- Modern kimya modern atom kuramı esas alınarak geliştirilmiştir. Atom yapısı ve atomların etkileşimlerinin anlaşılması kimya öğrenimi açısından önemlidir.
- Atom: Atom Yunanca atomos, bölünemez anlamına gelir. Bir kimyasal elementin bütün özelliklerini taşıyan en küçük parçacığıdır.

- Elementler atom numarası soldan sağa ve yukarıdan aşağıya artacak şekilde sıralanmıştır.
- Yatay sıraya = periyot
 - 7 tane periyot
- Düşey sütun = grup
 - Benzer fiziksel ve kimyasal özellikler

- Periyodik cetvelde her atom bir kutu içerisinde atomik özelliklerini ifade edecek şekilde sembolleriyle gösterilir
 - Atom numarası ve Kütle numarası

- Grup IA <u>alkali metaller</u>
 - Su ile alkali baz oluştururlar
- Grup 2A <u>toprak alkali metaller</u>
 - Bunlarda su ile baz oluştururlar, fakat iyi çözünmezler
- Grup 7A <u>halojenler</u>
 - Metallerle tuzları oluştururlar

Metaller

- Isı ve elektriği iyi iletirler
- Tel ve levha haline gelebilirler
- Civa hariç katı haldeler
- Elektron vererek (+) yüklü olmak isterler

Ametaller

- Isı ve elektriği iletmezler
- Katıları kırılgandır
- Oda sıcaklıklarında bazıları gaz halindedir
- Elektron alarak (-) yüklü olmak isterler

- Elementler <u>elektron dizilimlerine</u> göre 4 sınıfta toplanır:
 - 1) Soygazlar
 - 2) A grubu elementleri
 - 3) Geçiş metalleri
 - 4) İç geçiş metalleri

Şimdi bunları yakından inceleyelim

- 1) Soygazlar 8A grubunda bulunur
 - Kimyasal tepkimelere girme isteği çok azdır; çok kararlıdırlar
 - Soygazların en dış yörüngesindeki s
 ve p orbitalleri <u>tam doludur</u>

2) <u>A grubu elementleri</u> 1A -7A elementleri

- Bazıları metal ya da ametal ya da amfoter; bazıları katı, bazıları gaz veya sıvı haldedir
- Dış yörüngedeki s ve p orbitalleri tam dolu değildir

 1A-7A grubu elementleri (son **A8** yörüngeleri s ya da p ile biter) 3A 4A 5A 6A 7A

- 3) <u>Geçiş metalleri</u> B grubu elemenleri
 - Elektron dizilimleri d orbitali ile biter
 - Örneğin altın, bakır, gümüş

- 4) İç geçiş metalleri tablonun altındaki iki satırda bulunur
 - Elektron dizilimi f orbitali ile biter

Elektron diziliminin nasıl bittiğine dikkat edin!!!

$$1s^2 2s^1$$

$$1s^22s^22p^63s^1$$

K 19 $1s^22s^22p^63s^23p^64s^1$

Rb 37 $1s^22s^22p^63s^23p^64s^23d^{10}4p^6\underline{5s^1}$

Cs 55 $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}\,5p^6\underline{6s^1}$

Fr 87 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14} 5d^{10} 6p^6 7s^1$

Soygazların elektron dağılımı nasıl bitiyor ???

 $1s^22s^22p^6$

ne 10

 $1s^22s^22p^63s^23p^6$

4r 18

 $1s^22s^22p^63s^23p^6\underline{4s^2}3d^{10}\underline{4p^6}\ ^{Kr}$

Kr 36

 $1s^22s^22p^63s^23p^64s^23d^{10}4p^6\underline{5s^2}4d^{10}\underline{5p^6}$

Xe 54

 $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}$ $5p^66s^24f^{14}5d^{10}6p^6$

Rn 86

Periyodik cetvelde eğilimler: Atom çapı

 Bir grupta yukarıdan aşağıya doğru yörünge sayısı artar; dolayısıyla atom çapı artar!

Periyodik cetvelde eğilimler: Atom çapı

- Ayni periyotta soldan sağa gidildikçe atom çapı küçülür.
 - Elektronlar aynı enerji seviyesinde
 - Fakat etkin çekirdek yükü (Z_{et}) artıyor
 - Dış yörünge elektronları çekirdek tarafından daha çok çekilir

Periyodik cetvelde eğilimler: İyonlaşma enerjisi

- Yüklü atom ya da atom gruplarına <u>iyon</u> denir
- Gaz halindeki bir atomun son yörüngesinden bir elektron koparmak için verilmesi gereken enerji: İyonlaşma enerjisidir (iE)
- Nötr bir atomdan elektron koparıldığı zaman atom (+) yük kazanır
- Nötr bir atomdan bir elektron koparmak için gerekli enerji: 1. iyonlaşma enerjisidir.(1.İE)

Periyodik cetvelde eğilimler: İyonlaşma enerjisi

- 1 elektron kaybetmiş bir atomdan
- 2. elektronu koparmak için gerekli enerji 2. İE;
- 3. elektronu koparmak için 3. İ.E vb.

- Her zaman, <u>herhangi bir atom için</u>:
 - 1. İE < 2. İE ve 3. İE

$$Mg(g) \rightarrow Mg^{+}(g) + e^{-}$$

$$I_1 = 738 \text{ kJ}$$

$$Mg^+(g) \rightarrow Mg^{2+}(g) + e^-$$

$$I_2 = 1451 \text{ kJ}$$

1.
$$iE(I_1) < 2.iE(I_2)$$

3. Periyot elementlerinin iyonlaşma enerjileri (kj/mol)

	Na	Mg	Al	Si	P	S	Cl	Ar
I_1	495.8	737.7	577.6	786.5	1012	999.6	1251.1	1520.5
I_2	4562	1451	1817	1577	1903	2251	2297	2666
I_3		7733	2745	3232	2912	3361	3822	3931
I_4			11580	4356	4957	4564	5158	5771
I_5			3	16090	6274	7013	6542	7238
I_6					21270	8496	9362	8781
I_7						27110	11020	12000

- Etkin çekirdek yükü arttıkça İE artar
- Çekirdekten uzaklaştıkça İE azalır
- Yarı dolu ve tam dolu orbitallerden elektron koparılırken İE artar
- Yörünge sayısı arttıkça iç yörüngedeki elektronlar en dış kabuktaki elektron ile çekirdek arasındaki çekim kuvvetini perdeleyeceğinden İE azalır

- Bir grupta yukarıdan aşağıya gidildikçe çap artar, perdeleme artar dolayısıyla İE azalır.
- Aynı periyotta tüm atomlar aynı enerji seviyesinde, ayni perdeleme etkisi ancak soldan sağa Z_{et} artacağından İE genellikle artar.

İyon çapları

 Metaller elektron verdiklerinde (katyon oluşturduklarında) yörünge sayısı azalacağından çapları küçülür

İyon çapları

- Ametaller elektron aldıklarında (anyon oluşturduklarında) çapları büyür
- Ne kadar çok (-) yük olursa çap da o daha büyük olur

İyon çapları

- Ne kadar çok (+) yük olursa çap da o kadar küçük olur!
- Ne kadar çok (-) yük olursa çap da o daha büyük olur!

Elektronegativite

- Elektronegativite bir atomun başka bir atom ile biraraya geldiğinde elektronları kendine çekme isteğidir.
- Elektronegativitesi yüksek olan atom elektronları daha fazla çekmek ister
- Metallerin elektronegativiteleri ametallere göre daha düşüktür
- Aynı grupta yukarıdan aşağıya gidildikçe elektronegativite azalır
- Aynı periyotta soldan sağa gidildikçe elektronegativite artar

Elektron ilgisi

- İyonlaşma enerjisi atomdan elektron koparılmasının ölçüsü iken; <u>elektron ilgisi</u>, gaz halindeki bir atomun bünyesine elektron katıldığında enerjide meydana gelen değişimin ifadesidir.
- Flor atomu gaz halinde iken bir elektron aldığında dışarı enerji verir (-328 kJ enerji dışarı verilir)

F(g) +
$$e^{-} \rightarrow F^{-}(g)$$
 EA = -328 kJ
F(1s²2s²2p⁵) + $e^{-} \rightarrow F^{-}$
(1s²2s²2p⁶)

Periyodik cetvelde eğilimler

örnek

- Periyodik çizelgeden yararlanarak, aşağıdaki atomlardan hangisinin en büyük olduğunu belirleyiniz. Sc, Ba ya da Se.
- Sc (Skandiyum) ve Se (Selenyum) 4. periyot elementleridir. Sc periyodun baş kısmına daha yakın olduğundan Se'den daha büyük olması beklenir. Ba (Baryum) 6. periyottadır ve diğerlerine göre daha çok elektron kabuğuna sahiptir.

örnek

- Periyodik çizelgeden yararlanarak, aşağıdaki atom ve iyonları artan büyüklüklerine göre sıralayınız. Ar, K+, Cl-, S²⁻ ve Ca²⁺
- 5 atom ya da iyon izoelektroniktir Ar, 1s²2s²2p63s²3p6. izoelektronik katyonlar için yük arttıkça iyon küçülür. Bu da Ca²+ K+'dan küçük demektir (Çekirdek yükü daha fazla)

$$Ca^{2+} < K^+ < Ar < Cl^- < S^{2-}$$