

Secuenciación del genoma de bacterias: ensamblado y anotación

Unidad de Bioinformática
Unidades Centrales Científico Técnicas – SGSAFI-ISCIII

27 Mayo 2021, 8ª Edición Programa Formación Continua, ISCIII

27/05/2021

Ensamblado

Reconstruir la **secuencia de DNA original** a partir de **lecturas** o secuencias de mucho menos tamaño.

• **De novo:** sin ningún tipo de conocimiento previo a cerca del genoma a ensamblar. Busca lecturas cuyo final coincida con el principio de otra para formar fragmentos del mayor tamaño posible.

• *Usando Referencia:* se usa un genoma como guía que suponemos es similar al que se quiere ensamblar.

27/05/2021

Ensamblado: contig y scaffold

- Contig: secuencia continua del genoma formada por lecturas solapantes
- Scaffold: dos o más contigs unido por información de longitudes conocidas (pair-end, mate pair, referencia)

Ensamblado: gaps

- Sequencing gaps: sabemos el orden y orientación de los contigs por tener al menos un par que cubre ambos contigs
- Physical gaps: no tenemos información entre contigs adyacentes

Ensamblado: Errores

- A. Gaps región del genoma sin secuenciar
- B. Duplicaciones de gran tamaño
 - Quimeras
- Regiones repetidas colapsadas
 - C. Terminales
 - D. Intersticiales

Nature Reviews | Genetics

Ensamblado: Algoritmos

• Overlap, Layout, Consensus (OLC - overlap graph):

Overlap: Busca todos los pares de secuencia que solapan; Layout: Quita solapamientos redundantes y de baja calidad; Consensus: Alinea las secuencias que solapan solo entre ellas.

Ej. Newbler, Mira....

• De Brujin (k-mer graph)

Grafos de Brujin: Elaboración de un grafo de k-mers (fragmentos de secuencia de longitud fija) donde se representan todos los solapamientos entre k-mers. Se unen nodos, burbujas y selección del mejor camino hasta un grafo irreducible del que se obtienen los contigs.

Ej. SPAdes, ABySS, Velvet, AllPaths, Soap....

• Burrows Wheeler transform (FM-index):

OLC usando el algoritmo "Ferragina-Manzine index" para encontrar todos los pares de secuencias que solapan de manera eficiente (rápida).

Ej. Assembler SGA, String Graph...

50%

sum

Ensamblado: Métricas

- **sum** = numero total de bases
- **n** = numero total de contigs
- average = promedio de longitud de los fragmentos
- largest = bases en el fragmento mas largo
- N50 = el tamaño mas corto de los contigs en donde el 50% de sum (el total de bases) esta contenido.
- L50 = numero de contigs en donde tengo el 50% del genoma
- N90 = el tamaño mas corto de los contigs en donde el 90% de sum (el total de bases) esta contenido. Un buen ensamblado el N90 a veces es casi igual al tamaño promedio de contig.
- L90 = դարբրօ de contigs en donde tengo el 90% del genoma

50%

Ensamblado: Scaffolding - Genoma completo

• A partir del draft:

Ordenar contigs (Nucmer, si hay referencia la usamos para alinear y orientar contigs)

Completar los GAPs (GapFiller, rellena los gaps de los contigs - sequencing gap)

Resolver ambigüedades por repeticiones (Expander)

Volver a secuenciar con una librería de mayor fragmento y/o distinta plataforma

• Herramientas que mejoran los ensamblados

SSPACE (hace Scaffolding) REAPR (Evalúa el scaffolding, rompiendo los scaffolds incorrectos)

Visualizar un ensamblado

Artemis, ACT (comparación de dos o más secuencias)

27/05/2021

Ensamblado: Evaluación

- Software que evalúa diferentes algoritmos y parámetros iMetAMOS, Koren et al., BMCBioinformatics 2014, 15:126 GAGE-B, Magoc et al., Bioinformatics 2013,29(14):1718-25
- Evaluación del ensamblado: **Quast**, *Gurevich et al.*, *Bioinformatics 2013*, *29:8*
- Criterios elección mejor ensamblado:

N50 mas grande

Num. total de bases más cercano a lo esperado

Menos contigs totales

27/05/Menos contigs tanto en L50 como L90

Ensamblado: Ensambladores

Name	Туре	Technologies	Author	Presented /Last updated	Licence*	Homepage
DNASTAR Lasergene Genomics Suite	(large) genomes, exomes, transcriptomes, metagenomes, ESTs	Illumina, ABI SOLiD, Roche 454, Ion Torrent, Solexa, Sanger	<u>DNASTAR</u>	2007 / 2016	С	<u>link</u>
Newbler	genomes, ESTs	454, Sanger	454/Roche	2004/2012	С	link
<u>Canu</u>	Small and large, haploid/diploid genomes	PacBio/Oxford Nanopore reads	Koren et al. ^[8]	2001 / 2018	OS	<u>link</u>
<u>SPAdes</u>	(small) genomes, single- cell	Illumina, Solexa, Sanger, 454, Ion Torrent, PacBio, Oxford Nanopore	Bankevich, A et al.	2012 / 2017	OS	<u>link</u>
Velvet	(small) genomes	Sanger, 454, Solexa, SOLiD	Zerbino, D. et al.	2007 / 2011	OS	link

27/05/2021 *Licences: OS = Open Source; C = Commercial; C / NC-A = Commercial but free for non-commercial and academics

Ensamblado: Ensamblados especiales

- Genomas diploides
- Metagenomas
- Plásmidos

• Transcriptoma

Ensamblado: Categorías

Standards for Sequencing Viral Genomes in the Era of HighThroughput Sequencing. Ladner et al.

Hybrid genome assembly - short and long reads

Hybrid genome assembly - nanopore and illumina

Short reads (ILLUMINA) + Long reads (ONT) \rightarrow deNovo assembly (De novo assembly is the process of assembling a genome from scratch using only the sequenced reads as input - no reference genome is used.) \rightarrow high-quality assembly

ONT: >40.000b, higher error rate – **genome structure**

ILLUMINA: 300b, lower error rate – high base-level accuracy

Higher COST

Molina-Mora et al., Scientific Reports 2020

Hybrid genome assembly and annotation of Danionella translucida

Fig 1. Data flow chart of the integrative meta-assembly pipeline (IMAP).

Song G, Lee J, Kim J, Kang S, Lee H, et al. (2019) Integrative Meta-Assembly Pipeline (IMAP): Chromosome-level genome assembler combining multiple de novo assemblies. PLOS ONE 14(8): e0221858. https://doi.org/10.1371/journal.pone.0221858 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221858

Table 1. Assembly evaluation metrics and results.

Data	set (W303)	MIN (bp)	MAX (bp)	N50 (bp)	Total length (bp)	Mapped reads (%)	Proper pairs (%)	
De novo assembly	SPAdes	80	515,973	187,035	13,901,101	99.40	96.24	
	MaSurCa	300	784,921	273,283	11,838,299	82.86	97.88	
	SOAPdenovo2	200	61,911	13,286	11,749,637	50.60	88.48	
RACA assembly	RACA-SPAdes	80	1,058,428	716,084	13,905,771	99.40	96.24	
	RACA-MaSurCa	300	1,436,612	706,991	11,842,202	82.86	97.88	
	RACA-SOAPdenovo2	200	1,076,849	69,631	11,772,637	50.60	88.49	
Meta assembly	Meta	80	1,448,740	702,641	13,773,679	98.56	96.19	
Final assembly	Corrected assembly	80	1,450,556	705,629	13,847,490	98.57	97.10	
PacBio	PacBio	3,688	1,575,129	929,095	12,433,409	99.15	98.73	

https://doi.org/10.1371/journal.pone.0221858.t001

Song G, Lee J, Kim J, Kang S, Lee H, et al. (2019) Integrative Meta-Assembly Pipeline (IMAP): Chromosome-level genome assembler combining multiple de novo assemblies. PLOS ONE 14(8): e0221858. https://doi.org/10.1371/journal.pone.0221858

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221858

27/05/2021

Human Reference Consortium

General

Assembly name GRCh38.p13 Release date 2019-03-01

Assembly type haploid-with-alt-loci

Release type patch

Assembly units 38

Total bases 3.272.116.950 Total non-N bases 3,110,748,599

Primary assembly N50 67,794,873

Regions

Total regions 358 Regions with alternate loci 178

Regions with FIX patches 113

Regions with NOVEL patches 72 Regions as PAR 4

Alternate loci and patches

Alternate loci 261

Alternate loci aligned to

primary assembly

FIX patches 113

FIX patches aligned to primary

assembly

NOVEL patches 72

NOVEL patches aligned to

primary assembly

https://www.ncbi.nlm.nih.gov/grc/human

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/G CA 000001405.28 GRCh38.p13/README.txt

Index of /genomes/all/GCA/000/001/405/GCA 000001405.15 GRCh38

Name	Last modified	Size	
Parent Directory		-	
GCA 000001405.15 GRCh38 assembly structure/	2016-09-20 09:37	-	
GO TO CURRENT VERSION/	2020-04-15 12:35	-	
seqs for alignment pipelines.ucsc ids/	2021-03-02 22:14	-	
GCA 000001405.15 GRCh38 assembly regions.txt	2016-10-13 08:52	25K	
GCA 000001405.15 GRCh38 assembly report+ucsc names.tx	t 2014-11-21 17:18	49K	
GCA 000001405.15 GRCh38 assembly report.txt	2016-10-13 08:52	53K	
GCA 000001405.15 GRCh38 assembly stats.txt	2016-10-13 08:52	64K	
GCA 000001405.15 GRCh38 genomic.fna.gz	2015-02-10 13:55	902M	
GCA 000001405.15 GRCh38 genomic.gaps.gz	2014-04-10 21:33	11K	
GCA 000001405.15 GRCh38 genomic.gbff.gz	2015-02-10 13:55	120K	
GCA 000001405.15 GRCh38 genomic.gff.gz	2015-02-10 13:55	18K	
GCA 000001405.15 GRCh38 protein.faa.gz	2014-08-04 06:40	2.5K	
GCA 000001405.15 GRCh38 protein.gpff.gz	2014-08-04 06:40	6.4K	
GCA 000001405.15 GRCh38 rm.out.gz	2015-02-10 13:55	170M	
GCA 000001405.15 GRCh38 rm.run	2014-08-04 04:18	873	
README.txt	2020-09-02 16:26	43K	
assembly_status.txt	2021-05-24 08:42	16	
md5checksums.txt	2019-03-12 16:48	124K	

Human Genome Resources at NCBI

https://www.ncbi.nlm.nih.gov/genome/guide/human/

Download	GRCh38	GRCh37
Reference Genome Sequence	Fasta	Fasta
RefSeq Reference Genome Annotation	gff3	gff3
RefSeq Transcripts	Fasta	Fasta
RefSeq Proteins	Fasta	Fasta
ClinVar	vcf	vcf
dbSNP	vcf	vcf
dbVar	vcf	vcf

The human reference genome continues to change

- Ongoing efforts to fill "gaps" and properly/thoroughly represent complex structures and loci in the genome (e.g., Major Histocompatibility Complex)
- Each improvement leads to a new genome "build". Currently on build 38.
- Experimental and computational methods provide new genome annotations
 - New gene models, transcription factor binding sites, and loci where human individuals differ (i.e., polymorphisms)
- Therefore, the human reference genome is by no means "complete"!
- How does the same genome yield such phenotypic diversity across tissue types?

https://github.com/quinlan-lab/applied-computational-genomics

>¤_BU-ISCIII

Anotación

Anotación

- Identificación y/o localización de regiones codificantes en un genoma, determinando la función de cada uno.
 - Identificar elementos genómicos codificantes
 - Asignar función biológica a esos elementos
- Anotación estructural
 - ORFs y su localización
 - Regiones codificantes (cds)
 - Promotores y elementos reguladores
- Anotación funcional
 - Asignar función biológica a esos elementos

Anotación funcional

- Requiere una base de datos con la que comparer
 - Encyclopedia of DNA elements (ENCODE)
 - Entrez Gene
 - Ensembl
 - GENCODE
 - Gene Ontology Consortium

- GeneRIF
- RefSeq
- Uniprot
- Vertebrate and Genome Annotation Project (Vega)
- Pfam
- Mapado (srst2) o Alineamiento Local -BLAST- (Prokka)

Anotación: Prokka

			/ Genome /
Tool (reference)	Features predicted		sequence Prediction of
Prodigal (Hyatt 2010)	Coding sequence (CDS)	General database	Statistical gene Frediction of structural features
RNAmmer (Lagesen et al., 2007)	Ribosomal RNA genes (rRNA)	search FB	prediction
Aragorn (Laslett and Canback, 2004)	Transfer RNA genes	/ /	Gene/protein/
SignalP (Petersen et al., 2011)	Signal leader peptides		RNA set
Infernal (Kolbe and Eddy, 2011)	Non-coding RNA	\bigvee	Specialized database search
BLAST+ (Camacho et al., 2009)	Specific function or name	/\	
	Personal database	(Predicted gene functions
Anotación automática - Anotación ma	nual (Curado)		
27/05/2021	• • • •	ncbi.nlm.nih.gov/b 53/#!po=3.12500	Context analysis/ genome comparison 25

Formato ficher fna, faa

```
fna:>seqid | atributesATCGATCGATCG
```

faa:>seqid | atributesMAGCTYWHDEGGGML

Formato del fichero GFF (General feature format)

• Formato standard para describir genes o transcritos.... 9 col, tab-delimited,

plain text files

seqi	id	sc	ource	type	S	tart		er	ıd	score	strand	phase	atributes
0	0 \##gff-version 3.1.26												
1													
2			gene		1000	9000	্ব	+	1	ID-gene00001	;Name=EDEN		
3													
4	ctg1	23 .	mRNA		1050	9000		+		ID=mRNA00001	;Parent=gene	00001;Name=ED	EN.1
5	ctg1	23 .	mRNA		1050	9000		+		ID=mRNA00002	;Parent=gene	00001;Name=ED	EN.2
6	ctg1	23 .	mRNA		1300	9000		+		ID=mRNA00003	;Parent=gene	00001;Name=ED	EN.3
7	ctg1	23 .	exon		1300	1500		+		ID=exon00001	;Parent=mRNA	00003	
8	ctg1	23 .	exon		1050	1500		+		ID=exon00002	;Parent=mRNA	00001,mRNA000	02
9	ctg1	23 .	exon		3000	3902		+		ID=exon00003	;Parent=mRNA	00001,mRNA000	03
10	ctg1	23 .	exon		5000	5500		+	*	ID=exon00004	;Parent=mRNA	00001,mRNA000	02,mRNA00003
11	ctg1	23 .	exon		7000	9000		+		ID=exon00005	;Parent=mRNA	00001,mRNA000	02,mRNA00003
12	ctg1	23 .	CDS		1201	1500		+	0	ID=cds00001;	Parent=mRNA0	0001;Name=ede	nprotein.1
13	ctg1	23 .	CDS		3000	3902		+	0	ID=cds00001;	Parent=mRNA0	0001;Name=ede	nprotein.1
14	ctg1	23 .	CDS		5000	5500		+	0	ID=cds00001;	Parent=mRNA0	0001;Name=ede	nprotein.1
15	ctg1	23 .	CDS		7000	7600		+	0	ID=cds00001;	Parent=mRNA0	0001;Name=ede	nprotein.1
16	ctg1				1201	1500		+	0	ID=cds00002;	Parent=mRNA0	0002;Name=ede	nprotein.2
17	ctg1	23 .	CDS		5000	5500		+	0	ID=cds00002;	Parent=mRNA0	0002;Name=ede	nprotein.2
18	ctg1				7000	7600		+	0			0002;Name=ede	
19	ctg1				3301	3902	*	+	0			0003;Name=ede	
20	ctg1				5000	5500		+	1			0003;Name=ede	
21	ctg1				7000	7600		+	1			0003;Name=ede	
22	ctg1				3391	3902		+	0			0003;Name=ede	10-13-10-20-10-20-20-20-20-20-20-20-20-20-20-20-20-20
23	ctg1				5000	5500		+	1			0003;Name=ede	
24	ctg1	23 .	CDS		7000	7600	7.	+	1	ID=cds00004;	Parent=mRNA0	0003;Name=ede	nprotein.4

Formato fichero GTF (General Transfer Format)

• Es exacto al fichero GFF versión 2

Contenido de ficheros fna, gff, gtf

*_genomic.fna.gz file

FASTA format of the genomic sequence(s) in the assembly. Repetitive sequences in eukaryotes are masked to lower-case (see below). The FASTA title is formatted as sequence accession.version plus description. The genomic.fna.gz file includes all top-level sequences in the assembly (chromosomes, plasmids, organelles, unlocalized scaffolds, unplaced scaffolds, and any alternate loci or patch scaffolds). Scaffolds that are part of the chromosomes are not included because they are redundant with the chromosome sequences; sequences for these placed scaffolds are provided under the assembly structure directory.

*_genomic.gbff.gz file

GenBank flat file format of the genomic sequence(s) in the assembly. This file includes both the genomic sequence and the CONTIG description (for CON records), hence, it replaces both the .gbk & .gbs format files that were provided in the old genomes FTP directories.

• *_genomic.gff.gz file

Annotation of the genomic sequence(s) in Generic Feature Format Version 3 (GFF3). Sequence identifiers are provided as accession.version. Additional information about NCBI's GFF files is available at ftp://ftp.ncbi.nlm.nih.gov/genomes/README_GFF3.txt.

*_genomic.gtf.gz file

Annotation of the genomic sequence(s) in Gene Transfer Format Version 2.2 (GTF2.2). Sequence identifiers are provided as accession.version.

*_genomic_gaps.txt.gz

Tab-delimited text file reporting the coordinates of all gaps in the top-level genomic sequences. The gaps reported include gaps specified in the AGP files, gaps annotated on the component sequences, and any other run of 10 or more Ns in the sequences. See the "Description of files" section below for details of the file format.

Contenido de ficheros fna, faa, gff, gtf

*_protein.faa.gz file

FASTA format sequences of the accessioned protein products annotated on the genome assembly. The FASTA title is formatted as sequence accession.version plus description.

* protein.gpff.gz file

GenPept format of the accessioned protein products annotated on the genome assembly

*_rm.out.gz file

RepeatMasker output; Provided for Eukaryotes

* rm.run file

Documentation of the RepeatMasker version, parameters, and library; Provided for Eukaryotes

*_rna.fna.gz file

FASTA format of accessioned RNA products annotated on the genome assembly; Provided for RefSeq assemblies as relevant (Note, RNA and mRNA products are not instantiated as a separate accessioned record in GenBank but are provided for some RefSeq genomes, most notably the eukaryotes.) The FASTA title is provided as sequence accession.version plus description.

*_rna.gbff.gz file

GenBank flat file format of RNA products annotated on the genome assembly; Provided for RefSeq assemblies as relevant

*_rna_from_genomic.fna.g

FASTA format of the nucleotide sequences corresponding to all RNA features annotated on the assembly, based on the genome sequence. See the "Description of files" section below for details of the file format.

>¤_BU-ISCIII

PlasmidID

