

TREE DISTRIBUTION APPROXIMATORS

Why

We want to approximate a given distribution with one which factors according to a tree.

Definition

Given $q: A \to [0, 1]$, we want to find a distribution p on A and tree T on $\{1, \ldots, n\}$ to

minimize
$$d_{kl}(q, p)$$

subject to p factors according to T .

where d_{kl} is the relative entropy as a criterion of approximation. We call such a distribution a tree distribution approximator (or tree approximator) and we call the tree the approximator tree.

Result

Prop. 1. Let A_1, \ldots, A_n be finite non-empty sets. Define $A = \prod_{i=1}^n A_i$. Let $q: A \to [0,1]$ a distribution and T a tree on $\{1,\ldots,n\}$. The distribution $p_T^*: A \to [0,1]$ defined by

$$p_T^* = q_1 \prod_{i
eq 1} q_{i|\mathrm{pa}\,i}$$

minimizes the relative entropy with q among all distributions on A which factor according to T.

Proof. Let $p:A\to [0,1]$ be a distribution which factors ac-

cording to T. First, express

$$p = p_1 \prod_{i \neq i} p_{i|\text{pa}\,i}$$

where pa i is the parent of vertex i in T rooted at vertex 1 (i = 2, ..., n).

Second, recall that the relative entropy of q with p is H(q, p) - H(q). Since H(q) does not depend on p, p is a minimizer of the relative of q with p if and only if p is a minimizer of H(q, p).

Third, express

$$H(q, p) = -\sum_{a \in A} q(a) \log p(a)$$

$$= -\sum_{a \in A} q(a) \left(\log p_1(a_1) + \sum_{i \neq 1} \log p_{i|pai}(a_i, a_{pai}) \right)$$

$$= H(q_1, p_1) + \sum_{i \neq 1} \sum_{a_{pai} \in A_{pai}} q_{pai}(a_{pai}) H(q_{i|pai}(\cdot, a_{pai}), p_{i|pai}(\cdot, a_{pai}))$$

which separates across p_1 an $p_{i|pai}(\cdot, a_{pai})$ for i = 2, ..., n and $a_{pai} \in A_{pai}$.

Fourth, recall $H(\cdot,\cdot) \geq 0$ and is zero on repeated pairs. By this, we mean, for example, $H(p_1, p_1) = 0$. So $p_1 = q_1$ and $p_{i|pai} = q_{i|pai}$ are solutions.

Proposition 1 states the form of an optimal approximator given a tree. A natural next question is to select the tree.

3

