U.S. PATENT DOCUMENTS

U.S. PATENT DOCUMENTS						
**Examiner Initial	Document Number	Date	Name	Class	Subclass	Filing Date T If Appropriate
PP	5,668,035	09/16/1997	Fang, C.H., et al.	438	239	06/10/96
70	5,985,725	11/16/1999	Chou, J.	438	294	12/23/97
70	6,087,225	07/11/2000	Bronner, G.B., et al.	438	275	02/05/98
70	6,097,056	08/01/2000	Hsu, L.L., et al.	257	315	04/28/98
77	6,222,788	04/01/2001	Forbes, et al.	365	230.06	

FOREIGN PATENT DOCUMENTS

**Examiner						Translation
Initial	Document Number	Date	Country	Class	Subclass	Yes No

OTHER DOCUMENTS

**Examiner Initial	(Including Author, Title, Date, Pertiment Pages, Etc.)
PD	Chen, Y., et al., "Performance and Reliability Assessment of Dual-Gate CMOS Devices with Gate Oxide Grown Nitrogen Implanted Si Substrates", <u>International Electron Device Meeting</u> , pg. 1-4, (1997)
(1)	Cho, I.H., et al., "Highly Reliable Dual Gate Oxide Fabrication by Reducing Wet Etching Time and Re-Oxidation for Sub-Quarter Micron CMOS Devices", Extended Abstracts of the 1999 International Conference on Solid State Devices and Materials, pgs. 174-175, (1999)
Pr	Crowder, S., et al., "Trade-offs in the Integration of High Performance Devices with Trench Capacitor DRAM", Dig. Int. Electron Devices Meeting, Washington, D.C., pp. 45-48, (Dec. 1997)
	Fujiwara, M., et al., "New Optimization Guidelines for Sub-0.1 micrometer CMOS Technologies with 2 micrometer
Pn	Guo, X., et al., "High Quality Ultra-thin TiO2/Si3N4 Gate Dielectric for Giga Scale MOS Technology", <u>Technical Digest of 1998 IEDM</u> , pp. 377-380, (1998)
Ph	Han, L.K., et al., "Electrical Charateristics and Reliability of sub-3 nm Gate Oxides Grown on Nitrides Implanted Silicon Substrates", Int. Electron Devices Meeting, Washington, D.C., pp. 1-4, (1997)

Examiner	PHUC	<u>-</u>	DANG	Date Considered x/23/2000

^{*}Substitute Lisciosure Statement Form (FTV-1449)

^{**}EXAMINER: Initia, if cutation consulered, whether or not distance is in confirmance with MEEP et 9; I aw line through distance if not in order among and not a management. Include copy of this form with next communication to applicant.

Sheet 2 of 2

90

Form 1449*	Atty. Docket No.: 303.678US4	Serial No. Unknown
INFORMATION DISCLOSURE STATEMENT	Applicant: Kie Y. Ahn et al.	
BY APPLICANT (Use several sheets if necessary)	Filing Date: Herewith	Group: Unknown

OTHER DOCUMENTS

	Olimbia Boodimine			
**Examiner	(Including Author, Title, Date, Pertinent Pages, Etc.)			
Initial				

PF	Hideo, O., et al., "Dual Gate Oxide Process Integration for High Performance Embedded Memory Products", Extended Abstracts of the 1998 International Conference on Solid State Devices and Materials, pp. 108-109, (1998)
PD	King, Y., et al., "Sub-5nm Multiple-Thickness Gate Oxide Technology Using Oxygen Implantation", <u>IEDM</u> <u>Technical Digest</u> , pp. 585-588, (1998)
() (r	Liu, C.T., et al., "Multiple Gate Oxide Thickness for 2GHz System-on-A-Chip Technologies", <u>IEDM Technical</u> <u>Digest</u> , pp. 589-592, (1998)
*** * *	Ma, T.P., "Making Silicon Nitride film a Viable Gate Dielectric", <u>IEEE Trans. On Electron Devices</u> , <u>45(3)</u> , pp. 680-690, (1998)
PD	Muller, D.A., et al., "The Electronic Structure at the Atomic Scale of Ultrathin Gate Oxides", Nature, 399, 758-761, (June 1999)
PD	Oi, H., et al., "Dual Gate Oxide Process Integration for High Performance Embedded Memory Products", <u>Extended Abstracts of the 1998 International Conference on Solid State Devices and Materials</u> , pp. 108-109, (1998)
Pν	Saito, Y., et al., "High-Integrity Silicon Oxide Grown at Low-temperature by Atomic Oxygen Generated in High-Density Krypton Plasma", Extended Abstracts of the 1999 International Conference on Solid State Devices and Materials, pp. 152-153, (1999)
PP	Togo, M., et al., "Multiple-Thickness Gate Oxide and Dual-Gate Technologies for High Performance Logic-Embedded DRAms", <u>IEDM Technical Digest</u> , pp. 347-350, (1998)
Po	Tseng, H., et al., "Application of JVD Nitride Gate Dielectric to A 0.35 Micron CMOS Process for Reduction of Gate Leakage Current And Boron Penetration", Int. Electron Device Meeting, San Francisco, CA, pp. 1-4, (1998)

Examiner	PHUL	7	MANG	Date Considered 4/24/2003