LINEÆR ALGEBRA

MM 3: Fredag 17. marts 2023

kl. 08.15 i B2-104

Emner: Lineær transformation

Egenværdier, egenvektorer

Karakteristisk ligning og karakteristisk determinant

"Spor & determinant"

Egenrum, algebraisk og geometrisk multiplicitet

Anvendelseseksempler: computergrafik, talrækker (Fibonaccis kaniner, det gyldne snit),

kredsløbsanalyse og Markovmodeller

Læsning: [EK] s. 129 – 134, 313 – 317, 322 - 338

Som en hjælp er svaret til hver opgave angivet med grøn skrift efter opgaverne.

Med venlig hilsen

Troels

Opgaver:

Opgave 3.1

Undersøg om A er symmetrisk, skævsymmetrisk eller orthogonal. Find spektret for A

$$A = \left\{ \begin{array}{ll} 0.96 & -0.28 \\ 0.28 & 0.96 \end{array} \right\}$$

Opgave 3.2

Undersøg om A er symmetrisk, skævsymmetrisk eller orthogonal. Find spektret for A

$$A = \left\{ \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{array} \right\}$$

Opgave 3.4

Undersøg om A er symmetrisk, skævsymmetrisk eller orthogonal. Find spektret for A samt egenvektorer. Størrelserne a og b er reelle tal. Bestem også den algebraiske samt den geometriske multiplicitet for egenværdierne.

$$\mathbf{A} = \left\{ \begin{array}{cc} a & b \\ -b & a \end{array} \right\}$$

Opgave 3.5

Find spektrum, egenvektorer og spor for *A*. Anvend at $\lambda_1 = 3$.

$$A = \left\{ \begin{array}{ccc} 6 & 2 & -2 \\ 2 & 5 & 0 \\ -2 & 0 & 7 \end{array} \right\}$$

Opgave 3.7

Find egenværdier og egenvektorer for A. Bestem også den algebraiske samt den geometriske multiplicitet for egenværdierne.

$$A = \left\{ \begin{array}{ccc} 13 & 5 & 2 \\ 2 & 7 & -8 \\ 5 & 4 & 7 \end{array} \right\}$$

Opgave 3.8

Betragt en lineær transformation i det todimensionelle rum (\mathbb{R}^2) , som angiver en spejling omkring y-aksen:

$$y = A \cdot x$$

Find egenværdier og egenvektorer for A

Opgave 3.9 og 3.10 Anvendelsesopgaver med eigenværdiproblemer (næste sider)

Opgave 3.11 Eftervisning af Fiboncacci egenværdiproblemet

Formuler egenværdiproblemet relateret til Fibonacci talrækken, $AF = \lambda F$, som vist i slides/pencasts, og løs for λ . Er forklaringen i slidesættet korrekt?

Hjælp: Start med at udtrykke λ som forholdet mellem på hinanden følgende <u>Fibonacci</u>-tal, i grænsen for n gående mod uendelig.

Opgave 3.9 (anvendelseseksempel)

Betragt et trådløst kommunikationssystem med to basisstationer og to mobiltelefoner (brugere) der sender i retning fra mobilen til basisstationen. Størrelsen a_{i,b_i} angiver her kanalens forstærkning mellem mobil i og basisstation b_i : jo større afstand mellem mobil og basisstation, jo mindre forstærkning. Med to mobiler og to basisstationer er der fire forstærkninger som kan opstilles i en matrix \mathbf{A} , hvor række angiver mobil og søjle basisstation. Antag at denne er givet som følger:

$$\mathbf{A}^{(b)} = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} = \begin{bmatrix} 1/1^4 & 1/3^4 \\ 1/4^4 & 1/2^4 \end{bmatrix}$$

Antag at de to mobiler kommunikerer samtidigt og på samme kanal. De vil således interferere/forstyrre hinanden og give anledning til et signal til interferensforhold $\omega_i = a_{i,b_i}q_i/(a_{j,b_i}q_j)$, dvs. forholdet mellem den effekt vi modtager fra den ønskede mobil (sendeeffekt q_i gange forstærkning i kanalen mellem mobil i og den basisstation b_i som denne mobil er forbundet til) og den effekt vi modtager fra den anden mobil (dennes sendeeffekt q_j gange forstærkning i kanalen mellem mobil j og den samme basisstation b_i som mobil j er forbundet til).

Signal til interferensforholdet er bestemmende for om man kan kommunikere samtidigt og ønskes så stort som muligt. I dette tilfælde ønsker vi det ikke bare så stort som muligt, men balanceret mellem de to mobiler/brugere sådan at de begge får samme servicekvalitet. Uden at gå i detaljer kan vi opstille ligningssystemet (i kan evt. selv prøve ud fra ovenstående betragtninger):

$$\frac{1}{\omega} \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} 0 & a_{2,b_1}/a_{1,b_1} \\ a_{1,b_2}/a_{2,b_2} & 0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \end{bmatrix}$$

Spørgsmålet er nu hvordan skal vi associere mobiler med basisstationer og hvor stor sendeeffekt vi skal tildele de to mobiler sådan at vi maksimerer ω ? Besvar spørgsmålet med den antagelse at vi ikke tildeler begge mobiler til samme basisstation samtidigt.

Opgave 3.10 (anvendelseseksempel)

Følgende model viser hvordan en given by udvikler sig mellem tre områder, her I: boligområde, II: forretningsområde, og III: industriområde, i fem års intervaller. I et bestemt referenceår er fordelingen I: 30%, II: 20% og III: 50%

Modelen er en såkaldt Markov-model, og udviklingen en Markov process: Den næste tilstand, y, afhænger kun af den forrige tilstand x, sådan at $\mathbf{y} = \mathbf{A}^T \mathbf{x}$, hvor f.eks. tilstanden i referenceåret er $\mathbf{x}^T = \begin{bmatrix} 0.3, 0.2, 0, 5 \end{bmatrix}$ (overbevis jer om, at næste tilstand for område I er givet som i ovenstående udtryk for Markov processen). \mathbf{A} er en såkaldt stokastisk matrix, for hvilket der gælder at summen af hver række er lig 1.0 – den totale sandsynlighed er 1.0!

a) Lav et Matlab/Maple program der kan fremskrive udviklingen i områdefordelingen i intervaller af fem år (check at i for hvert step får total på 100%), og generer et plot eller en tabel der viser procentfordelingen mellem de tre områder som funktion af intervaller af fem år (et antal år ud i fremtiden).

Besvarelsen af a) forsøger numerisk at løse problemet $\mathbf{y} = \mathbf{A}^T \mathbf{x} = \mathbf{x}$, altså at fordelingen mellem områder stabiliserer sig.

b) Formulér ovenstående som et egenværdiproblem og løs for den resulterende fordeling mellem områder vha. Gaussisk elimination (hvad er egenværdien? husk at hvis **x** er en løsning så er også k**x** en løsning, men ikke alle løsninger er gyldige her! Hvad skal der gælde for den resulterende løsning?).

```
Facitliste
```

Opgave 3.1: orthogonal, $0.96 \pm j0.28$

Opgave 3.2: orthogonal, $1, \pm j$

Opgave 3.4:
$$a \pm jb$$
, $\begin{Bmatrix} 1 \\ j \end{Bmatrix}$ $\begin{Bmatrix} 1 \\ -j \end{Bmatrix}$
Opgave 3.5: $3,6,9$, $\begin{Bmatrix} 2 \\ -2 \\ 1 \end{Bmatrix}$ $\begin{Bmatrix} 1 \\ 2 \\ 2 \end{Bmatrix}$ $\begin{Bmatrix} 2 \\ 1 \\ -2 \end{Bmatrix}$, 18

Opgave 3.7:
$$9,9,9,$$
 $\begin{cases} 2\\ -2\\ 1 \end{cases}$ Opgave 3.8: $1,-1,$ $\begin{cases} 0\\ 1 \end{cases}$ $\begin{cases} 1\\ 0 \end{cases}$

Opgave 3.9:
$$\omega = 36 \text{ (15.6dB)}$$

 $q_1 = 0, 14; q_2 = 0, 99 \text{ (W)}$

Opgave 3.10: b) 1,
$$\begin{cases} 0{,}125 \\ 0{,}25 \\ 0{,}625 \end{cases}$$

Opgave 3.11: Ja, svaret kender i jo 😇