Samlefil for alle data til prøveeksamen

$Filen~1A/Oppgave1AFigur_A.png$

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

-1900.000 --2000.000 --2100.000 --2200.000 --2400.000 --2400.000 -

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

-2500.000

-2600.000

Luminositeten øker med en faktor 7.40e+09.

ò

200

400

600

Tidspunkt for observasjon (timer)

800

1000

1200

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjerna har en levetid på noen millioner år og fusjonerer hydrogen til helium i kjernen

STJERNE B) stjernas luminositet er 3 ganger solas luminositet og den fusjonerer hydrogen til helium i kjernen

STJERNE C) stjerna er bare noen hundretusen år gammel men skal allerede

snart begynne sin første heliumfusjon

STJERNE D) stjerna fusjonerer hydrogen til helium i et skall rundt kjernen

STJERNE E) massen til stjerna er 8 solmasser og den fusjonerer hydrogen i kjernen

Filen 1H.png

Figure 8: Figur fra filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 5.497e+06 kg/m $\hat{3}$ og temperatur 38 millioner K.

Kjernen i stjerne B har massetet
thet 7.800e+06 kg/m3̂ og temperatur 19 millioner K.

Kjernen i stjerne C har massetet
thet $3.255\mathrm{e}+06~\mathrm{kg/m}\hat{3}$ og temperatur 24

millioner K.

Kjernen i stjerne D har massetet
thet $8.486\mathrm{e}{+06~\mathrm{kg/m}}\hat{3}$ og temperatur 34 millioner K.

Kjernen i stjerne E har massetet
thet 2.260e+06 kg/m3̂ og temperatur 17 millioner K.

Filen 1K/1K.txt

Påstand 1: den tilsynelatende størrelseklassen (magnitude) med blått filter er betydelig mindre enn den tilsynelatende størrelseklassen i rødt filter

Påstand 2: den absolutte størrelseklassen (magnitude) med UV filter er betydelig større enn den absolutte størrelseklassen i blått filter

Påstand 3: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 4: denne stjerna er nærmest oss

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen \ 1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

Figur B tilsynelatende størrelseklasse 10.81

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L-Figure-E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet $4.732\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 25.60 millioner K.

Kjernen i stjerne B har massetet
thet $4.016\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 19.34 millioner K.

Kjernen i stjerne C har massetet
thet $4.132\mathrm{e}{+05~\mathrm{kg/m}}\hat{3}$ og temperatur 17.28

millioner K.

Kjernen i stjerne D har massetet
thet 1.704e+05 kg/m3̂ og temperatur 29.78 millioner K.

Kjernen i stjerne E har massetet
thet 1.210e+05 kg/m3̂ og temperatur 35.67 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 1.43 buesekunder i løpet av et millisekund.

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Lillehammer som ligger i en avstand av 350 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 99.30710 km/t.

Filen 3E.txt

Tog1 veier 76400.00000 kg og tog2 veier 76500.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 501 km/s.

Filen 4E.txt

Massen til gassklumpene er 8100000.00 kg.

Hastigheten til G1 i x-retning er 11400.00 km/s.

Hastigheten til G2 i x-retning er 19320.00 km/s.

Filen 4G.txt

Massen til stjerna er 35.55 solmasser og radien er 1.34 solradier.