In [2]:

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
```

In [40]:

data = pd.read_csv('C:/Users/DELL/Desktop/AI ML _ SCM/Assignment 2/Dataset.csv')

In [41]:

data.head()

Out[41]:

	S.No	District	Number of Positive Cases	Positivity Rate	Achievement towards 1st Dosage Covishield 18+	Achievement towards 2nd Dosage Covishield 18+	Total Achievement towards 1st Dose of Covishield and Covaxin	Tota Achievementowards 2nc Dose of Covishield and Covaxir
0	1	Ariyalur	16	1.6	93878	6169	196727	38680
1	2	Chennai	183	0.8	662095	89809	2542245	1082332
2	3	Coimbatore	205	1.8	418387	19173	1170289	313901
3	4	Cuddalore	57	1.3	310026	6333	612752	119949
4	5	Dharmapuri	21	1.1	229475	4172	446398	81128
4								>

In [79]:

X = data.iloc[:, [3,5]].values

```
In [80]:
```

```
Χ
```

Out[80]:

```
array([[1.60000e+00, 6.16900e+03],
       [8.00000e-01, 8.98090e+04],
       [1.80000e+00, 1.91730e+04],
       [1.30000e+00, 6.33300e+03],
       [1.10000e+00, 4.17200e+03],
       [2.00000e-01, 8.83000e+03],
       [1.50000e+00, 3.81400e+03],
       [7.00000e-01, 2.98200e+03],
       [5.00000e-01, 2.47800e+03],
       [7.00000e-01, 1.90620e+04],
       [6.00000e-01, 1.36020e+04],
       [1.00000e+00, 1.43210e+04],
       [2.00000e-01, 1.05880e+04],
       [1.80000e+00, 5.51700e+03],
       [2.70000e+00, 4.45200e+03],
       [1.50000e+00, 1.34870e+04],
       [1.40000e+00, 1.53580e+04],
       [1.00000e+00, 4.10600e+03],
       [1.30000e+00, 3.36600e+03],
       [1.20000e+00, 1.33800e+04],
       [1.30000e+00, 1.11240e+04],
       [2.50000e+00, 1.19760e+04],
       [3.00000e-01, 1.24710e+04],
       [1.00000e+00, 2.99450e+04],
       [8.00000e-01, 8.45900e+03],
       [1.30000e+00, 8.50400e+03],
       [1.00000e+00, 1.12280e+04],
       [7.00000e-01, 7.54700e+03],
       [1.30000e+00, 6.48000e+03],
       [1.10000e+00, 5.90500e+03],
       [1.60000e+00, 3.22200e+03],
       [2.00000e-01, 9.03400e+03],
       [1.00000e+00, 4.91982e+05]])
```

In [81]:

```
import scipy.cluster.hierarchy as sch
```

In [82]:

```
ddgrm = sch.dendrogram(sch.linkage(X, method='ward'))
plt.title('Dendgrogram: Positive Cases')
plt.xlabel('Customers')
plt.ylabel('Euclidean Distance')
plt.show()
```


In [83]:

```
from sklearn.cluster import AgglomerativeClustering
hc = AgglomerativeClustering(n_clusters=5, affinity='euclidean', linkage='ward')
y_hc = hc.fit_predict(X)
```

In [85]:

```
plt.scatter(X[y_hc==0, 0], X[y_hc==0, 1], s=50, c= 'red', label='Level 5')
plt.scatter(X[y_hc==0, 0], X[y_hc==0, 1], s=50, c= 'orange', label='Level 4')
plt.scatter(X[y_hc==0, 0], X[y_hc==0, 1], s=50, c= 'blue', label='Level 3')
plt.scatter(X[y_hc==1, 0], X[y_hc==1, 1], s=50, c= 'yellow', label='Level 2')
plt.scatter(X[y_hc==2, 0], X[y_hc==2, 1], s=50, c= 'green', label='Level 1')
plt.title('Risk of Infection')
plt.xlabel('1st Dose Complete 18+')
plt.ylabel('Positivity Rate')
plt.legend()
plt.show()
```


In []: