IOI-camp lecture Math

Meteor

February 7, 2017

程式競賽中的數學:

- ■數學知識
- ■數學想法

程式競賽中的數學:

- 數學知識
- ■數學想法

程式競賽中的數學:

- 數學知識
- 數學想法

例題 (平方國的平方幣, TIOJ 1349)

給你一個正整數 n,請找出最小的 k,使得存在 k 個平方數 $a_1^2, a_2^2, \cdots, a_k^2$ 使得 $\sum a_i^2 = n$ 。 $(n \le 10^7)$

- 一個很極端的「結論題」。
- 所有正整數都可以寫成 4 個平方數的和 (Lagrange 1770)。
- 太結論也不是很有趣……

例題 (平方國的平方幣, TIOJ 1349)

給你一個正整數 n,請找出最小的 k,使得存在 k 個平方數 $a_1^2, a_2^2, \cdots, a_k^2$ 使得 $\sum a_i^2 = n \circ (n \le 10^7)$

- 一個很極端的「結論題」。
- 所有正整數都可以寫成 4 個平方數的和 (Lagrange 1770)。
- 太結論也不是很有趣……

例題 (平方國的平方幣, TIOJ 1349)

給你一個正整數 n,請找出最小的 k,使得存在 k 個平方數 $a_1^2, a_2^2, \cdots, a_k^2$ 使得 $\sum a_i^2 = n \circ (n \le 10^7)$

- 一個很極端的「結論題」。
- 所有正整數都可以寫成 4 個平方數的和 (Lagrange 1770)。
- 太結論也不是很有趣……

例題 (平方國的平方幣, TIOJ 1349)

給你一個正整數 n,請找出最小的 k,使得存在 k 個平方數 $a_1^2, a_2^2, \cdots, a_k^2$ 使得 $\sum a_i^2 = n$ 。 $(n \le 10^7)$

- 一個很極端的「結論題」。
- 所有正整數都可以寫成 4 個平方數的和 (Lagrange 1770)。
- 太結論也不是很有趣……

例題 (Taxes, Codeforces 735D)

在一個很古怪的國家,如果你賺了x元,你就要繳d塊錢的稅,其中d是x的因數且小於n裡最大的一個。

現在有一個人賺了 n 元,他想把 n 拆成 $n = n_1 + n_2 + \cdots + n_k$ 然後 n_i 各自繳稅,請問他最多可以逃過多少稅? $(n \le 2 \times 10^9)$

■ Goldbach's conjecture: 大於 2 的偶數都可以寫成兩個質數的和。

例題 (Taxes, Codeforces 735D)

在一個很古怪的國家,如果你賺了x元,你就要繳d塊錢的稅,其中d是x的因數且小於n裡最大的一個。

現在有一個人賺了 n 元,他想把 n 拆成 $n = n_1 + n_2 + \cdots + n_k$ 然後 n_i 各自繳稅,請問他最多可以逃過多少稅? $(n \le 2 \times 10^9)$

■ Goldbach's conjecture: 大於 2 的偶數都可以寫成兩個質數的和。

但大部份還是屬於「數學想法」的問題。

例題 (2015 ICPC Daejeon regional pE)

給你一堆數列 a_1, a_2, \dots, a_n , 你要找一個排列 σ , 使得

$$\max\left(\,\left|a_{\sigma(1)}-a_{\sigma(2)}\right|,\,\left|a_{\sigma(2)}-a_{\sigma(3)}\right|,\cdots,\left|a_{\sigma(n)}-a_{\sigma(1)}\right|\,\right)$$

最小。 $(n \leq 10^4)$

定義

一個大小為n的排列是一個從[1,n]打到自己的一一對應函數。

但大部份還是屬於「數學想法」的問題。

例題 (2015 ICPC Daejeon regional pE)

給你一堆數列 a_1, a_2, \dots, a_n , 你要找一個排列 σ , 使得

$$\max\left(\left.\left|a_{\sigma(1)}-a_{\sigma(2)}\right|,\left|a_{\sigma(2)}-a_{\sigma(3)}\right|,\cdots,\left|a_{\sigma(n)}-a_{\sigma(1)}\right|\right.
ight)$$

最小。 $(n \le 10^4)$

定義

一個大小為 n 的**排列**是一個從 [1,n] 打到自己的一一對應函數

但大部份還是屬於「數學想法」的問題。

例題 (2015 ICPC Daejeon regional pE)

給你一堆數列 a_1, a_2, \dots, a_n , 你要找一個排列 σ , 使得

$$\max\left(\left.\left|a_{\sigma(1)}-a_{\sigma(2)}\right|,\left|a_{\sigma(2)}-a_{\sigma(3)}\right|,\cdots,\left|a_{\sigma(n)}-a_{\sigma(1)}\right|\right.
ight)$$

最小。 $(n \le 10^4)$

定義

一個大小為 n 的排列是一個從 [1, n] 打到自己的一一對應函數。

解題四部曲:

- 嘗試、觀察:在計算紙上多試試
- 2 神猜結論
- 3 (稍微)證明
- 4 寫 code

解題四部曲:

- 1 嘗試、觀察:在計算紙上多試試
- 2 神猜結論
- 3 (稍微)證明
- 4 寫 code

解題四部曲:

- 1 嘗試、觀察:在計算紙上多試試
- 2 神猜結論
- 3 (稍微)證明
- 4 寫 code

解題四部曲:

- 1 嘗試、觀察:在計算紙上多試試
- 2 神猜結論
- 3 (稍微)證明
- 4 寫 code

解題四部曲:

- 1 嘗試、觀察:在計算紙上多試試
- 2 神猜結論
- 3 (稍微)證明
- 4 寫 code

解題四部曲:

- 1 嘗試、觀察:在計算紙上多試試
- 2 神猜結論
- 3 (稍微)證明
- 4 寫 code

解題四部曲:

- 1 嘗試、觀察:在計算紙上多試試
- 2 神猜結論
- 3 (稍微)證明
- 4 寫 code

- 1 嘗試、觀察
- 2 神猜結論

- 1 嘗試、觀察
- 2 神猜結論

應該不是…

- 1 嘗試、觀察
- 2 神猜結論

- 1 嘗試、觀察
- 2 神猜結論

3 證明

3 證明

3 證明

4 寫 code

```
1  sort(begin(a), end(a));
2  int ans = 0;
3  for (int i=0; i<n-2; i++)
4   ans = max(ans, a[i+2] - a[i]);
5  cout << ans << endl;</pre>
```

Very easy! — 有時漂亮的結論就會有很短的程式碼。

4 寫 code

```
1  sort(begin(a), end(a));
2  int ans = 0;
3  for (int i=0; i<n-2; i++)
4   ans = max(ans, a[i+2] - a[i]);
5  cout << ans << endl;</pre>
```

Very easy! — 有時漂亮的結論就會有很短的程式碼。

相同的題目就不會在出現第二次了。

但用類似想法的題目有可能會在出現

要有舉一反三的能力!

相同的題目就不會在出現第二次了。

但用類似想法的題目有可能會在出現!

要有舉一反三的能力!

相同的題目就不會在出現第二次了。

但用類似想法的題目有可能會在出現!

要有舉一反三的能力!

例題 (2016 NTU PK pF)

給你一堆數列 a_1, a_2, \cdots, a_n ,你要找一個排列 σ ,使得

$$\min_{1 \leq i < n} \left| a_{\sigma(i)} - a_{\sigma(i+1)} \right|$$

最大。 $(n \le 2 \times 10^5)$

我們先想 n 是偶數的 case q

例題 (2016 NTU PK pF)

給你一堆數列 a_1, a_2, \dots, a_n , 你要找一個排列 σ , 使得

$$\min_{1 \leq i < n} \left| a_{\sigma(i)} - a_{\sigma(i+1)} \right|$$

最大。
$$(n \le 2 \times 10^5)$$

我們先想 n 是偶數的 case。

- 1 嘗試、觀察
- 2 神猜結論

- 1 嘗試、觀察
- 2 神猜結論

Introduction – 數學想法例子 2

- 1 嘗試、觀察
- 2 神猜結論

Introduction – 數學想法例子 2

3 證明

Introduction - 數學想法例子 2

習題

請完成奇數的情況。

例題 (An Easy Problem, NTUJ 1423)

給你等式 $a^b \equiv c \pmod{d}$ 中的其中 3 個,請找出剩下的一個。

11 $a^b \equiv ? \pmod{d}$: 快速幕, $\mathcal{O}(\log b)$ 。

```
int fastpow(int a, int b, int m) {
    if (!b) return 1%m;
    int ret = fastpow(a*a%m, b/2, m);
    if (b&1) (ret *= a) %= m;
    return ret;
}
```

例題 (An Easy Problem, NTUJ 1423)

給你等式 $a^b \equiv c \pmod{d}$ 中的其中 3 個,請找出剩下的一個。

 $\mathbf{1}$ $a^b \equiv ? \pmod{d}$: 快速冪, $\mathcal{O}(\log b)$ 。

```
int fastpow(int a, int b, int m) {
    if (!b) return 1%m;
    int ret = fastpow(a*a%m, b/2, m);
    if (b&1) (ret *= a) %= m;
    return ret;
}
```

例題 (An Easy Problem, NTUJ 1423)

給你等式 $a^b \equiv c \pmod{d}$ 中的其中 3 個,請找出剩下的一個。

 $\mathbf{1}$ $a^b \equiv ? \pmod{d}$: 快速冪, $\mathcal{O}(\log b)$ 。

```
int fastpow(int a, int b, int m) {
    if (!b) return 1%m;
    int ret = fastpow(a*a%m, b/2, m);
    if (b&1) (ret *= a) %= m;
    return ret;
}
```

圖 $a^? \equiv c \pmod p$, p prime: $\mathcal{O}(\sqrt{p})$,有點難了。

$$a^{xk+y} \equiv c \pmod{p} \iff a^{xk} \equiv ca^{-y} \pmod{p}$$

怎麼求出 $a^{-y} \mod p$?

圖 $a^? \equiv c \pmod{p}$, p prime: $\mathcal{O}(\sqrt{p})$,有點難了。

$$a^{xk+y} \equiv c \pmod{p} \iff a^{xk} \equiv ca^{-y} \pmod{p}$$

怎麼求出 a=v mod p?

$$\mathbf{3}$$
 $a^? \equiv c \pmod p$, p prime: $\mathcal{O}(\sqrt{p})$,有點難了。

$$a^{xk+y} \equiv c \pmod{p} \iff a^{xk} \equiv ca^{-y} \pmod{p}$$

問題

怎麼求出 $a^{-y} \mod p$?

$$\mathbf{3}$$
 $a^? \equiv c \pmod p$, p prime: $\mathcal{O}(\sqrt{p})$,有點難了。

$$a^{xk+y} \equiv c \pmod{p} \iff a^{xk} \equiv ca^{-y} \pmod{p}$$

問題

怎麼求出 $a^{-y} \mod p$?

我們先離題一下。

數學上喜歡把東西抽象化,只留下「本質」,去掉多餘的東西。

問題

運算的「本質」是什麼?

我們先離題一下。

數學上喜歡把東西抽象化,只留下「本質」,去掉多餘的東西。

運算的「本質」是什麼?

我們先離題一下。

數學上喜歡把東西抽象化,只留下「本質」,去掉多餘的東西。

問題

運算的「本質」是什麼?

定義(群)

一個**群**由一個集合 G 和一個運算 · 構成,滿足

- 一個群由一個集合 G 和一個運算 · 構成 · 滿足
 - 運算·是一個函數 $(G,G) \rightarrow G$,也就是說 $x \cdot y \in G$ 。
 - \blacksquare 有結合律: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - 存在一個特別的元素 1 叫作**單位元**,滿足 $1 \cdot x = x \cdot 1 = x$ 。
 - 對每一個 x 存在 $x^{-1} \in G$ 叫作**反元素**,滿足 $x \cdot x^{-1} = x^{-1} \cdot x = 1$ \circ

- 一個群由一個集合 G 和一個運算 · 構成 · 滿足
 - 運算・是一個函數 $(G,G) \rightarrow G$,也就是說 $x \cdot y \in G$ 。
 - 有**結合律** \vdots $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - 存在一個特別的元素 1 叫作**單位元**,滿足 $1 \cdot x = x \cdot 1 = x$ 。
 - 對每一個 x 存在 $x^{-1} \in G$ 叫作**反元素**,滿足 $x \cdot x^{-1} = x^{-1} \cdot x = 1$ \circ

- 一個**群**由一個集合 G 和一個運算 · 構成 , 滿足
 - 運算·是一個函數 $(G,G) \rightarrow G$,也就是說 $x \cdot y \in G$ 。
 - 有**結合律** \vdots $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - 存在一個特別的元素 1 叫作**單位元**,滿足 $1 \cdot x = x \cdot 1 = x$ 。
 - 對每一個 x 存在 $x^{-1} \in G$ 叫作**反元素**,滿足 $x \cdot x^{-1} = x^{-1} \cdot x = 1$ \circ

- 一個**群**由一個集合 G 和一個運算 · 構成 , 滿足
 - 運算·是一個函數 $(G,G) \rightarrow G$,也就是說 $x \cdot y \in G$ 。
 - 有**結合律** \vdots $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - 存在一個特別的元素 1 叫作**單位元**,滿足 $1 \cdot x = x \cdot 1 = x$ 。
 - 對每一個 x 存在 $x^{-1} \in G$ 叫作**反元素**,滿足 $x \cdot x^{-1} = x^{-1} \cdot x = 1$ °

- 整數對於加法 (ℤ, +) 是一個群。
- 旋轉是一個群,如 $0, \pi/2, \pi, 3\pi/2$ 。
- 模 m 下的加法,寫作 $\mathbb{Z}/m\mathbb{Z}$ 。
- 一個元素生成的群 $\langle a \rangle \triangleq \{a^k \mid k \in \mathbb{Z}\}$,我們把這種群叫作 循環群。

- 整數對於加法 (ℤ, +) 是一個群。
- 旋轉是一個群,如 $0, \pi/2, \pi, 3\pi/2$ 。
- 模 m 下的加法,寫作 $\mathbb{Z}/m\mathbb{Z}$ 。
- 一個元素生成的群 $\langle a \rangle \triangleq \{a^k \mid k \in \mathbb{Z}\}$,我們把這種群叫作 循環群。

- 整數對於加法 (ℤ, +) 是一個群。
- 旋轉是一個群,如 $0, \pi/2, \pi, 3\pi/2$ 。
- 模 m 下的加法,寫作 $\mathbb{Z}/m\mathbb{Z}$ 。
- 一個元素生成的群 $\langle a \rangle \triangleq \{a^k \mid k \in \mathbb{Z}\}$,我們把這種群叫作 循環群。

- 整數對於加法 (ℤ, +) 是一個群。
- 旋轉是一個群,如 $0, \pi/2, \pi, 3\pi/2$ 。
- 模 m 下的加法,寫作 $\mathbb{Z}/m\mathbb{Z}$ 。
- 一個元素生成的群 $\langle a \rangle \triangleq \{a^k \mid k \in \mathbb{Z}\}$,我們把這種群叫作 循環群。

- 整數對於加法 (ℤ, +) 是一個群。
- 旋轉是一個群,如 $0, \pi/2, \pi, 3\pi/2$ 。
- 模 m 下的加法,寫作 $\mathbb{Z}/m\mathbb{Z}$ 。
- 一個元素生成的群 $\langle a \rangle \triangleq \{a^k \mid k \in \mathbb{Z}\}$,我們把這種群叫作 循環群。

問題

模 m 下的乘法 $(\mathbb{Z}/m\mathbb{Z})^{\times}$ 是一個群嗎?

剛剛那樣問並不精確,關鍵應是模 m 下哪些元素有反元素?

2 在模 12 下就沒有反元素。

$$xy \equiv 1 \pmod{m} \implies xy = mt' + 1 \implies xy + mt = 1$$

剛剛那樣問並不精確,關鍵應是模m下哪些元素有反元素? 2 在模12 下就沒有反元素。

$$xy \equiv 1 \pmod{m} \implies xy = mt' + 1 \implies xy + mt = 1$$

剛剛那樣問並不精確,關鍵應是模m下哪些元素有反元素? 2 在模12 下就沒有反元素。

$$xy \equiv 1 \pmod{m} \implies xy = mt' + 1 \implies xy + mt = 1$$

剛剛那樣問並不精確,關鍵應是模m下哪些元素有反元素? 2 在模12 下就沒有反元素。

$$xy \equiv 1 \pmod{m} \implies xy = mt' + 1 \implies xy + mt = 1$$

剛剛那樣問並不精確,關鍵應是模m下哪些元素有反元素? 2 在模12下就沒有反元素。

$$xy \equiv 1 \pmod{m} \implies xy = mt' + 1 \implies xy + mt = 1$$

問題

定理

$$a\mathbb{Z} + b\mathbb{Z} = \gcd(a, b)\mathbb{Z}$$

```
a\mathbb{Z} + b\mathbb{Z} \supseteq \gcd(a, b)\mathbb{Z}:
```

```
pair<int, int> extend_gcd(int a, int b) {
    if(b == 0) return {1, 0};
    else {
        int k = a/b;
        pair<int, int> xy = gcd(b, a%b);
        return {xy.second, xy.first - k * xy.second};
    }
}
```

定理

$$a\mathbb{Z} + b\mathbb{Z} = \gcd(a, b)\mathbb{Z}$$

```
a\mathbb{Z} + b\mathbb{Z} \supseteq \gcd(a, b)\mathbb{Z}:
```

```
pair<int, int> extend_gcd(int a, int b) {
    if(b == 0) return {1, 0};
    else {
        int k = a/b;
        pair<int, int> xy = gcd(b, a%b);
        return {xy.second, xy.first - k * xy.second};
    }
}
```

引理

$$x \in (\mathbb{Z}/m\mathbb{Z})^{\times} \iff \gcd(x, m) = 1$$

證明:

引理

$$x \in (\mathbb{Z}/m\mathbb{Z})^{\times} \iff \gcd(x, m) = 1$$

證明:

$$xy \equiv 1 \pmod{m}$$
 有解 $\iff xy + mt = 1$ 有解

引理

$$x \in (\mathbb{Z}/m\mathbb{Z})^{\times} \iff \gcd(x, m) = 1$$

證明:

$$xy \equiv 1 \pmod{m}$$
 有解 $\iff xy + mt = 1$ 有解 $\iff \gcd(x, m) = 1$

問題

 $(\mathbb{Z}/m\mathbb{Z})^{\times}$ 有多少元素?也就是 [1,n] 中有幾個數和 n 互質?

定理 (Euler φ 函數)

arphi(n) 表示 [1,n] 有幾個數和 n 互質,則如果 $n=p_1^{lpha_1}p_2^{lpha_2}\cdots p_k^{lpha_k}$,則

$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_k}\right)$$

問題

 $(\mathbb{Z}/m\mathbb{Z})^{\times}$ 有多少元素?也就是 [1,n] 中有幾個數和 n 互質?

定理 (Euler φ 函數)

arphi(n) 表示 [1,n] 有幾個數和 n 互質,則如果 $n=p_1^{lpha_1}p_2^{lpha_2}\cdots p_k^{lpha_k}$,則

$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_k}\right)$$

證明這個定理需要用到中國剩餘定理:

定理 (Euler φ 函數)

假設 $m=m_1m_2\cdots m_k$,且 m_1,m_2,\cdots,m_k 兩兩互質,令

$$\psi(x) = (x \mod m_1, x \mod m_2, \cdots, x \mod m_k)$$

則 $\psi(x)$

- 且一個 $\mathbb{Z}/m\mathbb{Z}$ 到 $\mathbb{Z}/m_1\mathbb{Z} \times \mathbb{Z}/m_2\mathbb{Z} \times \ldots \times \mathbb{Z}/m_k\mathbb{Z}$ 的一一對應函數。
- 2 這個函數保持了加法和乘法。

- 1 如果 p 是質數,則 $\varphi(p) = p 1$ 。
- 2 如果 p 是質數,則 $\varphi(p^k) = p^{k-1}(p-1)$ 。
- 3 如果 m, n 互質,則 $\varphi(mn) = \varphi(m)\varphi(n)$ $\varphi(n)$

- 1 如果 p 是質數,則 $\varphi(p) = p 1$ 。
- 2 如果 p 是質數,則 $\varphi(p^k) = p^{k-1}(p-1)$ 。
- $oldsymbol{\exists}$ 如果 m,n 互質,則 arphi(mn)=arphi(m)arphi(n) \circ

- 1 如果 p 是質數,則 $\varphi(p) = p 1$ 。
- ② 如果 p 是質數,則 $\varphi(p^k) = p^{k-1}(p-1)$ 。
- ③ 如果 m,n 互質,則 $\varphi(mn)=\varphi(m)\varphi(n)$ 。

數論 - 子群

定義

如果 $H \subseteq G$ 且 H 中任兩個元素的乘積、任一個元素的反元素 還在 H 裡,我們就說 H 是 G 的**子群**。

- 所有偶數 2ℤ 對於加法是 ℤ 的子群。
- $H \triangleq \{\bar{1}, \bar{2}, \bar{4}\}$ 對於乘法是 $\mathbb{Z}/7\mathbb{Z}$ 的子群。

數論 - Lagrange's Theorem

定理 (Lagrange's theorem)

如果 H 是 G 的子群,則 |G|=|G/H||H|,因此有 |H|||G|。

定理 (Euler's theorem)

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$

數論 - Lagrange's Theorem

定理 (Lagrange's theorem)

如果 H 是 G 的子群,則 |G|=|G/H||H|,因此有 |H|||G|。

定理 (Euler's theorem)

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$

數論 - Euler's Theorem

證明:

如果 n 是最小的正整數使得 $a^n \equiv 1 \pmod m$,那 $H \triangleq \langle a \rangle = \{1, a, a^2, \cdots, a^{n-1}\}$ 有 n 個元素。由 Lagrange's theorem, $n \mid |(\mathbb{Z}/m\mathbb{Z})^\times| = \varphi(m)$,可令 $\varphi(m) = nk$,因此 $a^{\varphi(m)} = a^{nk} \equiv 1 \pmod m$ 。

引理

$$\gcd(a, m) = 1 \implies a^{-1} \equiv a^{\varphi(m)-1} \pmod{m}$$

回到一開始的題目:

4 ? $^b \equiv c \pmod{p}$, $p \text{ prime } \circ$

先看 b=2 的情況。

例題 (Square Roots in a Finite Group, 2013 大專院校 pJ)

給定一個質數 p 和 a ,請求出 $x^2 \equiv a \pmod{p}$ 的解 x 或輸出無解 。 $(a,p < 2^{31})$

回到一開始的題目:

 $\stackrel{4}{=} ?^b \equiv c \pmod{p}, p \text{ prime } \circ$

先看 b=2 的情況。

例題 (Square Roots in a Finite Group, 2013 大專院校 pJ)

給定一個質數 p 和 a ,請求出 $x^2 \equiv a \pmod p$ 的解 x 或輸出無解 。 $(a,p < 2^{31})$

當時這一題有給一個小題示。

- 1 把 p-1 寫作 $p-1=2^s m$,其中 m 是奇數。
- 2 找一個 b 使得 $x^2 \equiv b \pmod{p}$ 無解。
- 3 令 $b \leftarrow b^m$, $x \leftarrow a^{(m+1)/2}$, $t \leftarrow a^m$,可以驗證 $x^2 \equiv at \pmod{p}$ 。
- 4 想辦法把t 調成1 你就獲勝了。

當時這一題有給一個小題示。

- 1 把 p-1 寫作 $p-1=2^s m$,其中 m 是奇數。
- 2 找一個 b 使得 $x^2 \equiv b \pmod{p}$ 無解。
- 3 令 $b \leftarrow b^m$, $x \leftarrow a^{(m+1)/2}$, $t \leftarrow a^m$, 可以驗證 $x^2 \equiv at \pmod{p}$ 。
- 4 想辦法把t調成1你就獲勝了。

要有一點先備知識。

定理

$$(\mathbb{Z}/m\mathbb{Z})^{\times}$$
 是一個循環群 $\iff m=1,2,4,p^k,2p^k$

定義

如果 $(\mathbb{Z}/m\mathbb{Z})^{\times} = \langle a \rangle$,我們就說 a 是模 m 下的**原根**。

要有一點先備知識。

定理

 $(\mathbb{Z}/m\mathbb{Z})^{\times}$ 是一個循環群 $\iff m=1,2,4,p^k,2p^k$

定義

如果 $(\mathbb{Z}/m\mathbb{Z})^{\times} = \langle a \rangle$, 我們就說 a 是模 m 下的**原根**。

要有一點先備知識。

定理

 $(\mathbb{Z}/m\mathbb{Z})^{ imes}$ 是一個循環群 $\iff m=1,2,4,p^k,2p^k$

定義

如果 $(\mathbb{Z}/m\mathbb{Z})^{\times} = \langle a \rangle$,我們就說 a 是模 m 下的**原根**。

數論 – 原根

舉個例子,m = 11, a = 2。

可定義 \log_a ,如 $\log_2(9) = 6$ 。

舉個例子,m=11, a=2。

可定義 \log_a ,如 $\log_2(9) = 6$ 。

舉個例子,m=11, a=2。

可定義 \log_a ,如 $\log_2(9) = 6$ 。

問題

如何找一個模 m 下的原根?

$$p = 25, p - 1 = 2^s \cdot m = 2^3 \cdot 3$$

$$p = 25, p - 1 = 2^s \cdot m = 2^3 \cdot 3$$

 $\log(t) = \log(a^m) = m \log(a)$

$$p=25,\ p-1=2^s\cdot m=2^3\cdot 3$$
 $\log(t)=\log(a^m)=m\log(a)$ 。如果 $x\leftarrow b$,那 $t\leftarrow b^2$ 。

$$p=25,\ p-1=2^s\cdot m=2^3\cdot 3$$
 $\log(t)=\log(a^m)=m\log(a)$ 。如果 $x\leftarrow b$,那 $t\leftarrow b^2$ 。

$$p=25,\ p-1=2^s\cdot m=2^3\cdot 3$$
 $\log(t)=\log(a^m)=m\log(a)$ 。如果 $x\leftarrow b$,那 $t\leftarrow b^2$ 。


```
while (t != 1) {
    int k = 0, tp = t, tb = b;
    while (tp != 1) tp = (tp * tp) % p, k++;
    for (int i=0; i<s-k-1; i++) tb = (tb * tb) % p;
    x = x * tb % p;
    t = t * tb * tb % p;
}</pre>
```

習題

把剩下的細節弄清楚!

Burnside's lemma

例題

用 M 種寶石可以做出多少 N 個寶石的項鍊,假設旋轉相同視為相同。

Burnside's lemma – 問題的數學描述

- 旋轉會構成一個群 $G \triangleq \langle g \rangle$ 。
- 物品(項鍊)會構成一個集合 X。
- 用 G 把 X 分門別類,寫作 X/G。

Burnside's lemma - 問題的數學描述

- 旋轉會構成一個群 $G \triangleq \langle g \rangle$ 。
- 物品(項鍊)會構成一個集合 X。
- 用 G 把 X 分門別類,寫作 X/G。

Burnside's lemma – 問題的數學描述

- 旋轉會構成一個群 $G \triangleq \langle g \rangle$ 。
- 物品(項鍊)會構成一個集合 X。
- 用 G 把 X 分門別類,寫作 X/G。

定義

定義

- $\mathbf{1} \quad g \cdot x \in X \circ$
- $(gh) \cdot x = g \cdot (hx) \circ$
- 3 如果 1 是 G 的單位元,則 $1 \cdot x = x$

定義

- $\mathbf{1} \quad q \cdot x \in X \circ$
- $(gh) \cdot x = g \cdot (hx) \circ$
- ③ 如果 1 是 G 的單位元,則 $1 \cdot x = x$ 。

定義

- 1 $q \cdot x \in X \circ$
- $(gh) \cdot x = g \cdot (hx) \circ$
- 3 如果 1 是 G 的單位元,則 $1 \cdot x = x$ 。

- I $G_x \triangleq \{g \in G : gx = x\}$,也就是固定 x 下,所有不會動到 x 的作用。
- 2 $X^g riangleq \{x \in X : gx = x\}$,也就是固定一個作用 g 下的**不動**點。
- ③ $Gx \triangleq \{gx : g \in G\}$,也被稱作是 x 在 G 下的**軌道**。
- $A \mid X/G \triangleq \{Gx : x \in X\}$,也就是 $X \mid G \mid T$ 下所有的軌道。

- I $G_x \triangleq \{g \in G : gx = x\}$,也就是固定 x 下,所有不會動到 x 的作用。
- 2 $X^g riangleq \{x \in X : gx = x\}$,也就是固定一個作用 g 下的**不動點**。
- 3 $Gx \triangleq \{gx : g \in G\}$,也被稱作是 x 在 G 下的**軌道**。
- $A \mid X/G \triangleq \{Gx : x \in X\}$,也就是 $X \in G$ 下所有的軌道

- **I** $G_x \triangleq \{g \in G : gx = x\}$,也就是固定 x 下,所有不會動到 x 的作用。
- 2 $X^g riangleq \{x \in X : gx = x\}$,也就是固定一個作用 g 下的**不動** 點。
- 3 $Gx \triangleq \{gx : g \in G\}$,也被稱作是 x 在 G 下的**軌道**。
- 4 $X/G riangleq \{Gx: x \in X\}$,也就是 X 在 G 下所有的軌道。

- **I** $G_x \triangleq \{g \in G : gx = x\}$,也就是固定 x 下,所有不會動到 x 的作用。
- 2 $X^g riangleq \{x \in X : gx = x\}$,也就是固定一個作用 g 下的**不動** 點。
- $3 Gx \triangleq \{gx : g \in G\}$,也被稱作是 x 在 G 下的**軌道**。
- $oxed{4} \ X/G riangleq \{Gx: x \in X\}$,也就是 X 在 G 下所有的軌道。

Burnside's lemma

定理 (Burnside's lemma)

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

也就是說把每一個旋轉下的不動點加起來,除以旋轉的數量,就是種類數!

Burnside's lemma

定理 (Burnside's lemma)

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

也就是說把每一個旋轉下的不動點加起來,除以旋轉的數量,就 是種類數!

Burnside's lemma – 證明

證明:

$$\begin{split} \frac{1}{|G|} \sum_{g \in G} |X^g| &= \frac{1}{|G|} \# \big\{ (x,g) \mid x \in X, g \in G, xg = g \big\} \\ &= \frac{1}{|G|} \sum_{x \in X} |G_x| \\ &\stackrel{(1)}{=} \frac{1}{|G|} \sum_{x \in X} \frac{|G|}{|Gx|} \\ &\stackrel{(2)}{=} \sum_{Gx \in X/G} \sum_{x \in Gx} \frac{1}{|Gx|} = \sum_{Gx \in X/G} 1 \\ &= |X/G| \end{split}$$

Burnside's lemma – 證明

關鍵:

$$\boxed{} |G| = |Gx| \, |G_x|$$

$$oxed{2} X = igsqcup_{Gx \in G/X} Gx$$

回到原本的例題,現在我們要算每個旋轉 g 下的不動點 X^g 。

注意:不是只有 \wedge 而已,有 $1, \wedge, \wedge^2, \cdots$ 。

問題

如果今天在平面上旋轉 $\pi/2$ 和對 x 軸鏡射要視為相同,要考慮哪些旋轉?

回到原本的例題,現在我們要算每個旋轉 g 下的不動點 X^g 。

注意: 不是只有 \wedge 而已,有 $1, \wedge, \wedge^2, \cdots$ 。

問題

如果今天在平面上旋轉 $\pi/2$ 和對 x 軸鏡射要視為相同,要考慮哪些旋轉?

回到原本的例題,現在我們要算每個旋轉 g 下的不動點 X^g 。

注意: 不是只有 \wedge 而已,有 $1, \wedge, \wedge^2, \cdots$ 。

問題

如果今天在平面上旋轉 $\pi/2$ 和對 x 軸鏡射要視為相同,要考慮哪些旋轉?

哪些項鍊是旋轉 \wedge^k 下的不動點?有幾個觀察:

1 首先注意到 $X^{\wedge^k} = X^{\wedge^{\gcd(k,N)}}$

Figure: n = 15

哪些項鍊是旋轉 \wedge^k 下的不動點?有幾個觀察:

1 首先注意到 $X^{^{^{\prime}}} = X^{^{^{\gcd(k,N)}}}$

Figure: n = 15

哪些項鍊是旋轉 \wedge^k 下的不動點?有幾個觀察:

1 首先注意到 $X^{\curvearrowleft^k} = X^{\curvearrowleft^{\gcd(k,N)}}$

Figure: n = 15

2 如果 $d \triangleq \gcd(k, N)$,則

$$\left|X^{\curvearrowleft^k}\right| = \left|X^{\curvearrowleft^{\gcd(k,N)}}\right| = M^d$$

3 用 Burnside's lemma 得出

$$|X/G| = \sum_{d\mid N} \#\{k\mid \gcd(k,N) = d\}M^d$$

問題

對於 $d \mid N$ 的 d, $\#\{k \mid \gcd(k, N) = d\}$ 如何求?

2 如果 $d \triangleq \gcd(k, N)$,則

$$\left|X^{\curvearrowleft^k}\right| = \left|X^{\curvearrowleft^{\gcd(k,N)}}\right| = M^d$$

3 用 Burnside's lemma 得出

$$|X/G|=\sum_{d\mid N}\#\{k\mid\gcd(k,N)=d\}M^d$$

問題

對於 $d \mid N$ 的 d, $\#\{k \mid \gcd(k, N) = d\}$ 如何求?

因為 $d \mid N$,

$$\#\{k\mid \gcd(k,N)=d\}=\#\{k\mid \gcd(k,N/d)=1\}=\varphi(N/d)$$

總結答案:

$$\sum_{d|N} arphi(N/d) M^d$$

因為 $d \mid N$,

$$\#\{k\mid \gcd(k,N)=d\}=\#\{k\mid \gcd(k,N/d)=1\}=\varphi(N/d)$$

總結答案:

$$\sum_{d|N} \varphi(N/d) M^d$$

C++17

C++17 Features 分享!

```
pair pr("hao"s, 123);
```

Structure bindings

```
auto [a, b] = pair("hao"s, 123);
```

Initializers in if

```
if (int x = fun(); x > 3) { ... ]
```

```
assert(clamp(a, low, high) == min(max(a, low), high));
```

```
pair pr("hao"s, 123);
```

Structure bindings

```
auto [a, b] = pair("hao"s, 123);
```

Initializers in if

```
if (int x = fun(); x > 3) { ... }
```

```
assert(clamp(a, low, high) == min(max(a, low), high));
```

```
pair pr("hao"s, 123);
```

Structure bindings

```
auto [a, b] = pair("hao"s, 123);
```

Initializers in if

```
if (int x = fun(); x > 3) { ... }
```

```
assert(clamp(a, low, high) == min(max(a, low), high));
```

```
pair pr("hao"s, 123);
```

Structure bindings

```
auto [a, b] = pair("hao"s, 123);
```

Initializers in if

```
if (int x = fun(); x > 3) { ... }
```

```
assert(clamp(a, low, high) == min(max(a, low), high));
```

組合賽局 線性代數

我們先看一題遊戲題。

例題 (Takeover Wars, ACM-ICPC World Final pL)

兩個人玩一個遊戲,A 有 a_1, a_2, \dots, a_k 個數字,B 有 b_1, b_2, \dots, b_k 個數字。由 A 先開始行動,每次行動可以選一個進行:

- 1 融合:選兩個自己的數字 x, y,把 x, y 拿掉換成 x + y。
- 2 吃掉:選一個自己的數字 x 和對方的數字 y ,如果 x>y ,可以 把 y 拿掉。
- 3 喵 PASS ~ \ (`・д・´)

誰沒有數字了就輸了,問誰會贏? $(k, h \le 10^5)$

有些題目沒想出來看到結論會氣死…

組合賽局 線性代數

我們先看一題遊戲題。

例題 (Takeover Wars, ACM-ICPC World Final pL)

兩個人玩一個遊戲,A 有 a_1, a_2, \dots, a_k 個數字,B 有 b_1, b_2, \dots, b_k 個數字。由 A 先開始行動,每次行動可以選一個進行:

- 1 融合:選兩個自己的數字 x, y,把 x, y 拿掉換成 x + y。
- 2 吃掉:選一個自己的數字 x 和對方的數字 y ,如果 x>y ,可以 把 y 拿掉。
- 3 喵 PASS ~ \ (`・д・´)

誰沒有數字了就輸了,問誰會贏? $(k, h \le 10^5)$

有些題目沒想出來看到結論會氣死…

再看一題遊戲題。

例題 (Game on Bipartite Graph, 2015-2016 Saratov SU Contest)

給一個二分圖 G 和一個起點 v,兩人玩一個遊戲:輪流選一條 和現在的點 v 相鄰的邊 (v,u),並沿著這條邊走到 u。走過的邊 就不能再走了,誰沒有辦法再走就輸了。問你先手贏還是後手 贏。 $(|V| \le 100)$

再看一題遊戲題。

例題 (Game on Bipartite Graph, 2015-2016 Saratov SU Contest)

給一個二分圖 G 和一個起點 v,兩人玩一個遊戲:輪流選一條 和現在的點 v 相鄰的邊 (v,u),並沿著這條邊走到 u。走過的邊 就不能再走了,誰沒有辦法再走就輸了。問你先手贏還是後手 贏。 $(|V| \le 100)$

假設二分圖的兩個點集是 X, Y 每個人在他的回合一定是固定從 某個點集出發。

假設二分圖的兩個點集是 X, Y 每個人在他的回合一定是固定從 某個點集出發。

假設二分圖的兩個點集是 X, Y 每個人在他的回合一定是固定從 某個點集出發。不妨假設先手出發的是 X。

假設二分圖的兩個點集是 X, Y 每個人在他的回合一定是固定從 某個點集出發。不妨假設先手出發的是 X。

假設二分圖的兩個點集是 X, Y 每個人在他的回合一定是固定從 某個點集出發。不妨假設先手出發的是 X。

現在對於 X 的第 i 個點,如果他連到下面 i_1,i_2,\cdots,i_k 個點,就令 $oldsymbol{v}_i=\sum 2^{i_t}$ 。

從剛才的討論可以知道如果存在 $v_{j_1}, v_{j_2}, \cdots, v_{j_m}$ 使得

$$oldsymbol{v}_s \in \{j_t\}$$
 $oldsymbol{\exists}$ $oldsymbol{v}_{i_1} \oplus oldsymbol{v}_{i_2} \oplus \ldots \oplus oldsymbol{v}_{i_m}$

則後手會贏。

問題

- 1 怎麼找 j_1, j_2, \dots, j_m ?
- 2 這個條件是否也是必要條件?

現在對於 X 的第 i 個點,如果他連到下面 i_1, i_2, \cdots, i_k 個點,就令 $oldsymbol{v}_i = \sum 2^{i_t}$ 。

從剛才的討論可以知道如果存在 $v_{j_1}, v_{j_2}, \cdots, v_{j_m}$ 使得

則後手會贏。

問題

- **1** 怎麼找 j_1, j_2, \dots, j_m ?
- **2** 這個條件是否也是**必要條件**?

現在對於 X 的第 i 個點,如果他連到下面 i_1,i_2,\cdots,i_k 個點,就令 $oldsymbol{v}_i = \sum 2^{i_t}$ 。

從剛才的討論可以知道如果存在 $v_{j_1}, v_{j_2}, \cdots, v_{j_m}$ 使得

則後手會贏。

問題

- 1 怎麼找 j_1, j_2, \dots, j_m ?
- 2 這個條件是否也是必要條件?

這些 v_i 其實可以看作是 \mathbb{F}_2^n 向量空間中的向量,其中 $n \triangleq |Y|$ 。即 $1 \cong (1,0,0,\cdots,0),\ 2 \cong (0,1,0,\cdots,0)$ 等等。

而條件也可以改寫成找到 $\{j_t\},\, v_s
eq j_t$ 使得 $v_s=v_{j_1}+v_{j_2}+\ldots+v_{j_m}$

在**向量空間**中我們會問更一般的問題**:**解 $u=a_1oldsymbol{v}_1+a_2oldsymbol{v}_2+\ldots+a_moldsymbol{v}$

這些 v_i 其實可以看作是 \mathbb{F}_2^n 向量空間中的向量,其中 $n \triangleq |Y|$ 。即 $1 \cong (1,0,0,\cdots,0),\ 2 \cong (0,1,0,\cdots,0)$ 等等。

而條件也可以改寫成找到 $\{j_t\},\ v_s
eq j_t$ 使得 $v_s = v_{j_1} + v_{j_2} + \ldots + v_{j_m}$

在**向量空間**中我們會問更一般的問題**:**解 $u=a_1v_1+a_2v_2+\ldots+a_mv_r$

這些 v_i 其實可以看作是 \mathbb{F}_2^n 向量空間中的向量,其中 $n \triangleq |Y|$ 。即 $1 \triangleq (1,0,0,\cdots,0),\ 2 \triangleq (0,1,0,\cdots,0)$ 等等。

而條件也可以改寫成找到 $\{j_t\},\ v_s
eq j_t$ 使得 $v_s = v_{j_1} + v_{j_2} + \ldots + v_{j_m}$

在**向量空間**中我們會問更一般的問題:解 $u = a_1v_1 + a_2v_2 + \ldots + a_mv_m$

其實就是

$$oldsymbol{u} = egin{bmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_m \end{bmatrix} oldsymbol{a}$$

因此追根到底就是要

問題

解
$$b = Ax$$
 \circ

這有一個大家都知道的高斯消去法。

其實就是

$$oldsymbol{u} = egin{bmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_m \end{bmatrix} oldsymbol{a}$$

因此追根到底就是要

問題

解
$$b = Ax$$
。

這有一個大家都知道的高斯消去法。

線性代數 – 例題

其實就是

$$oldsymbol{u} = egin{bmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_m \end{bmatrix} oldsymbol{a}$$

因此追根到底就是要

問題

解
$$\boldsymbol{b} = Ax$$
。

這有一個大家都知道的高斯消去法。

```
void Gauss(int n, int **A) {
  for (int i=0; i<n; i++) {
    for (int j=i; j<n; j++) {
      if (abs(A[j][i]) > EPS) {
        swap(A[j], A[i]);
        break;
    }
    if (j == n-1) goto loop_end;
}
```

```
for (int j=0; j<n; j++) {
   if (j == i) continue;
   double r = A[j][i] / A[i][i];
   for (int k=i; k<n; k++) {
        A[j][k] -= A[i][k] * r;
    }
}
loop_end:;
}</pre>
```

- \blacksquare 解Ax = b。
- 2 計算矩陣 A 的維度。
- 3 計算 A-1。
- 4 計算 det A。

- 1 解 Ax = b
- 2 計算矩陣 A 的維度。
- 3 計算 A-1。
- 4 計算 det A。

- 1 解 Ax = b
- 2 計算矩陣 A 的維度。
- 3 計算 A⁻¹。
- 4 計算 det A。

- $\mathbf{1}$ 解Ax = b
- 2 計算矩陣 A 的維度。
- 3 計算 A⁻¹。
- 4 計算 det A。

$$\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \quad \underset{\leftarrow}{\longleftarrow}^{-1} \quad \Rightarrow \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} \quad | \quad \times (-1) \quad \Rightarrow \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \quad \overset{+}{\longrightarrow}^{+}_{-2} \quad \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- 1 解 Ax = b。
- 2 計算矩陣 A 的維度。
- 3 計算 A⁻¹。
- 4 計算 det A。

$$\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \xrightarrow{-1} \Rightarrow \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} | \times (-1) \Rightarrow \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \xrightarrow{+} ^{+} \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} \Rightarrow \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$$

- 1 解 Ax = b
- 2 計算矩陣 A 的維度。
- 3 計算 A-1。
- 4 計算 det A。

我們只剩下最後一個問題:為何剛剛那個條件是必要條件。

定義

對於向量 v_1, v_2, \cdots, v_n ,

- **1** 如果 $a_1v_1 + a_2v_2 + ... + a_nv_n = 0 \implies a_i = 0, \forall i$,也就是 沒有一個向量可以用其他的向量「湊出來」,我們就說這些 向量**線性獨立**。
- 2 如果所有 V 裡的其他向量 v 都可以寫成 $v=a_1v_1+a_2v_2+\ldots+a_nv_n$,我們就說這些向量是 V 的一個**生成集**。
- 3 如果這些向量同時是線性獨立並且生成 V ,我們就說這些向量是 V 的一個基底。

我們只剩下最後一個問題:為何剛剛那個條件是必要條件。

定義

對於向量 v_1, v_2, \cdots, v_n ,

- 1 如果 $a_1v_1 + a_2v_2 + \ldots + a_nv_n = 0 \implies a_i = 0, \forall i$,也就是 沒有一個向量可以用其他的向量「湊出來」,我們就說這些 向量**線性獨立**。
- 2 如果所有 V 裡的其他向量 v 都可以寫成 $v=a_1v_1+a_2v_2+\ldots+a_nv_n$,我們就說這些向量是 V 的一個**生成集**。
- 3 如果這些向量同時是線性獨立並且生成 V ,我們就說這些向量是 V 的一個基底。

定理

一個向量空間中,任何基底的大小是固定的。因此這個向量空間 的**維度**就定義成任一個基底的大小。

假設

$$oldsymbol{v}_s = a_1 oldsymbol{v}_1 + a_2 oldsymbol{v}_2 + \ldots + a_m oldsymbol{v}_m$$

無解,就表示

$$oldsymbol{v}_1$$
 $oldsymbol{v}_2$ \cdots $oldsymbol{v}_m$ $oldsymbol{v}_s$ 的維度比 $oldsymbol{v}_1$ $oldsymbol{v}_2$ \cdots $oldsymbol{v}_m$ $oldsymbol{3}$ 3 $oldsymbol{1}$

定理

一個向量空間中,任何基底的大小是固定的。因此這個向量空間 的**維度**就定義成任一個基底的大小。

假設

$$\boldsymbol{v}_s = \boldsymbol{a}_1 \boldsymbol{v}_1 + \boldsymbol{a}_2 \boldsymbol{v}_2 + \ldots + \boldsymbol{a}_m \boldsymbol{v}_m$$

無解,就表示

$$egin{bmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_m & oldsymbol{v}_s \end{bmatrix}$$
的維度比 $egin{bmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_m \end{bmatrix}$ 多 $1 \circ$

現在把圖上增加一個新點當起點,並且只連到本來的起點,然後 先後手互換。

現在把圖上增加一個新點當起點,並且只連到本來的起點,然後 先後手互換。

會對應到矩陣 $egin{bmatrix} oxedsymbol{\mid} & oxenstrain & oxedsymbol{\mid} & oxength{\mid} & oxedsymbol{\mid} & oxedsymbol{\mid} & oxedsymbol{\mid} & oxedsymbol{\mid} & oxedsymbol{\mid} & oxedsymbol{\mid} & oxendow{\mid} & oxedsymbol{\mid} & oxendow{\mid} & oxedsymbol{\mid} & oxedsymbol{\mid} & oxendow{\mid} & oxendow{\mid} & oxedsymbol{\mid} & oxendow{\mid} & ox$

定理

用 rank(A) 表示矩陣 A 的維度,則 $rank(A) = rank(A^{T})$ 。

定理

用 rank(A) 表示矩陣 A 的維度,則 $rank(A) = rank(A^{T})$ 。

加了 $(0,0,\cdots,0,1)$ 以後 rank 不變,表示 $(0,0,\cdots,0,1)$ 可被其他列向量線性組合出 \implies 原本的先手赢。

加了 $(0,0,\cdots,0,1)$ 以後 rank 不變,表示 $(0,0,\cdots,0,1)$ 可被其他列向量線性組合出 \implies 原本的先手贏。

例題 (均衡忍者出任務, 2015 ioi-camp)

請把 K_n 分解成互斥的三角形,其中 $n=2^k-1$ 。

如果可以找到函數 f(x,y) 使得 $x \neq y \implies f(x,y) \neq x,y$ 且 $f(x,f(x,y)) = y, \ f(f(x,y),y) = x$,我們就做完了!

例題

求n 個有編號的點可以形成多少種不同的樹。

答案是 n^{n-2}

例題

求n 個有編號的點可以形成多少種不同的樹。

答案是 n^{n-2} 。

Others - 構造

例題 (均衡忍者出任務, 2015 ioi-camp)

請把 K_n 分解成互斥的三角形,其中 $n=2^k-1$ 。

Others – 構造

如果可以找到函數 f(x,y) 使得 $x \neq y \implies f(x,y) \neq x,y$ 且 $f(x,f(x,y))=y,\ f(f(x,y),y)=x$,我們就做完了!

事實上,只要 $n \equiv 1, 3 \pmod{6}$ 就會有解!

Others – 構造

如果可以找到函數 f(x,y) 使得 $x \neq y \implies f(x,y) \neq x,y$ 且 $f(x,f(x,y))=y,\ f(f(x,y),y)=x$,我們就做完了!

事實上,只要 $n \equiv 1, 3 \pmod{6}$ 就會有解!

Others - 構造

例題 (Graph Factorization, ASC 35 pF)

請把 K_{2n} 分解成 2n-1 個互斥的完美匹配。

Others - 機率

例題 (Graph Game, Codeforces 235D)

現在有一個遊戲:一開始的分數是 0,並且有一個 n 個點的樹,每次從剩下的點中隨機且等機率的選出一個點 v,並把分數加上 v 所在的連通塊的大小,且把 v 和與 v 相鄰的邊全部刪掉。一直進行到圖上沒有點為止,問你得到的分數的期望值。

機率有關的題目通常會玩一個梗意

引理

$$\mathbf{E}[X+Y] = \mathbf{E}[X] + \mathbf{E}[Y]$$

Others - 機率

例題 (Graph Game, Codeforces 235D)

現在有一個遊戲:一開始的分數是 0,並且有一個 n 個點的樹,每次從剩下的點中隨機且等機率的選出一個點 v,並把分數加上 v 所在的連通塊的大小,且把 v 和與 v 相鄰的邊全部刪掉。一直進行到圖上沒有點為止,問你得到的分數的期望值。

機率有關的題目通常會玩一個梗:

引理

$$\mathbf{E}[X+Y] = \mathbf{E}[X] + \mathbf{E}[Y]$$

不過原本的題目其實是一棵水母。

不過原本的題目其實是一棵水母。

例題

給你許多點 $(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)$,請找一個線性函數 f 使得 $\sum (f(x_i)-y_i)^2$ 最小。

例題

給你許多點 x_1, x_2, \cdots, x_n ,請找一條線 l 使得 $\sum d(x_i, l)^2$ 最小。

例題

給你許多點 $(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)$,請找一個線性函數 f 使得 $\sum (f(x_i)-y_i)^2$ 最小。

例題

給你許多點 x_1, x_2, \cdots, x_n ,請找一條線 l 使得 $\sum d(x_i, l)^2$ 最小。