Session 1: Vector spaces

Optimization and Computational Linear Algebra for Data Science

Léo Miolane

Contents

- 1. Subspaces
- 2. Linear dependency
- 3. Properties of the dimension
- 4. Coordinates
- 5. Why do we care about all these things?

 Application to data science

Questions?

Questions?

Questions? 2/18

Questions?

Questions? 2/18

Subspaces

Subspaces 3/18

What are the subspaces of \mathbb{R}^2 ?

Subspaces 4/18

The span is always a subspace

Proposition

Let $x_1, \ldots, x_k \in V$. Then, $\operatorname{Span}(x_1, \ldots, x_k)$ is a subspace of V.

Subspaces 5/18

Linear dependency

Linear dependency 6/18

A useful lemma

Lemma

```
Let v_1, \ldots, v_n \in V and let x_1, \ldots, x_k \in \operatorname{Span}(v_1, \ldots, v_n).
Then, if k > n, x_1, \ldots, x_k are linearly dependent.
```

Abuse of language: Instead of saying (x_1,\ldots,x_k) are linearly dependent, we should have said (the family (x_1,\ldots,x_k)) is linearly dependent.

Linear dependency 7/1s

Basis, dimension

Basis, dimension 8/18

The dimension is well defined!

Theorem

If V admits a basis (v_1, \ldots, v_n) , then every basis of V has also n vectors. We say that V has dimension n and write $\dim(V) = n$.

Proof.

Basis, dimension 9/18

Properties of the dimension

Proposition

Let V be a vector space that has dimension $\dim(V) = n$. Then

Any family of vectors of V that are linearly independent contains at most n vectors.

```
i.e. if x_1, \ldots, x_k \in V are linearly independent, then k \leq n.
```

Any family of vectors of V that spans V contains at least n vectors.

i.e. if
$$x_1, \ldots, x_k \in V$$
 are such that $\mathrm{Span}(x_1, \ldots, x_k) = V$, then $k \geq n$.

Proof.

Basis, dimension 10/

Properties of the dimension

Proposition

Let V be a vector space that has dimension $\dim(V) = n$. Then

Any family of vectors of V that are linearly independent contains at most n vectors.

```
i.e. if x_1, \ldots, x_k \in V are linearly independent, then k \leq n.
```

Any family of vectors of V that spans V contains at least n vectors.

i.e. if
$$x_1, \ldots, x_k \in V$$
 are such that $\mathrm{Span}(x_1, \ldots, x_k) = V$, then $k \geq n$.

Proof.

Basis, dimension 10/

Properties of the dimension

Proposition

Let V be a vector space of dimension n and let $x_1, \ldots, x_n \in V$.

- 1. If x_1, \ldots, x_n are linearly independent, then (x_1, \ldots, x_n) is a basis of V.
- 2. If $\operatorname{Span}(x_1,\ldots,x_n)=V$, then (x_1,\ldots,x_n) is a basis of V.

Very useful to show that a family of vector forms a basis!

Proof.

Basis, dimension 11/18

An inequality

Proposition

Let U and V be two subspaces of \mathbb{R}^n . Assume that $U \subset V$. Then

$$\dim(U) \le \dim(V) \le n.$$

If **moreover** $\dim(U) = \dim(V)$, then U = V.

Basis, dimension 12/18

A bit of vocabulary

Definition

Let S be a subspace of \mathbb{R}^n .

- We call S a *line* if $\dim(S) = 1$.
- We call S an hyperplane if $\dim(S) = n 1$.

Basis, dimension 13/18

Coordinates

Coordinates 14/18

Coordinates of a vector in a basis

Definition

If (v_1, \ldots, v_n) is a basis of V, then for every $x \in V$ there exists a unique vector $(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ such that

$$x = \alpha_1 v_1 + \dots + \alpha_n v_n.$$

We say that $(\alpha_1, \ldots, \alpha_n)$ are the coordinates of x in the basis (v_1, \ldots, v_n) .

Proof.

Coordinates 1

Exercise

- 1. Show that the vectors $v_1=(1,1)$ and $v_2=(1,-1)$ form a basis of \mathbb{R}^2 .
- 2. Express the coordinates of u=(x,y) in the basis (v_1,v_2) in terms of x and y.

Coordinates 16/18

Exercise

- 1. Show that the vectors $v_1=(1,1)$ and $v_2=(1,-1)$ form a basis of \mathbb{R}^2 .
- 2. Express the coordinates of u=(x,y) in the basis (v_1,v_2) in terms of x and y.

Coordinates 16/18

Why do we care about this?

Application to image compression

Image = grid of pixels