14 solutions to my war-time pattern-for-match of the risk-free rate

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe 14 solutions to my war-time pattern-for-match of the risk-free rate. The paper ends with "The End"

Introduction

In a previous paper, I've described my war-time pattern-for-match of the risk-free rate. In this paper, I describe 14 solutions to my war-time pattern-for-match of the risk-free rate.

14 solutions to my war-time pattern-for-match of the risk-free rate

1.	0	20	_	20707077101
	$r_f = \frac{9}{1402}, r_e = 21, a =$	$\frac{68}{220405}, b =$	$\frac{5}{70}, c =$	28597255191
	1402	332423	18	17097871007100
2.	24	23 .	3	38563788439
	$r_f = \frac{24}{701}, r_e = 59, a =$	$\overline{179908}, b =$	$\overline{136}$, $c =$	$\overline{1554373636100}$
3.	400	_		100100
	$r_f = \frac{180}{701}, r_e = 20, \epsilon$	$a = \frac{7}{1220}, b =$	$=\frac{11}{05}, c=$	$=\frac{43877468}{715776270}$
	701	1220	90	113110319
4.	$r_f = \frac{195}{701}, r_e = 91, a = 100$	26	3	112904023661
	$r_f = \frac{1}{701}, r_e = 91, a = 1$	$=\frac{1}{42103}, b=$	$\overline{58}$, $c =$	$\overline{766897050752}$
5.	F 40	0	91	120200610057
	$r_f = \frac{549}{1402}, r_e = 23, a = 23$	$=\frac{6}{1623}, b=\frac{1}{1}$	$\frac{21}{233}, c =$	1034379069018
6.	1102	1029	200	1001010000010
0.	$r_f = \frac{603}{1402}, r_e = 15, a$	- <u>6</u> h -	9	181682054991
	$r_{J} = 1402, r_{e} = 10, w$	1631, 0 –	176, 6 –	806917286560
7.	391	80	3	59637196961
	$r_f = \frac{391}{701}, r_e = 46, a =$	$=\frac{30}{12819}, b=$	$\frac{3}{757}, c =$	825369039404

8.
$$r_f = \frac{465}{701}, r_e = 20, a = \frac{21}{4898}, b = \frac{95}{213}, c = \frac{1424002835}{71061391357}$$

9.
$$r_f = \frac{977}{1402}, r_e = 41, a = \frac{13}{2478}, b = \frac{13}{118}, c = \frac{168698503}{1377502854}$$

10.
$$r_f = \frac{1007}{1402}, r_e = 96, a = \frac{31}{7674}, b = \frac{10}{313}, c = \frac{27492221051}{2704143231372}$$

11.
$$r_f = \frac{531}{701}, r_e = 98, a = \frac{8}{5697}, b = \frac{1}{10}, c = \frac{5380264363}{24600557520}$$

12.
$$r_f = \frac{609}{701}, r_e = 72, a = \frac{43}{15454}, b = \frac{20}{329}, c = \frac{35710397628}{166750862195}$$

13.
$$r_f = \frac{1247}{1402}, r_e = 35, a = \frac{35}{7319}, b = \frac{18}{293}, c = \frac{2014839578087}{7964331702366}$$

14.
$$r_f=1, r_e=91, a=\frac{38}{18181}, b=\frac{23}{81}, c=\frac{82295}{2945322}$$

The End