שעור 6 צורת ז'ורדן

n מטריצת ז'ורדן נילפוטנטית יסודית מסדר 6.1 הגדרה

$$E=\{e_1,\ldots,e_n\}=\left\{egin{pmatrix}1\\0\\\vdots\\0\end{pmatrix},\ldots,egin{pmatrix}0\\\vdots\\1\end{pmatrix}
ight\}$$
יהי $E=\{e_1,\ldots,e_n\}=\left\{egin{matrix}1\\0\\\vdots\\0\end{pmatrix},\ldots,egin{pmatrix}0\\\vdots\\1\end{pmatrix}
ight\}$ יהי תודבת $E=\{e_1,\ldots,e_n\}=\{e_1,\ldots,e_n\}$

$$J_n(0) = \begin{pmatrix} | & | & | & | \\ \bar{0} & e_1 & e_2 & \dots & e_{n-1} \\ | & | & | & | \end{pmatrix}$$

שהעמודה ה-אשונה שלה היא וקטור האפס ושלכל $i \leq i \leq n$ העמודה היא וקטור האפס ושלכל היא i העמודה הראשונה שלה היא וקטור האפס ושלכל היא i בלומר:

$$J_n(0) = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & & \\ & & \ddots & \ddots & & \\ & & & \ddots & 1 & \\ & & & & 0 \end{pmatrix}$$

הגדרה 6.2 בלוק ז'ורדן

מצורה k imes k מטריצה מטריצה אוא $\lambda \in \mathbb{F}$, $k \in \mathbb{N}$, $J_k(\lambda)$ בלוק ז'ורדן

$$J_k(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda & 1 & 0 & \dots & 0 \\ 0 & 0 & \lambda & 1 & \dots & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & 1 \\ 0 & 0 & 0 & 0 & \dots & \lambda \end{pmatrix}$$

דוגמה 6.1

$$J_4(2) = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

דוגמה 6.2

 $J_4(2)$ מצאו את הפולינום האופייני של

פתרון:

משולשית עליונה, לכן הפולינום האופייני מתפרק לגורמים לינאריים, והערכים עצמיים נמצאים על האלכסון $J_4(2)$ הראשי. לכן נקבל

$$P_{J_4(2)} = (\lambda - 2)(\lambda - 2)(\lambda - 2)(\lambda - 2) = (\lambda - 2)^4$$
.

יש ערך עצמי יחיד $\lambda=2$ מריבוי אלגברי λ . נמצא את הריבוי הגאומטרי:

$$(A - 2I_{4\times 4}) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

. אנחנו המטריצה אלגברי, ולכן מהריבוי אלגברי, ולכסינה. אומרטי הריבוי אלגברי, ולכן מייד מייד מייד מייד אומרטי אומרטי אומרטי אומרטי מייד מייד מייד מייד מייד אומרטי אומרטי

משפט 6.1 בלוק ז'ורדן לא לכסין

.לא לכסין לא $J_k(\lambda)$

הוכחה:

$$J_k(\lambda_1) = \begin{pmatrix} \lambda_1 & 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_1 & 1 & 0 & \dots & 0 \\ 0 & 0 & \lambda_1 & 1 & \dots & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots & 1 \\ 0 & 0 & 0 & 0 & \dots & \lambda_1 \end{pmatrix}$$

משולשית עליונה. לכן הפולינום האופייני מתפרק לגורמים לינאריים, והערכים עצמיים נמצאים על האלכסון $J_k(\lambda_1)$ הראשי (משפט 3.19).

$$p_{J_k(\lambda_1)}(\lambda) = \underbrace{(\lambda - \lambda_1) \dots (\lambda - \lambda_1)}_{k} = (\lambda - \lambda_1)^k$$

 $:\!\!V_{\lambda_1}$ אמר את המרחב הא מריבוי אלגברי מריבוי $\lambda=\lambda_1$ יחיד: עצמי יש ערך עצמי אלגברי $\lambda=\lambda_1$

$$(A - \lambda_1 I_{k \times k}) = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

. נקבל אל המטריצה ולכן אלגברי, ולכן מהריבוי אומרטי אומרטי אומרטי ז"א הייבוי משריצה לא מייש. לש $V_{\lambda_1}=k-1$ כי

הגדרה 6.3 צרות ז'ורדן

צורת ז'ורדן היא מטריצה ריבועית $A\in\mathbb{F}^{n\times n}$ שעל האלכסון הראשי שלה יש בלוקים ז'ורדן ו- 0 בכל מקום אחר.

$$A = \operatorname{diag}\left(J_{k_1}(\lambda_1), J_{k_2}(\lambda_2), \dots, J_{k_l}(\lambda_l)\right) = \begin{pmatrix} J_{k_1}(\lambda_1) & 0 & \dots & 0 \\ 0 & J_{k_2}(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & J_{k_l}(\lambda_l) \end{pmatrix}$$

דוגמה 6.3

$$\operatorname{diag} \left(J_2(1), J_3(0) \right) = \begin{pmatrix} J_1(1) & 0 \\ 0 & J_3(0) \end{pmatrix} = \begin{pmatrix} \begin{array}{c|cccc} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 \end{array} \right)$$

- בורת ז'ורדן היא משולשית.
- מטריצה אלכסונית היא בצורת ז'ורדן.
- 3) צורת ז'ורדן היא הצורה הקרובה ביותר למטירצה אלכסונית.

תהי A מטריצה ריבועית מסדר 2×2 עם ערך עצמיי אחד, λ מריבוי אלגברי 2. יהי אז מטריצה ריבועית מסדר ישנן שתי אפשרויות:

- $\dim(V_{\lambda})=2$ (1) (הריבוי גאומרטי)
- (בוי גאומרטי 1). $\dim(V_{\lambda})=1$ (2)

 $\dim(V_{\lambda}) = 2$:(1) מקרה

השייכים u_2 , u_1 עצמיים עצמיים יהיו שני אלגברי שווה לריובי אומטרי. יהיו שני וקטורים עצמיים A לכסינה כי לכל ערך עצמי ביו אלגברי אלגברי ווה לריובי אומטרי. $A\cdot u_2=\lambda u_1$ ו- $A\cdot u_1=\lambda u_1$ לערך עצמי λ

$$A \cdot \begin{pmatrix} | & | \\ u_1 & u_2 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ A \cdot u_1 & A \cdot u_2 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ \lambda u_1 & \lambda u_2 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ u_1 & u_2 \\ | & | \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$

$$D=egin{pmatrix} \lambda & 0 \ 0 & \lambda \end{pmatrix}$$
 -ו $P=egin{pmatrix} 1 & u_1 \ u_1 & u_2 \ | & | \end{pmatrix}$ נסמן

$$A \cdot P = PD$$
 \Rightarrow $A = PDP^{-1}$

לכסינה. למטריצה אלכסונית ולכן A

 $\dim(V_{\lambda})=1$:(2) מקרה

לא לכסינה אז A לא לכסינה אבל היא אווה לריובי אווה לריובי אז A לא לכסינה אבל היא לא לכסינה אבל היא לורדן לורדן $J_2(\lambda)$.

יש וקטור עצמי אחד, השייך השיי עזמי אחד, כלומר יש וקטור עצמי אחד, אחד, כלומר

$$A \cdot u_1 = \lambda u_1 \qquad \Rightarrow \qquad (A - \lambda I) \cdot u_1 = 0 .$$

-נגדיר וקטור u_2 כך ש

$$(A - \lambda I) \cdot u_2 = u_1 \qquad \Rightarrow \qquad A \cdot u_2 = \lambda u_2 + u_1 .$$

מכאן

$$(A - \lambda I)^2 u_2 = (A - \lambda I) \cdot u_1 = 0.$$

לכן נקבל

$$A \cdot \begin{pmatrix} | & | \\ u_1 & u_2 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ A \cdot u_1 & A \cdot u_2 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ \lambda u_1 & \lambda u_2 + u_1 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ u_1 & u_2 \\ | & | \end{pmatrix} \cdot \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} .$$

נשים לב שהמטריצה בסוף היא $P=egin{pmatrix} |&1&u_1\\u_1&u_2\\|&&| \end{pmatrix}$ נסמן נשים לב שהמטריצה בסוף היא $\int_0^\lambda \frac{1}{\lambda}=J_2(\lambda)$ אז קיבלנו

$$A \cdot P = P \cdot J_2(\lambda)$$
 \Rightarrow $A = PJ_2(\lambda)P^{-1}$.

A נקראת בסיס ז'ורדן של $\{u_1,u_2\}$ נקראת הקבוצת הקבוצת וקטורים

דוגמה 6.4

$$A=PJP^{-1}$$
 -פך כך פר מצאו איורדן J ומטריצה מצאו איורדן . $A=\left(egin{array}{cc} 2 & 3 \\ 0 & 2 \end{array}
ight)$ תהי

פתרון:

הפולינום האופיינו הוא:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & -3 \\ 0 & \lambda - 2 \end{vmatrix} = (2 - \lambda)^2 = 0$$

לכן יש ערך עצמי אחד, $\lambda=2$, מירבוי אלגברי 2. נמצא את המרחב עצמי:

$$(A-2I) = \left(\begin{array}{cc|c} 0 & 3 & 0 \\ 0 & 0 & 0 \end{array}\right) \to \left(\begin{array}{cc|c} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

לכן
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 לכן

$$V_2 = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$$
 .

נסמן ב- $\dim(V_\lambda)=1<2$. $\lambda=2$ עצמי של ערך עצמי של ערך עצמי של ערך לא לכסינה. לכן $u_1=\begin{pmatrix}1\\0\end{pmatrix}$. עצמי $u_1=\begin{pmatrix}1\\0\end{pmatrix}$

$$(A - \lambda I) \cdot u_2 = u_1 .$$

$$.u_2 = \begin{pmatrix} x \\ y \end{pmatrix}$$
 נסמן

$$(A-2I)\cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 3 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 \end{pmatrix}$$

$$.u_2 = \begin{pmatrix} 1 \\ \frac{1}{3} \end{pmatrix}$$
 $x = 1$ ונקבל $x \in \mathbb{R}$ $u_2 = \begin{pmatrix} x \\ \frac{1}{3} \end{pmatrix}$
$$.J = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$$
, $P = \begin{pmatrix} 1 & 1 \\ u_1 & u_2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & \frac{1}{3} \end{pmatrix}$

דוגמה 6.5

$$A=PJP^{-1}$$
 -פיכה P כך ומטריצה זיורדן איורדן פורת מצאו או אורת $A=\begin{pmatrix}4&0&1\\0&4&0\\0&0&4\end{pmatrix}$ תהי

פתרון:

הפולינום האופיינו הוא:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 4 & 0 & -1 \\ 0 & \lambda - 4 & 0 \\ 0 & 0 & \lambda - 4 \end{vmatrix} = (\lambda - 4)^3 = 0$$

 $A = PJP^{-1} .$

עצמי: את המרחב עצמי . $\lambda=4$, מירבוי אלגברי מצא לכן יש ערך עצמי אחד,

$$(A-4I)=egin{pmatrix} 0&0&1&0\0&0&0&0\0&0&0&0 \end{pmatrix}$$
 אכן $\begin{pmatrix} x\y\z\end{pmatrix}=\begin{pmatrix} x\y\z\end{pmatrix}=x\begin{pmatrix} 1\0\0\end{pmatrix}+y\begin{pmatrix} 0\1\0\end{pmatrix}$ אכן $V_4=\mathrm{span}\left\{\begin{pmatrix} 1\0\0\end{pmatrix},\begin{pmatrix} 0\1\0\end{pmatrix}
ight\}$.

נרשום . $u_2=\begin{pmatrix}1\\0\\0\end{pmatrix}$, $u_1=\begin{pmatrix}0\\1\\0\end{pmatrix}$ ב- V_4 ב- בבסיס של A לכסינה. לכסינה. נסמן הוקטורים בבסיס של A ב- . $\lambda=4$ פצירוף לינארי של הבסיס הזה:

$$w_1 = \alpha_1 u_1 + \alpha_2 u_2 .$$

 w_2 לפי:

$$(A-4I) \cdot w_2 = w_1 = \alpha_1 u_1 + \alpha_2 u_2$$
.

נסמן $w_2 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ נסמן נסמן

$$(A-4I) \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \alpha_2 \\ \alpha_1 \\ 0 \end{pmatrix}$$

נרכיב את המטריצה המורחבת של המשוואה:

$$\left(\begin{array}{ccc|c}
0 & 0 & 1 & \alpha_2 \\
0 & 0 & 0 & \alpha_1 \\
0 & 0 & 0 & 0
\end{array}\right)$$

יש פתרון כאשר x,y נבחור x,y נבחור x,y ונקבל את הפתרון הפתרון $\alpha_2=1$ ונקבל $\alpha_2=1$ יש פתרון כאשר $\alpha_1=0$

$$.w_2=egin{pmatrix}1\\1\\1\end{pmatrix}$$
 ונקבל $x=1,y=1$ כל ערך. נציב

 $u_3=egin{pmatrix}1\\1\\1\end{pmatrix}$ אורדן מהוקטורים עצמיים עצמיים $u_2=egin{pmatrix}1\\0\\0\end{pmatrix}$, $u_1=egin{pmatrix}0\\1\\0\end{pmatrix}$ נבנה בסיס ז'ורדן מהוקטורים עצמיים

$$P = \begin{pmatrix} | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
$$J = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 4 \end{pmatrix}$$

$$A = PJP^{-1} .$$

שימו לב שבדוגמה הזאת J צורת ז'ורדן מצורה

$$J = \operatorname{diag}(J_1(\lambda), J_2(\lambda)) = \operatorname{diag}(J_1(4), J_2(4))$$
.

דוגמה 6.6

$$A=PJP^{-1}$$
 -כך ש- $A=\begin{pmatrix} 4&1&1\\0&4&1\\0&0&4 \end{pmatrix}$ תהי תהי $A=\begin{pmatrix} 4&1&1\\0&0&4 \end{pmatrix}$ מצאו צורת זיורדן $A=\begin{pmatrix} 4&1&1\\0&0&4 \end{pmatrix}$

הפולינום האופיינו הוא:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 4 & -1 & -1 \\ 0 & \lambda - 4 & -1 \\ 0 & 0 & \lambda - 4 \end{vmatrix} = (\lambda - 4)^3 = 0$$

לכן יש ערך עצמי אחד, $\lambda=4$, מירבוי אלגברי 3. נמצא את המרחב עצמי:

$$(A-4I)=\left(egin{array}{cc|c}0&1&1&0\\0&0&1&0\\0&0&0&0\end{array}
ight)$$
 אכן
$$\left(\begin{matrix}x\\y\\z\end{matrix}
ight)=\left(\begin{matrix}x\\0\\0\end{matrix}
ight)=x\left(\begin{matrix}1\\0\\0\end{matrix}
ight)$$
 הפתרון הוא
$$V_4=\mathrm{span}\left\{\left(\begin{matrix}1\\0\\0\end{matrix}
ight)\right\}\ .$$

 $.u_1=egin{pmatrix}1\\0\\0\end{pmatrix}$ -ב V_4 של בבסים של הוקטור לכסינה. נסמן הוקטור לכסינה. לכסינה. לכסינה. לכסינה. נסמן הוקטור בבסים של A

$$(A-4I)\cdot u_2=u_1.$$

$$u_2 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 נסמן

$$(A - 4I) \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $lpha \in \mathbb{R}$, $u_2 = egin{pmatrix} lpha \ 1 \ 0 \end{pmatrix}$ הפתרון הוא

$$(A-4I)\cdot u_3=u_2.$$

$$u_3 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 נסמן

$$\left(\begin{array}{ccc|c} 0 & 1 & 1 & \alpha \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 0 & 1 & 0 & \alpha - 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

:ונקבל הבסיס ה' ונקבל (ציב $\beta=1$,lpha=1 נציב ($eta\in\mathbb{R}$ $u_3=egin{pmatrix} eta & -1 \\ 1 \end{pmatrix}$ ונקבל הבסיס ג'ורדן:

$$\left\{ u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, u_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, u_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

$$,P = \begin{pmatrix} | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
 .J = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix} = \begin{pmatrix} 4 & 1 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 4 \end{pmatrix}$$

$$A = PJP^{-1} .$$

שימו לב שבדוגמה הזאת J צורת ז'ורדן מצורה

$$J = J_3(\lambda) = J_3(4)$$
.

משפט 6.2 משפט ז'ורדן

יים לינאריים מתפרק לגורמים אופייני שהפולינום שדה $\mathbb F$ מעל שדה לינארי מעל אופרטור לינארי אופרטור לינאריים אופרטור לינארי

$$p(x) = (\lambda - \lambda_1)^{n_1} (x - \lambda_2)^{n_2} \dots (x - \lambda_l)^{n_l}$$

כאשר אפולינום המינימלי לכל $i \neq j$ לכל עבור $\lambda_i \neq \lambda_j$ נניח אפולינום המינימלי הוא

$$m(x) = (x - \lambda_1)^{m_1} (x - \lambda_2)^{m_2} \dots (x - \lambda_l)^{m_l}$$

כאשר ז'ורדן מצורת מטריצה מצורת יש ל- T יש ל- i לכל $1 \leq m_i \leq n_i$ כאשר

$$\begin{pmatrix} \beta_1 & 0 & \\ & \beta_2 & \\ & & \ddots & \\ & 0 & & \beta_l \end{pmatrix}$$

 λ_i כאשר β_i מתאים לערך עצמי

$$\beta_i = \operatorname{diag} \left(J_{a_1}(\lambda_i), J_{a_2}(\lambda_i), \dots, J_{a_s}(\lambda_i) \right) = \begin{pmatrix} J_{a_1}(\lambda_i) & 0 & \dots & 0 \\ 0 & J_{a_2}(\lambda_i) & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & J_{a_s}(\lambda_i) \end{pmatrix}$$

כאשר

- $a_1 = m_i$ (1
- $a_1 \geq a_2 \geq a_3 \geq \ldots \geq a_s$ (2
- $a_1 + a_2 + \ldots + a_s = n_i$ (3
- λ_i הוא הריבוי הגאומרטי של s (4

לכן, שתי מטריצות דומות אם ורק אם יש להן אותה צורת ז'ורדן עד כדי סדר הבלוקים.

דוגמה 6.7

היא

$$\begin{pmatrix} \beta_1 & 0 \\ 0 & \beta_2 \end{pmatrix}$$

 $\lambda = 2$ נמצא β_1 נמצא

 $.eta_1$ יש שתי אפשרויות עבור

$$eta_1=egin{pmatrix} J_2(2) & 0 & 0 \ 0 & J_1(2) & 0 \ 0 & 0 & J_1(2) \end{pmatrix}$$
 in $eta_1=egin{pmatrix} J_2(2) & 0 \ 0 & J_2(2) \end{pmatrix}$

 $: \lambda = 3$ עבור β_2

$$\beta_2 = \begin{pmatrix} J_2(3) & 0\\ 0 & J_1(3) \end{pmatrix}$$

 $\lambda=2$ יש למצוא את הירבוי הגאומטרי לקבוע eta_1 יש למצוא את

 $\lambda=2$ של הגאומרי לריבוי שווה β_1 ב- מספר מספר מספר

דוגמה 8.8

. נתון הפולינום האופייני $p(x)=(x-2)^3(x-5)^2$ מצאו את הצורות ז'ורדן האפשריות

פתרון:

האפשרויות של הפולינום המינימלי הן

$$(x-2)(x-5)\;,\quad (x-2)(x-5)^2\;,\quad (x-2)^2(x-5)\;,\quad (x-2)^2(x-5)^2\;,\quad (x-2)^3(x-5)\;,\quad (x-2)^3(x-5)^2\;.$$

לכן האפשרויות לצורת ז'ורדן הן:

$$m(x) = (x-2)(x-5)$$

$$\begin{pmatrix} J_1(2) & & & & & \\ & J_1(2) & & & & \\ & & J_1(2) & & & \\ & & & J_1(5) & & \\ & & & & & J_1(5) \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{pmatrix}$$

$$m(x) = (x-2)^2(x-5)$$

$$\begin{pmatrix} J_2(2) & & & & \\ & J_1(2) & & & \\ & & J_1(5) & & \\ & & & J_1(5) \end{pmatrix} = \begin{pmatrix} \begin{array}{c|c} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ \hline 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{array} \end{pmatrix}$$

$$m(x) = (x-2)^3(x-5)$$

$$\begin{pmatrix} J_3(2) & & & \\ & J_1(5) & & \\ & & & J_1(5) \end{pmatrix} = \begin{pmatrix} \begin{array}{cccc} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{array} \end{pmatrix}$$

 $m(x) = (x-2)(x-5)^2$

$$\begin{pmatrix} J_1(2) & & & & \\ & J_1(2) & & & \\ & & J_1(2) & & \\ & & & J_2(5) \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 5 & 0 \end{pmatrix}$$

 $m(x) = (x-2)^2(x-5)^2$

$$\begin{pmatrix} J_2(2) & & & \\ & J_1(2) & & \\ & & J_2(5) \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 5 & 5 \end{pmatrix}$$

 $m(x) = (x-2)^3(x-5)^2$

$$\begin{pmatrix} J_3(2) \\ J_2(5) \end{pmatrix} = \begin{pmatrix} \begin{array}{c|cccc} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ \hline 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 5 \end{array} \end{pmatrix}$$

דוגמה 6.9

יש אותו פולינום מינימלי ופולינום אופייני: B -ו A למטריצות

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} , \qquad p_A(x) = x^4 , \qquad m_A(x) = x^2 .$$

מטריצות A ו- B לא דומות אבל

- ,יש אותם ערכים עצמיים B ו- A יש אותם ערכים עצמיים
 - אבל |A| = |B|
 - $.rank(A) \neq rank(B) \bullet$

בדוגמה היו שתי מטריצות לא דומות עם אותם p(x) ו- p(x) ו- p(x) אותם ערכים עצמיים וגם אותה דרגה.

3 imes 3 משפט 6.3 צורת ז'ורדן של מטריצה

עבור מטריצות 3×3 צורות פולינום אופייני הן:

$$p(x) = (x - a)(x - b)(x - c)$$
, $p(x) = (x - a)^{2}(x - b)$, $p(x) = (x - a)^{3}$.

מקרה 1:

$$p(x) = (x-a)(x-b)(x-c)$$
, $m(x) = (x-a)(x-b)(x-c)$.

קיימת צורת ז'ורדן אחת:

$$\begin{pmatrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{pmatrix}$$

מטריצה אלכסונית. הצ'ורת ז'ורדן היא

$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} = \begin{pmatrix} J_1(a) & 0 & 0 \\ 0 & J_1(b) & 0 \\ 0 & 0 & J_1(c) \end{pmatrix}$$

מקרה 2:

$$p(x) = (x-a)^2(x-b)$$

ישנן שתי אפשרויות לפולינום המינימלי:

$$m(x) = (x - a)(x - b)$$
 \forall $m(x) = (x - a)^{2}(x - b)$

$$m(x) = (x - a)(x - b)$$

קיימת צורת ז'ורדן אחת:

$$\begin{pmatrix} J_1(a) & 0 & 0 \\ 0 & J_1(a) & 0 \\ 0 & 0 & J_1(b) \end{pmatrix} = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}$$

$$\underline{m(x) = (x-a)^2(x-b)}$$

קיימת צורת ז'ורדן אחת:

$$\begin{pmatrix} J_2(a) & 0 \\ 0 & J_1(b) \end{pmatrix} = \begin{pmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}$$

מקרה 3:

$$p(x) = (x - a)^3$$

m(x) -אז ישנן 3 אפשרויות ל

$$(x-a)$$
, $(x-a)^2$, $(x-a)^3$.

$$m(x) = (x - a)$$

קיימת צורת ז'ורדן אחת:

$$\begin{pmatrix} J_1(a) & 0 & 0 \\ 0 & J_1(a) & 0 \\ 0 & 0 & J_1(a) \end{pmatrix} = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}$$

$$m(x) = (x - a)^2$$

קיימת צורת ז'ורדן אחת:

$$\begin{pmatrix} J_2(a) & 0 \\ 0 & J_1(a) \end{pmatrix} = \begin{pmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}$$

$$m(x) = (x - a)^3$$

קיימת צורת ז'ורדן אחת:

$$(J_3(a)) = \begin{pmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{pmatrix}$$

ז"א לכל פולינום מינימלי כאן יש צורת ז'ורדן אחת. לכן כל שתי מטריצות מסדר 3×3 עם אותו פולינום אופייני ואותו פולינום מינימלי הן דומות אחת לשניה.

דוגמה 6.10

מצאו את צורת ז'ורדן ובסיס מז'רדן אל מטריצה

$$A = \begin{pmatrix} 1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7 \end{pmatrix}$$

$$p_{A}(x) = |xI - A|$$

$$= \begin{vmatrix} x - 1 & 3 & -4 \\ -4 & x + 7 & -8 \\ -6 & 7 & x + 7 \end{vmatrix}$$

$$= (x - 1) \begin{vmatrix} x + 7 & -8 \\ 7 & x + 7 \end{vmatrix} - 3 \begin{vmatrix} -4 & -8 \\ -6 & x + 7 \end{vmatrix} - 4 \begin{vmatrix} -4 & x + 7 \\ -6 & 7 \end{vmatrix}$$

$$= (x - 1) ((x + 7)^{2} + 56) - 3(-28 - 4x + 48) - 4(-28 - 6(7 + x))$$

$$= -(x + 1)^{2}(x - 3)$$

האפשרויות לפולינום המינימלי הן:

$$m(x) = (x+1)(x-3)$$
 או $m(x) = (x+1)^2(x-3)$.

A נבדוק איזה מהם מתאפס ע"י

$$(A+I)(A-3) = \begin{pmatrix} 2 & -3 & 4 \\ 4 & -6 & 8 \\ 6 & -7 & 8 \end{pmatrix} \begin{pmatrix} -2 & -3 & 4 \\ 4 & -10 & 8 \\ 6 & -7 & 4 \end{pmatrix} \neq 0$$

לכן $m(x) = (x+1)^2(x-3)$ הצורת ז'ורדן היא

$$\begin{pmatrix} J_2(-1) & 0 \\ 0 & J_1(3) \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

 $\lambda=-1$ ערך עצמי. נמצא וקטור עצמי המז'רדן: $\lambda=-1$ ערך עצמי. נמצא את הבסיס המז'רדן:

$$(A+I) = \begin{pmatrix} 2 & -3 & 4 \\ 4 & -6 & 8 \\ 6 & -7 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -3 & 4 \\ 0 & 0 & 0 \\ 0 & 2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -3 & 4 \\ 0 & 2 & -4 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -3 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 2 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

 $z \in \mathbb{R} \ (x,y,z) = (z,2z,z)$:פתרון

$$V_{-1} = \operatorname{span}\left\{ \begin{pmatrix} 1\\2\\1 \end{pmatrix} \right\}$$

 $.u_1 = egin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ -ב V_{-1} של

$$(A+I)u_2 = u_1$$

$$u_2 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 נסמן

$$(A+I) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix}
2 & -3 & 4 & | & 1 \\
4 & -6 & 8 & | & 2 \\
6 & -7 & 8 & | & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & -3 & 4 & | & 1 \\
6 & -7 & 8 & | & 1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & -3 & 4 & | & 1 \\
0 & 2 & -4 & | & -2 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
2 & -3 & 4 & | & 1 \\
0 & 2 & -4 & | & -2 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & 0 & -2 & | & -2 \\
0 & 1 & -2 & | & -1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & -1 & | & -1 \\
0 & 1 & -2 & | & -1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

z=1 נציב . $z\in\mathbb{R}$ (x,y,z) = (-1+z,-1+2z,z) (נציב

$$u_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

 $: \lambda = 3$ נחפש הוקטור עצמי ששייך לערך עצמי

$$(A-3I) = \begin{pmatrix} -2 & -3 & 4 \\ 4 & -10 & 8 \\ 6 & -7 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & -3 & 4 \\ 0 & -16 & 16 \\ 0 & -16 & 16 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & -3 & 4 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} -2 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

 $.z \in \mathbb{R}$ $(x,y,z) = (\frac{1}{2}z,z,z)$

$$u_3=\begin{pmatrix}1\\2\\2\end{pmatrix}$$

$$P=\begin{pmatrix}|&|&|\\u_1&u_2&u_3\\|&|&|\end{pmatrix}=\begin{pmatrix}1&0&1\\2&1&2\\1&1&2\end{pmatrix}$$
 איז הבסיס ג'ורדן היא
$$J=\begin{pmatrix}J_2(-1)&0\\0&J_1(3)\end{pmatrix}=\begin{pmatrix}&-1&1&0\\0&0&3\end{pmatrix}$$
 לכן המרוצה ז'ורדן היא
$$J=\begin{pmatrix}J_2(-1)&0\\0&J_1(3)\end{pmatrix}=\begin{pmatrix}&0&1&0\\0&0&3\end{pmatrix}$$

דוגמה 6.11

מצאו את צורת ז'ורדן אל מטריצה

$$A = \begin{pmatrix} -4 & 2 & 10 \\ -4 & 3 & 7 \\ -3 & 1 & 7 \end{pmatrix}$$

 $A = PJP^{-1}$

 $.P^{-1}AP=J$ מעל $\mathbb C$ ומטריצה ומטריצה פ

$$p_{A}(x) = |x - IA|$$

$$= \begin{vmatrix} x + 4 & -2 & -10 \\ 4 & x - 3 & -7 \\ 3 & -1 & x - 7 \end{vmatrix}$$

$$= (x + 4) \begin{vmatrix} x - 3 & -7 \\ -1 & x - 7 \end{vmatrix} + 2 \begin{vmatrix} 4 & -7 \\ 3 & x - 7 \end{vmatrix} - 10 \begin{vmatrix} 4 & x - 3 \\ 3 & -1 \end{vmatrix}$$

$$= (x + 4) (x^{2} - 10x + 21 - 7) + 2 (4x - 28 + 21) - 10 (-4 - 3x + 9)$$

$$= (x + 4)(x^{2} - 10x + 14) + 2 (4x - 7) - 10 (-3x + 5)$$

$$= x^{3} - 10x^{2} + 14x + 4x^{2} - 40x + 56 + 8x - 14 + 30x - 50$$

$$= x^{3} - 6x^{2} + 12x - 8$$

$$= (x - 2)^{3}.$$

האפשרויות לפולינום המינימלי הן:

$$m(x) = (x-2)$$
 או $m(x) = (x-2)^2$ או $m(x) = (x-2)^3$.

A נבדוק איזה מהם מתאפס ע"י

$$(A-2I) \neq 0$$
, $(A-2I)^2 = \begin{pmatrix} -6 & 2 & 10 \\ -4 & 1 & 7 \\ -3 & 1 & 5 \end{pmatrix} \begin{pmatrix} -6 & 2 & 10 \\ -4 & 1 & 7 \\ -3 & 1 & 5 \end{pmatrix} \neq 0$

לכן $m(x) = (x-2)^3$ לכן

$$J = (J_3(2)) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

 $\lambda=2$ ערך עצמי. נמצא את המרחב עצמי ששייך ל $\lambda=2$ ערך עצמי את הבסיס המז'רדן:

$$(A-2I) = \begin{pmatrix} -6 & 2 & 10 \\ -4 & 1 & 7 \\ -3 & 1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} -6 & 2 & 10 \\ -4 & 1 & 7 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -3 & 1 & 5 \\ -4 & 1 & 7 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -3 & 1 & 5 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} -3 & 0 & 6 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

 V_2 של בבסיס את נסמן הוקטור . $V_2=\left\{egin{pmatrix}2\\1\\1\end{pmatrix}
ight\}$ המרחב עצמי הוא לכן המרחב עצמי הוא . $z\in\mathbb{R}$ (x,y,z)=(2z,z,z) :ב-

$$u_1 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

 $u_2 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ נסמן

$$(A-2I) \cdot u_2 = u_1 \qquad \Rightarrow \qquad \begin{pmatrix} -6 & 2 & 10 \\ -4 & 1 & 7 \\ -3 & 1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix}
-6 & 2 & 10 & | & 2 \\
-4 & 1 & 7 & | & 1 \\
-3 & 1 & 5 & | & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
-3 & 1 & 5 & | & 1 \\
-4 & 1 & 7 & | & 1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
-3 & 1 & 5 & | & 1 \\
0 & -1 & 1 & | & -1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
-3 & 0 & 6 & 0 \\
0 & -1 & 1 & | & -1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & -1 & | & 1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

נסמן $.z \in \mathbb{R}$,(x,y,z) = (2z,z+1,z) נסמן

$$u_2 = \begin{pmatrix} 2\alpha \\ 1+\alpha \\ \alpha \end{pmatrix} , \qquad \alpha \in \mathbb{R} .$$

$$(A-2I)u_3=u_2 \qquad \Rightarrow \qquad \begin{pmatrix} -6 & 2 & 10 & 2 \\ -4 & 1 & 7 & 2 \\ -3 & 1 & 5 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2\alpha \\ 1+\alpha \\ \alpha \end{pmatrix} \ .$$

$$\begin{pmatrix} -6 & 2 & 10 & 2\alpha \\ -4 & 1 & 7 & 1+\alpha \\ -3 & 1 & 5 & \alpha \end{pmatrix} \xrightarrow{R_1 \to \frac{1}{2} \cdot R_1} \begin{pmatrix} -3 & 1 & 5 & \alpha \\ -4 & 1 & 7 & 1+\alpha \\ -3 & 1 & 5 & \alpha \end{pmatrix}$$

$$\xrightarrow{R_2 \to 3R_2 - 4 \cdot R_1} \begin{pmatrix} -3 & 1 & 5 & \alpha \\ R_2 \to R_2 - R_1 \end{pmatrix} \xrightarrow{R_1 \to R_1 + R_2} \begin{pmatrix} -3 & 0 & 6 & 3 \\ R_2 \to R_2 - R_1 \end{pmatrix}$$

$$\xrightarrow{R_1 \to -\frac{1}{3} \cdot R_1} \quad \begin{pmatrix} 1 & 0 & -2 & -1 \\ 0 & -1 & 1 & 3 - \alpha \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

z=1 נציב .
 $z\in\mathbb{R}$,(x,y,z)=(-1+2z,-2+z,z) את הפתרון הפתרו
 $\alpha=1$ ונקבל המרו $\alpha=1$ ונקבל המרון לכל המרון ונקבל

$$u_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

לכן המטריצה של הבסיס ז'ורדן היא

$$P = \begin{pmatrix} | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 2 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$

והצורת ז'ורדן היא

$$J = J_3(2) = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{array}\right) .$$

דוגמה 6.12

$$A=PJP^{-1}$$
 - מצאו צורת זיורדן J ומטריצה הפיכה $A=\begin{pmatrix}4&1&1&0&0\\0&4&1&0&0\\0&0&4&0&0\\0&0&0&2&3\\0&0&0&0&2\end{pmatrix}$ תהי

פתרון:

הפולינום האופיינו הוא:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 4 & -1 & -1 & 0 & 0 \\ 0 & \lambda - 4 & -1 & 0 & 0 \\ 0 & 0 & \lambda - 4 & 0 & 0 \\ 0 & 0 & 0 & \lambda - 2 & -3 \\ 0 & 0 & 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 4)^3 (\lambda - 2)^2 = 0$$

:הערכים עצמיים הם

 $\lambda=2$ מירבוי אלגברי $\lambda=2$

 $\lambda=4$ מירבוי אלגברי

 $:V_2$ נמצא את המרחב עצמי

$$(A-2I) = \begin{pmatrix} 2 & 1 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

אכן
$$s\in\mathbb{R}$$
 , $egin{pmatrix} x\\y\\z\\s\\t \end{pmatrix}=egin{pmatrix}0\\0\\s\\0 \end{pmatrix}=segin{pmatrix}0\\0\\0\\1\\0 \end{pmatrix}$ אכן $s\in\mathbb{R}$, $s\in\mathbb{R}$, $s\in\mathbb{R}$, $s\in\mathbb{R}$

$$V_2 = \operatorname{span} \left\{ egin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}
ight\} \; .$$

$$.u_1 = egin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
 לכן A לכסינה. נסמו הוקטור עצמי . $\dim(V_2) = 1 < 2$

$$(A-2I)\cdot u_2=u_1.$$

$$u_2 = \begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix}$$
נסמן

$$(A - 2I) \cdot \begin{pmatrix} x \\ y \\ z \\ w \\ s \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\left(\begin{array}{cccc|cccc}
2 & 1 & 1 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)$$

$$u_2=egin{pmatrix}0\\0\\0\\rac{1}{3}\end{pmatrix}$$
 ונקל $lpha=0$ ונקל פתרון. נציב $lpha=0$ ונקל $lpha\in\mathbb{R}$, $u_2=egin{pmatrix}0\\0\\0\\rac{1}{3}\end{pmatrix}$ לכן $lpha=0$ נמצא את המרחב עצמי $lpha$:

$$\left(\begin{array}{cccccccc}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 3 & 0 \\
0 & 0 & 0 & 0 & -2 & 0
\end{array}\right)$$

לכן
$$\begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix} = \begin{pmatrix} x \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 לכן הפתרון הוא

$$V_4 = \operatorname{span} \left\{ \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix} \right\} .$$

$$.u_3 = egin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 לכן A לא לכסינה. נסמו הוקטור עצמי . $\dim(V_4) = 1 < 3$

$$(A-4I)\cdot u_4=u_3.$$

$$.u_4 = \begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix}$$
נסמן

$$(A - 4I) \cdot \begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\left(\begin{array}{cccc|cccc}
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 3 & 0 \\
0 & 0 & 0 & 0 & -2 & 0
\end{array}\right)$$

$$eta \in \mathbb{R}$$
 , $u_4 = egin{pmatrix} eta \ 1 \ 0 \ 0 \ 0 \end{pmatrix}$ לכנן

$$(A-4I)\cdot u_5=u_4.$$

$$.u_5 = \begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix}$$
 נסמן

$$(A - 4I) \cdot \begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix} = \begin{pmatrix} \beta \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\left(\begin{array}{cccccccc}
0 & 1 & 1 & 0 & 0 & \beta \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 3 & 0 \\
0 & 0 & 0 & 0 & -2 & 0
\end{array}\right)$$

ונקבל $\beta=0$ נציב פתרון. נציב $\beta=0$

$$.u_5=egin{pmatrix}0\-1\1\0\0\end{pmatrix}$$
 ונקבל $\gamma=0$ נציב $\gamma\in\mathbb{R}$, $u_5=egin{pmatrix}\gamma\-1\1\0\0\end{pmatrix}$

$$P = \begin{pmatrix} | & | & | & | & | \\ u_1 & u_2 & u_3 & u_4 & u_5 \\ | & | & | & | & | \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 \end{pmatrix} ,$$

$$J = \begin{pmatrix} J_2(2) & 0 \\ 0 & J_3(4) \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 1 & 0 \\ 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix} .$$

$$A = PJP^{-1} .$$