ドローンにおける協調型移動ロボットシステムの着地精度向上

法政大学 理工学部 機械工学科 人間支援ロボット研究室 加藤比呂

研究背景

国内のドローン市場規模の予測

今後さらに

・点検領域

・農業領域

の市場拡大が予測される

研究背景

スマート農業国内市場規模推移と予測 (21年度は見込み、22年度以降は予測)

スマート農業の効果

- ・ 作業の自動化
- 情報共有の簡易化
- データの活用

出典:矢野経済研究所

研究目的

- 給電
- ・画像データの取得

農業用ロボットに高精度で着陸

スマート農業の推進

ドローンの制御方法

Wi-Fi接続

Olympe

- ・ドローンへの接続、通信、制御
- ・ドローンカメラで撮影したビデオにリアルタイムアクセス

ArUcoマーカーを用いた自律着陸システム

Open CV ライブラリArUcoマーカー

コード部分が縦横4~8ピクセルからなる正方形の2次元マーカー

自動生成したArUcoマーカー

検出されたArUcoマーカー

ドローンの着陸制御方法

目的地手前の上空まで移動 🚺 ArUcoマーカーを検出 マーカーの中心座標を取得 2ドローンの位置を微調整 3 着陸

着陸パッドが設置された農業用ロボット

・着陸パッド

中心のArUcoマーカー (id=0)が一辺600[mm]

・農業用ロボット

研究室で使用している、除草 剤などを散布するロボット

Parrot ANAFI の仕様

サイズ[mm]	飛行時:175×240×65
重量[g]	320
最長飛行時間 [min]	25
ジンバル	垂直方向に180°、電子ブレ補正
衛星測位システム	GPS & GLONASS
解像度	ワイド:21MP(5344×4016) 直角:16MP(4608×3456)
容量[mAh]	2700

実験方法①:10 m先の農業用ロボットに自律飛行

実験方法②:農業用ロボットまでGPSを用いて自律飛行

離陸

高度4mまで上昇

GPSを用いて農業用ロボットの手前まで移動

ドローンカメラ起動

ArUcoマーカーを検出

農業用ロボットの中心まで移動

着陸

実験結果①:10 m先の農業用ロボットに自律飛行

URL: https://youtu.be/E6y2Rzy8KQ8

実験結果②:農業用ロボットまでGPSを用いて自律飛行

URL: https://youtu.be/fPMk8krPVWw

結論・今後の展望

結論

• ドローンが自律飛行後、農業用ロボットに高精度で 自動着陸するシステムを構築することができた

今後の展望

• 目視外飛行の状況下でも自律飛行し、自動着陸を 行うシステムを構築する

