	HQET Power Corrections
	1HQET = Quiv.DQv ← (lowest order [10])
	- B. (; v. D + 2 Ma) B. + Q. i ØT B. + B. ; ØT Q. + 1 acd + Light
	with \au = av , \au Bu = - Bu
	Integrate out Bu (anti-particle):
	- 1 - 2 - 0MY 0
	1(1) = -1 Q. DDQ. = -Q. DTQ gQ. G. G. G. Q. 2Mg 2Mg 4Mg
	2Ma 2Ma 4Ma
	Reparametrization Invariance (part a)
×	Pa = Mav + km
	Invariance under Vm -> Vm + Em
	Ma
3	k [~] → k [~] - ε [~]
Agent to the second	$v^2 = 1$, so $v \cdot \varepsilon = 0$
	We still want VQV(0) = QV(0)
and digital	- (x+ &)(Q+ SQ) = Q+ SQ.
	Ma
	solved by SQ = EQ (x=0)
100	2Ma
0	50 Qu(x) → e × (1+ &) Qu
ř	2Ma

q doesn't depend on v, so | q -> q (part b)

J(0)(x) = C, q x Qv + C, q v Q J"(x) = 1 & B; O; (x) $\frac{2M\alpha}{O_{1}^{(1)}} = \frac{1}{4} x^{m} : NQ_{1} \qquad O_{2}^{(1)} = \frac{1}{4} (-iv \cdot D_{1}) x^{m} Q_{1}$ $O_{2}^{(1)} = \frac{1}{4} v^{m} : NQ_{1} \qquad O_{3}^{(1)} = \frac{1}{4} (-iv \cdot D_{1}) v^{m} Q_{2}$ $O_{3}^{(1)} = \frac{1}{4} : D^{m} Q_{2} \qquad O_{6}^{(1)} = \frac{1}{4} (-iv \cdot D_{1}^{m}) Q_{2}$ under transformation $J^{(0)} + SJ^{(0)} = C_1 \overline{q} \times m e^{i E \times} (1 + \cancel{E}) Q_V$ + Cz q (V"+ E") e EX (1+ & Qv Ma) ZMa - SJ(0) = C, q x r e Ex & Qv + Crq v e i Ex & Qu + Crq E e i Ex Qu $J^{(1)} + \delta J^{(1)} = \frac{1}{1} B_1 \hat{q} \chi^m i \mathcal{B} e^{i\epsilon x} \left(1 + \mathcal{E} \right) Q_v$ $\begin{array}{c|c}
\hline
2MQ & 2MQ \\
+ 1 & B_2 \overline{q} \left(\overrightarrow{V} + \overrightarrow{E} \right) ;
\hline
2MQ & 2MQ \\
+ 1 & B_3 \overline{q} ;
\hline
2MQ & 2MQ \\
\hline
2MQ & 2MQ
\end{array}$

+ 1 By \overline{q} (-i (V+E). \overline{D}) $\chi^{m} e^{i\epsilon x}$ (1- χ) Q_{v} $\chi^{m} = \frac{1}{2} \frac{$ + 1 B6 q (-; Dm) e : Ex (1- x) Qv → SJ" = 1 Big xm; (ix) eiex Qu + 1 Bz q v i (ix) eiex Qv + 1 B3 q i (i E^) e E Qv + O (1 for RP1 want $SJ^{(0)} + SJ^{(1)} = O + O/1$ $B_1 = C_1$, $B_2 = C_2$, $B_3 = 2C_2$ By, Bs, B6 unconstrained