Hierarchical effects of contrast and motion coherence in early visual cortex

Dan Birman, Justin Gardner

Department of Psychology, Stanford University danbirman@stanford.edu

1. Introduction

An existing model of contrast discrimination suggests early visual cortex is sufficient to explain behavioral performance¹.

Can that approach be used to jointly explain motion coherence discrimination?

3. Discrimination task

We collected data on how well participants could discriminate small increments in contrast and motion coherence.

2. Model: neural responses Contrast and motion coherence response functions constrained by behavior (n=21) Signal detection / Weber-Fechner +1 std. dev Behavior: just noticeable differences +1 std. dev. Neural response functions Base stimulus V1 contrast and MT motion coherence response Constrain the functions constrained by fMRI (n=11) fMRI: response timeseries Stimulus strength (%) GLM (convolution) Trial response Hemodynamic response function

6. Behavior to fMRI 5. Response functions

Non-linear additive model

Stimulus strength (%)

We fit a neural noise⁵ parameter to scale response models into the same space. Based on previous work¹ we fit this parameter using the functions constrained on V1 and constrast discrimination.

^{3.} V5/MT is thought to respond linearly to increasing motion coherence (see also 4). Rees, G., Friston, K., & Koch, C. Nature neuroscience (2000).