Artificial Intelligence

What is AI?

- Intelligence:
 - "ability to learn, understand and think"
- All is the study of how to make computers make things which at the moment people do better.
- Examples: Speech recognition, Smell, Face, Object, Intuition, Inferencing, Learning new skills, Decision making, Abstract thinking

AI Definitions

What is AI?

Definitions organized into four categories

Think like human	Think Rationally
The exciting new effort to make computers think machines with minds , in the full and literal sense. [Haugeland 85].	The study of the computations that make it possible to perceive , reason , and act . [Winston, 1992]
Act humanly	Act rationally
The study of how to make	The branch of computer science that
computers do things at which, at	is concerned with the automation of
the moment, people are better.	intelligent behavior. [Luger and
[Rich & Knight, 1991]	Stubblefield, 1993]

Think Like Human

The Cognitive Modeling approach

To develop a program that think like human, the way the human think should be known.

Knowing the precise theory of mind (how human think?)

→ expressing the theory as a computer program.

GPS (General Problem Solver) [by Newell & Simon, 1961]

Were concerned with comparing the trace of its reasoning steps to traces of human subjects solving the same problem rather that *correctly solve problems*

Cognitive Science

Computer models from AI + Experimental techniques from psychology

→ Construction of human mind working theories

Think Rationally

The Law of Thought Approach

Aristotle and his syllogism (right thinking):

always gave correct conclusions given correct premises

- Socrates is a Man. %Fact
- All men are Mortal. % Rule: if X is a Man then X is Mortal.
- Therefore Socrates is Mortal. % Inference

These laws of thoughts initiated the field of LOGIC.

Two main obstacles

- 1. Not easy to translate an informal knowledge into a formal logic.
- It is usually the case that (say medium-size) problems can exhaust the computational power of any computer. Thus the need for heuristics.

Act Like Human

The TURING Test Approach:

Alan Turing [1950] designed a test for intelligent behavior. Ability to achieve human-level performance in all cognitive tasks, sufficient to FOOL an interrogator.

A human (interrogator) interrogates (without seeing) two candidates A and B (one is a human and the other is a machine).

Computer would need:

- 1. Natural Language Processing → Communication.
- 2. Knowledge Representation -> store info before and during interrogation.
- 3. Automated Reasoning→ answer questions and draw new conclusions.
- 4. Machine learning→ adapt to new circumstances.

Act Rationally

The Rational Agent Approach

An agent is something that perceives and acts

Laws of thought → correct inference

Making correct inferences is part of being rational agent

Act rationally = reason logically to the conclusion act on that conclusion

Correct inference is not always == rationality e.g. reflex actions (acting rationally without involving inference)

Two main advantages

- 1. More general than "the laws of thought" (a mechanism to achieve rationality)
- More amenable to scientific development than approaches based on [human] behavior/thought.

Typical AI Problems

AI tasks involve both:

- Mundane tasks which people can do very easily (understanding language)
- Expert tasks that require specialist knowledge (medical diagnosis)

Typical AI Problems

Experts tasks (require specialized skills and training) include:

- Medical diagnosis
- Equipment repair
- Computer configuration
- Financial planning

Mundane tasks are generally much harder to automate

AI is concerned with automating both mundane and expert tasks.

Typical AI Problems

Mundane tasks correspond to the following AI problems areas:

The ability to decide on a good sequence of

• Planning: actions to achieve our goals

• **Vision :** The ability to make sense of what we see

• **Robotics:** The ability to move and act in the world, possibly

responding to new perceptions

• Natural Language:

The ability to communicate with others in any human language

The Foundations of Al

- Philosophy (423 BC present):
 - Logic, methods of reasoning.
 - Mind as a physical system.
 - Foundations of learning, language, and rationality.
- Mathematics (c.800 present):
 - Formal representation and proof.
 - Algorithms, computation, decidability, tractability.
 - Probability.

The Foundations of Al

- Psychology (1879 present):
 - Adaptation.
 - Phenomena of perception and motor control.
 - Experimental techniques.
- Linguistics (1957 present):
 - Knowledge representation.
 - Grammar.

A Brief History of Al

- A dose of reality (1966 1974):
 - Al discovered computational complexity.
 - Neural network research almost disappeared after Minsky & Papert's book in 1969.
- Knowledge-based systems (1969 1979):
 - 1969: DENDRAL by Buchanan
 - 1976: MYCIN by Shortliffle.
 - 1979: PROSPECTOR by Duda

A Brief History of Al

- The gestation of AI (1943 1956):
 - 1943: McCulloch & Pitts: Boolean circuit model of brain.
 - 1950: Turing's "Computing Machinery and Intelligence".
 - 1956: McCarthy's name "Artificial Intelligence" adopted.
- Early enthusiasm, great expectations (1952 1969):
 - Early successful Al programs:
 Newell & Simon's Logic Theorist, Gelernter's Geometry
 Theorem Prover.
 - Robinson's complete algorithm for logical reasoning.

A Brief History of Al

- Al becomes an industry (1980 1988):
 - Expert systems industry booms.
 - 1981: Japan's 10-year Fifth Generation project.
- The return of NNs and novel AI (1986 present):
 - Mid 80's: Back-propagation learning algorithm reinvented.
 - Expert systems industry busts.
 - 1988: Resurgence of probability.
 - 1988: Novel AI (ALife, GAs, Soft Computing)
 - 1995: Agents everywhere.
 - 2003: Human-level Al back on the agenda.

Task Domains of Al

- Mundane Tasks:
 - Perception
 - Vision
 - Speech
 - Natural Languages
 - Understanding
 - Generation
 - · Translation
 - Common sense reasoning
 - Robot Control
- Formal Tasks
 - Games : chess, checkers etc
 - Mathematics: Geometry, logic, Proving properties of programs
- · Expert Tasks:
 - Engineering (Design, Fault finding, Manufacturing planning)
 - Scientific Analysis
 - Medical Diagnosis
 - Financial Analysis

The State of the Art

- · Computer beats human in a chess game.
- Computer-human conversation using speech recognition.
- Expert system controls a spacecraft.
- Robot can walk on stairs and hold a cup of water.
- Language translation for web pages.
- Home appliances use fuzzy logic.
- · And many more

Al Technique

- · Intelligence requires Knowledge
- Knowledge possesses less desirable properties such as:
 - Voluminous
 - Hard to characterize accurately
 - Constantly changing
 - Differs from data that can be used
- Al technique is a method that exploits knowledge that should be represented in such a way that:
 - Knowledge captures generalization
 - It can be understood by people who must provide it
 - It can be easily modified to correct errors.
 - It can be used in variety of situations

Recommended References

• Artificial Intelligence, 3rd Ed.,

Elaine Rich & Kevin Knight, Tata McGraw Hill

 Artificial Intelligence: A Modern Approach, 3rd Ed.,

Stuart Russell & Peter Norvig