Crypto101 Express

Block ciphers

DaVinciCode

14/06/20

Rappel

- OTP pas pratiques
 - taille des données = taille de la clef
 - problème de transmission des clés

Rappel

- OTP pas pratiques
 - taille des données = taille de la clef
 - problème de transmission des clés

Chiffrement par bloc

Définition

Algorithmes qui permettent de chiffrer/déchiffrer des blocs de taille fixe (e.g. 16 bytes)

$$C = E(k, P)$$

$$P = D(k, C)$$

4/18

Graphique

Remarque

Les algorithmes de chiffrement par bloc font partie de la cryptographie symmétrique du fait que la même clef est utilisée pour le chiffrement et le déchiffrement

DaVinciCode Crypto101 Express 14/06/20 5/18

- imaginons que l'on veuille chiffrer un bloc de 4 bits
 - peut être représenté en hexa

•
$$0000_2 = 0_{16}$$

$$0001_2^2 = 1_{16}^{10}$$

•
$$1010_2 = a_{16}$$

•
$$1011_2 = b_{16}$$

•
$$1111_2 = f_{16}$$

• une clef \Rightarrow un ensemble de permutations

DaVinciCode Crypto101 Express 14/06/20 7/18

• Chiffrement avec k_1

• Chiffrement avec k_2

ullet Déchiffrement avec k_2

DES

- Data Encryption Standard, standardisé en 1977
- taille d'un bloc: 64 bits
- taille d'une clef: 64 bits
- taille effective d'une clef: 56 bits (8 bits de parité)
- bruteforcable en un jour (il semblerait)

2**56

72057594037927936

DES sur Python

```
from Crypto.Cipher import DES
key = b'13371337'
cipher = DES.new(key, DES.MODE_ECB)
ciphertext = cipher.encrypt(b'deadbeef')
plaintext = cipher.decrypt(ciphertext)
print(ciphertext)
## b'\xd5r\x12\t\x86shQ'
print(plaintext)
## b'deadbeef'
```

3DES

$$\begin{split} C &= E_{DES}(k_1, D_{DES}(k_2, E_{DES}(k_3, P))) \\ P &= D_{DES}(k_3, E_{DES}(k_2, D_{DES}(k_1, C))) \end{split}$$

- tentative d'étendre la vie de l'algorithme DES
- si $k_1 \neq k_2 \neq k_3 \Rightarrow 168$ bits
- si $k_1 = k_3 \Rightarrow 112$ bits
- $\bullet \ \ \mathrm{si} \ k_1 = k_2 = k_3 \Rightarrow \mathrm{DES}$
- ça reste un mauvais choix

2**168

374144419156711147060143317175368453031918731001856

2**112

5192296858534827628530496329220096

DaVinciCode Crypto101 Express 14/06/20 13 / 18

Pourquoi pas 2DES?

• vulnérable aux attaques meet-in-the-middle

$$C = ENC_{k_2}(ENC_{k_1}(P))$$

$$P = DEC_{k_1}(DEC_{k_2}(C))$$

$$C = ENC_{k_2}(ENC_{k_1}(P))$$

$$\iff DEC_{k_2}(C) = DEC_{k_2}(ENC_{k_2}[ENC_{k_1}(P)])$$

$$\iff DEC_{k_2}(C) = ENC_{k_1}(P)$$

• la sécurité du 2DES n'est que faiblement supérieure à celle du DES $(2^{57}\ vs\ 2^{56})$

AES

- Advanced Encryption Standard (ou Rijndael)
- standardisé en 2002
- taille d'un bloc: 128 bits
- taille d'une clé: 128, 192, ou 256 bits

Pour aller plus loin

- https://cryptohack.org/challenges/aes/
- Implémentation simplissime de l'algorithme AES en Python

Toujours des problèmes

• et si la taille du message n'est pas un multiple de la clef?

DaVinciCode Crypto101 Express 14/06/20 17/18

Des questions?

```
$$$$\
                   $$$$\
                            $$$$\
                                     $$$$\
                                              $$$$\
                                                       $$$$\
          $$$$\
                      $$\
                                        $$\
$$
    $$\
        $$
             $$\ $$
                           $$
                               $$\
                                    $$
                                             $$
                                                  $$\
                                                           $$\
  /$$
           /$$
                    /$$
                             /$$
                                      /$$
                                                 /$$
                                                        /$$
   $$
            $$
                     $$
                              $$
                                       $$
                                                 $$
                                                          $$
  $$
           $$
                    $$
                             $$
                                      $$
                                               $$
                                                        $$
  $$\
           $$\
                    $$\
                             $$\
                                      $$\
                                               $$\
                                                        $$\
```

18 / 18