Permutation

Outline

- Review of hypothesis testing
- Permutation tests
- ► Two-sample problem
- ► Tests of independence

Test of Significance

Example: Testing

- ▶ There are two possibilities: Version A or version B
- ▶ Which version is better?

Experiment

- ► Subjects are randomly assigned to group A or B
- ► Group A gets version A
- ► Group B gets version B

Results

A (n=100)	B (<i>m</i> =150)
4	2
8	6
6	4
4	6
Average: 4.2	Average: 5.1

Is the observed effect due to chance?

- ▶ If we repeat the experiment, the observed effect could be smaller or larger due to random variation.
- ▶ Is it likely that we would observe an effect this large if there were no effect in the population?
- ▶ This question can be answered by hypothesis tests.

Neyman-Pearson

- ▶ Null hypothesis H₀ -"effect not present"
- ► Alternative hypothesis *H*₁- "effect present"
- ▶ Test statistic *T* measures the size of the effect
- **p**-value: probability that T would be as large as observed under H_0

Permutation tests are an interesting and conceptually simple

alternative to traditional tests when the required distributional assumptions (typically, Gaussian assumptions) are likely to be

violated.

References

Why Permutation Tests are Superior to t and F Tests in Biomedical Research, Ludbrook and Dudley, The American Statistician, 52 (2) 1998, 127-132

Independent samples

X (size n)	Y (size m)
4	2
8	6
6	4
4	6

Goal: Compare the distributions of X and Y

Permutation Null

- ➤ X and Y are i.i.d. with the sample distribution. So the labeling (X or Y) of the observations does not matter.
- Shuffling procedure
- 1. Input: Vectors X and Y of lengths n and m, respectively.
- 2. Form long vector Z = (X, Y) of length n + m
- 3. Take a simple random sample of size n from Z and assign to X^* ; assign remaining m to Y^*

Let's look at an example. Suppose we have two samples of data $x_1 = 1$, $x_2 = 0$, $x_3 = -1$; $v_1 = 4$, $v_2 = 7$.

Then n = 3, m = 2, $Z = \{1, 0, -1, 4, 7\}$, and $\nu = \{1, 2, 3, 4, 5\}$.

There are the number of possible ways we can permute ν that lead to distinct partitions $Z^* = (X^*, Y^*)$.

To help clarify, lets look at some.

1.
$$X^* = \{-1, 0, 1\}, Y^* = \{4, 7\}$$

2.
$$X^* = \{-1, 0, 4\}, Y^* = \{1, 7\}$$

3.
$$X^* = \{-1, 0, 7\}, Y^* = \{4, 1\}$$

4. $X^* = \{-1, 4, 1\}, Y^* = \{0, 7\}$

5.
$$X^* = \{-1, 7, 1\}, Y^* = \{4, 0\}$$

5.
$$X^* = \{-1, 7, 1\}, Y^* = \{4, 0\}$$

The key feature of permuting the data from their original values is that if $F_X = F_V$, then the distribution of (X, Y) is the same as the

distribution of (X^*, Y^*) no matter how we repartition the data.

Two-sample Problem with semiparametric alternative

Consider two independent random samples

$$X_1, \ldots, X_n \sim F_x$$

 $Y_1, \ldots, Y_m \sim F_y$

$$H_0: F_x = F_y$$
$$H_1: \theta(F_x) \neq \theta(F_y)$$

 θ is a parameter, but F_x and F_y are arbitrary

Example: Do X and Y have different (mean/variance/median)s?

Example:

- Are the means of the two groups (A and B) different?
- \blacktriangleright H_0 : X and Y have same distribution
- ► *H*₁: *X* and *Y* have different means
- Absolute two-sample t-statistic |t|- large when means are different

Approximate permutation test procedure

Step 1. Compute the observed test statistic $\hat{\theta} = \hat{\theta}(Z, \nu)$ Step 2. For each replicated, indexed $b = 1, 2, \dots, B$:

• Generate a statistic $\hat{ heta}^{(b)} = \hat{ heta}^*(Z, \pi_b)$

Empirical p-value

Step 3. If large values of $\hat{\theta}$ support the alternative hypothesis, then compute the empirical p-value by

$$\hat{p} = \frac{1}{B+1} \left[1 + \sum_{b=1}^{B} 1\{\hat{\theta}^{(b)} \ge \hat{\theta}\} \right]$$

Step 4. Reject H_0 at significance level α if $\hat{p} \leq \alpha$.

Proportion of observed and shuffled $\{\hat{\theta}, \hat{\theta}^{(1)}, \dots, \hat{\theta}^{(b)}\}$ that exceed observed $\hat{\theta}$

Small p-value is evidence against H_0

Let's see an example using the ${\tt chickwts}$ dataset in R. Here we we study the weights of newly hatched chicks fed different supplements.

The sample we'll label X was fed soybean, and the sample we'll label Y was fed linseed.

We will let $\hat{\theta}$ be the two-sample t-statistic, which we know is sensitive to difference in the means of the two distributions.

It will be interesting to compare the p-value obtained by referring to the t-distribution with the p-value from the permutation distribution.

```
x=c(158,171,193,199,230,243,248,248,250,267,271,316,327,328,9=c(141,148,169,181,203,213,229,244,257,260,271,309) ## First we find the p-value for the ## two-sample t statistic by referring to the t(n+m-2) t.test(x,y,var.equal=TRUE)
```

```
## Two Sample t-test
##
## data: x and y
## t = 1.3208, df = 24, p-value = 0.199
## alternative hypothesis: true difference in means is not
## 95 percent confidence interval:
```

mean of x mean of y ## 246.4286 218.7500

-15.57282 70.92996 ## sample estimates:

##

Now we'll let $\hat{ heta} = t $ to test null hypothesis of equal mean against a
two sided alternative, and use the randomization distribution for the

p-value.

```
B=10000
z=c(x,y)
nu=1:26
reps=numeric(B)
t0=t.test(x,y,var.equal=TRUE)$statistic
for(i in 1:B){
  perm=sample(nu,size=14,replace=FALSE)
  x1=z[perm]
  y1=z[-perm]
  reps[i]=t.test(x1,y1,var.equal=TRUE)$statistic
  reps[i]=abs(reps[i])
  }
p=mean(c(t0,reps)>=t0)
р
```

[1] 0.2065793

So, the two-*p*-values are quite similar.

Nonparametric two-sample Problem

$$X_1,\ldots,X_n\sim F_x$$

$$Y_1,\dots,Y_m\sim F_y$$

$$H_0: F_x = F_y$$

$$H_1: F_x \neq F_y$$

Do X and Y have different distributions?

Now let's study the same data, but with a test statistic that looks for any departure in the distributions of X and Y .
Let <i>F</i> be the cdf for weights of chicks supplemented with soybean.

and let G be the cdf for weights of chicks supplemented with linseed.

Kolmogorov-Smirnov statistic

$$D = \max_{1 \le i \le N} |F_n(z_i) - G_m(z_i)|$$

where F_n is the empirical cdf estimate of F computed from the x-sample, and G_m is the empirical cdf estimate of G computed from the y-sample.

- Maximum difference between empirical CDFs of X and Y
- Measures "distance" between empirical distributions = 0 iff empirical distributions are equal

Permutation KS-test

Are the distributions of the two groups different?

- $ightharpoonup H_0$: soybean & linseed have same distribution
- $ightharpoonup H_1$: soybean & linseed have different distributions
- T: Kolmogorov-Smirnov statistic

Same as before, except T

[1] 0.459654

```
z=c(x,y)
B=10000
n_{11}=1:26
D=numeric(B)
options(warn=-1) #or ks.test will warn of ties
D0=ks.test(x,y,exact=FALSE)$statistic
for( i in 1:B){
perm=sample(nu,size=14,replace=FALSE)
x1=z[perm]
y1=z[-perm]
D[i]=ks.test(x1,y1,exact=FALSE)$statistic
p=mean(c(D0,D)>=D0);p
```