

UNIVERSITY of LIMERICK

OLLSCOIL LUIMNIGH

COLLEGE of INFORMATICS and ELECTRONICS

Department of Computer Science and Information Systems

End-of-Semester Assessment Paper

Academic Year: 2006/07 Semester: **Spring** Module Title: Module Code: **CS4158** P.L.T. Percent of Total Marks: Duration of Exam: 2½ Hours **60** Lecturer(s): Jim Buckley Paper marked out of: **60**

Instructions to Candidates:

- Answer question 1.
- Answer 2 of the remaining 3 questions.
- Question 1 carries 20 marks.
- All other questions carry 20 marks.
- Your first 3 attempts will be marked unless you explicitly state otherwise.

Q1.	a)	Form a 'LEX' regular expressions for a float, made up of 1 or more numbers, preceded by an optional '-', with one optional decimal place. If the decimal place is present, there must be numbers on its RHS, but not necessarily on its LHS (Examples include: 10, -5, -78.98, .987 and87987)		
			4	Marks
	b)	Draw a transducer for the regular expression constructed in 'a' above, and from it create a transition table		
			4	Marks
	c)	Explain the error in each of the following segments of Flex and Bison code:		
		Flex: [a-zA-Z]+ For	{printf("Is an identifier"); } {printf("Is the keyword: FOR"); }	
		Bison Expression:	: NUMBER '+' NUMBER {\$\$=\$1+\$2}	
			4	Marks
	d)	Classify the following 2 grammars as either Context Free Grammars, Context Sensitive Grammars, Unrestricted Grammars or Regular Grammars (Explaining your reasons)		
		Grammar 1	Grammar 2	
		E -> aB B -> dGH GH -> cGdC cGd -> ad G -> λ	$E \rightarrow gH$ $H \rightarrow RT$ $R \rightarrow k$ $T \rightarrow p$	
			4	Marks
	e)	_	mmar that accommodates the 'Right-to-Left' associativity of the '^' (to to perator, explaining how it works.	he
			4	Marks
Q2.	a)	Build an LR	R(0) finite state automata for the following grammar:	
		S->E \$ E->E + T E-> gh T->F T->F * p F->g h y		

8 Marks

b) Using this Finite State Automata to illustrate the LR(0) parsing of "g h + g h y * p", show how it is insufficient and suggest a remedy

6 Marks

c) Briefly describe Emile Post's contribution to Compiler theory

6 Marks

Q3. a) Transform the		Transform the following into an LL(1) grammar.		
		$S \rightarrow P \$$ $P \rightarrow y X X$ $P \rightarrow y X Q$ $X \rightarrow r$ $X \rightarrow g$ $Q \rightarrow f$ $Q \rightarrow j$ 9 Marks		
	b)	Using the LL(1) grammar below, calculate the predict set for each production:		
		S -> T P r \$ T -> P f T -> w [T] P -> j C P -> \(\lambda \) C -> h y g C -> k		
		8 Marks		
	c)	Use this predict set to form a LL(1) Parse table for the grammar.		
		3 Marks		
Q4.	a)	Create a Context Free grammar that describes personal ads with the following structure:		
		 Tired emotional young man seeks friendly understanding young lady for relationship – 086 1987678 		
		 Generous rich old lady wants fun handsome hunk for long slow romantic walks – 097 6548374 		
		 Blonde serious gent desires kind serious lady for companionship – 086 5437234 Woman seeks generous friendly man – 061 3274586 		
		 Kind serious man seeks generous friendly female for deep conversations – 091 5674328 		
		14 Marks		
	b)	Prove the generality of the grammar by deriving a parse tree for the language instance: Handsome friendly rich old man seeks handsome friendly rich old woman for long serious deep conversations -0865464532		
		6 Marks		