Medical Image Processing for Interventional Applications

Vesselness Filter

Online Course – Unit 7 Andreas Maier, Joachim Hornegger, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Vesselness Filter

Vessel Segmentation Good Vessels in 2-D Faster Implementation

Summary

Take Home Messages Further Readings

Vessel Segmentation

- Problem 1: Vessels have different diameters.
 - \rightarrow We need to model different scales.
- Problem 2: Edges are only a weak model of vessels.
 - → Structure tensor is insufficient for vessel modeling.

Figure 1: Example for a medical image containing vessels (left), detail on an area showing the edge property well (right)

Problem 1: Scale Modelling

Question: How big must the window/volume be?

• Solution using scale space with parameter s:

$$I(x,s) = I(x) * G(x,s), \quad G(x,s) = \frac{1}{\sqrt{2\pi}s} \exp\left(-\frac{\|x\|^2}{2s^2}\right)$$

• Derivative of Gaussians (in 1-D):

$$\frac{\partial}{\partial x}I(x,s)=I(x)*\frac{\partial}{\partial x}G(x,s)$$

Problem 2: Vessel Model

From the properties of the structure tensor we can determine:

- rank $0 \rightarrow$ flat area,
- rank 1 \rightarrow edge,
- rank 2 \rightarrow corner.

But: Edges are not a good model of a vessel.

→ Modeling of curvature seems better suited to tackle this problem.

Problem 2: Vessel Model

Approach: compute Hessian (here 2-D)

$$H_{s} = egin{pmatrix} rac{\partial^{2}}{\partial x^{2}} I(m{x},s) & rac{\partial^{2}}{\partial x \partial y} I(m{x},s) \\ rac{\partial^{2}}{\partial y \partial x} I(m{x},s) & rac{\partial^{2}}{\partial y^{2}} I(m{x},s) \end{pmatrix}$$

This matrix looks very similar to the structure tensor, but the analysis of its eigenvalues yields:

- rank $0 \rightarrow$ no curvature, i. e., **flat** or **linear** behaviour,
- rank 1 → curvature in one direction, i. e., a tubular structure,
- rank 2 → curvature in two directions, i. e., a blob-like structure.

Good Vessels in 2-D

Indication of a vessel (we assume sorting $|\lambda_1| \ge |\lambda_2|$):

$$|\lambda_1| > |\lambda_2| \qquad \wedge \qquad |\lambda_2| \approx 0$$

Vesselness measures:

$$R_B = rac{\lambda_2}{\lambda_1}$$
 (close to 0 if vessel) $S = \sqrt{\lambda_1^2 + \lambda_2^2}$ (high contrast if vessel)

Probability map for vessels (β , c are control parameters, e.g., $\beta = 0.5$, and c depends on scaling):

$$V(\mathbf{x}, \mathbf{s}) = \begin{cases} 0, & \lambda_1 > 0 \\ \exp\left(-\frac{R_B^2}{2\beta^2}\right) \left(1 - \exp\left(-\frac{S^2}{2c^2}\right)\right), & \text{otherwise} \end{cases}$$

Maximum over all scales:

$$V(\mathbf{x}) = \max_{s_{\min} < s < s_{\max}} V(\mathbf{x}, s)$$

3-D Case

Good vessels (we assume sorting $|\lambda_1| \ge |\lambda_2| \ge |\lambda_3|$):

$$|\lambda_3| pprox 0 \qquad \wedge \qquad |\lambda_2| \gg \lambda_3 \qquad \wedge \qquad \lambda_1 pprox \lambda_2$$

3-D vesselness:

$$R_B = \frac{|\lambda_3|}{\sqrt{|\lambda_1 \lambda_2|}}$$
 (close to 0 if vessel) $R_A = \frac{|\lambda_2|}{|\lambda_1|}$ (close to 0 if surface point) $S = \sqrt{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}$ (high if vessel \rightarrow contrast)

3-D Case

Vesselness on scale *s* (probability map):

$$V(\boldsymbol{x},s) = \begin{cases} 0, & \lambda_1 > 0 \text{ or } \lambda_2 > 0 \\ \left(1 - \exp\left(-\frac{R_A^2}{2\alpha^2}\right)\right) \exp\left(-\frac{R_B^2}{2\beta^2}\right) \left(1 - \exp\left(-\frac{S^2}{2c^2}\right)\right), & \text{otherwise} \end{cases}$$

 α, β, c are parameters to be selected by the user ($\alpha = \beta = 0.5$, c depends on contrast)

Maximum over all scales:

$$V(\mathbf{x}) = \max_{s} V(\mathbf{x}, s)$$

Faster Implementation

Instead of increasing s, downsample the image l to images l_d accordingly:

- \rightarrow less eigenvalue analyses
- \rightarrow faster computation for high resolution images

Topics

Vesselness Filter

Vessel Segmentation Good Vessels in 2-D Faster Implementation

Summary

Take Home Messages Further Readings

Take Home Messages

- The Hessian and its eigenvalue analysis can be used to define a measure of vesselness.
- It is often more reliably than the structure tensor.
- The vesselness filter is well-known in medical imaging and can be considered a requisite.
- When implementing methods using scale-space, downsampling instead of computing several kernels can speed up your code.

Further Readings

- Alejandro F. Frangi et al. "Multiscale Vessel Enhancement Filtering". In: Medical Image Computing and Computer-Assisted Interventation – MICCAI'98. Ed. by William M. Wells, Alan Colchester, and Scott Delp. Vol. 1496. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1998, pp. 130–137. DOI: 10.1007/BFb0056195
- A. Budai et al. "Robust Vessel Segmentation in Fundus Images". In: International Journal of Biomedical *Imaging* 2013.154860 (Sept. 2013), pp. 1–11. DOI: 10.1155/2013/154860