Time Series Introduction

Ordering

In general machine learning:

- no specific ordering of the data points
- all training points are potentially relevant for the prediction of a new point

In time series:

- chronological ordering of the points
- recent points are potentially more relevant than older points for the prediction of a new point

 CAMBRIDGE SPA

Patterns in time series

Generally, assume the time series can be decomposed into several elements, each of which we model separately:

- Trend: a long term increase or decrease in the data
- **Seasonality**: a cyclic pattern in the data (e.g.: days of the week, quarters of the year)
- **Noise**: a non deterministic element in the data

Seasonality vs. Trend

time_series_intro-skeleton.ipynb

>> Importing and visualising Time Series data

Resampling

Resampling involves changing the frequency of your time series observations.

Upsampling: increase the frequency of the samples, (e.g. from days to hours)

Downsampling: decrease the frequency of the samples (e.g. from days to weeks)

pandas.DataFrame.resample

Resampling

We use resampling because we have observations at the wrong *frequency*:

They may be too granular or not granular enough!

Upsampling: this typically requires more care, as we are essentially interpolating between observations to *guess* what the measurements would have been in between.

For example: if we observe data hourly but need measurements every 30 minutes, then one approach could be to simply average the measurements before and after (linear interpolation).

Resampling

We use resampling because we have observations at the wrong *frequency*:

They may be too granular or not granular enough!

Downsampling: this typically *safer* than upsampling, because are aggregating data and reducing the granularity.

For example: we may observe hourly data but only be interested in daily measurements. Then one approach would be to compute the mean over all hourly measurements.

time_series_intro-skeleton.ipynb

Hands-on session

>> Resampling

>> Parsing custom date formats

Moving Windows

Big difference in time series: not all data are equal!

Moving windows involves applying a function on repeated fixed-width "slices" (window) of the data sliding along in the direction of the data

pandas.DataFrame.rolling

Moving Average

- Better expose the trend of the data
- Creates a new series by calculating the average of fixed-width windows
- The window slides along the time series
- The same principle can be used for moving standard deviation, moving median etc

time_series_intro-skeleton.ipynb

>> Moving windows

Shifting Time Series Data

Sometimes we want to shift time series data en masse.

- To remove a known consistent latency
- To help identify causal relationships more easily
- To create lag features

Index	Value(t)	Value(t-1)
t	50	40

time_series_intro-skeleton.ipynb

>> Shifting Time Series Data

Differencing

Differencing is a method of transforming a time series dataset.

Differencing is performed by subtracting a previous observation from the current observation. Here with a lag of 1:

```
difference(t) = observation(t) - observation(t-1)
```

Using differencing can help remove the trend (lag of 1) and seasonality (lag of m) and expose the noise in the time series.

pandas.DataFrame.diff

time_series_intro-skeleton.ipynb

>> Differencing

Autocorrelation

Autocorrelation is the correlation (similarity) of a time series with a lagged version of itself.

Ex: take values [1:10] then values [5:15] how similar are these two sequences of values?

It helps expose the **seasonality** structure of the data.

time_series_intro-skeleton.ipynb

>> Autocorrelation

Takeaways

- We often model time series data as consisting of a trend and seasonal component, together with some observational noise
- Often it may be helpful to resample the data in order to align it with our objectives.
 Upsampling requires more care than downsampling
- Not all data are created equal! We may discard past observations using methods such as sliding windows
- **Differencing** is helpful in removing some of the trend and seasonality in the data

