Kako se lotiš: Mehanika 1

Patrik Žnidaršič

Prevedeno 19. november 2023

1 Splošno

Praktično vse naloge v mehaniki vsebujejo obravnavo gibanja nekega telesa. Da to naredimo, analiziramo sile na telo, in zapišemo drugi Newtonov zakon

$$m\ddot{\vec{x}} = \sum \vec{F}.$$

Ker je sila \vec{F} lahko odvisna od časa t, položaja telesa \vec{x} ter od njegove hitrosti $\dot{\vec{x}}$, dobimo diferencialno enačbo drugega reda. Te rešujemo z običajnimi triki za reševanje diferencialnih enačb.

Če za silo \vec{F} obstaja funkcija $U: \mathbb{R}^3 \to \mathbb{R}$, da je $\vec{F} = -\vec{\nabla}.U$, pravimo, da je \vec{F} POTENCIALNA ali KONZERVATIVNA sila. Delo take sile je odvisno le od začetnega in končnega položaja točke; velja $W+U=E_0$, kjer je W kinetična energija in E_0 neka konstanta. Pri obravnavi premočrtnega gibanja pod vplivom potencialne sile naredimo dve stvari. Najprej narišemo graf danega potenciala U(x), s katerim naredimo kvalitativno analizo gibanja. Če k grafu narišemo še horizontalno črto za E_0 , lahko povemo, kaj se bo zgodilo z delcem na tem energijskem nivoju;

- Če je E_0 popolnoma nad grafom U(x), bo gibanje neomejeno. Tukaj lahko dodatno povemo, če dosežemo točko v neskončnosti v končnem ali neskončnem času, kar je odvisno od grafa U(x); razlika med E_0 in U(x) pove kinetično energijo, ki jo bo delec imel v x.
- Če E_0 seka graf U(x) v dveh točkah, bo gibanje omejeno (in periodično). V tem primeru lahko izračunamo periodo gibanja, kot piše spodaj.
- Če se E_0 dotika grafa v lokalnem maksimumu, bo gibanje v to smer omejeno, ker v točko dotika ne moramo priti v končnem času.
- Če se E_0 dotika grafa v lokalnem minimumu, smo v stabilnem ravnovesju, in se ne bomo nikdar premaknili iz te točke.

Pri reševanju naloge zapišemo vse možnosti za gibanje v odvisnosti od E_0 .

Pogosto moramo izračunati tudi periodo nihanja v primeru druge točke, kar lahko naredimo direktno, ali pa z eno od dveh aproksimacij. Recimo, da se gibljemo med točkama a < b. Tedaj lahko periodo izračunamo kot

$$T = \sqrt{2m} \int_{a}^{b} \frac{dx}{\sqrt{E_0 - U(x)}}.$$

To ni le integral, pač pa celo posplošen integral (ker je $U(x) = E_0$ v krajiščih). Sicer je vedno končen, a ga je pogosto težko (nemogoče) izračunati. Pri računu si lahko pomagamo z integralom

$$\int_{a}^{b} \frac{dx}{\sqrt{(b-x)(x-a)}} = \pi,$$

kjer pazimo, da sta vrednosti v ulomku enaki mejam integrala.

V posebnem primeru harmoničnega oscilatorja velja $U = \frac{1}{2}kx^2$ za neko konstanto k. Tedaj so vsa gibanja periodična s periodo $T = 2\pi\sqrt{m/k}$. Če je perioda gibanja neodvisna od E_0 , kakor je tu, pravimo, da je gibanje IZHRONIČNO. Izkaže se, da je edini potencial, ki je hkrati izohroničen in simetričen glede na svoj minimum, harmonični. Naj bo potencial U sedaj neharmonični. Če v lokalnem minimumu x_0 velja $E_0 - U(x) \ll 1$, se lahko poslužimo harmonične aproksimacije. Pri njej se predstavljamo, da je potencial kvadratna funkcija v tej točki, in izračunamo približek

$$T \doteq 2\pi \sqrt{\frac{m}{U''(x_0)}}.$$

Druga možna aproksimacija je LIBRACIJSKA, kjer prvo zapišemo

$$E_0 - U(x) = (b - x)(x - a)\chi(x),$$

in ocenimo integral po trapezni formuli, tako da dobimo približek

$$T \doteq \pi \sqrt{\frac{m}{2}} \left(\frac{1}{\sqrt{\chi(a)}} + \frac{1}{\sqrt{\chi(b)}} \right),$$

kar je natančna ocena v primeru, da je funkcija $(\chi(z))^{-1/2}$ afina.

2 Vezano gibanje

Če je gibanje vezano na neko krivuljo $\tau \to \vec{\gamma}(\tau)$, na telo poleg ostalih sil deluje tudi vezna sila, ki ga drži na krivulji. Za obravnavo takega sistema vedno prvo napišemo drugi Newtonov zakon $\vec{F} + \vec{F}_v = m\vec{a}$, kjer je \vec{F}_v neznana sila vezi. Vektorsko enačbo tokrat razpišemo v ortonormirani bazi krivulje. Bazne vektorje lahko izračunamo kot

$$\vec{e}_t = \frac{\vec{\gamma}'(au)}{\|\vec{\gamma}'(au)\|}, \qquad \qquad \vec{e}_n = \frac{\vec{e}_t'(au)}{\|\vec{e}_t'(au)\|}, \qquad \qquad \vec{e}_b = \vec{e}_t \times \vec{e}_n.$$

Pri tem ne pozabimo, da

$$\partial_s \vec{e}_t = \kappa \vec{e}_n$$

velja le v primeru, da je s naravni parameter. Parameter κ najlažje izračunamo kot

$$\kappa = \frac{|x'y'' - y'x''|}{(x'^2 + y'^2)^{3/2}},$$

kjer je $p \mapsto (x(p), y(p))$ regularna parametrizacija krivulje.

Če je krivulja gladka (brez trenja), je pospešek vedno v smeri tangente in normale na krivuljo, komponenta binormale je ničelna; poleg tega je hitrost vedno le v smeri tangente. Vrednost vseh komponent pospeška pravzaprav točno poznamo:

$$a_t = \dot{v}, \qquad a_n = \kappa v^2, \qquad a_b = 0.$$

V primeru gladke krivulje sila vezi deluje le v normalni in binormalni komponenti, in ne prispeva nič k velikosti hitrosti (le k smeri). Iz drugega Newtonovega zakona izrazimo predpis za \vec{F}_v . Če iščemo trenutek, ko se telo odklopi od predpisanega tira, bo to ravno trenutek, ko velja $\vec{F}_v = \vec{0}$. Veliko ostalih vprašanj se da rešiti s pomočjo energijskega zakona. Ker je sila vezi vedno pravokotna na smer premika, namreč ne opravi nobenega dela.

3 Gibanje v polju centralne sile

3.1 Polarne koordinate

V polju centralne sile so najbolj smiselne polarne koordinate s središčem v viru sile. Seveda jih lahko uporabljamo tudi drugje, če je to lažje. Bazna vektorja sta v tem primeru

$$\vec{e}_r = \cos\theta \, \vec{i} + \sin\theta \, \vec{j},$$
 $\vec{e}_\theta = \partial_\theta \vec{e}_r = -\sin\theta \, \vec{i} + \cos\theta \, \vec{j}.$

Za vektorje položaja, hitrosti in pospeška velja

$$ec{r} = r ec{e}_r,$$
 $ec{v} = \dot{r} ec{e}_r + r \dot{\theta} ec{e}_{\theta},$ $ec{a} = (\ddot{r} - r \dot{\theta}^2) ec{e}_r + (r \ddot{\theta} + 2 \dot{r} \dot{\theta}) ec{e}_{\theta}.$

Hitrost in pospešek imata pri tem RADIALNO in OBODNO komponento. Za vrtilno količino velja

$$\vec{l} = \vec{r} \times m\vec{v} = mr^2\dot{\theta}\vec{k}$$

kjer je \vec{k} normala na ploskev.

3.2 Centralna sila

Sila je centralna, če obstaja pol sile, t.j. taka točka, da sila deluje v smeri zveznice med telesom in polom, njena velikost pa je odvisna le od razdalje telesa do pola. Gibanje v polju centralne sile je ravninsko, vrtilna količina telesa okoli pola je konstantna (in podaja normalo ravnine). Poleg tega so zvezne centralne sile konzervativne, torej je tudi energija konstanta gibanja.

V takem gibanju je smiselno gledati tudi ploščino, ki jo vektor \vec{r} obarva med premikom. Velja namreč, da je ploščinska hitrost konstantna, in jo lahko kdaj uporabimo za merjenje časa. Za DVOJNO PLOŠČINSKO HITROST

$$C_0 = r^2 \dot{\theta} = r v_\theta$$

velja $\dot{A} = \frac{1}{2}C_0$ in $l = mC_0$, kjer je $v_{\theta} = \vec{v} \cdot \vec{e}_{\theta}$. Pomagamo si lahko tudi z Binetovo formulo; če je u = 1/r, velja

$$a_r = -C_0^2 u^2 (u'' + u),$$

kjer je u'' drugi odvod po θ . Dodatno velja

$$u' = -\frac{\dot{r}}{C_0},$$

iz česar lahko izračunamo \dot{r} , radialno komponento hitrosti.