Álgebra I. Grado en Matemáticas e Informática 01/02/2013

PARTE TEÓRICA:

Pregunta 1.- Define el concepto de *Dominio Euclídeo*, y demuestra que el anillo $\mathbb{Z}[\sqrt{-2}]$ es un Dominio Euclídeo.

Pregunta 2.- Enuncia y demuestra el Lema de Gauss sobre polinomios primitivos.

EJERCICIOS:

Ejercicio 1.- Estudiar la irreducibilidad de los siguientes polinomios de $\mathbb{Z}[x]$:

$$x^5 + 3x^3 + 3x^2 + 3x + 1$$
, $5x^4 - 24x^3 + 12x^2 - 12$, $x^4 + 2x^3 + 11x^2 + 1$.

Ejercicio 2.- Determinar todos los polinomios $f(x) \in \mathbb{Z}_2[x]$ de grado menor o igual que 4, tales que: 1) el resto de dividir f(x) entre $x^2 + 1$ es x, 2) el resto de dividir xf(x) entre $x^2 + x + 1$ es x + 1, y 3) f(1) = 1.

Ejercicio 3.- Resuelve la ecuación $2^{1000}x = 7$ en el anillo \mathbb{Z}_9 .

Ejercicio 4 En una reunión hay entre 25 y 100 personas que quieren jugar a las cartas, dividiéndose en equipos de igual tamaño. Pero tienen un problema: les sobra siempre una persona para poder formar equipos de 2, 3, 4, 5 o 6. Hallar el número de personas de la reunión.

Ejercicio 5 En el anillo $\mathbb{Z}[\sqrt{14}i]$ se verifica que $(1+\sqrt{14}i)(1-\sqrt{14}i)=15=3\cdot 15$. Demostrar que los elementos 3, 5, $1+\sqrt{14}i$ y $1-\sqrt{14}i$ son irreducibles y no asociados entre sí. ¿Es 3 primo en este anillo? ¿Es $\mathbb{Z}[\sqrt{14}i]$ un Dominio de Factorización Única?