GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING

ECE 8813A Spring 2017 Problem Set #1

Assigned: 17-Jan-17 Due Date: 26-Jan-17

Your homework will be due at the *start* of class on **Thursday, January 26.**. This is a review homework so we did not cover this material in class. Please read the text book to find the answer for the first two problems.

PROBLEM 1.1:

Write the truth table for the following gates:

(a) AND

(d) NAND

(b) OR

(e) XOR

(c) NOR

(f) XNOR

PROBLEM 1.2:

Define De Morgan's law and show how it would be used to simplify the following Boolean equation.

$$Y = \overline{A + \overline{A}B + \overline{A}\overline{B}} + \overline{A + \overline{B}} \tag{1}$$

PROBLEM 1.3:

Given the following Truth Table that represents a 16QAM signal.

Ι	Q	Symbol	I	Q	Symbol
-3	-3	0000	1	-3	1100
-3	-1	0001	1	-1	1101
-3	1	0011	1	1	1111
-3	3	0010	1	3	1110
-1	-3	0100	3	-3	1000
-1	-1	0101	3	-1	1001
-1	1	0111	3	1	1011
-1	3	0110	3	3	1010

Find:

- (a) The Boolean Equation for each bit of the Symbol using a Karnaugh Map.
- (b) Create a schematic of digital gates to represent the Boolean Equation. Label each gate and each wire.
- (c) Implement the schematic in Verilog using Altera's Schematic Entry tool
- (d) Program the schematic in Verilog using a text based tool.