Application of FIND/UNION: testing the equivalence of deterministic finite automata

Deterministic finite automata

$$A = (Q, \Sigma, i, F, \delta)$$

Q states

 Σ alphabet

i initial state

F final (accepting) states

 δ transition function

finite set finite set

 $i \in Q$

 $F \subseteq Q$

 $\delta: Q \times \Sigma \rightarrow Q$

$$L(A) = \{ x \in \Sigma^* \mid x \text{ label of the path from } i \text{ to } t \in T \}$$

Algorithmes sur automates

- pruning
- automaton → regular expression
- regular expression → automaton (e.g. Thompson)
- determinisation
- minimisation
- testing « $L(a) = \emptyset$? » or « $L(a) = A^*$? »
- Constructing an automaton A such that

•
$$L(A) = \Sigma^* - L(B)$$

- $L(A) = L(B) \cup L(C)$
- $L(A) = L(B) \cap L(C)$
- $L(A) = L(B)^*$

•

- testing L(A) = B
- testing equivalence : L(A) = L(B) ?

• ...

Equivalence of automata

Test
$$L(A_1) = L(A_2)$$

$$n = |Q_1| + |Q_2|$$

- if A_1 and A_2 are minimal $L(A_1) = L(A_2)$ iff $A_1 = A_2$
- par minimisation
 - -- minimise A₁ et A₂ (Hopcroft's or Moore's algorithm)
 - -- then test $A_1 = A_2$

Time (with Hopcroft's) : $O(|\Sigma| \cdot n \cdot \log(n))$

 direct test use UNION / FIND

Time : $O(|\Sigma| \cdot n \cdot \alpha(n))$

A1 et A2 are equivalent \leftrightarrow i1 and i2 are equivalent (in disjoint union)

Construction of the equivalence:

A1 and A2 are equivalent

Algorithm

```
procedure Equiv(q_1, q_2);
begin
       one of q_1, q_2 is final but not the other then
     « A1 and A2 are not equivalent »
  else {
     if FIND(q_1) \neq FIND(q_2) then {
        UNION(q_1, q_2);
       for all a \in \Sigma do
              Equiv (\delta_1(q_1, a), \delta_2(q_2, a));
end
Initial call: Equiv(i_1, i_2)
Time O(|A| \cdot n \cdot \alpha(n)) (n = |Q_1| + |Q_2|)
```


Flow network

Directed weighted graph G = (S, A, c)

c(p, q): capacity of edge (p, q)

Examples

Water systems
Production lines
Traffic roads
Transportation of goods
Electricity
etc.

source s

Conditions

Capacity
$$c: S \times S \rightarrow \mathbf{R}$$
 with $c(p, q) \ge 0$

if
$$(p, q) \neq A$$
, then assume $c(p, q) = 0$

Flow $f: S \times S \rightarrow \mathbf{R}$

source $s \in S$, sink $t \in S$

Accessiblity

all nodes appear on a path from s to t

Capacity constraint

for all
$$p, q \in S$$
, $f(p, q) \le c(p, q)$

Conditions (cont)

Anti-symmetry

for all
$$p, q \in S$$
, $f(q, p) = -f(p, q)$

$$\begin{array}{c}
17 \\
p \longrightarrow q \\
positive flow
\end{array}$$

Flow conservation

for all
$$p \in S \setminus \{s,t\}$$
, $\sum (f(p,q) \mid q \in S) = 0$

Flow

Flow value:

$$|f| = \sum (f(s, q) | q \in S)$$
 what flows out of the source

Property:

$$|f| = \sum (f(p, t) | p \in S)$$

what arrives to the sink

Problem

Flow network G = (S, A, c)Compute the **maximum flow**, *i.e.* the flow f of maximal value

The Ford-Fulkerson method

Augmenting path

(b), (d): residual networks

An augmenting path is a simple path in the residual network

Example 0/8 0/6 6/6 **ABDF** augmenting path B 0/3 0/3 C B 0/3 0/3 C 0/6 0/3 6/6 augmenting the flow along ABDF 0/8 |f| = 0|f| = 6

Example (cont) 3/8 5/8 6/6 **ACDF** augmenting path B 0/3 0/3 C **0**/3 **2**/3 6/6 3/3 6/6 augmenting the flow along ACDF 6/8 |f| = 9| f | = 11

Cut

$$(X, Y)$$
 cut of $G = (S, A, c)$:

(X, Y) partition of S such that $s \in X$, $t \in Y$

capacity of the cut

$$c(X, Y) = \sum (c(x, y) | x \in X, y \in Y)$$

flow

$$f(X, Y) = \sum (f(x, y) | x \in X, y \in Y)$$

$$X = \{A,B,C,D\}$$
 $Y = \{E,F\}$ $c(X,Y) = 14$ $f(X,Y) = 12$

Cut

Note that the flow from Y to X *is* counted negatively, but the capacity does *not* take into account edges from Y to X

$$c(X,Y) = 26 \quad f(X,Y) = 19$$

Properties

Properties Let (X, Y) be a cut. Then

1
$$f(X,Y) = |f|$$

$$2 f(X,Y) \le c(X,Y)$$

The maximum flow is bounded by the minimal capacity of a cut

Theorem (max-flow min-cut theorem)

The following conditions are equivalent:

- 1 f is a maximal flow
- 2 there is no augmenting paths
- **3** | f | = c(X', Y') for some cut (X', Y')

Optimal cut

$$X' = \{A,C\}$$

 $Y' = \{B,D,E,F\}$
 $c(X',Y') = 12$
 (X',Y') of minimal capacity
 $f(X',Y') = 12$ is the maximum flow

The number of iterations depends on the choice of the paths

The number of iteration depends on the choice of the paths

augmentation path ABCD

The number of iteration depends on the choice of the paths

augmentation path
ABCD
ACBD

The number of iteration depends on the choice of the paths

augmentation path
1 ABCD
1 ACBD
1 ABCD
etc.

The number of iteration depends on the choice of the paths

augmentation	path
1	ABCD
1	ACBD
1	ABCD
etc.	

Strategy 1

To augment the flow: choose the shortest augmenting path (using BFT)

Theorem

Computing the maximum flow using this strategy requires at most $|S| \cdot |A|$ augmentations. The running time is $O(|S| \cdot |A|^2)$

This strategy is known as the *Edmonds-Karp algorithm*

Other strategies

Push-relabel algorithm : $O(|S|^2 \cdot |A|)$

Relabel-to-front algorithm : $O(|S|^3)$

Maximal matching

Bipartite graph G = (S, A), $S=L \oplus R$, and $\forall (p,q) \in A$, $p \in L$ et $q \in R$

Matching: $C \subseteq A$ such that for all $p \in S$ \exists at most one edge in A incident to p (i.e. having p as one of the endpoints)

Maximal matching: matching with the maximal number of edges (NB: maximality here does not mean maximality by inclusion!)

Encoding by maximum flow R R

Encoding of a bipartite graph by a directed graph. Maximal matching and corresponding maximum flow. Each edge has capacity 1.

Lemma: Let $G = (S=L \uplus R, A)$ be a bipartite graph and G' be the corresponding directed graph. If C is a matching of G, then there exists a flow in G' of value |C|. Conversely, if f is a flow in G' (of an integer value), then there exists a matching in G of cardinality |f|.

The Ford-Fulkerson method computes a maximum flow maximal of integer value for each edge. It determines a maximal matching.

The complexity can be shown to be $O(|S|\cdot|A|)$.

Improvements have been proposed: for example, the Hopcroft-Karp algorithm works in time $O(|S|^{1/2} \cdot |A|)$