Moderate deviation analysis for c-q channels (and hypothesis testing)

Christopher T. Chubb

physics.usyd.edu.au/~cchubb/

Centre for Engineered Quantum Systems University of Sydney

Hao-Chung Cheng

Centre for Quantum Software and Information University of Technology Sydney

QIP 2018 QuTech, TU Delft

Two techniques

Refined small-deviation analysis:

 "Moderate deviation analysis for classical communication over quantum channels", Christopher T. Chubb, Vincent Y.F. Tan, and Marco Tomamichel, Communications in Mathematical Physics (2017) 355: 1283, arXiv:1701.03114.

Refined large-deviation analysis:

- "Moderate Deviation Analysis for Classical-Quantum Channels and Quantum Hypothesis Testing", Hao-Chung Cheng and Min-Hsiu Hsieh, IEEE Transactions on Information Theory (to appear), arXiv:1701.03195.
- "Quantum Sphere-Packing Bounds with Polynomial Prefactors", Hao-Chung Cheng, Min-Hsiu Hsieh, and Marco Tomamichel, arXiv:1704.05703.

Suppose Alice wants to send classical information to Bob, via some channel.

- Number of channel uses
- Amount of information transmitted
- Error probability

Suppose Alice wants to send classical information to Bob, via some channel.

- Number of channel uses
- Amount of information transmitted
- Error probability

Suppose Alice wants to send classical information to Bob, via some channel.

- Number of channel uses
- Amount of information transmitted
- Error probability

Suppose Alice wants to send classical information to Bob, via some channel.

- Number of channel uses
- Amount of information transmitted
- Error probability

Suppose Alice wants to send classical information to Bob, via some channel.

- Number of channel uses
- Amount of information transmitted
- Error probability

Suppose Alice wants to send classical information to Bob, via some channel.

- Number of channel uses
- Amount of information transmitted
- Error probability

Suppose Alice wants to send classical information to Bob, via some channel.

- Number of channel uses
- Amount of information transmitted
- Error probability

Classical channels versus quantum channels

If we have access to a quantum channel, then quantum encoding/decoding can allow us to transmit more information with less error than classical encoding/decoding.

A simple example is a bit-flip channel

$$\mathcal{E}(\rho) = pX\rho X + (1-p)\rho.$$

Classically: Either we send many noisy bits, or fewer encoded bits.

Quantumly: Simply transmit our bits noiselessly in the X basis $\{|+\rangle\,, |-\rangle\}$.

Classical communication over a quantum channel

We are going to consider coding of classical-quantum channels.

For c-q channel W, a (n, R, ϵ) -code is an encoder E and decoding POVM $\{D_i\}$ such that

$$\frac{1}{2^{nR}}\sum_{m=1}^{2^{nR}}\operatorname{Tr}\left[\mathcal{W}^{\otimes n}\left(\otimes_{i=1}^{n}E_{i}(m)\right)D_{m}\right]\geq 1-\epsilon$$

We will be concerned with the trade-off between the <u>block-length</u> n, the <u>rate</u> R, and the <u>error probability</u> ϵ . We define the optimal rate/error probability as

$$\begin{split} R^*(\mathcal{W}; \textit{n}, \epsilon) &:= \max \left\{ R \mid \exists (\textit{n}, R, \epsilon) \text{-code} \right\}, \\ \epsilon^*(\mathcal{W}; \textit{n}, R) &:= \min \left\{ \epsilon \mid \exists (\textit{n}, R, \epsilon) \text{-code} \right\}. \end{split}$$

Asymptotics

For a constant error probability ϵ , the Strong Converse Theorem tells us the rate approaches a constant known as the capacity

$$\lim_{n\to\infty} R^*(\mathcal{W}; n, \epsilon) = C(\mathcal{W}).$$

Equivalently this means that the error probability must to go 0 to 1 either side of the capacity

$$\lim_{n\to\infty} \epsilon^*(\mathcal{W}; n, R) = \begin{cases} 0 & : R < C(\mathcal{W}) \\ 1 & : R > C(\mathcal{W}) \end{cases}$$

Asymptotics

For a constant error probability ϵ , the Strong Converse Theorem tells us the rate approaches a constant known as the capacity

$$\lim_{n\to\infty} R^*(\mathcal{W}; n, \epsilon) = C(\mathcal{W}).$$

Equivalently this means that the error probability must to go 0 to 1 either side of the capacity

$$\lim_{n\to\infty} \epsilon^*(\mathcal{W}; n, R) = \begin{cases} 0 & : R < C(\mathcal{W}) \\ 1 & : R > C(\mathcal{W}) \end{cases}$$

This tells us we can have either $R \to C$ OR $\epsilon \to 0$.

How fast are these convergences? Can we do both?

How fast are the convergences $R \to C$ or $\epsilon \to 0$ as $n \to \infty$?

Small deviation (Tomamichel and Tan 2015) $R^*(n,\epsilon) = C + \sqrt{\frac{V}{n}} \Phi^{-1}(\epsilon) + o\left(\frac{1}{\sqrt{n}}\right) \quad \epsilon \in (0,\frac{1}{2})$

Large deviation (Partial progress) $\ln \epsilon^*(n,R) = -n \cdot E(R) + o(n) \quad R < C$

C. T. Chubb

How fast are the convergences $R \to C$ or $\epsilon \to 0$ as $n \to \infty$?

Small deviation (Tomamichel and Tan 2015) $R^*(n,\epsilon) = C + \sqrt{\frac{V}{n}} \Phi^{-1}(\epsilon) + o\left(\frac{1}{\sqrt{n}}\right) \quad \epsilon \in (0,\frac{1}{2})$

Large deviation (Partial progress) $\ln \epsilon^*(n,R) = -n \cdot E(R) + o(n) \quad R < C$

7/22

C. T. Chubb Moderate deviations

How fast are the convergences $R \to C$ or $\epsilon \to 0$ as $n \to \infty$?

Small deviation (Tomamichel and Tan 2015) $R^*(n,\epsilon) = C + \sqrt{\frac{V}{n}} \Phi^{-1}(\epsilon) + o\left(\frac{1}{\sqrt{n}}\right) \quad \epsilon \in (0,\frac{1}{2})$

Large deviation (Partial progress) $\ln e^*(n,R) = -n \cdot E(R) + o(n) \quad R < C$

C. T. Chubb

How fast are the convergences $R \to C$ or $\epsilon \to 0$ as $n \to \infty$?

Small deviation (Tomamichel and Tan 2015) $R^*(n,\epsilon) = C + \sqrt{\frac{V}{n}} \Phi^{-1}(\epsilon) + o\left(\frac{1}{\sqrt{n}}\right) \quad \epsilon \in (0,\frac{1}{2})$

Large deviation (Partial progress) $\ln \epsilon^*(n,R) = -n \cdot E(R) + o(n) \quad R < C$

C. T. Chubb

How fast are the convergences $R \to C$ or $\epsilon \to 0$ as $n \to \infty$?

Small deviation (Tomamichel and Tan 2015) $R^*(n,\epsilon) = C + \sqrt{\tfrac{V}{n}} \Phi^{-1}(\epsilon) + o\left(\tfrac{1}{\sqrt{n}}\right) \quad \epsilon \in (0,\tfrac{1}{2})$

Large deviation (Partial progress) $\ln \epsilon^*(n,R) = -n \cdot E(R) + o(n) \quad R < C$

C. T. Chubb

How fast are the convergences $R \to C$ or $\epsilon \to 0$ as $n \to \infty$?

Small deviation (Tomamichel and Tan 2015)

$$R^*(n,\epsilon) = C + \sqrt{rac{V}{n}}\Phi^{-1}(\epsilon) + o\left(rac{1}{\sqrt{n}}
ight) \quad \epsilon \in (0,rac{1}{2})$$

Large deviation (

$$\epsilon^*(n,R) = -n \cdot E(R) + o(n)$$
 $R < C$

C. T. Chubb

How fast are the convergences $R \to C$ or $\epsilon \to 0$ as $n \to \infty$?

Small deviation (Tomamichel and Tan 2015)

$$R^*(n,\epsilon) = C + \sqrt{rac{V}{n}}\Phi^{-1}(\epsilon) + o\left(rac{1}{\sqrt{n}}
ight) \quad \epsilon \in (0,rac{1}{2})$$

Large deviation (Partial progress)

$$\ln \epsilon^*(n,R) = -n \cdot E(R) + o(n) \quad R < C$$

C. T. Chubb Moderate deviations 7/22

Moderate deviations

What if we want $R \to C$ AND $\epsilon \to 0$?

Moderate deviation (This work)

For any $\{a_n\}$ such that $a_n \to 0$ and $\sqrt{n}a_n \to \infty$ we have

$$R^*(n, \epsilon_n) = C - \sqrt{2V}a_n + o(a_n)$$
 for $\epsilon_n = e^{-na_n^2}$,

or equivalently

$$\ln \epsilon^*(n,R_n) = -\frac{na_n^2}{2V} + o(na_n^2) \quad \text{for} \quad R_n = C - a_n.$$

C. T. Chubb Moderate deviations

8/22

Moderate deviations

Moderate deviation (This work)

For any $\{a_n\}$ such that $a_n \to 0$ and $\sqrt{n}a_n \to \infty$ we have

$$R^*(n,\epsilon_n) = C - \sqrt{2V}a_n + o(a_n)$$
 for $\epsilon_n = e^{-na_n^2}$,

$$\ln \epsilon^*(n, R_n) = -\frac{na_n^2}{2V} + o(na_n^2) \quad \text{for} \quad R_n = C - a_n$$

C. T. Chubb

Moderate deviations

Moderate deviation (This work)

For any $\{a_n\}$ such that $a_n \to 0$ and $\sqrt{n}a_n \to \infty$ we have

$$R^*(n,\epsilon_n)=C-\sqrt{2V}a_n+o(a_n)$$
 for $\epsilon_n=e^{-na_n^2},$ or equivalently

$$\ln \epsilon^*(n,R_n) = -\frac{na_n^2}{2V} + o(na_n^2) \quad \text{for} \quad R_n = C - a_n.$$

C. T. Chubb

Concentration inequalities

Take $\{X_i\}$ iid with $\mathbb{E}[X_i] = 0$ and $\operatorname{Var}[X_i] =: V$, and $\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$.

Asymptotic (Law of large numbers)

$$\lim_{n\to\infty} \Pr\left[\bar{X}_n \ge t\right] = \begin{cases} 1 & t<0, \\ 0 & t>0. \end{cases}$$

Small deviation (Berry-Esseen)

$$\Pr\left[ar{X}_n \geq rac{\epsilon}{\sqrt{n}}
ight] = Q\left(rac{\epsilon}{\sqrt{V}}
ight) + \mathcal{O}\left(rac{1}{\sqrt{n}}
ight) \quad \epsilon \in (0,1)$$

Large deviation (Cramér)

$$\ln \Pr \left[\bar{X}_n \ge t \right] = -n \cdot I(t) + o(n) \quad t \ge 0$$

Moderate deviation

For any $\{a_n\}$ such that $a_n \to 0$ and $\sqrt{n}a_n \to \infty$

$$\ln \Pr\left[\bar{X}_n \geq a_n\right] = -\frac{na_n^2}{2V} + o(na_n^2)$$

Concentration inequalities

Take $\{X_i\}$ iid with $\mathbb{E}[X_i] = 0$ and $\operatorname{Var}[X_i] =: V$, and $\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$.

Asymptotic (Law of large numbers)

$$\lim_{n\to\infty} \Pr\left[\bar{X}_n \ge t\right] = \begin{cases} 1 & t<0, \\ 0 & t>0. \end{cases}$$

Small deviation (Berry-Esseen)

$$\Pr\left[ar{X}_n \geq rac{\epsilon}{\sqrt{n}}
ight] = Q\left(rac{\epsilon}{\sqrt{V}}
ight) + \mathcal{O}\left(rac{1}{\sqrt{n}}
ight) \quad \epsilon \in (0,1)$$

Large deviation (Cramér)

$$\ln \Pr \left[\bar{X}_n \geq t \right] = -n \cdot I(t) + o(n) \quad t \geq 0$$

Moderate deviation

For any $\{a_n\}$ such that $a_n \to 0$ and $\sqrt{n}a_n \to \infty$

$$\ln \Pr\left[\bar{X}_n \geq a_n\right] = -\frac{na_n^2}{2V} + o(na_n^2)$$

Concentration inequalities

Take $\{X_i\}$ iid with $\mathbb{E}[X_i] = 0$ and $\operatorname{Var}[X_i] =: V$, and $\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$.

Asymptotic (Law of large numbers)

$$\lim_{n\to\infty} \Pr\left[\bar{X}_n \ge t\right] = \begin{cases} 1 & t<0, \\ 0 & t>0. \end{cases}$$

Small deviation (Berry-Esseen)

$$\mathsf{Pr}\left[ar{X}_n \geq rac{\epsilon}{\sqrt{n}}
ight] = Q\left(rac{\epsilon}{\sqrt{V}}
ight) + \mathcal{O}\left(rac{1}{\sqrt{n}}
ight) \quad \epsilon \in (0,1)$$

Large deviation (Cramér)

$$\operatorname{In}\operatorname{Pr}\left[\bar{X}_{n}\geq t\right]=-n\cdot I(t)+o(n)\quad t\geq 0$$

Moderate deviation

For any $\{a_n\}$ such that $a_n \to 0$ and $\sqrt{n}a_n \to \infty$

$$\ln \Pr\left[\bar{X}_n \geq a_n\right] = -\frac{na_n^2}{2V} + o(na_n^2).$$

Hypothesis testing

We want to test between two hypotheses, ρ and σ . For a binary POVM $\{A, I - A\}$, we define the type-I and type-II errors as

$$\alpha(A; \rho, \sigma) := \operatorname{Tr}(I - A)\rho, \qquad \beta(A; \rho, \sigma) := \operatorname{Tr} A\sigma,$$

and the ϵ -hypothesis-testing divergence

$$D_h^{\epsilon}(\rho\|\sigma) := -\log \min_{0 \le A \le I} \left\{ \beta(A; \rho, \sigma) \, | \, \alpha(A; \rho, \sigma) \le \epsilon \right\}.$$

$$\lim_{n\to\infty} \frac{1}{n} D_h^{\epsilon}(\rho^{\otimes n} \| \sigma^{\otimes n}) = D(\rho \| \sigma).$$

Moderate deviations

10/22

Hypothesis testing

We want to test between two hypotheses, ρ and σ . For a binary POVM $\{A, I - A\}$, we define the type-I and type-II errors as

$$\alpha(A; \rho, \sigma) := \text{Tr}(I - A)\rho, \qquad \beta(A; \rho, \sigma) := \text{Tr } A\sigma,$$

and the ϵ -hypothesis-testing divergence

$$D_h^{\epsilon}(\rho\|\sigma) := -\log \min_{0 \le A \le I} \left\{ \beta(A; \rho, \sigma) \, | \, \alpha(A; \rho, \sigma) \le \epsilon \right\}.$$

If we now consider testing between $\rho^{\otimes n}$ and $\sigma^{\otimes n}$, then the asymptotic behaviour is given by Quantum Stein's Lemma.

Asymptotics (Hiai and Petz 1991, Ogawa and Nagaoka 1999)

For any $\epsilon \in (0,1)$

$$\lim_{n\to\infty}\frac{1}{n}D_h^{\epsilon}(\rho^{\otimes n}\|\sigma^{\otimes n})=D(\rho\|\sigma).$$

C. T. Chubb Moderate deviations 10/22

Deviation results for hypothesis testing

Small deviation (Tomamichel and Hayashi 2013, Li 2014)

$$\tfrac{1}{n}D_h^\epsilon(\rho^{\otimes n}\|\sigma^{\otimes n}) = D(\rho\|\sigma) + \sqrt{\tfrac{V(\rho\|\sigma)}{n}}\Phi^{-1}(\epsilon) + \mathcal{O}\left(\tfrac{\log n}{n}\right) \quad \text{for} \quad \epsilon \in (0,1).$$

Large deviation (Hayashi 2006, Nagaoka 2006)

$$\ln \epsilon_n = -n \cdot E(R) + o(n) \quad \text{for} \quad \frac{1}{n} D_h^{\epsilon_n} (\rho^{\otimes n} \| \sigma^{\otimes n}) = R < D(\rho \| \sigma).$$

Moderate deviation (This work)

For any
$$\{a_n\}$$
 such that $a_n o 0$ and $\sqrt{n}a_n o \infty$ and $\epsilon_n:=e^{-na_n^2}$,

$$\frac{1}{n}D_h^{\epsilon_n}(\rho^{\otimes n}\|\sigma^{\otimes n}) = D(\rho\|\sigma) - \sqrt{2V(\rho\|\sigma)}a_n + o(a_n)$$

Deviation results for hypothesis testing

Small deviation (Tomamichel and Hayashi 2013, Li 2014)

$$\tfrac{1}{n}D_h^\epsilon(\rho^{\otimes n}\|\sigma^{\otimes n}) = D(\rho\|\sigma) + \sqrt{\tfrac{V(\rho\|\sigma)}{n}}\Phi^{-1}(\epsilon) + \mathcal{O}\left(\tfrac{\log n}{n}\right) \quad \text{for} \quad \epsilon \in (0,1).$$

Large deviation (Hayashi 2006, Nagaoka 2006)

$$\ln \epsilon_n = -n \cdot E(R) + o(n) \quad \text{for} \quad \frac{1}{n} D_h^{\epsilon_n} (\rho^{\otimes n} \| \sigma^{\otimes n}) = R < D(\rho \| \sigma).$$

Moderate deviation (This work)

For any $\{a_n\}$ such that $a_n o 0$ and $\sqrt{n}a_n o \infty$ and $\epsilon_n := e^{-na_n^2}$,

$$\frac{1}{n}D_h^{\epsilon_n}(\rho^{\otimes n}\|\sigma^{\otimes n}) = D(\rho\|\sigma) - \sqrt{2V(\rho\|\sigma)}a_n + o(a_n).$$

C. T. Chubb

Bounding the rate

For this we can use the one shot bounds

$$R^*(1,\epsilon) \geq \sup_{P_X} D_h^{\epsilon/2}(\pi_{XY} \| \pi_X \otimes \pi_Y) - \mathcal{O}(1),$$
 (Wang and Renner 2012) $R^*(1,\epsilon) \leq \inf_{\sigma} \sup_{\rho \in \operatorname{Im}(\mathcal{W})} D_h^{2\epsilon}(\rho \| \sigma) + \mathcal{O}(1),$ (Tomamichel and Tan 2015)

where
$$\pi_{XY} = \sum_{x} P_X(x) |x\rangle \langle x|_X \otimes \rho_Y^{(x)}$$
.

$$R^*(n,\epsilon_n) \ge \sup_{P_{X^n}} \frac{1}{n} D_h^{\epsilon_n/2} (\pi_{X^n Y^n} \| \pi_{X^n} \otimes \pi_{Y^n}) - \mathcal{O}(1/n)$$

$$R^*(n,\epsilon_n) \le \inf_{\sigma^n} \sup_{\rho^n \in \operatorname{Im}(\mathcal{W}^{\otimes n})} \frac{1}{n} D_h^{2\epsilon_n} (\rho^n \| \sigma^n) + \mathcal{O}(1/n).$$

C. T. Chubb Moderate deviations

Bounding the rate

For this we can use the one shot bounds

$$R^*(1,\epsilon) \ge \sup_{P_X} D_h^{\epsilon/2}(\pi_{XY} \| \pi_X \otimes \pi_Y) - \mathcal{O}(1),$$
 (Wang and Renner 2012) $R^*(1,\epsilon) \le \inf_{\sigma} \sup_{\rho \in \operatorname{Im}(\mathcal{W})} D_h^{2\epsilon}(\rho \| \sigma) + \mathcal{O}(1),$ (Tomamichel and Tan 2015)

where
$$\pi_{XY} = \sum_{x} P_X(x) |x\rangle \langle x|_X \otimes \rho_Y^{(x)}$$
.

This give *n*-shot bounds

$$R^*(n,\epsilon_n) \ge \sup_{P_{X^n}} \frac{1}{n} D_h^{\epsilon_n/2} (\pi_{X^n Y^n} \| \pi_{X^n} \otimes \pi_{Y^n}) - \mathcal{O}(1/n),$$

$$R^*(n,\epsilon_n) \le \inf_{\sigma^n} \sup_{\rho^n \in \operatorname{Im}(\mathcal{W}^{\otimes n})} \frac{1}{n} D_h^{2\epsilon_n} (\rho^n \| \sigma^n) + \mathcal{O}(1/n).$$

This now reduces the problem of proving a moderate deviation bound for channels to hypothesis testing.

C. T. Chubb Moderate deviations 12/22

Bounding the rate

For this we can use the one shot bounds

$$R^*(1,\epsilon) \geq \sup_{P_X} D_h^{\epsilon/2}(\pi_{XY} \| \pi_X \otimes \pi_Y) - \mathcal{O}(1),$$
 (Wang and Renner 2012) $R^*(1,\epsilon) \leq \inf_{\sigma} \sup_{\rho \in \operatorname{Im}(\mathcal{W})} D_h^{2\epsilon}(\rho \| \sigma) + \mathcal{O}(1),$ (Tomamichel and Tan 2015)

where
$$\pi_{XY} = \sum_{x} P_X(x) |x\rangle \langle x|_X \otimes \rho_Y^{(x)}$$
.

This give *n*-shot bounds

$$R^*(n,\epsilon_n) \ge \sup_{P_{X^n}} \frac{1}{n} D_h^{\epsilon_n/2} (\pi_{X^n Y^n} \| \pi_{X^n} \otimes \pi_{Y^n}) - \mathcal{O}(1/n),$$

$$R^*(n,\epsilon_n) \le \inf_{\sigma^n} \sup_{\rho^n \in \operatorname{Im}(\mathcal{W}^{\otimes n})} \frac{1}{n} D_h^{2\epsilon_n} (\rho^n \| \sigma^n) + \mathcal{O}(1/n).$$

This now reduces the problem of proving a moderate deviation bound for channels to hypothesis testing.

C. T. Chubb Moderate deviations 12/22

Reducing hyp. testing to concentration inequalities

To give a moderate deviation analysis of the HTD, we will use concentration bounds. First we see it is related to tail bounds of the $\frac{\text{Nussbaum-Szkoła}}{\text{distributions}^1}$

$$P^{
ho,\sigma}(a,b):=r_a|\langle\phi_a|\psi_b
angle|^2 \quad ext{and} \quad Q^{
ho,\sigma}(a,b):=s_b|\langle\phi_a|\psi_b
angle|^2,$$

where we have eigendecomposed our states $\rho:=\sum_a r_a\,|\phi_a\rangle\langle\phi_a|$ and $\sigma:=\sum_b s_b\,|\psi_b\rangle\langle\psi_b|$. These reproduce the first two moments of our states

$$D\left(P^{
ho,\sigma}\|Q^{
ho,\sigma}
ight) = D(
ho\|\sigma) \qquad ext{and} \qquad V\left(P^{
ho,\sigma}\|Q^{
ho,\sigma}
ight) = V(
ho\|\sigma).$$

Specifically for iid $Z_i = \log P^{
ho,\sigma}/Q^{
ho,\sigma}$ and $(a_i,b_i) \sim P^{
ho,\sigma}$, then²

$$\begin{split} &\frac{1}{n}D_{h}^{\epsilon_{n}}\left(\rho^{\otimes n} \middle\| \sigma^{\otimes n}\right) \geq \sup\left\{R \left| \Pr\left[\sum_{i=1}^{n} Z_{i}\right] \leq \epsilon_{n}/2\right\} - \mathcal{O}(\log 1/\epsilon_{n}) \right. \\ &\frac{1}{n}D_{h}^{\epsilon_{n}}\left(\rho^{\otimes n} \middle\| \sigma^{\otimes n}\right) \leq \sup\left\{R \left| \Pr\left[\sum_{i=1}^{n} Z_{i}\right] \leq 2\epsilon_{n}\right\} + \mathcal{O}(\log 1/\epsilon_{n}). \end{split}$$

¹Nussbaum and Szkoła 2009.

²Tomamichel and Hayashi 2013

Reducing hyp. testing to concentration inequalities

To give a moderate deviation analysis of the HTD, we will use concentration bounds. First we see it is related to tail bounds of the $\underbrace{\text{Nussbaum-Szkoła}}_{\text{distributions}^1}$

$$P^{
ho,\sigma}(a,b):=r_a|\langle\phi_a|\psi_b
angle|^2 \quad ext{and} \quad Q^{
ho,\sigma}(a,b):=s_b|\langle\phi_a|\psi_b
angle|^2,$$

where we have eigendecomposed our states $\rho:=\sum_a r_a\,|\phi_a\rangle\langle\phi_a|$ and $\sigma:=\sum_b s_b\,|\psi_b\rangle\langle\psi_b|$. These reproduce the first two moments of our states

$$D\left(P^{
ho,\sigma}\|Q^{
ho,\sigma}
ight) = D(
ho\|\sigma) \qquad ext{and} \qquad V\left(P^{
ho,\sigma}\|Q^{
ho,\sigma}
ight) = V(
ho\|\sigma).$$

Specifically for iid $Z_i = \log P^{\rho,\sigma}/Q^{\rho,\sigma}$ and $(a_i,b_i) \sim P^{\rho,\sigma}$, then²

$$\begin{split} &\frac{1}{n}D_h^{\epsilon_n}\left(\rho^{\otimes n}\big\|\sigma^{\otimes n}\right) \geq \sup\left\{R\left|\Pr\left[\sum_{i=1}^n Z_i\right] \leq \epsilon_n/2\right\} - \mathcal{O}(\log 1/\epsilon_n),\\ &\frac{1}{n}D_h^{\epsilon_n}\left(\rho^{\otimes n}\big\|\sigma^{\otimes n}\right) \leq \sup\left\{R\left|\Pr\left[\sum_{i=1}^n Z_i\right] \leq 2\epsilon_n\right\} + \mathcal{O}(\log 1/\epsilon_n). \end{split}$$

C. T. Chubb

¹Nussbaum and Szkoła 2009.

²Tomamichel and Hayashi 2013

Different regimes

From large deviation regime

Is the reliable communication possible as rate approaches capacity?

From large deviation regime

Is the reliable communication possible as rate approaches capacity?

Let
$$R_n = \mathsf{C} - a_n$$
, where

Let
$$R_n = \mathsf{C} - a_n$$
, where
$$\begin{cases} & \text{(i)} \lim_{n \to \infty} a_n = 0 \\ & \text{(ii)} \lim_{n \to \infty} \sqrt{n} a_n = \infty \end{cases}$$

From large deviation regime

Is the reliable communication possible as rate approaches capacity?

Let
$$R_n = \mathsf{C} - a_n$$
, where

Let
$$R_n = \mathsf{C} - a_n$$
, where
$$\begin{cases} & \text{(i)} \lim_{n \to \infty} a_n = 0 \\ & \text{(ii)} \lim_{n \to \infty} \sqrt{n} a_n = \infty \end{cases}$$

$$\epsilon^*(n, R_n) = \exp\left\{-\frac{na_n^2}{2\mathsf{V}} + o(na_n^2)\right\} \to 0$$

$$R^*(n, \epsilon_n) = C - \sqrt{2V}a_n + o(a_n)$$

 $\epsilon_n = \exp\{-na_n^2\}$

Channel coding

$$\epsilon^*(n, R_n) = \exp\left\{-\frac{na_n^2}{2V} + o(na_n^2)\right\}$$

$$R_n = C - a_n$$

$$R^*(n, \epsilon_n) = C - \sqrt{2Va_n} + o(a_n)$$

 $\epsilon_n = \exp\{-na_n^2\}$

Channel coding

$$\epsilon^*(n, R_n) = \exp\left\{-\frac{na_n^2}{2V} + o(na_n^2)\right\}$$

$$R_n = \mathsf{C} - a_n$$

$$-\frac{1}{n}\log\beta_n^* \to D - \sqrt{2V}a_n,$$
$$\alpha_n \le \exp\{-na_n^2\}$$

Hypothesis testing

$$\alpha_n^* \to \exp\left\{-\frac{na_n^2}{2V}\right\},$$

$$\beta_n \le \exp\{-n[D - a_n]\}$$

$$R^*(n, \epsilon_n) = C - \sqrt{2V}a_n + o(a_n)$$

$$\epsilon_n = \exp\{-na_n^2\}$$

Channel coding

$$\epsilon^*(n, R_n) = \exp\left\{-\frac{na_n^2}{2V} + o(na_n^2)\right\}$$

$$R_n = C - a_n$$

 $\alpha_n \leq \exp\{-na_n^2\}$

Hypothesis testing

[Small deviation]

Concentration inequalities

[Large deviation]

Moderate deviations for hypothesis testing

> Type-I, -II errors:
$$lpha_n:={
m Tr}\,[({1\hskip-2.5pt{\rm l}}-A_n)
ho^{\otimes n}]$$
 $eta_n:={
m Tr}\,[A_n\sigma^{\otimes n}]$

- Given $\beta_n \leq \exp\{-nR\}$
- Quantum Stein's lemma (Hiai and Petz 1991, Ogawa and Nagaoka 1999)

$$\alpha_n^* \to \begin{cases} 0, & R < D(\rho \| \sigma) \\ 1, & R > D(\rho \| \sigma) \end{cases}$$

Moderate deviations for hypothesis testing

> Type-I, -II errors:
$$lpha_n:={
m Tr}\,[({1\hskip-2.5pt{\rm l}}-A_n)
ho^{\otimes n}]$$
 $eta_n:={
m Tr}\,[A_n\sigma^{\otimes n}]$

- Given $\beta_n \leq \exp\{-nR\}$
- Quantum Stein's lemma (Hiai and Petz 1991, Ogawa and Nagaoka 1999)

$$\alpha_n^* \to \begin{cases} 0, & R < D(\rho \| \sigma) \\ 1, & R > D(\rho \| \sigma) \end{cases}$$

• Question: $\alpha_n^* \to 0$? given $\beta_n \le \exp\{-n[D(\rho \| \sigma) - a_n]\}$

Moderate deviations for hypothesis testing

> Type-I, -II errors:
$$lpha_n:={
m Tr}\,[({1\hskip-2.5pt{\rm l}}-A_n)
ho^{\otimes n}]$$
 $eta_n:={
m Tr}\,[A_n\sigma^{\otimes n}]$

- Given $\beta_n \leq \exp\{-nR\}$
- Quantum Stein's lemma (Hiai and Petz 1991, Ogawa and Nagaoka 1999)

$$\alpha_n^* \to \begin{cases} 0, & R < D(\rho \| \sigma) \\ 1, & R > D(\rho \| \sigma) \end{cases}$$

- Question: $\alpha_n^* \to 0$? given $\beta_n \le \exp\{-n[D(\rho \| \sigma) a_n]\}$
- Answer: $\left(\alpha_n^* = \exp\left\{-\frac{na_n^2}{2V(\rho||\sigma)} + o(na_n^2)\right\} \to 0 \right)$

• Quantum Hoeffding bound ($\beta_n \leq \exp\{-nR\}$)

$$\alpha_n^* = \exp\{-n\mathsf{E}(R) + o(n)\}$$

$$\sup_{0<\alpha\leq 1}\frac{1-\alpha}{\alpha}\left(D_{\alpha}(\rho\|\sigma)-R\right)$$

Achievability (Audenaert et al. 2007, Hayashi 2007, Audenaert, Nussbaum, Szkola, Verstraete 2008)

$$\alpha_n^* \le \exp\{-n\mathsf{E}(R)\}$$

• Quantum Hoeffding bound ($\beta_n \leq \exp\{-nR\}$)

$$\alpha_n^* = \exp\{-n\mathsf{E}(R) + o(n)\}$$

$$\sup_{0<\alpha\leq 1}\frac{1-\alpha}{\alpha}\left(D_{\alpha}(\rho\|\sigma)-R\right)$$

$$\frac{\mathsf{E}(D(\rho\|\sigma) - a_n)}{a_n^2} \to \frac{1}{2V(\rho\|\sigma)}$$

Achievability (Audenaert et al. 2007, Hayashi 2007, Audenaert, Nussbaum, Szkola, Verstraete 2008)

$$\alpha_n^* \le \exp\{-n\mathsf{E}(R)\}$$
 $\Rightarrow \alpha_n^* \le \exp\left\{-\frac{na_n^2}{2V(\rho\|\sigma)} + \frac{o(na_n^2)}{o(na_n^2)}\right\}$

• Quantum Hoeffding bound ($\beta_n \leq \exp\{-nR\}$)

$$\alpha_n^* = \exp\{-n\mathsf{E}(R) + o(n)\}$$

$$\sup_{0<\alpha\leq 1}\frac{1-\alpha}{\alpha}\left(D_{\alpha}(\rho\|\sigma)-R\right)$$

$$\frac{\mathsf{E}(D(\rho\|\sigma) - a_n)}{a_n^2} \to \frac{1}{2V(\rho\|\sigma)}$$

Converse (Nagaoka 2006)

$$\alpha_n^* \ge \exp\{-n\mathsf{E}(R) + O(\sqrt{n})\}$$

Quantum Hoeffding bound ($\beta_n \leq \exp\{-nR\}$)

$$\alpha_n^* = \exp\{-n\mathsf{E}(R) + o(n)\}$$

$$\sup_{0<\alpha\leq 1}\frac{1-\alpha}{\alpha}\left(D_{\alpha}(\rho\|\sigma)-R\right)$$

$$\frac{\mathsf{E}(D(\rho\|\sigma) - a_n)}{a_n^2} \to \frac{1}{2V(\rho\|\sigma)}$$

Converse (Nagaoka 2006)

$$\alpha_n^* \ge \exp\{-n\mathsf{E}(R) + O(\sqrt{n})\}$$

$$\alpha_n^* \ge \frac{A}{(1 - \alpha^*)\sqrt{n}} \exp\{-n\mathsf{E}(R)\}$$

Quantum Hoeffding bound ($\beta_n \leq \exp\{-nR\}$)

$$\alpha_n^* = \exp\{-n\mathsf{E}(R) + o(n)\}$$

$$\sup_{0<\alpha\leq 1}\frac{1-\alpha}{\alpha}\left(D_{\alpha}(\rho\|\sigma)-R\right)$$

$$\frac{\mathsf{E}(D(\rho||\sigma) - a_n)}{a_n^2} \to \frac{1}{2V(\rho||\sigma)}$$

Converse (Nagaoka 2006)

$$\alpha_n^* \ge \exp\{-n\mathsf{E}(R) + O(\sqrt{n})\}$$

$$\alpha_n^* \ge \frac{A}{(1 - \alpha^*)\sqrt{n}} \exp\{-n\mathsf{E}(R)\}$$

$$\beta_n \le \exp\{-n[D(\rho\|\sigma) - a_n]\}$$

$$\alpha_n^* \ge \exp\left\{-\frac{na_n^2}{2V(\rho\|\sigma)} + o(na_n^2)\right\}$$

Channel coding

• Goal: for $R_n = \mathsf{C} - a_n$,

$$\Rightarrow \epsilon^*(n, R_n) = \exp\left\{-\frac{na_n^2}{2\mathsf{V}} + o(na_n^2)\right\}$$

Information variance

$$\mathsf{V} := \sup_{
ho_X: I(X:B)_{
ho} = \mathsf{C}} V(
ho_{XB} ||
ho_X \otimes
ho_B)$$

- Challenges:
 - ▶ The optimal error exponent is still open
 - Need a tight finite blocklength analysis for the optimal error probability

Achievability

▶ Hayashi 2007: $\epsilon^*(n,R) \le 4 \exp\{-n\mathsf{E}_{\mathrm{r}}^{\downarrow}(R)\}$

$$\max_{\frac{1}{2} \le \alpha \le 1} \frac{1 - \alpha}{\alpha} \left(D_{2 - \frac{1}{\alpha}} (\rho_{XB} || \rho_X \otimes \rho_B) - R \right)$$

Achievability

▶ Hayashi 2007: $\epsilon^*(n,R) \le 4 \exp\{-n \mathsf{E}_{\mathrm{r}}^{\downarrow}(R)\}$

$$\max_{\frac{1}{2} \le \alpha \le 1} \frac{1 - \alpha}{\alpha} \left(D_{2 - \frac{1}{\alpha}}(\rho_{XB} \| \rho_X \otimes \rho_B) - R \right)$$

Asymptotic expansion:

$$\frac{\mathsf{E}_{\mathrm{r}}^{\downarrow}(\mathsf{C}-a_n)}{a_n^2} \to \frac{1}{2\mathsf{V}}$$

$$\epsilon^*(n, R_n) \le \exp\left\{-\frac{na_n^2}{2\mathsf{V}} + o(na_n^2)\right\}$$

Winter 1999:

$$\lim_{n\to\infty} -\frac{1}{n}\log \epsilon^*(n,R) \le \widetilde{\mathsf{E}}_{\mathrm{sp}}(R) := \max_{\rho_X} \min_{\sigma_{XB}:\sigma_X = \rho_X} \left\{ D(\sigma_{XB} \| \rho_{XB}) : \mathsf{I}(X:B)_{\sigma} \le R \right\}$$

Dalai 2013:

$$\lim_{n\to\infty} -\frac{1}{n}\log \epsilon^*(n,R) \le \mathsf{E}_{\mathrm{sp}}(R) := \max_{\rho_X} \sup_{0<\alpha \le 1} \min_{\sigma_B} \frac{1-\alpha}{\alpha} \left(D_\alpha(\rho_{XB} \| \rho_X \otimes \sigma_B) - R \right)$$

- Questions:
 - What is the right exponent?
 - Finite blocklength bound with tight prefactor?

Classical approach (Altug, Wagner 2014)

$$\epsilon^*(n, R_n) \ge \exp\left\{-n\widetilde{\mathsf{E}}_{\mathrm{sp}}(R) + o(na_n^2)\right\}$$

Classical approach (Altug, Wagner 2014)

$$\epsilon^*(n, R_n) \ge \exp\left\{-n\widetilde{\mathsf{E}}_{\mathrm{sp}}(R) + o(na_n^2)\right\}$$

Asymptotic expansion:

$$\frac{\widetilde{\mathsf{E}}_{\mathrm{sp}}(\mathsf{C}-a_n)}{a_n^2} \to \frac{1}{2\widetilde{\mathsf{V}}}$$

Classical approach (Altug, Wagner 2014)

$$\epsilon^*(n, R_n) \ge \exp\left\{-n\widetilde{\mathsf{E}}_{\mathrm{sp}}(R) + o(na_n^2)\right\}$$

$$V(\rho \| \sigma) := \operatorname{Tr} \left[\rho(\log \rho - \log \sigma)^2 \right] - D(\rho \| \sigma)^2$$
 [Li12, Tomamichel, Hayashi12]
$$\widetilde{V}(\rho \| \sigma) := \int_0^1 \mathrm{d}t \operatorname{Tr} \left[\rho^{1-t} (\log \rho - \log \sigma) \rho^t (\log \rho - \log \sigma) \right] - D(\rho \| \sigma)^2$$

Asymptotic expansion:

$$\frac{\widetilde{\mathsf{E}}_{\mathrm{sp}}(\mathsf{C}-a_n)}{a_n^2} o \frac{1}{2\widetilde{\mathsf{V}}} \geq \frac{1}{2\mathsf{V}}$$

Classical approach (Altug, Wagner 2014)

$$\epsilon^*(n, R_n) \ge \exp\left\{-n\widetilde{\mathsf{E}}_{\mathrm{sp}}(R) + o(na_n^2)\right\}$$

$$V(\rho \| \sigma) := \operatorname{Tr} \left[\rho(\log \rho - \log \sigma)^2 \right] - D(\rho \| \sigma)^2$$
 [Li12, Tomamichel, Hayashi12]
$$\widetilde{V}(\rho \| \sigma) := \int_0^1 \mathrm{d}t \operatorname{Tr} \left[\rho^{1-t} (\log \rho - \log \sigma) \rho^t (\log \rho - \log \sigma) \right] - D(\rho \| \sigma)^2$$

Asymptotic expansion:

$$\frac{\widetilde{\mathsf{E}}_{\mathrm{sp}}(\mathsf{C}-a_n)}{a_n^2} o \frac{1}{2\widetilde{\mathsf{V}}} \geq \frac{1}{2\mathsf{V}}$$

Result: a tight sphere-packing bound

$$\epsilon^*(n, R) \ge \frac{A}{(1 - \alpha^*)\sqrt{n}} \exp\{-n\mathsf{E}_{\mathrm{sp}}(R)\}$$

Dalai: $\exp\{O(\sqrt{n})\}$

[arXiv:1704.05703]

Classical approach (Altug, Wagner 2014)

$$\epsilon^*(n, R_n) \ge \exp\left\{-n\widetilde{\mathsf{E}}_{\mathrm{sp}}(R) + o(na_n^2)\right\}$$

$$V(\rho \| \sigma) := \operatorname{Tr} \left[\rho (\log \rho - \log \sigma)^2 \right] - D(\rho \| \sigma)^2$$
 [Li12, Tomamichel, Hayashi12]
$$\widetilde{V}(\rho \| \sigma) := \int_0^1 dt \operatorname{Tr} \left[\rho^{1-t} (\log \rho - \log \sigma) \rho^t (\log \rho - \log \sigma) \right] - D(\rho \| \sigma)^2$$

Asymptotic expansion:

$$\frac{\widetilde{\mathsf{E}}_{\mathrm{sp}}(\mathsf{C}-a_n)}{a_n^2} o \frac{1}{2\widetilde{\mathsf{V}}} \geq \frac{1}{2\mathsf{V}}$$

Result: a tight sphere-packing bound

$$\epsilon^*(n,R) \ge \frac{A}{(1-\alpha^*)\sqrt{n}} \exp\{-n\mathsf{E}_{\mathrm{sp}}(R)\}$$

Dalai:
$$\exp\{O(\sqrt{n})\}$$

[arXiv:1704.05703]

$$\epsilon^*(n, R_n) \ge \exp\left\{-\frac{na_n^2}{2\mathsf{V}} + o(na_n^2)\right\}$$

- We study the fundamental trade-off between error, rate, and blocklength
 - How fast are the convergences $R \to \mathsf{C}$ or $\epsilon \to 0$ as $n \to \infty$?

- We study the fundamental trade-off between error, rate, and blocklength
 - ightharpoonup How fast are the convergences R o C or $\epsilon o 0$ as $n o \infty$?

$$\begin{cases} R^*(n, \epsilon_n) = \mathsf{C} - \sqrt{2\mathsf{V}} a_n + o(a_n), & \epsilon_n = \exp\{-na_n^2\} \\ \epsilon^*(n, R_n) = \exp\left\{-\frac{na_n^2}{2\mathsf{V}} + o(na_n^2)\right\}, & R_n = \mathsf{C} - a_n \end{cases}$$

[Moderate]

[Chubb, Tan, Tomamichel]

Interplay between R and n given a fixed ε

[Small deviation]

Error Exponent Analysis

Interplay between ε and n given a fixed R

[Large deviation]

[Cheng, Hsieh]

- We study the fundamental trade-off between error, rate, and blocklength
 - ightharpoonup How fast are the convergences $R \to C$ or $\epsilon \to 0$ as $n \to \infty$?

$$\begin{cases} R^*(n, \epsilon_n) = \mathsf{C} - \sqrt{2\mathsf{V}} a_n + o(a_n), & \epsilon_n = \exp\{-na_n^2\} \\ \epsilon^*(n, R_n) = \exp\left\{-\frac{na_n^2}{2\mathsf{V}} + o(na_n^2)\right\}, & R_n = \mathsf{C} - a_n \end{cases}$$

Moderate deviations for hypothesis testing

$$\begin{cases} \frac{1}{n} D_h^{\epsilon_n}(\rho^{\otimes n} \| \sigma^{\otimes n}) = D(\rho \| \sigma) - \sqrt{2V(\rho \| \sigma)} a_n + o(a_n), & \epsilon_n := \exp\{-na_n^2\} \\ \frac{1}{n} D_h^{\exp\{-nR_n\}}(\rho^{\otimes n} \| \sigma^{\otimes n}) = \frac{a_n^2}{V(\rho \| \sigma)} + o(a_n^2), & R_n := D(\rho \| \sigma) - a_n \end{cases}$$

- We study the fundamental trade-off between error, rate, and blocklength
 - ightharpoonup How fast are the convergences $R \to C$ or $\epsilon \to 0$ as $n \to \infty$?

$$\begin{cases} R^*(n, \epsilon_n) = \mathsf{C} - \sqrt{2\mathsf{V}} a_n + o(a_n), & \epsilon_n = \exp\{-na_n^2\} \\ \epsilon^*(n, R_n) = \exp\left\{-\frac{na_n^2}{2\mathsf{V}} + o(na_n^2)\right\}, & R_n = \mathsf{C} - a_n \end{cases}$$

Moderate deviations for hypothesis testing

$$\begin{cases} \frac{1}{n} D_h^{\epsilon_n}(\rho^{\otimes n} \| \sigma^{\otimes n}) = D(\rho \| \sigma) - \sqrt{2V(\rho \| \sigma)} a_n + o(a_n), & \epsilon_n := \exp\{-na_n^2\} \\ \frac{1}{n} D_h^{\exp\{-nR_n\}}(\rho^{\otimes n} \| \sigma^{\otimes n}) = \frac{a_n^2}{V(\rho \| \sigma)} + o(a_n^2), & R_n := D(\rho \| \sigma) - a_n \end{cases}$$

Extension to image-additive channels – What about other channels (entanglement-breaking) or capacities (entanglement-assisted)?

- We study the fundamental trade-off between error, rate, and blocklength
 - How fast are the convergences $R \to C$ or $\epsilon \to 0$ as $n \to \infty$?

$$\begin{cases} R^*(n, \epsilon_n) = \mathsf{C} - \sqrt{2\mathsf{V}} a_n + o(a_n), & \epsilon_n = \exp\{-na_n^2\} \\ \epsilon^*(n, R_n) = \exp\left\{-\frac{na_n^2}{2\mathsf{V}} + o(na_n^2)\right\}, & R_n = \mathsf{C} - a_n \end{cases}$$

Moderate deviations for hypothesis testing

$$\begin{cases} \frac{1}{n} D_h^{\epsilon_n}(\rho^{\otimes n} \| \sigma^{\otimes n}) = D(\rho \| \sigma) - \sqrt{2V(\rho \| \sigma)} a_n + o(a_n), & \epsilon_n := \exp\{-na_n^2\} \\ \frac{1}{n} D_h^{\exp\{-nR_n\}}(\rho^{\otimes n} \| \sigma^{\otimes n}) = \frac{a_n^2}{V(\rho \| \sigma)} + o(a_n^2), & R_n := D(\rho \| \sigma) - a_n \end{cases}$$

- Extension to image-additive channels What about other channels (entanglement-breaking) or capacities (entanglement-assisted)?
- Other applications private communications, classical data compression with quantum side information, etc.

Different concentration regimes

Regimes	Channel Coding	Concentration
Small deviation	$\epsilon^* \left(n, C - \frac{A}{\sqrt{n}} \right) \sim \Phi \left(\frac{A}{\sqrt{V}} \right)$	$\Pr\left[\bar{X}_n \ge \frac{1}{\sqrt{n}}t\right] \sim 1 - Q\left(\frac{x}{\sqrt{V}}\right)$
Moderate deviation	$\epsilon^*(n, C - a_n) = e^{-\frac{na_n^2}{2V} + o(na_n^2)}$	$\Pr\left[\bar{X}_n \ge a_n t\right] = e^{-\frac{na_n^2}{2V}x + o(na_n^2)}$
Large deviation	$\epsilon^*(n,R) = e^{-nE(R) + o(n)}$	$\Pr\left[\bar{X}_n \ge t\right] = e^{-nI(x) + o(n)}$

[Moderate]

Second-order Analysis

Interplay between R and n given a fixed ε

[Small deviation]

Error Exponent Analysis

Interplay between ε and n given a fixed R

[Large deviation]