b) Nc fadden R^2 can be used: - explained variable the same - number of coefficients the same $R^2 = 1 - \frac{\log(L(b))}{\log(L(b))} + \log(L(b)) = -152.763$ Pirst value $R^2 = 1 - (-134.178)/(-152.763) = 1-087.83 = 0.1217$ Liz(-1) liz(-2) best performing model

Li(-1) 0.1217 01000

C)

Quarter	GDPIMPR	PredProb	Pred01
2011Q1	1	0.242872	0
2011Q2	0	0.219600	0
2011Q3	0	0.084092	0
2011Q4	0	0.084092	0
2012Q1	1	0.159628	0
2012Q2	0	0.225832	0
2012Q3	1	0.376366	0
2012Q4	1	0.555273	1
2013Q1	1	0.596042	1
2013Q2	1	0.522734	1
2013Q3	1	0.555273	1
2013Q4	0	0.713614	1
2014Q1	0	0.739621	1
2014Q2	1	0.649081	1
2014Q3	1	0.764048	1
2014Q4	1	0.850051	1
2015Q1	1	0.850051	1
2015Q2	1	0.832577	1
2015Q3	1	0.713614	1
2015Q4	0	0.346151	0

٠		
١		
1		
.1		١
N	•	

	Predicted		Total
	0	1	
Realization:0	5	2	7
Realization:1	3	10	13
Total:	8	12	20

revarive V

	Predicted		Total	
	0	1		
Realization:0	(5/20)	2/20	7/20	
Realization:1	3/20	(10/20)	13/20	
Total:	8/20	12/20	20/20	

the hydrate = $\frac{7}{10} + \frac{10}{10} = 0.75 => 75\%$ of the cases the model gives the correct prediction

d)

Dependent variable: GrowthRate= $\Delta \log GDP$

Sample size: 240

	Coefficient	Standard error	t-value
Constant	0.090	0.037	2.400
OGGDP(-1)	-0.019	0.008	(-2.371)
GrowthRate(-1)	0.613	0.050	12.236
Т	6.23×10^{-5}	2.59×10^{-5}	2.407

Cruical value of Augmented Dichey Fuller test with constand and trend Ca = -3.7

=> Ho of whit rook not rejected => logGPO non-stationary

e) li(-1) li2(-2) best performing model li(-1) 0.5009 0.5077 li(-1) 0.4772 0.4771

Dependent variable: GrowthRate

Sample size: 240

	Coefficient	Standard error	t-value
С	0.001737	0.000320	5.433
GrowthRate(-1)	0.461579	0.048302	9.556
LI1(-1)	-0.001023	0.000130	-7.880
LI2(-1)	-0.000149	6.421×10^{-5}	-2.326

Dependent variable: RESID (Residuals from model in (e) with $k_1 = k_2 = 1$)

Sample size: 239

	Coefficient	
С	-0.0001	
GROWTHRATE(-1)	0.0291	
LI1(-1)	3.14×10^{-5}	
LI2(-1)	2.77×10^{-6}	
RESID(-1)	-0.0500	
R^2	0.0010	

Breusch-Godfrey test statistic 240 x 0.0010= 0.24
$$\chi^2(1)$$
 ($d=3.8$)

=> He not rejected

L of no residual serial correlation \mathbb{R}

=> graph shows predictions are reasonably accurate,