Object Recognition with Artificial Neural Networks

Jacob Van De Weert

Outline

- Object recognition in humans
- Object recognition in computers
- Parallel Distributed Processing
- Application: Artificial Neural Networks
- Evaluation

Object Recognition in Humans

- Bottom-up/top-down process
- Impressively quick (150-200ms)

Object Recognition in Computers

- Many approaches
- Less successful than biology
- Major problem: variation
 - Viewing angle
 - Lighting
 - Different types of objects
 - Background
 - Etc.

Parallel Distributed Processing

- A low-level model of cognition
- Idea: the brain is a network of neurons
- Neurons are too slow to work sequentially → they must work in parallel!
- Computation is performed by activation flowing through the network

PDP (cont.)

- Input-Output pairs are presented to train the network
- Various algorithms; all examples of Hebbian learning
- Network is then evaluated with new input
- Has been used to model:
 - Memory
 - Learning
 - Perception
 - Motor control

- ...

Artificial Neural Networks

- Machine learning version of PDP networks
- Emphasis on performance over modeling
- Same ideas, just larger/more complex
- Many applications, including object recognition
- Convolutional networks (CNNs): try to mimic visual cortex
 - Split up image
 - Analyze basic features
 - Gradually merge these together and make a classification

Artificial Neural Networks

• Example:

Evaluation

- Do they work?
 - Yes!
- 2011: Ciresan et al achieve records for digit, 3D-object, and image recognition benchmarks
- 2012: Krizhevsky et al win ImageNet recognition challenge using a CNN
 - First place: 15.3% error
 - Second place: 26.2%
- But still below human performance

The End

