

Data Management and Data Cleaning for Scientists I

Mark van der Loo

Contents

Lecture	Topics
1	Structuring data and analyses
2	Reproducibility and introduction to R
3	Data cleaning 1: raw data, data validation
4	Data cleaning 2: fixing errors, missing data

Materials for these lectures

github.com/markvanderloo/UFPEL2019

The faces of data

What do we mean when we say 'data'?

Data are a representation of information.

What a user of data wants

CO₂ emission (fictional)

(11011011)				
fuel	emission			
Petrol	215			
of which bio	75			
Diesel	456			
- of which bio	89			

Example: IBGE

	A	В	C	D	E	F	G	Н		
	Tabe	ela 1.2 - Númer	o de empr	esas, pes	soal ocup	oado total	l, pessoa	l ocupado	assala	
2			segundo	as seçõ	es da clas	sificação	de ativi	dades e as	faixas	
3										
4			Ņ	úmero de emp	resas, por tip	os de eventos	demográfico	S		
5	Seções da classificação de atividades	Faixas de pessoal		Entradas				Sobrevivente		
6		ocupado assalariado	ocupado assalariado Total	Total	Total	Nascimento S	Reentradas	Saídas	Sobrevivente	Total
7	Total	Total	4 458 678	676 444	503 212	173 232	699 376	3 782 234	38 35	
8	Total	o	2 058 400	499 557	357 848	141 709	579 351	1 558 843	2 85	
9	Total	1 a 9	1 944 144	161 548	131 874	29 674	113 548	1 782 596	8 91	
10	Total	10 ou mais	456 134	15 339	13 490	1 849	6 477	440 795	26 59	
1	A Agricultura, pecuária, produção florestal, pesca e aquicultura	Total	33 110	5 704	4 307	1 397	5 029	27 406	48	
12	A Agricultura, pecuária, produção florestal, pesca e aquicultura	0	15 040	4 138	3 019	1 119	4 201	10 902	2	
13	A Agricultura, pecuária, produção florestal, pesca e aquicultura	1 a 9	13 085	1 327	1 071	256	755	11 758	6	
14	A Agricultura, pecuária, produção florestal, pesca e aquicultura	10 ou mais	4 985	239	217	22	73	4 746	38	
15	B Indústrias extrativas	Total	10 067	1 315	859	456	1 510	8 752	20	
16	B Indústrias extrativas	o	4 266	1 056	675	381	1 298	3 210		
17	B Indústrias extrativas	1 a 9	3 862	237	165	72	188	3 625	1	

 $Source: \ https://www.ibge.gov.br/en/statistics/economic/industry-and-construction/\\ 22733-demography-of-enterprises-and-statistics-of-entrepreneurship.html?=\&t=resultados$

What an analyst wants

fuel	emission		fuel	type	emission
Petrol	215		Petrol	regular	140
of which bio	75	\longrightarrow	Petrol	bio	75
Diesel	456		Diesel	regular	367
- of which bio	89		Diesel	bio	89

What a web developer wants

```
[{"fuel":"petrol","type":"regular","emission":140},
   {"fuel":"petrol","type":"bio","emission":75},
   {"fuel":"diesel","type":"regular","emission":367},
   {"fuel":"diesel","type":"bio","emission":89}]
```


Example: IBGE

```
{} [{"id":"1501", "nome": "Belém", "nivel": {"id": "7", "nome": "Região
metropolitana"}},
{"id": "2301", "nome": "Fortaleza", "nivel": {"id": "7", "nome": "Região
metropolitana"}},
{"id": "2601", "nome": "Recife", "nivel": {"id": "7", "nome": "Região
metropolitana"}},
{"id": "2901", "nome": "Salvador", "nivel": {"id": "7", "nome": "Região
metropolitana"}}, {"id":"3101", "nome": "Belo
Horizonte", "nivel":{"id":"7", "nome":"Região metropolitana"}},
{"id": "3301", "nome": "Rio de Janeiro", "nivel": {"id": "7", "nome": "Região
metropolitana"}}, {"id": "3501", "nome": "São
Paulo", "nivel": {"id": "7", "nome": "Região metropolitana"}},
{"id":"4101", "nome": "Curitiba", "nivel": {"id": "7", "nome": "Região
metropolitana"}}, {"id":"4301","nome":"Porto
Alegre", "nivel": {"id": "7", "nome": "Região metropolitana"}}]
```



```
[{"fuel":"petrol","type":"regular","emission":140},
   {"fuel":"petrol","type":"bio","emission":75},
   {"fuel":"diesel","type":"regular","emission":367},
   {"fuel":"diesel","type":"bio","emission":89}]
```


fuel	type	emission
Petrol	regular	140
Petrol	bio	75
Diesel	regular	367
Diesel	bio	89

What a database designer sees

Fuel			Тур	oe	
id	name	_	id	name	
11	petrol	,	1	regular	-,
12	diesel		2	bio	

Emis	sion		
id	fuel	type	amount
120	11	1	140
121	11	2	75
123	12	1	367
124	12	2	89

Fue		
id	name	
11	petrol	,
12	diesel	

Тур	e	
id	name	
1	regular	
2	bio	

Emission

Emission							
id	fuel	type	amount				
120	11	1	140				
121	11	2	75				
123	12	1	367				
124	12	2	89				

fuel	type	emission
Petrol	regular	140
Petrol	bio	75
Diesel	regular	367
Diesel	bio	89

Summarizing

Presentation

- Convey a (single) message
- Human-readable

Analyses

- Reusable for (interactive) analyses
- Machine-readable, easy to manipulate

Transport

- Machine-readable
- Generic, language-independent format

Storage

Examples of tools

Why choosing the right tool is important (NYT, 2013)

The New York Times

Opinion

PAUL KRUGMAN

The Excel Depression

By Paul Krugman

April 18, 2013

Why choosing the right tool is important (Nature, 2019)

6. Protect raw data

All data are precious, but raw data are irreplaceable: the only way to recreate them is to run the experiment again. These must therefore be backed up — and kept as read-only files. Wickes once had to kill a project because she opened a crucial file in Microsoft Excel, which automatically formatted a column, changing the values and ruining the underlying data set. So, protect your raw data, says Martinez, "no matter what".

Why choosing the right tool is important (Science, 2016)

One in five genetics papers contains errors thanks to Microsoft Excel

By Jessica Boddy | Aug. 29, 2016, 1:45 PM

Homework assignment

Google 'excel disasters'

and spend 30 minutes reading what you find

Presentation versus analysis

Spreadsheet software is unsuited for analysis because

- Autoformatting
- Does not force consistency
- Hard to analyze: code is hidden
- Hard to test
- You see a 'state' not the process

A bit of terminology

Computer scientists \leftrightarrow Statisticians

Entity type $\ \leftrightarrow$ Population

 $\mbox{Entity} \ \ \, \leftrightarrow \ \ \, \mbox{Population unit}$

Attribute \leftrightarrow (Stochastic) variable

 $\mathsf{Value} \ \leftrightarrow \ \mathsf{Value}$

How to recognize whether data is suited for analysis¹

Boxes to tick

- 1. Does each row correspond to one entity?
- 2. Are all entities of the same type?
- 3. Is every entity represented only once?
- 4. Does every column correspond to a single property for each entity?
- 5. Are all elements of each column of the same and the correct type?
- 6. Is the data valid?

Rule of thumb

Can you make meaningful summary statistics over each column?

Quizz (1): Ready for analyes?

	Alice	Bob	Carol
Shoe size	38	43	41
Income	3300	2800	4000

Quizz (2): Ready for analyses?

	Shoe size	Income
Alice	38	3300
Bob	43	2800
Carol	41	4000

Quizz (3): Ready for analyses?

Income distribution

	€14k – €20k	€20k – €40k	€40k – €80k	€80K+
Amsterdam	20%	40%	35%	5%
Rotterdam	30%	30%	38%	2%
Den Haag	25%	35%	30%	10%

Quizz (4): Ready for analyses?

	Age	has job
Dave	36	No
Eve	5	Yes

Quizz (5): Ready for analyses?

	costs	profit
Retailers	50	10
Wholesalers	20	5
Total	70	15

Not all data is 'simple rectangular'

Each data type consists of particular basic elements and is manipulated with particular basic operations.

The Statistical Value Chain

Value Chains

Porter's value chain (1985)

The idea of the value chain is based on the process view of organizations, the idea of seeing a manufacturing (or service) organization as a system, made up of subsystems each with inputs, transformation processes and outputs.

Statistical Value Chain

Notes

- This part only pertains to the data processing stage. Collection, design of experiments, dissemination of results, and so on are not included.
- The fixed points (half-fabricates) are well-defined statistical products.

Raw data

Your most valueable resource!

- Hard/expensive to obtain
- Keep unchanged
- Backup according to 3-2-1 principle

The importance of backups

Backblaze Lifetime Hard Drive Annualized Failure Rates

For hard drive models in service as of June 30, 2019 Reporting period April 2013 - June 2019 inclusive

		Drive	Drive	Average	Drive	Drive	
MFG	Model	Size	Count	Age	Days	Failures	AFR*
Toshiba	MG07ACA14TA	14TB	1,220	8.85	328,960	7	0.78%
HGST	HUH721212ALE600	12TB	520	4.47	61,360	2	1.19%
HGST	HUH721212ALN604	12TB	9,609	3.52	976,794	10	0.37%
Seagate	ST12000NM0007	12TB	34,710	13.58	14,245,745	737	1.89%
Seagate	ST10000NM0086	10TB	1,200	21.29	787,144	12	0.56%
HGST	HUH728080ALE600	8TB	1,001	19.29	654,219	15	0.84%
Seagate	ST8000DM002	8TB	9,875	33.26	10,003,569	280	1.02%
Seagate	ST8000NM0055	8TB	14,380	23.90	10,532,321	336	1.16%
Seagate	ST6000DX000	6TB	886	50.85	2,739,695	79	1.05%
HGST	HMS5C4040ALE640	4TB	2,639	39.01	11,174,488	155	0.51%
HGST	HMS5C4040BLE640	4TB	12,752	32.53	17,236,735	214	0.45%
Toshiba	MD04ABA400V	4TB	99	49.23	216,631	5	0.84%
Seagate	ST4000DM000	4TB	19,570	44.41	49,043,264	3,652	2.72%
		Totals	108,461		118,000,925	5,504	1.70%

^{*} AFR - Annualized Failure Rate

BACKBLAZE

backblaze.com/blog/backblaze-hard-drive-stats-q2-2019/

Optimistically:

- On average $P(failure) \approx 0.001/\text{year}$.
- UFPEL has $\approx 20\,000$ students.
- We expect \approx 20 failures/year.

Input data

Technically 'clean' data

- File type is known and can be read
- · Data structured for analyses
- Variables are of correct type (number/date/text/categorical...)
- Records identified with statistical objects
- Variables identified with statistical properties

Rule of thumb

You can read this data into your favorite analyses tool, without errors, with a single expression

From raw to input, an example from the LATTES system

From raw to input, an example from the LATTES system

os | Produções | Patentes e Registros | Inovação | Eventos | Orientações | Bancas

From raw to input, an example from the LATTES system

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?><CURRICULO-VITAE SISTEMA-ORIGEM-XML="LATTES_OFFLINE" NUMERO-IDENTIF
ICADDR="6217846985830016" DATA-ATUALIZACAO="15102019" HORA-ATUALIZACAO="140645">CURRICULO-VITAE SISTEMA-ORIGEM-XML="LATTES_OFFLINE" NUMERO-IDENTIF
ICADDR="6217846985830016" DATA-ATUALIZACAO="15102019" HORA-ATUALIZACAO="140645">CURRICULO-VITAE SISTEMA-ORIGEM-TO="Tatiana Pereira Cenci, Tatiana; PEREIRA, T; PEREIRACENCI, T; PEREIRA, T; PEREIRACENCI, T

LATTES XML format: nodes and attributes

Structuring XML data using R

```
library(xm12)
xml <- read xml("curriculo.xml")</pre>
node <- xml_find_first(xml,"/CURRICULO-VITAE")</pre>
d <- data.frame(</pre>
    LattesId = xml attr(node, "NUMERO-IDENTIFICADOR")
  . Updated = xml attr(node, "DATA-ATUALIZACAO")
print(d)
```

```
## LattesId Updated
## 1 6217846985830016 15102019
```


Structuring XML data using R

```
library(lubridate)

# convert from text to proper data-time format
d$Updated <- dmy(d$Updated)

print(d)</pre>
```

```
## 1 6217846985830016 2019-10-15
```

LattesId Updated

```
# export to CSV format
write.csv(d, file="CV.csv")
```


##

With a little more work

```
node <- xml find first(xml, "//ENDERECO-PROFISSIONAL")</pre>
d$Institute <- xml attr(node, "NOME-INSTITUICAO-EMPRESA")</pre>
d$Faculty <- xml attr(node, "NOME-ORGAO")
nodes <- xml find all(xml, "//ARTIGO-PUBLICADO")</pre>
d$Articles <- length(nodes)</pre>
nodes <- xml find all(xml, "//CAPITULO-DE-LIVRO-PUBLICADO")</pre>
d$BookChapters <- length(nodes)</pre>
print(d)
```

```
##
             LattesId Updated
                                                       Institute
## 1 6217846985830016 2019-10-15 Universidade Federal de Pelotas
##
                      Faculty Articles BookChapters
  1 Faculdade de Odontologia
                                   116
```


Valid data

Satisfy domain knowledge constraints

- The last update can not be in the future
- Full professorship under 24 is highly unlikely
- More than *n* papers/year is unlikely (depending on field)

Justification

Invalid data leads to invalid statistical results.

Statistics

Target output values (aggregates)

• The resulting numbers for publication

Note

• These also need to satisfy domain knowledge constraints.

Output

Your paper!

- · Formatted, annotated
- Data possibly treated with anonymization techniques (SDC = statistical disclosure control)

The SVC: Remarks

- Actual data processing is not linear, you will go round a few times.
 - Build up the SVC as your research project progresses.
- Add or remove stages as needed.
- This general idea scales really well.

Quizz (1)

Where does the following activity take place?

Formatting date-time variable to ISO8106 format.

Quizz (2)

Where does the following activity take place?

Estimating effect of internationalization academic output.

Quizz (3)

Where does the following activity take place?

Standardizing miss-spelled categories, e.g.

- "Sim", "si" \rightarrow "sim"
- "NO", "Nao" ightarrow "não"

Quizz (4)

Where does the following activity take place?

Removing of fixing records where unemployed persons have a positive income from employment.

Quizz (5)

Where does the following activity take place?

Join data with a backbone using probabilistic linkage, based on approximate matches between various columns of the data and the backbone.

Implementation

Demo

Summary

- 1. Data represents information
- 2. It is important to choose a representation that suites analyses.
- 3. Obtaining, cleaning, analyzing data and reporting on results follow a value chain structure. It is useful to separate tasks accordingly.

There are free and open source tools supporting all necessary methods and transformations.

For the next lecture: please install R and RStudio

Instructions: github.com/markvanderloo/UFPEL2019

