PFM 升压型电池充电控制集成电路

ZC3300

概述:

ZC3300是一款工作于4V到28V的PFM升压型电池充电控制集成电路。ZC3300内部集成有基准电压源,+5V电压调制单元,电感电流检测单元,电池电压检测电路和片外N沟道MOSFET驱动电路等,具有外部元件少,电路简单等优点。

当接通输入电源时,ZC3300进入充电状态,控制片外N沟道MOSFET导通,电感电流上升,当上升到外部电流检测电阻设置的上限时,片外N沟道MOSFET截止,电感电流下降,电感中的能量转移到电池中。当电感电流下降到外部电流检测电阻设置的下限时,片外N沟道MOSFET再次导通,如此循环。电池电压通过电阻分压网络反馈到FB管脚,当FB管脚电压达到1.205V(典型值)时,充电过程结束,片外N沟道MOSFET保持截止状态。当FB管脚电压下降到再充电阈值时,ZC3300再次进入充电状态。ZC3300最高工作频率可达1MHz,工作温度范围从一40℃到+85℃。

ZC3300采用6管脚的SOT23封装。

应用:

- 锂电池充电控制
- 磷酸铁锂电池充电控制
- 铅酸电池充电控制
- 独立充电器

特点:

- 输入电压范围: 4V 到 28V
- 电感电流检测
- 电池电压监测
- 高达1MHz开关频率
- 自动再充电功能
- 高达25W输出功率
- 5V,5mA内部稳压器
- 工作温度范围: -40℃到85℃
- 6管脚SOT23封装
- 产品无铅,满足rohs指令要求,不含卤素

管脚排列图:

典型应用电路:

图 1 典型应用电路

订购信息:

器件型号	封装形式	包装	工作环境温度
ZC3300	SOT23-6	盘装,每盘3000只	-40℃ 到 85℃

www.zichaotech.com 2 REV 1.0

功能框图:

图 2 功能框图

管脚描述:

序号.	名称	功能描述		
	CSN	电感电流检测负输入端。在VIN管脚和CSN管脚之间接一个电流检测电阻		
1		R _{CS} ,用以检测电感电流 (输入电流)。正常工作时,(VIN-CSN)的上限为		
		150毫伏(典型值),下限为120毫伏(典型值)。		
	FB	电池电压检测输入端。一般情况下,FB管脚接到外部电阻分压网络以监测		
2		电池电压。当FB管脚电压上升到1.205V(典型值)时,ZC3300进入充电结束		
2		状态;在充电结束状态,当FB管脚电压下降到1.155V(典型值)时,ZC3300		
		再次进入充电状态。		
3	VIN	电源正输入端。VIN管脚为ZC3300内部电路提供工作电源,同时也是电感		
3		电流 (输入电流)检测的正输入端。		
4	VCC	5V电压输出端。 外接4.7uF或10uF电容(图1中的C2),提供5V输出电压,		
4		最大电流输出能力5毫安。		
5	DRV	功率管栅极驱动端。 连接到外部N沟道场效应晶体管(MOSFET)的栅极。		
6	GND	电源地。		

极限参数

VIN ,CSN to GND0.3V to 30V	最大结温150℃
VCC to GND0.3V to 6.5V	工作温度范围40℃ to 85℃
CSN to VIN0.3V to 0.3V	存储温度65℃ to 150℃
FB, DRV0.3V to VCC	焊接温度260℃

超出以上所列的极限参数可能造成器件的永久损坏。以上给出的仅仅是极限范围,在这样的极限条件下工作,器件的技术指标将得不到保证,长期在这种条件下还会影响器件的可靠性。

电气参数:

(VIN = 12V, TA = -40°C to +85°C, 典型值在 TA = +25°C 时测得,除非另有说明。)

参数	符号	测试条件	最小	典型	最大	单位
输入电压范围	VIN		4		28	伏特
工作频率	f_{SW}				1	MHz
工作电流	I _{VIN}	V_{FB} =1.25V, No Switching	380	490	600	微安
电感电流检测比较器						
检测电压高端阈值	V _{CSHI}	(VIN-V _{CSN}) 从0V上升, 直到V _{DRV} <0.5V	120	150	180	毫伏
检测电压低端阈值	V _{CSLO}	$(VIN-V_{CSN})$ 从 $0.2V$ 下降, 直到 V_{DRV} >($VCC-0.5V$)	96	120	144	毫伏
输出高电平传输延时	t_{DPDH}	(VIN-V _{CSN})从0.2V降到0.07V		82		纳秒
输出低电平传输延时	t_{DPDL}	(VIN-V _{CSN})从0V上升到0.2V		82		纳秒
CSN管脚输入电流	I_{CSN}				1	微安
FB管脚			•			
FB管脚充电终止阈值	V _{term}	FB管脚电压上升	1.19	1.205	1.22	伏特
FB管脚再充电阈值	V _{rech}	FB管脚电压下降	1.13	1.155	1.18	伏特
FB管脚电流	I_{FB}		-100		+100	纳安
DRV管脚						
DRV管脚输出电流		$V_{CSN} = VIN, V_{DRV} = 0.5 \times VCC$		0.5		安培
DRV管脚灌入电流		$V_{CSN} = VIN - 0.22V,$ $V_{DRV} = 0.5 \times VCC$		1		安培
DRV输出高电平	V _{OH}	$I_{DRV} = 5 \text{mA}$	VCC-0	.5		伏特
DRV输出低电平	V_{OL}	$I_{DRV} = -10 \text{mA}$			0.5	伏特
VCC管脚						
输出电压	VCC	I _{VCC} =0.1mA 到 5mA, VIN=5.5V 到 30V	4.5		5.5	伏特
负载调整特性		I _{VCC} =0.1mA 到 5mA,		5		欧姆
输入电源调整特性		VIN=6V到28V,I _{VCC} =3mA		6		毫伏
输入电源抑制比	PSRR	$I_{VCC}=3mA$, $f_{IN}=10kHz$		-35		dB
启动时间	t_{START}	VCC=0 to 4.5V		350		微秒

详细描述:

ZC3300是一款工作于4V到28V的PFM升压型电池充电控制集成电路。ZC3300内部集成有基准电压源,+5V电压调制单元,电感电流检测单元,电池电压检测电路和片外N沟道MOSFET驱动电路等,非常适合锂电池,磷酸铁锂电池和铅酸电池的充电控制,具有外部元件少,电路简单等优点。

当接通输入电源后,ZC3300进入充电状态,控制片外N沟道MOSFET导通,电感电流上升,输出电容中的能量转移到电池中。当电感电流上升到外部电流检测电阻设置的上限时,片外N沟道MOSFET截止,电感电流下降,电感中的能量转移到输出电容和电池中。当电感电流下降到外部电流检测电阻设置的下限时,片外N沟道MOSFET再次导通,如此循环。电池电压经过电阻分压网络反馈到FB管脚,当FB管脚电压达到1.205V(典型值)时,充电过程结束,片外N沟道MOSFET截止,ZC3300进入充电结束状态。在充电结束状态,没有电流从输入端流向电池。当FB管脚电压下降到再充电阈值1.155V(典型值)时,ZC3300再次进入充电状态。ZC3300最高工作频率可达1MHz。

应用信息:

关于输入电压范围

ZC3300 在输入电压在 4V 到 28V 的范围内均能正常工作。在输入电压在 4V 到 5.5V 之间时, VCC 管脚 输出电压可能低于 5V。

5V电压调制器

VCC 管脚为 ZC3300 内部 5V 电压调制器的输出,最大电流输出能力 5 毫安。VCC 管脚到地之间需要接 一个 4.7 微法或 10 微法的滤波电容(图 1 中的 C2)。

在输入电压 VIN 在 4V 到 5.5V 之间时, VCC 管脚输出电压可能低于 5V。

电感电流(输入电流)

在图1所示的应用电路中,ZC3300通过连接在VIN和CSN管脚之间的电流检测电阻R_{CS}设置电感电流范围。 当外部N沟道MOSFET导通时,输入电源向电感充电,电感电流上升,当电感电流上升到(典型值):

$$I_{Lhigh} = 0.15 V / R_{CS}$$

外部N沟道MOSFET截止,电感电流开始下降,电感中的能量转移到输出电容和电池中。当电感电流下降 到(典型值):

$$I_{Llow} = 0.12 V / R_{CS}$$

外部N沟道MOSFET再次导通,开始新的周期。

所以, 电感平均电流为: $I_L = 0.135 \text{V} / R_{CS}$

$$I_{\rm I} = 0.135 \text{V} / R_{\rm CS}$$

在上面的三个公式中, ILhigh是电感电流上限,单位是安培(A)

ILlow是电感电流下限,单位是安培(A)

 R_{CS} 是电流检测电阻值,单位是欧姆(Ω)

计算开关频率和占空比

在图1所示的应用电路中,外部N沟道MOSFET导通时间为:

$$ton = \frac{0.03 \times L}{VIN \times Rcs}$$

外部N沟道MOSFET截止时间为:

$$toff = \frac{0.03 \times L}{(V_{BAT} + V_D - VIN) \times Rcs}$$

开关频率为:

$$f_{sw} = \frac{1}{ton + toff} = \frac{1}{0.03 \times L} + \frac{0.03 \times L}{(V_{BAT} + V_D - V_{IN}) \times Res}$$

占空比为:

$$D = \frac{ton}{ton + toff} = \frac{V_{BAT} + V_{D} - VIN}{V_{BAT} + V_{D}}$$

在上面的两个公式中, L为电感值, 单位为亨利 (H)

VIN为输入电压,单位为伏特(V)

V_{BAT}为电池电压,单位为伏特(V)

V_D为二极管D1的正向导通电压,单位为伏特(V)

 R_{CS} 为电感电流检测电阻,单位为欧姆(Ω)

估算充电电流

ZC3300是通过监测电感电流(输入电流)而控制充电电流,所以充电电流会随输入电压和电池电压的变

化而有所改变。

一般情况下,可通过下面的公式估算充电电流:

$$I_{CH} = \frac{V I N X I_{L} \chi \eta}{V_{BAT}}$$

其中, I_{CH}是充电电流,单位为安培(A)

VIN是输入电压,单位为伏特(V)

 I_{L} 是电感平均电流,为0.135 / R_{CS} ,单位为安培(A)

η是转换效率,一般在80%到90%之间,可取典型值85%

V_{BAT}是电池电压,单位为伏特(V)

关于电池电压检测

如图1所示,电池端的电压通过电阻R1和R2构成的电阻分压网络反馈到FB管脚,ZC3300根据FB管脚的电压决定充电状态。当FB管脚的电压达到1.205V(典型值)时,充电器进入充电结束状态。

在充电结束时电池端对应的的电压为:

$$V_{BAT} = 1.205 \times (1 + R1 / R2)$$

由于电阻R1和R2会从电池消耗一定的电流,在选取R1和R2的电阻值时,应首先根据所允许消耗的电流选取R1+R2的值,然后再根据上面公式分别计算R1和R2的值。

充电结束

当 FB 管脚电压达到 1.205V(典型值)时,充电过程结束,片外 N 沟道 MOSFET 截止,ZC3300 进入充电结束状态。在充电结束状态,没有电流从输入端流向电池。

再充电

在充电结束状态,当 FB 管脚电压下降到再充电阈值 1.155V(典型值)时, ZC3300 再次进入充电状态。

N沟道MOSFET的选择

ZC3300需要使用一个外部N沟道MOS场效应晶体管。选择MOS场效应晶体管应考虑最高输入电压,电感电流,开启电压和开关频率等因素。MOS场效应晶体管的击穿电压应该大于最高电池电压;较低的导通电阻和较低的总栅极电荷(Qg)有助于提高效率;开启电压要保证MOS场效应晶体管在工作电压最低端仍能完全导通。

在电池电压低于20V,电感平均电流小于1.5A的情况下,可以使用ZC2302。

二极管的选择

为了提高效率,在图1中的二极管D1的正向导通电压要尽量低,最好使用肖特基二极管;二极管通过电流能力要比充电电流大;击穿电压要大于最高电池电压。

输入电容

电源输入端VIN和地之间需要接一个至少为1微法的滤波电容(图1中的C1),如果输入电源的输出阻抗比较大或者连接导线比较长,电容值要相应增加;电容的耐压应高于最大输入电压。

输出电容

在充电器的输出端到地之间需要电容对电池电压滤波(图1中的Co),以及在片外N沟道MOSFET导通时向电池提供充电电流。输出电容应包括一个至少10微法的陶瓷电容。

为了避免在电池没有连接或者充电过程中电池突然断开的情况下电池连接端电压异常偏高可能造成的损坏,最好在输出端再并联一个电解电容,或者钽电容,或者陶瓷电容。

为了避免高频噪声对电压检测的影响,最好在输出端再并联一个0.1微法的高频电容。

增加状态指示功能

在图1所示的应用电路基础上,增加图3所示的电路可以实现状态指示功能。

www.zichaotech.com 6 REV 1.0

图3 增加充电状态指示功能

其中,ZC3300 DRV指的是ZC3300的DRV管脚,VIN是充电器的输入电源。LED1作为充电状态指示,LED2 作为充电结束状态指示。R1和R2是LED限流电阻。

设计流程

可根据下面的流程设计ZC3300的应用电路参数:

- (1) 根据电池容量和充电时间要求确定所需要的充电电流
- (2) 根据输入电压范围, 电池电压范围和充电电流, 估算电感平均电流
- (3) 根据电感平均电流计算电流检测电阻R_{CS}
- (4) 根据所需要的开关频率确定电感值
- (5) 设计电阻分压网络

PCB设计注意事项

良好的 PCB 布线对降低开关损耗和保证稳定的工作非常重要。

如果可能的话,尽量使用多层 PCB 布线,以增强抗干扰能力。

输入电容的接地端和 N 沟道 MOS 场效应晶体管的源极要连到 PCB 上同一块铜皮,然后再返回系统地(星型连接)。

ZC3300 的接地端和 VCC 管脚的电容接地端要同流经大电流的地线分开返回系统地。

为了保证尽可能低的电磁辐射,二极管,N沟道 MOS 场效应晶体管,电感,输入电容和输出电容的引线要尽量短,连接这些元器件的铜皮的面积要尽量小。

电流检测电阻 R_{CS}要尽量靠近输入电源和输入电源的滤波电容。

封装信息

Cumbal	Dimensions In	n Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E1	1.500	1.700	0.059	0.067	
E	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

本文中所描述的电路仅供参考,本公司对使用本文中所描述的电路不承担任何责任。本公司保留对器件的设计或者器件的技术规格书随时做出修改而不特别通知的权利。