MONTHLY WEATHER REVIEW.

Editor: Prof. Cleveland Abbe. Assistant Editor: Frank Owen Stetson.

Vol. XXXV.

MARCH, 1907.

No. 3

The Monthly Weather Review is based on data from about 3500 land stations and many ocean reports from vessels taking the international simultaneous observation at Greenwich noon.

Special acknowledgment is made of the data furnished by the kindness of cooperative observers, and by R. F. Stupart, Esq., Director of the Meteorological Service of the Dominion of Canada; Señor Manuel E. Pastrana, Director of the Central Meteorological and Magnetic Observatory of Mexico; Camilo A. Gonzales, Director-General of Mexican Telegraphs; Capt I. S. Kimball, General Superintendent of the United States Life-Saving Service; Commandant Francisco S. Chaves, Director of the Meteorological Service of the Azores, Ponta Delgada, St. Michaels, Azores; W. N. Shaw, Esq., Director Mete-

orological Office, London; H. H. Cousins, Chemist, in charge of the Jamaica Weather Office; Rev. L. Gangoiti, Director of the Meteorological Observatory of Belen College, Havana, Cuba.

As far as practicable the time of the seventy-fifth meridian

is used in the text of the Monthly Weather Review.

Barometric pressures, both at land stations and on ocean vessels, whether station pressures or sea-level pressures, are reduced, or assumed to be reduced, to standard gravity, as well as corrected for all instrumental peculiarities, so that they express pressure in the standard international system of measures, namely, by the height of an equivalent column of mercury at 32° Fahrenheit, under the standard force, i. e., apparent gravity at sea level and latitude 45°.

FORECASTS AND WARNINGS.

By Prof. E. B. GARRIOTT, in charge of Forecast Division

AN UNSEASONABLE WARM PERIOD IN THE UNITED STATES.

The temperature of the third decade of March averaged 12° to 21° above the normal generally east of the Rocky Mountains. In the Eastern States this remarkable and probably unprecedented 10-day period of March heat was due to the passage of two well-marked warm waves that advanced from the Great Plains to the Atlantic coast. These warm waves had their origin in a heated area that set in over the Middlewestern and Southwestern States from the 16th to the 18th, and continued in that region for about ten days, with maximum temperatures of 90° to 100° in Oklahoma and Kansas. The first offshoot from this heated area advanced over the Mississippi Valley on the 21st and reached the Atlantic coast on the 22d, attended at many points by the highest temperatures on record for March. At Washington, D. C., 90°, or higher, was reached on three days, the highest, 93°, being registered on the 23d. This was 10° above the highest March temperature previously recorded for Washington. The second warm wave of this decade advanced from the eastern Rocky Mountain slope to the Atlantic coast from the 24th to 29th, with temperatures at many points that exceeded those of any previous March. On the 29th the heated area in the Middle West and Southwest was dissipated by an area of high barometer from the Pacific. This high area was attended by a cold wave that carried the frost line to northern Florida by April 1.

The associated apparent causes of periods of unusual weather are found in the abnormal distribution of barometric pressure over and near the regions affected. In the case of the March warm period the barometer was continuously low or falling over the western half of the United States from the 18th to 28th. Attending the eastward advance of the warm wave on the 21st and 22d, pressure was low over the entire country except the extreme southeast. On the 24th the warm period in the Eastern States was temporarily broken by a high barometer area that moved from the Hudson Bay region over the Atlantic States from the 24th to 27th. In the meantime barometric pressure had remained low in the West. Following the southeast passage of the Hudson Bay high area southerly winds with rapidly rising temperature again set in over the eastern districts, and continued until broken by the cold wave of the 30th. A consideration of the greater areas of barometric pressure shows that during this warm period pressure was exceptionally high for the season over the interior of Asia, and corre-

spondingly low over the north Pacific Ocean. The effect of continued low pressure over the northern Pacific is shown in the low pressures that continued over central and western portions of the American Continent, which were in turn responsible for the prevalence of warm southerly winds over the eastern half of the United States during the latter half of the month.

Aside from the warm period referred to, average winter temperatures prevailed over the eastern half of the country. In Maine and the Pacific States the month was colder than usual, and over the northern half of California the deficiency was 3° to 6°.

IN GENERAL.

No specially notable features were shown by European and central Asiatic reports. There were two interruptions of the high barometric pressure that prevails at this season over the interior of Asia, one in the first decade and the other at the close of the month. In each case there appeared to have been a slow eastward drift of low barometric pressure from west-central and northwestern Europe, and from the Iceland low area, where, at Seydisfjord, readings below 29.00 inches were recorded during brief periods in each decade. British Isles pressures were generally high, except from the 15th to 19th and at the close of the month, when disturbances of marked intensity crost that region. In the vicinity of the Azores the barometer was exceptionally high during the first half of the month, and readings did not fall below 30.00 inches until the 31st. Over the western Atlantic storms advanced from the northern coasts on the 2d to 4th, 6th, 20th, and 23d, the storm of the 20th being particularly severe on the New England and Canadian coasts. The passage from the continent of storms of moderate strength caused low barometric pressure at Bermuda on the 6th, 25th, and 26th. A feature of the closing days of March was a storm off the extreme southeast coasts of the United States. As this storm acquired its greatest intensity early in April, its description will appear in the Monthly Weather Review for that month.

A number of disturbances of moderate energy crost the Great Lakes, one in the first and third decades and four in the second decade of the month. On the Pacific coast barometric pressure was generally low, more especially during the second and the first half of the third decades, the lowest reading, about 29.15 inches, being noted on the north Washington coast on the 23d.

Precipitation was in excess in the Rocky Mountain and Plateau districts and thence over California and southern Oregon. In California the month was one of the wettest Marches on record.

Heavy rains in the second decade of the month caused exceptionally high stages in the Ohio River and tributaries. At Pittsburg, Pa., a stage of 35.5 feet was reached on the morning of the 15th. This is the highest stage of water ever recorded at Pittsburg, and exceeded the record stage of February 10, 1832, by 0.5 foot. The water at Pittsburg receded rapidly after the 15th, until the 19th, when another rainstorm caused a rise to 24.4 feet, 2.4 feet above the flood stage, at 5 p. m. on the 20th. Heavy rains that set in on the Pacific coast on the 16th and continued several days, combined with melting snow in the mountains, caused destructive floods in the Sacramento Valley, Cal.

The night of the 5th a heavy snowstorm, attended by high wind, thunder and lightning, visited the Middle Atlantic States. On the 10th a heavy snowstorm covered the Middle Atlantic and New England States and the Canadian Maritime Provinces.

BOSTON FORECAST DISTRICT.

Storms of notable severity occurred on the 11th, 19th, and 20th. On the 19th heavy snow fell in northern New England, and on the 20th the wind attained velocities on the coast of 35 to 77 miles an hour. Storm warnings were timely, and there was no damage and little delay to shipping.—J. W. Smith, District Forecaster.

NEW ORLEANS FORECAST DISTRICT.

Frost warnings were issued on two days and frost occurred in the section covered by the warnings. Frost occurred over limited areas, without warnings, on two days. Cold-wave warnings were not issued or required, and no general storm occurred on the Gulf coast .- I. M. Cline, District Forecaster.

LOUISVILLE FORECAST DISTRICT.

After the 13th exceptionally warm weather prevailed, and day after day March temperature records were broken. The month closed with a cold wave and killing frost, regarding which due warnings were issued. The flood in the Ohio River caused widespread damage, altho in this vicinity damage was not so great as from the January flood .- F. J. Walz, District Forecaster.

CHICAGO FORECAST DISTRICT.

The special features of the month were extremely high temperatures over practically the entire district, with no cold waves of consequence. Advisory messages were sent to open ports on Lake Michigan previous to the occurrence of storms, and no damage by storms is known to have occurred.—H. J. Cox, Professor and District Forecaster.

DENVER FORECAST DISTRICT.

March was wet west of the Continental Divide and dry on the eastern slope, with an excess of temperature thruout the district. In eastern Colorado the month was the mildest March on record. No cold-wave warnings were issued.—F. H. Brandenburg, District Forecaster.

SAN FRANCISCO FORECAST DISTRICT.

Unusually heavy precipitation caused destructive floods in central and northern portions of California. Storm warnings were necessary on a number of dates. There were some frosts, but fewer than usual .- A. G. McAdie, Professor and District Forecaster.

PORTLAND, OREG., FORECAST DISTRICT.

The month was not as stormy as usual. During a storm on the 22-23d maximum velocities of 74 miles at North Head, Wash., and 60 miles at Tatoosh Island were reported. No marine casualties were reported in connection with the storms of the month. Timely warnings were issued for all damaging frosts.-E. A. Beals, District Forecaster.

RIVERS AND FLOODS.

For the second time within the short period of two months the Ohio Valley was visited by a great flood. The flood waters from the great rise of January had scarcely past into the Mississippi before the rains that were to cause another began over the headwaters. The two floods differed materially in character in that above the mouth of the Great Kanawha River that of January was very moderate, while that of March was decidedly the reverse, so much so in fact that stages beyond all previous records were reached at Pittsburg and along the Youghiogheny River generally. The apparent antecedent conditions of the two floods were not greatly dissimilar, except that over the watershed of the Conemaugh and Kiskiminetas, the lower Youghiogheny, and the upper Allegheny rivers there were from 4 to 8 inches of moist, heavy, and comparatively fresh-fallen snow on the ground on March 10 and 11, whereas immediately preceding the flood of January there was little or none. The amount of rainfall was somewhat greater during the January flood, but in March differences in distribution, combined with high temperatures and the rapid melting of the snow over the Allegheny, Kiskiminetas, and Youghiogheny watersheds, caused a volume of water that more than compensated for the deficiency in the amount of precipitation.

The greater portion of the heavy rains fell on two successive days, the 13th and 14th, just at the time when, under the influence of temperatures that were from 10° to 25° above normal conditions, all the snows over the Allegheny and Monongahela watersheds were melting with great rapidity and running into the streams.

From the mouth of the Great Kanawha to the mouth of the Scioto the crest stages of the two floods were very nearly alike, as were also the periods of duration. Below the mouth of the Scioto the crest stages of March were from 1 to nearly 5.5 feet below those of January, on account of the limited supply of water contributed by the southern tributaries, notably the Great Kanawha, the Big Sandy, and the Guyandotte. This deficiency in the precipitation over the State of West Virginia is probably all that prevented a flood of much greater proportions. The headwaters of all northern tributaries were above flood stages, and had the West Virginia tributaries, with the Big Sandy, contributed their usual proportionate share of water, the flood of February, 1884, might easily have been compelled to yield its precedence, at least

below the mouth of the Great Kanawha River. The damage caused by the flood was approximately as follows:

Pittsburg, Pa								۰						٠	0		\$5,600,000
Parkersburg, W	7.	١	71	A													200,000
Cincinnati, Ohi	0.																200,000
Louisville, Ky.																	100,000
Interior Ohio																	1,500,000

To these figures must be added the expense of moving property beyond reach of the flood waters, as well as the losses occasioned by the interruption of business, so that the total damage must have amounted to at least \$8,000,000.

An inspection of the weather maps and special reports shows that the flood at Pittsburg can be attributed mainly to the enormous volumes of flood waters caused by the excessive rains and melting snows from March 12 to 14 over the Kiskiminetas and Youghiogheny watersheds. The Monongahela, of course, contributed largely, but not so much as in the January flood, when the stages above the mouth of the Youghiogheny were from 3 to 5 feet higher. Not nearly so much rain fell over the upper Allegheny, less than 1 inch in fact, and no water of consequence came from the region above the mouth of the Kiskiminetas until the afternoon and evening of

March 14, when the breaking of the 6 or 8 feet of ice at Parker, Pa., released the backed-up water and augmented the flood volume of the lower river by about a foot or two. Preliminary warnings were issued on the morning of March 13 and special reports ordered from substations. By this time heavy rains and thunderstorms had interrupted the telegraph and telephone service so that it was impossible to obtain complete reports, and as a consequence the labor of issuing further flood warnings was attended with great difficulties. At 8 a. m. March 14 the stage of water at Pittsburg was 31.1 feet, having past the flood stage of 22 feet between 6 and 7 p. m. on the previous day. At the same time Johnstown, Pa., on the Conemaugh-Kiskiminetas reported 18 feet, 11 feet above flood stage, and the highest stage since the great flood of May 31, 1889. All previous records were exceeded on the Youghiogheny River, West Newton, Pa., reporting 26.3 feet, flood stage being 23 feet. The rise continued until 5 p. m., when a crest stage of 28.2 feet was reached, 6.2 feet above previous high records.

The river continued to rise at Pittsburg until 5 a. m., March 15, when a crest stage of 35.5 feet was reached, exceeding by 0.5 foot the previous high record of February 10, 1832, and by 2.2 feet the high-water mark of February 6, 1884. By 8 a. m., March 16, the river had fallen to 22.8 feet, and by 9 a. m. was once more below the flood stage.

In accordance with custom the municipal authorities of the cities of Pittsburg and Allegheny rendered extremely valuable assistance in the local dissemination of the flood warnings. Squads of police visited every house in the low-lying districts ordering the inhabitants to remove their property to places of safety, and all kept in close touch with the local Weather Bureau office.

About 4000 telephone calls were answered during the three days of the flood, and more than 1000 persons called at the office in search of information. The damage done in the immediate vicinity of Pittsburg amounted to about \$5,600,000, falling principally upon the manufacturing and electrical industries. As far as is known nine deaths in the Pittsburg district can be attributed to the flood, three by the collapse of a railroad bridge, and six by drowning in small streams. The damage to the river interests was practically nothing. Other losses above Pittsburg can not be satisfactorily esti-mated. On the morning of March 14 warning was also sent to Wheeling, W. Va., to expect a stage of 48 feet, 12 feet above the flood stage, by the afternoon of March 15, and again at 1 a. m., March 15, for a stage of 50 feet by midnight of the The crest stage was 50.1 feet at 9 p. m. of the 15th.

This flood has resulted in the overturning of all precedents, and has established the fact that while the Allegheny is usually the prime factor in flood causation at Pittsburg it is not essentially so. In the present instance the bulk of the water undoubtedly came from the Youghiogheny, which was ably, but not so extensively, assisted by the Kiskiminetas and Monongahela. The Allegheny was quite sluggish, being backed up for many miles above Pittsburg, and contributed practically no water to the main flood volume until late in the afternoon of March 14, when the moving of the ice above permitted a little water to come thru.

The greatest previous flood at Pittsburg was that of February 10, 1832, when the water reached a stage of 35 feet, 0.5 foot below that of the present year. Mr. Henry Pennywitt, official in charge of the local office of the Weather Bureau at Pittsburg, has furnished the following extracts regarding this flood:

From the Pittsburg Gazette:

[Issue of February 10, 1832.] River in fine order, about 15 feet above water mark.

[Tuesday morning, February 14.] The winter commenced several weeks earlier than usual. On the 9th of January the ice broke up and navigation opened. On the 5th of February it began to rain, and continued to rain with slight interruptions until the night of the 9th. On

the 9th the rivers commenced to rise, and continued rising rapidly and regularly until 9 p.m. of Friday, the 10th, "when they were higher than had been known by any living inhabitant of this city or neighborhood". The whole of the low ground of the boroughs of the Northern Liberties and Allegheny and the greater part of the city of Pittsburg north of Liberty street were inundated. The damage in Pittsburg did not equal that in those boroughs. No estimate approaching accuracy can be made

of the damage at this time.

[Tuesday, February 21.] The damage was less than at first estimated. At Pittsburg the crest was at 10 p. m., Friday, and at Wheeling,

8 p. m. Saturday.

From the History of Allegheny County:

From the History of Allegheny County:

The winter of 1831 set in early in November and the rivers were frozen until February, 1832, so that people were able to cross on the ice. There was some snow, enough for tolerably good sleighing, but not enough either in Pittsburg or on the mountains to give token of a large spring freshet. Albach, in his Annals of the West, says: "A winter of excessive cold was closed suddenly by long continued and very heavy rains, which, unable to penetrate the frozen ground, soon raised every stream emptying into the Ohio to an unusual height. The main trunk, unable to discharge the water which poured into it, overflowed its banks and laid the whole valley, in many places several miles in width, under water. The water continued to rise from the 7th to the 19th of February, when it attained a height of 63 feet above low-water mark at Cincinnati". Albach's statement of long continued and very heavy rains is not strictly correct. The rain which began to fall early in February, 1832, was a gentle, warm rain, not a very heavy one. It fell upon frozen ground, melting what little snow there was, and ran off as fast as it fell. The rains continued long enough to cause every tributary of the Ohio to overflow its banks. The rivers broke up on the 10th and had begun to fall on the 14th. Allegheny was covered with water to where the Fort Wayne road crosses Federal street. "The Point" at Pittsburg was from four to six feet under water, and the water extended Pittsburg was from four to six feet under water, and the water extended to St. Clair street on Penn and Liberty. Wood street was overflowed as far as Fourth avenue. All communication between the town and the South Side was cut off.

Yet beyond the flooding of cellars and lower rooms, no special damage was done to Pittsburg. The people living near the rivers were inconvenienced for a time, and business was at a standstill for a few days, but a few weeks served to remedy all this inconvenience. The greatest material loss to Pittsburg was that of Smoky Island, which was carried

away, together with a frame factory which it contained

From the mouth of the Beaver River to Parkersburg, W. Va., the flood was remarkable for its unprecedented rate of rise, averaging 30 feet for the forty-eight hours ending at 8 a. m., March 15, and the stages were the highest of record, with the exception of those of February, 1884. In the Parkersburg district the stages were generally somewhat over .50 feet, Parkersburg reporting 51.6 feet, 15.6 feet above the flood stage, and Marietta, Ohio, 50.6 feet, 25.6 feet above the flood stage. Warnings were issued promptly, but in several instances they were not heeded as they should have been, some persons preferring to place more reliance upon previous experience than upon the actual knowledge in the possession of the Weather Bureau. As a consequence considerable damage was done that might have been avoided. The official warnings were characterized by extreme accuracy, and were the subject of much commendation.

Four lives were lost during the flood and the damage done amounted to about \$200,000.

From Parkersburg to Cairo conditions were very similar to those that prevailed during the flood of January, 1907, altho from Portsmouth, Ohio, southward, the crest stages were somewhat lower. The warnings were issued with the usual high degree of accuracy, and many letters of commendation were received. The damage done amounted to perhaps \$300,000 or \$400,000, considerably less than during the January flood.

A special hydrograph of the Ohio River, showing the stages

from day to day, will be found on Chart IX.

The Wabash River was also in flood, with crest stages of 17.3 feet at Terre Haute, Ind., and 23 feet at Mount Carmel, Ill., on March 19 and 22, respectively, flood stages being at 16 and 15 feet. Warnings were issued from time to time and the crest stages differed from the forecast stage by only 0.4 foot.

While the flood was in progress along the upper Ohio, the interior rivers of the State of Ohio, without exception, were also in flood, and an enormous amount of damage was done over the southern half of the State.

The following table contains the flood stages at the various stations, together with the crest stages of both the January and March floods, and the number of days the river was above the flood stage:

Station.	Flood	Crest s	stages.	Days above	flood stage.
Station.	stage.	January, 1907.	March, 1907.	January, 1907.	March, 1907.
Pittsburg, Pa	22	23, 2	35, 5	1	4
Wheeling, W. Va	36 36	36. 9	50, 1	2	4
Parkersburg, W. Va	39	40. 1 50. 2	51. 6 54. 8	6	10
Huntington, W. Va	50	58.0	58.4	7	10
Catlettsburg, Ky	50	60.0	60. 4	8	2
Portsmouth, Ohio	50	61.0	60.8	9	9
Maysville, Ky	50	60.3	59. 2	9	9
Cincinnati, Ohio	50	65, 2	62. 1	11	12
Madison, Ind	46	56. 7	51.9	10	10
Louisville, Ky	28	41.4	36, 0	11	11
Evansville, Ind	35	46, 2	43. 8	30	17
Mount Vernon, Ind	35	48, 5	45, 0	31	16
Paducah, Ky	40 45	45. 7 50. 4	42, 3 46, 2	16 16	10

At Hamilton the Great Miami River reached a stage of 20.3 feet, 8.3 feet above the flood stage, and within 0.9 foot of the highest water of record. From 3 to 9 a. m., on March 13, the river rose 10 feet.

Along the Scioto River conditions were still more pronounced. At Circleville the crest stage was 19.3 feet, 12.3 feet above the flood stage, the breaking of a levee alone preventing still higher stages. At Columbus the maximum stage was 19 feet, 2 feet above the flood stage. Similar conditions prevailed along the Muskingum River, and at Zanesville on March 14, the water reached a stage of 31.9 feet, 6.9 feet above the flood stage.

The Hocking River, altho quite small, really caused more damage than any other river in the State. The Hocking Valley Railroad suffered to the extent of \$170,000, the loss to the coal mines by flooding was about \$1,000,000, and a few small towns were nearly destroyed. Nothing serious occurred along the Sandusky and Maumee rivers, altho flood stages were general. The total damage in the State of Ohio caused by the floods, aside from that along the main river, amounted to at least \$1,500,000, and possibly more.

Warnings were issued from the local office of the Weather Bureau at Columbus, Ohio, on March 14 and 15 to all points likely to be affected by high water, and reports from flooded districts stated that they were the means of saving a great amount of property.

The crest of the Ohio River flood past into the Mississippi on March 24, and as it closely followed another rise moving slowly toward the Gulf, the two were in a measure merged into one long swell with a very leisurely movement. At the end of the month the river was above flood stage as far south as Arkansas City, and still rising slowly below. Advisory warnings were issued at the proper time in both the Memphis and Vicksburg districts. The only damage was caused by the overflow of some early seeded fields along the lower Yazoo River, but planting operations were generally delayed and levee work entirely suspended.

There were some heavy rains along the Cumberland and lower Tennessee rivers during the last day or two of February and the first two days of March, necessitating warnings of moderate floods which were well verified. No damage was done.

Flood waters caused by ice gorges did much damage along the Missouri River between Pierre, S. Dak., and Sioux City, Iowa, during February and early March, and the following report thereon was prepared by Mr. C. D. Reed, official in charge of the local office of the Weather Bureau at Sioux City, Iowa: A warm spell from February 9 to 17, over the region between the Missouri River and the Rocky Mountains, caused all the tributaries flowing into the Missouri from the west and the headwaters of the Missouri itself to break up with more than the usual volume of water, the snowfall in this region having been above normal. On February 15, the Bad River broke up suddenly at Fort Pierre, S. Dak., pushed large quantities of ice out over and under the solid ice in the Missouri, and flooded the lowlands on the Fort Pierre side, damaging barges and other property belonging to the U. S. Engineers, to the amount of \$3000. At about the same time, the White River broke suddenly and rose rapidly near Oacoma, S. Dak., causing a loss of live stock and farm buildings estimated at \$3000.

On Sunday, February 17, the Missouri began to break up from just above Sioux City to above Running Water, S. Dak. Altho above the normal February stage, the Missouri was yet 5 feet below flood stage at Sioux City and at Yankton. Without some stoppage in the movement of the ice, no flood damage could possibly have occurred, but during the forenoon of February 17, the ice began lodging on a sand bar in Gunderson's Bend, four miles southeast of Vermilion, S. Dak. In five hours the water rose 12 feet and began flowing over the bottom lands. By Monday morning the 18th the water had broken thru the Chicago, Milwaukee, and St. Paul Railroad grade between Vermilion and Burbank, and began flooding the land north of the track. It is reported that the current was so strong that huge cakes of ice were carried over the railroad and into the fields on the other side.

At 10 p. m. of the 17th, upon the meager and somewhat conflicting information that could be gathered from unofficial sources, warnings were issued to interests on lowlands in the vicinity of Sioux City, advising the removal of all live stock to higher ground at once and the preparation of movable property for transfer on short notice. On the following morning this warning was distributed at Jefferson, and Elk Point, S. Dak., and Jackson, Nebr.:

"Gorge in Missouri River threatens damaging flood. Every precaution should be taken on lower lands".

During the afternoon of the 18th, a portion of the gorge became detached and past down to Renniker's Neck opposite Jackson, Nebr., where it lodged, causing the water to overflow the banks. A new channel was soon cut and much of the ice remained stranded. During the afternoon of the 18th heavy ice began passing Sioux City and while not really forming a gorge, it clogged the channel just below the mouth of Big Sioux River, causing the water to back up that river so that it began to flow into the basements of some of the boat club houses at Riverside, and came within an inch of the grates under the boilers used in heating Elder's greenhouses. An estimated stage of 14 feet occurred at the Sioux City gage during the night of the 18-19th.

After the partial break in the gorge at Vermilion on the 18th it rapidly reformed, and during the next few days extended up the river past Vermilion a total distance of 10 or 12 miles. The ice in many places became piled up to a height of 10 to 15 feet above the water level, and a few huge cakes became tipt up on edge so that they stood 25 feet high. The water spread over a large territory on both sides of the river, but especially on the South Dakota side from below Burbank to above Meckling. It is estimated that 100 square miles of land not usually overflowed were enundated, and much of this was valuable farming land. Within about ten days the water cut channels around and thru the gorge and began to subside gradually. The breaking up of the Missouri at Pierre, S. Dak., on March 7, with a 3-foot rise, closed the outlets around the gorge to some extent, and a second rise occurred on the 9th and 10th of March, reaching about the same height as the previous rise and extending farther up the river, causing additional damage at Meckling and above.

At this time an effort was made by the U. S. Engineers to locate a point where the gorge could be effectively blasted away with gunpowder, but before a strategic point could be found, large sections from the lower end of the gorge began to break away and pass down the river at intervals. The main gorge began to move out at 3 p. m. of the 13th. As it past Vermilion the water rose 3 feet, remained stationary for a time, and then rose 4 feet more, due to a sudden stoppage of the gorge at some point below. The U. S. Engineers telephoned the local office of the Weather Bureau in Sioux City as to the breaking of the gorge and the total rise of 7 feet in six hours. On this information and because of the great probability of a sudden stoppage of the gorge at most any point below, it was deemed advisable to issue flood warnings for Jefferson and Elk Point, S. Dak., and Jackson and Walker's Island, Nebr., and interests in Sioux City affected by a stage of 17 feet. The warnings were all distributed before midnight of the 13th. An estimated stage of 14.5 feet occurred at Sioux City on the early morning of the 14th. As the ice moved out without stoppage, all danger of flood was soon past.

distributed before midnight of the 13th. An estimated stage of 14.5 feet occurred at Sioux City on the early morning of the 14th. As the ice moved out without stoppage, all danger of flood was soon past.

The flood in the vicinity of Vermilion continued twenty-four days, and was said by old residents to be the worst since March 25, 1881, when a gorge formed in a similar manner at about the same place. The total damage is estimated at \$100,000, of which probably \$20,000 might have been prevented if sufficient warning could have been given. On account of the caprices of ice gorges and the difficulty in securing reliable information from points between gage stations, the difficulty in accurately predicting such floods is obvious.

The flood in the Sacramento and San Joaquin valleys was doubtless the greatest in their history, and before the waters subsided damage amounting to at least \$5,000,000 had been An account of this flood has been prepared by Mr. James H. Scarr, official in charge of the local office of the Weather Bureau, Sacramento, Cal., and follows herewith:

Preliminary to a report on the great flood of the latter half of March. 1907, in the Sacramento and lower San Joaquin valleys, a glance at the rainfall tables of the climatological reports of the California section will serve to show a period of heavy and long-sustained precipitation extending from the 2d to the 17th of January. Then followed a nearly rainless period of a week, followed by another period of heavy precipitation extending from January 24 to February 4. During these periods the tion, extending from January 24 to February 4. During these periods the rainfall was unusually heavy over the Sacramento watershed, gradually diminishing toward the south with heavy and accumulating snows in the higher Sierras.

These periods of heavy precipitation are mentioned because of their effect on the later flood situation in the Sacramento watershed. Conditions in the San Joaquin were not materially affected by these rains.

The precipitation of the first period mentioned produced the ordinary

winter stages in the rivers of the Sacramento watershed, and the gre overflow areas or storage basins known as Sutter, American, and Yolo basins began to fill.

The precipitation of the second period, ending about February 4, produced flood stages in all the streams of the Sacramento watershed, tho no new high-water records were made, except at Marysville, where the Yuba recorded a stage of 22.2 feet on February 2, 21.8 feet being the

previous record.
On February 2 the American River at Folsom reached a stage of 21.2 On February 2 the American River at Folsom reached a stage of 21.2 feet, the highest known for many years. All local interests were warned by telephone. Two new rallroad bridges in process of construction across the American River at this city were in great danger, but the companies' officials were warned in time to take all possible precautions, and as a result most of the structures were saved. By courtesy of the Capital and Pacific States Telephone companies all down-river points were warned of a rapid rise and advised to patrol all levees. Advisory warnings were sent to all points on the Sacramento from Colusa to Riovista daily as the situation seemed to warrant, and all local transportation interests were kept fully advised.

This flood wave in the upper Sacramento crested at Kennett on February 4 at 18.5, at Red Bluff on the 4th at 24.4, at Colusa on the 6th at 28.2, and at Knights Landing on the 6th at 18.8 feet. Below the latter place most of the flood waters of both the Sacramento and the Feather escape into the Yolo basin, returning to the Sacramento at Riovista thru Cache slough. At this city the Sacramento River continued to rise till

Cache slough. At this city the Sacramento River continued to rise till the evening of the 8th, when at a stage of 26.9 feet the levee on the west the evening of the 8th, when at a stage of 26.9 feet the levee on the west side of the river opposite Y street (the south boundary of the city) broke, flooding a small district in Yolo County containing some 900 acres. The Southern Pacific Railroad grade cuts off the upper or northern end of this district, passing thru the village of Washington. A small portion of the town lying south of the railroad was flooded. The back levees of the district were cut to save the railroad grade, and the water quickly found its way to the Yolo basin on the west. With the occurrence of this break the river here began to decline steadily.

On the 7th the first of the flood wave was noticed in a one-foot rise at Riovista. A warning was sent that flood stages would probably be reached by the 12th. The river reached its highest stage of 13.3 feet at Riovista about noon of the 11th.

This flood did very little damage, but is interesting in this connection because it left the great storage basins full. The warnings issued were generally appreciated and eagerly sought by those whose interests are menaced by flood stages.

menaced by flood stages

The lower San Joaquin River reached a fairly high stage, 15.8 feet, on the 9th, but as this is not dangerously high no warnings were sent. The daily river bulletin reaches Stockton at noon, and is ample to advise of stages in that watershed except in case of great emergency.

The rest of February was generally deficient in precipitation. The rivers declined to the usual winter stage and remained about stationary,

sponding slightly to a short precipitation period from the 21st to the

March shows two distinct precipitation periods—the first from the 2d to the 11th, only moderately heavy, but depositing fresh snow on the high mountains and well down on the footbills; the second extending from the 16th to the 25th and being very heavy. From the 16th to the 20th, inclusive, this rainfall over the northern half of the State, and especially in the watersheds of the upper Sacramento, Feather, Yuba, Bear, American, Mokelumne, Calaveras, Stanislaus, and Tuolumne rivers Bear, American, Mokelumne, Calaveras, Stanislaus, and Tuolumne rivers and over the watersheds of Stony, Cache, and Putah creeks, on the west side of the Sacramento Valley, was accompanied by unusually warm weather, especially at the higher altitudes, causing rapid melting of the soft snow and a run-off probably the heaviest since these valleys have been inhabited by civilized people. The average precipitation of four stations on the upper Sacramento for these five days is 8.90; for nine stations in the watershed discharging thru the Feather River 16.56; for six stations in the American watershed 14.41; and for four stations along the eastern slope of the San Joaquin watershed 6.99 inches

Individual stations reporting the greatest precipitation were Stirling City, 24.22 inches during this period, and 43.38 for the entire month; and Laporte 22.45 inches during this period, and 42.62 for the entire month. The effect of this rainfall was immediate and extreme in all rivers

affected. At Kennett, on the upper Sacramento, the river rose from 6.3 on the 17th to 20.0, 25.0, and 33.2 feet on the succeeding days; while in the Feather, Yuba, American, Mokelumne, Calaveras, Stanislaus, and Tuolumne, the climax was reached one day earlier.

On Sunday, the crimax was reached one day earner.

On Sunday, the 17th, reports from Electra, Melones, and Jacksonville of stages of 8.0, 10.3, and 10.6 feet, respectively, warranted a warning advising of a sudden and extreme rise in tributaries of the San Joaquin and subsequent high stages in the main river. An advisory warning was also sent to Colusa on the strength of special report of heavy rainfall at Kennett, and all local interests were warned by telephone of a sudden and extreme rise in the American River.

On Monday, the 18th, conditions were rapidly growing worse in all sections of both watersheds. Special reports were called for from stations in the San Joaquin watershed and warnings were repeated to Stockton, to be distributed by special arrangements from that point. Advisory warnings were sent to Colusa and Marysville, and all local interests advised thru the courtesy of the telephone companies.

On Tuesday, the 19th, telegraph wires were down in many places, but on the showing of reports received in a regular way, and reports of rainfall by courtesy of the Southern Pacific Company, warnings were sent to Colusa to expect the highest water of record at all points from Kennett to Knights Landing. Warnings were sent to Stockton for highest water of record in the Tuolumne, Stanislaus, Calaveras, and Mokelumne rivers also that the lower San Joaquin and entire island district would experience the highest water of record after the 21st. The American River at Folsom crested at 26.8 feet this morning. It was learned later that the Yuba at Colgate crested at midnight on the 18th at 23.0 feet, 8.4 feet above tuba at Colgate crested at mining of the 18th at 23.0 feet, 8.4 feet above the previous high-water stage of February 22, 1904. The Feather at Oroville crested on the morning of the 19th at 28.2 feet, 3.2 feet above the previous high-water stage of February, 1881. The Yuba at Marysville also crested on the morning of the 19th at 23.3 feet, 1.1 feet above the high water research of February 3, 1907; the Modelware Biscon at February 3, 1907; the Modelware Biscon at February 2, 1907; the Modelware Biscon at February 3, 1907; the Modelware Biscon at February 2, 1907; the Mod high-water record of February 2, 1907; the Mokelumne River at Electra at 13.0 feet, 4.0 feet above the previous highest known stage; the Calaveras at Jenny Lind at 13.0 feet, 3.0 feet above previous high water, and the Tuolumne at Jacksonville at 26.0 feet, by several feet the highest of record. The Stanislaus at Melones also reached a stage of 11.0 feet on the 19th, being above all previous records, tho it crested at 12.2 feet on the 21st.

On the afternoon of the 10th water from the Calaveras River overflowed the greater portion of the city of Stockton. The flood reached its greatest height about midnight, and in two or three days the water was gone from the streets. No lives were lost. The damage is estimated at half a million dollars, one half that sum being charged to goods in basements and lower floors damaged by wetting.

On Wednesday the 20th, the river at Kennett reached the remarkably high stage of 33.0 feet, 8.0 feet above any previously known stage, and began falling rapidly. At Red Bluff the flood wave crested at 27.5 feet at 4 p. m., 2.0 feet below the highest record stage of February 4, 1881. Colusa reported a stage of 28.6 feet, but 0.1 foot below the high-water stage of April 1, 1906, and with a certainty of a continued rise for twenty-four hours, unless relieved by breaking and overtopt levees. A special message at 4 p. m. announced a stage of 29.3 feet, with water running over the levees both above and below the city. Levees were also overtopt for nearly the whole distance from Princeton to Jacinto. At 8 p. m. another special message announced the inevitable breaking of the levees another special message announced the inevitable breaking of the levees below Colusa, affording at least temporary relief to the levees in front of the city. All reports from the Feather River watershed showed declining stages. The American at Folsom declined 6 feet, but was still at an unusually high stage. The Sacramento at this place reached 26.9 feet, and began to decline. The slope of the water surface from the mouth of the American to the Kripp break, a distance of nearly 3 miles, was about 2 feet to the mile, and the current velocity was estimated by engineers and river men to be at least 12 miles an hour. It was evident that no flood stage could occur here under the conditions existing, but warnings to points on the river between here and Riovista were emphathat no flood stage could occur here under the conditions existing, but warnings to points on the river between here and Riovista were emphasized. The doubled current velocity here was forcing a much larger volume of water past the Kripp break than would have past that point at much higher stages at normal velocity. The break was also acting to reduce the slope of the flood plane below, and a consequent "piling up" of the water below was resulting not only in higher stages than would be indicated by the stage at Sacramento, but higher stages by several feet than were ever before recorded. several feet than were ever before recorded.

The river at Riovista began to respond to the flood waters on this date in a rise of 1 foot to a stage of 9.8 feet at 7 a. m., and warnings were issued that the river at that point would continue to rise till after Sunday and would pass all previous high-water records.

The San Joaquin crested at the bridge near Lathrop at 19.2 feet, 0.5

foot above the high-water mark of March 25, 1906. Long distance telephone calls were had from Stockton and other down-river points, and warnings and advices were distributed by this means. The Mokelumne

River near Woodbridge was reported to have broken its levees, and a

large area was being flooded.
On Thursday the 21st, Kennett reported a decline of over 12 feet.
Breaks had occurred near Princeton, and several breaks in Sutter County ad flooded Reciamation District No. 70, resulting in the loss of con-derable stock. Telephone lines were down and it was impossible to reach the district with the later warnings. Eleven breaks had occurred on the west side between Colusa and Grimes, and the river at Colusa on the west side between Colusa and Grimes, and the river at Colusa was falling. At Knights Landing the river crested on this date at 20.2 feet, 1 foot above the previous high-water record. Breaks occurred in the levees above and below the town, flooding the greater part with back water. No lives were lost and not a great amount of damage was done in the town. The Feather, Yuba, and American rivers were falling. The Sacramento was falling at this city, but rising at all points below, including Riovista, where the returning flood waters from Yolo basin thru Cache slough caused a rise to a stage of 13.2 feet. All rivers in the cluding Riovista, where the returning nood waters from the thru Cache slough caused a rise to a stage of 13.2 feet. All rivers in the San Joaquin watershed were falling except the San Joaquin at Firebaugh, the fall to a stage of 18.6 feet at the bridge near Lathrop being due to several breaks in the levees both above and below that point. Long distance telephone calls from Stockton, Elk Grove, Riovista, Walnut Grove, Isleton, and Courtland furnished means of repeated warnings that the rivers and sloughs of the island districts would continue to rise for several days, and would remain at dangerously high stages until after the 29th. San Francisco was asked for a special wind forecast at 4 p. m., and the following was received: "High southwest winds will prevail in the valley and Bay districts to-night and Friday morning". This warning was telephoned or telegraphed to all points that could be reached; under prevailing conditions it was deemed of the utmost importance, as wave action under strong wind pressure is apt to prove most destructive to nearly submerged levees. During the apt to prove most destructive to nearly submerged levees. During the night several breaks occurred between Courtland and Walnut Grove on the east side of the Sacramento. This water past down on the back side of the Pierson district, adding to the already disastrous overflow from the Mokelumne, and threatening all reclamations in the lower San Joaquin delta.

On Friday, the 22d, most interest centered on the island districts, On Friday, the 22d, most interest centered on the island districts, where the water continued to rise steadily. Riovista reported 15.5 feet, 0.5 foot above the high-water mark of March 23, 1904. The situation was growing desperate, but the only reply that could be given to the repeated telephone calls from the doomed reclamations was: "The worst is yet to come. Do not be deceived by a temporary decline on the ebbing tide. The water will rise steadily in most sections till after Sunday, and the danger will not be past for a week". Several districts in the San Joaquin delta, embracing more than 20,000 acres, were flooded. District No. 108, embracing 75,000 acres, mostly in Colusa County, gave way and began to fill rapidly.

embracing 70,000 acres, mostly in Colusa County, gave way and began to fill rapidly.

Saturday, the 23d, was a most disastrous day. Ryer, Tyler, Brannan, Andrus, and Bouldin islands and the Lisbon district, embracing some 60,000 acres, all in the highest state of intensive cultivation, were flooded. This wholesale inundation, with the outgoing tide, caused a slight decline This wholesale inundation, with the outgoing tide, caused a slight decline at all points on the Sacramento side, but warnings were repeated that a still further rise would occur at all points in the island district. On Sunday, the 24th, the river at Riovista reached its highest point, 18 feet, 3 feet above the previous high-water record, and began to decline. This decline was doubtless due to the breaking of the levees on Brannan, Andrus, and Twitchell islands. The water from the Yolo basin thru Cache slough was given a direct and free outlet to the San Joaquin instead of being confined to the narrow and crooked channel between Sherman Island and the Solano County hills. On this date the rich Pierson district, some distance below this city, which escaped the flood of 1904, and which by tremendous effort had so far been held, gave way, and 10,000 more acres of the most productive land in the world was given to the flood. Probably the largest loss of livestock occurred in this to the flood. Probably the largest loss of livestock occurred in this district, its value being estimated at \$60,000. This was not because of the lack of warning, but because the officers of the reclamation district were too confident of holding the district against all odds.

The breaking of Brannan, Andrus, and Twitchell islands now gave the waters from the Yolo basin, which were several feet higher than ever before known, a free sweep in an almost direct line from the outlet at Cache slough into the San Joaquin more than 75 miles above its mouth. The escaping water from the Sacramento in the vicinity for the San Joaquin still higher up. mouth. The escaping water from the Sacramento in the vicinity of Courtland also found a direct outlet into the San Joaquin still higher up. As a result the water in the San Joaquin and sloughs below Stockton continued to rise in some sections till the 29th, tho at Lathrop the highest was reached on the 20th. In this section probably 40,000 acres were flooded after the 24th, the last tract of 2000 acres being submerged on

To summarize, undoubtedly the flood of March 18 to 29, 1907, was the greatest since the lowlands of the Sacramento and San Joaquin valleys have been reclaimed to any considerable extent. It is probable that the volume of water discharged was equal to if not greater than that of 1862, referred to as the "great flood".

Nearly 300,000 acres of reclaimed land was flooded. The damage, including the less of severe which is far in excess of all other lesses, or

cluding the loss of crops, which is far in excess of all other losses combined, will probably reach \$5,000,000. This does not include damage to railroads which was considerable. Very few lives were lost, and none

can be charged directly to the flood, so far as present advices indicate. All previous high-water records were surpast at all points reporting on the Feather, Yuba, and Bear rivers, also at all points on the Sacramento River, except Red Bluff and Sacramento. The Mokelumne, Calaveras, Stanislaus, and Tuolumne rivers past all previous records, as did also the San Joaquin below the mouth of the Toulumne.

In judging of the service performed by the Weather Bureau in this emergency, it is hoped that it will be born in mind that this service embraces two entire river systems, each complicated and with sources of flood waters from numerous short, torrential streams. The situation in the most important part, viz, the island districts, is still further complicated by the union of the two systems at tide level by an intricate network of sloughs and channels, and the return to the main rivers by shorter routes of the escaped flood waters from above. Then again the service is comparatively new as regards administration, data secured, and the people and interests to be served.

The papers usually gave credit for the information furnished and repeated the warnings given, and the editors and reporters have personally exprest great appreciation of the service. Locally the State Board of Public Works, the transportation companies, and many owners of reclaimed lands have also exprest appreciation of the service rendered.

Our observer at Colusa writes: "All farmers in flooded sections had received warnings from the Weather Bureau, and had ample time to remove stock to places of safety. No stock lost in Colusa County. * * * A copy of all warnings furnished to the press and posted on Market street and on Fifth street, and all farmers accessible by telephone notified. The service furnished by the Weather Bureau very satisfactory and greatly appreciated by all

M. D. Eaton, of Stockton, to whom was sent the first warning on March

17, writing on the 18th, says:

" * * I immediately telephoned, upon the receiving of your telegram, to different parties interested in reclaimed lands which might be affected by the possible extreme flood waters of the San Joaquin. would be useless for me to say that we appreciate your action beyond any explanation. * * * Your telegram of yesterday created quite a stir among us and has given us an opportunity to prepare for dangerous any explanation.

J. M. Eddy, Secretary of the Stockton Chamber of Commerce, writes under date of April 4:

"In behalf of this Chamber of Commerce and the vested interests of this community, I wish to thank you for your successful efforts to keep this organization and our people apprised of the river stages and weather conditions during the recent floods, and to assure you that there is a very high appreciation of your work among those best informed and most concerned. I trust that the memory of this will influence our citizens to a greater degree of helpfulness to you in making your inquiries in the future."

In addition to the service rendered, the complete and unbroken record of river stages secured by this service during the flood will prove invaluable to all lines of hydrographic, reclamation, irrigation, and river improvement work.

The breaking up and downstream passage of the ice in both branches of the Susquehanna River resulted in some moderately high stages of water. but no damage of great consequence. At Binghamton, N. Y., the ice went out at 11 p. m. on March 15; at Towanda, Pa., at 10:30 a. m. of the same day, and at Wilkes-Barre, Pa., at 5 a. m., March 16, moving out on 16 feet of water.

At Clearfield, Pa., on the West Branch, the ice began to move at 6 p. m., March 13, and by 5 p. m. of the following day the water had reached a stage of 11.9 feet, 3.9 feet above flood stage. Several factories were compelled to suspend work for a few days, and some streets were washt out.

At Renovo, Pa., the ice went out at 7 a. m. on March 14, and at Williamsport, Pa., at 6 a. m. of the following day. In the main river the ice began to run on March 14.

The greatest damage was done at Port Deposit, Md., a large portion of which was flooded.

The dead body of a boy, found in the ice at Port Deposit, was afterward identified as that of one who had fallen into the North Branch from the Berwick Bridge, more than 150 miles above, on January 16, 1907.

Warnings of the stages of water to be expected were issued from Harrisburg, Pa., on March 13 and 14, and were of great benefit to those interested.

Considering the condition of the rivers, the manner of the ice breakup was most fortunate; first came the ice from the main river and the Juniata, then that from the West Branch, followed a day later by that from the East Branch. Had all or any two come out together, a serious flood in the lower river would surely have resulted.

The rains of the latter days of February and March 1 caused a moderate flood in the Alabama River, and others somewhat more pronounced in the Black Warrior, the lower Tombigbee, and the rivers of southeastern Mississippi. Warnings were issued for all, and no damage worthy of special mention was done. On some of the rivers the floods were of benefit, as they permitted the movement of lumber that had been held for sufficient water to float it to market.

The heavy rains on March 13 and 14 caused severe and dangerous floods along the upper Potomac River and its headwaters, resulting in damage to the amount of about \$1,000,000, mainly to railroad interests. There was no damage of consequence below Cumberland, Md.

High water did some damage along the rivers of Idaho, the result of heavy rains and melting snows.

At the end of the month the Mississippi River was free from ice, which broke up at Leclaire, Iowa, on March 1, and at Fort Ripley, Minn., on March 27.

The rivers of Maine remained frozen, but the ice of the upper Connecticut gave way between March 27 and 29.

The highest and lowest water, mean stage, and monthly range at 312 river stations are given in Table VI. Hydrographs for typical points on seven principal rivers are shown on Chart I. The stations selected for charting are Keokuk, St. Louis, Memphis, Vicksburg, and New Orleans, on the Mississippi; Cincinnati and Cairo, on the Ohio; Nashville, on the Cumberland; Johnsonville, on the Tennessee; Kansas City, on the Missouri; Little Rock, on the Arkansas; and Shreveport, on the Red.—H. C. Frankenfield, Professor of Meteorology.

SPECIAL ARTICLES, NOTES, AND EXTRACTS.

RAINFALL AND RUN-OFF OF THE CATSKILL MOUNTAIN REGION.1

By Thaddeus Merriman, Assistant Engineer. Dated Browns Station, N. Y., June 14,

The purpose of the studies on the rainfall and run-off of the Catskill watersheds, the results of which are embodied in this report, has been:

1. To determine the most probable mean annual rainfall on each of the four watersheds proposed to be used as an additional supply for the city of New York.

2. To determine the relation between the values of the rainfall on these watersheds and the values of the rainfall at other points where long and careful records have been kept.

3. To determine as closely as possible the percentage of the rainfall on these watersheds which may be expected to appear as streamflow and become available for the supply of the city. RAINFALL.

An examination of rainfall records in the State of New York, particularly in the territory covered by the Rondout, Esopus, Schoharie, and Catskill watersheds, at once showed that practically no observations had ever been made in this immediate vicinity. There was found but one record within the limits of these watersheds, and that for a short period only. A number of records had been kept at distances varying from 3 to 20 miles, and located geographically around the area under consideration. An admirable digest of these records in the vicinity was made in the report of the Commission on Additional Water Supply for the city of New York, in 1903. This commission also established a number of gages on these watersheds. Observations were continued for about nine months, when the completion of the work of the commission caused their abandonment.

Ten rain gages have been established by the present Board of Water Supply, and these, in connection with the gages of the voluntary observers of the United States Weather Bureau, cover in excellent form all the territory of the four watersheds. For the future, therefore, the rainfall will be determined with a high degree of precision.

In order to fix the most probable mean value of the rainfall in this territory it was decided to make the study as comprehensive as possible. To this end, therefore, nearly all reliable records for points within approximately one hundred miles of the Ashokan basin which could be found in public documents were gotten out and studied. This work involved an examination of the records at 76 different stations, the records at all of the stations covering a total length of 1085 years.

The records studied were obtained from the following

sources: (a) New York State Meteorology. (b) The New York

State Weather Bureau Reports. (c) The United States Weather Bureau Reports. (d) Records at miscellaneous points, as given in the report of the Commission on Additional Water Supply.

In the New York State Meteorology are assembled the records of observations made at the incorporated academies of the State, under the direction of the regents of the University of the State of New York. These records were begun in 1825 and carried on more or less continuously until the Civil War diverted attention from them, and they were forgotten.

Two different forms of gages were employed by these oldtime observers. Prior to 1833 a gage with but little protection against evaporation was used. A conical mouthpiece collected the rain and delivered it into a cylinder the area of which was one-eighth that of the mouth of the collecting cone. In this cylinder there was a float connected to a graduated scale which projected above the top of the gage, and on which the depths were read. In cold weather a vessel having the same area of mouth as the collector of the gage was set out. The snow was caught in this vessel, melted, and measured in the gage. This vessel was not more than 6 inches deep, and it is doubtful if the precipitation during the winter months, as determined by this device, was even of a reasonable degree of accuracy. In fact, an inspection of these records shows that the rainfall during the winter season was then apparently quite uniformly lower than that which is recorded by gages at the present time; there is no reason for believing that such was really the case, and the difference is to be attributed to the type of gage used.

The instructions for setting these gages stated that they should be set remote from all obstacles, and distant from them by at least twice the height of the obstacle.

After 1833 a conical type of gage was used, the details of hich are shown in the accompanying sketch.² Measurement which are shown in the accompanying sketch.2 of the rainfall was made by putting a graduated stick down into the gage. This stick was graduated so as to give a reading in hundredths of an inch for the first three-tenths of an inch, and thereafter by fifths of an inch. The instructions for the setting of these gages were the same as those for the older type, except that they were to be placed with their mouths 8 feet above the surface of the ground.

All of these old records indicate quite uniformly a lower value for the rainfall than do the results of more recent observations. While it is impossible to state absolutely the reasons for this apparent difference, it is probably due (1) to loss by evaporation from the first type of gage used; (2) to the unapproved method of measuring the snowfall; (3) to the placing of the conical gage 8 feet above the ground; this gage would therefore probably register about 3 per cent less rain than the standard gages now in use.

¹A report to C. E. Davis, department engineer, and J. Waldo Smith, chief engineer, Board of Water Supply, city of New York. Communicated by permission of the Board.

² Not reproduced here.—EDITOR.

On the other hand, however, there is nothing to indicate that these reports were not kept with the greatest care and fidelity. They show monthly rainfalls as high as any we have now, and others just as low. Were it not for the unfortunate now, and others just as low. differences in methods used, these records would be of very great value. In these studies they have been used as having an indicative value only.

The records obtained from the reports of the New York State Weather Bureau and from those of the United States Weather Bureau are the most valuable and reliable which can be obtained. The methods used by the observers reporting to these two bureaus are uniform, and the only question which can arise as to their reliability is that of the unfaithfulness of This naturally is something which can not be the observers.

considered.

To attempt to assign a relative value to the records of all the stations studied would be a hopeless and impossible task. They have, therefore, been studied collectively; i. e., when in one locality one record showed a very high value and another a low one the mean of the two records has been considered as being the most probable value of the rainfall in that vicinity. Having decided that this was the only practical method of treating the records studied, it was felt that before even this could be done they must be reduced to some more even plane. The following is the reasoning which was used in this deduction, the steps of which are shown in detail in Tables 1 and 2.

Rainfall is erratic, and follows no definitely recognized law. Records of rainfall may differ from each other on account of what we may term "accidents of location", such, for instance, as the inapparent effect of a building; or again, the location of the gage in the path of showers, which path is defined by the topography of the country; or the results may differ, as from a minor local storm, which is felt at one station and not at another. That such differences occur is well shown by a study of the contemporaneous rainfalls at New York and Newark, 10 miles distant from each other, and again at Albany and Troy, but 7 miles apart. These very visible differences led us to an extended study, and we observed that they occur usually in the months of June, July, August, September, and October. Those which occur in June, July, and August are probably the result of local thundershowers, while those of September and October seem to be due to extended storms which cover a wide area of country, yet in which the precipitation varies greatly, even over a limited portion of territory. Other differences, not numerous, however, occur in the other months of the year, but the reasons for them are not so apparent.

Having recognized and admitted this principle of permissible differences in the records, the following method of rendering them comparable presented itself. Any monthly rainfall which exceeds twice the monthly mean rainfall for the length of the record is an excessive or unusual rainfall, and should be eliminated from the record. This has been done in the following manner: In any month in which the rainfall exceeded twice the monthly mean, as before defined, the value used for that month was the monthly mean, unless the rainfall for either the preceding or the following month was less than one-half its monthly mean, in which case only the excess of the surplus of the one month over the deficiency of the two months was deducted. The value of the yearly rainfall so determined has been called the "mean annual dependable" rainfall. It is not felt that this method of treating the records departs from sound and logical principles. It is without doubt a conservative assumption, and for that reason has recommended itself

most strongly.

Rainfall, according to the best of our knowledge, varies in irregular cycles. It appears to be manifestly improper, therefore, to compare even the mean annual dependable rainfall at one station with that at another without reducing them both

to an even plane by correcting them after comparison with the contemporaneous rainfalls at one or more points where records have been kept both for a long period and in an efficient manner. New York and Newark on the south, and Albany and Troy on the north, seemed to answer this purpose, and, following still further the method of elimination of differences in record due to local conditions, the mean annual dependable rainfalls for New York and Newark were averaged, and the resulting value called the mean annual dependable rainfall in the vicinity of New York. Similarly, the values of the mean annual dependable rainfall at Albany and Troy were averaged and called the mean annual dependable rainfall in the vicinity of Albany.

The values of the mean annual dependable rainfall at all stations studied have therefore been increased or diminished as the mean annual dependable rainfall in the vicinity of New York and in the vicinity of Albany varied above or below its mean during the years of the record in question. Two values for the deduced mean annual dependable rainfall at each station were thus obtained, and their mean was taken as most probably giving the best value. The full detail of this method is shown in Table 2. The value for the rainfall so determined has been called the "deduced mean annual dependable rainfall".

In the foregoing treatment the probability that the rainfall at any station within a given area varies from its mean by practically the same percentage as does the rainfall at any other station within the area has been made use of. In substantiation of this principle, Table 3 is presented. This table indicates that this proposition is true for 72 per cent of the time within the area covered by the records studied, and it may be added that the smaller the territory under considera-

tion the more nearly does it become absolute.

Having obtained the values of the deduced mean annual dependable rainfall as before described, even they did not appear to be proper values to use for the purpose of drawing isohyetal lines on a map of the region, for the reason that the mean annual dependable method had practically eliminated all local characteristics. In Table 1, therefore, will be found the number of unusual years, the records of which have been modified by this method. The percentage which the number of these unusual years is of the length of the record was then determined, as also the difference between the mean annual and the mean annual dependable precipitation. The product of this percentage and this difference was then added to the deduced mean annual dependable precipitation in order to determine finally the most probable value of the mean annual rainfall.

This value having been determined, it was plotted for all stations, and the isohyetal lines drawn as shown on the map, fig. 1. In studying these lines in connection with the values of the rainfall in Table 1, it must be borne in mind that the old records were given an indicative value only, and that where two neighboring stations showed different values for the rainfall the mean of these two values was taken as being the best

value for that vicinity.

These lines indicate that the most probable values of the mean annual rainfall for the four watersheds under consideration are as stated in the first column of the following table of probable rainfall:

Watershed,	Мар.	Additional water supply.	U. S. Weather Bureau.
Rondout	Inches. 48 44 41 39	Friches, 49 46½ 42 39½	Inches. 47 43 39 37

For purposes of comparison the values for the mean annual rainfall on these watersheds, as deduced by the Commission on Additional Water Supply, and the values as determined from the curves of mean annual rainfall published in the annual summary for 1905 of the New York section of the Climate and Crop Service of the United States Weather Bureau, are also given.

TABLE 1.—Showing all the stations for which records have been studied, the time of these records and their length, the number of extraordinary falls occurring during the life of the record and the percentage which such occurrences are of the length of the record, the mean annual precipitation as usually deduced, the mean annual dependable precipitation and the difference between them, the deduced mean annual dependable precipitation and a quantity which is the product of the percentage of the extraordinary falls and the difference between the mean and mean dependable precipitation; this quantity is properly added to the mean annual deduced dependable precipitation in order to give finally a most probable value for the mean yearly rainfall.

Place.	Time of record.	Length of record.	Number of extraor'y falls.	Per cent of extraor'y falls.	Mean annual precipitation.	Mean annual dependable precipitation.	Difference.	Deduced mean annual de- pendable precipitation.	Quantity to be added.	Probable mean yearly rain- fall.
Binghamton, N. Y. Montgomery, N. Y. Liberty, N. Y. Greenwich, N. Y. Lake Hill, N. Y. Oneonta, N. Y. Catskill, N. Y. Middleburg, N. Y. Middleburg, N. Y. Middleburg, N. Y. Windham, N. Y. South Hartford, N. Y. Lausingburg, N. Y. Gleus Falls, N. Y. South Kortright, N. Y. West Berne, N. Y. Red Hook, N. Y. Port Jervis, N. Y. North Salem, N. Y. Carvers Falls, N. Y. New Lisbon, N. Y. Griffins Corners, N. Y. Griffins Corners, N. Y. Mohonk, N. Y.	1841-1304 1825-1904 1826-1886 1868-1904 1893-1905 1889-1905 1896-1898 1896-1905 1890-1905 1870-1899 1878-1903 1880-1900 1885-1905 1890-1900 1885-1905 1890-1900 1885-1905 1890-1900 1885-1905 1890-1904 1896-1904 1896-1904 1896-1905 1886-1905 1886-1905 1886-1905 1886-1905	7rx 760 610 800 899 87 18 18 18 18 18 18 18 18 18 18 18 18 18	$\begin{smallmatrix} 23\\ 124\\ 127\\ 144\\ 220\\ 141\\ 183\\ 322\\ 2386\\ 866\\ 633\\ 44\\ 118\\ 420\\ 83\\ 117\\ 52\\ 40\\ 135\\ 45\\ 53\\ 753\\ 25\\ 70\\ 12\\ 00\\ 35\\ 96\\ 20\\ 0\\ 31\\ 10\\ 60\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 1$	33 25 30 29 38 31 12 6 6 6 23 9 24 23 24 23 24 23 24 23 24 24 24 24 24 24 24 24 24 24	## 15.55 ## 15.56	\$\frac{I}{1}\$ 43, 62 \\ 43, 73 \\ 43, 62 \\ 43, 73 \\ 43, 73 \\ 43, 73 \\ 43, 73 \\ 43, 73 \\ 43, 73 \\ 43, 73 \\ 43, 73 \\ 43, 73 \\ 43, 73 \\ 43, 74 \\ 43, 74 \\ 43, 75 \\ 44, 75 \\ 44, 75 \\ 44, 75 \\ 44, 75 \\ 44, 75 \\ 45, 48 \\ 45, 48 \\ 46, 76 \\ 47, 75 \\ 48, 76 \\ 48, 76 \\ 48, 76 \\ 48, 76 \\ 48, 76 \\ 48, 76 \\ 48, 77 \\ 48	Tns., 2, 15 2, 15 8, 16 1, 15 1, 16 1, 16 1, 17 1, 17 1, 18	## 43, 71 44, 62 43, 73 45, 91 48, 95 48, 95 48, 95 48, 87 47, 22 48, 84 51, 21 47, 22 48, 94 48, 96 48, 96 48, 96 48, 96 48, 96 48, 96 48, 96 48, 96 48, 96 48, 96 48, 96 48, 96 48, 96 48, 96 48, 96 48, 96 48, 96 48, 96 48, 96 48, 97 48, 97 48, 96 48, 96 48, 97 48, 97 48, 97 48, 98 48 48, 98	#ms, 0.71 0.74 0.19 0.47 0.19 0.40 0.00 0.05 0.61 0.00 0.05 0.61 0.07 0.00 0.05 0.61 0.07 0.08 0.02 0.05 0.11 1.86 0.50 0.11 1.87 0.89 0.10 1.16 0.50 0.11 1.89 0.50 0.11 1.89 0.50 0.11 1.89 0.50 0.11 1.89 0.50 0.11 1.89 0.50 0.11 1.89 0.50 0.11 1.89 0.50 0.11 1.89 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	## 44. 42 ## 45. 37. 78 ## 45. 37 ## 46. 79 ## 46. 79 ## 49. 79 ## 49. 79 ## 48. 89 ## 47. 72 ## 48. 79 ## 48. 72 ## 48. 72 ## 48. 72 ## 48. 72 ## 48. 72 ## 48. 72 ## 48. 72 ## 48. 72 ## 48. 72 ## 48. 72 ## 48. 73 ## 49. 79 ##

In order to show that the isohyetal lines as drawn on the watersheds differ but very slightly from the most probable values of the rainfall at each of the stations, three diagrams, figs. 2, 3, and 4 are submitted.

Fig. 2 shows what may be called a vertical section north and south along the Hudson River, from New York to Troy. On this diagram are plotted the observed values of the rainfall and also the values as read from the isohyetal lines on the map. It will be noted that the greatest difference occurs at Catskill, where it amounts to 8 per cent. Fig. 3 may be called a vertical section east and west, approximately thru Binghamton, N. Y., on the west, and Amherst, Mass., on the east. The greatest difference between the observed rainfall and that from the isohyetal lines again occurs at Catskill, where the difference is again 8 per cent. In fig. 4, which is a section east and west thru Towanda, Pa., on the west and Hartford, Conn., on the east, the greatest difference is shown to be less than 3 per cent. Where the words "observed rainfalls" are used in these figures and in the foregoing description, it must be remembered that they are the observed rainfalls as modified in the manner hereinbefore described.

In order further to justify the isohyetal lines as drawn on the map submitted herewith, a tracing was made showing as points only the positions of those stations having records of fifteen years or more in length, and the isohyetal lines were drawn among them strictly as a problem in contours. The results so obtained differed in no essential particular from those obtained by drawing in the lines and giving consideration to all records, no matter what their length. As a test of the method this was a particularly severe one, and the close agreement was a matter of much gratification.

As indicating, in a general way, the correctness of the result for the most probable value of the mean rainfall on the Esopus watershed, the following table showing the average rainfall for the Esopus as given by the average of seven gages, and as deduced from the New York and Albany records, has been prepared. It covers a period of but six months, and can therefore be considered as having a minor value only. It is offered, however, for what it may be worth.

04-44		1905.			1906,		T-1-1
Station.	Oet.	Nov.	Dec.	Jan.	Feb.	Mar.	Total.
Albany New York Esopus, observed Esopus—New York Esopus—Albany	Inches, 2. 38 2. 67 4. 17 2. 67 2. 76	Inches. 1.49 1.67 2.30 1.67 1.73	Inches. 1,36 3,67 8,74 8,67 1,58	Inches. 0. 97 2. 98 2. 73 2. 98 1. 13	Inches. 2. 09 2. 57 2. 35 2. 57 2. 42	Inches. 2, 54 5, 58 4, 78 5, 58 3, 06	Inches. 10, 83 19, 14 20, 07 19, 14 12, 68

The theory has been advanced that the rainfall of these watersheds is large, owing to their comparatively great elevation. We believe that there is a zone of large rainfall which is the result of the influence of the mountains, but we believe also, on the contrary, that the watersheds under consideration, with the possible exception of Rondout, are outside of this zone. This is evidenced by all of the rainfall records now available, and would appear to be due to the cooling of the storm winds to below the dew-point before the mountain slopes are entirely reached, i. e., the mountain influences make themselves felt before the mountains themselves are reached by the storm winds. Precipitation is thus begun before the winds have traversed the high lands, and the zone of greatest rainfall lies around and not on or beyond the higher elevations.

We believe that the values of the probable mean annual rainfalls on the Catskill watersheds as derived in this discussion are the best that can be deduced from any data now available or in existence.

The values of the most probable mean annual rainfall on these watersheds having been determined and the actual most

Fig. 1.—Map of the Catskill Mountain region and vicinity, showing by isohyetal lines the probable mean annual rainfall.

probable values of the rainfall at other points being known, it became easy to transfer their yearly rainfalls to each of the watersheds. Thus for the Esopus, where the rainfall is 44 inches, it can be said that the rainfall in any year was 44/38 of the rainfall during that year at Albany, or that it was 44/47 of that on the Croton watershed; 38 and 47 being the most probable values of the mean annual rainfall at Albany and on the Croton.

This method is probably of reasonable accuracy, but we desire to point out that it is not entirely satisfactory, inasmuch as it transfers the local characteristics of the rainfall at Albany or on the Croton to the locality being studied. We believe that each locality has its own characteristics, but in the absence of any direct observations the method followed is the best available.

The run-off from a watershed is the water that appears in the stream which drains the watershed and becomes available for use. It is the difference between the rainfall and the evaporation, if in this latter term there be included all water required by the vegetation, and also that required and used by all other natural causes.

Fig. 2.—Rainfall values along a south-north line from New York to Troy, N. Y.

Table 2.—Deduced mean annual dependable precipitation derived by the use of the contemporaneous precipitation in the vicinities of New York and Albany.

Place,	Time of	Length of	Mean dependable		during same icinity of—	Mean precipi	tation from-	Deduc mean ar
A THEODY	record.	record.	precipitation.	New York.	Albany.	New York.	Albany.	depend precipit
		Years.	Inches.	Inches.	Inches.	Inches.	Inches.	Inch
icinity of New York	1836-1905	70	44. 07	44, 07		44. 07		
icinity of Albany	1825-1904	80	36. 34	44.00	36, 34	AR 88	36, 34	1
roton watershed	1868-1904 1893-1905	37 13	46. 73	44. 98 45. 00	36, 70 33, 98	45, 55 46, 73	46, 26 51, 18	
equannock watershede Roy, Pa	1889-1905	17	47. 71 40. 12	44, 99	34, 98	39, 29	41.66	1
yberry, Pa	1866-1898	25	39, 00	44, 77	37. 28	38, 42	38, 01	
coming Grove, Pa	1866-1894	27	39, 80	44, 44	37, 09	39, 48	39, 13	
owanda, Pa	1896-1905	10	35, 20	45,32	34, 17	34. 24	37. 41	
iston, Pa	1857-1905	26	43.71	46, 09	35, 60	41.91	44. 55	
auch Chunk, Pa	1890-1905	14	48. 74	44. 30	34, 40	47. 41	51. 52	
uth Eaton, Pa	1890-1905	16	38, 32	44. 97	34,68	37, 57	40, 16	
lem Corners, Pa	1870-1899	9 26	48, 39 42, 19	45, 10 44, 93	37, 33 36, 35	47, 30 41, 40	47. 12 44. 93	
opersburg, Pa	1878-1903 1890-1900	11	46,48	44, 43	34, 51	46,38	48. 97	
ilkes-Barre, Pa	1885-1905	17	38, 84	44, 78	34. 41	38. 13	41. 01	
lvidere, N. J.	1892-1904	11	45, 48	48,85	33. 92	45, 71	48. 74	
ver, N. J	1886-1905	20	47. 72	45.78	35, 67	45, 97	48, 65	
mesdale, Pa	1882-1894	13	41. 75	46, 01	37. 13	40, 00	40. 85	
ver Vale, N. J	1893-1904	12	48, 62	45. 04	33, 99	47. 57	52, 11	
nderhook, N. Y	1830-1846	17	35. 17	44.00	35, 52	40 74	36,00	
w York, N. Y	1836-1905	70	43, 71	44. 07	***********	43.71	***********	
wark, N. J.	1844-1904	61 48	44. 62 43. 78	44. 07 44. 29	36,36	44. 62 43. 60	43, 78	
est Point, N. Y	1843-1899 1829-1892	23		44, 29	36, 52	93, 90	37. 45	
ngston, N. Yughkeepsie, N. Y	1830-1899	24			35. 79	*****	37, 71	
bany, N. Y	1826-1904	79			36,34		37,81	
oy, N. Y	1826-1886	59			36, 84		35.18	
ford, N. Y	1829-1905	39			34. 79	***********	41. 89	
dson, N. Y	1827-1855	19			37. 21		35. 49	
rtwick, N. Y	1826-1850	14			87. 52	******	35, 56	
milton, N. Y	1827-1895	19	33. 26		36. 80	07 70	32. 98	
perstown, N. Y	1854-1905	52 13	38, 92 30, 65	45, 42	36, 26 35, 86	37. 79	38, 92 30, 96	
nville, N. Y	1835-1848 1828-1848	16			36, 53		34, 55	
rfield, N. Y.	1827-1845	14	40 04		36. 18		40. 31	
glewood, N. J.	1896-1904	5	49. 70	44, 65	33. 52	49. 20	54, 02	
ne, N. Y	1890-1904	13	44, 84	44, 90	34. 17	43, 96	47. 70	
nton, Conn	1889-1904	16	48. 53	45, 02	34. 98	47. 58	30, 55	
terbury, Conn	1889-1904	15	46. 82	45, 29	35, 46	45, 46	47.78	
w Haven, Conn	1887-1904	18	42, 73	45, 77	35, 76	41.09	43, 60	
rtford, Conn	1888-1904	15	48, 28	45, 96	35, 69	46. 42	49, 16	
herst, Mass	1887-1904	14	43, 95 46, €0	45, 68 44, 63	35, 51 33, 86	42, 26 46, 14	44. 85 50. 11	
ppingers Falls, N. Y.	1891-1905 1891-1905	15	42, 99	44, 65	33, 35	42,57	45, 65	
ksonville, Vt	1889-1904	13	44. 19	44, 92	34, 41	43, 32	46, 52	
tland, N. Y	1851-1905	24	39, 33	47, 12	33, 93	36, 76	42, 29	
ant Pleasant, N. Y	1831-1844	12	34, 68		35, 18	**********	35, 75	
versville, N. Y	1893-1905	13	43, 32	45, 00	33. 45	42, 47	47.09	
ghamton, N. Y	1891-1905	15	33,50	44. 62	33. 86	33. 17	36, 02	
ntgomery, N. Y.	1828-1842	13	32. 77	44 00	36. 67	49 70	32, 45 47, 41	
erty, N. Y.	1851-1904	13	44, 57 46, 51	44.96 46.51	34, 21 34, 60	43, 70 43, 88	48, 96	
enwich, N. Y.	1898-1905 1903-1905	3	48. 62	44, 76	30, 78	48. 14	57,32	
erson N J	1892-1904	13	49, 86	44. 68	84. 05	49. 37	53.04	
erson, N. J.	1895-1905	9	38, 54	44.06	31.64	38, 54	44,30	
skill, N. Y	1897-1900	3	38, 46	44. 26	36. 16	38, 46	38. 46	
skill, N. Yldleburg, N. Ydham, N. Y	1889-1891	8	38, 12	46, 50	39. 02	35,96	35. 63	
adham, N. Y	1900-1905	6	37. 70	45, 62	33,03	36, 25	41. 43	
th Hartford, N. Y	1864-1878	12	38, 13	46, 96	27. 59	35. 97	37. 02	
ochester, Vt	1888-1904	20	43, 38	47. 39	35, 92 36, 03	40. 12	48. 77 31. 75	
singburg, N. Ys Falls, N. Y	1826-1846 1879-1905	26	31,43 36, 30	44, 46	35. 20	35, 94	37, 42	
th Kortright, N. Y	1889-1905	14	39, 38	45, 04	34, 89	38,61	41. 45	
t Berne, N. Y	1903-1905	3	34, 05	44, 76	30, 77	33, 50	40.05	
t Berne, N. Y. Hook, N. Y.	1902-1903	2	53, 09	47, 51	35, 78	49.17	54. 17	
Jervis, N. Y.	1890-1905	16	47,65	44. 91	34, 20	46, 72	50.69	
son, Mass	1890-1904	14	44, 90	45. 22	35. 17	43,59	46, 29	
rleyville, Conn	1899-1904	6	49, 08	45, 52	83,35	47. 65	58, 93	
th Salem, N. Y	1830-1859	22	39, 91		36. 33	04.80	39. 91	
vers Falls, N. Y	1899-1905	6	35, 42	45. 20	31. 55	34. 39 38. 96	40, 71 42, 31	
V Lisbon, N. Y	1891-1905	15	39, 35 37, 93	44. 62	33, 86 35, 21	35, 96	39, 10	
hi, N. Y	1828-1852 1901-1905	3 5	42, 43	45, 94	33, 52	40, 80	46, 12	
ens, N. Y	1901-1905	3	38.61	44, 76	30, 78	37. 85	45, 42	
honk, N. Y	1891-1905	12	47, 43	44, 81	34, 20	46, 50	50,46	
wburgh N. Y	1828-1867	20	33, 54		36, 20		83, 54	
lliamstown, Mass. ngston Reservoir No, 1, N. Y	1855-1904	35	37. 27	45, 42	35, 11	36. 18	38. 42	
	1900-1905	6	44.77	45. 62	33, 03	44. 73	49, 15	

Fig. 3.—Rainfall values along a west-east line from Binghamton, N. Y., to Monson, Mass.

Fig. 4.—Rainfail values along a west-east line from Le Roy, Pa., to Hartford, Conn.

Table No. 3.—Showing that the rainfall at any station within 100 miles of the Ashokan reservoir will, for 72 per cent of the time, vary from its mean by practically the same percentage as that at any other station also within the same distance

Stations.	Mean depend- able,						1827	1828	1829	1830	1831	1882	1833	1834	1835	1836	1837	1838	1839	1840	1841	184
Albany	37, 31 36, 20 37, 64						110	97 104	108 92 103	98	106 123 117	120 126 102	92 105 114	87 84 95	109 95 90	108	100	102	102	120	102	1
New York	48, 71			*****	****	*****	*****		99	102	115	116	104	89	98	63 90	107 99	96 99	98 97	68 92	96 99	
		1843	1844	1845	1846	1847	1848	1849	1850	1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861	1862	186
Albany	36, 20	180 110	87 90	109 72	102 71 94	112 105 101	117 92 101	93 78 86	125	93	85 100	112 107	81	100 137	97	101	92	86	87	97	96	1
Kingston New York West Point Liberty Cooperstown	37. 64 43. 71 43. 78 44. 57 38. 92	76 108	83 112	89 78 99	112 85	123 80	84 113	73 88	112 125	98 93 97	100 83 99	119 125 124	90 108 100 98	121 104 103 118	93 91 83 76	102 102 114 134	119 98 90 116	117 100 103 106	103 110 101 87	125 90	114 99	1
Average		106	93	89	93	104	101	84	121	94	93	117	95	114	88	111	103	102	98	106	102	1
		1864	1865	1866	1867	1868	1860	1870	1871	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	188
Albany	37. 31 36, 20	75	98	92	102	96	93	124	116	105	106	100	103	103	88	133	104	87	98	91	106	1
Kingston New York West Point Liberty	43,78	109 85	129 93	105 90	110 103	133 85	104 109	90 97	117 110	97 105	99 102	87 92	94 101	84 110	92 95	111 102	89 97	84 77	83 106	82	89	1
Cooperstown	38, 92 39, 00 46, 60 42, 19	77	91	83 93	88	96 93	118 95 92	85 96	98 97 105	95 87 87	106 101 94	94 82 91	97 77 82	96 87	89 98	100 109 120 104	78 85 101 93	88 83 79 81	87 96 100 83	79 95 92 98	92 89 92 106	1 1 1
Average		87	103	98	100	101	102	98	106	96	101	91	92	96	92	111	92	88	93	90	97	1
		1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899	1900	1901	1902	1903	1904	190
Albany	37, 31 36, 20 37, 64	82	92	107	120	106	106	103	94	95	94	80	75	110	104	78	82	102	101	92	84	
New York	43, 71 43, 78 44, 57 38, 92	96	107	107	121	108	100	95 87 92 105	87 96	121 112	101 92	82 107	87 105	89 102	108 118	96 102 97	95	108	108	99 101 114	95 81 103	16
Cooperstown Detry Croton Bethlehem	39, 00 46, 60 42, 19 47, 72	99 94 85	97 102 105 90	117 100 102 98	129 117 100 113	110 115 105	136 116 121 100	106 91 104 104	103 95 85 81	115 109 95 110	93 101 88 91	74 87 78 74	98 105 93	98 100 104	130 109 105 101	97 93 95	105 81 89	114 109 96	119 127 127	114 122 121	104	
Oover Imherst Vaterbury Outh Kortright	43, 96 46, 82 39, 38 33, 50		*****	114	124	101 98 106	111 110 114	99 92 96 118	83 86 91 115	96 109 109 119	73 93 89 113	92 97 81 91	94 86 101	98 109 99	115 108 107 118	95 87 70	91	114	118 121 96	101 107 100 - 111	103 94 92 90	
fohonk 'equannock Vindham iriffins Corners ake Hill	47. 43 47. 71 37. 70 42. 43 48. 62			******		*****			108	98 104	93 96	77	90 102	86 102	107	100	100 88 87	102 100 104 94	128 126 119 121	111 112 108 104 119	97 95 98 90 93	
Average		90	97	106	115	107	112	100	95	108	95	79			111	92	90	105	116	108	95	,

In order to determine the run-off, then, it becomes necessary first to determine the evaporation, which is dependent in some measure on each of the following conditions:

- a .- The rainfall.
- The extent of the watershed.
- The extent of water surface on the watershed.
- d.—The barometric pressure.
- The mean daily atmospheric temperature.
- The mean annual atmospheric temperature.
- The wind velocity.
- The inclination of the watershed.
- The geological character of the watershed.
- The extent of forest area on the watershed.
- The extent of cultivated land on the watershed.

All these conditions, and possibly some others, operate to render the problem a difficult one, and as yet no successful attempt has been made to devise a formula which will apply to more than one or two certain watersheds.

- The following are the general laws of evaporation:

 1. All other things being equal, for a rainfall uniformly distributed thruout the year, the evaporation will increase proportionally with the rainfall.
 - 2. All other things being equal, a heavy winter and a light

- summer rainfall will together show a small annual evaporation, and conversely.
- 3. All other things being equal, the greater the watershed the greater will be the evaporation.
- 4. All other things being equal, the greater the area of water
- surface on the watershed the greater will be the evaporation. 5. All other things being equal, the evaporation varies nearly inversely as the atmospheric pressure, or, it varies also nearly
- directly as the altitude of the watershed. 6. All other things being equal, the rate of evaporation is nearly proportional to the difference of the temperatures indi-
- cated by the wet-bulb and the dry-bulb thermometers.

 7. All other things being equal, the capacity of atmospheric air for moisture is approximately doubled for each 20° F. increase in atmospheric temperature; the evaporation will therefore be in some measure increased by an increase in temperature.
- 8. All other things being equal, the evaporation varies nearly directly as the wind velocity.
- 9. All other things being equal, the evaporation from a watershed will vary approximately inversely as the square root of the sine of the angle of its average inclination to the

10. All other things being equal, the evaporation from a watershed will vary nearly as the extent of the surface it exposes. The extent of the surface it exposes is nearly proportional to its area divided by the cosine of the angle of its average inclination.

11. All other things being equal, the evaporation will vary nearly inversely as the porosity of the materials with which

the watershed is covered.

 All other things being equal, the evaporation will vary approximately with the extent of cultivated land on the watershed.

13. All other things being equal, the evaporation will vary approximately inversely with the extent of forest area on the watershed.

Vermeule in his report of 1894 to the geological survey of New Jersey made an extended study of the subject, and deduced an expression for the evaporation in which it was made to depend on the rainfall and on the mean annual atmospheric temperature of the watershed. This formula has been severely criticized by Rafter in his paper on "The relation of rainfall to runoff", U. S. Geological Survey Water Supply and Irrigation Paper No. 80, but the ground of the criticism, in view of the many causes which act to modify evaporation, appears to us to have no foundation.

Vermeule's formula is as follows:

```
E = yearly evaporation.

R = yearly rainfall.

T = mean annual temperature.

F = (0.05 T - 1.48) = factor = 1.00 for 49.7^{\circ} F.

E = F(15.50 + 0.16 R).
```

In monthly form this formula becomes

```
\begin{array}{c} e = \text{monthly evaporation.} \\ r = \text{monthly rainfall.} \\ F = \text{factor as heretofore.} \\ \text{January,} \quad e = F \;\; (0.27 + 0.10 \; r). \\ \text{February,} \quad e = F \;\; (0.30 + 0.10 \; r). \\ \text{March,} \quad e = F \;\; (0.48 + 0.10 \; r). \\ \text{April,} \quad e = F \;\; (0.87 + 0.10 \; r). \\ \text{May,} \quad e = F \;\; (1.87 + 0.20 \; r). \\ \text{June,} \quad e = F \;\; (2.50 + 0.25 \; r). \\ \text{July,} \quad e = F \;\; (3.00 + 0.30 \; r). \\ \text{August,} \quad e = F \;\; (2.62 + 0.25 \; r). \\ \text{September,} \quad e = F \;\; (1.63 + 0.20 \; r). \\ \text{October,} \quad e = F \;\; (0.88 + 0.12 \; r). \\ \text{November,} \quad e = F \;\; (0.66 + 0.10 \; r). \\ \text{December,} \quad e = F \;\; (0.42 + 0.10 \; r). \\ \end{array}
```

E = F(15.50 + 0.16 R).

While we do not agree with Mr. Vermeule in the manner of the determination of the factor to be used for any watershed, we do think that the shape of his formula, when put into the monthly form he proposes, could not easily be improved upon. The most striking feature of this formula is that it takes account of the effect on the evaporation of unequal distribution of rainfall thruout the year.

Mr. Vermeule in his formula made this factor dependent entirely on the mean annual temperature, on the assumption that, as the capacity of atmospheric air for moisture is approximately doubled for each 20° F. increase in atmospheric temperature, therefore the evaporation would be doubled for each such increase in temperature.

We do not believe that such is the case, and in support of this belief submit fig. 5, on which is plotted the percentage of rainfall evaporated for each of Rafter's three seasons as given in his paper heretofore referred to, for the Croton, Pequannock, and Sudbury watersheds. The temperatures on which these percentages were plotted were obtained from the U. S. Weather Bureau publications.

The remarkable parallelism of these lines indicates primarily the existence of a well-defined law, and secondarily, that the observations have been well made. The law defined by this diagram is that for each degree increase in temperature the

rainfall evaporated will be increased by very nearly 2 per cent. But it at once becomes apparent that the percentage increase in total evaporation will vary with the temperature, and we have plotted a curve as fig. 6 to define this variation.

Fig. 5.—Percentage of rainfall evaporated at different temperatures from the Croton, Pequannock, and Sudbury watersheds.

Fig. 6.—Variation of percentage increase of evaporation with change of temperature.

The mean annual temperature on the Sudbury is 49° F. and on the coldest of the Catskill watersheds, 44° F. In fig. 6 the increase in total evaporation between these limits averages 3.2 per cent, and this is the value that we believe to be correct for these studies, rather than 5 per cent as proposed by Vermeule.

Taking up now, in order, the general laws of evaporation, we see that laws 1 and 2 are fully provided for by the form of the expression we have adopted. Law 3 does not seem susceptible of adaptation to a numerical expression. Law 4 is easily provided for outside the formula by increasing the evaporation by the difference due to any increase in water surface.

Law 5 can be adapted directly by assuming some watershed as a standard and stating that the evaporation from any other watershed will be inversely as the atmospheric pressure upon it.

Practically no data are at hand concerning law 6, but it is a well-known fact that the air on the higher altitudes averages drier than on low lands, and we have therefore assumed that the difference in evaporation due to this cause (the dryness of the air) will be one-fourth that due to the difference occasioned by difference in barometric pressure and in the same direction.

Law 7 has already been fully discust and the results stated. On account of the absence of any knowledge of wind velocities, we are unable to apply the fact stated in law 8. It would

seem, however, that any difference due to this cause would be

slight. Law 9 is here proposed by us as being an approximation to the reasonable belief that steep watersheds will yield a greater proportion of the rainfall than will comparatively flat ones. This statement was put into the above form on account of the not unreasonable analogy between the flow of water in a channel and the flow both over the ground and in the creeks of a watershed. The steeper the watershed the more rapidly will the rain water run off, and therefore less time will be afforded the evaporation to reduce the volume.

In order to apply this principle, it becomes necessary to define the words "average inclination of the watershed", and it seemed to us proper to assume that if the watershed were square its average inclination would be the difference in vertical height between its highest and lowest points divided by the diagonal of the square. Table 4 has been prepared with a view to indicating the difference in slope of the Croton, the Pequannock, the Sudbury, and the Esopus watersheds. The square root of the sine of each of their average inclinations has been determined. The average inclinations of the Croton and Sudbury are practically the same, and the inclination of the Esopus is twice as great as either.

TABLE 4 .- Mean slope of four watersheds.

Watershed.	Total dip.	Length of diagonal.	Mean slope per mile.	Angle.	Sin.	V ain.
Croton	Feet. 1,100 550 900 3,800	Miles. 26. 38 12, 40 11, 00 22, 47	Feet. 83 89 164 839	0 54 0 55 1 45 3 41	. 0156 . 0160 . 0805 . 0640	. 12 . 12 . 17 . 25

As indicating the general correctness of this result, we quote from the report of the Commission on Additional Water Supply, page 234:
"The table shows that the Esopus yielded from the floods

after the great drought a proportion of the rainfall just twice

as great as that of the Croton"

While the method is therefore applicable to the heavy floods, it is of course entirely inapplicable to moderate rainfalls. Now one and one-half inches is a reasonably heavy fall of rain, and in each year in these latitudes there occur on an average about eight such rains, which aggregate about eleven inches, or about 25 per cent of the total yearly rainfall. We feel, therefore, that this principle is applicable to the extent of 25 per cent of its full value for all cases.

Law 10 is of little value, and has been stated only for the

sake of completeness

Law 11 treats of the character of the soil. A watershed covered with loose gravel and sand will usually show a greater yield than one with a clay cover, as the rainfall sinks into the more porous material, and is in this manner largely protected against evaporation until it again finds its way into the streams thru springs or underground channels. All of the Catskill watersheds, with the possible exception of the Catskill, are fairly well covered with a loose rock covering on the mountain slopes, while the lower reaches of the valleys are filled with deposits of gravel. The intermediate lands are covered with an iceberg clay and do not afford much opportunity for water to penetrate into them. It does not appear to us that these watersheds are remarkable either for the presence or for the absence of opportunity for water to protect itself against evaporation by percolating into and thru the subsoil. In any event, it does not appear likely that this law could ever be numerically applied to a watershed.

In order to bring these laws down to actual figures, it is now necessary that we have the characteristics of the watersheds before us, and for purposes of comparison we have added also the same data for the Croton, Sudbury, and Pequannock

watersheds.

Watersheds.	Area.	Average altitude.	Average barometer.	Mean tem- perature,	√sine average slope.	Rainfall.
Eaopus	sq. m. 255 228 131 163 62 339 78	Feet. 1700 2000 1600 1500 1100 600 350	Inches. 28. 1 27. 8 28. 2 28. 3 28. 7 29. 3 29. 6	° F. 45 44 47 46 48 49 49	. 253 . 160 . 211 . 153 . 174 . 125	Inches. 44 41 48 38 56 47

Now, under law 5, if we assume the Croton as a standard, we find that the evaporation on each of the other watersheds will be as follows:

> Esopus..... 4.5 per cent greater than Croton. Schoharie.... 6.5 per cent greater than Croton. Rondout..... 4.5 per cent greater than Croton. Catskill..... 3.5 per cent greater than Croton. Pequannock 2.3 per cent greater than Croton. Sudbury..... 0.6 per cent less than Croton.

Under law 6 and our assumption, we find that the evaporation will be as follows:

> Esopus..... 1.1 per cent greater than Croton. Schoharie.... 1.6 per cent greater than Croton. Rondout..... 1.1 per cent greater than Croton. Catskill..... 0.9 per cent greater than Croton. Pequannock 0.8 per cent greater than Croton. Sudbury.... 0.1 per cent less than Croton.

And under law 7 and our discussion of it, we see that the evaporation will be as follows:

Esopus..... 12.8 per cent less than Croton. Schoharle.... 16.0 per cent less than Croton. Rondout.... 6.4 per cent less than Croton. Catskill.... 9.6 per cent less than Croton. Pequannock 3.2 per cent less than Croton. Sudbury..... 0.0 per cent less than Croton.

Finally, under law 10 and our assumptions thereunder, we find that the evaporation is-

Esopus 25.5 per cent less than on the Croton. Schoharie.... 7.0 per cent less than on the Croton. 17.2 per cent less than on the Croton. 5.6 per cent less than on the Croton. Rondout. . . . Catskill. . Pequannock 9.8 per cent less than on the Croton.
Sudbury 0.0 per cent less than on the Croton. Sudbury.

Now, summing up these differences, we have the following:

Watersheds.	Barometer.	Dryness.	Tempera- ture.	Inclina- tion.	Total.
Esopus Schoharie Rondout Catskill Pequannoek	+4.5 +6.5 +4.5 +3.5 +2.3 -0.6	+1.1 +1.6 +1.1 +0.9 +0.8 -0.1	-12.8 -16.0 - 6.4 - 9.6 - 3.2 0.0	-25.5 - 7.0 -17.2 - 5.6 - 9.8 0.0	-32.7 -14.5 -18.6 -10.8 - 9.5 - 0.7

This indicates that these watersheds will yield of the rain which falls upon them more than will the Croton, by the following averages:

> Esopus..... 33 per cent. Schoharie... 15 per cent. Rondout.... 18 per cent. Catskill..... 11 per cent. Pequannock . 10 per cent. Sudbury.... 0.7 per cent.

Now in the formula we have adopted the evaporation is exprest in terms of the rainfall, and its factor for the Croton is 100 per cent. The factors which the preceding discussion leads us to use for these watersheds are, then, the difference between 100 per cent and the greater percentage of yield of each as heretofore shown.

The factors derived and used are the following:

Esopus..... 0.67 Schoharle... 0.85 Rondout.... 0.82 Catskill..... 0.89 Pequannock . 0.90 Sudbury..., 0.993 That these factors so deduced "fit" the Pequannock, the Croton, and the Sudbury with reasonable accuracy is indicated by the following:

Watershed.	Record.	Observed run-off.	Computed run-off.	Factor.
Pequannock	(Average,) (1873-1903) (11 years,) (1893-1903) (Average,) (1868-1899)	Inches, 22, 85 331, 36 22, 93	Inches, 22,03 332,76 24,82	0, 998 0, 90 1, 00

Table 5 is also submitted as showing in detail the agreement of the formula with the observed values of the run-off on the Pequannock.

Table 5.—Observed and computed run-offs of the Pequannock River by Vermeule's formula, with a temperature factor of 0.90.

Year.	Rainfall.	Run	-off.	Per cent of run-off.			
Teat.	Raintaii.	Observed.	Computed.	Observed.	Computed		
1893	49. 73	32, 79	28, 57	66	5		
1894	44,62	28. 39	24. 24	64	54		
1895	36, 67	18, 97	17. 35	51	4		
896	51.89	30, 75	30, 05	59	58		
1897	57.97	29, 37	33, 98	51	56		
898	51,39	28. 98	30. 17	56	56		
1899	47. 94	26, 88	26,93	56	56		
900	42.00	21, 50	22, 16	51	50		
901	64, 69	31.94	40, 47	49	63		
902	60, 44	35, 73	87,73	59	63		
903	64. 79	46. 06	41. 11	71	65		
904	45, 24		24. 54		54		
905	43, 53	**********	23, 21	********	50		
Totals to end of 1903		331, 36	332. 76	58	58		

Now, applying our formula to each of these watersheds, we find that on an average we may expect:

Watershed.	Rainfall.	Evapora- tion.	Run-off.	Per cent of run-off.
	Inches.			
Esopus Schoharie	44	15. 10 18. 75	28, 90 22, 25	68
Rondout	48	19.00	28,00	56
Catskill	38	19. 20	18.80	49 57
Pequannock	50	21, 15	28. 85	57
Croton	47	23, 02	23.98	51
Sudbury	46	24, 46	21.54	4

Diagrams submitted with the report of Mr. J. Waldo Smith, Chief Engineer to the Aqueduct Commissioners, dated January 30, 1905, indicate very clearly that the Croton, with a storage of 250,000,000 gallons per square mile, will not safely sustain a draft of more than 325,000,000 gallons per day.

The watershed of the Croton River, above the New Croton Dam, is 360 square miles, and the safe yield per square mile is, therefore, 900,000 gallons per day.

Now it is safe to assume that in extremely dry periods the run-off will be 50 per cent less than in an average period, and on this basis, all other conditions being the same, the watersheds being studied will yield the following percentages of the Croton normal yield:

And we have seen that owing to the natural features of these watersheds they will yield, for the same rainfall as on the Croton, the following percentages:

Esopus...... 32.7 per cent more than Croton. Schoharie.... 14.9 per cent more than Croton. Rondout 18.0 per cent more than Croton. Catskill..... 10.8 per cent more than Croton. Pequannock 9.9 per cent more than Croton. Sudbury.... 0.7 per cent more than Croton.

Now, combining these, we deduce finally that these watersheds may be expected to have a safe yield, compared to the Croton safe yield, as follows:

Esopus	19.9 per cent more than Corton.
Schoharie	10.7 per cent less than Croton.
Rondout	19.0 per cent more than Croton.
Catskill	27.4 per cent less than Croton.
Pequannock	13.2 per cent more than Croton.
Sudbury	4.9 per cent less than Croton

And, therefore, on a storage of 250,000,000 gallons per square mile of watershed may be expected to have a safe yield as follows:

Esopus	1,080,000	gallons	per	day	per	square	mile.
Schoharie	804,000	gallons	per	day	per	square	mile.
Rondout	1,070,000	gallons	per	day	per	equare	mile.
Catskill	653,000	gallons	per	day	per	square	mile.
Pequannock	1,010,000	gallons	per	day	per	square	mile.
Sudbury	856, 000	gallons	per	day	per	square	mile.

In connection with this report certain depletion diagrams

[not reproduced here] were prepared.

The first diagram shows the depletion of the proposed Ashokan Reservoir when fed by the Esopus Creek, on the basis of the Albany rainfall records. It indicates that a draft of 240,000,000 gallons per day from the 255 square miles of tributary watershed could not well be exceeded without drawing down the reservoir to a considerable extent and for long periods. The maximum depletion shown is 40,000,000,000 gallons, or 160,000,000 gallons per square mile of watershed.

In the preparation of this diagram, as well as of all others, the formula as heretofore derived was employed, except that a factor of 0.75 was used instead of those deduced. This was done for the reason that it is not, at present at least, proposed to use the Ashokan Reservoir fed by the Esopus alone, but by the Esopus and Schoharie in combination.

The factor for the Schoharie is 0.85, and that for the Esopus 0.67. In proportion to the area of these watersheds, the combined factor would be

$$0.85 \times 228 = 193.80$$

 $0.67 \times 255 = 170.85$

$$483)364.65(=0.75)$$

Increase in evaporation due to reservoir water surface was provided for in the computations on which these depletion diagrams are based by assuming that the water surface on the Schoharie would be 1000 acres and on the Esopus 10,000 acres, and the corresponding corrections were made.

The second diagram shows the conditions which would obtain in the Ashokan Reservoir when collecting from the Esopus and Schoharie watersheds under a draft of 410,000,000 gallons daily and on the basis of the Albany rainfall records. This diagram indicates a maximum depletion of 63,000,000,000 gallons, or a minimum necessary storage of 130,000,000 gallons per square mile of watershed area. It also shows that the combined safe draft from these two watersheds should not exceed 425,000,000 gallons per day, or 880,000 gallons per square mile per day.

In the preparation of all the diagrams for the Schoharie, it has been assumed that the construction will be sufficient to divert all run-off up to and including that due to 7 inches of rain per month. For greater run-off than this but 80 per cent has been counted as becoming available.

The third diagram shows the conditions which would exist in the Ashokan Reservoir when fed by the Esopus and Schoharie under a draft of 410,000,000 gallons daily, but on the basis of the Croton rainfall records. The maximum depletion indicated under these conditions is 48,000,000,000 gallons.

The fourth and fifth diagrams show the conditions which would exist in the Ashokan Reservoir when fed by the Esopus and the Schoharie when under a draft of 410,000,000 gallons daily, and on the basis of the New York rainfall records.

The maximum depletion indicated under these conditions is 60,000,000,000 gallons.

Actual gagings of the four Catskill streams under consideration have been made by the United States Geological Survey more or less continually since 1901. The results of these gagings are set forth in the various water supply and irrigation papers published by the survey. Unfortunately, no rainfall observations were made contemporaneously with these gagings. A careful examination of practically all of the gagings made by the Geological Survey in New York, New Jersey, Pennsylvania, and New England since 1902 has caused us to use them as a general guide only.

CONCLUSIONS.

Our studies, therefore, lead us to the belief that the most probable mean annual rainfalls on the Catskill watersheds are as follows: Esopus, 44 inches; Schoharie, 41 inches; Rondout, 48 inches; Catskill, 38 inches.

VARIATION OF PRECIPITATION IN THE ADIRONDACK REGION.

By ALFRED J. HENRY, Professor of Meteory ogy, Dated April 17, 1907.

Mr. R. E. Horton, C. E., has worked out very clearly the relative distribution of precipitation in the Adirondack region for the five years, 1901-1905. The chart which accompanies Mr. Horton's article 1 shows a region of maximum precipitation (55 inches and upward) on the southwestern slope of the Adirondacks, particularly on the foothills in Lewis, Oneida, and Herkimer counties.

The writer was recently engaged on a study of the average annual precipitation over the watershed of Lake Ontario, which includes a portion of the area considered by Mr. Horton. The epoch used in this work was 1871-1906, altho the record at a number of the observing stations covered a much longer time. It is possible, therefore, to compare the mean values for the lustrum 1901-1905 with those of the much longer epoch, 1871-1906. Accordingly there will be found in the table below a statement showing the average annual precipitation for a few stations in the Adirondack region and contiguous territory for both the long and the short periods.

Comparative averages of precipitation.

Stations.	Length of record.	Whole period, 1871-1906.	Five years, 1901-06.	Depart- ure.
Oswego	Years. 54 40 40 53 15	Inches, 37, 4 36, 3 41, 7 39, 9 35, 6	Inches. 40, 0 44, 3 50, 7 45, 3 40, 7	Inches, +2,6 +8,0 +9,0 +5,4 +5,1

It is clearly apparent from the above table that the lustrum 1901-1905 was one of heavy precipitation in the Adirondacks; the greatest departure, about 22 per cent of the mean annual fall, occurred near the center of the region of maximum precipitation hereinbefore mentioned. The writer has found elsewhere that the extreme variation in the interior of this continent for a 10-year period is as high as 20 per cent. The variation for a 5-year period in this country has not been determined; in Germany, however, Dr. G. Hellmann's has found that the average maximum variation of a 5-year period for 14 stations in North Germany is 116 per cent, and for a 10-year period 109 per cent. The maximum variation for a single station for a 5-year period was 128 per cent, or 6 per cent greater than for the two stations in the Adirondack region, but the majority of the German stations showed a smaller variation. What little work has been done on this subject in the United States tends to show that the variation of the precipitation, especially in the interior, is greater than in England or Germany.

In conclusion it is proper to call attention to the fact that the chart of rainfall distribution compiled by Mr. Horton probably represents very closely the maximum amount of rain that may be expected for a 5-year period in the region under consideration. Readers of the Review should be careful, however, not to be misled by supposing that the chart purports to give the average or normal values for the Adirondack region, such as would result from a century of observations.

THE TEMPERATURE IN THE FRONT AND IN THE REAR OF ANTICYCLONES, UP TO AN ALTITUDE OF 12 KILO-METERS, COMPARED WITH THE TEMPERATURE IN THE CENTRAL AREA.

By HENRY HELM CLAYTON. Dated Blue Hill Observatory, Hyde Park, Mass., March 5, 1907.

Within the two years between the summer of 1904 and that of 1906, a series of observations with ballons-sondes were obtained at St. Louis, Mo., under the direction of Prof. A. Lawrence Rotch, by Mr. S. P. Fergusson and myself. These small balloons carried light instruments recording temperature and pressure, and occasionally reached heights of 17 kilometers or about 11 miles. These are the only data of this kind gathered in America up to the present time, and are of much interest and value in their bearing on the problems of the upper air. One of the problems of great interest is that of the distribution of temperature in cyclones and anticyclones. In a discussion of these observations published by me in the Beiträge zur Physik der freien Atmosphäre, Band II, Heft 2, 1906, the lowest temperatures (at the earth's surface) in the anticyclones were found in the central and southeastern portions, but this distribution was so changed at the height of 8 kilometers that the lowest temperature was found in the northern quadrant of the anticyclone. The reverse of this statement is true in regard to the cyclone in which the highest temperature was found in the eastern quadrant at the ground, but in the northern quadrant at the height of 8 kilometers. This matter is one of importance in studying the mechanism of these meteors and I give in the accompanying Table 1 some of the results in the individual cases where anticyclones past centrally over the region surrounding St. Louis. In this table the temperature at any height on the day in which the maximum pressure occurred at St. Louis is taken as the standard for that height and the departures from this of the temperatures at the same heights for the day preceding and the day following are given in so far as the observations permit. In each case the observations were obtained in the evening within an hour or two of 7 p. m. The tracks of the centers of maximum pressure are given on an accompanying chart, fig. 1. On this chart a circle of 300 miles radius (about 500 kilometers) is drawn around St. Louis, and it may be seen that all the given dates of maximum pressure at St. Louis are found within this area, while the dates of the preceding and following days are found outside the circle. In every case, except that of July 24 and 25, 1905, the general direction of motion was from northwest to southeast, so that observations on the day preceding were in the southeastern half of the anticyclone and on the day following in the northwestern half. The amounts in the table showing how much the temperatures in the front and in the rear of the anticyclone differed from those in the central area are plotted graphically in the accompanying diagram, fig. 2, which shows that in general it is colder in front of the anticyclone than in the central area, up to about 8 kilometers, above which altitude it becomes warmer. Of the two cases where the temperature in the rear was compared with that in the central area, in one case, January 26, 1905, it was warmer in the rear up to about 6 kilometers, and in the other case, May 10, 1906, it was warmer in the rear up to about 10 kilometers. Above these heights the rear was colder than the central area. The most instructive case is that of May 8 to

Monthly Weather Review, January, 1907, Vol. XXXV, pp. 8-11.
 Weather Bureau Bulletin D, p. 9.
 Die Niederschläge in den norddeutschen Stromgebieten.

Table 1.— Temperatures at successive altitudes within anticyclones; (a) temperatures on the day of maximum pressure at St. Louis, Mo.; (b) the departures from these temperatures for the preceding day; and (c) the departures for the following day.

Visit	Date.	Pressure				Temperatures st altitudes above the earth's surface.								
Number. Date. rressure at 7 p. m.	0 km.	1 km.	2 km.	3 km.	4 km.	5 km.	6 km.	7 km.	8 km.	9 km.	10 km.	11 km.		
I-(a) I-(b) I-(c)	November 25	772.7 770.4	° C. 5.3 + 0.8	° C.	° C.	° C. - 2.9	° C - 8.9	° C. -17.3 - 5.8	° C. -24.7 - 4.7	° C. -31.8 - 4.5	° C. -39.7 - 1.7	° C. -47.3 + 0.8	° C. -52.8 + 5.5	° C. -52.8
II – (a)	1905. January 25	784. 6	-11.1	-12.7	-17.9	-18.7	22,5	-29.8	-32,3	-40,6	-50.1	-51.8	-54. 0	*****
II – (e)	January 26	776, 2	+ 7.5	+ 6.0	+10.1	+ 8.1	+ 5.9	+ 4.8	- 2.6	- 5.1	- 6.7			
III—(a) III—(b)	1905, July 24-25 July 23 July 26	765, 2 763, 0	24.4 + 0.6	17. 5 — 0. 3	9,1 + 1.2	6.9 - 2.6	2.3 - 1.0	- 2.7 - 0.6	- 8.1 - 2.2	-16.0 - 2.8	-24.1 -1.7	-32.8 + 0.2	-42.5	
IV-(a)	1906. May 9 May 8 May 10	769, 0 769, 8 765, 3	15,0 - 4,8 + 5.0	10.5 - 8.1 + 3.8	$-\frac{1.2}{6.3}$	- 6, 8 - 3, 2 + 9, 3	-10.5 - 7.1 + 4.7	-14,6 - 6,0 + 1.0	$ \begin{array}{r} -21.1 \\ -2.0 \\ +2.3 \end{array} $	$ \begin{array}{r} -29.3 \\ -0.7 \\ +3.0 \end{array} $	-39.1 - 0.3 + 3.7	-49.3 + 2.9 + 7.1	-53. 2 + 5. 7 + 1. 8	-53, 2 + 6, 3 - 5, 8

^{*}Extrapolated; the temperature difference at 10.5 kilometers is +6.1°

Fig. 1.—Tracks of centers of anticyclones passing near St. Louis at times of flights of ballons-sondes from that city.

10, when observations were obtained on three successive days, namely, when St. Louis was respectively in the front of the central area, within the central area, and in the rear of the

FIG. 2.—Departures of temperatures in front and rear of anticyclones from the temperatures at the same altitudes in the central area.

central area of the anticyclone. The diagram, fig. 2, shows that, up to about 8 kilometers altitude, the temperature was lower in front and higher in the rear than it was in the central area; between 8 and 10 kilometers the central area was colder than either the front or the rear; while above 10 kilometers the lowest temperature was in the rear of the anticyclone and the highest in front, this condition being the reverse of that near the earth's surface.

The explanation of these facts which suggests itself to me is that the cold air in the northern part of the anticyclone is moving more rapidly than the anticyclone toward the southeast and, on account of its greater specific weight compared with the surrounding air, sinks toward the earth's surface, the center of the anticyclone being about midway between the northwestern and southeastern limits of the inclined stratum of cold air. The circulation of air around a central area is confined to a stratum within about 2 kilometers of the earth's surface.

In the second diagram, fig. 3, are shown the movements of

the air at different heights both in anticyclones and cyclones, as derived from the observations of cloud movements at the Blue Hill Observatory. This is reproduced from the Beiträge zur Physik der freien Atmosphäre, Band II, Heft 2, 1906, being

Fig. 3.—Movement of the air at different heights in anticyclones and cyclones.

slightly modified from the original diagram published in the Annals of the Astronomical Observatory of Harvard College, Vol. XXX, Part iv, 1896.

BRIGHT METEORS.

Many observers and correspondents of the Weather Bureau have been in the habit of sending us observations of bright meteors, but the observations have not been utilized as completely as is desirable.

The special interest meteors have for the meteorologist consists in the fact that their visibility, due to the heat generated as they pass thru the atmosphere, demonstrates the existence of gases at great heights about which we otherwise have no information whatever; and it has always been hoped that the visible paths of meteors and the behavior of the trains that are often left behind them may tell us much about the upper atmosphere.

We are happy to state that, by permission of Prof. Henry A. Peck, the astronomer at the University of Syracuse, all good observations of meteors received by us will hereafter be forwarded to him, who will make the necessary computations and tell us whatever may be learned relative to their orbits.

Every observer who reports a meteor is requested not to fill up his account with unnecessary verbiage, but state in a simple, straight way, first, at what exact point in the sky the meteor was LAST seen. This point may be defined either with reference to the stars or the moon or sun; or by horizontal angular bearings and vertical altitudes, such as are measured with engineering instruments; or by reference to certain trees, buildings, or other marks, whose linear distances and altitudes are known, so that angular bearings and altitudes may be calculated. One of the most convenient methods of estimating angular altitudes to the nearest whole degree consists in holding a graduated yardstick vertically at arm's length. Record the distance from the eye and the vertical distance on the yardstick above the line drawn from the eye to the horizon, from which the astronomer can easily get some idea of the angular altitude. Having fixt the point of disappearance, then record as nearly as possible the point of appearance, and in fact several points along the path, such as the point where it crost the north-south line and the east-west line, and especially the point where it approached nearest to the zenith. By marking the shadow of a pole or of the corner of a building one may secure a good record of the path of a very bright meteor. Continuous photographic records of meteors are peculiarly desirable.—C. A.

INTERNATIONAL AND LOCAL ORGANIZATIONS FOR THE PROMOTION OF SEISMOLOGY.

The German Ambassador at Washington, and the United States Ambassador at Berlin, have officially announced to the Department of State, under date of March 7, that Prof. Luigi Palazzo has accepted and entered upon his duties as vice-president of the permanent committee of the International Seismological Association. The financial agent of this association is the "Aktiengesellschaft für Boden-und Kommunal-kredit", at Strassburg, to whom all subscriptions should be paid. The United States is a member of this association, and a small appropriation has been made by Congress for fees and the expense of the delegate. Prof. Harry Fielding Reid, of Johns Hopkins University, is the member of the permanent committee representing the United States.

Two notable steps have been taken during the past year tending to a more definite and permanent organization of seismological interests in the United States. First, as a direct result of the California earthquake, the Seismological Society of America was organized, with headquarters at the University of California, Berkeley. The objects of the society are stated to be:

"For the acquisition and diffusion of knowledge concerning earthquakes and allied phenomena, and to enlist the support of the people and the Government in the attainment of these ends".

Prof. Geo. D. Louderback, of the University of California, is the present secretary. The other officers are:

Board of Directors-1907.

George Davidson, President; Andrew C. Lawson, 1st Vice-President; T. J. J. See, 2d Vice-President; Alex. G. McAdie, 3d Vice-President; J. N. LeConte, Treasurer; Chas. Burkhalter, W. W. Campbell, C. Derleth, jr., G. K. Gilbert, A. O. Leuschner, J. S. Ricard.

Scientific Committee.

Andrew C. Lawson, Chairman; John C. Branner, G. K. Gilbert, C. Derleth, jr., J. N. LeConte, A. G. McAdie, H. F. Reid.

The second important advance was made at the December meeting of the American Association for the Advancement of Science, when, at the instigation of Prof. W. H. Hobbs, of Ann Arbor, Mich., a committee on seismology was appointed. The gentlemen selected, who represent all sections of the country and the more important institutions likely to be engaged in seismological research, are as follows: L. A. Bauer, Carnegie Institution of Washington; W. W. Campbell, Lick Observatory; Major C. E. Dutton, U. S. Army; G. K. Gilbert, U. S. Geological Survey; J. F. Hayford, U. S. Coast and Geodetic Survey; W. H. Hobbs, University of Michigan; L. M. Hoskins, Stanford University; T. A. Jaggar, Massachusetts Institute of Technology; Otto Klotz, Ottawa Observatory, Canada; A. C. Lawson, University of California; C. F. Marvin, U. S. Weather Bureau; W J McGee, St. Louis Public Museum; H. F. Reid, Johns Hopkins University; C. J. Rookwood, jr., Princeton University; and R. S. Tarr, Cornell University. the preliminary organization of the committee Dr. G. K. Gilbert was chosen chairman and Dr. W. H. Hobbs, secretary.

Some of the objects in view in forming the committee on

seismology in America are as follows:

1. To be available for, and to initiate counsel in connection with, legislation which provides for investigation of earthquakes or the means for mitigating their dangers.

2. To bring into harmony all American and Canadian institutions doing seismological work, and to guard against unnec-

essary duplication of studies.

3. To organize, if thought best, a correlated system of earthquake stations, which should include the outlying possessions and protectorates.

4. To advise regarding the best type or types of seismome-

ters for the correlated stations.

5. To disseminate information regarding construction suited to earthquake districts.

6. To collect data regarding the light as well as the heavy shocks, and to put the results upon record.

7. To start investigations upon large problems of seismology. 8. To advise with some weight of authority when catastrophic earthquakes have wrought national calamity .- C. F. M.

THE METEOR OF MARCH 14, 1906, OVER CENTRAL NEW YORK.

By Prof. HENRY A. PECK. Dated Syracuse University, Syracuse, N. Y., May 1, 1907.

About 8 p. m., March 14, 1906, a large meteor past over the western-central part of New York State. Press notices appeared in the majority of the daily papers between Rome and Buffalo. In an attempt to secure more reliable data requests were sent from the Central Office of the Weather Bureau to the officials in charge at Oswego, Ithaca, Syracuse, and Rochester, asking them to send all good accounts of the meteor, together with apparent angular altitudes and bearings. Scattering observations were obtained from the three first named stations. In response to advertisements in the Rochester papers, Mr. L. M. Dey, the local forecaster, was enabled to obtain a large amount of material which has been of great value in roughly outlining the territory over which the meteor was observed, as well as in determining the general character of the phenomenon. A complete list of those who have contributed to secure the following results is here given, the places of observation being arranged in order of longitude west of Greenwich:

Henry B. French, Rome. J. W. Blood, Rome. L. W. Griswold, Oneida. H. A. Peck, Syracuse.
Jennie Whaley, Oswego.
Olive E. Templeton, Oswego.
F. R. Monk, Fair Haven. S. D. Colgate, Townsendville. Benjamin Christian, Wolcott.

Robert J. Purdy, Ovid. Floyd Thomas, North Rose. Louis H. Albright, Newark. J. A. Rose, Lyons. C. J. Andrews, Sodus Center. Fred Webler, Sodus Center.
Professor LeRoy, Penn Yan.
Olive R. Tobey, Penn Yan.
V. C. Washburn, Clifton Springs.

F. W. Clark, Williamson. Rev. J. Menlendyke, Palmyra. J. Van Arsdale, Canandalgua. Mrs. Addie Eddy, Middlesex. C. D. Gilbert, Despatch.
B. A. Plimpton, Victor.
Mrs. Jesse A. Wheeler, Holcomb.
Benjamin G. Wedd, Mortimer.
William B. Mason, Lima. Jesse L. Vanderpool, Rochester. L. M. Dey, Rochester. F. L. Hunt, Rochester. Kate E. Collins, Rochester. Julia F. White, Rochester. H. B. McEnbee, Rochester. Mrs. T. Tewilliger, Rochester. Mrs. F. B. Albro, Rochester. Mrs. Chas. T. Axelson, Rochester. Mrs. George Heberling, Rochester.

Adaline I. Jones, Rochester.

Katherine L. Hoyt, Rochester.

Mrs. G. T. Le Boutillier, Rochester.

Katherine L. Hoyt, Rochester.

Katherine L. Hoyt, Rochester.

Mrs. G. T. Le Boutillier, Rochester.

Keltinger, M. D., Lockport.

F. T. Ellison, Rochester. S. F. Gould, Rochester. A. E. Benjamin, Rochester. Edgar Shantz, Rochester. C. J. Trumeter, Rochester. Louis P. Hof, Rochester. F. W. Green, Rochester. H. H. Butler, Rochester. Frank J. Schantz, Rochester. Milton J. Tripp, Rochester. Mrs. H. H. Turner, Rochester. B. L. Pope, Rochester. Leman Gibbs, Livonia Center. George V. Witzel, Coldwater. F. Hanford, Scottsville. W. J. Stocum, Adams Basin. John Denton, M. D., Retsof. Ames Belden, Albion. Georgianna A. Nichol, Medina. Mrs. Thomas R. Griffith, Aurora.

When it is remembered that the air-line distance from Rome to Lockport is over 160 miles, it is evident that the meteor was a remarkable object from a popular as well as from a sci-

entific standpoint.

The apparent path of the meteor thru the atmosphere began about 4 miles to the southeast of Geneva on the eastern shore of Seneca Lake, at an altitude of 70 miles above the surface of the earth. The time of flight was about five or six seconds, and it disappeared over Lake Ontario northeast of Manitou Point, about 8 miles from the nearest land. At first it appeared as a rosy red star of not inconsiderable brightness, but in the latter part of its flight various observers estimated its size as from that of quarter to the full size of the moon. The light cast at places near its path was evidently as strong as that of the moon, or, as one observer says, "the beam of a strong searchlight". Some doubt might be cast on its having been one large, solid body from the fact that reports from places widely apart state that fragments seemed to leave the main mass and pursue separate paths. As suggested by Mr. L. M. Dey, official in charge of the Weather Bureau office at Rochester, this may be the cause of some of the conflicting accounts as to its course, some observers having seen frag-ments of the parent body. A trail that persisted for several seconds followed the flight. A number of observers report that it made a sound as of some heavy body rushing thru the air. After passing over Lake Ontario it exploded twice, the detonation being heard 40 miles, while within 25 miles the concussion was so great as to cause a slight shaking of houses The sound at Rochester and vicinity is compared to the sound

of distant cannon or blasting, or to the rolling of thunder. To obtain the orbit of such an object, using as the basis the conflicting observations and estimates of persons who, for the most part, are unskilled in such work, is no easy task. It must be remembered in the present instance that the greater share of the accounts were not compiled from notes made at the time of observation, but were compiled from memory about three weeks later. Under such circumstances the observer will often unconsciously and in perfect good faith prolong the

true path in either direction.

Our work falls into two divisions. We must first find the most probable path thru the atmosphere, assuming that path as a straight line, from which, in any event, it can not deviate very materially during the short time of flight. This straight line is fixt if we know its end, its length, and its direction. The known time of flight furnishes the velocity. The second

 $^{^1}$ A great noise is sometimes heard shortly after a large meteor passes the observer, and as meteors are frequently seen to break into two or more portions such noises are spoken of as concussions or explosions, especially because they are so loud as to resemble cannonading. However there is generally no explosion, properly so called, even when the noises are very loud; and the exact mechanism by which the noises are produced is worthy of further study.—C. A.

part of the work is the computation of the orbit pursued by the body before it encountered the earth. This can be accomplished by the well-known formulas of theoretical astronomy, provided we know the velocity and direction of its motion when it fell under the earth's attraction.

The end of the flight is very definitely fixt by the observations made at Rochester. Mr. Vanderpool was making his evening observation at the weather station when the flash of light was noted by him at seven hours and fifty-six minutes, eastern time. He estimated that the detonation was heard ninety seconds later. This is confirmed by Kate E. Collins, who estimated the time as eighty-five seconds, and later verified her estimate by walking again the distance she past over between the flash and the subsequent report. This places it 18 miles from Rochester. Mr. L. M. Dey, the official in charge of the Weather Bureau office at Rochester, states that its course was nearly due north, and that the disappearance took place 20° above the horizon. This makes the geographic coordinates of the point of disappearance

$$\lambda = 77^{\circ} 37'$$
 west of Greenwich, $\varphi = 43^{\circ} 24'$ north,

and the geocentric coordinates

$$\begin{array}{l} \log. \ \rho \sin \varphi' = 3.434 \\ \log. \ \rho \cos \varphi' = 3.461 \end{array}$$

the reduction of the latitude to geocentric position being eleven and one-half minutes, and the siderial time

$$\theta = 108^{\circ} 6'$$

while the height above the lake was 6 miles.

This completely defines one point on the line described by the meteor. As soon as another point is found the direction of this line is also established.

If one were at the place where a meteor fell to the ground, he would see it approach as a rapidly brightening and enlarging object, but would not see it describe any apparent path on the sky. The projection of the straight line would be reduced to a point, and this point from which it would seem to approach is called the radiant. It is apparent that the place where the meteor first encountered the atmosphere must be in the direction of the radiant. The apparent curve seen by an observer at any other station is the projection of the line joining the radiant and the point at the end of the flight. As the plane of this projection must always contain the line that is projected, the real path of the meteor must lie in the planes of all the apparent paths, i. e., it must be their common line of intersection. This is the underlying idea in Galle's classical method of computing a meteor orbit. A corollary to this proposition is that the great circles of which the various observed apparent paths are arcs must have a common point of intersection. This point is the radiant, and its determination completely establishes the direction of flight.

In the present case, after careful consideration of the observations, I have chosen those made at Rochester and Syracuse as the basis of the computation. The Syracuse observation must have been made very nearly at the instant when the meteor entered the earth's atmosphere. The azimuth was 67° west of south and the altitude was 60°. Since the point of disappearance is so well established we may abandon all observations of this portion of the path and compute by well-known formulas the direction in which the meteor should have been observed the instant before extinction. As viewed from Syracuse this point had the coordinates

Right Ascension =
$$a = 9^{\circ} 54'$$

Declination = $\delta = +17^{\circ} 9'$.

and the azimuth and altitude of the point of first appearance is equivalent to

$$a^{1} = 78^{\circ} 36'$$

 $\delta^{1} = +26^{\circ} 38'$

In order to find the plane of the great circle defined by these two points the requisite formulas are

$$\tan \gamma \sin (a^1 - I') = \tan \delta^1$$

$$\tan \gamma \cos (a^1 - I') = \frac{\tan \delta - \tan \delta^1 \cos (a - a^1)}{\sin (a - a^1)}$$

where γ represents the angle between the plane of the great circle and the plane of the equator while Γ is the right ascension of the node. In the case of the Syracuse observation we have

$$\gamma = 150^{\circ} 33'$$
 $\Gamma = 153^{\circ} 28'$

The question as to whether the node is ascending or descending is settled by the fact that its general course was from south to north and the ambiguity as to the tangent of γ is removed by its course being retrograde in right ascension.

Treating the Rochester observation in the same manner we

$$a = 288^{\circ} 6'$$

 $\delta = +66^{\circ} 50'$

Mr. L. M. Dey states that the meteor past Rochester a "little to the east of the zenith, and had an angular altitude of 60° or 70°". I have preferred to take his estimate rather than any that I could form from the conflicting reports of observers, as he had a chance of interviewing persons soon after the meteor was seen. Reducing this estimate,

$$a^{1} = 140^{\circ} 42'$$

 $\delta^{1} = +38^{\circ} 19'$

and, therefore,

$$\gamma = 79^{\circ} 53'$$
 $\Gamma = 132^{\circ} 38'$

The fact that at Rochester the projection was to the east of the meridian changes the quadrant of γ .

The mathematical condition that the radiant shall lie on the great circle is exprest by the condition

 $\sin \Gamma \sin \gamma \cdot \cos D \cos A - \cos \Gamma \sin \gamma \cdot \cos D \sin A + \cos \gamma \cdot \sin D = 0$

In the present instance we have two such equations and therefore A and D, which are the right ascension and declination of the radiant, become definitely known. If more than two observations are used there arises a condition which must be solved along the lines of the least square method. If we

$$\cot D \cos A = x \\
\cot D \sin A = y$$

the equations reduce to the form

$$ax + by + c = 0.$$

For the two observations under discussion the equations are

$$+0.206 x + 0.412 y - 0.887 = 0$$

 $+0.724 x + 0.667 y + 0.176 = 0$

and from the solution results

$$A = 134^{\circ} \ 26'$$

 $D = + 9^{\circ} \ 32'$

The direction of the line in space being found, its length may then be computed, which is 86.7 miles.

The time of flight was estimated in Syracuse at from five to six seconds. This is confirmed by other observers. Assuming it as five and one-half seconds, the velocity thru the atmosphere was 15.8 miles per second.

The direction and velocity just found are not those that the meteor possest in space before it felt the attractive force of the earth. These must be found before the orbit with regard to the sun can be determined. The orbit described after the body has fallen under the influence of the earth is a conic section, whose focus is the center of the terrestrial sphere. The

apparent velocity differs from the true velocity also because the earth is itself in motion. When these two causes are taken into consideration the true radiant is found to be the point whose celestial longitude and latitude are, respectively,

106° 2′ +3° 42′

and the true velocity is 31 miles per second.

As will be noticed, the velocity is about 20 per cent in excess of that to be ascribed to parabolic motion, and places the meteor in the hyperbolic class. I am perfectly aware that the burden of proof rests upon the person that assumes hyperbolic velocity for cosmic bodies, but as the assumption of a parabola would prolong the time of visible flight by two seconds, I have preferred to retain the velocity as above given. Computing the elements by the known formulas of theoretical astronomy we have

Longitude of ascending node	351° 31′
Inclination to ecliptic	4° 0'
Longitude of perihelion	209° 1'
Logarithm of perihelion distance	9.9434
Eccentricity	1.696

If one is disposed to reject the hyperbolic velocity from general principles, the orbit is not varied more than might easily arise from the uncertainty of the observations, and there results

Longitude of node	351°	31
Inclination to ecliptic	2°	58
Longitude of perihelion	206°	21
Logarithm of perihelion distance	9.9	597

COOLING BY EXPANSION AND WARMING BY COM-PRESSION.

By CHARLES EMERSON PRET. Dated Lewis Institute, Chicago, Ill. (Reprinted from School Science and Mathematics, April, 1907, page 263.)

The following method of cooling by expansion and condensation of the water vapor of the air into a visible cloud of water particles may be of interest to instructors in physiography. It is a method which I have used with success for several years. The apparatus necessary is: (1) an air pump. (2) a bell jar. (3) a bottle with a snug fitting cork, coated with vaseline. The bottle is corked and placed under the bell jar and the air is exhausted from the bell jar. The cork is pushed out of the bottle by the air inside. The sudden expansion causes cooling enough to condense the water vapor into a cloud which remains visible for a considerable time. Slow leakage of the air into the bell jar may produce warming by compression enough to reevaporate the water. warming by compression is made more striking if the bell jar is provided with a stop-cock by which the air may be admitted more rapidly and in a manner which is apparent to the class. The success of the experiment varies with the humidity of the air, but under the most unfavorable circumstances it is never an entire failure. The size of the bottle to be used and the force with which the cork should be forced into it can easily be determined by trial. The cloud in the bottle may be made more clearly visible by providing it with a proper background.

ESPY'S NEPHELOSCOPE.

The experiment above described by Professor Peet implies the use of an air pump, whereas the following method, which has often been used by the Editor, not only requires no expensive apparatus, but has several other advantages. A bottle (A) properly corked, has inside of it an ordinary elastic-rubber toy balloon (B), which, when but slightly distended, occupies only two or three cubic inches. A glass (or preferably a rubber) tube enters the mouth of the balloon, and also passes outward air-tight, thru the cork. On blowing thru the tube, or

forcing air by any other method into the balloon, the latter is distended, and of course the air within the bottle is comprest. Wait until this comprest air has lost its warmth, which it quickly does by conduction and radiation to the sides of the bottle, then remove the finger from the rubber tube and allow the comprest air of the bottle to push the air within the balloon outward thru the rubber tube. The work done by this expansion cools it enough to produce the most delicate cloud of condensed vapor, which is visible until the radiation of heat from the sides of the bottle evaporates the globules of water. The experiment may be repeated over and over with the same air always in the bottle; and if a thermometer be added, together with some way of measuring the volume of comprest air, then really instructive computations may be made. If a little water be kept in the bottle, but outside the balloon, we may arrange so to deal always with saturated air, and the haze will be more easily visible to a large class. no water be present then we have to deal with unsaturated air, and may make a large variety of experiments.

One of the first phenomena that the teacher and scholar will note is the fact that after a few trials it becomes more and more difficult to secure any visible haze. This is the phenomenon first recorded by Espy, and was a mystery to him and everyone else until Aitken showed that vapor condenses most easily on minute solid nuclei, and by its weight carries them to the bottom or sides of the jar, where they stick fast, so that after a few trials no more nuclei remain. Then comes the phenomenon first studied by C. T. R. Wilson, of Cambridge, England, who showed that in dustless air a greater expansion and therefore a greater cooling is necessary in order to produce visible globules. This may lead us on to the consideration of ions, if the scholar is far enough advanced for the subject. At least it is proper to call his attention to the fact that the interior of a cloud is dustless, and that here greater expansion seems to be necessary, and consequently greater cooling, and that therefore a greater liberation of latent heat occurs within the interior of a thundercloud than in that same air when it first rises high enough to become cloudy.

Instead of water one may introduce other liquids into the experimental bottle, which is in fact a modification of Espy's single nepheloscope, and may thus experiment upon carbonic acid gas, the vapors of alcohol, ammonia, etc.

The double nepheloscope devised by Espy may be imitated by connecting two clear glass bottles (C) and (D) by means of two rubber tubes to a central bottle or receiver (E), from which the air can be exhausted. By a spring clip close one tube so that the air may be exhausted from the receiver (E) and one bottle (C), while not exhausted from the other bottle (D). Then remove the clip from (D) and allow its air to pass over into (E) and (C). The student will be surprised to find that no cloud is formed. This experiment troubled Professor Espy very much about 1850, as he had up to that time been reasoning on the general principle that the atmosphere is cooled by the act of expansion, but here he evidently had expansion without cooling. It was Prof. William Thomson, of the University of Glasgow, now Lord Kelvin, who, by his work on thermodynamics, first gave the true explanation, namely, that it is not the mere expansion that produces cooling but the work done by expansion. When the air expands from (D) into the vacuum (E) and (C) there is no work done except the moving of about one-half the mass of air in (D) over into the empty jars (E) and (C), and the cooling is too slight to produce a visible haze; it was, in fact, too slight for Espy to measure with his most delicate thermometer. On the other hand, when the comprest air in the bottle (A) pushes the air in the balloon (B) out into the open air it is doing heavy work by pushing against the outside atmospheric pressure, just as does the steam in the cylinder and boiler of an engine. - C. A.

METEOROLOGICAL STATIONS IN SOUTHERN RHODESIA.

The organization of an independent meteorological service in Southern Rhodesia appears to have begun in 1901. Previous to that year the few stations in existence reported their results directly to the Meteorological Commission of the Cape of Good Hope. The reports for 1901, however, were collected by the government statist at Salisbury and forwarded by him to Cape Town for publication in the annual report of the Meteorological Commission. Nineteen stations of all orders were then in operation. With 1903 began the publication of the annual "Report on Meteorology by the Statist", devoted exclusively to the meteorology of Southern Rhodesia. This has since appeared regularly, except for a gap of one year, ending March

31, 1905. Concurrently, results from Southern Rhodesian stations have been published annually in the Report of the Meteorological Commission of the Cape of Good Hope.

Mr. J. S. Blackwell, acting statist, has been good enough to send the writer a manuscript map showing the location of all meteorological stations in Southern Rhodesia at the beginning of the year 1907. This is reproduced in a somewhat simplified form in fig. 1, herewith, and supplements in an important manner the published reports of observations in the colony, as several of the stations are located at places not shown on any of the ordinary maps of Southern Rhodesia. Of the 48 stations shown on this map only three—Bulawayo, Salisbury, and Hopefountain—have been in operation ten years.—C. F. T.

F10 1 .-- Map showing location of meteorological stations in Southern Rhodesia, January 1, 1907.

A CLOUD BANK AT SEA.

The Chief of the Division of Ocean Meteorology contributes the following extract from a record lately received by him:

At 2:30 a. m. of March 14, in crossing the North Sea from Copenhagen to North Shields, we witnessed a phenomenon of which I give you the following account:

following account:

Throughout the whole night it had been snowing heavily. At the above-named time we saw about a mile ahead of us (the ship's course at the time being SW. by W. ½ W.), lying on the water and rising to the height of the ship's rail, a sharply defined bank of clouds or some other object, having perfectly square edges, and extending from SW. by W. ½ W. to WSW., the remainder of the horizon being quite clear. Unable to decide what the object was, we brought the ship's head to WNW., and left it on our port beam. Immediately afterwards it started to blow very hard. Neither the chief officer nor myself had ever seen anything like it before. Barometer at the time 29.47 inches, wind WNW., force 4 to 5, and then increasing.—Brilliant (Ger. S. S.), Schroeder, report by Third Officer Leidhold.

NORMALS IN WEATHER BUREAU RECORDS.

A correspondent addresses the Chief of Bureau as follows:

Kindly inform me what is the standard for normals of pressure, temperature, and rainfall referred to in Table I of the Monthly Weather Review. I presume that it is the mean of certain periods accepted as normal. If so I should like to learn of the locus and length of these periods, and whether the application of the + or — departure to or from the monthly record is supposed to give the normal as a result.

In reply, the Division of Meteorological Records states that the values used as normals are the averages of all observations available from the beginning of record at the respective stations to the time the values were completed and put in operation. The normals of pressure now in use cover the period from 1873 to 1899, inclusive. Some stations contain the full 27-year record while the values for other stations are based on shorter periods. For temperature and precipitation the value used as normals cover the period from 1871 to 1895, inclusive. Some cover the entire period of twenty-five years, while at others the values are for shorter periods depending upon the dates upon which observations began at the several stations. As a rule normals are not prepared for stations having a record of less than ten years.

In computing these normals no attempt has been made to reduce the values at stations having shorter records to correspond with those covering the full period of years.

A PLEA FOR THE TEACHING OF METEOROLOGY.

By R. H. Curtis, Esq.

[Reprinted from Symons's Meteorological Magazine, November, 1906.]

The growth of an intelligent interest in meteorology on the part of the general public is manifesting itself in several ways. One very unmistakable sign of it, which everyone may note, is to be found in the amount of attention which is now paid to the subject of the weather by the daily press, and particularly to the forecasts of the weather published every morning. Not so very long ago there were comparatively few people who troubled themselves to look at these forecasts at all, and the majority of those who did do so regarded them as little more than guesses, generally good guesses, perhaps, because they were understood to have been made by people who had given more than ordinary attention to the subject, and presumably had by dint of long practice acquired more skill in reading the signs of coming changes in the weather than ordinary folk possessed; but they were rated as guesses nevertheless, with no more really scientific basis than existed for the predictions of "Old Moore". But to-day the change is great. The forecast is the first thing looked at by thousands of men and women when they open their morning paper at breakfast, or

in the train, or on their way to business; and these forecasts are treated with respect as being scientific deductions from observed conditions of the atmosphere, considered in relation to the laws, as far as they are known, by which the movements of the atmosphere are governed. That is the gist of the reply which probably the majority of those who study the forecasts would make if asked to give their opinion about them, although, likely enough, very few could go a step further and give even the most elementary account of the laws themselves. It is, however, a step in advance that the public mind is beginning to accept the fact that there are any "laws" at all in the matter, and to recognize that the daily sequence of weather is not simply fortuitous, the result of the purest chance. When so much is admitted, a desire on the part of many to get some sort of acquaintance with the laws is sure to follow, and the day when all ordinarily well educated people will possess at least some elementary ideas of a sound nature about meteorology will thereby be brought considerably nearer.

But signs of the spread of this spirit of enquiry are not wanting even now, and its progress would seem to be more real than possibly many meteorologists suppose. Indeed it may not be amiss to express the hope that some meteorologists may themselves be stirred to acquire a better knowledge of the theoretical side of the subject than they already possess, for it is not an unknown experience to meet with men who make daily observations of the barometer and of temperature, who have a rain gauge, and know all about the rainfall of the district in which they live, and who locally have the reputation of being "meteorologists", but who nevertheless would be sorely puzzled if asked to describe a typical "depression", or to explain what is known as "Buys Ballot's law".

Anyone passing the Meteorological Office in Victoria street might see at almost any time in the day people stopping at the door, not merely to scan the forecasts exhibited there, but also to study the charts hung by their side, upon which the forecasts are based. Not infrequently when friends are examining these charts together, an interesting discussion, or perhaps explanation, may be heard regarding the relation of the forecast to the conditions indicated by the chart; it is not always that these explanations proceed upon orthodox lines, although frequently they do; but, be that as it may, they show that the broad principles of the subject are receiving some attention, and to that extent they are welcome indications of progress to all who are interested in the furtherance of the study of meteorology.

Another and still more promising indication of progress may also be noticed at the door of the Meteorological Office, at a particular part of the day, when the students from a neighbouring training college for schoolmasters going for, or returning from, their daily walk, gather in small groups round the charts, discussing the sequence of changes shown during the past few days, and sketching in their note books the present distribution of pressure and temperature, and the wind circulation, with a view to subsequent class lectures on the subject. In the direction which this fact indicates lies, we think, the great hope of popularizing the science of meteorology. Hitherto it has been almost entirely omitted from the curricula of our schools, and from the training of the teachers. Smatterings of it have found their way into that olla-podrida of the sciences which under the name of "physiography" has for years been a favourite subject with school teachers in the annual South Kensington Science examinations; but since in addition to meteorology the paper on this subject usually embraces questions in astronomy, geology, vulcanology, chemistry, and possibly other branches of science as well, it is obvious that the modicum of knowledge of each which a student who aspired to grapple with such a "general knowledge paper would probably acquire, would be insufficient to enable him to teach any of them.

¹Mr. Curtis here refers to a famous almanac published in the seventeenth century. — EDITOR.

But why should not meteorology now be regarded as a science sufficiently mature to be able to stand upon its own feet, and why should not school teachers be encouraged to take a course of study in meteorology as complete as is now usual in the case of botany or physiology? Teachers would then have a real acquaintance with the subject, and would be able to impart their knowledge satisfactorily to their pupils; and without doubt both teachers and taught would find the subject at once interesting and useful.

There are teachers who have already made this discovery and have profited by it. Of course in some schools, such as those for young seamen, or those for students of agriculture, meteorology naturally secures a prominent place; but in some "public elementary" schools the subject is also taught so far as first principals are concerned, and the interest of the pupils is further secured by getting them to observe instruments

which have been provided as part of the school equipment.

In this country we, as a rule, move slowly, and although the inclusion of meteorology in the ordinary curriculum of school instruction has been advocated for many years, very little has yet been done to bring it about. But the growth of general interest in the subject to which we have drawn attention should we think aid materially in its accomplishment, and with the further development of that interest the time when meteorology shall form a common subject in schools of all grades should not be very distant.

ON "ABSOLUTE" VALUES.

In looking over the files of the section reports we notice a growing use of the word "absolute" that seems to be without official authority and that should be stopt, as it is objectionable for several reasons. The terms "absolute maximum" and "absolute minimum" frequently occur in climatology to express the highest maximum and lowest minimum that have occurred in a long series of observations at a given place. The difference between these extremes is the "absolute range" for that long period, and the term "absolute" is applicable only to a series of observations that is so long that the extreme temperatures and ranges may be supposed to approximate what would be given by a century or more of observation.

We use the expressions "maximum", "minimum", "ex-

tremes" for any given month or year, or for a short series of months or years, and always specify what that special period is.

In his translation of Hann's "Climatology" Prof. R. De C. Ward, on page 18, seems to apply the term "absolute" to a short series, but he does not intend this, as may be seen from the fact that he states that these data have very little value unless they are based on a long series of observations; and he illustrates the meaning and use of the word "absolute' on the next page by applying it to a series of ten years, while in the table on page 33 the term is applied by Hann only to a record of forty-six years. In the circular letter sent out by Prof. A. J. Henry, when gathering data for his Bulletin Q. he called for "absolute maximum and minimum" in his temperature tables, but only expected these data from stations having long records.

As the use of the word "absolute" is liable to convey wrong impressions it has been strongly recommended that the simple expressions "maximum", "minimum", "range" for the month or the year, or a given number of years, be adopted for general use, and that the term "about the property of the special of the strong o memoirs on climatology, where distinctions must be made between the periodic and nonperiodic features of climate.

In the best usage the word "absolute" refers to a single station and the oscillations thereat during a long period of time, but we notice a remarkable innovation in many of our

section reports, where the term "absolute" is applied to variations over a large area, as over a State or section; thus, "the absolute maximum temperature for the State is 101° and the absolute minimum 45°". But a section rarely has more than a hundred stations, and no one can be sure that there are not many points in the State at which our extremes are exceeded. The term "absolute" is as inappropriate to our State sections as it is to our short records. One should simply say "highest recorded", "lowest recorded" in the State, without using the word "absolute", and should give the station and date as well as the temperature.

We note other peculiar phrases that are also objectionable; for instance, one section director instead of saying the "absolute highest" or "absolute maximum" writes the "highest absolute temperature" or the "lowest absolute temperature". Now the "absolute temperature" is a term long since preempted both by physicists and by meteorologists, and means the temperature counted upward from the absolute zero, as distinguished from the temperature centigrade, which is counted upward or downward from the freezing point, or as distinguished from the Fahrenheit scale where the temperature is counted upward or downward from the zero point chosen by Fahrenheit. The absolute temperature is usually found by adding 273 to the centigrade temperature; it would come to the same thing if we should add 459 to the Fahrenheit temperature. As the term "absolute temperature' everywhere in common use it would be foolish to allow a new and loose usage to prevail in meteorological literature.

The phrases, "highest absolute maximum" and "lowest absolute minimum", are redundant and should be replaced by the simple expression "highest" or "lowest", omitting the word "absolute" as improper, and the words "maximum" or "minimum" as unnecessary. It is much clearer and more definite to say, "the highest temperature of the month at the station", or "the highest temperature recorded in the State or "the maximum temperature for the State

In another report we read, "the absolute minimum, 29°, -, is the lowest in fifteen years". It would be shorter as well to say, "29°, at ———, is the lowest recorded and just as well to say, " 29°, at in fifteen years", omitting the words "absolute minimum".

Again, we read "the absolute maximum temperature for

1906", as the the absolute maximum could occur, not merely once in a century, but once every year. The proper expression is "the highest temperature in 1906", or "the maximum temperature during 1906".

In another line occurs the expression "the highest absolute temperature for November, 1906, in the State of ——", as tho absolute temperatures could occur at every station, but the highest absolute could characterize some one point in the State. It would be a great deal better to say, "the highest temperature in the State during November, 1906".

From another report we quote an "absolute range of 100° in temperature for the month of February". The writer of this line evidently intends to say that the range of temperature for the month between the lowest at one station and the highest at another station somewhere within his section was 100° and that this was the largest of all similar records for that month. His word "absolute", therefore, includes both the idea of time and geographical extension-not either one alone, but both. Now such a combined chronological and geographical range of temperature has no local climatological value. The figures are not comparable with those for any other section because everything depends upon the sizes of the sections and their orography, whether mountainous or flat, and their shape, whether elongated north and south, or east and west. The climatologist wants the range of temperature for each individual station; by comparing these ranges among themselves he may be able to discern the differences in the climate over different parts of the section. To be sure one might imagine

[&]quot;The Climatology of the United States", not "A Climatological Dietionary", as some erroneously call it.

that taking the State or section as a whole the maximum and minimum occurring within it and the general range for the section might be comparable with similar numbers for other sections, and that thus we might study the relative climatology of the different sections, but this has not yet been done to any great extent. We can take the average of the departures of all the stations from their respective normals, and thus obtain an average departure for the whole section, but even this has no value in climatology when the stations have a wide range in altitude, latitude, or longitude. The study of climatology is coming down more and more into details, and these so-called absolute maxima and minima by sections cover up the very details that we wish to study.

Finally we note "The absolute maximum of 95° was, with two exceptions, the lowest of record for the month, while the absolute minimum was the highest with one exception". We think that the writer was endeavoring to communicate something that had imprest him as peculiar and perhaps remarkable, as to the weather in his section during September, 1906, but we do not ourselves get any clear idea from this paragraph and we think it should be rewritten, omitting the word "absolute", and mentioning the names of the stations.—C. A.

ADAM PAULSEN (1833-1907).

Prof. Adam F. W. Paulsen, director of the Danish Meteorological Institute—the national weather service of Denmarkdied January 11, 1907, at the age of 74.

In addition to his many other activities as the head of the Danish meteorological service and as a member of the International Meteorological Committee, Professor Paulsen was especially interested in two important projects—the study of the aurora, and the establishment of telegraphic communication between Europe and Iceland, for meteorological purposes. The cable to Iceland became an accomplished fact shortly before his death, and is a lasting monument to his memory. The discouraging financial difficulties that he had to overcome in achieving this result have been set forth in his reports to the International Meteorological Committee.

Paulsen's investigations of the aurora date from the international polar expeditions of 1882-1883, in which he took part as leader of the Danish expedition to the west coast of Greenland. In 1899–1900 he led an expedition to northern Iceland for the special purpose of studying the aurora. The results of the latter expedition included some remarkable photographs of auroral spectra, and new measurements of the altitude of the rayless auroral arch, indicating that it occurred at not less than four or five hundred kilometers from the earth's surface. At this height the atmosphere must be so rarified that ordinary electrical discharges would be impossible. In a paper published a few months before his death Paulsen reaches the conclusion that the cause of the aurora is to be sought in an immense ionization and negative electrification of the upper layers of the atmosphere, produced by cathode rays emitted from the sun.

Professor Paulsen's successor as director of the Meteorological Institute is Capt. Carl Ryder, who has heretofore been known to science chiefly as an arctic explorer.—C. F. T.

WEATHER BUREAU MEN AS EDUCATORS.

The following lectures and addresses by Weather Bureau men have been reported:

Mr. S. S. Bassler, March 5, 1907, before the Cincinnati Society of Natural History, on "The weather map".

Mr. Ford A. Carpenter, March 9, 1907, before the Scholia ¹Sur les récentes théories de l'aurore polaire. Résumé et critique

des théories de MM. Birkeland, Arrhenius et Nordmann. Idées personnelles. (Académie royale des sciences et des lettres de Danemark. Extrait du bulletin de l'année, 1906. No. 2.)

18-

Club, of San Diego, Cal., on "What makes the climate of San Diego "?

Mr. George M. Chappel, March 20, 1907, before the teachers and pupils of the North High School, Des Moines, Iowa, on "The work of the Weather Bureau'

Mr. David Cuthbertson, March 27, 1907, before the West Side Business Men's Association, of Buffalo, N. Y., on "The usefulness of the Weather Bureau to the commercial interests"

Mr. C. F. von Herrmann, March 23, 1907, before the Alpha Delta Epsilon Scientific Fraternity, of Johns Hopkins University, Baltimore, Md., on "The principles of forecasting the weather

Mr. J. R. Weeks, March 18, 1907, before pupils of the Washington Street Public School, Binghamton, N. Y.; also March 21, before the successful scholarship contestants of the Binghamton Republican, on "The work of the Weather Bureau".

Classes from universities, academies, and schools have visited Weather Bureau offices, to study the instruments and equipment and receive informal instruction, as reported from the following offices:

Meridian, Miss., March 14, 1907, the physics class from

Moffat-McLaurin Institute.

Mobile, Ala., March 22, 1907, a section of the physical geography class from Barton Academy.

Salt Lake City, Utah, during March, 1907, students from

the Salt Lake High School and the Latter Day Saints' Uni-

BELLS AS BAROMETERS.

We find a misleading paragraph under the above heading going the rounds of the press to the effect that "about five miles from Lebekke, in Belgium, there are some small church bells known as the 'water bells'. When they are heard distinctly in the town rain is sure to follow". With this paragraph goes a so-called "plausible popular explanation of the phenomenon", about as follows:

"If bells sound very distinctly of an evening, this points to the probability of a wet day following, since air heavily charged with moisture conducts sound better than dry air. So, too, as dense air conducts better than light air, bells sound more clearly when the barometer is high than when it is low, other things being equal; and so, too, with hot and cold air

There are several errors in this explanation. It may be acceptable to teachers and others if we add that the intensity and quality of a sound depends primarily on the bell, and the tower in which it is hung, but only to an infinitesimal degree, if at all, on the temperature of the air, or the quantity of aqueous vapor contained therein, or on the relative humidity of the air. On the other hand the intensity of sound, observed at a distance, does depend to a very large extent on the homogeneity of the air, while the distance to which a sound is heard depends on the direction of the wind. If the air is perfectly homogeneous then the effect of a horizontal wind, which is usually feeble near the ground and strong higher up, is to bend the rays of sound out of their straight line directions. If the observer is to windward of the bell, the sound that should come to him passes over his head, and if he is to leeward the sound that should pass over his head is brought down to him. If he is to leeward of a house or island the irregularities of the wind may bend the sound wave entirely away from him. If he is in a calm stratum, as in the early morning, with the wind blowing strong above him, then he may hear no sound if he is to windward of the bell, but a more intense sound if he is to leeward. Ordinarily the air is not homogeneous, but is a mixture of warm and cold, or dry and moist masses, that is to say, a mixture of rarer and denser portions that break up waves of sound. Especially during hot sunshine does the air become acoustically opaque, that is

to say, the rays of sound, having to pass thru many alternations of rarer and denser air, are reflected and refracted at avery transmission losing in intensity at every change so that every transmission, losing in intensity at every change, so that the range of audibility of a bell is always less in sunny weather than in cloudy weather, less during the daytime than at nighttime, less over the land than it is over the sea, and less over the lowlands than it is on the mountain tops. During still quiet nights, beneath a layer of clouds, the atmosphere is usually most homogeneous as to temperature and moisture; and, if there be no wind, sounds are then heard to the greatest distance. There are many peculiarities in the distribution of sound that have been especially studied in connection with fog signals on the coasts of Europe and America, but we believe all have been explained by considering the refraction of sound caused by differences of wind, by differences of density, by the presence of two currents of air passing each other, by the reflection from a sheet of falling rain, by reflection from the waves of the ocean, and by the irregularities of the land. If the audibility of distant sounds is a sign of coming rain, it is generally because the skies have become clouded over, or the wind has shifted preparatory to rain; but not because the air has become more heavily charged with moisture, nor because moist air conducts sound better than dry air, nor because the dense air of a high barometer conducts sound better than the rarefied air of a low barometer, nor because cold air conducts sound better than hot air. These four influences are negligible compared with homogeneity.

The diminution of sound is perfectly analogous to that of light. Everyone knows how easily light passes thru clear air or pure water, but it will not pass thru a mixture of air and water, such as a glass full of bubbles, or a fog or cloud, or a sheet of falling rain.—C. A.

RECENT ADDITIONS TO THE WEATHER BUREAU LIBRARY.

H. H. KIMBALL, Librarian,

The following titles have been selected from among the books recently received, as representing those most likely to be useful to Weather Bureau officials in their meteorological work and studies. Most of them can be loaned for a limited time to officials and employees who make application for them.

Anderson, Richard.

Lightning conductors; their history, nature, and mode of applica-tion. 3d ed. London. 1885. xv, 470 p. 8°.

Angot, Alfred.
Traité élémentaire de météorologie. 2d ed. Paris. 1907. vi, 416 p. 4°.
Austria. K. k. Zentralanstalt für Meteorologie und Geodynamik.

Allgemeiner Bericht und Chronik der im Jahre 1904 in Osterreich beobachteten Erdbeben. No. 1. Offizielle Publikation. Wien. 1906. vii, 155 p. 8°. tavia. Koninklijk magnetisch en meteorologisch Observa-

Batavia. Koninkijk magnetisch der torium.

Regenwarnemingen in Nederlandsch-Indie. 27 Jaargang. Batavia. 1906. xi, 380 p. 4°.

Black, W. G.
Ocean rainfall by rain-gage observations at sea. General and special oceans. 1864, 1875, 1881. New ed. [Repr. J. Manchester geogr. soc. v. 14, 1898.] Edinburgh. n. d. 21 p. 8°.

Blanchard, Raoul.
La Flandre. Paris. 1906. viii, 530 p. 4°.
Bouches-du-Rhone. Commission de météorologie.
Bulletin annuel. 1905. Marseille. 1906. x, 113 p.

Bravo, Carlos. ... La patria

Bravo, Carlos.
... La patria Boliviana. Estado geográfica. La Paz. 1894. 204 p. 8°.

Cape of Good Hope. Meteorological commission.
Report 1905. Cape Town. 1906. xiv, 127 p. f°.

Ceylon. Surveyor general.
Meteorology [1905]. (Extr. Ceylon administration reports for 1905.)
n. p. n. d. Fl-F44 p. f°.

Coester, A. and Gerland, E.
Beschreibung der Sammlung astronomischer, geodätischer und physikalischer Apparate im Königlichen Museum zu Cassel. Cassel.
1878. 48 p. 4.

Courty, Fernand.
Climatologie du littoral Atlantique français... Paris. 1905. 14 p. 8°.

bruck. n. d.

Die Beobachtungsergebnisse der meteorologischen Stationen nie-derer Ordnung im Herzogtum Braunschweig während des Zeit-raumes 1878–1905. (S.-A. Beiträge Statist. Herz. Braunschw. Heft 20. 1907.) 38 p. f°.

Egypt. Survey department.

Meteorological report for the year 1904. Part 1. Cairo. Report on the work of the Survey department. 1905. 76 p. 4°. Cairo. 1906.

Guzman, David Y.

Apuntamientos sobre la topografia fisica de la República del Salvador. San Salvador. 1883. xix, [20]-535 p. 8°...

Hamburg. Deutsche Seewarte.

Deutsches meteorologisches Jahrbuch. Hamburg. 1906. vi, 192 p. f°.

Hann, J[ulius].

Der tägliche Gang der Temperatur in der äusseren Tropenzone.

Das amerikanische und afrikanische Tropengebiet. (Denkschr. Akad. Wien. 80. Bd.) Wien, 1907.

Das amerikanische und afrikanische Tropengebiet. (Denkschr. Akad. Wien. 80. Bd.) Wien, 1907.

Huggard, W. R. and others.
Davos as health resort... Davos. 1906. iv, 316 p. 8°.

Hungary. Kgl ung. Reichsanstalt für Meteorologie u. Erdmagnetismus.

Bericht über die Tätigkeit. 1905. Budapest. 1906. 30 p. 8°.
Jahrbuch. 34 Band. 1904. Theile 1-3. Budapest. 1906. v. p. f°.

International meteorological committee.

Internationaler meteorologischer Kodex. Im Auftrage des Internationalen meteorologischen Komitees bearbeitet von G. Hellmann und H. H. Hildebrandsson. Deutsche Ausgabe besorgt von dem Königlich preussichen meteorologischen Institut. Berlin. 1907. Königlich preussichen meteorologischen Institut. Berlin. viii, 81 p. 4°.

viii, 81 p. 4°.

Juiz de Fora. Servico meteorologico.

Boletim. 1906. n. p. n. d. f°.

Knoch, Karl.

Die Niederschlagsverhältnisse der Atlasländer. Frankfurt a. M. [1906.] 86 p. 8°. cau. Observatoryum.

... Materyaly zebrane przez sekcye meteorologiczna. [1905.] n. p. n. d. 73 p. 8°.

on. d. 73 p. 8°. on. Solar physics observatory, South Kensington. eport. 1906. n. p. n. d. 15 p. 8°. London.

Lutz, Karl Wolfgang.
Untersuchungen über atmosphärische Elektrizität mit besonderer Berücksichtigung ihrer technischen Bedeutung. [München. 1904.] 102 p.

Maugham, R. C. F.
Portuguese East Africa. New York. 1906. xii, 340 p. 8°.

Flut und Witterung. Braunschweig. 1905. vi, 24 p. 8°.

Moscow. Agricultural institute. Meteorological observatory.

Observations. 1905. Moskva. 1987. xxx, 72 p. 4°.

Pastrana, Manuel E.

La sección metaorol.

La sección meteorológica del estado de Yucatán. Mexico. 1906.

99 p. f°.
ussia. Königliches preussisches meteorologisches Institut.
Ergebnisse der Beobachtungen an den Stationen II. and III. Ordnung im Jahre 1901... Berlin. 1906. xvi, 124–279 p. f°. Prussia.

Rakhmanov, G.
Osnovy meteorologii. [Elements of meteorology.] (Russ.) Moskva.
1902. ii, 118 p. 8°.
Richter, Eugen.
Die Witterungskunde für den Haus-, Land- und Forstwirt. Regens-

burg. n. d. 30 p. 16°. Rizzo, G. B.

Sopra il calcolo della profondità degli ipocentri nei movimenti sismici. (Estr. Accad. sc. Torino. v. 41. 17 giugno 1906.) Torino. 1906.
 Sp. 8°.
 Sulla velocità di propagazione delle onde sismiche nel terremoto della

Calabria del giorno 8 settembre 1905. (Estr. Mem. Accad. sc. Torino. Ser. II, Tom. 57. 17 giugno 1906.) Torino. 1906. p. [309]-350. f°.

Royal society of New South Wales.

Journal and proceedings. 1905. Sydney. 1905. v. p. 8°. Rykachev, M.

covyli isparitel dlla nabliupenii nad ispareniem travy i pervyia nab-liudeniia po nem v Konstantinovskoi observatorii y 1896 g. [New evaporometer for observing evaporation from the grass, and first observations with this instrument at the Constantine observatory in 1896.] St. Petersbug. 50 p. f°. (Mém. Acad. sc., St. Peters-burg. 7 sér. Classe phys.-math. v. 7. No. 3.)

South Australia. Government astronomer.

Meteorological observations made at the Adelaide observatory and other places...1902-3. Adelaide. 1905. xx, 65 p. f°.

Steen, Aksel S.

Report of the Second Norwegian Arctic expedition in the Fram. 1898-1902. No. 6. Terrestrial magnetism. Kristiania. 1907. 82 p. 40

Ueber den Einfluss der Lage die Temperaturentwickeiung der Som-mermonate und die Luftfeuchtigkeit an heissen Tagen im Schwarz-waldgebiet...Inaug.-Diss... Saalfeld. [Jena. 1906.] 72 p. 4°.

Streit, A.
Das Wesen der Cyklonen. Wien. 1906. vi, 125 p. f°.

Thieme, F. W.

Neues und vollständiges Handwörterbuch der englischen und deutschen Sprache. 18. Auflage vollständig neu bearbeitet von Leon Kellnar. 2 Theile. Braunschweig. 1901-5. xlviii, 491; xliv, 597 p. 4°. 597 p. 4°. Unanue, Hipolito.

Observaciones sobre el clima de Lima . . . Madrid. 1815. (26), 315 p. 8°.

The analytical theory of light. Cambridge. 1904. xv, 416 p. 4°.

RECENT PAPERS BEARING ON METEOROLOGY.

H. H. KIMBALL, Librarian

The subjoined titles have been selected from the contents of the periodicals and serials recently received in the Library of the Weather Bureau. The titles selected are of papers or other communications bearing on meteorology or cognate branches of science. This is not a complete index of the meteorological contents of all the journals from which it has been compiled; it shows only the articles that appear to the compiler likely to be of particular interest in connection with the work of the Weather Bureau. Unsigned articles are indi-

Bulletin of the American geographical society. New York. v. 39. Apr., 1907. T., R. S. Calabrian earthquakes. p. 236-237. Bulletin of the geographical society of Philadelphia. Philadelphia. v. 5. Apr., 1907.

Apr., 1907.

Bennett, Helen Christine. Kingston, the capital of Jamaica, as it was and is. p. 1-9. [Graphic description of the Kingston earthquake, January 15, 1907.]

Smith, Philip S. Settlements and climate of the Seward Peninsula, Alaska. p. 10-20. [Climate of Nome and vicinity.]

ture. London. v. 75.

MacDowall, Alex. B. Rothesay rainfall and the sun-spot cycle. (Mch. 21, 1907.) p. 488.

— The weather reports of the meteorological office. (Mch. 21, 1907.) p. 488-490.

1907.) p. 488-490.

1907.) p. 488-490.

— The weather and the crops. (Apr. 4, 1907.) p. 545-546. [Abstract of paper by R. H. Hooker.]

Physical Review. Lancaster. v. 24. Mch., 1907.

Turnbull, W. R. Researches on the forms and stability of aeroplanes. p. 285-302.

Science. New York. New Series. v. 25. Apr. 5, 1907.

Wetherill, Henry Emerson. Some new and useful data in reference to the moisture of the air. [Abstract.] p. 523. [Notice of a cobalt hygroscope.] of a cobalt hygroscope.]
Gates, Fanny Cook. On the conductivity of the air caused by

certain compounds during temperature changes. [Abstract.] p. 528.

Barus, Carl. On distributions of nuclei and ions in dust-free air.

[Abstract.] p. 534-535.

Ward, R. DeC[ourcy]. Cumulus clouds over the San Francisco fire. p. 554-555.

fire. p. 554-555.

Scientific American. New York. v. 96.

Rotch, A. Lawrence. The meteorological conditions above St.

Louis. (Mch. 30, 1907.) p. 271.

— A great jam on the Susquehanna River. (Apr. 6, 1907.) p. 288.

Scottish geographical magazine. Edinburgh. v. 23. Apr., 1907.

Newbigin, I. The Swiss Valais: a study in regional geography.
p. 169-191. [Climate, p. 175-183.]

Symons's meteorological magazine. London. v. 42. Mch., 1907.

Symons's meteorological magazine. London. v. 42. Mch., 1907.

Innes, R. T. A. Rain gauge exposure in the Transvaal. p. 21–23.

— The British weather reports. p. 23–27. [General description, with notes of changes recently introduced. Announces the inauguration of a monthly weather report.]

Krebs, Wilhelm. Qualitative analysis of curve diagrams. p. 27–28.

— Rain-making experiments in the Klondike. p. 29.

Druce, F. Weather recording. p. 29–31.

Clark, J. Edmund. A relation between rainfall at York and solar cycles. p. 32–33.

Lander, A. The Lander self-recording rain gage. p. 37.

Terrestrial magnetism and atmospheric electricity. Baltimore. v. 11. Dec., 1906.

Oddone, Emilio. Measurements of the electric potential during the total solar eclipse of August 30, 1905, at Tripoli, Barbary. p. 167–180.

Adam Paulsen (1833-1907).

— Adam Paulsen (1833–1907). p. 198.

Transactions of the royal society of Edinburgh. Edinburgh. v. 41. Pt. 3. 1904-5.

Chrystal, [George]. On the hydrodynamical theory of seiches. p. 599-649. [Bibliography, p. 644.] musire de la Société météorologique de France. Paris. 54 année.

Dongier, R. Introduction à l'étude des phénomènes électriques de l'atmosphère. Radioactivité; lons; electrons. (Août 1906.)

p. 213-230. [A popular résumé of recent theories of atmospherie electricity.]

electricity.]

Cœurdevache, P. Variation annuelle de la nébulosité. (Août 1906.) p. 235.

Dufour, Ch. Variation diurne de la pression barométrique à Rikitea. (Oct., 1906.) p. 253-257.

Ouzilleau, —. Note sur le climat de Koury (Soudan Francais). (Oct., 1906.) p. 257-261.

Dufour, Ch. Temperatures extrèmes au sommet de la Tour Eiffel (1889-1906). (Oct., 1906.) p. 262-264.

Moureaux, Th. Résumé de 23 années d'observations de l'insolation au Parc Saint-Maur. (Nov., 1906.) p. 269-274.

Chauveau, A. B. Sur le typhon du 18 septembre a Hong-Kong. (Nov., 1906.) p. 274-276.

Maillet, Edmond. Sur la durée de propagation des maxima des crues dans le bassin de la Seine. (Dec., 1906.) p. 285-288.

Besson, L. Recherches expérimentales sur l'orientation des cristaux de glace atmosphériques. (Fév., 1907.) p. 40-50.

taux de glace atmosphériques. (Fév., 1907.) p. 40-50.

Garrigou-Lagrange, P. Pluies, rivières et sources du Limousin. (Fév., 1907). p. 50-52. [Relations of rainfall to stream flow; experiments under conditions very favorable for observation.]

Bulletin de la Société belge d'astronomie. Brucelles. 12 année. Mars 1907. Boutquin, A. De l'emploi des appareils de télégraphie sans fil pour l'observation des courants atmosphériques dans les régions

pour l'observation des courants atmospheriques dans les régions polaires. p. 79-86.

Comptes rendus de l'Académie des sciences. Paris. Tome 144. 18 mars 1907.

Oddone, E. Sur quelques constantes sismiques déduites du tremblement de terre du 4 avril 1904. p. 662-664.

Revue néphologique. Mons. Mars 1907.

Mémery, Henri. La lune "mange-t-elle" les nuages? p. 113-114.

[Observations discrediting belief in the moon's effect on clouds.]

Blrackel. A. Les nuages de neige cosmiques. p. 114-115. [Re-

B[racke], A. Les nuages de neige cosmiques. p. 114-115. [Review of work by C. Drescher.]

Defant, A[lbert]. Dépendence de la radiation calorifique diffuse de l'époque de l'année. p. 117-120.

Annalen der Hydrographie und maritimen Meteorologie. Berlin. 35 Jahrgang. 1907.

Knipping, E. Der Hongkong-Taifun vom 18 Dezember 1906. p.

S., v. Windverhältnisse in Mogadar, der Kamerun-Mundung der der Walfish-Bucht, mit besonderer Berücksichtigung der täglichen Schwankungen. p. 103–108.

Kaiser, Max. Land- und Seewinde an der deutschen Ostseeküste. p. 113–122. K., E. Zwel Talfune im Golf von Tonkin am 20 und 24 September 1906. p. 136-137.
eorologische Zeitschrift. Braunschweig. Band 24. März 1907.

eorologische Zeitschrift. Braunschweig. Band 24. März 1907. Pernter, J[oseph] M[aria]. Das Ende des Wetterschiessens. p.

Ekholm, Nils. Ueber die unperiodischen Luftdruckschwankungen und einige damit zusammenhängende Erscheinungen. p. 102–113. Woeikow, A. Temperatur des Ural. –Der Juli und September 1906 in Russland. Das aerodynamische Institut bei Moskau. p.

114-119.

Woeikow, A. Das Barometermaximum im Januar 1907. p. 120. [Highest pressure ever observed in western Russia.]
H[ann], J[ulius]. Das ausserordentliche Barometermaximum. p.

E., F. M. Ueber die Theorie der Guilbertschen Regeln der Wettervorhersage von Bernard Brunhes (Arch. d. sciences phys. et. nat., 15 Juli 1906). p. 121-122. [Adverse criticism of Guilbert's rules and Brunhes's discussion of them.]

and Brunhes's discussion of them.]

— Klima von Buitenzorg. p. 124-129.

— Ueber die Eisverhältnisse des Ryck unfern des Greifswalder Bodden. p. 129. [Record 1839-1870.]

Schmidt, Ad. Vorläufige Mitteilung über magnetische Variationsbeobachtungen in einem Bergwerk. p. 130-131.

— Adam Paulsen. p. 138-139.

Exner, Karl. Farbe und Polarisation des Himmelslichtes. p. 139.

[An experiment showing color and polarisation to be desired.

Exner, Karl. Farbe und Polarisation des Himmelslichtes. p. 139.

[An experiment showing color and polarization to be due to the molecules of the air itself.]

Köppen, W. Klassifikation der Klimate. p. 140-142. [Replies to Prof. Ward's criticism of Köppen's classification.]

Hann, J[ulius]. Temperatur von Bombay und Kalkutta. p. 142.

[Corrects an error in Hann's Lehrbuch der Meteorologie.]

Ottweiler, Emil. Die Niederschlags-Verhältnisse von Deutsch-Südwestafrika. p. 1-84. [A compilation of all available data, in-cluding chart of mean annual rainfall and bibliography.] turvissenschaftliche Rundschau. Berlin. 22 Jahrgang. 21 März 1907. Süring, R. Wilhelm von Bezold. p. 153-155. ueste Erdbeben-Nachrichten. Laibach. Jahrgang 6. 1906-7. Belar, A. Bodenbewegungen und die Stabilität der Bauten. p. 81-85.

Falsehe Erdbebennachrichten. p. 103–105.
ungsberichte der Königlich preussischen Akademie der Wissenschaften.
Berlin. 1907. XII.

Warburg, E. and Leithäuser, G. Ueber die Oxydation des Stickstoffs bei der Wirkung der stillen Entladung auf atmosphär-

ische Luft. p. 229-234.

Weltall (Das). Berlin. 7 Jahrgang. 1907, April 1.
Linke, Felix. Vom Staube. p. 193-201.

Krebs, Wilhelm. Witterungsvoraussicht und Sonnentätigkeit.
p. 201-203.

P. 201-203. Wetter (Das). Berlin.

ter (Das). Berlin. 24 Jahrgang. März 1907.

Grohmann, —. Die Wettervorhersage auf den Witterungsberichten des Königl. sächsischen meteor. Institutes. p. 49-54.

Kaiser, Max. Historische Entwickelung unserer Kenntnis der Land- und Seninde auf der Erde und Darstellung der gegenwärtigen. Theorien. p. 24.65.

tigen Theorien. p. 54-65.

Wahlburg, Eduard Schiefer Edler von. Die Antizyklone der letzten Januar-Dekade 1907. p. 68-72.

Atti della Reale accademia dei Lincei. Roma. v. 15. 1906.

Monti, V. Sulla misura della velocità di propagazione delle perturbazioni sismiche in rapporte alla sismometria razionale. p. 15-18

Intorno al calcolo della rifrazione astronomica, senza Pizzetti speciali ipotesi sul modo di variare della temperatura dell'aria coll'-altezza. p. 73-81.

altezza. p. 73-81.

Chella, Silvio. Misura del coefficiente di attrito interno dell'aria a basse temperature. p. 119-125.

Chistoni, Ciro. Risultati pireliometrici ottenuti dal 22 agosto a tutto giugno 1903 al R. Osservatorio geofisico di Modena. p. 126-

Monti, V. Sulla probabile origine della distribuzione dei temporali italiani a seconda delle stagioni. p. 173-175.

Chistoni, Ciro. Misure pireliometriche eseguite sul Monte Cimone nell'estate del 1902 e nell'estate del 1903. p. 208-213.
Teglio, Emilio. Contributo allo studio del pireliometro a compensazione elettrica dell'Angström. p. 214-216.
Monti, V. Sull'interpretazione matematica dei sismogrammi. p. 217-219. 217-219.

Chistoni, Ciro. Misure pireliometriche eseguite sul Monte Cimone nell'estate del 1904 e nell'estate del 1905. p. 276-281.

Eredia, Filippo. La ploggia a Roma. p. 450-456. [Gives rainfall in extenso, by months, 1825-1906.]

fall in extenso, by months, 1825–1906.]

Blaserna, —. Sulle esperienze degli spari contre la grandine, eseguite a Castelfranco Veneto negli anni 1902–1906. p. 680–682.

Revista marittima. Roma. Anno 4". Marzo 1907.

Penne, Renzo de la. Osservazioni di scariche elettriche dell' atmosfera. [Observations made aboard the Calabria in a voyage around the world.]

Società geografica Italiana. Roma. Serie 4. Vol. 7.

— La regione meno piovosa delle Alpl. (Feb., 1906.) p. 142–143.

— La rete meteorologica eritrea. (Feb., 1906.) p. 155.

Baratta, Mario. I terremoto di Calabria. (Maggio 1906.) p. 432–459.

Alessandri Camillo.

432-459.

Alessandri, Camillo, Due mesi sulla vetta del Monte Rosa. (Luglio 1906.) p. 639-662. [Account of Regina Margherita observatory, Monte Rosa.]

Tancredi, A. M. Nota sul clima del Serahè (Colonia Eritrea). (Dic. 1906.) p. 1192-1249. [Includes collected data for Adi-Ugri and Chenafenà.]

Baratta, M. Sulla distribuzione topografica dei terremoti nel Chili. (Gen. 1907.) p. 30-37.

Boletin de la Sociedad geografica de Lima. Ano 16. Tome 19.

Victoria, Ernesto G. Evaporación y frío producido por ella en Lima. p. 1-58.

Victoria, Ernesto G. Evaporación y frío producido por ella en Lima. p. 1-58.

Castre, Emilio. El departmento de San Martín y nuestras regiones orientales. Conferencia dada en la Sociedad geográfica de Lima. p. 59-97. [Climate, p. 61-62.]

mel en dampkring. Den Haag. 4. Jaargang.

Kater, J. De groene straal bij op en ondergang der zon. p. 170-171.

M. Het flebied van hooge drukking in de tweed helft van Januari dezes jaars. p. 171-173. [Includes charts Jan. 19-24.]

M. Weerkundige waarnemingen te de Bilt 1897-1906. p. 173-176. [Brief résumé 1897-1906.]

NORTH ATLANTIC WEATHER.

By Mr. James Page, Chief of the Division of Ocean Meteorology.

[Compiled from the daily observations, at Greenwich mean noon, furnished by cooperating observers at sea.]

The distribution of pressure over the North Atlantic Ocean at the instant of Greenwich mean noon of March 1 and the attendant circulation of the winds is shown on Chart X. Pressure is above the average over Iceland, 29.80 inches, and a marked anticyclonic area covers the eastern portion of the ocean and the western shores of the Continent of Europe. The latter feature of the pressure remained practically constant thruout the entire month, the minimum barometric reading at Ponta Delgada, Azores, during the period March 1-30 being 30.18 inches, recorded March 25, consequent upon a northward recession of the center of the high to the British Isles. Over the latter upon the same date readings of 30.40 inches and upward were recorded.

As a result of this special distribution of pressure the northeast trades blew thruout the entire month without interruption, extending in a continuous belt from the latitude of Cape Finisterre to the Line. At the entrance to the Channel and westward along the transatlantic routes as far as the meridian of 20° the winds blew almost continuously from the southwest quadrant, and fair weather prevailed. Upon one day only, viz, March 16, did these winds attain gale force, the result of a cyclonic storm central at the time in the vicinity of the Faroes, where the recorded pressure upon the date mentioned was 29.00 inches.

Over the western half of the ocean variations of pressure succeeded one another with marked rapidity, and as a consequence severe weather was the rule. The high central over New England yielded March 2 and was succeeded March 3 by a shallow low which extended eastward to mid-ocean. Upon this date the transatlantic routes between the meridians of 60° W. and 35° W. were accordingly visited by westerly gales, without, however, any decided change in the barometer.

Pressure over Iceland fell from 29.50 inches on March 2 to 28.90 inches on March 5, with the result that vessels following the route north about Scotland experienced southwesterly gales of force 10 and 11 during this period.

On March 5 a feeble area of low pressure moved eastward across Hatteras and on March 6 was central with a well developed system of cyclonic winds in the neighborhood of 37° N., 66° W., the lowest recorded pressure being 29.30 inches. From this point it moved northeastward, developing into a

hurricane during the early hours of March 7.

The distribution of pressure and the circulation of the winds at Greenwich mean noon of this date are shown on Chart XI, the storm at this hour being central in latitude 42° N., longitude 56 W. Of the large number of vessels which experienced the hurricane's severity, the *Pretoria*, (German S. S., Schröter, report by 3d officer Suppelna), appears to have most nearly approached the center. The vessel was bound from Hamburg to New York, and at Greenwich mean noon of March 6 found herself in latitude 41° 55' N., longitude 53° 20' W. The remarks of the observer from this time forward are as follows:

"At 2 p. m. of March 6 the wind went from west, 2, to the southward, and so continued until 3 a. m. of March 7, with heavy rain squalls; lightning and thunder covering the whole sky. The wind then shifted to WSW., force 11, and at 6 a. m. to W., force 12, with a heavy hail squall. The lowest barometer, 725.0 millimeters (28.54 inches), occurred at 2 a. m., the position at the time being latitude 41° 51' N., longitude 57° 00' W., and the wind south, force 11".

The Brandenburg, (German S. S., Woltersdorff, Bremen to New York, report by officer Jaehnigen), also found herself within dangerous proximity to the storm center, altho in the

opposite semicircle. The position of the vessel at Greenwich mean noon of March 6 was latitude 41° 19′ N., longitude 57° 51′ W.—about 180 miles, therefore, to the westward of the *Pretoria*. The shifts of the wind during the advance of the storm were ENE, 10; NNW., 11; WNW., 10. The observer reports: "Continuous violent rain until 2 p. m. of the 6th; a tremendous sea running, causing the ship to labor fearfully; the wind blows at times with hurricane force; at 6 p. m. the sea was so very boisterous that the ship had no steerage way; both engines were accordingly stopt; at 3 a. m. of March 7, the storm had abated sufficiently to allow us to resume our course; lowest barometer, 733 millimeters (28.88 inches), at midnight".

The center of the storm moved northward across Cape Race during March 8, and conditions were thence undisturbed until March 11. Upon this date another depression appeared in the neighborhood of 39° N., 65° W., and, moving northeastward, was followed by northwesterly gales in the region to the southward of Nova Scotia. This was followed by a period of quiet weather which terminated on the 19th. Upon the last-named date a low moved eastward from the Great Lakes and on March 20 was central over the Bay of Fundy, the barometer at Eastport, Me., reading at 8 a. m. 28.66 inches. Southerly gales of force 10 and 11 swept the transatlantic routes from the American coast to the meridian of 60° west. The center of the depression did not at any time come within the region of observation at sea.

On March 24 an elongated trough of low pressure extended southeastward from Cape Race to a point situated in latitude 35° N., longitude 40° W. On the western slope of this trough northwesterly gales of force 8 to 9 prevailed, covering a belt

300 miles in width. On the eastern slope southerly and south-easterly winds of force 6 were the rule, rising to force 8 thruout a limited area at the southern extremity. As the day advanced the axis of this trough assumed a more easterly direction, the trough itself at the same time increasing in depth, with the result that thruout March 25 the transatlantic routes from the longitude of Cape Race to the meridian of 30° W., were the scene of steady southwesterly and westerly gales of force 9 and 10.

On the 26th of the month a tropical depression made its appearance between Bermuda and Porto Rico, in which the Epsom (British S. S., Cox, Channel to Galveston, report by officer Williams) and the Tampico (British S. S., Westcott, Channel to New Orleans, report by officer Haworth) became involved on the 27th. According to the report of the former vessel the slow initial fall of the barometer which marks the approach of storms of this nature set in at noon of March 25. At 4 a. m. of the 26th, the barometer rose slightly and the wind became variable, finally settling in the northeast, while a heavy northwesterly swell at the same time made itself felt. The position of the vessel at Greenwich mean noon was latitude 33° N., longitude 69° W.; wind NE., barometer 29.44 inches. Fifteen minutes later a squall of wind heralded the break of the threatening gale from the north. Fierce squalls of hurricane force were frequent and a very high and dangerous sea soon rose. The hurricane continued to rage thruout the day, the barometer meanwhile rising, altho very slowly. At Greenwich mean noon of the 27th the position of the Epsom was latitude 30° 30′ N., longitude 63° 10′ W., wind N., 12; barometer 29.71 inches, weather overcast and squally. At 1 p. m. the sky cleared and the wind and sea soon moderated.

THE WEATHER OF THE MONTH.

By Mr. P. C. DAY, Assistant Chief, Division of Meteorological Records.

PRESSURE.

The distribution of mean atmospheric pressure for March 1907, over the United States and Canada is graphically shown on Chart VI, and the average values and departures from the normal are shown for each station in Tables I and V.

During March, 1907, the distribution of the average pressure showed two well marked variations from the normal. Pressure averaged unusually low over all northwestern districts of the United States and Canada, and relatively high over all southern and eastern districts.

As a result of this reversal of pressure distribution, no high-pressure areas of any considerable magnitude moved southward from their usual source of origin over the Great Plains region east of the Canadian Rockies, and such cold waves as overspread the more northern districts were correspondingly lacking in severity.

On the other hand, the presence of unusually high pressure over the Gulf of California and adjacent territory and all southern and eastern districts forced the warm southerly winds of those latitudes far to the north of their usual limits.

Over the upper Missouri Valley and thence westward to the Pacific and northward over the Canadian Provinces the pressure was almost continuously below the average, while over southern California, Arizona, and New Mexico comparatively high pressure was the rule during most of the month.

Pressure also averaged considerably above the normal in all districts along the Gulf and Atlantic coasts. The entire region west of the Rocky Mountains, the Great Plains south of Nebraska, the lower Mississippi Valley, and the Gulf States were not within the direct influence of any considerable area of high pressure, having its origin in northern districts, during the month; on the other hand, no portion of the country was exempt from the influence of the numerous low areas which moved eastward from the Pacific.

TEMPERATURE.

The warm waves that overspread nearly all districts of the United States east of the Rocky Mountains from the 18th to 23d and from the 24th to 29th established new records at many points for both the highest monthly mean and the highest maximum temperatures ever recorded in March at the respective stations.

The abnormally warm weather during the above periods occurred in connection with marked depressions of the barometer in the central districts, but generally without the usual cloud formations and attended by little or no precipitation, which, with comparatively high pressure over the Gulf States and in the extreme Southwest, gave warm southerly winds and almost midsummer temperatures over the Great Plains, central valleys, and all eastern districts. Maximum temperatures far in excess of any previous March record, and in some sections higher than before recorded in any previous April or May, were recorded about the 23d, and again about the 29th.

The month as a whole was one of marked temperature excess over all portions of the United States, except the extreme eastern portion of Maine and over the Pacific coast districts.

Over practically all that portion of the United States from the Rocky Mountains eastward the average for the month exceeded the normal by more than 6° daily, and over the greater portion of the central Mississippi Valley region, Kansas, Oklahoma, and Texas the normal was exceeded by more than 10° daily.

Over the greater portion of the territory between the Rocky Mountains and the Mississippi Valley and south of Nebraska, the temperature has averaged continuously above the normal for the four months from December to March, inclusive. The average excess during that period over portions of Kansas, Oklahoma, Texas, Louisiana, and Arkansas, ranges from 7° to more than 10° daily.

West of the Sierras the month averaged somewhat colder than normal, the average deficiency in the Sacramento Valley ranging from 3° to 5° daily.

Maximum temperatures above 90° were recorded in the south Atlantic and east Gulf districts, over the districts between the Mississippi River and the Rocky Mountains and south of Nebraska and Iowa, and over the southern portions of New Mexico, Arizona, and California.

Temperatures below zero were confined to the northern districts of New England, central and northern New York, the upper Missouri Valley, and in the mountain districts of Wyoming and Colorado.

Freezing temperature did not penetrate farther south than to north-central Texas and the extreme northern portions of the Gulf States.

PRECIPITATION.

The deficiency in precipitation over portions of the South Atlantic and east Gulf States, and the Florida Peninsula, noted in the Review for February, 1907, continued during March.

Over all the States of the cotton belt the precipitation was from 2 to 4 inches less than the average fall, and in portions of those States the amounts measured were the least on record.

Over the Florida Peninsula the accumulated deficiency from September, 190°, to March, 1907, inclusive, amounted to about 13 inches. Less than the average amounts of precipitation occurred over all districts along the Atlantic coast, in the districts between the Mississippi Valley and the Rocky Mountains, and over most of Washington and northwestern Oregon.

In the watershed of the Ohio River heavy precipitation occurred from the 12th to 14th, which, with the rapid melting of the snow on the ground, combined to produce one of the worst floods in the history of the streams of that section, a full account of which appears elsewhere in this issue

full account of which appears elsewhere in this issue.

Over all portions of the mountain and Plateau districts of the west and the Pacific coast from Washington southward, the precipitation was generally above the average. In the mountainous portions of California and generally over the State the month was one of the wettest on record. Rain or snow occurred in some portion of the State nearly every day of the month, and the daily and monthly amounts recorded at some of the elevated stations on the western flanks of the Sierras were phenomenal.

Monthly amounts from 30 to more than 45 inches were measured at numerous points, with daily falls of from 5 to as much as 8 inches.

The unusually heavy falls of rain and snow filled the rivers and streams of that State, and the stages at many places were the highest on record.

SNOWFALL.

The snowfall during March was generally light on the eastern slopes of the Rocky Mountains and thence eastward, except over the mountain portions of West Virginia, Maryland, and southern Pennsylvania, where considerable snow occurred about the 10th. On the western slopes of the Rocky Mountains, over the Plateau region, and on the elevated portions of California and Oregon the snowfall was generally above the average.

In the mountains of California the monthly amounts were exceptionally heavy, the total fall at some of the higher elevations amounting to as much as 25 feet. In the mountains of Idaho and in Montana west of the main range, and on the western slopes of the mountains of Wyoming and Colorado much snow occurred. The warm weather, with strong southerly winds, melted much from the lower elevations, but in the wooded districts and other protected localities much snow had accumulated.

Owing to the alternate thawing and freezing, together with the considerable rain that had fallen upon the snow, it had become thoroly packed, contained a large percentage of water and was in excellent condition, supplemented by the generally well-saturated condition of the soil, to assure more than an average supply of water in the streams till late in the summer.

At the end of the month snow still covered the ground in the woods of northern New England and the Upper Peninsula of Michigan. From the Great Lakes westward the southern limit of snow receded during the month to the extreme northern portions of the States, where depths of a few inches still remained on the ground. Much snow still remained unmelted in the mountains west of the Continental Divide.

HUMIDITY AND SUNSHINE.

Over all interior districts east of the Rocky Mountains the percentage of relative humidity averaged considerably lower than the normal. On the immediate Gulf coast and the Florida Peninsula, despite the lack of precipitation, the amount of moisture in the atmosphere averaged considerably above the normal, owing to the influence of the prevailing moist southerly winds from the Gulf. In all districts west of the Rocky Mountains the relative humidity was unusually high.

Much bright sunshiny weather prevailed in all districts east of the Rocky Mountains, especially over the Great Plains, Mississippi Valley, and Gulf States, where the progress of the season averaged from two to four weeks in advance of the normal, both in the development of vegetation and in the opportunities offered for the prosecution of the usual seasonal operations.

On the Pacific slope, especially over California and Oregon, cold, rainy weather during most of the month retarded the development of vegetation, and delayed the prosecution of all outdoor occupations.

Average precipitation and departures from the normal.

	F. of	Ave	rage.	Depa	rture.
Districta,	Number stations.	Current month.	Percentage of normal,	Current month.	Accumu- lated since Jan. 1.
		Inches.		Inches.	Inches.
New England	12	2, 42	67	-1.2	-3. 5
Middle Atlantic	16	2, 81	74	-1.0	-3.5
South Atlantic	10	1.57	36	-2.8	-7.4
Florida Peninsula *	8	0, 29	9	-2.8	-7.5
East Gulf	11	2,04	35	-3.8	-6.5
West Gulf	10	1.83	57	-1.4	-4.6
Ohio Valley and Tennessee	13	4.82	112	+0.5	0.6
Lower Lake	10	2.84	112	+0.3	-0.1
Upper Lake	12	2,24	110	+0.2	-0.6
North Dakota	9	0, 85	89	-0.1	+0.3
Upper Mississippi Valley	15	2, 23	100	0.0	+0.6
Missouri Valley	12	1.04	60	-0.7	+0.8
Northern Slope	9	0, 54	64	-0.3	-0.2
Middle Slope	6	0, 58	45	-0.7	-0.6
Southern Slope	7	0, 59	60	-0.4	-0,6
Southern Plateau *	12	1.49	167	+0.6	+1.2
Middle Plateau *	10	1.88	147	+0.6	+0.9
Northern Plateau *	12	1.80	120	+0.3	+€.8
North Pacific	7	3, 45	66	-1.8	-4.2
Middle Pacific	8	8. 00	200	+4.0	+4.9
South Pacific	4	3.57	165	+1.4	+3.0

* Regular Weather Bureau and selected cooperative stations.

In Canada.—Director Stupart says:

The precipitation was deficient thruout the greater portion of the Dominion, the exceptions to the prevailing conditions being a marked positive departure in the vicinities of Calgary and Prince Albert, a slight excess in portions of northwestern Manitoba, an excessive amount of snow in the neighborhood of White River, Ont., and a positive departure locally in the precipitation of about one inch in the Georgian Bay region and also in the extreme western portion of Quebec. In the Maritime Provinces, altho several heavy snowstorms occurred, the precipitation was everywhere below the usual amount. The chief negative departures reported were New Westminster, 3.6 inches; Kingston, 1.7 inches; Yarmouth, 2.6 inches; Halifax and St. John, 2.1 inches. The principal positive departures were Prince Albert, 4.0 inch; White River, 2.8 inches; Parry Sound, 1.4 inches; Southampton, 0.9 inch; Montreal, 1.0 inch.

In the southern portions of British Columbia, the extreme southwestern portion of the Maritime Provinces, and in the Peninsula of Ontario the ground was generally bare of snow at the close of the month, but over a large portion of the Dominion there was still a considerable covering. Cariboo reports as much as 68 inches on the lower levels and far greater depths on the mountains; Alberta, from a trace in southern localities to 9 inches in northern; Saskatchewan, from 4 to 10 inches; Manitoba, from a trace to 8 inches; the northern portions of Ontario, from 2 to 9 inches; Quebec, from 6 to over 24 inches; and the Maritime Provinces as much as 24 inches in northern districts.

Average temperatures and departures from the normal.

		-	-		
Districts	Number of stations.	Average tempera- tures for the eurrent month.	Departures for the current month.	Accumu- lated departures since January 1.	Average departures since January 1.
		0	0	0	0
New England	12	34. 6	+ 1.5	- 6.7	- 2.5
Middle Atlantic	16	45.0	+ 4.7	+ 1.9	+ 0.6
South Atlantie	10	61, 1	+ 7.2	+11.4	+ 3.8
Florida Peninsula *	8	72.0	+ 5.7	+10.6	+ 3.1
East Gulf	11	66.7	+ 9.4	+19.3	+ 6.4
West Gulf	10	66, 8	+ 9.5	+22.7	+ 7.6
Ohio Valley and Tennessee	13	53.1	+ 8.8	+13.0	+ 4.2
Lower Lake	10	37.6	+ 5,3	+ 1.6	+ 0.5
Upper Lake	12	32.6	+ 5.3	+ 8.9	+ 1.3
North Dakota *	. 9	25. 0	+ 5.0	- 1.5	- 0.5
Upper Mississippi Valley	13	44.0	+ 7.9	+11.8	+ 3.5
Missouri Valley	12	45. 6	+ 9, 6	+13.7	+ 4.6
Northern Slope	9	35, 3	+ 4.5	+ 5,0	+ 1.7
Middle Slope	6	52. 0	+ 9.5	+19.6	+ 6.5
Southern Slope *	7	60,4	+ 9.7	+24.3	+ 8,1
Southern Plateau *	12	50.3	+ 1.2	+11.0	+ 3.7
Middle Plateau *	10	40, 8	+ 2.6	+16.2	+ 5.4
Northern Plateau *	12	38. 5	+ 0,9	+ 2.0	- 0.7
North Pacific	7	42, 8	- 1.4	- 2.4	- 0.8
Middle Pacific	8	49. 6	- 2.9	+ 0.2	+ 0.1
South Pacific	4	54. 4	- 0.8	+ 3.6	+ 1.2

* Regular Weather Bureau and selected cooperative stations.

In Canada.—Director R. F. Stupart says :

The temperature was below the average in British Columbia and Alberta, average or slightly below in Saskatchewan, except in the extreme eastern portion, average or a little below in eastern Quebec, and below the average in the Maritime Provinces; elsewhere in the Dominion it was above the average. The chief negative departures occurred in the northern portions of British Columbia and Alberta and in Prince Edward Island and Cape Breton, and amounted to from 4° to 5°. The most marked positive departures were in Manitoba, from 4° to 5°, and the greater portion of Ontario, from 4° to 8°.

Districts.	Average.	Departure from the normal.	Districts.	Average.	Departure from the normal.
New England	73 70 72 80 72 74 69 77 78 81 74	- 2 2 3 3 1 2 2 1 1 1 3 1 + + + + + + + + + + + + + + +	Missouri Valley Northern Slope Middle Slope Southern Slope Southern Plateau Middle Plateau Northern Plateau Northern Plateau North Pacific Middle Pacific South Pacific	68 68 56 50 47 62 71 77 80 74	1+11++++++

Average cloudiness and departures from the normal.

Districts.		Departure from the normal.	Districts.	Average.	Departure from the normal.
New England Middle Atlantic	5, 4 5, 6	- 0, 2 + 0, 1	Missouri Valley Northern Slope	5.6	0.0
South Atlantic	4.4	- 0.3	Middle Slope	4.8	+ 0.4
Florida Peninsula	2.3	- 1.7	Southern Slope	4. 0	+ 0.8
East Gulf	4.4	- 0.3	Southern Plateau	4.0	+ 0.4
West Gulf	4.8	- 0,4	Middle Plateau	6, 2	+ 1.7
Ohio Valley and Tennessee	6, 0	+ 0.1	Northern Plateau	7.4	+ 0.6
Lower Lake	6. 9	+ 0.5	North Pacific	6, 5	- 0.1
Upper Lake	6. 4	+ 0,5	Middle Pacific	6.8	+ 1.8
North Dakota		- 0.1	South Pacific	5, 8	+ 1.3
Upper Mississippi Valley	5, 8	+ 0.3			-

Maximum wind velocities.

Stations.	Date.	Velocity.	Direction.	Stations.	Date.	Velocity.	Direction.
Alpena, Mich	19	50	nw.	Mount Weather, Va	8	50	nw.
Amarillo, Tex	25	52	80.	Do	20	66	nw.
Bismarek, N. Dak	21	70	W.	Nantucket, Mass	24	56	ne.
Block Island, R. I.	20	57	nw.	New York, N. Y	20	58	nw.
Do	25	50	ne.	Northfield, Vt.	20	50	nw.
Boston, Mass	20	52	nw.	North Head, Wash	21	56	se,
Duffel N V	3	72	sw.	Do	22	74	
Buffalo, N. Y	5	58			23	64	se.
Do	17	50	hw.	Do	21	62	nw.
Do			sw.	Pierre, S. Dak			SW.
Burington, Vt	16	51	80,	Pittsburg, Pa	2	54	nw.
Do	19	50	se,	Do	5	50	nw.
Canton, N. Y.	17	64	SW.	Point Reyes Light, Cal	8	72	8.
Cape Henry, Va	14	56	n.	Do	9	60	SW.
Cleveland, Ohio	5	68	W.	Do	11	.59	nw.
Columbus, Ohio	1	52	nw.	Do	12	82	nw.
Do	2	53	W.	Do	17	57	8.
Do	5	50	W.	Do	18	55	5.
Duluth, Minn	19	56	nw.	Do	19	54	8.
Do	26	52	ne.	Do	22	82	8.
Eastport, Maine	20	56	nw.	Do	23	84	S.
Escanaba, Mich	19	55	nw.	Do	24	62	SW.
Galveston, Tex	30	52	ne.	Do	27	53	nw.
Grand Rapids, Mich	29	50	SW.	Do	31	52	nw.
Hatteras, N. C	24	50	ne.	Portland, Maine	20	54	DW.
Do	25	54	ne.	Pueblo, Colo	26	61	W.
Lexington, Ky	1	57	nw.	Rapid City, S. Dak	21	60	HW.
Marquette, Mich	19	56	nw.	Sault Ste. Marie, Mich	19	61	nw.
Modena, Utah	20	52	sw.	Southeast Farallon, Cal.	5	64	80.
Do	24	50	sw.	Do	22	56	8.
Do	25	50	sw.	Do	23	60	8.
Mount Tamalpais, Cal	5	53	8.	Syracuse, N. Y	19	62	В.
Do	17	56	8.	Do	20	54	W.
Do	24	50	sw.	Do	24	66	15.
Mount Weather, Va	2	56	DW.	Tatoosh Island, Wash	23	60	8.
Do	3	62	nw.	Toledo, Ohio	5	54	W.
Do	6	62	nw.	Do	29	55	aw.

CLIMATOLOGICAL SUMMARY.

By Mr. James Berry, Chief of the Climatological Division.

TEMPERATURE AND PRECIPITATION BY SECTIONS, MARCH, 1907.

In the following table are given, for the various sections of the Climatological Service of the Weather Bureau, the average temperature and rainfall, the stations reporting the highest worthy records available. and lowest temperatures with dates of occurrence, the stations

The mean departures from normal temperature and precipitation are based only on records from stations that have ten reporting greatest and least monthly precipitation, and other data, as indicated by the several headings.

The mean temperatures for each section, the highest and records is smaller than the total number of stations. or more years of observation. Of course the number of such

			Temperature	-in	degrees	Fahrenheit.					Precipitation—in incl	hes and	hundredths.	
Section.	rage.	from		3	fonthly	extremes.			Average.	from	Greatest monthl	y.	Least monthly.	
cection.	Section av	Departure from the normal.	Station.	Highest.	Date.	Station.	Lowest.	Date.	Section av	Departure from the normal.	Station.	Amount.	Station.	Amount.
klahoma and Indian Territories. regon	64, 5 55, 1 61, 9 40, 7 7, 0 64, 4 68, 6 38, 1 47, 9 48, 3 40, 6 52, 5 54, 9 69, 5 46, 1 34, 6 7 62, 6 7 34, 6 6, 2 2 3, 4 6, 6 6, 2 2 3, 4 6, 6 6, 2 2 3, 4 6, 6 6, 2 2 41, 6 41, 8 7 62, 0	+ 8.8 + 9.7 - 2.3 + 5.6 + 8.0 + 2.7 + 8.3 + 7.6 + 10.2 + 7.9 + 9.2 + 4.1 + 10.6 + 2.9 + 8.2 - 0.3 + 1.9 + 2.2 + 3.3 + 5.5 + 7.1 + 7.7 + 7.7	6 stations. Astec. Fayetleville. Mammoth Tank Holly. 3 stations. Brunswick. Hauula, Oahu. Garnet, Hot Spring. Carrollton Jeffersonville. Clarinda, Massena. Scimarron. Englewood Shelbyville. Manchester. Opelousas. Washington, D. C. Salisbury, Md. Cassopolis. Harbert Winnebago Clarksdale. Belle. GGraham. Lamedeer. Superior. Logan. Torrington, Conn. Beverly. Carlsbad. 3 stations Southern Pines. Berthold Agency. Portsmouth. Arapaho, Okla. Erick, Okla. Grants Pass. Everett. Central Aguirre. Blackville, Darling-ton.	93 105 96 104 96 98 99 87 75 94 90 92 92 92 92 93 85 85 84 93 93 93 85 84 93 93 85 84 91 88 84 88 88 101 88 88 89 88 89 88 89 88 88 88 88 88 88	21, 29 20 21 21 20 21 21 21 22 23 31 31 22 21, 22 25, 29(21(21(21(21(21(21(21(21(21(21	Hamilton Van Buren, Me River Vale. Chama. Faust. New Lisbon. Buck Spring Langdon, Pembins. Rome. Kenton, Okla. Government Camp. Pocono Lake. Cayey. Greenville.	299 109 255 88 322 500 2 2 155 5 8 32 2 2 162 24 300 166 25 -10 -10 -32 -21 13 0 -10 -20 16 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	3 dates 2 28 1 4 16; 65; 20; 21; 65; 11; 15; 15; 17; 17; 17; 17; 17; 17; 17; 17; 17; 17	2. 94 1. 04 3. 22 10 67 0. 81 0. 62 1. 87 9. 58; 3. 38 3. 11 1. 35 1. 12 2. 88 2. 12 3. 26 2. 60 0. 94 3. 08 2. 1. 26 0. 44 2. 66 2. 04 3. 04 0. 19 1. 90 2. 88 0. 70 5. 55 1. 44 4. 30 4. 26 4. 26 4. 26 4. 26 5. 55 1. 85 1.	-2, 82 +0, 04 -1, 81 +6, 37 -0, 60 -2, 82 -3, 31 +0, 90 -0, 27 +0, 95 -0, 55 -0, 44 -1, 17 -3, 02 -0, 43 +0, 34 +0, 34 +0, 34 +0, 14 -0, 70 +1, 26 -1, 10 -0, 51 -1, 25 -1, 25 -1, 25 -1, 25 -1, 26 -1, 26 -1	Demopolis Natural Bridge Helena No. 2 Inskip Corona DeFuniak Springs Diamond (Hakalau (Mauka), Hawaii. Landore La Harpe Butlerville Keokuk Paola Scott Ruston Grantsville, Md Cassopolis Wabasha Merrill Mount Vernon Snowshoe Fort Robinson Lewers Ranch Nantucket, Mass Englewood Clouderoft Middletown Eagletown Gladys Camp Dennison Calvin, Ind. T Buckhorn Farm Lock No. 4 Barros Clemson College	4. 88 3. 17 9. 02 45. 30 45. 30 47 7. 66 6. 40 9. 46 5. 05 3. 32 6. 86 7. 25 7. 50 6. 60 2. 47 9. 98 5. 68 6. 74 1. 90 16. 83 4. 62 4. 38 4. 62 4. 38 5. 68 3. 25 9. 17 4. 08 14. 23 8. 20 14. 23 8. 20 14. 23 8. 20 15. 3	Alaga 3 stations Heber Mammoth Tank 6 stations 6 stations Waynesboro Raymond Ranch, Maui Salmon Zion Seymour Washta 2 stations Bowling Green Lafayette Ocean City, Md Blaney Pipestone Wahnut Grove Oregon Fallon Osceola Tecoma Cornwall, Vt Pleasantville 21 stations Coeymans Southport 2 stations Toledo No. 2 Beaver, Okla Richland Pecono Lake 2 stations Blackville Blackville Blackville	0000 000
outh Dakota ennessee exas tah irginia ashington	58, 9 67, 8 42, 4 50, 7 40, 4	+4.4 + 5.6 - 0.8	5 stations Franklin 4 stations Wellington Arvonia Mottinger's Ranch (Romney	88 93 100 87 96 76 94	21, 24 21 18-20 23 29 31 292	White Horse Erasmus 3 stations Pinto Burkes Garden Twisp Bayard	8	1 4 1 28 6 4	0. 46 4. 43 1. 64 1. 65 3. 19 2. 65 4. 77	-0.84 -1.33 -0.69 +0.15 -0.85 -0.71 +0.33	Leola Walling. Longview. Huntsville. Big Stone Gap (a). Clearwater Moundsville.	2. 50 7. 84 4. 10 4. 08 5. 21 11. 77 8. 18	3 stations	T. 2. 7 0. 0 0. 0 1. 0 0. 0 1. 0
isconsin			Prairie du Chien	94 85	235	Koepenick	-16 -16	68	1.68	0.30	Valley Junction	3. 19	Medford	0,6
yoming	34.1	+ 6.6	Pine Bluff	86	20	Daniel	-16	277 155	1.65	-9, 03	(Lake Yellowstone,) Yellowstone N. Pk.	7, 48	Buffalo	0.

Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut. † 48 stations, with an average elevation of 533 feet. ‡ 143 stations.

DESCRIPTION OF TABLES AND CHARTS.

By Mr. P. C. DAY, Assistant Chief, Division of Meteorological Records.

For description of tables and charts see page 30 of Review for January, 1907.

TABLE I .- Climatological data for U. S. Weather Bureau stations, March, 1907

	Elev	rum	n of ents.	Press	ure, in	inches.	1	Cempera		of t			deg	rees		er.	of the	lity,		pitation	n, in		w	ind.						9.
	ove ft.	ers	, e. j	d to	pag pag	9	+	e e	T		8			i	aily	momet	erature of	ive humidity, cent.		E o	0.	Dt.	100		aximi			days.	Thomas A	tenth
New England.	Barometer a bov sea level, feet.	Thermometer	Anemomete above ground.	Actual, reduced to mean of 24 hours.	Sea level, reduced to mean of 24 bra	Departure fr normal.	Mean max. mean min. +	Departure fr normal.	Maximum.	Date.	Mean maximum.	Minimum.	Date.	Mean minimum	Greatest da	Mean wet thermometer.	Mean temperature dew-point.	Mean relative per cer	Total.	Departure fr.	Days with .01, more.	Total moveme miles.	Prevailing direc-	Miles per	Direction.		Clear days.	loudy	Cloudy days.	ing daylight, tenths.
New England.	76	69	85	29, 92	30, 00	+ .07	34.6 27.9	+ 1.6	49	29		0	1		24	26	22	73 77 66	2. 42 3. 17 2. 58	- 1.2 - 1.2	9	8, 935	sw.	56	nw.	20		1	1	5. 4
Portland, Me	100 288	81 70	117 79	29, 92 29, 73	30,05 30,06	+ .09	32, 2 32, 7	+ 0.2	64	30 29	39 42	- 3	1 1	25 24	27 34	28	22	66	0. 99	- 0.8 - 2.5	9 7	6, 704	nw.	54 42	nw.	20 20	11 13	6	14	5. 5 1 4. 6
Burlington Northfield Boston	876	16	47 70 188	29, 60 29, 08 29, 91	30, 06 30, 06 30, 05	+ .06	30. 6 28. 5 37. 9		65 63 71	30 22 30	40 39 45	- 9 -15 14	1 1		37 40 27	25 34	22 28	79 69	1. 87 1. 87 1. 66	-0.7 -1.0 -2.4	10 11 12	9, 758 6,830 8,048	se. s. nw.	52 50 52	se, nw, nw,	17 20 20	10	10	11	5, 8 5, 3 5, 5
Nantucket	12 26	14	90	30, 02 30, 03	30, 03 30, 06	+ .05	37. 1 36. 4	+ 0.3 + 0.5	68 68 76	29	43 42	. 19	7	31 31	27 27 27	34 38	30 30	81 81	4. 62 2. 80	$+1.1 \\ -1.2$	15 15	12,598 13,114	SW.	56	ne. nw.	24 20	9	11	11 1	5.71
arragansett rovidence artford	160		67	29. 88 29. 89	30. 06 30. 07	+ .08	37. 2 38. 2 38. 2	+ 2.2 + 2.5 + 3.2	76 74 80	30 29 29	46 47 47	13 15 13	9 7 7	28 30 29	38 31 29	32 32 34	26 26	67	2.56 1.78 1.33	- 2.0	12 12 10	5, 697	nw.	37	w.	20	14	9		5.0
ew Haven	100	116	155	29, 96	30. 08	+ .09	38. 2 45. 0	+ 3.2 + 2.8 + 4.7	73	29	46	15	7	30	27	34	28	64 69 70	2.59	- 1.6 - 1.0	11	5, 543 6, 922	nw.	39	nw.		18 11		12	5.6
nghamton	875	102 79	90	29, 97 29, 11	30, 08 30, 06	+ .07	36. 9 36. 6	+ 4.8	76 80 75	29 29	46	- 6	7 7	28 26	29 37	32	26	69	2. 81 0. 87 1. 23	-1.8 -1.8	8	6, 481 5, 264	s. w.	37 30	nw.	20 20	5	7	12 (19	7.4
w York arrisburg niladelphia	374	108 94 116	104	29, 73 29, 69 29, 96	30, 07 30, 10 30, 09	+ .07 + .07 + .07	40.8 42.6 44.1	+ 3.3 + 4.8 + 4.1	84	23 29 29	48 51 52	16 18 18	7 7	34 34 36	25 35 32	36 37 39	30 30 34	68 67 71	3. 80 3. 83 2. 81	- 0.2 - 0.1 - 0.4	15 12 15	8, 813 5, 917 8, 317	nw. nw. nw.	58 36 40	nw. nw. n.	20 20 6	10 8 10	9	11 8 14 6 8 8	
lantic City	805 52	111 37	119 48	29. 19 30. 04	30. 07 30. 10	+ .05	39. 1 41. 8	+ 4.2 + 3.0	82 79	29	48 50	5 16	7 7 7 7 7 7	30 34	33 31	34 37	27 32	65 75	2.09 3.52	- 0.4	16 11	5, 788 6, 760	SW.	32 35	nw. ne.	20 24	5 7	10 18	16 6	6. 6
timore	17 128 112	69	52 117 76	30. 09 29. 95 29. 97	30. 11 30. 09 30. 10	+ .06		+ 5.1	76	23 22 23 29	51 56 60	18 21	7 7 7	35 38 38	30 43 50	37 40 42	32 37	63 71	2.74 2.94 2.79	- 1.6 - 1.2	13 12 13	7, 186 5, 692	nw.	36	n. nw.		10	8	18 (5.7
pe Henry	18	11	58 88	30. 07 29. 35	30, 09 30, 10	+ .06 + .06 + .05	50. 0 52. 6	+6.6 + 3.4 + 7.2	86 93 89 92 85	29 29	59 64	22 28 24	7	41	40 41	44	38	67	2. 36 2. 50	-1.4 -2.8 -1.2	9	3, 167 10, 943 4, 078	nw. n. sw.	19 56 36	nw. nw.	6	11 12 13	10 12 9		5.0
orfolk	91	102	57 111	28, 22 30, 01	30,08 30,11	+ .03	48, 2 52, 4	+ 6.4	92	29 29	52 62	16	7 7 7 7 7	34 43	41 37	39 46	35 41	77 70	2. 07 3. 37	- 1.2	13 10	14, 178 7, 803	nw. n.	66 36	nw. sw.	20 13	14 13	8	9 8	5.0
chmondytheville		145 40	158	29. 96 27. 71	30, 11	+ .07	52.1 48.8 61.1	+ 5.2 + 6.5 + 7.2	94 80	29 23	64 59	29 26 22	6	41 38	39 34	42	38	74	2. 91 4. 23 1. 57	-1.0 $+0.4$ -2.8	11	7, 462 5, 308	8. W.	45 35	sw.	3	11 14	7	9 4	.8
heville	2, 255 778	53 68	75 76	27.76 29.28	30. 12 30. 12	+ .06 + .07	54. 2 57. 7	+ 9.3 + 6.9	86 91	23	66 68	29 32	6 7	43 48	37 31	47 49	43 42	72 76 65	2.69	- 1.6 - 2.6	9	7,554 6,441	se. sw.	33 35	nw. sw.	14 19	10 12	16 11		1.6
tteras	376		79	30, 09 29, 71	30. 10 30. 12	+ .06 + .07	54. 3 56. 0	+ 2.9 + 5.6	82 94	29	62 67	33 28	7 7	47 45	26 37	50 48	48	85 65	1,81 3,38	- 4.3 - 0.7	8	12, 628 5, 705	ne. sw.	54 25	ne. sw.	25 19	16 13	10 12	6 4	1. 1
Imington arlestonumbia, S. C		81 14	91 92 57	30, 04 30, 07 29, 73	30, 12 30, 12 30, 12	+ .07 + .06 + .06	59.8 65.0 62.7	+ 6.1 + 7.8 + 8.7	94 94 93	23	70 74 74	32 45 37	7 7 7	49 56 51	32 30	51 57 53	46 58 46	71 77 64	1. 40 1. 01 0. 88	-2.6 -2.9 -3.6	8 3 9	7, 254 9, 339 6, 062	SW. SW.	34 40 33	ne. ne. sw.	16 14	14	14 11 19	6 4	.3
gusta	180 65	89 81	97 89	29, 92 30, 06	30. 11 30. 13	+ .05	64. 4 67. 1	+ 8.5 + 8.8	93 94	23	76 77	41	8 7	58 57	30 35 37 29 31	55 58 62	49 54	65 74		- 4.0 - 8.3	4 3	5, 494 6, 709	W. W.	38	nw.	14	18	14	4 4	. 0
ksonville			129	30.08	30, 13	+ . 07	69. 8 73. 2	+ 7.9 + 3.9 + 3.1	91		79	58	4	60			60	81 80 83 76	0. 76	-2.7 -2.3	4	7, 263	sw.	28 28	ne.	31	20	8	3 3	.5
y West	28 22 25	10 10 41	48 53 71	30, 10 30, 09 30, 08	30, 13 30, 11 30, 11	+ .08 + .06 + .06	72. 5 75. 0 75. 4	+ 3.1	86 83 84	24	80 80 78	59 64 68	28 7 7	64 70 73	24 14 11	67 68	65 65	76	0. 19 T. 0. 00	-2.8 -1.2	0 0	7, 382 5, 788 8, 357	8e. e.	33 24 33	ne. e.	25 26 27	20 28 25	11 2 6 5	1 1	.9
mpa	35	79	96	30. 10	30, 14	+ .07		+ 6.8 + 9.4	92	25	83	53	4	62	30	64	61	80 72	T. 2.04	- 2.8 - 3.8	0	5, 695	W.	26	ne.	25	26		0 1	.5
con	370	55	66	28. 89 29, 73 29, 84	30. 14	+ .08		+ 9.1 +10.5	87 91	22	72	40	6	51 53 56	28 33	52	45	63	2. 42 1. 22	- 3.4 - 4.0	4	7, 938 4, 055	nw.	36 22	w. ne.	31	20 18	6 7	6 8	1.6
omasville nsacola niston	278 56 741	79	57 96 58	30. 07 29. 35	30. 13 30. 13 30. 14	+ .07 + .07 + .08	68. 8 68. 8 63. 6	+ 8.6 + 7.7 +11.1	92 85 90	25	82 74 76	51 35	31 4	63 51	35 21 35	59	56	75	1. 28 1. 04 3. 00	$ \begin{array}{r} -3.4 \\ -4.4 \\ -2.2 \end{array} $	5 3	4, 479 8, 277 5, 242	8W. 8W. 80.	21 41 25	e. sw. n.	1	12	12 14 11	5 4	.4
minghambile	700 57	136 98	144 106	29, 36 30, 06	30, 12 30, 12	+ .06	64. 6 68. 6	+ 9.4 + 9.5	90 86 90	21 25	75 75	38 51	15 15	54 62	31 21	56 62	50 60	66 82	2. 44	- 3.9 - 4.9	5	5, 242 7, 719 6, 825	sw.	36 39	n. n.		8	13 14	6 4	. 6
ntgomeryridianeksburg	223 375 247	100 84	93	29, 88 29, 71 29, 82	30. 13 30. 11 30, 10	+ .07 + .06 + .06	66. 2	+ 9.1 + 9.9 + 9.4	90 89 88	21	78 78 77	45 39 43	15 16 15	56 55 58	29 33 32	58 58 59	53 54 54	70 72 70		- 4.5 - 8.1 - 4.8	4 4	6, 825 5, 713 5, 166 6, 139	SW.	35 28 28	sw. nw.	1	15	11 10 15	6 4	. 0
w Orleans Vest Gulf States.	51		121	30. 06	30. 11	+ .07	71.4	+ 9.4	86		80	52	15	63	23	64	62	81 74	2.30	- 3.0	5	6, 699	8.	34	nw. sw.			12	7 4	.6
	249 1, 303	11	44	29, 80 28, 64	30.07 30.06	+ .05	67. 0 58. 4	+ 8.8 + 11.1	86 90	20	77 69	38	15 15	57 48	29 33	59	55	72	2.66	- 2.0	6 7	6, 358 6, 936	8e. 8.	27 31	w. se.	9	11	8	5 4 12 5	. 3
rt Smithtle Rock	457 357 20	93	100	29, 53 29, 68 30, 01	30. 01 30. 06 30. 03	+ .03 + .05	62. 6 63. 0 71. 4	$+11.8 \\ +10.8 \\ +7.0$	92 87 81	20	73 72 77	33 35 48	15 15	52 54 66	36 32 22	54 54 67	47 48 65	64 65 85	2. 57	-1.2 -2.6 -1.3		8, 368 7, 504 10, 815	e. s. se.	42 33 32	w. nw. se.	29 1 12	7	8	16 6	. 8
t Worthveston	670 54	106	114 112	29, 30 30, 03	30. 01 30, 09	+ .03	66. 8 70. 4	$+10.2 \\ + 8.1$	95 79 87	19 28	78 74	37 50	1 15	55 66	18	66	64	89	0. 70	- 1.7 - 0.6 - 2.0	5	10, 627 10, 119	sw. se.	35 52	s. ne.	11	17	13	1 3	. 7
Antonio	510 701	80	91	29, 50 29, 28 29, 41		+ .03	71.1	+ 9.3 + 9.0 +10.0	87 89 90	19	77 82	39 42	15 15 2	58 60	32 34 38	60 62	56 57	74 71	1.88	- 2.0 - 0.2	4	7, 384 6, 428	8. 8e.	30 36 31	8. n.	14	16	14	1 3	.6
o Val. and Tenn.	583 762			29. 32		+ .08	53.1	+ 8.8	89		70	38	6	59	30	52	46	69 65	1. 90 4. 82 3. 36	+ 0.5	7	9, 511 6, 414	sw.	31	s. w.	10	13	11	6	.0
nphis	1,004 399	35 76	88 97	29. 05 29. 67	30. 11 30. 10	+ .05	57. 8 62. 2	+ 9.6 +10.1	87 86	22 26	68 70	32 38 32 24	6 15	48 54	32 28	48 56	42 52	64 72	5. 17 4.00	- 0.2 - 1.9	10	7, 369 8, 443	sw.	38 48	w, nw.		7 10	8	16 6 13 5	.7
hvilleingtonisville	546 989 525	75	102	29, 52 29, 03 29, 51	30. 12	+ .07 + .07 + .05	51.5	+10.4 + 8.1 + 9.2	89 83 88	28	69 61 64	32 24	6	50 42 45	32 37 38	52 47	41	67	4. 13	-1.6 -0.8 $+1.0$	9 11 11	6, 169 10, 228 7, 672	SW.	28 57 35	se, nw. w.	1	9 16 8	7		.8
nsville	431 822	72	82	29. 59 29. 17	30. 07	+ .03	58.6	+ 9.0	82 82	25	62 57	27 29 24	6	45	00	43	38	73	3. 54	+ 0.5	8	6, 991 9, 092	8. 8.	30 42	sw.	27 27	10	18	8 5	.8
cinnati	628 824	152 178	160 190	29. 40 29, 19	30. 09 30. 08	+ .04	51.3	+ 8.5 + 7.6	83 81	22	60 56	25	6	42 38	37	45	39 36 34	68 71	8.48 5.21	+ 5.1 + 2.2	15 14	6, 203	SW.	35 53	W.	1 2	6	8	14 6 16 6	.6
kersburg	638 1, 940	77	84	29, 15 29, 42 28, 02	30,09	+ .03 + .04 + .06	51.5	+ 6.7	81 86 83	22	53 61 58	18 25 18	4 7	38 42 36	31 36 39	40 44 40	34 39 36	66 68 71	4. 88	+ 2.5 + 1.2 + 0.8	19 16 18	8,586 5,887 4 128	nw. sw. w.	54 38 28	nw. nw. w.	5 2	9 8	6	16 6 16 6 14 6	. 3 (
ver Lake Region.	767	178	206	29.18	30. 03	+ .01	35. 1	+ 8.1 + 5.3 + 3.9	67	29	43	9	7	27	30	32	28	77 80	2.84	+ 0.3	19	4, 128	ew.	72	sw.	2	3	11	17 7	.4 9
ego	448 335	10 76	71 91	29. 53 29. 66	30, 03 30, 04	+ .08	30. 3	+ 2.6 + 3.0	66 73	28 27	40 -	- 9	7	21 26	31 34	32	28	80	2.61	- 0.2	14 19	9, 767 9, 059	SW.	64 39	sw. nw.	17 20	8	13 1	10 5 19 7	9 8
hester	523 597 713	97	113	29, 46 29, 39 29, 27	30. 05	+ .03 + .03 + .04	35. 8	+ 5.9 + 4.4 + 5.9	74 80 78	29	46 44 48	7 2 14	7 7	29 27 30	34 32 36	33	28	74	1. 52 1. 57 3, 34	- 1.3 + 0.6	13	7, 409 10, 483 8, 816	W. 8. W.	42 66 47	w. s. nw.	2 24 5	3 4 3	14	19 7 13 6 18 7	.7 1
relanddusky	762 1 629	190 62	201 70	29, 22 29, 36	30. 06 30. 06	+ .03	41. 0 42. 3	+ 6.8	76 79	29 2	50 51	16	7 4 3 4	32	34	36	83	76	3.50 4.39	+ 0.7	17	7, 224	se, sw,	68 48	w. nw.	5 5	4	9 1	18 7	9 8
roit	628 2 730 1	207	246	29. 36	30.06	+ .03	41,8 39, 2	+ 7.0	78 75	22	50 48	16 14	4	34 34 31	32 28	37	33 31	74	2.68	+ 0.6	14	11,853 9,076	sw. w.	55 43	sw. nw.	29 5	7	13 1	11 6	7 3
per Lake Region. enaanaba		13 40		29, 35 29, 35	30. 04 30. 04	+ .01	31.4	+ 6.3 + 5.5 + 6.4 + 6.3	75 66		40	7 2	4	22 22 28	41	27 26	24 22 29	78 79 77		+ 0.2 + 0.3 + 0.3	18 11	9, 578 7, 758	nw.	50 55	nw.	19 19	5		18 6. 7 5.	
nd Haven	632		92	29. 34		+ .01		+ 5.6	74	23	44	13	6	28	34 38	26 32	29	78		+ 0.2	10		nw.	42	W.				10 6	

TABLE 1 .- Climatological data for U. S. Weather Bureau stations, March, 1907-Continued.

	Eleva			essure, ir	inches.		Temper		e of t			deg	rees		er.	the	lity.		pitation	ı, in		W	/ind							
Stations.	eter above evel, feet.	above ground.	above ground. Actual, reduced to	ei, reduced	are from	max. +	rture from	um.		maximum.	um.		minimam.	range,	wet thermometer.	emperature of dew-point.	relative humidity, per cent.		rture from	with .01, or	movement,	ing direc-	per	faxim velocit		days.	cloudy days.	days.	ing daylight, tenths.	snowfall,
	Barometer a sea level,	abov	Actual, r	Sea level,	Departure	Mean	Departure	Maximum	Pate.	Mean 1	Minimum.	Date.	Mean 1	Greate		Mean t	Mean r	Total.	Departure	Days w	Total n	Prevailing tion.	Miles 1	Direction	Date.	Clear d	Partly cloudy	Cloudy	ingd	Total sı
Up. Lake Reg—Cont. Grand Rapids Houghton Marquette Port Huron Sault Ste. Marie. Chicago Mil waukee Green Bay Duluth	707 1 668 734 638 614 823 1 681 1	66 7 77 11 70 12 40 6 40 81 22 14 49 8	4 29, 6 29, 10 29, 11 29, 10 29, 12 29, 16 29, 16	26 30, 01 21 30, 04 13 30, 04 13 30, 05 14 30, 04 10 30, 05 14 30, 02	03 .00 + .01 + .02 + .01 + .02 02	25. 4 28. 4 36. 0 25. 0 42. 6 38. 6 34. 0	+ 1.6 + 4.7 + 6.4 + 8.7 + 8.2 + 7.7 + 7.2	51 59 71 53 80 69 62	25 22 22 22 23 23 22 27	47 34 36 44 34 51 46 41 33	13 -10 3 10 -10 23 16 10 2	6 6 4 6 3 3 3	17 21 28 16 34 31 26	33 39 28 31 38 38 29 28 26	34 25 32 23 39 33 30 22	20 28 20 35 29 25	79 82 78 77	2. 74 3. 29 1. 34 2. 38 1. 85 2. 94 2. 92 2. 04 1. 56	+ 0.4 - 0.5 - 0.2 + 0.6 + 0.5 + 0.4 - 0.1 - 0.1	10 12 15 14 12 10 9	6, 423 8, 410 9, 696 8, 038	nw. nw. nw. w. nw. ne. w.	50 35 56 45 61 48 38 48 56	W. NW. NW. NW. W. SW. NW.	29 19 19 5 19 29 29	4 6 4 3 8 4	10 14 14 9 7 15 11	18 9 13 16 20 13 12	6. 9 8 7. 6 8 6. 5 2 6. 1 3 7. 0 2	3. 5 7. 2 8. 8 8. 0 2, 1 3. 3 2. 1
North Dakota. Moorhend Bismarek Devils Lake Williston	940 1, 674 1, 482	8 5 8 5	7 29. 6 7 28. 1 4 28. 2	0 30, 06 9 30, 04 8 30, 02	02 02 03	22.5 24.4 26.9 17.8	+ 1.6		24 21 24	34 38 29	- 8 - 9 -11 -16	3 1 2 1	15 15 7 10	34 44 36 39	22 22 -16 18	21 17 12	81	0. 37 0. 86 1. 09 0. 64 0. 66	+ 0.1 0.0 0.0 + 0.2	6 4	7, 771 8, 639	nw. nw. w.	36 70 49 41	BW. W. W.	21 21	4 12 16	16 12 8	11 7 7	5.4 9 5.4 6.2 5 5.0 5 4.3 6 6.2 6	5.4
Upper Miss. Valley. Minnespolis St. Paul. La Crosse Madison Charles City Davenport Des Moines Dubuque. Keokuk. Cairo La Salle. Peoria Springfield, Ill. Hannibal St. Louis	837 1 714 974 1,015 606 861 698 1 614 6 356 8 609 1 644 1	71 8 70 7 8 5 71 7 78 10 100 11 54 7 87 90 66 64 11 44 10 92 75 100	9 29, 1 7 29, 2 8 28, 9 8 28, 9 9 29, 3 1 29, 1 7 29, 2 7 29, 3 8 29, 3 2 29, 4	3 30, 02 5 30, 03 4 30, 04 6 30, 06 2 30, 04 9 30, 06 7 30, 06 9 30, 06 8 30, 05 6 30, 05 6 30, 05	02 01 01 .00 .00 + .02	35. 9 43. 7 42. 9 40. 9 47. 6 57. 4 43. 7 45. 6 49. 1	+ 3.0 + 6.1 + 7.5 + 7.5 + 8.8 + 7.2 + 7.7 + 9.7 + 10.4 + 6.9 + 8.6 + 10.0	64 65 73 76 84 82 88 82 88 85 83 87 91 91	25 26 26 26 21 25 26 21 21 21 21 21 21	52 56 56 66 53 55 55	5 2 11 15 7 20 14 16 25 33 20 23 26 26 30	3 2 2 6 14 2 14 2 6 6 6 6 6 6	23 23 29 29 26 35 33 32 39 49 34 36 40 41	28 27 32 39 39 41 47 42 40 28 42 40 41 41 87	28 34 32 39 37 36 41 50 40 43	30 29 34 32 32 38 45 37	82 72 70 75 76 67 77 78	2. 23 0, 56 0, 53 1, 69 1, 80 2, 17 1, 79 1, 18 0, 99 5, 05 3, 39 2, 34 4, 81 2, 67	0.0 -1.0 -0.9 +0.1 -0.4 +0.3 -0.3 -1.3 +2.9 -0.4 -2.1 -0.0 -1.1	6 5 8 11 9 8 7 11 9 7 11 13 13 9 11	9, 519 8, 200 5, 734 8, 343 6, 797 6, 868 7, 319	nw. nw. nw. nw. sw. se. sw. ne. sw. s. s.	42 38 28 40 28 30 40 26 36 40 40 29 38 31	nw. nw. w. sw. sw. sw. ne. sw. w. w. me.	19 19 29 29 16 23 26 26 29 31 29 29 27 29	14 5 5 8 8 11 5 11 18 7 10 11 12 8	9 17 10 6 11 7 16 8 6 11 7	8 9 6 16 6 17 6 12 8 11 8 11 8 11 8 11 8 11 8 11 8 11	5.8 4.6 5 6.4 4 6.6 2 6.5 5 5.6 2 6.5 5 6.5 4 1.1 3 6.8 2 6.8 2 6.8 4 7.6 4 7.6 6	1.8 1.8 1.6 1.6 1.0 1.4 1.1
Missouri Valley. Columbia, Mo Kansas City	784 1 968 7 1, 324 9 984 4	11 84 8 96 16 104 15 86 15 121 77 54 6 164 0 73 6 67	29, 0 28, 6 28, 9 28, 7 28, 8 27, 2 28, 7 28, 3 28, 6	0 80, 05 0 30, 01 5 30, 00 1 30, 00 2 30, 02 2 29, 98 8 30, 03 0 30, 00 0 30, 03	02 + .03 01 01 02 02 05 02 03 03	45. 6 51. 6 52. 1 56. 0 83. 0 51. 7 44. 5 43. 5 41. 2 38. 4 39. 6 35. 2	+ 9.6 +10.2 +11.3 +12.5 +12.6 +10.8 + 8.5 + 7.5 + 9.3 + 5.8 +10.1 + 8.5 + 7.6	92 91 92 94 93 91 91 81 81 83 84 82	21 20 20 22 25 25 21 21 20 21	62 62 67 67 63 55 52 54	27 28 26 24 19 11 13 - 4 0 - 5 - 5	2 1 8 1 1 1 1 1 2 1 1	42 42 46 43 40 34 35 28 28 28 24 26	35 33 37 41 37 45 41 46 40 48 44 44	45 47	32 31 25 25 26	68 70 64	1. 04 2. 99 2. 50 1. 48 1. 63 1. 81 0. 51 0. 29 0. 70 0. 26 0. 10 0. 45	- 0.7 0.0 0.3 - 2.2 - 0.3 - 0.9 - 1.2 - 0.8 - 1.0 - 0.8 - 0.4 - 0.9	10 9 9 6 5 3 4 5 5 5 6 3	8, 098 6, 580 9, 696 8, 155 8, 095 8, 542 7, 204 8, 227 9, 633 8, 378 9, 107 6, 342	s. s. s. s. s. ne. n. sw. nw. se. se.	37 29 34 30 35 44 41 40 62 38 32	sw. nw. se, sw. s. n. w. s, sw. s, s, s,	28 7 9 26 26 26 7 21 24 21 20	16 9 12 5 14 12 7 5 10 9	3 14 6 1 12 1 8 8 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 4 8 5 13 5 14 6 9 4 11 5 19 6 5 5 16 6 11 5 8 5	1.6 T 1.6 T 1.6 T 1.6 T 1.5 3 1.5 2 1.0 2 1.8 0	872929
Northern Slope. Miles City Miles City Helena Kalispell Rapid City Cheyenne Lander Yellowstone Park North Platte. Middle Slope	2, 505 1 2, 371 2 4, 110 2 2, 962 3 3, 234 4 6, 088 5 5, 372 2 6, 200 1 2, 821 1	1 44 6 48 8 56 8 34 6 50 6 64 6 36 1 48 1 51	27, 38	29, 98 29, 93 29, 89 29, 98 29, 91 29, 90 29, 92	06 04 08 10 03 05 09 10 01	35. 3 23. 7 37. 2 33. 6 33. 6 38. 2 40. 2 37. 6 29. 6 44. 2	+ 4.5 - 3.6 + 2.6 + 0.6 + 6.6 + 7.2 + 6.3 + 8.9	58 73 65 65 77 74 66 50 84	20 31 31 32 20 3 19 3 31 3	35 - 49 42 42 42 50 50 57 79		1 26 17 1 13 13 26 1	28 26 22	42 42 35 36 39 38 44 25 50	22 30 28 29 33 32 26 35	20 26 22 24 27 22 23 21 28	68 85 72 65 72 69 55 77 73 64	0, 84 0, 64 1, 16 0, 14 0, 49 0, 98 4, 56 0, 10	- 0.3 - 0.1 - 0.3 - 0.0 - 1.0 - 0.2 - 0.6	5 10 8 12 5 6 6 21 4	5, 815 4, 535 5, 330 4, 046 4, 622 9, 353 5, 219 6, 831 6, 213	e, ne. w. w. w. nw. sw. s.	27 44 37 30 60 49 46 39 35	sw. w. w. sw. sw. sw.	21 21 23 21 21 21 18 21	7 3 3 12 10 6	13 1 12 1 19 9 1 14 19 1	1 6 7. 9 6. 0 5. 7 4. 6 5. 0 6.	.5 4. .1 4. .0 4. .2 9. .0 1. .9 4. .4 6. .8 28. .6 0.	9 2 1 2 2 1 1
Denver Pueble Concordia Dodge Wichita Oklahoma	5, 291 125 4, 685 80 1, 398 45	136 86 47 54 86	24, 62 25, 20 28, 49 27, 35 28, 57 28, 69	29, 88 29, 98 29, 96	07 04 03 01 02 01		+ 9.5 + 8.5 + 8.8 + 8.9 + 9.9 + 10.5 + 10.4	82 86 97 98 92 97		15 12 17 16	16 10 14 19	1 1 1 1 1	34 38 36 43	39 49 44 50 37 39	36 36 41 40 46 50	21 19 35 29 40	38 68 52 66	0. 54 - 0. 12 - 0. 96 - 0. 33 -	- 0.7 - 0.4 - 0.4 - 0.6 - 0.6 - 1.1 - 1.3	1 2 6	6, 502 6, 292 7, 728 7, 864	8. W. 8. 80. 8.	39 61 30 36 30 47	sw. w. s. se. w.	26 1 26 1 28 1	16 1 12 1 10 1	15	7 4. 0 3. 8 4. 3 4. 1 5.	4 T.	4
Amarille	1, 788 45 3, 676 10 944 8 3, 578 9	49 57	28, 19 26, 22 28, 99 26, 30	29, 93 29, 96	02 02 + . 01 . 00	78. 4 58. 4	+10.3 +10.7 +11.8 +11.7 +7.1	94 96 94 95	18 7 19 7 20 8 20 7	3 7	32 20 40 26	1 2	40 60	39 46 44 54	43	33 (31 (55 52 43	0, 85 - 0, 02 - 0, 10 . 0, 00 -	- 0.4 - 0.3 - 0.4	1 1	0,039 7,032	86,	36 52 36 28	nw. se. nw. sw.		9 1	1	2 3. 1 3. 4 4.	7 3 2 0	
Santa Fe Flagstaff Phoenix Yuma Independence	8, 762 10 7, 913 33 6, 907 12 1, 108 50 141 16 3, 910 11	39 44 56 46	26, 19 23, 24 23, 32 28, 83 29, 84 25, 91	29, 95 29, 99 29, 99	+ .06 + .07 + .04 + .08 + .05 02	59.8 62.0 46.5	+ 0.8 + 5.1 + 4.6 + 1.7 - 0.7 - 2.5 - 3.1	92 96	20 7 19 5 19 4 19 7 18 7 18 5	7 9 3 5	10 33	14 1 14 28	32 26 46 49	45 35 39 41 44 86	33 31 49 50	23 2 20 4 24 6 38 5 38 4 26 5	29 40 65 51 67	0, 29 - 2, 86 + 0, 93 + 0, 72 + 1, 10 +	0.4 0.4 1.0 0.4 0.5 0.6	3 11 6 3	6, 397 6, 946 8, 093 5, 127	sw. sw. e. w.		W. SW. SW. W. SW.	22 1 12 1 25 27 1 5 2 20 1	7 1 9 4 1	0 1 7 1 3 4 8 3	6. 4. 2. 4.	8 5 1.4 0 9.3 1 2	
Fonopah	4, 582 56 8, 089 12 4, 344 18 5, 479 10 4, 366 105 6, 546 18 4, 608 43	20 56 43 110	25, 35 23, 95 25, 50 24, 55 25, 53 23, 63 25, 33	30, 00 29, 92 29, 93 29, 92 29, 97	04 09 03 06 05 02	38, 2 37, 3 39, 3 39, 6 44, 4 40, 8 46, 8	+ 1.9 - 0.3 + 0.4 + 3.0 + 3.3 + 3.3	62 66 70 70 75	30 4 18 4 31 4 19 5 19 5 19 5 19 5	5 8 0 2 4	14 16 10 23 14	26 13 28 14 13	29 30 29 37 28	37 22 34 35 29 40 12	32 34 34 38 38	28 7 24 6 29 5 30 7 29 5 22 5 29 5	75 33 58 72 56 55	1. 15 2, 65 + 2. 23 + 2. 35 + 1. 73 + 1. 14 +	1.8 1.3 0.3 0.3 0.3	7 1 15 8 8 1 12 8	0, 370 6, 020 1, 017 6, 088 4, 243	se, sw, sw, se,	47 52 44 30	8W. 80. 8W. 8W. 8. 8.	20 17 20 5 25	7 2 3 1 5 1 8 1	2 2 8 26 2 14 3 26 2 12	4. 7. 6. 7. 6.	7 21, 3 8 5, 8 1 15, 8 7 8, 3 1 15, 8 0 1, 3 8 2, 6	8 8 2 5 3
Northern Plateau. laker Clty	3, 471 48 2, 789 78 757 10 4, 477 46 1, 929 101 1, 000 •71	58 86 51 54 110	26, 30 27, 07 29, 10 25, 38 27, 84 28, 85	29. 91 29. 95 29. 93 29. 95	08 08 10 06 10 09	41. 3 38. 7 43. 4 44. 4 39. 1 38. 7 43. 6	1.1 3.2 1.2 0.4 2.2 0.2 - 0.2	65 68 69 60 62	31 44 31 56 31 53 18 46 31 46 31 53	3	21 28 30 26 25	2 3 3 3 3 7 3 7 3 7	31 36 36 33 33 33 32 3	85 86 88	34 38 35 34	27 6 31 6 31 7 29 7 37 7	7 9	2. 22 + 0. 97 - 2. 77 + 1. 60 + 1. 64 + 1. 97 +	0.5 0.8 1.0 0.5 2.1 0.2 0.1	10 1 21 1 12 1 18 1	5, 108 5, 230 4, 421 7, 409 5, 687	8. 80, 80, 80, 80,	28 25 46 36 30	s, nw, w, sw,	21 12 21 21 28	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 17 6 25 9 19 1 17	7. 7. 8. 7. 7. 7. 6.	4 3 7.6 7 2.6 5 2 14.3 6 0.6 1 0.4	6 6 8
Yorth Head		224 120 57 106	29, 69 29, 61 29, 81 29, 71 29, 79 29, 78 29, 39	29, 92 29, 90 29, 94 29, 94 29, 89 29, 94 29, 95	09 08 05 06 07 08 09	43, 3 - 38, 6 - 43, 2 - 42, 4 - 42, 4 - 44, 9 -	- 1.9 - 1.0 - 1.8 - 0.5 - 1.4	50 : 55 :	9 46 9 46 30 45 9 47 9 47 90 51 50 54		25 1 92 1 28 1 32 1 32 1	2 3 2 3 2 3 6 3 2 3	31 2 37 1 16 2	3 9 4 3	39 40 41	39 8 35 7 36 7 37 7 37 7	3 4 4 1 7 6 6 3	. 48 — . 84 — . 12 — . 65 —	1.8 1 2.0 1 2.3 1 4.1 1 1.7 1	7 4 2 7 6 8 9 12 7 8	1,478 17,648 18,783 18,094 6	w.	21 37 30 30 32	ne. w. sw. s.	14 8 23 8	110	1 10 3 12 9 19 7 16 1 16	6.	3 1 2.0 7 T. 4 T. 2 0.4 7 T.	

 ${\tt Table \ I.-Climatological \ data \ for \ U. \ S. \ Weather \ Bureau \ stations, \ March, \ 1907-Continued.}$

	Elevinst		on of		resst	ıre, in	inches,	7	Tempera	ture	of t	he a	ir, in	deg	rees		eter.	of the	humidity,	Precip	pitation nches.	, in		W	ind.					ness dur-	
	above feet.	ters	ter.	nd.	onrs.	luced hrs.	from	+	from			mnm.			um.	aily	thermometer.	ature oint.	e humi		from	01, or	nent,	irec-		aximu elocity			days.	diness	
Mid. Pac. Coast Reg.	Barometer a sea level, fo	Thermome	Anemome	Actual reduc	mean of 24 hours	Sea level, reduced to mean of 24 hrs.	arture	Mean man	Departure normal.	Maximum.	Date.	Mean maxim	Minimum.	Date.	Mean minimum.	Greatest d range.	wet	Mean temper dew-p	Mean relative	Total.	Departure normal.	Days with .0	Total moven miles.	Prevailing d	Miles per	Direction.	Date.	days.	Cloudy days.	600	000
Mid. Puc. Coast Reg. Eureka Mount Tamalpais Point Reyes Light Red Bluff Sacramento San Francisco San Jose Southeast Farallon. S. Pac. Coast Reg.	155 141 30	5 11 7 7 2 50 106 5 200 78 9	18 18 56 117 204 88 17	3 27 3 29 5 29 7 29 8 29 7 29	0, 92 7, 49 0, 42 0, 60 0, 93 0, 83 0, 86 0, 95	29, 99 29, 99 29, 94 29, 96 30, 00 30, 00 30, 01 29, 98	06	54. 4	- 1.2 - 5.5 - 3.3 - 1.7 - 2.9 - 0.8	62 60 61 72 72 69 73 59	5 31 30 31 31 30 30 7	54	35 31 38 34 37 38 32 40	12 25 25 14 12 25 13 26	41 38 45 42 45 46 43 47	19 16 12 27 23 22 32 11	45 47 47		76 75 79	8. 00 11. 83 9. 05 6. 43 5. 92 7. 28 8. 42 7. 75 6. 14 3. 57	+ 4.0 + 5.6 + 2.0 + 2.6 + 4.3 + 5.3	20 21 19 20 18 21	5, 195 13, 593 17, 580 5, 592 7, 326 6, 275 14, 324	se. sw. nw. se. se. s. nw. nw.	40 56 84 32 44 42	se, s, se, se, sw,	22 17 23 22 23 23 5	6 5 7 11 6 6	16 1 4 2 11 1 6 1 2 1 7 1 6 1 14 1	1 7.5 5 6.8 8 7.0 8 6.8 8 6.8 9 7.2 1 6.3 5.8	4
resno		94	128 102	29	0. 67 0. 68 0. 95 0. 84	30, 04 30, 05 30, 05 30, 06	+ .03	52. 8 55. 5 56. 6 52. 6	$ \begin{array}{r} -2.1 \\ -0.1 \\ +0.4 \\ -1.2 \end{array} $	77 84 82 80	31 17 18 30	62 65 65 61	32 39 40 34	13 27 13 12	44 46 48 44	30 34 28 29	48 49 51 48	43 43 46 46	73 69 73 80	1. 74 4. 12 1. 62 6. 79	+ 0.4 + 1.1 + 0.1 + 3.8	13 11 9 17	4,162 4,056 4,655 4,060	nw. w. nw. se.	26 32 30 25	8W. 8e. n. 8.	20 4 4 20	21			
an Juan	11 82 74		90		. 08	30, 09 30, 04	+ .07 + .02	74.9 74.0		84 80	18 9	82 79	61 64	25 31	68 69	16	68	65	78	0,43 1,80	- 0.5	7 19	8, 434	e, ne.	32	е,		17	18	3.2	
Ancon	74 40						******									****															

,		mperat ahrenh			cipita- on.			nperat hrenb			ipita- on.			uperat hrenh		Preci	plta- on.
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of
Alabame.	0	0	0	Ins.	Ins.	Alaska-Cont'd.	0	0	0	Ins.	Ins.	Arizona-Cont'd.	0	0	0	Ins.	Ins
laga				0.56		Copper Center	36	-40	16. 2	0.30	3, 0	San Simon	92	21	52.9	0.40	
shville	90	33 43	62. 2	2,51	-	Juneau	49 50	0	31, 0 29, 6	2.74	7.0	Seligman	78 96	17 35	62.0	1,14	2
uburn	86	1	65. 1	3, 79		Killisnoo	43	0	29. 4	4.98	24. 2	Sentinel	93	37	61.8	0, 53	
entonermuda	90	39	66. 6	2, 24		Orca	50	5	25.7	2, 15	25, 0	Tempe	94	29	58.8	1, 00	
oligee	92	40	67. 0	2,24		Sitks	49	9	32,3	1,75	10.5	Thatcher	93	20	55.0	0, 18	
ridgeport				4. 21		Skagway	42	2	24.5	0.47	T.	Tombstone	87	32	56,8	0, 21	1
amphill	914		63. 6*	0, 86		Teikhill	42	-28	7.8	0, 56	9.0	Tucson	95	24	58, 4	0.50	1
edar Bluff				3, 48		Wood Island	42	-28	7.8	0.56	9. 0	Upper San Pedro	93	22	54.7	0, 26	
tronelle	90	45	68. 8	4, 32		Arizona,					-	Vail	98	48	70.8	0,02	
anton	93	37	65, 0	3,76		Allaire Ranch				0.14		Walnut Grove				2,40	
ordova	92	33	64.0	2.07		Aztec	103	35	67.8	0.80		Willeox	92	24	57.4	0,00	
adeville				1.32		Benson	94	26	57.4	0.13		Yarnell				2, 82	T
aphne	84	51	68.4	2.60		Bisbee	86	28	54.2	0.48		Young	85	20	48.0	2, 05	
catur	93	30	62.4	3.75		Bonita,				0, 27		Arkansas.					1
mopolis				4.88		Bowie	95	21	57.4	0, 23		Alicia	88	29	62.6	1.50	
faula	87	40	64. 4	1.90		Buckeye	93	29	59. 0	0.98		Amity	88	30	63, 0	3. 47	
omaton	92	45	70.4	1.87		Casagrande			80 0	0.50		Arkadelphia,	87	30	63. 5	4.08	
lorence	90	31	61.4	3, 40		Chlarsons Mill	51	21	33, 6	1. 87	1.0	Arkansas City	00	30	01 4	7. 41	
ort Deposit	89 93	35	66, 4	2, 29		Clifton	86	27	56,0	2, 49		Batesville	90	31	61. 4	2, 30 1, 38	
deden	93	39	65, 2	2.54		Cline	72	30	56.0	0,00		Benton	90	91		3, 65	
oodwater	88	42	66,7	2,92		Columbia	86	32	53,6	2, 25		Black Rock			*****	2,42	
reensboro	00	4.0	00, 1	3,04		Congress	86	35	56.0	2.16		Brinkley	92	31	62,8	6, 04	
amilton	89	33	62.4	4, 63		Douglas	94	23	56, 8	0.37		Calico Rock			02,0	1, 20	
ighland Home	92	44	67.9	3,72		Dudleyville	95	29	58.0	0.92		Camden	87	33	65, 4	5, 41	1
husage				3, 30		Duncan	94	19	55, 5	0, 06		Center Point	94	30	64, 6	3, 98	
tohatchie				1.54		Fort Apache	84	20	49, 4	0, 61	T.	Clarendon				3. 71	
vingston	86	34	64. 2	2.94		Fort Huachuca	86	30	55. 0	0. 10	T.	Conway	91	31	62, 2	2, 50	
ck No. 4	90	34	63, 2	2,42		Fort Mohave	93	36	62,0	1.85		Corning	88	29	61, 6	8, 15	
icy	92	38	68.0	1. 35		Fredonia	81	10	44.3	0.50		Dardanelle				1.74	
adison Station	90	*****		3, 17		Gilabend	97	37	61.1	0,50		Des Arc	93	32	62. 2	4. 27	
spiegrove	91	33	60,6	3.94		Globe	89	28	54.8	1, 26		Dodd City	92	27	59. 7	1.10	
ilstead				2. 24		Grand Canyon	74	14	42.6	2.37	10,5	Dutton	87	28	58.1	3. 71	
wbern	98	39	65, 7	2.91		Greaterville	89	25	53, 0	0.11	4.0	Eldorado	89 89k	34 32k	65, 0 62, 3k	5, 16	-
eonta	90	31	63,3	2,93		Greer	89	18	48, 8	1. 90 0. 71	4, 0 0, 5	EnglandEureka Springs	93	28	59, 6	2, 37 3, 01	-
elika	92	41		2.70		Holbrook	09	10	30,0	0,80	0,0	Fayetteville	96	30	60, 8	2, 63	
attville	93	35m 36	66, 0	4, 00		Jerome	82	29	51. 2	2,70	T.	Forrest City	87	31	60, 2	3, 19	
shmataha	89	29	58.1	4.35		Keams Canyon	77.	15	43. 6	1. 17	1.0	Fulton	0.		200.00	3, 26	
verton	89	32	61.8	3, 63		Kingman	85	24	51.6	1. 21	T.	Hardy	90	30	60,0	1,98	1
ottsboro	92	39	66.1	3,58		Maricopa	98	29	60, 0	0. 86		Harrison	91	25	56. 8	1,70	1
ring Hill	86	45	68. 7	2.90		Mesa	94	32	59.6	1. 18		Heber	92	28	62.2	0.90	1
lladega				3, 19		Mohawk Summit	95	40	69.0	0,83		Helena	88	37	63.8	7,85	1
llassee				1.72		Natural Bridge				3. 17	T.	Hope	88	33	65. 6	8,87	1
omasville	90	40	65.2	5. 18		Nutrioso				0.88	0, 5	Hot Springs	87	29	62. 2	2, 92	
scaloosa	92	36	63, 8	3, 29		Oracle	84	32	54.2	2,57	1.0	Jonesboro	90	27	60.8	3, 81	1
scumbia	87	35	62,3	2.52		Paradise	88	22	54, 2	0. 21	T.	Junction	88	32	65. 8	5, 36	
skegee	92	43	66, 8	2,33		Parker	100	25	57.5	0.00		La Crosse	91	32	60. 2	3, 07	
ion Springs	90	44	66.0	4. 70		Phoenix (Ex. Farm)	91	30	58. 9	1,00		Lewisville	90*	32*		2. 43	
iontown	91	41	66, 8	2. 19		Picacho	94	40	66. 2	0, 50		Lutherville	91	27	60, 2	1,95	150
lley head	90	30	59. 2	2.78			*****			2, 60	0.5	Luxora	******	*****	*****	1.20	
enna		*****		2,90		Pinto	00		*0.0	0.42	2.0	Malvern	88	30 26	59.4	5, 50	
tumpka	91	38	66. 6	3, 62		Roosevelt	82	31	52.3	1.66		Mammoth Springs	98	26	57.8	1.08	
Alaska.	-	me		0.00		St. Michaels	75	10	41.4	1.13		Marked Tree	88	99	29 6		
estochena	36	-39	4.3	0, 80	8.0	San Carlos	95	24	56.8	1.07		Marvell	00	60	63, 6	5, 87	4

TABLE II.—Climatological record of cooperative observers—Continued.

		mpers			ipita- on.		Ter (Fa	npera	ure. eit.)		ripita- on.			nperat hrenb		Preci	pita- on.
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of show.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of
Arkensus—Cont'd. Mens Montrose Montrose Mosaville. Mount Nebo. Nawport. Ozark Pinebluff Pocahontas. Pond	89 85 87 89 92 90 93 92 88	0 31 38 29 33 32 31 34 28 25 33	62, 6 65, 8 57, 2 59, 6 61, 6 62, 2 63, 0 60, 2 59, 1 62, 3	Ins. 2, 35 7, 21 3, 26 1, 43 1, 26 2, 50 4, 51 3, 28 2, 08 4, 32	Ins.	Cuifornia—Cont'd. Mercury Mills College. Milo. Milon (near) Mohave. Mokelumne Hill Mono Ranch Montague Monterio Monumental	71 77 72 71 65 70 57	34 30 30 24 20 30 17	51. 2 51. 3 48. 0 43. 0 40. 4 48. 4 38. 0	Ins. 22, 10 10, 28 5, 41 9, 27 2, 62 15, 66 17, 93 4, 25 4, 55 17, 70	Ins. 1. 0 T. 2.0 T. 59.5	Colorade—Cont'd. Breckenridge. Buena Vista. Burlington. Canyon. Castlerock. Cheesman Cheyenne Wells. Chromo. Clearview. Collbran.	58 68 89 83 72 73 91 76 66 77	0 -3 11 7 22 6 10 10 -2 2	28, 7 39, 4 46, 6 51, 7 41, 4 44, 2 46, 9 37, 0 35, 8 41, 6	Ins. 0. 35 0. 21 1. 08 0. 09 0. 82 0. 30 0. 13 2. 02 0. 20 2. 58	Ins 5 2 0 9 3 T. 16 2 26
Princeton Russellville Spielerville Stuttgart Texarkana Warren White Cliffs	91 90 94	29 28 30 82 32 36 31	65, 1 59, 8 60, 0 68, 0 62, 4 68, 6 64, 2	2, 57 2, 42 1, 78 1, 89 3, 76 2, 30 5, 53 4, 10		Mount St. Helena Napa. Needles. Nevada City New Castle Nowman Niles Nimshew.	71 85 72 75 73 68 68	34 28 21 34 34 36 20	30.6 57.3 41.6 50.0 51.8 51.4 42.4	24. 62 14. 10 3. 82 10. 09 27. 69	31.0	Colorado Springa Cope Corona Cripplecreek Delta Dunkley Eagle Eureka	78 86 51 81 60 68	13 9 -10 13 0 4	45. 9 34. 1 37. 0	0. 16 0. 85 4. 22 0. 39 0. 13 1. 63 1. 17 2. 37	1. 5. 40 7. 0. 21. 12. 24.
Wigs Witts Springs	62 80 66 85 90	27 30 4 23 84 32 41	61, 8 87, 2 35, 6 49, 6 47, 6 52, 8 60, 4	3, 63 1, 33 4, 13 0, 85 16, 66 5, 39 0, 70	T.	North Bloomfield. Oakland. Ojai Valley. Orland Orleans. Oroville (near). Uzena		17 37 30 31 32 34	39. 8 51. 6 52. 7 48. 8 51. 7 51. 0	28. 64 9. 08 8. 75 3. 97 12. 01 10. 90 6. 46 8. 80	63. 0	Fort Collins Fort Morgan Fowler Frances Garnett Gladstone Glen wood Gothic	58 72 74 54	10 1 1 -6	34.6 35.1 40.7 27.8	0, 69 0, 12 0, 05 1, 35 0, 00 3, 94 1, 06 3, 27	50 00 26 53 8 45
sakersheid sear Valley serkeiey sliehop slooksburg slue Canyon sowman stranscomb	68 79 67 63	21 38 20 25 18	52,5 50, 4 46,6 42, 4 36, 6	0, 61 35, 50 10, 76 1, 41 21, 83 35, 11 31, 46 26, 59	1.5 14.0 157.0 210.5 15.5	Pilot Creek. Pine Crest. Placerville Point Lobos Porterville Poway Priest Valley Quincy.	77 69 65 80 86	39 26 46 81 30	53, 5 47, 0 55, 6 54, 8 54, 0	32, 88 8, 16 20, 54 7, 64 2, 66 2, 45 10, 00 30, 15	7.0 T 94.0	Grand Valley. Greeley. Grover Gunnison Hahns Peak. Hamps. Hoehne	79 83 69 58 82 87 96	6 -4 9 4 10	36.8 27.7 42.6 46.7 52.7	2. 41 0. 42 0. 20 0. 43 2. 38 0. 27 T.	6 2 2 4 31 3 T.
rush Creek utte Valley alexico amphell ampo edarville hico	72 92 70 64 76 85	26 42 31 14 28 33	62. 0 50. 8 34. 4 49. 2 53. 6	33. 02 26. 76 0, 42 8. 87 3. 91 3. 31 8. 03 5. 37	13. 5 112, 0 T. 23. 0	Reedley	70 78 85 87 86 74 68	32 30 33 34 31 31 31	49. 0 53. 3 52. 7 53. 6 53. 6 51. 2 47. 1	7, 28 3, 89 4, 30 12, 39 10, 70 3, 49 12, 46 11, 40	2,0	Holyoke (near) Idaho Springs Lake City Lake Moraine Lamar Laporte. Las Animas Lay	86° 68 67 61 94 94 73	10 9 - 3 - 2 14	48, 4° 40, 4 35, 9 32, 2 52, 2 51, 0 38, 9	0, 35 0, 45 0, 56 0, 03 0, 35 0, 00 0, 51	111 T
loverdale olfax olusa raftonville rescent City. rockers. uyamaca elta.		31 25 32 32 21 28	49. 6 48. 2 49. 9	19, 08 19, 46 3, 80 6, 67 14, 10 27, 41 11, 38 24, 45	0, 2 20, 0 0, 2 70, 0 2, 0 0, 5	Sacramento Salinas Salinas Salton San Bernardino San Jacinto Santa Barbara Santa Clara College Santa Crus	72 71 95 88 90 79 74 76	34 30 54 28 29 36 31 32	51. 6 53. 4 64. 9 53. 8 54. 8 54. 0 50. 7 52. 2	9, 54 6, 87 4, 58 2, 98 5, 64 9, 22 10, 85		Leroy Longs Peak Lujane Mancos Meeker Montrose Moraine Pagoda	84 59 75 74 72 70 62 70	-14 -15 -6 -4 -15* -9 3	44. 6 82. 7 42. 4 40. 2 40. 4 43. 8 ^f 34. 2 87. 8	0, 25 2, 29 0, 76 1, 76 0, 98 1, 35 1, 33	34 7 6 8
imond obbins	74 78 90 76 68 89 51 88 78		50. 4 56.6 53. 2 52. 6 53. 2 30. 0 53. 2 51. 0	10. 81 19. 43 8. 39 8. 06 18. 01 3. 26 3. 68 80. 20 3. 48 11. 06 29. 01 13. 07	160.0	Santa Maria Santa Monica Santa Rosa Santa Rosa Sansalito Shasta Sierra Madre Sisson Snedden Sonoma Sonora Stering Stockton	78 77 72 77 79 67 79 78 62 70	36 38 29 37 16 30 26 15 35	55. 2 53. 2 49. 0 48. 6 52. 4 37. 6 50. 9 47. 4 37. 0 51. 2	3, 95 5, 37 11, 21 9, 70 14, 47 6, 33 13, 16 8, 60 11, 46 19, 09 43, 38 6, 03	48. 0 6. 0 60. 0	Pagosa Springs Paonia Platte Canyon Power House Rangely River Portal Rocky ford Saguache Sailda San Luis Santa Clara Sapinero.	78 78 74 77 72 92 75 74 72 76 63 91	12 9 16 10 9 13 - 4 7 2	38. 0 44. 8 40. 0 42. 0 40. 6 48. 8 38. 0 43. 3 39. 8 42. 0 34. 2 47. 7	2, 27 1, 42 0, 43 1, 76 0, 57 0, 65 0, 00 0, 10 0, 03 0, 25 1, 59 0, 20	1 3 4 4 4 5 0 0
rt Ross oorgetown endors old Run ass Valley eenville. oveland unford	70 63 78	24 20 15	42. 4 39. 4 37. 8 52. 8	7. 33 21. 61 26. 15 24. 51 15. 95 2, 39	29. 0 119. 0 28. 0 84. 0	Storey. Summerdale	72 63 50 59 50 65 56 77	29 13 2 10 - 8 18 0 31	49. 8 35. 2 28. 8 35. 4 27. 4 37. 7 34. 2 52. 7	1. 35 27. 06 27. 36 12. 30 31. 62 24. 05 20. 50 2. 43 3. 65	84. 0 265. 0 51. 0 814. 0 98. 0 125. 0	Sheridan Lake Silt. Silverton Stonewall Terminal Dam Trinidad Victor Vilas Wagon Wheel	76 59 81 89	18 9	42. 4 28. 8 50. 9 36. 0	1. 60 3. 69 0. 03 2. 28 0. 00 0. 47 0. 00 1. 73	18 18 18 20
aldsburg	72	29 87 29 14 39 26	50, 4 63, 5 51, 2 40, 6 62, 0 42, 6	21. 07 0. 46 6. 60 6. 78 0. 96 24. 36 3. 08 17. 27	3.0 39.8 0.5	Ukiah Upland Upperlake Upper Mattole Vacaville Ventura Visalia	76 80 86 72 84 78	28 34 28 29 38 28	47. 4 53. 6 47. 6 49. 7 57. 5 50. 3	18. 18 7. 32 10, 63 23. 40 8. 48 6. 26 3, 09	1. 2 T. 0. 5	Waterdale Westcliffe Whitepine Wray. Yuma Connecticus. Bridgeport	79 74 55 86	8 3 -10 11	44. 6 40. 9 25. 8 47. 2	0. 85 0. 20 1. 40 0. 24 0. 33	2 T
on	*****	30 10	54. 5 32. 2 47. 3	7. 05 13. 85 19. 11 2. 14 6. 12 42. 62 21. 35 8. 56	1,0 119.0 8.0	Wasco. Wasioja Westpoint. West Saticey Wheatland Willetts Willows. Woodleaf	79 72 87 70	32 19 31	50. 6 45. 0 49. 1	5, 73 19, 76 4, 30 9, 64 19, 95 3, 63 37, 38	11. 5	Canton Colchester Falls Village Hawley ville Lake Konomoc North Grosvenor Dale Norwalk Southington	79 78 80 81 75 77	5 9 6 6 8	35, 8 36, 9 37, 0 36, 4 36, 0 37, 5	1, 34 1, 83 1, 26 1, 23 2, 10 1, 37 2, 82 1, 10	
moncove	79 62 71 69 77 78	30 24 30 31 22 35	54. 1 37. 4 50. 6 50. 7 47. 8 50. 8	4. 22 13, 80 8. 85 6. 76 1. 42 18. 13 7, 24	14.0	Woodside Yosemite Yyeka Zenia Chlorado. Akron. Alamosa.	68 69 64	34 15 19	50. 6 38. 4 39. 6	16. 03 20. 98 5. 89 17. 77 0. 43 T.	87. 5 24. 0	South Manchester	80 70° 79 82	8 2• 9 8	35, 9 34, 2° 39, 3 34, 3	1, 85 1, 68 1, 84 1, 94 1, 53 1, 34 1, 14	1
galia ammoth aryaville arced	70 104 73 67 90	24 40 40 30 34	41. 9 61. 4 53. 8 51. 7 60. 6	37. 75 0. 40 10. 59 3. 68 1, 25	13, 0	Antelope Springs Arriba Asheroft	59 81 58 94 79	-20 8 - 8 12 19	25, 8 43, 6 29, 8 51, 1 48, 2	2, 26 0, 20 1, 33 0, 01 0, 47	16.9 3.0 18.0	Delaware. Delaware City Dover Milford Millsboro.	83 88 88	19 19 18	45. 4 48. 0 46. 9	2 14 5, 02 2 61 2, 81	8 4 9

TABLE II.—Climatological record of cooperative observers—Continued

		nperat hrenh			ipita- on.			nperat hrenh			ipita- on.			nperat hrenh		Preci	
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stationa.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Eain and melted	Total depth of
Delaware—Cont'd. Newark Seaford District of Columbia. West Washington	0 83 88 93	0 16 19 20	43. 6 46. 6 47. 6	Ins. 2, 62 2, 72 3, 10	Ins. 10.0 3.5 6.4	Georgia—Cont'd. Marshallville Mauzy	92 96 90 97	40 42 37 39	66. 4 70. 0 62. 9 65. 3	Ins. 1.46 0.48 1.18 0.81	Ins.	Illinois—Cont'd. Dwight. Elgin Equality Flora.	84 82 92 86	21 19 28 27	45, 0 42, 8 56, 8 52, 4	2.22 2.57 4.13 8.09	Ins 4 0 T.
Florida. Apalachicola Archer Avon Park	97 96	52 47 50 46	70. 2 72. 1 73. 6 72. 3	0. 55 0. 57 0. 24		Monteguma Monticello Morgan Newnan	91 91 90	40 43 89	63. 9 68. 5 63. 0	0. 74 2, 50 2, 62 3, 57		Friendgrove Galva Grafton Greenville	80 84 88	27 19	52,5 42,8 50.6	5, 01 1, 27 2, 38 2, 55	5.
Bartow	91 92h 90	42 505 45 50	69. 3 71. 5 ^b 68. 0 74. 5	0. 81 0. 92 0. 75 T.		Oakdale	92 93 92 88	35 39 44 35	61. 7 67. 0 69. 0 62. 1	2, 20 2, 04 1, 64 1, 20 3, 40		Griggsville Halfway Havana Henry Hillsboro	92 85 91 85 89	26 27 25 21 26	50, 1 54, 8 50, 1 46, 0 50, 2	3. 27 2. 92 2. 54 3. 20 1. 90	6. 5. T.
De Funiak Deland Eustis Federal Point Fenholloway	91 95 96 99 95	45 47 47 49 48	69. 0 73. 4 73. 0 71. 4 69. 8	2, 92 0, 09 1, 06 1, 05		Rome	92 95 96 96	34 45 43 41	61. 8 70. 0 69. 4 69. 2	3, 37 2, 86 0, 23 0, 58 1, 08		Hoopeston Joliet Kishwaukee Lagrange Laharpe	84 84 81 83 87	21 23 16 21 22	47. 0 43. 7 42. 2 41. 7 46. 4	4. 26 3. 00 2. 15 2. 71 6. 40	5. 2. 1. 2. 8.
Fernandina Flamingo Fort Meade Fort Myers	95 98 97 92	49 54 44 53	70.6 75.6 72.0 71.8	0, 62 0, 00 T. 0, 08		Talbotton Tallapoosa. Toccoa	97 91 90 90	42 40 37 34	66. 6 65. 1 64. 0 59. 0	1.42 2.57 3.22	-	Lanark Loami McLeansboro Martinsville	81 85 86	15 29 25	41. 1 54. 4 50. 8	1. 51 4. 23 2. 97 1. 90	T.
Fort Pierce	96 92 95 90	48 49 50 50 54	72.4 72.2 71.6 72.1	0. 68 0. 32 1. 44 0. 00		Valdosta Valona Washington Waycross Waynesboro	94 95 89 95 94	43 38 38 44 40	70, 1 66, 6 61, 0 69, 4 66, 6	1. 00 1. 87 3. 51 2. 01 0. 16		Martinton	85 85 88 81 87	15 20 21 19 26	44. 0 45. 5 45. 4 43. 2 49. 6	5. 23 1.72 2.02 1.66 2.03	6, 6, 6, 1,
Inverness Jasper Kissimmee Lake City	94 93 98 94 94	46 43 44 47 43	70.6 69.8 71.5 72.6 68.8	0. 03 0. 56 T. 1. 00 0. 78		Westpoint Woodbury Idaho. Albion American Falls	95 89 63 64	35 34 8 21	64. 4 62. 2 38. 1 38. 4	2. 27 1. 86		Mount Carmel	92 85 87 83	26 28 28 28 20	52. 4 55. 4 52. 5 45. 8	4,50 3,88 3,77 4,50 2,55	T.
factiony fadison falabar. fanatee farianna.	91 88 94	51 48 40	71. 4 69. 8 68. 9	0.07 0.32 0.00 1.90		Black foot	62 63 49 72	20 20 11 25	87.8 40.9 30.2 44.2	3,58 1,29 5,17 2,45	3, 0 8, 5 49, 0	Palestine Pana Paris Philo	85 83 88 86	25 26 28 21	52. 4 49. 4 47. 5 47. 2	5, 55 2, 91 3, 05 4, 22	T.
Ierritts Island	98 92* 96 92 91	58 56* 42 37 46	72. 6 72. 5° 69. 8 65. 8 69. 4	0. 00 0. 72 0. 90 2. 73 0. 53		Cambridge	66 59 68 56° 57	29 10 22 8° 8	42.9 34.0 40.1 31.0° 29.4	3. 46 3.06 3.59 3.44 4.74	T. 29. 0 3. 7 26. 5 32. 9	Pontiac. Rantoul Raum Riley. Robinson.	84 87 86 80 85	22 19 29 16 25	46, 4 47, 4 55, 8 40, 8 52, 0	2. 74 3. 54 4. 04 1. 68 5. 47	5.
Iount Pleasant	94 90 97 98 97	41 47 49 47 49	70. 4 70. 6 73. 2 72. 9 73. 7	1. 60 0. 00 0, 77 0. 40 0. 15		Ellerslie Emmett Forney Garnet	63 71 63 75 60	19 24 1 26 10	40, 4 43, 9 32, 6 47, 2	3.08 3.11 1.39 2.41	5.5	Rushville St. Charles St. John Streator	90 82 87 83	25 18 27 21	48.6 42.3 54.9 44.1 49.2	2,83 2,94 2,64 3,02 2,96	1 4
rlando lant City. cockwell . Andrew . Augustine	99 95• 88 94	43 46° 44 47	73, 2 70, 2° 68, 2 70, 2	0. 00 0. 10 1. 25 0. 96		Grace Hot Springs Idaho Falls Kellogg	75 62 66 46	26 22 19 - 2	36. 6 44. 6 37. 8 38. 6 27. 8	3. 87 2. 16 3. 59 3. 43 4. 85	23. 5 7. 0 86. 0	Sullivan Sycamore Tilden Tiskilwa Urbana	88 82 86 83 85	24 15 29 19 21	40. 5 54. 1 48. 7 46. 6	1. 49 2. 66 2. 21 3. 34	5 0 T. 5 7
t, Leo witzerland allahassee arpon Springs	95 93° 90 88 94	46 45 ^b 48 44 38	72, 9 70, 6 ^b 69, 6 69, 5 69, 6	T. 0. 75 0. 27 0. 00 1. 85		Lakeview Landore Lardo Lost River Meadows	55 53 54 52 60	21 9 6 1 15	37. 0 30. 0 29. 6 30. 5 35. 8	2. 65 7. 66 7. 62 1. 69 2. 88	12.0 38.8 53.9 6.5 19.0	Vernon Walnut Warsaw Windsor Winnebago	87 83 87 80	28 20 25 15	51. 5 45. 0 50. 2 41. 5	4, 77 2, 28 3, 83 8, 88 1, 49	T. 2 8 1. 8
Georgia. bbeville	1	36 41 43		0, 38 3, 52 2, 19 1, 31		Milner	64 60 68 64 64	20 25 24 10 19	38, 0 38, 0 41, 0 35, 5 38, 4	3. 07 2. 79 2. 53 3. 78 4. 23	15. 0 7. 7 20. 0 6. 0	Yorkville	81 81 82 79	17 16 20 12	42. 4 40. 8 48. 0 41. 7	2. 58 0. 77 4. 69 3. 54	3 1
thensainbridgelakelyrunswick	86 93 96 99	38 39 41 42	60, 0 69, 4 69, 0 69, 5	2. 03 0. 93 2. 12 2. 64		Oakley	70 72 70	14 23 28	39. 8 42. 8 44. 1	5, 85 2, 62 3, 16 1, 37	17. 0 T. T.	Auburn Bedford Bloomington Blufton	82 82 84 82	13 25 24 14	40, 1 53, 0 50, 6 45, 4	3. 15 6, 25 6, 48 5.07	1. 6. T.
utler	91	37	61. 8	1. 81 1. 45 2. 50 2. 02 0. 60		Pollock	53 70 63	26 17 15 18	36. 6 39. 6 39. 2	2.47 2.78 1.86 5.45 3.69	11.0 9.5 1.0	Butlerville	85 82 87 85 89	28 19 21 21 21 22	51. 6 45. 0 50. 2 49. 4 46. 6	9, 46 7, 30 5, 06 5, 50 4, 52	8 0 6 T.
ayton	89 924 87 93	32 41 ⁴ 43 44 [¢]	56. 8 68. 14 66. 6 67. 6f	3, 44 0, 92 0, 91 1, 82		Salem	66	21	38, 2 41. 7	3. 78 0. 92 2. 78 4. 80	10.0 4.3 25.3	Delphi Elkhart Eminence Farmersburg	85 86 83 85	17 18 22 24	44. 8 44. 2 49. 7 49. 4	8, 98 4, 95 5, 11 4, 39	6 2 4
ahlonega iwson. amond. ublin.	88 96 85	35 44 33 43	59. 4 70.8 57. 8	3, 29 1, 34 4, 10 0, 60 0, 96	T.	Vernon	61 65 84 85	16 9 26 19	34. 2 39. 4 52. 8 44. 9	3.11 4.14 4.74 2.87	13, 0	Farmland	82 83 86 82 83	18 15 22 22 21	46, 6 44, 6 49, 7 49, 4 50, 1	5, 00 7, 95 4, 24 4, 99 5, 24	5. 8. 3. 8.
stman	91 91 88	44 36 37 39	66. 8 63. 1 62. 2 63. 2	0,40 2,28 1,84 1,36		Antioch	91 81 80 89	25 18 16 21	49. 4 42. 9 42. 2 46. 6	4, 23 1, 65 2, 12 2, 59	2.0 2.0 0.8 8.0	Hammond	81 89 82 90 82	22 26 18 26	42.8 55.0 45.6 55.2	2. 26 5. 58 4. 55 5. 11	3 T.
tzgerald eming ort Gaines ninesville	95 96 92 86 91	40 36 41 36 36	68.4 66.8 67.1 58.5 60.7	1. 13 0, 96 1. 58 2. 42 2. 33		Aurora Beardstown Benton Bloomington Bushnell	88 88 89	28 23 20	42, 4 56, 0 47, 8 46, 2	3. 17 3. 56 2. 26 4. 50 4. 20	8.0 14.0	Knox Kokomo. Lafayette Laporte Lima.	84 83 82 81	16 17 19 17 13	44. 9 48. 0 45. 4 42. 6 40. 4	5. 47 8. 80 4. 63 4. 15 5. 03	3 5 7 2 2
enville reenbush reensboro	92 85 91 91	41 32 36 39	66.8 59.7 61.6 64.2	1. 55 4. 12 2. 29 1. 57		Cambridge	83 91 94 86	18 25 23 24	43. 4 51.2 50. 8 49. 8	2.15 2.67 3.01 4.42	4.5 2.0 1.5 5.0	Logansport	86 88 86 85	18 24 26 18	45. 6 58. 0 58. 2 46. 6	3, 92 7, 11 5, 68 4, 62 5, 90	7. 5.
arrisonawkinsvilleelenasbon	98 96 92 93	42 35 38 84 35	64, 6 66, 2 68, 4 62, 8	1,71 1,31 1,20 1,18		Chester	90 89 88 86 86	31 27 20 29 24	56, 1 54, 6 47, 3 56, 1 47, 3	2. 63 3. 34 8. 63 2. 95 4. 02	T. 6.0	Markle	82 84 f 84 86 82	20° 21 27 16	45. 0 44. 0° 50. 4 53. 4 46. 0	5. 90 5. 06 7. 29 4. 20 3. 93	6.
isbon ost Mountain ouisville		84 35 41					86 88 88 76	29 24 24 16	56. 1 47. 3 47. 2 88, 2		8.7 9.0 0.6	Mount Vernon Northfield Paoli Plymouth	86 82 86 83	27 16 22 17	53. 4 46. 0 51. 6 44. 2	4, 20 3, 93 6, 26 3, 69	

TABLE II. - Climatological record of cooperative observers - Continued

	Te (F	empera ahreni	ture, heit.)		ipita- on.	1	Ter (Fa	nperat	ure. eit.)		ripita- on.		Ter (Fa	mperat	ture.		ipita- on.
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stationa,	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of show.	Stations.	Marimum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.
Indiana—Cont'd. Princeton Rensselaer Richmond Rochester Rockville Rome Salamonin Salamonin Salem Scottsburg Seymour Shelby ville South Bend Syracuse Terre Haute Veedersburg Vincences Washington Washington Morthington Indian Territory Ada	86 84 75 85 88 88 87 85 82 82 82 83 84 86	27 12 19 20 22 27 14 24 28 21 15 26 20 25 25 24		Ina. 3.84 6.37 5.36 5.31 3.05 4.86 2.02 2.02 2.02 3.91 3.62 4.19 3.15 4.92 3.70	7. 0 2. 7. 0 2. 5 2. 0 4. 0 2. 5 4. 4 2. 5 2. 0 8. 0 5. 0 T.	Jowa—Cont'd. Jefferson Keosauqua Lacona Larrabee Leclaire Leenx Leon Little Sloux Logan Maple Valley Marshalltown Mason City Massena Mountayr Mount Pleasant Mount Vernon Muscatine Nevada New Hampton	88 82 78 87 86 88 89 87 82 92 90 86 83	0 10 21 2 -3 17 18 8 11 5 8 10 17 20 16	37. 2 44. 0 37. 2 44. 0 34. 4 42. 0 41. 9 39. 2 37. 2 43. 0 44. 8 45. 0 41. 8	1.26 2.38 1.66 0.30 1.83 0.50 1.76 0.94 0.54 0.46 3.22 1.57 2.92 2.70 4.65 0.71 1.65	### 2.0 8.0 1.6 4.0 1.3 5.0 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 5.0 4.0 5.0 5.0 5.0 6.8 6.4 6.4 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	Kansus—Cont'd. Hanover Harrison. Hays. Hill City Horton Howard Hutchinson Independence Jetmore. Jewell La Croase. Lakin Larned Lebanon Lebo Lindsborg. Macksville McPherson Madison. Manhattan	94 96 97 93 94 94 95 98 96 97 98 96 94	12 5 16 20 18 27 18 27 18 25 10 20 10 16 16 20	49. 1 46. 9 49. 8 48. 0 56. 4 53. 4 58. 0 58. 2 51. 4 52. 2 51. 8 48. 6 53. 4 53. 4 53. 6	Ins. 0. 60 1. 25 0. 85 0. 71 1. 79 2. 57 0. 48 1. 20 0. 31 0. 90 0. 63 0. 05 0. 80 0. 50 1. 72 1. 23 0. 36 1. 87 1. 25	Ins 3. 9. T. 3. 3. 6. T. T. T. T. T. T.
Calvin Chickasha Durant. Fairland Fort Gibson Hartsborn Healdton dabel. Marlow Muskogee Dimulgee Pauls Valley Ravis Outh McAlestor Culan Jitta Josea Aligona Aligona Libia Aligona Libia L	98 99 94 91 97 98 96 97 98 99 95 93 98 88 88 88 87 87 89 87 89 88 88 88 88 88 88 88 88 88 88 88 88	288 322 30 30 266 322 328 322 328 322 328 322 328 322 32 328 322 32 32 32 32 32 32 32 32 32 32 32 32	62. 2 62. 1 60. 2 64. 0 63. 8 60. 5 60. 0 61. 4 62. 6 64. 6 64. 0 60. 1 58. 9 60. 1 43. 5 42. 9 86. 0 45. 3 37. 4 40. 7 42. 4 41. 1 44. 2 41. 2 41. 2 41. 2 41. 2 41. 4 45. 2 45. 4 45. 4 39. 0 40. 4	4. 08 1. 38 3. 47 3. 19 4. 2. 16 5. 2. 30 1. 98 2. 26 2. 26 2. 26 2. 2. 26 2. 26 26 26 26 26 26 26 26 26 26 26 26 26 2	8. 0 8. 0 7. 9 2. 1 5. 9 2. 1 5. 0 1. 5 5. 0 1. 8 2. 3 2. 3 1. 1 7. 0 3. 1 1. 8	Newton. Northwood Odebolt Olin. Onawa. Osage Oskaloosa. Ottumwa Pacific Junction. Pella. Perry Plover Pocahontas Ridgeway Rock Rapids Rock Well Sac City. St. Charles Sheldon Sibley Sigourney Sigourney Sioux Center Stockport Storm Lake Stuart Thurman Tipton Toledo Waphington Washington Washington Washington Washes Waterloo Waukee Waverly Webster City Westbend Whitten Wilton Junction Woodburn	86 80 81 88 82 87 88 89 86 87 88 89 80 80 80 80 80 80 80 80 86 86 86 86 86 86 86 86 86 86 86 86 86	15	$\begin{array}{c} 42.1\\ 35.21\\ 42.18\\ 36.1\\ 1.8\\ 6.6\\ 43.7\\ 2.8\\ 41.4\\ 43.8\\ 6.4\\ 37.2\\ 8.6\\ 5.4\\ 43.8\\ 4.1\\ 4.1\\ 4.3\\ 4.3\\ 8.2\\ 4.1\\ 4.3\\ 8.0\\ 2.3\\ 4.1\\ 4.3\\ 8.0\\ 2.3\\ 4.1\\ 4.3\\ 8.0\\ 4.4\\ 4.4\\ 4.3\\ 8.0\\ 2.3\\ 4.1\\ 4.4\\ 4.3\\ 8.0\\ 2.3\\ 4.1\\ 4.4\\ 4.3\\ 8.0\\ 2.3\\ 4.4\\ 4.3\\ 8.0\\ 2.3\\ 4.4\\ 4.3\\ 8.0\\ 2.3\\ 4.4\\ 4.3\\ 8.0\\ 4.4\\ 4.3\\ 8.0\\ 4.4\\ 4.3\\ 8.0\\ 4.4\\ 4.3\\ 8.0\\ 4.4\\ 4.3\\ 8.0\\ 4.4\\ 4.3\\ 8.0\\ 4.4\\ 4.3\\ 8.0\\ 4.4\\ 4.3\\ 8.0\\ 4.4\\ 4.3\\ 8.0\\ 4.4\\ 4.3\\ 8.0\\ 4.4\\ 4.3\\ 8.0\\ 4.4\\ 4.3\\ 8.0\\ 4.4\\ 4.3\\ 8.0\\ 4.4\\ 4.3\\ 8.0\\ 4.4\\ 4.3\\ 8.0\\ 4.3\\ 8.0\\ 4.3\\ 8.0\\ 4.3\\ 8.0\\ 4.3\\ 8.0\\ 4.3\\ 8.0\\ 4.3\\ 8.0\\ 4.3\\ 8.0\\ 4.3\\ 8.0\\ 8.0\\ 8.0\\ 8.0\\ 8.0\\ 8.0\\ 8.0\\ 8.0$	0.90 2.70 2.18 0.26 1.32 0.76 1.68 0.96 1.13 0.40 2.90 0.60 0.60 0.43 2.18 0.62 1.29 0.61 1.39 0.40 2.18 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.7	4.0 7.5 2.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	Manhattan Agr. College. Medicine Lodge. Minneapolis. Moran. Mounthope. Neosho Rapids Ness City Newton Norton Norton Norton Norwich Oberlin Olathe. Osage City Oswego. Ottawa. Paola. Phillipsburg. Pleasanton Pratt. Republic Rome Russell. Salina. Scott Sedan Toronto Ulyases. Valley Falls. Wakeeney. Wakeeney (near) Wallace Walnut. Winfield Yates Center Kentucky. Alpha Anchorage Bardstown Beatty ville Beaver Dam.	95 98 94 99 95 93 95 96 98 95 95 95 95 95 95 95 86 97 89 95 95 95 86 86 87 89 88 88 89 88 89 88 88 89 88 88 88 89 88 88	15 18 12 24	51. 2 55. 4 49. 4* 53. 6* 6* 6* 57. 6 2 54. 2 54. 2 54. 2 55. 2 54. 2 56. 0 55. 8 54. 0 55. 8 56. 2* 56. 56. 2* 56. 2* 56. 56. 2* 56. 56. 2* 56. 56. 56. 56. 56. 56. 56. 56. 56. 56.	1. 37 0. 66 0. 79 2. 03 0. 25 2. 51 0. 25 0. 50 0. 50 0. 50 1. 61 0. 50 0. 51 0. 51 0. 52 0. 63 0. 63	T. T. 6. T. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.
hariton larinda learinda liliott liliot	888 922 818 84 84 87 87 87 87 87 87 87 87 87 87 88 88 88	15 17 6 19 19 15 17 19 10 11 10 8 8 5 5 11 -6 5 8 11 -10 10 10 10 10 11 10 10 10 10 10 10 10 1	40, 4 44, 3 36, 2 43, 2 44, 2 44, 2 44, 2 45, 2 41, 0 42, 3 37, 9 41, 0 42, 6 37, 2 41, 1 38, 9 41, 0 37, 8 41, 1 38, 9 41, 8 43, 8 37, 8 44, 8 45, 8 46, 2 46, 2	1. 76 1. 29 1. 29 2. 10 2. 60 2. 10 2. 60 2. 79 1. 56 0. 79 1. 56 0. 73 0. 88 1. 96 0. 73 0. 88 1. 96 0. 67 1. 61 0. 83 1. 33 1. 33 1. 30 1. 30	8.0 7.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Zearing Kansas. Abilene Alton Anthony Atchison Baker	99 99 91 91 91 91 91 90 93 94 99 99 99 99 99 99 99 99 99 99 99 99	8 8 22 ^a 19 17	43, 0, 5 50, 4 50, 7, 0° 50, 3 48, 3° 56, 0 56, 0 5	1. 45 1. 18 0. 72 0. 69 1. 05 1. 14 1. 42 1. 33 1. 128 0. 15 0. 69 0. 04 2. 32 T. 39 0. 50 0. 92 1. 17 1. 120 2. 85 0. 15 1. 17 1. 120 2. 85 0. 83 1. 17 1. 120 2. 85 0. 83 1. 17 1. 120 2. 85 0. 83 1. 120 1. 120 1	2.7 6.0 1.0 0.5 4.0 2.5 T. T. 0.8 6.2 7.0 T.	Berea. Blandville. Blandville. Bowling Green Burnside Cadis Calboun Catlettaburg. Earlington Edmonton Edmonton Edmonton Farmers Frankfort Franklin Greensburg High Bridge Hopkinsville Irvington Jackson Leitchfield Loretto Lynnville Middlesboro Mount Sterling Owensboro Owensboro Owenston Princeton Richmond St. John Scott Shelby City Shelby ville Tayloraville Tayloraville Tayloraville West Liberty	88 85 89 91 90 87 87 87 87 88 88 85 89 86 89 87 87 87 88 88 88 87 89 82 88 88 87 87 88 88 87 88 88 87 88 88 87 88 88	239 277 269 277 272 272 272 272 272 272 272 272 27	584.2 58,0 157.4 56,7 56,7 56,2	. 4.05 4.2.66 6.66 6.51 6.51 6.51 6.51 6.51 6.51 6	3.6 T. 2.1.6 1.6 1.6 T. 3.8 2.6 4.8

TABLE II. - Climatological record of cooperative observers - Continued

		ahren	nture. heit.)		cipit a- ion.			mperai hrenh			cipit s- on.			mperat ahrenb		Preci	ipita on
Stations.	Maximum.	Minimum.	Mesn.	Rain and meited snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of
Kentucky—Cont'd. Villiamsburg Villiamstown	. 90 . 86					Maryland -Cont'd. Taneytown Van Bibber	87 80	0 13 18	43.6 44.5	Ins. 3.04 3.52	Ins. 8.6 7.3	Michigan—Cont'd. Montague	o 72 64	9 9	85. 9 85. 4	Ins. 8, 55 1, 72	1
Villiamstown Louisiana. Lobeville Louisiana. Louisiana	935 935 96 86 87 87 88 89 99 99 99 99 99 99 99 99 99 86 88 88 88 88 88 90 89	484 43 41 42 43 43 44 44 46 45 45 45 45 45 45 45 45 45 45 45 45 45	70.50 71.00 70.07 69.30 71.47 70.47 69.57 71.97 70.3 69.57 70.0 70.3 69.57 70.0 70.3 69.66 69.0 71.9 70.3 69.5 70.0 70.3 69.3 70.4 70.3 69.5 70.0 70.3 69.3 70.3 69.3 70.4 70.4 70.4 70.4 70.4 70.4 70.4 70.4	0,59 2,05 1,19 0,73 1,65 5,61 1,23 1,21 5,80 3,93 0,86 0,64 0,84 1,64 0,39 1,62 0,98 5,90 2,82 1,102 4,32 1,21 1,02 1,02 1,02 1,03 1,03 1,03 1,03 1,03 1,03 1,03 1,03	11.55 28.50 15.00 19.10 12.08 13.05 14.00 221.53 16.50 17.53 16.05 17.53 16.05 17.53 16.05 17.53 16.05 17.53 16.05 17.53 16.05 17.53 16.05 17.53 16.05 17.53 16.05 17.53 16.05 17.53 16.05 17.53 16.05 17.53 16.05 17.53 16.05 17.53	Westernport Woodstock Massachusetts Amberst Bedford Bluehill (summit) Chestnuthill Concord Fitchburg Framingham Groton Hyannis Jefferson Lawrence Leominster Lowell Middleboro Monson New Bedford Pittsfield Plymouth Princeton Provincetown Salem Somerset Sterling Taunton Webster Weston Weston Williamstown Winchendon Worcester Michigan Adrian Agricultural College Allegan Alma Ann Arbor Arbel Ball Mountain Baraga Battlecreek Bay City Benzonia Berlin Big Rapids Bilaney Bloomingdale Calumet Cassopolis Charlevoix Charlotte Chatham Charlotte Chatham Cheboygan Clinton Coldwater Concord Deer Park Dundee Eagle Harbor East Tawas Eloise Fiint Frankfort Grand Marais Grape Grasslake Grape Grasslake Grape Grasslake Grape Grasslake Grape Harbor Backen Grape Grasslake Grape	89 84 80 970 72 76 86 86 970 77 77 76 82 77 77 76 78 82 77 77 70 65 82 77 78 83 82 82 82 83 85 85 85 85 85 85 85 85 85 85 85 85 85	188 200 6 6 9 9 7 - 2 2 2 4 4 1 1 6 1 6 4 1 6 1 6 1 6 1 6 1 6 1 6	46.18 23.34.5.6 3.35.34.6.3 3.36.0.5.7 34.6.3 3.36.0.5 34.6.3 3.36.0.5 34.6.3 3.36.0.5 34.6.3 34.6.3 35.6.0 34.6.3 35.6.0 3	5.07 1. 86 2. 62 2. 1. 86 2. 62 2. 1. 87 1. 1. 87 2. 1. 61 1. 1. 13 2. 1. 1. 13 2. 1. 1. 15 2. 1. 1. 15 2. 1. 1. 15 2. 1. 1. 15 3. 1. 1. 15 3. 1. 1. 15 3. 1. 1. 15 4. 1. 15 5. 1. 15 6. 1. 15 6. 1. 15 7. 15 7	9.5 5 0.5 6.6 9.2 5.2 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	Mount Clemens. Mount Pleasant Muskegon. Old Mission Olivet. Omer. Owosso. Petoskey Plymouth Port Austin Powers. Reed City. Saginsw (W. S.) St. Johns. St. Joseph. Saranac South Haven Stanton Thomston Thornville Traverse City Vassar Wasepi Webberville West Branch Wetmore. Whitefish Point Woodlawn Ypsilanti. Minnesota. Albert Lea Alexandria Angus. Bagley Beardsley Beaulieu Bird Island Blackduck. Caledonia Collegoville Crookston Detroit. Farimount Faribault Farimgton Fergus Falls. Fort Ripley Glencoe Grand Meadow Hinckley. Lake Crystal Leech Lake. Little Falls. Long Prairie Luverne. Lynd. Mankato Mankato Mankato Mankato Mankato Morris Mount Iron New London New Richland Milan Milan Milan Milan Minneapolis Montevideo Mora Morris Mount Iron New London New Richland New Una Park Rapids Pine River Pipestone Pokegama Falls Reeds. St. Cloule St.	73 75 68 69 80 75 76 66 75 76 69 80 75 60 61 78 83 58 88 54 74 75 66 72 75 9 48 74 67 83 84 84 84 85 74 87 87 88 86 67 77 87 88 86 67 77 87 87 88 88 88 88 88 88 88 88 88 88	7 7 2 12 8 11 4 1 9 9 9 17 7 4 4 11 2 8 8 - 66 9 2 1 14 10 10 - 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1. 72 3. 147 1. 69 4. 28 2. 90 2. 40 2. 40 1. 10 3. 11 3. 87 2. 83 2. 20 1. 10 2. 20 1. 10 3. 61 2. 20 1. 10 5. 06 2. 2. 90 1. 10 1. 56 3. 787 1. 59 1. 10 1. 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TABLE II. - Climatological record of cooperative observers-Continued

	Te (F)	mperat	ure. elt.)		ipita- on.		Ten (Fa	nperat	ure. eit.)		ipita- on.			nperate hrenbe		Preci tio	pit on.
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of show.	Stations.	Maximum.	Minimum.	Меап.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total danch of
Mississippi Cont'd. ustin ttesville uy St. Louis ellefontaine tloxi	85 87 87 84	0 34 34 47 35 50 35 40	64. 4 64. 0 70. 0 64. 3 71. 2 62. 0 67. 9	Inz. 6, 65 5, 54 1, 74 2, 18 1, 58 4, 80 1, 10	Ins.	Missouri—Cont'd. Jackson Jefferson City Joplin Kidder. Koehkonong Lamar	98 98 94 88 92 93	0 28 26 28 23 30 29	58, 2 51, 6 59, 4 48, 6 57, 6 57, 2	Ins. 3, 28 2, 90 2, 46 2, 50 1, 39 1, 57 8, 77	Ins	Montana—Cont'd. Raymond. Redlodge. Renovo. Saltese. Snowshoe. Springbrook. Steele.	65 65 68 69	7 12 10 -10 6	33, 2 35, 7 28, 4 28, 2 34, 4	Ins. 1. 54 1. 09 1. 25 4. 22 6. 74 2. 14 1. 70	
ookhaven nton arksdalelumbia lumbia	93	38	66. 5 65. 4 64. 8	1. 72 2. 28 1. 10 2. 25		Lebanon	90 89 90 91	30 25 24 29 25	55. 4 51. 4 51. 6 56. 8	1.86 8.42 2.57 2.15		Tosten Troy Twin Bridges	64 67 60 64	-10 8 22 12°	27. 9 35. 1 39. 2 35. 6°	0, 95 0, 61 3, 35 0, 80	
rinth	85 88 89 88	37 38 33 40	60. 6 67. 0 65. 6 68. 0	7, 12 2, 82 3, 61 1, 87 5, 36		Louisiana Marbiehill Marshall Maryville Mexico	94 89 90 92 92	25 25 25 18 25	51. 8 56. 9 51. 9 45. 2 50. 0	4. 04 3. 41 2. 59 2. 98 3. 28	0.5 T. 8.0 T.	Wolf Creek. Nebraska Agate Ainsworth	62 66 79 85	-10 - 1	32.5 33.7 40.5 41.9	0. 61 0. 42 0. 50 0. 65	
rette	86 91 92	36 37 38	67. 0 66. 4 65. 7	2. 22 6. 14 5. 10		Monroe	89 86 91 93	24 22 25 29	48, 8 55, 4 57, 4 59, 1	2,58 2,87 5,68 3,20	3.0	Albion Alliance Alma Anoka		- 14 9 8	39, 64 41, 00 46, 4	0, 20 0, 20 0, 86 0, 14 0, 80	
tiesburglehurstuandoly Springsianola	91 88 87 86 86	43 41 30 33 39	65. 4 67. 3 60. 0 60. 4 64. 0f	3. 68 3. 25 5. 85 5. 43 9. 90		New Madrid New Palestine Oakfield Olden Oregon	90 92 91 90	29 28 28 16	54.3 53.6 58.6 47.8	2. 94 3. 69 2. 47 4. 17 1. 15	5, 0	Arapaho. Areadia Ashland. Ashton Atkinson.	91 85	10	44.6	0. 30 0. 39 0. 01 0. 90	
ciuskoe	89 88 91 91 90	40 36 33 38 38	67. 4 64. 8 66. 6 67. 2 67. 9	2, 62 2, 34 3, 06 2, 68 1, 81		Osceola	92	28	52. 4	3. 25 2. 22 1. 94 2. 16 2. 31	2.0	Auburn Aurora Beatrice Beaver Bellevue	90	15 6 12 9 12	47. 8 43. 8 46. 8 46. 3 44. 6	1. 15 0. 05 1. 08 0. 85 0. 22	
rel kesville	91 88 90 92 89 89	42 36 41 37 34 38	68. 0 65. 8 68. 3 65. 1 65. 5 68. 8	6. 79 2. 68 1. 22 2. 22 1. 62 1. 81		Sedalia. Seymour. Sikeston. Steffenville Sublett. Trenton	90 88 88 90 85 85	25 26 28 25 22 23	53. 7 55. 6 58. 4 49. 4 46. 6 47. 5	4.06 3,10 3.01 4.38 2.56 1.45	4.5 6.0 2.9	Benkleman Blair Bloomfield Blue Hill Blue Springs Bradshaw	90 87		42, 4 89, 1	0. 30 0. 28 0. 93 0. 40 0. 85 0. 60	
rill	89 88 88 88	39 36 39 47	69. 1 63. 8 70. 0 68, 6	9, 98 1, 91 2, 51 1, 55 2, 89		Unionville Warrensburg Warrenton Warsaw Wheatland	86 91 92 98	18 24 26 23	44. 6 54. 2 50. 8 55. 8	1.80 3.77 2.32 3.50 2.61	8.0	Bridgeport Burchard Burwell Callaway Chester	87	10	44.0	0. 50 0. 60 T.	
Aboro	88 89 91 89 92 88	55 35 34 35 36 32	63.6 63.2 65.6 66.8 67.6	3. 58 3. 88 1. 64 1. 81 1. 63 5. 00		Windsor	91	23 - 1 - 7 - 5	28, 9 32, 2 31, 2	5, 03 1, 05 0, 85 1, 08 1, 05	7. 5 8. 5 1. 9 10. 5	Cody Columbus Crete Culbertson David City Dawson	90 90 86	5 9 5 15	41. 2 45. 4 42. 0 48. 4	0, 50 0, 11 0, 52 0, 38 0, 26 0, 74	
ey buta	91 88 91	38 39 39	61. 6 68. 0 69. 0 67. 4	2.17 1.60 2.06 1.34		Augusta Babb Billings Bozeman Bowen	48 ¹ 73 60 50	- 91 13 12 -10	24. 5 ¹ 40. 2 83. 2 23. 2	1. 25 1. 44 1. 86 1. 25	14. 0 8. 5 12. 0 10. 0	Dubois				0,64 0,50 0,50 0,55 0,93	
elo	88 89 88° 89 80 87	33 38 39* 34 37 40	63. 1 66. 6 66. 8° 63. 6 65. 8 68. 6	3, 38 5, 55 0, 95 0, 88 5, 80 2, 20 1, 75		Broadview Butte Canyon Ferry Cascade Chester Chinook Choteau	68 60 64 70 59 52 67	10 8 6 -15 - 8 3	34. 8 34. 2 34. 2 35. 8 22. 5 20. 8 32. 2	0, 83 0, 55 0, 98 1, 09 0, 40 0, 20	3,6 5,5 3,0 6,5 4,0 2,0	Ellis Ewing Fairbury Fairmont Fort Robinson Franklin Fremont	86 93 90 81 96 89	- 5 10 0 6 12 8	38. 0 47. 3 42. 0 41. 7 46. 2 41. 9	0.70 0.76 0.44 1.90 0.71 0.35	
Missouri.	90	23	54.0	1. 49 2. 51 4. 40 2. 74	4.5	Clear Creek Columbia Falls. Copper Crow Agency. Culbertson	65 61 73 51	13 -13	30. 2 31. 7 39. 8 20. 8	1. 75 1. 97 3. 04 2. 09 0. 37	14. 5 9. 8 22. 0 10. 2 T.	Fullerton. Geneva. Genoa (near). Gering. Gosper	87 91 88	16 2 6	42. 5 45. 2 42. 4	0. 24 0. 61 0. 30 0. 23 0. 35	
on	93 89	28 25 20	85. 9 49. 4 55. 0	3, 81 2, 94 2, 98 2, 33		Dayton Decker Dillon Ekalaka	64 60 60 75	11 10 14 8	32. 8 33. 3 36. 4 37. 7	1. 34 0. 10 1. 64 0. 26	6.9 1.0 8.1 1.9	Gothenburg	89 90 85	4 8 7	44.6 44.4 44.3	0. 10 T. 0. 40 0. 88 0, 10	
anytreeville	97 92 91	23 27 25 34	48, 2 57, 1 56, 5	1. 77 2. 28 2. 02 3. 83 3. 53	5.0 T.	Ericson	62° 71 72 71	- 5 - 2 2	34. 2° 31. 6 37. 7 34. 2	0, 25 1, 45 T. 0, 75 0, 70	2.3 6.5 6.0 7.0	Halsey Hartington Harvard Hastings*1	85 83 88 88 88	3 0 5 10 13	42.7 39.8 42.2 44.0 45.4	0. 29 0. 08 0. 51 0. 62 0. 58	
Girardeauthersville	98 98 83 90	29 24 18 23	60. 9 55. 0 45. 6 49. 6	2. 73 2. 38 4. 75 1. 41 2. 75	5.0 0.5	Fort Harrison Fort Logan Fortine Glasgow Glendive	65 58 59 49 72	2 5 5 4 -10 - 3	35. 3 31. 8 32. 3 20. 2 31. 7	0, 42 1, 64 1, 08 0, 45	4.6 12.9 9.0	Hayes Center Hay Springs	83 91 92	- 2 5 10	41.6 46.4 46.4	0, 41 0, 92 1, 20 0, 40	
turvilleotoophan	94 91 ⁴ 91 89 93	29 287 26 26 26 23	60. 4 50. 9° 54. 6 58. 3 56. 5	1. 96 1. 83 1. 61 1. 43 2. 57		Gold Butte	54 78 50 66	-14 10 -13 6	22. 1 39. 6 26. 5 35. 6	0. 57 0. 42 3. 01 0. 95 2. 44	2.0 T. 21.0 5.1	Kennedy Kimball Kirkwood	68 87 84 82 88	$ \begin{array}{r r} & 10 \\ & 2 \\ & 7 \\ & 3 \end{array} $	40.8 46,4 42.2 44.0 42.6	0, 26 0, 30 0, 74 0, 60 0, 54	
port	89 91 93 88	27 26 26 26 25	56. 1 51. 9 53. 5 56. 4	1. 27 8. 42 8. 11 8. 11 2. 06	5.0 T.	Huntley	73 58 78 ^h 70 63	13 5 11 ^h 5 13	38, 6 30, 9 39, 8 ^h 33, 6 87, 5	1. 12 0. 70 0. 69 0. 92 2. 43	8.9 6.0 4.0 7.8 6.0	Lexitt. Lexington Lodgepole. Loup. Lynch. McCook	89 85 87 93	8 - 9 - 2 - 5	41. 7 44. 8 42.2 42.8	T. 0, 15 0, 80 0, 10 0, 20 0, 45	
gow	92	26 24	54.8	2, 15 2, 50 4, 15		Lodge Grass	70s 48 70 58	-15 13 12	37, 2s 21, 2 36, 0 36, 7	1, 11 0, 40 0, 75 1, 94	4,0	McCool	88•	2.	41.4	0. 30 0. 30 0. 12	
it City	91	18 25	47. 2 52. 3	2, 65 2, 00 2, 86 1, 37 2, 22	8.0 2.5 3.0	Norris Nye Ovando Philipsburg Plains	47 59 65	- 4 5 16	27. 9 80, 6 85. 6	2. 34 0. 78 0. 91 0. 43	17. 0 5. 0 5. 0 0. 5	Mason	92	6	43. 8	0, 20 0, 20 0, 62 0, 27	
nann ston taville	88	26	56.0	2. 61 2. 35 3. 37		Plentywood	49*	-25° 20	21. 2° 35. 4	1.40	14.0 T. 12.0	Nebraska City Nemaha Norfolk	92	15	45. 3	0. 70 0. 30 0. 41	

 ${\bf TABLE~II.} - {\bf Climatological~record~of~cooperative~observers} - {\bf Continued.}$

		nperat hrenh			ipita- on.			nperat hrenh			ipita- on.			nperati hrenh		Preci	
Stations.	Maximum.	Minimum.	Mean.	Rain and meited snow.	Total depth of snow.	Stations.	Maximum,	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations,	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total epth of
Nebraska—Cont'd. North Loup Oakdale		0 - 3 11	0 42,3 38.8 41.5	Ins. 0. 15 0. 40 0. 40	Ins. 1.5 2.6	New Jersey—Cont'd. Charlottsburg Clayton College Farm	o 77 87 79	0 - 5 12 5	0 38.2 43.6 40,4	Ins. 2. 41 2. 60 3. 29	Ins. 10. 0 11. 0 12. 5	New Mexico—Cont'd, Tres Piedras Tucumcari Valley.	o 71 92	6 22	38, 4 57, 8	Ins. 0, 30 0, 00 T.	In
Oakland		,		0. 18		Dover	77 76	6	37. 4 41.0	3. 31 3. 08	13.0	Vermejo	72 74	16 11	43. 0 39. 2	T.	-
Osceola Palmer			43, 5	0.05	0.5	Elizabeth Englewood	72	13	39. 3	4,38	17.0	New York.				0,61	
Palmyra * 1	92 95	12 15	44.7	0, 50	3. 0 7. 0	Friesburg	83 85	14	40, 4 43, 8	3, 52 2, 70	7.6	Addison	74 83	- 3	38, 0 39, 0	1,28 0,90	7
Plattsmouth	91	12	47.1	0, 42	8.0	Hightstown	81 84	10	40.4	3, 44	8,0	Allegany	79 71	- 6	38.6 33.0	3,65	11
Purdum	80 89	3 2	41.8 43.0	1.02	10. 0	Indian Mills	84 79	9	43.3 41.0	2,93 3,55	12.4 14.6	Angelica	95° 70	- 9:	33, 9° 36, 2	2.15	7
Ravenna Redcloud	98	18	47. 2	0 20 T.	2, 0	Jersey City Lakewood	80	10	43.1	2.93	10. 0	Athens	75	8	37. 8	0.77	1
Republicanst. Libory				0.80	2.0	Lambertville	87 82	11 - 9	42, 0 36, 4	3. 10 2. 50	12.5 9.3	Atlanta	84	- 7	34,0	1. 35	2
St. Paul		3	42.7 42.4	0. 14 0. 21	T. 4	Moorestown	86 78	11	42.0 40.6	2.66 4.31	13. 0 13. 2	Auburn	80 80	- 2	36, 2 37, 4	0, 75	2
santee				0.30	3.0	New Brunswick	79	5	39,6 38,3	4. 15	17.0	Baldwinsville	69	- 7	33. 8	1.87	1 7
scottsbluff	89	- 2 20	42. 2 44. 6	0, 05 0, 05	1.8 0.5	Newton Oceanic	82 78	- 1 16	41.4	2,56 3,32	10.5	Bedford	72 78	5	38. 4	1.82	9
pringview	86 89	0	40, 9	0.60	8. 5	Paterson	79 85	10 11	41.8	3. 05	14.5 13.7	Blue Mountain Lake	80	- 8	37. 2	1. 57 2. 64	11
trang				0, 80	8.0 2.0	Plainfield	79	12	40,0	3, 17	12.5	Brockport	76 74	-10	31. 6 37. 6	1. 44 2, 16	1
Stratton	101	8	48. 4	1.00	10.0	Rancocas				8. 91	12.3	Cape Vincent	63	-1	32.0	2, 25	1
y racuse				0, 30 1, 00	7.0	South Orange	80 75	13	40,6	2, 72 3, 39	13.5 12.0	Charters Falls	67 81	- 8 5	31. 2 37. 0	2, 04 0, 84	1
Fecumseh	94 89	12	48,9 42,6	0.80	4.0	Sussex	83 80	- 3 6	38, 8 40, 6	2. 37 2. 30	12.0 15.5	Coeymans	63 77	6	31. 2 34, 4	1.17 0.40	8
Curlington	91	13	45.1	0.71	6. 5	Trenton	83	16	43.8	2.65 3.06	6. 0 9. 0	Cooperstown	76	- 7 -12	32, 1 32, 2	1. 87 1. 26	9
Iniversity Farm	91	10	44. 5	0, 46	1.0	Tuckerton Vineland	80 85	12	44.0	2.44	7.8	Cutchogue	75 75	18	37. 6	3.77	1
Vakefield	85	- 1	38. 6	0,60	4,3 1,5	Woodbine	81	12	44. 2	3, 85	8.0	Dannemora De Ruyter	65 76	-17	29,5 33,4	2. 74 1. 89	1
Vauneta				0,60	6,0	Alamagordo	90 92	26 19	57. 6 54. 4	T. 0,00		Easton	64	2	34,4	1. 28 1. 68	
Vestpoint	88	3	40. 8	0. 10	1.0	Albuquerque	85	21	53,9	0.00		Faust	66	-20	27. 5	1.08	
VilberVilsonville		****		0, 30	5. 0 5. 0	AltoArtesia	92	25	58, 2	0,22		Fort Plain	81 68	5	36. 9 35. 0	1.84 2,29	T
Vinnebago		- 3 	38, 4	0.12	2.5	Beliranch	92 89	13 11	52, 7 45, 5	0.00	1.0	Franklinville	78 66	-18	35.8 27.8	2.64	
Vymore		4	43. 2	0, 60 0, 30	6, 0	Cambray	97	29	61.4	0.00 T.		GansevoortGlens Falls	69	- 3	32. 9	1, 90	1
Nevada.					0.0	Chama	72	0	36, 6	0.94	6.0	Gloversville	65	- 1	31.2	3, 52	1 3
mos	65 56	18	32,9 30,6	1. 95 6, 18	45, 5	Cliff	81 91	19	47. 5 52. 3	T. 0.08		Greenfield	69 67	- 4	33. 8 32. 6	2,60 1.34	
attle Mountain	58 42	20 - 5	37. 9 31. 9	0. 61 2.00	6. 1 16. 0	Clouderoft,	70 98	13 10	40.5 44.1	1.50	3, 0	Griffin Corners	78 68	-15 - 9	32, 3 31, 3	1, 38	1
arson Dam	70°	21.	42.6° 37.8°	2.58	12.0	Deming	87 88	32 12	52.5 48.6	0. 06 0. 01		Haskinville	76	- 2	35. 6	1.97	1 7
olumbia				2. 22	3.0	Dorsey Dulce	77	11	40.4	1.44	6.5	Hunt	83	0	40. 4	1. 89	
yer	62	8	36. 2 37. 0	1.86	13.6	Eagle Rock Ranch Elizabethtown	82 66	14	46. 4 38. 5	T. 0,55	T. 2.0	Indian Lake	64 80	-17 - 4	29, 8 36, 6	1.54	3
allon		120	36. 6 42.4°	2. 18 1. 40	19. 0 2. 5	Elk	881 85	231	54. 6 ¹ 39. 8	T. 1,23	0.5	Jamestown	78 81	-15	39. 4 34. 0	3, 25 1, 58	1
ernley	65	22	41. 2 35. 6	1.37 2,08	0.9	Engle				0.00 T.		Lake George	71 65	- 2 - 7	32, 6 31, 9	1. 59 2. 28	
eyserolconda	67	20	41.6	1. 52		Estancia	80	10	44.2	0.00		Le Roy	81	3	87. 2 31. 1	1. 59	10
alleck	50	-10	26. 4	0.77 4.70	7. 7 47. 0	Fairview Fort Bayard	85	20	52.0	0, 00		Liberty Littlefalls, City Res	76 66	0	31.5	2.87	
azen[umboldt * 1]	70 64	20 23	42.2	1. 31 0. 75	3. 5	Fort Stanton	84 81	16	49,4	T. 0.08		Lockport	73 71	- 6	36, 2 31, 0	2. 27 1. 70	
eetvilleewers Ranch	75 76	21 11	42.8 37.5	0, 12 16, 85	0.8 41.0	Fort Wingate	78 85	14 20	44. 4 49. 3	0.68	1.7	Lyons	82°	0* 5		1.66	1
ogan	83	31	56.8	1.40		Fruitland	88	13	47.4	0.14		Mohonk Lake	72	5	85. 8 30, 1	1.97	i
ina	67	26 19	36. 1 43. 0	0.65	6.0 2.0	Gage	94	22	56. 2	0, 15 T. T.		Mount Hope	66 78	-10 - 4	87. 7	3, 00	1
almetto	64	9	34.9	8, 00 8, 10	48. 0 8. 2	Hillsboro	87	28	54.6	0, 00		Newark Valley New Lisbon	77	-20	31.2	0. 87 1. 58	
ioche	71 60	11	39, 2 33, 2	2, 64 1, 60	8. 5 13. 0	Laguna	83 90	11 21	48. 0 51. 5	0,00 T.		North Hammond, North Lake	63 65	- 6	31. 6 26. 7	1.06 1.28	1
n Jacinto	66	- 5	37.0	2, 40	19, 4	Lake Valley				T.	T.	Norwich	78°	-12°		5. 51	
ecoma erdi *1	70 62	15 2	37. 5 34. 9	0, 05 3, 90	T. 39, 0	Las Vegas	93	10 24	47. 6 55. 1	0.07	1.	Oneonta	64 80	- 8	37.2	1. 69	
Abuska	72	11	41.1	1,25		Los Lunas		19	49.7	0.02		Oxford	77 76	-18	38.3	1.85	
Istead	68	- 1	31.1	1.86 4.56	11. 0 29. 0	Luna	76 84	10 12	41. 4 48. 0	0.30		Oyster Bay Perry City	75 78	14	39. 4	2. 68 1. 23	1
artlettethlehem	59	- 8	27.0	2. 41	14.0	Manuelito				0, 92		Plattsburg	64	-11	31.2	1.65	1
rooklineurham	70 66	- 8	34.1 34.2	1, 85 1, 32	6,8	Mesilla Park	89	20	57.8	0,05		Port Jervis	84 75	-10	38. 1 31. 2	2. 24 2. 30	
ranklin Falls	69 62	- 7 -16	30. 9 28. 0	2. 18 2. 12	14. 0 13. 0	Mineral Hill	95	25	60, 6	0. 25	0.5	Rose	79 80	- 4	37. 8 36. 0	1. 26 2, 01	1
roveton	63		30,8	2,93	17. 8 10. 0	Mountain Air	83 924	22	49,8 56, 24	0, 06	T.	Salisbury Mills	76	-16 -17	33. 6 28. 7	2,88 1,81	1
anover	79	$-13 \\ -9$	32. 3	1.68	6. 0	Nara Visa Orango.	95	29	56, 9	0.00	0.0	Scarsdale	66 76	6	37.8	3.70	1
ashuaewton	75 70	- 2 - 5	33. 6 32. 6	1.80 1.60	8,5	Red River				1,00 0.03	9. 0	SetauketShortsville	74 82	18	38, 0 37, 8	2.78 1.10	
lymouth	64	- 9	29, 8	2,85	12. 2	Rincon	92 75	22 7	56. 2 43. 6	T. 0, 33		Skaneateles	71	16	37. 9	1. 40 3. 50	1
sbury Park	76	13	40.4	3.19	14.0	Ross				0.60		South Canisteo	80	-4	36. 8 32. 9	2, 01 1, 98	7
ayonneelvidere	84	11 5	39, 6 40, 4	3, 37 3, 22	13. 0 9. 5	Rosedale	78 89	18 24	48, 4 55, 4	0.00		Taberg	67 78	-8	31. 4	2, 22	
ergen Point	78 88	14	40, 0 42, 4	2, 39	12.0 9.8	San Rafael	83 91	16 24	47.2 53.0	0, 00		Volusia Wading River	75	10	37. 0 36. 7	1. 61 3. 10	1
ridgeton	85	15	45. 0	3, 66	8.5	Springer	90	10	46.4	0.00		Wappinger Falls	78	- 5	36. 3	1.89	1

TABLE II. - Climatological record of cooperative observers - Continued

	Te (F	mpera abreni	ture. neit.)		cipita- ion.		Ter (F)	mperat shrenh	ture. eit.)		ipita- on.			npera			ipita- on.
Stations.	Meximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of
New York—Cont'd. Waverly Wedgwood West Berne Westfield Westpoint. Windham Youngstown North Chrolina. Battleboro Beaufort.	78 77 72 77	0 - 7 2 0 8 0 -10	38. 4 36. 2 35. 3 37. 2 38. 8 35. 4	Ins. 1, 29 1, 53 0, 97 2, 68 2, 30 0, 89 2, 17 3, 45 2, 73	Ins. 6,3 7,5 1,0 8,0 14,0 1,3 8,5 0,5	North Dukota—Cont'd. Langdon Liabon McKinney Manfred. Mayville Mcdora. Melville Minot Minto Moyersville	68 54 58 59 68	e -20 - 9 -19 -15 -11 -12 -10 -10 -13*	0 19.7 26.5 18.8 20.8 21.6 23.0 22.9 19.0 21.8°	Ins. 0, 75 0, 84 0, 87 0, 78 0, 42 0, 30 0, 80 0, 62 0, 42	Ins. 4.2 5.5 8.7 8.3 4.0 3.0 8.0 5.8	Ohie—Cont'd. Rittman Rockyridge Rome Shenandoah Sidney Somerset South Lorain. Springfield Summerfield Thurman.	81 79 84 79 84 82 80 83	9 15 - 2 11 14 20 13	43. 2 43. 2 39. 8 42. 7 47. 4 48. 6 42 0 48. 3 52. 6	Ina. 4.23 4.49 3.40 4.23 4.79 6.69 4.08 5.10 8.44 4.50	Ins. 2. T. 11. 3. 4. 1. 2. 3. 2.
revard. revers revers reyson City cack Springs aroleen haly beate Springs hapelhill linton agletown denton ayotteville oldstore raham reensboro	87 93 76 94 95 92 93 98 99 97 96	28 28' 16 29 23 28 30 25 29 27 22 22	55, 6	3.77 2.33 3.76 2.40 3.21 4.75 1.50 5.68 4.45 1.91 1.85 3.84 2.83	3.0 0.6 1.5 T. 0.8 T.	Napoleon New Salem Oakdale Oriska Palermo Park River Pembina Portal Power Pratt Steele University Valley City Wahpeton	78 75 66 63 46 45 47 42 70 40 67 48	-17 -9 0 -5 -16 -9 -20 -16 -11 -17 -9 -12 -9 -8	22. 2 27. 4 28. 0 25. 0 18. 5 19. 6 16. 4 16. 1 25. 4 17. 5 24. 3 20. 0 25. 7 27. 6	0. 30 0. 35 0. 85 0. 35 0. 78 0. 37 1. 42 1. 50 0. 14 0. 88 T. 0. 20 0. 47 0. 00	2.0 2.3 8.5 1.0 7.8 3.7 13.2 10.0 1.0 8.0 T.	Tiffin Toledo (St. Johns College) Upper Sandusky Urbana. Vickery Warren Wauseou Waverly Waynesville Wellington Willoughby Wilson Wooster Zanesville	79 78 80 83 80 81 81 86 83 81 84	15 15 13 15 14 9 13 21 21 12 21 12	43.8 41.9 46.2 46.2 42.8 42.6 41.5 51.7 48.2 43.6 41.9	4. 32 2. 43 5. 51 4. 09 4. 42 6. 55 2. 53 6. 63 5. 88 4. 61 2. 66 5. 88 5. 80 6. 43	7. 2. 4. 3. 7. 4. 8. 5. 5. 4. 4. 3.
reenville. enderson endersonville orse Cove. ot Springs inston moir exington incolnton uniaburg. umberton arion oncure onroe	92 86 84 88 98 92 92 95 94 91 92	26 30 31 32 25 26 27 22 26 27 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	54,3 54.8 56.0 56.4 59.2 54.6 54.7 57.1 54.6 57.9 57.8 86.2 57.2 57.2	2. 21 4. 31 3. 51 4. 39 2. 08 3. 81 2. 22 4. 23 1. 77 1. 76 2. 36 2. 79	T. 2.0 0.5	Walhalla Washburn White Earth Willow City Wishek Ohio. Akron Amesville Bangorville Bellefontaine Benton Ridge Bladensburg Bowling Green Bucyrus Cadls	47 684 48 80 86 80 82 80 81 80 82	- 8 04 12 20 11 16 10 12 16 12 16 12 15	20, 2 31, 4 ⁴ 17, 6 41, 3 50 6 45, 0 45, 0 45, 0 45, 8 43, 2 43, 8 46, 3 47, 5	0. 18 0. 20 0. 45 0. 60 T. 4. 06 6. 28 5. 06 4. 44 4. 69 6. 61 6. 68	1.8 2.0 4.5 6.0 T. 4.5 0.2 3.0 1.5 5.5 7.0 6.2	Oklahoma, Alva	99 103 96 101 ⁴ 99 102 98 102 100 98 ³ 100 ⁴ 103	21 23 33 19 ⁴ 22 30 28 24 20 24 ¹ 22 ⁴ 22	57. 7 59. 8 62. 8 54. 14 58. 8 63. 2 62. 4 60. 8 56. 8 56. 54 61. 0	0. 43 0. 02 3. 25 0. 00 0. 21 1. 70 1. 25 0. 08 0. 90 	
ount Holly urphy shville wbern tterson* nk Beds idsville ckingham lem lisbury pphire outher Kock	95 92 86 94 82	24 28 27 28 29 26 31 27 26 25 27	50, 5 57, 4 52, 4 60, 1 50, 6 54, 8 61, 2 54, 8 55, 8 56, 5	2. 30 4. 10 4. 34 2. 07 2. 63 2. 72 2. 70 2. 40 2. 35 3. 28 2. 93 3. 99 3. 71	1.2 T. 0.8 0.5 1.5 0.5	Cambridge Camp Deunison Canal Dover. Canton Circleville. Clarington Clarksville Cleveland & Dayton. Defiance. Delaware Demos Findlay Frankfort Fremont	85 86 79 78 84 87 82 79 84 83 82 81 84 83 80	13 22 12 14 21 17 22 15 21 12 16 15 10 22	51. 4 43. 4 43. 8 47. 9 49. 6 49. 8 41. 6 49. 4 44. 7 46. 1 46. 8 43. 2 50. 4 44. 4	6, 90 9, 17 6, 14 5, 63 6, 87 6, 19 3, 29 6, 00 3, 76 5, 31 7, 28 3, 94 4, 91	2.0 3.3 3.0 2.5 1.0 3.1 3.6 0.4 2.6 3.4 2.2 5.0 0.5	Gage Grand Guthrie Harrington Helena Heunessey Hobart Holdenville Hooker Jefferson Kenton Kingfisher McComb. Mangum Neola.	88 100 102 99 97 100 92 102 97 93 100 91 93 98	18 19 28 20 20 26 81 17 22 13 27 29 25 27	56, 2 52, 6 61, 7 57, 6 57, 0 60, 2 61, 8 59, 4 56, 2 57, 1 52, 4 60, 6 59, 6 61, 2 61, 0	0. 07 0. 20 0. 91 0. 05 0. 30 0. 73 0. 57 2. 95 T. 0. 35 T. 0. 56 1. 47 0. 25 1. 51	
ma tile an. whill thern Pines. thport tesville boro le Mecum shington sh Woods ynesville don North Dukota.	94 91 94 99 100 89 98 96 91 95 90* 89	29 26 25 23 30 33 20 25 24 24 29* 26	55, 6 54, 6 58, 4 57, 8 59, 5 89, 2 57, 6 56, 0 52, 2 58, 3 53, 34 55, 1 54, 0	3. 00 1. 95 1. 63 2. 07 2. 30 0. 67 2. 75 2. 85 2. 62 8. 20 1. 90 3. 76 4. 01	1.0 1.8 T. 0.5 3.0 3.3 T. T. 0.5	Garrettaville Granville Granville Gratiot Green Greenhill Greenville Hedges Hillhouse Hiram Hudson Ironton Jacksonburg Jeffersonville Kenton	80 81 80 93 79 84 82 77 79 82 88 83 82 80	- 1 17 16 24 10 19 9 7 8 8 5 23 20 21	41. 8 46. 8 46. 2 53. 4 42. 5 47. 4 44. 4 40. 2 41. 0 54. 1 47. 8 48. 7 41. 1	5, 92 7, 49 6, 02 7, 83 5, 19 5, 26 4, 91 2, 82 5, 65 5, 70 4, 65 7, 32 5, 14 4, 46	4.5 8.5 3.0 4.0 2.0 5.0 7.0 7.5 T. 5.0	Newkirk Norman Okeene Pawhuska Perry Sac and Fox Agency Shawnee Snyder Stillwater Taloga Temple Waukomis Weatherford Whiteagle	94 93 99 97 100 98 95* 98 102 96 100 100	25 30 23 28 25 29 29 28 27 20 32 26 26 25	58, 2 58, 2 60, 4 60, 6 59, 7 62, 2 62, 6° 60, 7 58, 6 59, 8 64, 8 60, 2 60, 4 59, 4	0. 31 1. 41 0. 55 1. 19 1. 14 1. 65 2. 24 1. 44 1. 27 0. 83 2. 00 0. 66 0. 59 0. 17	
enia in ley chi ley chi lin ley chi lin lin lin lin lin lin lin lin lin li	74 78 80 56 47 60 82 69 49 48 72	- 8 -11 2 -10 - 5 -15 -15 -15 -15 -16 -18 - 8	22. 6 26. 1 26. 8 81. 4 26. 2 19. 9 23. 8 17. 0 24. 2 20. 2 20. 2 22. 6 19. 8 17. 6 26. 9	0, 08 0, 50 0, 50 0, 50 0, 45 1, 02 1, 12 1, 35 0, 88 1, 15 0, 86 0, 02 0, 39 0, 40 1, 15 0, 21	5.0 5.0 3.2 2,7 13.5 13.0 11.5 8.5 0.1 3.1 4.0 11.5 1.2	Killbuck Lancaster Lima McConnelsville Marietta Marion Medina Millordton Milligan Milligan Millort Napoleon Nelie New Alexandria New Bremen	80 81 81 83 83 83 80 80 84 80 87 82 80 83	21 18 18 23 14 10 14 19 12 15 15 9	45. 5 48. 4 46. 2 48. 4 48. 4 48. 6 48. 6 48. 6 48. 1 46. 0 46. 2 42. 2 46. 2	6.59 7.81 3.58 7.98 6.05 4.70 4.83 6.91 9.01 4.78 4.37 7.26 6.35 8.10 4.34	3.5 T. 8.0 0.5 T. 4.2 7.0 5.5 1.0 3.2 2.0 3.0 5.0 1.0	Alba Albany Ashland Astoria Aurora (near) Bay City Bend Bulekhorn Bullrun Burns Carlton Cascade Locks Coquille	70 64 58 67 63 63 68 68 66 66 66 65 62	26 34 29 29 15 31 23 29 16 27 23	44, 6 41, 8 44, 3 43, 8 43, 4 37, 1 46, 6 42, 3 41, 8 38, 2 42, 9 43, 2	5. 77 7. 49	5. T. 5. 17. 0. 4.
ndale. man Berthold Yates erton Iys unlin ton ville. iiiton boro d d . sstown n	623 83 81 72 44 71 49 41° 52 75 80 75	- 8 ^j -17 -10 - 8 -17 - 5 -10 -10* - 6 - 6 -12 - 6	30, 2 23, 1 27, 0 33, 2 27, 8 18, 4 28, 2 20, 6 17, 2° 28, 2 35, 3 26, 6 17, 6 28, 2 28, 2	0, 22 0, 00 0, 17 0, 51 0, 81 3, 25 0, 23 0, 20 0, 46 2, 50 0, 51 1, 32 0, 50 0, 51	2.0 1.9 5.8 21.0 1.7 2.0 4.0 14.0 3.3 8.0 3.2 4.2 5.0	New Richmond New Waterford North Lewisburg. North Royalton Norwalk Oberlin Ohio State University Orangeville Ottawa Pataskala Philo Plattsburg Pomeroy. Porsmouth Pulse.	84 81° 81 79 82 81 81 81 84 81 84 81 86 ⁴ 96 83	10 16 8 10 10 19 6 11 19 18 19 28 ⁴ 25	16, 8 18, 4 17, 5 19, 6 ⁴	8. 74 6 90 6 .10 6 .30 4. 40 3. 65 5. 80 2. 88 6. 94 8. 53 6. 32	T. 2.9 1.1 2.5	Corvallis Dale Dayville Doraville Doraville Drain Echo. Ella Eugene. Falls City Forestgrove Gardiner Glendale Glendora Gold Beach. Government Camp.	73 61 73 65 68 70 64 69 68 69 65 69 56	22 26 28 28 26 26 26 27 23 31 27 27 27		5. 39 2. 78 1. 56 3. 31 6. 01 1. 50 0. 82 4. 65 6. 69 2. 52 8. 98 8. 28 10. 51 10. 66 5. 13	7. 2. 8. 0. T. 14.

TABLE II.—Climatological record of cooperative observers—Continued.

		mpera ahrenh			cipita- on.			mperat			ripita- on.			nperat hrenh		Preci	
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of
Oregon—Cont'd.	60	0 3	33. 2	Ins. 1. 55	Ins.	Pennsylvania - Cont'd, Mauch Chunk	0	0	0	Ins. 3,24	Ins. 9, 5	South Dakota—Cont'd. Asheroft	79	0	o 36, 2	Ins. 0. 10	Ins
rants Pass	75	22 20	45, 0 43, 0	7. 37 1. 95	T.	Mifflintown	85 81	10	42.2 37.5	4,63	11.0	Brookings	77 75	- 8 - 8	30, 4	0, 60 0, 55	6.
eppner	64	25	40, 8	1.80	-	Montrose	82 86	- 2	36.0 43.8	1.78 3,70	12.0	Canton	76 72	- 8 -10	36, 4 31, 2	0. 87	3.
ermistonood River	60	26	42.6	3. 32	0.5	New Germantown			*****	3,65	7. 0	Centerville	78	- 5	37. 2	0,71	4.
untington	64 70	26 23	44.1	2, 88 6, 13	T. 2.0	Parker		17	45, 1	5. 76 2. 82	9.0	Chamberlain	86 85	- 2	41. 2	0. 27	0.
seph	62	15	34.8	2,80	20.5	Pocono Lake	76	-10	34, 0	1.08	6.0	Clark	76	- 9	30, 0	0, 87	8.
grande	64	9 20	35. 2	3, 30 2, 07	5.0 7.0	Point Pleasant			*****	3, 05	*****	Clear Lake Desmet	70 78	$-\frac{1}{2}$	31, 2 34, 0	1,30	11.
keview	60	10	33, 4	3.79	17.5	Radford			40.0	3, 38	3.0	Elkpoint	840	- 1.	40.6*	0,25	
cKenzie Bridge cMinnville,	71 66	21 26	41.8	6. 78	T.	Reading	86	13	43,0	3. 89 1. 79	9, 3	Fairfax	88	- 7	45. 1 32. 7	0. 12 0. 82	7.
arshfield	66	32	46. 4	8,54		Saegerstown	79	- 2	39. 6	3.80	9. 5	Flandreau	75	- 2	34.2	0. 35	2
itchellonroe	66 68	20 27	41.2	1,41 5,48	2.5	St. Marys	770	0.	38.50	5, 50	6.8	Fort Meade	83 78	- 7	35. 2 37. 7	0, 10	1.
ountain Park	59 68	24 29	38. 3	3. 28 4. 94	7.0	Seisholtzville			49 9	3,16		Frederick	76 87	$-15 \\ -5$	30.0	0.38 0.33	3.
ount Angel			45. 6	9.18	T.	Selinsgrove		7	42. 2	3,89 2,42	8, 0	Gannvalley	88	- 2	42,5	0. 25	0.
ewport	66	32	47. 2	6. 61 3. 16	4.2	Skidmore	80	10	41.6	2,58	2.0	Hermosa	80h 82	-10	39, 0h 36, 4	0,50	3.
ex (near)	69	29	41.4	1.54	0. 2	Smiths Corners	85	12	41.9	7. 28	8.3	Highmore	78	- 7	33. 9	0, 28	1.
tario	55	20	32.4	0. 95 11. 35	93, 5	South Eaton	83	1	39,2	1. 46 6. 20	9.0	Howellfpswich	82 79	-11 -11	34. 1 29. 6	0.46	8.
secoisley	62	21	37.4	2.65	12.0	Springmount		*****	*****	3,36		Kidder	79	-10	28.5	0. 10	1.
ndleton	67 63	26 34	42.7	1. 70 9. 61	0.5	State College	86 81	10	40. 6 38, 4	4. 27 1. 35	10. 0 8. 6	Kimball	84 79	-8	38.8	0. 36	3,
ineville	65	19	38.9	1.06	T.	Uniontown	84	21	47.4	7. 89	8.0	Leola.	68	- 8	28. 2	2.50	8.
ehlandverside	68 70	19	43.0	0. 65 1. 40	1.0	Warren	81 764	- 54	39.6	2,97 1,72	7.0	Little Engle	80 r 80	- 5'	34.0° 39.8	0.45	2.
lem	66	31	45. 7	2,88		Westchester	85	13	42.4	3. 31	18.5	Mellette	81	-12	33,0	0. 55	5.
ver Lake	58 50	21	36. 0 36. 0	3, 23 2, 33	8,0 5.0	West Newton	80	4	36.1	6, 65	8.0	Menno	84 72	- 3	38. 4	0.17	1.
afford	67	30	43,8	4.60		Wilkesbarre	82	7	40,1	8, 19	16.0	Mitcheli	88 764	-4	38. 4	0. 38	3.
mptere Dailes	42 66	27	24.0	6,90	69. 0 2. 0	Williamsport	83	9	41.2	2,22	8.2	Mound City	81	-11*	26, 8 ^d 40, 6	0, 20	2,
ledo	58 72	28 30	43, 1 46, 8	9. 76	T.	Bristol	67 76	17 12	40. 1 36. 2	1.99 3.19	8. 0 12. 0	Orman	78 86	- 5	39. 0 43, 2	0.41	4.
natilla	72	28	42.9	2.14	T.	Ringston	78	14	41.1	2. 20	7.2	Pine Ridge	85	- 5	38. 8	0. 22	7. 0
in	67	10	38, 1	2.64 1.21	8.0	Providence	73	16	40.0	1. 90	6, 8	Ramsey	76ª 83	- 10 ⁴	37. 0 ⁴ 32. 6	0, 20	2.0
allowaarm Spring	67 72	18 22	42.0	1.59	4.2	South Carolina.	93	40	64. 5	0,93		Redfield	73	- 5	28,5	0. 25	2.6
ston	65 72°	25 20°	40. 4 44. 1°	2, 39 6, 93	2.5 T.	Allendale	93 93	41 35	64.2 60.8	0, 65 1, 96		Sioux Falls	78 76°	80	37. 4 39. 4°	0, 48 0, 15	1.8
Pennsylvania.						Batesburg	92	34	64. 0	0.96		Stephan	83	- 6	36. 2	0. 12	1.8
eppotoona	82 83°	17 104	47.6 40.8ª	8. 17 5. 65	1.0	Beaufort	93 97	42 35	66. 0 62. 6	1.37		Tyndall Vermillion	87 88	3	41.9	0. 30 T.	T.
dwin	80	11	40.8	3, 89	9.0	Blackville	99	38	65. 8	0,59		Warnecke	82	-15	35, 6	T.	T.
aver Dam	85	11	42.7	6, 99 4, 86	10.0	Blairs	96	33	64.8	1,52 1,69		Watertown	71 75	- 8	30, 1 34, 6	0,21	0.8
owers Lock	84			3, 50		Calhoun Falls				2, 69		Whitehorse	75	-17	36. 6	0.24	2.4
ifornia	80	21 9	47. 8	7. 14	15.0	Camden		35	61.5	1. 46		Woolsey		*****		0. 52	3,2
rion	84	15	47.1	4. 18 7. 66	7.4	Chappells	99	31	58.8	1. 26 1. 78		Ashwood	86 89	30 29	59.4 60.0	6. 17 3. 19	
arfield				6,54	10.1	Clarks Hill	91	35	62.5	1.06		Birds Bridge				2.73	
ataville	86	15	43.0	3. 81 7. 64	18.1	Clemson College	87 96	38	59, 4 62, 1	3. 11		Bluff City	88	32	60.4	3,08 4,37	
aopolis				5, 89	7.1	Darlington	99	30 29 29	61. 2	2.58		Bristol	86	25 32	53. 6	3,88	0.8
vis Island Dam	83	15	46,6	5. 56 7. 11	4.7 11.5	Dillon	97 90	29 38	61.0	2. 23 1. 78		Brownsville	86	28	58. 9 57. 9	3. 78 3. 57	
ylestown				3. 44 .		Edisto				2.18		Carthage	88 89	31 28	60. 4 59, 0	4. 62 3. 60	
ftont Mauch Chunk	83 85	1 3	39,4	4.35 3.24	14.8 9.5	Effingham	98	31	59.8	0. 75		Celina		****	33,0	4.61	
wood Junction	79	12	41.0	2,83 6,18	9.0	Georgetown	92	42 20	64. 4 55. 0	1. 21 2. 14		Charleston	87	31	58.4	5, 63	
porium	80	0	39, 2	3, 62	10.5	Greenwood	89	37	59. 5	1.94		Clinton			*****	5, 50	
hrata	85 92	16 12	41. 2 42. 5	2.99 4.18	10.0	Heath Springs Kingstree	91 95	32 41	61.7 68.2	1.60		Dandridge	91	28	58.6	6.65	
ks of Neshaminy				2, 95 .	*****	Liberty	91	35	60.4	2.78		Dickson	89	29	60. 0	5, 01	
eport	81	14	41.7	6, 68	1.3	Newberry	92 92	31 32	62.0	2, 23 2, 32		Dover	92 87		61.8	2, 87	
orge School	86	9	41.7	2. 98	11.0	Pelzer				2.04		Elizabethton	84	28	55. 1	2.72	1.0
tysburg	89	13	44.4	3. 44	8.2	Pinopolis* 1	89 93	39	64, 6 65, 5	2. 00 0. 90		Florence	86 86	31	55. 6 58. 4	6, 61 4, 96	T.
rdon	83	- 1	40.0	5, 20	17.0	St. Matthews	92		62.2	0.84		Franklin	93		59. 6	4.38	
ensbore	81	7	41.3	6. 60 4. 27	2.5	St. Stephens	92		62. 2	0. 95		Halls Hill	87		58. 2	6, 75 5, 88	
ve City	80	14	42.8 41.0	6, 22 4, 31	7.1	Santuck	92		59,6	2. 45		Iron City	89	30	60, 8	4. 12	
mburg	90		46. 3	2, 86	8.0	Society Hill	90	31	60, 2	2.54		Johnsonville	90 89	29	60,6	3, 70	
rrs Island Dam	85	10	43.0	5, 63	5.0	Spartanburg	95 95	32 40	58. 6 64. 3	1. 21		Jonesboro	85 88		57. 8 60. 6	3. 55 4. 46	
ndman	89	14	44.8	6, 21	12.5	Summerville	98	34	66, 2	0. 93		Kingston				5, 98	
iana	81 86		43,8	7. 71 5. 81	7.5	Trenton	90 95	38	60. 6 64. 0	1, 64		Lafayette Lewisburg	88 88	27 30	57. 6 60. 0	3, 99 5, 01	
nstown	86	14	44.4	7. 25	10.5	Walhalla	94	36	61.5	2, 83		Lynnville	88 85		59. 0	4, 49	
nett	82	9	42.1	1. 42 2. 09	11.0	Walterboro	98*		67. 6° 61. 2	1. 24		McGee	89	29	59. 6	4. 54 5. 99	
renceville	81		38,6	1. 45	11.0	Winthrop College	86	35	58.2	2, 18		Maryville	89	31	59. 0	5, 04	T.
oanon	87°		42, 8f 37, 2	3. 98 1. 51	14.5	Yemassee Yorkville,	92 94		64. 6 60. 5	1. 99		Milan	87 85		59, 2 56, 6	4, 06 3, 74	
risburg	85	9	41.4	3, 88	11.0	South Dakota,						Palmetto	88	30	61.0	4,83	
ckhaven	84	6	42. 2	3. 76 8, 20 .	10.5	Aberdeen			31,5 42,2°	1. 17 0, 35	11.7 T.	Pope	88 86		59,6 55.7	4,65 3,90	
ek No. 4														23			

TABLE II. - Climatological record of cooperative observers -- Continue

		mpera ahreni			cipita- on.			nperat hrenh			ipita- on.			nperat hrenh		Preci	i pi on.
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of	Stationa.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	
Tennessee Cont'd.	88 84	27 31	57. 2 59. 6	Inc. 5. 43 4. 50	Ins. T.	Texas-Cont'd.	o 89 86	0 38 42	65, 6 70, 1	Ina. 2, 50 2, 75	Ins.	Vermont—Cont'd.	64 55	0 - 3 - 5	0 31, 2 27, 3	Ins. 1. 45 1, 77	
ria	98	22 28 32	50.4	3. 40 5. 83		Plerce	98 85	15 49	55. 2 71. 8	0.00		Chelsea. Enosburg Falls. Jacksonville.	65 59	-21 -11	29, 2 29, 3	1,91 1,28	
ngdalengville	88	32 27	56, 3 59, 8	4. 29 8. 54	T.	Rhineland	100	28	63.0	3, 50 2, 02		Manchester Norwich	73 58	- 2 -18	32. 2 28. 6	0, 62 2, 33	
well		28	59. 5	5. 07 4. 27	0. 5 T.	Rockisland	87	42	70. 4	1. 82 3. 75		St. Johnsbury	56 60	$-19 \\ -2$	28. 0 30, 1	2.62 2.02	
y City	83 85	28 28 29	56, 3 60, 0	5. 15 3. 60		Rockport	94	39	71.6	2,00 0.50		Woodstock	56	-16	27. 0	2.00	
ahomaon City		32	60. 2	3, 10		San Marcos	99 92	39 32	69. 4 68. 4	1. 44 2. 10		Arvonia	96 92	18 22	52, 5 51, 2	2,86 3,15	1
rtown				7. 84 3. 20		Santa Gertrude Seymour	96	30	63.8	0, 62 3,55	T.	Blacksburg.	85 85	26 19	54. 0 47, 0	5. 21 3, 96	ı
nesboro	84	33	60.6	7. 16		Sherman	91	29	66, 3	1, 35 0, 62		Buchanan	76	15	46. 9	1.98 4.72	1
Texas,	1	32 28	64,6	1, 30		Sulphur Springs Temple Tilden	91 99	36 36 36	65, 9 67, 8 75, 0	2, 31 0, 98 0, 77	T.	Callaville. Charlottesville	92 94	23 23	53,4 52,3	4. 78 1. 96 3. 42	ı
ny n ur				3, 76 3, 04		Trinity	-90	34	72.0	2, 27 0, 79		Columbia	93 91	21 17	52, 0 48, 8	2. 92 2. 61	ı
in	82	37 30	68.4	1,68		Victoria	88 90	45 37	72.4 68.4	1. 52		Danville Dinwidde	93	18	51.8	2. 52	
mont	94	33	64.0	0.85 2,24	-	Waco	95 94	33	66,8 66,3	1. 52 0. 83		Doswell	95 83	19	53. 3 53. 3	3.74 4.48	
ille	92	44	72,2	0.97		Wichita Falls	93 91	31 40	63.4	1.99 2.70		Fredericksburg	93 81°	21 22*	50. 5 51. 0*	2, 39	
00				1.48 1.40		Willspoint,	86	33	65. 6	2. 30		Hampton	88 82	28 19	53. 0 46. 1	3. 67 3. 81	ľ
am	95	31	66.7	1.71 2.78		Alpine	83	19	51.4	3,50 0,72	2,0	Ivanhoe Lexington	89	19	49.0	2, 83 2, 45	l
ham	98 87	42	66. 3 71. 8	1.78 2,60		Blackrock	73	14	46.8	1.50	8.0	Marion	92 79	16 22	46. 8 50. 6	2. 90 3. 42	l
dian	82	50	71.0	1. 26 T.		Castledale	74	13	43.8	T. 2.14	17.5	Mendota. Newport News	91	25	52.6	3, 91 3, 17	
ross	100	15 21	58. 7 61. 9	0.00 T.		Cedar City	70 60	13 23	41.8	1,58	5.0	Nokesville (near)	93	20	50, 1	1. 02 2. 90	ı
aville	89	36	64.5	0, 10		Deseret	78 69	15 21	46, 0 43, 6	0.34	11.0	Randolph	92	20	48. 2	1.00	ı
ge	95	27	65.4	1.04 2.96 2.04		Enterprise Escalante Experiment Farm	75 86	15 23	41.8	1.06	5, 0	Riverton	90° 92	26°	51. 4 ^f 53. 0	2, 36 3, 22 3, 48	ı
ndo nbus	*****			2. 21		Farmington	65 75	23	43. 2 45. 2	3, 25 1, 34	20,0	Shenandoah Speers Ferry			*****	1. 92	
ett	88	36	69.8	2,48 1,60		Fort Duchesne	75 66	15 18	42. 2 39. 0	0.00		Spottsville	93 89	21 22	52.6 51.4	4.95	ı
rt	94	37 15	66.7 58.8	1. 32 T.		Garrison	63	10	42.7	0.90 2.22	19.0	Stephens City	92	17	48. 2 50. 4	3, 02 2, 75	ı
vang				2. 25 4. 40		Grayson	78 64	18	44. 4 38. 0	1. 23 3, 29	1. 0 27. 0	Williamsburg	92 93	24 22	53, 1 49, 8	2,70 1,80	
We	85	41	68.0 70.6	2. 15 2. 63		Henefer	86	29	40. 4 54. 2	2, 76 0, 51	14. 6 T.	Washington.	65	27	42.2	7 14	
Pass	97	45	74.5	0.02		Huntsville	54	5	31.7	4. 08 3. 52	14.0 32.8	Anacortes	87	30	41,6	2. 15 3. 06	-
larkdeIntoah	98	40	70. 2 75. 6	0, 00 0, 30 0, 63		Karnab Kelton	76	101	40.3	0, 23	2,0	Baker	68 66 62	27 26 25	42.8 42.8	3, 69 1, 98	
ricksburgville	91	35 34	68. 2	0, 95		La Sal	67	18	41. 8 35. 0	1. 21	8,9	Hogachiel	55		41.6 35.3	10,12 2.09 0.67	
ilea	100	29	65.2	2. 15		Logan	64° 69	19e	38. 3* 42. 0	3,54		CentraliaCheney	63 68		42. 8 36. 7	3. 18 0. 77	
vineville.	964 90	364	68.84	0,68		Marion	71	8	42 0	3, 62 0, 61	30.0	Clearbrook	60	23 29	40.1	3. 72 11, 77	- 1
itaville	99	30	65. 2	2.80		Meadowville	53	14	33.6	3, 50 3, 15	20,5	Cle Elum	56 64	17 23	35. 7 41. 4	1.14 2.06	
stead	*****			0.30 2.75		Minersville	84		52.6	1. 76 0. 92	7.0	Conconully	66 56	14	37. 8 33. 1	1, 22 1, 90	
it	98	17	57. 1	0.00		Morgan	68	15	41.2	2.48 1.12	12.0 10.0	Coupeville	59 68	22	44. 0 37. 3	1, 55	
on	91	47	70.4	1. 81 8. 74		Mount Pleasant	72		41.4	1. 41 2. 26	11. 0 25. 2	Easton	72		40.1	1,50 2,90	
wille	89 87 88	38 39 32	67. 8 69. 8 68. 4	0, 91 2, 46 2, 00		Oak City Ogden Parowan	71 65 75	24	43.5	1. 47 3. 50	6.8	Ellensburg	58 63 65		39. 7 38, 1 40. 7	2. 27 0. 62 0. 07	
**************	98	28 29	67. 6	1.18 T.		Payson			41. 4 88. 2	1.61 2.74 2.92	11.3	Fort Simcoe	64 60	26	41.8	2.03	
illeerbocker	80 96	31 27	70. 2 66. 6	0.51		Plateau	67 68	2	37. 8 43. 4	1.12	10.7	Hatton	68 68	25	41.8	2.09	1
M				1. 20 0. 67		Ranch	63		35, 6	3.87		Kennewick	71 70	28	44.7	1. 29	
es Ranch				2, 10 0, 82		Richfield	81	17	46. 0 56. 8	0.06 .		Kosmos	66 63	26	41. 9	3,95	00
y	93		70. 6 69. 0	2.70		Salt Air	86 71	26	52. 5 41. 6	0.88		Lakeside	59	20 24	38.8	2, 50	
star Ranch				0,00 2.67	-	Scipio	70 64	12	41. 8 38, 2	1.41 2.55	T.	Lucerne	53	25	39. 0	1. 25 2. 35	
iew	87 89	38	66. 4 70. 4	4. 10 2. 03		Sunnyside	56	10	34. 1	1. 55 0. 26	14.0	Mottinger Ranch	76 66	28	46. 8 44. 0	1. 75 6. 30	
n	88 98	20	70. 4 58. 0	1.62 0.02		Theodore Thistle	70	6	41.0	0. 25 0. 80	1.0	Moxee Northport	67 62	10	41, 8 33, 8	1. 50	
***************	90 99	20	67. 0 58. 8	2.73 T.		Tropic.	68 72°	184	40.44	2. 68 0. 39	0.2	Olga Olympia	63	25	43.2	1.58 3.24	
loches	96 87	35	59.0 68.1	0. 22 2. 15		Vernal	78 79	18	48.6	1. 05 0. 76	10.5	Pinehill	65 55	24	42. 0 38. 6	1.51	
eth	94 89		86. 5 71. 5	0, 10 2, 24 1, 00		Woodruff	87			0.05	7. 5	Port Townsend Pullman Quiniault	59 60 63	25	44. 4 39. 2 41. 0	0. 91 1. 67 10. 47	

Table II .- Climatological record of cooperative observers-Continued. Late reports for February, 1907.

	Te (F	mpera ahreni	ture. leit.)		ipita- on.			nperat		Prec	ipita- on.			mperat hrenh		Precip	
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.
Washington—Cont'd. Rex Creek Ritxville Rosalin Ruby Hill Sedro Sixprong Snohomish Snoqualmie Sprague Stokes Touchet Twisp Union Vancouver Vashon Wahluke Wenatchee (near) Wilbur Yale Lindel Wet Virginia Bayard Beckley Bens Run Berkley Springs Burlington Cairo Central Charleston Creston Cuba Davis	600 544 559 655 660 559 552 552 553 688 556 667 660 661 653 853 853 855 856 856 856 856 856 856 856 856 856	23 2 18 22 11 17 20 16 25 22 20	44, 6 34, 4 42, 2 44, 4 42, 8 43, 0 32, 5 37, 3 35, 0 42, 2 44, 8° 50, 8 43, 2 49, 1 49, 6 46, 9 46, 9 51, 5 50, 0 51, 7	4, 67 6, 45 3, 32 6, 81 4, 80 2, 70 6, 57 3, 09 4, 56 5, 36 5, 80	Ins. T. 1. 7 T. 20. 2 T. T. 5. 5 2 0 11. 0 2. 3 5. 7 2. 0 7. 0 8. 0 7. 6 10. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1.	Wisconsin—Cont'd. Grand River Locks. Grandsburg. Hancock Hayward Hillsboro. Kilbourn. Koepenick Lake Mills Lancaster Manitowoe Mauston. Meadow Valley Medford. Menasha Merrill. Minocqua Mount Horeb New London New Richmond Oconto Osceola. Oshkosh Pine River Portage Port Washington Prairie du Chien Prentice. Racine Sheboygan Shullsburg Solon Springs Spooner Stanley Stevens Point Sturgeon Bay	54 471 65 54 774 82 2 62 69 69 69 65 66 66 66 66 66 66 66 66 66 66 66 66	-10 -10 -10 -10 -10 -11 -12 -11 -12 -13 -10 -7 -6 -6 -7 -8 -9 -12 -14 -10 -16 -18 -13 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	27. 4 3. 6 25. 6 25. 6 25. 6 25. 6 25. 6 25. 6 25. 6 25. 6 25. 6 25. 6 25. 6 27. 6 2	In 76 2 30 1 38 1 65 1 38 1 65 2 80 1 14 1 99 1 50 1 14 1 99 1 50 1 26 1 40 1 48 1 51 1 48 1 51 1 48 1 55 1 40 1 83 1 55 1 86 1 87 1 89 1 81 1 79 1 56 1 89 1 81 1 52 1 81 1 79 1 52 1 52	1.5 15.0 10.0 3.5 3.2 5.5 5.2 4.0 10.0 14.0 14.0 14.0 14.0 14.0 14.0	Porto Rico—Cont'd. Anasco. Arecibo Barros Bayamon Caguas. Caroya Cidra. Carozal Fajardo Guanica. Guayama. Hacienda Colosa Humacao. Isabel Isolina. Juana Diaz La Carmelita. Lares Las Marias. Manati Maunabo Mayaguez. Ponce Rio Piedras San German San Lorenzo. San Salvador. Santa Isabel Vieques Yabucoa. New Brunawick.	88	59 53 56 56 56 66 46 50 55 60 60 55 59 60 55 55 61 56 56 57 56 57 56 57 56 57 56 57 56 57 56 57 57 57 57 57 57 57 57 57 57 57 57 57	74.6	Ins. 0, 45 2, 11 4, 58 1, 81 2, 78 1, 25 2, 26 6, 00 0, 11 3, 42 2, 94 2, 94 1, 32 3, 51 1, 35 4, 12 16 1, 13 2, 49 0, 19 1, 0, 97 1, 06	Ins.
Elkhorn. Pairmont. Franklin Henville Franklin Henville Franklon Henver Sulphur Springs Harpers Ferry	83 85 88 86 84 87	19 20 18 23 19 22	52. 6 50. 0 48. 0 51. 8 49. 8 50. 8	4. 63 6. 10 3. 10 4. 45 5. 43 3. 98 2. 26 4. 25	4.5 T. 2.0 T. 5.0	Valley Junction. Viroqua. Watertown Waukesha Waupaca Wausau Weyerhauser Whitehall	67 75 76 62 60 56 68	8 11 10 6 0 -10 6	35, 3 36, 6 35, 3 32, 6 28, 6 34, 7	3, 19 1, 58 3, 15 2, 20 1, 41 1, 82 2, 31	2. 5 6. 5 3. 5 1. 9 8. 2 9. 2 7. 5	St. John	49 for F	- 4	25.3 ry, 19	2.97	19.0
Iinton Iuntington	87 79 84 91 84 85 89° 87 90	23 16 19 26 21 16 21 20 14	51. 8 46 2 47. 3 57. 1 48. 2 50. 4	4, 98 4, 72 5, 12 3, 05 4, 10 5, 89 3, 90 1, 05	3. 0 6. 0 2. 0 4. 0 1. 0 3. 1 9. 0 4. 0	Wyoming. Afton Barnum Barrett Creek Basin Bedford Blue Cap Buffalo Chugwater Clark	55 52* 75 52* 51 72 79 67	1 - 8° 4 6° 2 7 4 12	31. 8 28. 0* 40. 9 31. 2* 26. 5 37. 2 41. 2 88. 9	1. 90 0. 35 1. 96 0. 14 3. 22 3. 80 0. 07 6. 45 1. 34	15. 0 5, 2 17. 5 4. 0 16 9 38. 0 0. 7 5. 0 13. 0	Alaska, Central Chestochina. Circle City Coal Harbor Dutch Harbor Fort Egbert Fort Gibbon Holy Cross Mission Kenai	41 45 20 22 34 38	-51 - 3 13 -52 -58 -40 -38	-10, 8 -25, 6 20, 8 26, 4 -20, 0 -20, 5 -10, 6 3, 7	Fns. 0, 42 0, 20 0, 57 2, 00 2, 49 0, 20 0, 55 0, 61	Ins. 4. 2. 7. 1. 2. 3. 15.
Mooreaville	84 85 83 78 88 88	19 21 15 20 23 12 15 15 15 24 24	48, 4 50, 6 44, 4 45, 8 54, 5 46, 3 48, 9 45, 9 53, 9 54, 3	7. 18 6. 97 8. 18 3. 95 1. 99 5. 00 6. 20 5. 61 7. 10 5. 41 1. 90	5. 0 0. 2 2. 0 1. 0 0. 4 6. 5 4. 6 12. 0 T.	Clear Creek Cabin Daniel Dubois Elk Mountain Evanston Fort Laramie. Granite Canyon Granite Springs Green River Griggs. Hatton	52 48 60° 80 68 68 68 63 71	- 5 -16 -2 7 7 13 9	25, 6 21, 7 83, 2° 41, 4 37, 2 39, 3 86, 2 39, 3	1.01 1.87 1.33 1.41 1.95 0.41 1.20 0.75 0.49 0.53 1.05	8, 5 18, 7 12, 3 26, 5 8, 5 5, 8 13, 0 9, 5 5, 5 3, 8 10, 5	Ketchemstock North Fork Rampart. St. Michael Summit Teikhill Tyonok Arkansas. Russellville. Cntifornia. Crescent City.	17 25 30 37 37 73	-57 -30 -55 -36 -25		0, 20 0, 28 0, 44 0, 00 0, 10 1, 81 1, 08 2, 32 20, 40	3. 3. 4. 2. 21. 26.
rinceton tomney townesburg tyan mithfield outhside pencer utton	79 94° 86 86 87 92	14 19° 20 21 19 24	46. 6 47. 8° 51. 2 51. 8 48. 6 53. 7	6. 80 2.53 7. 17 5. 13 5.98 5.14 4. 14 4. 60	14. 0 4. 5 8. 0 4. 0 2. 8 3. 0 5. 0	Hyattville. Jackson Kirtley Laramie. Leo. Little Medicine Lusk Moorcroft.	71 72 67 61 54 73 74	5 2 - 6 - 4 - 0 - 2	39. 6 37. 6 36. 1 35. 3 30. 6 39. 2 39. 2	4. 43 0. 31 0. 28 0. 71 2. 07 0. 90 0. 50	27. 0 5. 0 2. 8 9. 0 24. 0 9. 0 5. 0	Grass Valley New Castle West Saticoy Jolon Florida De Land Hdaho Roosevelt Haho Roosevelt Haho Ha	74	33	54. 0 60. 8 26. 4	11, 79 6, 72 1, 95 0, 70	14.
erra Alta nion ppertract ellsburg 'eston 'heeling 'illiamson Wisconsin	81 81 90 78 94 90 89	15 19 16 17 18 20 25	44, 2 48, 8 48, 0 44, 8 49, 4 53, 6 55, 6	7, 36 3, 71 2, 52 6, 72 5, 33 4 24 4, 16	12. 6 5, 5 1. 0 5. 4 3. 8 1. 0 2. 0	Moore. New Castle	73 72 66 79 86 55 68	7 15 4 5 9 -11 5 13	40. 2 39. 5 38. 8 42. 4 43. 7 24. 5 34. 2 39. 8	0, 32 0, 90 0, 55 0, 20 0, 80 1, 50 0, 20 0, 18	2.4 4.0 4.5 2.0 8.0 12.0 1.5 0.6	Iowa. Denison Olin Rock Rapids Illinois. Tuscola Massachusetts. Winchendon	59 57 60 62	-25 -19 -28 - 5	25. 7 23.6 20. 4 30. 3	1. 48 1. 56 0. 75 0, 42 1. 62	14. 7. 7. 1. 17.
nherst ttigo poleton pleton Marsh hiand rrou	66 60 64 70 50 56 80	-4 9 6 -10 -10 15	35. 4 31. 5 36. 2 33. 6 27. 5 27. 1 40. 0	0,79 0,75 1,98 1,95 1,65 1,08 1,59 1,86	3 7 7. 5 6. 9 2. 1 8. 0 4. 2 0. 8	Saratoga Sheridan Shoshone Canyon South Pass City Wells. Wheatland Wolf. Yellowstone Pk (G. Can.)	69 75 64 42 39 84 72 41	11 4 10 -18 -14 10 5 -15	36. 6 39. 1 37. 0 19. 6 20. 5 46. 0 39. 2 17. 6	0. 87 0. 45 0. 99 5. 00 2. 95 2. 30 1. 35 3. 22	5.7 2.0 8.5 51.0 22.0 14.0 14.0	Maryland. College Park. Missours. Avalon Windsor. New Jersey. Charlotteburg. College Farm.	55 61 66 46 46	-15 - 9 1 -22 - 5	28. 1 31. 3 33. 6 19. 0 21. 8	1. 76 0.72 1. 78 2. 44 2. 22	14 6 2 23 24
ack River Fallsodhead rnett	80 65 54 64	15 12 -13 9	40. 8 36. 8 27. 0 35. 0	1.86 2.13 1.71 1.52 2.54 2.50	2.5 2.5 11.4 6.5 6.0	Yellowstone Pk. (G. Can.) Yellowstone Pk. (Lake) Yellowstone Pk. (Norris). Yellowstone Pk. (Riv'side) Yellowstone Pk. (T.Sta.). Yellowstone Pk. (Up. Ba.)	46 56 49 52 48	-10 - 9 - 5 - 5 - 7	23. 7 26. 4 27. 0 30. 2 25. 1	7. 48 4. 05 1. 74 8, 33	65. 0 36, 0 12. 0 53. 0	New York. Dannemora. Oregon. Mitchell. Riverside	41 64 61	-15 15 18	9.8 41.2 40.0	2, 22 0, 50 2, 86 2, 39	18
owning to Claire orence ond du Lac and Rapids	64 70 56 65 69	-14 3 -13 10 7	29.8 32.2 26.9 37.7 34.4	2,21 1.95 1.50 2.04 1.97	20. 0 3. 0 5. 5 1. 8 3. 0	Yellowstone Pk. (Up. Ba.) Porto Rico. Adjuntas. Aguirre. Aibonita	80 94 89	-10 55 52 48	25, 4 68, 0 72, 4 68, 0	5, 70 2, 70 0, 05 3, 31		Tennessee. Erasmus. Texas. Sonora. Claytonville	70 82 83	13 18 12	87. 2 52. 5 50. 2	4.83 0.92 0.00	1

l record of cooperative observers-Continued. Late reports for February, 1907.

	TA	BLE	11.—	Aimal	ologic
	Ten (Fa	nperat hrenh	ure.	Precitio	pita- n.
Stations.	Maximum.	Minimum.	Mean.	Rain and melted anow.	Total depth of snow.
Vermont.	0	0	0	Ins.	Ins.
Cavendish	36	-13	11.9	1.02	14.0
Logan	68	7	40, 2	3, 35	10, 0
Yellowstone Pk.(G. Can.)	41	23	18.0	0.95	17. 0

EXPLANATION OF SIGNS.

servers, as the case may be, are reporting from the same station. A small roman letter following the name of a station, or in figure columns, indicates the number of days missing from the record; for instance, "a" denotes 14 days missing.

No note is made of breaks in the continuity of temperature records when the same do not exceed two days. All known breaks of whatever duration, in the precipitation record receive appropriate notice. *Extremes of temperature from observed readings of dry thermometer.

A numeral following the name of a station indicates the hours of observation from which the mean temperature was obtained, thus:

1 Mean of 7 a. m. + 2 p. m. + 9 p. m. + 4.

1 Mean of 8 a. m. + 8 p. m. + 2.

2 Mean of 6 a. m. + 8 p. m. + 2.

3 Mean of 7 a. m. + 2 p. m. + 2.

4 Mean of 6 a. m. + 6 p. m. + 2.

5 Mean of 6 a. m. of a m. + 2 p. m. + 2.

5 Mean of 6 a. m. of a m.

TABLE III.— Wind resultants, from observations at 8 a. m. and 8 p. m., daily, during the month of March, 1907.

D4-41	Comp	onent di	rection f	rom-	Result	ant.		Comp	ponent di	rection i	from—	Result	ant.
Stationa,	N.	8.	E,	w.	Direction from—	Dura- tion.	Stations.	N.	8.	E.	w.	Direction from—	Dut
New England,	Hours.	Hours.	Hours.	Hours.	0	Hours.	North Dakota.	Hours.	Hours.	Hours.	Hours.	0 .	Hon
stport, Mertland, Me	23 25	-17 20	12	27 26	n. 68 w. n. 75 w.	16 20	Moorhead, Minn Bismarck, N. Dak	24 24	17	14	22	n. 49 w.	-
neord, N. H. t	20	4	6	9	n. 11 w.	16	Devils Lake, N. Dak	15	13 21	22 15	19 26	n. 15 e. s. 61 w.	
rlington, Vt. †thield, Vt	6 23	12 32	10	11	s. 9 w.	6	Devils Lake, N. Dak Williston, N. Dak	22	13	18	23	n. 29 w.	
ton, Mass	21	15	5 12	15 28	a. 48 w. n. 69 w.	14	Upper Mississippi Valley. Minneapolis, Minn.*	12	10	7	13	n. 72 w.	
tucket, Mass	20	20	14	28 25	w.	11	St. Paul, Minn	22	16	18	20	n. 18 w.	
ck Island, R. Ividence, R. I	19 21	19 16	15 13	28 27	n. 70 w.	13	La Crosse, Wis.†	14	10	4	8	n. 45 w.	
tford, Conn.	28	21	5	19	n. 63 w.	15 16	Charles City, Iowa	16 25	20 15	16	24 20	s. 63 w. n. 17 w.	
Haven, Conn	28	18	15	15	B.	10	Davenport, lowa	18	15	19	21	n. 34 w.	
Middle Atlantic States.	24	24	9	18	w.	9	Des Moines, Iowa	24	18	19	19 24	n.	
tany, N. Y. chamton, N. Y.† York, N. Y.	8	6	12	10	n. 45 e.	3	Dubuque, Iowa Keokuk, Iowa	22	16	17	23	n. 68 w. n. 45 w.	
risburg, Pa	26	15	12	23	n. 45 w.	16	Cairo, Ill	21	26	19	14	в. 45 е.	
adelphia, Pa	22 24	13 21	19 13	22 20	s. 18 w. n. 67 w.	10	La Salle, Ill. † Peoria, Ill.	90	22	11	13 14	n. 34 w.	
nton. Pa	18	24	16	20	s. 34 w.	7	Springfield, Ill	16	24	17	16	a. 7 e.	
May N. J	24 25	20 23	11	22 15	n. 70 w. n. 63 w.	12	Hannibal, Mo. †	12	8 25	9 22	10 12	n. 14 w.	
ntic City, N. J May, N. J more, Md	21	16	18	22	n. 39 w.	6	Springfield, III Hannibal, Mo. † St. Louis, Mo. Missouri Valley.	10	20		12	в. 55 е.	
hington, D. C	23	22	14	17	n. 72 w.	. 3			12	10	6	в. 53 е.	
chburg, Vant Weather, Va	15 20	22 18	16	27 30	s. 58 w. n. 84 w.	13 19	Springfield Mo	15 16	24 29	23 18	11 12	s. 53 e. s. 25 e.	
olk. Va	21	21	17	15	e.	2	Kansas City, Mo Springfield, Mo Iola, Kans.	9	12	12	6	s. 63 e.	
mond, Va	24 20	27	11	10	s. 18 e.	3	Topeka, Kans.*	10 25	12 22	12	3	8. 77 e.	
South Atlantic States.	20	2	12	35	n. 52 w.	29	Omaha, Nebr	25 28	22	22 15	12	n. 77 e. n. 23 e.	
ville, N. C.	30	17	16	14	n. 9 e.	13	Valentine, Nebr	18	19	13	24	s. 85 w.	
lotte, N. C	14 23	23 12	23 19	18 23	s. 29 e. n. 20 w.	10 12	Topeka, Kans.* Lincoln, Nebr Omaha, Nebr Valentine, Nebr Sloux City, Iowa † Pierre, S. Dak	12 16	16	11 30	7 16	n. 45 e.	
gh, N. C	16	19	16	24	s, 69 w.	8	Hulou, O. L'an	40	16	21	15	n. 31 e.	
gh, N. C. lington, N. C. eston, S. C	18 12	15	18	23	n. 59 w.	6	Yankton, S. Dak. †		8	9	10	n. 18 w.	
nbia, S. C	17	20 14	18 20	23 23	s. 32 w. n. 45 w.	9	Northern Slope.	16	7	27	25	n. 13 e.	
sta, Ga	14	17	18	26	s. 69 w.	8	Miles City, Mont	22	14	23	16	n. 41 e.	
onville, Fla	14	16 23	16 21	26 19	s. 79 w. s. 18 e.	10	Helena, Mont	13	19 18	8	35 39	s. 78 w.	
Florida Peninsula,		40		10	8, 10 6,	6	Rapid City, 8. Dak	16	18	13	23	8. 72 W. 8. 76 W.	
er, Fla	15	24	17	22	s. 29 w.	10	Rapid City, 8. Dak. Cheyenne, Wyo Lander, Wyo	19	17	5	33	n. 86 w.	
West, Fla	24 17	. 11	34 15	33	n. 64 e. n. 66 w.	30 20	Yellowstone Park, Wyo	19	21 41	4	32 24	a. 86 w.	
Bastern Gulf States.			10	30	11. 00 w.	20	North Flatte, Nebr	19	18	20	. 18	n. 63 e.	
n, Ga.†	14	19	17	26	a. 61 w.	10	Middle Slope.	10					
nasville, Ga	16	24	7 9	13 22	s. 80 w. s. 58 w.	15	Pueblo, Colo	18 23	27 10	17	22 27	8. 57 W. D. 38 W.	
icola, Fla.†	10	10	10	10 .			Concordia, Kans	15	25	21	18	s. 39 e.	
ston, Alaingham, Ala	18 16	30	14	13 16	s. 5 e. s, 11 w.	12	Dodge, Kans	17 16	22 29	23 20	16	s. 54 e.	
le, Ala	12	35	16	11	8, 11 W. 8, 12 e.	15 24	Wichita, KansOklahoma, Okla	18	37	8	5	8. 40 e. 8. 9 e.	
gomery, Ala lian, Miss	14	27	10	22	s. 43 w.	18	Southern Slope.						
sburg, Miss	13	32 35	11 15	17	s. 18 w.	20 24	Abilene, Tex	16	36	13	11	8. 9 W.	
Orleans, La	9	37	14	14	8.	28	Del Rio, Tex t	4	10	23	15	s. 4 w.	
Western Gulf States.	12	38	21		- 90 -	-	Roswell, N. Mex	20	22	11	23	a. 81 w.	
onville, Ark. †	6	18	9	3	s. 32 e. s. 27 e.	39	Southern Plateau.	21	9	8	38	n. 68 w.	* .
Smith, Ark	11	26	21	12	s. 31 e.	18	Santa Fe, N. Mex	24	16	16	23	n. 41 w.	
Rock, Ark	13	30	31	14	8. 8. 45 e.	17	Flagstaff, ArizPhoenix. Ariz	15	21	28	19	s. 81 w. n. 56 e.	
Worth, Tex	12	36	12	12	8.	24	Yuma, Ariz.	17	10	17	29	n. 60 w.	
ston, Tex	13	41	25	2	s. 34 e.	41	Yums, Ariz	16	31	11	16	s. 18 w.	
ntonio, Tex	11	34	31	8 3	8, 2 w. 8, 51 e.	28	Reno Nev	9	25	7	30	8. 55 W.	
r, Tex. † Ohio Valley and Tennessee,	8	19	4	2	s. 10 e.	11	Reno, Nev	8	33	32	12	s. 39 e.	
anooga, Tenn	20	25	16	19	a. 31 w.	e	Winnemucca, Nev	11 5	24 22	8	35 45	a, 64 w,	
anooga, Tenn ville, Tenn his, Tenn	20	25	13	24	s. 66 w.	12	Salt Lake City, Utah	10	30	25	12	8, 68 W. 8, 33 e.	
ohis, Tenn	18	32	15	14	s. 3 e.	19	Durango, Colo	18	19	7	32	8, 88 W.	
gton, Ky. †	16	25 14	17	20	s. 18 w. s. 23 e.	10 8	Grand Junction, Colo	15	18	21	19	s, 34 e.	
rille, Ky	16	27	14	16	s, 10 w.	11	Baker City, Oreg	11	37	14	11	s. 7 e.	
gton, Ky. † ville, Ky ville, Ind. † napolis, Ind	10 20	13 24	10	5	s. 59 e.	6	Boise, Idaho	16	27	27	13	s. 52 e.	
	18	20	15	17 24	s. 27 w. s. 74 w.	7	Lewiston, Idaho † Pocatello, Idaho	5	32	18	20	8. 81 e. 8. 4 e.	
bus, Ohio	. 19	20 23	14	21	s. 60 w.	8	Spokane, Wash Walla Walla, Wash	17	27	15	19	8. 21 W.	
rahure W Va	21 20	21	10	27 20	w.	17	Walla Walla, Wash	11	42	7	12	s. 9 w.	
ibus, Ohio urg, Pa reburg, W. Va s, W. Va Lower Lake Region.	18	20	5	26	s. 66 w. s. 85 w.	10	North Pacific Coast Region, North Head, Wash	17	23	20	18	a. 18 e.	
Lower Lake Region.							Port Crescent, Wash.	8	9	11	12	s. 45 w	
by P. C.	13	22	15 9	27 15	s. 53 w.	15	Seattle, Wash	17	28 28	21	11	s. 42 e. s. 56 w.	
o, N. Y	11	31	18	20	s. 63 w. s. 19 w.	21	Tacoma, Wash	17 8	20	26	27 17	8. 37 e,	
ster, N. Y	7	21	11	36	s. 61 w.	29	Portland, Oreg	14	20 27	18	21	s. 13 w.	
	15	26 21	17	22 24	s. 16 w. s. 59 w.	19	Roseburg, Oreg	13	24	13	24	s. 45 w.	
and, Ohio	17	24	15	20	s. 36 w.	9	Eureka, Cal	17	23	19	13	s. 45 e.	
ky, Ohio†	10	9	8	13	n. 79 w.	5	Mount Tamalpais, Cal	13	26	6	30	s, 62 w.	
t. Mich	20 18	20	14 21	23 22	n. 9 w.	9	Red Bluff, Cal	14	30	21 23	12	s. 29 e. s. 28 e.	
Upper Lake Region.					o w.		San Francisco, Cal	16	21	8	28	s. 28 e. s. 76 w.	
Mich	23	19	11	22	n. 70 w.	12	San Jose, Cal. †	7	11	5	15	s. 68 w.	
Aba, Mich	25 22	20	14	17 20	n. 31 w. n. 7 w.	6 8	Southeast Farallon, Col	12	12	2	13	w.	
Rapids, Mich	20	16	19	22	n. 37 w.	5	South Pacific Coast Region.					-	
nton, Mich.†	8	3	11	15	n. 39 w.	6	Freeno Cal	21	25	16	16	8.	
luron, Mich	20 21	19 20	14		n. 84 w. n. 80 w.	10	San Diego, Cal	18 25	8	19	29 24	n. 45 w. n. 19 w.	
Ste. Marie, Mich	19	9	18	28	n. 45 w.	14	Los Angeles, Cal	18	25	7	21	s. 63 w.	
	20	17	18 19	28	n. 59 w.	6						24	
ukee, Wis Bay, Wis h, Minn	20 18	16	19	21 25	n. 27 w. s. 81 w.	13	San Juan, Porto Rico	18	13	35	10	n. 79 e.	
			16	27		19	Grand Turk, W.I. †	10	44	22			

^{*} From observations at 8 p. m. only

f From observations at 8 a, m. only.

Table IV.—Accumulated amounts of precipitation for each 5 minutes, for storms in which the rate of fall equaled or exceeded 0.25 in any 5 minutes, or 0.80 in 1 hour, during March, 1907, at all stations furnished with self-registering gages.

		Total d	luration.	amount recipita-	Excess	ive rate.	t before		D	epths	of prec	ipitati	on (in	inches) duri	ng per	iods of	time i	ndicat	ed.	
Stations.	Date.	From-	То-	Total a of pre	Began-	Ended-	Amount excessive gan.	5 min.	10 min.	15 min.	20 min.	25 min.	30 min.	35 min.	40 min.	45 min.	50 min.	60 min.	80 min.	100 min.	15 mi
bilene, Tex	1,	12:10 a. m.	4:10 a. m.	4 0, 85	8 2:10 a.m.	2:22 a. m.	7 0, 30	0, 23	0, 41	0.45											1
lbauy, N. Y	24			0.48													*****	:		****	
marillo, Tex	23 28		***********	0.48	*********	**********									*****			0.01	*****		
nniston, Alasheville, N. C	31	3:45 p. m.	D. N.	1.42	6:11 p. m.	6:31 p. m.	0, 40	0.18	0.43	0.52	0, 59	****						0. 24			
tlanta, Ga	1-2	7:03 p. m.	2:25 a. m.	1.38	8:09 p. m.	8:37 p.m.	0.30	0.11	0. 22	0, 29	0, 40	0.56	0.63						*****		
tlantic City, N. J ugusta, Ga	19-20	**********	********	0, 68	**********		*****			*****			*****	*****	*****			0. 27			
altimore, Md	12-13	0.45	0.40	0.82	0.04	0.19	0.01	0.00	0.90	0.30								0.31			
entonville, Arkinghamton, N. Y	12 5	8:45 p. m.	9:40 p.m.	0. 28	9:04 p. m.	9:13 p. m.	0, 01	0, 26	0,39	0,39						****	*****	0. 11	*****		
rmingham, Ala smarck, N. Dak	26	2:17 p. m.	7:40 p. m.	1. 70	4:00 p. m.	5:30 p.m.	0.07	0.05	0.09	0, 16	0.45	0, 53	0,60	0, 69	0. 75	0.81	0, 85	0.91	1,33	1, 45	
ock Island, R. I	2		********	0.62														:			
oise, Idaho	25 13		**********	0.40											*****			0,11			
ffalo, N. Y	27 13			0. 22									****					0.11 0.55			
nton, N. Y	27	******** ***		0, 23			******	*****					****					0, 18			
arles City, lowa	28 15	6:33 p. m.		1.00 0.46	7:23 p. m.	8:00 p. m.	0. 15	0, 10	0, 15	0, 19	0, 25	0. 29	0, 52	0. 75	0. 80			0.34			1
ariotte N. C.	14			0.64	*********			*****						****			*****	0.34			-1
attanooga, Tenn eyenne, Wyo icago, Ill	11-12	********	*********	1.05	**********						*****		*****				*****	0.41	*****		-
icago, Ill	28			0. 92	********	11.09	****	0.04						****	*****						
(12-13	3:20 p.m.	7:25 a. m.	2.97	11:16 p. m. 1:08 a. m.	11:23 p. m. 1:26 a. m.	0.71 1.58	0. 24	0, 31 0, 23	0.36	0,40			*****			*****		*****	******	
einnati, Ohio	1				(3:29 a. m. (5:14 p. m.	3:44 a. m. 6:04 p. m.	2. 56 0. 12	0. 17	0.30	0,36	0, 25	0, 31	0. 46	0.66	0. 72	0.74	0.76				***
	13	4:45 p. m.	9:30 p. m.	2.65	6:04 p. m.	6:35 p. m.		0.97	1.06	1,13	1.32	1. 35	1. 47						*****	*****	
veland, Ohio	26-27			0, 43	(7:13 p. m.	7:31 p. m.	1.81	0, 11	0, 27	0. 42	0.60	*****	*****		****		****	0, 33			
umbia, Mo	12-13			0.50														0, 26			
umbia, 8. Cumbus, Obio	31 27			0. 28 0. 66														0.11	*****	*****	***
eord, N. H	24		********	0.37							****							0, 29		*****	
pus Christi, Tex renport, Iowa	28-29			0. 41							*****						*****	0. 34		*****	
Rio, Tex	12-13	**********		0. 10 0. 52											****			:		*****	
ver, Colo	28	**********	- 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0. 65																*****	
roit, Mich	26		*********	0.20	*********	*********	*****	*****	*****				*****		*****	*****		0.17		*****	
uque, Iowauth, Minn	28-29			0.52		*******		*****			****						*****	0. 27			
tport, Me	28			0.38									*****	*****				0.06	*****	******	
tport, Me ins, W. Va	19 26-27			1. 25			****		****		- 0 0 0 0 0				****			0, 58 0, 79			
anaba, Mich	23			0.56							*****					*****			****		
neville, Indt Smith, Ark	12-13	********	********	2. 16		*******		*****	*****				*****	*****	*****	*****	*****	0,43	*****	*****	***
t Worth, Tex	14			0.30	*********			*****						*****				0. 16			
nd Haven, Mich	30	***********	**********	0. 86		**********					*****						*****	0, 60	*****		1:::
nd Rapids, Mich	1-2			0. 84 .	**********	*********		****	*****	*****				****		****	*****	0.34	*****	****	
en Bay, Wis	12			0.59	**********	*********	*****	*****				*****			*****	*****		0, 39			
risburg, Pa	13-14			0.52 .		*********		*****	****	*****		****	*****		*****	****		0, 27	*****		* * *
teras, N. C	15	**********		0.60	*****				*****							*****		0.37			
ron, S. Dak	23 .	*********		0. 23					*****						*****			0,23			
Kans	17-28					********							****		*****			0, 23 0, 51	****		
iter, Fla	2					**********	*****	*****						*****	*****		*****	0.07			
sas City, Mokuk	28	3:55 p. m		1. 23 . 2. 38	3:39 p. m.	4:23 p. m.	0.01	0, 53	0,85	1,14	1.43	1.51	1. 57	1,72	2. 23	2.36		0, 18			1000
West, Fla	14 .		*****	T.	********													T.			
rosse, Wis	14 .	********			**** *******		*****	*****				*****						0. 62			
Salle, Ill.	28 .		**********	1, 18 .			*****	****				****						0,33	*****		
ooln, Nebr	9			0.33 .														*			
le Rock. Ark	3-5	9:20 p.m.		1. 42	1:10 a. m.			0. 16		0, 40			*****					0,55			*
sville, Ky	3-14			2.07	*********			*****	****	*****								0.47		*****	
Angeles, Calisville, Kychburg, Vaon, Ga	14							*****		*****	*****				*****			0, 15			
1800, W18	8-29		*****	0, 83 .	*********		****											:			
	3-24	8:30 p. m.		0.50 .	8:35 p. m.	8:47 p. m.	0.02	0. 20	0,34	0,39						*****					
dian, Miss		12:40 p. m.		1. 48	3:07 p. m.	3:37 p. m.					0.92					****					
neapolis, Minn	28 8-29 .	4:43 p. m.									*****	*****						0.07		*****	***
ile, Ala	14	4:15 p. m. 9:15 a. m.	5:45 p.m.	0, 67	4:32 p. m. 12:53 p. m.	5:02 p. m. 1:21 p. m.				0, 21 0, 48	0, 33					****		****		*****	* * *
tgomery, Ala	1			0, 60					0. 20									0.44			
nt Weather, Va	9-20			0, 85			*****	*****		*****								0. 23			***
ville, Tenn 1	3-14	10:50 p. m.	4:00 a, m.	1. 30	11:33 p. m.	11:59 p. m.	0. 03	0. 23	0. 37	0.48	0,53	0.60									
Haven, Conn	19 .			0, 61 .		10:57 a. m.	0.01	0, 27	0,52									0, 16			
Orleans, La York, N. Y olk, Va	19 .	*****	********	1,03														0. 29		*****	
	2.0	9:05 p. m.	9:35 p. m.	0, 35	9:06 p.m.	9:16 p. m.	U. UI	0, 20	0, 30 .				*****								
thfield, Vt	24 .			0, 78																	
thfield, Vt	~ .			0,66						*****								0, 14 0, 18			

 ${\bf TABLE~IV.-} Accumulated~amounts~of~precipitation~for~each~5~minutes,~etc.-- Continued.$

Stations.		Total duration.		precipita-	Excessi	ve rate.	t before														
- Commons	Date.	From-	То-	Total a of pre	Began-	Ended—	Amount excessive gan.	5 min.	10 min.	15 min.	20 min.	25 min.	30 min.	35 min.	40 min.	45 min.	50 min.	60 min.	80 min.	100 min.	120 min
	1		3		5		7													1	
arkersburg, W. Va	12-13			1.50					*****									0.42			
ensacola, Fla	14		*********	. 0,22	*********				*****									0, 22			
eoria, Ill	28			. 0. 68																	
hiladelphia, Pa	13			. 0, 30														0.18			
ittaburg, Pa	26		********	. 0. 58														0, 37			
ortland, Me	14			0. 47														0.17		1	
ortland, Oreg	22-23			0. 95														0, 16			
ueblo, Colo	13			0. 12																	1
aleigh, N. C	31-1b			1.00														0. 52			1
ichmond, Va	14-15			0,66														0, 20			
ochester, N. Y	12			0. 25	**********	**********												*		*****	
cramento, Cal	22-23	**********	**********	1. 51		*********							*****	*****	*****	*****	*****	0.29	*****	*****	
Louis, Mo	11			0.48														0, 35			0.00
Paul, Minn	281			0, 38				*****						*****			*****	0.07			***
It Lake City, Utah	12	**********	*********	0, 60				*****		*****			*****	*****	*****	*****		0,01	*****	*****	**
		*********	*********		(0.40 = -	9:55 p. m.	0.00	0,16	0, 33	0.05		*****	*****	*****		*****	*****		*****	*****	***
n Antonio, Tex	29-30	9:00 p. m.	4:30 a, m,	1.56	9:42 p. m.			0, 16		0, 35	*****		*****	*****		*****	*****	*****	*****	*****	
n Diego, Cal	5			0.41	711:06 p. m.						*****		*****		*****	*****		0.00	*****	*****	
		*********	*********										*****			****	*****	0. 28	*****	*****	
ndusky, Ohio	27-28	*********	********	1. 18	*********	**********	*****		*****		*****	*****		*****	*****		*****				
n Francisco, Cal	8-9	*********	*********	0,81	**********					*****	*****	****				*****		0. 41	*****	*****	
vannah, Ga	2	*********	*********	0. 22	*****	*********	*****			*****								0.18			
ranton, Pa	8	*********		0, 29	*********			*****				*****									
attle, Wash	31	*********	**********	0, 13		*********	*****		*****				*****				*****	0. 10	*****		
reveport, La	13-14		*********	1.48		***** *****					*****							0. 51			
okane, Wash	19-20	*********		0.47														0. 16			
ringfield, Ill	5 27	D. N.	D. N.	0.53	3:00 a. m.	3:19 a. m.		0.14		0,40											
	27	8:30 p.m.	8:58 p. m.	0.35	8:40 p. m.	8:45 p. m.	0, 02	0. 33													
ringfield, Mo	28-29			0.54																	
racuse, N. Y	5-6			0,40																	
mpa, Fla	11			T.														T.			
ylor, Tex	29-30			1.50														0, 29			
omasville, Ga	2	D. N.	5:10 a. m.		2:24 a. m.	2:35 a. m.	0.02	0.31	0.40												1
oledo, Ohio	18-19			0.44														0. 21			1
peka, Kans	8-9			1.83														0. 19			1
lentine, Nebr	4			0.34																	1000
cksburg, Miss	1		11:45 a. m.		9:17 a. m.	9:27 a. m.	0.01	0. 25	0.34												
ashington, D. C	19			0.74				0. 20										0, 24			
ichita, Kans	9			0.49						*****								0. 27			
ilmington, N. C	15			0.26	*********	*** *******			*****	*****	*****							0, 15	*****		
ytheville, Va	7-8									*****			*****			*****		0, 23		*****	***
ankton, S. Dak	6	**** *****	*********	0. 17	**********	**********	*****			*****		*****					*****	0. 20			
n Juan, Porto Rico	15	*********	******	0 00		********	*****		*****	*****	*****	*****		*****		******	*****		*****	*****	
n Junu, rorto Rico	10	*********		0,02	*********													U. 32			

*Self-register not working (a) Of February. (b) Of April.

TABLE V.—Data furnished by the Canadian Meteorological Service, March, 1907.

	Pressi	re, in i	nches.		Tempe	rature.		Pre	ecipitati	on.		Press	ire, in i	nches.	1	Temp	erature	۸.	Pre	cipitati
Stations.	Actual, reduced to mean of 24 hours.	Sea level, reduced to mean of 24 hours.	Departure from normal.	Mean.	Departure from normal.	Mean maximum.	Mean minimum.	Total.	Departure from normal.	Total snowfall.	Stations.	Actual, reduced to mean of 24 hours.	Sea level, reduced to mean of 24 bours.	Departure from normal.	Mean.	Departure from normal.	Mean maximum.	Mean minimum.	Total.	Departure from normal.
Johns, N. Fdney, C. B. Ialifax, N. S	29, 93 29, 88	Ina. 29, 78 29, 97 29, 99	Ins. 10 + 09 + 05	0 24.1 22.6 28.2	- 3.6 - 3.6 - 0.8	0 31. 5 32. 0 36. 4	16. 7 13. 2 20. 1	Ins. 6. 11 4. 70 3. 36	-0, 23 -2, 10	37. 0 10. 3	Parry Sound, Ont Port Arthur, Ont Winnipeg, Man	Ins. 29. 31 29. 31 29. 11	fns. 30, 02 30, 04 29, 97	Ins. .00 01 12		+ 7.4 + 5.0 + 5.0	32. 9 28. 2	6.5	Ins. 3. 60 1. 63 1. 12	Ins. +1. 37 +0. 66 +0. 09
rand Manan, N. B	29. 94 29. 94 29. 93 29. 95 29. 95	29, 99 30, 01 29, 97 29, 97 29, 98	+.06 +.06 +.07 +.07 +.08	30, 1 30, 5 22, 2 22, 7 20, 6	+ 0.3 - 0.3 - 3.2 - 0.3 + 0.3	36, 5 36, 6 30, 0 36, 1 30, 0	28.6 24.3 14.5 9.3 11.2	2, 16 2, 22 2, 31 3, 43 2, 14	-2.63 -0.90 -0.04	8,5 14.1 30.8	Minnedosa, Man Qu'Appelle, Sask Medicine Hat, Alberta. Swift Current, Sask Calgary, Alberta	28, 09 27, 62 27, 54 27, 30 26, 25	29. 87	08 09 13 04 05	26. 4	+5.1 $+2.7$ -1.1 -2.3 -4.1	29, 2 27, 4 36, 6 28, 8 33, 1	7. 7 16. 1 10. 5	0, 86 0, 95 0, 51 0, 86 0, 76	+0. 21 +0. 18 -0. 25 +0. 05 +0. 04
nebec, Que ontreal, Que ockliffe, Ont tawa, Ont	29. 70 29. 39 29. 65	30. 04 30. 02 29. 99	+.08 +.01 02	24. 0 23. 3 27. 0	+ 2.8 + 4.3 + 5.5	32, 2 36, 4 35, 2	15. 9 10. 3 18. 8	3. 38 1. 92 2. 38	+0. 12 -0. 14 -0. 34	8.6 14.5	Banff, Alberta Edmonton, Alberta Prince Albert, Sask Battleford, Sask	25. 17 27. 32 28. 13	29, 89 29, 95 29, 94	05 13 12	22. 8 12. 9 14. 0	- 5.7 + 0.9 + 0.9	25. 9 24. 9	10.8 - 0.1 3.0	1. 55 1. 82 0. 52	+0.14 +1.05 +0.06
ingston, Ont pronto, Onthite River, Ont ort Stanley, Ont	29, 73 29, 65 29, 40	30. 05 30. 05 30. 06	+.03	30. 6 33. 8	+ 5.0 + 6.5 + 7.4	87. 3 41. 4	24. 1 26. 3	0.94 2.15 2.78		7.9	Kamloops, B. C Victoria, B. C Barkerville, B. C Hamilton, Bermuda	28, 62 29, 80 29, 95	29, 90	06 07	42.4	- 0.2 + 0.5 + 0.4	49.6	35, 2	1. 40	-0.38 -1.72 -3.55

Stations.	ons. Height. Date. Height. Date. W	stage page.	Higher	t water.	Lowes	t water.	stage.	t b	Stations	ance to outh of ver.	stage rage.	Highe	et water.	Lower	st water.	stage.	thly nge.
1		Sauce Control of the	Dista	Flood	Height.	Date.	Height.	Date.	Mean	Mon							
Milk River. Havre, Mont. (28) Yellowstone River.	Miles. 237	Feet.	Feet. 10, 2	24	Feet. 5. 4	30	Feet. 6,8	Feet.	Republican River. Clay Center, Kans Solomon River.	Miles. 42	Feet. 18	Feet. 6.9	5	Feet. 6. 1	30, 31	Feet. 6, 4	Feet. 0, 8
Billings, Mont. (*)	330	8	1.2	25	0.2	16-18		1, 0	Beloit, Kans	75	16	1.7	\$9, 11, 18, } {15, 21, 23}	0.6	1, 30, 31	1,1	1.1
Rosseau, S. Dak. (20) James River.	1	9	3, 9	22	1.8	31	2,9	2.1	Smoky Hill-Kansas River. Lindsborg, Kans	341	20	2.2	5	1.4	17, 20, 29	1.7	0.8
Lamoure, N. Dak.(*) Huron, S. Dak. (*) Big Blue River.	330 139	14	13.9	26, 27	0.7 4.9	16-21 13, 14	3.3 9.6	5. 7 9. 9	Abilene, Kans	277 116 87	20 22 18 21	1. 4 5. 4 10. 6	12 11 10	0.4 3.5 6.8	26-28 31 28-31	0.7 4.8 7.6	1.0 1.9 8.8
Beatrice, Nebr	92 47	14	3. 1 5. 5	12		21-31 30,31	2.5	0.8	Osage River.	70	28	7.8	30	2.8	1	4.5	5.5

TABLE VI.—Heights of rivers referred to zeros of gages—Continued

Stations.	ath of	riage gage.	Highes	t water.	Lowe	st water.	stage.	onthly range.	Stations.	uth of	l stage gage.	Highes	it water.	Lowe	et water.	stage.	thly
	Distano mouth river.	Flood on g	Height.	Date.	Height.	Date.	Mean	Mon	1	Distance mouth river.	Flood on g	Height.	Date.	Height.	Date.	Mean	M o n
Gasconade River.	Miles. 98	Feet.	Feet.	14	Feet.	25-27, 31	Feet 1.7		Tennessee River—Cont'd. Kingston, Tenn	Miles. 556	Feet.	Feet. 12.0	3	Feet.	30, 31	Feet.	Feet 9.
Missouri River.	2,504	11	4.8	22-24	4.0	16-18	4.4	0.8	Chattanooga, Tenn. Bridgeport, Ala	452 402	83 24	18. 4 15. 2	4	5.0	31	10, 1 8, 0	13.
Fort Benton, Mont. (*)	2,504 2,285 1,952	12 17	9.7	25, 26 26	1.8 6.6	16-18, 20 28		1.2	Guntersville, Ala	349 255	31 16	21. 8 14. 5	5,6	6.5	30,31		15.
Fort Benton, Mont. (*) Wolfpeint, Mont. (*) (*) Bismarck, N. Dak. Pierre, S. Dak. (*)	1,309	14	9.4	4,5	6.1	30	7.8	3.3	Florence, Ala	225	26	24.5	5	6.4	31	14.9	18.
Sioux City, Iowa.(*) Blair, Nebr	1,114 784	14	14.5	14	8.4	3, 4	10. 2	6.1	Johnsonville, Tenn Ohio River.		21	25. 4	5	9.3	31	17.8	16.
Omaha Nahr	660	15 18	11.4	15 16	9.8	4,5			Pittsburg, Pa Dam No. 2, Pa	966 956	22	35, 5 36, 8	15 15	6.0	9	11.6	30,
Plattsmouth, Nebr	641 481	17	7. 0	16 17	4.2	5,6	5, 2		Beaver Dam, Pa. a Wheeling, W. Va	925	27 36	47. 1 50. 1	15 15	8.6	26		38. 42.
Kansas City, Mo	388 231	21 18	15. 4 12.3	17	10.7	6,7			Parkersburg, W. Va	785	36 36 39	51.6 54.8	16 18	9.6	10		42.
Plattsmouth, Nebr	199 103	20 24	14.7	19 20	10. 3	28	12.6	4.4	Point Pleasant, W. Va Huntington, W. Va	660	50	58, 4	18	- 18.0	1	32.8	42.
THE SHARECHEDOM VENDOL.					9. 6				Catlettsburg, Ky Portsmouth, Ohio	612	50 50	60. 8	17,18	19. 0 19. 5	1	34. 0 85. 7	41.
Mankato, Minn	127	18	8.8	23	4.4	11-15	1	4.4	Maysville, Ky	559 499	50 50	59. 2 62. 1	18 19	19.3 22.3	1	35,8 40.1	39,
Stillwater, Minn. (21) Chippewa River.	23	11	12.7	31	5. 9	22		6.8	Madison, Ind Louisville, Ky Evansville, Ind	413 367	46 28	51. 9 36. 0	19 20	21. 3 8. 7	1	35,5 19,6	30, 6
Chippewa River, Chippewa Falls, Wis. (18) Red Cedar River.	75	16	11.0	30	1. 7	19	5.3	9, 3	Evansville, Ind	184 148	35 35	43. 8 45. 0	23 24, 25	20.5 19.0	1	34.4	23.
Cedar Rapids, Iowa Des Moines River.	77	14	6.6	6	4.4	13, 14	4.8	2.2	Paducah, Ky	47	40	42.3	25	21.3	1	35. 1 35. 1	26, 6
Des Moines, Iowa	205	19	4.3	30	2,8	11, 12	3,5	1.8	St. Francis River.	,	45	46. 2	24	29,1	1	40. 2	17.1
Illinois River.	197	18	20.4	31	15.8	11, 12	17.4	4.6	Marked Tree, Ark	104	17	16.6	14-16	15. 3	1, 31	16. 1	1.3
Peoria, Ill	135	14 12	14.3	31 22-25	12.7 11.9	12 11	13.8	1.6	Neosho Rapids, Kans Iola, Kans	326 262	22 10	14. 1 5. 3	11	1.8	29-31 26-28,31	4.5	12.3
Clarion River.	32	10	8.5	15					Oswego, Kans. Fort Gibson, Ind. T	184	20 22	8.8	14	0.8	. 1	2.9	8,0
Conemaugh River.					2.8	11, 12	4.6	5.7	Canadian River.	3		14.0	16	9.0	24	10. 7	5.6
Johnstown, Pa	64	7	18.0	14	1.9	11	4.5	16.1	Calvin, Ind. T	99	10	5, 6	9	2.2	27, 28	2.9	3.4
Franklin, Pa. (1)	114	14	7, 2 10, 8	28 14	1.4	2-11 12	6.8	6.7	Blackrock, Ark	67	12	18. 2	2	10.9	31	15.0	7.8
Parker, Pa.(14) Freeport, Pa	73	20	18.0 28.0	14 15	5.2 4.0	26 1	6.7	12.5	Calleoroek, Ark	272 217	15 18	8.5	15 15	2.9	30, 31	5, 5 7, 9	5.6
Springdale, Pa	17	27	32, 4	15	8.4	i	15. 2	24.0	Newport, Ark	185	26	19. 8	17	10.6	81	16,6	8. 7
itowlesburg, W. Va Youghiogheny River.	36	14	9.2	14	24	31	4.4	6.8	Clarendon, Ark	75	30	26.7	13-18	23. 0	1	25. 9	3. 7
Confluence, Pa	59	10	18.6	14	1.9	31	4.5	16.7	Wichita, Kans	832 551	16	0.6 4.2	6-8	- 0.6 3.3	25-31	3.6	1. 2 0. 9
West Newton, Pa	15	23	28. 2	14	2.4	31	6.8	25.8	Webbers Falls, Ind. T Fort Smith, Ark	465	23	8. 0 12. 1	10, 15	5. 4 4. 5	28, 30 29-31	6.4 7.0	2.6 7.6
Monongahela River. Weston, W. Va	161	18 25	25.6	14	14.0	29-31 31	1. 2 17. 5	9.1	Dardanelle, Ark Little Rock, Ark	256 176	21 23	12. 4 14. 0	12 13	4. 2 5. 7	31 31	7.2	8.2
Greensboro, Pa Lock No. 4, Pa	81 40	18 28	27.9	14 14	7.8	31 31	11.7	20. 1 29. 7	Pine Bluff, Ark	121	23	16.2	14	8.1	31	12. 2	8. 1
Beaver River.	10	14	11.0	14	2.3	10, 11	4.4	8,7	Greenwood, Miss	175 80	38 25	29. 6 23. 1	24-26	18. 5 20. 5	12-14	26. 8 21. 5	11. 1 2, 6
Muskingum River.	70 20	25 25	31.9	14	9.5	. 1	16.4	22, 4	Ouachita River.	304	39	32, 6	6	8.1	30	20. 2	24, 5
Beverly, Ohio (*)	-	~	34.0	14	7. 6	1	15. 5	26. 4	Monroe, La	122	40	34.7	28,29	29. 1	5-7	31. 8	5. 6
Glenville, W. Va	38	20	18.6	20 14	8.5	30 6	6.6	13.0	Arthur City, Tex	768 688	22 27	7.9 16 0	12	7. 9	29-31	10.3	6, 7 8, 1
New-Great Kanawka River. Radford, Va	213	14	3.2	6	0.7	20,21,23-26	1.6	2.5	Fulton, ArkShreveport, La	515 827	28	23. 8 15. 0	15	10.3	31	17. 1 11. 1	13, 5 10, 4
Radford, Va	158 58	30	20.9	15	2.5	29, 30 29	9.6	16.1	Alexandria, La	118	83	22.4	20, 21	11.4	1	18.5	11.0
Scioto River.	110	17	19.0		3,0	8-12			Port Kipley, Minn. (2)	2,082	10	11.8	30				
Licking River. Falmouth, Ky. Miami River.				14		77.5	6.1	16.0	Red Wing, Minn, (21)	1, 954 1, 914	14	9.7	31	6.1	18 25	*****	6. 5 3. 6
Miami River.	30	25	28,1	14	2.0	31	9. 2	26, 1	La Crosse, Wis.(23)	1,884	12 12	9. 8 10. 2	31 31	7.2	10-15 26	4.0	7.1
Nentucky River.	77	18	15.2	14	2.0	29-31	4.3	13. 2	Prairie du Chien, Wis. (36). Dubuque, Iowa (11) Clinton, Iowa	1,759	18	9.4	31	7.0	17	7.8	2,6
Beattyville, Ky	287. 254	30	18.0 22.0	15 15	1.1	30, 31	7.3	13.5	Leciaire, Iowa	1,629	16	6.1	30, 31	5.5 3.7	11-16 6,12-15	6.5	3, 3
tigh Bridge, Ky	65	17 31	20. 0	15 15	10.0	29-31 31	14.1	10. 0 14. 2	Davenport, Iowa	1, 593 1, 562	15 16	8.2 9.5	31	5.0	12, 15, 16	5.9	3.2
rankfort, Ky	171	16							Galland, lowa	1, 472	8	4.5	31	8.1	4	3.6	1.4
dount Carmel, Ill	75	15	17.3 23.0	19 22	2.8 5.3	1,2	13.6	14.5	Warsaw, Ill.	1, 463 1, 458	15	8. 0 10. 7	31	5, 2 8, 0	. 1	8.8	2.8
urnside, Ky	518	50	36.0	3	2.8	30, 31	12.1	33.2	Grafton, Ill	1, 402 1, 306	13	8.9 12.4	14, 15	9.3	5, 6	7.1	2.7 3.1
emp. lenn	383 308 198	45	31.5	4	4.7	31 29	16.8	26.8	St. Louis. Mo	1, 264	30	18. 7 16. 2	15	12.7 10.6	10	15. 2 13, 1	6. 0 5. 6
arthage, Tenn	198 126	40	38,9 45,3	3	10.1	31 31	25. 0 81. 1	28. 8 35. 4	Cape Girardeau, Mo	1,128 1,003	28	21. 9 35. 9	26-28	15. 9 23. 4	12	18, 9 81, 4	6.0
Powell River.	44	20							Luxora, Ark	905	33	30.1	30, 31	16.4	i	24.9	13.7
Clinch River.			13.5	3	1.4	30, 31	4.0	12, 1	Memphis, Tenn	843 767	23 30 30 28 34 33 42 42	35.5	30,31	20. 5 27. 8	1	29. 6 38. 0	15. 0 17. 1
linton, Tenn	156	25	21.0	4	5.4	30, 31	10.8	15,6	Greenville, Miss	635 595	42	46, 2 40, 2	31 31	32. 7 27. 7	1 1	40.8 34.8	13.5 12.5
South Fork Holston River.	35	15	4.0	3	1.4	28-31	2.4	2.6	Vicksburg, Miss	474 378	45 46 35 28 16	43, 4	31 31	36.1	8,9	39. 5 40, 4	7.3
Holston River.	165	8	5.6	3	1.4	28-30	2,8	4,2	Baton Rouge, La	240 188	35	34. 1 27. 3	1	29. 5	10-14	30, 8 24, 4	4.6
ogersville, Tenn French Broad River,	108	14	6.0	3	2.4	31	3.7	3.6		108	16	18.1	i	15.1	10-14	16,0	3.0
sheville, N. C	144	6	1.0	3	- 0.2	26, 30	0.1	1.2	Simmesport, La.	127	33	40.0	1	35.0	11-16	36. 0	5.0
Little Tennessee River.	46	12	3.8	11	1.4	27-30	2.1	2.4	Aichafalaya Ricer. Simmesport, La. Melville, La. Morgan City, La. Grand Ricer.	103	8	36. 4 4. 9	1	38,3	11-14	33,9	3.1
Ghee, Tenn	17	20	6.9	3	3.7	30, 31	4.7	3.2		166	6	4.9	29	8.6	1-12	8.9	1.3
harieston, Tenn	18	22	7.9	4	2.4	30	4.1	5,5	Lansing, Mich	140 129	11 6	8.8	30,31	2.6	1,11	4.9	6.2
Tennessee Ricer. noxville, Tenn																-	6.0

TABLE VI.—Heights of rivers referred to zeros of gages—Continued.

Stations.	5 th 5	d stage gage.	Highe	st water.	1	et water.	stage.	onthly range.	Stations.	30	8,	Highe	st water.	Lowe	st water.	stage.	onthly range.
	Distance mouth river.	Flood on g	Height.	Date.	Height	Date.	Mean	M o B		Distance mouth river.	Flood on 8	Height.	Date.	Height	Date.	Mean	M o n
Grand River—Cont'd, Grand Rapids, Mich	Miles.	Feet.	Feet. 8.3	16	Feet.	1	Feet.	Feet.	Edisto River.	Miles.	Feet.	Feet.	7	Feet.	31	Feet. 3.4	Feet.
Sandusky River. Tiffin, Ohio		7	8.0	15	0.8	11	2.9	7.2	Broad River.		11	6.3	3	2.5	30, 31	3.2	3.
Penobscot River. Mattawamkeag, Me. (81) West Enfield, Me. (51)	87 60			*******		1			Savannah River. Calhoun Falls, S. C Augusta, Ga	347 268	15 32	5. 0 17. 0	2	2.4 8.0	30, 31	3.5 10.0	2.
Kennebec River. Winslow, Me		8	6,2	31	4.0	3,16,17	4.7	2.2	Oconee River. Milledgeville, Ga	147	25	12.9	3	3,1	31	5,1	9.1
Merrimac River. Franklin June., N. H. (6)(b) Concord, N. H. (16)	110 94	13 10	12. 1 5. 5	31 31	3.9 1.2	10-12 17	4.7	8.2	Ocmulges River. Macon, Ga	79	18	9. 5	7	3.0	31	3.9	10.
Connecticut River.	68	8	4.5	31	1.1	2	2.5	3.4	Abbeville, Ga	96	11	10.3	10	3.7	31	6.4	6.
Wells River, Vt. (29) Whiteriver Junction, Vt(25)	255 209 170	12	28, 8 14, 1	31 31			2.2		Woodbury, Ga	152	10 20 20	10.2	5	2.9	28-31 28	1.5	3.
Bellows Falls, Vt Holyoke, Mass Hartford, Conn. (17)	84	9 16	7. 8 7. 4 15. 1	31 31 31	- 0.9 0.2 6.4	14 23	2,4	8.7 7.2 8.7	Albany, Ga. Bainbridge, Ga. Chattahoochee River.	90 29	22	7. 4 8. 0	9	1. 7 3. 7	31	4.2 5,7	5.
Housatonic River. Gaylordsville, Conn	44	15	6.7	18, 19	3.8	12,13	5,1	2,9	Oakdale, Ga	305	18 20	13, 8	3	3.0	\$23,24,26-} {28, 30, 31}	5.0	10.1
Mohanek River. Utica, N. Y. Tribeshill, N. Y. Schenectady, N. Y. Hudeen River	98 42	6 12	10.5 6.4	24 21, 22	2.0	6,7	5. 5	8.5	Eufaula, Ala	90	40 25	22. 0 21. 7	8 5	4.3 5.5	31 31	9.7	17.
AI therefore Above .		15	8,5	30	1. 2	6-11	4.2	7.3	Chosa River. Bome, Ga	266 162	30 22	21. 6 20. 2	3 4	2.8	28-31 29-31	6.1	18.8
Glens Falls, N. Y Troy, N. Y	197	20 14	16.2	31 27	3,3 3,2	15 9	7.8	5,4 13.0	Lock No. 4, Ala	113 12	17	16, 2 35, 3	3,4	3.6 2.8 7.0	30, 31 30, 31	8.8 6.8 15.4	13.4
Albany, N. Y	147 128	9	10, 8	31 18	1.9	10	5, 0 3, 7	8.9 1.5	Tallapoora River.						7		
Pompton River. Pompton Plains, N. J. (12). Passaic River.	6	8	5.7	19	4,3	13	5.1	1.4	Milstead, Ala	323	35	26. 0	3 5	4.8	30, 31	13.3	22, 6
Chatham, N. J. (18)	69 45	15	9.0	18	3.0	31	5,0	2.7	Selma, Ala	246	35	37. 5	6	6.1	81	16.8	31, 4
Schuylkill River. Reading, Pa	66	12	7. 2 6. 8	18	0.3	31	2.1	6.5	Tuscaloosa, Ala	90	43	50. 2	3	7.4	31	19. 1	42.8
Delgware River. Hancock (E. Branch), N. Y. Hancock (W. Branch), N. Y.	287	12	9.5	15	4.7	21	5.8	4.8	Vienna, Ala	246	33 42 35	16. 3 28. 8 47. 3	6 8	- 0.2 2.4 5.1	31 31 31	7. 1 13. 7 28. 1	16. 5 26. 4 42. 2
Port Jervis, N. Y	287 215 146	10 14 26	7. 1 7. 2 11. 5	15 24 18	3, 8 2.1 1.6	6, 7 9	5.0 3.8 6.2	8.3 5.1 9.9	Leaf River. Hattiesburg, Miss	60	20	15.0	5	3.1	31	6.5	11.9
Phillipsburg, N. J. (7) Trenton, N. J	92	18	7. 0	15	8.6	31	4.8	8.4	Chickasawhay River. Enterprise, Miss	144	18	24.0	3	2.3	31	7.5	21. 7
Binghamton, N. Y Towanda, Pa	183 139	16	9. 5 8. 9	24 24	2.0 3.0	13,14	4.6 5.1	7.5 5.9	Shubuta, Miss Pascagoula River. Merrill, Miss.	78	25	20.2	5 8-10	4.5	24-31	14.8	15, 6
Wilkes-Barre, Pa West Branch Susquehanna. Clearfield, Pa	165	17	16.0	16	3.1	12, 13	8.2	9.8	Pearl River.								
Renovo, Pa.(18)	90 39	16 20	14.0	15 15	4.5 1.7	31 1-3	7.7	9.5 17.1	Jackson, Miss		20 14	27. 3 19. 5	6	4.6 5.7	30 31	16.4 12.6	22. 7 13. 8
Juniata River. Huntingdon, Pa	90	24	14.0	14	3. 3	1	5.7	10. 7	Logansport, La	315	25	16.6	5,6	5. 3	30	12, 2	11.3
SusqueAanna River. Selinsgrove, Pa Harrisburg, Pa	116 69	17 17	10.0 13.3	16 16	1.7	1,2	4.9 6.8	8.3 10.0	Rockland, Tex	105	20 10	9. 5 2. 3	10, 13	3,0	13 31	1.9	1.0
Shenandoah River. Riverton, Va	58	22	- 0.5	1-31	- 0.5	1-31	-0.5	0.0	Dallas, TexLong Lake, Tex	320 211	25 35	16.9 22.8	1 5	4.1 5.9	27,28,30,31 29,31	5.8	12. 8 16. 9
Potomac River. Cumberland, Md Harpers Ferry, W. Va	290 172	8 18	12.0 16.1	14 15	4.4	31 1	6.1	7.6 13.6	Riverside, Tex	112 20	40 25	11.9 12.8	8	2. 1 5. 5	29, 30 31	5. 4 8. 5	9.8
James River. Buchanan, Va	305	12	6.9	1	3.3	31	4.8	3.6	Brazos River. Kopperl, Tex	345 285	21 24	2.2	19 22	- 0.2	1, 2 20, 21	0.4	2.4
Lynchburg, Va Columbia, Va	260 167	18	9.3	5, 15	1. 8 5. 0	30, 31	7.0	4.3	Hempstead, Tex	215 140	40	4.6	4 7	2.9 0.4 - 1.8	17-22,27,28 27, 29, 30	3. 3 1. 2 0. 6	4. 2 5. 5
Richmond, Va	55	12	1.1	16	- 0.1 - 0.1	30, 31	0.5	1.2	Booth, Tex	61	39	3.8	1-3	2.1	22, 23	8.0	1.7
Staunton River. Randolph, Va	26	28	9. 3	12	5.3	27, 30, 31	6. 2	4.0	Rallinger, Tex	214	21 18 24	0, 8 1, 2 7, 4	29-31 1-5 1	0. 6 0. 9 6. 2	13-28 21, 22 23-25	0.7 1.1 6.7	0. 2 0. 3 1. 2
Roanoke River. Clarksville, Va Weldon, N. C	196 129	12 30	3.9 27.2	11, 16	0 7	31 29-31	2.1 15.6	8.2 16.3	Guadalupe River.	- 0		7 1			20-20		2 1112
Tur River.	46	25	17. 2	16	10,9	31	10,7	12.7	Gonzales, Tex	112 35	22 16	2.1	1,2	0.8	24-29 25	1,3	0.4
Greenville, N. C	21	22	13,8	16	5.9	30, 31	10.6	7.9	Moorhead, Minn. (17) Kootenat River.	284	26	29.8	30, 31	10,8	18		19. 5
Moncure, N. C	171	25	21. 2	16	8. 3 5. 0	30	9.6	16,2	Bonners Ferry, Idaho	123	26	1.7	1	- 0.5	19	0. 2	2.2
Waccamare River.	40	7	3,7	15	2.2	28	3.1	1.5	Newport, Wash	86	14	2.8	26-31	1.2	15, 20	1.7	1.1
Pedee River. Cheraw, S. C	149	27	13.0	16	2.3	30, 31	5.8	10.7	Lewiston, Idaho	67	30	13.8	21	5.8	8, 10, 18	7. 5	9.4 7.2
Lynch Creek.	51 35	16	12.9	4,5	2,8	31	5.0	7. 6 6. 0	Umatilla, Oreg	473 270	40 25	7.9	31 23	7.3	23 19	7. 6 6. 4	0.6 5.8
Black River. Kingstree, S. C	45	12	8.5	9	4.2	31	6.4	4.8	Willamette River.	166	20	15.9	23	6.9	19	6.4	6.7
Mount Holly, N. C	143	18	2.6	15, 16	1.8	23-31	2,0	0.8	Albany, Oreg	84 12	20 15	8.8	20, 21	8.5	16 9	5.5	5.3
Catawba, S. C	107 37	24	11.7	2	1. 7 5. 2	31	7.9	6.5	Sacramento River. Kennett, Cal	323	23	33.2	20	8.4	16	10.4	27.8
Blairs, S. C	36	14	2.6	2, 17	0,3	23	1.4	2.3	Red Bluff, Cal Colusa, Cal Knights Landing, Cal	265 156 99	23 25	27. 5 29. 3 20. 2	20 20 21	7. 7 18.6 15.6	6,9-11	13. 8 22. 4 16. 6	19.8 10.7 4.6
Pelzer, S. C	109 56	14	5. 0 8. 0	2,3	3. 2 1. 8	25, 30, 31 21, 25, 30	2.8	1.8 6.2	Sacramento, Cal	64 26	25 12	26, 9 18, 0	20 24	20.4	1,5	22.7 9.8	6.6
Columbia, S. C	52	15	3. 2	3	1.0	. 24, 31	1.8	2.2	San Joaquin River. Pollasky, Cal	203	10	7.5	21	1.3	2-4	3.3	6.2
Rimini, S. C	108 50	12	12.6 8.6	4,5	6.6	31 31	9. 6 7. 3	6.0	Firebaugh, Cal	148	14	11.5 19.2	. 23 20	4.7 13.0	5 6	8.1 16.0	6, 8

Figures indicate number of days frozen. (*) One day missing. (*) Two days missing. (*) Estimated. (*) Sixteen days only.

plied March 1907

	Pres	sure.*	A	ir tem	peratu	re.		Mois	sture.			w	ind.			ipita- on.			Clo	uds.		
							8 a	. m.	8 p	. m.	8 a.	m.	8 p.	m.				8 a. 1	n.		8 p. :	m.
Day.	d d	8 p. m.	8 p. m.	Maximum.	Minimum.	Wet.	Relative humidity.	Wet	Relative humidity.	Direction.	Velocity.	Direction.	Velocity.	8 m.	8 p. m.	Amount	Kind.	Direction.	Amount	Kind.		
	29, 95	29. 93	73. 0	72.0	76	68	68. 0	78	68. 0	82	e,	2	ne.	4	0.00	0.02	9	Seu.	8.	3	8.	ne.
	29. 95	29, 96	74.0	73. 2	77	69	67. 5	71	67. 2	73	ne.	8	e,	16	0.00	0, 11	3 9	Scu. Cu.	8.	7	8.	e,
	30. 05	30.06	72.0	71.5	76	70	64.5	67	66. 0	75	ne.	29	ne.	20	0.00	0.00	10	Scu.	e.	3	Cu.	e,
	30.06	30, 06	69, 2	70.0	75	65	64. 0	75	65. 5	79	e,	18	e,	11	T.	0.04	3 4	Scu. Cu.	e.	4	N.	e,
	30, 06	30.00	71. 2	71.0	76	68	66. 4	69	67. 0	81	ne.	13	ne.	2	T.	0.01	3 7	As. N.	e. e.	10	S.	ne.
	29,91	29, 91 29, 88 29, 88	69,2 72,0	66.5	74 74 78	66 68 67	67. 0 68. 2 69. 0	91 83 86	66. 0 69. 0 66. 0	97 88	e, se, ne,	8 4 2	ne. ne. ne.	8 1 6	0. 04 0. 02 0. 16	0,83 0,09 0,00	10 9	S. Cu. Acu.	e. e.	9 9	8. Cis.	ne.
	29, 88 29, 92 29, 95	29, 94 29, 98	72.8 70.8 69.5	69.5 70.3 69.0	76 75	63 64	62. 6 64. 0	63 74	65. 3 62. 5	83 77 70	ne.	3	ne. ne.	3 7	0. 00 T.	0.00	1 5	Acu. Cu.	0 e.	0	Cu. Cu. 0	e. ne. 0
	30, 06	29, 95 30, 04	70. 2 70. 2	68.0	75 77	63 63	63.0	58 58 64 82	62.5 62.0	74 67	ne. ne.	3 5	ne. ne.	10 12 3	0.00 0.00 0.00	T. 0.00	few.	Acu. Cu.	0.	0	0	0
	29, 96	29,98 29,92 29,94	66, 6 68, 0	69, 0 68, 5	78 76 76	62 63 64	61. 2 63. 0 63. 0	82 76	65, 0 64, 0 63, 0	76 74	ne. nw. ne.	4	ne. nw. ne.	9	0.00	0.00 T. T.	few. 9 5	Cu. S. Cu.	e. e.	0 7	0 Cu.	0
********	29. 90	30, 00	70:0	68. 5	74	65	61. 0	59	59. 0	56	ne.	18	ne.	16	0.00	0.00	3 1	Aeu. Cu.	0 e.	1	S.	e.
	30, 05	30, 06	69.0	68.5	73	65	59.0	55	65.0	83	ne.	22	ne.	10	0.00	0.00	5 7	Cieu.	W.	6	8	ne.
	30.05	30, 05	70.0	69.3	74	66	50.0	51	62.0	66	ne.	13	e.	9	0.00	0.00	3 4	As. Cu.	0	8	As. Cu.	e, e,
	30,04	30.04	71.0	70.0	75	66	61.0	56	64.0	72	e,	10	ne.	8	0, 00	T.	3 8	Aa.	0	8	N.	ne.
	30.06	30. 03	70.0	71.0	74	66	63.0	68	63.0	64	e,	10	ne.	15	T.	0. 01	10	Cu. S,-eu.	e. 5	8	As.	ne.
	30.06	30.04	72.3	71.0	76	65	64.0	64	65, 0	72	e,	22	e,	17	0.03	T.	5 8	Aeu. Cu.	0	10	Cu.	e,
	30.04	30,05	73.0	72.0	75	68	65.0	65	64.5	67	ne.	9	e,	14	0, 01	T.	5 9	Seu. Cu.	0 e.	5	Cu.	e.
	30.07	36. 65	72.0	72.0	76 78	66	65. 0	69	64.0	65	ne.	13	e,	15	0.04	0.00		Cu.	e,	5	Cu.	e.
	30, 08	30. 07 30. 06	73. 2 72. 0	71.5 69.8	78 77	68 67	64.3 63.3	61 62	64. 0	66 90	e, ne.	14	0,	15	0, 60 T.	0.00	9	Cu.	e, e,	7	Cu. N.	e. e.
	30, 09 30, 10	30. 08 30. 10	67.5 72.5	70.5	74 76	65 64	65. 0 63. 6	88 61	63, 5 63, 0	68	e. ne.	13	ne. e.	14 8	0.17 0.02	0. 16 T.	10	N. Cu.	e.	5 7	Cu.	ne.
	30, 13	30, 09	72.0	69. 0	75	64	62. 5	59	65, 0	81	e,	18	ne.	12	0.03	0.06	4	Cu.	e. e.	6	N.	e, ne.
	30,07	30, 06	72.0	71.0	77	62	63,0	61	61,2	57	ne.	16	e.	10	0.07	T.	3	Cu.	0.	3 4	Acu. Cun.	e. e.
	30. 08	30.08	71.8	72.0	75	63	64. 0	65	64.0	65	ne.	7	e.	12	0. 13	0, 05	8	Cu.	e.	3 3	As. Cu.	0
	30, 13	30. 15	78.0	72.0	76	68	64.0	61	65. 0	69	e.	23	e,	12	T.	T.	7 3	Acu. Cu.	w. }	10	8.	e,
Mean	30, 925	30, 013	70.9	70, 2	75, 6	65, 5	63. 8	67. 7	64.5	78.6	ne.	10.8	ne.	10.0	0.74	1, 40	6.5	Cu.	e.	5,3	Cu.	e,

Observations are made at 8 a. m. and 8 p. m., local standard time, which is that of 157° 30' west, and is 5° and 30° slower than 75th meridian time. Pressure values are reduced to sea level and standard gravity.

Notz.—At the morning observation on the 28th, with four-tenths cumulus clouds and several belts of very light rain to the eastward and northward of the station, two portions of a rainbow, one extending from 50° above the northern horizon to the zenith and the other extending from the southern horizon to 30° above, were observed to the westward of the station in an apparently cloudless sky. Several viewpoints were taken, yet not a semblance of a cloud could be seen in that portion of the heavens. The colors of the segments of rainbow were very brilliant.

RAINFALL IN JAMAICA

Thru the kindness of Dr. H. H. Cousins, chemist to the government of Jamaica and now in charge of the meteorological service of that island, we have received the following table:

The rainfall for February was therefore above the average for the whole island. The greatest fall, 13.80 inches, occurred at Mount Holstein in the northeastern division, while no rain fell at Sandy Bay, in the northern division.

Comparative table of rainfall. [Based upon the average stations only.] FEBRUARY, 1907.

	Relative	Number of	Rain	fall.
Divisions.	area.	stations.	1906.	Average.
Northeastern division	Per cent. 25 22	22 49	Inches. 4.71 3.18	Inches. 5, 52 2, 48
West-central division	26 27	21 31	3, 89 3, 21	2, 39 1, 69
Means	100		3, 75	3.02

¹ Received too late for publication in the February Review.

XXXV-23.

· Barkerville

XXXV-24.

Chart X. Isobars and Winds for Greenwich Mean Noon, March 1, 1907.

Chart XI. Isobars and Winds for Greenwich Mean Noon, March 7, 1907.

