

Design Variations and Design for Yield Design for Manufacturability

Chun-Zhang Chen, Ph.D.

June 25-29, 2018

DFM for **DFY**

DFM Introduction - What is Litho, CMP and Variability?

Litho

- Problem: Specific DRC clean layout patterns cause resolution problems
- Solution: Mandatory detection and fixing of litho hotspots from design by foundry certified litho solution

- Problem: Copper metal erodes during manufacturing and create yield issue and impact interconnect RC
- Solution: Mandatory detection of CMP hotspot using foundry certified CMP simulations

Oxide Loss Dishing Total Copper Loss Isolated Isolated Dense Array Thin-Lines Wide-Lines Thin-Lines Wide-Lines

Variability

- Problem: Characteristics of devices vary with placement and density "Layout Dependent Effects (LDE)"
- Solution: Include LDE in implementation to predict electrical variability across design by foundry certified e-DFM flows

Layout Dependent Effects		Prior to 40nm	At 40nm	28nm & Beyond
WPE	Well Proximity Effect	×	×	×
PSE	Poly Spacing Effect		×	X
LOD	Length of Diffusion	×	x	X
OSE	OD to OD Spacing Effect		×	X
LPC	Layout Patterning Check		x	x
OP/PO Density	OD/Poly Density		×	X

Litho

3 (SUMMER 2018 UCAS, Beijing)

Design for Value*

Andrew Kahng, 2003

Mask cost trend → Design for Value (DFV)

Design for Value Problem:

Given

- Performance measure f
- Value function v(f)
- •Selling points f_i corresponding to various values of f_i
- Yield function y(f)

Maximize Total Design Value = $\Sigma_i y(f_i)^* v(f_i)$

[or, Minimize Total Cost]

Probabilistic optimization regime

^{*} See "Design Sensitivities to Variability: Extrapolation and Assessments in Nanometer VLSI", *IEEE ASIC/SoC Conference*, September 2002, pp. 411-415.

DFM in DSM since 2000

New Metal Density/CMP; Antenna Rules PSM, RET, and OPC

DFM in Below 20nm/FinFET

ITRS Predictions of DFM
Requirements
Economic, Technologic

DFM for DFY

- DFM wrt DFX
- CMP and DFM
- MPT of DFM
- EAD for DFM
- Discussion

Layout Density Control

- Area fill: "electrically inactive", floating or grounded
- Area fill insertion (and slotting)
 - Decreases local density variation
 - Decreases post-CMP ILD erosion, conductor dishing
 - Cf. "Filling and Slotting: Analysis and Algorithms", ISPD-98

New Rule of Metal Density

- New rule: max/min metal density
 - For Cu, metals are "poured" (damascene)
 - Review of dual-damascene

Ta barrier layer to prevent Cu from diffusing into Si

SiN layer for etch stop

An amateur's view of dual damascene ("via-first" variation)

Min/Max Rule of Metal Density

- Min rule: Ta barrier is hard to remove
- Max rule: Cu metal is much softer than Ta
- "Selectivity" of Cu is 20x higher than for Ta

Low density: Mandate min. metal density

High density: Mandate max. density and width

Phase-Shifting Masks (PSM)

- Lithography uses (partially) coherent light
 - Wavelength today is 248nm; changes slowly

Kahng et. al., 1999 DAC

Optical Proximity Correction (OPC)

- Also known as serifs and dog-ears
 - Layout is not WYSIWYG anymore
- Patterning through a reticle is tough
 - Holes in reticle act as low-pass filter
 - Blurred edges
 - Squares in mask are blobby ovals in production
 - We can predistort the image to compensate

Automated Full-Chip Hotspot Detection

SPIE 2007, Roseboom et al Contours and Hotspots on a 65nm Metal1 Layout (a)Contours at Nominal Conditions

(b) Contours and Hotspots at Defocus Conditions

SPIE 2007, Roseboom et al, Architecture of Clear Shape Model Technology for RET/OPC/ORC

Manufacturing Flow

20nm Implementation and Signoff Physical Verification

Physical Implementation

Physical/DFM Signoff

Tapeout

Basic Concepts

- Design rule checks (DRC)
- Layout versus schematic (LVS)
- Verification Methods
- DRC, LVS, ERC,
- SVL, LVL, LPE
- Tools
 - Dracula, Diva, Assura,
 - Calibre, Hercules, PVS

DFM for DFY

- DFM wrt DFX
- CMP and DFM
- MPT of DFM
- EAD for DFM
- Discussion

Multiple Patterning Technology in Lithography

- MPT: DPT, TPT, QPT
- SADP, SATP, SAQP
- Self-aligned contact/via patterning
 - used in DRAM

- DSA ()
- LELE
 - LELE (Litho-Etch-Litho-Etch), used in 20nm/14nm
 - LELELE, used in 10/7nm

MPT and DPT Application in IC

- MPT vs EUV
 - LELE Litho-Etch-Litho-Etch (DPT)
 - 28nm-40nm, LELE with half-pitch
 - 20nm-14nm, LELE
 - SAS Self-Aligned Spacer
 - 20nm-28nm, SAS with half-pitch
 - 10nm-14nm, SAS
 - Quadruple Patterning Technology (QPT)
 - sub-20nm, QPT with half-pitch
 - beyond 10nm, QPT
 - EUV with MPT at 7nm and beyond
 - SID (Spacer-Is-Dielectric) patterning
 - DSA (Directed self-Assembly)
- Ref.:
 - E. van Setten et al., SPIE 9661, 96610G (2015)
 - http://www.eetimes.com/document.asp?doc_id=1327919 EUV 5nm test

Dry UV and Immersion UV

EUV (extreme ultraviolet) for 10nm

436nm → 365nm → 248nm KrF → 193nm ArF Immersion (200W/cm²) → 13.5nm CO₂ EUV (10¹¹W/cm²)

NXE:3300B @13.5nm, ASML/Cymer Generation 1 "" [by Cymer] LPP (*Laser-Produced Plasma*) 55W for 43 wafer/hr in 2013; 250W for 126 wafer/hr by 2015

Chip Optimizer for DFY/DFM Solutions

Space-based Rout O

Incremental, Automated **DRC/Recommended Rule Optimization or ECO Routing** Via Reduction

> Wire Spreading & CAA **Optimization**

Wire Topology Optimization

Via Optimization

Wire Widening

Pwr/Gnd Optimization

Dummy Fill

CMP Model-based Fill

Incremental, Automated Litho Repair

Yield Data: 90nm mature fab for June 2005

CMP Prediction Model Engine

3D Characterization

Litho Prediction Model Engine

Litho Pattern Cache

Encounter

Electri

SoC

65/45 nm Design-Related Manufacturing Failures Cause Yield Loss and Respins

Catastrophic Failures Impact Yield

Transistor delay and leakage non-linear variation with gate length variations

Manufacturing variations cause leakage and delay failures

Wire Awidth creates non-

DRC is not sufficient anymore

- Risk poor utilization of process or costly re-spins
- Need to prevent catastrophic failures 'during' design
- Increased sensitivity to variations on both devices and interconnect
- **©** Current margins and rulebased method insufficient
- Need silicon accurate timing and leakage analysis

OutPerform Reduces Guard-bands and Detects New Parametric Failures

All variations – systematic, random etc., - lumped together

Table-based solutions try to account for systematic variations in interconnect

Manufacturing Integrity analysis reduces guard-bands and detects new failures

Pessimism

Pessimism

Timing/Noise/Power

Pessimism

Timing/Noise/Power Checks

Checks

Timing/Noise/Power Checks

OutPerform Accounts for Manufacturing Integrity Issues on Device

- Proprietary incremental device parameter extraction algorithms
- Predict current density across channel from SPICE models and extract equivalent W/L
 - Equivalent I_{on} for delay
 - Equivalent I_{off} for leakage
- Formulated as perturbation problem
 - Back-annotated transistor SPICE netlist

Proprietary L transformation

- Current varies non uniformly over channel width
- Divide into multiple partitions across channel
- Find current for each partition
- Sum to get total current = Find L_{eff} to match current

OutPerform: In-Context Performance Integrity Flow In Custom Design

- Produce back-annotated SPICE netlist with W_{eq}, L_{eq}, ΔR, ΔC
- Predicts impact of actual silicon shapes on device and interconnect
- Simulation of back-annotated netlist in SPICE shows timing impact of manufacturing variations

Clear Shape Enables Reduction in Area(10%), Power (up to 9%) and Leakage (up to 24%)

Lithography

Physical DFM Application for Libraries

by:

- Used conservative design rules
- Routing grid larger than minimum routing pitch
 - Larger via enclosure and spacing rules.
- Moving L-shaped poly and diffusion away from MOS gates

Process maturity

17% cell area reduction 10% block area reduction Usage of model-based simulation to detect and fix hotspots

More aggressive rules enabled

Block	Die area reduction	Dynamic power reduction	Leakage power reduction
"A"	10.1%	5.2%	4.8%
"R"	14.0%	9.0%	24.2%

clear chane technologies

RCX – Interconnect Extraction

Extracts ΔR and ΔC due to shape variations and updates the original SPEF

Delay Calculation

- \bullet Δ L, Δ W and Δ R, Δ C variation affects both delay and slew
- **◆**∆slew affects downstream logic delay
- **◆**∆slew and ∆delay on the clock network affects the entire design
- OutPerform takes into account the ∆slew, device delta, and parasitic delta and calculates \(\Delta delay \) for gates
- **♦** ∆delay for interconnect factors the ∆slew and parasitic delta

Bringing Manufacturing Variations into Timing Analysis

Simulate circuit with worst-case (best-case) parameters and contour-extracted parameters

OutPerform: Variation Analysis in ASIC flow

DFM for DFY

- DFM wrt DFX
- CMP and DFM
- MPT of DFM
- EAD for DFM
- Discussion

Definitions

- PAD = Parasitic Aware Design
- RAP = Rapid Analog Prototyping
- •LDE = Layout Dependent Effects
- EAD = Electrically Aware Design
- VSE = Virtuoso Schematic Editor (CAS)
- •ADE = Analog Design Environment (CAS)
- VLS = Virtuoso Layout Suite (CAS)
- PVS = Physical Verification System (SSV)
- •QRC = Cadence Extraction (SSV)
- LEA = Litho Electrical Analyzer (SSV)

PAD

- Parasitic Aware Design
 - Allows designers to estimate parasitic effects without any layout
 - Highlights
 - Run simulations with estimated parasitics across multiple testbenches and corners
 - Perform parasitic sweeps and specify constraints (max R, max C, max Coupling C, matched C) to drive layout generation
 - Perform sensitivity analysis and Monte Carlo analysis in the presence of these parasitics

RAP

- Rapid Analog Prototyping
 - Allows designers to very quickly and automatically capture constraints for a circuit architecture
 - Constraints include
 - Module Generators allows for highly matched array of devices with abutment, merging, guard rings etc.
 - Symmetry, Orientation, Matching etc..
 - These constraints can drive a prototype layout generation using the auto-placer and auto-router
 - Goal is to get a layout as quickly as possible for getting access to physical effects as quickly as possible

LDE

- Layout Dependent Effects
 - Circuit Designer can extract accurate LDE effects from Module Generators or a placement to re-simulate in the presence of these effects
 - Layout Engineer can perform LDE hotspot analysis in the layout during placement to identify any problem areas in your circuit
 - Note: While RAP can provide inputs for the LDE flow, it is not a requirement for using the LDE flow

EAD

- Electrically Aware Design
 - Supports RC extraction on interconnect
 - Supports EM analysis on interconnect while routing
 - Currents are captured during circuit design phase
 - Supports re-simulation with parasitic effects during circuit design while layout is being generated

DFM for DFY

- DFM wrt DFX
- CMP and DFM
- MPT of DFM
- EAD for DFM
- Discussion

DFM Requirements by ITRS 2011

- Requirements due to fundamental economic limitations
 - Mask cost towards multi \$M, for SoC innovation
- Requirements due to variability and lithography limitations

MPU and DRAM Metal Level Potential Solutions

ITRS 2013

Research Required
Development Underway
Qualification / Pre-Production
Continuous Improvement

Summary: In-Design DFM in Encounter Digital Implementation System

Layout Dependent Effect-Aware Placement and Timing Analysis

Summary

- DFM challenges are from
 - Increasing variability
 - Mask cost
 - Data explosion
 - Lithography hardware limitations
- They (may) impact on
 - Architecture challenges
 - Logic and circuit challenges
 - Layout and physical design challenges
 - Yield prediction and optimization as design challenges