Lecture 1

CS436/536: Introduction to Machine Learning

Zhaohan Xi Binghamton University

zxi1@binghamton.edu

Why? Huh!? What is it good for?

Learning to Solve Hard Problems with Data

When is Machine Learning Useful?

- Human expertise does not exist or cannot be conveniently translated into an algorithm (navigating on Mars, protein structure)
- Humans can't explain their expertise (speech / face recognition)
- Models must be customized (personalized medicine)
- Models are based on huge amounts of data (genomics)
- No "analytical" solution

Some Other Applications

- Recognizing patterns
 - Facial identities or facial expressions
 - Handwritten or spoken words
 - Medical images
- Generating patterns
 - Generating images or motion sequences
- Recognizing anomalies
 - Unusual credit card transactions
 - Unusual patterns of sensor readings in a nuclear power plant
- Prediction
 - Future stock prices or currency exchange rates

Central to

- Natural language processing (NLP)
- Computer vision
- Computational biology
- Robotics

• • •

Example: Credit Approval

- Using salary, debt, years in residence, etc., approve for credit or not
- Nobody has an optimal credit approval formula
- But banks have data
 - Customer information
 - Credit history

age	33 years
salary	50,000
debt	27,500
years employed	1
years at residence	2
	•••

Approve for credit?

Outline

1. What is Learning?

"Learning is a process by which a system improves performance

from experience"

- Herbert Simon
- 2. Can we Learn?
- 3. How to Learn?
- 4. How to Learn well?
- 5. Advanced Techniques.
- 6. Other Learning Paradigms.

What is Machine Learning?

"computer programs that automatically improve their performance through experience" — Herbert Simon

"... the ability to learn without being explicitly programmed" — Arthur Samuel

How to Learn?

- Memorization
 - Accumulate all the facts in a large lookup table

- Generalization
 - Deduce new facts from old facts
 - Recognize a pattern and use it to make a prediction
 - A pattern exists
 - The pattern is UNKNOWN
 - But we have data

Credit Approval

- Using salary, debt, years in residence, etc., approve for credit or not
- Nobody has an optimal credit approval formula
- But banks have data
 - Customer information
 - Credit history

age	33 years
salary	50,000
debt	27,500
years employed	1
years at residence	2
	•••

Approve for credit?

Components of the Learning Problem

• age, salary, debt, years employed, ...

input $x \in \mathbb{R}^d = \mathcal{X}$ output $y \in \{-1, +1\} = \mathcal{Y}$

Approve credit or not

target function $f: \mathcal{X} \to \mathcal{Y}$

• True relationship between x and y

[unknown]

Data on customers

data set $\mathcal{D}_N = (x_1, y_1), \dots (x_N, y_N)$ $[y_n = f(x_n)]$

 \mathcal{X},\mathcal{Y} and \mathcal{D} are *given* by the learning problem

The target function f is fixed but unknown

Learn the target function f from the data D

What is Learning?

- Obtaining f
- Result of learning is an approximation of f $g: \mathcal{X} \to \mathcal{Y}$

• Want:

 $g \approx f$ i.e. $g(x_*) \approx f(x_*)$ where x_* is the next test data point

Learning Problem Setup

Fixed, Unknown

UNKNOWN TARGET FUNCTION

$$f: \mathcal{X} \to \mathcal{Y}$$

(optimal credit approval function)

$$y_n = f(x_n)$$

Given Dataset

TRAINING EXAMPLES

$$(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$$

(historical records of credit customers)

(set of candidate functions)

 \mathcal{H}

Estimating Population Mean from Sample Mean

Pick a *random* sample of *N* marbles with replacement *independently*

Observe the fraction of red marbles ν

Note: the only random quantity here is ν . μ is fixed (albeit unknown)

What does ν tell us about μ ? Nothing for sure. But...

Estimating Population Mean from Sample Mean

Can we say anything **for certain** about μ (outside the data) having observed ν (the data)?

• No.

It is possible to pick only red marbles while the bin has mostly green marbles

But not probable

See the binomial distribution

• What is the relationship between ν and μ ?

Learning

- ullet Start with a set of candidate hypotheses ${\mathcal H}$ which likely represent f
- $\mathcal{H} = \{h_1, h_2, ...\}$ The hypothesis set or *model*
- Select a hypothesis g from ${\mathcal H}$
- Using a *learning algorithm*
- Use *g* for new customers

Hope that $g \approx f$

 \mathcal{X} , \mathcal{Y} and \mathcal{D} are **given** by the learning problem

The target function *f* is **fixed but unknown**

We choose ${\mathcal H}$ and the learning algorithm

Outline

1. What is Learning?

"Learning is a process by which a system improves performance

from experience"

- Herbert Simon
- 2. Can we Learn?
- 3. How to Learn?
- 4. How to Learn well?
- 5. Advanced Techniques.
- 6. Other Learning Paradigms.

17

Prerequisites

- CS 375 Design and Analysis of Algorithms or equivalent
- MATH 327 Probability with Statistics Methods

Comfort with Linear Algebra, Calculus

 Proficiency with at least one of the following high level programming language:

Python, Matlab, Java, C++

Textbooks

• Learning from Data by Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin

Machine Learningby Tom Mitchell

Pattern Recognition and Machine Learning
by Christopher M. Bishop

Grading

- (70 points) 7-10 Take-home Homework and Programming Assignments
- (5 points) 4 In-class Quizzes
 - Open book, open notes, NO electronics
- (30 points) Two Exams (open-book)

- Please talk to each other
- Write solutions / implement program yourself
- Check Brightspace for all announcements and course content

Grading

- . A/A-: 100-90
- _o B+/B/B-: 75-90
- _o C+/C/C-: 65-75
- 。D: 55-65

Office hours

Zhaohan Xi

Tuesday & Thursday

1:00PM - 2:50PM

EB G06

Taoyue Wang

Friday

2:00PM - 4:00PM

EB NOO

Additional appointments arranged by email:

zxi1@binghamton.edu

twang61@binghamton.edu

Syllabus available on Brightspace

- Please review the syllabus
- Please read the CS department Academic Honesty letter to students
- Please review Watson College and University Academic Integrity policy

Academic Integrity/Honesty

- The Watson College Student Academic Honesty Code
- Student Academic Honesty Code

Today's Tasks

Say hello

Please talk to each other

Find some people to work on homework with

Form some initial agreements to work in pairs