

ROS Workshop

Packages, Tools, and Libraries

January 12, 2023

Hassan Umari

1. Packages

- 2. Gazebo
- 3. RViz
- 4. Coordinate Frames
- 4.1 tf The Transform Library
- Popular Packages
- 5.1 Gmapping
- 5.2 Navigation Stack

Inside a ROS package:

How to install packages:

- From source (many packages available on GitHub).
- Using apt. Example:

sudo apt install ros-noetic-navigation

Demo

package, rosrun, launch files

1. Packages

2. Gazebo

3. RViz

- 4. Coordinate Frames
- 4.1 tf The Transform Library
- Popular Packages
- 5.1 Gmapping
- 5.2 Navigation Stack

Gazebo

- Gazebo is a simulator that is bundled with ROS distributions.
- Gazebo includes a physics engine, 3D rendering (OpenGL), and support for simulating sensors and actuators.
- Simulation environment can be defined in a .world file.

Example

1. Packages

2. Gazebo

3. RViz

- 4. Coordinate Frames
- 4.1 tf The Transform Library
- Popular Packages
- 5.1 Gmapping
- 5.2 Navigation Stack

RViz

- RViz can be used to visualize several commonly used ROS messages
- Examples: laser scans, occupancy gird maps, point clouds, images, robot frames, etc..

RViz

- Packages
- 2. Gazebo
- 3. RViz
- 4. Coordinate Frames
- 4.1 tf The Transform Library
- 5. Popular Packages
- 5.1 Gmapping
- 5.2 Navigation Stack

Coordinate Frames

- A robotic system involves several coordinate frames that change over time.
- A common task in robotics, is to find the transformation between frames.
- Visualization of these frames is also very important.

Coordinate Frames

image source: http://wiki.ros.org/hector_slam/Tutorials/SettingUpForYourRobot

Coordinate Frames

Source: https://ros-planning.github.io/moveit_tutorials/doc/robot_model_and_robot_state/robot_model_and_robot_state_tutorial.html

- 1. Packages
- 2. Gazebo
- 3. RViz
- 4. Coordinate Frames
- 4.1 tf The Transform Library
- 5. Popular Packages
- 5.1 Gmapping
- 5.2 Navigation Stack

tf - The Transform Library

- The tf is a library for handling transformation between frames.
- The library stores the relationship between frames in a tree structure buffered in time.
- In ROS, it comes as a package called tf2.

tf - The Transform Library

Source: https://spl.hevs.io/spl-docs/tools/ros/tf2.html

tf - The Transform Library

- There is no central server. Each client listens to published transforms and maintains a copy of the tree.
- What a node can do:
 - Broadcast a transformation
 - Listens for all transformations
 - query for a transform at a chosen time instance
- Comes with a tool to quickly publish static transformations.

Demo

URDF

- URDF = Unified Robotics Description Format
- XML format for representing a robot model

URDF

URDF

- URDF file can be loaded by robot_state_publisher
- It will publish link frames to tf

Example
URDF + Robot state publisher

- 1. Packages
- 2. Gazebo
- 3. RViz
- 4. Coordinate Frames
- 4.1 tf The Transform Library
- 5. Popular Packages
- 5.1 Gmapping
- 5.2 Navigation Stack

- 1. Packages
- 2. Gazebo
- 3. RViz
- 4. Coordinate Frames
- 4.1 tf The Transform Library
- 5. Popular Packages
- 5.1 Gmapping
- 5.2 Navigation Stack

Gmapping

- Is a ROS wrapper for Gmapping C++ library.
- Implements a SLAM algorithm.
- odometry + laser scan → occupancy grid map

Occupancy Grids

map data = [0, 0, 0, 0, ... , 0, 100 ,100 ,100 ,0 ,0 , ...]

Occupancy Grids

Gmapping

sudo apt install ros-noetic-gmapping

Gmapping

- 1. Packages
- 2. Gazebo
- 3. RViz
- 4. Coordinate Frames
- 4.1 tf The Transform Library
- 5. Popular Packages
- 5.1 Gmapping
- 5.2 Navigation Stack

Navigation Stack

- A collection of packages for mobile robot navigation (2D)
- map + odometry + laser scan + goal → velocity commands

Navigation Stack

- Costmap
- Global planner
- Local planner

Global Planner

- Uses the global costmap
- Search algorithm to find a safe path in the global costmap

Global Planner

- Generates velocity commands to make the robot follow the global plan
- It uses a local costmap
- A local path is generated based on the global plan

Demo

Thank you Questions..?