

디지털논리회로 [Digital Logic Circuits]

3강.

논리게이트와 부울대수 (2)

컴퓨터과학과 강지훈교수

- 01 정규형
 - 최소항과 최대항
 - 최소항의 합
 - 최대항의 곱
- 02 표준형
 - 곱의 합
 - 합의 곱

제3장. 논리게이트와 부울대수

- 부울대수의 정규형
 - 논리식을 체계적으로 정리하는 방법
 - 논리식을 AND와 OR 연산을 사용해 일정한 규칙에 따라 정의한 것
 - 부울함수를 일관성 있게 정리하기 위해 사용함
 - 두 가지 주요 표현 방식은 최소항의 합(sum of minterm), 최대항의 곱(product of maxterm)이 있음
 - 최소항의 합
 - 논리식을 AND 연산으로 구성된 최소항들의 OR 연산으로 표현
 - 최대항의 곱
 - 논리식을 OR 연산으로 구성된 최대항들의 AND 연산으로 표현

• 최소항과 최대항

2개의 논리변수 X,Y가 있는 경우

• 최소항

논리곱(AND)로 표현되는 $XY, X\overline{Y}, \overline{X}Y, \overline{X}\overline{Y}$ 4가지 항

➡ 그 결과가 논리-1이 되는 것이 최소항

• 최대항

논리합(OR)로 표현되는 $X + Y, X + \bar{Y}, \bar{X} + Y, \bar{X} + \bar{Y}$ 4가지 항

➡ 그 결과가 논리-0이 되는 것이 최대항

• 3개의 변수에 대한 최소항과 최대항

V	Y	7	최소	<u>`</u> 항	최대항		
X	I	Z	항	표시	상	표시	
0	0	0	$ar{X}ar{Y}ar{Z}$	m_0	X + Y + Z	M_0	
0	0	1	$ar{X}ar{Y}Z$	m_1	$X + Y + \bar{Z}$	M_1	
0	1	0	$ar{X}Yar{Z}$	m_2	$X + \overline{Y} + Z$	M_2	
0	1	1	$\bar{X}YZ$	m_3	$X + \bar{Y} + \bar{Z}$	M_3	
1	0	0	$Xar{Y}ar{Z}$	m_4	$\bar{X} + Y + Z$	M_4	
1	0	1	$X \overline{Y} Z$	m_5	$\bar{X} + Y + \bar{Z}$	M_5	
1	1	0	$XYar{Z}$	m_6	$\bar{X} + \bar{Y} + Z$	M_6	
1	1	1	XYZ	m_7	$\bar{X} + \bar{Y} + \bar{Z}$	M_7	

- n개의 논리변수로 구성된 부울함수의 최소항
 - 각 변수의 문자 1개씩 모두 n개 문자의 논리곱 항으로 그 결과가 논리-1인 경우

• m_j 로 표시

X	Y	7	최소	_항
Λ	Ï	Z	항	표시
0	0	0	$ar{X}ar{Y}ar{Z}$	m_0
0	0	1	$\bar{X}\bar{Y}Z$	m_1
0	1	0	$\bar{X}Y\bar{Z}$	m_2
0	1	1	$\bar{X}YZ$	m_3
1	0	0	$Xar{Y}ar{Z}$	m_4
1	0	1	$X \overline{Y} Z$	m_5
1	1	0	$XYar{Z}$	m_6
1	1	1	XYZ	m_7

- n개의 논리변수로 구성된 부울함수의 최대항
 - 각 변수의 문자 1개씩 모두 n개 문자의 논리합 항으로 그 결과가 논리-0인 경우
 - • M_j 로 표시

X	Y	7	최대형	;
A	I	Z	항	표시
0	0	0	X + Y + Z	M_0
0	0	1	$X + Y + \bar{Z}$	M_1
0	1	0	$X + \bar{Y} + Z$	M_2
0	1	1	$X + \bar{Y} + \bar{Z}$	M_3
1	0	0	$\bar{X} + Y + Z$	M_4
1	0	1	$\bar{X} + Y + \bar{Z}$	M_5
1	1	0	$\bar{X} + \bar{Y} + Z$	M_6
1	1	1	$\bar{X} + \bar{Y} + \bar{Z}$	M_7

• 최소항? 최대항?

- 최소항은 특정 조합에서만 논리-1이 되고 그 외의 모든 조합에서 논리-0이 됨
- 최대항은 특정 조합에서만 논리-0이 되고 그 외의 모든 조합에서 논리-1이 됨
- 특정 조합에서 1, 혹은 0이 되도록 작동시키기 위해 최소항은 곱으로, 최대항은 합으로 설계됨

V	V	7	최소	<u>`</u> 항	최대항		
Λ	I	Z	햐	표시	항	표시	
0	0	0	$ar{X}ar{Y}ar{Z}$	m_0	X + Y + Z	M_0	

• 최소항의 합 형태로 진리표를 부울함수로 표현

X	Y	7	최소	_항
Λ	I	Z	슝	표시
0	0	0	$ar{X}ar{Y}ar{Z}$	m_0
0	0	1	$\bar{X}\bar{Y}Z$	m_1
0	1	0	$\bar{X}Y\bar{Z}$	m_2
0	1	1	$\bar{X}YZ$	m_3
1	0	0	$Xar{Y}ar{Z}$	m_4
1	0	1	$X\overline{Y}Z$	m_5
1	1	0	$XYar{Z}$	m_6
1	1	1	XYZ	m_7

$$F = \bar{X}\bar{Y}\bar{Z} + \bar{X}\bar{Y}Z + \bar{X}Y\bar{Z} + \bar{X}YZ + X\bar{Y}\bar{Z} + X\bar{Y}Z + XY\bar{Z} + XYZ$$

= $m_0 + m_1 + m_2 + m_3 + m_4 + m_5 + m_6 + m_7$

$$F(X,Y,Z) = \Sigma m(0,1,2,3,4,5,6,7)$$

• 최대항의 곱 형태로 진리표를 부울함수로 표현

V	V	7	최대형	하
X	Y	Z	항	표시
0	0	0	X + Y + Z	M_0
0	0	1	$X + Y + \bar{Z}$	M_1
0	1	0	$X + \overline{Y} + Z$	M_2
0	1	1	$X + \bar{Y} + \bar{Z}$	M_3
1	0	0	$\bar{X} + Y + Z$	M_4
1	0	1	$\bar{X} + Y + \bar{Z}$	M_5
1	1	0	$\bar{X} + \bar{Y} + Z$	M_6
1	1	1	$\bar{X} + \bar{Y} + \bar{Z}$	M_7

$$F = (X + Y + Z)(X + Y + \bar{Z})(X + \bar{Y} + Z)(X + \bar{Y} + \bar{Z})$$
$$(\bar{X} + Y + Z)(\bar{X} + Y + \bar{Z})(\bar{X} + \bar{Y} + Z)(\bar{X} + \bar{Y} + \bar{Z})$$

$$= M_0 \cdot M_1 \cdot M_2 \cdot M_3 \cdot M_4 \cdot M_5 \cdot M_6 \cdot M_7$$

$$F(X,Y,Z) = \Pi M(0,1,2,3,4,5,6,7)$$

• 최소항의 합으로 부울함수 표현

• 진리표에서 출력이 1이 되는 최소항들을 OR으로 묶으면 정규형 부울함수가 구해 짐

	X	0	0	0	0	1	1	1	1
입력	Y	0	0	1	1	0	0	1	1
	Z	0	1	0	1	0	1	0	1
출력	F	0	1	0	0	1	0	0	1

진리표에서 출력 F가 1이 되는 조합은 001, 100, 111

따라서,
$$F = \bar{X}\bar{Y}Z + X\bar{Y}\bar{Z} + XYZ$$

• $F = X + Y\overline{Z}$ 를 최소항의 합으로 표현

$$F = X + Y\bar{Z}$$

$$= X(Y + \overline{Y}) + (X + \overline{X})Y\overline{Z}$$

$$= XY + X\overline{Y} + XY\overline{Z} + \overline{X}Y\overline{Z}$$

$$= XY(Z + \bar{Z}) + X\bar{Y}(Z + \bar{Z}) + XY\bar{Z} + \bar{X}Y\bar{Z}$$

$$= XYZ + XY\bar{Z} + X\bar{Y}Z + X\bar{Y}\bar{Z} + XY\bar{Z} + \bar{X}Y\bar{Z}$$

$$= XYZ + XY\bar{Z} + X\bar{Y}Z + X\bar{Y}\bar{Z} + \bar{X}Y\bar{Z}$$

$$F = m_2 + m_4 + m_5 + m_6 + m_7$$

$$F(X,Y,Z) = \sum m(2,4,5,6,7)$$

• 최대항의 곱으로 부울함수 표현

• 진리표에서 출력이 0이 되는 최대항들을 AND로 묶으면 정규형 부울함수가 구해 짐

	X	0	0		0	0		1	1	1	1
입력	Y	0	0		1	1	(0	0	1	1
	Z	0	1	П	0	1	(0	1	0	1
출력	F	0	1		0	0		1	0	0	1

출력 F가 0이 되는 조합은 000, 010, 011, 101, 110

따라서,
$$F = (X + Y + Z)(X + \overline{Y} + Z)$$

 $(X + \overline{Y} + \overline{Z})(\overline{X} + Y + \overline{Z})(\overline{X} + \overline{Y} + Z)$

• $F = XY + \overline{X}Z$ 를 최대항의 곱으로 표현

$$F = XY + \bar{X}Z$$

$$= (XY + \bar{X})(XY + Z)$$

$$= (X + \bar{X})(Y + \bar{X})(X + Z)(Y + Z) = (\bar{X} + Y)(X + Z)(Y + Z)$$

$$= (\bar{X} + Y + Z\bar{Z})(X + Y\bar{Y} + Z)(X\bar{X} + Y + Z)$$

$$= (\bar{X} + Y + Z)(\bar{X} + Y + \bar{Z})(X + Y + Z)(X + \bar{Y} + Z)(X + Y + Z)$$

$$= (X + Y + Z)(X + \bar{Y} + Z)(X + Y + Z)(X + Y + Z)$$

$$F = M_0 \cdot M_2 \cdot M_4 \cdot M_5$$
$$F(X, Y, Z) = \Pi M(0, 2, 4, 5)$$

- 부울함수의 표준형
 - 정규형은 진리표에서 바로 얻을 수 있지만, 최소 혹은 최대항에 대한 모든 변수가 포함되어 형태가 복잡함
 - 정규형 부울함수를 간소화 해야 할 필요가 있음

표준형 부울함수

- 간소화된 형태로 부울함수를 표현하는 방법
- 각 항은 하나 이상의 문자로 표현
- 곱의 합, 합의 곱 형태가 존재함

• 곱의 합

OI	X	0	0	0	0	1	1	1	1
입 려	Y	0	0	1	1	0	0	1	1
¬	Z	0	1	0	1	0	1	0	1
출력	F	0	0	1	1	0	1	1	1

진리표에서 F=1인 경우를 추출하여 정규형 부울함수를 구하면

$$F = \bar{X}Y\bar{Z} + \bar{X}YZ + X\bar{Y}Z + XY\bar{Z} + XYZ$$

대수적 간소화를 통해 간소화를 통해 표준형 부울함수가 구해 짐

$$F = Y + XZ$$

• 합의 곱

X	0	0	0	0	1	1	1	1
Y	0	0	1	1	0	0	1	1
Z	0	1	0	1	0	1	0	1
F	0	0	1	1	0	1	1	1
	$\begin{array}{c} X \\ Y \\ \hline Z \\ \hline F \end{array}$	X 0 Y 0 Z 0 F 0	X 0 0 Y 0 0 Z 0 1 F 0 0	X 0 0 0 Y 0 0 1 Z 0 1 0 F 0 0 1	X 0 0 0 Y 0 0 1 1 Z 0 1 0 1 F 0 0 1 1	X 0 0 0 1 Y 0 0 1 1 0 Z 0 1 0 1 0 F 0 0 1 1 0	X 0 0 0 1 1 Y 0 0 1 1 0 0 Z 0 1 0 1 0 1 F 0 0 1 0 1	X 0 0 0 1 1 1 Y 0 0 1 1 0 1 Z 0 1 0 1 0 1 0 F 0 0 1 0 1 1 1

진리표에서 F=0인 경우를 추출하여 정규형 부울함수를 구하면 $F=(X+Y+Z)(X+Y+\bar{Z})(\bar{X}+Y+Z)$

대수적 간소화를 통해 간소화를 통해 표준형 부울함수가 구해 짐

$$F = Y + XZ$$

• 정규형과 표준형

정규형	표준형
진리표에서 얻음	정규형을 대수적으로 간소화 한 것
모든 변수 포함	일부 변수 생략 가능
모든 가능한 최소항 또는 최대항을 포함한 완전한 표현	논리적으로 동등하지만 더 간단한 식 (일부 변수 생략)
논리적으로 정확한 분석에 사용	논리회로를 최적화 하는데 사용

ullet 곱의 합으로 표현된 표준형 부울함수 $F=\overline{Y}+\overline{X}Y\overline{Z}+XY$ 의 논리 회로도

$$F = AB + C(D + E)$$

$$C$$

$$C$$

$$D$$

$$E$$

• 부울함수, 정규형 및 표준형의 필요성

Summary

3강 | 논리게이트와 부울대수 (2)

- 01 부울 함수의 정규형 및 표준형
- 최소항, 최대항
- 표준형을 이용한 간소화

디지털놀리회로 [Digital Logic Circuits]

4 강.

부울함수의 간소화 및 구현(1)

