COMPUTER SCIENCE

Database Management System

Transaction & Concurrency Control

Lecture_6

Vijay Agarwal sir

Finding Conflict Serializable Schedule

Transaction

Dwallity Isolation Consistency Atomicity Concurrency Subsystem Recovery

Socializable

Conflict Serializable

Lyview Serializable

Recoverable

-> Recoverable

-> Cas Cadeless

-> Strict @ Strict Recoverable

Finding Number of Conflict Serializable.

- 1) write Down all obseration of the following (later) Transaction.
- 2) Starts from Last operation of the first transaction 2 try to Put at Correct place Such that Conflict operation order Must be Maintained Same as Transaction order.

Two transactions T₁ and T₂ are given as

$$T_1: r_1(X) w_1(X) r_1(Y) w_1(Y)$$

$$T_2$$
: $r_2(Y) w_2(Y) r_2(Z) w_2(Z)$

Where $r_i(V)$ denotes a read operation by transaction T_i on a variable V and $w_i(V)$ denotes a write operation by transaction T_i on a variable V. The total number of conflict serializable schedules that can be formed

NAT:2017-2M]

$$T_{1}: r_{1}(X) w_{1}(X) r_{1}(Y) w_{1}(Y)$$

$$T_{2}: r_{2}(Y) (w_{2}(Y)) r_{2}(Z) w_{2}(Z)$$

$$T_{2} \Rightarrow (F)$$

$$CASE I \xrightarrow{52(Y)} \delta_{1}(X) + \omega_{1}(X) + \omega_{2}(Y)$$

$$\delta_{2}(Y) \xrightarrow{52(Y)} \delta_{2}(Y) + \omega_{2}(Y)$$

$$\delta_{2}(Y) \xrightarrow{52(Y)} \delta_{2}(Y) + \omega_{2}(Y)$$

$$\delta_{2}(Y) \xrightarrow{52(Y)} \delta_{2}(Y) \xrightarrow{52(Y)} \delta_{2}(Y)$$

$$\delta_{2}(Y) \xrightarrow{52(Y)} \delta_{2}$$

82(Z) W2(Z)

out of 3 place Put them (82(2) W2(2) together (3(1)

out of 3 place Put them Separtely

 $T_1: r_1(X) w_1(X) r_1(Y) w_1(Y)$ $T_2: r_2(Y) w_2(Y) r_2(Z) w_2(Z)$

CASE II
$$\sqrt{\frac{1}{2}}$$
 $\sqrt{\frac{1}{2}}$ $\sqrt{\frac{1}{2$

 $T_1: r_1(X) w_1(X) r_1(Y) w_1(Y)$

 $T_2: r_2(Y) w_2(Y) r_2(Z) w_2(Z)$

Q.2

Consider the transaction T₁ and T₂ given below:

 $T_1: (R_1(A) R_1(B) W_1(B))$

 $T_2 : (R_2(A) R_2(B) W_2(B))$

T, 4 T2 Exact Mirror Copy. Operation 4 order all one same

Where $R_i(A)$ denote a read operation by transaction T_i on a Data Item (A) W_i (B) Denote a write operation by transaction T_i on a Data Item B.

The Total number of conflict serializable schedule is 8.00

TI: RIA) RI(B) WI(B) · R2(B)-W1(B): T2-) TI BUT T2: R2(A) R2(B) W2(B) W2(B)-W1(B) Schedule is TI-JT2 WI(B) CASEIL CASEI CASEI R2(B) We(B) R2(A) WI(B) CHSETT W2 (B) WILB) R2(A) R3(B)

Ti: R1(A) R1(B) W1(B)
Tz: R2(A) R2(B) W2(B)

C'ASE I:

RIA) RIB)

$$\mathbb{P}_{2}(A)$$
 $\mathbb{W}_{1}(\mathbb{B})$ $\mathbb{P}_{2}(\mathbb{R})$ $\mathbb{W}_{2}(\mathbb{R})$

$$2C_1 + 2C_2 = 2 + 1 = (3)$$

CASE II WI(B) R2(A) R2(B) W2(B)

out of 2 Place Sit them together 20,

Ott at 2 Place, Sit there separtely 200 Case I:3

T1 -> (T2): 4

T2 ->(T1): 4

Total Conflict Serializable: (8)

Serial

Non serial Conflict Serializable = 8-2

= 6 Am

Consider the transaction T₁ and T₂ given below:

NAT] PW

 $T_1 : R_1(A) R_1(B) W_1(B)$

 $T_2 : R_2(B) R_2(A) W_2(B)$

Where $R_i(A)$ denote a read operation by transaction T_i on a Data Item (A) W_i (B) Denote a write operation by transaction T_i on a Data Item B.

The Total number of conflict serializable schedule is ____.

Consider given schedule:

S: $r_1(x)$, $r_2(y)$, $w_3(y)$, $r_4(x)$, $w_4(z)$, $w_3(y)$

How many conflict serializable schedules exists for the above schedule S?

x(x)		Ta	Ty	Ang (12)		T2
Ang 1/2)	(3)	wly)	X/X)	11 & Pra	ed fred	
		W(y)	W(x)	ber	T2 -> T3	T3
		7				

Consider given schedule:

S: $r_1(x)$, $r_2(y)$, $w_3(y)$, $r_4(x)$, $w_4(z)$, $w_3(y)$

How many conflict serializable schedules exists for the above schedule S?

8(x)	2 13	Ty		12	
Ang/12)	y) W(y)	XI.	The placed my		
	W(y)	W(x)	Ber (19) T2 (2) T2	T3	3121
					3/2/

CASEI (Ty) TI 12 T3 T (Ty) T2 T5 (Y) TI T2 (Ty) 13 TI To To (Ty) 巨田丁丁古 T2 T1 (T4) T3 Q. (1) How Many (Number of) Conflict Scripalizable

9. 2 Number of Conflict Equivalent.

Consider the following schedule

$$S = r_1(P); r_3(S); w_1(Q); r_2(Q) r_4(Q), w_2(R);$$

 $r_5(R); w_4(T); r_5(T); w_5(Q)$

How many serial schedules are possible which will be

view	equal	to S?	(10	Aug)
Read .	P·T	C	• Т	

2 Final Write:

: Q: T5 => T1-> T5

3) Updated Read (Wrik-Read) Sequence

W1(a)-82(a): Ti->7	2
$W_1(Q) - \delta_4(Q) : T_1 \rightarrow T_1$	
W2(R)-85(R): T2->7	1
Wy(T) - 8=/T): The -> T	5

TI	T2	TR	14	15
8 (P)				
		R(2)		
W(B)		1		
	r(Q)			
			8(9)	
	W(R)			
			W(T)	Y(R)
				V(T)
				Wal

9 To 12 1 Ty 1 Ts 1 (T3) T1 T2 T4 T5 TI (T2) T2 T4 T5 TI T2 (T3) TY T5 T1 T2 T4 (T3) T5-TI TZ T4 T5 (T3)

ı	þ	-	٠	
ı	ľ	8)	
ı	٠	Ξ	c	

 $R_4(x) R_2(x) R_3(x) W_1(y) W_2(x) R_3(y) W_2(y)$

₹•			
	TZ T3 ly)
	R(X)		
الحرا	CHY.	(Ty)	
10)	whx)		
Ang (3)	Ry)	CTI T3, T4, T2	
	CHT)		

Q.

 $R_4(x) R_2(x) R_3(x) W_1(y) W_2(x) R_3(y) W_2(y)$

Q.

Consider the following directed graph:

The number of different topological ordering of the vertices of the graph is ______.

[MCQ: 2016]

AB XY BY BY BY BY AX AX AX AX AX AX AX AX AX XX AX XX

MCQ Q.15

Consider a simple checkpointing protocol and the following set of operations in the log. (start, T4); (write, T4, y, 2, 3); (start, T1); (commit, T4); (write, T1, z, 5, 7); (checkpoint); (start, T2); (write, T2, x, 1, 9); (commit, T2); (start, T3); (write, T3, z, 7, 2); If a crash happens now and the system tries to recover using both undo and redo operations, what are the contents of the undo list and the redo list?

[GATE-2015-CS: 2M]

- A Undo: T3, T1; Redo: T2
- B Undo: T3, T1; Redo: T2, T4
- C Undo: none; Redo: T2, T4, T3, T1
- D Undo: T3, T1, T4; Redo: T2

