Inferring and Debugging Path MTU Discovery Failures

Matthew Luckie
University of Waikato

Kenjiro Cho Internet Initiative Japan Bill Owens NYSERNet

Background: The Internet

What Could Possibly Go Wrong?

Background: Path MTU


```
|src-----||dst-----|
[0x00][0x0c][0x00][0x0a]
|type||size----|
{IPv4}[0x01][0x00][0x07]
|src-ip-----|
[0x01][0x01][0x01][0x02]
|dst-ip-----|
[0x03][0x03][0x03][0x04]
|type-----||size----|
[0x01][0x00][0xFF][0xFF]
```

Background: Path MTU

Fragmentation Considered Harmful

Christopher A. Kent Jeffrey C. Mogul

December, 1987

Background: Path MTU Discovery

Background: Path MTU Discovery


```
src ip    dst ip    type    payload
1.1.1.2 | 3.3.3.4 | TCP | (0x0000 - 0xFFFF)
2.2.2.1 | 1.1.1.2 | ICMP | Too Big (max 0xFF)
```

Background: Path MTU Discovery

Inferring and Debugging Path MTU Discovery Failures

Matthew Luckie University of Waikato

Kenjiro Cho Internet Initiative Japan Bill Owens NYSERNet

- Router (C) does not send ICMP Too Big
 - "For Security Reasons™"

- Firewall (B) blocks ICMP Too Big
 - "For Security Reasons™"

^{*} This was David's problem

- Layer 2 MTU Mismatch
 - B thinks it can send jumbo frames to C
 - o ... but C is not actually capable of receiving them

- Router (C) does not send a Next-Hop MTU
 - (A) has to guess, which is inefficient

- Implementation Bugs
 - o ... They're a Thing

Scamper

- Traceroute w/ small packets
- Test with big packets
- "Brute force" Path MTU Discovery
- Traceroute w/ big packets to find faulty link

Results

Dataset:	NYSERNet-east	nms1-chin	Intersection	Total
Location:	New York, NY	Chicago, IL	-	10211
Hostname:	east.nysernet.org	nms1-chin.abilene.ucaid.edu	_	_
Date / Time:	Apr 28 2005, 21:50 EDT	Apr 28 2005, 20:10 CDT	_	_
Target Count:	147	147	147	<u> 18040</u>
Reachable:	136 (92.5%)	134 (91.2%)	134	
PMTUD Failures:	41 (30.1%)	40 (29.9%)	25	<u> </u>
No ICMP messages:	6 (6 unique)	5 (5 unique)	4 (4 unique)	7 unique
No PTB messages:	26 (17 unique)	27 (18 unique)	13 (13 unique)	22 unique
Incorrect PTB messages:	2 (2 unique)	2 (2 unique)	2 (2 unique)	2 unique
Target MTU Mismatch:	7 (7 unique)	6 (6 unique)	6 (6 unique)	7 unique

Table 1: Summary of the two data collections. 30% of reachable targets had a PMTUD failure.

Conclusions

- Ping (with small packets) is not enough
 - `tracepath` may be useful these days?
- Jumbo frames are coming
 - o ... sort of?
- New approach to PMTUD
 - Now RFC 4821 "PLPMTUD"
 - Linux implements but it's generally off by default
 - /proc/sys/net/ipv4/tcp_mtu_probing

- 1. Traceroute w/ Small UDP Packets
 - a. Can we reach (D) at all?
 - b. Find routers that don't send any ICMPs

1. Traceroute w/ Small UDP Packets

- a. Can we reach (D) at all?
- b. Find routers that don't send any ICMPs

...

- 1. Traceroute w/ Small UDP Packets
 - a. Can we reach (D) at all?
 - b. Find routers that don't send any ICMPs

2. Send Big UDP Packets

- a. Hopefully we get an ICMP Too Big
- b. If so, decrease size until port unreachable/timeout

2. Send Big UDP Packets

- a. Hopefully we get an ICMP Too Big
- b. If so, decrease size until port unreachable/timeout

3a. No Feedback?

a. Try to find the actual PMTU

...

3a. No Feedback?

- a. Try to find the actual PMTU
 - i. Try the smallest (reasonable) PMTU

3a. No Feedback?

- a. Try to find the actual PMTU
 - i. Work your way up the chart...

3a. No Feedback?

- a. Try to find the actual PMTU
 - i. ... until you get no feedback again

...

3a. No Feedback?

- a. Try to find the actual PMTU
 - i. Then try candidate PMTU + 1 to be sure
 - ii. (if not, resort to binary search)

...

3a. No Feedback

- a. Try to find the *actual* PMTU [✓]
- b. Try to find out where the problem is

3a. No Feedback

- a. Try to find the actual PMTU [✓]
- b. Try to find out where the problem is

...

- 3b. Invalid Feedback
 - a. Try to find the actual PMTU

3b. Invalid Feedback

- a. Try to find the actual PMTU
 - i. Working downwards now instead of upwards

3b. Invalid Feedback

- a. Try to find the actual PMTU
 - i. Working downwards now instead of upwards

