Planing

=>	Need to encort to events.
⇒	Not all'information is available in advance.
	Duline planning
=>	Not all information is needed for each decision.
	Ly hierarchical planning
	Hierarchical Planning
	Divide doniving took into Subproblems.
=>	Herachy defines levels of abstraction & information cecess.
	Clabal Planning 1:1
	High obstraction)
	Behavion Planning
	Local Planning
	Control V (Low obstraction)

The Property of the safety of

* Global Planning

Usen defined destination k)

Global Planning

[Sequence of Warpoints]

- => Often in probotics, we discretize would encoulting in a grid.
- => Here, we use topological moad map.
- => MD maps contains information about intersections, land etc.
- => Forom graph to tree

> A path on the graph can be onepresented in a search tree

Top mode is the start pose

At each level an action is taken which result in a new pose-

Page Student Nukshauks

=> Search algorithms d'iffer in
> Completeness > Optimelity
> Time Consumptio
> Mamong consumption.
Drinformed on informed Scarch.
· Bonadh-first South > Gready Seanch · Droph-first Seanch > A*
· Depth-Forst Search > A*
* Behavion Planning
Sequence of Laypoints & Perception of neighborhood
Perception of neighborhood)
Behavior Planning
Moneuvon specification?
(Stop, doive straight, overtake)
Firste
=> Cover all possible Situations by a state

*	Finite State machine
	Finite amount of possible states
⇒	Current State defines a maneyver
=>	Tomasition between stetes board on inpu
	Example
	(Follow trajectors with)
	proference speed
	(Follow lead)
	Vehicle.
*	Local Planning
	Desired maneuver &
	(measurements of Surrounding)
	The Planning
	Local laming
_ <u></u>	
	Path with valocity) Porofile to follow
	L'Onofile to Sollow

Page OM Student Notebooks

=> Return oreferere trajectory to follow with a poredefined hosizon. La Torajactory should be feasible Ko Obstacle free. all Generation * Combinctorid plames 1> Explicitly model obstacles. * Vanictiond planner L'Optimize miter enespoit to obstedes k dynamics. * Sorpling bond planner * Lattice band planner Account for boundary conditions k Kinematic constraints. C/ Comort

modelle distribution

(ols, ys, Os)

Date	OM
Page	Student Notebooks

Cabic Spline

91(u) = [x(u), y(u)] UE[0,1]

x(u)= 2343+24+2,4+20

5(4) = B347 + B247 + B,4 + B6

Dictive function to aptimize choice of

Combine différent objectives like distance to sufference, Control effort Courveture, Collision etc.

* Collision Avoidance

Generale Collision-freel on Generale entituers

trajectories \trajectories k chark

-> Use schet g margin

=> Collision fra trajectory might not exist for longer planning horizons.

=> Chacking Collision!

> Time to Collision (TTC) > Sweth Compution for occupacy grid map. > Civile Collision Challing.

Dato

*	Velocity Profile Generation
⇒	Velocity profile is limited by:
	> Vimit => Speed limit > Vc => Imposed constraint of Idead
	accilaction
	Lo Voer a Reference from Behevion pknown
>	Easiest Implementation: Linger Raip.

1/ ----

102