Разные задачи (часть 2).

- 1. В остроугольном треугольнике ABC проведены высоты AA_1 и CC_1 . Окружность Ω , описанная около треугольника ABC, пересекает прямую A_1C_1 в точках A' и C'. Касательные к Ω , проведённые в точках A' и C', пересекаются в точке B'. Докажите, что прямая BB' проходит через центр окружности Ω .
- 2. К двум непересекающимся окружностям ω_1 и ω_2 проведены три общие касательные две внешние, a и b, и одна внутренняя, c. Прямые a, b и c касаются окружности ω_1 в точках A_1, B_1 и C_1 соответственно, а окружности ω_2 в точках A_2, B_2 и C_2 соответственно. Докажите, что отношение площадей треугольников $A_1B_1C_1$ и $A_2B_2C_2$ равно отношению радиусов окружностей ω_1 и ω_2 .
- 3. На стороне AB треугольника ABC выбраны точки C_1 и C_2 . Аналогично, на стороне BC выбраны точки A_1 и A_2 , а на стороне AC точки B_1 и B_2 . Оказалось, что отрезки A_1B_2, B_1C_2 и C_1A_2 имеют равные длины, пересекаются в одной точке, и угол между любыми двумя из них равен 60° . Докажите, что $\frac{A_1A_2}{BC} = \frac{B_1B_2}{CA} = \frac{C_1C_2}{AB}$.
- 4. Треугольник ABC вписан в окружность Ω с центром O. Окружность, построенная на AO как на диаметре, пересекает описанную окружность треугольника OBC в точке $S \neq O$. Касательные к Ω в точках B и C пересекаются в точке P. Докажите, что точки A, S и P лежат на одной прямой.
- 5. Пусть AL биссектриса треугольника ABC. Серединный перпендикуляр к отрезку AL пересекает окружность, описанную около треугольника ABC, в точках P и Q. Докажите, что окружность, описанная около треугольника PLQ, касается стороны BC.
- 6. Дан прямоугольный треугольник ABC с прямым углом C. Пусть BK биссектриса этого треугольника. Окружность, описанная около треугольника AKB, пересекает вторично сторону BC в точке L. Докажите, что CB + CL = AB.
- 7. В треугольнике ABC проведена биссектриса BB_1 . Перпендикуляр, опущенный из точки B_1 на BC, пересекает дугу BC описанной окружности треугольника ABC в точке K. Перпендикуляр опущенный из точки B на AK пересекает AC в точке L. Докажите что точки K, L и середина дуги AC (не содержащей точку B) лежат на одной прямой.