风控评分模型报告

一、背景描述

现如今,金融信用消费产品的数量,种类越来越多,信用消费的规模也越来越大,种类由过去单一、大额、手续繁杂的房贷、车贷产品,发展出现如今小额,手续便捷,响应速度更快的花呗、京东白条、借呗等全新的信用消费产品。随着数量、种类的快速增多,信用消费便捷快速的同时,需要的是更严格的风险控制。

为了更高效,便捷的管控金融信用风险,在央行的监管下两家个人征信机构百行征信,朴道征信相继成立,其主要产品按服务对象划分为:个人征信产品,企业征信产品,政务产品,可用于查询个人信用报告,帮助中小微企业提供征信报告,有助于企业融资,银行进行优质贷款,为政府提供便民服务。所提供的征信包括了个人或企业的基本情况以及信用评估报告,可用于信用证明,信用消费等与信用相关的业务。不仅可以帮助个人或企业分辨优质的用户与合作伙伴,国家也可依据征信报告快捷办理便民业务,也可对失信人员进行约束,如限制购机票、火车票等举措,督促失信人员尽快弥补失信行为,高效的降低了资金流动中的信用风险。

风控评分能够有效的量化风险控制,有效的降低了金融放贷机构的信用风险。风控评分对于银行的重要性如下: 1. 风控评分可对贷款人进行信用分级(未来考虑对不同等级人群给予不用的贷款利率) 2. 风控评分降低贷款人还贷逾期风险(提高银行现金流的稳定性,为银行带来高确定性的收益,降低银行坏账风险) 3. 风控评分增加了信用评价量化标准,未来可为低抵押甚至无抵押的用户进行贷款,提高银行收益,增加银行资产流动性。

本文选取具有市场代表性的信用消费产品——银行信用卡作为研究对象,对 1000 名用户的数据进行逻辑回归分析,量化评价不同用户的按时还款能力。

表 1:数据描述表

数据类型		数据名称	详细说明	取值范围	数据分布	备注
因变量		还款状况	定性变量	0: 坏人; 1:好 人	0:333 (33.3%) , 1:667 (66.7%)	好人占比 66.7%
自变量	基本信息	性别	定性变量	0: 女性; 1:男	0:503 (50.3%) , 1:497 (49.7%)	男性占比 49.7%
		单身/已婚	定性变量	0: 单身; 1:已 婚	0:503 (50.3%) , 1:497 (49.7%)	已婚占比 49.7%
		未育/已育	定性变量	0: 未育; 1:已 育	0:512 (51.2%) , 1:488 (48.8%)	已育占比 48.8%
	收入水平	收入	连续变量 呈右偏分布	426-120940	平均值: 21549,中位 数: 18080,数 据右偏	单位: 元
	学习能力	教育水平	定性变量	1: 高中及以 下, 2: 大专或 本科, 3: 硕士 研究生, 4:博士 研究生及以上	1:212 (21.2%) , 2:335 (33.5%) , 3:354 (35.4%) , 4:99 (9.9%)	
		英语水平	定性变量 共4个水平	1: 四级以下, 2: 四级, 3: 六 级, 4:六级以上	1:224 (22.4%), 2:329 (32.9%), 3:305 (30.5%), 4:142 (14.2%)	
	社交人脉	微博好友数	连续变量	6-114 (整数)	平均值 40.99, 中位数: 39,数 据右偏	单位: 个
	消费理念	消费理念	连续变量	0-1	平均值: 0.3903, 中位 数: 0.35, 数据 右偏	消费理念=信用 卡消费/总消费

三、描述分析

图 1: 收入水平直方图, 箱线图

收入水平呈右偏分布,收入平均值: 21549 元,收入中位数: 18080 元。好人的收入中位数显著高于坏人,初步判断收入水平与按时还款正相关。

图 2: 教育水平直方图

高中及以下学历人群违约率: 84/212=39.62%, 大专或本科学历人群违约率: 132/335=39.40%, 硕士研究生学历人群违约率: 102/354=28.81%, 博士研究生及以上学历

人群违约率: 15/99=15.15%。高学历人群违约率显著低于低学历人群。学历水平与按时还款正相关。

图 3: 英语水平直方图

英语水平四级以下人群违约率: 97/224=43.30%, 四级人群违约率: 123/329=37.39%, 六级人群违约率: 83/305=27.21%, 六级以上人群违约率: 30/142=21.13%。高英语水平人群违约率显著低于低英语水平人群。英语水平与按时还款正相关。

图 4: 微博好友数,消费理念箱线图

好人的微博好友,消费理念中位数显著低于坏人,初步判断微博好友数,消费理念 与按时还款负相关。

四、模型建立

本逻辑模型包含一个自变量:是否按期还款,8个自变量性别,单身/已婚,未育/已育,收入,受教育程度,英语水平,微博好友数,消费理念。将案例数据的连续变量标准化后,对自变量进行逻辑回归,回归结果如下表。

表 2: 标准化后回归系数表

本目 4	コロズ坐	显著性	A X	
受 重 名	变量名 回归系数		备注	
收入	0.748	<0.001	不显著	
微博好友数	-0.309	<0.001		
消费理念	-0.382	<0.001		
性别: 男性	-0.266	0.077	基准组: 女性	
单身/已婚:已婚	0.398	0.008	基准组: 单身	
未育/已育: 已育	0.364	0.015	基准组: 未育	
教育水平: 大专或本	-0.004	0.982		
科	0.001	0.702	基准组: 高中及以下	
教育水平: 硕士研究	0.541	0.007		
生	0.341	0.007		
教育水平:博士研究	1.374	< 0.001		
生及以上	1,371	\$0.001		
英语水平: 四级	0.348	0.076		
英语水平: 六级	0.784	<0.001	基准组:四级以下	
英语水平: 六级以上	1.183	<0.001		
全样本 AUC 值	0.759	AIC	1104.5	

由上表得出,控制其他变量不变的情况下:

- 收入回归系数为正且显著,收入高的用户更倾向于按时还款
- 微博好友数,消费理念回归系数为负,微博好友数越多,信用卡消费比例越大的用 户按时还款可能性越小
- 硕士,博士及以上学历用户比高中及以下学历用户更有可能按时还款,但大专或本 科用户与高中及以下学历用户按时还款无明显差异
- 英语水平六级及以上用户比四级以下用户更有可能按时还款,但四级用户与四级以下用户按时还款无明显差异
- 已婚,已育用户比单身,未育用户更有可能按时还款

五、模型预测

使用上述逻辑回归模型对内样本进行预测,得到 ROC 曲线图:

图 5: ROC 曲线图

由图 5 可知,全模型的内样本 AUC 值为 0.759,即在 ROC 曲线下方的面积为 0.759

为了验证模型在真实测试数据的准确性,随机拆分80%的数据作为训练集,20%的数据作为测试集,模拟100次,得到外样本的AUC取值为0.747

六、商业化结果展示

图 6: 人群划分图

由图 6 可知,前三个分位数样本按时还款率均高于平均水平,为了降低坏账风险, 建议向按时还款率靠前的分组样本放贷。

图 7: 用户画像雷达图

图 7 中选取了 4 个样本的数据,其中 3 位用户按时还款,这 3 位用户在收入,学习能力两个正相关指标表现较好,在消费理念,社交人脉两个负相关指标表现较差,因此按时还款,被归类为优质客户。

图 8: 按时还款概率预测值的分组箱线图

由图 8 可知,按时还款与非按时还款用户的中位数差距显著,因此本模型具有较强的区分度。

七、结论与建议

根据风控打分模型,控制其他变量不变的情况下,我们可以得出如下结论:

- 收入,学历水平,英语水平高的用户更倾向于按时还款
- 微博好友数,消费理念高的用户更不容易按时还款
- 已婚,已育用户比单身,未育用户更有可能按时还款

因此,针对信用卡还款给出如下建议:

为降低坏账风险,在其他资质相同的情况下,尽可能选择收入高,学历水平,英语水平高的已婚已育用户,且微博好友数少,消费理念低的用户开放高额的信用消费