Прогнозирование временных рядов. Экспоненциальное среднее как предиктор.

Определение: Предиктор - модель, служащая для предсказания.

1. Постановка задачи прогнозирования.

Проблему прогнозирования можно определить как задачу оценивания по данной последовательности чисел, взятых из какого либо временного ряда последующих значений того же ряда.

Пусть в последовательности дискретных наблюдений каждое значение представляет собой сумму:

$$X_t = a_t + \varepsilon_t$$
 (1)

- t момент времени измерения t=1,2,...
- a_t уровень ряда (модель ряда),
- ϵ_{t} случайная помеха ("белый шум"), имеющая нормальный закон распределения с $M(\epsilon_{t})=0$ и $D(\epsilon_{t})=\sigma_{\mathcal{E}}^{2}$.

Будем задавать a_t в виде полинома n-го порядка.

$$a_{t} = A_{0} + A_{1} \cdot t + \frac{A_{2} \cdot t^{2}}{2!} + \dots + \frac{A_{n} \cdot t^{n}}{n!} = \sum_{i=0}^{n} \frac{A_{i} \cdot t^{i}}{i!}$$
(2)

Задача предсказания значения \hat{x}_{t+m} , отстоящего на m шагов от последнего наблюдавшегося значения x_t включает следующие этапы:

- 1) Выбор дискретности наблюдения Δt и интервала наблюдения T.
- 2) Выбор модели процесса a_t, т.е. определение порядка полинома в формуле (2).
- 3) Вычисление оценок коэффициентов модели по заданным значениям ряда, наблюдаемым на интервале Т.
- 4) Использование полученной модели для предсказания значений \hat{x}_{t+m}
- 5) Оценивание точности предсказания.

Основной этап задачи прогнозирования - этап сглаживания.

В случае, когда веса наблюдений убывают по экспоненте, сглаживание называется экспоненциальным.

Если n=0, то a=const.

Многократное экспоненциальное сглаживание.

Оператор простого экспоненциального сглаживания — это оператор экспоненциального сглаживания первого порядка. Если к результату простого экспоненциального сглаживания вновь применить, ту же процедуру, то получим оператор сглаживания второго порядка:

$$S_t^{[1]} = \alpha x_t + (1 - \alpha) S_{t-1}^{[1]}$$

$$S_t^{[2]} = \alpha S_t^{[1]} + (1 - \alpha) S_{t-1}^{[2]}$$

$$S_t^{[3]} = \alpha S_t^{[2]} + (1-\alpha)S_{t-1}^{[3]}$$
 оператор экспоненциального сглаживания третьего порядка.

•••

$$S_t^{[n]} = \alpha S_t^{[n-1]} + (1-\alpha) S_{t-1}^{[n]}$$
- оператор экспоненциального сглаживания n-го порядка.

Основная теорема экспоненциального сглаживания.

Обозначим прогнозируемое значение через \hat{x}_{t+m} . Его можно выразить с помощью ряда Тейлора для наблюдавшегося значения в момент времени t.

$$\hat{x}_{t+m} = \sum_{i=0}^{n} \frac{\hat{x}_t^{(i)}}{i!} m^i,_{\text{ГДе}}$$

$$x_t^{(i)} - i -$$
 ая производная x_t $\hat{x}_t^{(i)} -$ оценка этого значения

m - количество интервалов от последнего наблюдавшегося значения x_t до предсказываемого значения \hat{x}_{t+m} .

Из сравнения формул (2) и (3) можно сделать вывод, что неизвестный коэффициент A_i представляет собой соответствующие производные переменной x в момент времени t. Значение производных можно определить, пользуясь сглаженными величинами.

Основная теорема экспоненциального сглаживания позволяет получить оценки n+1 коэффициента (производной) полиномиальной модели n-го порядка как линейную комбинацию результата первых n+1 порядков сглаживания.

Теорема: Если ряд наблюдений x_t представлен моделью $x_t = \sum_{i=0}^n \frac{t^i x_t^{(i)}}{i!}$, то существует система n+1 уравнений, связывающих сглаженные величины $S_t^{[p]}$ с производными $x_t^{(i)}$, т.е.

$$S_{t}^{[p]}(x) = \sum_{i=0}^{n} (-1)^{i} * \left(\frac{x_{t}^{(i)}}{i!}\right) * \frac{\alpha p}{(p-1)} * \sum_{l=0}^{\infty} l^{i} (1-\alpha)^{l} * \frac{(p-1+l)!}{l!}$$

$$p = 1, \dots, n+1$$

Решение этой системы дает выражения для производных в виде линейных комбинаций сглаженных данных.

Применяя основную теорему для случая, когда моделью является постоянная величина ξ = a, т. e. n = 0, получаем всего одно уравнение:

$$S_t^{[1]} = a. (4)$$

Основная теорема позволяет получить искомые оценки коэффициентов A_i – по следующей схеме: наблюдавшиеся данные — сглаженные величины — оценки коэффициентов.

Вывод расчетных формул для коэффициентов линейной модели.

$$a_t = A_{0(t)} + A_{1(t)} *t,$$
 (5) t - номер наблюдения

<u>шаг 1</u>. Пользуясь определением многократного сглаживания, выразим текущие сглаженные величины через текущие наблюдавшиеся значения и предыдущие сглаженные величины:

$$S_{t}^{[1]} = \alpha x_{t} + \beta \cdot S_{t-1}^{[1]}$$

$$S_{t}^{2} = \alpha \cdot S_{t}^{[1]} + \beta \cdot S_{t-1}^{[2]} = \alpha^{2} x_{t} + \alpha \beta \cdot S_{t-1}^{[1]} + \beta \cdot S_{t-1}^{[2]} \quad (*)$$

$$\beta = 1 - \alpha$$

<u>шаг 2</u>. Выразим коэффициенты модели через сглаженные величины. Для этого необходимо на основании теоремы экспоненциального сглаживания записать выражение для сглаженных величин через оценки коэффициентов A_0 и A_1 .

$$S_t^{[1]} = A_{0(t)} - \left(\frac{\beta}{\alpha}\right) A_{1(t)}$$

$$S_t^{[2]} = A_{0(t)} - \left(\frac{2\beta}{\alpha}\right) A_{1(t)}$$
(**)

Решив эту систему относительно $A_{0(t)}$ и $A_{1(t)}$, получим:

$$S_t^{[1]} - S_t^{[2]} = \frac{\beta}{\alpha} A_{l(t)}$$

$$A_{\mathbf{l}(t)} = \left(S_t^{[1]} - S_t^{[2]}\right) \frac{\alpha}{\beta}$$

$$A_{0(t)} = S_t^{[1]} + \frac{\beta}{\alpha} \cdot \frac{\alpha}{\beta} \left(S_t^{[1]} - S_t^{[2]} \right) = 2S_t^{[1]} - S_t^{[2]}$$

$$A_{0(t)} = 2S_t^{[1]} - S_t^{[2]}$$

$$A_{1(t)} = \left(S_t^{[1]} - S_t^{[2]} \right) \frac{\alpha}{\beta}$$
(***)

<u>шаг 3</u>. Подставив выражение для $S_t^{[1]}$ и $S_t^{[2]}$ из выражений (*) и (***) получим:

$$A_{0(t)} = \alpha (1 + \beta) x_t + \beta (1 + \beta) S_{t-1}^{[1]} - \beta S_{t-1}^{[2]}$$

$$A_{1(t)} = \alpha^2 x_t + \alpha \beta S_{t-1}^{[1]} - \alpha S_{t-1}^{[2]}$$

<u>шаг 4</u>. По аналогии с уравнениями (**) запишем выражения для предыдущих сглаженных величин через оценки коэффициентов моделей:

$$S_{t-1}^{[1]} = A_{0(t-1)} - \left(\frac{\beta}{\alpha}\right) A_{1(t-1)}$$
$$S_{t-1}^{[2]} = A_{0(t-1)} - \left(\frac{2\beta}{\alpha}\right) A_{1(t-1)}$$

 $\underline{\text{шаг 5}}$. Подставим выражение для $S_{t-1}^{[1]}$ и $S_{t-1}^{[2]}$ из формул пункта 4 в формулы пункта 3.

Окончательное выражение для оценок коэффициентов линейной модели:

$$A_{0(t)} = x_t + \beta^2 [\hat{x}_t - x_t]$$

$$A_{1(t)} = A_{1(t-1)} + \alpha^2 [\hat{x}_t - x_t]$$

$$\hat{x}_t = A_{0(t-1)} + A_{1(t-1)}$$
, rge
(6)

Выбор дискретности отсчетов.

Интервал между замерами рекомендуется выбирать в зависимости от требуемого минимального времени упреждения $\tau = m\Delta t$. Обычно интервал между замерами Δt берут равным 0.01—0.25 минимального времени упреждения. Указанная рекомендация не является жесткой, однако следует помнить, что при слишком малом интервале между замерами характер процесса затемняется шумом. С другой стороны, при увеличении Δt растет величина ошибки предсказанного значения.

Выбор модели.

Для определения порядка полинома на основе выборки вычисляют разности первого порядка $\Delta x(t) = x_{t+1} - x_t$; если они колеблются около нуля, то данные можно аппроксимировать постоянной величиной. Если среднее разностей первого порядка отлично от нуля, а для разностей второго порядка $\Delta^{(2)}x = \Delta x(t+1)$ - $\Delta x(t)$ оно равно нулю, то данные представляют с помощью линейного закона. Вообще, если среднее разностей (n-1)-го порядка отлично от нуля, а среднее разностей порядка равно нулю, то моделью служит полином (n-1)-й степени, причем среднее значение разности (n-1)-го порядка может служить начальной оценкой коэффициента при старшем члене полинома. Если наблюдается

систематический рост разностей, то возможно, что данные описываются экспонентой. Для проверки необходимо оценить отношение двух соседних наблюдений. При экспоненциальном законе процентный рост данных должен быть постоянным.

При подборе модели не следует стремиться описывать весь ряд целиком: модель должна хорошо представлять лишь некоторый отрезок, который простирается достаточно далеко в прошлое (чтобы иметь достаточное количество данных для оценивания коэффициентов модели) и в будущее (чтобы охватить интервал упреждения). Этот отрезок перемещается вдоль временного ряда по мере того, как поступают новые данные.

Выбор начальных условий.

Т.к. оператор сглаживания требует рекуррентных вычислений, то для оценивания коэффициентов модели необходимо знать начальные величины.

$$S_0^{[1]}(x), S_0^{[2]}(x), \dots, S_0^{[n+1]}(x)$$

Обычно удобнее оценивать не начальное значение сглаживаемых величин, а начальные значения коэффициентов ряда Тейлора, т.е. $\mathcal{X}_{t(0)}, \mathcal{X}'_{t(0)}, \dots$

Эти начальные оценки можно получить на основе прошлых данных, например для постоянной модели — путем усреднения, для линейной модели — методом наименьших квадратов. Также для определения начальных значений коэффициентов линейной модели можно построить график выборки. Зная оценки $x_{t(0)}$ и $x'_{t(0)}$ и пользуясь уравнениями

$$S_t^{[1]} = A_{0(t)} - \left(\frac{\beta}{\alpha}\right) A_{1(t)},$$

$$S_t^{[2]} = A_{0(t)} - \left(\frac{2\beta}{\alpha}\right) A_{1(t)},$$
(7)

можно вычислить начальные оценки для сглаженных величин:

$$S_{t}^{[1]} = x_{0(t)} - \left(\frac{\beta}{\alpha}\right) x_{t(0)}'$$

$$S_{t}^{[2]} = x_{0(t)} - \left(\frac{2\beta}{\alpha}\right) x_{t(0)}',$$

$$\beta = 1 - \alpha$$
(8)

Прогнозирование. После того как получены оценки коэффициентов модели, может быть вычислена оценка будущего наблюдения:

$$\hat{x}_{t+m} = \sum_{i=0}^{n} \frac{m^{i} A_{i(t)}}{i!},$$
(9)

где n — порядок полинома; $A_{i(t)}$ - оценка коэффициента A_i для наблюдения с номером t; m - количество интервалов от последнего наблюдавшегося значения \mathbf{x}_t до предсказанного \hat{x}_{t+m} .

Оценка точности предсказания.

Для любой последовательности данных полином n-ой степени полученный путем многократного экспоненциального сглаживания является решением минимизирующим взвешенную сумму квадратов разностей:

$$\beta \sum_{i=0}^{\infty} (x_{t-i} - \hat{x}_{t-i})^2$$

При условии отсутствия шума многократное экспоненциальное сглаживание обеспечивает получение точных коэффициентов моделей. Обычно данные наблюдения включают в себя шум. Благодаря линейности оператора сглаживания можно записать:

$$S_t(x) = S_t(a) + S_t(\epsilon)$$

Если $M(ε_t)=0$, то $M(S_t(x))=M(S_t(a))$.

Оценки коэффициентов моделей, полученные в результате многократного сглаживания, имеют нормальное распределение.

Будем вычислять оценку дисперсии $s^2[\hat{x}_t]$ по экспериментальным данным на основании сравнения предсказанных величин и соответствующих им действительно наблюдавшихся значений. (n - порядок полинома)

$$s^{2}[\hat{x}_{t}] = \frac{\sum_{t=0}^{N} (x_{t} - \hat{x}_{t})^{2}}{N - n - 1}$$
(10)

Задание и порядок выполнения работы.

- 1) Загрузить N значений временного ряда, соответственно варианту (Приложение 2). Для данной выборки найти оценки математического ожидания и дисперсии. Построить график $x_t = \psi(t)$, t=1,2,...,N полученных значений временного ряда.
- 2)Использовать постоянную модель (n=0) для прогнозирования значений временного ряда при $\alpha=0,1$ и $\alpha=0,3$. $S_t^{[1]}$ считать прогнозом на момент времени t+1. Начальное значение $S_0^{[1]}$ найти как среднее арифметическое пяти первых значений временного ряда. На каждом шаге сравнить предсказанное \hat{x}_t и действительное x_t значения, выписывая ошибку предсказания $\Delta x_t = x_t \cdot \hat{x}_t$, t=1,2,...,N. Вычислить дисперсию $s^2[\hat{x}_t]$ (10) ошибки предсказания по данным эксперимента.
- 3) Оценить начальные значения коэффициентов линейной модели $A_{0(0)}$ и $A_{1(0)}$, воспользовавшись методом наименьших квадратов (см. Приложение 1), то есть по значениям $x_t = \psi(t)$ нужно построить аппроксимирующую прямую. Точка пересечения этой линии с осью ординат определяет величину $A_{0(0)}$, а тангенс угла наклона к оси абсцисс величину $A_{1(0)}$.
 - 4) Используя операторы экспоненциального сглаживания первого и второго порядков (пункт «Многократное

экспоненциальное сглаживание»), получить сглаженные значения $S_t^{[1]}$ и $S_t^{[2]}$, t=1,2,...,N при значениях постоянной сглаживания $\alpha=0,1$ и $\alpha=0,3$. Построить графики (всего четыре графика). (Начальные значения найти по формуле (7) или (8)).

5) Использовать линейную модель (n=1)для прогнозирования значений временного ряда x с интервалом упреждения $\tau = \Delta t$, что равносильно m=1 при $\alpha = 0,1$ и $\alpha = 0,3$. (Формулы (6),(9)).

На каждом шаге сравнить предсказанное \hat{x}_t и действительное x_t значения, выписывая ошибку предсказания $\Delta x_t = x_t - \hat{x}_t$, t=1,2,...,N. Вычислить дисперсию ошибки предсказания по данным эксперимента $s^2[\hat{x}_t]$.

- 6) Выполнить пункт 5) для m=5. Сравнить полученные результаты.
- 7) Представить рекомендацию по выбору модели (порядка полинома) для заданного временного ряда по приведенному в пункте «Выбор модели» алгоритму.

Использованная литература

1. Статистические методы в инженерных исследованиях под ред. Г.К.Круга (Лабораторный практикум).

Приложение 1.

Простая линейная регрессия

Имеются экспериментальные значения случайных величин x и y: $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$. Будем искать зависимость вида: $y = a_0 + a_1 x$

$$\sum_{i=1}^{n} (y_i - a_0 - a_1 x_i)^2 \to \min_{a_0, a_1}$$

$$\begin{cases} -2\sum_{i=1}^{n} (y_i - a_0 - a_1 x_i) = 0 \\ -2\sum_{i=1}^{n} (y_i - a_0 - a_1 x_i) x_i = 0 \end{cases}$$

$$\begin{cases} \sum_{i=1}^{n} y_i - na_0 - a_1 \sum_{i=1}^{n} x_i = 0 \\ \sum_{i=1}^{n} y_i x_i - a_0 \sum_{i=1}^{n} x_i - a_1 \sum_{i=1}^{n} x_1^2 = 0 \end{cases}$$

$$a_0 = \frac{\sum_{i=1}^{n} y_i - a_1 \sum_{i=1}^{n} x_i}{n}$$

$$\sum_{i=1}^{n} (x_i y_i) - \frac{\sum_{i=1}^{n} y_i - a_1 \sum_{i=1}^{n} x_i}{n} \sum_{i=1}^{n} x_i - a_1 \sum_{i=1}^{n} x_i^2 = 0 \implies a_1 - ?$$

$$a_1 = \frac{n \sum_{i=1}^{n} (x_i y_i) - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$

Приложение 2.

Приведены данные продаж на конец недели. Данные записывались в течение 30 недель.

вариант	1, 20	2, 21	3, 22	4, 23	5, 24	6, 25	7, 26	8, 27	9, 28	10,	11,	12	13	14	15	16	17	18	19
										29	30								
неделя																			
1	33	43	240	272	1795	1523	1630	622	666	53	72	517	609	1204	1494	6827	6848	737	2428
2	35	44	260	281	1738	1549	1659	620	670	33	73	538	625	1328	1525	6178	7027	775	2010
3	37	45	265	289	1934	1576	1689	621	676	30	77	554	644	1328	1551	7084	7685	792	2981
4	40	42	267	291	1835	1602	1720	630	684	29	81	575	665	1435	1539	8162	7602	787	3074
5	38	47	269	296	2024	1630	1749	636	696	55	78	584	676	1416	1629	8462	7775	835	2893
6	43	48	268	299	2083	1659	1778	650	705	44	79	601	700	1494	1665	9644	7933	887	3198

7	44	49	272	302	1341	1689	1807	666	707	41	87	609	725	1525	1708 8350 80	094 8	10	3250
8	45	53	281	306	987	1720	1837	670	718	43	94	625	745	1551				3495
9	42	56	289	310	1650	1749	1865	676	731	68	93	644	787	1539	1873 8829 87	730 8	55	3528
10	47	60	291	315	2074	1778	1892	684	745	55	84	665	810	1629	1973 9948 96	614 8	78	3838
11	48	66	296	324	2122	1807	1919	696	758	55	92	676	832	1665	2087 10638 92	290 8	84	3916
12	49	72	299	334	1920	1837	1943	705	773	67	100	700	855	1708	2208 11253 10	0925 9	13	4142
13	53	73	302	348	1877	1865	1966	707	787	55	106	725	878	1799	2271 11179 10	0645 9	41	4441
14	56	77	306	367	1815	1892	1987	718	807	57	110	745	884	1873	2365 12820 12	2161 9	59	5583
15	60	81	310	388	1848	1919	2007	731	828	52	108	787	913	1973	2423 12950 10	0466 9	39	6230
16	66	78	315	405	1646	1943	2027	745	844	34	111	810	941	2087	2416 10894 11	1030 9	57	6497
17	72	79	324	418	1653	1966	2051	758	870	29	103	832	959	2208	2484 10455 11	1424 9	83	5480
18	73	87	334	444	1810	1987	2077	773	894	30	109	855	939	2271	2605 11179 10	0748 1	000	5870
19	77	94	348	493	1462	2007	2099	787	920	28	121	878	957	2365	2744 10590 11	1390 1	002	6354
20	81	93	367	538	1404	2027	2110	807	938	28	110	884	983	2423	2729 8919 11	1637 9	96	6610
21	78	84	388	569	1522	2051	2138	828	962	41	115	913	1000	2416	2695 11607 12	2200 9	93	6290
22	79	92	405	606	1624	2077	2160	844	990	50	125	941	1002	2484	2826 12537 11	1577 1	007	6725
23	87	100	418	652	1732	2099	2180	870	102	49	145	959	996	2605	2858 14759 12	2246 1	003	6435
24	94	106	444	726	1850	2110	2202	894	105	44	132	939	993	2744	3115 10437 13	3281 1	030	6687
25	93	110	493	824	1920	2138	2226	920	107	52	136	957	1007	2729	3190 13589 10	0360 1	055	6885
26	84	108	538	909	2074	2160	2251	938	109	79	158	983	1003	2695	3248 13402 13	3812 1	077	6540
27	92	111	569	965	2122	2180	2277	962	115	68	146	1000	1030	2826	3166 13103 12	2185 1	040	6480
28	100	103	606	996	2305	2202	2300	990	112	83	148	1002	1055	2858	3279 14190 14	4057 1	280	7000

29	106	109	652	103	2280	2226	2323	1020	116	107	160	996	1077	3115	3501 13560 16243 1090 6580
30	110	121	726	107	2295	2251	2340	1050	109	105	155	993	1040	3190	3618 10820 12400 1150 6985