Independent Investigation Lab Report Word Count: 2250

Title: The effect of incremental amounts of fish meal fertilizer on dissolved oxygen levels in a mock pond

Personal Engagement:

Chemical fertilizers, especially nitrogen and phosphorous based, are commonly used to grow crops. However, these fertilizers are susceptible as runoff, so the nutrients flow into nearby water sources. It can mean the deterioration of aquatic environments, as well as their demise into dead zones. As long as chemical fertilizers remain an industrial standard, then the process of nutrient runoffs will only extend the effects of eutrophication. As such, it's important to investigate new possible forms of organic fertilizer, so that there can be novel insight into preventing the effects of eutrophication while maintaining efficient crop cultivation.

Exploration

Research Question:

My research question explores how different concentrations of fish meal affect dissolved oxygen levels of samples of slightly eutrophic pond water.

Environmental Issue Addressed:

The environmental issue my research question inquires is eutrophication, as it occurs on both a global and local level wherever bodies of water naturally occur near societies.

Background Information - Literature Review:

The widespread ecological phenomenon, known as eutrophication, impacts the water quality for an aquatic ecosystem (Diaz, 2010). Eutrophication is when excess nutrients enter an aquatic ecosystem, rapidly increasing algae growth. Consequently, algal blooms form, blocking sunlight and depleting dissolved oxygen levels, as a cycle occurs with the death and decomposition, by bacterial activity, of algae that releases more nutrients. Soon, the ecosystem is left with dead algae blooms and hypoxia, effectively killing all organisms and turning into a dead zone (Davis & Nagle). Chemical fertilizers are prime influencers of eutrophication, for nitrogen and phosphorus-based fertilizers are common in agricultural practice; thus, over enrich aquatic ecosystems when runoff occurs (Nixon, 1995). However, there has been investigations to turn organic matter, such as fish waste, into fertilizer that is environmentally friendly and efficient (López-Mosquera et al.,2011). As such, fish meal is a possible alternative to conventional fertilizers that is minimally damaging to aquatic systems.

My dependent variable is dissolved oxygen (DO for this report) levels, the small amounts of oxygen dissolved in water, which aquatic organisms require to survive. It's an important parameter for measuring water quality (Perlman, 2017). For my experiment, I will use a DO meter, fitted with a sensor probe, to measure its levels in mg/L in each of my trials. However, DO saturation can be affected by temperature and salinity levels. Additionally, the probe must be correctly calibrated to lessen measurement errors (WaterAtlas, n.d). I'll also be measuring in a span of 5 days, so that eutrophication occurs as time passes.

My independent variable is different concentrations of fish meal fertilizer, a dry fertilizer processed from bycatch fish by heating, pressing, and drying (Barlow & McCurran, 2015). I will make the concentrations by percent mass solutions with a constant amount of water. Each concentration will be put into "mock ponds," which pond water is put into small cups. Thus, nutrients are added at smaller scale. I chose this condition for differentiation of how quickly the pond water will reach low DO levels. As such, the formulated condition resembles the issue of open fertilizer run-off seeps into unprotected bodies of water, thereby increasing eutrophication.

If increasing concentrations of fish meal fertilizer are added to a mock pond then the DO levels should drop incrementally as there are slightly higher nutrient concentrations. Additionally, measuring DO levels in a confined volume, compared to a large body of water, should mean quicker eutrophication formation in a span of a few days, especially since pond water is slightly eutrophic by nature with the presence of organisms.

Variables - Experimental Design:

Variable	Identification Include units	Measurement: Explain how it is measured, including units and equipment
Independent Variable: Fish Meal Fertilizer Concentrations	IV Levels: 1. Control- 125.0 mL with no fish meal fertilizer 2. 1st trial- 5% mass percent solution of 25 mL 3. 2nd trial- 10% percent mass solution of 25 mL 4. 3rd trial- 15% percent mass solution of 25 mL 5. 4th trial- 20% mass solution of 25 mL 6. 5th trial- 25% mass percent solution of 25 mL	 Balance (used to measure the fish meal fertilizer in grams) Distilled water Graduated cylinder (100 mL)
Dependent Variable: Dissolved Oxygen levels	Quantitative measurement: I will record the dissolved oxygen levels of the mock ponds by using a dissolved oxygen meter fitted with a sensor probe.	Lab Quest fitted with Dissolved oxygen probe (calibrated in mg/L)
	Qualitative measurement: I will be observing the reaction as it happens. I will note occurrences that happen such as bubbles or change in color solution	 Laptop with premade qualitative data tables

	Identification Important/Significance exp	
Control Group	The control is 5 samples of mock ponds not mixed with any fish bone meal fertilizer	I chose this as my control, for the untouched mock ponds are a natural baseline for the depleting DO levels with the other IV trials.
Experimental Groups	1. 5% mass solution of 25 mL 2. 10% mass solution of 25 mL 3. 15% mass solution of 25 mL	These are my experimental groups, for the collected DO levels will be compared to the different concentrations of fish bone meal fertilizer

	 4. 20% mass solution of 25 mL 5. 25% mass solution of 25 mL 		
Sampling Method	N/A	N/A	
Risk Assessment and Ethical Considerations	When collecting the pond water, it's important to avoid captur any organisms.		

Constants	Importance to keep constant	How each is measured/maintained	
Type of fish meal fertilizer	Using the same brand of fish meal fertilizer is important to have consistent levels of nitrogen and phosphorus used when making my fertilizer concentrations. Otherwise, different fertilizers can accelerate eutrophication with higher nutrient levels than needed	I'll use the same fertilizer when making my concentrations for each IV level	
Source of pond water	The water will be collected from the same pond because the ecosystems of different ponds can be different, which present biological processes	I'll collect my pond water on the same day from the same pond	
Dissolved Oxygen Probe	Using the same dissolved oxygen probe is important to ensure the same measurement tool for measuring DO. Using a different dissolved oxygen probe can result in different in different readings, especially if it's calibrated different or a different type of dissolved oxygen sensor	I will use the same dissolved oxygen probe and rinse with each measure. Measurements will be in mg/L	
Graduated Cylinder	Using the same graduated keeps consistency in my measurements. Using a different graduated cylinder can have different measurements, not be suitable to use, and it can affect my experiment through contamination.	consistency in my rements. Using a different uated cylinder can have ent measurements, not be le to use, and it can affect y experiment through	
UV Grow Light	The same UV Grow Light will	All of the trials will be under the	

be used to continue the natural
processes within the pond water,
so that there are no discrepancies
in dissolved oxygen levels
between all trials

same UV Grow Light and kept there for 5 days

Methodology - Materials and Apparatus List:

- 2 Empty 2 Liter Bottles
- Down to Earth Fish meal fertilizer (ASIN: B00F9FVON8)
- 30 red plastic cups 532 mL
- Vernier Optical Dissolved Oxygen Probe
- Plastic pipette
- 2 Beakers 250 mL
- Gallon of distilled water
- Small plastic cup
- Graduated Cylinder 100 mL
- UV Grow Light (School provided)
- Balance
- Metal evaporating dish
- Spatula
- PC with Microsoft Word software
- Paper towels
- Empty gallon of water container
- Funnel
- Tape
- Marker
- Goggles
- Apron

Methodology - Procedures:

Set-Up Procedures

- 1. Travel to a nearby pond in a local neighborhood
- 2. Submerge the 2 Liter bottle and cap it once the bottle is filled
- 3. Ensure the cap is tight and tape around the cap to minimize air escape
- 4. Head to the school lab area and put on goggles and apron
- 5. Use marker and tape to label each red cup, based on if it's a control group or IV level, (i.e. the first 5 cups are the control group) and the trial number
- 6. Measure 125 mL of the collected pond water in a 250 mL beaker for each cup
- 7. Measure 25 mL of distilled water with a 100 mL graduated cylinder and pour it in the same 250 mL beaker
- 8. Place the metal evaporating dish on a balance and zero it
- 9. Calculate the mass required for a 5% mass solution of 25 mL (1st IV level) and measure the calculated mass of fish meal fertilizer with a spatula on the metal evaporating dish
- 10. Thoroughly mix the fertilizer into the beaker with the 25 mL of distilled water
- 11. Pour the concentration of fertilizer into the 1st designated trial of the 1st IV level set of cups
- 12. Repeat steps 7-11 for the rest of the trials in for the 1st IV level
- 13. Repeat steps 7-12, but measure the mass required for each concentration level from calculating the % mass solution for the designated IV level and its trials
- 14. Turn on the UV Grow Light, and place all the cups into grouped placements by IV level underneath it

- 15. Create premade qualitative and quantitative data tables in *Microsoft word* that includes separate 5 days for all trials ("Days 1 5")
- 16. Set the Vernier Dissolved Oxygen probe near the samples and calibrate as needed
- 17. Place another 250 mL beaker filled with distilled water and a small plastic cup placed near the probe

Data Collection Procedures

- 18. Within the same day of preparing the samples, measure the DO levels of the 1st trial of the control group and wait until readings have stopped fluctuating substantially
- 19. Record the measurements in the quantitative data table and record observations for the trial sample in the qualitative data set for "Day 1" within the data table
- 20. Fill a pipette from the beaker of distilled water (refill as needed) and rinse the probe as needed underneath the plastic cup (discard into sink as it nears capacity)
- 21. Dry the sensor of the probe with paper towels and place the cup back underneath the UV Grow Light
- 22. Repeat steps 18-21 for all the trials in the control group and IV levels
- 23. Repeat steps 18-22 for each day that passes ("Day 2, 3 etc.")

Clean-Up/Disposal Procedures

- 24. On day 5, place a funnel on an empty water gallon and pour all the pond water from each trial
- 25. Rinse any leftover fertilizer with water in the cup and pour into the empty water gallon (obtain another empty water gallon if necessary)
- 26. Label the empty water gallon(s) as "Pond water contaminated with fish meal fertilizer" and give to chemical supervisor for proper disposal
- 27. Discard the cups into a nearby trash can
- 28. Empty out the beaker of distilled water and plastic cup into the sink
- 29. Recap the DO probe and store it back

Data - Data Table

Days	Control Group						
		No Fish	meal fertiliz	zer added			
	Trial #01	Trial #02	Trial #03	Trial #04	Trial #05		
1	8.78	8.81	8.76	8.87	8.82		
2	10.06	10.14	10.32	10.38	10.28		
3	11.84	11.93	11.77	11.95	11.87		
4	11.45	11.38	11.32	11.52	11.43		
5	11.04	11.04 10.83 10.52 10.77 10.90					
	D	Dissolved Oxygen Levels mg/L (± 0.01)					

Days	Control Group					
		No Fish meal Fertilizer added				
	Trial #1	Trial #2	Trial #3	Trial #4	Trial #5	
1	Water is clear	Water is clear	Water is clear	Water is clear	Water is clear	
	and contains	and contains	and contains	and contains	and contains	
	little wood	little wood	little wood	little wood	little wood	
	pieces floating	pieces floating	pieces floating	pieces floating	pieces floating	
2-5	Water is	Water is	Water is	Water is	Water is	
	darkened	darkened	darkened	darkened	darkened	
	against the	against the	against the	against the	against the	
	background of	background of	background of	background of	background of	
	the inside of the	the inside of	the inside of	the inside of	the inside of	
	cup; little wood	the cup; little	the cup; little	the cup; little	the cup; little	
	pieces floating	wood pieces	wood pieces	wood pieces	wood pieces	
		floating	floating	floating	floating	
		Qualita	tive Data/Observ	ations		

Days	Concentration of Fertilizer IV 1: 5% Fish meal fertilizer of 25 mL						
	Trial #06	Trial #07	Trial #08	Trial #09	Trial #10		
1	8.89	8.68	8.94	8.63	8.72		
2	0.61	0.62	0.57	0.64	0.59		
3	0.87 0.78 0.74 0.72 0.71						
4	0.85	0.75	0.71	0.71	0.70		
5	0.79	0.79 0.72 0.70 0.69 0.67					
	Dissolved Oxygen Levels mg/L (± 0.01)						

Days	Concentration of Fertilizer					
		IV 1: 5% Fish meal fertilizer of 25 mL				
	Trial #6	Trial #7	Trial #8	Trial #9	Trial #10	
1	The fertilizer is	The fertilizer is	The fertilizer is	The fertilizer is	The fertilizer is	
	brown with	brown with	brown with	brown with	brown with	
	little particles	little particles	little particles	little particles	little particles	
	settled in the	settled in the	settled in the	settled in the	settled in the	
	water. Water	water. Water	water. Water	water. Water	water. Water	
	has an opaque,	has an opaque,	has an	has an	has an	
	brown color	brown color	opaque,	opaque,	opaque,	
			brown color	brown color	brown color	
2-5	Fertilizer is	Fertilizer is	Fertilizer is	Fertilizer is	Fertilizer is	
	rested in cup	rested in cup	rested in cup	rested in cup	rested in cup	
	upon initial	upon initial	upon initial	upon initial	upon initial	
	look. White	look. White	look. White	look. White	look. White	
	matter is	matter is rested	matter is	matter is	matter is	
	rested atop of	atop of the	rested atop of	rested atop of	rested atop of	
	the water.	water.	the water.	the water.	the water.	
	Qualitative Data/Observations					

Days	Concentration of Fertilizer IV 2: 10% Fish meal fertilizer of 25 mL						
	Trial #11	Trial #12	Trial #13	Trial #14	Trial #15		
1	8.82	8.90	8.67	8.74	8.89		
2	0.60	0.60	0.63	0.64	0.67		
3	0.71	0.70	0.72	0.72	0.71		
4	0.68	0.69	0.69	0.69	0.70		
5	0.65	0.65					
	Dissolved Oxygen Levels mg/L (± 0.01)						

Days	Concentration of Fertilizer					
	IV 2: 10% Fish meal fertilizer of 25 mL					
	Trial #11	Trial #12	Trial #13	Trial #14	Trial #15	
1	The fertilizer is brown with little particles settled in the water. Water has an opaque, brown color	The fertilizer is brown with little particles settled in the water. Water has an opaque, brown color	The fertilizer is brown with little particles settled in the water. Water has an opaque, brown color	The fertilizer is brown with little particles settled in the water. Water has an opaque, brown color	The fertilizer is brown with little particles settled in the water. Water has an opaque, brown color	
2-5	Fertilizer is rested in cup upon initial look. White matter is rested atop of the water.	Fertilizer is rested in cup upon initial look. White matter is rested atop of the water.	Fertilizer is rested in cup upon initial look. White matter is rested atop of the water.	Fertilizer is rested in cup upon initial look. White matter is rested atop of the water.	Fertilizer is rested in cup upon initial look. White matter is rested atop of the water.	
	Qualitative Data/Observations					

Days	Concentration of Fertilizer IV 3: 15% Fish meal fertilizer of 25 mL						
	Trial #16	Trial #17	Trial #18	Trial #19	Trial #20		
1	8.75	8.82	8.69	8.73	8.92		
2	0.65	0.66	0.66	0.66	0.67		
3	0.71 0.70 0.73 0.73 0.71						
4	0.69	0.69	0.68	0.68	0.70		
5	0.65	0.65 0.65 0.64 0.65					
	Dissolved Oxygen Levels mg/L (± 0.01)						

Days			entration of Ferti	_	
	IV 3: 15% Fish meal fertilizer of 25 mL				
	Trial #16	Trial #17	Trial #18	Trial #19	Trial #20
1	The fertilizer is	The fertilizer is	The fertilizer is	The fertilizer is	The fertilizer is
	brown with	brown with	brown with	brown with	brown with
	little particles	little particles	little particles	little particles	little particles
	settled in the	settled in the	settled in the	settled in the	settled in the
	water. Water	water. Water	water. Water	water. Water	water. Water
	has an opaque, has an		has an	has an	has an
	brown color	opaque,	opaque,	opaque,	opaque,
		brown color	brown color	brown color	brown color
2-5	Fertilizer is	Fertilizer is	Fertilizer is	Fertilizer is	Fertilizer is
	rested in cup	rested in cup	rested in cup	rested in cup	rested in cup
	upon initial upon initial		upon initial	upon initial	upon initial
	look. White look. White		look. White	look. White	look. White
	matter is rested	matter is	matter is	matter is	matter is
	atop of the	rested atop of	rested atop of	rested atop of	rested atop of
	water.	the water.	the water.	the water.	the water.
		Qualita	tive Data/Observ	ations	

Days	Concentration of Fertilizer				
	IV	4: 20% Fisl	n meal ferti	lizer of 25 r	nL
	Trial #21	Trial #22	Trial #23	Trial #24	Trial #25
1	8.70	8.91	8.66	8.84	8.82
2	0.67	0.70	0.69	0.69	0.76
3	0.70	0.71	0.72	0.72	0.71
4	0.70	0.71	0.70	0.72	0.71
5	0.65	0.65			
	Di	ssolved Oxy	gen Levels	mg/L (± 0.0	01)

Days		Conc	entration of Ferti	izer	
	IV 4: 20% Fish meal fertilizer of 25 mL				
	Trial #21	Trial #22	Trial #23	Trial #24	Trial #25
1	The fertilizer is	The fertilizer is	The fertilizer is	The fertilizer is	The fertilizer is
	brown with	brown with	brown with	brown with	brown with
	little particles	little particles	little particles	little particles	little particles
	settled in the	settled in the	settled in the	settled in the	settled in the
	water. Water	water. Water	water. Water	water. Water	water. Water
	has an opaque, has an		has an	has an	has an
	brown color	opaque,	opaque,	opaque,	opaque,
		brown color	brown color	brown color	brown color
2-5	Fertilizer is	Fertilizer is	Fertilizer is	Fertilizer is	Fertilizer is
	rested in cup	rested in cup	rested in cup	rested in cup	rested in cup
	upon initial	upon initial	upon initial	upon initial	upon initial
	look. White	look. White	look. White	look. White	look. White
	matter is rested	matter is	matter is	matter is	matter is
	atop of the	rested atop of	rested atop of	rested atop of	rested atop of
	water.	the water.	the water.	the water.	the water.
		Qualita	tive Data/Observ	ations	

Days	Concentration of Fertilizer IV 5: 25% Fish meal fertilizer of 25 mL				
	Trial #26	Trial #27	Trial #28	Trial #29	Trial #30
1	8.72	8.83	8.89	8.67	8.69
2	0.71	0.72	0.74	0.74	.85
3	0.71	0.70	0.73	0.71	0.72
4	0.70	0.71	0.72	0.70	0.70
5	0.68	0.67	0.69	0.69	0.66
	Dis	solved Oxy	gen Levels	mg/L (± 0.0	1)

Days		Conc	entration of Fertil	izer	
	IV 5: 25% Fish meal fertilizer of 25 mL				
	Trial #26	Trial #27	Trial #28	Trial #29	Trial #30
1	The fertilizer is	The fertilizer is	The fertilizer is	The fertilizer is	The fertilizer is
	brown with	brown with	brown with	brown with	brown with
	little particles	little particles	little particles	little particles	little particles
	settled in the	settled in the	settled in the	settled in the	settled in the
	water. Water	water. Water	water. Water	water. Water	water. Water
	has an opaque, has an		has an	has an	has an
	brown color	opaque,	opaque,	opaque,	opaque,
		brown color	brown color	brown color	brown color
2-5	Fertilizer is	Fertilizer is	Fertilizer is	Fertilizer is	Fertilizer is
	rested in cup	rested in cup	rested in cup	rested in cup	rested in cup
	upon initial upon initial upon initial		upon initial	upon initial	
	look. White	look. White	look. White	look. White	look. White
	matter is rested	matter is	matter is	matter is	matter is
	atop of the	rested atop of	rested atop of	rested atop of	rested atop of
	water.	the water.	the water.	the water.	the water.
		Qualita	tive Data/Observ	ations	

Days	Control Group		
	No Fish	meal fer	tilizer added
	Mean	Range	Standard
			Deviation
1	8.81	0.11	0.038
2	10.24	0.32	0.118
3	11.87	0.16	0.065
4	11.42	0.20	0.067
5	10.81	0.52	0.172
	· · · · · · · · · · · · · · · · · · ·		

Dissolved Oxygen Levels mg/L

Days	Concentration of Fertilizer		
	IV 1: 5% Fi	sh meal fe	ertilizer of 25 mL
	Mean	Range	Standard
			Deviation
1	8.77	0.31	0.121
2	0.61	0.07	0.024
3	0.76	0.16	0.058
4	0.74	0.15	0.056
5	0.71	0.12	0.041
	Dissolved	Oxvgen	

Dissolved Oxygen Levels mg/L

Days	Concentration of Fertilizer		
	IV 2: 10% F	ish meal	fertilizer of 25 mL
	Mean	Range	Standard
			Deviation
1	8.80	0.23	0.088
2	0.63	0.07	0.026
3	0.71	0.02	0.007
4	0.69	0.02	0.006
5	0.65	0.01	0.004
	Dissalus d Overson		

Dissolved Oxygen Levels mg/L

Days	Concentration of Fertilizer		
	IV 3: 15% F	ish meal	fertilizer of 25 mL
	Mean	Range	Standard
			Deviation
1	8.78	0.23	0.081
2	0.66	0.02	0.006
3	0.72	0.03	0.012
4	0.69	0.02	0.007
5	0.65	0.01	0.004

Dissolved Oxygen Levels mg/L

Days	Concentration of Fertilizer		
	IV 4: 20% F	ish meal	fertilizer of 25 mL
	Mean	Range	Standard
			Deviation
1	8.79	0.25	0.092
2	0.70	0.09	0.031
3	0.71	0.02	0.007
4	0.71	0.02	0.007
5	0.65	0.02	0.007
	Discolude	Ovven	

Dissolved Oxygen Levels mg/L

Days	Concentration of Fertilizer		
	IV 5: 25% F	ish meal	fertilizer of 25 mL
	Mean	Range	Standard
			Deviation
1	8.76	0.22	0.085
2	0.75	0.14	0.050
3	0.71	0.03	0.010
4	0.71	0.02	0.008
5	0.68	0.03	0.012

Dissolved Oxygen Levels mg/L

Formulas used

Name	Formula	Sample Calculation
Mean	Add up all the numbers in the set then divide by the number of entries	Ex. 2,4,6,8 Step 1. 2+4+6+8 Step 2. 20/4=5 Mean=5
Range	The difference between the largest and smallest value in a data set	Ex. 1,2,3,4,5 Step 1. 5-1=4 Range =4
Standard deviation	$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$	Ex. 2,4,6,8 Step 1. 2+4+6+8=22/4=5.5 Step2. 2-5.5=-3.5^2=12.25, 4-5.5=-1.5^2=2.25, 6-5.5=.5^2=.25, 8-5.5=2.5^2=6.25 Step 3. 12.25+2.25+.25+6.25/4=5.25 step 4. Square root of 5.25=2.29

Data - Data Display/Graphs

Data - Data Interpretation/conclusion as applied to your research question

My first graph shows the substantial drop in DO levels for the samples with concentrations of fish meal fertilizer after 1 day, while my control group remained relatively constant with minor fluctuations. However, the trends for the fertilizer samples are not easy to spot, so the second graph gives a closer look between Days 2-5. Within these days the DO levels remained between 0.60-0.75 mg/L after 1 day, and the all-around small values in standard deviation support how close overall the DO level readings were for all fertilizer samples.

Evaluation - Conclusion:

My data supports the broad conclusion that the fish meal fertilizer decreases DO levels initially, though it's inconclusive whether changes in concentration have any noticeable effects on DO levels after the substantial drop in DO levels. As such, this conclusion can be applied to the causes of eutrophication, as it starts with over nourishment, no matter the source of the nutrients. Thus, another strength of applying

my results is the importance of monitoring DO levels in aquatic systems, as fertilizer is interconnected with the destruction of aquatic system when chemical fertilizers remain as common practice.

However, a limitation of my results is that my investigation isolates fertilizer as the main driver of DO levels, but salinity and temperature also play a part. As such, my results lack in the overall variability for DO levels, as bodies of water have natural fluctuations in these factors that also play a part in aquatic systems.

Evaluation - Strengths, Limitations, and Weaknesses

Limitations/Weaknesses	Explain how the limitation or	Suggest ways to minimize or
	weakness affected data collection	eliminate the limitations or
	or experimental results	weakness
Time discrepancy when	When collecting my data, the DO	I'll set a timer, such as 3 minutes,
measuring DO levels	meter would stop then decrease	to allow the DO probe to get the
	slowly at ambiguous times. Thus,	DO levels with enough time for
	I collect readings that aren't the	all samples in the same manner.
	true DO levels for the sample	
	size.	
Range of Fertilizer	The significant drop in DO levels	I'll go with smaller percent mass
concentrations	for all IV levels is attributed to	solutions for fertilizer, preferably
	the small volume of water mixed	between 1-5%, as to avoid major
	with sizeable masses of fish meal	drops in DO levels in order to
	fertilizer. Thus, the measurement	study the incremental effects of
	of DO levels isn't sustainable to	fertilizer concentration.
	test the effects of increasing	
	concentrations.	
Litter bottle delivery	When I collected the pond water,	I'll use aluminum foil to wrap up
	I used bottles that were clear	the bottle, so that DO levels are
	plastic; therefore, photosynthesis	increasingly preserved through
	still occurred from the time of	blocking photosynthesis until the
	transporting the pond water to the	time I start DO measurements.
	lab, decreasing DO levels until I	
	could follow through with my	
	experimentation	

Future Studies

In a future study I'd investigate the DO levels at actual lakes in different locations, such as suburban and rural, to deduce if eutrophication is more impactful with fertilizers or with other wastes of human activity. I'd measure over a span of months to detect noticeable changes in DO levels.

Possible solution (or application) to the environmental issue:

Since the conclusion of my study reveals nutrients as the prime factor for eutrophication, a solution would be to implement agroforestry around the crops to decrease the chance of major run-off. Thus, a preventative measure is taken to stop nutrients from traveling freely in open farm fields.

Justification

The solution is appropriate because it involves change at the source of the nutrients, the farms. It's difficult to raise awareness of the harmful effects of eutrophication effects occur from nutrient transfer into the body of water. Thus, implementing agroforestry goes beyond the isolated blame of fertilizer use when farmers can be offered a chance to be more conscious of common agricultural practices and extend benefits of environmental protection and usage.

Evaluation

A strength is the functional benefit that agroforestry provides by being a buffer against major runoff with different plant matter in the way. Additionally, agroforestry provides better soil quality; therefore, the chance of run-of is decreased with healthier soil, protecting against soil erosion, to take in the nutrients more easily. However, a weakness with implementing agroforestry is the time and costs to structure and build the agroforest, which is an economic consideration that farmers weigh for changing agriculture practices. Another weakness is the major overhaul required to have an impactful change, as it requires the interconnected commitment of the farming industry to establish a new farming practice.

Bibliography:

- Barlow, P., & McCurran, A. (2015). The Nutrient Value and Effect of Fish Meal as a Fertiliser for Hayward Kiwifruit Grown Under an Organic Regime. Unpublished. https://doi.org/10.13140/rg.2.1.4100.5287
- Davis, A., & Nagle, G. (2015). *Environmental systems and societies: Supporting every learner across the IB continuum*. London: Pearson Education.
- Díaz, R. J. (2010). Agriculture's impact on aquaculture: Hypoxia and eutrophication in marine waters. *Advancing the Aquaculture Agenda*, 275-318.
- López-Mosquera ME, Fernández-Lema E, Villares R, Corral R, Alonso B, Blanco C (2011) Composting fish waste and seaweed to produce a fertilizer for use in organic agriculture. Proc Environ Sci 9:113–117
- Nixon, S. W. (1995). Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia, 41(1), 199-219. (1995)
- Perlman, H. (2017, January 20). Water properties: Dissolved oxygen. Retrieved January 29, 2019, from https://water.usgs.gov/edu/dissolvedoxygen.html
- WaterAtlas, S. (n.d.). Learn more about Dissolved Oxygen. Retrieved January 29, 2019, from http://www.sarasota.wateratlas.usf.edu/shared/learnmore.asp?toolsection=lm_dissolvedox