Traffic Anomaly Detector + Self-Improving Model — Project Report

Step 1: Dataset Creation

We created a custom CSV dataset consisting of **1000 synthetic traffic records**. The dataset includes the following features:

- speed: Average speed of vehicles (in km/h)
- vehicle count: Number of vehicles observed
- time: Time of the day (Morning, Afternoon, Evening, Night)
- day: Day of the week
- location: Location ID or name
- anomaly: Binary class label (1 = Anomaly, 0 = Normal)

This data mimics real-world traffic conditions, including both normal flow and anomalies such as congestion or unexpected slowdowns.

Step 2: Data Preprocessing & EDA (Exploratory Data Analysis)

- Used **Pandas** and **Seaborn** for data analysis and visualization.
- Verified class balance and feature distributions using count plots and heatmaps.
- Applied Label Encoding on categorical features such as time, day, and location.
- Data was split into training and testing sets using an 80-20 ratio.

Step 3: Model Training (Initial Model)

- Trained a **RandomForestClassifier** to detect traffic anomalies.
- The model was fitted on the preprocessed training data.
- Initial test accuracy was **1.0** (**100%**), indicating perfect separation of normal and anomalous data.

Step 4: Real-Time Prediction Simulation

- Simulated real-time inputs with values like speed, vehicle count, and time.
- The trained model made predictions on this live data.
- Two types of outputs were observed:
 - o "Anomaly Detected!"
 - "Normal Traffic"

Step 5: Self-Improving Model (Dynamic Retraining)

- Appended additional real-time data (both normal and anomalies) into the dataset.
- Re-encoded and retrained the model with the new data.
- After retraining, the updated model achieved an accuracy of 0.9933 (99.33%).
- This step demonstrates the model's ability to **self-learn and adapt** to evolving traffic patterns.

Step 6: Performance Visualization

- Plotted a **learning curve** to visualize model performance over varying training sizes.
- Observed no overfitting, indicating good generalization.
- Accuracy drift was tracked before and after retraining to measure improvement over time.

Future Scope

1. Integration with Real-Time Traffic APIs

Connecting the model with real-world traffic data sources (e.g., Google Maps, Open Traffic APIs) can enhance the system's ability to detect and respond to live traffic anomalies effectively.

2. Deployment on Edge Devices or IoT Systems

Implementing the model on edge devices such as smart cameras or Raspberry Pi units enables real-time, on-site anomaly detection, making it suitable for smart city infrastructure.

3. Multi-Class Anomaly Detection

Expanding the current binary classification to detect specific types of traffic anomalies—such as accidents, roadblocks, or unusual congestion—can provide more detailed and actionable insights.

Conclusion

- Successfully built a machine learning-based **Traffic Anomaly Detection System** with adaptive learning capabilities.
- The model:
 - o Detects anomalies in real-time traffic data.
 - o Adapts over time using additional data (self-improvement).
 - Maintains high accuracy and reliability.
- This project can serve as a foundation for advanced real-world systems in **smart** cities, traffic management, and road safety monitoring.