The University Interscholastic League Number Sense Test • HS SAC • 2007

Final _

Contestant's Number		2nd			
Read directions carefully before beginning test		NFOLD THIS SHEET FOLD TO BEGIN	1st Score	Initials	
Directions: Do not turn this page until th 80 problems. Solve accurately and quickly SOLVED MENTALLY. Make no calc each problem. Problems marked with a (five percent of the exact answer will be so	y as many as you can in culations with paper and *) require approximate	the order in which they appear. AL pencil. Write only the answer in a integral answers; any answer to a	L PROBLEMS ARE TO the space provided at the	D BE end of	
The person conducting this contest sh	ould explain these dire	ctions to the contestants.			
	STOP V	VAIT FOR SIGNAL!			
(1) 2007 + 2008 =		(17) Which is smaller, $\frac{4}{7}$	or $\frac{5}{9}$?		
(2) 8002 — 2007 =		(18) The mean of 18 and			
(3) $25 \times 2008 =$		(19) 9 ft. \times 6 ft. \times 3 ft. =	cubic ya	rds	
(4) 2008 ÷ 9 =	(mixed number)	*(20) 20708 ÷ 278 =			
$(5) 2.008 + 80.02 = \underline{}$	(decimal)	(21) 12345 ÷ 4 has a re	mainder of		
(6) $\frac{2}{7} \div \frac{3}{8} = $,	(22) 56 has	_ positive prime divis	ors	
$(7) \ (-3) \times 1\frac{1}{2} = \underline{\hspace{1cm}}$	(mixed number)	$(23) \sqrt[3]{-1331} = \underline{\hspace{1cm}}$			
(8) 28 % =(proper fraction)	(24) If a pen cost 13¢ the	en 12 pens cost \$	·	
(9) $4 + 64 \div 16 \times 8 - 32 = $		(25) .121212 + .151515	j =		
*(10) 38 + 979 + 1176 =		(26) 200 ₈ =		_10	
(11) $14^2 =$		(27) The set {M,A,T,H}	hassub	sets	
(12) 33 × 27 =		(28) If $\frac{x}{4} = \frac{4}{5}$, then $x = $ _			
$(13) \ 3 \ \frac{4}{5} \times 1 \ \frac{2}{3} = \underline{\hspace{1cm}}$	(mixed number)	(29) $1.5 \times 2.5 \times 4.4 = $ _	(decim	ıal)	
(14) 1.4 is what % of 20?	%	*(30) $29 \times 33 + 29 \times 66 =$	=		
(15) $MMX - II = $ (A	rabic Numeral)	(31) If $f(x) = x^2 - 2x - $	3 then f(3) is		
(16) The LCM of 5, 6, and 15 is		(32) 123 × 17 =			

(57) $9+3+1+\frac{1}{3}+...=$ (33) 33 plus 25% of 44 is _____ (34) $(41 + 9 \times 12) \div 7$ has a remainder of _____ (58) The radius of the circle $x^2 + y^2 = 16$ is $(35) (8)^{\frac{2}{3}} =$ (59) $55_6 + 5_6 = ____6$ (36) 1+1+2+3+5+8+13=(61) If $\sqrt{1 + \sqrt{2 + \sqrt{x}}} = 3$ then x =_____ (37) A regular hexagon with side length of 4" has a perimeter of inches (38) The smallest root of $x^2 + x = 20$ is _____ $(62) \ \frac{6}{11} - \frac{16}{35} = \underline{\hspace{1cm}}$ (63) 67² = $(39) 123 \times 9 + 4 = \underline{\hspace{1cm}}$ $*(40) \sqrt{13579} =$ (64) The volume of a right circular cylinder 3" high with a radius of 1" is $k\pi$ cu. in. k =___ (41) If $6^x = 30$ then $6^{(x-1)} =$ $(65) \sqrt{9801} =$ $(42) 64 \div .25 =$ (66) The slope of the line 3x - 2y = 5 is (43) The smallest leg of a right triangle with integral sides is 7". The hypotenuse is ____" (67) $2 \sin \frac{\pi}{12} \cos \frac{\pi}{12} =$ (44) If 2x + 3 = 4 then 5x - 6 =(68) The simplified coefficient of the x ² term in the expansion of $(2x-3)^3$ is _____ (45) The x-intercept of the line 3x - 2y = 1 is (h, k). Find h. _____ (69) If $(\sqrt{a^3})(\sqrt[3]{a^4}) = (\sqrt[n]{a^k})$ then k= $(46) 202^2 =$ *(70) $7e^2 \times 9\pi^2 =$ (47) If x < 3, then $x^2 + 1 < \underline{\hspace{1cm}}$ (71) If f(x) = 2 - x and g(x) = x + 2 then $(48) 112 \times 401 = \underline{\hspace{1cm}}$ $g(f(-2)) = \underline{\hspace{1cm}}$ $(49) 22 \times 4! + 32 \times 3! =$ (72) The smaller root of $8x^2 + 25x + 3 = 0$ is *(50) $15^3 \times 9^3 \div 3^3 =$ ______ (73) Change .12 base 5 to a base 10 fraction. $(51) _{5}P_{3} =$ ______ (74) Find k, $0 \le k \le 7$, if $(4!)(2!) \cong k \pmod{8}$. (75) If $f(x) = x^3 - x^2 + x$, then f'(1) =_____ (52) (1-2i)(3+4i) = (a+bi). Find b. _____ (53) If x and y vary directly and x = 3 when (76) A vertical asymptote for $y = \frac{1}{x+1}$ is x =____ y = 12, find x when y = 8. $(77) \ \frac{1}{42} + \frac{1}{56} + \frac{1}{72} = \underline{\hspace{1cm}}$ (54) 12% of 233 $\frac{1}{3}$ is _____ (78) $\int_0^2 x^3 dx =$ _____ (55) If $\log_x 36 = 2$ then x =_____ (56) The largest integer such that $(79) 111 \times 45 =$ $2x - 2 \le 2$ is _____

*(80) $898 \div 37.5\% \times \frac{1}{8} =$

The University Interscholastic League Number Sense Test • HS Invitational A • 2008

Final _____

Contestant's Number				2nd		
				1st		
Read directions carefully before beginning test	DO NOT UN UNTIL T		i e		Score	Initials
Directions: Do not turn this page until the 80 problems. Solve accurately and quickly SOLVED MENTALLY. Make no calculate and problem. Problems marked with a clique percent of the exact answer will be seen	as many as you can in the alations with paper and paper and paper and paper and paper approximate	ne order in pencil. W integral a	n which they appear. ALL /rite only the answer in the answers; any answer to a s	PROBLENGE PROPERTY PROPERTY IN THE PROPERTY PROPERTY IN THE PROPERTY PROPERTY IN THE PROPERTY	AS ARE T vided at the	O BE end of
The person conducting this contest sho	ould explain these direc	tions to	the contestants.			
	STOP W	AIT FOR	SIGNAL!			
$(1) 2008 + 208 - 28 = \underline{\hspace{1cm}}$		(18)	The mode of 2, 8, 4, 8	3, 2, 4, 8, 4,	. & 8 is	
(2) 50 × 200.8 =		(19)	MMVIII MIV = _	(A	Arabic Nu	meral)
$(3) \ \frac{2}{7} + 2\frac{1}{8} = \underline{\hspace{1cm}}$	(mixed number)	*(20)	$987 - 654 \times 321 =$			
(4) $\frac{7}{8} \div .2 =$ (i	mproper fraction)	(21)	If $A = 3$, $B = 5$, and C	= B, then	BC + A	=
$(5) (24+18) \div 12 \times (3-6) =$		(22)	7.777 — 3.333 =			
(6) 7.5 % =	(proper fraction)	(23)	Find the simple interfive years. \$			
(7) 15 × 28 =		(24)	$(4)^{-1} + (4)^{-2} = $		····	
$(8) \ 28 \div 11 + 82 \div 11 = \underline{\hspace{1cm}}$		(25)	6 pints is what per co	ent of a gal	llon?	
(9) $23^2 =$		(26)	Which of the following			
*(10) 41 × 411 + 4111 =		•	9, 15, or 18?			
(11) The largest prime divisor of	65 is	(27)	$\sqrt[3]{2197} = $			
$(12) \ 11 \div 1 \ \frac{2}{3} = \underline{\hspace{1cm}}$	(decimal)		$\{s,l,o,p,e\} \cap \{l,i,n,e\}$			
(13) If 12 ounces of nuts costs \$1.3		(29)	If $\frac{3}{4} = \frac{3x}{5}$, then $x =$			
of nuts will cost \$		*(30)	$118 \times 118 - 19 \times 1$	21 =		
(14) 280 plus 30% of 320 is		(31)	438 - 218 =			8
(15) Which is smaller, $1\frac{1}{3}$ or 1.3?		(32)	If $x - 3 = -4$, the	n x + 3 = 1		7
(16) 2 ft. \times 3 ft. \times 4 ft. =	cubic yards	(33)	$1^2 + 1^2 + 2^2 + 3^2 $	$-5^2+8^2=$	=	
(17) $(34+65+96) \div 3$ has a ren	nainder of	(34)	$(4^4 + 3^3 \times 2^2) \div 51$	ias a rema	inder of	

$(35) 15 \frac{1}{5} \times 5 \frac{1}{5} = \underline{\hspace{1cm}}$	(59) The tenth
$(36) 6 - -3 - 6 = \underline{}$	*(60) (24) ⁴ = _
(37) The area of a rhombus is 135 in ² and one	(61) If $\sqrt{12}$
diagonal is 18 in. The other diagonal is in (38) If a = 5 and b = 3, then	(62) If $\log_X 3$ (63) The dot $ $
$(a - b)(a^2 + ab + b^2) = $ (39) If $x + 3y = 5$ and $x - 2y = 4$ then $y = $	(64) $f(x) = 5x^2$ has a rem
*(40) $\sqrt[3]{1730} \times \sqrt{142} \times 12 =$	$(65) \cos \frac{4\pi}{3} =$
(41) $63 \div 1.75 =$	(66) If $A = [2]$
(42) If $3 \times 3 = 3$ then $k = $ (43) $212 \times 311 = $	(67) If $(\sqrt[4]{a^2})$
(44) The hypotenuse of a right triangle with integral sides is 41 in. The shortest leg is in	k are rel (68) $\sqrt{44488}$
(45) 45 × 95 =	(69) The grea
(46) (x,y) is the midpoint of the line segment whose endpoints are (2,5) and (5,9). y =	value of $(70) (e\pi)^2 >$
$(47) \ 31 \times 4! \ +36 \times 3! = $	•
(48) The measure of an exterior angle of a regular n-gon is 18°. n = sides	(71) The larg (72) The sma that f(x)
$(49) \ \frac{3}{14} = \underline{\hspace{1.5cm}}^{9/0}$	is
*(50) $18^2 \div 9^3 \times 3^6 =$	(73) The rect
(51) Let $ 2x + 3 \le 11$. The least value of x is	$(74) \lim_{x \to 4} \left(\frac{x}{}\right)$
(53) The vertex of the parabola $y = x^2 + 8x$ is (h, k) .	(75) If $f(x) =$
Find h	(76) $\int_{-2}^{2} x$
(55) If y varies inversely with x and $x = 4$ when	(77) If the in termina
$y = 3$, find x when $y = 8$. (56) $61 \times 69 + 16 =$	$(78) 111 \times 2$
(57) $(k-4i)^2 = -7 - 24i$. Find k.	$(79) \ \frac{1}{3} + \frac{1}{6} -$

(58) $_{6}C_{3} =$ ______

(59) The tenth term of 2, 7, 12, 17, is
*(60) (24) ⁴ =
(61) If $\sqrt{12} + \sqrt{27} = \sqrt{x}$ then $x = $
(62) If $\log_x 3 = .5$ then $x = $
(63) The dot product for $u = (2,1)$ and $v = (4,3)$ is
(64) $f(x) = 5x^3 + 4x^2 + 3x - 2$ divided by $x + 1$ has a remainder of
$(65) \cos \frac{4\pi}{3} = $
(66) If $A = \begin{bmatrix} 2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ then $AB = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
(67) If $(\sqrt[4]{a^2})(\sqrt[3]{a}) = (\sqrt[n]{a^k})$, where n and k are relatively prime, then n =
$(68) \sqrt{444889} = $
(69) The greatest integer function $f(x) = [x]$ has a value of for $f(\pi)$
*(70) $(e\pi)^2 \times (\pi e)^2 =$
(71) The larger root of $8x^2 + 25x + 3 = 0$ is
(72) The smallest value of x in the domain of $f(x)$ so that $f(x) = \sqrt{4x + 5}$ has, a real valued range is
(73) The rectangular coordinates of the polar coordinates $(3\sqrt{2}, \frac{\pi}{4})$ are (x,y). $x = $
(74) $\lim_{x \to 4} \left(\frac{x^2 + x - 20}{x - 4} \right) =$
(75) If $f(x) = 3x^2 - 2x + 1$, then $f'(-4) = $
(76) $\int_{-2}^{2} x^{2} dx = $
(77) If the initial point of a vector is (3,7) and the terminal point is (-1 ,4), then $ v = $
(78) $111 \times 27 =$
$(79) \ \frac{1}{3} + \frac{1}{6} + \frac{1}{10} + \frac{1}{15} = \underline{\hspace{1cm}}$
*(80) $798 \div 44\frac{4}{9}\% \times .25 =$

The University Interscholastic League Number Sense Test • HS Invitational B • 2008

Final _____

Contestant's Number			2nd	
			1st	
Read directions carefully before beginning test	DO NOT UNFOLI UNTIL TOLD		Score	Initials
Directions: Do not turn this page until the 80 problems. Solve accurately and quickly SOLVED MENTALLY. Make no calculated problem. Problems marked with a (five percent of the exact answer will be seen	as many as you can in the order ulations with paper and pencil. *) require approximate integr	er in which they appear. A. Write only the answer in al answers; any answer to	LL PROBLEMS ARE T n the space provided at the	O BE end of
The person conducting this contest sho	ould explain these directions	to the contestants.		
	STOP WAIT F	OR SIGNAL!		
$(1) \ 2008 - 288 + 28 = \underline{\hspace{1cm}}$		_	sitive integral divisors	
$(2) \ \frac{3}{4} \times \frac{8}{9} \times \frac{2}{3} = \underline{\hspace{1cm}}$	*(2	0) $\sqrt{959} \times \sqrt{1091} =$	=	
(3) $2357 \div 9 = $	_ (mixed number) (2		en x =	
$(4) 2 + (-6) + 4 + (-8) = _{-}$			of $2x^2 - 5x + 3 = 0$	
(5) $14 \times 3 + 16 \div 4 =$			-3 - 1 - 1 = 1	
(6) $25 \times 2.8 =$				
$(7) 31^2 = $	(2	4) (13) 3 =		<u></u>
(8) 18.75% =	(proper fraction)		wing is a square numb	
(9) Which is smaller, $-\frac{11}{13}$ or $-$	$\frac{9}{11}$?(2	6) 4 ⁵ ÷ 11 has a rem	ainder of	
*(10) 55 × 555 - 5555 =	(2	7) 130 base ten is equ	ivalent to	base 5
(11) The LCM of 9, 15, and 18 is	(2	(8) If $5x - y = 4$ and	x + 2y = 3 then $y =$	
(12) 34 is what % of 85?			git k such that 37195k	
(13) The mean of 2, 8, 4, 8, 2, 4, 8,	4, & 8 is		minutes = n	
(14) $(23 \times 19 - 15) \div 4$ has a rem	nainder of		and $R=4$, then $PQ + R=$	
(15) If 6 apples cost \$1.32 then 11	annles cost \$		en x =	
(16) The product of the first 4 pri	me numbers is		6" and B is 9" by 18".	
$(17) MCXI + DLI = \underline{\hspace{1cm}}$		•	eter to B's perimeter is	
(18) If 1 gram = .04 oz., then 4 oz.	= grams (3	34) The set {s,l,o,p,e} h	1as 3-elements s	ubsets

 $(58) 1234 \times 9 + 5 = \underline{\hspace{1cm}}$ (35) Solve for x: $\frac{2x-1}{3} - 4 = 5$. x =_____ (59) If $\sqrt{12 - \sqrt{9 + \sqrt{6 - x}}} = 3$ then x =_____ (36) 2.8333... - 1.58333... = _____ (37) The area of an equilateral triangle is $16\sqrt{3}$ sq. *(60) The area of $11x^2 + 36y^2 = 396$ is cm. The perimeter of the triangle is cm (61) When two dice are rolled, what is the (38) The sum of the roots of $2x^2 - 5x = 3$ is probability that the sum is 2 or 12? $(39) 2+1+3+4+7+11+...+29+47 = \underline{\hspace{1cm}}$ (62) The simplified coefficient of the x ²y term in the expansion of $(x - 4y)^3$ is * $(40) (375 \times 79)^2 \div (40 \times 124) =$ (63) $\cos \left| \sin^{-1}(\frac{\sqrt{3}}{2}) \right| =$ (41) The hypotenuse of an isosceles right triangle is $5\sqrt{2}$ cm. The area is _____ cm² (64) $3^6 \div 5$ has a remainder of _____ $(42) \ 404^2 = \underline{\hspace{1cm}}$ (65) The greatest integer function f(x) = [3x + 1](43) The measure of each of the interior angles of a has a value of _____ for f(e)regular pentagon is ______ degrees $(66) 66\frac{7}{10} \times 66\frac{7}{10} =$ (44) $35 \times 85 =$ _____ (67) The dot product for u = (3,3) and v = (1,1) is____ (45) Let $(k^4)^2 \div k^{(-1)} \times k^3 = k^x$, where k>0. (68) The smaller root of $12x^2 - 11x - 15 = 0$ is ____ $(46) \ 54 \times 6! - 24 \times 5! = \underline{\hspace{1cm}}$ (69) The eleventh term of 3, 8, 13, 18,... is (47) The point (2, 7) is reflected across the y-axis to *(70) 2152008 ÷ 3579 = point (h,k). Find h. (71) If the initial point of a vector is (5, -2) and $(48) \ \frac{5}{11} - \frac{29}{67} = \underline{\hspace{1cm}}$ the terminal point is (1,1), then $||\mathbf{v}|| = \underline{}$ (49) The hypotenuse of a right triangle with integral (72) Find x, if det $\begin{vmatrix} 1 & -2 \\ x & 4 \end{vmatrix} = 5$. sides is 41 in. The shortest leg is _____ in *(50) 2142.857 × 213 = (73) Change $\frac{3}{25}$ to a base 5 decimal. _____5 (51) A sector of a circle radius 12", central (74) $\lim_{x \to \infty} \frac{3x}{x-1} =$ angle 30°, and arc length $k\pi$ ". Find k. (52) If x varies directly with y^3 and x = 2 when (75) The polar coordinates of the rectangular y = 2, find x when y = 4. coordinate $(3,\sqrt{3})$ are (r,θ) . $\theta =$ $(53) \ \frac{2}{3} + \frac{1}{2} + \frac{3}{8} + \dots = \underline{\hspace{1cm}}$ (76) If $f(x) = 3x^4 - 2x^3 + x$, then f''(-2) =(54) If $(\sqrt[3]{a^4})(\sqrt[5]{a^k}) = \sqrt[15]{a^{26}}$, then k = (77) The horizontal asymptote of $y = 4^{x} + 2$ is (78) $\int_{2}^{3} x^{2} dx =$

 $(79) \ \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \frac{1}{56} = \underline{\hspace{1cm}}$

*(80) $779 \div 77\frac{7}{9}\% \times .75 =$

(55) (5-7i)(5+7i) = a + bi. Find a + b.

(56) If $\log_4(3x+2) = 1$ then x =_____

 $(57) \ (_{7}C_{3}) (_{7}C_{4}) = \underline{\hspace{1cm}}$

2007-08 TMSCA High School Number Sense Test 6

(1) 2070 — 2800 =	(18) Which is larger, $-\frac{5}{6}$ or $-\frac{6}{7}$?
$(2) 2080 + 7020 = \underline{\hspace{1cm}}$	(19) MMVII ÷ IX = (Arabic Numeral)
(3) 2007 ÷ 8 = (mixed number)	*(20) 123 × 456 + 789 =
(4) 2008 × 75 =	$(21) \ (4)^{\frac{3}{2}} = \underline{\hspace{1cm}}$
$(5) \ 20 \times 70 - 80 \times 20 = \underline{\hspace{1cm}}$	(22) If $3x - 2 = 1$ then $3x + 2 = $
(6) $1\frac{3}{5} + 5\frac{1}{3} = $ (mixed number)	(23) Mary drove 180 miles in 4.5 hours. Her average speed was mph
(7) $(5) \div (-2.5) =$ (decimal)	(24) The multiplicative inverse of 1.75 is
$(8) \ \frac{1}{40} = _{} \%$	$(25) -1 - -2 + 3 = \underline{\hspace{1cm}}$
$(9) 18^2 = \underline{\hspace{1cm}}$ $(10) 383 - 9779 + 56 = \underline{\hspace{1cm}}$	(26) If x is to 5 as 5 is to 8 then (decimal)
$(11) 5 + 10 \times 15 \div 20 - 25 = \underline{}$	$(27) \sqrt[3]{1728} = $
(12) 28 × 22 =	(28) The set {s,i,x} has proper subsets
(13) The largest prime divisor of 51 is	(29) 200 base ten is equivalent to base 8
(14) The GCD of 28 and 82 is	*(30) 101.25% of 640 =
(15) The median of 7, 5, 3, and 2 is	(31) 0.575757 =(fraction)
(16) $\frac{2}{3}$ of 4 pounds 5 ounces = ounces	(32) $(19 \times 8 - 7) \div 6$ has a remainder of
(17) 2.5 is 25 % of what ?	(33) 33 plus 75% of 44 is

(17) 2.5 is 25 % of what?

- (34) The perimeter of a square is 18 inches. The area of this square is _____ sq. inches
- (35) The sum of the roots of $x^2 + x = 20$ is _____
- $(36) 1^2 + 1^2 + 2^2 + 3^2 + 5^2 = \underline{\hspace{1cm}}$
- (37) $1.1 \times 7.5 \times 4.4 =$ (decimal)
- (38) Which of the following is an abundant number, 40, 41, or 42?
- $(39) 123 \times 8 + 3 = \underline{\hspace{1cm}}$
- *(40) $\sqrt{246810} =$
- $(41) \ 32 \times 0.0625 = \underline{\hspace{1cm}}$
- (42) The side opposite 30° in a right triangle is $2\frac{2}{8}$ cm. The hypotenuse is _____ cm
- (43) If $8^x = 40$ then $8^{(x+1)} =$
- (44) 93 × 94 =
- (45) If 2x + y = 4 and x y = 2 then $y = _____$
- $(46) \ \frac{7}{10} \frac{20}{31} = \underline{\hspace{1cm}}$
- (47) If 3 x < 1, then 2x >_____
- (48) The y-intercept of the line 2x 3y = 4 is (h, k). Find k.
- $(49) 16 \times 5! + 20 \times 4! = \underline{\hspace{1cm}}$
- *(50) $12^4 \div 8^3 \times 4^2 =$
- $(51) \, {}_{5}C_{3} = \underline{\hspace{1cm}}$
- (52) If $\log_5(.2) = x$ then x =_____
- $(53) \ 4 2 + 1 \frac{1}{2} + \dots = \underline{\hspace{1cm}}$
- (54) The units digit of 33 33 is _____
- (55) (4 i)(3 + 2i) = (a + bi). Find a.
- $(56) 34_6 5_6 = \underline{\qquad \qquad }_6$
- (57) 55 ÷ 1.666... =

- (58) If x and y vary inversely and x = 3 when y = 20, find x when y = 5.
- (59) The area of $x^2 + 4y^2 = 4$ is $k\pi$. $k = _____$
- *(60) 26 4 = _____
- (61) If $(\sqrt[3]{x^5})(\sqrt{x^3}) = (\sqrt[n]{x^k})$, where n and k are relatively prime, then k =
- $(62) 999^2 = \underline{}$
- (63) If det $\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = x$ then x 1 =
- (64) The odds of rolling a 3 with one die is _____
- (65) The greatest integer less than 2.3 is ____
- (66) $\sqrt{4489} =$
- (67) $(\sin 30^\circ) (\cos 60^\circ) =$
- (68) The larger root of $9x^2 12x 5 = 0$ is ____
- (69) If $\sqrt{4 + \sqrt{5 + \sqrt{x 1}}} = 3$ then x =____
- *(70) $e^3 \times \pi^3 =$ ______
- (71) $(2, \frac{\pi}{2})$ are polar coordinates for (x,y). y = ____
- $\lim_{x \to 1} \frac{1}{2x} = \underline{\hspace{1cm}}$
- (73) If $f(x) = 2x^3 x + 1$, then f'(-1) =_____
- (74) Find the least value of k, so that the six digit number 3467k2 is divisible by 6. k = _____
- $(75) \ 3^3 4^3 5^3 = \underline{\hspace{1cm}}$
- (76) Change .21 base 5 to a base 10 decimal.
- (77) If $f(x) = \frac{3}{1-x}$ then $f^{-1}(2) = \underline{\hspace{1cm}}$
- (78) $\int_{1}^{2} (x+1) dx =$
- (79) If $\sin 1.2 = .9$ then $\csc 1.2 =$ _____
- *(80) $639 \div 44\frac{4}{9}\% \times .125 =$

2007-08 TMSCA High School Number Sense Test 12

(1) $28 - 208 - 2008 =$	(19) If 2 pounds of peanuts costs \$1.88 then 8 ounces of peanuts will cost \$
	*(20) 24680 ÷ 111 =
(3) $\$1.25 + \$20.08 = \$$	(21) If $A = 1$, $B = 2A$, and $C = -3A$, then $(A + B) \div C = -2A$
(4) $1\frac{1}{8} \times 1.6 =$ (decimal) (5) $105\% =$ (improper fraction)	(22) The additive inverse of $-\frac{4}{9}$ is
(6) $19^2 = $	(23) If $\frac{5x}{8} = \frac{7}{10}$, then $x = $ (mixed number
(7) 15 × 28 =	(24) A 3-element set has improper subsets
$(8) (7-14) \times 14 + (28 \div 7) = \underline{\hspace{1cm}}$	$(25) 16^2 - 4^2 = \underline{}$
(9) 1357 ÷ 9 has a remainder of	(26) What number added to 18 and multiplied by 4, gives the same results?
10) 2008 × 3 + 2007 = 11) 47 × 67 =	(27) If $2x + 3 = 4$ then $4x - 3 =$
12) 40% of 42 less 38 is	(28) $(2+3^2 \times 4^3) \div 5$ has a remainder of
13) $12 \div 1 \frac{3}{5} =$ (decimal)	(29) 0.444 — 0.888 =
14) The LCM of 78 and 65 is	*(30) $27^2 \div 9^2 \times 18^2 =$ (31) If $8^2 \div 4^2 \times 2^3 = 2^k$, then $k =$
15) DLV — CDXLIV = (Arabic Numeral)	
16) The sum of the positive integral divisors of 51 is	$(32) \ 1 - 2 - - 3 - 4 = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
$17) -2 - (-3) + (-4) - 5 = \underline{\hspace{1cm}}$	$(33) \ 9^3 = \underline{\hspace{1cm}}$ $(34) \ 1101011_2 = \underline{\hspace{1cm}}$

(18) The range of 2, 8, 4, 8, 2, 4, 8, 4, & 8 is ____

(35)	Which of the following is a deficient number, 36, 45, or 54?	(58) $(1 - i)(1 + i) = (a + bi)$. Find $a + b$.
(36)	1+1+2+3+5+8++34+55=	(59) The foci of $25x^2 + 9y^2 = 225$ are (a, k) and $(a, -k)$. Find k.
(37)	If $x + 4y = 1$ and $x - y = 4$, then $x =$	*(60) 234678 ÷ 1111 =
(38)	The area of an equilateral triangle is $\sqrt{3}$ cm ² . The side of the triangle is cm	(61) If $x > 0$ and $x^2 = \sqrt{x^3 + x^3 + x^3}$ then $x = $
(39)	The roots of a cubic equation are 1, 2, and 3. The equation is $x^3 - 6x^2 + 11x =$	(62) $(\sin 225^{\circ}) (\cos 315^{\circ}) = $
^k (40)	$\sqrt{111011} = $	(64) The surface area of a cube is 24 sq. cm. The
(41)	If $a^3 \times a^4 \div a^5 = a^k$ then $k = $	edge of the cube is cm
(42)	If A is 70% of B and B is 80% of C, then A is what percent of C?%	(65) If $\sqrt{4-\sqrt{3+\sqrt{x-2}}} = 1$ then $x = $
(43)	The hypotenuse of a 30-60-90° triangle is $1\frac{2}{3}$ ft. The smaller leg is inches	(66) If $f(x) = 3x - 4$ and $g(x) = 4 + 3x$, then $f(g(1)) = $
(44)	The units digit of 17 ¹⁷ is	(67) The smaller root of $9x^2 - 12x - 5 = 0$ is
	The distance between the points $(-2, -2)$ and $(2, 1)$ is	(68) The dot product for $u = (-2,1)$ and $v = (4, -3)$ is
(46)	18 × 5! — 30 × 4! =	(69) The greatest integer less than $\sqrt{22}$ is
(47)	The side length of a regular septagon is 6 cm. It's perimeter is cm	(71) If the domain of $f(x) = \sqrt{3x - 5}$ is $\{x \mid x \ge 2\}$,
(48)	123 × 123 =	then the range is $\{f(x) f(x) \ge $
(49)	If $2 - 3x < 5$, then $4x > $	(72) Change .67 base 8 to a base 10 fraction.
(50)	142.857 × 78 =	(73) The polar coordinates of the rectangular coordinates (11, 60) are (r, θ) . $r = $
(51)	The odds of winning are 3 to 8. The probability of not winning is (proper fraction)	(74) Find k, $0 \le k \le 7$, if $\frac{(6!)(3!)}{(5!)} \cong k \pmod{8}$.
(52)	The sides of a triangle are 4, 6, and x. The least	(75) If $f(x) = 3x^4 - 2x^3 + x^2$, then $f''(1) = $
(53)	value of x, where x is a natural number is $ (_5C_5) (_5P_5) = $	(76) The sum of the first ten terms of the Lucas sequence 3, 4, 7, 11, 18, is
	1 - 3 - 4 - 7 - 11 - 18 - 29 =	(77) $\int_0^5 (5-x) dx = $
	34 ₆ × 5 ₆ =6	$(78) \ 6^3 - 5^3 + 4^3 =$
(56)	If y varies directly with x^2 and $y = 8$ when $x = 2$, find y when $x = 5$.	(79) If $\csc \theta = 1.1$ then $\sin \theta =$
	The simplified coefficient of the xy^2 term in the expansion of $(2x - y)^3$ is	*(80) $693 \div 77\frac{7}{9}\% \times \frac{1}{3} =$

The University Interscholastic League Number Sense Test • HS District 1 • 2008

2nd _____

Contestant's Number _____

		1st	1st		
Read directions carefully before beginning test	DO NOT UNFOLD THIS SH UNTIL TOLD TO BEGIN		Initials		
Directions: Do not turn this page until the 80 problems. Solve accurately and quickly a SOLVED MENTALLY. Make no calcule each problem. Problems marked with a (*five percent of the exact answer will be scored).	as many as you can in the order in which lations with paper and pencil. Write only require approximate integral answers;	they appear. ALL PROBLEMS ARE T y the answer in the space provided at the any answer to a starred problem that is	TO BE end of		
The person conducting this contest show	uld explain these directions to the con	testants.			
	STOP WAIT FOR SIGNAL	.!			
(1) 3218 — 3288 =	(19) — 9 -	-(-7)-(-5)-3=			
(2) 2008 + 8002 =	*(20) $\sqrt{123}$	$\overline{0} \times \sqrt{1220} = $			
$(3) \ \frac{4}{9} \times 1\frac{1}{8} = \underline{\hspace{1cm}}$	(21) 235689	9 ÷ 8 has a remainder of			
(4) 3.2 ÷ .8 =	(22) The sn	nallest root of $x^2 + 2x = 24$ is			
(5) $2+3 \div 4 \times 5 - 6 = $	an ave	me it will take Ted to drive 360 mil brage speed of 45 mph is			
(6) 244 × 25 =	$(24) 2^2 + 3$	$^2 + 5^2 + 8^2 + 13^2 = $			
(7) $27^2 = $	(25) A pent	agon has distinct dia	gonals		
(8) Which is smaller, $\frac{11}{12}$ or $\frac{12}{13}$?	(26) 40 bas	e 5 is equivalent to	base 8		
(9) 7.5% =	(proper fraction) (27) $314 \times$	17 =			
*(10) 49 × 449 + 4499 =	(28) If x +	5 = -6, then $x - 5 =$			
(11) 2700 ÷ 75 =	(29) If $\frac{5}{7}$ =	$=\frac{5}{8x}$, then $x =$			
$(12) \ 4\frac{7}{8} + 3\frac{5}{16} = \underline{\hspace{1cm}}$	(mairead maranham)	4 × 26 =			
(13) 30% of 33 less 36 is	(31) If A=3	, B= $-$ 4, and C=5, then B $-$ AC :	=		
(14) The mean of 23, 27, 35, & 31 is	(32) Circle	O has a diameter of 7" and circle	P has		
(15) 1 inch + 2 feet + 3 yards =	inches	eter of 5". The ratio of O's ference to P's circumference is			
(16) The GCF of 24, 32, and 48 is	(33) 13 ³ =				
(17) 7 is 35% of		. + 0.08333 — 0.1666 =			
(18) $MCM + CVIII =($	Arabic Numeral)				

- (35) $\{s,h,o,r,t\} \cup \{s,t,o,r,e\}$ has ____ distinct elements
- $(36) 33^2 + 11^2 = \underline{\hspace{1cm}}$
- (37) If $3.2 \times k = 1$, then k =_____
- (38) 14 pints is what per cent of a gallon? $__$
- (39) A 3-digit perfect number is _____
- *(40) 20 hours + 30 minutes + 40 seconds = seconds
- (41) The measure of an exterior angle of a regular n-gon is 45° . n =______ sides
- $(42) \ \ 24 \times 6! + 36 \times 5! = \underline{\hspace{1cm}}$
- $(43) \ 331 \times 122 =$
- (44) If f < 60 < h are the integral sides of a right triangle then f is _____
- $(45) \ \frac{4}{15} \frac{27}{106} = \underline{\hspace{1cm}}$
- (46) The point (3, -4) is reflected across the x-axis to point (h, k). Find h + k.
- (47) If $A \neq 0$ and $A^4 \div A^k \times A^5 = A^2$ then $k = \underline{\hspace{1cm}}$
- $(48) 707^2 = \underline{\hspace{1cm}}$
- (49) The largest integer value x such that $7x + 5 \le 3$ is _____
- *(50) $12^4 \div 6^3 \times 3^2 =$
- (51) The ninth term of 9, 14, 19, 24,... is _____
- (52) $2 \left| -3 + \left| -5 \right| 7 \right| =$
- (53) Point (h, k) is the vertex of the parabola $y = -2(x+1)^2 8$. Find h + k.
- (54) ₁₁C ₉ = _____
- (55) If $\sqrt{16 \sqrt{12\sqrt{4 x}}} = 2 \text{ then } x = \underline{\hspace{1cm}}$
- (56) $(4 + ki)^2 = -33 + 56i$. Find k.
- (57) If $\log_5(3-4x) = 2$ then x =_____
- (58) The smaller root of $12x^2 + 11x = 56$ is _____

- $(59) 66 \div 1.375 =$
- *(60) 875 × 888 ÷ 77 = _____
- (61) If $(\sqrt[3]{a^5})(\sqrt[5]{a^3}) = (\sqrt[n]{a^k})$, where n and k are relatively prime, then k =
- $(62) \left[4 5 \right] \times \left[\begin{array}{c} -4 \\ 5 \end{array} \right] = \left[\begin{array}{c} \end{array} \right]$
- (63) $\sin \frac{7\pi}{6} =$
- (64) $f(x) = 8x^3 27$ divided by x 4 has a remainder of
- $(65) \sqrt{44448889} = \underline{\hspace{1cm}}$
- (66) If the initial point of a vector is (2, 3) and the terminal point is (4, 5), then $||v||^2 =$
- $(67) 71^2 70^2 + 69^2 68^2 = \underline{\hspace{1cm}}$
- (68) The diameter of the circle $x^2 + y^2 = 256$ is ____
- (69) The greatest integer function $f(x) = [x^2]$ has a value of ______ for f(e)
- *(70) 3212008 ÷ 2468 = _____
- (71) If $f(x) = 3 x^3$ and $g(x) = x^3 + 3$ then g(f(-1)) =
- (72) The smallest value of x in the domain of f(x) so that $f(x) = \sqrt{x^3 1}$ has a real valued range is _____
- $(73) \ \frac{1}{35} + \frac{1}{63} + \frac{1}{99} = \underline{\hspace{1cm}}$
- (74) The horizontal asymptote of $\frac{3+x}{x^2-5}$ is _____
- (75) If $f(x) = \sin(3x) + 4$, then $f'(\frac{\pi}{9}) = \underline{\hspace{1cm}}$
- (76) 111 × 1111 = _____
- (78) $\int_0^2 (x+1)^2 dx =$ _____
- $(79) \ 4^3 3^3 + 2^3 1^3 = \underline{\hspace{1cm}}$
- *(80) $17600 \times 9\frac{1}{11} \times 6.25\% =$

The University Interscholastic League Number Sense Test ◆ HS District 2 ◆ 2008

				Final		
Contestant's Number				2nd		
				1st		
Read directions carefully before beginning test	DO NOT UN UNTIL T				Score	Initial
Directions: Do not turn this page until the personal problems. Solve accurately and quickly as material SOLVED MENTALLY. Make no calculation each problem. Problems marked with a (*) refive percent of the exact answer will be scored or	any as you can in the ns with paper and paper and paper approximate	ne order i pencil. V integral a	n which they appear. ALI Vrite only the answer in the answers; any answer to a	PROBLEM ne space prov	IS ARE To vided at the	O BE end of
The person conducting this contest should e	explain these direc	tions to	the contestants.			
	STOP W	AIT FOR	SIGNAL!			
(1) 3205 — 3088 =		(18)	474 × 11 =			
$(2) \ \ 2080 + 8020 = \underline{\hspace{1cm}}$		(19)	MMCDIX - CDI =	(A	rabic Nu	meral)
$(3) \ \frac{5}{7} \div 1\frac{1}{4} = \underline{\hspace{1cm}}$		*(20)	$453 + 231 \times 786 = $			
(4) 12.3 × .4 =	(decimal)	(21)	80 has	positive	e prime di	ivisors
(5) $6 - 5 \times 4 + 3 \div 2 = $		(22)	$12345 \times 9 + 6 = $			
(6) $404 \div 25 = $ (m	ixed number)	(23)	The multiplicative in	verse of 2.1	25 is	
$(7) \frac{3}{80} = $	%	(24)	$2.2 \times 12.5 \times 8.8 = $			
(8) 3443 ÷ 9 has a remainder of			If $x - y = 6$ and $x + $			
(9) $16^2 = $			If $f(x) = 4x^2 - 4x +$			
*(10) 51 × 551 - 5511 =			The set {l,i,n,e,a,r} ha			
(11) 44 × 36 =		(28)	$24\frac{1}{8} \times 8\frac{1}{8} = $	(mixed nu	mber)
(12) The largest prime divisor of 57 is		(29)	If $\frac{3}{4} - \frac{5}{6} = \frac{1}{x}$, then	x =		
(13) 4.25 is what % of 25?	%	*(30)	$\sqrt{346598} = $			
(14) If 8 ounces of candy costs \$1.47 the of candy will cost \$			101100111 2 =			
(15) $(36 \times 18 - 12) \div 5$ has a remained	der of	(32)	Find the smallest dig divisible by 6. $k = $			
(16) The LCM of 11, 18, and 33 is		(33)	2345 × 16 =			
$(17) \ 5\frac{2}{5} - 2\frac{7}{10} = \underline{\qquad} (m$	nixed number)	(34)	13 × 13 × 13 =			

- (35) What number added to 8 and divided by 4 gives the same results?
- (36) Let x = 3, y = 2x, and z = x y. Find xyz.
- (37) **0.2333...** = _____(fraction)
- (38) Which of the following is an abundant number, 140, 143, 147?
- (39) 14 cups is what per cent of a quart? ______ %
- *(40) $(249 \times 61)^2 \div (30 \times 126) =$
- (41) If |x| < 4, then $x^2 1 <$ _____
- (42) 95 × 115 = _____
- (43) The measure of each of the interior angles of a regular decagon is ______ degrees
- $(44) 679 89 = ____9$
- (45) The y-intercept of the line 3x = 1 2y is (h, k). Find h + k.
- $(46) 131 \times 223 =$
- (47) If 13 < b < 85 are the integral sides of a right triangle then the area of the triangle is _____
- (48) If $8^x = 80$ then $8^{(x+2)} =$
- (49) 24% of 333 $\frac{1}{3}$ is _____
- *(50) $\sqrt[3]{6860} \times \sqrt{288} \times 15 =$
- (51) A sector of a circle with radius 8" and central angle $\frac{\pi}{4}$ has arc length $k\pi$ ". k = _____
- $(52) \frac{2}{5} + \frac{1}{3} + \frac{5}{18} + \dots = \underline{\hspace{1cm}}$
- (53) If y varies inversely with x and y = 2 when x = -2, find x when y = -4.
- $(54) 8P_3 =$
- (55) (8+4i)(8-4i) = a + bi. Find a + b.
- (56) $\ln e^{10} \div \log 10^5 =$ _____
- (57) The odds of losing is $\frac{7}{11}$. The probability of winning is _____

- (58) If $\sqrt{98} \sqrt{32} = \sqrt{x}$ then x =_____
- (59) The sum of the coefficients of $(2x + 2y)^5$ is ____
- *(60) (35) ³ = _____
- (61) Let $n^2 = \sqrt{n^3 + n^3 + n^3 + n^3 + n^3}$, where n > 0. Find n^2 .
- (62) 1+1+2+3+5+8+...+34+55 =
- (63) If $\log_x 4 = .25$ then $x = _____$
- (64) $4^8 \div 10$ has a remainder of _____
- (65) Find x, if det $\begin{vmatrix} -2 & -1 \\ 1 & x \end{vmatrix} = 5$.
- (66) $\tan \frac{\pi}{3} \times \cot \frac{\pi}{6} =$
- (67) $8883 \div 987 =$
- (68) $84 \times 5! + 26 \times 6! =$
- (69) Vector u = (-2,1) and vector v = (4, -3). The dot product for u and v is ______
- *(70) $3.1\pi \times 2.7e \times 1.6\phi =$
- (71) Change .63 base 7 to a base 10 fraction.
- (72) $\lim_{x \to 4} \frac{x^2 1}{x + 1} =$
- (73) The rectangular coordinates of the polar coordinate $(\sqrt{3}, \frac{\pi}{3})$ are (x, y). y =_____
- (74) Find $k, 0 \le k \le 6$, if $(4!)(3!) \cong k \pmod{7}$.
- (75) If $f(x) = 1 2x^2 3x^4$, then $f''(-1) = _____$
- $(76) \ \frac{1}{56} + \frac{1}{72} + \frac{1}{90} + \frac{1}{110} = \underline{\hspace{1cm}}$
- (77) 203 × 111 = _____
- (78) $\int_1^3 2x^3 dx =$ _____
- $(79) 1 + 2^2 + 3^3 + 4^4 = \underline{\hspace{1cm}}$
- *(80) 678 × 12.5% ÷ .5 = _____

The University Interscholastic League Number Sense Test • HS Regional • 2008

Final _

Contestant's Number			2nd	 	
Read directions carefully before beginning test		NFOLD THIS SHEET TOLD TO BEGIN	1st	Score	Initials
Directions: Do not turn this page until 80 problems. Solve accurately and quick SOLVED MENTALLY. Make no caeach problem. Problems marked with a five percent of the exact answer will be	kly as many as you can in the alculations with paper and a (*) require approximate	he order in which they appear. ALL pencil. Write only the answer in th integral answers; any answer to a s	PROBLEM e space prov	IS ARE Tailed at the	O BE end of
The person conducting this contest s	should explain these dire	ctions to the contestants.			
	STOP W	/AIT FOR SIGNAL!			
(1) $4110 - 4128 + 2008 =$		$(18) \ 2 + (-4) - 6 - (-4)$	- 8) =		· · · · · · · · · · · · · · · · · · ·
(2) 50 ÷ 2.5 =		(19) The sum of the first 5	prime nui	mbers is _	-
$(3) \ 1\frac{2}{3} \times 3\frac{4}{5} = \underline{\hspace{1cm}}$	(mixed number)	*(20) $\sqrt{322} \times \sqrt{405} \times $	481 =		
(4) $\frac{8}{25} = $	%	(21) 105 has	_ positive	e prime d	ivisors
(5) $(8+12) \div (12 \times 2 - 4) =$		(22) 235 8 =			2
(6) 66 × 54 =		(23) 6.666 7.777 + 3	3.333 = _		
(7) $14 \div 2\frac{2}{3} =$	(decimal)	(24) If $2x + 3 = -5$, then	x-7=		
(8) $24^2 = $		(25) Which of the followin and a square number	_		
(9) The median of $-2, -8, -8$	16, & 4 is	(26) $\{f,i,v,e\} \cup \{e,i,g,h,t\}$ has	as d	istinct ele	ements
*(10) 77 × 888 + 9999 =		(27) $(2^6 \times 3^5 - 5^4) \div 7$	has a rem	ainder of	-
(11) The negative reciprocal of		(28) 13 × 246 =	····		
(12) 11 × 747 =		(29) A convex nonagon has			
(13) Which is larger, $-1\frac{1}{6}$ or	— 1.6 ?	*(30) 3 days 3 hours 3 minu			
(14) 45 plus 45% of 45 is		(31) 32 fluid ounces is			
(15) If 3 pounds of nuts costs \$3 of nuts will cost \$		$(32) 12 \frac{1}{4} \times 4 \frac{1}{4} = \underline{\hspace{1cm}}$			
(16) If GCD(64, k) = 16 and LC k is	M(64, k) = 64 then	(33) 1+1+2+3+5+			
(17) $CXLIV \times XII =$		(34) If $P = -2$, $Q = -3$ PQ + R - QR =	, and R =	— 5, the	a

(35) If a = 4 and b = 5, then $(a - b)(a^2 + ab + b^2) =$ (36) Find k if .75, -.5, and k are the roots of $32x^3 - 14x - 3 = 0.$ (37) The diagonals of a rhombus are 15" and 18". Find the area of the rhombus. _____ sq. in. $(38) 14^3 =$ (39) $123456 \times 9 + k = 1,111,111. k =$ *(40) 75 × 53 + 57 × 35 = (41) The longest of a right triangle with integral sides is 41 cm. The triangle's area is ____ cm² $(42) 506^2 =$ (43) The point (h, k) is reflected across the line y = x to point (1, 4). Find h. (44) If $(\sqrt[4]{a^5})(\sqrt[3]{a^k}) = \sqrt[12]{a^{23}}$, a > 3 and a is not a multiple of 3, then \Rightarrow = (45) 412 × 311 = (46) 1331 ÷ 1.375 = _____ $(47) \ 44 \times 3! \ + 11 \times 4! \ =$ $(48) \ 456_8 \times 7_8 = \underline{\hspace{1cm}}_8$ (49) The smaller root of $7x^2 + 30x + 8 = 0$ is *(50) $\sqrt{84634221} =$ $(51) \frac{7}{20} - \frac{55}{161} =$ (52) If $(3-4i)^2 = a + bi$. Find $a + b = _____$ $(53) \ 3.5 - 2.1 + 1.26 - 0.756 + \dots =$ (54) If $\log_4(5x+4) = 3$ then x =(55) If y varies directly with x and x = -2 when y = 6, find x when y = -9. (56) The probability of winning is 75%. The odds of losing is _____ (proper fraction) (57) The sum of the coefficients of $(x + y)^6$ is _____

(58) The 16th term of 2, 7, 12, 17,... is

(59) ${}_{8}C_{5} \div {}_{8}C_{3} = {}_{8}C_{k}$. Find k. *(60) 777 × 4545 ÷ 77 = (61) Vector u = (-3, -6) and vector v = (-4,8). The dot product for *u* and *v* is _____ (62) If $\log_x 6 = \frac{1}{3}$ then x =_____ (63) Find x, if det $\begin{vmatrix} 2 & -3 \\ 4 & -x \end{vmatrix} = 6$. (64) $\tan \frac{5\pi}{6} \times \cot \frac{4\pi}{3} =$ $(65) 62^2 - 61^2 + 60^2 - 59^2 =$ (66) The greatest integer function f(x) = [2 - x]has a value of _____ for f(e) (67) If $\sqrt{15 - \sqrt{12 + \sqrt{6 - x}}} = 3$ then x =____ $(68) \sqrt{4444.8889} = (decimal)$ (69) 4 ⁹ ÷ 5 has a remainder of *(70) $(e)^{\pi} \times (\pi)^{e} \times \frac{\sqrt{5}-1}{2} =$ _____ (71) The smallest value of x in the domain of f(x) so that $f(x) = \sqrt{12 + 4x}$ has a real valued range

(72) If $f(x) = 5x^3 - 4x^2 + 2$, then f''(-1) =

 $(73) \ 5^3 - 4^3 - 3^3 - 2^3 + 1^3 = \underline{\hspace{1cm}}$

(74) Change .88 base 9 to a base 10 fraction.

(75) The horizontal asymptote of $y = \frac{3x-2}{5-x}$ is _____

 $(76) \int_0^{\pi} \sin(x) dx = \underline{\hspace{1cm}}$

the terminal point is (-2,7), then $||\mathbf{v}|| = _____$

 $(78) \ \frac{1}{6} + \frac{1}{10} + \frac{1}{15} = \underline{\hspace{1cm}}$

 $(79) 11^3 \times 121 = \underline{\hspace{1cm}}$

*(80) $3333 \div 66\frac{2}{3}\% \times 3.6 =$

(77) If the initial point of a vector is (3, -5) and

The University Interscholastic League Number Sense Test • HS State • 2008

Final _____

Contestant's Number			2nd	
		•	1st	
Read directions carefully before beginning test	DO NOT UNFOLD THIS SHEET UNTIL TOLD TO BEGIN		Score	Initials
Directions: Do not turn this page until the page with the page of the problems. Solve accurately and quickly a SOLVED MENTALLY. Make no calcule each problem. Problems marked with a (* five percent of the exact answer will be scored.)	is many as you can in the ations with paper and) require approximate	ne order in which they appear. ALL pencil. Write only the answer in the integral answers; any answer to a st	PROBLEMS ARE To space provided at the	O BE end of
The person conducting this contest shou	ıld explain these dire	ctions to the contestants.		
	STOP W	AIT FOR SIGNAL!		
(1) 5308 — 3085 =		(18) The largest prime divi	isor of 87 is	·
$(2) \ 5\frac{3}{8} + 8\frac{3}{5} = \underline{\hspace{1cm}}$	(mixed number)	(19) The additive inverse of	of $1\frac{2}{3}$ is	
(3) 1.21 × 1.1 =	(decimal)	*(20) 50308 ÷ 538 =		
$(4) \ \frac{8}{25} \div 3.125 = \underline{\hspace{1cm}}$		$(21) \ (4)^{-3} \times (4)^{2} \div (4)^{-1} =$		
(5) $14 + 16 \div 18 \times (20 - 22) = $	·	(22) The discriminant of 5	$5 - 3x + 8x^2 = 0$	is
(6) $28^2 =$		(23) If $\frac{9}{11x} = \frac{7}{9}$, then $x = \frac{1}{2}$	(mixed no	ımber)
(7) 37 × 15 =		(24) 2.222 — 5.555 =		
(8) 27.5% =		(25) Harry walked 1 mile i his average speed?		
$(9) \ 50308 \div 9 = \underline{\hspace{1cm}}$		(26) 503 8 =		
*(10) 41 × 414 + 4141 =				
(11) $1\frac{1}{5}$ is 42% of		$(27) \ (3^3 + 4^4 \times 5^5) \div 61$	has a remainder of	
(12) 88 × 82 =		$(28) \ 28 \ \frac{1}{7} \times 7 \ \frac{1}{7} = \underline{\hspace{1cm}}$	(mixed nu	ımber)
(13) If 5 gallons of gas costs \$14.40		(29) If $4 - x = 8$, then $x +$	4 =	
gas will cost \$		*(30) $119 \times 45 + 15 \times 143$		
(14) If LCM(k, 48) = 96 and GCD(l k is		(31) If $A = 5$, $B = -3$, and $AB \div (AC) \times (C \div B)$	nd C = 8, then	
(15) $(34 \times 56 - 78) \div 12$ has a rem		(32) Find the largest digit		
(16) If 1 gram = $.04$ oz., then 600 gr	rams = lbs.	divisible by 6. $k = $		
$(17) CCXXV \times XV = \underline{\hspace{1cm}}$	(Arabic Numeral)	$(33) 1^2 + 1^2 + 2^2 + 3^2 -$	$+5^2 + 8^2 + 13^2 =$	

(34) 60% of 75 minus 90 is (35) The sum of the roots divided by the product of the roots of $8x^3 - 18x^2 - 17x = 3$ is $(36) |2 - |-3 - 5| |-7 = \underline{\hspace{1cm}}$ (37) If 3x + 4y = 5 and x - 2y = 3, then $x = ____$ $(38) \sqrt[3]{3375} =$ (39) If 8 is to 20 as 14 is to x, then x =_____ *(40) 1 mile + 2 yards + 3 feet = _____ inches (41) 48 × 0.1875 = _____ $(42) \ 409^2 = \underline{\hspace{1cm}}$ $(43) 80 \times 3! + 16 \times 5! = \underline{\hspace{1cm}}$ $(44) 503 9 - 308 9 = ____9$ (45) The x-intercept of the line containing the points (1,3) and (5,7) is (x,y). $x = ______$ (46) The measure of an exterior angle of a regular dodecagon is _____ (47) If $A \neq 0$ and $A^3 \div A^5 \times A = A^k$ then k =____ $(48) \ \ 221 \times 332 = \underline{\hspace{1cm}}$ (49) The larger root of $5x^2 + 24x - 5 = 0$ is *(50) $24^3 \div 12^2 \times 6^3 =$ $(51) \ \frac{11}{14} - \frac{109}{141} = \underline{\hspace{1cm}}$ (52) The sides of a triangle are 8, 11 and x. The least value of x, where x is a natural number, is ____

(53) Point (h, k) is the vertex of the parabola

 $y = 3(x + 2)^2 + 5$. Find h + k.

(54) $(3 - ki)^2 = -16 - 30i$. Find k.

(56) $_{6}P_{6} \div _{6}P_{3} = _{6}P_{k}$. Find k.

(57) If $\sqrt{108} + \sqrt{75} = \sqrt{x}$ then x =_____

 $(58) \ (4+9\times 123) \div 11 = \underline{\hspace{1cm}}$

(55) If $6\log_x 2 = 2$ then x =_____

(69) The greatest integer less than $\sqrt{1100}$ is _____

*(70) $1.6\pi \times 3.1e \times 2.7\phi =$ _____

(72) If $f(x) = 6x^2 - 11x + 4$, then $f'(2) = ______$

(73) Change $\frac{11}{36}$ to a base 6 decimal. ______6

(74) Find $x, 0 \le x < 7$, if $\frac{(5!)(3!)}{(2!)} \cong x \pmod{7}$.

 $(75) \ \frac{7}{110} + \frac{7}{132} + \frac{7}{156} = \underline{\hspace{1cm}}$

 $\lim_{x \to 1} \frac{9x^2 - 6x + 1}{3x - 1} = \underline{\hspace{1cm}}$

 $(77) \int_{-1}^{1} (x + 1) dx = \underline{\hspace{1cm}}$

 $(78) \ 5 - 4^2 + 3^3 - 2^4 + 1^5 = \underline{\hspace{1cm}}$

 $(79) \ 161051 \div 121 = \underline{\hspace{1cm}}$

*(80) $2828 \times 28\frac{4}{7}\% \times 2.8 =$

coordinates $(\sqrt{3}, 1)$ are $(r, \frac{\pi}{k})$. $k = \underline{\hspace{1cm}}$

(71) The polar coordinates of the rectangular

University Interscholastic League - Number Sense Answer Key HS • SAC • Fall 2007

*number) x - y means an integer between x and y inclusive NOTE: If an answer is of the type like $\frac{1}{2}$ it cannot be written as a repeating decimal

	. 14		945. D	40.00	
	100)	. 40		-
×	# 1	100	- 321	11.0	-
		- 9			
			7	•	~

- (2) 5995
- (3) 50200
- (4) $223\frac{1}{9}$
- (5) 82.028
- (6) $\frac{16}{21}$
- (7) $-4\frac{1}{2}$
- (8) $\frac{7}{25}$
- (9) 4
- *(10) 2084 2302
- (11) 196
- (12) 891
- (13) $6\frac{1}{3}$
- (14) 7
- (15) 2008
- (16) 30

$$(17) \frac{5}{9}$$

- (18) 22
- (19) 6
- *(20) 71 78
- (21) 1
- (22) 2
- (23) 11
- (24) \$1.56
- (25) $\frac{3}{11}$
- (26) 128
- (27) 16
- (28) 3.2, $\frac{16}{5}$, $3\frac{1}{5}$
- (29) 16.5
- *(30) 2728 3**614**
- (31) 0
- (32) 2091

- (34) 2
- (35) 4
- (36) 33
- (37) 24
- (38) 5
- (39) 1111
- *(40) 111 122
 - (41) 5
- (42) 256
- (43) 25
- $(44) -3.5, -\frac{7}{2}, \\ -3\frac{1}{2}$
- (45) $\frac{1}{3}$
- (46) 40804
- (47) 10
- (48) 44912
- (49) 720
- *(50) 86569 95681
- (51) 60
- (52) 2
- (53) 2
- (54) 28
- (55) 6
- (56) 2

- (57) 13.5, $\frac{27}{2}$, $13\frac{1}{2}$
- (58) 4
- (59) 104
- *(60) 9587 10595
- (61) 3844
- (62) $\frac{34}{385}$
- (63) 4489
- (64) 3
- (65) 99
- (66) 1.5, $\frac{3}{2}$, $1\frac{1}{2}$
- (67) .5 or $\frac{1}{2}$
- (68) 36
- (69) 17
- *(70) 4365 4824
- (71) 6
- (72) 3
- (73) $\frac{7}{25}$ or .28
- (74) 0
- (75) 2
- (76) 1
- $(77) \frac{1}{18}$
- (78) 4
- (79) 4995
- *(80) 285 314

University Interscholastic League - Number Sense Answer Key HS ● Invitation A ● 2008

*number) x - y means an integer between x and y inclusive

NOTE: If an answer is of the type like $\frac{1}{3}$ it cannot be written as a repeating decimal

(1) 2188

(2) 10040

(3) $2\frac{23}{56}$

(4) $\frac{35}{8}$

(5) $\frac{-10.5}{-10\frac{1}{2}}$, $\frac{21}{2}$,

(6) $\frac{3}{40}$

(7) 420

(8) 10

(9) 529

*(10) 19914 - 22010

(11) 13

(12) 6.6

(13) \$ 5.00

(14) 376

(15) 1.3, $\frac{13}{10}$, $1\frac{3}{10}$

 $(16) \frac{8}{9}$

(17) 0

(18) 8

(19) 1004

*(20) - 219395 -- 198499

(21) 28

 $(22) \ \frac{40}{9}, 4\frac{4}{9}$

(23) \$ 125.00

(24) .3125, $\frac{5}{16}$

(25) 75

(26) 15

(27) 13

(28) 2

(29) 1.25, $\frac{5}{4}$, $1\frac{1}{4}$

*(30) 11044 - 12206

(31) 22

(32) 2

(33) 104

(34) 4

(35) 79.04, $\frac{1976}{25}$,

 $79\tfrac{1}{25}$

(36) 3

(37) 15

(38) 98

(39) .2, $\frac{1}{5}$

*(40) 1631 - 1802

(41) 36

(42) 3

(43) 65932

(44) 9

(45) 4275

(46) 7

(47) 960

(48) 20

(49) $21\frac{3}{7}$

*(50) 308 - 340

(51) - 7

(52) 48

(53) - 4

 $(54) \frac{32}{261}$

(55) 1.5, $\frac{3}{2}$, $1\frac{1}{2}$

(56) 4225

(57) 3

(58) 20

(59) 47

*(60) 315188 - 348364

(61) 75

(62) 9

(63) 11

(64) - 6

,

(65) $-.5, -\frac{1}{2}$

(66) 12

(67) 6

(68) 667

 $(69) \ 3$

*(70) 5053 - 5584

(71) $-.125, -\frac{1}{8}$

(72) $-1.25, -\frac{5}{4},$ $-1\frac{1}{4}$

(73) 3

(74) 9

(75) - 26

 $(76) \ \frac{16}{3}, 5\frac{1}{3}$

(77) 5

(78) 2997

 $(79) \frac{2}{3}$

*(80) 427 - 471

University Interscholastic League - Number Sense Answer Key HS • Invitation B • 2008 NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

(1) 1748

(19) 124

(35) 14

(58) 11111

(2) $\frac{4}{9}$

- *(20) 972 1074
- (36) 1.25, $\frac{5}{4}$, $1\frac{1}{4}$
- (59) 6

(3) $261\frac{8}{9}$

(21) 3

(37) 24

(4) - 8

(22) 1

- $(38) \ 2.5, \frac{5}{2}, 2\frac{1}{2}$
- *(60) 60 65

(5) 46

(23) - 8

- (61) $\frac{1}{18}$

(6) 70

(24) 2197

- (39) 122
- (62) 12

(25) 64

- *(40) 168097 185790
- (63) .5, $\frac{1}{2}$

(7) 961

(26) 1

- (41) 12.5, $\frac{25}{2}$, $12\frac{1}{2}$
- (64) 4

(8) $\frac{3}{16}$

(27) 1010

(42) 163216

(65) 9

(9) $-\frac{11}{13}$

(28) 1

(43) 108

- *(10) 23722 26218
- (29) 8

(44) 2975

(66) 4448.89, <u>444889</u> $4448 \frac{89}{100}$

- (11) 90
- *(30) 3147 3477
- (45) 12

(67) 6

(12) 40

(31) 0

(46) 36000

 $(68) - \frac{3}{4}$

(43) 16, 51

- (32) 15
- (47) 2

(69) 53

(14) 2

117) 1662

(18) 100

(33) $\frac{1}{3}$

 $(48) \frac{16}{737}$

*(70) 572 - 631

(15) \$2.42 (34) 10.

(49) 9

(71) 5

(16) 210

- *(50) 433608 479249
- (72) .5, $\frac{1}{2}$

(51) 2

(73) .03

(52) 16

(74) 3

(53) $\frac{8}{3}$, $2\frac{2}{3}$

(75) 30

(54) 2

(76) 168

(55) 74

(77) 2

 $(56) \frac{2}{3}$

 $(78) \frac{19}{3}, 6\frac{1}{3}$

(79) .125, $\frac{1}{8}$

(57) 1225

*(80) 714 - 788

2007-08 TMSCA High School Number Sense Test 6 - Answer Key

*number) x - y means an integer between x and y inclusive

NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

(1) - 730

 $(18) - \frac{5}{6}$

(34) 20.25, $\frac{81}{4}$, $20\frac{1}{4}$

(58) 12

(2) 9100

(19) 223

(35) - 1

(59) 2

(3) $250 \frac{7}{8}$

*(20) 54034 - 59720

(36) 40

*(60) 434128 - 479824

(4) 150600

(21) 8

(37) 36.3

(61) 19

(5) - 200

(22) 5

(38) 42

(62) 998001

(6) $6\frac{14}{15}$

(23) 40

(39) 987

(63) - 3

(7) .2

 $(24) \frac{4}{7}$

*(40) 472 -521

(64) $.2, \frac{1}{5}$

(8) 2.5, $\frac{5}{2}$, $2\frac{1}{2}$

(25) 2

(41) 2

(65) - 3

(9) 324

(26) 3.125

 $(42) \ 4.75, \frac{19}{4}, 4\frac{3}{4}$

(66) 67

*(10) (-9807) -

(27) 12

(43) 320

(67) .25, $\frac{1}{4}$

(-8873)

(28) 7

(44) 8742

 $(68) \frac{5}{3}, 1\frac{2}{3}$

 $(11) -12.5, -\frac{25}{2},$

(29) 310

*(30) 616 -680

(45) 0

(46) $\frac{17}{310}$

(69) 401

(12) 616

 $(31) \frac{19}{33}$

(47) 4

*(70) 592 -653

(71) 2

(13) 17

(32) 1

 $(48) -\frac{4}{3}, -1\frac{1}{3}$

(72) .5, $\frac{1}{2}$

(14) 2(15) 4

(33) 66

(49) 2400

(73) 5

(16) 46

(17) 10

*(50) 616 - 680

(74) 2

(51) 10

(75) - 162

(52) - 1

(76) .44

 $(53) \frac{8}{3}, 2\frac{2}{3}$

(77) $-.5, -\frac{1}{2}$

(54) 3

(78) 2.5, $\frac{5}{2}$, $2\frac{1}{2}$

(55) 14

 $(79) \frac{10}{9}, 1\frac{1}{9}$

(56) 25

*(80) 171 - 188

(57) 33

2007-08 TMSCA High School Number Sense Test 12 - Answer Key

*number) x - y means an integer between x and y inclusive

NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

(1)		218	88
------------	--	-----	----

(2)
$$\frac{1}{11}$$

$$(21) - 1$$

$$(37)$$
 3.4, $\frac{17}{5}$, $3\frac{2}{5}$

*(40) 317 - 349

$$*(60)$$
 201 -221

(22)
$$\frac{4}{9}$$

(5)
$$\frac{21}{20}$$

(23)
$$1\frac{3}{25}$$

(62)
$$-.5, -\frac{1}{2}$$

$$(8) - 94$$

$$(26)$$
 6

$$(27) - 1$$

(67)
$$-\frac{1}{3}$$

(29)
$$-\frac{4}{9}$$

$$(68) - 11$$

(12)
$$-21.2, -\frac{106}{5},$$

 $-21\frac{1}{5}$

*(30)
$$2771 - 3061$$

$$(32) - 4$$

$$(49) - 4$$

$$(72) \frac{55}{64}$$

(51) $\frac{8}{11}$

$$(54) - 71$$

(77) 12.5,
$$\frac{25}{2}$$
, $12\frac{1}{2}$

(79)
$$\frac{10}{11}$$

University Interscholastic League - Number Sense Answer Key HS ● District 1 ● 2008

*number) x - y means an integer between x and y inclusive

NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

(1) - 70

(19) 0

(35) 6

(59) 48

(2) 10010

*(20) 1164 - 1286

(36) 1210

*(60) 9587 - 10595

(3) .5, $\frac{1}{2}$

(21) 1

(37) .3125, $\frac{5}{16}$

(61) 34

(4) 4

(22) - 6

(38) 175

(62) - 41

(5) $-.25, -\frac{1}{4}$

(23) 8

(39) 496

(63) $-.5, -\frac{1}{2}$

(6) 6100

(24) 271

*(40) 70148 — 77532

(64) 485

(7) 729

(25) 5

(41) 8

(65) 6667

 $(8) \frac{11}{12}$

(26) 24

(42) 21600

(66) 8

(27) 5338

(43) 40382

(67) 278

(9) $\frac{3}{40}$

(28) - 16

(44) 11

(68) 32

*(10) 25175 - 27825

(29) .875, $\frac{7}{8}$

 $(45) \ \ \frac{19}{1590}$

(69) 7

(11) 36

*(30) 13042 - 14414

(46) 7

*(70) 1237 - 1366

 $(12) \ 8\frac{3}{16}$

(31) - 19

(47) 7

(71) 67

(13) $-26.1, -\frac{261}{10},$ $-26\frac{1}{10}$

(32) 1.4, $\frac{7}{5}$, $1\frac{2}{5}$

(48) 499849

(72) 1

(14) 29

(33) 2197

(49) - 1

*(50) 821 - 907

 $(73) \frac{3}{55}$

(15) 133

(34) .25, $\frac{1}{4}$

(51) 49

(74) 0

(16) 8

(52) -3

(75) 1.5, $\frac{3}{2}$, $1\frac{1}{2}$

(53) - 9

(76) 123321 (77) 21

(17) 20

(54) 55

 $(78) \frac{26}{3}, 8\frac{2}{3}$

(55) - 140

(79) 44

*(80) 9500 - 10500

(56) 7

(57) $-5.5, -\frac{11}{2},$ $-5\frac{1}{2}$

 $(58) - \frac{8}{3}, -2\frac{2}{3}$

(18) 2008

University Interscholastic League - Number Sense Answer Key HS ● District 2 ● 2008

*number) x - y means an integer between x and y inclusive

NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

(1) 117

(2) 10100

 $(3) \frac{4}{7}$

(4) 4.92

(5) $-12.5, -\frac{25}{2},$ $-12\frac{1}{2}$

(6) $16\frac{4}{25}$

(7) 3.75, $\frac{15}{4}$, $3\frac{3}{4}$

(8) 5

(9) 256

*(10) 21461 - 23719

(11) 1584

(12) 19

(13) 17

(14) \$5.88

(15) 1

(16) 198

 $(17) \ 2\frac{7}{10}$

(18) 5214

(19) 2008

*(20) 172919 – 191119

(21) 2

(22) 111111

 $(23) \frac{8}{17}$

(24) 242

(25) 0

(26) 2025

(27) 15

(28) $196\frac{1}{64}$

(29) - 12

*(30) 560 -618

(31) 547

(32) 4

(33) 37520

(34) 2197

 $(35) - \frac{32}{3}, -10\frac{2}{3}$

(36) - 54

 $(37) \frac{7}{30}$

(38) 140

(39) 350

*(40) 57982 - 64084

(41) 15

(42) 10925

(43) 144

(44) 58

(45) .5, $\frac{1}{2}$

(46) 29213

(47) 546

(48) 5120

(49) 80

*(50) 4596 — 5078

(51) 2

(52) 2.4, $\frac{12}{5}$, $2\frac{2}{5}$

(53) 1

(54) 336

(55) 80

(56) 2

 $(57) \frac{11}{18}$

(58) 18

(59) 1024

*(60) 40732 - 45018

(61) 25

(62) 143

(63) 256

(64) 6

(65) - 2

(66) 3

(67) 9

(68) 28800

(69) - 11

*(70) 176 — 194

 $(71) \frac{45}{49}$

(72) 3

(73) 1.5, $\frac{3}{2}$, $1\frac{1}{2}$

(74) 4

(75) - 40

 $(76) \frac{4}{77}$

(77) 22533

(78) 40

(79) 288

*(80) 162 - 177

University Interscholastic League - Number Sense Answer Key HS ● Regional ● 2008

*number) x - y means an integer between x and y inclusive

NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

(1)	1990
(1)	エフフひ

(3)
$$6\frac{1}{3}$$

(11)
$$-\frac{8}{11}$$

$$(13) -\frac{7}{6}, -1\frac{1}{6}$$

(14) 65.25,
$$\frac{261}{4}$$
, 65 $\frac{1}{4}$

$$(23) \ \frac{20}{9}, 2\frac{2}{9}$$

$$(24) - 11$$

$$(26) \cdot 7$$

$$(32)$$
 $52\frac{1}{16}$

$$(34) - 14$$

$$(35) - 61$$

(36)
$$-.25, -\frac{1}{4}$$

$$(49) - 4$$

$$(51) \ \ \frac{27}{3220}$$

$$(52) - 31$$

(53) 2.1875,
$$\frac{35}{16}$$
, $2\frac{3}{16}$

$$(56) \frac{1}{3}$$

$$(61) - 36$$

(64)
$$-\frac{1}{3}$$

$$(66) - 1$$

$$(67) - 570$$

$$*(70)$$
 306 $-$ 337

$$(71) - 3$$

$$(72) - 38$$

$$(73)$$
 27

$$(74) \frac{80}{81}$$

$$(75) - 3$$

$$(78) \frac{1}{3}$$

University Interscholastic League - Number Sense Answer Key HS ● State ● 2008

*number) x - y means an integer between x and y inclusive

NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

(1) 2223

(2) $13\frac{39}{40}$

(3) 1.331

(4) .1024, $\frac{64}{625}$

 $(5) \ \frac{110}{9}, 12\frac{2}{9}$

(6) 784

(7) 555

(8) $\frac{11}{40}$

(9) $5589\frac{7}{9}$

*(10) 20060 - 22170

 $(11) \ \frac{20}{7}, 2\frac{6}{7}$

(12) 7216

(13) \$3.60

(14) 32

(15) 2

(16) 1.5, $\frac{3}{2}$, $1\frac{1}{2}$

(17) 3375

(18) 29

 $(19) -\frac{5}{3}, -1\frac{2}{3}$

*(20) 89 - 98

(21) 1

(22) - 151

(23) $1\frac{4}{77}$

(24) $-\frac{10}{3}$, $-3\frac{1}{3}$

(25) 4

(26) 323

(27) 5

(28) $201\frac{1}{49}$

(29) 0

*(30) 7125 - 7875

(31) 1

(32) 8

(33) 273

(34) - 45

(35) 6

(36) - 1

(37) 2.2, $\frac{11}{5}$, $2\frac{1}{5}$

(38) 15

(39) 35

*(40) 60295 - 66641

(41) 9

(42) 167281

(43) 2400

(44) 184

(45) - 2

(46) 30

(47) - 1

(48) 73372

(49) .2, $\frac{1}{5}$

*(50) 19700 — 21772

 $(51) \frac{25}{1974}$

(52) 4

(53) 3

(54) 5

(55) 8

(56) 1

(57) 363

(58) 101

 $(59) \frac{2}{3}$

*(60) 62260 - 68812

(61) 0

(62) 4.25, $\frac{17}{4}$, $4\frac{1}{4}$

(63) .5, $\frac{1}{2}$

(64) .2, $\frac{1}{5}$

(65) 88888

(66) 5

(67) 4

 $(68) \frac{5}{6}$

(69) 33

*(70) 176 - 194

(71) 6

(72) 13

(73) .15

(74) 3

 $(75) \frac{21}{130}$

(76) 2

(77) 2

(78) 1

(79) 1331

*(80) 2150 — 2375