DSBDAL Assignment 09 - Data Analytics 2

- 1. Implement logistic regression using Python/R to perform classification on Social_Network_Ads.csv dataset.
- 2. Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate, Precision, Recall on the given dataset

```
from google.colab import drive
drive.mount('/content/drive')
```

Mounted at /content/drive

import numpy as np import pandas as pd import seaborn as sns

ds = pd.read_csv('/content/drive/My Drive/DSBDL/Assignment9/data.csv') ds

	User ID	Gender	Age	EstimatedSalary	Purchased			
0	15624510	Male	19	19000	0	ıl.		
1	15810944	Male	35	20000	0	+/		
2	15668575	Female	26	43000	0			
3	15603246	Female	27	57000	0			
4	15804002	Male	19	76000	0			
395	15691863	Female	46	41000	1			
396	15706071	Male	51	23000	1			
397	15654296	Female	50	20000	1			
398	15755018	Male	36	33000	0			
399	15594041	Female	49	36000	1			
400 rows × 5 columns								

Next steps:

Generate code with ds

View recommended plots

User ID	int64
Gender	object
Age	int64
EstimatedSalary	int64
Purchased	int64

dtype: object

ds.describe()

Purchased	EstimatedSalary	Age	User ID	
400.000000	400.000000	400.000000	4.000000e+02	count
0.357500	69742.500000	37.655000	1.569154e+07	mean
0.479864	34096.960282	10.482877	7.165832e+04	std
0.000000	15000.000000	18.000000	1.556669e+07	min
0.000000	43000.000000	29.750000	1.562676e+07	25%
0.000000	70000.000000	37.000000	1.569434e+07	50%
1.000000	88000.000000	46.000000	1.575036e+07	75%
1.000000	150000.000000	60.000000	1.581524e+07	max

sns.boxplot(data = ds, x = 'Age')

<Axes: xlabel='Age'>

<Axes: xlabel='EstimatedSalary'>


```
ds['Gender'].value_counts()
```

Gender

Female 204 Male 196

Name: count, dtype: int64

```
sns.countplot(data = ds, x = 'Gender')
```

<Axes: xlabel='Gender', ylabel='count'>


```
ds['Purchased'].value_counts()
```

Purchased

0 257

1 143

Name: count, dtype: int64

sns.countplot(data = ds, x = 'Purchased')


```
ds.isna().sum()
```

```
User ID 0
Gender 0
Age 0
EstimatedSalary 0
Purchased 0
dtype: int64
```

```
ds.loc[ds['Gender'] == 'Male', 'Gender'] = 0
ds.loc[ds['Gender'] == 'Female', 'Gender'] = 1
ds = ds.astype({'Gender' : 'int'})
ds
```

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	0	19	19000	0
1	15810944	0	35	20000	0
2	15668575	1	26	43000	0
3	15603246	1	27	57000	0
4	15804002	0	19	76000	0
395	15691863	1	46	41000	1
396	15706071	0	51	23000	1
397	15654296	1	50	20000	1
398	15755018	0	36	33000	0
399	15594041	1	49	36000	1
400					

400 rows × 5 columns

Next steps: Generate code with ds View recommended plots

ds.drop(['User ID'], axis = 1, inplace = True)

	Gender	Age	EstimatedSalary	Purchased	\blacksquare
0	0	19	19000	0	ıl.
1	0	35	20000	0	+/
2	1	26	43000	0	-
3	1	27	57000	0	
4	0	19	76000	0	
395	1	46	41000	1	
396	0	51	23000	1	
397	1	50	20000	1	
398	0	36	33000	0	
399	1	49	36000	1	

400 rows × 4 columns

Next steps: Generate code with ds


```
def min_max_normalization(col_name):
    ds[col_name] = (ds[col_name] - ds[col_name].min()) / (ds[col_name].max() - ds[col_name]
min_max_normalization('EstimatedSalary')
min_max_normalization('Age')
ds
```

	Gender	Age	EstimatedSalary	Purchased	
0	0	0.023810	0.029630	0	ıl.
1	0	0.404762	0.037037	0	+/
2	1	0.190476	0.207407	0	
3	1	0.214286	0.311111	0	
4	0	0.023810	0.451852	0	
395	1	0.666667	0.192593	1	
396	0	0.785714	0.059259	1	
397	1	0.761905	0.037037	1	
398	0	0.428571	0.133333	0	
399	1	0.738095	0.155556	1	

400 rows × 4 columns

Next steps: Generate code with ds View recommended plots

ds[['Age', 'EstimatedSalary']].skew()
ds[['Age', 'EstimatedSalary']].kurtosis()

Age -0.622513 EstimatedSalary -0.405878

dtype: float64

```
# Reciprocal transformation
print( ( 1 / (ds["Age"] + 1e-3) ).skew() )
print( ( 1 / (ds["Age"] + 1e-3) ).kurtosis() )
# square-root transformation
print( np.sqrt( ds[ "Age" ] ).skew() )
print( np.sqrt( ds[ "Age" ] ).kurtosis() )
# cube-root transformation
print( np.cbrt( ds[ "Age" ] ).skew() )
print( np.cbrt( ds[ "Age" ] ).kurtosis() )
# log-transformation
print( np.log( ds[ "Age" ] + 1e-6 ).skew() )
print( np.log( ds[ "Age" ] + 1e-6 ).kurtosis() )
     8.772648855102862
     75.54534474505262
     -0.6431799328732787
     0.36416628386911043
     -1.31598202376335
     2.9087199865782374
     -6.314913080205095
     46.98324920534226
from scipy.stats import boxcox , skew , kurtosis
# Box-cox (power-transform)
# https://en.wikipedia.org/wiki/Power transform
output , lmbda = boxcox( ds[ "Age" ] + 1e-4 )
print( skew(output) )
print( kurtosis(output) )
print( lmbda )
     -0.2385769089771854
     -0.4060057246641384
     0.6805870525685984
# Box-cox transform returns the smallest skew
# and kurtosis
ds["Age"] = boxcox( ds[ "Age" ] + 1e-4 )[0]
ds["EstimatedSalary"] = boxcox( ds[ "EstimatedSalary" ] + 1e-4 )[0]
ds[ [ "Age" , "EstimatedSalary" ] ].describe()
```

Check for transformation with near-zero skew and kurtosis

	Age	EstimatedSalary	
count	400.000000	400.000000	ılı
mean	-0.625744	-0.764688	
std	0.335984	0.398289	
min	-1.466535	-1.736617	

from sklearn.model_selection import train_test_split