5)

1

Î

1

1

Ninimize $4x_1 + \sqrt{2}x_2 - 0.35x_3$ $5.t. -0.001x_1 + 200x_2 \ge 7\sqrt{2}61$ $7.07x_2 - 2.62x_3 \le -4$ $x_1 \times x_3 \ge 0$

> Surplus veriables: e, ez substitution veriables: x2-2=x2

Standard form

Minimize $4x_1 + \sqrt{2}x_2 - \sqrt{2}x_2 - 0.35x_3$ $5.t, -0.001x_1 + 200x_2 - 200x_2 - e_1 = 7\sqrt{261}$ $-7.07x_2 + 7.07x_2 + 2.62x_3 - e_2 = 4$ $x_1, x_2, x_2, x_3, e_1, e_2 \ge 0$

b) Maximize $-3.1x_1 + 2\sqrt{2}x_2 - x_3$ 5.t. $100x_1 - 20x_2 = 7$ $-11x_1 - 771x_2 - 2x_3 \le 400$ $x_1 \ge 20, x_2 \ge 0, x_3 \ge -15$

> slack veriable: 5, substitutions: x, +20=x, , x3-15=x3

Standard form

Mimimize $3.1\bar{x}$, $-2\sqrt{2}x_2 + \bar{x}_3 + 4\bar{s}$ $5.t - 100\bar{x}$, $+20x_2 = 1993$ $-11\bar{x}$, $-7\pi x_2 - 2\bar{x}_3 + \bar{s}$, = 590 \bar{x} , x_2 , x_3 , s, s, s (c) Maximize $x_1 + 3x_2 - 2x_3$ $5 + -2 \le 3x_1 - 5x_2 \le 15$ $11 \le -5x_1 + 20x_2 \le 40$ $11 \le -5x_1 + 20x_2 \le 40$ $11 \le -3x_1 + 5x_2 \le 2$ $11 \le -3x_1 + 5x_2 \le 2$ $11 \le -3x_1 + 5x_2 \le 2$

 $5pl.+ inequalities: 1 -3x_1 + 5x_2 \le 2$ $3x_1 - 5x_2 \le 15$ $2 + 5x_1 + 20x_2 \le 11$ $-5x_1 + 20x_2 \le 40$

slack voriobles: 5,, S2, S3, S4 surplus voriobles: e,

substitutions: $x_1 = \overline{x}_1 - \overline{x}_1$ $x_3 = 10 - \overline{x}_3$

Standard form:

Minimize $-X_1 + \hat{X}_1 - 3x_2 - 2x_3 + 20$ 5.+ $-3x_1 + 3x_1 + 5x_2 + 5 = 2$ $3x_1 + 3\hat{x}_1 - 5x_2 + 5 = 15$ $-5x_1 + 5\hat{x}_1 + 20x_2 - e_1 = 11$ $-5x_1 + 5\hat{x}_1 + 20x_2 + 5 = 40$ $x_3 + 54 = 10$ $x_3 + 54 = 10$ $x_1 + 54 = 10$

Mimimize
$$2x, +6x, +8x_3$$

 $5.+. x_1 + 2x_2 + x_3 = 5$
 $4x, +6x_2 + 2x_3 = 12$
 $x_2 = 20, x_3 = 20$

substition:
$$X_i = \overline{X}_i - \hat{X}_i$$

standard form:

Minimize
$$2x_1 - 2x_1 + 6x_2 + 8x_3$$

 $s.t.$ $x_1 - x_1 + 2x_2 + x_3 = 5$
 $4x_1 - 4x_1 + 6x_2 + 2x_3 = 12$
 $x_{1,1}x_{1,1}x_{2,1}x_3 \ge 0$

(b) let
$$x_1 = 5 - 2x_2 - X_3$$

Minimize
$$2(5-2x_2-x_3)+6x_2+8x_3$$

s.f. $0=0$
 $4(5-2x_2-x_3)+6x_2+2x_3=12$
 $x_2+x_3=0$

(c) storderd from

1

Minimize
$$2x_2 + 6x_3 + 10$$

s.t. $2x_2 + 2x_3 = 8$
 $x_2, x_3 = 20$

(d) minimum =
$$2(4) + 6(0) + 10 = 18$$

at $x_1 = 4$, $x_3 = 0$

1.3

Minimize $x_1^2 + x_2 + 4x_3$ $5.4. x_1^2 - x_2 = 0$ $2x_2 + 4x_3 = 4$ $x_1 \neq 0, x_2 \neq 2, x_3 \neq 0$

- (a) no it is not a linear programming problem as x,2 is not linear
- (b) yes, substitute $X = x^2 \rightarrow X, 200 \rightarrow 7, 20$
- (c) surplus regretles: ex substitution: $x_2 + 2 = x_2$ standard form

Minimize $\bar{X}_1 + \bar{X}_2 + 4\bar{X}_3 + 4$ 5.t. $\bar{X}_1 - \bar{X}_2 = 2$ $2\bar{X}_2 + 4\bar{X}_3 - e_1 = 0$ $\bar{X}_1 + \bar{X}_2 + 4\bar{X}_3 + e_1 = 0$

(d) linear problem - yes

original problem - no except if

x, is a square of an integer

1.4

Minimize
$$|x_1| + 2|x_2| - |x_3|$$

1.t. $|x_1 + x_2| - |x_3| = 10$
 $|x_1 - 3x_2| + 2x_3 = 12$

- (a) no, the absolute value function is non-linear
- (b) yes, set now non-nogative decision variables V_1/V_2 , V_3 and V_1/V_2 , V_3 and V_1/V_2 , V_3 and V_1/V_2 , V_3 and V_1/V_2 , V_3 such that $|X_1| = U_1 + V_1$ and $|X_2| = U_2 V_2$ $|X_3| = U_3 + V_3$ and $|X_3| = U_3 V_3$ then convert existing equations
- (c) Minimize $|x_1-5|+|x_2+4|$ 5.t, $|x_1+|x_2| \le 10$ $|x_1-3|x_2| = 72$

substitutions: $\frac{1}{1}$ $\frac{1}{1}$

Mimimize $\sqrt{1} + \sqrt{1} + \sqrt{2} + \sqrt{2}$ $5.t. \quad \sqrt{1} - 91 + \sqrt{2} - \sqrt{2} + 51 = 9$ $-\sqrt{1} + 91 + 3\sqrt{2} - 3\sqrt{2} + 52 = 15$ $-\sqrt{1} + 91 + \sqrt{2} + \sqrt{2} + \sqrt{2} = 15$

1,5 1.6 1 1 Ĵ

Maximize
$$15x_1 + 25x_2$$

 $5.t. 3x_1 + 4x_2 \le 100$
 $2x_1 + 3x_2 \le 70$
 $x_1 + 2x_2 \le 30$
 $x_1 \ne 0, x_2 \ne 3$

x1 = # chips 1 produced x2 = # chips 2 produced

Minimize $5x_{A1} + 5x_{A2} + 7x_{A3} + 9x_{A4} + 8x_{A5}$ $+ 6x_{B1} + 5x_{B2} + 8x_{B3} + 3x_{B4} + 7x_{B5}$ $+ 6x_{C1} + 8x_{C2} + 9x_{C3} + 5x_{C4} + 10x_{C5}$ $+ 7x_{B1} + 6x_{D2} + 6x_{D3} + 3x_{O4} + 6x_{D5}$ $+ 6x_{E1} + 7x_{E2} + 10x_{E3} + 6x_{E4} + 11x_{E5}$

S; + XA, + XA2 + XA3 + XA4 + XA5 = 1 X01 + XB2 + XB3 + XB4 + XB5 = 1 Xc1 + XC2 + XC3 + XC4 + XC5 = 1 X01 + XB2 + XB3 + XB4 + XB5 = 1 XE1 + XE2 + XE3 + XE4 + XE5 = 1 XA1 + XB1 + XC1 + XB1 + XE1 = 1 XA2 + XB2 + XC2 + XB2 + XE3 = 1 XA3 + XB3 + XC3 + XB3 + XE3 = 1 XA4 + XB4 + XC4 + XB4 + XB5 = 1 XA5 + XB5 + XC5 + XB5 + XE5 = 1 For i=A1E, J=115 X: j ZO, Xij intoser 1.7 for Xio, i=1=) Hong Kong, i=2=7 Towaran j=1=7 Ching, 2-7 India, 3=7 Philippaino, 4=200, 5= AFANCE (a) Minimiza 50 x,1 + 90 x,2 + 70x,3+ 150 x,4+ 180 x,5 + 60 x2, +95x22 +50x23+130x24+200x25 s.t. X, + X21 = 60 X12+ X22 = 45 $X_{13} + X_{23} = 30$ X14+ X24 = 80 X15 + X25 = 55 XII + X12+ X13- X14-X15 =0 X21 + X22 + X23 - X24 - X25 = 0 all xis 20/11/1/2 (b) add constraints: X11 + X12 + X13 < 60 (c) add constraints: X11 + X12 + X13 = 60 $X_{21} + X_{22} + X_{23} = 50$ also modefy constraints X11 + X21 = 60 X12+ X22 = 45 X13+ X23 = 30 X14+X24 = 80 X15 x X25 = 55