Energy Storage Materials Dr. James Cumby

james.cumby@ed.ac.uk

Room 269

Lecture Overview

Lecture	Topic	
1	Introduction to energy storage materials	
1-2	Batteries	
3	(Super) capacitors	
4-5	Fuel Cells	

Recommended Reading

Basic Solid State Chemistry, A. R. West, Wiley, 1988.

References given during course.

Introduction

Meeting global energy demand is one of the big challenges facing society.

Energy sources

To meet this demand will require a combination of energy sources:

All sources have problems...

Fossil fuels

- Finite supply
- Environmental cost (i.e. climate change)
- Political uncertainty

Nuclear

- "Finite" supply
- Concerns over waste storage
- Political issues

Renewable

- Intermittent source
- (Relatively) expensive (although this is changing)
- Limited lifespan of components

Drivers behind change

- Problems with energy supply/demand
- Climate change
 - CO₂ emissions
- Other emissions
 - ∘ NO_x
 - \circ SO_X
 - Particulates
 - Others

Energy storage

If we aim to increase renewable sources, we need a way to *store* this energy.

- Supply cannot immediately respond to changes in demand
- Inefficient to waste "excess" energy (e.g. on a windy day)

How can we store this energy?

Historic approaches:

Technology	Energy conversion	
- Burning wood	Chemical potential → Heat	
- Firebrick (Used since the Hittites)	Heat → Heat	
- Gravity!	Gravitational potential → Kinetic	
e.g. Irrigation (Hanging Gardens of Babylon)		
e.g. Mill ponds (modifying existing rivers)		

Energy storage history

The discovery of electricity introduced much more variety into energy storage methods:

Technology	Energy	conversion
- Burning wood	Chemical potential	→ Heat
- Firebrick (Used since the Hittites)	Heat	→ Heat
Gravity!	Gravitational potential	\rightarrow Kinetic
e.g. Irrigation, Mill ponds		
- Batteries	Chemical	→ Electrical
- (Super-) Capacitors	Electrical	→ Electrical
- Fuel Cells	Chemical	→ Electrical
- Cryogenic / Liquid air	Kinetic (from electrical)	→ 'Heat'
- Mechanical (e.g. flywheels)	Kinetic	→ potential

Efficient energy storage relies on materials

Important properties for energy storage:

- Cost
- (Long-term) stability; reactivity
- Durability
- Compatibility of different materials
- Material performance
 - Ionic conduction
 - Electronic conduction

Batteries

Battery History

ca. 190 AD: Baghdad (or Parthian) battery

- Iron and copper electrodes, filled with vinegar or wine
- Possible uses: medicinal, religious or electro-plating!

1800: Volta created the voltaic pile

- Alternating Ag and Zn discs, NaCl electrolyte
- Enabled chemistry e.g. 2H₂O → H₂ + O₂
- · Corrosion limited battery life

1836: Daniell cell: Zn|Zn²⁺,SO₄²⁻ || SO₄²⁻ | Cu²⁺ | Cu

• First practical electricity source (used to power telegraphs)

1859 Lead-acid battery (first rechargeable)

1886 The first dry cell, Zn | NH₄Cl | MnO₂

NH₄Cl immobilised with plaster of Paris (CaSO₄·0.5 H₂O)

1899 The first alkaline battery NiO(OH) | KOH | Cd

Higher energy density than lead-acid, but expensive

1991 Li-ion battery commercialised by Sony

Battery Operation

Charge

Discharge

NOTE: In rechargeable cells, naming of *anode* and *cathode* is often unclear. Here we define:

- Cathode is positive electrode under discharge
- Anode is negative electrode under discharge

Improving batteries

The most important parameter in improving batteries is the total *energy capacity*, E

Combination of cell voltage (V) and amount of charge (Q) stored in material:

$$E_{
m bat} = QV$$

Q is expressed in units of Ah (1 mAh = 3.6 C), so E_{bat} is in Wh (Watt-hours)

- E_{bat} is dependent on the amount of battery material. More useful are:
 - Specific (gravimetric) energy (Wh g⁻¹). Q is charge per unit mass (Ah g⁻¹)
 - (Volumetric) energy density (Wh L⁻¹). Q is charge per unit volume (Ah L⁻¹)

We want to maximise volumetric and gravimetric energy densities

Increase E_{bat} : Increase voltage V

Increase E_{bat} : Increase charge Q

Faraday's Law:

$$Q_{
m theoretical} = rac{nF}{3.6 M_w} \qquad ({
m in~mAh~g}^{-1})$$

e.g. for
$${\rm LiCoO_2} \longrightarrow {\rm Li^+} + {\rm e^-} + {\rm CoO_2}$$
 :

$$n = 1, F = 96485.3 ext{ As mol}^{-1}$$
 $M_w = 97.873 ext{ g mol}^{-1}$
 $\therefore Q = 274 ext{ mAh g}^{-1}$

In reality, the charge stored is less than the theoretical maximum

- For LiCoO₂, CoO₂ is *very* unstable: $2 \operatorname{Co^{IV}O}_2 \longrightarrow \operatorname{Co_2^{III}O}_3 + \frac{1}{2}\operatorname{O}_2$
 - We can only safely reach Li_{0.5}CoO₂, so the useful capacity is 137 mAh g⁻¹

Charging rates

Ideally we want to charge batteries quickly

Define charge rate, $C=rac{I}{Q}$, the ratio of discharge current to capacity

- *i.e.* for a 1000 mAh (1 Ah) battery:
 - \circ 1C => current of 1 A, which could be sustained for 1 hour
 - \circ 2C => 2 A (for 30 mins)
 - $\circ \frac{C}{6} => 0.167 \text{ A (for 6 hours)}$
- This allows us to describe charging rates independent of battery capacity.

Effect of rate on capacity

High charging rates reduce capacity

- Electrons can move much faster than ions, so at high C-rates strain occurs in the lattice
 - lons get stuck, reducing the overall discharge capacity
 - Irreversible damage to crystal structure and/or microstructure can occur, preventing future charging

Ragone (ru-GO-nee) plot

Displays the relation between specific energy (E) and specific power (P):

E=QV(=ItV) The total amount of energy available in the battery

P=IV The rate at which energy can be used

Some applications require fast discharge over short times (e.g. electric sports car accelerating) while others need more sustained energy supply (long-range electric vehicle)

B.D. McCloskey, J. Phys. Chem. Lett., 2015, 6, 3592-3593

Electrochemical measurements

Typically we use *Galvanostatic* (constant current) measurements to characterise battery response, and measure the resulting voltage.

• Charging rates have a big impact on device performance, so *potentiostatic* (*i.e.* constant voltage) measurements would be difficult to attribute to chemistry *vs.* rate effects.

Electrochemical measurements

e.g. for a 2.2 Ah battery:

0.2C

0.5C 1.0C

100

0.5

1.0

Capacity can be expressed in a number of formats

What can we learn from galvanostats?

Solid Solution

Two-phase region

Phase change

lons can be continously added/removed from the material without a structural transition

Two distinct compositions exist together, and the relative proportions change with x

Abrupt voltage (and structure) change between α and β due to a morestable γ phase with narrow composition window.

Example: Na_xCoO₂

Berthelot et al, Nature Materials, 2010, 74-80.

Key materials properties

Anode

- Good electronic conductor
- Good ionic conductor
- Structural stability on ionic movement

Electrolyte

- Good ionic conductor
- Negligible electronic conduction

Cathode

- Good electronic conductor
- Good ionic conductor
- Structural stability on ionic movement

Overall

 Compatibility between materials (particularly under volume changes during charge/discharge)

Charge

Discharge

