\mathbf{ODE}

Hao Y.H

2024年2月15日

前言

低廉而有效的快乐.

Hao Y.H 2024 年 2 月 15 日

目录

第一章	ODE 初级解法	1
1.1	conception	1
1.2	一阶方程的初等解法	2
	1.2.1 分离变量法	2
1.3	导数未解出的一阶方程	3
1.4	微分方程组的初等积分法与首次积分	4
	1.4.1 转化为高阶方程	4
	1.4.2 首次积分法	4

第一章 ODE 初级解法

summary.

1.1 conception

常微分方程解决的是求函数的问题,其中,未知函数的自变量唯一. 首先约定术语如下:

定义 1.1.1 (阶). 未知函数的导数的最高阶数即为 DE 的阶. 一般的 n 阶 ODE 可表示为:

$$F(t, x, \frac{df}{dt}, \cdots, \frac{df^n}{dt^n}) = 0$$
(1.1)

定义 1.1.2 (解与定义空间). 若函数 $\phi(x)$ 在某区间 [a,b] 内有 n 阶连续导数, 且将函数 $x = \phi(t)$ 代入方程 (1.1) 后, 可使得等式

$$F(t, \phi(t), \phi'(t), \cdots, \phi^{(n)}(t)) = 0$$

在 [a,b] 中恒成立, 称函数 $x = \phi(t)$ 为方程 (1.1) 的解, 称 [a,b] 为解的定义空间.

当 $x = \phi(t)$ 不易求得而 $\phi(t,x) = 0$ 易于求得时,后者确定的隐函数为方程 (1.1) 的解,则称 $\phi(t,x) = 0$ 为方程 (1) 的积分.

对于一个微分方程, 求其积分, 相当于求得其解.

定义 1.1.3 (积分曲线). 解在 t,x 平面上的几何表示—平面曲线, 称为方程 (1.1) 的积分曲线.

定义 1.1.4 (方向场—微分方程的几何解释). 当一阶 ODE 已解, 总能以 t,x 表示出积分曲线上任一一点的斜率, 因此可依据积分曲线作出有向线段, 即方向场.

欧拉折线以方向场为原理.

定义 1.1.5 (变系数线性微分方程).

1.2 一阶方程的初等解法

1.2.1 分离变量法

定义 1.2.1 (变量可分离方程).

$$\frac{dx}{dt} = f(x) \cdot g(t) \tag{1.2}$$

定义 1.2.2 (耦合可分离方程-齐次方程).

$$\frac{dx}{dt} = g(\frac{x}{t})\tag{1.3}$$

$$\frac{dx}{dy} = \frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2} \tag{1.4}$$

对于方程 (1.4), 试作变换: $\begin{cases} x = \xi + h \\ y = \eta + k \end{cases}$

令变换后的分子分母的常数项等于零,得到 h,k,当线性方程组行列式为 0 时,ODE 退化,其解是 trivial 的,于此不作赘述.

定义 1.2.3 (线性方程).

例 1.2.4 (因果变量互易一例). $\frac{dx}{dt}(x^3 + \frac{t}{x}) = 1$

定义 1.2.5 (全微分方程和积分因子).

$$P(x,y)dx + Q(x,y)dy = 0 (1.5)$$

若满足柯西黎曼方程,则称全微分方程 (1.5) 是恰当的. 若存在形如 (1.5) 的方程不满足柯西黎曼方程, 然而乘以某适当函数后, 满足柯西黎曼方程, 称此函数为积分因子

$$\mu(x,y)[P(x,y)dx + Q(x,y)dy] = 0$$
 (1.6)

对于 (1.6), $\mu(x,y)$ 的求解通过柯西黎曼方程实现, 可令 $\mu(x,y)$ 关于 x 或 y 的偏导等于 0, 从而简化方程求解难度.

1.3 导数未解出的一阶方程

本节研究的方程的一般形状为:

$$F(t, x, x') = 0 (1.7)$$

对于 (1.7), 三自变量, 可能得到三种隐函数, 本节研究导数未解出的一阶方程.

定义 1.3.1 (方程 x = g(t, x') 与 t = h(x, x')).

1. 对于方程 x = g(t, x'):

令 $p = \frac{dx}{dt}$, 方程取 t 导数, 得到:

$$p = \frac{\partial g(t, p)}{\partial t} + \frac{\partial g(t, p)}{\partial p} \cdot \frac{\mathrm{d}p}{\mathrm{d}t}$$
 (1.8)

2. 对于方程 t = h(x, x'): 令 $\frac{1}{p} = \frac{dt}{dx}$ 即可求解.

例 1.3.2.

$$x\left(\frac{dx}{dt}\right)^2 + -2t\frac{dx}{dt} + x = 0\tag{1.9}$$

Therefore, $t = \frac{x}{2p} + \frac{xp}{2}$.

Derivative of x, $\frac{1}{p} = \frac{1}{2p} + \frac{p}{2} + (\frac{x}{2} - \frac{x}{2p^2})\frac{dp}{dx}$.

Multiply the both sides of the equation by $2p^2:(p^2-1)(x\frac{dp}{dx}+p)=0$

The rest of part is obviously trivial.

例 1.3.3. clairant equation, where f(u) is continuously derivable, and $f'(u) \neq$ constant:

$$x = t \cdot \frac{dx}{dt} + f(\frac{dx}{dt}) \tag{1.10}$$

which is equal to: x = tp + f(p).

Derivative of t, $p = p + (t + f'(p)) \frac{dp}{dt}$.

Trivial.

1.4 微分方程组的初等积分法与首次积分

1.4.1 转化为高阶方程

例 1.4.1. 对于微分方程组:

$$\begin{cases} \frac{dx}{dt} = y \\ \frac{dy}{dt} = x \\ - 式求导, 代入二式即可. \end{cases}$$

1.4.2 首次积分法