Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_mate-info

Test 10

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați partea reală a numărului complex z = (3+2i)(3-2i)-(4-i).
- **5p** 2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x + 2 și $g: \mathbb{R} \to \mathbb{R}$, g(x) = 2x 3. Calculați $(f \circ g)(2)$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt[3]{2^{6x}} = 16$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de trei cifre, acesta să aibă produsul cifrelor un număr impar.
- **5p 5.** Se consideră paralelogramul ABCD cu AD = 6, AB = 4 și $m(\angle ADC) = 120^{\circ}$. Determinați modulul vectorului $\vec{v} = \overrightarrow{AB} + \overrightarrow{AD}$.
- **5p 6.** Se consideră triunghiul ABC cu AB = 60, AC = 80 și BC = 100. Calculați lungimea înălțimii AD a triunghiului ABC.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricea $A(a) = \begin{pmatrix} 2a+1 & 1 & -2 \\ a-1 & -1 & 1 \\ 2a & -2 & 1 \end{pmatrix}$ și sistemul de ecuații $\begin{cases} (2a+1)x + y - 2z = a \\ (a-1)x - y + z = a + 1, \\ 2ax - 2y + z = 1 \end{cases}$

unde a este număr real.

- **5p** a) Arătați că $\det(A(1))=1$.
- **5p b**) Determinați numărul real a pentru care matricea A(a) **nu** este inversabilă.
- **5p** c) Determinați numărul real a pentru care există y_0 și z_0 , numere reale, astfel încât $(2, y_0, z_0)$ să fie soluție a sistemului de ecuații.
 - 2. Pe mulțimea $G = (0, +\infty)$ se definește legea de compoziție asociativă și cu element neutru $x * y = \sqrt[3]{x^{\log_2 y}}$.
- **5p** | **a**) Arătați că 2*64 = 4.
- **5p b)** Arătați că legea de compoziție "*" este comutativă.
- **5p** c) Determinați $x \in G$ care sunt egale cu simetricele lor în raport cu legea de compoziție "".

SUBIECTUL al III-lea

(30 de puncte)

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = (x-5)(x-4)(x-3)(x-2)+1.
- **5p a**) Arătați că f'(5) = 6.
- **5p b)** Calculați $\lim_{n \to +\infty} \left(\frac{f(n+1)-1}{f(n)-1} \right)^n$.
- **5p** c) Demonstrați că ecuația f'(x) = 0 are trei soluții reale.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1 e^x}{1 + e^x}$.
- **5p** a) Determinați primitiva G a funcției $g: \mathbb{R} \to \mathbb{R}$, $g(x) = (1 + e^x) f(x)$ pentru care G(0) = 0.

5p b) Calculați $\int_{0}^{1} f(x)dx$.

5p c) Demonstrați că $\int_{-1}^{1} f(x)\cos x dx = 0$.