

King Saud University College of Computer and Information Sciences Computer Science Department						College of Computer & Information Sciences Computer Science Department			
Course Code:		CSC 339							
Course Title:		Theory of Computation				/ 20			
Semester:		2 nd (1442)							
Exercises Cover Sheet:		Homework							
Name		-	ID		-		Serial		
Name		-	ID	-			Serial		
Name		•	ID		-				
Name		-	ID	-			Serial		
Name		-	ID	-			Serial	Serial	
Course Learning Outcomes					Releva Questi No	tion Full Mark		Student Mark	
CLO 1	Identify regu	ular and non-regular languages (K1)							
CLO 2 Identify deciproblems (K1		dable and non-decidable, NP-complete, and reducible 1)							
CLO 3		nputing based solutions using regular expressions, and grammar (K2)							
CLO 4 Design differ		rent machine models (DFA, NFA, PDA, TM) (S1)			Part	12			
(105)		language accepted by a machine, a regular expression, kt free grammar (S1)			Part	t 2 8			
CLO 6 Evaluate the time and space complexity of a Turing machine (S1)									
Feedback ar	nd Remarks:								
I certify that the work contained within this assignment is all my own work and referenced where required.				Feedback Received: Student Signature: Date:					

Date:

Student Signature:

Part 1 [12 pts]

Exercise 1 [4 pts]

1. Construct a **DFA** which accepts the language of all binary strings where every odd position is 1. **[2 pts]**

2. Construct a **DFA** which accepts the language of all binary strings that have at least three symbols and whose first and last symbols are different. [2 pts]

Exercise 2 [4 pts]

1. Construct a **NFA** which accepts the language L of all strings over $\{a,b\}$ defined by $L=\{b^na^mb^k\colon 0\le n\le 1, m>0, k\ge 0\}$. [2 pts]

2. Construct a **NFA** which accepts the language L of the English alphabet defined by $L = \{read, listen, study, succeed\}$. [2 pts]

Exercise 3 [4 pts]

Consider the following **NFA**, $M=(Q,\Sigma,\delta,S,F)$ where $Q=\{A,B,C,D\}, \Sigma=\{0,1\}, S=A,F=\{A\}$, and

$$\delta(A,0) = B$$

$$\delta(C,1)=D$$

$$\delta(A,0) = C$$

$$\delta(D,0)=A$$

$$\delta(B,1)=A$$

 $1. \ \ Construct \ the \ corresponding \ \textbf{NFA}.$

5

2. Construct the equivalent **DFA**.

Empty set 8
$$S^*(A,\lambda) = \{A\}$$

 $S^*(B,\lambda) = \{B\}$
 $S^*(C,\lambda) = \{C\}$
 $S^*(D,\lambda) = \{D\}$
(I) Stort State: A
(II) A C,B Ø AD Ø Ø AD Ø Ø AD Ø Ø AD ABC Ø AD ABC A,B,C A,D

Part 2 [8 pts]

Exercise 4 [4 pts]

1. What is the language covered by this **DFA**?

The language is all binary strings that do not contain more than two consecutive 1's. ie: L= $\{\lambda,0,01,001,0110,00110011\}$

2. What is the language covered by this **DFA**?

The language is all strings that contain three ones exactly. ie: L= {111, 1110, 010101, 011010}

Exercise 5 [4 pts]

1. What is the language covered by this **NFA**?

2. What is the language covered by this **NFA**?

