

GROUP 1

YOUTUBE LINK: https://youtu.be/YrV0HPwoJUg

22056764 Devayani A/P Balkrishnan

Li Xin Qi S2195613

S2155659 Lim Yu Xuan

Navaneeta A/P P Shanmugam S2192763

Presented by: Li Xin Qi

CONTENT

01

PROJECT RECAP & OBJECTIVES

02

MODIFY

03

DATA EXPLORATION AFTER MODIFYING

04

MODEL

05

ASSESS

06

CONCLUSION

Presented by: Li Xin Qi

PROJECT RECAP

Credit Score Classification Model

- Reflect individual's creditworthiness
- Allow financial institution to:
 - optimize capability in determining individual's risk level
 - minimize credit risk and default cost
 - increase sales and overall expected profits

SEMMA

01 Sample

02 Explore

03 Modify

04 Model

05 Assess

OBJECTIVES

To explore the key factors that have significant impact on an individual's

To build a credit score classification model.

To assess various models and determine the best model in classifying customers' credit score.

MODIFY

MODIFY

New Dataset Variable Type and Role Summary

Role	Variable	Count	
Input	Nominal	4	
	Interval	17	
	Ordinal	1	
	Binary	9	
Target	Binary]	

Presented by: Lim Yu Xuan

DATA EXPLORATION

Characteristics

Low Spending with Small Value Payments

Correlation Matrix

Annual Income & Monthly In Hand Salary

Loan & Total Estimated
Monthly Instalment
per month

Interest Rate and & Credit History Age

Chi-Square Plot

Payment of Minimum Amount

Presented by: Lim Yu Xuan

MODEL

Presented by: Navaneeta A/P P Shanmugam

DECISION TREE (DT)

BACKGROUND & PROPERTIES

Decision Tree is

- a supervised learning technique that commonly used to solve classification problem.
- tree-like structure with root nodes, interval nodes, leaf nodes and branches.

Properties:

- Significance level set to 1.0.
- Maximum depth and leaf size set to 10.

DECISION RULES & VARIABLE IMPORTANCE

- 41 decision rules and 81 nodes.
- Root Node : Interest rate (highest information gain).
- Total EMI per month has the highest number of splitting.
- If the interest rate is lesser, then the credit score is 'standard to poor'.
- Top 3 important variables from high to low: Interest_Rate, Credit_Mix, Month

CLASSIFICATION RESULTS

Training Set Outcome:

Misclassification Rate - 0.1521

Validation Set Outcome:

Misclassification Rate - 0.1599

LOGISTIC REGRESSION (LR)

BACKGROUND & PROPERTIES

Logistic Regression is

- a statistical model used in classification problem and predictive analytics.
- where dependent variables bounded between 0 and 1 to produce a probabilistic outcome.

Properties:

- Polynomial terms set as Yes.
- Polynomial degree of 2.

CLASSIFICATION RESULTS

Training Set Outcome:

Misclassification Rate - 0.1783

Validation Set Outcome:

Misclassification Rate - 0.1858

GRADIENT BOOSTING (GB)

BACKGROUND & PROPERTIES

Gradient Boosting is

- a technique where each decision tree reduces the error of the previous decision tree progressively by predicting its error.
- where sequential method is used in prediction.

Properties:

- N Iterations set to 700.
- Maximum depth and reuse variable set to 3.

CLASSIFICATION RESULTS

Training Set Outcome:

Misclassification Rate - 0.0717

Validation Set Outcome:

Misclassification Rate - 0.1538

Presented by: Devayani Balkrishnan

LEAST-ANGLE REGRESSION (LARS)

BACKGROUND & PROPERTIES

Least-Angle Regression is

- an algorithm used in regression for high-dimensional data.
- similar to forward selection but sometimes may be more accurate.

Properties:

- Variable Selection Method set to LASSO.
- Model Selection Criteria set to Cross Validation.
- CV Fold set to 200.

CLASSIFICATION RESULTS

Training Set Outcome:

Misclassification Rate - 0.1856

Validation Set Outcome:

Misclassification Rate - 0.1833

Presented by: Devayani Balkrishnan

ASSESS

Models	DT	LR	GB	LARS
Misclassification Rate	0.1599	0.1858	0.1538	0.1833
Accuracy	84.01%	81.42%	84.62%	81.67%
Precision	0.8569	0.8327	0.8778	0.8381
Recall	0.8166	0.7864	0.8044	0.7850
F1-Score	0.8362	0.8089	0.8395	0.8107
AUC	2nd	3rd	1st	4th

Presented by: Devayani Balkrishnan

CONCLUSION

Stratified equal-sized sampling using sample node on the connected data source

Univariate, Bivariate
and Multivariate
Analysis to
investigate data type
error and explore
relationships between
variables and target

Pre-modifying
dataset using Base
SAS &
Replace, drop, impute
and Log 10
transformation to
prepare data for
modelling

Partition data into
training and validation
&
Build DT, LR, GB and
LARS credit score
classification model

Assess models based on metrices like precision, recall, accuracy, misclassification rate, F1-score and AUC

THANKS FOR LISTENING

