

# UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

#### FCT - Faculdade de Ciências e Tecnologia DMC - Departamento de Matemática e Computação Pós-Graduação em Matemática Aplicada e Computacional

Trabalho Prático 2 Métodos Computacionais para Equações Diferenciais

Aluno: Guilherme Cesar Tomiasi

Professora: Analice Costacurta Brandi

| $\alpha$ |     | ,  | •  |   |
|----------|-----|----|----|---|
| 51       | IJΥ | ทล | rı | O |

| 1. Resolução de Equação do Calor            | 3 |
|---------------------------------------------|---|
| 2. Equação do Calor sobre uma barra delgada | 4 |
|                                             |   |

## 1. Resolução de Equação do Calor

#### Discretização (Euler Explícito)

Irei utilizar  $u(t,x) \to u_{t,x}$  ao invés de  $u_{i,j}$  para evitar confusão. A primeira linha representa o primeiro momento no tempo.

$$\begin{split} \frac{\partial u}{\partial t} &= \alpha \frac{\partial^2 u}{\partial x^2} \Rightarrow \frac{u_{t+1,x} - u_{t,x}}{k} = \alpha \left( \frac{u_{t,x-1} - 2u_{t,x} + u_{t,x+1}}{h^2} \right) \\ u_{t+1,x} &= u_{t,x} + \frac{\alpha k}{h^2} (u_{t,x-1} - 2u_{t,x} + u_{t,x+1}) \\ u_{t+1,x} &= u_{t,x} + \sigma (u_{t,x-1} - 2u_{t,x} + u_{t,x+1}) \end{split}$$

Discretização (Euler Implícito)

$$\begin{split} \frac{\partial u}{\partial t} &= \alpha \frac{\partial^2 u}{\partial x^2} \Rightarrow \frac{u_{t+1,x} - u_{t,x}}{k} = \alpha \left( \frac{u_{t+1,x-1} - 2u_{t+1,x} + u_{t+1,x+1}}{h^2} \right) \\ u_{t,x} &= u_{t+1,x} - \frac{\alpha k}{h^2} \left( u_{t+1,x-1} - 2u_{t+1,x} + u_{t+1,x+1} \right) \\ u_{t,x} &= -\sigma u_{t+1,x-1} + (1+2\sigma)u_{t+1,x} - \sigma u_{t+1,x+1} \end{split}$$

Forma-se o sistema linear  $(\beta = 1 + 2\sigma)$ 

$$\begin{pmatrix} \beta & -\sigma & 0 & 0 & 0 & \dots & 0 \\ -\sigma & \beta & -\sigma & 0 & 0 & \dots & 0 \\ 0 & -\sigma & \beta & -\sigma & 0 & \dots & 0 \\ & & \ddots & \ddots & \ddots & \\ 0 & \dots & 0 & 0 & 0 & -\sigma & \beta \end{pmatrix} \begin{pmatrix} u_{t+1,2} \\ u_{t+1,3} \\ u_{t+1,4} \\ \vdots \\ u_{t+1,N-1} \end{pmatrix} = \begin{pmatrix} u_{t,2} \\ u_{t,3} \\ u_{t,4} \\ \vdots \\ u_{t,N-1} \end{pmatrix}$$

Discretização (Crank-Nicolson)

$$\begin{split} \frac{\partial u}{\partial t} &= \alpha \frac{\partial^2 u}{\partial x^2} \Rightarrow \frac{u_{t+1,x} - u_{t,x}}{k} = \\ \frac{\alpha}{2} \left( \frac{u_{t+1,x-1} - 2u_{t+1,x} + u_{t+1,x+1}}{h^2} + \frac{u_{t,x-1} - 2u_{t,x} + u_{t,x+1}}{h^2} \right) \\ u_{t,x} &= u_{t+1,x} - \frac{\alpha k}{2h^2} \left( u_{t+1,x-1} - 2u_{t+1,x} + u_{t+1,x+1} + u_{t,x-1} - 2u_{t,x} + u_{t,x+1} \right) \\ u_{t,x} &= u_{t+1,x} - \lambda u_{t+1,x-1} + 2\lambda u_{t+1,x} - \lambda u_{t+1,x+1} - \lambda u_{t,x-1} + 2\lambda u_{t,x} - \lambda u_{t,x+1} \\ \lambda u_{t,x-1} + (1 - 2\lambda)u_{t,x} + \lambda u_{t,x+1} = \\ -\lambda u_{t+1,x-1} + (1 + 2\lambda)u_{t+1,x} - \lambda u_{t+1,x+1} \end{split}$$

Forma-se o sistema linear  $(\varphi = 1 + 2\lambda, \psi = 1 - 2\lambda)$ 

$$\begin{pmatrix} \varphi & -\lambda & 0 & 0 & 0 & \dots & 0 \\ -\lambda & \varphi & -\lambda & 0 & 0 & \dots & 0 \\ 0 & -\lambda & \varphi & -\lambda & 0 & \dots & 0 \\ & \ddots & \ddots & \ddots & & \\ 0 & \dots & 0 & 0 & 0 & -\lambda & \varphi \end{pmatrix} \begin{pmatrix} u_{t+1,2} \\ u_{t+1,3} \\ u_{t+1,4} \\ \vdots \\ u_{t+1,N-1} \end{pmatrix} = \begin{pmatrix} \lambda u_{t,1} + \psi u_{t,2} + \lambda u_{t,3} \\ \lambda u_{t,2} + \psi u_{t,3} + \lambda u_{t,4} \\ \lambda u_{t,3} + \psi u_{t,4} + \lambda u_{t,5} \\ \vdots \\ \lambda u_{t,N-2} + \psi u_{t,N-1} + \lambda u_{t,N} \end{pmatrix}$$

Onde os valores anotados em vermelho são iguais a 0. Os termos foram mantidos para manter a simetria da notação. Como o valor no contorno é 0, não é necessário representar os valores de  $u_{t+1,1}, u_{t+1,N}$ , como anteriormente.

## 2. Equação do Calor sobre uma barra delgada

**Enunciado** Considere uma barra delgada, de comprimento L=1m, inicialmente a temperatura uniforme  $T_{\rm init}=0$ °C.

[Figura]

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x}$$

A extremidade esquerda (x=0) é mantida à temperatura fixa  $T_0=0$ °C A extremidade direita (x=L) é mantida à temperatura fixa  $T_N=100$ °C A difusividade térmica é  $\alpha=0.0834$  m²/s

- Resolva numericamente o problema utilizando os métodos de Explícito, Implícito e de Crank-Nicolson
- Compare a solução numérica com a solução analítica:

$$T(x,t) = \frac{x}{L}T_N + \sum_{n=1}^{\infty} (-1)^n \frac{2T_N}{n\pi} \sin\left(\frac{n\pi x}{L}\right) e^{-\alpha t \left(\frac{n\pi}{L}\right)^2}$$

- Para cada método:
  - ► A partir da temperatura no estado inicial, determine a distribuição de temperatura na barra em vários intantes de tempo;
  - Calcular o erro relativo máximo e o erro em norma  $L^2$ ;
  - Verificar consistência, estabilidade e custo computacional dos métodos numéricos utilizados no problema.

**Resolução** Podemos aproveitar as discretizações obtidas no Exercício 1, ao definirmos T=u. A única alteração necessária é nos vetores resultantes do produto matriz-vetor, que agora precisam conter novos valores, tendo em vista que as condições de contorno mudaram. Dessa forma, obtemos as seguintes discretizações:

**Método Explícito** A discretização de método explícito é a única a não ser afetada, visto que atua diretamente sobre o vetor de valores no tempo anterior. Alterando os valores iniciais desse vetor, todo o restante será devidamente adaptado.