Mereology 2

Thomas Bittner Thomas.bittner@ifomis.uni-leipzig.de

Remarks:

- The course web-page was (is??) down
- Somebody hacked into Barry's Ontology site and deleted most of its content
- · Please send me email -then I will send you the course notes

Talks ???

- First come first serve
- · History of Part-whole
- Holes

Overview

- 1. Extending ground mereology
- 2. The weak supplemention principle
- 3. The proper part principle
- 4. The strong supplementation principle
- 5. Extensional mereology (EM)
- 6. Theorems of EM
- 7. Summary

Ground mereology - M

- Axioms

- -M1 P xx $-M2 P xy & P yx \Rightarrow x = y$ $-M3 P xy & P yz \Rightarrow P xz$
- Defined relations:
- Overlap
- Underlap
- Proper part

Partial ordering is not parthood

- Ground mereology captures some aspects of parthood
- · Bur admits models which conflict with our intuitions about parthood
- ⇒ More axioms are needed

Extending ground mereology

- · Adding Principles asserting the existence of entities given the existence of other entities
 - Whenever an entity has one proper part then it has more than one proper part
 - Given two entities then there exists an entity which is the sum of them
 - Given a set of entities then there exists an entity that is the sum of the entities in that set
 - Products, complements, ...

Our example model

- Structure $A_1 = (S_1, R_1)$ with
 - S₁ = {a,b} R₁ = {(a,a), (a,b), (b,b) }
- · We interpreted P as R,
- · We then verified that the axioms
- P xx
- $P xy & P yx \Rightarrow x = y$
- P xy & P yz \Rightarrow P xz

hold

A nicer way of representing models

- Structure $A_1 = (S_1, R_1)$ with

 - $S_1 = \{a,b\}$ $R_1 = \{(a,a), (a,b), (b,b)\}$
 - R₁ interpreted as P
 - •We represent entities of our domain as points in the plane of IP xy holds then we connect them by a line •The first argument is further down than the second argument •We do not explicit represent P xx

The proper part principle (PPP)

- If
 - x has some proper part and
 - Every proper part of x is a proper part of y
- Then x is a part of y
- $((\exists z)PP zx & (\forall z)(PP zx \Rightarrow PP zy)) \Rightarrow P xy$

The proper part principle (PPP)

- If
- x has some proper part and Every proper part of x is a proper part of y
- Then x is a part of y

- Proper parts of a: c1,c2
- Proper parts of b: c₁,c₂
- (a,b) is not in R_p

The proper part principle (PPP)

- x has some proper part and
 Every proper part of x is a proper part of y
 Then x is a part of y

- Proper parts of a: $\{\}$
- Proper parts of b: {a}
- Proper parts of c: {a,b}
- $R_P = \{(a,b),(b,c),(a,c),...\}$

PPP and WSP are independent

The strong supplementation

- If x is not a part of y then

 - z is a part of x and

principle (SSP)

- There exists a z such that
- · z does not oberlap y
- $\neg P xy \Rightarrow (\exists z)(P zx \& \neg O zy)$

SSP (cont)

Assignment: give truthtables that show that these are not models Of SSP!

SSP (cont)

M + SSP rules out:

- The theory formed by M+SSP is strictly stronger than the theories formed by M+WSP and M+PPP

 M+WSP not |-SSP

 M+PPP not |-SSP

 The theory formed by M+SSP is strictly stronger than the theories formed by M+WSP+PPP

 M+PPP+WSP not |-SSP

M + PPP + WSP not |-- SSP|

- Find a structure that is a model of M + PPP + WSP but not of SSP
- M + PPP + WSP but not of SSP

 All half-open, half closed intervals of the real line: $[0,1), [1,2), \dots, [0,1], [1,2]$ M + PPP + WSP are satisfied:

 PP interpreted as subset relation among sets \subset M is satisfied (\subset is a partial order)

 If all proper subsets of x are proper subsets of y then x is a subset of y therefore PPP holds

 If $x \subset y$ then there exists a z such that $x \cup z = y$ and $x \cap z = \emptyset$

M + PPP + WSP not |-- SSP|

- · All half-open, half closed intervals of the
- real line: [0,1), [1,2), ...,(0,1],(1,2]
- · SSP is NOT satisfied
 - $-\neg [0,1) \subseteq (0,1]$
 - ¬(∃z) (z ⊆ [0,1) & ¬ O z (0,1]

 - How about {0} or {1}?
 A singelton set cannot be half open or half closed

Some theorems of EM

- M+SSP |-- (z)(O zx \Rightarrow O zy) \Rightarrow P xy
- M+SSP |-- $x = y \Leftrightarrow (\forall z)(O zx \Leftrightarrow O zy)$
 - Extensionality of overlap
 - Identity of two entities is determined by the entities they overlap
- M+PPP |-- (($\exists z$)PP zx & ($\forall z$)(PP zx \Leftrightarrow PP zy)) $\Rightarrow x = y$

$(\forall z)(O zx \Leftrightarrow O zy) \Rightarrow x=y$	
1. $(\forall z)(O zx \Leftrightarrow O zy)$	ass
 O zx ⇔ O zy 	1 UI
3. O $zx \Rightarrow 0$ $zy & 0 zy \Rightarrow 0$ zx	2 Eq
4. $(\forall z)(O zx \Rightarrow O zy)$	(3 simp)UG
5. $(z)(O zx \Rightarrow O zy) \Rightarrow P xy$	Theorem UI
6. P xy	4,5 MP
7. $(z)(O zy \Rightarrow O zx)$	(3 simp)UG
8. $(z)(O zy \Rightarrow O zx) \Rightarrow P yx$	Theorem UI
9. P yx	7,8 MP
10. P xy & P yx	6,9 conj
11. $x = y$	10, M2 MP
12. $(\forall z)(O zx \Leftrightarrow O zy) \Rightarrow x=y$	1- 11 CP

Summary

Extending ground mereology

- Adding Principles asserting the existence of entities given the existence of other entities
 - Whenever an entity has one proper part then it has more than one proper part
 - Given two entities then there exists an entity which is the sum of them
 - Given a set of entities then there exists an ent that is the sum of the entities in that set
 - Products, complements

Extensional mereology - EM

- Axioms
 - M1 P xx
 - -M2 P xy & P yx \Rightarrow x = y
 - -M3 P xy & P yz \Rightarrow P xz
 - SSP ¬P xy ⇒ (∃z)(P zx & ¬ O zy)

Some theorems of \mathop{EM}

- M+SSP |-- (z)(O zx \Rightarrow O zy) \Rightarrow P xy
- M+SSP |-- $x = y \Leftrightarrow (\forall z)(O zx \Leftrightarrow O zy)$
- Extensionality of overlap
- Identity of two entities is determined by the entities they overlap
- M+PPP |-- (($\exists z$)PP zx & ($\forall z$)(PP zx \Leftrightarrow PP zy)) $\Rightarrow x = y$

Assignments due Sep. 10

- M \mid -- $(z)(P zx \Leftrightarrow P zy) \Leftrightarrow x = y$
- M |-- P xy \Rightarrow (z)(O zx \Rightarrow O zy) • M + SSP |-- PPP
- fill in the gaps in Simon's proof on pg. 29 of 'Parts'
- Give truthtables that show that the given structures are not models Of SSP!