Homework # 13

MATH 140 PROFESSOR JOHN LOTT

Ву

Cody Vig

 $The \ University \ of \ California \\ Berkeley$

Chapter 06 | Problem 7.1

Let M be a compact surface. Prove that M has a vector field with no zeros if and only if M "looks like" a torus.

Solution

Lemma. Let M be a compact surface, and suppose M has a vector field with no zeros. Then M 'looks like" a torus.

Proof. Suppose M is a compact surface with a vector field \mathbf{V} which has no zeros. Then we have $I(\mathbf{V}) = 0$, since the sum is empty. From the Poincaré-Brouwer Theorem, $\chi(M) = I(\mathbf{V}) = 0$. Then $\chi(M) = 2(1-g) = 0$ implies g = 1 and so M "looks like" a torus. 1

Lemma. Let M be a compact surface which 'looks like" a torus. Then M has a vector field with no zeros.

Proof. We can prove such a field exists by constructing one. Each meridian of a torus is a circle, and so we can define a vector field $\mathbf{v}(\theta_0,t)$ there such that $\langle \mathbf{v}(\theta_0,t), \mathbf{r} \rangle = 0$ where \mathbf{r} is a vector parallel to any radius of the meridian. As long as we choose the direction of $\mathbf{v}(\theta_0,t)$ consistently (perhaps by choosing $\mathbf{v}(\theta_0,t)$ to always point "downwards" along the circle of latitude²), then we can extend this definition analytically through θ to get a vector field on M which is everywhere nonzero, which completes the problem.

Chapter 06 | Problem 7.2

Prove that on $M = \mathbb{R}^2$ there are vector fields with infinitely many zeros P_n such that the sequence $\{P_n\}$ does not have a convergent subsequence.

Solution

It is sufficient to construct an example of such a field. To do so, construct a unit vector field on M and choose a sequence (x_n) of points along any line in M such that

$$\|x_{n+1} - x_n\| > \|x_n - x_{n-1}\|.$$

Now smoothly deform the vector field so that the resulting field vanishes at each \mathbf{x}_i and remains nonzero elsewhere. Then there are infinitely many zeros $P_n = \mathbf{x}_n$. But, since the sequence of zeros is strictly increasing, no subsequence of P_n is convergent, and we are done.

¹I cannot find a formal definition of "looks like" in the text, except for the statement defining the geometric genus of a surface. Intuitively, it seems like a surface 'looks like" a torus if its geometric genus g = 1. Otherwise, I am unsure.

 $^{^{2}}$ A notion of "downwards" is well-defined here, since M being compact implies M is orientable.

Chapter 06 | Problem 7.3

Prove that on $M = \mathbb{R}^2$ there are vector fields with no zeros.

Solution

Take the vector field $X(u^1, u^2) = x_0$ where x_0 is any nonzero vector in \mathbb{R}^2 . Then X is indeed a vector field with no zeros.

Chapter 06 | Problem 7.4

Find an example to show that Proposition 7.2 s false if the hypothesis "compact" is omitted.

Solution

The proposition is quoted below.

Proposition. If V and W are two vector fields on a compact surface M with only a finite number of zeros, then I(V) = I(W).

We need to find a surface M and two distinct vector fields \mathbf{V} and \mathbf{W} with finitely many zeros for which $I(\mathbf{V}) \neq I(\mathbf{W})$. Take $M = \mathbb{R}^2$.

Then a vector field \mathbf{V} with a source at the origin, say, $\mathbf{v} = \mathbf{x}_1 + \mathbf{x}_2$ (and analytically extended outside of the coordinate patch where \mathbf{x} is defined) is a vector field with $i_0(\mathbf{V}) = 1$. (This is meant to look like the second figure in Example 7.1 on page 195 on Millman and Parker) Since there are no other zeros, $I(\mathbf{V}) = 1$.

Consider now the vector field \mathbf{W} with a zero at the origin which looks like $\mathbf{v} = \mathbf{x} - \mathbf{y}$ (and again analytically extended outside of the coordinate patch where \mathbf{x} is defined). This is a vector field with $i_0(\mathbf{W}) = -1$. (This is meant to look like the third figure in Example 7.1 on page 195 on Millman and Parker) Since there are no other zeros, $I(\mathbf{W}) = -1$. Hence $I(\mathbf{V}) \neq I(\mathbf{W})$ and the theorem is false if the surface is not compact.