

WHAT IS CLAIMED IS:

1. 1. A rotor for electrical equipment, said rotor having at least one pair of poles
2 and comprising
3 a winding encircling each of said poles; and
4 at least one element fabricated of heat conductive material separate from
5 said pole and said winding and disposed between at least one of said poles and
6 the winding encircling this pole.

1. 2. The rotor of claim 1 wherein each element has a first surface adjacent to
said winding and formed so as to be in substantial contact therewith.

1. 3. The rotor of claim 2 wherein each element has a second surface adjacent
to said pole and formed to be in substantial contact therewith.

1. 4. The rotor of claim 1 wherein each element has a first surface adjacent to
said pole and formed so as to be in substantial contact therewith.

1. 5. The rotor of claim 4 wherein each element has a second surface adjacent
2 to said winding and formed so as to be in substantial contact therewith.

1. 6. The rotor of claim 1 wherein each element includes at least one
2 passageway for the conduction of a cooling medium therethrough.

1. 7. The rotor of claim 6 wherein said rotor includes at least one manifold for
2 receiving a cooling medium.

1 8. The rotor of claim 7 further including at least one coupling member for
2 transporting the cooling medium from the manifold to each passageway.

1 9. The rotor of claim 8 wherein said rotor includes a shaft having a cooling
2 medium conducting passageway therethrough.

1 10. The rotor of claim 1 wherein said winding is fabricated of wire having a
2 rectangular cross section.

1 11. The rotor of claim 1 wherein said element is a unitary member.

1 12. The rotor of claim 1 wherein said element includes a pair of mating
members.

1 13. Electrical equipment comprising
2 a housing;
3 a stationary winding; and
4 a rotor, said rotor including at least one pair of poles with a winding encircling
5 each pole; and
6 at least one element fabricated of heat conductive material separate from
7 said pole and said winding and disposed between at least one of said poles and
8 the winding encircling this pole.

1 14. The equipment of claim 13 wherein said equipment is an alternator.

1 15. The equipment of claim 13 wherein said equipment is a generator.

1 16. The equipment of claim 13 wherein said equipment is a motor.

1 17. A method of cooling a rotor for electrical equipment, said rotor having at
2 least one pair of poles and a winding encircling each pole, said method
3 comprising the steps of
4 providing an element fabricated of heat conductive material; and
5 disposing said element between each rotor pole and the winding
6 encircling that pole.