Méta-Heuristiques

M.-J. Huguet

https://homepages.laas.fr/huguet 2018-2019

Plan

- 1. Introduction
- 2. Optimisation Combinatoire
 - 1. Quel est le problème?
 - 2. Démarche de résolution
 - 3. Familles de méthodes (exactes, approchées)
- 3. Méthodes approchées
 - 1. Heuristiques gloutonnes
 - 2. Méthodes de recherche locale
 - 3. Méthodes à population
- 4. Conclusions et ouvertures

Section 1. Introduction

- Contexte
- Exemples : SAT, TSP
- Rappels sur les classes de complexité
- Lien problèmes de décision et d'optimisation combinatoire

3

Contexte

Résolution de problèmes

- Intelligence Artificielle & Optimisation Combinatoire
- Déterminer une séquence d'actions pour atteindre un but
 - Formalisation du problème / du but
 - Méthodes de recherche (informées, non informées) dans un graphe d'états

• Performances des méthodes

- Complétude : est-ce que la méthode garantit l'obtention d'une solution si elle existe
- Optimalité : est-ce que la méthode permet de déterminer une solution optimale ?
- Complexité temporelle et spatiale : combien de temps et de mémoire nécessite la méthode ?

Exemple: Problème de Satisfiabilité (SAT)

- Satisfaire une formule booléenne écrite sous forme de clauses
 - Ex : $(a \lor \neg b) \land (\neg a \lor c \lor d) \land (\neg b \lor \neg c \lor \neg e) \land (a \lor b \lor d \lor e)$
 - Conjonction de clauses
 - Problème de décision
 - Peut-on satisfaire toutes les clauses ?
 - Problème NP-complet dans le cas général
 - Mais problème polynomial si la taille des clauses est au max de 2 éléments
 - Problème d'optimisation
 - Satisfaire le plus grand nombre de clauses
 - Problème NP-difficile dans le cas général
 - Nombre de solutions
 - Si n variables : 2^n solutions

_ `

Exemple: Voyageur de Commerce (1)

- ou Traveling Salesman Problem (TSP)
 - Graphe G(X, A): (supposé non orienté)
 - \bullet X: ensemble des villes
 - A : ensemble des arêtes
 - Chaque arête est valuée par la longueur de la route
 - Problème de décision
 - Trouver un cycle hamiltonien de longueur $\leq K$
 - Problème NP-complet
 - Problème d'optimisation
 - Trouver le cycle hamiltonien de plus petite longueur
 - Problème NP-difficile
 - Nombre de solutions
 - Si n sommets : (n-1)! solutions (nombre de permutations)

Exemple: Voyageur de Commerce (2)

• Comment déterminer la meilleure solution ?

- En théorie : énumérer toutes les solutions et retenir celle ayant la meilleure valeur par rapport à la fonction objectif
- En pratique : l'énumération est prohibitive (complexité temporelle)
 - 4 sommets {A, B, C, D} : 6 tours possibles (3 si distances symétriques)
 - n sommets : (n-1)! ((n-1)!/2)
 - 10 sommets : 3 628 800
 - 20 sommets: 2.43 E+18
 - 30 sommets : 2.65 E+32
- Comment obtenir la meilleure solution ?
- Comment obtenir une solution réalisable ?
 - contraintes fenêtres de temps, capacités,

_

Bref rappel de Complexité (1)

Complexité d'un problème

- Complexité du meilleur algorithme pour le résoudre pour l'instance la plus difficile (ie. le pire cas)
- Classes de complexité
 - définies pour les problèmes de décision
 - (par rapport à la machine de Turing)
 - Classes principales :
 - P, NP,
 - NP-complet, NP-difficile
 - (indécidable)

Bref rappel de Complexité (2)

La classe P

- Problèmes pour lesquels il existe un algorithme polynomial
 - Complexité problème $A \leq O(n^k)$
 - n: taille des données en entrée de A; k: constante indépendante de n
 - Exemple : rechercher un élément dans un tableau, plus court chemin, ...

La classe NP

- Problèmes pour lesquels il est possible de vérifier une solution en temps polynomial (certificat)
 - Problème pour lesquels il existe un algorithme polynomial sur une machine de Turing non déterministe

• Propriété

- $P \subseteq NP$
- Conjecture : $P \neq NP$

9

Bref rappel de Complexité (3)

Problèmes NP-Difficiles

Les problèmes au moins aussi difficile que tous ceux de la classe NP

• Problèmes NP-Complets

• Un problème est NP-Complet s'il est NP-difficile et qu'il est dans la classe NP

- Cook, 1971: SAT est NP-Complet
- NP-complet ⊆ NP-Difficile

- Montrer que le problème A appartient à NP (certificat polynomial)
- Trouver une procédure polynomiale pour transformer un problème B connu comme NP-Complet vers le problème A (réduction polynomiale de B vers A)

Lien décision et optimisation

Problème de décision

- Existe-t-il une solution satisfaisant une certaine propriété ?
- Résultat : OUI / NON
 - Ex : le graphe G donné est-il coloriable en 4 couleurs ?

• Problème d'optimisation

- Parmi les solutions satisfaisant une certaine propriété, quelle est celle qui optimise une fonction objectif (fonction de coût)
- Résultat : une solution de coût optimal
 - Ex : Quel est le nombre minimum de couleur pour colorier le graphe G donné ?

Résoudre un problème d'optimisation

- Au moins aussi difficile que résoudre le problème de décision associé
 - Si le problème de décision est NP-Complet, le problème d'optimisation associé est dit NP-Difficile

11

Optimisation Combinatoire

• Exemples dans le secteur spatial:

• Déterminer la meilleure solution parmi un ensemble discret (combinatoire)

de solutions possibles

Placement de stations-sol optiques pour optimiser la transmission en présence de nébulosité

Séquencement de tests de satellites de

Optimisation intégrée de l'allocation de fréquences et du placement de faisceau

Section 2. Optimisation Combinatoire

- Définitions générales
- Démarche de résolution
- Caractéristiques de différents types de méthodes
 - Méthodes exactes
 - Méthodes avec garantie
 - Méthodes approchées

Formalisation (1)

- **Problème** (**X**, **D**, **C**, **f**):
 - ullet X : ensemble des variables du problème
 - D: domaine des variables : $x_i \to D(x_i)$: les valeurs pouvant être prises par x_i
 - Espaces des solutions (alternatives) A : produit cartésien des domaines
 - o Taille de l'ensemble des solutions : $D_1 \times D_2 \ \times \ ... \ \times D_n$
 - o Une solution : instanciation des variables $s: \{(x_i \leftarrow v_i)\}, v_i \in D_i, \forall x_i \in X$
 - ullet ${\cal C}$: contraintes du problème
 - o Relations entre les variables X: restreindre les valeurs possibles
 - Espace des solutions admissibles / réalisables Ω :
 - 0 Une solution $\, {\it S} \,$ telle que les contraintes $\, {\it C} \,$ sont satisfaites
 - $f: X \to \mathbb{R}$: fonction Objectif
 - o Minimiser (cout/perte); Maximiser (gain, profit)

Formalisation (2)

- Résoudre un problème d'optimisation (minimisation) :
 - solution $s^* \in \Omega$, telle que $f(s^*) = min_{s \in \Omega} f(s)$: ie $s^* = argmin(f)$
 - Trouver des valeur pour toutes les variables de X
 - ullet Toutes les contraintes de ${\cal C}$ doivent être satisfaites
- Optimisation Combinatoire :
 - ullet minimisation sur un ensemble Ω discret et fini
 - potentiellement de très grande taille
 - ullet En pratique : conserver les 2 ensembles A et Ω
 - Un algorithme peut générer des solutions intermédiaires non réalisables avant d'arriver à une solution (optimale) réalisable

15

Vocabulaire

- **Problème :** par exemple le TSP
- Instance : par exemple un ensemble donné de villes, de routes et de distances
- Solution : par exemple une tournée pour le TSP
 - Solution candidate (alternative)
 - Instanciation des variables; ne respecte pas nécessairement les contraintes
 - Solution réalisable
 - Respecte les contraintes
 - Solution optimale
 - La meilleure solution / fonction objectif
 - o Plusieurs solutions peuvent avoir la même valeur de fonction objectif
 - o La valeur de l'optimum est unique

Démarche (1)

Problème

- Comprendre le problème (données, paramètres, contraintes, objectifs)
- Analyser le problème :
 - est-il facile ou difficile (en termes de complexité) ?
 - Ressemble-t-il à un problème déjà connu (état de l'art) ?

Modèle

- A un même problème peut correspondre plusieurs modèles
- Différents formalismes de modélisation
 - · Logique, Graphe, Programmation Linéaire,
 - Programmation Linéaire en Nombres entiers ou Mixtes
 - Programmation par Contraintes
 - Etc

17

Démarche (2)

Méthode

- Quelle méthode utiliser pour résoudre le problème ?
- Adapter une méthode existante ou développer une méthode ad-hoc?
- S'assurer que la méthode fournit des <u>résultats corrects</u> (tests de correction)
 - La solution obtenue est-elle bien réalisable ?
 - Si pas de solution est-ce parce qu'il n'en existe pas ?

Evaluation expérimentale

- Mettre en place une campagne de tests pour évaluer <u>les performances</u> de la méthode
 - A quels autres résultats se comparer ? Existe-t-il des benchmarks de ce problème ?
 - o Jeux d'instances de tests de performances (académiques, réels,)?
 - o Autres méthodes?
 - Les tests de performance sont-ils représentatifs des instances du problème ?
 - Les tests effectués sont-ils reproductibles ?
 - Les résultats obtenus sont-ils conformes à l'analyse du problème ?

Types de problèmes (1)

Types de problèmes :

- Planifier, Ordonnancer (Planning, Scheduling, Allocation)
- Transporter (Routing, Transportation)
- Découpe et Empilement (Cutting, Packing)
- Problèmes académiques (TSP, Bin-Packing,) / Problèmes réels

• Secteurs économiques :

- Secteur industriel (gestion production, stratégie)
- Services, Hôpitaux, Administrations
- Logistique et Transport
- Aéronautique, Espace
- Réseaux et Télécom, Systèmes Embarqués
- Développement durable (gestion de l'énergie, de ressources, ...)
- etc.

19

Types de problèmes (2)

Objectifs usuels

- Temps
- Argent
- Quantité
- Equilibrage (ex : utilisation de ressources)
- Qualité de service
- Robustesse
- Mais aussi :
 - Sécurité
 - Environnement
 - Vie privée

Résolution de problèmes combinatoires

• Problèmes d'optimisation combinatoire NP-Difficile

- Espace de recherche : espace exploré pour trouver la solution (optimale)
 - Solutions candidates ou réalisables
- Comment faire face à l'explosion combinatoire ie. la taille de l'espace de recherche ?

• Méthodes génériques

- Contenir l'explosion combinatoire en structurant et en élaguant l'exploration de l'espace de recherche méthodes exactes
- Contourner l'explosion combinatoire en faisant des impasses (sans explorer tout l'espace de recherche)
 méthodes approchées

21

Méthodes exactes

• Principe :

- Structurer l'exploration de l'espace de recherche de solutions en arbre
 - Recherche arborescente
- Construction d'un arbre de recherche
 - Séparation :
 - Partitionner en sous espace
 - Evaluation:
 - L'espace obtenu est-il une solution ?
 - Correspond-il à un problème facile ?
 - Est-il réalisable (échec) ?
 - Sélection :
 - Choisir la prochaine partie à explorer

Méthodes exactes

Autres principes :

- Filtrer et/ou élaguer → supprimer des parties de l'arbre
 - Parties ne pouvant conduire à une solution
 - Parties ne pouvant conduire à une bonne solution
- Sélection (Heuristiques d'ordre) → explorer en premier les branches les plus prometteuses

2

Exemple (1)

Problème de planification

- Un ensemble d'états E
- Un état initial E_0 , un ensemble d'états finaux F
- Un ensemble d'actions/opérateurs permettant d'effectuer des transitions entre états : $E_i \longrightarrow^{o_k} E_j$
- Un plan (une solution) :
 - Séquence d'actions permettant de passer de l'état initial à un état final
 - $E_0 \longrightarrow^{o_1} E_1 \longrightarrow^{o_2} E_2 \longrightarrow \dots \longrightarrow^{o_k} E_n$, avec $E_n \in F$
- Problème d'optimisation :
 - Trouver le plan de coût minimal
 - Définir le coût de chaque action
 - ullet Espace de recherche : ensemble des séquences d'actions débutant en E_0

Exemple (2)

• Résolution du problème de planification

- Recherche arborescente : Algorithme A*
- Arbre
 - Racine : suite vide d'actions (état initial E_0)
 - Nœud : suite d'actions partant de E_0
 - **Séparation**: 1 fils pour chaque action (transition) possible
 - Evaluation : 2 fonctions de coût
 - ullet g(n) : coût des actions pour aller de la racine au nœud n
 - h(n) : estimation du coût des actions pour atteindre un état final à partir de nœud n
 - Evaluation : f(n) = g(n) + h(n)
 - Sélection :
 - nœud ayant la plus petite valeur de f(n)

25

Exemple (3)

• Application vue en TP: problème du taquin

- Etat final = GH
- Opération = échanger la case vide avec une case adj.
- But = trouver le plus petit plan (en nombre d'opérations)
- Coût du début du plan = nombre d'opérations déjà effectuées
- Estimation du coût pour atteindre l'état final = dist de Manhattan

$$\delta(A) = 2$$
 $\delta(D) = 2$ $\delta(G) = 0$
 $\delta(B) = 1$ $\delta(E) = 1$ $\delta(H) = 1$

$$\delta(C) = 0 \quad \delta(F) = 0$$

⇒ au moins 7 opérations pour aller jusqu'à l'état final

Exercice

• Recherche arborescente pour le TSP (exemple A*)

	A	В	C	D	Е	F
A		9			3	5
В	9		5			4
С		5		2		8
D			2		1	7
Е	3			1		5
F	5	4	8	7	5	

- Etat initial : une ville X
- Etats Finaux : toute séquence X*X
- Changement d'état : ajouter une ville dans la séquence
- Fonctions d'évaluation
 - o g(X*Y) = cout depuis X jusqu'à Y
 - o h(Y*X) = estimation du trajet restant depuis X

Nb arcs restant x cout min (possible) Somme des p arcs de cout min

→ Borne Inférieure de l'optimum

Exercice

F 5 4 8 7 DF

7+ 5 arcs restants x 1=12

	A	В	С	D	Е	F
A		9			3	5
В	9		5			4
С		5		2		8
D			2		1	7
Е	3			1		5
F	5	4	8	7	5	

Exercice

	A	В	C	D	Е	F
A		9			3	5
В	9		5			4
С		5		2		8
D			2		1	7
Е	3			1		5
F	5	4	8	7	5	

29

Exercice

• Solution optimale :

	A	В	С	D	Е	F
A		9			3	5
В	9		5			4
С		5		2		8
D			2		1	7
Е	3			1		5
F	5	4	8	7	5	

Cout = 20

- Exploration
 - Les plus prometteurs d'abord
 - Quand une solution est trouvée
 - Elaguer les nœuds ayant évaluation > solution courante
 - Intérêt d'avoir une évaluation (borne inférieure) de bonne qualité
 - Branch and Bound

21 21

Bilan sur les méthodes exactes

- Approches correctes et complètes
 - Fournissent la solution optimale (s'il existe des solutions)
- Complexité exponentielle
 - Sont limitées à des problèmes de taille raisonnable
- Différentes variantes des méthodes arborescentes
 - En liaison avec les formalismes de modélisation
 - Rappel: Algorithme DPLL pour SAT (Logique et Programmation Logique)
 - o Instanciation progressive de variables (ordre de parcours)
 - o Elagage de l'arborescence (simplifier les clauses)
 - o Retour arrière chronologique en cas d'échec
 - Rappel : Algorithmes de Programmation Dynamique (Algorithmique avancée)

Bilan sur les méthodes exactes

• La suite en 5^e année SDBD – Mineure Analyse Prescriptive

- Etudes de différents formalismes, de méthodes exactes associées et de solvers
 - Programmation Linéaire en Nombres Entiers,
 - Programmation par Contraintes,
 - Satisfiabilité

33

Méthodes approchées

• Principe:

- Ne pas explorer tout l'espace de recherche
- Méthodes avec garantie de qualité / solution obtenue
 - Algorithmes d'approximation
 - Trouver des solution avec garantie / optimum

• Méthodes guidées par des heuristiques

- Trouver des « bonnes » solutions mais sans garantie / optimum
- Complexité raisonnable

Algorithmes d'approximation : exemple (1)

• Algorithme de ρ -approximation :

- Algorithme polynomial qui renvoie une solution approchée garantie au pire cas à un facteur ρ de l'optimum :
 - $Opt \le Alg \le \rho Opt \text{ (avec } \rho > 1)$
 - avec Opt la solution optimale et Alg la solution obtenue

• Problème de Bin Packing

- un ensemble B de n objets (items) de « taille » w_i , $\forall b_i \in B$
- un entier c (capacité des sacs/bin)
- Un entier k
- Problème de décision : existe-il un rangement des objets de B dans k sacs de capacité c? \Longrightarrow problème NP-Complet
- Problème d'optimisation : quel est le nombre minimum de sacs de capacité c
 pour ranger les objets de B ?
 → problème NP-difficile

35

Algorithmes d'approximation : exemple (2)

Exemple

- $B = \{b_1, b_2, b_3, b_4, b_5\}; w = \{6, 7, 2, 4, 1\}; c = 10$
- Existe-t-il un rangement de ces objets dans 2 sacs de capacité 10 ?
- Réponse :

Algorithmes d'approximation : exemple (3)

Algorithme Next-Fit

- Entrées : ensemble $B = \{b_1, \dots, b_n\}$ d'objets, fonction $w : B \to \mathbb{N}$, entier c
- Sortie : un entier k
- 1. $j \leftarrow 1$ // indice des sacs
- 2. Pour i de 1 à n faire
 - si b_i peut être rangé dans sac S_i alors $S_i \leftarrow S_i \cup \{b_i\}$
 - sinon
 - $j \leftarrow j + 1$
 - $S_i \leftarrow \{b_i\}$
- 3. Retourner j
- Complexité : linéaire dans le nombre d'objets

37

Application Algorithme Next-Fit

Exemple

- $B = \{b_1, b_2, b_3, b_4, b_5\}; w = \{6, 7, 2, 4, 1\}; c = 10$
- Minimiser le nombre de sacs ?

10	X
9	X
8	X
7	X
6	
5	
4	b1
3	DI
2	
1	
	SAC 1

10	X	10	X
9	X	9	b3
8	X	8	D3
7		7	
6		6	
5		5	
4	b2	4	b2
3		3	
2		2	
1		1	
	SAC 2		SAC 2

10	X	10	X
9	X	9	X
8	X	8	X
7	X	7	X
6	X	6	X
5	X	5	b5
4		4	
3	b4	3	b4
2	υ +	2	υ +
1		1	
	SAC 3		SAC 3

Facteur d'approximation pour Next-Fit (1)

- Soit $w(b_i)$ les tailles des objets, c la capacité des sacs et k la valeur retournée par l'algorithme Next-Fit
- Quel est le nombre minimal théorique de sacs ? $\frac{\sum_{i=1}^{n} w(b_i)}{c}$
- Donc: $Opt \ge \frac{\sum_{i=1}^{n} w(b_i)}{c}$ Borne inférieure
- Si on considère le fonctionnement de l'algorithme et regardant les sacs 2 par 2 :
 - $w = \{50, 20, 60, 10, 10, 10, 20, 40, 10, 10, 30, 80, 10, 20, 60, 30\}; c = 100$

• Somme des taille des objets dans 2 sacs consécutifs > capacité d'un sac

Facteur d'approximation pour Next-Fit (2)

Somme des tailles des objets sur toutes les paires de sacs

- Chaque paire a une taille \geq capacité (100) et il y a k-1 paires
 - o Chaque élément est compté 2 fois (sauf 1ère et dernier sacs)
 - o Ajouter des sacs fictifs en début et à la fin (supposés plein) : 2 paires de plus (k+1) et la taille de chaque objet est compté 2 fois
 - $2 \times \sum_{i=1}^{n} w(b_i) + 200 > 100 \times (k+1)$
 - $2 \times \sum_{i=1}^{n} w(b_i) > 100 \times (k-1)$
 - $\sum_{i=1}^{n} w(b_i) > \frac{100 \times (k-1)}{2}$

์ 30

Facteur d'approximation pour Next-Fit (3)

• On regroupe les inégalités :

•
$$Opt \ge \frac{\sum_{i=1}^{n} w(b_i)}{100}$$
 et $\sum_{i=1}^{n} w(b_i) \ge \frac{100 \times (k-1)}{2}$

• C'est à dire :

•
$$Opt \ge \frac{\sum_{i=1}^{n} w(b_i)}{100} > \frac{k-1}{2}$$

- D'où
 - $k < 2 \times Opt + 1$ et $k \le 2 \times Opt$
 - Facteur d'approximation : 2

41

Pour aller plus loin sur le Bin Packing

- Autres algorithmes d'approximation pour le Bin Packing
 - First Fit Decreasing / Best-Fit Decreasing
 - Tri des objets dans l'ordre décroissant
 - Placer chacun dans le premier/meilleur sac qui peut le contenir
- Méthodes exactes
- Objets avec plusieurs dimensions
- En pratique
 - Problèmes de rangement/remplissage (de caisses dans des camions, de fichiers sur des supports, ...)
 - Problèmes de découpe

Méthodes approchées

- Principe:
 - Ne pas explorer tout l'espace de recherche
 - Méthodes avec garantie de qualité / solution obtenue
 - Algorithmes d'approximation
 - Trouver des solution avec garantie / optimum
 - Méthodes guidées par des heuristiques
 - Trouver des « bonnes » solutions mais sans garantie / optimum
 - Complexité raisonnable

43

Méthodes basées sur des heuristiques (1)

- But : trouver une « bonne » solution mais sans garantie sur l'optimalité
 - Avec une méthode de complexité raisonnable
 - Qui est robuste : fournit souvent une bonne solution
 - Qui est simple en œuvre
 - Grands principes:
 - Intensifier l'exploration de zones prometteuses de l'espace de recherche
 - Diversifier pour découvrir de nouvelles zones

Heuristique versus Métaheuristique (1)

• Pas de consensus sur des définitions précises. Le plus souvent :

Méthode heuristique

- Détermine de bonnes solutions (c'est-à-dire presque optimales)
 - avec un coût de calcul raisonnable sans pouvoir garantir ni la faisabilité ni l'optimalité,
- Reflète une stratégie par rapport à une connaissance du problème
- Une heuristique est une méthode de résolution spécialisée pour un problème

• Métaheuristique

- processus de génération qui guide une heuristique
 - en combinant des concepts différents pour explorer l'espace de recherche afin de trouver efficacement des solutions quasi optimales
- Une métaheuristique est un principe générique à adapter pour chaque problème

45

Heuristique versus Métaheuristique (2)

	Heuristique	Métaheuristique
Domaine	Problème d'optimisation	Optimisation combinatoire
Entrée	Données	Problème d'optimisation
Coeur	Algorithme	Ensemble de principes
Sortie	Solution	Algorithme

Classer les ratios poids/coût par ordre décroissant et sélectionner les variables correspondantes tant que la contrainte n'est pas saturée; ... Mémoire des solutions visitées; Choisir parmi les a bonnes solutions; Ajuster la liste t des mouvements interdits dynamiquement; etc

Exploration de l'espace de recherche

Principe des méthodes approchées

• Intensification :

But : contourner l'explosion combinatoire

- Accentuer l'exploration dans des zones prometteuses
- Diversification:
 - Découvrir de nouvelles zones
- Compromis intensification / diversification
 - Aléatoire
 - Guidé par la fonction objectif
 - Guidé par d'autres évaluations (solutions explorées, contraintes, paysage, ...)

47

Evaluation d'une méthode approchée (1)

- Qualité d'une heuristique / métaheuristique
 - Comparaison : qualité de solution (pour un temps de calcul donné)

Evaluation d'une méthode approchée (2)

Qualité / temps de calcul

Evaluation d'une méthode approchée (3)

- Comparaison solution optimale / borne
 - Hypothèse : problème de minimisation
- Solution obtenue (heuristique / métaheuristique)

Algorithme Next-Fit

- Borne supérieure de l'optimum
- Comparaison
 - Optimum si connu
 - Borne inférieure de l'optimum
 - Calcul analytique

Ex pour le Bin-Packing : Borne inférieure = $\frac{\sum_{i=1}^{n} w(b_i)}{\sum_{i=1}^{n} w(b_i)}$

Différentes familles de méthodes approchées

- Heuristiques « gloutonnes » (constructives)
 - Obtenir une solution à partir de « règles » de décision

Méthodes Approchées

- Méta-Heuristiques
 - Méthode à solution unique : Recherche locale
 - o Exploration du voisinage d'une solution
 - Méthodes à population de solutions
 - o Evolution d'un ensemble de solutions
 - Hybridation de méthodes

51

Intérêts des méthodes approchées

- Quand utiliser une méthode approchée ?
 - Impossible de passer à l'échelle avec une méthode exacte
 - Contraintes de temps de calcul, de mémoire, de modélisation,
- Une bonne méthode approchée?
 - Complexité raisonnable
 - Solution de bonne qualité, rarement de mauvaise solution
 - Simple à mettre en œuvre
- Evaluation d'une méthode approchée
 - Comparaison méthodes exactes sur des jeux de données de taille raisonnable
 - Comparaison / bornes / temps de calcul / solutions ...

Autres qualités pour une métaheuristique

- Robustesse
 - Variabilité dans les données (et les contraintes,)
- Simplicité de mise en œuvre
 - Paramétrage de la méthode
- Applicable à une grande variété de problèmes
 - Optimisation combinatoire
 - Optimisation continue
- Attractivité de la métaphore
 - Recuit simulé
 - Recherche Tabou
 - Algorithmes génétiques
 - Colonies de Fourmis
 - Systèmes immunitaires artificiels, essaims particulaires, scatter search,

- 2

(Bilan) sur les caractéristiques des méthodes

- Résolution de problèmes NP-Complets / NP-Difficiles
- Méthodes exactes
 - Fournissent solution optimale (si existe)
 - Complexité exponentielle : sont limitées à des instances de taille raisonnable
- Méthodes approchées
 - Fournissent une solution réalisable mais pas nécessairement optimale
 - Complexité « correcte »
- En pratique
 - Certaines instances peuvent être faciles à résoudre
 - o Comprendre pourquoi : données ? contraintes ? cas particulier polynomial ?
 - Certains problèmes NP-difficiles admettent des approximations polynomiales
 - o Algorithmes polynomiaux permettant le calcul d'une solution avec erreur bornée par rapport à la solution optimale

En savoir plus

- Société Française de Recherche Opérationnelle et d'Aide à la Décision (ROADEF)
 - Chercheurs/Enseignants Chercheurs/Industriels
 http://www.roadef.org
 - Journées annuelles / Forum stages et emplois (ingénieurs, thèses, post-doc, ...)
 - Liens forts avec Intelligence Artificielle sur l'optimisation combinatoire
- A Toulouse
 - Equipe de recherche au LAAS https://www.laas.fr/public/fr/roc
 - mais aussi autres établissements (ENAC, ONERA, IRIT, IMT, INRA)
 - Industries et Services
- A l'international
 - IFORS (International Federation of Operations Research Societies) http://ifors.org/
 - Decision Science / Decision Management / Operations Research

55

Vocabulaire ...

- Méthode exacte : explore l'espace de recherche dans sa totalité (complète)
 - Optimum global
- Méthode approchée : explore une partie de l'espace de recherche
 - Optimum local
- **Méthode complète** : explore l'ensemble des solutions de façon exhaustive et systématique en structurant l'espace de recherche
- Méthode incomplète: explore seulement une sous-partie de l'ensemble des solutions en utilisant des heuristiques pour se guider vers les zones qui semblent plus prometteuses.
- Méthode déterministe : réalise toujours la même suite d'actions
- Méthode stochastique : effectue des choix aléatoires (probabilistes)

Vocabulaire ...

- Hyper-heuristique
 - Heuristique pour déterminer quelle heuristique appliquer
- Matheuristique
 - Combinaison de méthodes heuristiques et de programmation mathématique
 - Ex : explorer un espace de recherche avec un algo de prog dynamique

57

Section 3. Méthodes approchées

Heuristiques gloutonnes

Principes d'une Recherche Gloutonne

Méthode naïve

Greedy Search

- Partir d'une affectation vide des variables
- Tant qu'il y a des variables non affectées

Méthode « Constructive »

- Choisir une variable
- Lui affecter une valeur
- Les choix successifs ne sont pas remis en cause
- Une branche d'une recherche arborescente (sans backtrack)
- Les choix effectués doivent garantir l'admissibilité de la solution obtenue (ie. respect des contraintes)
- Peut-on toujours le garantir ?

59

Exemple heuristique gloutonne (1)

• Coloration de graphe

 $\{\text{bleu, rouge}\}$ $\{\text{bleu, rouge, vert}\}$ x_1

 x_3 {bleu, rouge}

Minimiser nombre de couleurs

Solution pas toujours admissibles

Ordre Instanciation : x_1, x_2, x_3 {bleu, rouge} {bleu, rouge, vert}

{bleu, rouge}

Ordre Instanciation : x_1, x_3, x_2

{bleu, rouge} {bleu, rouge, vert} $x_1 \qquad x_2$

{bleu, rouge}

Exemple heuristique gloutonne (2)

Planification

activités	durée	ressource
A1	1	1
A2	1	2
A3	2	1
A4	1	2
A5	2	1

$$A_1 \prec A_2 \prec A_5 \\ A_3 \prec A_4$$

Quantité de ressource disponible : 2 Minimiser durée totale

> Solutions admissibles Valeurs différentes / objectif

Instanciation : A_1 ; A_3 ; A_2 ; A_4 ; A_5

Durée Totale = 6

Instanciation: A_1 ; A_2 ; A_3 ; A_5 ; A_4

Durée Totale = 5

61

Exemple heuristique gloutonne (3)

• Arbres couvrants de cout minimal

- Soit un graphe non orienté et pondéré
- Trouver un arbre couvrant de poids minimal :
 - Sélectionner les arêtes telles que la sommes des poids des arêtes soit minimale

Graphe initial

Arbre couvrant de cout minimal (11)

Exemple heuristique gloutonne (4)

Arbres couvrants de cout minimal

- Algorithme de Prim : ajout progressif d'arêtes
 - o arbre = graphe connexe avec un nombre minimal d'arêtes
 - o Maintenir un graphe connexe à chaque itération en ajoutant une arêtes pour connecter la partie connexe aux sommets non encore couverts

Algorithme glouton optimal (voir cours Algorithmique avancée 4IR)

Caractéristiques d'une Recherche Gloutonne

• Qualité de la solution / fonction objectif

- Dépend de l'ordre sur les variables et des choix de valeurs
- Pas de garantie d'optimalité
- Obtention d'une **borne supérieure** de la valeur optimale (minimisation)

• Ordre d'instanciation

- Quelle variable choisir?
- Quelle valeur lui affecter ?
- Principe général
 - Choix de variable : la plus importante d'abord (fail-first)
 - Choix de valeur : celle ayant le plus de chance de conduire à une (bonne) solution (suceed-fisrt)

• Heuristique : Plus proche Voisin

- Choisir un sommet de départ
- Tant qu'il reste des sommets non traités
 - Connecter le dernier sommet atteint au sommet libre le plus proche
- Relier le dernier sommet au sommet initial
- Données:
 - Graphe (*n* sommets) avec matrice de distance (2 à 2)
- Résultat : cycle (permutation des sommets)
- Nombre de solutions : (n-1)!
- Complexité heuristique : $(O(n^2))$
 - *n* itérations
 - À chaque itération : trouver le plus proche (O(n))

65

Application 1: TSP

Borne supérieure de la solution optimale

Garantie de qualité (si symétrique et inégalités triangulaires)

• Autre Heuristique : Insertion dans un cycle

- Choisir un sommet de départ
- A chaque étape : il existe un cycle
 - Insérer dans ce cycle le sommet minimisant un critère
 - o Insertion du plus proche voisin : insérer dans le cycle le sommet le plus proche de ceux déjà présents (nearest insertion) après le plus proche
 - o Insertion du voisin à moindre coût : insérer le sommet engendrant la plus petite augmentation de la longueur du cycle (cheapest insertion)
- Complexité heuristique d'insertion :
 - n itérations
 - À chaque itération :
 - o Nearest insertion : O(n)
 - o Cheapest insertion : $O(n^2)$

67

Application 1: TSP

Application 1: TSP

Application 1: TSP

72

Application 1: TSP

Application 1: TSP

Application 1: TSP

Application 1: TSP

76

Application 1: TSP

Borne supérieure de la solution optimale

Garantie de qualité (si symétrique et inégalités triangulaires)

77

Application 2 : Problème du Sac à dos (1)

• Problème:

Knapsack Problem

- Un ensemble de n objets $N = \{a_1, \dots a_n\}$
- A chaque objet :
 - ullet Un poids w_i et une utilité u_i
- ullet Un sac à dos dont le poids total ne doit pas dépasser la capacité W
- Sélectionner les objets pour maximiser l'utilité
- Exemple sac de randonnée de capacité maximale 3 kg
 - Remplir le sac avec les objets les plus utiles

	Utilité	Poids (kg)
carte	10	0,2
gourde	8	1,5
2e gourde	3	1,5
pull	6	1,2
Kway	2	0,5
fromage	2	0,6
fuits secs	4	0,5

Exemple 2 : Problème du Sac à dos (2)

• Heuristique par intérêt décroissant

- Calculer pour chaque objet le ratio Utilité / Poids : $\frac{u_i}{w_i}$
- Trier les objets par ordre décroissant sur le ratio $\frac{u_i}{w_i}$
- Variable booléenne : prendre ou pas un objet
- Objets sélectionnés : $S = \emptyset$
 - Parcourir les objets dans l'ordre
 - o Soit *i* l'objet courant
 - o Si $w(S) + w_i \le W$ alors prendre l'objet $i: S = S \cup \{i\}$
- Complexité : O(n)
 - Calcul du ratio pour tous les objets (O(n)) et tri $(O(\log(n)))$
 - Parcours de chaque objet et vérification du poids total (O(n))

7a

Application 2 : Problème du Sac à dos (3)

Application

	Utilité	Poids	Ratio	Ordre
carte	10	0,2	50,00	1
gourde	8	1,5	5,33	3
2e gourde	3	1,5	2,00	7
pull	6	1,2	5,00	4
Kway	2	0,5	4,00	5
fromage	2	0,6	3,33	6
fuits secs	4	0,5	8,00	2

•
$$W(S) = 0$$

•
$$i = \text{Carte} : W(S) + w(i) = 0.2 \le 3$$

 \rightarrow OK

•
$$i = \text{Fruits secs} : W(S) + w(i) = 0.2 + 0.5 = 0.7 \le 3$$

→ OK

•
$$i = \text{Gourde} : W(S) + w(i) = 0.7 + 1.5 = 2.2 \le 3$$

 \rightarrow OK

•
$$i = Pull : W(S) + w(i) = 2,2 + 1,5 = 3,7 > 3$$

→ NON

•
$$i = \text{Kway} : W(S) + w(i) = 2,2 + 0,5 = 2,7 \le 3$$

 \rightarrow OK

•
$$i = \text{Fromage}: W(S) + w(i) = 2.7 + 0.6 = 3.3 > 3$$

•
$$i = 2e$$
 gourde: $W(S) + w(i) = 2,7 + 1,5 = 4,2 > 3$

Borne inférieure / utilité max

• **Utilité** =
$$10+8+2+4=24$$

Exercice: Coloration de sommets

• Planifier sur la semaine les rattrapages de 6 étudiants et de 6 UF avec 2 créneaux par jour tout en minimisant le nombre de créneaux

Etudiants	Epreuves
E1	UF1, UF2, UF5
E2	UF3, UF4
E3	UF2, UF6
E4	UF3, UF4, UF5
E5	UF3, UF6
E6	UF1, UF2, UF3

- Pistes:
 - Modéliser le problème par un graphe d'incompatibilité entre UF et se ramener à un problème de coloration de sommets
 - Calculer une borne inférieure du nombre de créneaux
 - Proposer une heuristique gloutonne
 - Voir cours Graphes (3MIC)

Exercice: Ordonnancement d'activités (1)

- On souhaite planifier la réalisation d'un ensemble d'activités (notées de A à J) utilisant deux ressources (R_1 et R_2) pour minimiser la durée totale de réalisation (appelée Makespan)
 - Le séquencement temporel entre activités est représenté par le graphe ci-dessous

Les utilisations de ressources sont les suivantes

	A	B	C	D	E	F	G	H	I	J
$R_1(5)$	3	3	1	1	1	2	3	2	1	2
$R_2(1)$	0	0	0	1	1	1	0	1	0	0

Exercice: Ordonnancement d'activités (2)

- Question 1. Calculer la durée minimale de l'ordonnancement (sans prendre en compte les contraintes de ressource)
- Question 2. Donner les dates de début au plus tôt et au plus tard
- Question 3. Appliquer une heuristique gloutonne en classant les tâches par dates de début au plus tard croissantes
- **Question 4.** Donner le diagramme de Gantt associé et donner la valeur du Makespan de la solution obtenue.

• Question 5. A-t-on l'optimum ? Une borne supérieure ? Une borne inférieure ?

83

Récapitulatif - Heuristiques Gloutonnes

Caractéristiques d'une méthode gloutonne

- Exploiter des connaissances pour faire les meilleurs choix à chaque étape
- Simple à mettre en œuvre
- Temps de calcul limité :
 - Ex : complexité linéaire en fonction du nombre de variables
- Aucune garantie d'optimalité :
 - Borne supérieure/ objectif en minimisation

Attention

- Peut ne pas aboutir à une solution réalisable
- Sauf si problème peu contraint

Variantes - Heuristiques Gloutonnes

- Heuristiques statiques
 - Ordre d'exploration est défini a priori
- Heuristiques dynamiques
 - Ordre d'exploration est recalculé lors de chaque étape
- Heuristiques avec de l'aléatoire (« randomisées »)
 - Introduire de l'aléatoire
 - Sur les choix de variables et de valeurs
 - Lancer plusieurs exécutions de la recherche gloutonne
 - Arrêt de la méthode
 - Toutes les variables sont instanciées
 - Récupérer la meilleure solution

요도

Section 3. Méthodes approchées

• Méthodes de Recherche Locale

LA SUITE ...

A finaliser ...

- Voisinage / Recherche Locale
- Recuit Simulé
- Tabou
- Algorithme génétique
- Colonies de Fourmis
- Hybridation de méthodes
- Contexte multi-objectif? Contexte multi-agent?

87

Principes d'une recherche locale (1)

- Idée:
 - Les bonnes solutions ont des caractéristiques communes
- Principe:
 - Partir d'une solution initiale
 - Modification de cette solution
 - Mouvement
 - Ex : Echange de 2 sommets dans un cycle

- Voisinage d'une solution \boldsymbol{x}
 - N(x): Ensemble des solutions atteignables par un mouvement donné
 - $x' \in N(x)$: voisin de la solution x

Principes d'une recherche locale (2)

• Principe d'exploration :

• Exploration de voisinages successifs

voisinage

voisinage

Sélectionner solution

- But : améliorer la valeur de la fonction objectif (et assurer l'obtention de solution réalisable)
- Solution obtenue :
 - Issue de mouvements dans une structure de voisinage
- Conditions d'arrêt?
- Cycles entre différentes solutions?

ga

Principes d'une recherche locale (3)

Composants

- Espace de recherche des solutions : E
- Fonction objectif : f (cout à minimiser)
- Voisinage: mouvement qui pour tout $x \in E \rightarrow N(x) \in E$

• Algorithme de Recherche locale

• Solution initiale : $s \in E$; $z \leftarrow f(s)$

Local Search

- Meilleure solution : $s^* \leftarrow s$; $z^* \leftarrow z$
- Répéter
 - Choisir $s' \in N(s)$
 - $s \leftarrow s'$
 - Si $f(s) < f(s^*)$ alors $s^* \leftarrow s$, $z^* \leftarrow z$
- Jusqu'à « Critères d'arrêt »

Algorithme de recherche locale (1)

• Principe:

- Solution initiale : $s \in E$; $z \leftarrow f(s)$ (1)
- Meilleure solution : $s^* \leftarrow s$; $z^* \leftarrow z$
- Répéter
 - Choisir $s' \in N(s)$ (2) (3)
 - $s \leftarrow s'$
 - Si $f(s) < f(s^*)$ alors $s^* \leftarrow s$, $z^* \leftarrow z$
- Jusqu'à « Critères d'arrêt » (4)

Points clés

- 1. Comment obtenir une solution initiale ?
- 2. Comment générer un voisinage ?
- 3. Comment sélectionner la prochaine solution ?
- 4. Quand s'arrêter?

93

Algorithme de recherche locale (2)

• Algorithme de Recherche locale

- Solution initiale : $s \in E$; $z \leftarrow f(s)$ (1)
- Meilleure solution : $s^* \leftarrow s$; $z^* \leftarrow z$
- Répéter
 - Choisir $s' \in N(s)$

(2) (3)

- $s \leftarrow s'$
- Si $f(s) < f(s^*)$ alors $s^* \leftarrow s$, $z^* \leftarrow z$
- Jusqu'à « Critères d'arrêt » (4)

Points clés

- 1. Comment obtenir une solution initiale?
 - Solution aléatoire
 - Solution connue
 - Heuristique gloutonne

Algorithme de recherche locale (3)

• Algorithme de Recherche locale

- Solution initiale : $s \in E$; $z \leftarrow f(s)$ (1)
- Meilleure solution : $s^* \leftarrow s$; $z^* \leftarrow z$
- Répéter
 - Choisir $s' \in N(s)$ (2)
 - $s \leftarrow s'$
 - Si $f(s) < f(s^*)$ alors $s^* \leftarrow s$, $z^* \leftarrow z$
- Jusqu'à « Critères d'arrêt » (4)

Points clés

- 4. Quand s'arrêter?
 - Obtention d'une solution de qualité voulue
 - Nombre d'itérations / Temps d'exécution maximum atteint
 - Nombre d'itérations / Temps d'exécution maximum sans amélioration atteint

95

Algorithme de recherche locale (4)

• Algorithme de Recherche locale

- Solution initiale : $s \in E$; $z \leftarrow f(s)$ (1)
- Meilleure solution : $s^* \leftarrow s$; $z^* \leftarrow z$
- Répéter
 - Choisir $s' \in N(s)$

(2) (3)

- $s \leftarrow s'$
- Si $f(s) < f(s^*)$ alors $s^* \leftarrow s$, $z^* \leftarrow z$
- Jusqu'à « Critères d'arrêt » (4)

Points clés

2. Comment générer un voisinage?

Voisinages (1)

• Voisinage d'une solution

- Opération de transformation : $x \in E \rightarrow N(x) \in E$
- Transformation locale sur une solution :
 - La structure globale de la solution n'est pas modifiée
- Doit pouvoir être généré et évalué rapidement
- Lié à la représentation d'une solution

• Graphe de voisinage :

- Sommets : espace de recherche E
- Si $y \in N(x) \rightarrow$ relation (x, y) dans le graphe

97

Voisinages (2)

Propriétés :

- Accessibilité : tout élément de l'espace de recherche peut être atteint (toute solution intéressante) est accessible par transformations successives
 - Graphe de voisinage Connexe
- Réversibilité : on peut revenir à la solution initiale
 - Graphe symétrique

• Choix d'un Voisinage :

- Lié au codage de la solution
 - Ex : Voyageur de Commerce : ensemble des sommets ou des arêtes
- Lié à sa taille (cout de génération et d'évaluation)
 - Ex : O(n), $O(n^2)$, .../ nombre de variables

Exemple de voisinage (1)

- Ensemble de N variables binaires :
- Voisinage:
 - Distance:
 - Ensemble des chaînes binaires à une distance de Hamming de 1
 - Pour 5 variables binaires : x = 01101
 - $N(x) = \{11101; 00101; 01001; 01111; 01100\}$
 - |N(x) = n = 5|
 - Si distance de Hamming de 2, $\left| N(x) = \frac{n(n-1)}{2} \right|$
 - Complémentation
 - Solution = chaine de variables binaires :
 - remplacer une ou plusieurs valeurs 0/1 par son complémentaire

99

Exemple de voisinage (2)

- Echange / Swap
 - Solution = chaine de caractères
 - Choisir 2 positions i et j. Intervertir les caractères situés à ces deux positions

Taille du voisinage d'une solution de taille $n:\frac{n(n-1)}{2}$

Exemple de voisinage (3)

Quelques transformations classiques :

- Décalage
 - Solution = chaine de caractères :
 - ullet Choisir une position i. Insérer élément de position i à la fin et décaler les caractères

- Inversion
 - Solution = chaine de caractères
 - Choisir 2 positions i et j. Inverser l'ordre d'écriture entre i et j.

101

Voisinages pour le problème du Voyageur de Commerce (1)

- Problème :
 - Un ensemble de villes (sommets d'un graphe) : G(X,A) et distance entre villes
 - Déterminer une tournée minimisant la somme des distances parcourues
 - Espace de recherche E: ensemble des permutations de X
 - Soit une solution contenant les arêtes (u, x) et (v, y)
 - Insertion
 - o Supprimer u du cycle pour l'insérer après v
 - o Déplacer (u, x) après v
 - Swap
 - o Echanger u et v

Voisinages pour le problème du Voyageur de Commerce (2) : Insertion

• Supprimer v_7 pour l'insérer après v_{10}

Voisinages pour le problème du Voyageur de Commerce (2) : Insertion

• Déplacer (v_7, v_3) pour le placer après v_{10}

Voisinages pour le problème du Voyageur de Commerce (3) : Swap

• Echanger v_7 et v_{10}

Voisinages pour le problème du Voyageur de Commerce (3) :

- Voisinage 2-opt
 - Trouver 2 arêtes non consécutives
 - Les supprimer et reformer le cycle
 - Supprimer : (x_2, x_6) et (x_7, x_3)

- Une seule façon de reformer le cycle
- Variante : 3-opt, k-opt,

Reformer : (x_2, x_3) et (x_6, x_7)

Graphe de voisinage (1)

• Exemple sur leTSP

Voisinage = échanger 2 sommets consécutifs

107

Graphe de voisinage (2)

• Exemple sur le TSP

Départ et Retour en 0

Voisinage → graphe connexe

Voisinage = échanger 2 sommets consécutifs

Graphe de voisinage (3)

Paysage de Recherche

- Une opération de voisinage
- → graphe de voisinage
- Paysage de recherche
- Optimum local: tous les voisins sont moins bons / objectif
- Plateau : ensemble de points connexes dans le graphe de voisinage et ayant même valeur de fonction objectif
- Bassin d'attraction : voisins que l'on peut atteindre sans dégrader la fonction objectif

Choix d'un voisinage

- Dépend du problème à résoudre
- Dépend de la représentation des solutions
- Impact du voisinage sur le paysage des solutions
- Littérature sur le problème considéré

• Attention à la taille du voisinage

- Si trop petit : risque de ne pas avoir de meilleure solution
- Si trop grand: l'exploration est couteuse

• Impact entre voisinage et sélection d'une solution :

- 1 seul optimum et pas de plateau : Intensifier
- Paysages rugueux : Diversifier

111

Algorithme de recherche locale (5)

Algorithme de Recherche locale

- Solution initiale : $s \in E$; $z \leftarrow f(s)$ (1)
- Meilleure solution : $s^* \leftarrow s$; $z^* \leftarrow z$
- Répéter
 - Choisir $s' \in N(s)$

(2) (3)

- $s \leftarrow s'$
- Si $f(s) < f(s^*)$ alors $s^* \leftarrow s$, $z^* \leftarrow z$
- Jusqu'à « Critères d'arrêt » (4)

Points clés

2. Comment sélectionner la prochaine solution ?

Exploration d'un voisinage (1)

Algorithme de Recherche locale

- Solution initiale : $s \in E$; $z \leftarrow f(s)$ (1)
- Meilleure solution : $s^* \leftarrow s$; $z^* \leftarrow z$
- Répéter
 - Choisir $s' \in N(s)$ (2) (3)
 - $s \leftarrow s'$
 - Si $f(s) < f(s^*)$ alors $s^* \leftarrow s$, $z^* \leftarrow z$
- Jusqu'à « Critères d'arrêt » (4)

Points clés

- 3. Comment sélectionner la prochaine solution ?
 - Premier voisin améliorant
 - Meilleur voisin améliorant
 - Aléatoire
 -

113

Exploration d'un voisinage (2)

- Comment sélectionner la prochaine solution ?
 - Exploration de l'espace de recherche pour déterminer la nouvelle solution
 - Sélectionner une solution de meilleure qualité :
 - Premier voisin améliorant (First Improvment)
 - o Savoir générer des voisins prometteurs
 - Meilleur voisin (Best improvment)
 - o Exploration de tout le voisinage
 - Méthode Hill-Climbing ou Plus grande pente ou Descente
 - Méthode du gradient en optimisation continue
 - Permet une **intensification** de l'exploration autour d'une solution initiale
 - Aboutit à un optimum local (ou reste bloqué sur un plateau)

Algorithmes Hill-Climbing (1)

Algorithme First Improvment Solution initiale: $s \in E$; $z \leftarrow f(s)$ (1) Meilleure solution: $s^* \leftarrow s$; $z^* \leftarrow z$ Répéter Choisir $s' \in N(s)$ tq f(s') < f(s) (2) (3) $s \leftarrow s'$ Si $f(s) < f(s^*)$ alors $s^* \leftarrow s$, $z^* \leftarrow z$ Jusqu'à « Critères d'arrêt » (4)

```
Algorithme Best Improvment Solution initiale: s \in E ; z \leftarrow f(s) (1) Meilleure solution: s^* \leftarrow s; z^* \leftarrow z Répéter

Choisir s' \in N(s) tq \forall s'' \in N(s)\{s'\} f(s') < f(s'') (2) (3) s \leftarrow s' Si f(s) < f(s^*) alors s^* \leftarrow s, z^* \leftarrow z Jusqu'à « Critères d'arrêt » (4)
```

115

Algorithmes Hill-Climbing (2)

Terminaison de la méthode Hill-Climbing

- La taille du voisinage ne permet pas de trouver de meilleure solution
- Solution localement optimale
- Pas de bouclage de la méthode
 - Pas de retour sur une solution déjà trouvée
 - Quand on sélectionne s' comme solution améliorante, s' n'a jamais été sélectionnée auparavant comme solution améliorante

Exploration aléatoire d'un voisinage

- Sélectionner une solution aléatoire: Random Walk
 - Accepte des solutions même non améliorante
 - Permet une diversification de l'exploration (sortir d'un optimum local)
- Exemple en maximisation

Random walk

e function

local optimum

search space

Diversification

Hill-climbing

Intensification

117

Intensification / Diversification

- Combinaison intensification / diversification
 - Fixer une probabilité de choisir un mouvement « random » : ho
 - Choisir aléatoirement une valeur *m*
 - Si $m < \rho$ alors
 - Choisir une solution S' aléatoirement dans N(S) -- diversification
 - Sinon
 - Choisir la meilleure solution $s' \in N(s)$ -- intensification
 - Selon la probabilité ho : compromis diversification / intensification
 - $\rho = 1$: random walk
 - $\rho = 0$: hill-climbing
 - En pratique : ρ faible

Plusieurs solutions initiales

Autre amélioration de la méthode Hill-Climbing

- Relancer la méthode de descente à partir de plusieurs solutions initiales
- Conserver la meilleure solution trouvée
- Méthode de Descente Multi-Start

119

Algorithme de recherche locale (6)

Algorithme de Recherche locale

- Solution initiale : $s \in E$; $z \leftarrow f(s)$ (1)
- Meilleure solution : $s^* \leftarrow s$; $z^* \leftarrow z$
- Répéter
 - Choisir $s' \in N(s)$

(2) (3)

- $s \leftarrow s'$
- Si $f(s) < f(s^*)$ alors $s^* \leftarrow s$, $z^* \leftarrow z$
- Jusqu'à « Critères d'arrêt » (4)

Points clés

- 1. Comment obtenir une solution initiale?
- 2. Comment générer un voisinage ?

 et évaluer
- 3. Comment sélectionner la prochaine solution ?
- 4. Quand s'arrêter?

Evaluation d'une solution voisine

• Evaluation d'une solution / d'un voisin

- Estimation a priori de la qualité d'un voisin
- Permet de se guider dans l'espace de recherche pour trouver un chelin vers de bonnes solutions
- Comment évaluer ?
 - Fonction Objectif
 - Mais pas toujours!
 - o autre fonction d'évaluation (ex SAT : nombre de clauses non vérifiées)

• L'évaluation : opération de calcul très fréquente

- Doit être la moins coûteuse en temps de calcul
- Si possible incrémentale :
 - Calculer l'apport / la perte généré par un voisin
 - Variation de f(s') par rapport à f(s)

121

Exemple évaluation

Exemple

Départ et Retour en 0

Solution
$$s = \{0,1,2,3,4,0\}; f(s) = 48$$

Voisin s'

- Permutation 1 et 2 : {0,2,1,3,4}

Evaluation de s':

- Retirer (0,1) et (2,3): -6-13 = -19
- Ajouter (0,2) et (1,3): +10+11=+21
- f(s') = f(s) 19 + 21 = 50

S'échapper des optima locaux (1)

Dans une recherche locale :

- Impact du choix de la structure de voisinage
- Impact du choix de la fonction d'évaluation (ie. du paysage parcouru)

Pour diversifier

- Introduire de l'aléatoire
- Autoriser des solutions non améliorantes
 - Mais comment éviter de cycler sur des solutions ?
- Faire varier les voisinages
- Re-démarrage
- Mémorisation
- Nombreuses variantes en Recherche Locale

Variantes (1): Iterated Local Search

Perturbation aléatoire de la solution

Iterated Local Search

```
1. s0 ← Solution initiale; Best ← s0
2. s \leftarrow Descent(s0) // Exploration
3. repeat
      s' \leftarrow Perturbation (s)
       s'' ← Descent(s')
5.
       Acceptation:
         if f(s'') < f(s) then
             s \leftarrow s''; Mise-à-jour(Best, s);
```

7. until : conditions à définir

solution space S

Variantes (2): Méthode à seuil

Treshold Accepting

• Idée:

- Introduire un seuil d'acceptation au des solutions non améliorantes
- Choisir le premier voisin s' tel que $f(s') f(s) < \tau$
- Réglage du seuil
 - Détermine le compromis diversification / intensification
 - Si $\tau = \infty$: aléatoire
 - Si $au \leq 0$: les mouvements dégradant la solution sont interdits
 - Le seuil peut varier au cours des itérations

Variantes (3): Voisinages variables

- Variable Neighborhood Descent/ Search
- Définir plusieurs voisinages (diversification)
 - But : pouvoir sortir des optima locaux et améliorer la qualité de la solution

Principe

- Effectuer une succession de méthodes de descente
- Quand un optimum local est atteint par une méthode de descente:
 - changer de voisinage
- Ordonner a priori l'ensemble des voisinages
 - N1, N2,, Nk
 - Complexité croissante

Variantes (3): Voisinages variables

Principe

```
1. s 	Solution initiale
2. i 	Solution initiale
3. repeat
4. s' 	Solution dans Ni(s) //Variante : Random(Ni) // et Descent(s')
5. if f(s') < f(s) then //Variante : Rester sur Ni i 	Solution i 	Solution i 	Solution solution i 	Solution dans Ni(s) //Variante : Random(Ni) // et Descent(s')
6. else i 	Solution initiale
6. else i 	Solution initiale
7. until i >k (nombre de voisinages)
```

127

Variantes (3): Voisinages variables

Variantes (4): Recuit Simulé

Simulated Annealing

Idée

• Analogie métallurgie : en chauffant un métal puis en le refroidissant doucement on peut obtenir des structures cristallines résistantes

Principe

Repose sur la capacité d'un système physique d'évoluer vers un état énergétique minimal.

- D'abord, une agitation thermique permet de sortir des minima locaux de l'énergie.
- Ensuite, quand on refroidit le système physique assez lentement, il tend à évoluer vers une structure d'énergie minimale.

- Métaheuristique pour l'optimisation
 - S. Kirpatrick 1983 / V. Cerny 1985

Variantes (4): Recuit Simulé

Simulated Annealing

• Pour l'optimisation :

• Diversifier la recherche en acceptant des voisins qui dégradent la fonction objectf en fonction d'une probabilité d'acceptation qui décroit dans le temps

• Stratégie d'exploration :

- Paramètre T (température) qui décroit au cours des itérations
- Choix d'un voisin s' tel que :
 - Si $\Delta = f(s') f(s) < 0$ alors $s \leftarrow s'$ -- intensification
 - Si $x < e^{\frac{-\Delta}{T}}$ (x choisi aléatoirement dans [0,1]) alors $s \leftarrow s'$
 - Sinon Rester sur la solution S

-- diversification

Variantes (4): Recuit Simulé

- Température : probabilité d'accepter une solution non améliorante
- Condition de Métropolis :
 - accepter la nouvelle solution avec une probabilité : $e^{rac{-\Delta}{T}}$
 - Si Δ \nearrow alors $e^{\frac{-\Delta}{T}} \searrow$; si Si $T \searrow$ alors $e^{\frac{-\Delta}{T}} \searrow$
 - Algorithme

```
1. s0 ← solution initiale
2. T0 ← Température initiale
3. s ← s0; T ← T0
4. while (Conditions) loop
5. s' ← Random(N(s))
6. Deltaf← f(s') - f(s)
7. if Deltaf< 0 ou random < exp(-Delta/T) then
8. s ← s'
9. end if
10. T ← k.T
11. end while
12. Return s</pre>
```

131

Variantes (4): Recuit Simulé

- Au début des itérations :
 - T élevé : Acceptation fréquente de solutions non améliorantes
- En fin des itérations :
 - T faible : acceptation rare de solution non améliorante
- Réglage des paramètres
 - Température initiale
 - Variation de température : à chaque étape / par palier / adaptative
 - Conditions d'arrêt (température, fonction objectif, ...)
 - Trouver le bon paramétrage

Variantes (4): Recuit Simulé

• Etat initial

- Solution initiale
- Température : doit permettre d'accepter « suffisamment » de solutions voisines
- Graphique des solutions visitées / acceptées

133

Variantes (4): Recuit Simulé

• Schéma de refroidissement

- Si trop rapide : convergence prématurée : on reste dans un optimum local
- Si trop lente : exploration trop importante

Variantes (5): Recherche Tabou

Tabu Search

• Constat:

- Quand on est sur un optimum local : les solutions voisines sont toutes de moins bonne qualité → bassin d'attraction
- Glover 1986 / Hansen 1986

• Idée:

- Sortir du bassin d'attraction en acceptant des solutions de moins bonne qualité
 - Choisir le meilleur voisin même si non améliorant
- Mais interdire de revisiter des solutions déjà explorées
- Structure pour mémoriser des informations sur les solutions visitées, appelée Liste Tabou pendant un certain nombre d'itérations

135

Variantes (5): Recherche Tabou

Stratégie d'exploration :

- Introduire une liste *L* (initialement vide)
- A chaque itération : ajouter le dernier mouvement effectué dans L
- Choisir une solution voisine s' telle que :
 - Le mouvement $s \to s' \notin L$ -- diversification
 - Le cout f(s') soit minimal -- intensification

Algorithme

```
1. s \( \) solution initiale
2. best \( \) s
3. L \( \) \( \) // Tabu
4. while (Conditions) loop
5. s' \( \) Meilleur-Voisin(N(s), L) // Voisin non tabou
6. if f(s') < f(best) then
7. best \( \) s'
8. end if
9. Actu_Tabu(s', L)
10. end while
11. Return best</pre>
```

Variantes (5): Recherche Tabou

Liste Tabou

- Conserver les mouvements effectués et non pas les solutions visités
 - Exemple : variables échangées (swap)
 - Plus rapide à vérifier et moins couteux à mémoriser ...
- Est parcourue fréquemment dans la recherche de solutions
 - Accès efficace pour vérifier si une solution est tabou
 - Table de hachage (sur les mouvements, sur la fonction objectif)
 - o Si collision : Taille de la liste trop petite
- Ne pas déconnecter la solution optimale de la solution courante
 - Les informations restent dans la liste pendant une durée limitée (ie un nombre d'itérations)

Variantes (5): Recherche Tabou

• Exemple d'une liste Tabou

- Mouvement effectué sur les solutions :
 - Interdire le mouvement inverse pendant k itérations
 - o Itération p: solution obtenue après swap(i, j)
 - o Interdire swap(j, i) jusqu'à itération p + k
 - o Matrice pour mémoriser toutes les paires de swap possibles
 - Mouvement inverse peut être complexe

Le contenu de la liste Tabou

- interdit plus de solutions que celles réellement explorées
- Ne prévient pas totalement des risques de cyclage

Variantes (5): Recherche Tabou

Durée des interdiction

- Ne conserver que les k derniers mouvements effectués
 - Valeur de k: longueur de la liste ightharpoonup compromis diversification / intensification
 - k faible :
 - o peu de voisins interdits risque de rester bloqué sur un optimum local
 - *k* élevé :
 - o beaucoup de voisins interdits / parcours potentiellement plus long
 - o diversification importante mais on risque de louper l'optimum global
 - Réglage adaptatif en fonction du problème / d'une instance

• Annuler une interdiction

- Autoriser mouvement tabou si amélioration de la fonction objectif
- Critère d'aspiration

Variantes (5): Recherche Tabou

• Attention à l'exploration du voisinage

- Taille : se limiter si besoin à une liste de voisins candidats
 - Aléatoire
 - Les plus pertinents a priori
- Evaluation :
 - doit être efficace (incrémentale, approchée)

Variante

- Mémoire dite à long terme pour guider la recherche
 - Mémoriser les mouvements effectués et leur qualités respectives
 - Diversification : Guider vers des parties non explorées
 - Intensification : Repartir de caractéristiques de bonnes solutions

Section 3. Méthodes approchées

• Méthodes à population

