# Logistic Regression

Unravelling the Power of Classification

#### <u>CLASSIFICATION</u>

A classification problem is where we predict the category of a given sample.eg-

- SMS spam or not spam [Binary classification]
- Cuisine preference Indian , Chinese , Italian [Multinomial classification]
- Customer satisfaction Low ⊕, Medium ⊕, High ⊕ [Ordinal classifcation]



## Why not Linear regression



# Sigmoid or Logistic Function

- The Linear regression model would predict a number between infinity to +infinity
- However, we would like the predictions of our classification model to be between 0 and 1 since our output is either 0 or 1.
- This can be accomplished by using a "sigmoid function" which maps all input values to values between 0 and 1.





# Logistic Regression

• The formula for a sigmoid function is as follows -

$$g(z) = \frac{1}{1 + e^{-z}}$$

• In the case of logistic regression, z (the input to the sigmoid function), is the output of a linear regression model.

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = g(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$$
"logistic regression"

### DECISION BOUNDARY

to get a final prediction (y=0 or y=1)

$$f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = g(\mathbf{w} \cdot \mathbf{x}^{(i)} + b)$$

if f**w**,b(x)>=0.5 , predict y=1

if 
$$f$$
**w**, $b$ ( $x$ )<0.5, predict  $y$ =0

for 
$$f$$
**w**, $b$ ( $x$ )>=0.5  
=> g(z)>=0.5  
=> z>0



#### DECISION BOUNDARY

#### Decision boundary is given by z=0

- Say you have a logistic regression model of the form f(x)=g(w0x0+w1x1+b)
- Let's say that you trained the model and get the parameters as b=-3,w0=1,w1=1. That is, f(x)=g(x0+x1-3) then decision boundary is given by x0+x1-3=0, which is a line



• similarly, if  $f(x)=g((x0)^2+(x1)^2-1)$ then decision boundary is given by  $(x0)^2+(x1)^2-1=0$ , which is a circle



# 

#### **COST FUNCTION**

 for Linear Regression we have used the squared error cost function: The equation for the squared error cost with one variable is:

$$J(w,b) = \frac{1}{2m} \sum_{i=0}^{m-1} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

$$f_{w,b}(x^{(i)}) = wx^{(i)} + b$$

• In the case of Logistic regression

$$f_{w,b}(x^{(i)}) = sigmoid(wx^{(i)} + b)$$

• Lets look at the graph of the cost function

#### <u>SQUARED ERROR COST FUNCTION</u>



$$f_{w,b}(x^{(i)}) = wx^{(i)} + b$$

$$f_{w,b}(x^{(i)}) = sigmoid(wx^{(i)} + b)$$

- Its clear that the squared error cost function in the case of logistic regression is a non convex
- So the gradient descent algorithm might get stuck in a local minimum point before reaching the global minima
- So we need a different cost function which can give us a convex graph like in the case of squared error cost for linear regression

#### LOGISTIC LOSS FUNCTION

$$loss(f_{\mathbf{w},b}(\mathbf{x}^{(i)}),y^{(i)}) = \begin{cases} -\log(f_{\mathbf{w},b}\left(\mathbf{x}^{(i)}\right)) & \text{if } y^{(i)} = 1\\ -\log(1-f_{\mathbf{w},b}\left(\mathbf{x}^{(i)}\right)) & \text{if } y^{(i)} = 0 \end{cases}$$

- f**w**,b(**x**(i) is the model's prediction, while y(i) is the target value.
- y(i)=1log(fw,b(x(i))) 0.0 0.2 0.4 0.6 0.8 1.0 fw.b(x(i))

- Loss is a measure of the difference of a single example to its target value while the
- Cost is a measure of the losses over the training set



### Logistic Loss Function



## Gradient descent

$$J(\vec{\mathbf{w}}, b) = -\frac{1}{m} \sum_{i=1}^{m} \left[ \mathbf{y}^{(i)} \log \left( \mathbf{f}_{\vec{\mathbf{w}}, b}(\vec{\mathbf{x}}^{(i)}) \right) + \left( 1 - \mathbf{y}^{(i)} \right) \log \left( 1 - \mathbf{f}_{\vec{\mathbf{w}}, b}(\vec{\mathbf{x}}^{(i)}) \right) \right]$$

repeat { 
$$w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(\overrightarrow{w}, b)$$
 
$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w}, b)$$
 }

$$\frac{\partial}{\partial w_j} J(\vec{\mathbf{w}}, b) = \frac{1}{m} \sum_{i=1}^m (f_{\vec{\mathbf{w}}, b}(\vec{\mathbf{x}}^{(i)}) - \mathbf{y}^{(i)}) \mathbf{x}_j^{(i)}$$
$$\frac{\partial}{\partial b} J(\vec{\mathbf{w}}, b) = \frac{1}{m} \sum_{i=1}^m (f_{\vec{\mathbf{w}}, b}(\vec{\mathbf{x}}^{(i)}) - \mathbf{y}^{(i)})$$

Now that we have found the cost function we can now use the gradient descent to update the weights(wj) and biases(b) to minmise the error in the prediction



# Logistic Regression code implementation

#### MULTICLASS CLASSIFICATION

- we used sigmoid for binary classification
- For multi class classifications we can use the softmax function
- Softmax converts the outputs from the model into probabilities

$$s\left(x_{i}\right) = \frac{e^{x_{i}}}{\sum_{j=1}^{n} e^{x_{j}}}$$



# LIMITATIONS OF LOGISTIC REGRESSION

Logistic Regression assumes linearity between the input features and the binary outcome:
For example, predicting the likelihood of a customer making a purchase based on their age and income may not have a linear relationship. In such cases, logistic regression may not capture the complex non-linear patterns in the data, and its

performance may be limited.

# 0012-2