a yellow fever virus in which the nucleotide sequence encoding a prM-E protein is either deleted, truncated, or mutated so that functional yellow fever virus prM-E protein is not expressed, and

integrated into the genome of said yellow fever virus, a nucleotide sequence encoding a prM-E protein of a second, different flavivirus, so that said prM-E protein of said second flavivirus is expressed, wherein the capsid protein of said chimeric virus is from yellow fever virus.

9. (Twice Amended) A method of preventing or treating Japanese encephalitis virus infection in a patient, said method comprising administering to said patient a chimeric, live, infectious, attenuated virus comprising:

a yellow fever virus in which the nucleotide sequence encoding a prM-E protein is either deleted, truncated, or mutated so that functional yellow fever virus prM-E protein is not expressed, and

integrated into the genome of said yellow fever virus, a nucleotide sequence encoding a prM-E protein of Japanese encephalitis virus strain SA-14-14-2 or Japanese encephalitis virus strain Nakayama, wherein the capsid protein of said chimeric virus is from yellow fever virus.

14. (Amended) The method of claim 9, wherein the nucleotide sequence encoding the prM-E protein of said Japanese encephalitis virus replaces the nucleotide sequence encoding the prM-E protein of said yellow fever virus.

- 15. (Amended) The method of claim 9, wherein said nucleotide sequence encoding said prM-E protein of said Japanese encephalitis virus comprises a mutation that prevents prM cleavage to produce M protein.
- 16. (Amended) The method of claim 9, wherein the NS2B-3 protease recognition site and the signal sequences and cleavage sites at the C/prM and E/NS1 junctions are maintained in construction of said chimeric flavivirus.