MAN Roland Druckmaschinen AG, 63075 Offenbach.

Offenlegungsschri

DEUTSCHLAND

[®] DE 195 10 797 A 1

(51) Int. Cl.6: B 41 F 13/22

B 41 F 31/00 B 41 F 33/00

DEUTSCHES PATENTAMT Aktenzeichen:

195 10 797.7

Anmeldetag:

24. 3.95

Offenlegungstag:

26. 9.98

② Erfinder:

(71) Anmeider:

Müller, Lutz, 08529 Plauen, DE; Koppelkamm, Günter, 08541 Neuensalz, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

(54) Temperierbarer zylindrischer Rotationskörper

Die Erfindung betrifft einen temperierbaren zylindrischen Rotationskörper für Druckmaschinen, insbesondere Zylinder und Walzen für Offsetrotationsdruckmaschinen mit einer einseitigen Zu- und Abführung des Kühlmittels durch einen Zapfen des Zylinderkörpers, der von einer Zuflußleitung mittig durchsetzt ist, die an der dem Kühlmittelanschluß gegenüberliegenden Seite des Zylinderkörpers mit einer einoder mehrtelligen mantelseitigen Temperierkammer in Verbindung steht, die an der Seite des Kühlmittelanschlusses in eine die Zuflußleitung ringförmig umschließende Abflußleitung einmündet. Für einen unterschiedlichen verfahrensund maschinenspezifischen Anforderungen Rechnung tragenden ökonomischen Einsatz sind beide Zapfen (4; 5) des Zylinderkörpers (1) jeweils wechselseitig mit dem Kühlmittelanschluß (11; 22) oder mit einem nach außen abdichtenden Verschluß (8) ausrüstbar gestaltet und ist die Zuflußleitung (14) jeweils die Oberleitung des Kühlmittels in die Temperierkammer (17) gewährleistend variierbar.

Die Erfindung betrifft einen temperierbaren zylindrischen Rotationskörper nach dem Oberbegriff von Anspruch 1.

Insbesondere beim Offsetdruck ist es für einen qualitätsgerechten Druck erforderlich, die Temperatur der am Druckprozeß beteiligten Zylinder, wie Form-, Übertragungs- und Gegendruckzylinder, und Walzen des Farb- und Feuchtwerkes, insbesondere die Reibwalzen, auf einem niedrigen Niveau konstant zu halten, wobei diesbezügliche Forderungen für den wasserlosen Offsetdruck besonders hoch sind.

Deshalb wird in der DE-Patentanmeldung P 44 31 188.5-27 u. a. vorgeschlagen, die genannten Zy- 15 linder und Walzen mit einer Innenkühlung auszustatten. Dazu wird das Kühlmittel einseitig durch einen Zapfen des Zylinderkörpers über einen an dem Zapfen stirnseitig befestigten Anschlußkopf zu- und abgeführt. Dabei ist der Zylinderkörper von einer Zuflußleitung mittig 20 durchsetzt, die an der dem Kühlmittelanschluß gegenüberliegenden Seite des Zylinderkörpers mit einer mantelseitigen Kühlkammer in Verbindung steht, die an der Seite des Kühlmittelanschlusses in einer die Zuflußleitung ringförmig umschließenden Abflußleitung mündet.

Eine analoge Bauweise besitzt ein in dem DE-G 94 08 328.2 U1 beschriebener Formzylinder für wasserlosen Flachdruck.

Die bekannten Lösungen sind nicht den jeweiligen Betriebsbedingungen ökonomisch angepaßt einsetzbar. 30 Dies betrifft insbesondere den Offsetdruck, bei dem verfahrensbedingt zur jeweiligen Sicherung eines qualitätsgerechten Druckes ausgehend vom Zeitungsdruck bis hin zum Akzidenzdruck die Anforderungen bezüglich einer Temperierung bestimmter an der Druckgebung 35 beteiligter Walzen und Zylinder, wie Farb- und Feuchtreibwalzen sowie Form- und Übertragungszylinder, steigen und speziell diese Anforderungen beim wasserlosen Offsetdruck besonders hoch sind.

Der Erfindung liegt die Aufgabe zugrunde, einen temperierbaren zylindrischen Rotationskörper gemäß dem Oberbegriff von Anspruch 1 zu schaffen, der in ökonomischer Weise unterschiedliche verfahrens- und maschinenspezifische Anforderungen realisierend einsetzbar ist.

Die Aufgabe wird durch die kennzeichnenden Merkmale von Anspruch 1 erfüllt. Die Erfindung gestattet einen wahlweisen Kühlmittelanschluß an beiden Zapfen des Zylinderkörpers, bei Druckmaschinen auf der in der Regel verkleideten Bedienseite oder der öldicht gekapselten Antriebsseite.

Auf Grund einer gegenüber der Bedienseite größeren Erwärmung der Antriebsseite ist es im Interesse einer gleichmäßigen Temperaturverteilung günstig, das als Schmiermittel verwendete Öl zu kühlen. In diesem Fall kann das Öl zusätzlich als Kühlmittel für den Zylinderkörper verwendet werden, wobei das letzteren durchflossene Öl in ein Gehäuse auf der Antriebsseite die dort angeordneten Antriebsmechanismen schmierend frei abläuft

Andererseits ist es üblich, ein gesondertes Kühlmittel, z. B. Wasser, zwecks Vermeidung von Schäden bei einer evtl. Leckage oder aus Platzgründen auf der Bedienseite zu- und abzuführen. In beiden Fällen ist der gleiche Zylinderkörper einsetzbar.

So ist es auch möglich, nachträglich den Zylinderkörper zur Realisierung einer höheren Druckqualität oder der Umstellung auf wasserlosen Offsetdruck von einer Ölkühlung auf eine eine ek Kühlung mit einem gesonderten Kühlmittel unter entsprechender vorheriger Reinigung des Zylinderkörpers in der Maschine umzurüsten.

Die Unteransprüche enthalten weitere vorteilhafte Ausgestaltungen der Erfindung.

Die Erfindung wird nachfolgend an einem Ausführungsbeispiel näher erläutert. In den zugehörigen Zeichnungen zeigen:

Fig. 1: einen schematisierten Längsschnitt eines erfindungsgemäß ausgestatteten Zylinderkörpers mit alternativ installierbaren Kühlmittelanschlüssen,

Fig. 2: eine Variante mit einer gegenüber Fig. 1 geänderten Zuflußleitung im Zylinderkörper,

Fig. 1 zeigt einen zylindrischen Rotationskörper in Gestalt einer changierenden Reibwalze eines Farboder Feuchtwerkes einer Offsetdruckmaschine.

Der Rotationskörper besitzt einen Zylinderkörper 1 mit einem rohrförmigen Mantel 2, in dem jeweils stirnseitig ein im Maschinengestell 3; 3' gelagerter Zapfen 4; 5 befestigt ist.

Die Zapfen 4; 5 besitzen jeweils eine als Abflußleitung 6; 7 für das Kühlmittel fungierende koaxiale Bohrung, die stirnseitig am Zapfen 4; 5 mit einem Gewinde abschließt, in das wahlweise ein Abschlußstopfen 8 oder ein mit Anschlüssen 9; 10 für die Kühlmittelzu- und -abführung versehener, die Verdrehung des jeweiligen Zapfens 4 gegenüber den Anschlüssen 9; 10 ermöglichender Anschlußkopf 11 einschraubbar ist.

Eine aus zwei zusammengesteckten Rohren 12; 13 bestehende, mit dem Anschlußkopf 11 verbundene Zuflußleitung 14 durchsetzt mit ihrem ersten Rohr 1 2 koaxial die gegenüber ihr im Durchmesser erweiterte Abflußleitung 6 und mit ihrem zweiten, in jeweils die Abflußleitungen 6; 7 gegenüber dem Zylinderkörper 1 begrenzende, durchmesserreduzierte Bohrungen 15; 16 beider Zapfen 4; 5 eingesetzten Rohr 13 den als Temperierkammer 17 dienenden Hohlraum des Zylinderkörpers 1.

Das in die Abflußleitung 7 des dem Kühlmittelanschluß gegenüberliegenden Zapfens 5 austretende Kühlmittel fließt durch Bohrungen 18 in die Temperierkammer 17 ab und infolge der Zentrifugalkraft mantelseitig im drehenden Zylinderkörper 1 zurück und tritt über gleichartige Bohrungen 19 das den Anschlußkopf 11 tragenden Zapfens 4 in dessen die Zuflußleitung 14 ringförmig umschließende Abflußleitung 6 ein, von der es über den Anschlußkopf 11 und einer Verbindungsleitung im Regelfall in eine nicht dargestellte, das Kühlmittel aufbereitende und kühlende Anlage abfließt.

Fig. 1 zeigt jedoch eine Ausführung, bei der der Anschlußkopf 11 auf der Antriebsseite I innerhalb eines öldicht gekapselten Gehäuses 20 angeordnet ist, wobei das der Schmierung der Antriebselemente dienende Öl 21 zusätzlich als Kühlmittel dient, das nach dem Durchströmen des Zylinderkörpers 1 frei in das Gehäuse 20 gegen das Öl 21 verspritzende Antriebsräder abläuft.

Als Variante ist gestrichelt in Fig. 1 ein auf der gegenüberliegenden Bedienseite II installierter Anschlußkopf 22 für einen gesonderten, geschlossenen Kühlmittelkreislauf mit beispielsweise Wasser 23 als Kühlmittel dargestellt, wobei in diesem Fall der Zapfen 4 auf der Antriebsseite I durch einen Abschlußstopfen verschlossen ist. Dabei muß das mit dem Anschlußkopf 11; 22 verbundene Rohr 12; 24 der Zuflußleitung 14 jeweils den unterschiedlichen Zapfenlängen angeglichen werden.

Fig. 2 zeigt eine gegenüber Fig. 1 geänderte Zufluß-

5

10

15

20

30

35

leitung mit einem bis zum schnüberliegenden Zapfen 4' ungeteilt durchgehenden, am Anschlußkopf 25 befestigten und mit diesem wahlweise in beide Zapfen 5'; 6' einsetzbaren Rohr 26 als Zuflußleitung 27, wobei die Kühlmittelführung der von Fig. 1 entspricht.

Bezugszeichenliste

1; 1' Zylinderkörper

2 Mantel

3;3' Maschinengestell

4;4' Zapfen

5;5' Zapfen

6;6' Abflußleitung

7;7' Abflußleitung

8;8' Abschlußstopfen

9;9' Anschluß

10; 10' Anschluß

11 Anschlußkopf

12 Rohr

13 Rohr

14 Zuflußleitung

15 Bohrung

16 Bohrung

17; 17' Temperierkammer

18 Bohrung

19 Bohrung

20 Gehäuse

21 Öl

22 Anschlußkopf

23 Wasser

24 Rohr

25; 25' Anschlußkopf

26; 26' Rohr

27 Zuflußleitung

I Antriebsseite II Bedienseite

Patentansprüche

1. Temperierbarer zylindrischer Rotationskörper 40 für Druckmaschinen, insbesondere Zylinder und Walzen für Offsetrotationsdruckmaschinen mit einer einseitigen Zu- und Abführung des Kühlmittels durch einen Zapfen des Zylinderkörpers, der von einer Zuflußleitung mittig durchsetzt ist, die an der 45 dem Kühlmittelanschluß gegenüberliegenden Seite des Zylinderkörpers mit einer ein- und mehrteiligen mantelseitigen Temperierkammer in Verbindung steht, die an der Seite des Kühlmittelanschlusses in eine die Zuflußleitung ringförmig umschließenden 50 Abflußleitung einmündet, gekennzeichnet dadurch, daß beide Zapfen (4; 5; 4'; 5') des Zylinderkörpers (1; 1') jeweils wechselseitig mit dem Kühlmittelanschluß für die Zuflußleitung (14; 27) und die Abflußleitung (6; 7; 6'; 7') oder mit einem nach au-Ben abdichtenden Verschluß ausrüstbar gestaltet sind und die Zuflußleitung (14; 27) jeweils die Überleitung des Kühlmittels in die Temperierkammer

(17; 17') gewährleistend variierbar ist.

2. Temperierbarer zylindrischer Rotationskörper 60 nach Anspruch 1, gekennzeichnet dadurch, daß die Abflußleitungen (6; 7) beider Zapfen (4; 5) durch ein fest installiertes koaxiales Rohr (13) verbunden sind, an dessen Enden wahlweise jeweils ein mit dem Anschluß (9) für die Kühlmittelzuführung verbundenes, im Außendurchmesser gegenüber der Abflußleitung (6; 7) reduziertes Rohr (12) einsteck-

bar ist.

3. Temperierbat Zylindrischer Rotationskörper nach Anspruch 1, gekennzeichnet dadurch, daß die Abflußleitungen (6';7') im Zapfen (4';5') gegenüber der Temperierkammer (17') des Zylinderkörpers (1') jeweils durch eine durchmesserreduzierte Bohrung (15'; 16') begrenzt sind, in die den Zylinderkörper (1') koaxial durchsetzend ein mit dem Anschluß (9') für die Kühlmittelzuführung verbundenes Rohr (26) im Bereich der gegenüberliegenden, nicht angeschlossenen Abflußleitung (6') endend einsteckbar ist.

4. Temperierbarer zylindrischer Rotationskörper nach Anspruch 1 bis 3, gekennzeichnet dadurch, daß der Zylinderkörper (1; 1') im Inneren hinsichtlich der wahlweisen Kühlmittelführung symme-

trisch gestaltet ist.

5. Temperierbarer zylindrischer Rotationskörper nach Anspruch 1 bis 4, gekennzeichnet dadurch, daß bei einer gemeinsamen Verwendung von Öl (21) als Schmier- und Kühlmittel die Zuflußleitung (14) an eine Ölaufbereitungs- und -kühlanlage angeschlossen ist und die Abflußleitung (6) mit einem öldicht gekapselten Gehäuse (20) die Benetzung in diesem angeordneter Antriebselemente mit Öl (21) ermöglichend in Verbindung steht.

6. Temperierbarer zylindrischer Rotationskörper nach Anspruch 1 bis 5, gekennzeichnet dadurch, daß jeweils die Abflußleitung (6; 7; 6'; 7') stirnseitig am Zapfen (4; 5; 4'; 5') mit einem Gewinde ausgestattet ist, in das wechselseitig ein Abschlußstopfen (8; 8') oder ein Anschlußkopf (11; 22; 25; 25') einschraubbar ist, der jeweils mit dem einsteckbaren Rohr (12; 24; 26; 26') der Zuflußleitung (14: 27)

gemeinsam demontierbar ist.

Hierzu 2 Seite(n) Zeichnungen

- Leerseite -

602 039/371

602 039/371

Also published as:

EP0733478 (A1)

EP0733478 (B1)

Rotary cylindrical body with temperature regulation

Patent number:

DE19510797

Publication date:

1996-09-26

Inventor:

MUELLER LUTZ [DE]; KOPPELKAMM GUENTER [DE]

Applicant:

ROLAND MAN DRUCKMASCH [DE]

Classification:

- international:

B41F13/22; B41F31/00; B41F33/00

- european:

B41F13/22

Application number:

DE19951010797 19950324

Priority number(s):

DE19951010797 19950324

Abstract not available for DE19510797 Abstract of corresponding document: **EP0733478**

The rotary body can be a cylinder or roller for an offset rotary press. The coolant goes in and comes out on the same side through a journal through which the inflow line passes in the middle before being connected to a temp. control chamber on the jacket side, coming out in into the outflow line which is an annular fitting in the input line. The two journals (4,5) of the cylinder body (1) can be connected at either side to the coolant connection (11,22) or may have an outwardly sealed lock (8). The inflow line (14) and the coolant line to the temp. control chamber (17) is variable to maintain the guaranteed temp.

Data supplied from the esp@cenet database - Worldwide