MEEN 673

Homework 3

Jicheng Lu 525004048

Problem 1:

Boundary conditions:

$$T(0, y) = 500^{\circ} K, T(a, y) = 300^{\circ} K, \frac{\partial T}{\partial y} = 0 @ y = 0, b$$

Box1.1 Input file for 4×4 linear elements.

4 2 1 1 1 0 2 NPE,NGPF,NGPR,MESH,NPRNT,IGRAD,NONLIN
4 4 NX, NY
0.0 0.045 0.045 0.045 0.045 X0, (DX(I), I=1,NX)
0.0 0.025 0.025 0.025 0.025 Y0, (DY(I), I=1,NY)
NSPV and next lines ISPV, VSPV
11 61 111 161 211 51 101 151 201 251
500.0 500.0 500.0 500.0 500.0 300.0 300.0 300.0 300.0 300.0
0 NSSV
0.2 0.0 0.0 A10, A1X, A1Y
0.2 0.0 0.0 A20, A2X, A2Y
0.0 0.0 0.0 A00, A0X, A0Y
0 ICONV
0.0 0.0 0.0 F0, FX, FY
4.0E-4 0.0 0.0 4.0E-4 0.0 0.0 A1U,A1UX,A1UY, A2U,A2UX,A2UY
1 10 0.001 0.0 NLS, ITMAX, EPS, GAMA
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 GLU(I)

Box1.2 Input file for 2×2 quadratic elements.

9 3 2 1 1 0 2 NPE,NGPF,NGPR,MESH,NPRNT,IGRAD,NONLIN										
2 2 NX, NY										
0.0 0.09 0.09 X0, (DX(I), I=1,NX)										
0.0 0.05 0.05 Y0, (DY(I), I=1,NY)										
NSPV and next lines ISPV, VSPV										
11 61 111 161 211 51 101 151 201 251										
0 NSSV										
0.2 0.0 0.0 A10, A1X, A1Y										
0.2 0.0 0.0 A20, A2X, A2Y										
0.0 0.0 0.0 A00, A0X, A0Y										
0 ICONV										
0.0 0.0 0.0 F0, FX, FY										

Box1.3 Input file for 8×8 linear elements.

4 2 1 1 1 0 2 NPE,NGPF,NGPR,MESH,NPRNT,IGRAD,NONLIN
8 8 NX, NY
0.0 0.0225 0.0225 0.0225 0.0225 0.0225 0.0225 0.0225 0.0225 X0, (DX(I), I=1,NX)
0.0 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 Y0, (DY(I), I=1,NY)
NSPV and next lines ISPV, VSPV
11 101 191 281 371 461 551 641 731
9 1 18 1 27 1 36 1 45 1 54 1 63 1 72 1 81 1
500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0
300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
0 NSSV
0.2 0.0 0.0 A10, A1X, A1Y
0.2 0.0 0.0 A20, A2X, A2Y
0.0 0.0 0.0 A00, A0X, A0Y
0 ICONV
0.0 0.0 0.0 F0, FX, FY
4.0E-4 0.0 0.0 4.0E-4 0.0 0.0 A1U,A1UX,A1UY, A2U,A2UX,A2UY
1 10 0.001 0.0 NLS, ITMAX, EPS, GAMA
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 GLU(I)

Box1.4 Input file for 4×4 quadratic elements.

9	3 2	1 1 (2 1	NPE,NGP	F,NGPR,MI	ESH,NPR	NT,IGRAD,NON	NLIN		
4	4	4 NX, NY								
0.0	0.045	0.045	0.045	0.045	X0, (DX(I), I=	1,NX)			
0.0	0.025	0.025	0.025	0.025	Y0, (DY(I), I=	1,NY)			
18				N	SPV and ne	xt lines IS	SPV, VSPV			
11	10 1	19 1	28 1	37 1 4	6 1 55 1	64 1	73 1			
91	18 1	27 1	36 1	45 1 5	4 1 63 1	72 1	81 1			

```
500.0
      500.0
            500.0 500.0 500.0
                                500.0 500.0
                                              500.0
                                                     500.0
300.0 300.0
             300.0
                   300.0 300.0
                                 300.0
                                       300.0
                                              300.0
                                                     300.0
0
                                     NSSV
0.2
    0.0
        0.0
                               A10, A1X, A1Y
0.2
    0.0
                               A20, A2X, A2Y
        0.0
0.0
    0.0
        0.0
                               A00, A0X, A0Y
0
                                     ICONV
    0.0
0.0
        0.0
                               F0, FX, FY
4.0E-4 0.0 0.0 4.0E-4 0.0 0.0 A1U,A1UX,A1UY, A2U,A2UX,A2UY
    10
1
          0.001
               0.0
                                   NLS, ITMAX, EPS, GAMA
0.0
    0.0
        0.0
             0.0 0.0 0.0 0.0
                                0.0 0.0 0.0
0.0
    0.0
        0.0
             0.0
                  0.0
                      0.0
                                0.0 0.0
                                         0.0
                           0.0
0.0
    0.0
        0.0
             0.0
                  0.0
                      0.0
                           0.0
                                0.0 0.0
                                         0.0
0.0
    0.0
        0.0
             0.0
                  0.0
                      0.0
                           0.0 0.0 0.0 0.0
    0.0
        0.0
             0.0
                  0.0
                      0.0
                           0.0
                                0.0
0.0
                                    0.0
                                        0.0
0.0
    0.0
        0.0
             0.0
                  0.0
                      0.0 0.0 0.0 0.0 0.0
0.0
    0.0
        0.0
             0.0
                  0.0
                      0.0
                           0.0
                                0.0
                                    0.0
                                         0.0
    0.0 0.0
             0.0 0.0
                      0.0 0.0
                               0.0 0.0 0.0
0.0
0.0
                                                   GLU(I)
```

The numerical results of Problem 1 are given in Table 1.1. Both direct iteration and Newton iteration give essentially the same results. Note that the solution is independent of the mesh in the y-direction.

Table 1.1. Numerical results of Problem 1 (Primary variable).

X(m)	Linear		Direct I	teration			Newton	Iteration	
		4×4L4	2×2Q9	8×8L4	4×4Q9	4×4L4	2×2Q9	8×8L4	4×4Q9
0.0000	500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00
0.0225	475.00	-	1	477.24	477.24	1	-	477.24	477.24
0.0450	450.00	453.94	453.94	453.94	453.94	453.94	453.94	453.94	453.94
0.0675	425.00	-	1	430.06	430.06	1	-	430.05	430.05
0.0900	400.00	405.54	405.54	405.54	405.54	405.54	405.54	405.54	405.54
0.1125	375.00	-	1	380.35	380.35	1	-	380.34	380.34
0.1350	350.00	354.40	354.40	354.40	354.40	354.40	354.40	354.40	354.40
0.1575	325.00	-	1	327.65	327.65	1	-	327.65	327.65
0.1800	300.00	300.00	300.00	300.00	300.00	300.00	300.00	300.00	300.00

Table 1.2. Numerical results of Problem 1 (Secondary variable, 4×4 linear elements).

			red from the posi	tive x-axis	
x-coord.	y-coord	a11(du/dx) -a2	22(du/dy) Flu	x Mgntd Orient	ation
0.2250E-01	0.1250E-01	0.4000E+03	0.0000E+00	0.4000E+03	0.00
0.6750E-01	0.1250E-01	0.4000E+03	-0.6765E-12	0.4000E+03	-0.00
0.1125E+00	0.1250E-01	0.4000E+03	-0.3201E-12	0.4000E+03	-0.00
0.1575E+00	0.1250E-01	0.4000E+03	-0.3009E-12	0.4000E+03	-0.00
0.2250E-01	0.3750E-01	0.4000E+03	0.0000E+00	0.4000E+03	0.00
0.6750E-01	0.3750E-01	0.4000E+03	0.6765E-12	0.4000E+03	0.00
0.1125E+00	0.3750E-01	0.4000E+03	-0.3201E-12	0.4000E+03	-0.00
0.1575E+00	0.3750E-01	0.4000E+03	-0.3009E-12	0.4000E+03	-0.00
0.2250E-01	0.6250E-01	0.4000E+03	-0.7108E-12	0.4000E+03	-0.00
0.6750E-01	0.6250E-01	0.4000E+03	-0.6765E-12	0.4000E+03	-0.00
0.1125E+00	0.6250E-01	0.4000E+03	0.0000E+00	0.4000E+03	0.00
0.1575E+00	0.6250E-01	0.4000E+03	0.0000E+00	0.4000E+03	0.00
0.2250E-01	0.8750E-01	0.4000E+03	0.0000E+00	0.4000E+03	0.00
0.6750E-01	0.8750E-01	0.4000E+03	0.0000E+00	0.4000E+03	0.00
0.1125E+00	0.8750E-01	0.4000E+03	-0.6403E-12	0.4000E+03	-0.00
0.1575E+00	0.8750E-01	0.4000E+03	-0.3009E-12	0.4000E+03	-0.00

Table 1.3. Numerical results of Problem 1 (Secondary variable, 2×2 quadratic elements).

The orientation of gradient vector is measured from the positive x-axis										
x-coord.	y-coorda	a11(du/dx) -a2	22(du/dy) Flu	x Mgntd Orien	tation					
0.1902E-01	0.1057E-01	0.4000E+03	0.1427E-11	0.4000E+03	0.00					
0.1902E-01	0.3943E-01	0.4000E+03	0.0000E+00	0.4000E+03	0.00					
0.7098E-01	0.1057E-01	0.4000E+03	0.1348E-11	0.4000E+03	0.00					
0.7098E-01	0.3943E-01	0.4000E+03	0.1348E-11	0.4000E+03	0.00					
0.1090E+00	0.1057E-01	0.4000E+03	0.0000E+00	0.4000E+03	0.00					
0.1090E+00	0.3943E-01	0.4000E+03	0.6434E-12	0.4000E+03	0.00					
0.1610E+00	0.1057E-01	0.4000E+03	0.1797E-11	0.4000E+03	0.00					
0.1610E+00	0.3943E-01	0.4000E+03	-0.1797E-11	0.4000E+03	-0.00					
0.1902E-01	0.6057E-01	0.4000E+03	0.2855E-11	0.4000E+03	0.00					
0.1902E-01	0.8943E-01	0.4000E+03	0.7136E-12	0.4000E+03	0.00					
0.7098E-01	0.6057E-01	0.4000E+03	0.2696E-11	0.4000E+03	0.00					
0.7098E-01	0.8943E-01	0.4000E+03	0.6740E-12	0.4000E+03	0.00					
0.1090E+00	0.6057E-01	0.4000E+03	0.1287E-11	0.4000E+03	0.00					
0.1090E+00	0.8943E-01	0.4000E+03	-0.1287E-11	0.4000E+03	-0.00					
0.1610E+00	0.6057E-01	0.4000E+03	0.1797E-11	0.4000E+03	0.00					
0.1610E+00	0.8943E-01	0.4000E+03	-0.5991E-12	0.4000E+03	-0.00					

Note: the other results with 8×8 linear elements and 4×4 quadratic elements are presented in the output files.

Problem 2:

Boundary conditions:

$$T(0, y) = 500^{\circ} K, T(a, y) = 300^{\circ} K, \frac{\partial T}{\partial y} = 0 @ y = 0, T(x, b) = 500 - 1000x^{\circ} K$$

Box2.1 Input file for 4×4 linear elements.

BOX2.1 input the for + A+ linear elements.
4 2 1 1 1 0 1 NPE,NGPF,NGPR,MESH,NPRNT,IGRAD,NONLIN
4 4 NX, NY
0.0 0.05 0.05 0.05 X0, (DX(I), I=1,NX)
0.0 0.025 0.025 0.025 0.025 Y0, (DY(I), I=1,NY)
NSPV and next lines ISPV, VSPV
11 61 111 161 211 51 101 151 201 251
22 1 23 1 24 1
500.0 500.0 500.0 500.0 500.0 300.0 300.0 300.0 300.0 300.0
450.0 400.0 350.0
0 NSSV
0.2 0.0 0.0 A10, A1X, A1Y
0.2 0.0 0.0 A20, A2X, A2Y
0.0 0.0 0.0 A00, A0X, A0Y
0 ICONV
0.0 0.0 0.0 F0, FX, FY
4.0E-2 0.0 0.0 4.0E-2 0.0 0.0 A1U,A1UX,A1UY, A2U,A2UX,A2UY
1 10 0.001 0.0 NLS, ITMAX, EPS, GAMA
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 GLU(I)

Box2.2 Input file for 2×2 quadratic elements.

```
3 2 1
                        NPE,NGPF,NGPR,MESH,NPRNT,IGRAD,NONLIN
9
2
    2
                              NX, NY
0.0 0.1
                                    X0, (DX(I), I=1,NX)
          0.1
0.0
   0.05 0.05
                                    Y0, (DY(I), I=1,NY)
13
                               NSPV and next lines ISPV, VSPV
1 1
                  16 1
                        21 1
                               5 1
                                     10 1
                                            15 1
                                                  201
                                                         25 1
     6 1
           11 1
22 1
      23 1
            24 1
500.0
      500.0 500.0
                   500.0 500.0 300.0 300.0 300.0 300.0 300.0
450.0 400.0 350.0
0
                                      NSSV
0.2 0.0 0.0
                               A10, A1X, A1Y
```

0.2 0.0 0.0	A20, A2X, A2Y
0.0 0.0 0.0	A00, A0X, A0Y
0	ICONV
0.0 0.0 0.0	F0, FX, FY
4.0E-2 0.0 0.0	4.0E-2 0.0 0.0 A1U,A1UX,A1UY, A2U,A2UX,A2UY
1 10 0.001	0.0 NLS, ITMAX, EPS, GAMA
0.0 0.0 0.0 0.	0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.	0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.	0 0.0 GLU(I)

Box2.3 Input file for 8×8 linear elements.

					DOZ	12.51	nput i	110 10	0 /0	micu	eleme	iito.				
4	4 2 1 1 1 0 1 NPE,NGPF,NGPR,MESH,NPRNT,IGRAD,NONLIN															
8	8 8 NX, NY															
0	0.0 0.	025	0.0	25 0	.025	0.02	5 0.	025	0.02	5 0.0	025 0	.025	X0,	(DX(I), I=1,	NX)
0	0.0 0.	0125	0.0	125 0.0	125 0	.0125	5 0.01	25 0.0)125	0.012	5 0.012	5 Y	70, (DY	Y(I), I	=1,NY)
2	25							NSP	V and	l next	lines IS	SPV, V	SPV			
1	1	10	1	19 1	28 1	3	7 1	46 1	5	5 1	64 1	73 1				
9	1	18	1	27 1	36 1	4	5 1	54 1	6	3 1	72 1	81 1				
7	4 1	75	1	76 1	77 1	7	8 1	79 1	8	0 1						
	0.00		0.0	500.0			500.0			500.0	500.0	500	0.0			
	800.0		0.0	300.0			300.0			300.0	300.0	300	0.0			
4	175.0	45	0.0	425.0	400	0.0	375.0	350	0.0	325.0						
0										SSV						
		0.0	0.0					A10,								
		0.0	0.0					A20,								
		0.0	0.0					A00,								
0										ONV						
			0.0	0.0	0F 0	0.0		,	FX,				0 7.77.7		,	
	1.0E-				.0E-2	0.0	0.0				A1UY, A			A2U Y		
1		10			0.0	0.0	0.0				AX, EP	S, GA	MA			
		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0						
		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0						
		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0						
		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0						
		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0						
		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0						
		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0						
		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		CIII	(I)			
U	0.0											GLU	(1)			

Box2.4 Input file for 4×4 quadratic elements.

BOX2.4 input the for 4 ×4 quadratic elements.										
9 3 2 1 1 0 1 NPE,NGPF,NGPR,MESH,NPRNT,IGRAD,NONLIN										
4 4 NX, NY										
0.0 0.05 0.05 0.05 X0, (DX(I), I=1,NX)										
0.0 0.025 0.025 0.025 V0, (DY(I), I=1,NY)										
NSPV and next lines ISPV, VSPV										
11 101 191 281 371 461 551 641 731										
91 181 271 361 451 541 631 721 811										
74 1 75 1 76 1 77 1 78 1 79 1 80 1										
500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0										
300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0										
475.0 450.0 425.0 400.0 375.0 350.0 325.0										
0 NSSV										
0.2 0.0 0.0 A10, A1X, A1Y										
0.2 0.0 0.0 A20, A2X, A2Y										
0.0 0.0 0.0 A00, A0X, A0Y										
0 ICONV										
0.0 0.0 0.0 F0, FX, FY										
4.0E-2 0.0 0.0 4.0E-2 0.0 0.0 A1U,A1UX,A1UY, A2U,A2UX,A2UY										
1 10 0.001 0.0 NLS, ITMAX, EPS, GAMA										
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0										
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0										
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0										
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0										
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0										
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0										
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0										
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0										
0.0 GLU(I)										

Table 2.1. Numerical results of Problem 2 (Primary variable).

X(m)	Y(m)		Direct I	teration			Newton	Iteration				
		4×4L4	2×2Q9	8×8L4	4×4Q9	4×4L4	2×2Q9	8×8L4	4×4Q9			
0.0000	0.0000	500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00			
0.0250	0.0000	-	-	477.92	477.90	-	-	477.92	477.90			
0.0500	0.0000	455.16	455.01	455.05	455.02	455.15	455.01	455.05	455.01			
0.0750	0.0000	-	-	431.49	431.45	-	-	431.48	431.44			
0.1000	0.0000	407.45	407.21	407.28	407.22	407.44	407.19	407.27	407.21			
0.1250	0.0000	-	-	382.34	382.29	-	-	382.33	382.27			
0.1500	0.0000	356.63	356.41	356.47	356.42	356.62	356.40	356.46	356.40			
0.1750	0.0000	-	-	329.25	329.21	-	_	329.24	329.21			

0.2000	0.0000	300.00	300.00	300.00	300.00	300.00	300.00	300.00	300.00
0.0000	0.0125	-	-	500.00	500.00	-	-	500.00	500.00
0.0250	0.0125	_	_	477.89	477.87	_	_	477.89	477.87
0.0500	0.0125	_		454.99	454.95	_	_	454.99	454.95
0.0750	0.0125	_	_	431.41	431.36	-	_	431.40	431.35
0.1000	0.0125	_	_	407.18	407.13	_	-	407.17	407.12
0.1250	0.0125	_	_	382.25	382.19	_	-	382.23	382.17
0.1500	0.0125	_	_	356.39	356.34	_	-	356.38	356.32
0.1750	0.0125	-	-	329.20	329.17	-	-	329.20	329.16
0.2000	0.0125	_	-	300.00	300.00	-	-	300.00	300.00
0.0000	0.0250	500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00
0.0250	0.0250	-	-	477.79	477.77	-	-	477.79	477.77
0.0500	0.0250	454.90	454.76	454.80	454.76	454.90	454.76	454.80	454.76
0.0750	0.0250	-	-	431.15	431.11	-	-	431.14	431.10
0.1000	0.0250	407.06	406.82	406.89	406.84	407.05	406.80	406.88	406.83
0.1250	0.0250	-	-	381.96	381.90	-	-	381.94	381.89
0.1500	0.0250	356.31	356.09	356.15	356.10	356.30	356.08	356.14	356.08
0.1750	0.0250	-	-	329.06	329.02	-	-	329.05	329.02
0.2000	0.0250	300.00	300.00	300.00	300.00	300.00	300.00	300.00	300.00
0.0000	0.0375	-	-	500.00	500.00	-	-	500.00	500.00
0.0250	0.0375	-	-	477.62	477.60	-	-	477.62	477.60
0.0500	0.0375	-	-	454.47	454.44	-	-	454.47	454.44
0.0750	0.0375	-	-	430.72	430.67	-	-	430.71	430.67
0.1000	0.0375	-		406.40	406.35	-	-	406.38	406.33
0.1250	0.0375	-	-	381.47	381.41	-	-	381.45	381.40
0.1500	0.0375	-	-	355.73	355.68	-	-	355.72	355.67
0.1750	0.0375	-	-	328.81	328.77	-	1	328.80	328.77
0.2000	0.0375	-	-	300.00	300.00	-	-	300.00	300.00
0.0000	0.0500	500.00	50000	500.00	500.00	500.00	500.00	500.00	500.00
0.0250	0.0500	-	-	477.36	477.34	-	-	477.36	477.34
0.0500	0.0500	454.10	453.97	454.00	453.97	454.10	453.96	454.00	453.96
0.0750	0.0500	-	-	430.08	430.04	-	-	430.07	430.03
0.1000	0.0500	405.81	405.60	405.68	405.63	405.80	405.58	405.67	405.62
0.1250	0.0500	-	-	380.75	380.70	-	-	380.74	380.69
0.1500	0.0500	355.28	355.08	355.13	355.07	355.28	355.07	355.12	355.06
0.1750	0.0500	-	-	328.44	328.40	-	-	328.44	328.40
0.2000	0.0500	300.00	300.00	300.00	300.00	300.00	300.00	300.00	300.00
0.0000	0.0625	-	-	500.00	500.00	-	-	500.00	500.00
0.0250	0.0625	-	-	477.01	476.99	-	-	477.01	476.99
0.0500	0.0625	-	-	453.35	453.32	-	-	453.35	453.32
0.0750	0.0625	-	-	429.22	429.19	-	-	429.22	429.19
0.1000	0.0625	-	-	404.71	404.67	-	-	404.70	404.66
0.1250	0.0625	-	-	379.78	379.74	-	-	379.77	379.73

0.1500	0.0625	-	ı	354.30	354.25	ı	ı	354.29	354.24
0.1750	0.0625	-	1	327.93	327.89	1	1	327.93	327.89
0.2000	0.0625	-	1	300.00	300.00	1	1	300.00	300.00
0.0000	0.0750	500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00
0.0250	0.0750	-	-	476.54	476.52	-	-	476.54	476.52
0.0500	0.0750	452.59	452.49	452.50	452.47	452.59	452.49	452.49	452.47
0.0750	0.0750	-	-	428.12	428.09	-	-	428.11	428.09
0.1000	0.0750	403.53	403.38	403.47	403.44	403.53	403.37	403.46	403.43
0.1250	0.0750	-	1	378.53	378.50	1	1	378.52	378.49
0.1500	0.0750	353.34	353.19	353.20	353.16	353.34	353.18	353.20	353.16
0.1750	0.0750	-	1	327.24	327.20	1	1	327.24	327.20
0.2000	0.0750	300.00	300.00	300.00	300.00	300.00	300.00	300.00	300.00
0.0000	0.0875	-	1	500.00	500.00	1	1	500.00	500.00
0.0250	0.0875	-	-	475.90	475.88	-	-	475.90	475.88
0.0500	0.0875	-	-	451.39	451.38	-	-	451.39	451.37
0.0750	0.0875	-	1	426.72	426.71	1	1	426.72	426.71
0.1000	0.0875	-	1	401.91	401.89	1		401.91	401.89
0.1250	0.0875	-	1	376.95	376.93	1	1	376.95	376.93
0.1500	0.0875	-	1	351.79	351.76	1	1	351.79	351.76
0.1750	0.0875	-	1	326.31	326.28	1	1	326.31	326.28
0.2000	0.0875	-	1	300.00	300.00	1	1	300.00	300.00
0.0000	0.1000	500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00
0.0250	0.1000	-	1	475.00	475.00	1	1	475.00	475.00
0.0500	0.1000	450.00	450.00	450.00	450.00	450.00	450.00	450.00	450.00
0.0750	0.1000	-	1	425.00	425.00	1	1	425.00	425.00
0.1000	0.1000	400.00	400.00	400.00	400.00	400.00	400.00	400.00	400.00
0.1250	0.1000	-	-	375.00	375.00	-	-	375.00	375.00
0.1500	0.1000	350.00	350.00	350.00	350.00	350.00	350.00	350.00	350.00
0.1750	0.1000	-	-	325.00	325.00	-	-	325.00	325.00
0.2000	0.1000	300.00	300.00	300.00	300.00	300.00	300.00	30000	300.00

Figure 2.1 Temperature vs X with 4×4 quadratic 9-node element mesh and Newton Iteration.

Table 2.2. Numerical results of Problem 2 (Secondary variable, 4×4 linear elements).

The orientation of gradient vector is measured from the positive x-axis x-coord. y-coorda11(du/dx) -a22(du/dy) Flux Mgntd Orientation						
	y coord					
0.2500E-01	0.1250E-01	0.1736E+05	0.9751E+02	0.1736E+05	0.32	
0.7500E-01	0.1250E-01	0.1667E+05	0.2256E+03	0.1667E+05	0.78	
0.1250E+00	0.1250E-01	0.1572E+05	0.2212E+03	0.1572E+05	0.81	
0.1750E+00	0.1250E-01	0.1505E+05	0.8554E+02	0.1505E+05	0.33	
0.2500E-01	0.3750E-01	0.1755E+05	0.3101E+03	0.1756E+05	1.01	
0.7500E-01	0.3750E-01	0.1675E+05	0.7135E+03	0.1676E+05	2.44	
0.1250E+00	0.3750E-01	0.1564E+05	0.7005E+03	0.1566E+05	2.56	
0.1750E+00	0.3750E-01	0.1486E+05	0.2727E+03	0.1486E+05	1.05	
0.2500E-01	0.6250E-01	0.1798E+05	0.5827E+03	0.1799E+05	1.86	
0.7500E-01	0.6250E-01	0.1690E+05	0.1315E+04	0.1695E+05	4.45	
0.1250E+00	0.6250E-01	0.1549E+05	0.1295E+04	0.1554E+05	4.78	
0.1750E+00	0.6250E-01	0.1443E+05	0.5147E+03	0.1444E+05	2.04	
0.2500E-01	0.8750E-01	0.1873E+05	0.9940E+03	0.1876E+05	3.04	
0.7500E-01	0.8750E-01	0.1710E+05	0.2111E+04	0.1723E+05	7.04	
0.1250E+00	0.8750E-01	0.1530E+05	0.2097E+04	0.1544E+05	7.81	
0.1750E+00	0.8750E-01	0.1368E+05	0.8836E+03	0.1370E+05	3.70	

Table 2.3. Numerical results of Problem 2 (Secondary variable, 2×2 quadratic elements).

The orientation of gradient vector is measured from the positive x-axis						
x-coord.	y-coord	a11(du/dx) -a2	22(du/dy) Flu	x Mgntd Orient	ation	
0.2113E-01	0.1057E-01	0.1743E+05	0.7668E+02	0.1743E+05	0.25	
0.2113E-01	0.3943E-01	0.1767E+05	0.3129E+03	0.1767E+05	1.01	
0.7887E-01	0.1057E-01	0.1664E+05	0.1976E+03	0.1664E+05	0.68	
0.7887E-01	0.3943E-01	0.1671E+05	0.7903E+03	0.1673E+05	2.71	
0.1211E+00	0.1057E-01	0.1576E+05	0.2023E+03	0.1576E+05	0.74	
0.1211E+00	0.3943E-01	0.1569E+05	0.8103E+03	0.1571E+05	2.96	
0.1789E+00	0.1057E-01	0.1497E+05	0.7183E+02	0.1497E+05	0.27	
0.1789E+00	0.3943E-01	0.1473E+05	0.2927E+03	0.1474E+05	1.14	
0.2113E-01	0.6057E-01	0.1801E+05	0.5238E+03	0.1802E+05	1.67	
0.2113E-01	0.8943E-01	0.1890E+05	0.9980E+03	0.1893E+05	3.02	
0.7887E-01	0.6057E-01	0.1683E+05	0.1310E+04	0.1688E+05	4.45	
0.7887E-01	0.8943E-01	0.1699E+05	0.2247E+04	0.1714E+05	7.53	
0.1211E+00	0.6057E-01	0.1557E+05	0.1344E+04	0.1563E+05	4.93	
0.1211E+00	0.8943E-01	0.1541E+05	0.2321E+04	0.1558E+05	8.57	
0.1789E+00	0.6057E-01	0.1439E+05	0.4897E+03	0.1439E+05	1.95	
0.1789E+00	0.8943E-01	0.1350E+05	0.9237E+03	0.1353E+05	3.91	

Note: the other results with 8×8 linear elements and 4×4 quadratic elements are presented in the output files.

```
DO 200 \text{ NI} = 1\text{,NGPF}
      DO 200 \text{ NJ} = 1, NGPF
         XI = GAUSPT(NI,NGPF)
         ETA = GAUSPT(NJ,NGPF)
         CALL INTERPLN2D(NPE,XI,ETA,DET,ELXY)
         CNST = DET*GAUSWT(NI,NGPF)*GAUSWT(NJ,NGPF)
C
C
      Compute x, y, U, UX, UY needed
C
C^*
          ***** YOUR STATEMENTS *****
         X = 0.0
         Y = 0.0
         U = 0.0
         UX = 0.0
         UY = 0.0
         DO 140 I=1,NPE
         IF(NONLIN.GT.0)THEN
         U = U + ELU(I)*SFL(I)
         UX = UX + ELU(I)*GDSFL(1,I)
         UY = UY + ELU(I)*GDSFL(2,I)
         ENDIF
         X = X + ELXY(I,1)*SFL(I)
140
         Y = Y + ELXY(I,2)*SFL(I)
C
C
      Define the coefficients of the differential equation
C
C^*
          ***** YOUR STATEMENTS *****
         FXY = F0 + FX*X + FY*Y
         A00 = A00 + A0X*X + A0Y*Y
         A11 = A10 + A1X*X + A1Y*Y
         A22 = A20 + A2X*X + A2Y*Y
         IF(NONLIN.GT.0)THEN
         AXX = A11 + A1U*U + A1UX*UX + A1UY*UY
         AYY = A22 + A2U*U + A2UX*UX + A2UY*UY
         ENDIF
C
\mathbf{C}
      Define the element source vector and coefficient matrix
C
C^*
          ***** YOUR STATEMENTS ****
       DO 180 I=1,NPE
          ELF(I) = ELF(I) + FXY*SFL(I)*CNST
          DO 160 J=1,NPE
```

```
S00 = SFL(I)*SFL(J)*CNST
              S11 = GDSFL(1,I)*GDSFL(1,J)*CNST
              S22 = GDSFL(2,I)*GDSFL(2,J)*CNST
              ELK(I,J) = ELK(I,J) + AXX*S11 + AYY*S22 + A00*S00
\mathbf{C}
C
      Define the part needed to be added to [K] in order to define [T]
\mathbf{C}
C^*
          ***** YOUR STATEMENTS *****
              IF(NONLIN.GT.1)THEN
              S10 = GDSFL(1,I)*SFL(J)*CNST
              S20 = GDSFL(2,I)*SFL(J)*CNST
              S12 = GDSFL(1,I)*GDSFL(2,J)*CNST
              S21 = GDSFL(2,I)*GDSFL(1,J)*CNST
              TANG(I,J) = TANG(I,J) + UX*(A1U*S10 + A1UX*S11 + A1UY*S12)
                                     + UY*(A2U*S20 + A2UX*S21 + A2UY*S22)
              ENDIF
          CONTINUE
  160
          CONTINUE
  180
  200 CONTINUE
```

Modified code in the subroutine POSTPROCS2D:

```
DO 100 NI=1, NGPR
         DO 100 NJ=1, NGPR
         XI = GAUSPT (NI, NGPR)
         ETA = GAUSPT(NJ, NGPR)
         CALL INTERPLN2D (NPE, XI, ETA, DET, ELXY)
C
C*
          ***** YOUR STATEMENTS *****
C
         XC = 0.0
         YC = 0.0
         U = 0.0
         UX = 0.0
         UY = 0.0
         DO 60 I=1, NPE
         IF (NONLIN. GT. 0) THEN
              U = U + ELU(I)*SFL(I)
              UX = UX + ELU(I)*GDSFL(1, I)
              UY = UY + ELU(I)*GDSFL(2, I)
         ENDIF
         XC = XC + ELXY(I, 1)*SFL(I)
         YC = YC + ELXY(I, 2)*SFL(I)
60
```

```
С
C
      Define the coefficients of the differential equation
\mathsf{C}
C*
          **** YOUR STATEMENTS ****
         A11 = A10 + A1X*XC + A1Y*YC
         A22 = A20 + A2X*XC + A2Y*YC
         IF (NONLIN. GT. 0) THEN
              AXX = A11 + A1U*U + A1UX*UX + A1UY*UY
              AYY = A22 + A2U*U + A2UX*UX + A2UY*UY
         ENDIF
         SX = -AXX*UX
         SY = -AYY*UY
         VALUE = DSQRT(SX*SX + SY*SY)
         IF (IGRAD. EQ. 1) THEN
               QX = SX
               QY = SY
         ELSE
               QX = -SY
               QY = SX
         ENDIF
         IF (DABS (QX). LE. 0. 0001) THEN
               IF (QY. LT. 0. 0) THEN
                   ANGLE = -90.0
               ELSE
                   ANGLE = 90.0
               ENDIF
         ELSE
               ANGLE = ATAN2 (QY, QX) *CONST
         ENDIF
         WRITE (IT, 200) XC, YC, QX, QY, VALUE, ANGLE
  100
         CONTINUE
  200 FORMAT (5E13. 4, 3X, F7. 2)
  300 FORMAT (6E13. 4)
  400 FORMAT (26X, 2E13. 4)
```