Рассмотрим систему дифференциальных уравнений с диффузионным взаимодействием между соседними элементами и дополнительной внутренней связью

$$\dot{u}_j = N^2(u_{j+1} - 2u_j + u_{j-1}) + \gamma u_j - u_j^3, \qquad j = \overline{1, N},$$
(1)

$$u_0 = u_1, \ u_{N+1} = u_N + \frac{\alpha}{N} u_k, \qquad 1 \leqslant k < N.$$
 (2)

где $u_j = u_j(t)$ — гладкие функции при $t \geqslant 0$, величина $N \gg 1$, а параметры α, β, γ — действительные числа. Индекс $k \in \mathbb{N}$ позволяет определить дополнительную внутреннюю связь между элементами u_N и u_k .

Изучим поведение нулевого состояния равновесия системы (1), (2) вблизи критических значений $\alpha = \alpha_u$ для различных значений γ при k = 1. Величина α_u рассчитывается по формуле

$$\alpha_u = \frac{\sqrt{-\gamma} \, \operatorname{sh} \delta_u}{\operatorname{ch} \delta_u x_k},\tag{3}$$

где $\delta_u=2N$ arsh $\frac{\sqrt{-\gamma}}{2N}$, а $x_k=\frac{1}{N}\left(k-\frac{1}{2}\right)$. Схематическая визуализация критических значений α и γ , а также график функции $\alpha_u(\gamma)$ показаны на рис. 1. Кривая α_u , соответствующая случаю дивергентной потери устойчивости нулевого состояния равновесия, показана синим цветом, а кривая α_c , соответствующая случаю колебательной потери устойчивости нулевого решения, показана красным цветом. Кривые α_u и α_c пересекаются в точке B с координатами (γ_*,α_*) , где $\gamma_*>0$ и $\alpha_*<0$. Так, в случае k=1 $(x_0=0)$ значение $\gamma_*\approx 4.116$, а $\alpha_*\approx -1.82$.

Рис. 1: Схематическая визуализация критических зависимостей в случае k=1 ($x_0=0$)

Кривые α_u и α_c в данном случае являются важнейшими элементами построения областей значений параметров (α, γ) , определяющих устойчивость нулевого состояния равновесия системы (1), (2). Так область S соответствует случаю устойчивого нулевого решения, U – случаю появления двух симметричных состояний равновесия, а в обла-

сти C наблюдается наличие цикла вблизи неустойчивого нулевого решения. Отметим, что все результаты локальны и получены в некоторой окрестности нулевого состояния равновесия и достаточно малой окрестности критических кривых.

С помощью предельного перехода $N \to \infty$, систему дифференциальных уравнений (1), (2) можно свести к непрерывной краевой задаче

$$\dot{u} = u'' + \gamma u - u^3,\tag{4}$$

$$u'(0,t) = 0, u'(1,t) = \alpha u(x_0,t).$$
 (5)

Здесь функция u(x,t) является гладкой при $t \geq 0$ и $x \in [0,1]$, а величина $x_0 \in [0,1)$ вместо индекса k, определяет отклонение во втором краевом условии. В нашем случае, поскольку величина k=1, значение $x_0=0$.

С помощью вспомогательной функции v(x) сведем задачу (4), (5) к следующей системе:

$$\begin{cases} u' = v \\ v' = -\gamma u + u^3. \end{cases}$$
(6)

Для вектора $(u,v)^T$ определим следующие условие на его компоненты

$$u(0) = a, \quad v(0) = 0, \tag{7}$$

где a — действительное число.

Теорема 1. Введем в рассмотрение нечетную скалярную функцию F, определяемую по формуле

$$F(a) = v(1) - \alpha u(x_0). \tag{8}$$

Пусть $a_* \in [0, A]$ такое, что $F(a_*) = 0$. Тогда функция $u_*(x)$, удовлетворяющая условиям

$$u_*(0) = a_*, \qquad u_*'(0) = 0$$
 (9)

будет являться решением системы (6) и краевой задачи (4), (5) соответственно.

Определим условия дивергентной потери устойчивости нулевого решения краевой задачи (4), (5), а также исследуем фазовые перестройки, проходящие в его малой окрестности нулевого состояния равновесия. Для этого с помощью функций u(x) и v(x), построенных методом Рунге-Кутты, и различных значений $a \in [0, A]$ найдем корни a_* уравнения

$$F(a) = 0, (10)$$

которые соответствуют состояниям равновесия системы краевой задачи (4), (5).

Локальный анализ поведения системы (1), (2) в окрестности нулевого решения для k=1 ($x_0=0$) и $\widetilde{\gamma}\approx 4.039$ позволил численно доказать следующие теоремы.

Теорема 2. Пусть $\varepsilon = \alpha - \alpha_u$. Тогда для любого $\gamma < \widetilde{\gamma}$ существует ε_0 такое, что для $\varepsilon \in (0, \varepsilon_0]$ система (1), (2) имеет в окрестности нуля два пространственно неоднородных устойчивых режима.

Теорема 3. Пусть $\varepsilon = \alpha - \alpha_u$. Тогда для любого $\widetilde{\gamma} < \gamma < \gamma_*$ существует ε_0 такое, что для $\varepsilon \in (0, \varepsilon_0]$ система (1), (2) имеет в окрестности нуля два пространственно неоднородных неустойчивых режима.

При изменении параметра α вблизи критических значений α_u , для любого γ такого, что $\gamma < \widetilde{\gamma}$ наблюдается один и тот же сценарий поведения функции F(a). Для определенности возьмем $\gamma = -2.0$ и начнем менять параметр α вблизи критического значения α_u . Численный анализ поведения функции F(a) позволяет получить следующую последовательность фазовых перестроек для нулевого состояния равновесия для системы (4), (5):

1. При $\alpha < \alpha_u$, $\alpha_u \approx 2.737$, где уравнение (10) имеет единственный нулевой корень. Другими словами, нулевое состояние равновесия краевой задачи (4), (5) будет устойчивым. График функции F(a) для данного случая при a > 0 изображен на рис. 2.

Рис. 2: График функции F(a) для $\alpha=2.5$ и $\gamma=-2.0$

2. При переходе через критическое значение α_u , для всех $\alpha > \alpha_u$ уравнение (10) имеет пару симметричных относительно нуля корней $a_0 > 0$ и $\overline{a_0} < 0$. Это означает, что от нулевого состояния равновесия краевой задачи (4), (5), ответвляется пара устойчивых симметричных состояний равновесия, в результате чего нуль теряет свою устойчивость. Графики функций F(a) для $\alpha = 2.9$ при a > 0 и u(x) для $a_0 > 0$ показаны на рис. 3.

Рис. 3: Графики функций F(a) и u(x) для $\alpha=2.9$ и $\gamma=-2.0$

Полученный сценарий поведения функции F(a) верен для любых $\gamma < \widetilde{\gamma}$ и $\alpha > \alpha_c$. Отличия от рассмотренного случая состоят лишь в числовых значениях параметра α_u .

При изменении параметра α вблизи критических значений α_u , для любого γ такого, что $\widetilde{\gamma} < \gamma < \gamma_*$ наблюдается один и тот же сценарий поведения функции F(a). Для определенности возьмем $\gamma = -4.1$ и начнем менять параметр α вблизи критического значения α_u . Численный анализ поведения функции F(a) позволяет получить следующую последовательность фазовых перестроек для нулевого состояния равновесия для системы (4), (5):

1. При $\alpha < \alpha_1$, где $\alpha_1 \approx -1.823$, уравнение (10) имеет единственный нулевой корень. Другими словами, нулевое состояние равновесия краевой задачи (4), (5) будет устойчивым. График функции F(a) для данного случая при a>0 изображен на рис. 4а.

Рис. 4: График функции F(a) для различных значений α

- 2. При значении $\alpha = \alpha_1$ функция F(a) будет касаться оси абсцисс в точках $a_0 > 0$ и $\overline{a_0} < 0$, симметричных относительно нуля. График функции F(a) для данного случая при a > 0 изображен на рис. 46.
- 3. В малой окрестности критического значения $\alpha_u \approx -1.82$, при $\alpha_1 < \alpha < \alpha_2$, где $\alpha_2 \approx -1.81$, уравнение (10) будет иметь две пары симметричных относительно нуля корней $a_{02} > a_{01} > 0$ и $\overline{a_{02}} < \overline{a_{01}} < 0$. Это означает, что в окрестности устойчивого нулевого состояния равновесия краевой задачи (4), (5) рождается пара неустойчивых и пара устойчивых симметричных состояний равновесия, соответствующих парам корней a_{01} , $\overline{a_{01}}$ и a_{02} , $\overline{a_{02}}$. Отметим, что с ростом значения α , значения a_{01} и $\overline{a_{01}}$ будут приближаться к нулю, а a_{02} и $\overline{a_{02}}$ отдаляться от него. График функции F(a) для $\alpha = -1.821$ при a > 0 показан на рис. 5. Графики функции u(x) для $a_{02} > a_{01} > 0$ показаны на рис. 6.

Рис. 5: График функции F(a) для $\gamma=4.1$ и $\alpha=-1.821$

Рис. 6: График функций u(x)

- 4. При $\alpha = \alpha_2$ корни уравнения (10) a_{01} и $\overline{a_{01}}$ сливаются с нулем. Другими словами, пара неустойчивых симметричных состояний равновесия сливается с нулевым решением краевой задачи (4), (5), тем самым отбирая у него устойчивость.
- 5. При $\alpha > \alpha_2$ уравнение (10) имеет пару симметричных относительно нуля корней $a_{02} > 0$ и $\overline{a_{02}} < 0$. Это означает в окрестности неустойчивого нулевого решения краевой задачи (4), (5) имеется пара устойчивых состояний равновесия. Графики функций F(a) для $\alpha = -1.81$ и u(x) для $a_{02} > 0$ показаны на рис. 7.

Рис. 7: Графики функций F(a) и u(x) для $\alpha=-1.81$ и $\gamma=4.1$

Полученный сценарий поведения функции F(a) верен для любых $\tilde{\gamma} < \gamma < \gamma_*$ и $\alpha > \alpha_c$. Отличия от рассмотренного случая состоят лишь в числовых значениях параметра α_u . Начиная со значения $\gamma > \gamma_*$ фазовые перестройки будут происходить с неустойчивым нулевым состоянием равновесия краевой задачи (4), (5).

Вместе с приведенным выше анализом фазовых перестроек, численно можно доказать следующие теоремы.

Теорема 4. Пусть $\gamma < \widetilde{\gamma}$. Тогда на плоскости параметров (α, γ) , при переходе через кривую $\alpha_u(\gamma)$ от нулевого решения краевой задачи (4), (5) ответвляются два устойчивых симметричных состояния равновесия.

Теорема 5. Пусть $\tilde{\gamma} < \gamma < \gamma_*$. Тогда на плоскости параметров (α, γ) , при переходе через кривую $\alpha_u(\gamma)$ нулевое решение краевой задачи (4), (5) грубо теряет свою устойчивость: к нулевому состоянию равновесия равномерно подходит пара неустойчивых состояний равновесия и отбирает у него устойчивость.