

集合上的运算

- 1、并、交、差、补等运算
- 2、集合恒等式

定义 设A和B是集合。

- (a) "#" A∪B={x|x∈A∨x∈B}
- (b) " \dot{x} " A∩B={x|x∈A∧x∈B}
- (c) "差" A-B ={x|x∈A∧x ∉B}
- (d) "补" ~A = U-A U为全集
- (e) "对称差" A⊕B = (A−B)∪(B−A) 环和 A⊕B = (A∪B)−(A ∩ B)

集合算律

1. 只涉及一个运算的算律: 交换律、结合律、幂等律

	U	\cap	Φ
交换	$A \cup B = B \cup A$	$A \cap B = B \cap A$	$A \oplus B = B \oplus A$
结合	$(A \cup B) \cup C$	$(A \cap B) \cap C =$	(A⊕B)⊕C
	$=A\cup (B\cup C)$	$A\cap (B\cap C)$	$=A\oplus(B\oplus C)$
幂等	$A \cup A = A$	$A \cap A = A$	

集合算律

2. 涉及两个不同运算的算律:

分配律、吸收律

	∪与○
分配	$A \cup (B \cap C) =$
	$(A \cup B) \cap (A \cup C)$
	$A\cap (B\cup C)=$
	$(A \cap B) \cup (A \cap C)$
吸收	$A \cup (A \cap B) = A$
	$A \cap (A \cup B) = A$

集合算律

3. 涉及补运算的算律:

DM律,双补律

	_	~
D.M律	$A-(B\cup C)=(A-B)\cap (A-C)$	~(<i>B</i> ∪ <i>C</i>)=~ <i>B</i> ∩~ <i>C</i>
	$A-(B\cap C)=(A-B)\cup (A-C)$	$\sim (B \cap C) = \sim B \cup \sim C$
双补		~~A=A

排中律

4. 涉及全集和空集的算律:

互补律、零一律、同一律、否定律

 Ø
 E

 互补律
 A ○ ~A=Ø
 A ○ ~A=E

 零一律
 A ○ Ø=Ø
 A ○ E=E

 同一律
 A ○ Ø=A
 A ∩ E=A

 否定
 ~Ø=E
 ~E=Ø

矛盾律

证明方法: 谓词演算法、集合等式置换法

谓词演算证明法的书写规范 (以下的X和Y代表集合公式)

(1) 证 $X\subseteq Y$

任取x, $x \in X \Rightarrow ... \Rightarrow x \in Y$

(2) i E X = Y

方法一 分别证明 $X \subseteq Y$ 和 $Y \subseteq X$

方法二 任取x, $x \in X \Leftrightarrow ... \Leftrightarrow x \in Y$

注意: 在使用方法二的格式时,必须保证每步推理都是充分必要的

方法一: 谓词演算法

例1 证明 $A \cup (A \cap B) = A$ (吸收律) 证 任取x,

$$x \in A \cup (A \cap B) \Leftrightarrow x \in A \lor x \in (A \cap B)$$

 $\Leftrightarrow x \in A \lor (x \in A \land x \in B) \Leftrightarrow x \in A$

吸收律

因此得 $A \cup (A \cap B) = A$.

例2 证明 **A**−**B** = **A**∩~**B** 证 任取**x**,

> $x \in A - B \Leftrightarrow x \in A \land x \notin B$ $\Leftrightarrow x \in A \land x \in \sim B \Leftrightarrow x \in (A \cap \sim B)$

因此得 $A-B = A \cap B$

等式置換法

例3 假设交换律、分配律、同一律、零一律已经成立, 证明吸收律.

证

$$A \cup (A \cap B)$$

$$= (A \cap E) \cup (A \cap B) \qquad (同一律)$$

$$=A\cap (E\cup B)$$
 (分配律)

$$=A\cap (B\cup E)$$
 (交換律)

$$=A\cap E$$
 (零一律)

$$=A$$
 (同一律)

- * 补的唯一性
- *设A和B是论述域U的子集,那么B=~A当且仅当A∪B=U和A∩B=φ。
- * 证: (充分性) B=U∩B =(A∪ ~A)∩B
 - $=(A \cap B) \cup (^{\sim}A \cap B) = \varphi \cup (^{\sim}A \cap B)$
 - =($^{\sim}$ A \cap A) \cup ($^{\sim}$ A \cap B)
 - $= (^{A} \cup (^{A} \cap B)) \cap (A \cup (^{A} \cap B))$
 - $= {}^{\sim}A \cap ((A \cup {}^{\sim}A) \cap (A \cup B))$
 - = $^{A} \cap (A \cup B) = ^{A} \cap U = ^{A}$

每一松树都是针叶树,每一冬季落叶的树都非针叶树,所以,每一冬季落叶的树都非松树。

设P(x): x是松树, Q(x): x是针叶树, R(x): x是冬季落叶的树。 符号化:

$$\frac{\forall \ x(P(x) \to Q(x)), \forall \ x(R(x) \to \neg \ Q(x))}{\therefore \forall \ x(R(x) \to \neg \ P(x))}$$

$$(1) \quad \forall \ x(P(x) \to Q(x))$$

P

$$(2) P(y) \rightarrow Q(y)$$

T,(1),US

$$(3) \quad \neg \quad Q(y) \rightarrow \neg \quad P(y)$$

T,(2), E_{24}

$$(4) \quad \forall \ x(R(x) \to \neg \ Q(x))$$

P

$$(5) \quad R(y) \to \neg \quad Q(y)$$

T,(4),US

(6)
$$R(y) \rightarrow \neg P(y)$$

T,(3),(5),I₆

$$(7) \quad \forall \ x(R(x) \to \neg P(x))$$

T,(6),UG

徐书 57页 3、4、7、8、958页14、18、19