

Art of Problem Solving 1988 Balkan MO

Balkan MO 1988

1	Let ABC be a triangle and let M, N, P be points on the line BC such that AM, AN, AP are the altitude, the angle bisector and the median of the triangle, respectively. It is known that $\frac{[AMP]}{[ABC]} = \frac{1}{4} \text{ and } \frac{[ANP]}{[ABC]} = 1 - \frac{\sqrt{3}}{2}.$ Find the angles of triangle ABC .
2	Find all polynomials of two variables $P(x,y)$ which satisfy
	$P(a,b)P(c,d) = P(ac+bd,ad+bc), \forall a,b,c,d \in \mathbb{R}.$
3	Let $ABCD$ be a tetrahedron and let d be the sum of squares of its edges' lengths. Prove that the tetrahedron can be included in a region bounded by two parallel planes, the distances between the planes being at most $\frac{\sqrt{d}}{2\sqrt{3}}$
4	Let $(a_n)_{n\geq 1}$ be a sequence defined by $a_n=2^n+49$. Find all values of n such that $a_n=pg, a_{n+1}=rs$, where p,q,r,s are prime numbers with $p< q,r< s$ and $q-p=s-r$.