Analysis of time-stratified casecrossover studies in environmental epidemiology using **R**

Aurelio Tobías

Spanish Council for Scientific Research
Nagasaki University School of Tropical Medicine and Global Health

XIV Summer School UPC-FME Barcelona, 2021/07/02

Outline

- Introduction
- The case-crossover design
- Conditional logistic regression
- Poisson regression
- Conditional Poisson regression
- Summary

Introduction

- Handling with individual factors it is not a straight forward process in conventional time series regression
- The time stratified case-crossover design is a popular alternative to for analysing associations between time series of environmental exposures and counts of health outcomes
- It was firstly proposed by *Maclure (1991)* to study transient effects on the risk of acute health events

- Case only study (i.e., cases serve as their own controls)
- Comparison of exposure during cases' index interval versus exposure during reference interval

- Physical exercise and acute myocardial infraction (Maclure 1991)
- Use of mobile phone and car accident (Redelmeier et al. 1997)

 Analysis likewise a matched case-control

Control
Exp. No

Risk Exp.
$$a$$
 b c d

OR = b/c

Risk period	Control period (24 h)		Control period (1 week)	
	Exposed	Non-exposed	Exposed	Non-exposed
Exposed	4	22	5	27
Non-exposed	6	216	6	288
	OR = 3.7		OR = 4.5	

(Adapted from McEvoy et al. 2005 and Dawes 2005)

Application to environmental studies

- Firstly adapted to air pollution studies in Philadelphia (Neas et al. 1999) and Barcelona (Sunyer et al. 2000)
- Comparing exposure levels for a given day (t) when health event occurs vs. levels before (t-7) and after (t+7) the health event
- Allows to control for time-trend and seasonality by design, since it compares exposure levels between the same weekdays within each month of each year

Time-stratified case-crossover

Table 1. Comparison of different CCO designs.

Reference	Туре	Selection of controls	Advantages	Factors that can introduce bias	Selection of controls diagram
Maclure 1991	CCO	One control point before the effect	All possible confounding factors undergoing no change between control periods and effect, automatically controlled for by design	Long-term trends or seasonality	∤
Bateson and Schwartz 1999	Symmetric bidirectional	Two at equal distance of the event	Provides adequate control for long-term trends and seasonality		∤↑∤
Navidi and Weinhandl 2002	Semisymmetric bidirectional	One chosen at random from the two used for symmetric bidirectional CCO	Provides adequate control for long-term trends and seasonality		At random
Lumley and Levy 2000	Time stratified	One (or several) within the same time stratum in which the event occurred	Provides adequate control for long-term trends and seasonality		

Arrows pointing up indicate case periods; horizontal arrows represent direction of time within 1 month; dashed lines indicate time periods of 1 day; vertical lines indicate control periods.

(Adapted from Carracedo et al. 2010)

Conditional logistic regression

 Dataset must be reshaped from time-series to individual matched case-control and analyzed with the clogit function in R

time-series date dow deaths pm 2001-01-01 mon 2 79.2 2001-01-02 ...

 Dataset reshaped from n days to N × 4 individuals

	individual matched							
į	id	case	date	dow	pm			
ı	1	yes	2001-01-01	mon	79.2			
ı	1	no	2001-01-08	mon	49.2			
1	1	no	2001-01-15	mon	80.1			
ı	1	no	2001-01-22	mon	60.4			
L	1	no	2001-01-29	mon	64.1			
Γ	2	yes	2001-01-01	mon	79.2			
	2	no	2001-01-08	mon	49.2			
ł	2	no	2001-01-15	mon	80.1			
1	2	no	2001-01-22	mon	60.4			
L	2	no	2001-01-29	mon	64.1			

Conditional logistic regression

- Similar approach to a matched case-control study familiar to the epidemiologist
- But...
 - Unfriendly data management
 - Very large data-sets at individual level
 - Slow convergence CPU time with interaction terms for individual variables
 - Can not account for overdispersion

Poisson regression

- Lu and Zeger (2007)
 - "... the time-stratified case-crossover design leads to the same estimate as obtained from a Poisson regression with dummy variables indicating the strata"
- Strata defined by the 3-way interaction between yearmonth-day of week

Autocorrelation and overdispersion

Time-stratified model

$$Y_t = \alpha + \sum \beta_i year_i + \sum \delta_i month_i$$

Periodic functions

$$Y_t = \alpha + \beta t + \sum \delta_k \sin(k\pi t/T) + \sum \gamma_k \cos(k\pi t/T)$$

Spline function

$$Y = \alpha + f(t_i, \beta)$$

Case-crossover

$$Y = \alpha + \sum \beta_i year_i + \sum \delta_j month_j + \sum \delta_j dow_j + \sum \gamma_{ij} year_i \times month_j + \sum \gamma_{ij} year_i \times dow_j + \sum \gamma_{ij} month_i \times dow_j + \sum \gamma_{ijk} year_i \times month_j \times dow_k$$

Poisson regression

- Avoids reshaping the dataset to individual level
- Accounts for overdispersion with family=quasipoisson
- But...
 - Large number of interaction parameters, slowing the convergence CPU time, even making difficult with missing data
 - Much slower convergence CPU time with additional interactions for individual variables

Conditional Poisson regression

- Armstrong et al. 2014
 - "... Poisson models with large numbers of indicator variables can alternatively be fit with conditional Poisson models, conditioning on numbers of events in the time stratum"
 - Firstly proposed by Farrington (1995) for the self-controlled caseseries design for vaccine safety studies
- Time-stratum set defined by grouping same weekday within each month of each year
- Use the gnm library in R

Conditional Poisson regression

```
dow
2001-01-01
            mon
2001-01-02
             tue
2001-01-03
            wed
             thu
             fri
             sat
             sun
            mon
             tue
            wed
2001-01-11
            t.hii
            fri
             sat
             sun
            mon
             tue
            wed
             thu
            fri
             sat
             sun
            mon
                 60.4
             tue
             wed
            thu
2001-01-01
            fri
2001-01-01
             sat
2001-01-01
2001-01-29
```

• From Poisson regression...

$$Y|x \sim Poisson(\mu)$$

 $E(Y|x) = \mu$
 $log(\mu) = \alpha + \beta x$
with $V(Y|x) = \mu$

...to conditional Poisson regression

```
Y<sub>.,stratum</sub> | x ~ Poisson(\mu)

E(Y<sub>.,stratum</sub> | x) = \mu<sub>.,stratum</sub>

\log(\mu<sub>.,stratum</sub>) = \alpha<sub>stratum</sub> + \betax

with V(Y|x) = \mu
```

Conditional Poisson regression

- Avoids reshaping the dataset to individual level
- Accounts for overdispersion with **family=quasipoisson**
- Easy fit of interaction terms for individual variables with faster convergence CPU time
- In environmental epidemiology studies it is useful to
 - Analyse time-series with small-count data
 - Test for effect modification by individual characteristics (e.g., sex, age, neighborhood) and other environmental events (e.g., dust episodes, heatwaves)

Summary

- Time-stratified case-crossover accounts for temporal trends and short-term variations by design
- In environmental epidemiology studies can be used for smallcount data and to easily test for effect modification
- Case-crossover studies can be analysed using R
 - Conditional logistic regression requires unfriendly data management, and large data-sets at individual level
 - Poisson regression with 3-way interaction requires to fit large number of interaction parameters, making it difficult convergence
 - Conditional Poisson solves the problems above allowing the analysis with faster convergence CPU time