Projet ASI322:

Étude de l'impact de la pollution de l'air sur taux de décès maladies respiratoires

Jia CAO, 2024/01/09

Contenu:

- Partie 0: Problématique
- Partie 1: Acquisition des donées et prétraitement

1.1: problème rencontré

- Partie 2: Analyse et traitement des données
- Partie 3: Machine Learning
- Partie 4: Conclusion

Deaths by risk factor, World, 2019

The estimated annual number of deaths attributed to each risk factor¹. Estimates come with wide uncertainties especially for countries with poor vital registration².

Contenu:

- Partie 0: Problématique
- Partie 1: Acquisition des donées et prétraitement

1.1: problème rencontré

- Partie 2: Analyse et traitement des données
- Partie 3: Machine Learning
- Partie 4: Conclusion

Particulate Pollutants	Gaseous Pollutants	
1. Lead 2. Fly Ash 3. Metallic Oxides 4. Nanoparticles	1. Carbon monoxide (CO) 2. Carbon dioxide (CO2) 3. Chlorofluorocarbons (CFCs) 4. Ozone (O3) 5. Nitrogen oxide (NOx) 6. Sulphur dioxide (SO2)	 Volatile organic compounds (VOCs) Benzene Ethylene Biological pollutants Asbestos Radon

IQA Niveau de pollution de l'air

0 - 50	Bon
51 -100	Modéré
101-150	Mauvais pour les groupes sensibles
151-200	Mauvais
201-300	Très mauvais
300+	Dangereux

 $AQI = max(AQI_{PM_{2.5}}, AQI_{PM_{10}}, AQI_{O_3}, ...)$

Ozone (ppm) – truncate to 3 decimal places $PM_{2.5}$ (µg/m³) – truncate to 1 decimal place PM_{10} (µg/m³) – truncate to integer CO (ppm) – truncate to 1 decimal place SO_2 (ppb) – truncate to integer NO_2 (ppb) – truncate to integer

Recherche de données sur 2 aspects:

- polluants & qualité de l'air
- maladies respiratoire

Source de données:

1. (OMS) Base de données sur la qualité de l'air ambiant (données annuelles, selon les villes)[

['pm10_concentration' 'pm25_concentration' 'no2_concentration' 'pm10_tempcov' 'pm25_tempcov' 'no2_tempcov' 'population']

Recherche de données sur 2 aspects:

- polluants & qualité de l'air
- maladies respiratoire

Source de données:

1. (OMS) Base de données sur la qualité de l'air ai ['pm10 concentration' 'pm25 concentration' 'no2 c

'no2 tempcov' 'population']

2. (WAQI) Base de données sur la qualité de l'air ambiant (données quoditiennes, selon les villes)

['pm25', 'pm10', 'o3', 'no2', 'so2', 'co'] NB: ici ce sont des IQA des polluants

Recherche de données sur 2

- polluants & qualité de l'air
- maladies respiratoire

Source de données:

1. (OMS) Base de données sur l

['pm10_concentration' 'pm25_co 'no2_tempcov' 'population']

2. (<u>WAQI</u>) Base de données sur la qualité de l'air ambiant (données **quoditiennes**, selon les **villes**)

```
['pm2.5', 'pm10', 'o3', 'no2', 'so2', 'co'] NB: ici ce sont des IQA des polluants
```

3. [Berkeley Earth] données horaires, selon ville ou pays

['UTC hour', 'pm2.5 (concentration)']

BERKELEY EARTH.

Recherche de données sur 2 aspects:

- polluants & qualité de l'air
- maladies respiratoire

Source de données:

4. (aqistudy.cn) Base de données des villes chinoises (données quoditiennes, par ville)

日期	AQI	质量等级	PM2.5	PM10	SO2	со	NO2	O3_8h
2014-01-01	195	中度污染	147	181	63	1.7	99	61
2014-01-02	147	轻度污染	113	131	37	1.6	95	60
2014-01-03	189	中度污染	142	163	56	1.4	96	45

Recherche de données sur 2 aspects: Time Series Diagram of AQI data in Shanghai (every month) 200 agistudy - polluants & qualité de l'air WAOI 180 - maladies respiratoire 160 140 Source de données: ₹ 120 4. (aqistudy.cn) Base de données des vill 100 空气质量 分析平台 www.agi 检测到非常 60 Month 日期 AQI 质量等级 PM2.5 2014-01-01 195 中度污染 147 181 63 1.7 99 61 131 1.6 95 60 2014-01-02 147 113 37 中度污染 1.4 2014-01-03 189 142 163 56 96 45

Recherche de données sur 2 aspects

- polluants & qualité de l'air

- maladies respiratoire

Source de données:

4. (aqistudy.cn) Base de données des vill

									-	aqistudberkele
80 -		1								
70										
50 -	V		\ \ \ \ \	/						
50				۸. ا		1				1
40	9/	1		4	\ \ \			B		
	V	·	9.1	M	\ \ \\			\	1	A
30 -						N	\mathbb{W}	M	1	
20			1	,		- \	· W		M	1
					V	1		P.M	V	V
10 +	-3 -1	-3	-2	-1	-2	-1	-2	-2	-2	-2
2020	2015-0	2016-01	2017-01	2018-01	2019-01	2020-01	2021-01	2022-01	2023-01	2024-01
1000	7.2	100	70.00	147.0	Mor		1700	11.7%		-

日期	AQI	质量等级	PM2.5	70-	20 20	70	70	Month
2014-01-01	195	中度污染	147	181	63	1.7	99	61
2014-01-02	147	轻度污染	113	131	37	1.6	95	60
2014-01-03	189	中度污染	142	163	56	1.4	96	45

60

20

Time Series Diagram of PM2.5 concentration in Shanghai (every year)

agistudy

berkeley

Recherche de données sur 2 aspects

- polluants & qualité de l'air

- maladies respiratoire

Source de données:

4. (aqistudy.cn) Base de données des vill

					2012	2014	2016	2018
日期	AQI	质量等级	PM2.5					Year
2014-01-01	195	中度污染	147	181	63	1.7	99	61
2014-01-02	147	轻度污染	113	131	37	1.6	95	60
2014-01-03	189	中度污染	142	163	56	1.4	96	45

		*	¥	N .	污染物项	目浓度限值	Ĺ	**	* 1	
空气质量 分指数 (IAQI)	二氧化硫 (SO ₂) 24 小时 平均/ (µg/m³)	二氧化硫 (SO ₂) 1 小时 平均/ (µg/m³) ⁽¹⁾	二氧化氮 (NO ₂) 24 小时 平均/ (µg/m³)	二氧化氮 (NO ₂) 1 小时 平均/ (µg/m ³) (1)	颗粒物 (粒径小 于等于 10μm) 24 小时 平均/ (μg/m³)	一氧化碳 (CO) 24 小时 平均/ (mg/m³)	一氧化碳 (CO) 1 小时 平均/ (mg/m³) ⁽¹⁾	1 小时 平均/	臭氧 (O ₃) 8 小时滑 动平均/ (μg/m³)	颗粒物 (粒径小 于等于 2.5μm) 24 小时 平均/ (μg/m³)
0	0	0	0	0	0	0	0	0	0	0
50	50	150	40	100	50	2	5	160	100	35
100	150	500	80	200	150	4	10	200	160	75
150	475	650	180	700	250	14	35	300	215	115
200	800	800	280	1 200	350	24	60	400	265	150
300	1 600	(2)	565	2 340	420	36	90	800	800	250
400	2 100	(2)	750	3 090	500	48	120	1 000	(3)	350
500	2 620	(2)	940	3 840	600	60	150	1 200	(3)	500

These Brea	akpoints						equal this AQI	and this category
O₃ (ppm) 8-hour	O ₃ (ppm) 1-hour ¹	PM _{2.5} (μg/m³) 24-hour	PM ₁₀ (μg/m³) 24-hour	CO (ppm) 8-hour	SO ₂ (ppb) 1-hour	NO ₂ (ppb) 1-hour	AQI	
0.000 - 0.054	-	0.0 – 12.0	0 - 54	0.0 - 4.4	0 - 35	0 - 53	0 - 50	Good
0.055 - 0.070	=	12.1 – 35.4	55 - 154	4.5 - 9.4	36 - 75	54 - 100	51 - 100	Moderate
0.071 - 0.085	0.125 - 0.164	35.5 – 55.4	155 - 254	9.5 - 12.4	76 - 185	101 - 360	101 - 150	Unhealthy for Sensitive Groups
0.086 - 0.105	0.165 - 0.204	(55.5 - 150.4) ³	255 - 354	12.5 - 15.4	(186 - 304) ⁴	361 - 649	151 - 200	Unhealthy
0.106 - 0.200	0.205 - 0.404	(150.5 - (250.4) ³	355 - 424	15.5 - 30.4	(305 - 604) ⁴	650 - 1249	201 - 300	Very unhealthy
(²)	0.405 - 0.504	(250.5 - (350.4) ³	425 - 504	30.5 - 40.4	(605 - 804) ⁴	1250 - 1649	301 - 400	Hazardous
(²)	0.505 - 0.604	(350.5 - 500.4) ³	505 - 604	40.5 - 50.4	(805 - 1004) ⁴	1650 - 2049	401 - 500	Hazardous

Problème Rencontré

Recherche de données sur 2 aspects:

- polluants & qualité de l'air
- maladies respiratoire

Problème:

- 1. PAS de données sur le nombre de personnes diagnostiquées
- 2. PAS de données quoditiennes ou mensuelles
- 3. PAS de données en fonction des villes

1. IHME: Institute for Health Metrics and Evaluation

2. https://ourworldindata.org/explorers/air-pollution (source: Zenodo)

['Entity' 'Year' 'Nitrogen oxide (NOx)' 'Sulphur dioxide (SO₂)' 'Carbon monoxide (CO)' 'Organic carbon (OC)' 'NMVOCs' 'Black carbon (BC)' 'Ammonia (NH₃)' 'Nitrogen oxide (NOx).1' 'Sulphur dioxide (SO₂).1' 'Carbon monoxide (CO).1' 'Organic carbon (OC).1' 'NMVOCs.1' 'Black carbon (BC).1' 'Ammonia (NH₃).1']

3. (The World Bank) World Development Indicators

df wdi.columns.values

array(['Country Name', 'Country Code', 'Indicator Name', 'Indicator Code', '1960', '1961', '1962', '1963', '1964', '1965', '1966', '1967', '1968', '1969', '1970', '1971', '1972', '1973', '1974', '1975', '1976', '1977', '1978', '1979', '1980', '1981', '1982', '1983', '1984', '1985', '1986', '1987', '1988', '1989', '1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015',

Les indicateurs qu'on veut:

```
selected_indicators = {
    "NY.GDP.MKTP.CD": "GDP",  # GDP
    "EN.ATM.PM25.MC.M3": "PM2.5",  # PM2.5
    "SP.POP.TOTL": "Population",  # Population, total
    "AG.SRF.TOTL.K2": "Surface",  # Surface area (sq. km)
}
```

	Country Name	Country Code	Indicator Name	Indicator Code	1960	1961	1962	1963	1964	1965		2014	2015	2016
0	Africa Eastern and Southern	AFE	Access to clean fuels and technologies for coo	EG.CFT.ACCS.ZS	NaN	NaN	NaN	NaN	NaN	NaN	•••	17.392349	17.892005	18.359993
1	Africa Eastern and Southern	AFE	Access to clean fuels and technologies for coo	EG.CFT.ACCS.RU.ZS	NaN	NaN	NaN	NaN	NaN	NaN	***	6.720331	7.015917	7.281390

3. (The World Bank) World Development Indicators

	Country Name	Country Code	Indicator Name	Indicator Code	1960	1961	1962
0	Africa Eastern and Southern	AFE	Access to clean fuels and technologies for coo	EG.CFT.ACCS.ZS	NaN	NaN	NaN
1	Africa Eastern and Southern	AFE	Access to clean fuels and technologies for coo	EG.CFT.ACCS.RU.ZS	NaN	NaN	NaN

	Country Name	Country Code				1990
Indicator Code			AG.SRF.TOTL.K2	EN.ATM.PM25.MC.M3	NY.GDP.MKTP.CD	SP.POP.TOTL
0	Afghanistan	AFG	6.528600e+05	49.282398	NaN	1.069480e+07
1	Africa Eastern and Southern	AFE	1.510674e+07	30.132449	2.546735e+11	3.098907e+08
2	Africa Western and Central	AFW	9.166270e+06	64.258847	1.218036e+11	2.067390e+08
	A II .	ALD	2.075000 04	24.047402	2 020554 00	2 2005 42 00

stack

Indicator Code	Country Name	Country Code	level_2	AG.SRF.TOTL.K2	EN.ATM.PM25.MC.M3	NY.GDP.MKTP.CD	SP.POP.TOTL
0	Afghanistan	AFG	1990	652860.0	49.282398	NaN	10694796.0
1	Afghanistan	AFG	1991	652860.0	NaN	NaN	10745167.0
2	Afghanistan	AFG	1992	652860.0	NaN	NaN	12057433.0
3	Afghanistan	AFG	1993	652860.0	NaN	NaN	14003760.0
4	Afghanistan	AFG	1994	652860.0	NaN	NaN	15455555.0
•••	***	•••		***	(2000)	***	

Partie 2: Analyse et traitement des données

• Premières étape:

Join==> deux dataframe (merged_CR et merged_RI, RI=Respiratory Infectious, CR= Chronic Respiratory Diseases)

Scatter Diagram of Death Data and other attributes:

maladie respiratoire chronique

infections respiratoires

maladie respiratoire chronique

maladie respiratoire chronique

infections respiratoires

maladie respiratoire chronique

infections respiratoires

maladie respiratoire chronique

infections respiratoires

maladie respiratoire chronique

infections respiratoires

