

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS (963.4)

AD-A141 727

FRANK J. SEILER RESEARCH LABORATORY FJSRL-TR-83-0012 JANUARY 1984

MINDO/3 and MNDO
Calculations for
Nitro Compounds

R. M. GUIDRY and

L. P. DAVIS

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

PROJECT 2303

AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE

84 05 29 119

FJSRL-TR-83-0012

This document was prepared by the Energetic Materials Division, Directorate of Chemical Sciences, Frank J. Seiler Research Laboratory, United States Air Force Academy, CO. The research was conducted under Project Work Unit number 2303-F3-07. R. Martin Guidry was the project scientist.

When U.S. Government drawings, specifications or other data are used for any purpose other than a definitely related government procurement operation, the government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the government may have formulated, furnished or in any way supplied the said drawings, specifications or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

Inquiries concerning the technical content of this document should be addressed to the Frank J. Seiler Research Laboratory (AFSC), FJSRL/NC, USAF Academy, CO 80840. Phone AC 303 472-2655.

This report has been reviewed by the Commander and is releasable to the National Technical Information Service (NTIS). At NTIS it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Larry P. Davis

Project Scientist

Chester J. Dymek, Jr, Lt Col

Director, Chemical Sciences

Kenneth E. Siegenthaler, L. Colonel

Chief Scientist

Copies of this report should not be returned unless return is required by security considerations, contractural obligations, or notice on a specific document.

Printed in the United States of America. Qualified requestors may obtain additional copies from the Defense Documentation Center. All others should apply to:

National Technical Information Service 6285 Port Royal Road Springfield, Virginia 22161

	REPORT DOCUME	IENTATION PAGE ADA						
1a. REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE MARKINGS						
Unclassified		None						
26. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT						
26. DECLASSIFICATION/DOWNGRADING SCHED	ULE	Distribution Unlimited						
4. PERFORMING ORGANIZATION REPORT NUM	BER(S)	5. MONITORING ORGANIZATION REPORT NUMBER(S)						
FJSRL-TR-83-0012								
6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONIT	ORING ORGAN	IZATION				
Frank J. Seiler Research Lab	}							
6c. ADDRESS (City, State and ZIP Code)	7b. ADDRESS (City,	State and ZIP Cod	lei					
The Frank J. Seiler Research L USAF Academy, Colorado Springs	N/A							
8. NAME OF FUNDING/SPONSORING ORGANIZATION	9. PROCUREMENT I	NSTRUMENT ID	ENTIFICATION NU	MBER				
Frank J. Seiler Research Lab								
8c. ADDRESS (City, State and ZIP Code)		10. SOURCE OF FUN	DING NOS.					
The Frank J. Seiler Research L USAF Academy, Colorado Springs		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT NO.			
11. TITLE (Include Security Classification) MINDO/3 and MNDO Calculations f	or Nitro Compou	61102F nds	2303	F3	07			
12. PERSONAL AUTHOR(S) Maj R. Martin Guidry and Capt								
13a. TYPE OF REPORT 13b. TIME C		14. DATE OF REPOR			UNT			
	20101 to 831031	84 January	y 13	42				
N/A								
17. COSATI CODES	18. SUBJECT TERMS (C	ontinue on reverse if ne	cessary and identi	(y by block number)				
FIELD GROUP SUB. GR.	Nitro Compoun	ds .						
0704 1901 2102	Molecular Orb Theoretical C	ital Calculat: hemistry	ions					
A DETRACT CONTINUE OF THE PROPERTY OF				·				
The semiempirical molecular orbital calculational methods MINDO/3 and MNDO were compared to each other and to available experimental data for a number of nitroaliphatic and nitroaromatic compounds. In general, MINDO/3 predicted heats of formation, dipole moments and ionization potentials better than MNDO. MNDO, however, predicted molecular geometries slightly better than MINDO/3 although both methods gave good estimates of the structural parameters.								
20. DISTRIBUTION/AVAILABILITY OF ABSTRAC		21. ABSTRACT SECU		CATION				
228. NAME OF RESPONSIBLE INDIVIDUAL				220 OFFICE BULL				
LARRY P. DAVIS, Capt, USAF	,	22b TELEPHONE NUMBER //nclude Area Code/ (303) 472-2655 FJSRL/NC						

SECURITY CLASSIFICATION OF THIS PAGE	
	1
	i

MINDO/3 and MNDO Calculations for Nitro Compounds

Maj R. Martin Guidry
Capt Larry P. Davis

November 1983

Approved for public release; distribution unlimited

Directorate of Chemical Sciences

The Frank J. Seiler Research Laboratory

Air Force Systems Command

U.S. Air Force Academy, Colorado 80840

TABLE OF CONTENTS

Summary.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ii
Preface.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	iii
Introduct	ion	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	1
Experimen	tal	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	1
Results a	and	Di	SCI	us	si	on	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
Reference					_	_		_	_																							9

SUMMARY

The semiempirical molecular orbital calculational methods MINDO/3 and MNDO were compared to each other and to available experimental data for a number of nitroaliphatic and nitroaromatic compounds. In general, MINDO/3 predicted heats of formation, dipole moments and ionization potentials better than MNDO. MNDO, however, predicted molecular geometries slightly better than MINDO/3 although both methods gave good estimates of the structural parameters.

PREFACE

The research described was performed under Project 2303-F4-03 (Molecular Orbital Calculations of Excited Species). The overall research project encompassed a complete literature search for experimental data on physical and chemical properties of nitro-compounds. Approximately 450 literatures sources were identified, from which 247 literature articles were abstracted. Copies of the remaining sources are still being sought. Additionally, the properties of 93 nitro-compounds (nitroaliphatics, nitroaromatics, nitroalcohols and nitroamines) were calculated using the semi-empirical molecular orbital computer programs MINDO/3 and MNDO. The calculated data was analyzed to determine how well each calculational method predicted experimental data. Properties evaluated included heats of formation, dipole moments, ionization potentials and molecular geometries.

INTRODUCTION

Many investigators have used a variety of methods to perform molecular orbital calculations on nitrocompounds, including π -electron methods 1 , semiempirical methods $^{2-6}$ and <u>ab initio</u> methods 7 . Few results, however, have appeared on nitro-compounds analyzed using the semiempirical MINDO/3 and MNDO programs $^{8-10}$. This report compares the MINDO/3 and MNDO molecular orbital calculations to each other and to available experimental data for a number of nitro-compounds - both aliphatic and aromatic. The goal of this work is to determine which method better predicts particular physical and chemical properties of nitro-compounds. The ultimate goal of our research is using calculational methods to aid in elucidating the kinetics and mechanisms of thermochemical decompositions of nitro-compounds.

EXPERIMENTAL

The MINDO/3 and MNDO molecular orbital programs developed by M.J.S. Dewar, et. al. were used to calculate the geometries, heats of formation, ionization potentials and dipole moments for numerous aliphatic and aromatic nitro-compounds. We then compared calculated properties to available experimental data published in the scientific literature.

Molecular orbital calculations were done on a Digital Equipment Corporation VAX-780 minicomputer.

RESULTS AND DISCUSSIONS

Heats of Formation

Table I shows the observed heats of formation (AH_f at 25°C) and those calculated with MINDO/3 and MNDO for a series of normal nitroaliphatics. MINDO/3 predicts the enthalpies of formation much better than MNDO. Furthermore, MINDO/3 generally correctly predicts whether the heat of formation is exothermic or endothermic. MNDO, however, always predicts heats of formation which are too endothermic by several hundred per cent.

Enthalpies of formation calculated by MINDO/3 are always more exothermic than those calculated by MNDO and are generally near the experimental value. For MINDO/3 the average absolute error is 9.9 kcal/mole and the average error is -4.1 kcal/mole. With MNDO these values are 52.0 kcal/mole and +52.0 kcal/mole, respectively.

As more nitro-groups are added to a molecule, MNDO predicts increasingly more endothermic heats of formation - a 20-50 kcal/mole increase per nitro-group added. MINDO/3 does not show any trends with increasing nitro content. In fact, except for molecules with high nitro-content, MINDO/3 predicts values close to the experimental heats of formation. As nitro-content gets high, the observed heats of formation become more endothermic probably due in part to steric crowding. MINDO/3 may follow this trend, but does not compensate enough and, consequently, predicts too exothermic an enthalpy for nitroaliphatics containing near the limit of nitro groups.

As carbon content increases, MNDO estimates a less endothermic enthalpy.

MINDO/3 predicts a more exothermic enthalpy - the same direction as actually observed. Each methylene group added increases the exothermicity by 5-10

kcal/mole.

Table II presents heat of formation data for several branched nitroaliphatics. Although no experimental data is available, the same trends seen with normal nitroaliphatics occur. Methyl branching affects the enthalpies very little. With MINDO/3 they become slightly less exothermic (5-10 kcal/mole) while with MNDO little change (1-3 kcal/mole) occurs.

Heats of formation for nitroaromatics are presented in Table III. As with nitroaliphatics, MNDO predicts considerably more endothermic heats of formation than MINDO/3. Although only a few experimental heats of formation are available for these nitroaromatics, MINDO/3 seems to estimate the enthalpies much better than MNDO.

With MNDO, adding an additional nitro group to the aromatic ring creases the endothermic heat by 20-30 kcal/mole. With MINDO/3 the heats be emore exothermic by 8-15 kcal/mole for each nitro group added to the rin. The position of the nitro groups on the ring affect the heats of format very little (1-8 kcal/mole) with both calculational methods.

Replacing a ring hydrogen with a methyl group makes the heats more exothermic by 2-7 kcal/mole for both MINDO/3 and MNDO. This effect decreases as the number of nitro substituents increases.

Heats of formation for several nitroamines and nitroalcohols are shown in Table IV. The same trends observed for nitroaliphatics are evident here. The hydroxyl function definitely causes the heats of formation to be very exothermic - ∿50 kcal/mole more exothermic for experimental data. Both MINDO/3 and MNDO become more exothermic when the hydroxyl function is present - MINDO/3 by 30-40 kcal/mole and MNDO by 65-75 kcal/mole.

The amine and N-nitro substituents also cause exothermicity, but to a lesser degree - less than 10 kcal/mole. Both MINDO/3 and MNDO predict more exothermic enthalpies for the nitroamines.

As with other nitro-compounds MINDO/3 more accurately predicts heats of formation of nitroamines and nitroalcohols.

Dipole Moments

Calculated and observed dipole moments for normal nitroaliphatics are compared in Table V. MNDO overestimates the dipole moments while MINDO/3 generally predicts the dipole moments to within 0.2 D. With MINDO/3 the average absolute error is 0.17 D while the average error is - 0.02 D. For MNDO the average absolute error and average error are both 0.63 D indicating that MNDO, unlike MINDO/3, always overpredicts the dipole moment.

Both MINDO/3 and MNDO tend to change in the same direction as the nitroaliphatic molecule is varied. Both generally also mirror changes in the observed dipole moments. The variances may be in the observed values and not the calculated values. Measured dipole moments are quite susceptible to solvent and temperature. Where possible, gas-phase values at 25°C are reported in Tables V-VIII. Where not available, measured values at higher temperatures or in an "inert" solvent (e.g., benzene) at 25°C are given. In general "reactive" solvents tend to reduce the dipole moment while increasing temperature increases the dipole moment slightly.

Adding or repositioning nitrogroups on the nitroaliphatic molecule tends to change the observed and calculated dipole moments according to polarity changes. Adding a methylene group to the nitroaliphatic initially slightly increases the dipole moment, but this effect disappears as carbon number increases. Additional methylene groups have little effect after the propanes.

Table VI contains calculated and observed dipole moments for branched nitroaliphatics. The same observations are evident for branched as for normal nitroaliphatics. Here, also, MNDO/3 predicts dipole moments better than MNDO. As expected, branching with a single methyl group tends to increase the

dipole moment of the molecule because of the polarity increase.

Nitroaromatic dipole moments are compared in Table VII. MNDO nearly always predicts dipole moments higher than MINDO/3. The major exceptions are when the dipole mements are near zero. Of the two calculational methods, MINDO/3 better estimates the observed dipole moment. For MINDO/3 the average absolute error and average error are both 0.62 D while for MNDO these values are 0.99 D and +0.95 D. The high errors could be due, in part, to the sparcity of good experimental data. Few gas-phase data at 25°C are available; therefore, "inert" solvent data were used. This would tend to yield lower experimental values than gas phase data. The high, positive errors tend to confirm this.

For both methods, the position of the nitro groups around the ring affects the value of the dipole moment more than the number of nitro groups on the aromatic ring. As the polarity of the aromatic molecule increases, the dipole moment increases. Both methods react to changes on the ring in the same way.

Substituting a methyl group for a hydrogen atom on the ring affects the dipole moment according to how the polarity changes. The effect is generally less than 1 D.

Table VIII contains dipole moment data for nitroamines and nitroalcohols. The same trends described above are evident here. MNDO-calculated values are generally slightly higher than values predicted by MINDO/3.

Ionization Potentials

The calculated and observed ionization potentials for normal nitroaliphatics are presented in Table IX. Only ionization potentials measured using photoionization spectroscopy are reported. Electron impact values 11 are too inaccurate for comparing to calculated values here. As with

heats of formation and dipole moments, MINDO/3 is a better predictor of ionization potentials than MNDO. For normal nitroaliphatics the average absolute error with MINDO/3 is 0.08 eV while the average error is -0.06 eV. For MNDO both of these values are 0.65 eV. Furthermore, MNDO always predicts an ionization potential about 8-10% higher than that estimated by MINDO/3.

The same trends in ionization potential are predicted by MINDO/3 and MNDO. Additional nitrogroups tend to increase the ionization potential by 0.3-0.5 eV per nitro group. The position of the nitro group on the aliphatic backbone affects ionization potential very little. Adding a methylene group decreases the ionization potential slightly. The effect disappears at higher carbon numbers (pentanes). Both MINDO/3 and MNDO mirror these changes with MINDO/3 giving a better estimate of the observed ionization potential.

Branched nitroaliphatics again show the same tendencies as the normal nitroaliphatics. Both MINDO/3 and MNDO mirror the trends. Table X presents these results.

Branching with a single methyl group generally slightly decreases the calculated ionization potential.

Table XI compares ionization potentials of nitroaromatics calculated by MINDO/3 and MNDO to observed values. MINDO/3 consistently estimates a lower ionization potential than MNDO by 0.4-1.5 eV. It appears from the few observed ionization potentials available that MINDO/3 more nearly predicts the correct ionization potential.

Increasing the nitro groups around the ring increases the ionization potential by 0.1-0.6 eV for MINDO/3 and 0.3-0.8 eV for MNDO. The position of the nitro groups around the ring has a rather minor effect (0.1-0.2 eV) on the ionization potential calculated by either method.

Replacing a ring hydrogen with a methyl group reduces the ionization potential by 0.1-0.4 eV with both MINDO/3 and MNDO.

In Table XII are shown ionization potentials calculated for nitroamines and nitroalcohols. Again trends similar to those with nitroaliphatics are evident. MNDO predicts ionization potentials about 4-16% higher than those calculated by MINDO/3.

Molecular Geometries

There is a scarcity of experimental structural data available on nitro-compounds. Tables XIII-XX compare the observed data to calculated structural parameters using both MINDO/3 and MNDO for nitroaliphatics and nitroaromatics. Molecular geometries were calculated with MINDO/3 and MNDO for many other nitroaliphatics and nitroaromatics. Comparing the calculated values, we find that generally MINDO/3 predicts shorter C-C and C-N distances and longer N-O distances. The differences are fairly small - always less than 0.1 Å and usually less than 0.02 Å. Both methods calculate almost the same C-H distances - to within 0.01 Å.

In predicting bond angles MINDO/3 predicts a slightly smaller ONC angle by 3-6°. The CCN angle predicted by MINDO/3 is slightly larger than that calculated by MNDO by 1-6°. To within 2° both methods calculate the same HCC angles. For CCC bond angles no general trend occurs. Both methods usually agree to within 6°, but either may predict the larger angle.

Calculated values shown in Tables XIII-XX are typical of those obtained for all molecules by the two calculational methods.

Both MINDO/3 and MNDO predict reasonably accurate molecular geometries for nitroaliphatics and nitroaromatics. MNDO, in general, calculates slightly more accurate structural parameters; however, the differences are not great. There are few general trends in how the methods predict parameters. For nitroaromatics both methods overestimate the C-C bond distance by 0.03-0.04 Å

and C-H bond distances by ~ 0.02 Å. MNDO generally predicts C-N bond distances for nitroaromatics to better than 0.02 Å while MINDO/3 C-N bonds are too short by 0.04-0.05 Å.

Both methods do well in calculating nitroaromatic bond angles with MNDO having a slight edge in reproducting observed data. Generally, both programs calculate bond angles to within \pm 3° of each other and observed data.

REFERENCES

- 1. Howe, G. R., J. Chem. Soc. B, 1971, 981.
- 2. Bloor, J. E. and Breen, D. L., J. Phys. Chem., 1968, 72, 716.
- 3. Tinland, B., Theor. Chim. Acta, 1969, 13, 171
- 4. Sieiro, C. and Fernandez-Alonso, J. I., Chem. Phys. Lett., 1973, 18, 557.
- 5. Brownlee, R. T. C., and Taft, R. W., J. Amer. Chem. Soc., 1970, 92, 7007.
- 6. Gropen, O. and Skanche, P. N., Acta Chem. Scandinavica, 1969, 23, 2685.
- 7. Hehre, W. J.; Radom, L. and Pople, J. A., <u>J. Amer. Chem. Soc.</u>, 1972, <u>94</u>, 1496.
- 8. Bingham, R. C.; Dewar, M. J. S. and Lo, D. H., <u>J. Amer. Chem. Soc.</u>, 1975, 97, 1285.
- 9. Dewar, M. J. S. and Thiel, W., J. Amer. Chem. Soc., 1977, 99, 4899, 4907.
- Dewar, M. J. S.; Shanshal, M. and Worley, S. D., <u>J. Amer. Chem. Soc.</u>, 1969, <u>91</u>, 3590.
- 11. Dewar, M. J. S. and Worley, S. D., J. Phys. Chem., 1969, 50, 654.

Table I

Heats of Formation of Normal Nitroaliphatics

NITROALIPHATIC	OBSERVED	м	INDO/3	MNDO			
	ΔH _f a	ΔH _f a	Error ²	ΔH a	Error ^a		
NITROMETHANE	-12.2 ^b	-10.5	+1.7	+3.4	+15.6		
DINITROMETHANE	-14.3 ^c	-15.9	-1.6	+28.5	+42.8		
TRINITROMETHANE	-3.2 ^d	-23.9	-20.7	+60.1	+63.3		
TETRANITROMETHANE	+18.5 ^c	-32.2	-50.7	+107.1	+88.6		
NITROETHANE	-23.5 ^b	-20.5	+3.0	-1.9	+21.6		
1,1-DINITROETHANE	-24.1 ^{c,e}	-21.6	+2.5	+25.6	+49.7		
1,2-DINITROETHANE	-22,9 ^{c,e}	-18.6	+4.3	+23.3	+46.2		
1,1,1-TRINITROETHANE	-12.4 ^{c,e}	-25.5	-13.1	+69.0	+81.4		
1,1,2-TRINITROETHANE		-20.0		+59.3			
1,1,1,2-TETRANITROETH	ANE	-18.1		+94.2			
1,1,2,2-TETRANITROETHA	ANE	-19.8		+86.1			
PENTANITROETHANE		-12.3		+131.3			
HEXANITROETHANE	+35.8 ^f	-13.0	-48.8	+178.8	+143.0		
1-NITROPROPANE	-29.7 ^b	-26.7	+3.0	-6.9	+22.8		
2-NITROPROPANE	-33.9 ^b	-22.0	+11.9	-2.3	+31.6		
1,1-DINITROPROPANE	-25.9 ^b	-28.1	-2.2	+22.3	+48.2		
1,2-DINITROPROPANE		-16,1		+22.4			
1,3-DINITROPROPANE	-31.6 ^{b,c}	-25.4	+6.2	+15.2	+46.8		
2,2-DINITROPROPANE	-27.0 ^{c,e}	-19.0	+8.0	+25.6	+52.6		
1,1,1-TRINITROPROPANE	-18.4 ^c	-25.8	-7.4	+59.2	+77.6		
1,1,2-TRINITROPROPANE		-17.9		+55.0			
1,2,2-TRINITROPROPANE		-11.3		+57.9			
1,2,3-TRINITROPROPANE		-17.5		+46.9			
1,1,1,2-TETRANITROPRO	PANE	-10.6		+97.1			
1,1,1,3-TETRANITROPROI	PANE	-20.0		+84.2			
1,1,2,2-TETRANITROPRO	PANE	-9.2		+97.4			

Table I (cont'd)
Heats of Formation of Normal Nitroaliphatics

NITROALIPHATIC	OBSERVED	MINI	00/3	MNDO		
	ΔH _f a	ΔH _f a	Error ^a	ΔH a	Errorª	
1-NITROBUTANE	-34.4 ^b	-32.6	+1.8	-11.4	+23.0	
2-NITROBUTANE	-39.1 ^b	-29.0	+10.1	-5.1	+34.0	
1,1-DINITROBUTANE	-34.1 ^c	-29.8	+4.3	+20.8	+54.9	
1,2-DINITROBUTANE		-22.1		+19.2		
1,3-DINITROBUTANE		-19.5		+16.7		
1,4-DINITROBUTANE	-38.9 ^{c,e}	-33.0	+5.9	+6.4	+45.3	
2,2-DINITROBUTANE		-20.7		+22.1		
2,3-DINITROBUTANE		-20.7		+18.5		
1,1,1-TRINITROBUTANE		-30.5	~ ~			
1,1,2-TRINITROBUTANE		-25.1				
1,1,3-TRINITROBUTANE		-24.1				
1,1,4-TRINITROBUTANE		-32.2				
1,2,2-TRINITROBUTANE		-19.2				
1,2,3-TRINITROBUTANE		-6.3				
1,2,4-TRINITROBUTANE		-22.0				
1,3,3-TRINITROBUTANE		-17.5				
2,3,3-TRINITROBUTANE		-10.7				
1,1,1,4-TETRANITROBUTA	ANE -24.9 ^{c,e}	-27.8	-2.9			
1,1,2,2-TETRANITROBUTA	ANE	-10.5				
1-NITROPENTANE	~-	-38.4		-14.6		
2-NITROPENTANE		-33.4		-12.8		
3-NITROPENTANE		-31.7		-8.3		
1,1-DINITROPENTANE	-38.2 ^{c,e}	-40.2	-2.0	+12.9	+51.1	
Ave. Absolute Error			9.9		52.0	
Ave. Error	ag de		-4.1		+52.0	

Table I (Cont'd) Heats of Formation of Normal Nitroaliphatics

- Units are kcal/mole at 25°C for gas.
- b Holcomb, D. E. and Dorsey, C. L., Jr., Indust and Eng. Chem., 1949, 41, 2788.
- Istomin, B.I. and Palm, V., <u>Reakts. Sposobnosi Org. Soedin.</u>, 1973, <u>10</u>, 583.
- d Carpenter, G. A.; Zimmer, M. F., Baroody, E. E. and Robb, R. A., <u>J. Chem. Eng. Data</u>, 1970, <u>15</u>, 553
- Liebedera, N. D. and Ryadnenko, V. L., Russ J. Phys. Chem., 1968, 42, 1225.
- Noble, P., Jr.; Reed, W. L.; Gallaghan, J. A. and Borgardt, F.G., Amer. Inst. Aeron. Astron. (AIAA) J., 1963, 1, 395.

Table II

Heats of Formation of Branched Nitroaliphatics

NITROALIPHATIC	OBSERVED ΔH ^a f		NDO/3	MNDO ΔH ^a _f Error ^a			
2-METHYL-1-NITROPROPANE		-24.3		-8.0			
2-METHYL-2-NITROPROPANE		-16.6		-3.4			
2-METHYL-1,1-DINITROPROPANE		-21.5		+21.9			
2-METHYL-1,2-DINITROPROPANE		-10.3		+23.2			
2-METHYL-1,3-DINITROPROPANE		-19.1		+17.4			
2,2-DIMETHYL-1,1-DINITROPROPANE	E	-5.8		+21.0			

^a Units are kcal/mole at 25°C for gas

Table III
Heats of Formation of Nitroaromatics

NITROAROMATIC	OBSERVED	MI	NDO/3	M		
	ΔH _f a	ΔH a	Error ^a	ΔH a	Errora	
NITROBENZENE	+15.4 ^{b,c}	+12.7	-2.7	+38.2	+22.8	
1,2-DINITROBENZENE		-2.5		+61.4		
1,3-DINITROBENZENE		-2.4		+58.7		
1,4-dinitrobenzene		-0.2		+58.5		
1,2,3-TRINITROBENZENE		-19.0		+91.0		
1,2,4-TRINITROBENZENE		-20.0		+81.9		
1,3,5-TRINITROBENZENE		-9.6		+84.2		
1,2,3,4-TETRANITROBENZENI	E	-30.9		+112.5		
1,2,3,5-TETRANITROBENZEN	E	-31.6	-	+110.1		
1,2,4,5-TETRANITROBENZEN	<u></u>	-32.0		+109.9		
PENTANITROBENZENE		-39.9		+143.8		
HEXANITROBENZENE		-36.4		+179.5		

Table III (cont'd)
Heats of Formation of Nitroaromatics

NITROAROMATIC	OBSERVED	MINI	00/3	1	MNDO	
	ΔH _f a	ΔH _f	Error ^a	ΔH	a Errora	
2-NITROTOLUENE	+9.3 ^{d,e}	+6.9	-2.4	+32.1	+22.8	
3-NITROTOLUENE	+5,9 ^d ,e	+6.7	+0.8	+30.1	+24.2	
4-NITROTOLUENE		+6.3		+29.9		
2,3-DINITROTOLUENE		-9.7		+54.8		
2,4-DINITROTOLUENE		-10.3		+52.5		
2,5-DINITROTOLUENE		-3.8		+56.2		
2,6-DINITROTOLUENE	~-	-1.6		+59.8		
3,4-DINITROTOLUENE		-12.8		+51.0		
3,5-DINITROTOLUENE	~-	-5.7		+51.3		
2,3,4-TRINITROTOLUENE		-22.3				
2,3,5-TRINITROTOLUENE		-20.7				
2,3,6-TRINITROTOLUENE		-17.8				
2,4,5-TRINITROTOLUENE		-22.2				
2,4,6-TRINITROTOLUEN	E +12.9	-16.9	-29.8	74.9	+62.0	
3,4,5-TRINITROTOLUENE		-25.9				
2,3,4,5-TETRANITROTO	LUENE	-34.0				
2,3,4,6-TETRANITROTO	LUENE	-30.8				
2,3,5,6-TETRANITROTO	LUENE	-30.0				
PENTANITROTOLUENE		-37.8				
Ave. Absolute Error			8.9		33.0	
Ave Error			-8.5		+33.0	

Table III Heats of Formation of Nitroaromatics

- a Units are kcal/mole at 25°C for gas.
- Stull, D. R.: Westrum, E. F., Jr. and Sinke, G. C., The Chemical Thermodynamics of Organic Compounds (John Wiley and Sons, Inc., New York), 1969.
- c Maksimov, Y. Y., Russ J. Phys. Chem., 1968, 42, 1550.
- Garner, W. E. and Abernathy, C. L., Proc. Royal Soc. London, Series A, 1921, 99A, 213.
- e Berliner, J. F. T. and May, O. E., J. Amer. Chem. Soc., 1926, 48, 2630.
- f Marantz, S. and Armstrong, G. T., J. Chem. Eng Data, 1968, 13, 118, 455.

Table IV

Heats of Formation for Nitroamines and Nitroalcohols

NITRO-COMPOUND	OBSERVED		MINDO/3		MNDO
	ΔfHa	f ^{ΔH}	a Error	a f ΔH	a Error ^a
					
NITROAMINE		-30.2		+23.1	~-
N-NITROETHYLAMINE		-32.2		+13.3	
N-NITROBUTYLAMINE		-47.8		+4.3	~~
N-NITRODIMETHYLAMINE	-3.2 ^{b,c}	-4.0	-0.8	+23.1	+26.3
N-NITRODIETHYLAMINE	-13.8 ^c	-2:5	-7.7	+16.0	+29.8
NITROETHANOL	~75.1 ^{d,e}	-64.5	+10.6	-45.2	+29.9
3-NITRO-2-BUTANOL		-64.6		-42.2	
Ave. Absolute Error			6.4		28.7
Ave. Error			+0.7		+28.7

a Units are kcal/mole at 25°C for gas

Stull, D. R.; Westrum, E. F. Jr. and Sinke, G. C., The Chemical Thermodynamics of Organic Compounds (John Wiley & Sons, Inc., New York), 969

Cass, R. C.; Fletcher, S. E.; Mortimer, C. T.; Quincey, P. G. and Springall, H. D., J. Chem. Soc., 1958, 958.

d Medard, L. and Thomas, M., Mem. Poudres, 1953, 35, 155.

Tstomin, B. I. and Palm, V., Reakts. Sposobnosi Org. Soedin., 1973, 10, 583.

Table V

Dipole Moments of Normal Nitroaliphatics

NITROALIPHATIC	OBSERVED	MI	NDO/3		MNDO	
	μa	μa	Errora	μa	Errora	
						
NI TROMETHANE	3.46 ^{b,c}	3.53	+0.07	4.18	+0.72	
DINITROMETHANE		3.37	~-	4.17		
TRINITROMETHANE	2.63 ^d ,e	1.93	-0.70	2.79	+0.16	
TETRANITROMETHANE	0.19 ^{f,g}	0.12	-0.07	0.55	+0.36	
NITROETHANE	3.58 ^{h,i}	3.62	+0.04	4.29	+0.71	
1,1-DINITROETHANE	3.50 ^{d,e}	3.94	+0.44	4.79	+1.29	
1,2-DINITROETHANE		5.62		6.77		
1,1,1-TRINITROETHANE	3.20 ^{d,e}	3.14	-0.06	3.57	+0.37	
1,1,2-TRINITROETHANE		4.81		5.86	~-	
1,1,1,2-TETRANITROETHANE		2.69		3.15		
1,1,2,2-TETRANITROETHANE		0.07		0.02	~-	
PENTANITROETHANE		1.63		1.98		
HEXANITROETHANE		0.14		0.02	~-	
1-NITROPROPANE	3.72 ^{j,k}	3.70	-0.02	4.35	+0.63	
2-NITROPROPANE	3.73 ^{j,k}	3.72	-0.01	4.37	+0.64	
1,1-DINITROPROPANE		3.95		4.72		
1,2-DINITROPROPANE	~-	3.60		4.49		
1,3-DINITROPROPANE		6.12		7.48		
2,2-DINITROPROPANE		4.29		5.24		
1,1,1-TRINITROPROPANE		3.54		4.41		
1,1,2-TRINITROPROPANE		3.85		4.56		
1,2,2-TRINITROPROPANE		5.43		6.79		
1,2,3-TRINITROPROPANE		4.92		6.10		
1,1,1,2-TETRANITROPROPAN	E	3.46		4.04		
1,1,1,3-TETRANITROPROPAN	E	0.77		0.76		
1,1,2,2-TETRANITROPROPAN	E	4.32		5.47		

Table V (cont'd)

Dipole Moments of Normal Nitroaliphatics

NITROALIPHATIC	OBSERVED	MII	NDO/3		MNDO	
	μa	μa	Errora	μ ^a	Error ^a	
					······································	
1-NITROBUTANE	3.61 ^{e,j}	3.72	+0.11	4.36	+0.75	
2-NITROBUTANE		3.79		4.46		
1,1-DINITROBUTANE		4.04		4.79		
1,2-DINITROBUTANE		1.50		1.61		
1,3-DINITROBUTANE		3.32		3.64		
1,4-DINITROBUTANE		0.02		0.00	-~	
2,2-DINITROBUTANE		4.54		5.34	_~	
2,3-DINITROBUTANE		5.01		6.47		
1,1,1-TRINITROBUTANE		3.67				
1,1,2-TRINITROBUTANE		4.37				
1,1,3-TRINITROBUTANE		3.75				
1,1,4-TRINITROBUTANE		3.38				
1,2,2-TRINITROBUTANE		5.92				
1,2,3-TRINITROBUTANE		3.78				
1,2,4-TRINITROBUTANE		5.69				
1,3,3-TRINITROBUTANE		2.53				
2,3,3-TRINITROBUTANE		3.27				
1,1,1,4-TETRANITROBUTANI	E	2.46				
1,1,2,2-TETRANITROBUTAN	E	4.86	***			
1-NITROPENTANE		3.71		4.34	~~	
2-NITROPENTANE		3.87		4.48	-~	
3-NITROPENTANE		3.82		4.46		
1,1-DINITROPENTANE		4.14		4.84		
Ave. Absolute Error	~-		0.17		0.63	
Ave. Error			-0.02		+0.63	

Table V (cont'd) Dipole Moments of Normal Nitroaliphatics

- a Units are Debye. Calculated values are for gas at 25°C.
- b By microwave spectroscopy on gas at 25°.
- Tannenbaum, E.; Myers, R. J. and Gwinn, W. D., <u>J. Chem Phys.</u>, 1956, 25, 42.
- d Benzene solution at 25°C.
- e McClellan, A. L., <u>Tables of Experimental Dipole Moments</u> (W. H. Freeman an Co.; San Francisco), 1963.
- f Carbon tetrachloride solution at 25°C.
- Weissberger, A. and Sängewald, R., Berichte, 1932, 65, 701.
- h Gas at 25°C.
- i Dewar. M. J. S.; Shanshal, M. and Worley, S. D., <u>J. Amer. Chem. Soc.</u>, 1969, <u>91</u>, 3590.
- j Gas at ∿100°C.
- k Smyth, C. P. J. Amer. Chem. Soc., 1941, 63, 57.

Table VI
Dipole Moments of Branched Nitroaliphatics

NITROALIPHATIC	OBSERVED	MINDO	/3	MNDO				
	μa	μa	Errora	μa	Error ^a			
			·			_		
2-METHYL-1-NITROPROPANE	3.71 ^{b,c}	3.81	+0.10	4.45	+0.74			
2-METHYL-2-NITROPROPANE	3.74 ^{b,c}	3.91	+0.17	4.63	+0.89			
2-METHYL-1,1-DINITROPROPANE		4.43		5.29				
2-METHYL-1,2-DINITROPROPANE		5.38		6.39				
2-METHYL-1,3-DINITROPROPANE		2.61		3.49				
2,2-DIMETHYL-1,1-DINITROPROPAR	NE	1.72		2.63				
Ave. Absolute Error	~-		0.14		0.82			
Ave. Error	~-		+0.14		+0.82			

a Units are Debye. Calculated values are for gas at 25°C.

b Gas at ∿100°C.

McClellan, A.L., <u>Tables of Experimental Dipole Moments</u>, (W. H. Freeman and Co.; San Francisco), 1963.

Table VII
Dipole Moments of Nitroaromatics

NITROAROMATIC	OBSERVED	MINDO/3		MNDO		
	μa	μ ^a	Errora	μa	Error ^a	
NITROBENZENE	4.23 ^{b,c}	5.11	+0.88	5.37	+1.14	
1,2-DINITROBENZENE	6.05 ^{d,e}	7.22	+1.17	8.03	+1.98	
1,3-DINITROBENZENE	4.10 ^{f,g}	4.60	+0.50	5.00	+0.90	
1,4-dinitrobenzene	0.0 ^{d,h}	0.04	+0.04	0.05	+0.05	
1,2,3-TRINITROBENZENE		7.34		8.31		
1,2,4-TRINITROBENZENE		3.77		4.26		
1,3,5-TRINITROBENZENE	0.0 ^{d,h}	0.09	+0.09	0.07	+0.07	
1,2,3,4-TETRANITROBENZE	NE	5.71		6.67		
1,2,3,5-TETRANITROBENZE	NE	3.08		3.63		
1,2,4,5-TETRANITROBENZE	NE	0.02		0.01		
PENTANITROBENZENE		2.90		3.44		
HEXANITROBENZENE		0.07		0.01		

Table VII (cont'd)
Dipole Moments of Nitroaromatics

NITROAROMATIC	OBSERVED		DO/3		INDO	
	$_{\mu}$ a	μ ^a	Errora	μa	Errora	
						
2-nitrotoluene	3.97 ^{i,g}	4.69	+0.72	5.15	+1.18	
3-NITROTOLUENE	4.41 ^{i,g}	5.15	+0.74	5.42	+1.01	
4-NITROTOLUENE	4.72 ^{i,g}	5.35	+0.63	5.50	0.78	
2,3-DINITROTOLUENE	5.81 ^{d,g}	7.21	+1.40	8.23	2.42	
2,4-dinitrotoluene	4.33 ^{d,h}	4.90	+0.57	5.37	1.04	
2,5-dinitrotoluene	0.58 ^{d,h}	0.74	+0.16	0.67	0.09	
2,6-DINITROTOLUENE	2.81 ^{d,h}	3.51	+0.70	4.13	1.32	
3,4-DINITROTOLUENE	6.38 ^{d,g}	7.40	+1.02	8.24	1.86	
3,5-DINITROTOLUENE	4.33 ^{d,h}	4.88	+0.55	5.19	0.86	
2,3,4-TRINITROTOLUENE		8.02				
2,3,5-TRINITROTOLUENE		4.12				
2,3,6-TRINITROTOLUENE		3.34				
2,4,5-TRINITROTOLUENE		4.54				
2,4,6-TRINITROTOLUENE	1.37 ^{d,j}	1.47	+0.10	0.96	-0.41	
3,4,5-TRINITROTOLUENE		7.78				
2,3,4,5-TETRANITROTOLUEN	E	6.55				
2,3,4,6-TETRANITROTOLUEN	E	3.85				
2,3,5,6-TETRANITROTOLUEN	E	1.23				
PENTANITROTOLUENE		4.24		-~		
Ave Absolute Error			0.62		0.99	
Ave. Error			+0.62		+0.95	

Table VII Dipole Moments of Nitroaromatics

- Units are Debye. Calculated values are for gas at 25°C.
- b Gas at 25°C.
- c LeFevre, J. W. and Russell, P., J. Chem. Soc., 1936, 491.
- d Benzene solution at 25°C.
- e Williams, J. W. and Schwingel, C. H., J. Amer. Chem. Soc., 1928, 50, 362.
- f Hexane solution at 25°C.
- 8 McClellan, A. L., <u>Tables of Experimental Dipole Moments</u> (W. H. Freeman and Co., San Francisco), 1963.
- h Cass, R. C.; Spedding, H. and Springall, H. D., J. Chem. Soc., 1957, 3451.
- i Hexane solution at 30°C.
- j LeFevre, C. G. and LeFevre, R. J., J. Chem. Soc., 1950, 1829.

Table VIII
Dipole Moments for Nitroamines and Nitroalcohols

NITRO-COMPOUND	OBSERVED	MINDO/3		M	NDO	
	μ a	μa	Errora	μ ^a	Error ^a	
						
NITROAMINE	3.78 ^{b,c}	3.94	0.16	4.01	0.23	
N-NITROETHYLAMINE		4.18		4.28		
N-NITROBUTYLAMINE		4.52		4.40		
N-NITRODIMETHYLAMINE	4.61 ^{b,d}	3.02	-1.59	3.91	-0.70	
N-NITRODIETHYLAMINE		3.13		3.81		
NITROETHANOL		3.51		3.88		
3-NITRO-2-BUTANOL		3.55		3.95		
Ave. Absolute Error			0.88		0.46	
Ave Error			-0.72		0.24	

a Units are Debye. Calculated values are for gas at 25°C.

b Dioxane solution at 20°C.

McClellan, A. L., <u>Tables of Experimental Dipole Moments</u>, (W. H. Freeman and Co., San Francisco), 1963.

d George, M. V. and Wright, G. F., J. Amer. Chem. Soc., 1958, 80, 1200.

Table IX

Ionization Potentials of Normal Nitroaliphatics

NITROALIPHATIC	OBSERVED	MI	MINDO/3		MNDO	
	IP ^a	IPa	Errora	IPa	Errora	
	h.c					
NITROMETHANE	11.08 ^{b,c}	11.14	+0.06	11.54	+0.46	
DINITROMETHANE	~=	11.44		12.37		
TRINITROMETHANE		11.80		12.98		
TETRANITROMETHANE	 h o	12.13		13.25		
NITROETHANE	10.88 ^{b,c}	10.83	-0.05	11.49	+0.61	
1,1-DINITROETHANE		11.20		12.25		
1,2-DINITROETHANE		11.18		11.94		
1,1,1-TRINITROETHANE		11.63		12.65		
1,1,2-TRINITROETHANE		11.55		12.10		
1,1,1,2-TETRANITROETHAN	E	11.61		12.51		
1,1,2,2-TETRANITROETHAN	E	11.62		13.10		
PENTANITROETHANE		11.82		13.22		
HEXANITROETHANE		12.04		13.47		
1-NITROPROPANE	10.81 ^{b,c}	10.73	-0.08	11.46	+0.65	
2-NITROPROPANE	10.71 ^{b,c}	10.61	-0.10	11.44	+0.73	
1,1-DINITROPROPANE		11.09		12.23		
1,2-DINITROPROPANE		10.99		11.97		
1,3-DINITROPROPANE		10.99		11.70		
2,2-DINITROPROPANE		11.01		12.15		
1,1,1-TRINITROPROPANE		11.54		12.77		
1,1,2-TRINITROPROPANE		11.20		12.41		
1,2,2-TRINITROPROPANE		11.37		12.01		
1,2,3-TRINITROPROPANE		11.22		12.17		
1,1,1,2-TETRANITROPROPAL	NE	11.51		12.63		
1,1,1,3-TETRANITROPROPA		11.44		12.18		
1,1,2,2-TETRANITROPROPAL		11.46		12.60		

Table IX (cont'd)

Ionization Potentials of Normal Nitroaliphatics

NITROALIPHATIC 0	BSERVED	MIN	DO/3		MNDO	
	IP ^a	IPa	Errora	IP ^a	Errorª	
				 _		
1-NITROBUTANE	10.71 ^đ	10.73	+0.02	11.46	+0.75	
2-NITROBUTANE	10.71 ^d	10.53	-0.18	11.41	+0.70	
1,1-DINITROBUTANE		11.01		12.15		
1,2-DINITROBUTANE		10.79		12.03		
1,3-DINITROBUTANE		10.94		11.76	~-	
1,4-DINITROBUTANE		10.83		11.78		
2,2-DINITROBUTANE		10.97		12.10		
2,3-DINITROBUTANE		10.94		11.80		
1,1,1-TRINITROBUTANE		11.48		~-		
1,1,2-TRINITROBUTANE		11.16			***	
1,1,3-TRINITROBUTANE		11.21			~-	
1,1,4-TRINITROBUTANE		11.23				
1,2,2-TRINITROBUTANE		11.31			~-	
1,2,3-TRINITROBUTANE		11.14				
1,2,4-TRINITROBUTANE		11.22				
1,3,3-TRINITROBUTANE		11.16			~-	
2,3,3-TRINITROBUTANE		11.15		~-		
1,1,1,4-TETRANITROBUTANE	~-	11.23	·			
1,1,2,2,-TETRANITROBUTAN	E	11.38				
1-NITROPENTANE		10.69		11.46		
2-NITROPENTANE		10.53		11.39		
3-NITROPENTANE		10.44		11.38		
1,1-DINITROPENTANE		11.04		12.20		
Ave. Absolute Error			0.08		0.65	
Ave. Error			-0.06		-0.65	

Table IX (cont'd) Ionization Potentials of Normal Nitroaliphatics

- Units are electron-volts (eV).
- b By photoionization spectroscopy.
- Watanabe, K.; Nakayama, T. and Motte, J., <u>J. Quant. Spec.-Rad. Transfer.</u>, 1962, <u>2</u>, 369.
- Dewar, M. J. S.; Shanshal, M. and Worley, S. D., <u>J. Amer. Chem. Soc.</u>, 1969, <u>91</u>, 3590.

Table X

<u>Ionization Potentials of Branched Nitroaliphatics</u>

NITROALIPHATIC	OBSERVED	MIN	00/3	1	MDO	
	IP ^a	IPa	Error ^a	IP ^a	Error ^a	
						
2-METHYL-1-NITROPROPANE		10.66		11.44		
2-METHYL-2-NITROPROPANE		10.46		11.35		
2-METHYL-1,1-DINITROPROPANE		11.04		12.18		
2-METHYL-1,2-DINITROPROPANE		10.96		11.72		
2-METHYL-1,3-DINITROPROPANE		10.83		11.88		
2,2-DIMETHYL-1,1-DINITROPROPA	ANE	10.74		11.87		

a Units are electron-volts (eV).

Table XI
Ionization Potentials of Nitroaromatics

NITROAROMATIC	OBSERVED	MIN	MINDO/3		INDO	
	IP ^a	IPa	Error ^a	IPa	Error ^a	
			-			
NITROBENZENE	9.92 ^{b,c}	9.97	+0.05	10.33	+0.41	
1,2-DINITROBENZENE		10.55		11.15		
1,3-DINITROBENZENE		10.61		11.21		
1,4-DINITROBENZENE		10.61		11.10		
1,2,3-TRINITROBENZENE		10.94		11.92		
1,2,4-TRINITROBENZENE		10.84		11.91		
1,3,5-TRINITROBENZENE		11.09		12.10		
1,2,3,4-TETRANITROBENZE	NE	11.11		12.55		
1,2,3,5-TETRANITROBENZE	NE	11.15		12.61		
1,2,4,5-TETRANITROBENZE	NE	11.05		12.57		
PENTANITROBENZENE		11.38		13.00		
HEXANITROBENZENE		11.66		13,31		

Table XI (cont'd)
Ionization Potentials of Nitroaromatics

NITROAROMATIC	OBSERVED	MI	NDO/3		MNDO	
	I P ^a	IPa	Errora	IPa	Error	
2-NITROTOLUENE		9.66		10.15		
3-NITROTOLUENE		9.69		10.18		
4-NITROTOLUENE	9.82 ^{d,e}	9.77	-0.05	10.29	+0.47	
2,3-DINITROTOLUENE		10.26		10.93		
2,4-DINITROTOLUENE		10.34		11.06		
2,5-DINITROTOLUENE		10.25		10.95		
2,6-DINITROTOLUENE	-~	10.25		10.92		
3,4-DINITROTOLUENE		10.26		11.02		
3,5-DINITROTOLUENE		10.34		11.01		
2,3,4-TRINITROTOLUENE		10.77				
2,3,5-TRINITROTOLUENE		10.76				
2,3,6-TRINITROTOLUENE		10.70				
2,4,5-TRINITROTOLUENE		10.72				
2,4,6-TRINITROTOLUENE		10.84				
3,4,5-TRINITROTOLUENE		10.76				
2,3,4,5-TETRANITROTOLUEN	NE	11.02				
2,3,4,6-TETRANITROTOLUE	NE	11.05				
2,3,5,6-TETRANITROTOLUEN	NE	10.93				
PENTANITROTOLUENE		11.26				

a Units are electron-volts (eV).

b By photoionization spectroscopy.

Watanabe, K.; Nakayama, T. and Motte, J., J. Quant. Spectr.-Rad.

<u>Transfer</u>, 1962, <u>2</u>, 369.

d By mass spectroscopy

e Crable, G. F. and Kearns, G. L., <u>J. Phys. Chem.</u>, 1962, <u>66</u>, 436.

Table XII

Ionization Potentials for Nitro-Compounds

NITRO-COMPOUND	OBSERVED	MIN	00/3	1	1NDO	
	IP ^a	IPa	Errora	IP ^a	Error ^a	
NITROAMINE		11.44		11.85		
N-NITROETHYLAMINE		10.42		11.69		
N-NITROBUTYLAMINE		10.50		11.67		
N-NITRODIMETHYLAMINE		9.72		11.24		
N-NITRODIETHYLAMINE	~-	9.58		11.16	~-	
NITROETHANOL		10.99		11.56		
3-NITRO-2-BUTANOL		10.58		11.46	~-	

a Units are electron-volts (eV).

Table XIII
Molecular Geometry of Nitromethane

S TRUCTURAL PARAMETER	OBSERVED ^a VALUE	MINDO/3 VALUE	MNDO VALUE
Bond Distance (Å)			
C-N	1.46	1.453	1.546
N-O	1.208	1.225	1.210
C-H		1.115	1.109
Bond Angle (°)			
O NO	127	131.4	121.4
ONC	116.5	114.3	119.3
HCN		113.6	108.8

Brockway, L. O.; Beach, J. Y. and Pauling, L., J. Amer. Chem. Soc., 1935, 57, 2693. See also Rogowski, F., Berichte, 1942, 75, 244; Naturwiss., 1940, 28, 517.

Table XIV

Molecular Geometry of Tetranitromethane

STRUCTURAL	observed ^a	MINDO/3	MNDO
PARAMETER	VALUE	VALUE	VALUE
		·	
Bond Distance (Å)			
C-N	1.47	1.532	1.578
N-O	1.22	1.212	1.201
Bond Angle (°)			
ONC	116.5	113.8	118.4
NCN	109.5	112.39	110.2

a Stosick, A. J., <u>J. Amer. Chem. Soc.</u>, 1939, <u>61</u>, 1127.

Table XV Molecular Geometry of Nitrobenzene^a

STRUCTURAL	observed ^b	MINDO/3	MNDO
PARAMETER	VALUE	VALUE	VALUE
Bond Distance (Å)			
C1-C2	1.367	1.431	1.422
C2-C4	1.426	1.405	1.403
C4-C6	1.363	1.403	1.415
C1-N7	1.486	1.437	1.495
N7-08	1.208	1.229	1.213
Ave. C-H		1.104	1.091
Bond Angle (°)			
C1C2C4	116	120.0	119.4
C2C4C6	121	120.7	120.3
C4C6C5	121	120.0	120.8
C3C1C2	125	118.8	119.8
N7C1C2	117	120.6	120.1
08N7C1	118	115.2	119.8
Ave. HCC		120.9	120.2
a	н	Н	

Trotter, J., <u>Tetrahedron</u>, 1960, 8, 13.

Table XVI

Molecular Geometry of m-Dinitrobenzene

S TRUCTURAL PARAMETER	OBSERVED ^b VALUE	MINDO/3 VALUE	MNDO VALUE
Bond Distance (Å)			
C1-C2	1.384	1.428	1.415
C2-C4	1.384	1.427	1.416
C4-C6	1.386	1.427	1.416
C5-C3	1.386	1.405	1.404
C1-C3	1.381	1.422	1.416
C1-N7	1.491	1.442	1.498
C4-N10	1.494	1.441	1.498
N7-08	1.276	1.226	1.211
N7-09	1.220	1.227	1.211
N10-011	1.266	1.227	1.211
N10-012	1.230	1.226	1.211
C2-H13	1.12	1.106	1.095
C3-H14	0.90	1.106	1.093
C5-H15	0.90	1.104	1.091
С6-н16	0.87	1.106	1.093
Bond Angle (°)			
C1C2C4	115.7	121.4	119.9
C2C4C6	124.0	118.4	120.1
C1C3C5	119.1	120.7	119.8
C3C1C2	123.1	130.3	120.7
C1N708	118.3	115.1	119.8
C1N709	118.3	114.6	119.5

Table XVI (cont'd)

Molecular Geometry of m-Dinitrobenzene

STRUCTURAL	observed ^b	MINDO/3	M NDO	
PARAMETER	VALUE	VALUE	VALUE	
C4N10011	116.1	114.3	119.4	
C4N10011	116.8	114.7	119.8	
C2C1N7	118.3	120.9	120.1	
C3C1N7	118.6	121.0	120.0	
C2C4N10	117.5	121.0	120.0	
C6C4N10	118.4	120.6	119.9	
H13C2C1		119.7	120.2	
H14C3C1		122.4	120.1	
н15С5С3		119.5	119.7	
H16C6C4		122.3	121.7	

а

Trotter, J. and Williston, C. S., <u>Acta Cryst.</u>, 1966, <u>21</u>, 285. See also Gregory, N. W. and Lassettre, E. N., <u>J. Amer. Chem. Soc.</u>, 1947, <u>69</u>, 102; Archer, E. M., Proc., Royal Soc. (London), 1946, <u>1884</u>, <u>51</u>.

Table XVII

Molecular Geometry of p-Dinitrobenzene

STRUCTURAL PARAMETER	OBSERVED ^b VALUE	MINDO/3 VALUE	MNDO VALUE	
Bond Distance (A)				
C1-C2	1.385	1.425	1.417	
C2-C3	1.385	1.405	1.408	
C1-C3	1.385	1.425	1.415	
C1~C4	1.41	1.445	1.503	
N4-05	1.23	1.227	1.211	
N4~06	1.23	1.228	1.211	
Ave. C-H		1.104	1.092	
Bond Angle (°)				
C1C2C3		120.6	119.9	
C2C3C1		120.8	120.0	
C3C1C2		118.5	119.8	
05N4C1	118.5	114.8	119.6	
06N4C1	117.5	114.8	119.6	
N4C1C2		120.8	120.1	
N4C1C3		120.7	120.1	
C1C2H		123.1	122.2	
С2С3Н		116.2	117.6	

а

Llewellyn, F. J., <u>J. Chem. Soc.</u>, 1947, 884. See also Banerjee, K., Philosoph. Mag. and J. Sci., 1934, 18, 1004; James, R. W.; King, G. and Horrocks, H. Proc., Royal Soc. (London), 1935, 153A, 225.

Table XVIII

Molecular Geometry of 1,3,5-Trinitrobenzene

observed ^a	MINDO/3	MNDO
VALUE	VALUE	VALUE
1.380	1.426	1.415
1.480	1.448	1.502
1.208	1.225	1.209
1.071	1.106	1.096
120.1	120.1	119.9
118.4	120.6	119.8
117.1	114.8	119.5
122.5	119.1	120.0
	1.380 1.480 1.208 1.071 120.1 118.4	VALUE VALUE 1.380 1.426 1.480 1.448 1.208 1.225 1.071 1.106 120.1 120.1 118.4 120.6 117.1 114.8

a Choi, C. S. and Abel, J. E., <u>Acta Cryst.</u>, 1972, <u>B28</u>, 193.

STRUCTURAL	OBSERVED ^b VALUE		MINDO/3 VALUE	MNDO VALUE	
PARAMETER					
	Form A	Form B			
					
Bond Distance (A)					
C1-C2	1.408	1.379	1.444		
C2-C3	1.373	1.387	1.422		
C3-C4	1.375	1.373	1.422		
C4-C5	1.415	1.344	1.421		
C5-C6	1.364	1.383	1.420		
C1-C7	1.505	1.507	1.500		
C2-N11	1.449	1.494	1.447		
N11-012			1.224		
N11-013			1.224		
C4-N14	1.443	1.482	1.447		
N14-015			1.225		
N14-016			1.225		
C6-N17	1.496	1.459	1.445		
N17-018			1.223		
N17-019			1.224		
Ave Methyl C-H			1.110		
Ave Arom. C-H			1.108		
Bond Angle (°)					
C1C2C3			122.1		
C2C3C4			121.2		
C3C4C5			117.8		
C4C5C6			121.5		
C7C1C2			122.0		
N11C2C3			115.7		
012N11C2			113.6		

Table XIX (cont'd)

Molecular Geometry of 2,4,6-Trinitrotoluene

STRUCTURAL	OBSERVED ^b VALUE		MINDO/3	MNDO VALUE
PARAMETER	Form A	Form B	VALUE	VALUE
0.123/11/00			112 7	
013N11C2 N14C4C5			113.7 121.2	
015N14C4 016N14C4			114.6 114.6	
N17C6C1			121.4	
018N17C6 019N17C6			114.2 113.4	
Ave. Methyl HCC Ave. Arom. HCC			113.6 119.4	
-				

а

b Carper, W. R.; Davis, L. P. and Extine, M. W., <u>J. Phys. Chem.</u>, 1982, <u>86</u>, 459.

Table XX

Molecular Geometry of N-Nitrodimethylamine

STRUCTURAL	OBSERVED ^b	MINDO/3	MNDO	
PARAMETER	VALUE	VALUE	VALUE	
Bond Distance (A)				
N1-C3	1.41	1.429	1.482	
N1-C4	1.41	1.430	1.485	
N1-N2	1.33	1.345	1.423	
N2-05	1.21	1.223	1.204	
N2-06	1.21	1.223	1.210	
Ave C-H		1.120	1.113	
Bond Angle (°)				
C3N1C4		117.8	115.8	
C3N1N2	123	120.7	115.4	
05N2N1	118	113.3	116.4	
06N2N1	118	115.3	120.1	
Ave. HCN		113.7	110.6	

3

Urbanski, T., Chemistry and Technology of Explosives (The Macmillan Co.; New York), 1964. See also Costain, W. and Cox, E. G., Nature, 1947, 160, 826.