

Taller de Grafos

4 de noviembre

Alejandro Barreiro Valdez

Objetivos

Repasar los fundamentos de los grafos y hacer ejercicios sobre el recorrido de grafos.

Temario

Conceptos básicos

Clasificación de grafos

Representación de grafos

Recorrido de grafos

Grafo

Conceptos básicos

Vértice, Arista, Grado y Adyacencia

Vértice: En grafos, un vértice es cada uno de los nodos o de los elementos que conforman un grafo.

Arista:La arista entre dos vértices de un grafo es la conexión entre estos dos vértices.

Grado: El grado de un vértice es el número de aristas conectadas a un vértice.

Adyacencia: Se dice que dos vértices son adyacentes si hay una arista conectándolos.

Dirigido y No Dirigido

Clasificación de grafos

Ponderado y No Ponderado

Clasificación de grafos

М	1	2	3	4	5
1	0	1	0	1	0
2	1	0	1	0	1
3	0	1	0	1	0
4	1	0	1	0	1
5	0	1	0	1	0

Representación de grafos

Matriz cuadrada (nxn) donde se indican las relaciones de adyacencia entre nodos.

	e1	e2	е3	e4	e5
A	1	0	1	1	0
В	1	1	0	0	0
C	0	1	1	0	1
D	0	0	0	1	1

Matriz de Incidencia

Representación de grafos

Matriz se construye utilizando el número de vértices como el número de filas y el número de aristas como el número de columnas.

Lista de adyacencia

Representación de grafos

Conjunto de listas ligadas donde se realiza una lista de los vecinos de cada uno de los vértices del grafo.

DFS

Recorrido de Grafos

- 1. Poner un vértice inicial del grafo en el tope de la pila.
- 2. Poner el tope de la pila en la lista de visitados.
- 3. Crear una lista de los nodos adyacentes al vértice de la lista de visitados. Agregar al tope de la pila aquellos vértices que no estén en la pila.
- 4. Repetir los pasos 2 y 3 hasta que la pila esté vacía.

BFS

Recorrido de Grafos

- 1. Iniciar encolando el vértice inicial del grafo.
- 2. Desencolar un vértice y agregarlo a la lista de visitados.
- 3. Crear una lista de los nodos adyacentes al vértice de la lista de visitados. Agregar a la cola aquellos vértices que no estén en la pila.
- 4. Repetir los pasos 2 y 3 hasta que la cola esté vacía.

Referencias

Chakraborty, A.(2019, 27 de agosto). Appli-cations of dfs and bfs in data structures. Tutorials Point. Descargado dehttps://www.tutorialspoint.com/applications-of-dfs-and-bfs-in-data-structures. Dee pali. (2021, 23 de septiembre). Graphs in datastructure: Types, representation, operations. Nau-kri Learning. Descargado dehttps://www.naukri.com/learning/articles/author/deepali/JavaTPoint. (s.f.). Graph theory. JavaTPoint. Des-cargado dehttps://www.javatpoint.com/graph-theory-graph-representations Programiz. (s.f.-a). Breadth first search. Progra-miz. Descargado dehttps://www.programiz.com/dsa/graph-bfs Programiz. (s.f.-b). Depth first search. Progra-miz. Descargado dehttps://www.programiz.com/dsa/graph-dfs Sharma, R. (2021, 7 de octubre). Graphs in data struc-ture: Types, storing traversal. up Grad. Descarga-do dehttps://www.upgrad.com/blog/graphs-in-data-structure/