Отчёт по лабораторной работе №8

Дисциплина: архитектура компьютеров и операционные системы

Зарина Исмайилбековна Исаева

Содержание

Сп	Список литературы		
5	Выводы	13	
4	Выполнение лабораторной работы 4.1 Реализация циклов в NASM	9 10 12	
3	Теоретическое введение	7	
2	Задание	6	
1	Цель работы	5	

Список иллюстраций

4.1	Создание файлов для лабораторной работы
4.2	Ввод текста программы из листинга 8.1
4.3	Запуск программного кода
4.4	Редактирование текста программы
4.5	Запуск обновлённой программы
4.6	Редактирование текста программы
4.7	Вывод программы
4.8	Ввод текста из листинга 8.2
4.9	Запуск исполняемого файла
4.10	Ввод текста из листинга 8.3
4.11	Вывод программы
4.12	Изменение текста файла
4.13	Запуск исполняемого файла
	Текст программы
4.15	Запуск исполняемого файла и его проверка

Список таблиц

1 Цель работы

Приобретение навыков написания программ с использованием циклов и обработкой аргументов командной строки.

2 Задание

- 1. Реализация циклов в NASM.
- 2. Обработка аргументов командной строки.
- 3. Задание для самостоятельной работы.

3 Теоретическое введение

Стек — это структура данных, организованная по принципу LIFO («Last In — First Out» или «последним пришёл — первым ушёл»). Стек является частью архитектуры процессора и реализован на аппаратном уровне. Для работы со стеком в процессоре есть специальные регистры (ss, bp, sp) и команды. Основной функцией стека является функция сохранения адресов возврата и передачи аргументов при вызове процедур. Кроме того, в нём выделяется память для локальных переменных и могут временно храниться значения регистров. Стек имеет вершину, адрес последнего добавленного элемента, который хранится в регистре еsp (указатель стека). Противоположный конец стека называется дном. Значение, помещённое в стек последним, извлекается первым. При помещении значения в стек указатель стека уменьшается, а при извлечении — увеличивается.

Команда push размещает значение в стеке, т.е. помещает значение в ячейку памяти, на которую указывает регистр esp, после этого значение регистра esp увеличивается на 4. Данная команда имеет один операнд — значение, которое необходимо поместить в стек.

Команда рор извлекает значение из стека, т.е. извлекает значение из ячейки памяти, на которую указывает регистр esp, после этого уменьшает значение регистра esp на 4. У этой команды также один операнд, который может быть регистром или переменной в памяти. Нужно помнить, что извлечённый из стека элемент не стирается из памяти и остаётся как "мусор", который будет перезаписан при записи нового значения в стек.

Для организации циклов существуют специальные инструкции. Для всех ин-

струкций максимальное количество проходов задаётся в регистре ecx. Наиболее простой является инструкция loop. Она позволяет организовать безусловный цикл.

4 Выполнение лабораторной работы

4.1 Реализация циклов в NASM

Создаю каталог для программ лабораторной работы № 8, перехожу в него и создаю файл lab8-1.asm (рис. [4.1]).

Создание файлов для лабораторной работы

Рис. 4.1: Создание файлов для лабораторной работы

Ввожу в файл lab8-1.asm текст программы из листинга 8.1 (рис. [4.2]).

Ввод текста программы из листинга 8.1

Рис. 4.2: Ввод текста программы из листинга 8.1

Создаю исполняемый файл и запускаю его (рис. [4.3]).

Запуск программного кода

Рис. 4.3: Запуск программного кода

Данная программа выводит числа от N до 1 включительно.

Изменяю текст программы, добавив изменение значения регистра есх в цикле (рис. [4.4]).

Редактирование текста программы

Рис. 4.4: Редактирование текста программы

Создаю исполняемый файл и проверяю его работу (рис. [4.5])

Запуск обновлённой программы

Рис. 4.5: Запуск обновлённой программы

В данном случае число проходов цикла не соответствует введенному с клавиатуры значению.

Вношу изменения в текст программы, добавив команды push и рор для сохранения значения счетчика цикла loop (рис. [4.6]).

Редактирование текста программы

Рис. 4.6: Редактирование текста программы

Создаю исполняемый файл и проверяю его работу (рис. [4.7])

Вывод программы

Рис. 4.7: Вывод программы

В данном случае число проходов цикла соответствует введенному с клавиатуры значению и выводит числа от N-1 до 0 включительно.

4.2 Обработка аргументов командной строки

Создаю файл lab8-2.asm в каталоге ~/work/arch-pc/lab07 (рис. [4.8]).

Ввод текста из листинга 8.2

Рис. 4.8: Ввод текста из листинга 8.2

Создаю исполняемый файл и запускаю его, указав нужные аргументы (рис. [4.9]).

Запуск исполняемого файла

Рис. 4.9: Запуск исполняемого файла

Программа вывела 4 аргумента, так как аргумент 2 не взят в кавычки, в отличии от аргумента 3, поэтому из-за пробела программа считывает "2" как отдельный аргумент.

Рассмотрим пример программы, которая выводит сумму чисел, которые передаются в программу как аргументы. Создаю файл lab8-3.asm в каталоге ~/work/archpc/lab08 и ввожу в него текст программы из листинга 8.3 (рис. [4.10])

Ввод текста из листинга 8.3

Рис. 4.10: Ввод текста из листинга 8.3

Создаю исполняемый файл и запускаю его, указав аргументы (рис. [4.11]).

Вывод программы

Рис. 4.11: Вывод программы

Изменяю текст программы из листинга 8.3 для вычисления произведения аргументов командной строки (рис. [4.12])

Изменение текста файла

Рис. 4.12: Изменение текста файла

Создаю исполняемый файл и запускаю его, указав аргументы (рис. [4.13]). Запуск исполняемого файла

Рис. 4.13: Запуск исполняемого файла

4.3 Задания для самостоятельной работы

Пишу текст программы, которая находит сумму значений функции f(x) = 10x - 5 в соответствии с моим номером варианта (3) для x = x1, x2, ..., xn. Значения хі передаются как аргументы. (рис. [4.14])

Текст программы

Рис. 4.14: Текст программы

Создаю исполняемый файл и проверьте его работу на нескольких наборах x = x1, x2, ..., xn. (рис. [4.15]).

Запуск исполняемого файла и его проверка

Рис. 4.15: Запуск исполняемого файла и его проверка

Программа работает корректно.

Код программы:

%include 'in_out.asm' SECTION .data esult_msg db "Результат:", 0 coeff dd 10 constant dd 5 SECTION .text global _start

_start: pop ecx sub ecx, 1 mov esi, 0 next_value: cmp ecx, 0 je print_result pop ebx call atoi eax, [coeff] sub eax, [constant] add esi, eax loop next_value print_result: mov eax, result msg call sprint mov eax, esi call iprintLF call quit

5 Выводы

Благодаря данной лабораторной работе я приобрела навыки написания программ использованием циклов и обработкой аргументов командной строки, что поможет мне при выполнении последующих лабораторных работ.

Список литературы

1. [Лабораторная работа $N^{o}8$] (https://esystem.rudn.ru/pluginfile.php/2089095/mod_resource/comparing temperature of the system of the sy