数据库系统

哈尔滨工业大学(深圳)

第14讲 函数依赖及其公理定理

函数依赖及其公理/定理

基本内容

- 1. 函数依赖
- 2. 完全函数依赖与传递函数依赖
- 3. 关于函数依赖的公理和定理
- 4. 函数依赖集的最小覆盖

重点与难点

- ●一组概念:函数依赖、部分函数依赖和完全函数依赖、传递函数依赖、 候选键、非主属性、逻辑蕴涵、闭包、属性闭包、覆盖、最小覆盖等
- ●关于函数依赖的公理和定理,相关的证明
- ●求属性闭包的算法、求最小覆盖的算法

[Definition] 函数依赖:

设R(U)是属性集合 $U=\{A_1,A_2,...,A_n\}$ 上的一个关系模式,X,Y是U上的两个子集,若对R(U)的任意一个可能的关系r,r中不可能有两个元组满足在X中的属性值相等而在Y中的属性值不等,则称"X函数决定Y"或"Y函数依赖于X",记作 $X\to Y$ 。

示例: U = {学号,姓名,年龄,班号,班长,课号,成绩}

- □ 学号→{ 姓名,年龄}
- □班号→班长
- □ { 学号,课号} → 成绩

设计关系模式 时,除给出属性 全集外,还需给 出数据依赖集合

注:函数依赖的分析取决于对问题领域的限定和分析,取决于对业务规则的正确理解。例如:问题领域中,学生是没有重名的,则有:"年龄"和"家庭住址"都函数依赖于"姓名"。而在另一个问题领域中,学生是有重名的,则上述函数依赖是不成立的。

示例:下表中函数依赖有哪些呢?

属性A	属性B	属性C
1	2	3
4	2	3
5	3	3

属性A	属性B	属性C	属性D
a1	b1	c1	d1
a1	b2	c1	d2
a2	b2	c2	d2
a2	b3	c2	d3
a3	b3	c2	d4

示例:下表就是问题领域,则存在的函数依赖有哪些呢?

✓ 下表存在的函数依赖有: $A \rightarrow B$, $B \rightarrow C$

属性A	属性B	属性C
1	2	3
4	2	3
5	3	3

✓ 下表存在的函数依赖有: $A \rightarrow C$, $D \rightarrow B$

属性A	属性B	属性C	属性D
a1	b1	c1	d1
a1	b2	c1	d2
a2	b2	c2	d2
a2	b3	c2	d3
a3	b3	c2	d4

函数依赖的特性

- (1)对 $X \rightarrow Y$,但Y ⊄ X,则称 $X \rightarrow Y$ 为非平凡的函数依赖;
- (2)若X→Y,则任意两个元组,若X上值相等,则Y上值必然相等,则称X为决定因素;
- (3)若X \rightarrow Y · Y \rightarrow X, 则记作X \leftrightarrow Y ;
- (4)若Y不函数依赖于X,则记作X/→Y;
- (5)X→Y,有基于模式R的,则要求对任意的关系r成立;有基于具体关系r的,则要求对某一关系r成立;
- (6)如一关系r的某属性集X, r中根本没有X上相等的两个元组存在,则 $X\to Y$ 恒成立;

练习:请分析下列属性集上的函数依赖

- 学生(学号, 姓名, 班级, 课号, 课程名, 成绩, 教师, 教师职务)
- 员工(员工码, 姓名, 出生日期, 联系电话, 最后学历, 毕业学校, 培训 日期, 培训内容)
- 图书(书号, 书名, 出版日期, 出版社, 书架号, 房间号)
- 客户(客户号,客户名称,类别,联系电话,产品编码,产品名称,数量,要货日期)

练习:请分析下列属性集上的函数依赖

- 学生(学号, 姓名, 班级, 课号, 课程名, 成绩, 教师, 教师职务)
 - ✓学号 → {姓名,班级};课号 →课程名;{ 学号,课号} →成绩
 - ✓教师 → 教师职务
 - √{班级,课号} → 教师

{班级·课号} → 教师; 课号 → 教师;

{学号,课号} → 教师 究竟选哪一个取 决于对问题领域的理解

- 客户(客户号,客户名称,类别,联系电话,产品编码,产品名称,数量,要货日期)
 - ✓客户号 → {客户名称,类别}
 - ✓产品编码 →产品名称
 - √{客户号,产品编码,要货日期}→数量

本质上,函数依赖 是对属性之间取 值的一种约束, 是一种数据依赖

[Definition] 部分或完全函数依赖:

在R(U)中,若X→Y并且对于X的任何真子集X'都有X' \rightarrow Y, 则称Y完全函数依赖于X, 记为:X \rightarrow Y, 否则称Y部分函数依赖于X, 记为:X \rightarrow Y

示例:U={学号,姓名,年龄,班号,班长,课程号,成绩}

- **□** {学号,课程号} 「▶**∪**
- □ {学号,课程号}---▶姓名
- □{学号,课程号}_「▶成绩

练习:分析下列模式的完全或部分函数依赖

● 学生(学号, 姓名, 班级, 课号, 课程名, 成绩, 教师, 教师职务)

● 员工(员工码, 姓名, 出生日期, 联系电话, 最后学历, 毕业学校, 培训日期, 培训内容)

- 图书(书号, 书名, 出版日期, 出版社, 书架号, 房间号)
- 客户(客户号,客户名称,类别,联系电话,产品编码,产品名称,数量,要货日期)
- 学生(学号, 姓名, 系号, 系主任)

练习:分析下列模式的完全或部分函数依赖

- 学生(学号, 姓名, 班级, 课号, 课程名, 成绩, 教师, 教师职务)
 - □ {学号,课号} → U; 但 {学号,课号} → 姓名
 - **□** {学号, 课号} → 课程名
- 员工(员工码, 姓名, 出生日期, 联系电话, 最后学历, 毕业学校, 培训日期, 培训内容)
 - **□** {员工码,培训日期} → U;
 - □ {员工码,培训日期} → {姓名,出生日期 };
- 图书(书号, 书名, 出版日期, 出版社, 书架号, 房间号)
- 客户(客户号,客户名称,类别,联系电话,产品编码,产品名称,数量,要货日期)
- 学生(学号, 姓名, 系号, 系主任)

[Definition]传递函数依赖

在R(U)中,若X→Y,Y→Z 且Y⊄X, Z⊄Y, Z⊄X, Y→X, 则称Z传递函数依赖干X。

示例:U={学号,姓名,年龄,班号,班长,课号,成绩}

□ 学号→班号 ; 班号→班长

□ 学号→班长

注: "班长"是传递依赖于"学号"的。

示例:学生(学号,姓名,系号,系主任)

□ 学号→系号; 系号→系主任

□ 学号→ 系主任

注: "系主任"是传递依赖于 "学号"的。

传递依赖存在着非受控冗余!

学号	姓名	班级	班主任	班主任职称
2003510101	张三	035101	张林	讲师
2003510102	李四	035101	张林	讲师
2003510103	王五	035101	张林	讲师
2003510104	李六	035101	张林	讲师
2003510105	张四	035101	张林	讲师
2003510106	张五	035101	张林	讲师
2003510107	张小三	035101	张林	讲师
2003510108	张小四	035101	张林	讲师
2003510109	李小三	035101	张林	讲师
2003510110	李小四	035101	张林	狮
2003520201	周三	035202	郑东	副教授
2003520202	赵四	035202	郑东	副教授
2003520203	赵五	035202	郑东	副教授
2003520204	赵六	035202	郑东	副教授
2003520205	後四	035202	郑东	副教授
2003520206	强五	035202	郑东	副教授
2003520207	梁小三	035202	郑东	副教授
2003520208	梁小四	035202	郑东	副教授
2003520209	王小三	035202	郑东	副教授
2003520210	王小四	035202	郑东	剛教授

练习:分析下列模式的传递函数依赖

- ●商店(商店,商品,商品经营部,经营部经理)
 - □ {商店, 商品}→ 商品经营部; {商店, 商品经营部}→ 经营部经理
 - □ {商店, 商品} → 经营部经理
- ●学生(学号, 姓名, 班级, 班主任, 课号, 课程名, 成绩, 教师, 教师职务)
 - □ 学号→班级 ; 班级→班主任 ; {学号,课号} → 教师;教师→教师职务
 - □ 学号→ 班主任 ; {学号,课号}→ 教师职务
- 员工(员工码, 姓名, 部门, 部门经理)
 - □ 员工码→部门;部门→部门经理
 - □ 员工码 → 部门经理
- 图书(书号, 书名, 出版日期, 出版社, 书架号, 房间号, 管理员)
- 客户(客户号,客户名称,类别,联系电话,产品编码,产品名称,数量,要货日期)

[Definition]候选键

设K为R(U)中的属性或属性组合,若K → U, 则称K为R(U)上的<mark>候选键</mark> (Candidate Key)。

说明:

- (1)可任选一候选键作为R的主键(Primary Key);
- (2)包含在任一候选键中的属性称主属性(Prime Attribute),其他属性称非主属性;
- (3)若K是R的一个候选键·S⊃K,则称S为R的一个超键(Super Key)。

示例: U = {学号,姓名,年龄,班号,班长,课号,成绩} □ {学号,课号} □ L

练习:找候选键与非主属性

●学生(学号, 年龄, 家庭住址, 课程号, 成绩, 教师, 教师职务) 候选键是??,非主属性是??

●邮编(城市名,街道名,邮政编码) 候选键是??,非主属性是??

●商店(商店,商品,商品经营部,商品经营部经理) 候选键是??,非主属性是??

●学生(学号, 姓名, 所属系别, 系主任) 候选键是?? · 非主属性是??

[Definition]逻辑蕴涵

设F是关系模式R(U)中的一个函数依赖集合,X,Y是R的属性子集,如果从F中的函数依赖能够推导出 $X\to Y$,则称F逻辑蕴涵 $X\to Y$,或称 $X\to Y$ 是F的逻辑蕴涵。记作F $\models X\to Y$ 。

说明:

口设F是关系模式R(U)的函数依赖集, $X \rightarrow Y$ 是一个函数依赖,若对R中的每个满足F的关系r, 能够用逻辑推理的方法推出r也满足 $X \rightarrow Y$,则称 $F \models X \rightarrow Y$ 。

[Definition]闭包

被F逻辑蕴涵的所有函数依赖集合称为F的闭包(Closure),记作 F+。 说明:

□若F+=F,则说F是一个全函数依赖族(函数依赖完备集)。

关于函数依赖的公理和定理

[Armstrong's Axioms A1~A3]

设R(U)是属性集 $U=\{A_1,A_2,...,A_n\}$ 上的一个关系模式,F为R(U)的一组

函数依赖,记为R(U, F),则有如下规则成立:

- □[A1]自反律(Reflexivity rule):若Y_X_U,则X→Y被F逻辑蕴涵。
- □[A2]增广律(Augmentation rule):若X→Y∈F, 且Z⊆U, 则XZ→YZ 被F逻辑蕴涵。
- □[A3]传递律(Transtivity rule):若X→Y∈F, 且Y→Z, 则X→Z被F逻辑 蕴涵。

关于函数依赖的公理和定理

[引理2]由Armstrong 's Axiom可推出如下结论:

□(a)合并律(Union Rule): 若X→Y且X→Z,则X →YZ。

□(b)伪传递律(Pseudo Transitivity): 若X→Y且WY→Z, 则XW→Z。

□(c)分解律(Decomposition Rule): 若X→Y且Z⊆Y, 则X→Z。

[引理 3] 如果 A₁,A₂,...,A_n是属性,则

 $X \rightarrow A_1, A_2, ..., A_n$ 当且仅当对每个 A_i 有

 $X \rightarrow A_i (1 \le i \le n)$ °

证明略。

关于函数依赖的公理和定理

[Definition] 属性(集)闭包

对R(U, F), X⊆U, U = { $A_1, A_2, ..., A_n$ }, 令:

χ+_F = { A_i | 用Armstrong Axiom A1,A2,A3可从F导出X→ A_i }

 $称X+_F为X关于F的属性(集)闭包。$

注:显然X⊆ X+_F。

[引理4] X→Y·当且仅当Y⊆ X_F

证明:<首先证明必要性:若 $X \rightarrow Y$,则定有 $Y \subset X^+_{c}$ >

因为 $X \rightarrow Y$,由分解律,若 $A_i \in Y$,则 $X \rightarrow A_i$ (i = 1,2,...,n),所以 $Y \subseteq X^+_F$ 。

<再证明充分性:若Y⊆ X+F,则定有X→Y>

因为Y_⊆X⁺ $_F$ </sub>,按属性闭包定义,对 $\forall A$ _i $\in Y$,有X $\rightarrow A$ _i (i =1,2,...,n);再由合

并律,可以推出 $X \rightarrow Y$ 。 证毕。

[Definition] 覆盖(Cover)

对R(U)上的两个函数依赖集合 $F \cdot G$,如果 $F^+=G^+$,则称F和G是等价的,也称F覆盖G或者G覆盖F。

[Algorithm] 计算一属性集关于一组函数依赖的属性闭包。

Input:有限属性集合U, U上的函数依赖集合F, 及U的子集X

Output: X关于F的属性闭包X+, 记为X+_F。

Method:按下列规则递归计算属性序列X⁽⁰⁾, X⁽¹⁾,...

- 1. 令X⁽⁰⁾=X, i=0
- 2. $B = \{A \mid (\exists V)(\exists W)(V \rightarrow W \in F \land V \subseteq X^{(i)} \land A \subseteq W)\}$
- 3. $X^{(i+1)} = B \cup X^{(i)}$
- 4. If $\chi_{(i+1)} \neq \chi_{(i)}$ then i=i+1; goto 2.
- 5. X+_F = X⁽ⁱ⁾ , 算法终止。

示例:已知 R(U, F), U={A, B, C, D, E}, F={AB→C, B→D,

 $C \rightarrow E$, $EC \rightarrow B$, $AC \rightarrow B$ } 。 求: $(AB)_F$

解:(1) $X^{(0)} = \{A, B\}$

(2) $\oplus AB \rightarrow C$, $B \rightarrow D$: $X^{(1)} = X^{(0)} \cup \{C, D\} = \{A, B, C, D\}$

(3) $\oplus C \rightarrow E$, $AC \rightarrow B$: $X^{(2)} = X^{(1)} \cup \{E\} = \{A, B, C, D, E\}$

(4) $\oplus EC \rightarrow B : X^{(3)} = X^{(2)} \cup \phi = \{A, B, C, D, E\}$

(5) 因为X⁽³⁾ = X⁽²⁾ · 所以(AB)+_F = {A, B, C, D, E}。

[引理6] 每个函数依赖集F可被一个其右端至多有一个属性的函数依赖之集 G覆盖。

证明:依据引理6,G = { X→A | X→Y ∈ F \land A∈Y } 要证F+与G+等价,由引理5,只需证F \subseteq G+ \land G \subseteq F+ 因为X→Y∈F,A∈Y可以由Armstrong公理的自反律可推出X→A,所以G \subseteq F+

又因为若 $Y = A_1A_2...A_n$,则G中的 $X \to A_1$, $X \to A_2$,..., $X \to A_n$,由Armstrong 公理的合并律可以推出 $X \to Y$,所以 $F \subseteq G^+$ 。最终依据引理5,可导出 $F^+=G^+$ 。证毕。

1920 HIT

[Definition]最小覆盖

若F满足以下条件,则称F为最小覆盖(minimal Cover)或最小依赖集 (minimal set of Functional Depandency):

- 1) F中每个函数依赖的右部是单个属性;
- 2)对任何X→A∈F, 有F- { X→A }不等价于F;
- 3)对任何X→A∈F, Z⊂X, (F-{X→A})∪{Z→A}不等价于F。

总结

