EE185524

Information Theory

Yurid Eka Nugraha
TSP DTE FTEIC ITS

How to transmit information over channel?

Shannon, *A mathematical theory of communication*, 1948 EE185524 2022E – 5

Basic insight:

- > Shannon: "the rarer an event is, the more the information"
- > "The information content of a message depends on its a priori probability"

(Information) Entropy?

- > Simple definition: "the differential of a quantity which depends on the configuration of the system"
- In the context of information theory: "average level of "information", "surprise", or "uncertainty" inherent to the variable's possible outcomes". (Shannon)

$$H(X) = -\sum_{x \in X} p(x) \log p(x) = \mathbb{E}\{-\log p(x)\}\$$

(Information) Entropy?

$$H(X) = -\sum_{x \in X} p(x) \log p(x) = \mathbb{E}\{-\log p(x)\}\$$

- \triangleright If log base = 2, then information is expressed as **bits**
- ➤ Called information entropy because of its similarity to the entropy in statistical mechanics: "number of possible microscopic states (microstates) of a system in thermodynamic equilibrium, consistent with its macroscopic thermodynamic properties"

Review of basic probability

- $\triangleright \mathbb{E}(X)$: expected value of random variable X
- > Countable events:

$$\mathbb{E}(X) = \sum_{i=1}^{\infty} x_i p_i,$$

where x_i : possible outcome of random variables X with corresponding probabilities p_i

For 6-side dice: $\mathbb{E}(X) = 3.5$

Source entropy

Requires a way of measuring:

- > information content of a source
- > efficiency of a code, etc.

> Maximized if all symbols equiprobable

Source entropy

Fair coin toss with $p = \frac{1}{2}$:

$$H(X) = -\frac{1}{2}\log\left(\frac{1}{2}\right) - \frac{1}{2}\log\left(\frac{1}{2}\right) = 1$$

 \triangleright Coin toss with head probability $p = \frac{3}{4}$:

$$H(X) = -\frac{1}{4}\log\left(\frac{1}{4}\right) - \frac{3}{4}\log\left(\frac{3}{4}\right) = 0.811$$

 \triangleright Coin toss with head probability $p = \frac{4}{5}$:

$$H(X) = -\frac{1}{5}\log\left(\frac{1}{5}\right) - \frac{4}{5}\log\left(\frac{4}{5}\right) = 0.722$$

Source entropy

Conditional entropy and mutual information

- ${\blacktriangleright} \ {\rm Conditional} \ {\rm entropy} \ H(X|Y) := \sum_{y \in Y} p(y) H(X|Y = y)$
- >H(X|Y) < H(X)
 - random variable X carries less information if Y is already known
- Mutual information: A drop in entropy between X and Y: $I(X;Y) \coloneqq H(X) H(X|Y)$

Mutual information

$$I(X;Y) = H(X) - H(X|Y)$$

$$= -\sum_{x \in X} p(x) \log p(x) + \sum_{y \in Y, x \in X} p(x,y) \log \frac{p(x,y)}{p(y)}$$

$$= \mathbb{E}\{\log \frac{p(x,y)}{p(x)p(y)}\}$$

Also, I(X;Y) = I(Y;X): mutual information **between** X and Y

Entropy rates

 \triangleright For stochastic process $\{X_i\}$:

$$H(X) = \lim_{n \to \infty} \left(\frac{1}{n}\right) H(X_1, \dots, X_n)$$

when the limit exists.

- ► Derivative: $H'(X) = \lim_{n \to \infty} H(X_n | X_{n-1}, X_{n-2}, ..., X_1)$
- For strongly stationary stochastic process: H(X) = H'(X)
- → "although there are many series of results that may be produced by a random process, the one actually produced is most probably from a loosely defined set of outcomes that all have approximately the same chance of being the one actually realized"

Topological entropy

➤ Defined as:

$$H_T(A) := \sum_{i} \max\{log_2|\lambda_i|, 0\}$$

- In information theory, **entropy rate** is used to measure the rate at which stochastic process generates information
- In feedback control theory, the rate at which a dynamical system generates information is quantified by **topological entropy**

Channel capacity

- ➤ Also called Shannon capacity
- ➤ the tightest upper bound on the average amount of information that can be transmitted over a communication channel

$$C = max_{p(x)}I(X;Y)$$

Channel capacity in wireless communications

➤ Shannon-Hartley theorem: For channel capacity in point-topoint scenario, the AWGN (additive white gaussian noise) channel capacity is

Shannon's theorems

Claude Shannon

Article Talk Read Edit View history

From Wikipedia, the free encyclopedia

Claude Elwood Shannon (April 30, 1916 – February 24, 2001) was an American mathematician, electrical engineer, and cryptographer known as a "father of information theory". [1][2]

As a 21-year-old master's degree student at the Massachusetts Institute of Technology (MIT), he wrote his thesis demonstrating that electrical applications of Boolean algebra could construct any logical numerical relationship. [3] Shannon contributed to the field of cryptanalysis for national defense of the United States during World War II, including his fundamental work on codebreaking and secure telecommunications.

Biography [edit]

province of the

Shannon's theorems

- \triangleright Source samples X_n are encoded into a digital representation at rate R (bits/sample)
- \succ Decoder produces sample estimates \widehat{X}_n

Shannon's theorems

- \triangleright Shannon's channel coding theorems: probability of error could be made nearly zero for R < C
- \triangleright Shannon's source coding theorems: average number of bits required to represent result of a random event is given by its entropy R > H
 - \triangleright When R < H, distortion always happens (never if R > H)

Distortion measures

- \succ "Distance" $d(x,\hat{x})$: quantitative measure between two variables x and \hat{x}
 - **Hamming distance:** $d(x, \hat{x}) = 1$ if $x \neq \hat{x}$, zero if $x = \hat{x}$.
 - > Squared error: $d(x, \hat{x}) = (x \hat{x})^2$
- \triangleright Distance between sequences $x_1^n \coloneqq \{x_1, \dots, x_n\}$ and \hat{x}_1^n :

$$d(x_1^n, \hat{x}_1^n) \coloneqq \frac{1}{n} \sum_{i=1}^n (x_i - \hat{x}_i)^2$$

> Average distortion between two random sequences:

$$D \coloneqq \mathbb{E}[d(X_1^n, \hat{X}_1^n)]$$

Rate distortion theory

 \triangleright Lossy compression: lower the bit rate R by allowing some acceptable distortion D of the signal

EE185524 2022E - 5

Causality, feedback, and directed information

- ➤ based on Massey, Causality, feedback, and directed information, IEEE Int. Symp. on Inform. Theory and Its Appl., 1990
- > Discrete channel is without feedback if

$$p(x_n|x^{n-1}, y^{n-1}) = p(x^n|x^{n-1}), \forall x^n, y^{n-1}$$

Directed information

 \triangleright Given a pair of random sequences X^n and Y^n , directed information is defined as

$$I(X^{n} \to Y^{n}) := \sum_{t=1}^{n} I(X^{t}; Y^{t} | Y^{t-1})$$

$$= H(Y^{n}) - H(Y^{n} | | X^{n})$$

$$= H(Y^{n}) - \sum_{t=1}^{n} H(Y^{t} | Y^{t-1}, X^{t})$$

Causally conditional entropy

Directed information

Compared to mutual information, directed information has the causally conditional entropy in place of the conditional entropy $I(X^n; Y^n) = H(Y^n) - H(Y^n|X^n)$

➤ Unlike mutual information, directed information is, in general, non symmetric

$$I(X^n \to Y^n) \neq I(Y^n \to X^n)$$

Properties of directed information

Conservation law: $I(X^n; Y^n) = I(X^n \to Y^n) + I(Y^{n-1} \to X^n)$ = $I(X^{n-1} \to Y^n) + I(Y^n \to X^n)$

 \triangleright No feedback case: $I(X^n; Y^n) = I(X^n \rightarrow Y^n)$

Causal influence

EE185524 2022E - 5

Causal influence

- Forward link exists if and only if $I(X^n \to Y^n) > 0$
- \triangleright Backward link **if and only if** $I(Y^n \to X^n) > 0$

Topological entropy

Topological entropy of an **LTI system** with open-loop matrix A (as in x[k+1] = Ax) is defined as

 $H_T(A) := \sum_i \max\{\log_2 |\lambda_i|, 0\}$, where λ_i are eigenvalues of A

- In information theory, entropy rate is used to measure the rate at which a stochastic process generates information
- In feedback control theory, the rate at which a dynamical system generates information is quantified by topological entropy

Mahler measure

$$M(A) := M \det(zI - A) = \prod_i \max\{|\lambda_i|, 1\} = 2^{H_T(A)}$$

➤ No reference to any controller or feedback communication — an intrinsic property of the dynamical system

Data rate theorem

 \triangleright Addresses how much information needs to be communicated between the quantizer and controller **for stabilizing a discrete** LTI system $C > H_T(A)$

Conclusion

- Information theory deals with general problems of reliable transmission of data and capacity of channels required for that purpose
- ➤ Parallel between information theory and control of unstable system?