

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе № __3_

Название: Исследование синхронных счетчиков

Дисциплина: Архитектура ЭВМ

Студент	ИУ7-44Б		И.Ю. Елгин	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Преподаватель			А.Ю. Попов	
		(Подпись, дата)	(И.О. Фамилия)	

Цель работы — изучение принципов построения счетчиков, овладение методом синтеза синхронных счетчиков, экспериментальная оценка динамических параметров счетчиков, изучение способов наращивания разрядности синхронных счетчиков.

Выполнение лабораторной работы

- 1. Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом на Ттриггерах. Проверить работу счётчика
 - от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
 - от импульсов генератора. Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Рис. 1 Схема суммирующего счётчика на Т-тригерах с переключателем и светодиодами

Рис. 2 Схема суммирующего счётчика на Т-тригерах с генератором сигнала

Рис. 3 Временная диаграмма сигналов счётчика (первый сигнал входной остальные четыре выходные)

На временной диаграмме видно, что счётчик переключается в новое состояние при переключении сигнала из 0 в 1, состояния изменяются последовательно в естественном порядке.

Время задержки равно 6 нс, максимальная частота 160 МНz

2. Синтезировать двоично-десятичный счётчик с заданной последовательностью состояний. десятичными числами обозначены номера двоичных наборов, изображающие десятичные цифры и определяющие состояние счётчика. Начертить схему счётчика на элементах интегрального базиса (И-НЕ; И, ИЛИ, НЕ), синхронных ЈКтриггерах.

Вариант №5 0,1,2,3,4,5,6,8,9,10

	Преды	здущее	состоян	ие	Ново	Новое состояние			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
0	0	0	0	0	0	0	0	1	
1	0	0	0	1	0	0	1	0	
2	0	0	1	0	0	0	1	1	

3	0	0	1	1	0	1	0	0
4	0	1	0	0	0	1	0	1
5	0	1	0	1	0	1	1	0
6	0	1	1	0	1	0	0	0
8	1	0	0	0	1	0	0	1
9	1	0	0	1	1	0	1	0
10	1	0	1	0	0	0	0	0

Табл.1 Состояния триггеров при работе счётчиков.

J0	K0	J1	K1	J2	K2	J3	K3
0	A	0	a	0	a	1	a
0	A	0	A	1	0	0	1
0	A	0	A	A	0	1	0
0	A	1	0	0	1	0	1
0	A	A	0	0	A	1	0
0	A	A	0	1	0	0	1
1	0	0	1	0	1	0	A
a	0	0	A	0	A	1	0
a	0	0	A	1	0	0	1
0	1	0	A	0	1	0	A

Табл. 2 Сигналы на входы ЈК- триггеров

Логические функции для ЈК- триггеров:

J0=Q2&Q3

J1=Q3&Q4

J2=Q4&!Q3

J3=!Q4&!(Q3&(Q2|Q1))

K0=Q1&Q3

K1=Q2&Q3

K2=Q3&(Q4|Q2|Q1)

K3=Q4

Рис. 4 Схема двоично-десятичного счётчика с заданной последовательностью состояний

3. Собрать десятичный счётчик, используя элементную базу приложения Multisim или учебного макета. Установить счётчик в начальное состояние, подав на установочные входы R соответствующий сигнал.

	Предыдущее состояние				Новое состояние			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
0	0	0	0	0	0	0	0	1
1	0	0	0	1	0	0	1	0
2	0	0	1	0	0	0	1	1
3	0	0	1	1	0	1	0	0
4	0	1	0	0	0	1	0	1
5	0	1	0	1	0	1	1	0
6	0	1	1	0	0	1	1	1
7	0	1	1	1	1	0	0	0
8	1	0	0	0	1	0	0	1
9	1	0	0	1	0	0	0	0

Табл. 3 Состояния триггеров при работе десятичного счётчиков.

J0	K0	J1	K1	J2	K2	J3	K3
0	A	0	a	0	a	1	0
0	A	0	A	1	0	0	1
0	A	0	A	A	0	1	0
0	A	1	0	0	1	0	1
0	A	A	0	0	A	1	0
0	A	A	0	1	0	0	1
0	A	A	0	A	0	1	0
1	0	0	1	0	1	0	1
a	0	0	A	0	A	1	0
0	1	0	A	0	A	0	1

Табл. 2 Сигналы на входы ЈК- триггеров десятичного счётчика.

Логические функции для ЈК- триггеров:

J0=Q2&Q3&Q4

J1=Q3&Q4

J2=Q4&!Q3&!Q1

J3=!Q4

K0=Q1&Q4

K1 = Q2&Q3&Q4

K2 = Q1&Q2

K3=Q4

Рис. 5 Схема десятичного счётчика.

- 4. Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом. Проверить работу счётчика
- от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
- от импульсов генератора. Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Рис. 1 Схема четырёхразрядного синхронного суммирующего счётчика на D-тригерах с переключателем и светодиодами.

Рис. 7 Схема четырёхразрядного синхронного суммирующего счётчика на D-тригерах с генератором сигнала.

Рис. 8 Временная диаграмма сигналов счётчика (первый сигнал входной остальные четыре выходные)

На временной диаграмме видно, что счётчик переключается в новое состояние при переключении сигнала из 0 в 1, состояния изменяются последовательно в естественном порядке.

Время задержки равно 4 нс, максимальная частота 250 MHz

- 5. Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом ИС К555ИЕ9, аналог ИС 74LS160 Проверить работу счётчика
- от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
- от импульсов генератора. Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Рис. 9 Схема ИС 74LS160 с диодами и переключателем.

Рис. 10 Схема ИС 74LS160 с генератором сигналов.

Рис. 11 Временная диаграмма сигналов счётчика (первый сигнал входной остальные четыре выходные)

На временной диаграмме видно, что счётчик переключается в новое состояние при переключении сигнала из 1 в 0, состояния изменяются в естественном порядке.

Время задержки равно 30 нс, максимальная частота 33 МНz

6. Исследование схем наращивания разрядности счетчиков ИЕ9 до четырех секций с последовательным переносом между секциями и по структуре «быстрого» счета

Рис. 12 Схема наращивания разрядности счетчиков ИЕ9 до четырех секций с последовательным переносом между секциями.

Рис. 13 Схема наращивания разрядности счетчиков ИЕ9 до четырех секций по структуре «быстрого» счета.

Вывод: при выполнении лабораторной работы изучены принципы построения счетчиков, изучены методоы синтеза синхронных счетчиков, дана экспериментальная оценка динамических параметров счетчиков, изучены способы наращивания разрядности синхронных счетчиков.