SUBJECTIVE QUESTION PAPER

SEMESTER: 6 EXAMINATION FINAL: Spring 2016 SUBJECT: BSCS (Hons) TITLE: Operating System COURSE CODE: CS-2205 Max Marks: 48 Time: Allowed: 120 minutes Note: Attempt any 4 questions. All Questions carry equal Marks. Q.2 (a): What is micro-kernel and how is different form layered operating system? (5) (b): Briefly describe following terms: cascading termination, starvation, convoy affect, system call, context switch, Paging, batch processing. (7) Q.3 (a): Briefly describe the different type of schedulers along with the differences between (4) them. (4) (b): What are the different models of Inter-Process Communication? (c): Why does Peterson's solution for critical section problem may not work correctly on modern architectures? (3)(a): How does swapping result in better memory management? (3) (b): What is the function of the ready queue? (3)(c): What is a race condition? Give an example. (3) (d): What is the purpose of direct memory access structure? Draw a Gantt chart and calculate the average waiting time for the following processes by

Process Name	Arrival time	Burst Time
Pa	1	7
P ₁	2	3
P ₂	3	5
P ₃	5	1

using FCFS, SJF (Preemptive and non-preemptive), SRTF and Round Robin (time quantum

= 2) algorithm.

Q.6	
(a): What are the different types of address bindings?	(5)
(b): Consider the following resource allocation graph:	0.00
$P = \{P1, P2, P3, P4\}$	
$R = \{R1, R2, R3\}$	
E = {R1> P1, P1> R2, R2> P2, P2> R3, R3> P3, P3> R1, R	1> P43
- resource type R1 has two instances	All Religions
- resource type R2 has one instance	
- resource type R3 has one instance	14
Draw a resource allocation graph and explain the possibility for a deadlock.	(7)
	(1)