Lecture #2: Enzyme Purification and Assay

- (1) Initial velocity measurements
 - Effect of enzyme concentration
 - Effect of temperature
- (2) Assay types
 - Discontinuous
 - Continuous
 - Quantitative assays
 - Coupled reactions
- (3) Enzyme activity measurements
 - Units
 - Katals
- (4) Turnover number and properties
- (5) Purification and assessment
 - Purification table
- (6) Methods for measurements
 - Continuous systems
 - Immobilized enzymes
 - Stopped flow
 - Quench flow
 - Multi-plate readers

Lecture #2: Enzyme Purification and Assay

How to Perform Kinetic Measurements

1. Dead time

 time after mixing the sample and before the measurement begins

2. Initial slope

 Linear portion of the time-course plot for data collection

3. Post collection

 Time after initial velocity during which the reaction reaches equilibrium

1. Initial velocity measurements

- a typical enzyme reaction is reduced as the reaction proceeds <u>because:</u>
- i. denaturation of enzyme
- ii. product inhibition
- iii. decrease of enzyme saturation
- iv. inactivation of coenzyme
- v. increase of reverse reaction

Lehninger Principles of Biochemistry, Seventh Edition
2017 W. H. Freeman and Company

- critical that velocity be determined at the very beginning of the reaction
- •initial velocity is the slope of the curve depicting S or P changes with time $v_o = d[P]/dt = -d[S]/dt$
- •in practice: $v_o = \Delta[P]/\Delta t = -\Delta[S]/\Delta t$ **provided that** these parameters are measured at the **beginning** of the **reaction** where the rate of S consumption and P formation is linear with time

2. Assay types

- i. <u>Discontinuous assay</u> fixed time point sampling of kinetic data
 - Radiometric: measure incorporation of radioactivity into substrates
 - Chromatographic: measure product formation by separating the reaction mixture into components by chromatography (HPLC, FPLC, TLC)
 - •the rate of [P] formation must be linear over the incubation time chosen
- ii. <u>Continuous assay</u> reaction is analyzed continuously using a monitoring technique
 - Spectrophotometric, calorimetric, chemiluminescent
 - •for the continuous assay one must use the initial part of the curve for dP/dt
 - •one must use [E] that falls within the range in which P formation varies linearly with [E] for all substrate concentrations

Two types of quantitative enzyme assays

(1) Measure the amount of E in the sample

- •E is present at **much lower** concentration than S
- •E is present in **limiting amounts** and S is present **in excess**
- •assay conditions correspond to levelled off portions of vo versus [S] curves

thus velocity α [E]

Substrate concentration, [S] (mm)

Figure 6-11
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

Zero order reaction

$$V_0 = [E] * k * [S]^0$$

(2) Measure the amount of S present ([S])

- •[E] is high enough to convert all $S \rightarrow P$
- •S is limiting reagent
- •assay conditions correspond to those of initial part of v_o versus [S] curves

First order reaction

Substrate concentration, [S] (mm)

Figure 6-11
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

$$V_0 = [E] * k * [S]^1$$

(3) Coupled Reactions

- some reactions difficult to assay because of absence of a readily measurable compound or property
- couple one reaction to another which produces a measurable product

- if conditions for E₂ are compatible with those of E₁ then both stages can be measured simultaneously
- <u>if not</u>, then reaction with E₁ is run first and stopped (boiling, change pH, etc.)
- second reaction (with E₂ in excess) is added and reaction proceeds until all of B is converted to C
- for such "coupled reactions" E₂ must be in sufficient concentration so that all of B is converted to C
 - Rate-limiting step in the linked assay is the action of the first enzyme

- -the relative amounts of E₁ and A depend on the nature of assay
 -if E₁ is being measured then A should be in **high concentration**
 - -if A is being measured then A should be in **low concentration**

3. Enzyme units of activity

 enzyme solutions described in terms of arbitrary units because enzymes are active at very low concentrations and purity is frequently unknown

Unit (definition)

- one international unit = amount of enzyme catalyzing the transformation of 1 μmol of substrate per min under defined conditions
 - based on measurements of initial velocity

-greater the **purity** of an enzyme, the greater the fraction of total protein that is **actually enzyme protein**

-relationship defined as "specific activity"

-specific activity - number of enzyme units per amount (mg) of total protein= U/mg protein

-total activity = U/mg protein x total mg protein= U/mL of fraction x total vol (mL) of fraction

I.U.B. proposed <u>katal</u> (1972) \equiv SI Unit of activity

katal is amount of enzymatic activity that catalyzes the transformation of **1** mole of substrate per second under defined conditions

$$1 U = 10^{-6} \text{ moles}/60\text{s} = 16.7 \text{ x } 10^{-9} \text{ mol/s}$$

- 1 U = 16.7 nkatal
- 1 nkatal = 0.06 U
- $-1 \text{ katal} = 6 \times 10^7 \text{ U}$
- -concentration of enzyme in terms of katals is "molar activity"
- -defined as the number of katals per mole of enzyme

4. Turnover number (TN, k_{cat})

-number of moles of substrate transformed into product per unit time per mole of enzyme under optimal conditions

-molecular activity = TN (per mole of enzyme)

-catalytic centre activity = TN (per mole of active sites)

•TN =
$$V_{max}/[E_T] = \mu mol(S \rightarrow P) \times min^{-1} \times mL^{-1}/(\mu mol\ enzyme\ or\ cat\ site\ x\ mL^{-1})$$

= min⁻¹ or **t**⁻¹

-typical values fall in the range of 50 - 10⁷ min⁻¹

Turnover Number, $k_{\rm col}$, of Some Enzyn	nes
	Turnover Number, k,,, of Some Enzyn

Enzyme	Substrate	$oldsymbol{k}_{cat}(s^{-1})$
Catalase	H ₂ O ₂	40,000,000
Carbonic anhydrase	HCO ₃	400,000
Acetylcholinesterase	Acetylcholine	14,000
eta-Lactamase	Benzylpenicillin	2,000
Fumarase	Fumarate	800
RecA protein (an ATPase)	ATP	0.5

5. Purification and assessment

-purification is the process by which an enzyme is separated from other cell components

Three categories of purification methods:

- i. **Precipitation** ⇒ differential solubility
 - salting out with (NH₄)₂SO₄ most common.
 - salts neutralize exterior charge of protein allowing aggregation.

- isoelectric precipitation uses same principle

ii. Chromatography

-various types, including

-gel filtration

-ion-exchange

-hydrophobic

-adsorption

-affinity: taken over with recombinant enzymes today!
-His tags, Flag tags, GST-tags

iii. Electrophoresis

-native or denaturing

-presentation of purification data is vital for analysis of purity and recovery

- need 3 measurements:

- i. volume of sample (mL)
- ii. protein content (mg/mL)
- iii. enzyme activity (units/mL)

all other quantities derived by calculation:

sample vol × activity = total activity (mL) (units/mL) (units)

total activity (units) total protein (mg)

specific activity (units/mg)

(mg)

Room temperature, too. Now it dies in the cold room. I've got the enzyme purification

I found that the air kills it.

- the higher the yield, the greater the recovery, the fewer times you'll need to get in the cold room and purify the enzyme
- the higher the purification factor, the purer the enzyme
 - the purification factor still doesn't give information about **how pure** it really is!

TABLE 3-5 A Purification Table for a Hypothetical Enzyme

Procedure or step	Fraction volume (mL)	Total protein (mg)	Activity (units)	Specific activity (units/mg)
1. Crude cellular extract	1,400	10,000	100,000	10
2. Precipitation with ammonium sulfate	280	3,000	96,000	32
3. Ion-exchange chromatography	90	400	80,000	200
4. Size-exclusion chromatography	80	100	60,000	600
5. Affinity chromatography	6	3	45,000	15,000

Note: All data represent the status of the sample *after* the designated procedure has been carried out. Activity and specific activity are defined on page 95.

Table 3-5

Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

What properties of any enzyme should be determined?

- (i) molecular weight
 - -electrospray mass spectrometry
 - -gel filtration
 - -analytical ultracentrifugation
- (ii) subunit structure
 - -SDS-PAGE (± DTT)
- (iii) -amino acid composition
 - -6M HCl, 105°C, 24 h
- (iv) -amino acid sequence
 - -Edman degradation N-terminal sequencing
 - -MS/MS mass spectrometry

(v) -three dimensional structure-X-ray crystallography-NMR

- 6. Methods for Enzyme Activity Measurements
- (a) Experimental approaches
 - i. <u>spectrophotometric</u> <u>assays</u>- accurate and convenient
 - -fluorescence or absorbance changes
- ii. Release or uptake of H^+ (ΔpH)- directly in buffered or weakly buffered solutions with a glass electrode
 - -restricted pH range (enzyme stability)
 - indicator that changes its absorbance with protonation state

-pH stat technique-titrate the reaction mixture with either acid or base to keep the pH constant whilst recording the rate of addition

-ion-selective electrodes or gas electrodes

- -automation of E assay can allow **large numbers of samples** to be processed rapidly and efficiently
- -many involve the determination of P formation after a fixed time
- (1) <u>continuous flow systems</u>-uses multi-channel pumps to mix reactants and determine P formation

 after a fixed time

Ligand (from LC)

Flow 2

Flow 1

Reactor 1

Flow 3

Reactor 2

4.85 4.8

4.75 4.7

4.65

4.6

open-tubular

mixing-T

(2) <u>immobilized enzymes</u>-enzymes are attached to a matrix (bead or surface) eg., trypsin-bead columns

(3) stopped-flow apparatus

-enzyme mixed with substrate using a flow cell and detected with spectrometer-allows rapid kinetic measurements (msec time scale)

- Stopped-flow kinetic trace for the binding of a substrate to the enzyme
- Substrate binding causes quenching of the enzyme Trp fluorescence

4) **quenched-flow apparatus**-enzyme is mixed with substrate and quenched with acid or base in a second mixer

5) multi-plate readers-wavelength selection and temperature control

coupled with rapid sample throughput

McMaster HTS Lab

Inspiring Innovation and Discovery

http://www.cmcbmcmaster.ca/high-throughput-screening-lab/

