Multiple regression!

Start time stamper! Eastern time zone

Week 3

Multiple regression

- Essentially the same as simple linear regression, but with more than one predictor.
 - Can include categorical predictors
 - Can look at several different quantitative predictors
 - Can also have higher order terms, like square terms, interactions – anything that combines he original predictors

Form of the model

- $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \varepsilon$
- Still uses the sum of squares procedure to minimize residuals – now just more Betas to predict

Predicting the amount (in³) of usable wood in cherry trees

 Might imagine this is related to the height (inches) of the tree.

	Model Summary ^b						
Model	R	R Square	Adjusted F	₹	Std. Error of		
Square the Estimate							
1	1 .598 ^a .358 .336 13.3969						
a. Predic	a. Predictors: (Constant), height						
b. Deper	b. Dependent Variable: vol						

	ANOVA						
Mode	el	Sum of	df	Mean Square	F	Sig.	
		Squares					
	Regression	2901.189	1	2901.189	16.164	.000b	
1	Residual	5204.895	29	179.479			
	Total	8106.084	30				

	Coefficients						
М	lodel	Unstandardize	ed Coefficients	Standardized	t	Sig.	
				Coefficients			
		В	Std. Error	Beta			
Γ	(Constant)	-87.124	29.273		-2.976	.006	
Ľ	height	1.543	.384	.598	4.021	.000	

But can we do better?

- Diameter of a tree might also be related to useable wood volume
- Will we do better at predicting wood volume if we use both variables? Lets try!!

Estimating the Model

Click on Analyze > Regression > Linear

Drag the dependent variable and all independent variables to the appropriate locations.

Click on OK.

Regression output

Model Summaryb

Middel Sullillary							
Model	R	R Square	Adjusted R	Std. Error of			
			Square	the Estimate			
1	.974ª	.948	.944	3.88183			

a. Predictors: (Constant), height, diamter

b. Dependent Variable: vol

Looks mostly the same

Now each beta gets its own pvalue

And the ANOVA hypothesis doesn't have to match the individual beta tests

ANOVA	Α	N	0	٧	Ά	١
-------	---	---	---	---	---	---

Мо	odel	Sum of	df	Mean Square	F	Sig.
		Squares				
	Regression	7684.163	2	3842.081	254.972	.000 ^b
1	Residual	421.921	28	15.069		
	Total	8106.084	30			

a. Dependent Variable: vol

b. Predictors: (Constant), height, diamter

ີ.ດ	effi	ci	er	ıts	9

Model		Unstandardized Coefficients		Standardized	t	Sig.	
				Coefficients			ı
		В	Std. Error	Beta			l
	(Constant)	-57.988	8.638		-6.713	000	l
1	diamter	4.708	.264	.899	17.816	.000	r
	height	.339	.130	.132	2.607	.014	L

a. Dependent Variable: vol

Very similar assumptions

- But no linearity assumption because we will see later that we can use higher order terms to represent non-linear relationships
- Conditions that deal with the distribution of ERRORS
 - Zero Mean the distribution of the errors is centered at zero always true with least squares regression!
 - Constant Variance the variability of the errors is the same for all values of the predictor variable
 - Independence the errors are independent of each other
 - Normality In order to use standard distributions for confidence intervals and hypothesis tests, we often need to assume the random errors follow a normal distribution.
- Random the data are obtained using a random process, like random sampling from a population of interest.

Check residuals

- Do we meet the assumptions?
 - Residuals look randomly distributed around 0, maybe a possible outlier, and the residuals look normal, as the NPP plot shows the data very close to the line

Assess the overall model

Hypothesis test now differs from individual beta test

$$H_0$$
: $\beta_1 = \beta_2 = \beta_3 = \cdots = \beta_k = 0$

H_a: The slopes are not all zero – or at least one slope is not zero

ANOVA ^a						
Model		Sum of	df	Mean Square	F	Sig.
		Squares				
	Regression	7684.163	2	3842.081	254.972	.000 ^b
1	Residual	421.921	28	15.069		
	Total	8106.084	30			

a. Dependent Variable: vol

b. Predictors: (Constant), height, diamter

Assess the overall model

• For our data, with 2 betas:

 H_0 : $\beta_1 = \beta_2 = 0$ or H_0 : $\beta_{diameter} = \beta_{height} = 0$ H_a : at least one slope is not zero (no easy way to write with symbols)

Decision

Pvalue is essentially zero, or p<.001 and F=254.972, we can reject the null hypothesis

Conclusion:

The data indicates that there is a relationship between volume of usable cherry wood and the predictor variables diameter and height. Together they are useful in predicting the average volume of cherry wood.

ANOVA ^a							
Model		Sum of	df	Mean Square	F	Sig.	
		Squares					
	Regression	7684.163	2	3842.081	254.972	.000 ^b	
1	Residual	421.921	28	15.069			
	Total	8106.084	30				

a. Dependent Variable: vol

Assess the overall model

- Coefficient of determination, R² no longer directly related to r
- We could use, it means the same thing in multiple regression but can be inflated when you have several predictors
- Instead, for multiple regression we use R²adj
 - Has a penalty for additional predictors, and considers sample size
 - Does R²adj always increase when add more predictors? 75% corr
- Can interpret the same way:

Height and diameter together account for 94.4% of the variability in volume of usable cherry wood, after correcting for the number of predictors and sample size.

Model Summary^b

Model	R	R Square	Adjusted R	Std. Error of
			Square	the Estimate
1	.974ª	.948	.944	3.88183

a. Predictors: (Constant), height, diamter

b. Dependent Variable: vol

b. Predictors: (Constant), height, diamter

Are we doing 'better' by including two variables?

- One easy way to answer that is by looking at R²adj values
- What do you think?

– Yes

Model Summary						
Model	R	R Square	Adjusted R	Std. Error of		
			Square	the Estimate		
1	.598 ^a	.358	.336	13.39698		

a. Predictors: (Constant), height

b. Dependent Variable: vol

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.974ª	.948	.944	3.88183

a. Predictors: (Constant), height, diamter

b. Dependent Variable: vol

Are we doing 'better' by including two variables?

- Another way is the standard error of the estimate
- What do you think?

Yes

Model Summary^b

Model	R	R Square	Adjusted R	Std. Error of						
		Square the Es		the Estimate						
1	.598 ^a	.358	.336	13.39698						

a. Predictors: (Constant), height

b. Dependent Variable: vol

Model Summary^b

Model	R	R Square Adjusted R Sto		Std. Error of					
			Square	the Estimate					
1	.974ª	.948	.944	3.88183					

a. Predictors: (Constant), height, diamter

b. Dependent Variable: vol

Individual betas

- Now we know the model is good, but which betas are contributing to the 'goodness' of the model?
- · Need to test each beta separately
- · Generically:

 H_0 : $\beta_i = 0$ H_a : $\beta_i \neq 0$

	Coefficients ^a											
Model		Unstandardized Coefficients		Standardized	t	Sig.						
				Coefficients								
		В	Std. Error	Beta								
	(Constant)	-57.988	8.638		-6.713	.000						
1	diamter	4.708	.264	.899	17.816	.000						
	height	339	130	132	2 607	014						

a. Dependent Variable: vol

Individual betas

 H_0 : $\beta_{diameter} = 0$

 H_a : $\beta_{diameter}$ ≠ 0

- Decision: Since p is less than .05 and t=17.816, we can reject the null hypothesis
- Conclusion:
 - The data suggests that there is a significant relationship between tree diameter and average volume of usable cherry wood, after accounting for height. (will interpret the slope value later)
- Some people say, while holding height constant, or for a given value of height.

	Coefficients ^a									
Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.				
		В	Std. Error	Beta						
	(Constant)	-57.988	8.638		-6.713	.000				
1	diamter	4.708	.264	.899	17.816	.000				
	height	.339	.130	.132	2.607	.014				

a. Dependent Variable: vol

Individual betas

- Important to note that the meaning of each coefficient depends on all of the predictors in the regression model
 - If we fail to reject the null hypothesis, it means that the corresponding predictor variable contributes nothing to the multiple regression model after allowing for all other predictors.

	Coefficients ^a										
Ν	Model	Unstandardized Coefficients		Standardized	t	Sig.					
ı				Coefficients							
L		В	Std. Error	Beta							
Γ	(Constant)	-57.988	8.638		-6.713	.000					
1	1 diamter	4.708	.264	.899	17.816	.000					
L	height	.339	.130	.132	2.607	.014					

a. Dependent Variable: vol

Individual betas

 H_0 : $\beta_{height} = 0$

H_a: β_{height} ≠ 0

Decision:

Since p is less than .05 and t=2.607, we can reject the null hypothesis

Conclusion:

The data suggests that there is a significant relationship between tree height and average volume of usable cherry wood, after accounting for tree diameter.

- · These tests are independent.
- What is the fitted regression equation?

Wood volume^= -58.0 +4.7Diameter +.34Height

- Interpret slope for height:
 - For each additional inch in the height of a tree, the volume of wood will increase on average by .34 in³, for a given value of tree diameter. (while holding tree diameter constant, after accounting for tree diameter)

	Coefficients ^a										
Γ	Model	Unstandardiz	Unstandardized Coefficients		t	Sig.					
ı				Coefficients							
L		В	Std. Error	Beta							
Γ	(Constant	-57.988	8.638		-6.713	.000					
ı	1 diamter	4.708	.264	.899	17.816	.000					
L	height	.339	.130	.132	2.607	.014					

a. Dependent Variable: vol

Individual betas

- Wood volume^= -58.0 +4.7Diameter +.34Height
 - For each additional inch in the height of a tree, the volume of wood will increase on average by .34 in³, for a given value of tree diameter
- Wood volume^= -58.0 +4.7(1) +.34Height =-53.3 +.34Height
- Wood volume^= -58.0 +4.7(3) +.34Height =-43.9 +.34Height

What if one wasn't significant?

- Then we can not reject the null hypothesis, and it suggests that there in no significant relationship between the predictor and the response variable, after accounting for all of the other predictors.
- This suggests we could take the variable out of the model, and rerun it!! – but depends on our question of interest.
 - Good to try. If everything still looks good, or better, then go with the model with less terms.

Making predictions

- Same as for simple linear regression, but need to have a value for each predictor in mind.
- What is the average predicted wood volume for trees with a height of 62 in and a diameter of 12 in?
 - We can be 95% confident that the average volume of usable wood will be between -3.5 and 20.6 for trees with a height of 62 in and a diameter of 12in
- What is the predicted wood volume for a tree with a height of 62 in and a diameter of 12 in?
 - We can be 95% confident that the volume of usable wood will be between -21.4 to 38.5 in³ for a tree with a height of 62 in and a diameter of 12in

diamter	height	vol	LMCI_1	UMCI_1	LICI_1	UICI_1
18.00	80.00	51.00	30.50656	42.18218	8.32946	64.35927
20.60	87.00	77.00	37.20798	57.08765	18.00069	76.29494
12.00	62.00		-3.47873	20.60687	-21.36558	38.49372

Categorical predictors

- Categorical (or qualitative) variables can also be included in multiple regression models. These variables are coded as numbers so that we can employ the methods we have discussed, but are not really the same as quantitative variables. These coded values are called *indicator variables* or *dummy variables*.
- They are coded using 0 and 1, where

0 = absence or 0 = "no"

1 = presence 1 = "yes"

Maybe where a tree comes from matters

 We could imagine having a categorical variable representing if a tree was from the east or west cost. We can call this variable FromWest, and it will be:

FromWest = 0 if the tree is from the east 1 if the tree is from the west

 You MUST define these indicator variables, as which one is coded as 0/1 makes a huge difference, and is often arbitrary.

Comparing two regression lines

- This is how your book describes what is being investigated when you include one of these binary categorical variables
- This is because of what it does to the regression equation Tree vol^= β_0 + β_1 Diameter + β_2 Height + β_3 FromWest

When a tree is from the west:

Tree vol^= β_0 + β_1 Diameter + β_2 Height + β_3 (1)

Tree vol^= $\beta_0 + \beta_3 + \beta_1$ Diameter + β_2 Height

When a tree is from the east:

Tree vol^= $\beta_0 + \beta_1$ Diameter + β_2 Height + β_3 (0)

Tree vol^= β_0 + β_1 Diameter + β_2 Height

 So including this binary predictor essential results in testing the hypothesis of whether the intercept is the same for trees from the east and west coasts.

What this means in your graph

Tree vol^= β_0 + β_1 Diameter + β_2 Height + β_3 FromWest When a tree is from the west:

Tree vol^= $\beta_0 + \beta_3 + \beta_1$ Diameter $+\beta_2$ Height When a tree is from the east:

Tree vol^= β_0 + β_1 Diameter + β_2 Height

It changes the INTERCEPT, not the slope -> so get parallel

lines

So for a given value of diameter, the regression line for trees from the west might look like this

While for the same diameter, the line for trees from the east might look like this

Interpreting betas

When a tree is from the west:

Tree vol^= $\beta_0 + \beta_3 + \beta_1$ Diameter + β_2 Height

When a tree is from the east:

Tree vol^= $\beta_0 + \beta_1$ Diameter + β_2 Height

- B₀= mean tree volume for trees from the east, after accounting for tree diameter and height – or can think of as the base or beginner tree vol (tree vol when diameter and height is zero)
- B₃= change in tree vol when go from a tree in the east to one in the west – for a given value of tree diameter and height (or after accounting for tree diameter and tree height)

Mac vs PC question, if the beta for th categorical variable is signficant, always a difference in price 78% corr

Interpreting betas from categorical variables

Tree vol^= 20 +15Height + 10Diameter +5FromWest

What does 20 represent?

the mean tree vol for a tree from the east with 0 height and 0 diameter, or the mean tree vol for trees from the east after accounting for tree height and diameter

What does 5 represent?

The average difference in tree vol when a tree is from the west compared to the east, after accounting for tree height and diameter

Can do this for more than binary categorical variables

- Lets investigate a cooling method for engines. The response variable is the heatrate of the engine (kilojoules per kilowatt per hour), which we will predict using the speed of the engine (revolutions per min) and the type of engine (Traditional, advanced, and aerodynamic).
- Engine type is categorical with 3 levels
- You would need to build n-1 indicator variables, where n=number of levels in your categorical variable
- One category isn't coded, this is the 'base' or reference category its essentially the '0' category when you have a binary variable
 - IsAdvan= 1 when from advanced, 0 otherwise
 - IsAero = 1 when aerodynamic, 0 otherwise
- So this one variable of interest turns into 2 terms in the regression model

Heatrate= $\beta_0 + \beta_1$ IsAdvan + β_2 IsAero + β_3 RPM + ϵ

Model output

- Heatrate[^] = 9,919 -901.04IsAdvan -692.17IsAero +.18RPM
- What does 9,919 represent?
 - The average heatrate for a traditional engine with ORPM rate
- Interpret the beta for IsAero
 - On average, heatrate will decrease by 692.17 kj/kw/hr for aerodynamic engines compared to traditional engines for a given RPM
- What would the graph of this model look like?
 - Three parallel lines, one for each engine type.
- If ISAero had been nonsig, could we take it out of the model?
 - No! it is necessary to correctly code engine type

Coefficients^a

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
	(Constant)	9919.275	187.796		52.819	.000
l,	IsAdvanced	-901.041	220.607	264	-4.084	.000
ľ	IsAero	-692.174	338.624	134	-2.044	.045
	RPM	.180	.016	.794	11.400	.000

a. Dependent Variable: HEATRATE

Higher order terms: Interactions!

New predictors from old: Interactions

- Sometimes we may hypothesize that two predictors might interact with each other.
 - Short trees with a very large diameter might have a particularly high volume of usable wood, while a really tall tree with a small diameter might not have much usable wood.
- This suggests that there may be a different relationship between diameter and wood volume for different values of height
- This goes against what we concluded before about the slope of diameter

Let's add an interaction term! They way we model this is by adding an 'interaction' term, which is created by simply multiplying tree diameter by tree height.

How does this change the equation?

- WoodVol^=1 +.5Diameter + 2Height +3DiaHeight
- When height=1:

WoodVo^l= 1+.5Diameter +2(1) +3Diameter(1)

WoodVol^ = 3+.5Diameter +3Diameter

WoodVol^ = 3 +3.5Diameter

• When Height = 2:

WoodVol^= 1+.5Diameter +2(2) +3Diameter(2)

WoodVol^ = 5+.5Diameter +6Diameter

WoodVol $^{\circ}$ = 5 +6.5Diameter

Interactions

• This means when you want to know the relationship between height and wood volume, you can't just look at β_{2}

 $Y^{\wedge} = \beta_0 + \beta_1 Diameter + \beta_2 Height + \beta_3 Diameter Height$

• Its really now for each unit change in height, wood volume is expected to change by:

 $\beta_2 + \beta_3 \text{Diameter, after accounting for tree}$ diameter

Means that the effect of one predictor on the response variable is different at different values of the other predictor.

How interaction terms change things

 $Y^{\wedge} = \beta_0 + \beta_1$ Diameter + β_2 Height + β_3 DiameterHeight

- 3 important consequences
 - You can not infer the direction of the relationship from the sign of β_2 .
 - If β_2 is not significant, but the β_3 is, then you can't get rid of β_2
 - Can't remove terms when they are used to create 'higher order' terms
 - If higher order terms aren't significant get rid of them!!
 - And lower order term?
 - Check significance without higher order term before removing.

Interaction data

Model Summary⁵									
Model	R	R Square	Adjusted R	Std. Error of					
			Square	the Estimate					
1	.997ª	.993	.992	1.44169					

- a. Predictors: (Constant), diam_height, height, diamter
- b. Dependent Variable: vol

- Output looks just like normal.
- What is the fitted regression equation?

WoodVol^=-15.2 +1.2Dia + . 19Height + .03DiaHeight

	AN	•

Mode	el	Sum of Squares	df	Mean Square	F	Sig.
	Regression	8049.966	3	2683.322	1291.017	.000 ^b
1	Residual	56.118	27	2.078		
	Total	8106.084	30			

Coefficients

	Model		Unstandardize	ed Coefficients	Standardized Coefficients	t	Sig.
			В	Std. Error	Beta		
		(Constant)	-15.186	4.550		-3.338	.002
	4	diamter	1.165	.285	.222	4.095	.000
11	'	height	.193	.050	.075	3.882	.001
		diam_height	.034	.003	.739	13.266	.000

a. Dependent Variable: vol

Interaction data

WoodVol^=-15.2 +1.2Dia + .19Height + .03DiaHeight

- Does the relationship between tree diameter and wood volume depend on height?
- H_0 : $\beta_{DiaHeight} = 0$
- H_a : $\beta_{DiaHeight} \neq 0$
- Decision:
 - Since p <.05, reject null hypothesis
- · Conclusion:
 - The relationship between tree diameter and average wood volume is different at different values of tree height.
- · To find out how it is different, plug in a few values of height
- Height =0: 15.2 +1.2Dia, height =10: 15.2 +1.2Dia +1.9 +.3Dia, -> 17.1 +1.5Dia
 - The average increase in tree vol for a one unit increase in tree diameter will be larger for larger values of tree height

Coefficients ^a	

Model		Unstandardize	ed Coefficients Standardized Coefficients		t	Sig.
		В	Std. Error	Beta		
	(Constant)	-15.186	4.550		-3.338	.002
1,	diamter	1.165	.285	.222	4.095	.000
1'	height	.193	.050	.075	3.882	.001
	diam_height	.034	.003	.739	13.266	.000

a Denendent Variable: vol.

Interactions with categorical predictors

- Go back to our engine heatrate example, but lets hypothesize that the amount of heatrate varies not only by engine type, but for each engine type varies by RPMs.
- · Old model:

Heatrate^{α}= β_0 + β_1 IsAdvan + β_2 IsAero + β_3 RPM

· New model?

Heatrate^{β_0} + β_1 IsAdvan + β_2 IsAero + β_3 RPM + β_4 IsAdvanRPM + β_5 IsAeroRPM

- How to interpret
 - Predicting Heatrate for Traditional:
 - β_0 = intercept, β_3 = slope
 - Predicting heatrate for Advanced:
 - β_1 = change in intercept, β_4 = change in slope from traditional
 - Predicting heatrate for Aerodynamic:
 - β_2 =change in intercept, β_5 = change in slope from traditional

Polynomial regression: quadratic terms

New predictors from old: Polynomial regression

- Material scientists investigated how long it took microchips to fail (in hours), for different solder temperatures (degrees centigrade)
- Saw how we can transform data, but now we can actually model curvilinear relationships

Quadratic relationships

• Add 'powers' to the equation

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \varepsilon$$

If we don't include the square term

- $Y^{=}\beta_0 + \beta_1 X$
- We get a 'pattern' in the residuals

Check residuals

• $Y^= \beta_0 + \beta_1 temp + \beta_2 temp^2$

Output

 To test whether there is a quadratic relationship, need to test beta for higher order term

Model Summary [□]									
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate					
1	.970 ^a	.942	.935	688.137					
a Predictors: (Constant) tempso TEMP									

			ANOVA						
Model	•	Sum of	df	Mean Square	F	Sig.			
		Squares							
	Regression	144830279.61	2	72415139.810	152.926	.000 ^b			
		9							
1	Residual	8997106.744	19	473531.934					
	Total	153827386.36	21						
	Total	4							
	Coefficients ^a								

	Unstandardized Coefficients		Standardized	t	Sig.
			Coefficients		
	В	Std. Error	Beta		
(Constant)	154242.914	21868.474		7.053	.000
TEMP	-1908.850	303.664	-9.148	-6.286	.000
tempsq	5.929	1.048	8.236	5.659	.000
	TEMP	B (Constant) 154242.914 TEMP -1908.850	B Std. Error (Constant) 154242.914 21868.474 TEMP -1908.850 303.664	B Std. Error Beta (Constant) 154242.914 21868.474 TEMP -1908.850 303.664 -9.148	Coefficients B Std. Error Beta (Constant) 154242.914 21868.474 7.053 TEMP -1908.850 303.664 -9.148 -6.286

a. Dependent Variable: FAILTIME

Is there a curvilinear relationship?

$$H_0$$
: $\beta_{tempsq} = 0$
 H_a : $\beta_{tempsq} \neq 0$

- Decision: Since p is less than .05, we can reject the null hypothesis
- Conclusion

The data suggests that there is a significant **quadratic** relationship between solder temperature and the average time it takes for a microchip to fail.

- Similar to when you add an interaction term, you can now no longer simply look at the sign of TEMP to determine the relationship.
- Higher order terms mess things up!!
- Also like in an interaction, you should leave lower order term in, even if not significant.

	Coefficients ^a									
Model		Unstandardized Coefficients		Standardized	t	Sig.				
				Coefficients						
		В	Std. Error	Beta						
	(Constant)	154242.914	21868.474		7.053	.000				
1	TEMP	-1908.850	303.664	-9.148	-6.286	.000				
	tempsq	5.929	1.048	8.236	5.659	.000				
a. Dependent Variable: FAILTIME										

Can get information about direction of relationship from the sign of quadratic beta

Putting relationship in words

 Look at your data, because you need to know more than just the sign to be accurate

Failtime $^{154,242.9} - 1,908.9$ temp + 5.9temp²

The data suggests that there is a significant curvilinear relationship between solder temperature and fail time, such that as temperature increases, average fail time decreases at a decreasing rate.

Summary

- Can have categorical variables via indicator variables
 - Essentially allow you to model multiple lines (with different intercept) for each level of categorical variable
- Can include higher order terms like interactions and quadratic terms
 - Complicate interpretation of lower-order terms
 - If higher order terms not sig, take them out
 - If higher order term is sig, must keep lower order terms in regardless

Multicollinarity

- When some of your predictor variables are correlated
- It's a problem because then they are 'fighting' over similar variability in response variable
 - Redundant
- Can make results weird.....
- Things to look for:
 - Predictors can be very significant alone, but not when combined
 - model can be significant while predictors are not
 - signs of the betas may not be what is predicted
- Can check for by looking at correlation between all your variables in the model

Dataset: cigarette content

 The Federal Trade Commission ranks cigarettes according to tar, nicotine, and carbon monoxide contents – three substances thought to be hazardous to health. Past studies have show that increases in tar and nicotine are accompanied by an increase in carbon monoxide. They also recorded weight. Want to model:

CarbonMonoxide=
$$\beta_0 + \beta_1 X_{tar} + \beta_2 X_{nicotine} + \beta_3 X_{weight} + \epsilon$$

 Would hypothesize that carbon monoxide should increase as tar, nicotine, and weight increases

Model Summary^b Model R Square Adjusted R Std. Error of the Estimate Square .958ª .919 .907 1.4457 a. Predictors: (Constant), weight, tar, nicotine b. Dependent Variable: co **ANOVA**^a

Output

Does anything seem odd?

l	Model		Sum of	df	Mean Square	F	Sig.
l			Squares				
		Regression	495.258	3	165.086	78.984	.000 ^b
	1	Residual	43.893	21	2.090		
		Total	539.150	24			

a. Dependent Variable: co

a. Dependent variable. 66
b. Predictors: (Constant), weight, tar, nicotine

Coefficients^a

			Coemcients			
Model		Unstandardize	Unstandardized Coefficients		t	Sig.
		В	Std. Error	Beta		
	(Constant)	3.202	3.462		.925	.365
1	tar	.963	.242	1.151	3.974	.001
1	nicotine	-2.632	3.901	197	675	.507
	weight	130	3.885	002	034	.974

a. Dependent Variable: co

Model very significant, while only one Beta is, and sign of nicotine is opposite of what would predict

Investigate multicollinearity: Scatter plot matrix

Only need to look at one half of the plot

If you are a numbers person: Correlation matrix

• Puts numbers to graphs, only shows predictors

Coefficient Correlations^a

Model		weight	tar	nicotine
	weight	1.000		
Correlations	tar	012	1.00	
<u> </u>	nicotine	112	969	1.00

a. Dependent Variable: co

Variance inflation factor (VIF)

- A statistic to capture multicollinearity
- Helpful for more subtle dependence among predictors, such as when some combination of predictors taken together are strongly related to another predictor.
- VIF reflects the association between a predictor and ALL the other predictors
 - VIF > 5 can be an indicator of an issue, > 10, very concerning
- Tolerance is the inverse of VIF

_						
٠	оe	TTI	CI	e	nı	S

	Cocmolenta								
Model		Unstandardize	nstandardized Coefficients		t	Sig.	Collinearity	Statistics	
				Coefficients				$\overline{}$	
		В	Std. Error	Beta			Tolerance	VIF	
	(Constant)	3.202	3.462		.925	.365			
1	tar	.963	.242	1.151	3.974	.001	.046	21.631	
1	nicotine	-2.632	3.901	197	675	.507	.046	21.900	
	weight	130	3.885	002	034	.974	.750	1.334	
a. De	a. Dependent Variable: co								

So what should you do?

- Depends on what you want to do with model
- If you just want to estimate/predict
 - you can leave all the predictors in, and as long as the population you will make predictions about has the same collinearity issues as your sample did.
 - Avoid making inferences about individual betas
- Generally, trying to answer a relationship question, and want to interpret individual betas
 - Drop predictors
 - If adjusted R² doesn't change much, you are probably good
 - Combine predictors
 - Can add predictors together (tar + nicotine)
 - Or sometimes a ratio (tar/nicotine)

Model building: how to choose predictors?

Model building: how to choose predictors

- Sometimes you might have many variables to choose from in building a model.
- Why not just include them all?
 - Usually models with less predictors and less higher order terms are easier to understand and use
 - So it's a balance between doing a good job at predicting and staying simple
- Best way to start -> look at correlations between variables and the response variable (and each other)

Predicting executive salaries

- Response variable: Salary, in \$10,000
- Predictors
 - Years of experience
 - Corporate assets (in millions)
 - Company profits (past 12 months, in millions)

Look at your data!

Might want to include sq of years of experience

	Model Summary ^b								
Model	R	R Square	Adjusted R	Std. Error of					
			Square	the Estimate					
1	.814 ^a	.662	.648	.1541193					

Results

- a. Predictors: (Constant), X1sq, X8, X5, X1
- b. Dependent Variable: Y

ANOVA^a

			,			
Мо	del	Sum of	df	Mean Square	F	Sig.
		Squares				
	Regression	4.426	4	1.107	46.586	.000 ^b
1	Residual	2.257	95	.024		
	Total	6.683	99			

a. Dependent Variable: Y

b. Predictors: (Constant), X1sq, X8, X5, X1

|--|

			Coemicients			
Model		Unstandardize	ed Coefficients	Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
	(Constant)	10.421	.199		52.313	.000
	X1	.036	.009	1.011	4.092	.000
1	X8	.002	.010	.014	.235	.814
	X5	.004	.001	.208	3.384	.001
	X1sq	.000	.000	232	938	.351

a. Dependent Variable: Y

We have a few nonsig factors, might want to eliminate – especially higher order terms

Model Summary ^b									
Model	R	R Square	Adjusted R	Std. Error of					
			Square	the Estimate					
1	.812ª	.659	.652	.1532507					

Results: removing nonsig terms

a. Predictors: (Constant), X5, X1

b. Dependent Variable: Y

	ANOVA ^a									
Mod	el	Sum of	df	Mean Square	F	Sig.				
		Squares								
	Regression	4.405	2	2.202	93.770	.000 ^b				
1	Residual	2.278	97	.023						
	Total	6.683	99							

a. Dependent Variable: Y

b. Predictors: (Constant), X5, X1

	Coefficients									
Model		Unstandardized Coefficients		Standardized	t	Sig.				
				Coefficients						
		В	Std. Error	Beta						
	(Constant)	10.500	.178		59.077	.000				
1	X1	.028	.002	.786	13.256	.000				
	X5	.003	.001	.200	3.379	.001				

a. Dependent Variable: Y

Now everything is significant, but are we still doing a good job?

Compare models

· With all terms

Model Summary^b

Model	R	R Square	Adjusted R	Std. Error of				
			Square	the Estimate				
1	.814 ^a	.662	.648	.1541193				

a. Predictors: (Constant), X1sq, X8, X5, X1

b. Dependent Variable: Y

With only years of experience and corporate assets

Model Summary^b

	Model Sullillary									
Model	R R Square		Adjusted R	Std. Error of						
			Square	the Estimate						
1	.812ª	.659	.652	.1532507						

a. Predictors: (Constant), X5, X1

b. Dependent Variable: Y

- What do you think?
 - Yes! Adjusted R² higher, stderr of the estimate smaller

But what if too many variables?

- Response variable: Salary, in \$10,000
- Predictors
 - X₁ Years of experience
 - X₂ Education (years)
 - X₃ Gender (1 if male, 0 if female)
 - X₄ Number of employees supervised
 - X₅ Corporate assets (in millions)
 - X₆ Board member (1 if yes, 0 if no)
 - X₇ Age (years)
 - X₈ Company profits (past 12 months, in millions)
 - X₉ Has international responsibility (1 if yes, 0 if no)
 - X₁₀ Company's total sales (past 12 months, in millions)

Stepwise regression

- Pretty much does the same process as we did by hand
- Finds the variable with the largest correlation (R²)
 - Then tries each additional predictor, looking for the one that results in the largest increase in R².
 - If that variable isn't significant (α =.05), it stops
 - Otherwise keeps going
- One caveat, sometimes when additional predictors are added, ones that were significant in the beginning might become nonsig. (redundant), so keeps an eye out for this
 - Will delete any variables that become nonsig

Model Summary									
Model R		R Square Adjusted R		Std. Error of					
			Square	the Estimate					
1	.787 ^a	.619	.615	.1611893					
2	.866 ^b	.749	.744	.1314457					
3	.916°	.839	.834	.1058344					
4	.953 ^d	.907	.904	.0806758					
5	.959 ^e	.921	.916	.0751179					

Results

- a. Predictors: (Constant), X1 b. Predictors: (Constant), X1, X3
- c. Predictors: (Constant), X1, X3, X4
- d. Predictors: (Constant), X1, X3, X4, X2

ANOVA							
Model		Sum of Squares	df	Mean Square	F	Sig.	
	_	_				b	
	Regression	4.136	1	4.136	159.204	.000 ^b	
1	Residual	2.546	98	.026			
	Total	6.683	99				
	Regression	5.007	2	2.503	144.887	.000°	
2	Residual	1.676	97	.017			
	Total	6.683	99				
	Regression	5.607	3	1.869	166.873	.000 ^d	
3	Residual	1.075	96	.011			
	Total	6.683	99				
	Regression	6.064	4	1.516	232.936	.000 ^e	
4	Residual	.618	95	.007			
	Total	6.683	99				
	Regression	6.152	5	1.230	218.061	.000 ^f	
5	Residual	.530	94	.006			
	Total	6.683	99				

- a. Dependent Variable: Y

- d. Dependent variable: Y b. Predictors: (Constant), X1 c. Predictors: (Constant), X1, X3 d. Predictors: (Constant), X1, X3, X4 e. Predictors: (Constant), X1, X3, X4, X2

Coefficients ^a						
Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
1	(Constant)	11.091	.033		335.524	.000
	X1	.028	.002	.787	12.618	.000
2	(Constant)	10.968	.032		342.659	.000
	X1	.027	.002	.770	15.134	.000
	X3	.197	.028	.361	7.097	.000
3	(Constant)	10.783	.036		298.170	.000
	X1	.027	.001	.771	18.801	.000
	X3	.233	.023	.427	10.170	.000
	X4	.000	.000	.307	7.323	.000
4	(Constant)	10.278	.066		155.154	.000
	X1	.027	.001	.771	24.677	.000
	X3	.232	.017	.425	13.297	.000
	X4	.001	.000	.354	10.920	.000
	X2	.030	.004	.266	8.379	.000
5	(Constant)	9.962	.101		98.578	.000
	X1	.027	.001	.771	26.501	.000
	X3	.225	.016	.412	13.742	.000
	X4	.001	.000	.337	11.064	.000
	X2	.029	.003	.258	8.719	.000
	X5	.002	.000	.116	3.947	.000

Coefficients

- a. Dependent Variable: Y
 - All terms will be sig, as a result of the process
 - What is the final model?

 $Y=9.962 + .027X_1 + .225X_3 + .001X_4 + .029X_2 + .002X_5$

Final fitted equation

- $Y=9.962+.027X_1+.225X_3+.001X_4+.029X_2+.002X_5$
- Predictors
 - X₁ Years of experience
 - X₂ Education (years)
 - X₃ Gender (1 if male, 0 if female)
 - X₄ Number of employees supervised
 - X₅ Corporate assets (in millions)
 - X₆ Board member (1 if yes, 0 if no)
 - X₇ Age (years)
 - X₈ Company profits (past 12 months, in millions)
 - X₉ Has international responsibility (1 if yes, 0 if no)
 - X₁₀ Company's total sales (past 12 months, in millions)

Use model building with caution!

- Based on overall model goodness
- · Doesn't know your question of interest
- Isn't checking residual plots and such
- SPSS can't tell what makes 'sense'
- Usually only done with first order terms no interactions or quadratic terms
 - Need to think about whether should include some of these after you run stepwise
 - May want to test the complete second order model

Complete second order model

- $Y^{=}\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5$
- Predictors
 - X₁ Years of experience
 - X₂ Education (years)
 - X₃ Gender (1 if male, 0 if female)
 - X₄ Number of employees supervised
 - X₅ Corporate assets (in millions)
- All interactions
 - $\begin{array}{lll} & \beta_6 \, X_1 X_2 + \beta_7 \, X_1 X_3 + \beta_8 \, X_1 X_4 + \beta_9 \, X_1 X_5 + \beta_{10} \, X_2 X_3 \, + \beta_{11} \, X_2 X_4 + \beta_{12} \, X_2 X_5 + \beta_{13} \\ & X_3 X_4 + \beta_{14} \, X_3 X_5 + \beta_{15} \, X_4 X_5 \end{array}$
- All square terms
 - $\beta_{16} X_1^2 + \beta_{17} X_2^2 + \beta_{18} X_4^2 + \beta_{19} X_5^2$
- $\begin{array}{l} \bullet \quad Y \, {}^{\wedge} = \, \beta_0 + \, \beta_1 \, X_1 + \, \beta_2 \, X_2 + \, \beta_3 \, X_3 + \, \beta_4 X_4 + \, \beta_5 X_5 + \, \beta_6 \, X_1 X_2 + \, \beta_7 \, X_1 X_3 + \\ \beta_8 \, X_1 X_4 + \, \beta_9 \, X_1 X_5 + \, \beta_{10} \, X_2 X_3 + \, \beta_{11} \, X_2 X_4 + \, \beta_{12} \, X_2 X_5 + \, \beta_{13} \, X_3 X_4 + \\ \beta_{14} \, X_3 X_5 + \, \beta_{15} \, X_4 X_5 + \, \beta_{16} \, X_1^2 + \, \beta_{17} \, X_2^2 + \, \beta_{18} \, X_4^2 + \, \beta_{19} \, X_5^2 \end{array}$