Teoría de números algebraicos Tarea 5

Alexey Beshenov (alexey.beshenov@cimat.mx)

23 de septiembre de 2020

Fecha límite: viernes, 2 de octubre.

Ejercicio 5.1. Sea X una matriz de $n \times n$ e Y una matriz de $n' \times n'$. El **producto de Kronecker** $X \otimes Y$ es la matriz de $nn' \times nn'$ que consiste en bloques

$$\begin{pmatrix} x_{11}Y & \cdots & x_{1n}Y \\ \vdots & \ddots & \vdots \\ x_{n1}Y & \cdots & x_{nn}Y \end{pmatrix}.$$

Demuestre que

$$\det(X \otimes Y) = \det(X)^{n'} \cdot \det(Y)^{n}.$$

Ejercicio 5.2. Para el campo de números $K=\mathbb{Q}(\sqrt{3},\zeta_5)$ calcule \mathcal{O}_K y Δ_K . ¿Cuáles primos racionales se ramifican en K?

Ejercicio 5.3. Consideremos los campos cuadráticos $K = \mathbb{Q}(\sqrt{3})$ y $K' = \mathbb{Q}(\sqrt{-5})$ y su compositum $KK' = \mathbb{Q}(\sqrt{3}, \sqrt{-5})$. Sea $\mathcal{O} = \mathbb{Z} \oplus \sqrt{3}\mathbb{Z} \oplus \sqrt{-5}\mathbb{Z} \oplus \sqrt{-15}\mathbb{Z}$. Calcule $\mathcal{O}_{KK'}$, $\Delta_{KK'}$ y el índice $[\mathcal{O}_{KK'}:\mathcal{O}]$.

Ejercicio 5.4. Calcule que

$$\Delta(\mathbb{Z}[\zeta_{p^e}]) = \Delta(\Phi_{p^e}) = \pm p^s$$
, donde $s = p^{e-1} (pe - e - 1)$.

¿Cuál es el signo?

Ejercicio 5.5. Demuestre que si $n=mp^e$, donde $p\nmid m$, entonces se cumple la congruencia

$$\Phi_n(x) \equiv \Phi_m(x)^{\phi(p^e)} \pmod{p}.$$