STAT 475/575 Midterm Review

Outline

Data

• Vector-format: $\boldsymbol{X} = \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix}$

• Matrix-format (*n* observations): $X = \begin{bmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{np} \end{bmatrix}$

Multivariate normal distribution (MVN)

• $\boldsymbol{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

• PDF: $f(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)' \Sigma^{-1}(x-\mu)\right]$

• Contour is ellipse/ellipsoid: $(x - \mu)' \Sigma^{-1} (x - \mu) = c$

• Check normality:

- Plot: histogram, QQ plot, ...

- Test: Shapiro-Wilk test, ...

Compare center (hypothesis test)

• $H_0: \cdots = \mathbf{c} \text{ vs } H_a: \ldots \neq \mathbf{c}$

• Assumption/condition

• Test statistics & distribution

• Case

– One-sample (Hotelling's T2): $\mu = c$

– Two-sample (Hotelling's T2): $\mu^{(1)} - \mu^{(2)} = c$ – More samples (MANOVA): $\mu^{(1)} = \cdots = \mu^{(g)}$

• Confidence region

- Region/ellipsoid (p-dim)

- Interval (1-dim)

* One-at-a-time

* Bonferroni (simultaneous)

* T^2 (simultaneous)

Principal Component Analysis (PCA)

$$PC_j = \sum_{i=1}^p a_{ji} X_i$$

Factor Analysis (FA)

$$X_i - \mu_i = \sum_{j=1}^m l_{ij} F_j + \epsilon_i.$$

• Principal component method

• Principal factor method

• Maximum likelihood estimation

One-sample Hotelling's T2 Test

Univariate case: one-sample t-test

 $H_0: \mu = \mu_0 \text{ vs } H_a: \mu \neq \mu_0.$

$$t = \frac{\bar{X} - \mu_0}{s/\sqrt{n}} \sim t_{n-1}$$

Multivariate case: one-sample Hotelling's T^2 test

 $H_0: \pmb{\mu} = \pmb{\mu}_0$ vs $H_a: \pmb{\mu} \neq \pmb{\mu}_0$ (at least one variable not equal).

$$T^2 = (\bar{X} - \mu_0)' \left(\frac{S}{n}\right)^{-1} (\bar{X} - \mu_0) \sim \frac{(n-1)p}{n-p} F_{p,n-p}$$

where sample covariance $S = \frac{1}{n-1} \sum_i (\boldsymbol{X}_i - \bar{\boldsymbol{X}}) (\boldsymbol{X}_i - \bar{\boldsymbol{X}})'$.

$In \ R \hbox{: DescTools::} \\ HotellingsT2Test$

Conditions

- 1. Independency (most important)
- 2. Sample from a population with mean μ , covariance Σ
- 3. Multivariate-normality (in R: mvShapiroTest::mvShapiro.Test)

Repeated measure

 $H_0: C\boldsymbol{\mu} = \boldsymbol{c} \text{ vs } H_a: C\boldsymbol{\mu} \neq \boldsymbol{c}.$

$$T^{2} = (C\bar{\boldsymbol{X}} - \boldsymbol{c})' \left(\frac{CSC'}{n}\right)^{-1} (C\bar{\boldsymbol{X}} - \boldsymbol{c}) \sim \frac{(n-1)q}{n-q} F_{q,n-q}$$

where $q = \operatorname{rank}(C)$.

Two-sample Hotelling's T2 Test

Univariate case: two-sample t-test

 $H_0: \mu_1 - \mu_2 = c \text{ vs } H_a: \mu_1 - \mu_2 \neq c.$

$$t = \frac{\bar{X}_1 - \bar{X}_2 - c}{\sqrt{s_1^2/n_1 + s_2^2/n_2}} \sim t_{n_1 + n_2 - 2}$$

where s_1^2, s_2^2 can be replaced with pooled variance $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}$.

Multivariate case: two-sample Hotelling's T^2 test

 $H_0: \boldsymbol{\mu}^{(1)} - \boldsymbol{\mu}^{(2)} = \boldsymbol{c}$ vs $H_a: \boldsymbol{\mu}^{(1)} - \boldsymbol{\mu}^{(2)} \neq \boldsymbol{c}$ (at least one variable not equal).

$$T^{2} = (\bar{\boldsymbol{X}}^{(1)} - \bar{\boldsymbol{X}}^{(2)} - \boldsymbol{c})' \left(\frac{S_{1}}{n_{1}} + \frac{S_{2}}{n_{2}} \right)^{-1} (\bar{\boldsymbol{X}}^{(1)} - \bar{\boldsymbol{X}}^{(2)} - \boldsymbol{c}) \sim \frac{(n_{1} + n_{2} - 2)p}{n_{1} + n_{2} - p - 1} F_{p, n_{1} + n_{2} - p - 1}$$

where S_1, S_2 have to be replaced with pooled variance $S_p = \frac{(n_1 - 1)S_1 + (n_2 - 1)S_2}{(n_1 - 1) + (n_2 - 1)}$.

In R: DescTools::HotellingsT2Test

Conditions

- 1. Independency (within group & between group) (most important)
- 2. Sample 1 from a population with mean μ_1 , covariance Σ_1 Sample 2 from a population with mean μ_2 , covariance Σ_2
- 3. Homogeneity of variance $(\Sigma_1 = \Sigma_2)$ (in R: biotools::boxM)
- 4. Multivariate-normality (for each group) (in R: mvShapiroTest::mvShapiro.Test)

MANOVA (g > 2)

Univariate case: ANOVA

 $H_0: \mu_1 = \cdots = \mu_g \text{ vs } H_a: \mu_k \neq \mu_l \text{ for some } k, l.$

$$F = \frac{MS_{trt}}{MS_{err}} = \frac{SS_{trt}/(g-1)}{SS_{err}/(n-g)} \sim F_{g-1,n-g}$$

Multivariate case: MANOVA

 $H_0: \boldsymbol{\mu}^{(1)} = \cdots = \boldsymbol{\mu}^{(g)}$ vs $H_a: \boldsymbol{\mu}^{(k)} \neq \boldsymbol{\mu}^{(l)}$ for some k, l (at least two groups, at least one variable not equal).

(Wilk's)
$$\Lambda = \frac{|W|}{|B+W|} = \frac{\left|\sum_{l=1}^{g} \sum_{j=1}^{n_l} (\boldsymbol{X}_j^{(l)} - \bar{\boldsymbol{X}}^{(l)}) (\boldsymbol{X}_j^{(l)} - \bar{\boldsymbol{X}}^{(l)})'\right|}{\left|\sum_{l=1}^{g} \sum_{j=1}^{n_l} (\boldsymbol{X}_j^{(l)} - \bar{\boldsymbol{X}}) (\boldsymbol{X}_j^{(l)} - \bar{\boldsymbol{X}})'\right|} \qquad i.e. \frac{|\text{Within-group SS}|}{|\text{Total SS}|}$$

In R: car::Manova

Conditions

- 1. Independency (within group & between group) (most important)
- 2. Each sample from a population with mean μ_l , covariance Σ_l
- 3. Homogeneity of variance $(\Sigma_1 = \cdots = \Sigma_q)$ (in R: biotools::boxM)
- 4. Multivariate-normality (for each group) (in R: mvShapiroTest::mvShapiro.Test)

Confidence Region/Interval

(p-dim) Region for $\mu, \mu^{(1)} - \mu^{(2)}$

One-sample:

$$T^{2} = (\bar{\boldsymbol{X}} - \boldsymbol{\mu}_{0})' \left(\frac{S}{n}\right)^{-1} (\bar{\boldsymbol{X}} - \boldsymbol{\mu}_{0}) \sim \frac{(n-1)p}{n-p} F_{p,n-p}$$

$$\implies \boldsymbol{\mu} : (\bar{\boldsymbol{X}} - \boldsymbol{\mu})' \left(\frac{S}{n}\right)^{-1} (\bar{\boldsymbol{X}} - \boldsymbol{\mu}) \leq \frac{(n-1)p}{n-p} F_{(p,n-p),1-\alpha}$$

Two-sample:

$$T^{2} = (\bar{\boldsymbol{X}}^{(1)} - \bar{\boldsymbol{X}}^{(2)} - \boldsymbol{c})' \left(\frac{S_{1}}{n_{1}} + \frac{S_{2}}{n_{2}} \right)^{-1} (\bar{\boldsymbol{X}}^{(1)} - \bar{\boldsymbol{X}}^{(2)} - \boldsymbol{c}) \sim \frac{(n_{1} + n_{2} - 2)p}{n_{1} + n_{2} - p - 1} F_{p, n_{1} + n_{2} - p - 1}$$

$$\implies \boldsymbol{\mu}^{(1)} - \boldsymbol{\mu}^{(2)} : (\bar{\boldsymbol{X}}^{(1)} - \bar{\boldsymbol{X}}^{(2)} - (\boldsymbol{\mu}^{(1)} - \boldsymbol{\mu}^{(2)}))' \left(\frac{S_{1}}{n_{1}} + \frac{S_{2}}{n_{2}} \right)^{-1} (\bar{\boldsymbol{X}}^{(1)} - \bar{\boldsymbol{X}}^{(2)} - (\boldsymbol{\mu}^{(1)} - \boldsymbol{\mu}^{(2)}))$$

$$\leq \frac{(n_{1} + n_{2} - 2)p}{n_{1} + n_{2} - p - 1} F_{(p, n_{1} + n_{2} - p - 1), 1 - \alpha}$$

where S_1, S_2 have to be replaced with pooled variance S_p .

(1-dim) Interval for $\mu_j, \mu_j^{(1)} - \mu_j^{(2)}, \mu_j^{(k)} - \mu_j^{(l)}$

Formula:

center \pm coef \times std.err

If $g \geq 2$:

• individual variances: $S_{jj}^{(l)}$ • pooled variance: $S_{p,jj} = \frac{1}{n-q} \sum_{l=1}^{g} (n_l - 1) S_{jj}^{(l)}$

(1). One-at-a-time CI

$$\mu_j : \left[\bar{X}_j \pm t_{n-1,1-\alpha/2} \cdot \sqrt{\frac{S_{jj}}{n}} \right]$$

$$\mu_j^{(1)} - \mu_j^{(2)} : \left[\bar{X}_j^{(1)} - \bar{X}_j^{(2)} \pm t_{n_1+n_2-2,1-\alpha/2} \cdot \sqrt{\frac{S_{jj}^{(1)}}{n_1} + \frac{S_{jj}^{(2)}}{n_2}} \right]$$

$$\mu_j^{(k)} - \mu_j^{(l)} : \left[\bar{X}_j^{(k)} - \bar{X}_j^{(l)} \pm t_{n-g,1-\alpha/2} \cdot \sqrt{\frac{S_{jj}^{(k)}}{n_k} + \frac{S_{jj}^{(l)}}{n_l}} \right]$$

(2). Bonferroni simultaneous CI

Trick: \cdot/m in one-at-a-time CI, where m is the no. of comparisons (CIs) you want. E.g.

• (One sample)
$$\mu_1, \dots, \mu_p \implies m = p$$

• (Two samples)
$$\mu_1^{(1)} - \mu_1^{(2)}, \cdots, \mu_p^{(1)} - \mu_p^{(2)} \implies m = p$$

• (More samples)
$$\begin{cases} \mu_1^{(1)} - \mu_1^{(2)}, \cdots, \mu_p^{(1)} - \mu_p^{(2)} \\ \mu_1^{(1)} - \mu_1^{(3)}, \cdots, \mu_p^{(1)} - \mu_p^{(3)} \\ \mu_1^{(2)} - \mu_1^{(3)}, \cdots, \mu_p^{(2)} - \mu_p^{(3)} \end{cases} \implies m = p \cdot \binom{g}{2}$$

$$\mu_j : \left[\bar{X}_j \pm t_{n-1,1-\alpha/2m} \cdot \sqrt{\frac{S_{jj}}{n}} \right]$$

$$\mu_j^{(1)} - \mu_j^{(2)} : \left[\bar{X}_j^{(1)} - \bar{X}_j^{(2)} \pm t_{n_1+n_2-2,1-\alpha/2m} \cdot \sqrt{\frac{S_{jj}^{(1)}}{n_1} + \frac{S_{jj}^{(2)}}{n_2}} \right]$$

$$\mu_j^{(k)} - \mu_j^{(l)} : \left[\bar{X}_j^{(k)} - \bar{X}_j^{(l)} \pm t_{n-g,1-\alpha/2m} \cdot \sqrt{\frac{S_{jj}^{(k)}}{n_k} + \frac{S_{jj}^{(l)}}{n_l}} \right]$$

(3). T^2 simultaneous CI

Trick: $\sqrt{\cdot}$ in CR.

$$\mu_j : \left[\bar{X}_j \pm \sqrt{\frac{(n-1)p}{n-p}} F_{(p,n-p),1-\alpha} \cdot \sqrt{\frac{S_{jj}}{n}} \right]$$

$$\mu_j^{(1)} - \mu_j^{(2)} : \left[\bar{X}_j^{(1)} - \bar{X}_j^{(2)} \pm \sqrt{\frac{(n_1 + n_2 - 2)p}{n_1 + n_2 - p - 1}} F_{(p,n_1 + n_2 - p - 1),1-\alpha} \cdot \sqrt{\frac{S_{jj}^{(1)}}{n_1} + \frac{S_{jj}^{(2)}}{n_2}} \right]$$

Principal Component Analysis (PCA)

Model

Idea: uncorrelated linear combinations of original covariates X.

$$\boldsymbol{Y}_{p\times 1} = A'_{p\times p} \boldsymbol{X}_{p\times 1}$$

$$\begin{cases} Y_1 = \boldsymbol{a}'_1 \boldsymbol{X} = a_{11} X_1 + a_{12} X_2 + \dots + a_{1p} X_p \\ Y_2 = \boldsymbol{a}'_2 \boldsymbol{X} = a_{21} X_1 + a_{22} X_2 + \dots + a_{2p} X_p \\ \vdots \\ Y_p = \boldsymbol{a}'_p \boldsymbol{X} = a_{p1} X_1 + a_{p2} X_2 + \dots + a_{pp} X_p \end{cases}$$

 $Var(\boldsymbol{X}) = \Sigma$ with eigenvalues $\lambda_1 \ge \cdots \ge \lambda_p \ge 0$. $\boldsymbol{a}_k' \boldsymbol{a}_k = 1, Cov(Y_k, Y_l) = \boldsymbol{a}_k' \Sigma \boldsymbol{a}_l = 0$.

Properties

- Spectral(eigen) decomposition: $\Sigma = E\Lambda E' = \lambda_1 e_1 e_1' + \dots + \lambda_p e_p e_p'$, with eigenvalue-eigenvector pairs (λ_i, e_i) .
- Loading matrix: $A = E = [e_1, \dots, e_p]$, with coefficients $a_j = e_j$.
- $Var(\boldsymbol{Y}) = \Lambda = \operatorname{diag}(\lambda_i) \text{ and } Cov(\boldsymbol{Y}, \boldsymbol{X}) = \Lambda E'.$ $Var(Y_j) = \lambda_j \text{ or } \frac{\lambda_j}{\lambda_1 + \dots + \lambda_p} \text{ (proportion)}.$
- PC score: $Y_{n \times p} = X_{n \times p} A$ or $Y_{p \times 1} = A' X$.
- Choose number of PCs: (1) scree plot + elbow method (2) % variance (3) context (4) meaningful interpretation (5) desire for simplicity (6)...
- Interpretation: size (absolute value) and sign (positive or negative) of coefficients a_i .

In R: prcomp or princomp

prcomp(x, center = T, scale. = F)

- scale. = F: raw/centered data (covariance)
- scale. = T: standardized data (correlation)

princomp(x, cor = F) or princomp(covmat, cor = F)

- cor = F: centered data (covariance)
- cor = T: standardized data (correlation)

Factor Analysis (FA)

Model

Idea: latent variables behind original covariates X.

$$\boldsymbol{X}_{p\times 1} - \boldsymbol{\mu}_{p\times 1} = L_{p\times m} \boldsymbol{F}_{m\times 1} + \boldsymbol{\epsilon}_{p\times 1} \\ \begin{cases} X_1 - \mu_1 = l_{11}F_1 + l_{12}F_2 + \dots + l_{1m}F_m + \epsilon_1 \\ X_2 - \mu_2 = l_{21}F_1 + l_{22}F_2 + \dots + l_{2m}F_m + \epsilon_2 \\ \vdots \\ X_p - \mu_p = l_{p1}F_1 + l_{p2}F_2 + \dots + l_{pm}F_m + \epsilon_p \end{cases}$$

$$E(\mathbf{F}) = \mathbf{0}, Var(\mathbf{F}) = I_m, E(\epsilon) = \mathbf{0}, Var(\epsilon) = \Psi = \operatorname{diag}(\psi_i), \text{ and } \mathbf{F} \perp \epsilon.$$

Properties

- $Var(\mathbf{X}) = \Sigma = LL' + \Psi$ and $Cov(\mathbf{X}, \mathbf{F}) = L$. $Var(X_i) = \sigma_{ii} = l_{i1}^2 + \dots + l_{im}^2 + \psi_i$ and $Cov(X_i, X_k) = \sigma_{ik} = l_{i1}l_{k1} + \dots + l_{im}l_{km}$.
- $\sigma_{ii} = h_i^2 + \psi_i$. Communality: $h_i^2 = \sum_{j=1}^m l_{ij}^2$. Uniqueness: $\psi_i = \sigma_{ii} h_i^2$.
- Infinite rotations: $X \mu = LF + \epsilon = (LT)(T'F) + \epsilon$ for any orthogonal matrix T. E.g. varimax, quartimax, promax, ...
- Contribution of j-th factor: $\sum_{i=1}^p l_{ij}^2$ or $\frac{\sum_{i=1}^p l_{ij}^2}{\lambda_1 + \dots + \lambda_p}$ (proportion).
- Factor score: $F_{n \times m} = (X_{n \times p} \mathbf{1}_n \bar{X}')(LL' + \Psi)^{-1}L$ or $F_{m \times 1} = L'(LL' + \Psi)^{-1}(X \bar{X})$.
- Interpretation: size (absolute value) + sign (positive or negative) of coefficients l_j .

Three common methods of estimating factor loadings:

- 1. Principal component method:
 - Loading matrix: $L = [\boldsymbol{l}_1, \dots, \boldsymbol{l}_m] = [\sqrt{\lambda_1} \boldsymbol{e}_1, \dots, \sqrt{\lambda_m} \boldsymbol{e}_m]$, with coefficients $\boldsymbol{l}_j = \sqrt{\lambda_j} \boldsymbol{e}_j$.
 - Choose number of Factors: (1) no. of PCs in PCA (2) % variance (3) context (4) meaningful interpretation (5) desire for simplicity (6)...
- 2. Principal factor method:
 - Iterative method: $\Psi \to L \to \Psi \to L \to \cdots$.
- 3. Maximum likelihood estimation:
 - Normality assumption: X, F, ϵ are normal.
 - Maximize the likelihood function with respect to (μ, L, Ψ) .
 - Likelihood ratio test: H_0 : m-factors are sufficient.
 - Choose number of Factors: (1) likelihood ratio test (2) % variance (3) context (4) meaningful interpretation (5) desire for simplicity (6)...

In R: prcomp or factanal

- 1. PC method:
 - (1) PCA: prcomp or princomp
 - (2) Factor loading: rotation %*% diag(sdev)
 - (3) Rotation (optional): varimax on first m columns of factor loading
- 3. MLE:

factanal(x, factors, scores = "regression", rotation = "varimax") or
factanal(factors, covmat, n.obs, scores = "regression", rotation = "varimax")

- rotation: "varimax" (default) or "none"
- scores: "none" (default) or "regression"