Large-Scale Optimization

Interior-point methods

Jordi Castro MSc in Statistics and Operations Research

Department of Statistics and Operations Research School of Mathematics and Statistics Universitat Politècnica de Catalunya Barcelona

(Jordi Castro) Interior-Point Methods 1 / 31

Contents

- Basics of convexity
- Optimality conditions
- 3 Duality
- Computational complexity and convergence rates
- Newton's method

(Jordi Castro) Interior-Point Methods 2 / 31

Convex set

• Set X is convex if for all $x_1, x_2 \in X$

$$\alpha x_1 + (1 - \alpha)x_2 \in X \quad 0 \le \alpha \le 1$$

• Graphically, segment $\overline{x_1} \overline{x_2}$ belongs to X:

(Jordi Castro) Interior-Point Methods 3 / 31

Basics of convexity

Convex function

• Function f(x) is convex in convex set X if for all $x_1, x_2 \in X$

$$f(\alpha x_1 + (1-\alpha)x_2) \leq \alpha f(x_1) + (1-\alpha)f(x_2) \quad 0 \leq \alpha \leq 1$$

(strictly convex if < instead of ≤)

• Graphically:

• f(x) is convex if Hessian $\nabla^2 f(x)$ is positive semidefinite (strictly convex if $\nabla^2 f(x)$ is positive definite).

(Jordi Castro) Interior-Point Methods 4 / 31

Convex problem and global optimum

Problem

min
$$f(x)$$
 s.to $x \in X$

is convex if f(x) is convex function and X is convex set.

- If g(x) is convex function then $X = \{x : g(x) \le b\}$ is convex set (similarly, if g(x) is concave function, $X = \{x : g(x) \ge b\}$ is convex set).
- It can be shown that: Any local optimum of a convex problem is also a global optimum. If f(x) is strictly convex, then the optimum is unique.
- Are LPs a convex optimization problem?

(Jordi Castro)

Interior-Point Methods

5/31

Optimality conditions

Necessary optimality conditions

Given problem

min
$$f(x)$$

s.to $h(x) = 0$ $[h_i(x) = 0 \ i = 1, ..., m]$
 $g(x) \le 0$ $[g_i(x) \le 0 \ j = 1, ..., p],$

and its Lagrangian function

$$L(x,\lambda,\mu) = f(x) + \lambda^{\top} h(x) + \mu^{\top} g(x),$$

- Linearly Independent Constraint Qualification (LICQ): gradients of active constraints at x^* are linearly independent (to characterize limiting directions of feasible sequences to x^*).
- Necessary conditions. If x^* is a regular (i.e., LICQ holds) local optimum then there are unique vectors $\lambda \in \mathbb{R}^m$ and $\mu \in \mathbb{R}^p$ such that:

First order conditions (KKT)

(i)
$$h(x^*) = 0, g(x^*) < 0$$

[primal feasibility]

(ii)
$$\nabla_{\mathbf{x}} L(\mathbf{x}, \lambda, \mu) = \nabla f(\mathbf{x}^*) + \lambda^{\top} \nabla h(\mathbf{x}^*) + \mu^{\top} \nabla g(\mathbf{x}^*) = 0$$

[dual feasibility]

(iii)
$$\mu \ge 0$$
 and $\mu^{\top} g(x^*) = 0$ (if $g_i(x^*)$ is inactive then $\mu_i = 0$)
Second order conditions

[complementarity]

(iv)
$$y^{\top} \nabla^2_{xx} L(x^*, \lambda, \mu) y \ge 0$$
, for all y such that $\nabla h(x^*) y = 0$ and $\nabla g_i(x^*) y = 0, i \in \{j : g_j(x^*) = 0\}$

(Jordi Castro) Interior-Point Methods 6 / 31

Sufficient optimality conditions

• Sufficient conditions Point x^* is local optimum if:

First order conditions (KKT)

(i) $h(x^*) = 0, g(x^*) \le 0$

[primal feasibility]

(ii) $\nabla_{\mathbf{x}} L(\mathbf{x}, \lambda, \mu) = \nabla f(\mathbf{x}^*) + \lambda^{\top} \nabla h(\mathbf{x}^*) + \mu^{\top} \nabla g(\mathbf{x}^*) = 0$

[dual feasibility]

(iii) $\mu \ge 0$ i $\mu^{\top} g(x^*) = 0$ (if $g_i(x^*)$ is inactive then $\mu_i = 0$)

[complementarity]

Second order conditions

- (iv) $y^{\top} \nabla^2_{xx} L(x^*, \lambda, \mu) y > 0$, for all y such that $\nabla h(x^*) y = 0$ and $\nabla g_i(x^*) y = 0, i \in \{j: g_j(x^*) = 0, \mu_j > 0\}$
- Main difference between 2nd order necessary and sufficient conditions:
 - regularity of x* (LICQ) not needed
 - condition (iv):

$$\begin{array}{ll} y^\top \nabla^2_{xx} L(x^*,\lambda,\mu) y > 0 & \quad \text{[sufficient]} \\ y^\top \nabla^2_{xx} L(x^*,\lambda,\mu) y \geq 0 & \quad \text{[necessary]} \end{array}$$

If problem is convex, first order necessary conditions are also sufficient.

(Jordi Castro)

Interior-Point Methods

7/31

Optimality conditions

Optimality conditions: Example (I)

Problem

Given a segment of length a we want to divide it into two parts, such that the area of the squares whose side is each of these two parts is minimized.

- Solution:
 - Variables: x₁ i x₂
 - Formulation:

Lagrangian:

$$L(x_1, x_2, \lambda, \mu) = x_1^2 + x_2^2 + \lambda(x_1 + x_2 - a) - \mu_1 x_1 - \mu_2 x_2$$

(Jordi Castro) Interior-Point Methods 8 / 31

Optimality conditions: Example (II)

First order necessary conditions:

$$\begin{array}{lll} (i) & x_1+x_2=a, & x_1\geq 0, & x_2\geq 0\\ (ii.x_1) & \nabla_{x_1}L()=2x_1+\lambda-\mu_1=0\\ (ii.x_2) & \nabla_{x_2}L()=2x_2+\lambda-\mu_2=0\\ (iii) & \mu_i\geq 0, \mu_i=0 \text{ si } x_i>0, i=1,2 \end{array}$$

- Four cases to be analyzed, depending on whether $x_1, x_2 \ge 0$ are active:
 - \blacktriangleright $x_1 = 0$ $x_2 = 0$. Not possible, infeasible for $x_1 + x_2 = a$.
 - $x_1 > 0$, $x_2 = 0$. Then $x_1 = a$ i $\mu_1 = 0$. Solving

$$2a + \lambda = 0$$

 $\lambda - \mu_2 = 0$

we have $\mu_2 = \lambda = -2a$, which violates $\mu_2 \ge 0$.

- $x_1 = 0, x_2 > 0$. Symmetric to previous case.
- $x_1 > 0, x_2 > 0$. Then $\mu_1 = \mu_2 = 0$ and solving

$$x_1 + x_2 = a$$

 $2x_1 + \lambda = 0$
 $2x_2 + \lambda = 0$

we have $x_1 = x_2 = a/2$, $\lambda = -a$, candidate to solution.

(Jordi Castro)

Interior-Point Methods

9/31

Optimality conditions

Optimality conditions: Example (III)

Second order sufficient conditions:

$$\nabla^2_{xx}L()=\left(\begin{array}{cc}2&0\\0&2\end{array}\right)$$

which is positive definite for all y, not only for y such that $\nabla(x^*)y = 0$.

- Therefore the candidate point is the optimal solution.
- And a global solution, since this problem is convex.

(Jordi Castro) Interior-Point Methods 10 / 31

LP optimality conditions

LP

$$\begin{array}{ll} \min & c^\top x \\ \text{s.to} & Ax = b \quad [\pi] \\ & -x \leq 0 \quad [\mu] \end{array}$$

Lagrangian

$$L(\mathbf{X}, \pi, \mu) = \mathbf{c}^{\top} \mathbf{X} + \pi^{\top} (\mathbf{A} \mathbf{X} - \mathbf{b}) - \mu^{\top} \mathbf{X}$$

KKT conditions

$$Ax = b, \quad x \ge 0$$

 $c^{\top} + \pi^{\top}A - \mu^{\top} = 0$
 $\mu^{\top}x = 0, \quad \mu \ge 0$

• Defining $\lambda = -\pi$ (no sign restriction) rewrite KKT:

$$\begin{array}{ll} \textit{Ax} = \textit{b}, \textit{x} \geq \textit{0} & \text{[primal feasibility]} \\ \textit{A}^{\top} \lambda + \mu = \textit{c}, \mu \geq \textit{0} & \text{[dual feasibility]} \\ \mu^{\top} \textit{x} = \textit{0} & \text{[complementarity]} \end{array}$$

(Jordi Castro)

Interior-Point Methods

11/31

Optimality conditions

Simplex algorithm: a method for solving KKT

KKT conditions

$$Ax = b$$

$$A^{\top}\lambda + \mu = c$$

$$\mu^{\top}x = 0$$

$$x \ge 0, \mu \ge 0$$

- In primal simplex μ named reduced cost and λ dual variables.
- Simplex looks for a (basic, nonbasic) partition satisfying KKT:

$$\begin{split} & x = [x_B \ x_N] \ x_N = 0 \ x_B > 0 \\ & A = [B \ N], \ Ax = Bx_B = b \\ & \mu_B = 0 \Rightarrow B^\top \lambda = -c_B \\ & \mu_N = c_N - N^\top \lambda \quad \text{[reduced cost definition]} \\ & \mu_N \geq 0 \Rightarrow \text{ simplex optimality condition} \end{split}$$

- Complementarity $\mu^{\top}x = 0$ guaranteed at each simplex iteration by construction: $\mu_B^{\top}x_B = 0, \mu_N^{\top}x_N = 0$
- Primal simplex violates $\mu_N \ge 0$. It iterates until achievement of this optimality condition.

(Jordi Castro) Interior-Point Methods 12 / 31

QP optimality conditions

QP

min
$$c^{\top}x + \frac{1}{2}x^{\top}Qx$$

s.to $Ax = b \quad [\pi]$
 $-x \le 0 \quad [\mu]$

Lagrangian

$$L(x, \pi, \mu) = c^{\top} x + \frac{1}{2} x^{\top} Q x + \pi^{\top} (A x - b) - \mu^{\top} x$$

KKT conditions

$$Ax = b, \quad x \ge 0$$

$$c + Qx + A^{\top}\pi - \mu = 0$$

$$\mu^{\top}x = 0, \quad \mu \ge 0$$

• Using change $\lambda = -\pi$ (no sign constraint) rewrite KKT:

$$Ax = b$$

$$A^{\top}\lambda - Qx + \mu = c$$

$$\mu^{\top}x = 0$$

$$x \ge 0, \mu \ge 0$$

(Jordi Castro)

Interior-Point Methods

13/31

Duality

Dual problem

Primal problem

Lagrangian function:

$$L(x, \lambda, \mu) = f(x) + \lambda^{\top} h(x) + \mu^{\top} g(x)$$

• Dual function $q(\lambda, \mu)$ is

$$q(\lambda, \mu) = \min_{x} \quad L(x, \lambda, \mu)$$

 $x \in X$

Constraints h(x) = 0 and $g(x) \le 0$ dualized, preserving $x \in X$. Depending what is dualized, different formulations obtained.

Dual problem

$$\max_{\lambda,\mu} \quad q(\lambda,\mu) \\ \mu \ge 0$$

NOTE: although inf and sup preferred we will use min and max q().

(Jordi Castro) Interior-Point Methods 14 / 31

Dual problem: example

$$\begin{array}{lll} \text{min} & x_1^2 + x_2^2 \\ \text{s.to} & x_1 + x_2 \geq 4 \\ & x_1 \geq 0, x_2 \geq 0 \end{array} \quad \equiv \quad \begin{array}{ll} 4 - x_1 - x_2 \leq 0 \\ \equiv & -x_1 \leq 0, -x_2 \leq 0 \end{array}$$

Solution is $x_1^* = x_2^* = 2$, $f(x^*) = 8$. Dual function is:

$$q(\mu) = \min_{x_1 \ge 0, x_2 \ge 0} x_1^2 + x_2^2 + \mu(4 - x_1 - x_2) = \min_{x_1 \ge 0, x_2 \ge 0} (x_1^2 - \mu x_1) + (x_2^2 - \mu x_2) + 4\mu$$

Problem is separable, with solution:

$$\left\{ \begin{array}{ll} x_1=x_2=0 & \text{if } \mu<0 \quad \text{ since } x_i^2-\mu x_i\geq 0 \\ x_1=x_2=\mu/2 & \text{if } \mu\geq 0 \quad \text{ since solution of min } x_i^2-\mu x_i \end{array} \right.$$

Then $q(\mu)$ is the concave function:

$$q(\mu) = \left\{egin{array}{ll} 4\mu & \mu < 0 \ -\mu^2/2 + 4\mu & \mu \geq 0 \end{array}
ight.$$

Solution of dual problem $\max_{\mu \geq 0} q(\mu)$ is $\mu^* = 4$ and $q(\mu^*) = f(x^*) = 8$.

(Jordi Castro)

Interior-Point Methods

15/31

Duality

Geometric interpretation of the dual problem (I)

Consider problem

$$\min_{x \in X} \quad z \triangleq f(x) \\ y \triangleq g(x) \le 0$$
 (for instance $f(x) = x^2$, $g(x) = x$)

• Let G be image of X for mapping (g, f):

$$G = \{(y, z) : y = g(x), z = g(x) \text{ for some } x \in X\}$$

• The optimal solution is (y^*, z^*) :

(Jordi Castro) Interior-Point Methods 16 / 31

Geometric interpretation of the dual problem (II)

The dual is

$$q(\mu) = \min_{x} f(x) + \mu g(x) = \min_{x} z + \mu y$$

with $\mu \geq$ 0. For some level set α , the line with slope $-\mu \leq$ 0 is

$$z + \mu y = \alpha \iff z = \alpha - \mu y$$
.

• Fixing μ the solution for $q(\mu)$ is any point on the line AB in the plot:

• For y = 0, $q(\mu) = z(B)$. If we want $max_{\mu}q(\mu)$ we have to change slope.

(Jordi Castro)

Interior-Point Methods

17/3

Duality

Geometric interpretation of the dual problem (III)

• The optimal slope is μ^* such that $q(\mu^*) = z^* = f(x^*)$. There is no duality gap:

• If problem is not convex, then the duality gap may be greater than 0:

(Jordi Castro) Interior-Point Methods 18 / 31

Weak duality theorem

- Previous definition of dual problem valid for any optimization problem (continuous, discrete, convex, nonconvex...): Lagrangian Duality.
- Weak duality is also valid for any problem:

Weak duality theorem:

Let x be a feasible point of primal problem (i.e. h(x) = 0, $g(x) \le 0$, $x \in X$) and (λ, μ) a feasible point of dual problem (i.e., $\mu \ge 0$), then

$$q(\lambda, \mu) \leq f(x)$$

Proof: From definition of $q(\lambda, \mu)$ and $\mu^{\top} g(x) \leq 0$, we get:

$$q(\lambda,\mu) = \min_{t} \{f(t) + \lambda^{\top} h(t) + \mu^{\top} g(t) : t \in X\} \le f(x) + \lambda^{\top} h(x) + \mu^{\top} g(x) \le f(x)$$

Corollary:

Dual problem provides a lower bound of primal problem.

Distance between dual and primal is the duality gap.

(Jordi Castro) Interior-Point Methods 19 / 31

Duality

Strong duality theorem

Primal problem

$$\min_{x} f(x)
s.to $h(x) = 0$

$$g(x) \le 0$$$$

Dual problem

$$\max_{\lambda,\mu} \quad q(\lambda,\mu) \\ \mu \ge 0$$

• For some problems $q(\lambda^*, \mu^*) = f(x^*)$:

Strong duality theorem:

If X is a convex set, f(x) and g(x) are convex function, h(x) = Ax - b (affine function), under certain constraints qualifications (Slater constraint qualification) (see [Bazaraa, Sheraly, Shetty (2006), Bertsekas (1999)]), then:

$$q(\lambda^*,\mu^*)=f(x^*)$$

• Strong duality is satisfied by LP, convex QP, and most convex problems.

(Jordi Castro) Interior-Point Methods 20 / 31

Wolfe duality

- Lagrangian duality does not require differentiability. Wolfe duality assumes differentiability.
- If f(x), h(x) and g(x) are convex and differentiable functions, a necessary and sufficient condition of optimality of the dual function

$$q(\lambda,\mu)=\min_{x}L(x,\lambda,\mu)$$

is

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \lambda, \mu) = 0$$

The dual problem

$$\max_{\lambda,\mu} \quad q(\lambda,\mu) \\ \mu \ge 0$$

can thus be recast as

$$\max_{x,\lambda,\mu} L(x,\lambda,\mu)$$

$$\nabla_x L(x,\lambda,\mu) = 0$$

$$\mu \ge 0$$

This allows a simpler formulation of some problems: LP, QP

(Jordi Castro)

Interior-Point Methods

21 / 31

Duality

The dual of LP using Wolfe duality

LP

min
$$c^{\top}x$$

s.to $Ax = b$
 $x > 0 \equiv -x < 0$

Lagrangian function and gradient:

$$L(x, \lambda, \mu) = c^{\top} x + \lambda^{\top} (b - Ax) - \mu^{\top} x$$
$$\nabla_{x} L(x, \lambda, \mu) = c - A^{\top} \lambda - \mu$$

Dual problem:

$$\max_{x,\lambda,\mu} \quad c^\top x + \lambda^\top (b - Ax) - \mu^\top x$$

$$c - A^\top \lambda - \mu = 0$$

$$\mu \ge 0$$

Constraint $c - A^{\top}\lambda - \mu = 0$ means $c^{\top}x - \lambda^{\top}Ax - \mu^{\top}x = 0$, and replacing in objective we get the dual of LP:

$$\begin{array}{ccc} \max_{\lambda} & b^{\top} \lambda & & & & \\ & \lambda & & A^{\top} \lambda \leq c & & & & & A^{\top} \lambda + \mu = c, & \mu \geq 0 \end{array}$$

(Jordi Castro) Interior-Point Methods 22 / 31

The dual of QP using Wolfe duality

QP

min
$$c^{\top}x + 1/2x^{\top}Qx$$

s.to $Ax = b$
 $x \ge 0 \equiv -x \le 0$

Lagrangian function and gradient:

$$L(x,\lambda,\mu) = c^{\top}x + 1/2x^{\top}Qx + \lambda^{\top}(b - Ax) - \mu^{\top}x$$
$$\nabla_{x}L(x,\lambda,\mu) = c + Qx - A^{\top}\lambda - \mu$$

Dual problem:

$$\max_{x,\lambda,\mu} \quad c^{\top}x + 1/2x^{\top}Qx + \lambda^{\top}(b - Ax) - \mu^{\top}x$$

$$c + Qx - A^{\top}\lambda - \mu = 0$$

$$\mu \ge 0$$

Constraint $c + Qx - A^{\top}\lambda - \mu = 0$ means $c^{\top}x + x^{\top}Qx - \lambda^{\top}Ax - \mu^{\top}x = 0$ and replacing in objective we get the dual of QP:

$$\max_{\substack{\lambda,x\\ \lambda,x}} b^{\top}\lambda - 1/2x^{\top}Qx \\ A^{\top}\lambda - Qx \le c \qquad \equiv \qquad \max_{\substack{\lambda,\mu,x\\ \lambda^{\top}\lambda}} b^{\top}\lambda - 1/2x^{\top}Qx \\ A^{\top}\lambda - Qx + \mu = c, \quad \mu \ge 0$$

(Jordi Castro)

Interior-Point Methods

23 / 31

Duality

The dual of a Convex Problem using Wolfe duality

• Convex Problem (f(x), g(x)) convex)

min
$$f(x)$$

s.to $h(x) = Ax - b = 0$
 $g(x) \le 0$

Lagrangian function and gradient:

$$L(x, \lambda, \mu) = f(x) + \lambda^{\top} (b - Ax) + \mu^{\top} g(x)$$
$$\nabla_{x} L(x, \lambda, \mu) = \nabla f(x) - \lambda^{\top} A + \mu^{\top} \nabla g(x)$$

Dual problem

$$\max_{x,\lambda,\mu} \quad f(x) + \lambda^{\top}(b - Ax) + \mu^{\top}g(x) \\ \nabla f(x) - \lambda^{\top}A + \mu^{\top}\nabla g(x) = 0 \\ \mu \geq 0$$

• If problem is QP (i.e., $f(x) = c^{\top}x + 1/2x^{\top}Qx$ and g(x) = -x) dual problem reduces to:

$$\max_{\lambda,x} \quad b^{\top}\lambda - 1/2x^{\top}Qx \\ A^{\top}\lambda - Qx \le c \qquad \equiv \qquad \max_{\lambda,\mu,x} \quad b^{\top}\lambda - 1/2x^{\top}Qx \\ A^{\top}\lambda - Qx + \mu = c, \quad \mu \ge 0$$

(Jordi Castro) Interior-Point Methods 24 / 31

Computational complexity of algorithms

- Used to compute the number of arithmetic operations needed to solve some problem.
- Usually the computational cost is a function of the size of the input.
- For LP is not easy to determine the size of the input: n number of variables, m number of constraints? Sometimes L is used: the number of bits needed to code the problem.
- Total costs depends on the number of iterations and cost per iteration.
- In simplex, the worse case can be an exponential number of iterations.

(Jordi Castro) Interior-Point Methods 25 / 31

Computational complexity and convergence rates

Local convergence and rates of convergence

- Optimization methods generate sequences of points $x^0, x^1, \dots, x^k, \dots$
- Local convergence analyzes how fast we approach the optimal solution
 x* when we are close to that point.
 - ► Linear convergence (Example: $x^k = 2^{-k}$)

$$\exists r \in (0,1): \frac{||x^{k+1} - x^*||}{||x^k - x^*||} \le r \quad \forall k \text{ large enough}$$

Superlinear convergence (Example: $x^k = k^{-k}$)

$$\lim_{k \to \infty} \frac{||x^{k+1} - x^*||}{||x^k - x^*||} = 0$$

• Quadratic convergence (Example: $x^k = 2^{-2^k}$)

$$\exists M \in \mathbb{R} : \frac{||x^{k+1} - x^*||}{||x^k - x^*||^2} \le M \quad \forall k \text{ suficientment gran}$$

▶ Quadratic ⇒ superlinear ⇒ linear

(Jordi Castro) Interior-Point Methods 26 / 31

Example rates of convergence

k	2^{-k}	k^{-k}	2^{-2^k}
1	0.500000	1.000000	0.250000
2	0.250000	0.250000	0.062500
3	0.125000	0.037037	0.003906
4	0.062500	0.003906	0.000015
5	0.031250	0.000320	0.000000
6	0.015625	0.000021	
7	0.007812	0.000001	
8	0.003906	0.000000	
9	0.001953		
10	0.000976		
11	0.000488		
12	0.000244		
13	0.000122		
14	0.000061		

(Jordi Castro)

Interior-Point Methods

27 / 31

Computational complexity and convergence rates

Order notation

- Used for computational complexity and rates of convergence.
- Given to nonnegative sequences of scalars $\{a_k\}$, $\{b_k\}$:

▶
$$b_k = O(a_k)$$
 if $\exists C > 0$: $|b_k| \le C|a_k|$ $\forall k$ large enough

$$b_k = o(a_k) \quad \text{if } \lim_{k \to \infty} \frac{b_k}{a_k} = 0$$

(Jordi Castro) Interior-Point Methods 28 / 31

Newton's method

In unconstrained optimization

$$\min_{x\in\mathbb{R}^n}f(x)$$

used for solving $\nabla f(x) = 0$.

- In constrained optimization (and IPMs) used for solving nonlinear system F(x) = 0 associated to KKT conditions.
- Using a linear approximation $M_k(x)$ of F(x) based on a first-order Taylor series at point x^k :

$$F(x^k + \Delta) = F(x^k) + \nabla F(x^k) \Delta + o(||\Delta||^2)$$
 $M_k(x^k + \Delta) = F(x^k) + \nabla F(x^k) \Delta \approx F(x^k + \Delta)$
 $M_k(x^k + \Delta) = 0 \quad \Rightarrow \quad \Delta = (\nabla F(x^k))^{-1} (-F(x^k))$

Compute $x^{k+1} = x^k + \Delta$, k := k + 1 and iterate until solution.

(Jordi Castro)

Interior-Point Methods

29 / 31

Newton's method

Newton's method: basic properties

- Local quadratic convergence.
- No global convergence. Main drawbacks:
 - ▶ $\nabla F(x)$ may be singular.
 - **Solutions:** use modifications of Newton's method : quasi-Netwon updates, modification of $\nabla F(x)$.
 - ▶ It can iterate forever. **Example**: Newton's method to $F(x) = -x^5 + x^3 + 4x$, starting at $x^0 = 1$. We get $\Delta^0 = -2$ and $x^1 = -1$. But $\Delta^1 = 2$ and then $x^2 = 1 = x^0$.
 - **Solutions:** use line-search methods $(x^{k+1} = x^k + \alpha^k \Delta^k)$, or a trust-region model $(\min_{\Delta} M_k(x^k + \Delta) : ||\Delta||_2 \le \epsilon)$.

(Jordi Castro) Interior-Point Methods 30 / 31

General references

M.S. Bazaraa, H.D. Sherali, C.M. Shetty, *Nonlinear Programming. Theory and Algorithms, 3rd Ed.*, Wiley, 2006.

D.P. Bertsekas, Nonlinear Programming, 2nd Ed., Athena Scientific, 1999.

D.G. Luenberger, Linear and Nonlinear Programming, 2nd Ed., Addison Wesley, 1984.

J. Nocedal, S.J. Wright, *Numerical Optimization*, Springer, 1999.

(Jordi Castro) Interior-Point Methods 31 / 31