ANNEX B

PJC 2011 JC 2 H2 End of Year Examination Paper 1

Qn/No	Topic Set	Answers
1		(i) $\frac{1}{2}x^2 \tan^{-1}(2x^2) - \frac{1}{8}\ln(1+4x^4) + C$
	Applications of Integration	(ii) 50.89 units ³
2	Binomial Theorem	(i) $\frac{1}{2} - \frac{1}{16}x^2 + \frac{3}{256}x^4$
		(ii) $\frac{1}{2} + \frac{1}{2}x - \frac{1}{16}x^2 - \frac{1}{16}x^3$ (iii) $-2 < x < 2$
3		(i) $28-24\left(\frac{3}{4}\right)^n$
		(ii) at least 7 times (iii) $S_{\infty} = 28$
4	Summation	(i) $1 - \frac{1}{N - 2}$
		$(ii) 1 - \frac{1}{N-4}$
		$\lim_{N \to \infty} \left(1 - \frac{1}{N - 2} \right) = 1$
5	Maclaurin Series	$2x + 2x^{2} - \frac{4x^{3}}{3}$ (ii) $f^{-1}: x \mapsto \frac{1+2x}{x+2}, x > -2$
6		
		(iii) gf $(x) = \ln\left(\frac{x-5}{x-2}\right)$, $x < 2$
7	Parametric Equations	(i) $y = \frac{1}{12}x + \frac{4}{3}a$, $y = -12x + 98a$
		(ii) $(-64a, -4a)$
8	Differential Equations	(i) $x = \frac{1}{2} \left(1 + e^{-0.1t} \right)$
		$(iii) x \to \frac{1}{2}$

9	Complex Numbers	(i) $z = re^{-i\theta}$ is another root (ii) $ z_2 = 2$, $\arg(z_2) = \frac{5\pi}{6}$, z_2 is an anti-clockwise rotation of z_1 about the origin by $\frac{\pi}{2}$. (iii) $(z^2 - 2z + 4)(z^2 + 2\sqrt{3}z + 4)$
10	Curve Transformations	(b) $\frac{4}{x^2}$
11		(i) $x = k$, $y = x + k - 4$ (ii) $k < 0$ or $k > 2$ (iii) $k = 4$ (iv) $p > 1$
12	Vectors	(iii) $\begin{pmatrix} 0 \\ -1 \\ 7 \end{pmatrix}$ (iii) $a = 3, b = 1, c = 0, r = \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 3 \\ 10 \end{pmatrix}, \lambda \in \square$