

Theoretical Study of Skyrmions in Two-dimensional Materials

Rongjing Guo

Advisor: Prof. Yandong Ma

School of Physics, SDU rjguo@utexas.edu

$$Q = \frac{1}{4\pi} \int_{S} \mathbf{n}(\mathbf{r}) \cdot [\partial_{i} \mathbf{n}(\mathbf{r}) \times \partial_{j} \mathbf{n}(\mathbf{r})] d\mathbf{r}$$

a Skyrmions
$$(Q = \pm 1)$$
 b Biskyrmion $(Q = -2)$

c Merons (Q = ±1/2)

S. S. P. Parkin*, Science 320,5873 (2008)

V.Cros*, Nat. Nanotech. 8, 839-844 (2013)

a

Fe

Ir-

Nat. Rev. Mater. 2, 17031 (2017)

Heisenberg exchange interaction

Dzyaloshinskii-Moriya interaction

$$H_{EX} = -J\left[S_i\cdot S_j
ight]$$

$$H_{DM} = D \cdot [S_i imes S_j]$$

Spin-Orbital Coupling

Heisenberg VS DMI

Monolayer with Inversion Symmetry Broken

Janus Monolayers

Monolayers with Rashba Effect

Computational Method

$$H = -\sum_{\langle i,j \rangle} \mathbf{D}_{ij} \cdot \left(\mathbf{S}_i \times \mathbf{S}_j \right) - J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j - \lambda \sum_{\langle i,j \rangle} S_i^z S_j^z - K \sum_i (S_i^z)^2 - \mu_{Mn} B \sum_i S_i^z S_i^z + K \sum_i (S_i^z)^2 + \mu_{Mn} B \sum_i S_i^z S_i^z + K \sum_i (S_i^z)^2 + \mu_{Mn} B \sum_i S_i^z S_i^z + K \sum_i (S_i^z)^2 + \mu_{Mn} B \sum_i S_i^z S_i^z + K \sum_i (S_i^z)^2 + \mu_{Mn} B \sum_i S_i^z S_i^z + K \sum_i (S_i^z)^2 + \mu_{Mn} B \sum_i S_i^z S_i^z + K \sum_i (S_i^z)^2 + \mu_{Mn} B \sum_i S_i^z S_i^z + K \sum_i (S_i^z)^2 + \mu_{Mn} B \sum_i S_i^z S_i^z + \mu_{Mn$$

DFT + GPU-accelerated Monte Carlo

Janus Monolayers

Fert-levy Mechanism

Monolayers with Rashba Effect

Rashba-induced DMI

Topological Phase Transition

Anisotropic DMI with opposite signs along two orthogonal in-plane directions?

Anisotropic DMI

Generating new degree of freedom

Eliminating skyrmion Hall effect

Prospectives

Stablizing skyrmions in monolayers

Forming topological phase transitions in 2D multiferroic materials

Anisotropic DMI controlled by external fields

Thanks