Ma Spec 100p – Linjär Algebra – Kapitel 4.2

Samuel Bayley Eriksson

March 9, 2023

I uppgift 7–14 använd antingen ett lämpligt teorem för att visa att den givna mängden W är ett vektorrum, eller hitta ett exempel som motbevisar det.

7.
$$\left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a+b+c=2 \right\}$$

8.
$$\left\{ \begin{bmatrix} r \\ s \\ t \end{bmatrix} : 5r - 1 = s + 2t \right\}$$

9.
$$\left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : \begin{array}{l} a - 2b = 4c \\ 2a = c + 3d \end{array} \right\}$$

10.
$$\left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a+3b=c \\ b+c+a=d \right\}$$

11.
$$\left\{ \begin{bmatrix} b-2d\\5+d\\b+3d\\d \end{bmatrix} : b,d \in \mathbb{R} \right\}$$

12.
$$\left\{ \begin{bmatrix} b-5d\\2b\\2d+1\\d \end{bmatrix} : b,d \in \mathbb{R} \right\}$$

13.
$$\left\{ \begin{bmatrix} c - 6d \\ d \\ c \end{bmatrix} : c, d \in \mathbb{R} \right\}$$

14.
$$\left\{ \begin{bmatrix} -a+2b \\ a-2b \\ 3a-6b \end{bmatrix} : a,b \in \mathbb{R} \right\}$$

31. Definiera
$$T \colon \mathbb{P}_2 \to \mathbb{R}^2$$
 som $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix}$.

- a) Visa att T är en linjär transformation. [Hint: För godtyckliga polynom \mathbf{p}, \mathbf{q} i \mathbb{P}_2 , beräkna $T(\mathbf{p} + \mathbf{q})$ och $T(\mathbf{cp})$.]
- b) Hitta ett polynom \mathbf{p} i \mathbb{P}_2 som spänner upp kärnan till T och beskriv värdemängden till T.
- **32.** Definiera en linjär transformation $T: \mathbb{P}_2 \to \mathbb{R}^2$ som $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(0) \end{bmatrix}$. Hitta polynom \mathbf{p}_1 och \mathbf{p}_2 i \mathbb{P}_2 som spänner upp kärnan till T och beskriv värdemängden till T.
- 33. Låt $M_{2\times 2}$ vara vektorrummet av alla 2×2 matriser och definiera $T\colon M_{2\times 2}\to M_{2\times 2}$ som $T(A)=A+A^T$.
 - a) Visa att T är en linjär transformation.
 - b) Låt B vara godtyckligt element ur $M_{2\times 2}$ så att $B^T=B$. Hitta ett A i $M_{2\times 2}$ så att T(A)=B.
 - c) Visa att värdemängden till Tär mängden av alla B i $M_{2\times 2}$ där $B^T=B.$
 - d) Beskriv kärnan till T.
- **35.** Låt V och W vara vektorrum och låt $T \colon V \to W$ vara en linjär transformation. Givet ett delrum U till V, låt T(U) beteckna mängden av alla bilder på formen $T(\mathbf{x})$ där $\mathbf{x} \in U$. Visa att T(U) är ett delrum till W.

1