TIME SERIES FORECASTING

BUSINESS REPORT

THAKUR ARUN SINGH

SEPTEMBER 2021

This Business Report
shall provide detailed
explanation of how we
approached each problem
given in the assignment. It
shall also provide relative
resolution and explanation
with regards to the
problems

CONTENTS

Problem 1:	2
Problem 1.1	2
Problem 1.2	4
Problem 1.3	11
Problem 1.4	12
Problem 1.5	18
Problem 1.6	25
Problem 1.7	31
Problem 1.8	36
Problem 1.9	37
Problem 1 10	40

Problem 1:

For this particular assignment, the data of different types of wine sales in the 20th century is to be analyzed. Both of these data are from the same company but of different wines. As an analyst in the ABC Estate Wines, you are tasked to analyze and forecast Wine Sales in the 20th century.

PROBLEM 1.1

Read the data as an appropriate Time Series data and plot the data.

Resolution:

First, we import all the necessary libraries seaborn, numpy, pandas, sklearn etc to perform our analysis

Next, we import the data set "Sparkling" and "Rose"

Sparkling Dataset

```
DatetimeIndex(['1980-01-01', '1980-02-01', '1980-03-01', '1980-04-01', '1980-05-01', '1980-06-01', '1980-07-01', '1980-08-01', '1980-09-01', '1980-10-01', '1994-10-01', '1994-10-01', '1994-10-01', '1995-01-01', '1995-02-01', '1995-03-01', '1995-04-01', '1995-05-01', '1995-06-01', '1995-07-01'], dtype='datetime64[ns]', name='YearMonth', length=187, freq=None)
```

Sparkling

YearMonth

1980-01-01	1686
1980-02-01	1591
1980-03-01	2304
1980-04-01	1712
1980-05-01	1471

Rose Dataset

```
DatetimeIndex(['1980-01-01', '1980-02-01', '1980-03-01', '1980-04-01', '1980-05-01', '1980-06-01', '1980-07-01', '1980-08-01', '1980-09-01', '1980-10-01', '1990-12-01', '1995-01-01', '1994-11-01', '1994-12-01', '1995-01-01', '1995-02-01', '1995-03-01', '1995-04-01', '1995-05-01', '1995-06-01', '1995-07-01'], dtype='datetime64[ns]', name='YearMonth', length=187, freq=None)
```

Rose

YearMonth	
1980-01-01	112.0
1980-02-01	118.0
1980-03-01	129.0
1980-04-01	99.0
1980-05-01	116.0

PROBLEM 1.2

Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.

Resolution:

Sparkling: Rose:

	Sparkling			Rose
count	187.000	c	ount	185.000
mean	2402.417	r	nean	90.395
std	1295.112		std	39.175
min	1070.000		min	28.000
25%	1605.000		25%	63.000
50%	1874.000		50%	86.000
5%	2549.000		75%	112.000
ax	7242.000		max	267.000

Sparkling 0 dtype: int64

Rose 2 dtype: int64

Rose 0 dtype: int64

(187, 1)

Sparkling Year Month

YearMonth

1980-01-01	1686	1980	1
1980-02-01	1591	1980	2
1980-03-01	2304	1980	3
1980-04-01	1712	1980	4
1980-05-01	1471	1980	5

Rose Year Month

YearMonth

realMonth			
1980-01-01	112.0	1980	1
1980-02-01	118.0	1980	2
1980-03-01	129.0	1980	3
1980-04-01	99.0	1980	4
1980-05-01	116.0	1980	5

Below Pivot shows the sales made for a month in particular year:

Sparkling												
Month	1	2	3	4	5	6	7	8	9	10	11	12
Year												
1980	1686	1591	2304	1712	1471	1377	1966	2453	1984	2596	4087	5179
1981	1530	1523	1633	1976	1170	1480	1781	2472	1981	2273	3857	4551
1982	1510	1329	1518	1790	1537	1449	1954	1897	1706	2514	3593	4524
1983	1609	1638	2030	1375	1320	1245	1600	2298	2191	2511	3440	4923
1984	1609	1435	2061	1789	1567	1404	1597	3159	1759	2504	4273	5274
1985	1771	1682	1846	1589	1896	1379	1645	2512	1771	3727	4388	5434
1986	1606	1523	1577	1605	1765	1403	2584	3318	1562	2349	3987	5891
1987	1389	1442	1548	1935	1518	1250	1847	1930	2638	3114	4405	7242
1988	1853	1779	2108	2336	1728	1661	2230	1645	2421	3740	4988	6757
1989	1757	1394	1982	1650	1654	1406	1971	1968	2608	3845	4514	6694
1990	1720	1321	1859	1628	1615	1457	1899	1605	2424	3116	4286	6047
1991	1902	2049	1874	1279	1432	1540	2214	1857	2408	3252	3627	6153
1992	1577	1667	1993	1997	1783	1625	2076	1773	2377	3088	4096	6119
1993	1494	1564	1898	2121	1831	1515	2048	2795	1749	3339	4227	6410
1994	1197	1968	1720	1725	1674	1693	2031	1495	2968	3385	3729	5999
1995	1070	1402	1897	1862	1670	1688	2031	NaN	NaN	NaN	NaN	NaN

Rose												
Month	1	2	3	4	5	6	7	8	9	10	11	12
Year												
1980	112	118	129	99	116	168	118	129	205	147	150	267
1981	126	129	124	97	102	127	222	214	118	141	154	226
1982	89	77	82	97	127	121	117	117	106	112	134	169
1983	75	108	115	85	101	108	109	124	105	95	135	164
1984	88	85	112	87	91	87	87	142	95	108	139	159
1985	61	82	124	93	108	75	87	103	90	108	123	129
1986	57	65	67	71	76	67	110	118	99	85	107	141
1987	58	65	70	86	93	74	87	73	101	100	96	157
1988	63	115	70	66	67	83	79	77	102	116	100	135
1989	71	60	89	74	73	91	86	74	87	87	109	137
1990	43	69	73	77	69	76	78	70	83	65	110	132
1991	54	55	66	65	60	65	96	55	71	63	74	106
1992	34	47	56	53	53	55	67	52	46	51	58	91
1993	33	40	46	45	41	55	57	54	46	52	48	77
1994	30	35	42	48	44	45	46	46	46	51	63	84
1995	30	39	45	52	28	40	62	NaN	NaN	NaN	NaN	NaN

Yearly Boxplots

Monthly Boxplots

Additive Decomposition:

Sparkling:

Rose:

Multiplicative:

Sparkling:

Rose:

Summary Sparkling Dataset:

- Sparkling dataset doesn't show a visible trend however it shows seasonality, also if observed from additive decomposition the residual is catching some pattern.
- Multiplicative decomposition on the other hand seems to dictate on the series as the scale of the residual plot had decreased considerably
- Monthly bar plots showed that the sales are higher towards the last months than the earlier.

Summary Rose Dataset:

- Rose dataset show a clear decreasing trend as well as seasonality, multiplicative decomposition
- dictates the series the noise is reduced considerably in it also the seasonal patterns increase and decrease in the size across difference years
- The sales tend to go up during the July-August and also during end of the year.

PROBLEM 1.3

Split the data into training and test. The test data should start in 1991.

Resolution:

	Sparkling	Year	Month
YearMonth			
1990-08-01	1605	1990	8
1990-09-01	2424	1990	9
1990-10-01	3116	1990	10
1990-11-01	4286	1990	11
1990-12-01	6047	1990	12

Train Data: (132, 3)

	Rose	Year	Month
YearMonth			
1990-08-01	70.0	1990	8
1990-09-01	83.0	1990	9
1990-10-01	65.0	1990	10
1990-11-01	110.0	1990	11
1990-12-01	132.0	1990	12

Train Data: (132, 3)

	Sparkling	Year	Month
YearMonth			
1991-01-01	1902	1991	1
1991-02-01	2049	1991	2
1991-03-01	1874	1991	3
1991-04-01	1279	1991	4
1991-05-01	1432	1991	5

Test Data: (55, 3)

	Rose	Year	Month
YearMonth			
1991-01-01	54.0	1991	1
1991-02-01	55.0	1991	2
1991-03-01	66.0	1991	3
1991-04-01	65.0	1991	4
1991-05-01	60.0	1991	5

Test Data: (55, 3)

PROBLEM 1.4

Build various exponential smoothing models on the training data and evaluate the model using RMSE on the test data.

Other models such as regression, naïve forecast models, simple average models etc. should also be built on the training data and check the performance on the test data using RMSE

Resolution:

Model 1: Linear Regression: \hat{y} t+1 = β y + c

Model 2: Naive Approach: ŷ t+1=yt

For this particular naive model, we say that the prediction for tomorrow is the same as today and the prediction for day after tomorrow is tomorrow and since the prediction of tomorrow is same as today, therefore the prediction for day after tomorrow is also today.

Method 3: Simple Average:

For this particular simple average method, we will forecast by using the average of the training values.

Method 4: Moving Average(MA)

For the moving average model, we are going to calculate rolling means (or moving averages) for different intervals. The best interval can be determined by the minimum error. The below plot shows the forecast for different rolling means:

Method 5: Exponential Smoothing methods

Exponential smoothing methods consist of flattening time series data. Exponential smoothing averages or exponentially weighted moving averages consist of forecast based on previous periods data with exponentially declining influence on the older observations.

Simple Exponential Smoothing (SES): The simplest of the exponentially smoothing methods is naturally called simple exponential smoothing (SES). This method is suitable for forecasting data with no clear trend or seasonal pattern. In Single ES, the forecast at time (t + 1) is given by Winters, 1960

 $\hat{y}t+1=\alpha Yt+(1-\alpha)\hat{y}t$ Parameter α is called the smoothing constant and its value lies between 0 and 1. Since the model uses only one smoothing constant, it is called Single Exponential Smoothing.

Sparkling data doesn't show visible trend however it shows seasonality, Rose data on the other hand shows both trend and seasonality, all the Exponential models will still be built on both the datasets.

Double Exponential Smoothing(DES): One of the drawbacks of the simple exponential smoothing is that the model does not do well in the presence of the trend. This model is an extension of SES known as Double Exponential model which estimates two smoothing parameters. Applicable when data has Trend but no seasonality. Two separate components are considered: Level and Trend. Level is the local mean. One smoothing parameter α corresponds to the level series A second smoothing parameter β corresponds to the trend series. Double Exponential Smoothing uses two equations to forecast future values of the time series, one for forecasting the short term average value or level and the other for capturing the trend.

Intercept or Level equation, \hat{y} t is given by: \hat{y} t= αy t+ $(1-\alpha)\hat{y}$ t Trend equation is given by

Tt= $\beta(\hat{y}t-\hat{y}t-1)+(1-\beta)$ Tt-1 Here, α and β are the smoothing constants for level and trend, respectively,

 $0 < \alpha < 1$ and $0 < \beta < 1$.

The forecast at time t + 1 is given by

Ft+1=ŷt+Tt Ft+n=ŷt+nTt

Though our Sparkling data doesn't seem to have a visible trend we are still going to build this model for the project. Rose data has a clear trend from the plot above

Inference

- Here, we see that the Double Exponential Smoothing model has picked up the trend component as well (see the below fig.)
- Our data has seasonality too so we will include one more smoothing parameter for seasonality which is gamma.
- We will use ETS (A, A, A) Holt Winter's linear method with additive trend and seasonality for Sparkling data and ETS (A, A, M) Holt Winter's linear method with additive trend and multiplicative seasonality for Rose wine data. We will call it Triple Exponential Smoothing (TES)

PROBLEM 1.5

Check for the stationary of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationary and comment.

Note: Stationary should be checked at alpha = 0.05.

Resolution:

Sparkling Train set:

Results of Dickey-Fuller Test:

Test Statistic -1.208926
p-value 0.669744
#Lags Used 12.000000
Number of Observations Used 119.000000
Critical Value (1%) -3.486535
Critical Value (5%) -2.886151
Critical Value (10%) -2.579896

dtype: float64

Sparkling Test set:

Results of Dickey-Fuller Test:	
Test Statistic	-1.790189
p-value	0.385343
#Lags Used	11.000000
Number of Observations Used	43.000000
Critical Value (1%)	-3.592504
Critical Value (5%)	-2.931550
Critical Value (10%)	-2.604066
dtype: float64	

Since the Null Hypothesis H0: The series is non-stationary Alternate Hypothesis H1: The series is stationary

We cannot reject the null as the p values for both of series is greater than 0.05 (significance level) from the Augmented Dickey Fuller test above

Differenced Sparkling Train set:

Results of Dickey-Fuller Test:

Test Statistic -8.005007e+00
p-value 2.280104e-12
#Lags Used 1.100000e+01
Number of Observations Used 1.190000e+02
Critical Value (1%) -3.486535e+00
Critical Value (5%) -2.886151e+00
Critical Value (10%) -2.579896e+00

dtype: float64

Differenced Sparkling Test set:

Results of Dickey-Fuller Test:

Test Statistic -7.050414e+00
p-value 5.545252e-10
#Lags Used 1.100000e+01
Number of Observations Used 4.200000e+01
Critical Value (1%) -3.596636e+00
Critical Value (5%) -2.933297e+00
Critical Value (10%) -2.604991e+00

dtype: float64

We can now see that the p –value < than 0.05 so we can reject the null-hypothesis and accept the alternate. So we say the series is stationary.

Rose Train Set:

Results of Dickey-Fuller Test:

Test Statistic -2.164250
p-value 0.219476
#Lags Used 13.000000
Number of Observations Used 118.000000
Critical Value (1%) -3.487022
Critical Value (5%) -2.886363
Critical Value (10%) -2.580009

dtype: float64

Rose Test Set:

Results of Dickey-Fuller Test:

Test Statistic -4.464772
p-value 0.000228
#Lags Used 11.000000
Number of Observations Used 43.000000
Critical Value (1%) -3.592504
Critical Value (5%) -2.931550
Critical Value (10%) -2.604066

dtype: float64

Since the Null Hypothesis H0: The series is non-stationary Alternate Hypothesis H1: The series is stationary we cannot reject the null as the p values is greater than 0.05 (significance level) from the Augmented Dickey Fuller test above Train set of Rose Wine dataset, on the contrary we can reject the null as the p values is less than 0.05 (significance level) from the Augmented Dickey Fuller test above Test set of Rose Wine dataset

We can correct the non-stationary by using multiple methods like taking differences at various level, using logged transformed series etc.

Here we will take difference of level 1 of the original train series and we will use the train dataset as is.

Differenced Rose Train set:

Results of Dickey-Fuller Test:

Test Statistic -6.592372e+00
p-value 7.061944e-09
#Lags Used 1.200000e+01
Number of Observations Used 1.180000e+02
Critical Value (1%) -3.487022e+00
Critical Value (5%) -2.886363e+00
Critical Value (10%) -2.580009e+00

dtype: float64

PROBLEM 1.6

Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.

Resolution:

ARIMA

AIC score for both Sparkling and Rose wine dataset for different models is below:

	param	AIC_Sparkling
8	(2, 1, 2)	2210.616954
7	(2, 1, 1)	2232.360490
2	(0, 1, 2)	2232.783098
5	(1, 1, 2)	2233.597647
1	(1, 1, 1)	2235.013945
,	(2, 1, 0)	2262.035601
ı	(0, 1, 1)	2264.906439
3	(1, 1, 0)	2268.528061
)	(0, 1, 0)	2269.582796

An automated model of (2,1,2) will be built on sparkling wine data and (0,1,2) on rose wine data. Both are of difference order 1.

Sparkling Data:						
		ARIMA Mode	l Results			
Dep. Variable:	D.Sp	======= arkling	No. Observati	======= ons:	1	== 31
			Log Likelihoo		-1099.3	08
Method:			5.D. of innov		1011.9	85
Date:	Sun, 05 S	ep 2021	AIC		2210.6	17
Time:		4:09:34 I			2227.8	68
Sample:	02-	01-1980 H	HQIC		2217.627	
	- 12-	01-1990				
	coet	std err	Z	P> z	[0.025	0.975
const	5.5860	0.516	10.825		4.575	6.597
ar.L1.D.Sparkling	1.2698	0.074	17.045	0.000	1.124	1.416
ar.L2.D.Sparkling						
ma.L1.D.Sparkling	-1.9993	0.042	-47.149	0.000	-2.082	-1.916
ma.L2.D.Sparkling	0.9993	0.042	23.584	0.000	0.916	1.082
		Roots	5			
R	======= eal	Imaginary	/ M	odulus	Frequenc	= У
AR.1 1.1			i			-
			j i			
MA.1 1.0			,		0.000	
	996		•		0.000	

_				_		_		
о.	~	-	_	п		+	-	
п	.,	ъ.	_		_		а	

ARIMA Model Results							
==========							
Dep. Variable:		D.Rose	No. Obse	rvations:		130	
Model:	AR	IMA(0, 1, 2)	Log Like	lihood		-636.754	
Method:		css-mle	S.D. of	innovations		30.440	
Date:	Sun,	05 Sep 2021	AIC			1281.508	
Time:		14:09:51	BIC			1292.978	
Sample:		03-01-1980	HQIC			1286.169	
		- 12-01-1990					
	coef	std err	Z	P> z	[0.025	0.975]	
const	0.0091	0.005	1.996	0.046	0.000	0.018	
ma.L1.D.Rose	-1.9955	0.039	-51.366	0.000	-2.072	-1.919	
ma.L2.D.Rose	0.9955	0.039	25.457	0.000	0.919	1.072	
		Ro	oots				
	Real	Imagi	nary	Modulus	Fr	requency	
MA.1	1.0000	+0.00	_	1.0000		0.0000	
MA.2	1.0045	+0.00	000j	1.0045		0.0000	

From the ACF plot we see a significant seasonal correlation after every 11th interval Setting the seasonality as 12 for the first iteration of the auto SARIMA model.

AIC scores for SARIMAX model

	param	seasonal	AIC_Sparkling
3	(0, 1, 3)	(3, 0, 3, 12)	2182.456353
14	(3, 1, 2)	(3, 0, 3, 12)	2677.681332
10	(2, 1, 2)	(3, 0, 3, 12)	2813.241309
7	(1, 1, 3)	(3, 0, 3, 12)	2953.601648
1	(0, 1, 1)	(3, 0, 3, 12)	3036.436346
8	(2, 1, 0)	(3, 0, 3, 12)	3043.170885
5	(1, 1, 1)	(3, 0, 3, 12)	3091.984506
0	(0, 1, 0)	(3, 0, 3, 12)	3172.429930
4	(1, 1, 0)	(3, 0, 3, 12)	3264.185626
12	(3, 1, 0)	(3, 0, 3, 12)	3303.282950
11	(2, 1, 3)	(3, 0, 3, 12)	3347.568890
9	(2, 1, 1)	(3, 0, 3, 12)	3363.739589
13	(3, 1, 1)	(3, 0, 3, 12)	3382.091626
2	(0, 1, 2)	(3, 0, 3, 12)	3665.477652
6	(1, 1, 2)	(3, 0, 3, 12)	3909.418096
15	(3, 1, 3)	(3, 0, 3, 12)	6460.315416

	param	seasonal	AIC_Rose
2	(0, 1, 2)	(3, 0, 3, 12)	2145.523921
10	(2, 1, 2)	(3, 0, 3, 12)	2945.075027
4	(1, 1, 0)	(3, 0, 3, 12)	3321.965396
3	(0, 1, 3)	(3, 0, 3, 12)	3345.176296
7	(1, 1, 3)	(3, 0, 3, 12)	3396.093427
15	(3, 1, 3)	(3, 0, 3, 12)	3482.006817
6	(1, 1, 2)	(3, 0, 3, 12)	3484.017259
1	(0, 1, 1)	(3, 0, 3, 12)	3490.096143
12	(3, 1, 0)	(3, 0, 3, 12)	3492.860663
11	(2, 1, 3)	(3, 0, 3, 12)	3498.600279
9	(2, 1, 1)	(3, 0, 3, 12)	3547.731254
0	(0, 1, 0)	(3, 0, 3, 12)	3549.313989
5	(1, 1, 1)	(3, 0, 3, 12)	3595.673963
13	(3, 1, 1)	(3, 0, 3, 12)	3712.496109
14	(3, 1, 2)	(3, 0, 3, 12)	3723.046367
8	(2, 1, 0)	(3, 0, 3, 12)	3857.771586

An automated SARIMA model of (3,1,2) will be built on sparkling wine data and (3,1,1) on rose wine data. both are of difference order 1 and seasonality 12.

Sparkling Data:

SARIMAX Results								
Dep. Variable: y No. Observations: 132								
Model:	SARI	MAX(3, 1, 2	2)x(3, 0, [], 12) Log	Likelihood		-696.287	
Date:			Sun, 05 Se	p 2021 AIC			1410.574	
Time:			15	:02:33 BIC			1433.270	
Sample:				0 HQI	C		1419.734	
				- 132				
Covariance	Type:			opg				
	coef	std err	Z	P> z	[0.025	0.975]		
ar.L1	-1.5592	0.126	-12.411	0.000	-1.805	-1.313		
ar.L2	-1.4484	0.118	-12.273	0.000	-1.680	-1.217		
ar.L3	-0.4105	0.102	-4.008	0.000	-0.611	-0.210		
ma.L1	1.1987	0.111	10.770	0.000	0.981	1.417		
ma.L2	0.9999	0.123	8.109	0.000	0.758	1.242		
ar.S.L12	0.4951	0.089	5.549	0.000	0.320	0.670		
ar.S.L24	0.2824	0.096	2.944	0.003	0.094	0.470		
ar.S.L36	0.2827	0.103	2.744	0.006	0.081	0.485		
sigma2	2.046e+05	8.2e-07	2.49e+11	0.000	2.05e+05	2.05e+05		
=======							==	
Ljung-Box	(L1) (Q):		1.67	Jarque-Bera	(JB):	23.	20	
Prob(Q):			0.20	Prob(JB):		0.	90	
Heterosked	asticity (H):		0.96	Skew:		0.	71	
Prob(H) (to	wo-sided):		0.91	Kurtosis:		5.	91	
========							==	

Note:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 2.3e+26. Standard errors may be unstable.

Rose Data:

SARIMAX Results							
========							
Dep. Variab	le:			у	No. Observat	tions:	132
Model:	SARI	MAX(3, 1, 1)x(3, 0, [1, 2], 11)	Log Likelih	ood	-437.103
Date:		, -		5 Sep 2021	_		894.205
Time:			-	15:02:44			919.744
Sample:				А	HOIC		904.525
Jump201				- 132			30323
Covariance	Tyne:			opg			
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
				P> z		0.975]	
ar.L1	0.1884	0.121	1.551	0.121	-0.050	0.426	
ar.L2	0.0208	0.123	0.170	0.865	-0.219	0.261	
ar.L3	0.0146	0.140	0.104	0.917	-0.259	0.288	
ma.L1	-0.9339	0.076	-12.309	0.000	-1.083	-0.785	
ar.S.L11	-0.2380	0.421	-0.565	0.572	-1.063	0.587	
ar.S.L22	-0.0357	0.170	-0.210	0.834	-0.369	0.298	
ar.S.L33	-0.0042	0.115	-0.036	0.971	-0.229	0.221	
ma.S.L11	0.1810	0.448	0.404	0.686	-0.697	1.059	
ma.S.L22	-0.1736	0.234	-0.742	0.458	-0.632	0.285	
sigma2					372.258		
Ljung-Box (=======		Jarque-Bera		0.17	
Prob(0):	, , , -,		0.90	Prob(JB):	, ,	0.92	2
\ -/	sticity (H):		0.91	, ,		-0.06	5
Prob(H) (tw			0.80	Kurtosis:		3.17	7

Note:

[1] Covariance matrix calculated using the outer product of gradients (complex-step)

Diagnostic plots for Auto SARIMA model are as below:

Sparkling Data:

Rose Data:

Sparkling Dataset Diagnostic:

From the diagnostic plots we see that the assumptions of Normality, heteroscedasticity as seems to be getting satisfied as well the series show randomness and no auto correlation between the residuals

Rose Dataset Diagnostic:

The plot shows randomness of the residual also the assumption of normality and heteroscedasticity is satisfied, it shows no auto correlation until lag 5, then shows a rise in significance at 6.

Though visual plots satisfy most assumptions the test proves it wrong seen from the summary of SARIMAX model for both the dataset.

PROBLEM 1.7

Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.

Resolution:

ARIMA

Sparkling Dataset:

Rose Dataset:

Differenced Data Partial Autocorrelation

- Here, we have taken alpha=0.05.
- The Auto-Regressive parameter in an ARIMA model is 'p' which comes from the significant lag before which the PACF plot cuts-off to 0. The Moving-Average parameter in an ARIMA model is 'q' which comes from the significant lag before the ACF plot cuts-off to 0.
- By looking at the above plots for Sparkling data, we can say that both the PACF cuts off at 3 and ACF plot cuts-off at lag 2.
- By looking at the above plots for Rose data, we can say that PACF cuts off at 4 and ACF plot cuts-off at lag 2.

Sparkling Data:

ARIMA Model Results

Dep. Variable:	D.Sparkling	No. Observations:	131					
Model:	ARIMA(3, 1, 2)	Log Likelihood	-1107.464					
Method:	css-mle	S.D. of innovations	1106.033					
Date:	Sun, 05 Sep 2021	AIC	2228.928					
Time:	14:12:29	BIC	2249.054					
Sample:	02-01-1980	HQIC	2237.106					
	42 04 4000							

- 12-01-1990

	coef	std err	Z	P> z	[0.025	0.975]		
const	5.8816	nan	nan	nan	nan	nan		
ar.L1.D.Sparkling	-0.4422	nan	nan	nan	nan	nan		
ar.L2.D.Sparkling	0.3075	7.77e-06	3.96e+04	0.000	0.308	0.308		
ar.L3.D.Sparkling	-0.2503	nan	nan	nan	nan	nan		
ma.L1.D.Sparkling	-0.0004	0.028	-0.013	0.990	-0.055	0.054		
ma.L2.D.Sparkling	-0.9996	0.028	-36.010	0.000	-1.054	-0.945		
Posts.								

Roots

	Real	Imaginary	Modulus	Frequency				
AR.1	-1.0000	-0.0000j	1.0000	-0.5000				
AR.2	1.1145	-1.6595j	1.9990	-0.1559				
AR.3	1.1145	+1.6595j	1.9990	0.1559				
MA.1	1.0000	+0.0000j	1.0000	0.0000				
MA.2	-1.0004	+0.0000j	1.0004	0.5000				

Rose:

ma.L1.D.Rose

ma.L2.D.Rose

ARIMA Model Results

Dep. Variable:	D.Rose	No. Observations:	131
Model:	ARIMA(4, 1, 2)	Log Likelihood	-633.876
Method:	css-mle	S.D. of innovations	29.793
Date:	Sun, 05 Sep 2021	AIC	1283.753
Time:	14:12:39	BIC	1306.754
Sample:	02-01-1980	HQIC	1293.099
	- 12-01-1990		

	coef	std err	z	P> z	[0.025	0.975]
const	-0.1905	0.576	-0.331	0.741	-1.319	0.938
ar.L1.D.Rose	1.1685	0.087	13.391	0.000	0.997	1.340
ar.L2.D.Rose	-0.3562	0.132	-2.693	0.007	-0.616	-0.097
ar.L3.D.Rose	0.1855	0.132	1.402	0.161	-0.074	0.445
ar.L4.D.Rose	-0.2227	0.091	-2.443	0.015	-0.401	-0.044

nan

nan

nan

nan

nan

nan

nan

nan

Roots

nan

nan

-1.9506

1.0000

	Real	Imaginary	Modulus	Frequency
AR.1	1.1027	-0.4116j	1.1770	-0.0569
AR.2	1.1027	+0.4116j	1.1770	0.0569
AR.3	-0.6863	-1.6643j	1.8003	-0.3122
AR.4	-0.6863	+1.6643j	1.8003	0.3122
MA.1	0.9753	-0.2209j	1.0000	-0.0355
MA.2	0.9753	+0.2209j	1.0000	0.0355

Manual ARIMA Test 250 Test ARIMA 200 150 100 50 0 -50 1980 1982 1984 1986 1988 1990 1992 1994 1996 Rose Wine

AIC for sparkling data is the lowest for the model (3,1,2), also we saw the from ACF and PACG plots that the cut off of p and q are at 3 and 2 resp. so we conclude that the auto SARIMAX and the manual SARIMAX models are the same.

SARIMA

For Rose data let's build a model at the p and q cut off at 4, 2 respectively.

Manual SARIMAX Summary on Rose data:

SARIMAX Results							
Dep. Variabl Model: Date: Time: Sample: Covariance T	SARI		oun, 05 Sep 15:0	, 12) Log L	Dbservations:		132 -371.081 766.161 796.292 778.317
	========	std err		P> z	[0.025	0.9751	
ar.S.L12 ar.S.L24 ar.S.L36 ma.S.L12	-0.0110 -0.1475 -0.2441 -0.0887 -0.7649 0.7670 0.0839 0.0765 -0.5259	0.159 0.153 0.108 0.186 0.183 0.165 0.149 0.093 0.288	-4.250 -0.069 -0.963 -2.269 -0.476 -4.186 4.638 0.565 0.823 -1.824 -1.014 4.559	0.945 0.336 0.023 0.634 0.000 0.000 0.572 0.410 0.068	-1.167 -0.322 -0.448 -0.455	-0.430 0.300 0.153 -0.033 0.276 -0.407 1.091 0.375 0.259 0.039	
Ljung-Box (L Prob(Q): Heteroskedas Prob(H) (two	1) (Q): ticity (H):		0.04 0.85			0.9 0.6 0.2 2.9	3 5

PROBLEM 1.8

Build a table with all the models built along with their corresponding parameters and the respective RMSE values on the test data.

Resolution:

	Test_Spark RMSE	
	1389.135175	Regression
	3864.279352	NaiveModel
	1275.081804	SimpleAvg
	813.400684	MovingAvg2
	1156.589694	MovingAvg4
	1283.927428	MovingAvg6
	1346.278315	MovingAvg9
	1316.034674	SES
	2007.238526	DES
	473.954404	TES
	1375.028279	Auto ARIMA (2,1,2)
	1375.097144	Manual ARIMA (3,1,2)
Aut	1918.728383	Auto SARIMA (3,1,2)(3,0,0,12)

PROBLEM 1.9

Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.

Resolution:

For Sparkling dataset, we see that Triple Exponential smoothing gives the best forecast, so we will move forward with that for forecasting

	Sparkling Forecast lower CI		upper CI
Time			
1995-08-31	1858.037942	1075.060737	2641.015147
1995-09-30	2432.697346	1649.720141	3215.674551
1995-10-31	3246.134445	2463.157240	4029.111649
1995-11-30	3888.467711	3105.490506	4671.444916
1995-12-31	6099.865815	5316.888610	6882.843019
1996-01-31	1216.015599	433.038394	1998.992804
1996-02-29	1576.041044	793.063839	2359.018249
1996-03-31	1824.637312	1041.660107	2607.614517
1996-04-30	1806.325944	1023.348739	2589.303148
1996-05-31	1648.757666	865.780461	2431.734871
1996-06-30	1595.635315	812.658110	2378.612520
1996-07-31	1969.866380	1186.889175	2752.843585

Test_Rose RMSE

15.262509 79.699093

53.440426

11.529409

14.448930

14.560046

14.724503

36.775774

15.262495 20.906585

56.351188

33.930217

38.034261

For Rose dataset rolling avg shows the best RMSE, however since the window chosen was very small(2,4,6,9) it was natural it was going to work well on Test set. The other model which gave the best RMSE was TES and Manual SARIMAX (4,1,2)(3,0,2,12). We will built a final model on the entire Rose dataset using SARIMAX.

у	mean	mean_se	mean_ci_lower	mean_ci_upper
Time				
1995-08-31	46.413681	11.969449	22.953992	69.873369
1995-09-30	48.793911	12.039961	25.196021	72.391800
1995-10-31	47.508266	12.108541	23.775961	71.240571
1995-11-30	56.269275	12.121077	32.512402	80.026149
1995-12-31	77.863686	12.121551	54.105882	101.621490
1996-01-31	28.708561	12.214416	4.768746	52.648376
1996-02-29	37.191299	12.374841	12.937057	61.445541
1996-03-31	42.402183	12.562169	17.780784	67.023582
1996-04-30	40.944350	12.728683	15.996590	65.892110
1996-05-31	36.441184	12.842221	11.270894	61.611474
1996-06-30	40.438159	12.933916	15.088148	65.788169
1996-07-31	49.552354	13.022241	24.029231	75.075477

PROBLEM 1.10

Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.

Resolution:

Sparkling Wine data:

- TES (Triple Exponential Smoothing) has worked the best for the forecast with lowest RMSE on test data
- You can see from the above chart that the forecast for next 12 months is slightly over the sales of the previous 12 months however, there isn't a considerable increase.
- Observed from the month wise bar plots previously, we can say that the sales of Sparkling wine tend to
 go up in last two months probably because it's a holiday season than the rest and its lowest around Jun
 and July
- ABC can take various measures to increase the sales towards the beginning and mid of the year, it can
 introduce promotional activities or discounts during the low sales period.
- ABC can tie up with events like concerts, weddings etc. and do some sponsorships to boost sales during the slack

Rose Wine data:

- We chose manual SARIMAX model to predict for the Rose wine data. The model was passed the cut offs found through ACF and PACF plots of q and p respectively and seasonality of 12 as the plots showed a patterned significance after 11 lags.
- You can see from the above plot for Rose wine data the forecast for 1996 is more or less same as of for 1995.
- Observed from the monthly bar plot sales shows an increasing trend from August towards December, it's on the lower side beginning of the year
- ABC can take sought promotional activities and implement some discounts during the first half of the year

The End
Thakur Arun Singh
