

المديرية العامة للتربية والتعليم (رامتحان تجريبي للصف الحادي عشر للعام الدراسي ٢٠٢٢٠٢٢م الفصل الدراسي الثاني

المادة: الفيزياء

• عدد صفحات أسئلة

• زمن الامتحان: (ساعتان ونصف). الامتحان: (٩) صفحات.

• الإجابة في دفتر الاسئلة نفسه.

	اسم الطالب
الصف	المدرسة

ع بالاسم	التوقي	الدرجة		السؤال	
المراجع	المصحح	بالأرقام	المفردة	う	
	.40.0		C 11		
راجع الجمع:	جمعه:		المجموع	4	
			لمجموع الكلي)	

١

أجب عن الأسئلة التالية

ضة للقصف وذلك بهدف حماية	خنادق الجنود في الأماكن المعر	1) توضع اكياس من الرمل بمحاذاة
التصادم بين الرصاص والرمل:	ن طريق الحصول على نوع من	الجنود من رصاص العدو وذلك عز

رقعيم	غير مرن ($\frac{ ext{dlb}}{ ext{ll}}$ الاجابة الص	🗆 مرن (زنبرکیا)
[1]		علل إجابتك

2) تصمم منطقة الانبعاج في مقدمة السيارة بحيث تنهار أثناء الاصطدام.

في اختبار معملي للسيارات ، يتم دفع سيارة كتلتها (1200 Kg) لتصطدم بجدار خرساني بسرعة 1.7ms⁻¹ كما هو مبين في الشكل السابق ، يظهر تسجيل فيديو لاختبار السيارة أنها توقف خلال (0.36 s) . احسب ما يلي:

[1]	ة .	 التغير في كمية الحركة للسيار
	ىيارة .	ب) متوسط القوة المؤثرة على الس
[1]		

كل الطاقة	الجدار ويتم امتصاص	تها (1500 Kg) تتصادم مع نفس	ج) سیارة أخری کتا
أن سرعة	اثبت ، ($4.3 \times 10^5 \mathrm{J}$, بواسطة منطقة الانبعاج ومقدارها (المنقولة اثناء التصاده
		تسا <i>و ي</i> (¹⁻ 24 ms).	السيارة قبل الاصطدام
		, , , , ,	'
[2]			
••••			
الى	10000Kgms) ثم تنفجر	ة كتلتها (20kg) أفقيا وكمية حركتها($^{ m 1}$	3) تنطلق قذيفة صاروخي
		, , ,	قسمین متساویین کما بالش
		all the second of the second o	
		60°	
	20kg	30 °	
		and the second second	
		سرعة للشظيتين بعد الانفجار	أ) المركبة الأفقية ال
		ر ت ستيين بد ، د سبر	۱) انگریب ادلیب س
[2]			
		سرعة للشظيتين بعد الانفجار	ر) المركبة الرأسية ال
[2]		سرعه تسطینین بعد ۵۱ تعجار	ب)المرحبة الراسية ا
[2]	•••••		•••••
			•••••
	ن بعد الانفجار	السرعة ، أحسب سرعة كل من الشظيتير	ج) من خلال مركبات
[2]			
[2]			
[1]	(ظلل الاجابة الصحيحة)	لتصادم قانون حفظ كمية الحركة ؟	د) هل ينطبق على هذا
	,		' '
		γ 🗖	🗖 نعم

4)تصطدم كرة سنوكر سرعتها ٧ بحائط صلب فترتد بنفس سرعتها قبل الاصطدام

	2mv= بركة الكرة	أ) اثبت أن التغير في كمية ح
	في كمية الحركة عرف القوة الم	ب)من خلال در استك للتغير
[1]	المؤثرة على الكرة لارتدادها تسا	ح) اذا علمت أن مقدار القه ة ا
[2]		بي مدر مصر مصر مصر مصر مصر مصر مصر مصر مصر مص
(ظلل الاجابة الصحيحة)	رد رزف د رأنه:	د)التصادم بين الكرة والجدار
المحديدة الصحيدة)	يىسى بىه. تصادم متلاصق	د) تصادم زنبركي تصادم زنبركي
ي (1.57rad s ⁻¹) فإن إزاحة (ظلل الاجابة الصحيحة) [1]		5) اذا علمت أن السرعة الزاوية الزاوية الزاوية خلال 2 ثانية يمثلها الشكالة
1200	180° 90°	600

6) أراد المهندس أحمد تصميم منفذ خروج لطريق بحيث يكون أكثر أمانا على السيارة عندما تدور في المنحنى بسرعة عالية ، مثل هذا الانحناء يكون عادة ذا انحدار .

أ)ما الزاوية التي يجب أن يميل بها الشارع المنحني الذي نصف قطره 500m بحيث يسمح فيه للسيارات بالمرور بسرعة 35ms⁻¹ ؟

مؤثرة على الكرة ؟	الشد في الخيط ال	ج)احسب قوة
[2]		
?	ن الدوري للكرة '	د)احسب الزمر
[2]		
120c دورة بالدقيقة ويبلغ قطرها 120cm . اجب عن الأتي.	ة سقف المنزل (8)تدور مروح
? :	بالإزاحة الزاوية	أ)ما المقصود
[1]		•••••
	د المروحة ؟	ب)احسب ترد
[1]		
ية طرف المروحة؟	عة المتجهة لنها	ج)احسب السر
[2]		
الى النصف. ماذا يحدث للسرعة الزاوية للمروحة؟		
(ظلل الاجابة الصحيحة)	-	
ل تظل ثابتة	لقة 🗖	🗖 تزید

				۶ Д ٦	جهة عند النقط	س السرعة المتد
[2]						
لى الرسم . [2	والزمن عا	قيم السرعا	ع توضيح	س الجسم م	مة والزمن لنف	سم منحنى السرح
<u> </u>	. 7.731 7.76			: 11: . : 11:	·	
	که نو افقیه ب	ينخرك خر	ِمن تجسم	ه بسبه سر	صنح النسارح	لمنحنى المقابل يو
4 1 3 1 2 1					,	
1 (sw.) 9 (-1.)		5		10		t (s)
-2						10
-3 -4 						
a:	$= a_{\circ} \sin($	لاقة (ωt)	, حسب العا	ركة الجسم	ع الدال على ح	ب معادلة التسارخ

ب)ارسم على الرسم السابق منحنى التسارع لجسم آخر يتحرك بنفس التردد ولكن بفرق طور يساوي
[2] $\frac{1}{4}$ اهتزازة والقيمة القصوى لتسارعه يساوي $\frac{1}{4}$
4
12) جسم مهتز كتلته 0.2kg يتحرك بحركة توافقية بسيطة حسب المعادلة
: احسب کل من . $v=40\cos(10t)cms^{-1}$
أ)التردد الزاوي
*
[1]
ب)السعة
[1]
ج)الزمن الدوري للحركة .
. 3 23 6 3 (6
[1]
د)السرعة عند t=2s .
25 5 (
[1]
هـ)الطاقة الكلية .
• • • • • • • • • • • • • • • • • • • •
[2]

13) الرسم البياني يوضح الحركة التخامدية لزنبرك عجلة السيارة.

انتهت الأسئلة مع تمنياتنا لكم بالنجاح والتفوق

القوانين والثوابت

$g = 9.81 ms^{-2}$	$F\Delta t = \Delta mv$	$\Delta p = \Delta m v$
$\vec{v} = \frac{2\pi r}{T}$	$\vec{v} = \omega \cdot r$	$\Delta \theta = \frac{\Delta s}{r}$
$f = \frac{n}{t}$	$\omega = 2\pi f$	$\omega = \frac{\Delta \theta}{\Delta t}$
$a = \omega^2 . r$	$a = \frac{v^2}{r}$	$T = \frac{1}{f}$
$a = -\omega^2 x$	$F = m\omega^2 r$	$F = m \frac{v^2}{r}$
$E_{\circ} = \frac{1}{2} m \omega^2 x_{\circ}^2$	$E_{\circ} = \frac{1}{2} m v_{\circ}^2$	$v = \pm \omega \sqrt{x_{\circ}^2 - x^2}$

نموذج اجابة الامتحان التجريبي للعام الدراسي ١٤٤٤هـ -٢٠٢٣/٢٠٢٦م الفصل الدراسي الأول المادة الفيزياء

عدد الصفحات: ٤

الدرجة الكلية : ٦٠ درجة

المستوى المعرفي	المخرج التعليمي	الص فحة	الدرجة	الاجابة	دة	المفرد
			1	عبر مرن (متلاصق) لأن الجسمين يفقدان جميع طاقتهما الحركية بعد التصادم	١	
			1	$\Delta mv = m(v - u)$ = 1200(0 - 1.7) = -2040kgms ⁻¹	Í	
			1	$F = \frac{\Delta p}{\Delta t} = \frac{2040}{0.36} = 5666.7N$	ب	
			2	$\Delta KE = 4.3 \times 10^{5} J$ $\frac{1}{2} m v^{2} = 4.3 \times 10^{5}$ $v = \sqrt{\frac{2 \times 4.3 \times 10^{5}}{1500}} = 24 m s^{-1}$	٣	۲
			2	$v_1\cos 60 + v_2\cos 30$	Í	
			2	$v_1 \sin 60 = v_2 \sin 30$	ب	
			2	$10000 = 10(rac{v_2 \sin 30}{\sin 60} \cos 60 + v_2 \cos 30)$ $1000 = 0.2887v_2 + 0.8660v_2$ $1000 = 1.155v_2$ $v_2 = 866ms^{-1}$ بالتعویض بالمعادلة $v_1 \sin 60 = v_2 \sin 30$ $v_1 \sin 60 = 866 \sin 30$ $v_1 = rac{866 \sin 30}{\sin 60} = 500 \text{ms}^{-1}$	ح	٣
			1	نعم	7	-
			2	$\Delta p = \Delta m v = m(v - (-v)) = m2v$ $= 2mv$	Í	٤

	1	القوة هي معدل التغير في كمية التحرك	ب	
	2	$\Delta p = \frac{F}{\Delta t} = \frac{8}{1} = 8 \text{kgms}^{-1}$ $\Delta p = 2mv = 8$ $mv = \frac{8}{2} = 4 \text{kgms}^{-1}$	<u>ح</u>	
	1	تصادم زنبركي	د	
	1	180°		0
	2	$N \sin \theta = \frac{mv^2}{r}$ المركبة الافقية $N \cos \theta = mg$ المركبة الرأسية $N = \frac{mg}{\cos \theta}$ المركبة الرأسية $\frac{mg \sin \theta}{\cos \theta} = \frac{mv^2}{r}$ $g \tan \theta = \frac{v^2}{r}$ $\theta = \tan^{-1}\left(\frac{v^2}{gr}\right)$ $\theta = \tan^{-1}\left(\frac{35^2}{9.81x500}\right) = 14^\circ$	Í	٦
	1	$N \sin heta$ مركبة قوة التلامس الأفقية ($N \sin heta$	ب	
	1 1	غير ثابتة المقدار ثابت والاتجاه يتغير	Í	
	2	$a = \frac{v^2}{r}$ $a = \frac{2^2}{1.6} = 2.5 ms^{-2}$	ب	٧
	2	$F = \frac{mv^2}{r}$	ح	

		$F = \frac{0.4x2^2}{1.6} = 1N$		
	2	$\omega = \frac{v}{r} = \frac{2}{1.6} = 1.25 rads^{-1}$ $T = \frac{2\pi}{\omega} = \frac{2\pi}{1.25} = 5.0s$	7	
	1	الازاحة الزاوية هي زاوية القوس الذي يتحرك عليه الجسم من موقع بداية حركته	Í	
	1	$f = \frac{n}{t} = \frac{1200}{60} = 20Hz$	ب	٨
	2	$v = 2\pi r f = 2\pi \times 0.60 \times 20 = 75.40 ms^{-1}$	ح	
	1	تظل ثابتة	٦	
	1	KE		٩
	1	لان العلاقة طردية بين الازاحة والتسارع وفي عكس الاتجاه أو لأن الكتلة المهتزة تتحرك حول موضع الاتزان	Í	
	1	30cm أو X ₀ = 0.30m	ب	
	1	$f = \frac{1}{T} = \frac{1}{6} = 0.167Hz$ $\omega = 2\pi f = 2 \times \pi \times 0.167 = 1.05 rads^{-1}$.	١.
	2	$v_{\circ} = \omega x_{\circ} = 1.05 \times 0.30 = 0.315 ms^{-1}$	۲	
	2	20 19 18 18 2 8 4 5 6	ھـ	
	2	$a = 3\sin 0.50t$	Í	11

		<u></u>		
	2	4 3 2 2 1 1 (b) 0 15 15 15 15 15 15 15 15 15 15 15 15 15	ŗ	
	1	$\omega = 10 rads^{-1}$	ĺ	
	1	$x_{\circ} = \frac{v_{\circ}}{\omega} = \frac{40}{10} = 4cm$ $= 0.04 \text{m}$	ب	
	1	$T = \frac{2\pi}{\omega} = \frac{2\pi}{10} = 0.63s$	ج	
	1	$v = 40 \cos 10 \times 2 = 16.3 cm s^{-1}$ $\theta = 10 \times 2 = 20 \ rad = \frac{20 \times 180}{\pi}$ $= 1145^{\circ}$ $v = 40 \cos 1145^{\circ} = 16.3 cm s^{-1}$	7	١٢
	2	$E = \frac{1}{2}mv_{\circ} = \frac{1}{2} \times 0.2 \times 0.40^{2} = 0.016J$	هـ	
	1	الاهتزازة المخمدة هي اهتزازة تتسبب فيها قوى المقاومة بنقل طاقة النظام الى المحيط كطاقة داخلية	Í	
	1	ضعيف لان الجسم ما زال يهتز أو لأن السعة تقل أسيا	ب	
	2	$\omega = \frac{2\pi}{T} = \frac{2\pi}{0.5} = 12.6 \ rad \ s^{-1}$	ح	
	1	بسبب الاحتكاك	7	۱۳
	2	$x_1 = 2cm = 0.02m$ $x_2 = 1.3cm = 0.013m$ $\Delta KE = \frac{1}{2}m(v_2^2 - v_1^2) = \frac{1}{2}m\omega^2(x_2^2 - x_1^2)$ $= \frac{1}{2} \times 250 \times 12.6^2(0.013^2 - 0.02^2)$ $= -4.6J$	ھـ	

نهاية نموذج الاجابة