

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/644,718	08/20/2003	Yi-Hsun Wu	N1085-00191	6119
54657	7590	06/13/2007	EXAMINER	
DUANE MORRIS LLP			NGUYEN, DANNY	
IP DEPARTMENT (TSMC)			ART UNIT	PAPER NUMBER
30 SOUTH 17TH STREET			2836	
PHILADELPHIA, PA 19103-4196			MAIL DATE	DELIVERY MODE
			06/13/2007	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No.	Applicant(s)
	10/644,718	WU ET AL.
	Examiner	Art Unit
	Danny Nguyen	2836

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 18 May 2007.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-7,12-21 and 23-28 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-7,12-21,23-28 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on _____ is/are; a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|--|---|
| 1) <input type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08) | 5) <input type="checkbox"/> Notice of Informal Patent Application |
| Paper No(s)/Mail Date _____ | 6) <input type="checkbox"/> Other: _____ |

DETAILED ACTION

Response to Arguments

1. Applicant's arguments filed 5/18/2007 have been fully considered, the arguments regarding claim 13 is not. The arguments regarding claim 11 is found persuasive. Therefore, the finality of the rejection dated 3/15/2007 is withdrawn.

Regarding claim 13, applicant argued that Smith does not disclose the cascaded transistor have common gate terminals. Examiner does not agree with the arguments. The drawing 4 of Smith clearly shows that cascaded transistor (M40 to Mn) have common gate at Vctl.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

2. Claims 1-7, 12-21, 23-28 are rejected under 35 U.S.C. 102(b) as being anticipated by Lien et al (USPN 6,069,782) in view of Smith et al (USPN 6,775,112).

Regarding claim 1, Lien discloses a sensor (125 in figure 2b) for electrostatic discharge protection comprises an inverter (such as 123) coupled to the output terminal (126) of the sensor, a voltage drop circuit (series diodes 122-1 to 122-5) coupled to an input terminal (101) of the sensor, wherein a voltage drop occurs across the voltage drop circuit and a high state voltage is generated at an output terminal (126) of the

sensor when the input terminal of the sensor is coupled to an ESD voltage pulse (ESD voltage pulse on terminal 101), thereby, applying the high state voltage to the inverter, and a device (such as 121) coupled to the voltage drop circuit, wherein the device is adapted to maintain the high state voltage at the output terminal of the sensor, while the input terminal of the sensor is coupled to the ESD voltage pulse, wherein the output terminal of the inverter is coupled to a gate terminal of an ESD protection circuit (124) (col. 7, lines 5-59). Lien does not disclose the cascaded transistor as claimed. Smith discloses an ESD circuit comprises a MOS transistor of ESD circuit is cascaded NMOS (300) (figures 3 and 4). It would have been obvious to one of ordinary skill in the art at the time the invention was made to have modified the ESD circuit of Lien to incorporate the cascaded transistor as disclosed by Smith in order to provide efficient ESD protection.

Regarding claims 2, 16, Lien discloses the input terminal of the sensor is coupled to a voltage supply terminal (101).

Regarding claims 3, 4, 17, 18, Lien discloses the voltage drop circuit is a series of diodes (122-1 to 122-5).

Regarding claims 5-7, 19-21, Lien discloses the device comprises NMOS transistor (121, col. 7, lines 5-6).

Regarding claim 12, Lien discloses the gate of the MOS transistor (124) is pulled down to a low state when the ESD pulse is sensed (col. 7, lines 5-53).

Regarding claim 13, Lien discloses a circuit (figure 2b) for ESD protection comprises an ESD circuit having a MOS transistor (124) with a gate terminal, wherein

the transistor is configured to discharge an ESD pulse, a sensor (125) that senses an ESD pulse and generates a high state voltage at an output terminal in response to the ESD pulse, and an inverter (such as inverter 123) coupled to the output terminal of the sensor and the ESD circuit, wherein the sensor applied the high state voltage to an input terminal of the inverter (see col. 7, lines 5-53). Lien does not disclose the cascaded transistor as claimed. Smith discloses an ESD circuit comprises a MOS transistor of ESD circuit is cascaded NMOS (300) (figures 3 and 4). It would have been obvious to one of ordinary skill in the art at the time the invention was made to have modified the ESD circuit of Lien to incorporate the cascaded transistor as disclosed by Smith in order to provide efficient ESD protection.

Regarding claim 14, Lien discloses the gate of the transistor is pulled down to a low state voltage (the gate of the transistor 124 is pulled down when the transistor 222 turn on to apply a low state voltage 0 V to the gate of the transistor).

Regarding claims 15, 16, Lien discloses the sensor (125) for electrostatic discharge protection comprises a voltage drop circuit (series diodes 122-1 to122-5) coupled to an input terminal (101) of the sensor, wherein a voltage drop occurs across the voltage drop circuit and the high state voltage is generated at an output terminal (126) of the sensor when the input terminal of the sensor is coupled to an ESD voltage pulse (ESD voltage pulse on terminal 101), and a device (such as 121) coupled to the voltage drop circuit, wherein the device is adapted to maintain the high state voltage at the output terminal of the sensor, while the input terminal of the sensor is coupled to the ESD voltage pulse (col. 7, lines 5-53).

Regarding claims 23, 24, 27, Lien discloses a method for ESD protection comprises sensing an ESD pulse (the ESD pulse is sensed by circuit 125), pulling down a gate terminal of a MOS transistor (124) of an ESD circuit to a low state when the ESD pulse is sensed, wherein the transistor is configured to discharge the ESD pulse (as the ESD is detected, the transistor 222 turn on to pull the gate of the transistor 124 to a low state voltage (col. 7, lines 5-53). Lien does not disclose the cascaded transistor as claimed. Smith discloses an ESD circuit comprises a MOS transistor of ESD circuit is cascaded NMOS (300) (figures 3 and 4). It would have been obvious to one of ordinary skill in the art at the time the invention was made to have modified the circuit of Lien to incorporate the cascaded transistor as disclosed by Smith in order to provide efficient ESD protection.

Regarding claims 25, 26 Lien discloses connecting the sensor to a voltage supply terminal (Vcc) and generating a high state voltage at the output terminal when the ESD pulse is sensed.

Regarding claim 28 Lien discloses the output terminal of the sensor is coupled to an inverter (123)) to generate a low state at an output terminal of the inverter when the ESD pulse is sensed.

Conclusion

3. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Danny Nguyen whose telephone number is 571-272-2054. The examiner can normally be reached on 8:00-4:30 M-F.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, MICHAEL SHERRY can be reached on 571-272-2084. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

DN
DN
6/5/2007

MICHAEL SHERRY
SUPERVISORY PATENT EXAMINER
TECHNOLOGY CENTER 2800