David Muñoz Sánchez 3ºCSI

Ejercicio 1

Con base la ontología del congreso de las transparencias Ontologías 1, traducir a palabras el siguiente axioma:

 \exists NºArticulos.{n} = ≤n.P-author⁻¹ ∩ ≥n.P-author⁻¹

descomponiendo cada parte simple de la expresión

{n}: el único elemento es el número n.

Nº Articulos: es una propiedad que tiene como dominio a la clase autor y como rango el entero n.

∃NºArticulos.{n}: Autores que en la propiedad Nº Articulo tienen un valor n.

P-autor⁻¹: es la propiedad inversa de P-autor, y va desde Autor a Presentación (al contrario de como se muestra en la ontología). Podemos identificarla como es autor de.

≤n.P-autor-1: autores que son autores de a lo sumo n presentaciones.

≥ n.P-autor-1: autores que son autores de como mínimo n presentaciones.

 \leq n.P-autor-1: autores que son autores de exactamente n presentaciones.

 \exists NºArticulos.{n} \equiv \leq n.P-autor-1 \cap \geq n.P-autor-1: los autores cuyo valor de NºArticulos es n equivalen a los autores que son autores de exactamente n presentaciones.

David Muñoz Sánchez 3ºCSI

Ejercicio 2

 Crear un axioma para representar en la ontología del congreso de las transparencias Ontologías 1 la siguiente afirmación:

"Todas las presentaciones deben tener al menos uno de sus autores inscritos"

NombreIns: es una propiedad que tiene como dominio una persona inscrita y como rango el nombre de esa persona.

∃NombreIns-1.nombre: nombres que se corresponden con el nombre de una persona inscrita.

∃nombreAut.(∃NombreIns-¹.nombre): clase de los autores que tienen el nombre de una persona inscrita.

3P.autor.(3nombreAut.(3NombreIns-1.nombre**)):** clase de las presentaciones con algún autor inscrito.

El axioma tendrá la forma:

Presentacion \subseteq \exists P.autor.(\exists nombreAut.(\exists NombreIns⁻¹.nombre))