

	UZUPEŁNIA ZDAJĄCY	
KOD	PESEL	miejsce na naklejkę
		dysleksja

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY

DATA: **8 maja 2015 г.**GODZINA ROZPOCZĘCIA: **9:00**

CZAS PRACY: 180 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony (zadania 1–16). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–5) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem ⑤ i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (7–16) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj <u>tylko długopisu lub pióra</u> z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MMA-R1 **1**P-152

W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Na rysunku przedstawiony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność $|2x-8| \le 10$.

Stad wynika, że

A.
$$k = 2$$

B.
$$k = 4$$

C.
$$k = 5$$

D.
$$k = 9$$

Zadanie 2. (0–1)

Dana jest funkcja f określona wzorem $f(x) = \begin{cases} x-2 & \text{dla } x \le 0 \\ \|x+3\|-4\| & \text{dla } x > 0 \end{cases}$

Równanie f(x) = 1 ma dokładnie

A. jedno rozwiązanie.

B. dwa rozwiązania.

C. cztery rozwiązania.

D. pięć rozwiązań.

Zadanie 3. (0-1)

Liczba $(3-2\sqrt{3})^3$ jest równa

A.
$$27 - 24\sqrt{3}$$

B.
$$27 - 30\sqrt{3}$$

C.
$$135 - 78\sqrt{3}$$

B.
$$27-30\sqrt{3}$$
 C. $135-78\sqrt{3}$ **D.** $135-30\sqrt{3}$

Zadanie 4. (0-1)

Równanie $2\sin x + 3\cos x = 6$ w przedziale $(0, 2\pi)$

A. nie ma rozwiązań rzeczywistych.

B. ma dokładnie jedno rozwiązanie rzeczywiste.

C. ma dokładnie dwa rozwiązania rzeczywiste.

D. ma więcej niż dwa rozwiązania rzeczywiste.

Zadanie 5. (0-1)

Odległość początku układu współrzędnych od prostej o równaniu y = 2x + 4 jest równa

A.
$$\frac{\sqrt{5}}{5}$$

B.
$$\frac{4\sqrt{5}}{5}$$

C.
$$\frac{4}{5}$$

BRUDNOPIS (nie podlega ocenie)

MMA_1R Strona 3 z 22

Zadanie 6. (0-2)

Oblicz granicę $\lim_{n\to\infty} \left(\frac{11n^3 + 6n + 5}{6n^3 + 1} - \frac{2n^2 + 2n + 1}{5n^2 - 4} \right)$. W poniższe kratki wpisz kolejno cyfrę jedności i pierwsze dwie cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Strona 4 z 22 MMA_1R

Zadanie 7. (0–2)

Liczby (-1) i 3 są miejscami zerowymi funkcji kwadratowej f. Oblicz $\frac{f(6)}{f(12)}$.

	Nr zadania	6.	7.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 8. (0–3)Udowodnij, że dla każdej liczby rzeczywistej *x* prawdziwa jest nierówność

$$x^4 - x^2 - 2x + 3 > 0.$$

Strona 6 z 22 MMA_1R

	Nr zadania	8.
Wypełnia	Maks. liczba pkt	3
egzaminator	Uzyskana liczba pkt	

MMA_1R Strona 7 z 22

Zadanie 9. (0–3)

Dwusieczne czworokąta ABCD wpisanego w okrąg przecinają się w czterech różnych punktach: P, Q, R, S (zobacz rysunek).

Wykaż, że na czworokącie *PQRS* można opisać okrąg.

Strona 8 z 22 MMA_1R

	Nr zadania	9.
Wypełnia	Maks. liczba pkt	3
egzaminator	Uzyskana liczba pkt	

MMA_1R Strona 9 z 22

Zadanie 10. (0-4)

Długości boków czworokąta ABCD są równe: |AB|=2, |BC|=3, |CD|=4, |DA|=5. Na czworokącie ABCD opisano okrąg. Oblicz długość przekątnej AC tego czworokąta.

Odpowiedź:

Strona 10 z 22

Zadanie 11. (0–4)

W pierwszej urnie umieszczono 3 kule białe i 5 kul czarnych, a w drugiej urnie 7 kul białych i 2 kule czarne. Losujemy jedną kulę z pierwszej urny, przekładamy ją do urny drugiej i dodatkowo dokładamy do urny drugiej jeszcze dwie kule tego samego koloru, co wylosowana kula. Następnie losujemy dwie kule z urny drugiej. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że obie kule wylosowane z drugiej urny będą białe.

	Nr zadania	10.	11.
Wypełnia	Maks. liczba pkt	4	4
egzaminator	Uzyskana liczba pkt		

Zadanie 12. (0-4)

Funkcja f określona jest wzorem $f(x) = x^3 - 2x^2 + 1$ dla każdej liczby rzeczywistej x. Wyznacz równania tych stycznych do wykresu funkcji f, które są równoległe do prostej o równaniu y = 4x.

Strona 12 z 22 MMA_1R

	Nr zadania	12.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 13. (0–5)

Dany jest trójmian kwadratowy $f(x) = (m+1)x^2 + 2(m-2)x - m + 4$. Wyznacz wszystkie wartości parametru m, dla których trójmian f ma dwa różne pierwiastki rzeczywiste x_1 , x_2 , spełniające warunek $x_1^2 - x_2^2 = x_1^4 - x_2^4$.

Strona 14 z 22 MMA_1R

	Nr zadania	13.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 14. (0–5)

Podstawą ostrosłupa *ABCDS* jest kwadrat *ABCD*. Krawędź boczna *SD* jest wysokością ostrosłupa, a jej długość jest dwa razy większa od długości krawędzi podstawy. Oblicz sinus kąta między ścianami bocznymi *ABS* i *CBS* tego ostrosłupa.

Strona 16 z 22 MMA_1R

	Nr zadania	14.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 15. (0–6)

Suma wszystkich czterech współczynników wielomianu $W(x) = x^3 + ax^2 + bx + c$ jest równa 0. Trzy pierwiastki tego wielomianu tworzą ciąg arytmetyczny o różnicy równej 3. Oblicz współczynniki a, b i c. Rozważ wszystkie możliwe przypadki.

Strona 18 z 22 MMA_1R

	Nr zadania	15.
Wypełnia	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

Zadanie 16. (0-7)

Rozpatrujemy wszystkie stożki, których przekrojem osiowym jest trójkąt o obwodzie 20. Oblicz wysokość i promień podstawy tego stożka, którego objętość jest największa. Oblicz objętość tego stożka.

Strona 20 z 22 MMA_1R

	Nr zadania	16.
Wypełnia	Maks. liczba pkt	7
egzaminator	Uzyskana liczba pkt	

BRUDNOPIS (nie podlega ocenie)