Question	Answer		Mark
Number 13a	Correct shape of graph for positive quadrant Correct symmetry in negative quadrant I	(1) (1)	2
13bi	Use of $A = \pi r^2$ Use of $I = nqvA$ $v = 1.3 \times 10^{-2} \text{ m s}^{-1}$ $\frac{\text{Example of calculation}}{A = \pi r^2 = \pi \times (0.023 \times 10^{-3} \text{ m})^2 = 1.66 \times 10^{-9} \text{ m}^2}$ $v = \frac{I}{nAq} = \frac{0.44 \text{ A}}{(1.26 \times 10^{29} \text{m}^{-3}) (1.66 \times 10^{-9} \text{ m}^2)(1.60 \times 10^{-19} \text{C})} = 0.0131 \text{ m s}^{-1}$	(1) (1) (1)	3
13bii	Use of $R = V/I$ Use of $R = \rho l/A$ $\rho = 9.1 \times 10^{-7}$ (Ω m), so approximately 2700°C (MP2 e.c.f. for A value from part b(i)) Example of calculation $R = \frac{140 \text{ V}}{0.44 \text{ A}} = 318 \Omega$ $\rho = \frac{RA}{l} = \frac{(318 \Omega)(1.66 \times 10^{-9} \text{m}^2)}{0.580 \text{ m}} = 9.1 \times 10^{-7} \Omega \text{ m}$, so this most closely matches the resistivity value at 2700°C.	(1) (1) (1)	3
	Total for question 13		8