Exploration

EECS 598-12: Unsupervised Visual Learning Presenter - Justin Bi, 4/12/2021

What is exploration, and why do we care?

- Exploration is the process of an agent learning about the environment it is operating in
- Greater knowledge leads to better-informed decision making in future tasks
- Unfortunately, difficult to solve with reinforcement learning

Reinforcement learning (RL) - quick refresher

• Train an agent to interact with its environment in order to maximize rewards

Problem setup

- Using only intrinsic rewards, maximize the exploration performance of the agent by an extrinsic metric
 - Real world rewards are typically sparse or nonexistent

Game score is an example of extrinsic reward

See, Hear, Explore: Curiosity via Audio-Visual Association

Victoria Dean, Shubham Tulsiani, Abhinav Gupta NeurIPS 2020

Inspiration from humans

- Humans, especially babies, use multiple modalities to learn about the world
- Dember and Earl argue that intrinsic motivation comes from discrepancies between expected perception and actual stimulus

How can we exploit this for reinforcement learning?

Audio-video association discriminator

Data collection

- Agent policy is rolled out in parallel instances
- Trajectories from each instance are chunked into 128 time steps
- Time step consists of visual and sound features: (v_r, s_t), t ∈ [1,128]
 - Positive samples are matching pairs
 - \circ Negative samples have true visual feature v_t and false sound feature s'_t
 - s'_{t} is uniformly sampled from the current trajectory

How do we train the discriminator?

Weighted cross entropy loss

$$\mathcal{L}_{t}(v_{t}, s_{t}, z_{t}) = \begin{cases} -\log(D(v_{t}, s_{t})), & \text{if } z_{t} = 1\\ -\frac{||s_{t} - s'_{t}||_{2}}{\mathbb{E}_{\text{batch}}||s_{t} - s'_{t}||_{2}} \log(1 - D(v_{t}, s'_{t})), & \text{if } z_{t} = 0 \end{cases}$$

- z_t is an indicator variable that is 1 when the true sound is used
- Weighting prevents punishment for similar false and true audio samples

Training the agent via intrinsic reward

Intrinsic reward:

$$r_t^i := -\log(D(v_t, s_t))$$

Policy is trained to maximize expected reward:

$$\max_{\theta} \mathbb{E}_{\pi(v_t;\theta)} \left[\sum_t \gamma^t r_t^i \right]$$

Trained with a policy optimization technique, in this case PPO

Baselines

- Future prediction curiosity
- Exploration via disagreement
- Random network distillation (RND)

- Hyperparameters for policy learning are the same across all approaches
- CNN features are random for all approaches

Future prediction curiosity

Exploration via disagreement

Random network distillation

Target network is randomly initialized

Target network will output a fixed feature representation of \mathcal{S}_{t+1}

Predictor Network will tries to predict the target network's output \hat{f}_{t+1}

$$r_t^i = \left\| \hat{f}\left(s_{t+1}
ight) - f\left(s_{t+1}
ight)
ight\|_2^2 \left\| egin{array}{c} \egin{array}{c} egin{array}$$

of next state

Evaluation environment - Atari

- Evaluated on 12 Atari games
 - Some games excluded due to no audio (e.g. Amidar, Pong)
 - Other games excluded due to background music (e.g. RoadRunner, Super Mario Bros)
- Trained for 200 million frames (allegedly more sample efficient)

Results - Atari training curves

Failure case - trivial audio-visual association

- Easy discriminator task leads to low agent rewards
- Visiting already-learned states necessary for high extrinsic reward

Qbert Atlantis

Failure case - repetitive background sounds

- Difficult to visually associate sounds
- Trouble learning basic cases makes agent unmotivated to explore

BeamRider

Space Invaders

Failure case - learned repetitive sounds?

- Agent gets stuck in a loop of passing from one side of the screen to the other in Alien
- Slight delay in sound makes alignment difficult

Success case - Gravitar

Hard exploration environment

Visual dynamics not very interesting - audio-visual associations are

Evaluation environment - Habitat

- Photorealistic simulator using Replica Dataset
- Sound source emits a fixed audio clip less than one second long

Apartment 0 render

Apartment 0 bird's eye view

Habitat - results

Authors claim significant gains over baselines

Habitat - results cont'd

- Heatmaps do not seem to show particularly superior performance
- Agents start facing different directions?

(e) Random policy

Ablations - future prediction with audio

Concatenate audio features to visual features

Results - future prediction with audio

Ablations - RND with audio

 Image and audio are converted to features with convolutional and dense layers respectively, then concatenated

Results - RND with audio

- Authors note that differing sparsities between video and audio features makes this difficult
- Claim their method is better because it doesn't need tuning

Audio-visual RND on Gravitar

Ablations - robustness to noise

Gaussian noise added to audio and visual feature vector inputs

Ablations - multiple curiosity modules

Sum the rewards from future prediction and audio-visual discriminator

Final thoughts

Pros:

- Work is interesting a successful implementation of multi-modal curiosity
- Shows strong performance on certain Atari games
 - Performs well on some challenging games like Gravitar

Cons:

- Habitat experiment does not seem particularly convincing
- Audio ablation does not seem totally fair
- Method has lots of limitations no sound, too much sound, etc.
- Performs significantly worse on some Atari games with more information

Discussion

- What other modalities might provide useful information for exploration?
- Ideally, adding additional information does not degrade performance below previous systems. How can we incorporate sound into a reinforcement learning system without degrading performance?
- How else might curiosity be instilled into reinforcement learning systems?