TP 2 : analyse modale d'une plaque sur appuis élastiques Déroulé et travail à faire v2

0 Observations:

a Faire faire des observations de la structure à étudier : forme, matériau supports et CL Chercher une valeur standard pour les modules de Young et amortissement structural de l'aluminium et du caoutchouc.

b Calculer les 5 premières fréquences de résonance d'une plaque appuyée sur tous ses bords puis libre sur tous ses bords .(cf pdf vibrations des plaques rectangulaires). Expliquer, à l'aide d'un modèle à 2DL,l'influence des trois appuis sur le comportement vibratoire de la plaque.

<u>1 Presentation de pulse</u>: Matériel et déroulé de l'essai

a / **regarder la vidéo 1** de présentation et noter les points qui vous semblent important et/ ou vos questions Réglages accéléromètre et marteau : seuils, fenêtre d'acquisition influence du type d'embout du marteau

Ouestions:

Choix du maillage (forme de la plaque) position du capteur et points d'impact ? **En faire une synthèse**

2 Prise en main du marteau :

Consignes

Chaque étudiant fait quelques coups de marteau

3 Partie expérimentale :

a Faire les acquisitions des 37 points (en faire des copies d'écran en fonction des observations)
4 sur les 5 acquisitions demandées doivent être « bonnes* » avant de faire un save et de passer au point suivant.

*regarder la cohérence et l'évolution temporelle de la force (pas de rebonds)

b Exportation des résultats de mesure vers Mescope : Assigner tous les points importer pour générer le modèle de la plaque sous Mescope .

4 Exploitations sous Mescope:

a Observations sur les 37 spectres de FRF : (en faire des copies d'écran en fonction des observations)

Superposer tous les spectres : Que pouvez vous en conclure ? (en faire une copie d'écran) **Analyser en tendance** les différents spectres : Que pouvez vous en déduire ? Donner des explications.

Sur un des pics observé (demander lequel à l'encadrant) faire un tableau des niveaux d'accélérations mesurés pour tous les points . En faire une représentation graphique . Que pouvez vous en conclure ?

b regarder la vidéo 2 et noter les points qui vous semblent important et/ ou vos questions En faire une synthèse

c Exploitations et observations :

Visualiser les mouvements de la plaque à partir des FRF (en faire un film Movie 3D) Observations Que peut on en déduire, comparer à **0b** ?

5 ANALYSE MODALES (votre encadrant fait la démo)

a Délimiter l'intervalle de fréquences à analyser, quels sont les critères de choix ? Sélectionner toutes les 37 FRF

b Déterminer le nombre de modes à identifier puis les caractériser avec Mescope : pulsations et amortissements modaux .

Comparez les fréquences de résonance de la plaque étudiée à celles issues d'un calcul numérique (vos calculs en 0b) . Comparer l'amortissement modal aux valeurs d'amortissement d'une structure en alliage d'aluminium . Expliquer, à l'aide d'un modèle à 2DL, l'influence des trois appuis sur le amortissement vibratoire observé.

Que pouvez vous, à partir de ces comparaisons, en déduire puis en conclure?

b Modèliser avec Mescope ces modes (shape) : comparer les FRF expérimentales et simulées par un modèle à N=5 DDL (en faire une copie d'écran) **Que pouvez vous en conclure ?**

<u>6 Lecture complémentaire d'un article</u>: mescope modal.pdf (travail hors séance)

7 Conclusions:

Synthèse générale : démarche, principes, résultats importants, difficultés rencontrées ...

Remise de votre Rapport au plus tard 7 jours après votre séance sous forme de PDF et par mail à l'adresse <u>alain.blaise@univ-lyon1.fr</u>