Calcolo integrale — Scheda di esercizi n. 9

9	
17 Maggio 2022 — Compito n.	00284-

Istruzioni: le prime due caselle (V / F) permettono di selezionare la risposta vero/falso. La casella "C" serve a correggere eventuali errori invertendo la risposta data.

Per selezionare una casella, annerirla completamente: \blacksquare (non \boxtimes 0 \bigcirc).

Nome:					
Cognome:					
G					I
Matricola:					

Punteggi: 1 punto per ogni risposta esatta, 0 punti per risposte sbagliate o lasciate in bianco.

1) Si consideri l'equazione differenziale

$$y'(t) = (4t+2) y(t) + A e^{2t^2+2t}$$
.

- **1A)** Esistono infinite soluzioni dell'equazione tali che y(10) = 9.
- **1B)** Se A = 0, la funzione $y(t) = 4 e^{2t^2 + 2t}$ non è soluzione dell'equazione.
- **1C)** La funzione $y(t) = (6+At)e^{2t^2+2t}$ è soluzione dell'equazione.

1D) Se
$$y(0)=0$$
 e $A=2$, si ha
$$\lim_{t\to +\infty}y(t)=0\,.$$

3) Si consideri l'equazione differenziale

$$y'(t) = \frac{e^{y(t)} - 1}{e^{y(t)}} \cos(t)$$
.

- **3A)** L'equazione non è a variabili separabili.
- **3B)** Se y(0) = 0, la soluzione y(t) non è costante.
- **3C)** Se y(0) = 5, esiste $t_0 > 0$ tale che $y(t_0) = 0$.
- **3D)** Se $y(0) = \ln(6)$, si ha

$$y(s) = \ln(5 e^{\sin(s)} + 1).$$

2) Si consideri l'equazione differenziale

$$y'(t) = 4 \cos(t) y(t) + 7 \sin(t) \cos(t)$$
.

- **2A)** Se y(0) = 0, si ha $y'(0) \neq 0$.
- **2B)** Se y(0) = 0, si ha y''(0) = 4.
- **2C)** Se y(0) = 6, la soluzione y(t) è decrescente in un intorno di t = 0.
- **2D)** Se $y(\frac{\pi}{2}) = 5$, si ha $T_1(y(t); \frac{\pi}{2}) = 5 + (t \frac{\pi}{2})$.
- 4) Si consideri l'equazione differenziale $y'(t) = t(y(t)^3 9y(t))$.
- **4A)** Se y(0) = 3, la soluzione è costante.
- **4B)** Se y(0) = 1, si ha y'(0) = 0.
- **4C)** Se y(0) = -1, si ha $T_2(y(t); 0) = -1 4t^2$.
- **4D)** Se y(0) = 1, la soluzione ha un massimo relativo per t = 0.

5) Si consideri il problema di Cauchy

(1)
$$\begin{cases} y'(t) = a(t) y(t) + b(t), \\ y(0) = y_0. \end{cases}$$

- a) Si risolva (1) se a(t)=-10, b(t)=3 e $y_0=0$. b) Si risolva (1) se $a(t)=\sin(t)$, $b(t)=2\sin(t)$ e $y(0)=\pi$. c) Si scriva il polinomio di Taylor di ordine 1 di y(t) nell'origine se $a(t)=\mathrm{e}^{8\,t}$, $b(t)=5\cos(t)$ e $y_0=2$. d) Si scriva il polinomio di Taylor di ordine 2 di y(t) nell'origine se $a(t)=8\,t$, $b(t)=9\,t^2$ e $y_0=4$.

- 6) Si risolvano le seguenti equazioni differenziali a variabili separabili.

- a) y'(t) = 8y(t) + 13, se y(0) = 0. b) $y'(t) = 12t(25 + y^2(t))$, se y(0) = 0. c) $y'(t) = e^{-y(t)}e^{5t}$, se y(0) = 0. d) $y'(t) = \frac{6(1+y^2(t))}{y(t)}$, se y(0) = 1.

Soluzioni del compito 00284

1) Si consideri l'equazione differenziale

$$y'(t) = (4t+2)y(t) + Ae^{2t^2+2t}$$
.

Ricordiamo la formula risolutiva per il problema di Cauchy

(1)
$$\begin{cases} y'(t) = a(t) y(t) + b(t), \\ y(t_0) = y_0. \end{cases}$$

Posto

$$A(t) = \int_{t_0}^t a(s) \, ds \,,$$

si ha

(2)
$$y(t) = e^{A(t)} \left[y_0 + \int_{t_0}^t b(s) e^{-A(s)} ds \right].$$

1A) Esistono infinite soluzioni dell'equazione tali che y(10) = 9.

Falso: Trattandosi di un'equazione differenziale ordinaria del primo ordine, è sufficiente una sola condizione iniziale affinché esista un'unica soluzione.

1B) Se A=0, la funzione $y(t)=4\,\mathrm{e}^{2t^2+2t}$ non è soluzione dell'equazione.

Falso: Se $y(t) = 4 e^{2t^2 + 2t}$, si ha

$$y'(t) = 4(4t+2)e^{2t^2+2t} = (4t+2)y(t) = (4t+2)y(t) + Ae^{2t^2+2t}$$

e quindi y(t) è soluzione dell'equazione.

1C) La funzione $y(t) = (6 + At) e^{2t^2 + 2t}$ è soluzione dell'equazione.

Vero: Se $y(t) = (6 + At) e^{2t^2+2t}$, derivando si ha

$$y'(t) = A e^{2t^2 + 2t} + (6 + At) (4t + 2) e^{2t^2 + 2t} = (4t + 2) y(t) + A e^{2t^2 + 2t}$$

e quindi y(t) è soluzione dell'equazione.

1D) Se
$$y(0) = 0$$
 e $A = 2$, si ha

$$\lim_{t \to +\infty} y(t) = 0.$$

Falso: Il problema rientra nel caso (1) con

$$a(t) = 4t + 2$$
, $b(t) = 2e^{2t^2 + 2t}$, $t_0 = 0$, $y_0 = 0$.

Dato che

$$A(t) = \int_0^t a(s) \, ds = \int_0^t (4s+2) \, ds = (2s^2 + 2s) \Big|_0^t = 2t^2 + 2t \,,$$

e dato che

$$\int_0^t b(s) e^{-A(s)} ds = \int_0^t 2 e^{2s^2 + 2s} e^{-(2s^2 + 2s)} ds = \int_0^t 2 ds = 2t,$$

dalla (2) si ha

$$y(t) = 2t e^{2t^2 + 2t}$$

da cui segue che

$$\lim_{t \to +\infty} y(t) = +\infty \neq 0.$$

2) Si consideri l'equazione differenziale

$$y'(t) = 4 \cos(t) y(t) + 7 \sin(t) \cos(t)$$
.

Derivando l'equazione si ha

(1)
$$y''(t) = -4\sin(t)y(t) + 4\cos(t)y'(t) + 7\cos^2(t) - 7\sin^2(t).$$

2A) Se y(0) = 0, si ha $y'(0) \neq 0$.

Falso: Dall'equazione, sostituendo t = 0, si ha

$$y'(0) = 4\cos(0) y(0) + 7\sin(0)\cos(0) = 4 \cdot 1 \cdot 0 + 7 \cdot 0 \cdot 1 = 0$$
.

2B) Se y(0) = 0, si ha y''(0) = 4.

Falso: Dall'equazione con t = 0 si ha (si veda l'esercizio 2A)

$$y'(0) = 0$$
.

Dalla (1) con t = 0 si ha

$$y''(0) = 7 \neq 4$$
,

dato che il primo, secondo e quarto termine si annullano.

2C) Se y(0) = 6, la soluzione y(t) è decrescente in un intorno di t = 0.

Falso: Dall'equazione si ha

$$y'(0) = 4 \cdot \cos(0) \cdot y(0) = 4 \cdot 6 = 24 > 0$$

per ipotesi. Essendo y'(0) > 0, si ha y'(t) > 0 in un intorno dell'origine (per il teorema di permanenza del segno per funzioni continue) e quindi y(t) è crescente in un intorno dell'origine.

2D) Se $y(\frac{\pi}{2}) = 5$, si ha $T_1(y(t); \frac{\pi}{2}) = 5 + (t - \frac{\pi}{2})$.

Falso: Dall'equazione si ha

$$y'(\frac{\pi}{2}) = 4 \, \cos(\frac{\pi}{2}) \, y(\frac{\pi}{2}) + 7 \, \sin(\frac{\pi}{2}) \, \cos(\frac{\pi}{2}) = 4 \cdot 0 \cdot 5 + 7 \cdot 1 \cdot 0 = 0 \, .$$

Ricordando che

$$T_1(y(t); \frac{\pi}{2}) = y(\frac{\pi}{2}) + y'(\frac{\pi}{2}) (t - \frac{\pi}{2}),$$

si ha

$$T_1(y(t); \frac{\pi}{2}) = 5 \neq 5 + (t - \frac{\pi}{2}).$$

3) Si consideri l'equazione differenziale

$$y'(t) = \frac{e^{y(t)} - 1}{e^{y(t)}} \cos(t)$$
.

Osserviamo che l'equazione è a variabili separabili, essendo della forma

$$y'(t) = f(y(t)) g(t),$$

con

$$f(s) = \frac{e^s - 1}{e^s}, \qquad g(t) = \cos(t).$$

Dato che f(0) = 0, se all'equazione abbiniamo la condizione iniziale y(0) = 0 abbiamo la soluzione costante $y(t) \equiv 0$. Se, invece $y(0) = y_0 > 0$ allora $y(t) \neq 0$ per ogni t e possiamo separare le variabili, riscrivendo l'equazione come

$$\frac{e^{y(t)}y'(t)}{e^{y(t)}-1} = \cos(t).$$

Integrando tra zero e s si ha

$$\int_0^s \frac{e^{y(t)} y'(t)}{e^{y(t)} - 1} dt = \int_0^s \cos(t) dt = \sin(s).$$

Per il primo integrale, con la sostituzione z = y(t), da cui dz = y'(t) dt, si ha

$$\int_0^s \frac{e^{y(t)} y'(t)}{e^{y(t)} - 1} dt = \int_{y_0}^{y(s)} \frac{e^z}{e^z - 1} dz.$$

Con la sostituzione $w = e^z - 1$, da cui $dw = e^z dz$, si ha

$$\int_{y_0}^{y(s)} \frac{\mathrm{e}^z}{\mathrm{e}^z - 1} \, dz = \int_{\mathrm{e}^{y_0} - 1}^{\mathrm{e}^{y(s)} - 1} \frac{dw}{w} = \ln(|w|) \Big|_{\mathrm{e}^{y_0} - 1}^{\mathrm{e}^{y(s)} - 1} = \ln\left(\left|\frac{\mathrm{e}^{y(s)} - 1}{\mathrm{e}^{y_0} - 1}\right|\right).$$

Essendo $y_0 > 0$ possiamo levare i moduli (perché?) e scrivere che

$$\ln\left(\frac{e^{y(s)} - 1}{e^{y_0} - 1}\right) = \sin(s),$$

da cui segue, dopo alcuni calcoli, che

(1)
$$y(s) = \ln[(e^{y_0} - 1)e^{\sin(s)} + 1].$$

Osserviamo di passaggio che la (1) è valida anche nel caso in cui $y_0 = 0$.

3A) L'equazione non è a variabili separabili.

Falso: Per quanto detto sopra, l'equazione è a variabili separabili.

3B) Se y(0) = 0, la soluzione y(t) non è costante.

Falso: Dato che $f(y_0) = f(0) = 0$, la funzione costante $y(t) \equiv y_0 = 0$ è soluzione dell'equazione.

3C) Se y(0) = 5, esiste $t_0 > 0$ tale che $y(t_0) = 0$.

Falso: Se esistesse $t_0 > 0$ tale che $y(t_0) = 0$, il problema di Cauchy con dato iniziale $y(t_0) = 0$ avrebbe due soluzioni: la funzione y(t) che stiamo considerando (e che non è la funzione nulla dato che in t = 0 vale 5), e la funzione $w(t) \equiv 0$. Dato che il problema di Cauchy ha un'unica soluzione, si ha $y(t) \neq 0$ per ogni t > 0.

3D) Se
$$y(0) = \ln(6)$$
, si ha

$$y(s) = \ln(5 e^{\sin(s)} + 1).$$

Vero: Dalla (1), con $y_0=\ln(6)$, da cui segue che ${\rm e}^{y_0}-1=6-1=5$, si ha $y(s)=\ln(5\,{\rm e}^{\sin(s)}+1)\,.$

4) Si consideri l'equazione differenziale $y'(t) = t(y(t)^3 - 9y(t))$.

Osserviamo che l'equazione è a variabili separabili, essendo della forma

$$y'(t) = f(y(t)) g(t),$$

con

(1)
$$f(s) = s^3 - 9s, g(t) = t.$$

4A) Se y(0) = 3, la soluzione è costante.

Vero: Se f(s) è come in (1), dato che si ha f(3) = 0, la funzione costante $y(t) \equiv 3$ è soluzione dell'equazione.

4B) Se y(0) = 1, si ha y'(0) = 0.

Vero: Dall'equazione, scritta per t = 0, si ha

$$y'(0) = 0 \cdot (y(0)^3 - 9y(0)) = 0 \cdot (1 - 9) = 0.$$

4C) Se y(0) = -1, si ha $T_2(y(t); 0) = -1 - 4t^2$.

Falso: Derivando l'equazione si ha

$$y''(t) = y(t)^3 - 9y(t) + t(3y(t)^2 - 9)y'(t),$$

da cui segue che y''(0) = 8. Dato che dall'equazione segue che y'(0) = 0 (si veda l'esercizio 4B), si ha

$$T_2(y(t); 0) = y(0) + y'(0) t + \frac{y''(0)}{2} t^2 = -1 + 4 t^2 \neq -1 - 4 t^2.$$

4D) Se y(0) = 1, la soluzione ha un massimo relativo per t = 0.

Falso: Derivando l'equazione si ha

$$y''(t) = y(t)^3 - 9y(t) + t(3y(t)^2 - 9)y'(t),$$

da cui segue che y''(0) = -8 < 0. Dato che dall'equazione segue che y'(0) = 0 (si veda l'esercizio **4B**), si ha che t = 0 è un punto di massimo relativo per y(t).

5) Si consideri il problema di Cauchy

(1)
$$\begin{cases} y'(t) = a(t) y(t) + b(t), \\ y(0) = y_0. \end{cases}$$

- a) Si risolva (1) se a(t) = -10, b(t) = 3 e $y_0 = 0$.
- **b)** Si risolva (1) se $a(t) = \sin(t)$, $b(t) = 2\sin(t)$ e $y(0) = \pi$.
- c) Si scriva il polinomio di Taylor di ordine 1 di y(t) nell'origine se $a(t) = e^{8t}$, $b(t) = 5 \cos(t)$ e $y_0 = 2$.
- d) Si scriva il polinomio di Taylor di ordine 2 di y(t) nell'origine se a(t) = 8t, $b(t) = 9t^2$ e $y_0 = 4$.

Soluzione:

Ricordiamo che la soluzione del problema di Cauchy (1) è data da

(2)
$$y(t) = e^{A(t)} \left[y_0 + \int_0^t b(s) e^{-A(s)} ds \right], \quad \text{dove} \quad A(t) = \int_0^t a(s) ds.$$

a) Dato che a(t) = -10, si ha

$$A(t) = -\int_0^t 10 \, ds = -10 \, t$$
.

Pertanto, per la (2) si ha

$$y(t) = e^{-10t} \left[0 + \int_0^t 3 e^{10s} ds \right] = e^{-10t} \left[\frac{3}{10} e^{10s} \Big|_0^t \right] = \frac{3}{10} e^{-10t} \left[e^{10t} - 1 \right] = \frac{3}{10} \left[1 - e^{-10t} \right].$$

b) Dato che $a(t) = \sin(t)$, si ha

$$A(t) = \int_0^t \sin(s) \, ds = -\cos(s) \Big|_0^t = 1 - \cos(t) \,,$$

e quindi, per la (2),

$$y(t) = e^{1-\cos(t)} \left[\pi + \int_0^t 2 \sin(s) e^{\cos(s)-1} ds \right].$$

Con il cambio di variabile $z = \cos(s) - 1$, da cui $dz = -\sin(s) \, ds$, si ha

$$\int_0^t 2\sin(s) e^{\cos(s)-1} ds = -2 \int_0^{\cos(t)-1} e^z dz = -2 e^z \Big|_0^{\cos(t)-1} = 2(1 - e^{\cos(t)-1}).$$

Pertanto

$$y(t) = e^{1-\cos(t)} \left[\pi + 2\left(1 - e^{\cos(t)-1}\right)\right] = (\pi + 2) e^{1-\cos(t)} - 2.$$

c) Dall'equazione si ha

$$y'(0) = e^{8 \cdot 0} y(0) + 5 \cos(0) = 1 \cdot 2 + 5 = 7,$$

da cui segue che

$$T_1(y(t); 0) = y(0) + y'(0) t = 2 + 7t.$$

d) Dall'equazione si ha

$$y'(0) = 8 \cdot 0 \cdot y(0) + 9 \cdot 0^2 = 0.$$

Derivando l'equazione si ha poi

$$y''(t) = 8y(t) + 8ty'(t) + 18t,$$

da cui segue che

$$y''(0) = 8y(0) + 8 \cdot 0 \cdot y'(0) + 18 \cdot 0 = 32.$$

Si ha quindi

$$T_2(y(t);0) = y(0) + y'(0) t + \frac{y''(0)}{2} t^2 = 4 + 16 t^2.$$

6) Si risolvano le seguenti equazioni differenziali a variabili separabili.

a)
$$y'(t) = 8y(t) + 13$$
, se $y(0) = 0$.

b)
$$y'(t) = 12t(25 + y^2(t))$$
, se $y(0) = 0$.
c) $y'(t) = e^{-y(t)}e^{5t}$, se $y(0) = 0$.

c)
$$y'(t) = e^{-y(t)} e^{5t}$$
, se $y(0) = 0$.

d)
$$y'(t) = \frac{6(1+y^2(t))}{y(t)}$$
, se $y(0) = 1$.

a) Dividendo per 8y(t) + 13, l'equazione è equivalente a

$$\frac{y'(t)}{8y(t) + 13} = 1.$$

Integrando tra 0 e s si ha

$$\int_0^s \frac{y'(t)}{8y(t) + 13} dt = \int_0^s 1 dt = s.$$

Con la sostituzione z = y(t) si ha, ricordando che y(0) = 0, ed osservando che 8y(s) + 13 > 0 per s vicino a zero,

$$\int_0^s \frac{y'(t)}{8y(t)+13} dt = \int_0^{y(s)} \frac{dz}{8z+13} = \frac{1}{8} \ln(|8z+13|) \Big|_0^{y(s)} = \frac{1}{8} \left[\ln(8y(s)+13) - \ln(13) \right].$$

Pertanto.

$$\frac{1}{8} \left[\ln(8 y(s) + 13) - \ln(13) \right] = s,$$

da cui segue (dopo facili calcoli...) che

$$\frac{8y(s) + 13}{13} = e^{8s},$$

e quindi che

$$y(s) = \frac{13e^{8s} - 13}{8}.$$

b) Separando le variabili, si ha che deve essere

$$\frac{y'(t)}{25 + y^2(t)} = 12 t.$$

Integrando (con la consueta sostituzione z = y(t)) si ha

$$\int_0^{y(s)} \frac{dz}{25 + z^2} = \int_0^s 12 t \, dt = 6 \, s^2 \, .$$

Dato che

$$\int \frac{dz}{25 + z^2} = \frac{1}{5} \arctan\left(\frac{z}{5}\right),$$

si ha

$$\frac{1}{5}\arctan\left(\frac{y(s)}{5}\right) = 6s^2,$$

da cui segue che

$$y(s) = 5 \tan(30 s^2)$$
.

c) Separando le variabili si arriva a

$$\int_0^{y(s)} e^z dz = \int_0^s e^{5t} dt = \frac{e^{5s} - 1}{5}.$$

Il primo integrale è immediato, e porta a

$$e^{y(s)} - 1 = \frac{e^{5s} - 1}{5},$$

da cui

$$y(s) = \ln\left(\frac{e^{5s} + 4}{5}\right).$$

d) Separando le variabili si arriva a

$$\int_1^{y(s)} \frac{z}{1+z^2} \, dz = \int_0^s \, 6 \, dt = 6 \, s \, .$$
 Dato che
$$\int \frac{z}{1+z^2} \, dz = \frac{1}{2} \, \frac{2z}{1+z^2} \, dz = \frac{1}{2} \, \ln(1+z^2) \, ,$$
 si ha
$$\frac{1}{2} \, \ln(1+y^2(s)) - \frac{1}{2} \, \ln(2) = 6 \, s \, ,$$
 da cui
$$y^2(s) = 2 \, \mathrm{e}^{12 \, s} - 1 \, ,$$

e quindi

$$y(s) = \sqrt{2 e^{12 s} - 1}$$
.

Perché, tra le due radici, si è scelta quella positiva?