

Table of Contents

- ► What is Kubernetes?
- ► Why you need Kubernetes?
- ► The differences of Kubernetes and Docker Swarm
- Kubernetes components
- kubectl

What is Kubernetes?

- > Kubernetes is **Open Source Orchestration** system for Containerized Applications.
- > Kubernetes is a platform that **eliminates the manual processes** involved in **deploying** containerized applications.
- > Kubernetes used to manage the State of Containers.
 - Start Containers on Specific Nodes.
 - Restart Containers when gets Killed.
 - Move containers from one Node to Another.

Why you need Kubernetes?

Containers are a perfect way to get the applications packaged and run. In production environment, you should manage the containers that run the applications and ensure no downtime.

kubernetes

CLARUSWAY®

Why you need Kubernetes?

Kubernetes supplies you with:

- Service discovery and load balancing
- Storage orchestration
- · Automated rollouts and rollbacks
- Automatic bin packing
- Self-healing
- Secret and configuration management

Features of Kubernetes

- ➤ Automated Scheduling: Kubernetes provides advanced scheduler to launch container on cluster nodes based on their resource requirements and other constraints.
- ➤ Healing Capabilities: Kubernetes allows to replace and reschedule containers when nodes die. K8s doesn't allow Containers to use a node until they get ready.
- ➤ Auto Upgrade and RollBack: Kubernetes rolls out changes to the application. K8s doesn't kill the instances all at once. If something goes wrong, you can rollback the change.

CLARUSWAY®

Features of Kubernetes

- ➤ Horizontal Scaling: K8s can scale up and scale down the application as per the requirements with a simple command, using a UI, or automatically based on CPU usage.
- > Storage Orchestration: With K8s, you can mount the storage system of your choice. You can either opt for local storage, or choose a public cloud provider.
- > Secret & Configuration Management: K8s can help you deploy and update secrets and application configuration without rebuilding your image and without exposing secrets in your stack configuration.

Features of Kubernetes

You can Run Kubernetes Anywhere:

- On-Premise (Own DataCenter)
- Public Cloud (Google, AWS, Azure, DigitalOcean...)
- Hybrid Cloud

Kubernetes Nodes

- ➤ A **node** is a **worker** machine in Kubernetes.
- ➤ A node may be a **VM or physical machine**, depending on the cluster.
- ➤ Each node contains the **services** necessary to run pods.
- ➤ Nodes Primarily managed by **Kubernetes Master**.
- ➤ Single Master Can manage ~5000 Worker Nodes.

Kubernetes Master Component

- > To understand the Kubernetes Administration, we should understand the **Architecture of Master** and the **workflow of Master Components**.
- ➤ Kubernetes master runs the **Scheduler**, **Controller Manager**, **API Server** and **etcd** components and is responsible for managing the Kubernetes cluster.
- ➤ You can say the **master** is the **brain** of the Kubernetes Cluster.

Control Plane Components

kube-apiserver:

- provides a REST interface into the kubernetes control plane and datastore.
- Clients and applications interact with k8s strictly through the API Server.
- acts as the gatekeeper to the cluster by handling authentication and authorization, request validation, mutation, and admission control in addition to being the front-end to the backing datastore.

CLARUSWAY®

Control Plane Components

etcd:

- etcd acts as the cluster datastore.
- aims to provide a strong, consistent and highly available key-value store for persisting cluster state.
- stores objects and config information.

Control Plane Components

kube-controller-manager:

- serves as the primary daemon that manages all core component control loops.
- monitors the cluster state via the apiserver and steers the cluster towards the desired state

CLARUSWAY®

Control Plane Components

kube-scheduler:

- is the engine that evaluates workload requirements and attempts to place it on a matching resource.
- is the component that uses bin packing.
- Workload Requirements can include: general hardware requirements, affinity/anti-affinity, labels, and other various custom resource requirements.

CLARUSWAY©

Node Components

kubelet:

- acts as the node agent responsible for managing the lifecycle of every pod on its host.
- understands YAML container manifests that it can read from several sources:
 - API Server
 - File Path
 - o HTTP Endpoint
 - HTTP Server mode accepting container manifests over a simple API.

Node Components

kube-proxy:

- Manages the network rules on each node.
- Performs connection forwarding or load balancing for Kubernetes cluster services.
- Available Proxy Modes:
 - o user space
 - o iptables (default)
 - o ipvs

CLARUSWAY©

Node Components

Container Runtime Engine:

- A container runtime is a CRI (Container Runtime Interface) compatible application that executes and manages containers.
 - Containerd (docker)
 - o Cri-o
 - o Rkt
 - Kata (formerly clear and hyper)
 - Virtlet (VM CRI compatible runtime)

CLARUSWAY©

