PET - Tomografia por Emissão de Positrões

Nesta atividade laboratorial, com a duração de 4 sessões de 4h30 cada, estudar-se-á a deteção de coincidências $\gamma\gamma$ provenientes do decaimento β + de uma fonte de Sódio-22. Em particular, pretende-se analisar a forma como esta depende da posição relativa da fonte e dos dois detetores de cintilação NaI(TI) que serão utilizados. Como objetivo último, o qual será explorado na quarta sessão, pretende-se compreender o funcionamento da Tomografia por Emissão de Positrões. Este método, basado num estudo semelhante ao que iremos efetuar, reconstrói imagens de tumores dopando-os com substâncias radioativas e analisando posteriormente a deteção de coincidências $\gamma\gamma$.

Sessão 1 - 03/03/2016

MONTAGEM

Utilizou-se nesta experiência um sistema que consiste em dois detectores de cintilação NaI(TI), um dos quais pode efetuar rotações em torno do outro que se mantém fixo, constituindo um espectómetro duplo. Cada um dos detectores irá estar associado ao seu próprio fotomultiplicador, pré-amplificador, amplificador de tensão e analisador monocanal. Ambos estão associados a uma unidade de coincidências com três contadores (um para cada detector e outro para as coincidências).

O processo de montagem segue uma sequência de passos que deve ser efetuado no início de cada uma das 4 sessões. Nas sessões 2, 3 e 4, apresentam-se apenas alguns valores, não todo o processo. Os passos 1 e 2 repetem-se para cada um dos detetores. A cada detetor corresponde uma fonte de alta tensão, um amplificador, uma Timing SCA e um contador.

- 1. Observar no programa PCA o Espectro de Emissão Gama da fonte Sódio-22.
 - 1.1. Alimentar o Detetor com Fonte de alta tensão (900 V) Ambos os botões reguladores que permitem impor a tensão têm um desvio ao zero, que se apresenta nas imagens seguintes:

Figura 1. Fonte usada para o Detetor Móvel

Figura 2. Fonte usada para o Detetor Fixo

1.2. Ligar Detetor -> Amplificador (Ganho= 10) -> Computador

1.3. Análise do espectro

Tempo de aquisição: Δt_{aq}=183 s

Neste espectro é possível identificar as seguintes físicas distintas:

- I. Valor mais provável da corrente negra;
- II. Pico de Aniquilação (511keV)
- III. Joelho de Compton
- IV. Pico de absorção total (1274keV)

Constata-se em primeiro lugar que existe um fundo considerável em torno do pico de aniquilação que queremos detetar, originário da corrente negra e do patamar de Compton correspondente ao pico de 1274keV. Esta taxa de fundo será calculada na sessão 2.

Pico	Área Total (Cts)	Área do Sinal (Cts)	Centróide - C (Can)	FWHM (Can)	Sigma - σ (Can)
C (511keV) Canais: [235;285]	11023±105	8193±187	262,43±0.10	22,18	9,41
E (1274keV) Canais: [583;659]	2157±46	1490±104	621,25±0.32	28,62	12,2

Tabela 1. Dados referentes ao espectro observado, para o detetor móvel, na sessão 1.

Fórmulas:
$$\sigma = \frac{FWHM}{2\sqrt{2ln(2)}}$$
 ; $\sigma_C = \frac{\sigma}{\sqrt{A_{sinal}}}$

2. Montagem da Timing SCA

Com este procedimento pretende-se definir um intervalo de energia de $\pm 3\sigma$ em torno do centróide do pico de 511keV onde queremos que sejam contabilizados os fotões incidentes.

2.1. Ligar Pulser -> Amplificador -> Computador

- 2.2. Observando no programa PCA, colocar pulser no extremo inferior do pico (canal 262,43-3*σ*≅234), registar e manter esta tensão do pulser.
- 2.3. Ligar Pulser -> Amplificador -> Timing SCA -> Contador
- 2.4. Rodar limite inferior da Timing SCA por forma a encontrar a tensão em que o sinal do pulser origina contagens (limite entre contar e não contar). Registar e manter essa tensão.
- 2.5. Ligar Pulser -> Amplificador -> Computador
- 2.6. Observando no programa PCA, colocar pulser no extremo superior do pico (canal 262,43+3*σ*≅291), registar e manter esta tensão do pulser.
- 2.7. Ligar Pulser -> Amplificador -> Timing SCA -> Contador
- 2.8. Rodar limite superior da Timing SCA por forma a encontrar a tensão em que o sinal do pulser origina contagens (limite entre contar e não contar). Registar e manter essa tensão.

Obteve-se os seguintes valores para as tensões do pulser e dos limites das Timing SCA, para cada um dos detetores:

	Limite In	ferior (V)	Limite Superior (V)		
	Pulser	Timing SCA	Pulser	Timing SCA	
Detetor Móvel	2.63±0.01	2.06±0.01	3.21±0.01	2.48±0.01	
Detetor Fixo	2.62±0.01	2.08±0.01	3.22±0.01	2.49±0.01	

Tabela 2. Valores dos limiares de tensão do pulser e das Timing SCA utilizados na sessão 1.

3. Montagens Finais

- 3.1. Ligar Detetor -> Amplificador -> Timing SCA -> Contador (para ambos os detetores)
- 3.2. Ligar Timing SCA -> Analisador de Coincidências (para ambas as Timing SCA).
- 3.3. Ligar Analisador de Coincidências -> Contador C (contagem das coincidências)
- 3.4. Regular o Resolving Time (=Janela de Coincidências), que é o intervalo de tempo após deteção de um γ por um detetor em que a deteção de um γ no outro detetor é considerada uma coincidência γγ.

Dado importante a reter da montagem:

- Contador A Número de partículas γ detetadas pelo detetor móvel;
- Contador C Número de coincidências yy detetadas;
- Contador B Número de partículas y detetadas pelo detetor fixo;

Passamos agora à recolha e análise de dados.

FONTE NO CENTRO (x=y=0) E VARIAÇÃO DA POSIÇÃO DO DETETOR MÓVEL (θ)

Resolving time: $5 \times 250 ns = 1250 ns$

Distância entre os detetores e a fonte: $D = (20\pm0.3)cm$

Raio do detetor: R = 1in = 2.54cm (valor fornecido pelo docente)

Mantendo a fonte no centro do disco, variou-se a posição do detetor móvel (θ) entre -20° e 20°, para diferentes tempos de aquisição, e registaram-se as contagens de cada um dos detetores bem como o número de coincidências. Os dados obtidos encontram-se na tabela 3.

Nota: As taxas de contagens R_A , R_B e R_C já estão corrigidas para a taxa de fundo (R_{Back}) e para a taxa de coincidências fortuitas R_F . Estas serão calculadas em outras sessões. Fórmulas:

Fórmulas:
$$R'_{A,B} = \frac{C_{A,B}}{\Delta t}$$
; $R'_{C} = \frac{C_{C}}{\Delta t}$; $R_{A,B} = R'_{A,B} - R_{Back}$; $R_{C} = R'_{C} - R_{F}$;

Erros:
$$\sigma_{C_{A,B,C}} = \sqrt{C_{A,B,C}}; \sigma_{R'_{A,B,C}} = R'_{A,B,C} \sqrt{\left(\frac{\sigma_{C_{A,B,C}}}{C_{A,B,C}}\right)^2 + \left(\frac{\sigma_{\Delta t}}{\Delta t}\right)^2}; \sigma_{a-b} = \sqrt{\sigma_a^2 + \sigma_b^2}$$

θ(°)	C_A (Cts)	Erro (Cts)	C_C (Cts)	Erro (Cts)	C_B (Cts)	Erro (Cts)	t (s)	Erro (s)	R_A (Cts/s)	Erro (Cts/s)	R_C (Cts/s)	Erro (Cts/s)	R_B (Cts/s)	Erro (Cts/s)
-20	6814	83	9	3	7018	84	180	0.01	27.4	1.1	0.04	0.02	28.4	1.1
-15	6776	82	17	4	7009	84	180	0.01	27.2	1.1	0.08	0.02	28.4	1.1
-12	4547	67	16	4	4523	67	120	0.01	27.5	1.2	0.12	0.03	27.1	1.2
-11	1118	33	9	3	1104	33	30	0.01	26.8	1.5	0.29	0.10	26.2	1.5
-10	1122	33	24	5	1149	34	30	0.01	27.0	1.5	0.79	0.16	27.7	1.5
-9	1149	34	37	6	1118	33	30	0.01	27.9	1.5	1.22	0.20	26.7	1.5
-8	1080	33	60	8	1103	33	30	0.01	25.6	1.5	1.99	0.26	26.2	1.5
-7	1036	32	88	9	1167	34	30	0.01	24.1	1.5	2.92	0.31	28.3	1.5
-6	1141	34	122	11	1143	34	30	0.01	27.6	1.5	4.05	0.37	27.5	1.5
-5	1155	34	161	13	1115	33	30	0.01	28.1	1.5	5.35	0.42	26.6	1.5
-4	1167	34	188	14	1146	34	30	0.01	28.5	1.5	6.25	0.46	27.6	1.5
-3	1091	33	236	15	1155	34	30	0.01	25.9	1.5	7.85	0.51	27.9	1.5
-2	1038	32	230	15	1120	33	30	0.01	24.2	1.5	7.65	0.51	26.8	1.5
-1	1114	33	282	17	1159	34	30	0.01	26.7	1.5	9.39	0.56	28.1	1.5
0	1156	34	320	18	1198	35	30	0.01	28.1	1.5	10.65	0.60	29.4	1.5
1	1126	34	325	18	1110	33	30	0.01	27.1	1.5	10.82	0.60	26.4	1.5
2	1121	33	309	18	1141	34	30	0.01	26.9	1.5	10.29	0.59	27.5	1.5
3	1139	34	291	17	1177	34	30	0.01	27.5	1.5	9.69	0.57	28.7	1.5
4	1129	34	237	15	1139	34	30	0.01	27.2	1.5	7.89	0.51	27.4	1.5
5	1081	33	196	14	1129	34	30	0.01	25.6	1.5	6.52	0.47	27.1	1.5
6	1179	34	187	14	1138	34	30	0.01	28.9	1.5	6.22	0.46	27.4	1.5
7	1091	33	152	12	1129	34	30	0.01	25.9	1.5	5.05	0.41	27.1	1.5

8	1162	34	111	11	1167	34	30	0.01	28.3	1.5	3.69	0.35	28.3	1.5
9	1145	34	72	8	1119	33	30	0.01	27.7	1.5	2.39	0.28	26.7	1.5
10	1136	34	47	7	1195	35	30	0.01	27.4	1.5	1.55	0.23	29.3	1.5
11	1111	33	40	6	1144	34	30	0.01	26.6	1.5	1.32	0.21	27.6	1.5
12	4479	67	79	9	4571	68	120	0.01	26.9	1.2	0.64	0.07	27.5	1.2
15	6810	83	13	4	6800	82	180	0.01	27.4	1.1	0.06	0.02	27.2	1.1
20	6736	82	11	3	6914	83	180	0.01	27.0	1.1	0.05	0.02	27.9	1.1

Tabela 3. Valores obtidos para variação de θ com a fonte em x=y=0.

Os pontos destacados a negrito estão representados no gráfico da figura 4.

Procuremos agora uma expressão teórica que possa explicar o andamento da taxa de coincidências. A primeira observação óbvia que é necessário efetuar é que só serão detetadas coincidências quando a posição relativa detetor fixo - detetor móvel - fonte for tal que é possível desenhar uma reta que passe pela fonte e atravesse ambos os detetores. Para analisarmos em que casos tal é possível, podemos considerar todos os fotões que entram no detetor fixo, e analisar para quais deles o fotão que foi emitido em sentido contrário entra no detetor móvel. Ora, como os fotões são emitidos em sentidos diametralmente opostos, podemos considerar uma imagem do detetor fixo no campo de ação do detetor móvel, e concluir que o número de coincidências detetadas estará relacionado com a área da interseção da imagem do detetor fixo com a do detetor móvel, como se observa na figura 3.

Figura 3. Modelo para taxa de coincidências em função de θ com a fonte em x=y=0.

A expressão para a área da interseção que aparece na figura 3 é a fórmula geral para a interseção de dois círculos de raio R quando a distância entre os seus centros é $d = D\theta$.

Tendo em conta este modelo, ajustou-se aos pontos da figura 4 a seguinte expressão:

$$R_C(\theta) = A \left[2R^2 \arccos\left(\frac{D|\theta - \Delta\theta|}{2R} \times \frac{\pi}{180^\circ}\right) - \frac{D|\theta - \Delta\theta|}{2} \times \frac{\pi}{180^\circ} \sqrt{4R^2 - D^2\left((\theta - \Delta\theta) \times \frac{\pi}{180^\circ}\right)^2} \right] \tag{1}$$

Figura 4. Ajuste da expressão (1) à variação da taxa de coincidências $\gamma\gamma$ com θ pelo método dos mínimos quadrados.

Os parâmetros de ajuste encontram-se na tabela 4:

$A (Cts s^{-1}in^{-2})$	3.58±0.17
R (in)	1.011±0.013
Δθ (°)	0.86±0.10
χ^2/ngl	2.33
ngl	26

Tabela 4. Parâmetros do ajuste da figura 4.

O baixo valor do χ^2/ngl indicia um bom ajuste. Além disso, podemos constatar que o valor do raio da abertura do detector é congruente dentro da margem de erro com o valor real R=1in. Ademais, observamos um valor de $\Delta\theta$ que não é nulo e que indicia portanto um desvio na montagem. Alternativamente, podemos considerar que este desvio pode ser atribuído a um desvio Δx da posição fonte no eixo dos xx (eixo equidistante dos dois detetores) em relação a x=0:

$$\Delta x = D \times tan(\Delta \theta)$$
; $\sigma_{\Delta x} = \frac{D}{cos^2(\Delta \theta)} \sigma_{\Delta \theta}$

$\Delta x (cm)$	0.23±0.04
-----------------	-----------

De seguida, calculemos a eficiência do fotopico, para cada um dos detetores, sabendo que esta é dada pelo quociente entre a taxa de coincidências e a taxa de contagens, sendo que estes valores devem ser tomados no ângulo em que as coincidências são máximas:

$$\varepsilon_{A,B} = \frac{R_C}{R_{A,B}} \; ; \; \sigma_{\varepsilon_{A,B}} = \varepsilon_{A,B} \sqrt{\left(\frac{\sigma_{R_C}}{R_C}\right)^2 + \left(\frac{\sigma_{R_{A,B}}}{R_{A,B}}\right)^2} \; ; \\ \varepsilon = \frac{\varepsilon_A + \varepsilon_B}{2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_B}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_A}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_A}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{\varepsilon_A}^2 + \sigma_{\varepsilon_A}^2} \; ; \\ \sigma_{\varepsilon} = \frac{1}{2} \sqrt{\sigma_{$$

Detetor Móvel: $\varepsilon_{A}(\%)$	39.9 ± 3.1
Detetor Fixo: $\varepsilon_B(\%)$	40.9 ± 3.3
ε(%)	40.4 ± 2.3

Tabela 5. Eficiência do fotopico.

Tal significa que cerca de 4 em cada 10 contagens detectadas corresponderão a coincidências. Este valor não ser 100% não se deve à radiação de fundo nem às coincidências fortuitas pois estas já tinham sido descontadas anteriormente no cálculo das taxas de contagens e coincidências. Como tal, esta diferença resulta certamente da unidade de coincidências, não se podendo inferir com certeza qual a sua origem. Podemos no entanto colocar a hipótese de se perder a deteção de algumas coincidências devido ao tempo em que a janela está aberta. No entanto, este facto explica mal o que se observa, visto o resolving time ser cerca de cinco ordens de grandeza menor que o tempo médio de deteção de uma partícula γ.

Observando o gráfico da figura 4, facilmente se conclui que existe uma gama restrita de ângulos θ para os quais se detetam coincidências $\gamma\gamma$. Este intervalo de valores de θ é designado por resolução angular. A partir da equação (1), concluímos que a resolução angular é definida por:

$$-rac{2R}{D}<| heta-\Delta heta|<rac{2R}{D}$$
 ,

o que, substituindo os parâmetros obtidos no ajuste da figura 4, resulta:

Resolução Angular (°)	[-11.84; 13.56]
-----------------------	-----------------

Por último, podemos analisar o gráfico da figura 4 enquanto distribuição. Para isso, calculemos o valor da média μ , do desvio Padrão σ e do skewness γ_1 :

Fórmulas:
$$\mu = E[\theta] = \frac{\sum_{i} R_{C_i}}{\sum_{i} R_{C_i}}$$
; $\sigma = \sqrt{Var[\theta]} = \sqrt{E[\theta^2] - E^2[\theta]}$; $\gamma_1 = E[\left(\frac{\theta - E[\theta]}{\sigma}\right)^3]$
Erros: $E[K] = \frac{\sum_{i} R_{C_i}}{\sum_{i} R_{C_i}}$

$$\begin{split} \text{Para } E[\theta] : A_i &\equiv \theta_i R_{C_i} => \sigma_{A_i} = \theta_i \sigma_{R_{C_i}}; \\ \text{Para } E[\theta^2] : A_i &\equiv \theta_i^{\ 2} R_{C_i} => \sigma_{A_i} = 2\theta_i \sigma_{R_{C_i}}; \\ \text{Para } E[\left(\frac{\theta - E[\theta]}{\sigma}\right)^3] : A_i &\equiv \left(\frac{\theta_i - E[\theta]}{\sigma}\right)^3 R_{C_i} => \sigma_{A_i} = A_i \sqrt{\frac{9\sigma_{\mu}^2}{(\theta_i - \mu)^2} + \frac{9\sigma_{\sigma}^2}{\sigma^2} + \frac{\sigma_{R_{C_i}}^2}{R_{C_i}^2}}; \\ \sigma_{\sigma} &= \frac{1}{\sigma} \sqrt{\frac{1}{4}\sigma_{E[\theta^2]}^{\ 2} + E[\theta]^2 \sigma_{E[\theta]}^{\ 2}}; \end{split}$$

μ (°)	0.816 ± 0.075
σ (°)	4.657 ± 0.049
γ ₁ ((°) ³)	-0.03 ± 0.13

Tabela 6. Média, desvio padrão e skewness da distribuição da figura 4.

Podemos concluir a partir destes três parâmetros que:

- A média não é $\theta=0$, como seria já de esperar. O que se observa aliás é que este valor é congruente com o anterior parâmetro de ajuste $\Delta\theta=0.86\pm0.10$.
- O desvio padrão é bastante baixo, fruto das contagens desaparecerem rapidamente com a variação em θ. Tal é lógico dada a geometria da montagem, isto é, a distância da fonte aos detetores ser muito superior ao raio dos detetores.
- A skewness é nula dentro da margem de erro, indiciando que a distribuição não possui quaisquer assimetrias (ou caudas).

Resumidamente, notamos que existe uma assimetria a nível da posição do máximo, a qual poderá ser atribuída a um mau alinhamento dos detetores ou a um mau posicionamento da fonte, mas que a forma da curva se preserva simétrica.

Sessão 2 - 10/03/2016

MONTAGEM

Repetiu-se o procedimento da sessão 1, tendo-se colocado um resolving time de 250ns. Obtiveram-se os seguintes parâmetros para o pico de 511keV e para os valores dos limiares de tensão do Pulser e das Timing SCA.

Tempo de aquisição: $\Delta t_{aq} = 246s$ (igual para ambos os picos)

Pico	Área Total (Cts)	Área do Sinal (Cts)	Centróide - C (Can)	FWHM (Can)	Sigma - σ (Can)
511keV - Detetor Móvel Canais: [238;287]	9171±96	6388±180	264.67	22,86	9,71
511keV - Detetor Fixo Canais: [237;286]	9459±97	6792±178	262.73	21,30	9,05

Tabela 7. Dados referentes aos espectros observados na sessão 2.

	Limite In	ferior (V)	Limite Superior (V)		
	Pulser	Timing SCA	Pulser	Timing SCA	
Detetor Móvel	2.48±0.01	2.09±0.01	3.01±0.01	2.50±0.01	
Detetor Fixo	2.49±0.01	2.09±0.01	3.01±0.01	2.50±0.01	

Tabela 8. Valores dos limiares de tensão do pulser e Timing SCA utilizados na sessão 2.

Para cada um dos espectros observados, registaram-se ainda as contagens em alguns canais em torno dos canais inferior e superior do pico de 511keV, por forma a quantificar aproximadamente a radiação de fundo. Designando por C_{inf} o número de contagens do canal inferior X_{inf} , $e \ por \ C_{sup}$ o número de contagens do canal superior X_{sup} , podemos aproximar o número de contagens de fundo pela área do trapézio por baixo do pico, isto é:

$$C_{Back} = \frac{1}{2} \times (B+b) \times h$$
; $B = C_{sup}$; $b = C_{inf}$; $h = X_{sup} - X_{inf}$

Os resultados obtidos apresentam-se na tabela 9, onde foram utilizadas as seguintes fórmulas:

$$\begin{split} B,b &= C_{sup,inf} = \frac{1}{N} \sum_{i=1}^{N} C_i; \sigma_B = \sqrt{B}; \sigma_b = \sqrt{b}; \sigma_{C_{Back}} = \frac{h}{2} \sqrt{\sigma_B^2 + \sigma_b^2} \\ R_{Back} &= \frac{C_{Back}}{\Delta t}; \sigma_{R_{Back}} = R_{Back} \sqrt{\left(\frac{\sigma_{C_{Back}}}{C_{Back}}\right)^2 + \left(\frac{\sigma_{\Delta t}}{\Delta t}\right)^2} \end{split}$$

Detetor A	Detetor B	
-----------	-----------	--

Canal	C_i (Cts)	Erro (Cts)	Canal	C_i (Cts)	Erro (Cts)					
232	59	8	232	51	7					
233	54	7	233	51	7					
234	60	8	234	45	7					
235	42	6	235	50	7					
236	58	8	236	54	7					
237	57	8	237	65	8		Detet	or A	Dete	tor B
238	60	8	238	66	8		Valor	Erro	Valor	Erro
239	61	8	239	71	8	B (Cts)	56	8	57	8
	C_i	Erro		C_i	Erro	h (04-)		_	40	7
Canal	(Cts)	(Cts)	Canal	(Cts)	(Cts)	b (Cts)	48	7	49	_ ′
Canal 286			Canal 282			b (Cts)	48	-	49	-
	(Cts)	(Cts)		(Cts)	(Cts)		49			
286	(Cts) 50	(Cts)	282	(Cts) 61	(Cts) 8	h	49 2568	-	49	-
286 287	(Cts) 50 53	(Cts) 7 7	282 283	(Cts) 61 64	(Cts) 8 8	h C_Back (Cts	49 2568	251	49 2597	- 252
286 287 288	(Cts) 50 53 53	7 7 7	282 283 284	(Cts) 61 64 56	(Cts) 8 8 7	h C_Back (Cts	49 2568	251	49 2597	- 252
286 287 288 289	50 53 53 53	7 7 7 7	282 283 284 285	(Cts) 61 64 56 48	(Cts) 8 8 7 7	h C_Back (Cts	49 2568	251	49 2597	- 252
286 287 288 289 290	50 53 53 53 53 39	7 7 7 6	282 283 284 285 286	(Cts) 61 64 56 48 49	(Cts) 8 8 7 7	h C_Back (Cts	49 2568	251	49 2597	- 252

Tabela 9. Cálculo da taxa de radiação de fundo para cada um dos detetores.

Esta taxa deverá ser descontada à taxa de contagens de cada um dos detetores A e B, mas não à taxa de coincidências $\gamma\gamma$. Devemos no entanto ter em atenção que apenas podemos fazer isto quando a fonte está na posição central. A radiação de fundo, sendo que provém da fonte, não é independente da posição relativa entre esta e o detetor, variando da mesma forma que a taxa de contagens.

* * * * *

Antes de apresentar os dados recolhidos, é necessário definir as coordenadas (x, y). Para tal, consultar a figura 5.

Figura 5. Esquema dos parâmetros x, y, r, ϕ, θ .

O eixo yy é o eixo de simetria dos detetores, quando $\theta = \varphi = 0$, com sentido do detetor fixo para o móvel. O eixo xx é o eixo equidistante dos dois detetores, definido por forma a o eixo dos zz ser para cima. As coordenadas (r, φ) são as coordenadas polares correspondentes a (x, y) ainda que definidas de forma diferente do habitual. Por último, é necessário ter em conta que quando se varia θ também roda o disco onde se encontra a fonte.

VARIAR A POSIÇÃO DA FONTE AO LONGO DOS EIXOS, COM O DETETOR MÓVEL EM θ=0

Mantendo os detetores alinhados, variou-se a posição da fonte ao londo do eixo yy, e registaram-se os valores indicados na tabela 10, onde também se inclui a conversão para taxas segundo as fórmulas anteriormente indicadas. Note-se que, devido à variação da taxa de fundo com a distância entre a fonte e o detetor, as taxas R_A e R_B não estão corrigidas para o fundo. A taxa R_C por sua vez já inclui a correção relacionada com as coincidências fortuitas.

y (in)	C_A (Cts)	Erro (Cts)	C_C (Cts)	Erro (Cts)	C_B (Cts)	Erro (Cts)	R_A (Cts/s)	Erro (Cts/s)	R_C(x=0) (Cts/s)	Erro (Cts/s)	R_B (Cts/s)	Erro (Cts/s)
1.5	3129	56	536	23	1664	41	52.2	0.9	8.92	0.4	27.7	0.7
1	2791	53	581	24	1882	43	46.5	0.9	9.7	0.4	31.4	0.7
0.5	2456	50	604	25	2083	46	40.9	0.8	10.1	0.4	34.7	8.0
0	(Para y=	0 utilizam	-se os d	ados da	tabela 3	para θ=0)	38.5	0.8	10.7	0.6	39.9	1.2
-0,5	2022	45	649	25	2652	51	33.7	0.7	10.8	0.4	44.2	0.9
-1	1779	42	550	23	2904	54	29.7	0.7	9.2	0.4	48.4	0.9
-1.5	1626	40	540	23	3294	57	27.1	0.7	9.0	0.4	54.9	1.0

Tabela 10. Valores obtidos para variação de y com $x=\theta=0$

Em primeiro lugar, procedemos ao estudo da variação do número de partículas γ detetadas em função de y. Para tal, representa-se no gráfico da figura 6 os valores R_A e R_B em função de y.

Figura 6. Representação gráfica de R_A e R_B em função de y e ajuste das expressões (2) pelo método dos mínimos quadrados.

É expectável que o número de contagens, e portanto a taxa, seja proporcional ao ângulo sólido definido correspondente a uma esfera de centro na fonte e raio até ao detetor, tal como se demonstra na figura 7.

Figura 7. Dedução das fórmulas (2)

Podemos então ajustar aos pontos da figura 6 as expressões

$$R_{A} = A_{1 \atop \square}^{\square} 1 - \frac{1}{\sqrt{1 + \frac{R^{2}}{(D_{1} - y)^{2}}}} \atop \square}^{\square}; R_{B} = A_{2 \atop \square}^{\square} 1 - \frac{1}{\sqrt{1 + \frac{R^{2}}{(D_{2} + y)^{2}}}} \atop \square}^{\square}$$
(2)

Obteve-se os seguintes parâmetros de ajuste:

$A_1 (Cts s^{-1})$ 6421.4±473.2	$A_2 (Cts \ s^{-1})$	6278.1±406.9
---------------------------------	----------------------	--------------

$D_1(cm)$	23.54±0.84	$D_2(cm)$	22.80±0.71		
χ^2/ngl	0.97	χ^2/ngl	0.78		
ngl	4	ngl	4		

Tabela 11. Parâmetros do ajuste da figura 6.

Em primeiro lugar, observamos que os valores χ^2/ngl são próximos da unidade, indiciando a boa qualidade do ajuste.

Sabemos que a distância entre o centro do referencial e os detetores é 20cm. Os valores D_1 e D_2 que aqui foram obtidos são superiores a esta distância. Tal ocorre dado que se deve considerar um livre percurso médio dentro do detetor necessário para que uma partícula γ seja detetada. Isto implica que podemos considerar que a entrada do detetor está ligeiramente mais distante do que 20cm.

Calculemos a média entre estes dois valores para definir um valor para *D*:

D (cm) 23.17±0.55

Temos então que a correção a efetuar é de 3.17cm. Este valor parece particularmente elevado dado que o comprimento do detetor é de 5cm, no entanto tal compreende-se dado que $D\gg R$. Isto implica que o ângulo de proveniência das partículas será muito reduzido, e como tal incidirão quase paralelamente ao eixo do detetor.

Por fim, observamos que na verdade os detectores não estão equidistantes do ponto y=0 visto os gráficos se sobreporem em $y\approx 2.6mm$. Este valor é no entanto inferior à precisão associada à montagem utilizada.

De seguida, variou-se a posição da fonte ao longo do eixo dos xx, isto é, para y=0. Obtiveram-se os resultados da tabela 12. Desta vez, podemos considerar que a distância da fonte aos detetores é $\approx D$ e como tal podemos descontar a taxa de fundo. Logo, ao contrário do que acontecia na tabela 11, as taxas R_A e R_B já estão corrigidas.

x (in)	C_A (Cts)	Erro (Cts)	C_C (Cts)	Erro (Cts)	C_B (Cts)	Erro (Cts)	R_A (Cts/s)	Erro (Cts/s)	R_C(y=0) (Cts/s)	Erro (Cts/s)	R_B (Cts/s)	Erro (Cts/s)
1.5	2223	47	4	2	2194	47	26.6	1.3	0.05	0.03	26.0	1.3
1	2170	47	2	1	2166	47	25.7	1.3	0.02	0.02	25.5	1.3
0.5	2154	46	238	15	2195	47	25.5	1.3	3.95	0.26	26.0	1.3
-0,5	2330	48	291	17	2263	48	28.4	1.3	4.84	0.28	27.2	1.3
-1	2176	47	6	2	2223	47	25.8	1.3	0.09	0.04	26.5	1.3
-1.5	2108	46	5	2	2151	46	24.7	1.3	0.07	0.04	25.3	1.3

Tabela 12. Valores obtidos para variação de x com $y=\theta=0$

Na figura 8 representa-se a variação da taxa de coincidências $\gamma\gamma$ com x e com y.

Figura

Representação gráfica da variação de $R_{C(y=0)}$ com x e de $R_{C(x=0)}$ com y e ajuste das expressões (3) e (4), respetivamente, pelo método dos mínimos quadrados.

Determinemos agora um modelo teórico geral que permita explicar a variação da taxa de coincidências. Podemos seguir o raciocínio anterior e considerar que esta estará relacionada de alguma forma com a área da interseção da imagem do detetor fixo com o detetor móvel. Na verdade, será proporcional ao ângulo sólido correspondente a esta área de interseção.

Para calcular este ângulo sólido devemos considerar coordenadas esféricas centradas na fonte. No entanto, visto que na maior parte dos casos tal é muito difícil de fazer analiticamente, iremos considerar que para uma dada área de interseção A situada a uma distância D da fonte, o ângulo sólido correspondente é dado por

$$\Omega = \frac{A}{D^2}$$
.

Ora, esta área é a da interseção do detetor móvel com uma imagem do detetor fixo, que designaremos por A_1 . Mas em bom rigor devemos também considerar de forma semelhante a área A_2 da interseção do detetor fixo com uma imagem do detetor móvel. Podemos então fazer a média entre os dois ângulos sólidos correspondentes a cada uma destas áreas para obter:

$$R_C \propto \Omega \simeq \frac{1}{2} \left(\frac{A_1}{D_1^2} + \frac{A_2}{D_2^2} \right)$$

Temos então esta expressão geral, que para ser aplicada, basta apenas calcular as duas áreas de interseção A_1 e A_2 e as distâncias delas à fonte D_1 e D_2 .

Comecemos então por estudar o caso em que a fonte se desloca segundo o eixo dos xx, que se representa na figura 9. Neste caso, $A_1 = A_2 = A$ e $D_1 = D_2 = D$.

8.

Figura 9. Esquema para a dedução da fórmula (3)

Temos então que a taxa de coincidências ao longo de y=0 varia com x da seguinte forma:

$$R_{C(y=0)}(x) = \frac{A_1}{D^2} \left[2R^2 \arccos\left(\frac{|x|}{R}\right) - 2|x| \sqrt{R^2 - x^2} \right]$$
 (3)

No caso em que a fonte se desloca segundo o eixo dos yy, temos que as áreas já serão diferentes, como se observa na figura 10.

Temos então que a taxa de coincidências ao longo de x=0 varia com y da seguinte forma:

$$R_{C(x=0)}(y) = A_2 \frac{\pi R^2}{(D+|y|)^2}$$
 (4)
$$P_{L} = P + y$$

Figura 10. Esquema para a dedução da fórmula (4)

Os parâmetros do ajuste da figura 8 apresentam-se na tabela 13.

$A_1 (Cts \ s^{-1})$	142.1±9.7
$A_2 (Cts \ s^{-1})$	152.6±2.4

R (in)	1.02±0.01
χ_1^2/ngl	2.63
χ_2^2/ngl	0.96
$ngl_{1,2}$	6

Tabela 13. Parâmetros do ajuste da figura 8.

Assim, podemos concluir em primeiro lugar que em ambos os casos possuímos bons valores de χ^2/ngl , indiciando a boa qualidade do ajuste aos pontos experimentais. Por outro lado, notamos que os valores dos máximos são concordantes. Ainda assim, foram utilizados muito poucos pontos, o que provoca ajustes adequados aos pontos mas com um andamento diferente do esperado. Como tal, concluímos que estes ajustes são bastante inconclusivos quanto à qualidade do modelo aplicado.

Deve-se mencionar ainda que o valor obtido para o raio $R=(1.02\pm0.01)in$ desvia-se de 2σ do valor indicado pelo docente de 1in.

Sessão 2.2 - 10/03/2016

VARIAR A POSIÇÃO DA FONTE (r, ϕ) , COM O DETETOR MÓVEL EM θ =0

Variou-se agora a posição da fonte para diferentes valores de (r, ϕ) . Utilizaram-se três valores de r, percorrendo os 360° de ϕ para cada um. Os resultados encontram-se na tabela 14.

r (in)	φ (°)	C_A (Cts)	Erro (Cts)	C_C (Cts)	Erro (Cts)	C_B (Cts)	Erro (Cts)	R_A (Cts/s)	Erro (Cts/s)	R_C (Cts/s)	Erro (Cts/s)	R_B (Cts/s)	Erro (Cts/s)
0.5	0	2330	48	291	17	2263	48	28.40	1.18	4.84	0.28	27.16	1.17
0.5	10	2139	46	291	17	2272	48	25.21	1.16	4.84	0.28	27.31	1.17
0.5	20	2116	46	287	17	2325	48	24.83	1.15	4.77	0.28	28.19	1.18
0.5	30	2061	45	327	18	2376	49	23.91	1.15	5.44	0.30	29.04	1.19
0.5	40	2046	45	370	19	2515	50	23.66	1.15	6.15	0.32	31.36	1.20
0.5	50	2018	45	444	21	2540	50	23.20	1.14	7.39	0.35	31.78	1.20
0.5	60	1940	44	517	23	2463	50	21.90	1.13	8.60	0.38	30.49	1.20
0.5	70	1939	44	514	23	2499	50	21.88	1.13	8.55	0.38	31.09	1.20
0.5	80	1964	44	598	24	2658	52	22.30	1.14	9.95	0.41	33.74	1.22
0.5	90	2022	45	649	25	2652	51	23.26	1.14	10.80	0.42	33.64	1.22
0.5	100	1914	44	566	24	2569	51	21.46	1.13	9.42	0.40	32.26	1.21
0.5	110	1998	45	550	23	2547	50	22.86	1.14	9.15	0.39	31.89	1.20
0.5	120	2061	45	518	23	2524	50	23.91	1.15	8.62	0.38	31.51	1.20
0.5	130	2095	46	454	21	2528	50	24.48	1.15	7.55	0.35	31.58	1.20
0.5	140	2012	45	345	19	2367	49	23.10	1.14	5.74	0.31	28.89	1.18
0.5	150	2159	46	336	18	2370	49	25.55	1.16	5.59	0.30	28.94	1.19
0.5	160	2103	46	282	17	2425	49	24.61	1.15	4.69	0.28	29.86	1.19
0.5	170	2164	47	304	17	2357	49	25.63	1.16	5.05	0.29	28.73	1.18
0.5	180	2154	46	238	15	2195	47	25.46	1.16	3.95	0.26	26.03	1.17
0.5	190	2224	47	239	15	2133	46	26.63	1.17	3.97	0.26	24.99	1.16
0.5	200	2240	47	281	17	2192	47	26.90	1.17	4.67	0.28	25.98	1.17
0.5	210	2268	48	324	18	2132	46	27.36	1.17	5.39	0.30	24.98	1.16
0.5	220	2376	49	332	18	2087	46	29.16	1.18	5.52	0.30	24.23	1.15
0.5	230	2520	50	418	20	2121	46	31.56	1.20	6.95	0.34	24.79	1.16
0.5	240	2451	50	455	21	2091	46	30.41	1.19	7.57	0.35	24.29	1.15
0.5	250	2481	50	549	23	2097	46	30.91	1.19	9.14	0.39	24.39	1.16
0.5	260	2470	50	578	24	2018	45	30.73	1.19	9.62	0.40	23.08	1.15
0.5	270	2456	50	604	25	2083	46	30.50	1.19	10.05	0.41	24.16	1.15
0.5	280	2538	50	616	25	2049	45	31.86	1.20	10.25	0.41	23.59	1.15
0.5	290	2527	50	523	23	2006	45	31.68	1.20	8.70	0.38	22.88	1.15
0.5	300	2405	49	437	21	2020	45	29.65	1.19	7.27	0.35	23.11	1.15
0.5	310	2474	50	449	21	2191	47	30.80	1.19	7.47	0.35	25.96	1.17
0.5	320	2376	49	342	18	2091	46	29.16	1.18	5.69	0.31	24.29	1.15
0.5	330	2236	47	306	17	2161	46	26.83	1.17	5.09	0.29	25.46	1.16
0.5	340	2372	49	276	17	2216	47	29.10	1.18	4.59	0.28	26.38	1.17

0.5	350	2144	46	193	14	2209	47	25.30	1.16	3.20	0.23	26.26	1.17
1	0		47	6	2		47						
		2176		-	3	2223		25.83	1.16	0.09	0.03	26.49	1.17
1	10	2083	46	8	-	2329	48	24.28	1.15	0.12	0.04	28.26	1.18
1	20	1993	45	10	3	2470	50	22.78	1.14	0.15	0.05	30.61	1.20
1	30	1965	44	32	6	2571	51	22.31	1.14	0.52	0.09	32.29	1.21
1	40	1836	43	86	9	2683	52	20.16	1.12	1.42	0.15	34.16	1.22
1	50	1816	43	175	13	2730	52	19.83	1.12	2.90	0.22	34.94	1.22
1	60	1834	43	266	16	2768	53	20.13	1.12	4.42	0.27	35.58	1.23
1	70	1813	43	420	20	2898	54	19.78	1.12	6.99	0.34	37.74	1.24
1	80	1782	42	538	23	2877	54	19.26	1.12	8.95	0.39	37.39	1.24
1	90	1779	42	550	23	2904	54	19.21	1.12	9.15	0.39	37.84	1.24
1	100	1853	43	543	23	2915	54	20.45	1.12	9.04	0.39	38.03	1.24
1	110	1792	42	388	20	2757	53	19.43	1.12	6.45	0.33	35.39	1.23
1	120	1801	42	257	16	2678	52	19.58	1.12	4.27	0.27	34.08	1.22
1	130	1842	43	163	13	2759	53	20.26	1.12	2.70	0.21	35.43	1.23
1	140	1878	43	93	10	2605	51	20.86	1.13	1.54	0.16	32.86	1.21
1	150	1989	45	39	6	2475	50	22.71	1.14	0.64	0.10	30.69	1.20
1	160	2103	46	18	4	2426	49	24.61	1.15	0.29	0.07	29.88	1.19
1	170	2148	46	12	3	2305	48	25.36	1.16	0.19	0.05	27.86	1.18
1	180	2170	47	2	1	2166	47	25.73	1.16	0.02	0.01	25.54	1.16
1	190	2215	47	10	3	2208	47	26.48	1.16	0.15	0.05	26.24	1.17
1	200	2383	49	14	4	2069	45	29.28	1.18	0.22	0.06	23.93	1.15
1	210	2447	49	27	5	2107	46	30.35	1.19	0.44	0.08	24.56	1.16
1	220	2556	51	70	8	2015	45	32.16	1.20	1.15	0.14	23.03	1.15
1	230	2610	51	123	11	1877	43	33.06	1.21	2.04	0.18	20.73	1.13
1	240	2735	52	292	17	1948	44	35.15	1.22	4.85	0.28	21.91	1.14
1	250	2781	53	425	21	1853	43	35.91	1.23	7.07	0.34	20.33	1.13
1	260	2749	52	517	23	1853	43	35.38	1.22	8.60	0.38	20.33	1.13
1	270	2791	53	581	24	1882	43	36.08	1.23	9.67	0.40	20.81	1.13
1	280	2764	53	538	23	1830	43	35.63	1.22	8.95	0.39	19.94	1.13
1	290	2872	54	407	20	1879	43	37.43	1.24	6.77	0.34	20.76	1.13
1	300	2703	52	261	16	1918	44	34.61	1.22	4.34	0.27	21.41	1.14
1	310	2715	52	157	13	1967	44	34.81	1.22	2.60	0.21	22.23	1.14
1	320	2502	50	70	8	1965	44	31.26	1.20	1.15	0.14	22.19	1.14
1	330	2430	49	31	6	1993	45	30.06	1.19	0.50	0.09	22.66	1.14
1	340	2258	48	13	4	2039	45	27.20	1.17	0.20	0.06	23.43	1.15
1	350	2217	47	6	2	2030	45	26.51	1.16	0.09	0.03	23.28	1.15
1.5	0	2108	46	5	2	2151	46	24.70	1.15	0.07	0.03	25.29	1.16
1.5	10	2097	46	3	2	2397	49	24.51	1.15	0.04	0.02	29.39	1.19
1.5	20	1882	43	1	1	2477	50	20.93	1.13	0.00	0.00	30.73	1.20
1.5	30	1893	44	2	1	2568	51	21.11	1.13	0.02	0.01	32.24	1.21
1.5	40	1829	43	1	1	2664	52	20.05	1.12	0.00	0.00	33.84	1.22
1.5	50	1751	42	10	3	2885	54	18.75	1.11	0.15	0.05	37.53	1.24
1.5	60	1713	41	91	10	3042	55	18.11	1.11	1.50	0.16	40.14	1.26
1.5	70	1622	40	271	16	3196	57	16.60	1.10	4.50	0.27	42.71	1.27
1.5	80	1645	41	468	22	3172	56	16.98	1.10	7.79	0.36	42.31	1.27

1.5	90	1626	40	540	23	3294	57	16.66	1.10	8.99	0.39	44.34	1.28
1.5	100	1562	40	401	20	3117	56	15.60	1.09	6.67	0.33	41.39	1.27
1.5	110	1684	41	261	16	3120	56	17.63	1.11	4.34	0.27	41.44	1.27
1.5	120	1641	41	102	10	3023	55	16.91	1.10	1.69	0.17	39.83	1.26
1.5	130	1713	41	13	4	2930	54	18.11	1.11	0.20	0.06	38.28	1.25
1.5	140	1727	42	5	2	2847	53	18.35	1.11	0.07	0.03	36.89	1.24
1.5	150	1896	44	4	2	2661	52	21.16	1.13	0.05	0.03	33.79	1.22
1.5	160	2008	45	6	2	2540	50	23.03	1.14	0.09	0.03	31.78	1.20
1.5	170	2126	46	4	2	2365	49	25.00	1.15	0.05	0.03	28.86	1.18
1.5	180	2223	47	4	2	2194	47	26.61	1.17	0.05	0.03	26.01	1.17
1.5	190	2157	46	1	1	2178	47	25.51	1.16	0.00	0.00	25.74	1.16
1.5	200	2333	48	3	2	2014	45	28.45	1.18	0.04	0.02	23.01	1.15
1.5	210	2604	51	2	1	1922	44	32.96	1.21	0.02	0.01	21.48	1.14
1.5	220	2718	52	4	2	1805	42	34.86	1.22	0.05	0.03	19.53	1.12
1.5	230	2711	52	7	3	1838	43	34.75	1.22	0.10	0.04	20.08	1.13
1.5	240	2988	55	84	9	1775	42	39.36	1.25	1.39	0.15	19.03	1.12
1.5	250	2932	54	232	15	1697	41	38.43	1.24	3.85	0.25	17.73	1.11
1.5	260	3168	56	449	21	2365	49	42.36	1.27	7.47	0.35	28.86	1.18
1.5	270	3129	56	536	23	1664	41	41.71	1.26	8.92	0.39	17.18	1.11
1.5	280	3275	57	475	22	1663	41	44.15	1.28	7.90	0.36	17.16	1.11
1.5	290	3090	56	227	15	1745	42	41.06	1.26	3.77	0.25	18.53	1.12
1.5	300	3003	55	82	9	1755	42	39.61	1.25	1.35	0.15	18.69	1.12
1.5	310	3001	55	7	3	1798	42	39.58	1.25	0.10	0.04	19.41	1.12
1.5	320	2820	53	7	3	1814	43	36.56	1.23	0.10	0.04	19.68	1.12
1.5	330	2516	50	2	1	1881	43	31.50	1.20	0.02	0.01	20.79	1.13
1.5	340	2439	49	3	2	2022	45	30.21	1.19	0.04	0.02	23.14	1.15
1.5	350	2297	48	2	1	2002	45	27.85	1.17	0.02	0.01	22.81	1.15

Tabela 14. Valores obtidos para várias posições de (r, ϕ) com $\theta = 0$. $(\Delta t_{aq} = 60s)$

Tal como anteriormente, os valores de $R_{A,B}$ não estão corrigidos para a radiação de fundo e os valores de R_C estão corrigidos para as coincidências fortuitas. Representa-se graficamente na figura 11 os valores das coincidências $\gamma\gamma$ como função de ϕ , para os três diferentes valores de r.

Figura 11. Representação gráfica da variação de R_C com ϕ para diferentes valores de r, e ajuste da expressão (5) pelo método dos mínimos quadrados.

Pretendemos agora encontrar o modelo teórico que explique esta variação. O processo é semelhante ao anterior e está explicitado nas figuras 12 e 13, onde se determina os raios R_1 e R_2 dos dois círculos que se intersectam, e a distância d entre os seus centros. A expressão que permite calcular a área da interseção é:

$$I(R_1, R_2, d) = R_1^2 \arccos\left(\frac{d^2 + R_1^2 - R_2^2}{2dR_1}\right) + R_2^2 \arccos\left(\frac{d^2 + R_2^2 - R_1^2}{2dR_2}\right)$$
$$-\frac{1}{2}\sqrt{(-d + R_1 + R_2)(d + R_1 - R_2)(d - R_1 + R_2)(d + R_1 + R_2)}$$

Temos no entanto que ter em atenção que, em ambos os casos, quando $|x| > \frac{R}{D}|y|$, o círculo maior passa a englobar inteiramente o círculo menor. Nesse caso, a área da interseção passa a ser simplesmente a do círculo menor.

Figura 12. Esquema para calcular A_1

Figura 13. Esquema para calcular A_2

Logo:

$$A_{1}(x,y) = \begin{cases} I\left(R, \frac{D-|y|}{D+|y|}R, \frac{2D|x|}{D+|y|}\right), |x| > \frac{R}{D}|y| \\ \pi\left(\frac{D+|y|}{D-|y|}\right)^{2}R^{2}, |x| < \frac{R}{D}|y| \end{cases} \quad A_{2}(x,y) = \begin{cases} I\left(\frac{D+|y|}{D-|y|}R, R, \frac{2D|x|}{D-|y|}\right), |x| > \frac{R}{D}|y| \\ \pi R^{2}, |x| < \frac{R}{D}|y| \end{cases}$$

Por último, temos que $D_1 = D - |y|$ e $D_2 = D + |y|$. Juntando estes resultados, temos que:

$$R_C = A \left[\frac{A_1(x,y)}{(D-|y|)^2} + \frac{A_2(x,y)}{(D+|y|)^2} \right]$$
 (5)

É ainda necessário passar de (x,y) para (r,ϕ) , da seguinte forma:

$$x = -r\cos(\phi)$$
; $y = -r\sin(\phi)$

Devido à complexidade da expressão, não foi possível utilizar o software Gnuplot para ajustar esta equação aos pontos da figura 11. Antes disso, obteve-se através do software o valor do modelo teórico calculado nos pontos experimentais para cada valor de r, e fez-se o ajuste analiticamente à amplitude A pelo método dos mínimos quadrados. Este método foi aplicado simultaneamente para todos os dados, tendo-se obtido os seguintes resultados.

Nota: utilizou-se $D = (23.17 \pm 0.55) \ cm$ e $R = (1.011 \pm 0.013) in$, obtidos com os ajustes das figuras 6 e 4 respetivamente.

$A (Cts s^{-1})$	152.98
χ^2/ngl	3.26

O ajuste foi efetuado seguindo a seguinte lógica explicada de seguida.

Começamos por analisar o caso de 1 único conjunto de N pontos a ajustar a uma função Af(x) que, no ponto experimental e_n assume o valor $f(e_n)$. Ora, o funcional que desejamos minimizar é dado por

$$F(A) = \sum_{n=1}^{N} (Af(e_n) - e_n)^2$$

onde o parâmetro A designa a amplitude da função a ser determinada. Minimizar consiste em descobrir o extremo do funcional. Efetuando a derivada temos assim:

$$\sum_{n=1}^{N} 2f(x_n)(Af(e_n) - e_n) = 0$$

que rapidamente pode ser rearranjada em ordem a A para obter:

$$A = \frac{\sum_{n=1}^{N} e_n}{\sum_{n=1}^{N} f(e_n)}$$

Podemos agora generalizar para o caso que nos será útil: o caso em que temos M conjuntos de pontos experimentais, cada qual com N pontos, aos quais ajustaremos M função $f_m(x)$, pelo que a amplitude a ajustar será idêntica para todos os pontos (de facto, queremos minimizar a soma dos erros quadráticos para cada conjunto de pontos). Repetindo o procedimento anterior, definimos o funcional

$$F(A) = \sum_{m=1}^{M} \sum_{n=1}^{N} (Af_m(e_{nm}) - e_{nm})^2$$

onde e_{nm} designa o ponto experimental n do conjunto m. Obter o mínimo deste funcional corresponde à condição:

$$\sum_{m=1}^{M} \sum_{n=1}^{N} 2f_m(e_{nm})(Af_m(e_{nm}) - e_{nm}) = 0$$

Assim, reescrevendo esta equação:

$$A = \frac{\sum_{m=1}^{M} \sum_{n=1}^{N} e_{nm} f_m(e_{nm})}{\sum_{m=1}^{M} \sum_{n=1}^{N} f_m(e_{nm})^2}$$

No nosso caso concreto, em que M=3 (três raios diferentes), a equação acima é passível de ser reescrita enquanto:

$$A = \frac{\sum_{n=1}^{N} e_{n1} f_m(e_{n1}) + e_{n2} f_m(e_{n2}) + e_{n3} f_m(e_{n3})}{\sum_{n=1}^{N} f_m(e_{n1})^2 + f_m(e_{n2})^2 + f_m(e_{n3})^2}$$

Tal como anteriormente, calculemos a média, o desvio padrão e o skewness:

	r = 0.5	r = 1.0	r = 1.5
μ (°)	173.6 ± 0.8	179.2 ± 1.1	178.7 ± 1.4
σ (°)	100.5 ± 2.1	93.5 ± 0.3	200.3 ± 0.24
$\gamma_1 ((^{\circ})^3)$	0.02 ± 0.15	0.01 ± 0.11	0.002 ± 0.114

Tabela 15. Média, desvio padrão e skewness da distribuição da figura 11.

Observa-se que a posição dos picos é congruente com 180°, exceptuando para r=0.5in. Tal decorre de meras flutuações estatísticas a nível das contagens e não de qualquer problema existente para este raio. O desvio padrão neste caso não possui significado físico. A skewness é sempre nula, indicando que não existem assimetrias ou caudas.

Calculemos agora os mesmos parâmetros mas considerando duas distribuições em torno de $\phi = 90^{\circ}$ e de $\phi = 270^{\circ}$:

ф		r = 0.5in	r = 1.0in	r = 1.5in
	μ (°)	89.50±0.54	89.99±0.42	90.11 ± 0.36
90°	σ (°)	47.72 ± 1.45	26.00 ± 2.12	17.27 ± 2.71
	$\gamma_1 \left(\left(^{\circ} \right)^3 \right)$	-1.2 ± 35.5	1.1 ± 6.7	1.0 ± 3.0
	μ (°)	269.41 ± 0.50	270.01 ± 0.46	270.16 ± 0.36
270°	σ (°)	41.93 ± 4.58	28.3 ± 2.0	15.44 ± 3.03
	$\gamma_1 \left(\binom{o}{3} \right)$	1.4 ± 95.2	-1.1 ± 0.4	1.3 ± 2.5

Tabela 16. Média, desvio padrão e *skewness* das distribuição da figura 11 em torno de $\phi = 90^{\circ}$ e de $\phi = 270^{\circ}$.

Pode-se concluir que:

- Exceptuando r = 0.5in os valores esperados dos picos encontram-se extremamente congruentes com os valores supostos, indicando a quase perfeita simetria da distribuição;
- O desvio padrão diminui com r. Tal é lógico para menores valores de r, a rotação do porta-alvos irá influenciar de forma menor o deslocamento da fonte e como tal a ocorrência de coincidências. De forma mais intuitiva, a curva das coincidências demora menos a "morrer" (ser nula) para maiores valores de raio porque uma mesma rotação corresponde a um maior desvio da fonte.
- O valor do skewness é quase nulo para todos os picos, indicando que estes não possuem uma cauda em nenhum dos lados, revelando novamente a sua grande simetria.

ÁREA DE DETEÇÃO

Para determinar a área de detecção determinou-se os pontos onde a distribuição deixa praticamente de ter contagens. Para isso, consideramos que a distribuição morre a 3σ (visualmente é o que se verifica) e utilizamos o estes valores de ϕ_{lim} para determinar os pontos da Fig. 14

$$\begin{aligned} & \varphi_{lim} = E[\varphi] \pm 3 * VAR[\varphi] & \varepsilon_{\varphi_{lim}} = \sqrt{\varepsilon_E^2 + 9 * \varepsilon_{VAR}^2} \\ & x_{lim} = R * Cos(\varphi_{lim}) & \varepsilon_{x_{lim}} = R * |Sin(\varphi_{lim})| * \varepsilon_{\varphi_{lim}} \\ & y = R * Sin(\varphi_{lim}) & \varepsilon_{y_{lim}} = R * |Cos(\varphi_{lim})| * \varepsilon_{\varphi_{lim}} \end{aligned}$$

r(in)	x(in)	Erro (in)	y(in)	Erro (in)
1.0	-0.98	0.02	0.21	0.11
1.0	0.98	0.02	0.21	0.11
1.0	1.00	0.01	-0.07	0.10
1.0	-0.99	0.01	-0.11	0.10
1.5	-1.18	0.13	0.92	0.17
1.5	1.18	0.13	0.93	0.17
1.5	1.08	0.16	-1.04	0.17
1.5	-1.08	0.16	-1.04	0.17

Tabela 17. Pontos limites da área de deteção

A laranja na figura 14 está representado os limites teóricos da área de deteção do modelo, isto é, duas retas paralelas a xx distanciadas R=1.01 in do eixo de simetria dos detetores. Todos os pontos ajustam-se ao modelo a menos de $1.5\,\sigma$ no entanto a reduzida dimensão do números de pontos não permite fazer nenhuma análise. Além disso, os pontos limites as $3\,\sigma$ poderão não corresponder aos zeros da função pelo que teria sido mais relevante tirar pontos junto aos ângulos limites para determinar o 0.

Figura 14. Pontos limites da área de deteção e circulo de raio 1.5 in

MONTAGEM

Repetiu-se novamente o procedimento da sessão 1, tendo-se colocado um resolving time de 250ns. Obtiveram-se os seguintes parâmetros para o pico de 511keV e para os valores dos limiares de tensão do Pulser e das Timing SCA.

Tempo de aquisição:	$\Delta t_{aq} = 130s$ (i	gual para am	bos os picos)
---------------------	---------------------------	--------------	---------------

Pico	Área Total (Cts)	Área do Sinal (Cts)	Centróide - C (Can)	FWHM (Can)	Sigma - σ (Can)
511keV - Detetor Móvel Canais: [236;291]	4984±71	3416±140	264.72	23,30	9.89
511keV - Detetor Fixo Canais: [235;292]	4652±68	3308±124	263.40	22,47	9,54

Tabela 18. Dados referentes aos espectros observados na sessão 3.

	Limite In	ferior (V)	Limite Superior (V)		
	Pulser	Timing SCA	Pulser	Timing SCA	
Detetor Móvel	2.45±0.01	2.06±0.01	3.07±0.01	2.54±0.01	
Detetor Fixo	2.47±0.01	2.05±0.01	3.08±0.01	2.52±0.01	

Tabela 19. Valores dos limiares de tensão do pulser e Timing SCA utilizados na sessão 3.

COINCIDÊNCIAS FORTUITAS

Iremos agora determinar a taxa de coincidências fortuitas. Para isso, coloca-se o detetor móvel na posição $\theta=0$, de tal forma que certamente todas as coincidência contadas serão fortuitas. Para um tempo de aquisição $\Delta t_{aq}=10 min=600 s$, registaram-se as contagens e coincidências para diferentes resolving times τ . Os resultados apresentam-se na tabela 20.

τ (ns)	C_A (Cts)	Erro (Cts)		Erro (Cts)	C_B (Cts)	Erro (Cts)	_	Erro (Cts/s)	R_C (Cts/min)	Erro (Cts/min)	R_B (Cts/s)	Erro (Cts/s)
50	22709	151	5	2	22169	149	37.8	0.3	0.50	0.22	36.9	0.2
250	22431	150	9	3	22378	150	37.4	0.2	0.90	0.30	37.3	0.2
750	22564	150	8	3	22470	150	37.6	0.3	0.80	0.28	37.5	0.2
2500	22813	151	12	3	21935	148	38.0	0.3	1.20	0.35	36.6	0.2
5000	22860	151	18	4	21924	148	38.1	0.3	1.80	0.43	36.5	0.2
6250	22524	150	16	4	22458	150	37.5	0.3	1.60	0.40	37.4	0.2

Tabela 20. Contagens e coincidências para diferentes valores de τ .

Podemos agora utilizar os valores obtidos para R_A e R_B , para determinar o valor R_T que se segue do modelo teórico para as coincidências fortuitas:

$$R_{T} = a_{T}\tau$$
; $a_{T} = R_{A}R_{B}$; $\sigma_{a_{T}} = a_{T}\sqrt{\left(\frac{\sigma_{R_{A}}}{R_{A}}\right)^{2} + \left(\frac{\sigma_{R_{B}}}{R_{B}}\right)^{2}}$; $\sigma_{R_{T}} = \tau\sigma_{a_{T}}$

Note-se que estas taxas R_A e R_B não são corrigidas para a radiação de fundo uma vez que esta também irá contribuir para as coincidências fortuitas. Na tabela 21 efetua-se a comparação entre os resultados experimentais e as previsões teóricas.

τ (ns)	R_A (Cts/s	Erro (Cts/s)	R_C (Cts/min	Erro (Cts/min)	R_B (Cts/s	Erro (Cts/s)	a_T (Cts/s.ms)	Erro (Cts/s.ms)	R_T (Cts/min)	Erro (Cts/min)	Desvi o (#)	Desvi o (%)
50	38	0	1	0	37	0	2.797	0.026	0.008	0.001	2.2	5859
250	37	0	1	0	37	0	2.789	0.026	0.042	0.001	2.9	2052
750	38	0	1	0	37	0	2.817	0.027	0.127	0.001	2.4	531
2500	38	0	1	0	37	0	2.780	0.026	0.417	0.004	2.3	188
5000	38	0	2	0	37	0	2.784	0.026	0.835	0.008	2.3	115
6250	38	0	2	0	37	0	2.810	0.027	1.054	0.010	1.4	52

Tabela 21. Comparação entre os resultados obtidos e as previsões teóricas.

Observamos que existe uma grande discrepância entre as previsões teóricas e os resultados obtidos. Na figura 15 representa-se R_C em função de τ e efetua-se um ajuste do tipo $R_C = a\tau + b$ pelo método dos mínimos quadrados aos dados obtidos e obtiveram-se os parâmetros de ajuste da tabela 22.

Figura 15. Ajuste linear à taxa de coincidências fortuitas R_C em função do tempo de resolução τ .

a (Cts/(s.ms))	3.00±0.57
b (Cts/s)	0.011±0.002
χ^2/ngl	0.414
ngl	4

Tabela 22. Parâmetros do ajuste da figura 15.

Constata-se em primeiro lugar que o valor obtido para o declive a é muito semelhante aos valores a_T da tabela 21. Para quantificar esta semelhança, efetuemos a média entre eles:

a (Cts/(s.ms))	3.00±0.57
$a_T (Cts/s)$	2.796±0.001
Desvio (#σ)	0.36
Desvio (%)	7.3

Tabela 23. Comparação entre os valores do declive obtidos pelo ajuste e pela aplicação do modelo teórico para as coincidências fortuitas.

O valor obtido para o declive é portanto congruente com o que seria expectável para a taxa de contagens R_A e R_B . No entanto, a ordenada na origem b não é nula. Aliás, esta é significativa, justificando que os dados obtidos sejam superiores a R_T . Este valor afetará de forma mais significativa a contabilização de coincidências fortuitas para baixos τ , daí os desvios percentuais serem especialmente elevados nesses casos. Esta ordenada na origem, que na prática pode ser considerado um fundo residual de coincidências, decorrerá naturalmente de ruído associado à própria eletrónica.

Por fim, devemos realçar que o valor χ^2/ngl muito inferior a 1 advém do do grande valor dos erros, cuja dimensão é facilmente observável no gráfico da figura 4, ou no facto de o desvio em unidades de σ da tabela 21 ser baixo mesmo quando o desvio percentual é extremamente elevado.

Para os tempo de resolução que foram utilizados ao longo das quatro sessões laboratoriais, obtém-se a partir do ajuste as seguintes taxas de coincidências fortuitas:

τ (<i>ns</i>)	$R_F(Cts/s)$
250	0.012±0.002
1250	0.015±0.002

Tabela 24. Taxa de coincidências fortuitas para os tempos de resolução utilizados.

Notamos que ao contrário da radiação de fundo, esta taxa de coincidências poderá ser sempre utilizada para corrigir a taxa de contagens do contador C visto ser independente da posição relativa entre os detetores e a fonte.

FONTE EM (x, y = 0) E VARIAR POSIÇÃO DO DETETOR MÓVEL

Deslocando a fonte ao longo do eixo dos xx, equidistante dos dois detetores, registou-se na tabela 25 os resultados obtidos para diferentes posições θ do detetor móvel.

x	θ (°)	C_A (Cts)	Erro (Cts)	C_C (Cts)	Erro (Cts)	C_B (Cts)	Erro (Cts)	R_A (Cts/s)	Erro (Cts/s)	R_C (Cts/s)	Erro (Cts/s)	R_B (Cts/s)	Erro (Cts/s)
0.5	-35	2183	47	1	1	2376	49	25.9	1.3	0.00	0.02	29.0	1.3
0.5	-30	2317	48	2	1	2476	50	28.2	1.3	0.02	0.02	30.7	1.3
0.5	-25	2305	48	1	1	2420	49	28.0	1.3	0.00	0.02	29.8	1.3
0.5	-20	2245	47	3	2	2391	49	27.0	1.3	0.04	0.03	29.3	1.3
0.5	-15	2294	48	134	12	2274	48	27.8	1.3	2.22	0.19	27.3	1.3
0.5	-10	2181	47	398	20	2399	49	25.9	1.3	6.62	0.33	29.4	1.3
0.5	-5	2337	48	624	25	2368	49	28.5	1.3	10.39	0.42	28.9	1.3
0.5	0	2232	47	274	17	2306	48	26.8	1.3	4.55	0.28	27.9	1.3
0.5	5	2374	49	27	5	2331	48	29.1	1.3	0.44	0.09	28.3	1.3
0.5	10	2268	48	1	1	2329	48	27.4	1.3	0.00	0.02	28.3	1.3
0.5	15	2277	48	2	1	2208	47	27.5	1.3	0.02	0.02	26.2	1.3
0.5	20	2319	48	3	2	2205	47	28.2	1.3	0.04	0.03	26.2	1.3
1	-35	2154	46	1	1	2502	50	25.5	1.3	0.00	0.02	31.1	1.3
1	-30	2150	46	4	2	2355	49	25.4	1.3	0.05	0.03	28.7	1.3
1	-25	2243	47	17	4	2443	49	26.9	1.3	0.27	0.07	30.2	1.3
1	-20	2258	48	226	15	2383	49	27.2	1.3	3.75	0.25	29.2	1.3
1	-15	2201	47	518	23	2350	48	26.2	1.3	8.62	0.38	28.6	1.3
1	-10	2292	48	565	24	2348	48	27.8	1.3	9.40	0.40	28.6	1.3
1	-5	2155	46	173	13	2208	47	25.5	1.3	2.87	0.22	26.2	1.3
1	0	2218	47	5	2	2195	47	26.5	1.3	0.07	0.04	26.0	1.3
1	5	2210	47	4	2	2160	46	26.4	1.3	0.05	0.03	25.4	1.3
1	10	2213	47	2	1	2084	46	26.4	1.3	0.02	0.02	24.2	1.3
1	15	2203	47	0	0	2066	45	26.3	1.3	-0.01	0.00	23.9	1.3
1	20	2206	47	0	0	2061	45	26.3	1.3	-0.01	0.00	23.8	1.3
1.5	-35	2166	47	5	2	2790	53	25.7	1.3	0.07	0.04	35.9	1.4
1.5	-30	2062	45	40	6	2638	51	23.9	1.3	0.65	0.11	33.4	1.3
1.5	-25	2115	46	295	17	2611	51	24.8	1.3	4.90	0.29	33.0	1.3
1.5	-20	2092	46	584	24	2466	50	24.4	1.3	9.72	0.40	30.5	1.3
1.5	-15	2153	46	406	20	2368	49	25.4	1.3	6.75	0.34	28.9	1.3
1.5	-10	2169	47	123	11	2356	49	25.7	1.3	2.04	0.18	28.7	1.3
1.5	-5	2168	47	3	2	2196	47	25.7	1.3	0.04	0.03	26.0	1.3
1.5	0	2178	47	4	2	2251	47	25.9	1.3	0.05	0.03	27.0	1.3
1.5	5	2151	46	1	1	2180	47	25.4	1.3	0.00	0.02	25.8	1.3
1.5	10	2208	47	2	1	2081	46	26.4	1.3	0.02	0.02	24.1	1.3

1.5	15	2135	46	0	0	2136	46	25.1	1.3	-0.01	0.00	25.0	1.3
1.5	20	2078	46	1	1	1953	44	24.2	1.3	0.00	0.02	22.0	1.3
-0.5	-35	2211	47	1	1	2123	46	26.4	1.3	0.00	0.02	24.8	1.3
-0.5	-30	2363	49	0	0	2163	47	28.9	1.3	-0.01	0.00	25.5	1.3
-0.5	-25	2354	49	4	2	2257	48	28.8	1.3	0.05	0.03	27.1	1.3
-0.5	-20	2244	47	1	1	2259	48	27.0	1.3	0.00	0.02	27.1	1.3
-0.5	-15	2221	47	2	1	2183	47	26.6	1.3	0.02	0.02	25.8	1.3
-0.5	-10	2273	48	4	2	2260	48	27.4	1.3	0.05	0.03	27.1	1.3
-0.5	-5	2302	48	17	4	2260	48	27.9	1.3	0.27	0.07	27.1	1.3
-0.5	0	2221	47	291	17	2297	48	26.6	1.3	4.84	0.28	27.7	1.3
-0.5	5	2309	48	610	25	2372	49	28.0	1.3	10.15	0.41	29.0	1.3
-0.5	10	2175	47	418	20	2368	49	25.8	1.3	6.95	0.34	28.9	1.3
-0.5	15	2320	48	131	11	2439	49	28.2	1.3	2.17	0.19	30.1	1.3
-0.5	20	2233	47	3	2	2279	48	26.8	1.3	0.04	0.03	27.4	1.3
-0.5	25	2278	48	1	1	2310	48	27.5	1.3	0.00	0.02	27.9	1.3
-0.5	30	2292	48	0	0	2403	49	27.8	1.3	-0.01	0.00	29.5	1.3
-0.5	35	2208	47	0	0	2401	49	26.4	1.3	-0.01	0.00	29.5	1.3
-1	-35	2297	48	1	1	2003	45	27.8	1.3	0.00	0.02	22.8	1.3
-1	-30	2218	47	1	1	2033	45	26.5	1.3	0.00	0.02	23.3	1.3
-1	-25	2268	48	0	0	2020	45	27.4	1.3	-0.01	0.00	23.1	1.3
-1	-20	2192	47	1	1	2072	46	26.1	1.3	0.00	0.02	24.0	1.3
-1	-15	2277	48	1	1	2163	47	27.5	1.3	0.00	0.02	25.5	1.3
-1	-10	2339	48	2	1	2217	47	28.5	1.3	0.02	0.02	26.4	1.3
-1	-5	2253	47	3	2	2205	47	27.1	1.3	0.04	0.03	26.2	1.3
-1	0	2188	47	7	3	2275	48	26.0	1.3	0.10	0.04	27.4	1.3
-1	5	2259	48	182	13	2288	48	27.2	1.3	3.02	0.22	27.6	1.3
-1	10	2337	48	570	24	2397	49	28.5	1.3	9.49	0.40	29.4	1.3
-1	15	2262	48	543	23	2325	48	27.3	1.3	9.04	0.39	28.2	1.3
-1	20	2194	47	210	14	2441	49	26.1	1.3	3.49	0.24	30.1	1.3
-1	25	2213	47	12	3	2424	49	26.4	1.3	0.19	0.06	29.8	1.3
-1	30	2206	47	2	1	2513	50	26.3	1.3	0.02	0.02	31.3	1.3
-1	35	2263	48	8	3	2533	50	27.3	1.3	0.12	0.05	31.7	1.3
-1.5	-15	2127	46	0	0	2081	46	25.0	1.3	-0.01	0.00	24.1	1.3
-1.5	-10	2219	47	0	0	2173	47	26.5	1.3	-0.01	0.00	25.7	1.3
-1.5	-5	2271	48	4	2	2102	46	27.4	1.3	0.05	0.03	24.5	1.3
-1.5	0	2180	47	1	1	2268	48	25.9	1.3	0.00	0.02	27.2	1.3
-1.5	5	2195	47	3	2	2376	49	26.1	1.3	0.04	0.03	29.0	1.3
-1.5	10	2189	47	126	11	2373	49	26.0	1.3	2.09	0.19	29.0	1.3
-1.5	15	2267	48	970	31	2365	49	27.3	1.3	16.15	0.52	28.9	1.3
-1.5	20	2222	47	571	24	2415	49	26.6	1.3	9.50	0.40	29.7	1.3
-1.5	25	2248	47	305	17	2631	51	27.0	1.3	5.07	0.29	33.3	1.3
-1.5	30	2297	48	34	6	2698	52	27.8	1.3	0.55	0.10	34.4	1.3
-1.5	35	2275	48	4	2	2688	52	27.5	1.3	0.05	0.03	34.2	1.3
Tab) F \/o	loroo	obtido	0.00	o font	om (-	– 0) .	nara vár	iaa naai	-ã do	datatar	mával

Tabela 25. Valores obtidos com a fonte em (x,y=0) para várias posições do detetor móvel. $(\Delta t_{aq}=60s)$

A taxa de coincidências e as taxas de contagens encontram-se corrigidas para as coincidências fortuitas e para a radiação de fundo, respetivamente. Na figura 16 representa-se graficamente cada um dos conjuntos de valores de R_C para os diferentes valores de x como função de θ .

Figura 16. Representação da taxa de coincidências R_C como função da rotação do detetor móvel θ , para diferentes valores de x, e respetivos ajustes da equação (6).

Pretende-se adaptar o modelo que já foi apresentado a esta nova situação. Como a fonte está aproximadamente equidistantes dos dois detetores, temos que $A_1 = A_2 = A$. Temos então, tal como anteriormente, de determinar a área da interseção $A(R_1,R_2,d)$ de dois círculos de raio R_1 e R_2 cujos centros estão distanciados de d. A determinação destes três valores apresenta-se na figura 17. Visto que o disco onde a fonte se encontra roda juntamente com o detetor móvel, projecta-se propositadamente no esquema o desvio em θ no detetor fixo por forma a ser mais simples analisar a geometria do problema.

Figura 17. Esquema para a determinação da equação (6).

Concluímos então que $R_1 = R_2 = R$ e que $d = |D\theta + 2x|$. Logo, aplicando a fórmula para a área da interseção de dois círculos de raios iguais, temos que:

$$R_{C}(\theta, x) = A \left[2R^{2} \arccos\left(\frac{|D\theta + 2x|}{2R} \times \frac{\pi}{180^{\circ}}\right) - \frac{|D\theta + 2x|}{2} \times \frac{\pi}{180^{\circ}} \sqrt{4R^{2} - \left((D\theta + 2x) \times \frac{\pi}{180^{\circ}}\right)^{2}} \right]$$
 (6)

Os parâmetros do ajuste da equação (6) a cada um dos conjuntos de pontos da figura 16 apresentam-se na tabela 26. Note-se que o valor de x também foi deixado como parâmetro livre.

	x = -1.5in	x = -1.0in	x = -0.5in	x = 0.5in	x = 1.0in	x = 1.5in
$A (Cts s^{-1}m^{-2})$	3.45±0.50	3.71±0.25	3.52±0.38	3.49±0.09	3.65±0.37	3.46±0.25
$x_e(in)$	- 1.51±0.04	- 1.02±0.02	-0.51 ± 0.03	0.49±0.01	1.03±0.04	1.51±0.03
χ^2/ngl	17.5	6.23	16.4	0.87	15.3	7.34

Tabela 26. Parâmetros do ajuste da figura 16.

Observa-se em primeiro lugar que os valores de χ^2/ngl são particularmente elevados, devido ao facto de haver muitos pontos aos quais ajustar a expressão.

De seguida, constata-se que a amplitude se mantém constante, o que indica que o máximo da taxa de coincidências não varia significativamente com a deslocação da fonte segundo x. Tal é lógico visto que na posição máxima, na qual os dois detetores e a fonte estão alinhados, esta se encontra a uma distância que varia muito pouco em relação a D, que é a distância para x=0.

Por último, o parâmetro livre x_e é congruente dentro do erro com o valor de x onde colocámos a fonte. No entanto, no início da primeira sessão (figura 4), tínhamos observado

que existia uma assimetria na nossa montagem. Relembramos que a expressão de ajuste era semelhante, mas a distância entre os centros dos círculos a intersetar era dada por

$$d = D |\theta - \Delta \theta| = |D\theta - \Delta x|,$$

onde se obteve $\Delta x = (0.232 \pm 0.047)cm = (0.091 \pm 0.019)in$. Desta vez, se quisermos incluir este desvio $\Delta\theta$, obtemos

$$d = |D(\theta - \Delta\theta) + 2x| = |D\theta - \Delta x + 2x| = |D\theta + 2(x - \Delta x/2)|$$
.

Ou seja, os parâmetros de ajuste x_e correspondem a $x-\Delta x/2$. A correção a x seria então da ordem de $\Delta x/2 \sim 0.045 in$, o que é da ordem de grandeza do erro de x_e . É portanto natural que esta simetria que foi detetada no caso da sessão 1 para x=0 aqui não seja detetada.

Vamos agora tentar analisar se é lógico o valor de θ para o qual a taxa de coincidências é máxima. Para tal, supomos que este máximo se dá quando a fonte e os detetores estão alinhados, tal como se representa no esquema da figura 18. Desse esquema conclui-se que o maximizante $\theta_{máx}$ será a solução da equação

$$\frac{D}{x} = \frac{1 + \cos(\theta_{\text{máx}})}{-\sin(\theta_{\text{máx}})}$$
 (7)

Figura 18. Esquema para a equação (7)

Na tabela 27 apresenta-se os valores de $\theta_{m\acute{a}x}$ para cada x, bem como a média, desvio padrão e skewness da distribuição referente a cada x. O desvio que se apresenta igualmente refere-se à comparação entre os valores obtidos para $\theta_{m\acute{a}x}$ e para a média.

x (in)	θ _{máx} (°)	μ (°)	σ (°)	γ ₁ ((°) ³)	Desvio (%)
-1.5	18.68	17.88±0.10	4.46±0.60	0.06±0.01	-4.3
-1.0	12.51	12.72±0.14	4.87±0.50	1.21±0.60	1.7
-0.5	6.28	6.10±0.14	4.73±0.30	1.24±0.36	-2.9
0.5	-6.28	-6.15 ± 0.13	4.82±0.30	0.06±0.29	2.1
1.0	-12.51	-12.81±0.13	4.69±0.50	-0.33 ± 1.05	-2.4
1.5	-18.68	-19.02±0.14	4.91±0.70	0.08±0.43	-1.8

Tabela 27. Média, Desvio padrão e Skewness das distribuições da figura 16 e comparação da média com o valor esperado teoricamente θ_{max} .

Concluimos então que:

- A posição do máximo é sempre próxima do valor esperado. De facto, os desvios são sempre inferiores a 5% e não exibem uma tendência de sinal.
- O valor do desvio padrão é aproximadamente constante. Tal é lógico as curvas correspondem a translações da original mas preservam a sua forma.
- A skewness é baixa, em módulo inferior à unidade, não indicando a existência de assimetrias na distribuição.

VARIAR A POSIÇÃO DA FONTE FRACA (r, ϕ) , COM O DETETOR MÓVEL EM $\theta=0$

Nesta secção, utiliza-se uma fonte de Sódio-22 mais fraca, de menor atividade radioativa, e registam-se as contagens correspondentes a diferentes valores de φ para r=1. Os resultados apresentam-se na tabela 28.

Note-se que as taxas R_A e R_B não estão corrigidas para a radiação de fundo visto que estamos a utilizar uma fonte diferente daquela que foi utilizada para calcular a taxa de fundo. A taxa R_C por outro lado está corrigida para as coincidências fortuitas visto que estas são independentes da fonte utilizada.

No gráfico da figura 19 representam-se os valores das taxas coincidencias da tabela 28 como função de φ , bem como o ajuste da expressão (5), cujos parâmetros se encontram na tabela 29. Este ajuste foi feito da mesmo forma que anteriormente, isto é, manualmente pelo método dos mínimos quadrados, dada a complexidade da fórmula.

Ф (°)	C_A (Cts)	Erro (Cts)	C_C (Cts)	Erro (Cts)	C_B (Cts)	Erro (Cts)	R_A (Cts/s)	Erro (Cts/s)	R_C (Cts/s)	Erro (Cts/s)	R_B (Cts/s)	Erro (Cts/s)
0	1331	36	0	0	1215	35	11.1	1.1	-0.01	0.01	10.1	1.1
10	1267	36	1	1	1362	37	10.6	1.1	-0.01	0.01	11.4	1.1
20	1214	35	1	1	1342	37	10.1	1.1	-0.01	0.01	11.2	1.1
30	1232	35	3	2	1400	37	10.3	1.1	0.01	0.01	11.7	1.1
40	1237	35	14	4	1375	37	10.3	1.1	0.10	0.03	11.5	1.1
50	1122	33	40	6	1316	36	9.4	1.1	0.32	0.05	11.0	1.1
60	1152	34	73	9	1451	38	9.6	1.1	0.59	0.07	12.1	1.1
70	1193	35	127	11	1471	38	9.9	1.1	1.04	0.09	12.3	1.1
80	1167	34	163	13	1511	39	9.7	1.1	1.34	0.11	12.6	1.1
90	1171	34	211	15	1548	39	9.8	1.1	1.74	0.12	12.9	1.1
100	1172	34	217	15	1536	39	9.8	1.1	1.79	0.12	12.8	1.1
110	1114	33	140	12	1461	38	9.3	1.1	1.15	0.10	12.2	1.1
120	1121	33	109	10	1521	39	9.3	1.1	0.89	0.09	12.7	1.1
130	1222	35	73	9	1386	37	10.2	1.1	0.59	0.07	11.6	1.1
140	1155	34	22	5	1395	37	9.6	1.1	0.17	0.04	11.6	1.1
150	1182	34	5	2	1422	38	9.9	1.1	0.03	0.01	11.9	1.1
160	1302	36	3	2	1361	37	10.9	1.1	0.01	0.01	11.3	1.1
170	1262	36	3	2	1323	36	10.5	1.1	0.01	0.01	11.0	1.1
180	1254	35	4	2	1266	36	10.5	1.1	0.02	0.01	10.6	1.1
190	1267	36	1	1	1185	34	10.6	1.1	-0.01	0.01	9.9	1.1
200	1345	37	1	1	1215	35	11.2	1.1	-0.01	0.01	10.1	1.1
210	1324	36	0	0	1123	34	11.0	1.1	-0.01	0.01	9.4	1.1
220	1437	38	12	3	1179	34	12.0	1.1	0.09	0.02	9.8	1.1
230	1483	39	29	5	1110	33	12.4	1.1	0.23	0.04	9.3	1.1
240	1463	38	82	9	1254	35	12.2	1.1	0.67	0.07	10.5	1.1
250	1508	39	112	11	1102	33	12.6	1.1	0.92	0.09	9.2	1.1
260	1543	39	168	13	1126	34	12.9	1.1	1.39	0.11	9.4	1.1
270	1519	39	213	15	1134	34	12.7	1.1	1.76	0.12	9.5	1.1
280	1508	39	190	14	1180	34	12.6	1.1	1.57	0.11	9.8	1.1
290	1504	39	140	12	1092	33	12.5	1.1	1.15	0.10	9.1	1.1
300	1521	39	78	9	1100	33	12.7	1.1	0.64	0.07	9.2	1.1
310	1485	39	58	8	1190	34	12.4	1.1	0.47	0.06	9.9	1.1
320	1399	37	25	5	1178	34	11.7	1.1	0.19	0.04	9.8	1.1
330	1340	37	6	2	1151	34	11.2	1.1	0.04	0.01	9.6	1.1
340	1417	38	1	1	1194	35	11.8	1.1	-0.01	0.01	10.0	1.1
350	1313	36	1	1	1258	35	10.9	1.1	-0.01	0.01	10.5	1.1

Tabela 28. Valores obtidos com a fonte fraca, para várias posições de φ com r = 1 e θ = 0 . $(\Delta t_{aq} = 120s)$

Figura 19. Representação gráfica da taxa de coincidências da fonte fraca em função de ϕ , para r=1, e respetivo ajuste pelo método dos mínimos quadrados da expressão (5).

$A (Cts s^{-1})$	26.6
χ^2/ngl	10,82

Tabela 29. Parâmetro do ajuste da figura 19.

Em primiro lugar, verificamos que como seria de esperar o valor aqui obtido para a amplitude é bastante inferior ao obtido anteriormente $(152.98\ Cts/s)$, indiciando a menor atividade radioativa da fonte fraca. Ainda assim, devemos notar que o valor de χ^2/ngl é relativamente elevado o que corresponde a um mau ajuste.

Sessão 4 - 31/03/2016

MONTAGEM

Repetiu-se novamente o procedimento da sessão 1, tendo-se colocado um resolving time de 250ns. Obtiveram-se os seguintes parâmetros para o pico de 511keV e para os valores dos limiares de tensão do Pulser e das Timing SCA.

Tempo de aquisição: $\Delta t_{aa} = 130s$ (igual para ambos os picos)

Pico	Área Total (Cts)	Área do Sinal (Cts)	Centróide - C (Can)	FWHM (Can)	Sigma - σ (Can)
511keV - Detetor Móvel Canais: [242;288]	4379±66	2906±126	266.13	21,10	8.96
511keV - Detetor Fixo Canais: [240;286]	3801±62	2469±119	264.53	24.61	10.44

Tabela 30. Dados referentes aos espectros observados na sessão 4.

	Limite In	ferior (V)	Limite Superior (V)		
	Pulser	Timing SCA	Pulser	Timing SCA	
Detetor Móvel	2.52±0.01	2.11±0.01	3.12±0.01	2.51±0.01	
Detetor Fixo	2.47±0.01	2.05±0.01	3.09±0.01	2.53±0.01	

Tabela 31. Valores dos limiares de tensão do pulser e Timing SCA utilizados na sessão 4.

OBTENÇÃO DE UM SINOGRAMA PET

Nesta última sessão pretende-se obter um sinograma PET correspondente às coincidências $\gamma\gamma$ originadas pelas duas fontes de Sódio-22 (a forte e a fraca) colocadas simultaneamente no porta alvos, em posições distintas.

Colocámos a fonte fraca na posição (x,y)=(-1,0) e a fonte forte em (x,y)=(0,1.5). Assim, garantimos um espaçamento de 90° em φ , e de 0.5in em r, por forma a conseguir diferenciar no sinograma a contribuição de cada uma das fontes.

Devido à extensão dos resultados obtidos, apresenta-se na tabela 32 apenas a matriz utilizada para fazer o sinograma, cuja entrada (ϕ,θ) corresponde à taxa de coincidências com o detetor móvel na posição θ e o porta alvos rodado de ϕ .

Na figura 20 representa-se graficamente o sinograma e a imagem tumográfica, fornecidos pelo docente após utilizar o sotware MATLAB para aplicar a *Inverse Radon Transform* aos dados da matriz da tabela 32.

			θ (°)											
		-30,00	-25,00	-20,00	-15,00	-10,00	-5,00	0,00	5,00	10,00	15,00	20,00	25,00	30,00
	0,00	-0,01	0,05	0,02	0,09	0,55	1,29	1,42	2,84	7,04	7,09	2,69	0,12	-0,01
	15,00	-0,01	-0,01	0,02	0,09	0,05	0,32	0,99	3,94	7,89	7,84	1,64	0,15	0,05
	30,00	-0,01	-0,01	0,02	-0,01	-0,01	0,09	0,39	3,94	8,69	5,29	1,19	0,05	0,09
	45,00	0,02	-0,01	-0,01	0,12	0,02	0,12	1,39	5,59	8,39	4,49	1,14	0,49	0,05
	60,00	0,05	-0,01	-0,01	-0,01	0,02	0,19	2,95	6,94	5,84	2,69	2,09	0,82	0,19
	75,00	-0,01	-0,01	0,12	0,02	0,02	0,99	6,69	7,49	2,19	1,19	1,54	0,85	0,12
	90,00	-0,01	-0,01	0,02	-0,01	0,15	3,09	8,45	5,14	0,89	0,59	1,34	0,85	0,19
	105,00	0,02	-0,01	0,05	0,05	2,25	8,02	6,35	1,89	0,39	1,24	1,04	0,62	0,05
	120,00	-0,01	0,02	0,05	0,45	5,02	7,05	4,15	0,59	0,69	1,39	0,59	0,15	-0,01
	135,00	0,02	0,02	0,09	2,49	7,52	6,19	1,92	0,54	1,24	0,74	0,54	0,02	-0,01
	150,00	-0,01	0,09	0,32	4,52	8,69	4,72	0,55	1,24	1,19	0,69	0,04	-0,01	0,02
Φ (9)	165,00	0,05	0,02	1,59	4,92	8,29	2,29	1,22	1,14	0,59	-0,01	0,04	0,09	0,02
Φ (°)	180,00	0,02	0,05	2,92	7,55	7,69	3,29	1,02	0,44	0,09	-0,01	-0,01	-0,01	-0,01
	195,00	0,12	0,25	2,89	7,59	7,02	3,32	1,15	0,14	0,04	-0,01	-0,01	0,02	-0,01
	210,00	0,02	0,12	2,75	5,19	7,32	4,99	0,52	0,04	-0,01	0,09	-0,01	-0,01	-0,01
	225,00	0,09	0,12	1,35	5,55	8,32	4,92	1,62	-0,01	-0,01	0,14	0,04	-0,01	-0,01
	240,00	0,12	0,09	1,15	4,45	8,65	6,82	3,59	0,34	0,09	0,04	0,04	0,05	0,02
	255,00	-0,01	0,39	1,29	2,25	5,05	7,25	6,05	2,59	0,24	-0,01	0,04	0,09	0,05
	270,00	0,12	0,69	2,02	1,05	2,25	5,72	8,49	8,54	1,59	0,14	-0,01	0,02	-0,01
	285,00	0,29	0,62	1,02	1,15	0,49	2,79	6,95	8,54	4,99	0,54	0,14	0,09	0,12
	300,00	0,12	0,45	1,49	1,09	0,72	0,99	3,69	7,29	7,64	2,79	0,24	0,02	-0,01
	315,00	-0,01	0,52	1,02	1,52	1,12	0,42	1,55	6,04	8,69	4,94	1,44	0,09	0,05
	330,00	-0,01	0,09	0,72	1,09	1,52	0,82	1,05	3,54	7,64	6,09	2,39	0,15	0,15
	345,00	0,02	0,02	-0,01	0,49	0,92	1,65	0,95	3,24	7,09	7,79	2,94	0,12	0,05

Tabela 32. Valores da taxas de coincidências para diferentes $\theta \ e \ \varphi$.

Figura 20. Sinograma (à esquerda) e imagem tumográfica (à direita) referente à matriz da tabela 32.

Identifica-se claramente no sinograma um andamento em tons de vermelho correspondente à fonte forte, e outro andamento em tons de azul claro correspondentes à fonte fraca. Estes estão desfazados de 90° , o que corresponde ao desfazamento em φ das duas fontes. Para além disso, a amplitude em θ do andamento correspondente à fonte forte é inferior à do correspondente à fonte fria, o que advém do facto de o r=1 para a fonte forte e r=1.5 para a fonte fraca.

Na imagem tumográfica, é simples de reconhecer a fonte forte e a fonte fraca. No entanto, os eixos utilizados são pouco intuitivos. Vamos então estabelecer uma correspondência entre este sistema de coordenadas (θ_0,θ_{90}) e o sistema de coordenadas habitual que temos usado (x,y).

Este sistema de coordenadas funciona da seguinte forma: um dado ponto (x,y), quando $\phi=0^{\circ}$, estará alinhado com os dois detetores caso o detetor móvel esteja desviado de θ_0 ; por outro lado, quando $\phi=90^{\circ}$, estará alinhado com os dois detetores caso o detetor móvel esteja desviado de θ_{90} .

Ou seja, o ângulo θ_0 define uma reta no porta alvos correspondente a todas as posições (x,y) que estarão alinhadas com os dois detetores caso $\theta=\theta_0$. Por sua vez, o ângulo θ_{90} define também por sua vez uma reta. A interseção destas duas retas estabele a correspondência $(\theta_0,\theta_{90}) \rightarrow (x,y)$. Na figura 21 concretiza-se este raciocínio.

Figura 21. Esquema para determinar a correspondência $(\theta_0, \theta_{00}) \rightarrow (x, y)$

Igualando as expressões das duas retas, obtém-se

$$x = -D \frac{1 + cos\theta_{90} + sin\theta_0 sin\theta_{90}}{(1 + cos\theta_9)(1 + cos\theta_{90}) + sin\theta_0 sin\theta_{90}}$$

Aplicando esta correspondência, passa a ser possível representar graficamente a imagemm tumográfica num sistema de coordenadas (x, y). O resultado apresenta-se na figura 22.

Figura 22. Imagem tumográfica para o sistema de coordenadas (x,y)

Assim, podemos observar imediatamente que as posições das fontes coincidem com aquelas nas quais foram calculadas, evidenciando a validade da reconstrução. O método utilizado foi portanto capaz de perfeitamente reconstruir a posição das duas fontes. Para as

localizar de forma mais exacta na imagem considerou-se a média da posição dentro do contorno de contagens máximas para cada fonte, e um erro associado à FWHM calculado no contorno intermédio. Assim, obtiveram-se como posições das fontes os seguintes resultados da tabela 33.

	x (in)	y (in)
Fonte Forte	-0.02 ± 0.25	1.63±0.18
Fonte Fraca	-1.17±0.26	0.01±0.23

Tabela 33. Valores reconstruídos para a posição das fontes forte e fraca.

Por conseguinte, vemos que dentro da margem de erro as posições das fontes coincidem com o seu valor, evidenciando a qualidade da reconstrução e a forma como a escolha inicial das posições das duas fontes foi adequada.