

Учебный практикум на ЭВМ

Лекция 3 MathWorks MATLAB: Функции. Массивы. Структуры. Строки

Функции

Функция – это фрагмент программного кода, к которому можно обратиться из другого места программы.

Для функции могут быть определены входные данные – аргументы, и выходные данные – значения («вывод») функции: [значения] = function(аргументы)

Также функция может быть задана без использования входных и выходных данных.

Встроенные (библиотечные) функции:

```
x = [0; pi/6; pi/3; pi/2];

y = sin(x);

plot(x, y)
```

```
[cmd_name, cmd_data_string] = strtok(tline, {',', '*'});
```

```
7 - cd
```

ФУНКЦИИ

ommand Window

C:\Users\Zavialov\Documents\MATLAB\2021.09_Workshop

ПРАКТИКУМ

Функции. Виды функций

Функции — это отдельный программный объект, выполняющий определенный алгоритмический код со своей областью определения.

Локальные переменные — s, v, z; Глобальные переменные — L, P;

Входные параметры – v, s; Выходные параметры – c, m.

```
f.m
       program.m
        s = 3;
        v = 66;
        z = 11;
        global L P
 8 -
 9
10 -
        disp(L);
12
```

Функции. Виды функций

Функции встроенные в MATLAB Функции встроенные в код

Функции внешние (М-файлы)

```
program.m 💥
                   f.m
        s = 3;
        v = 66;
        z = 11;
       global L P
       L = 9;
        P = 2;
        [c, m] = f(v, s)
11 -
        disp(L);
    program.m X
               f.m × +
    function [c, m] = f(v,s)
     global L;
      L = 3;
      m = v * 2;
     end
```

Функции. Виды функций

Использование глобальных переменных

```
+1 program.m * f.m * +

3 - s = 3;

4 - v = 66;

5 - z = 11;

6 - global L P

7 - L = 9;

8 - P = 2;

9

10 - [c, m] = f(v, s)

11 - disp(L);
```

Функции с изменяющимся числом параметров nargin, varargin

nargin - возвращает количество входных аргументов функции

varargin - позволяет делать список входных параметров переменной длинны

```
program.m X
                       c = f(5, 6)
                f.m 💥 parent.m
      function [c] = f(varargin)
            switch nargin
23 -
                case 2
                    c = varargin{1} + varargin{2};
24 -
25 -
                case 1
26 -
                    c = v + v:
                otherwise
                    c = 0;
29 -
            end
30 -
        end
```

Анонимные функции

Функция, которая НЕ имеет заданного имени. Является указателем на функцию

Может принять несколько входных параметров и возвратить один выходной параметр

Указатель на анонимную функцию, которая находит квадрат числа

```
sqr = @(x) x.^2;
a = sqr(10);
```

Вложенные функции

Вложенная функция является функцией, которая полностью содержится в родительской функции

ВФ могут получить доступ и изменить переменные, которые заданы в их родительских функциях.

Достоинства Упрощает решение задач моделирования, оптимизации и т.д.

Многомерные массивы

N-мерные массивы.

Массив данных

Каждая ячейка может содержать любой тип данных

```
program.m × f.m × parent.m × +

34 - C = {1,2,3;

'text', rand(5,10,2), {11; 22; 33}}
```

Обратиться к наборам ячеек можно через круглые скобки, ().

Доступ к содержимому ячеек путем индексации с фигурными скобками, {}.

Массив структур

Структура позволяет включать в себя разные типы данных и даже другие структуры.

```
parentfun.m X
                                                               +
      program.m 💥
                          main1.m
                                      main2.m ×
       S = struct('title','', 'author','', 'year', 0);
50 -
51
       S.title = 'Евгений Онегин';
52 -
       S.author = 'Пушкин';
53 -
54 -
       s.year = 2000;
55
56
       %Вектор структур
       lib(100,1) = struct('title','','author','','year',0);
57 -
58
       lib(1).title = 'Евгений Онегин';
59 -
60 -
       lib(1).author = 'Пушкин';
       lib(1).year = 2000;
61 -
62 -
       lib(2).title = 'Преступление и наказание';
       TF = isfield(S, 'title')
63 -
```

МС можно представить в виде таблицы, в которой роль столбцов играют поля, а роль строк элементы массива структур

С помощью функции isfield можно определить является ли входное имя именем поля

Массив символов

Символьный массив является последовательностью символов, как числовой массив является последовательностью чисел.

Целые числа от 32 до 127 соответствуют печатаемым символам ASCII.

Целые числа от 0 до 65 535 соответствуют символам Unicode.

Можно преобразовать целые числа в их соответствующие представления Unicode с помощью char функция.

Функций strrep(), strfind(), strsplit(), strtok()

strrep() - найти и заменить подстроки, strfind() — найти шаблон в строке,

Функций strrep(), strfind(), strsplit(), strtok()

strsplit() — разделить строку или вектор символов в заданном разделителе, strtok() — выбор части строки

Строки

Можно представлять текст с помощью строковых массивов вместо символьных массивов. Каждый элемент массива строк хранит последовательность символов.

```
program.m x f.m x parent.m x +

82 %%
83 - str = "Hello, world"
84 - A = 'Four score and seven years ago'
85 - strA = string(A)
```