Introduction Operations Research Technologies Assignment Project Exam Help

Sanjay Dominik Jena

https://tutorcs.com

WeChat: cstutores

MBA 8419 - Decision Making Technology

Overview of the presentation

Assignment Project Exam Help

- Content
- Operations research technologies

 Definitible of CS.COM
 - Operations research vs practical methods
 - Origins of the field
 - Scientific approach
- · Aprica Chates estutores

Presentation of the course

Content

Gerjegeltherreent Project Exam Help

- Understanding the context in which decisional problems appear
- Define what constitutes a solution to the problems

The Unit are the decisions from a Re? COM Define the criteria used to evaluate the possible solutions

- - What are the objectives pursued?
 - What goals need to be reached?

fine the limits of restrictions that inject to be enforced

- Important considerations
 - Quantitative elements ⇒ Objective measurements
 - Qualitative elements ⇒ Subjective measurements

Presentation of the course

Content

General themes (cont'd): ssignments Project Exam Help Prescriptive numerical tools

- Exact methods
- Provide an optimal solution Desplys/stematics for S.COM
 - Heuristic methods
 - Provide a feasible solution
- Exploit specific characteristics of the optimization model

Out hat: CStutores

- Simulation methods
 - Descriptive numerical tools
 - Formulate and represent complex decisional contexts
 - Stochastic parameters

General definition

Operations research field :

CC1 Terintim Contations research of operational research is 🚾 sea nat deals with the application of advanced analytical methods to help make better decisions.

It employs techniques from other mathematical sciences (i.e., mathematical madeling, statistical analysis, and mathematical aptimization), to find optimal bringar eptimal solutions to complex decision-making problems.

see "About Operations Research", INFORMS.org

Problems addressed

Critical path analysis (project markagement) S Floor planning

- Network optimization
- Allocation problems
- Assignment problems
- Routing
- etc.

Operations research vs practical methods

Assignment of the same of the Is it always a good idea?

Intercity truck transportation

Autops://teatescs.com

Context: A company has seven trucks, which are currently located in seven different cities. Seven loads, each corresponding to a truck's capacity and also located in a specific city, need to be collected and then delivered to a final emital. The late, each bid yil to a single truck and each truck will be used to transport one of the loads to the final destination.

Objective:

The company is interested in minimizing the total distance travelled to bring the seven loads to the final terminal.

Operations research vs practical methods

Assi Intercity truck transip tation (cont'd) Exam Help Loade

	Loads						
	1	2	3	4	5	6	7
Trucks	NY /	NY	Dover	Paterson	Flemington	Easton	Newton
Fora fter C	• 2/29 ·	229	139	76	111 49	116	125
2 Honesdale	• 2 12	212	414	755	1153	123	91
3 Franklin	111	111	32	54	108	81	25
4 Edison	62	62	69	68	46	81	82
_ 5 Princeton	92	92	84	95	38	88	89
Warvick	1160	116	6271	1100		111	44
7 Newark	154C	L 54	43			101	76

Question:

How should the company proceed to solve this transportation problem? → Exercise.

Operations research vs practical methods

Assignment Project Exam Help

Intuitive solution approach:

lettes: //textores.com

2 For each assignment, identify, among all available options, the one that minimizes the distance travelled

evistic method secon alporishmes

Question: Is this the best approach to solve the problem?

Operations research vs practical methods

Assignment of Control Exam Help

	Greedy So	olution	Optimal Solution		
1.4	Assignments			Distance	
n	UDS→6/ LL	110 kig	s.com	116 km	
	2 → 1	212 km	2 ightarrow 7	91 km	
	$3 \rightarrow 7$	25 km	3 ightarrow 3	32 km	
XX	/eChat	62 km	1+04r0b	62 km	
V 1	thigal	- 38 km	110gras	38 km	
	$6 \rightarrow 3$	62 km	6 ightarrow 4	69 km	
	7 o 4	26 km	7 ightarrow 2	54 km	
	Total	541 km	Total	462 km	

Operations research vs practical methods

Intercity truck transportation (cont'd) Exam Help

- Extremely fast
- Easy to implement

stilyantages tithe greed sile ithm

 Does not necessarily produce the best solution to the problem

Systematic search approach:

- Emperate at the possible solution of the problem
- Evaluate the total distance traveled for each possible solution
- Choose the solution for which the total distance is minimum

Exact method ⇒ Complete Enumeration

Operations research vs practical methods

ssignment Project Exam Help Assumption

Using a computer capable of treating (i.e., finding and evaluating) one billion solutions within one second of computation time. HUDS://tutorcs.com

Computation time as a function of the size of the problem, where *n* represents the number of trucks / loads

Computation time 6 nanoseconds 120 120 nanoseconds $\approx 1,307674 \times 10^{12}$ \approx 22 minutes $\approx 2,432902 \times 10^{18}$ \approx 77 years

Operations research vs practical methods

Assignments Project Exam Help Advantages of complete enumeration

Finds an optimal solution to the problem

isadvantages of complete enumeration Externelly long search process in the case of larger

problems

these types of problems (i.e., Assignment Problems)

These tools are much more efficient than either the greedy method or the complete enumeration procedure

Operations research vs practical methods

Assignment Project Exam Help

Using such technological tools, the computation time as a function of the size of the problem a are as follows

T	n	Assignment Problem	
	10	< 1 seconds	
WeCh	50	CSELLORCS	
* * CC11	CIUU.	CD E eeconde CD	
	200	10 seconds	

Operations research vs practical methods

Assignment Project Exam Help

Context: A company needs to plan its needs for a cer-Periods :00 à :15 :30 à :45 :45 à :60 in type of staff for the next 06:00 day of operations. The old-wing table provides the mini-3 10:00 mum numbers of staff mem-11:00 bers that need to be present to 13:00 perform operations throughout 14:00 hat: cstut@ Objectives: 18:00 19:00 Minimize the number of staff 20:00 21 .00 that are scheduled for the day, 22:00 or, minimize the number of 23:00 24:00 hours they work

01:00

Operations research vs practical methods

Assignaging human resources (confd) Exam Help considered staff are unionized and their collective agreement specifies

the following conditions:

A staffer must work at least 4 hours on a day shift to the staffer can work at no 11 hours on a ray shift

Greedy algorithm:

- Establish the next scheduled shifts at the earliest non-covered
- period the day

 Number of leadiled staff S leadile () Thought Staff to cover the identified period
- Shifts are prolonged as far as possible without exceeding the required minimum number of staff of subsequent non-covered periods, while enforcing union requirements

Operations research vs practical methods

Assignment Project Exam Help

	Gree	edy Solution	Optimal Solution		
	Number	Shift	Number	Shift	
1 4	2//	06 :30 à 13 :00	2	06:30 à 10:30	
http	C • / / / 1	08:45 a 13:30	CO	107 15 à 12 :30	
nup	D.11	08:45 à 13:30	5. 40	08:45 à 13:00	
_	1	09 :15 à 13 :15	1	09 :15 à 19 :15	
	2	13:30 à 23:30	1	13:30 à 21:00	
***		15 :30 à 21 :15	, 1	15 :30 à 24 :00	
$\mathbf{W}_{\mathbf{P}}$	์ 'h ภ	117:302 S 119 21:15 a 5 115	Itar(™ C:30 à 22 :15	
****	-41a	21:15 á bí .15	ιψι	20:15 à 01 :15	

In terms of the objectives

- Greedy solution \Rightarrow 10 employees who will work 64.5 hours
- Optimal solution ⇒ 9 employees who will work 53.25 hours

Origins of the field

Assignmento Project Exam Help

Description: transition to new manufacturing processes in the period from about 1760 to sometime between 1820 and 1840

- o₁ manual/hand production methods ⇒ machines ne v processes (manufacturing and iron production)
 - ↑ steam power and factory systems

Perecondent of machine tools utores

- Managing projects of ever increasing complexity
 - Hydroelectric Dams
 - Interstate highway systems

Origins of the field

Assignment Project Exam Help

Description: theory of management that analyzes and synthesizes workflows and whose main objective is improving economic efficiency and labour

nroductivity // tutorcs com

- use measurements for better management
- Power Chat: cstutorcs

 Description: standardization of mass production processes and the deve-

lopment of more efficient production chains

Taylorism applied on more complex operations

Scientific Approach

Assignment Project Exam Help

Figure – A general 7 step process

Figure – The optimization model is based on the abstraction of the real-world

Logistics

Assignment Project Exam Help

Figure – Supply chain management

Assignment Project Exam Help

Context: Considering a fleet of vehicles, determine an optimal set of routes for them to traverse overtime in order to deliver (or pickup)

https://tutorcs.com

Different variants:

- Capacity constraints
- We Period Windows

 Period W of del Central Control Con
 - Multiple depots
 - Multiple trips
 - Simultaneous pickups and deliveries
 - etc.

Logistics (cont'd)

Assignation of the state of the

Travelling şalesman problem

ween each pair of cities, find the shortest possible route that visits each city once.

Consider the case where there are 3 cities to visit, how many possight outes? 13 × 2×0+ for 100 C

n!	Number of solutions		
3!	6		
5!	120		
10!	3 628 800		
20!	2 432 902 008 176 640 000		

Assignment Project Exam Help

Context: Strategy that aligns a firm's business with risk factors of its environment in the pursuit of strategic objectives.

hee Managing Risk, Reabing Rewards, Changing financial world turns to Operations Research, OR/MS Today, Level 1975, Changing financial world turns to Operations Research, OR/MS Today, Value of Communication of Communication (Communication) Revealed to Communication (Communication) Research, OR/MS Today, Value of Communication (Communication) Research, OR/MS Today, OR/MS Today,

Pricing ⇒ models to measure risks

Securifization = design financial products that are adjusted to an organization?

- Asset and liability management ⇒ portfolio optimization
- Indexation ⇒ design of market benchmarks (i.e., indices)

Assimulating project Fram Help Context:

- Set of markets that need to be reached the process of the transfer of the street of th
 - Promotional impact (outlet → market)

We Chat: cstutorcs

How to design a marketing plan (i.e., a set of outlets to be applied through time) to max impact over considered markets?

Assignmente groject Exam Help

Set of potential (or recurring) clients

https://tutorcs.com

- Workload per client
- Value per client

WaChat: cstutorcs

How to assign salespersons \rightarrow clients to ensure that either the overall workload (or client value) per salesperson is uniform and to min costs?

Information technology

Assignment Project Exam Help thods at the intersection of machine learning, statistics, and database systems

Objective:

extractinformation/iron a data set and transform ir interen understandable structure for further use (i.e., organizational decision making)

Common tasks:

- ♠ Anomaly detection ⇒ outlier, change and deviation detection
 - Association rul Raping ⇒ depende by no lettin (elaigns lips between variables)
 - Clustering

 discovering similar groups and structures in the data
 - Olassification⇒ generalizing known structures to apply to new data
 - Regression

 formulate models to estimate the relationships between different data, or datasets, with
 the least error
 - Summarization⇒ compact representation of the data set (visualization and report generation)

Assignment Project Exam Help

Context :

- Schedule \Rightarrow list of times at which possible tasks, events, or actions tare in the ded to take bloom CS. COM
 - Scheduling ⇒ deciding how to order the tasks and how to commit the necessary resources to perform them
- Scheduling problem CS TUTOTCS
 Scheduling a number of employees with typical constraints such as rotation of shifts, limits on overtime, etc. to cover the demands for treatment and care for a set of patients

Managing human ressources (cont'd)

Assischeduling problem (Project Exam Help

 Hard constraints ⇒ a constraint that absolutely needs to be enforced (otherwise, the schedule is invalid)

https://tutorcs.com

- specification of shifts (e.g., morning, atternoon, and night)
- a nurse should be assigned to no more than one shift per day
- all patients be covered

Soft constraints to a constraint that should preferably be enforced (however, not meeting them does not make the schedule invalid) Examples:

- min and max numbers of shifts assigned to a given nurse in a given week
- min and max days worked consecutively
- shift preferences of individual nurses

