HOMEWORK 2 REPORT CS698004 ST: TIME SERIES ANALYSIS AND FORECASTING SURAJ KUMAR OJHA (31669171)

Dataset details

- The dataset consists of following properties:
 - Dataset is called Huawei Public and Private Cloud Release Datasets.
 - It's a univariate time series data.
 - Granularity is minutes.
 - The columns 'day' and 'time' represent the timestamp values.
 - All the rest columns named (*0 to 5092*) represent 5093 different serverless functions.
 - Cell value indicates the number of function invocations that occurred for a specific timestamp and a particular function.

Preprocessing Steps

- Used Forward fill method to replace missing values.
- Used *Min-Max scaling* since data were in range of hundreds of thousands. After applying this transformation, data became stationary as verified by the ADF test.
- Performed aggregation across columns named from 0 to 5092 to get total invocations.
- Used Augmented Dickey-Fuller (ADF) test to check whether data is stationary or not.
- Merged the timestamp columns (date and time) to a single column named datetime.

Model results and Comparison

Model	MAE	RMSE	MAPE
Naive Baseline	86.979167	161.954598	12.656594
SES (Simple Exponential Smoothing)	91.509000	153.387247	14.709435
Holt's Linear Trend	89.586084	153.015790	14.231775
Holt-Winters	146.716804	190.252477	26.668826
ARIMA	83.22808	157.832165	12.138456

Discussion

Model Results and Comparison

■ ARIMA outperforms all other baseline models since data seems to be stationary already and as indicated by the values shown in the performance metric table.

Strengths and weaknesses of dataset

Strength

Dataset was already stationary.

■ Weakness

- Data points were in the range of thousands which is rescaled [0-1] by the Min-Max scaling.
- Timestamp values were split into two columns (day and time) in the original dataset.

Insights Gained From Preprocessing and Modeling

- Min-Max Scaling equalized function importance, ensuring no single function skewed the total workload prediction.
- Forward-fill avoided erroneous forecasting caused by gaps in the dataset.
- ARIMA and Holt's Linear Trend model are suitable for forecasting serverless function invocations, as serverless workloads often exhibit an increasing trend.

• BONUS POINTS

- Hyperparameter Tuning (smoothing parameter, alpha) for SES
 - SES performed best for smoothing parameter alpha = 0.7
- VAR MODEL on multivariate time series
 - Dataset included (timestamps, CPU usage and requests_per_minute)
 - Var model with forecasting steps set to 10 doesn't perform better than ARIMA model.