Leveraging Word Embedding from Macro and Micro View to Boost Performance for Semantic Textual Similarity

October 7, 2016

1/22

Outline

- Task Definition
- Our Systems
 - Preprocess
 - Traditional NLP Feature Engineering
 - Word Embedding Feature Engineering
- Experiments
- Results
- Conclusion

2/22

Task Definition

Definition (Semantic Textual Similarity)

Input: given two sentences

Output: similarity score([0,5])

Gold Standard: human judgements

Evaluation: Pearson correlation

Example

```
The bird is bathing in the sink.

Birdie is washing itself in the water basin.

(sys: ? / gs: 5.0)
```

```
The woman is playing the violin.

The young lady enjoys listening to the guitar. (sys: ? / gs: 1.0)
```

4 ロ ト 4 団 ト 4 豆 ト 4 豆 ト 9 Q ()

Our Systems

Traditional NLP Feature Engineering

- String-Based Similarity
- Machine Translation Similarity
- Corpus-based Features
- Alignment Measures

Word Embedding Feature Engineering

- Word Centroid Distance
- Word Mover's Distance

Preprocess

- To Formal Writing (Search and Replace)
 e.g., doesn't → does not
- ② Lemmatize (NLTK and Stanford CoreNLP) e.g., was → be
- Parse (Stanford CoreNLP)

5/22

Traditional NLP Feature Engineering

- String-Based Similarity
- Machine Translation Similarity
- Corpus-based Features
- Alignment Measures

String-Based Similarity

Length Features (len):

$$|A|, |B|, |A - B|, |B - A|, |A \cup B|, |A \cap B|, \frac{|A - B|}{|B|}, \frac{|B - A|}{|A|}$$

Syntactic Features (pos):

$$\begin{aligned} |A_{pos}|, |B_{pos}|, |A_{pos} - B_{pos}|, |B_{pos} - A_{pos}| \\ |A_{pos} \cup B_{pos}|, |A_{pos} \cap B_{pos}|, \frac{|A_{pos} - B_{pos}|}{|B_{pos}|}, \frac{|B_{pos} - A_{pos}|}{|A_{pos}|} \end{aligned}$$

Longest Common Sequence (lcs):

$$\frac{|lcs(A,B)|}{min(|A|,|B|)}$$

String-Based Similarity

Ngrams Overlap Features (ngram):

- word level (original and lemmatized) / character level.
- $n = \{1, 2, 3\}$ are used for the word level.
- $n = \{2, 3, 4\}$ are used for the character level.

Named Entities Features (ner):

location, organization, data, money, person, time, percent

Machine Translation Similarity

Machine Translation Similarity

- 1. Viewed as one input and one output of a MT system.
- 2. MT measures (i.e., WER, TER, PER, NIST, ROUGE-L, GTM-1)
- 3. Two strategies (i.e., average and concatenate)

Corpus-based Features

WordNet Rank Features (wordnet):

- normalized ranking (sentence) vector.
- sentence vector distance: cosine, manhattan, Euclidean, Jaccard.

Vector Space Sentence Similarity (Isa):

- Latent Semantic Analysis(LSA)
- New York Times Annotated Corpus(NYT) / Wikipedia
- 3 convert to sentence level: sum up / use idf to weigh each word vector.

Alignment Measures

12 killed in bus accident in Pakistan.
10 killed in road accident in NW Pakistan. (sys: (2/3)*5 / gs: 3.2)

• Global Alignment Features:

$$sim(S_1, S_2) = \frac{n_a(S_1) + n_a(S_2)}{n(S_1) + n(S_2)}$$

POS-Specific Alignment Features:

calculate the aligned words proportion specifically according to POS tag(i.e., noun, verb, adjective, adverb).

Word Embedding Feature Engineering

- Word Centroid Distance
- Word Mover's Distance

Figure: An illustration of the word centroid distance.

Word Embedding Feature Engineering

- Word Centroid Distance
- Word Mover's Distance

Figure: An illustration of the word mover's distance.

Word Embedding Feature Engineering

Word Embedding

- word2vec
- @ GloVe
- C&W
 - Wiki

Distance Measurements

- Cosine Distance
- Manhattan Distance
- Euclidean Distance
- Pearson coefficient
- Spearman coefficient
- 6 Kendall tau coefficient

Datasets

Training Set			Test Set			
Dataset	Input	Gold	Dataset	Input	Gold	
MSRpar	1500	1500	answers-answers	1572	254	
SMTeuroparl	1193	1193	plagiarism	1271	230	
headlines*	3000	2250	headlines*	1498	249	
SMTnews	399	399	postediting	3287	244	
MSRvid	1500	1500	question-question	1555	209	
OnWN	2061	2061		-	-	
FNWN	189	189	-	-	-	
images	2250	1500	-	-	-	
deft-forum	450	450	-	-	-	
deft-news	300	300	-	-	-	
tweet-news	750	750	-	-	-	
answers-forums	1500	375	-	-	-	
answers-students	1500	750	-	-	-	
belief	2000	375	-	-	-	
All	19092	13592	All	9183	1186	

Table: The statistics of all datasets for STS task.

Questions

Q₁ Supervised Model?

A: Learning Algorithm: SVM? RF? GB?

Q₂ Difference between Training Data and Test Data?

A: Training Data: All? Selected Data?

Q₃ Efficient Feature Set?

A: Feature Set: ??

Q₁: Learning Algorithm

Regression	belief	answers -students	headlines	images	answers -forums	Weighted Mean
SVR(c=1)	0.7413	0.7359	0.8168	0.8660	0.7400	0.7898
RF(n=40)	0.7466	0.7100	0.8200	0.8534	0.7398	0.7816
GB(n=140)	0.7655	0.7484	0.8439	0.8791	0.7469	0.8080
DLSCU-S1	0.7491	0.7725	0.8250	0.8644	0.7390	0.8015

Table: Results of different algorithm on STS 2015 test data.

Q₂: Training Data

Measurements

- source
- average length of sentences
- word mover's distance

Training Data for STS 2016 test data

- headlines: headlines
- answers-answers, question-question: belief, deft-forums, answers-students, answers-forums
- postediting: SMTeuropar, MSRpar
- plagiarism: onWN, FNWN

Q₃: Feature Selection

Feature		belief	answers -students	headlines	image	answers -forums
String-based	len	-	-	√	√	-
	pos	-	-	√	-	√
	lcs	-	-	√	√	√
	ngram	-	√	√	√ √	√
	ner	-	Ų √	V	-	-
Machine	average	√	-	√	√	-
Translation	concat	-	-	-	-	-
Corpus-based	wordnet	√	√	√	-	√
	Isa	-	√	√	√	√
Alignment	global	-	√	√	√	√
	specific	√	√	√	√	√
Word Centroid Distance	word2vec	√	√	√	√	√
	glove		-	-	-	-
	turian's	√	√	√	√	-
Word Mover's Distance	wmd	√	√	√	√	√
Our Results		0.7835	0.7713	0.8455	0.8808	0.7636
Best Scores		0.7717	0.7879	0.8417	0.8713	0.7390

Table: Results of feature selection experiments on STS 2015 test data.

Setups

- U-SEVEN:
 - Iongest common sequence
 - alignment feature
 - corpus-based feature
 - word centroid distance from from four word embedding. cosine distance, Pearson coefficient, Spearman coefficient.
- S1-All
 - all the training datasets
 - regression model: GB(n=140)
 - feature selection: hill climbing
- S2
 - selected training datasets
 - regression model: GB(n=140)
 - feature selection: hill climbing

Results

Dataset		Best		
	U-SEVEN	S1-All	S2	Score
answers-answers	0.4774	0.5697	0.5715	0.6923
plagiarism	0.8301	0.8250	0.7733	0.8413
headlines	0.7668	0.8121	0.7903	0.8274
postediting	0.8423	0.8234	0.7496	0.8669
question-question	0.7191	0.7311	0.6763	0.7470
weighted mean	0.7242	0.7507	0.7116	0.7780

Table: The results of our three runs on STS 2016 test datasets.

Results

```
You should do it.
You can do it, too.

It's pretty much up to you.
It's much better to ask.

(sys: 4.0 / gs: 1.0)

(sys: 3.2 / gs: 0.0)
```

Conclusion

- The difference between top system and our best system is about 2.8%
- Future work: Deep Learning

