Übung (Genetik), Diskussion 17.12.2015

Name des Studierenden:

Datum:

1 RNA

1. Beschreiben Sie Unterschiede zwischen DNA und RNA.

	DNA	RNA
Anzahl Stränge		
Länge		
Nukleotide		
Sekundärstruktur		

Tabelle 1: Sie können unter den Antworten "A", "20", "250 \times 106", "C", "wichtig", "unwichtig", "G", "T", "1", "U", "2" wählen oder eigene Antworten geben.

2. Nennen Sie und beschreiben Sie die Funktionen von mindestens 4 Arten von RNA. Verwenden Sie bitte Abkürzungen $(z.B.\ mRNA)$.

Name	Hauptfunktion
1	
2	
3	
4	

3.Beschreiben Sie den Unterschied zwischen stillen Mutationen, konservativen und nichtkonservativen Aminosäuresubstitutionen. Antworten Sie mit Ja, Nein, oder k.A. (keine Angabe möglich).

	"still"	konservativ	nicht- konservativ
Nukleotidveränderung?			Konservaciv
Aminosäureveränderung?			
Substitution durch eine physiko-			
chemisch ähnliche Aminosäure ?			

RNA-Sekundärstruktur

- G-C: drei Wasserstoffbrücken
- A-T: zwei Wasserstoffbrücken
- ullet G–U: Eine Wasserstoffbrücke ("wobble pair" o Wackelpaar)

Bestimmen Sie, unter Beachtung folgender Bedingungen:

- ullet Bilden Nukleotide i und j eine Wasserstoffbrücke, dann |i-j|>1
- ullet Sind (i,j) und (p,q) zwei Wasserstoffbrücken (Paare von Nukleotiden), wobei i , dann gilt <math>q < j

die gültigen Strukturen für die RNA-Sequenz AACUGAUAGC. Welche Struktur ist die energetisch günstigte?

2 RNA Struktur und multiple Alignments

- Besuchen Sie die RFAM Datenbank: http://rfam.xfam.org/
- Verwenden Sie das Suchfenster, um zum EIntrag fuer die snoRNA snoZ107_R87 zu gelangen
- Schauen Sie sich die Sekundaerstrutur dieser RNA an
- Gehen Sie zum entsprechenden mulitplen Sequenzalignment (falls Sie das Alignment mit Jalview wegen der Java-SIcherheitseinstellungen nicht sehen koennen, verwenden Sie die HTML Ansicht)

Erklaeren Sie nun das auffaellige Muster der jeweils gepaarten Basen (im Alignment bunt hinterlegt)