US 6893764 COVV40 US 2003/0096/49, 2005/003/

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-100317 (P2003-100317A)

(43)公開日 平成15年4月4日(2003.4.4)

(51) Int.Cl.7	•	識別記号	FΙ	テーマコート*(参考)
H 0 1 M	8/02		H 0 1 M 8/02	P 4J005
C 0 8 G	65/334		C 0 8 G 65/334	5 G 3 0 1
H01B	1/06		H 0 1 B 1/06	A 5H026
H 0 1 M	8/10		H 0 1 M 8/10	
			審査請求有	請求項の数16 OL (全 49 頁)

(21)出願番号 特願2001-289493(P2001-289493) (71)出願人 000005108

(22)出願日 平成13年9月21日(2001.9.21)

(出願人による申告) 国等の委託研究の成果に係る特許 出願(平成12年度新エネルギー・産業技術総合開発機構 (再) 委託研究、産業活力再生特別措置法第30条の適用 を受けるもの)

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(72)発明者 小山 徹

茨城県日立市大みか町七丁目1番1号 株

式会社日立製作所日立研究所内

(72)発明者 小林 稳幸

茨城県日立市大みか町七丁目1番1号 株

式会社日立製作所日立研究所内

(74)代理人 100068504

弁理士 小川 勝男 (外2名)

最終頁に続く

(54) 【発明の名称】 固体高分子電解質と膜電極接合体および燃料電池

(57) 【要約】

【課題】ふっ素系固体高分子電解質と同等以上、もしく は、実用上十分な耐劣化特性を有し、しかも低コストで 製造可能な高耐久性固体高分子電解質を提供にある。

【解決手段】ポリエーテルエーテルスルホンの芳香族環 に一般式-(CH₂)n-SO₃Hで示されるスルホアルキ ル基が結合しているポリエーテルエーテルスルホンを電 解質として用いたことを特徴とする固体高分子電解質。

(2)

【特許請求の範囲】 【請求項1】 式〔1〕

【化1】

 $-(CH_2)_n - SO_3H$

... (1)

(nは1~6の整数)で示されるスルホアルキル基が結*

* 合したポリエーテルエーテルスルホンを電解質として用いたことを特徴とする固体高分子電解質。

【請求項2】 式〔2〕

【化2】

 $(n t 1 \sim 6 o 8 x m, 'a, b t 0 \sim 4 o 8 x c 2 t が 0 に t t t t c s t v i c x t t 1 \sim 3 o 8 x x t t 1 \sim 5 o 8 x c x t t t c x t t t c x t c x t t c x$

※スルホンを電解質として用いたことを特徴とする固体高 分子電解質。

【請求項3】 式〔3〕

【化3】

(nは1~6の整数、a, b, c, dは0~4の整数で全てが0にはならない)で示されるアルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホンを電解質として用いることを特徴とする固体高分子電★

★解質。

【請求項4】 式〔4〕

【化4】

(a, b, c, dは0~4の整数で全てが0にはならない)で示されるアルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホンを電解質として用☆

☆いることを特徴とする固体高分子電解質。

【請求項5】 式〔5〕

【化5】

(a, b, c, dは0~4の整数で全てが0にはならない)で示されるアルキレン基を介してスルホン酸基が結 40合したポリエーテルエーテルスルホンを電解質として用◆

◆いることを特徴とする固体高分子電解質。

【請求項6】 式〔6〕

【化6】

(nは $1\sim6$ の整数、a, b, cは $0\sim4$ の整数で全てが0にはならない)で示されるアルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホンを電解質として用いることを特徴とする固体高分子電解

啠

【請求項7】 式〔7〕.

【化7】

(a, b, cは0~4の整数で全てが0にはならない)で示されるアルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホンを電解質として用いる*

* ことを特徴とする固体高分子電解質。 【請求項8】 式〔8〕 【化8】

(a, b, cは0~4の整数で全てが0にはならない) で示されるアルキレン基を介してスルホン酸基が結合し たポリエーテルエーテルスルホンを電解質として用いる※

※ことを特徴とする固体高分子電解質。 【請求項9】 式〔9〕 【化9】

(a, b, c, dは $0\sim4$ の整数で全てが0にはならない)で示されるアルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホンを電解質として用いることを特徴とする固体高分子電解質。

【請求項10】 前記スルホン酸基当量重量が530~970g/当量である請求項1~9のいずれかに記載の固体高分子電解質。

【請求項11】 請求項1~10のいずれかに記載の固体高分子電解質を用いたことを特徴とする固体高分子電解質膜。

【請求項12】 請求項1~10のいずれかに記載の固体高分子電解質を含むことを特徴とする電極触媒被覆用溶液。

【請求項13】 固体高分子電解質膜とこの固体高分子電解質膜の両側に酸素極および水素極からなる一対の電極が配置された膜電極接合体において、前記固体高分子電解質膜が請求項11の固体高分子電解質膜であること 40 を特徴とする膜電極接合体。

【請求項14】 固体高分子電解質膜とこの固体高分子電解質膜の両側に電極触媒被覆用溶液で被覆された酸素極および水素極からなる一対の電極が配置された膜電極接合体において、前記固体高分子電解質膜が前記式

[1] ~式[9] のいずれかで表されるアルキレン基を 介してスルホン酸基が結合したポリエーテルエーテルス ルホンを用いた固体高分子電解質膜で、電極触媒被覆用 溶液が請求項12に記載の電極触媒被覆用溶液であるこ とを特徴とする膜電極接合体。 【請求項15】 電極触媒被覆用溶液が、パーフルオロスルホン酸固体高分子電解質溶液である請求項14に記載の膜電極接合体。

【請求項16】 請求項11に記載の固体高分子電解質 膜と、該固体高分子電解質膜の両側に酸素極および水素 極からなる一対の電極が配置された膜電極接合体と、該 膜電極接合体の両面に配された一対の支持集電体と、該 支持集電体の外周に配置されたセパレータを有することを特徴とする固体高分子型燃料電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は燃料電池、水電解、 ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度セ ンサ、ガスセンサ等に用いられる固体高分子電解質膜、 電極触媒被覆溶液、上記膜と電極との接合体および燃料 電池に関する。

[0002]

【従来の技術】固体高分子電解質は、高分子鎖中にスルホン酸基等の固体高分子電解質基を有する固体高分子材料であり、特定のイオンと強固に結合したり、陽イオンまたは陰イオンを選択的に透過する性質を有していることから、粒子、繊維、あるいは膜状に成形し、電気透析、拡散透析、電池隔膜等の各種用途に利用されている。

【0003】改質ガス燃料電池は、プロトン伝導性の固体高分子電解質膜の両面に一対の電極を設け、メタン、メタノール等、低分子の炭化水素を改質することにより

得られる水素ガスを燃料ガスとして一方の電極(水素極)へ供給し、酸素ガスあるいは空気を酸化剤として他方の電極(酸素極)へ供給し、起電力を得るものである。また、水電解は、固体高分子電解質膜を用いて水を電気分解することにより水素と酸素を製造するものである。

【0004】燃料電池や水電解等の固体高分子電解質膜として、ナフィオン(登録商標、デュポン社製)、Aciplex(登録商標、旭化成工業株式会社製)、フレミオン(登録商標、旭硝子株式会社製)の商品名で知られる高いプロトン伝導性を有するパーフルオロスルホン酸固体高分子電解質膜に代表されるふっ素系固体高分子電解質膜が、化学的安定性に優れていることから使用されている。

【0005】また、食塩電解は、固体高分子電解質膜を用いて塩化ナトリウム水溶液を電気分解することにより、水酸化ナトリウムと、塩素と水素を製造するものである。

【0006】この場合、固体高分子電解質膜は塩素と高温,高濃度の水酸化ナトリウム水溶液に曝されるので、これらに対する耐性の乏しい炭化水素系固体高分子電解質膜を使用することができない。そのため、食塩電解用の固体高分子電解質膜には、一般に、塩素および高温,高濃度の水酸化ナトリウム水溶液に対して耐性があり、さらに、発生するイオンの逆拡散を防ぐために表面に部分的にカルボン酸基を導入したパーフルオロスルホン酸固体高分子電解質膜が用いられている。

【0007】ところで、パーフルオロスルホン酸固体高分子電解質膜に代表されるふっ素系固体高分子電解質は、C-F結合を有しているために化学的安定性が非常 30 に大きく、上述の燃料電池用、水電解用、あるいは、食塩電解用の固体高分子電解質膜の他に、ハロゲン化水素酸電解用の固体高分子電解質膜としても用いられる。さらにはプロトン伝導性を利用して、湿度センサ、ガスセンサ、酸素濃縮器等にも広く応用されている。

【0008】しかし、ふっ素系固体高分子電解質は製造が困難で、非常に高価であると云う欠点がある。そのため、ふっ素系固体高分子電解質膜は、宇宙用あるいは軍用の固体高分子型燃料電池等の特殊な用途に用いられ、自動車用の低公害動力源としての固体高分子型燃料電池 40等の民生用への応用を困難なものとしていた。

【0009】安価な固体高分子電解質膜として特開平6-93114号公報にはスルホン化ポリエーテルエーテルケトン、特開平9-245818号公報、特開平11-116679号公報にはスルホン化ポリエーテルスルホン、特開平11-672240号公報にはスルホン化ポリエーテルエーテルスルホン、特表平10-503788号公報にはスルホン化アクリロニトリル・プタジエン・スチレンポリマ、特表平11-510198号公報にはスルホン化ポリスルフィッド、特表平11-515

6

55040号公報にはスルホン化ポリフェニレン等の芳香族炭化水素系固体高分子電解質膜が提案されている。 【0010】これらエンジニアプラスチックをスルホン化した芳香族炭化水素系固体高分子電解質膜は、ナフィ

オンに代表されるふっ素系固体高分子電解質膜と比較す

ると、製造が容易で低コストと云う利点がある。

[0011]

【発明が解決しようとする課題】しかし、その一方、スルホン化芳香族炭化水素系固体高分子電解質膜は劣化し易いと云う問題が残されていた。特開2000-106203号公報によると、固体高分子電解質膜と酸素極の界面に形成された触媒層において生成した過酸化水素が、芳香族炭化水素骨格を酸化劣化させるため、芳香族炭化水素骨格を有する固体高分子電解質膜は劣化し易い。

【0012】そこで、ふっ素系固体高分子電解質膜と同等以上の耐酸化劣化特性を有し、しかも低コストで製造可能な固体高分子電解質膜として、例えば、特開平9-102322号公報には、炭化ふっ素系ビニルモノマと炭化水素系ビニルモノマとの共重合によって作られた主鎖と、スルホン酸基を有する炭化水素系側鎖とから構成される、スルホン酸型ポリスチレンーグラフトーエチレンテトラフルオロエチレン共重合体(ETFE)膜が提案されている。

【0013】特開平9-102322号公報に開示されているスルホン酸型ポリスチレンーグラフト-ETFE 膜は安価であり、燃料電池用の固体高分子電解質膜として十分な強度を有し、しかもスルホン酸基の導入量を増やすことによって導電率を向上させることが可能とされている。

【0014】しかし、スルホン酸型ポリスチレンーグラフトーETFE膜は、炭化ふっ素系ピニルモノマと炭化水素系ピニルモノマとの共重合によって作られた主鎖部分の耐酸化劣化特性は高いが、スルホン酸基を導入した側鎖部分は、酸化劣化を受け易い芳香族炭化水素系高分子である。従って、これを燃料電池に用いた場合には、膜全体の耐酸化劣化特性が不十分であり、耐久性に乏しいと云う問題がある。

【0015】また、米国特許第4,012,303号および米国特許第4,605,685号には、炭化ふっ素系ピニルモノマと炭化水素系ピニルモノマとの共重合によって作られた膜に、 α , β , β -トリフルオロスチレンをグラフト重合させ、これにスルホン酸基を導入して固体高分子電解質膜とした、スルホン酸型ポリ(トリフルオロスチレン)-グラフト-ETFE膜が提案されている。

【0016】これは、前記のスルホン酸基を導入したポリスチレン側鎖部の化学的安定性が十分ではないとの認識を前提に、スチレンの代わりに、部分的にふっ素化し α , β , β -トリフルオロスチレンを用いたものであ

る。しかし、側鎖部分の原料となる α , β , β ートリフルオロスチレンは、合成が困難なため、燃料電池用の固体高分子電解質膜として応用することを考えた場合には、前述のナフィオンの場合と同様にコストの問題がある。

【0017】また、 α , β , β -トリフルオロスチレンは重合反応性が低いために、グラフト側鎖として導入できる量が少なく、得られる膜の導電率が低いと云う問題がある。

【0018】本発明の目的は、ふっ素系固体高分子電解質と同等以上、もしくは、実用上十分な耐劣化特性を有し、しかも低コストで製造可能な高耐久性固体高分子電解質を提供することにある。

[0019]

【課題を解決するための手段】本発明者らは、固体高分子電解質膜の劣化メカニズムを詳細に検討した。その結果、芳香族環に直接スルホン酸基が結合している芳香族スルホン酸は水溶液中で芳香族環と硫酸との解離平衡状態にあり、硫酸濃度が低く温度が高くなるほど相対的に芳香族スルホン酸からスルホン酸基が脱離する傾向にあ 20 ることが分った。

【0020】即ち、芳香族炭化水素系固体高分子電解質膜を用いた燃料電池の寿命低下は従来考えられていた膜自体の酸化劣化ではなく、燃料電池条件下においては硫酸濃度が低いため、芳香族環からスルホン酸基が脱離、イオン伝導度が低下する現象に起因することが分かった。

【0021】上記目的を解決するために本発明に係る高耐久性固体高分子電解質は、スルホン酸基の代わりに式〔1〕

[0022]

【化10】

$$-(CH2)n-SO3H ··· (1)$$

(nは1~6の整数)で示されるアルキレン基を介してスルホン酸基を導入したポリエーテルエーテルスルホンからなることを特徴とするもので、ふっ素系固体高分子電解質と同等以上、もしくは、実用上十分な耐久性を有し、しかも安価な高耐久性固体高分子電解質を得ることが可能となる。

【0023】また、同じイオン交換基当量重量ならばア 40 ルキル基を介してスルホン酸基を導入した固体高分子電解質のイオン導電率はスルホン酸基を導入した固体高分子電解質のイオン導電率より大きい利点がある。これはアルキレン基を介するスルホン酸基がアルキレン基を介さないスルホン酸基より運動し易いことと関係があるものと思われる。

【0024】上記化〔1〕のnの数が3~6のものは、

8

nの数が1もしくは2のものよりもイオン伝導度が高くなり好ましい。この現象はnの数が大きくなるとSO3 Hが動き易くなり、凝集構造、イオンチャンネル構造をとり易くなるためと考えられる。

【0025】本発明の特徴は、上記式〔1〕で示される スルホアルキル基が結合しているポリエーテルエーテル スルホンを電解質に用いたことにある。

【0026】本発明の特徴は、後記の式〔2〕~式

[9] で示されるアルキレン基を介してスルホン酸基が 結合しているポリエーテルエーテルスルホンを電解質に 用いることにある。

【0027】また、本発明の他の特徴は、上述のスルホン酸がスルホン酸基当量重量で530~970g/当量であること。

【0028】また、本発明の特徴は、上述した電解質を 電解質膜へ適用したことにある。

【0029】また、本発明の他の特徴は、上述した固体 高分子電解質を含む電極触媒被覆用溶液にある。

【0030】また、本発明の他の特徴は、上述した固体 高分子電解質膜と上記固体高分子電解質膜の両側に酸素 極および水素極からなる一対の電極が配置された膜と電 極との接合体である膜電極接合体にある。

【0031】また、本発明の特徴は、上述の電極触媒被 覆用溶液によって覆われており、後述の式〔1〕~式

[9] のいずれかに示すアルキレン基を介してスルホン酸基が結合しているポリエーテルエーテルスルホンを用いた固体高分子電解質膜と、上記固体高分子電解質膜の両側に酸素極および水素極からなる一対の電極が配置された膜と電極との接合体とを含んで構成されている。

【0032】また、本発明の特徴は、上述の電極触媒被 覆用溶液は、ナフィオン(登録商標、デュポン社製パー フルオロスルホン酸固体高分子電解質溶液)である膜電 極接合体にある。

【0033】さらに、本発明の特徴は、上述の固体高分子電解質膜と上記固体高分子電解質膜の両側に酸素極および水素極からなる一対の電極が配置された膜電極接合体と上記膜電極接合体の両面に配された一対の支持集電体と、上記支持集電体の外周に配置されたセパレータとを有する。

[0034]

【発明の実施の形態】本発明のアルキレン基を介してスルホン酸基を導入したポリエーテルエーテルスルホン固体高分子電解質は式〔2〕に示すアルキレン基を介してスルホン酸基を導入したポリンエーテルエーテルスルホン固体高分子電解質であれば特に制限は無い。

[0035]

【化11】

 $(nは1\sim6の整数、m, a, bは0\sim4の整数で全てが0にはならない。<math>xは1\sim3$ の整数、 $yは1\sim5$ の整

* を介してスルホン酸基を導入したポリエーテルエーテル スルホン固体高分子電解質が挙げられる。

数。Arは芳香族残基を表す)

10 [0036]

具体例としては、式〔3〕~式〔8〕に示すアルキル基* 【化12】

 $(n t 1 \sim 6$ の整数、a, b, c, $d t 0 \sim 4$ の整数で % 【0 0 3 7】 あり、かつ、b, c, d t d 同時に0 t になることは無 【t 1 3】 い。) %

(a, b, c, dは0~4の整数であり、かつa, b, \star 【0038】 c, dが同時に0になることは無い。) \star 【化14】

(a, b, c, dは $0\sim4$ の整数であり、かつa, b, $$^{\diamond}$$ 【0039】 c, dが同時に0になることは無い。) $$^{\diamond}$$ 【化15】

$$(CH_{2})_{n}SO_{1}H)_{n} (CH_{2})_{n}SO_{2}H)_{b} (CH_{3})_{n}SO_{3}H)_{c}$$
... (6)

(nは1~6の整数、a, b, cは0~4の整数であ \spadesuit [0040] り、かつa, b, cが同時に0になることは無い。) \spadesuit 40 【化16】

(a, b, cは0~4の整数であり、かつa, b, cが【0041】同時に0になることは無い。)【化17】

 $(a, b, c は 0 \sim 4 の整数であり、かつ a, b, c が * 【0 0 4 2】 同時に 0 になることは無い。) * 【化 1 8】$

 $(a, b, c, d t 0 \sim 4 o 整数であり、かつ<math>a, b, c, d$ が同時に0になることは無い。)

ポリエーテルエーテルスルホンあるいはそのポリマアロイにアルキレン基を介してスルホン酸基を導入する方法には、特に制限はないが、具体的な方法として例えば、

※5360(1954)に記載されているような式(I) に示すスルトンを用いて芳香族環にアルキレン基を介し てスルホン酸基を導入する方法がある。

[0043]

【化19】

J. Amer. Chem. Soc., 76, 5357 \sim \times 20

$$\begin{array}{c} \begin{array}{c} & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

(但し、mは1または2を示す)

また、芳香族環の水素をリチウムに置換し、次いでジハロゲノアルカンでハロゲノアルキレン基に代え、アルキレン基を介してスルホン酸基に変換する方法やテトラメチレンハロゲニウムイオンを用いてハロゲノブチル基を★

★導入し、ハロゲンをスルホン酸基に変換する方法などが ある。

[0044]

【化20】

$$(CH_{2})_{n} \times \longrightarrow (CH_{2})_{n} \times O_{3}H$$

$$(CH_{2})_{3} - Li$$

$$(CH_{2})_{4} - X \longrightarrow (CH_{2})_{4} \times O_{3}H$$

(但し、nは1~6の整数、Xはハロゲンを示す)

アルキレン基を介してスルホン酸基を導入する反応はいずれも芳香族環に対する親電子反応であり、芳香族環の電子密度の高い本願の構造のポリエーテルエーテルスルホンは他のエンジニアリングプラスチックより比較的マイルドな条件で反応が起こり好ましい。

【0045】ポリエーテルエーテルスルホンにアルキレン基を介してスルホン酸基を導入する際に用いる方法には、特に制限はないが、コストの観点から合成工程が少ない方法、例えば、上記式(I)で表される方法が好ましい。

【0046】本発明で用いられる固体高分子電解質のイオン交換基当量重量は250~2500g/当量のアルキレン基を介してスルホン酸基を導入したポリマである。好ましくは、イオン交換基当量重量は300~1500g/当量であり、さらに好ましくは530~970g/当量である。イオン交換基当量重量が2500g/当量を越えると出力性能が低下することがあり、250g/当量より低いと該重合体の耐水性が低下し、それぞれ好ましくない。

50 【0047】なお、本発明のイオン交換基当量重量と

は、導入されたアルキレン基を介するスルホン酸基単位 当量あたりの該アルキレン基を介してスルホン酸基を導 入したポリマの分子量を表し、値が小さいほどアルキレ ン基を介するスルホン酸基の導入度が大きいことを示 す。イオン交換基当量重量は、 ^1H-NMR スペクトロ スコピー、元素分析、特公平1-52866号明細書に 記載の酸塩基滴定、非水酸塩基滴定(規定液はカリウム メトキシドのベンゼン・メタノール溶液)等により測定 が可能である。

【0048】アルキレン基を介してスルホン酸基を導入した該固体高分子電解質のイオン交換基当量重量を250~2500g/当量に制御する方法としては、芳香族炭化水素系高分子とスルホアルキル化剤の配合比、反応温度、反応時間、反応溶媒等を変化させることで、目的とするイオン交換基当量重量を有するアルキレン基を介してスルホン酸基を導入したポリマを得ることができる。

【0049】本発明で用いられる固体高分子電解質を燃料電池用として使用する際には、通常膜の状態で使用される。アルキレン基を介してスルホン酸基を導入したポリマを膜へ転化する方法に特に制限はないが、溶液状態より製膜する方法(溶液キャスト法)あるいは溶融状態より製膜する方法(溶融プレス法もしくは溶融押し出し法)等が可能である。具体的には前者については、例えば、ポリマ溶液をガラス板上に流延塗布し、溶媒を除去することにより製膜する。

【0050】製膜に用いる溶媒は、高分子を溶解し、その後に除去し得るものであれば特に制限はなく、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド、Nーメチルー2ーピロリドン、ジメチルスルホキシド等の非プロトン性極性溶媒、あるいはエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテル、ジクロロメタン、トリクロロエタン等のハロゲン系溶媒、iープロピルアルコール、tープチルアルコール等のアルコールが好適に用いられる。

【0051】固体高分子電解質膜の厚みは、特に制限はないが $10\sim200\mu$ mが好ましい。特に、 $30\sim100\mu$ mが好ましい。実用に耐える膜の強度を得るには 10μ mより厚い方が好ましく、膜抵抗の低減、つまり発電性能向上のためには 200μ mより薄い方が好ましい。溶液キャスト法の場合、膜厚は溶液濃度あるいは基板上への塗布厚により制御できる。溶融状態より製膜する場合、膜厚は溶融プレス法あるいは溶融押し出し法等で得た所定厚さのフィルムを、所定の倍率に延伸することで膜厚を制御できる。

【0052】また、本発明の固体高分子電解質を製造する際に、通常の高分子に使用される可塑剤、安定剤、離 50

14

型剤等の添加剤を本発明の目的に反しない範囲内で使用することができる。

【0053】燃料用電池として用いる際の膜電極接合体に使用される電極は、触媒金属の微粒子を担持した導電材により構成され、必要に応じて撥水剤や結着剤が含まれていてもよい。また、触媒を担持していない導電材と、必要に応じて含まれる撥水剤や結着剤とからなる層を、触媒層の外側に形成してもよい。

【0054】この電極に使用される触媒金属としては、水素の酸化反応および酸素の還元反応を促進する金属であればいずれでもよく、例えば、白金、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム、鉄、コバルト、ニッケル、クロム、タングステン、マンガン、バナジウム、あるいは、それらの合金が挙げられる。

【0055】これらの触媒の中で、特に、白金が多くの場合用いられる。なお、触媒となる金属の粒径は、通常は $10\sim300$ オングストロームである。これらの触媒はカーボン等の担体に付着させた方が触媒の使用量が少なくコスト的に有利である。触媒の担持量は電極が成形された状態で $0.01\sim10$ m g/c m 2 が好ましい。

【0056】導電材としては、電子導伝性物質であればいずれのものでも良く、例えば、各種金属や炭素材料などが挙げられる。

【0057】炭素材料としては、例えば、ファーネスプラック、チャンネルプラック、およびアセチレンプラック等のカーボンプラック、活性炭、黒鉛等が挙げられ、これらが単独あるいは混合して使用される。

【0058】撥水剤としては、例えば、ふっ素化カーボン等が使用される。バインダーとしては本発明の電極触媒被覆用溶液をそのまま用いることが、接着性の観点から好ましいが、他の各種樹脂を用いても差し支えない。その場合は撥水性を有する含ふっ素樹脂が好ましく、特に、耐熱性、耐酸化性の優れたものがより好ましく、例えば、ポリテトラフルオロエチレン、テトラフルオロエチレンーパーフルオロアルキルビニルエーテル共重合体、およびテトラフルオロエチレンーへキサフルオロプロピレン共重合体が挙げられる。

【0059】燃料用電池として用いる際の固体高分子電解質膜と電極接合法についても特に制限はなく、公知の方法を適用することが可能である。膜電極接合体の製法として、例えば、カーボンに担持させたPt触媒紛をポリテトラフルオロエチレン懸濁液と混ぜ、カーボンペーパに塗布、熱処理して触媒層を形成する。次いで、固体高分子電解質膜と同一の固体高分子電解質溶液を触媒層に塗布し、固体高分子電解質膜とホットプレスで一体化する方法がある。

【0060】この他、固体高分子電解質膜と同一の固体高分子電解質溶液を、予め、Pt触媒紛にコーテイングする方法、触媒ペーストを固体高分子電解質膜の方に塗布する方法、固体高分子電解質膜に電極を無電解めっき

する方法、固体高分子電解質膜に白金族の金属錯イオン を吸着させた後、還元する方法等がある。

【0061】固体高分子型燃料電池は、以上のように形成された固体高分子電解質膜と電極との接合体の両側に薄いカーボンペーパのパッキング材(支持集電体)を密着させて、その両側から極室分離と電極へのガス供給通路の役割を兼ねた導電性のセパレータ(バイポーラプレート)を配したものを単セルとし、この単セルの複数個を冷却板等を介して積層することにより構成される。燃料電池は、高い温度で作動させる方が、電極の触媒活性が上がり電極過電圧が減少するため望ましいが、固体高分子電解質膜は水分がないと機能しないため、水分管理が可能な温度で作動させる必要がある。燃料電池の作動温度の好ましい範囲は室温~100℃である。

【0062】以下実施例により本発明をさらに詳しく説明する。なお、各物性の測定条件は次の通りである。

【0063】(1) イオン交換基当量重量 測定しようとするアルキレン基を介してスルホン酸基を 導入したポリマを密閉できるガラス容器中に精秤(a: グラム)し、そこに過剰量の塩化カルシウム水溶液を添 20 加して一晩撹拌した。系内に発生した塩化水素を0.1 Nの水酸化ナトリウム標準水溶液(f:カ価)で、指示 薬にフェノールフタレインを用いて滴定(b:ml)し た。イオン交換基当量重量(g/当量)は下式より求め た。

〔数1〕

イオン交換基当量重量= (1000×a) / (0.1×b×f)

(2) 燃料電池単セル出力性能評価 電極を接合した固体高分子電解質膜を評価セルに組込 み、燃料電池出力性能を評価した。

【0064】反応ガスには、水素/酸素を用い、共に1気圧の圧力で23℃の水パプラーを通して加湿した後、評価セルに供給した。ガス流量は水素60ml/min、酸素40ml/min、セル温度は70℃とした。電池出力性能は、H201B充放電装置(北斗電工社製)により評価した。

【0065】〔実施例 1〕

(1) スルホプロピル化ポリ1,4-ビフェニレンエー テルエーテルスルホンの合成

撹拌機、温度計、塩化カルシウム管を接続した還流冷却器を付けた500mlの四つ口丸底フラスコの内部を窒素置換した後、110℃、10時間保持乾燥した6.00g (0.0155mol) のポリ $1,4-ピフェニレンエーテルエーテルスルホン [(<math>-C_6H_4-4-SO_2C_6H_4-4-OC_6H_4-4-C_6H_4-4-O-$)n] と合成用脱水クロロホルム150mlを入れ、60℃で約1時間保持して溶解した。この溶液にプロパンスルトン2.83g (0.0232mol) を加えた。

【0066】次いで、撹拌しながら約30分かけて無水 50 スルホン酸基が脱離していた。

16

塩化アルミニウム3.10g(0.0232mol)を加えた。無水塩化アルミニウムを添加した後、50℃で15時間加熱攪拌した。析出物を濾過し、クロロホルム150mlで洗浄後、減圧乾燥した。得られた析出物を水250mlに懸濁させ、ミキサーで細かく砕いて濾過した。これを4回繰り返した後、水で十分洗浄し、水不溶性の微粉砕物を減圧下、90℃で乾燥した。

【0.067】 1 H-NMRを測定すると新たに $-CH_{2}CH_{2}CH_{2}SO_{3}H基に基づくピークが <math>2.2ppm$ 、 3.8ppmに認められた。このことからスルホプロピル基が導入されていることが確認された。得られたスルホプロピル化ポリ 1,4 - ピフェニレンエーテルエーテルスルホン固体高分子電解質 I のスルホン酸当量重量は 1.100 g/当量であった。

【0068】スルホプロピル化ポリ1,4ービフェニレンエーテルエーテルスルホン固体高分子電解質Iのコストは、市販の比較的安価なエンジニアプラスチックであるポリ1,4ービフェニレンエーテルエーテルスルホンを原料として1工程で製造できるため、原料が高価で5工程を経て製造されるパーフルオロスルホン酸固体高分子電解質(ナフィオン117)のコストに比べ1/50以下と安価である。

【0069】スルホプロピル化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質Iは、1工程で製造できるため、後述の実施例11、12に示すように、2段階の工程を経て製造されるスルホメチル化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質VIIや、スルホヘキサメチル化スルホメチル化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質VIIIより低コストで合成でき、コスト的に有利である。

【0070】テフロン(登録商標)コーテングのSUS製密閉容器に、得られたスルホプロピル化ポリ1,4ービフェニレンエーテルエーテルスルホン固体高分子電解質Iの1.0gと、イオン交換水20mlを入れて120℃に2週間保持した。その後、冷却して充分に水洗した後、スルホプロピル化ポリ1,4ービフェニレンエーテルエーテルスルホン固体高分子電解質Iのイオン交換基当量重量を測定した。

【0071】その結果、スルホプロピル化ポリ1,4-ビフェニレンエーテルエーテルスルホン固体高分子電解質Iのイオン交換基当量重量は、初期と変わらず1100g/当量と、高価なパーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定であった。【0072】一方、後述の比較例1の(1)に示すように、安価なスルホン化ポリ1,4-ビフェニレンエーテルエーテルスルホン固体高分子電解質IIのイオン交換基当量重量は、同一加温加水分解条件で1200g/当量と変化し、初期の650g/当量の値より大きくなり、スルホン酸基が脱離していた

【0073】即ち、安価なスルホプロピル化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質Iは、後述の比較例1の(1)に記載した安価なスルホン化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質IIと異なり、高価なパーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定で、コストと耐加水分解性(耐久性)が両立して優れている。

【0075】テフロンコーテングのSUS製密閉容器に、前記固体高分子電解質膜Iとイオン交換水20mlを入れ、120℃で2週間保持した。保持後の固体高分子電解質膜Iのイオン導電率は、高コストのパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に初期と変わらず、膜もしっかりしていた。

【0076】一方、後述の比較例1の(2)に示すように、比較的安価なスルホン化ポリ1,4-ビフェニレンエーテルエーテルスルホン固体高分子電解質IIは、同一加温加水分解条件で破け、ぼろぼろになっていた。

【0077】即ち、安価なスルホプロピル化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質膜Iは、後述の比較例1のスルホン化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質膜IIと異なり、高価なパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に、安定でコストと耐加水分解性(耐久性)が両立したものが得られた。

【0078】(3) 電極触媒被覆用溶液および膜電極接合体の作製

40重量%の白金担持カーボンに、前記(2)の5重量% 濃度のN,Nージメチルホルムアミドーシクロヘキサノンーメチルエチルケトン混合溶液を、白金触媒と固体 40高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液I)を調整した。

【0079】テフロンコーテングのSUS製密閉容器に、前記電極触媒被覆用溶液Iの1.0gと、イオン交換水20mlを入れて120℃で2週間保持した。その後、冷却して溶媒を揮散させ、生じた固体を水洗した後、電極触媒被覆用溶液Iのイオン交換基当量重量を測定した。その結果、該溶液Iのイオン交換基当量重量は、初期と変わらず1100g/当量と、高価なパーフ 50

18

ルオロスルホン酸(ナフィオン117) 電極触媒被覆用 溶液と同様に安定であった。

【0080】一方、後述の比較例1の(2)に示すように、電極触媒被覆用溶液IIのイオン交換基当量重量は、同一加温加水分解条件で1200g/当量と変化し、初期の650g/当量の値より大きくなり、スルホン酸基が脱離していた。

【0081】即ち、安価な電極触媒被覆用溶液 I は、後述の比較例1の(2)に記載した安価な電極触媒被覆用溶液IIと異なり、高価なパーフルオロスルホン酸(ナフィオン117)電極触媒被覆用溶液と同様に、安定でコストと耐加水分解性(耐久性)が両立したものを得ることができた。

【0082】前記電極触媒被覆用溶液 I を、前記(2)で得られた固体高分子電解質膜 I の両側に塗布した後、乾燥して白金担持量 0.25 mg/c m²の膜電極接合体 I を作製した。

【0083】後述の比較例1の(2)に記載した電極触 媒被覆用溶液IIを、前記(2)で得られた固体高分子電 解質膜Iの両側に塗布した後、乾燥して白金担持量0. 25mg/cm²の膜電極接合体I'を作製した。

【0084】40重量%の白金担持カーボンに、パーフロロスルホン酸固体高分子電解質(ナフィオン117)の5重量%濃度のアルコール/水混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液)を調整した。この電極触媒被覆用溶液を前記(2)で得られた固体高分子電解質膜Iの両側に塗布後、乾燥して白金担持量0.25mg/cm²の膜電極接合体I''を作製した。

【0085】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体Iとイオン交換水20mlを入れ、120℃で2週間保持した。保持後の膜電極接合体Iは高コストのパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と、パーフルオロスルホン酸固体高分子電解質(ナフィオン117)を用いて作製した膜電極接合体と同様に初期と変わらず、膜もしっかりしていた。

【0086】テフロンコーテングのSUS製密閉容器に、得られた前記膜電極接合体 I とイオン交換水 20 m I を入れ、120 で 2 週間保持した。保持後の膜電極接合体 I は、電極が若干剥がれていたが膜はしっかりしており、発電能力はあった。

【0087】テフロンコーテングのSUS製密閉容器に、得られた前記膜電極接合体 I''とイオン交換水 20 m 1 を入れ、120 \mathbb{C} で 2 週間保持した。保持後の膜電極接合体 I'' は、電極が若干剥がれていたが膜はしっかりしており、発電能力はあった。

【0088】一方、後述の比較例1の(3)に示したようにスルホン化ポリ1,4-ビフェニレンエーテルエー

テルスルホン固体高分子電解質膜IIと、電極触媒被覆用溶液IIを用いて作製した膜電極接合体IIは、同一加温加水分解条件で膜は破け、ぼろぼろになり、電極は剥がれていた。

【0089】即ち、安価なスルホプロピル化ポリ1,4 ーピフェニレンエーテルエーテルスルホン固体高分子電 解質膜電極接合体は、後述の比較例1の(3)に記した スルホン化ポリ1,4ーピフェニレンエーテルエーテル スルホン固体高分子電解質膜電極接合体IIと異なり、高 価なパーフルオロスルホン酸(ナフィオン117)膜電 10 極接合体と同様に安定で、コストと耐加水分解性(耐久 性)が両立し優れたものを得ることができた。

【0090】(4)燃料電池単セルの耐久性試験前記膜電極接合体 I, I'または I''を沸騰した脱イオン水中に 2時間浸漬することにより吸水させた。得られた膜電極接合体を評価セルに組込み、燃料電池出力性能を評価した。即ち、図1に示す固体高分子電解質膜 1、酸素極 2 および水素極 3 からなる実施例 1 の膜電極接合体 4 の両電極に、薄いカーボンペーパのパッキング材

(支持集電体) 5 を密着させて、その両側から極室分離 20 と電極へのガス供給通路の役割を兼ねた導電性のセパレータ (バイポーラプレート) 6 からなる固体高分子型燃料電池単セルを作製した。

【0091】前記固体高分子型燃料電池単セルを電流密度300mA/cm²の条件で長時間稼動試験を行った。その結果を図2に示す。

【0092】図2中の12,13,14はそれぞれ膜電極接合体I,I'およびI''を用いた燃料電池単セルの耐久性試験結果である。図2中の15はパーフルオロスルホン酸(ナフィオン117)膜電極接合体を用いた燃 30料電池単セルの耐久性試験結果である。

【0093】図中の12は実施例1のアルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホン固体高分子電解質膜と、アルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホン固体高分子電解質の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化を、13は実施例1のアルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホン固体高分子電解質膜と、スルホン酸基が直接結合したポリエーテルエーテルスルホン固体高分子電解質の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化である。

【0094】また、14は実施例1のアルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホン固体高分子電解質膜と、パーフルオロスルホン酸固体高分子電解質(ナフィオン117)の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化、15はパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)を用いた燃料電池単セルの出力電圧の経時変化、16は比較例1のスルホン酸基が直接結合した50

20

ポリエーテルエーテルスルホン固体高分子電解質膜と、 スルホン酸基が直接結合したポリエーテルエーテルスル ホン固体高分子電解質の電極触媒被覆用溶液を用いた燃 料電池単セルの出力電圧の経時変化である。

【0095】図2の12および14に示すように膜電極接合体I, I''を用いた燃料電池単セルの出力電圧は初期0.70Vと、図2の15のパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)を用いた燃料電池単セルの出力電圧より低いが、稼動時間5000時間後でも初期と変わらないため、積層数を増やせば燃料電池として十分使える。

【0096】一方、図2中の16(後述に記載の比較例1のスルホン化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質IIを使用した燃料電池単セル)の出力電圧は初期0.73V、稼動時間600時間後では出力が無くなった。このことからポリ1,4ーピフェニレンエーテルエーテルスルホンの芳香族環にアルキレン基を介してスルホン酸基を結合したポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質膜Iを用いた燃料電池単セルは、スルホン基と直接結合したポリ1,4ーピフェニレンエーテルスルホン固体高分子電解質膜IIを用いた燃料電池単セルより耐久性に優れていることが明白である。

【0097】図2から分かるように膜電極接合体 I, I''を用いた燃料電池単セルの耐久性は、膜電極接合体 I'を用いた燃料電池単セルの耐久性より優れている。即ち、電極触媒被覆用溶液 I は電極触媒被覆用溶液 IIより膜電極接合体の電極触媒被覆に適している。

【0098】(5) 燃料電池の作製

前記(4)で作製した単電池セルを36層積層し、固体高 分子型燃料電池を作製したところ、3kWの出力を示し た。

【0099】〔比較例 1〕

(1) スルホン化ポリ1,4ーピフェニレンエーテルエーテルスルホンの合成撹拌機、温度計、塩化カルシウム管を接続した還流冷却器を付けた500mlの四つ口丸底フラスコの内部を窒素置換した後、110で10時間保持乾燥した4.00g(0.0103mol)のポリ1,4-ピフェニレンエーテルエーテルスルホン〔(-C6H4-4-SO₂C6H4-4-OC6H4-4-C6H4-4-O-)n〕と脱水クロロホルム<math>100ml中を入れ、60℃に約1時間保持して溶解した。この溶液に1.165g(0.01mol)のクロロスルホン酸を添加した1,1,2,2-テトラクロロエタン溶液50mlを約10分間かけて加えた。

【0100】次いで、60℃で4時間攪拌した。析出物を濾過し、クロロホルム150 m l で洗浄した。得られた析出物にメタノール250 m l を加え60℃で溶解し、該溶液を60℃で減圧乾燥した。

【0101】得られたポリマーに水250mlを加え、

ミキサーで細かく砕き、濾過した。この操作を3回繰り返し、得られた水不溶性の微粉末を5酸化燐上で減圧下、90℃で乾燥した。

【0102】この微粉末は水に不溶、メタノールに可溶であった。「HNMRを測定すると、原料のポリ1,4ービフェニレンエーテルエーテルスルホン中のフェニル基の水素に基づく7.3~8.0 ppmの吸収が減少し、新たにSO3H基に隣接するフェニル基の水素の基づく8.3 ppmの吸収が認められた。このことからスルホン酸が導入されていることが確認された。得られたスルホン化ポリ1,4ービフェニレンエーテルエーテルスルホン固体高分子電解質IIのスルホン酸当量重量は650g/当量であった。

【0103】テフロンコーテングのSUS製密閉容器に、前記スルホン化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質IIの1.0gと、イオン交換水20mlを入れ、120℃に2週間保持した。その後、冷却して十分に水洗した後、スルホン化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質IIのイオン交換基当量重量を測定した。

【0104】その結果、スルホン化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質IIのスルホン酸当量重量は1200g/当量と初期の650g/当量の値より大きくなり、スルホン酸基が脱離していた。

【0105】(2) 固体高分子電解質膜の作製 前記(1)で得られたスルホン化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質IIを、5 重量%の濃度になるようにN,Nージメチルホルムアミドーシクロヘキサノンーメチルエチルケトン混合溶媒 (体積比20:80:25)に溶解した。この溶液をスピンコートによりガラス板上に展開し、風乾した後、80℃で真空乾燥して膜厚45μmの固体高分子電解質膜IIを作成した。得られた固体高分子電解質膜IIのイオン 導電率は3S/cmであった。

【0106】テフロンコーテングのSUS製密閉容器に前記固体高分子電解質膜IIとイオン交換水20m1を入れ、120℃に2週間保持した。その結果、得られた固体高分子電解質膜IIは破け、ぼろぼろになっていた。

【0107】(3) 電極触媒被覆用溶液および膜電極接 40 合体の作製

40重量%の白金担持カーボンに、前記(2)の5重量% 濃度のN,N-ジメチルホルムアミドーシクロヘキサノンーメチルエチルケトン混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液II)を調整した。

【0108】テフロンコーテングのSUS製密閉容器 に、前記電極触媒被覆用溶液IIの1.0gとイオン交換 水20mlを入れて120℃に2週間保持した。その 22

後、冷却して溶媒を揮散させ、生じた固体を水洗後、電極触媒被覆用溶液IIのイオン交換基当量重量を測定した。その結果、電極触媒被覆用溶液IIのイオン交換基当量重量は、同一加温加水分解条件で1200g/当量と変化し、初期の650g/当量の値より大きくなり、スルホン酸基が脱離していた。

【0109】前記電極触媒被覆用溶液IIを前記(2)で得られた固体高分子電解質膜IIの両側に塗布した後、乾燥して白金担持量 $0.25\,\mathrm{mg/cm^2}$ の膜電極接合体IIを作製した。

【0110】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体IIとイオン交換水20mIを入れ、120Cに2週間保持した。その結果、膜電極接合体IIの膜は破け、ぼろぼろになり、電極は剥がれていた。

【0111】(4) 燃料電池単セルの耐久性試験 比較例1の膜電極接合体IIの両側に薄いカーボンペーパ のパッキング材(支持集電体)を密着させ、その両側か ら極室分離と電極へのガス供給通路の役割を兼ねた導電 性のセパレータ(バイポーラプレート)からなる固体高 分子型燃料電池単セルを作製し、電流密度300mA/ cm²の条件で長時間稼動試験を行った。

【0112】その結果、図2の16に示すように出力電 圧は初期0.73Vで、稼動時間600時間後で出力電 圧が無くなった。

【0113】 (実施例 2)

(1) スルホプロピル化ポリ1,4-ピフェニレンエーテルエーテルスルホンの合成

撹拌機、温度計、塩化カルシウム管を接続した還流冷却器を付けた500mlの四つ口丸底フラスコの内部を窒素置換した後、110で10時間保持乾燥した22. 6g(0.0155mol)のポリ1,4-ピフェニレンエーテルエーテルスルホン [(-C₆H₄-4-SO₂C₆H₄-4-OC₆H₄-4-C₆H₄-4-O-)n] と脱水<math>1,1,2-トリクロロエタン150mlを入れ、113で約 1時間保持して溶解した。この溶液にプロパンスルトン24.8g(0.0155mol)を加えた。

【0114】次いで、撹拌しながら約30分かけて無水塩化アルミニウム6.19g(0.0464mol)を加えた。無水塩化アルミニウムを添加後、30時間,113℃で撹拌した。析出したポリマーを濾過し、クロロホルム150mlで洗浄し、減圧乾燥した。得られたポリマーを水250mlに懸濁させ、ミキサーで細かく砕いた。得られた微粉砕物を濾過した。これを4回繰り返した

【0115】水で十分洗浄後、水不溶性の微粉砕物を減圧下、90℃で乾燥した。 1 HNMRを測定すると、新たに-CH $_{2}$ CH $_{2}$ SO $_{3}$ H基に基づくピークが 2. $_{2}$ ppm、 $_{3}$. $_{8}$ ppmに認められた。このことからス $_{50}$ ルホプロピル基が導入されていることが確認された。得

られたスルホプロピル化ポリ1,4-ビフェニレンエー テルエーテルスルホン固体高分子電解質IIIのスルホン 酸当量重量は430g/当量であった。

【0116】スルホプロピル化ポリ1,4-ビフェニレンエーテルエーテルスルホン固体高分子電解質IIIのコストは、市販の比較的安価なエンジニアプラスチックであるポリ1,4-ビフェニレンエーテルエーテルスルホンを原料に1工程で製造できるため、原料が高価で5工程を経て製造されるパーフルオロスルホン酸固体高分子電解質(ナフィオン117)のコストに比べ1/50以 10下と安価である。

【0117】テフロンコーテングのSUS製密閉容器に、得られたスルホプロピル化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質IIIの1.0gと、イオン交換水20mlを入れて120℃で2週間保持した。その後、冷却して十分に水洗した後、スルホプロピル化ポリ1,4ービフェニレンエーテルエーテルスルホン固体高分子電解質IIIのイオン交換基当量重量を測定した。

【0118】その結果、スルホプロピル化ポリ1,4-ビフェニレンエーテルエーテルスルホン固体高分子電解質IIIのイオン交換基当量重量は、初期と変わらず430g/当量と高価なパーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定であった。

【0119】一方、比較例1の(1)に示したように、スルホン化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質IIのイオン交換基当量重量は、同一加温加水分解条件で1200g/当量と変化し、初期の650g/当量の値より大きくなり、スルホン酸基が脱離していた。

【0120】即ち、安価なスルホプロピル化ポリ1,4 ーピフェニレンエーテルエーテルスルホン固体高分子電 解質!!!は、比較例1の(1)に記載したスルホン化ポリ 1,4ーピフェニレンエーテルエーテルスルホン固体高 分子電解質!!と異なり、高価なパーフルオロスルホン酸 固体高分子電解質(ナフィオン117)と同様に、安定 でコストと耐加水分解性(耐久性)が両立したものが得 られた。

【0121】(2) 固体高分子電解質膜の作製前記(1)で得られた生成物を、5重量%の濃度になるようN,N-ジメチルホルムアミドーシクロヘキサノンーメチルエチルケトン混合溶媒(体積比20:80:25)に溶解した。この溶液をスピンコートによりガラス板上に展開し、風乾後、80℃で真空乾燥して膜厚25μmの固体高分子電解質膜IIIを作成した。得られた固体高分子電解質膜IIIのイオン導電率は55S/cmであった

【0122】テフロンコーテングのSUS製密閉容器に 前記固体高分子電解質膜IIIと、イオン交換水20ml を入れ、120℃で2週間保持した。その結果、そのイ 21

オン導電率は高コストのパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に初期と変わらず、膜もしっかりしていた。

【0123】一方、比較例1の(2)に示したように、スルホン化ポリ1,4-ビフェニレンエーテルエーテルスルホン固体高分子電解質IIは、同一加温加水分解条件で破け、ぼろぼろになっていた。

【0124】即ち、安価なスルホプロピル化ポリ1,4 ーピフェニレンエーテルエーテルスルホン固体高分子電 解質膜IIIは、比較例1の(2)に記載した安価なスルホ ン化ポリ1,4ーピフェニレンエーテルエーテルスルホ ン固体高分子電解質膜IIと異なり、高価なパーフルオロ スルホン酸固体高分子電解質膜(ナフィオン117)と 同様に安定で、コストと耐加水分解性(耐久性)が両立 し優れている。

【0125】(3) 電極触媒被覆用溶液および膜電極接合体の作製

40重量%の白金担持カーボンに、前記(2)の5重量% 濃度のN, N-ジメチルホルムアミドーシクロヘキサノンーメチルエチルケトン混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液III)を調整した。

【0126】テフロンコーテングのSUS製密閉容器に、前記電極触媒被覆用溶液IIIの1.0gと、イオン交換水20mlを入れて120℃で2週間保持した。その後、冷却して溶媒を揮散させ、生じた固体を水洗後、電極触媒被覆用溶液IIIのイオン交換基当量重量を測定した。

50 【0127】その結果、電極触媒被覆用溶液IIIのイオン交換基当量重量は、初期と変わらず430g/当量と高価なパーフルオロスルホン酸(ナフィオン117)電極触媒被覆用溶液と同様に安定であった。

【0128】一方、比較例1の(2)に示したように、電極触媒被覆用溶液IIのイオン交換基当量重量は、同一加温加水分解条件で1200g/当量と変化し、初期の650g/当量の値より大きくなり、スルホン酸基が脱離していた。即ち、安価な電極触媒被覆用溶液IIIは、比較例1の(2)に記載した安価な電極触媒被覆用溶液IIと異なり、高価なパーフルオロスルホン酸(ナフィオン117)電極触媒被覆用溶液と同様に安定で、コストと耐加水分解性(耐久性)が両立して優れている。

【0129】前記電極触媒被覆用溶液IIIを、前記(2)で得られた固体高分子電解質膜IIIの両側に塗布後、乾燥して白金担持量0.25mg/cm²の膜電極接合体IIIを作製した。

【0130】比較例1の(2)に記載した電極触媒被覆用溶液IIを、前記(2)で得られた固体高分子電解質膜IIIの両側に塗布後、乾燥して白金担持量0.25mg/cm²の膜電極接合体III'を作製した。

【0131】40重量%の白金担持カーボンに、パーフロロスルホン酸固体高分子電解質の5重量%濃度のアルコールー水混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液)を調整した。

【0132】この電極触媒被覆用溶液を前記(2)で得られた固体高分子電解質膜IIIの両側に塗布後、乾燥して白金担持量 $0.25\,\mathrm{mg/cm^2}$ の膜電極接合体III''を作製した。

【0133】テフロンコーテングのSUS製密閉容器に 10 得られた前記膜電極接合体!!!と、イオン交換水20m 1を入れ、120℃で2週間保持した。その結果、膜電 極接合体!!!は、高コストのパーフルオロスルホン酸固 体高分子電解質膜(ナフィオン117)とパーフルオロ スルホン酸固体高分子電解質(ナフィオン117)を用 いて作製した膜電極接合体と同様に、初期と変わらず膜 もしっかりしていた。

【0134】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体III'とイオン交換水20mlを入れ、120℃に2週間保持した。その結果、膜電極 20接合体III'は電極が若干剥がれていたが膜はしっかりしており、発電能力もあった。

【0135】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体III'とイオン交換水20m1を入れ、120℃に2週間保持した。その結果、膜電極接合体III'は電極が若干剥がれていたが膜はしっかりしており、発電能力もあった。

【0136】一方、比較例1の(3)に示したように、比較的安価なスルホン化芳香族炭化水素系固体高分子電解質膜IIと、電極触媒被覆用溶液IIを用いて作製した膜電極接合体IIは、同一加温加水分解条件で膜は破け、ぼろぼろになり、電極は剥がれていた。即ち、安価なスルホプロピル化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質膜電極接合体は、比較例1の(3)に記載した安価なスルホン化ポリ1,4ーピフェニレンエーテルエーテルスルホンル固体高分子電解質膜電極接合体IIとは異なり、高価なパーフルオロスルホン酸(ナフィオン117)膜電極接合体と同様に安定で、コストと耐加水分解性(耐久性)が両立し優れている。

【0137】(4) 燃料電池単セル出力性能評価 前記膜電極接合体III、III'およびIII''を沸騰した脱イ オン水中に2時間浸漬することにより吸水させた。得ら れた膜電極接合体を評価セルに組込み、燃料電池出力性 能を評価した。

【0138】図1に示す、固体高分子電解質膜1、酸素極2および水素極3からなる実施例2の膜電極接合体4の両電極に、薄いカーボンペーパのパッキング材(支持集電体)5を密着させて、その両側から極室分離と電極へのガス供給通路の役割を兼ねた導電性のセパレータ

(バイポーラプレート) 6 からなる固体高分子型燃料電 50

26

他単セルを作製し、電流密度300mA/cm²の条件で長時間稼動試験を行った。その結果を図3に示す。図3中の17,18,19はそれぞれ膜電極接合体III、III'、III'、を用いた燃料電池単セルの耐久性試験結果である。

【0139】図3において、17は実施例2のアルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホン固体高分子電解質膜と、アルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホン固体高分子電解質の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化、18は実施例2のアルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホン固体高分子電解質原と、スルホン酸基が直接結合したポリエーテルエーテルスルホン固体高分子電解質の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化である。

【0140】また、19は実施例2のアルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホン固体高分子電解質膜と、パーフルオロスルホン酸固体高分子電解質(ナフィオン117)の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化、20はパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)を用いた燃料電池単セルの出力電圧の経時変化、21は比較例2のスルホン酸基が直接結合したポリエーテルエーテルスルホン酸基が直接結合したポリエーテルエーテルスルホン固体高分子電解質の電極触媒被覆用溶液を用いた、燃料電池単セルの出力電圧の経時変化である。

【0141】図3中の20はパーフルオロスルホン酸 (ナフィオン117)膜電極接合体を用いた燃料電池単 セルの耐久性試験結果である。

【0142】図3の17,19に示すように膜電極接合体III,III''を用いた燃料電池単セルの出力電圧は初期0.88Vで、稼動時間5000時間後でほぼ初期の94%に低下しているが、低下後の値はパーフルオロスルホン酸(ナフィオン117)膜電極接合体を用いた燃料電池単セルの値とほぼ同等であり、燃料電池として十分使用できる。

【0143】一方、図3中の21(比較例2のスルホン化芳香族炭化水素固体高分子電解質IIを使用した燃料電池単セル)の出力電圧は初期0.73Vで、稼動時間600時間後で出力が無くなった。

【0144】このことから芳香族炭化水素の芳香族環にアルキレン基を介してスルホン酸基を結合した芳香族炭化水素系固体高分子電解質IIIを用いた燃料電池単セルが、スルホン基と直接結合した芳香族炭化水素系固体高分子電解質IIを用いた燃料電池単セルより耐久性に優れていることが明白である。

【0145】膜電極接合体IIIおよびIII''を用いた燃料電池単セルの耐久性は膜電極接合体III'を用いた燃料電

池単セルの耐久性より優れている。

【0146】即ち、電極触媒被覆用溶液IIIは、比較例 1の電極触媒被覆用溶液IIより、膜電極接合体の電極触 媒被覆に適している。また、実施例2および比較例2の 膜電極接合体の白金担持量が0.25mg/cm²と同じ であるにも拘わらず、実施例2の燃料電池単セルの出力 電圧が、比較例2の燃料電池単セルの出力電圧より大き い理由は、実施例2の膜電極接合体IIIの固体高分子電 解質膜IIIおよび電極触媒被覆用溶液IIIのイオン導電率 が、比較例2の膜電極接合体IIの固体高分子電解質膜II 10 および電極触媒被覆用溶液IIのイオン導電率より高いか らである。

【0147】(5) 燃料電池の作製

前記(4)で作製した単電池セルを36層積層し、固体高分子型燃料電池を作製したところ、3kWの出力を示した。

【0148】 (実施例 3)

(1) スルホプロピル化ポリ1,4-ビフェニレンエー テルエーテルスルホンの合成

撹拌機、温度計、塩化カルシウム管を接続した還流冷却 20 器を付けた500mlの四つ口丸底フラスコの内部を窒素置換後、乾燥した6.00g(0.0155mol)のポリ1,4-ピフェニレンエーテルエーテルスルホン

〔 $(-C_6H_4-4-SO_2C_6H_4-4-OC_6H_4-4-C_6H_4-4-O-)n$ 〕と、合成用脱水クロロホルム150 mlを入れ、60℃で約1時間保持し溶解した。この溶液にプロパンスルトン5.67g (0.0464mol)を加えた。

【0149】次いで、撹拌しながら約30分かけて無水塩化アルミニウム6.19g(0.0464mol)を加えた。無水塩化アルミニウムを添加した後、60℃で30時間還流攪拌した。析出物を濾過し、クロロホルム150mlで洗浄、減圧乾燥した。得られた析出物を水250mlに懸濁させ、ミキサーで細かく砕いて濾過した。これを4回繰り返した。

【0150】水で十分洗浄した後、水不溶性の微粉砕物を減圧下、90℃で乾燥し、 1 HNMRを測定すると、新たに-CH $_{2}$ CH $_{2}$ CH $_{2}$ SO $_{3}$ H基に基づくピークが 2.2ppm、3.8ppmに認められた。

【0151】このことからスルホプロピル基が導入され 40 ていることが確認された。得られたスルホプロピル化ポリ1,4-ビフェニレンエーテルエーテルスルホン固体高分子電解質IVのスルホン酸当量重量は970g/当量であった。

【0152】スルホプロピル化ポリ1,4ービフェニレンエーテルエーテルスルホン固体高分子電解質IVのコストは、市販の比較的安価なエンジニアプラスチックであるポリ1,4ービフェニレンエーテルエーテルスルホンを原料に、1工程で製造できるため、原料が高価で5工程を経て製造されるパーフルオロスルホン酸固体高分

28

子電解質(ナフィオン117)のコストに比べ、1/50以下と安価である。

【0153】テフロンコーテングのSUS製密閉容器に、得られたスルホプロピル化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質IVの1.0gと、イオン交換水20mlを入れて120℃で2週間保持した。その後、冷却して充分に水洗した後、スルホプロピル化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質IVのイオン交換基当量重量を測定した。

【0154】該固体高分子電解質IVのイオン交換基当量重量は、初期と変わらず970g/当量と高価なパーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定であった。

【0155】一方、比較例1の安価なスルホン化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質IIのイオン交換基当量重量は、同一加温加水分解条件で1200g/当量と変化し、初期の650g/当量の値より大きくなり、スルホン酸基が脱離していた。即ち、安価なスルホプロピル化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質IVは、比較例2のスルホン化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質IIと異なり、パーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定で、コストと耐加水分解性(耐久性)が両立して優れている。

【0156】(2) 固体高分子電解質膜の作製前記(1)で得られた固体高分子電解質IVを、5重量%の濃度になるようにN、Nージメチルホルムアミドーシクロヘキサノンーメチルエチルケトン混合溶媒(体積比20:80:25)に溶解した。この溶液をスピンコートによりガラス板上に展開して風乾後、80℃で真空乾燥し、膜厚25 μ mの固体高分子電解質膜IVを作成した。該電解質膜IVのイオン導電率は10S/cmであった。

【0157】テフロンコーテングのSUS製密閉容器に前記固体高分子電解質膜IVとイオン交換水20mlを入れ、120℃で2週間保持した。保持後の固体高分子電解質膜IVのイオン導電率は、高コストのパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に初期と変わらず、膜もしっかりしていた。

【0158】一方、比較例1の(2)に示したように、比較的安価なスルホン化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質IIは、同一加温加水分解条件で破け、ぼろぼろになっていた。

【0159】即ち、安価なスルホプロピル化ポリ1,4 ーピフェニレンエーテルエーテルスルホン固体高分子電 解質膜IVは、スルホン化ポリ1,4ーピフェニレンエー テルエーテルスルホン固体高分子電解質膜IIと異なり、 50 パーフルオロスルホン酸固体高分子電解質膜(ナフィオ

ン117)と同様に安定で、コストと耐加水分解性(耐 久性)が両立し優れている。

【0160】(3) 電極触媒被覆用溶液および膜電極接 合体の作製

40重量%の白金担持カーボンに、前記(2)の5重量% 濃度のN, N-ジメチルホルムアミドーシクロヘキサノ ンーメチルエチルケトン混合溶液を、白金触媒と固体高 分子電解質との重量比が2:1となるように添加し、均 一に分散させてペースト(電極触媒被覆用溶液IV)を 調製した。

【0161】テフロンコーテングのSUS製密閉容器 に、前記電極触媒被覆用溶液IVの1.0gと、イオン交 換水20mlを入れて120℃で2週間保持した。その 後、冷却して溶媒を揮散させ、生じた固体を水洗後、電 極触媒被覆用溶液IVのイオン交換基当量重量を測定し た。

【0162】その結果、電極触媒被覆用溶液IVのイオ ン交換基当量重量は、初期と変わらず970g/当量と パーフルオロスルホン酸(ナフィオン117)電極触媒 被覆用溶液と同様に安定であった。

【0163】一方、比較例1の電極触媒被覆用溶液Ⅱの イオン交換基当量重量は、同一加温加水分解条件で12 00g/当量と変化し、初期の650g/当量の値より 大きくなり、スルホン酸基が脱離していた。

【0164】即ち、安価な電極触媒被覆用溶液IVは、 比較例1の電極触媒被覆用溶液IIと異なり、パーフルオ ロスルホン酸(ナフィオン117)電極触媒被覆用溶液 と同様に安定で、コストと耐加水分解性(耐久性)が両 立し優れている。

【0165】前記電極触媒被覆用溶液IVを、前記(2) で得られた固体高分子電解質膜IVの両側に塗布後、乾 燥して白金担持量0.25mg/cm²の膜電極接合体I Vを作製した。

【0166】40重量%の白金担持カーボンに、比較例 1の電極触媒被覆用溶液!!を前記(2)で得られた固体 高分子電解質膜IVの両側に塗布した後、乾燥して白金 担持量0.25mg/cm²の膜電極接合体IV'を作製し た。

【0167】40重量%の白金担持カーボンに、パーフ ロロスルホン酸固体高分子電解質(ナフィオン117) の5重量%濃度のアルコールー水混合溶液を、白金触媒 と固体高分子電解質との重量比が2:1となるように添 加し、均一に分散させてペースト(電極触媒被覆用溶 液)を調製した。この電極触媒被覆用溶液を前記(2)で 得られた固体高分子電解質膜IVの両側に塗布後、乾燥 して白金担持量 0.2 5 m g / c m²の膜電極接合体I V''を作製した。

【0168】テフロンコーテングのSUS製密閉容器に 得られた前記膜電極接合体IVと、イオン交換水20m 1を入れ、120℃で2週間保持した。保持後の膜電極 so ルホン固体高分子電解質膜と、アルキレン基を介してス

30

接合体IVは、高コストのパーフルオロスルホン酸固体 高分子電解質膜(ナフィオン117)と、パーフルオロ スルホン酸固体高分子電解質(ナフィオン117)を用 いて作製した膜電極接合体と同様に初期と変わらず、膜 もしっかりしていた。

【0169】テフロンコーテングのSUS製密閉容器に 得られた前記膜電極接合体 IV'とイオン交換水20m1 を入れ、120℃で2週間保持した。保持後の膜電極接 合体IV'は、電極が若干剥がれていたが膜はしっかりし 10 ており、発電能力もあった。

【0170】テフロンコーテングのSUS製密閉容器 に、前記膜電極接合体IV''とイオン交換水20mlを 入れ、120℃で2週間保持した。その結果、膜電極接 合体IV''は、電極が若干剥がれていたが膜はしっかり しており、発電能力もあった。

【0171】一方、比較例1の(3)に示したように、比 較的安価なスルホン化ポリ1,4-ビフェニレンエーテ ルエーテルスルホン固体高分子電解質膜IIと、電極触媒 被覆用溶液口を用いて作製した膜電極接合体口は、同一 加温加水分解条件で膜は破け、ぼろぼろになり、電極は 剥がれていた。

【0172】即ち、安価なスルホプロピル化ポリ1,4 ビフェニレンエーテルエーテルスルホン固体高分子電 解質膜電極接合体は、比較例1の安価なスルホン化ポリ 1,4-ビフェニレンエーテルエーテルスルホン固体高 分子電解質膜電極接合体IIと異なり、パーフルオロスル ホン酸(ナフィオン117)膜電極接合体と同様に安定 で、コストと耐加水分解性(耐久性)が両立し優れてい る。

【0173】(4) 燃料電池単セルの耐久性試験 前記膜電極接合体IV、IV'またはIV''を、沸騰した脱 イオン水中に2時間浸漬することにより吸水させた。得 られた膜電極接合体を評価セルに組込み、燃料電池出力 性能を評価した。図1に示す固体高分子電解質膜1、酸 素極2および水素極3からなる実施例3の膜電極接合体 4の両電極に薄いカーボンペーパーのパッキング材(支 持集電体) 5を密着させて、その両側から極室分離と電 極へのガス供給通路の役割を兼ねた導電性のセパレータ (バイポーラプレート) 6からなる図固体高分子型燃料 電池単セルを作製した。

【0174】前記固体高分子型燃料電池単セルを電流密 度300mA/cm²の条件で長時間稼動試験を行っ た。図4に示すように22,23,24はそれぞれ膜電 極接合体 IV、IV'およびIV''を用いた燃料電池単セル の耐久性試験結果である。図4中の25はパーフルオロ スルホン酸(ナフィオン117)膜電極接合体を用いた 燃料電池単セルの耐久性試験結果である。

【0175】図4中の22は実施例3のアルキレン基を 介してスルホン酸基が結合したポリエーテルエーテルス

ルホン酸基が結合したポリエーテルエーテルスルホン固体高分子電解質の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化、23は実施例3のアルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホン固体高分子電解質膜と、スルホン酸基が直接結合したポリエーテルエーテルスルホン固体高分子電解質の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化である。

【0176】また、24は実施例3のアルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスル 10 ホン固体高分子電解質膜と、パーフルオロスルホン酸固体高分子電解質(ナフィオン117)の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化、25はパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)を用いた燃料電池単セルの出力電圧の経時変化、そして、26は比較例3のスルホン酸基が直接結合したポリエーテルエーテルスルホン固体高分子電解質膜とスルホン酸基が直接結合したポリエーテルエーテルスルホン固体高分子電解質膜とスルホン酸基が直接結合したポリエーテルエーテルスルホン固体高分子電解質の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化である。20

【0177】図4の22および24の出力電圧は初期 0.78Vで、稼動時間5000時間後でも初期と変わらず、図4の25のパーフルオロスルホン酸固体高分子 電解質膜(ナフィオン117)IVを用いた結果と同等 であった。

【0178】一方、図4中の26(比較例1のスルホン化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質IIを使用した燃料電池単セル)の出力電圧は、初期0.73Vで、稼動時間600時間後で出力が無くなった。

【0179】このことから、ポリ1,4-ピフェニレンエーテルエーテルスルホンの芳香族環に、アルキレン基を介してスルホン酸基を結合したポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質膜IVを用いた燃料電池単セルは、スルホン基と直接結合したポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質膜IIを用いた燃料電池単セルより耐久性に優れていることが明白である。

【0180】また、膜電極接合体IVおよびIV"を用いた燃料電池単セルの耐久性は膜電極接合体IV"を用いた 40燃料電池単セルの耐久性より優れている。即ち、電極触媒被覆用溶液IVは、比較例1の電極触媒被覆用溶液IIより膜電極接合体の電極触媒被覆に適している。

【0181】また、実施例3および比較例1の膜電極接合体の白金担持量が0.25mg/cm²と同じであるにも拘わらず、実施例3の燃料電池単セルの出力電圧が比較例1の燃料電池単セルの出力電圧より大きい理由は、実施例3の膜電極接合体の固体高分子電解質膜IVおよび電極触媒被覆用溶液IVのイオン導電率が、比較例1の膜電極接合体の固体高分子電解質膜!!および電極触媒50

32

被覆用溶液川のイオン導電率より高いからである。

【0182】(5) 燃料電池の作製

前記(4)で作製した単電池セルを36層積層し、固体高分子型燃料電池を作製したところ、3kWの出力を示した。

【0183】 〔実施例 4〕

(1) スルホプロピル化ポリ1,4-ビフェニレンエー テルエーテルスルホンの合成

乾燥した6.00g(0.0155mol) のポリ1,4 ーピフェニレンエーテルエーテルスルホン $[(-C_6H_4-4-SO_2C_6H_4-4-OC_6H_4-4-C_6H_4-4-O-)n]$ と、脱水クロロホルム150mlをオートクレープに入れ、60Cにて約1時間保持し溶解した。この溶液にプロパンスルトン5.67g(0.0464mol) を加えた。

【0184】次いで、撹拌しながら約30分かけて無水塩化アルミニウム6.19g(0.0464mol)を加えた。無水塩化アルミニウムを添加後、20時間,130℃で攪拌した。析出したポリマを濾過し、クロロホルム150mlで洗浄し、減圧乾燥し、該ポリマを水250mlに懸濁させ、ミキサーで細かく砕いた。得られた微粉砕物を濾過した。これを4回繰り返した。

【0185】水で十分洗浄後、水不溶性の微粉砕物を減圧下、90℃で乾燥した。 1 HNMRを測定すると、新たに $^-$ CH $_2$ CH $_2$ SO $_3$ H基に基づくピークが $_2$. $_2$ ppm、 $_3$. $_8$ ppmに認められた。このことからスルホプロピル基が導入されていることが確認された。得られたスルホプロピル化ポリ $_1$, $_4$ $^-$ ビフェニレンエーテルエーテルスルホン固体高分子電解質 $_1$ 0のスルホン酸当量重量は $_1$ 0の $_2$ 1分量であった。

【0186】スルホプロピル化ポリ1,4-ビフェニレンエーテルエーテルスルホン固体高分子電解質Vのコストは、市販の比較的安価なエンジニアプラスチックであるポリ1,4-ビフェニレンエーテルエーテルスルホンを原料に1工程で製造できるため、原料が高価で5工程を経て製造されるパーフルオロスルホン酸固体高分子電解質(ナフィオン117)のコストに比べ1/50以下と安価である。

【0187】テフロンコーテングのSUS製密閉容器に、得られたスルホプロピル化ポリ1,4ービフェニレンエーテルエーテルスルホン固体高分子電解質Vの1.0gとイオン交換水20mlを入れて120℃で2週間保持した。その後、冷却して十分に水洗した後、スルホプロピル化ポリ1,4ービフェニレンエーテルエーテルスルホン固体高分子電解質Vのイオン交換基当量重量を測定した。その結果、該固体高分子電解質Vのイオン交換基当量重量は、初期と変わらず530g/当量と、パーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定であった。

【0188】一方、比較例1の(1)に示したように、

安価なスルホン化ポリ1,4-ビフェニレンエーテルエーテルスルホン固体高分子電解質IIのイオン交換基当量重量は、同一加温加水分解条件で1200g/当量と変化し、初期の650g/当量の値より大きくなり、スルホン酸基が脱離していた。

【0189】即ち、安価なスルホプロピル化ポリ1,4 ーピフェニレンエーテルエーテルスルホン固体高分子電 解質 V は、比較例1のスルホン化ポリ1,4 - ビフェニ レンエーテルエーテルスルホン固体高分子電解質IIと異 なり、パーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定で、コストと耐加水分解性 (耐久性)が両立して優れている。

【0190】(2) 固体高分子電解質膜の作製前記(1)で得られた生成物を5重量%の濃度になるようにN,N-ジメチルホルムアミドーシクロへキサノンーメチルエチルケトン混合溶媒(体積比20:80:25)に溶解した。この溶液をスピンコートによりガラス板上に展開し、風乾後、80℃で真空乾燥して膜厚25μmの固体高分子電解質膜Vを作成した。得られた固体高分子電解質膜Vのイオン導電率は20S/cmであっ20た。

【0191】テフロンコーテングのSUS製密閉容器に得られた前記固体高分子電解質膜Vとイオン交換水20mlを入れ、120℃で2週間保持した。その結果、そのイオン導電率は高コストのパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に初期と変わらず、膜もしっかりしていた。

【0192】一方、比較例1の(2)に示したように比較的安価なスルホン化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質IIは、同一加温加水分解条件で破け、ぼろぼろになっていた。即ち、安価なスルホプロピル化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質膜Vは、比較例1のスルホン化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質膜IIと異なり、パーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に安定で、コストと耐加水分解性(耐久性)が両立し優れている。

【0193】(3) 電極触媒被覆用溶液および膜電極接 合体の作製

40重量%の白金担持カーボンに、前記(2)の5重量% 濃度のN,N-ジメチルホルムアミドーシクロヘキサノンーメチルエチルケトン混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液V)を調製した。

【0194】テフロンコーテングのSUS製密閉容器 に、前記電極触媒被覆用溶液Vの1.0gと、イオン交 換水20mlを入れて120℃で2週間保持した。その 後、冷却して溶媒を揮散させ、生じた固体を水洗後、電 50 34

極触媒被覆用溶液 V のイオン交換基当量重量を測定した。該溶液 V のイオン交換基当量重量は、初期と変わらず530g/当量と、パーフルオロスルホン酸(ナフィオン117)電極触媒被覆用溶液と同様に安定であった。

【0195】一方、比較例1の(2)に示したように電極触媒被覆用溶液IIのイオン交換基当量重量は、同一加温加水分解条件で1200g/当量と変化し、初期の650g/当量の値より大きくなり、スルホン酸基が脱離していた。即ち、安価な電極触媒被覆用溶液Vは、比較例1の電極触媒被覆用溶液IIと異なり、パーフルオロスルホン酸(ナフィオン117)電極触媒被覆用溶液と同様に安定で、コストと耐加水分解性(耐久性)が両立して優れている。

【0196】前記電極触媒被覆用溶液Vを前記(2)で得られた固体高分子電解質膜Vの両側に塗布した後、乾燥して白金担持量0.25mg/cm²の膜電極接合体Vを作製した。

【0197】比較例1の(2)に記載した電極触媒被覆用溶液IIを、前記固体高分子電解質膜Vの両側に塗布後、乾燥して白金担持量0.25mg/cm²の膜電極接合体V'を作製した。

【0198】40重量%の白金担持カーボンに、パーフロスルホン酸固体高分子電解質の5重量%濃度のアルコール/水混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液)を調製した。この電極触媒被覆用溶液を前記(2)で得られた固体高分子電解質膜Vの両側に塗布後、乾燥して白金担持量0.25mg/cm²の膜電極接合体V''を作製した。

【0199】テフロンコーテングのSUS製密閉容器に、前記膜電極接合体Vとイオン交換水20mlを入れ、120℃で2週間保持した。その結果、膜電極接合体Vは、高コストのパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)とパーフルオロスルホン酸固体高分子電解質(ナフィオン117)を用いて作製した膜電極接合体と同様に初期と変わらず、膜もしっかりしていた。

【0200】テフロンコーテングのSUS製密閉容器に前記膜電極接合体V'とイオン交換水20m1を入れ、120℃で2週間保持した。その結果、膜電極接合体V'は電極が若干剥がれていたが膜はしっかりしており、発電能力もあった。

【0201】テフロンコーテングのSUS製密閉容器に前記膜電極接合体V"とイオン交換水20m1を入れ、120で2週間保持した。その結果、膜電極接合体V"は電極が若干剥がれていたが膜はしっかりしており、発電能力もあった。

【0202】一方、比較例1の(3)に示したように、比較的安価なスルホン化芳香族炭化水素系固体高分子電解

質膜IIと、電極触媒被覆用溶液IIを用いて作製した膜電極接合体IIは同一加温加水分解条件で膜は破け、ぼろぼろになり、電極は剥がれていた。即ち、安価なスルホプロピル化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質膜電極接合体は、比較例1のスルホン化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質膜電極接合体IIと異なり、パーフルオロスルホン酸(ナフィオン117)膜電極接合体と同様に安定で、コストと耐加水分解性(耐久性)が両立し優れている。

【0203】(4) 燃料電池単セル出力性能評価前記膜電極接合体 V、V'およびV''を沸騰した脱イオン水中に2時間浸漬することにより吸水させた。これらの膜電極接合体を評価セルに組込み、燃料電池出力性能を評価した。図5に膜電極接合体 V を組み込んだ燃料電池単セルの電流密度 - 電圧プロットを示す。

【0204】電流密度 $1A/cm^2$ のとき出力電圧は0.70Vで、電流密度 $300mA/cm^2$ のとき出力電圧は0.80Vで、固体高分子型燃料電池単セルとして十分使用可能であった。

【0205】次いで、電流密度300 mA/cm^2 の条件で長時間稼動試験を行った結果を図6に示す。図6中の27,28,29はそれぞれ膜電極接合体V、V'およびV''を用いた燃料電池単セルの耐久性試験結果である。図6中の30はパーフルオロスルホン酸(ナフィオン117)膜電極接合体を用いた燃料電池単セルの耐久性試験結果である。

【0206】図6中、27は実施例4のアルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホン固体高分子電解質膜と、アルキレン基を介してス 30ルホン酸基が結合したポリエーテルエーテルスルホン固体高分子電解質の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化、28は実施例4のアルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホン固体高分子電解質膜と、スルホン酸基が直接結合したポリエーテルエーテルスルホン固体高分子電解質の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化である。

【0207】また、29は実施例4のアルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスル 40 ホン固体高分子電解質膜と、パーフルオロスルホン酸固体高分子電解質(ナフィオン117)の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化、30はパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)を用いた燃料電池単セルの出力電圧の経時変化、そして、31は比較例4のスルホン酸基が直接結合したポリエーテルエーテルスルホン固体高分子電解質膜と、スルホン酸基が直接結合したポリエーテルエーテルスルホン固体高分子電解質に表別でである。 50

36

【0208】図6の27,28の出力電圧は初期0.80Vで、稼動時間5000時間後でも初期とほとんど変わらず、図6の30のパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)を用いた結果と同等であった。

【0209】一方、図6中の31 (比較例1のスルホン 化芳香族炭化水素固体高分子電解質IIを使用した燃料電 池単セル)の出力電圧は初期0.73 Vで、稼動時間600時間後で出力が無くなった。

10 【0210】このことから芳香族炭化水素の芳香族環に アルキレン基を介してスルホン酸基を結合した芳香族炭 化水素系固体高分子電解質Vを用いた燃料電池単セル は、スルホン基と直接結合した芳香族炭化水素系固体高 分子電解質IIを用いた燃料電池単セルより耐久性に優れ ていることが明白である。

【0211】膜電極接合体VおよびV''を用いた燃料電池単セルの耐久性は、膜電極接合体V'を用いた燃料電池単セルの耐久性より優れている。即ち、電極触媒被覆用溶液Vは電極触媒被覆用溶液IIより、膜電極接合体の電極触媒被覆に適している。

【0212】また、実施例4および比較例1の膜電極接合体の白金担持量が0.25mg/cm²と同じであるにも拘わらず、実施例4の燃料電池単セルの出力電圧が比較例1の燃料電池単セルの出力電圧より大きい理由は、実施例4の膜電極接合体Vの固体高分子電解質膜Vおよび電極触媒被覆用溶液Vのイオン導電率が、比較例1の膜電極接合体IIの固体高分子電解質膜IIおよび電極触媒被覆用溶液IIのイオン導電率より高いからである。

【0213】実施例3と4から分かるように、スルホン酸当量重量が530~970g/当量であるスルホアルキル化ポリーエーテルエーテルスルホン固体電解質を用いた燃料電池単セルの初期の出力電圧は、パーフルオロスルホン酸(ナフィオン117)膜を用いた燃料電池単セルの出力電圧と同等以上であり、5000時間稼動させても劣化せず特に好ましい。

【0214】(5) 燃料電池の作製

前記(4)で作製した単電池セルを36層積層し、固体高分子型燃料電池を作製したところ、3kWの出力を示した。

40 【0215】 (実施例 5~9) 撹拌機、温度計、塩化カルシウム管を接続した還流冷却器を付けた500mlの四つ口丸底フラスコの内部を窒素置換した後、110℃で10時間保持乾燥した6.00g(0.0155mol)のポリ1,4ーピフェニレンエーテルエーテルスルホン〔(-C6H4-4-SO2C6H4-4-OC6H4-4-C6H4-4-O-)n〕と脱水溶媒150mlを入れ、加熱溶解した。この溶液にプロバンスルトンを加えた。【0216】次いで、乳鉢で良くすりつぶした無水塩化アルミニウムを撹拌しながら約30分かけて加えた。なお、プロパンスルトンと無水塩化アルミニウムの配合量

(20)

37

を表1に記した。

【0217】無水塩化アルミニウムを添加した後、表1 記載の温度で表1記載の時間攪拌した。

【0218】生じた沈澱を濾過し、クロロホルム150 m 1 で洗浄し、減圧乾燥した。得られた沈澱を水250 m 1 に懸濁させ、ミキサーで細かく砕き、濾過した。これを4 回繰り返した。水で十分洗浄した後、水不溶性の微粉砕物を減圧下、90 で乾燥した。 1 HNMRを測定すると、新たに- CH $_{2}$ CH $_{2}$ SO $_{3}$ H基に基づく $_{2.2pm}$ の $_{2.2pm}$ 3.8 $_{2.2pm}$ か認められた。このことから $_{2.2pm}$

38

*スルホプロピル基が導入されていることが確認された。 得られたスルホアルキル化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質のスルホン酸当量重量の測定、固体高分子電解質、固体高分子電解質膜、電極触媒被覆溶液および固体高分子電解質膜電極接合体の耐水劣化特性、および、燃料電池単セルの評価を行った。その結果を表1に示す。

【0219】 【表1】

表 1

プロパンスルトン(g) 無水塩化アルミニウム(g)	実施例 5 5.67	実施例6	実施例7	実施例8	
			5.67		実施例9
悪水塩化/ルミニワム(g)		5.67	5.67	17.0	28.4
	6.20	6.20	6.20	18.6	24.8
	1,1,2-トリ	1,1,2,2・テ	1,2,4-トリ	クロロホ	クロロホ
脱水溶媒	クロロエ	トラクロ	クロロベ	ルム	ルム
	タン	ロエタン	ンゼン		
反応時間(℃)	113	145	150	60	60
反応温度(hr)	12	12	12	15	12
イオン交換基当量重量					
(g/当量)	620	610	590	730	680
固体高分子電解質をイオン交					
換水中で 120℃/2 週間保持後	620	610	590	730	680
のイオン交換基当量重量					
(g/当量)					
固体高分子電解質膜をイオン					
交換水中で 120℃/2 週間保持	変化無	変化無	変化無	変化無	変化無
後の形態					
固体高分子電解質膜のイオン	16	17	19	13	15
伝導度(S/cm)					
固体高分子電解質電極触媒被					
覆溶液をイオン交換水中で	620	610	590	730	680
120℃/2 週間保持後のイオン					
交換基当量重量 (g/当量)					
固体高分子電解質膜/電極接					
合体をイオン交換水中で	変化無	変化無	変化無	変化無	変化無
120℃/2 週間保持後の形態					
単電池セルの 300mA/cm ² で			1		
の初期出力(V)	0.80	0.80	0.81	0.79	079
300mA/cm ² で 5000 時間稼動					
後の単電池セルの出力	97	98	97	99	98
(初期に対する%)					

スルホアルキル化ポリ1,4-ビフェニレンエーテルエーテルスルホン固体高分子電解質のコストは、市販の安価なエンジニアプラスチックを原料に1工程で製造できるため、原料が高価で5工程を経て製造されるパーフルオロスルホン酸固体高分子電解質(ナフィオン117)のコストに比べ、1/40以下と安価である。

【0220】実施例5~9のスルホアルキル化ポリ1, 4-ビフェニレンエーテルエーテルスルホン固体高分子 50 電解質を、テフロンコーテングのSUS製密閉容器中イオン交換水中で120℃/2週間保持後のスルホン酸当量重量は、比較例1のスルホン化ポリ1,4-ビフェニレンエーテルエーテルスルホン固体高分子電解質IVと異なり、初期と変わらず、パーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定でコストと耐加水分解性(耐久性)が両立して優れている。

【0221】実施例5~9のスルホアルキル化ポリ1,

4-ビフェニレンエーテルエーテルスルホン固体高分子 電解質膜を、テフロンコーテングのSUS製密閉容器中 イオン交換水中で120℃/2週間保持した後の形態 は、比較例1のスルホン化ポリ1,4-ビフェニレンエ ーテルエーテルスルホン固体高分子電解質膜と異なり、 初期と変わらず、パーフルオロスルホン酸固体高分子電 解質膜(ナフィオン117)と同様に安定で、コストと 耐加水分解性(耐久性)が両立して優れている。

【0222】実施例5~9の電極触媒被覆溶液を、テフ ロンコーテングのSUS製密閉容器中イオン交換水中で 10 120℃/2週間保持した後のスルホン酸当量重量は、 比較例1の電極触媒被覆溶液11と異なり、初期と変わら ず、パーフルオロスルホン酸(ナフィオン117)電極 被覆溶液と同様に安定で、コストと耐加水分解性(耐久 性)が両立し優れている。

【0223】実施例5~9のスルホアルキル化ポリ1, 4-ビフェニレンエーテルエーテルスルホン固体高分子 電解質膜電極接合体を、テフロンコーテングのSUS製 密閉容器中イオン交換水と120℃に2週間加熱して も、比較例1のスルホン化ポリ1,4-ビフェニレンエ ーテルエーテルスルホン膜電極接合体と異なり初期と変 化せず、パーフルオロスルホン酸(ナフィオン117) 固体高分子電解質膜電極接合体と同様に安定で、コスト と耐加水分解性(耐久性)が両立し優れている。

【0224】また、300mA/cm²で5000時間 稼動後の実施例5~9のスルホアルキル化ポリ1,4-ビフェニレンエーテルエーテルスルホン固体高分子電解 質膜を用いた単電池セルの出力は、比較例1のスルホン 化ポリ1,4-ピフェニレンエーテルエーテルスルホン 固体高分子電解質膜を用いた単電池セルと異なり、初期 30 と変わらず、パーフルオロスルホン酸固体高分子電解質 膜(ナフィオン117)を用いた単電池セルと同様に安 定でコストと耐加水分解性(耐久性)が両立し優れてい る。

【0225】〔実施例 10〕

(1) スルホプチル化ポリ1,4-ビフェニレンエーテ ルエーテルスルホンの合成

撹拌機、温度計、塩化カルシウム管を接続した還流冷却 器を付けた500mlの四つ口丸底フラスコの内部を窒 素置換後、110℃で10時間保持乾燥した6.00g (0.0155mol) のポリ1,4-ビフェニレンエー テルエーテルスルホン $((-C_6H_4-4-SO_2C_6H_4-$ 4-OC₆H₄-4-C₆H₄-4-O-)n] と脱水クロロ ホルム150m1を入れ、60℃にて約1時間保持して 溶解した。この溶液にブタンスルトン6.26g(0.0 464mol) を加えた。

【0226】次いで、乳鉢で良くすりつぶした無水塩化 アルミニウム6.19g(0.0464mol)を撹拌し ながら約30分かけて加えた。無水塩化アルミニウムを 添加後、20時間, 60℃で還流攪拌した。析出物を濾 50 【0233】即ち、安価なスルホプチル化ポリ1,4-

40

過し、クロロホルム150mlで洗浄して減圧乾燥し た。析出物を水250mlに懸濁させ、ミキサーで細か く砕き、得た微粉砕物を濾過した。これを4回繰り返し た。水で十分洗浄した後、水不溶性の微粉砕物を減圧下 90℃で乾燥した。 ¹HNMRを測定すると新たに-C H₂CH₂CH₂CH₂SO₃H基に基づくピークが1.6~ 3.8 p p m に認められた。このことからスルホプチル 基が導入されていることが確認された。

【0227】得られたスルホブチル化ポリ1,4-ビフ エニレンエーテルエーテルスルホン固体高分子電解質V Iのスルホン酸当量重量は670g/当量であった。 【0228】スルホブチル化ポリ1,4-ビフェニレン エーテルエーテルスルホン固体高分子電解質VIのコス トは、市販の比較的安価なエンジニアプラスチックであ るポリ1,4-ビフェニレンエーテルエーテルスルホン を原料に1工程で製造できるため、原料が高価で5工程 を経て製造されるパーフルオロスルホン酸固体高分子電 解質(ナフィオン117)のコストに比べ1/50以下 と安価である。

【0229】スルホブチル化ポリ1,4-ビフェニレン エーテルエーテルスルホン固体高分子電解質VIは、ス ルホプロピル化ポリ1,4-ビフェニレンエーテルエー テルスルホン固体高分子電解質VIと同様に1工程で製 造できるため、後述の実施例11,12に示したよう に、2段階の工程を経て製造されるスルホメチル化ポリ 1,4-ピフェニレンエーテルエーテルスルホン固体高 分子電解質や、スルホヘキサメチル化スルホメチル化ポ リ1.4-ピフェニレンエーテルエーテルスルホン固体 高分子電解質より低コストで合成でき、コスト的に有利 である。

【0230】テフロンコーテングのSUS製密閉容器 に、得られたスルホブチル化ポリ1,4-ビフェニレン エーテルエーテルスルホン固体高分子電解質 VIの1.0 gとイオン交換水20mlを入れて120℃で2週間保 持した。その後、冷却して十分に水洗した後、スルホブ チル化ポリ1,4-ビフェニレンエーテルエーテルスル ホン固体高分子電解質VIのイオン交換基当量重量を測 定した。

【0231】その結果、スルホプチル化ポリ1,4-ビ フェニレンエーテルエーテルスルホン固体高分子電解質 VIのイオン交換基当量重量は初期と変わらず、670 g/当量と、パーフルオロスルホン酸固体高分子電解質 (ナフィオン117)と同様に安定であった。

【0232】一方、比較例1の(1)に示したように安 価なスルホン化ポリ1,4-ビフェニレンエーテルエー テルスルホン固体高分子電解質IIのイオン交換基当量重 量は、同一加温加水分解条件で1200g/当量と変化 し、初期の650g/当量の値より大きくなり、スルホ ン酸基が脱離していた。

ビフェニレンエーテルエーテルスルホン固体高分子電解質 VIは、比較例1のスルホン化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質IIと異なり、パーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定で、コストと耐加水分解性(耐久性)が両立し優れている。

【0234】(2) 固体高分子電解質膜の作製前記(1)で得られた生成物を5重量%の濃度になるようにN,Nージメチルホルムアミドーシクロヘキサノンーメチルエチルケトン混合溶媒(体積比20:80:25)に溶解した。この溶液をスピンコートによりガラス板上に展開し、風乾後、80℃で真空乾燥して膜厚25 μ mの固体高分子電解質膜VIを作成した。得られた固体高分子電解質膜VIのイオン導電率は25S/Cmであった。

【0235】テフロンコーテングのSUS製密閉容器に前記固体高分子電解質膜VIとイオン交換水20mlを入れ、120℃で2週間保持した。その結果、該電解質膜VIのイオン導電率は、高コストのパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様 20に初期と変わらず、膜もしっかりしていた。

【0236】一方、比較例1の(2)に示したように比較的安価なスルホン化芳香族炭化水素系固体高分子電解質IIは、同一加温加水分解条件で破け、ぼろぼろになっていた。即ち、安価なスルホブチル化ポリ1,4-ビフェニレンエーテルエーテルスルホン固体高分子電解質VIは、比較例1のスルホン化ポリ1,4-ビフェニレンエーテルエーテルスルホン固体高分子電解質膜IIとは異なり、パーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に安定で、コストと耐加水分解性 30(耐久性)が両立し優れている。

【0237】(3) 電極触媒被覆用溶液および膜電極接 合体の作製

40重量%の白金担持カーボンに、前記(2)の5重量%濃度のN,Nージメチルホルムアミドーシクロヘキサノンーメチルエチルケトン混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液VI)を調製した。

【0238】テフロンコーテングのSUS製密閉容器に、前記電極触媒被覆用溶液VI01.0 gと、イオン交換水20mI を入れて120 $\mathbb C$ で 2 週間保持した。その後、冷却して溶媒を揮散させ、生じた固体を水洗後、電極触媒被覆用溶液VI0 イオン交換基当量重量を測定した。その結果、該溶液VI0 イオン交換基当量重量は初期と変わらず 670 g / 当量と、パーフルオロスルホン酸(ナフィオン117)電極触媒被覆用溶液と同様に安定であった。

【0239】一方、比較例1の(2)に示したように電極触媒被覆用溶液IIのイオン交換基当量重量は、同一加 50

42

温加水分解条件で1200g/当量と変化し、初期の650g/当量の値より大きくなり、スルホン酸基が脱離していた。即ち、安価な電極触媒被覆用溶液VIは、比較例1の電極触媒被覆用溶液IIと異なり、パーフルオロスルホン酸(ナフィオン117)電極触媒被覆用溶液と同様に安定でコストと耐加水分解性(耐久性)が両立し優れている。

【0240】前記電極触媒被覆用溶液VIを前記(2)で得られた固体高分子電解質膜VIの両側に塗布した後、乾燥して白金担持量0.25mg/cm²の膜電極接合体VIを作製した。

【0241】比較例1の(2)に記載した電極触媒被覆用溶液IIを前記(2)で得られた固体高分子電解質膜VIの両側に塗布した後、乾燥して白金担持量0.25mg/cm²の膜電極接合体VI'を作製した。

【0242】40重量%の白金担持カーボンに、パーフロスルホン酸固体高分子電解質の5重量%濃度のアルコール/水混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液)を調製した。この電極触媒被覆用溶液を前記(2)で得られた固体高分子電解質膜VIの両側に塗布後、乾燥して白金担持量0.25mg/cm²の膜電極接合体V!''を作製した。

【0243】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体VIとイオン交換水20mIを入れ、120℃に2週間保持した。その結果、膜電極接合体VIは、高コストのパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と、パーフルオロスルホン酸固体高分子電解質(ナフィオン117)を用いて作製した膜電極接合体と同様に初期と変わらず、膜もしっかりしていた。

【0244】テフロンコーテングのSUS製密閉容器に前記膜電極接合体VI'とイオン交換水20mIを入れ、120℃で2週間保持した。その結果、膜電極接合体VI'は電極が若干剥がれていたが膜はしっかりしており、発電能力もあった。

【0.245】テフロンコーテングのSUS製密閉容器に前記膜電極接合体VI''とイオン交換水20mIを入れ、120℃で2週間保持した。その結果、膜電極接合体VI''は電極が若干剥がれていたが膜はしっかりしており、発電能力もあった。

【0246】一方、比較例1の(3)に示したように、 比較的安価なスルホン化芳香族炭化水素系固体高分子電 解質膜IIと、電極触媒被覆用溶液IIを用いて作製した膜 電極接合体IIは、同一加温加水分解条件で膜は破け、ぼ ろぼろになり、電極は剥がれていた。

【0247】即ち、安価なスルホプロピル化ポリ1,4 ーピフェニレンエーテルエーテルスルホン固体高分子電 解質膜電極接合体VIは、比較例1のスルホン化ポリ1, 4-ピフェニレンエーテルエーテルスルホン固体高分子

電解質膜電極接合体IIとは異なり、パーフルオロスルホン酸(ナフィオン117)膜電極接合体と同様に安定で、コストと耐加水分解性(耐久性)が両立し優れている。

【0248】(4) 燃料電池単セル出力性能評価 前記膜電極接合体VI、VI'およびVI''を沸騰した脱イ オン水中に2時間浸漬することにより吸水させた。これ らの膜電極接合体を評価セルに組みこみ、燃料電池出力 性能を評価した。図7に膜電極接合体VIを組み込んだ 燃料電池単セルの電流密度-電圧プロットを示す。

【0249】電流密度 $1A/cm^2$ のとき出力電圧は0.70Vで、電流密度 $300mA/cm^2$ のとき出力電圧は0.79Vであり、固体高分子型燃料電池単セルとして十分使用可能であった。

【0250】実施例10の膜電極接合体VI、VI'およびVI'の両側に薄いカーボンペーパのパッキング材

(支持集電体)を密着させて、その両側から極室分離と電極へのガス供給通路の役割を兼ねた導電性のセパレータ (バイポーラプレート) からなる固体高分子型燃料電池単セルを作製し、電流密度300mA/cm²の条件で長時間稼動試験を行った。その結果を図8に示す。

【0251】図8中の32,33,34はそれぞれ膜電極接合体VI、VI'、VI''を用いた燃料電池単セルの耐久性試験結果である。図8中の35はパーフルオロスルホン酸(ナフィオン117)膜電極接合体を用いた燃料電池単セルの耐久性試験結果である。

【0252】図8中、32は実施例10のアルキレン基を介してスルホン酸基が結合したポリーエーテルエーテルスルホン固体高分子電解質膜と、アルキレン基を介してスルホン酸基が結合したポリーエーテルエーテルスル 30 ホン固体高分子電解質の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化、33は実施例10のアルキレン基を介してスルホン酸基が結合したポリーエーテルエーテルスルホン固体高分子電解質原と、スルホン酸基が直接結合したポリーエーテルエーテルスルホン固体高分子電解質の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化である。

【0253】また、34は実施例10のアルキレン基を介してスルホン酸基が結合したポリーエーテルエーテルスルホン固体高分子電解質膜と、パーフルオロスルホン 40酸固体高分子電解質(ナフィオン117)の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化、35はパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)を用いた燃料電池単セルの出力電圧の経時変化、そして、36は比較例10のスルホン酸基が直接結合したポリーエーテルエーテルスルホン固体高分子電解質膜と、スルホン酸基が直接結合したポリーエーテルエーテルスルホン固体高分子電解質膜と、スルホン酸基が直接結合したポリーエーテルスルホン固体高分子電解質の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化である。 50

44

【0254】図8の32、34の出力電圧は初期0.79Vで、稼動時間5000時間後でも初期と変わらず、図8の35のパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)を用いた結果と同等であった。【0255】一方、図8中の36(比較例1のスルホン化芳香族炭化水素固体高分子電解質IIを使用した燃料電池単セル)の電圧は初期0.73Vで、稼動時間600時間後で出力が無くなった。

【0256】このことから、芳香族炭化水素の芳香族環にアルキレン基を介してスルホン酸基を結合した芳香族炭化水素系固体高分子電解質VIを用いた燃料電池単セルは、スルホン基と直接結合した芳香族炭化水素系固体高分子電解質IIを用いた燃料電池単セルより耐久性に優れていることが明白である。

【0257】また、膜電極接合体VIおよびVI''を用いた燃料電池単セルの耐久性は膜電極接合体VI'を用いた燃料電池単セルの耐久性より優れている。

【0258】即ち、電極触媒被覆用溶液VIは、電極触媒被覆用溶液IIよりも膜電極接合体の電極触媒被覆に適している。

【0259】また、実施例10および比較例1の膜電極接合体の白金担持量が0.25mg/cm²と同じであるにも拘わらず、実施例10の燃料電池単セルの出力電圧が、比較例1の燃料電池単セルの出力電圧より大きい理由は、実施例10の膜電極接合体の固体高分子電解質膜VIおよび電極触媒被覆用溶液VIのイオン導電率が、比較例1の膜電極接合体の固体高分子電解質膜IIおよび電極触媒被覆用溶液IIのイオン導電率より高いからである。

no 【0260】(5) 燃料電池の作製

前記(4)で作製した単電池セルを36層積層し、図13 に示す固体高分子型燃料電池を作製したところ、3kW の出力を示した。

【0261】〔実施例 11〕

(1) クロルメチル化ポリ1, 4 – ピフェニレンエーテルエーテルスルホンの合成

撹拌機、温度計、塩化カルシウム管を接続した選流冷却器を付けた 500mlの四つ口丸底フラスコの内部を窒素置換した後、36.1gのポリ1,4-ビフェニレンエーテルエーテルスルホン $\left((-C_6H_4-4-SO_2C_6H_4-4-OC_6H_4-4-O-)n\right]$ 、60g (2 モル) のパラホルムアルデヒド、乾燥した 50ml のニトロベンゼンを入れた。100 に保って撹拌しながら 73g の塩化水素ガスを吹き込んだ。吹き込み終了後、150 で4時間保った。

【0262】次いで、反応溶液を1リットルの脱イオン水にゆっくりと滴下することでクロルメチル化ポリ1,4-ビフェニレンエーテルエーテルスルホンを析出させ、濾過回収した。析出した沈澱をミキサーによる脱イオン水洗浄と、吸引濾過による回収操作を、濾液が中性

45

になるまで繰り返した後、80℃で一晩減圧乾燥した。 【0263】(2) スルホメチル化ポリ1,4-ビフェ ニレンエーテルエーテルスルホンの合成

撹拌機、温度計、塩化カルシウム管を接続した還流冷却器を付けた500mlの四つ口丸底フラスコの内部を窒素置換後、10gの前記クロルメチル化ポリ1,4-ビフェニレンエーテルエーテルスルホン、乾燥した50mlのニトロベンゼン、30gの硫酸ナトリウムを入れ、100℃で5時間撹拌した。さらに、10mlのイオン交換水を加え、5時間撹拌した。

【0264】次いで、反応溶液を1リットルの脱イオン水にゆっくりと滴下することでスルホメチル化ポリ1,4-ピフェニレンエーテルエーテルスルホンを析出させ、濾過回収した。析出した沈澱をミキサーによる脱イオン水洗浄と、吸引濾過による回収操作を、濾液が中性になるまで繰り返した後、120℃で一晩減圧乾燥した。

【0265】 1 HNMRを測定すると新たに $^{-}$ CH₂SO 3H基に基づくピークが4.5 p p mに認められ、スルホメチル基が導入されていることが確認された。得られた 20 スルホメチル化ポリ1,4 $^{-}$ ビフェニレンエーテルエーテルスルホン固体高分子電解質 1 VIIのイオン交換基当量重量は660 g / 当量であった。

【0266】本製法で得られるスルホメチル化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質VIIのコストは、市販の安価なエンジニアプラスチックであるポリ1,4-ピフェニレンエーテルエーテルスルホンを原料に2工程で製造でき、原料が高価で5工程を経て製造されるパーフルオロスルホン酸固体高分子電解質(ナフィオン117)のコストに比べ1/30以下と極めて安価である。

【0267】テフロンコーテングのSUS製密閉容器に得られたスルホメチル化ポリ1,4ービフェニレンエーテルエーテルスルホン固体高分子電解質VIIの1.0gと、イオン交換水20mIを入れ、120Cに2週間保持した。その後、冷却して十分に水洗した後、スルホメチル化ポリ1,4ービフェニレンエーテルエーテルスルホン固体高分子電解質VIIのイオン交換基当量重量を測定した。

【0268】その結果、スルホメチル化ポリ1,4-ビフェニレンエーテルエーテルスルホン固体高分子電解質 VIIのイオン交換基当量重量は、初期と変わらず660 g/当量とパーフルオロスルホン酸固体高分子電解質 (ナフィオン117)と同様に安定であった。

【0269】一方、比較例1の(1)に示したように、安価なスルホン化芳香族炭化水素固体高分子電解質IIのイオン交換基当量は、同一加温加水分解条件で1200g/当量と変化し、初期の650g/当量の値より大きくなり、スルホン酸基が脱離していた。

【0270】即ち、安価なスルホメチル化ポリ1,4-

46

ビフェニレンエーテルエーテルスルホン固体高分子電解質VIIは、安価なスルホン化ポリ1,4ービフェニレンエーテルエーテルスルホンVII固体高分子電解質IIと異なり、高価なパーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定でコストと耐加水分解性(耐久性)が両立して優れている。

【0271】(3) 固体高分子電解質膜の作製前記(2)で得られたスルホメチル化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質VIIを、5重量%の濃度になるようにトリクロロエタンージクロロエタンの混合溶媒(1:1)に溶解した。この溶液をスピンコートによりガラス板上に展開し、風乾した後、80℃で真空乾燥して膜厚42μmのスルホメチル化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質膜VIIを作成した。得られた固体高分子電解質膜VIIのイオン伝導度は7S/cmであった。

【0272】テフロンコーテングのSUS製密閉容器に前記スルホメチル化ポリ1, 4 ーピフェニレンエーテルエーテルスルホン固体高分子電解質膜 VII とイオン交換水20m I を入れ、120 ℃に2 週間保持した。その結果、固体高分子電解質膜 VII のイオン導電率は、高コストのパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に初期と変わらず、膜もしっかりしていた。

【0273】一方、比較例1の(2)に示したように比較的安価なスルホン化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質!!は、同一加温加水分解条件で破け、ぼろぼろになっていた。即ち、安価なスルホメチル化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質膜VIIは、安価なスルホン化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質膜IIと異なり、高価なパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に安定でコストと耐加水分解性(耐久性)が両立して優れている。

【0274】(4) 電極触媒被覆用溶液および膜電極接合体の作製

40重量%の白金担持カーボンに、前記(3)のトリクロロエタンージクロロエタンの混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液VII)を調製した。

【0275】テフロンコーテングのSUS製密閉容器に、前記電極触媒被覆用溶液VIIの1.0gと、イオン交換水20mlを入れて120℃に2週間保持した。その後、冷却して溶媒を揮散させて生じた固体を水洗した後、電極触媒被覆用溶液VIIのイオン交換基当量重量を測定した。その結果、電極触媒被覆用溶液VIIのイオン交換基当量重量は、初期と変わらず660g/当量とパ

ーフルオロスルホン酸(ナフィオン117) 電極触媒被 覆用溶液と同様に安定であった。

【0276】一方、比較例1の(2)に示したように、電極触媒被覆用溶液IIのイオン交換基当量重量は、同一加温加水分解条件で1200g/当量と変化し、初期の650g/当量の値より大きくなり、スルホン酸基が脱離していた。

【0277】即ち、安価な電極触媒被覆用溶液VIIは、 比較例1の電極触媒被覆用溶液IIと異なり、パーフルオロスルホン酸(ナフィオン117)電極触媒被覆用溶液 10と同様に安定で、コストと耐加水分解性(耐久性)が両立して優れている。

【0278】前記電極触媒被覆用溶液VIIを前記(2)で得られた固体高分子電解質膜VIIの両側に塗布した後、乾燥して白金担持量0.25mg/cm²の膜電極接合体VIIを作製した。

【0279】比較例1の(2)に記した電極触媒被覆溶液IIを前記(2)で得られた固体高分子電解質膜VIIの両側に塗布した後、乾燥して白金担持量0.25mg/cm²の膜電極接合体VII'を作製した。40重量%の白金担持カーボンに、パーフロロスルホン酸固体高分子電解質の5重量%濃度のアルコールー水混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液)を調製した。この電極触媒被覆用溶液を前記

(2) で得られた固体高分子電解質膜VIIの両側に塗布後、乾燥して白金担持量0.25mg/cm²の膜電極接合体VII''を作製した。

【0280】テフロンコーテングのSUS製密閉容器に、得られた前記膜電極接合体VIIとイオン交換水20mlを入れ、120℃に2週間保持した。その結果、膜電極接合体VIIは高コストのパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)とパーフルオロスルホン酸固体高分子電解質(ナフィオン117)を用いて作製した膜電極接合体と同様に初期と変わらず、膜もしっかりしていた。

【0281】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体VII'とイオン交換水20m Iを入れ、120℃に2週間保持した。その結果、膜電極接合体VII'は電極が若干剥がれていたが膜はしっか 40 りしており、発電能力はあった。

【0282】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体VII''とイオン交換水20m 】を入れ、120 C に 2 週間保持した。その結果、膜電極接合体VII''は電極が若干剥がれていたが膜はしっかりしており、発電能力はあった。

【0283】一方、比較例1の(3)に示したように比較的安価なスルホン化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質膜IIと電極触媒被覆用溶液IIを用いて作製した膜電極接合体IIは、同一加 50

48

温加水分解条件で膜は破け、ぼろぼろになり、電極は剥がれていた。即ち、安価なスルホメチル化ポリ1,4-ビフェニレンエーテルエーテルスルホン固体高分子電解質膜電極接合体VIIは、比較例1のスルホン化ポリ1,4-ビフェニレンエーテルエーテルスルホン固体高分子電解質膜電極接合体IIと異なり、パーフルオロスルホン酸(ナフィオン117)膜電極接合体と同様に安定で、コストと耐加水分解性(耐久性)が両立して優れている。

【0284】(5) 燃料電池単セル出力性能評価前記膜電極接合体VII、VII'およびVII''を沸騰した脱イオン水中に2時間浸漬することにより吸水させた。得られた膜電極接合体VIIを評価セルに組み込み、燃料電池出力性能を評価した。得られた電流密度-出力電圧プロットを図9に示す。電流密度1A/cm²のとき出力電圧は0.65Vで、電流密度300mA/cm²のとき出力電圧は0.74Vで固体高分子型燃料電池単セルとして十分使用可能であった。

【0285】また、前記固体高分子型燃料電池単セルを電流密度300mA/cm 2 の条件で長時間稼動試験を行った。その結果を図10に示す。

【0286】図10中の37,38,39はそれぞれ固体高分子電解質膜電極接合体VII,VII',VII'を用いた燃料電池単セルの耐久性試験結果である。図10中の40はパーフルオロスルホン酸(ナフィオン117固体高分子電解質膜電極接合体を用いた燃料電池単セルの耐久性試験結果である。

【0287】図10中、37は実施例11のアルキレン 基を介してスルホン酸基が結合したポリエーテルエーテ ルスルホン固体高分子電解質膜と、アルキレン基を介し てスルホン酸基が結合したポリエーテルエーテルスルホ ン固体高分子電解質の電極触媒被覆用溶液を用いた燃料 電池単セルの出力電圧の経時変化、38は実施例11の アルキレン基を介してスルホン酸基が結合したポリエー テルエーテルスルホン固体高分子電解質膜と、スルホン 酸基が直接結合したポリエーテルエーテルスルホン固体 高分子電解質の電極触媒被覆用溶液を用いた燃料電池単 セルの出力電圧の経時変化、39は実施例11のアルキ レン基を介してスルホン酸基が結合したポリエーテルエ ーテルスルホン固体高分子電解質膜と、パーフルオロス ルホン酸固体高分子電解質(ナフィオン117)の電極 触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経 時変化、40はパーフルオロスルホン酸固体高分子電解 質膜(ナフィオン117)を用いた燃料電池単セルの出 力電圧の経時変化、41は比較例11のスルホン酸基が 直接結合したポリエーテルエーテルスルホン固体高分子 電解質膜と、スルホン酸基が直接結合したポリエーテル エーテルスルホン固体高分子電解質の電極触媒被覆用溶 液を用いた燃料電池単セルの出力電圧の経時変化であ

【0288】図10の37と39の電圧はいずれも初期0.74Vで、稼動時間5000時間後でも初期と変わらず、図10の40のパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)を用いた結果と同等であった。

【0289】一方、図10中の41(比較例1のスルホン化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質膜IIを使用した燃料電池単セル)の電圧は初期0.73Vで、稼動時間600時間後で出力が無くなった。

【0290】このことから芳香族炭化水素の芳香族環に アルキレン基を介してスルホン酸基を結合した芳香族炭 化水素系固体高分子電解質を用いた燃料電池単セルが、 スルホン基と直接結合した芳香族炭化水素系固体高分子 電解質を用いた燃料電池単セルより耐久性に優れている ことが明白である。

【0291】膜電極接合体VIIおよびVII''を用いた燃料電池単セルの耐久性は膜電極接合体VII'を用いた燃料電池単セルの耐久性より優れている。即ち、電極触媒被覆用溶液VIIは、電極触媒被覆用溶液IIより膜電極接 20合体の電極触媒被覆に適している。

【0292】また、実施例11および比較例1の膜電極接合体の白金担持量が0.25mg/cm²と同じであるにも拘わらず、実施例11の燃料電池単セルの出力電圧が比較例4の燃料電池単セルの出力電圧より大きい理由は、実施例11の膜電極接合体の固体高分子電解質膜および電極触媒被覆用溶液のイオン導電率が比較例1の膜電極接合体の固体高分子電解質膜および電極触媒被覆用溶液のイオン導電率より高いからである。

【0293】(6) 燃料電池の作製

前記(5)で作製した単電池セルを36層積層し、固体 高分子型燃料電池を作製したところ、3kWの出力を示 した。

【0294】〔実施例 12〕

(1) プロモヘキサメチル化ポリ1,4-ビフェニレンエーテルエーテルスルホンの合成

撹拌機、温度計、塩化カルシウム管を接続した還流冷却器を付けた500mlの四つ口丸底フラスコの内部を窒素置換した後、38.8gのポリ1,4-ビフェニレンエーテルエーテルスルホン $[(-C_6H_4-4-SO_2C_6H_4-4-OC_$

【0295】析出した沈澱をミキサーによる脱イオン水 洗浄と吸引濾過による回収操作を、濾液が中性になるま 50 50

で繰り返した後、120℃にて一晩減圧乾燥した。 【0296】(2) スルホヘキサメチル化ポリ1,4 ーピフェニレンエーテルエーテルスルホンの合成 撹拌機、温度計、塩化カルシウム管を接続した還流冷却 器を付けた500mlの四つ口丸底フラスコの内部を窒 素置換した後、10gの前記プロモヘキサメチル化ポリ 1,4ーピフェニレンエーテルエーテルスルホン、乾燥 した50mlのニトロベンゼン、30gの硫酸ナトリウムを入れ、100℃にて5時間撹拌した。さらに、10mlのイオン交換水を加え、5時間撹拌した。

【0297】次いで、反応溶液を1リットルの脱イオン水にゆっくりと滴下することでスルホヘキサメチル化ポリ1,4ーピフェニレンエーテルエーテルスルホンを析出させ、濾過回収した。析出した沈澱をミキサーによる脱イオン水洗浄と吸引濾過による回収操作を、濾液が中性になるまで繰り返した後、120℃にて一晩減圧乾燥した。 1 HNMRを測定すると新たに $^-$ CH $_2$ CH $_2$ CH $_2$ CH $_2$ SO $_3$ H基に基づくピークが1.3 $^-$ 3.8 ppmに認められた。このことから得られたスルホヘキサメチル基が導入されていることが確認された。スルホヘキサメチル化ポリ1,4 $^-$ ビフェニレンエーテルエーテルスルホン固体高分子電解質 VIIIのイオン交換基当量重量は670g/当量であった。

【0298】本製法で得られるスルホヘキサメチル化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質 VIIIのコストは、市販の安価なエンジニアプラスチックであるポリ1,4ーピフェニレンエーテルエーテルスルホンを原料に2工程で製造できるために、原料が高価で5工程を経て製造されるパーフルオロスルホン酸固体高分子電解質(ナフィオン117)のコストに比べ1/30以下と安価である。

【0299】テフロンコーテングのSUS製密閉容器に得られたスルホヘキサメチル化ポリ1, 4 - \mathbb{E} \mathbb{E}

【0300】その結果、スルホヘキサメチル化ポリ1, 4-ビフェニレンエーテルエーテルスルホン固体高分子 電解質 VIIIのイオン交換基当量重量は初期と変わらず 670g/当量とパーフルオロスルホン酸固体高分子電 解質(ナフィオン117)と同様に安定であった。

【0301】一方、比較例1の(1)に示したように安価なスルホン化芳香族炭化水素固体高分子電解質11のイオン交換基当量は、同一加温加水分解条件で1200g/当量と変化し、初期の650g/当量の値より大きくなり、スルホン酸基が脱離していた。即ち、安価なスルホヘキサメチル化ポリ1,4-ビフェニレンエーテルエ

ーテルスルホン固体高分子電解質 VIIIは、安価なスルホン化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体高分子電解質IIと異なり、高価なパーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定でコストと耐加水分解性(耐久性)が両立して優れている。

【0302】(3) 固体高分子電解質膜の作製 前記(2)で得られた生成物を5重量%の濃度になるようにN,N-ジメチルホルムアミドーシクロヘキサノンーメチルエチルケトン混合溶媒(体積比20:80:25)に溶解した。

【0303】この溶液をスピンコートによりガラス板上に展開し、風乾した後、80℃で真空乾燥して膜厚 42 μ mのスルホヘキサメチル化ポリ 1 , 4 - ビフェニレンエーテルエーテルスルホン固体高分子電解質膜 VIII を作成した。得られたスルホヘキサメチル化ポリ 1 , 4 - ビフェニレンエーテルエーテルスルホン固体高分子電解質膜 VIII のイオン導電率は 35 S / c m であった。

【0304】テフロンコーテングのSUS製密閉容器に得られた前記スルホヘキサメチル化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体高分子電解質膜VIILとイオン交換水20mlを入れ、120℃に2週間保持した。その結果、得られた固体高分子電解質膜VIIのイオン導電率は、パーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に初期と変わらず、膜もしっかりしていた。

【0305】一方、比較例1の(2)に示したように、比較的安価なスルホン化芳香族炭化水素系固体高分子電解質IIは同一加温加水分解条件で破け、ぼろぼろになっていた。即ち、安価なスルホヘキサメチル化ポリ1,4ービフェニレンエーテルエーテルスルホン固体高分子電解質膜VIIIは、スルホン化芳香族炭化水素系固体高分子電解質膜IIと異なり、パーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に安定で、コストと耐加水分解性(耐久性)が両立して優れている。【0306】(4) 電極触媒被覆用溶液および膜電極接合体の作製

40重量%の白金担持カーボンに、前記(3)のトリクロロエタンージクロロエタンの混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液VIII)を調製した。

【0307】テフロンコーテングのSUS製密閉容器に、前記電極触媒被覆用溶液VIIIの1.0gとイオン交換水20mlを入れて120℃に2週間保持した。その後、冷却して溶媒を揮散させて生じた固体を水洗した後、電極触媒被覆用溶液VIIIのイオン交換基当量重量を測定した。その結果、電極触媒被覆用溶液VIIIのイオン交換基当量重量は初期と変わらず670g/当量とパーフルオロスルホン酸(ナフィオン117)電極触媒50

52

被覆用溶液と同様に安定であった。

【0308】一方、比較例1の(2)に示したように電極触媒被覆用溶液IIのイオン交換基当量重量は、同一加温加水分解条件で1200g/当量と変化し、初期の650g/当量の値より大きくなり、スルホン酸基が脱離していた。即ち、安価な電極触媒被覆用溶液VIIIは、比較例1の電極触媒被覆用溶液IIと異なり、パーフルオロスルホン酸(ナフィオン117)電極触媒被覆用溶液と同様に安定でコストと耐加水分解性(耐久性)が両立して優れている。

【0309】前記電極触媒被覆用溶液VIIIを前記

(3)で得られた固体高分子電解質膜の両側に塗布した後、乾燥して白金担持量0.25mg/cm²の膜電極接合体VIIIを作製した。比較例1の(2)に記載した電極触媒被覆用溶液IIを前記(2)で得られた固体高分子電解質膜VIIIの両側に塗布した後、乾燥して白金担持量0.25mg/cm²の膜電極接合体VIII'を作製した。

【0310】40重量%の白金担持カーボンに、パーフロコスルホン酸固体高分子電解質の5重量%濃度のアルコールー水混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液)を調製した。この電極触媒被覆用溶液を前記(2)で得られた固体高分子電解質膜VIIIの両側に塗布後、乾燥して白金担持量0.25mg/cm²の膜電極接合体VIII''を作製した。

【0311】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体VIIIとイオン交換水20mlを入れ、120℃に2週間保持した。その結果、膜電極接合体VIIIは、パーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)とパーフルオロスルホン酸固体高分子電解質(ナフィオン117)を用いて作製した膜電極接合体と同様に初期と変わらず、膜もしっかりしていた。

【0312】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体VIII'とイオン交換水20m 1 を入れ、120 C に2 週間保持した。その結果、膜電極接合体VIII'は電極が若干剥がれていたが膜はしっかりしており、発電能力はあった。

【0313】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体VIII'、とイオン交換水20 mlを入れ、120 Cに2週間保持した。その結果、膜電極接合体VIII'、は電極が若干剥がれていたが膜はしっかりしており、発電能力はあった。

【0314】(5) 燃料電池単セル出力性能評価 前記膜電極接合体VIII、VIII'およびVIII''を沸騰し た脱イオン水中に2時間浸漬することにより吸水させ た。得られた膜電極接合体を評価セルに組みこみ、燃料 電池出力性能を評価した。

【0315】前記膜電極接合体VIIIを用いた燃料電池

単セルの電流密度 - 電圧プロットを図11に示す。電流密度 $1A/cm^2$ のとき出力電圧は0.69 Vで、電流密度 300 mA/ cm^2 のとき出力電圧は0.83 Vで固体高分子型燃料電池単セルとして十分使用可能であった。

【0316】また、前記固体高分子型燃料電池単セルを電流密度300 mA/c m 2 の条件で長時間稼動試験を行った。その結果を図12に示す。

【0317】図12中の42,43,44はそれぞれ固体高分子電解質膜電極接合体VIII,VIII'およびVIII'で用いた燃料電池単セルの耐久性試験結果である。図12中の45はパーフルオロスルホン酸(ナフィオン117)固体高分子電解質膜電極接合体を用いた燃料電池単セルの耐久性試験結果である。

【0318】図12中、42は実施例12のアルキレン 基を介してスルホン酸基が結合したポリエーテルエーテ ルスルホン固体高分子電解質膜と、アルキレン基を介し てスルホン酸基が結合したポリエーテルエーテルスルホ ン固体高分子電解質の電極触媒被覆用溶液を用いた燃料 電池単セルの出力電圧の経時変化、43は実施例12の アルキレン基を介してスルホン酸基が結合したポリエー 20 テルエーテルスルホン固体高分子電解質膜と、スルホン 酸基が直接結合したポリエーテルエーテルスルホン固体 高分子電解質の電極触媒被覆用溶液を用いた燃料電池単 セルの出力電圧の経時変化、44は実施例12のアルキ レン基を介してスルホン酸基が結合したポリエーテルエ ーテルスルホン固体高分子電解質膜と、パーフルオロス ルホン酸固体高分子電解質(ナフィオン117)の電極 触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経 時変化、45はパーフルオロスルホン酸固体高分子電解 質膜(ナフィオン117)を用いた燃料電池単セルの出 30 力電圧の経時変化、46は比較例12のスルホン酸基が 直接結合したポリエーテルエーテルスルホン固体高分子 電解質膜と、スルホン酸基が直接結合したポリエーテル エーテルスルホン固体高分子電解質の電極触媒被覆用溶 液を用いた燃料電池単セルの出力電圧の経時変化であ る。

【0319】図12の42および44から分かるように、本発明の固体高分子電解質膜電極接合体VIIIおよびVIII''を用いた単電池セルの電圧は初期0.83Vで、稼動時間5000時間後でも初期と変わらず、図12の45のパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)を用いた結果と同等に初期と変化しなかった。

【0320】一方、図12中の46(比較例1のスルホン化芳香族炭化水素固体高分子電解質を使用した燃料電池単セル)の出力電圧は初期0.73Vで、稼動時間600時間後で出力が無くなった。

【0321】このことから、芳香族炭化水素の芳香族環 にアルキレン基を介してスルホン酸基を結合した芳香族 炭化水素系固体高分子電解質を用いた燃料電池単セル 54

が、スルホン基と直接結合した芳香族炭化水素系固体高 分子電解質を用いた燃料電池単セルより耐久性に優れて いることが明白である。

【0322】膜電極接合体VIIIおよびVIII''を用いた燃料電池単セルの耐久性は膜電極接合体VIII'を用いた燃料電池単セルの耐久性より優れている。即ち、電極触媒被覆用溶液VIIIは、電極触媒被覆用溶液IIより膜電極接合体の電極触媒被覆に適している。

【0323】また、実施例12および比較例1の膜電極接合体の白金担持量が0.25mg/cm²と同じであるにも拘わらず、実施例12の燃料電池単セルの出力電圧が比較例1の燃料電池単セルの出力電圧より大きい理由は、実施例12の膜電極接合体の固体高分子電解質膜および電極触媒被覆用溶液のイオン導電率が、比較例1の膜電極接合体の固体高分子電解質膜および電極触媒被覆用溶液のイオン導電率より高いからである。

【0324】実施例11, 9, 10, 120(1) および(2) から分かるように、前記式[3] で表されるアルキレン基の100の数が1, 100のの数が10のの数が10のの表が10のの表が10のの表が10のの表が10のの表が10のの表が10のの表が名。10のの表が名。それに対応する固体高分子電解質膜のイオン伝導度 100のの表が大きいほどイオン伝導度が大きく、プロトンの伝達性が大きくなり固体高分子型燃料電池として優れている

【0325】一方、コストの観点からスルホンとの1段 反応により合成できるスルホプロピル化ポリ1,4ービフェニレンエーテルエーテルスルホン固体電解質と、スルホブチル化ポリ1,4ービフェニレンエーテルスルホン固体電解質が、2段階反応によって合成されるスルホヘキサメチル化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体電解質やスルホメチル化ポリ1,4ーピフェニレンエーテルエーテルスルホン固体電解質と37トとの両立の観点からnの数は3~4が好ましい。

【0326】(6) 燃料電池の作製

前記(5)で作製した単電池セルを36層積層し、固体 高分子型燃料電池を作製したところ、3kWの出力を示した

【0327】〔実施例 13〕

(1) スルホプロピル化ポリ1,4-フェニレンエーテルエーテルスルホンの合成

撹拌機、温度計、塩化カルシウム管を接続した還流冷却器を付けた500mlの四つ口丸底フラスコの内部を窒素置換した後、110℃において10時間保持乾燥した4.84g(0.0155mol)のポリ1,4-フェニレンエーテルエーテルスルホン〔(-C6H4-4-SO2

 $C_6H_4-4-OC_6H_4-4-O-)$ n] と脱水クロロホルム 150mlを入れ、60 でにて約 1 時間保持して溶解した。この溶液にプロパンスルトン 5.67g (0.04 64m o 1) を加えた。

【0328】次いで、撹拌しながら約30分かけて乳鉢で良くすりつぶした無水塩化アルミニウム6.19g (0.0464mol)を加えた。無水塩化アルミニウムを添加した後、30時間60℃で還流攪拌した。析出したポリマーを濾過し、クロロホルム150mlで洗浄し、減圧乾燥した。得られたポリマーを水250mlに懸濁させ、ミキサーで細かく砕き、得られた微粉砕物を濾過した。これを4回繰り返し、水で十分洗浄した後、水不溶性の微粉砕物を減圧下,90℃で乾燥した。

【0329】 HNMRを測定すると新たに $-CH_2CH_2CH_2SO_3H$ 基に基づくピークが2.2ppm、3.8ppmに認められた。このことからスルホプロピル基が導入されていることが確認された。

【0330】得られたスルホプロピル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質IXのスルホン酸当量重量は670g/当量であった。【0331】スルホプロピル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質IXのコストは、市販の比較的安価なエンジニアプラスチックであるポリ1,4-フェニレンエーテルエーテルスルホンを原料に1工程で製造できるため、原料が高価で5工程を経て製造されるパーフルオロスルホン酸固体高分子電解質(ナフィオン117)のコストに比べ1/50以下と安価である。

【0332】テフロンコーテングのSUS製密閉容器に、得られたスルホプロピル化ポリ1,4ーフェニレンエーテルエーテルスルホン固体高分子電解質IXの1.0gとイオン交換水20mIを入れて120℃に2週間保持した。その後、冷却して十分に水洗した後スルホプロピル化ポリ1,4ーフェニレンエーテルエーテルスルホン固体高分子電解質IXのイオン交換基当量重量を測定した。

【0333】その結果、スルホプロピル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質IXのイオン交換基当量重量は、初期と変わらず670g/当量とパーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定であった。

【0334】一方、後述の比較例2の(1)に示すように、安価なスルホン化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質Xのイオン交換基当量重量は、同一加温加水分解条件で1250g/当量と変化し、初期の660g/当量の値より大きくなり、スルホン酸基が脱離していた。即ち、安価なスルホプロピル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質IXは、後述の比較例2のスルホン化ポリ1,4-フェニレンエーテルエーテルスルホン固体

56

高分子電解質 X と異なり、パーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定で、コストと耐加水分解性(耐久性)が両立して優れている。【0335】(2) 固体高分子電解質膜の作製前記(1)で得られた生成物を5 重量%の濃度になるようにN, N - ジメチルホルムアミドーシクロヘキサノンーメチルエチルケトン混合溶媒(体積比<math>20:80:25)に溶解した。この溶液をスピンコートによりガラス板上に展開し、風乾した後、80 $\mathbb C$ で真空乾燥して膜厚 25μ mの固体高分子電解質膜 $\mathbb I$ $\mathbb X$ $\mathbb E$ $\mathbb E$

【0336】テフロンコーテングのSUS製密閉容器に得られた前記固体高分子電解質膜IXとイオン交換水20m1を入れ、120℃に2週間保持した。その結果、得られた固体高分子電解質膜IXのイオン導電率は、パーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に初期と変わらず、膜もしっかりしていた。

【0337】一方、後述の比較例2の(2)に示すように、比較的安価なスルホン化芳香族炭化水素系固体高分子電解質Xは、同一加温加水分解条件で破け、ぼろぼろになっていた。即ち、安価なスルホプロピル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質膜IXは、後述の比較例2の(2)に記載した安価なスルホン化ポリ1,4-フェニレンエーテルエーテルスルホンX固体高分子電解質膜Xと異なり、パーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に安定で、コストと耐加水分解性(耐久性)が両立して優れている。

【0338】(3) 電極触媒被覆用溶液および膜電極 接合体の作製

40重量%の白金担持カーボンに、前記(2)の5重量%濃度のN,N-ジメチルホルムアミドーシクロヘキサノン-メチルエチルケトン混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液IX)を調製した。

【0339】テフロンコーテングのSUS製密閉容器 に、前記電極触媒被覆用溶液IXの1.0gとイオン交換 水20mlを入れて120℃に2週間保持した。その 後、冷却して溶媒を揮散させて生じた固体を水洗後、電 極触媒被覆用溶液IXのイオン交換基当量重量を測定し た。その結果、電極触媒被覆用溶液IXのイオン交換基 当量重量は初期と変わらず670g/当量と、パーフル オロスルホン酸(ナフィオン117)電極触媒被覆用溶 液と同様に安定であった。

【0340】一方、後述の比較例2の(2)に示すように、電極触媒被覆用溶液Xのイオン交換基当量重量は同 50 一加温加水分解条件で1250g/当量と変化し、初期

30

57

の660g/当量の値より大きくなり、スルホン酸基が脱離していた。即ち、安価な電極触媒被覆用溶液IXは、後述の比較例2の(2)に記載した安価な電極触媒被覆用溶液Xと異なり、パーフルオロスルホン酸(ナフィオン117)電極触媒被覆用溶液と同様に安定で、コストと耐加水分解性(耐久性)が両立して優れている。【0341】前記電極触媒被覆用溶液IXを前記(2)で得られた固体高分子電解質膜IXの両側に塗布した後、乾燥して白金担持量0.25mg/cm²の膜電極接合体IXを作製した。

【0342】後述の比較例2の(2)に記載した電極触 媒被覆用溶液Xを、前記(2)で得られた固体高分子電 解質膜1Xの両側に塗布後、乾燥して白金担持量0.25 mg/cm²の膜電極接合体IX'を作製した。

【0343】40重量%の白金担持カーボンに、パーフロスルホン酸固体高分子電解質の5重量%濃度のアルコールー水混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液)を調製した。この電極触媒被覆用溶液を前記(2)で得られた固体高分子電 20解質膜IXの両側に塗布後、乾燥して白金担持量0.25mg/cm²の膜電極接合体IX''を作製した。

【0344】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体IXとイオン交換水20mlを入れ、120℃に2週間保持した。その結果、膜電極接合体IXは、パーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)とパーフルオロスルホン酸固体高分子電解質(ナフィオン117)を用いて作製した膜電極接合体と同様に初期と変わらず、膜もしっかりしていた。

【0345】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体IXとイオン交換水20m1を入れ、120Cに2週間保持した。その結果、膜電極接合体IXは、電極が若干剥がれていたが膜はしっかりしており、発電能力はあった。

【0346】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体IXとイオン交換水20m1を入れ、120Cに2週間保持した。その結果、膜電極接合体IX、は、電極が若干剥がれていたが膜はしっかりしており、発電能力はあった。

【0347】一方、後述の比較例2の(3)に示すように、比較的安価なスルホン化芳香族炭化水素系固体高分子電解質膜Xと電極触媒被覆用溶液Xを用いて作製した膜電極接合体Xは、同一加温加水分解条件で膜は破け、ほろぼろになり、電極は剥がれていた。

【0348】即ち、安価なスルホプロピルポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質膜電極接合体IXは、後述の比較例2の(3)に記載した安価なスルホン化芳香族炭化水素系固体高分子電解質膜電極接合体Xとは異なり、パーフルオロスルホン酸

58

(ナフィオン117) 膜電極接合体と同様に安定でコストと耐加水分解性(耐久性)が両立して優れている。

【0349】(4) 燃料電池単セルの耐久性試験 前記膜電極接合体IX、IX'およびIX''を沸騰した脱イオン水中に2時間浸漬することにより吸水させた。得られた膜電極接合体を評価セルに組みこみ、燃料電池出力性能を評価した。

【0350】即ち、固体高分子電解質膜1、酸素極2および水素極3からなる実施例13の膜電極接合体4の両電極に、薄いカーボンペーパのパッキング材(支持集電体)5を密着させて、その両側から極室分離と電極へのガス供給通路の役割を兼ねた導電性のセパレータ(バイポーラプレート)6からなる図1に示す固体高分子型燃料電池単セルを作製し、電流密度300mA/cm²条件で、長期劣化試験を行った。その結果を図13に示す。

【0351】図13中の47,48,49は、それぞれ 固体高分子電解質膜電極接合体IX、IX'およびIX''を 用いた燃料電池単セルの耐久性試験結果である。

【0352】図13中の50はパーフルオロスルホン酸(ナフィオン117)固体高分子電解質膜電極接合体を用いた燃料電池単セルの耐久性試験結果である。

【0353】図13中、47は実施例13のアルキレン 基を介してスルホン酸基が結合したポリエーテルエーテ ルスルホン固体高分子電解質膜と、アルキレン基を介し てスルホン酸基が結合したポリエーテルエーテルスルホ ン固体高分子電解質の電極触媒被覆用溶液を用いた燃料 電池単セルの出力電圧の経時変化、48は実施例13の アルキレン基を介してスルホン酸基が結合したポリエー テルエーテルスルホン固体高分子電解質膜と、スルホン 酸基が直接結合したポリエーテルエーテルスルホン固体 高分子電解質の電極触媒被覆用溶液を用いた燃料電池単 セルの出力電圧の経時変化、49は実施例13のアルキ レン基を介してスルホン酸基が結合したポリエーテルエ ーテルスルホン固体高分子電解質膜と、パーフルオロス ルホン酸固体高分子電解質 (ナフィオン117) の電極 触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経 時変化、50はパーフルオロスルホン酸固体高分子電解 質膜(ナフィオン117)を用いた燃料電池単セルの出 力電圧の経時変化、51は比較例13のスルホン酸基が 直接結合したポリエーテルエーテルスルホン固体高分子 電解質膜と、スルホン酸基が直接結合したポリエーテル エーテルスルホン固体高分子電解質の電極触媒被覆用溶 液を用いた燃料電池単セルの出力電圧の経時変化であ

【0354】図13の47および49から分かるように、本発明の固体高分子電解質膜電極接合体IXおよびIX''を用いた単電池セルの電圧は初期0.79Vで、稼動時間5000時間後でも初期と変わらず、図13の50のパーフルオロスルホン酸固体高分子電解質膜(ナフ

ィオン117)を用いた結果と同等に初期と変化しなかった。

【0355】一方、図13中の51 (後述の比較例2の スルホン化芳香族炭化水素固体高分子電解質Xを使用し た燃料電池単セル)の出力電圧は初期0.73Vで、稼 動時間600時間後で出力が無くなった。

【0356】このことから、芳香族炭化水素の芳香族環にアルキレン基を介してスルホン酸基を結合した芳香族炭化水素系固体高分子電解質を用いた燃料電池単セルが、スルホン基と直接結合した芳香族炭化水素系固体高分子電解質を用いた燃料電池単セルより耐久性に優れていることが明白である。

【0357】膜電極接合体IXおよびIX''を用いた燃料電池単セルの耐久性は、膜電極接合体IX'を用いた燃料電池単セルの耐久性より優れている。即ち、電極触媒被覆用溶液IXは電極触媒被覆用溶液Xより膜電極接合体の電極触媒被覆に適している。

【0358】また、実施例13および比較例2の膜電極接合体の白金担持量が0.25mg/cm²と同じであるにも拘わらず、実施例13の燃料電池単セルの出力電圧 20が比較例2の燃料電池単セルの出力電圧より大きい理由は、実施例13の膜電極接合体の固体高分子電解質膜および電極触媒被覆用溶液のイオン導電率が、比較例2の膜電極接合体の固体高分子電解質膜および電極触媒被覆用溶液のイオン導電率より高いからである。

【0359】(5) 燃料電池の作製

前記(4)で作製した単電池セルを36層積層し、固体 高分子型燃料電池を作製したところ、3kWの出力を示 した。

【0360】〔比較例 2〕

(1) スルホン化ポリ1,4-フェニレンエーテルエーテルスルホンの合成

撹拌機、温度計、塩化カルシウム管を接続した還流冷却器を付けた500mlの四つ口丸底フラスコの内部を窒素置換した後、110℃において10時間保持乾燥した3.22g (0.0103mol) のポリ $1,4-フェニレンエーテルエーテルスルホン〔(<math>-C_6H_4-4-SO_2C_6H_4-4-OC_6H_4-4-O-$)n〕とクロロホルム100ml中を入れ、60℃に約1時間保持して溶解した。

【0361】この溶液にクロロスルホン酸1.165g(0.01mo1)を1,1,2,2-テトラクロロエタン50m1に溶かした溶液を約10分間かけて加えた。次いで、60℃で4時間攪拌した。析出物を濾過し、クロロホルム150m1で洗浄した。得られた析出物にメタノール250m1を加え60℃で溶解した。溶液を60℃で減圧乾燥した。得られたポリマーに水250m1を加え、ミキサーで細かく砕き、濾過した。この操作を3回繰り返した。

【0362】得られた水不溶性の微粉末を五酸化燐上で 50

60

減圧下, 90℃で乾燥した。この微粉末は、水に不溶、 メタノールに可溶であった。

【0.3.6.3】 1 HNMRを測定すると原料のポリ1,4-フェニレンエーテルエーテルスルホン中のフェニル基の水素に基づく $7.3\sim8.0$ ppmの吸収が減少し、新たに SO_3 H基に隣接するフェニル基の水素の基づく8.3ppmの吸収が認められた。このことからスルホン酸が導入されていることが確認された。得られたスルホン化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質Xのスルホン酸当量重量は6.6.0g/当量であった。

【0364】テフロンコーテングのSUS製密閉容器に得られた前記スルホン化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質Xの1.0gとイオン交換水20mlを入れ、120℃に2週間保持した。その後、冷却して充分に水洗したのちスルホン化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質Xのイオン交換基当量重量を測定した。その結果、スルホン化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質Xのスルホン酸当量重量は1250g/当量と初期の660g/当量の値より大きくなり、スルホン酸基が脱離していた。

【0365】(2) 固体高分子電解質膜の作製 前記(1)で得られたスルホン化ポリ1,4ーフェニレンエーテルエーテルスルホン固体高分子電解質Xを、5 重量%の濃度になるようにN,N-ジメチルホルムアミドーシクロヘキサノンーメチルエチルケトン混合溶媒 (体積比20:80:25)に溶解した。この溶液をスピンコートによりガラス板上に展開し、風乾した後、80℃で真空乾燥して膜厚45 μ mの固体高分子電解質膜Xを作成した。得られた固体高分子電解質膜Xのイオン 導電率は8 S I c I mであった。

【0366】テフロンコーテングのSUS製密閉容器に得られた前記固体高分子電解質膜Xとイオン交換水20 m 1 を入れ、120 ∞ に2 週間保持した。その結果、固体高分子電解質膜X は破け、ぼろぼろになっていた。

【0367】(3) 電極触媒被覆用溶液および膜電極接合体の作製

40重量%の白金担持カーボンに、前記(2)の5重量%濃度のN,N-ジメチルホルムアミドーシクロヘキサノンーメチルエチルケトン混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液X)を調製した。

【0368】テフロンコーテングのSUS製密閉容器に、前記電極触媒被覆用溶液Xの1.0gとイオン交換水20mlを入れて120℃に2週間保持した。その後、冷却して溶媒を揮散させて生じた固体を水洗した後、電極触媒被覆用溶液Xのイオン交換基当量重量を測定した。その結果、電極触媒被覆用溶液Xのイオン交換

基当量重量は1250g/当量と変化し、初期の660 g/当量の値より大きくなり、スルホン酸基が脱離していた。

【0369】前記電極触媒被覆用溶液Xを前記(2)で得られた固体高分子電解質膜Xの両側に塗布した後、乾燥して白金担持量0.25mg/cm²の膜電極接合体Xを作製した。

【0370】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体Xとイオン交換水20m1を入れ、120Cに2週間保持した。その結果、膜電極接合体Xの膜は破け、ぼろぼろになり、電極は剥がれていた。

【0371】(4) 燃料電池単セルの耐久性試験 比較例2の膜電極接合体Xの両側に薄いカーボンペーパ のパッキング材(支持集電体)を密着させて、その両側 から極室分離と電極へのガス供給通路の役割を兼ねた導 電性のセパレータ(バイポーラプレート)からなる固体 高分子型燃料電池単セルを作製し、電流密度300mA /cm²の条件で長時間稼動試験を行った。その結果、 図13の51に示すように出力電圧は初期0.73V で、稼動時間600時間後で出力電圧が無くなった。 【0372】[実施例 14]

(1) スルホブチル化ポリ1,4-フェニレンエーテルエーテルスルホンの合成

撹拌機、温度計、塩化カルシウム管を接続した還流冷却 器を付けた500mlの四つ口丸底フラスコの内部を窒 素置換した後、110℃において10時間保持乾燥した 4.84g(0.0155mol)のポリ1,4-フェニ レンエーテルエーテルスルホン $(-C_6H_4-4-SO_2)$ $C_6H_4-4-OC_6H_4-4-O-)n$ と脱水クロロホル ム150mlを入れ、60℃にて約1時間保持して溶解 した。この溶液にプタンスルトン6.26g(0.046 4mol)を加えた。次いで、撹拌しながら約30分か けて乳鉢で良くすりつぶした無水塩化アルミニウム6. 19g(0.0464mol)を加えた。無水塩化アル ミニウムを添加した後、30時間60℃で還流攪拌し た。析出したポリマーを濾過し、クロロホルム150m 1で洗浄し、減圧乾燥した。得られたポリマーを水25 0mlに懸濁させ、ミキサーで細かく砕き、得られた微 粉砕物を濾過した。これを4回繰り返した。水で十分洗 浄した後、水不溶性の微粉砕物を減圧下、90℃で乾燥

【0373】 1 HNMRを測定すると新たに-CH $_2$ CH $_2$ CH $_2$ CH $_2$ SO $_3$ H基に基づくピークが $1.3\sim3.8$ p pmに認められた。このことからスルホブチル基が導入されていることが確認された。得られたスルホブチル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質XIのスルホン酸当量重量は650 g/当量であった。

【0374】スルホブチル化ポリ1,4-フェニレンエ

62

ーテルエーテルスルホン固体高分子電解質XIのコストは、市販の比較的安価なエンジニアプラスチックであるポリ1,4-フェニレンエーテルエーテルスルホンを原料に1工程で製造できるため、原料が高価で5工程を経て製造されるパーフルオロスルホン酸固体高分子電解質(ナフィオン117)のコストに比べ1/50以下と安価である。

【0375】テフロンコーテングのSUS製密閉容器に、得られたスルホブチル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質XIの1.0gとイオン交換水20mIを入れて120℃に2週間保持した。その後、冷却して十分に水洗した後スルホブチル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質XIのイオン交換基当量重量を測定した

【0376】その結果、スルホブチル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質XIのイオン交換基当量重量は初期と変わらず650g/当量と、パーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定であった。

【0377】一方、比較例2の(1) に示すように、安価なスルホン化ポリ1, 4 – フェニレンエーテルエーテルスルホン固体高分子電解質Xのイオン交換基当量重量は同一加温加水分解条件で1250 g/当量と変化し、初期の660 g/当量の値より大きくなり、スルホン酸基が脱離していた。

【0378】即ち、安価なスルホブチル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質XIは、比較例2の(1)に記載した安価なスルホン化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質Xとは異なり、パーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定で、低コストと耐加水分解性(耐久性)が両立して優れている。

【0379】(2) 固体高分子電解質膜の作製前記(1)で得られた生成物を5重量%の濃度になるようにN, N ージメチルホルムアミドーシクロヘキサノンーメチルエチルケトン混合溶媒(体積比20:80:25)に溶解した。この溶液をスピンコートによりガラス板上に展開し、風乾した後、80で真空乾燥して膜厚 25μ mの固体高分子電解質膜XIを作成した。得られた固体高分子電解質膜XIのイオン導電率は25S/cmであった。

【0380】テフロンコーテングのSUS製密閉容器に得られた前記固体高分子電解質膜XIとイオン交換水20mIを入れ、120Cに2週間保持した。その結果、得られた固体高分子電解質膜XIのイオン導電率は、パーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に初期と変わらず、膜もしっかりしてい

50 た。

【0381】一方、比較例2の比較的安価なスルホン化 芳香族炭化水素系固体高分子電解質 X は同一加温加水分解条件で破け、ぼろぼろになっていた。即ち、安価なスルホブチル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質膜 X I は、比較例2のスルホン化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質膜 X と異なり、パーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に安定でコストと耐加水分解性(耐久性)が両立して優れている。

【0382】(3) 電極触媒被覆用溶液および膜電極接合体の作製

40重量%の白金担持カーボンに、前記(2)の5重量%濃度のN,N-ジメチルホルムアミドーシクロヘキサノンーメチルエチルケトン混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液XI)を調製した。

【0383】テフロンコーテングのSUS製密閉容器に、前記電極触媒被覆用溶液 XIの1.0gとイオン交換 20水20mlを入れて120℃に2週間保持した。その後、冷却して溶媒を揮散させて生じた固体を水洗した後、電極触媒被覆用溶液 XIのイオン交換基当量重量を測定した。その結果、電極触媒被覆用溶液 XIのイオン交換基当量重量は初期と変わらず650g/当量とパーフルオロスルホン酸(ナフィオン117)電極触媒被覆用溶液と同様に安定であった。

【0384】一方、比較例2の(2)に示すように、電極触媒被覆用溶液Xのイオン交換基当量重量は、同一加温加水分解条件で1250g/当量と変化し、初期の660g/当量の値より大きくなり、スルホン酸基が脱離していた。即ち、安価な電極触媒被覆用溶液XIは、比較例2の電極触媒被覆用溶液Xと異なり、パーフルオロスルホン酸(ナフィオン117)電極触媒被覆用溶液と同様に安定でコストと耐加水分解性(耐久性)が両立して優れている。

【0385】前記電極触媒被覆用溶液XIを前記(2)で得られた固体高分子電解質膜XIの両側に塗布した後、乾燥して白金担持量0.25mg/cm²の膜電極接合体XIを作製した。

【0386】比較例2の電極触媒被覆用溶液Xを前記 (2)で得られた固体高分子電解質膜XIの両側に塗布 した後、乾燥して白金担持量0.25mg/cm²の膜電 極接合体XI'を作製した。

【0387】40重量%の白金担持カーボンに、パーフロスルホン酸固体高分子電解質の5重量%濃度のアルコールー水混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液)を調製した。この電極触媒被覆用溶液を前記(2)で得られた固体高分子電 50

64

解質膜XIの両側に塗布後、乾燥して白金担持量0.25 mg/cm²の膜電極接合体XI''を作製した。

【0388】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体XIとイオン交換水20mlを入れ、120℃に2週間保持した。その結果、膜電極接合体XIは、パーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)とパーフルオロスルホン酸固体高分子電解質(ナフィオン117)を用いて作製した膜電極接合体と同様に初期と変わらず、膜もしっかりしていた。

【0389】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体XI、とイオン交換水20m 1 を入れ、120 に 2 週間保持した。その結果、膜電極接合体XI、は、電極が若干剥がれていたが膜はしっかりしており、発電能力はあった。

【0390】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体XI'、とイオン交換水20 m I を入れ、120 ℃に2 週間保持した。その結果、膜電極接合体XI'、は電極が若干剥がれていたが膜はしっかりしており、発電能力はあった。

【0391】一方、比較例2の(3)に示すように、比較的安価なスルホン化芳香族炭化水素系固体高分子電解質膜Xと、電極触媒被覆用溶液Xを用いて作製した膜電極接合体Xは同一加温加水分解条件で膜は破け、ぼろぼろになり、電極は剥がれていた。即ち、安価なスルホブチルポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質膜電極接合体XIは、比較例2のスルホン化芳香族炭化水素系固体高分子電解質膜電極接合体Xと異なり、パーフルオロスルホン酸(ナフィオン117)膜電極接合体と同様に安定でコストと耐加水分解性(耐久性)が両立して優れている。

【0392】(4) 燃料電池単セルの耐久性試験 前記膜電極接合体XI、XI'およびXI',を沸騰した 脱イオン水中に2時間浸漬することにより吸水させた。 得られた膜電極接合体を評価セルに組み込み、燃料電池 出力性能を評価した。

【0393】即ち、固体高分子電解質膜1、酸素極2および水素極3からなる実施例14の膜電極接合体4の両電極に、薄いカーボンペーパのパッキング材(支持集電体)5を密着させて、その両側から極室分離と電極へのガス供給通路の役割を兼ねた導電性のセパレータ(バイポーラプレート)6からなる図1に示す固体高分子型燃料電池単セルを作製し、電流密度300mA/cm²の条件で長期劣化試験を行った。その結果を図14に示す。

【0394】図14中の52,53,54は、それぞれ 固体高分子電解質膜電極接合体XI、XI'およびX I'を用いた燃料電池単セルの耐久性試験結果であ る。

【0395】図14中の55は、パーフルオロスルホン

酸(ナフィオン117)固体高分子電解質膜電極接合体. を用いた燃料電池単セルの耐久性試験結果である。

【0396】図14中、52は実施例14のアルキレン 基を介してスルホン酸基が結合したポリエーテルエーテ ルスルホン固体高分子電解質膜と、アルキレン基を介し てスルホン酸基が結合したポリエーテルエーテルスルホ ン固体高分子電解質の電極触媒被覆用溶液を用いた燃料 電池単セルの出力電圧の経時変化、53は実施例14の アルキレン基を介してスルホン酸基が結合したポリエー テルエーテルスルホン固体高分子電解質膜と、スルホン 酸基が直接結合したポリエーテルエーテルスルホン固体 高分子電解質の電極触媒被覆用溶液を用いた燃料電池単 セルの出力電圧の経時変化、54は実施例14のアルキ レン基を介してスルホン酸基が結合したポリエーテルエ ーテルスルホン固体高分子電解質膜と、パーフルオロス ルホン酸固体高分子電解質 (ナフィオン117) の電極 触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経 時変化、55はパーフルオロスルホン酸固体高分子電解 質膜(ナフィオン117)を用いた燃料電池単セルの出 力電圧の経時変化、56は比較例14のスルホン酸基が 20 直接結合したポリエーテルエーテルスルホン固体高分子 電解質膜と、スルホン酸基が直接結合したポリエーテル エーテルスルホン固体高分子電解質の電極触媒被覆用溶 液を用いた燃料電池単セルの出力電圧の経時変化であ

【0397】図14の52および54から分かるように、本発明の固体高分子電解質膜電極接合体XIおよびXI''を用いた単電池セルの電圧は初期0.79Vで、稼動時間5000時間後でも初期と変わらず、図14の55のパーフルオロスルホン酸固体高分子電解質膜(ナ 30フィオン117)を用いた結果と同等に初期と変化しなかった。

【0398】一方、図14中の56(比較例2のスルホン化芳香族炭化水素固体高分子電解質Xを使用した燃料電池単セル)の出力電圧は初期0.73Vで、稼動時間600時間後で出力が無くなった。

【0399】このことから、芳香族炭化水素の芳香族環にアルキレン基を介してスルホン酸基を結合した芳香族炭化水素系固体高分子電解質を用いた燃料電池単セルが、スルホン基と直接結合した芳香族炭化水素系固体高分子電解質を用いた燃料電池単セルより耐久性に優れていることが明白である。

【0400】本発明の膜電極接合体XIを用いた燃料電池単セルの耐久性は、膜電極接合体XI'を用いた燃料電池単セルの耐久性より優れている。即ち、電極触媒被覆用溶液XIは、電極触媒被覆用溶液Xより膜電極接合体の電極触媒被覆に適している。

【0401】また、実施例14および比較例2の膜電極接合体の白金担持量0.25mg/cm²と同じであるにも拘わらず、実施例14の燃料電池単セルの出力電圧が 50

66

比較例2の燃料電池単セルの出力電圧より大きい理由は、実施例14の膜電極接合体の固体高分子電解質膜および電極触媒被覆用溶液のイオン導電率が、比較例2の膜電極接合体の固体高分子電解質膜および電極触媒被覆用溶液のイオン導電率より高いからである。

【0402】(5) 燃料電池の作製

前記(4)で作製した単電池セルを36層積層し、固体 高分子型燃料電池を作製したところ、3kWの出力を示 した。

○ 【0403】〔実施例 15〕

(1) クロルメチル化ポリ1,4-フェニレンエーテルエーテルスルホンの合成

撹拌機、温度計、塩化カルシウム管を接続した還流冷却器を付けた500mIの四つ口丸底フラスコの内部を窒素置換した後、36.1gのポリ1,4-フェニレンエーテルエーテルスルホン $[(-C_6H_4-4-SO_2C_6H_4-4-OC_6H_4-4-O-)n]$ 、60g (2mo1) のパラホルムアルデヒドと、乾燥した50mIのニトロベンゼンを入れた。100でに保って撹拌しながら73gの塩化水素ガスを吹き込んだ。吹き込み終了後、150で に4時間保った。

【0404】次いで、反応溶液を1リットルの脱イオン水にゆっくりと滴下することでクロルメチル化ポリ1,4-フェニレンエーテルエーテルスルホンを析出させ、 濾過回収した。析出した沈澱をミキサーによる脱イオン 水洗浄と吸引濾過による回収操作を、濾液が中性になる まで繰り返した後、80℃にて一晩減圧乾燥した。

【0405】(2) スルホメチル化ポリ1,4-フェニレンエーテルエーテルスルホンの合成

撹拌機、温度計、塩化カルシウム管を接続した還流冷却器を付けた500mlの四つ口丸底フラスコの内部を窒素置換した後、10gの前記クロルメチル化ポリ1,4-フェニレンエーテルエーテルスルホン、乾燥した50mlのニトロベンゼン、30gの硫酸ナトリウムを入れ、100℃にて5時間撹拌した。さらに、10mlのイオン交換水を加え、5時間撹拌した。

【0406】次いで、反応溶液を1リットルの脱イオン水にゆっくりと滴下することでスルホメチル化ポリ1,4-フェニレンエーテルエーテルスルホンXIIを析出させ、濾過回収した。析出した沈澱をミキサーによる脱イオン水洗浄と吸引濾過による回収操作を、濾液が中性になるまで繰り返した後、120℃にて一晩減圧乾燥した。

【0407】 1 HNMRを測定すると新たに-CH $_{2}$ SO 3 H基に基づくピークが 2 . 2 ppmに認められた。得られたスルホメチル化ポリ 1 , 4 -フェニレンエーテルエーテルスルホン固体高分子電解質XIIのイオン交換基当量重量は 6 50g/当量であった。

【0408】本製法で得られるスルホメチル化ポリ1, 4-フェニレンエーテルエーテルスルホン固体高分子電

解質XIIのコストは、市販の安価なエンジニアプラスチックであるポリ1,4-フェニレンエーテルエーテルスルホンを原料に2工程で製造でき、5工程を経て製造されるパーフルオロスルホン酸固体高分子電解質(ナフィオン117)のコストに比べ1/30以下と安価である。

【0409】テフロンコーテングのSUS製密閉容器に得られたスルホメチル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質XIIの1.0gとイオン交換水20mlを入れ、120℃に2週間保持した。その後、冷却して十分に水洗した後スルホメチル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質XIIのイオン交換基当量重量を測定した。【0410】その結果、スルホメチル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質XIIのイオン交換基当量重量は、初期と変わらず650g/当量とパーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定であった。

【0411】一方、比較例2の(1)に示すように、安価なスルホン化芳香族炭化水素固体高分子電解質Xのイオン交換基当量は、同一加温加水分解条件で1250g/当量と変化し、初期の660g/当量の値より大きくなり、スルホン酸基が脱離していた。即ち、安価なスルホメチル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質XIIは、スルホン化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質Xと異なり、パーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定で、コストと耐加水分解性(耐久性)が両立して優れている。

【0412】(3) 固体高分子電解質膜の作製前記(2)で得られたスルホメチル化ポリ1, 4 – フェニレンエーテルエーテルスルホン固体高分子電解質XIIを5重量%の濃度になるようにトリクロロエタンージクロロエタンの混合溶媒(1:1)に溶解した。この溶液をスピンコートによりガラス板上に展開し、風乾した後、80℃で真空乾燥して膜厚 42μ mのスルホメチル化ポリ1, 4 – フェニレンエーテルエーテルスルホン固体高分子電解質膜XIIを作成した。得られた固体高分子電解質膜XIIのイオン伝導度は5 S / c mであった。

【0413】テフロンコーテングのSUS製密閉容器に 40 前記スルホメチル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質膜XIIとイオン交換水20mlを入れ、120℃に2週間保持した。その結果、固体高分子電解質膜XIIのイオン導電率は、パーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に初期と変わらず、膜もしっかりしていた。【0414】一方、比較例2の(2)に示すように、比較的安価なスルホン化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質Xは、同一加温加水分解条件で破け、ぼろぼろになっていた。即ち、安価な50

68

スルホメチル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質膜XIIは、安価なスルホン化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質膜Xと異なり、パーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に安定でコストと耐加水分解性(耐久性)が両立して優れている。

【0415】(4) 電極触媒被覆用溶液および膜電極接合体の作製

40重量%の白金担持カーボンに、前記(3)のトリクロロエタンージクロロエタンの混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液XII)を調製した。

【0416】テフロンコーテングのSUS製密閉容器に、前記電極触媒被覆用溶液 XIIの1.0gとイオン交換水20mlを入れて120℃に2週間保持した。その後、冷却して溶媒を揮散させて生じた固体を水洗した後、電極触媒被覆用溶液 XIIのイオン交換基当量重量を測定した。その結果、電極触媒被覆用溶液 XIIのイオン交換基当量重量は、初期と変わらず650g/当量とパーフルオロスルホン酸(ナフィオン117)電極触媒被覆用溶液と同様に安定であった。

【0417】一方、比較例2の(2)に示すように、電極触媒被覆用溶液Xのイオン交換基当量重量は、同一加温加水分解条件で1250g/当量と変化し、初期の660g/当量の値より大きくなり、スルホン酸基が脱離していた。即ち、安価な電極触媒被覆用溶液XIIは、比較例2の(2)に記載した安価な電極触媒被覆用溶液Xと異なり、パーフルオロスルホン酸(ナフィオン117)電極触媒被覆用溶液と同様に安定でコストと耐加水分解性(耐久性)が両立して優れている。

【0418】前記電極触媒被覆用溶液XIIを前記(2)で得られた固体高分子電解質膜XIIの両側に塗布した後、乾燥して白金担持量0.25mg/cm²の膜電極接合体XIIを作製した。

【0419】比較例2の(2)に記載した電極触媒被覆用溶液Xを、前記(2)で得られた固体高分子電解質膜XIIの両側に塗布した後、乾燥して白金担持量0.25mg/cm²の膜電極接合体XII^{*}を作製した。

【0420】40重量%の白金担持カーボンに、パーフロロスルホン酸固体高分子電解質(ナフィオン117)の5重量%濃度のアルコールー水混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液)を調製した。この電極触媒被覆用溶液を前記(2)で得られた固体高分子電解質膜XIIの両側に塗布後、乾燥して白金担持量0.25mg/cm²の膜電極接合体XII',を作製した。

【0421】テフロンコーテングのSUS製密閉容器に

得られた前記膜電極接合体XIIとイオン交換水20mlを入れ、120℃に2週間保持した。その結果、膜電極接合体XIIは、パーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)とパーフルオロスルホン酸固体高分子電解質(ナフィオン117)を用いて作製した膜電極接合体と同様に初期と変わらず、膜もしっかりしていた。

【0422】テフロンコーテングのSUS製密閉容器に 得られた前記膜電極接合体XII'とイオン交換水20m 1を入れ、120℃に2週間保持した。その結果、膜電 10 極接合体XII'は、電極が若干剥がれていたが膜はしっ かりしており、発電能力はあった。

【0423】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体XII'、とイオン交換水20 m l を入れ、120 ℃に2 週間保持した。その結果、膜電極接合体XII'、は、電極が若干剥がれていたが膜はしっかりしており、発電能力はあった。

【0425】即ち、安価なスルホメチル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質膜電極接合体XIIは、比較例2のスルホン化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質膜電極接合体Xと異なり、パーフルオロスルホン酸(ナフィオン117)膜電極接合体と同様に安定で、コストと耐加水分解性(耐久性)が両立して優れている。【0426】(4) 燃料電池単セルの耐久性試験前記膜電極接合体XII、XII'およびXII'を沸騰した脱イオン水中に2時間浸漬することにより吸水させた。得られた膜電極接合体を評価セルに組み込み、燃料電池出力性能を評価した。

【0427】即ち、固体高分子電解質膜1,酸素極2および水素極3からなる実施例15の膜電極接合体4の両電極に、薄いカーボンペーパのパッキング材(支持集電体)5を密着させて、その両側から極室分離と電極へのガス供給通路の役割を兼ねた導電性のセパレータ(バイポーラプレート)6からなる図1に示す固体高分子型燃料電池単セルを作製し、電流密度300mA/cm²の条件で長期劣化試験を行った。その結果を図15に示す。

【0428】図15中の57,58,59はそれぞれ固体高分子電解質膜電極接合体XII,XII'およびXII' を用いた燃料電池単セルの耐久性試験結果である。

【0429】図15中の60はパーフルオロスルホン酸 (ナフィオン117) 固体高分子電解質膜電極接合体を 50 70

用いた燃料電池単セルの耐久性試験結果である。

【0430】図15中、57は実施例15のアルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホン固体高分子電解質膜と、アルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホン固体高分子電解質の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化、58は実施例15のアルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホン固体高分子電解質の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化である。

【0431】また、59は実施例15のアルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホン固体高分子電解質膜と、パーフルオロスルホン酸固体高分子電解質(ナフィオン117)の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化、60はパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)を用いた燃料電池単セルの出力電圧の経時変化、61は比較例15のスルホン酸基が直接結合したポリエーテルエーテルスルホン固体高分子電解質膜と、スルホン酸基が直接結合したポリエーテルエーテルスルホン固体高分子電解質の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化である。

【0432】図15の57および59から分かるように、本発明の固体高分子電解質膜電極接合体XIIおよびXII''を用いた単電池セルの電圧は初期0.74Vで、稼動時間5000時間後でも初期と変わらず、図15の60のパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)を用いた結果と同等に初期と変わらなかった。

【0433】一方、図15中の61(比較例2のスルホン化芳香族炭化水素固体高分子電解質膜Xを使用した燃料電池単セル)の出力電圧は初期0.73Vで、稼動時間600時間後で出力が無くなった。

【0434】このことから、芳香族炭化水素の芳香族環にアルキレン基を介してスルホン酸基を結合した芳香族炭化水素系固体高分子電解質を用いた燃料電池単セルが、スルホン基と直接結合した芳香族炭化水素系固体高分子電解質を用いた燃料電池単セルより耐久性に優れていることが明白である。

【0435】本発明の膜電極接合体XIIを用いた燃料電池単セルの耐久性は、膜電極接合体XII'を用いた燃料電池単セルの耐久性より優れている。即ち、電極触媒被覆用溶液XIIは、電極触媒被覆用溶液Xより膜電極接合体の電極触媒被覆に適している。

【0436】また、実施例15および比較例2の膜電極接合体の白金担持量が0.25mg/cm²と同じであるにも拘わらず、実施例15の燃料電池単セルの出力電圧が比較例2の燃料電池単セルの出力電圧より大きい理由

は、実施例15の膜電極接合体の固体高分子電解質膜および電極触媒被覆用溶液のイオン導電率が、比較例2の 膜電極接合体の固体高分子電解質膜および電極触媒被覆 用溶液のイオン導電率より高いからである。

【0437】(5) 燃料電池の作製

前記(4)で作製した単電池セルを36層積層し、固体 高分子型燃料電池を作製したところ、3kWの出力を示 した。

【0438】 〔実施例 16〕

(1) プロモヘキサメチル化ポリ1,4-フェニレン エーテルエーテルスルホンの合成

撹拌機、温度計、塩化カルシウム管を接続した還流冷却器を付けた500m1の四つ口丸底フラスコの内部を窒素置換した後、38.8gのポリ1,4-フェニレンエーテルエーテルスルホン $[(-C_6H_4-4-SO_2C_6H_4-4-OC_6H_4-4-C_6H_4-4-O-)n]$ 、乾燥した50m1のニトロベンゼンを入れた。これに6.5gのn-ブトキシリチウムを加え、室温に2時間保った。次いで、100gの1,6-ジプロモヘキサンを加え、さらに12時間撹拌した。

【0439】反応溶液を1リットルの脱イオン水にゆっくりと滴下することでプロモヘキサメチル化ポリ1,4 ーフェニレンエーテルエーテルスルホンを析出させ、濾 過回収した。析出した沈澱をミキサーによる脱イオン水 洗浄と吸引濾過による回収操作を、濾液が中性になるま で繰り返した後、120℃にて一晩減圧乾燥した。

【0440】(2) スルホヘキサメチル化ポリ1,4-フェニレンエーテルエーテルスルホンの合成

撹拌機、温度計、塩化カルシウム管を接続した還流冷却器を付けた500mlの四つ口丸底フラスコの内部を窒素置換した後、10gの前記プロモヘキサメチル化ポリ1,4-フェニレンエーテルエーテルスルホン、乾燥した50mlのニトロベンゼン、30gの硫酸ナトリウムを入れ、100℃にて5時間撹拌した。さらに、10mlのイオン交換水を加え、5時間撹拌した。

【0441】次いで、反応溶液を1リットルの脱イオン水にゆっくりと滴下することでスルホヘキサメチル化ポリ1,4-フェニレンエーテルエーテルスルホンを析出させ、濾過回収した。析出した沈澱をミキサーによる脱イオン水洗浄と吸引濾過による回収操作を、濾液が中性 40になるまで繰り返した後、120℃にて一晩減圧乾燥した

【0442】 1 HNMRを測定すると新たに-CH $_{2}$ CH $_{2}$ CH $_{2}$ CH $_{2}$ CH $_{2}$ CH $_{2}$ SO $_{3}$ H基に基づくピークが1. $3\sim4$. 6 ppmに認められた。このことからスルホヘキサメチル基が導入されていることが確認された。得られたスルホヘキサメチル化ポリ1, 4-フェニレンエーテルエーテルスルホン固体高分子電解質XIIIのイオン交換基当量重量は660g/当量であった。

【0443】本製法で得られるスルホヘキサメチル化ポ 50 のイオン導電率は、パーフルオロスルホン酸固体高分子

72

リ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質XIIIのコストは、市販の安価なエンジニアプラスチックであるポリ1,4-フェニレンエーテルエーテルスルホンを原料に2工程で製造できるため、原料が高価で5工程を経て製造されるパーフルオロスルホン酸固体高分子電解質(ナフィオン117)のコストに比べ1/30以下と安価である。

【0444】テフロンコーテングのSUS製密閉容器に得られたスルホヘキサメチル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質XIIIの1.0gとイオン交換水20mlを入れ、120℃に2週間保持した。その後、冷却して充分に水洗したのちスルホヘキサメチル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質XIIIのイオン交換基当量重量を測定した。

【0445】その結果、スルホヘキサメチル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質XIIIのイオン交換基当量重量は、初期と変わらず660g/当量とパーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定であった。

【0446】一方、比較例2の(1)に示すように、安価なスルホン化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質Xのイオン交換基当量は、同一加温加水分解条件で1250g/当量と変化し、初期の660g/当量の値より大きくなり、スルホン酸基が脱離していた。

【0447】即ち、安価なスルホへキサメチル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質XIIIは、安価なスルホン化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質Xと異なり、パーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定でコストと耐加水分解性(耐久性)が両立して優れている。

【0448】(3) 固体高分子電解質膜の作製前記(2)で得られた生成物を5重量%の濃度になるようにN,Nージメチルホルムアミドーシクロヘキサノンーメチルエチルケトン混合溶媒(体積比20:80:25)に溶解した。この溶液をスピンコートによりガラス板上に展開し、風乾した後、80℃で真空乾燥して膜厚42μmのスルホヘキサメチル化ポリ1,4ーフェニレンエーテルエーテルスルホン固体高分子電解質膜XIIIを作成した。得られたスルホヘキサメチル化ポリ1,4ーフェニレンエーテルエーテルスルホン固体高分子電解質膜XIIIのイオン導電率は40S/cmであった。

【0449】テフロンコーテングのSUS製密閉容器に得られた前記スルホヘキサメチル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質膜XII Iとイオン交換水20mlを入れ、120℃に2週間保持した。その結果、得られた固体高分子電解質膜XIII 7.3

電解質膜(ナフィオン117)と同様に初期と変わらず、膜もしっかりしていた。

【0450】一方、比較例2の(2)示すように、比較的安価なスルホン化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質Xは同一加温加水分解条件で破け、ぼろぼろになっていた。

【0451】即ち、安価なスルホヘキサメチル化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質膜XIIIは、スルホン化ポリ1,4-フェニレンエーテルエーテルスルホン固体高分子電解質Xと異なり、パーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に安定でコストと耐加水分解性(耐久性)が両立して優れている。

【0452】(4) 電極触媒被覆用溶液および膜電極接合体の作製

40重量%の白金担持カーボンに、前記(3)のトリクロロエタンージクロロエタンの混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液XIII)を調製した。

【0453】テフロンコーテングのSUS製密閉容器に、前記電極触媒被覆用溶液XIIIの1.0gとイオン交換水20mlを入れて120℃に2週間保持した。その後、冷却して溶媒を揮散させて生じた固体を水洗した後、電極触媒被覆用溶液XIIIのイオン交換基当量重量を測定した。その結果、電極触媒被覆用溶液XIIIのイオン交換基当量重量は、初期と変わらず660g/当量とパーフルオロスルホン酸(ナフィオン117)電極触媒被覆用溶液と同様に安定であった。

【0454】一方、比較例2の(2)に示すように、電 30 極触媒被覆用溶液Xのイオン交換基当量重量は同一加温加水分解条件で1250g/当量と変化し、初期の660g/当量の値より大きくなり、スルホン酸基が脱離していた。

【0455】即ち、安価な電極触媒被覆用溶液XIII は、比較例2の(2)に記載した安価な電極触媒被覆用 溶液Xと異なり、パーフルオロスルホン酸(ナフィオン 117)電極触媒被覆用溶液と同様に安定でコストと耐 加水分解性(耐久性)が両立して優れている。

【0456】前記電極触媒被覆用溶液XIIIを前記

(3) で得られた固体高分子電解質膜XIIIの両側に塗布した後、乾燥して白金担持量0.25mg/cm²の膜電極接合体XIIIを作製した。

【0457】比較例2の(2)に記載した電極触媒被覆用溶液Xを前記(2)で得られた固体高分子電解質膜XIIIの両側に塗布した後、乾燥して白金担持量0.25mg/cm²の膜電極接合体XIII'を作製した。

【0458】40重量%の白金担持カーボンに、パーフロロスルホン酸固体高分子電解質(ナフィオン117)の5重量%濃度のアルコールー水混合溶液を、白金触媒 50

74

と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液)を調製した。この電極触媒被覆用溶液を前記(2)で得られた固体高分子電解質膜XIIIの両側に塗布後、乾燥して白金担持量0.25mg/cm²の膜電極接合体XIII',を作製した。

【0459】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体XIIIとイオン交換水20mlを入れ、120℃に2週間保持した。その結果、膜電極接合体XIIIは、パーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)とパーフルオロスルホン酸固体高分子電解質(ナフィオン117)を用いて作製した膜電極接合体と同様に初期と変わらず、膜もしっかりしていた。

【0460】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体XIII'とイオン交換水20 mlを入れ、120 ℃に2 週間保持した。その結果、膜電極接合体XIII'は電極が若干剥がれていたが膜はしっかりしており、発電能力はあった。

0 【0.4.6.1】テフロンコーテングのSUS製密閉容器に 得られた前記膜電極接合体XIII'、とイオン交換水2.0m1を入れ、1.2.0℃に2.週間保持した。その結果、膜電極接合体<math>XIII'、は電極が若干剥がれていたが膜 はしっかりしており、発電能力はあった。

【0462】(4) 燃料電池単セルの耐久性試験前記膜電極接合体XIII、XIII' およびXIII',を沸騰した脱イオン水中に2時間浸漬することにより吸水させた。得られた膜電極接合体を評価セルに組み込み、燃料電池出力性能を評価した。即ち、固体高分子電解質膜1、酸素極2および水素極3からなる実施例16の膜電極接合体4の両電極に薄いカーボンペーパのパッキング材(支持集電体)5を密着させて、その両側から極室分離と電極へのガス供給通路の役割を兼ねた導電性のセパレータ(バイポーラプレート)6からなる図1に示す固体高分子型燃料電池単セルを作製し、電流密度300mA/cm²の条件で長期劣化試験を行った。その結果を図16に示す。

【0463】図16中の62,63,64はそれぞれ本発明の固体高分子電解質膜電極接合体XIII、XIII、お はびXIII、を用いた燃料電池単セルの耐久性試験結果である。

【0464】図16中の65はパーフルオロスルホン酸 (ナフィオン117) 固体高分子電解質膜電極接合体を 用いた燃料電池単セルの耐久性試験結果である。

【0465】図16中、62は実施例16のアルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホン固体高分子電解質膜と、アルキレン基を介してスルホン酸基が結合したポリエーテルエーテルスルホン固体高分子電解質の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化、63は実施例16の

アルキレン基を介してスルホン酸基が結合したポリエー テルエーテルスルホン固体高分子電解質膜と、スルホン 酸基が直接結合したポリエーテルエーテルスルホン固体 高分子電解質の電極触媒被覆用溶液を用いた燃料電池単 セルの出力電圧の経時変化、64は実施例16のアルキ レン基を介してスルホン酸基が結合したポリエーテルエ ーテルスルホン固体高分子電解質膜とパーフルオロスル ホン酸固体高分子電解質(ナフィオン117)の電極触 媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時 変化、65はパーフルオロスルホン酸固体高分子電解質 10 膜(ナフィオン117)を用いた燃料電池単セルの出力 電圧の経時変化、66は比較例16のスルホン酸基が直 接結合したポリエーテルエーテルスルホン固体高分子電 解質膜と、スルホン酸基が直接結合したポリエーテルエ ーテルスルホン固体高分子電解質の電極触媒被覆用溶液 を用いた燃料電池単セルの出力電圧の経時変化である。 【0466】図16の62および64から分かるよう に、本発明の固体高分子電解質膜電極接合体XIIIおよ びXIII'を用いた単電池セルの電圧は初期0.83V で、稼動時間5000時間後でも初期と変わらず、図1 6の65のパーフルオロスルホン酸固体高分子電解質膜 (ナフィオン117)を用いた結果と同等に初期と変わ らなかった。

【0467】一方、図16中の66(比較例2のスルホン化芳香族炭化水素固体高分子電解質Xを使用した燃料電池単セル)の出力電圧は初期0.73Vで、稼動時間600時間後で出力が無くなった。

【0468】このことから、芳香族炭化水素の芳香族環にアルキレン基を介してスルホン酸基を結合した芳香族炭化水素系固体高分子電解質を用いた燃料電池単セルが、スルホン基と直接結合した芳香族炭化水素系固体高分子電解質を用いた燃料電池単セルより耐久性に優れていることが明白である。

【0469】本発明の膜電極接合体XIIIを用いた燃料電池単セルの耐久性は、膜電極接合体XIII'を用いた燃料電池単セルの耐久性より優れている。即ち、電極触媒被覆用溶液XIIIは電極触媒被覆用溶液Xより膜電極接合体の電極触媒被覆に適している。

【0470】また、実施例16および比較例2の膜電極接合体の白金担持量が0.25mg/cm²と同じであるにも拘わらず、実施例16の燃料電池単セルの出力電圧が比較例2の燃料電池単セルの出力電圧より大きい理由は、実施例16の膜電極接合体の固体高分子電解質膜および電極触媒被覆用溶液のイオン導電率が比較例2の膜電極接合体の固体高分子電解質膜および電極触媒被覆用溶液のイオン導電率より高いからである。

【0471】 (5) 燃料電池の作製 前記(4)で作製した単電池セルを36層積層し、固体 高分子型燃料電池を作製したところ、3kWの出力を示

した。

76

【0472】実施例15, 13, 14, 16から分かるようにnの数が1、3、4、6のスルホアルキル化ポリ1, 4-フェニレンエーテルエーテルスルホン固体電解質のイオン交換基当量重量(g/当量)は、それぞれ650, 670, 650, 660と殆ど同じである。それに対応する固体高分子電解質膜のイオン伝導度S/cmはそれぞれ5, 15, 25, 40である。

【0473】即ち、スルホアルキル化芳香族炭化水素固体電解質のnの数が大きいほどイオン伝導度が大きく、プロトンの伝達性が大きくなり固体高分子型燃料電池として優れている。

【0474】一方、コストの観点からスルホンとの1段 反応により合成できるスルホプロピル化芳香族炭化水素 系固体高分子電解質とスルホプチル化芳香族炭化水素系 高分子固体電解質が、2段階反応によって合成されるス ルホヘキサメチル化芳香族炭化水素系高分子固体電解質 やスルホメチル化芳香族炭化水素系高分子固体電解質よ り有利である。

【0475】即ち、イオン伝導度とコストとの両立の観点からnの数は3~4が好ましい。

【0476】〔実施例 17〕

(1) スルホプロピル化ポリ1,6-ナフタレンエー テルエーテルスルホンの合成

撹拌機、温度計、塩化カルシウム管を接続した還流冷却器を付けた500mlの四つ口丸底フラスコの内部を窒素置換した後、110℃において10時間保持乾燥した6.08g (0.0155mol) のポリ1,5-ナフタレンエーテルエーテルスルホン $\{(-C_6H_4-4-SO_2C_6H_4-1-OC_{10}H_6-5-O-)n\}$ と、脱水クロロホルム150mlを入れ、60℃にて約1時間保持して溶解した。この溶液にプロパンスルトン5.67g (0.0464mol) を加えた。次いで、撹拌しながら約30分かけて乳鉢で良くすりつぶした無水塩化アルミニウム6.19g (0.0464mol) を加えた。無水塩化アルミニウムを添加した後、30時間,60℃で還流攪拌した。

【0477】析出したポリマーを濾過し、クロロホルム 150mlで洗浄し、減圧乾燥した。得られたポリマー を水250mlに懸濁させ、ミキサーで細かく砕いた。 得られた微粉砕物を濾過した。これを4回繰り返した。 水で十分洗浄した後、水不溶性の微粉砕物を減圧下、9 0℃で乾燥した。

【0478】 1 HNMR解析を測定すると新たに $-CH_{2}$ C H_{2} C H_{2} S O_{3} H基に基づくピークが2.2ppm、3.8ppmに認められた。このことからスルホプロピル基が導入されていることが確認された。

【0479】得られたスルホプロピル化ポリ1,6-ナフタレンエーテルエーテルスルホン固体高分子電解質XIVのスルホン酸当量重量は770g/当量であった。

【0480】スルホプロピル化ポリ1,6-ナフタレン

エーテルエーテルスルホン固体高分子電解質XIVのコストは、市販の比較的安価なエンジニアプラスチックであるポリ1,6ーナフタレンエーテルエーテルスルホンを原料に1工程で製造できるため、原料が高価で5工程を経て製造されるパーフルオロスルホン酸固体高分子電解質(ナフィオン117)のコストに比べ1/50以下と安価である。

【0481】テフロンコーテングのSUS製密閉容器に、得られたスルホプロピル化ポリ1,6ーナフタレンエーテルエーテルスルホン固体高分子電解質 XIVの1.0gと、イオン交換水20mlを入れて120℃に2週間保持した。その後、冷却して十分に水洗した後、スルホプロピル化ポリ1,6ーナフタレンエーテルエーテルスルホン固体高分子電解質 XIVのイオン交換基当量重量を測定した。その結果、スルホプロピル化ポリ1,6ーナフタレンエーテルエーテルスルホン固体高分子電解質 XIVのイオン交換基当量重量は、初期と変わらず770g/当量とパーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定であった。

【0482】一方、後述の比較例3の(1)に示すよう 20 に、安価なスルホン化ポリ1,6-ナフタレンエーテルエーテルスルホン固体高分子電解質XVのイオン交換基当量重量は、同一加温加水分解条件で1300g/当量と変化し、初期の760g/当量の値より大きくなり、スルホン酸基が脱離していた。

【0483】即ち、安価なスルホプロピル化ポリ1,6 ーナフタレンエーテルエーテルスルホン固体高分子電解 質XIVは、後述の比較例3の(1)に記載した安価な スルホン化ポリ1,6ーナフタレンエーテルエーテルス ルホン固体高分子電解質XVと異なり、パーフルオロス 30 ルホン酸固体高分子電解質(ナフィオン117)と同様 に安定で、コストと耐加水分解性(耐久性)が両立して 優れている。

【0484】(2) 固体高分子電解質膜の作製前記(1)で得られた生成物を5重量%の濃度になるようにN, N - ジメチルホルムアミドーシクロヘキサノンーメチルエチルケトン混合溶媒(体積比<math>20:80:25)に溶解した。この溶液をスピンコートによりガラス板上に展開し、風乾した後、80 $^{\circ}$ で真空乾燥して膜厚 25μ mの固体高分子電解質膜XIV を作成した。得られた固体高分子電解質膜XIV のイオン導電率は15S /c mであった。

【0485】テフロンコーテングのSUS製密閉容器に、得られた前記固体高分子電解質膜XIVとイオン交換水20m1を入れ、120℃に2週間保持した。その結果、イオン導電率はパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に初期と変わらず、膜もしっかりしていた。

【0486】一方、後述の比較例3の(2)に示すよう に、比較的安価なスルホン化芳香族炭化水素系固体高分 50 78

子電解質XVは、同一加温加水分解条件で破け、ぼろぼろになっていた。

【0487】即ち、安価なスルホプロピル化ポリ1,6 ーナフタレンエーテルエーテルスルホン固体高分子電解 質膜XIVは、後述の比較例3の(2)に記載した安価 なスルホン化ポリ1,6ーナフタレンエーテルエーテル スルホン固体高分子電解質膜XIVと異なり、パーフル オロスルホン酸固体高分子電解質膜(ナフィオン11 7)と同様に安定で、コストと耐加水分解性(耐久性) が両立して優れている。

【0488】(3) 電極触媒被覆用溶液および膜電極接合体の作製

40重量%の白金担持カーボンに、前記(2)の5重量%濃度のN,N-ジメチルホルムアミドーシクロヘキサノン-メチルエチルケトン混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液XIV)を調整した。

【0489】テフロンコーテングのSUS製密閉容器に、前記電極触媒被覆用溶液XIVの1.0gとイオン交換水20mlを入れて120℃に2週間保持した。その後、冷却して溶媒を揮散させて生じた固体を水洗した後、電極触媒被覆用溶液XIVのイオン交換基当量重量を測定した。

【0490】その結果、電極触媒被覆用溶液XIVのイオン交換基当量重量は、初期と変わらず760g/当量と、パーフルオロスルホン酸(ナフィオン117)電極触媒被覆用溶液と同様に安定であった。

【0491】一方、後述の比較例3の(2)に示すように、電極触媒被覆用溶液XVのイオン交換基当量重量は、同一加温加水分解条件で1300g/当量と変化し、初期の760g/当量の値より大きくなり、スルホン酸基が脱離していた。

【0492】即ち、安価な電極触媒被覆用溶液XIVは、比較例3の(2)に記載した安価な電極触媒被覆用溶液XVと異なり、パーフルオロスルホン酸(ナフィオン117)電極触媒被覆用溶液と同様に安定で、コストと耐加水分解性(耐久性)が両立して優れている。

【0493】前記電極触媒被覆用溶液XIVを前記

(2) で得られた固体高分子電解質膜XIVの両側に塗布した後、乾燥して白金担持量0.25mg/cm²の膜電極接合体XIVを作製した。

【0494】後述の比較例3の(2) に記載した電極触媒被覆用溶液XVを前記(2) で得られた固体高分子電解質膜XIVの両側に塗布した後、乾燥して白金担持量0.25mg/cm²の膜電極接合体XIV^{*}を作製した

【0495】40重量%の白金担持カーボンに、パーフロロスルホン酸固体高分子電解質の5重量%濃度のアルコールー水混合溶液を、白金触媒と固体高分子電解質と

の重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液)を調整した。この電極触媒被覆用溶液を前記(2)で得られた固体高分子電解質膜XIVの両側に塗布後、乾燥して白金担持量0.25mg/cm²の膜電極接合体XIV'、を作製した。

【0496】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体XIVとイオン交換水20m 1を入れ、120℃に2週間保持した。その結果、膜電極接合体XIVは、パーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)とパーフルオロスルホン酸固体高分子電解質(ナフィオン117)を用いて作製した膜電極接合体と同様に初期と変わらず、膜もしっかりしていた。

【0497】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体XIV'とイオン交換水20 mlを入れ、120 Cに2週間保持した。その結果、膜電極接合体XIV'は電極が若干剥がれていたが膜はしっかりしており、発電能力はあった。

【0498】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体XIV'、とイオン交換水20mIを入れ、120Cに2週間保持した。その結果、膜電極接合体XIV'、は電極が若干剥がれていたが膜はしっかりしており、発電能力はあった。

【0499】一方、後述の比較例3の(3)に示すように、比較的安価なスルホン化芳香族炭化水素系固体高分子電解質膜XVと、電極触媒被覆用溶液XVを用いて作製した膜電極接合体XVは、同一加温加水分解条件で膜は破け、ぼろぼろになり、電極は剥がれていた。

【0500】即ち、安価なスルホプロピルポリ1,6-ナフタレンエーテルエーテルスルホン固体高分子電解質 30 膜電極接合体XIVは、後述の比較例3の(3)に記載した安価なスルホン化芳香族炭化水素系固体高分子電解質膜電極接合体XVと異なり、パーフルオロスルホン酸(ナフィオン117)膜電極接合体と同様に安定で、コストと耐加水分解性(耐久性)が両立して優れている。【0501】(4) 燃料電池単セルの耐久性試験前記膜電極接合体XIV、XIV、およびXIV、を沸騰した脱イオン水中に2時間浸漬することにより吸水させた。得られた膜電極接合体を評価セルに組みこみ、燃

【0502】即ち、固体高分子電解質膜1,酸素極2および水素極3からなる実施例1の膜電極接合体4の両電極に、薄いカーボンペーパのパッキング材(支持集電体)5を密着させて、その両側から極室分離と電極へのガス供給通路の役割を兼ねた導電性のセパレータ(バイポーラプレート)6からなる図1に示す固体高分子型燃料電池単セルを作製し、電流密度300mA/cm²の条件で長期劣化試験を行った。その結果を図17に示す。

料電池出力性能を評価した。

【0503】図17中の67,68,69は、それぞれ 50

80

本発明の固体高分子電解質膜電極接合体XIV, XIV' およびXIV''を用いた燃料電池単セルの耐久性試験 結果である。

【0504】図17中の70はパーフルオロスルホン酸 (ナフィオン117)固体高分子電解質膜電極接合体を 用いた燃料電池単セルの耐久性試験結果である。

【0505】図17中、67は実施例17のアルキレン 基を介してスルホン酸基が結合したポリエーテルエーテ ルスルホン固体高分子電解質膜と、アルキレン基を介し てスルホン酸基が結合したポリエーテルエーテルスルホ ン固体高分子電解質の電極触媒被覆用溶液を用いた燃料 電池単セルの出力電圧の経時変化、68は実施例17の アルキレン基を介してスルホン酸基が結合したポリエー テルエーテルスルホン固体高分子電解質膜と、スルホン 酸基が直接結合したポリエーテルエーテルスルホン固体 高分子電解質の電極触媒被覆用溶液を用いた燃料電池単 セルの出力電圧の経時変化、69は実施例17のアルキ レン基を介してスルホン酸基が結合したポリエーテルエ ーテルスルホン固体高分子電解質膜と、パーフルオロス ルホン酸固体高分子電解質 (ナフィオン117) の電極 触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経 時変化、70はパーフルオロスルホン酸固体高分子電解 質膜(ナフィオン117)を用いた燃料電池単セルの出 力電圧の経時変化、71は比較例17のスルホン酸基が 直接結合したポリエーテルエーテルスルホン固体高分子 電解質膜と、スルホン酸基が直接結合したポリエーテル エーテルスルホン固体高分子電解質の電極触媒被覆用溶 液を用いた燃料電池単セルの出力電圧の経時変化であ

【0506】図17の67および69から分かるように、本発明の固体高分子電解質膜電極接合体XIVおよびXIV''を用いた単電池セルの電圧は初期0.76Vで、稼動時間5000時間後でも初期と変わらず、図17の70のパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)を用いた結果と同等に初期と変化しなかった。

【0507】一方、図17中の71(後述の比較例3の スルホン化芳香族炭化水素固体高分子電解質XVを使用 した燃料電池単セル)の出力電圧は初期0.73Vで、 稼動時間600時間後で出力が無くなった。

【0508】このことから、芳香族炭化水素の芳香族環にアルキレン基を介してスルホン酸基を結合した芳香族炭化水素系固体高分子電解質を用いた燃料電池単セルが、スルホン基と直接結合した芳香族炭化水素系固体高分子電解質を用いた燃料電池単セルより耐久性に優れていることが明白である。

【0509】本発明の膜電極接合体XIVを用いた燃料電池単セルの耐久性は、膜電極接合体XIV、を用いた燃料電池単セルの耐久性より優れている。即ち、電極触媒被覆用溶液XIVは、電極触媒被覆用溶液XVより膜

電極接合体の電極触媒被覆に適している。

【0510】また、実施例17および比較例3の膜電極 接合体の白金担持量が0.25mg/cm 2 と同じである にも拘わらず、実施例17の燃料電池単セルの出力電圧 が比較例3の燃料電池単セルの出力電圧より大きい理由 は、実施例17の膜電極接合体の固体高分子電解質膜お よび電極触媒被覆用溶液のイオン導電率が、比較例3の 膜電極接合体の固体高分子電解質膜および電極触媒被覆 用溶液のイオン導電率より高いからである。燃料電池の 作製前記(4)で作製した単電池セルを36層積層し、 固体高分子型燃料電池を作製したところ、3kWの出力

【0511】〔比較例 3〕

(1) スルホン化ポリ1.6-ナフタレンエーテルエー テルスルホンの合成

撹拌機、温度計、塩化カルシウム管を接続した還流冷却 器を付けた500mlの四つ口丸底フラスコの内部を窒 素置換した後、110℃において10時間保持乾燥した 3.22g(0.0103mol)のポリ1,6-ナフタ レンエーテルエーテルスルホン $((-C_6H_4-4-SO_2)^2$ 20 $C_6H_4-1-OC_{10}H_6-5-O-)$ n) と、クロロホル ム100mlを入れ、60℃に約1時間保持して溶解し た。この溶液にクロロスルホン酸1.165g(0.01 mol) を1,1,2,2-テトラクロロエタン50ml に溶かした溶液を約10分間かけて加えた。

【0512】次いで、60℃で4時間攪拌し、析出物を 濾過して、クロロホルム150mlで洗浄した。得られ た析出物にメタノール250mlを加え60℃で溶解し た。溶液を60℃で減圧乾燥した。得られたポリマーに 水250mlを加え、ミキサーで細かく砕き、濾過し た。この操作を3回繰り返した。

【0513】得られた水不溶性の微粉末を五酸化燐上で 減圧下、90℃で乾燥した。この微粉末は、水に不溶、 メタノールに可溶であった。

【0514】 ¹HNMRを測定すると、原料のポリ1,6 ーナフタレンエーテルエーテルスルホン中のナフタレン 環、ベンゼン環の水素に基づく7.3~8.0 ppmの吸 収が減少し、新たにSO3H基に隣接するフェニル基の 水素の基づく8.3ppmの吸収が認められた。このこ とからスルホン酸が導入されていることが確認された。 得られたスルホン化ポリ1,6-ナフタレンエーテルエ ーテルスルホン固体高分子電解質XVのスルホン酸当量 重量は760g/当量であった。

【0515】テフロンコーテングのSUS製密閉容器に 得られた前記スルホン化ポリ1,6-ナフタレンエーテ ルエーテルスルホン固体高分子電解質 X V の 1.0 g と イオン交換水20mlを入れ、120℃に2週間保持し た。その後、冷却して十分に水洗した後、スルホン化ポ リ1,6-ナフタレンエーテルエーテルスルホン固体高 分子電解質XVのイオン交換基当量重量を測定した。そ 50 Vで、稼動時間600時間後で出力電圧が無くなった。

の結果、スルホン化ポリ1,6-ナフタレンエーテルエ ーテルスルホン固体高分子電解質XVのスルホン酸当量 重量は1300g/当量と初期の760g/当量の値よ り大きくなり、スルホン酸基が脱離していた。

【0516】(2) 固体高分子電解質膜の作製 前記(1)で得られたスルホン化ポリ1,6-ナフタレ ンエーテルエーテルスルホン固体高分子電解質XVを、 5 重量%の濃度になるようにN, N-ジメチルホルムア ミドーシクロヘキサノンーメチルエチルケトン混合溶媒 (体積比20:80:25) に溶解した。この溶液をス ピンコートによりガラス板上に展開し、風乾した後、8 0℃で真空乾燥して膜厚45μmの固体高分子電解質膜 XVを作成した。得られた固体高分子電解質膜XIVの イオン導電率は8S/cmであった。

【0517】テフロンコーテングのSUS製密閉容器に 得られた前記固体高分子電解質膜XIVとイオン交換水 20mlを入れ、120℃に2週間保持した。その結 果、固体高分子電解質膜XVは破け、ぼろぼろになって いた。

【0518】(3) 電極触媒被覆用溶液および膜電極 接合体の作製

40重量%の白金担持カーボンに、前記(2)の5重量 %濃度のN, N - ジメチルホルムアミド - シクロヘキサ ノン-メチルエチルケトン混合溶液を、白金触媒と固体 高分子電解質との重量比が2:1となるように添加し、 均一に分散させてペースト (電極触媒被覆用溶液XV) を調製した。

【0519】テフロンコーテングのSUS製密閉容器 . に、前記電極触媒被覆用溶液XVの1.0gとイオン交 換水20m1を入れて120℃に2週間保持した。その 後、冷却して溶媒を揮散させて生じた固体を水洗後、電 極触媒被覆用溶液XVのイオン交換基当量重量を測定し た。その結果、電極触媒被覆用溶液XVのイオン交換基 当量重量は、同一加温加水分解条件で1300g/当量 と変化し、初期の760g/当量の値より大きくなり、 スルホン酸基が脱離していた。

【0520】テフロンコーテングのSUS製密閉容器に 得られた前記膜電極接合体XVとイオン交換水20ml を入れ、120℃に2週間保持した。その結果、膜電極 接合体XVの膜は破け、ぼろぼろになり、電極は剥がれ ていた。

【0521】(4) 燃料電池単セルの耐久性試験 比較例3の膜電極接合体XVの両側に薄いカーボンペー パのパッキング材(支持集電体)を密着させて、その両 側から極室分離と電極へのガス供給通路の役割を兼ねた 導電性のセパレータ(バイポーラプレート)からなる固 体高分子型燃料電池単セルを作製し、電流密度300m A/cm²の条件で長時間稼動試験を行った。その結 果、図17の71に示すように出力電圧は初期0.73

【0522】〔実施例 18〕

(1) スルホプチル化ポリ1,6-ナフタレンエーテルエーテルスルホンの合成

撹拌機、温度計、塩化カルシウム管を接続した還流冷却器を付けた500m1の四つ口丸底フラスコの内部を窒素置換した後、110℃において10時間保持乾燥した6.08g(0.0155mo1)のポリ $1,5-ナフタレンエーテルエーテルスルホン〔<math>(-C_6H_4-4-SO_2C_6H_4-1-OC_{10}H_6-5-O-)n$ 〕と、脱水クロロホルム150m1を入れ、60℃にて約1時間保持して溶解した。この溶液にプタンスルトン6.26g(0.0464mo1)を加えた。

【0525】スルボブチル化ポリ1,6ーナフタレンエーテルエーテルスルホン固体高分子電解質XVIのコストは、市販の比較的安価なエンジニアプラスチックであるポリ1,6ーナフタレンエーテルエーテルスルホンを原料に1工程で製造できるため、原料が高価で5工程を経て製造されるパーフルオロスルホン酸固体高分子電解質(ナフィオン117)のコストに比べて1/50以下と安価である。

スルホプチル化ポリ1,6-ナフタレンエーテルエーテルスルホン固体高分子電解質XVIのスルホン酸当量重

量は770g/当量であった。

【0526】テフロンコーテングのSUS製密閉容器に、得られたスルホブチル化ポリ1,6-ナフタレンエーテルエーテルスルホン固体高分子電解質 XVIの1.0 gと、イオン交換水20mlを入れて120℃に2週間保持した。その後、冷却して十分に水洗した後スルホブチル化ポリ1,6-ナフタレンエーテルエーテルスルホン固体高分子電解質 XVIのイオン交換基当量重量を測定した。

【0527】その結果、スルホプチル化ポリ1,6-ナフタレンエーテルエーテルスルホン固体高分子電解質XVIのイオン交換基当量重量は、初期と変わらず750g/当量と、パーフルオロスルホン酸固体高分子電解質(ナフィオン117)と同様に安定であった。

【0528】一方、比較例3の(1)に示すように、安 50 換水20mlを入れて120℃に2週間保持した。その

84

価なスルホン化ポリ1,6ーナフタレンエーテルエーテルスルホン固体高分子電解質XVのイオン交換基当量重量は、同一加温加水分解条件で1300g/当量と変化し、初期の760g/当量の値より大きくなり、スルホン酸基が脱離していた。

【0530】(2) 固体高分子電解質膜の作製前記(1)で得られた生成物を5重量%の濃度になるようにN,N-ジメチルホルムアミドーシクロヘキサノンーメチルエチルケトン混合溶媒(体積比20:80:25)に溶解した。この溶液をスピンコートによりガラス板上に展開し、風乾した後、80℃で真空乾燥して膜厚25 μ mの固体高分子電解質膜XVIを作成した。得られた固体高分子電解質膜XVIのイオン導電率は25S/C mであった。

【0531】テフロンコーテングのSUS製密閉容器に得られた前記固体高分子電解質膜XVIとイオン交換水20mlを入れ、120℃に2週間保持した。その結果、そのイオン導電率は、パーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に初期と変わらず、膜もしっかりしていた。

【0532】一方、比較例3の(2)に示すように、比較的安価なスルホン化芳香族炭化水素系固体高分子電解質XVは、同一加温加水分解条件で破け、ぼろぼろになっていた。即ち、安価なスルホブチル化ポリ1,6ーナフタレンエーテルエーテルスルホン固体高分子電解質膜XVIは、比較例3の(2)に記載した安価なスルホン化ポリ1,6ーナフタレンエーテルエーテルスルホン酸固体高分子電解質膜XVと異なり、パーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)と同様に安定で、コストと耐加水分解性(耐久性)が両立して優れている。

【0533】(3) 電極触媒被覆用溶液および膜電極 接合体の作製

40重量%の白金担持カーボンに、前記(2)の5重量%濃度のN,N-ジメチルホルムアミドーシクロヘキサノン-メチルエチルケトン混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液XVI)を調整した。

【0534】テフロンコーテングのSUS製密閉容器に、前記電極触媒被覆用溶液XVIの1.0gとイオン交換水20mlを3カフ120℃に2週間保持した。その

後、冷却して溶媒を揮散させて生じた固体を水洗後、電 極触媒被覆用溶液 X V I のイオン交換基当量重量を測定 した

【0535】その結果、電極触媒被覆用溶液XVIのイオン交換基当量重量は、初期と変わらず750g/当量と、パーフルオロスルホン酸(ナフィオン117)電極触媒被覆用溶液と同様に安定であった。

【0536】一方、比較例3の(2)に示したように電極触媒被覆用溶液XVのイオン交換基当量重量は、同一加温加水分解条件で1300g/当量と変化し、初期の760g/当量の値より大きくなり、スルホン酸基が脱離していた。

【0537】即ち、安価な電極触媒被覆用溶液XVIは、比較例3の(2)に記載した安価な電極触媒被覆用溶液XVと異なり、パーフルオロスルホン酸(ナフィオン117)電極触媒被覆用溶液と同様に安定で、コストと耐加水分解性(耐久性)が両立して優れている。

【0538】前記電極触媒被覆用溶液XVIを前記

(2) で得られた固体高分子電解質膜XVIの両側に塗布した後、乾燥して白金担持量0.25mg/cm²の膜 20電極接合体XVIを作製した。

【0539】比較例3の(2)に記載した電極触媒被覆用溶液XVを前記(2)で得られた固体高分子電解質膜XVIの両側に塗布した後、乾燥して白金担持量0.25mg/cm²の膜電極接合体XVI'を作製した。

【0540】40重量%の白金担持カーボンに、パーフロスルホン酸固体高分子電解質の5重量%濃度のアルコールー水混合溶液を、白金触媒と固体高分子電解質との重量比が2:1となるように添加し、均一に分散させてペースト(電極触媒被覆用溶液)を調整した。この電極触媒被覆用溶液を前記(2)で得られた固体高分子電解質膜XVIの両側に塗布後、乾燥して白金担持量0.25mg/cm²の膜電極接合体XVI''を作製した。

【0541】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体XVIと、イオン交換水20mlを入れ、120℃に2週間保持した。その結果、膜電極接合体XVIは、高コストのパーフルオロスルホン酸固体高分子電解質膜(ナフィオン117)とパーフルオロスルホン酸固体高分子電解質(ナフィオン117)を用いて作製した膜電極接合体と同様に初期と変わらず、膜もしっかりしていた。

【0542】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体XVI'と、イオン交換水20m1を入れ、120℃に2週間保持した。その結果、膜電極接合体XVI'は、電極が若干剥がれていたが膜はしっかりしており、発電能力はあった。

【0543】テフロンコーテングのSUS製密閉容器に得られた前記膜電極接合体XVI'、とイオン交換水20m1を入れ、120℃に2週間保持した。その結果、膜電極接合体XVI'、は、電極が若干剥がれていたが

86

膜はしっかりしており、発電能力はあった。

【0544】一方、比較例3の(3)に示したように比較的安価なスルホン化芳香族炭化水素系固体高分子電解質膜XVと、電極触媒被覆用溶液XVを用いて作製した膜電極接合体XVは、同一加温加水分解条件で膜は破け、ぼろぼろになり、電極は剥がれていた。

【0545】即ち、安価なスルホブチル化ポリ1,6-ナフタレンエーテルエーテルスルホン固体高分子電解質 膜電極接合体XVIは、後述の比較例3の(3)に記載 した安価なスルホン化芳香族炭化水素系固体高分子電解 質膜電極接合体XVと異なり、パーフルオロスルホン酸 (ナフィオン117)膜電極接合体と同様に安定で、コ ストと耐加水分解性(耐久性)が両立して優れている。

【0546】(4)燃料電池単セルの耐久性試験 前記膜電極接合体XVI、XVI、およびXVI、を沸 騰した脱イオン水中に2時間浸漬することにより吸水さ せた。得られた膜電極接合体を評価セルに組みこみ、燃 料電池出力性能を評価した。

【0547】即ち、固体高分子電解質膜1、酸素極2および水素極3からなる実施例18の膜電極接合体4の両電極に、薄いカーボンペーパのパッキング材(支持集電体)5を密着させて、その両側から極室分離と電極へのガス供給通路の役割を兼ねた導電性のセパレータ(バイポーラプレート)6からなる図1に示す固体高分子型燃料電池単セルを作製し、電流密度300mA/cm²の条件で長期劣化試験を行った。その結果を図18に示す。

【0548】図18中の72、73、74はそれぞれ本願発明の固体高分子電解質膜電極接合体XVI、XVI'、XVI'、を用いた燃料電池単セルの耐久性試験結果である。図18中の73はパーフルオロスルホン酸(ナフィオン117)固体高分子電解質膜電極接合体を用いた燃料電池単セルの耐久性試験結果である。

【0549】図18中、72は実施例18のアルキレン 基を介してスルホン酸基が結合したポリエーテルエーテ ルスルホン固体高分子電解質膜とアルキレン基を介して スルホン酸基が結合したポリエーテルエーテルスルホン 固体高分子電解質の電極触媒被覆用溶液を用いた燃料電 池単セルの出力電圧の経時変化、73は実施例18のア ルキレン基を介してスルホン酸基が結合したポリエーテ ルエーテルスルホン固体高分子電解質膜と、スルホン酸 基が直接結合したポリエーテルエーテルスルホン固体高 分子電解質の電極触媒被覆用溶液を用いた燃料電池単セ ルの出力電圧の経時変化、74は実施例18のアルキレ ン基を介してスルホン酸基が結合したポリエーテルエー テルスルホン固体高分子電解質膜と、パーフルオロスル ホン酸固体高分子電解質(ナフィオン117)の電極触 媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時 変化、75はパーフルオロスルホン酸固体高分子電解質 50 膜(ナフィオン117)を用いた燃料電池単セルの出力

電圧の経時変化、76は比較例18のスルホン酸基が直接結合したポリエーテルエーテルスルホン固体高分子電解質膜と、スルホン酸基が直接結合したポリエーテルエーテルスルホン固体高分子電解質の電極触媒被覆用溶液を用いた燃料電池単セルの出力電圧の経時変化である。【0550】図18の72および74から分かるように固体高分子電解質膜電極接合体XVIおよびXVI''を用いた単電池セルの電圧は初期0.79Vで、稼動時間500時間後でも初期と変わらず、図18の75のパーフルオロスルホン酸固体高分子電解質膜(ナフィオン10117)を用いた結果と同等に初期と変化しなかった。【0551】一方、図18中の76(比較例3のスルホン化芳香族炭化水素固体高分子電解質XVを使用した燃料電池単セル)の出力電圧は初期0.73Vで、稼動時間600時間後で出力が無くなった。

【0552】このことから、芳香族炭化水素の芳香族環にアルキレン基を介してスルホン酸基を結合した芳香族炭化水素系固体高分子電解質を用いた燃料電池単セルが、スルホン基と直接結合した芳香族炭化水素系固体高分子電解質を用いた燃料電池単セルより耐久性に優れていることが明白である。

【0553】本発明の膜電極接合体XVIを用いた燃料電池単セルの耐久性は、膜電極接合体XVIを用いた燃料電池単セルの耐久性より優れている。即ち、電極触媒被覆用溶液XVIは電極触媒被覆用溶液XVより膜電極接合体の電極触媒被覆に適している。

【0554】また、実施例18および比較例3の膜電極接合体の白金担持量が0.25mg/cm²と同じであるにも拘わらず、実施例18の燃料電池単セルの出力電圧が比較例3の燃料電池単セルの出力電圧より大きい理由は実施例18の膜電極接合体の固体高分子電解質膜および電極触媒被覆用溶液のイオン導電率が比較例3の膜電極接合体の固体高分子電解質膜および電極触媒被覆用溶液のイオン導電率より高いからである。

【0555】(5) 燃料電池の作製 前記(4)で作製した単電池セルを36層積層し、固体 高分子型燃料電池を作製したところ、3kWの出力を示 した。

【0556】実施例3と4から分かるようにスルホン酸当量重量が530~970g/当量であるスルホアルキ 40ル化ポリエーテルエーテルスルホン固体電解質を用いた燃料電池単セルの初期の出力電圧はパーフルオロスルホン酸(ナフィオン117)膜を用いた燃料電池単セルの出力電圧と同等以上であり、5000時間稼動させても劣化せず特に好ましい。

【0557】実施例11,9,10,12の(1) および(2) から分かるように化3で表されるアルキレン基のnの数が1,3,4,6のスルホアルキル化ポリ1,4-ピフェニレンエーテルエーテルスルホン固体電解質のイオン交換基当量重量(g/当量)はそれぞれ66

88

0,680,670,670と殆ど同じである。それに 対応する固体高分子電解質膜のイオン伝導度S/cm は、それぞれ7,15,25,35である。

【0558】同様に実施例15,13,14,16から分かるようにnの数が1,3,4,6のスルホアルキル化ポリ1,4-フェニレンエーテルエーテルスルホン固体電解質のイオン交換基当量重量(g/当量)はそれぞれ650,670,650,660と殆ど同じである。それに対応する固体高分子電解質膜のイオン伝導度S/c mはそれぞれ5,15,25,40である。

【0559】即ち、スルホアルキル化芳香族炭化水素固体電解質のnの数が大きいほどイオン伝導度が大きく、プロトンの伝達性が大きくなり固体高分子型燃料電池として優れている。

【0560】一方、コストの観点からスルトンとの1段 反応により合成できるスルホプロピル化芳香族炭化水素 系固体高分子電解質とスルホプチル化芳香族炭化水素系高分子固体電解質が、2段階反応によって合成されるスルホヘキサメチル化芳香族炭化水素系高分子固体電解質 やスルホメチル化芳香族炭化水素系高分子固体電解質より有利である。即ち、イオン伝導度とコストとの両立の観点からnの数は3~4が好ましい。

[0561]

【発明の効果】本発明に係るアルキレン基を介してスルホン酸基を導入したポリエーテルエーテルスルホンは、安価なエンジニアプラスチックを原料にし1乃至2工程で製造でき、原料が高価で5工程を経て製造されているパーフロロスルホン酸膜に代表されるふっ素系固体高分子電解質膜に比べ、そのコストは1/30以下と安価である。

【0562】このように、芳香族環にアルキレン基を介してスルホン酸基を結合することにより、芳香族環に直接結合したスルホン酸基と異なり、イオン導電率も大きく、スルホン酸基が強酸、高温下で解離せず、実用上十分な高耐久性と、コストの低減を図ることができる。

【図面の簡単な説明】

【図1】実施例1の本発明に係る固体高分子型燃料電池 用電池単セルの構造を示す模式斜視図である。

【図2】実施例1の固体高分子型燃料電池用電池単セルの耐久性試験結果を示すグラフである。

【図3】実施例2の固体高分子型燃料電池用電池単セルの耐久性試験結果を示すグラフである。

【図4】実施例3の固体高分子型燃料電池用電池単セルの耐久性試験結果を示すグラフである。

【図5】実施例4の固体高分子型燃料電池用電池単セルの出力性能を表す電流密度-電圧のグラフである。

【図6】実施例4の固体高分子型燃料電池用電池単セルの耐久性試験結果を示すグラフである。

【図7】実施例10の固体高分子型燃料電池用電池単セ 50 ルの出力性能を表す電流密度-電圧のグラフである。

(46)

89

【図8】実施例10の固体高分子型燃料電池用電池単セルの耐久性試験結果を示すグラフである。

【図9】実施例11の固体高分子型燃料電池用電池単セルの出力性能を表す電流密度-電圧のグラフである。

【図10】実施例11の固体高分子型燃料電池用電池単セルの耐久性試験結果を示すグラフである。

【図11】実施例12の固体高分子型燃料電池用電池単セルの出力性能を表す電流密度-電圧のグラフである。

【図12】実施例12の固体高分子型燃料電池用電池単セルの耐久性試験結果を示すグラフである。

【図13】実施例13の固体高分子型燃料電池用電池単セルの耐久性試験結果を示すグラフである。

【図14】実施例14の固体高分子型燃料電池用電池単セルの耐久性試験結果を示すグラフである。

90

【図15】実施例15の固体高分子型燃料電池用電池単セルの耐久性試験結果を示すグラフである。

【図16】実施例16の固体高分子型燃料電池用電池単セルの耐久性試験結果を示すグラフである。

【図17】実施例17の固体高分子型燃料電池用電池単セルの耐久性試験結果を示すグラフである。

【図18】実施例18の固体高分子型燃料電池用電池単セルの耐久性試験結果を示すグラフである。

【符号の説明】

1…固体高分子電解質膜、2…空気極、3…酸素極、4 …膜電極接合体、5…支持集電体、6…セパレータ、7 …空気、8…空気+水、9…水素+水、10…残留水 素、11…水。

【図6】

図 6

【図7】

図 7

【図8】

【図9】

2 9

【図10】

図 10

【図11】

2 11

【図12】

図 12

【図13】

🗵 13

【図14】

図 14

【図15】

図 1.5

【図16】

図 16

【図17】

図 17

(49)

【図18】

図 18

フロントページの続き

(72)発明者 山賀 賢史

茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内

(72)発明者 加茂 友一

茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 東山 和寿

茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内

Fターム(参考) 4J005 AA23 BD06

5G301 CA30 CD01

5H026 AA06 CX04 EE18 EE19 HH00