数据科学入门1.4:多变量回归

Introduction to Data Science Part1.4: Multi variable Regression

多变量回归

之前我们讲了一个independent variable的情况,那如果有多个x怎么办,如下面的例子:

exp3 这是一群人年收入,高中毕业以后受教育的年数,和信用卡账单,我们想通过前两个来预测他一年花多少钱。

Annual Income x1	# Years Post-High School Education x2	Annual Credit Card Charges y
\$39,400	5	\$10,120.45
\$68,200	4	\$15,289.80
\$43,000	6	\$5,937.19
\$53,600	2	\$0.00
\$53,500	4	\$13,569.89
\$60,800	2	\$3,889.79
\$74,900	1	\$7,715.47

我们还是老方法

```
%% get a glance of the data
scatter3(exp3.x1,exp3.x2,exp3.y)
plotmatrix(exp3.Variables)

%% fit a surface
[model,gof,output]=fit([exp3.x1,exp3.x2],exp3.y,"poly33")
plot(model,[exp3.x1,exp3.x2],exp3.y)

%% let's look at the result
% this shows the goodness of the fit
gof
% let's plot the residuals
scatter(exp3.x1,output.residuals)
scatter(exp3.x2,output.residuals)
histogram(output.residuals,10)

model
gof
```

首先我们还是把图画出来看看,这个叫做exploratory data analysis,探索新数据分析,看看大概数据是啥样。可以看到除了散点图我还画了一个图 plotmatrix(exp3.Variables),这个可以把表格里面所有变量两辆话在一个散点图中,如下面:

这个图是对角线对称的,大的xy周分别是变量,对角线就是自身对自身没必要画散点图,就给出了分布的直方图。我们关心的是那两个变量之间有关系。可以看到x1,和y有比较明显的正相关,你们希望看到的是independent variable和dependent variable之间最好没有,这

样说明每个变脸都是独立有作用的。如果independent variable之间强有相关则可以去掉某个变量。我们便量少可以不管,当independent variable多的时候尽量选择和Y关联大的之间没关系的变量。

再看fit模型,我们只关注有什么变化,首先是fit里面"ploy33",因为我们有2个independent variable,所以我们对两个都采用3次多项式,你也可以尝试别的不同的玩法。你可以看到这个residual的plot我们也有两个。

更多变量回归

我们之前一直在用fit, fit是curve fitting toolbox里面的玩意,用起来虽然简单但是还是功能比较悠闲的,比如independent variable超过2个就不能用了,怎么办呢,我们还有statistic and machine learning toolbox。其中有东西叫做fitlm,应该是fit linear model的意思我们开看看他。

exp4 这个是年龄,血压,是否吸烟和未来10年发生中风的概率的关系,现在让你预测一个人是否未来会发生中风。

Age x1	Blood Pressure x2	Smoker x3	% Risk of Stroke over Next 10 Years Y
63	129	No	7
75	99	No	15
80	121	No	31
82	125	No	17
60	134	No	14
79	205	Yes	48
79	120	Yes	36

我们看下面一个代码:

首先,我们要把表格里面的yes/no变成1/0,这样才能用计算,非常简单用 unique 函数,大家不懂可以查查,出来以后吗默认是吧不同种类的字符串变成了从1开始的数字,我们未来方便剪掉1,这样抽烟就是1,不抽是0。这个是一个很基础的数据预处理,当然如果你的一个数据有很多种类型,直接的用1,2,3...这种编码其实是不合适的,可以使用one hot编码,这个大家自己去研究,下次可也会讲。

预处理之后只要用 fitlm 指定independent variable和dependent variable就行。可以看到他的给出的模型是:

```
ft =
线性回归模型:
y ~ 1 + x1 + x2 + x3
```

估计系数:

	Estimate	SE	tStat	pValue
				
(Intercept)	-72.508	15.092	-4.8043	0.00010793
x1	0.83483	0.16446	5.0761	5.7719e-05
x2	0.22801	0.048995	4.6539	0.00015295
x3	10.607	3.2056	3.3089	0.0035044

观测值数目: 24, 误差自由度: 20

均方根误差: 6.53

R 方: 0.824, 调整 R 方 0.798

F 统计量(常量模型): 31.3, p 值 = 9.43e-08

居然是中文的真不习惯,可以看到 y~ 那一串就是模型的公式,然后那个estimate就是系数。 R 方: 0.824, 调整 R 方 0.798 就是我们之前说的rsquare和adjrsquare。这次多了个东西,就是

pValue,这个表示这个参数是否在统计学上significant。这里一时半会解释不清,挺复杂,你就认为这个数字小于0.05这个参数对应的independent variable就是有意义的,要是比这个大,就代表可以忽略掉他,你再做个模型就不要加这个变量了。

这里再说一点,就是你看这个模型的参数,isSmoker的系数最大时10多,说明只要吸烟你中风的概率比别人搞10%,这也是我们从模型中可以总结出来的规律。

到这里你要说,这个虽然是实现了多变量的回归,但是是一次多项式呀,怎么变成更高次的呢? , 简单如下面这个代码:

就是加一个参数叫Terms Matrix,这个用来指明你模型中的阶数,很好理解,每一行就对应一项,而每一列对应每个independent variable的阶数,如第一行 1 0 0 0,对应的就是 $x_1^1*x_2^0*x_3^1$,最后一个0是必须的不知道为啥。那么底5航1 2 0 0对应的就是 $x_1^1*x_2^2*x_3^0$ 。你不用吧每一行都写完,你要用几个就写几行,上面这个模型结果如下:

```
ft =
线性回归模型:
y ~ x3 + x1*x2 + x1:(x2^2) + x1^3 + 1
```

估计系数:

	Estimate	SE	tStat	pValue
x1	-0.23256	1.3909	-0.1672	0.86919
x2	0.12519	0.42139	0.29709	0.77
x3	10.643	3.4187	3.1132	0.0063233
x1:x2	-0.00095897	0.0080442	-0.11921	0.9065
x1:x2^2	7.4576e-06	2.4488e-05	0.30454	0.76441
x1^3	6.8769e-05	7.5166e-05	0.91491	0.37304
(Intercept)	-9.332	87.015	-0.10725	0.91585

观测值数目: 24, 误差自由度: 17

均方根误差: 6.9

R 方: 0.833, 调整 R 方 0.774

F 统计量(常量模型): 14.1, p 值 = 8.89e-06

可以看到这个rsquare增加了,但是adjrsquare没有,所以我们增加了个个模型的复杂度,但是并没有增加什么有意义的项,你看有好几个pValue都很大。

这里你又要问了,这里只能用多项式拟合,我像自定义一个模型的公式可以吗?当然是可以,我以前教过你的对吧。只要线性回归你总能把你的模型携程 af(X)+bg(X)... 这种形式对吧。

例如: ft=fitlm([sin(exp4.x1),exp4.x2,isSmoker],exp4.y)