南京大学大学数学试卷

2019.1.2____ 任课教师 考试成绩 考试时间

一、 简答题(每小题7分,共4题,计28分)

- 1. 设方阵A满足 $aA^2 + bA + cE = 0 (c \neq 0)$, 判断 A 是否可逆? 若A可逆, 求 A^{-1} .
- 解: 由 $aA^2 + bA + cE = 0$ 及 $c \neq 0$ 可得: $A(-\frac{a}{c}A \frac{b}{c}E) = E$, 故方阵 A 可逆,而且 $A^{-1} = -\frac{a}{c}A - \frac{b}{c}E$.
- 2. 设实二次型 $f(x) = x^{T}Ax$ 是正定二次型,试判断 $g(x) = x^{T}A^{k}x$ (k 为正整数)是否为正定二次型?
- 解:因为实二次型 $f(x) = x^{T}Ax$ 是正定二次型,所以A是正定矩阵,从而A对称,故 A^{k} 也对称.

设 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 是 A 的全部特征值, 则 $\lambda_1^k, \lambda_2^k, \cdots, \lambda_n^k$ 是 A^k 的全部特征值,

由 A 正定知, $\lambda_i > 0 (1 \le i \le n)$,从而 $\lambda_i^k > 0 (1 \le i \le n)$,故 A^k 正定,即 $g(x) = x^T A^k x$ 为正定二次型. 解法二: k=1 时结论显然,下面证明 k >= 2 时结论成立.

因为 A 对称正定,对正整数 $s \ge 1$, 易知 A^s 可逆,且 $(A^s)^{\mathrm{T}} = (A^{\mathrm{T}})^s = A^s$,故 A^s 对称可逆.

当 k 为偶数时,令 k=2s,则有 $A^k=(A^s)^{\mathrm{T}}E(A^s)$,即 A^k 合同于 E,故 A^k 正定,

故二次型 $q(x) = x^{T} A^{k} x$ 正定.

当 k 为奇数时,令 k=2s+1,则有 $A^k=(A^s)^TA(A^s)$,即 A^k 合同于 A,从而也合同于 E, 故 A^k 正定, 二次型 $g(x) = x^T A^k x$ 也正定.

3. 设矩阵 A 的秩 $\mathbf{r}(A) = 2$,求 x, y 的值,其中 $A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 3 & 2 & 1 & -3 & x \\ 0 & 1 & 2 & 6 & 3 \\ 5 & 4 & 3 & -1 & y \end{pmatrix}$.

解:
$$A \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 6 & 3 \\ 0 & 0 & 0 & 0 & x \\ 0 & 0 & 0 & 0 & y - 2 \end{pmatrix}$$
, 且 $\mathbf{r}(A) = 2$, 故有 $x = 0, y = 2$.

解法二:显然矩阵 A 中有2阶子式不为零,例如左上角的一个二阶子式: $D_2 = \begin{vmatrix} 1 & 1 \\ 3 & 2 \end{vmatrix} = -1 \neq 0$.

为使
$$\mathbf{r}(A) = 2$$
,必须使 A 的所有三阶子式都等于零,特别是应使下列含 x 和 y 的三阶子式 $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -3 & x \\ 2 & 6 & 3 \end{vmatrix} = -4x = 0$, $\begin{vmatrix} 1 & 1 & 1 \\ 2 & 6 & 3 \\ 3 & -1 & y \end{vmatrix} = 4y - 8 = 0$,即 $x = 0, y = 2$.

- 4. 设 A 是正交矩阵,证明 A 的元素 a_{ij} 的代数余子式 $A_{ij} = \pm a_{ij}$.
- 证: $AA^* = |A|E = A^*A$,因为 A 是正交矩阵,所以, $|A| = \pm 1$, $A^{-1} = A^{\mathrm{T}}$. 故 $A^* = |A|A^{-1} = \pm A^{-1} = \pm A^{\mathrm{T}}$,即 $A_{ij} = \pm a_{ij}$.

- 二、 (本题12分) 设矩阵 $A=\begin{pmatrix} a & -1 & c \\ 5 & b & 3 \\ 1-c & 0 & -a \end{pmatrix}$,其行列式 |A|=-1,又 A 的伴随矩阵 A^* 有一个特征值

$$|A|\alpha = \lambda_0 A\alpha, \quad \mathbb{N} \quad \lambda_0 A\alpha = -\alpha, \quad \hat{m}\mathbb{N}: \quad \lambda_0 \begin{pmatrix} a & -1 & c \\ 5 & b & 3 \\ 1-c & 0 & -a \end{pmatrix} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} = -\begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}.$$

解:由题设有
$$A^*\alpha = \lambda_0 \alpha$$
,因在此式两端同时左乘A,利用 $AA^* = |A|E$ 得, $AA^*\alpha = \lambda_0 A\alpha$,
$$|A|\alpha = \lambda_0 A\alpha, \quad \mathbb{P} \ \lambda_0 A\alpha = -\alpha, \quad \text{亦即:} \ \lambda_0 \begin{pmatrix} a & -1 & c \\ 5 & b & 3 \\ 1-c & 0 & -a \end{pmatrix} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} = -\begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}.$$
 于是有
$$\begin{cases} \lambda_0 (-a+1+c) = 1 \\ \lambda_0 (-5-b+3) = 1 \\ \lambda_0 (-1+c-a) = -1 \end{cases} \Rightarrow \lambda_0 = 1, c = a, b = -3. \ \ \text{又因为} |A| = \begin{vmatrix} a & -1 & a \\ 5 & -3 & 3 \\ 1-a & 0 & -a \end{vmatrix} = a-3 = -1,$$

故 a = c = 2, b = -3.

三. (本题12分) 设 A, B 都是 n 阶实对称矩阵,证明:存在正交矩阵 Q,使得 $Q^{-1}AQ = B$ 的充分必要条件 是 A 与 B 有相同的特征值.

证:必要性:由题设可知 A 与 B 相似,所以 A 与 B 有相同的特征值.

充分性:设 A与 B有相同的特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$, 因为 A, B 均为实对称矩阵,故存在正交矩阵 Q_1, Q_2 ,使得

 $Q_1^{-1}AQ_1 = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n), \ Q_2^{-1}BQ_2 = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n),$ 于是, $Q_1^{-1}AQ_1 = Q_2^{-1}BQ_2$,则有 $B = Q_2Q_1^{-1}AQ_1Q_2^{-1} = (Q_1Q_2^{-1})^{-1}A(Q_1Q_2^{-1}).$ 令 $Q = Q_1Q_2^{-1}$,因为 $Q^{\mathrm{T}} = (Q_1Q_2^{-1})^{\mathrm{T}}(Q_1Q_2^{-1}) = (Q_1Q_2^{\mathrm{T}})^{\mathrm{T}}(Q_1Q_2^{-1}) = Q_2Q_1^{\mathrm{T}}Q_1Q_2^{-1} = E,$ 故 Q 为正交矩阵.即存在正交矩阵 $Q = Q_1Q_2^{-1}$,使得 $Q^{-1}AQ = B$.

四. (本题12分)设 3 阶实对称矩阵 A 的特征值为 1,2,3,且对应于特征值 1 和 2 的特征向量分别为 $\alpha_1 = (-1, -1, 1)^T$, $\alpha_2 = (1, -2, -1)^T$, $\alpha_3 = (1, -2, -1)^T$, $\alpha_4 = (-1, -1, 1)^T$, $\alpha_5 = (-1, -1, 1)^T$, $\alpha_7 = (-1, -1, 1)^T$, $\alpha_8 = (-1, -1, 1)^T$, $\alpha_8 = (-1, -1, 1)^T$, $\alpha_8 = (-1, -1, 1)^T$, $\alpha_9 = (-1, -1, 1)^T$

解: (1) 对应于特征值3的特征向量 $\alpha_3 = (x_1, x_2, x_3)^{\mathrm{T}}$ 与 α_1, α_2 正交,得方程组 $\left\{ \begin{array}{l} -x_1 - x_2 + x_3 = 0 \\ x_1 - 2x_2 - x_3 = 0 \end{array} \right.$

$$(2) \diamondsuit P = \begin{pmatrix} -1 & 1 & 1 \\ -1 & -2 & 0 \\ 1 & -1 & 1 \end{pmatrix}, \quad \text{Mf } P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \quad \text{if } A = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} P^{-1} = \frac{1}{6} \begin{pmatrix} 13 & -2 & 5 \\ -2 & 10 & 2 \\ 5 & 2 & 13 \end{pmatrix}.$$

五. (本题12分) 设 A 为 n 阶矩阵,若存在正整数 k,使得 $A^k = O$,(1) 求 |A + E| 的值; (2) 求 A 相似于 对角矩阵的充要条件.

解: (1) 设 λ 是 A 的特征值,则 λ^k 是 A^k 的特征值,

因为 $A^k = O$,零矩阵的特征值只能是0,故 $\lambda^k = 0$,从而 $\lambda = 0$,即 A 的所有特征值均为0.

所以 A + E 的所有特征值均为1,故 $|A + E| = 1 \cdot 1 \cdot 1 \cdot \dots 1 = 1$.

(2) 若 A 相似于对角矩阵,则该对角矩阵为零矩阵,因此有 $P^{-1}AP = O \Rightarrow A = POP^{-1} = O$,

反之, 若 A = O, 必有 A 相似于对角矩阵, 故 A 相似于对角矩阵的充要条件是 A = O.

六. (本题12分) 已知 R^3 的一组基 $\alpha_1 = (1,0,0)^T$, $\alpha_2 = (1,1,0)^T$, $\alpha_3 = (1,1,1)^T$, α_3 α 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标.

解: (1) 由題意,有
$$(\beta_1,\beta_2,\beta_3)=(\alpha_1,\alpha_2,\alpha_3)A=\begin{pmatrix} 1&1&1\\0&1&1\\0&0&1 \end{pmatrix}\begin{pmatrix} 1&-1&0\\0&1&-1\\0&0&1 \end{pmatrix}=\begin{pmatrix} 1&0&0\\0&1&0\\0&0&1 \end{pmatrix}$$
,

故
$$\beta_1 = (1,0,0)^T$$
, $\beta_2 = (0,1,0)^T$, $\beta_3 = (0,0,1)^T$.
(2) 因为 α 在基 β_1 , β_2 , β_3 下的坐标为 $x = (1,2,3)^T$, 由基 α_1 , α_2 , α_3 到基 β_1 , β_2 , β_3 的过渡矩阵为 A , 则 α 在 α_1 , α_2 , α_3 下的坐标 $y = Ax = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 3 \end{pmatrix}$.

七. (本题12分) 设n阶矩阵 $A=\begin{pmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ a_2b_1 & a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & & \vdots \\ a_-b_1 & a_nb_2 & \cdots & a_nb_n \end{pmatrix}$,已知矩阵的迹 $\mathrm{tr}(A)=a\neq 0$,试问:矩阵 A是否能相似于对角矩阵?

证: 设 $\alpha = (a_1, a_2, \dots, a_n)^T, \beta = (b_1, b_2, \dots, b_n)^T$, $\mathbb{M}\ A = \alpha\beta^{\mathrm{T}}, A^2 = (\alpha\beta^{\mathrm{T}})(\alpha\beta^{\mathrm{T}}) = \alpha(\beta^{\mathrm{T}}\alpha)\beta^{\mathrm{T}} = (\sum_{i=1}^n a_i b_i) \cdot A = aA.$

设 λ 是 A 的特征值, ξ 是 A 的属于特征值 λ 的特征向量,则 $A\xi = \lambda \xi, A^2 \xi = aA\xi = a\lambda \xi,$ 又 $A^2 \xi = A \cdot A \xi = \lambda \lambda \xi = \lambda^2 \xi$,所以, $a\lambda \xi = \lambda^2 \xi$,即 $(\lambda^2 - a\lambda) \xi = 0$. 因为 $\xi \neq 0$,故 $\lambda^2 - a\lambda = 0$, $\lambda = 0$ 或 $\lambda = a$. 又 $\sum_{i=1}^{n} \lambda_i = \operatorname{tr}(A) = a \neq 0$,所以 $\lambda = a$ 是A的单特征值, $\lambda_2 = \lambda_3 = \dots = \lambda_n = 0$ 是A的n - 1重特征值.

对于特征值 $\lambda_2 = \lambda_3 = \dots = \lambda_n = 0$, 齐次线性方程组 (0E - A)X = 0 的系数矩阵的秩为: $\mathbf{r}(0E - A) = \mathbf{r}(-A) = \mathbf{r}(A) = \mathbf{r}(\alpha\beta^{\mathrm{T}}) \leq \min\{r(\alpha), r(\beta^{\mathrm{T}})\} = 1$. 又 $\mathbf{tr}(A) = \sum_{i=1}^n a_i b_i = a \neq 0$, 故 $a_i, b_i (i = 1, 2, \dots, n)$ 不全为零,故 $\mathbf{r}(A) \geq 1$, 因此 $\mathbf{r}(0E - A) = 1$. 因此矩阵 A 的属于 n - 1 重特征值 0 的线性无关的特征向量的个数为 n - 1,故 A 有 n 个线性无关的特征向量。 的特征向量, 所以 A 相似于对角矩阵.