P - 38 - 2012

발열 화학반응의 위험에 관한 일반안전 기술지침

2012. 7.

한국산업안전보건공단

안전보건기술지침의 개요

○ 작성자: 김 나영개정자 : 한 우 섭

- O 제 · 개정 경과
 - 2010년 8월 화학안전분야 제정위원회 심의(제정)
 - 2012년 7월 총괄 제정위원회 심의(개정, 법규개정조항 반영)
- O 관련 규격 및 자료
 - INDG-254, "Chemical reaction hazards and the risk of thermal runaway", 1997
 - HSG-143, "Designing and operating safe chemical reaction process", 2000
- O 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자: 2012년 7월 18일

제 정 자: 한국산업안전보건공단 이사장

발열 화학반응의 위험에 관한 일반안전 기술지침

1. 목 적

이 지침은 화학반응이 가지는 위험성을 파악하고 이를 제거하거나 경감시키기 위해 화학반응 단계에서 실시하는 위험 요인의 확인 등 일반 안전에 관한 기술 지침을 제시하는데 그 목적이 있다.

2. 적용범위

이 지침은 발열 화학반응 공정을 상업화하는 단계에서 위험을 확인하고자 할 때적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용되는 용어의 정의는 다음과 같다.
 - (가) "폭주반응 (Runaway reaction)"이라 함은 반응속도가 지수 함수적으로 증대되어 반응 용기 내부의 온도 및 압력이 비정상적으로 상승하여 반응이 과격하게 진행되는 현상을 말한다.
 - (나) "발열개시온도 (Onset temperature)"라 함은 반응에 의해 열이 방출될 때, 반응용기에서 더 이상의 열이 제거(소실)되지 않아 온도의 상승이 감지되기 시작하는 온도를 말한다. 시작온도는 감지 감도, 반응 속도, 반응기의 크기, 냉각 속도, 교반기의 특성에 의존한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행규칙 및 「산업안전보건기준에 관한 규칙」에서 정하는 바에 의한다.

4. 화학반응의 위험요인

(1) 화학반응의 3 가지 주요 위험요인은 다음과 같다.

P - 38 - 2012

- (가) 반응물, 반응혼합물 및 생산물(중간체, 부산물, 잠재적 오염물 포함)의 열적 불 안정성
- (나) 발열반응(온도를 증가시켜 분해반응 야기) 또는 극심한 비등
- (다) 가스 발생
- (2) 화학반응의 위험요인은 공정화학자의 지식과 위험성평가에 경험이 있는 전문가에 의해 평가되어야 한다.

5. 화학반응의 위험확인 절차

5.1 일반사항

- (1) 화학반응에 관한 위험요인을 확인하고자 할 때에는 아래의 예와 같은 이벤트가 어떻게 발생하는 지 고려할 필요가 있다.
 - (가) 화재 : 호환되지 않는 화학물질의 혼합, 엎지르거나 누출에 의한 점화, 방화, 위험한 작업 용접, 흡연 등, 외부 사건(번개, 충격, 인접지역의 화재 등)
 - (나) 폭발: 화재, 엎지르거나 누출에 의한 점화, 발열 폭주반응 또는 분해반응, 가스 생성에 의한 압력 상승
 - (다) 누출 : 봉쇄 실패, 충격, 작업자 실수
- (2) 모든 반응을 적용할 수 있는 표준 절차는 없다. 다만, 위험을 적절하게 평가할 수 있는 자료를 얻는 것이 목표이다.
- (3) 과도한 노력과 시간의 낭비를 방지하기 위하여 반응의 복잡성과 위험의 크기가 자료조사에 반영되어야 한다.
- (4) 새로운 공정과 공장을 위한 연구개발의 초기 단계부터 위험요인을 확인하는 것은 본질안전의 최고 수준에 도달케 하는 것이다. 이 단계에서 안전 조치 비용을 최소 화할 수 있다. 또 기존의 공장이나 공정에서는 합리적이고 가능한 수준으로 위험 을 줄이기 위해 필요한 모든 단계를 보장하는 위험성 평가를 고려해야 한다.

P - 38 - 2012

5.2 초기조사 및 반응정보 수집

연구 화학자와 연구개발 전문가는 공정 개발에 있어서 근본적인 역할을 한다. 이들 전문가들은 본질안전 설계를 포함하는 안전에 기여할 수 있는 많은 기회를 가지고 있다. 즉, 공정 개발과 함께 위험을 확인하고 위험성평가를 실시함으로서 본질적으로 안전한 화학반응공정을 선정할 수 있다.

5.2.1 문헌조사

- (1) 사용되는 화학물질과 공정 화학에 관한 유용한 문헌조사를 실시한다.
- (2) 초기단계에서 본질적으로 안전한 반응경로를 고려한다.
 - (가) 큰 발열반응이나 열적으로 불안정한 반응물이나 중간체의 회피
 - (나) 회분식 공정은 반회분식 공정이나 연속공정으로 대체
 - (다) 물 속 반응 : 유기 용매 대신 물 사용
 - (라) 온도나 압력같이 중요하게 정의된 운전조건의 변화에 덜 민감한 공정의 사용
 - (마) 비록 높은 온도와 압력일지라도 물이나 이산화탄소 같이 상대적으로 덜 위험한 물질을 용매로 사용하는 초임계공정(Supercritical processing)의 사용
 - (바) 위험한 용제는 제거하거나 감소시키는 반응성이 낮은 시약의 사용이나 보다 덜 위험한 운전조건을 이끌어 내는 촉매의 사용
 - (사) 열 흡수원으로 동작하는 용제의 사용

5.2.2 반응성 및 안전성의 예측

- (1) 화학물질의 분자 구조로부터 화학물질의 반응성과 안전성을 예측할 수 있다.
- (2) 특정한 분자그룹은 공정에 위험을 가져올 가능성이 높은데 이를 규명해야 한다.
 - (가) 이중 또는 삼중 결합 탄화수소
 - (나) 에폭시드(Epoxides)
 - (다) 수소와 수소화물

P - 38 - 2012

- (라) 금속 이세틸라이드(Metal acetylides)
- (마) 질소화합물-예: 아미드, 이미드, 니트라이드, 아조, 다이아조 등
- (바) 할로겐의 산소화합물
- (사) 과산화물
- (3) 새로운 화합물의 특별한 위험성은 몰라도 유사한 화합물의 위험성을 알거나 비슷한 분자그룹의 위험성은 알 수 있다.
- (4) 화학물질의 조합의 위험한 반응성으로부터 많은 추가적인 위험성이 초래된다.
- (5) 특정화합물이 분해되거나 연소되거나 폭발하는 것을 결정하는 것은 산소 수지이다.
- (6) 거의 모든 폭발물은 -100 ~ 40 사이의 산소 수지를 가진다. 산소 수지가 -200 이상인 큰 위험성이 있는 화합물은 특성 폭발시험에 추가할 필요가 있다.
- (7) 작은 양을 뜨거운 접시에 떨어뜨리거나 주걱에서 가열시키는 간단한 시험법으로 폭연(Deflagration) 가능성을 알 수도 있다. 급속한 분해 또는 연소는 폭연의 가능성이 있는 물질임을 의미한다.

5.2.3 열화학

- (1) 반응열을 고려하는 열화학으로부터 유용한 징후를 얻을 수 있다. 반응물과 생성물의 합성열로부터 반응열을 계산하는 것이 가능하다. 계산은 선택된 생성물의 100% 전환을 가정하여 한다.
- (2) 계산의 정확성은 합성열의 정확도에 의존하지만 발생단계에서의 변화를 고려하여 야 한다. 증발처럼 용액의 열을 고려하지 않으면 계산에 확실한 영향을 주며 심각한 계산 오류를 가져올 수도 있다.
- (3) 평균 결합 에너지의 합으로 계산하며 다른 방법으로도 화학반응의 발열량을 예측할 수 있다.
- (4) 반응열을 계산할 때 열 손실이 없는 조건 하에서 반응 물질은 최고예상온도까지 상승하리라고 기대할 수 있다. 이것은 반응열로부터 오는 모든 에너지로 반응물질 의 온도가 증가한다고 가정한 것으로 열 손실이 전혀 없다고 하면 반응물질의 열 용량에 따른 최고온도까지 상승한다.

P - 38 - 2012

 $\Delta T_{ad} = \Delta H/Cp$ 여기서.

ΔT_{ad}: 단열 온도 상승 (K)

ΔH : 반응열 (kJ/kg)

C_P : 반응혼합물의 열용량 (kJ/kg·K)

- (5) 반응공정 중에 도달할 수 있는 최고온도는 반응온도로 기대할 수 있는 최고치이며 단열온도 상승의 합계이다. 만약 최고온도가 아래의 온도보다 낮다면 이 합계는 중요한 수치이다.
 - (가) 분해와 같은 추가적인 화학
 - (나) 꿇거나 가스를 생성하는 물리적 전환
 - (다) 증기 증발로 인한 과압 발생
- (6) 비록 설계된 반응의 열 방출이 작은 위험이라고 할지라도 생성물의 질과 수율에는 극적인 영향을 미칠 수도 있다.

5.3 취득정보 해석

- (1) 설계된 반응이 발열반응이라는 정후를 얻고 또 반응물질 또는 생성물이 열적으로 불안정하다고 하면 설계된 반응의 최고 반응 온도를 계산해 보는 것이 좋다. 다만, 이런 검토 단계는 일반적인 화학이나 전체 검사가 일상적인 경우에는 필요하지 않을 수도 있다.
- (2) 분해가 발생하는 온도나 폭주반응이 발생하는 온도는 물질이 존재하는 조건에 따라 다르게 일어나기 때문에 초기검토에서 얻은 정보가 적절하게 평가되었는지 주의 깊게 살펴볼 필요가 있다. 즉 단열온도 상승은 부반응이나 단계의 변화를 고려하지 않는다면 과소평가 될 수 있다.
- (3) 이런 검토는 아래와 같은 정보는 주지 않는다.
 - ① 설계된 반응의 동역학
 - ② 열이 생성되는 속도
 - ③ 분해를 포함한 불안정하고 원하지 않는 반응
 - ④ 반응혼합물의 오염에 대한 영향

P - 38 - 2012

- ⑤ 공급품질의 변화에 대한 영향
- ⑥ 가스의 발생
- (4) 발열폭주반응이 일어나는 지를 결정하기 위해 반응속도와 반응열에 대한 정확한 정보를 알아야 한다.
- (5) 물리적 시험을 포함, 앞으로 필요한 추가 검토를 수행하기 위해 필요한 추가정보를 결정하여야 한다.

5.4 추가 검토

- (1) 아래의 징후를 얻는데 사용 가능한 소규모 시험 방법(표본 크기 0.01 ~ 10 g)은 시차주사열량계(Differential scanning calorimetry, DCS), 여러 형태의 시차열분석 (Differential thermal analysis, DTA), 단열발열체시험(Insulated exotherm test), 분해압력시험(Decomposition pressure test), 카리우스 밀폐튜브시험(Carius sealed tube test) 등이며 이들 시험법의 상용변형시험도 유용하다.
 - (가) 가스 발생, 열의 양, 속도
 - (나) 폭주반응의 발생 여부
 - (다) 가스발생 속도와 열 측면에서 폭주반응의 결과
- (2) 하나의 간단한 시험으로 화학반응 위험성평가에 필요한 모든 정보를 얻는 것은 불가능하다. <그림 1>은 유용한 전략적인 평가흐름의 순서도이다.

5.5 검토자료의 해석

- (1) 시험 장치와 절차를 선택하고 결과를 해석하는 데는 전문가가 필요하므로, 이를 위해 실험설비와 장비를 갖춘 컨설팅 회사와 컨설턴트를 이용하는 것이 유용할 수 도 있다.
- (2) 아래의 테스트는 유용하다.
 - (가) 많은 샘플로 하는 초기 테스트
 - (나) 넓은 온도 범위의 샘플 테스트
 - (다) 실험실 수량에서만 유용한 샘플 테스트

<그림 1> 평가절차 순서도

- (라) 혼합물의 안전성에 변화가 있어 보이는, 공정 여러 단계의 반응 혼합물에서 얻은 샘플 테스트
- (마) 증류 잔여물 샘플과 회수된 물질 테스트

P - 38 - 2012

- (바) 반응물의 여러 비율의 반응물을 포함한 혼합물 테스트
- (사) 숙성 효과(Aging effect) 심사 상승 온도에서 연장 기간 이후에 일어나는 안 전성의 변화 테스트
- (3) 테스트 결과는 초기에 지시해야 할 사항을 알려준다.
 - (가) 열분해 가능성
 - (나) 방출열의 속도와 양
 - (다) 가스 발생
 - (라) 유도 시간 효과(자체 촉매 작용): 예를 들면 장기 보관 후 열적 불안전성 증가
 - (마) 높은 분해 속도(물질의 폭연 가능성)
- (4) 온도 추적의 초기 편차는 초기 발열온도 또는 발열개시온도를 인용할 수 있으나 주의가 필요하다. 온도에 영향을 주는 아래의 변수는 시험물질 고유의 화학적 안 정성과는 관련이 없다.
 - (가) 시험 장치의 감도
 - (나) 샘플의 크기
 - (다) 실험 가열 모드와 가열 속도
 - (라) 샘플컨테이너에서의 반응
 - (마) 분해에 앞선 샘플 증발
- (5) 지금까지의 정보는 특별히 운전조건과 관련된 분해반응이나 폭주 시작온도 이하의 조건에서 운전되는 경우에, 전체규모의 공장을 위한 운전 한계를 결정하는 데는 충분하나 대부분의 경우 안전운전한계를 결정하기 위해서 보다 상세한 검사가수행될 필요가 있다.

5.6 반응 열량 측정

(1) 물리적이나 화학적 공정에 의한 반응시스템의 즉각적인 열 방출을 측정하는 것이 가능한 데, 이러한 접근은 공정 설계의 최적화를 위한 관점에서 유용하다.

P - 38 - 2012

- (2) 오작동 경우에 예상되는 온도 변화와 요구되는 열 제거 속도 같은 안전한 공정 제어를 위해 중요한 양을 열 생성 속도로부터 유도할 수 있다.
- (3) 교반 속도, 교반기의 구성, 건설에 사용된 물질, 추가 속도의 변화, 반응물의 농도, 첨가속도(Addition rate), 체류시간(Hold time) 등과 같이 열 생성 속도와 가스 발 생과 반응 속도에 영향을 주는 것에 대해 조사할 필요가 있다. 또 예측가능한 공정 의 오작동의 영향에 대해 밝힐 필요가 있다.
- (4) 실험 열량 측정법들은 아래와 같이 개발되었다.
 - (가) 전체 규모의 반응물 첨가 속도, 배치 온도와 시간 프로파일 그리고 공정 조건으로 시뮬레이션
 - (나) 열 손실 또는 다른 열원의 포함(예: 교반으로 인한 에너지 추가, 응축기로부터 의 열 손실)
 - (다) 반응이 진행되는 동안 물리적 특성의 변화로 인한 효과 측정
- (5) 위와 같은 실험으로부터 얻은 아래와 같은 데이터는 전체 규모 공장의 안전 운전 한계를 명확하게 하는데 도움을 준다.
 - (가) 반응열
 - (나) 열용량
 - (다) 열 생성 속도
 - (라) 반응혼합물의 열전달 특성
 - (마) 반응 속도의 반응 농도 의존도
 - (바) 열 생성 속도 또는 축적에 영향을 주는 인자(예: 온도, 촉매, pH 등)
 - (사) 가스발생 속도와 양
- (6) 열량계의 종류
 - (가) 등온-열 흐름(Heat flow)과 전원(Power) 보상
 - (나) 단열

P - 38 - 2012

5.7 안전운전 한계(Envelope)의 결정

공정설계 시 5.5 항의 시뮬레이션 결과를 아래와 같이 사용할 수 있다.

- (가) 최고 온도의 열매를 사용하는 것은 직접 제어가 손실되는 사건에서 안전을 보 장한다.
- (나) 만약 제어밸브 또는 측정기가 실패하면 공급되는 유량을 제한할 수 있는 오리 피스를 설치한다.
- (다) 반응기를 충전하는 용기는 한 번에 추가될 수 있는 반응물의 양이 안전한 양으로 제한되도록 설계한다.