Úloha 1. Rozhodněte, zda pro částečné uspořádání \leq na konečné množině M platí následující výrok: pokud má \leq pouze jeden minimální prvek, má nejmenší prvek.

[3 body]

Úloha 2. Může na množině M existovat relace R, která je ekvivalence a zároveň částečné uspořádání? Pokud ano, kolik jich je a jak vypadají?

[3 body]

Úloha 3. Nechť R a S jsou libovolná uspořádání na množině M. Rozhodněte, které z následujících relací jsou nutně také uspořádáními.

- a) $R \cap S$
- b) $R \cup S$
- c) $R \setminus S$
- d) $R \circ S$

[6 bodů]

Úloha 4. Dokažte, že $\mathbb{N} \setminus \{0,1\}$ uspořádaná relací dělitelnosti má nekonečně mnoho minimálních prvků. O která čísla se jedná?

[2 body]