RW778 Concurrent Programming

Lecture 2: Weakest preconditions & synchronization

Last week & this week

- Last week we saw an *impossibly* complicated proof.
- This week we will look at it again, but only after learning about weakest preconditions an approach that will make such proofs much easier.
- We shall start to also look at synchronization mechanisms.
- But first we need to recap two important concepts from last week.

Reminder 1

A predicate formula is equivalent to a set of states.

Example 1

Suppose that $a, b, c, d \in \{\text{true}, \text{false}\}.$

• $a \wedge b \wedge \neg c$ is equivalent to

$$\{a,b,\bar{c},\bar{d}\}$$
 $\{a,b,\bar{c},d\}$

• $(a \Rightarrow b) \Rightarrow (c \land d)$ is equivalent to

$$\{ \bar{a}, \bar{b}, c, d \}$$
 $\{ a, \bar{b}, \bar{c}, \bar{d} \}$
 $\{ \bar{a}, b, c, d \}$ $\{ a, \bar{b}, \bar{c}, d \}$
 $\{ a, b, c, d \}$ $\{ a, \bar{b}, c, \bar{d} \}$
 $\{ a, \bar{b}, c, d \}$

• $(a \Rightarrow \neg b) \Leftrightarrow (\neg c \land d)$ is equivalent to ???

Reminder 1

A predicate formula is equivalent to a set of states.

Example 2

Suppose that $x, y \in \{1, 2, 3, 4, 5\}.$

• x = y is equivalent to

$$\{x=1, y=1\}$$
 $\{x=2, y=2\}$ $\{x=3, y=3\}$
 $\{x=4, y=4\}$ $\{x=5, y=5\}$

• x + y = 5 is equivalent to

$$\{x=1, y=4\}$$
 $\{x=2, y=3\}$ $\{x=3, y=2\}$ $\{x=4, y=1\}$

A predicate formula is equivalent to a set of states.

Example 2

Suppose that $x, y \in \{1, 2, 3, 4, 5\}$.

• $(x \le 3) \land ((x < y) \Rightarrow isodd(y - x))$ is equivalent to

$$\{x=1,y=1\} \quad \{x=1,y=2\} \quad \{x=1,y=4\}$$

$$\{x=2,y=1\} \quad \{x=2,y=2\} \quad \{x=2,y=3\}$$

$$\{x=2,y=5\} \quad \{x=3,y=1\} \quad \{x=3,y=2\}$$

$$\{x=3,y=3\} \quad \{x=3,y=4\}$$

• $(xy \mod 6 = y)$ is equivalent to ???

A Hoare triple

$$\{P\}$$
 S $\{Q\}$

(where P and Q are predicate formulas and S is a statement) is true if, whenever we start in a state that satisfies P and we execute S and it terminates, we end up in a state that satisfies Q.

Weakest preconditions

Last week we saw the following list...

- $wp(\mathbf{skip}, Q) = Q$
- $\bullet \ wp(x := e, Q) = Q_e^x$
- $wp(v1 :=: v2, Q) = Q_{v2,v1}^{v1,v2}$
- $wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$
- $wp(IF, Q) = \neg(B_1 \lor \ldots \lor B_n) \Rightarrow Q \land$ $(B_1 \Rightarrow wp(S_1, Q) \land \ldots \land B_n \Rightarrow wp(S_n, Q))$
- $wp(DO, Q) = (\exists k : 0 \le k : H_k(Q))$, where $H_0(Q) = \neg BB \land Q$ $H_k(Q) = H_0(Q) \lor wp(IF, H_{k-1}(Q))$

 $BB: B_1 \vee \ldots \vee B_n$

 $DO: \mathbf{do} \ BB \to IF: \mathbf{if} \ B_1 \to S_1 \ [] \ \dots \ [] \ B_n \to S_n \ \mathbf{fi} \ \mathbf{do}$

... and this week we'll investigate them more closely.

$$wp(\mathbf{skip}, Q) = Q$$

• Trivial.

$$wp(x := e, Q) = Q_e^x$$

• Remember: notation Q_e^x means that we replace x by e in Q.

•
$$wp(x := 1, (x = 1))$$

= $(1 = 1)$
= true

• Meaning: we can start in any state (because all states satisfy true) and if we execute x := 1 and it terminates, we end in a state that satisfies x = 1.

$$wp(x := e, Q) = Q_e^x$$

•
$$wp(x := x + 1, (x > 0))$$

= $(x > 0)_{x+1}^{x}$
= $(x + 1 > 0)$
= $(x > -1)$
= $(x \ge 0)$

• Meaning: we can start in any state that satisfies $x \ge 0$ and if we execute x := x + 1 and it terminates, we end in a state that satisfies x > 0.

$$wp(x := e, Q) = Q_e^x$$

•
$$wp(x := a * b, (x = c))$$

= $(x = c)_{a*b}^{x}$
= $(a * b = c)$
• $wp(x := a * b, (x = b))$

= ???

$$wp(v1 :=: v2, Q) = Q_{v2,v1}^{v1,v2}$$

• Skip.

$$wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$$

```
• wp(i := i + 1; \ j := 2 * i, (j = n))

= wp(i := i + 1, wp(j := 2 * i, (j = n)))

= wp(i := i + 1, (j = n)_{2*i}^{j}))

= wp(i := i + 1, (2 * i = n))

= (2 * i = n)_{i+1}^{i}

= (2 * (i + 1) = n)

• wp(j := 2 * i; \ i := i + 1, (j = n))

= ???
```

$$wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$$

•
$$wp(t := x; \ x := y; \ y := t, (x = Y \land y = X))$$

= $wp(t := x; \ x := y, wp(y := t, (x = Y \land y = X)))$
= $wp(t := x; \ x := y, (x = Y \land t = X))$
= $wp(t := x, wp(x := y, (x = Y \land t = X)))$
= $wp(t := x, (y = Y \land t = X))$
= $(y = Y \land x = X)$

$$wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$$

• $wp(t := x; \ y := x; \ x := t, (x = Y \land y = X))$

$$wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$$

•
$$wp(t := x; \ y := x; \ x := t, (x = Y \land y = X))$$

= $wp(t := x; \ y := x, wp(x := t, (x = Y \land y = X)))$

$$wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$$

```
• wp(t := x; \ y := x; \ x := t, (x = Y \land y = X))
= wp(t := x; \ y := x, wp(x := t, (x = Y \land y = X)))
= wp(t := x; \ y := x, (t = Y \land y = X))
```

$$wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$$

```
• wp(t := x; \ y := x; \ x := t, (x = Y \land y = X))

= wp(t := x; \ y := x, wp(x := t, (x = Y \land y = X)))

= wp(t := x; \ y := x, (t = Y \land y = X))

= wp(t := x, wp(y := x, (t = Y \land y = X)))
```

$$wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$$

•
$$wp(t := x; \ y := x; \ x := t, (x = Y \land y = X))$$

= $wp(t := x; \ y := x, wp(x := t, (x = Y \land y = X)))$
= $wp(t := x; \ y := x, (t = Y \land y = X))$
= $wp(t := x, wp(y := x, (t = Y \land y = X)))$
= $wp(t := x, (t = Y \land x = X))$

$$wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$$

•
$$wp(t := x; \ y := x; \ x := t, (x = Y \land y = X))$$

= $wp(t := x; \ y := x, wp(x := t, (x = Y \land y = X)))$
= $wp(t := x; \ y := x, (t = Y \land y = X))$
= $wp(t := x, wp(y := x, (t = Y \land y = X)))$
= $wp(t := x, (t = Y \land x = X))$
= $(x = Y \land x = X)$

$$wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$$

```
• wp(t := x; \ y := x; \ x := t, (x = Y \land y = X))

= wp(t := x; \ y := x, wp(x := t, (x = Y \land y = X)))

= wp(t := x; \ y := x, (t = Y \land y = X))

= wp(t := x, wp(y := x, (t = Y \land y = X)))

= wp(t := x, (t = Y \land x = X))

= (x = Y \land x = X)

= (Y = X)

Is this right?
```

- $IF: \mathbf{if} \ B_1 \to S_1 \ [] \ \dots \ [] \ B_n \to S_n \ \mathbf{fi}$
- $wp(IF, Q) = \neg(B_1 \lor \ldots \lor B_n) \Rightarrow Q \land$ $(B_1 \Rightarrow wp(S_1, Q) \land \ldots \land B_n \Rightarrow wp(S_n, Q))$

- if $x < 0 \to y := -x [] x \ge 0 \to y := x$ fi
- $B_1: (x < 0)$ $S_1: y := -x$ $B_2: (x \ge 0)$ $S_2: y := x$
- $\bullet \ Q: y = |x|$
- $wp(IF, Q) = \neg(B_1 \lor B_2) \Rightarrow Q \land$ $(B_1 \Rightarrow wp(S_1, Q) \land B_2 \Rightarrow wp(S_2, Q))$

•
$$wp(S_1, Q)$$

= $wp(y := -x, (y = |x|))$
= $(-x = |x|)$
= $(x \le 0)$

•
$$B_1 \Rightarrow wp(S_1, Q)$$

= $(x < 0) \Rightarrow (x \le 0)$
= true

•
$$wp(S_2, Q)$$

$$= wp(y := x, (y = |x|))$$

$$= (x = |x|)$$

$$= (x \ge 0)$$

•
$$B_2 \Rightarrow wp(S_2, Q)$$

= $(x \ge 0) \Rightarrow (x \ge 0)$
= true

• if $x < 0 \to y := -x [] x \ge 0 \to y := x$ fi

•
$$wp(IF, Q) = \neg(B_1 \lor B_2) \Rightarrow Q \land (B_1 \Rightarrow wp(S_1, Q) \land B_2 \Rightarrow wp(S_2, Q))$$

 $= \neg(B_1 \lor B_2) \Rightarrow Q \land (\text{true} \land \text{true})$
 $= \neg(B_1 \lor B_2) \Rightarrow Q$
 $= \neg((x < 0) \lor (x \ge 0)) \Rightarrow (y = |x|)$
 $= \neg(\text{true}) \Rightarrow (y = |x|)$
 $= \text{false} \Rightarrow (y = |x|)$
 $= \text{true}$

$$wp(DO,Q) = \dots$$

The book says:

•
$$DO: \mathbf{do} \ BB \to IF: \mathbf{if} \ B_1 \to S_1 \ [] \ \dots \ [] \ B_n \to S_n \ \mathbf{fi} \ \mathbf{do}$$

• $BB: B_1 \vee \ldots \vee B_n$

•
$$wp(DO, Q) = (\exists k : 0 \le k : H_k(Q))$$
, where
$$H_0(Q) = \neg BB \land Q$$
$$H_k(Q) = H_0(Q) \lor wp(IF, H_{k-1}(Q))$$

Unfortunately, the formal definition of wp(DO, Q) is not easy to use, and it gives us little insight into how to develop correct software. So, we are going to use a slightly different definition.

$$wp(DO, Q) = \dots$$

- $DO: \mathbf{do} \ BB \to IF: \mathbf{if} \ B_1 \to S_1 \ [] \ \dots \ [] \ B_n \to S_n \ \mathbf{fi} \ \mathbf{do}$
- $BB: B_1 \vee \ldots \vee B_n$
- $\{P\}$ DO $\{Q\}$ holds if there is an invariant I such that
 - $-P \Rightarrow I$,
 - $-\{I \wedge BB\}\ IF\{I\}\ holds, and$
 - $-I \wedge \neg BB \Rightarrow Q.$

$$wp(DO,Q) = \dots$$

- S: x := X; y := Y; z := 0; $D: \mathbf{do} \ x \neq 0 \rightarrow T: x := x - 1; \ z := z + y \ \mathbf{do}$
- $\{\text{true}\}\ S\ \{z = XY\}\ ?$

 $wp(DO, Q) = \dots$

- S: x := X; y := Y; z := 0; $D: \mathbf{do} \ x \neq 0 \rightarrow T: x := x - 1; \ z := z + y \mathbf{do}$
- $\{(x = X) \land (y = Y) \land (z = 0)\}\ D\ \{z = XY\}\ ?$
- Where does the invariant I come from? We have to make it up!

 $wp(DO, Q) = \dots$

- S: x := X; y := Y; z := 0; $D: \mathbf{do} \ x \neq 0 \rightarrow T: x := x - 1; \ z := z + y \mathbf{do}$
- $\{(x = X) \land (y = Y) \land (z = 0)\}\ D\ \{z = XY\}\ ?$
- $\bullet \ I = (z + xY = XY)$

$$wp(DO, Q) = \dots$$

- S: x := X; y := Y; z := 0; $D: \mathbf{do} \ x \neq 0 \rightarrow T: x := x - 1; \ z := z + y \ \mathbf{do}$
- $\{(x = X) \land (y = Y) \land (z = 0)\}\ D\ \{z = XY\}\ ?$
- $\bullet \ I = (z + xY = XY)$
- We have to show
 - $-P \Rightarrow I$:
 - $-\{I \wedge BB\} T \{I\}$:
 - $-I \wedge \neg BB \Rightarrow Q$:

$$wp(DO, Q) = \dots$$

- S: x := X; y := Y; z := 0; $D: \mathbf{do} \ x \neq 0 \rightarrow T: x := x - 1; \ z := z + y \ \mathbf{do}$
- $\{(x = X) \land (y = Y) \land (z = 0)\}\ D\ \{z = XY\}\ ?$
- $\bullet \ I = (z + xY = XY)$
- We have to show
 - $-P \Rightarrow I$: Trivial
 - $-\{I \wedge BB\} T \{I\}$:
 - $-I \wedge \neg BB \Rightarrow Q$:

$$wp(DO, Q) = \dots$$

- S: x := X; y := Y; z := 0; $D: \mathbf{do} \ x \neq 0 \rightarrow T: x := x - 1; \ z := z + y \ \mathbf{do}$
- $\{(x = X) \land (y = Y) \land (z = 0)\}\ D\ \{z = XY\}\ ?$
- $\bullet \ I = (z + xY = XY)$
- We have to show
 - $-P \Rightarrow I$: Trivial
 - $-\{I \wedge BB\} T \{I\}$:
 - $-I \wedge \neg BB \Rightarrow Q$: Trivial

$$wp(DO, Q) = \dots$$

• To show that $\{I \wedge BB\}$ T $\{I\}$ we are going to calculate R = wp(T, I) and check that $(I \wedge BB) \Rightarrow R$.

(• Recall the Rule of Consequence:
$$\frac{P' \Rightarrow P, \ \{P\} \ S \ \{Q\}, \ Q \Rightarrow Q'}{\{P'\} \ S \ \{Q'\}}$$
)

- wp(T, I)= wp(x := x - 1; z := z + y, (z + xY = XY))= (z + y + xY = XY)= (z + y + (x - 1)Y = XY)= (z + xY = XY - y + Y)
- Does $(I \wedge BB) \Rightarrow wp(T, I)$?

$$wp(DO,Q) = \dots$$

- Does $(I \wedge BB) \Rightarrow wp(T, I)$? **NO!**
- Our invariant I is too weak. Finding the right invariant is not easy and there is no way to calculate it.
- What is missing from our invariant?

$$wp(DO, Q) = \dots$$

- $\bullet \ I = (z + xY = XY) \land (y = Y)$
- Again we check
 - $-P \Rightarrow I$: Trivial
 - $-\{I \wedge BB\} T \{I\}: ?$
 - $-I \wedge \neg BB \Rightarrow Q$: Trivial
- wp(T, I) = I and because $(I \wedge BB) \Rightarrow I$, it holds that $\{I \wedge BB\}$ T $\{I\}$.
- So, the main theorem holds: $\{\text{true}\}\ S\ \{z=XY\}$?

A predicate formula is equivalent to a set of states.

Example 1: $a, b, c, d \in \{\text{true}, \text{false}\}.$

• $(a \Rightarrow \neg b) \Leftrightarrow (\neg c \land d)$ is equivalent to

$$\{ \overline{a}, \overline{b}, \overline{c}, d \} \quad \{ \overline{a}, b, \overline{c}, d \} \quad \{ a, \overline{b}, \overline{c}, d \}$$

$$\{ a, b, \overline{c}, \overline{d} \} \quad \{ a, b, c, \overline{d} \} \quad \{ a, b, c, d \}$$

A predicate formula is equivalent to a set of states.

Example 2: $x, y \in \{1, 2, 3, 4, 5\}$.

• $(xy \mod 6 = y)$ is equivalent to

$$\{x=1, y=1\}$$
 $\{x=1, y=2\}$ $\{x=1, y=3\}$
 $\{x=1, y=4\}$ $\{x=1, y=5\}$ $\{x=3, y=3\}$
 $\{x=4, y=2\}$ $\{x=4, y=4\}$ $\{x=5, y=3\}$

•
$$wp(x := a * b, (x = b))$$

= $(x = b)_{a*b}^{x}$
= $(a * b = b)$
= $(a = 1) \lor (b = 0)$

•
$$wp(j := 2 * i; i := i + 1, (j = n))$$

= $wp(j := 2 * i, wp(i := i + 1, (j = n)))$
= $wp(j := 2 * i, (j = n)_{i+1}^{i})$
= $wp(j := 2 * i, (j = n))$
= $(j = n)_{2*i}^{j}$
= $(2 * i = n)$