CODE No.: 19BT30401 SVEC-19

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

II B.Tech I Semester (SVEC-19) Regular Examinations February – 2021

ELECTROMAGNETIC FIELDS AND TRANSMISSION LINES

[Electronics and Communication Engineering]

Ti	ime: 3	hours		Max. Marks: 60						
		Answer One Question from each Unit All questions carry equal marks								
UNIT-I										
1.	a)	Derive an expression for the continuity equation and explain its significance.	6 Marks	L1	CO1	PO1				
	b)	Point charges of 30 nC each are located at A(2, 0, 0), B(-2, 0, 0), C(0, 2, 0) and D(0, -2, 0) in free space. Find the total force on the charge at A.	6 Marks	L3	CO1	PO1				
		(OR)								
2.	a)	Determine magnetic field intensity about an infinitely long straight current carrying filament and also sketch the resulting magnetic flux lines.	6 Marks	L2	CO1	PO2				
	b)	The point charge Q = 18 nC has a velocity of 5 x 10^6 m/s in the direction $0.6\hat{a}_x + 0.75\hat{a}_y + 0.3\hat{a}_z$. Calculate the force exerted	6 Marks	L3	CO1	PO1				
		on the charge by the field $\bar{B} = (-3\hat{a}_x + 4\hat{a}_y + 6\hat{a}_z) mT$.								
		(UNIT-II)								
3.	a)	State and prove Maxwell's four equations for time varying fields.	6 Marks	L1	CO2	PO2				
	b)	In a medium of conduction current density given by	6 Marks	L3	CO2	PO1				
		$J = 6\cos(\omega t - 10z) a_y + \sin(\omega t - 10z) a_z \text{ mA/m}^2$, find the volume								
		charge density. (OR)								
4.	a)	Determine the boundary conditions for electrostatic fields at a conductor – dielectric interface.	6 Marks	L1	CO2	PO2				
	b)	Derive boundary conditions for magnetostatic fields. UNIT-III	6 Marks	L1	CO2	PO2				
5.	a)	Derive expression for resultant fields due to oblique incidence of	6 Marks	L1	CO3	PO2				
		an EM wave on a perfect conductor.								
	b)		6 Marks	L4	CO3	PO2				
		B = $2\sin(\omega t - \beta x)$ $\mathbf{a}_x + 2y\cos(\omega t - \beta x)$ \mathbf{a}_y in a medium where $\mathbf{\rho}_v = 0$,								
		σ =0, J=0, find the electric field. Assume ε_r = 1 and μ_r =1.								
6.	a)	(OR) Show that the ratio of E and H in a uniform plane wave is	6 Marks	L1	CO3	PO2				
0.	a)	approximately equal to 377Ω .	O IVIAIRS	L1	CO3	102				
	b)	Discuss in detail the various ways in which a plane wave can be polarized.	6 Marks	L2	CO3	PO2				
		UNIT-IV								
7.	a)	Starting from the equivalent circuit, derive the transmission line equation for V and I in terms of the source parameters and prove	6 Marks	L2	CO4	PO2				
		that $Z_0^2 = Z_{sc} Z_{oc}$		_	a: -					
	b)	Find the input impedance of a 75 Ω lossless transmission line of length 0.22, if it is terminated in a short circuit	6 Marks	L3	CO4	PO2				
		length 0.2λ , if it is terminated in a short circuit. (OR)								
		(OL)								

8.	a)	Derive an expression for the relation between reflection coefficient, load and characteristic impedance.	6 Marks	L1	CO4	PO2
	b)	A lossy line which has $R = 2.5 \Omega$ /m, $L = 1.0 \text{ mH/m}$, $C = 1 \text{ pF/m}$, and $G = 0$ operates at $f = 1.5 \text{ GHz}$. Find the attenuation constant of the line.	6 Marks	L3	CO4	PO1
		UNIT-V				
9.	a) b)	List out the various applications of a Smith chart. A lossless transmission line is terminated in a load impedance of $30-j$ 25 Ω . Find the phase constant and the reflection coefficient of a line of length 50m. Characteristic impedance $z_0 = 50 \Omega$. Wavelength on the line = 0.40m.	6 Marks 6 Marks	L1 L3	CO4 CO4	PO1 PO2
		(OR)				
10	a)	Explain how single stub matching is carried out using a Smith chart.	6 Marks	L2	CO4	PO2
	b)	Find the input impedance of a 75Ω lossless transmission line of length 0.2λ . if it is terminated in an open circuit using Stub matching.	6 Marks	L4	CO4	PO3

(유)