

Aufgaben zu Riemannschen Flächen

10. Blatt – Übung am Montag, 09.01.2017

Aufgabe 32: Sei \mathscr{U} eine offene Überdeckung von X und \mathcal{F} eine Garbe abelscher Gruppen auf X. Zeigen Sie exemplarisch, dass

$$\delta \circ \delta : \check{C}^0(\mathscr{U}, \mathcal{F}) \to \check{C}^1(\mathscr{U}, \mathcal{F}) \to \check{C}^2(\mathscr{U}, \mathcal{F})$$

der Null-Morphismus ist.

Aufgabe 33: Seien $\mathcal{W} \leq \mathcal{V} \leq \mathcal{U}$ jeweils Verfeinerungen offener Überdeckungen. Zeigen Sie, dass die Verfeinerungsabbildungen in Čech-Kohomologie wie erwartet kommutieren:

Aufgabe 34: Zeigen Sie, dass die Verfeinerungsabbildung auf Čech-Kohomologie

$$\check{H}^r(\mathscr{U},\mathcal{F}) \longrightarrow \check{H}^r(\mathscr{V},\mathcal{F})$$

für eine Verfeinerung $\mathscr{V} \leq \mathscr{U}$ immer injektiv ist.

Aufgabe 35: Betrachten Sie die Garben $\mathcal{O}(m)$ auf \mathbb{CP}^1 aus Aufgabe 11, Blatt 3. Sei $\mathscr{U}=(U_0,U_1)$ die dort betrachtete offene Überdeckung (die Standard-Kartengebiete auf \mathbb{CP}^1). Zeigen Sie, dass¹

$$\dim_{\mathbb{C}} \check{H}^1(\mathscr{U},\mathcal{O}(m)) = \left\{ \begin{array}{ll} -m-1 & \text{für } m \leq -2, \\ \\ 0 & \text{für } m \geq -1. \end{array} \right.$$

¹Beachten Sie, dass diese Kohomologiegruppen in natürlicher Weise \mathbb{C} -Vektorräume sind, weil die lokalen Schnitte $\mathcal{O}(m)(U)$ dies sind und die Korand-Operatoren δ offenbar \mathbb{C} -linear.