ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEOMATIKY

Název předmětu:						
VTTG - Výuka v terénu z teoretické geodézie						
Úloha:	Název úlo	ohy:				
TRG			Triangulace a trilaterace na velké vzdálen	nosti		
Akademický rok:	Semestr:	Skupina:	Vypracoval:	Datum:	Klasifikace:	
			Josef Bořík, Matěj Klimeš			
			Michal Kovář, Matyáš Pokorný			
			Filip Roučka, Kryšof Sedlák			
2024/2025	letní	1	Tereza Černohousová, Adéla Rabasová	22. 9. 2025		
			Magdalena Soukupová, Tomáš Zbíral			

Obsah

1	Zad	ání		1		
2	Info	rmace	o měření	1		
	Postup měření 2					
3	Pos	tup m	ereni	2		
4	Pos	tup zp	racování	2		
		4.0.1	Centrační osnova	2		
		4.0.2	Redukce délek	2		
		4.0.3	Astronomické azimuty	3		
		4.0.4	Redukce měřených směrů do Křovákova zobrazení	3		
		4.0.5	Centrace vodorovných směrů	3		
		4.0.6	Vyrovnání sítě	3		
5	$\mathbf{V}\mathbf{\acute{y}}\mathbf{s}$	sledky		5		
	5.1	Reduk	ce délek	5		
	5.2	Reduk	cce měřených úhlů	5		
		5.2.1	měřený úhel a centrace	5		
		5.2.2	Směrové korekce	6		
		5.2.3	Výsledné upravené úhly	6		
	5.3	Astron	nomické měření	7		
		5.3.1	Centrace azimutů	7		
	5.4	Výsled	lky GNSS měření	8		
	5.5	Vyrov	nání GAMA	8		
		5.5.1	Základní informace	8		
		5.5.2	Souřadnice vyrovnaných veličin	8		
		5.5.3	Detailní výsledky vyrovnání	9		
	5.6	Měřen	í gyroteodolitem	10		
		5.6.1	Konstanta gyroteodolitu	11		
	5.7	Porovi	nání terestrického měření a GNSS	11		
6	Záv	ěr		12		
7	Příl	ohv		12		

1 Zadání

Cílem této úlohy je určení souřadnic vybraných bodů geodetické sítě v okolí Starého Města pod Sněžníkem v souřadnicovém systému S-JTSK pomocí metod klasické geodézie – **triangulace**, **trilaterace** a **astronomického určení azimutu**. Dalším cílem je stanovení **součtové konstanty gyroteodolitu** z měření na známém azimutu. Orientace sítě je definována měřenými azimuty na vybraných bodech. Vzhledem k obtížnosti určení zeměpisných souřadnic bodů sítě astronomickými metodami jsou souřadnice jednoho z bodů převzaty z úlohy GNSS. V rámci úlohy jsou prováděny následující činnosti:

- měření horizontálních směrů mezi body (triangulace) včetně centrace měřených směrů.
- měření délek mezi body (trilaterace) a záznam meteorologických veličin pro fyzikální redukce.
- provedení astronomického určení azimutu na vybraných stranách sítě měřením na Slunce.
- měření gyroteodolitem na vybrané straně a výpočet součtové konstanty přístroje.
- zpracování a vyrovnání výsledků, porovnání s výsledky GNSS.

2 Informace o měření

Místo měření: Staré Město pod Sněžníkem a okolí (okres Šumperk)

Datum měření: 13. 6. 2025 – triangulace, trilaterace, astro měření;

14. 6. 2025 – měření gyroteodolitem, sk č. 3

16. 6. 2025 – měření gyroteodolitem, sk č. 1

Povětrnostní podmínky: 13. 6. 2025 – jasno, slabý vítr, teplota cca 20–24°C

14. 6. 2025 – jasno, mírný vítr, teplota cca 20–24 °C

16. 6. 2025 – zataženo, deštivo, teplota cca 17–20 °C.

Použité přístroje a pomůcky: 2× totální stanice Leica TC1700 / Topcon GPT-7501,

souprava hranolů (centrické a excentrické), minihranol,

2× stativ, 2× měřická lať,

gyroteodolit, stopky, přijímač pro čas UTC,

meteorologická souprava (teploměr, vlhkoměr, barometr)

Souřadnicový systém: S-JTSK

3 Postup měření

Měření v terénu probíhalo ve dvou dnech a zahrnovalo klasické geodetické metody – triangulaci, trilateraci a astronomické určení azimutu, doplněné o měření gyroteodolitem. Studenti byli rozděleni do čtyř pracovních čet, přičemž každá z nich zaujala jeden z určených bodů sítě a během celého dne prováděla veškerá potřebná měření. Pro práci byly využity univerzální teodolity typu Leica TC1700 nebo Topcon GPT-7501.

V rámci triangulace a trilaterace byly na každém stanovisku měřeny tři vodorovné úhly. Každý úhel byl určen nezávisle ve třech sadách, přičemž v každé sadě se uskutečnilo dvojí cílení, aby bylo dosaženo vyšší přesnosti. Délky se vždy určovaly ze stanoveného centra a spolu s tím byly zaznamenávány meteorologické veličiny – teplota, tlak a vlhkost vzduchu – nutné pro následnou fyzikální redukci. Důležitá byla i evidence výšek přístroje a odrazných hranolů nad body. Důležitou součástí postupu bylo měření centračních prvků, protože přístroje i cíle byly umístěny excentricky. Centrační osnova obsahovala směry na tři ostatní body sítě a navíc na vlastní centr a excentrický cíl. Dále byly změřeny délky z excentrického stanoviska na centr a na excentrický cíl.

Astronomické určení azimutu spočívalo v měření směru na Slunce. Každá četa si zvolila jednu stranu vymezenou excentrickým stanoviskem a cílem a provedla měření úhlu mezi touto záměrou a polohou Slunce. Postup zahrnoval cílení na oba okraje slunečního kotouče v obou polohách dalekohledu, přičemž byl vždy zaznamenán přesný čas měření. K určení času se využíval ruční GPS přijímač nastavený na světový čas UTC, zatímco vlastní odečet probíhal pomocí stopek synchronizovaných s tímto přijímačem. Získaná data pak sloužila k výpočtu azimutu měřené strany.

Další část měření byla věnována práci s gyroteodolitem. Jeho úkolem bylo určení azimutu vybrané strany v síti. Protože vlastní součtová konstanta použitého přístroje nebyla známa, postup byl obrácený: z naměřených hodnot a známého azimutu se zpětně určovala právě tato konstanta.

4 Postup zpracování

4.0.1 Centrační osnova

Každou z měřických čet bylo nejprve zpracováno měření centrační osnovy. Byly tedy vypočteny průměry ze dvou skupin, měřené délky byly opraveny o součtovou konstantu podle použitého hranolu.

4.0.2 Redukce délek

Redukce délek se zkládají ze dvou typů redukcí — fyzikálních a matematických. Fyzikální redukce jsou závislé na hodnotách tlaku, teploty a vlhkosti a jsou počítány pomocí firemních rovnic.

Mluvíme-li o matematických redukcích, jde o opravu z refrakce a převod délky měřené na délku přímé spojnice v rovině kartografického zobrazení. Převod na délku přímé spojnice probíhá tak, že z přibližných elipsoidických souřadnic bodů sítě určíme jejich souřadnice v rovině křovákova zobrazení a z nich délku přímé spojnice obrazu těchto bodů. Po převodu přibližných hodnot na pravoúhlé prostorové souřadnice vypočteme prostorovou vzdálenost. Výslednou délku vypočteme podle vzorce uvedeného v

zadání.

4.0.3 Astronomické azimuty

Nejprve byl vypočten průměr z měření na levý a pravý okraj Slunce a také průměr z časů těchto měření. Výpočtem průměru byl vodorovný směr vztažen ke středu Slunce. Díky tomu mohla být dále použita rektascenze a deklinace v astronomických tabulkách. Následně byl jako rozdíl dvou směrů vypočten vodorovný úhel mezi bodem sítě a středem Slunce.

4.0.4 Redukce měřených směrů do Křovákova zobrazení

Samotný výpočet probíhá v několika krocích. Nejprve se určí délka spojnice S_{ij} mezi body A a B a vypočítá průměrné hodnoty polárního úhlu ε_{IJ} a průvodiče ρ_{ij} . Následně stanoví korekční koeficienty k_i a k_j na základě kartografických šířek obou bodů, přičemž vychází ze zadané základní kartografické rovnoběžky.

Směrová korekce je poté vypočtena z přibližných souřadnic bodů podle vzorců uvedených v zadání. Výsledkem jsou hodnoty směrových korekcí pro oba směry $(\delta_{ij} \text{ a } \delta_{ji})$.

4.0.5 Centrace vodorovných směrů

Centrace byla provedena iteračním postupem. Pro každé rameno měřeného úhlu byla zvlášť určována centrační změna. V prvním kroku byly vypočteny souřadnice bodů na stanovisku, pro které se určovala centrační. Souřadnice excentrického stanoviska S1 byly v prvním kroku vypočteny pomocí metody rajónu (polární metody) "zpět", protože v tomto okamžiku nejsou známy souřadnice excentrického cíle Cíl2, a proto byly použity souřadnice středu C2. V následujícím kroku byly souřadnice excentrického cíle Cíl1 určeny pomocí polární metody. Výpočet byl proveden i na stanovisku S2, přičemž se pro jeho výpočet použily již vypočtené souřadnice Cíl1. Celý postup se opakoval, dokud absolutní rozdíl nově vypočtených souřadnic S1, S2, Cíl1 a Cíl2 mezi dvěma po sobě jdoucími iteracemi neklesl pod 0,0001 m. Centrační změna byla vypočtena jako úhel mezi spojnicí S1–Cíl2 a spojnicí C1–C2.

4.0.6 Vyrovnání sítě

Pro vyrovnání sítě byla použita aplikace GNU Gama, konkrétně verze qgama-2.08 s grafickým uživatelským rozhraním. Do vyrovnání byly zahrnuty délky a úhly. Astronomické azimuty byly vyřazeny, protože jejich hodnoty se odchylovaly od hodnot vypočtených z přibližných souřadnic. Celkem bylo pro vyrovnání využito 15 délek a 15 úhlů.

Stanovisko	Cíl	Astronomický azimut ze souřadnic	Astronomický azimut měřený	Rozdíl
1001	1004	75.8787	75.1646	0.7141
1002	1004	10.8688	8.8140	2.0548
1002	1001	335.4767	333.8572	1.6195
1003	1004	298.8013	297.8721	0.9292
1004	1001	210.8688	208.8475	2.0213

Tabulka 1: Vynechané hodnoty z měření [gony]

Síť byla vyrovnána jako volná s opěrnými body 1002 a 1004. Váhy jednotlivých měření byly prvotně stanoveny ze znalosti předpokládaných přesností jednotlivých metod měření. Následně byly váhy upravovány tak, aby platilo

$$\frac{m_0}{m_0'} = 1,$$

kde:

 m_0' - apriorní směrodatná odchylka jednotková,

 m_0 - aposteriorní směrodatná odchylka jednotková.

Tato podmínka byla kontrolována separátně pro úhly a pro délky. Přesnost měření délek byla charakterizována trojicí čísel (a,b,c), přičemž směrodatná odchylka měřené vzdálenosti je definována vztahem

$$\sigma_D = a + b \cdot D^c,$$

kde:

D - délka v kilometrech.

5 Výsledky

5.1 Redukce délek

Tabulka 2: Fyzikální a matematická redukce délek

St.	Cíl	Měřená	Fyzikální	Matematická	Redukovaná
St.	CII	vzdálenost [m]	redukce [m]	redukce [m]	vzdálenost [m]
1001	1002	5907.4190	0.13288	-2.04409	5905.5078
1001	1003	4794.1160	0.09660	-1.53955	4792.6730
1001	1004	6415.6470	0.16262	-1.20999	6414.5996
1002	1001	5907.4305	0.10951	-2.04373	5905.4963
1002	1003	3221.3505	0.04337	-0.42646	3220.9674
1002	1004	5581.4355	0.11392	-4.56639	5576.9830
1003	1001	4794.0310	0.08093	-1.53915	4792.5728
1003	1002	3221.3360	0.04426	-0.42687	3220.9534
1003	1004	2570.4370	0.05246	-6.67317	2563.8163
1003	1001	4794.0355	0.08093	-1.53917	4792.5773
1003	1002	3221.3385	0.04426	-0.42686	3220.9559
1003	1004	2570.4390	0.04682	-6.67325	2563.8126
1004	1001	6415.6235	0.16363	-1.21034	6414.5768
1004	1002	5581.5120	0.13086	-4.56823	5577.0746
1004	1003	2570.5165	0.05400	-6.67666	2563.8938

5.2 Redukce měřených úhlů

5.2.1 měřený úhel a centrace

Tabulka 3: Naměřené úhly a centrační korekce

Stanovisko	Levé	Pravé	Měřený	Centrace	Centrace	Centrační
Stanovisko	rameno	rameno	úhel	levé rameno	pravé rameno	změna
1001	1003	1002	36.6853	0.06538	-0.07415	-0.00877
1001	1004	1002	59.6360	0.03767	-0.07415	-0.03647
1001	1004	1003	22.9514	0.03767	-0.06538	-0.02770
1002	1001	1003	60.1844	0.14337	-0.16080	-0.01743
1002	1001	1004	75.2223	0.14337	0.02676	0.17013
1002	1003	1004	15.0373	0.16080	0.02676	0.18756
1003	1002	1001	103.2681	0.06590	-0.17549	-0.10958
1003	1001	1004	131.0620	0.17549	0.06718	0.24267
1003	1004	1002	165.6710	-0.06718	-0.06590	-0.13309
1003	1002	1001	103.2034	0.05087	-0.09687	-0.04599
1003	1001	1004	131.2344	0.09687	-0.02529	0.07158
1003	1004	1002	165.5629	0.02529	-0.05087	-0.02558
1003	1005	1001	16.3341	-0.10748	-0.09687	-0.20435
1004	1002	1001	65.0163	0.07076	-0.07645	-0.00570
1004	1002	1003	19.0362	0.07076	0.12979	0.20054
1004	1003	1001	45.9796	-0.12979	-0.07645	-0.20624

5.2.2 Směrové korekce

Tabulka 4: Směrové korekce k jednotlivým úhlům

Stanovisko	Levé	Pravé	Směrová korekce	Směrová korekce	směrová
Stanovisko	rameno	rameno	levé rameno	pravé rameno	korekce
1001	1003	1002	0.00189	-0.00267	-0.00077
1001	1004	1002	0.00187	-0.00267	-0.00079
1001	1004	1003	0.00187	-0.00189	-0.00002
1002	1001	1003	-0.00267	0.00077	-0.00190
1002	1001	1004	-0.00267	0.00079	-0.00188
1002	1003	1004	-0.00077	0.00079	0.00002
1003	1002	1001	0.00077	0.00190	0.00267
1003	1001	1004	-0.00190	0.00002	-0.00188
1003	1004	1002	-0.00002	-0.00077	-0.00079
1003	1002	1001	0.00077	0.00190	0.00267
1003	1001	1004	-0.00190	0.00002	-0.00188
1003	1004	1002	0.02529	-0.05087	-0.02558
1003	1005	1001	-0.00052	0.00190	0.00138
1004	1002	1001	0.00079	0.00188	0.00267
1004	1002	1003	0.00079	-0.00002	0.00077
1004	1003	1001	0.00002	0.00188	0.00190

5.2.3 Výsledné upravené úhly

Tabulka 5: Opravy a finální upravené úhly

Stanovisko	Levé	Pravé	Oprava	Upravený
Stallovisko	rameno	rameno	směru	úhel
1001	1003	1002	-0.00954	36.67576
1001	1004	1002	-0.03726	59.59874
1001	1004	1003	-0.02772	22.92368
1002	1001	1003	-0.01933	60.16507
1002	1001	1004	0.16825	75.39055
1002	1003	1004	0.18758	15.22488
1003	1002	1001	-0.10691	103.16119
1003	1001	1004	0.24079	131.30279
1003	1004	1002	-0.13387	165.53713
1003	1002	1001	-0.04333	103.16007
1003	1001	1004	0.06970	131.30410
1003	1004	1002	-0.02637	165.53653
1003	1005	1001	-0.20297	16.13113
1004	1002	1001	-0.00303	65.01327
1004	1002	1003	0.20132	19.23752
1004	1003	1001	-0.20434	45.77526

5.3 Astronomické měření

Tabulka 6: Přehled měření azimutu

Jméno 1	Jméno 2	Datum	Čas	Stanovisko	Cíl	Azimut [g]
Tereza Cernohousova	Matyas Pokorny	2025-06-13	09:37:35.4	1001	1004	276.3985
Tereza Cernohousova	Matyas Pokorny	2025-06-13	09:41:26.7	1001	1004	276.3504
Tereza Cernohousova	Matyas Pokorny	2025-06-13	09:49:09.5	1001	1004	276.2386
Tereza Cernohousova	Matyas Pokorny	2025-06-13	09:52:11.3	1001	1004	276.1903
Tereza Cernohousova	Matyas Pokorny	2025-06-13	11:38:30.8	1001	1004	274.1676
Tereza Cernohousova	Matyas Pokorny	2025-06-13	11:41:24.3	1001	1004	274.1668
Josef Borik	Matej Klimes	2025-06-13	14:26:12.7	1003	1001	96.8991
Josef Borik	Matej Klimes	2025-06-13	14:30:52.2	1003	1001	97.0793
Josef Borik	Matej Klimes	2025-06-13	14:33:11.8	1003	1001	97.0903
Krystof Sedlak	Magda Soukupova	2025-06-13	13:37:39.1	1003	1001	97.1408
Krystof Sedlak	Magda Soukupova	2025-06-13	13:43:46.1	1003	1001	97.0846
Krystof Sedlak	Magda Soukupova	2025-06-13	13:48:42.7	1003	1001	97.0928

5.3.1 Centrace azimutů

Tabulka 7: Centrace astronomického měření

St.	Cíl	Azimut [gon]	Contraco [gon]	Směrová	Korekce	Upravený
ы.	CII	Azimut [gon]	Centrace [gon]	korekce [gon]	celkem [gon]	azimut [gon]
1001	1004	276.37442	-0.03767	0.00187	-0.03580	76.33862
1001	1004	276.21445	-0.03767	0.00187	-0.03580	76.17865
1001	1004	274.14843	-0.03767	0.00187	-0.03580	74.11263
1001	1004	273.77776	-0.03767	0.00187	-0.03580	73.74196
1002	1004	208.77826	0.02676	-0.00079	0.02597	8.80423
1002	1004	208.90165	0.02676	-0.00079	0.02597	8.92762
1002	1001	133.84050	-0.14337	-0.00267	-0.14603	333.69447
1002	1001	133.58179	-0.14337	-0.00267	-0.14603	333.43575
1003	1001	99.68832	-0.17549	-0.00190	-0.17738	299.51093
1003	1001	99.60332	-0.17549	-0.00190	-0.17738	299.42593
1003	1001	96.97939	-0.17549	-0.00190	-0.17738	296.80201
1003	1001	97.08479	-0.17549	-0.00190	-0.17738	296.90740
1003	1001	97.11275	-0.09687	-0.00190	-0.09876	297.01399
1003	1001	97.10187	-0.09687	-0.00190	-0.09876	297.00310
1003	1001	97.14310	-0.09687	-0.00190	-0.09876	297.04434
1003	1001	97.15861	-0.09687	-0.00190	-0.09876	297.05985
1004	1002	8.79823	-0.07076	0.00079	-0.06997	208.72826
1004	1002	8.79892	-0.07076	0.00079	-0.06997	208.72895
1004	1002	8.77957	-0.07076	0.00079	-0.06997	208.70960
1004	1002	8.73334	-0.07076	0.00079	-0.06997	208.66337

5.4 Výsledky GNSS měření

Tabulka 8: Souřadnice stanovišť určené z GNSS měření

stanovisko	Zeměpisná šířka [°]	Zeměpisná délka [°]	Výška [m]
1001	50.168009	16.900870	877.078
1002	50.144727	16.975136	746.024
1003	50.173260	16.967453	775.968
1004	50.194748	16.980437	957.596
1005	50.168051	16.946863	602.168

5.5 Vyrovnání GAMA

5.5.1 Základní informace

Tabulka 9: Shrnutí zpracování bodů sítě.

Popis	Počet	Popis	Počet
Vyrovnané body	4	Vektorové měření	0
Pevné body	0	Azimutální měření	0
Podmíněné body	2	Měření výšek	0

Tabulka 10: Shrnutí počtu pozorování.

Pozorování	Počet
Délky	15
Směry	0
Úhly	15
Azimuty	0

Tabulka 11: Shrnutí vyrovnání a statistických údajů.

Popis	Hodnota	Popis	Hodnota
Rovnice	30	Neznámé	8
Stupně volnosti	25	Defekt	3
Suma čtverců	22.9869	Iterace	1
Apriorní S.O.	1.000	Aposteriorní S.O.	0.9589
Poměr	0.959	Dolní mez	0.724
Horní mez	1.275	Úroveň spolehlivosti	0.950

5.5.2 Souřadnice vyrovnaných veličin

Tato tabulka zobrazuje upravené souřadnice pro každý bod, včetně délek hlavních a vedlejších poloos chybových elips.

Tabulka 12: Vyrovnané souřadnice a hlavní poloosy chybových elips.

Bod	X [m]	Y [m]	hl. poloosa [mm]	vedl. poloosa [mm]	
1001	1055386.1210	565725.1145	34.3014	31.5160	
1002	1058509.5130	560713.0936	15.1696	0.0000	
1003	1055296.0630	560933.3479	18.5655	11.2824	
1004	1053013.6070	559765.5664	15.1696	0.0000	

5.5.3 Detailní výsledky vyrovnání

Tyto tabulky obsahují detailní výsledky vyrovnání pro úhly a délky, včetně měřených a vyrovnaných hodnot, směrodatných odchylek a standardizovaných reziduí.

Úhly

Tabulka 13: Detailní výsledky vyrovnání úhlů.

Pozorování	měřená hodnota	vyrovnaná hodnota	sm. odch. [mgon]	standard. reziduur
[gon]				
1001: 1003 - 1002	36.6758	36.6745	3.1110	1.430
1001: 1004 - 1002	59.5987	59.5978	3.7428	1.053
1001: 1004 - 1003	22.9237	22.9233	2.3795	0.464
1002: 1001 - 1003	60.1651	60.1652	3.8987	0.087
1002: 1001 - 1004	75.3905	75.3907	3.8693	0.230
1002: 1003 - 1004	15.2249	15.2255	2.3882	0.673
1003: 1002 - 1001	103.1612	103.1603	4.4725	1.033
1003: 1001 - 1004	131.3028	131.3028	4.6005	0.009
1003: 1004 - 1002	165.5371	165.5369	4.7891	0.276
1003: 1002 - 1001	103.1601	103.1603	4.4725	0.262
1003: 1001 - 1004	131.3041	131.3028	4.6005	1.534
1003: 1004 - 1002	165.5365	165.5369	4.7891	0.445
1004: 1002 - 1001	65.0133	65.0115	3.4891	1.980
1004: 1002 - 1003	19.2375	19.2376	2.8754	0.114
1004: 1003 - 1001	45.7753	45.7739	3.6014	1.545

Délky

Tabulka 14: Detailní výsledky vyrovnání délek.

Pozorování	měřená hodnota	vyrovnaná hodnota	sm. odch. [mm]	standard. reziduum
[m]				
$\overline{1001 - 1002}$	5905.5078	5905.5847	33.4678	0.890
1001 - 1003	4792.6730	4792.6128	30.7267	0.852
1001 - 1004	6414.5996	6414.4396	33.9940	1.705
1002 - 1001	5905.4963	5905.5847	33.4678	1.023
1002 - 1003	3220.9674	3220.9894	24.8454	0.448
1002 - 1004	5576.9830	5576.9876	30.3393	0.055
1003 - 1001	4792.5728	4792.6128	30.7267	0.565
1003 - 1002	3220.9534	3220.9894	24.8454	0.733
1003 - 1004	2563.8163	2563.8484	22.5120	0.804
1003 - 1001	4792.5773	4792.6128	30.7267	0.502
1003 - 1002	3220.9559	3220.9894	24.8454	0.682
1003 - 1004	2563.8126	2563.8484	22.5120	0.896
1004 - 1001	6414.5768	6414.4396	33.9940	1.462
1004 - 1002	5577.0746	5576.9876	30.3393	1.053
1004 - 1003	2563.8938	2563.8484	22.5120	1.134

5.6 Měření gyroteodolitem

Tabulka 15: Azimuty měřené gyroteodolitem a jejich redukce

St.	Cíl	Měřený	Centrace [g]	Směrová	Celková	Opravený
56.	St. CII	Azimut [g]	Centrace [g]	korekce [g]	oprava [g]	azimut [g]
1005	1003	75.56611	-0.09904	0.00052	0.09956	75.46759
1005	1003	75.57344	-0.09907	0.00052	0.09958	75.47490
1005	1003	75.57556	-0.09889	0.00052	0.09941	75.47719
1005	1003	75.64867	-0.09883	0.00052	0.09935	75.55035
1005	1003	75.54300	-0.07609	0.00052	0.07661	75.46742
1005	1003	75.54744	-0.07608	0.00052	0.07660	75.47189
1005	1003	75.55467	-0.07606	0.00052	0.07658	75.47913
1005	1003	75.57944	-0.07604	0.00052	0.07656	75.50392
1005	1003	75.57322	-0.07605	0.00052	0.07657	75.49769
1005	1003	76.46722	-0.07454	0.00052	0.07505	76.39321

5.6.1 Konstanta gyroteodolitu

Tabulka 16: Určení konstanty gyroteodolitu

Hodnota	Průměr	Ze souřadnic	Konstanta gyroteodolitu
75.4676			
75.4749			
75.4772			
75.5504			
75.4674	75 1070	00.6700	7.1844
75.4719	75.4878	82.6722	
75.4791			
75.5039			
75.4977			
76.3932			

5.7 Porovnání terestrického měření a GNSS

Tabulka 17: Souřadnice a jejich rozdíly v metrech

Stanovisko	X vyrovnané	X GNSS	ΔX	Y vyrovnané	Y GNSS	ΔY
1001	1055386.121	1055386.291	0.170	565725.114	565725.159	0.045
1002	1058509.513	1058509.547	0.034	560713.094	560713.097	0.003
1003	1055296.063	1055296.051	-0.012	560933.348	560933.350	0.002
1004	1053013.607	1053013.574	-0.033	559765.566	559765.560	-0.006

6 Závěr

V rámci zpracování byla nejprve vyhodnocena centrační osnova, z níž byly stanoveny průměry a opraveny délky o součtovou konstantu hranolu. Následně proběhla redukce délek, zahrnující fyzikální redukce podle meteorologických veličin a matematické redukce zohledňující refrakci a převod do roviny Křovákova zobrazení. Pro astronomické měření byly vypočteny průměry směrů na levý a pravý okraj Slunce i odpovídající časy, čímž byl získán směr ke středu slunečního kotouče a z tabulek určena rektascenze a deklinace pro výpočet azimutu. Současně byly stanoveny směrové korekce do rovinného zobrazení a iteračním postupem byly určeny centrační změny vodorovných směrů na všech stanoviscích. Dále proběhlo vyrovnání sítě v programu GAMA, kde byly pro vyrovnání použito 15 směrů a 15 délek. Astronomické azimuty byly vyřazeny, protože jejich hodnoty se odchylovaly od hodnot vypočtených z přibližných souřadnic. Výsledné vyrovnané souřadnice jsou patrné v následující tabulce.

Tabulka 18: Vyrovnané souřadnice bodů.

Bod	X [m]	Y [m]
1001	1055386.1209	565725.1145
1002	1058509.5130	560713.0936
1003	1055296.0630	560933.3479
1004	1053013.6070	559765.5664

Z dostupných RINEX dat byly vypočítány souřadnice z GNSS, které byly porovnány s terestrickým měřením. Porovnání je uvedeno v následující tabulce.

Tabulka 19: Souřadnice a jejich rozdíly v metrech

Stanovisko	X vyrovnané	X GNSS	ΔX	Y vyrovnané	Y GNSS	ΔY
1001	1055386.121	1055386.291	0.170	565725.114	565725.159	0.045
1002	1058509.513	1058509.547	0.034	560713.094	560713.097	0.003
1003	1055296.063	1055296.051	-0.012	560933.348	560933.350	0.002
1004	1053013.607	1053013.574	-0.033	559765.566	559765.560	-0.006

Dalším výstupem je určení konstanty gyroteodolitu, která činí 7,1844.

7 Přílohy

- 1. Zápisníky
- 2. Náčrt sítě
- 3. Protokol o vyrovnání sítě