Probabilistic Algorithms Homework 1

P1 (100 points)

Consider the quarter circle of radius 1 inside the square of edge 1 (see the figure).

Figure 1: Quarter circle inside unit square

- 1. Consider the following experiment: select randomly a point inside the unit square (i.e. generate a tuple (x,y) from the uniform distribution on $[0,1] \times [0,1]$). What is the probability that such a point, randomly generated, falls inside the quarter circle?
- 2. Based on the answer for question a), write a MatLab function $pi_estimate(N)$ that calculates an estimate of π using N trials of this experiment.
- 3. For a fixed N, call the pi_estimate() function 100 times and calculates, based on the vector of 100 estimates for π , the following values: the minimum estimate (π_{min}) , the maximum estimate (π_{max}) , the average estimate (π_{mean}) , the standard deviation of estimates $(\Delta \pi)$.
- 4. Fill the following table:

N	π_{min}	π_{max}	π_{mean}	$\Delta \pi$
100				
1000				
10000				
100000				
1000000				
10000000				

P2 (25 points bonus)

Consider a two-sided error Monte-Carlo algorithm which may return two outputs (decisions),

$$\left\{ \begin{array}{ll} "yes", & P("yes" \text{ is wrong}) = \varepsilon < 1/2 \\ "no", & P("no" \text{ is wrong}) = \varepsilon < 1/2 \end{array} \right.$$

Suppose that this algorithm is running 10 times on the same input and generate the following sequence of decisions: "yes", "no", "no", "yes", "yes", "yes", "no", "no", "yes", "yes".

- 1. Propose a rule that allows the user to choose the "right" decision after N trials on the same input. What gives your rule for this particular case (N=10)?
- 2. If P("yes" is wrong) $\neq P("no"$ is wrong), do you think you must modify the rule?

P3 (25 points bonus)

Suppose we have a random number generator that, at each call, returns one of the two values $\{a, b\}$ with a probability of 0.5. Propose a method of how to use this generator to get uniform numbers on (0, 1).