ICE 4071: Industrial Internet of Things (IIoT) Arduino & Raspberry Pi

Dr. S. Meenatchisundaram

Email: meenasundar@gmail.com

What is an Arduino?

Open Source electronic prototyping **platform** based on flexible **easy to use** hardware and software.

What is an Arduino?

- ☐ Arduino is an open-source physical computing platform.
- ☐ It is a small microcontroller board with a USB plug.
- ☐ Based on a simple i/o board and a development environment that implements the Processing/writing language.
- ☐ Arduino can be used to develop stand-alone interactive objects or can be connected to software on your computer.
- ☐ Easy-to-use hardware and software.

What is an Arduino?

- ☐ It's intended for students, artists, designers, hobbyists and anyone who tinker with technology.
- ☐ It is programmed in Arduino Programming language(APL) similar to C/C++.
- Way more easy to program compared to other microcontroller packages.
- ☐ The Arduino is a microcontroller development platform (not a microcontroller....)
- ☐ It is the winner of "worlds best interaction award 2012" sponsored by Google

Arduino

Pinout

Different flavors!!!

☐ There are many versions of Arduino board. Versions differ by size, microcontroller, etc.

MEGA

LILYPAD

NANO 43mm x 18mm

Shields

- ☐ Printed circuit boards that sit atop an arduino
- ☐ Plug into the normally supplied pin-headers of arduino.

☐ F(

External power

- ☐ Should be between 9V and 12V DC.
- Must be rated for a minimum of 250mA current output.
- Must have a 2.1mm power plug on the Arduino end.
- ☐ The plug must be "centre positive",that is,the middle pin of the plug has to be the + connection

also solves polarity concerns

The Arduino IDE

- ☐ The arduino is programmed in C language.
- □ The language is very simple and provides many abstraction for simplicity of reading and writing powerful applications.
- ☐ It provides a serial monitor to see the serial data from the USB virtual COM port.
- ☐ Allows one click compiling, verification and burning of code onto the arduino.

Arduino Programming language v/s Processing Arduino has two reserved functions: void setup() void loop() There is no pop-up display window, hence void draw() is not special. Loop() can be considered to do the same thing as draw() for the arduino. ☐ There are three types of variable in Arduino: char int liii. long Arduino has a few reserved constants, which do not need to be defined: HIGH//5 volts LOW//0 volts 3. **INPUT**//pin is input 4. **OUTPUT**//pin is output Conditional statements are the same as in Processing. Functions can be defined the same as in Processing

Arduino Programming language v/s Processing

Arrays

Arduino	Processing
int bar[8]; bar[0] = 1;	<pre>int[] bar = new int[8]; bar[o] = 1;</pre>
int foo[] = { o, 1, 2 };	int foo[] = { 0, 1, 2 }; or int[] foo = { 0, 1, 2 };

Loops

Arduino	Processing
int i;	for (int $i = 0$; $i < 5$; $i++$) { }
for (i = 0; i < 5; i++) { }	

Printing

Arduino	Processing	
Serial.println("hello world");	println("hello world");	-
<pre>int i = 5; Serial.println(i);</pre>	int i = 5; println(i);	
<pre>int i = 5; Serial.print("i = "); Serial.print(i); Serial.println();</pre>	int i = 5; println("i = " + i);	

Steps in Arduino programming

- Open the IDE
- Write code and logic
- Click the verify/compile button to check your program for errors
- ☐ Attach the arduino via USB to the PC
- Install drivers if first time
- □ Setup serial port being used.
- ☐ Setup board which we need to program.
- ☐ Click upload code to send code to arduino.

Arduino - Simulator

- □ "simulator for Arduino v0.95" is the simulator software to make virtual implementation of the Arduino.
- ☐ The benefits and features are:
- 1. The ability to teach and demonstrate the inner workings of an Arduino sketch
- 2. Test out a sketch without the hardware, or prior to purchasing hardware
- 3. Debug a sketch
- 4. Demonstrate a project to a potential customer
- 5. Develop a complicated sketch faster than using the hardware

Simulator for Arduino v0.95

Simulator for Arduino

Why Arduino?

- ☐ It is Open Source, both in terms of **Hardware** and **Software**.
- It is cheap, (about \$20, the cost of going out for pizza)
- USB connectivity(MacBooks don't have serial ports)
- More powerful than a BASIC stamp(it costs around \$180)
- ☐ Simple and easy to use by someone without formal electronics training. Editing and rewriting is often easier than writing from scratch.

Getting started with Programming

Bare minimum code

```
void setup() {
   // put your setup code here, to run
  once:
void loop() {
   // put your main code here, to run
  repeatedly:
```

Bare minimum code

setup: It is called only when the Arduino is powered on or reset. It is used to initialize variables and pin modes

loop: The loop functions runs continuously till the device is powered off. The main logic of the code goes here. Similar to while (1) for micro-controller programming.

PinMode

A pin on arduino can be set as input or output by using pinMode function.

pinMode(13, OUTPUT); // sets pin 13 as output pin

pinMode(13, INPUT); // sets pin 13 as input pin

Reading/writing digital values

digitalWrite(13, LOW); // Makes the output voltage on pin 13, 0V

digitalWrite(13, HIGH); // Makes the output voltage on pin 13, 5V

int buttonState = digitalRead(2); // reads the value of pin 2 in buttonState

Analog to Digital Conversion

What is analog?

It is continuous range of voltage values (not just 0 or 5V)

Why convert to digital?

Because our microcontroller only understands digital.

ADC in Arduino Uno

Converting Analog Value to Digital

Quantization the signal

ADC in Arduino

The Arduino Uno board contains 6 pins for ADC

10-bit analog to digital converter

This means that it will map input voltages between 0 and 5 volts into integer values between 0 and 1023

Reading/Writing Analog Values

analogRead(A0); // used to read the analog value from the pin A0

analogWrite(2,128);

ADC Example

```
// These constants won't change. They're used to give names to the pins used:
      const int analogInPin = AO; // Analog input pin that the potentionmeter is attached to
      const int analogOutPin = 9; // Analog output pin that the LED is attached to
      int sensorValue = 0;
                               // value read from the pot
                              // value output to the PWM (analog out)
      int outputValue = 0;
      void setup() {
       // initialize serial communications at 9600 bps:
       Serial.begin(9600);
      void loop() {
       // read the analog in value:
       sensorValue = analogRead(analogInPin);
       // map it to the range of the analog out:
       outputValue = map(sensorValue, 0, 1023, 0, 255);
       // change the analog out value:
       analogWrite(analogOutPin, outputValue);
       // print the results to the serial monitor:
       Serial.print("sensor = ");
       Serial.print(sensorValue);
       Serial.print("\t output = ");
       Serial.println(outputValue);
       // wait 2 milliseconds before the next loop
       // for the analog-to-digital converter to settle
       // after the last reading:
       delay(2);
```

Arduino Vs Raspberry Pi

S No.	Arduino	Raspberry Pi
1.	Control unit of Arduino is from Atmega family.	While control unit of Raspberry Pi is from ARM family.
2.	Arduino is based on a microcontroller.	While Raspberry Pi is based on a microprocessor.
3.	It is designed to control the electrical components connected to the circuit board in a system.	While Raspberry Pi computes data and produces valuable outputs, and controls components in a system based on the outcome of its computation.
4.	Arduino boards have a simple hardware and software structure.	While Raspberry Pi boards have a complex architecture of hardware and software.
5.	CPU architecture: 8 bit.	CPU architecture: 64 bit.

Arduino Vs Raspberry Pi

6.	It uses very less RAM, 2 kB.	While Raspberry Pi requires more RAM, 1 GB.
7.	It clocks a processing speed of 16 MHz.	While Raspberry Pi clocks a processing speed of 1.4 GHz.
8.	It is cheaper in cost.	While Raspberry Pi is expensive.
9.	It has a higher I/O current drive strength.	While Raspberry Pi has a lower I/O current drive strength.
10.	It consumes about 200 MW of power.	While it consumes about 700 MW of power.