VIBRATION AND STRESS ANALYSIS OF SOFT-BONDED SHUTTLE INSULATION TILES

Modal Analysis With Compact Widely-Spaced Stringers

VIBRATION AND STRESS ANALYSIS OF SOFT-BONDED SHUTTLE INSULATION TILES

Modal Analysis With Compact Widely-Spaced Stringers

by

I. U. Ojalvo F. Austin

A. Levy

September 1974

Prepared by

Grumman Aerospace Corporation
Bethpage, N.Y. 11714

for

Langley Research Center
Under Contract NAS 1-10635-17

FOREWORD

The work reported herein was performed by the Grumman Aerospace Corporation under the NASA/Langley Master Agreement and Contract No. NAS 1-10635 for the Development and Implementation of Space Shuttle Structural Dynamics Modeling Technology. The Work Statement of Task Order No. 17, "Development of an Analytical Program to Analyze Reusable Surface Insulation for Shuttle", authorized and specified the tasks to be performed in this study. The period of performance was for 15 months starting in June of 1973.

The overall supervision of programs under the Master Agreement is provided by Mr. E.F. Baird, Master Agreement Program Manager. The Task Order No. 17 Project Manager was Dr. I. U. Ojalvo. Many individuals at Grumman contributed to the work reported here. However, the authors wish to specifically acknowledge the efforts of Mrs. Patricia Ogilvie for greatly assisting in the development of the associated computer program.

ABSTRACT

This report describes an efficient iterative procedure for the vibration and modal stress analysis of Reusable Surface Insulation (RSI) of multi-tiled Space Shuttle panels. The method, which is quite general, is rapidly convergent and highly useful for this application. A user-oriented computer program based upon this procedure and titled RESIST (REusable Surface Insulation Stresses) has been prepared for the analysis of compact, widely spaced, stringer-stiffened panels. RESIST, which uses finite element methods, obtains three diemensional tile stresses in the isolator, arrestor (if any), and RSI materials. Two-dimensional stresses are obtained in the tile coating and the stringer-stiffened primarystructure plate. A special feature of the program is that all the usual detailed finite element grid data is generated internally from a minimum of input data. The program can accommodate tile idealizations with up to 850 nodes (2550 degreesof-freedom) and primary structure idealizations with a maximum of 10,000 degreesof-freedom. The primary structure vibration capability is achieved through the development of a new rapid eigenvalue program named ALARM (Automatic LArge Reduction of Matrices to tridiagonal form).

CONTENTS

Section		Page
I	INTRODUCTION	1-1
II	TECHNICAL APPROACH	2-1
	A. Structural Configuration	2-1
	B. General Solution Procedure	2-1
	C. Structural Idealization	2-4
	Primary Structure	
	Thermal Protection Systems (TPS) Tiles	2-5
	Mass Matrix Tiles	2 - 5
	Automatic Grid Generators	2-11
	D. Approximate Frequencies and Mode Shapes	2-11
	E. Flexible Tile Solutions	2-13
	F. Frequency Update	2-15
	G. Primary-Structure Deflection Update	2-16
III	NUMERICAL RESULTS `	3-1
	A. Tiled Configurations	3 - 1
	B. Untiled Primary Structure	3-10
īv	CONCLUSIONS AND RECOMMENDATIONS	4-1
V	NOMENCLATURE	5 - 1
VI	REFERENCES	6-1
Appendix		
Α	LARGE EIGENVALVE SOLUTION ALGORITHM	A-l
В	USER'S MANUAL FOR RESIST	B-1
С	FINITE ELEMENT TYPES USED IN RESIST	C-1

ILLUSTRATIONS

Figure		Page
1	Typical Design Configuration for Shuttle Thermal Protection System	2 - 2
2	Logic Diagram for Solution Procedure	2-3
3 .	Typical Finite Element Idealization of Shuttle RSI Tile	2 - 6
4	Top View of Lowest Surface of Deck	2-7
5	TPS Z-Coordinates for Computation of Rigid Mass Matrix	2-10
6	Notation for Flexible Tile Solution Approach	2-14
7	Example 1: Sample Problem Used to Demonstrate Numerical Covergence of Iteration Scheme	3-2
8	Example 2: Typical Configuration That Computer Program is Capable of Analyzing	3-4
9	Example 2: Plate Structure Normal Deflections of First Mode	3 - 6
10	Example 2: Normalized First Mode Direct Stresses for Tiles 1 and 2 in Planer Directions as a Function of Spanwise Coordinate	3 - 7
11	Example 2: Normalized First Mode Direct Stresses for Tiles 1 and 2 in Planer Directions as a Function of Spanwise Coordinate	3 - 8
12	Example 2: Normalized First Mode Direct Stresses for Tiles 1 and 2 as a Function of Chordwise Coordinate	3-9
13	RESIST Idealization of Shuttle Panel for Test at Langley	3-11
	TABLES	
1	Fundamental Frequency, Maximum Deflection, and Critical Tile Stresses vs Iteration Number	3 - 3
2 .	Fundamental Frequency and Maximum Primary Structure Deflection as a Function of Iteration Number for Example 2	3 - 5
3	Natural Frequencies for RESIST Idealization of Shuttle Panel for Test at Langley	3-12

I. INTRODUCTION

The integrity of a reusable space shuttle system is strongly dependent upon protecting the orbiting vehicle from reentry heating in a manner which does not require significant refurbishment between missions. The thermal protection system (TPS) selected to fulfill this need is a non-structural reusable surface insulation (RSI) material shaped into individual tiles which cover almost all of the orbiter surface area. Most of the tiles are square in planform and measure 15.3 or 20.4 cm (6 or 8 inches) on a side, with thicknesses which vary roughly between 1.3 and 7.6 cm (0.5 and 3 inches). Since loss of a single tile could be catastrophic, RSI tile stresses must be accurately determined for the anticipated static, dynamic and thermal environments.

Recognizing that a system's natural vibration modes may serve as basic building blocks for predicting the response to acoustic excitation, this report describes a new iterative procedure for accurately determining tile stresses associated with typical shuttle-panel lower frequency modes. The results of this work must be combined with a dynamic response program, to obtain realistic forced response results.

A user-oriented computer program based upon the present method of analysis was developed. The program, which is titled RESIST (for REusable Surface Insulation STresses), is capable of computing undamped vibration mode shapes and frequencies of elastically supported multi-tiled panels and determining associated normalized RSI stresses. Typical numerical results from this computer program are presented. A user's manual to facilitate its implementation is presented as Appendix B.

Because of the complex geometry, nonuniform anisotropic material properties, and detailed three-dimensional stress states, the TPS was idealized by finite element assemblages with up to 2500 degrees of freedom per tile. Since a number of tiles affixed to a given structural panel will, in general, interact with one another, application of the standard direct stiffness method would require simultaneous equation systems involving excessive numbers of unknowns. The present iteration scheme overcomes this problem by treating each tile separately. An important byproduct of this approach is that it avoids conditioning problems associated with combining low-stiffness tile isolation ele-

ments (E \approx 50 psi) with high-stiffness primary structure elements (E \approx 10 x 10⁶ psi). Typical results from the associated computer program reveal a rapid rate of convergence. In addition, a related effort for obtaining tilestresses associated with statically loaded and heated shuttle panels is presented in Reference 1.

II. TECHNICAL APPROACH

A. STRUCTURAL CONFIGURATION

The design configuration for which an analysis procedure is presented is shown in Figure 1. It consists of a stringer-stiffened flat rectangular panel which supports a nonstructural thermal protection system (TPS).

The TPS is composed of a series of rigidized (RSI) tiles. The tiles are undercut on all four sides to accommodate "filler-strips". The purpose of the nonrigidized filler-strip insulation is to prevent severe heat penetration through the gaps between adjacent tiles.

The RSI material is not bonded directly to the primary structure, but to a thin, stiff, strain arrestor plate first, and then, in turn, to a soft strain isolator material. The function of both these items is to help isolate the primary-structure strains from the low-strength RSI tiles, for the wide range of loading environments which the vehicle must sustain.

B. GENERAL SOLUTION PROCEDURE

Because of the detailed complexity of the structural configuration and the dependence of material properties upon temperature, an analysis technique based upon finite element methods was selected. However, direct application of the standard direct stiffness finite element procedure, to obtain accurate three-dimensional tile stresses, would require equation systems involving excessive numbers of unknowns. The reason for this is that many tiles affixed to a given structural panel may interact. Since each one is a three-dimensional body requiring a detailed structural idealization, their simultaneous consideration requires the solution of large systems of equations. To overcome this problem a rapidly convergent iteration scheme, which treats each tile separately, was developed. The logic flow for an efficient computer program which employs this procedure is presented in Figure 2. The basis for the method is that the TPS is nonstructural but its stress levels, which are critical, must be computed. Thus, it becomes possible to neglect the stiffness of the TPS initially, but not its mass, to determine approximate primary structure modal deflections associated with the vibrations of the overall system. initial calculations, the tiles are assumed rigid in shear and thicknessstretching for the purpose of computing their kinetic energies.

Figure 1. Typical Design Configuration for Shuttle Thermal Protection System

Figure 2. Logic Diagram for Solution Procedure

An interative procedure is then performed where, for each step, the primary structure oscillatory modal deflections are imposed individually upon each tile at the tile/primary-structure interface, and the tile deflections and interface boundary loads are obtained. The frequency is then updated by computing a Rayleigh Quotient, using the latest non-rigid tile displacements in addition to the corresponding primary structure displacements. The individual tile boundary loads obtained are then assembled and their reactions applied to the primary structure. New primary structure deflections are obtained and compared to the previous set. This process is repeated until convergence is obtained. By this method each tile is temporarily assumed uncoupled from all others. Although this is not strictly true, the coupling involved is sufficiently weak so as to ensure accurate approximate results and rapid convergence as well.

It should be noted that an important byproduct of the present tile-by-tile solution procedure is that, unlike the direct stiffness method, it avoids possible numerical precision problems associated with directly combining a low finite element stiffness (E = 50 psi) with a high primary structure stiffness element ($E = 10^7$ psi).

C. STRUCTURAL IDEALIZATION

A pictorial representation of the four finite element types incorporated in the RESIST computer program is presented in Appendix C. A brief description of these elements and how each type is used in the overall structural idealization is presented below.

Primary Structure

The primary structure stiffness idealization is based upon two finite elements contained in the Grumman program library described in Ref 2. The panel surface is represented by flat rectangular membrane-bending elements. The elements possess three deflections and two rotations at each node, for a total of 20 independent nodal degrees of freedom per element. The stiffeners are represented by beam elements which bend, stretch and twist. These elements possess 6 degrees of freedom per node, for a total of 12 degrees of freedom per element.

In general, the stiffeners do not attach to the plate nodes at the beam centroids. The stringer attachment points actually used coincide with the plate node which is closest to the centroid of each beam element. The assumption associated with this connection is that the attachment point and beam centroid

move as two points on the same rigid body. Furthermore, the principal axes of the beam cross section may make an arbitrary angle with the plate surface. Refer to Appendix C for further details on the manner of attachment of beam elements to plate nodes.

The translational mass properties of each rectangular plate element are divided equally and lumped at their middle surface node points. The stiffener translation mass properties of each beam element are also divided equally and lumped at their two centroidal nodes. The rotational inertias of the primary structure beam and plate elements are ignored. The assembled structure is rectangular in planform and is assumed to be statically supported with uniform, but different, arbitrary boundary conditions along each edge.

The above idealizations and assumptions appear consistent with the degree of detail required for obtaining accurate dynamic responses of typical aerospace stiffened panel construction.

Thermal Protection System (TPS) Tiles

The basic stiffness element used for the RSI tiles and strain isolator is the anisotropic hexahedron, as defined in References 3 and 4. The version of this element which is being used contains 3 deflection degrees of freedom per node and 8 nodes per element (the more general version which is available permits up to 20 nodes per element). A typical undercut tile with element and node numbering is shown in Figures 3 & 4. The top layer of each tile also has a coating material which is idealized by rectangular membrane elements. The bottom two layers of each tile comprise the strain isolator and strain arrestor, respectively. The undercut regions of each tile are filled with non-rigidized insulation material. This contributes a small amount of mass to the structure but negligible stiffness and negligible effect upon the stresses within the rigidized tile material. Thus, for purposes of computing the tile deflections and stresses, the undercut regions are treated as empty voids.

Mass Matrix Calculations

Two different mass matrices for the TPS must be computed. The first mass matrix required for the TPS "HEX" element and used in Steps 4 and 5 of the logic flow diagram (Figure 2), is based upon lumping 1/8 of each element's mass at each of its 8 corner nodes for x, y and z translational motion. The second type mass matrix, required in Step 2 of Figure 2, is necessary for computing the ap-

Figure 3. Typical Finite Element Idealization of Shuttle RSI Tile

Figure 4. Top View of Lowest Surface of Deck

proximate mode shapes and frequencies (Step 3 of Figure 2) based upon certain assumptions. These assumptions are that the TPS behaves as a series of rigidly attached masses which contribute inertia, but afford no structural stiffness to the primary structure. Analytical details associated with the latter procedure are described as follows.

Let u, v and w be the displacements of a generic TPS point above a corresponding point on the primary structure plate (p) with displacements u_p , v_p and w_p . Then under the assumption of a rigid-in-shear and thickness-stretch TPS we obtain

$$u = u_p - z \frac{\partial w_p}{\partial x}$$

$$v = v_p - z \frac{\partial w_p}{\partial y}$$

$$w = w_p$$

(i.e., normals to the plate middle surface remain normal).

For a section of TPS above a typical plate element, the kinetic energy is given by

$$T = 1/2 \int_{A} \int_{z} \rho(\dot{u}^{2} + \dot{v}^{2} + \dot{w}^{2}) dz dA$$

$$= 1/2 \int_{A} \int_{z} \rho \left\{ \dot{u}_{p}^{2} - z\dot{u}_{p} \frac{\partial \dot{w}_{p}}{\partial x} + z^{2} \left(\frac{\partial \dot{w}_{p}}{\partial x} \right)^{2} + \dot{v}_{p}^{2} - 2z\dot{v}_{p} \frac{\partial \dot{w}_{p}}{\partial y} + z^{2} \left(\frac{\partial \dot{w}_{p}}{\partial y} \right)^{2} + \dot{w}_{p}^{2} \right\} dz dA$$

where A is the planform area surrounding a node.

Defining the integrals in the kinetic energy equation as follows (refer to Figure 5):

$$\int_{z} \rho dz = \sum_{i=1}^{3} \rho_{i} \left(Z_{i+1} - Z_{i} \right) = \overline{\rho h_{1}}$$

$$\int_{z} \rho z dz = \sum_{i=1}^{3} \rho_{i} \left(\frac{Z_{i+1}^{2} - Z_{i}^{2}}{2} \right) = \overline{\rho h_{2}}$$

$$\int_{z} \rho z^{2} dz = \sum_{i=1}^{3} \rho_{i} \left(\frac{Z_{i+1}^{3} - Z_{i}^{3}}{3} \right) = \overline{\rho h_{3}}$$

and computing

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\{ \frac{\partial}{\partial (\mathring{\mathbf{u}}_{\mathbf{p}}, \mathring{\mathbf{v}}_{\mathbf{p}}, \mathring{\mathbf{w}}_{\mathbf{p}}, \frac{\partial \mathbf{x}}{\partial \mathring{\mathbf{w}}_{\mathbf{p}}}, \frac{\partial \mathbf{y}}{\partial \mathring{\mathbf{w}}_{\mathbf{p}}})}{\mathbf{d}t} \right\}$$

then yields for the TPS mass matrix, per plate node

Figure 5. TPS Z-Coordinates for Computation of Rigid Mass Matrix

Automatic Grid Generators

To reduce the quantity of input data significantly, two automatic mesh generating schemes were developed. The first procedure generates the primary structure geometry, node and element numbering system, material properties, and boundary conditions; while the second does the exact same thing for the TPS. Each requires a minimum of information, such as overall dimensions stringer pitch, material properties (as a function of temperature) and TPS material temperatures and element properties from which data may be interpolated (see Appendix B for details).

D. APPROXIMATE FREQUENCIES AND MODE SHAPES

This phase employs the primary-structure mass and stiffness matrices (the latter being in lower triangular decomposed form L, where $K = LL^T$) as well as the rigid-tile approximate mass matrix, just described, to obtain approximate mode shapes and frequencies. Since the primary structure idealizations are quite refined, the number of degrees of freedom will be in the thousands with 10,000 as an upper limit. Thus, an efficient and reliable eigenvalue reduction scheme is required.

The reduction procedure employed was suggested by Crandall (5) and is based upon an algorithm for accommodating the full matrix due to Lanczos (6). However, the basic scheme is numerically unstable. The essential improvements necessary to correct this weakness were made by Ojalvo and Newman (7), who were the first to develop a successful reduction scheme for large scale problems. The work was further streamlined by Newman and Pipano (8) through the use of banded matrix packing techniques and the computation of convenient error bounds on frequency squared.

The present program, which is a synthesis of these works, is called ALARM (Automatic LArge Reduction of Matrices). It is designed to operate efficiently through use of the Grumman COmprehensive Matrix Algebra Procedures (COMAP) interface programs developed by C. Wilkie and F. Nolan.

A mathematical statement of the original vibration problem considered is

$$[K] \{\emptyset\} = \omega^2 [M] \{\emptyset\}$$
 (1)

where n x n stiffness matrices [M] and [K], which are generally highly banded and sparse, may be singular but non-negative, with the only restirction being $n \le 10,000$. The associated reduced eigenvalue problem is symmetric, tridiagonal and of the form (7)

where m is typically several orders of magnitude smaller than n, and $\lambda = 1/\omega^2$.

The algorithm used for obtaining the α_i and θ_i of Eq. (2), as will be shown, is based upon the power method (9). Unlike the power method, however, in which each vector is discarded as a new one is generated, the present procedure retains each vector V_i after orthogonalizing and normalizing it to all previous vectors such that $[V_i]_{\{i\}} = \delta_{ij}$, where δ_{ij} is the Kronecker delta. Thus, the involvement of the original system's lower modes is strengthened. A Rayleigh-Ritz approximation, using the n x m matrix [V] whose columns are the V_i , follows from the substitution of

$$[L]^{T} \{\emptyset\} \equiv [V] \{y\}$$
 (3)

into Eq. (1) where

$$[K] = [L] [L]^{T}$$
 (4)

Premultiplication of the resulting equation by λ [V] [L] ⁻¹ then yields Eq. (2). This result is now solved (in core) by Sturm-Sequencing for the λ 's and power iterations (as described on page 622 of Reference 9) for the eigenvectors.

Experience has shown $^{(7)}$ that over half the number of modes, $\frac{m}{2}$, obtained by this method are "exact" with a sharp drop-off in accuracy somewhere around $\frac{2}{3}$ m; thus, the program usually sets m to 2q+1, where q is the number of desired mcdes. Newman-Pipano error bounds $^{(8)}$ are useful indicators of where a loss of accuracy occurs. The computational steps for obtaining the approximate frequencies and mode shapes are presented in the Appendix A.

E. FLEXIBLE TILE SOLUTIONS

The tiles are originally treated as nonstructural mass items. However, since their modal stress states are desired, it is necessary to eventually account for their flexibility. This is achieved by imposing the primary-structure/TPS interface deflections $\{\delta_B\}_i$ sin ωt , to each tile and computing the associated tile deflections, $\{\delta_A\}_i$ sin ωt , to obtain tile stresses and reactions, $\{-P_B\}$ sin ωt . As described earlier, this is repeatedly done in an iterative manner until convergence is obtained.

Referring to Figure 6, the associated steady-state partitioned matrix equations governing each tile are

$$\begin{bmatrix} K_{AA} - \omega^2 M_{AA} & K_{AB} \\ - - - - - - - - - - - - - \\ K_{BA} & K_{BB} - \omega^2 M_{BB} \end{bmatrix} \begin{cases} \delta_A \\ - \\ \delta_B \end{cases} = \begin{cases} 0 \\ 0 \\ - \\ 0 \end{cases}$$

$$(5)$$

where use has been made of the fact that the tile mass matrix is diagonal.

This equation is then decomposed into

$$[K_{AA} - \omega^2 M_{AA}] \{\delta_A\}_i = -[K_{AB}] \{\delta_B\}_i$$
(6)

and

$$-\mathbb{K}_{BA} \int \left\{ \delta_{A} \right\}_{i} - \left[\mathbb{K}_{BB} - \omega^{2} M_{BB} \right] \left\{ \delta_{B} \right\}_{i} = \left\{ -P_{B} \right\}_{i}$$
(7)

Figure 6. Notation for Flexible Tile Solution Approach

Prior to solution of Eq. (6) for $\{\delta_A^{}\}_i$, it is noted that $[K_{AA}^{} - \omega^2 M_{AA}^{}]$ is not positive definite if any of the eigenvalues, $\lambda_A^{}$, of

$$\lambda_{A} [K_{AA}] \{\delta_{A}\} = [M_{AA}] \{\delta_{A}\}$$

satisfy the equation

$$\lambda_{A} \le \frac{1}{\omega^{2}} \tag{8}$$

where ω is the current (approximate) frequency value.

Since the efficient solution routine (9) that is used for large banded symmetric equations, such as Eq. (2), requires positive definiteness, Eq. (6) is premultiplied by $(K_{AA} - \omega^2 M_{AA})$ to insure this property. Thus, the equation treated to obtain $\{\delta_A\}_i$ is

$$\left[K_{AA} - \omega^2 M_{AA}\right]^2 \left\{\delta_A\right\}_i = \left[K_{AA} - \omega^2 M_{AA}\right] \left\{-K_{AB} \delta_B\right\}_i \tag{9}$$

Following this, Eq. (7) is used to compute $\{-P_B\}_i$. Once convergence of the primary structure deflections has been achieved, the corresponding tile modal stresses are computed from the hexahedron stress recovery equations (3).

F. FREQUENCY UPDATE

Since the modes and frequencies obtained originally ignored the tile stiffness and true displacements, the resulting frequencies are only approximate. To correct these, the frequencies are updated through use of a Rayleigh Quotient calculation in which the latest tile and primary structure deflections are used in the equation

$$\omega_{R}^{2} = \frac{\sum_{i}^{\delta_{T}} \int_{i}^{\delta_{T}} \left[K_{T} \right] \left\{ \delta_{T} \right\}_{i}^{\delta_{T}} + \left[\delta_{ps} \right] \left\{ K_{ps} \right] \left\{ \delta_{ps} \right\}}{\sum_{i}^{\delta_{T}} \int_{i}^{\delta_{T}} \left[K_{T} \right] \left\{ \delta_{T} \right\}_{i}^{\delta_{T}} + \left[\delta_{ps} \right] \left[K_{ps} \right] \left\{ \delta_{ps} \right\}_{i}^{\delta_{T}}}$$
(10)

where the subscripts "T" and "ps" denote tile and primary structure, respectively. Thus, $\{\delta_{ps}\}$ are the latest primary structure deflections, which

originally are the $\{\emptyset\}$ of Eq. (1), $[K_{ps}]$ and $[M_{ps}]$ are the banded stiffness and mass matrices, respectively, of the primary structure and tile. Thus, the $[K_T]$ and $[M_T]$ matrices of Eq. (10) are related to the stiffness and mass matrices of Eq. (5) as follows:

$$[K_{T}] = \begin{bmatrix} K_{AA} & K_{AB} \\ K_{BA} & K_{BB} \end{bmatrix} \qquad [M_{T}] = \begin{bmatrix} M_{AA} & O \\ O & M_{BB} \end{bmatrix}$$

G. PRIMARY-STRUCTURE DEFLECTION UPDATE

The original primary-structure modal deflections are approximate, should be checked and, if necessary, corrected. Employing the latest compatible set of tile and primary-structure deflections, the frequencies are recomputed, to give ω_{Rayleigh} , by the method described in the previous subsection. The steady oscillating tile boundary reactions $\{-P_B\}_i \sin \omega_R t$ are collected for all the tiles and applied to the primary-structure, to yield new modal deflections, as follows:

$$[K_{ps} - \omega_{R}^{2} M_{ps}] - \{\delta_{ps}\} = \{-P_{B}\}$$
 (11)

where $\{-P_B\}$ sin $\omega_R^{}t$ is the assembled load reaction of all the tiles acting upon the primary-structure.

Once again, since the solution routine (2) that is used for large, banded symmetric equations requires the positive-definiteness property, Eq. (11) is premultiplied by [K $_{\rm ps}$ - $\omega_{\rm R}^{2}$ M $_{\rm ps}$] prior to solution for the $\{\delta_{\rm ps}\}$, i.e., the actual equation solved for $\{\delta_{\rm ps}\}$ is:

$$[K_{ps} - \omega_{R}^{2} M_{ps}]^{2} \{\delta_{ps}\} = [K_{ps} - \omega_{R}^{2} M_{ps}] \{-P_{ps}\}$$
 (12)

For consistency, the deflections $\{\delta_{\mbox{\footnotesize{ps}}}\}$ are then normalized such that

$$\lfloor \delta_{ps} \rfloor \{ \delta_{ps} \} = 1$$

prior to comparison to the previous set, to establish convergence. The convergence test employed consists in satisfying

where $\boldsymbol{\varepsilon}$ is an empirically determined positive input quantity.

III. NUMERICAL RESULTS

A. TILED CONFIGURATIONS

To demonstrate the numerical convergence properties of the proposed iteration scheme, two examples are presented here. The material properties and loading conditions used, while not precise in a specific design sense, are representative of the problem parameters the method is intended to accommodate.

Figure 7 shows the configuration, finite element idealization, material properties, and boundary conditions considered for Example 1. The fundamental frequency, largest primary-structure normalized deflection and average stress components for certain critical RSI elements are presented as a function of iteration number in Table 1. Besides revealing a rapid convergence rate, the results presented indicate a high level of accuracy for the first iterate in that the maximum frequency, deflection and $\sigma_{\rm X}$ errors are less than 2%. The errors in $\sigma_{\rm Z}$ were higher for the first iteration (approximately 20%), but these settled down to under 4% in the second iteration.

Similar observations were made for the more realistic shuttle tile configuration of Example 2 shown in Figure 8. This problem consists of three 6 x 6 inch tiles, each of which is two inches thick and has $1 \times 1/2$ inch edge undercuts. The primary structure is a .041 inch aluminum plate with offset stringers spaced half an inch apart. The two opposite shorter boundaries are clamped while the longer ends are free.

The fundamental frequency and peak normalized deflection, as a function of iteration number, are shown in Table 2. The primary-structure mode-shape is plotted in Figure 9 for iterations 1, 2, and 4. The corresponding stresses for iterations 1 and 4 are shown in Figures 10 through 12. Running time for this realistic type problem on an IBM 370 averaged 1 1/3 CPU minutes per tile plus a fixed time of 13 minutes per iteration. Thus, four iterations of the three tiled configuration required approximately 68 CPU minutes.

Figure 7. Example 1: Sample Problem Used to Demonstrate Numerical Convergence of Iteration Scheme

TABLE 1

FUNDAMENTAL FREQUENCY, MAXIMUM DEFLECTION, AND CRITICAL

TILE STRESSES VS. ITERATION NUMBER (Refer to Figure 7)

		MAXIMUM			RSI ST	RESSES		
ITERATION	ယ္	NORMALIZED	σ _x (psi) ELEMEN	T NO. 25	$\sigma_{_{ m Z}}^{}({ m psi})$	ELEMENT	T NO. 21
NO.	(Hz)	DEFLECTION (INCHES)	TILE NO. 1	TILE NO. 2	TILE NO. 3	TILE NO. 1	TILE NO. 2	TILE NO. 3
0	510	0.180	-	-	-	1		-
1	425	0.181	-43	- 88	- 46	22	57	35
2	. 427	0.181	-40	- 86	- 43	22	49	28
3	425	0.181	- 40	- 86	-46	21	48	28
4	425	0.181	-40	- 86	- 46	22	49	28
					·			
		·	<u> </u>					

Figure 8. Example 2: Typical Configuration That Computer Program is Capable of Analyzing

FUNDAMENTAL FREQUENCY AND MAXIMUM PRIMARY STRUCTURE
DEFLECTION AS A FUNCTION OF ITERATION NUMBER FOR
EXAMPLE 2

TABLE 2

ITERATION NUMBER	FUNDAMENTAL FREQUENCY (Hz)	NORMALIZED MAX PRIM STRUCT DEFLECTION (inches)
0	146	0.111
ı	153	0.108
5	153	0.111
3	154	0.110
<u> 1</u>	153	0.110
		,

Figure 9. Example 2: Plate Structure Normal Deflections of First Mode

Figure 10. Example 2: Normalized First Mode Direct Stresses for Tiles 1 and 2 in Planer Directions as a Function of Spanwise Coordinate

Figure 11. Example 2: Normalized First Mode Direct Stresses for Tiles 1 and 2 in Planer Directions as a Function of Spanwise Coordinate

Figure 12. Example 2: Normalized First Mode Direct Stresses for Tiles 1 and 2 as a Function of Chordwise Coordinate

B. UNTILED PRIMARY STRUCTURE

Figure 13a is representative of a typical stiffened untiled "shuttle panel" undergoing dynamic testing at the Langley Research Center. Figure 13b shows the finite element idealization that the RESIST computer program generated for this panel. The numerical results obtained (see Table 3) reveal a tendency for the frequencies to occur in groups of 7. The geometric significance of this clustering is that the modes in each group are related to the physical presence of 7 stringers, which subdivide the panel into 6 bays.

The idealized stringers are assumed to be attached at only a single rivet line. However, in the configuration of Figure 13a, each stringer is attached by two rivet lines to form a closed section torque-tube. Thus, the idealization of Figure 13b is inadequate for predicting the higher cross-stringer modes (i.e. m > 0) when the stiffened plate-pitch, a, is not small compared to the unstiffened plate-pitch, b. Since a is of the order of b for realistic shuttle panels, the idealization capability within RESIST should be extended to accommodate closed-section stringers with narrow spacing in addition to the present capability which treats widely spaced, or open-section, stringers.

Figure 13. RESIST Idealization of Shuttle Panel for Test at Langley

TABLE 3

NATURAL FREQUENCIES FOR RESIST IDEALIZATION OF

SHUTTLE PANEL FOR TEST AT LANGLEY

Mode n*	Shapes	RESIST Finite Element Analysis
1	0	106
1	1.	108
1	2	126
1	3	136
1	4	150
1	5	183
1	6	203
2	0	286
2	1	288
2	2	302
2	3	315
2	Žį	328
2	5	. 343
2	6	346

^{*} n = number of 1/2 sine waves between spanwise supports

^{**} m = number of nodes in cross-stringer direction

IV. CONCLUSIONS AND RECOMMENDATIONS

An iterative procedure for the vibration stress analysis of RSI multitiled shuttle panels has been developed. The method, which is quite general, is rapidly convergent and highly useful for this application.

A user-oriented computer program based upon this procedure and titled RESIST has been coded. RESIST, which uses finite element methods, obtains three dimensional tile stresses in the isolator, arrestor (if any) and RSI materials. Two dimensional stresses are obtained in the tile coating and the stringer-stiffened primary structure plate. A special feature of the program is that all the usual detailed finite element grid data is generated internally from a minimum of input data.

The program may be used in an iterative mode to obtain detailed results. However, for parametric design studies, reasonably accurate results may be obtained by using only one iteration at a significant savings in running time. This is achieved by having the program analyze certain specific tiles of a rultitiled panel only once, while ignoring less critically stressed tiles.

At present the program can accommodate tile idealizations with up to 850 nodes (2,550 degrees-of-freedom) and primary structure idealizations with a maximum of 10,000 degrees-of-freedom. In addition, the tile pattern must begin and end at a structural frame and the isolator material must be isotropic. Should such restrictions, or any similar ones, require alteration as the shuttle TPS design changes, it would appear logical to update RESIST.

To enhance the usefulness of the present work, it should be extended to accommodate closely spaced, closed-cell stiffeners (which are more typical of Space Shuttle panel designs) and to perform acoustic response analyses as well.

V. NOMENCIATURE

Α .	Plate area associated with a given primary-structure node
[A] ·	Matrix used in large eigenvalue algorithm (= [L] [M] [L] T)
[G]	Matrix used in large eigenvalue algorithm
[K]	Stiffness matrix used in large eigenvalue algorithm
$[K_{T}]$	Tile stiffness matrix
[K _{ps}]	Primary structure stiffness matrix
$[\kappa_{AA}], [\kappa_{AB}],$	Matrix partitions of $[K_{\overline{T}}]$
[K _{BA}], [K _{BB}]	
[r]	Lower triangular decomposition of stiffness matrix
[M _{ps}]	Diagonal primary structure mass matrix
[M _{rt}]	Mass matrix associated with rigid tile
$[M_{T}]$	Tile mass matrix
[M]	Approximate tile mass matrix associated with a typical plate
	node
[M]	Mass matrix used in large eigenvalue algorithm
[M _{AA}], [M _{BB}]	Diagonal partition matrices of tile mass matrix
{-P _B }	Reaction loads caused by all tiles acting upon primary structure
{P _B } _i	Load acting upon i th tile caused by primary structure
T	Approximate kinetic energy associated with a typical node
{\bar{v}_i^{(s)}}	Unnormalized and unrefined Lanczos vector
$\{\overline{v}_i\}$	Refined but unnormalized Lanczos vector
$\{V_{\mathbf{i}}\}$	Normalized and refined Lanczos vector

Z _i	Thickness coordinates. Refer to Figure 5.
{b _i }	Vector used in eigenvalue algorithm
$\{g_{\mathbf{i}}\}$	Vector used in eigenvalue algorithm
m	Order of reduced eigenvalue problem
n	Order of unreduced eigenvalue problem
n	Number of dynamic degrees of freedom
q	Number of desired approximate system modes
t	Time
u, v, w	Approximate displacement components of arbitrary point within tile
up, vp, wp	Displacement components of primary structure
x, y, z	Spacial coordinates
{y}, {y _i }	Eigenvectors of reduced eigenvalue problem
y _i m	Last element of $\{y_i^{}\}$
α_{i} , β_{i}	Diagonal and superdiagonal elements of tridiagonal reduced
	eigenvalue matrix
{δ _{ps} }	Primary structure deflections
$\{\delta_A\}_i$, $\{\delta_B\}_i$	Deflections of i^{th} tile at node points not in contact (A) and
	in contact (B) with plate
i Trai	Deflections of i th tile
€	Primary structure deflection convergence parameter
λ	Eigenvalue of reduced problem

$\lambda_{\mathbf{A}}$	Eigenvalue problem associated with "A" degrees-of-freedom of tile
ρ	Mass density
ρn _i	Integrated mass density parameter
(ø _{ps})	Approximate primary structure mode shape
(i) 2	Frequency of large eigenvalue problem
[©] R	Rayleigh Quotient
^w rt.	Approximate rigid-tile frequency

VI. REFERENCES

- 1. Ojalvo, I. U., Levy, A. and Austin, F., "Thermal Stress Analysis of Reusable Insulation for Shuttle", NASA CR-132502, 1974.
- 2. Dwyer, W. J., Emerton, R. K., and Ojalvo, I. U., "An Automated Procedure for the Optimization of Practical Aerospace Structures", Vol. I, AFFDL-TR-70-118, April 1971.
- 3. Armen, H., Levine, H., Pifko, A. and Levy, A. "Nonlinear Analysis of Structures, "NASA CR-2351, 1974.
- 4. Levy, A. "A Three-Dimensional "Variable Node" Isoparametric Solid Element", to be published as a GAC Research report.
- 5. Crandall, S. H.: Engineering Analysis. McGraw-Hill, N. Y., 1956, pp. 106-109.
- 6. Lanczos, C.: An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators., J. Res. Nat. Bur. Stand., Vol. 45, 1950, pp. 225-282.
- 7. Ojalvo, I. U., and Newman, M., "Vibration Modes of Large Structures by an Automatic Matrix-Reduction Method," AIAA J., Vol. 8, No. 7, 1970, pp. 1234-1239.
- 8. Newman, M. and Pipano, A., "Fast Modal Extraction in NASTRAN via the FEER Computer Program", NASA TMX-2893, September 1973, pp. 485-506.
- 9. Wilkinson, J. H., <u>The Algebraic Eigenvalue Problem</u>, Clarendon Press, Oxford, 1965.
- 10. Ogilvie, P., Levy, A., Austin, F., and Ojalvo, I.U., "Programmer's Manual for RESIST (Static and Dynamic REusable Surface Insulation STress Program)," proposed NASA CR, 1974.

APPENDIX A

LARGE EIGENVALUE SOLUTION ALGORITM

The algorithm employed to initially determine the approximate mode shapes and frequencies of the system(7,8) is outlined below:

For
$$\overline{n} \le 7$$
 set $m = \overline{n}$
For $\overline{n} > 7$ set $m = \overline{n}$ if $2q + 1 \ge \overline{n}$

$$m = 2q + 1$$
 if $2q + 1 < \overline{n}$ and $q > 3$

$$m = 7 \text{ if } q \leq 3$$

"Reverse", transpose, and "reverse" [L] to obtain $[L]^{RTR}$ and save result for repeated use in Step 6 (see discussion in Step 6).

- 2. Generate $\{V_0\}$: Use a random number generator for each element. Go to 6.
- 3. Compute $\theta_{i-1} = [\overline{V}_i] \{\overline{V}_i\}$
- 4. Test $i \ge m+1$: if no--continue; if yes--go to 15
- 5. Compute $\{V_i\} = \frac{1}{8_{i-1}} \{\overline{V}_i\}$: This step normalizes the vectors such that

$$[V,] \{V_j\} = 1$$

6. Solve for $\{g_i\}$ and save it if $i \ge 1$. This is the solution vector of $[L]^T \ \{g_i\} = \{V_i\}$

The usual Grumman routine used for solutions of this type equation is titled QBAC (see Reference 10). However, it is not too efficient when there is only one right-hand side, as is our case.

A more efficient procedure is to manipulate [L]^T, which is an upper triangular matrix, into lower triangular form, and then to use QFOR to solve the equation $[L]^{RTR} \{g_i\}^R = \{V_i\}^R$, where $\{g_i\}^R$ and $\{V_i\}^R$ correspond to $\{g_i^{}\}$ and $\{V_i^{}\}$, respectively, each with the order of its elements reversed (e.g., the first element of $\{g_i\}$ is the last element $\{g_i\}^R$ and vice versa). The manipulation of [L] into [L] RTR requires two matrix row reversals (COMAP routine REVERS*) and one transpose (TRAN*) operation in the order REVERS-TRAN -REVERS. The most time consuming routine of these three is TRAN, which is even slower than QFOR*. However, since it is only necessary to compute [L] RTR once (see Step 1), each solution for {g,}, by the present procedure, requires far less running time than by the direct method (e.g., 1/30th the CPU time for a 3,000 DOF system).

- 7. Compute $\{b_i\}$ from $\{b_i\} = [M] \{g_i\}$. This is actually accomplished by forming $(\lfloor g_i \rfloor, \lfloor M \rfloor)^T$ which is considerably more efficient using the COMAP associated subroutines.
- 8. Solve for $\{A\ V_i\}$ from [L] $\{A\ V_i\}=\{b_i\}$ using QFOR.

 Note that $[A]=[L]^{-1}$ [M] $[L]^{-T}$. Thus $\{A\ V_i\}$ is one power iteration of V_i and so accentuates its lower modal content.
- 9. Test i: if i = 0, set $\overline{V}_1 = A V_0$ and return to step 3. if $i \neq 0$, continue.

^{*}See Reference 10 for descriptions of these subroutines.

10. Compute $\alpha_i = [V_i]$ {A V_i } and step up i by 1.

This step computes the Rayleigh Quotient associated with the vector $\{V_i\}$.

- 11. For i = 2, compute $\left\{ \overline{V}_{2}^{(1)} \right\} = \left\{ A \ V_{1} \right\} \alpha_{1} \left\{ V_{1} \right\}$
- 12. For $i \ge 3$, compute $\left\{\overline{V}_{1}^{(1)}\right\} = \left\{A \ V_{i-1}\right\} \alpha_{i-1} \left\{V_{i-1}\right\} \beta_{i-2} \left\{V_{i-2}\right\}$ and set s = 1.

This step theoretically (7) orthogonalizes (\overline{V}_i) .

However, any slight numerical inprecision tends to bias the resulting vestors unfavorably through the present iterative generation scheme. The suggested correction to this numerical stability problem is contained in the following two steps.

- 13. Test $s > \overline{s}$: if no, continue; if yes, set $\{V_i\} = \{\overline{V}_i\}$ and return to 3.
- 14. Replace $\left\{\overline{V}_{i}^{(s)}\right\}$ by $\left\{\overline{V}_{i}^{(s)}\right\}$ $\left(\lfloor V_{j} \rfloor, \left\{\overline{V}_{i}^{(s)}\right\}\right)$ $\left\{V_{j}^{(s)}\right\}$ for j=1Continue correcting $\left\{V_{i}^{(s)}\right\}$ by repeating the above step for $j=2, 3, \ldots, i-1$. Step up s by 1 and return to 13.
- 15. Solve for the lowest 3/4^{ths} (rounded to an integer) of the frequencies of Eq. 2 using Sturm sequencing (9).
- 16. Solve for the eigenvectors associated with the highest "q" eigenvalues $\lambda\,,$ each normalized such that

$$[y][y] = 1$$

- 17. Compute and print $w_i = \lambda_i^{-1/2}$ and $f_i = \frac{w_i}{2\pi}$
- 18. Compute $\frac{\beta_{m} y_{i}^{m}}{\lambda_{i}}$, where y_{i}^{m} is the mth (last) component of $\{y_{i}\}$.

 This term is an error bound (9) on

$$\begin{vmatrix} 2 \\ \frac{w_i}{2} \\ -1 \\ w_i \\ exact \end{vmatrix}$$

19. Compute [G] $\{y_i\}$ for i=1,2,---, q where the columns of [G] are the vectors $\{g_i\}$. These are the vibration mode shapes $\{\emptyset_i\}$ associated with the lower q eigenvalues.

These are then normalized such that

$$\emptyset_i \setminus \{\emptyset_i\} = 1$$

APPENDIX B

USER'S MANUAL FOR

RE*S*I*ST

(STATIC AND DYNAMIC REUSABLE SURFACE INSULATION STRESS PROGRAM)

A. INTRODUCTION

This Appendix describes the use of a finite element based structural computer program for determining the static response and natural vibrations of TPS protected shuttle panels. The program is titled "RESIST" for static and dynamic REusable Surface Insulation Stresses. The logic flor for RESIST is presented in Figure B-1.

The basis for the method is that the TPS is nonstructural but its stress levels, which are critical, must be computed. Thus, it becomes possible to neglect the stiffness of the TPS initially, but not its mass in the vibration, to determine approximate primary structure deflections.

An iterative procedure is then performed where, for each step, the primary structure deflections are imposed individually upon each tile at the tile/primary-structure interface, and the tile deflections and interface boundary loads are obtained. For the vibration option, the frequency is updated by computing a Rayleigh Quotient, using the latest non-rigid tile displacements in addition to the corresponding primary structure displacements. The individual tile boundary loads obtained are then assembled and their reactions are applied to the primary structure. New Primary structure deflections are obtained and compared to the previous set. This process is repeated until convergence is obtained.

B. PROGRAM LIMITATIONS

The usual assumptions for programs based upon the linear elastic finite element method are applicable to RESIST. However, to facilitate the preparation of program input, a number of simplifications regarding the configuration and loadings have been made. Thus, the generation of a voluminous quantity of finite element input data has been greatly reduced by inclusion of a series of data preprocessing subroutines within RESIST. The restrictions upon which these subroutines are based follows:

- 1. Boundary conditions and edge loadings are assumed uniform along the four rectangular plate edges defined by x=0, L_x and y=0, L_y .
- 2. The primary structure plate temperature and properties are all uniform.

Figure B-1 Flow Chart for RSI Stress Analysis Program "Resist"

- 3. The stringers are equally spaced with temperatures and properties which are all uniform.
- 4. All tiles are geometrically identical as are their temperature distributions and uniform pressure loadings.
- 5. The boundary conditions must be selected such that the primary structure is statically stable.

The remaining limitations are primarily concerned with the program's capacity and should be adhered to by the user. These limitations are as follows:

- 6. Maximum number of nodes in a tile = 850.
- 7. Maximum number of finite elements running in any one direction in a tile = 20.
- 8. Maximum number of nodes in primary structure = 2500.
- Maximum number of primary structure nodes along x or y direction = 1,000.
- 10. Maximum number of degrees of freedom in primary structure $= \begin{cases}
 10,000 & \text{for vibration option.} \\
 15,000 & \text{for statics option.}
 \end{cases}$
- 11. Maximum number of natural mode shapes = 50.
- 12. Maximum number of stringers = 15.
- 13. To avoid a singular stiffness matrix, I_{Z} , and sin β must not both be zero for a given stringer.

A violation of restrictions 6-13, inclusive, will cause the program to stop and an appropriate warning message to appear.

To insure symmetry of solutions for panels which are symmetric with regard to stringer locations about $y = L_y/2$, care should be taken with the input data to see that the plate nodes associated with the stringers are symmetric about $y = L_y/2$. Thus, the number of primary structure finite elements in the y direction should not be odd if the number of panel stringers is even.

C. INPUT INSTRUCTIONS

A description of the card input for the IBM 370 and CDC 6600 versions of this program is presented in this section.

In addition to the first two input cards which contain literal data, such as special program title and date, in columns 1 through 80, inclusive; there are six groups of input cards containing the following information:

- Group A Instructions regarding the type of problem being performed, number of iteratious desired, and type of output information
- Group B Details of the geometric configuration and finite element mesh of the primary structure and tiles. (Card B.4 is omitted if there are no tiles)
- Group C Defines the primary structure and RSI temperature dependent material properties. If there is no TPS, cards C.3 through C.11 are omitted.
- Group D Specifies the primary structure boundary conditions
- Group E Describes the mechanical loading upon the primary structure as well as its temperature. These cards are omitted when the vibration option is used
- Group F Defines the RSI temperature distribution. These cards are omitted if there is no TPS.

A. PROGRAM OPTIONS AND CONTROL - Sheet 1 of 2

DESCRIPTION	l in col. 5 denotes that a statics problem is being treated. Skip cols. 6-25 in such cases	2 in col. 5 denotes that a natural vibration problem is being treated.	Number of desired mode shapes (50 is the maximum permitted).	Number of reorthogonalizations for eigenvalue algorithm. A min of 2 and a max.	of 5 is suggested with 3 as an adequate compromise for most problems. The run should be reposted with greater values for s or N if the frequency error	bound of a desired mode is greater than 1%.	Vibration mode number for which tile modes are desired,	tions	Convergence parameter. Maximum primary structure deflection or rotation difference between iterations divided by magnitude of largest element.	O in col. 50 indicates that primary structure stresses and strains are not required.	l in col. 50 indicates that only midplate strains and stresses of primary structure are required.	2 in col. 50 indicates that only top of plate strains and stresses of primary structure are required.	3 in col. 50 indicates that only bottom of plate strains and stresses of primary structure are required.	4 in col. 50 indicates that only mid and top of plate strains and stresses of primary structure are required.	5 in col. 50 indicates that only <u>mid and bottom</u> of plate strains and stresses of primary structure are required.	6 in col. 50 indicates that only top and bottom of plate strains and stresses of primary structure are required.	7 in col. 50 indicates that top, bottom, and mid plate strains and stresses of primary structure are required.	Overhung rotatory mass inertia ϵ , occiated with each stringer. Used if plate overhange x = 0 and x = $L_{\rm x}$ boundaries.	
UNITS	1		1	ı			ı	,	{ in. or rad.	•								lb-in-	ວ ນ ຊ
SYMBOLS			Q Q	lα			ı .	imax	ʹω	1				-				ı	
FORMAT	15		15	15			I5	15	E10.0	I5								E10.0	
cor(s)	1-5		6-10	16-20			21-25	26-30	31-40	76-50							 -	51-60	
CARD(S)	A.1																		

A. PROGRAM OPTIONS AND CONTROL - Sheet 2 of 2

																	τ-		_	_
DESCRIPTION	O in col. 5 indicates that tile stresses are not required. l in col. 5 indicates that tile stresses are to be computed after each iteration is performed.	2 in col. 5 indicates that tile stresses are to be computed only after last iteration is performed or only after convergence is obtained.	O in col. 10 if primary structure stresses and strains were not requested in column 50 of Card A.l.	l in col. 10 indicates that primary structure stresses and strains are required after each iteration.	2 in col. 10 indicates that primary structure stresses and strains are required only after last iteration or, only after convergence.	O in col. 15 indicates no tiles on the primary structure. Skip card $A.3^*$	l in col. 15 indicates that there are tiles on the primary structure.	l in col. 20 indicates tile node map printout desired. O = no node map printout.	<pre>l in col. 25 indicates tile element map printout desired. 0 = no element map printout.</pre>	l in col. 30 indicates tile nodal coordinate, temp. and nodes per element printout.	O in col. 30 indicates suppression of this printout.	1 in col. 35 indicates printout of element stiffness matrices. $0 = no$ element stiffness matrices.	l in col. 40 indicates printout of assembled stiffness matrices and ALARM reorthog. info.	O in col. 40 indicates suppression of this printout.	I in col. 45 indicates printout of unit no., file no., and matrix storage info. for program debugging.	O in col. 45 indicates suppression of this printout.	e stress states are desired.	User may specifically request up to 20 tile stress states (see Figure A.2 for tile numbering scheme). A zero in col. 4 indicates that stress	esired.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
UNITS	ı		1			ı			ı	1		1	ı		l ·		1	1 1		s
SYMBOLS						1		ı	. •	ı		1	,				•	1 1		ر ا ا ا
FORMAT	15	· · · · ·	15			15		15	15	15		15	I5	-	15		71	古古		, t
cor(s)	1-5		. 07-9			11-15		16-20	21-25	26-30		31-35	36-40		41-45		1-4,	5-8, 9-12,	etc.	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CARD(S)	A.2																A.3			· *

If there are no tiles then \overline{n}_x and \overline{n}_y , together with n_{B2} and n_{D2} , are still required since they determine the primary structure finite element grid. In analyzing panels without tiles, leave out cards B.4, C.3 through C.10 and all "F" cards.

B. GEOMETRIC CONFIGURATION - Sheet 1 of 2 (See Figure B-2)

			-						<u> </u>		i			-1
YMBOLS UNITS DESCRIPTION	Panel dimension	Panel dimension	Panel thickness	Position of first stringer centroid. If there are no stringers, set $Y_1 > L_1$, and skip to next card.	Distance of stringer centroid below plate middle surface	Discrete stiffener spacing	Stringer cross sectional area	Stiffener principal mom, of inertia about y' axis	Stiffener principal mom, of inertia about z' axis	Stiffener twisting stiffness geometric parameter	Angle between z and z' axis measured positive clockwise along x	Integer number of tiles between $x = 0$ and $L *$	Integer number of tiles between y = 0 and L *	and \bar{n} , together with n_{BZ} and n_{DZ} , are still required since they determine
UNITS	inches	inches	inches	inches	inches	inches	in.	in.	in.	in.	Degrees	Į.	1	ny, togeth
N	1 ×	ī,	, t	Y ₁	Z S	Y S	A S	I,	$\mathbf{I}_{\mathbf{z}}$,	,x	හ ක	ia X	l s	then n and
FORMAT	2E10.0		>	8E10.0								110	110	If there are no tiles then \overline{n}_x
cor(s)	1-10	11-20	21-30	1-10	11-20	21-30	31-40	41-50	51-60	02-19	71-80	1-10	11-20	there are
CARD(S)	B.1			B.2	-							B.3		-

the primary structure finite element grid. In analyzing panels without tiles, leave out cards $B.h, \, C.3$

through C.10 and all "F" cards.

B. GEOMETRIC CONFIGURATION - Sheet 2 of 2 (See Figure B-3)

DESCRIPTION	Undercut RSI tile thickness. Leave blank if tile is brick shaped or if there are no tiles.	Tile undercut dimension, Leave blank if tile is brick shaped.	Tile undercut dimension or height of brick shaped tile.	Strain arrestor plate (SAP) thickness. May replace with layer of isolator, RSI or bond material if no SAP.	Strain isolator thickness (SIP)	Coating thickness. Leave blank if no tile coating.	Number of elements along B_1 . Leave blank if tile is brick shaped or if there are no tiles.	Number of elements along B_2 .	Number of elements along D ₂ .	Number of elements along T-T $_2$. Leave blank if tile is brick shaped.	Number of elements along \mathbb{T}_2 .	
UNITS	inches	inches	inches	inches	inches	inches	•	ı	ı		ı	
SYMBOLS	E	L B	72	t A	$^{ m t}_{ m I}$	t c	$^{ m n}_{ m B_1}$	n _B 2	n _{D2}	n	r. S.	
FORMAT	6E10.0					_	15				>	
cor(s)	1-10	11-20	21-30	31-40	41-50	51-60	1-5	6-10	11-15	16-20	21-25	
CARD (S)	B,4						B.5					

NOTE: SUBSCRIPTED SYMBOLS BEGINNING WITH "n" ARE THE NUMBER OF ELEMENTS WHICH SUBDIVIDE THE INDICATED SPAN. THE OTHER SYMBOLS ARE DIMENSIONS.

C. MATERIAL PROPERTIES - Sheet 1 of 2 (See Figure B-4)

1-10	CARD (S)	(S)TOO	FORMAT	SYMBOLS	SIIMO	DESCRIPTION
11-20 21-30 4p 1b/jn3 Weight density for plate 21-30 1-10 4E10.0 Es 1b/jn3 Weight density for plate Coefficient of thermal expansion for plate 1-10 1-10 6E10.0 Ex 11-20 1-10 6E10.0 Ex 1-10	C.1	1-10	4E10.0	EI O	psi	
21-30 31-40 4E10.0 Bs 21-30 1-10 4E10.0 Bs 21-30 1-10 4E10.0 Ex 1b/in ³ Weight density for plate Coefficient of thermal expansion for plate 1-20 31-40 1-20 Ex 1b/in ³ Weight density for stringer Coefficient of thermal expansion for plate 1-20 21-30 21-30 Ex 1-10 6E10.0 Ex 1-10 6E10.0 Ex 1-10 1-10 6E10.0 Ex 1-10 1-10 1-10 6E10.0 Ex 1-10 1-		11-20		, p	ı	Poisson's ratio for plate
1-10		21-30		, ç	lb/in ³	Weight density for plate
1-10 μ Elo.0 Es psi Stringer modulus of elasticity (enternal large) ν_s		31-40	•	ď,	or-1	Coefficient of thermal expansion for plate
11-20 21-30 31-40 $\frac{\sqrt{s}}{\alpha_S}$ $\frac{1}{\alpha_{F}-1}$ $\frac{\sqrt{s}}{\alpha_S}$ $\frac{1}{\alpha_F-1}$ Coefficient of thermal expansion for stringer 1-10 $\frac{1}{\alpha_S}$ $\frac{1}{\alpha_S}$ $\frac{\alpha_S}{\alpha_F}$ $\frac{\alpha_F-1}{\alpha_F}$ Coefficient of thermal expansion for stringer 11-20 $\frac{1}{\alpha_S}$ $\frac{\alpha_S}{\alpha_S}$ $\frac{\alpha_F-1}{\alpha_F}$ Coefficient of thermal expansion for stringer Arrestor x direction orthotropic stiffn arrestor and a see Figure A.4 1-10 $\frac{\alpha_S}{\alpha_S}$ α_S	c.2	01-1	0.0L34	म ऽ	psi	elasticity (en
21-30 31-40 $\frac{1}{\alpha_S}$ $$		11-20		s N	ı	no
1-10 6E10.0 Ex psi Arrestor x direction orthotropic stiffn 1 21-40 2 psi Arrestor x direction orthotropic stiffn 1 21-30 2 2 psi Arrestor y direction orthotropic stiffn 2 31-40 2 2 psi Arrestor z direction orthotropic stiffn 2 41-50 2 2 psi Arrestor z direction orthotropic stiffn 2 2 See Figure A. ⁴ See Figure A. ⁴ See Figure A. ⁴ 4 See F		21-30		×	1b/in ³	Weight density for stringer
1-10 6E10.0 E _X psi Arrestor x direction orthotropic stiffn $E_{\rm Z}$ psi Arrestor y direction orthotropic stiffn $E_{\rm Z}$ psi Arrestor z direction orthotropic stiffn $E_{\rm Z}$ psi Arrestor z direction orthotropic stiffn $V_{\rm XY}$ - See Figure A.4 See Figur		31-40	_	o's	$^{ m o_F}$ -1	of
11-20 Ey psi Arrestor y direction orthotropic stiffn $21-30$ Ez psi Arrestor z direction orthotropic stiffn $31-40$ v_{xy} - See Figure A.4 $41-50$ v_{zx} - See Figure A.4 $51-60$ v_{zx} - See Figure A.4 v_{zx} - See	G.3	1-10	6E10.0	м Х	psi	direction orthotropic
21-30 31-40 v_{xy} - See Figure A.4 v_{1} 51-60 v_{xy} - See Figure A.4 See F		11-20		Ey	psi	Arrestor y direction orthotropic stiffness
31-40		21-30		E Z	psi	13
h_1 -50 V_{yz} - See Figure A. h 1-10 T_{E10} .0 G_{xy} psi See Figure A. h 11-20 G_{yz} psi See Figure A. h 21-30 G_{zx} psi See Figure A. h 11-50 V_A psi See Figure A. h 12-50 V_A psi See Figure A. h 13-50 V_A psi See Figure A. h 14-50 V_A psi See Figure A. h 15-60 V_A psi See Figure A. h 16-60 V_A psi See Figure A. h 17-60 V_A psi See Figure A. h 18-60 V_A psi		31-40		٧×۲	ı	Figure
51-60 $\sqrt{2x}$ - See Figure A.4 1-10 $7E10.0$ G_{xy} psi See Figure A.4 21-20 G_{yz} psi See Figure A.4 21-30 G_{zx} psi See Figure A.4 31-40 γ_A $1b/in^3$ Weight density for arrestor 41-50 α_{AX} o_F^{-1} X coefficient of thermal expansion for α_{AX} o_F^{-1} Y coefficient of thermal expansion for α_{AX} o_F^{-1} Z coefficient of thermal expansion for α_{AX} o_F^{-1} Z coefficient of thermal expansion for		41-50		νyz	ı	Figure
1-10 7 ± 10.0 G_{XY} psi See Figure A.4 21-20 G_{ZX} psi See Figure A.4 21-30 G_{ZX} psi See Figure A.4 31-40 Y_A $1b/in^3$ Weight density for arrestor 41-50 α_{AX} α_{P}^{-1} X coefficient of thermal expansion for α_{AX} α_{P}^{-1} Y coefficient of thermal expansion for α_{AX} α_{P}^{-1} Z coefficient of thermal expansion for α_{AX} α_{P}^{-1} Z coefficient of thermal expansion for	_	21-60	-	VZX	. 1	Figure
Gyz psi See Figure A. $^{\mu}$ Gzx psi See Figure A. $^{\mu}$ γ_{A} lb/in ³ Weight density for arrestor α_{AX} o _F ⁻¹ X coefficient of thermal expansion for α_{AX} o _F ⁻¹ Y coefficient of thermal expansion for α_{AZ} o _F ⁻¹ Z coefficient of thermal expansion for	C.4	1-10	7E10.0	Gxy	psi	Figure
GZX psi See Figure A.4 $\gamma_{\rm A} \qquad {\rm 1b/in}^3 \qquad {\rm Weight \ density \ for \ arrestor}$ $\alpha_{\rm AX} \qquad {\rm o_F}^{-1} \qquad {\rm X \ coefficient \ of \ thermal \ expansion \ for}$ $\alpha_{\rm AX} \qquad {\rm o_F}^{-1} \qquad {\rm Y \ coefficient \ of \ thermal \ expansion \ for}$ $\alpha_{\rm AZ} \qquad {\rm o_F}^{-1} \qquad {\rm Z \ coefficient \ of \ thermal \ expansion \ for}$		11-20		Gyz	psi	
$\gamma_{\rm A}$ $1{\rm b/in}^3$ Weight density for arrestor $\alpha_{\rm AX}$ ${\rm o_F}^{-1}$ X coefficient of thermal expansion for $\alpha_{\rm AX}$ ${\rm o_F}^{-1}$ Y coefficient of thermal expansion for $\alpha_{\rm AZ}$ ${\rm o_F}^{-1}$ Z coefficient of thermal expansion for		21-30		Gzx	psi	See Figure A.4
$\alpha_{\rm AX}$ oF-1 X coefficient of thermal expansion for $\alpha_{\rm AY}$ oF-1 Y coefficient of thermal expansion for $\alpha_{\rm AZ}$ oF-1 Z coefficient of thermal expansion for		31-40		γ	1b/in ³	Weight density for arrestor
$\alpha_{\rm AY}$ o $_{\rm F}^{-1}$ Y coefficient of thermal expansion for $\alpha_{\rm AZ}$ o $_{\rm F}^{-1}$ Z coefficient of thermal expansion for		41-50		 αΑχ	٠ ا ا	X coefficient of thermal expansion for arrestor
$\alpha_{ m AZ}$ o. Z coefficient of thermal expansion for		21-60		$\alpha_{ m AY}$	- F	coefficient of thermal expansion
-		02-19	-	$\alpha_{ m AZ}$	o _F -1	coefficient of thermal expansion

Figure B-4 Orthotropic Stress-Strain Law for 3-Dimensional Elements

C. MATERIAL PROPERTIES - Sheet 2 of 2

UNITS	Isolator modulus of elasticity	Poisson's ratio for isolator (Note:max $v_{\rm I}$ =.499)	Weight density for isolator	Coefficient of thermal expansion for isolator	Weight density of RSI material	RSI coefficient of thermal expansion in y direction $({}^{\circ}F^{-1})$ divided by coefficient of thermal expansion	in x direction $(lpha_{f x})$	RSI coeffient of thermal expansion ratio in z vs. x direction	
	psi		1b/in ³	OF 1	16/in ³	· · · ;		1	
SYMBOLS	I I	, I	٦×	$^{ m I}_{ m \infty}$, R	$^{lpha_{ m y}/lpha_{ m x}}$		$\alpha^{\rm z}/\alpha^{\rm x}$	
COL(S) FORMAT	o.ota4			->	E10.0	E10.0		E10.0	
(S)TOD	1-10	11-20	21-30	31-40	1-10	11-20	-	21-30	-
CARD(S)	c.5		٠.		9.0				

C. TEMPERATURE DEPENDENT MATERIAL PROPERTIES, sheet 1 of 2

ENTROTTE DEFENDENT WAIEALAD FROFERITES, SHEET I OI 2	DESCRIPTION	Number of entry sets in the following table of \mathbf{E}_R vs. temperature ($^{\mathrm{OF}}$)	Temperature (absolute, not relative) corresponding to following value of $\boldsymbol{E}_{\boldsymbol{R}}$	Value of $\mathrm{E_{R}}$ (RSI modulus - refer to equations below*) associated with previous temp.	Repeat above set of data as often as necessary, μ sets to a card.	Program uses closest 3 data pts. for 2nd order Langrangian interpolation of properties if element temp, is within data specified temp, range and at least 3 data-points are input. Program uses closest data-point properties for element temp, outside range. Uniform property value is used for any given property if only one value	of that property is specified. Thus, program requires a minimum of 1 or 3 value(s) per property for proper execution.
שימע מאטיאי	UNITS	ı	O _F	psi	OF.		
	SYMBOLS	l	H	E _R (T ₁)	e to.		
	FORMAT	15	E10.0	E10.0	Elo.o etc.		·
	cor(s)	1-5	1-10	11-20	31-30 etc.		į
	CARD(S)	C.7.1	G. 8.1			· · · · · · · · · · · · · · · · · · ·	

C. TEMPERATURE DEPENDENT MATERIAL PROPERTIES - Sheet 2 of 2

				
	DESCRIPTION	Repeat above two card sets for E' $_{ m R}$ *	Repeat above card sets for remaining RSI properties in following order: $ \begin{array}{ll} G_R', \ \nu_R, \ \nu' \\ \end{array}_X^* \\ \text{where } \alpha_X \\ \end{array}$ where α_X = RSI coefficient of thermal expansion in x direction.	Repeat above card sets for coating properties in following order: $\mathbf{E_c}, \mathbf{v_c}, \mathbf{c}'$
	UNITS			
	SYMBOLS			
•	COL(S) FORMAT			
	cor(s)			
	CARD(S)	C.7.2 & C.8.2	C.7.3 & C.8.3 through C.7.6 & C.7.6 & C.7.6	C.9.1 & C.10.1 through C.9.3 &

* For RSI (refer to Figure B-4)

$$E_{x} = E_{y} = E_{R}$$

$$G_{xy} = G_{yx} = \frac{R}{2(1 + v_{R})}$$

$$E_{z} = E'_{R}$$

$$V_{xy} = v_{yx} = v_{R}$$

$$V_{xz} = v_{yz} = v_{R}$$

$$V_{xz} = v_{yz} = v_{R}$$

D. BOUNDARY CONDITIONS - Sheet 2 of 3 (See Figure B-5)

DESCRIPTION	O denotes edge is not held from in-plane deflections 1 denotes edge is held from in-plane deflections 2 denotes edge is not held for y deflection, but is held for x deflection (PARTIALLY HELD) 4 denotes edge is not held for x deflection, but is held for y deflection (PARTIALLY HELD) 3 denotes edge is flexibly held for in-plane deflections NOTE: For non-vibratory heated or cooled primary structure problems, refer to special in-	structions on bottom of page In-plane x force per unit length on an edge caused by in-plane x direction unit deflection In-plane x force per unit length on an edge caused by in-plane y direction unit deflection or In-plane y force per unit length on an edge caused by in-plane x direction unit deflection In-plane y force per unit length on an edge caused by in-plane y force per unit length on an edge caused by in-plane y direction unit deflection
	O denotes edge is not held from in-pland l denotes edge is held from in-plane d 2 denotes edge is not held for y defle held for x deflection (PARTIALLY HELD) held for y deflection (PARTIALLY HELD) and for y deflection (PARTIALLY HELD) 3 denotes edge is flexibly held for in flections NOTE: For non-vibratory heated or coostructure problems, refer to sp	structions on bottom of page In-plane x force per unit length on an by in-plane x direction unit deflection In-plane x force per unit length on an by in-plane y direction unit deflection by in-plane x direction unit deflection by in-plane x direction unit deflection by in-plane y force per unit length on an by in-plane y force per unit length on an by in-plane y direction unit deflection
UNITS	1	1b/in ² 1b/in ²
SYMBOLS		K uu K uv or Vu Vv
COL(S) FORMAT	Ā	O・6 日
cor(s)		32-40
CARD(S)	D.l-D-4, (continued)	

Figure B-5 Primary Stucture Boundary Condition Notation

D. BOUNDARY CONDITIONS - Sheet 1 of 3 (See Figure B-5)

D.1, D.2, These are four simi- lar bound- ary condi- tion cards 3-11 E9.0 K A denotes the x=0 edge of the plate (CARD I denotes the y=1, edge of the plate (CARD I denotes the y=1, edge of the plate (CARD I denotes the y=1, edge of the plate (CARD I denotes the y=1, edge of the plate (CARD I not tion cards) 1 indicates that the plate edge is free to rotate out of the z=0 plane (FREE) 2 indicates that the plate edge is not free or rotate out of the z=0 plane (CAMFED) 2 indicates that the plate edge is not free but is free to rotate out of the z=0 plane 3-11 E9.0 K 1 indicates that the plate edge is flexibly regard to out of plane motion 2 indicates that the plate edge is flexibly regard to out of plane motion 3 indicates that the plate edge is flexibly regard to out of plane motion 12-20 K M 1b/in Out-of-plane moment per unit edge-length can of plane unit edge-length	CARD(S)	(೮)ಗು	FORMAT	SYMBOLS	UNITS	DESCRIPTION
2 A1 3-11 E9.0 K who lb/in or K hey lb/in 12-20 K hey K hey 1b/in K hey 1b/in K hey 1b.		Н	A1	ı	1	A denotes the x=0 edge of the plate (CARD D.1)
2 A1	These are four simi-					B denotes the $x=L_x$ edge of the plate (CARD D.2) C denotes the y=0 edge of the plate (CARD D.3) D denotes the y= L_y edge of the plate (CARD D.4)
E9.0 K ww E9.0 K	ary condi- tion cards	α	A1	1	1	O indicates that the plate edge is free to deflect and rotate out of the z=O plane (FREE)
E9.0 K ww K wθ or K θw K θ K H H H H H H H H H H H H H H H H						l indicates that the plate edge is not free to deflect or rotate out of the z=0 plane (CLAMPED)
E9.0 K ww K h or K θ h K θ h Ib/in Ib/in Ir K θ h Ib/in Ir K θ H K H Ib.						2 indicates that the plate edge is not free to deflect but is free to rotate out of the z=0 plane (PINNED)
E9.0 K _{ww} 1b/in K _{we} 0x K _e						3 indicates that the plate edge is flexibly held with regard to out of plane motion
K _{wθ} lb/in or K _{θw} lb/in Ib.		3-11	E9.0	K ww	lb/in	Out-of-plane force per unit edge-length caused by out- of-plane unit deflection
K _{θw} K _{θθ} 1b.		12-20		K we or	lb/in	Ħ ·
K G lb.				K 9w		Out-of-plane moment per unit edge-length caused by out-of-plane unit deflection
or prane unit rotation		21-29		К 99	1b.	Out-of-plane moment per unit edge-length caused by out-of plane unit rotation

• BOUNDARY CONDITIONS - Sheet 1 of 3 (See Figure B-5)

			<u> </u>					
DESCRIPTION	O denotes stringer edge not held for $\frac{1}{2}$ Note $\frac{1}{2}$ is not a in-plane rotation $\binom{1}{2}$ degree of freedom plane rotation $\binom{1}{2} = 0$ $\frac{1}{2}$ denotes stringer edge flexibly held present at a parfor in-plane rotation		In-plane stringer edge moment produced by unit rotation $\boldsymbol{\theta}_{\mathbf{Z}}$	O denotes stringer edge free to twist $(heta_{ extbf{x}})$	l denotes stringer edge not free to twist $(\theta_{_{\mathbf{X}}}=0)$	3 denotes stringer edge flexibly held against twist	Twist moment on end of stringer for a unit twist-	rotation
UNITS	t		in-lb.	ı			in-lb.	
SYMBOLS			K s $\theta_{\mathbf{z}}$	ı			Кв	×
FORMAT	A1		E9.0	Al		,	E9.0	
cor(s)	09		61-69 E9.0	7.1			72-80	·
CARD(S)	Add'l info. for cards Dl and D2 only.	•						

temperature other than the reference temperature are required to permit free in-plane thermal straining; e.g.: Special Instructions for running a thermal stress problem when the primary structure is at a uniform

- Permit the x=0 boundary to move freely or be elastically held in-plane
- boundary to move freely in the y direction but not the x direction if free, or be elastically held if elastically held along x=0. Permit the $x=L_{X}$
- Permit the y=0 boundary to move freely or be elastically held in-plane.
- Permit the y=L, boundary to move freely in the x direction but not the y direction if free, or be elastically held if elastically held along y=0.

See pages B-53 and B-57 for a typical example of the above instructions.

E. PRIMARY STRUCTURE LOADING (See Figure B-6)

DESCRIPTION	Uniform, direct cover-plate running load in x direction on x = 0 edge(see Figure 7)	Uniform, direct cover-plate running load in y dir- ection on y = 0 edge (see Figure 7)	Uniform, shearing cover-plate running load on $x = 0$ edge (see Figure 7)	Uniform, shearing cover-plate running load on $v=0$ edge (see Figure 7)	Uniform external normal pressure acting upon tiles	Tension force acting upon centroid of each stiffener at $\mathbf{x} = 0$	Out-of-plane bending moment acting upon each stiffener	Shear load acting upon each stiffener	te, lecodu odu de P de P de P de ee ee mpe	option is used
UNITS	lb/in	lb/in	lb/in	1b/in	įsď	1b	in-1b	1.b		vibration o
SYMBOLS	N X	N y	N XX	$_{ m yx}^{ m N}$	P	ĘH	×	Λ	a LV	and E.2 if v
FORMAT	E10.0							> -	10.0	E F
cor(s)	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	1-10	Leave out cards
CARD(S)	т ° п									Note: Lea

F. TILE TEMPERATURE DISTRIBUTIONS - Sheet 1 of 2

Each tile is assumed to have the same temperature distribution. There are 3 temperature distribuin terms of absolute temperature scales, a reference temperature (which is also input) is added to the tion options, each of which is considered separately below. Tile temperature differences, rather than absolute tile temperatures, are required for each of these options (since thermal strains depend upon temperature differences). However, since temperature-dependent material property data are presented differences to obtain absolute temperatures for internally computing material properties.

DESCRIPTION	0 in col.5 of this card indicates no thermal static	loading effects will be considered. But material	properties used in forming the TPS stiffness properties	will be based upon the specified temperature distribution.	l in col. 5 indicates that thermal static loading will	be considered in the analysis. In such cases, refer to	bottom of following Page for special instructions re-	garding boundary condition cards (D.1 through D.4).	l in col. 10 indicates that each tile is at the same	uniform temperature.	2 in col. 5 indicates that each tile temperature	distribution is governed by Lagrangian interpolation	formulas.	3 in col. 5 indicates that each tile temperature	distribution is input by consecutive finite element	node-temperature differences from the reference	temperature.	Panel reference temperature (added to temp. differences	when obtaining mat'l. properties)
SIINO	ı					-			ı								•	O Et	
SYMBOLS	ş			_														${ m T}_{ m Ref}$	
FORMAT	ΙΊ								TI									E10.0	
cor(s)	5								10									11-20	
CARD(S)	F.1									-									•

F. TILE TEMPERATURE DISTRIBUTIONS - Sheet 2 of 2

.

:1

	L				
CARD(S)	cor(s)	FORMAT	SYMBOLS	UNITS	DESCRIPTION
		•	Ü	UNIFORM TEMPERATURE	PERATURE OPTION (1)
F. S.	1-10	E10-1	ΔTα	D.	Uniform temperature difference from $ extsf{T}_{ ext{Ref}}$
			or LAGRANGI	AN INTERPO	or LAGRANGIAN INTERPOLATION TEMPERATURE OPTION (2)
F.2.1	1-5	215	•	•	Number of x coordinates through which temperature
		·			differences will be interpolated.
	6-10		1	ı	Order of Lagrangian interpolation polynominal in x
					direction. Must be at lease 1 less than number of
	-				coords given in col. 5.
F.3.1	1-10	0.013	×	inches	The local x coordinates used in the x direction temper-
			 		ature difference interpolation. Eight to a card until
	1				all are accounted for.
F.2.2- 3.2				`	Repeat card types F.2.1 and F.3.1 for the y coordinates
F.2.3-3.3					Repeat card types F.2.1 and F.3.1 for the z coordinates
			Or ELL	ELEMENT NODE	TEMPERATURE OPTION (3)
ਟ•ਸ	1-10	E10.0	$^{\Delta T_{ m R}}$	ОН	Temperature differences above reference temperatures,
	11-20				node by node, in consecutive order.
	etc.				Seven temperature differences to a card until all nodes
		T Things years	شهر شرورت ش		are accounted for.
			d 4		Cols. 71-80 of each card are reserved for user's card
					identification.

D. DESCRIPTION OF OUTPUT

Output from a typical run of the RESIST computer program is explained below in outline form. References in parentheses refer to pages in this Appendix.

1. Program <u>title</u> and date indicating latest update of program version which was run.

INPUT INFORMATION

- 2. <u>Listing of input cards</u>, the first two of which are the title assigned to any given run by the user.
- 3. User selected input options are listed.
- 4. Plate, stringer and tile geometry and specification of finite element grids for primary structure and tiles (pp. B.8 B.11).
- 5. Plate, stringer, strain isolator and arrestor material properties (p. B.12). Note, if there is no strain arrestor, RSI or isolator material properties may be used for the arrestor. If this is done, the thickness dimension of the usual isolator or RSI should be appropriately reduced to compensate for this addition.
- 6. Temperature-dependent <u>RSI material property</u> data used for generating curves used internally by program to compute RSI average finite element properties.
- 7. Plate and stringer boundary conditions (pp. B.16-B.21).
- 8. Applied primary structure static mechanical and thermal loading if not a vibration problem.
- 9. RSI temperature distribution input data. Used for property data (item 6 above) and thermal loading if a statics problem.

OUTPUT INFORMATION

10. Map showing typical tiles three dimensional finite element ordering, by layers. Top, or first layer also corresponds to two-dimensional tile coating elements as well.

- 11. <u>Map</u> showing ordering of a typical tiles finite element <u>nodes</u>
 . by layers.
- 12. <u>Position and temperatures</u> for a typical <u>tile</u> in a local coordinate system (reference Figures 3.a &.b).
- 13. Global geometry of primary structure nodes and plate nodal degree-of-freedom numbering D_x , D_y and D_z refer to nodal deflections, and R_x , R_y and R_z are the nodal rotations. Nodes with no degrees-of-freedom are used to define the stringer centroids and axes.
- 14.a. Statics Option: Primary structure nodal deflections by iteration number. Nodes with the same x coordinate are grouped together.

 These groups are separated with dashed lines.
- 14.b. Vibration Option: Mode numbers, approximate frequencies and corresponding modal error bound (which should be less than 2% to be a reliable approximate mode). This is followed by the primary structure mode shapes with a similar nodal deflection format as for the Statics Option.
- 15. If requested by the user, the computed <u>convergence parameter</u> is printed out along with the input quantity it was tested against. This is done for each iteration after the first for the Static Option. The primary structure degree-of-freedom with the largest change from the previous iteration is also identified.
- 16. Tile nodal displacements by tile and iteration number. For a vibration option, this calculation and the subsequent ones are performed only for the user-specified vibration mode.
- 17. Three dimensional tile stresses and strains for the bottom two layers of elements by element number. These quantities are computed at each element's 8 Gauss integration points. Gauss point stresses are believed to be more accurate than nodal values and provide more detail than simply the element's average stresses.

- 18. Three dimensional element average stresses and strains (by tile and iteration number).
- 19. Two-dimensional element average coating stresses. Coating element numbers correspond to three dimensional element numbering directly below them.
- 20.a. Statics Option: Repeat of items 16-19 for each tile. Repeat of item 14.a and 15 for each iteration.
- 20.b. Vibrations Option: Computation of Rayleigh Quotient (OMEGA SQUARED) if all tiles have been treated. Repeat of items 16-19 for each iteration. Repeat of items 14.b, 15 and Rayleigh Quotient until convergence or last iteration is performed.
- 21. Plate element stresses and strains for mid and/or top and/or bottom surfaces. This computation is done after each iteration if requested by the user. Otherwise, it is computed only after convergence or the last iteration is performed.

E. SAMPLE PROBLEMS

Output for three sample problems, one vibration case and two statics cases, are presented in the remaining pages of this report. Only portions of the output for each problem are shown. However, the pages presented are representative of the types of information, and their respective formats, which the RESIST Program can deliver.

STATIC AND DYNAMI

STRESSES

INSUL AT I ON

SURFACE

PFUSABLE

:								·
RRRRRRRR			55555555				88888888	TTTTTTTTTTT
RRRRRRRRRR			. \$55555555		11111111		888888888	TTTTTTTTTT
RPR RRR			88888		111		\$\$\$\$\$	111
RRR ROB			8888		111		5555	TTT
989 9889			88888		111		\$5555	111
RRRRARPRORP	FEFFEFF	#	\$5555	# #	111	#	55555	111
RRRRRRRRR		# #	\$8888	#	-	#	88888	111
RPR RRP			88888		111		55555	111
PPP RRP			8888		111		. \$588	TTT
ชย์ช ชยช			\$8888		111		88888	111
889 868			\$\$\$\$\$\$\$\$\$\$		1111111		8888888888	111
868			55555555		TITITITI		33333333	111

99999999999999999

> VERSION DATE AUGUST 31, 1974

PREPARED BY

1. DJALVO, P. NGILVIE, A. LEVY AND F. AUSTIN

OF GRUMMAN AEROSPACE CORPORATION

FOR

THE LANGLEY RESEARCH CENTER

B-30

PROGRAM LISTING OF INPUT DATA CARDS

123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 .01 0.0 VIBRATION OF THREE (3) SIMPLE TILES. .05 .005 .16667 .05 1,16667 .01 6.E3 60.F3 64. 60.E3 6.53 32.E3 . 33334 .01 ċ SAMPLE PROBLEM ! 60.E3 20.E3 90. . 6 1.0 .005 70. . !

NO. REARTHOGONALIZATIONS =

NO. DESTRED MODES =

5.0000E-02

CONVEPGENCE PARAMETER =

ċ OVERHUNG ROTATORY MASS INERTIA ASSOCIATED WITH FACH STRINGER =

MAXIMUM NO. LIEPATIONS =

FREE VIBRATION MODES

PRIMARY STRUCTURE STRESSES PRESENTED AFTER LAST ITERATION AT PLATE MID, TOP AND BOTTOM SURFACES

THES OF PAINTRY STAUCTURE

AND STRESSES PRESENTED AFTER FACE TERATION

Challiga WAP SCON BILL

Gadinoso ova iNskšis sili

CECHIOSE SELVATOROUS SOUN SILL

Sauldive Spinadits indepid integ ice ob

SUBJECT ASSERBLIS CELEBORAS WATOR OF

SHILL like the Subbanib willowing

PLATE	LX = 1.80000F 01	LY = 3.3330E-01	TP = 7.50000E-01		
E 1	Y1 = 1.00000E 00	0.0 = 25	YS = 0.0	AS = 0.0	And designed to the section of the s
	0.0 = 'YY	0.0 = 77	JXr = 0.0	BETA S = 0.0	
TILES	NXO = 3	I = NAN		The state of the s	
:	T = 0.0	0.0 = 18	T2 = 1.16567E 00	. 01	
	TA = 1.65670F-01	n	TC = 0.0		
A) I ÚK	N91 = 0	NS. ≈ 10	ND2 = 1		***************************************
:	NT1 = 0	7 = CIN			
			:		
		B d U d d T V I A B I V I V	RITES		
		l !	t t t		
91,ATF	50 = 000000 = 64	10-400000 t = 4 0N	GAMMA P = 1.00000F-02	02 AIPHAP = 0.0	÷ .
SCHONIATS	F.S. = 0.0	NU S = 0.0	GAMMA S = 0.0	ALPHA P = 0.0	
ei ladenv	£ ζ = - ξ « ΟΟΛΑΘΕ Ο Δ	56 ∃00000€9 = Kb	FZ = 6.00000F	03	•
UR RSI	VI XY = 5,00000E-01	10-300000°1 = ZA NN	NI ZX = 1.03000E-02	.02	:
	20 3(0000°2 = 7×0)	GY7 = 7.2000F 04	S7x = 3.2000€	96	
	SAMMA A = 5.00309F-03				
	Albha x = 0.0	. O*0 = A PHdle .	ALPHA Z = 0.0		
1800 4 1 32	. To acocce of a rai	MIT = 4.9300E-01	GAMMA T = 3.50030F-32	02 ALPHA 1 = .0.0	
158	5448A 2 = 5.03030F-03				1
,	ka Vmalv	U*O = XE VHDHV / AB VHDHV	AL	ALPHA RZ / ALPHA RX = 0.0	:

! !			e e e e e e e e e e e e e e e e e e e	TEMPERATURE DEPENDENT MATERIAL PROPERTIES	ENDENT MATERIA	L PROPERTIES		V 1846 1977 W 1850 1977 1977 1978 1978 1978 1978 1978 1978	
4		TEMPERATURE PROPERTY	PROPERTY	TEMPERATURE	PROPERTY	TEMPERATURE	PROPERTY	TEMPERATURE	PROPERTY
	FR	ALL 6.000E 04	6.000E 04						
<u>.</u>	ER	ALL	6.000E 33	:					
-	. 85	176	3.200E 04						
-	NIJ P	ערר	5-000E-01						
-	NU R.	ALL	1.000E-02				!	:	
-	ALPHA P	461	0.0				•		
	, Ju	41.	0.0					:	
-	O O	ALI	U*0		,		ì		
-	ALOHA C	ALI	0.0						

		FREE	FREE	
	STRINGERS	FREE	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
OUNDARY CONDITIONS	PLATE IN PLANE	FREE	U HFLD, V FREF	יישני
	PLATE OUT OF PLANE	PINNED	PINNED	ų u
:	wı			

V HELD. U FREE FOEF

NO STATIC THERMAL LOADING

UNIFUPM TEMPERATURE DPTION

SURFACE 1			38 210 212 214 216 218 220	
- 1		1		
-		!	212	
RFACE			210	•
<u> </u>	- i		5.08	, 1
			506	
		:	204	
			202	
		1. 1984 and 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	200	

ELEMENT LAYER 1 RSI

B-39

90

œ

82

=

LAYER 9

							tumate contract a para vibra.			:			i	i	í			:	
						the process of the state of the state of	;	:	٠.			î							
de contrate de contrate de la contrate de		a and strategy to a segment that the second		r en area de la composition de						. 3	•								
- Barbara and a second of the	23	25	27 29	29 31	31	33	35	37	39	41	45	47	51	.51 53	53 55	55	7.00	59	
S	24 26	9	28 30	2	2	9	င်ထ	8 Ç	· 6 &	V. 4		4.8 0.2	50 52	<i>V</i> . 4	4 1	5 0 86		0 %	6. 4
E N 0.0 E	2	2	3	6			, m m	w 4	- 44	44	4.4		<i>.</i>	ι ν ικ΄ .			ሌ ¢		
7 1 1	2 4	4.0	\$	10	10	12	16	16 18	-18 -20	20	24	26 28	30	32	32	3.5 3.5	r. r. 8. 8.	39	6.5
	1 3	mis	5.	6	9 11	11 13	13	15	17	19 21	23	25 27	23	31	- K. K.	W W 13	35	7£ 95	39
TILE MESH ELEMENT		2		4	in.			«	σ.	c	. 11	- 12	r	*		91	. 21	<u> </u>	C
ELE			!			:				-		-	-	~		~·	-		-

LOCAL

HODE

-	0.0	0.0	0.0	O	0
2	0.0	3.33330F-01	0.0)	0.0
к.	6.00000E-01	0.0	0.0		0.0
4	1:	3.33330E-01			0.0
ſ			:		0.0
9		3.33330E-01	0.0		0.0
7		c . c	0.0	•	0.0
oc	:	3.333305-01	0.0		0.0
6		0.0	0.0		0.0
0	2.40000E 30 .	3.333306-01	0.0		0.0
-		· 0°0	0.0	:	0.0
۷.		3.333305-01	0.0		0.0
3	Ċ	0.0	0.0		0.0
4		3.33330F-01	0.0	:	0.0
ĸ.		J•0	0.0		0.0
·c	C	3.33330F-01	0.0		
_	C	٠	0.0		0.0
m	Ċ	٠	0.0		0.0
Cr.	6 30000t	0.0	U•C		0.0
c	5,40000€ 00	4.33336-01	0.0		0.0
	.6.00000F 00	0.0	C•0		0.0
٥.	6.00000F Ja	3.333CF-01	٥• ٥		0.0
~	0 * 0	0.0	5.00000F-02		0.0
.•	0.0	7.33330F-01	5.00000F-02		0.0
16.	6. 00000F-01	0.0	5.00000E-02		0.0
	10-400000-9	3.33330F-01	5.00000F-02		0.0
	0r 3000001	٥•٠	5.000000-02		Ú.0
•	1.200005 00	3,333GF-01	5.00000E-02		0.0
~	1.800006 33	ر• د	5.000000-02		0.0
_		3.333305-01	5.00000E-02		0.0
_			5.003005-02		0.0
•		3.3330F-01	5.00000F-02		0.0
-	•	0.0	. 5.00000E-02		0.0
		3,33230F-01	5.00000F-02		0.0
	•	C • C	5.0000nF=02		0.0
		3,333505-01	5.00000F=02		٠ <u>٠</u>
		0.0	5. 00000 = 02		C •
•••		3. 4334 Jk - (1)	5.000305-02		0.0
	4. FULL CO.	0.3	5.000000000000000000000000000000000000		
			00 = 100 00 0 · s		
	5 400000 30	3.113105-01	5. 300000 5		0
_		_	5-100001-03		0.0
	6. 300 355 30	2.33330F-01			0.0
	0.0	_	2.16670F-01	-	0.0
	0.0	3.333306-01	2.15670E-01		0.0
	4.0000001	5.1	2.166775-01		0.0
~	1 0-36coc6 • 9	10-302826.6	2.165705-01		0.0
_	1.200307.00	0°L	2.16670F-01		0.0
_		TO-JUber's	7-166705-01		0.0

0 0	82	0	0 (0	- C		o	0	0	0	0	0	0	0	0 9	o (0	9 0	> (5 (> 0	> c	-	o c	0	0	0	0	C	0	0	0	0	0 0	-		0	C	ဝ	c	0	0	0	0	0 (> •	> 6	> 0	,
F R E E	<u>م</u>	4	~ ;	12	2 5	7,5	30	34	39	43	48	25	21	19	99	2;	C ;	2 3		20 C			701	2 -	112	120	124	129			142	141		156	(6)	691	174	178	181	181	192	196	201	20.5	210	51.	219	223	
F 0	×	3	9 ;			2 6	20	60	38	4.5	41	21	26	09		6	+ 6	2 0	r r	× 6	<u>}</u>	9 5	101		7	611	123	178	132	137	141	146		155 155	757	16.4	173	177	182	186	161	195	200	204	503	517	8 6	227	
E S (70	0	0 :	2:	<u>*</u>	73	28	35	37	14	46	20	52	26	40	9 6	2;	- 6	÷ à	ę e	1,6	ر د د	100	000	<u> </u>	118	122	127	131	136	140	145	149	154	8 C T	7 4	172	176	181	185	1 30	161	661	203	α (C: (217	117	726	
G R E	λG	2	0	د	<u>م</u>	9 0	77	0	36	0	45	C	54	0 ;	6	<u>-</u>	2 9	· .	. '	- 8	<u></u>	- 8	, c	ο α -	C (1	117	0	12.5	0	135	c	144	C	153	0 (1	707	171	c	180	0	199	C	198	C	707	c ;	912	225	
) E	X		in i	30 r	1.7	22	26	31	35	40	7 7	64	23	58	79	ē i	Z	c c	ο i	n (òòò	7.0	אל רכו	101	112	116		125	130	134	139	143		152	7 ()	1991		175	179	184	198	193	101	202	206	117	215	224	
	-		-	:										-		_	-						-									-		٠						-									
1		!		:			!			:																																							
T U R E	Y	0.0	0.0	0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		5.0			•	0.0		0	0.0	0.0	ر د	0.0	0.0	₹. 0	0.0	ن. ر • ر	e 6			c S	c.	٥.٢	0.0	0.0	0.0	0.0	0.0	ر. م	c (C 6	o c	
YSTRU	= ⊔ ≎ >	0.0	3.333300E-01	3 3335005 01	0-0	3.33300F-01	0.0	3.333300F-01	0.0	3.333300F-01	0.0	3.333300E-01	0.0	3.333300E-01	0.0	3.333300E-01	0.0	10-10000000000000000000000000000000000	(1.1)	3.3.4.3.00F-01	0.00	0 0 0	3.33300F-01		3.33300F-01	0.0	3.33300F-01	٠, ٠	10-300 2226	ر • د	3.33300F-01		10-5008286	ויס שמרבבר ב	10-40-66	3.111200F-01		3.333300F-01	C. 0	3.333303F-01	0.0	3.3333006-01	0.0	10-JC0-188.	0.0	10-36021666	0.0	3, 3, 3, 3, 4, 9, 00 F = 0.1 0 a b	
▼ E a a	<u>.</u>	0.0	0.0	6 - 3000000 - 01	1.2000005 00	200005	1. 799999E 00	79999E 0	2.40000E 00	300000			3666665	165566	1666661	1000000	00 366667.4	1000000	400000t*	20 300000 S		0C 3666666.	1655555	_	3656561		7.194999# JA	ng 3655551.4	00 ⊿66566 ι °ε	00 3656565°s	C	, 4,999998 JA	00 000000°	16 30000001		-	1.140000001	1. 140001-1	1.20000g 01	1.2000000 01	1.260000F 01	1.7600000 01	1. 300005r.1	10 3000000			1.440000F 01	1.5000000 01	
	NODE	: !-	2 r	o .7	· ·	. 40	L	8	σ	10	-	75	£ 1.	5 1.	<u></u>	<u> </u>		2 2	, ,	0.5	10		26	25	5.6	14	23	62	3.0	3.1	32	٤.	7.	· · ·	6 F	. (64	4:0	4.1	Ç	43	**	4.5	٠,٠	r (n (7 C	5.1	

FREG. SORD. ERROR BOUND (PERCENT)	7.609798E-14	2.610086F-13	4.1913725-06	9.051610E-06	1.4974265-01	9.145379E-02	4.056820F 00	7_0667926_01
FREQUENCY (HERIZ)	5.100483F 02	1.745266F 03	3.6011175 03	3.819991F 03	6.281301F 03	7.165570F 03	9.982004F 03	1,221037F 04
FREQUENCY (RAD / SEC)	3.204729F 03	1.096593E 04	2.2626485 04	2.400171F 04	3.946659E 04	4.502263F 04	5.271878F Ó4	7.672000F 04
MODE	1	^	~	. 4	ις.	9	7	œ

ORDER OF UNREDUCED PROBLEM = 27 NUMBER OF DESTRED WODES = 5 NUMBER OF REORTHOGONALIZATIONS =

	R2	•	-02	02	- 20	- 02 - 02		= 0.5 = 0.5	02 02 03	= = = = = = = = = = = = = = = = = = =	E-02	E-02		E-03		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	286215E-04
***	RY	-3.161962E-02 -3.162404E-02	-3.14493E-02	-3.092045E-02	-3.005014E-02 -3.005387E-02	-2.883692E-02 -2.884041E-02	2_729557E_02 _2.729934E_02	-2.54503E-02	-2.331475E-02 -2.331808E-02	-2.091386E-02 -2.091752E-02	-1.828836E-02 -1.829213F-02	-1.548051E-02 -1.548352E-02	-1.25230E-02 -1.252472E-02	440	-6.268606F-03 -6.269876F-03	-3.038223F-03 -3.039023F-03	2.286215E-04
	RX	1.429838E-06 -1.400851E-06	-2.142981E-05 3.746948E-05	-4.241391E-05 7.399049E-05	-6.385770E-05 1.099205E-04	-8.621626E-05 1.444587E-04	-1.059153E-04 1.770441E-04	-1.229580F-04 2.091781F-04	-1.404429E-04 2.392771F-04	-1.547958F-04 2.659557E-04	-1.638929F-04 2.906900E-04	-1.707078E-04 3.108693F-04	-1.776290F-04 -2.271538E-04	-1.823899F-04 3.403833E-04	-1.862148F-04 3.443910E-04	-1.877103E-04 3.546302E-04	-1.8928875-04
110N NO. 0	20	1	1.893834F-02 1.894102F-02	3.76652E-02 3.767179E-02	597516E 598381E	7.366067E-02 7.367039E-02	9.051722F-02 9.052908E-02	1.063711E-01	1.210190F-01 1.210190F-01	1.342834E-01 1.343020E-01	1.460547F-01 1.460758F-01	1.561939F-01 1.562172E-01	1.646270F-01 1.646270F-01	1.711945E-01 1.712228F-01	1.7591296-01	1.7873535-01	1,7955186-01
1 ITERA	λū	4.9733456-08	. 4,	4.864	4.731215E	4	4.307981E	4.024713F	3.657092E-08	3.3221045-09	2.925146F-08	494605F	2.042313E	1.5705845-03	_ 	116	9.2274835-13
ARY STRUCTURE MODE SHAPE	XÚ		-2.104755E-07 -2.104363E-07		-1.578119E-07 -1.577289E-07	-1.323493E-07 -1.322388E-07	-1.0773746-07	-6.423490E-08 -8.406460E-08	-6.193574F-08 -4.175992E-08	#	-2.174171F-08 -2.152723F-0a	-4.124917E-09 -3.875034F-09	1.17a755F-98	2,5321761-38 2,6153156-08	2. 514961-09 3. 9:15126-09	4.4.10.210.0.4 4.4.10.210.0.4	80-322-269-5
PRIMARY	NODE	7 2 7	l	v & 1	,	10	111	1 1 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		o C	22		2 5 5 1 2 6 5 1	# C C	, c	,

The second secon

	15 17 19 16 18 20
<u>0</u>	12
TILE	15
WITH	13
NODES ASSOCIATED WITH TILE	11
ES AS	9
20	~ 8
RIMARY STRUCTURE	3 5 7 9 11 4 6 8 10 12
RIMARY	E 4
7	

1.	
i	
١.	
NO.	
5	
_	
Ī	
01	
-	
1	
1	
ļ	
-	
=	
15	
<u>.</u>	
12.	
١.	
20	
Z	
NO.	
III.	
-	
-	
-	
١.,	
≊	
FOR	
ļĸ	
S FOR T	
,,,	
5	
·~	
=	
ш	
-	
SPLAC	
ā	
S	
-	
0	
_	
S	
۵	
-	

1017 411.	- M - N - N - N - N - N - N - N - N - N		4E-02	SE-02	E-0	F-0	Ŀ	E+0	E-0	7E-02	•	0	Ł	L.	w	L	L.	L L	Ĭ	<u>.</u>	Į,	-	9	F-0	6-1	E-0	E-0	E-0	0-1	E-0	6-0	ç	u u) C	. C	0 -	1C-39	L	1E-01	Į.	į.	Į,	1	Ĺ	1E-03	1E-02	6-1	j.	20.00
1	O. O. O. O.	•	393834	.894101	766651	. 767178	.597615	.598380	66067	1038	.051722	52908	3567	063711	210015	0179	2834	343019	460547	460758	61938	62171	239879	489114	955017	.978315	.800200	.920600	.616984	36225	.376122	971768.	4738	344690	767515	209767	5119	343793	351723	65297	5137	77212	537972	116726	4439	2,010839	41647	30646	459797
1	45555E	16155	.0856189	.4051055E-	3861E-0	.7746428E-0	-3993940E-	220163F-0	3.2376542E-0	172007F-0	.9761304E-0	.6391527c-0	49493F-0	.8441793F-O	.2703050E-0	.9728899E-0	81714E-0	.9733385E-0	.1489074F-0	- 0900875E-	.4040360E-0	.1657560F-0	-3310964E-	.7381082E-0	.09620735	16506	. 8301746F	.4311233F-0	134756-0	00238195-0	302840E-0	94626E-0	2185425F	3656565656	05235-0	612875F-0	315547F	29541E-0	.0691841E-0	.5477647F-0	.6531830F-	0-18688988-0	.7313705E-n	.534097	.4800652E-0	8307F-	0-36889696	794745-	3.4779799F ~04
V COMBONIANT	57588	59249E-0	92056E-0	-36	95350E-0	1.1596903E-	1.1268958E-0	270355E-0	1.08139745-0	815281E-0	235939E-	1.02373595-0	.5439628F-0	.5453411E-0	8.7430837F-	443367E-0	7.8427382E-0	7.8441054E-0	6.85815145	.8595633F-0	5.80519445-	043194F-0	47564F	194820=-0	908F-0	3-96-3E-0	317F-0	6-1019	1966E-0	327485-	1125-0	52105-0	1.25454965-02	0-3988909	9976256-	376225-0	12902976-	81725F-	909	4045.8	1241371	1580693	200.	5742	171	-5377430E-	-18753376-	1:299	G_122596-02
2000		2	•	4	ŗ.	(r)	7	œ	6	10	11	12	۲.	۷,	5	91	17	s :	-	7.7				24			2.3						71. 47 73. M			۷. د	7	39	6.0	4.1	4.2	۲,	77	납	94	r. 3	ന: •*	•	ر.د

:

the same of the same states

, XZ			6789E 0	.6698E 0	0	.6685E	6807E 0	6717E 0	.6839E 0		.6533E	-6645E		.6744E	.6542E	ш	533E	5752E		1.6188E 01	274E	6405F	•	.6192F	6278E	410E	512E		1.5616F 01	654E	955E	1.6024F 01	618E	26E	957F	5026E 0		1.4849E 01	4808E	5291F 0	5298F	4850E 0	809E	5291E	1.5300E 01
ZX		1.6162	-1.1118E-01	9381E-	2088E-	7388	2343E-	-34990*	3371E-		21 79E-	2994E-	3.3251E-03.	6417E-	1105E-	1920E-	3737E-	15		5.5905E-01	23 78 E-	-36901	0	4923E-	1397	6045E-	5029E-		0E-	.2903E-0	16-0	2E-0	5E-	7.1847E-01	15-	2E-		8.6363E-01	-327C	-365 E	960E-0	693 E-0	552F-0	102E-0	
SSES		8.80165-04	0059E-	-0522E-	1.0808E-	Ш	4156E	5049E-	6328		5363E-	7633E	-3.2834E-06	2.2154E	8976F	6293E	4361E	7781E-0		:	1-01715-0	-1.5320	-2.3954	4.4718E-	3.0674E-	-4.7055F-	-6.1104F-		5.8366F-0	4.2046E-0	-4.2068E-0	-2.0530F-0	1.1650F-0	1.1914F-0	-5.1494F-3	-4.9875E-0		9.1163E-	9.04535-	-9:5026F-	-2.0213E-	2.0526F-	2.1829E-	-6.4047E-	-5-10225-
STRESSES 22	er d'en a bigen d'amont en comme amont en de la comp de	2.8029F 01	2.3860E	3.9298E	3.4934E	2.8	2.4363E	3.9965E	3.5603E		1.6847E	1.3152E 0	2.2009E 01	30661	7278E	3614E	624E	8635E		1.11276	7.695AF	1.3648F	1.0073	1.1756F	8.3925	1.4461E	1.09548		8.1839E	4.45	9.3979E	5.8604E	9.0530F	5.4154E	1.0404F	6.9915E		7.2467F	2.3179F	7.4130E	3.2099F	8.3259F	3.5978	8.6030E	4.5955E
>	The real state of the state of	2.6883	2.2876F	3.7696E	3.3504E	2.7399E	2.3395E	3.8385E	3.41945		9165E	2613F	2.1109E 01	7246F	96659	3077E	1734E	7901E		1.0681F	7.3810E	1.3088F	9.64	1.13006	8.0672F	1.3898	1.05286		7.8658E	4.2473	9.0158F	5.6104E	3.7054F	5.2115F	1.3307E	6.72		5.9647F	2.2185F	7.1217F	3.9677F	8.0143E	3.468RE	8.2815E	4.4283
×			2.2899E 01			i				2	174E 0	.262IE 0	.1127E 0	.7262F 0	71E 0	0 366	1757F	24E					9.6336E 00						7.8194F 00	.1944	.975BE	.5634F	.1375F		.0039E	.7561F		6.9006E 00	1631	.0614F	9643E	.0533F	.50	3200E	.45
	MICKO CO	Y L						:	: :	NUMBER									NUMBER	•					٠			NIJMBED									NUMBER					•			
7	THURS IN		3.9434F-02	Ö	ó	0	.0566E-0	0-399g	1.0566E-02	<u>u</u>	Ö	ç	3.9434F-02	Ó	.0566E-0	ç	1.05655-02	ç	FLEMENT	3.94346-02	3.94345-02	3.9434F-02	345-0	9	0-390	1.05665-02	Ç	u.	0-358	3.94346-02	Ŷ	ç	ို	\sim	\sim	1.05665-02	7.0	0-34E+6	0-34546.	0-14846.	0-	.0566E-0	.0555F-0	.0546F-0	1.05865-02
LOGAL COORDINATES Y		2.6289E-01	7.0441E-02	2.6289E-01	7.04416-02	2.6289E-01	7.0441E-02	2.5289F-01	• 044		2.6287E-01	7.0441F-02	2.6289E-01	7.0441E-02	2.6289E-01	7.34415-02	2.42696-01	7.0441E-02			_		4415-	2.62896-01	7.04415-02	~	.0441E		2.52616-01	7.04416-02	2.42896-01	7.04416-02	7.42895-31	7.09416-32	10-16:29.6	7.04416-02		2.42836-01	91E-0	0-366	1.04416-72	10-36869°c	7.14415-72	[じー3もおとり。	7-04418-02
L DCAI		4.7320F-01	4.7320F-01	1.26795-01	1.26795-01	4.7320E-01	4.7320F-01	1.2679E-01	\sim		1.0732F CO	00		~	C	$\frac{1}{2}$	<u>ا</u>	7		ç	33	CC	1.32695 30	Ç	C C				00 J2816.	2.2772E 33	.9268F 00	.926RE 00	.2732E JD	rr 36x75.	.92685 00	.9264F 0.3		8772F	37335	5262F	5263F	32518	3772	52545	
•		~	2	۴	.	<u>ب</u>	9	_	c c		<u>.</u>		۲.	4	v.	æ	_	œ٠		-	r	m)	4	ť	٠,	~	c.		_	~:	m	4	S.	٠	~	σ.		_	r.	۳.	4	ŗ	æ	7	α

STRESSES FOR ISOLATOR AND ARRESTOR FOR TILE NO. 1 AND ITERATION NO.

:

*	į		10	5	3 6	35	5	56	3 5	8	5	5	5.5	55	5	5	2 5	3 5	5	0.1	5 6	3 6	5,5	8	88	8	8	5	5 6	5 6	5	8	88	5 6	8	0	0	0	7	5 8	8	5	00	
	XZ	; ·,	.675E	.664E	537E	. 506E	413E	308E	199E	993F	170E	.029E	7007	622E	.390E	107E	7996	602E-	.003E	.092E	.282E	. 784E	.338F	.850E	1,3546	264F	.899E	.024E	. 392E	826F	. 212E	,505E	.944E	722E	96.29E	.868E	.317E	.220E	.754E	529E	619F	35	~	
	27		-531E-	.173E-	014876-0	.087E-0	.764E-0	-052E-	978F 0	3.614E 0	1.630E-0	.013E-0	02295-0	.264E-0	.452E-0	8-202E-0	1.8775-0	.552E 0	1.448E-0	.484E-0	.650E-0	-65/E-0	.629E-0	2.480E-0	-7.801E-01	1.987F 0	1.7216-0	6.557E-0	.269E-0	.543F-0	.768E-0	2.899E-0	.771E-0	0-301001	2.072	7.1886-0	529E-0	1.748E-0	3.242E-0	ביינו היינו	5.539E-	9326-	36	-
ES	×	-	1.733E-0	3.217E-0	1125-0	1596-0	.080E-0	30 E-0	263E-03	048F-04	851E-02	.288F-0	.416t-U	375E 0	.089E	.282E 00	212E 00	.089F 00	10-3688.	.555E-C	577F-0	55.6F	566E 0	068F 00	9.900E-02	9045 00	789E-01	.089E-01	.797E-0	297E	055E	-277E-0	8.144F-(2470	306E-C	.5916-	.287E-(.156E	.160E 3	-1/01.	95F 0	5E 0	735 0	
STRESS	77		182E	777E 01	101E	664E	32.7E	.861E	2315	547E	,753E	720E	42t	335E	.539F	.657E	90.35	137F	-732F	.530E	.080E	5205	620F	.599E	6.957F 00	7.97	740E	. 290E	3010	3045	-224E	3661.	3455 00	16.10	283F	002E	-641E	. 766F	3616	7967	946F	57E	81F	
	**		-054E	. 706E	05 /E	. 445E	.124E	.598E	1436	462F	.234E	418F	-855E-	2.283E	2.95 SE	26E	2. /165 0 1265	5.936E	.484F	4.119E	3636	1.0545	9.017E-	.130F	-2.148E 00	526F	2.425F-	-306F-	.578 ⁻ -	2 6	1.2225-	.472c-	26F-	7 6 6	1.3355-	304F-	.559F-	701E-	031F-	ī	480E-	-	3966	
	××		.056F 0	.707F 0	.058E 0	430F 0	.107E 0	O C	146F 0	469F 0	.038F 0	5.491E 0	907E 0	6.545F 0	593E 0	7.714E 0	0 3860	1.473E 0	138F C	7.257E 0	749F 0	3.170E U	4.868F 0	.745F O	۲.	7.900F 0	.321F 0	3.350F 0	8.314E 0	0 3244. 0 3091.	2.459E 0	.296E 0	1.4170 0	0 4/1/•	. A50F 0	2-1715 0	. 279F O	2.016E 0	3.098F O	-7.//05 00 -1 0395-01	973F 0	.5995 0	ש'אני ט	
ŧ	7.7		0-31	0 H Z	898510	722E-0	.488E-0	44	0-10-5-	0.106-0	.535E-0	.811F-0	0-1/29	0496-0	.8516-0		189510	7996-0	0-31	.563E-0	54	9275-0	.52	.1435-0	726F-	2265	6	-1996-	34 oF	1 1 1 0 C	4536-	0-1110	8 C	2011	1430-0	-2819	1095-0	J9F-		7.155514	- 40 to		1002	
STRAINS	*		2.970F-	.875F-0	3.724F-0	032E-0	275E-0	4.6	2.475F-0	5.952E-0	.958F-0	1.840F-0	7 L	517F-0	.415E-O	281F-0	. A15E-O	4.579F-0	.187E-0	7.359F-0	0-123E-0	ב ע	795-0	146-0	2.6825-04 7.5575-05	1 540F-0	(-360	0-1969.	• 1976-7 2716-3	1-2415-34	098-0	6-365	123		5F-0	0-460	0-368	-219E-0	- 2465	7.9706-0	3.639F-0	. 734F-		
#	××		.234E-05	.0155-04	8.9446-05	-502F-	1.579E-	8.861E-05 7.243E-05	3895-04	.651F-04	4.985E-05	1.229E-04	7.918F-	1.072F	1.2416-	- 250c - I	7.3555	3.01 RE - 74	5-1295-05	1-1235-04	1698.	7.053E-	-3696.	-356E-	-6.749F-34	1435-04	.970F-05	- 925°°	5436-	- 3027	-1601-	~3C1.*1	. 45000	1.1517	7775-	-3622.9	-368E-	- 1770.	1 3 (O C •)	**************************************	1758-05	2245-05	36-91-06	
DINATES	2		0	0 0	0.02	0.02	0.02	0.02	0	0	0.13	0.13	0.13	0.13	0.12	0.17		0.13	0.30	ر د. و د	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.30	0.0	0.30		. E	C . 47	0.47	74.0	7.0	0.47	0.47	~ r	0.47		6.63	0.63	် (၁		* 6 * 6	0. k3	0.0	••••••	
~			0.1	. ·	0	 	0.1	~ - c c	C	7.1	1.0	0.0		0.1	۲.	 			7.1		 _ c		7.1			0		٠. د	• •			, ·				٦.٠	-	-			· ~	0	 C	
TEMP LC			റ:		. ~	. 2	m (. r.	ır.		•	• c		٠.,	,	. ·	١,٠	٠	c .	- ^	, ~	κ.	, m	, c	٠,		ď.	- ^	^	m	~	√ 0	· (.	· •	Ċ	-	ς,	, r	, e	٠	'n	v.	
X .	:			. ~						_																																		

STRESSES AND DIRECT STRAINS FOR TILE NO. 1 AND ITERATION NO.

SUM DEN = 4.066200-06 RWEGA SQUARED = 7.12655F 06 DMEGA = 2.66956F 03

								MARL	n inggara	.s.a.,		1.11.		·,		
	RZ	-1.	•	-					†		: !	1	i : : :	•	l 1	, , , , , , , , , , , , , , , , , , ,
	RY	3.189787E-03 3.191435E-03	6.399900E-03 6.402336E-03	9.573631E-03 9.576578E-03	1.267944E-02 1.268287E-02	1.566771E-02 1.56771E-02	1.847837F-02 1.848471E-02	2.105218E-02 2.106069E-02	2,336588E-02 2,337612E-02	2.540788E-02 2.541899E-02	2.716987E-02 2.718170E-02	2.863894F-02 2.865112E-02	2.979947E-02 2.981209E-02	3.064273F-02 3.065582E-02	3.116091E-02 3.117428F-02	3.133634E-02 3.134975E-02
ITERATION NO. 1	X X	5.587914E-05 4.809038E-04	-5.725912E-05 4.751717E-04	-5.781297F-05 4.673784E-04	-5.394027F-05 4.556030E-04	-4.895801F-05 4.377079E-04	-3.918960E-05 4.109822E-04	-3.102203E-05 3.767714E-04	-2.576198E-05 3.377073E-04	-2.197572E-05 2.953170E-04	-1.980127E-05 2.503702E-04	-1.593972E-05 2.037658E-04	-1.253435F-05 1.549640F-04		-5.443765E-06 5.384142E-05	1.710473E-06 -1.713168E-06
JRE DEFLECTIONS FOR IT	70	1.78551E-01 1.786259E-01	1.756771E-01 1.757467E-01	1.708924E-01 1.709508E-01	1.642013E-01 1.642683E-01	1.556897E-01 1.557546E-01	1.454340E-01 1.454960E-01	1.335106-01	1.202210F-01 1.202730F-01	1.055738E-01 1.054194E-01	8.978516E-02. 8.98?366F-02	7.30560F-02 7.305735E-02	5.547747E-02 5.547124F-02	3.73276aE-92 3.734367F-02	1.976934E-02 1.977641F-02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PRIMARY STRUCTUR	ÜA	-1.673227E-06	-1.613901E-06	-1.536437E-06	-1.429681E-06	-1.370172F-06	-1.232098F-06	-1.067070F-06	-8.915556F-07	-7.026549F-07	-5.027475E-07	-2.924773F-07	-7.611419E-ne	1.4746015-07	2.967929F-07	5,462543E-07
the rate of the same of the sa	XC	6.681679E-05 6.680365E-05	5.671559E-05 5.670004E-05	4.701459E-05 4.699403E-05	3.779292E-05 3.775843F-05	2.907454F-05 2.905251F-05	2.120507F-05 2.116353F-05	1.478868F-05 1.473488F-05	377575F 321329F	2.635151E-06 2.477969E-06	-1-711983E-07	-2.6 475186 -06 -2.7478625-06	-3.945375F-06 -4.007447F-06		-2.547715f-06 -2.645495f-06	
	NODE	333	35	38	98 1	4 4 2	7 7 7 1	1 4 4 1	1	50 1	5.5	. 4 . 4	55. 56.	l • σ	96	

\$61 dud 80d \$6—d\$\$\$\$\$*2 = fladadddfilladfillaf wilwikkw

= 1.79574F-01 FOR DOF 140

mullidded nAmixum

MEMBER	COORDINATES	INATES		STRAINS			STRESSES	
•	×		EPS X	EPS V	EPS XY	Sf6 x	SIG Y	SIG XV
-	3.9000E-01	1.66665-01	-1.1270F-06	2.8437E-07	7.6610E-09	-1.1447E 01	-5.9034E-01	5.4721E-02
· 2	9. COOOE-01	1.66666-01	-3.0212F-06	8.1109E-07	-1.0723F-08	-3.0526E 01	-1.0468E 00	-7.6596E-02
i (1.5000E 00	1.66665-01	-4.9522F-06	1.4223E-06	5.0875E-10	4.9731E 01	-6.9658E-01	3.6339E-03
· · · ·	2.1000E 00	1.6666E-01	-6.8412F-06	1.99515-06	-4.9741E-10	-6.8601E 01	-6.2947E-01	-3.5543E-03
i i	2.7000E 10	1.66665-71	-8.6617E-06	2.5449F-06	9.8254E-10	-8.6794E 01	-5.8923E-01	7.0181E-03
9	3.3000E 00	1.6666E-01	-1.0390E-05	3.0682E-06	2.7056F-09	-1.0406F 02	-5.3562E-01	1.9326E-02
· ·	3.9000E 00	1.66665-01	-1.2010E-05	3.5613E-06	4.5449E-09	-1.2024E 02	-4.5776E-01	3.2463E-02
, E	4.5000E JO	1.5666-71	-1.3517F-05	4.0194E-06	6.7660F-09	-1.3529F 02	-3.9400E-01	4.8329E-02
1 5 1	5.1000 0	1.6446F-01	-1.4923E-05	4.43745-06	3.0466F-09	-1.49365 02	-4.3319E-01	2-1761E-02
101	5.7000E 00	1.6566F-71	-1.6246F-05	4.7443E-06	1.6097E-08	-1.6289E 02	-1.4233E 00	1.1498E-01
=	4.3000E 10	1.5664F-01	-1.71936-05	4.96526-06	-4.2749E-09	-1.7257F 02	-2.1183E 00	-3.0535E-02
- 21	4. 3000F 00	1.6646F-71	-1.7465E-05	5.1359E-06	-1.0357E-08	-1.7499F 02	-1.1392E 00	-7.3980E-02
13	7.50006 00	1.66665-31	- 1.76715-05	5.21546-06	-9.4432F-09	-1.7699F 02	-9.4382E-01	-6.7451E-02
1 1	00 00 01 ° d	1.56665-01	-1.7738E-05	5-2275F-06	-7.2482F-09	-1.7769F 02	-1.0326F 00	-5.1773E-02
51	9.7000E	1.66666-11	-1.7630=-05	5.1321F-06		-1.766E 02	-1.1764E 00	-2.9176E-02
1 19 1	9.30.06.00	1.45465-01	-1.7330F-05	5.08761-06	-4.9312F-10	-1.7368E 02	-1.2776E 00	-3.5223E-03
17	נר ארנים.נ	1.46665-11	-1.63375-05	4.330 FE-06	3.19686-03	-1.6877F 02	-1.3237E 00	2.2834E-02
<u>a</u>	1.05006 1	1.56665-71	-1.61735-05	4.7256E-06	5.18825-09		-1.3868F 00	3.7058E-02
10	10 30011.1	1.6465F-01	-1.53735-05	4.4492F-06	1.0492F-08	-1.5426F 02	-1.7868F 00	7.63695-02
20	16 30071-1	156665-11	-1-45235-1-	4.12435-06	1.0737F-09	-1.4606E 02	-2.5689E 00	7.6691E-02
12	1.2300F 21	1.56668-01	50-5618-1-	3.8284E-06	-1.39755-08	-1.3169F 02	-1.2216F 00	-7.8394F-02
22	1.2900 51	1.6566-11	-1.15385-05	3.4483F-06	-2.7438E-09	-1.15425 02	-1.3707E-01	-1.9598E-02
	10 30051 1	1.45467-01	4C-35258*6-	2.43335-06	- 6.13536-09		-1.9858E-01	-6.4538E-02
5.4	1.41005 31	1.66408-01	-8.0711F-05	2.19136-06	-6.7381F-03	10 36080°E-	-3.2947E-01	-4.8129E-02
1 2 1	1.47775 01	1.46565-01	-4.13045-06	1.3081 -06	-5.27186-09	-6.1955E 01	-5.0534E-01	-3.7656E-02

MID-POINT PLATE MEMBER STRAINS AND STRESSES FOR ITERATION NO. 1

STATICS PROBLEM

MAXIMUM VO. TTERATIONS = 3

CONVERGENCE PARAMETER = 0.0

PRIMARY STRUCTURE STRESSES PRESENTED AFTER FACH ITEPATION AT PLATE MID, TOP AND BOTTOM SURFACES

TILES ON PRIMARY STRUCTURE

TILE STRESSES PRESENTED AFTER LAST TTERATION

TILE NODE MAP NOT REQUIRED

TILF FLEWENT MAP PROJECT

TILE NOTE CORRESINATES PROUPED

DO ADT PRINT FLEMENT STIFFNESS MATPICES

sautoryk SSepantts colonossy falloc tea co

NOTAMORATE THE SECUENCE INFOOMATION

Salli illy and Sabbabas amondo

91, ATF	LX = 6.66667F 90	LY = 3,33330E-01	TP = 7.50000E-01	
STPINGERS	Y1 = 4.00000F-01	0.0 = 85	YS = 0.0	AS = 0.0
 	IÝ* = 0.0	0.0 = .21	0°0 = ,xr	BETA S = 0.0
TILES	NXP = 1	N + n = 1		
1 5 1 1	T = 0.0	0.0 = 18	T2 = 1.16667E 00	Communication of the state of t
	TA = 1.666705-01	II = 5.00000F-02	TC = 0.0	
agick	u = lun	MS2 = 10	MD2 = 1	
	MT1 = 0	NT2 = 7		
			•	*
		A T F O I A F A F O I	S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
				:
21 <u></u>	10 ∃000000°1 = 63	NU P = 3.00000E-01	CA44A P = 0.0	ALPHA P = 1.31000E-05
>	C.O. = 23	6.0 = 8 UV	GAMMA S = 0.0	ALPHA P = 0.0
APREST 19	70 mining (* 2000)	\$6 3000€6*9 = Xa	F7 = 6.00000F 03	
11 P P P P P P P P P P P P P P P P P P	10-400000 = 5,30000F-01	NU YZ = 1.00003F-01	NU ZX = 1.00030E-02	
 	94Y = 2,00000F 04	GY7 = 3.2000E 04	G7X ≈ 3,20000E 04	
	C*U = V kanvo			
	20-305664.5 = x 44014	ALDHA Y = 1 9,999995-07	10-366060 = 1 VHO 1V	Charter ten
GC X A 10.51	(2) proceeds of a 11	16-3000006** = 1 100	5AMMA 1 = 0.0	ALPHA 1 = 2.71000E-04
152	CAMMA SE C.O.			
•	VHO IV / AC VHO IV	/ ALPHA EX = 1.00000E 00	ALPHA R	RZ / ALPHA RX = 1.00000F 00

į
IES
ERT
ROP
٦
RIAL
ATE
F
DEN
PEN
DE
URE
RAT
MPE
1

•		TEMPERATURE	PROPERTY	TEMPER ATURE	PRIDERTY	TEMPERATURE	PROPERTY	TEMPERATURE	PROPERTY
	Eq	ALL	6.000F 04		. And the state of the control of th	The second control of	eratumpy to the state town days to the plant and the state of the state of	A PRINCIPLE OF A PRINCIPLE COMPANY OF A PRINCIPLE O	mentapun mentanga kumaha apartimpusahan di meras
	• α	ALL	6.000E 03		to the second se	M		٠	
•••	• 85		3.200E 04						
~	NU R	AL L	5.000E-01		:				e de la companya de l
	NU R.	VIT	1.000E-02	;	•				The second secon
-	ALPHA R	VIL	3.470E-07						
-	:	. ALL	0.0						and the same of th
	U DN	A) L	0.0			:		•	
_	AL PHA C	776	0.0						
								:	
		•	,						:

:

S !	FREE	FREE					
STRINGERS	FREE	FREE				0°C = XAN	•
PLANE		V FREF	<u>:.</u>	y Farr	0 2 4 0 0 1 1	C • O = 2	off traps = 0.0
PLATE IN PLANE	й С	U HELD, V FREF	99 99	V HELD, U FRFF	► 1 ▼ 1 ✓ 1	0.0 = Y6 C.0 = T	
PLATE GUT OF PLANE	PINMES	PINVE	FREF	u. u.		0°0 = 40	Se ignera, e e e noge pa
ED6E	<	r.	U	c			, j.

T REFERENCE = 7.0000E 01

0EL T U = T - T REF = -3.2500E 02

B-59

	23	25	27	29 31	31	20 33 30 33	35	37	39	413	45	. 64	. 64	5.2	5 3 5	55	57	59	61 63	
				ends for the second sec	**************************************															
2 0 0 0	24 26	26		30	32	# 6 4 6	3 & 3 &	4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	40	7 4 4 7 4 4	44 88	48 50	50	5.2	3. A.	\$0. 8.0	, 50	50	5.2 2.4	
W	4	4 9	'∞∞	61	10	12 14	16	18	19	. 20	24	28	28 30	9.5 3.5	~ ~ * ~ *	36	36.	38.	49.	
	3	min		6	9	11 13	12	15	71	19	23	25	27	26 31 .		33 35	35	37.	رد 1۰	
TE MESH ELFMENT			: •		٠.	· ·	۷	·			<u>.</u>			\$ F	1-8			۳.		
EL EL			:													-		-	-	

	C.0	0.0 2 22205-01	0.0		-3.25000E
	0.0 6.6667E=01	0.00 00 00 00 00 00 00 00 00 00 00 00 00	0.0		-3.25000E (
	(2 222200 01	c: 6		-3.25000E
	10-00000 TE - 00 TE -	10-33334-01 0 0	0		-3.25000E
		3.33930F_01			200036
					•
~		3.3330F-01	0.0		
		0.0	0.0		-3.2500CF
•	<u>.</u>	2.33330F-01	ر. ن ن ن		-3.25000E (
		٠ ٠ ٠	. 6•0		-3.25000E (
.		2.33330=-01	0.0		-3.25000F
~	400000		0.0		-3.25000F
•	4 to 30 30 30 3	2.35330F-01	Č.		-3.25000E
		3.3330F-01	. 0		-3.25000F
					-3.25000F
	378626	3.22301-01	0.0	-	-3.25000F
		0.0	C • C		-3.25000E
_	.00000E	3.332301-01	0.0		-3.25000F
		0.0	, · υ•υ		2
	6.86667F AB	[0-305555 * c	0.0		-3.25000E
			5.00000-02		3.5
	7.00	7 - 32700 - L	5.00000F-02		-3.25030F
•	0 - 36 - 57 - 51 - 51 - 51 - 51 - 51 - 51 - 51	3 333305-03	26-400000 9		٠. ٦
	1.1333335		5 0000E-02		1000047 6-
		13-362-22	0-400000		, c
	2.000000 00		6.0000n-02		. ∿
	CONTROCTOR 6	10-3026666	5.33240F-02		2
	2.446610	۲.٬	6.100000-07		-3.75000F
	2.666675 33	7.333305-01	5.000000-12		-3.25000E
	r :		5.10002E-02		-3.250005
	in a second of the second of t	7. 323.40F-01	5.10009F-02	-	-3.25000F
		10-300000	5 300,000 c. 3		-3.75000 -
			6. Janaer - J2	•	36667
	4.55(677 1)	10-300666.	5.00000-02		-3.25000E
	5. 222345 2.3	٥.٦	6.00000=02		-3.25000E
	5	10-1066886	6.03700F-02		-3.24000
	77 UT T C C C C C C C C C C C C C C C C C		50-30000c.		-3.25000F
	**	10-201222	6.1300005.00		-3.240006
	, , , , , , , , , , , , , , , , , , ,	0.6	5.0000t-12		-3.250006
	6. 6. 6. 6. 7 E 2. 3	TO-LONGER S	6.00000E-02	-	-3.25000
			2.166775-01		-3.25000F
			10-30/041-7		-4.24000F
		101100000000000000000000000000000000000	2.1567.76-01		- 3,756/195
		• (2.166706-03		-3.25000F
	fi schick of	16-3062121	7.164705-01		-3.25000F

	mpranty of our and our commission of the commiss			***************************************			·						The same of the flags of the same of the s						***************************************	-		***
	-	e degli specimi en la cama i rega de la mesa ca inde				-								•								
# O O	R2	0	,	0	0	0	0	0	0	0	0	0	0	0	0	:	c	0	0	0	0	0
5. 13.	Æ	4	12	91	51	52	30	34	39	43	48	25	. 25	61	99	70	75	79	8	88	16	66
7	×	6 4] [15	20	24	62	33	38	42	47	51	. 95	9	65	69	42	78	83	8.7	90	95
E S 0	20	00	2	14	19	23	82	. 32	37	41	46	20	53	59	90	9	73	11	. 28	96	0	0
ر م س		20	•	0	18	0	12	0	36	0	45	0	54	0	63	0	72	0	. 81	0	66	0
О П	×C	- 4	° ec	13	17	22	92	31	35	40	77	64	53	58	62	. 67	71	1,4	80	82	Ċ	c
															,							
ا 8	-	0.0	0.0	0.0	0.0	.0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> i	γ Γ ς F O M F	0.0 3.33300F-01	0.0	3.33300F-01	0.0	3.333300E-01	0.0	3.333300E-01	0.0	3.33300F-01	0•0	3.33300F-01	0.0	3.33300E-01	0.0	3.33300F-01		3.333300F-01	0.0	3.333300F-01	0.0	3.333300F-01
-	& C → U → X	0.0	6.6666 70E-01	6.5665705-01	1.333334F 00	1.333334E 00	2.000001E 00	2.000001E 00	2.566668E 00	2.66668F On	3.333335F 00		4.000002F 00	4.000002E 00	4.56669F 00	4.666669F 00	5.333336 00	5.333334F 00	6.000103F 00	6.000003F 00	6.664670F 30	6.666670E 00
	NODE	1 2	 	4	S.	9	7	œ	σ	֖֖֖֝֝֝֝֡ יבו	11	12		14	15	. 91	1.7	19	. 61	20	71	25

NONE	x	PRIMARY STRUCTURE	te berceutiums Fo	K TIEKATION NO. 1	R	7 N.
, - ~	2.838170E-02 2.838172E-02	1.419157E-03	1	0.0	0.0	t
- 1 w 4	ı	1.4191586-03	0.0	0.0	0.0	1
u	1.5	20	0.0	0.0	0.0	1 :
1 - 0	1.986	1.419171F-03	0.0	0.0	0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- 61		1.4191755-03	1 0.0	0.0	0.0	• • • • • • • • • • • • • • • • • • •
1 22	1.419059E-02 1.41906F-02	1.4191786-03	0.0	0.0	0.0	! !
1 2 4 1	1.135246	1.4191828-03	0.0	1 0.00	0.0	; ;
1 91	8.5147-75 - 5147-76-6 - 5147-74	1.4191825-03	0.0	1 000	0.0	1
1 2 2	\$0-142142-5 20-142142-5 20-14141-6	1.419185F-03	0.0	0.0	0.0	1 1 1
1 000	2.010105E-30 0.01005E-30	1.415196-03	0.0	1 0.00	0.0	1 1
21 - 22	; ;	1.4191966-03	1	0.0	0.0	1 1 1

21.

19

13

11

B-64

:		NIOd-GIW	T PLATF MEMBER	STRAINS AND ST	MID-POINT PLATE MEMBER STRAINS AND STRESSES FOR (TERATION NO. 1	ON NO. 1		
MEMBED.	COORD	COORDINATES		STRAINS			CTRECEC	
	× .	>	EPS X	EpS Y	Eps XY	S16 X	¥ 918	SIG XY
1			1) (1) (1)	- 1			
- ' - '	3.3333F-01	1.4666F-01	-4.2574E-03 -4.2575E-03	-4.2575E-03	2.5495F-08	6.5625F-01	8.2031E-02	1.82116-
~ ¹	1.0000E 00	1.6666E-01	-4.2574E-03 -4.2575E-03	-4.25758-03	1.4232E-08	. 1.3516E 00	1.6406E-01	1.0166
	1.5667F 73	1.6666F-01	-4.2573E-03 -4.2575E-03	-4.2575E-03	1.8335F-09	1.8008F 90	8.2031E-02	1.3097E-
4 .	2.3333E 00	1.66665-01	-4.2573E-03 -4.2576F-03	-4.2576F-03	7.0723E-09	2.3750E 00	1.2500E-01	5.0516E-
5	3.00005	1.6566-01	-4.25725-03 -4.2576E-03	-4.2576E-03	1.2049E-09	2.6211E 00	I. 2500E-01	8.6065E-
 c 	3.6667E 00	1.66646-01	-4.2572E-03 -4.2575F-03	-4.2575F-03	1.5529 E-03	2.9063E 00	8.2031E-02	1.11636-
	4.2223F 30	1.66665-01	-4.2572E-03 -4.2576E-03	-4.2576E-03	1.6939E-09	3.2344£ 00	1.25005-01	1.2099E-
` ! α· !	5.0000F 10	1.65665-71	-4.2572F-03 -4.2576F-03	-4.25765-03	9.51706-09	3.3555E 00	1.25005-01	6.7979E-
c. 1	5.4667F 30	1.65665-01	-4.2572E-03 -4.2576E-03	-4.2576F-03	1.74625-10	3.5195F 00	8.2031E-02	1.24736-
10	6-33436 00	1.6556 01	-4.2572F-03 -4.2576E-03	-4-25765-03	8.7311F-11	3.5195F 00	3,5195F 00 8,2031F-02	6.2365F=

1,4191825E-03	PRIMARY STRUC
1.110410E-08 -4.857246E-05 -2.494943E-07 -4.696766E-05 -2.494943E-07 -4.69676E-05 -2.494943E-07 -4.69676E-05 -2.494943E-07 -4.69676E-05 -2.494943E-07 -4.69676E-05 -2.494943E-07 -4.69676E-05 -2.494943E-07 -4.69676E-05 -2.494943E-07 -2.49676E-07 -2.105376E-05 -2.494946E-07 -2.1072976E-05 -2.494966E-07 -2.49496E-07 -2.49496E-07 -2.49496E-05 -2.49496E-07 -2.49496E-05 -2.494946E-07 -2.49496E-07 -2.49496E-05 -2.49496E-07 -2.49496E-05 -2.494946E-07 -2.49496E-05 -2.494946E-07 -2.49496E-07 -2.49496E-07 -2.49496E-07 -2.49496E-07 -2.49496E-07 -2.49496E-07 -2.49496E-07 -2.49496E-07 -2.49496E-07 -2.49496E-05 -2.49496E-07 -2.49496E-05 -2.49496E-07 -2.49496E-05 -2.49496E-	:
3.204057E-05 3.204057E-05 3.204057E-05 3.203430F-07 4.606350E-05 6.173004E-05 6.173004E-05 6.173004E-05 6.173004E-05 6.172433E-05 6.172433E-05 6.198011E-07 6.19804E-05 6.198011E-07 6.19804E-05 6.198041E-07 6.198049E-05 6.198049E-05 6.101759F-04 6.1215332E-06 6.16838E-05 6.101759F-04 6.1215332E-06 6.16838E-05 6.101898E-05 6.166430E-05 6.166430E-05 6.166430E-05 6.166430E-05 6.166430E-05 6.166430E-05 6.166430E-05 6.10193228E-07 6.101938E-05 6.101938E-05 6.101938E-05 6.101938E-05 6.101938E-05 6.101938E-05 6.166430E-05 6.101938E-05 6.1019324E-05 6.1019324E-05 6.1019324E-05 6.1019324E-05 6.1019324E-05 6.10193344E-05 6.1019344E-05 6.1019344E-05 6.10193344E-05 6.1019344E-05 6.1019344E-05 6.1019344E-05 6.1019344E-05 6.1019344E-05 6.1019344E-05 6.1019344E-05 6.1019344E-05 6.10193344E-05 6.1019344E-05 6.1019444E-05 6.10194444E-05 6.1019444E-05 6.1019444E-05 6.1019444E-05 6.1019444E-05 6.1019444E-05 6.1019444E-05 6.1019444E-05 6.1019444E-05 6.1019444E-05 6.10194444E-05 6.10194444E-05 6.10194444E-05 6.10194444E-05 6.101944444E-05 6.10194444E-05 6.10194444E-05 6.101944444E-05 6.101944444E-05 6.101944444E-05 6.1019444444E-05 6.101944444444444444444444444444444444444	1.41
6.1730046-05 6.098011E-07 6.1730046-05 6.098011E-07 6.178243E-05 8.592271E-05 8.592271E-05 9.408456E-07 1.017059F-04 1.017156E-04 1.017156E-04 1.017156E-04 1.017156E-04 1.017156E-04 1.017156E-04 1.017156E-04 1.017176E-04 1.017176E-04 1.017176E-04 1.017176E-04 1.017176E-04 1.017176E-04 1.017176E-04 1.017176E-04 1.01830E-05 1.016350E-07 1.016350E-07 1.016350E-07 1.016350E-07 1.016350E-07 1.016350E-07 1.016370E-07 1.0163	
8.592271E-05 9.869391E-07 -3.059379E-05 8.591506E-05 9.408456E-07 -3.059104E-05 1.01759F-04 1.158402E-06 1.0528164E-05 1.017165E-04 1.158402E-06 1.0528164E-05 1.017368E-04 1.158402E-06 1.018368E-05 1.016948F-04 1.158408E-06 1.016948F-04 1.158909F-06 1.016948F-07 1.016948F-04 1.155909F-06 1.632443E-05 8.587058E-05 9.369464F-07 3.061310E-05 6.167241F-05 6.167241F-05 6.055278E-07 4.117301E-05 6.16530F-05 1.032928F-09 4.850899E-05 1.032928F-09 4.850899E-05 -1.09324F-05 -1.099510E-08 4.850899E-05	1
1.01729F-04	-
1.072070E-04	1,419
1.016948E-04	
8.587058E-05 -9.875703E-07 9.586227E-05 9.389464F-07 6.167241F-05 -6.42675E-07 6.165630F-05 6.055278F-07 3.200154F-05 -2.472392E-07 3.199324F-05 2.270913E-07 1.032928F-09	1.419
6.167241F-05 -6.426225E-07 6.166630F-05 6.055278F-07 3.200154F-05 -2.472392E-07 3.199324F-05 2.270913F-07 1.092928F-09 -1.089510E-08	
3.200154E-05 -2.472392E-07 3.199324F-05 2.270913E-07 	
1,0329285-09-1,03295105-08	

MAXIMUM OFFLECTION = 2.83744F-02 FOR ONF 5

WAXIMJM DEFLICTING DIFFERENCE = 1,0772075-04 FOR DAF 46

REPUBLICAN FORMER OF PARAMETER = 3.77830F-03

CUSCASSION HAS SAN WOTTUINS

COMPONENTIV) 7 4191780E-03 0	193156E-03 3.1108400E-0	4500016F-08 3.1105301E-0	.4195214F-03 5.9920829E-0	.2263924F-07 5.9915212F-0	.4196830F	.4197913F±03 9.8699835E±0	• 2083934E+07 9 • 8690522E-0	.4198280E-03 1.0401016E-0	.4781825E-07 1.0400009E-0	•4197964F-03 9.8668752F-0	.1985641F-07 9.8659031F-0	.4196937E-03 8.3330786E-0	**************************************	.2099863E-07 5.9857077E-0	.4193379F-01 3.1069256E-0	*3249513E-08 3.1065982F-0	•4192052F-03 0	.0019721E-09 0.0	.0304173F-04 - 1.2936962 .7323775F-04 - 1.2963125	. 72655 71g-04 -1.2648195F-0	.4036545F-04 -1.2651250F-0	.7850767E-04 -1.7551006E-0	-5354165E-04 -1.2553982E-0	*32334536-04 -1**2300148F-0	-8311702F-04 -1.2469962F-0	.4753677F-04 -1.2472779E-0	*8128699F-04 -1.2460098F-0	.4697679E-04 -1.2462813E-0	.8651830F=04 -1	-4135147E-04 -1.2500532E-0	.4799199E-04 -1.2503073F-0	*7665598F-04 -1.2551751F-0	.5199039F-04 -1.2554195F-0	.6472460E-04 -1.2649776F-0	7.7.7.1.07.1.07.	. 10 1704 465 - 0 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	*42919745-04 -1.318212AF-0	.9463020F-94 -1.3185198F-0	337330E-04 -1.2763842E-0	9318269E-04 -1.2767731E-0	-04 -1.25078026-0
.8356735F-0	5519237£-	.5519237E-0	.2683558E-02	*7683650E-02 -	.9850120F=0	• 7018143E-02	-7018139E-02	.4186997F-02	41869975-07	.1355862E-02	.1355866F-02	5219187F-03 5229226E-02	. 76373386-03 . 6904666-03	- 69047796-03	.8549971F-03	-8550087F-03 -	7662009F-0F	/6602046±03 55975926±03	5597765500	53383846-02	53386226-02	57577398-02	357940F-02	4790514F=02 4790514F=02	5223076-02	45774335-02	2521456-02	7522195-02	0-36-6186	7134675-52	7135015-02	645456-03	445560F-02	1637645-0	71137777	7141295-02	4351636-02	353346-62	C-2121646	-366864	1. +0.123230 +0.4
ក់ពេលE 1 2	: :	4 4	د .	۰,	~ α	. 0	10		12	£ 7	4.	5 7	17	: c.	٠-	20)		· [+c	9 ¢	7.7	c. c	r 6	3.1		e .	3.6	. 46	1;	ķ. ;.		C∵ •			. **	5 7	***		•	٠.,

ď
AND LIFRATION NO.
č
Ţ
A
۲
_
S
٩
•
S
w
-
R FOR TILE NO.
~
5
ES
2
۷ -
AND ARRESTOR
ĕ
F
۲
3
۵.
FOR ISOLATOR A
S
STRESSES
E E
S

SH	XZ ZA AX		2.5630E-04 2.3283E-01	2.5833E-04 -2.2482E-01 -6.4685E	5844E-04 2.3546E-01 -7.3711E	5608E-04 -2.2715E-01	0354F-05 2.3299E-01 -6.4757E	1774E-05 -2.2466E-01 -6.4758E	.0902F-05. 2.3563E-01 -7.3784F	11956-05 -2.26996-01 -7.37846		170E-04 2.2992F-01 -4.9285F 0	2957F-04 -2.225F-01 -4.9286F"D	3735F-04 7, 3144F-01 -5, 8195F 0	3126F-04 -2.2358F-01 -5.81	8826F-05 2,3008F-01 -4,6303F 0	8103E-05 -2236E-01 -4-0306E-0	80105-05 21505-01 -5 82125 0	#041E=04 = 123222E	0.34170*6- 10-32567*3- 60-3560	-05 2.2807E-01 -3	8.8453F-05 -2.2118F-01 -3.3817F 0	.8828E-05 2.2905E-01 -4.2765F 0	.9128E-05 -2.2188F-01 -4.2766F	.6462F-05 2.2823F-01 -3.3824F 0	.6609F-05 -2.2103E-01 -3.3824F D	2E-05 2.2920F-01 -4.2773E 0	.6465F-05 -2.2172E-01 -4.2773E 0		.1043E-05 2.2733E-01 -1.8335E D	278F-05 -2.2082E-01 -1.8336F	.8680E-05 2.2761E-01 -2.7276E 0	.3528F-05 -2.2090E-01 -2.7277E 0	.4484F-36 2.2748F-01 -1.8339F 0	.4247F-06 -2.2067E-01 -1.8340E 0	78F-06 2.2776F-01 -2.7280E	584E-06 -2.2075E-01 -2.7281E 0		-9.6340F-06 2.2703E-01 -2.8710F-01	6029F-06 -2.2079F-01 -2.8712	8339F-06 2.2717F-01 -1.1802	8-7405F-06-22-2074F-01	2001-1- 10-16102-3- 00 //04-162-03-16-16-16-16-16-16-16-16-16-16-16-16-16-	77/9*7= 10=3/1/7*7	#2/9°7	CODI-1- 10-12012-0 00-11-06-0
STRESSE	11		9111E-0	4556E-01	4983E 00	-4.4476E 00	2898E	2353E	1216E 01	1160F		7536E 00	8067E 00	5626F 00	164F 00	8461F, 00	2,7928E 00	4.0554F 00	4.0015F 00		571F 00	.9089F 00	.3857E 00	4397E	.7334F 00	.6318E	2.2163F 00	.1634F		3864F	5	1250E	1761F	(C) 3	.1431E	7,	53			.6376	6	532F 0.3	305-01	16-34-46-0	1.06606	
	**		712E	5	10 361C	173E 01	343E 00	46 7E · 00	528E 00	165E 00			898	7795E	1.7846E 01	.2201F 01	.2253E 01	1040E 01	1092F 01	;	1,99955 01	.0045E	545E	3595E	270E 01	.3320E 01	. 2307E 01	. 2857F 01		-0501F	.0551E	.0252F	.0301F	10 7687r.	0	10 35858.	.3584F 01		.1697F		10 5 AC .	24675	30805	10 2656	116 01	15 11111
	××	-	57.10E	.576	371C1.	T.	.8938F	.9462F	.1617E	.2153F	~	4E 0	8986E	7791E	78	LI	2252E	139F	10916			0	9544F	9594F	307 CE	3320E	2	7357F	4		315°	252E	101E	189F	~	35265	3585€			2.07445 91		34695	30005		1.3312E 01	
		T NUMBER									T NIJMBER									L NUMBER									NIJWATR I									asbatha.								
S	7	£	3.9434E-02	.9434	9434	4.34	0566	9950	0566	9950	FLFWFN	34	.9434	9646.	34	.0565	.0566	3	.0566	ب	9245	.+	3.9424F-02			3	565	\$	٠,	9636	3.9434F-02	5650	\$645.	-3566	1.05645-02	5.4.5	1.0544F-02	FICECH	•	1	0	ď	10	- 0566F-	0 1	
COORDINATE	λ		11: 1 11: 1	.0441E-0	0-46879*	•0441E-0	- 45874-0	.0441E-0	•4289E-0	.0441E-0		•6269	.0441	.6289	7.0441F-02	.6289	.0441	.6289	.0441		-st 3 2 9 .		-16865	-3441=-	-42898-	-3441F-	ーッチなくり・	-)44 lc-		?					7.4416-72		1.04415-02		2.62635-01	20-11940-2	15-168610	7.74415-32	2.02 HUE-01	1.04415-02	16-16464.5	
LOCAL	×		5.2578F-01	-2578F-	-4038E-	10-18804-1	- 22 / 81-	.2578E-	.4088E-	.4088E-		1.1925F 03	925E	755E-	75	325E	925F	1551-	755F-		F 77	(6 316	.4742E 1)	LL 36414	.8591F nJ	591 E OD	4742F n.)	် ပြ	•	.524AF C)	.5253F 00	.1409F JJ	.1409E 00	. 5258E 07	בט שוני	. 1403E-01	.1409F JQ		in 19661.	Ĉ	(1) 351.6.	. 3275E 11	19246 03	((356)	4075F C)	
			اد مسو :	∼ r	n ,	đ t	η,	œ I	►.	œ.		-	2	٣	4	ĸ.	¢	7	α.		_	^	۲.	4	z.	Ð	7	n,		- .	<i>ح</i>	~	5	ď	~ 1	_	æ		_	٢	۳۰.	•	u.	ب د	. ~	

	XX	-6.923	-3.830	-2.281	A.126	2.35	3.908	7.00	-5.74	-6.50	-2.2	-7.06	8.36	4.01	6.64		-5.60	-3.97	-2.16	ì	2.324	4.129	5.754	-1.843	4	-3.621	-6.378	7.788	2.254	4.374	1.953	80	-2.75	-1.93	-6.02	~	~ `	•	9.7245
	٧2	162E-0	.593E-0	383E-0	0425-0	2.960E-03	-805F-0	.244E-0	053E-0	457E-0	576E-0	.695E-0	.338E-0	.742E-0	-907E-0	•980E-0	219E-0	.980E-0	.099E-0	0996-0	.503E-0	•623E-0	550F-0	.961E-0	-384E-0	. 961E-0	. 623E-0	. 623E-0	•146E-0	3116-0	.457F-(.623F-0	.669E-0	.027F-C	-907F-C	.027F-0	.788F-(1 1 1 1 1	3-0996-03
S	X	.430E-0	.022E-U .735E-0	.876E-0	4610E-0	2.890E-06	.417E-0	.173E-0	-090E-0	.588E-0	841E-0	0-3069°	.353E-0 .544F-0	.818E-0	240E-0	354E-0	0-36E9	451E-0	4955-0	73/F-0 73/F-0	305E-0	.361F-0	.588E-0	151F-0	.942₽	.193E-1 653E-0	. 52 7E-0	.801E-0	30E-0	.313F-0	.537F-J	.105E-0	21E-0	0-3968	. 44 BE-0	C-369	() () () () () () () ()	3.404F-03	1.4675-33
.NO. 3 STRESSE	77	.376F 00	.1965-01 - .349E 00 -	990E 00	.286E 00 -	. 987E 00 -	.341E 00 -	.445E 00 -	- 919E 00 -	.626E-01 -	.728F 00 -	.023E 00 -	.022E 00 -	.032F 00 -	-920E-	205E 00	110F	.053F-01	33.7E	.647E 00 .	334F	.945F-01 -	- 1345 00 -	.151F 00 -	-003F 00 -	.486F-02 -	- 78F 00 -	- 00 FTTC.	-343F-11 -	.117E 00	- 177F 00 -	-3036-	448F-01	. 1543F-	-288F-01	277F-	. 905E-01 -		
TERATION	*	- 973E 00 -	.643E 01	.704E 01	7335 01	.704E 01 1	.642F 01 530F 01 -	.937E 00 -	- 803E 00 -	.297F 00 -	315E	354E 00	.363E 00 .314E 00	. 10F 00	- 287F 03 -	- 787E 00 - 787.	.759E 30 -	.541E 00	.675E 00	750F	.674F 00	54nE 00	250F 00 -	- 10-3£19	.7575-32 -1	059F-02	05 7F-01	0465-01	736E-01	962E-02 -	4355-01 -	924E-01 -	-35E4	3245-02	1175-02	3366	Ė,	. 520F-01 - 1 6465-03 - 6	20 15 TO - 10
NO. 1 AN	; ×	6 -	43F 01 1	704F 01 1	733E 01 1	704F 01 1	425 01 1	904E 00 9	290F 00 2	01E 00 2	04E 00 3	35E 00 3	5F 00	213E 00	675F 00 2	1 4 F 00 - 7	75F 01 -6	95F 01 5	53E 01 -6	4 10 H	45E 01 -6	995 01 -6	79F 01 -6	73E 01 = 4 28F 00 = 7	~ .	9 10 5 E	97F 01 2	RRE 01 2	52F 01 1	136 00 7	54E 00 7	E 60 51	7 00 4	10 508	E 01 -		Ϊ - C - L		
NS FOR TILE		4E-01 9	E-01 1.	5F-01 1.	4E-01 1.	5F-01 1.	05-01 1.	-01 9.	25E-03 1.	9F-04 -2.	05 -2.	2F-05 -	7- 40-11 4F-05 -2	78F-04 -2	7F-04 -2	144.	115-04-1	258-05 -1.	216-04 -1.	5F-04 -1.	168-04 -1.	525-05 -1.	201-04 -1.	8F-04 -3.	71-34 -B.	75-05 -1.	0F-04 -1.	29E-04 -1.		40F-04 -9	4E-34-35	1-04-1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	r-06-1	1- 50-16	<u> </u>	7855-04 -1.	71 (E-1)4 -19. 6566-06 -16	101120120
DIRECT STRAIN	>	9E-03 -	4F-03 -	2E-13 -	4E-03 -	60	2F-03 -	85-03 -	36F-04 -1.	73E-34 -4	3E-04 -	20F-04 -4	195-04 -4 905-04 -9	86E-04 -7.	145-04 -4.	-45060 05E-04	1E-75 -7.	35-05 1.	75-05 1.	-75 7.	5u-us	0f-05 1.			ر- ع3 3	7 5	(- 1 y	35-36 1.	• .	Jr-15 -7.	- 46-3	- 50-51	(- 4]		1856-35 6.	1836-75 6.	687F-05 3.		, 1 = 00 = 0.700
PESSES AND	×	31 SE	326E-03 -	325F-03 -	326E-03 -	325E-	. 5768-03 (3155-03 -	244F-04 -	888F-04 -	913E-04 -	- 96-34 F.	- 40 CC	-3966.	. 48555-	しいしなが、	- 3/1/2	.582E-	.5815- 7255-	-3127 -3275-	-3584	,587, 230,00	- 1517	777=-	4.145	- 1557	4785-	- 3625	-36191	-1515	7396-	44211	7 20 1	1945	- 3466	(-331.6)	76.05	1.5 70 - 3	
ST TNATES **	; · · · · · · · · · · · · · · · · · · ·		02 - 20	20.	02 - 20	20.	70.	2- 20	5	7 7	-	<u></u> .	0 60	13 - 1	5	5 6 6	, e.e.	5- CE	6 - C	() () () () () () () () () ()	30 -2	נו מני נו	2 2	47 -1	C- L1	, , ,	47 -3	۲- /7	را / م د را	7	1- 15	- (7	, , , , , , , , , , , , , , , , , , ,	.3 - 4	£ - % :	7 - 2 's	5- F.) 6- F.)), () () () () ()	
AL CONRDINATES		o;c	0		0	0.0	2 6	c.	0.0					. c			7	0.1			7.1						~		 -		-	~ ;	• •	~	<i>-</i> .	<u>.</u> ,		-	
- TÜCVI - d	× ,	0.33	-	~ n	'n	4.0	ר ור	ć	0 -			ι 		ις	5		-	-	υī	. <i>y</i>	*	ι. n	r <	e d	: .		, ,	∵		4.	6.			~•	رم (, ,	. C		
MEM TEMP		1 -325.	i m	<u>ו</u> ו	, 10		i (. "	1 - 3	n pro I I I pro	"	υ. 	. 6	£ 1	יי ר קיי	, L		£ .	1 1	, ,	7		1 1	1	0)	1 1	7	-	, ,	-	- ;	1	, , , ,	-	۲.	<u></u>	, ,	. ~	

		BOTTOM-I	ENTTOM-POINT PLATE MEMBER STRAINS AND STRESSES FOR ITERATION NO. 3	S STRAINS AND S	TRESSES FOR ITERA	TION NO. 3		
MEMAED	นลขบว	COMPRINATES		STRAINS			STRESSES	,
	×	>	Eps×	EPS Y	FPS XY	× 518 ×	SIG Y	SIG XY
1	.1	, 1 1 1	. 1	1	; ;	1		
- '	3.33335-31	1.66658-01	-4.2580F-03	-4.25746-03	1.62148-08	-5.2813E 00	-5.3125E-01	1.15815-01
~ '	1.00006 00	1.66666-71	-4.25975-03	-4.2569F-03	1.34216-08	-2.2148E 01	-1.6406E-01	9.5864E-02
ا س	1.66675 70	1.66666-71	-4.25195-03	4.2562E-03	5.11566-09	4.3762E 01	-2.8516E-01	3.6540E-02
· •	2.3334F 10	1.6666F-01		-4.2557F-03	4.10846-09	-6.0832E 01	-2.4609E-01	2.9345E-02
ייר	3.0000E 00	1.45656-01	-4.2645F-03		-9.7114F-10	7.0004E 01	-2.4609E-01	-6.9367E-03
	3.66,67F 00	1.56665-31	-4.26455-03		2.27896-09		-2.4609E-01	1.59208-02
	06 38888 ** 7	1.5566F-01		-4.2557F-03	8.64266-09		-2.0313F-01	6.1733E-02
, i	5.0000 30	1.46668-01	-4.26176-03	-4.25635-03	1.12466-08	4.2246E 01	-7.4609F-01	8.0474E-02
. I	15. KKK7 FF 11	1.45665-31	£0-3595E-0-	-4-25695-03	7.4381F=09	-2.0132F 01	-1.640AE-01	1.7415F-02
1,	6.3333F 30	1,56448-01	-4.2577F-03	-4.2\$75r-03	1.12656-03	- 7.6602F 00	-5.3125E-01	8.1179E-03

567890	
678901234	•
456789012345	; ;
45678901234	.°°
3456789012345	**************************************
2345678901234	10 10 10 10 10 10 10 10 10 10 10 10 10 1
45678901	A C C C C C C C C C C C C C C C C C C C
1234567890123	SAMPLE PROBLEM AUGUST 21: 2

STATICS PROBLEM

MAXEMUM NO. ITERATIONS = 3

PRIMARY STRUCTURE STRESSES PRESENTED AFTER LAST ITERATION AT PLATE TOP AND BUTTOM SURFACES

CONVERGENCE PARAMETER = 5.0000E-02

TILES OF PRIMARY STRUCTURE

TILE STRESSES PRESENTED AFTER LAST ITERATION

TILE NOJE MAP REGUIRED

TILE ELEMENT MAP NOT PEOUTRED

TILE NUJE COURDINATES NOT REQUIRED

DU NUT JRINT ELEMENT STIPFNESS MATRICES

DO NUT ARINI ASSEMBLED STIFFNESS MATRICES

JU NUT THENT FILE DEBUGGING INFORMATION

COMPUTE STRESSES FOR ALL TILES

B-72

O E O B E H P.

	AS = 0.0	BETA S = 0.C								ALPHA P = 0.0	ALPHA P = 0.0						ALPHA I = 0.C		ALPHA RZ / ALPHA KK = 3.C
7.50000E-01	0.0	0.0		1.16667E 00	0.0	-				0 • 0	0.0	6.00000E 03	1.00000E-02	3.20000E 04		0.0			ALPHA RZ
TP =	≡ S.⊁	" • × 7		12 =	TC =	ND2 =			Ø 1 ₩ 1 ₩ 1 ₩ 1	GAMMA P	CAMMA S =	E 2 =	" ×2 ON	= x29		ALPHA Z =	GAMMA I =		-
3+33330E-01	0.0	0.0	-	0.0	5.000006-02	10,	~		4 I	3.0000E-01	0.0	6.00000E 04	1.00000E-01	3. 20000E 04		0 • 0	4 - 90 0 00E-01		0.0
II	¥ SZ	= . 21	NYB =	81 =	= 11	NB2 =	NT 2		α I ⊬ I ∢ I Σ I	" a	s ON	EY.	= ZA NN	= 245		ALPHA Y =	" " " "		ALPHA RY / ALPHA KX =
6.66667E 00	5.00000E-01	0•0		0.0	1.5667CE-01	o	0			1.00000E 07	0 • 0	6. COOCOE 04	5.000c0E-01	2. COOCCE 04	0.0	0.0	9.000ccE 01	0.0	ALPHA F
۲×	u 11 }	H	II EC XX	u -	1 A F	19N	M 1 1			E E	ES	EX	≅ XX ∩N	CXY =	GAMMA A =	ALPHA X =	ij	GAMMA R	
PLATE	STRINGERS		TILES	! 		BPICK		,	-	PL A TE	STRINGERS	ARMESTOR	OH RSI	! ! !			I SOL A TOR	I Sa	

		TEMPERATURE PROPERTY	PROPERTY	TEMPERATURE PROPERTY	PROPERTY	TEMPERATURE PROPERTY	PROPERTY	TEMPERATURE	PROPERTY
-	E.R	ALL	6.000E C4						
-	₽	ALL	6.000E C3						
-	5R*	ALL	3.200E C4	•		٠			
1	Œ O	ALL	5.000E-C1						
-	.NU R.	ALL	1.000E-C2		•				
-	ALPH & R	ALL	0.0						
-	EC	ALL	0.0						
-	NU C	ALL	0.0					•	

0.0

ALL

ALPHA C

	STRINGERS	FREE	FREE				O • O • O • II • X > Z	
N I I I I I I I I I I I I I I I I I I I	PLATE IN PLANE	FREE	U HELD, V FREE	V MELD, U FREE	FREE		O • O X X Z O • O W O • O O • O W O • O W O • O	DEL TEMP S = C.0
3 I 0 I 0 I	PLATE OUT CF PLANE	PINNED	PINNED	FPEE	FREE		= C.0 = 1.00000E 02 T = C.0	0 • 0
							х х d	DEL TEMP P

NO STATIC THERMAL LOADING
UNIFORM TEMPEFATUPE OPTION
T REFERENCE = 0.0

DEL T U = T + T REF = 0.0

212
210
213
21.1
508
207
205
503
201
1 90

198	197
196	40
194	101
192	
190	191
188	1.87
186	285
184	183
182	181
178 180	177 179
178	177

```
0000000000000000000
0
۵
ш
 W
æ
ų.
 ш
0
 20
S
ш
 ш
ò
α
 ш
ă
```

```
ш
0≥ ≻
 ⊃∝
UШ
 3 C
œ 0
μW
øψ>
α∢
∢ 🗈
 ≥ 0
αυ
œ×
```

-TODE

	RZ	1	1	1	•	1	•	,	•		•	ι	1	
		٠.	ı	1	ı	٠.	•	ı	ı	ı	ı	1	ı	
		1	1	ı	ı	ı	ı	ı	ı	1	1	ı		
	RY	3.456739E-03 3.456733E-03	3.268892E-03 3.268868E-03	. ~1	1,969881E-03 1,969814E-03	1.027109E-03	2.700736E-07 2.323126E-07	-1.026573E-03	-1.969688E-03	-2.745	-3.269351E-03 -3.269293E-03	-3.457324E-03 -3.45726E-03	1 1 1 1	
TERATION NO. 1	×	-1.473518E-06	2.863919E-05	5.041329E-05 -5.027156E-05	6.620480E-05 -6.595705E-05	7.583386E-05	7.908084E-05	7.592475E-05 -7.511086E-05	6.644083E-05 -6.583716E-05	5.057774E-05 -5.013507E-05	2.877529E-05 -2.853607E-05	-1.470409E-06 1.468549E-06	1 1 1 1	
RE DEFLECTIONS FOR IT	20	1	-2.264617E-03 -2.264618E-03	-4.286710E-03	-5.870827E	-6.877355E-03 -6.877262E-03	-7.222328E	-6.877705E-03	-5.871460E-03	-4.287299E-03	-2.264980E-03	1 1	1 1 1	
STRUCTURE			1		ı				1 ()		1	4	
STR		1 1) 1	, ,			١	1	ı 1) 1	. 1	ı	i i	
MARY	ρ	1 (· I) I		ì		
PRI		0.0	0 0	0.0	0.1	0	0	0.0	0	0 • 0	0	0.0	1	
													1	
		4 (· 1	ı	ı	ı	,					ı	ı	
			ı .	ı	ı	ı	1	ı	ı ı) I		i	ı	
	ă	1 (ı	1	,	,	(ı	1	
		100	00	00	00	00 00	00	00	00	00	00	ı	ı	
		į i	•	•	•	ı	ı	,					1	
		' 1	•	1	•	ı	1	1			ı	1	ı	
		()	ı	ı	ı	ı	ı	•		•			ı	
	NJDE	1781	w 4	n o 1	~ 8 ₁	70 1	121	I	0.0	~ 0	40 I	2.1 2.2	ı	
			ı	•	•	,	. 1	. 1	1	1	١		ì	
									R-	-80				

B-81

	RZ	1	1	1	! !	:		•	1	1	,	· ·
		257E-03 257E-03	853E-03 835E-03	913E-03 876E-03	1E-03	3E-04 19E-04	7E-07	1E-04 56E-04	76E-03	52E-03 52E-03	7F-03 10F-03	58E-03 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	RY	3.3612	3.175 3.175	2.661913E-0 2.661876E-0	1.907061E-0.	9.932443E-0 9.931689E-0	2.205044E-0	-9.927261E-0 -9.927156E-0	-1.906876E-		_3.176297E-0. _3.176240F-0.	-3-361825E-(-3-361768E-(-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
ITERATION NG. 2	×	-1.457974E-06 1.453203E-06	2.826525E-05 -2.829292E-05	4.925889E-05 -4.916536E-05	6.429966E-05 -6.406714E-05	7.339950E-05 -7.276067E-05	7.645463E-05 -7.562677E-05	7.350260E-05 -7.263929E-05	6.455116E -6.391277E	4.944927E-05 -4.899905E-05	2.841215E-05 -2.817533E-05	-1.454991E-06 1.452934E-06
URE DEFLECTIONS FOR	20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-2.201482E-03	-4.164275E-03	-5.699161E-03 -5.699124E-03	-6.673034E-03 -6.672934E-03	-7.006560E-03 -7.006425E-03	-6.673	-5.699780E-03 -5.699676E-03	-4.164	-2.201836E-03	1 1
PRIMARY STRUCTURE	¥0.	7.973046E-08	6.345107E	4.207058E-08	2.713356E	1.782072E		1.783919E-08	2.717687E-08	4.2C7477E-08	٠	7.931072E-08
	Χ	-3-901913E-06 -3-997959E-06	-3.676207E-06 -3.671434E-06	-3.351139E-06 -3.346494E-06		-2.450804E		11.437492E-06	-9.603064E-07	-5.676637E-07 -5.523403E-07	-2.230393E-07	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	NODE	0	w 4	ן סיטו	ا 8 م	00 I	1 7 1	H 4 H	n o 1	1 1 1 4	20.0	1 2 2 4

= -3.36177E-03 FOR DOF

4AXIMUM DEFLECTION

6

²⁰ AAXIMUM DEFLECTION DIFFEHENCE = 2.15776E-C4 FOR DOF

¹AXIMUM CONVERGENCE PARAMETER = 6.41853E-C2

		• 1	ı	•	1 1	1	1 1) !	•	'		•
•	RZ	1	ı			1 !	1	1	•) (•
		ı	ı		! 1) :	1	1	•)) (1 1
		1		i	. (1	1	1		, ,) (1
	Ŗ	3.364080E-03 3.364078E-03	3.178601E-03 3.178587E-03	2.664377E-03 2.664342E-03	1.9089395-03	9.942634E-04 9.941910E-04	2.646018E-07 2.219912E-07	-9.937447E-34	-1.908754E-03 -1.908718E-03	-2.664619E-03	-3.179051E-03 -3.178995E-03	-3-364645E-03 -3-364590E-03
ITERATION NO. 3	×	- 1.455582E-06 1.455494E-06	2.828105E-05 -2.829883E-05	4.928574E-05 -4.920547E-05	6.433637E-05 -6.412840E-05	7.343816E-05 -7.286872E-05	7.650600E-05 -7.574550E-05	7.356293E-05 -7.272129E-05	6.458355E-05 -6.399328E-05	4.946388E-05	2.842055E-05 -2.818723E-05	-1.455612E-06 1.455408E-06
DEFLECTIONS FOR	. 20	1 1	-2.203349E-03	-4.167896E-03	-5.704246E-03 -5.704213E-03	-6.679095E-03	-7.012971E-03 -7.012848E-03	-6.679438E-03	-5.704869E-03 -5.704772E-03	-4.168469E-03 -4.168406E-03	-2.203700E-03 -2.203566E+03	, , , , , ,
FRIMARY STRUCTURE	λQ	7.9586875-08	6.373557E	4.291585E	2.840901E-08	1.937944E	1.6311736	1.939791	2.845171E	4	6.41262CE	~
	, X	-3.838843E-06 -3.834992E-06	-3.615079E-06	-3.294500E-06	-2.898414E-06	-2.419676E-06	-1.917612E-06 -1.917616E-06	-1.415613E-06	-9.473772E-07	-5.412911E -5.458402E	-2.211529E-07	1
		, ,			•	1	•	•	•		ı	1
		1 6						•		1		ı
	NUDE	177	m 4 .	. G O	1 0.0	~ ○	V. I	□ = 1 □ 4	S 0 1	1 1 8	2001	22.
		1 1				f	,					

44XIMUM DEFLECTION DIFFERENCE = 6.42240E-06 FOF DOF 50

6

= -3.36455E-03 FOR DOF

4AXIMUM DEFLECTION

SULUTION HAS CONVERGED

Z COMPONENT(W)	2.2033486E-0	٠	4 16 78846F-0	5.7042465E-0	5.7042129E-0	6.6790953E-0	7.01207076=0	7. 0128478E-0	6.6794381E-0	6.6793077E-0	5. 7048686E-0	5. 7047717E-0	4.1684061F-0	2.2036997E-0	2.2036657E-0	•	1.7478BAGE_A	3.7476560E-0	5.6907944E-0	5.6905597E-0	7.4508972E-0	A - 4300303E-0	8.8766739E-0	9-7944960E-0	9.7941980E-0	1.01103355-0	9. 794 8052 E-0	9. 7944811E-0	8.8774636E-0		7.4511021E-0	5. 6911409E-0	5.690909E-0	3.7480451E-0	3. /4 /8020E-0	6.8435557F-0	8.5816644E-0	8.5813478E-0	1.0192931E-0	1 • 01 • 2 3 3 3 5 1 0
Y COMPONENT(V) 5.4584314E-07 -4.6622353E-07	•0605394E-0	90675798E-0	8494960F-C	-4126130E-0	.4076551E-0	-7539310E-0	- 7 34 3 1 3 UE = 0	2.8420851E-0	.7586095E-0	2.7289876E-0	• 4218825E-0	- 4025925 - 85489485 - 65489485	1.8437131E-0	.0657704E-0	. C634339E-0	5.4585439E-0	• 6564696E	3.693951 3E-0	.4020585E-0	3.4074089E-0	• U802 /2 0E - O	2.7959980F-0	.8061983E-0	2.6274496E-0	2.63/2983E-0	579753 AF-0	2.6276428E-0	2.6369118E-0	• 7955766E-0	• 0784123E-0	3.0894089E-0	.3979258E-0	3.4115440E-0	-6838348E-0	0 - 12 0 - 10 0 - 10 0 - 10 0 0 0 0 0 0 0 0 0	• 6520 663E-C	•4886331E-0	.4912240E-0	.2930391E-0	
COMPCNEN 2576911E	•1883602E-0	•1883595E-0 •0584647F-0	9583808E-0	1296352E-0	.1294140F-0	.7042890E-0	1-8183664F-0	1.8343690E-0	3.7406967E-0	3.7406664E-0	7.1672956E-0	7.15/13/1E-C	0-3865366-5	1.1923651E-0	1.1923490E-0	1.261/4195-0	1.928P564F-0	1.9288959E-0	1.7317173E-0	1.7317629E-0	1.4811209E-U	1.08831596-0	1.0883401E-0	.7616225E-0	1. 708 4408E - 0	1.32621925-0 1.1892517E-0	.7595852E-0	.7593780E-0	• 0 6 5 7 1 3 5 - 0	4811466E-0	.481 CBBE-0	.73175536-0	7316577E-0	928938-0		1.4386380E-0	.3081105E-0	1.3081587E-0	1.10055046-0	0 - 10000000
NOCE	۲) ۱	ct rt) vo	7	a.	٥.) an	12	m -	4 .	ij) v ⊶ •	٥,	13	1.6	50	400	4 6	4	25	96	~ a	1 C1	0	≠ ; M ?	ا ا ا) m)	u) (4)	919	~ ~ ~	u o n m	04	4 1	4	4 4 El 4	# 15 # 5	1 4	47	6 0 (4 1 2 C	>

		-				
		0000000	0000000	0000000	55000000	5555555
	XZ	-11.9883E -11.9883E -11.9813E -11.99813E -11.89512E -11.9881E	-1.6344E -1.7890E -1.7890E -1.7890E -1.7898E -1.6398E -1.7943E	11.23999E 11.44756E 11.24756E 11.24756E 11.24786E 11.4478E	7.22996 -1.622976 -1.622976 -1.02296 -1.24446 -1.62256	11111111111111111111111111111111111111
	2,4	1.18116-01 1.26102-01 1.25892-01 1.25892-01 1.1783-01 1.26098-01		99999 99999 99999 99999 99999 99999 9999		- 4.0732E-0.2 - 7.9979E-0.2 - 8.210.62-0.2 - 8.0731E-0.2 - 8.2045E-0.2 - 8.2045E-0.2 - 8.2045E-0.2
ITERATION NO. 3	sses XY	-5.3123E-04 -5.3123E-04 -5.3109E-04 5.3209E-04 7.0103E-05 7.1126E-05	-6.1785=-04 -6.1785=-04 -6.1785=-04 -6.1828=-04 -1.6868=-05 -1.6456=-05 -1.6456=-05	-55.5080E -55.5080E -55.5080E -55.5080E -55.5087 -55.508 -55.5	- 33.28452EC.04 - 33.28452EC.04 - 33.28762EC.04 - 32.8702EC.05 - 2.9040EC.05 - 2.9040EC.05	1 1282E 1 1 1 1 1 1 1 1 1
ATE	RES	00000000	00000000	00000000	00000000	00000000
AND ITER	22		1-19-9871E -1-10-0339E -1-10-0197E -1-0197E -1-0560E		-9.3683E -9.4637E -9.4637E -9.6009E -9.6013E -9.7023E	111111 ••••••• •••••• •••••• ••••• •••• •••• •• ••
_		00000000	00000000	55555555	00000000	5555555
R TILE NO.	*	-11.0099E -11.0099E -11.00933E -11.00933E -11.00969E -10.0860E	- 99.5761E - 99.5766E - 99.9129E - 99.7921E - 19.7925E - 10.0141E	- 99 - 1902E - 99 - 1906E - 99 - 3674E - 99 - 4172E - 99 - 6048E - 96052E	-8.9827E -8.9831E -9.0738E -9.2738E -9.2203E -9.3177E	1 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
FOR		00000000	00000000	00000000	00000000	00000000
ARRESTOR	×	10207E -1.0207E -1.0642E -1.00442E -1.00417E	1.90.5839E 1.90.5843E 1.90.79211E 1.90.79215E 1.90.7963E 1.00.7963E	-9.1963E -9.3739E -9.3739E -9.4213E -9.4217E -9.6094E	-3.9875E -9.0789E -9.0299E -9.2296E -9.3250E	11990 1990 1990 1990 1990 1990 1990 199
CLATOR AND			n en	· m		
SES FOP IS	ES Z	ELENT 3.99434E-02 3.99434E-02 3.99434E-02 3.99434E-02 1.0566E-02 1.0566E-02 1.0566E-02	14 4 4 4 0 0 0 0 0 7 	44440000 	44440400 Bandananana 	រដ្ឋាភិបាលប្រជាពិភាព ព្រះ ព្រះ ព្រះ ព្រះ ព្រះ ព្រះ ព្រះ ព្រះ
STRE	COORDINAT	2.6289E-01 2.6241E-02 2.6289E-01 7.0441E-02 7.0491E-01 7.0489E-01 7.0441E-02	2.6289E-01 2.6289E-02 7.6289E-02 7.6289E-02 7.6289E-02 2.6289E-01	2.6289F-01 2.6289F-02 2.6289F-02 7.6289F-01 7.6289F-01 7.6289F-01 2.6289F-01	2.6289E-01 2.6241E-02 7.6241E-02 7.6241E-02 7.6249E-01 2.6289E-01	2.62891E-02 7.60891E-02 7.60891E-02 7.60891E-02 7.60891E-01 7.60891E-01 7.60891E-01
	LOCAL		00000000	0000000	0000000	2000000
	×	5.2578E- 1.4088E- 5.2578E- 5.2578E- 1.4088E- 1.4088E-			######################################	2011926 2011926 2011926 3011926 3011926 3011926 3011926 3011926 3011926 3011926 3011926 3011926 3011926 3011926 3011926 3011926
				•		

	*	000000000000-000000000000000000	
	×2	$\begin{array}{c} \bullet \bullet$	
	7.5	444444444 44 44 44 44 44 44 44 44 44 44	
	×	20000000000000000000000000000000000000	
	ESSES		
ON NO. 3	STRES 22	11111111111111111111111111111111111111	
ATI	•		
AND ITER	>		
-			
TILE NO.	×	$\begin{array}{c} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	
RAINS FOR	* 22	11111111111111111111111111111111111111	
D DIRECT ST	STRAINS	111-11-11-11-11-11-11-11-11-11-11-11-11	
STRESSES AND	× *	99.99 99.99	
	NATES Z	00000000000000000000000000000000000000	
	L COORDINAT	000000000000000000000000000000000000000	
	LOCAL	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
	1E 4P	**************************************	
	N III	O4G 46 66 66 66 66 66 66 66 66 66 66 66 66	

			10P-	TOP-POINT		TRAINS AND ST	PLATE MEMBER STRAINS AND STRESSES FOR ITERATION NO.	ON NO. 3		
YEMBER	×	COGRDINATES	NATES Y		EPS X	STRAINS EPS Y	EPS XY	x 518	STRESSES SIG Y	XX 518
'.		1_6	1	ı		† † †	1	1	1	1
.' .'	ייייייייייייייייייייייייייייייייייייי	- - - - - -	10-300001	,	= 1 • 0 4 6 0 E = 0 4	3.0404E-05	-1.7294E-09	-1.0426E 03	-8.7436E 00	-1.2353E-02
~ ' ~ '	1.0000E	ا۔0	1.6666E-01	1	-2.8878E-04	E. 7388E-05	-2.8538E-08	-2.8853E 03	8.3048E 30	-2.0384E-01
m '	1.6667E	-0-	1.6666E-01	l	-4.2433E-04	1.2777E-04	-4.6300E-08	-4.2418E 03	5.1730E 00	-3.3071E-01
' 4 '	2.3333	1-8-1	1.6666E-01	1	-5.1380E-04	1.5463E-04	-9.0042E-08	-5.1364E 03	5.3959E 00	-6.4315E-01
ر ري	3.000E	-6-1	1.6666E-01	t 1	-5.5£36E-04	1-6799E-04	-5.9231E-08	-5.58206 03	5.33216 30	-4.23CBE-01
, · , ·	3.6667E	6-i	1.6666E-01		-5.5836E-04	1.6798E-04	-2.0045E-08	-5.5821E 03	5.1957E 30	-1.43186-01
~ '	4.3333E	-6.	1.6666E-01	•	-5.1398E-04	1.5468E-04	4.8764E-08	-5.1382E 03	5.3562E 00	3.4832E-01
າວ ' ເວົ້	5.0000E	0-1	1.6666E-01	•	-4.2456E-04	1.2785E-04	4.83116-08	-4.2440E C3	5.260bE 30	3.45C8E-01
ր ' ' 	5.6667E	-0-I	1.6666E-01	٠ (-2.8889E-04	8.7413E-05	5.5284E-08	-2.8864E 03	8.2066E 33	3.94896-01
01	6.33335	0	1.6666E-01		-1.0406E-04	3.0421E-05	6.6454E-08	-1.0432E 03	-8.7649E 30	4.7467E-01

			NION-MOLION	NIOL		STRAINS AND	PLATE MEMBER STRAINS AND STRESSES FOR ITERATION NO.	1 ON NO.			
MEMBER		COORDI	COORDI NATES	٠	EPS X	STRAINS EPS Y	EPS XY	x 918		STRESSES SIG Y	XX 918
! ! !		ı	1								
	ım	1. 3333E-01	1.6666E-01	ı	1.0467E-04	-2.9974E-05	2.5926E-09	1.0514E 03	1	1.5686E 01	1.8519E-C
' ' 2 '	ı —	. 0000E 00	1.6666E-01	!	2.8974E-04	-8.7068E-05	2.6673E-08	2.8969E	١.	-1.6196E 00	1.9052E-0
' . ' m	ı	.6667E 00	1.6666E-01		4.2555E-04	-1.2756E-04	4.6589E-08	4.2559E	1 E0	1.1875E 30	3.3278E-0
• •	1 (2)	. 3333E 00	1.6666E-01	,	5.1521E-04	-1.5449E-04	8.9941E-08	5.1523E	03	8.08676-31	6.4243E-0
ا ا اینا ا ا	. m ;	** 0000E 00	1.66666-01	• 1	5.5987E-04	-1.6789E-04	5.9203E-08	5.5989E	03	8.0227E-31	4.2288E-0
' • ' ' • '	M 	1.6667E 00	1.6666E-01		5.5587E-04	-1.6787E-04	2.0064E-08	5.5989E	03	9.3916E-01	1.4331E-0
, , , , , , , , , , , , , , , , , , ,	1	0 3333E 00	1.66665-01		5.1539E-04	-1.5454E-04	-4.8651E-08	5.1541E	03	8.48176-31	-3.4751E-C
₂₀ Ι	ic i	00 30000 °	1.66665-01		4.2578E-04	-1.2763E-04	-4.8670E-08	4.2581E	03	1.0976E 30	-3.4764E-0
ا د د ا	ທັ I	.6667E 00	1.6666E-01		2.85H5E-04	-8.7097E-05	-5.3558E-08	Z-8980E 03	•	-1.5727E 30	-3.8256E-C
° - '	ا ق	5.3333E 30	1.6666E-C1		1.04735-04	-2.9991E-05	-6.2518E-08	1.0520E 03	03	1.5701E 31	-4.4656E-C
						,	,			1	

APPENDIX C

FINITE ELEMENT TYPES USED IN RE*S*I*ST

The active degrees-of-freedom (dof) for an element are defined as the dof for which there is at least one nonzero term in the corresponding row of the element stiffness matrix. The nodes and active dof per node, for each type element included in the RESIST computer program, are defined in (Figures C-1 through C-4).

- BENDING AND MEMBRANE STIFFNESS
- FOUR NODES AT PLATE MIDDLE SURFACE
- ACTIVE DOF PER NODE ARE x, y AND z DEFLECTIONS AND x AND y ROTATIONS
- LUMPED MASSES AT NODES

Figure C-1 Primary Structure Isotropic Plate Element

- ARBITRARY CROSS SECTION BENDING, TWISTING AND AXIAL STIFFNESS
- TWO CENTROIDAL NODES AND TWO ATTACHMENT NODES
- ACTIVE DOF ARE x, y AND z DEFLECTIONS AND ROTATIONS AT ATTACHMENT NODES ONLY. NO ACTIVE DOF AT CENTROIDAL NODES
- LUMPED MASSES AT CENTROIDAL NODES

Figure C-2 Primary Structure Uniform Stiffener Element

- THREE DIMENSIONAL STIFFNESS ELEMENT
- EIGHT CORNER NODES
- ACTIVE DOF PER NODE ARE x, y AND z DEFLECTIONS
- LUMPED MASSES AT CORNER NODES

Figure C-3 Three Dimensional Orthotropic TPS Element

- TWO DIMENSIONAL MEMBRANE ELEMENT
- FOUR CORNER NODES
- ACTIVE DOF PER NODE ARE x AND y DEFLECTIONS ONLY
- INERTIA EFFECTS NEGLECTED FOR THESE ELEMENTS

Figure C-4 TPS Thin Membrane Coating Element

