einheit der Anzeige (g,kg,t,%) definiert werden.
Px1305 Nenngewicht	Definiert den Nennbereich der Waage (100%).
Px1310 Zählereinheit	Legt fest in welcher Zähleinheit der Controller intern summiert

6.2 Px1500 Zusatzantriebe XD0 - XD3

Der Controller ermöglicht die Steuerung vom dies zu 4 zugeordneten Antriebe in verschiedenen Betriebsarten. Je nach Auswahl in der Gruppe x1500 und der zugeordneten x16xx Parameter weiss der Controller wie der entsprechende Antrieb zu Steuern ist und wann dieser ein bzw. ausgeschaltet werden muss.

Px1500 XD0-	Es wird definiert ob ein Hauptantrieb XD0: angeschlossen ist und dessen
Px1503 XD3	Funktionalität wird bestimmt. (z.B. Schieber)

Px16y0 XDy REM Quelle	Bestimmt welches Signal primär den Antrieb in der Betriebsart REMote aktiviert
Px16y2 XDy REM Option	Bestimmt ob und welches Signal zusätzlich notwendig ist um den Antrieb in der
	entsprechenden Betriebsart zu aktivieren (log. UND – Verknüpfung)
Px16y3 XDy REM aktiv	Manchmal ist es notwendig den eigentlichen Antrieb zeitlich etwas verzögert anlaufen zu lassen. Dieser Parameter verzögert den Anlauf entsprechend der eingestellten Zeit.
Px16y4 XDy REM delaytime	Dieser Parameter bietet die Möglichkeit ein Signal künstlich zu verlängern. Das Signal bleibt für die eingestellte Zeit länger aktiv auch wenn die Eigentliche Aktivierungsquelle bereits inaktiv wurde.

in der Parametergruppe Px16y5 bis Px16y9 ist der gesamte Block noch einmal für die Betriebsart PANel abgebildet. Somit bietet Der Controller die Möglichkeit den Antrieb in jeder Betriebsart entsprechend optimal anzupassen.

6.3 Px2000 Grenzen

Hier werden Zeiten und Grenzen eingestellt.

Px2000 Max Max	Schwellwert für MaxMax Status einer Charge in %
Px2001 Max	Schwellwert für Max Status einer Charge in %
Px2002 Mix	Schwellwert für Min Status einer Charge in %
Px2003 Min Min	Schwellwert für MinMin Status einer Charge in %
Px2004 Leer	Schwellwert für Leer Status des Behälters in %
Px2005 Füllen Ein	Schwellwert für Nachfüllung bei subtrahierenden Waagen
Px2006 Füllen Aus	Schwellwert für Ende der Nachfüllung bei subtrahierenden Waagen
Px2007 Beruhigungszeit	Wartezeit bevor eine neue Charge nach der Nachfüllung bei
	subtrahierenden Waagen gestartet werden kann
Px2010 Tarazeit	Bestimmt die Dauer der Tarierung der Waage
Px2011 Tarafehlergrenze	Legt fest wie weit die aktuelle tara vom urspünglich festgelegten Nullpunkt
	abweichen darf.
Px2015 Max Chargenabweichung	Definiert wann eine Charge als fehlerhaft erkannt wird.

6.4 Px4000 Sonderfunktionen

Hier werden spezielle Möglichkeiten für besondere Anwendungen parametriert.

Px4510 Chargensollwert	Bestimmt die Quelle des Sollwerts für eine Charge
Px4515 Feinstrommenge	Definiert bei welcher Restmenge der Materialfluss reduziert wird, um ein genaues Erreichen des Chargengewichts zu gewährleisten.
Px4521 Vorabschaltmenge Min	Bestimmt um wieviel der Feinstrom schon vor Erreichen des Sollgewichtes gestoppt wird. Damit kann ein "nachtropfen" ausgeglichen werden soweit es weitgehen bei jeder Charge gleich ist.
Px4525 Rampe Min	Bestimmt bei analogen Feinstromdosiergeräten auf welchen Prozentwert die Dosierung gegen Chargenende heruntergeregelt wird.
Px4535 Korrekturfaktor	Erlaubt eine dynamische automatische Anpassung der Vorabschaltmenge um einen bestimmten Prozentwert. Dieser Wert sollte maximal auf 30% eingestellt werden.
Px4540 Beruhigungszeit	Bestimmt die Zeit zwischen Erreichen des Chargengewichtes und deren tatsächlichen endgültigen Abrechnung.

6.5 Px5000 Analog E/A

In dieser Gruppe erfolgt die Einstellung des eigentlichen Messkanals.

Zur Verbesserung der Einstellmöglichkeit wird das Signal permanent dynamisch dargestellt.

Px5002 WC Nennkennwert	Hier wird die Konstante des Kraftaufnehmers eingegeben (z.B. 2mV/V)
Px5004 WC Offset	Definiert den mV-Wert bei dem die Waage grundsätzlich 0 erkennt
Px5006 WC Span	Definiert wie viele mV dem Nennbereich (0 und 100%) entsprechen
Px5007 Hardwarefilter	Legt fest wie das Signal auf der Kraftaufnehmer-Messkarte selbst gedämpft wird
Px5008 WC AI Filter	Legt fest wie das Signal per Software gedämpft wird

Über die Tasten "Set offset" und "Set span" können der Nullpunkt und der Bereich automatisch eingemessen werden.

Die dargestellten mV-Werte können im Mikrovoltbereich von Nachmessungen mit Multimetern abweichen.

7 FELDBUS Kommunikation

Optional kann eine KSW-7B mit verschieden Feldbusmodulen ausgestattet werden.

EthernetIP ist bereits verfügbar, DeviceNet wäre auf Anfrage möglich.

7.1 FB Status

Es besteht die Möglichkeit, den Datentransfer der Feldbusschnittstelle unter "FB- Status" zu kontrollieren.

- 1 Von der KSW-7B gesendeten Daten. Die Parametrierung der Datenfelder wird unter Punkt 7.4 beschrieben
- 2 Daten die zur KSW-7B gesendet werden. Die Parametrierung der Datenfelder wird unter Punkt 7.3 beschrieben

7.2 ProfibusDP - Allgemein

Die Waagencomputer der Serie KSW-7B können mit einem ProfiBus DP Interface ausgestattet werden. Dieses Interface muss bei der Bestellung angegeben werden. Ein nachträglicher Einbau ist in Absprache mit dem Hersteller ebenfalls möglich. Die Schnittstelle wird vom Hersteller KUKLA lizenziert und entspricht der ProfiBus Norm 50170. Optional ist neben vielen anderen Kommunikationslösungen auch eine DP V1 oder eine ProfiNet-Schnittstelle realisierbar.

7.3 ProfibusDP Datenübertragungsrate / Steckerbelegung

Das Interface unterstützt die gängigen genormten Datenübertragungsraten bis zu 12 MBit. Bei höheren Übertragungsgeschwindigkeiten müssen unbedingt dafür zugelassene Stecker verwendet werden.

Es wird die Verwendung von genormten ProfiBus DP Steckern empfohlen. Die Kabelenden müssen mit Abschlusswiderständen terminiert werden.

7.4 ProfibusDP - Stationsadresse

Die Stationsadresse wird in der Parametergruppe P97xxx direkt eingestellt.

Relevant ist der Parameter P97010. Es dürfen Adressen zwischen 3 und 125 eingestellt werden.

Der Parrameter P97020 Swap erlaubt eine Änderung der Adresse wo das niederwertigste Byte gespeichert wird. (siehe Enidianess)

Falls die Zahl 126 eingestellt ist werden alle zugehörigen Feldbusparameter der Gruppe P97xxx inaktiv und können nicht verwendet werden.

NACH DER ÄNDERUNG DER PROFIBUS-DP ADRESSE MUSS DER WAAGENCOMPUTER CA. 5 SEKUNDEN VON DER SPANNUNG GENOMMEN WERDEN, DAMIT DIE NEUE ADRESSE AUCH ÜBERNOMMEN WIRD!

7.5 ProfiNet - IP-Adresse

Die Stationsadresse muss über ein geeignetes Setup-Tool vom Master eingestellt werden.

7.6 ProfibusDP - LED Statusmeldungen

7.7 Datenaufbau / Konsistenz

Details zum Datenaufbau sind dem allgemeinen Teil im Bereich "Allgemeiner Datenaufbau" zu entnehmen.

7.8 ProfibusDP - GSD-Datei

Die notwendigen Gerätestammdaten sind auf der Homepage <u>www.kukla.co.at</u> im Downloadbereich hinterlegt oder können direkt vom Hersteller bezogen werden. Andere Datenformate als in dieser Dokumentation beschrieben sind nicht möglich.

7.9 ProfiNet - GSDML-Datei

Die notwendigen Gerätestammdaten sind auf der Homepage <u>www.kukla.co.at</u> im Downloadbereich hinterlegt oder können direkt vom Hersteller bezogen werden. Andere Datenformate als in dieser Dokumentation beschrieben sind nicht möglich.

7.10 DeviceNet - EDS-Datei

Die notwendigen Gerätestammdaten befinden sich in Vorbereitung.

7.11 EthernetIP - EDS-Datei

Die notwendigen Gerätestammdaten müssen manuell zusammengesetzt werden. Eine vorgefertigte EDS ist derzeit nicht vorgesehen. Es gilt aber trotzdem derselbe Datenaufbau wie in den anderen Bussystemen.

8 Allgemeiner Datenaufbau

Generell müssen von der übergeordneten Steuerung immer 8 Doppelworte als Solldaten übertragen werden.

Da üblicherweise der Waagencomputer viele verschiedene Daten erfassen kann, werden immer 16 Doppelworte an das übergeordnete System zurück gemeldet. Jedem Prozessdatendoppelwort kann über die entsprechende Parameternummer individuell zugeordnet werden, welcher Wert genau auf diesem Feld gesendet wird.

8.1 Sollwert - und Prozessdatenfelder

	PLC > KSW - 7	KSW - 7 > PLC
00 Doppelwort	BusIn DW00 (P97200)	BusOut DW00 (P97400)
01 Doppelwort	BusIn DW04 (P97201)	BusOut DW04 (P97401)
02 Doppelwort	BusIn DW08 (P97202)	BusOut DW08 (P97402)
03 Doppelwort	BusIn DW12 (P97203)	BusOut DW12 (P97403)
04 Doppelwort	BusIn DW16 (P97204)	BusOut DW16 (P97404)
05 Doppelwort	BusIn DW20 (P97205)	BusOut DW20 (P97405)
06 Doppelwort	BusIn DW24 (P97206)	BusOut DW24 (P97406)
07 Doppelwort	BusIn DW28 (P97207)	BusOut DW28 (P97407)
08 Doppelwort		BusOut DW32 (P97408)
09 Doppelwort		BusOut DW36 (P97409)
10 Doppelwort		BusOut DW40 (P97500)
11 Doppelwort		BusOut DW44 (P97501)
12 Doppelwort		BusOut DW48 (P97502)
13 Doppelwort		BusOut DW52 (P97503)
14 Doppelwort		BusOut DW56 (P97504)
15 Doppelwort		BusOut DW60 (P97505)

Prozentwerte werden üblicherweise als Werte mit 1/100 Prozent Auflösung übertragen (z.B. 74.83 % entspricht dem Zahlenwert 7483).

Alternativ ist bei allen Zahlenwerten auch eine Ausgabe im Gleitkommaformat möglich. Die Einstellungen dafür erfolgen in der Parametergruppe P973xx und P975xx.

8.2 Empfohlene Datenstruktur (nur für Standardanwendungen)

(Details siehe folgende Kapitel)

00 Doppelwort		
oo Doppelwort	01: WC00 CMD	28: WC00 Steuerbits 1
01 Doppelwort	10: Bus 1 ABS	10: WC00 ABS
02 Doppelwort	02: WC10 CMD	55: WC00 Istcharge
03 Doppelwort	11: Bus 2 ABS	37: WC00 Dosiersollwert
04 Doppelwort	03: WC20 CMD	46: WC00 Chargenschritt
05 Doppelwort	12: Bus 3 ABS	29: WC10 Steuerbits 1
06 Doppelwort	00:	11: WC10 ABS
07 Doppelwort	00:	56: WC10 Istcharge
08 Doppelwort		38: WC10 Dosiersollwert
09 Doppelwort		47: WC10 Chargenschritt
10 Doppelwort		30: WC20 Steuerbits 1
11 Doppelwort		12: WC20 ABS
12 Doppelwort		57: WC20 Istcharge
13 Doppelwort		39: WC20 Dosiersollwert
14 Doppelwort		48: WC20 Chargenschritt
15 Doppelwort		00:

Hier das Beispiel einer alternativen Parametrierung des Eingangsbereiches über die Parametergruppe P9720x.

Auch die Ausgangsdatenfelder in Richtung der übergeordneten Steuerung sind unter der Parametergruppe P940xx grundsätzlich frei einstellbar.

8.3 Steuer und Statusbits (Byte Reihenfolge / Endianness)

Byte-Reihenfolge (*byte order* oder endianness) bezeichnet die Speicherorganisation für INT und DINT Wert. Dies ist besonders bei der Auswertung von Steuerbits wichtig!

Bitfelder (Status und Steuerdoppelwörter) werden vom KSW-7B basisgerät üblicherweise als Doppelwörter übertragen. Das erste Bit (00 xxxxx) befindet sich bei AB-Steuerungen üblicherweise auf der niedrigsten Byte-Adresse (0.0-0.7,1.0-1.7, 2.0-2.7,3.0-3.7). Bei Siemens-S7 Steuerungen beginnt das erste Bit auf der höchstwertigsten Adresse (3.0-3.7,2.0-2.7, 1.0-1.7,0.0-0.7)

9 PARAMETERBESCHREIBUNG

9.1 Allgemeiner Parameter bis 9xxxx

Parameternummern der Gruppe P9xxxx dienen zum allgemeinen Parametrieren der Waage.

P91070	Sprache		INT	
	Auswahl: 00: Engli 01: Deut		Bereich:	0-1
Beschreibung:	Dieser Parameter	bestimmt die Sprache	der Visualisierung	

P91000	Fabrikationsnummer		DINT
	Auswahl:	Bereich:	0-2147483647
Beschreibung:	Dieser Parameter bestimmt die Fabrikationsnummer der Wa	age	

P91100	IP-Adresse		
	Auswahl: 0.0.0.0	Bereich:	0.0.0.0 - 255.255.255.255
Beschreibung:	Dieser Parameter bestimmt die IP-Adresse der Schnittstelle	ıF2	
Hinweis:	Die IP-Adresse im Default lautet 10.0.1.40 Die Default IP-Adresse wird gesetzt sobald die KSW7 ohne eine gesteckte Karte neu gestartet wird!!		
Abhängigkeit:			

P91101	Subnetz Maske		
	Auswahl: 0.0.0.0	Bereich:	0.0.0.0 - 255.255.255.255
Beschreibung:	Dieser Parameter bestimmt die Subnetzmaske der Schnit	tstelle IF2	
Hinweis:	Die IP-Adresse im Default lautet 255.255.0.0 Die Default Subnetz Maske wird gesetzt sobald die K gestartet wird!!	SW-7B ohne	e eine gesteckte Karte neu

9.2 Ändern der IP-Adresse

- 1. Die gewünschten IP- Parameter in die jeweiligen Felder eintragen
- 2. Die Taste "IP Parameter setzen" drücken
- 3. Im Bestätigungsfenster die angegebenen Parameter Bestätigen
- 4. Bei erfolgreicher Umstellung der IP-Parameter wird der VLC-Viewer die Verbindung verlieren

- 1 Einzustellende IP Parameter für die IF2 Schnittstelle der KSW-7B
- 2 Aktuelle eingestellte IP Parameter der IF2 Schnittstelle
- 3 Taste, um die IP-Parameter zu setzen
- 4 Status des Funktionsbausteins für die IF2 Konfiguration
- 5 Bestätigungsfenster der IP Parameter

Zurücksetzen der IP- Parameter auf Default

- 1. Die Wiegeelektronik vom Strom nehmen
- 2. Alle Module, mit Ausnahme des Versorgungsmodul, ziehen
- 3. Wiegeelektronik hochfahren bis alle LED grün leuchten
- 4. Erneut vom Net nehmen
- 5. Alle Module wieder in die Elektronik stecken
- 6. Nach diesem Hochlauf der Elektronik wird die IF2 Schnittstelle mit den Default Werten erreichbar sein IP: 10.0.1.40

SubNetz: 255.255.0.0

9.3 Datum und Uhrzeit einstellen

Die aktuelle Uhrzeit ist für die Erstellung des Parameterausdruck wichtig da der Dateiname aus der Fabrikationsnummer und den aktuellen Zeitinformationen gebildet wird.

9.4Parameterliste erstellen / USB oder FTP

In der Parameterliste sind alle derzeit eingestellten Parameter hinterlegt. Diese Parameterliste kann entweder auf einen USB stick der DIREKT AUF DER CPU gesteckt wird erstellt werden. Alternativ kann er auch im internen Filesystem hinterlegt werden und von dort per FTP-Protokoll heruntergeladen werden.

Die Parameterliste ist eine CSV.

Der Name dieser Datei setzt sich aus der Fabrikationsnummer der Sprache und der aktuellen Datum und Uhrzeit zusammen.

Erstellen der Parameterliste:

- 1. Uhrzeit und Datum kontrollieren
- 2. Taste 1 "Parameterliste erstellen" drücken, um den Parameterausdruck im Hauptverzeichnis des angesteckten USB-Speicher zu erstellen
- 3. Alternativ Taste 2 drücken, um den Parameterausdruck im Hauptverzeichnis des internen Filesystem zu erstellen
- 4. Während der Erstellung der Parameterliste wird diese Taste gesperrt
- 5. Wenn in der Statusanzeige wieder RDY anzeigt, ist der Vorgang beendet

9.5 Allgemeine Feldbusparameter 97xxx

Die Parametergruppe "**Feldbus**" erlaubt die Einstellung und Veränderung von Kommunikationsmöglichkeiten zu einer zentralen Steuerung.

P9710	Feldbus-Adresse:		INT
	Auswahl: Profibus 1124	Bereich:	1-125
Beschreibung:	Dieser Parameter bestimmt die Profibusadresse.		
Hinweis:	126 / Neutraladresse		
Abhängigkeit:			

9.6 Sollwerte und Kommandos per Feldbus (P972x)

In diesem Beispiel sind Kommandowörter für 3 Wagen dargestellt. Die datenkommunikatio erfolgt über Ganzzahlen im **Format** Doppelinteger (4Byte).

P9720x P9727x	- Bus IN DW0 - DW28:		INT
	Auswahl: 00: 01: WC0 CMD 02: WC1 CMD 03: WC2 CMD 04: WC3 CMD 05: WC4 CMD 06: WC5 CMD 07: WC6 CMD 08: WC7 CMD 09: 10: Bus 1 ABS	Bereich:	0-8

	11: Bus 2 ABS	
	12: Bus 3 ABS	
	13: Bus 4 ABS	
	14: Bus 5 ABS	
	15: Bus 6 ABS	
	16: Bus 7 ABS	
	17: Bus 8 ABS	
	18:	
	19: BUS 1 [%]	
	20: BUS 2 [%]	
	21: BUS 3 [%]	
	22: BUS 4 [%]	
	23: BUS 5 [%]	
	24: BUS 6 [%]	
	25: BUS 7 [%]	
	26: BUS 8 [%]	
	27:	
	18: Waagenindex 0	
	29: Waagenindex 1	
	30: Waagenindex 2	
	31: Waagenindex 3	
	32:	
	33: Mailbox- Nummer 0	
	34: Mailbox- Nummer 1	
	35: Mailbox- Nummer 2	
	36: Mailbox-Nummer 3	
	37:	
	38: Mailbox- Wert 0	
	39: Mailbox- Wert 1	
	40: Mailbox Wert 1	
	41: Mailbox- Wert 3	
	TI. WIGHDOX- WOLL O	
eschreibung:	Dieser Parameter bestimmt wie das erste Eingangssollwert-Doppelwort D	

Details zur Funktion sind den vorherigen Kapiteln zu entnehmen.

Hinweis:

9.7 Istwerte und Steuer/Statusbits per Feldbus (P974xx)

WC0-7	Digitale Steue	rkommandos an den Waagencomputer
CMD	0x00000001	00:
	0x00000002	01: Nullpunkt setzen <0> STARTEN
	0x00000004	02: Tarierung starten
	0x00000008	03: Zähler B zurücksetzen
	0x00000010	04: Max Max
	0x00000020	05: Max
	0x00000040	06: Min
	0x00000080	07: Min Min
	0x00000100	08: Leer
	0x00000200	09: Charge starten
	0x00000400	10: Charge unterbrechen
	0x00000800	11: Charge Abbruch
	0x00001000	12: Feinstrom
	0x00002000	13: System entleeren
	0x00004000	14:
	0x00008000	15: REM
	0x00010000	16: Antriebssperre
	0x00020000	17: Notaus aktiv
	0x00040000	18: Läuft Meldung
	0x00080000	19: Jog
	0x00100000	20: Opto 0
	0x00200000	21: Opto 1
	0x00400000	22: Opto 2
	0x00800000	23: Opto 3
	0x01000000	24: Opto 4
	0x02000000	25: Motorstörung
	0x04000000	26:
	0x08000000	27:
	0x10000000	28:
	0x20000000	29:
	0x40000000	30:
	0x80000000	31:

Auch hier Ist die Kommunikation mit 3 Waagen dargestellt vorgesehen. Als Datenformat wurde teilweise das Gleitkomma-Format Real gewählt. (z.B. P097500, P97501..)

Reine Bitfelder hingegen müssen im Datenformat Doppelinteger dargestellt werden. (z.B. P97402)


```
30: WC20 SteuerBits1
                       31: WC30 SteuerBits1
                       32: WC40 SteuerBits1
                       33: WC50 SteuerBits1
                       34: WC60 SteuerBits1
                       35: WC70 SteuerBits1
                       36: ---
                       37: WC00 Chargensollwert
                       38: WC10 Chargensollwert
                       39: WC20 Chargensollwert
                       40: WC30 Chargensollwert
                       41: WC40 Chargensollwert
                       42: WC50 Chargensollwert
                       43: WC60 Chargensollwert
                       44: WC70 Chargensollwert
                       45: ---
                       46: WC00 Chargenschritt
                       47: WC10 Chargenschritt
                       48: WC20 Chargenschritt
                       49: WC30 Chargenschritt
                       50: WC40 Chargenschritt
                       51: WC50 Chargenschritt
                       52: WC60 Chargenschritt
                       53: WC70 Chargenschritt
                       54: ---
                       55: WC 00 Istcharge
                       56: WC 10 Istcharge
                       57: WC 20 Istcharge
                       58: WC 30 Istcharge
                       59: WC 40 Istcharge
                       60: WC 50 Istcharge
                       61: WC 60 Istcharge
                       62: WC 70 Istcharge
                       63: ---
                       64: Waagenindex 0
                       65: Waagenindex 1
                       66: Waagenindex 2
                       67: Waagenindex 3
                       68: ---
                       69: Mailbox - Nummer 0
                       70: Mailbox - Nummer 1
                       71: Mailbox - Nummer 2
                       72: Mailbox - Nummer 3
                       73: ---
                       74: Mailbox - Wert 0
                       75: Mailbox - Wert 1
                       76: Mailbox - Wert 2
                       77: Mailbox - Wert 3
                       1000: AI00
                       1001: AI01
                       1010: Globale Steuerbits
Beschreibung:
              Dieser Parameter bestimmt welcher Wert über das erste Istwert-Doppelwort DW00 - DW36 des
              Feldbus- Ausgangsbereiches an eine zentrale Steuerung übermittelt wird.
Hinweis:
              Die Art der Ausgabe wird unter P840 – 855 definiert (0 Integer | 1 REAL)
```


WC0-7	Digitale Steue	Digitale Steuerkommandos an den Waagencomputer	
SteuerBits1	0x00000001	00:	
	0x00000002	01: Charge Start	
	0x00000004	02: Charge Grobstrom	
	0x00000008	03: Charge Feinstrom	
	0x00000010	04: Füllen ein	
	0x00000020	05: Leer	
	0x00000040	06: Min Min	
	0x00000080	07: Min	
	0x00000100	08: Max	
	0x00000200	09: Max Max	
	0x00000400	10: Mengenfehler	
	0x00000800	11:	
	0x00001000	12:	
	0x00002000	13:	
	0x00004000	14: Materialfreigabe	
	0x00008000	15: Rem aktiv	
	0x00010000	16: Antriebssperre aktiv	
	0x00020000	17: Notaus aktiv	
	0x00040000	18: System läuft	
	0x00080000	19: Jog Maindrive aktiv	
	0x00100000	20: Relais 0	
	0x00200000	21: Relais 1	
	0x00400000	22: Relais 2	
	0x00800000	23: Relais 3	
	0x01000000	24: Warnung	
	0x02000000	25: Betriebsbereit	
	0x04000000	26: XD0	
	0x08000000	27: XD1	
	0x10000000	28: XD2	
	0x20000000	29: XD3	
	0x40000000	30:	
	0x80000000	31: Relais 4	

10 Kommunikation mit S7 – Steuerungen (ProfiBus / ProfiNetIO)

In der Hardwarekonfiguration ist auf die korrekte Zuweisung der einzelnen Doppelwörter zu achten.

Diese Beispiel gilt rein funktionell auch für alle anderen Bussysteme. Die Byteorder, das heißt ob das niederwertigste Byte eines Doppelworts auf der niedrigsten oder höchsten Adresse gespeichert wir is besonders zu beachten. (siehe Enidianess / P97020_Swap)

Beispiel HW Konfig S7 Classic

Notizen: