Probability 2

Exercise sheet nb. 10

Raul Penaguiao - Mailbox in J floor

Due until: 26th November at 5 p.m.

Exercises marked with * are easier after the lecture on Thursday.

Exercise 1 (3 points*). Consider the Markov chain $(X_n)_{n\geq 0}$ on $S:=\{1,2\}$ starting at 1 with transition matrix

$$Q = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}$$

- 1. Compute the distribution of the first return time $T_1 := \inf_{n \geq 1} \{X_n = 1\}$ of $(X_n)_{n \geq 0}$ at state 1.
- 2. Find a stationary probability measure μ on S. Compare $\mu(1)^{-1}$ and $\mathbb{E}(T_1)$.

Exercise 2 (3 points*). Fix $p \in (0,1)$, set q = 1 - p and consider the Markov chain $\{X_n\}_{n\geq 0}$ with state space $\mathbb{Z}_{\geq 0}$ and $Q_{i,j} = \mathbb{P}[X_{n+1} = j | X_n = i]$ transition matrix given by

$$Q_{i,j} = \begin{cases} p, & \text{if } j-1=i \ge 1, \\ q, & \text{if } j+1=i \ge 1, \\ 1, & \text{if } i=0, j=1, \\ 0, & \text{otherwise.} \end{cases}$$

- 1. Show that the measure μ on $\mathbb{Z}_{\geq 0}$ defined by $\mu(i) = \left(\frac{p}{q}\right)^i$ for $i \geq 1$ and $\mu(0) = p$, is stationary.
- 2. Show that for p < 0.5, all states are recurrent.

Exercise 3 (5 points). Consider the same Markov chain $\{X_n\}_{n\geq 0}$ from Exercise 2. This exercise is independent from Exercise 2. Define the hitting times for $j\geq 0$ as

$$H_i := \inf\{n > 0 : X_n = j\},$$

and let ϕ be the generating function of H_0 , for the Markov chain starting at 1, i.e. $\phi(s) := \mathbb{E}_1[s^{H_0}]$ for $s \in [0, 1)$.

1. Show that $\mathbb{E}_2[s^{H_0}] = \phi(s)^2$. Conclude that

$$\mathbb{E}_1[s^{H_0}\mathbb{1}[X_1=2]] = ps\phi(s)^2.$$

Hint: working under \mathbb{P}_2 (i.e. with the Markov chain starting at 2), define $\tilde{H}_0 = H_0 - H_1$ and show that \tilde{H}_0 is independent of H_1 and that both, under \mathbb{P}_2 , have the distributions of H_0 under \mathbb{P}_1 .

2. Show that ϕ satisfies $ps\phi^2(s) + qs = \phi(s)$. Show that $\phi(s) = \frac{1 - \sqrt{1 - 4pqs^2}}{2ps}$, where $s \in [0, 1)$.

Hint: The quadratic equation has two solutions, so assume the fact that ϕ is continuous on [0,1) to decide which solution must be chosen.

- 3. Compute $\mathbb{P}_1[H_0 = 3]$ from $\phi(s)$ directly. Hint: Recall that $\phi(s) = \sum_{k \geq 0} \mathbb{P}_1[H_0 = k]s^k$.
- 4. Show that $\mathbb{P}_1[H_0 < \infty] = \lim_{s \to 1^-} \phi(s)$ and compute it. Hint: Note that $1 4pq = (1 2p)^2$.
- 5. Show that $\mathbb{E}_1[H_0] = \lim_{s \to 1^-} \phi'(s)$ and compute it for p < 0.5. (Remark: For $p \ge 0.5$, the value of $\mathbb{E}[H_0]$ is infinite: why?)