Glenn Baddeley - GPS - NMEA sentence information

Contents

- All \$GPxxx sentence codes and short descriptions
- 26 interpreted sentences transmitted by GPS unit
- 12 interpreted Garmin proprietary sentences transmitted by GPS unit
- 8 interpreted Garmin proprietary sentences received by GPS unit
- Format of latitudes and longitudes
- References

[Top] [Glenn's GPS Contents Page]

All \$GPxxx sentence codes and short descriptions

- \$GPAAM Waypoint Arrival Alarm
- \$GPALM GPS Almanac Data
- \$GPAPA Autopilot format "A"
- \$GPAPB Autopilot format "B"
- \$GPASD Autopilot System Data
- \$GPBEC Bearing & Distance to Waypoint, Dead Reckoning
- \$GPBOD Bearing, Origin to Destination
- \$GPBWC Bearing & Distance to Waypoint, Great Circle
- \$GPBWR Bearing & Distance to Waypoint, Rhumb Line
- \$GPBWW Bearing, Waypoint to Waypoint
- \$GPDBT Depth Below Transducer
- \$GPDCN Decca Position
- \$GPDPT Depth
- \$GPFSI Frequency Set Information
- \$GPGGA Global Positioning System Fix Data
- \$GPGLC Geographic Position, Loran-C
- \$GPGLL Geographic Position, Latitude/Longitude
- \$GPGRS GPS Range Residuals
- \$GPGSA GPS DOP and Active Satellites
- \$GPGST GPS Pseudorange Noise Statistics
- \$GPGSV GPS Satellites in View
- \$GPGXA TRANSIT Position
- \$GPHDG Heading, Deviation & Variation
- \$GPHDT Heading, True
- \$GPHSC Heading Steering Command
- \$GPLCD Loran-C Signal Data
- \$GPMSK Control for a Beacon Receiver
- \$GPMSS Beacon Receiver Status
- \$GPMTA Air Temperature (to be phased out)
- \$GPMTW Water Temperature
- \$GPMWD Wind Direction
- \$GPMWV Wind Speed and Angle
- \$GPOLN Omega Lane Numbers
- \$GPOSD Own Ship Data
- \$GPR00 Waypoint active route (not standard)
- \$GPRMA Recommended Minimum Specific Loran-C Data
- \$GPRMB Recommended Minimum Navigation Information
- \$GPRMC Recommended Minimum Specific GPS/TRANSIT Data
- \$GPROT Rate of Turn

- \$GPRPM Revolutions
- \$GPRSA Rudder Sensor Angle
- \$GPRSD RADAR System Data
- \$GPRTE Routes
- \$GPSFI Scanning Frequency Information
- \$GPSTN Multiple Data ID
- \$GPTRF TRANSIT Fix Data
- \$GPTTM Tracked Target Message
- \$GPVBW Dual Ground/Water Speed
- \$GPVDR Set and Drift
- \$GPVHW Water Speed and Heading
- \$GPVLW Distance Traveled through the Water
- \$GPVPW Speed, Measured Parallel to Wind
- \$GPVTG Track Made Good and Ground Speed
- \$GPWCV Waypoint Closure Velocity
- \$GPWNC Distance, Waypoint to Waypoint
- \$GPWPL Waypoint Location
- \$GPXDR Transducer Measurements
- \$GPXTE Cross-Track Error, Measured
- \$GPXTR Cross-Track Error, Dead Reckoning
- \$GPZDA UTC Date / Time and Local Time Zone Offset
- \$GPZFO UTC & Time from Origin Waypoint
- \$GPZTG UTC & Time to Destination Waypoint

[Top]

26 interpreted sentences transmitted by GPS unit

```
$GPAAM - Waypoint Arrival Alarm
$GPALM - GPS Almanac Data (Can also be received by GPS unit)
$GPAPB - Autopilot format "B"
$GPBOD - Bearing, origin to destination
$GPBWC - Bearing and distance to waypoint, great circle
$GPGGA - Global Positioning System Fix Data
$GPGLL - Geographic position, latitude / longitude
$GPGRS - GPS Range Residuals
$GPGSA - GPS DOP and active satellites
$GPGST - GPS Pseudorange Noise Statistics
$GPGSV - GPS Satellites in view
$GPHDT - Heading, True
$GPMSK - Control for a Beacon Receiver
$GPMSS - Beacon Receiver Status
$GPR00 - List of waypoints in currently active route
$GPRMA - Recommended minimum specific Loran-C data
$GPRMB - Recommended minimum navigation info
$GPRMC - Recommended minimum specific GPS/TRANSIT data
$GPRTE - Routes
$GPTRF - TRANSIT Fix Data
$GPSTN - Multiple Data ID
$GPVBW - Dual Ground / Water Speed
GGPVTG - Track made good and ground speed
$GPWPL - Waypoint location
$GPXTE - Cross-track error, Measured
$GPZDA - UTC Date / Time and Local Time Zone Offset
```

There is a full list of \$GPxxx sentence codes available, without links to format details.

[Top]

\$GPAAM

Waypoint Arrival Alarm

This sentence is generated by some units to indicate the Status of arrival (entering the arrival circle, or passing the perpendicular of the course line) at the destination waypoint.

```
$GPAAM, A, A, 0.10, N, WPTNME * 32
```

Where:

AAM Arrival Alarm

A Arrival circle entered

A Perpendicular passed

0.10 Circle radius N Nautical miles WPTNME Waypoint name

*43 Checksum data

\$GPALM

GPS Almanac Data

A set of sentences transmitted by some Garmin units in response to a received \$PGRMO,GPALM,1 sentence. It can also be received by some GPS units (eg. Garmin GPS 16 and GPS 17) to initialize the stored almanac information in the unit.

Example 1: \$GPALM,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,*CC

```
1 = Total number of sentences in set
```

2 = Sentence sequence number in set

3 = Satellite number

4 = GPS week number

5 = Bits 17 to 24 of almanac page indicating SV health

6 = Eccentricity

7 = Reference time of almanac

8 = Inclination angle

9 = Right ascension rate

10 = Semi major axis route

11 = Argument of perigee (omega)

12 = Ascension node longitude

13 = Mean anomaly

14 = af0 clock parameter

15 = af1 clock parameter

Example 2: \$GPALM,1,1,15,1159,00,441d,4e,16be,fd5e,a10c9f,4a2da4,686e81,58cbe1,0a4,001*77

Field	Example	Comments
Sentence ID	\$GPALM	
Number of messages	1	Total number of messages in sequence
Sequence number	1	This is first message in sequence
Satellite PRN	15	Unique ID (PRN) of satellite message relates to
GPS week number	1159	
SV health	00	Bits 17-24 of almanac page
Eccentricity	441d	
Reference time	4e	Almanac reference time
Inclination angle	16be	

Rate of right ascension	fd5e	
Roor of semi-major axis	a10c9f	
Argument of perigee	4a2da4	
Longitude of ascension node	686e81	
Mean anomoly	58cbe1	
F0 clock parameter	0a4	
F1 clock parameter	001	
Checksum	*5B	

\$GPAPB

Autopilot format "B"

This sentence is sent by some GPS receivers to allow them to be used to control an autopilot unit. This sentence is commonly used by autopilots and contains navigation receiver warning flag status, cross-track-error, waypoint arrival status, initial bearing from origin waypoint to the destination, continuous bearing from present position to destination and recommended heading-to-steer to destination waypoint for the active navigation leg of the journey.

Note: Some autopilots, Robertson in particular, misinterpret "bearing from origin to destination" as "bearing from present position to destination". This is likely due to the difference between the APB sentence and the APA sentence. for the APA sentence this would be the correct thing to do for the data in the same field. APA only differs from APB in this one field and APA leaves off the last two fields where this distinction is clearly spelled out. This will result in poor performance if the boat is sufficiently off-course that the two bearings are different.

```
where:
   APB
           Autopilot format B
   A
           Loran-C blink/SNR warning, general warning
           Loran-C cycle warning
    0.10
           cross-track error distance
   R
           steer Right to correct (or L for Left)
   N
           cross-track error units - nautical miles (K for kilometers)
   V
           arrival alarm - circle
   V
           arrival alarm - perpendicular
   011,M magnetic bearing, origin to destination
```

magnetic bearing, present position to destination

magnetic heading to steer (bearings could True as 033,T)

\$GPAPB, A, A, 0.10, R, N, V, V, 011, M, DEST, 011, M, 011, M*3C

destination waypoint ID

\$GPBOD

DEST

011,M 011,M

Bearing Origin to Destination

```
eg. BOD,045.,T,023.,M,DEST,START

045.,T bearing 045 degrees True from "START" to "DEST"

023.,M breaing 023 degrees Magnetic from "START" to "DEST"

DEST destination waypoint ID
```

```
START origin waypoint ID
```

Example 1: \$GPBOD,099.3,T,105.6,M,POINTB,*48

Waypoint ID: "POINTB" Bearing 99.3 True, 105.6 Magnetic

This sentence is transmitted in the GOTO mode, without an active route on your GPS. WARNING: this is the bearing from the moment you press enter in the GOTO page to the destination waypoint and is NOT updated dynamically! To update the information, (current bearing to waypoint), you will have to press enter in the GOTO page again.

Example 2: \$GPBOD,097.0,T,103.2,M,POINTB,POINTA*4A

This sentence is transmitted when a route is active. It contains the active leg information: origin waypoint "POINTA" and destination waypoint "POINTB", bearing between the two points 97.0 True, 103.2 Magnetic. It does NOT display the bearing from current location to destination waypoint! WARNING Again this information does not change until you are on the next leg of the route. (The bearing from POINTA to POINTB does not change during the time you are on this leg.)

\$GPBWC

Bearing and distance to waypoint, great circle

```
eg1. $GPBWC,081837,,,,,T,,M,,N,*13
        BWC, 225444, 4917.24, N, 12309.57, W, 051.9, T, 031.6, M, 001.3, N, 004*29
           225444 UTC time of fix 22:54:44
           4917.24,N
                       Latitude of waypoint
           12309.57, W Longitude of waypoint
           051.9,T Bearing to waypoint, degrees true
031.6,M Bearing to waypoint, degrees magnetic
001.3,N Distance to waypoint, Nautical miles
           004
                        Waypoint ID
eg2. $GPBWC,220516,5130.02,N,00046.34,W,213.8,T,218.0,M,0004.6,N,EGLM*21
               1 2 3
                                 4 5 6 7 8 9 10 11 12 13
           220516 timestamp
      1
           5130.02 Latitude of next waypoint
      2
      3
           N
                     North/South
           00046.34 Longitude of next waypoint
      4
           East/West 213.0 True T
      5
      6
                     True track to waypoint
      7
           Т
                     True Track
           218.0 Magnetic track to waypoint
      8
      9
          M
                    Magnetic
         0004.6 range to waypoint
      10
      11
         N
                    unit of range to waypoint, N = Nautical miles
      12
         EGLM
                   Waypoint name
      13
           *11
                     checksum
```

\$GPGGA

Global Positioning System Fix Data

eg1. \$GPGGA,170834,4124.8963,N,08151.6838,W,1,05,1.5,280.2,M,-34.0,M,,,*59

Name	Example Data	Description
Sentence Identifier	\$GPGGA	Global Positioning System Fix Data
Time	170834	17:08:34 UTC
Latitude	4124.8963, N	41d 24.8963' N or 41d 24' 54" N
Longitude	08151.6838, W	81d 51.6838' W or 81d 51' 41" W
Fix Quality: - 0 = Invalid - 1 = GPS fix - 2 = DGPS fix	1	Data is from a GPS fix
Number of Satellites	05	5 Satellites are in view
Horizontal Dilution of Precision (HDOP)	1.5	Relative accuracy of horizontal position
Altitude	280.2, M	280.2 meters above mean sea level
Height of geoid above WGS84 ellipsoid	-34.0, M	-34.0 meters
Time since last DGPS update	blank	No last update
DGPS reference station id	blank	No station id
Checksum	*75	Used by program to check for transmission errors

Courtesy of Brian McClure, N8PQI.

Global Positioning System Fix Data. Time, position and fix related data for a GPS receiver.

eg2. \$GPGGA,hhmmss.ss,ddmm.mmm,a,dddmm.mmm,b,q,xx,p.p,a.b,M,c.d,M,x.x,nnnn

hhmmss.ss = UTC of position

ddmm.mmm = latitude of position

a = N or S, latitute hemisphere

dddmm.mmm = longitude of position

b = E or W, longitude hemisphere

q = GPS Quality indicator (0=No fix, 1=Non-differential GPS fix, 2=Differential GPS fix, 6=Estimated fix)

xx = number of satellites in use

p.p = horizontal dilution of precision

a.b = Antenna altitude above mean-sea-level

M = units of antenna altitude, meters

c.d = Geoidal height

M = units of geoidal height, meters

x.x = Age of Differential GPS data (seconds since last valid RTCM transmission)

nnnn = Differential reference station ID, 0000 to 1023

\$GPGLL

Geographic Position, Latitude / Longitude and time.

```
eg1. $GPGLL,3751.65,S,14507.36,E*77
eg2. $GPGLL,4916.45,N,12311.12,W,225444,A*31
          4916.46,N
                    Latitude 49 deg. 16.45 min. North
          12311.12,W Longitude 123 deg. 11.12 min. West
          225444 Fix taken at 22:54:44 UTC
                     Data valid
eg3. $GPGLL,5133.81,N,00042.25,W*75
                 2
                      3
     1
         5133.81 Current latitude
                  North/South
     3
         00042.25 Current longitude
     4
         W East/West
         *75 checksum
     5
```

\$--GLL,lll.ll,a,yyyyy,y,a,hhmmss.ss,A llll.ll = Latitude of position

```
a = N or S
yyyyy.yy = Longitude of position
a = E or W
hhmmss.ss = UTC of position
A = status: A = valid data
```

\$GPGRS

GPS Range Residuals

Example: \$GPGRS,024603.00,1,-1.8,-2.7,0.3,,,,,,*6C

Field	Example	Comments
Sentence ID	\$GPGRS	
UTC Time	024603.00	UTC time of associated GGA fix
Mode	1	0 = Residuals used in GGA, 1 = residuals calculated after GGA
Sat 1 residual	-1.8	Residual (meters) of satellite 1 in solution
Sat 2 residual	-2.7	The order matches the PRN numbers in the GSA sentence
Sat 3 residual	0.3	
Sat 4 residual		Unused entries are blank
Sat 5 residual		
Sat 6 residual		
Sat 7 residual		
Sat 8 residual		
Sat 9 residual		
Sat 10 residual		
Sat 11 residual		
Sat 12 residual		
Checksum	*6C	

\$GPGSA

GPS DOP and active satellites

\$GPGST

GPS Pseudorange Noise Statistics

Example: \$GPGST,024603.00,3.2,6.6,4.7,47.3,5.8,5.6,22.0*58

Field	Example	Comments
Sentence ID	\$GPGST	
UTC Time	024603.00	UTC time of associated GGA fix
RMS deviation	3.2	Total RMS standard deviation of ranges inputs to the navigation solution
Semi-major deviation	6.6	Standard deviation (meters) of semi-major axis of error ellipse
Semi-minor deviation	4.7	Standard deviation (meters) of semi-minor axis of error ellipse
Semi-major orientation	47.3	Orientation of semi-major axis of error ellipse (true north degrees)
Latitude error deviation	5.8	Standard deviation (meters) of latitude error
Longitude error deviation	5.6	Standard deviation (meters) of longitude error
Altitude error deviation	22.0	Standard deviation (meters) of latitude error
Checksum	*58	

\$GPGSV

GPS Satellites in view

```
\tt eg. \$GPGSV, 3, 1, 11, 03, 03, 111, 00, 04, 15, 270, 00, 06, 01, 010, 00, 13, 06, 292, 00*74
```

```
$GPGSV,3,2,11,14,25,170,00,16,57,208,39,18,67,296,40,19,40,246,00*74
    $GPGSV,3,3,11,22,42,067,42,24,14,311,43,27,05,244,00,,,,*4D
    $GPGSV,1,1,13,02,02,213,,03,-3,000,,11,00,121,,14,13,172,05*62
1
    = Total number of messages of this type in this cycle
2
    = Message number
3
    = Total number of SVs in view
    = SV PRN number
    = Elevation in degrees, 90 maximum
    = Azimuth, degrees from true north, 000 to 359
    = SNR, 00-99 dB (null when not tracking)
8-11 = Information about second SV, same as field 4-7
12-15= Information about third SV, same as field 4-7
16-19= Information about fourth SV, same as field 4-7
```

\$GPHDT

Heading, True.

Actual vessel heading in degrees Ture produced by any device or system producing true heading.

```
$--HDT,x.x,T
x.x = Heading, degrees True
```

\$GPMSK

Control for a Beacon Receiver

\$GPMSS

Beacon Receiver Status

Example 1: \$GPMSS,55,27,318.0,100,*66

where: 55 signal strength in dB 27 signal to noise ratio in dB 318.0 Beacon Frequency in KHz 100 Beacon bitrate in bps *66 checksum

Example 2: \$GPMSS,0.0,0.0,0.0,25,2*6D

Field	Example	Comments
Sentence ID	\$GPMSS	
Signal strength	0.0	Signal strength (dB 1uV)
SNR	0.0	Signal to noise ratio (dB)
Frequency	0.0	Beacon frequency (kHz)
Data rate	25	Beacon data rate (BPS)
Unknown field	2	Unknown field sent by GPS receiver used for test
Checksum	*6D	

\$GPR00

List of waypoint IDs in currently active route

```
eg1. $GPR00,EGLL,EGLM,EGTB,EGUB,EGTK,MBOT,EGTB,,,,,,*58
eg2. $GPR00,MINST,CHATN,CHAT1,CHATW,CHATM,CHATE,003,004,005,006,007,,,*05
List of waypoints. This alternates with $GPWPL cycle
which itself cycles waypoints.
```

\$GPRMA

Recommended minimum specific Loran-C data

\$GPRMB

Recommended minimum navigation information (sent by nav. receiver when a destination waypoint is active)

```
004
                       Destination waypoint ID
           4917.24,N Destination waypoint latitude 49 deg. 17.24 min. N
           12309.57,W Destination waypoint longitude 123 deg. 09.57 min. W
                    Range to destination, nautical miles
           052.5
                       True bearing to destination
           000.5
                       Velocity towards destination, knots
                       Arrival alarm A = arrived, V = not arrived
           *0B
                        mandatory checksum
eg2. $GPRMB,A,4.08,L,EGLL,EGLM,5130.02,N,00046.34,W,004.6,213.9,122.9,A*3D
               2 3 4 5
                                6 7 8 9 10
                                                            11
                     validity
           Α
      2
          4.08
                     off track
      3
                    Steer Left (L/R)
          L
          EGLL last waypoint EGLM next waypoint
      4
      5
          5130.02 Latitude of Next waypoint
      6
      7
                   North/South
      8
          00046.34 Longitude of next waypoint
     9 W East/West
10 004.6 Range
11 213.9 bearing to waypt.
12 122.9 closing velocity
13 A validity
14 *3D checksum
eg3. $GPRMB,A,x.x,a,c--c,d--d,llll.ll,e,yyyyy.yy,f,g.g,h.h,i.i,j*kk
     = Data Status (V=navigation receiver warning)
2
     = Crosstrack error in nautical miles
3
    = Direction to steer (L or R) to correct error
4
    = Origin waypoint ID#
5
    = Destination waypoint ID#
6
    = Destination waypoint latitude
7
    = N or S
8
    = Destination waypoint longitude
9
    = E or W
10 = Range to destination in nautical miles
11 = Bearing to destination, degrees True
12 = Destination closing velocity in knots
13 = Arrival status; (A=entered or perpendicular passed)
14 = Checksum
```

\$GPRMC

Recommended minimum specific GPS/TRANSIT data

```
eg1. $GPRMC,081836,A,3751.65,S,14507.36,E,000.0,360.0,130998,011.3,E*62 eg2. $GPRMC,225446,A,4916.45,N,12311.12,W,000.5,054.7,191194,020.3,E*68
```

225446	Time of fix 22:54:46 UTC
A	Navigation receiver warning A = Valid position, V = Warning
4916.45,N	Latitude 49 deg. 16.45 min. North
12311.12,W	Longitude 123 deg. 11.12 min. West
000.5	Speed over ground, Knots
054.7	Course Made Good, degrees true
191194	UTC Date of fix, 19 November 1994
020.3,E	Magnetic variation, 20.3 deg. East
*68	mandatory checksum

```
eg3. $GPRMC,220516,A,5133.82,N,00042.24,W,173.8,231.8,130694,004.2,W*70
                 2 3 4 5 6 7 8
     1 220516 Time Stamp
                   validity - A-ok, V-invalid
      2
        5133.82 current Latitude
North/South
      3
        N
      4
         00042.24 current Longitude
      5
      6
                    East/West
         173.8 Speed in K
231.8 True course
130694 Date Stamp
      7
                    Speed in knots
      8
                    True course
      9
     10 004.2
                    Variation
      11 W
                   East/West
     12 *70
                   checksum
eq4. for NMEA 0183 version 3.00 active the Mode indicator field is added
    $GPRMC, hhmmss.ss, A, llll.ll, a, yyyyy.yy, a, x.x, x.x, ddmmyy, x.x, a, m*hh
Field #
    = UTC time of fix
    = Data status (A=Valid position, V=navigation receiver warning)
3
   = Latitude of fix
4
   = N or S of longitude
5
   = Longitude of fix
   = E or W of longitude
6
7
    = Speed over ground in knots
    = Track made good in degrees True
8
    = UTC date of fix
10
   = Magnetic variation degrees (Easterly var. subtracts from true course)
    = E or W of magnetic variation
    = Mode indicator, (A=Autonomous, D=Differential, E=Estimated, N=Data not valid)
13
    = Checksum
```

\$GPRTE

Routes

```
eg. $GPRTE,2,1,c,0,PBRCPK,PBRTO,PTELGR,PPLAND,PYAMBU,PPFAIR,PWARRN,PMORTL,PLISMR*73 $GPRTE,2,2,c,0,PCRESY,GRYRIE,GCORIO,GWERR,GWESTG,7FED*34 1 2 3 4 5 ...
```

- 1. Number of sentences in sequence
- 2. Sentence number
- 3. 'c' = Current active route, 'w' = waypoint list starts with destination waypoint
- 4. Name or number of the active route
- 5. onwards, Names of waypoints in Route

\$GPTRF

TRANSIT Fix Data

Time, date, position, and information related to a TRANSIT Fix. The \$GPTRF and \$GPGXA sentences became obsolete when the TRANSIT satellite navigation system was replaced with GPS in 1996, refer to Wikipedia for further details.

\$--TRF,hhmmss.ss,xxxxxx,llll.ll,a,yyyyy,yy,a,x.x,x.x,x.x,xxxx

hhmmss.ss = UTC of position fix

xxxxxx = Date: dd/mm/yy

llll.ll,a = Latitude of position fix, N/S

yyyyyy,a = Longitude of position fix, E/W

x.x = Elevation angle

x.x = Number of iterations

x.x =Number of Doppler intervals

x.x = Update distance, nautical miles

x.x = Satellite ID

\$GPSTN

Multiple Data ID.

This sentence is transmitted before each individual sentence where there is a need for the Listener to determine the exact source of data in the system. Examples might include dual-frequency depthsounding equipment or equipment that integrates data from a number of sources and produces a single output.

```
$--STN,xx
```

xx = Talker ID number, 00 to 99

\$GPVBW

Dual Ground / Water Speed

Water referenced and ground referenced speed data.

\$--VBW,x.x,x.x,A,x.x,x.x,A

x.x = Longitudinal water speed, knots

x.x = Transverse water speed, knots

A = Status: Water speed, A = Data valid

x.x = Longitudinal ground speed, knots

x.x = Transverse ground speed, knots

A = Status: Ground speed, A = Data valid

\$GPVTG

Track Made Good and Ground Speed.

```
eg1. $GPVTG,360.0,T,348.7,M,000.0,N,000.0,K*34 eg2. $GPVTG,054.7,T,034.4,M,005.5,N,010.2,K*48
```

054.7,T	True course made good over ground, degrees
034.4,M	Magnetic course made good over ground, degrees
005.5,N	Ground speed, N=Knots
010.2,K	Ground speed, K=Kilometers per hour

eg3. for NMEA 0183 version 3.00 active the Mode indicator field

\$GPWPL

Waypoint location

```
eg1. $GPWPL,4917.16,N,12310.64,W,003*65
```

4917.16,N Latitude of waypoint 12310.64,W Longitude of waypoint 003 Waypoint ID

When a route is active, this sentence is sent once for each waypoint in the route, in sequence. When all waypoints have been reported, GPR00 is sent in the next data set. In any group of sentences, only one WPL sentence, or an R00 sentence, will be sent.

```
eg2. $GPWPL,5128.62,N,00027.58,W,EGLL*59
1 2 3 4 5 6
```

```
1 5128.62 Latitude of nth waypoint on list
2 N North/South
3 00027.58 Longitude of nth waypoint
4 W East/West
5 EGLL Ident of nth waypoint
6 *59 checksum
```

\$GPXTE

Cross Track Error, Measured

```
eg1. $GPXTE, A, A, 0.67, L, N*6F
```

```
eg2. $GPXTE,A,A,4.07,L,N*6D
1 2 3 4 5 6
```

1	A	validity
2	A	cycle lock
3	4.07	distance off track
4	L	steer left (L/R)
5	N	distance units
6	*6D	checksum

\$GPZDA

UTC Date / Time and Local Time Zone Offset

Example 1: \$GPZDA,hhmmss.ss,xx,xx,xxx,xx,xx

```
hhmmss.ss = UTC
xx = Day, 01 to 31
xx = Month, 01 to 12
xxxx = Year
xx = Local zone description, 00 to +/- 13 hours
xx = Local zone minutes description (same sign as hours)
```

Example 2: \$GPZDA,024611.08,25,03,2002,00,00*6A

Field	Example	Comments
Sentence ID	\$GPZDA	
UTC Time	024611.08	UTC time
UTC Day	25	UTC day (01 to 31)
UTC Month	03	UTC month (01 to 12)
UTC Year	2002	UTC year (4 digit format)
Local zone hours	00	Offset to local time zone in hours (+/- 00 to +/- 59)
Local zone minutes	00	Offset to local time zone in minutes (00 to 59)
Checksum	*6A	

[<u>Top</u>]

12 interpreted Garmin proprietary sentences transmitted by GPS unit

```
$HCHDG - Compass Heading

$PGRMB - DGPS Beacon Information

$PGRMC - Sensor Configuration Information

$PGRMC1 - Additional Sensor Configuration Information

$PGRME - Estimated Position Error

$PGRMF - GPS Position Fix Data

$PGRMI - Sensor Initialization Information

$PGRMM - Map Datum

$PGRMT - Sensor Status Information

$PGRMV - 3D Velocity Information

$PGRMZ - Altitude Information

$PSLIB - Tune DPGS Beacon Receiver
```

[Top]

\$HCHDG

Compass Heading

This sentence is used on Garmin eTrex summit, Vista and GPS76S receivers to output the value of the

internal flux-gate compass. Only the magnetic heading and magnetic variation is shown in the message.

```
$HCHDG,101.1,,,7.1,W*3C
where:
    HCHDG    Magnetic heading, deviation, variation
    101.1    heading
    ,,         deviation (no data)
    7.1,W    variation
```

\$PGRMB

DGPS Beacon Information

```
$PGRMB,1,2,3,4,5,6,7,8,9*HH
```

- 1 = Tune frequency, Kilohertz (283.5 325.0 in 0.5 steps)
- 2 = Bit rate, Bits / second (0, 25, 50, 100, 200)
- 3 = SNR (Signal to Noise Ratio), 0 31
- 4 = Data Quality, 0 100
- 5 = Distance to beacon reference station
- 6 = Distance unit (K=Kilometres)
- 7 = Receiver communication status (0=Check wiring, 1=No signal, 2=Tuning, 3=Receiving, 4=Scanning)
- 8 = Fix source (R=RTCM, W=WAAS, N=Non-DPGS fix)
- 9 = DGPS Mode (A=Automatic, W=WAAS only, R=RTCM Only, N=None; DGPS disabled)

HH = Checksum

\$PGRME

Estimated Position Error

```
eg. $PGRME,15.0,M,45.0,M,25.0,M*1C

15.0,M Estimated horizontal position error (HPE), M=metres
45.0,M Estimated vertical position error (VPE), M=metres
25.0,M Overall spherical equivalent position error, M=metres
```

\$PGRMF

GPS Position Fix Data

\$PGRMF,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15*HH

- 1 = GPS week number
- 2 = GPS seconds in current week
- 3 = UTC date, ddmmyy format
- 4 = UTC time, hhmmss format
- 5 = GPS leap second count
- 6 = Latitude, dddmm.mmmm format
- 7 = Latitude hemisphere, N or S
- 8 = Longitude, dddmm.mmmm format
- 9 = Longitude hemisphere, E or W

http://home.mira.net/~gnb/gps/nmea.html#gpvtg

- 10 = Mode (M=Manual, A=Automatic)
- 11 = Fix type (0=No fix, 1=2D fix, 2=3D fix)
- 12 = Speed over ground, kilometres / hour
- 13 = Course over ground, degrees true
- 14 = PDOP (Position dilution of precision), rounded to nearest integer
- 15 = TDOP (Time dilution of precision), rounded to nearest integer

HH = Checksum

\$PGRMM

Map datum

Example 1: \$PGRMM, Astrln Geod '66*51

'Astrln Geod 66' = Name of currently active datum

Example 2: \$PGRMM,NAD27 Canada*2F

'NAD27 Canada' = Name of currently active datum

\$PGRMT

Sensor Status Information

\$PGRMT,1,2,3,4,5,6,7,8,9*HH

- 1 = Garmin product model and software version (eg. GPS 16 VER 2.10)
- 2 = ROM checksum test (P=Pass, F=Fail)
- 3 = Receiver failure discrete (P=Pass, F=Fail)
- 4 = Stored data lost (R=Retained, L=Lost)
- 5 = Real time clock lost (R=Retained, L=Lost)
- 6 = Oscillator drift discrete (P=Pass, F=Excessive drift detected)
- 7 = Data collection discrete (C=Collecting, Null=Not Collecting)
- 8 = GPS sensor temperature (Degrees C)
- 9 = GPS sensor configuration data (R=Retained, L=Lost)

HH = Checksum

\$PGRMV

3D Velocity Information

\$PGRMV,1,2,3*HH

- 1 = True east velocity, metres / sec
- 2 = True north velocity, metres / sec
- 3 = Upward velocity, metres / sec

HH = Checksum

\$PGRMZ

Altitude Information

```
eg1. $PGRMZ,246,f,3*1B
eg2. $PGRMZ,93,f,3*21

93,f Altitude in feet
3 Position fix dimensions 2 = user altitude
3 = GPS altitude
This sentence shows in feet, regardless of units shown on the display.

eg3. $PGRMZ,201,f,3*18
1 2 3

1 201 Altitude
2 F Units - f-Feet
3 checksum
```

\$PSLIB

Tune DPGS Beacon Receiver

Proprietary Differential Control sentences to control a Starlink differential beacon receiver, assuming Garmin's DBR is made by Starlink.

```
eg1. $PSLIB,290.5,100,J*33
eg2. $PSLIB,300.0,200,K*3C
```

These two sentences are normally sent together in each group of sentences from the GPS.

The three fields are: Frequency, bit Rate, Request Type. The value in the third field may be: J = status request, K = configuration request, blank = tuning message.

When the GPS receiver is set to change the DBR frequency or baud rate, the "J" sentence is replaced (just once) by (for example): \$PSLIB,320.0,200*59 to set the DBR to 320 KHz, 200 baud.

To tune a Garmin GBR 21, GBR 23 or equivalent beacon receiver.

```
$PSLIB,1,2*HH
```

```
1 = Beacon tune frequency, Kilohertz (283.5 - 325.0 in 0.5 steps)
```

2 = Beacon bit rate, Bits / second (0, 25, 50, 100, 200

HH = Checksum

[Top]

8 interpreted Garmin proprietary sentences received by GPS unit

\$PSLIB - Tune DPGS Beacon Receiver

A few Garmin GPS receiver units are known to receive these sentences, including the GPS 16 and GPS 17 modules.

[Top]

\$PGRMC

Sensor Configuration Information

Used to configure the GPS sensor's operation. The GPS will also transmit this sentence upon receiving this same sentence or the \$PGRMCE sentence.

\$PGRMC,1,2,3,4,5,6,7,8,9,10,11,12,13,14*HH

- 1 = Fix mode (A=Automatic, 2=2D exclusively; host system must supply altitude, 3=3D exclusively)
- 2 = Altitude above/below mean sea level, metres
- 3 = Earth datum index. If the user datum index is specified (96), fields 4 to 8 must contain valid values, otherwise they must be blank.
- 4 = Semi-major axis, metres, 0.001 metre resolution
- 5 = Inverse flattening factor, 285 to 310, 10e-9 resolution
- 6 = Delta X earth centred coordinate, metres, -5000 to 5000, 1 metre resolution
- 7 = Delta Y earth centred coordinate, metres, -5000 to 5000, 1 metre resolution
- 8 = Delta Z earth centred coordinate, metres, -5000 to 5000, 1 metre resolution
- 9 = Differential mode (A=Automatic; output DGPS fixes when available otherwise non-DGPS, D=Only output differential fixes)
- 10 = NMEA 0183 baud rate (1=1200, 2=2400, 3=4800, 4=9600, 5=19200, 6=300, 7=600)
- 11 = Velocity filter (0=None, 1=Automatic, 2-255=Filter time constant; seconds)
- 12 = PPS mode (1=None, 2=1 Hertz)
- 13 = PPS pulse length, N = 0 to 48. Length (milliseconds) = (N+1)*20
- 14 = Dead reckoning valid time, 1 to 30, seconds
- HH = Checksum

\$PGRMCE

Sensor Configuration Information Enquiry

The unit will respond by transmitting a \$PGRMC sentence containing the current default values.

\$PGRMCE*HH

HH = Checksum

\$PGRMC1

Additional Sensor Configuration Information

Used to configure additional aspects of the GPS sensor's operation. The GPS will also transmit this sentence upon receiving this same sentence or the \$PGRMC1E sentence.

\$PGRMC1,1,2,3,4,5,6,7,8,9*HH

- 1 = NMEA 0183 output time, 1-900, seconds (Not applicable to GPS16A)
- 2 = Binary phase output data (1=Off, 2=On)
- 3 = Position pinning (1=Off, 2=On)
- 4 = DGPS beacon frequency, Kilohertz, 283.5 to 325.0 in 0.5 steps
- 5 = DGPS beacon bit rate (0, 25, 50, 100, 200)
- 6 = DGPS beacon scanning (1=Off, 2=On)
- 7 = NMEA 0183 version 3.00 mode indicator (1=Off, 2=On)
- 8 = DGPS mode (A=Automatic, W=WAAS only, R=RTCM only, N=None; DGPS disabled)
- 9 = Power save mode (P=Activated, N=Normal)

HH = Checksum

\$PGRMC1E

Additional Sensor Configuration Information Enquiry

The unit will respond by transmitting a \$PGRMC1 sentence containing the current default values.

\$PGRMC1E*HH

HH = Checksum

\$PGRMI

Sensor Initialization Information

Used to set the GPS sensor's set time and position and then commences satellite acquisition. The GPS will also transmit this sentence upon receiving this same sentence or the \$PGRMIE sentence.

\$PGRMI,1,2,3,4,5,6,7*HH

- 1 = Latitude, dddmm.mmm format
- 2 = Latitude hemisphere, N or S
- 3 = Longitude, dddmm.mmm format
- 4 = Longitude hemisphere, N or S
- 5 = Current UTC date, ddmmyy format
- 6 = Current UTC time, hhmmss format
- 7 = Receiver command (A=Auto locate, R=Unit reset)

HH = Checksum

\$PGRMIE

Sensor Initialization Information Enquiry

The unit will respond by transmitting a \$PGRMI sentence containing the current default values.

\$PGRMIE*HH

HH = Checksum

\$PGRMO

Output Sentence Enable / Disable

\$PGRMO,xxxxx,n*HH

xxxxx = Target sentence name (eg. GPGGA, GPGSA)

n = Target mode (0=Disable specified sentence, 1=Enable specified sentence, 2=Disable all output sentences except PSLIB, 3=Enable all output sentences except GPALM, 4=Restore factory defaults) HH = Checksum

[Top]

Format of latitudes and longitudes

Where a numeric latitude or longitude is given, the two digits immediately to the left of the decimal point are whole minutes, to the right are decimals of minutes, and the remaining digits to the left of the whole minutes are whole degrees.

eg. 4533.35 is 45 degrees and 33.35 minutes. ".35" of a minute is exactly 21 seconds.

eg. 16708.033 is 167 degrees and 8.033 minutes. ".033" of a minute is about 2 seconds.

[<u>Top</u>]

References

This information on <u>NMEA</u> sentences has been sourced from all over the 'net and I make no apologies for any inaccuracies or errors. Still, it's useful stuff. I wish to thank all the sources, which are <u>listed</u> on my GPS Links page. Please <u>contact me</u> if you know of freely available interpretations of sentences which are not on this page.

[Top]

Copyright © Glenn Baddeley 2002, 2011

http://home.pacific.net.au/~gnb/gps/nmea.html was last updated 24th May 2011.

Report problems and send comments to Glenn Baddeley.