Задача упаковки в контейнеры

Дано: множество предметов $L = \{1, ..., n\}$ и их веса $w_i \in (0,1), i \in L$.

Найти: разбиение множества L на минимальное число m подмножеств

 B_1 , B_2 , ... , B_m такое, что

$$\sum_{i \in B_j} w_i \le 1$$
, для всех $1 \le j \le m$.

Множества B_i называют контейнерами.

Требуется упаковать предметы в минимальное число контейнеров.

Алгоритм «Следующий подходящий» (NF)

В произвольном порядке упаковываем предметы по следующему правилу. Первый предмет помещаем в первый контейнер.

На k-м шаге пытаемся поместить k-й предмет в текущий контейнер.

Если предмет входит, то помещаем его и переходим к следующему шагу, иначе помещаем предмет в новый контейнер.

T = O(n), $\Pi = O(1)$, если не считать место для исходных данных.

Теорема. $NF(L) \leq 20PT(L)$.

Доказательство. Пусть $W = \sum_{i \in L} w_i$. Так как любые два последовательных контейнера содержат предметы суммарным весом не меньше единицы, то NF(L) < 2[W]. Кроме того, $OPT(L) \geq [W]$, откуда и следует требуемое.

Пример

$$L = \left\{\frac{1}{2}, \frac{1}{2N}, \frac{1}{2}, \frac{1}{2N}, \dots \frac{1}{2}, \frac{1}{2N}\right\}$$
. Всего $4N$ предметов.

$$OPT(L) = N + 1$$
 $NF(L) = 2N$

Замечание $NF(L) \leq 2OPT(L) - 1$ для всех L.

Пусть алгоритм A для множества L порождает A(L) контейнеров и

$$R_A(L) \equiv \frac{A(L)}{OPT(L)}$$

Для задачи на минимум гарантированная относительная точность $\,R_A\,$ для алгоритма A определяется как

$$R_A \equiv \inf\{r \geq 1 \mid R_A(L) \leq r$$
 для всех $L\}$.

Определение Асимптотическая гарантированная относительная точность R_A^{∞} для алгоритма A определяется как

$$R_A^\infty \equiv \inf\{r \geq 1 | \exists N > 0 \text{ такое, что } R_A(L) \leq r \text{ для всех } L \text{ с } OPT(L) \geq N\}.$$

Алгоритм «Первый подходящий» (FF)

В произвольном порядке упаковываем предметы по следующему правилу. Первый предмет помещаем в первый контейнер.

На k-м шаге находим контейнер с наименьшим номером, куда помещается k-й предмет, и помещаем его туда. Если такого контейнера нет, то берем новый пустой контейнер и помещаем предмет в него.

$$T = O(n^2), \quad \Pi = O(n).$$

Теорема $FF(L) \leq \left[\frac{17}{10}OPT(L) + 1\right]$ для всех L и существуют примеры со сколь угодно большими значениями OPT, для которых $FF(L) \geq \left[\frac{17}{10}OPT(L) - 1\right]$. (Без доказательства)

Пример

$$L = \{1, ..., 18 m\} \qquad w_i = \begin{cases} \frac{1}{7} + \varepsilon, & 1 \le i \le 6m \\ \frac{1}{3} + \varepsilon, & 6m < i \le 12m \\ \frac{1}{2} + \varepsilon, & 12m < i \le 18m \end{cases}$$

$$\frac{1/7 + \varepsilon}{1/3 + \varepsilon}$$

$$\frac{1/7 + \varepsilon}{1/7 + \varepsilon}$$

$$\frac{1}{1/3 + \varepsilon}$$

$$\frac{1}$$

Алгоритм «Наилучший подходящий» (BF)

В произвольном порядке упаковываем предметы по следующему правилу. Первый предмет помещаем в первый контейнер.

На k-м шаге размещаем k-й предмет. Находим частично заполненные контейнеры, где достаточно для него свободного места и выбираем среди них наиболее заполненный. Если таких нет, то берем новый пустой контейнер и помещаем предмет в него.

$$T = O(n^2), \quad \Pi = O(n).$$

Теорема $R_{BF} = R_{FF}$, $R_{BF}^{\infty} = R_{FF}^{\infty}$ и существуют примеры со сколь угодно большими значениями OPT(L), для которых $BF(L) = \frac{4}{3}FF(L)$

и
$$FF(L) = \frac{3}{2}BF(L)$$
.

(Без доказательства)

Алгоритмы типа On-line

Предметы поступают в непредсказуемом порядке. Требуется упаковать их в минимальное число контейнеров. Упакованный предмет нельзя перемещать в другой контейнер. Место для предварительного хранения предметов отсутствует.

Алгоритмы NF, FF, BF являются On-line алгоритмами.

Теорема Для любого On-line алгоритма A справедливо неравенство $R_A^{\infty} > 1.5$ (*Без доказательства*)

Алгоритм «Первый подходящий с упорядочиванием» (FFD)

- ullet Сортируем предметы по невозрастанию весов $w_1 \geq w_2 \geq \cdots \geq w_n$
- Применяем алгоритм FF (BF).

Теорема $FFD(L) \leq \frac{11}{9}OPT(L) + 4$ для всех L и существуют примеры со сколь угодно большими значениями OPT(L), для которых

$$FFD(L) \ge \frac{11}{9}OPT(L).$$

Кроме того
$$R_{FFD}^{\infty} = R_{BFD}^{\infty} = \frac{11}{9} \approx 1.22.$$

(Без доказательства)

Пример

$$L = \{1, ..., 30 m\}$$

$$w_{i} = \begin{cases} \frac{1}{2} + \varepsilon, & 1 \leq i \leq 6m \\ \frac{1}{4} + 2\varepsilon, & 6m < i \leq 12m \\ \frac{1}{4} + \varepsilon, & 12m < i \leq 18m \\ \frac{1}{4} - 2\varepsilon, & 18m < i \leq 30m \end{cases}$$

$$\frac{1}{4} - 2\varepsilon$$

$$\frac{1}{4} + \varepsilon$$

$$\frac{1}{4} - 2\varepsilon$$

$$\frac{1}{4} - 2\varepsilon$$

$$\frac{1}{4} + 2\varepsilon$$

Классы Р и NP

Задачи распознавания — задачи с ответом *«да»* или *«нет»*.

Пример: Дан граф, является ли он связным?

Класс Р — класс задач распознавания, которые можно решить с полиномиальной трудоемкостью.

Пример: Дан граф, существует ли в нем эйлеров цикл?

Класс NP — класс задач распознавания, в которых можно проверить решение с ответом «да» за полиномиальное время, то есть класс задач, решаемых за полиномиальное время на недетерминированной машине Тьюринга.

Пример: Дан граф, существует ли в нем гамильтонов цикл?

NP-полные задачи — самые трудные задачи в NP, то есть если существует точный полиномиальный алгоритм для решения одной из них, то существует точный полиномиальный алгоритм для решения всех задач из класса NP.

Вопросы

- Даны веса n предметов и число K. Можно ли упаковать эти предметы в K контейнеров? Эта задача из класса NP (Да или Hem?)
- Даны веса n предметов. Можно ли так разбить их на два подмножества, чтобы сумма весов предметов в каждом подмножестве была бы ровно в половину от общего веса всех предметов? Эта задача из класса NP (Да или Hem?)
- Если вторая задача NP-полна, то и первая задача NP-полна? (Да или Нет?)
- Если первая задача NP-полна, то и вторая задача NP-полна? (Да или Hem?)
- Правда ли, что Р ⊆ NР ? (Да или Нет?)

Негативный результат

Теорема Для любого $\varepsilon > 0$ существование приближенного полиномиального алгоритма A с гарантированной точностью $R_A = \frac{3}{2} - \varepsilon$ влечет P = NP.

Доказательство Пусть такой алгоритм А существует. Покажем, как с его помощью можно решить точно одну из NP-полных задач, а именно задачу о разбиении. Дано n неотрицательных чисел a_1 , ..., a_n . Можно ли разбить их на два подмножества так, чтобы сумма чисел в каждом подмножестве равнялась $C = \frac{1}{2} \sum_{i=1}^{n} a_i$? Рассмотрим задачу упаковки в контейнеры с весами предметов $w_i = \frac{a_i}{c}$, i = 1, ..., n. Если их можно упаковать в два контейнера, ответ в задаче о разбиении — «ДА». Применим алгоритм А к задаче о контейнерах. Если OPT = 2, то алгоритм A тоже дает 2, иначе $R_A \geq \frac{3}{2}$, то есть алгоритм А точный.

Нижние оценки

$$y_j = \begin{cases} 1, & \text{если используется контейнер } j \\ 0, & \text{в противном случае} \end{cases}$$

$$x_{ij} = \begin{cases} 1, & \text{если предмет } i \text{ помещен в контейнер } j \\ 0, & \text{в противном случае} \end{cases}$$

Математическая модель

при ограничениях

$$\min_{n} \sum_{j=1}^{n} y_j$$

$$\sum_{i=1}^{n} w_i x_{ij} \leq y_j, \qquad j = 1, \dots, n,$$

$$\sum_{j=1}^{n} x_{ij} = 1, \qquad i = 1, ..., n,$$

$$y_i, x_{ij} \in \{0,1\}, i, j = 1, ..., n.$$

Релаксация линейного программирования

Заменим условие булевости переменных на условия:

$$0 \le y_j \le 1, \quad j = 1, ..., n$$

 $0 \le x_{ij} \le 1, \quad i, j = 1, ..., n.$

Тогда одно из оптимальных решений имеет вид

$$x_{ij}^* = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}, \quad y_j^* = w_j,$$

что дает нижнюю оценку

$$H_0 = \left[\sum_{i=1}^n w_i\right]$$

(предметы можно резать произвольным образом).

Оценки Martello & Toth

Для примера $L=\{1,\dots,n\}, 0\leq w_i<1$ и произвольного $0\leq \alpha\leq \frac{1}{2}$ положим $L_1=\{i\in L\ | w_i>1-\alpha\} \qquad - \$ крупные предметы $L_2=\{i\in L\ | 1-\alpha\geq w_i>\frac{1}{2}\}- \$ средние предметы

$$L_3 = \{i \in L \mid \frac{1}{2} \ge w_i \ge \alpha\}$$
 — мелкие предметы

Теорема Для любого $0 \le \alpha \le \frac{1}{2}$ величина

$$H_1(\alpha) = |L_1| + |L_2| + \max\left(0, \left[\sum_{i \in L_3} w_i - (|L_2| - \sum_{i \in L_2} w_i)\right]\right).$$

является нижней оценкой для OPT(L).

Доказательство Каждый предмет из множества $L_1 \cup L_2$ требует отдельный контейнер. Поэтому в любом допустимом решении не менее $|L_1| + |L_2|$ контейнеров. Предметы из множества L_3 не лежат вместе с предметами из L_1 . Значит, они лежат либо вместе с предметами из L_2 , либо в отдельных кон-

тейнерах. В контейнерах для L_2 осталось $S = \left(\mid L_2 \mid -\sum_{i \in L_2} w_i \right)$ свободного ме-

ста. Следовательно, для предметов из множества L_3 требуется как минимум

$$\left|\sum_{i\in L_3}w_i-S\right|$$
 отдельных контейнеров. \blacksquare

Теорема Для любого $0 \le \alpha \le \frac{1}{2}$ величина

$$H_2(\alpha) = |L_1| + |L_2| + \max \left\{ 0, \left\lceil \frac{|L_3| - \sum_{i \in L_2} \left\lfloor \frac{1 - w_i}{\alpha} \right\rfloor}{\left\lfloor \frac{1}{\alpha} \right\rfloor} \right\rceil \right\}$$

является нижней оценкой для OPT(L).

Доказательство Заменим вес каждого предмета из множества L_3 на α . Тогда в один контейнер войдет $\left\lfloor \frac{1}{\alpha} \right\rfloor$ предметов, и для множества L_3 потребовалось

бы $\left| \frac{|L_3|}{\left| \frac{1}{\alpha} \right|} \right|$ дополнительных контейнеров. Но часть предметов из L_3 мож-

но уложить в контейнеры для L_2 . Каждый из них имеет $1-w_i$, $i\in L_2$ свободного места, где поместится $\left|\frac{1-w_i}{\alpha}\right|$ предметов из L_3 .

Следствие 1 Величина $H = \max\{H_1(\alpha), H_2(\alpha), 0 \le \alpha \le 0.5\}$

является нижней оценкой для OPT(L).

Следствие 2
$$H \ge H_0 \equiv \left| \sum_{i \in L} w_i \right|.$$

Доказательство. При $\alpha = 0$ получаем $H \ge H_1(0) = \max\{|L_2|, H_0\} \ge H_0$.

Как найти H, не перебирая все значения α ?

Следствие 3 Пусть V — множество всех различных значений $w_i \leq 0,5$. Тогда

$$H = \begin{cases} n, & \text{если } V = \emptyset, \\ \max\{H_1(\alpha), H_2(\alpha), \text{для } \alpha \in V\}, & \text{если } V \neq \emptyset. \end{cases}$$

т. е. после сортировки предметов получаем $T_H = O(n + n \log n)$.

Вопросы

- При вычислении нижних оценок Martello &Toth предметы весом менее α выбрасываются (Да или Hem?)
- Алгоритмы вычисления нижних оценок Martello &Toth являются полиномиальными (Да или Heт?)
- Выбор оптимального значения параметра α осуществляется полиномиальным алгоритмом (Да или Hem?)
- Если не выбрасывать предметы весом менее α , то можно улучшить нижнюю оценку (Да или Hem?)
- Почему на три группы, а не на пять, семь, ...? Можно ли так улучшить нижнюю оценку (Да или Hem?)

Нижние оценки Гилмора и Гомори

Пусть $L = \{1, ..., m\}$ — множество типов предметов. Для каждого типа $i \in L$ задан вес предмета $0 < w_i < 1$ и их количество $n_i \ge 1$. Требуется упаковать все предметы в минимальное число контейнеров единичной вместимости.

Рассмотрим множество J всех вариантов упаковки одного контейнера. Пусть матрица (a_{ij}) задает число предметов -го типа в j-м варианте упаковки.

Переменные задачи:

 $x_i \ge 0$, целые — число контейнеров, упакованных по -му варианту

$$\min \sum_{j \in J} x_j$$
 при условиях: $\sum_{j \in J} a_{ij} x_j \geq n_i, \ i \in L;$ $x_j \geq 0$, целые, $j \in J$.

Множество Ј может иметь экспоненциальную мощность.

Нижняя оценка

$$H = \min \sum_{j \in J} x_j$$

$$\sum_{j \in J} a_{ij} x_j \ge n_i, i \in L;$$

$$x_j \ge 0, j \in J.$$

Решая задачу линейного программирования, получаем нижнюю оценку H.

Но задача имеет гигантскую размерность!

Метод генерации столбцов

Выберем подмножество $J'\subset J$ так, чтобы следующая подзадача ЛП(J') имела решение:

$$\min \sum_{j \in J'} x_j$$

$$\sum_{j \in J'} a_{ij} x_j \ge n_i, \quad i \in L;$$

$$x_j \ge 0, \quad j \in J'.$$

Это легко сделать с помощью любой жадной эвристики: NF, FF, BF,...

Пусть x_i^* — оптимальное решение для J' и $\lambda_i^* \geq 0$ — оптимальное решение соответствующей J^\prime двойственной задачи. Рассмотрим двойственную задачу для множества I':

$$\max \sum_{i \in L} n_i \lambda_i$$

при ограничениях

$$\max \sum_{i \in L} n_i \lambda_i$$

$$\sum_{i \in L} a_{ij} \lambda_i \le 1, \ j \in J';$$

$$\lambda_i \ge 0, \quad i \in L.$$

Если для всех $j \in J$ справедливо

$$\sum_{i \in L} a_{ij} \lambda_i^* \le 1,\tag{*}$$

то вектор $\bar{x_j} = \begin{cases} x_j^*, \ j \in J' \\ 0, \ i \in I \setminus I' \end{cases}$ — оптимальное решение задачи линейного про-

граммирования для всего множества Ј и

$$H = \sum_{j \in J'} x_j^*.$$

Проблема: как проверить (*), не просматривая все множество J, и что делать, если условие не выполняется.

Рассмотрим задачу о рюкзаке:

$$\alpha = \max \sum_{i \in L} \lambda_i^* y_i$$

при ограничениях:

$$\sum_{i \in I} w_i y_i \le 1$$

(вместимость контейнеров)

$$y_i \ge 0$$
, целые, $i \in L$.

Оптимальное решение этой задачи дает нам новый вариант упаковки контейнера.

Если $\alpha \leq 1$, то (*) выполнено!

Если $\alpha > 1$, то получили вариант упаковки, который следует добавить в множество J' (нашли ведущий столбец в симплекс–таблице).

Общая схема метода:

- 1. Выбрать подмножество $J' \subset J$
- 2. Решить задачу ЛП(J'), получить x_j^* , λ_j^* .
- 3. Решить задачу о рюкзаке, получить α .
- 4. Если $\alpha \leq 1$, то $H = \sum_{j \in J'} x_j^*$, STOP.
- 5. Добавить в J' новый вариант упаковки и вернуться на шаг 2

Оценка $H = \sum_{j \in J'} x_j^*$ является трудоемкой, но доминирует другие по

точности. Решение $x_j = [x_j^*], j \in J$, дает верхнюю оценку и часто оказывается оптимальным.

Вопросы

- Метод генерации столбцов дает точное решение задачи упаковки в контейнеры (Да или Hem?)
- Если на шаге 2 придется решать полиномиальное число задач линейного программирования, то метод будет полиномиальным?
- Правда ли, что размерность задачи о рюкзаке на шаге 3 растет с ростом числа итераций метода?
- Правда ли, что метод требует решения полиномиального числа задач о рюкзаке?
- Если на шаге 4 после срабатывания STOP решить точно целочисленную задачу для финального подмножества J', то получим точное решение исходной задачи?
- В чем смысл решать одну NP-трудную задачу (упаковки) путем многократного решения другой NP-трудной задачи (о рюкзаке)?