

FCC TEST REPORT

Product : Smart Indicating System

Trade mark : Walk Horizon

Model/Type reference : Tag-RRL100

Serial Number : N/A

Report Number : EED32I00332802 FCC ID : 2AKW8-RL044T Date of Issue : Mar. 30, 2017

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

Walk Horizon Technology (Beijing) Co., Ltd.
Room 121, Building B1, Shouxindasha, 5 Jiangtai Road, Chaoyang
District, Beijing, 100015, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom chen (Test Project)

Compiled by:

Approved by

Report Seal

Kevin lan (Project Engineer)

Reviewed by:

Kevin yang (Reviewer)

Sheek Luo (Lab supervisor)

Date:

Mar. 30, 2017

Check No.: 2447644992

Page 2 of 29

2 Version

Version No.	Date	Description
00	Mar. 30, 2017	Original
	**	

3 Test Summary

Page 3 of 29

Remark:

NA:The device is only battery operated, the conducted emission at DC input is not applicable.

The tested samples and the sample information are provided by the client.

4 Contents

Page 3 TEST SUMMARY......3 4 CONTENTS......4 5 GENERAL INFORMATION....... 5 5.5 DESCRIPTION OF SUPPORT UNITS......5 6 EQUIPMENT LIST......8

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP......21 APPENDIX 2 PHOTOGRAPHS OF EUT.......23

Page 4 of 29

Report No. : EED32l00332802 **5 General Information**

Page 5 of 29

5.1 Client Information

Applicant:	Walk Horizon Technology (Beijing) Co., Ltd.	
Address of Applicant:	Room 121, Building B1, Shouxindasha, 5 Jiangtai Road, Chaoyang District, Beijing, 100015, China	
Manufacturer:	Walk Horizon Technology (Beijing) Co., Ltd.	
Address of Manufacturer:	Room 121, Building B1, Shouxindasha, 5 Jiangtai Road, Chaoyang District, Beijing, 100015, China	
Factory:	Jiangyin SINBON Electronics Co., Ltd	
Address of Factory:	No.288, Chengjiang Middle Rd, Jiangyin Economic Development Zone, Jiangsu Province, China.	

5.2 General Description of EUT

Product Name:	Smart Indicating System
Model No.(EUT):	Tag-RRL100
Trade Mark:	Walk Horizon
EUT Supports Radios application:	TX: 2440MHz, 2460MHz; RX: 2450MHz,
Power Supply:	Lithium battery: 1x3.6V(ER18505M)=3.6V

5.3 Product Specification subjective to this standard

Frequency Range:	2440MHz; 2460MHz	6.	/3	
Modulation Type:	GFSK	(5)	(65)	
Sample Type:	Fixed production			
Hardware Version:	V1.0(manufacturer declare)			
Software Version:	V1.0(manufacturer declare)	-1-		_0
Antenna Type:	PIFA antenna	(21)		(3
Antenna Gain:	-0.77dBi			160
Test voltage:	Lithium battery:1x3.6V(ER1850	5M)=3.6V		
Sample Received Date:	Mar. 13, 2017			
Sample tested Date:	Mar. 13, 2017 to Mar. 30, 2017	The second		

5.4 Test Environment and Mode

Operating Environment:			
Temperature:	24°C		
Humidity:	54% RH		(4
Atmospheric Pressure:	1010mbar	6.)	(0.)
Test mode:			
Transmitting mode:	Keep the EUT transmitted the c specific channel(s).	continuous modulation test sig	nal at the

5.5 Description of Support Units

The EUT has been tested independently.

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

5.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

Page 6 of 29

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Page 7 of 29

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

5.8 Deviation from Standards

None.

5.9 Abnormalities from Standard Conditions

None.

5.10 Other Information Requested by the Customer

5.11 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE never conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
2	Dadieted Courieus emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction amission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Page 8 of 29

6 Equipment List

	3M :	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	TTE20130797	06-01-2016	05-31-2019
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-16-2017	02-15-2018
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-11-2017	01-10-2018
Cable line	Fulai(6M)	SF106	5220/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5216/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5217/6A	01-11-2017	01-10-2018
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	TTF20120434	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001	TTF20120435	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002	TTF20120436	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001	TTF20120437	01-11-2017	01-10-2018

RF Conducted test					
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	TTF20120434	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001	TTF20120435	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002	TTF20120436	01-11-2017	01-10-2018

Conducted disturbance Test					
Equipment Manufacturer Mode No. Serial Cal. date Cal. Number (mm-dd-yyyy) (mm-					
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017
ISN	TESEQ GmbH	ISN T800	30297	02-23-2017	02-22-2018

Report No. : EED32I00332802 Page 10 of 29

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is PIFA Antenna mounted on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.77dBi.

Report No.: EED32I00332802 Page 11 of 29

7.2 Radiated Spurious Emission

Test Requirement: 47 CFR Part 15C Section 15.249 and 15.209

Test Method: ANSI C63.10

Test Site: Measurement Distance: 3m (Semi-Anechoic Chamber)

	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30KHz	Peak
É	0.009MHz-0.090MHz	Average	10kHz	30KHz	Average
ď	0.090MHz-0.110MHz	Quasi-peak	10kHz	30KHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30KHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30KHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300KHz	Quasi-peak
	Above 1GHz	Peak	1MHz	3MHz	Peak
	ADOVE IGHZ	Peak	1MHz	10Hz	Average

Test Setup:

Test Procedure:

Receiver Setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

Below 1GHz test procedure as below:

The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.

The test-receiver system was set to Peak Detect Function and Specified Bandwidth with

Limit: (Spurious Emissions)

Limit:

(Field strength of the fundamental

Report No.: EED32I00332802

Maximum Hold Mode.

If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Page 12 of 29

Above 1GHz test procedure as below:

Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).

Test the EUT in the lowest channel, the Highest channel

The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	9) i <u>-</u>	- (87)	300
0.490MHz-1.705MHz	24000/F(kHz)	/ -	- 6	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

peak emission level radiated	by the device.	
Frequency	Limit (dBµV/m @3m)	Remark
2400MU- 2492 5MU-	94.0	Average Value
2400MHz-2483.5MHz	114.0	Peak Value

Page 13 of 29

Measurement Data

Field Strength Of The Fundamental Signal

Peak value:

Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
2440	32.63	4.40	34.40	88.07	90.70	114	-23.30	Pass	H
2440	32.63	4.40	34.40	88.02	90.65	114	-23.35	Pass	V
2460	32.67	4.45	34.40	87.34	90.06	114	-23.94	Pass	Н
2460	32.66	4.44	34.40	87.42	90.12	114	-23.88	Pass	V

Remark: As shown in this section, for field strength of the fundamental signal measurements, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above. So only the peak measurements were shown in the report.

Spurious Emissions

30MHz~1GHz

Page 14 of 29

Z~10									
100	Level (dBuV	/m)							
90									
70									
50									FCC CLASS-B
30		1		1		_	4	Sugar Market Water	Mark replace and
10	privided processing the	magadaji mitodija meneraliya ta	- Linear white part	*****	and the second of	3 anglapanak makangi	man distribution in the second		
-10	30	50		100	Freque	200 ncy (MHz)		500	1
	Freq	Ant Factor	Cable Loss	Read Level	Level	Limit Line	Over Limit	Pol/Phase	Remark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
	46.666 99.878	14.82 13.18	1.13 1.57	6.35 5.99	22.30 20.74			Horizontal Horizontal	
	176.888 283.979	13.17	1.94 2.37	6.03 6.06	21.60	46.00	-24.40	Horizontal Horizontal	
рр	467.235 790.619	17.56 21.49	3.04 3.86	6.02 7.07	26.62 32.42			Horizontal Horizontal	

1 2

3 4 5

Page 16 of 29

Above 1GH	Z								
Test mode:	Trans	smitting	Test Fr	equency:	2440MH	Z			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1241.562	30.32	2.56	34.92	39.74	37.70	74	-36.30	Pass	Н
1737.384	31.29	3.03	34.48	38.24	38.08	74	-35.92	Pass	Н
3072.770	33.53	5.61	34.51	37.40	42.03	74	-31.97	Pass	H
4880.000	34.85	5.08	34.33	31.64	37.24	74	-36.76	Pass	H
7320.000	36.43	6.77	34.90	34.97	43.27	74	-30.73	Pass	Н
9760.000	38.05	7.60	35.05	34.56	45.16	74	-28.84	Pass	Н
1241.562	30.32	2.56	34.92	40.49	38.45	74	-35.55	Pass	V
1750.702	31.32	3.04	34.47	39.70	39.59	74	-34.41	Pass	V
3010.828	33.59	5.62	34.50	37.64	42.35	74	-31.65	Pass	V
4880.000	34.85	5.08	34.33	36.23	41.83	74	-32.17	Pass	V
7320.000	36.43	6.77	34.90	35.27	43.57	74	-30.43	Pass	V
9760.000	38.05	7.60	35.05	35.65	46.25	74	-27.75	Pass	V

Test mode:	Tran	smitting	Test Fi	equency	2460MH	lz			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1257.465	30.36	2.58	34.90	42.25	40.29	74	-33.71	Pass	Н
1737.384	31.29	3.03	34.48	39.62	39.46	74	-34.54	Pass	Н
3104.217	33.51	5.60	34.51	38.12	42.72	74	-31.28	Pass	Н
4920.000	34.93	5.07	34.32	36.36	42.04	74	-31.96	Pass	H
7380.000	36.44	6.82	34.90	35.59	43.95	74	-30.05	Pass	H
9840.000	38.13	7.54	35.03	36.66	47.30	74	-26.70	Pass	Н
1260.670	30.37	2.58	34.90	38.76	36.81	74	-37.19	Pass	V
1750.702	31.32	3.04	34.47	38.67	38.56	74	-35.44	Pass	V
3112.129	33.50	5.60	34.51	36.67	41.26	74	-32.74	Pass	V
4920.000	34.93	5.07	34.32	36.42	42.10	74	-31.90	Pass	V
7380.000	36.44	6.82	34.90	35.84	44.20	74	-29.80	Pass	V
9840.000	38.13	7.54	35.03	35.11	45.75	74	-28.25	Pass	V

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

 - Final Test Level =Receiver Reading Correct Factor
 Correct Factor = Preamplifier Factor—Antenna Factor—Cable Factor
 - Scan from the test data, The average value is lower than limit, and The below the limit need not be reported, so only the peak value had been displayed.
- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

7.3 Emissions Out of Band-edge

Test Requirement: 47 CFR Part 15C Section 15.209 and 15.205

Test Method: ANSI C63.10

Test Site: Measurement Distance: 3m (Semi-Anechoic Chamber)

Limit(Band Edge): Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser

attenuation.

Frequency	Limit (dBµV/m @3m)	Remark
30MHz-88MHz	40.0	Quasi-peak Value
88MHz-216MHz	43.5	Quasi-peak Value
216MHz-960MHz	46.0	Quasi-peak Value
960MHz-1GHz	54.0	Quasi-peak Value
Above 1CHz	54.0	Average Value
Above 1GHz	74.0	Peak Value

Test Setup:

Page 17 of 29

Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Instruments Used: Test Mode: Refer to section 6 for details

Transmitting mode

Test Results: Pass

Test plot as follows:

lest plot as	ioliows.								
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark
2390.00	32.53	4.28	34.39	62.33	64.75	74	-9.25	Н	PK
2390.00	32.53	4.28	34.39	34.91	37.33	54	-16.67	Н	AV
2400.00	32.55	4.30	34.39	63.84	66.30	74	-7.70	Н	PK
2400.00	32.55	4.30	34.39	35.58	38.04	54	-15.96	Н	AV
2390.00	32.53	4.28	34.39	51.35	53.77	74	-20.23	V	PK
2390.00	32.53	4.28	34.39	35.98	38.40	54	-15.60	V	AV
2400.00	32.55	4.30	34.39	53.71	56.17	74	-17.83	V	PK
2400.00	32.55	4.30	34.39	36.54	39.00	54	-15.00	V	AV
2483.50	32.71	4.51	34.41	67.62	70.43	74	-3.57	€_H	PK
2483.50	32.71	4.51	34.41	33.95	36.76	54	-17.24	Н	AV
2483.50	32.71	4.51	34.41	58.41	61.22	74	-12.78	V	PK
2483.50	32.71	4.51	34.41	35.94	38.75	54	-15.25	V	AV
4	1.4	C-91-		1.4.31		1 /			1 40

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

7.4 20dB Bandwidth

Test Requirement: 47 CFR Part 15C Section 15.215

Test Method: ANSI C63.10

Test Setup:

Page 19 of 29

Ground Reference Plane

Test Mode: Transmitter mode

Limit: N/A

Instruments Used: Refer to section 6 for details

Test Channel/Frequency	20dB bandwidth (MHz)
2440MHz	1.92
2460MHz	1.31

Test plot as follows:

2440MHz:

Date: 26.MAR.2017 17:54:50

Page 20 of 29

2460MHz:

Date: 26.MAR.2017 18:01:32

Report No. : EED32I00332802 Page 21 of 29

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

Test Model No.: Tag-RRL100

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Page 22 of 29

Radiated spurious emission Test Setup-3(Above 1GHz)

Report No.: EED32I00332802 Page 23 of 29

APPENDIX 2 PHOTOGRAPHS OF EUT

Test model No.: Tag-RRL100

View of Product-1

View of Product-3

View of Product-4

View of Product-5

View of Product-6

View of Product-10

View of Product-11

View of Product-12

Page 29 of 29 Report No.: EED32I00332802

View of Product-13

View of Product-14

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.