

Clustering Complex Data with Group-Dependent Feature Selection

Yen-Yu Lin^{1,2}, Tyng-Luh Liu¹, and Chiou-Shann Fuh²

¹Institute of Information Science, Academia Sinica, Taiwan; ²Dept. of CSIE, National Taiwan University, Taiwan

1. Summary

- · We propose a new clustering technique that considers multiple feature representations and cluster-specific feature selection for handling complex data.
- · Our approach:
- > Associate each cluster with a classifier that implements multiple kernel learning (MKL) in a boosting way.
- Each cluster-specific classifier is applied to feature selection to best separate data of the cluster from the rest.
- > Integrate the multiple, correlative training tasks of the clusterspecific classifiers into the clustering procedure.
- It supports both unsupervised and semi-supervised clustering.

2. The Proposed Approach

2.1 **Problem Definition**

- Our goal is to divide a given dataset $D = f x_1 g_{i=1}^N$ into C clusters.
- · Multiple image descriptors are used, and kernel matrices serve as the unified feature representation.
- · Two sets of variables are optimized in our clustering formulation.
 - > Y 2 f 0; $1g^{N \& C}$: the partition matrix used to represent the clustering result.
 - $> ff_c g_{c=1}^C$: the cluster-specific classifiers. f_c will select features such that data of cluster c are coherent to each other, and distinct to the rest.
- · The cause-and-effect factor:
- Learning classifiers ffcgC requires data labels provided by partition matrix Y.
- · Partition matrix Y is determined by considering the cluster structure revealed via $ff_cg_{c=1}^C$.
- . Thus, we cast them as a joint optimization problem:

2.2 Optimization

- An alternative optimization procedure is used to solve the joint optimization problem.
- > By fixing Y, each cluster-specific classifier fo is trained by using a boosting-based MKL. fc is derived by selecting features to best separate data residing in cluster c from the rest.
- By fixing ff_cg^C_{c=1}, partition matrix Y is optimized by solving a binary integer programming (BIP) problem.

3. Multiple Kernel Learning via Boosting

- · We carry out multiple kernel learning in a boosting way.
- > Transfer the discriminant power of each kernel into a set of weak learners, called dyadic hypercuts [Moghaddam et al., NIPS'02].
- Learn the boosting classifier over weak learners generated from all the kernels.

Weak Learners: Dvadic Hypercuts

· A dyadic hypercut is specified by a kernel and a pair of training samples of opposite labels:

$$h(x) = sign(k(x_n; x) i k(x_n; x) i \mu)$$
:

· Dyadic hypercuts capture useful information in the kernel.

Classifier Learning with Multiple Kernels

- · Learn the classifiers by one of the boosting algorithms, such as AdaBoost, LogitBoost, or AnyBoost.
- · It supports incremental/on-line classifier learning.

4. Experimental Results

 The proposed approach is evaluated on two vision applications: visual object categorization and face image grouping.

4.1 **Visual Object Categorization**

- . Following the setting in [Dueck et al., ICCV'07], we select the same twenty object categories form the Caltech-101 dataset.
- · We randomly pick thirty images from each category to form a set of 600 images.
- Five kinds of image descriptors are implemented, and they result in the following five kernel matrices:
- > GB: Based on the geometric blur descriptor.
- > SIFT: Based on the SIFT descriptor.
- > SS: Based on the self-similarity descriptor.
- > C2: Based on the biologically inspired features.
- > PHOG: Based on the PHOG descriptor.

- · Clustering performances are evaluated by accuracy (ACC) and normalized mutual information (NMI).
- · When each descriptor (kernel) is considered individually, ...

Kernet	&-means	Amnity Prop.	Spectral Clus.	Ours	
GB	68.0 / 0.732	52.5 / 0.578	69.5 / 0.704	75.0 / 0.742	
SIFT	62.5 / 0.680	59.8 / 0.638	62.5 / 0.668	69.6 / 0.706	
SS	65.7 / 0.659	55.7 / 0.574	63.3 / 0.655	62.1 / 0.639	
C2	37.8 / 0.417	47.5 / 0.517	57.7 / 0.585	51.2 / 0.550	
PHOG	53.3 / 0.547	43.3 / 0.464	61.0 / 0.624	55.2 / 0.569	

- > In form of [ACC (%) / NMI]
- · When all descriptors (kernels) are considered jointly, ...

kernels	CE + k-means	CE + Affinity Prop.	CE + Spectral Clus.	Ours
All	73.8 / 0.737	63.3 / 0.654	77.3 / 0.758	85.7 / 0.833

- > CE: Cluster Ensemble [Strehl et al., JMLR'02]
- · Our approach works with different initializations.

4.2

Face Image Grouping

- . The CMU PIE database is used.
- > We divide the 68 people into four equal-size disjoint groups. each of which contains images reflecting one kind of variations.

- · Four kinds of image descriptors are implemented:
- > DeLight: Based on the delighting algorithm [Gross et al., 2003].
- > LBP: The rotation-invariant LBP operator [Ojala et al., 2000].
- > RsLTS: Least trimmed squares with 20% outliers allowed.
- > RsL2: Pixel intensities with Euclidean distance.
- Clustering performances [ACC (%) / NMI]:

method	kernel(s)	dataset (number of classes)				
					Occlusion (17)	
Ours	DeLight LBP RsLTS RsL2	39.3 / 0.647	35.4 / 0.518	32.9 / 0.495	25.5 / 0.508 30.0 / 0.500 61.4 / 0.757 19.5 / 0.352	27.6 / 0.492
CE	All				55.4 / 0.695 64.8 / 0.781	

- · Our approach also works with partially labeled data.
 - Randomly generate must-links and cannot-links for each subject.

> xMyC stands for x must-links and y cannot-links per subject.