4 Funktionen und ihre Graphen

4.1 Strecken, verschieben, spiegeln

Gegeben sei der Graph der Funktion f. Der in x-Richtung verschobene, in y-Richtung verschobene und in y-Richtung gestreckte Graph der Funktion g besitzt den Funktionsterm:

$$g(x) = a \cdot f(x - c) + d$$

Bei den Spiegelungen von f gilt:

- g(x) = f(-x) Spiegelung an der **y-Achse**
- g(x) = -f(x) Spiegelung an der **x-Achse**
- g(x) = -f(-x) Spiegelung am **Ursprung**

Beispiel

Skizziere die Graphen von f und g.

a)
$$f(x) = -\sqrt{x+2} - 3; \quad x \ge -2$$

Zeige, dass die Graphen von f_k mit $f_k(x) = kxe^{x^2}$; $k \in \mathbb{R}$ punktsymmetrisch zum Ursprung sind.

$$f(-x) = k \cdot (-x) \cdot e^{(-x)^2}$$
$$= -kxe^{x^2}$$
$$= -f(x)$$

4.2 Linearfaktordarstellung - mehrfache Nullstellen

Satz 1

Hat eine ganzrationale Funktion vom Grad n eine Nullstelle x_0 , so gilt:

$$f(x) = (x - x_0) \cdot g(x)$$

wobei g vom Grad n-1 ist.

 $(x-x_0)$ nennt man **Linearfaktor**.

Satz 2

Eine ganz
rationale Funktion n-ten Grades besitzt höchsten
sn Nullstellen.

Satz 3

Sei $f(x) = (x - a)^k \cdot g(x)$.

- Für k = 1: Schnittstelle von f mit der x-Achse.
- Für k=2 : Berührstelle von f an der x-Achse.
- Für k=3 : Sattelstelle von f an der x-Achse.

Beispiel

a) Skizziere den Graph von f mit $f(x) = x^3(x-2)^2(x+1)$.

b) Bestimme die Funktionsgleichung des folgenden Graphen.

$$g(x) = a(x+1)^3(x-1)(x-2)^2$$
 mit $a = 1$: $g(0) = -4 \Rightarrow a = \frac{1}{2}$
$$g(x) = \frac{1}{2}(x+1)^3(x-1)(x-2)^2$$

4.3 Lösen von Gleichungen

Folgende Strategien zum Lösen von diversen Gleichungen sind zielführend:

Betragsgleichungen

Führe eine Fallunterscheidung durch:

- für positive Beträge kann man den Betrag weglassen und die Gleichung wie gewohnt lösen.
- für negative Beträge wird eine Seite der Gleichung mit -1 multipliziert.

Beispiel

$$\left|\frac{10}{e^x-1}\right| = 2$$

$$\frac{10}{e^x-1} = 2 \qquad |\cdot e^x - 1|$$

$$10 = 2e^x - 2 \qquad |+2; \cdot \frac{1}{2}|$$

$$6 = e^x \qquad |\ln 6|$$

$$x = \ln 6$$

$$-\frac{10}{e^x-1} = 2 \qquad |\cdot e^x - 1|$$

$$-10 = 2e^x - 2 \qquad |+2; \cdot \frac{1}{2}|$$

$$-4 = e^x \Rightarrow \text{ keine L\"osung}$$

$$\left|\frac{10}{e^{\ln 6}-1}\right| = \left|\frac{10}{5}\right| = 2$$

$$\Rightarrow \mathbb{L} = \{\ln 6\}$$

Wurzelgleichungen

- isoliere die Wurzel
- quadriere beide Seiten der Gleichung

Beispiel

Probe:

$$\sqrt{20 - 2 \cdot 2} + 6 = 2 \Leftrightarrow 4 + 6 \neq 2$$
$$\sqrt{20 - 2 \cdot 8} + 6 = 8 \Leftrightarrow 2 + 6 = 8$$
$$\Rightarrow \mathbb{L} = \{8\}$$

Bruchgleichungen

- Bestimme den Hauptnenner
- Beide Seiten mit dem Hauptnenner durchmultiplizieren

Beispiel

$$\frac{6}{x^4} - \frac{5}{x^2} = -1 \qquad | \cdot x^4$$

$$6 - 5x^2 = -x^4 \qquad | + x^4$$

$$x^4 - 5x^2 + 6 = 0 \qquad | u = x^2$$

$$u^2 - 5u + 6 = 0$$

$$(u - 2)(u - 3) = 0$$

$$u_1 = 2; \ u_2 = 3 \qquad | x^2 = u$$

$$x^2 = 2 \qquad x^2 = 3$$

$$x_1 = \pm \sqrt{2} \qquad x_2 = \pm \sqrt{3}$$

$$x^4 \neq 0 \text{ und } x^2 \neq 0 \text{ für } x = \pm \sqrt{2} \text{ oder } x = \pm \sqrt{3}$$

$$\Rightarrow \mathbb{L} = \{\sqrt{2}; -\sqrt{2}; \sqrt{3}; -\sqrt{3}\}$$

Ungleichungen

Entweder: Mit Vergleichszeichen auflösen und aufpassen bei Mulitplikation oder Division mit negativen Zahlen.

Oder: Eine Gleichung lösen und Werte größer und kleiner als die Lösung testen.

Beispiel

$$1 - \left(\frac{1}{2}\right)^{x} < 0.05 \qquad | -1$$

$$- \left(\frac{1}{2}\right)^{x} < -0.95 \qquad | \cdot (-1)$$

$$\left(\frac{1}{2}\right)^{x} > 0.95 \qquad | \log$$

$$x \log 0.5 > \log 0.95$$

$$x < \frac{\log 0.95}{\log 0.5} \approx 0.074$$

4.4 Trigonometrische Funktionen

Gegeben sei die Funktion f mit $f(x) = \sin x$. Der Graph von der Funktion g mit

$$g(x) = a\sin(b(x-c)) + d$$

ist gegenüber dem Graph von f

- um |a| Einheiten in y-Richtung gestreckt,
- um d Einheiten in y-Richtung verschoben,
- besitzt die Periode $p=\frac{2\pi}{b}$ (Streckung in x-Richtung) und
- um *c* Einheiten in *x*-Richtung verschoben.

Für a < 0 wird der Graph zusätzlich an der x-Achse gespiegelt.

Beispiel

a) Gib im Intervall $I=[0;2\pi]$ zwei Lösungen der Gleichung $\sin x=-0.6$ an.

$$\sin^{-1}(-0.6) \approx -0.64$$

 $x_2 = -0.64 + 2\pi \approx 5.64$
 $x_1 = \pi + 0.64 \approx 3.78$

Skizziere den Graphen von $f(x) = 2\sin(2\pi(x-1)) - 1$.

Senkrechte und waagerechte Asymptoten

Gegeben sind die ganzrationalen Funktionen g(x) und h(x). Die Funktion f mit $f(x) = \frac{g(x)}{h(x)}$ $(h(x) \neq 0)$ nennt man gebrochenrationale Funktion.

Wenn $g(x_0) \neq 0$ und $h(x_0) = 0$ gilt, dann ist x_0 eine **Polstelle** von f und die Gerade mit $x = x_0$ ist eine **senkrechte Asymptote** des Graphen von f.

Gilt $g\left(x_{0}\right)=0$ und $h\left(x_{0}\right)=0$, dann liegt keine senkrechte Asymptote, sondern eine **hebbare Definitionslücke**

Für die waagerechte Asymptote gilt:

- 1. Zählergrad > Nennergrad: keine waagerechte Asymptote
- 2. Zählergrad = Nennergrad: höchste Potenz von x ausklammern und $\lim_{x \to \pm \infty} f(x)$ bilden. $\left(y = \frac{a}{b}\right)$
- 3. Zählergrad < Nennergrad: waagerechte Asymptote bei y = 0.

Beispiel

a) Bestimme die senkrechte und waagerechte Asymptote.

$$f(x) = \frac{6x^2 + 3}{5x^2 - 1/2}$$

$$5x^2 - \frac{1}{2} = 0 \Leftrightarrow x = \pm \frac{1}{\sqrt{10}} \qquad \qquad \rightarrow \text{Senk. Asymp. bei } x = \pm \frac{1}{\sqrt{10}}$$

$$\lim_{x \to \pm \infty} \frac{\cancel{x}^2 \left(6 + \frac{3}{x^2}\right)}{\cancel{x}^2 \left(5 - \frac{1/2}{x^2}\right)} = \frac{6}{5} \qquad \qquad \rightarrow \text{Wag. Asymp. bei } y = \frac{6}{5}$$

$$g(x)=rac{x^2-1}{x^2-1}$$
 $x^2-1=0\Leftrightarrow x=\pm 1$ o Senk. Asymp. bei $x=\pm 1$ o Wag. Asymp. bei $y=0$

$$g(x) = \frac{7x}{x^2 - 1}$$

$$x^2 - 1 = 0 \Leftrightarrow x = \pm 1$$
 \rightarrow Senk. Asymp. bei $x = \pm 1$ \rightarrow Wag. Asymp. bei $y = 0$
$$h(x) = \frac{3x^2 + 2}{7x - 2}$$

$$7x - 2 = 0 \Leftrightarrow x = \frac{2}{7}$$
 \rightarrow Senk. Asymp. bei $x = \frac{2}{7}$ \rightarrow keine wag. Asymp.

 $b) \quad \text{Skizziere den Graphen von } t \text{ mit } t(x) = \frac{3x^2 + 1}{x^2 + 4x + 4}.$

4.6 Vollständige Kurvendiskussion

Strategie zum "Zeichnen" eines Graphen:

- 1. Nullstellen bestimmen (f(x) = 0),
- 2. senkrechte und waagerechte Asymptoten bestimmen,
- 3. Symmetrie zur y-Achse und zum Ursprung,
- 4. Hoch-, Tief- und Wendepunkte,
- 5. Verhalten für $x \to \pm \infty$, bzw. Vorzeichenwechsel an einer Polstelle,
- 6. Verhalten für $x \to 0$ (kleinste Potenz von x betrachten).

Beispiel

Skizziere den Graphen von f mit $f(x)=\frac{(x+1)^2}{2x^2}$

$$f(x) = 0$$
$$\frac{(x+1)^2}{2x^2} = 0 \Leftrightarrow x = -1$$

Senk. Asymp. bei x=0

Wag. Asymp. bei $y=\frac{1}{2}$

4.7 Funktionenscharen – Ortskurven

Eine Funktion mit Parameter nennt man **Funktionenschar**. Die Menge aller Punkte, die alle eine gemeinsame Eigenschaft teilen, z. B. gemeinsame Hochpunkte, bilden eine **Ortskurve**. Um die Gleichung der Ortskurve zu bestimmen geht man wie folgt vor:

- 1. Die notwendige Bedingung aufstellen und nach x auflösen.
- 2. x in $f_t(x)$ einsetzen $\rightarrow y$ -Koordinate
- 3. Gleichung aus 1. nach t auflösen und in die y-Koordinate aus 2. einsetzen.

Beispiel

a) Bestimme die Ortskurve aller Tiefpunkte von $f_t(x) = (x - t)e^x + 1$

$$f_t'(x) = e^x + (x - t)e^x$$

$$f'_t(x) = 0$$

$$e^x + (x - t)e^x = 0$$

$$e^x (1 + (x - t)) = 0$$

$$1 + (x - t) = 0$$

$$x = t - 1$$

$$f(t-1) = ((t-1) - t) e^{t-1} + 1$$

$$= -e^{t-1} + 1 \qquad | t = x + 1$$

$$\Rightarrow y = -e^{x} + 1$$

b) Untersuche $f_t(x) = 2(x+5)e^{tx}$ auf gemeinsame Punkte.

$$f_0(x) = f_1(x)$$

$$2(x+5) = 2(x+5)e^x$$

$$2(x+5) - 2(x+5)e^x = 0$$

$$2(x+5)(1-e^x) = 0$$

$$\Rightarrow x_1 = -5; \ x_2 = 0$$

$$f_t(-5) = 2(-5+5)e^{-5t} = 0$$

$$\Rightarrow P_1(-5,0); P_2(0,10)$$

 $f_t(0) = 2(0+5)e^0 = 10$