

### Evaluation of Color STIPs for Human Action Recognition

Ivo Everts

Ian van Gemert

Theo Gevers

Universiteit van Amsterdam

Intelligent Systems Lab Amsterdam, University of Amsterdam

## 1. Why Color for Action Recognition?

#### Because:

Motion is the dominant cue in action recogition

Color gives:

-More Motion observations -Better Motion estimation



# 4. Multi-channel STIP Descriptors

g:3D Gradient, P: nx3 matrix of polyhedron face centers





KlaserBMVC08

Channel Integration:  $g'' = \sum_{j=1}^{nc} g^j \cdot g^j$ 

Channel Concatenation:  $g' = \{g^j\}, j = 1, ..., n_c$  Channel Concatenation  $\mathfrak{C}_{0,1}: n_c D/2$ 

|                     | Gradient Orientation     | Gradient Direction      |  |
|---------------------|--------------------------|-------------------------|--|
| Channel Integration | $\mathfrak{C}_{1,1}:D/2$ | $\mathfrak{C}_{1,0}:1D$ |  |

#### 2. Reflection Model and Color Space Shafer85

Di-chromatic Model,  $\mathbf{f} = e(m^b \mathbf{c}^b + m^i \mathbf{c}^i)$ Diffuse Reflection Specular (interface) Reflection Source ci:Body Color cb:Interface Color  $m^b$ 



|                | Intensity | Chromatic   | Norm<br>Chromatic                               | Hue               |
|----------------|-----------|-------------|-------------------------------------------------|-------------------|
| Representation | $O_3$     | $[O_1,O_2]$ | $\left[\frac{O_1}{O_3}, \frac{O_2}{O_3}\right]$ | $\frac{O_1}{O_2}$ |
| Invariant to   | -         | Highlights  | Shadows                                         | Hl. & Sh.         |
| Reference      | I         | C           | N                                               | H                 |

## 5. Results, UCF-Sports, UCF-11, UCF-50





IC - Gabor

I - Gabor

IN - Gabor

**UCF Sports** 



71.1%

Color

71.0%



68.5%

76.0%

72.6%

72.9%



73.9%

74.2%



## 3. Multi-channel STIP Detectors

 $m^i$ :Scalar mb·Scalar

#### Multi-channel Harris STIPs

 $q(\cdot;\cdot,\cdot)$ :3D Gauss  $f^j$ :image channel j  $n_c$  :nr channels  $V = (V^1, V^2, ..., V^{n_c})^T$   $V^j = q(\cdot; \sigma_o, \tau_o) * f^j(\cdot)$  $V_d = (V_d^1, V_d^2, ..., V_d^{n_c})^T, d \in \{x, y, t\}$ 









71.8%

Intensity

UCF 11



71.8%

LICE 50

54.3% 57.9%

#### Multi-channel Gabor STIPs

 $R = \sum_{i=1}^{nc} (g(\cdot; \sigma_o) * h_{ev}(\cdot; \tau_o) * V^j)^2 + (g(\cdot; \sigma_o) * h_{od}(\cdot; \tau_o) * V^j)^2$