Mathematics

Zhang En-Yao

August 2023

Contents

1	Paiı	'S	5
	1.1	Unordered, Ordered Pairs	5
	1.2	Relation	7

4 CONTENTS

Chapter 1

Pairs

1.1 Unordered, Ordered Pairs

Notion. Summary

Sets define ordered and unordered pairs. Ordered pairs contain coordinates. Coordinates define equivalent.

Definition. Unordered Pair

 $\{a,b\}$ is a set whose elements are exactly a and b.

Definition. Ordered Pair

Ordered pair of a and b is denoted by (a, b).

Definition. Coordinate

a is the first coordinate of the pair, b is the second coordinate.

Definition.

$$(a,b) = \{\{a\}, \{a,b\}\}.$$

Definition.

For two different sets α and β , $(a,b) = \{\{a,\alpha\}, \{b,\beta\}\}.$

Note. An alternative definition of ordered pairs.

(a,b)=(a',b') if and only if a=a' and b=b'.

Proof. Obviously.

Proposition 1.1.1.1.

Two ordered pairs are equal if and only if their first coordinates are equal and their second coordinates are equal.

Proof. Obviously.

Note. Ordered pair should be defined in such a way that two ordered pairs are equal if and only if their first coordinates are equal and their second coordinates are equal.

Proposition 1.1.1.2.

 $(a,b) \neq (b,a)$ if $a \neq b$.

Proof. Obviously.

Proposition 1.1.1.3.

If $a \neq b$, (a, b) has two elements, a *singleton* $\{a\}$ and an *unordered pair* $\{a, b\}$. We find the *first coordinate* by looking at the element of $\{a\}$. The *second coordinate* is then the other element of $\{a, b\}$. If a = b, then $(a, a) = \{\{a\}\}$ has only one element.

Proof. Obviously.

Note. If $a \neq b$, (a,b) has two elements, a singleton $\{a\}$ and an unordered pair $\{a,b\}$. The first coordinate is the element of $\{a\}$; the second coordinate is the other element of $\{a,b\}$.

Definition. One-Tuples

(a) = a.

Definition. Ordered Triples

(a, b, c) = ((a, b), c).

Definition. Ordered Quadruples (a, b, c, d) = (((a, b), c), d).Property 1.1.1. $(a,b) \in \mathcal{P}(\mathcal{P}(\{a,b\}))$. More generally, if $a \in A$ and $b \in A$, then $(a,b) \in A$ $\mathcal{P}(\mathcal{P}(\{a,b\})).$ Proof. Obviously. Property 1.1.2. $a, b \in \bigcup (a, b).$ Proof. Obviously. Property 1.1.3. (a,b), (a,b,c), and (a,b,c,d) exist for all a,b,c, and d. *Proof.* Obviously. Property 1.1.4. If (a, b) = (b, a), then a = b. Proof. Obviously. Property 1.1.5. (a, b, c) = (a', b', c') implies a = a', b = b', and c = c'. (a, b, c, d) = (a', b', c', d')implies a = a', b = b', c = c', and d = d'. Proof. Obviously.

7

1.2 Relation

1.2. RELATION

Notion. Summary Undering.

Definition. Binary Relation

A set A is a binary relation if all elements of R are ordered pairs, i.e., if for any $z \in R$ there exist x and y such that z = (x, y).

Note. Relations between objects of two sorts called binary relations.

Note. A binary relation is determined by specifying all ordered pairs of objects in that relation; it does not matter by what property the set of these ordered pairs is described.

Definition.

Let A be a binary relation.

- 1. The set of all x which are in relation A with some y is called the domain of R and denoted by dom R.
- 2. The set of all y such that, for some x, x is in relation R with y is called the range of A, denoted by ran R.
- 3. The set dom $R \cup \operatorname{ran} R$ is called the field of R and is denoted by field R.
- 4. If field $R \subseteq X$, we say that R is a relation in X or that R is a relation between elements of X.

Note. dom R is the set of all first coordinates of ordered pairs in R.

Note. ran R is the set of all second coordinates of ordered pairs in R.

Proposition 1.2.0.1.

Both dom R and ran R exist for any relation R.

Proof. Obviously.