Honors Problems

- 1. Sea X_1, \dots, X_n una muestra aleatoria de una v.a. Bernoulli con $\mathbb{P}(X=1) = p$, donde $p \in (0,1)$ es desconocido. Sea $\hat{\theta}$ el estimador de máxima verosimilitud de $\theta = p(1-p)$.
 - a) Muestra que $\hat{\theta}$ es asintóticamente normal cuando $p \neq 1/2$.
- b) Cuando p=1/2, usando una normalización adecuada, deriva una distribución asintótica no degenerada de $\hat{\theta}$.
- 2. Sean U_1, U_2, \cdots v.a. independientes con distribución uniforme en [0,1] y $Y_n = (\prod_{i=1}^n U_i)^{-1/n}$. Muestra que $\sqrt{n}(Y_n e) \xrightarrow{d} N(0, e^2)$.
- 3. Para el caso presentado en el ejemplo anterior, sin usar el Teorema de Wilks, justifique que la distribución asintótica de $-2\log\lambda(X)$ es χ_1^2 .