Table of contents

- Table of contents
- User guide
 - PhasiHunter workflow
 - Dependencies
 - Installation
 - Manual Installation
 - Docker image
 - Conda/mamba configure file
 - Demo data
 - Executing PhasiHunter with step-by-step submodules.
 - · Executing PhasiHunter with one-command module
 - · Default config.yaml file
 - The main output file
- Copyright

User guide

Welcome to phasihunter 69

A multithreaded program for mining phasiRNA regulation pathways based on multiple reference sequences.

PhasiHunter workflow

Dependencies

phasihunter is a CLI program runing on linux platform. The correction runing of phasihunter depends on some existing softwares.

- Bowtie (Langmead, et al., 2009. Genome Biol)
- Biopython (Cock, et al., 2009. Bioinformatics)
- Bedtools (Quinlan and Hall, 2010. Bioinformatics)
- Dnapi (Tsuji and Weng, 2016. PloS One)
- Trim_galore (<u>https://github.com/FelixKrueger/TrimGalore</u>)
- Segkit (Shen, et al., 2016. PloS One)
- Perl5 (<u>https://www.perl.org</u>)
- Fasta36 (Pearson and Lipman, 1988. Proc Natl Acad Sci U S A)
- TarHunter (Ma, et al., 2018. Bioinformatics)

Installation

Manual Installation

- 1. Install all dependencies
- 2. Clone phasihunter

```
git clone https://github.com/HuangLab-CBI/PhasiHunter.git .
```

3. Setting environment variable in ~/.bashrc

```
echo "export PATH=\$PATH:<phasihunter PATH> >> ~/.bashrc"
example:
```

```
echo "export PATH=\$PATH:/home/user/volumes/PhasiHunter >> ~/.bashrc"
```

4. type phasihunter to check phasihunter whether installation correct. If phasiHunter is installed correctly you will see the following content.

Docker image

The Docker image has been configured with all the dependencies required for running phasiHunter.

Conda/mamba configure file

We also provide a conda/mamba environment configuration file. User can install all the required dependencies with command conda/mamba create -f /foo/PhasiHunter/bin/env.yaml

Demo data

Download link

https://cbi.njau.edu.cn/PhasiHunter_demo_data/test_osa.tar.gz

Executing PhasiHunter with step-by-step submodules.

Parameter in < > means necessary; parameter in [] means optional

1. Data pre-process

```
phasiHunter preprocess -m r -i /home/user/test_osa/SRR5049781.fastq.gz -mi
19 -ma 25 -e 1 -n 1000000 -o
   /home/user/test_osa/SRR5049781_processed_cdna.map -in
   /home/user/test_osa/index/oryza_sativa_cdna_index

phasiHunter preprocess -m m -i
   /home/user/test_osa/SRR5049781_trimmed_format_filter.fa -mi 19 -ma 25 -e 1 -
   n 1000000 -o /home/user/test_osa/SRR5049781_processed_gdna.map -in
   /home/user/test_osa/index/oryza_sativa_gdna_index
```

· preprocess module usage

```
1
    Help messeage:
2
      options:
        # necessary options:
3
        -m: string -- mode: r | c | m;
4
                        raw(mode): trim adaptor --> normalization --> length and
 5
    abundance filter --> mapping
                        clean(mode): normalization --> length and abundance
6
    filter --> mapping
                        mapping(mode): mapping
7
        -i: file -- for r mode: fastq file or fastq.gz file
8
9
                        for c mode: fasta file or fasta.gz file
                        for m mode: length and abundance filter fasta file
10
        -r: file -- reference sequence fasta file
11
12
        -in: string -- index prefix, -r option will be ignored when -in enable
        -o: outfile -- outfile name
13
14
        # options with default value
15
```

```
-j: int -- adaptor trim parallel cores; <8 is recommend, only need
16
    in r mode, default=1
17
        -bj: int
                    -- bowtie parallel cores; defalut=1
        -mh: int
                    -- max hits when mapping to ref sequence, default=10
18
                    -- minimal sRNA reads length cutoff, default=19
        -mi: int
19
                    -- maxmial sRNA reads length cutoff, default=25
20
        -ma: int
        -e: float -- sRNA reads cpm cutoff, default=1
21
22
        -n: int
                   -- normalization base, default=1000000
23
24
25
        # other
        -v:
                        print version information
26
        -h:
                        print help information
27
```

2. PhasiRNA and PHAS loci prediction

```
phasiHunter phase -cm /home/user/test_osa/SRR5049781_processed_cdna.map -c /home/user/test_osa/oryza_sativa_cdna.fa -gm /home/user/test_osa/SRR5049781_processed_gdna.map -g /home/user/test_osa/oryza_sativa_gdna.fa -fm None -f None -fa /home/user/test_osa/SRR5049781_trimmed_format_filter.fa -a /home/user/test_osa/phase_a.txt -o /home/user/test_osa/phase_o.txt -me b -il 5 -pl 21 -pn 4 -mh 10 -j 20 -pv 0.001 -ps 15 -pr 0.4 -cl y
```

phase module usage

```
phase usage:
1
2
      option:
        -cm: file -- map file based on reference transcriptome sequence
3
        -c: file -- reference transcritome sequence, fasta file
4
        -gm: file -- map file based on reference genome sequence
5
        -g: file -- reference genome sequence, fasta file
6
7
        -fm: file -- map file based on full length transcriptome sequence
        -f: file -- full length transcriptome sequence, fasta file
8
9
        -fa: file -- sRNA file
                   -- allsiRNA cluster output file, default name is phase_a.txt
10
        -a: out
                   -- phasiRNA cluster output file, default name is phase_o.txt
        -o: out
11
                       phasiRNA prediction method, h(hypergeometric test) |
        -me: str
12
    p(phase score) | b (both), default=b
        -il: int
                   -- phasiRNA cluster island, default=5
13
        -pl: int
                   -- phase length, 21 | 24, default=21
14
                   -- phase number, default=4
        -pn: int
15
                   -- max hits when mapping to ref sequence, default=10
16
        -mh: int
        -j: int
                       parallel number, default=1
17
        -pv: float -- pvalue cutoff, default=0.001, only function with h/b
18
    method applied
        -ps: float -- phase score cutoff, default=15, only function with p/b
19
    method applied
        -pr: float -- phase ratio cutoff, default=0.4, only function with p/b
20
    method applied
21
        -cl: str -- delete .phasiHuter_bowtieIndex, y|n, default=y
```

```
22 -v: -- print version information
23 -h: -- print help information
```

3. PhasiRNA and PHAS loci result integration

```
phasiHunter integration -io /home/user/test_osa/phase_o.txt -ia /home/user/test_osa/phase_a.txt -an /home/user/test_osa/oryza_sativa_gdna.gff3 -g y -o /home/user/test_osa/integration_o.txt -a /home/user/test_osa/integration_a.txt -s /home/user/test_osa/integration_s.txt -po /home/user/test_osa/integration_p.txt -j 1 -pn 4 -pl 21 -pv 0.001 -il 5
```

integration module usage

```
1
    integration usage:
2
      option:
3
        # necessary options:
        -io: file -- phase module -o output file
4
        -ia: file -- phase module -a output file
5
        -an: file -- reference genome gff3 file
6
                   -- y | n, whether exist gdna based PHAS Loci
        −g: str
7
8
9
        # options with default value
        -o: out -- integration phasiRNA cluster, default name is
10
    integration_o.txt
        -a: out -- integration all siRNA cluster, default name is
11
    integration_a.txt
12
        -s: out -- integration summary, default name is integration_s.txt
        -po: out -- PHAS Loci information, default name is integration_p.txt
13
                  -- parallel number, default=1
14
        -j: int
                   -- phase number, default=4
15
        -pn: int
        -pl: int -- phase length, 21 | 24, default=21
16
        -pv: float -- pvalue cutoff, default=0.001
17
        -il: int -- phasiRNA cluster island, default=5
18
19
        -dp: str -- y | n, discard only P method result, default=y
20
        # optional options
21
        -fn: file -- full length transcript annotation file
22
23
        # other
24
        -v:
                  -- print version information
25
                      print help information
26
        -h:
```

4. Print phasiRNA cluster plot, phasiRNA.fa, PHAS.fa

```
phasiHunter visulization -io /home/user/test_osa/integration_o.txt -ia /home/user/test_osa/integration_a.txt -ip /home/user/test_osa/integration_p.txt -a /home/user/test_osa/alignment.txt - o /home/user/test_osa/phasiRNA.fa -p /home/user/test_osa/PHAS.fa -pl 21 -m
```

```
10 -c /home/user/test_osa/oryza_sativa_cdna.fa -g /home/user/test_osa/oryza_sativa_gdna.fa -f None -pc y -pg y -pf n
```

visulization module usage

```
visulization usage:
1
2
      option:
        # necessary options:
3
        -io: file -- integration -io outputfile
4
        -ia: file -- integration -ia outputfile
5
        -ip: file -- integration -po outputfile
6
        -a: out -- alignment file, default name is alignment.txt
7
        -o: out
                   -- phasiRNA fasta file, default name is phasiRNA.fa
8
             out -- PHAS Gene fasta file; Format:
9
        -p:
    >geneid/chr\tphasiRNA_cluster_region(start end)\tseq_region(start end),
    default name is PHAS.fa
10
        # options with default value
11
        -pl: int -- phase length, 21 | 24, default=21
12
        -m: float -- the number for reducing the size of Y-axis. default=10
13
14
        # optional options
15
16
        -c: file -- reference transcritome sequence, fasta file, enable cdna
    based phasiRNA.fa, PHAS.fa, Alignmen, Plot output
        -g: file -- reference genome sequence, fasta file, enable gdna based
17
    phasiRNA.fa, PHAS.fa, Alignmen, Plot output
        -f: file -- full length transcriptome sequence, fasta file, enable
18
    flnc based phasiRNA.fa, PHAS.fa, Alignmen, Plot output
        -pc: str -- plot cdna based phasiRNA cluster, y | n, defaut=y
19
        -pg: str -- plot gdna based phasiRNA cluster, y | n, defaut=y
20
        -pf: str -- plot flnc based phasiRNA cluster, y | n, defaut=y
21
22
        # other
23
        -v:
                   -- print version information
24
        -h:
                       print help information
25
```

5. Initiator prediction and verification

```
phasiHunter target -q /home/user/test_osa/osa.miRbase.fa -b
  /home/user/test_osa/PHAS.fa -o /home/user/test_osa/miR_target.txt -T 10

phasiHunter initiator -i /home/user/test_osa/integration_o.txt -j
  /home/user/test_osa/miR_target.txt -ip /home/user/test_osa/integration_p.txt
  -pd 5 -pl 21 -ps 1 -o /home/user/test_osa/initiator.txt

phasiHunter deg -i /home/user/test_osa/deg/GSM1040649_format_filter.map -q
  /home/user/test_osa/osa.miRbase.fa -j /home/user/test_osa/initiator.txt -t
  /home/user/test_osa/oryza_sativa_cdna.fa -o GSM1040649_MTI_deg.txt -s 1 -m 0
  -p y -in y -pl 1 -pf MTI_deg --lib GSM1040649 -less
```

```
Usage:
1
        perl /home/user/volumes/PhasiHunter/bin/TarHunterL_Modified.pl -q
2
    <mir_file> -b <targ_file> -o <out_file> [Options]
3
4
    Required arguments:
        -q (--qmir):
5
                            query miRNA file
        -b (--targ):
                           target file
6
        -o (--output):
7
                            output file
8
9
    Options:
10
        -M (--total_misp):
                                                              [Default: off]
                            max. total mispairs
11
                                                              [Default: off]
        -m (--seed_misp):
                             max. seed mispairs
12
        -f (--score):
                             score cutoff
                                                              [Default: 4]
13
14
        -I (--mimics):
                            eTM search
                                                              [Default: off]
15
        -i (--mimics_str): eTM stringency
16
                            (0: strict, 1: relaxed)
                                                            [Default: 0]
17
18
        -T (--threads):
                            FASTA threads
                                                              [Default: 1]
19
        -t (--tab):
                             tabular format output
                                                              [Default: off]
20
        -h (--help):
                             help information
21
22
    Dependencies:
23
        fasta36
24
```

initiator module usage

```
1
    initiator option:
2
     -i [str]integration -o output
3
     -j [str]the target predicted by psRNAtarget server or target module
     -ip [str]integration -po output
4
     -pd [int]the microRNA distance away to phase border, default=105(21) or
5
    120 (24), optional
     -pl [int]21 or 24, the phase length of 21 or 24, default=21
6
     -ps [int]0 or 1, the position of cleavage at 10(0) or 9-11 (1), default=1
7
     -o [str]outputfilename.
8
     -h print the version and details of the usage
```

deg module usage

```
// function: vertified the sRNA - Target interaction with degradome data
1
2
3
     options:
     -i: <inputfilename>
                                  mapping file for degradome data mapping
4
   transcripts, by bowtie
     -q: <sRNA fasta>
                                  small RNA sequences used for target
   prediction, fasta
     -j: <inputfilename>
                                   from psRNATarget batch download file or
6
   initiator output
     -t: <inputfilename>
                                   transcripts file, fasta
```

```
-- matched map file with only matched records
8
      -o: <outputfilename>
      -s: <shift_number>
                                    if shifts=0 then cleaved exactly at pos.10,
    default=1
      -m: <minum deg_num>
                                    minum number of degradome reads, int,
10
    default=0
                                    enable the plot function, y | n, default='n'
11
      -p: <T-plot function>
      -in: <bool>
                                    y | n, use initiator output information
12
      -pl [int]
                                    1, plot only category 1; 2, plot categories 1
13
    and 2, default=1
14
      -pf [str]
                                    output folder name, for exporting t-plot
    images and outputfile
      --lib [str]
                                    library name
15
      -less
                                    only output cat_1 and cat_2 information
16
17
18
      *******
      //About the categories:
19
      Cat #1, degradome read at the cleavage site is most abundant.
20
      Cat #2, the read is less than the most abudant one, but higher than the
21
    median.
      Cat #3, the read is less than the median, but high than 1
22
      Cat #4, the read is identical or less than 1 (if degradome data is
    normalized)
```

6. PhasiRNA target prediction and verification

```
phasiHunter target -q /home/user/test_osa/phasiRNA.fa -b
/home/user/test_osa/oryza_sativa_cdna.fa -o
/home/user/test_osa/phasiRNA_target.txt -T 10

phasiHunter deg -i /home/user/test_osa/deg/GSM1040649_format_filter.map -q
/home/user/test_osa/phasiRNA.fa -j /home/user/test_osa/phasiRNA_target.txt -
t /home/user/test_osa/oryza_sativa_cdna.fa -o GSM1040649_PTI_deg.txt -s 1 -m
0 -p y -in n -pl 1 -pf PTI_deg --lib GSM1040649 -less
```

Executing PhasiHunter with one-command module

One-command module usage

```
One command executing mode
2
3
    Usage:
        phasiHunter run [-i] [config file]
4
5
        phasiHunter run -d
6
7
    option:
        -i: yaml format config file
8
        -d: using the default config, defalut config file is
9
    /foo/PhasiHunter/bin/config.yaml
        -h: print help information
10
11
    WARNIG: make sure choose the correct config file before run this command
```

Some INPUT and OUTPUT still need modified when using.

```
# Please provide the full path to the input file
1
2
    # Configure the modules that need to be run
3
    # y means enable, n means disable
4
    Runing_module:
5
6
       preprocess: y
7
       phase: y
       integration: y
8
9
       visulization: y
       initiator_prediction_and_verification:
10
        target: y
11
         initiator: y
12
13
         deg: y
       phasiRNA_target_prediction_and_verification:
14
         phasiRNA_target: y
15
         phasiRNA_deg: y
16
17
    # Configure the preprocess module
18
    preprocess:
19
       # raw(mode): trim adaptor --> normalization --> length and abundance
20
    filter --> mapping
       # clean(mode): normalization --> length and abundance filter --> mapping
21
22
       # mapping(mode): mapping
      mode: r # [r | c | m]
23
24
25
      # for r mode: fastq file or fastq.gz file
      # for c mode: fasta file or fasta.gz file
26
       # for m mode: length and abundance filter fasta file
27
      # ** INPUT **
28
      inputfile: /home/user/test_osa/SRR5049781.fastq.gz
29
30
       # reference sequence fasta file
31
       # ** INPUT **
32
       reference_fasta: # disable when index parameter enable, multiple sequence
33
    can provided here
        # - /home/user/test_osa/oryza_sativa_cdna.fa
34
        # - /home/user/test_osa/oryza_sativa_gdna.fa
35
36
37
       # index prefix, reference_fasta option will be ignored when index enable,
    multiple index can provided here
      # ** INPUT **
38
       index:
39
         - /home/user/test_osa/index/oryza_sativa_cdna_index
40
         - /home/user/test_osa/index/oryza_sativa_gdna_index
41
42
       # outfile name, relative path is work for outputfile, but absolute path
43
     is still recommended. The number must be the same as the number of
     reference_fasta or indexs
```

```
# ** OUTPUT **
44
45
       outfile name:
         - /home/user/test_osa/SRR5049781_processed_cdna.map
46
         - /home/user/test_osa/SRR5049781_processed_gdna.map
47
48
       # adaptor trim parallel cores; <8 is recommend, only need in r mode
49
       trim_adaptor_cores: 1
50
51
       # bowtie parallel cores
52
53
       bowtie_mapping_cores: 1
54
       # max hits when mapping to ref sequence
55
       bowtie_max_hits_cutoff: 10
56
57
       # minimal sRNA reads length cutof
58
       minimal_sRNA_length_cutoff: 19
59
60
       # maxmial sRNA reads length cutoff
61
      maxmial_sRNA_length_cutoff: 25
62
63
       # sRNA reads cpm cutoff
64
       sRNA_expression_cutoff: 1
65
66
      # normalization base
67
       library_normalization_base: 1000000
68
69
70
     # Configure the phase module
71
     # predicting with only one reference sequence or multiple reference
72
     sequences
     phase:
73
      # map file based on reference transcriptome sequence
74
       # ** INPUT **
75
      mapped_cdna_file: /home/user/test_osa/SRR5049781_processed_cdna.map
76
77
       # map file based on reference genome sequence
78
       # ** INPUT **
79
       mapped_gdna_file: /home/user/test_osa/SRR5049781_processed_gdna.map
80
81
       # map file based on full length transcriptome sequence
82
       # ** INPUT **
83
84
      mapped_flnc_file:
85
86
       # reference transcritome sequence, fasta file
       # ** INPUT **
87
       cdna_fasta: /home/user/test_osa/oryza_sativa_cdna.fa
88
89
       # reference genome sequence, fasta file
90
       # ** INPUT **
91
       gdna_fasta: /home/user/test_osa/oryza_sativa_gdna.fa
92
93
       # full length transcriptome sequence, fasta file
94
       # ** INPUT **
95
```

```
96
        flnc_fasta:
 97
        # sRNA file
98
        # ** INPUT **
99
        sRNA_fa: /home/user/test_osa/SRR5049781_trimmed_format_filter.fa
100
101
       # allsiRNA cluster output
102
103
       # ** OUTPUT **
        allsiRNA_cluster_output: /home/user/test_osa/phase_a.txt
104
105
       # phasiRNA cluster output file
106
        # ** OUTPUT **
107
        phasiRNA_cluster_output: /home/user/test_osa/phase_o.txt
108
109
        # phasiRNA prediction method, h(hypergeometric test) | p(phase score) | b
110
      (both)
        phasiRNA_prediction_method: b
111
112
        # phasiRNA cluster island
113
        phasiRNA_cluster_island: 5
114
115
116
        # phase length
        phase_length: 21
117
118
119
        # phase number
120
        phase_number_cutoff: 4
121
        # max hits when mapping to ref sequence
122
        bowtie_max_hits_cutoff: 10
123
124
        # parallel number
125
        parallel_cores: 20
126
127
        # pvalue cutoff, only function with h/b method applied
128
        pvalue_cutoff: 0.001
129
130
        # phase score cutoff, only function with p/b method applied
131
        phase_score_cutoff: 15
132
133
        # phase ratio cutoff, only function with p/b method applied
134
        phase_ratio_cutoff: 0.4
135
136
137
        # delete .phasiHuter_bowtieIndex, y|n
138
        delete_index: y
139
140
141
     # Configure the integration module
     integration:
142
        # phase module phasiRNA_cluster_output
143
144
        # ** INPUT **
        o_inputfile: /home/user/test_osa/phase_o.txt
145
146
147
        # phase module allsiRNA_cluster_output
```

```
# ** INPUT **
148
149
       a_inputfile: /home/user/test_osa/phase_a.txt
150
       # reference genome gff3 file
151
       # ** INPUT **
152
       gff3: /home/user/test_osa/oryza_sativa_gdna.gff3
153
154
       # y | n, whether exist gdna based PHAS Loci
155
       gdna_based_PHAS_Loci: y
156
157
       # integration phasiRNA cluster
158
159
       # ** OUTPUT **
       integration_phasiRNA_cluster: /home/user/test_osa/integration_o.txt
160
161
162
       # integration all siRNA cluste
       # ** OUTPUT **
163
       integration_allsiRNA_cluster: /home/user/test_osa/integration_a.txt
164
165
166
       # integration summary
       # ** OUTPUT **
167
168
       integration_summary: /home/user/test_osa/integration_s.txt
169
170
       # PHAS Loci information
       # ** OUTPUT **
171
       integration_PHAS_Loci_info: /home/user/test_osa/integration_p.txt
172
173
174
       # parallel number
175
       parallel_cores: 1
176
177
       # phase number
       phase_number_cutoff: 4
178
179
180
       # phase length
181
       phase_length: 21
182
       # pvalue cutoff
183
       pvalue_cutoff: 0.001
184
185
186
       # phasiRNA cluster island
       phasiRNA_cluster_island: 5
187
188
       # y | n, discard only P method result
189
       discard_only_P_method_result: y
190
191
       # full length transcript annotation file
192
       flnc_annotation_file:
193
194
195
     # Configure the visulization module
196
197
     visulization:
       # integration module integration_phasiRNA_cluster
198
       # ** INPUT **
199
200
       o_inputfile: /home/user/test_osa/integration_o.txt
```

```
201
       # integration module integration allsiRNA cluster
202
203
       # ** INPUT **
       a_inputfile: /home/user/test_osa/integration_a.txt
204
205
       # integration integration_PHAS_Loci_info
206
       # ** INPUT **
207
208
       p_inputfile: /home/user/test_osa/integration_p.txt
209
210
       # alignment file
       # ** OUTPUT **
211
       output_alignment_file: /home/user/test_osa/alignment.txt
212
213
214
       # phasiRNA fasta file
215
       # ** OUTPUT **
       output_phasiRNA_fa: /home/user/test_osa/phasiRNA.fa
216
217
       # PHAS Gene fasta file, Format:
218
     >geneid/chr\tphasiRNA_cluster_region(start end)\tseq_region(start end)
       # ** OUTPUT **
219
       output_PHAS_fa: /home/user/test_osa/PHAS.fa
220
221
222
       # phase length
       phase_length: 21
223
224
225
       # the number for reducing the size of Y-axis
226
       Y_axis: 10
227
       # reference transcritome sequence, fasta file, enable cdna based
228
     phasiRNA.fa, PHAS.fa, Alignmen, Plot output
       # ** INPUT **
229
       cdna_fasta: /home/user/test_osa/oryza_sativa_cdna.fa
230
231
       # reference genome sequence, fasta file, enable gdna based phasiRNA.fa,
232
     PHAS.fa, Alignmen, Plot output
       # ** INPUT **
233
234
       gdna_fasta: /home/user/test_osa/oryza_sativa_gdna.fa
235
236
       # full length transcriptome sequence, fasta file, enable flnc based
      phasiRNA.fa, PHAS.fa, Alignmen, Plot output
       # ** INPUT **
237
238
       flnc_fasta:
239
240
       # plot cdna based phasiRNA cluster, y | n
       plot_cdna_based_phasiRNA_cluster: y
241
242
243
       # plot gdna based phasiRNA cluster, y | n
       plot_gdna_based_phasiRNA_cluster: y
244
245
246
       # plot flnc based phasiRNA cluster, y | n
       plot_flnc_based_phasiRNA_cluster: n
247
248
249
```

```
250
     # Configure the target module
251
     target:
       # query miRNA file, fasta format
252
       # ** INPUT **
253
254
       query_fa: /home/user/test_osa/osa.miRbase.fa
255
       # PHAS.fa/transcript.fa, fasta file
256
257
       # ** INPUT **
       subject_fa: /home/user/test_osa/PHAS.fa
258
259
       # output file
260
       # ** OUTPUT **
261
262
       output: /home/user/test_osa/miR_target.txt
263
264
       # max. total mispairs
       total_misp: off
265
266
       # max. seed mispairs
267
       seed_misp: off
268
269
       # score cutoff
270
271
       score: 4
272
273
       # eTM search
274
       mimics: off
275
276
       # eTM stringency, (0: strict, 1: relaxed)
       mimics_str: 0
277
278
279
       # fasta36 threads
       threads: 10
280
281
282
     # Configure the initiator module
283
284
     initiator:
       # integration module integration_phasiRNA_cluster
285
       # ** INPUT **
286
       i_input_file: /home/user/test_osa/integration_o.txt
287
288
289
       # the target predicted by psRNAtarget server or target module
       # ** INPUT **
290
       j_input_file: /home/user/test_osa/miR_target.txt
291
292
293
       # integration module integration_PHAS_Loci_info
294
       # ** INPUT **
295
       p_input_file: /home/user/test_osa/integration_p.txt
296
       # the microRNA distance away to phase border, default=105(21) or 120 (24)
297
       sRNA_distance: 5
298
299
300
       # 21 or 24, the phase length of 21 or 24,
       phase_length: 21
301
302
```

```
303
       # 0 or 1, the position of cleavage at 10(0) or 9-11 (1)
       cleavage_shift: 1
304
305
306
       # outputfilename
       # ** OUTPUT **
307
       outputfile: /home/user/test_osa/initiator.txt
308
309
310
     # Configure the deg module
311
312
     deg:
       # mapping file for degradome data mapping transcripts, by bowtie
313
       # ** INPUT **
314
315
       inputfile:
316
          - /home/user/test_osa/deg/GSM1040649_format_filter.map
          - /home/user/test_osa/deg/GSM1040650_format_filter.map
317
318
       # miRNA sequences used for target prediction, fasta
319
       # ** INPUT **
320
321
       query_fa: /home/user/test_osa/osa.miRbase.fa
322
       # initiator module outputfile
323
324
       # ** INPUT **
325
       STI_result: /home/user/test_osa/initiator.txt
326
327
       # transcripts file, fasta
328
       # ** INPUT **
329
       transcript_fa: /home/user/test_osa/oryza_sativa_cdna.fa
330
       # matched map file with only matched records
331
332
       # filename only, do not input directory
       # ** OUTPUT **
333
       output:
334
         - GSM1040649_MTI_deg.txt
335
336

    GSM1040650_MTI_deg.txt

337
       # if shifts=0 then cleaved exactly at pos.10
338
       shift: 1
339
340
341
       # minum number of degradome reads, int
       minum_deg_abun: 0
342
343
       # enable the plot function, y | n
344
       T_plot: y
345
346
       # y | n, use initiator output information
347
       initiator: y
348
349
       # 1, plot only category 1; 2, plot categories 1 and 2
350
       plot_categories: 1
351
352
       # output folder name, for exporting t-plot images and outputfile
353
       plot_folder: MTI_deg
354
355
```

```
356
       # library name
357
        library:
          - GSM1040649
358
          - GSM1040650
359
360
        # only output cat_1 and cat_2 information
361
        less: y
362
363
364
365
     # Configure the phasiRNA_target module
     phasiRNA_target:
366
        # query phasiRNA file, fasta format
367
368
        # ** INPUT **
369
        query_fa: /home/user/test_osa/phasiRNA.fa
370
       # target file, fasta file
371
        # ** INPUT **
372
        subject_fa: /home/user/test_osa/oryza_sativa_cdna.fa
373
374
       # output file
375
       # ** OUTPUT **
376
377
        output: /home/user/test_osa/phasiRNA_target.txt
378
379
       # max. total mispairs
380
       total_misp: off
381
       # max. seed mispairs
382
        seed_misp: off
383
384
385
       # score cutoff
       score: 4
386
387
       # eTM search
388
       mimics: off
389
390
       # eTM stringency, (0: strict, 1: relaxed)
391
       mimics str: 0
392
393
       # fasta36 threads
394
       threads: 10
395
396
397
     # Configure the phasiRNA_deg module
398
399
     phasiRNA_deg:
       # mapping file for degradome data mapping transcripts, by bowtie
400
       # ** INPUT **
401
402
       inputfile:
          - /home/user/test_osa/deg/GSM1040649_format_filter.map
403
404
          - /home/user/test_osa/deg/GSM1040650_format_filter.map
405
        # phasiRNA sequences used for target prediction, fasta
406
        # ** INPUT **
407
408
        query_fa: /home/user/test_osa/phasiRNA.fa
```

```
409
        # psRNATarget/target outputfile
410
        # ** INPUT **
411
        STI_result: /home/user/test_osa/phasiRNA_target.txt
412
413
       # transcripts file, fasta
414
       # ** INPUT **
415
        transcript_fa: /home/user/test_osa/oryza_sativa_cdna.fa
416
417
418
       # matched map file with only matched records
       # filename only, do not input directory
419
       # ** OUTPUT **
420
       output:
421
          GSM1040649_PTI_deg.txt
422
          GSM1040650_PTI_deg.txt
423
424
       # if shifts=0 then cleaved exactly at pos.10
425
        shift: 1
426
427
        # minum number of degradome reads, int
428
       minum_deg_abun: 0
429
430
431
        # enable the plot function, y | n
       T_plot: y
432
433
        # y | n, use initiator output information, for phasiRNA_deg, it must be n
434
435
        initiator: n
436
        # 1,plot only category 1; 2, plot categories 1 and 2
437
438
        plot_categories: 1
439
        # output folder name, for exporting t-plot images and outputfile
440
        plot_folder: PTI_deg
441
442
443
       # library name
444
       library:
         - GSM1040649
445
         - GSM1040650
446
447
        # only output cat_1 and cat_2 information
448
        less: y
449
```

The main output file

- · preprocess module
 - preprocessed fasta file
 - alignment file generated by bowtie
- phase module
 - redundant allsiRNA cluster output
 - table header: gene, strand, sRNA_position, sRNA_abundance, sRNA_record, sRNA_sequence, sRNA_length, pvalue, phase_ratio, phase_number,

phase_abundance, phase_score, marker

- redundant phasiRNA cluster output
 - table header: PHAS_gene, strand, phasiRNA_position, phasiRNA_abundance, phasiRNA_record, phasiRNA_sequence, phasiRNA_length, pvalue, phase_ratio, phase_number, phase_abundance, phase_score, marker
- · integration module
 - integrated PHAS loci information
 - integration summary information
 - integrated allsiRNA cluster output
 - table header: gene, strand, sRNA_position, sRNA_abundance, sRNA_record, sRNA_sequence, sRNA_length, phase_ratio, phase_number, phase_abundance, phase_score, pvalue, gene_annotation, marker
 - integrated phasiRNA cluster output
 - table header: PHAS_gene, strand, phasiRNA_position, phasiRNA_abundance, phasiRNA_record, phasiRNA_sequence, phasiRNA_length, phase_ratio, phase_number, phase_abundance, phase_score, pvalue, PHAS_gene_annotation, marker
- · visulization module
 - phasiRNA fasta file
 - id description: recorder PHAS gene position abundance strand order
 - PHAS loci fasta file
 - id description:
 recorder_PHAS_gene_[start]_[end]_[extend_start]_[extend_end]_[marker]
 - phasiRNA alignment result
 - phasiRNA cluster plot
- initiator_prediction_and_verification
 - miRNA-PHAS loci interaction output
 - Predicted phase initiator output
 - vertified phase initiator output with degradome data
 - degradome verification t-plot
- phasiRNA target prediction and verification
 - phasiRNA-target interaction output
 - vertified phasiRNA-target interaction with degradome data
 - degradome verification t-plot

Copyright

Copyright © Crop Bioinformatics Group (CBI), College of Agricultural, Nanjing Agricultural University.

Free for academic use. For commercial use, please contact us (huangji@njau.edu.cn)