Simulation Options for CATE Estimation in Target Sample

Carly Lupton Brantner Stuart Lab: 1/31/2023

Overview

Goal: Estimate conditional average treatment effect (CATE) for target group of individuals after fitting a multi-study CATE model.

- 1. Background
- 2. Notation
- 3. Simulation Setup
- 4. Open Questions

Background

- Finishing up a project where I estimate the conditional average treatment effect by combining data from multiple randomized controlled trials
- Several methods yield study-specific functions where study matters at varying levels
- Goal is either a universal treatment effect function or a way to apply these functions to individuals who are not coming from the original sample
- Idea: For the target sample, treat study as *missing* and compare different ways of imputing it.
 - ► Bootstrapping framework for imputation
 - Creating a simulation design to compare methods for imputing study and estimating a mean and confidence interval for the CATE estimates of target individual

Background continued

- \bullet More on the idea: Can we do a sort of bootstrapping/posterior sampling procedure where we repeat the individual observation N times, and for each iteration we randomly assign study and then predict the CATE
- Then we can aggregate CATE estimates
- We want to see which option for doing this bootstrapping works the best
- Options: completely random, based on study membership probability, causal forest default, imputing within causal forest

Background continued

Notation

- $A \in \{0,1\}$ indicates treatment status
- X are covariates (continuous)
- Y is a continuous outcome
 - ightharpoonup Y(1) is the potential outcome under treatment
 - ightharpoonup Y(0) is the potential outcome under control
- $S \in \{1, ..., K\}$ is a study indicator

Estimand

The estimand is the study-specific conditional average treatment effect:

$$\tau_s(X) = E(Y(1)|X, S = s) - E(Y(0)|X, S = s)$$

Simulation Steps: Training Data

Training Data: Mimic MDD dataset: RCTs comparing Duloxetine versus Vortioxetine for reduction in depressive symptoms, measured by MADRS score

- 6 studies with 200 or 500 people in each
- Probability of treatment is 1/2
- 5 covariates per person: sex, smoking status, weight, baseline MADRS (depression scale), age such that:
 - 1. Same covariate distribution
 - 2. MADRS varies
 - 3. MADRS and age vary
 - 4. Age completely distinguishable across studies

Simulation Steps: Target Data

- Simulate target data using one of three options
 - 1. Random sample of 100 individuals from the training data
 - 2. Random sample of 100 individuals from the training data, where individuals from studies 3 and 5 have three times the chance of getting selected
 - 3. Different sample of 100 individuals who are younger and have less severe depression according to their MADRS score
- In all three options, study is assigned to be missing

Simulation Steps: Outcome and Treatment Effect

- Define m and au function in one of two ways:
 - ▶ Simple: m = -0.02*age 0.7*madrs 0.15*sex and $\tau = -8.5 + 0.07*age + 0.20*madrs + \epsilon_{study}$, where $\epsilon_{study} \sim N(0, \epsilon_{sd}^2)$ in the training data and $\epsilon_{study} = 0$ in the target data
 - ▶ Linear: randomly sample study coefficients from normal distributions with different parameters and small SDs: $m=10.7-S_{main}-.02*age-0.87*madrs-0.15*sex+S_{inter}*madrs$ and $\tau=-10.5+.07*age+.2*madrs+S_{\tau}$.
- Define $Y = m + A * \tau + \epsilon$ where $\epsilon \sim N(0, 0.05^2)$
- Fit model to training data using causal forest with pooling with trial indicator to estimate CATE

Simulation Steps: Method Comparison

- Predict on target data and create confidence intervals for each individual using each imputation method
 - 1. Completely random: Repeat each observation N times and for each repetition, randomly sample S with equal probability for each value. Predict and then calculate a confidence interval using the mean and standard deviation of the N predictions.
 - Study membership model: Same as completely random but when assigning study, do it according to a distribution defined by the probabilities of a study membership multinomial logistic regression model.
 - 3. **Within-forest default:** Follow the default process of the causal forest, meaning split such that all missing values go in the same direction. This won't be a bootstrap anymore.
 - 4. Within-forest random sampling: assign study based on the probabilities in each split of the tree.

Simulation Steps: Evaluation Metrics

- Calculate measures of accuracy
 - 1. MSE in training data
 - 2. MSE in target data
 - 3. Confidence interval coverage in target data
 - 4. Confidence interval length in target data

Simulation Parameters

Overall, the simulation will vary depending on the following parameters:

- 1. N=100, where N is the number of repetitions in the bootstrap
- 2. K = 6, where K is the number of RCTs
- 3. $n_k \in \{200, 500\}$ where n_k is the sample size for study k
- 4. m and τ scenario: Simple with $\epsilon_{sd} \in \{0.01, 0.05, 1, 3\}$ or Linear
- 5. Training data distributional shift: same, varying MADRS, varying MADRS and age, distinguishable age
- 6. Target data setup: random sample, random with upweighted studies, different distribution

Open Questions

- Any thoughts on the simulation setup? Does anyone have experience / know of any helpful papers that simulate based on a real dataset?
- 2. Running into issues with the last idea does anyone have any coding suggestions for predictions from trees?
- 3. Any other ideas for how to do the "imputation" / sampling?