MOSFET (Metal Oxide Semiconductor Field Effect Transistor)

MOSFETS are basically of 2 types:

- 1. Depletion Type MOSFET
- 2. Enhancement Type MOSFET

MOSFET basically has 4 terminals?

- 1. Source (s)
- 2. Drain (D)
- 3. hate (h)
- 4. Body (B)

Depletion type MOSFET:

There is a physical channel between S & D. No spe separation between S & D

[3] Depletion type (MOSFET

Enhancement type MOSFET:

There is no physical channel between S & D. Channel has to be created by applying proper biasing voltage between and source (5).

Fig: Enhancement type
MOSFET

Both Depletion type (MOSFET and Enhancement type MOSFET ran be categorized either as n-channel (MOSFET (nMOS) or p-channel (MOSFET (pMOS).

fig: Enhancement Type nonos

fig: Enhancement Type p(nos

Enhancement type nonos:

In voter to make current flow from D to S channel has to be created between S to D by applying proper voltage (Vas) between (n & S.

The minimum gate to source voltage (Vas) that is needed to create the channel is called the threshold voltage (V1).

If Vas. > VT -> channel will be created for n(nos, VT is (+ve)

1-V Characteristics graph of enhancement type n (nos:

$$V_{hs} > V_{T}$$
 $0 < V_{DS} < (V_{hs} - V_{T})$

Linear or resistive region

 $I_{DS} > 0$

D -> thickness of oxide layer

L -> length of the channel or gate

W -> Width of the gate or channel

In Linear region, $D + b \leq \text{current}, \quad I_{bs} = \frac{\epsilon \mu_n}{D} \cdot \frac{\omega}{L} \cdot \left[(v_{\alpha s} - v_{\tau}) v_{bs} - \frac{v_{bs}^2}{2} \right]$

E-> permittivity of exide layer

un -> mobility of electron

U -> aspect ratio

In saturation region,

D to S werent, IDS = \frac{\xi \mu_1}{2D} \cdot \frac{\pi}{L} \cdot \(V_{GS} - V_T\)^{\text{T}}

Combination of p(NOS and n(NOS in a single IC

norma normally a single IC contains symmetrical

(complementary)

p(NOS - n(NOS pairs

n(NOS)

pmos

$$T_1 \rightarrow n(Mos)$$

$$T_2 \rightarrow p(Mos)$$

$$V_{Tp} = -1v$$

$$V_{Tn} = 1v$$

$$V_{DD} = 2.5v$$

Output capacitor (CL) will discharge

Vout = OV (LOW)

- Important properties of chos inverter:
 - -> The high and Low output levels equal VDD and GND, respectively
 - -> Ratioless design: which means that logic levels are not dependent on relative derice sites
 - -> In steady state, a finite resistance parth exists between the output and either VDD or GND
 - Input impedance is extremely high. Stoady

 State i/p current is overly zero. So, a

 Single inverter can theoretically drive an

 infinite number of gates (fan out = infinite).

 However, increasing fan-out will increase

 propagation delay
 - -> No direct path exists between source and ground in steady state operation. Thus, no continuous current flow between from VDD to and . So, static power dissipation is very less.

Input - Output Characteristics of Mos Inverter (Voltage - toansfer characteristics)

Steps to draw the graph:

- Sketch the I-V curve of the nons and ponos transformed on a common co-ordinate set for different input voltages
- → Superimapose the two II as I-V curross of nos & ponos
- -> Find the operating points of the dinverter from the intersecting points between the two curves for each input voltage level
- -> Plot the output voltage against the

Now,

Let, the variables associated with the common cordinate sot be: Vin, Vout & I DSn & (Current through nonos)

and IV curry the different values of Vin;

phos Iv curve in terms of Ips, Vont, Vin Ipsn Vin = 2.57 Superimposing IV curves of monos & ponos drawn same co-ordingte set 1050 Vin= 2.54 Vin= 24 2.5V Inversion Voltage nons & ponos interchange their mode of operation wirit this rollage

Input - Output Characteristic graph

Vout nonos ess

ponos ses

ponos sex

ponos sex

ponos sex

ponos sex

ponos res

po

Combinational Logic Grates using cmos Static (MOS Design

-> Static emos gate is a combination of two networks: pull-up network (PUN)

pull-down network (PDN)

pun -> posorides a connection
between output (f) and

VDD when f is

Supposed to be HIGH

pDN -> provides a connection
between output (F) and
aND when F is supposed
to be LOW

At steady state only one of the networks between PUN & PDN conducts

-> notos devices are normally used in the PDN

-> pinos devices are normally used in the post PUN

Two-Input NAND Grade:

A	B	F	
0	. 0	1	
0	1	ι	
	0	ı,	
1	1	0	
1	-		
a			
1	-		
10-1-0		,	ł.

Two-Input NOR Gate

1.11		0111
A	В	F
0	, 0	
0)	0
1	O	O
1.1	1	0
		.,, 1

$$\therefore \overline{\hat{F}} = F = \overline{AB + \overline{AB}}$$

$$F = \overline{A}B + A\overline{B}$$

$$= (\overline{A} \cdot B) \cdot (\overline{A} + \overline{B})$$

$$= (\overline{A} + \overline{B}) \cdot (\overline{A} + \overline{B})$$

$$= (A + \overline{B}) \cdot (\overline{A} + B)$$

$$= (A + \overline{B}) \cdot (\overline{A} + B)$$

$$= A \cdot \overline{A} + AB + \overline{A}B + \overline{B}B$$

$$= AB + \overline{AB}$$

Example: D+ A. (B+c) VDD