Openaling Systems

Assignment - 2

Tarusi Mittal

1901CS65

Physical Address = 48 515 Virtual Address = 64 5its

Page Size = 8kb = 8 1024 byles = 8 1024 8 bits

= 16 bit number.

No. of pages (but) = Vielual Space

lage Size

We will lake that frame size = page size

No of frames (bits) = Physical space

Grame Size

Now, given a word addressable memory,

Word Size = 4 bytes

= 4 8 bib

= 5 bits are needed for each word

No of words in a page = 2" = 2"

Towns Mitted 1901CS65 green the valed enteries in TLB possible = 128 a me can store a reference to 128 pages. Maximum words that can be stored = 128 mod words =128 12" - 27 x 2" As the memory is word addressable, 218 maximum unque address can be a cord in The without a min Our 9: No of page frame = 5 Sequena: - 3,8,2,3,9,1,6,3,8,9,3,6,2,1,3 s obian (2) & Both infor the some no of page faults. USING FIFO Hit fault Sepuence 3 9 X

2

2

2

8

3

Tar	usi A	1:Hel	1	9016565			
		C	_	C	•	-	lope 3
5	3		F, 3	F ₃	h	15	HH/A
	9	6		8	مر م	1	
		1	3	8	٩	1	— Н
	6	b	3	8	9		— Н
		Ь	3	8	9		H
	2	<i>b</i>	3	8	2	1	<u> </u>
			3	8	2	<u> </u>	H
3		Ь	3	8	2	1	H
						1	
	-				-	= 9 f	aults Ho
	-		7			6 +	tito /
	Us	ing LRU	-	9 Gaulls	AL	RU = FIF	7
		•	1			- TIV	<u> </u>
se	F,	Fu		_£3	Fy	F5	HA) Faull
	X	X		Υ.	X	χ	
5	3	×		X	X	××	<u>-</u>
8 .	3			```	χ	χ	t
2	3	8		2	×	Х	F
3	3	8		2	>	X	Н
٩	3	8		2	٩	X	F
1	3	ę		2	9	1	F .
6	3	6		2	٩	1	£.
3	3	6		2	٩	1	Н
₽.	3	b		8	9	1	Ç
9	3	6		. 8	9	1	H
3	7	<u> </u>		8	9	1	Н
6	3	6		8	9		Н
2	<u>す</u>	1		8	9	2	C
1	3	6		. 1	9	2	Ł
.3	3	6			9	2	H

1901CS15 Page 4 Tarun Mittel Ours let the page size is of 'x' bits Size of Ti = 22 bight Now as I pape entry size = 4 bytes. No of entries in T₁ = 2 No of enderies in T, - No of second level page tables. Total size of second level page tables = 2 x 2n Illy no of entres in 2 deut page lables = no of 3nd bul - If y total no of embres in all 3 and level page lables = $\frac{2^{x}}{4} \times \frac{2^{x}}{4} \times \frac{2^{x}}{4}$ $\frac{2}{2} = \frac{3x-6}{2}$ Size of virillal memory = $\frac{2}{2}$ - $\frac{2}{2}$ ① should be equal to ② $3x-6=46-x \implies x=13.$

Page size = 13 bits or = 2^{13} bytes $= 8 \times 8$

Que 4:-

Nutual adobies = 32 515

Physical Address Size - 36 bits

Physical Meniory size = 236 by 18

Pape Luanusize = 4K bytes - 212 bytes.

No of bits required to access physical memory size = 36 -12 = 24.

: In the 3rd level of pape table 24 birts are suggested to access an embry.

9 bes of Vulual Address is used to access 2nd level page lable entry.

Size of pages in 2nd level = 4 bytes.

Size of 2nd level page lable = 29 x 4 - 2" bytes

There are 2 possible locations to store the

page table.

Jud page lable regiones 25 bit

loist page table siepuies = 25 bits Second page table requires = 25 bits Third page labb reguous = 24 bils.

19016565 Taewsi Mittel lage (Que 5: No of page frames = 3 dequence = 1,2,1,3,7,4,5,6,3,1 Using LRU Hit | Paul F₃ Sequen 3 P. T. 6

Taeus Mittel 19016865 Page 7 Using Optimal Page Algorithm Septence Hit Fault. Hits = 3 Faults = 7 At the positions @ and @ if the 1 or 3rd page would have been replaced there their could been 2 more pape faults So if the operator is well-epubled with the perocess sunning them the oftimal algorithm the bost. x ---x- END-x-