第四章 随机变量的数字特征 参考答案

	设随机变量 (X, Y)		$N(0,0;1,4;-rac{1}{2})$,则下多	问随机变量中服从标准		
			(C) $\frac{\sqrt{3}}{3}(X+Y)$	(D) $\frac{\sqrt{3}}{3}(X - Y)$;)	
2.	设随机变量 X 的期]望和方差分别为 μ, α		必有·····(D))	
	(A) $E(X-c)^2 = E(X^2) - c^2$. (B) $E(X-c)^2 = E(X-\mu)^2$. (C) $E(X-c)^2 < E(X-\mu)^2$. (D) $E(X-c)^2 \ge E(X-\mu)^2$. 思路: 左侧= $E[(X-\mu) + (\mu-c)^2]$, 展开					
3.		• • • • • • • • • • • • • • • • • • • •	X,Y 不相关,则 Vai	$(X-3Y+1)=\cdots (\ \square$))	
	(A) 2	(B) 4				
	思路: 利用方差的性	性质,所求方差化为 X	和Y的方差组合			
4. 设随机变量 X 与 Y 相互独立,且 $E(X)$, $E(Y)$ 存在,记 $U = \max\{X, Y\}$, $V = \min$ 则 $E(UV) = \cdots$						
			(C) $E(U)E(Y)$)	
	(A) E(O)E(V) 思路: 利用 UV=XY		(C) $E(O)E(T)$	(D) E(X)E(V)		
5.		设随机变量 X 与 Y 独立同分布, 记 $U=X-Y, V=X+Y$,则随机变量 U 与 V 必				
٥.	然······(D)					
	(A) 不独立	(B) 独立	(C) 相关	(D) 不相关		
	思路: 求 U 和 V 的	办方差				
=	L、填空题(共5小题,每小题4分,共20分)					
1.	设 X 服从参数为 λ	X 服从参数为 $\lambda > 0$ 的泊松分布,且已知 $E[(X-1)(X-2)] = 1$,则 $\lambda =1$.				
	思路: 泊松分布的期望和方差等于 λ					
2.	设随机变量 X 与 Y 的相关系数为 0.5, 且 $E(X) = E(Y) = 0$, $E(X^2) = E(Y^2) = 2$, $E((X+Y)^2) = 6$.					
	思路:将所求值展开,其中包括 X 与 Y 的协方差,可由相关系数求出					
3.	设随机变量(X,Y)	服从 N(0,0;1,4; $ ho$), V	Var(2X-Y)=1,则	$ ho = rac{7}{8}$.		
	思路:由已知的方差	的方差求出 X 和 Y 的协方差,进而求出相关系数				
4.	设随机变量 X 的概率密度函数为 $f(x) = a + bx^2, 0 < x < 1$, 已知 $E(X) = 0.6$, 则 $Var(X) = \frac{2}{25}$.					
	思路:由密度的规范性和期望,进而密度函数中的两个参数					
5.	设随机变量 X 的分	布函数				
	则 $E(X) = 2$	<i>_</i>	$\Phi(x) + \frac{1}{2}\Phi(\frac{x-4}{2}),$			

思路: 利用标准正态分布的期望为0, 以及密度的规范性

三、游客乘电梯从电视塔底层到顶层观光,电梯于每个整点的第 5 分钟、25 分钟和 55 分钟从底层起行.假设一游客在早八点的第 X 分钟到达底层侯梯处,且 X 在 [0,60] 上服从均匀分布,求该游客等候时间的数学期望.(本题 30 分)

解. 已知 X 在 [0,60] 上服从均匀分布, 其概率密度函数为

$$f_X(x) = \begin{cases} \frac{1}{60}, & 0 \le x \le 60, \\ 0, & \text{else.} \end{cases}$$

设 Y 为游客等候电梯的时间 (单位:分),则

$$Y = g(X) = \begin{cases} 5 - X, & 0 < X \le 5, \\ 25 - X, & 5 < X \le 25, \\ 55 - X, & 25 < X \le 55, \\ 60 - X + 5, & 55 < X \le 60. \end{cases}$$

因此
$$E(Y) = E[g(X)] = \int_{-\infty}^{+\infty} g(x) f_X(x) dx = \frac{1}{60} \int_{0}^{60} g(x) dx$$

$$= \frac{1}{60} \left[\int_{0}^{5} (5 - x) dx + \int_{5}^{25} (25 - x) dx + \int_{25}^{55} (55 - x) dx + \int_{55}^{60} (65 - x) dx \right]$$

$$= \frac{1}{60} [12.5 + 200 + 450 + 37.5] = 11.67$$

注: 学生不可省略计算步骤。

四、设二维随机变量(X,Y)的联合概率密度函数为(本题 30 分)

$$f(x,y) = \begin{cases} 3x, & 0 < y < x < 1; \\ 0, & \text{else.} \end{cases}$$

求: (1) Var(X-Y); (2) ρ_{XY} .

方法2

解. 方法1
$$E(X) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f(x,y) dx dy = \int_{0}^{1} 3x^{2} dx \int_{0}^{x} dy = \int_{0}^{1} 3x^{3} = \frac{3}{4}.$$

同理可求(学生不可以省略计算步骤):

$$E(X^{2}) = \frac{3}{5}, E(Y) = \frac{3}{8}, E(Y^{2}) = \frac{1}{5}, E(XY) = \frac{3}{10},$$

$$Var(X) = E(X^{2}) - E(X)^{2} = \frac{3}{80}. \quad Var(Y) = \frac{19}{320},$$

$$Cov(X, Y) = E(XY) - E(X)E(Y) = \frac{3}{160},$$

$$Var(X - Y) = Var(X) + Var(Y) - 2Cov(X, Y) = \frac{19}{320}.$$

$$\rho_{XY} = \frac{Cov(X, Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}} = \frac{3}{\sqrt{57}}.$$

$$E(X - Y) = \frac{3}{8}, E(X - Y)^{2} = \frac{1}{5}$$

$$Var(X - Y) = E(X - Y)^{2} - E^{2}(X - Y) = \frac{19}{220}.$$