Statistics Applied to Bioinformatics

Hypothesis testing

Introduction

• H_0 null hypothesis

• H_A alternative hypothesis

• AH_0 acceptation of the null hypothesis

• RH_0 rejection of the null hypothesis

• α $P(RH_0|H_0)$ probability to reject the null hypothesis when it is true

• β $P(AH_0|H_A)$ probability to accept the null hypothesis when it is false

• 1- β $P(RH_0|H_A)$ Power of the test (also called rejection power)

	H0	HA
AH0	Correct	Type II error
	acception	β error
RH0	Type I error	Correct
	α error	rejection

Examples of tests

- <u>Test of significance</u>: assess the significance of the difference between expectation and observation.
 - Example : a sequence contains 26 occurrences of the word GATAAG, whereas 3 occurrences would be expected by chance. Is this word over-represented? How significant is the over-representation?
- <u>Test of conformity</u>: compare a sample with a theoretical distribution, on the basis of some parameters (mean, variance).

Two-tailed test on the mean
$$H_0: m = 0; H_a: m \neq 0$$

• One-tailed test on the mean
$$H_0$$
: $m \ge 5$; H_A : $m < 5$

Two-tailed test on the variance
$$H_0: \sigma^2 = 1; H_A: \sigma^2 \neq 0$$

Test of homogeneity (or of equality): compare two populations, on the basis of some statistics calculated on their samples.

Two-tailed test on the means
$$H_0: m_1 = m_2$$
; $H_A: m_1 \neq m_2$

• One-tailed test on the means
$$H_0: m_1 \geq m_2; H_A: m_1 \leq m_2$$

□ Two-tailed test on the variance
$$H_0$$
: $\sigma_1^2 = \sigma_2^2$; H_A : $\sigma_1^2 \neq \sigma_2^2$

- Goodness of fit: test if a given sample can be considered as extracted from a population, on the basis of its whole distribution.
 - Example: assess whether the log-ratios from a control DNA chip (no treatment) follow a normal distribution.