INVENTOR(S)

[0001] KIMZEY, Samuel C

TITLE

[0002] BlockMesh Decentralized Memory-Mesh Architecture

TECHNICAL FIELD

[0003] This invention relates to multi-chain blockchain architectures and distributed ledger systems, and more particularly to methods for anchoring and querying a decentralized mesh of memory logs.

BACKGROUND

[0004] Conventional blockchains record all activity in a single chain, leading to scalability bottlenecks and single points of failure. As applications diversify, there is a need for an architecture that maintains parallel memory logs per entity while ensuring global integrity and enabling efficient cross-chain verification.

SUMMARY

[0005] The BlockMesh Decentralized Memory-Mesh Architecture comprises:

[0006] Establishing, per entity, a personal subchain storing sequential event logs.

[0007] Periodically committing each subchain's state root or anchor hash to a base layer blockchain via on-chain mint transactions.

[0008] Forming a cryptographic mesh by linking subchain anchors into the base layer.

[0009] Enabling cross-mesh queries that retrieve and verify subchain logs using cryptographic proofs against the base anchors.

DETAILED DESCRIPTION

[00010] At the conceptual level, each participant entity maintains its own memory subchain recording events. Each subchain periodically emits an anchor—such as a chained hash, pointer, or optional Merkle root—that is committed to a common base layer. These anchors collectively form a mesh, ensuring data integrity and non-repudiation across chains. Cross-mesh queries assemble cryptographic proofs from one or more subchains and verify them against the base layer anchors, allowing participants to efficiently retrieve and trust historical records.

METHOD

[00011] Step 1: Subchain Instantiation – Initialize a personal subchain for each entity to record sequential event logs.

[00012] Step 2: Anchoring – At regular intervals or based on memory-flow triggers, commit each subchain's state root or anchor hash to the base layer using a one-action, one-mint transaction.

[00013] Step 3: Mesh Formation – Maintain cryptographic hash links between subchain anchors and base layer transactions to establish a cohesive mesh.

[00014] Step 4: Cross-Mesh Query – Upon request, collect cryptographic proofs (e.g., anchor paths) from relevant subchains and verify against corresponding base layer anchors to authenticate events.

NARRATIVE WORKED EXAMPLE

[00015] Imagine three organizations—OrgA, OrgB, and OrgC—each operating its own subchain. At t1, OrgA anchors hash H1; at t2, OrgB anchors H2; at t3, OrgC anchors H3. A user seeks proof of an event recorded by OrgB. The user retrieves OrgB's proof path: Event record \rightarrow block hash \rightarrow subchain anchor H2, then verifies H2 was committed to the base layer at t2. The mesh ensures the user can trust OrgB's event via the collective anchors.

ALGORITHMIC WORKED EXAMPLE

[00016] In an optional embodiment, anchors are Merkle roots. For a subchain with block data blocks B1–B4, compute Merkle root M = MerkleRoot(B1||B2||B3||B4). Embed M in a base layer mint transaction. To prove inclusion of B3, provide a Merkle proof [Hash(B3), sibling hashes], which verifies against M stored on-chain.

EMBODIMENTS

[00017] Anchoring using chained hashes or pointers without Merkle structures.

[00018] Dynamic anchoring intervals driven by memory-flow pressure metrics.

[00019] Identity-anchored subchains using biometric hashes or external oracle signatures.

[00020] Hierarchical multi-layer subchains (L2–L6) anchoring to intermediate layers before base layer.

IMPLEMENTATION NOTES

[00021] Each anchor commit uses a one-action, one-mint on-chain transaction. No off-chain storage or endpoints are required. All subchain logs and anchors persist permanently, creating an immutable memory mesh. Modules read and verify anchors inchain.

[00022] Imagine a layered architecture with six chains (L1–L6) anchored by a common Genesis Block at Layer 0.

[00023] At t1, L1 emits anchor A1 to the Genesis Block; at t2, L2 emits anchor A2 linking to A1; continuing up to L6 emitting A6 in sequence.

[00024] An event on L3 at t3 creates a cryptographic attestation attached to A3, verifiable through the chain of anchors back to Genesis.

[00025] Similarly, an event on L5 at t4 attaches to A5, interwoven via L4 and L3 anchors into the mesh.

[00026] Observers tracing proofs from L3 or L5 reconstruct the layered anchor path: Event \rightarrow A3 \rightarrow A2 \rightarrow A1 \rightarrow Genesis, demonstrating integrity across layers.

[00027] Peaks in cross-layer event density—such as simultaneous events on L2, L4, and L6—naturally form pressure points at the mesh's core.

CLAIMS

- 1. A method for managing decentralized memory across a plurality of subchains, the method comprising:
 - a. establishing, by a processor, a plurality of personal subchains, each subchain storing sequential event logs for a respective entity;
 - b. periodically committing, by the processor, a state root or anchor hash of each personal subchain to a common base layer blockchain via a single mint transaction;
 - c. forming, by the processor, a mesh of anchored subchains via cryptographic hash links between subchain anchors and base layer transactions;
 - d. responding, by the processor, to cross-mesh query requests by retrieving cryptographic proofs from one or more personal subchains and verifying the proofs against corresponding base layer anchors.
- 2. The method of claim 1, wherein committing a state root or anchor hash comprises generating an anchor hash from subchain block data and including the anchor hash in a mint transaction.
- 3. The method of claim 1, further comprising associating each personal subchain with an identity anchor selected from a biometric hash or an external oracle signature.
- 4. The method of claim 1, further comprising dynamically adjusting the commitment intervals for each personal subchain based on aggregated memory-flow metrics.
- 5. The method of claim 1, wherein the mesh comprises multiple hierarchical layers, and subchains of higher layers anchor to subchains of lower layers to form a layered anchoring structure.
- 6. The method of claim 1, wherein the anchor hash comprises a Merkle root of the subchain block data.
- 7. The method of claim 1, further comprising querying Layer 3 trait subchains across multiple personal chains to infer mesh-wide pressure conditions.

ABSTRACT

[00028] A foundational framework for decentralized memory management using a mesh of personal subchains anchored into a base layer, where each subchain's state anchors forge an emergent, verifiable memory substrate without reliance on a single monolithic chain.