Introduction to Convolutional Neural Network

Sammie Omranian

June 2025

College of Engineering & Applied Science

What is a CNN?

- A Convolutional Neural Network (CNN) is a type of neural network that processes data with a grid-like structure, such as images.
- CNNs help recognize patterns in images like edges, shapes, and objects.

Why Use CNNs?

- Traditional methods for image recognition required manual feature extraction.
- CNNs learn features automatically from the data.

Applications:

- Face recognition
- Self-driving cars
- Medical imaging
- Image search engines

How Does a CNN Work?

- Input Image: The image is broken down into numbers (pixels).
- Convolution: Small filters scan the image for patterns (e.g., edges, textures).
- Pooling: Simplifies the image by keeping only the important features.
- Fully Connected Layers: Combines all the features to classify the image.

How Does a CNN Work? Convolution

- What happens in convolution?
 - Filters (small grids) slide over the image to detect patterns like edges and lines.
 - The result is a new "feature map" that highlights where patterns are found.

Like looking at an image through a magnifying glass to spot specific details.

How Does a CNN Work? Pooling

What happens in pooling?

- Reduces the size of the image while keeping important features.
- Common type: Max Pooling (takes the largest value in a region).

Example:

• From a 4x4 grid $\rightarrow 2x2$ grid.

How Does a CNN Work? Pooling

Max Pooling

15	28	184
100	70	38
12	7	2
12	45	6
	100	100 70 12 7

2 x 2 pool size

100	184
12	45

Average Pooling

31	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6

2 x 2 pool size

36	80
12	15

How Does a CNN Work?

Example for convolution and max pooling operation.

source

How Does a CNN Work? Fully Connected Layers

After extracting features using convolution and pooling:

- Fully Connected Layers classify the image.
- Every feature is connected to every possible output class (e.g., cat, dog, car).

Like collecting puzzle pieces and putting them together to see the full picture!

Example - Recognizing a Dog

- Input: A dog image.
- Convolution: Detects edges, shapes (e.g., ears, eyes, nose).
- 3. Pooling: Simplifies features while keeping "dog-like" details.
- 4. Fully Connected Layers: Combines features and classifies it as "Dog."

Training a CNN

- CNNs learn by adjusting weights through training:
 - Feed labeled images (e.g., cat, dog).
 - CNN makes a prediction.
 - Calculate the error (difference between prediction and true label).
 - Update weights to improve predictions (using backpropagation).

