Theory of Computation

MIEIC, 2nd Year

João M. P. Cardoso

Email:jmpc@acm.org

Outline

- Introduction to the topics of the course
- ► Concepts about Automata
- Proof method by induction

History

- ► Automata theory: study of abstract computing devices [machines]
- ► Alan Turing (1930's)
 - ▶ Studied the limits of an abstract machine equivalent to the current real ones!
 - ▶ Before the existence of computers!
- ▶ 1940's, 1950's
 - Study of finite automata to model the human brain
- Noam Chomsky (1950's)
 - ► Formal grammars related to abstract automata and very useful in compilers
- Stephen Cook (1969)
 - Complexity theory what is feasible or not to compute

"Let us now return to the analogy of the theoretical computing machines ... It can be shown that a single special machine of that type can be made to do the work of all. It could in fact be made to work as a model of any other machine. The special machine may be called the universal machine ..."

— Alan Turing 1947

Relevance of the Automata Theory

- Useful to model hardware and software
 - Design and test of digital circuits
 - Lexical analysis in compilers
 - ► Text processing, web search
 - State machines, communication protocols, security, cryptography, analytics, etc.
- ► Finite Automata
 - System that in each instant is in one of a finite number of states
 - State memorizes the part relevant of the history of the system
 - ▶ Being finite it needs to forget what is not relevant
 - It can be implemented with finite resources

Example of an Automaton: on/off switch

- Simple finite automaton models switch
 - ► Two **states** [circles]: on and off
 - Only one input [labels in edges]: Press
 - ▶ Represents the external influence on the system [state transition]
 - ▶ Push button has an effect dependent of the state
 - Initial state represented by an arrow with label Start
 - ► There can exist one or more **final (acceptance) states**, represented by double circles

Example of an Automaton: recognizer

- ▶ If the input is the string "then" the automaton goes from the initial to the final state
 - ► Accumulate the history of the input
 - ► The goal is to recognize the string "then"

Structural Representations

- Regular Expressions
 - Describe the structure of strings
 - Example: [1-9][0-9][0-9][0-9][0-9][0-9][0-9][][A-Z][a-z]*
 - ▶ Describe "4200-465 Porto", but not "5505-032 Vila Real"
 - ► Correction: [1-9][0-9][0-9][0-9][0-9][0-9][0-9][][A-Z][a-z]*([][A-Z][a-z]*)*
 - Correction does not describe "Vila Nova de Gaia"!

Grammars

- Process data with recursive structure [expressions]
- \blacktriangleright Example of a grammar rule: E \Rightarrow E + E
 - ▶ One expression can consist of two expressions "connected" by "+"
- Used in syntactic analyzers [parsers], e.g., of compilers

Proof Methods

- ► Formal proofs are important for informatics engineering
 - ▶ E.g., for demonstration of correctness of a given algorithm
- Statements
 - ▶if ... then
 - ▶ if A then B $(A \rightarrow B)$
 - ▶ if and only if iff
 - \triangleright A iff B (A \leftrightarrow B, prove: A \rightarrow B and B \rightarrow A)

Proof Methods

- ▶ There are several proof methods (e.g., by deduction)
- ▶ if H then C (H \rightarrow C)
 - ▶ By contradiction: H and not C implies falsehood
 - ▶ By counter-example: show an example that proves the proposition is false
 - ▶ By counter-positive : if not C then not H (proving one is proving the other)
 - ▶ By induction (see the following slides)

Proof by Induction

- Proving a statement S(n) over an integer n (or a structure defined inductively, such as a tree)
 - ▶ Basis (base step): prove S(i) for some small i's, typically i=0 or i=1
 - ▶ Inductive step: assuming by **hypothesis** that S(k), k=n, is true, show that S(k+1) holds
 - ▶ Being k general, the property verifies for all k (and n!)
- ► Elements of an inductive proof
 - Structure over which we apply induction
 - Integers, trees, graphs, sets, strings, etc.
 - ► Statement S(n) which we intend to prove (n is de step)
 - ► Base case (basis)
 - ► Induction/inductive step

Induction proofs

- ► The principle of induction
 - ▶ If we prove S(i) and prove that for $n \ge i$, S(n) implies S(n + 1), then we can conclude that S(n) is true for any $n \ge i$

Example 1

- ► Prove that for any natural number n, the sum of the first n naturals is n(n+1)/2
 - Note that in computer science it is common to consider that the number 0 is a natural number

Example 1 (proof)

Proof:

```
Statement S(n): the sum of the first n natural numbers, i.e., 1+2+..+n, is n(n+1)/2
  Basis: the first natural number is 1 (sum is equal to 1) and 1(1+1)/2 = 1 [basis is true]
  Induction step: Let k be a natural number for which S(k) is true
         S(k): the sum of the first k natural numbers is k(k+1)/2, by hypothesis
         S(k+1): sum of the first k+1 natural numbers is (k+1)(k+2)/2
         The sum of the first k+1 natural numbers is 1+2+...+k+(k+1)
         as by hypothesis 1+2+...+k = k(k+1)/2, then 1+2+...+k+(k+1) = k(k+1)/2 + k+1
         (k+1)(k/2 +1) = (k+1)(k+2)/2
  which is exactly the expression of the sum of the first natural numbers given by the expression in the statement S(k+1) = (k+1)(k+2)/2
Q.E.D. (quod erat demonstrandum)
```

Widening the scope of the concept

- ► To prove statements of the form:
 - $ightharpoonup \forall n [P(n) \rightarrow S(n)]$
- ► Induction necessary when P(n) is based on an inductive definition

Example 2

- ► Consider the following inductive definition of quasi complete binary tree (ABqc)
- ► Inductive definition of a quasi complete binary tree (ABqc):
 - ► An isolated node is an ABqc
 - ▶ If U and V are ABqc, then a node with U and V as children is an Abqc
- ▶ Prove that a quasi complete binary tree with k leaves has 2k-1 nodes

Example 2 (proof)

- ▶ Prove that a quasi complete binary tree (ABqc) with k leaves has 2k-1 nodes
- Proof based on the structure of the tree:
 - ► Structure: set of quasi complete binary trees
 - n step: quasi complete binary trees with height n
 - ► We could have selected he number of nodes, but we preferred to use the height

Example 2 (proof)

- ► <u>Statement S(T)</u>: if T is a ABqc with k leaves then T has 2k-1 nodes
- Basis: an ABqc with height 0, only root, has 1 leaf and 2x1-1=1 node
- ► Induction step: Assume S(U) for the ABqc of height until n and in particular for the subtrees of T
 - T is an ABqc with height n+1 with root and two ABqc subtrees U and V (at least one of height n)
 - ▶ If U and V have u and v leaves, respectively, then T has t=u+v leaves
 - ▶ By hypothesis U and V have 2u-1 and 2v-1 nodes, respectively
 - By the definition of the tree, T has 1+(2u-1)+(2v-1) = 2(u+v)-1 = 2t-1 nodes
 - ► So, S(T) is true
- Important: we consider that the hypothesis is true for all the cases ≤ n

Exercise 1

► Prove that for any natural number n, the sum of the first n squares is n(n+1)(2n+1)/6

Exercise 2

▶ Prove that for any natural number x greater of equal than 4, $2^x \ge x^2$

Exercise 3

- ▶ Prove that the sum of the first n perfect cubes is a perfect square.
 - **Examples**:
 - $1^3+2^3+3^3=36=6^2$
 - $1^3+2^3+3^3+4^3+5^3=225=15^2$
- ► Solution:
 - ► Induction using integers
 - Statement: $\sum_{i=1}^{n} i^3 = a^2$
 - ▶ Basis: n=1

$$ightharpoonup$$
 a=1, 1³ = a² = 1²

► Induction step

$$\sum_{i=1}^{n+1} i^3 = \sum_{i=1}^{n} i^3 + (n+1)^3 = a^2 + (n+1)^3 = b^2$$
 Which b?

Exercise 3: Inventor's paradox

- Solution: reformulate the statement to prove in order to make it stronger
 - ▶ Instead of "one" perfect square, say which is "the" square: the sum of the numbers
 - ▶ Prove that exists one and we identify it, "invent" an extra restriction which serves to proceed with the proof → Inventor's paradox
 - ► New statement: $\sum_{i=1}^{n} i^3 = (\sum_{i=1}^{n} i)^2$
 - Induction step (basis: the same as before)

```
\sum_{i=1}^{n+1} i^3 = (\sum_{i=1}^{n+1} i)^2 objective
```

$$\sum_{i=1}^{n} i^3 + (n+1)^3 = (\sum_{i=1}^{n} i + (n+1))^2$$
 algebra

$$\sum_{i=1}^{n} i^3 + (n+1)^3 = (\sum_{i=1}^{n} i)^2 + 2(\sum_{i=1}^{n} i)(n+1) + (n+1)^2$$
 algebra

$$(n+1)^3 = 2(\sum_{i=1}^n i)(n+1) + (n+1)^2$$
 hypothesis

$$(n+1)^3 = 2(n/2)(n+1)(n+1) + (n+1)^2$$
 sum of the arithmetic series

$$(n+1)^3 = n^3 + 3n^2 + 3n + 1$$
 Q.E.D.

Example 3 – Balanced parenthesis

- ► Two definitions of balanced parenthesis:
 - ► Grammatically (EG)
 - ▶ The empty string ε is balanced
 - If w is balanced then "(w)" is balanced
 - If w and x are balanced then wx is balanced
 - ► By scanning (EV)
 - w is balanced if and only if (iff)
 - ► Has an equal number of (and)
 - Each prefix of w has at least as many (as)
- ▶ Theorem: a string of parenthesis is EG iff is EV
 - ▶ Bidirectional proof

Example 3 – balanced parenthesis (proof)

- ▶ EG ← EV
 - Proof by induction base on the length of the string w (+ conditional proof)
 - \triangleright Basis: $w = \varepsilon$, |w| = 0
 - $w = \varepsilon$ é EG, by the first rule
 - ► Induction step
 - ► For |w|=n+1 there are two cases
 - I) w does not have a non-empty prefix with the same number of (and)
 - Then w must begin with (and finish with), i.e., w = (x)
 - \triangleright x must be EV \rightarrow |w| even
 - ► |x| <= n, so, by hypothesis x is EG
 - ▶ By the second rule, w = (x) is also EG
 - ▶ II) w has a non-empty prefix with the same number of (and)
 - ► Then w = xy, in which x is the shorter of those prefixes and y $\neq \epsilon$
 - x and y are EV; by hypothesis, x and y are EG
 - By the third rule w is EG

Example 3 – balanced parenthesis (proof)

- \triangleright EG \rightarrow EV
 - Prove by induction based on the structure EG of the string w, i.e., in the number of applications of the rules of the EG definition (+ conditional proof)
 - Basis: w = ε, n = 1, first rule of EG
 - \triangleright w = ε is EV (trivial)
 - Induction step
 - ► For n+1 applications of EG rules there are two cases
 - I) w is EG because of the second rule, i.e., w = (x) and x is EG
 - ► Then, by hypothesis, x is EV
 - As x has the same number of (and), (x) also has
 - As x does not have prefix with more) than (, (x) also does not
 - ▶ II) w is EG because of the third rule, i.e., w = xy and x and y are EG
 - ▶ By hypothesis, x and y are EV (rigorously, the hypothesis is EG \rightarrow EV for a number of rules \leq n)
 - As x and y have equal number of (and), w also has
 - If w had a prefix with more) than (, then or x would have such a prefix (in contradiction for being EV) or would have it x followed by a prefix of y (in contradiction to y being EV) (proof by contradiction)
 - Q.E.D.

Summary

- ► Introduction to the Theory of Computation
- Introduction to finite automata
- Proof methods with emphasis on the proofs by the induction method (revision)