Lógica - Informe Preliminar 4 Sistemas de Inteligencia Artificial - ITBA

Gonzalo Castiglione, Alan Karpovsky, Martín Sturla Martes 29 de Mayo de 2012

Índice

1	Unificador más general	2
2	Resolución por refutación	3
3	Demostración 1: $\forall z \; \exists x \; H(z,x)$	4
4	Demostración 2: $\exists y \; Gato(y) \land Mata(curiosidad, y)$	6
5	Demostración 3: $\forall x \ Ultimo(cons(2, cons(1, Nil)), x)$	7
6	Resolución por refutación	7

1. Unificador más general

1.
$$p(x,b,b)$$
 y $p(a,y,z)$

-
$$\{b/y, b/z, a/x\}$$

2.
$$p(g(f(v)), g(u)) y p(x, x)$$

-
$$\{f(v)/u, g(f(v))/x\}$$

3.
$$p(g(y), f(x, h(x), y)) y p(x, f(z, u, v))$$

-
$$\{g(y)/x,g(y)/z,h(g(y))/u,y/v\}$$

4.
$$p(g(y), f(x, h(x), y)) y p(x, f(z, x, v))$$

- No se puede

5.
$$p(x, f(x)) y p(y, y)$$

- No se puede

6.
$$p(x, f(x), d) y p(c, f(c), y)$$

-
$$\{c/x, d/y\}$$

7.
$$p(f(g(x)), g(z)) y p(f(y), y)$$

$$-\{x/z, g(x)/y\}$$

8.
$$p(g(f(x)), z) y p(g(y), y)$$

-
$$\{f(x)/y, f(x)/z\}$$

9.
$$p(f(g(x)), x)$$
 y $p(g(g(h(z))), h(z))$

- No se puede

10.
$$conoce(padre(u), u) \ y \ conoce(x, x)$$

- No se puede

11.
$$entre(1, 2, 3)$$
 y $entre(y, s(x), 3)$

- No se puede

12.
$$entre(1, z, 3)$$
 y $entre(y, s(y), 3)$

-
$$\{S(1)/z, 1/y\}$$

- 13. menor(x, y) y mayor(u, v)
 - No se puede

2. Resolución por refutación

Dada:
$$\forall x \ a(x) \Rightarrow \exists x \ b(x) \vdash \exists x \ (a(x) \Rightarrow b(x))$$

Conversión a **CNF** de: $\forall x \ a(x) \Rightarrow \exists x \ b(x)$

- 1. Eliminación de la implicación
 - $a) \ \forall x \ a(x) \Rightarrow \exists x \ b(x)$
 - $b) \neg (\forall x \ a(x)) \lor (\exists x \ b(x))$
- 2. Reducción del alcance de la negación
 - $a) \exists x \neg a(x) \lor \exists x \ b(x)$
- 3. Estandarización de variables
 - $a) \exists x \neg a(x) \lor \exists z \ b(z)$

Conversión a **CNF** de: $\exists x \ (a(x) \Rightarrow b(x))$

- 1. Eliminación de la implicación
 - $a) \exists x (a(x) \Rightarrow b(x))$
 - $b) \ \exists x \ (\neg a(x) \lor b(x))$
- 2. Estandarización de variables
 - $a) \exists x (\neg a(x) \lor b(x))$
 - $b) \exists y (\neg a(y) \lor b(y))$

Negación de lo que quiero demostrar (resolución por refutación):

$$\forall y \ (a(y) \land \neg b(y))$$

Entonces obtenemos: $\{\neg a(A_1) \lor b(Z_1), a(y), \neg b(y)\}$. Sean:

$$\neg a(A_1) \lor b(Z_1) \tag{1}$$

$$a(y) (2)$$

$$\neg b(y) \tag{3}$$

Resolución:

Aclaración: En el primer nivel se utiliza la sustitución $\{A_1/y\}$ y en el segundo $\{Z_1/y\}$

3. Demostración 1: $\forall z \; \exists x \; H(z,x)$

Transformación a \mathbf{CNF} :

$$F(S_1(y), y) \tag{4}$$

$$G(S_2(z), z) (5)$$

$$\neg F(u, v) \lor \neg G(v, w) \lor H(u, w) \tag{6}$$

$$(\neg H(p,q) \lor F(p,S_3(p,q))) \land (\neg H(p,q) \lor G(S_3(p,q)))$$

$$(7)$$

Negación de lo que se desea probar llevado a CNF:

$$\neg H(a, x) \tag{8}$$

Ahora la base del conocimiento estará dada por:

$$F(S_1(y), y) \tag{9}$$

$$G(S_2(z), z) \tag{10}$$

$$\neg F(u,v) \lor \neg G(v,w) \lor H(u,w) \tag{11}$$

$$\neg H(a, x) \tag{12}$$

$$\neg H(p,q) \lor F(p, S_3(p,q)) \tag{13}$$

$$\neg H(p,q) \lor G(S_3(p,q)) \tag{14}$$

Nótese que las funciones $S_1,\ S_2$ y S_3 son las introducidas por el proceso de Skolemización

Resolución:

De (11) y (13) utilizando las substituciones $\{u/p, S_3(p,q)/v\}$ se obtiene

$$\neg G(S_3(p,q), w) \lor \neg H(u,q) \lor H(v,w) \tag{15}$$

De (14) y (15) utilizando las substituciones $\{q/w\}$ se obtiene

$$\neg H(u,q) \lor H(v,q) \tag{16}$$

De (12) y (16) utilizando las substituciones $\{a/v, q/x\}$ se obtiene

$$\neg H(u,q) \tag{17}$$

De (11) y (17) utilizando las substituciones $\{w/q\}$ se obtiene

$$\neg F(u, v) \lor \neg G(v, w) \tag{18}$$

De (9) y (18) utilizando las substituciones $\{S_1(y)/u, y/v\}$ se obtiene

$$\neg G(y, w) \tag{19}$$

De (12) y (19) utilizando las substituciones $\{S_2(z)/y, z/w\}$ se obtiene NIL

4. Demostración 2: $\exists y \; Gato(y) \land Mata(curiosidad, y)$

Como primer paso se convierte todo a CNF obteniendo:

- 1. $\neg Animal(y) \lor \neg Mata(x,y) \lor \neg Ama(x,z)$
- 2. $\neg Animal(x) \lor Ama(pedro, x)$
- 3. $Mata(Pedro, Felix) \vee Mata(curiosidad, Felix)$
- $4. \; Gato(Felix)$
- 5. $\neg Gato(x) \lor Animal(x)$
- 6. Negación de lo que se desea probar: $\neg Gato(y) \lor \neg Mata(curiosidad, y)$

Resolución:

- De (4) + (5) con la sustitución {Felix/x} se obtiene
 7. Animal(Felix)
- De (4) + (6) con la sustitución $\{Felix/y\}$ se obtiene 8. $\neg Mata(curiosidad, Felix)$
- De (3) + (8) se obtiene
 - 9. Mata(Pedro, felix)
- De (7) + (1) con la sustitución $\{Felix/y\}$ se obtiene 10. $\neg Mata(x, Felix) \lor \neg Ama(x, z)$
- De (9) + (10) con la sustitución $\{Pedro/x\}$ se obtiene 11. $\neg Ama(Pedro, z)$
- De (7) + (2) con la sustitución {Felix/x} se obtiene
 12. Ama(pedro, Felix)
- De (11) + (12) con la sustitución $\{Felix/z\}$ se obtiene

13. **NIL**

Como se ha visto en la demostración, se ha logrado demostrar que $\exists y \; Gato(y) \land Mata(curiosidad, y)$.

5. Demostración 3: $\forall x \ Ultimo(cons(2, cons(1, Nil)), x)$

Primero se convierte todo a CNF:

$$Ultimo(cons(x, Nil), x)$$
 (20)

$$\neg Ultimo(y, z) \lor Ultimo(cons(w, y), z)$$
 (21)

$$\neg Ultimo(cons(2, cons(1, Nil)), p) \tag{22}$$

Resolución:

De (21) y (22) utilizando las substituciones $\{z/w, cons(1, Nil)/y, z/p\}$ se obtiene

$$\neg Ultimo(cons(1, Nil), z) \tag{23}$$

De (20) y (23) utilizando las substituciones $\{1/x, 1/z\}$ se obtiene NIL

6. Resolución por refutación

- 1. Tony, Mike y John pertenecen al Club Alpino.
- 2. Cada miembro del Club Alpino es, o esquiador, o alpinista o ambas cosas.
- 3. A ningún alpinista le gusta que llueva.
- 4. A todos los esquiadores les gusta que nieve.
- 5. A Mike no le gusta lo que le gusta a Tony, y le gusta lo que le disgusta a Tony.
- 6. A Tony le gusta que llueva y que nieve.
- 7. ¿Quién es un miembro del Club Alpino que es alpinista y no es esquiador?

Por cuestiones de practicidad se utiliza el siguiente reemplazo: T = Tony, M = Mike, J = John.

Definanse las siguientes funciones:

- Alpino(x): x pertenece al Club Alpino
- gusta(x,y): al sujeto x le gusta(y)
- Esquiador(x): x es esquiador
- Alpinista(x): x es alpinista

Luego del pasaje a CNF se obtiene:

$$Alpino(T)$$
 (24)

$$Alpino(M)$$
 (25)

$$Alpino(J)$$
 (26)

$$\neg Alpino(x) \lor Esquiador(x) \lor Alpinista(x)$$
 (27)

$$\neg Alpinista(y) \lor gusta(y, llueve)$$
 (28)

$$\neg Esquiador(z) \lor gusta(z, nieve)$$
 (29)

$$\neg gusta(T, p) \lor \neg gusta(M, p) \tag{30}$$

$$gusta(T, p) \lor gusta(M, p)$$
 (31)

$$gusta(T, llueve)$$
 (32)

$$gusta(T, nieve)$$
 (33)

Resolución:

De (30) y (33) utilizando las substituciones $\{nieve/p\}$ se obtiene

$$\neg gusta(M, nieve)$$
 (34)

De (29) y (34) utilizando las substituciones $\{M/z\}$ se obtiene

$$\neg Esquiador(M) \tag{35}$$
 De (27) y (35) utilizando las substituciones $\{M/x\}$ se obtiene
$$\neg Alpino(M) \lor Alpinista(M) \tag{36}$$
 De (25) y (36) se obtiene
$$\neg Alpinista(M) \tag{37}$$
 De (25) y (27) utilizando las substituciones $\{M/x\}$ se obtiene
$$Esquiador(M) \lor Alpinista(M) \tag{38}$$
 De (35) y (38) se obtiene
$$Alpinista(M) \tag{39}$$

De (37) y (39) se obtiene **NIL**