WO0052001

Publication Title:

Piperazine derivatives and process for the preparation thereof

Abstract:

The present invention relates to a novel compound of the general formula (I) and its pharmaceutically acceptable acid addition salt, and process for the preparation thereof, which have strong antimumor activities and very low toxicity. wherein R1 and R2 are independently hydrogen, C1-C4 alkyl, C1-C4 alkylcarboxyl, C1-C4 alkylcarbonyl, C1-C4 alkoxy, C1-C4 hydroxyalkyl, C1-C4 aminoalkyl or C1-C4 hydroxyiminoalkyl, or R1 and R2 are fused to form C3-C4 unsaturated ring; R3, R4, R5, R6 and R7 are independently hydrogen, halogen, hydroxy, nitro, amino, C1-C4 alkyl, C1-C4 alkylcarboxyl, C1-C4 alkylcarbonyl, C1-C4 alkoxy or C1-C4 thioalkoxy; R8 is C1-C4 alkyl; Y is oxygen, sulphur, amino, substituted amino or C1-C4 thioalkyl; Z is C1-C4 alkoxy, C1-C4 alkyl C1-C4 alkylamino or C1-C4 thioalkoxy; X1 and X2 are independently carbon or nitrogen; and -N=C- and -C=Y- may form a single bond or a double bond provided that if -N=C- forms a single bond, -C=Y- forms a double bond and R8 is nonexistent.

Data supplied from the esp@cenet database - http://ep.espacenet.com

This Patent PDF Generated by Patent Fetcher(TM), a service of Stroke of Color, Inc.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷:
C07D 295/108, 295/13, 401/12, 403/12, 213/65, 241/28

(11) International Publication Number:

WO 00/52001

(43) International Publication Date:

8 September 2000 (08.09.00)

(21) International Application Number:

PCT/KR00/00164

(22) International Filing Date:

3 March 2000 (03.03.00)

(30) Priority Data:

1999/6890 3 March 1999 (03.03.99) KR 1999/7266 5 March 1999 (05.03.99) KR 1999/8088 11 March 1999 (11.03.99) KR 1999/11254 31 March 1999 (31.03.99) KR

(71) Applicant (for all designated States except US): SAMJIN PHARMACEUTICAL CO., LTD. [KR/KR]; 338-8, Seokyo-dong, Mapo-gu, Seoul 121-739 (KR).

(72) Inventors; and

(75) Inventors'Applicants (for US only): CHO, Eui-Hwan [KR/KR]; #105-101, Hyundai 1-cha Apt., 653, Kaepo 1-dong, Kangam-gu, Seoul 135-241 (KR). CHUNG, Sun-Gan [KR/KR]; #206-1603, Lg Village Apt., 530, Keumgok-dong, Kwonson-gu, Suwon, Kyungki-do 441-460 (KR). LEE, Sun-Hwan [KR/KR]; #105-403, Daerim Apt., Dokgok-dong, Pyongtaek, Kyungki-do 459-100 (KR). KWON, Ho-Seok [KR/KR]; #506-1105, Sindonga Apt. 1274, Kwonson-dong, Suwon, Kyungki-do 441-390 (KR). KANG, Dong-Wook [KR/KR]; #708-1306, Chowon Buyoung Apt., 896-6, Pyeongchon-dong,

Dongan-gu, Anyang, Kyungki-do 431-070 (KR). JOO, Jeong-Ho [KR/KR]; #107-301, Baekzo Apt., Seoksu 1-dong, Manan-gu, Anyang, Kyungki-do 430-041 (KR). LEE, Young-Hee [KR/KR]; 866-5, Bono 1-dong, Ansan, Kyungki-do 425-181 (KR).

(74) Agent: PARK, Sa-Ryong; Park Patent & Law, Rm. 301, Chongho Bldg., 823-5, Yeoksam 1-dong, Kangnam-gu, Seoul 135-081 (KR).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

(I)

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PIPERAZINE DERIVATIVES AND PROCESS FOR THE PREPARATION THEREOF

$$\begin{array}{c|c}
R_2 & X_1 & R_5 \\
R_1 & X_2 & Z & R_7 & R_6
\end{array}$$

(57) Abstract

The present invention relates to a novel compound of general formula (I) and its pharmaceutically acceptable acid addition salt, and process for the preparation thereof, which have strong antitumor activities and very low toxicity, wherein R_1 and R_2 are independently hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkylcarboxyl, C_1 - C_4 al

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia	
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia	
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal	
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad	
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan	
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago	
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine	
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda	
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
CA	Canada	IT	Ĭtaly	MX	Mexico	UZ	Uzbekistan	
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam	
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia	
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe	
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			
CM	Cameroon		Republic of Korea	PL	Poland			
CN	China	KR	Republic of Korea	PT	Portugal			
CU	Cuba	KZ	Kazakstan	RO	Romania			
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
DE	Germany	LI	Liechtenstein	SD	Sudan			
DK	Denmark	LK	Sri Lanka	SE	Sweden			
EE	Estonia	LR	Liberia	SG	Singapore			

Piperazine derivatives and process for the preparation thereof

The present invention relates to a new piperazine derivative of the general formula (I) or its pharmaceutically acceptable acid addition salt, and process for the preparation thereof.

$$R_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{2}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{2}$$

$$X_{1}$$

$$X_{2}$$

$$X_{3}$$

$$X_{4}$$

$$X_{5}$$

$$X_{7}$$

$$X_{6}$$

(I)

wherein R_1 and R_2 are independently hydrogen, C_1 – C_4 alkyl, C_1 – C_4 alkylcarboxyl, C_1 – C_4 alkylcarboxyl, C_1 – C_4 alkylcarboxyl, C_1 – C_4 hydroxyalkyl,

15 C₁-C₄ aminoalkyl or C₁-C₄ hydroxyiminoalkyl, or R₁ and R₂ are fused to form C₃-C₄ unsaturated ring;

 R_3 , R_4 , R_5 , R_6 and R_7 are independently hydrogen, halogen, hydroxy, nitro, amino, C_1 – C_4 alkyl, C_1 – C_4 alkylcarboxyl, C_1 – C_4 alkoxy or C_1 – C_4 thioalkoxy;

20 R_8 is C_1 - C_4 alkyl;

10

Y is oxygen, sulphur, amino, substituted amino or C_1 - C_4 thioalkyl; Z is C_1 - C_4 alkoxy, C_1 - C_4 alkyl, C_1 - C_4 alkylamino or C_1 - C_4 thioalkoxy; X_1 and X_2 are independently carbon or nitrogen; and

provided that if -N=C- forms a single bond, -C=Y- forms a bouble bond, and if -C=Y- forms a single bond, -N=C- forms a bouble bond and R_8 is nonexistent.

-N=C- and -C=Y- may form a single bond or a double bond

In the above definitions, C₁-C₄ alkyl means methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl or tert-butyl.

C₁-C₄ alkylcarboxyl means carboxyl esterified with a lower alkyl such

- 2 -

as methylcarboxyl and ethylcarboxyl.

25

C₁-C₄ alkylcarbonyl means carbonyl ketonized with a lower alkyl such as methylcarbonyl and ethylcarbonyl.

C₁-C₄ alkoxy means methoxy, ethoxy, propoxy, isopropoxy, butoxy, 5 isobutoxy or tert-butoxy.

C₁-C₄ thioalkoxy means methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio or tert-butylthio.

C₁-C₄ aminoalkyl means aminomethyl, aminoethyl, aminopropyl, aminobutyl or the like.

10 C₁-C₄ kydroxyalkyl means hydroxymethyl, hydroxyethyl, hydroxypropyl, hydroxybutyl or the like.

 C_1 - C_4 hydroxyiminoalkyl means C_1 - C_4 alkyl substituted with hydroxyimino such as hydroxyiminoethyl.

Substituted amino means hydroxyamino, C₁-C₄ alkylamino, C₁-C₄ alkoxyamino or the like. 15

The present inventors had studied for a long time to find compounds having intensive antitumor activity. As a result, now we have finally found out the facts that the present compounds of the general formula 20 (I) and acid addition salts thereof have not only prominent antitumor activities but very low toxicities.

Accordingly, the one object of the present invention is to provide the novel compounds of the general formula (I) and acid addition salts thereof having not only prominent antitumor activities but very low toxicities.

The other object of the present invention is to provide a process for the preparation of the compounds of general formula(I) and acid addition salts thereof.

The compounds of the present invention can be mixed with pharmaceutically acceptable vehicles by a known method to give 30 pharmaceutical compositions and thus the pharmaceutical compositions

- 3 -

can be used to prevent or treat with various kinds of tumors of human beings or mammals.

Therefore, another object of the present invention is to provide pharmaceutical compositions containing the compound of the general formula(I) or an acid addition salt thereof as an active ingredient.

Acids which can be reacted with the compounds of the general formula(I) to form acid addition salts are pharmaceutically acceptable inorganic or organic acids; for example, inorganic acids such as hydrochloric acid, bromic acid, sulfuric acid, phosphoric acid, nitric acid; organic acids such as formic acid, acetic acid, propionic acid, succinic acid, citric acid, maleic acid, malonic acid, glycolic acid, lactic acid; amino acids such as glycine, alanine, valine, leucine, isoleucine, serine, cysteine, cystine, asparaginic acid, glutamic acid, lysine, arginine, tyrosine, proline; sulfonic acids such as methane sulfonic acid, ethane sulfonic acid, benzene sulfonic acid, toluene sulfonic acid; or the like.

Vehicles which can be used in the preparation of pharmaceutical compositions containing the compound of the general formula (I) as the active ingredient may include a sweetening agent, binding agent, dissolving agent, aids for dissolution, wetting agent, emulsifying agent, isotonic agent, adsorbent, degrading agent, antioxident, antiseptics, lubricating agent, filler, perfume or the like; such as lactose, dextrose, sucrose, mannitol, sorbitol, cellulose, glycine, silica, talc, stearic acid, stearin, magnesium stearate, calcium stearate, magnesium aluminum silicate, starch, gelatine, tragacanth gum, glycine, silica, alginic acid, sodium alginate, methyl cellulose, sodium carboxy methyl cellulose, agar, water, ethanol, polyethylenglycol, polyvinyl pyrrolidone, sodium chloride, potassium chloride, orange essence, strawberry essence, vanila aroma or the like.

25

Daily dosage of the compound of the general formula (I) may be varied depending on age, sex of a patient, degree of disease, etc. and generally 1.0mg to 5,000mg per day may be administered one to several times.

5

The compounds of the general formula (I) according to the present invention wherein —N=C— forms a single bond and —C=Y— forms a bouble bond, may be prepared by the following scheme I.

10 Scheme I

15

$$R_3$$
 R_4
 R_5
 R_7
 R_6
 R_6
 R_7
 R_6
 R_7
 R_6
 R_7
 R_6
 R_7
 R_6
 R_7
 R_6
 R_7
 R_7
 R_6
 R_7
 R_7
 R_8
 R_7
 R_8
 R_9
 R_9

20

25

30

wherein R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, X₁, X₂, Y and Z are as defined above, and Lie is a conventional leaving group such as halogen, sulfonyl or the like.

The above process comprises reacting a compound of the general

formula (2) with a -C(=Y)- group-providing agent in an organic solvent to obtain a compound of the general formula (3) and successively reacting the compound of the formula (3) with a compound of the general formula (4) to give the compound of the general formula (5).

Then, the compound of the formula (5) may be reacted with an alkylating agent or an arylating agent in the presence of a base to give a compound of the general formula (Ia).

The -C(=X)-group-providing agent used in the above reaction may include 1,1-carbonyldiimidazole, 1,1-carbonylthiodiimidazole, phosgene, thiophosgene, carbonyldiphenoxide and phenylchloroformate, and it may be used in an amount of 1 - 1.5 equivalent, preferably 1-1.1 equivalent to the starting compound.

The reaction may be carried out in a conventional organic solvent such as, for example, tetrahydrofuran, dichloromethane, acetonitrile, chloroform and dimethylformamide.

And also the reaction is preferably carried out in the presence of a coupling agent such as a conventional inorganic or an organic base.

Such conventional inorganic or organic bases used in the reaction may include sodium hydride, potassium hydride, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, potassium bicarbonate, triethylamine, pyridine and DBU.

The reaction may be carried out at a temperature between 3° C and boiling point of the solvent used, preferably at 50° C- 100° C and for 5 - 48 hours, preferably for 10 - 24 hours.

The reaction of the compound (3) with the compound (4) to give the compound (5) may be carried out in the presence of a conventional organic solvent at the temperature of 50–100°C for 5–48 hours. The compound (4) may be used by 1–1.5 equivalent.

- 6 -

And also the reaction is preferably carried out in the presence of a conventional inorganic or organic base, such as sodium hydride, potassium hydride, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, potassium bicarbonate, triethylamine, pyridine, DBU or the like.

Then, the compound of the formula (5) may be reacted with an alkylating agent or an arylating agent in the presence of a conventional organic or inorganic base to give a compound of the general formula (Ia).

The alkylating agent and arylating agent used in the above step may include C₁-C₈ alkylhalide, C₁-C₈ alkylsulfonate, substituted or unsubstituted C₃-C₈ cycloalkyl halide, arylhalide, and substituted or unsubstituted C₃-C₈ cycloalkyl sulfonate.

C₁-C₈ alkyl halide means methyl chloride, methyl bromide, methyl iodide, ethyl chloride, ethyl bromide, ethyl iodide, propyl chloride, propyl bromide, propyl iodide, butyl chloride, butyl bromide, butyl iodide, pentyl chloride, pentyl bromide, pentyl iodide, bromo ehtylacetate or the like.

 C_1 – C_8 alkylsulfonate means methyl sulfonate, ethyl sulfonate, propyl sulfonate, butyl sulfonate, pentyl sulfonate or the like.

20

25

Substituted or unsubstituted C₃-C₈ cycloalkyl halides mean cyclopropyl chloride, cyclopropyl bromide, cyclopropyl iodide, cyclobutyl chloride, cyclopentyl bromide, cyclobutyl iodide, cyclopentyl chloride, cyclopentyl bromide, cyclopentyl iodide, cyclohexyl chloride, cyclohexyl bromide, cyclopropyl methyl chloride, cyclopropyl methyl bromide, cyclopropyl methyl iodide, cyclobutyl methyl chloride, cyclobutyl methyl bromide, cyclobutyl methyl iodide, cyclopentyl methyl chloride, cyclopentyl methyl bromide, cyclopentyl methyl iodide, cyclohexyl methyl chloride, cyclohexyl methyl bromide, cyclohexyl methyl iodide, or the like.

Aryl halides may include benzyl chloride, benzyl bromide, benzyl iodide, benzoyl chloride, benzoyl iodide, toluyl chloride,

- 7 -

toluyl bromide and toluyl iodide.

Substituted or unsubstituted C₃-C₈ cycloalkyl sulfonate may include cyclopropyl sulfonate, cyclobutyl sulfonate, cyclopentyl sulfonate, cyclopentyl sulfonate, cyclobutyl methyl sulfonate, cyclobutyl methyl sulfonate and cyclohexyl methyl sulfonate.

Aryl sulfonate may include benzyl sulfonate, benzoyl sulfonate, toluyl sulfonate, or the like.

The reaction may be carried out in a conventional organic solvent as such as, for example, tetrahydrofuran, dichloromethane, chloroform, dimethyl sulfoxide, acetonitrile and dimethylformamide.

The conventional inorganic or organic base used in above step may include sodium hydride, potassium hydride, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, potassium bicarbonate, triethylamine, pyridine and DBU.

In the above reaction process, if any acid material is formed, a basic material may be added as a scavenger in order to eliminate the acid material from the reaction phase. Such basic material may be alkali 20 metal hydroxide, alkali earth metal hydroxide, alkali metal oxide, alkali earth metal oxide, alkali earth metal carbonate, alkali metal hydrogen carbonate, alkali earth metal hydrogen carbonate such as for example, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, magnesium oxide, calcium oxide, potassium carbonate, sodium carbonate, calcium carbonate, magnesium carbonate, sodium bicarbonate, calcium bicarbonate or the like, and organic amines.

The compounds of the general formula (2) and the formula (4) are known compounds, or may be prepared by a known method described in, for example, Farmaco(pavia) Ed, Sci., 18(8), 557-65(1963) or by a similar method thereto.

A compound of the general formula (I) wherein —C=Y—
forms a single bond and —N=C— forms a double bond may be prepared
by the following scheme II

5 Scheme II.

25

30

$$R_{2} \xrightarrow{X_{1}} X_{2} \xrightarrow{X_{2}} Z$$

$$R_{1} \xrightarrow{X_{2}} Z$$

$$R_{2} \xrightarrow{X_{1}} X_{2} \xrightarrow{X_{2}} Z$$

$$R_{2} \xrightarrow{X_{1}} X_{2} \xrightarrow{X_{2}} Z$$

$$R_{3} \xrightarrow{R_{4}} R_{5}$$

$$R_{4} \xrightarrow{R_{5}} R_{5}$$

$$R_{7} \xrightarrow{R_{6}} R_{5}$$

$$R_{7} \xrightarrow{R_{7}} R_{6}$$

$$R_{8} \xrightarrow{R_{1}} X_{2} \xrightarrow{R_{2}} Z$$

$$R_{1} \xrightarrow{X_{2}} Z$$

$$R_{1} \xrightarrow{X_{2}} Z$$

$$R_{2} \xrightarrow{X_{1}} X_{2} \xrightarrow{X_{2}} Z$$

$$R_{3} \xrightarrow{R_{4}} R_{5}$$

$$R_{5} \xrightarrow{R_{5}} R_{5}$$

$$R_{7} \xrightarrow{R_{6}} R_{5}$$

$$R_{1} \xrightarrow{X_{2}} Z$$

$$R_{1} \xrightarrow{X_{2}} Z$$

$$R_{2} \xrightarrow{X_{1}} X_{2} \xrightarrow{X_{2}} Z$$

$$R_{3} \xrightarrow{R_{4}} R_{5}$$

$$R_{4} \xrightarrow{R_{5}} R_{5}$$

$$R_{5} \xrightarrow{R_{1}} R_{6}$$

$$R_{2} \xrightarrow{X_{1}} X_{2} \xrightarrow{X_{2}} Z$$

$$R_{1} \xrightarrow{X_{2}} Z$$

$$R_{2} \xrightarrow{X_{1}} X_{2} \xrightarrow{X_{2}} Z$$

$$R_{3} \xrightarrow{R_{4}} R_{5}$$

$$R_{4} \xrightarrow{R_{5}} R_{5}$$

$$R_{5} \xrightarrow{R_{1}} R_{6}$$

wherein R₁, R₂, R₃, R₄, R₅, R₆, R₇, X₁, X₂, Y and Z are as defined above, and R' is lower alkyl such as methyl and ethyl.

A compound of the general formula (II), which may be prepared by a known method, is reacted with an alkylating agent in the presence of a base to give a compound of the general formula (I'). Then, the compound of the formula (I') is reacted with a substituted or unsubstituted amine in the presence of a base to give a compound of the general formula (Ib).

The reaction may be carried out at a temperature between 3°C and

- 9 -

boiling point of the solvent used, preferably at 50° C-100°C for 5 - 48 hours, preferably for 10 - 24 hours.

The alkylating agent may be used in an amount of 1 – 1.5 equivalent to the compound (II). The alkylating agent may include C₁–C₈ alkyl halide, C₁–C₈ alkylsulfonate, substituted or unsubstituted C₃–C₈ cycloalkyl halide, aryl halide and substituted or unsubstituted C₃–C₈ cycloalkyl sulfonate.

The reaction may be carried out in a conventional organic solvent as described above.

The conventional inorganic or organic base as described above may be used in the above process.

The compound of the formula (I') is reacted with a substituted or unsubstitued amine in the presence of a conventional base to give a compound of the general formula (Ib).

The reaction also may be preferably carried out in a conventional organic solvent as decribed above.

The conventional inorganic or organic base described above may be used in the above reaction step.

In the above reactions, if any acid material is formed, any basic material may be preferably added as a scavenger in order to eliminate the acid material from the reaction phase. Such basic material may be the organic or inorganic bases as described in the scheme I above.

The compound of the general formula (II) is a known compound, or may be prepared by a known method described in, for example, USP 5,780,472, PCT/KR97/00128 or by a similar method thereto.

Hereinafter the present invention will be described in more details with reference to following examples but it is not intended to limit the scope of the invention thereinto.

30

Compounds of the general formula (Ia) were prepared in following

examples according to the above-mentioned process.

wherein R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , X_1 , X_2 , Y and Z are as defined above.

•	t	4	r
	ı	и	
-	ı	и	ı

	Ex.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	X_1	X ₂	Y	Z
	1	СН₃	СН₃	Н	Н	Н	Н	Н	Н	N	N	О	OCH₃
	2	СН₃	СН3	OCH₃	Н	Н	Н	Н	H	N	N	О	ОСН₃
15	3	СН₃	СН3	Н	OCH ₃	Н	OCH₃	Н	Н	N	N	0	ОСН₃
	4	СН₃	СН₃	Et	Н	Н	Н	Н	Н	N	N	O	OCH₃
	5	СН₃	СН₃	Н	Н	n-Bu	Н	Н	Н	N	N	0	ОСН₃
	6	СН₃	СН₃	iPr	Н	Н	H	Н	Н	N	N	0	OCH₃
20	7	СНз	CH ₃	Н	CH ₃	Н	СН₃	Н	Н	N	N	О	OCH₃
	8	СН3	СН3	СН₃	СН3	Н	СН3	СН3	Н	N	N	O	OCH₃
	9	СН₃	СН₃	F	Н	Н	H	H	Н	N	N	0	ОСН₃
	10	СН₃	СН₃	Н	Br	H	Н	Н	Н	N	N	0	ОСН₃
25	11	СН₃	CH ₃	Н	Cl	Н	Cl	Н	Н	N	N	O	ОСН₃
	12	CH₃	СН₃	Н	F	H	F	Н	Н	N	N	О	OCH₃
	13	СН₃	СН₃	Н	CF ₃	Н	Н	Н	Н	N	N	0	OCH₃
	14	СН₃	СН₃	SCH₃	Н	Н	Н	н	Н	N	N	0	OCH₃
30	15	СН₃	СН₃	Н	NO ₂	Н	NO ₂	H	Н	N	N	0	OCH ₃

- 11 -

WO 00/52001 PCT/KR00/00164

Ex.	R ₁ .	R ₂	R ₃	R4	R ₅	R ₆	R_7	R ₈	X_1	X_2	Y	Z
16	СН3	CH ₃	Н	NH ₂	Н	NH ₂	Н	Н	N	N	0	OCH₃
17	СН3	CH ₃	Н	Н	Ac	Н	Н	Н	N	N	0	OCH ₃
18	СН₃	СН3	OCH₃	Н	Н	Н	Н	СН₃	N	N	0	OCH ₃
19	СН₃	СН3	H	OCH₃	Н	ОСН₃	Н	СН₃	N	N	0	ОСН₃
20	СН3	СН₃	H	СН₃	H	СН₃	Н	СН3	N	N	0	OCH ₃
21	СН₃	СН3	Н	Cl	H	Cl	Н	СН₃	N	N	0	OCH₃
22	СН3	СНз	Н	F	Н	F	Н	CH₃	N	N	0	OCH₃
23	СН₃	СН₃	SCH₃	Н	Н	Н	H	CH₃	N	N	0	OCH₃
24	CH₃	CH ₃	Н	NO ₂	Н	NO ₂	Н	CH ₃	N	N	0	OCH₃
25	СН₃	СН₃	Н	NH ₂	Н	NH ₂	H	СН₃	N	N	0	OCH ₃
26	CH ₃	CH ₃	Н	OCH₃	Н	OCH₃	H	Et	N	N	O	OCH ₃
27	CH ₃	СН₃	Н	СН₃	Н	СН₃	Н	Et	N	N	o	OCH ₃
28	CH ₃	СН₃	Н	OCH ₃	Н	OCH₃	Н	Н	N	N	s	OCH₃
29	СН₃	СНз	Et	Н	Н	Н	Н	Н	N	N	S	OCH₃
30	CH ₃	СН3	Н	СН₃	Н	CH₃	Н	Н	N	N	S	OCH₃
31	CH ₃	СН₃	Н	Br	Н	Н	Н	Н	N	N	S	OCH ₃
32	CH₃	CH₃	Н	Cl	Н	Cl	Н	Н	N	N	s	OCH ₃
33	CH ₃	СН₃	SCH ₃	Н	Н	Н	Н	Н	N	N	s	OCH ₃
34	Et	Et	Н	СН3	Н	СН₃	Н	Н	N	N	0	OCH ₃
35	Et	Et	Н	OCH ₃	Н	OCH ₃	Н	Н	N	N	0	OCH ₃

Ex.	R_1	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	Xı	X ₂	Y	Z
36	анан	анан	Н	Н	Н	Н	Н	Н	N	N	O	OCH ₃
37	а⊭ан	а⊧ан	OCH₃	Н	Н	Н	Н	Н	N	N	0	OCH₃
38	α H αH	а⊭ан	Н	OCH₃	Н	OCH ₃	Н	Н	N	N	О	OCH ₃
39	анан	на⊭ан	Et	Н	Н	Н	Н	Н	N	N	0	OCH ₃
40	Œ₩ŒH	нанан	iPr	H	Н	Н	Н	Н	N	N	0	ОСН₃
41	α ⊨ α⊦	на⊭ан	Н	Н	nBu	Н	Н	Н	N	N	0	ОСН₃
42	Œ#Œ	на⊭ан	Н	СН3	Н	СН₃	Н	Н	N	N	0	OCH₃
43	a ⊬ a:	нањан	СН₃	СН3	Н	СН3	СН₃	Н	N	N	0	OCH₃
44	ана	нанан	F	Н	Н	Н	Н	Н	N	N	0	OCH₃
45	ања	на⊭ан	Н	Br	Н	Н	Н	Н	N	N	0	OCH₃
46	a⊭a	нанан	Н	F	Н	F	Н	Н	N	N	0	OCH₃
47	αŧα	на⊭ан	Н	CF ₃	Н	Н	Н	Н	N	N	0	OCH₃
48	a⊭a	на⊭ан	Н	NO ₂	Н	NO ₂	Н	Н	N	N	0	OCH ₃
49	а⊭а	нанан	H	NH ₂	Н	NH ₂	Н	Н	N	N	0	OCH₃
50	ана	нанан	Н	Н	Ac	Н	Н	Н	N	N	0	OCH₃
51	ана	нанан	SCH₃	Н	Н	Н	H	H	N	N	0	OCH ₃
52	a⊭a	нањан	Ph	Н	H	Н	Н	H	N	N	0	OCH₃
53	a⊭a	нанан	Н	OCH ₃	H	OCH₃	Н	CH ₃	N	N	0	OCH ₃
54	a⊭a	HOHOH	OCH ₃	Н	Н	Н	Н	СН₃	N	N	0	OCH₃
55	ŒŧŒ	Ha#a	Н	CH₃	Н	CH₃	Н	CH₃	N	N	0	OCH ₃

- 13 -

Ex	R_1	R ₂	R ₃	R4	R ₅	R ₆	R ₇	R_8	X_1	X ₂	Y	Z
56	a⊧aı	а⊭ан	Н	F	Н	F	H	СН₃	N	N	0	OCH ₃
57	анан	а⊭ан	H	NO ₂	Н	NO ₂	Н	СН₃	N	N	0	OCH ₃
58	а⊭ан	а⊭ан	Н	NH ₂	Н	NH ₂	Н	СН₃	N	N	0	OCH₃
59	ањан	а⊭ан	Н	OCH₃	·H	OCH₃	Н	Et	N	N	0	OCH₃
60	а⊭ан	-ањан	Н	СН₃	Н	СН₃	Н	Et	N	N	0	OCH₃
61	анан	αŧαн	H	Cl	Н	Cl	Н	Et	N	N	O	OCH₃
62	а⊭ан	а⊭ан	H	ОСН₃	Н	ОСН₃	Н	iPr	N	N	0	OCH₃
63	а⊭ан	а⊭ан	OCH₃	Н	Н	Н	Н	H	N	N	S	OCH₃
64	анан	но⊭т	F	OCH₃	Н	OCH₃	Н	Н	N	N	S	OCH₃
65	анан	анан	Et	H	H	Н	H	Н	N	N	S	OCH₃
66	Œ₩ŒH	нанан	H	СН3	H	CH ₃	H	H	N	N	S	OCH ₃
67	α ⊩ αн	на⊭ан	H	Br	H	Н	Н	Н	N	N	s	OCH₃
68	анан	нанан	Н	F	H	F	Н	Н	N	N	S	OCH₃
69	ана	на⊭ан	SCH₃	Н	Н	Н	Н	Н	N	N	s	OCH₃
70	a⊭a	на⊭ан	Н	Н	Ac	Н	Н	Н	N	N	s	OCH₃
71	a⊭a:	нанан	Н	Н	nBu	н	Н	Н	N	N	s	OCH₃
72	a + a+	на⊭ан	Н	OCH ₃	Н	OCH₃	Н	Н	N	N	0	OEt
73	a ∔ a-	нанан	OEt	Н	Н	Н	Н	Н	N	N	0	OEt
74	a⊭a	на⊭ан	Н	СН₃	Н	СН₃	Н	Н	N	N	0	OEt
75	a ⊩ a	на⊭ан	СН₃	СН₃	Н	Н	Н	Н	N	N	О	OEt

PCT/KR00/00164

Ex.	R ₁	R ₂	R_3	R4	R ₅	R ₆	R ₇	R ₈	X_1	X_2	Y	Z
76	анан	анан	Et	Н	Н	Н	H	Н	N	N	0	OEt
77	анан	на⊭ан	Н	Cl	Н	Cl	Н	Н	N	N	0	OEt
78	ањан	на⊭ан	Н	Br	Н	Н	Н	Н	N	N	0	OEt
79	Œ₩ŒH	на⊭ан	Н	F	Н	F	Н	H	N	N	0	OEt
80	Œ H ŒH	на⊭ан	SCH₃	Н	Н	Н	Н	Н	N	N	0	OEt
81	ана	на⊭ан	Н	ОСН₃	Н	OCH₃	Н	CH ₃	N	N	0	OEt
82	a⊭a:	на⊭ан	H	Cl	Н	Cl	Н	СН₃	N	N	0	OEt
83	ана	нанан	Н	ОСН₃	Н	OCH₃	Н	Et	N	N	0	OEt
84	a⊭a	на⊭ан	Н	Cl	H	Cl	Н	Et	N	N	0	OEt
85	a⊭a	на⊭ан	Н	CH ₃	Н	CH ₃	H	Et	N	N	0	OEt
86	αŧα	на⊭ан	Н	CH ₃	H	CH ₃	H	Н	С	С	0	ОСН₃
87	a⊨a	на⊭ан	Н	OCH₃	Н	OCH ₃	Н	Н	С	С	0	OCH₃
88	α⊭α	на⊭ан	Н	F	Н	F	Н	Н	С	С	0	OCH₃
89	a⊭a	нанан	Н	Cl	Н	Cl	H	Н	С	С	О	OCH₃
90	Œ₩Œ	+ a ⊧a⊦	Н	СН₃	Н	СН₃	H	СН3	С	С	0	OCH₃
91	Œ₩Œ	H ŒHŒH	Н	F	Н	F	Н	CH ₃	С	С	0	OCH₃
92	a⊬a	нанан	H	Cl	Н	Cl	Н	CH ₃	С	С	0	OCH₃
93	a⊭a	нана	Н	OCH₃	Н	OCH₃	Н	СН₃	С	С	0	OCH₃
94	a⊭a	-tα + α	Н	ОСН₃	H	OCH₃	Н	Et	С	С	0	OCH₃
95	a⊭a	нана	Н	СН3	Н	СН₃	Н	Et	С	С	О	OCH₃

The compounds of the general formula (Ib) were prepared in the following examples according to the above-described process.

$$\begin{array}{c|c}
 & Y \\
R_2 & X_1 & N = C - N \\
R_1 & X_2 & Z
\end{array}$$
(Ib)

wherein, R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , X, Y and Z are as defined above.

Ex.	R_1	R_2	R ₃	R₄	R ₅	R_6	R ₇	X_1	X ₂	Y	Z
96	CH ₃	СН3	Н	Н	Н	Н	Н	С	N	NHOH	OCH₃
97	СН₃	СН₃	Н	Н	CH ₃	Н	Н	С	N	NHOH	OCH₃
98	СН₃	СН3	Н	Н	nBu	Н	Н	С	N	NHOH	OCH₃
99	СН₃	СН₃	Н	СН₃	Н	СН₃	Н	Ċ	N	NHOH	ОСН₃
100	CH₃	CH ₃	OCH ₃	Н	H	Н	Н	С	N	инон	ОСН₃
104	СН₃	CH ₃	Н	OCH₃	Н	OCH ₃	Н	С	N	NHOH	ОСН₃
102	СН₃	CH₃	Н	F	Н	F	Н	С	N	NHOH	ОСН₃
103	СН3	СН₃	Н	Cl	Н	Cl	Н	С	N	NHOH	OCH₃
104	СН3	СН₃	Н	Br	H	Н	Н	С	N	NHOH	OCH₃
105	СН3	CH₃	Н	NO ₂	Н	NO ₂	Н	С	N	NHOH	OCH₃
106	СН3	CH ₃	Н	OEt	Н	OEt	Н	С	N	NHOH	OCH ₃
107	СН3	CH ₃	Н	∕∕он	Н	∕ОН	Н	С	N	NHOH	OCH ₃
108	CH ₃	Et	OCH₃	Н	Н	Н	Н	С	N	NHOH	OCH₃
109	СН₃	Et	Н	OCH₃	Н	OCH₃	Н	С	N	NHOH	OCH ₃
110	СН₃	Et	Et	Н	Н	Н	Н	С	N	NHOH	OCH ₃

Ex.	Rı	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	X_1	X_2	Y	Z
111	СН₃	Et	H	Н	Н	Н	Н	С	N	NHOH	OCH₃
112	СН₃	Et	SCH₃	Н	Н	Н	Н	С	N	NHOH	OCH₃
113	СН3	Et	Н	СН3	Н	СН₃	Н	С	N	NHOH	OCH₃
114	СН₃	Et	Н	F	Н	F	Н	С	N	NHOH	OCH₃
115	СН₃	Et	Н	Cl	. Н	Cl	Н	С	N	NHOH	OCH₃
116	СН3	Et	Ph	н	Н	Н	Н	С	N	NHOH	OCH₃
117	СН₃	Et	Н	NO ₂	Н	NO ₂	Н	С	N	NHOH	OCH₃
118	СН₃	OCH ₃	Н	OCH₃	Н	OCH ₃	Н	С	N	NHOH	OCH₃
119	СН₃	OCH ₃	Н	СН₃	H	СН3	H	С	N	NHOH	OCH₃
120	CH ₃	О ОСН3	Н	F	Н	F	Н	С	N	NHOH	OCH₃
121	СН3	OCH ₃	OCH₃	Н	Н	Н	Н	С	N	NHOH	ОСН₃
122	СН3	ОСНЗ	Н	Н	Н	Н	Н	С	N	NHOH	OCH₃
123	СН₃	Оснз	Н	Н	СН₃	Н	Н	С	N	NHOH	OCH₃
124	CH ₃	ОСН	Н	Cl	Н	Н	Н	С	N	NHOH	OCH₃
125	СН₃	∕он	Н	OCH₃	H	OCH₃	Н	С	N	NHOH	OCH ₃
126	СН₃	∕он	Н	СН₃	Н	СН₃	Н	С	N	NHOH	OCH₃
127	СН₃	∕он	Н	F	Н	F	Н	С	N	NHOH	OCH₃
128	СН₃	∕~он	OCH₃	Н	Н	Н	Н	С	N	NHOH	OCH ₃
129	СН₃	∕он	Н	Н	Н	Н	Н	С	N	NHOH	OCH ₃
130	СН₃	∕он	Н	Н	СН₃	Н	Н	С	N	NHOH	OCH ₃

WO 00/52001

Ex	R ₁	R ₂	R ₃	R4	R ₅	R ₆	R ₇	X_1	X_2	Y	Z
131	CH ₃	∕он	Н	Cl	H	Н	Н	С	N	NHOH	OCH ₃
132	СН₃	<u>Ļ</u>	Н	СН3	Н	СН3	Н	С	N	NHOH	OCH₃
133	СН3	1	Н	OCH₃	Н	ОСН₃	Н	С	N	NHOH	OCH₃
134	СН₃	Ŷ	H	Н.	Н	Н	Н	С	N	NHOH	OCH₃
135	СН₃	1	Н	Н	.CH ₃	Н	Н	С	N	NHOH	OCH₃
136	СН₃	2	Н	F	Н	F	Н	С	N	NHOH	ОСН₃
137	CH ₃	1	SCH₃	Н	H	Н	Н	С	N	NHOH	OCH₃
138	СН3	ĕ-(Н	СН₃	Н	СН3	Н	С	N	NHOH	OCH₃
139	СН3	₹	H	OCH₃	H	OCH ₃	Н	С	N	NHOH	ОСН₃
140	СН3	<u></u>	H	Н	Н	Н	Н	С	N	NHOH	OCH₃
141	CH ₃	<u></u>	H	Н	СН₃	Н	Н	С	N	NHOH	OCH₃
142	СН3	ŎĦ,	Н	F	Н	F	Н	С	N	NHOH	OCH₃
143	CH₃	OH	SCH₃	Н	Н	Н	Н	С	N	NHOH	OCH₃
144	СН₃	NHOH	Н	СН₃	Н	CH₃	Н	С	N	NHOH	OCH ₃
145	CH ₃	NHOH	Н	OCH₃	Н	OCH₃	Н	С	N	NHOH	OCH ₃
146	CH₃	NHOH	Н	F	Н	F	Н	С	N	NHOH	OCH₃
147	СН₃	NHOH	SCH₃	Н	Н	Н	H	С	N	NHOH	OCH₃
148	СН₃	МНОН	Н	NO ₂	Н	NO ₂	Н	С	N	NHOH	OCH₃
149	СН3	МНОН	Н	Н	СН₃	Н	Н	С	N	NHOH	OCH ₃
150	CH₃	NH ₂	Н	СН₃	Н	СН₃	Н	С	N	NHOH	OCH ₃

WO 00/52001

Ex	R_1	R_2	R ₃	R ₄	R ₅	R ₆	R ₇	X_1	X_2	Y	Z
151	СН₃	NH ₂	Н	ОСН₃	Н	OCH ₃	Н	С	N	NHOH	OCH₃
152	СН3	NH ₂	Н	F	Н	F	Н	С	N	NHOH	OCH₃
153	СН₃	NH ₂	SCH ₃	Н	Н	Н	Н	С	N	NHOH	OCH₃
154	СН₃	NH ₂	Н	NO ₂	Н	NO ₂	Н	С	N	NHOH	OCH₃
155	CH ₃	NH ₂	H	Cl	. H	Cl	Н	С	N	NHOH	OCH₃
156	Et	OCH ₃	Н	Н	CH ₃	Н	Н	С	N	NHOH	OCH ₃
157	Et	OCH	Et	H	Н	Н	Н	С	N	NHOH	OCH₃
158	Et	OCH3	H	СН3	H	CH ₃	Н	С	N	NHOH	ОСН₃
159	Et	OCH3	Н	OCH₃	Н	ОСН₃	H	С	N	NHOH	ОСН₃
160	Et	ОСН	Н	Cl	Н	Cl	Н	С	N	NHOH	OCH₃
161	Et	OCH3	SCH ₃	Н	Н	Н	Н	С	N	NHOH	ОСН₃
162	Et	OCH ₃	Н	OEt	H	OEt	H	С	N	NHOH	OCH₃
163	Et	ОСН3	H	F	Н	F	Н	С	N	NHOH	OCH₃
164	Et	∕ ОН	Н	H	СН₃	Н	Н	С	N	NHOH	OCH₃
165	Et	∕ он	Et	Н	Н	Н	Н	С	N	NHOH	ОСН₃
166	Et	∕он	Н	СН₃	Н	СН₃	Н	С	N	NHOH	OCH₃
167	Et	∕он	Н	OCH₃	Н	OCH₃	Н	С	N	NHOH	OCH₃
168	Et	∕он	Н	Cl	Н	Cl	Н	С	N	NHOH	OCH ₃
169	Et	∕он	SCH₃	Н	Н	Н	Н	С	N	NHOH	OCH₃
170	Et	∕ он	Н	∕ОН	Н	∕он	H	С	N	NHOH	ОСН₃

. - 19 -

Ex	R_1	R_2	R ₃	R ₄	R ₅	R ₆	R ₇	X_1	X ₂	Y	Z
171	Et	∕он	Н	F	Н	F	H	С	N	NHOH	OCH₃
172	СН=СН	-СН=СН	Н	OCH₃	Ή	ОСН₃	Н	С	N	NHOH	OCH₃
173	СН=СН	-СН=СН	Н	СН₃	Н	СН₃	Н	С	N	NHOH	OCH₃
174	СН=СН	-СН=СН	Н	F	Н	F	H	С	N	NHOH	OCH₃
175	СН=СН	-СН=СН	OCH₃	Н	. H	Н	Н	С	N	NHOH	OCH₃
176	СН=СН	-СН=СН	Н	Cl	H	Н	Н	С	N	ИНОН	ОСН₃
177	СН₃	СН₃	Н	Н	Н	Н	Н	С	С	ИНОН	OCH₃
178	СН₃	СН₃	Н	Н	СН₃	H	Н	С	С	NHOH	OCH₃
179	СН₃	СН₃	Et	Н	H	H	H	С	С	NHOH	OCH₃
180	СН₃	CH ₃	Н	СН₃	Н	СН₃	Н	С	С	NHOH	OCH₃
181	СН₃	СН₃	Н	ОСН₃	Н	OCH₃	Н	С	С	NHOH	ОСН₃
182	СН₃	СН₃	Н	F	H	F	Н	С	С	NHOH	OCH₃
183	CH₃	СН₃	Н	Cl	Н	Н	Н	С	С	NHOH	OCH₃
184	СН3	СН3	Н	Br	Н	Н	Н	С	С	NHOH	OCH₃
185	СН₃	CH ₃	SCH₃	Н	Н	Н	Н	С	С	NHOH	OCH₃
186	СН3	СН₃	Н	H	Н	Н	Н	C	N	NHOCH:	OCH₃
187	СН₃	СН₃	Н	н	СН₃	Н	Н	С	N	NHOCH	OCH₃
188	СН3	СН₃	Н	CH₃	Н	СН₃	Н	С	N	NHOCH:	OCH₃
189	СН₃	СН₃	Н	OCH₃	Н	OCH ₃	Н	С	N	NHOCH	OCH₃
190	СН₃	СН₃	Н	F	Н	F	Н	С	N	NHOCH:	OCH ₃

Ex.	R_1	R_2	R_3	R ₄	R_5	R_6	R ₇	X_1	X_2	Y	Z
191	СНз	СН₃	SCH₃	Н	H	Н	Н	С	N	NHOCH₃	OCH ₃
192	СН₃	СН₃	н	NO ₂	Н	NO ₂	Н	С	N	NHOCH₃	OCH ₃
193	СН₃	Et	Н	Cl	Н	Cl	Н	С	N	NHOCH₃	OCH ₃
194	Et	ОСНЗ	Н	F	Н	F	Н	С	N	NHOCH₃	OCH ₃
195	Et	OCH ₃	H	OEt	Н	OEt	Н	С	N	NHOCH₃	ОСН₃
196	Et	∕он	Н	∕~он	Н	∕он	Н	С	N	NHOCH₃	OCH ₃
197	CH ₃	СН₃	Н	Н	СН₃	Н	Н	С	·C	NHOCH₃	OCH₃
198	СН₃	СН3	H	СН₃	Н	СН₃	Н	С	С	NHOCH₃	ОСН₃
199	CH ₃	СН3	Н	Н	Н	H	Н	С	N	SCH₃	OCH ₃
200	СН3	СН₃	Н	Н	СН₃	Н	Н	С	N	SCH ₃	OCH ₃
201	СН₃	СНз	Н	Н	nBu	H	Н	С	N	SCH₃	OCH₃
202	CH₃	СН₃	Н	СН₃	Н	CH₃	Н	С	N	SCH₃	OCH₃
203	СН₃	СН₃	OCH₃	Н	Н	Н	н	С	N	SCH₃	OCH ₃
204	СН₃	CH ₃	Н	OCH₃	Н	OCH₃	Н	С	N	SCH ₃	OCH ₃
205	CH ₃	СН₃	Н	F	Н	F	Н	С	N	SCH₃	OCH ₃
206	CH ₃	CH₃	Н	Cl	Н	Cl	Н	С	N	SCH₃	ОСН₃
207	CH ₃	СН₃	Н	Br	Н	Н	Н	С	N	SCH₃	OCH₃
208	CH ₃	CH₃	Н	NO ₂	Н	NO ₂	Н	С	N	SCH₃	ОСН3
209	СН₃	CH ₃	Н	OEt	Н	OEt	Н	С	N	SCH₃	OCH₃
210	CH ₃	Et	Н	Н	Н	Н	Н	С	N	SCH₃	OCH₃

WO 00/52001

Ex	R_1	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	X_1	X ₂	Y	Z
211	СН3	Et	OCH₃	Н	Н	Н	Н	С	N	SCH₃	ОСН₃
212	СН₃	Et	Н	OCH₃	Н	ОСН₃	Н	С	N	SCH₃	ОСН₃
213	СН₃	Et	Et	Н	Н	H	Н	С	N	SCH₃	ОСН₃
214	СН₃	Et	Н	СН₃	Н	СН₃	Н	С	N	SCH₃	OCH₃
215	СН₃	Et	Н	F	Н	F	Н	С	N	SCH₃	OCH₃
216	СН₃	Et	Н	Cl	H	Cl	H	С	N	SCH₃	ОСН₃
217	CH ₃	Et	Ph	Н	Н	Н	Н	С	N	SCH₃	OCH ₃
218	CH ₃	Et	Н	NO ₂	Н	NO ₂	Н	С	N	SCH₃	OCH₃
219	CH ₃	Et	SCH₃	Н	Н	Н	H	С	N	SCH₃	ОСН₃
220	CH ₃	OCH3	Н	OCH₃	Н	OCH₃	H	С	N	SCH₃	ОСН₃
221	CH ₃	OCH ₃	Н	СН3	H	СН3	Н	С	N	SCH₃	ОСН₃
222	CH ₃	COCH	Н	F	Н	F	Н	С	N	SCH₃	OCH₃
223	CH₃	OCH ₃	OCH₃	Н	Н	Н	Н	С	N	SCH₃	OCH ₃
224	СН₃	OCH ₃	Н	Н	Н	Н	Н	С	N	SCH₃	OCH₃
225	СН₃	OCH ₃	Н	н	СН₃	Н	Н	С	N	SCH₃	OCH₃
226	СН₃	OCH ₃	Н	Cl	Н	Н	н	·C	N	SCH₃	OCH₃
227	СН₃	1	Н	СН3	Н	CH ₃	Н	С	N	SCH₃	OCH₃
228	СН₃	<u></u>	Н	OCH ₃	Н	OCH₃	Н	С	N	SCH₃	OCH₃
229	СН₃	1	Н	Н	Н	Н	Н	С	N	SCH₃	OCH ₃
230	СН₃	Ļ	Н	Н	CH ₃	Н	Н	С	N	SCH₃	OCH₃

WO 00/52001

PCT/KR00/00164

Ex.	R ₁	R ₂	R ₃	R ₄	R_5	R_6	R ₇	X_1	X ₂	Y	Z
231	СН₃	1	H	F	Н	F	Н	С	N	SCH₃	OCH₃
232	СН₃		SCH₃	Н	Н	Н	Н	С	N	SCH₃	OCH₃
233	Et	OCH	Н	Н	СН₃	Н	Н	С	N	SCH₃	OCH₃
234	Et	OCH	Et	H	Н	Н	Н	С	N	SCH₃	ОСН₃
235	Et	OCH3	Н	СН₃	. H	СН₃	Н	С	N	SCH₃	ОСН₃
236	Et	OCH ₃	H	OCH₃	Н	OCH₃	Н	С	N	SCH₃	ОСН₃
237	Et	OCH	Н	Cl	Н	Cl	H	С	N	SCH₃	ОСН₃
238	Et	OCH3	SCH₃	Н	Н	Н	Н	С	N	SCH₃	OCH₃
239	Et	OCH ₃	Н	OEt	H	OEt	H	С	N	SCH₃	OCH₃
240	Et	OCH ₃	Н	F	H	F	Н	С	N	SCH₃	OCH₃
241	СН=СН-СН=СН		Н	OCH₃	Н	OCH₃	Н	С	N	SCH₃	OCH₃
242	СН=СН-СН=СН		Н	CH ₃	Н	СН3	H	С	N	SCH₃	OCH₃
243	СН=СН-СН=СН		Н	F	Н	F	Н	С	N	SCH₃	OCH₃
244	СН=СН	I-CH=CH	OCH₃	Н	Н	Н	Н	С	N	SCH₃	OCH₃
245	СН=СН	І-СН=СН	Н	Cl	Н	Н	Н	С	N	SCH₃	OCH₃
246	СН₃	СН₃	Н	Н	Н	Н	Н	С	С	SCH₃	OCH₃
247	СН₃	CH₃	Н	н	СН₃	Н	Н	С	С	SCH₃	OCH₃
248	СН₃	СН₃	Et	Н	Н	Н	Н	С	С	SCH₃	OCH ₃
249	СН3	СН₃	Н	СН₃	Н	СН₃	Н	С	С	SCH₃	OCH ₃
250	СН₃	СН₃	Н	OCH₃	Н	OCH ₃	Н	С	С	SCH₃	OCH ₃

- 23 -

Ex	R ₁	R_2	R ₃	R ₄	R_5	R_6	R ₇	X_1	X ₂	Y	Z
251	CH ₃	CH₃	Н	F	Н	F	Н	С	С	SCH₃	ОСН₃
252	СН₃	СН₃	Н	Cl	Н	Н	Н	С	С	SCH₃	ОСН₃
253	CH ₃	CH ₃	Н	Br	H	Н	Н	С	С	SCH₃	OCH₃
254	CH ₃	CH ₃	SCH₃	H	Н	Н	Н	С	С	SCH₃	OCH ₃

10

15

25

5

Example 1)

1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-phenylpiperazi ne

a) Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)carbamate:

3-Amino-5,6-dimethyl-2-methoxypyrazine(1.00g, 6.53mmol) and phenylchloroformate(1.02g, 6.53mmol) were dissolved in dichloromethane and stirred at room temperature for 2 hours. The resulting mixture was concentrated under the reduced pressure to remove the solvent and purified by column chromatography to obtain the titled compound.

20 yield: 98 %

m.p.: 101~103°C

b) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-phenyl piperazine:

Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)carbamate (350mg, 1.28mmol) and 1-phenylpiperazine(208mg, 1.28mmol) were dissolved in anhydrous tetrahydrofuran and thereto DBU(195mg, 1.28mmol) was added. The resulting mixture was stirred at room temperature for 2 hours and concentrated under the reduced pressure to remove the solvent, and purified by column chromatography to obtain the titled compound.

30 yield: 78.5%

m.p.: 185~187℃

- 24 -

Example 2) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-(2-methoxyphenyl)piperazine

Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)carbamate and 1-(2-methoxyphenyl)piperazine were reacted by the same way with the 5 example 1 to obtain the titled compound.

yield: 82.0%

m.p.: 184~185℃

Example 3) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-(3.5-dimethoxyphenyl)piperazine

Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)carbamate and 10 1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

vield: 85.0%

m.p.: 136~137°C

15 Example 4) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-(2-ethylphenyl)piperazine

Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)carbamate and 1-(2-ethylphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

20 yield: 70.4%

m.p.: 197~199℃

Example 5) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-(4-butylphenyl)piperazine

Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)carbamate and

25 1-(4-butylphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 68.5%

m.p.: 121~123°C

Example 6) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-

30 (2-isopropylphenyl)piperazine

Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)carbamate and

- 25 -

1-(2-isopropylphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 73.0%

m.p.: 165~167°C

5 Example 7) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine

Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)carbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

10 yield: 84.0%

m.p.: 162~164°C

Example 8) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-(2,3,5,6-tetramethylphenyl)piperazine

Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)carbamate and

15 1-(2,3,5,6,-tetramethylphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 65.5%

m.p.: 202~204°C

Example 9) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-

20 (2-fluorophenyl)piperazine

Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)carbamate and 1-(2-fluorophenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 74.5%

25 m.p.: 170~172℃

Example 10) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-(3-bromophenyl)piperazine

Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)carbamate and 1-(3-bromophenyl)piperazine were reacted by the same way with the example

30 1 to obtain the titled compound.

yield: 70.0%

- 26 -

m.p.: 158~160℃

Example 11) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-(3,5-dichlorophenyl)piperazine

Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)carbamate and

5 1-(3,5-dichlorophenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 80.5%

m.p.: 180~181°C

Example 12) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-

10 (3,5-difluorophenyl)piperazine

Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)carbamate and 1-(3,5-difluorophenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 78.0%

15 m.p.: 153~154℃

Example 13) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-(3-trifluorotolyl)piperazine

Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)carbamate and 1-(3-trifluorotolyl)piperazine were reacted by the same way with the 20 example 1 to obtain the titled compound.

yield: 69.5%

m.p.: 168~170℃

Example 14) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-(2-methylthiophenyl)piperazine

25 Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)carbamate and 1-(2-methylthiophenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 71.0%

m.p.: 202~204℃

30 Example 15) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-(3,5-dinitrophenyl)piperazine

- 27 -

Phenyl N-(5.6-dimethyl-2-methoxypyrazin-3-yl)carbamate and 1-(3,5-dinitrophenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 64.5%

5 m.p.: 192~194℃

Example 16) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-(3.5-diaminophenyl)piperazine

1-[(5.6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-(3,5-dinitrophenyl)piperazine was dissolved in ethanol(30ml) and thereto 10 10% palladium/carbon(10mg) was added. The resulting mixture was hydrogenated for 4 hours, and then filtered to remove the 10% palladium/carbon. The filtrate was concentrated and purified by column chromatography to obtain the titled compound.

vield: 45.0%

15 m.p.: >100°C (decomposed)

Example 17) 1-[(5.6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-(4-acetylphenyl)piperazine

Phenyl N-(5.6-dimethyl-2-methoxypyrazin-3-yl)carbamate and 1-(4-acetylphenyl)piperazine were reacted by the same way with the 20 example 1 to obtain the titled compound.

Yield: 71.5%

m.p.: 166~168°C

Example 18) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl) N-methylaminocarbonyl]-4-(2-methoxyphenyl)piperazine

1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-25 (2-methoxyphenyl)piperazine(200mg, 0.54mmol) was dissolved in dimethylformamide (15ml) and thereto 60% sodium hydride (21.5mg, 0.54mmol) was added. The resulting mixture was stirred at room temperature for 15 minutes, and thereto methyl iodide (76.6mg, 0.54mmol)

30 was added. The resulting mixture was stirred at room temperature for 6 hours, concentrated under the reduced pressure to remove the solvent,

- 28 -

and purified by column chromatography to obtain the titled compound.

yield: 92.5%

m.p.: 140~142℃

Example 19) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl) N-methylamino-

5 carbonyl]-4-(3,5-dimethoxyphenyl)piperazine

1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-

(3,5-dimethoxyphenyl)piperazine was reacted by the same way with the example 18 to obtain the titled compound.

yield: 90.5%

10 m.p.: 80~82℃

Example 20) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl) N-methylaminocarbonyl]-4-(3,5-dimethylphenyl)piperazine

1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-

(3,5-dimethylphenyl)piperazine was reacted by the same way with the

15 example 18 to obtain the titled compound.

yield: 88.4%

m.p.: 94~96℃

Example 21) 1-[(5.6-Dimethyl-2-methoxypyrazin-3-yl) N-methylaminocarbonyl]-4-(3,5-dichlorophenyl)piperazine

1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-20 (3.5-dichlorophenyl)piperazine was reacted by the same way with the example 18 to obtain the titled compound.

yield: 95.2%

m.p.: 97~99℃

25 Example 22) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl) N-methylaminocarbonyl]-4-(3.5-difluorophenyl)piperazine

1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-(3.5-difluorophenyl)piperazine was reacted by the same way with the example 18 to obtain the titled compound.

30 yield: 94.0%

m.p.: 104~106℃

- 29 -

Example 23) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl) N-methylaminocarbonyl]-4-(2-methylthiophenyl)piperazine

1-[(5.6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-

(2-methylthiophenyl)piperazine was reacted by the same way with the 5 example 18 to obtain the titled compound.

yield: 89.5%

m.p.: 133~134°C

Example 24) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl) N-methylaminocarbonyl]-4-(3,5-dinitrophenyl)piperazine

1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-10 (3,5-dinitrophenyl)piperazine was reacted by the same way with the example 18 to obtain the titled compound.

yield: 80.0%

m.p.: 133~135℃

15 Example 25) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl) N-methylaminocarbonyl]-4-(3.5-diaminophenyl)piperazine

1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)N-methylaminocarbonyl]-4-(3,5-dinitrophenyl)piperazine was reacted by the same way with the example 18 to obtain the titled compound.

20 yield: 58.5%

m.p.: $>100^{\circ}$ C (decomposed)

Example 26) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl) N-ethylaminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine

1-[(5.6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-

25 (3,5-dimethoxyphenyl)piperazine(250mg, 0.62mmol) was dissolved in dimethylformamide(20ml) and thereto 60% sodium hydride(24.9mg, 0.62mmol) was added. The mixture was stirred at room temperature for 15 minutes, and thereto methyl iodide(96.7mg, 0.62mmol) was added. The resulting mixture was stirred at room temperature for 6 hours,

30 concentrated under the reduced pressure to remove the solvent used, and purified by column chromatography to obtain the titled compound.

- 30 -

yield: 89.5%

m.p.: 78~80℃

Example 27) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl) N-ethylamino-carbonyl]-4-(3,5-dimethylphenyl)piperazine

5 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4- (3,5-dimethylphenyl)piperazine was reacted by the same way with the example 26 to obtain the titled compound.

yield: 92.0%

m.p.: 68~70℃

10 Example 28)

- 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminothiocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine
- a) Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)thiocarbamate: 3-Amino-5,6-dimethyl-2-methoxypyrazine(500mg, 3.26mmol) was
- dissolved in dichloromethane and thereto phenyl thiochloroformate (564mg, 3.26mmol) was slowly added. The mixture was stirred at room temperature for 24 hours, concentrated under the reduced pressure to remove the solvent, and purified by column chromatography to obtain the titled compound.

20 yield: 78.5%

m.p.: 71~73℃

b) 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminothiocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)thiocarbamate (200mg,

0.69mmol) and 1-(3,5-dimethoxyphenyl)piperazine(154mg, 0.69mmol) were dissolved in anhydrous tetrahydrofuran(25ml) and thereto DBU(105mg, 0.69mmol) was added. The mixture was stirred at room temperature for 2 hours, concentrated under the reduced pressure to remove the solvent and purified by column chromatography to obtain the titled compound.

30 yield: 71.5%

m.p.: 183~184°C

- 31 -

Example 29)

1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminothiocarbonyl]-4-(2-ethylphenyl)piperazine

Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)thiocarbamate and

5 1-(2-ethylphenyl)piperazine were reacted by the same way with the example 28 to obtain the titled compound.

yield: 64.0%

m.p.: 197~199°C

Example 30)

10 1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminothiocarbonyl]-4-

(3,5-dimethylphenyl)piperazine

Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)thiocarbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 28 to obtain the titled compound.

15 yield: 68.4%

m.p.: 160~162°C

Example 31)

 $1-[(5,\!6-Dimethyl-2-methoxypyrazin-3-yl)aminothiocarbonyl]-4-\\$

(3-bromophenyl)piperazine

20 Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)thiocarbamate and 1-(3-bromophenyl)piperazine were reacted by the same way with the example 28 to obtain the titled compound.

yield: 62.5%

m.p.: 136~138°C

25 Example 32)

1-[(5,6-Dimethyl-2-methoxypyrazin-3-yl)aminothiocarbonyl]-4-

(3,5-dichlorophenyl)piperazine

Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)thiocarbamate and

1-(3,5-dichlorophenyl)piperazine were reacted by the same way with the

30 example 28 to obtain the titled compound.

yield: 70.8%

- 32 -

m.p.: 182~184°C

Example 33)

1-[(5.6-Dimethyl-2-methoxypyrazin-3-yl)aminothiocarbonyl]-4-

(2-methylthiophenyl)piperazine

Phenyl N-(5,6-dimethyl-2-methoxypyrazin-3-yl)thiocarbamate and 1-(2-methylthiophenyl)piperazine were reacted by the same way with the example 28 to obtain the titled compound.

yield: 61.4%

m.p.: 181~183℃

10 Example 34)

1-[(5,6-Dichloroethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-

(3,5-dimethylphenyl)piperazine

Phenyl N-(5,6-diethyl-2-methoxypyrazin-3-yl)carbamate and

1-(3,5-dimethylphenyl)piperazine were reacted by the same way with

15 the example 1 to obtain the titled compound.

yield: 77.5%

m.p.: 118~120℃

Example 35)

1-[(5,6-Dichloroethyl-2-methoxypyrazin-3-yl)aminocarbonyl]-4-

20 (3,5-dimethoxyphenyl)piperazine

Phenyl N-(5,6-diethyl-2-methoxypyrazin-3-yl)carbamate and 1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 78.9%

25 m.p.: 90~92℃

Example 36)

- 1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-phenylpiperazine
- a) Phenyl N-(2-methoxyquinoxalin-3-yl)carbamate:
 - 3-Amino-2-methoxyquinoxaline(1.00g, 6.53mmol) and
- 30 phenylchloroformate (1.02g, 6.53mmol) were dissolved in dichloromethane and stirred at room temperature for 2 hours. The resulting mixture was

- 33 -

concentrated under the reduced pressure to remove the solvent, and purified by column chromatography to obtain the titled compound.

yield: 75.5%

m.p.: 147~149℃

b) 1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-phenylpiperazine:
 Phenyl N-(2-methoxyquinoxalin-3-yl)carbamate(378mg, 1.28mmol) and 1-phenylpiperazine(208mg, 1.28mmol) were dissolved in anhydrous tetrahydrofuran and thereto DBU(195mg, 1.28mmol) was added. The mixture was stirred at room temperature for 2 hours, concentrated

 under the reduced pressure to remove the solvent, and purified by

yield: 76.5%

m.p.: 156~158℃

Example 37)

15 1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(2-methoxyphenyl)-piperazine

column chromatography to obtain the titled compound.

Phenyl N-(2-methoxyquinoxalin-3-yl)carbamate and 1-(2-methoxyphenyl)piperazine were reacted by the same way with the example 36 to obtain the titled compound.

20 yield: 72.4%

m.p.: 177~178℃

Example 38)

1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl) piperazine

25 Phenyl N-(2-methoxyquinoxalin-3-yl)carbamate and 1-(3,5-dimethoxy-phenyl)piperazine were reacted by the same way with the example 36 to obtain the titled compound.

yield: 81.2%

m.p.: 140~141°C

30 Example 39)

1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(2-ethylphenyl)piperazine

- 34 -

Phenyl N-(2-methoxyquinoxalin-3-yl)carbamate and

1-(2-ethylphenyl)piperazine were reacted by the same way with the example 36 to obtain the titled compound.

yield: 75.0%

5 m.p.: 191~193℃

Example 40)

1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(2-isoprop-ylphenyl) piperazine

Phenyl N-(2-methoxyquinoxalin-3-yl)carbamate and

10 1-(2-isopropylphenyl)piperazine were reacted by the same way with the example 36 to obtain the titled compound.

yield: 77.5%

m.p.: 147~149℃

Example 41)

15 1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(4-butylph-enyl)-piperazine

Phenyl N-(2-methoxyquinoxalin-3-yl)carbamate and

1-(4-butylphenyl)-piperazine were reacted by the same way with the example 36 to obtain the titled compound.

20 yield: 65.4%

m.p.: 124~126°C

Example 42)

1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl) piperazine

25 Phenyl N-(2-methoxyquinoxalin-3-yl)carbamate and

1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 36 to obtain the titled compound.

yield: 79.3%

m.p.: 155~157°C

30 Example 43)

1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(2,3,5,6-tetramethyl-

- 35 -

phenyl)piperazine

Phenyl N-(2-methoxyquinoxalin-3-yl)carbamate and

1-(2,3,5,6-tetramethylphenyl)piperazine were reacted by the same way with the example 36 to obtain the titled compound.

5 yield: 64.0%

m.p. : 237~239℃

Example 44)

1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(2-fluorop-henyl) piperazine

10 Phenyl N-(2-methoxyquinoxalin-3-yl)carbamate and

1-(2-fluorophenyl)-piperazine were reacted by the same way with the example 36 to obtain the titled compound.

yield: 67.5%

m.p.: 142~144°C

15 Example 45)

1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(3-bromop-henyl) piperazine

Phenyl N-(2-methoxyquinoxalin-3-yl)carbamate and

1-(3-bromophenyl)-piperazine were reacted by the same way with the 20 example 36 to obtain the titled compound.

yield: 69.5%

m.p.: 148~150°C

Example 46)

1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(3,5-difluo-rophenyl)

25 piperazine

Phenyl N-(2-methoxyquinoxalin-3-yl)carbamate and

1-(3,5-difluorophenyl)piperazine were reacted by the same way with the example 36 to obtain the titled compound.

yield: 74.5%

30 m.p.: 172~173℃

Example 47)

1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(2-trifluorotolyl) piperazine

Phenyl N-(2-methoxyquinoxalin-3-yl)carbamate and

1-(2-trifluorotolyl)-piperazine were reacted by the same way with the

5 example 36 to obtain the titled compound.

yield: 70.7%

m.p.: 132~134°C

Example 48)

1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(3,5-dinitrophenyl)

10 piperazine

Phenyl N-(2-methoxyquinoxalin-3-yl)carbamate and

1-(3,5-dinitrophenyl)piperazine were reacted by the same way with the example 36 to obtain the titled compound.

yield: 54.5%

15 m.p.: 216~218℃

Example 49)

1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(3,5-diami-nophenyl) piperazine

1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(3,5-dinitrophenyl)

- 20 piperazine(200mg, 0.44mmol) was dissolved in ethanol(30ml) and thereto 10% palladium/carbon(10mg) was added. The mixture was hydrogenated for 4 hours, and then filtered to remove the 10% palladium/carbon. The filtrate was concentrated and purified by column chromatography to obtain the titled compound.
- 25 Yield: 42.5%

m.p.: >100°C (decomposed)

Example 50)

1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(4-acetylp-henyl) piperazine

30 Phenyl N-(2-methoxyquinoxalin-3-yl)carbamate and

1-(4-acetylphenyl)-piperazine were reacted by the same way with the

- 37 -

example 36 to obtain the titled compound.

yield: 71.0%

m.p.: 198~200℃

Example 51)

5 1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(2-methylt-hiophenyl) piperazine

Phenyl N-(2-methoxyquinoxalin-3-yl)carbamate and

1-(2-methylthiophenyl)piperazine were reacted by the same way with the example 36 to obtain the titled compound.

10 yield: 69.8%

m.p.: 180~182℃

Example 52)

1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(2-biphen-yl)piperazine Phenyl N-(2-methoxyquinoxalin-3-yl)carbamate and

15 1-(2-biphenyl)piperazine were reacted by the same way with the example 36 to obtain the titled compound.

vield: 59.0%

m.p.: 162~165℃

Example 53) 1-[(2-Methoxyquinoxalin-3-yl)

20 N-methylaminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine 1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(2-methoxyphenyl) piperazine(229mg, 0.54mmol) was dissolved in dimethylformamide(15ml)

and thereto 60% sodium hydride(21.5mg, 0.54mmol) was added. The

mixture was stirred at room temperature for 15 minutes, and thereto

25 ehtyl iodide (76.6mg, 0.54mmol) was added. The mixture was stirred at room temperature for 6 hours, concentrated under the reduced pressure to remove the solvent and purified by column chromatography to obtain the titled compound.

vield: 92.5%

30 m.p.: 143~144℃

Example 54) 1-[(2-Methoxyquinoxalin-3-yl) N-methylaminocarbonyl]-4-

. - 38 -

(2-methoxyphenyl)piperazine

1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(2-methoxyphenyl) piperazine was reacted by the same way with the example 53 to obtain the titled compound.

5 yield: 83.8%

m.p.: 128~130℃

Example 55) 1-[(2-Methoxyquinoxalin-3-yl) N-methylaminocarbonyl]-4-(3,5-dimethylphenyl)piperazine

1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)

10 piperazine was reacted by the same way with the example 53 to obtain the titled compound.

vield: 86.5%

m.p.: 142~144℃

Example 56) 1-[(2-Methoxyquinoxalin-3-yl) N-methylaminocarbonyl]-4-

15 (3.5-difluorophenyl)piperazine

1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(3,5-difluorophenyl) piperazine was reacted by the same way with the example 53 to obtain the titled compound.

yield: 84.7%

20 m.p.: 197~199℃

Example 57) 1-[(2-Methoxyquinoxalin-3-yl) N-methylaminocarbonyl]-4-(3,5-dinitrophenyl)piperazine

1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(3,5-dinitrophenyl) piperazine was reacted by the same way with the example 53 to obtain 25 the titled compound.

yield: 56.5%

m.p.: 197~199℃

Example 58) 1-[(2-Methoxyquinoxalin-3-yl) N-methylaminocarbonyl]-4-(3,5-diaminophenyl)piperazine

To 1-[(2-methoxyguinoxalin-3-vl) N-methylaminocarbonyl]-4-30 (3,5-dinitrophenyl)piperazine dissolved in ethanol(30ml), 10%

- 39 -

palladium/carbon (10mg) was added. The mixture was hydrogenated for 4 hours, and then filtered to remove the 10% palladium/carbon. The filtrate was concentrated and purified by column chromatography to obtain the titled compound.

5 Yield: 44.5%

m.p.: >100°C (decomposed)

Example 59) 1-[(2-Methoxyquinoxalin-3-yl) N-ethylaminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine

To 1-[(2-methoxyguinoxalin-3-yl)aminocarbonyl]-4-

10 (3,5-dimethoxyphenyl)piperazine(263mg, 0.62mmol) dissolved in dimethylformamide (20ml), 60% sodium hydride(24.9mg, 0.62mmol) was added and stirred at room temperature for 15 minutes, and thereto methyl iodide (96.7mg, 0.62mmol) was added. The resulting mixture was stirred at room temperature for 6 hours, concentrated under the reduced pressure to remove the solvent and purified by column chromatography

to obtain the titled compound.

yield: 85.4%

m.p. : 129~130℃

Example 60) 1-[(2-Methoxyquinoxalin-3-yl) N-ethylaminocarbonyl]-4-

20 (3,5-dimethylphenyl)piperazine

1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl) piperazine was reacted by the same way with the example 59 to obtain the titled compound.

yield: 87.6%

25 m.p.: 145~147℃

Example 61) 1-[(2-Methoxyquinoxalin-3-yl) N-ethylaminocarbonyl]-4-(3,5-dichlorophenyl)piperazine

1-[(2-Methoxyquinoxalin-3-yl)aminocarbonyl]-4-(3,5-dichlorophenyl) piperazine were reacted by the same way with the example 59 to obtain 30 the titled compound.

yield: 80.6%

- 40 -

m.p.: 146~148℃

Example 62) 1-[(2-Methoxyquinoxalin-3-yl) N-isopropylaminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine

To 1-[(2-methoxyquinoxalin-3-yl)aminocarbonyl]-4-

5 (3,5-dimethoxyphenyl)piperazine(216mg, 0.51mmol) dissolved in dimethylformamide(20ml), 60% sodium hydride(20.4mg, 0.51mmol) was added and stirred at room temperature for 15 minutes, and thereto propyl iodide (86.7mg, 0.51mmol) was added. The resulting mixture was stirred at room temperature for 6 hours, concentrated under the reduced 10 pressure to remove the solvent and purified by column chromatography to obtain the titled compound.

yield: 82.0%

m.p.: 110~112℃

Example 63)

- 15 1-[(2-Methoxyquinoxalin-3-yl)aminothiocarbonyl]-4-(2-met-hoxyphenyl) piperazine
 - a) Phenyl N-(2-Methoxyquinoxalin-3-yl)thiocarbamate:

To 3-Amino-2-Methoxyquinoxaline(571mg, 3.26mmol) dissolved in dichloromethane, phenylthiochloroformate(564mg, 3.26mmol) were added 20 slowly and stirred at room temperature for 24 hours. The resulting mixture was concentrated under the reduced pressure to remove the solvent and purified by column chromatography to obtain the titled compound.

yield: 60.5%

25 m.p.: 160~162℃

b)

1-[(2-Methoxyquinoxalin-3-yl)aminothiocarbonyl]-4-(2-methoxyphenyl) piperazine:

Phenyl N-(2-methoxyquinoxalin-3-yl)thiocarbamate(215mg, 0.69mmol)

and 1-(2-methoxyphenyl)piperazine(154mg, 0.69mmol) were dissolved in anhydrous tetrahydrofuran(25ml) and thereto DBU(105mg, 0.69mmol)

- 41 -

was added. The mixture was stirred at room temperature for 2 hours, concentrated under the reduced pressure to remove the solvent and purified by column chromatography to obtain the titled compound.

yield: 62.4%

5 m.p.: 177~179℃

Example 64)

1-[(2-Methoxyquinoxalin-3-yl)aminothiocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine

Phenyl N-(2-methoxyquinoxalin-3-yl)thiocarbamate and

10 1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with the example 63 to obtain the titled compound.

yield: 64.5%

m.p.: 141~143℃

Example 65)

15 1-[(2-Methoxyquinoxalin-3-yl)aminothiocarbonyl]-4-(2-ethylphenyl) piperazine

Phenyl N-(2-methoxyquinoxalin-3-yl)thiocarbamate and 1-(2-ethylphenyl)piperazine were reacted by the same way with the example 63 to obtain the titled compound.

20 yield: 60.7%

m.p. : 141~143℃

Example 66)

1-[(2-Methoxyquinoxalin-3-yl)aminothiocarbonyl]-4-(3,5-di-methylphenyl)piperazine

25 Phenyl N-(2-methoxyquinoxalin-3-yl)thiocarbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 63 to obtain the titled compound.

yield: 65.0%

m.p.: 193~195℃

30 Example 67)

1-[(2-Methoxyquinoxalin-3-yl)aminothiocarbonyl]-4-(3-bro-mophenyl)

- 42 -

piperazine

Phenyl N-(2-methoxyquinoxalin-3-yl)thiocarbamate and

1-(3-bromophenyl)piperazine were reacted by the same way with the example 63 to obtain the titled compound.

5 yield: 57.5%

m.p.: 195~197°C

Example 68)

1-[(2-Methoxyquinoxalin-3-yl)aminothiocarbonyl]-4-(3,5-difluorophenyl) piperazine

Phenyl N-(2-methoxyquinoxalin-3-yl)thiocarbamate and 10 1-(3,5-difluorophenyl)piperazine were reacted by the same way with the

example 63 to obtain the titled compound.

yield: 59.0%

m.p.: 280~281°C

15 Example 69)

1-[(2-Methoxyquinoxalin-3-yl)aminothiocarbonyl]-4-(2-methylthiophenyl)piperazine

Phenyl N-(2-methoxyquinoxalin-3-yl)thiocarbamate and

1-(2-methylthiophenyl)piperazine were reacted by the same way with

20 the example 63 to obtain the titled compound.

yield: 64.5%

m.p.: 148~150℃

Example 70)

1-[(2-Methoxyquinoxalin-3-yl)aminothiocarbonyl]-4-(4-acetylphenyl)

25 piperazine

Phenyl N-(2-methoxyquinoxalin-3-yl)thiocarbamate and

1-(4-acetylphenyl)piperazine were reacted by the same way with the example 63 to obtain the titled compound.

yield: 56.9%

30 m.p. : 235~237℃

Example 71)

WO 00/52001 PCT/KR00/00164

1-[(2-Methoxyquinoxalin-3-yl)aminothiocarbonyl]-4-(4-but-ylphenyl) piperazine

- 43 -

Phenyl N-(2-methoxyquinoxalin-3-yl)thiocarbamate and

1-(4-butylphenyl)piperazine were reacted by the same way with the

5 example 63 to obtain the titled compound.

yield: 62.5%

m.p.: 163~165℃

Example 72)

1-[(2-Ethoxyquinoxalin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)

10 piperazine

Phenyl N-(2-ethoxyquinoxalin-3-yl)carbamate and

1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with the example 36 to obtain the titled compound.

yield: 74.7%

15 m.p.: 149~150°C

Example 73)

1-[(2-Ethoxyquinoxalin-3-yl)aminocarbonyl]-4-(2-ethoxyphenyl) piperazine

Phenyl N-(2-ethoxyguinoxalin-3-yl)carbamate and

20 1-(2-ethoxyphenyl)-piperazine were reacted by the same way with the example 36 to obtain the titled compound.

yield: 76.5%

m.p.: 120~122℃

Example 74)

25 1-[(2-Ethoxyquinoxalin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl) piperazine

Phenyl N-(2-ethoxyquinoxalin-3-yl)carbamate and

1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 36 to obtain the titled compound.

30 yield: 82.0%

m.p.: 152~154℃

- 44 -

Example 75)

1-[(2-Ethoxyquinoxalin-3-yl)aminocarbonyl]-4-(2,3-dimethylphenyl) piperazine

Phenyl N-(2-ethoxyquinoxalin-3-yl)carbamate and

5 1-(2,3-dimethylphenyl)piperazine were reacted by the same way with the example 36 to obtain the titled compound.

yield: 78.7%

m.p.: 108~110℃

Example 76)

10 1-[(2-Ethoxyquinoxalin-3-yl)aminocarbonyl]-4-(2-ethylphenyl)piperazine Phenyl N-(2-ethoxyquinoxalin-3-yl)carbamate and

1-(2-ethylphenyl)piperazine were reacted by the same way with the example 36 to obtain the titled compound.

yield: 77.5%

15 m.p.: 152~154℃

Example 77)

1-[(2-Ethoxyquinoxalin-3-yl)aminocarbonyl]-4-(3,5-dichlorophenyl) piperazine

Phenyl N-(2-ethoxyquinoxalin-3-yl)carbamate and

20 1-(3,5-dichlorophenyl)piperazine were reacted by the same way with the example 36 to obtain the titled compound.

yield: 81.3%

m.p.: 157~159℃

Example 78)

25 1-[(2-Ethoxyquinoxalin-3-yl)aminocarbonyl]-4-(3-bromophenyl)piperazine Phenyl N-(2-ethoxyquinoxalin-3-yl)carbamate and

1-(3-bromophenyl)-piperazine were reacted by the same way with the example 36 to obtain the titled compound.

yield: 80.6%

30 m.p.: 164~166℃

Example 79)

1-[(2-Ethoxyquinoxalin-3-yl)aminocarbonyl]-4-(3,5-difluorophenyl) piperazine

Phenyl N-(2-ethoxyquinoxalin-3-yl)carbamate and

1-(3,5-difluorophenyl)piperazine were reacted by the same way with the example 36 to obtain the titled compound.

yield: 78.6%

m.p.: 146~148℃

Example 80)

1-[(2-Ethoxyquinoxalin-3-yl)aminocarbonyl]-4-(2-methylthiophenyl)

10 piperazine

Phenyl N-(2-ethoxyquinoxalin-3-yl)carbamate and

1-(2-methylthiophenyl)piperazine were reacted by the same way with the example 36 to obtain the titled compound.

yield: 71.4%

15 m.p.: 139~141℃

Example 81) 1-[(2-Ethoxyquinoxalin-3-yl) N-methylaminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine

1-[(2-Ethoxyquinoxalin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine was reacted by the same way with the example 53 to obtain
the titled compound.

yield: 92.8%

m.p.: 159~161℃

Example 82) 1-[(2-Ethoxyquinoxalin-3-yl) N-methylaminocarbonyl]-4-(3,5-dichlorophenyl)piperazine

25 1-[(2-Ethoxyquinoxalin-3-yl)aminocarbonyl]-4-(3,5-dichlorophenyl) piperazine was reacted by the same way with the example 53 to obtain the titled compound.

yield: 94.5%

m.p.: 129~131℃

30 Example 83) 1-[(2-Ethoxyquinoxalin-3-yl) N-ethylaminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine

- 46 -

1-[(2-Ethoxyquinoxalin-3-yl)aminocarbonyl]-4-(3.5-dimethoxyphenyl)piperazine was reacted by the same way with the example 61 to obtain the titled compound.

yield: 82.8%

5 m.p.: 144~146℃

Example 84) 1-[(2-Ethoxyquinoxalin-3-yl) N-ethylaminocarbonyl]-4-(3,5-dichlorophenyl)piperazine

1-[(2-Ethoxyquinoxalin-3-yl)aminocarbonyl]-4-(3,5-dichlorophenyl) piperazine was reacted by the same way with the example 61 to obtain 10 the titled compound.

yield: 80.7%

m.p. : 115~117℃

Example 85) 1-[(2-Ethoxyquinoxalin-3-yl) N-ethylaminocarbonyl]-4-(3.5-dimethylphenyl)piperazine

1-[(2-Ethoxyquinoxalin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)-15 piperazine was reacted by the same way with the example 61 to obtain the titled compound.

yield: 78.8%

m.p. : 142~144℃

- 20 Example 86)
 - 1-[(2-Methoxynaphth-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine
 - a) Phenyl N-(2-methoxynaphth-3-yl)carbamate:
 - 3-Amino-2-methoxynaphthalene(1.13g, 6.53mmol) and
- phenylchloroformate(1.02g, 6.53mmol) were dissolved in dichloromethane. The mixture was stirred at room temperature for 2 hours, concentrated under the reduced pressure to remove the solvent and purified by column chromatography to obtain the titled compound.

yield: 75.0%

- 30 m.p.: 105~107℃
 - b) 1-[(2-Methoxynaphth-3-yl)aminothiocarbonyl]-4-(3,5-dimethylphenyl-

WO 00/52001 PCT/KR00/00164

- 47 -

piperazine:

Phenyl N-(2-methoxynaphth-3-yl)carbamate(375mg, 1.28mmol) and 1-(3,5-dimethylphenyl)piperazine(208mg, 1.28mmol) were dissolved in anhydrous tetrahydrofuran(25ml) and thereto DBU(195mg, 1.28mmol)

5 was added, and then stirred at room temperature for 2 hours, concentrated under the reduced pressure to remove the solvent and purified by column chromatography to obtain the titled compound.

yield: 72.0%

m.p.: 117~119℃

10 Example 87)

1-[(2-Methoxynaphth-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl) piperazine

Phenyl N-(2-methoxynaphth-3-yl)carbamate and

1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with

15 the example 86 to obtain the titled compound.

yield: 74.5%

m.p.: 191~193℃

Example 88)

1-[(2-Methoxynaphth-3-yl)aminocarbonyl]-4-(3,5-difluorophenyl)

20 piperazine

Phenyl N-(2-methoxynaphth-3-yl)carbamate and

1-(3,5-difluorophenyl)piperazine were reacted by the same way with the example 86 to obtain the titled compound.

yield: 78.5%

25 m.p.: 160~161℃

Example 89)

1-[(2-Methoxynaphth-3-yl)aminocarbonyl]-4-(3,5-dichlorophenyl) piperazine

Phenyl N-(2-methoxynaphth-3-yl)carbamate and

30 1-(3,5-dichlorophenyl)piperazine were reacted by the same way with the example 86 to obtain the titled compound.

yield: 76.7%

m.p.: 182~184°C

Example 90) 1-[(2-Methoxynaphth-3-yl)-N-methylaminocarbonyl]-4-(3.5-dimethylphenyl)piperazine

To 1-[(2-methoxynaphth-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)-5 piperazine(210mg, 0.54mmol) dissolved in dimethylformamide(15ml), 60% sodium hydride(21.5mg, 0.54mmol) was added, stirred at room temperature for 15 minutes, and thereto methyl iodide (76.6mg, 0.54mmol) was added. The resulting mixture was stirred at room 10 temperature for 6 hours, concentrated under the reduced pressure to remove the solvent and purified by column chromatography to obtain the titled compound.

yield: 86.4%

m.p. : 134~136℃

15 Example 91) 1-[(2-Methoxynaphth-3-yl)-N-methylaminocarbonyl]-4-(3,5-difluorophenyl)piperazine

1-[(2-Methoxynaphth-3-yl)aminocarbonyl]-4-(3,5-difluorophenyl)piperazine was reacted by the same way with the example 90 to obtain the titled compound.

20 yield: 85.0%

m.p.: 115~117℃

Example 92) 1-[(2-Methoxynaphth-3-yl)-N-methylaminocarbonyl]-4-(3.5-dichlorophenyl)piperazine

1-[(2-Methoxynaphth-3-yl)aminocarbonyl]-4-(3,5-dichlorophenyl)-25 piperazine was reacted by the same way with the example 90 to obtain

the titled compound.

vield: 89.8%

m.p. : 165~167℃

Example 93) 1-[(2-Methoxynaphth-3-yl)-N-methylaminocarbonyl]-4-

30 (3.5-dimethoxyphenyl)piperazine

1-[(2-Methoxynaphth-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)-

WO 00/52001 PCT/KR00/00164

- 49 -

piperazine was reacted by the same way with the example 90 to obtain the titled compound.

yield: 92.5%

m.p.: 83~85℃

5 Example 94) 1-[(2-Methoxynaphth-3-yl)-N-ethylaminocarbonyl]-4-(3,5-dimethylphenyl)piperazine

To 1-[(2-methoxynaphth-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl) piperazine(210mg, 0.54mmol) dissolved in dimethylformamide(15ml), 60% sodium hydride(21.5mg, 0.54mmol) was added, stirred at room

- temperature for 15 minutes, and thereto methyl iodide (84.2mg, 0.54mmol) was added. The mixture was stirred at room temperature for 6 hours, concentrated under the reduced pressure to remove the solvent and purified by column chromatography to obtain the titled compound. vield: 70.2%
- Example 95) 1-[(2-Methoxynaphth-3-yl)-N-ethylaminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine

1-[(2-Methoxynaphth-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)-piperazine was reacted by the same way with the example 94 to obtain the titled compound.

20 yield: 85.0%

Example 96) N-Hydroxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)-(4-phenylpiperazin-1-yl)carboxyimidamide

To methyl N-(5,6-dimethyl-2-methoxypyridin-3-yl)-(4-phenyl-piperazin-1-yl)iminothiorate (0.50g, 1.35mmol) dissolved in chloroform (30ml), hydroxylamine hydrochlroride (0.25g, 3.60mmol) and triethylamine (0.41g, 4.05mmol) were added and stirred at room temperature for 15 hours, and then thereto water(30ml) was added to stop reaction. The resulting mixture was extracted with methylene chloride. The organic layer was concentrated under the reduced pressure to remove the solvent and purified by column chromatography to obtain the titled compound.

WO 00/52001 PCT/KR00/00164

- 50 -

yield: 64.5%

m.p.: 173~175℃

Example 97) N-Hydroxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(4-methylphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(4-methylphenyl)-piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 55.2%

m.p.: 187~189℃

10 Example 98) N-Hydroxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)[4-(4-n-butylphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(4-n-butylphenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the
example 96 to obtain the titled compound.

15 yield: 60.1%

m.p.: 153~155℃

Example 99) N-Hydroxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-dimethylphenyl)piperazin-1-yl]carboxyimidamide

Methyl

20 N-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-dimethylphenyl)-piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 67.5%

m.p.: 125~128℃

25 Example 100)

N-Hydroxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(2-methoxy-phenyl)piperazin-1-yl]carboxyimidamide

Methyl

N-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(2-methoxyphenyl)-

30 piperazin-1-ylliminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 62.0%

m.p. : 134~136℃

Example 101) N-Hydroxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)- [4-(3,5-dimethoxyphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-dimethoxy-phenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 57.2%

m.p.: 188~190°C

10 Example 102) N-Hydroxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)[4-(3,5-difluorophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-difluoro-phenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

15 yield: 60.7%

m.p.: 177~178℃

Example 103) N-Hydroxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)- [4-(3,5-dichlorophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-dichloro-20 phenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 65.4%

m.p.: 185~187°C

Example 104)

25 N-Hydroxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3-bromo-phenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3-bromophenyl)-piperazine-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

30 yield: 68.1%

m.p.: 174~176℃

Example 105) N-Hydroxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-dinitrophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-dinitro-phenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 45.2%

m.p.: 193~195℃

Example 106) N-Hydroxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-diethylisophthal-1-yl)piperazin-1-yl]carboxyimidamide

10 Methyl N-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)[4-(3,5-diethylisophthal-1-yl)piperazin-1-yl]iminothiolate was reacted by
the same way with the example 96 to obtain the titled compound.

yield: 64.1%

m.p.: 166~168°C

15 Example 107)

N-Hydroxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)-{4-[3,5-bis-(hydroxymethyl)phenyl]piperazin-1-yl}carboxyimidamide

To N-hydroxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)[(4-(3,5-diethylisophthal-1-yl)piperazin-1-yl]carboxyimidamide (500mg,

- 20 1.0mmol) dissolved in tetrahydrofuran(20ml), lithium aluminium hydride (57mg, 1.5mmol) were added slowly, and stirred at 20°C for 1 hours, and then thereto water(0.5ml) was added to stop reaction. The resulting mixture was concentrated under the reduced pressure to remove the solvent and extracted with methylene chloride with addition of water.
- The organic layer was dried with magnesium sulfate and purified by column chromatography to obtain the titled compound.

yield: 42.1%

m.p.: 184~186°C

Example 108)

30 N-Hydroxy-N'-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)[4-(2-methoxyphenyl)piperazin-1-yl]carboxyimidamide

- 53 -

Methyl N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(2-methoxyphenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 69.4%

5 m.p.: 134~135℃

Example 109)

N-Hydroxy-N'-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-dimethoxyphenyl)piperazin-1-yl]carboxyimidamide

Methyl

10 N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-dimethoxyphenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 68.2%

m.p.: 140~142℃

15 Example 110)

N-Hydroxy-N'-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(2-ethylphenyl)piperazin-1-yl]carboxyimidamide

Methyl

N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(2-ethylphen-yl)-

20 piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 70.2%

m.p.: 157~160℃

Example 111)

25 N-Hydroxy-N'-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-(4-phenylpiperazin-1-yl)carboxyimidamide

Methyl N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-(4-phenylpiperazin-1-yl)iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

30 yield: 72.2%

m.p.: 178~180℃

Example 112)

N-Hydroxy-N'-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-

[4-(2-methylthiophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(2-methyl-

5 thiophenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 69.3%

m.p.: 178~179℃

Example 113)

10 N-Hydroxy-N'-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-

[4-(3,5-dimethylphenyl)piperazin-1-yl]carboxyimidamide

Methyl

N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-dimethyl-

phenyl)piperazin-1-yl]iminothiolate was reacted by the same way with

15 the example 96 to obtain the titled compound.

yield: 64.7%

m.p.: 155~157℃

Example 114)

N-Hydroxy-N'-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-di-

20 fluorophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-difluoro-phenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 51.8%

25 m.p.: 150~152℃

Example 115)

N-Hydroxy-N'-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-

(3,5-dichlorophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-dichloro-

30 phenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 72.2%

m.p.: 172~174°C

Example 116)

N-Hydroxy-N'-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-

5 (2-biphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(2-biphenyl)-piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 53.4%

10 m.p.: 195~197℃

Example 117)

N-Hydroxy-N'-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-

(3, 5-dinitrophenyl) piperazin-1-yl] carboxyimidamide

Methyl N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-dinitrophenyl)piperazin-1-yl]iminothiolate was reacted by the same way with

the example 96 to obtain the titled compound.

yield: 44.3%

m.p.: 193~195℃

Example 118)

20 N-Hydroxy-N'-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)- [4-(3,5-dimethoxyphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)- [4-(3,5-dimethoxyphenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

25 yield: 61.6%

m.p.: 192~194°C

Example 119)

N-Hydroxy-N'-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-dimethylphenyl)piperazin-1-yl]carboxyimidamide

30 Methyl N-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)- [4-(3,5-dimethylphenyl)piperazin-1-yl]iminothiolate was reacted by the

same way with the example 96 to obtain the titled compound.

yield: 63.0%

m.p.: 195~197℃

Example 120)

5 N-Hydroxy-N'-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)- [4-(3,5-difluorophenyl)piperazin-1-yl]carboxyimidamide

Methyl

N-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-difluorophenyl)piperazin-1-yl]iminothiolate was reacted by the same

10 way with the example 96 to obtain the titled compound.

yield: 57.4%

m.p.: 170~172℃

Example 121)

N-Hydroxy-N'-(5-methoxycarbonyl-2-methoxy-6-methylpyridine-3-yl)-10-methylpyridine-3-yl-1

15 [4-(2-methoxyphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)- [4-(2-methoxyphenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 65.1%

20 m.p.: 176~178℃

Example 122)

N-Hydroxy-N'-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)-(4-phenylpiperazin-1-yl)carboxyimidamide

Methyl N-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)-

25 (4-phenylpiperazin-1-yl)iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 69.5%

m.p.: 194~196℃

Example 123)

30 N-Hydroxy-N'-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)- [4-(4-methylphenyl)piperazin-1-yl]carboxyimidamide

- 57 -

Methyl N-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)-[4-(4-methylphenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 73.2%

5 m.p.: 190~192℃

Example 124)

N-Hydroxy-N'-(5-methoxycarbonyl-2-methoxy-6-methylpyridine-3-yl)-[4-(3-chlorophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)-

10 [4-(3-chlorophenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 60.2%

m.p.: 91~93℃

Example 125)

15 N-Hydroxy-N'-(5-hydroxymethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-dimethoxyphenyl)piperazin-1-yl]carboxyimidamide

To N-hydroxy-N'-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)-[(4-(3,5-dimethoxyphenyl)piperazin-1-yl]carboxyimidamide (300mg, 0.65mmol) dissolved in tetrahydrofuran(20ml), lithium aluminium

20 hydride(37mg, 0.98mmol) was added slowly and stirred at 20°C for 1 hours. Then, water(0.5ml) was added thereto to stop reaction. The resulting mixture was concentrated under the reduced pressure to remove the solvent, and extracted with methylene chloride with addition of water. The organic layer was dried with magnesium sulfate, and 25 purified by column chromatography to obtain the titled compound.

yield: 45.8%

m.p.: 185~187℃

Example 126)

N-Hydroxy-N'-(5-hydroxymethyl-2-methoxy-6-methylpyr-idine-3-yl)-1-methylpyr-idine-3-yl-1-methyl-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methyl-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-

[4-(3,5-dimethylphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5-hydroxymethyl-2-methoxy-6-methylpyridin-3-yl)-

- 58 -

[4-(3,5-dimethylphenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 125 to obtain the titled compound.

vield: 47.3%

m.p.: 127~129℃

5 Example 127)

N-Hydroxy-N'-(5-hydroxymethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-difluorophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5-hydroxymethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-difluorophenyl)piperazin-1-yl]iminothiolate was reacted by the

way with the example 125 to obtain the titled compound. 10 same

yield: 42.3%

m.p.: 179~181℃

Example 128)

N-Hydroxy-N'-(5-hydroxymethyl-2-methoxy-6-methylpyridin-3-yl)-

15 [4-(2-methoxyphenyl)piperazin-1-yl]carboxyimid-amide

Methyl N-(5-hydroxymethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(2-methoxyphenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 125 to obtain the titled compound.

yield: 57.5%

20 m.p.: 129~131℃

Example 129)

N-Hydroxy-N'-(5-hydroxymethyl-2-methoxy-6-methylpyr-idine-3-yl)-1-methylpyr-idine-3-yl-1-methyl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idine-3-yl-1-methylpyr-idin(4-phenylpiperazin-1-yl)carboxyimidamide

Methyl N-(5-hydroxymethyl-2-methoxy-6-methylpyridin-3-yl)-

25 (4-phenylpiperazin-1-yl)iminothiolate was reacted by the same way with the example 125 to obtain the titled compound.

vield: 61.6%

m.p.: 167~169℃

Example 130)

[4-(4-methylphenyl)piperazin-1-yl]carboxyimidamide

- 59 -

Methyl

N-(5-hydroxymethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(4-methylphe nyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 125 to obtain the titled compound.

5 yield: 66.7%

m.p.: 157~159℃

Example 131)

N-Hydroxy-N'-(5-hydroxymethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3-chlorophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5-hydroxymethyl-2-methoxy-6-methylpyridin-3-yl)-10 [4-(3-chlorophenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 125 to obtain the titled compound.

yield: 56.2%

m.p.: 171~173℃

15 Example 132)

N-Hydroxy-N'-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-dimethylphenyl)piperazin-1-yl]carboxyimidamide Methyl

N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-dimethyl-

20 phenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 35.1%

m.p.: 174~176℃

Example 133)

25 N-Hydroxy-N'-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-dimethoxyphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-dimethoxyphenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

30 yield: 32.4%

m.p.: 143~145℃

Example 134)

N-Hydroxy-N'-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)-

(4-phenylpiperazin-1-yl)carboxyimidamide

Methyl N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)-(4-phenyl-

5 piperazin-1-yl)iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 40.5%

m.p.: 169~170℃

Example 135)

10 N-Hydroxy-N'-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)-

[4-(4-methylphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)-[4-(4-methyl-phenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

15 yield: 55.2%

m.p.: 164~166℃

Example 136)

N-Hydroxy-N'-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)-[4-acetyl-2-methoxy-6-methylpyridin-3-yl)-[4-acetyl-2-methoxy-6-methylpyridin-3-yl]

(3,5-difluorophenyl)piperazin-1-yl]carboxyimidamide

20 Methyl

N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-difluoro-phenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 33.2%

25 m.p.: 184~185℃

Example 137)

N-Hydroxy-N'-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)-[4-

(2-methylthiophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)-[4-(2-methyl-

30 thiophenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 39.8%

m.p. : 178~179℃

Example 138)

N-Hydroxy-N'-[5-(1-hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]-

5 [4-(3.5-dimethylphenyl)piperazin-1-yl]carboxyimidamide

To N-hydroxy-N'-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)[(4-(3,5-dimethylphenyl)piperazin-1-yl]carboxyimidamide (150mg,
0.36mmol), ethanol(20ml) and then sodium borohydride(17mg, 0.45mmol)
were added slowly. The resulting mixture was stirred at 20°C for 4

10 hours, concentrated under the reduced pressure to remove the solvent, and extracted with methylene chloride with addition of water. The organic layer was dried with magnesium sulfate and purified by column chromatography to obtain the titled compound.

yield: 75.6%

15 m.p.: 94~96℃

Example 139)

N-Hydroxy-N'-[5-(1-hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]- [4-(3,5-dimethoxyphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-[5-(1-hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]-[4-

20 (3,5-dimethoxyphenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 138 to obtain the titled compound.

yield: 65.6%

m.p.: 123~125°C

Example 140) N-Hydroxy-N'-[5-(1-hydroxyethyl)-2-methoxy-6-methyl-

25 pyridin-3-yl]-(4-phenylpiperazin-1-yl)carboxyimidamide

Methyl N-[5-(1-hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]- (4-phenylpiperazin-1-yl)iminothiolate was reacted by the same way with the example 138 to obtain the titled compound.

yield: 72.3%

30 m.p.: 154~155℃

Example 141)

- 62 -

N-Hydroxy-N'-[5-(1-hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]-[4-(4-methylphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-[5-(1-hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]-[4-(4-methylphenyl)piperazin-1-yl]iminothiolate was reacted by the same 5 way with the example 138 to obtain the titled compound.

yield: 62.1%

m.p.: 187~189°C

Example 142)

N-Hydroxy-N'-[5-(1-hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]-

10 [4-(3.5-difluorophenyl)piperazin-1-yl]carboxyimidamide Methyl N-[5-(1-hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]-[4-(3,5-difluorophenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 138 to obtain the titled compound.

yield: 63.8%

15 m.p.: 156~157℃

Example 143)

N-Hydroxy-N'-[5-(1-hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]-[4-(2-methylthiophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-[5-(1-hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]-

20 [4-(2-methylthiophenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 138 to obtain the titled compound.

yield: 70.2%

m.p.: 162~163°C

Example 144)

25 N-Hydroxy-N'-[5-(1-hydroxyiminoethyl)-2-methoxy-6-methylpyridin-3-yl]-[4-(3,5-dimethylphenyl)piperazin-1-yl]carboxyimidamide Methyl N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-dimethylphenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

30 yield: 23.2%

Example 145)

N-Hydroxy-N'-[5-(1-hydroxyiminoethyl)-2-methoxy-6-methylpyridin-3yl]-[4-(3,5-dimethoxyphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5dimethoxyphenyl)piperazin-1-yl]iminothiolate was reacted by the same 5 way with the example 96 to obtain the titled compound.

yield: 35.6%

Example 146)

N-Hydroxy-N'-[5-(1-hydroxyiminoethyl)-2-methoxy-6-methylpyridin-3yl]-[4-(3,5-difluorophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-10 difluorophenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 33.3%

Example 147)

15 N-Hydroxy-N'-[5-(1-hydroxyiminoethyl)-2-methoxy-6-methylpyridin-3yl]-[4-(2-methylthiophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)-[4-(2-methylthiophenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

20 yield: 30.2%

Example 148)

N-Hydroxy-N'-[5-(1-hydroxyiminoethyl)-2-methoxy-6-methylpyridin-3yl]-[4-(3,5-dinitrophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-

25 dinitrophenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 29.5%

Example 149)

N-Hydroxy-N'-[5-(1-hydroxyiminoethyl)-2-methoxy-6-me-thylpyridin-3

30 -yl]-[4-(4-methylphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)-[4-(4-

WO 00/52001 PCT/KR00/00164

- 64 -

methylphenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 25.0%

Example 150)

5 N-Hydroxy-N'-[5-(1-aminoethyl)-2-methoxy-6-methylpyridin-3-yl]-[4-(3,5-dimethylphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-[5-(1-aminoethyl)-2-methoxy-6-methylpyridin-3-yl]- [4-(3,5-dimethylphenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

10 yield: 45.6%

Example 151)

N-Hydroxy-N'-[5-(1-aminoethyl)-2-methoxy-6-methylpyridin-3-yl]-[4-(3,5-dimethoxyphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-[5-(1-aminoethyl)-2-methoxy-6-methylpyridin-3-yl]-

15 [4-(3,5-dimethoxyphenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 42.2%

Example 152)

N-Hydroxy-N'-[5-(1-aminoethyl)-2-methoxy-6-methylpyridin-3-yl]-

20 [4-(3,5-difluorophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-[5-(1-aminoethyl)-2-methoxy-6-methylpyridin-3-yl]
[4-(3,5-difluorophenyl)piperazin-1-yl]iminothiolate was reacted by the

same way with the example 96 to obtain the titled compound.

yield: 53.1%

25 Example 153)

N-Hydroxy-N'-[5-(1-aminoethyl)-2-methoxy-6-methylpyridin-3-yl]- [4-(2-methylthiophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-[5-(1-aminoethyl)-2-methoxy-6-methylpyridin-3-yl]-

[4-(2-methylthiophenyl)piperazin-1-yl]iminothiolate was reacted by the

30 same way with the example 96 to obtain the titled compound.

yield: 44.7%

Example 154)

N-Hydroxy-N'-[5-(1-aminoethyl)-2-methoxy-6-methylpyridin-3-yl][4-(3,5-dinitrophenyl)piperazin-1-yl]carboxyimidamide

Methyl

5 N-[5-(1-aminoethyl)-2-methoxy-6-methylpyridin-3-yl]-[4-(3,5-dinitrophenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 52.1%

Example 155)

10 N-Hydroxy-N'-[5-(1-aminoethyl)-2-methoxy-6-methylpyridin-3-yl][4-(3,5-chlorophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-[5-(1-aminoethyl)-2-methoxy-6-methylpyridin-3-yl]-[4(3,5-chlorophenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

15 yield: 47.6%

Example 156)

N-Hydroxy-N'-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)- [4-(4-methylphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-

20 [4-(4-methylphenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 71.2%

m.p.: 176~178°C

Example 157)

25 N-Hydroxy-N'-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-[4-(2-ethylphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-[4-(2-ethylphenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

30 yield: 65.0%

m.p.: 182~184℃

Example 158)

N-Hydroxy-N'-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-

[4-(3,5-dimethylphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-

5 [4-(3,5-dimethylphenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 59.1%

m.p.: 152~155℃

Example 159)

10 N-Hydroxy-N'-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-[4-(3,5-dimethoxyphenyl)piperazin-1-yl]carboxyimidamide Methyl

N-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-[4-(3,5-dimethoxyphenyl)piperazin-1-yl]iminothiolate was reacted by the same

15 way with the example 96 to obtain the titled compound.

yield: 55.6%

m.p.: 156~157℃

Example 160)

N-Hydroxy-N'-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-[4-

20 (3,5-dichlorophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-[4-

(3,5-dichlorophenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 54.4%

25 m.p.: 158~160℃

Example 161)

N-Hydroxy-N'-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-[4-(2-methylthiophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-[4-

30 (2-methylthiophenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 50.1%

m.p. : 168~170℃

Example 162)

N-Hydroxy-N'-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-[4-

5 (3,5-diethylisophthalate-1-yl)piperazin-1-yl]carboxyimidamide

Methyl N-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-[4-(3,5-diethylisophthal-1-yl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 57.3%

10 m.p.: 101~103℃

Example 163)

N-Hydroxy-N'-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-[4-(3,5-difluorophenyl)piperazin-1-yl]carboxyimid-amide

Methyl N-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-

15 [4-(3,5-difluorophenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 45.0%

m.p.: 143~145℃

Example 164)

20 N-Hydroxy-N'-(6-ethyl-5-hydroxymethyl-2-methoxypyridin-3-yl)[4-(4-methylphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(6-ethyl-5-hydroxymethyl-2-methoxypyridin-3-yl)-[4-(4-methylphenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 125 to obtain the titled compound.

25 yield: 66.6%

m.p.: 170~172℃

Example 165)

N-Hydroxy-N'-(6-ethyl-5-hydroxymethyl-2-methoxypyridin-3-yl)-[4-(2-ethylphenyl)piperazin-1-yl]carboxyimidamide

30 Methyl N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(2-ethyl-phenyl)piperazin-1-yl]iminothiolate was reacted by the same way with

the example 125 to obtain the titled compound.

yield: 60.4%

m.p.: 185~187℃

Example 166)

5 N-Hydroxy-N'-(6-ethyl-5-hydroxymethyl-2-methoxypyridin-3-yl)- [4-(3,5-dimethylphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(6-ethyl-5-hydroxymethyl-2-methoxypyridin-3-yl)-

[4-(3,5-dimethylphenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 125 to obtain the titled compound.

10 yield: 65.1%

m.p.: 75~77℃

Example 167)

N-Hydroxy-N'-(6-ethyl-5-hydroxymethyl-2-methoxypyridin-3-yl)-

[4-(3,5-dimethoxyphenyl)piperazin-1-yl]carboxyimidamide

15 Methyl N-(6-ethyl-5-hydroxymethyl-2-methoxypyridin-3-yl)-[4-(3,5-dimethoxyphenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 125 to obtain the titled compound.

yield: 61.2%

m.p.: 67~69°C

20 Example 168)

N-Hydroxy-N'-(6-ethyl-5-hydroxymethyl-2-methoxypyridin-3-yl)-[4-(3, 5-dichlorophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(6-ethyl-5-hydroxymethyl-2-methoxypyridin-3-yl)-[4-(3,5-dichlorophenyl)piperazin-1-yl]iminothiolate was reacted by the same way

25 with the example 125 to obtain the titled compound.

yield: 70.1%

m.p.: 75~77℃

Example 169)

N-Hydroxy-N'-(6-ethyl-5-hydroxymethyl-2-methoxypyridin-3-yl)-

30 [4-(2-methylthiophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(6-ethyl-5-hydroxymethyl-2-methoxypyridin-3-yl)-[4-(2-

methylthiophenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 125 to obtain the titled compound.

yield: 67.2%

m.p.: 163~165°C

5 Example 170)

N-Hydroxy-N'-(6-ethyl-5-hydroxymethyl-2-methoxypyridin-3-yl)-{4-[3,5-bis(hydroxymethyl)phenyl]piperazin-1-yl}carboxyimidamide

Methyl N-(6-ethyl-5-hydroxymethyl-2-methoxypyridin-3-yl)-{4-[3,5-bis(hydroxymethyl)phenyl]piperazin-1-yl}iminothiolate was reacted by the

10 same way with the example 125 to obtain the titled compound

yield: 59.4%

Example 171)

N-Hydroxy-N'-(6-ethyl-5-hydroxymethyl-2-methoxypyridin-3-yl)-[4-(3,5-difluorophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(6-ethyl-5-hydroxymethyl-2-methoxypyridin-3-yl)-[4-(3,5-difluorophenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 125 to obtain the titled compound.

yield: 48.7%

m.p.: 68~70℃

20 Example 172)

N-Hydroxy-N'-(2-methoxyquinolin-3-yl)-[4-(3,5-dimethoxyphenyl)-piperazin-1-yl]carboxyimidamide

Methyl N-(2-methoxyquinolin-3-yl)-[4-(3,5-dimethoxyphenyl)-piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 41.0%

m.p. : 215~217℃

Example 173)

N-Hydroxy-N'-(2-methoxyquinolin-3-yl)-[4-(3,5-dimethylphenyl)-

30 piperazin-1-yl]carboxyimidamide

Methyl N-(2-methoxyquinolin-3-yl)-[4-(3,5-dimethylphenyl)-

- 70 -

piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 44.2%

m.p.: 182~184°C

5 Example 174)

N-Hydroxy-N'-(2-methoxyquinolin-3-yl)-[4-(3,5-difluoro-phenyl)-piperazin-1-yl]carboxyimidamide

Methyl N-(2-methoxyquinolin-3-yl)-[4-(3,5-difluorophenyl)-piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 38.1%

m.p.: 163~165℃

Example 175)

N-Hydroxy-N'-(2-methoxyquinolin-3-yl)-[4-(2-methoxyphenyl)-

15 piperazin-1-yl]carboxyimidamide

Methyl N-(2-methoxyquinolin-3-yl)-[4-(2-methoxyphenyl)-piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 43.2%

20 m.p. : 210~212℃

Example 176)

N-Hydroxy-N'-(2-methoxyquinolin-3-yl)-[4-(3-chlorophenyl)-piperazin-1-yl]carboxyimidamide

Methyl

25 N-(2-methoxyquinolin-3-yl)-[4-(3-chlorophenyl)piperazin-1-yl]- iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 45.2%

. m.p. : 162~164℃

30 Example 177)

N-Hydroxy-N'-(4,5-dimethyl-2-methoxyphenyl-1-yl)-(4-phenyl-

WO 00/52001 PCT/KR00/00164

piperazin-1-yl)carboxyimidamide

Methyl N-(4,5-dimethyl-2-methoxyphenyl-1-yl)-(4-phenylpiperazin-1-yl)iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

5 yield: 62.7%

m.p.: 160~162°C

Example 178)

N-Hydroxy-N'-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(4-methyl-phenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(4-methylphenyl)-piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 60.1%

m.p.: 181~183°C

15 Example 179)

N-Hydroxy-N'-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(2-ethyl-phenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(2-ethylphenyl)-piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 65.4%

m.p.: 194~196℃

Example 180) N-Hydroxy-N'-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(3,5-dimethylphenyl)piperazin-1-yl]carboxyimidamide

25 Methyl

N-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(3,5-dimethylphenyl)-piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 64.1%

30 m.p.: 184~186℃

Example 181) N-Hydroxy-N'-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-

- 72 -

(3.5-dimethoxyphenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(3,5-dimethoxy-phenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

5 yield: 65.5%

m.p.: 189~191℃

Example 182) N-Hydroxy-N'-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(3,5-difluorophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(3,5-difluoro-

phenyl)-piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

yield: 60.0%

m.p.: 179~181℃

Example 183)

N-Hydroxy-N'-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(3-chloro-phenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(3-chlorophenyl)-piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

20 yield: 58.7%

m.p.: 174~176℃

Example 184)

N-Hydroxy-N'-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(3-bromo-phenyl)piperazin-1-yl]carboxyimidamide

25 Methyl N-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(3-bromophenyl)-piperazin-1-yl]iminothiolate was reacted by the same way with the example 96 to obtain the titled compound.

vield: 61.2%

m.p.: 178~180℃

30 Example 185)

N-Hydroxy-N'-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(2-methyl-

- 73 -

thiophenyl)piperazin-1-yl]carboxyimidamide

Methyl N-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(2-methylthiophenyl)piperazin-1-yl]iminothiolate was reacted by the same way with the ex-ample 96 to obtain the titled compound.

vield: 60.5%

m.p.: 194~196℃

Example 186) N-Methoxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)-(4phenylpiperazin-1-yl)carboxyimidamide

To N-hydroxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)-(4-phenylpiperazin-1-yl)carboxyimidamide (0.5g, 1.41mmol) dissolved in 10 dimethylformamide (15ml), sodium hydride(60%, 57.8mg, 1.45mmol) and methyl iodide (0.20g, 1.41mmol) were added and stirred for 4 hours and then water(20ml) was added thereto to stop reaction. The resulting mixture was extracted with ethylether. The organic layer was

15 concentrated under the reduced pressure to remove the solvent and purified by column chromatography to obtain the titled compound.

vield: 89.1%

Example 187)

N-Methoxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(4-methyl-20 phenyl)piperazin-1-yl]carboxyimidamide

N-Hydroxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(4-methylphenyl)piperazin-1-yl]carboxyimidamide was reacted by the same way with the example 186 to obtain the titled compound.

yield: 92.2%

Example 188)

N-Methoxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-dimethylphenyl)piperazin-1-yl]carboxyimidamide

N-Hydroxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5dimethylphenyl)piperazin-1-yl]carboxyimidamide was reacted by the same way with the example 186 to obtain the titled compound. yield: 90.0%

Example 189)

N-Methoxy-N'-(5.6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-dimethoxyphenyl)piperazin-1-yl]carboxyimidamide

N-Hydroxy-N'-(5.6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-di-5 methoxyphenyl)piperazin-1-yl]carboxyimidamide was reacted by the same way with the example 186 to obtain the titled compound.

yield: 92.2%

Example 190)

N-Methoxy-N'-(5.6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-difluoro-10 phenyl)piperazin-1-yl]carboxyimidamide

N-Hydroxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-difluorophenyl)piperazin-1-yl]carboxyimidamide was reacted by the same way with the example 186 to obtain the titled compound.

yield: 85.2%

15 Example 191)

N-Methoxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methoxypyridin-3-yl)-[4-(2-methyl-2-methoxypyridin-3-yl)-[4-(2-methyl-2-methoxypyridin-3-yl)-[4-(2-methyl-2-methoxypyridin-3-yl)-[4-(2-methyl-2-methoxypyridin-3-yl)-[4-(2-methyl-2-methoxypyridin-3-yl)-[4-(2-methyl-2-methoxypyridin-3-yl)-[4-(2-methyl-2-methoxypyridin-3-yl)-[4-(2-methyl-2-methoxypyridin-3-yl)-[4-(2-methyl-2-methoxypyridin-3-yl)-[4-(2-methyl-2-methyl-2-methyl-2-methyl-2-methoxypyridin-3-yl)-[4-(2-methyl-2thiophenyl)piperazin-1-yl]carboxyimidamide

N-Hydroxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(2-methylthiophenyl)piperazin-1-yl]carboxyimidamide was reacted by the same

20 way with the example 186 to obtain the titled compound.

yield: 89.2%

Example 192)

N-Methoxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-dinitrophenyl)piperazin-1-yl]carboxyimidamide

N-Hydroxy-N'-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-dinitro-25 phenyl)piperazin-1-yl]carboxyimidamide was reacted by the same way with the example 186 to obtain the titled compound.

yield: 79.5%

Example 193)

30 N-Methoxy-N'-(5-ethyl-6-methyl-2-methoxypyridin-3-yl)-[4-(3,5-dichlorophenyl)piperazin-1-yl]carboxyimidamide

- 75 -

N-Hvdroxv-N'-(5-ethyl-6-methyl-2-methoxypyridin-3-yl)-[4-(3,5-methyl-2-methoxypyridin-3-yl)-[4-(3,5-methyl-2-methyl-2-methoxypyridin-3-yl)-[4-(3,5-methyl-2-methyl-2-methoxypyridin-3-yl)-[4-(3,5-methyl-2-methyl-2-methoxypyridin-3-yl)-[4-(3,5-methyl-2-metdichlorophenyl)piperazin-1-yl]carboxyimidamide was reacted by the same way with the example 186 to obtain the titled compound.

yield: 84.2%

5 m.p.: 163~165℃

Example 194)

N-Methoxy-N'-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-[4-(3.5-difluorophenyl)piperazin-1-yl]carboxyimid-amide

N-Hydroxy-N'-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-

10 [4-(3,5-difluorophenyl)piperazin-1-yl]carboxyimidamide was reacted by the same way with the example 186 to obtain the titled compound.

yield: 91.3%

Example 195)

N-Methoxy-N'-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-

15 [4-(3,5-diethylisophthal-1-yl)piperazin-1-yl]carboxyimidamide N-Hydroxy-N'-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-[4-(3,5-diethylisophthal-1-yl)piperazin-1-yl]carboxyimidamide was reacted by the same way with the example 186 to obtain the titled compound.

20 yield: 94.0%

Example 196)

N-Methoxy-N'-(6-ethyl-5-hydroxymethyl-2-methoxypyridin-3-yl)-{4-[3.5-bis(hydroxymethyl)phenyl-1-yl]piperazin-1-yl}carboxyimidamide N-methoxy-N'-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-

25 [4-(3,5-diethylisophthal-1-yl)piperazin-1-yl]carboxyimidamide was reacted by the same way with the example 186 to obtain the titled compound.

yield: 68.0%

Example 197)

30 N-Methoxy-N'-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(4-methylphenyl)piperazin-1-yl]carboxyimidamide

PCT/KR00/00164 WO 00/52001

- 76 -

N-Hydroxy-N'-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(4-methyl-1-yl)-1]phenyl)piperazin-1-yl]carboxyimidamide was reacted by the same way with the example 186 to obtain the titled compound.

vield: 86.7%

5 Example 198) N-Methoxy-N'-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(3,5-dimethylphenyl)piperazin-1-yl]carboxyimidamide

N-Hydroxy-N'-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(3,5-di-1)]methylphenyl)piperazin-1-yl]carboxyimidamide was reacted by the same way with the example 186 to obtain the titled compound.

10 yield: 87.0%

Example 199) Methyl

N-(5,6-dimethyl-2-methoxypyridin-3-yl)-(4-phenylpiperazin-1-yl)iminothiolate

To 1-[(5,6-dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-phenylpiperazine (0.5g, 1.40mmol) dissolved in dimethylformamide(15ml), sodium hydride (60%, 56.1mg, 1.40mmol) and methyl iodide (0.20g, 1.41mmol) were added. The resulting mixture was stirred for 2 hours and then water (20ml) was added thereto to stop reaction. The resulting mixture was purified by column chromatography to obtain the titled

yield: 92.4%

20 compound.

Example 200) Methyl

N-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(4-et-hylphenyl)piperazin-1-yl]iminothiolate

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminothiocarbonyl]-4-(4-25 methylphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 95.2%

Example 201) Methyl N-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(4-n-

30 butylphenyl)piperazin-1-yl]iminothiolate

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminothiocarbonyl]-4-(4-n-

- 77 -

butylphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 93.4%

Example 202) Methyl

5 N-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-dimethylphenyl)-piperazin-1-yl]iminothiolate

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminothiocarbonyl]-4-(3,5-dimethylphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

10 yield: 97.2%

Example 203) Methyl

N-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(2-methoxyphenyl)-piperazin-1-yl]iminothiolate

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminothiocarbonyl]-4-(2-15 methoxyphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 97.4%

Example 204) Methyl

N-(5.6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-dimethoxyphenyl)-20 piperazin-1-yl]iminothiolate

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminothiocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 95.2%

25 Example 205) Methyl

N-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-di-fluorophenyl)-piperazin-1-yl]iminothiolate

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminothiocarbonyl]-4-(3,5-difluorophenyl)piperazine was reacted by the same way with the

30 example 199 to obtain the titled compound.

yield: 90.1%

Example 206) Methyl

N-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-di-chlorophenyl)-piperazin-1-yl]iminothiolate

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminothiocarbonyl]-4-(3,5-di-5 chlorophenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 92.5%

Example 207) Methyl

N-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3-bromophenyl)-

10 piperazin-1-yl]iminothiolate

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminothiocarbonyl]-4-(3-bromophenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 89.5%

15 Example 208) Methyl

N-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-di-nitrophenyl)-piperazin-1-yl]iminothiolate

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminothiocarbonyl]-4-(3,5-dinitrophenyl)piperazine was reacted by the same way with the example 20 199 to obtain the titled compound.

yield: 92.9%

Example 209) Methyl

N-(5,6-dimethyl-2-methoxypyridin-3-yl)-[4-(3,5-di-ethylisophthal-1-yl)-piperazin-1-yl]iminothiolate

25 1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminothiocarbonyl]-4-(3,5-diethylisophthal-1-yl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 92.9%

Example 210) Methyl N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-(4-

30 phenyl)piperazin-1-yl]iminothiolate

1-[(5-Ethyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-

WO 00/52001 PCT/KR00/00164

phenylpiperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 92.2%

Example 211) Methyl N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-5 (2-methoxyphenyl)piperazin-1-yl]iminothiolate

1-[(5-Ethyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-(2-methoxyphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 87.2%

10 Example 212) Methyl

N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-dimethoxyphenyl)-piperazin-1-yl]iminothiolate

1-[(5-Ethyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 92.4%

Example 213) Methyl N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(2-ethylphenyl)piperazin-1-yl]iminothiolate

1-[(5-Ethyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-

20 (2-ethylphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 93.6%

Example 214) Methyl N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)- [4-(3,5-dimethylphenyl)piperazin-1-yl]iminothiolate

25 1-[(5-Ethyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-(3,5-dimethylphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 96.2%

Example 215) Methyl

30 N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-difluorophenyl)-piperazin-1-yl]iminothiolate

- 80 -

1-[(5-Ethyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-(3,5-difluorophenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 92.5%

5 Example 216) Methyl

N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-dichlorophenyl)-piperazin-1-yl]iminothiolate

1-[(5-Ethyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-(3,5-dichlorophenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 93.2%

Example 217) Methyl N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(2-phenylphenyl)piperazin-1-yl]iminothiolate

1-[(5-Ethyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-15 (2-phenylphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 91.4%

Example 218) Methyl

N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5-dinitrophenyl)-20 piperazin-1-yl]iminothiolate

1-[(5-Ethyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-(3,5-dinitrophenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 94.2%

25 Example 219) Methyl N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)[4-(2-methylthiophenyl)piperazin-1-yl]iminothiolate

1-[(5-Ethyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-(2-methylthiophenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

30 yield: 90.5%

Example 220) Methyl

- 81 -

N-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3.5dimethoxyphenyl)piperazin-1-yl]iminothiolate

1-[(5-Methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine was reacted by the 5 same way with the example 199 to obtain the titled compound.

yield: 93.2%

Example 221) Methyl

N-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5dimethylphenyl)piperazin-1-yl]iminothiolate

1-[(5-Methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)amino-10 thiocarbonyl]-4-(3,5-dimethylphenyl)piperazine was reacted by the same with the example 199 to obtain the titled compound.

yield: 92.9%

Example 222) Methyl

15 N-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)-[4-(3,5difluorophenyl)piperazin-1-yl]iminothiolate

1-[(5-Methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-(3,5-difluorophenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

20 yield: 88.5%

Example 223) Methyl

N-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)-[4-(2methoxyphenyl)piperazin-1-yl]iminothiolate

1-[(5-Methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)aminothio-25 carbonyl]-4-(2-methoxyphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 90.2%

Example 224) Methyl

N-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)-(4-phenyl-

30 piperazin-1-yl)iminothiolate

1-[(5-Methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)aminothio-

carbonyl]-4-phenylpiperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 93.5%

Example 225) Methyl

5 N-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)-[4-(4-methylphenyl)piperazin-1-yl]iminothiolate

1-[(5-Methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-(4-methylphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

10 yield: 97.5%

Example 226) Methyl

N-(5-methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)-[4-(2-chlorophenyl)piperazin-1-yl]iminothiolate

1-[(5-Methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)aminothio-15 carbonyll-4-(2-chlorophenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 95.5%

Example 227) Methyl N-(2-methoxy-5-methylcarbonyl-6-methylpyridin- 3-yl)-[4-(3,5-dimethylphenyl)piperazin-1-yl]iminothiolate

1-[(5-Methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)aminothio-20 carbonyl]-4-(3,5-dimethylphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 96.2%

Example 228) Methyl N-(2-methoxy-5-methylcarbonyl-6-methylpyridin-25 3-yl)-[4-(3,5-dimethoxyphenyl)piperazin-1-yl]iminothiolate

1-[(5-Methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 95.4%

30 Example 229) Methyl N-(2-methoxy-5-methylcarbonyl-6-methylpyridin-3-yl)-(4-phenylpiperazin-1-yl)iminothiolate

1-[(5-Methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-phenylpiperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 90.1%

5 Example 230) Methyl N-(2-methoxy-5-methylcarbonyl-6-methylpyridin-3-yl)-[4-(4-methylphenyl)piperazin-1-yl]iminothiolate

1-[(5-Methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-(4-methylphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

10 yield: 92.2%

Example 231) Methyl N-(2-methoxy-5-methylcarbonyl-6-methylpyridin-3-yl)-[4-(3,5-difluorophenyl)piperazin-1-yl]iminothiolate

1-[(5-Methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-(3,5-difluorophenyl)piperazine was reacted by the same way 15 with the example 199 to obtain the titled compound.

yield: 93.1%

Example 232) Methyl N-(2-methoxy-5-methylcarbonyl-6-methylpyridin-3-yl)-[4-(2-methylthiophenyl)piperazin-1-yl]iminothiolate

1-[(5-Methoxycarbonyl-2-methoxy-6-methylpyridin-3-yl)aminothio-20 carbonyl]-4-(2-methylthiophenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 90.0%

Example 233) Methyl N-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-[4-(4-methylphenyl)piperazin-1-yl]iminothiolate

1-[(6-Ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)aminothio-25 carbonyl]-4-(4-methylphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 91.1%

Example 234) Methyl N-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-

30 3-yl)-[4-(2-ethylphenyl)piperazin-1-yl]iminothiolate

1-[(6-Ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)aminothio-

WO 00/52001 PCT/KR00/00164

- 84 -

carbonyl]-4-(2-ethylphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 90.4%

Example 235) Methyl N-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-

5 3-yl)-[4-(3,5-dimethylphenyl)piperazin-1-yl]iminothiolate

1-[(6-Ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)aminothiocarbonyl]-4-(3,5-dimethylphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

vield: 95.5%

10 Example 236) Methyl N-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-[4-(3,5-dimethoxyphenyl)piperazin-1-yl]iminothiolate

1-[(6-Ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)aminothiocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine was reacted by the same with the example 199 to obtain the titled compound. way

15 yield: 95.4%

Example 237) Methyl N-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-vl)-[4-(3.5-dichlorophenyl)piperazin-1-yl]iminothiolate

1-[(6-Ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)aminothiocarbonyl]-4-(3,5-dichlorophenyl)piperazine was reacted by the same way 20 with the example 199 to obtain the titled compound.

yield: 90.5%

Example 238) Methyl N-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-[4-(2-methylthiophenyl)piperazin-1-yl]iminothiolate

1-[(6-Ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)aminothio-25 carbonyl]-4-(2-methylthiophenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 92.0%

Example 239) Methyl N-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-[4-(3,5-diethylisophthalate-1-yl)piperazin-1-yl]iminothi-olate

1-[(6-Ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)aminothio-30 carbonyl]-4-(3,5-diethylisophthalate-1-yl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 93.2%

Example 240) Methyl N-(6-ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)-[4-(3,5-difluorophenyl)piperazin-1-yl]iminothiolate

5 1-[(6-Ethyl-5-methoxycarbonyl-2-methoxypyridin-3-yl)aminothiocarbonyl]-4-(3,5-difluorophenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 95.2%

Example 241) Methyl

10 N-(2-methoxyquinolin-3-yl)-[4-(3,5-dimethoxyphe-nyl)piperazin-1-yl]iminothiolate

1-[(2-Methoxyquinolin-3-yl)aminothiocarbonyl]-4-(3,5-dimethoxy-phenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

15 yield: 90.3%

Example 242) Methyl

N-(2-methoxyquinolin-3-yl)-[4-(3,5-dimethylphenyl)piperazin-1-yl]-iminothiolate

1-[(2-Methoxyquinolin-3-yl)aminothiocarbonyl]-4-(3,5-dimethyl-20 phenyl)piperazine was reacted by the same way with the example 199

to obtain the titled compound.

yield: 91.1%

Example 243) Methyl N-(2-methoxyquinolin-3-yl)-[4-(3,5-difluoro-phenyl)piperazin-1-yl]iminothiolate

1-[(2-Methoxyquinolin-3-yl)aminothiocarbonyl]-4-(3,5-difluorophenyl)
-piperazine was reacted by the same way with the example 199 to
obtain the titled compound.

yield: 94.2%

Example 244) Methyl

30 N-(2-methoxyquinolin-3-yl)-[4-(2-methoxyphenyl)-piperazin-1-yl]iminothiolate

PCT/KR00/00164 WO 00/52001

- 86 -

1-[(2-Methoxyquinolin-3-yl)aminothiocarbonyl]-4-(2-methoxyphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 92.4%

5 Example 245) Methyl

N-(2-methoxyquinolin-3-yl)-[4-(3-chlorophenyl)pi-perazine-1-yl]iminothiolate

1-[(2-Methoxyquinolin-3-yl)aminothiocarbonyl]-4-(3-chlorophenyl)piperazine was reacted by the same way with the example 199 to obtain 10 the titled compound.

yield: 90.3%

Example 246) Methyl

N-(4,5-dimethyl-2-methoxyphenyl-1-yl)-(4-phenyl-piperazin-1-yl)iminothiolate

1-[(4.5-Dimethyl-2-methoxyphenyl-1-yl)aminothiocarbonyl]-4-phenyl-15 piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 95.4%

Example 247) Methyl

20 N-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(4-methylphenyl)piperazin-1-yl]iminothiolate

1-[(4,5-Dimethyl-2-methoxyphenyl-1-yl)aminothiocarbonyl]-4-(4methylphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

25 yield: 94.4%

Example 248) Methyl N-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(2ethylphenyl)piperazin-1-yl]iminothiolate

1-[(4,5-Dimethyl-2-methoxyphenyl-1-yl)aminothiocarbonyl]-4-(2-ethylphenyl)piperazine was reacted by the same way with the

30 example 199 to obtain the titled compound.

yield: 96.2%

- 87 -

Example 249) Methyl

N-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(3,5-di-methylphenyl)-piperazin-1-yl]iminothiolate

1-[(4.5-Dimethyl-2-methoxyphenyl-1-yl)aminothiocarbonyl]-4-(3,5-

5 dimethylphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 96.8%

Example 250) Methyl

N-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(3,5-dimethoxy-

10 phenyl)piperazin-1-yl]iminothiolate

1-[(4,5-Dimethyl-2-methoxyphenyl-1-yl)aminothiocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 95.7%

15 Example 251) Methyl

N-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(3,5-difluorophenyl)-piperazin-1-yl]iminothiolate

1-[(4,5-Dimethyl-2-methoxyphenyl-1-yl)aminothiocarbonyl]-4-(3,5-difluorophenyl)piperazine was reacted by the same way with the 20 example 199 to obtain the titled compound.

yield: 90.4%

Example 252) Methyl

N-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(3-chlorophenyl)-piperazin-1-yl]iminothiolate

25 1-[(4,5-Dimethyl-2-methoxyphenyl-1-yl)aminothiocarbonyl]-4- (3-chlorophenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 94.2%

Example 253) Methyl

30 N-(4,5-dimethyl-2-methoxyphenyl-1-yl)-[4-(3-bromophenyl)-piperazin-1-yl]iminothiolate

WO 00/52001 PCT/KR00/00164

- 88 -

1-[(4,5-Dimethyl-2-methoxyphenyl-1-yl)aminothiocarbonyl]-4-(3-bromophenyl)piperazine was reacted by the same way with the example 199 to obtain the titled compound.

yield: 94.4%

5 Example 254) Methyl

N-(4.5-dimethyl-2-methoxyphenyl-1-yl)-[4-(2-methylthiophenyl)-1-yl)piperazin-1-yl]iminothiolate

1-[(4,5-Dimethyl-2-methoxyphenyl-1-yl)aminothiocarbonyl]-4-(2-methylthiophenyl)piperazine was reacted by the same way with the 10 example 199 to obtain the titled compound. yield: 93.5%

Physical data of the compounds prepared in the above examples are as follows:

15

Example 1 ¹H NMR(CDCl₃) : δ 2.37(3H,s), 2.39(3H,s), 3.27(4H,t), 3.74(4H,t), 3.97(3H,s), 6.97(2H,m), 7.31(2H,t) Example 2 ¹H NMR(CDCl₃) : δ 2.36(3H,s), 2.40(3H,s), 3.13(4H,t),

3.75(4H,t), 3.89(3H,s), 3.97(3H,s), 6.95(3H,m), 7.05(2H,m)

- 20 Example 3 1 H NMR(CDCl₃) : δ 2.37(3H,s), 2.39(3H,s), 3.25(4H,t), 3.71(4H,t), 3.79(6H,s), 3.97(3H,s), 6.10(3H,m) Example 4 ¹H NMR(CDCl₃) : δ 1.26(3H,t), 2.37(3H,s), 2.41(3H,s), 2.74(2H,q), 2.94(4H,t), 3.68(4H,t), 3.97(3H,s), 6.72(1H,brs), 7.08(2H,m), 7.19(1H,t), 7.25(1H,s)
- 25 Example 5 1 H NMR(CDCl₃) : δ 0.92(3H,t), 1.35(2H,m), 1.57(2H,m), 2.37(3H,s), 2.39(3H,s), 2.56(2H,t), 3.25(4H,t), 3.78(4H,t), 3.97(3H,s), 6.95(2H,brs), 7.14(2H,m)

Example 6 ¹H NMR(CDCl₃) : δ 1.23(6H,d), 2.38(3H,s), 2.42(3H,s), 2.95(4H,t), 3.53(1H,m), 3.72(4H,t), 3.98(3H,s), 7.11(1H,m), 7.29(1H,m)

30 Example 7 ¹H NMR(CDCl₃) : δ 2.30(6H.s), 2.37(3H,s), 2.40(3H,s), 3.25(4H,t), 3.75(4H,t), 3.97(3H,s), 6.62(3H,m)

- 89 -

Example 8 1 H NMR(CDCl₃) : δ 2.21(6H,s), 2.22(6H,s), 2.38(3H,s), 2.43(3H.s), 3.17(4H.t), 3.67(4H,t), 4.00(3H,s), 6.84(1H,s) Example 9 ${}^{1}H$ NMR(CDCl₃) : δ 2.37(3H,s), 2.40(3H,s), 3.14(4H,t), 3.73(4H,t), 3.98(3H,s), 6.99(2H,m), 7.07(2H,m)

5 Example 10 1 H NMR(CDCl₃) : δ 2.37(3H,s), 2.39(3H,s), 3.26(4H,t), 3.70(4H,t), 3.98(3H,s), 6.85(1H,m), 7.01(1H,d), 7.05(1H,s), 7.13(1H,t) Example 11 1 H NMR(CDCl₃): δ 2.37(3H,s), 2.39(3H,s), 3.27(4H,t), 3.69(4H,t), 3.98(3H,s), 6.75(2H,s), 6.84(1H,s)

Example 12 1 H NMR(CDCl₃): δ 2.37(3H,s), 2.39(3H,s), 3.27(4H,t),

10 3.69(4H,t), 3.97(3H,s), 6.30(1H,t), 6.37(2H,d)

Example 13 1 H NMR(CDC $_{13}$): δ 2.38(3H,s), 2.40(3H,s), 3.31(4H,s), 3.73(4H,t), 3.98(3H,s), 7.09(1H,d), 7.13(2H,m), 7.38(1H,t)

Example 14 1 H NMR(CDCl₃): δ 2.38(3H,s), 2.42(3H,s), 2.43(3H,s), 3.05(4H,t), 3.73(4H,t), 3.99(3H,s), 7.05(1H,brs), 7.13(1H,s)

15 Example 15 ¹H NMR(CDCl₃): δ 2.39(3H,s), 2.45(3H,s), 3.57(4H,t), 3.88(4H,t), 4.08(3H,s), 7.98(2H,s), 8.45(1H,s) Example 16 ¹H NMR(CDCl₃) : δ 2.38(3H,s), 2.40(3H,s), 3.26(4H,t), 3.70(4H,t), 3.98(3H,s), 6.35(1H,s), 6.42(2H,s)

Example 17 1 H NMR(CDCl₃): δ 2.38(3H,s), 2.40(3H,s), 2.54(3H,s),

- 20 3.46(4H,t), 3.74(4H,t), 3.99(3H,s), 6.88(2H,d), 7.90(2H,d) Example 18 1 H NMR(CDCl₃): δ 2.39(3H,s), 2.40(3H,s), 2.91(4H,t), 3.22(3H,s), 3.46(4H,t), 3.85(3H,s), 3.95(3H,s), 6.89(3H,m), 7.02(1H,m) Example 19 ¹H NMR(CDCl₃): δ 2.39(3H,s), 2.40(3H,s), 3.01(4H,t), 3.21(3H,s), 3.40(4H,t), 3.75(6H,s), 3.92(3H,s), 6.03(3H,s)
- 25 Example 20 1 H NMR(CDCl₃): δ 2.26(6H,s), 2.39(3H,s), 2.40(3H,s), 2.99(4H,t), 3.22(3H,s), 3.40(4H,t), 3.93(3H,s), 6.52(3H,m) Example 21 1 H NMR(CDCl₃): δ 2.40(3H,s), 2.41(3H,s), 3.03(4H,t), 3.21(3H,s), 3.38(4H,t), 3.93(3H,s), 6.68(2H,s), 6.81(1H,s) Example 22 1 H NMR(CDCl₃): δ 2.40(3H,s), 2.41(3H,s), 3.03(4H,t),
- 30 3.21(3H,s), 3.39(4H,t), 3.93(3H,s), 6.27(3H,m) Example 23 ¹H NMR(CDCl₃): δ 2.40(9H,s), 2.87(4H,t), 3.22(3H,s),

3.46(4H,t), 3.96(3H,s), 7.02(1H,brs), 7.11(3H,s)

Example 24 1 H NMR(CDCl₃) : δ 2.43(6H,s), 3.24(3H,s), 3.27(4H,t),

3.45(4H,t), 3.95(3H,s), 7.89(2H,d), 8.40(1H,s)

Example 25 ¹H NMR(CDCl₃): δ 2.38(3H,s), 2.39(3H,s), 2.95(4H,t),

- 5 3.21(3H,s), 3.37(4H,t), 3.92(3H,s), 5.62(1H,s), 5.65(2H,s)
 - Example 26 1 H NMR(CDCl₃): δ 1.65(3H,t), 2.39(3H,s), 2.40(3H,s),

2.96(4H,t), 3.35(4H,t), 3.74(2H,q), 3.75(6H,s), 3.92(3H,s), 6.02(3H,s)

Example 27 ¹H NMR(CDCl₃): δ 1.17(3H,t), 2.25(6H,s), 2.39(3H,s),

2.40(3H,s), 2.95(4H,t), 3.36(4H,t), 3.74(2H,q), 3.92(3H,s), 6.50(3H,m)

- 10 Example 28 ¹H NMR(CDCl₃): δ 2.32(3H,s), 2.34(3H,s), 3.34(4H,t), 3.78(6H,s), 3.98(3H,s), 4.07(4H,t), 6.12(3H,m)
 - Example 29 1 H NMR(CDCl₃): δ 1.26(3H,t), 2.35(3H,s), 2.37(3H,s),

 $2.74(2H,q),\ 3.02(4H,t),\ 3.97(3H,s),\ 4.02(4H,t),\ 7.09(2H,q),\ 7.19(1H,t),$

7.55(1H,s)

15 Example 30 ¹H NMR(CDCl₃): δ 2.29(6H,s), 2.32(3H,s), 2.35(3H,s), 3.31(4H,t), 3.98(3H,s), 4.04(4H,t), 6.59(3H,brs)

Example 31 ¹H NMR(CDCl₃): δ 2.32(3H,s), 2.35(3H,s), 3.33(4H,t),

3.98(3H,s), 4.06(4H,t), 6.82(1H,d), 7.01(2H,m), 7.13(1H,t)

Example 32 1 H NMR(CDCl₃) : δ 2.44(3H,s), 2.49(3H,s), 3.48(4H,t),

- 20 4.05(3H,s), 4.25(4H,t), 6.98(3H,m)
 - Example 33 1 H NMR(CDCl₃) : δ 2.35(3H,s), 2.36(3H,s), 2.43(3H,s),

3.12(4H,t), 3.97(3H,s), 4.05(4H,t), 6.87(1H,d), 7.05(1H,brs), 7.13(2H,m)

Example 34 1 H NMR(CDCl₃) : δ 1.26(6H,m), 2.30(6H,s), 2.70(2H,t),

2.78(2H,t), 3.25(4H,t), 3.74(4H,t), 3.99(3H,s), 6.65(3H,m)

25 Example 35 1 H NMR(CDCl₃) : δ 1.24(6H,m), 2.69(2H,t), 2.78(2H,t),

3.24(4H,t), 3.71(4H,t), 3.78(6H,s), 3.98(3H,s), 6.07(1H,s), 6.11(2H,brs)

Example 36 1 H NMR(CDCl₃) : δ 3.34(4H,t), 3.88(4H,t), 4.15(3H,s),

7.05(3H,m), 7.35(3H,m), 7.43(2H,m), 7.70(1H,brs)

Example 37 1 H NMR(CDCl₃): δ 3.17(4H,t), 3.83(4H,t), 3.90(3H,s),

30 4.16(3H,s), 6.99(4H,m), 7.49(2H,m), 7.75(2H,m)

Example 38 1 H NMR(CDCl₃) : δ 3.22(4H,t), 3.30(4H,t), 3.79(6H,s),

4.11(3H,s), 7.20(1H,d), 7.33(2H,m), 7.50(2H,m), 7.62(1H,d), 7.76(1H,m), 7.83(1H,m)

Example 39 1 H NMR(CDCl₃): δ 1.28(3H,t), 2.78(2H,q), 3.02(4H,t), 3.89(4H,t), 4.15(3H,s), 7.13(2H,m), 7.21(1H,t), 7.28(1H,m), 7.43(3H,m),

5 7.70(1H,d)

Example 40 ¹H NMR(CDCl₃) : δ 1.24(6H,d), 2.98(4H,t), 3.56(1H,m), 3.82(4H,t), 4.15(3H,s), 7.16(3H,m), 7.30(1H,d), 7.43(2H,brs), 7.69(2H,d) Example 41 ¹H NMR(CDCl₃) : δ 0.93(3H,t), 1.35(2H,m), 1.57(2H,m), 2.56(2H,t), 3.35(4H,t), 3.88(4H,t), 4.15(3H,s), 7.19(3H,brs), 7.43(3H,brs),

10 7.70(2H,brs)

Example 42 ¹H NMR(CDCl₃) : δ 2.30(6H,s), 3.26(4H,t), 3.78(4H,t), 4.14(3H,s), 6.60(3H,s), 7.30(2H,m), 7.50(1H,s), 7.55(1H,m) Example 43 ¹H NMR(CDCl₃) : δ 2.21(6H,s), 2.34(6H,s), 3.20(4H,t), 3.83(4H,t), 4.17(3H,s), 6.85(1H,s), 7.46(2H,m), 7.61(1H,brs), 7.72(1H,d)

- Example 44 ¹H NMR(CDCl₃) : δ 3.20(4H,t), 3.91(4H,t), 4.15(3H,s), 7.07(4H,m), 7.42(3H,m), 7.70(1H,d) Example 45 ¹H NMR(CDCl₃) : δ 3.30(4H,t), 3.90(4H,t), 4.16(3H,s), 6.95(1H,d), 7.05(1H,d), 7.15(2H,m), 7.42(2H,m), 7.53(1H,s), 7.69(1H,d) Example 46 ¹H NMR(CDCl₃) : δ 3.27(4H,t), 3.78(4H,t), 4.16(3H,s),
- 20 6.39(3H,m), 7.52(2H,m), 7.74(2H,m) Example 47 1 H NMR(CDCl₃) : δ 3.34(4H,t), 3.90(4H,t), 4.16(3H,s), 7.15(3H,m), 7.40(3H,m), 7.52(1H,brs), 7.70(1H,d) Example 48 1 H NMR(CDCl₃) : δ 3.55(4H,t), 3.98(4H,t), 4.19(3H,s), 7.46(3H,m), 7.73(1H,m), 8.00(2H,s), 8.44(1H,s)
- 25 Example 49 ¹H NMR(CDCl₃) : δ 3.25(4H,t), 3.73(4H,t), 4.13(3H,s), 5.68(1H,brs), 5.79(2H,brs), 7.49(2H,m), 7.74(2H,m)

 Example 50 ¹H NMR(CDCl₃) : δ 2.54(3H,s), 3.49(4H,t), 3.92(4H,t), 4.16(3H,s), 6.95(2H,d), 7.43(2H,m), 7.51(1H,brs), 7.71(1H,d), 7.92(2H,d)

 Example 51 ¹H NMR(CDCl₃) : δ 2.47(3H,s), 3.30(4H,t), 4.04(4H,t),
- 30 4.19(3H,s), 7.20(3H,brs), 7.47(2H,m), 7.60(2H,m), 7.76(1H,m) Example 52 1 H NMR(CDCl₃) : δ 2.92(4H,t), 3.57(4H,t), 4.11(3H,s),

WO 00/52001 PCT/KR00/00164

- 92 -

7.15(1H.d), 7.12(1H.t), 7.30(4H,m), 7.41(4H,m), 7.54(1H,m), 7.64(3H,m) Example 53 ¹H NMR(CDCl₃) : δ 3.19(4H,t), 3.38(3H,s), 3.68(4H,t), 3.78(6H,s), 4.07(3H,s), 6.09(3H,brm), 7.50(2H,m), 7.80(2H,m) Example 54 ¹H NMR(CDCl₃) : δ 3.08(4H,t), 3.39(3H,s), 3.73(4H,t), 5 3.88(3H,s), 4.09(3H,s), 6.92(4H,m), 7.50(2H,m), 7.80(2H,m) Example 55 1 H NMR(CDCl₃) : δ 2.30(6H,s), 3.19(4H,t), 3.39(3H,s), 3.70(4H.t), 4.08(3H,s), 6.59(3H,brs), 7.52(2H,s), 7.80(2H,m) Example 56 ¹H NMR(CDCl₃): δ 3.20(4H,t), 3.39(3H,s), 3.66(4H,t), 4.07(3H,s), 6.35(3H,m), 7.52(2H,m), 7.82(2H,m)

- 10 Example 57 ¹H NMR(CDCl₃) : δ 3.41(3H.s), 3.43(4H.t), 3.71(4H.t), 4.09(3H,s), 7.55(2H,m), 7.79(1H,m), 7.88(1H,m), 7.96(2H,s), 8.44(1H,s) Example 58 1 H NMR(CDCl₃): δ 3.13(4H,t), 3.37(3H,s), 3.65(4H,t), 3.94(3H,s), 5.59(2H,m), 5.61(1H,s), 7.50(2H,m), 7.77(1H,m), 7.82(1H,m) Example 59 1 H NMR(CDCl₃) : δ 1.33(3H,t), 3.15(4H,t), 3.65(4H,t),
- 15 3.77(6H,s), 3.91(2H,q), 4.08(3H,s), 6.09(3H,brs), 7.52(2H,m), 7.80(2H,m) Example 60 ¹H NMR(CDCl₃) : δ 1.34(3H,t), 2.28(6H,s), 3.12(4H,t), 3.62(4H,t), 3.91(2H,q), 4.08(3H,s), 6.55(3H,brs), 7.51(2H,m), 7.80(2H,m) Example 61 ¹H NMR(CDCl₃) : δ 1.33(3H,t), 3.15(4H,t), 3.61(4H,t), 3.91(2H,q), 4.08(3H,s), 6.77(2H,s), 6.87(1H,s), 7.53(2H,m), 7.78(1H,m),
- 20 7.85(1H,m) Example 62 ¹H NMR(CDCl₃) : δ 1.43(6H,d), 2.98(4H,t), 3.48(4H,d), 3.74(6H.s), 4.06(3H.s), 4.71(1H.m), 5.99(2H.s), 6.01(1H,s), 7.53(2H,m), 7.77(1H,m), 7.84(1H,m)

Example 63 1 H NMR(CDCl₃) : δ 3.49(4H,t), 3.96(3H,s), 4.15(3H,s),

- 25 4.31(4H,t), 7.06(3H,m), 7.44(3H,m), 7.71(2H,d) Example 64 ¹H NMR(CDCl₃) : δ 3.40(4H,t), 3.80(6H,s), 4.15(3H,s), 4.30(4H,t), 6.16(3H,brs), 6.84(1H,d), 7.23(1H,t), 7.44(2H,brs), 7.70(1H,brs) Example 65 ¹H NMR(CDCl₃) : δ 1.27(3H,t), 2.76(2H,q), 3.05(4H,t), 4.15(3H,s), 4.39(4H,t), 7.10(2H,m), 7.19(1H,s), 7.40(3H,m), 7.75(1H,m),
- 30 8.01(1H.s) Example 66 ${}^{1}H$ NMR(CDCl₃) : δ 2.31(6H,s), 3.36(4H,t), 4.14(3H,s),

WO 00/52001 PCT/KR00/00164

- 93 -

4.38(4H,t), 6.64(3H,brs), 7.45(2H,m), 7.72(2H,m)

Example 67 ¹H NMR(CDCl₃) : δ 3.34(4H,t), 4.16(3H,s), 4.38(4H,t),

6.85(1H,d), 7.01(1H,d), 7.06(1H,s), 7.15(1H,m), 7.42(3H,m), 7.68(1H,brs)

Example 68 ¹H NMR(CDCl₃) : δ 3.42(4H,t), 4.16(3H,s), 4.30(4H,t),

5 6.39(3H,m), 7.20(1H,t), 7.43(1H,m), 7.69(2H,m)

Example 69 ¹H NMR(CDCl₃) : δ 2.46(3H,s), 3.20(4H,t), 4.15(3H,s),

4.30(4H,t), 6.90(1H,m), 7.15(3H,m), 7.45(1H,m), 7.65(1H,t), 7.73(1H,m), 8.01(1H,d)

Example 70 1 H NMR(CDCl₃) : δ 2.56(3H,s), 3.60(4H,t), 4.15(3H,s),

10 4.30(4H.t), 6.96(2H.d), 7.44(1H,m), 7.59(1H,m), 7.74(2H,m), 7.95(2H,m)

Example 71 ¹H NMR(CDCl₃) : δ 0.92(3H,t), 1.35(2H,m), 1.57(2H,m),

2.56(2H,t), 3.34(4H,t), 4.11(4H,t), 4.19(3H,s), 6.91(2H,m), 7.14(2H,m),

7.60(1H,t), 7.68(1H,t), 7.98(1H,d), 8.02(1H,d)

Example 72 ¹H NMR(CDCl₃) : δ 1.52(3H,t), 3.32(4H,t), 3.79(6H,s),

15 3.80(4H,t), 4.60(2H,q), 6.14(3H,m), 7.44(2H,brs), 7.69(2H,brs)

Example 73 ¹H NMR(CDCl₃) : δ 1.50(3H,t), 3.26(4H,t), 3.86(4H,t),

4.11(2H,q), 4.62(2H,q), 6.95(2H,m), 7.07(1H,brs), 7.55(3H,m), 7.80(2H,m)

Example 74 1 H NMR(CDCl₃): δ 1.52(3H,t), 2.30(6H,s), 3.30(4H,t),

3.80(4H,t), 4.61(2H,q), 6.62(3H,brs), 7.48(2H,m), 7.76(2H,m)

20 Example 75 ¹H NMR(CDCl₃) : δ 1.52(3H,t), 2.27(3H,s), 2.29(3H,s),

2.98(4H,t), 3.78(4H,t), 4.60(2H,q), 6.94(2H,m), 7.10(1H,m), 7.30(1H,brs),

7.47(2H,brs), 7.74(1H,brs)

Example 76 ¹H NMR(CDCl₃) : δ 1.28(3H,t), 1.52(3H,t), 2.79(2H,q),

3.06(4H,t), 3.89(4H,t), 4.61(2H,q), 7.14(2H,m), 7.22(1H,t), 7.28(1H,d),

25 7.44(2H,m), 7.69(2H,m)

Example 77 ¹H NMR(CDCl₃) : δ 1.54(3H,t), 3.36(4H,t), 3.91(4H,t),

4.63(2H,g), 6.88(2H,s), 6.90(1H,s), 7.47(2H,m), 7.59(1H,brs), 7.71(1H,m)

Example 78 1 H NMR(CDCl₃) : δ 1.52(3H,t), 3.30(4H,t), 3.83(4H,t),

4.60(2H,q), 6.90(1H,d), 7.03(1H,d), 7.10(1H,s), 7.15(1H,t), 7.43(2H,brs),

30 7.69(1H.brs)

Example 79 ¹H NMR(CDCl₃): δ 1.52(3H,t), 3.33(4H,t), 3.77(4H,t),

3.78(4H,t), 4.68(2H,q), 6.31(1H,t), 6.40(2H,d), 7.47(2H,m), 7.54(1H,m), 7.72(1H,t)

Example 80 ¹H NMR(CDCl₃) : δ 1.52(3H,t), 2.44(3H,s), 3.13(4H,t), 3.89(4H,t), 4.61(2H,q), 7.15(4H,brs), 7.45(2H,m), 7.69(2H,brm)

5 Example 81 ¹H NMR(CDCl₃): δ 1.44(3H,t), 3.22(4H,t), 3.38(3H,s), 3.71(4H,t), 3.78(6H,s), 4.53(2H,q), 6.09(1H,brs), 6.13(2H,brs), 7.50(2H,m), 7.75(1H,m), 7.82(1H,m)

Example 82 ¹H NMR(CDCl₃) : δ 1.43(3H,t), 3.22(4H,t), 3.38(3H,s), 3.66(4H,t), 4.54(2H,q), 6.76(2H,s), 6.86(1H,s), 7.51(2H,m), 7.76(1H,m),

10 7.83(1H,m)

Example 83 1 H NMR(CDCl₃): δ 1.34(3H,t), 1.44(3H,t), 3.15(4H,t), 3.62(4H,t), 3.77(6H,s), 3.91(2H,q), 4.53(2H,q), 6.06(3H,brs), 7.51(2H,m), 7.75(1H,m), 7.81(1H,m)

Example 84 1 H NMR(CDCl₃) : δ 1.33(3H,t), 1.44(3H,t), 3.16(4H,t),

15 3.59(4H,t), 3.91(2H,q), 4.54(2H,q), 6.74(2H,s), 6.85(1H,s), 7.52(2H,m), 7.76(1H,m), 7.82(1H,m)

Example 85 1 H NMR(CDCl₃) : δ 1.34(3H,t), 1.45(3H,t), 2.28(6H,s), 3.15(4H,t), 3.63(4H,t), 3.91(2H,q), 4.53(2H,q), 6.56(3H,brs), 7.50(2H,m), 7.75(1H,d), 7.82(1H,d)

20 Example 86 ¹H NMR(CDCl₃) : δ 2.30(6H,s), 3.27(4H,t), 3.73(4H,t), 4.03(3H,s), 6.60(3H,brs), 7.13(1H,s), 7.33(2H,t), 7.45(1H,s), 7.67(1H,m), 7.75(1H,m)

Example 87 1 H NMR(CDCl₃) : δ 3.20(4H,t), 3.40(4H,t), 3.75(6H,s), 3.99(3H,s), 6.10(3H,brs), 7.12(1H,s), 7.31(2H,t), 7.44(1H,s), 7.65(1H,m),

25 7.70(1H,m)

Example 88 1 H NMR(CDCl₃) : δ 3.32(4H,t), 3.73(4H,t), 4.03(3H,s), 6.32(1H,t), 6.41(2H,d), 7.13(1H,s), 7.34(2H,t), 7.43(1H,s), 7.67(1H,m), 7.75(1H,m)

Example 89 1 H NMR(CDCl₃) : δ 3.34(4H,t), 3.77(4H,t), 4.03(3H,s),

30 6.84(1H,m), 6.92(2H,m), 7.13(1H,s), 7.34(2H,m), 7.43(1H,s), 7.68(1H,m), 7.75(1H,m)

Example 90 ¹H NMR(CDCl₃): δ 2.20(6H,s), 2.85(4H,t), 3.18(3H,s), 3.32(4H.t), 3.99(3H.s), 6.39(2H,s), 6.47(1H,s), 7.20(1H,s), 7.35(1H,t), 7.43(1H,t), 7.53(1H,s), 7.69(1H,d), 7.73(1H,d) Example 91 ¹H NMR(CDCl₃) : δ 2.91(4H,t), 3.18(3H,s), 3.33(4H,t), 5 4.00(3H,s), 6.24(3H,brm), 7.21(1H,s), 7.37(1H,t), 7.45(1H,t), 7.53(1H,s), 7.70(1H,d), 7.74(1H,d) Example 92 ¹H NMR(CDCl₃) : δ 3.03(4H,t), 3.18(3H,s), 3.52(4H,t), 4.01(3H,s), 6.82(3H,brm), 7.12(1H,brs), 7.37(1H,m), 7.46(1H,m), 7.56(1H,m),

10 Example 93 ¹H NMR(CDCl₃) : δ 2.88(4H,t), 3.18(3H,s), 3.33(4H,t), 3.71(6H,s), 3.99(3H,s), 5.92(2H,brs), 5.97(1H,brs), 7.20(1H,s), 7.36(1H,t), 7.43(1H.t), 7.52(1H.s), 7.69(1H,d), 7.73(1H,d) Example 94 1 H NMR(CDCl₃) : δ 1.34(3H,t), 2.21(6H,s), 2.88(4H,t), 3.32(4H.t), 3.91(2H,g), 3.99(3H,s), 6.39(2H,s), 6.47(1H,s), 7.20(1H,s),

7.72(2H.m)

7.54(1H.s)

- 15 7.35(1H,t), 7.46(1H,t), 7.56(1H,s), 7.71(1H,d), 7.73(1H,d) Example 95 ¹H NMR(CDCl₃) : δ 1.35(3H,t), 2.90(4H,t), 3.33(4H,t), 3.70(6H,s), 3.92(2H,q), 3.99(3H,s), 5.92(2H,brs), 5.97(1H,brs), 7.25(1H,s), 7.36(1H,t), 7.43(1H,t), 7.52(1H,s), 7.72(1H,d), 7.73(1H,d) Example 96 ¹H NMR(CDCl₃): δ 2.14(3H,s), 2.33(3H,s), 3.19(4H,s), 20 3.20(4H,s), 3.98(3H,s), 6.84(1H,s), 6.87(1H,t), 6.93(2H,d), 7.25(1H,d),
- 7.55(1H,s) Example 97 ¹H NMR(CDCl₃) : δ 2.13(3H,s), 2.27(3H,s), 2.32(3H,s), 3.13(4H,d), 3.19(4H,d), 3.98(3H,s), 6.81(1H,s), 6.83(2H,d), 7.07(2H,d),
- 25 Example 98 ¹H NMR(CDCl₃) : δ 0.91(3H,t), 1.30(2H,m), 1.54(2H,m), 2.13(3H,s), 2.32(3H,s), 2.53(2H,t), 3.14(4H,d), 3.19(4H,d), 3.98(3H,s), 6.80(1H,s), 6.85(2H,d), 7.08(2H,d), 7.55(1H,s) Example 99 ¹H NMR(CDCl₃): δ 2.13(3H,s), 2.27(6H,s), 2.32(3H,s), 3.12(4H,s), 3.13(4H,s), 3.89(3H,s), 6.56(3H,s), 6.81(1H,s), 7.54(1H,s)
- 30 Example 100 ¹H NMR(CDCl₃): δ 2.16(3H,s), 2.33(3H,s), 3.08(4H,t), 3.25(4H,t), 3.85(3H,s), 3.98(3H,s), 6.87(1H,t), 6.93(2H,d), 7.02(1H,m),

7.57(1H,s)

Example 101 1 H NMR(CDCl₃) : δ 2.14(3H,s), 2.32(3H,s), 3.17(8H,s), 3.77(6H,s), 3.98(3H,s), 6.04(1H,s), 6.08(2H,s), 6.81(1H,s), 7.53(1H,s) Example 102 1 H NMR(CDCl₃) : δ 2.15(3H,s), 2.33(3H,s), 3.17(8H,s),

5 3.98(3H,s), 6.28(1H,t), 6.35(2H,d), 6.78(1H,s), 7.50(1H,s) Example 103 H NMR(CDCl₃): δ 2.16(3H,s), 2.39(3H,s), 3.18(4H,s), 3.20(4H,s), 3.98(3H,s), 6.69(3H,s), 6.78(1H,s), 7.45(1H,s) Example 104 ¹H NMR(CDCl₃): δ 2.15(3H,s), 2.33(3H,s), 3.18(8H,s), 3.98(3H,s), 6.78(1H,s), 6.82(1H,d), 6.97(1H,d), 7.03(1H,s), 7.11(1H,t),

10 7.51(1H,s)

Example 105 ¹H NMR(CDCl₃) : δ 2.16(3H,s), 2.34(3H,s), 3.20(4H,s), 3.37(4H,s), 3.90(3H,s), 6.78(1H,s), 7.47(1H,s), 7.97(2H,s), 8.42(1H,s) Example 106 ¹H NMR(CDCl₃) : δ 1.40(6H,t), 2.17(3H,s), 2.30(3H,s), 3.29(4H,s), 3.33(4H,s), 3.98(3H,s), 4.38(4H,q), 7.41(1H,s), 7.72(2H,s),

15 8.16(1H,s)

Example 107 ¹H NMR(CDCl₃) : δ 2.14(3H,s), 2.33(3H,s), 3.21(8H,s), 3.98(3H,s), 4.66(4H,s), 6.82(1H,s), 6.88(3H,s), 7.52(1H,s) Example 108 ¹H NMR(CDCl₃) : δ 1.19(3H,t), 2.36(3H,s), 2.52(2H,q), 3.07(4H,s), 3.30(4H,s), 3.84(3H,s), 3.97(3H,s), 6.85~7.03 (5H,m), 7.51(1H,s)

20 Example 109 ¹H NMR(CDCl₃): δ 1.14(3H,t), 2.36(3H,s), 2.50(2H,q), 3.17(8H,d), 3.77(6H,s), 3.98(3H,s), 6.04(1H,s), 6.07(2H,s), 6.80(1H,s), 7.56(1H,s)

Example 110 ¹H NMR(CDCl₃) : δ 1.22(6H,m), 2.36(3H,s), 2.54(2H,q), 2.68(2H,q), 2.90(4H,s), 3.20(4H,s), 3.98(3H,s), 6.80(1H,s), 7.08(2H,m),

25 7.17(1H,t), 7.22(1H,d), 7.62(1H,s) Example 111 1 H NMR(CDCl₃) : δ 1.14(3H,t), 2.36(3H,s), 2.50(2H,q), 3.18(4H,s), 3.25(4H,s), 3.98(3H,s), 6.89(4H,m), 7.27(2H,m), 7.52(1H,s) Example 112 1 H NMR(CDCl₃) : δ 1.20(3H,t), 2.36(3H,s), 2.38(3H,s), 2.54(2H,q), 3.00(4H,s), 3.27(4H,s), 3.97(3H,s), 7.00(1H,brs) 7.01(1H,s),

30 7.10(3H,s), 7.55(1H,s) Example 113 1 H NMR(CDCl₃) : δ 1.14(3H,t), 2.27(6H,s), 2.36(3H,s), 2.49(2H,q), 3.17(4H,s), 3.18(4H,s), 3.98(3H,s), 6.55(3H,s), 6.81(1H,s), 7.57(1H,s)

Example 114 1 H NMR(CDCl₃): δ 1.15(3H,t), 2.36(3H,s), 2.50(2H,q), 3.17(8H,s), 3.98(3H,s), 6.28(1H,t), 6.35(2H,d), 6.65(1H,brs), 6.78(1H,s),

5 7.52(1H,s)

Example 115 ¹H NMR(CDCl₃) : δ 1.15(3H,t), 2.36(3H,s), 2.50(2H,q), 3.17(8H,s), 3.98(3H,s), 6.17(1H,brs), 6.74(3H,m), 6.82(1H,s), 7.51(1H,s) Example 116 ¹H NMR(CDCl₃) : δ 1.15(3H,t), 2.32(3H,s), 2.48(2H,q), 2.84(4H,s), 2.94(4H,s), 3.94(3H,s), 6.73(1H,s), 7.00(1H,s), 7.09(1H,t),

7.24(2H,m), 7.29(1H,t), 7.35(2H,t), 7.51(1H,s), 7.58(2H,d)
Example 117 ¹H NMR(CDCl₃): δ 1.15(3H,t), 2.37(3H,s), 2.51(2H,q), 3.28(4H,s), 3.39(4H,s), 3.98(3H,s), 6.84(1H,brs), 7.47(1H,s), 7.96(2H,s), 8.42(1H,s)

Example 118 1 H NMR(CDCl₃) : δ 2.69(3H,s), 3.20(8H,s), 3.77(6H,s),

- 15 3.80(3H,s), 4.06(3H,s), 6.04(1H,s), 6.09(2H,s), 6.93(1H,s), 8.39(1H,s) Example 119 1 H NMR(CDCl₃) : δ 2.28(6H,s), 2.70(3H,s), 3.20(8H,s), 3.80(3H,s), 4.06(3H,s), 6.56(3H,s), 6.94(1H,s), 8.40(1H,s) Example 120 1 H NMR(CDCl₃) : δ 2.69(3H,s), 3.19(4H,d), 3.22(4H,d), 3.80(3H,s), 4.07(3H,s), 6.29(1H,t), 6.36(2H,d), 6.75(1H,brs), 6.93(1H,s),
- 20 8.36(1H,s)

Example 121 ¹H NMR(CDCl₃) : δ 2.70(3H,s), 3.13(4H,s), 3.28(4H,s), 3.83(3H,s), 3.86(3H,s), 4.06(3H,s), 6.94(5H,m), 8.42(1H,s) Example 122 ¹H NMR(CDCl₃) : δ 2.70(3H,s), 3.23(8H,s), 3.78(3H,s), 4.07(3H,s), 6.89(1H,t), 6.94(2H,d), 6.99(1H,brs), 7.27(2H,d), 8.38(1H,s)

25 Example 123 1 H NMR(CDCl₃): δ 2.27(3H,s), 2.69(3H,s), 3.17(4H,d), 3.22(4H,d), 3.78(3H,s), 4.06(3H,s), 6.84(2H,d), 6.98(1H,brs), 7.09(1H,d), 8.38(1H,s)

Example 124 ¹H NMR(CDCl₃): δ 2.70(3H,s), 3.22(8H,s), 3.80(3H,s), 4.06(3H,s), 6.78(1H,d), 6.84(1H,d), 6.88(1H,s), 6.98(1H,brs), 7.17(1H,t),

30 8.35(1H,s) Example 125 ¹H NMR(CDCl₃) : δ 2.39(3H,s), 3.17(8H,s), 3.76(6H,s), 4.00(3H,s), 4.59(2H,s), 6.03(1H,s), 6.07(2H,d), 6.88(1H,s), 7.79(1H,s)

Example 126 ¹H NMR(CDCl₃) : δ 2.27(6H,s), 2.40(3H,s), 3.18(8H,s),

4.01(3H,s), 4.59(2H,s), 6.55(3H,s), 6.87(1H,s), 7.80(2H,s)

Example 127 ¹H NMR(CDCl₃) : δ 2.40(3H,s), 3.19(8H,s), 4.00(3H,s),

5 4.61(2H,s), 6.27(1H,t), 6.35(2H,d), 6.86(1H,s), 7.79(1H,s)

Example 128 1 H NMR(CDCl₃): δ 2.40(3H,s), 3.08(4H,s), 3.31(4H,s),

3.84(3H,s), 3.99(3H,s), 4.61(2H,s), 6.92(5H,m), 7.77(1H,s)

Example 129 ¹H NMR(CDCl₃) : δ 2.39(3H,s), 3.20(8H,d), 4.00(3H,s),

4.58(2H,s), 6.90(4H,m), 7.27(2H,d), 7.79(1H,s)

10 Example 130 ¹H NMR(CDCl₃) : δ 2.17(3H,s), 2.39(3H,s), 3.13(4H,d), 3.22(4H,d), 3.99(3H,s), 4.58(2H,s), 6.82(2H,d), 7.00(1H,brs), 7.06(2H,d), 7.78(1H,s)

Example 131 ¹H NMR(CDCl₃): δ 2.39(3H,s), 3.19(8H,d), 4.00(3H,s), 4.60(2H,s), 6.76(1H,d), 6.82(1H,d), 6.85(1H,s), 6.95(1H,brs), 7.16(1H,t),

15 7.77(1H,s)

Example 132 ¹H NMR(CDCl₃): δ 2.27(6H,s), 2.50(3H,s), 2.64(3H,s), 3.19(8H,d), 4.07(3H,s), 6.55(2H,s), 6.56(1H,s), 6.88(1H,s), 7.39(1H,brs), 8.19(1H,s)

Example 133 1 H NMR(CDCl₃) : δ 2.50(3H,s), 2.64(3H,s), 3.16(4H,s),

20 3.25(4H,s), 3.76(6H,s), 4.06(3H,s), 6.05(1H,s), 6.07(2H,s), 7.05(1H,brs), 8.13(1H,s)

Example 134 ¹H NMR(CDCl₃): δ 2.50(3H,s), 2.65(3H,s), 3.20(4H,s), 3.26(4H,s), 4.06(3H,s), 6.91(4H,m), 7.27(2H,m), 8.15(1H,s)

Example 135 1 H NMR(CDCl₃) : δ 2.18(3H,s), 2.42(3H,s), 2.57(3H,s),

25 3.15(4H,s), 3.30(4H,s), 4.07(3H,s), 6.84(2H,d), 7.07(3H,d), 8.13(1H,s) Example 136 ¹H NMR(CDCl₃) : δ 2.52(3H,s), 2.66(3H,s), 3.22(4H,s), 3.28(4H,s), 4.07(3H,s), 6.30(3H,m), 8.07(1H,s)

Example 137 ¹H NMR(CDCl₃) : δ 2.39(3H,s), 2.58(3H,s), 2.66(3H,s), 3.04(4H,s), 3.33(4H,s), 4.07(3H,s), 7.02(1H,d), 7.10(3H,s), 8.14(1H,s)

30 Example 138 ¹H NMR(CDCl₃) : δ 1.40(3H,d), 2.26(6H,s), 2.39(3H,s), 3.19(8H,s), 3.99(3H,s), 5.04(1H,q), 6.54(3H,s), 6.86(1H,s), 7.93(1H,s)

PCT/KR00/00164 WO 00/52001

- 99 -

Example 139 ¹H NMR(CDCl₃) : δ 1.40(3H,d), 2.39(3H,s), 3.20(8H,m), 3.76(6H,s), 3.99(3H,s), 5.03(1H,q), 6.03(1H,s), 6.06(2H,s), 7.04(1H,brs), 7.89(1H,s)

Example 140 ¹H NMR(CDCl₃) : δ 1.40(3H,d), 2.39(3H,s), 3.19(4H,m), 5 3.30(4H,s), 3.97(3H,s), 5.08(1H,q), 6.89(3H,m), 7.24(2H,m), 7.87(1H,s) Example 141 ¹H NMR(CDCl₃) : δ 1.40(3H,d), 2.26(3H,s), 2.39(3H,s), 3.15(4H,s), 3.35(4H,s), 3.97(3H,s), 5.02(1H,q), 6.82(2H,d), 7.06(2H,d), 7.84(1H,s)

Example 142 ¹H NMR(CDCl₃) : δ 1.40(3H,d), 2.39(3H,s), 3.20(4H,m), 10 3.28(4H,s), 3.98(3H,s), 5.04(1H,q), 6.27(3H,m), 7.85(1H,s) Example 143 1 H NMR(CDCl₃) : δ 1.45(3H,d), 2.38(3H,s), 2.39(3H,s), 3.02(4H,m), 3.31(4H,s), 3.98(3H,s), 5.07(1H,q), 7.03(1H,brs), 7.09(4H,s), 7.91(1H,s)

Example 144 ¹H NMR(CDCl₃): δ 2.18(3H,s), 2.27(6H,s), 2.41(3H,s), 15 3.19(4H,brs), 3.22(4H,brs), 4.00(3H,s), 6.55(2H,s), 6.56(1H,s), 7.50(1H,s) Example 145 ¹H NMR(CDCl₃) : δ 2.18(3H,s), 2.41(3H,s), 3.16(4H,brs), 3.25(4H,s), 3.76(6H,s), 4.00(3H,s), 6.05(1H,s), 6.03(2H,s), 7.49(1H,s) Example 146 ¹H NMR(CDCl₃) : δ 2.18(3H,s), 2.40(3H,s), 3.18(4H,brs), 3.27(4H,brs), 4.00(3H,s), 6.27(3H,m), 7.50(1H,s)

20 Example 147 ¹H NMR(CDCl₃) : δ 2.18(3H,s), 2.39(3H,s), 2.40(3H,s), 3.04(4H,s), 3.33(4H,s), 4.01(3H,s), 7.02(1H,d), 7.10(3H,s), 7.50(4H,s) Example 148 ¹H NMR(CDCl₃) : δ 2.10(3H,s), 2.31(3H,s), 3.20(4H,s), 3.37(4H,s), 3.95(3H,s), 7.42(1H,s), 7.96(2H,s), 8.40(1H,s) Example 149 ¹H NMR(CDCl₃) : δ 2.09(3H,s), 2.26(3H,s), 2.31(3H,s),

25 3.11(4H,brs), 3.25(4H,brs), 4.00(3H,s), 6.80(2H,d), 7.06(2H,d), 7.42(1H,s) Example 150 ¹H NMR(CDCl₃) : δ 1.74(3H,d), 2.28(9H,s), 3.12(2H,brs), 3.27(4H,brs), 3.65(4H,brs), 4.02(3H,s), 4.15(1H,q), 6.54(3H,s), 8.37(1H,s) Example 151 ¹H NMR(CDCl₃) : δ 1.74(3H,d), 2.28(3H,s), 3.05(2H,brs), 3.26(4H,m), 3.67(4H,m), 3.82(6H,s), 4.01(3H,s), 4.15(1H,q), 6.06(1H,s),

30 6.09(2H,s), 8.37(1H,s) Example 152 1 H NMR(CDCl₃): δ 1.74(3H,d), 2.28(3H,s), 3.15(2H,brs),

PCT/KR00/00164 WO 00/52001

- 100 -

3.22(4H.s), 3.29(4H.s), 4.00(3H,s), 4.15(1H,q), 6.30(3H,m), 8.37(1H,s) Example 153 ¹H NMR(CDCl₃) : δ 1.74(3H,d), 2.28(3H,s), 2.39(3H,s), 3.10(2H.brs), 3.04(4H,s), 3.34(4H,s), 4.07(3H,s), 4.15(1H,q), 7.02(1H,d), 7.10(3H,s), 8.37(1H,s)

5 Example 154 ¹H NMR(CDCl₃): δ 1.74(3H,d), 2.28(3H,s), 3.07(2H,brs), 3.20(4H,s), 3.35(4H,s), 3.90(3H,s), 4.15(1H,q), 7.97(2H,s), 8.35(1H,s), 8.42(1H.s)

Example 155 ¹H NMR(CDCl₃) : δ 1.74(3H,d), 2.28(3H,s), 3.11(2H,brs), 3.20(8H.s), 4.00(3H.s), 4.15(1H,q), 6.17(1H,s), 6.74(2H,m), 8.37(1H,s)

10 Example 156 ¹H NMR(CDCl₃): δ 1.26(3H,t), 2.28(3H,s), 3.08(2H,q), 3.17(4H,s), 3.24(4H,s), 3.78(3H,s), 4.07(3H,s), 6.85(2H,d), 7.00(1H,brs), 7.07(2H,d), 8.05(1H,s)

Example 157 ¹H NMR(CDCl₃): δ 1.25(6H,m), 2.70(2H,q), 2.95(4H,t), 3.08(2H,q), 3.26(4H,brs), 3.90(3H,s), 4.07(3H,s), 7.08(2H,m), 7.18(1H,t),

15 7.24(1H,d), 8.40(1H,s)

Example 158 ¹H NMR(CDCl₃) : δ 1.26(3H,t), 2.27(6H,s), 3.08(2H,q), 3.20(8H.s), 3.79(3H.s), 4.07(3H,s), 4.22(3H,s), 6.56(1H,s), 6.57(2H,s), 6.94(1H,s), 8.38(1H,s)

Example 159 1 H NMR(CDCl₃): δ 1.26(3H,t), 3.07(2H,q), 3.21(8H,s),

20 3.77(6H,s), 3.79(3H,s), 4.07(3H,s), 6.05(1H,s), 6.09(2H,s), 6.95(1H,s), 8.37(1H,s)

Example 160 ¹H NMR(CDCl₃) : δ 1.27(3H,t), 3.07(2H,q), 3.24(8H,s), 3.81(3H,s), 4.08(3H,s), 6.75(2H,s), 6.83(1H,s), 7.05(1H,brs), 8.29(1H,s) Example 161 ¹H NMR(CDCl₃) : δ 1.27(3H,t), 2.40(3H,s), 3.07(6H,m),

25 3.28(4H,brs), 3.88(3H,s), 4.07(3H,s), 7.05(2H,m), 7.12(3H,m), 8.38(1H,s) Example 162 ¹H NMR(CDCl₃) : δ 1.27(3H,t), 1.40(6H,t), 3.07(2H,q), 3.26(4H,s), 3.34(4H,s), 3.77(3H,s), 4.08(3H,s), 4.39(4H,q), 7.00(1H,brs), 7.70(2H,s), 8.17(1H,s), 8.35(1H,s)

Example 163 ¹H NMR(CDCl₃) : δ 1.27(3H,t), 3.07(2H,q), 3.22(8H,d),

30 3.80(3H,s), 4.08(3H,s), 6.29(1H,t), 6.36(2H,d), 6.99(1H,brs), 8.32(1H,s) Example 164 ¹H NMR(CDCl₃) : δ 1.25(3H,t), 2.27(3H,s), 2.69(2H,q), WO 00/52001 PCT/KR00/00164

- 101 -

3.14(4H,d), 3.22(4H,d), 4.01(3H,s), 4.60(2H,s), 6.82(2H,d), 6.96(1H,brs), 7.06(2H,d), 7.78(1H,s)

Example 165 ¹H NMR(CDCl₃): δ 1.21(3H,t), 1.26(3H,t), 2.67(4H,m), 2.91(4H,t), 3.27(4H,s), 4.01(3H,s), 4.66(2H,s), 7.06(2H,m), 7.16(1H,t),

5 7.21(1H,d), 7.82(1H,s)

Example 166 ¹H NMR(CDCl₃) : δ 1.26(3H,t), 2.27(6H,s), 2.69(2H,q), 3.19(8H,d), 4.02(3H,s), 4.60(2H,s), 6.55(3H,s), 6.90(1H,s), 7.80(1H,s) Example 167 ¹H NMR(CDCl₃) : δ 1.26(3H,t), 2.69(2H,q), 3.19(8H,s), 3.76(6H,s), 4.02(3H,s), 4.60(2H,s), 6.03(1H,s), 6.08(2H,d), 6.88(1H,s),

10 7.79(1H,s)

Example 168 ¹H NMR(CDCl₃) : δ 1.26(3H,t), 2.69(2H,q), 3.20(8H,s), 4.01(3H,s), 4.62(2H,s), 6.73(2H,s), 6.84(1H,s), 6.95(1H,brs), 7.77(1H,s) Example 169 ¹H NMR(CDCl₃) : δ 1.26(3H,t), 2.39(3H,s), 2.70(2H,q), 3.03(4H,d), 3.28(4H,s), 4.01(3H,s), 4.65(2H,s), 7.03(2H,m), 7.10(3H,m),

15 7.80(1H,s)

Example 170 ¹H NMR(CDCl₃): δ 1.20(3H,t), 2.61(2H,q), 3.09(4H,s), 3.23(4H,s), 3.97(3H,s), 4.45(4H,s), 4.46(2H,s), 6.77(1H,s), 6.81(2H,s), 6.99(1H,brs), 7.90(1H,s)

Example 171 1 H NMR(CDCl₃) : δ 1.25(3H,t), 2.68(2H,q), 3.21(4H,s),

20 3.22(4H,s), 4.01(3H,s), 4.62(2H,s), 6.27(1H,t), 6.33(2H,d), 7.05(1H,brs), 7.76(1H,s)

Example 172 ¹H NMR(CDCl₃) : δ 3.24(8H,s), 3.76(6H,s), 4.15(3H,s), 6.00(1H,s), 6.08(2H,d), 7.31(1H,t), 7.35(1H,s), 7.43(1H,t), 7.57(1H,d), 7.71(1H,d), 8.06(1H,s)

25 Example 173 ¹H NMR(CDCl₃): δ 2.28(6H,s), 3.25(4H,s), 3.26(4H,s), 4.18(3H,s), 6.33(1H,brs), 6.56(1H,s), 6.58(2H,d), 7.33(1H,t), 7.47(1H,t), 7.57(1H,d), 7.78(1H,d), 8.05(1H,s)

Example 174 ¹H NMR(CDCl₃) : δ 3.26(8H,s), 4.18(3H,s), 6.29(1H,t), 6.36(2H,d), 7.25(1H,brs), 7.34(1H,t), 7.49(1H,t), 7.50(1H,d), 7.79(1H,d),

30 8.02(1H,s)

Example 175 1 H NMR(CDCl₃) : δ 3.16(4H,s), 3.36(4H,s), 3.84(3H,s),

4.18(3H,s), 6.86(1H,d), 6.95(2H,m), 7.02(1H,m), 7.34(1H,t), 7.48(1H,t), 7.60(1H.d), 7.78(1H.d), 8.04(1H,s)

Example 176 ¹H NMR(CDCl₃) : δ 3.25(4H,d), 3.32(4H,s), 4.18(3H,s), 6.77(1H,d), 6.85(2H,m), 7.17(1H,t), 7.35(1H,t), 7.50(1H,t), 7.59(1H,d),

5 7.79(1H.d), 7.99(1H.s)

Example 177 ¹H NMR(CDCl₃) : δ 2.14(3H,s), 2.20(3H,s), 3.18(4H,d), 3.23(4H.d), 3.84(3H,s), 6.65(1H,s), 6.87(1H,t), 6.91(2H,d), 6.93(1H,brs), 7.25(2H.m), 7.36(1H.s)

Example 178 ¹H NMR(CDCl₃): δ 2.14(3H,s), 2.20(3H,s), 2.27(3H,s),

10 3.12(4H,d), 3.22(4H,d), 3.84(3H,s), 6.64(1H,s), 6.83(2H,d), 6.96(1H,brs), 7.07(2H,d), 7.35(1H,s)

Example 179 ¹H NMR(CDCl₃) : δ 1.21(3H,t), 2.20(3H,s), 2.21(3H,s), 2.67(2H,q), 2.90(4H,t), 3.26(4H,s), 3.85(3H,s), 6.65(1H,s), 7.07(3H,m), 7.17(1H,t), 7.21(1H,d), 7.36(1H,s)

15 Example 180 ¹H NMR(CDCl₃): δ 2.14(3H,s), 2.20(3H,s), 2.27(6H,s), 3.16(4H,d), 3.20(4H,d), 3.85(3H,s), 6.54(1H,s), 6.56(2H,s), 6.64(1H,s), 6.89(1H,brs), 7.37(1H,s)

Example 181 ¹H NMR(CDCl₃) : δ 2.14(3H,s), 2.20(3H,s), 3.17(4H,s), 3.19(4H.s), 3.77(6H.s), 3.85(3H,s), 6.03(1H,s), 6.08(2H,d), 6.64(1H,s),

20 6.90(1H,brs), 7.36(1H,s)

Example 182 ¹H NMR(CDCl₃) : δ 2.14(3H,s), 2.20(3H,s), 3.22(8H,s), 3.85(3H,s), 6.28(1H,t), 6.36(2H,d), 6.64(1H,s), 6.89(1H,brs), 7.36(1H,s) Example 183 ¹H NMR(CDCl₃) : δ 2.15(3H,s), 2.20(3H,s), 3.17(4H,d), 3.21(4H,d), 3.85(3H,s), 6.65(1H,s), 6.78(1H,d), 6.81(1H,d), 6.86(1H,s),

25 6.94(1H,brs), 7.16(1H,t), 7.33(1H,s)

Example 184 ¹H NMR(CDCl₃) : δ 2.15(3H,s), 2.20(3H,s), 3.17(4H,d), 3.21(4H,d), 3.85(3H,s), 6.65(1H,s), 6.81(1H,d), 6.96(2H,brd), 7.02(1H,s), 7.10(1H.t), 7.33(1H.s)

Example 185 ¹H NMR(CDCl₃) : δ 2.19(3H,s), 2.21(3H,s), 2.39(3H,s),

30 3.00(4H,d), 3.28(4H,s), 3.85(3H,s), 6.64(1H,s), 6.99(1H,brs), 7.03(1H,d), 7.10(3H,m), 7.36(1H,s)

- 103 -

Example 186 ¹H NMR(CDCl₃) : δ 2.14(3H,s), 2.33(3H,s), 3.19(4H,s), 3.20(4H,s), 3.78(3H,s), 3.98(3H,s), 6.84(1H,s), 6.87(1H,t), 6.93(2H,m), 7.24(1H,d), 7.56(1H,s)

Example 187 ¹H NMR(CDCl₃): δ 2.13(3H,s), 2.27(3H,s), 2.32(3H,s),

5 3.13(4H,d), 3.19(4H,d), 3.77(3H,s), 3.98(3H,s), 6.81(1H,s), 6.83(2H,d), 7.07(2H,d), 7.54(1H,s)

Example 188 ¹H NMR(CDCl₃) : δ 2.13(3H,s), 2.28(9H,s), 3.17(4H,brs), 3.78(3H,s), 3.98(3H,s), 6.56(3H,s), 6.70(1H,s), 7.53(1H,s)

Example 189 ¹H NMR(CDCl₃) : δ 2.14(3H,s), 2.32(3H,s), 3.17(8H,s),

10 3.77(9H.s), 3.98(3H.s), 6.04(1H.s), 6.08(2H,s), 6.81(1H,s), 7.53(1H,s) Example 190 ¹H NMR(CDCl₃) : δ 2.15(3H,s), 2.33(3H,s), 3.17(8H,s), 3.78(3H,s), 3.98(3H,s), 6.28(1H,t), 6.35(2H,d), 6.78(1H,s), 7.50(1H,s) Example 191 ¹H NMR(CDCl₃) : δ 2.15(3H,s), 2.34(3H,s), 2.38(3H,s), 3.00(4H,s), 3.28(4H,s), 3.78(3H,s), 3.90(3H,s), 7.01(1H,s), 7.10(3H,s),

15 7.55(1H.s)

Example 192 ¹H NMR(CDCl₃) : δ 2.16(3H,s), 2.34(3H,s), 3.20(4H,s), 3.37(4H.s), 3.78(3H.s), 3.90(3H,s), 6.78(1H,s), 7.47(1H,s), 7.97(2H,s), 8.42(1H.s)

Example 193 ¹H NMR(CDCl₃) : δ 1.15(3H,t), 2.37(3H,s), 2.50(2H,q),

20 3.18(4H,brs), 3.23(4H,brs), 3.82(3H,s), 3.97(3H,s), 6.72(2H,s), 6.88(1H,s), 7.45(1H,s)

Example 194 ¹H NMR(CDCl₃) : δ 1.26(3H,t), 3.07(2H,q), 3.22(8H,s), 3.79(3H,s), 3.86(3H,s), 4.07(3H,s), 6.29(1H,t), 6.36(2H,d), 8.29(1H,s) Example 195 ¹H NMR(CDCl₃) : δ 1.26(3H,t), 1.40(6H,t), 3.06(2H,q),

25 3.27(4H,brs), 3.38(4H,brs), 3.77(3H,s), 3.81(3H,s), 4.07(3H,s), 4.38(4H,q), 7.76(2H,s), 8.17(1H,s), 8.30(1H,s)

Example 196 ¹H NMR(CDCl₃) : δ 1.24(3H,t), 2.67(2H,q), 3.21(8H,s), 3.78(3H,s), 4.01(3H,s), 4.59(2H,s), 4.63(4H,s), 6.84(2H,m), 6.88(2H,s), 7.78(1H,s)

30 Example 197 ¹H NMR(CDCl₃): δ 2.14(3H,s), 2.20(3H,s), 2.27(3H,s), 3.13(4H,brs), 3.24(4H,brs), 3.78(3H,s), 3.84(3H,s), 6.64(1H,s), 6.84(2H,brs), 7.07(2H,d), 7.27(1H,brs)

Example 198 ¹H NMR(CDCl₃) : δ 2.14(3H,s), 2.20(3H,s), 2.25(6H,s), 3.16(4H,brs), 3.22(4H,brs), 3.79(3H,s), 3.83(3H,s), 6.54(2H,s), 6.64(1H,s), 6.81(1H,brs), 7.27(1H,brs)

- 5 Example 199 ¹H NMR(CDCl₃) : δ 2.11(3H,brs), 2.16(3H,s), 2.36(3H,s), 3.24(4H,t), 3.80(4H,s), 3.92(3H,s), 6.85(1H,brs), 6.89(1H,t), 6.95(2H,d), 7.28(2H.t)
 - Example 200 ¹H NMR(CDCl₃) : δ 2.11(3H,brs), 2.16(3H,s), 2.28(3H,s), 2.36(3H,s), 3.19(4H,t), 3.80(4H,brs), 3.92(3H,s), 6.86(3H,brd), 7.08(2H,d)
- 10 Example 201 ¹H NMR(CDCl₃): δ 0.92(3H,t), 1.35(2H,m), 1.55(2H,m), 2.10(3H,brs), 2.16(3H,s), 2.36(3H,s), 2.54(2H,t), 3.20(4H,t), 3.80(4H,brs), 3.92(3H,s), 6.87(3H,brd), 7.09(2H,d)
 - Example 202 ¹H NMR(CDCl₃): δ 2.10(3H,brs), 2.16(3H,s), 2.89(6H,s), 2.36(3H,s), 3.21(4H,t), 3.78(4H,brs), 3.92(3H,s), 6.56(1H,s), 6.59(2H,s),
- 15 6.84(3H,brs)
 - Example 203 ¹H NMR(CDCl₃): δ 2.10(3H,brs), 2.16(3H,s), 2.36(3H,s), 3.22(4H,t), 3.79(7H,brs), 3.92(3H,s), 6.84(1H,brs), 6.95(4H,s) Example 204 ¹H NMR(CDCl₃): δ 2.10(3H,brs), 2.16(3H,s), 2.36(3H,s), 3.24(4H,brs), 3.78(10H,s), 3.92(3H,s), 6.05(1H,s), 6.11(2H,s), 6.84(3H,brs)
- 20 Example 205 ¹H NMR(CDCl₃): δ 2.10(3H,brs), 2.16(3H,s), 2.36(3H,s), 3.24(4H,t), 3.78(4H,t), 6.28(1H,t), 6.39(2H,d), 6.84(1H,s) Example 206 ¹H NMR(CDCl₃) : δ 2.10(3H,s), 2.16(3H,s), 2.36(3H,s), 3.25(4H.t), 3.78(4H,t), 3.92(3H,s), 6.77(2H,s), 6.84(2H,s) Example 207 ¹H NMR(CDCl₃): δ 2.10(3H,brs), 2.17(3H,s), 2.36(3H,s),
- 25 3.25(4H,brs), 3.79(4H,brs), 3.92(3H,s), 6.84(2H,m), 7.00(1H,d), 7.06(1H,brs), 7.13(1H,t)
 - Example 208 ¹H NMR(CDCl₃): δ 2.12(3H,s), 2.17(3H,s), 2.37(3H,s), 3.50(4H,t), 3.88(4H,brs), 3.93(3H,s), 6.87(1H,brs), 8.00(2H,d), 8.43(1H,s) Example 209 ¹H NMR(CDCl₃) : δ 1.41(6H,t), 2.11(3H,brs), 2.15(3H,s),
- 30 2.37(3H,s), 3.36(4H,brs), 3.83(4H,brs), 3.92(3H,s), 4.40(4H,q), 6.85(1H,brs), 7.78(2H,s), 8.18(1H,s)

Example 210 ¹H NMR(CDCl₃) : δ 1.67(3H,t), 2.10(3H,s), 2.39(3H,s), 2.51(2H,q), 3.25(4H,t), 3.80(4H,t), 3.92(3H,s), 6.90(2H,t), 6.95(2H,d), 7.29(2H,t)

Example 211 ¹H NMR(CDCl₃) : δ 1.17(3H,t), 2.10(3H,brs), 2.39(3H,s),

- 5 2.52(2H,q), 3.13(4H,brs), 3.84(4H,brs), 3.88(3H,s), 3.93(3H,s), 6.89(2H,brd), 6.93(2H,m), 7.04(1H,m)
 - Example 212 ¹H NMR(CDCl₃) : δ 1.16(3H,t), 2.09(3H,s), 2.39(3H,s), 2.51(2H,q), 3.23(4H,t), 3.79(10H,s), 3.92(3H,s), 6.05(1H,s), 6.11(2H,d), 6.87(1H,s)
- 10 Example 213 ¹H NMR(CDCl₃): δ 1.18(3H,t), 1.25(3H,t), 2.11(3H,brs), 2.40(3H,s), 2.52(2H,q), 2.72(2H,q), 2.96(4H,brs), 3.79(4H,brs), 3.94(3H,s), 6.88(1H,brs), 7.09(2H,m), 7.18(1H,t), 7.24(1H,d) Example 214 ¹H NMR(CDCl₃): δ 1.16(3H,t), 2.09(3H,s), 2.29(6H,s), 2.39(3H,s), 2.51(2H,q), 3.22(4H,t), 3.78(4H,t), 3.92(3H,s), 6.56(1H,s),
- 15 6.59(2H,s), 6.87(1H,s) Example 215 ¹H NMR(CDCl₃) : δ 1.16(3H,t), 2.11(3H,brs), 2.40(3H,s), 2.51(2H,q), 3.27(4H,s), 3.80(4H,s), 3.92(3H,s), 6.28(1H,t), 6.39(2H,d),

6.84(1H,s)

Example 216 1 H NMR(CDCl₃) : δ 1.17(3H,t), 2.12(3H,brs), 2.40(3H,s),

- 20 2.52(2H,q), 3.27(4H,s), 3.80(4H,s), 3.92(3H,s), 6.77(2H,d), 6.84(1H,s), 6.90(1H,brs)
 - Example 217 ¹H NMR(CDCl₃) : δ 1.15(3H,t), 2.03(3H,brs), 2.38(3H,s), 2.50(2H,q), 2.90(4H,brs), 3.51(4H,brs), 3.90(3H,s), 6.82(1H,d), 7.03(1H,d), 7.10(1H,t), 7.27(3H,m), 7.39(2H,t), 7.61(2H,d)
- 25 Example 218 ¹H NMR(CDCl₃) : δ 1.15(3H,t), 2.13(3H,brs), 2.41(3H,s), 2.52(2H,q), 3.52(4H,brs), 3.93(7H,s), 6.87(1H,brs), 7.99(2H,d), 8.44(1H,s) Example 219 ¹H NMR(CDCl₃) : δ 1.17(3H,t), 2.10(3H,brs), 2.39(3H,s), 2.42(3H,s), 2.52(2H,q), 3.06(4H,s), 3.83(4H,s), 3.93(3H,s), 6.88(1H,brs), 7.05(1H,m), 7.12(3H,s)
- 30 Example 220 ¹H NMR(CDCl₃): δ 2.10(3H,brs), 2.73(3H,s), 3.23(4H,brs), 3.86(10H,s), 3.89(3H,s), 6.05(1H,s), 6.11(2H,s), 7.62(1H,brs)

Example 221 ¹H NMR(CDCl₃) : δ 2.10(3H,brs), 2.29(6H,s), 2.73(3H,s), 3.23(4H,brs), 3.82(4H,brs), 3.86(3H,s), 3.99(3H,s), 6.57(3H,m), 7.62(1H,brs) Example 222 ¹H NMR(CDCl₃) : δ 2.10(3H,s), 2.73(3H,s), 3.27(4H,t), 3.83(4H,s), 3.86(3H,s), 4.00(3H,s), 6.30(1H,t), 6.40(2H,d), 7.64(1H,brs)

5 Example 223 ¹H NMR(CDCl₃): δ 2.10(3H,brs), 2.73(3H,s), 3.14(4H,brs), 3.86(7H,s), 3.89(3H,s), 4.00(3H,s), 6.89(1H,d), 6.95(2H,m), 7.04(1H,brm), 7.62(1H,brs)

Example 224 ¹H NMR(CDCl₃) : δ 2.11(3H,brs), 2.73(3H,s), 3.26(4H,t), 3.85(7H,s), 4.00(3H,s), 6.91(1H,t), 6.95(2H,d), 7.30(2H,t), 7.63(1H,brs)

10 Example 225 ¹H NMR(CDCl₃): δ 2.10(3H,s), 2.27(3H,s), 2.72(3H,s), 3.20(4H,t), 3.83(4H,s), 3.85(3H,s), 4.00(3H,s), 6.87(2H,d), 7.09(3H,d), 7.63(1H,brs)

Example 226 1 H NMR(CDCl₃): δ 2.11(3H,brs), 2.73(3H,s), 3.27(4H,brs), 3.86(7H,s), 4.00(3H,s), 6.81(1H,d), 6.85(1H,d), 6.90(1H,s), 7.19(1H,t),

15 7.63(1H,brs)

Example 227 1 H NMR(CDCl₃): δ 2.12(3H,brs), 2.29(6H,s), 2.53(3H,s), 2.67(3H,s), 3.24(4H,brs), 3.83(4H,brs), 4.00(3H,s), 6.58(1H,s), 6.60(2H,s), 7.47(1H,brs)

Example 228 1 H NMR(CDCl₃) : δ 2.12(3H,brs), 2.53(3H,s), 2.68(3H,s),

20 3.25(4H,t), 3.79(6H,s), 3.82(4H,brs), 4.00(3H,s), 6.06(1H,s), 6.12(2H,d), 7.46(1H,brs)

Example 229 1 H NMR(CDCl₃) : δ 2.12(3H,s), 2.53(3H,s), 2.68(3H,s), 3.26(4H,t), 3.77(4H,t), 4.00(3H,s), 6.89(3H,d), 7.19(2H,d), 7.46(1H,s) Example 230 1 H NMR(CDCl₃) : δ 2.12(3H,brs), 2.12(3H,s), 2.53(3H,s),

25 2.68(3H,s), 3.22(4H,s), 3.85(3H,brs), 4.00(3H,s), 6.87(2H,d), 7.10(2H,d), 7.45(1H,s)

Example 231 1 H NMR(CDCl₃) : δ 2.12(3H,s), 2.55(3H,s), 2.68(3H,s), 3.32(4H,brs), 3.86(4H,brs), 4.01(3H,s), 6.38(3H,m), 7.47(1H,brs) Example 232 1 H NMR(CDCl₃) : δ 2.12(3H,s), 2.43(3H,s), 2.54(3H,s),

30 2.68(3H,s), 3.07(4H,brs), 3.86(4H,brs), 4.00(3H,s), 7.06(1H,m), 7.13(3H,m), 7.46(1H,brs)

- 107 -

Example 233 ¹H NMR(CDCl₃) : δ 1.28(3H,t), 2.13(3H,brs), 2.29(3H,s), 3.11(2H,g), 3.21(4H,brs), 3.85(7H,brs), 4.00(3H,s), 6.89(2H,brs), 7.08(2H,d), 7.62(1H,brs)

Example 234 1 H NMR(CDCl₃) : δ 1.24(3H,t), 1.28(3H,t), 2.12(3H,brs),

- 5 2.72(2H.a), 2.96(4H.brs), 3.10(2H.a), 3.81(4H.brs), 3.86(3H.s), 4.00(3H.s), 7.09(2H,m), 7.19(1H,t), 7.24(1H,d), 7.60(1H,brs)
 - Example 235 ¹H NMR(CDCl₃) : δ 1.28(3H,t), 2.10(3H,brs), 2.29(6H,s), 3.11(2H,q), 3.23(4H,brs), 3.82(4H,brs), 3.85(3H,s), 4.00(3H,s), 6.57(1H,s), 6.59(2H,s), 7.59(1H,brs)
- 10 Example 236 ¹H NMR(CDCl₃): δ 1.28(3H,t), 2.10(3H,brs), 3.10(2H,q), 3.24(4H,brs), 3.79(6H,s), 3.81(4H,brs), 3.85(3H,s), 4.00(3H,s), 6.06(1H,s), 6.11(2H,s), 7.59(1H,brs)
 - Example 237 ¹H NMR(CDCl₃) : δ 1.28(3H,t), 2.10(3H,brs), 3.11(2H,q), 3.28(4H,brs), 3.82(4H,brs), 3.85(3H,s), 4.00(3H,s), 6.77(2H,d), 6.85(1H,s),
- 15 7.60(1H.brs)
 - Example 238 ¹H NMR(CDCl₃) : δ 1.28(3H,t), 2.10(3H,brs), 2.43(3H,s), 3.06(6H,m), 3.86(7H,brs), 4.01(3H,s), 7.06(1H,s), 7.12(3H,s), 7.60(1H,brs) Example 239 ¹H NMR(CDCl₃) : δ 1.28(3H,t), 1.43(6H,t), 2.11(3H,brs), 3.12(2H,q), 3.37(4H,brs), 3.86(7H,s), 4.01(3H,s), 4.41(4H,q), 7.60(1H,brs),
- 20 7.79(2H,s), 8.18(1H,s)
 - Example 240 ¹H NMR(CDCl₃) : δ 1.28(3H,t), 2.10(3H,brs), 3.10(2H,q), 3.28(4H,brs), 3.82(4H,brs), 3.86(3H,s), 4.00(3H,s), 6.30(1H,t), 6.39(2H,d), 7.60(1H,brs)
 - Example 241 ¹H NMR(CDCl₃) : δ 2.07(3H,s), 3.27(4H,t), 3.79(6H,s),
- 25 3.86(4H,t), 4.10(3H,s), 6.06(1H,m), 6.12(2H,d), 7.32(1H,t), 7.36(1H,s), 7.48(1H,t), 7.61(1H,d), 7.80(1H,d)
 - Example 242 ¹H NMR(CDCl₃) : δ 2.07(3H,s), 2.30(6H,s), 3.25(4H,s), 3.86(4H,s), 4.10(3H,s), 6.58(1H,s), 6.60(2H,s), 7.32(1H,t), 7.36(1H,s), 7.49(1H,d), 7.80(1H,d)
- 30 Example 243 ¹H NMR(CDCl₃) : δ 2.09(3H,brs), 3.27(4H,s), 3.87(4H,s), 4.10(3H,s), 6.29(1H,t), 6.39(2H,d), 7.32(1H,t), 7.37(1H,s), 7.49(1H,t),

- 108 -

7.80(1H,d)

Example 244 ¹H NMR(CDCl₃) : δ 2.09(3H,brs), 3.15(4H,t), 3.89(4H,s), 4.11(3H,s), 6.89(1H,d), 6.96(2H,m), 7.04(1H,m), 7.32(1H,t), 7.38(1H,brs), 7.48(1H,t), 7.62(1H,d), 7.80(1H,d)

- 5 Example 245 ¹H NMR(CDCl₃) : δ 2.10(3H,brs), 3.29(4H,t), 3.88(4H,brs), 4.10(3H,s), 6.82(1H,dd), 6.88(1H,d), 6.92(1H,s), 7.20(1H,t), 7.33(1H,t), 7.40(1H.brs), 7.49(1H.t), 7.62(1H,d), 7.80(1H,d) Example 246 ¹H NMR(CDCl₃) : δ 2.14(3H,brs), 2.17(3H,s), 2.22(3H,s), 3.25(4H,t), 3.78(7H,s), 6.60(1H,brs), 6.66(1H,s), 6.89(1H,t), 6.95(2H,t),
- 10 7.29(2H.t) Example 247 ¹H NMR(CDCl₃) : δ 2.14(3H,brs), 2.17(3H,s), 2.22(3H,s), 2.28(3H,s), 3.19(4H,t), 3.77(7H,s), 6.60(1H,brs), 6.66(1H,s), 6.86(2H,d), 7.08(2H,d)

Example 248 ¹H NMR(CDCl₃) : δ 1.25(3H,t), 2.14(3H,brs), 2.18(3H,s),

- 15 2.23(3H,s), 2.72(2H,q), 2.96(4H,brs), 3.75(4H,brs), 3.79(3H,s), 6.60(1H,brs), 6.67(1H,s), 7.08(2H,t), 7.18(1H,t), 7.24(1H,m) Example 249 ¹H NMR(CDCl₃) : δ 2.12(3H,s), 2.16(3H,s), 2.22(3H,s), 2.29(6H,s), 3.21(4H,t), 3.74(4H,t), 3.77(3H,s), 6.55(1H,s), 6.59(3H,s), 6.65(1H,s)
- 20 Example 250 ¹H NMR(CDCl₃): δ 2.12(3H,s), 2.16(3H,s), 2.22(3H,s), 3.23(4H,t), 3.74(4H,t), 3.77(3H,s), 3.78(6H,s), 6.04(1H,s), 6.12(2H,d), 6.59(1H.s), 6.65(1H.s) Example 251 ¹H NMR(CDCl₃) : δ 2.11(3H,s), 2.16(3H,s), 2.22(3H,s), 3.25(4H,t), 3.74(4H,t), 3.77(3H,s), 6.28(1H,t), 6.39(2H,d), 6.59(1H,s),
- 25 6.66(1H.s)

Example 252 ¹H NMR(CDCl₃) : δ 2.14(3H,brs), 2.17(3H,s), 2.22(3H,s), 3.25(4H,t), 3.76(4H,brs), 3.78(3H,s), 6.61(1H,brs), 6.66(1H,s), 6.83(2H,m), 6.90(1H,s), 7.18(1H,t)

Example 253 ¹H NMR(CDCl₃): δ 2.14(3H.brs), 2.17(3H.s), 2.23(3H.s),

30 3.25(4H,t), 3.78(7H,s), 6.61(1H,brs), 6.66(1H,s), 6.85(1H,d), 6.98(1H,d), 7.06(1H,s), 7.12(1H,t)

- 109 -

Example 254 1 H NMR(CDCl₃): δ 2.14(3H,brs), 2.17(3H,s), 2.22(3H,s), 2.42(3H,s), 3.06(4H,t), 3.78(7H,s), 6.60(1H,brs), 6.66(1H,s), 7.06(1H,m), 7.12(3H,s)

- 5 Antitumor activities of the compounds of the present invention were tested *in vitro* against 5 kinds of human tumor cell lines and a leukemia tumor cell line. The method and result of the *in vitro* tests is as follows.
- 10 Experimental 1: In vitro antitumor effect against human tumor cell lines.

A. Tumor cell line: A549 (human non-small lung cell)

SKOV-3 (human ovarian)

15 HCT-15 (human colon)

XF 498 (human CNS)

SKMEL-2 (human melanoma)

B. SRB Assay Method.

20 a. Human solid tumor cell lines, A549(non-small lung cell), SKMEL-2(melanoma), HCT-15(colon), SKOV-3(ovarian), XF-498(CNS) were cultured at 37°C in 5% CO₂ incubators using RPMI 1640 media containing 10% FBS, while they were transfer-cultured successively once or twice per week. Cell cultures were dissolved in a solution of

- 25 0.25% trypsin and 3 mM CDTA PBS(-) and then cells were separated from media which the cells were sticked on.
 - b. $5\times10^3\sim2\times10^4$ cells were added into each well of 96-well plate and cultured in 5% CO₂ incubator, at 37°C, for 24 hours.
- c. Each sample drug was dissolved in a little DMSO and diluted with 30 the used medium to a prescribed concentration for experiments, wherein the final concentration of DMSO was controlled below 0.5%.

- 110 -

- d. Medium of each well cultured for 24 hours as above b. was removed by aspiration. Each $200 \mu l$ of drug samples prepared in c. was added into each well and the wells were cultured for 48 hours. Tz(time zero) plates were collected at the point of time drugs were added.
- 5 e. According to the SRB assay method, cell fixing with TCA, staining with 0.4% SRB solution, washing with 1% acetic acid and elution of dye with 10mM Tris solution were carried out on Tz plates and culture-ended plates, whereby OD values were measured at 520 nm.

10 C. Calculation of result

- a. Time zero(Tz) value was determined with measuring the SRB protein amounts of the Tz plates collected at the point of time drugs were added.
- b. Control value(C) was determined with the OD values of wells 15 untreated with a drug.
 - c. Drug-treated test value(T) was determined with the OD values of drug-treated wells.
 - d. Effects of drugs were estimated with growth stimulation, net growth inhibition, net killing etc., being calculated from Tz, C and T.
- 20 e. If $T \ge Tz$, cellular response function was calculated by 100x(T-Tz)/(C-Tz), and if T $\langle Tz$, by $100\times(T-Tz)/Tz$. The results are shown in the next table 1.

* REFERENCE

- 25 1) P. Skehan, R. Strong, D Scudiero, A. Monks, J. B. Mcmahan, D. T. Vistica, J. Warren, H. Bokesh, S. Kenny and M. R. Boyd: Proc. Am. Assoc. Cancer Res., 30, 612(1989)
 - 2) L. V. Rubinstein, R. H. Shoemaker, K. D. Paull, R. M. simon, S. Tosini, P. Skehan, D. Scudiero, A. Monks and M. R. boyd.; J. Natl.
- 30 Cancer Inst., 82, 1113(1990)
 - 3) P. Skehan, R. Strong, D. Scudiero, A. monks, J. B. Mcmahan, D. T.

- 111 -

Vistica, J. Warren, H. Bokesh, S. Kenny and M. R. Boyd.; J, Natl. Cancer Ins., 82, 1107(1990)

D. Results.

5 It was found that all the tested compounds of the present invention have superior antitumor activities to the control, cisplatin.

Table 1. $ED_{50} = \mu g/m \ell$

•						
Example No.	A 549	SK-OV-3	SK-MEL-2	XF-498	HCT 15	
2	0.032	0.088	0.029	0.084	0.019	
3	0.0016	0.0064	0.0015	0.0022	0.0020	
4	0.047	0.251	0.042	0.089	0.038	
7	0.0024	0.0072	0.0023	0.0027	0.0028	
12	0.008	0.069	0.008	0.017	0.001	
14	0.204	0.677	0.283	0.340	0.067	
15	0.079	0.184	0.038	0.096	0.071	
19	0.0064	0.143	0.043	0.093	0.080	
20	0.323	0.904	0.211	0.970	0.295	
21	0.038	0.093	0.024	0.097	0.008	
28	0.0001	0.0006	<0.0001	0.0001	0.0001	
30	0.0006	0.0007	<0.0001	0.0005	0.0007	
34 0.0023 0.0038		0.0003	0.0021	0.0021		
35	35 0.0001 0.0007 <0		<0.0001	0.0001	0.0001	
37	0.01	0.02	0.02	0.003	0.009	
38	0.00003	0.00009	0.00004	0.00011	0.00013	
39	0.10	0.33	0.07	0.14	0.06	
40	0.41	1.01	0.37	0.81	0.39	
42	0.0018	0.0043	0.0012	0.0057	0.0026	
	No. 2 3 4 7 12 14 15 19 20 21 28 30 34 35 37 38 39 40	No. A 549 2 0.032 3 0.0016 4 0.047 7 0.0024 12 0.008 14 0.204 15 0.079 19 0.0064 20 0.323 21 0.038 28 0.0001 30 0.0006 34 0.0023 35 0.0001 37 0.01 38 0.00003 39 0.10 40 0.41	No. A 549 SK-OV-3 2 0.032 0.088 3 0.0016 0.0064 4 0.047 0.251 7 0.0024 0.0072 12 0.008 0.069 14 0.204 0.677 15 0.079 0.184 19 0.0064 0.143 20 0.323 0.904 21 0.038 0.093 28 0.0001 0.0006 30 0.0006 0.0007 34 0.0023 0.0038 35 0.0001 0.002 38 0.00003 0.00009 39 0.10 0.33 40 0.41 1.01	No. A 549 SK-OV-3 SK-MEL-2 2 0.032 0.088 0.029 3 0.0016 0.0064 0.0015 4 0.047 0.251 0.042 7 0.0024 0.0072 0.0023 12 0.008 0.069 0.008 14 0.204 0.677 0.283 15 0.079 0.184 0.038 19 0.0064 0.143 0.043 20 0.323 0.904 0.211 21 0.038 0.093 0.024 28 0.0001 0.0006 <0.0001	No. A 549 SR-OV-3 SR-MEL-2 XF-498 2 0.032 0.088 0.029 0.084 3 0.0016 0.0064 0.0015 0.0022 4 0.047 0.251 0.042 0.089 7 0.0024 0.0072 0.0023 0.0027 12 0.008 0.069 0.008 0.017 14 0.204 0.677 0.283 0.340 15 0.079 0.184 0.038 0.096 19 0.0064 0.143 0.043 0.093 20 0.323 0.904 0.211 0.970 21 0.038 0.093 0.024 0.097 28 0.0001 0.0006 <0.0001	

W.O 00/52001

Example No.	A 549	SK-OV-3	SK-MEL-2	XF-498	HCT 15
45	0.0001	0.0002	<0.0001	0.0002	0.0001
46	0.002	0.007	0.003	0.001	0.002
48	0.001	0.007	0.0003	0.004	0.002
51	0.37	0.68	0.28	0.63	0.18
53	0.17	0.21	0.93	0.27	0.05
55	0.34	0.49	0.22	0.41	0.33
64	0.019	0.057	0.011	0.014	0.032
66	0.005	0.008	0.002	0.008	0.003
68	0.38	0.86	0.34	0.47	0.31
72	0.0001	0.0007	<0.0001	0.0001	0.0001
74	0.0020	0.038	0.003	0.024	0.028
86	0.04	0.08	0.03	0.04	0.06
87	0.01	0.03	0.66	0.08	0.008
89	0.04	0.20	0.03	0.04	0.05
90	0.38	0.35	0.90	0.68	0.20
99	0.012	0.008	0.006	0.010	0.003
101	0.0003	0.0003	0.0003	0.0002	0.0001
107	0.032	0.013	0.005	0.008	0.009
118	0.057	0.032	0.019	0.017	0.0002
120	0.64	0.73	0.28	0.82	0.30
125	0.0009	0.0008	0.0001	0.0001	0.0001
127	0.013	0.011	0.005	0.006	0.002
132	0.011	0.007	0.001	0.002	0.001
133	0.0001	0.0001	0.0001	0.0001	0.0001
138	0.074	0.030	0.016	0.018	0.006
139	0.0007	0.0007	0.0002	0.0003	0.0004

- 113 -

	Example No.	A 549	SK-OV-3	SK-MEL-2	XF-498	HCT 15	
	159	0.029	0.010	0.002	0.006	0.0006	
	172	0.07	0.08	0.02	0.03	0.02	
5	173	0.40	0.86	0.15	0.21	0.18	
	176	0.0012	0.0009	0.0003	0.0001	0.0001	
	177	0.0006	0.0008	0.0003	0.0004	0.0001	
	180	0.28	0.16	0.31	0.24	0.16	
	181 0.13		0.06	0.11	0.04	0.02	
	182 0.292 0.081		0.033	0.103	0.006		
10	Cisplatin	0.91	1.32	0.87	0.77	3.17	

Experimental 2.

In vitro antitumor effects against animal leukemia cells.

15

25

A. Material:

Tumor cell line: P388 (mouse lymphoid neoplasma cell)

- B. Method: Dye Exclusion Assay.
- 20 Concentrations of P388 cells being cultured in RPMI 1640 media containing 10% FBS were regulated to 1×10⁶ cells/ml.
 - 2) Sample drugs of respective concentrations diluted in the ratio of log doses were added into each cell culture and cultured at 37°C, for 48 hours, in 50% CO₂ incubator, and then viable cell numbers were measured by dye exclusion test using trypan blue.
 - 3) Concentrations of sample compounds showing 50 % cell growth inhibition compared with the control(IC_{50}) were determined and listed in the table 2 below.

* REFERENCE

1) P. Skehan, R. Strong, D. Scudiero, A. Monks, J. B. Mcmahan, D. T. Vistica, J. Warren, H. Bokesh, S. Kenney and M. R. Boyd.: Proc. Am.

- 114 -

Assoc. Cancer Res., 30, 612(1989).

- 2) L. V. Rubinstein, R. H. Shoemaker, K. D. Paull, R. M. Simon, S. Tosini, P. Skehan, D. Scudiero, A. Monks, J. Natl. Cancer Inst., 82, 1113(1990)
- 5 3) P. Skehan, R. Strong, D. Scudiero, J. B. Mcmahan, D. T. Vistica, J. Warren, H. Bokesch, S. Kenney and M. R. Boyd.: J. Natl. Cancer Inst., 82, 1107(1990)

C. Results

As the results of measurement of antitumor activities of compounds of the present invention against P388 mouse leukemia cells, it was found that all the compounds tested have equal to or higher antitumor activities than those of the control drug, mitomycin C.

15

20

25

- 115 -

!	Example	P388	Example	P388	
	No.		No.		
	2	0.3	46	0.2	
	3	0.01	48	0.39	
5	7	0.02	64	0.34	
	11	0.02	66	0.2	
	12	0.1	. 72	0.10	
	15	0.70	74	0.68	
	19	0.2	99	0.04	
10	20	1.2	101	0.002	
	21	0.8	107	0.04	
	28	0.04	118	0.3	
	30	0.07	138	0.1	
15	34	0.14	139	0.03	
	35	0.01	173	0.4	
	37	0.3	180	0.05	
	38	0.01	181	0.03	
	42	0.03	182	0.2	
20	45	0.15	Mitomycin C	1.1	

Experimental 3.

WO 00/52001

Acute toxicity test (LD₅₀):

25 A. Method: Litchfield-Wilcoxon method.

6 weeks old ICR mice(male 30±2.0g) were fed freely with solid feed and water at room temperature, 23±1°C at humidity 60±5%. Sample drugs were injected into abdominal cavities of mice, while each group comprises 6 mice. Observed during 14 days, external appearances and 30 life or death were recorded, and then, visible pathogenies were observed from dead animals by dissection. LD₅₀ value was calculated by

- 116 -

Litchfiled-wilcoxon method.

B. Result

The results are shown at the next table 3.

Table 3

5

	D1. No	LD ₅₀ (mg/kg)				
	Example No.	p.o.	i.v.	i.p.		
10	7		75			
	38	410	97			
	99		>200			
	104		212			
15	Cisplatin			9.7		

As described above, it was found that the compounds of the present invention are more safer than cisplatin, whereby the present compounds may solve problems of known drugs by the prior art such as restriction of dosage, toxicity, etc.

25

20

What is claimed:

1. A compound of the general formula(I)

(I)

 C_1 - C_4 alkoxy or C_1 - C_4 thioalkoxy;

wherein R₁ and R₂ are independently hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylcarboxyl, C₁-C₄ alkylcarbonyl, C₁-C₄ alkoxy, C₁-C₄ hydroxyalkyl, C₁-C₄ aminoalkyl or C₁-C₄ hydroxyiminoalkyl, or R₁ and R₂ are fused to form C₃-C₄ unsaturated ring;

R₃, R₄, R₅, R₆ and R₇ are independently hydrogen, halogen, hydroxy, nitro, amino, C₁-C₄ alkyl, C₁-C₄ alkylcarboxyl, C₁-C₄ alkylcarbonyl,

 R_8 is C_1-C_4 alkyl;

Y is oxygen, sulphur, amino, substituted amino or C_1 - C_4 thioalkyl; Z is C_1 - C_4 alkoxy, C_1 - C_4 alkyl, C_1 - C_4 alkylamino or C_1 - C_4 thioalkoxy;

- 20 X₁ and X₂ are independently carbon or nitrogen; and

 —N=C— and —C=Y— may form a single bond or a double bond
 provided that if —N=C— forms a single bond, —C=Y— forms a bouble
 bond, and if —C=Y— forms a single bond, —N=C— forms a bouble
 bond and R₈ is nonexistent; or pharmaceutically acceptable acid addition
 25 salts thereof.
 - A process for the preparation of compound of the general formula
 (Ia) or a pharmaceutically acceptable acid addition salt thereof
 comprising
- 30 reacting a compound of the general formula (2) with a -C(=Y)-group-providing agent in a conventional organic solvent to obtain a

compound of the general formula (3) and successively reacting the compound of the general formula (3) with a compound of the general formula (4) to give the compound of the general formula (5), and reacting the compound of the formula (5) with an alkylating agent or arylating agent in the presence of a base to give the compound of the general formula (Ia).

10
$$R_{2} \xrightarrow{X_{1}} \xrightarrow{NH_{2}} R_{2} \xrightarrow{X_{1}} X_{2} \xrightarrow{R_{2}} Z$$

$$R_{1} \xrightarrow{X_{2}} Z$$

$$R_{2} \xrightarrow{X_{1}} X_{2} \xrightarrow{R_{3}} R_{4}$$

$$R_{2} \xrightarrow{X_{1}} X_{2} \xrightarrow{N-C-N} X_{2} \xrightarrow{R_{3}} R_{4}$$

$$R_{2} \xrightarrow{X_{1}} X_{2} \xrightarrow{N-C-N} X_{2} \xrightarrow{R_{3}} R_{4}$$

$$R_{1} \xrightarrow{R_{2}} Z$$

$$R_{2} \xrightarrow{X_{1}} X_{2} \xrightarrow{N-C-N} X_{2} \xrightarrow{R_{3}} R_{4}$$

$$R_{2} \xrightarrow{X_{1}} X_{2} \xrightarrow{N-C-N} X_{3} \xrightarrow{R_{4}} R_{5}$$

$$R_{1} \xrightarrow{R_{2}} Z$$

$$R_{2} \xrightarrow{X_{1}} X_{2} \xrightarrow{N-C-N} X_{3} \xrightarrow{R_{4}} R_{5}$$

$$R_{1} \xrightarrow{R_{2}} Z$$

$$R_{2} \xrightarrow{X_{1}} X_{2} \xrightarrow{N-C-N} X_{3} \xrightarrow{R_{4}} R_{5}$$

$$R_{2} \xrightarrow{X_{1}} X_{2} \xrightarrow{N-C-N} X_{5} \xrightarrow{R_{5}} R_{5}$$

20

25

wherein R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, X₁, X₂, Y and Z are as defined above, and Lie is a conventional leaving group.

(Ia)

3. A process for the preparation of compound of the general formual (Ib) comprising

reacting a compound of the general formula (II) with an alkylating agent in the presence of a base to give a compound of the general formula (I') and reacting the compound of the formula (I') with a substituted or unsubstituted amine in the presence of a base to give a

compound of the general formula (Ib).

wherein R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , X_1 , X_2 , Y and Z are as defined above, and R' is C_1 - C_4 alkyl.

INTERNATIONAL SEARCH REPORT

International application No. PCT/KR 00/00164

	FC1/KR 00/0016	, 4				
CLASSIFICATION OF SUBJECT MATTER						
IPC ⁷ : C 07 D 295/108, 295/13, 401/12, 403/12, 213	3/65, 241/28					
According to International Patent Classification (IPC) or to both nat	According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by	hu alossi Sasti an aranka la)					
IPC ⁷ : C 07 D 295/00, 401/00, 403/00, 213/00, 241/	· ·					
Documentation searched other than minimum documentation to the		the fields searched				
AT, Chemical Abstracts						
Electronic data base consulted during the international search (name	e of data base and, where practicable, searc	ch terms used)				
Questel: DARC, STN: CA, EPO: WPI						
C. DOCUMENTS CONSIDERED TO BE RELEVANT						
Category Citation of document, with indication, where appropriate	e, of the relevant passages	Relevant to claim No.				
X WO 98/00402 A1 (SAMJIN) 8 January 19 totality.	998 (08.01.98)	1-3				
X WO 96/21648 A1 (SAMJIN) 18 July 1990 totality.	WO 96/21648 A1 (SAMJIN) 18 July 1996 (18.07.96)					
Further documents are listed in the continuation of Box C.	See patent family annex.					
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	considered novel or cannot be considered when the document is taken alone "Y" document of particular relevance; the clair considered to involve an inventive step we combined with one or more other such being obvious to a person skilled in the a me. document member of the same patent fan	on but cited to understand ention med invention cannot be to involve an inventive step imed invention cannot be then the document is ocuments, such combination in interest in the document in the document of the document in the document of				
Date of the actual completion of the international search	Date of mailing of the international search					
2 June 2000 (02.06.2000)	28 July 2000 (28.0°	7.2000)				
Name and mailing adress of the ISA/AT Austrian Patent Office	Authorized officer					
Kohlmarkt 8-10; A-1014 Vienna	Hammer					
Facsimile No. 1/53424/535	Telephone No. 1/53424/374					
Form PCT/ISA/210 (second sheet) (July 1998)						

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No. PCT/KR 00/00164

		document cited search report	Publication date		Patent f membe		Publication date
WO	Al	9800402	08-01-1998	AU	A1	34642/97	21-01-1998
		•		UA	B2	713171	25-11-1999
				BG	A	102286	31-08-1999
				BR	A	9706540	20-07-1999
				CA	AA	2230960	08-01-1998
				CN	A	1196724	21-10-1998
				CZ	A3	9800593	15-07-1998
				EP	A1	850222	01-07-1998
				JP	T2	11501680	09-02-1999
				JP	B2	3032303	17-04-2000
				KR	B1	204320	15-06-1999
				NO	A0	980856	27-02-1998
				Ю	A	980856	27-04-1998
				NZ	A	329847	28-01-1999
				PL	A1	325341	20-07-1990
			•	SK	A3	275/98	04-11-1998
				ซร	A	6028195	22-02-200
				KR	B1	204318	15-06-1999
				KR	B1	197111	15-06-1999
				KR	B1	204319	15-06-199
MO	Al	9621648	18-07-1996	BG	B1	61875	31-08-199
WO	A1	9621648	18-07-1996	KR	Y1	9707010	11-07-199
				RU	C1	2126001	10-02-1999
				UA	Al	44007/96	31-07-199
				AU	B2	699619	10-12-199
	-			BG	A	100704	30-09-199
				BR	A	9605309	14-10-199
				CA	AA	2184919	18-07-199
				CN	A	1145620	19-03-199
				CZ	A3	9602960	12-02-199
				EP	A1	749425	27-12-199
				FI	A	963566	10-09-199
				FI	A0	963566	10-09-199
				HU	A0	9602489	28-11-199
				HU	AB	9602489	28-08-199
				JP	T2	9511764	25-11-199
				JP	B2	2978967	15-11-199
			•	KR	B1	162710	01-12-199
				МО	A0	963792	10-09-199
				NO	A	963792	11-11-199
				NO NZ	B1	307459 298499	10-04-200
				NZ PL	A A1	298499 316613	26-01-199
				RO	B3	115159	20-01-199
				SK	A3	889/96	30-11-199
				US	A A	5780472	07-05-199 14-07-199
				2A	A	9600517	11-07-199

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☑ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.