Review of Finite Difference (FD) Cakulus

Objective: approximate derivatives using only discrete points $\chi_i \Rightarrow "grid points"$

 $i \quad i+1 \quad i+2$ $\mathcal{U}(X_i) = \mathcal{U}_i$

Strategy: Expand Talyor Series about point where derivative is desired, evaluate at other grid pants... Use as many as needed to get desired derivative order and accuracy

e.g. Want
$$\frac{d\mathcal{U}}{dx} = \frac{d\mathcal{U}_{i}}{dx} = \mathcal{U}_{i}$$

$$U_{i+1} = U_i + hU_i' + \frac{h^2}{2!}U_i'' + O(h^3)$$

$$\Rightarrow \frac{d\mathcal{U}_{i}}{dx} = \frac{\mathcal{U}_{i+1} - \mathcal{U}_{i}}{h} - \frac{h}{2!} \mathcal{U}_{i}'' + \mathcal{O}(h^{2})$$

Want d'Ui: write another Taylor Series

Uita = U; +2hUi + (2h)Ui" + (2h) Ui" + ...

Add with TS for Uit, to make Ui terms cancel:

 $-2\left[U_{i+1} = U_{i} + hU_{i}' + \frac{h^{2}U_{i}''}{2!} + \frac{h^{3}U_{i}'''}{3!}U_{i}'' + \dots\right]$ $U_{i+2} = U_{i} + 2hU_{i}' + \frac{(2h)^{2}U_{i}''}{2!}U_{i}'' + \frac{(2h)^{3}U_{i}'''}{3!}U_{i}''' + \dots$

 $\frac{d\mathcal{U}_{i}}{dx^{2}} = \frac{\mathcal{U}_{i+2} - 2\mathcal{U}_{i+1} + \mathcal{U}_{i}}{h^{2}} - h\mathcal{U}_{i}^{"} = \frac{\Delta^{2}\mathcal{U}_{i}}{h^{2}} + \mathcal{O}(h)$

 $\frac{d^n \mathcal{U}_i}{dx^n} = \frac{\Delta^n \mathcal{U}_i}{h^n} + O(h) \quad \text{Involves points } \mathcal{U}_i \rightarrow \mathcal{U}_{i+n}$

Note: Key fact ... D'Ui = D(D'Ui)

Check:.. $\Delta^{2}U_{i} = \Delta(\Delta U_{i}) = \Delta(U_{i+1} - U_{i})$ = $(U_{i+2} - U_{i+1}) - (U_{i+1} - U_{i}) = U_{i+2} - 2U_{i+1}U_{i}$

$$T_{ij} \Delta^{3} \mathcal{U}_{i} := \Delta(\Delta^{2} \mathcal{U}_{i}) = \Delta(\mathcal{U}_{i+2} - 2\mathcal{U}_{i+1} + \mathcal{U}_{i})$$

$$= \mathcal{U}_{i+3} - \mathcal{U}_{i+2} - 2\mathcal{U}_{i+2} + 2\mathcal{U}_{i+1} + \mathcal{U}_{i+1} - \mathcal{U}_{i}$$

$$= \mathcal{U}_{i+3} - 3\mathcal{U}_{i+2} + 3\mathcal{U}_{i+1} - \mathcal{U}_{i}$$

Can do the same thing backwards \Rightarrow Backward Differences" $\frac{d^2 u_i}{dvn} = \frac{\nabla^2 u_i}{h^2} + O(h) \quad \text{involves points } u_i \rightarrow u_i$

so
$$\nabla^n u_i = \nabla (\nabla^{n-1} u_i)$$

e.g. $\nabla^2 u_i = \nabla(\nabla u_i) = \nabla(u_i - u_{i-1})$ = $(u_i - u_{i-1}) - (u_{i-1} - u_{i-2})$ = $u_i - 2u_{i-1} + u_{i-2}$

$$\frac{d^{2}U_{i}}{dx^{2}} = \frac{U_{i}-2U_{i-1}+U_{i-2}}{h^{2}} + O(h)$$

Á)

If desire more accuracy: take more points e.g. want $\frac{dU_i}{dx}$ to $O(h^2)$

 $0 \quad \mathcal{U}_{i+1} = \mathcal{U}_i + h \mathcal{U}_i' + \frac{h^2 \mathcal{U}_i''}{2!} + \frac{h^3 \mathcal{U}_i'''}{3!} + \dots$

(3) $U_{i+2} = U_i + 2hU_i' + \frac{(2h)^2U_i''}{2!}U_i'' + \frac{(2h)^3U_i'''}{3!}U_i''' + \dots$

Odd 0 + A*2

Uit, + AUit = (1+A)Ui + (1+2A)hUi + (1+4A) hui

 $+(1+8A)\frac{h}{3!}U_{i}^{"}+...$

Leading Error

 $\frac{dU_{i}}{dx} = \frac{1}{(2A+1)h} \int_{A}^{A} AU_{i+2} + U_{i+1} - (1+A)U_{i} - (1+8A)h^{3}U_{i}'' - \frac{(1+8A)h^{3}U_{i}''}{3!} + \frac{1}{3!} \int_{A}^{A} U_{i}'' + \frac{1}{3!} \int_{A}^{A} U_{i}' + \frac{1}$

 $\frac{dU_{i}}{dx} = -\frac{U_{i+2} + 4U_{i+1} - 3U_{i}}{2h} - \frac{h^{2}U_{i}^{"'} + O(h^{3})}{3}$

leading error O(h2)!

This approach to generating difference expressions Systematic (see handout for general case)

OR ... Can use error team to produce

Thigher accuracy differences => Substitute

difference expressions for derivatives in

leading error teams!

e.g. $\frac{d\mathcal{U}_i}{dx} = \frac{\Delta\mathcal{U}_i}{h} - \frac{h}{2} \frac{d^2\mathcal{U}_i}{dx^2} + O(h^2)$

Substitute difference formula $\frac{d^2U_i}{dx^2} = \frac{\Delta^2U_i}{h^2} + O(h)$

 $\frac{d\mathcal{U}_{i}}{dx} = \frac{\Delta \mathcal{U}_{i}}{h} - \frac{h}{2} \left[\frac{\Delta^{2} \mathcal{U}_{i}}{h^{2}} + O(h) \right] + O(h^{2})$ $= \left(\Delta \mathcal{U}_{i} - \frac{1}{2} \left(\mathcal{U}_{i+2} - 2\mathcal{U}_{i+1} + \mathcal{U}_{i} \right) \right) h + O(h^{2})$

 $= -U_{i+2} + 4U_{i+1} - 3U_i + O(h^2) V Same$ before

Central Differences

- · only meaningful on unitarm mesh
- . forward + backward errors cancel
- · get extra O(h) for same # of points

e.g.
$$\frac{d\mathcal{U}_{i}}{dx} = \frac{\Delta \mathcal{U}_{i}}{h} - \frac{h}{2} \frac{d^{2}\mathcal{U}_{i}}{dx^{2}} + O(h^{2}) \quad \text{Forward}$$

$$\frac{d\mathcal{U}_{i}}{dx} = \frac{\nabla \mathcal{U}}{h} + \frac{h}{2} \frac{d^{2}\mathcal{U}_{i}}{dx^{2}} + O(h^{2}) \quad \text{Backward}$$

Combine:
$$\frac{dU_i}{dx} = \frac{\Delta U_i + \nabla U_i}{2h} + O(h^2)$$
(add)
$$\frac{d\partial u_i}{dx} = \frac{\Delta U_i + \nabla U_i}{2h} + O(h^2)$$

$$\frac{d\partial u_i}{dx} = \frac{\Delta U_i + \nabla U_i}{2h} + O(h^2)$$

$$= \frac{SU_i}{2h} + O(h^2) \quad SU_i = U_{i+1} - U_{i-1}$$

Subtract:
$$\frac{d^2 U_c}{dx^2} = \frac{\Delta U_c - VU_c}{h^2} + O(h^2)$$

$$= \frac{\int_0^2 U_c}{h^2} + O(h^2)$$

$$\int_{u_i}^{2} = \Delta u_i - \nabla u_i = u_{i+1} - u_i - (u_i - u_{i-1}) = u_{i+1} - 2u_i + u_{i-1}$$

Summary - Equal mesh spacing:

· Forward
$$\frac{d''l_i}{dx^n} = \frac{\Delta l_i}{h'} + O(h)$$

• Forward
$$\frac{d''U_i}{dx^n} = \frac{\Delta U_i}{h''} + O(h)$$
• Backward
$$\frac{d''U_i}{dx^n} = \frac{\nabla''U_i}{h''} + O(h)$$
Involve

$$\frac{\partial''U_i}{\partial x^n} = \frac{\nabla''U_i}{h''} + O(h)$$

· Centered
$$\frac{d^n U_i}{dx^n} = \frac{\int^n U_i}{(10r^2)h^n} + O(h^2)$$
nodd

More Accuracy: add points

• Uncentered:
$$n$$
th derivative $+ O(h^2) \Rightarrow n+2 pts$
 $+ O(h^3) \Rightarrow n+3 pts$

· Centered: NH derivative +
$$O(h^4) \Rightarrow n+3 pts$$

+ $O(h^6) \Rightarrow n+5 pts$
always add 2pts at a time
always stay 1 order ahead of uncentered

Alternative to Taylor Series: Polynomial fit

then $U_{i-1} = ah^2 + b(-h) + c$ $U_i = c$ $U_{i+1} = a(ah)^2 + b(ah) + c$

$$\begin{cases}
h^2 - h & | \begin{cases} a \\ b \end{cases} = \begin{cases} u_{i-1} \\ u_i \end{cases} \\
u_{i+1} \\ u_{i+1}$$

Invert: $\begin{cases} Q = \left\{ \left[\frac{(u_{i-1} - u_i) + (u_{i-1} - u_i)}{(u_{i-1} - u_i) + (u_{i-1} - u_i)} \right] / (\lambda^2 + \lambda) h^2 \right\} \\ Q = \left\{ \left[-\lambda^2 \left(u_{i-1} - u_i \right) + \left(u_{i-1} - u_i \right) \right] / (\lambda^2 + \lambda) h \right\} \\ Q = \left\{ \left[u_i - u_i \right] \right\} / (\lambda^2 + \lambda) h \end{cases}$

then $\frac{du}{dx} = 2ax + b$ $\int u_{i+1} - u_i(1+2) + c$

 $\frac{d^2u}{dx^2} = 2a = 2\left[\frac{u_{i+1} - u_i(1+2) + du_{i-1}}{\alpha(d+1)h^2}\right] \frac{Same}{as}$ Tagilor!

Example:
$$K_{(X)} \frac{d^2 \mathcal{U}}{dx^2} = r$$

$$K(x) = X$$
 $BCs: U(0) = U_0$
 $Sgiven$
 $U(L) = U_L$

Use and order FD expression for PDE:

$$X_i \frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} = \Gamma_i + O(h^2)$$

$$\Rightarrow \mathcal{U}_{i-1}\left(\frac{X_i}{h^2}\right) + \mathcal{U}_i\left(\frac{-2X_i}{h^2}\right) + \mathcal{U}_{i+1}\left(\frac{X_i}{h^2}\right) = \Gamma_i$$

$$\begin{array}{c} U_{1} \\ U_{2} \\ U_{3} \\ U_{4} \\ U_{4} \\ U_{5} \\ U_{6} \\ U_{6} \\ U_{7} \\ U_{8} \\$$

	ſ,	fı-ı	f1-1	f>	fi]
$hf^*(x_t) =$	-1	1	_]
h1f"(z _i) =	1	-2	1		·	+ O(h)
$h^3f^a(x_i) =$	-1	3	-3	1		
$h^*f^*(x_i) =$	1	-4	6	-4	1]

(a) Forward difference representations

-	fi	f ₁₋₃	f1-2	f,-,	f,	
$hf'(z_i) =$				-1	1	
$h^2f''(x_i) =$			1	-2	1 .	+
$h^{3}f^{\ast\prime}(x_{i})=$		-1	3	-3	1	
$h^a f^m(x_i) =$	1	-4	.6	-4	1	

O(h)

(b) Backward difference representations

Fig. 3.2 Forward and backward difference representations of O(h).

,	f,	f;+1	fi-s	fi+s	fi-a	fi-s] .
$2hf'(x_i) =$	-3	4	-1	,			1
h 2 f"(x,) =	2	-5	4	-1			+ O(h)*
$2h^3f'''(x_i) =$	-5-	18	-24	14	-3		1
$h^*f^*(x_t) =$	3	- 14	26	- 24	11	-2	1

(a) Forward difference representations

	f1-0	fı →	f ₁₋₁	f ₁₋₂	f,	fi]
$2hf'(x_i) =$				1	-4	3	
h*f"(±,) =			-1	4	-5	2	+ O(h) ³
$2h^{s}f^{-}(x_{t}) =$		3	-14	24	- 18	5	:
$h^4f^{4a}(x_i) =$	-2	11	-24	26	- 14	3] .

(b) Backward difference representations

Fig. 3.3 Forward and backward difference representations of $O(h)^2$.

	f ₁₋₂	f_{i-1}	fi	fire	fier	
2hf'(z,) =	 	-1	0	1		
h'f'(z,) =		-	-2	1	<u> </u>	
iy, (=') =	-1	2	0	-2	1	
h'f"(z _i) =		-4	6	-4	1	

(a) Representations of $O(h)^2$

	6.	fire.	f,	f _{i+1}	fi-s	fe-s
N-3	1	-8	0	8	-1	
	 	16	-30	16	-1	
		<u> </u>		 		-1
1	-8	13	0	-13	 -	
 	12	-39	56	-39	12	
	\$	-1	1 -8 -1 16 1 -8 13	1 -8 0 -1 16 -30 1 -8 13 0	1 -8 0 8 -1 16 -30 16 1 -8 13 0 -13	1 -8 0 8 -1 1 -8 0 16 -1 1 -8 13 0 -13 8

(b) Representations of O(h)4

Fig. 3.4 Central difference representations.

O(h)*