

PROYECTO DE HORMIGÓN CI5206-2

AUXILIAR N°1

¿Qué aprenderán?

- Entender diferencia entre planos de arquitectura y estructura
- · Considerar requerimientos de arquitectura
- Predimensionar elementos
- Estructurar un edificio (Qué es posible? y qué no?)
- Usar normas
- Diseño de elementos
- Realizar planos de Estructura y su simbología
- Tomar decisiones como Ingeniero

¿Qué aprenderán?

ETABS

- Ingresar ejes, alturas entre piso, materiales
- Crear elementos (Vigas, Iosas, muros) y dibujarlos (planta y/o elevación)
- Cargar Losas (PP y SC)
- Ingresar Espectro y crear sismos en dos direcciones (Sx, Sy)
- Mesh de elementos (Elementos Finitos)
- Ingresar Factores de Reducción (Rx* y Ry*)
- Obtener datos (Periodos, Cortes basales, Esfuerzos)

Normas a Usar:

- NCh 433 Diseño Sísmico de Edificios
- Decretos D.S. N° 60 y 61
- NCh 1537 Sobrecargas de Uso
- NCh 3171 Diseño Estructural Disposiciones generales y Combinaciones de carga
- ACI 318 Requisitos de Reglamento para Hormigón Estructural

Software:

- Etabs (Edificios)
- SAP2000 (Galpones, Vigas)
- Safe (Losas, Fundaciones)
- Planillas en Mathcad, Excel, etc

¿Qué deben usar de cursos anteriores?

- Hormigón Armado:
- Diseño de Vigas
- Diseño de Losas (Tablas)
- Diseño de Muros (Diagramas P-M)
- Diseño de Fundaciones (zapatas corridas)
- Muros de Contención
- Diseño Sísmico:
- Análisis Sísmico
- Norma Nch433

Modelo Computacional

Datos de entrada:

- Muros (h,e,L), Vigas (h,b,L), Losas (lx,ly,e):
 - Planos Arquitectura
 - Predimensionamiento
- Cargas sobre la estructura:
 - Sobrecarga de uso (SC)
 - Peso Propio Adicional (PP)
 - Sismo (Sx, Sy)
- Resistencia de Hormigón y Acero

Modelo Computacional

Datos de entrada:

- Espectro Sísmico:
 - Zona Sísmica (1, 2, 3)
 - Suelo (A, B, C, D, E)
- Factor de Reducción (R*)
 - Periodo de Estructura (Tx, Ty)
 - Corte Basal (Qbx, Qby)

COMBINACIONES (NCh 3171):

- 1) 1.4 PP
- 2) 1.2 PP + 1.6 SC
- 3) 0.9 PP ± 1.4 SX
- 4) 0.9 PP ± 1.4 SY
- 5) $1.2 PP + SC \pm 1.4 SX$
- 6) $1.2 PP + SC \pm 1.4 SY$

Combinaciones

Modelo Computacional

Datos de salida:

- Periodos Estructura (Tx, Ty, TRz)
- Cortes Basales (Qbx, Qby)
- Esfuerzos sobre elementos (Nu, Qu, Mu)
- Desplazamientos entre piso (Drift)
- Deformaciones de elementos (Δx , Δy , Δz)

Propiedades Materiales:

Hormigón Armado:

Resistencia a la Compresión f_c'

Mod Elasticidad: Ec = 15100 $\sqrt{f_c'}$ [kgf/cm^2]

H25: $f_c' = 200 \ kgf/cm^2 \longrightarrow Ec = 213546 \ kgf/cm^2$

H30 : $f_c' = 250 \ kgf/cm^2 \longrightarrow Ec = 238752 \ kgf/cm^2$

Densidad: $\gamma c = 2.5 ton f/m^3$

· Acero:

Mod Elasticidad: Es = $2000000 kgf/cm^2$

Tension de Fluencia: f_{y} = 4200 kgf/cm^{2}

Densidad: $\gamma = 7.85 tonf/m^3$

D.S. 60 Cap. 5.1

de fracción
defectuosa)
H20
H25
H30
H35
H40
H45
>H45*)

*) Para resistencias mayores que H45 el valor de f'_c se debe determinar con probetas cilíndricas.

 $(1MPa \approx 10 \text{ kgf/cm}^2)$

 $(1 \text{ kgf/cm}^2 \approx 10 \text{ tonf/m}^2)$

CI5206 – Proyecto de Hormigón / Septiembre 2018

Tipos de Elementos

Vigas

- Normales (Interiores - Ingeniería) Ej: V 25/60

- Seminvertidas (Fachadas – Terrazas - Arquitectura) Ej: V.S.I. 20/140

- Invertida (Fachadas – Terrazas - Arquitectura) Ej: VI 20/60

Losas

Muros

- Normales Ej: M.H.A. e=30

- Invertidos Ej: M.I. e=25

Fundaciones

- Zapatas (cuadradas, corridas)

- Vigas de Fundación Ej: V.F. 25/110

- Cadenas de Fundación Ej: C.F. 20/40

Planos de Ingeniería

- Plano de Fundaciones (1)
- Plano de Estructura (N° de Pisos)
- Plano de Losas (N° de Pisos)
- Planos de Elevaciones (Según Muros existentes)
- Planos de Vigas (No incluidas en Elevaciones)
- Especificaciones Constructivas
- Bases de Cálculo

Pasos para iniciar el Modelo

- Unidades (tonf, m)
- Grid (Grilla)
- Definir stories
- Definir Materiales (Hormigón y Acero de armadura)
- Definir Elementos (Muros, Losas y Vigas)
- Definir Static Load Cases (PP y SC)
- Definir Mass Source (Peso Sísmico)
- Agregar Espectro
- Definir SX y SY
- Agregar Combinaciones

Pasos para iniciar el Modelo

CI5206 – Proyecto de Hormigón / Septiembre 2018