In [1]: import pandas as pd
import numpy as np

In [3]: df = pd.read_csv('C:/Users/prajw/Desktop/Indexs/DSBDA print/Assignment 6 (Data Analytics-III)/Iris.csv')

In [4]: **df**

Out[4]:

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
•••			•••			
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

In [5]: df.shape

Out[5]: (150, 6)

In [6]: df.describe()

Out[6]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75 %	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

In [7]: df.isnull()

Out[7]:

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	False	False	False	False	False	False
1	False	False	False	False	False	False
2	False	False	False	False	False	False
3	False	False	False	False	False	False
4	False	False	False	False	False	False
•••						
145	False	False	False	False	False	False
146	False	False	False	False	False	False
147	False	False	False	False	False	False
148	False	False	False	False	False	False
149	False	False	False	False	False	False

150 rows × 6 columns

In [8]: df.isnull().sum()

```
Out[8]: Id
          SepalLengthCm
          SepalWidthCm
          PetalLengthCm
          PetalWidthCm
          Species
          dtype: int64
In [9]: x = df.drop(["Species"],axis=1)
         y = df["Species"]
In [10]: from sklearn.model_selection import train_test_split
         x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
         print(x_train.shape)
         print(y_train.shape)
         print(x_test.shape)
         print(y_test.shape)
        (120, 5)
        (120,)
        (30, 5)
        (30,)
In [11]: from sklearn.naive_bayes import MultinomialNB
In [12]: classifier = MultinomialNB()
         classifier.fit(x_train,y_train)
Out[12]:
          ▼ MultinomialNB
         MultinomialNB()
In [13]: classifier.score(x_test, y_test)
Out[13]: 0.83333333333333334
In [14]: y_pred = classifier.predict(x_test)
In [15]: y_pred
Out[15]: array(['Iris-virginica', 'Iris-versicolor', 'Iris-setosa',
                 'Iris-virginica', 'Iris-setosa', 'Iris-versicolor', 'Iris-setosa',
                 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
                 'Iris-virginica', 'Iris-versicolor', 'Iris-versicolor'
                 'Iris-versicolor', 'Iris-versicolor', 'Iris-setosa',
                 'Iris-versicolor', 'Iris-virginica', 'Iris-versicolor',
                 'Iris-setosa', 'Iris-virginica', 'Iris-versicolor', 'Iris-setosa',
                 'Iris-setosa', 'Iris-virginica', 'Iris-setosa', 'Iris-setosa',
                 'Iris-virginica', 'Iris-virginica', 'Iris-setosa'], dtype='<U15')
In [16]: y_test
                  Iris-virginica
Out[16]: 114
                 Iris-versicolor
          62
          33
                     Iris-setosa
                  Iris-virginica
          107
          7
                     Iris-setosa
                  Iris-virginica
          100
          40
                     Iris-setosa
          86
                 Iris-versicolor
          76
                 Iris-versicolor
          71
                 Iris-versicolor
         134
                 Iris-virginica
          51
                 Iris-versicolor
          73
                 Iris-versicolor
          54
                 Iris-versicolor
          63
                 Iris-versicolor
          37
                     Iris-setosa
          78
                 Iris-versicolor
          90
                 Iris-versicolor
          45
                     Iris-setosa
          16
                     Iris-setosa
          121
                  Iris-virginica
          66
                 Iris-versicolor
          24
                     Iris-setosa
          8
                     Iris-setosa
          126
                  Iris-virginica
          22
                     Iris-setosa
          44
                     Iris-setosa
          97
                 Iris-versicolor
          93
                 Iris-versicolor
          26
                     Iris-setosa
          Name: Species, dtype: object
```

```
In [17]: import sklearn.metrics
         lbs = ['Iris-versicolor','Iris-setosa','Iris-virginica']
         print(sklearn.metrics.confusion_matrix(y_test, y_pred, labels = lbs))
        [[10 0 3]
        [ 1 10 0]
        [ 1 0 5]]
In [18]: from sklearn.metrics import classification_report
In [19]: print(classification_report(y_test,y_pred))
                                      recall f1-score
                                                         support
                         precision
            Iris-setosa
                              1.00
                                        0.91
                                                  0.95
                                                              11
                              0.83
        Iris-versicolor
                                        0.77
                                                  0.80
                                                              13
         Iris-virginica
                              0.62
                                        0.83
                                                  0.71
                                                               6
               accuracy
                                                  0.83
                                                              30
              macro avg
                              0.82
                                        0.84
                                                  0.82
                                                              30
           weighted avg
                              0.85
                                        0.83
                                                  0.84
                                                              30
In [20]: from sklearn.naive_bayes import GaussianNB
         gnb = GaussianNB()
         gnb.fit(x_train, y_train)
Out[20]:
          ▼ GaussianNB
         GaussianNB()
In [21]: classifier.score(x_test, y_test)
Out[21]: 0.83333333333333333
In [22]: y_pred = gnb.predict(x_test)
In [23]: y_test
Out[23]: 114
                 Iris-virginica
                Iris-versicolor
          62
          33
                    Iris-setosa
          107
                  Iris-virginica
          7
                     Iris-setosa
         100
                 Iris-virginica
         40
                    Iris-setosa
         86
                Iris-versicolor
         76
                Iris-versicolor
         71
                Iris-versicolor
         134
                 Iris-virginica
                Iris-versicolor
          51
         73
                Iris-versicolor
          54
                Iris-versicolor
         63
                Iris-versicolor
          37
                    Iris-setosa
         78
                Iris-versicolor
         90
                Iris-versicolor
         45
                    Iris-setosa
         16
                    Iris-setosa
         121
                 Iris-virginica
         66
                Iris-versicolor
         24
                    Iris-setosa
          8
                    Iris-setosa
         126
                 Iris-virginica
         22
                    Iris-setosa
         44
                    Iris-setosa
         97
                Iris-versicolor
         93
                Iris-versicolor
                    Iris-setosa
          26
         Name: Species, dtype: object
```