Introduction to Correlation Analysis

Learning Objectives

- Scatter Plots
- Correlation
- Correlation Coefficient
- Calculating the Correlation Coefficient
- Hypotheses
- Test statistic
- level of significance

Scatter Plots and Correlation

- A **scatter plot** (or scatter diagram) is used to show the relationship between two variables
- Correlation analysis is used to measure strength of the association (linear relationship) between two variables
 - Only concerned with strength of the relationship
 - No causal effect is implied

Scatter Plot Examples

Scatter Plot Examples

Scatter Plot Examples

Correlation Coefficient

- The **population correlation coefficient** ρ (rho) measures the strength of the association between the variables
- The sample correlation coefficient ${\bf r}$ is an estimate of ${\boldsymbol \rho}$ and is used to measure the strength of the linear relationship in the sample observations

Features of p and r

- Unit free
- Range between -1 and 1
- The closer to -1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker the linear relationship

Examples of Approximate r Values

Calculating the Correlation Coefficient

Sample correlation coefficient:

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\left[\sum (x - \overline{x})^2\right]\left[\sum (y - \overline{y})^2\right]}}$$

or the algebraic equivalent:

$$r = \frac{n\sum xy - \sum x\sum y}{\sqrt{[n(\sum x^2) - (\sum x)^2][n(\sum y^2) - (\sum y)^2]}}$$

where:

r = Sample correlation coefficient

n = Sample size

x =Value of the independent variable

y = Value of the dependent variable

Calculation Example

Tree Height	Trunk Diamete r			
у	X	xy	y ²	X ²
35	8			
49	9			
27	7			
33	6			
60	13			
21	7			
45	11			
51	12			
\sum =	Σ =	Σ =	Σ =	Σ =

Calculation Example

Tree Height	Trunk Diamete r			
у	X	xy	y ²	X ²
35	8	280	1225	64
49	9	441	2401	81
27	7	189	729	49
33	6	198	1089	36
60	13	780	3600	169
21	7	147	441	49
45	11	495	2025	121
51	12	612	2601	144
∑ =321	∑ =73	∑ =3142	∑=14111	Σ =713

Calculation Example

$$r = \frac{n\sum xy - \sum x\sum y}{\sqrt{[n(\sum x^2) - (\sum x)^2][n(\sum y^2) - (\sum y)^2]}}$$

$$= \frac{8 \cdot 3142 - 73 \cdot 321}{\sqrt{[8 \cdot 713 - (73)^2][8 \cdot 14111 - (321)^2]}}$$

$$= 0.886$$

 $\mathbf{r} = \mathbf{0.886} \rightarrow \text{relatively strong positive}$ linear association between x and y

Significance Test for Correlation

Hypotheses

$$H_0$$
: $\rho = 0$ (no correlation)

 H_0 : $\rho = 0$ (no correlation) H_A : $\rho \neq 0$ (correlation exists)

• Test statistic

$$t = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}}$$

(with n-2 degrees of freedom)

Example: Produce Stores

Is there evidence of a linear relationship between tree height and trunk diameter at the 0.05 level of significance?

$$H_0$$
: $\rho = 0$ (No correlation)

 H_1 : $\rho \neq 0$ (correlation exists)

$$\alpha = 0.05$$
, df = 8 - 2 = 6

$$t = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}} = \frac{0.886}{\sqrt{\frac{1 - 0.886^2}{8 - 2}}} = 4.68$$

TABLE B.2 THE t DISTRIBUTION

Table entries are values of t corresponding to proportions in one tail or in two tails combined.

	PROPORTION IN ONE TAIL							
	0.25	0.10	0.05	0.025	0.01	0.00		
		PRO	OPORTION IN TWO T	AILS COMBINED				
df	0.50	0.20	0.10	0.05	0.02	0.0		
1	1.000	3.078	6.314	12.706	31.821	63.6		
2	0.816	1.886	2.920	4.303	6.965	9.9		
3	0.765	1.638	2.353	3.182	4.541	5.8		
4	0.741	1.533	2.132	2.776	3.747	4.6		
5	0.727	1.476	2.015	2 571	3.365	4.0		
6	0.718	1.440	1.943	2.447	3.143	3.7		
7	0.711	1.415	1.895	2.365	2.998	3.4		
8	0.706	1.397	1.860	2.306	2.896	3.3		
9	0.703	1.383	1.833	2.262	2.821	3.2		
10	0.700	1.372	1.812	2.228	2.764	3.1		
11	0.697	1.363	1.796	2.201	2.718	3.		
12	0.695	1.356	1.782	2.179	2.681	3.0		
13	0.694	1.350	1.771	2.160	2.650	3.0		
14	0.692	1.345	1.761	2.145	2.624	2.9		
15	0.691	1.341	1.753	2.131	2.602	2.9		
16	0.690	1.337	1.746	2.120	2.583	2.		
17	0.689	1.333	1.740	2.110	2.567	2.		
18	0.688	1.330	1.734	2.101	2.552	2.		
19	0.688	1.328	1.729	2.093	2.539	2.		
20	0.687	1.325	1.725	2.086	2.528	2.		
21	0.686	1.323	1.721	2.080	2.518	2.		
22	0.686	1.321	1.717	2.074	2.508	2.		
23	0.685	1.319	1.714	2.069	2.500	2.3		
24	0.685	1.318	1.711	2.064	2.492	2.7		
25	0.684	1.316	1.708	2.060	2.485	2.		
26	0.684	1.315	1.706	2.056	2.479	2.		
27	0.684	1.314	1.703	2.052	2.473	2.		
28	0.683	1.313	1.701	2.048	2.467	2.		
29	0.683	1.311	1.699	2.045	2.462	2.		
30	0.683	1.310	1.697	2.042	2.457	2.1		
40	0.681	1.303	1.684	2.021	2.423	2.1		
60	0.679	1.296	1.671	2.000	2.390	2.0		
120	0.677	1.289	1.658	1.980	2.358	2.0		
oc	0.674	1.282	1.645	1.960	2.326	2.5		

ble III of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research, 6th ed. London: Longman Group Ltd., 74 (previously published by Oliver and Boyd Ltd., Edinburgh). Adapted and reprinted with permission of the Addison Wesley Longman blishing Co.

Example: Test Solution

Decision:

Reject H₀

Conclusion:

There is evidence of a linear relationship at the 5% level of significance