Раздел 4. Применение производной функции к решению задач Вариант 1

- 1. Найти дифференциал функции:
 - a) $y = 3x^2 6x + 5$; 6) $y = \sqrt{x} 2x^3 + \frac{1}{x}$;
 - B) $y = \sin x \cdot 10^x$; Γ) $y = 4 \text{ tg} \frac{x}{3}$; π) $f(x) = (x^3 + 2)^{15}$.
- 2. Найти приращение и дифференциал функции $y = x^3 5x^2 + 80$ в точке $x_0 = 4$, если $\Delta x = 0.001$.
- 3. Вычислить приближенно, используя дифференциал: а) $\sqrt{27}$, б) $tg44^0$, в) $(1,02)^5$.
- 4. Найти dx, d^2x , d^3x для функции $4x^3 12x + 5$.
- 5. Найти пределы, используя правило Лопиталя:
 - a) $\lim_{x\to 2} \frac{3x^2 8x + 4}{5x^2 14x +};$ 6) $\lim_{x\to \infty} \frac{\frac{2x + 3}{5x + 1}}{\frac{\sin 3x}{x}};$ B) $\lim_{x\to 0} \frac{\sin 3x}{x}.$
- 6. Исследовать функцию на монотонность: $y = x^3 6x^2 + 9x 3$.
- 7. Исследовать функцию на выпуклость, вогнутость и точки перегиба: $y = x^4 - 2x^2 + 4$.

Раздел 4. Применение производной функции к решению задач Вариант 2

- 1. Найти дифференциал функции:
 - a) $y = x^3 \cdot \ln x$; 6) $y = \frac{5}{3x^2 8}$;
 - в) $y = \cos(5x 3)$; г) $y = 10^x + 7x$; д) $f(x) = 5x^4 3x^3 + 2x 11$.
- 2. Найти приращение и дифференциал функции $y = x^3 2x^2 + 100$ в точке $x_0 = 3$, если $\Delta x = 0.15$.
- 3. Вычислить приближенно, используя дифференциал: a) $\sqrt{48}$, б) $tg34^{\circ}$, в) $(1,03)^6$.
- 4. Найти dx, d^2x , d^3x для функции $8x^3 10x + 9$.
- 5. Найти пределы, используя правило Лопиталя:

 - a) $\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x}$; 6) $\lim_{x\to \infty} \frac{x^6+x^5}{x^3+x^4}$; B) $\lim_{x\to 0} \frac{\sin x \cos x}{x}$.
- 6. Исследовать функцию на монотонность: $y = x^3 9x^2 + 24x 12$.
- 7. Исследовать функцию на выпуклость, вогнутость и точки перегиба: y = $0.5x^4 - 4x^2$.

Раздел 4. Применение производной функции к решению задач Вариант 3

- 1. Найти дифференциал функции:
 - a) $y = \ln x \cdot \frac{5}{x}$; 6) $y = \frac{7-x}{7+x}$;
 - в) $y = \sqrt{x} \cdot \lg x$; г) $y = 7^x \cdot \sin x$; д) $f(x) = 3x^5 8x + 4$.
- 2. Найти приращение и дифференциал функции $y = 2x^3 x^2 + 20$ в точке $x_0 = 5$, если $\Delta x = 0.14$.
- 3. Вычислить приближенно, используя дифференциал: a) $\sqrt{37}$, б) $tg53^0$, в) $(2,03)^4$.
- 4. Найти dx, d^2x , d^3x для функции $x^3 + 4x 17$
- 5. Найти пределы, используя правило Лопиталя:

 - a) $\lim_{x\to 0} \frac{3x^2 2x}{2x^2 5x}$; 6) $\lim_{x\to \infty} \frac{3x^2 8}{x^2 + 3x 7}$;
 - B) $\lim_{x\to 0} \frac{\sin x}{\tan 2x}$.
- 6. Исследовать функцию на монотонность: $y = \frac{1}{4}x^4 2x^2 + 5$.
- 7. Исследовать функцию на выпуклость, вогнутость и точки перегиба: $y = x^4 1$ $2x^3 + 6x - 4$.

Раздел 4. Применение производной функции к решению задач Вариант 4

- 1. Найти дифференциал функции
 - a) $y = \ln(1 x^2)$; 6) $y = \frac{2x^2 5}{2x^2 + 3}$;
 - в) $y = 10 \sin 3x$; г) $y = 5^{x} \sin x$; д) $f(x) = 8x^3 2x^2 + 2x 18$.
- 2. Найти приращение и дифференциал функции $y = x^3 + x 1$ в точке $x_0 = 2$, если $\Delta x = 0.01$.
- 3. Вычислить приближенно, используя дифференциал: а) $\sqrt{63}$, б) $tg64^0$, в) $(3,02)^6$.
- 4. Найти dx, d^2x , d^3x для функции $5x^3 13x + 21$
- 5. Найти пределы, используя правило Лопиталя:

 - a) $\lim_{x\to\infty} \frac{\ln x}{x}$; 6) $\lim_{x\to 3} \frac{x-3}{x^2-9}$; B) $\lim_{x\to 2} \frac{x^3+x-10}{x^3-3x-2}$.
- 6. Исследовать функцию на монотонность: $y = x^3 6x^2 + 4$.
- 7. Исследовать функцию на выпуклость, вогнутость и точки перегиба: $y = x^4 1$ $4x^2 + 3$.