21. China

RLChina Reinforcement Learning Summer School

PyTorch Introduction

YanSong CASIA August 15, 2022

3. China

na al China

Outline

Why Pytorch?

Introduction to Pytorch tensor operations

BackPropogation

- Training
- Examples and Homeworks

• Jidi plateform

What is O PyTorch

- Replacement for Numpy to use the power of GPUs
- Deep learning research platform that provides flexibility and speed
- Installation: https://pytorch.org/get-started/locally/
- Many alternatives based on similar principles

Why PyTorch?

- Dynamic computation graphs (by now also supported in TF Eager) are from our experience more intuitive for newcomers
- Easy debugging
- Data Parallelism

Scalars, Vectors, Matrices, Tensors and Basic operations

$$\overrightarrow{X} = X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Chino

code on supplymentary notebook

PyTorch Variables

- A PyTorch Variable is a wrapper around a PyTorch Tensor, and represents a node in a computational graph.
- If x is a Variable then x.data is a Tensor giving its value
- x.grad is another Variable holding the gradient of x with respect to some scalar value

PyTorch Autograd----Gradient

$$\frac{\partial}{\partial \mathbf{x}} r = \frac{\partial}{\partial \mathbf{x}} (\mathbf{x} \odot \mathbf{y})^{\top} \mathbf{z}$$

$$= \mathbf{z} \left[\frac{\partial}{\partial \mathbf{x}} (\mathbf{x} \odot \mathbf{y}) \right] + (\mathbf{x} \odot \mathbf{y}) \left[\frac{\partial}{\partial \mathbf{x}} \mathbf{z} \right]$$

$$= \mathbf{z} \left[\mathbf{y} \left[\frac{\partial}{\partial \mathbf{x}} \mathbf{x} \right] + \mathbf{x} \left[\frac{\partial}{\partial \mathbf{x}} \mathbf{y} \right] \right]$$

$$= \mathbf{z} \odot \mathbf{y} = \begin{bmatrix} -2.0 \\ 0.2 \end{bmatrix} \odot \begin{bmatrix} 1.0 \\ -1.3 \end{bmatrix} = \begin{bmatrix} -2.00 \\ -0.26 \end{bmatrix}$$

BackPropogation derivation (Chain Rule)

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha \frac{\partial}{\partial \mathbf{x}_t} r_t$$

$$\theta_{t+1} = \theta_t - \alpha \frac{\partial}{\partial \theta_t} L(X, Y; \theta_t)$$

Gradient update

code on supplymentary notebook

PyTorch Autograd----BackPropagation

- Backpropagation = Efficient Application of Chain Rule
- Chain Rule: y = g(x)z = f(y) $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} = f'(g(x))g'(x)$
- Backprop

What idiot called it "deep learning hype" and not "backpropaganda"

```
b = torch.rand(1, requires grad=True)
c = torch.rand(1, requires_grad=True)
d = torch.rand(1, requires grad=True)
# compare to: f = c * a * b + d * a * b
f = c * e + d * e
> tensor([0.0994], grad_fn=<AddBackward0>
```

a = torch.rand(1, requires grad=True)

PyTorch Modules

- All network components should inherit from nn.Module and override the forward method
- Using a module provides functionality:
 - Keeps track of trainable parameters
 - Allows you to easily swap between CPU and GPU (see .to(device))
- To register a variable tensor to the parameters of a module you need to wrap it using nn.Parameter

```
class LinearModule(torch.nn.Module):
    def __init__(self, x_dim, y_dim):
        super(LinearModule, self).__init__()
        self.W = nn.Parameter(torch.randn(y_dim, x_dim, requires_grad=True))
        self.b = nn.Parameter(torch.randn(y_dim), requires_grad=True)
    def forward(self, x):
        return self.W @ x + self.b

# Some random input and output data
x = torch.randn(5)
y = torch.randn(2)

model = LinearModule(5, 2)

for param in model.parameters():
    print(param.size())

pred = model(x)
pred
```


Loss Function

- Least squares [nn.MSELoss] $L(f_{\theta}(x), y) = \frac{1}{2} (f_{\theta}(x) y)^2$
- Logistic [nn.SoftMarginLoss] $L(f_{\theta}(x), y) = \log(1 + exp(-yf_{\theta}(x)))$
- Hinge loss [nn.MultiMarginLoss / nn.MultiLabelMarginLoss] $L(f_{\theta}(x),y) = \max(0,\,1-yf_{\theta}(x))$
- Cross-entropy [nn.CrossEntropyLoss]

$$L(f_{\theta}(x), y) = -\left[y\log(f_{\theta}(x)) - (1 - y)\log(1 - f_{\theta}(x))\right]$$

For more see https://pytorch.org/docs/stable/nn.html#loss-functions

Training Loop

- Given model f_{θ} , initialize parameters θ (e.g. randomly)
- For number of epochs:
 - for number of iterations (i.e. number of batches in data):
 - sample batch of data x, $y \sim T$
 - x: input, y: target output
 - run model forward $y *= f_{\theta}(x)$ and calculate loss L(y *, y)• Calculate gradient of loss ∇
 - Calculate gradient of loss $oldsymbol{V}_{ heta}oldsymbol{L}$ w.r.t parameter using backprop
 - Update parameters using optimiser, e.g. $\theta_{t+1} = \theta_t \alpha \nabla \theta_t$

Stochastics Gradient Descent

Li, Hao, et al. "Visualizing the loss landscape of neural nets." NeurIPS. 2018.

Optimiser

PyTorch Training Loop Scaffold

```
import torch.nn as nn
import torch.optim as optim
# Set a seed; your experiments should be reproducible!
torch.manual seed(1)
# Load data
train, dev, test = ...
# Instantiate model
model = MyModel(...)
# Define loss function
loss fn = nn.CrossEntropyLoss()
# Instantiate optimizer with a learning rate (lr)
optimizer = optim.SGD(model.parameters(), lr=0.1)
for epoch in range(10): # 10 epochs in this example
  for i, batch in enumerate(train): # assuming train is a generator that reshuffles data
    # Set gradients to zero
    optimizer.zero grad()
    # Run forward
    y = model(batch)
    # Calculate loss
    loss = loss fn(y, y target)
    # Run backward to compute gradient of loss w.r.t. to model parameters
    loss.backward()
    # Perform one step of optimization
    optimizer.step()
    # Print diagnostics (e.g. loss or dev set performance)
  Evaluate on test
```

RIChina

- Regression
- Classification
- Recurrent Neural Network
- Convolution Neural Network

Chilia

21.China

China

A Decision Making example using PyTorch

- Behaviour Cloning is a supervised learing way to tackle a decision making problem.
- Given expert experience, our goal is to imitate its behaviour as similar as possible with a parametrised policy
- therefore a good example to work with before get into the field of RL.

Homework: Behaviour Cloning on Olympics Wrestling

- two agent compete on stage and aim at pushing opponent out of bounds while avoid themselves falling out of the stage.
- Expert policy knows how to stay on the stage to survive.
- You are given with 10,000 collected expert data, battle begins!!!

How to submit your policy ---- Jidi

- Align your policy input and output with Jidi's evaluation, see run_log.py in ai_lib (https://github.com/jidiai/ai_lib) and /submission_example folder.
- Create an accout on Jidi (http://www.jidiai.cn/)
- Submit your policy

21.China

P.I.China

RIChina

PLChina

Thanks

RI.China

21.China

21 China

21. China