2. Dimostra che il seguente linguaggio è indecidibile:

$$A_{1010} = \{\langle M \rangle \mid M$$
è una TM tale che $1010 \in L(M)\}.$

Dimostriamo che A_{1010} è un linguaggio indecidibile mostrando che A_{TM} è riducibile ad A_{1010} . La funzione di riduzione f è calcolata dalla seguente macchina di Turing:

F = "su input $\langle M, w \rangle$, dove M è una TM e w una stringa:

1. Costruisci la seguente macchina M_w :

 $M_w =$ "su input x:

- 1. Se $x \neq 1010$, rifiuta.
- 2. Se x = 1010, esegue M su input w.
- 3. Se M accetta, accetta.
- 4. Se M rifiuta, rifiuta."
- 2. Restituisci $\langle M_w \rangle$."

Dimostriamo che f è una funzione di riduzione da A_{TM} ad A_{1010} .

- Se $\langle M, w \rangle \in A_{TM}$ allora la TM M accetta w. Di conseguenza la macchina M_w costruita dalla funzione accetta la parola 1010. Quindi $f(\langle M, w \rangle) = \langle M_w \rangle \in A_{1010}$.
- Viceversa, se $\langle M, w \rangle \not\in A_{TM}$ allora la computazione di M su w non termina o termina con rifiuto. Di conseguenza la macchina M_w rifiuta 1010 e $f(\langle M, w \rangle) = \langle M_w \rangle \not\in A_{1010}$.

Per concludere, siccome abbiamo dimostrato che $A_{TM} \leq_m A_{1010}$ e sappiamo che A_{TM} è indecidibile, allora possiamo concludere che A_{1010} è indecidibile.

2. Dimostra che il seguente linguaggio è indecidibile:

$$L_2 = \{ \langle M, w \rangle \mid M \text{ accetta la stringa } ww^R \}.$$

Dimostriamo che L2 = $\{\langle M, w \rangle \mid M \text{ accetta la stringa ww}^R\}$ è indecidibile:

Useremo una riduzione dal problema dell'arresto $A_TM = \{(M, w) \mid M \text{ si ferma su input w}\}$.

Definiamo una funzione f che mappa (M, w) in (M', w), dove M' è una TM che:

1. Su input x: a. Se x non ha la forma yy^R, rifiuta. b. Altrimenti, estrae y dalla prima metà di x. c. Simula M su y. d. Se M si ferma su y, accetta. Altrimenti, cicla.

Ora, $\langle M, w \rangle \in A_TM$ se e solo se $\langle M', w \rangle \in L2$. Infatti, M' accetta ww^R se e solo se M si ferma su w.

Poiché A_TM è indecidibile e abbiamo una riduzione da A_TM a L2, concludiamo che L2 è indecidibile.

2. (12 punti) Data una Turing Machine ${\cal M},$ definiamo

$$\operatorname{HALTS}(M) = \{ w \mid M \text{ termina la computazione su } w \}.$$

Considera il linguaggio

$$F = \{ \langle M \rangle \mid \mathrm{HALTS}(M) \ \mathrm{\`e} \ \mathrm{un \ insieme \ finito} \}.$$

Dimostra che ${\cal F}$ è indecidibile.

Soluzione. La seguente macchina G calcola una riduzione $\overline{A_{TM}} \leq_m F$:

G= "su input $\langle M,w\rangle,$ dove M è una TM e w una stringa:

1. Costruisci la seguente macchina M':

M' = "Su input x:

- 1. Esegue M su input w.
- 2. Se M accetta, accetta.
- 3. Se M rifiuta, va in loop."
- 2. Ritorna $\langle M' \rangle$."

Mostriamo che G calcola una funzione di riduzione g da $\overline{A_{TM}}$ a F, cioè una funzione tale che

$$\langle M, w \rangle \in \overline{A_{TM}}$$
 se e solo se $M' \in F$.

- Se $\langle M, w \rangle \in \overline{A_{TM}}$ allora la macchina M su input w rifiuta oppure va in loop. In entrambi i casi la macchina M' va in loop su tutte le stringhe, quindi $\mathrm{HALTS}(M) = \emptyset$ che è un insieme finito. Di conseguenza $M' \in F$.
- Viceversa, se $\langle M, w \rangle \not\in \overline{A_{TM}}$ allora la macchina M accetta w. In questo caso la macchina M' accetta tutte le parole, quindi $\text{HALTS}(M) = \Sigma^*$ che è un insieme infinito. Di conseguenza $M' \not\in F$.
- 2. (12 punti) Data una Turing Machine M, definiamo

$$HALTS(M) = \{w \mid M \text{ termina la computazione su } w\}.$$

Considera il linguaggio

$$I = \{ \langle M \rangle \mid \text{HALTS}(M) \text{ è un insieme infinito} \}.$$

Dimostra che I è indecidibile.

Soluzione. La seguente macchina F calcola una riduzione mediante funzione $A_{TM} \leq_m I$:

F = "su input $\langle M, w \rangle$, dove M è una TM e w una stringa:

1. Costruisci la seguente macchina M':

M' = "Su input x:

- 1. Esegue M su input w.
- 2. Se M accetta, accetta.
- 3. Se M rifiuta, va in loop."
- 2. Ritorna $\langle M' \rangle$."

Mostriamo che F calcola una funzione di riduzione f da A_{TM} a I, cioè una funzione tale che

$$\langle M, w \rangle \in A_{TM}$$
 se e solo se $M' \in I$.

- Se $\langle M, w \rangle \in A_{TM}$ allora la macchina M accetta w. In questo caso la macchina M' accetta tutte le parole, quindi $\text{HALTS}(M) = \Sigma^*$ che è un insieme infinito. Di conseguenza $M' \in I$.
- Viceversa, se $\langle M, w \rangle \not\in A_{TM}$, allora la macchina M su input w rifiuta oppure va in loop. In entrambi i casi la macchina M' va in loop su tutte le stringhe, quindi $\text{HALTS}(M) = \emptyset$ che è un insieme finito. Di conseguenza $M' \not\in I$.
- ${\bf 2.}~({\bf 12~punti})$ Considera il linguaggio

FORTY-Two =
$$\{\langle M, w \rangle \mid M \text{ termina la computazione su } w \text{ avendo solo } 42 \text{ sul nastro} \}.$$

Dimostra che FORTY-Two è indecidibile.

Useremo una riduzione dal problema della fermata (Halting Problem), che sappiamo essere indecidibile.

Sia H = $\{\langle M, w \rangle \mid M \text{ è una TM che si ferma su input w}\}$

Costruiamo una funzione di riduzione f da H a Forty-Two:

 $f(\langle M, w \rangle) = \langle M' \rangle$, dove M' è una TM che:

- 1. Simula M su input w
- 2. Se M si ferma, M' cancella il suo nastro e scrive 42
- 3. Se M non si ferma, M' continua a girare all'infinito

Ora, $\langle M, w \rangle \in H$ se e solo se $\langle M' \rangle \in Forty-Two$.

Se Forty-Two fosse decidibile, potremmo decidere H usando questa riduzione, che è una contraddizione. Quindi Forty-Two è indecidibile.

2. (12 punti) Considera il linguaggio

EVEN-HALTS = $\{\langle M \rangle \mid \text{per ogni numero naturale } n \text{ pari, } M \text{ termina la computazione su } n \}$.

Dimostra che Even-Halts è indecidibile.

Useremo una riduzione dal problema della fermata (A_TM), che sappiamo essere indecidibile.

Sia f una funzione che mappa $\langle M, w \rangle$ a $\langle M' \rangle$, dove M' è definita come segue:

M' = "Su input n:

- 1. Se n è dispari, entra in un loop infinito
- 2. Se n è pari, simula M su input w
- 3. Se M si ferma su w, M' si ferma
- 4. Se M non si ferma su w, M' entra in un loop infinito"

Ora, $\langle M, w \rangle \in HALTS$ se e solo se $\langle M' \rangle \in EVEN-HALTS$.

Se EVEN-HALTS fosse decidibile, potremmo decidere A_TM usando questa riduzione, che è una contraddizione. Quindi EVEN-HALTS è indecidibile.

- 3. (12 punti) Considera le stringhe sull'alfabeto $\Sigma = \{1, 2, \dots, 9\}$. Una stringa w di lunghezza n su Σ si dice ordinata se $w = w_1 w_2 \dots w_n$ e tutti i caratteri $w_1, w_2, \dots, w_n \in \Sigma$ sono tali che $w_1 \leq w_2 \leq \dots \leq w_n$. Ad esempio, la stringa 1112778 è ordinata, ma le stringhe 5531 e 44427 non lo sono (la stringa vuota viene considerata ordinata). Diciamo che una Turing machine è ossessionata dall'ordinamento se ogni stringa che accetta è ordinata (ma non è necessario che accetti tutte queste stringhe). Considera il problema di determinare se una TM con alfabeto $\Sigma = \{1, 2, \dots, 9\}$ è ossessionata dall'ordinamento.
 - (a) Formula questo problema come un linguaggio SO_{TM} .
 - (b) Dimostra che il linguaggio SO_{TM} è indecidibile.

Soluzione.

- (a) $SO_{TM} = \{\langle M \rangle \mid M \text{ è una TM con alfabeto } \Sigma = \{1, 2, \dots, 9\}$ che accetta solo parole ordinate}
- (b) La seguente macchina F calcola una riduzione $\overline{A_{TM}} \leq_m UA$:

F = "su input $\langle M, w \rangle$, dove M è una TM e w una stringa:

1. Costruisci la seguente macchina M':

M' = "Su input x:

- 1. Se x = 111, accetta.
- 2. Se x = 211, esegue M su input w e ritorna lo stesso risultato di M.
- 3. In tutti gli altri casi, rifiuta.
- 2. Ritorna $\langle M' \rangle$."

\..., w/ ~ ... M ~ ~ ~ ~ ~ ~ \... / ~ ~ ~ ...

Mostriamo che F calcola una funzione di riduzione da $\overline{A_{TM}}$ a SO_{TM} , cioè una funzione tale che

$$\langle M, w \rangle \in \overline{A_{TM}}$$
 se e solo se $\langle M' \rangle \in SO_{TM}$.

- Se $\langle M, w \rangle \in \overline{A_{TM}}$ allora la macchina M rifiuta o va in loop su w. In questo caso la macchina M' accetta la parola ordinata 111 e rifiuta tutte le altre, quindi è ossessionata dall'ordinamento e di conseguenza $\langle M' \rangle \in SO_{TM}$.
- Viceversa, se $\langle M, w \rangle \not\in \overline{A_{TM}}$ allora la macchina M accetta w. Di conseguenza, la macchina M' accetta sia la parola ordinata 111 che la parola non ordinata 211, quindi non è ossessionata dall'ordinamento. Di conseguenza $\langle M' \rangle \not\in SO_{TM}$.

- 3. (12 punti) Data una Turing Machine M, considera il problema di determinare se esiste un input tale che M scrive "xyzzy" su cinque celle adiacenti del nastro. Puoi assumere che l'alfabeto di input di M non contenga i simboli x, y, z.
 - (a) Formula questo problema come un linguaggio $\mathit{MAGIC}_{\mathrm{TM}}.$
 - (b) Dimostra che il linguaggio $MAGIC_{\mathrm{TM}}$ è indecidibile.

Soluzione.

- (a) $MAGIC_{TM} = \{\langle M \rangle \mid M$ è una TM che scrive xyzzy sul nastro per qualche input $w\}$
- (b) La seguente macchina F calcola una riduzione $A_{\text{TM}} \leq_m MAGIC_{\text{TM}}$:

F= "su input $\langle M,w\rangle,$ dove M è una TM e w una stringa:

- 1. Verifica che i simboli x,y,z non compaiano in w, né nell'alfabeto di input o nell'alfabeto del nastro di M. Se vi compaiono, sostituiscili con tre nuovi simboli X,Y,Z nella parola w e nella codifica di M.
- 2. Costruisci la seguente macchina M':

M' = "Su input x:

- 1. Simula l'esecuzione di M su input w, senza usare i simboli x,y,z.
- 2. Se M accetta, scrivi xyzzy sul nastro, altrimenti rifiuta senza modificare il nastro.
- 3. Ritorna $\langle M' \rangle$."

Mostriamo che F calcola una funzione di riduzione da $A_{\rm TM}$ a $MAGIC_{\rm TM}$, cioè una funzione tale che

$$\langle M, w \rangle \in A_{\mathrm{TM}}$$
 se e solo se $\langle M' \rangle \in MAGIC_{\mathrm{TM}}$.

- Se $\langle M, w \rangle \in A_{\text{TM}}$ allora la macchina M accetta w. In questo caso la macchina M' scrive xyzzy sul nastro per tutti gli input. Di conseguenza $\langle M' \rangle \in MAGIC_{\text{TM}}$.
- Viceversa, se $\langle M, w \rangle \notin A_{TM}$ allora la macchina M rifiuta o va in loop su w. Per tutti gli input, la macchina M' simula l'esecuzione di M su w senza usare i simboli x, y, z (perché sono stati tolti dalla definizione di M e di w se vi comparivano), e rifiuta o va in loop senza scrivere mai xyzzy sul nastro. Di conseguenza $\langle M' \rangle \notin MAGIC_{TM}$.

- 4. (9 punti) Considera il seguente problema: data una TM M a nastro semi-infinito, determinare se esiste un input w su cui M sposta la testina a sinistra partendo dalla cella numero 2023 (ossia se in qualche momento durante la computazione la testina si muove dalla cella 2023 alla cella 2022).
 - (a) Formula questo problema come un linguaggio 2023_{TM}.
 - (b) Dimostra che il linguaggio $2023_{\rm TM}$ è indecidibile.

Per dimostrare che 2023_TM è indecidibile, riduciamo il problema della fermata A_TM a 2023_TM.

Sia R un decisore ipotetico per 2023_TM. Costruiamo un decisore S per A_TM:

 $S = "Su input \langle M, w \rangle$:

- 1. Costruisci una TM M' che:
 - o Scrive w sul nastro
 - Si sposta alla cella 2023
 - o Simula M su w
 - o Se M si ferma, M' si sposta alla cella 2022
- 2. Esegui R su (M')
- 3. Se R accetta, accetta. Se R rifiuta, rifiuta."

S decide correttamente A TM perché:

• M si ferma su w \Leftrightarrow M' si sposta dalla cella 2023 alla 2022 \Leftrightarrow R accetta \langle M' \rangle \Leftrightarrow S accetta \langle M,w \rangle

Ma sappiamo che A_TM è indecidibile, quindi 2023_TM deve essere indecidibile

- **4. (9 punti)** Una Turing Machine *somma correttamente* se, dati in input due numeri binari separati da #, termina la computazione con la loro somma (in binario) sul nastro. (Non importa cosa fa sugli altri input.) Considera il problema di determinare se una TM somma correttamente.
 - (a) Formula questo problema come un linguaggio SUM_{TM} .
 - (b) Dimostra che il linguaggio $SUM_{\rm TM}$ è indecidibile.
- (a) Formuliamo SUM_TM come: SUM_TM = $\{\langle M \rangle \mid M \text{ è una TM che, dati due numeri binari x e y separati da #, termina con x+y (in binario) sul nastro}$
- (b) Per dimostrare che SUM_TM è indecidibile, riduciamo A_TM a SUM_TM.

Sia R un decisore ipotetico per SUM_TM. Costruiamo un decisore S per A_TM:

 $S = "Su input \langle M, w \rangle$:

- 1. Costruisci una TM M' che:
 - Su input x#y:
 - Ignora x e y
 - Simula M su w
 - Se M si ferma, calcola x+y e lo scrive sul nastro

- 2. Esegui R su (M')
- 3. Se R accetta, accetta. Se R rifiuta, rifiuta."

S decide correttamente A_TM perché:

• M si ferma su w \Leftrightarrow M' somma correttamente per ogni input \Leftrightarrow R accetta \langle M' \rangle \Leftrightarrow S accetta \langle M,w \rangle

Ma sappiamo che A TM è indecidibile, quindi SUM TM deve essere indecidibile.

- **4. (9 punti)** Una Turing Machine *moltiplica correttamente* se, dati in input due numeri binari separati da #, termina la computazione con la loro moltiplicazione (in binario) sul nastro. (Non importa cosa fa sugli altri input.) Considera il problema di determinare se una TM moltiplica correttamente.
 - (a) Formula questo problema come un linguaggio $MUL_{\rm TM}$.
 - (b) Dimostra che il linguaggio $MUL_{\rm TM}$ è indecidibile.
- 6. (a) Formuliamo MUL_TM come: MUL_TM = $\{\langle M \rangle \mid M \text{ è una TM che, dati due numeri binari x e y separati da #, termina con x*y (in binario) sul nastro}$
- (b) Per dimostrare che MUL_TM è indecidibile, riduciamo A_TM a MUL_TM.

Sia R un decisore ipotetico per MUL_TM. Costruiamo un decisore S per A_TM:

S = "Su input $\langle M, w \rangle$:

- 1. Costruisci una TM M' che:
 - o Su input x#y:
 - Ignora x e y
 - Simula M su w
 - Se M si ferma, calcola x*y e lo scrive sul nastro
- 2. Esegui R su (M')
- 3. Se R accetta, accetta. Se R rifiuta, rifiuta."

S decide correttamente HALT_TM perché:

M si ferma su w ⇔ M' moltiplica correttamente per ogni input ⇔ R accetta ⟨M'⟩ ⇔ S accetta ⟨M,w⟩

Ma sappiamo che A_TM è indecidibile, quindi MUL_TM deve essere indecidibile.

- 2. (12 punti) Una stringa w è palindroma se rimane uguale letta da sinistra a destra e da destra a sinistra, cioè se $w = w^R$. Un linguaggio $B \subseteq \{0,1\}^*$ è quasi-palindromo se contiene al più una stringa non palindroma. Ad esempio, sia $\{00,11011,1001\}$ che $\{00,101\}$ sono linguaggi quasi-palindromi, mentre $\{00,10,100\}$ non lo è. Considera il problema di determinare se il linguaggio di una TM M è quasi-palindromo.
 - (a) Formula questo problema come un linguaggio $QPAL_{TM}$.
 - (b) Dimostra che il linguaggio $QPAL_{TM}$ è indecidibile.

- a) Formulazione come linguaggio: QPALTM = {w | w è una stringa quasi-palindroma su {0,1}*} dove una stringa è quasi-palindroma se rimane uguale letta da sinistra a destra e da destra a sinistra, eccetto al più una stringa.
- (b) Dimostrazione che QPALTM è indecidibile: Riduzione dal problema della fermata (A_TM). Costruiamo una TM M' che, dato input \langle M,w \rangle:
 - 1. Simula M su w.
 - 2. Se M si ferma su w, M' produce l'output 1001001.
 - 3. Se M non si ferma, M' entra in un loop infinito.

Ora, definiamo una funzione f che mappa (M,w) in 1001001. f è una riduzione da A_TM a QPALTM perché:

- Se M si ferma su w, $f(\langle M,w\rangle) = 1001001 \in QPALTM$
- Se M non si ferma su w, f(⟨M,w⟩) ∉ QPALTM

Poiché A_TM è indecidibile, QPALTM deve essere indecidibile.

2. (12 punti) I grawlix sono sequenze di simboli senza senso che sostituiscono le parolacce nei fumetti.

Un linguaggio è volgare se contiene almeno un grawlix. Considera il problema di determinare se il linguaggio di una TM è volgare.

- (a) Formula questo problema come un linguaggio $GROSS_{TM}$.
- (b) Dimostra che il linguaggio $GROSS_{TM}$ è indecidibile.
- (a) Formulazione come linguaggio: GROSS_TM = $\{\langle M \rangle \mid M \text{ è una TM e L}(M) \text{ contiene almeno un grawlix}\}$
- (b) Dimostrazione che GROSS_TM è indecidibile:

Riduzione dal problema della fermata (HALT_TM). Costruiamo una TM M' che, dato input (M,w):

- 1. Simula M su w.
- 2. Se M si ferma su w, M' produce l'output "@#\$%&!".
- 3. Se M non si ferma, M' entra in un loop infinito.

Ora, definiamo una funzione f che mappa (M,w) in (M'). f è una riduzione da HALT_TM a GROSS_TM perché:

- Se M si ferma su w, L(M') contiene un grawlix, quindi $\langle M' \rangle \in GROSS_TM$
- Se M non si ferma su w, L(M') = Ø, quindi ⟨M'⟩ ∉ GROSS_TM

Poiché HALT_TM è indecidibile, GROSS_TM deve essere indecidibile.

- 2. (12 punti) Un linguaggio B è emozionato se ogni stringa in B assume la forma ww per qualche $w \in \{0,1\}^*$. Ad esempio, sia $\{00,1111,1010\}$ che \emptyset sono linguaggi emozionati, mentre $\{00,10\}$ non lo è. Considera il problema di determinare se il linguaggio di una TM M è emozionato.
 - (a) Formula questo problema come un linguaggio EX_{TM} .
 - (b) Dimostra che il linguaggio EX_{TM} è indecidibile.
- (a) EXT_M = { $\langle B, w \rangle \mid B \text{ è una TM M ed esiste una stringa } ww \in \{0,1\}^* \text{ tale che } ww \in L(M)$ }
- (b) Dimostrazione che EXT_M è indecidibile per contraddizione riducendo il problema dell'accettazione A_TM. Supponiamo per assurdo che EXT_M sia decidibile e sia H una TM che lo decide. Costruiamo la TM D: D = "Su input $\langle M, w \rangle$:
 - 1. Costruisci la TM M' che accetta se l'input è nella forma $xx e x \in L(M)$, rifiuta altrimenti
 - 2. Esegui H su input (M', w)
 - 3. Se H accetta rifiuta, se H rifiuta accetta"

D decide A_TM: Se $\langle M, w \rangle \in A_TM$ allora $w \in L(M)$, quindi $ww \in L(M')$ e $\langle M', w \rangle \in EXT_M$, quindi H accetta e D rifiuta Se $\langle M, w \rangle \notin A_TM$ allora $w \notin L(M)$, quindi $ww \notin L(M')$ e $\langle M', w \rangle \notin EXT_M$, quindi H rifiuta e D accetta Ma A_TM è indecidibile, quindi abbiamo una contraddizione e EXT_M non può essere decidibile.

- 2. (12 punti) Un linguaggio $B \subseteq \{0,1\}^*$ è palindromo se ogni stringa in B è palindroma, cioè se $w = w^R$ per ogni $w \in B$. Ad esempio, sia $\{00,11011,1001\}$ che \emptyset sono linguaggi palindromi, mentre $\{00,10\}$ non lo è. Considera il problema di determinare se il linguaggio di una TM M è palindromo.
 - (a) Formula questo problema come un linguaggio PAL_{TM} .
 - (b) Dimostra che il linguaggio PAL_{TM} è indecidibile.
- (a) PAL_TM = { $\langle M \rangle \mid M \text{ è una TM e L(M)} \subseteq \{0,1\}^* \text{ è palindromo} \}$
- (b) PAL_TM è indecidibile. Dimostrazione per riduzione dal problema della cofinalità E_TM = { $\langle M \rangle$ | L(M) = \emptyset }. Costruiamo la funzione di riduzione f: f($\langle M \rangle$) = $\langle \hat{M} \rangle$ dove \hat{M} è la TM che su input w \in {0, 1}*:
 - 1. Simula M su input ε
 - 2. Se M accetta, accetta se w = w^R , rifiuta se w \neq w^R
 - 3. Se M non accetta, accetta qualunque input w

Se $\langle M \rangle \in E_TM$ allora $L(M) = \emptyset$, quindi $L(\hat{M}) = \{0,1\}^*$ che è palindromo, perciò $\langle \hat{M} \rangle \in PAL_TM$. Se $\langle M \rangle \notin E_TM$ allora $L(M) \neq \emptyset$, quindi $L(\hat{M}) = \{w \in \{0,1\}^* \mid w = w^R\}$ che non è palindromo, perciò $\langle \hat{M} \rangle \notin PAL_TM$. Siccome E_TM è indecidibile e si riduce a PAL_TM , anche PAL_TM è indecidibile.