Relative Invariants in Permutation Groups with Applications to Galois Theory

Mitchell Wadas

Consultant: Prof. Harm Derksen

Northeastern University

April 18, 2024

Outline

- Background
- Stauduhar's Method
- Generic Invariants
- Special Invariants
- 6 Results & Future Work

Polynomial Algebras

- Let K be an infinite field.
- The set of polynomials in x_1, \dots, x_n over K is denoted $K[X] = K[x_1, \dots, x_n]$.
- \bullet K[X] forms a commutative, $\mathbb{N}\text{-graded}$ algebra over K with homogeneous pieces

 $K[X]_d = \{ \text{ homogeneous polynomials of degree } d \} \cup \{0\}.$

Linear Representations

- A linear representation is a group homomorphism $\rho: G \to GL_n(K)$.
- This defines a *G*-action on K^n by $\sigma * v = \rho(\sigma)v$.
- We extend this action to $f \in K[X]$ by

$$\sigma * f(\mathbf{x}) = f(\sigma^{-1} * \mathbf{x}).$$

Example.

The defining representation of $G \leq S_n$ is given by

$$\rho(\sigma)(\mathbf{e}_i) = \mathbf{e}_{\sigma(i)}.$$

The induced action is equivalent to

$$\sigma * f(x_1, \cdots, x_n) = f(x_{\sigma(1)}, \cdots, x_{\sigma(n)}).$$

Invariants

Definition.

A polynomial $f \in K[X]$ is G-invariant if $\sigma * f = f$ for all $\sigma \in G$.

Remark.

The G-invariant polynomials form a subalgebra, which we denote $K[X]^G$.

Definition.

If H is a subgroup of G, then we say f is a G-relative H-invariant if

$$\operatorname{Stab}_G(f) = H.$$

The Galois Group

- Let $p \in K[x]$ be a separable polynomial with splitting field N over K.
- Gal(N/K) is the set of automorphisms of N which leave K fixed.
- Gal(N/K) acts on the set R of roots of p by $\gamma * r = \gamma(r)$.

Definition.

The action induces an injective homomorphism from Gal(N/K) into Sym(R).

The Galois group of p is the image of Gal(N/K) under this homomorphism.

Stauduhar's Method

Stauduhar's Method

Theorem 1.

Let $H < G \le S_n$, and assume $Gal(p) \le G$. Let f be a G-relative H-invariant such that, for all $\sigma \in G \setminus H$,

$$\sigma * f(r_1, \cdots, r_n) \neq f(r_1, \cdots, r_n). \tag{1}$$

For all σ in G, $Gal(p) \leq \sigma H \sigma^{-1}$ if and only if $\sigma * f(r_1, \dots, r_n) \in K$.

Remark.

If (1) does not hold, we can apply a transformation to obtain a new polynomial with the same Galois group as p, whose roots do satisfy (1).

Stauduhar's Method

Algorithm (Stauduhar's Method).

To compute the Galois group of a separable polynomial of degree n,

- Set $G = S_n$.
- Choose a maximal subgroup H and compute a G-relative H-invariant.
- Apply theorem 1 to find a conjugate subgroup $\sigma H \sigma^{-1}$ containing Gal(p).
- Set $G = \sigma H \sigma^{-1}$, and repeat until Gal(p) is not contained in any proper subgroup of G.

Generic Invariants

The Reynolds Operator

Definition.

Let G be a finite group with subgroup H. The relative Reynolds operator is defined as the map

$$\mathcal{R}_{G/H}: K[X]^H \to K[X]^G, \quad f \mapsto \frac{1}{|G:H|} \sum_{\sigma H \in G/H} \sigma * f.$$

When $H = \{e\}$, we call this map the Reynolds operator, denoted \mathcal{R}_G .

Proposition.

- The relative Reynolds operator is a graded linear transformation.
- The relative Reynolds operator is a projection.

The Reynolds Operator

Consider the restriction of $\mathcal{R}_{G/H}$ to the finite dimensional subspace $K[X]_d^H$:

$$\mathcal{R}_{G/H,d}:K[X]_d^H\to K[X]_d^G.$$

Proposition.

Let H be a maximal proper subgroup of G.

If f is a non-zero element of ker $\mathcal{R}_{G/H,d}$, then f is a relative invariant.

Method 1

Method 1.

To compute a G-relative H-invariant,

- ullet Choose a degree d so that the kernel of $\mathcal{R}_{G/H,d}$ is non-trivial.
- Compute a basis B for $K[X]_d^H$.
- Construct the matrix of $\mathcal{R}_{G/H,d}$ in this basis.
- ullet Find the kernel by solving a system of linear equations over K.
- Choose any non-zero element in the kernel.

Method 2

Let S be a set of non-identity cosets representatives of G/H.

Define the map

$$\psi: K[X]^H \to \bigoplus_{i=1}^{|S|} K[X], \quad f \mapsto (\sigma * f - f)_{\sigma \in S}.$$

Proposition.

- The map ψ is K-linear.
- If B is a basis for $K[X]_d^H$, then $\psi(B)$ is a spanning set for $\psi(K[X]_d^H)$.

Method 2

Proposition.

Let H be a maximal proper subgroup of G.

If $\psi(f) \neq 0$, then f is a G-relative H-invariant.

Method 2.

To compute a G-relative H-invariant,

- Choose an appropriate degree d.
- Compute a basis for $K[X]_d^H$.
- ullet Apply ψ to each basis element.
- Any element which is not mapped to zero is a relative invariant.

The Hilbert Series

Definition.

Let M be a non-negatively graded vector space of finite type. We define the Hilbert series of M to be the formal power series

$$H(M,t) = \sum_{d=0}^{\infty} \dim(M_d) t^d.$$

Remark.

A formal power series is an algebraic expression, independent of any notion of convergence.

Molien's Formula

Theorem (Molien's Formula).

Let $\rho: G \to GL(n, K)$ be a representation of a finite group G acting on K[X]. The Hilbert series of the invariant algebra is given by

$$H(K[X]^G,t) = \frac{1}{|G|} \sum_{g \in G} \frac{1}{\det(I - \rho(g)t)}.$$

Applications

Proposition.

The Reynolds operator is a projection onto $K[X]_d^G$, so we obtain

$$K[X]_d^H = K[X]_d^G \oplus \ker \mathcal{R}_{G/H,d}.$$

Therefore, the Hilbert series of $K[X]^H$ splits into

$$H(K[X]^H, t) = H(K[X]^G, t) + H(\ker \mathcal{R}_{G/H}, t).$$

We can use this fact to determine the minimal degree of a relative invariant.

Computing a Basis

Proposition.

If B is a basis for $K[X]_d^H$, then the image $\mathcal{R}_{G/H,d}(B)$ spans $K[X]_d^G$.

Algorithm.

To compute a basis for $K[X]_d^G$,

- Apply \mathcal{R}_G to a monomial basis for $K[X]_d$ to obtain a spanning set.
- Refine the spanning set to a basis.

This requires us to apply $\mathcal{R}_{\mathcal{G}}$ to each of the $\binom{n+d-1}{d}$ basis elements.

Each application requires |G| actions.

Computing a Basis

A Better Method.

- Form a chain of groups $\{e\} = H_1 < H_2 < \cdots < H_K = G$.
- Then compute $\mathcal{R}_{G} = \mathcal{R}_{H_{K}/H_{k-1}} \circ \cdots \circ \mathcal{R}_{H_{2}/H_{1}}$.

The total number of operations is $\sum [H_i: H_{i-1}] \ll \prod [H_i: H_{i-1}] = |G|$.

We can refine the spanning set to a basis at each step.

Special Invariants

Projective Space

Definition.

- Given a vector space V over K, the projective space $\mathbb{P}(V)$ is the set of all 1 dimensional subspaces.
- When dim V=2, we call the projective space a projective line.

The Projective Semi-Linear Group

The invertible linear transformations of V induce permutations $\mathbb{P}(V)$ by

$$g * W = g(W) = \{g(w) : w \in W\}.$$

Definition.

The permutations induced by GL(V) form the projective linear group PGL(V).

Definition.

We extend PGL to include the induced action of invertible semi-linear maps by defining the projective semi-linear group

$$P\Gamma L(V) = PGL(V) \rtimes Aut(K).$$

When $V = \mathbb{F}_q^n$, the notation PGL(n,q) and $P\Gamma L(n,q)$ is used.

The Particular Case

- We are interested in $PGL(2,25) \triangleleft P\Gamma L(2,25) \leq S_{26}$.
- This is a difficult case where most existing methods do not apply.

Observations.

- PGL(2,25) acts sharply 3-transitively on $\mathbb{P}(\mathbb{F}^2_{25})$.
- Aut (\mathbb{F}_{25}) is cyclic of order 2 and generated by the Frobenius automorphism:

$$\varphi: \mathbb{F}_{25} \to \mathbb{F}_{25}, \quad x \mapsto x^5.$$

- P Γ L(2, 25) consists of PGL(2, 25) and the left coset φ PGL(2, 25).
- If x is in the prime subfield \mathbb{F}_5 , then $\varphi(x) = x$. Otherwise, $\varphi(x) \neq x$.

The Cross Ratio

Definition.

For points A, B, C, D on the projective line, the cross ratio is the point [A, B; C, D] = h(D), where h is the unique map sending (A, B, C) to $(\infty, 0, 1)$.

Proposition.

The cross ratio is invariant under the action of PGL(V).

Observation.

If we choose A, B, C, D so that [A, B; C, D] lies in $\mathbb{F}_{25} \setminus \mathbb{F}_5$, then

$$\mathsf{Stab}_{\mathsf{P\Gamma L}}[A,B;C,D] = \mathsf{PGL}$$
.

Special Methods

Special Invariant

Choose a value $\lambda \in \mathbb{F}_{25} \setminus \mathbb{F}_5$ and form the sum

$$\sum_{[A,B;C,D]=\lambda} x_A^1 x_B^2 x_C^3 x_D^4 \in K[X].$$

Permutations in PGL(2,25) will permute the order of the sum.

Permutations in PTL \setminus PGL will send (A, B, C, D) to some tuple not in the sum.

Results

We summarize the computational cost of relative invariants for the pair $PGL(2,25) \triangleleft P\Gamma L(2,25)$ in the table below.

Method	Degree	Products
Benchmark	4	14675
Method 1	4	23400
Method 2	4	11700
Special Method	10	46800

"Benchmark" refers to the generic method of Fieker and Klüners [3].

Future Work

- For carefully chosen λ , the cross ratio is invariant under even permutations of $\{A, B, C, D\}$. We hope to use this symmetry to simplify the special invariant constructed.
- Extend the special method to other pairs, say $PGL(\mathbb{F}_{p^n}^2) \leq P\Gamma L(\mathbb{F}_{p^n}^2)$.
- Analyze the computational complexity of the algorithms.
- Apply the generic methods to other pairs.

References

- [1] Harm Derksen and Gregor Kemper. *Computational invariant theory*. Vol. 130. Encyclopedia of Mathematical Sciences. Springer, Heidelberg, 2015, pp. xxii+366. ISBN: 978-3-642-07796-8.
- [2] Andreas-Stephan Elsenhans. "Improved methods for the construction of relative invariants for permutation groups". In: *Journal of Symbolic Computation* 79 (2017), pp. 211–231.
- [3] Claus Fieker and Jürgen Klüners. "Computation of Galois groups of rational polynomials". In: *LMS Journal of Computation and Mathematics* 17.1 (2014), pp. 141–158.
- [4] Jean Gallier. *Geometric methods and applications*. Vol. 38. Texts in Applied Mathematics. Springer, New York, NY, 2011, pp. xxviii+680. ISBN: 978-1-4419-9960-3.
- [5] K. W. Gruenberg and A. J. Weir. *Linear geometry*. Vol. 49. Graduate Texts in Mathematics. Springer, New York, NY, 1977, pp. x+199. ISBN: 978-0-387-90227-2.
- [6] Mara D. Neusel. *Invariant Theory*. Vol. 36. Student Mathematical Library. American Mathematical Society, Providence, RI, 2015, pp. viii+314. ISBN: 978-0-8218-4132-7.
- [7] Richard P. Stauduhar. "The determination of Galois groups". In: *Mathematics of Computation* 27 (1973), pp. 981–996.