

Primer exámen parcial Matemáticas discretas II Duración 1.5 horas

Carlos Andres Delgado S, Msc *

25 de Junio de 2019

Importante: Debe explicar el procedimiento realizado en cada uno de los puntos, no se considera válido únicamente mostrar la respuesta.

- 1. [30 puntos] Se tienen actualmente 125 estudiantes de ingeniería de sistemas en la sede Tuluá. De cuantas formas:
 - ¿Se puede escoger un comité compuesto por 4 personas?
 - ¿Se puede escoger un representante y dos delegados para el comité de programa?
- 2. [30 puntos] Para ingresar a ingeniería de sistemas de la Universidad del Valle, se requieren los puntajes del examen del IC-FES, de matemáticas, sociales, inglés y filosofía. Se sabe que estos puntajes están entre 0 y 90. ¿Cuantas personas se deben inscribir para garantizar que al menos 2 saquen el mismo puntaje en todos los 4 cursos?
- 3. [40 puntos] Resuelva la siguiente relación de recurrencia mediante el método de cambio de variable $T(n) = 3T(\frac{n}{4}) + 4T(\frac{n}{16}) + 4^n$. Realice el cambio $n = 4^k$. Como no hay condiciones iniciales encuentre

los valores de la solución particular y exprese la solución como la suma de la homogénea más la particular.

Ayudas

Conceptos básicos

Ecuación cuadrática de $ax^2 + bx + c$:

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{1}$$

Principio de Palomar

$$\left\lceil \frac{N}{k} \right\rceil$$

Tenemos N palomas para k nidos.

Combinatoria y permutación

Permutación:

$$P(n,r) = \frac{n!}{(n-r)!} \tag{2}$$

Combinatoria:

$$C(n,r) = \frac{n!}{r!(n-r)!} \tag{3}$$

 $^{^*}$ carlos.andres.delgado@correounivalle.edu.co

Permutación con objetos indistinguibles:

$$P_n^{a,b,c} = \frac{n!}{a!b!c!} \tag{4}$$

Combinatoria con repetición:

$$C(n+r-1,r) (5)$$

Forma solución particular

F(n)	$a_n^{(p)}$
C_1	A
$\mid n \mid$	$A_1n + A_0$
n^2	$A_2n^2 + A_1n + A_0$
$n^t, t \in Z^+$	$A_t n^t + A_{t-1} n^{t-1} + \ldots + A_1 n + A_0$
$r^n, r \in R$	Ar^n
$\sin(\alpha n)$	$A\sin(\alpha n) + B\cos(\alpha n)$
$\cos(\alpha n)$	$A\sin(\alpha n) + B\cos(\alpha n)$
$n^t r^n, t \in Z^+, r \in R$	$r^{n}(A_{t}n^{t} + A_{t-1}n^{t-1} + \ldots + A_{1}n + A_{0})$
$r^n \sin(\alpha n)$	$Ar^n\sin(\alpha n) + Br^n\cos(\alpha n)$
$r^n \cos(\alpha n)$	$Ar^n\sin(\alpha n) + Br^n\cos(\alpha n)$

Cuadro 1: Forma de la solución particular dado f(n)

Método del maestro

$$T(n) = aT(n/b) + cn^d$$

Siempre que $n=b^k$, donde k es un entero positivo, $a\geq 1$, b es un entero mayor que 1 y c y d son números reales tales que c>0 y $d\geq 0$, Entonces,

$$T(n) \quad es \left\{ \begin{array}{ll} O(n^d) & \text{si } a < b^d \\ O(n^d \log n) & \text{si } a = b^d \\ O(n^{\log_b a}) & \text{si } a > b^d \end{array} \right\}$$