Application 4 of Stack: Tower of Hanoi

The problem is as follows:

- N discs of decreasing size stacked on one needle & two empty needles are given.
- It is required to arrange all the discs onto a second needle in decreasing order of size.
- The Third needle may be used as temporary storage.

Application 4 of Stack: Tower of Hanoi (Continue)

The movement of the discs is restricted by the following rules:

- 1. Only one disc may be moved at a time.
- 2. A disc may be moved from any needle to any other.
- 3. At no time may a larger disc rest upon a smaller disc.

Solution of the problem (N=2)

Solution

- The solution of this problem is:
- To move <u>one</u> disc, move it from $A \rightarrow C$.
- To move <u>two</u> discs, move the first disc $A \rightarrow B$, move the second from $A \rightarrow C$, then move the disc from $B \rightarrow C$.
- In general, the solution of the problem moving *N* discs from A to C has three steps:
 - 1. Move $\underline{N-1}$ discs from $A \rightarrow B$. (source \rightarrow interm)
 - 2. Move N^{th} disc from $A \rightarrow C$. (source \rightarrow destination)
 - 3. Move N-1 discs from $B \rightarrow C$. (interm \rightarrow dest)

Problem of Tower of Hanoi

• This problem uses STACK as a data structure for the solution. Because the problem is solved using recursion.

Algorithm (recursive) Book

■ ToH(source, intermediate, destination, no.of disc)

Solution of the problem (N=2)

Graphical solution of the problem (N=2)

