Appln. 09/703,038

Amdt. dtd. May 3, 2006

Reply to Office Action of Nov. 3, 2006

Amendments to the Claims:

This listing ofclaims will replace all prior versions, and

listings, of claims in this application.

Listing of Claims:

1 - 62 (Cancelled)

63. (Previously Presented) A method of passing Internet Protocol

(IP) data packets through a network, said method comprising:

constructing a chunk as a substantially fixed quantity of data

with a payload that is sized to fit more than one of said data

packets;

filling said payload of said chunk with a portion of at least

one data packet;

including a framing symbol in each said chunk

converting said chunk from electrical information into optical

information; and passing said chunk through an optical switch

fabric.

64. (Previously Presented) The method of claim 63 further

comprising inserting said framing symbol adjacent to the trailing

end of said chunk.

65. (Previously Presented) The method of claim 63 wherein said passing comprises using said framing symbol to determine uniquely within a stream of bits the beginning and the trailing end of said chunk.

- 66. (Previously Presented) The method of claim 63 wherein said framing symbol has a length of 16 bytes.
- 67. (Previously Presented) The method of claim 66 wherein said framing symbol includes two bits of said framing symbol intermixed in each of 56 contiguous bytes of said chunk immediately followed by two contiguous bytes of said framing symbol.
- 68. (Previously Presented) The method of claim 63 further comprising:

formatting said chunk to include forward error correction (FEC) coding.

- 69. (Previously Presented) The method of claim 68 wherein said formatting includes cyclical redundancy check (CRC) coding in each chunk.
- 70. (Previously Presented) The method of claim 69 further comprising using said FEC encoded in each said chunk to detect and correct errors in said chunk.

Appln. 09/703,038 Amdt. dtd. May 3, 2006

Reply to Office Action of Nov. 3, 2006

71. (Previously Presented) The method of claim 70 further comprising using said CRC encoded in each said chunk to determine that the entire said chunk has a proper CRC value.

72. (Previously Presented) The method of claim 63 further comprising:

formatting said chunk to include a scrambler seed, and wherein said formatting comprises using said scrambler seed in said chunk to balance zeroes and ones and to minimize run lengths of zeroes and ones by scrambling bits across said chunk.

73. (Previously Presented) The method of claim 63 further comprising:

formatting said chunk to include a "Break Bytes" field and a "Make Bytes" field, said fields configured to precondition an optical receiver prior to the arrival of said chunk.

- 74. (Previously Presented) The method of claim 73 wherein said "Break Bytes" field and said "Make Bytes" field are programmable in length.
- 75. (Previously Presented) The method of claim 73 wherein said passing comprises using said "Break Bytes" field and said "Make Bytes" field to precondition an optical receiver prior to the arrival of a chunk.

Reply to Office Action of Nov. 3, 2006

76. (Previously Presented) The method of claim 75 wherein said "Break Bytes" field maintains a 50 percent density of ones and zeros for a laser beam.

- 77. (Previously Presented) The method of claim 75 wherein said "Make Bytes" field reestablishes a decision threshold level of a limiting amplifier within a burst mode optical receiver.
- 78. (Previously Presented) The method of claim 63 further comprising:

formatting said chunk to include adding a chunk header.

- 79. (Previously Presented) The method of claim 78 wherein said chunk header includes identification of chunk type.
- 80. (Previously Presented) The method of claim 78 wherein said chunk header includes a header parity.
- 81. (Previously Presented) The method of claim 78 wherein said chunk header includes an indication that said chunk is a master chunk.
- 82. (Previously Presented) The method of claim 78 wherein said chunk header includes a sequence number.

Appln. 09/703,038 Amdt. dtd. May 3, 2006

Reply to Office Action of Nov. 3, 2006

83. (Previously Presented) The method of claim 82 further

comprising:

performing error detection and correction using said sequence

number in said chunk header for alarming and for alerting that a

chunk potentially was corrupted.

84. (Previously Presented) The method of claim 83 wherein a re-

initialize bit is used to enable reinitialization of said sequence

number, such that said alarming is avoided.

85. (Previously Presented) The method of claim 63 wherein said

chunk has a length of approximately 400 bytes.

86. (Previously Presented) The method of claim 63 wherein said

chunk contains multiple data packets.

87. (Previously Presented) The method of claim 63 wherein said

sized chunk contains a segment of a data packet, said data packet

having a length greater than the size of said chunk.

88. (Previously Presented) An Internet Protocol (IP) packet router

system, said system comprising:

at least one chunk having a payload comprising a plurality of

data packets and a framing symbol; and

an IP packet router, including:

Page 6 of 18

Appln. 09/703,038

Amdt. dtd. May 3, 2006

Reply to Office Action of Nov. 3, 2006

an optical switch fabric through which said chunk passes;

and;

a first electrical switch stage at an input side of said

optical switch fabric and a second electrical switch stage at an

output side of said switch fabric.

89. (Previously Presented) The IP packet router system of claim 88

wherein said first electrical switch stage is operable to construct

said chunk, and said second electrical switch stage is operable to

strip said data packets from said chunk.

90. (Previously Presented) The IP packet router system of claim 88

wherein said framing symbol has a length of 16 bytes, and wherein

said framing symbol is located adjacent the trailing end of each

said chunk.

91. (Previously Presented) The IP packet router system of claim 90

wherein said framing symbol includes two bits of said framing

symbol intermixed in each of 56 contiguous bytes of said chunk

immediately followed by two contiguous bytes of said framing

symbol.

92. (Previously Presented) The IP packet router system of claim 91

wherein each said chunk is formatted to include a chunk cyclical

redundancy check (CRC) field.

Page 7 of 18

Appln. 09/703,038

Amdt. dtd. May 3, 2006

Reply to Office Action of Nov. 3, 2006

93. (Previously Presented) The IP packet router system of claim 92 wherein said chunk CRC field is located adjacent and preceding said two contiguous bytes of said framing symbol.

94. (Previously Presented) The IP packet router system of claim 88 wherein each said chunk is further formatted to include forward error correction (FEC) coding.

95. (Previously Presented) The IP packet router system of claim 88 wherein said FEC coding is located adjacent to and following said framing symbol.

- 96. (Previously Presented) The IP packet router system of claim 88 wherein each said chunk is formatted to include a preamble, said preamble containing information configured to allow alignment of router clock and data recovery circuitry.
- 97. (Previously Presented) The IP packet router system of claim 96 wherein each said chunk is formatted to include a "Break Bytes" field and a "Make Bytes" field, said fields configured to precondition an optical receiver prior to the arrival of a chunk.
- 98. (Previously Presented) The IP packet router system of claim 97 wherein said "Break Bytes" field is located ahead of said "Make Bytes" field in a chunk.

Reply to Office Action of Nov. 3, 2006

- 99. (Previously Presented) The IP packet router system of claim 98 wherein said "Make Bytes" field is located ahead of said preamble.
- 100. (Previously Presented) The IP packet router system of claim 88 wherein each said chunk is formatted to include a scrambler seed.
- 101. (Previously Presented) The IP packet router system of claim 88 wherein each said chunk is formatted to include a chunk header.
- 102. (Previously Presented) The IP packet router system of claim 101 wherein said chunk header includes identification of chunk type.
- 103. (Previously Presented) The IP packet router system of claim 101 wherein said optical switch fabric is partitioned into a plurality of working subplanes.
- 104. (Previously Presented) The IP packet router system of claim 103 wherein said chunk header includes identification of a specific routing subplane through said switch fabric.
- 105. (Previously Presented) The IP packet router system of claim
 101 wherein said chunk header includes a header parity.

Appln. 09/703,038

Amdt. dtd. May 3, 2006

Reply to Office Action of Nov. 3, 2006

106. (Previously Presented) The IP packet router system of claim 101 wherein said chunk header includes identification of an input of said optical switch fabric and an output of said optical switch

fabric for said chunk.

107. (Previously Presented) The IP packet router system of claim

101 wherein said chunk header includes a master chunk bit.

108. (Previously Presented) The IP packet router system of claim

101 wherein said chunk header includes a sequence number.

109. (Previously Presented) The IP packet router system of claim 88

wherein said payload of said at least one chunk further comprises

at least one packet segment and an associated packet header.

110. (Currently Amended) The IP packet router system of <u>claim 109</u>

 ${
m claim}$ 88 wherein said at least one packet segment is selected from

the group consisting of portions of packets that are larger than

said chunk payload, portions of packets that are equal in size to

said chunk payload, and portions of packets that are smaller in

size than said chunk payload.

111. (Previously Presented) The IP packet router system of claim 88

wherein said switch fabric comprises a plurality of optical switch

planes.

112. (Previously Presented) A method of information flow through an IP packet network system, said method comprising:

encapsulating input data packets from a plurality of source ports into substantially fixed sized chunks, wherein said input data packets are electrical signals;

formatting overhead information onto each of said chunks, said overhead including a framing symbol;

electrically switching said chunks to be sent to an appropriate optical switch plane; converting said chunks into optical signals; and

directing said chunks through said appropriate optical switch plane toward a plurality of destination ports.

113. (Previously Presented) The method of claim 112 further comprising:

converting said directed chunks into electrical signals;
electrically switching said chunks from said appropriate
optical switch plane;

performing error detection and error correction on said chunk; removing said overhead information from said chunks; and reassembling said input data packets out of said chunks.

114. (Previously Presented) The method of claim 112 wherein all information flows through said switch plane in said substantially fixed sized chunks.

Appln. 09/703,038

Amdt. dtd. May 3, 2006

Reply to Office Action of Nov. 3, 2006

115. (Previously Presented) The method of claim 112 further comprising:

formatting said chunks to include adding a chunk header.

116. (Previously Presented) The method of claim 115 wherein said appropriate switch plane is one of a plurality of subplanes

comprising a partitioned switch fabric.

117. (Previously Presented) The method of claim 116 wherein said

chunk header includes identification of a specific routing subplane

through said switch fabric.

118. (Previously Presented) The method of claim 117 wherein said

directing comprises using said identification in said chunk header

of a specific routing subplane to route said chunks through said

switch fabric.

119. (Previously Presented) The method of claim 115 wherein said

chunk header includes identification of an input of said

appropriate optical switch plane and an output of said appropriate

optical switch plane for said chunk.

120. (Previously Presented) The method of claim 119 wherein said

directing comprises using said identification in said chunk header

Appln. 09/703,038

Amdt. dtd. May 3, 2006

Reply to Office Action of Nov. 3, 2006

of said input and said output to route said chunks through said optical switch plane.

121. (Previously Presented) The method of claim 119 further comprising:

performing error detection and correction using said identification in said chunk header of said input and said output to verify the route of said chunks from said input and said output.

- 122. (Previously Presented) The method of claim 115 wherein said chunk header includes identification of chunk type.
- 123. (Previously Presented) The method of claim 122 wherein said directing comprises using said identification of chunk type in said chunk header to enable guaranteed bandwidth chunks to pass ahead of best effort chunks through said switch plane.
- 124. (Previously Presented) The method of claim 112 wherein said optical switch plane is part of an optical switch fabric.
- 125. (Previously Presented) The method of claim 112 wherein said electrically switching comprises using said framing symbol in each said chunk to determine uniquely within a stream of bits a beginning and a trailing end of each said chunk.