Worksheet

MATH 3160 – Complex Variables Miguel Gomez

Completed: August 28, 2025

Problem 1

Show that $\text{Re}(z) = \frac{z+\bar{z}}{2}$ and $\text{Im}(z)*i = \frac{z-\bar{z}}{2}$ for any complex number z=a+bi

Problem 2

Find the fourth roots of $-8 - 8\sqrt{3}i$. express the roots in rectangular coordinates, exhibit them as the vertices of a certain square, and point out the principal root.

Problem 3

Find the four zeros of the polynomial $z^4 + 4$, given that one of them is:

$$z_0 = \sqrt{2}e^{i\frac{\pi}{4}} = 1 + i$$

Use these zeros to factor $z^4 + 4$ into quadratic factors with real coefficients.

Problem 4

Sketch the following sets and state whether each set is open, connected, a domain, and whether it is bounded.

(a)
$$|z - 2 + i| \le 1$$

• Open: No, because the boundary is included (≤ condition)

• Connected: Yes, it's a disk which is connected

• Domain: No, because it's not open

• Bounded: Yes, all points are within distance 1 from center (2, -1)

(b)
$$|2z+3| > 4$$

(c)
$$Im(z) > 1$$

(d)
$$Im(z) = 1$$

(e)
$$0 \le \arg(z) \le \frac{\pi}{4}$$
, where $z \ne 0$

$$(f) |z-4| \ge |z|$$