INDEX

Aikaike information criterion, 114	second-order, 25, 130, 141, 142
ARMA, 48, 50, 51	Cross-validation, 107
ARMAX, 51	
ARX, 50, 51	Deconvolution, 142, 146, 237
Autoregressive, 49, 51	Delay, 24
	Difference equation, 48–50, 53
Back-propagation, 219, 220	Differential equation, 52
Bilinear transform, 48	Dimensions
Bode diagram, 116	cascade models, 78
Box-Jenkins model, 51, 53	Hammerstein cascade, 78
Bussgang, 149, 150, 155, 237	kernel, 62
	Wiener model, 75
Cholesky factorization, 179	Domain, 2
Coherence, 117, 118, 146	
Condition number, 29, 30, 32, 112	Eigenvalue, generalized, 239
Convolution	Ergodic, 3, 21, 22
integral, 42, 43, 57, 59, 67	Error surface, 208
sum, 43	Examples
Correlation	ankle compliance
autocorrelation, 16, 20, 22, 24,	discrete state-space model, 54
109, 141	discrete transfer function, 49
autocorrelation coefficient, 16, 18	frequency response, 44, 118
autocovariance, 16, 18, 23	impulse response, 43, 110, 114
cross-correlation, 18, 20, 23, 109	simulated data, 103
cross-correlation coefficient, 19	transfer function, 47
cross-covariance, 19, 24	fly retina,
estimate	description, 182
biased, 21, 23, 109, 144	fast orthogonal algorithm, 182
unbiased, 21, 23	Laguerre expansion, 196

Identification of Nonlinear Physiological Systems, By David T. Westwick and Robert E. Kearney ISBN 0-471-27456-9 © 2003 Institute of Electrical and Electronics Engineers

INDEX

Examples (Continued)	Marginal kernel, 82, 165
parallel Wiener cascade, 243	MDL, 113, 114, 229, 238, 241
principal dynamic modes, 200	Mean-square error, 25
separable Volterra network, 220	minimum, 27, 108, 208
Volterra kernels, 182, 196, 201, 221,	normalized, 106
222, 244	Model
	nonparametric, 4, 40, 41, 57
Flop, 14, 22, 61, 109, 180, 190	parametric, 4, 46, 47
Fourier transform, 23, 44, 45	structure, 4
discrete, 22	
fast, 23, 110, 145	NLN cascade model, 83
inverse, 22, 44	identification, 218
Frequency response, 44–46	Noise
estimate, 116	measurement, 7, 24, 27, 48, 51, 53,
estimate, 110	120
Gaussian	process disturbance, 7, 49-51, 53
linear system, 15, 67	
probability density, 14	Operator
product of, 15, 68, 149	continuous, 65
Genetic algorithm, 122	fading memory, 66
Gram–Schmidt, 171	Wiener, 67, 68
Grain Schmat, 171	Optimization
11	constrained, 215
Hammerstein cascade, 77	Gauss-Newton, 215
identification, 155, 209	gradient descent, 122, 208, 212, 220
Hessian, 28–30, 109, 112, 173, 213	Levenberg-Marquardt, 215, 220, 248
Hysteresis, 66	Newton, 214
	Orthogonal, 30
Impulse response, 42, 57, 59	basis, 40
discrete, 43	operator, 67, 68
Fourier transform, 45	Orthonormal, 30
state-space model, 53	Output error model, 48, 51, 119
transfer function, 46	
Instrumental variable, 120	Parallel cascade model, 87
	convergence, 89
Jacobian, 209, 216	identification, 219, 242
Hammerstein cascade, 210	Wiener-Bose model, 97, 98, 100
LNL cascade, 217, 218	Parameter, 4
NLN cascade, 218	covariance matrix, 27
parallel cascade model, 219	insight from, 47
Wiener cascade, 216, 217	linear function, 26
	redundant, 75, 78, 210, 214, 215,
Laguerre filter, 191, 232	217, 230
Laplace transform, 46	sensitivity, 27
inverse, 46	space, 26, 227
Linear regression, 26, 110, 120, 152, 156	vector, 4, 25-27, 121, 208, 227
IRF, 108, 109	Parametric optimization, 207
sensitivity analysis, 110, 112, 180, 195	Polynomial, 29
Volterra kernels, 171	Grad-Hermite, 33–35
Wiener kernels, 127	normalized, 69
LNL cascade model, 60, 79	Hermite, 31, 34, 69, 150, 156
identification, 162, 217	multiple-input, 33, 69, 91

orthogonal, 30, 68	System
power series, 29, 30, 33, 64, 65,	anti-causal, 5
68, 74	causal, 5, 42, 46, 60
Tchebyshev, 32, 35, 60, 152, 211	deterministic, 7, 10, 48
Power spectrum, 22, 116	discrete-time, 48
averaged periodogram, 23, 145	dynamic, 5
cross-spectrum, 23, 116	linear, 6, 46, 48, 52
Principal dynamic modes, 221	linear range, 7
Proportionality, 6, 39, 40, 43, 58	noncausal, 5, 42
Pseudo-inverse, 113, 114, 238, 241	nonlinear, 6, 29, 57
, , , , , , , , , , , , , , , , , , , ,	second-order, 58
OD f4	static, 5, 29
QR factorization, 13, 33, 171	stochastic, 7, 10, 50
	time invariant, 7
Random variable, 3, 14	time-invariant, 46, 48, 52
Range, 2	time-varying, 7
	time varying, ,
Sampling interval, 43	Toeplitz matrix, 110, 142
Separable Volterra network, 219	Transfer function, 46, 144
Signal	Transfer function, 40, 144
deterministic, 2	
ergodic, 25	Variance accounted for, 105
periodic, 24	Volterra
stochastic, 2, 48–50	kernel, 59, 60, 67
Similarity transformation, 53, 94	kernels of Hammerstein cascade, 78
Simulated annealing, 122	kernels of LNL model, 79, 81
Smoothing filter, 143, 186	kernels of Wiener model, 74
State	kernels of Wiener series, 71
vector, 52	kernels of Wiener-Bose model, 94, 95
State-space model, 52, 53	series, 58, 60, 67, 69
Stationary, 3	
Step size	Wiener cascade, 73
adaptive, 208, 214, 215	identification, 150, 208, 216
limits, 213	Wiener series, 67
Structure test	colored input, 73, 140, 143, 146, 147
Hammerstein cascade, 78	estimation, 125, 131, 132, 134, 147
LNL cascade, 82, 83, 139, 164	kernel, 67
NLN cascade, 248	kernels of LNL model, 81
Wiener cascade, 75, 76, 139	kernels of Volterra series, 71
Sum of squared errors, 106, 229	kernels of Wiener-Bose model, 95, 97
Superposition, 6, 39, 40, 42, 43,	Wiener-Bose model, 57, 91
57, 156	generality, 94
SVD, 14, 28, 33, 113	uniqueness, 92–94
	* *