Application of Discontinuous Galerkin methods to the unsteady, compressible Navier-Stokes equations

A review of the state of the art

Björn Müller Seminar Strömungsmechanik, Kontinuumsmechanik und geophysikalische Mechanik Fachgebiet für Strömungsdynamik (FDY) TU Darmstadt

March 3, 2010

Outline

Introduction to the Discontinuous Galerkin framework

Application of the DG approach to the compressible Navier-Stokes equations

Time discretization

Outlook on some advanced features

Overview

Introduction to the Discontinuous Galerkin framework

Application of the DG approach to the compressible Navier-Stokes equations

Time discretization

Outlook on some advanced features

▶ Main goal: Compute higher order solutions of partial differential equations

- Main goal: Compute higher order solutions of partial differential equations
- ▶ If possible, the order of the approximation should be adjustable on each element separately (so called *hp-adaptivity*)

- Main goal: Compute higher order solutions of partial differential equations
- ▶ If possible, the order of the approximation should be adjustable on each element separately (so called *hp-adaptivity*)
- Main idea: Intelligent combination of the favorable properties of the Finite Volume Method (FVM) and the Finite Element Method (FEM)
 - ightarrow Discontinuous Galerkin (DG, sometimes also called DG-FEM)

- ▶ Main goal: Compute higher order solutions of partial differential equations
- ▶ If possible, the order of the approximation should be adjustable on each element separately (so called *hp-adaptivity*)
- Main idea: Intelligent combination of the favorable properties of the Finite Volume Method (FVM) and the Finite Element Method (FEM)
 - → Discontinuous Galerkin (DG, sometimes also called DG-FEM)

Method	High-order accuracy	hp-adaptivity	Conservativity
FVM	(√)	х	√
FEM	✓	(√)	(√)
DG	✓	✓	✓

Figure: Comparison of the different approaches

► We want to approximate the solution of a given partial differential equation inside a domain that is subdivided into a number of disjoint cells

- We want to approximate the solution of a given partial differential equation inside a domain that is subdivided into a number of disjoint cells
- ▶ In each cell, we represent the solution as a weighted sum of basis polynomials

- We want to approximate the solution of a given partial differential equation inside a domain that is subdivided into a number of disjoint cells
- In each cell, we represent the solution as a weighted sum of basis polynomials
- We allow discontinuities at the cell interfaces

- We want to approximate the solution of a given partial differential equation inside a domain that is subdivided into a number of disjoint cells
- ▶ In each cell, we represent the solution as a weighted sum of basis polynomials
- We allow discontinuities at the cell interfaces
- Thus, the recovered solution can be interpreted as a generalized Finite Volume solution

- We want to approximate the solution of a given partial differential equation inside a domain that is subdivided into a number of disjoint cells
- ▶ In each cell, we represent the solution as a weighted sum of basis polynomials
- We allow discontinuities at the cell interfaces
- Thus, the recovered solution can be interpreted as a generalized Finite Volume solution

(a) First order FEM

- We want to approximate the solution of a given partial differential equation inside a domain that is subdivided into a number of disjoint cells
- ▶ In each cell, we represent the solution as a weighted sum of basis polynomials
- We allow discontinuities at the cell interfaces
- Thus, the recovered solution can be interpreted as a generalized Finite Volume solution

- We want to approximate the solution of a given partial differential equation inside a domain that is subdivided into a number of disjoint cells
- In each cell, we represent the solution as a weighted sum of basis polynomials
- We allow discontinuities at the cell interfaces
- Thus, the recovered solution can be interpreted as a generalized Finite Volume solution

(c) First order DG

► The general workflow is similar to the FEM

- ► The general workflow is similar to the FEM
 - 1. Multiplication of the equation by a test function

- ► The general workflow is similar to the FEM
 - 1. Multiplication of the equation by a test function
 - 2. Integration and requiring that the local residual is orthogonal to all test functions

- The general workflow is similar to the FEM
 - 1. Multiplication of the equation by a test function
 - 2. Integration and requiring that the local residual is orthogonal to all test functions
 - 3. Application of Gauss' theorem

- The general workflow is similar to the FEM
 - 1. Multiplication of the equation by a test function
 - 2. Integration and requiring that the local residual is orthogonal to all test functions
 - 3. Application of Gauss' theorem
 - Specification of a numerical flux so that a unique value at interfaces can be recovered

- The general workflow is similar to the FEM
 - 1. Multiplication of the equation by a test function
 - 2. Integration and requiring that the local residual is orthogonal to all test functions
 - 3. Application of Gauss' theorem
 - Specification of a numerical flux so that a unique value at interfaces can be recovered
- ► For the sake of simplicity, this procedure will be introduced by means of a scalar consveration law in the following

Example: Application to a scalar conservation law

Considered equation:

$$\frac{\partial u}{\partial t} + \nabla \cdot \vec{f}(u) = 0 \tag{1}$$

Example: Application to a scalar conservation law

Considered equation:

$$\frac{\partial u}{\partial t} + \nabla \cdot \vec{f}(u) = 0 \tag{1}$$

▶ The function \vec{f} is an arbitrary non-linear function

Example: Application to a scalar conservation law

Considered equation:

$$\frac{\partial u}{\partial t} + \nabla \cdot \vec{f}(u) = 0 \tag{1}$$

- ► The function \vec{f} is an arbitrary non-linear function
- ▶ Multiplication by the test function Φ and integration over the cell K yields

$$\int_{K} \left(\frac{\partial u}{\partial t} + \nabla \cdot \vec{f}(u) \right) \Phi d\vec{x} = 0$$
 (2)

Example:

Application to a scalar conservation law

► Considered equation:

$$\frac{\partial u}{\partial t} + \nabla \cdot \vec{f}(u) = 0 \tag{1}$$

- ▶ The function \vec{f} is an arbitrary non-linear function
- ightharpoonup Multiplication by the test function Φ and integration over the cell K yields

$$\int_{K} \left(\frac{\partial u}{\partial t} + \nabla \cdot \vec{f}(u) \right) \Phi d\vec{x} = 0$$
 (2)

After application of Gauss' theorem:

$$\int_{K} \frac{\partial u}{\partial t} \Phi d\vec{x} = -\int_{\partial K} \left(\vec{f}(u) \cdot \vec{n} \right) \Phi ds + \int_{K} \vec{f}(u) \cdot \nabla \Phi d\vec{x}$$
 (3)

Example continued: Approximation of the solution

▶ (Modal) Approximation of order *p* of the exact solution in cell *K*:

$$u(\vec{x},t) \approx \tilde{u}(\vec{x},t) = \sum_{i=1}^{N} \tilde{u}_{i}^{K}(t) \cdot \varphi_{i}(\vec{x})$$
 (4)

Example continued: Approximation of the solution

▶ (Modal) Approximation of order p of the exact solution in cell K:

$$u(\vec{x},t) \approx \tilde{u}(\vec{x},t) = \sum_{i=1}^{N} \tilde{u}_{i}^{K}(t) \cdot \varphi_{i}(\vec{x})$$
 (4)

• (Modal) Basis functions: Polynomials φ_i with

$$degree(\varphi_i) \le p \ \forall i$$
 (5)

satisfying the orthogonality condition

$$\int_{\mathcal{L}} \varphi_i \cdot \varphi_j \ d\vec{x} = \delta_{ij} \ \forall i, j$$
 (6)

Example continued: Approximation of the solution

▶ (Modal) Approximation of order p of the exact solution in cell K:

$$u(\vec{x},t) \approx \tilde{u}(\vec{x},t) = \sum_{i=1}^{N} \tilde{u}_{i}^{K}(t) \cdot \varphi_{i}(\vec{x})$$
 (4)

• (Modal) Basis functions: Polynomials φ_i with

$$degree(\varphi_i) \le p \ \forall i$$
 (5)

satisfying the orthogonality condition

$$\int_{\mathcal{L}} \varphi_i \cdot \varphi_j \ d\vec{x} = \delta_{ij} \ \forall i, j$$
 (6)

• Usually, the polynomials φ are also chosen as test functions ϕ

▶ Notation: Quantities tagged with "-" are associated with the value *inside* the considered cell while quantities with "+" are associated with the adjacent cell

- ▶ Notation: Quantities tagged with "-" are associated with the value *inside* the considered cell while quantities with "+" are associated with the adjacent cell
- After insertion of the approximation into the weak formulation:

$$\int_{K} \frac{\partial \tilde{u}}{\partial t} \Phi d\vec{x} = -\int_{\partial K} \left(\vec{f}(\tilde{u}) \cdot \vec{n} \right) \Phi^{-} ds + \int_{K} \vec{f}(\tilde{u}) \cdot \nabla \Phi d\vec{x}$$
 (7)

- ▶ Notation: Quantities tagged with "-" are associated with the value *inside* the considered cell while quantities with "+" are associated with the adjacent cell
- After insertion of the approximation into the weak formulation:

$$\int_{K} \frac{\partial \tilde{u}}{\partial t} \Phi d\vec{x} = -\int_{\partial K} \left(\vec{f}(\tilde{u}) \cdot \vec{n} \right) \Phi^{-} ds + \int_{K} \vec{f}(\tilde{u}) \cdot \nabla \Phi d\vec{x}$$
 (7)

This expression is not uniquely defined because we allow discontinuities

- Notation: Quantities tagged with "-" are associated with the value inside the considered cell while quantities with "+" are associated with the adjacent cell
- After insertion of the approximation into the weak formulation:

$$\int_{K} \frac{\partial \tilde{u}}{\partial t} \Phi d\vec{x} = -\int_{\partial K} \left(\vec{f}(\tilde{u}) \cdot \vec{n} \right) \Phi^{-} ds + \int_{K} \vec{f}(\tilde{u}) \cdot \nabla \Phi d\vec{x}$$
 (7)

- This expression is not uniquely defined because we allow discontinuities
- ▶ Introduction of a so called *flux function*:

$$\vec{f}(\tilde{u}) \cdot \vec{n} \approx g(\tilde{u}^-, \tilde{u}^+)$$
 (8)

- ▶ Notation: Quantities tagged with "-" are associated with the value *inside* the considered cell while quantities with "+" are associated with the adjacent cell
- After insertion of the approximation into the weak formulation:

$$\int_{K} \frac{\partial \tilde{u}}{\partial t} \Phi d\vec{x} = -\int_{\partial K} \left(\vec{f}(\tilde{u}) \cdot \vec{n} \right) \Phi^{-} ds + \int_{K} \vec{f}(\tilde{u}) \cdot \nabla \Phi d\vec{x}$$
 (7)

- This expression is not uniquely defined because we allow discontinuities
- ▶ Introduction of a so called *flux function*:

$$\vec{f}(\tilde{u}) \cdot \vec{n} \approx g(\tilde{u}^-, \tilde{u}^+)$$
 (8)

▶ The choice of *g* defines the numerical properties of the whole scheme!

▶ Many choices for the flux function are possible

- Many choices for the flux function are possible
- They are the most important factor in terms of consistency, stability and accuracy of the method

- Many choices for the flux function are possible
- They are the most important factor in terms of consistency, stability and accuracy of the method
- Existing flux functions:

- Many choices for the flux function are possible
- They are the most important factor in terms of consistency, stability and accuracy of the method
- Existing flux functions:
 - Mean value flux

- Many choices for the flux function are possible
- They are the most important factor in terms of consistency, stability and accuracy of the method
- Existing flux functions:
 - Mean value flux
 - Upwind formulations

- Many choices for the flux function are possible
- They are the most important factor in terms of consistency, stability and accuracy of the method
- Existing flux functions:
 - Mean value flux
 - Upwind formulations
 - Dozens of problem-dependent formulations

- Many choices for the flux function are possible
- They are the most important factor in terms of consistency, stability and accuracy of the method
- Existing flux functions:
 - Mean value flux
 - Upwind formulations
 - Dozens of problem-dependent formulations
- Actually, the topic of flux functions is quite extensive and will not be discussed here any further

- Many choices for the flux function are possible
- ➤ They are the most important factor in terms of consistency, stability and accuracy of the method
- Existing flux functions:
 - Mean value flux
 - Upwind formulations
 - Dozens of problem-dependent formulations
- Actually, the topic of flux functions is quite extensive and will not be discussed here any further
- Note: Another possibility of deriving a DG scheme is the so called strong formulation. For details see [Gassner2009b] or [Hesthaven2007]

Overview

Introduction to the Discontinuous Galerkin framework

Application of the DG approach to the compressible Navier-Stokes equations

Formulation of the equations Application of the DG approach

Time discretization

Outlook on some advanced features

Overview

Introduction to the Discontinuous Galerkin framework

Application of the DG approach to the compressible Navier-Stokes equations Formulation of the equations

Application of the DG approach

Time discretization

Outlook on some advanced features

Notation

Symbol $(i, j = 1, 2, 3)$	Physical interpretation	Unit
X _i	Cartesian coordinates	m
u_i	Velocity components	<u>m</u>
р	Pressure	$\frac{N}{m^2}$
$ au_{ij}$	Components of the stress tensor	$\frac{\tilde{N}}{m^2}$
ρ	Mass density	$\frac{kg}{m^3}$
е	Specific inner energy	E \$2 22 25 25 25 25 25 25 25 25 25 25 25 25
q_i	Components of the heat flow	$\frac{\tilde{J}}{m^2}$
μ	Dynamic viscosity	$\frac{Ns}{m^2}$
T	Absolute temperature	"K
λ	Thermal conductivity	$\frac{W}{Km}$

Figure: The notation used for the formulation of the Navier-Stokes equations

Assumptions

Newtonian fluid (i, j = 1, 2, 3)

$$\tau_{ij} = \mu \left(\frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right)$$
 (9)

Assumptions

Newtonian fluid (i, j = 1, 2, 3)

$$\tau_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right) \tag{9}$$

▶ Fourier's law of heat conduction (i = 1, 2, 3):

$$\frac{\partial q_i}{\partial t} = -\lambda \frac{\partial T}{\partial x_i} \tag{10}$$

Continuity

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_i)}{\partial x_i} = 0 \tag{11}$$

Continuity

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_i)}{\partial x_i} = 0 \tag{11}$$

Momentum

$$\frac{\partial(\rho u_i)}{\partial t} + \frac{\partial(\rho u_i u_j)}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j}$$
 (12)

Continuity

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_i)}{\partial x_j} = 0 \tag{11}$$

Momentum

$$\frac{\partial(\rho u_i)}{\partial t} + \frac{\partial(\rho u_i u_j)}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j}$$
(12)

Energy

$$\rho\left(\frac{\partial e}{\partial t} + u_i \frac{\partial e}{\partial x_i}\right) = \frac{\partial}{\partial x_i} \left(\lambda \frac{\partial T}{\partial x_i}\right) - \rho \frac{\partial u_i}{\partial x_i} + 2\mu \left(\frac{\partial u_i}{\partial x_j} \frac{\partial u_i}{\partial x_j} - \frac{1}{3} \left(\frac{\partial u_i}{\partial x_i}\right)^2\right)$$
(13)

Continuity

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_i)}{\partial x_j} = 0 \tag{11}$$

Momentum

$$\frac{\partial(\rho u_i)}{\partial t} + \frac{\partial(\rho u_i u_j)}{\partial x_j} = -\frac{\partial \mathbf{p}}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} \tag{12}$$

Energy

$$\rho\left(\frac{\partial e}{\partial t} + u_i \frac{\partial e}{\partial x_i}\right) = \frac{\partial}{\partial x_i} \left(\lambda \frac{\partial \mathbf{T}}{\partial x_i}\right) - \rho \frac{\partial u_i}{\partial x_i} + 2\mu \left(\frac{\partial u_i}{\partial x_j} \frac{\partial u_i}{\partial x_j} - \frac{1}{3} \left(\frac{\partial u_i}{\partial x_i}\right)^2\right) \tag{13}$$

We still need relations for T and p

T and p are determined using a problem-dependent material law

- T and p are determined using a problem-dependent material law
- For a thermally and calorically ideal gas (e.g. air in most configurations)

$$p = \rho RT \tag{14}$$

$$e = c_v T \tag{15}$$

with the ideal gas constant R is the standard choice

- T and p are determined using a problem-dependent material law
- For a thermally and calorically ideal gas (e.g. air in most configurations)

$$p = \rho RT \tag{14}$$

$$e = c_v T \tag{15}$$

with the ideal gas constant R is the standard choice

lacktriangle Additionally, the viscosity μ will usually depend on the temperature T

- T and p are determined using a problem-dependent material law
- ► For a thermally and calorically ideal gas (e.g. air in most configurations)

$$p = \rho RT \tag{14}$$

$$e = c_v T \tag{15}$$

with the ideal gas constant R is the standard choice

- \blacktriangleright Additionally, the viscosity μ will usually depend on the temperature T
- For example for ideal gases usually Sutherland's law

$$\mu = \mu_0 \left(\frac{T}{T_0}\right)^{\frac{3}{2}} \frac{T_0 + S}{T + S} \tag{16}$$

with the reference temperature T_0 , the reference viscosity $\mu_0 = \mu(T_0)$ and the Sutherland temperature S is used

Dimensionless formulation

Physical quantity	Dimensionless formulation
Cartesian coordinates	$\hat{X}_i = \frac{X_i}{I}$
Time	$\hat{t} = \frac{t\bar{u}_{\infty}}{I}$
Mass density	$\hat{\rho} = \frac{\bar{\rho}}{\rho_{\infty}}$
Components of the momentum	$\hat{\rho}\hat{u}_i = \frac{\rho u_i}{\rho_\infty u_\infty}$
Pressure	$\hat{p} = \frac{p}{\rho_{\infty} u^2}$
Energy per volume	$ \begin{aligned} \hat{p} &= \frac{r}{\rho_{\infty} u_{\infty}^2} \\ \hat{\rho} \hat{E} &= \frac{\rho e + u_i u_i}{\rho_{\infty} u^2} \end{aligned} $
Absolute temperature	$\hat{T} = \frac{\hat{T}}{T_{-}}$
Thermal conductivity	Depends on the law for p and T
Components of the stress tensor	Depends on the law for $\hat{\mu}$

Figure: Dimensionless quantities (for i = 1, 2, 3) for the characteristic quantities L, ρ_{∞} , u_{∞} , T_{∞}

 For numerical calculations it is often useful to write conserved quantities in the so called conservation form

- For numerical calculations it is often useful to write conserved quantities in the so called conservation form
- ▶ That is, conserved quantities (like the mass) are expressed as divergences

- For numerical calculations it is often useful to write conserved quantities in the so called conservation form
- That is, conserved quantities (like the mass) are expressed as divergences
- For DG such a formulation is mandatory!

- For numerical calculations it is often useful to write conserved quantities in the so called conservation form
- That is, conserved quantities (like the mass) are expressed as divergences
- For DG such a formulation is mandatory!
- Abstract (dimensionless) formulation of a second order conservation law:

$$\frac{\partial U}{\partial \hat{t}} + \frac{\partial F_i(U)}{\partial \hat{x}_i} - \frac{1}{Re} \frac{\partial G_i(U, \nabla U)}{\partial \hat{x}_i} = 0$$
 (17)

- For numerical calculations it is often useful to write conserved quantities in the so called conservation form
- That is, conserved quantities (like the mass) are expressed as divergences
- For DG such a formulation is mandatory!
- Abstract (dimensionless) formulation of a second order conservation law:

$$\frac{\partial U}{\partial \hat{t}} + \frac{\partial F_i(U)}{\partial \hat{x}_i} - \frac{1}{Re} \frac{\partial G_i(U, \nabla U)}{\partial \hat{x}_i} = 0$$
 (17)

► The *F_i* represent the *convectice fluxes* while the *G_i* denote the *dissipative fluxes*

- For numerical calculations it is often useful to write conserved quantities in the so called conservation form
- That is, conserved quantities (like the mass) are expressed as divergences
- For DG such a formulation is mandatory!
- Abstract (dimensionless) formulation of a second order conservation law:

$$\frac{\partial U}{\partial \hat{t}} + \frac{\partial F_i(U)}{\partial \hat{x}_i} - \frac{1}{Re} \frac{\partial G_i(U, \nabla U)}{\partial \hat{x}_i} = 0$$
 (17)

- ► The F_i represent the convectice fluxes while the G_i denote the dissipative fluxes
- ► For the application of the DG approach, only weak assumptions for concerning the structure of F_i and G_i are needed

Navier Stokes in conservation form

In our case:

Navier Stokes in conservation form

- In our case:
 - Vector of unknowns

$$U(\hat{x}_1, \hat{x}_2, \hat{x}_3, \hat{t}) = \begin{pmatrix} \hat{\rho} \\ \hat{\rho} \hat{u}_1 \\ \hat{\rho} \hat{u}_2 \\ \hat{\rho} \hat{u}_3 \\ \hat{\rho} \hat{E} \end{pmatrix}$$
(18)

Navier Stokes in conservation form

- In our case:
 - Vector of unknowns

$$U(\hat{x}_1, \hat{x}_2, \hat{x}_3, \hat{t}) = \begin{pmatrix} \hat{\rho} \\ \hat{\rho} \hat{u}_1 \\ \hat{\rho} \hat{u}_2 \\ \hat{\rho} \hat{u}_3 \\ \hat{\rho} \hat{E} \end{pmatrix}$$
(18)

Convective and diffusive fluxes:

$$F_{i}(U) = \begin{pmatrix} \hat{\rho}\hat{u}_{i} \\ \hat{\rho}\hat{u}_{i}\hat{u}_{1} + \delta_{1i}\hat{p} \\ \hat{\rho}\hat{u}_{i}\hat{u}_{2} + \delta_{2i}\hat{p} \\ \hat{\rho}\hat{\mu}_{i}\hat{u}_{3} + \delta_{3i}\hat{p} \\ \hat{u}_{i}(\hat{\rho}\hat{E} + \hat{p}) \end{pmatrix} G_{i}(U, \nabla U) = \begin{pmatrix} 0 \\ \hat{\tau}_{i1} \\ \hat{\tau}_{i2} \\ \hat{\tau}_{i3} \\ \hat{u}_{j}\hat{\tau}_{ji} - \hat{\lambda}\frac{\partial \hat{\tau}}{\partial \hat{x}} \end{pmatrix}$$

$$(19)$$

Overview

Introduction to the Discontinuous Galerkin framework

Application of the DG approach to the compressible Navier-Stokes equations

Formulation of the equations

Application of the DG approach

Time discretization

Outlook on some advanced features

Second order systems: Naive approach

▶ Main difference compared to the scalar example: Second order terms

$$\frac{\partial U}{\partial \hat{t}} + \frac{\partial F_i(U)}{\partial \hat{x}_i} - \frac{1}{Re} \frac{\partial G_i(U, \nabla U)}{\partial \hat{x}_i} = 0$$
 (20)

Second order systems: Naive approach

▶ Main difference compared to the scalar example: Second order terms

$$\frac{\partial U}{\partial \hat{t}} + \frac{\partial F_i(U)}{\partial \hat{x}_i} - \frac{1}{Re} \frac{\partial G_i(U, \nabla U)}{\partial \hat{x}_i} = 0$$
 (20)

Naive approach:

Second order systems: Naive approach

▶ Main difference compared to the scalar example: Second order terms

$$\frac{\partial U}{\partial \hat{t}} + \frac{\partial F_i(U)}{\partial \hat{x}_i} - \frac{1}{Re} \frac{\partial G_i(U, \nabla U)}{\partial \hat{x}_i} = 0$$
 (20)

- Naive approach:
 - Introduce auxiliary variables and write equation 20 as a first order system:

$$\frac{\partial U}{\partial \hat{t}} + \frac{\partial F_i(U)}{\partial \hat{x}_i} - \frac{1}{Re} \frac{\partial G_i(U, V)}{\partial \hat{x}_i} = 0$$
 (21)

$$V_{ji} - \frac{\partial U_j}{\partial \hat{x}_i} = 0 \quad \text{for } j = 1, \dots, 5$$
 (22)

Second order systems: Naive approach

▶ Main difference compared to the scalar example: Second order terms

$$\frac{\partial U}{\partial \hat{t}} + \frac{\partial F_i(U)}{\partial \hat{x}_i} - \frac{1}{Re} \frac{\partial G_i(U, \nabla U)}{\partial \hat{x}_i} = 0$$
 (20)

- Naive approach:
 - Introduce auxiliary variables and write equation 20 as a first order system:

$$\frac{\partial U}{\partial \hat{t}} + \frac{\partial F_i(U)}{\partial \hat{x}_i} - \frac{1}{Re} \frac{\partial G_i(U, V)}{\partial \hat{x}_i} = 0$$
 (21)

$$V_{ji} - \frac{\partial U_j}{\partial \hat{x}_i} = 0 \quad \text{for } j = 1, \dots, 5$$
 (22)

Reformulation of equation 22 in conservation form:

$$V_{jj} - \frac{\partial \delta_{jk} U_j}{\partial \hat{\mathbf{x}}_k} = 0 \quad \text{for } k = 1, \dots, 3$$
 (23)

Main drawback of the naive approach:

- Main drawback of the naive approach:
 - Explosion of the number of unknowns

- Main drawback of the naive approach:
 - Explosion of the number of unknowns
 - ▶ Before the transformation, we had 5 variables

- Main drawback of the naive approach:
 - Explosion of the number of unknowns
 - ▶ Before the transformation, we had 5 variables
 - Now we have $5 + 5 \cdot 3 = 20$ variables

- Main drawback of the naive approach:
 - Explosion of the number of unknowns
 - ▶ Before the transformation, we had 5 variables
 - Now we have $5 + 5 \cdot 3 = 20$ variables
- Alternative: Ultra weak formulation (introduced in [Gassner2009b])

- Main drawback of the naive approach:
 - Explosion of the number of unknowns
 - ▶ Before the transformation, we had 5 variables
 - Now we have $5 + 5 \cdot 3 = 20$ variables
- Alternative: Ultra weak formulation (introduced in [Gassner2009b])
 - Idea: Apply a second spatial integration by parts

- Main drawback of the naive approach:
 - Explosion of the number of unknowns
 - Before the transformation, we had 5 variables
 - Now we have $5 + 5 \cdot 3 = 20$ variables
- Alternative: Ultra weak formulation (introduced in [Gassner2009b])
 - Idea: Apply a second spatial integration by parts
 - As a result, an additional surface integral has to be treated and so called adjoint fluxes have to be introduced

- Main drawback of the naive approach:
 - Explosion of the number of unknowns
 - Before the transformation, we had 5 variables
 - Now we have $5 + 5 \cdot 3 = 20$ variables
- Alternative: Ultra weak formulation (introduced in [Gassner2009b])
 - Idea: Apply a second spatial integration by parts
 - As a result, an additional surface integral has to be treated and so called adjoint fluxes have to be introduced
 - ▶ The approach seems quite promising but not much literature is available by now

Overview

Introduction to the Discontinuous Galerkin framework

Application of the DG approach to the compressible Navier-Stokes equations

Time discretization

Outlook on some advanced features

 In general, the DG method allows the application of all common time discretization schemes

- In general, the DG method allows the application of all common time discretization schemes
- ▶ On the whole, one generally distinguishes between three types of schemes:

- In general, the DG method allows the application of all common time discretization schemes
- ▶ On the whole, one generally distinguishes between three types of schemes:
 - Semi-implicit

- In general, the DG method allows the application of all common time discretization schemes
- ▶ On the whole, one generally distinguishes between three types of schemes:
 - Semi-implicit
 - Usually linear terms are treated implicitly (e.g. using an Implicit-Euler or a Crank-Nicolson scheme) while all others are treated explicitly

- In general, the DG method allows the application of all common time discretization schemes
- ▶ On the whole, one generally distinguishes between three types of schemes:
 - Semi-implicit
 - Usually linear terms are treated implicitly (e.g. using an Implicit-Euler or a Crank-Nicolson scheme) while all others are treated explicitly
 - ► The terms treated explicitly limit the maximum time-step

- In general, the DG method allows the application of all common time discretization schemes
- ▶ On the whole, one generally distinguishes between three types of schemes:
 - Semi-implicit
 - Usually linear terms are treated implicitly (e.g. using an Implicit-Euler or a Crank-Nicolson scheme) while all others are treated explicitly
 - The terms treated explicitly limit the maximum time-step
 - Can be considered the "standard" case

- In general, the DG method allows the application of all common time discretization schemes
- ▶ On the whole, one generally distinguishes between three types of schemes:
 - Semi-implicit
 - Usually linear terms are treated implicitly (e.g. using an Implicit-Euler or a Crank-Nicolson scheme) while all others are treated explicitly
 - ► The terms treated explicitly limit the maximum time-step
 - Can be considered the "standard" case
 - Fully Implicit

- In general, the DG method allows the application of all common time discretization schemes
- ▶ On the whole, one generally distinguishes between three types of schemes:
 - Semi-implicit
 - Usually linear terms are treated implicitly (e.g. using an Implicit-Euler or a Crank-Nicolson scheme) while all others are treated explicitly
 - ► The terms treated explicitly limit the maximum time-step
 - Can be considered the "standard" case
 - Fully Implicit
 - Nonlinear terms are linearized and treated implicitly as the linear terms

- In general, the DG method allows the application of all common time discretization schemes
- ▶ On the whole, one generally distinguishes between three types of schemes:
 - Semi-implicit
 - Usually linear terms are treated implicitly (e.g. using an Implicit-Euler or a Crank-Nicolson scheme) while all others are treated explicitly
 - ► The terms treated explicitly limit the maximum time-step
 - Can be considered the "standard" case
 - Fully Implicit
 - Nonlinear terms are linearized and treated implicitly as the linear terms
 - Seems to be used less frequently than the other options

- In general, the DG method allows the application of all common time discretization schemes
- ▶ On the whole, one generally distinguishes between three types of schemes:
 - Semi-implicit
 - Usually linear terms are treated implicitly (e.g. using an Implicit-Euler or a Crank-Nicolson scheme) while all others are treated explicitly
 - ► The terms treated explicitly limit the maximum time-step
 - Can be considered the "standard" case
 - Fully Implicit
 - Nonlinear terms are linearized and treated implicitly as the linear terms
 - Seems to be used less frequently than the other options
 - Main advantage: Large time-steps in low Mach-number flows

- In general, the DG method allows the application of all common time discretization schemes
- ▶ On the whole, one generally distinguishes between three types of schemes:
 - Semi-implicit
 - Usually linear terms are treated implicitly (e.g. using an Implicit-Euler or a Crank-Nicolson scheme) while all others are treated explicitly
 - ► The terms treated explicitly limit the maximum time-step
 - Can be considered the "standard" case
 - Fully Implicit
 - Nonlinear terms are linearized and treated implicitly as the linear terms
 - Seems to be used less frequently than the other options
 - Main advantage: Large time-steps in low Mach-number flows
 - Fully Explicit

- In general, the DG method allows the application of all common time discretization schemes
- ▶ On the whole, one generally distinguishes between three types of schemes:
 - Semi-implicit
 - Usually linear terms are treated implicitly (e.g. using an Implicit-Euler or a Crank-Nicolson scheme) while all others are treated explicitly
 - ► The terms treated explicitly limit the maximum time-step
 - Can be considered the "standard" case
 - Fully Implicit
 - Nonlinear terms are linearized and treated implicitly as the linear terms
 - Seems to be used less frequently than the other options
 - Main advantage: Large time-steps in low Mach-number flows
 - Fully Explicit
 - All terms are treated explicitly

- In general, the DG method allows the application of all common time discretization schemes
- ▶ On the whole, one generally distinguishes between three types of schemes:
 - Semi-implicit
 - Usually linear terms are treated implicitly (e.g. using an Implicit-Euler or a Crank-Nicolson scheme) while all others are treated explicitly
 - ► The terms treated explicitly limit the maximum time-step
 - Can be considered the "standard" case
 - Fully Implicit
 - Nonlinear terms are linearized and treated implicitly as the linear terms
 - Seems to be used less frequently than the other options
 - Main advantage: Large time-steps in low Mach-number flows
 - Fully Explicit
 - All terms are treated explicitly
 - Main advantage: Low computational cost per time-step

► The length of a time-step using an explicit scheme is usually limited by the so called *CFL condition*

- The length of a time-step using an explicit scheme is usually limited by the so called CFL condition
- ightharpoonup This condition generally depends on the applied scheme and the minimum cell size Δx

- The length of a time-step using an explicit scheme is usually limited by the so called CFL condition
- This condition generally depends on the applied scheme and the minimum cell size Δx
- For the one-dimensional heat equation, for example, one has

$$\Delta t_{\rm max} \propto \Delta x^2$$
 (24)

- The length of a time-step using an explicit scheme is usually limited by the so called CFL condition
- This condition generally depends on the applied scheme and the minimum cell size Δx
- ► For the one-dimensional heat equation, for example, one has

$$\Delta t_{\rm max} \propto \Delta x^2$$
 (24)

But in the context of DG methods, this becomes much more restrictive:

$$\Delta t_{\text{max}} \propto \frac{\Delta x^2}{(2N+1)^2} \tag{25}$$

(where *N* is the polynomial degree of the approximation)

- The length of a time-step using an explicit scheme is usually limited by the so called CFL condition
- This condition generally depends on the applied scheme and the minimum cell size Δx
- For the one-dimensional heat equation, for example, one has

$$\Delta t_{\rm max} \propto \Delta x^2$$
 (24)

But in the context of DG methods, this becomes much more restrictive:

$$\Delta t_{\text{max}} \propto \frac{\Delta x^2}{(2N+1)^2} \tag{25}$$

(where *N* is the polynomial degree of the approximation)

► E.g. in [Gassner2009c] similar formulations for our case are shown and can be used to determine the time-step restriction

► Implicit methods often are nearly unconditionally stable which seems to make them superior

- Implicit methods often are nearly unconditionally stable which seems to make them superior
- ▶ But: Stability is not enough. For accurate results in fully unsteady flow simulations (e.g, think of turbulence), the time-step cannot be too large without losing information

- Implicit methods often are nearly unconditionally stable which seems to make them superior
- But: Stability is not enough. For accurate results in fully unsteady flow simulations (e.g, think of turbulence), the time-step cannot be too large without losing information
- ➤ On the other hand, explicit methods are by far less computationally expensive (especially when local time-stepping can be used)

- ► Implicit methods often are nearly unconditionally stable which seems to make them superior
- But: Stability is not enough. For accurate results in fully unsteady flow simulations (e.g, think of turbulence), the time-step cannot be too large without losing information
- On the other hand, explicit methods are by far less computationally expensive (especially when local time-stepping can be used)
- But: For low Mach number flows, for example, the time-step restriction is dominated by the speed fast acoustic waves

- ► Implicit methods often are nearly unconditionally stable which seems to make them superior
- But: Stability is not enough. For accurate results in fully unsteady flow simulations (e.g, think of turbulence), the time-step cannot be too large without losing information
- On the other hand, explicit methods are by far less computationally expensive (especially when local time-stepping can be used)
- But: For low Mach number flows, for example, the time-step restriction is dominated by the speed fast acoustic waves
- Conclusion

- Implicit methods often are nearly unconditionally stable which seems to make them superior
- But: Stability is not enough. For accurate results in fully unsteady flow simulations (e.g, think of turbulence), the time-step cannot be too large without losing information
- On the other hand, explicit methods are by far less computationally expensive (especially when local time-stepping can be used)
- But: For low Mach number flows, for example, the time-step restriction is dominated by the speed fast acoustic waves
- Conclusion
 - There is no optimal setting for all situations

- ► Implicit methods often are nearly unconditionally stable which seems to make them superior
- But: Stability is not enough. For accurate results in fully unsteady flow simulations (e.g, think of turbulence), the time-step cannot be too large without losing information
- On the other hand, explicit methods are by far less computationally expensive (especially when local time-stepping can be used)
- But: For low Mach number flows, for example, the time-step restriction is dominated by the speed fast acoustic waves
- Conclusion
 - There is no optimal setting for all situations
 - ► High Mach number and/or highly dynamic → Fully explicit or semi-implicit

- Implicit methods often are nearly unconditionally stable which seems to make them superior
- But: Stability is not enough. For accurate results in fully unsteady flow simulations (e.g, think of turbulence), the time-step cannot be too large without losing information
- On the other hand, explicit methods are by far less computationally expensive (especially when local time-stepping can be used)
- But: For low Mach number flows, for example, the time-step restriction is dominated by the speed fast acoustic waves
- Conclusion
 - There is no optimal setting for all situations
 - ▶ High Mach number and/or highly dynamic \rightarrow Fully explicit or semi-implicit
 - ▶ Low Mach number and/or steady → Fully implicit or semi-implicit

Overview

Introduction to the Discontinuous Galerkin framework

Application of the DG approach to the compressible Navier-Stokes equations

Time discretization

Outlook on some advanced features

Local time-stepping Hp-adaptivity

Overview

Introduction to the Discontinuous Galerkin framework

Application of the DG approach to the compressible Navier-Stokes equations

Time discretization

Outlook on some advanced features Local time-stepping Ho-adaptivity

The concept of local-time-stepping

 Usually a small number of tiny cells limits the maximum time-step size for the whole simulation

The concept of local-time-stepping

- Usually a small number of tiny cells limits the maximum time-step size for the whole simulation
- In explicit DG schmes it is possible to apply this very small time-step only where it is really needed (using so called ADER or CERK schemes)

The concept of local-time-stepping

- Usually a small number of tiny cells limits the maximum time-step size for the whole simulation
- In explicit DG schmes it is possible to apply this very small time-step only where it is really needed (using so called ADER or CERK schemes)

(a) Three cells with their maximum time-step

Figure: Visualization of the local-time-stepping procedure (taken from [Gassner2009c])

The concept of local-time-stepping

- Usually a small number of tiny cells limits the maximum time-step size for the whole simulation
- In explicit DG schmes it is possible to apply this very small time-step only where it is really needed (using so called ADER or CERK schemes)

- (a) Three cells with their maximum time-step
- (b) Local advancement of the cell with the sharpest restriction

Figure: Visualization of the local-time-stepping procedure (taken from [Gassner2009c])

Overview

Introduction to the Discontinuous Galerkin framework

Application of the DG approach to the compressible Navier-Stokes equations

Time discretization

Outlook on some advanced features

Local time-stepping

Hp-adaptivity

▶ Automatic grid adaptation in critical regions is desirabe for many applications

- Automatic grid adaptation in critical regions is desirabe for many applications
- The main problem: It is generally not trivial to split single while retaining a conforming mesh

- Automatic grid adaptation in critical regions is desirabe for many applications
- The main problem: It is generally not trivial to split single while retaining a conforming mesh

(a) Example of a mesh where the red cell should be refined

- Automatic grid adaptation in critical regions is desirabe for many applications
- The main problem: It is generally not trivial to split single while retaining a conforming mesh

(a) Example of a mesh where the red cell should be refined

(b) Example of a conforming, mixed element refinement

- Automatic grid adaptation in critical regions is desirabe for many applications
- The main problem: It is generally not trivial to split single while retaining a conforming mesh

(a) Example of a mesh where the red cell should be refined

(b) Example of a conforming, mixed element refinement

(c) Example of a non-conforming refinement with one hanging node (red)

- Automatic grid adaptation in critical regions is desirabe for many applications
- The main problem: It is generally not trivial to split single while retaining a conforming mesh

(a) Example of a mesh where the red cell should be refined

(b) Example of a conforming, mixed element refinement

(c) Example of a non-conforming refinement with one hanging node (red)

Due to the simple interaction between cells (→ fluxes), DG schemes can (relatively) easily cope with so called hanging nodes

▶ Adjacent cells only communicate through fluxes → There is no need for the approximation to be of the same polynomial degree in every cell

- Adjacent cells only communicate through fluxes \rightarrow There is no need for the approximation to be of the same polynomial degree in every cell
- ► There are cases where either the local increase or decrease of the polynomial order can be beneficial:

- Adjacent cells only communicate through fluxes \rightarrow There is no need for the approximation to be of the same polynomial degree in every cell
- There are cases where either the local increase or decrease of the polynomial order can be beneficial:
 - Near shocks, for example, one might want to decrease the order to avoid the so called Gibbs phenomenon

- Adjacent cells only communicate through fluxes → There is no need for the approximation to be of the same polynomial degree in every cell
- There are cases where either the local increase or decrease of the polynomial order can be beneficial:
 - Near shocks, for example, one might want to decrease the order to avoid the so called Gibbs phenomenon
 - In regions with temporary strong dynamic changes one might want to increase the polynomial order

- Adjacent cells only communicate through fluxes → There is no need for the approximation to be of the same polynomial degree in every cell
- There are cases where either the local increase or decrease of the polynomial order can be beneficial:
 - Near shocks, for example, one might want to decrease the order to avoid the so called Gibbs phenomenon
 - In regions with temporary strong dynamic changes one might want to increase the polynomial order
- Main issues: Development of general, reliable error indicators and efficient data representation

- Adjacent cells only communicate through fluxes → There is no need for the approximation to be of the same polynomial degree in every cell
- There are cases where either the local increase or decrease of the polynomial order can be beneficial:
 - Near shocks, for example, one might want to decrease the order to avoid the so called Gibbs phenomenon
 - In regions with temporary strong dynamic changes one might want to increase the polynomial order
- Main issues: Development of general, reliable error indicators and efficient data representation
- Popular choices in the context of CFD:

- Adjacent cells only communicate through fluxes → There is no need for the approximation to be of the same polynomial degree in every cell
- There are cases where either the local increase or decrease of the polynomial order can be beneficial:
 - Near shocks, for example, one might want to decrease the order to avoid the so called Gibbs phenomenon
 - In regions with temporary strong dynamic changes one might want to increase the polynomial order
- Main issues: Development of general, reliable error indicators and efficient data representation
- Popular choices in the context of CFD:
 - Detection of shocks: Gradient based detectors

- Adjacent cells only communicate through fluxes → There is no need for the approximation to be of the same polynomial degree in every cell
- There are cases where either the local increase or decrease of the polynomial order can be beneficial:
 - Near shocks, for example, one might want to decrease the order to avoid the so called Gibbs phenomenon
 - In regions with temporary strong dynamic changes one might want to increase the polynomial order
- Main issues: Development of general, reliable error indicators and efficient data representation
- Popular choices in the context of CFD:
 - Detection of shocks: Gradient based detectors
 - Detection of boundary layers: Vorticity based detectors

▶ Problem: Unphysical oscillations of higher order approximations near jumps

▶ Problem: Unphysical oscillations of higher order approximations near jumps

(a) Example of a discontinuous exact solution

▶ Problem: Unphysical oscillations of higher order approximations near jumps

(a) Example of a discontinuous exact solution

(b) Gibbs phenomenon for a higher order approxmation

Problem: Unphysical oscillations of higher order approximations near jumps

(a) Example of a discontinuous exact solution

- (b) Gibbs phenomenon for a higher order approxmation
- ▶ In FVM, for example, usually *slope limiters* are applied to avoid this behaviour

Problem: Unphysical oscillations of higher order approximations near jumps

(a) Example of a discontinuous exact solution

- (b) Gibbs phenomenon for a higher order approxmation
- ▶ In FVM, for example, usually slope limiters are applied to avoid this behaviour
- The simple order reduction in DG is a much "cleaner" approach since these limiters decrease the local order of exactness anyway

Local order adaptation: Order elevation

- ▶ Regions with strong gradients have to be resolved very accurately
 - ightarrow e.g. extremely fine meshes in boundary layers

Local order adaptation: Order elevation

- Regions with strong gradients have to be resolved very accurately
 - ightarrow e.g. extremely fine meshes in boundary layers
- Drawback: Critical regions must be defined a priori and/or cannot easily be adapted in case of dynamic changes

Local order adaptation: Order elevation

- ▶ Regions with strong gradients have to be resolved very accurately
 - ightarrow e.g. extremely fine meshes in boundary layers
- Drawback: Critical regions must be defined a priori and/or cannot easily be adapted in case of dynamic changes
- Example: Kárman vortex street

Local order adaptation: Order elevation

- Regions with strong gradients have to be resolved very accurately
 - ightarrow e.g. extremely fine meshes in boundary layers
- Drawback: Critical regions must be defined a priori and/or cannot easily be adapted in case of dynamic changes
- Example: Kárman vortex street

Whirls should be resolved very accurately but they move through the domain!

Local order adaptation: Order elevation

- Regions with strong gradients have to be resolved very accurately
 - ightarrow e.g. extremely fine meshes in boundary layers
- Drawback: Critical regions must be defined a priori and/or cannot easily be adapted in case of dynamic changes
- Example: Kárman vortex street

- Whirls should be resolved very accurately but they move through the domain!
- DG approach: Dynamically increase the local order near whirls and decrease it again if the whirl has moved on

The end

Thank you for your attention! Any questions?

References I

[Dumbser2005]

M. Dumbser

Arbitrary High Order Schemes for the Solution of Hyperbolic Conservation Laws in Complex Domains

Stuttgart, 2005

[Gassner2009b]

G. Gassner

Discontinuous Galerkin methods for the unsteady compressible Navier-Stokes equations

Stuttgart, 2009

References II

[Gassner2009c]

G. Gassner, C. Altmann, F. Hindenlang, M. Staudenmeier and C. D. Munz Explicit Discontinuous Galerkin Schemes with Adaptation in Space and Time Stuttgart, 2009

[Hesthaven2007]

J. S. Hesthaven and T. Warburton

Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications Springer, Berlin, 2007

[Prandtl2008]

L. Prandtl

Führer durch die Strömungslehre Grundlagen und Phänomene Teubner, Wiesbaden, 2008