Soluciones al Segundo parcial de Matemática Discreta 2

1. Sea $n \in \mathbb{N}$, n > 1. Se considera el conjunto

 $G_n = \{P: I\!\!R \to I\!\!R \, / \, P \text{ polinomio con coeficientes en } I\!\!R \text{ de grado } \leq n\}$

con la suma usual de polinomios.

(a) Probar que $(G_n, +)$ es un grupo abeliano.

Un polinomio genérico en G_n se escribe como

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum_{h=0}^{n} a_h x^h$$

La suma de $P, Q \in G_n$ es

$$\sum_{h=0}^{n} a_h x^h + \sum_{h=0}^{n} b_h x^h = \sum_{h=0}^{n} (a_h + b_h) x^h$$

Esto muestra que el grado de P+Q es menor o igual que n. Muestra también que tomando el polinomio idénticamente nulo (de grado $-\infty$) éste es el neutro de la suma y que el opuesto (inverso respecto a la operación suma) de $P(x) = \sum_{h=0}^{n} a_h x^h$ es $-P(x) = \sum_{h=0}^{n} (-a_h x^h)$. La asociatividad resulta de la asociatividad de $(\mathbb{R}, +)$. En efecto:

$$(P+Q) + R = (\sum_{h=0}^{n} a_h x^h + \sum_{h=0}^{n} b_h x^h) + \sum_{h=0}^{n} c_h x^h =$$
$$= \sum_{h=0}^{n} (a_h + b_h) x^h + \sum_{h=0}^{n} c_h x^h = \sum_{h=0}^{n} ((a_h + b_h) + c_h) x^h =$$

(Por la asociatividad de la suma en \mathbb{R} , $(a_h + b_h) + c_h = a_h + (b_h + c_h)$)

$$= \sum_{h=0}^{n} (a_h + (b_h + c_h))x^h = \sum_{h=0}^{n} a_h x^h + \sum_{h=0}^{n} (b_h + c_h)x^h = P + (Q + R)$$

Del mismo modo la abelianidad de G_n resulta de la conmutatividad en la suma de reales: $a_h + b_h = b_h + a_h$.

(b) Se considera $H = \{P(x) \in G_n / P(0) = P'(0) = 0\}$ (P'(x)) es la derivada de P(x). Probar que H es subgrupo normal de G_n .

Dado que G_n es abeliano, todos sus subgrupos son normales. Queda entonces ver que H es efectivamente un subgrupo. Es claro que $P \equiv 0$ (el polinomio nulo) está en H.

Si $P \in H$ entonces P(0) = P'(0) = 0, entonces el polinomio opuesto, -P cumple también que -P(0) = 0. Como la derivada de -P es -P' también se cumple que (-P)'(0) = -P'(0) = 0. Luego $-P \in H$.

Si $P, Q \in H$ entonces P(0) = Q(0) = 0. Luego (P+Q)(0) = P(0) + Q(0) = 0 + 0 = 0. También se cumple que (P+Q)' = P' + Q' y de aquí resulta que (P+Q)'(0) = P'(0) + Q'(0) = 0. Luego $P+Q \in H$.

Se probó que H es subgrupo (normal) de G_n .

(c) Sea $\varphi: G_n \to G_n$ dado por $\varphi(P(x)) = P''(x)$ (P''(x) es la derivada segunda de P(x)). Probar que φ es un homomorfismo de grupos. Hallar $Im(\varphi)$ y $Ker(\varphi)$.

Como $\varphi(P(x)) = P''(x)$ y (P+Q)'' = P'' + Q'' resulta que $\varphi(P+Q) = P'' + Q'' = \varphi(P) + \varphi(Q)$ probando que es un homomorfismo. Se cumple que $P \in \ker(\varphi)$ si y solo si $\varphi(P) = 0$ (el polinomio nulo), o sea, $P''(x) = 0 \,\forall x$. Como si $P(x) = \sum_{h=0}^{n} a_h x^h$ entonces $P''(x) = \sum_{h=0}^{n} h(h-1)a_h x^{h-2}$ para que se anule para todo x debe ocurrir que $a_2 = a_3 = \ldots = a_n = 0$. Por lo tanto el grado de P debe ser menor o igual que 1 y $P(x) = a_1 x + a_0$. Por otro lado, si grado de P es menor o igual que 1 derivándolo 2 veces da el polinomio nulo y entonces $P \in \ker(\varphi)$ probando que $\ker(\varphi) = G_1$ =polinomios de grado menor o igual que 1.

La misma fórmula para la derivada segunda da

$$P''(x) = \sum_{h=0}^{n} h(h-1)a_h x^{h-2} = \sum_{h=0}^{n-2} (h+2)h + 1)a_{h+2} x^h$$

Luego $Im(\varphi) \subset G_{n-2}$ =polinomios de grado menor o igual que n-2.

Pero dado un polinomio de grado menor o igual que n-2 es fácil encontrar uno en G_n que lo tenga por imágen mediante φ . Si $Q(x) = \sum_{h=0}^{n-2} b_h x^h$ tomamos

$$P(x) = \sum_{h=0}^{n-2} \frac{b_h}{(h+1)(h+2)} x^{h+2}$$

(primitivamos dos veces a Q) y entonces se tiene que $\varphi(P)=Q$. Por lo tanto $Im(\varphi)=G_{n-2}$.

(d) Probar que $G_n/Ker(\varphi)$ es isomorfo a H. [Sugerencia: $Im(\varphi)$ es isomorfo a H definiendo una función $\psi(Q(x)) = x^2Q(x), \ Q(x) \in Im(\varphi)$, que hay que ver que es isomorfismo...]

 $\psi(Q+R)=x^2(Q+R)=x^2Q+x^2P=\psi(Q)+\psi(R)$ probando que ψ es un homomorfismo. Está bien definida, pues multiplicando por x^2 a Q, queda un polinomio que cumple que $x^2Q(x)$ evaluado en 0 da $0^2Q(0)=0$. Derivando una vez queda $2xQ(x)+x^2Q'(x)$ que al evaluarlo en 0 da 0. Luego la imagen está en H.

Por la parte anterior, un elemento Q(x) de $Im(\varphi)$ es cualquier polinomio en G_{n-2} , luego sus coeficientes b_h son cualesquiera. Al multiplicar Q(x) por x^2 obtengo cualquier elemento de H (sus coeficientes pueden elegirse arbitrariamente). Luego ψ es sobreyectiva.

Finalmente, si $\psi(Q) = 0$, el polinomio nulo, quiere decir que todos los coeficientes de Q van a ser nulos. Luego $ker(\psi) = \{0\}$ y ψ es inyectiva. Entonces ψ es un isomorfismo de grupos. Luego H es isomorfo a $G_{n-2} = Im(\varphi)$. (Notación para decir que dos grupos son isomorfos: $G_{n-2} \cong H$.)

Por otra parte por el primer teorema de homomorfismos de grupos tenemos que $G_n/ker(\varphi) \cong Im(\varphi) = G_{n-2} \cong H$. Por transitividad de la relación de ser isomorfos tenemos que $G_n/ker(\varphi) \cong H$. Esto es lo que se pedía.

- 2. Recordar que dados $m_1, m_2 \in \mathbb{N}$ tales que $MCD(m_1, m_2) = 1$ y $a_1 \in \mathbb{Z}_{m_1}$, $a_2 \in \mathbb{Z}_{m_2}$ el Teorema Chino del Resto (TChR) dice que existe y es única módulo m_1m_2 la solución b de $\begin{cases} x \equiv a_1 \mod (m_1) \\ x \equiv a_2 \mod (m_2) \end{cases}$ y está dada por $b = (a_1m_2N_1 + a_2m_1N_2) \mod (m_1m_2)$ donde $m_2N_1 \equiv 1 \mod (m_1)$ y $m_1N_2 \equiv 1 \mod (m_2)$.
 - (a) Consideramos en $\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2}$ la suma + dada por:

$$(a_1, a_2) + (b_1, b_2) = ((a_1 + b_1) \mod m_1, (a_2 + b_2) \mod m_2)$$

Probar que $(\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2}, +)$ es un grupo abeliano.

Usamos que \mathbb{Z}_n es grupo abeliano con la suma módulo n.

$$(a_1, a_2) + (b_1, b_2) = ((a_1 + b_1) \mod m_1, (a_2 + b_2) \mod m_2) =$$

$$((b_1 + a_1) \mod m_1, (b_2 + a_2) \mod m_2) = (b_1, b_2) + (a_1, a_2)$$

Esto prueba la abelianidad. El neutro es (0,0) y el opuesto de $(a_1,a_2) = -(a_1,a_2) = (-a_1,-a_2) = (m_1-a_1,m_2-a_2)$ como se verifica de inmediato. Por ejemplo: $(a_1,a_2) + (m_1-a_1,m_2-a_2) = (m_1 \mod m_1,m_2 \mod m_2) = (0,0)$ La asociatividad, como en el ejercicio anterior en que se deriva de la asociatividad en \mathbb{Z}_n , se deriva ahora de la asociatividad en \mathbb{Z}_n .

(b) Consideramos el grupo $(\mathbb{Z}_{m_1 \times m_2}, +)$ con la suma + módulo $m_1 \times m_2$ (aceptamos que es un grupo) y

$$\varphi: \mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \to \mathbb{Z}_{m_1 \times m_2} / \varphi(a_1, a_2) = b$$

donde b es la solución dada por el TChR. Probar que φ es un homomorfismo de grupos.

Si tenemos que
$$\varphi((a_1, a_2) + (b_1, b_2)) = d$$
, la única solución de (XX)
$$\begin{cases} x \equiv a_1 + b_1 \mod(m_1) \\ x \equiv a_2 + b_2 \mod(m_2) \end{cases}$$

Y si b es la única solución de $\begin{cases} x \equiv a_1 \mod(m_1) \\ x \equiv a_2 \mod(m_2) \end{cases}$ y c es laúnica solución de $\begin{cases} x \equiv b_1 \mod(m_1) \\ x \equiv b_2 \mod(m_2) \end{cases}$, entonces $(b+c) \mod m_1 m_2$ es solución de (XX) y por unicidad tiene que ser d. Luego

$$\varphi((a_1, a_2) + (b_1, b_2)) = d = b + c \mod m_1 m_2 = \varphi(a_1, a_2) + \varphi(b_1, b_2)$$

probando que es un homomorfismo.

(c) Probar que φ es inyectiva y sobreyectiva.

Sobreyectividad: Dado $b \in \mathbb{Z}_{m_1 \times m_2}$ tomemos $a_1 = b \mod m_1$ y tomemos $a_2 =$ Sobreyectividad. Dado $b \in \mathbb{Z}_{m_1 \times m_2}$ to $a_1 \mod m_2$. Al resolver $\begin{cases} x \equiv a_1 \mod (m_1) \\ x \equiv a_2 \mod (m_2) \end{cases}$ tenemos, teniendo en cuenta que $b = a_1 \mod m_1$ y que $b = a_2 \mod m_2$, que es lo mismo que resolver $\begin{cases} x \equiv b \mod (m_1) \\ x \equiv b \mod (m_2) \end{cases}$

Es obvio que una solución es x = b. De aquí resulta por unicidad que es Luego φ es sobreyectiva.

Para ver la invectividad consideramos que $\varphi(a_1, a_2) = 0$. Entonces $0 = (a_1 m_2 N_1 +$ $a_2m_1N_2$) mod (m_1m_2) . La inyectividad es equivalente a que $ker(\varphi)=(0,0)$, o sea, que $a_1 = 0 \mod m_1$ y que $a_2 = 0 \mod m_2$. Tomando módulo respecto a m_1 y teniendo en cuenta que $m_2N_1=1\,mod\,m_1$ que da $0\,mod\,m_1=a_1+0\,mod\,m_1$. El "0" de la igualdad corresponde a que m_1N_2 al ser múltiplo de m_1 es 0, módulo m_1 . Luego $a_1 = 0 \mod m_1$. Del mismo modo, tomando módulos respecto a m_2 queda que $a_2 = 0 \mod m_2$.

(d) Deducir que $\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2}$ es un grupo cíclico.

El grupo $\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2}$ resulta, vía φ , isomorfo a $\mathbb{Z}_{m_1 \times m_2}$. Este grupo, como todos los $\mathbb{Z}_n,$ es cíclico. Por ejemplo, el 1 es generador de $\mathbb{Z}_n.$ De aquí, tomando la preimagen de 1 por φ resulta un generador de $\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2}$. Luego este grupo es cíclico.

1. Se considera la permutación $p \in S_{12}$ producto de

y del ciclo $p_2 = (1, 8, 5, 4, 12);$ $p = p_1 p_2.$

Descomponer p en ciclos ajenos, hallar la paridad de p y calcular p^{344} .

Solución: p = (1, 11, 9, 12, 2, 5)(3, 4, 10, 6, 7, 8). p es par pues el producto de dos 6-ciclos, cada ciclo es par o impar según el número de elementos, si interviene un número par de elementos es impar, y si interviene un número impar de elementos entonces es par, luego en este caso cada ciclo es impar. Pero como p es el producto de dos ciclos impares ambos, resulta que p es par. p tiene orden 6 porque el orden de p es el mínimo común múltiplo del orden de sus ciclos (una vez descompuesta p en ciclos ajenos). Por esto resulta que $p^{344} = (p^{6\cdot57+2} = (p^6)^{57}p^2 = p^2 = (1,9,2)(3,10,7)(4,6,8)(5,11,12)$

2. Se considera la permutación $p \in S_{12}$ producto de

y del ciclo $p_2 = (12, 7, 4, 3, 11);$ $p = p_1 p_2.$

Descomponer p en ciclos ajenos, hallar la paridad de p y calcular p^{344} .

p = (1, 3, 10, 7, 2, 6, 8, 12, 9)(4, 5), el 11 queda fijo. p impar, orden de p es $mcm\{9, 2\} = 18$. Luego $p^{344} = p^{18\cdot 19+2} = (p^{18})^{19}p^2 = p^2 = (1, 10, 2, 8, 9, 3, 7, 6, 12)$.

3. Se considera la permutación $p \in S_{12}$ producto de

y del ciclo $p_2 = (3, 10, 7, 6, 2);$ $p = p_1 p_2.$

Descomponer p en ciclos ajenos, hallar la paridad de p y calcular p^{344} .

p = (1, 12, 8, 9, 10, 6, 3, 4, 11, 7, 5), p es par. Como el orden de p es 11 y el resto de dividir 344 por 11 es 3 queda que $p^{344} = p^3 = (1, 9, 3, 7, 12, 10, 4, 5, 8, 6, 11)$

4. Se considera la permutación $p \in S_{12}$ producto de

5

y del ciclo $p_2 = (6, 8, 5, 3, 11);$ $p = p_1 p_2.$

Descomponer p en ciclos ajenos, hallar la paridad de p y calcular p^{343} .

p = (1, 3, 9, 12, 10, 6, 7, 8, 2, 4), p es impar. El orden de p es 10. El resto de dividir 343 por 10 es 3 por lo que $p^{343} = p^3 = (1, 12, 7, 4, 9, 6, 2, 3, 10, 8)$.

5. Se considera la permutación $p \in S_{12}$ producto de

y del ciclo $p_2 = (12, 6, 9, 4, 10); \quad p = p_1 p_2.$

Descomponer p en ciclos ajenos, hallar la paridad de p y calcular p^{338} .

p = (1, 10, 2, 9)(3, 6, 12, 7, 8, 11, 5). p es impar. El orden de p es $mcm\{4, 7\} = 28$. El resto de dividir 338 por 28 es 2 por lo que $p^{338} = p^2 = (1, 2)(3, 12, 8, 5, 6, 7, 11)(9, 10)$.