

University School of Automation and Robotics GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY East Delhi Campus, Surajmal Vihar Delhi - 110092

Paper Code : BS109

Name of the Paper : Engineering Chemistry- I

Semester : I

<u>Time</u>: 60 minutes (+15 minutes extra for uploading) <u>Maximum Marks</u>: 30

Instructions for Candidates

- l. Write your Enrollment number, Name, Program, Subject and page number on each A4 sheet.
- 2. Put your signature at the bottom of each sheet.
- 3. Soft copy of the answer sheet has to be uploaded as a single PDF file.
- 4. Attempt any 15 questions from Section A, any 6 from Section B, and any 1 from Section C.

SECTION – A

Attempt any 15 questions. Each question contains 1 mark.

 $[1 \times 15 = 15]$

1)	The Heisenberg Principle states that	·
----	--------------------------------------	---

- (a) no two electrons in the same atom can have the same set of four quantum numbers.
- (b) two atoms of the same element must have the same number of protons.
- (c) it is impossible to determine accurately both the position and momentum of an electron simultaneously.
- (d) electrons of atoms in their ground states enter energetically equivalent sets of orbitals singly before they pair up in any orbital of the set.
- (e) charged atoms (ions) must generate a magnetic field when they are in motion.
- 2) Which statement about the four quantum numbers which describe electrons in atoms is incorrect?
 - (a) n = principal quantum number, n = 1, 2, 3,
 - (b) l = subsidiary (or azimuthal) quantum number, $l = 1, 2, 3, \dots, (n+1)$
 - (c) $m_l = \text{magnetic quantum number}, m_l = (-l), \dots, 0, \dots, (+l)$
 - (d) $m_s = \text{spin quantum number}$, $m_s = +1/2 \text{ or } -1/2$.
- 3) The maximum number of electrons that can be accommodated in a sublevel for which 1 = 3 is:
 - (a) 10
 - (b) 6
 - (c) 14
 - (d) 8
- 4) The outer electronic configuration ns² np⁴ corresponds to which one of the following elements in its ground state?
 - (a) As
 - (b) Ca
 - (c) Cr
 - (d) Br
 - (e) S

5)	If the de Broglie wavelength of a particle of mass "m" is 100 times its velocity, then its mass (m) and Planck's constant (h)?
	$(a) \frac{1}{10} \sqrt{m/h}$
	(b) $10\sqrt{m/h}$
	(c) $\frac{1}{10}\sqrt{h/m}$
	(d) $10\sqrt{h/m}$
6)	Which of the following sets of quantum numbers (n, l , m_l , and m_s) describes the valence electron of Na? (a) 2, 1, 0, -1/2 (b) 2, 0, 0, -1/2 (c) 3, 1, 1, +1/2 (d) 3, 0, 0, +1/2
7)	The correct order of increasing radii of the following ions is:
	(a) $O^{2-} < S^{2-} < F^- < N^{3-}$ (b) $N^{3-} < S^{2-} < O^{2-} < F^-$
	(c) $F < O^2 < N^{3-} < S^2$
0)	(d) $S^{2-} < O^{2-} < F^{-} < N^{3-}$
8)	Which element has the highest first ionization energy? (a) Be
	(b) B
	(c) C (d) N
	(d) N (e) O
9)	Which of these isoelectronic species has the smallest radius?
	(a) Br^{1}
	(b) Sr ²⁺ (c) Rb ⁺
	(d) Se^{2}
	(e) They are all the same size because they have the same number of electrons.
10)	What is the correct order of electronegativity among the following options?(a) Li < Na < K < Rb < Cs
	(a) Li $<$ Na $<$ No $<$ Cs (b) Li $<$ K $<$ Na $<$ Rb $<$ Cs
	(c) $Li > Na > K > Cs > Rb$
	(d) Li > Na > K = Rb > Cs
11)	A neutral molecule having the general formula AB ₃ has two unshared pair of electrons on A. What is the hybridization of A?
	(a) sp (b) sp^2
	(c) sp3
	(d) sp^3d
10	(e) sp ³ d ² Which of the following complexes do not follow EAN rule?
12,	Which of the following complexes do not follow EAN rule? (a) [Fe(CN) ₆] ⁴⁻ (b) [Fe(CN) ₆] ³⁻

(c) Ni(CO)₄ (d) [Cu(CN)₄]³⁻

- 13) What is the % ionic character of CsF? Given that electronegativity of F is 4.0 and Cs is 0.7.(a) 90.9%(b) 89.5%(c) 85.0%
- 14) The order of increasing sizes of atomic radii among the elements O, S, Se and As is:
 - (a) As < S < O < Se(b) Se < S < As < O(c) O < S < As < Se

(d) 43.0%

- (d) O < S < Se < As
- 15) Correct increasing order of bond length in given compounds is:
 - (a) HF < HCl < HBr < HI
 - (b) HF < HBr < HCl < HI
 - (c) HI < HBr < HCl < HF
 - (d) HI < HCl < HBr < HF
- 16) Wave nature of electron is proved by which of the following experiments/phenomenon?
 - (a) Photoelectric effect
 - (b) Interference
 - (c) Dispersion
 - (d) Black body radiation
- 17) An orthogonal wave function satisfies which one of the following conditions?
 - (a) $\int \Psi \Psi^* dV = 1$
 - (b) $\int \Psi^2 dV = 0$
 - (c) $\int \Psi \Psi^* dV = 0$
 - (d) $\int \Psi^2 dV = 1$
- 18) For a particle in a 1-D box, what would happen if the walls of the 1-D box are removed?
 - (a) Potential energy of particle becomes zero.
 - (b) Energy of the particle becomes non-quantized.
 - (c) ΔE increases.
 - (d) ΔE decreases.
- 19) Select the pair with the same geometry.
 - (a) NO_2^+ and NO_2^-
 - (b) CO₂ and NO₂
 - (c) CO_2 and NO_2^+
 - (d) NO_3^- and CO_2
- 20) The shape of SF₄ is:
 - (a) Square planar
 - (b) Tetrahedral
 - (c) See-saw
 - (d) Octahedral

SECTION - B

Attempt any 6 questions. Each question carries 2 marks.

 $[2 \times 6 = 12]$

- 21) Write the Schrödinger wave equation for the electron. Explain the terms involved. Explain the physical significance of Ψ^2 .
- 22) Draw radial probability distribution curve for 3s, 3p, and 3d orbitals.
- 23) Calculate the lattice energy of NaCl crystal from the following data by use of Born Haber cycle.

 $\begin{array}{lll} \mbox{Ionisation energy of Na (g)} & = 489.5 \ \mbox{kJ/mol} \\ \mbox{Electron affinity for Cl (g)} & = -351.4 \ \mbox{kJ/mol} \\ \mbox{Sublimation energy} & = 108.7 \ \mbox{kJ/mol} \\ \mbox{Dissociation energy for Cl}_2 & = 225.9 \ \mbox{kJ/mol} \\ \mbox{Heat of formation of NaCl (H_f)} & = -414.2 \ \mbox{kJ/mol} \end{array}$

- 24) Explain hybridization concept using PF₅ as an example.
- 25) First ionization energy of Al is less than Mg but reverse is true for second ionization energy of Al.
- 26) An electron was confined in a box having length of 2 nm. Determine the (i) minimum energy, (ii) minimum excitation energy from this state.
- 27) Compare the bond angles in NH₃ and NF₃ based on VSEPR theory.
- 28) Calculate the ratio between the wavelength of an electron and a proton if the proton is moving with half the velocity of electron ($m_p = 1.67 \times 10^{-27} \text{ kg}$; $m_e = 10^{-30} \text{ kg}$).
- 29) Define electron affinity (EA) and electronegativity. Why do Group 17 elements have high EA and high electronegativity?
- 30) Explain why KCl is ionic but AgCl is covalent in nature.

SECTION - C

Attempt any 1 question. Each question carries 3 marks.

 $[3 \times 1 = 3]$

- 31) Draw the molecular orbital diagram of N_2 , N_2^+ and N_2^- . Find the bond order and predict their magnetic behavior. Arrange the above in increasing order of bond length.
- 32) Derive energy of a particle in a 1-D box by applying boundary conditions and given is general solution of Schrödinger wave equation as $\Psi = a \sin(kx) + b \cos(kx)$. And show energy level diagram for first three energy levels.
- 33) Explain linear combination of atomic orbitals and show combination of s-p orbitals. Explain why He₂ does not exist.