Lecture 1

We begin by trying to gain a deeper understanding of the Cauchy-Riemann equations.

Let $f: X \to \mathbb{C}$, where $X \subset \mathbb{C}^n$. For now, let's say $X \subset \mathbb{C}$. In real analysis, we have a notion of differentiability for $f: \mathbb{R}^n \to \mathbb{R}^k$. We can say that f is differentiable at a point $p \in X$ when

$$f(p+h) = f(p) + (df_p)h + \rho(h)$$

Where $(df)_p : \mathbb{R}^n \to \mathbb{R}^k$ is a linear map $\in \operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^n, \mathbb{R}^k)$, and $\frac{|\rho(h)|}{|h|} \to 0$ as $h \to 0$. So we can think of the "real differential" as a linear map in $\operatorname{Hom}_{\mathbb{R}}(\mathbb{C}^n, \mathbb{C})$.

Definition 0.1. Let $X \subset \mathbb{C}$, and $f: X \to \mathbb{C}$. Differentiability refers to the existence of a $(df)_p \in \operatorname{Hom}_{\mathbb{R}}(\mathbb{C}, \mathbb{C})$.

So, f is complex differentiable at $p \in X$ means that

$$f(p+h) = f(p) + f'(p)h + \rho(h)$$

Where f'(p) is a complex number and $\frac{|\rho(h)|}{|h|} \to 0$.

If $A \in \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}, \mathbb{C}) \cong \mathbb{C}$, $A(z) = \alpha z$, $\alpha \in \mathbb{C}$.

So $(df)_p \in \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}, \mathbb{C})$.

 $\operatorname{Hom}_{\mathbb{C}}(\mathbb{C},\mathbb{C})$ is a \mathbb{C} -vector space of dimension 1.

 $\operatorname{Hom}_{\mathbb{R}}(\mathbb{C},\mathbb{C}) \cong \operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^2,\mathbb{R}^2)$ is a \mathbb{C} -vector space of dimension 2.

So where did the extra dimension go? What happened?

Consider an element of $\operatorname{Hom}_{\mathbb{R}}(\mathbb{C},\mathbb{C})$ given by $\binom{x}{y} \mapsto x - iy$.

We also have $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto x + iy$.

From the real analysis point of view, these two functions are equal to their differentials. The first is called $d\overline{z}$, and the second is called dz.

dz = dx + idy and $d\overline{z} = dx - idy$

$$dx \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = h_1$$
$$dy \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = h_2$$

On a complex vector space, suppose $\phi \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{C}^n, \mathbb{C})$, we have $(\overline{\phi})(v) = \overline{\phi(v)}$. So $\overline{dz} = d\overline{z}$.

Now, \mathbb{C} -valued real differentiable functions are just pairs of \mathbb{R} -valued real differentiable functions.

Example 0.1. If $k, m \in \mathbb{N}$, then $z^k \overline{z}^m : \mathbb{C} \to \mathbb{C}$ is a real smooth function (when viewed as an element of $\operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^2,\mathbb{R}^2)$, with

$$d(z^{k}\overline{z}^{m}) = kz^{k-1}\overline{z}^{m} + m\overline{z}^{m-1}z^{k}d\overline{z}$$

We will study the differences between $\operatorname{Hom}_{\mathbb{R}}(\mathbb{C}^n,\mathbb{C})$ versus $\operatorname{Hom}_{\mathbb{C}}(\mathbb{C}^n,\mathbb{C})$, with complex dimensions 2 and 1, respectively.

Definition 0.2. Let V be a real vector space.

A complex structure on V is a $J \in \operatorname{End}_{\mathbb{R}}(V)$ which satisfies $J^2 = -\operatorname{Id}_V$

Proposition 1. Define $V_J = V$ as a set and group, with a \mathbb{C} -action $\mathbb{C} \times V_J \to V_J$ defined by $((\alpha + i\beta), x) \mapsto \alpha x + \beta Jx$.

Proof. Check z(wx) = (zw)x for all $z, w \in \mathbb{C}$ and $x \in V_J$.

Proposition 2. If a vector space V admits a complex structure J, then $\dim_{\mathbb{R}} V = 2n$. Further, $\dim_{\mathbb{R}} V = 2 \dim_{\mathbb{C}} V_J$.

Proof. First, $\det(J^2) = \det(-id_V) = (-1)^{\dim_{\mathbb{R}} V}$, so the dimension must be even. Alternatively, if e_1, \ldots, e_n is a basis of V_J , then check $e_1, \ldots, e_n, Je_1, \ldots, Je_n$ is a basis of V over R.

Example 0.2. For \mathbb{R}^2 , let $J_0 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. We see that $J_0 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}$. This is like i(x+iy) = ix - y.

So $A:(\mathbb{R}^2)_{J_0}\to\mathbb{C}$ is an isomorphism of \mathbb{C} -vector spaces.

Let W be a vector space over \mathbb{C} . Consider $W_{\mathbb{R}}$, a real vector space. We see $\dim_{\mathbb{R}} W_{\mathbb{R}} =$ $2\dim_{\mathbb{C}} W$. Consider $J:W_{\mathbb{R}}\to W\mathbb{R}$ given by $x\mapsto ix$. Then $J^2=-\operatorname{Id}_{W_{\mathbb{R}}}$.

Let V be a real vector space with complex structure J. Consider $\operatorname{Hom}_{\mathbb{R}}(V,\mathbb{C}) =$ $\mathbb{C} \otimes_{\mathbb{R}} V^*$.

 $J^t: \operatorname{Hom}_{\mathbb{R}}(V,\mathbb{C}) \to \operatorname{Hom}_{\mathbb{R}}(V,\mathbb{C}), \text{ we can express } \operatorname{Hom}_{\mathbb{R}}(V,\mathbb{C}) \ni \phi = \phi_1 + \phi_2, \text{ and by }$ definition,

$$J^t \phi = \phi \circ J = \phi_1 \circ J + i\phi_2 \circ J$$

So $(J^t)^2 = -1$.

 $J^t \in \operatorname{End}_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{R}}(V,\mathbb{C})).$

Main observation: $\phi \in \operatorname{Hom}_{\mathbb{R}}(V,\mathbb{C})$ is \mathbb{C} -linear in V_i , meaning $\phi(ix) = i\phi(x)$, which is equivalent to $\phi(Jx) = i\phi(x)$.

In other words, such a ϕ is only \mathbb{C} -linear if ϕ is an eigenfunction of J^t with eigenvalue i.

Definition 0.3. ϕ is \mathbb{C} -antilinear on V_J means

$$\phi((\alpha + i\beta)x) = \overline{(\alpha + i\beta)}\phi(x)$$

for all $x \in V$.

We denote the space of \mathbb{C} -antilinear functionals by $\overline{\operatorname{Hom}}_{\mathbb{C}}(V_J,\mathbb{C})$. In fact, there is an isomorphism between $\operatorname{Hom}_{\mathbb{C}}(V_J,\mathbb{C})$ and $\overline{\operatorname{Hom}}_{\mathbb{C}}(V_J,\mathbb{C})$ as <u>real</u> vector spaces.

Theorem 0.1. Let V be a real vector space with complex structure J. Then

- 1. $\operatorname{Hom}_{\mathbb{R}}(V,\mathbb{C}) = \operatorname{Hom}_{\mathbb{C}}(V_J,\mathbb{C}) \oplus \overline{\operatorname{Hom}}_{\mathbb{C}}(V_J,\mathbb{C}).$
- **2.** If $\operatorname{Hom}_{\mathbb{C}}(V_J,\mathbb{C}) := V^{1,0}$, and $\overline{\operatorname{Hom}}_{\mathbb{C}}(V_J,\mathbb{C}) := V^{0,1}$, then $\operatorname{Hom}_{\mathbb{R}}(V,\mathbb{C}) = V^{1,0} \oplus_{\mathbb{C}} V^{0,1}$.
- 3. $\dim_{\mathbb{C}} V^{1,0} = \dim_{\mathbb{C}} V^{0,1} = \frac{\dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{R}}(V,\mathbb{C}))}{2}$

Proof. Observe that $\phi \in \operatorname{Hom}_{\mathbb{R}}(V,\mathbb{C})$ can be written as

$$\phi = \frac{\phi - i\phi \circ J}{2} + \frac{\phi + i\phi \circ J}{2} = \frac{\phi(Jx) + i\phi(x)}{2} = i\frac{\phi - i\phi \circ J}{2}(x) = \phi$$

Further, $V^{1,0} \cap V^{0,1} = 0$ by the definitions, so we are done.

Thus, any differential can be split into a C-linear and a C-antilinear part.

Definition 0.4. $\pi^{1,0}$ is projection on the first factor, $\pi^{0,1}$ is projection onto the second. We have

$$\phi = \pi^{1,0}\phi + \pi^{0,1}\phi$$

Corollary 0.2. If $\phi \in \text{Hom}_{\mathbb{R}}(V, \mathbb{C})$, then ϕ being \mathbb{C} -linear (i.e $\phi \in V^{1,0}$) if and only if $\pi^{0,1}\phi = 0$.

Definition 0.5. Applying to $(df)_p \in \operatorname{Hom}_{\mathbb{R}}(V,\mathbb{C})$, then

$$(df)_p = \pi^{1,0} df_p + \pi^{0,1} df_p$$

Say
$$\pi^{1,0}df_p = \underbrace{\partial f_p}_{\text{complex linear}}$$
 and $\pi^{0,1}df_p = \underbrace{\overline{\partial} df_p}_{\text{complex antilinear}}$

Theorem 0.3. A function $f: X \to \mathbb{C}$ is \mathbb{C} -differentiable at $p \in X$ if and only if f is \mathbb{R} -differentiable at p and $df_p = \partial f_p$, which happens if and only if $\overline{\partial} f_p = 0$.

Proof. We have $\mathbb{C} \cong \mathbb{R}^2_{J_0}$, which has standard basis $\mathbb{R}^2 = \langle e_1, e_2 \rangle_{\mathbb{R}^2}$. This has a dual basis in $\operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^2, \mathbb{R})$ given by dx and dy. That is, $\operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^2, \mathbb{C}) = \langle dx, dy \rangle_{\mathbb{C}}$. $J_0 e_1 = e_2$ and $J_0 e_2 = -e_1$, so $dx \circ J_0 = -dy$ and $dy \circ J_0 = dx$.

$$\pi^{0,1}dx = \frac{1}{2}(dx - idx \circ J_0)$$

$$= \frac{1}{2}(dx + idy) \qquad := dz$$

Further,

$$\pi^{0,1}dx = \frac{1}{2}d\overline{z}$$
$$\pi^{1,0}dy = \frac{1}{2}dz$$

So

$$df = f_x dx + f_y dy = \frac{f_x - if_y}{2} dz + \frac{f_x + if_y}{d} \overline{z} = \partial f + \overline{\partial} f$$

Definition 0.6.

$$\frac{\partial}{\partial z} = \frac{\partial_x - i\partial_y}{2}$$
$$\frac{\partial}{\partial \overline{z}} = \frac{\partial_x + i\partial_y}{2}$$

So

$$df = \frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial \overline{z}}d\overline{z}$$

So analyticity is equivalent to $df = \partial f$, meaning $\overline{\partial} f = 0$, which is equivalent to $\frac{\partial f}{\partial \overline{z}} = 0$, which means

$$\frac{\partial(u+iv)}{\partial\overline{z}} = 0$$

So $(\partial_x + i\partial_y)(u + iv) = 0$. Multiplying out, we get

$$u_x = v_y$$
$$u_y = -v_x$$

Lecture 2

The focus for the first bit of this course will be the so-called (by Dennis) $\overline{\partial}$ -calculus. Suppose $f: X \to \mathbb{C}$ is differentiable for some $X \subseteq \mathbb{R}^{2n}$. It has a differential $df_p \in \operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^{2n}, \mathbb{C})$.

f is holomorphic if and only if $df_p \in \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}^n, \mathbb{C})$. Last time, we talked about how the second sits in the first, and how they interact.

Question: How to make \mathbb{C}^n out of \mathbb{R}^{2n} . The abstract algebra way to do it is with a complex structure J. If V is a vector space over \mathbb{R} , then $\dim_{\mathbb{R}} V = 2n$ $J \in \operatorname{End}_{\mathbb{R}}(V)$ with $J^2 = -\operatorname{Id}_V$.

For all $x \in V_J$, we define ix = Jx, so V_J is a vector space over \mathbb{C} , and $\dim_{\mathbb{C}} V_j = \frac{\dim_{\mathbb{R}} V}{2}$

Example 0.3. Let $V = \mathbb{R}^2$, $J = J_0 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. $\mathbb{R}^2_{J_0} \cong \mathbb{C}$

Last time, we showed that for any $\phi \in \operatorname{Hom}_{\mathbb{R}}(V,\mathbb{C}) = H$, then

$$\phi = \underbrace{\frac{\phi - i\phi \circ J}{2}}_{\in \operatorname{Hom}_{\mathbb{C}}(V_{J}, \mathbb{C})} + \underbrace{\frac{\phi + i\phi \circ J}{2}}_{\in \overline{\operatorname{Hom}_{\mathbb{C}}}(V_{J}, \mathbb{C})}$$

So, $H = \operatorname{Hom}_{\mathbb{C}}(V_J, \mathbb{C}) \oplus \overline{\operatorname{Hom}_{\mathbb{C}}(V_J, \mathbb{C})} = V^{1,0} \oplus V^{0,1}$

Where $V^{1,0}$ and $V^{0,1}$ are what we call $\operatorname{Hom}_{\mathbb{C}}(V_J,\mathbb{C})$ and $\overline{\operatorname{Hom}}_{\mathbb{C}}(V_J,\mathbb{C})$ by tradition.

Let
$$V = \mathbb{R}^2$$
, $J = J_0 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Let $\phi = df_p = \frac{\partial f(p)}{\partial x} dx_p + \frac{\partial f(p)}{\partial y} dy_p$

After doing some computations, we get

$$d_p f = \pi^{1,0} df + \pi^{0,1} df = A dz + B d\overline{z}$$

Where dz = dx + idy and $d\overline{z} = dx - idy$. You can check that the former is in $V^{1,0}$ and the latter in $V^{0,1}$.

The coefficient A is denoted by tradition as $\frac{\partial f}{\partial z}(p)$, and B as $\frac{\partial f}{\partial \overline{z}}(p)$. Here, the presence of ∂ does not imply any limit taking or anything, they are just notation.

Note $A = \frac{1}{2}(\partial_x f - i\partial_y f)|_p$ and $B = \frac{1}{2}(\partial_x f + i\partial_y f)|_p$.

Definition 0.7. We define

$$\partial f_p = f_z(p)dz_p$$
$$\overline{\partial} f_p = f_{\overline{z}}(p)d\overline{z}_p$$

The former is \mathbb{C} -linear, and the second \mathbb{C} -antilinear.

Claim. f is \mathbb{C} -differentiable at p if and only if f is \mathbb{R} -differentiable at p and $\overline{\partial} f_p = 0$

Proof. If f = u + iv, we get

$$\overline{\partial} f_p = \frac{\partial f}{\partial \overline{z}}(p) = 0$$

Which gives you the Cauchy-Riemann equations. So f is analytic if $d_p f = f_z dz$.

Example 0.4. What are the following?

1.
$$\frac{\partial |z|}{\partial z}$$

2.
$$\frac{\partial |z|}{\partial \overline{z}}$$

How do we manage these problems?

Claim. If $m, k \in \mathbb{Z} \setminus \{0\}$, we will consider $d(z^m \overline{z}^k)$. We have $f(z+h) = (z+h)^m (\overline{z} + \overline{h})^m = f(z) + (mz^{m-1}\overline{z}^k)h + (k\overline{z}^{k-1}z^m)\overline{h} + \mathcal{O}(h^2)$ Where $\frac{|LHS-RHS|}{|z-2|} \to 0$ ad $z \to 2$

Then $\overline{\partial}(z^m\overline{z}^k) = (k\overline{z}^{k-1}z^m)d\overline{z}$

Let's do some examples. Consider $\frac{\overline{z}-1}{z+1}$. We have

$$\frac{\overline{z} - 1}{z + 1} = \frac{(\overline{z} - 2) - 2 - 1}{(z - 2) + 2 - 1} = \frac{(\overline{z} - z) + 1}{3} \frac{1}{1 + \frac{z - 2}{3}} = \frac{\overline{z} - 1}{3} (1 - \frac{z - 2}{3} + \mathcal{O}(H^2)) = cAz + B\overline{z} + \rho(z)$$

There are two building blocks for doing problems:

- 1. First, remember you are really doing real analysis.
- **2.** Use the formula $d_p f = \pi^{1,0} \cdots$

Example 0.5. We will calculate $d|z| = d\sqrt{z\overline{z}}$.

$$d|z| = d\sqrt{z\overline{z}} = \frac{1}{2\sqrt{z\overline{z}}}d(z\overline{z}) = \frac{1}{2|z|}d(z\overline{z}) = \frac{1}{2|z|}zd\overline{z} + \overline{z}dz$$

So the answer would be $\frac{z}{2|z|}$.

So, just express your function as a function of $z\overline{z}$ and proceed to do real analysis.

We know $\partial_z f, \partial_{\overline{z}} f$, and want to find $\partial_z(\overline{f}), \partial_{\overline{z}}(\overline{f}) = ?$

We have

$$df = \partial f + \overline{\partial} f$$
$$d(\overline{f}) = \overline{df} = \overline{(\partial f)} + \overline{(\overline{\partial} f)}$$

Now, $\overline{\partial}(\overline{f}) = \overline{\partial f}$. The bottom is equal to $\frac{\partial \overline{f}}{\partial \overline{z}} d\overline{z}$ So

$$\frac{\partial \overline{f}}{\partial \overline{z}} = \frac{\overline{\partial f}}{\partial z}$$

The conjugate of something which is complex anti-linear is complex linear.

What is $\frac{\partial \overline{f}}{\partial z}$? This is $\frac{\partial f}{\partial \overline{z}}$.

So, the general procedure is to decompose your function as something linear + something antilinear, and use the sentence I just wrote.

How to compute $\frac{\partial f \circ g}{\partial \bar{z}}$?
Well $\underline{d(f \circ g) = df \circ df}$ The chain rule expresses the functoriality of the derivative , which is equal to

$$(\partial f + \overline{\partial} f) \circ (\partial g + \overline{\partial} g) = \partial f \circ \partial g + \overline{\partial} f \circ dg + \cdots$$

Now, $\overline{\partial} f \circ \partial g = f_{\overline{z}} d\overline{z} \circ (g_z dz) = f_{\overline{z}} \overline{g_z}$.

Definition 0.8. Suppose $\frac{\partial f}{\partial \overline{z}}(p) = 0$. Then $df_p = \frac{\partial f}{\partial z}(p)dz_p$, and we write this as f'(p)dz.

Homework problem: We know f holomorphic, compute $\frac{\partial}{\partial} \overline{z} F(|f|)$, where $F: \mathbb{R} \to \mathbb{R}$ is smooth.

So

$$dF(|f|) = F'(|f|)d|f| = F'(|f|)d\sqrt{f\overline{f}}$$

And $d\sqrt{u} = \frac{1}{2u}du$, so the above is equal to

$$F'(|f|)\frac{1}{2|f|}d(f\overline{f})^{-1} = \frac{F'(|f|)}{2|f|}(\overline{f}df + fd\overline{z}) = \frac{F'(|f|)}{2|f|}(\overline{f}f_zdz + f\overline{f_z}d\overline{z})$$

Our answer is thus whatever we get in front of $d\overline{z}$, so in this case the solution is

$$\frac{\partial}{\partial \overline{z}}F(|f|) = \frac{F'(|f|)}{2|f|}f\overline{f'}$$

The $|z| = \sqrt{z\overline{z}}$ is a very useful trick.

Complex analysis is kind of a local study of $f: X \to \mathbb{C}$ for some $X \subseteq \mathbb{C}$, where f is differentiable, $\overline{\partial} f = 0$, or equivalently $\frac{\partial f}{\partial \overline{z}} = 0$ in X. Really, we are studying solutions to a certain PDE (Cauchy-Riemann equation).

Suppose you want $u_{xx} - u_{yy} = 0$. If this is the case (and it turns out exactly when this is the case), we can express $u = \phi(x - y) + \psi(x + y)$ for ϕ, ψ arbitrary of 1 variable. What if we want to study $u_y = u_{xx}$ in, say, $y > -\varepsilon$? We actually have a formula:

$$u(x,y) = frac12\pi y \int_{-\infty}^{\infty} e^{-\frac{(x-s)^2}{4y}} u(s,0)ds, y > 0$$

Suppose we want to study $u_{yy} + u_{xx} = 0$ in $y > -\varepsilon$, or maybe an open ball around the origin. We have a formula

$$u(x,y) = \int_{-\infty}^{\infty} P_H(x,y-s)u(s,0)ds$$

Where P_H is the Poisson Kernel.

MAIN LOCAL THM

Let $f: B_{R+\varepsilon} \to \mathbb{C}$. Then the following statements are all equivalent.

- **1.** For any $p \in B_R$, f is differentiable and $df_p = \partial f_p$, so $\overline{\partial} f_p = 0$.
- **2.** $f(z) = \int_{C_R} \frac{f(w)}{z w} dw$
- **3.** Like 8 other things

What exactly is complex integration?

Let $\gamma:[a,b]\to\mathbb{C}$ be a piecewise smooth map. We integrate functions over maps. If ϕ is a continuous function, the formula is

$$\int_{\gamma} \phi(z)dz = \int_{a}^{b} \phi(\gamma(t))\dot{\gamma}(t)dt$$

where $\dot{\gamma}$ is the time-derivative of γ , so will be a complex number.

Let $t \in [0, 2\pi]$, $C_R(t) = Re^{it}$, a circle going counterclockwise. Let $\gamma(t) = Re^{-it}$. Then $\gamma^{-1} : [a, b] \to \mathbb{C}$ is the same but in the opposite direction. We have

$$\int_{\gamma^{-1}} \phi \, dz = \int_{\gamma} \phi \, dz$$