

Revolution Analytics

Leveraging R in Hadoop Environments

September 21, 2011

In Today's Webinar:

- About Revolution Analytics
- Why R and Hadoop?
- The Packages (rhdfs, rhbase, rmr)
- Examples
- Resources and Further Reading

Co-sponsored by Revolution and Cloudera

OPEN SOURCE ANALYTICS FOR THE ENTERPRISE

- → Most advanced statistical analysis software available
- → Half the cost of commercial alternatives
- →2M+ Users
- → 3,000+ Applications

Statistics

Predictive Analytics

Data Mining

Visualization

Finance

Life Sciences

Manufacturing

Retail

Telecom

Social Media

Government

Forbes

Power in the Numbers

Quentin Hardy, 05.06.10, 09:00 AM EDT

The professor who invented analytic software for the experts now wants to take it to the masses

The New Hork Times

Data Analysts Captivated by R's Power

By ASHLEE VANCE Published: January 6, 2009

What's the Difference Between R and Revolution R Enterprise?

Revolution R is 100% R and More®

For more information contact: info@revolutionanalytics.com

Let's Talk about R and Hadoop

Why R and Hadoop?

- Hadoop offers a scalable infrastructure for processing massive amounts of data
 - Storage HDFS, HBASE
 - Distributed Computing MapReduce
- R is a statistical programming language for developing advanced analytic applications
- There is a need for more than counts and averages on these big data sets
- Analyzing all of the data can lead to insights that sampling or subsets can't reveal.

Motivation for this project

- Make it easy for the R programmer to interact with the Hadoop data stores and write MapReduce programs
- Ability to run R on a massively distributed system without having to understand the underlying infrastructure
- Keep statisticians focused on the analysis and not the implementation details
- Open source to drive innovation and collaboration.

R and Hadoop – The R Packages

rhdfs

- Manipulate HDFS directly from R
- Mimic as much of the HDFS Java API as possible
- Examples:
 - Read a HDFS text file into a data frame.
 - Serialize/Deserialize a model to HDFS
 - Write an HDFS file to local storage
 - rhdfs/pkg/inst/unitTests rhdfs/pkg/inst/examples

rhdfs Functions

- File Manipulations hdfs.copy, hdfs.move, hdfs.rename, hdfs.delete, hdfs.rm, hdfs.del, hdfs.chown, hdfs.put, hdfs.get
- File Read/Write hdfs.file, hdfs.write, hdfs.close, hdfs.flush, hdfs.read, hdfs.seek, hdfs.tell, hdfs.line.reader, hdfs.read.text.file
- Directory hdfs.dircreate, hdfs.mkdir
- Utility hdfs.ls, hdfs.list.files, hdfs.file.info, hdfs.exists
- Initialization hdfs.init, hdfs.defaults

rhbase

- Manipulate HBASE tables and their content
- Uses Thrift C++ API as the mechanism to communicate to HBASE
- Examples
 - Create a data frame from a collection of rows and columns in an HBASE table
 - Update an HBASE table with values from a data frame
 - rhbase/pkg/inst/unitTests

rhbase Functions

- Table Manipulation hb.new.table, hb.delete.table, hb.describe.table, hb.set.table.mode, hb.regions.table
- Row Read/Write hb.insert, hb.get, hb.delete, hb.insert.data.frame, hb.get.data.frame, hb.scan
- Utility hb.list.tables
- Initialization hb.defaults, hb.init

rmr

- Designed to be the simplest and most elegant way to write MapReduce programs
- Gives the R programmer the tools necessary to perform data analysis in a way that is "R" like
- Provides an abstraction layer to hide the implementation details
- Examples
 - Simulations Monte Carlo and other Stochastic analysis
 - R 'apply' family of operations (tapply, lapply...)
 - Binning, quantiles, summaries, crosstabs and inputs to visualization (ggplot, lattice).
 - Data Mining and Machine Learning
 - rmr/pkg/inst/tests

rmr mapreduce Function

mapreduce (input, output, map, reduce, ...)

```
input – input folder
output – output folder
map – R function used as map
reduce – R function used as reduce
```

... - other advanced parameters

The Basics

K-means

Final thoughts

- R and Hadoop together offer innovation and flexibility needed to meet analytics challenges of big data
- We need contributors to this project!
 - Developers
 - Documentation
 - Use cases
 - General Feedback

Resources

- Slides / Replay: <u>bit.ly/r-and-hadoop</u>
- Open source project: https://github.com/RevolutionAnalytics/RHadoop/wiki
- Participate in our survey: http://www.surveymonkey.com/s/JM3N6RP
- Revolution R Enterprise: bit.ly/Enterprise-R
- Cloudera CDH: http://www.cloudera.com/hadoop/
- Email: rhadoop@revolutionanalytics.com

Thank you.

The leading commercial provider of software and support for the popular open source R statistics language.

www.revolutionanalytics.com

650.330.0553

Twitter: @RevolutionR

