ESPRIT & Le Mans Université Institut du Risque et de l'Assurance A. Matoussi Année universitaire 19-20 5ème DS & Master 2 Actuariat MAAF

Fiche 3.

Exercice 1. Soit $(B_t)_{t \ge 0}$ est un mouvement brownien standard.

1. Montrer que les processus suivants sont des mouvement browniens standards :

$$(-B_t), (B_{t_0+t} - B_{t_0}), (cB_{t/c^2})$$

sont également des mouvements browniens.

2. Montrer que

$$Loi\left(\int_0^T B_s \, ds\right) = Loi\left(T^{3/2} \int_0^1 B_s \, ds\right).$$

3. Quelle est la loi de la v.a. $\int_0^T B_s ds$? calculer son espérance et sa variance.

Exercice 2. Soit $(B_t)_{t\geq 0}$ est un mouvement brownien standard.

- 1) Calculer $\mathbb{E}(|B_t|)$.
- 2) Calculer $\mathbb{E}(B_t^2 B_s^2)$.

Exercice 3. Soit $(B_t)_{t \ge 0}$ est un mouvement brownien standard. Montrer que les processus suivants sont des martingales :

- 1. $(B_t)_{t \ge 0}$
- 2. $X_t = B_t^2 t$
- 3. $X_t = \exp\{\sigma B_t \frac{\sigma^2}{2}t\}.$

Exercice 4. Soit $(M_t)_{t \geqslant 0}$ une (\mathcal{F}_t) -martingale de carré intégrable.

1. Montrer que, pour $s \leq t$, on a :

$$\mathbb{E}[M_t^2 - M_s^2 |\mathcal{F}_s|] = \mathbb{E}[(M_t - M_s)^2 |\mathcal{F}_s|].$$

- 2. En dénduire que (M_t^2) est une (\mathcal{F}_t) -sous-martingale.
- 3. Peux-t-on obtenir ce dernier résultat en utilisant un résultat de cours?

4. On suppose maintenant que (M_t) est un (\mathcal{F}_t) - mouvement brownien. Calculer $\mathbb{E}[M_t^2 | \mathcal{F}_s|]$ et $\mathbb{E}[M_t^3 | \mathcal{F}_s|]$ pour $s \leq t$,.

Exercice 5. Soit $(W_t^1)_{t\geq 0}$ et $(W_t^2)_{t\geq 0}$ deux mouvements Browniens standards indépendants sur un espace filtré $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$.

On définit $\forall t \geqslant 0$, $W_t^3 := \rho W_t^1 + \sqrt{1-\rho^2} W_t^2$, avec $\rho \in [0,1]$ un réel donné.

- 1. Montrer que $(W_t^3)_{t\geq 0}$ est un mouvement Brownien standard.
- 2. Montrer que $(W_t^1 W_t^3 \rho t)_{t \ge 0}$ est une martingale.

Exercice 6. Soit $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ un espace de probabilité filtré complet et (B_t) un \mathcal{F}_t -mouvement Brownien réel issu de 0.

Cette exercice est une introduction à l'intégrale stochastique. Il s'agit de construire une intégrale de type $\int_0^{+\infty} f(s)dB_s$ où f est une fonction mesurable de $(\mathbb{R}^+, \mathcal{B}(\mathbb{R}^+)$ dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ telle que

$$\int_0^{+\infty} f^2(s) \, ds \, < \, +\infty \, .$$

Cette intégrale s'appelle l'intégrale de Wiener et c'est un cas particulier de l'intégrale d'Itô.

On rappelle que l'espace $e\mathcal{B}$ des fonctions étagées de la forme $\sum_{i=0}^{N-1} \alpha_i \mathbb{I}_{]t_i,t_{i+1}]}$ avec $\alpha_i \in \mathbb{R}^+$ et $t_0 = 0 \leqslant t_1 \leqslant \cdots \leqslant t_N$ est dense dans $L^2(\mathbb{R}^+, dx)$ muni de la norme

$$||f||_2 = \sqrt{\int_0^{+\infty} f^2(s) \, ds}$$
.

1) Soit $\alpha_i \in \mathbb{R}^+$, $t_0 = 0 \leqslant t_1 \leqslant \cdots \leqslant t_N$ et $f(t) = \sum_{i=0}^{N-1} \alpha_i \mathbb{1}_{[t_i, t_{i+1}]}(t)$. On pose

$$I_e(f) = \sum_{i=0}^{N-1} \alpha_i (B_{t_{i+1}} - B_{t_i}).$$

Démontrer que $I_e(f)$ est une variable aléatoire gaussienne dont on calculera la moyenne et la variance. En déduire que

$$\mathbb{E}\left[I_e(f)^2\right] = \|f\|_2^2.$$

2) En déduire qu'il existe une unique application linéaire I de $L^2(\mathbb{R}^+, dx)$ dans $L^2(\Omega, \mathcal{F}, \mathbb{P})$, qui vérifie $I(f) = I_e(f)$, $\forall f \in e\mathcal{B}$ et

$$\mathbb{E}\left[I(f)^2\right] = ||f||_2^2, \quad \forall f \in L^2(\mathbb{R}^+, dx).$$

3) Montrer que si $f \in L^2(\mathbb{R}^+, dx)$, alors I(f) est une variable aléatoire gaussienne cen trée de variance $\int_0^{+\infty} f^2(s)ds$.

4) Soit $f \in L^2(\mathbb{R}^+, dx)$, on note par $X_t = \int_0^t f(s)dB_s = \int_0^{+\infty} f(s)\mathbb{1}_{]0,t[}(s)dB_s$. Démontrer que $(X_t)_{t \geqslant 0}$ est un processus adapté à \mathcal{F}_t , et que $X_t - X_s$ est indépendant de \mathcal{F}_s .

Indication: On commencera par traiter le cas où $f \in e\mathcal{B}$.

5) Démontrer que les processus suivants :

$$X_t$$
, $Y_t = X_t^2 - \int_0^t f^2(s)ds$ et $Z_t^{\lambda} = \exp\left(\lambda X_t - \frac{\lambda^2}{2} \int_0^t f^2(s)ds\right)$, $\forall \lambda \in \mathbb{R}$

sont des martingales.

Exercice 7. Soit $(B_t)_{t\geq 0}$ un mouvement brownien standard. On définit $X_t = \int_0^t \sin(s)dB_s$.

- 1. Montrer que X_t est une variable aléatoire réelle gaussienne. Calculer son espérance et sa fonction de covariance $E(X_tX_s)$ pour tout $t, s \ge 0$.
- 2. Montrer que $X_t = \sin(t)B_t \int_0^t B_s \cos(s)ds$.

Exercice 8. Soit (B_t) un MB standard. On définit $a_n(t) := \mathbb{E}[B_t^n]$, pour $n \in \mathbb{N}^*$.

- i) A l'aide de la formule d'Itô, trouver la valeur $a_2(t)$, $a_4(t)$ et $a_6(t)$.
- ii) A l'aide de la formule d'Itô, montrer que

$$a_k(t) = \frac{1}{2}k(k-1)\int_0^t a_{k-2}(s)ds, \quad k \geqslant 2.$$

iii) Montrer que $\mathbb{E}[B_t^{2n+1}] = 0$ et $\mathbb{E}[B_t^{2n}] = \frac{(2n)!t^n}{2^nk!}$, pour tout $n \geqslant 1$.

Exercice 9. Soit $(B_t)_{t \ge 0}$ un mouvement Brownien issu de 0 et $a \in \mathbb{R}$ un réel fixé. On définit

$$X_t := \int_0^t e^{-a(t-s)} dB_s, \quad \forall t \in [0, T].$$

- 1) Calculer la moyenne et la covariance du processus X (si ils existent!!).
- 2) Ecrire $X_t = e^{-at}Y_t$ où Y est un processus à déterminer, puis montrer que X vérifie l'EDS suivante

$$dX_t = -aX_tdt + dB_t.$$

 $\label{thm:continuous} \textit{Un processus qui v\'erfie l'EDS pr\'ecedente est appel\'e processus d'Ornstein-Uhlenbeck.}$

Exercice 10. Soit $(B_t)_{t \ge 0}$ un mouvement brownien réel standard.

- 1) A l'aide de la formule d'Itô, montrer que le processus $Y_t = e^{t/2} \cos(B_t)$ est une martingale.
- 2) A l'aide de la formule d'Itô, montrer que : $\int_0^t B_s^2 dB_s = \frac{1}{3}B_t^3 \int_0^t B_s ds$, en déduire que $(\frac{1}{3}B_t^3 \int_0^t B_s ds)_{t \ge 0}$ est une martingale.

Exercice 11. Soit $(B_t)_{t\geq 0}$ un mouvement brownien standard. Ecrire les processus suivants comme des processus d'Itô.

- 1. $X_t = t + e^{B_t}$
- 2. $X_t = B_t^3 3tB_t$
- 3. $X_t = (B_t + t) \exp(-B_t \frac{1}{2}t)$

Exercice 12. Soit un actif financier de prix (S_t) et payant un dividende continu d > 0 avec un dynamique :

$$dS_t = S_t[(r-d)dt + \sigma dW_t], \qquad S_0 = x$$

sous la probabilité risque-neutre et où r et σ sont des constantes strictement positives. On suppose que (S_t) est strictement positif pour tout $t \ge 0$.

- 1. Donner l'expression explicite de S_t .
- 2. Le prix forward d'échéance T est défini à l'instant t par $F_t := e^{(r-d)(T-t)}S_t$. Donner la dynamique de F_t .
- 3. Donner la dynamique de S_t^{β} pour $\beta > 0$.
- 4. Calculer $\mathbb{E}[e^{-rT}(S_T^{\beta}-K)^+]$ en fonction de la fonction de répartition N de la loi normale centrée réduite et de r,d et σ . K est une constante positive donnée.