Joining Data Tables

Motivation

An online retailer stores customer data in two places:

customers

id	name
4	Tukey
8	Wickham
15	Mason
16	Jordan
23	Patil
42	Cox

order	id	date
1	4	1-Jan
2	8	1-Feb
3	42	15-Apr
4	50	17-Apr

Types of joins

- 1. **Mutating joins** add new variables to one data frame from matching observations in another
- 2. **Filtering joins** filter observations from one data frame based on whether or not they match an observation in the other

Keys

Used to connect two data tables

- primary key uniquely identifies an observation in its own table
- **foreign key** uniquely identifies an observation in another table

inner_join

An inner_join matches pairs of observations when their keys are equal

inner_join

 $inner_join(x = orders, y = customers, by = "id")$

customers

id	name
4	Tukey
8	Wickham
15	Mason
16	Jordan
23	Patil
42	Cox

order	id	date
1	4	1-Jan
2	8	1-Feb
3	42	15-Apr
4	50	17-Apr

order	id	date	name
1	4	1-Jan	Turkey
2	8	1-Feb	Wickham
3	42	15-Apr	Cox

Outer joins

Keep the rows that appear in a specified table

A **left join** keeps all observations in the x table

A **right join** keeps all observations in the y table

A **full join** keeps all observations in both the x and y tables

$left_join(x = orders, y = customers, by = "id")$

customers

id	name
4	Tukey
8	Wickham
15	Mason
16	Jordan
23	Patil
42	Cox

order	id	date
1	4	1-Jan
2	8	1-Feb
3	42	15-Apr
4	50	17-Apr

$right_join(x = orders, y = customers, by = "id")$

customers

id	name
4	Tukey
8	Wickham
15	Mason
16	Jordan
23	Patil
42	Cox

order	id	date
1	4	1-Jan
2	8	1-Feb
3	42	15-Apr
4	50	17-Apr

$full_join(x = orders, y = customers, by = "id")$

customers

id	name
4	Tukey
8	Wickham
15	Mason
16	Jordan
23	Patil
42	Cox

orders

order	id	date
1	4	1-Jan
2	8	1-Feb
3	42	15-Apr
4	50	17-Apr

NA

NA

Patil

Cox

23

42

NA

NA

Filtering joins

Filtering joins still match observations between two data tables, but do not add additional variables, they **only impact** the rows returned.

- 1. $semi_join(x, y)$ keeps all observations in x that have a match in y
- 2. $anti_join(x, y)$ drops all observations in x that have a match in y

semi_join(x, y)

Observations will never be duplicated.

anti_join(x, y)

$semi_join(x = orders, y = customers, by = "id")$

orders

order	id	date
1	4	1-Jan
2	8	1-Feb
3	42	15-Apr
4	50	17-Apr

customers

id	name
4	Tukey
8	Wickham
15	Mason
16	Jordan
23	Patil
42	Cox

order	id	date
1	4	1-Jan
2	8	1-Feb
3	42	15-Apr

What if we had an extra order?

```
extra_order <- data.frame(order = 5, id = 42, date = "May-01")
orders2 <- rbind(orders, extra_order)</pre>
```

customers

id	name
4	Tukey
8	Wickham
15	Mason
16	Jordan
23	Patil
42	Cox

order	id	date
1	4	1-Jan
2	8	1-Feb
3	42	15-Apr
4	50	17-Apr
5	42	1-May

How do semi_join and inner_join differ?

 $semi_join(x = customers, y = orders2, by = "id")$

customers

id	name
4	Tukey
8	Wickham
15	Mason
16	Jordan
23	Patil
42	Cox

order	id	date
1	4	1-Jan
2	8	1-Feb
3	42	15-Apr
4	50	17-Apr
5	42	1-May

How do semi_join and inner_join differ?

 $inner_join(x = customers, y = orders2, by = "id")$

customers

id	name
4	Tukey
8	Wickham
15	Mason
16	Jordan
23	Patil
42	Cox

order	id	date
1	4	1-Jan
2	8	1-Feb
3	42	15-Apr
4	50	17-Apr
5	42	1-May

id	date	name
4	1-Jan	Turkey
8	1-Feb	Wickham
42	15-Apr	Cox
42	1-May	Cox

For an anti_join, order matters

 $anti_join(x = orders2, y = customers, by = "id")$

customers

id	name
4	Tukey
8	Wickham
15	Mason
16	Jordan
23	Patil
42	Cox

order	id	date
1	4	1-Jan
2	8	1-Feb
3	42	15-Apr
4	50	17-Apr
5	42	1-May

order	id	date	
4	50	17-Apr	

For an anti_join, order matters

 $anti_join(x = customers, y = orders2, by = "id")$

customers

id	name
4	Tukey
8	Wickham
15	Mason
16	Jordan
23	Patil
42	Cox

order	id	date
1	4	1-Jan
2	8	1-Feb
3	42	15-Apr
4	50	17-Apr
5	42	1-May

id		name
	23	Patil
	16	Jordan
	15	Cox

Common complications

Joining by multiple variables,

You must specify a vector of variable names:

by =
$$c("var1", "var2", "var3")$$
.

All three columns must match in both tables.

Use all variables that appear in both tables

Leave the by argument blank.

Column names differ between tables

```
by = c("left_var" = "right_var").
```

Your Turn

Does payroll differ between the American League and the National League?

- Load the tidyverse
- Install and load the Lahman R package
- Look at the Salaries and Teams data tables
- Devise a way to clearly compare the team payroll between the two leagues over the years