Friedrich-Alexander-Universität Erlangen-Nürnberg

Decision theory

Exercise 3

Michael Hartisch, Lundra Resyli

Friedrich-Alexander Universität Erlangen-Nürnberg, Department Mathematik May 6, 2024

DEA – Model 1

$$\min \theta_{j}$$
s.t. $\sum_{i \in I} \lambda_{i} x_{ik} \leq \theta_{j} x_{jk}$ $\forall k \in [N]$

$$\sum_{i \in I} \lambda_{i} y_{ik} \geq y_{jk}$$
 $\forall k \in [M]$

$$\theta_{j} \in \mathbb{R}$$

$$\lambda_{i} \in \mathbb{R}_{+}$$
 $\forall i \in I$

Data

Branch	, ,	` ′	` '
Α	125 44	50	18
В	44	20	16
С	80	55	17
D	23	12	11

with:

- (1) Private transactions
- (2) Business transactions
- (3) Employees

Exercise 1

Write the DEA LP for DMU A. Which branch is efficient?

Solution 1, Part 1

(1), (2) are Output, (3) is Input

min
$$\theta_1$$

s.t. $18\lambda_1 + 16\lambda_2 + 17\lambda_3 + 11\lambda_4 \le 18\theta_1$
 $125\lambda_1 + 44\lambda_2 + 80\lambda_3 + 23\lambda_4 \ge 125$
 $50\lambda_1 + 20\lambda_2 + 55\lambda_3 + 12\lambda_4 \ge 50$
 $\theta_1, \lambda_1, \lambda_2, \lambda_3, \lambda_4 > 0$

Solution 1, Part 2

Have only one input \rightarrow can normalize

Only A and C are efficient in terms of DEA (supported Pareto efficient).

AHP: Normalized Columns

How do I compute suitable weights w_1 , w_2 , w_3 from a comparison matrix

$$R = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$

such that $r_{ij} \approx w_i/w_j$?

- Using eigenvectors of R
- Through geometric mean
- Via the method of least squares
- Now: normalized columns

AHP: Normalized Columns

- 1. Normalize R such that the sum of each column equals 1
- 2. w_i is the mean of each row

The method is simple but lacks a theoretical foundation.

Example

$$R = \begin{pmatrix} 1 & 3 & 1/2 \\ 1/3 & 1 & 2 \\ 2 & 1/2 & 1 \end{pmatrix} \rightarrow \overline{R} = \begin{pmatrix} 3/10 & 6/9 & 1/7 \\ 1/10 & 2/9 & 4/7 \\ 6/10 & 1/9 & 2/7 \end{pmatrix} \rightarrow w \approx \begin{pmatrix} 0.37 \\ 0.30 \\ 0.33 \end{pmatrix}$$

Exercise 2

Model and solve the following problem using AHP:

- For lunch break, you have three options:
 - Going to the cafeteria
 - Pre-cooking for the next day in the evening
 - Going to a snack bar
- Relevant criteria are:
 - Price
 - Taste
 - Healthiness
- Maximize your overall satisfaction
- Use normalized columns

Solution 2 (Example)

Comparison matrices and weight vectors:

$$R^{\text{Price}} = \begin{pmatrix} 1 & 1/2 & 1 \\ 2 & 1 & 2 \\ 1 & 1/2 & 1 \end{pmatrix},$$

,

,

Solution 2 (Example)

Comparison matrices and weight vectors:

$$R^{\text{Price}} = \begin{pmatrix} 1 & 1/2 & 1 \\ 2 & 1 & 2 \\ 1 & 1/2 & 1 \end{pmatrix},$$

$$R^{\text{Taste}} = \begin{pmatrix} 1 & 3/2 & 1 \\ 2/3 & 1 & 2/3 \\ 1 & 3/2 & 1 \end{pmatrix},$$

,

Solution 2 (Example)

$$R^{\text{Price}} = \begin{pmatrix} 1 & 1/2 & 1 \\ 2 & 1 & 2 \\ 1 & 1/2 & 1 \end{pmatrix},$$

$$R^{\text{Taste}} = \begin{pmatrix} 1 & 3/2 & 1 \\ 2/3 & 1 & 2/3 \\ 1 & 3/2 & 1 \end{pmatrix},$$

$$R^{\text{Healthiness}} = \begin{pmatrix} 1 & 1/2 & 4/3 \\ 2 & 1 & 7/3 \\ 3/4 & 3/7 & 1 \end{pmatrix},$$

Solution 2 (Example)

$$R^{\text{Price}} = \begin{pmatrix} 1 & 1/2 & 1 \\ 2 & 1 & 2 \\ 1 & 1/2 & 1 \end{pmatrix},$$

$$R^{\text{Taste}} = \begin{pmatrix} 1 & 3/2 & 1 \\ 2/3 & 1 & 2/3 \\ 1 & 3/2 & 1 \end{pmatrix},$$

$$R^{\text{Healthiness}} = \begin{pmatrix} 1 & 1/2 & 4/3 \\ 2 & 1 & 7/3 \\ 3/4 & 3/7 & 1 \end{pmatrix},$$

$$w^{\text{Price}} = \begin{pmatrix} 0.25 \\ 0.5 \\ 0.25 \end{pmatrix}$$

Solution 2 (Example)

$$R^{\text{Price}} = \begin{pmatrix} 1 & 1/2 & 1 \\ 2 & 1 & 2 \\ 1 & 1/2 & 1 \end{pmatrix},$$

$$R^{\text{Taste}} = \begin{pmatrix} 1 & 3/2 & 1 \\ 2/3 & 1 & 2/3 \\ 1 & 3/2 & 1 \end{pmatrix},$$

$$R^{\text{Healthiness}} = \begin{pmatrix} 1 & 1/2 & 4/3 \\ 2 & 1 & 7/3 \\ 3/4 & 3/7 & 1 \end{pmatrix},$$

$$w^{\text{Price}} = \begin{pmatrix} 0.25 \\ 0.5 \\ 0.25 \end{pmatrix}$$
$$w^{\text{Taste}} = \begin{pmatrix} 0.375 \\ 0.25 \\ 0.375 \end{pmatrix}$$

Solution 2 (Example)

$$R^{\text{Price}} = \begin{pmatrix} 1 & 1/2 & 1 \\ 2 & 1 & 2 \\ 1 & 1/2 & 1 \end{pmatrix},$$

$$R^{\text{Taste}} = \begin{pmatrix} 1 & 3/2 & 1 \\ 2/3 & 1 & 2/3 \\ 1 & 3/2 & 1 \end{pmatrix},$$

$$R^{\text{Healthiness}} = \begin{pmatrix} 1 & 1/2 & 4/3 \\ 2 & 1 & 7/3 \\ 3/4 & 3/7 & 1 \end{pmatrix},$$

$$w^{\text{Price}} = \begin{pmatrix} 0.25 \\ 0.5 \\ 0.25 \end{pmatrix}$$

$$w^{\text{Taste}} = \begin{pmatrix} 0.375 \\ 0.25 \\ 0.375 \end{pmatrix}$$

$$w^{\text{Healthiness}} = \begin{pmatrix} 0.27 \\ 0.52 \\ 0.21 \end{pmatrix}$$

Solution 2 (Example)

$$R^{\text{Satisfaction}} = \begin{pmatrix} 1 & 2/3 & 3/4 \\ 3/2 & 1 & 4/3 \\ 4/3 & 3/4 & 1 \end{pmatrix}$$

$$w^{\text{Satisfaction}} = \begin{pmatrix} 0.26 \\ 0.41 \\ 0.33 \end{pmatrix}$$

$$W_1^{\text{Satisfaction}} W^{\text{Price}} + W_2^{\text{Satisfaction}} W^{\text{Taste}} + W_3^{\text{Satisfaction}} W^{\text{Healthiness}}$$

$$W_{1}^{\text{Satisfaction}} W^{\text{Price}} + W_{2}^{\text{Satisfaction}} W^{\text{Taste}} + W_{3}^{\text{Satisfaction}} W^{\text{Healthiness}}$$

$$= 0.26 \begin{pmatrix} 0.25 \\ 0.5 \\ 0.25 \end{pmatrix} + 0.41 \begin{pmatrix} 0.375 \\ 0.25 \\ 0.375 \end{pmatrix} + 0.33 \begin{pmatrix} 0.27 \\ 0.52 \\ 0.21 \end{pmatrix}$$

$$w_1^{\text{Satisfaction}} w^{\text{Price}} + w_2^{\text{Satisfaction}} w^{\text{Taste}} + w_3^{\text{Satisfaction}} w^{\text{Healthiness}}$$

$$= 0.26 \begin{pmatrix} 0.25 \\ 0.5 \\ 0.25 \end{pmatrix} + 0.41 \begin{pmatrix} 0.375 \\ 0.25 \\ 0.375 \end{pmatrix} + 0.33 \begin{pmatrix} 0.27 \\ 0.52 \\ 0.21 \end{pmatrix}$$

$$\approx \begin{pmatrix} 0.31 \\ 0.40 \\ 0.29 \end{pmatrix}$$

Solution 2 (Example)

$$w_1^{\text{Satisfaction}} w^{\text{Price}} + w_2^{\text{Satisfaction}} w^{\text{Taste}} + w_3^{\text{Satisfaction}} w^{\text{Healthiness}}$$

$$= 0.26 \begin{pmatrix} 0.25 \\ 0.5 \\ 0.25 \end{pmatrix} + 0.41 \begin{pmatrix} 0.375 \\ 0.25 \\ 0.375 \end{pmatrix} + 0.33 \begin{pmatrix} 0.27 \\ 0.52 \\ 0.21 \end{pmatrix}$$

$$\approx \begin{pmatrix} 0.31 \\ 0.40 \\ 0.29 \end{pmatrix}$$

Thus, the best choice (in my case) is to cook at home!

Exercise 3: MAUT

- You want to rent an apartment
- Four possible alternatives
- Three relevant criteria:
 - Price (Euro)
 - Size (*m*²)
 - Distance from the city center (m)
- You determine the following metrics:

	Price	Size	Distance
W1	350	35	200
W2	400	50	1500
W3	500	45	300
W4	600	55	500

Exercise 3: MAUT, Continuation

	Price	Size	Distance
W1	350	35	200
W2	400	50	1500
W3	500	45	300
W4	600	55	500

- Determine a utility function for price using the direct rating method
- Determine utility functions for size and distance using the halving method
- Determine weights for the three objective criteria using the trade-off method

Price	350	400	500	600
Points				

Price	350	400	500	600
Points	100			0

Price	350	400	500	600
Points	100	80		0

Price	350	400	500	600
Points	100	80	30	0

Price	350	400	500	600
Points	100	80	30	0
Utility	1.0	8.0	0.3	0.0

$$x_2^0$$
 $x_2^{1/4}$
 $x_2^{1/2}$
 $x_2^{3/4}$
 x_2^1

 Utility
 0
 0.25
 0.5
 0.75
 1

 Size
 35
 38
 43
 55

$$x_2^0$$
 $x_2^{1/4}$
 $x_2^{1/2}$
 $x_2^{3/4}$
 x_2^1

 Utility
 0
 0.25
 0.5
 0.75
 1

 Size
 35
 38
 43
 48
 55

Solution 3: Halving Method for Size

$$x_2^0$$
 $x_2^{1/4}$
 $x_2^{1/2}$
 $x_2^{3/4}$
 x_2^1

 Utility
 0
 0.25
 0.5
 0.75
 1

 Size
 35
 38
 43
 48
 55

Interpolation:

$$u_2(45) = u_2(43) + \frac{u_2(48) - u_2(43)}{48 - 43} \cdot (45 - 43) = 0.6$$

$$u_2(50) = u_2(48) + \frac{u_2(55) - u_2(48)}{55 - 48} \cdot (50 - 48) = 0.82$$

Solution 3: Halving Method for Distance

$$x_3^0$$
 $x_3^{1/4}$
 $x_3^{1/2}$
 $x_3^{3/4}$
 x_3^1

 Utility
 0
 0.25
 0.5
 0.75
 1

 Distance
 1500
 800
 500
 250
 200

Interpolation:

$$u_3(300) = u_3(500) + \frac{u_3(250) - u_3(500)}{250 - 500} \cdot (300 - 500) = 0.7$$

	Price	Utility	Size	Utility	Distance	Utility
W1	350	1.00	35	0.00	200	1.00
W2	400	0.80	50	0.82	1500	0.00
W3	500	0.30	45	0.60	300	0.70
W4	600	0.00	55	1.00	500	0.50

	Price	Utility	Size	Utility	Distance	Utility
W1	350	1.00	35	0.00	200	1.00
W2	400	0.80	50	0.82	1500	0.00
W3	500	0.30	45	0.60	300	0.70
W4	600	0.00	55	1.00	500	0.50

- First step, rearrange criteria
- Which criterion has the greatest difference in utility from 0 to 1?
- I find: Price
- No rearrangement necessary

	Price	Utility	Size	Utility	Distance	Utility
W1	350	1.00	35	0.00	200	1.00
W2	400	0.80	50	0.82	1500	0.00
W3	500	0.30	45	0.60	300	0.70
W4	600	0.00	55	1.00	500	0.50

- Second step, comparison questions
- What price \overline{x}_2 must an apartment have for the following options to be equally good:
 - Price \overline{x}_2 Euros, Size $35m^2$
 - Price 600 Euros, Size 55*m*²

	Price	Utility	Size	Utility	Distance	Utility
W1	350	1.00	35	0.00	200	1.00
W2	400	0.80	50	0.82	1500	0.00
W3	500	0.30	45	0.60	300	0.70
W4	600	0.00	55	1.00	500	0.50

- Second step, comparison questions
- What price \overline{x}_2 must an apartment have for the following options to be equally good:
 - Price \overline{x}_2 Euros, Size $35m^2$
 - Price 600 Euros, Size 55*m*²
- My answer: 350 Euros
- Thus, $\lambda_1 u_1(\overline{x}_2) = \lambda_2$
- So, $\lambda_1 = \lambda_2$

	Price	Utility	Size	Utility	Distance	Utility
W1	350	1.00	35	0.00	200	1.00
W2	400	0.80	50	0.82	1500	0.00
W3	500	0.30	45	0.60	300	0.70
W4	600	0.00	55	1.00	500	0.50

- Second step, comparison questions
- What price \overline{x}_3 must an apartment have for the following options to be equally good:
 - Price \overline{x}_3 Euros, Distance 1500m
 - Price 600 Euros, Distance 200*m*
- My answer: 400 Euros
- Thus, $\lambda_1 u_1(\overline{x}_3) = \lambda_3$
- So, $0.8\lambda_1 = \lambda_3$

Solution 3: Trade-Off Method

Now solve the following system of equations:

$$\lambda_1 = \lambda_2$$

$$0.8\lambda_1 = \lambda_3$$

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

Answer:

$$\lambda_1 = 5/14, \lambda_2 = 5/14, \lambda_3 = 4/14$$

		- O-	Talal
50	lutior	11.5	Total

	Price	Utility	Size	Utility	Distance	Utility	Total
W1	350	1.00	35	0.00	200	1.00	0.64
W2	400	0.80	50	0.82	1500	0.00	0.58
W3	500	0.30	45	0.60	300	0.70	0.52
W4	600	0.00	55	1.00	500	0.50	0.50
$\overline{\lambda}$		5/14		5/14		4/14	

SO	lutic	vn 3.	Tot	
		/II J.		

	Price	Utility	Size	Utility	Distance	Utility	Total
W1	350	1.00	35	0.00	200	1.00	0.64
W2	400	0.80	50	0.82	1500	0.00	0.58
W3	500	0.30	45	0.60	300	0.70	0.52
W4	600	0.00	55	1.00	500	0.50	0.50
$\overline{\lambda}$		5/14		5/14		4/14	