

Análise Matemática II (2012/2013)

 2^a Frequência / Exame

15/06/2013

Duração: 2h 30m / 3h

Nome:

Número:

Curso:

Resolva cada parte numa folha de teste diferente.

Parte I

1. (Só Frequência) Aplicando o Teorema de Green calcule

$$\int_{C} \left(y + e^{\sqrt{x}} \right) dx + \left(2x + \cos\left(y^{2}\right) \right) dy,$$

sendo C a curva que limita a região sitiuada entre as parábolas $y=x^2$ e $x=y^2$, percorrida no sentido directo.

- 2. Considere a superfície $S = \{(x, y, z) \in \mathbb{R}^3 : z = 1 x^2 y^2, x > 0, y > 0, z > 0\}$.
 - (a) Parametrize S.
 - (b) Calcule a área de S.
 - (c) Determine o fluxo de $G(x, y, z) = (x, -y^4 y, 4y^3z + 2)$ através de S no sentido da normal exterior usando o teorema da divergência.

Parte II

- 3. Determine o comprimento da curva $C = \{(e^t \cos t, e^t \sin t) : t \in [0, 2]\}.$
- 4. Seja $f:\mathbb{R}^2 \to \mathbb{R}$ uma função contínua em A. Sabe-se que

$$\iint\limits_{A} f(x,y) dxdy = \int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}} f(x,y) dxdy.$$

- (a) Represente graficamente o conjunto A.
- (b) Mude a ordem de integração no cálculo de $\iint_A f(x,y) dxdy$.
- (c) Calcule o volume do sólido $S=\{(x,y,z)\in\mathbb{R}^3:(x,y)\in A,\,0\leq z\leq\cos\left(x^2+y^2\right)\}$.

5. (Só Frequência) Considere o campo vectorial $F: \mathbb{R}^3 \to \mathbb{R}^3$ dado por

$$F(x, y, z) = (y + z, x + z, x + y).$$

- (a) Verifique se F é conservativo. No caso afirmativo determine uma sua função potencial.
- (b) Calcule o trabalho realizado pela força F ao longo da curva

$$C = \left\{ (x, y, z) \in \mathbb{R}^3 : x = \cos \theta, y = \sin \theta, z = 2\theta, \ 0 \le \theta \le 2\pi \right\}.$$

Parte III

6. (Só Exame) Estude quanto à continuidade a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$

7. (**Só Exame**) Sejam $h : \mathbb{R}^3 \to \mathbb{R}$ uma função de classe C^1 tal que $\nabla h(e, 0, 1) = (2, 0, 1)$ e $g : \mathbb{R}^2 \to \mathbb{R}^3$ dada por

$$g(x,y) = (e^{x+y}, x^2y, \cos(xy)).$$

Calcule a derivada de $h \circ g$ no ponto (1,0) segundo o vector v = (1,1).

- 8. (Só Exame) Seja $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = x^2y + y^2x 3xy$.
 - (a) Calcule o gradiente e a matriz hessiana de f.
 - (b) Determine os extremos e os pontos sela de f.
 - (c) Determine o plano tangente e a recta normal à superfície de equação f(x,y)=z no ponto (2,1,0).

Cotações		
Questões	Freq.	Exame
1	2,5	_
2 a)	1	1
b)	2	1,5
c)	3	2,5
3	1,5	1
4 a)	1,5	1
b)	1,5	1,5
c)	2	2
5 a)	3	_
b)	2	_
6	_	2
7	_	2
8 a)	_	1,5
b)	_	2
c)	_	2

BOM TRABALHO!