Digitális technika

II. Boole-algebra, kapuáramkörök

2.1. Boole-algebra

Logikai értékek

A digitális áramkörök azok logikai hálózatok → leírásukra, tervezésükre a Boole-algebra használatos. Két érték van:

hamis -> 0

igaz -> 1

(így használjuk, bár fordítva is hozzárendelhetnénk a számokat)

A gyakorlatban a két értékhez két különböző feszültség tartomány tartozik, ezeket L és H betűkkel jelöljük (Low illetve High, alacsony és magas feszültség tartomány)

 $1 \rightarrow H$

 $0 \rightarrow L$

2.1. Boole-algebra

2.1. Boole-algebra

Logikai változók, függvények

változók, konkrét logikai érték helyett betűjelek ---> A, B, C, két értéket vehetnek fel (0,1)

függvények ----> pl. Y= A*B+C \rightarrow jelentése Y értéke igaz, ha (A igaz ÉS B igaz) VAGY (C igaz) ekkor pl. ha A=1 B=0 és C=1 \rightarrow Y=1*0+1=1

néhány azonosság:

A+B=B+A A*B=B*A
$$\overline{A}$$
=A

A+1=1 A+0=A A+A=A A+ \overline{A} =1

A*1=A A*0=0 A*A=A A* \overline{A} =0

A*(B+C)=A*B+A*C A+(B*C)=(A+B)*(A+C)

De Morgan azonosságok---> \overline{A} +B= \overline{A} * \overline{B} és \overline{A} * \overline{B} = \overline{A} + \overline{B}

2.2. Mintafeladatok

Műveletvégzés sorrendje! → alapvetően a "legerősebb" művelet a tagadás (negálás), majd utána az ÉS kapcsolat (szorzás), majd a VAGY kapcsolat (összeadás) → de a zárójelek megváltoztatják a sorrendet és hasonló hatása van a közös negálásnak is!

pl.
$$Y = \overline{B} + A^*\overline{C}$$
 \rightarrow 1. a két negálás, majd a szorzás, majd az összeadás

$$Y=(A+B+C)*C$$
 \rightarrow 1. B+C, 2. ennek a negálása, majd evvel VAGY A, majd ÉS C-vel

1. mintafeladat: hozd egyszerűbb alakra!

$$Y = (B*C+\overline{A})*C = ?$$
 $Y = B*C*C* + \overline{A}*C = B*C + \overline{A}*C$

2. mintafeladat: hozd egyszerűbb alakra!

$$Y = (\overline{A} * \overline{B}) = ?$$
 $Y = (\overline{A} + \overline{B}) = \overline{A} + B$

2.2. Mintafeladatok

3. mintafeladat: hozd egyszerűbb alakra!

$$Y = (A*C+B) = ?$$

$$Y = (\overline{A*C} * \overline{B}) = (\overline{A}+\overline{C})*\overline{B} = \overline{A}*\overline{B}+\overline{C}*\overline{B}$$

4. mintafeladat: hozd egyszerűbb alakra!

$$Y = B*(C+\overline{A}) = ?$$

$$Y = \overline{B} + \overline{(C + \overline{A})} = \overline{B} + \overline{C} * \overline{\overline{A}} = \overline{B} + \overline{C} * A$$

Hozd egyszerűbb alakra!

• 1. feladat:
$$Y = (A*C+\overline{B})*\overline{C}+\overline{A} =$$

• 2. feladat
$$Y = \overline{A^*C} + \overline{A} + B^*B =$$

• 3. feladat
$$Y=(B+\overline{A})^* \overline{B^*C}=$$

• 4. feladat
$$Y = \overline{B} + \overline{A + B * C} =$$

Megoldások

• 1. feladat:
$$Y = (A*C+\overline{B})*\overline{C}+\overline{A} = A*C*\overline{C} + \overline{B}*\overline{C} + \overline{A} = 0 + \overline{B}*\overline{C} + \overline{A} = \overline{B}*\overline{C} + \overline{A}$$

• 2. feladat
$$Y = \overline{A*C} + \overline{A} + B*B = \overline{A} + \overline{C} + \overline{A} + B*B = \overline{A} + C + B$$

• 3. feladat
$$Y = (B + \overline{A})^* \overline{B^*C} = (B + \overline{A})^* (\overline{B} + \overline{C}) = B^* \overline{B} + \overline{A}^* \overline{B} + B^* \overline{C} + \overline{A}^* \overline{C}$$

• 4. feladat
$$Y = \overline{B} + \overline{A + B + C} = \frac{0 + \overline{A} + \overline{B} + B + \overline{C} + \overline{A} + \overline{C}}{B + A + B + C} = \overline{B} + \overline{A} + \overline{C} = \overline{B} + \overline{C} + \overline{C} = \overline{C} \overline{C}$$

2.4. Logikai kapuáramkörök

Egyszerű digitális alapáramkörök, a logikai műveleteket végzik el (bal oldalon bemenetek, jobb oldalon kimenet). Kis kör jelzi az invertálást !!

2.4. Logikai kapuáramkörök

(Not AND, És-Nem)

Először AND művelet (szoroz)! és a végén NOT (invertál)

pl. ha A=1 és B=0
$$\rightarrow$$
 $\overline{1*0} = \overline{0} = 1$

$$\begin{array}{ccc} & & & & & \\ & \text{(Not OR,} & & & \\ & & \text{Vagy-Nem)} & & & & \\ & & & & \\ \end{array} \geq 1$$

→

Először OR művelet (logikai összeadás)! és a végén NOT (invertál)

pl. ha A=1 és B=0
$$\rightarrow$$
 $\overline{1+0} = \overline{1} = 0$

2.4. Logikai kapuáramkörök

Akkor 1-es a kimenet, ha különböző a két bemenet

pl. ha A=1 és B=0
$$\rightarrow$$
 1* $\overline{0}$ + $\overline{1}$ *0 = 1*1 + 0*0 = 1
de, ha A=1 és B=1 \rightarrow 1* $\overline{1}$ + $\overline{1}$ *1 = 1*0 + 0*1 = 0

2.5. Logikai kapuk, mintafeladatok

Milyen kapu és mi lesz a kimenetének értéke az adott bemenet esetén ?!

2. feladat

3. feladat

4. feladat

5. feladat

6. feladat

7. feladat

8. feladat

Milyen kapu és mi lesz a kimenetének értéke az adott bemenet esetén ?!

10. feladat

11. feladat

12. feladat

13. feladat

14. feladat

15. feladat

16. feladat

Megoldások:

1. feladat

2. feladat

3. feladat

4. feladat

5. feladat

6. feladat

7. feladat

8. feladat

Megoldások:

9. feladat

10. feladat

11. feladat

12. feladat

13. feladat

14. feladat

15. feladat

16. feladat

