A is an nxn (ie square) matrix

by BA = AB = I then $B = A^{-1}$ inverse of A If a matrix exists for A with above B'

then A is investible

If no A-1 exists than A is non-inventible (or singular)

If A is a $2x^2$ matrix, $A = \begin{bmatrix} a & b \end{bmatrix}$ then $A'' = \begin{bmatrix} d & -6 \end{bmatrix}$.

eg. $A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} \Rightarrow A^{-1} = \begin{bmatrix} 5 & -2 \\ -3 & 1 \end{bmatrix} \frac{1}{(5) - (2)3} = \begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix}$

$$B = \begin{bmatrix} 2 & 0 \\ 4 & -1 \end{bmatrix} \Rightarrow B^{-1} = \begin{bmatrix} -1 & 0 \\ -4 & 2 \end{bmatrix} \xrightarrow{1/2} = \begin{bmatrix} 1+0 & 0+0 \\ 2-1 \end{bmatrix}$$

$$Check \qquad BB^{-1} = \begin{bmatrix} 2 & 0 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 1+0 & 0+0 \\ 2-2 & 0+1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \Rightarrow C^{-1} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \Rightarrow C^{-1} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \Rightarrow C^{-1} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \Rightarrow C^{-1} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \Rightarrow C^{-1} \Rightarrow C$$

note if
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $A^{-1}DNE$

if $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, iff $ad - be = 0$

if $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, iff $ad - be = 0$

if $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, iff $ad - be = 0$

if $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, iff $ad - be = 0$

and $ad - bc = 0 \Rightarrow A^{-1}DNE$! Singular!

eg.
$$2x + 3y = 7$$
 Solve using inverse! $x - y = 2$

Solution
$$A = (coeff. radiciy): \begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix} \qquad \vec{x} = voriable = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\vec{b} = constant = \begin{bmatrix} 7 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 7 \\ 2 \end{bmatrix} \iff \vec{A}\vec{x} = \vec{b}$$

$$\vec{x} = A^{-1}\vec{b}$$

$$\vec{x} = A^{-$$

$$\frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \left[\begin{array}{c} 3/6 \\ 3/6 \end{array} \right] \quad \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi \\ \chi \end{array} \right] = \frac{3}{6} \left[\begin{array}{c} \chi$$

What about 3x3 & lorgen A's & their inverses }

We need more tools & background

Non Elementory Matrices

An Elementory Matrix is result of a single elementory row operation applied to an identity matrix

eg. Rows \leftarrow Row2 on I_2 , $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $Z_3 \in \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

9. $Row 2 \Rightarrow \frac{1}{5} Row 2$ on I_{4} 25 $E = \begin{cases} 10000 \\ 01/500 \\ 00010 \end{cases}$ cy Rows - Rows - 4Rows on I3 Note 1: Can be shown if E is an elementary matrix EA = row op on A Row 1 => Ra 2 ? To E = [0]

 $E = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $E = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ $= \begin{bmatrix} 4 & 5 & 6 \\ 1 & 2 & 3 \end{bmatrix}$

Note 2: Each row op- has an invase row op. that "undoe" it! Rows () Rong () Rouge Rouge Rouge 7. Rouz revau 7. Rouz. Row 4 -> Row 1 + 4. Row 2 rows - Row 1 - 4 kow 2 Say E, = elem. matrix for a given op. & E, = elemi matrix for reverce row op. $E_{i}(E_{i}\cdot I) = E_{i}(rougonZ) = under rougon(op. on Z)$ $\int E_{\epsilon} = I$

6 Similarly | Ez E, = I | => Ez = E, 7 => All elen. matrica are invertible! Two matrices ore "Row equivalent"

if row aps turn one into other =) II Ris RREF of A = R is row equivalent to A If A has RREF, R = Iic A is row equivalent to I.

the $E_1 = E_2 = E_1 + E_2 = E_2 = E_1 + E_2 = E_2 =$

Ez Ez E, A = I $E_2E_1A=E_3^{-1}$ E, A = E = E A = E, -1 E, -1

A is a product of elenentony matrice,