Computational Methods

POLYNOMIAL INTERPOLATION

QUOTE

A census of the population of the United States is taken every 10 years. The following table lists the population, in thousands of people, from 1950 to 2000, and the data are also represented in the figure.

Year	1950	1960	1970	1980	1990	2000
Population (in thousands)	151,326	179,323	203,302	226,542	249,633	281,422

In reviewing these data, we might ask whether they could be used to provide a reasonable estimate of the population, say, in 1975 or even in the year 2020. Predictions of this type can be obtained by using a function that fits the given data. This process is called *interpolation*.

The problem of determining a polynomial of degree one that passes through the distinct points (x_0, y_0) and (x_1, y_1) is the same as approximating a function f for which $f(x_0) = y_0$ and $f(x_1) = y_1$ by means of a first-degree polynomial **interpolating**, or agreeing with, the values of f at the given points. Using this polynomial for approximation within the interval given by the endpoints is called polynomial **interpolation**.

Define the functions

$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
 and $L_1(x) = \frac{x - x_0}{x_1 - x_0}$.

The linear **Lagrange interpolating polynomial** through (x_0, y_0) and (x_1, y_1) is

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1) = \frac{x - x_1}{x_0 - x_1}f(x_0) + \frac{x - x_0}{x_1 - x_0}f(x_1).$$

Note that

$$L_0(x_0) = 1$$
, $L_0(x_1) = 0$, $L_1(x_0) = 0$, and $L_1(x_1) = 1$,

which implies that

$$P(x_0) = 1 \cdot f(x_0) + 0 \cdot f(x_1) = f(x_0) = y_0$$

and

$$P(x_1) = 0 \cdot f(x_0) + 1 \cdot f(x_1) = f(x_1) = y_1.$$

So P is the unique polynomial of degree at most one that passes through (x_0, y_0) and (x_1, y_1) .

Determine the linear Lagrange interpolating polynomial that passes through the points (2, 4) and (5, 1).

Solution In this case we have

$$L_0(x) = \frac{x-5}{2-5} = -\frac{1}{3}(x-5)$$
 and $L_1(x) = \frac{x-2}{5-2} = \frac{1}{3}(x-2)$,

SO

$$P(x) = -\frac{1}{3}(x-5) \cdot 4 + \frac{1}{3}(x-2) \cdot 1 = -\frac{4}{3}x + \frac{20}{3} + \frac{1}{3}x - \frac{2}{3} = -x + 6.$$

The graph of y = P(x) is shown in Figure.

To generalize the concept of linear interpolation, consider the construction of a polynomial of degree at most n that passes through the n + 1 points

$$(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n)).$$

In this case we first construct, for each k = 0, 1, ..., n, a function $L_{n,k}(x)$ with the property that $L_{n,k}(x_i) = 0$ when $i \neq k$ and $L_{n,k}(x_k) = 1$. To satisfy $L_{n,k}(x_i) = 0$ for each $i \neq k$ requires that the numerator of $L_{n,k}(x)$ contain the term

$$(x-x_0)(x-x_1)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n).$$

To satisfy $L_{n,k}(x_k) = 1$, the denominator of $L_{n,k}(x)$ must be this same term but evaluated at $x = x_k$. Thus

$$L_{n,k}(x) = \frac{(x-x_0)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)}{(x_k-x_0)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n)}.$$

The interpolating polynomial is easily described once the form of $L_{n,k}$ is known. This polynomial, called the *n*th Lagrange interpolating polynomial, is defined in the following theorem.

Theorem

If x_0, x_1, \dots, x_n are n + 1 distinct numbers and f is a function whose values are given at these numbers, then a unique polynomial P(x) of degree at most n exists with

$$f(x_k) = P(x_k)$$
, for each $k = 0, 1, ..., n$. This polynomial is given by

$$P(x) = f(x_0)L_{n,0}(x) + \dots + f(x_n)L_{n,n}(x) = \sum_{k=0}^{n} f(x_k)L_{n,k}(x),$$

where, for each $k = 0, 1, \ldots, n$,

$$L_{n,k}(x) = \frac{(x-x_0)(x-x_1)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)}{(x_k-x_0)(x_k-x_1)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n)}.$$

- (a) Use the numbers (called *nodes*) $x_0 = 2$, $x_1 = 2.75$, and $x_2 = 4$ to find the second Lagrange interpolating polynomial for f(x) = 1/x.
- (b) Use this polynomial to approximate f(3) = 1/3.

Solution (a) We first determine the coefficient polynomials $L_0(x)$, $L_1(x)$, and $L_2(x)$. In nested form they are

$$L_0(x) = \frac{(x - 2.75)(x - 4)}{(2 - 2.5)(2 - 4)} = \frac{2}{3}(x - 2.75)(x - 4),$$

$$L_1(x) = \frac{(x-2)(x-4)}{(2.75-2)(2.75-4)} = -\frac{16}{15}(x-2)(x-4),$$

and

$$L_2(x) = \frac{(x-2)(x-2.75)}{(4-2)(4-2.5)} = \frac{2}{5}(x-2)(x-2.75).$$

Also,
$$f(x_0) = f(2) = 1/2$$
, $f(x_1) = f(2.75) = 4/11$, and $f(x_2) = f(4) = 1/4$, so
$$P(x) = \sum_{k=0}^{2} f(x_k) L_k(x)$$

$$= \frac{1}{3} (x - 2.75)(x - 4) - \frac{64}{165} (x - 2)(x - 4) + \frac{1}{10} (x - 2)(x - 2.75)$$

$$= \frac{1}{22} x^2 - \frac{35}{88} x + \frac{49}{44}.$$

(b) An approximation to f(3) = 1/3 is

$$f(3) \approx P(3) = \frac{9}{22} - \frac{105}{88} + \frac{49}{44} = \frac{29}{88} \approx 0.32955.$$

Exercises

Use appropriate Lagrange interpolating polynomials of degrees one, two, and three to approximate each of the following:

a.
$$f(8.4)$$
 if $f(8.1) = 16.94410$, $f(8.3) = 17.56492$, $f(8.6) = 18.50515$, $f(8.7) = 18.82091$

b.
$$f\left(-\frac{1}{3}\right)$$
 if $f(-0.75) = -0.07181250$, $f(-0.5) = -0.02475000$, $f(-0.25) = 0.33493750$, $f(0) = 1.10100000$

c.
$$f(0.25)$$
 if $f(0.1) = 0.62049958$, $f(0.2) = -0.28398668$, $f(0.3) = 0.00660095$, $f(0.4) = 0.24842440$

d.
$$f(0.9)$$
 if $f(0.6) = -0.17694460$, $f(0.7) = 0.01375227$, $f(0.8) = 0.22363362$, $f(1.0) = 0.65809197$