

PYTHON PROGRAMMING AND MACHINE LEARNING

FEATURE ENGINEERING AND REDUCTION

Yunghans Irawan (yirawan@nus.edu.sg)

Objectives

 Understand the importance of feature engineering in machine learning

 Able to perform some common feature engineering and dimensionality reduction technique

- Understand the basic concepts of:
 - PCA
 - LDA

Feature Engineering

 The usefulness and accuracy of our machine learning model is greatly influence by the features in our data

 Data collection and pre-processing takes up a significant portion of effort in a machine learning project

Recap of Common Data Preparations

- Categorical Variable
 - Encode into numeric value (integer)
- One-Hot-Encoding
 - Convert each category into its own column with 0 and 1 value
 - 1 means that sample belong to that category
- Binning
 - Sometimes converting a continuous number into category gives us better model
 - E.g. salary into salary range (<50k, 50-100k, 100-150k)

Recap of Common Data Preparations

- Missing Data
 - Exclude the features if there's too many missing data
 - Replace blank with a default value (average value or a reasonable default)
 - Depends on the domain
- Unreasonable Data
 - Example: negative age
 - Exclude the rows or replace with default values

Feature Selection & Reduction

- Why
 - Visualization
 - Curse of Dimensionality
- How
 - Feature Selection
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)

Feature dimensions

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	car_name
0	18.0	8	307.0	130.0	3504.0	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165.0	3693.0	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150.0	3436.0	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150.0	3433.0	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140.0	3449.0	10.5	70	1	ford torino
5	15.0	8	429.0	198.0	4341.0	10.0	70	1	ford galaxie 500
6	14.0	8	454.0	220.0	4354.0	9.0	70	1	chevrolet impala
7	14.0	8	440.0	215.0	4312.0	8.5	70	1	plymouth fury iii
8	14.0	8	455.0	225.0	4425.0	10.0	70	1	pontiac catalina
9	15.0	8	390.0	190.0	3850.0	8.5	70	1	amc ambassador dpl
10	15.0	8	383.0	170.0	3563.0	10.0	70	1	dodge challenger se
11	14.0	8	340.0	160.0	3609.0	8.0	70	1	plymouth 'cuda 340
12	15.0	8	400.0	150.0	3761.0	9.5	70	1	chevrolet monte carlo
13	14.0	8	455.0	225.0	3086.0	10.0	70	1	buick estate wagon (sw)

What is the feature dimension?

High dimensional features

37×50 pixels = 1850 features!

	U	<u> </u>		J	4	J	U	- 1	0	J	•••
0	254.000000	254.000000	251.666672	240.333328	185.333328	144.000000	174.000000	196.666672	196.000000	192.333328	
1	39.666668	50.333332	47.000000	54.666668	99.000000	120.666664	139.666672	157.666672	171.000000	177.666672	
2	89.333336	104.000000	126.000000	141.333328	152.000000	155.333328	155.333328	160.000000	163.000000	166.666672	
3	16.666666	7.666667	7.000000	6.000000	16.333334	70.000000	170.000000	169.666672	161.000000	106.333336	
4	122.666664	121.000000	126.666664	129.333328	129.333328	134.666672	142.000000	142.666672	147.333328	152.000000	

5 rows × 1850 columns

Visualization

Plotting features helps us find patterns
But, datasets typically have >=3 features
... just look at <u>UCI repository</u>

Problem: Humans can't see more than 3-D

Visualization

Visualize to see relationships of features (X) with mpg (y)

	V	\				X		\Rightarrow	
	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	car_name
0	18.0	8	307.0	130.0	3504.0	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165.0	3693.0	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150.0	3436.0	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150.0	3433.0	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140.0	3449.0	10.5	70	1	ford torino
5	15.0	8	429.0	198.0	4341.0	10.0	70	1	ford galaxie 500
6	14.0	8	454.0	220.0	4354.0	9.0	70	1	chevrolet impala
7	14.0	8	440.0	215.0	4312.0	8.5	70	1	plymouth fury iii
8	14.0	8	455.0	225.0	4425.0	10.0	70	1	pontiac catalina
9	15.0	8	390.0	190.0	3850.0	8.5	70	1	amc ambassador dpl
10	15.0	8	383.0	170.0	3563.0	10.0	70	1	dodge challenger se
11	14.0	8	340.0	160.0	3609.0	8.0	70	1	plymouth 'cuda 340
12	15.0	8	400.0	150.0	3761.0	9.5	70	1	chevrolet monte carlo
13	14.0	8	455.0	225.0	3086.0	10.0	70	1	buick estate wagon (sw)

Original **X** (7-dimension) vs y

Plot **Z** (2-dimension) vs **y**

Curse of Dimensionality

Machine learning is a **search (i.e. optimization) problem**

The search space **increases exponentially** with more features

Features	Regions
1	4
2	4^2
k	4^k

Dimensionality vs. model performance

Techniques

Feature Selection

Principal Component Analysis (PCA)

Linear Discriminant Analysis (LDA)

Feature Selection

X space X space

Feature Reduction

x1	x2	х3	x4	У		z1	z 2	У
					$ \hspace{.05cm} \hspace{.05cm} \hspace{.05cm} \hspace{.05cm} $			

X space Z space

Feature Selection

- Ignore features that don't contribute much to the model
- Correlation
 - Too low with y => not much use
 - Too high with other features => redundant
- Statistical Tests
 - E.g. feature doesn't change very much (low variance)
 - <u>sklearn.feature_selection.VarianceThreshold</u>
 - SelectKBest

Correlation

- Two questions:
 - 1. How related is each x with y?
 - Hint on what kind of features to use

- 2. How related is x1 with x2?
 - Including both adds more noise to model

Pearson Correlation

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

where:

- n is the sample size
- ullet x_i,y_i are the individual sample points indexed with i
- ullet $ar{x}=rac{1}{n}\sum_{i=1}^n x_i$ (the sample mean); and analogously for $ar{y}$

High positive correlation

Scatter Matrix

Large number of features

- Scatter Matrix or Correlation plots become hard to view properly
- Experiment programmatically:
 - Compute Pearson Correlation
 - Apply thresholding
 - For Regression tasks, can drop features where target correlation is below threshold
 - Can drop feature where intra-feature correlation is above threshold

Select K Best

- <u>Select features</u> based on <u>F-test</u> or <u>Mutual</u> <u>Information</u>
- Higher F-value means higher dependency between each X column and y

Principal Component Analysis (PCA)

Find an orthogonal projection into a lower dimensional space

- Given X (n-dim) to Z (k-dim), where n > k:
- Finds Z-axes that capture the highest variance for X
- k subset of the principal components

PCA: Intuition

Project from 2-D space to 1-D space

Pink line captures the highest variance of the data points

Machine Learning Srihari

Eigenvector

An eigenvector of a square matrix

 A is a non-zero vector v such that multiplication by A only changes the scale of v

$$Av = \lambda v$$

- The scalar λ is known as eigenvalue
- If v is an eigenvector of A, so is any rescaled vector sv. Moreover sv still has the same eigen value. Thus look for a unit eigenvector

Wikipedia

Machine Learning Srihari

Example of Eigenvalue/Eigenvector

Consider the matrix

$$A = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

• Taking determinant of $(A-\lambda I)$, the char poly is

$$A - \lambda I = \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} = 3 - 4\lambda + \lambda^2$$

- It has roots $\lambda=1$ and $\lambda=3$ which are the two eigenvalues of A
- The eigenvectors are found by solving for \boldsymbol{v} in $A\boldsymbol{v}=\lambda\boldsymbol{v}$, which are $\begin{bmatrix} v_{\lambda=1}=\begin{bmatrix} 1\\-1\end{bmatrix},v_{\lambda=3}=\begin{bmatrix} 1\\1\end{bmatrix}$

Srihari

Machine Learning

SVD Definition

- Write A as a product of 3 matrices: $A = UDV^{T}$
 - If A is $m \times n$, then U is $m \times m$, D is $m \times n$, V is $n \times n$
- Each of these matrices have a special structure
 - *U* and *V* are orthogonal matrices
 - *D* is a diagonal matrix not necessarily square
 - Elements of Diagonal of D are called singular values of A
 - Columns of U are called left singular vectors
 - Columns of V are called right singular vectors
- SVD interpreted in terms of eigendecomposition
 - Left singular vectors of A are eigenvectors of AA^{T}
 - Right singular vectors of A are eigenvectors of $A^{\mathrm{T}}A$
 - Nonzero singular values of A are square roots of eigen values of $A^{\rm T}A$. Same is true of $AA^{\rm T}$

Non-examinable

PCA (using SVD)

Singular Value Decomposition

- 1. Subtract mean
- 2. Compute C, the Covariance Matrix
- 3. Use C to compute eigenvectors and eigenvalues
- 4. Sort eigenvectors by decreasing eigenvalues and choose k largest. These are the <u>principal</u> <u>components</u>
- 5. Transform X using the principal components

Reference: A Tutorial on Principal Component Analysis

Mathematics

Covariance Matrix

$$C = \begin{bmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & \dots \\ \dots & \dots & \dots & \dots \\ v_{n1} & \dots & \dots & v_{nn} \end{bmatrix}$$
$$v_{ab} = \sum \frac{(x_a - \mu_a)(x_b - \mu_b)}{n}$$

$$\det(A-\lambda I)=0$$

$$\det \left(\begin{pmatrix} 504 & 360 & 180 \\ 360 & 360 & 0 \\ 180 & 0 & 720 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right)$$

$$-\lambda^3 + 1584\lambda^2 - 641520\lambda + 25660800$$

 $\lambda \approx 44.81966..., \lambda \approx 629.11039..., \lambda \approx 910.06995...$

$$\mathbf{A}\nu = \lambda\nu \qquad \begin{pmatrix} -3.75100... \\ 4.28441... \\ 1 \end{pmatrix}, \begin{pmatrix} -0.50494... \\ -0.67548... \\ 1 \end{pmatrix}, \begin{pmatrix} 1.05594... \\ 0.69108... \\ 1 \end{pmatrix}$$

https://towardsdatascience.com/the-mathematics-behind-principal-component-analysis-fff2d7f4b643

Feature Reduction using PCA

PCA: Tuning

Optimum dimension = maximize Explained
 Variance Ratio

Explained variance = eigenvalue

Explained variance ratio = eigenvalue / sum(eigenvalues)

Somewhat similar to elbow method in k-means

Linear Discriminant Analysis (LDA) National University of Singapore

PCA:

component axes that maximize the variance

LDA:

maximizing the component axes for class-separation

good projection: separates classes well

Non-examinable

• Instead of Covariance Matrix, use Scatter Matrices $S_W^{-1}S_B$ to compute eigenvectors and eigenvalues

Within-class Scatter Matrix:

$$S_W = \sum_{i=1}^{c} S_i$$

$$S_i = \sum_{x \in D_i}^{n} (x - \mu_i) (x - \mu_i)^T$$

$$\mu_i = \frac{1}{n_i} \sum_{x \in D_i}^{n_i} x_k$$

Between-class Scatter Matrix:

$$S_B = \sum_{i=1}^{c} n_i (\mu_i - \mu) (\mu_i - \mu)^T$$

LDA: Intuition

Minimize within-class separation

Maximize between-class separation

Note: LDA is **supervised** - it uses the class labels. Only limited to **classification problems**

Reference: Linear Discriminant Analysis - bit by bit

NUS National University of Singapore INSTITUTE OF SYSTEMS SCIENCE

Applications of Feature Reduction

- Feature reduction applies generally to every non-trivial dataset, but here are some interesting examples:
- Health: Gene Classification dataset
- Retail: <u>Wine reviews</u> dataset
- Transport: <u>NYC taxi ride duration</u> dataset
- Economic: <u>Happiness and Employee</u>
 <u>Turnover</u> dataset

Further study

- SHAP: <u>SHapley Additive exPlanations</u>
- Other Techniques
- <u>t-SNE</u>
- Select K best features (uses ANOVA)
- Manifold learning (e.g. Isomap)

