

- Terms
- Motivation
- **Supported Problem Types**
- **GPU Performance Parameters**
- ✓ General Kernel-Level Strategy
- **Kernel Parameters**
- Auto-Tuning
- Mapping Problem Sizes to Kernels
- Performance Experiments
- Future Work

TERMS

- Compute-Unit (CU)
- Local Data Share (LDS)
- Vector General-Purpose Register (VGPR)
- Instruction-Level Parallelism (ILP)
 - issue high latency memory operation
 - instructions independent of memory op
 - wait for memory op
 - instructions dependent on memory op

MOTIVATION

- GEMM API encapsulates trillions of problems, all of which behave differently.
 - Precisions, Transpose A, Transpose B, M, N, K, Strides
- Many problem types behave similar to GEMM.
 - $\overline{-C_{ij}} = \beta C_{ij} + \alpha \sum_{k} A_{ik} * B_{kj}$ (gemm NN)
 - $-C_{ijk} = \sum_{l} A_{ilk} * B_{ilk}$ (batched gemm NT)
 - $-C_{ijk} = \sum_{lmn} A_{ilmnk} * B_{jlmnk}$ (batched gemm w/ 3D summation)
 - $-C_{ijk} = \sum_{lmn} A_{inlkm} * B_{mjlkn}$ (batched gemm w/ 3D summation different data layout)
- Can we auto-generate kernels which achieve peak performance
 - For all problem types?
 - For all problem sizes?
 - On all GPUs?

SUPPORTED PROBLEM TYPES

Example:

$$C_{ijk} = \alpha \sum_{lmn} A_{inlkm} * B_{mjlkn} + \beta C_{ijk}$$

- Tensor indices are ordered shortest to largest stride, i.e., the zeroth index/dimension has a stride of 1 (typically).
- C indices are labeled alphabetically starting with "i".
- Summation indices are labeled alphabetically picking up where C indices left off.
- A, B indices are then labeled according to which summation or C index they correspond to.
- Tensile kernel will employ:
 - Enough work-groups to cover all the dimensions of C
 - Enough nested loops to carry out the multi-dimensional summation.
- A kernel for a given problem type will give correct answer for any problem sizes.

GPU PERFORMANCE PARAMETERS

VEGA10 FRONTIER EDITION

- Compute Throughput
 - -13.1 TFlops = 2 (flops/cycle)*64(CUs)*64(lanes/CU)*1600MHz
- **Global Memory Bandwidth**
 - 480 GB/s
 - coalescing
- Global Memory Latency
 - hundreds of cycles
 - hide using CU-occupancy or ILP
- **CU** Occupancy
 - resources (VGPRs, LDS) permitting, multiple workgroups are concurrently scheduled on CU
- Whole-GPU Occupancy
 - need enough total workgroups to fill up the GPU
- Caches
 - L2 shared by all CUs
 - L1 dedicated to CU

- LDS Bandwidth
 - TB/s
- LDS Latency
 - tens of cycles
 - hide using CU-occupancy or ILP
- **Instruction Divergence**
 - all threads within workgroup do same instruction else need to compute and apply execution masks
- Instruction Throughput
 - gemm requires 2*M*N*K instructions, all extras hurt efficiency
 - minimize instructions which don't count
 - maximize dual-issuing of instructions which don't count with instructions that do; must be from different wavefronts
 - VALU, SALU, LDS, global memory, branch
- Power
 - VALU, LDS, memory, caches

GENERAL KERNEL-LEVEL STRATEGY

TILING

Tiling at all memory levels to read from lower-bandwidth memory less and from higher-bandwidth memory more to prevent bandwidth from being bottleneck

THREAD-TILE SUB-ITERATION

WHERE WE WANT TO GET TO

```
// read 8 A elements
ds_read_b128 		— 16 threads reading exact same address of LDS; coalesced.
ds read b128
// read 8 B elements
ds read b128
ds read b128
// 64 MACs
v_mac_f32
v_mac_f32
v_mac_f32
v_mac_f32
+ 60 more
// Note: Prefetching and waits not shown
```


GLOBAL TO LDS

AMD

Don't Transpose Data

Do Transpose Data

SUMMATION LOOP

GENERAL KERNEL-LEVEL STRATEGY **OTHER**

- ✓ High CU-Occupancy and prefetching to prevent latencies from being bottleneck
- ✓ High GPU-Occupancy to create enough parallel work to fill all CUs
- ✓ Eliminate divergence from summation loop

KERNEL PARAMETERS

- WorkGroup, LocalSplitU 1)
- ThreadTile
- 3) VectorWidth
- 4) GlobalSplitU
- GlobalSplitUWGM 5)
- 6) PrefetchGlobalRead
- PrefetchLocalRead 7)
- WorkGroupMapping 8)
- LoopUnroll 9)
- 10) NumLoadsCoalesced
- 11) GlobalReadCoalesceGroup
- 12) GlobalReadCoalesceVector
- 13) KernelLanguage
- 14) NonTemporal

(13)

(3,10,11,12)calculate addresses prefetch iter 0 **BEGIN LOOP** (3,6)load global iter 1 read lds 1 (7)wait lds read 0 FMAs 0 read lds 2 wait lds read 1 FMAs 1

(9)

read lds N-1 wait global read write lds swap lds red / black ptrs wait read lds N-2 FMAs N-2 wait write lds & N-1 barrier read lds iter 1 subiter 0 FMAs N-1 END LOOP (14)write vgprs to C

KERNEL PARAMETERS AFFECT GPU PERFORMANCE

AUTO-TUNING

- ✓ Steps 1-6 create a set of candidates which will be benchmarked against all problem sizes.
- ✓ User can limit final kernels to keep backend library size manageable. Otherwise each problem size could have own custom kernel.
- ✓ User can create multiple sets of candidates and benchmark each against a set of problem sizes.
 - small/skinny tiles for small/skinny problem sizes
 - large tiles for large problem sizes

(7) Benchmark Final Parameters


```
// Exact Sizes
if (sizeI==101 && sizeJ==202 && sizeK==303)
        return function ptr 0;
if (sizeI==4004 && sizeJ==5005 && sizeK==6006)
        return function ptr 1;
```

```
// Range Sizes - Recursive Size Splitting
if (sizeI < threshold I 0) {</pre>
        if (sizeJ < threshold J 0) {</pre>
                  if (sizeK < threshold_K_0)</pre>
                           return function ptr 2;
                  if (sizeK < threshold K 1)</pre>
                           return function_ptr_3;
                  // more K thresholds
                  return function ptr 4;
         if (sizeJ < threshold_J_1) {</pre>
                  // more K thresholds
         // more J, K thresholds
if (sizeI < threshold_I_1) {</pre>
        // more J, K thresholds
// more I, J, K thresholds
```

EXPERIMENT 1 - 2D

Set of 100 kernels

- ThreadTile = 8x8, 8x4, 8x2, 4x8, 4x4, 4x2, 2x8, 2x4, 2x2
- WorkGroup = 16x16x1, 16x8x2, 8x16x2, 8x8x4
- GlocalSplitU = 1, 2, 4, 6, 8
- DepthU = 8
- VectorWidth = max
- PrefetchGlocalRead = True
- PrefetchLocalRead = True
- WorkGroupMapping = 8
- Benchmark kernels against 2D range of sizes
 - M = 16 -> 5632
 - -N = 16 -> 5632
 - -K = 3104
- Analyze performance and kernel properties for each data point.

PERFORMANCE

	N																										
	16	32	64	112	176	256	352	464	592	736	896	1072	1264	1472	1696	1936	2192	2464	2752	3056	3376	3712	4064	4432	4816	5216	5632
16	29	62	118	205	314	448	596	735	890	1,024	1,131	1,204	1,401	1,502	1,562	1,625	1,646	1,750	1,754	1,823	1,833	1,887	1,937	1,890	1,976	1,977	2,036
32	60	116	238	406	615	880	1,137	1,424	1,722	2,006	2,271	2,304	2,628	2,877	2,953	3,120	3,171	3,365	3,452	3,617	3,619	3,654	3,800	3,710	3,848	3,896	3,992
64	121	236	452	774	1,168	1,635	2,030	2,402	2,785	3,173	3,539	3,625	4,206	4,506	4,723	4,959	4,936	5,146	5,483	5,846	5,644	5,979	6,404	5,869	6,251	6,449	6,510
112	206	409	790	1,270	1,831	2,365	2,758	3,275	3,590	3,989	4,353	4,398	5,002	5,487	5,422	6,033	5,625	5,791	6,362	6,879	6,652	6,891	7,436	7,058	7,203	7,016	7,458
176	316	633	1,201	1,848	2,404	3,178	3,457	4,012	4,506	4,695	5,479	5,397	6,223	5,894	6,204	6,908	6,755	7,237	7,001	7,332	7,864	7,630	8,156	7,868	7,704	8,343	8,023
256	456	878	1,575	2,342	3,065	4,021	4,271	4,847	5,052	5,810	5,780	5,968	6,579	6,898	6,811	7,593	7,095	7,458	7,936	8,597	8,012	8,558	9,211	8,357	8,761	8,387	8,835
352	604	1,186	2,141	2,971	3,566	4,566	4,720	5,458	5,924	6,001	6,555	6,683	7,363	7,298	7,224	7,899	7,811	7,934	7,886	8,573	8,636	8,741	9,013	8,483	8,534	9,188	8,854
464	755	1,447	2,489	3,340	4,113	5,100	5,480	5,877	5,810	6,906	7,229	7,075	7,789	7,932	7,927	8,217	8,232	8,403	8,562	8,950	8,526	8,708	9,437	8,882	9,007	8,905	9,378
592	947	1,711	2,892	3,749	4,510	5,561	6,022	5,942	6,393	7,288	7,512	7,550	7,734	8,013	8,120	8,403	8,677	8,430	8,848	9,118	8,947	8,898	9,573	9,414	9,861	9,461	9,707
	1,073	2,018	3,415	4,254	4,966	6,241	6,099	6,967	7,254	7,666	7,913	8,111	8,476	8,693	8,424	9,010	8,796	9,114	9,079	9,678	9,715	9,801	10,293	9,534	9,505	10,182	9,853
	1,228	2,225	3,755	4,450	5,394	6,442	6,447	6,794	6,950	7,527	7,974	8,695	8,841	8,860	9,428	9,395	9,785	9,516	9,655	9,758	10,327	10,173	10,338	10,442	10,216	-,	10,786
	1,304 1.427	2,380 2.716	3,895 4.490	4,616 5.222	5,536 6,367	6,392 7.212	6,786 7,401	7,242 7.782	7,635 7,755	8,173 8,474	8,763 9,031	8,442 9.012	9,037 9,125	9,050 9,373	9,180 9,506	9,259 9,739	9,446 9,929	9,620 9,614	9,836 10.071	10,038 10.300	9,745 10.133	-,	10,334 11.079	10,281 10.544	10,016 11.055	10,399 10.580	10,338 11.158
	1,509	2,710	4,700	5,562	6.147	7,212	7,401	7,782	7,733	8,619	8,981	8,968	9,123	9,585	9,300	9,739	9,897	9,804	-/-	10,300	-,	· ·	/	10,344	10.434		10.728
	1,608	3,128	4,896	,	6,562	7,643	7,503	8.015	8,196	8.409	9,484	9,100	9,521	9,792	9.641	9.605	9,943	9.926	-,	-,	10,124	10,303	10,824	10,323	10,434	-/	10,728
	1.673	3.162	5.085	6.223	6,961	8,097	7,939	8,244	8.373	9.018	9,442	9.245	9.734	9,894	9.617	10,001	· · ·	10.313	.,	-,	-,	10.183		10,575	10,411	-/-	11.049
	1.666	3,291	5,152	6.069	7.078	8.025	7,870	8,285	8.692	8.773	9,876	9.419	9,929	9,894	9,946	10,081	-,	10.083	-,	-,	-,	10,543	-,-	10,806	10,726		10.651
	1.746	3.438	5.511	6.385	7.275	8.370	8.098	8.424	8.438	9.103	9.541	9.608	9.661	9.778	9.924	10.247	- / -	10.339	-,	· · ·	-,	-,	-,	-,	-,		11.065
	1,805	3,501	5,703	6,353	7,109	8,311	8,062	8,530	8,825	9,046	9,846	9,765	10,032	-, -	10,053	/	-,	10,617	-,		-,	-/	,	10,608	10,669	, , , ,	10,868
056	1,848	3,623	5,879	6,856	7,724	8,901	8,576	8,932	9,107	9,681	9,918	10,008	10,310	10,268	10,040	10,734	10,520	10,516	10,508	11,474	10,751	11,497	11,552	10,864	11,024	11,207	11,393
376	1,836	3,570	5,910	6,907	7,934	8,733	8,671	8,510	8,930	9,739	10,468	9,701	10,125	10,145	10,398	10,296	10,481	10,394	10,669	10,722	10,744	10,801	10,989	11,199	10,775	11,037	11,290
712	1,890	3,701	6,048	6,773	7,709	8,632	8,643	8,630	8,760	9,770	10,161	9,957	10,041	10,525	10,275	10,136	10,441	10,462	11,227	11,372	10,682	10,935	11,159	11,420	11,065	11,343	11,700
064	1,948	3,824	6,511	7,413	8,252	9,440	8,982	9,380	9,553	10,282	10,555	10,289	11,005	10,828	10,748	10,806	10,915	11,081	11,257	11,483	10,935	11,228	11,521	11,210	11,548	11,328	11,685
132	1,938	3,700	6,049	7,225	7,945	9,047	8,473	8,873	9,381	9,555	10,561	10,279	10,599	10,338	10,382	10,563	10,819	11,061	10,643	10,856	11,197	11,554	11,277	11,100	11,480	11,371	11,310
316	1,966	3,819	6,334	7,244	7,879	9,041	8,608	9,070	9,868	9,534	10,245	9,994	11,052	10,466	10,211	10,420	10,701	11,044	10,694	11,023	10,786	11,199	11,605	11,480	11,416	11,375	11,396
216	1,976	3,920	6,601	7,198	8,310	8,942	9,198	8,960	9,429	10,168	10,722	10,314	10,655	10,538	10,822	10,464	10,578	11,008	10,755	11,146	10,974	11,427	11,338	11,310	11,311	11,364	11,433
32	2,034	3,996	6,180	7,169	7,800	9,051	8,528	9,295	9,440	9,765	10,740	10,183	10,998	10,577	10,521	10,906	10,524	10,999	10,797	11,250	11,160	11,654	11,602	11,166	11,244	11,355	11,513

GFlops K = 3104

WINNERS

N

	16	32	64	112	176	256	352	464	592	736	896	1072	1264	1472	1696	1936	2192	2464	2752	3056	3376	3712	4064	4432	4816	5216	5632
16	3	3	3	3	3	3	3	3	1	3	1	7	11	26	1	26	1	26	26	18	18	14	18	15	15	1	15
32	3	3	3	3	3	3	3	3	3	3	1	7	1	18	1	18	1	18	14	18	18	14	18	15	15	29	15
64	3	3	3	3	3	3	3	12	7	12	7	12	12	14	23	30	12	0	30	30	23	30	30	0	30	5	
12	8	3	3	3	3	1	12	23	10	0	28	25	25	28	28	28	25	22	5	5	28	5	5	28	5	28	28
76	3	3	3	3	23	4	23	13	28	25	25	28	28	28	5	5	28	5	28	28	5	28	5	5	6	6	
56	8	3	3	1	26	14	9	10	17	22	22	17	22	5	22	24	22	5	24	24	5	6_	6	5	24	5	24
52	8	3	3	4	4	2	25	28	28	25	5	28	5	28	28	5	5	6	5_	5	5	5	20	24	27	27	-
64	3	3	1	7	4	10	28	28	30	5	28	28	5	5	5	20	5	5	5	20	24	5	27	24	5	5	24
92	3	3	7	4	25	25	28	25	30	5	28	28	28	20	5	5	5	5	24	27	5	5	20	24	27	24	20
36	3	3	4	2	25	28	25	5	5	28	28	28	20	5	5	20	24	5	5	24	24	24	27	20	5	27	24
96	11	1	4	2	17	2	21	17	17	28	28	6	5	5	24	24	27	24	24	24	27	24	6	27	24	6	27
72	8	1	4	25	28	25	25	28	28	28	6	5	5	5	27	5	5	5	5	24	5	6	24	27	24	6	9
64	11	1	4	25	28	28	5	5	28	6	5	5	5	27	5	20	24	5	20	24	24	27	27	20	27	20	27
72	11	18	4	28	25	5	25	5	6	5	28	5	27	5	24	27	24	5	6	20	6	24	27	6	6	6	- 6
96	1	1	7	10	25	28	25	5	28	28	24	27	5	24	5	20	24	24	27	24	27	24	27	6	20	27	27
36	11	1	17	28	28	5	5	20	5	20	24	5	20	27	20	27	24	27	24	27	24	24	27	27	24	6	27
92	1	26	12	25	25	28	5	5	5	24	27	5	24	24	24	24	6	16	24	27	24	6	27	27	27	27	27
64	26	26	17	28	5	5	28	5	5	27	24	5	5	5	5	27	6	24	27	20	24	6	27	27	27	27	27
52	26	26	28	5	28	28	28	5	24	5	5	5	20	24	27	24	24	27	24	24	24	27	27	20	20	20	27
56	18	26	22	28	28	24	5	20	27	24	5	24	24	20	24	27	27	20	24	27	16	27	27	27	27	27	27
76	11	11	28	25	5	5	5	5	5	6	27	5	24	16	27	24	24	24	24	6	24	27	27	27	27	27	27
12	3	11	22	5	28	6	5	27	5	24	24	24	27	24	24	24	24	24	27	27	27	27	27	27	27	27	27
64	18	18	22	5	5	6	20	27	20	27	20	24	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27
32	8	15	17	28	5	5	24	24	24	20	27	27	20	16	16	27	27	27	16	27	27	27	27	27	27	27	27
16	26	15	22	5	28	28	5	5	27	5	24	24	27	16	24	20	27	27	16	27	27	27	27	27	27	27	27
16	11	19	5	28	5	28	27	5	24	27	20	24	20	27	27	16	27	27	20	27	27	27	27	27	27	27	27
32	19	19	22	24	5	5	24	24	6	24	27	24	27	24	27	27	27	27	27	27	27	27	27	27	27	27	2

```
Flops/Byte = 2*MT0*MT1 / (MT0+MT1)/4
```

For example 128x128 tile: 2*128*128/(128+128)/4 = 32

M

	Ş	32	60	12	116	250	z	A6A	Sol	136	g S	2017	126	* \W1	100	Sold	200	200	*215)	30th	_{જુ} જી(315	7060	* 423	N875	522	જ્
16	8	8	8	8	8	8	8	8	6	8	6	6	6	4	6	4	6	4	4	4	4	4	4	2	2	6	2
32	8	8	8	8	8	8	8	8	8	8	8	11	8	8	8	8	8	8	11	8	8	11	8	8	8	11	8
64	8	8	8	8	8	8	8	11	11	11	11	11	11	11	11	13	11	11	13	13	11	13	13	11	13	16	16
112	8	8	8	8	8	8	11	11	13	11	16	16	16	16	16	16	16	13	16	16	16	16	16	16	16	16	16
176	8	8	8	8	11	11	11	11	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	21	21	16
256	8	8	8	8	8	11	11	13	13	13	13	13	13	16	13	16	13	16	16	16	16	21	21	16	16	16	16
352	8	8	8	11	11	13	16	16	16	16	16	16	16	16	16	16	16	21	16	16	16	16	32	16	32	32	16
464	8	8	8	11	11	13	16	16	13	16	16	16	16	16	16	32	16	16	16	32	16	16	32	16	16	16	16
592	8	8	11	11	16	16	16	16	13	16	16	16	16	32	16	16	16	16	16	32	16	16	32	16	32	16	32
736	8	8	11	13	16	16	16	16	16	16	16	16	32	16	16	32	16	16	16	16	16	16	32	32	16	32	16
896	8	8	11	13	13	13	13	13	13	16	16	21	16	16	16	16	32	16	16	16	32	16	21	32	16	21	32
.072	8	8	11	16	16	16	16	16	16	16	21	16	16	16	32	16	16	16	16	16	16	21	16	32	16	21	21
.264	8	8	11	16	16	16	16	16	16	21	16	16	16	32	16	32	16	16	32	16	16	32	32	32	32	32	32
.472 .696	8	8	11 11	16 13	16 16	16 16	16 16	16 16	2116	16 16	16 16	16 32	32 16	16 16	16 16	32 32	16 16	16 16	21 32	32 16	21 32	16 16	32 32	21 21	21 32	21 32	21 32
.090	8	8	13	16	16	16	16	32	16	32	16	16	32	32	32	32	16	32	16	32	16	16	32	32	16	21	32
192	8	8	11	16	16	16	16	16	16	16	32	16	16	16	16	16	21	21	16	32	16	21	32	32	32	32	32
464	8	8	13	16	16	16	16	16	16	32	16	16	16	16	16	32	21	16	32	32	16	21	32	32	32	32	32
752	8	8	16	16	16	16	16	16	16	16	16	16	32	16	32	16	16	32	16	16	16	32	32	32	32	32	32
056	8	8	13	16	16	16	16	32	32	16	16	16	16	32	16	32	32	32	16	32	21	32	32	32	32	32	32
376	8	8	16	16	16	16	16	16	16	21	32	16	16	21	32	16	16	16	16	21	16	32	32	32	32	32	32
712	8	8	13	16	16	21	16	32	16	16	16	16	32	16	16	16	16	16	32	32	32	32	32	32	32	32	32
064	8	8	13	16	16	21	32	32	32	32	32	16	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
432	8	8	13	16	16	16	16	16	16	32	32	32	32	21	21	32	32	32	21	32	32	32	32	32	32	32	32
816	8	8	13	16	16	16	16	16	32	16	16	16	32	21	16	32	32	32	21	32	32	32	32	32	32	32	32
216	8	11	16	16	16	16	32	16	16	32	32	16	32	32	32	21	32	32	32	32	32	32	32	32	32	32	32
632	11	11	13	16	16	16	16	16	21	16	32	16	32	16	32	32	32	32	32	32	32	32	32	32	32	32	32

GLOBAL SPLIT U

EXPERIMENT 2 - DEEPBENCH

- Set of thousands of kernels.
- Benchmark kernels against ~250 problem sizes of DeepBench.
- Analyze speedup of kernel tuned for exact problem size vs "fastest" 128x128 tile kernel.

SPEEDUP OF DEEPBENCH SIZES

FUTURE WORK

