

Cambridge International Examinations

Cambridge Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

5748005294

CHEMISTRY 5070/22

Paper 2 Theory

October/November 2015

1 hour 30 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Section A

Answer all questions.

Write your answers in the spaces provided in the Question Paper.

Section B

Answer any three questions.

Write your answers in the spaces provided in the Question Paper.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

Section A

Answer all the questions in this section in the spaces provided.

The total mark for this section is 45.

A1 Choose from the following elements to answer the questions below.

aluminium
argon
carbon
copper
iodine
iron
lead
magnesium
nitrogen
oxygen
sulfur

Each of these elements can be used once, more than once or not at all.

Which element

(a)	has an ion which, in aqueous solution, reacts with aqueous sodium hydroxide to give a red-brown precipitate,
	[1]
(b)	has an atom with an electronic configuration with only five occupied electron shells,
	[1]
(c)	has an oxide which decolourises acidified potassium manganate(VII),
	[1]
(d)	has a sulfate which is insoluble in water,
	[1]
(e)	provides an inert atmosphere for the extraction of reactive metals,
	[1]
(f)	produces ammonia when it is warmed with an aqueous mixture of sodium nitrate and sodium hydroxide?
	[1]

[Total: 6]

A2	Plai	nts c	ontain many different types of carbon compounds.	
	(a)	Cai	bon compounds are made in plants by photosynthesis.	
		Wri	te the overall equation for photosynthesis and state the conditions required for this proc	ess
				[3]
	(b)		rch is a polymer found in plants. rch can be hydrolysed.	
		(i)	Give the name of the product formed when starch is hydrolysed.	
				[1]
		(ii)	Give the reagent and conditions needed to hydrolyse starch.	
				[2]

(c) When wood chips are heated in the absence of air, a colourless distillate is formed.

The distillate contains ethanoic acid, esters and other organic compounds.

(i)	Ethanoic acid reacts with calcium hydroxide to form a salt and water.	
	Give the name and formula of the salt formed.	
	name	
	formula	[2

(ii) One of the esters in the distillate has the molecular formula, $C_4H_8O_2$.

Draw the structure of an ester with this formula, showing all the atoms and all the bonds.

(iii) The distillate also contains a compound with the following composition.

element	percentage by mass
carbon	37.5
hydrogen	12.5
oxygen	50.0

Deduce the empirical formula of this compound.

empirical formula	 [2]
	[Total: 11]

٧	vater for use in the nome is treated using carbon and chlorine.
(a	a) Explain the purpose of using carbon and chlorine in water treatment.
	carbon
	chlorine[2
(I) In some parts of the world, drinking water is purified by desalination.
	What is meant by the term desalination?
	[1
(Piver water may contain pollutants from agricultural sources. These pollutants may cause eutrophication.
	Give the names of two anions present in fertilisers which contribute to eutrophication.
	and[1
(d) An aqueous solution of barium chloride is added to a sample of water which contains sulfate ions. A white precipitate forms.
	Construct an ionic equation, including state symbols, for this reaction.
	[2

[Total: 6]

Δ4	Iron is	extracted in	n a hlast	furnace	The	raw materials	required are
A4	1101115	extracted ii	i a biasi	i iumace.	HILE	raw matemais	required are

•		
	•	iron ore, which contains iron(III) oxide, ${\rm Fe_2O_3}$, limestone, coke (carbon), air.
(a)	The	coke first burns in air to form carbon dioxide.
(4)		carbon dioxide is then reduced by coke to produce carbon monoxide.
		carbon monoxide reduces the iron(III) oxide to iron.
		• •
	Writ	e equations for
	(i)	the reduction of carbon dioxide by coke,
	(')	the reduction of surport dioxide by coke,
		[1
	(ii)	the reduction of iron(III) oxide to iron by carbon monoxide.
		[4
		[1
(b)	Whν	is limestone added to the blast furnace?
()	,	, 12

(c) Another ore of iron contains an oxide with the formula ${\rm Fe_3O_4}$.

Calculate the percentage by mass of iron in $\mathrm{Fe_3O_4}.$

[2]

(u)	The reactions at the electrodes are given.	aqueous acidilled solution of fron(11) suitate.
	at the anode (positive electrode):	$\rm 4OH^- \rightarrow O_2 + 2H_2O + 4e^-$
	at the cathode (negative electrode):	$Fe^{2+} + 2e^{-} \rightarrow Fe$
	Which reaction is oxidation and which is redu	action? Explain your answer.
		[2
(e)	Attaching magnesium strips to the iron hulls	of ships can lower their rate of rusting.
	Explain how the magnesium stops the iron fr	om rusting.
		[2
(f)	Aqueous iron(II) chloride is one of the producid.	ucts formed when iron reacts with hydrochloric
	Construct an equation for this reaction.	
		[1
		[Total: 10

A5 (a) Two students set up tubes as shown.

Concentrated hydrochloric acid produces fumes of hydrogen chloride. Concentrated hydrobromic acid produces fumes of hydrogen bromide.

Four minutes after setting up the experiment, the litmus paper in tube 1 turns red. Seven minutes after setting up the experiment, the litmus paper in tube 2 turns red.

Use the kinetic particle theory to explain

(i)	how the gases move through the tubes,
	[2
(ii)	why the gases take different times to reach the litmus paper.
	[1

(b) A gas syringe is filled with 80 cm³ of hydrogen chloride gas at 20°C. The syringe is placed in some hot water at 50°C. The atmospheric pressure does not change but the volume of the gas in the syringe increases to 88 cm³.

Use the kinetic particle theory to explain why the volume increases.
[2

[Total: 5]

A6 When one mole of sulfur burns, 247 kJ of energy is releas
--

sodium hydroxide.

$$S(s) + O_2(g) \rightarrow SO_2(g)$$

(a)	Calculate the energy	released when	9.60 a of sulfur	is burnt.
\~ /	oaloalate the ollergy		. 0.00 9 0. 04.14.	

(b) When sulfur dioxide is passed through aqueous sodium hydroxide, sodium hydrogensulfite is formed. Sodium hydrogensulfite contains the hydrogensulfite ion, HSO₃⁻.

Construct the ionic equation for this reaction.

[1]

(c) The hydrogensulfite ion is a weaker acid than ethanoic acid.

Samples of 0.1 g of magnesium are added separately to 0.1 mol/dm³ ethanoic acid and 0.1 mol/dm³ hydrogensulfite ions.

Explain why the reaction is faster with ethanoic acid.

[2]

(d) Calculate the volume of 0.10 mol/dm³ sodium hydroxide which contains 3.2 g of

volume of aqueous sodium hydroxide = cm³ [2]

[Total: 7]

Section B

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

B7 The structures of diamond and silicon dioxide are shown.

(a)	Describe one similarity in the structures of diamond and silicon dioxide.
	[1]
(b)	Explain why silicon dioxide has a high melting point.
	[2]
(c)	Silicon dioxide reacts with hot concentrated sodium hydroxide to form sodium silicate, $\mathrm{Na_2SiO_3}.$
	Deduce the formula of the silicate ion.
	[1]
(d)	Explain why diamond does not conduct electricity.
	[1]
(e)	Graphite is a form of carbon which conducts electricity. Graphite is used as electrodes in electrolysis.
	What is the meaning of the term <i>electrolysis</i> ?
	[1]

(f)) Aluminium is extracted by the electrolysis of molten aluminium oxide dissolved in cryolite.									
	Construct the equation for the reaction at									
	(i) the anode (positive electrode),									
			[1]							
	(ii)	the cathode (negative electrode).								
			[1]							
(g)	An	isotope of silicon is represented by the symbol ²⁹ ₁₄ Si.								
	Deduce the number of protons and neutrons in this isotope.									
	nur	mber of protons								
	nur	mber of neutrons	[1]							
(h)	Sili	icon has a relative atomic mass of 28.								
	Det	fine the term <i>relative atomic mass</i> .								
			[1]							
		П	otal: 10]							

B8	Chlorine	reacts	with	sodium	hydroxide.
		reacts	VVILII	Souluiii	HIVUI ONIGO.

(a) A volume of 144 cm³ of chlorine gas, measured at room temperature and pressure, is passed into 38.0 cm³ of 0.250 mol/dm³ sodium hydroxide.

Show by calculation which reactant is in excess.

(b)	Chlo	Chlorine displaces bromine from an aqueous solution of potassium bromide.							
	(i)	Construct the equation for this reaction.							
	(ii)	Explain why bromine does not react with aqueous potassium chloride.							
			[1]						
	(iii)	Give the charge of a chloride ion and its electronic configuration.							
		charge							
		electronic configuration	[2]						
(c)		plain why sodium chloride does not conduct electricity when solid but does cond ctricity when molten.							
			[4]						

[3]

[Total: 10]

Question B9 begins on page 16.

B9 When rubber is heated in the absence of air, a small amount of isoprene is formed. The structure of isoprene is shown.

(a)	Isoprene is an unsaturated hydrocarbon.
	Describe a test for an unsaturated hydrocarbon.
	[2
(b)	Isoprene is a liquid at 25 °C.
	Describe the arrangement and motion of the particles in isoprene at 25 °C.
	[2
(c)	Isoprene reacts with sulfur dioxide to form methylsulfolene.
	$C_5H_8 + SO_2 \rightarrow C_5H_8SO_2$
	isoprene methylsulfolene

Calculate the maximum mass of methylsulfolene that can be formed from 100 g of isoprene.

mass of methylsulfolene = g [3]

- (d) (i) What feature of the isoprene molecule is responsible for it forming an addition polymer?
 - (ii) Perspex is also an addition polymer.

 The diagram shows part of the polymer chain of Perspex.

Deduce the formula of the monomer used to make Perspex.

[2]

[Total: 10]

B10 At 200 °C and 200 atmospheres pressure,	phosphorus(V)	chloride	forms ar	equilibrium	mixture
with phosphorus(III) chloride and chlorine.					

$$\begin{array}{cccc} \operatorname{PC}l_5(\mathbf{g}) & \Longleftrightarrow & \operatorname{PC}l_3(\mathbf{g}) & + & \operatorname{C}l_2(\mathbf{g}) \\ \operatorname{phosphorus(V)} & \operatorname{phosphorus(III)} \\ \operatorname{chloride} & \operatorname{chloride} \end{array}$$

(a)	Predict and explain the effect of decreasing the pressure on the position of this equilibrium. The temperature remains constant.					
				[2]		
(b)	Predict and exple	ain the effect of increasin	ng the concentration of chlo	rine on the position of this		
(c)			osphorus(III) chloride in t			
		temperature/°C	% PCl ₃ in the mixture]		
		200	48			
		300	95			
		400	99			
	(i) Describe ho	ow the composition of this	s equilibrium mixture chan	ges with temperature.		
				[1]		
	(ii) Explain wha	at this tells you about the	energy change in this read	ction.		

(d)	How is the position of equilibrium affected by the presence of a catalyst? [1]
(e)	
(f)	Phosphorus(V) chloride reacts with water. Phosphoric acid, $\rm H_3PO_4$, and hydrogen chloride are formed.
	Construct the equation for this reaction.
	[1]
	[Total: 10]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Derindic Table of the Flements DATA SHEET

		0	4 He lium	20 Ne on 10	40 Ar Argon	36	131 Xe Xeron Xeron 54	222 Rn Radon 86		
		NII		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 T lodine	210 At Astatine 85		_
		IN		16 Oxygen 8	32 S Sulfur	79 Selenium 34	128 Te Tellurium 52	209 Po Polonium 84		
		>		14 N Nitrogen 7	31 Phosphorus	75 AS Arsenic 33	122 Sb Antimony 51	209 Bis Bismuth 83		-
		//		12 Carbon	28 Si Silicon	73 Ge Germanium 32	Sn Tin 50	207 Pb Lead 82		
		≡		11 B Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T 1 Thallium		_
S						65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		
Element						64 Cu Copper	108 Ag Silver 47	197 Au Gold 79		
he Periodic Table of the Elements	dno					Nickel	106 Pd Palladium 46	195 Pt Platinum 78		_
dic Table	Group					59 Co Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium		
ne Perio			1 Hydrogen			56 Fe Iron	Ru Ruthenium 44	190 Os Osmium 76		
F						Manganese	Tc Technetium 43	186 Re Rhenium 75		
						Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		
						51 V Vanadium 23	93 Nobium 41	181 Ta Tananan Tananan Tananan Ta		
						48 Ti Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium '2		
						Sc Scandium 21	89 ×	139 La Lanthanum 57 * 7	227 Ac Actinium 89	
		=		9 Be Beryllium	24 Magnesium	40 Ca Calcium 20	Sr Strontium	137 Ba Barium 56	226 Ba Radium 88	
		_		7 Lithium	23 Na Sodium	39 K Potassium	Rb Rubidium 37	133 CS Caesium 55	223 Fr Francium 87	
201	5						2/O/N/15			

165 **H**Olmium 252 **ES** The volume of one mole of any gas is 24dm3 at room temperature and pressure (r.t.p.). **5**2 Berkelium 159 **7** Terbium 247 **BK** 65 **Curium** 152 **Eu** Europium Am Samarium Plutonium 244 **Pu** 237 **Np** 238 231 **Pa** 140 **Ceri**um Thorium 232 **Th** 28 90 b = atomic (proton) number a = relative atomic mass

X = atomic symbol

а **×**

Key

150 **Sm**

14 44 44 44

₁ 주

* 58-71 Lanthanoid series † 90-103 Actinoid series

175 **Lu** Lutetium

169 **Thulium**

167 **Er** Erbium

68

Ze0

S59 Nobelium

258 **Md**

257 **Fm**

© UCLES 2015 5070/22/O/N/15