Exercises completed: All.

Exercise 1. Munkres §23, pg. 152 #4.

Collaborators: None.

Suppose Y is a space with the finite complement topology and X is an infinite set in Y. Note that since $X \subset Y$ is infinite, this forces Y to also be infinite. Suppose X is not connected, then there exist nonempty disjoint open sets U and V whose union is X.

Since $U \cap V = \emptyset$, by DeMorgan's laws the complement of their intersection is

$$Y - (U \cap V) = (Y - U) \cup (Y - V) = Y.$$

Since Y is infinite, this means at least one of Y-U and Y-V is infinite. This is a contradiction, though, since open sets in the finite complement topology have finite complements. Thus X must be connected.

Exercise 2. Munkres §23, pg. 152 #9.

Collaborators: None.

Let $Z \doteq (X \times Y) - (A \times B)$, and fix $(a,b) \in Z$ such that $a \in X - A$ and $b \in Y - B$. Then the segments $\{a\} \times Y$ and $X \times \{b\}$ are both connected subsets of Z (they are connected because they are homeomorphic to Y and X, respectively). Since they share the point (a,b), their union

$$T \doteq (X \times \{b\}) \cup (\{a\} \times Y)$$

is also connected. Now let (x,y) be an arbitrary point of Z, and define

$$T_{x,y} \doteq \begin{cases} \{x\} \times Y & \text{if } x \in X - A, \\ X \times \{y\} & \text{if } y \in Y - B. \end{cases}$$

In the first case, $T_{x,y}$ intersects T at the point (x,b). In the second case, it intersects T at the point (a,y). Since $T_{x,y}$ is homeomorphic to either X or Y, it is connected, and by definition it lies entirely in Z and intersects T. Thus

$$\tilde{T}_{x,y} \doteq T_{x,y} \cup T$$

is a connected subset of Z that contains the points (x, y) and (a, b). Finally,

$$\bigcup_{(x,y)\in Z} \tilde{T}_{x,y} = Z$$

is the union of connected sets that all contain the points (a, b), so Z is connected.

Exercise 3. Let $T = \{(x, \sin(1/x) \mid x > 0\} \subset \mathbb{R}^2$. Prove that T is connected. You may assume the sine function is continuous.

Collaborators: Saloni Bulchandani, Rahul Ramesh.

Since $(0, \infty)$ is connected and the function $x \mapsto 1/x$ is continuous on $(0, \infty)$, the set $\{1/x \mid x>0\}$ is connected. Then since the sine function is continuous, the image of this set under the sine function $\{\sin(1/x) \mid x>0\}$ is connected. Then since the finite Cartesian product of connected spaces is connected, the set

$$T_1 \doteq \{(x, \sin(1/x) \mid x > 0\}$$

is connected. Thus if $T = T_1 \cup \{(0,0)\}$ is disconnected, then it is because (0,0) can be separated from T_1 .

Consider any neighborhood U of (0,0), which is of the form $B((0,0),\varepsilon) \cap T$ for some $\varepsilon > 0$. There is some $n \in \mathbb{N}$ such that $\frac{1}{\pi n} < \varepsilon$, then for $x = \frac{1}{\pi n}$, we have

$$\sin(1/x) = \sin(\pi n) = 0.$$

The point $(1/\pi n, 0)$ is then in T_1 , and its distance from the origin is

$$||(1/\pi n, 0) - (0, 0)|| = ||(1/\pi n, 0)|| = |1/\pi n| < \varepsilon,$$

so it is also in U. Since U was arbitrary, this shows that every neighborhood of the origin intersects T_1 , so (0,0) is a limit point of T_1 . This gives

$$T_1 \subset T \subset \overline{T_1},$$

so since T_1 is connected, T is also connected.

Exercise 4. Munkres §24, pg. 158 #2.

Collaborators: Saloni Bulchandani, Rahul Ramesh.

If f is constant, then this is trivial, so assume f is not constant. Let g(x) = f(x) - f(-x). Then g(-x) = f(-x) - f(x) = -g(x). Since f is not constant, there is some x such that $g(x) \neq 0$. Then g(-x) has the opposite sign. Then since S^1 is connected, by the intermediate value theorem there is some $\tilde{x} \in S^1$ such that $g(\tilde{x}) = 0$, i.e. $f(\tilde{x}) = f(-\tilde{x})$.

Exercise 5. Munkres §24, pg. 158 #9.

Collaborators: Saloni Bulchandani, Rahul Ramesh.

Fix arbitrary $x, y \in \mathbb{R}^2 - A$, then we must show that there is a continuous path between them. Consider the collection of straight lines extending from x

$$\mathcal{R}_x \doteq \{t \mapsto x + t(\cos\theta, \sin\theta) \mid \theta \in [0, \pi)\}.$$

Because of how we restricted θ , all of these lines are disjoint. We claim that an uncountable number of these lines never intersect A.

Suppose that an uncountable number of the lines intersect A at some point. Then since \mathcal{R}_x is uncountable and the lines are all disjoint, A contains an uncountable number of points. Since A is countable, this is impossible, so there must be an uncountable number of lines in \mathcal{R}_x that never intersect A.

Any two non-parallel straight lines in \mathbb{R}^2 will eventually intersect. Since we have uncountably many lines in both \mathcal{R}_x and \mathcal{R}_y that never intersect A, there must be two that are non-parallel and also never intersect A.

Take these two lines, then we can easily use them to construct a continuous path from x to y: Suppose L_x is the line extending from x and L_y is the line extending from y, and suppose they intersect at a point z. Then the path from x to z is continuous, and the path from z to y is continuous. Since they agree at z, by the pasting lemma, they can be combined into a continuous path from x to y. Since this path never intersects A, the space $\mathbb{R}^2 - A$ is connected.