Dr. Danushka Bollegala Tel. No. 0151 7954283 EXAMINER:

DEPARTMENT: Computer Science

RESIT EXAMINATIONS 2017/18

Data Mining and Visualisation

TIME ALLOWED: Two and a Half Hours

INSTRUCTIONS TO CANDIDATES

Answer **FOUR** questions.

If you attempt to answer more questions than the required number of questions, the marks awarded for the excess questions answered will be discarded (starting with your lowest mark).

Question 1 Consider a dataset \mathcal{D} of N instances, where each instance $x_i \in \mathcal{D}$ is represented by a three dimensional real-valued vector $\mathbf{x}_i = (x_{i1}, x_{i2}, x_{i3})^{\top}$. Moreover, a label $t_i \in \{-1, 1\}$ is assigned to \mathbf{x}_i . We would like to learn a binary classifier using \mathcal{D} . However, for some instances, we do not have x_{i3} values measured. Answer the following questions.

A. Explain what is meant by the *missing value problem* in data mining. (2 marks)

If some features are missing (not measured, unobserved) for some data points in a dataset, then this is called the missing value problem.

B. Compute the ℓ_2 norm of \boldsymbol{x}_i .

$$||\boldsymbol{x}_i||_2 = \sqrt{X_{i1}^2 + X_{i2}^2 + X_{i3}^2}$$

C. Write the ℓ_2 normalised version of \mathbf{x}_i . (2 marks)

 $\frac{\boldsymbol{x}_i}{||\boldsymbol{x}_i||_2}$

D. Compute the means μ_1, μ_2, μ_3 and standard deviations $\sigma_1, \sigma_2, \sigma_3$ for the three features in \mathcal{D} . (6 marks)

$$\mu_{1} = \frac{1}{N} \sum_{n=1}^{N} x_{n1}$$

$$\sigma_{1} = \sqrt{\frac{\sum_{n=1}^{N} (x_{n1} - \mu_{1})^{2}}{N - 1}}$$

$$\mu_{2} = \frac{1}{N} \sum_{n=1}^{N} x_{n2}$$

$$\sigma_{2} = \sqrt{\frac{\sum_{n=1}^{N} (x_{n2} - \mu_{1})^{2}}{N - 1}}$$

$$\mu_{3} = \frac{1}{N} \sum_{n=1}^{N} x_{n3}$$

$$\sigma_{3} = \sqrt{\frac{\sum_{n=1}^{N} (x_{n3} - \mu_{1})^{2}}{N - 1}}$$

E. Apply Gaussian scaling on x_i .

(2 marks)

(2 marks)

$$\left(\frac{x_{i1}-\mu_1}{\sigma_1},\frac{x_{i2}-\mu_2}{\sigma_2},\frac{x_{i3}-\mu_3}{\sigma_3}\right)$$

F. Given that $\mu_3 = 0$ would it be problematic to replace missing values of x_{i3} to zero? Explain your answer. (2 marks)

Yes, this would be problematic because $x_{i3} \in \mathbb{R}$, if we replace missing x_{i3} values by zero we would not be able to distinguish among the instances for which x_{i3} was measured but turned out to be zero vs. instances where x_{i3} is missing.

G. As a solution to the missing value problem, we would like to predict x_{i3} using x_{i1} and x_{i2} using the linear relationship $\hat{x_{i3}} = ax_{i1} + bx_{i2} + c$, where $a, b, c \in \mathbb{R}$ are parameters that must be estimated from \mathcal{D} and $\hat{x_{i3}}$ is the predicted value for x_{i3} . Write the squared loss for this prediction problem. (3 marks)

$$E(\mathcal{D}) = \sum_{i=1}^{N} (ax_{i1} + bx_{i2} + c - x_{i3})^2$$

H. Compute the gradient of the squared loss function w.r.t. *a*, *b* and *c*.

(3 marks)

$$\frac{\partial E}{\partial a} = 2 \sum_{i=1}^{N} (ax_{i1} + bx_{i2} + c)x_{i1}$$
$$\frac{\partial E}{\partial b} = 2 \sum_{i=1}^{N} (ax_{i1} + bx_{i2} + c)x_{i2}$$
$$\frac{\partial E}{\partial c} = 2 \sum_{i=1}^{N} (ax_{i1} + bx_{i2} + c)$$

I. Write the update rules for *a*, *b* and *c* using stochastic gradient descent.

(3 marks)

$$a^{(k+1)} = a^{(k)} - 2\eta \sum_{i=1}^{N} (ax_{i1} + bx_{i2} + c)x_{i1}$$

$$b^{(k+1)} = b^{(k)} - 2\eta \sum_{i=1}^{N} (ax_{i1} + bx_{i2} + c)x_{i2}$$

$$c^{(k+1)} = c^{(k)} - 2\eta \sum_{i=1}^{N} (ax_{i1} + bx_{i2} + c)$$

Question 2 We would like to use the Perceptron algorithm to learn a linear classifier $y = \boldsymbol{w}^{\top} \boldsymbol{x} + b$, defined by a weight vector $\boldsymbol{w} \in \mathbb{R}^d$ and a bias $b \in \mathbb{R}$ from a training dataset consisting of three instances, $\{(t_n, \boldsymbol{x}_n)\}_{n=1}^3$. Here, $\boldsymbol{x}_1 = (0, 0)^{\top}$, $\boldsymbol{x}_2 = (1, 1)^{\top}$ and $\boldsymbol{x}_3 = (-1, 1)^{\top}$, and the labels are $t_1 = 1$, $t_2 = -1$ and $t_3 = 1$. We predict an instance \boldsymbol{x} as positive if $\boldsymbol{w}^{\top} \boldsymbol{x} + b \geq 0$, and negative otherwise. The initial values of the weight vector and the bias are set respectively to $\boldsymbol{w}^{(0)} = (0, 0)^{\top}$ and b = 0. We visit the training instances in the order $\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3$. Answer the following questions.

A. Plot the dataset in the two-dimensional space.

(2 marks)

The three points form a triangle with x_1 at the origin and x_2 and x_3 mirroring each other on the y-axis.

B. Write the perceptron update rule for a misclassified instance (t, \mathbf{x}) .

(3 marks)

- $\mathbf{W}^{(k+1)} = \mathbf{W}^{(k)} + t\mathbf{X}$
- **C.** What will be the values of the weight vector and the bias after observing the instance x_1 . (3 marks)

 $y_1 = \mathbf{w}^{(0)\top} \mathbf{x}_1 + b^{(0)} = 0$. Therefore, this instance is classified correctly as positive. The weight vector and bias are not updated. $\mathbf{w}^{(1)} = (0,0)^\top$, $b^{(1)} = 0$.

D. What will be values of the weight vector and the bias after observing x_2 .

(4 marks)

- $y_2 = 0$. Therefore, \mathbf{x}_2 will be incorrectly classified as positive. The weight vector and the bias will be update to $\mathbf{w}^{(2)} = (-1, -1), b^{(2)} = -1$
- **E.** What will be the values of the weight vector and the bias after observing x_3 .

(4 marks)

- $y_3 = (-1, 1)^{\top}(-1, -1) 1 = -1 < 0$. Therefore, \mathbf{x}_3 will be incorrectly classified as negative. The updated values will be $\mathbf{w}^{(3)} = (-2, 2)^{\top}$, $b^{(3)} = 0$.
- **F.** Is the dataset consisting of x_1, x_2, x_3 linearly separable? Justify your answer.

(2 marks)

- Yes. We have already found a Perceptron with a weight vector and a bias that would correctly classify all three instances in this dataset.
- **G.** Is it the case that a dataset consisting of three points is always linearly separable? If yes, explain your answer. If no, provide a counter example. (4 marks)

No. For example, if the three datapoints are on a straight line and the middle point has the opposite label than the other two points, then this dataset cannot be linearly separable.

H. Explain a method that you can use to learn a Perceptron from a non-linearly separable dataset. (3 marks)

Apply a kernel method to project the dataset into a high dimensional feature space and learn a Perceptron in this high dimensional feature space.

Question 3 Consider the two sentences S_1 and S_2 given by:

 $S_1 = I$ love cake with tea

 $S_2 = I drink beer with cake$

Answer the following questions.

A. Represent S_1 and S_2 respectively by feature vectors \mathbf{s}_1 and \mathbf{s}_2 , where elements correspond to the frequency of unigrams. (4 marks)

Let the unigram features be indexed as follows: l=0, love=1, cake=2, with=3, tea=4, drink=5, beer=6. Then we have $\mathbf{s}_1=(1,1,1,1,1,0,0)^{\top}$ and $\mathbf{s}_2=(1,0,1,1,0,1,1)^{\top}$.

B. Compute the ℓ_2 norms of \mathbf{s}_1 and \mathbf{s}_2 .

(4 marks)

$$||\mathbf{s}_1||_2 = \sqrt{5}, ||\mathbf{s}_2||_2 = \sqrt{5}$$

C. Compute the ℓ_1 norms of \mathbf{s}_1 and \mathbf{s}_2 .

(4 marks)

$$||\mathbf{s}_1||_1 = 5, ||\mathbf{s}_2||_1 = 5$$

D. Compute the cosine similarity between \mathbf{s}_1 and \mathbf{s}_2 .

(2 marks)

$$\frac{\mathbf{s}_1^{\top} \mathbf{s}_2}{\|\mathbf{s}_1\|_2 \|\mathbf{s}_2\|_2} = 3/5$$

E. Compute the Manhattan distance between \mathbf{s}_1 and \mathbf{s}_2 .

(2 marks)

$$|1-1|+|1-0|+|1-1|+|1-1|+|1-0|+|0-1|+|0-1|=4$$

F. Assume that for all the unigrams u_i and bigrams u_iu_{i+1} that appear in S_1 and S_2 we are given the marginal probabilities respectively $p(u_i)$ and $p(u_iu_{i+1})$. Compute the conditional probability of observing u_{i+1} given u_i . (2 marks)

$$p(u_{i+1}|u_i) = \frac{p(u_{i+1}, u_i)}{p(u_i)}$$

$$p(u_{i+1}, u_i) = p(u_{i+1}u_i) + p(u_iu_{i+1})$$

$$p(u_{i+1}|u_i) = \frac{p(u_{i+1}u_i) + p(u_iu_{i+1})}{p(u_i)}$$

G. Using the Markov assumption, compute the likelihood $p(S_1)$ and $p(S_2)$. (4 marks)

 $p(S_1) = p(I)p(love|I)p(cake|love)p(with|love)p(tea|with)$ $p(S_2) = p(I)p(drink|I)p(beer|drink)p(with|drink)p(tea|with)$

H. Explain how you can use the computation done in part (F) to evaluate whether S_2 is less common than S_1 in English texts written by native speakers. (3 marks)

Compare $p(S_1 \text{ and } p(S_2)$. If the likelihood of a sentence is small, then it is unlikely to be produced by a native speaker.

Question 4 Table 1 shows how four users u_1 , u_2 , u_3 , u_4 purchased four items I_1 , I_2 , I_3 , I_4 in an online shopping site over a period of one year. A cell value of 1 indicates that the user corresponding to the row has purchased the item corresponding to the column, and 0 otherwise. Answer the following questions.

	<i>I</i> ₁	<i>l</i> ₂	l ₃	<i>I</i> ₄
<i>u</i> ₁	1	0	1	1
U ₂	1	1	0	0
<i>U</i> ₃	0	0	1	1
<i>U</i> ₄	0	1	0	0

Table 1: A table showing four users u_1 , u_2 , u_3 , u_4 who have purchased four items l_1 , l_2 , l_3 , l_4 in an online shopping site over a period of one year.

A. Given that the users have been initially clustered into two clusters $S_1 = \{u_1, u_2\}$ and $S_2 = \{u_3, u_4\}$, compute the centroids for the two clusters respectively denoted by μ_1 and μ_2 . For this purpose, consider a user is represented by a vector over the items he or she has purchased in the past. (2 marks)

$$\mu_1 = (1, 0.5, 0.5, 0.5)^{\top}$$
 and $\mu_2 = (0, 0.5, 0.5, 0.5)^{\top}$

B. Compute Euclidean distances between μ_1 and each of the four users. (4 marks)

$$d(\mathbf{u}_{1}, \mu_{1}) = \sqrt{0.75}$$

$$d(\mathbf{u}_{2}, \mu_{1}) = \sqrt{0.75}$$

$$d(\mathbf{u}_{3}, \mu_{1}) = \sqrt{1.75}$$

$$d(\mathbf{u}_{4}, \mu_{1}) = \sqrt{0.75}$$

C. Compute Euclidean distances between μ_2 and each of the four users. (4 marks)

$$d(\mathbf{u}_{1}, \mu_{2}) = \sqrt{1.75}$$

$$d(\mathbf{u}_{2}, \mu_{2}) = \sqrt{1.75}$$

$$d(\mathbf{u}_{3}, \mu_{2}) = \sqrt{0.75}$$

$$d(\mathbf{u}_{4}, \mu_{2}) = \sqrt{0.75}$$

D. Based on the distances computed in parts (B) and (C), determine the assignment of users to clusters for the next iteration. (2 marks)

Two possible assignments exist.
$$S_1 = \{u_1, u_2, u_4\}, S_2 = \{u_3\}$$
 or $S_1 = \{u_1, u_2\}, S_2 = \{u_3, u_4\}$

E. Let us denote the probability of a user purchasing an item I_j when he or she has purchased I_i by $p(I_j|I_i)$. From Table 1, compute $p(I_1|I_4)$, $p(I_2|I_4)$ and $p(I_3|I_4)$. (3 marks)

$$p(I_1|I_4) = 0.5$$
, $p(I_2|I_4) = 0$ and $p(I_3|I_4) = 1$

- **F.** Based on your calculations in part (E), explain what is the best item to recommend to a user who has just purchased l_4 . (2 marks)
 - l_3 because $p(l_3|l_4) = 1$ and the user is likely to buy l_3 too, given that he/she has already purchased l_4
- **G.** Represent the information shown in Table 1 by a bi-partite graph where the users and items are represented by vertices, and an undirected edge is formed between the vertices corresponding to u_i and l_i if and only if u_i has purchased l_i . (4 marks)
- **H.** Consider a random walker moving along the edges of the graph you created in part (G), where the probability of moving from u_i to l_j is given by $\frac{1}{d(u_i)}$ and the probability of moving from l_j to u_i is given by $\frac{1}{d(l_j)}$. Here, d(x) is the out-degree of the vertex x. Given that the random walker started from u_1 , compute the probability that the random walker will be in u_3 after two time steps. (4 marks)

$$p(u_1 \rightarrow l_3)p(l_3 \rightarrow u_3) + p(u_1 \rightarrow l_4)p(l_4 \rightarrow u_3) = 1/3$$

Question 5 Consider the three points $x_1 = (0, 1)$, $x_2 = (-1, 0)$ and $x_3 = (1, 0)$. We would like to project these three points onto a straight line using principle component analysis. Answer the following questions.

A. Compute the total projection error if we project the three points onto the y-axis. (3 marks)

1+1=2

- **B.** Compute the total projection error if we project the three points onto the x-axis. (3 marks)
- **C.** Compute the mean \bar{x} of the three points.

(2 marks)

(0, 1/3)

D. Compute the covariance matrix for the three points.

(3 marks)

Compute $\mathbf{x}_i - \bar{\mathbf{x}}$ and adding the outer product matrices gives [[2, 0], [0, 2/3]].

E. Compute the eigenvalues of the covariance computed in part (D).

(4 marks)

Because the covariance matrix is diagonal we have $\lambda_1 = 2$, $\lambda_2 = 2/3$

F. Compute the first principle component of the projection.

(3 marks)

The eigenvector corresponding to λ_1 (the larger eigenvalue) is (1, 0). This is the *x*-axis.

G. Compute the second principle component of the projection.

(3 marks)

The eigenvector corresponding to λ_2 (the smaller eigenvalue) is (0,1). This is the y-axis.

H. Compute the total variance if we had projected the three points on to the first principle component. (2 marks)

$$\frac{(1-0)^2 + (-1-0)^2 + (0-0)^2}{3} = 2/3$$

I. Compute the total variance if we had projected the three points on to the second principle component. (2 marks)

$$\frac{(1-0.5)^2 + (0-0.5)^2 + (0-0.5)^2}{3} = 0.25$$