CS641

Modern Cryptology Indian Institute of Technology, Kanpur

Group Name: ANV Dibbu Amar Raja (21111009), Idamakanti Venkata Nagarjun Reddy (21111031), Vikas

(21111067)

End Semester Examination

Submission Deadline: May 5, 2022, 11:55hrs

Solution 1

Lattice

Q a):- Given:

 $L \in \mathbb{Z}^{n \times n}$, be the matrix defined as: L = n · I , Here I is an identity matrix of size nxn Let $U \in \mathbb{Z}^{n \times n}$ be a unitary matrix with det U = 1.

Let $R \in Q^{nxn}$ be a rigid rotation matrix, that is, $RR^T = I$

 $\hat{L} = ULR$.

Public key is the matrix \hat{L} . Private key is the matrix R

We will now prove that the lattice generated by \hat{L} has a basis consisting of n orthogonal vectors, each of length n.

Let the lattice generated by taking \hat{L} as basis be 'z'.

 $U \in \mathbb{Z}^{n \times n}$ be a unitary matrix, that is, det U = 1.

A unitary matrix with real entries is orthogonal.

So, we can say that $U.U^T = I$

It is given that $RR^T = I$, We can say that R is an orthogonal matrix.

It is given that $\hat{L} = ULR$

 $\hat{L} = U.n.I.R$

 $\hat{L} = n.U.I.R$

 $\hat{L} = n.U.R$

We know that product of two orthogonal matrices is orthogonal.

Proof. \Rightarrow

Let A, B be 2 orthogonal matrices.

$$\Rightarrow A.A^T = I \text{ and } B.B^T = I$$

Product of these two matrices is A.B

Let us take $(A.B).(A.B)^T$

This can be written as

$$\Rightarrow (A.B).(B^T.A^T)$$

$$\Rightarrow (A.B.B^T.A^T)$$

$$\Rightarrow (A.I.A^T)$$

$$\Rightarrow (A.A^T)$$

 $\Rightarrow I$

From this, we can say that product of two orthogonal matrices is orthogonal.

 $\hat{L}=n.U.R$, here, U is orthogonal and R is orthogonal. So, product of U and R is orthogonal too.

Let U.R be denoted by matrix P, P is an nxn matrix.

$$\Rightarrow \hat{L} = n.P$$

P is orthogonal

That means, P has n columns which are orthogonal to each other and each of the columns are of length 1. Then, if we multiply P with n, that is nP, we can say that nP has n columns which are orthogonal to each other and the length of the each column will be n. That means, \hat{L} has has n columns which are orthogonal to each other and the length of the each column will be n. This means that the lattice z has a basis consisting of n orthogonal vectors, each of length n. This basis is \hat{L} .

(or)

Another approach :-

$$\hat{L}.\hat{L}^T = (ULR).(ULR)^T$$

$$\hat{L}.\hat{L}^T = (ULR).(R^TL^TU^T)$$

$$\hat{L}.\hat{L}^T = (UL.I.L^TU^T) \quad (\because R.R^T = I)$$

$$\hat{L}.\hat{L}^T = (ULL^TU^T)$$

```
\hat{L}.\hat{L}^T = (U.n.I.n.I.U^T) (given L = n.I)

\hat{L}.\hat{L}^T = (U.n^2.I.U^T)

\hat{L}.\hat{L}^T = (n^2.U.U^T)

\hat{L}.\hat{L}^T = (n^2.I) (: U.U^T = I)
```

 \hat{L}/n . $\hat{L}^T/n = I \Longrightarrow$ Now we can say that \hat{L}/n is an orthogonal matrix each column of length "1".

(: if A is a square matrix and $A.A^T = I$ then A is Orthogonal matrix)

 \hat{L}/n is an orthogonal martix, this means that \hat{L} has has n columns which are orthogonal to each other and the length of the each column will be n. This means that the lattice z has a basis consisting of n orthogonal vectors, each of length n. This basis is \hat{L} .

Decryption

Q b):- Given:

L = n.I

Let $U \in Z$

n×n be a unitary matrix, that is, det U = 1. Let $R \in Q^{n \times n}$ be a rigid rotation matrix, that is, $RR^T = I$. Define $\hat{L} = ULR$. Public key is the matrix \hat{L} and private key is the matrix R.

Encryption: Given an n-bit long message m, view it as a vector in Z^n with binary entries. Pick a random vector $v \in Z^n$ and compute the vector $c = v\hat{L} + m$. Output c.

Decryption: Given a vector $c \in Q^n$, compute vector $d = cR^T$. Reduce every entry of d modulo n so that the entry becomes < n/2 in absolute value. Let the resulting vector be \hat{d} . Compute $m = \hat{d}R$.

Now, we will show that the decryption works.

$$c = v\hat{L} + m$$

We multiply c with R^T and call it d.

$$d = c.R^T$$

$$\Rightarrow d = (v.\hat{L} + m).R^T$$

$$\Rightarrow d = (v.\hat{L}.R^T + m.R^T)$$

$$\Rightarrow d = (v.ULR.R^T + m.R^T)$$

$$\Rightarrow d = (v.U.L.I + m.R^T)$$

$$\Rightarrow d = (v.U.n.I.I + m.R^T)$$

$$\Rightarrow d = (n.v.U + m.R^T)$$

$$d = (n.v.U + m.R^T)$$

this is a cryptosystem. If n is small (< 10), security is very weak. So n should be assumed to be large. (As mentioned by Sir in Forum). So, we will assume that $n \ge 10$

According to decryption, Reduce every entry of d modulo n so that the entry becomes < n/2 in absolute value. Let the resulting vector be \hat{d} . We will do this.

Now, we will perform (mod n) on d. We will consider floating point modulus operation as R contains rational numbers

d modulo n =
$$(n.v.U + m.R^T)$$
 mod n
d modulo n = $(((n.v.U)modn) + ((m.R^T)modn))$

The matrix ((n. v. U) mod n) will become a zero matrix because v has integers and U has integers and we are multiplying v.U with the scalar 'n' and each value of n.v.U will be a

multiple of n. So, ((n.v.U) mod n) will result in a zero matrix of dimensions 1xn.

$$\Rightarrow$$
 d modulo n = $((m.R^T)modn)$

Now, we will discuss about the entries of the matrix $m.R^T$

m is a 1xn matrix consisting of entries say $m_1, m_2, m_3, \dots, m_n$

 $m_1, m_2, m_3, \dots, m_n$ take values 0, 1

Let us consider R has row vectors r_1, r_2, \dots, r_n

Let us consider r_1 has elements r_{11} , r_{12} , r_{13} , r_{1n}

Let us consider r2 has elements r_{21} , r_{22} , r_{23} , r_{2n} .

.

Let us consider r_n has elements r_{n1} , r_{n2} , r_{n3} , r_{nn}

Let us consider r_1 has elements r_{11} , r_{12} , r_{13} r_{1n} . Total n elements in r_1 . As R is an orthogonal matrix, we can say that length of each column vector and each row vector in R is 1.

So, length of r_1 is 1, r_2 is 1,..... r_n is 1.

This means
$$\sqrt{(r_{i1}^2 + r_{i2}^2 + r_{i3}^2 \dots r_{in}^2)} = 1$$
 (i takes values from 1 to n). $\Rightarrow r_{i1}^2 + r_{i2}^2 + r_{i3}^2 \dots r_{in}^2 = 1$

If we transpose R, the row vectors become column vectors. That means, r_1, r_2, \dots, r_n are column vectors in R^T

If we multiply m by R^T , then i^{th} element of $m.R^T$ would be $\sum_{j=1}^n (m_j * r_{ij})$

For example, 1st element of $m.R^T$ would be $m_1 * r_{11} + m_2 * r_{12} + m_3 * r_{13} + \dots m_n * r_{1n}$

We will try to find the maximum value and minimum value of the elements of $m.R^T$

Let us take the 1st element of $m.R^T$ i.e $m_1 * r_{11} + m_2 * r_{12} + m_3 * r_{13} + \dots m_n * r_{1n}$ we know that $r_{11}^2 + r_{12}^2 + r_{13}^2 + \dots r_{1n}^2 = 1$

$$m_1 * r_{11} + m_2 * r_{12} + m_3 * r_{13} + \dots m_n * r_{1n}$$

The maximum of this element is achieved when m_1, m_2, \dots, m_n all of them are equal to 1 and $r_{11}, r_{12}, \dots, r_{1n}$ are positive. So, we should maximize $r_{11} + r_{12} + r_{13}, \dots, r_{1n}$ The maximum value of $r_{11} + r_{12} + r_{13}, \dots, r_{1n}$ is achieved when all these values are equal.

$$\Rightarrow r_{11} = r_{12}..... = rr_{1n} = z$$

$$\Rightarrow z^2 + z^2 +ntimes = 1$$

$$\Rightarrow n * z^2 = 1$$

$$\Rightarrow z^2 = 1/n$$

$$\Rightarrow$$
 z = +1/ $\sqrt[2]{n}$ or -1/ $\sqrt[2]{n}$

As we want to maximize $r_{11} + r_{12} + r_{13} + r_{13} + r_{1n}$, we take z as $+1/\sqrt[2]{n}$

So,
$$r_{11} = r_{12} = r_{1n} = 1/\sqrt[2]{n}$$

So, max value of $m_1 * r_{11} + m_2 * r_{12} + m_3 * r_{13} + \dots m_n * r_{1n}$ is $1/\sqrt[2]{n} + 1/\sqrt[2]{n} + \dots m_n$ times

 \Rightarrow max value of $m_1 * r_{11} + m_2 * r_{12} + m_3 * r_{13} + \dots + m_n * r_{1n}$ is $n / \sqrt[2]{n}$

$$\Rightarrow$$
 max value of $m_1 * r_{11} + m_2 * r_{12} + m_3 * r_{13} + \dots + m_n * r_{1n}$ is $\sqrt[2]{n}$

We can also prove that maximum value of $r_{11} + r_{12} + \dots r_{1n}$ is $\sqrt[2]{n}$ using L1-L2 norm inequality.

Proof: According to L1-L2 norm inequality,

L1-norm $\leq \sqrt[2]{n} * L2$ -norm

$$\Rightarrow |r_{11}| + |r_{12}| + \dots |r_{1n}| <= \sqrt[2]{n^*} \sqrt[2]{r_{11}^2 + r_{12}^2 + r_{13}^2 + \dots |r_{1n}^2|}$$

we take r_{11} , r_{12} as positive values

we know
$$r_{11}^2 + r_{12}^2 + r_{13}^2 \dots r_{1n}^2 = 1$$

so,
$$r_{11} + r_{12} + \dots r_{1n} \le \sqrt[2]{n}$$

$$\Rightarrow$$
 max value of $\mathbf{r}_{11} + r_{12} \dots r_{1n} is \sqrt[2]{n}$

So, max value of m1 * $r_{11} + m2 * r_{12} + m3 * r_{13} + \dots + mn * r_{1n} is \sqrt[2]{n}$ (because to achieve max value, we take m1, m2, as 1)

Similarly, we can show that minimum value of $m1 * r_{11} + m2 * r_{12} + m3 * r_{13} + \dots + mn * r_{1n}$ is $-\sqrt[2]{n}$

So, we can say that each element of $m.R^T$ lies in range $[-\sqrt[2]{n}, \sqrt[2]{n}]$ inclusive

Also, We can say that each element of $((m.R^T) \mod n)$ lies in range $[-\sqrt[2]{n}, \sqrt[2]{n}]$ inclusive (since $(\sqrt[2]{n} \mod n)$ is equal to $\sqrt[2]{n}$ for every n > 1) As we have assumed that $n \ge 10$, we can say that absolute value of $((m.R^T) \mod n)$ is less than n/2.

 $Proof \Rightarrow$

Let us assume $(\sqrt[2]{n}) < n/2$

$$\Rightarrow$$
 n/2> $\sqrt[2]{n}$

$$\Rightarrow n > \sqrt[2]{n} \cdot 2$$

applying square on both sides

$$\Rightarrow n^2 > n*4$$

$$\Rightarrow n > 4$$

So, for $\sqrt[2]{n}$ to be less than n/2, n should be greater than 4. As our assumption is $n \ge 10$, we can say that absolute value of $((m.R^T) \mod n)$ is less than n/2.

So, we can say that $((m.R^T) \mod n)$ is equal to $(m.R^T)$ We can now say that the resulting vector $\hat{d} = (m.R^T)$ We now compute $\hat{d}.R$ $\hat{d}.R = m.R^T.R$ As R is orthogonal, $R^T.R = R.R^T = I$ $\Rightarrow \hat{d}.R = m.I$ $\Rightarrow \hat{d}.R = m$

In this way, we have shown that the decryption works correctly and it gives us the message vector m.

Cryptosystem Security

Q c):-

Analysis:

It is a public key cryptography system based on lattices , where public key is the matrix \hat{L} and private key is the matrix R. Differential Cryptanalysis might not be possible as v is random in $c = v\hat{L} + m$

Breaking the crypto system:

- Breaking the security of the system , by bruteforcing on all the possibilites of "U" takes very large amount of time and is not practically feasible.
- Breaking the security of the system , with a bruteforce approach through "m" message makes us go through 2^n possibilities of the message. (We have described these two solutions in "Q d)")
- We found out that the optimal approach to break this crypto system is using the orthogonal basis of lattice generated by \hat{L} .

We will now analyze the security of the cryptosystem. In particular, we will show that if any orthogonal basis of \hat{L} can be found, then the security is broken.

Let us now assume that an orthogonal basis of \hat{L} has been found. Let us call this orthogonal basis as 'Q'.Given an orthogonal basis, we can break the security (i.e decrypt the cipher) by solving CVP (Closest Vector Problem). Given a lattice L and a target point x, CVP asks to find the lattice point closest to the target.

We can use Babai's algorithm to solve CVP.

Babai's algorithm takes a point 'r' and a set of basis vectors $[g_1, ..., g_n]$ as input. The algorithm then solves $r = a_1 * g_1 + ... + a_n * g_n$ where $[a_1, ..., a_n]$ are real number coefficients. Babai then approximates a solution to CVP by rounding all coefficients $a_1, ..., a_n$ to their nearest integer. For orthogonal bases, Babai works well and will return the closest lattice point to 'r'. If we have a target vector c, let c' be the closest vector found out using Babai's Algorithm and 'Q' be the orthogonal basis of the lattice.

For finding c', we do the following:

- 1) First we create an equation c = A.Q where c is the target vector i.e encrypted message, A is a matrix of dimensions 1xn, Q is the orthogonal basis.
- 2) On multiplying the above equation with Q^{-1} on both sides, we get $A.Q.Q^{-1} = c.Q^{-1}$.

- 3) Now, $A.I = c.Q^{-1}$.
- 4) Now, $A = c.Q^{-1}$
- 5) After finding Q^{-1} , we do $c.Q^{-1}$ and from this, we will get the matrix A.
- 6) The values in A will be rational. We will round off the values in A to their nearest integers. Let us call the matrix after rounding off the values as A'.
- 7) Now, the closest vector c' will be c' = A'. Q.

In this way, we have found the closest vector c'. Now, let us calculate a vector

Z = c - c'. Now, we will create a vector by taking absolute values of the entries in Z and round them off to their nearest integers. The vector thus obtained is the message vector m. In this way, we have shown that if any orthogonal basis of \hat{L} can be found, then the security is broken and we can find the message m. We can also break this cryptosystem with \hat{L} itself as we have proved \hat{L} to be an orthogonal basis.

Other Ways to break the security :-

Q d):-

<u>Approach 1</u>:- We can break the security of this cryptosystem by finding out the matrix R (i.e the private key). Finding out R is a difficult task.

Let us assume that we have a known message 'm' and its corresponding cipher i.e 'c'. Here, m is the n-bit long message m, it is a vector in Z^n with binary entries. A random vector $v \in Z^n$ was picked and the vector $c = v\hat{L} + m$ was computed.

We know a message 'm' and its corresponding cipher 'c'. We also know the public key \hat{L} Now, we will try to find out the Matrix R.

We know that $\hat{L} = ULR$

Here, $U \in \mathbb{Z}^{n \times n}$ be a unitary matrix, with det U = 1

 $R \in Qnxn$ be a rigid rotation matrix, that is, $RR^T = I$

L = n.I

I is identity matrix of dimensions nxn

U has integer entries and U is unitary matrix with det 1. So, we can say that U is an orthogonal matrix. U is of dimensions nxn. The number of possibilities for U is finite. 'U' can only contain entries from 0,1,-1 because the length of each row and column is 1 (because U is an orthogonal matrix). Also, The det of U should be 1.

The nxn matrices which satisfy the above criteria are finite in number. We can use this to our advantage and we can bruteforce all possibilities U and find out the correct R.

we know that $\hat{L} = U.L.R$

$$\Rightarrow \hat{L} = U.n.I.R$$

$$\Rightarrow \hat{L} = n.U.R$$

$$\Rightarrow \hat{L}/n = U.R$$

$$\Rightarrow U^{-1}(\hat{L}/n) = R$$

$$\Rightarrow R = U^{-1}(\hat{L}/n)$$

For each possible U with the above constraints, we will find R in the following way. Now, for each R, we will find out if this R is correct or not using 'm' and 'c'. We have our known $c \in Qn$. We compute vector $d = cR^T$.

We Reduce every entry of d modulo n so that the entry becomes < n/2 in absolute value. Let the resulting vector be \hat{d} . We now compute $m' = \hat{d}R$

If m' == m, we can say that we have found out the correct R matrix.

In this way, we can break the security of the crypto system using Bruteforce.

Approach 2:-

There is another approach to decrypt the message without figuring out 'R'. In this approach, we will take all 2^n possibilities of messages (because each position takes either 0 or 1. The length of message is n. So total 2^n possibilities).we will try each of them and find out whether it is the correct message or not. Let c be the encrypted message. \hat{L} be public key of dimensions nxn.

For every message m' in the 2^n possibilities, do the following:

- 1) Calculate c m'
- 2) Now, calculate $(\hat{L})^{-1}$.
- 3) Now, multiply $(\hat{L})^{-1}$ with (c m'). That is $(c m') \cdot (\hat{L})^{-1}$. let us call this v'. $v' = (c m') \cdot (\hat{L})^{-1}$.
- 4) Now, if all of the entries in the vector \mathbf{v}' are integers, we can confidently say that we have found the correct message. That is \mathbf{m}' is the correct decrypted message if if all of the entries in the vector \mathbf{v}' are integers. We print this message \mathbf{m}' .

In this way, we can decrypt the message without figuring out 'R'.

The python code for this approach is given below:

```
import numpy as np
from random import randint, uniform
#number of dimensions. replace it with your own dimension value. n>=1
n = 13
# replace this with your own invertible 1^
l = np.array([[uniform(1,100) for i in range(n)] for j in range(n)])
#replace this with your own v
v=np.array([randint(1,100) for i in range(n)])
#this is the message. replace it with your own binary message
m=np.array([randint(0,1) for i in range(n)])
c = np.matmul(v, l) + m
inv_l = np.linalg.inv(1)
def decrypt_message(c,l,n):
    def check(z,mm):
        z=[round(i) for i in z]
        return (c==(np.matmul(z,1)+mm)).all()
    ans = []
    for i in range (2**n):
        mm=np.array([int(j) for j in bin(i)[2:].zfill(n)])
        z=np.matmul((c - mm), inv_l)
        if check(z,mm):
            ans.append(mm)
    return ans
ans=decrypt_message(c,l,n)
if len(ans)==1:
    print("Message has been decrypted and it is: ",ans[0])
    print((ans[0]==m).all())
    #verifying whether the message is correct or not
else:
    print("Failed to decrypt the message")
```

RESOURCES

https://kel.bz/post/lattices/

https://myweb.uiowa.edu/pbreheny/7110/wiki/l1-l2-inequality.html

http://www.noahsd.com/mini_lattices/05__babai.pdf

https://mathworld.wolfram.com/UnitaryMatrix.html

Code for Q d) Approach 2