Assignment (
a. $f(x) = (4x_1^2 - x_2)^2$ [28x,2+16(4x,2-x2) Vf(x) = [16x, (4x,2-x2)] Hf(x) = -16x, -2 (4x, 8- x2) Vf(x)=0=16x, (4x,2-x2) X2 = 4x2 -> all Stationery Points Rollow This Relation When Sub. X2 in The Hessian: HF(x) = [2(8x,)2] - Phogging in - Ploggis in X = 0 HF(0) = [0 0] All Points are global minimizers Since flx) doesn't not go below b. g(x) = x,2 + 4x, x2 + x2 + x, -x2 79(x)= (2x, +4x2+1) Hf(x) = (24 42 4x, + 2x, -1 79(x)=0=2x, +4x, +1=0 Solve For eigen Valves et Hessian: X = = 2 X2 - 1/2 4(-2x2-1/2)+2x2-1=0 (2-1)2 - 16 = 0 X2 = -1/2 12-41-12 =0 X, = 1/2 (x-6)(x+2)=0 1=6, -2 -> So The Hassian is indefinite. Since The Hessian Is Inscrinite, The Point (1/2, -1/2) is a saddle point.

(. - f(x) is not Coercive because along The PUR Where The Function f(x) has X25 4(x,2 The Function Will not increase to Do. - a(x) is not coercive because There is only I saddle point at (1/2, -1/2), and no other Stationery points That There are Directions Which go TO -00. An example of This is The Direction 1-3. D. Mat Lab Code and graphs attached. NOTE The Points Plotted in The flood graph represent The parabola X2=4X,2.

2. AER and is Symmetric (S. A=AT). $Ra(x) = \frac{x^T A x}{\|x\|^2}, \forall x \neq 0.$ $\frac{X^{T}AX}{\|X\|^{2}} = \frac{X^{T}AX}{X^{T}X} = \frac{(Uy)^{T}A(Uy)}{(Uy)^{T}(Uy)} = \frac{y^{T}U^{T}AUy}{U^{T}y^{T}Uy} = \frac{y^{T}\Lambda y}{y^{T}y}$ $= \underbrace{\frac{2}{\xi} \lambda_i y_i^2}_{1|y||^2}$ Considering n=2, \(\frac{2}{\xi} \lambda_1 \cdot \frac{1}{\xi^2} = \lambda_1 \cdot \frac{1}{\xi^2} + \lambda_2 \cdot \frac{1}{2} \\ \frac{1}{\yi|^2} \qquad \text{||y||^2} \end{align*} From This, The 1/41/2 gives a weight to exch & between 0-1. So assuming I is The minimum and Is The Maximum, it can be seen met The smallest the Roll Can be is I, and the largest as he Anin & Ra (x) & Amax Yx # D.

3,	a. AGR is a Symmetric matrix and The Diagnoss
	Air Z & Air Hit { 1 n} -> A & O
	Assume Ideo Such That AK = dx. Then
	$ A:: -\lambda X: = \underbrace{\mathcal{E}}_{j \neq i} A_{i,j} X_{j} $
	$\left \underset{j \neq i}{\mathcal{E}} \right A_{:i} X_{j} \leq \underset{j \neq i}{\mathcal{E}} \left A_{:i} \right X_{j} \leq \left A_{:i} \right X_{j} $
	$ A_{ii} - \lambda X_i \leq A_{ii} X_j $
	Assuming X; is the biggest value in \vec{X} . Then we have $ A_{ii} - \lambda X_i \leq A_{ii} X_j \leq A_{ii} X_j $
	$ X_{ij} = X_{ij} X_{ij} = X_{ij} X_{ij} $
	So if I is negative This would violate The inequality About. So since 2 = 0 -> A \(0.

	1 Onen
5,	b. Let AER be a Symmetriz Matrix wing.
	Aii > & Aii \tie {1,n} -> Aro
	ASSUME FICO ST. 4x=1x Then
	$ A_{ii}-\lambda \chi_i = \underbrace{\underbrace{\underbrace{\underbrace{A_{ii} \chi_i }}_{j \neq i}}_{j \neq i} \underbrace{A_{ii} \chi_i }_{j \neq i} \angle A_{ii} \chi_i $ So $ A_{ii}-\lambda \chi_i \leq A_{ii} \chi_i $
	Assume X; is the biggest value in X. Then we have
	be a consider the late of the
	if 160 The inequality would be violates. So 170 -> 170.
4	

3	C, il	2 -4 0	1		
		-480	$A \times = \lambda \lambda$		
		0 0 -3			
	des	[2-2 -4			
		-4 8-X	6 = 0		
		00	-3-x	La Ballan	
	(-3-7	2-2 -4	= 0		
			1	Real Andrews	
	(-3-1	1[2-1](8-1)	-6] =0		
	(-3-1) [12 - (0)]	= 0	la - L	
	- \ 3 +1	0 12 -3/2+3	01=0	LECTION OF THE	
	X3 -	712-301=0			
	7 (12	- 71 -30) = 1	0	11111111111	
	1=0	ur 12-71	-30=0		
		(1-10)	1(1+3)=0	March 1	
		1=10	,-3		
	Since	There is at ce	ust positive	ens negative ei	gen value,
	The ma	itrix 15 indexi	nite.		
					_
•					

4.	f(x) = \frac{1}{2}X^TQX - CTX + d / Q \in R^n is symmomiz
	CERT I SER
	if a to -> f is logicity
	Staring with CTX & 11C 1111X11
	S= - CTX ≥- ((C1) X)
	So as 11x11-100 The right Side would go to -00
	Which man That Lim Tx = -00.
	1/×11-> 00
	However We know That I have & Ra (x) & I have
	also Since Q 20 We have That
	$\chi^T \otimes \chi > 0$.
	Now morthpryling both sizes by 11x112 he have
	1 X Q X X 2 = 2 Ro(x) X 2 = 2 min X 2.
	Since we know down >0 Ren as 1/x112->00
	The right Side goes to as, and Since to Ra(k) /1/12
	is Lower bounded we know it will also go to do.
	So as 1/x112 -> 00 + xTax -> 00.
	Since Extax goes To Do Faster Than -CTX
	goes to -w, lim f(x) = co -> fis coercive.
	1111->
-	
-	

5. f(x) = 4x,2+2x,x2+2x,2 a. The Function, f(x), is coercive because as Lim f(x) = 00. 11111-200 b. $\nabla f(x) = \begin{cases} 8x, +2x_2 \\ 2x, +9x, \end{cases} + f(x) = \begin{cases} 8 & 2 \\ 2 & 9 \end{cases}$ [2x, + 9x2] 8x, + 2x2 = 0 2x, + 4x2 = 0 $x_2 = -4x, \qquad x_2 = -\frac{1}{2}x,$ Only way Red This To be true is it X, = X, =0. Shace Hf(x) >0 For an X. The point (0,0) is a global minimizer a plot / code attached To Fire. d. Plot attackes to Fise. C. The Largest Step Size Found Likes & = 0,2265. This has Fand Through guess and Cheer. The Convergence is better For 8=0.025, Using The Max Step Size was very Slow Versus a Step Size OF 6.025.