数字电子技术作业(五)

谢悦晋 U202210333

Nov 6th, 2023

6.2.4 试分析图题 6.2.4 所示电路,列出状态转换表,并画出状态转换图。当输入序列A为01011011111111101,其输出序列 Z 是什么?该电路可以检测 A 的何种输入序列?

图 1: 6.2.4

解:

Step 1. 写出输出方程,激励方程,状态方程:

$$Z = Q_0 \overline{Q}_1, \begin{cases} D_{FF_0} = A(Q_1 + Q_0) \\ D_{FF_1} = A(\overline{Q}_0 + \overline{Q}_1) \end{cases}, \begin{cases} Q_0^{n+1} = A(Q_1^n + Q_0^n) \\ Q_1^{n+1} = A(\overline{Q}_0^n + \overline{Q}_1^n) \end{cases}$$

Step 2. 列出状态转换表

$Q_0^nQ_1^n$	$Q_0^{n+1}Q_1^{n+1}/Z$		
	A=0	A=1	
00	00/0	01/0	
01	00/0	11/0	
10	00/1	11/1	
11	00/0	10/0	

Step 3. 画出状态转换图

图 2: 6.2.4

输出序列为: 0000 0000 0100 0101 0100, 可以检测连续的三个1, 若连续的三个1之后每跟着两个1就输出一个1, 只要有0重新检测。

6.2.6 试分析图题 6.2.6 所示同步时序电路,写出激励方程组、状态转换方程组和输出方程,列出状态转换表并画出状态转换图。

图 3: 6.2.6

解:

Step 1 写出输出方程,激励方程,状态方程:

$$Z = Q_0 + \overline{Q}_1, \begin{cases} D_{FF_0} = Q_1 + \overline{Q}_0 \\ D_{FF_1} = A\overline{Q}_1 \end{cases}, \begin{cases} Q_0^{n+1} = Q_1^n + \overline{Q}_0^n \\ Q_1^{n+1} = A\overline{Q}_1^n \end{cases}$$

Step 2 列出状态转换表

$Q_1^nQ_0^n$	$Q_1^{n+1}Q_0^{n+1}/Z$		
	A=0	A=1	
00	01/1	11/1	
01	00/0	10/0	
10	01/1	01/1	
11	01/1	01/1	

Step 3. 画出状态转换图

图 4: 6.2.6

6.3.5 试用下降沿触发的JK触发器和最少的门电路,实现图题 6.3.5 所示的 Z_1 和 Z_2 输出波形(要求写出Verilog程序)

图 5: 6.3.5

解:

Step 1. 逻辑抽象

从图6.3.5所示输出波形图可以看出,对于每一个周期,可分为4个状态: $Z_2Z_1=00,Z_2Z_1=01,Z_2Z_1=11,Z_2Z_1=01$ 。设定为4个状态: 00,01,10,11,用两个下降沿触发的 JK 触发器实现.设两个触发器的状态为 Q_1 、 Q_0 ,输出信号为 Z_1,Z_2

Step 2. 列写激励方程,输出方程

首先写出真值表:

$Q_0^n Q_1^n$	$Q_0^{n+1}Q_1^{n+1}$	Z_1Z_2	J_0	K_0	J_1	K_1
00	01	00	1	X	0	X
01	10	10	X	1	1	X
10	11	11	1	X	X	0
11	00	10	X	1	X	1

易得激励方程和输出方程:

$$\begin{cases} J_1 = K_1 = Q \tilde{0} \\ J_0 = K_0 = 1 \end{cases}, \begin{cases} Z_1 = Q_1 + Q_0 \\ Z_2 = Q_1 \overline{Q}_0 \end{cases}$$

Step 2. 画出逻辑电路,写出Verilog语句


```
module sol(input clk,
    output reg Z_1,
    output reg Z_2);
    reg[1:0] state;
    parameter S0=2'b00, S1=2'b01, S2=2'b10, S3=2'b11
    always@(posedge clk)begin
        case(state)
            S0:begin
                state=S1;Z_1=0;Z_2=0;
            end
            S1:begin
                state=S2;Z_1=1;Z_2=0;
            end
            S2:begin
                state=S3;Z_1=1;Z_2=1;
            end
            S3:begin
                state=S0;Z_1=1;Z_2=0;
            end
            default:begin
                state=S0;
            end
        endcase
    end
endmodule
```

6.3.6 试用上升沿触发的D触发器设计一个1101序列检测器(序列可重复),输入为串行编码序列,输出为检出信号(要求写出Verilog程序)解:

Step 1. 逻辑抽象

首先写出状态转换图和状态转换表

Q^n	Q^{n+1}/Y		
	A = 0	A = 1	
a	a/0	b/0	
b	a/0	c/0	
c	d/0	c/0	
d	a/0	e/1	
e	a/0	c/0	

Step 2. 状态化简

On	Q^{n+1}/Y	
Q^n	A = 0	A = 1
a	a/0	b/0
b	a/0	c/0
c	d/0	c/0
d	a/0	b/1

Step 3. 状态分配

$Q_0^nQ_1^n$	$Q_0^{n+1}Q_1^{n+1}/Y$		
	A = 0	A = 1	
00	00/0	10/0	
01	00/0	10/0	
10	11/0	10/0	
11	00/0	01/1	

Step 4. 列写激励方程,输出方程

$$\begin{cases} D_0 = A\overline{Q}_0Q_1 + \overline{A}Q_0\overline{Q}_1 + AQ_0\overline{Q}_1 \\ D_1 = A\overline{Q}_0\overline{Q}_1 + \overline{A}Q_0\overline{Q}_1 + AQ_0Q_1 \end{cases}, Y = AQ_0^nQ_1^n$$

Step 5. 画出逻辑电路,写出Verilog语句


```
module sol(input clk, input A, output reg Y);
    reg[1:0] state;
    parameter S0=2'b00, S1=2'b01, S2=2'b10, S3=2'b11
    always@(posedge clk)begin
        case(state)
            S0:begin
                if (A==0){state=S0;Y=0;}
                    else {state=S2;Y=0;}
            end
            S1:begin
                if (A==0){state=S0;Y=0;}
                    else {state=S2;Y=0;}
            end
            S2:begin
                if (A==0){state=S3;Y=0;}
                    else {state=S2;Y=0;}
            end
            S3:begin
                if (A==0){state=S0;Y=0;}
                    else {state=S1;Y=1;}
            end
        endcase
    end
endmodule
```