Analysis 1. Semester (WS2017/18)

Dozent: Prof. Dr. Friedemann Schuricht Kursassistenz: Moritz Schönherr

Stand: 28. Dezember 2017

Inhaltsverzeichnis

I	Grundlagen der Mathematik	1
1	Grundbegriffe aus Mengelehre und Logik	1
2	Aufbau einer mathematischen Theorie 2.1 Relationen und Funktionen	4
II	Zahlenbereiche	8
3	Natürliche Zahlen	8
4	Ganze und rationale Zahlen	11
5	Reelle Zahlen 5.1 Struktur von archimedisch angeordneten Körper (allg.)	14 14
6	Komplexe Zahlen (kurzer Überblick)	16
II	Metrische Räume und Konvergenz	17
7	Grundlegen Ungleichungen	17
8	Metrische Räume	21
9	Konvergenz	24
10	Vollständigkeit	25
11	Kompaktheit	26
12	Reihen	27
ΙV	Funktionen und Stetigkeit	28
13	Funktionen	28

Teil I

Grundlagen der Mathematik

Mathematik besitzt eine Sonderrolle unter den Wissenschaften, da

- Resultate nicht empirisch gezeigt werden müssen
- Resultate nicht durch Experimente widerlegt werden können

Literatur

- Forster: Analysis 1 + 2, Vieweg
- Königsberger: Analysis 1 + 2, Springer
- Hildebrandt: Analysis 1 + 2, Springer
- Walter: Analysis 1 + 2, Springer
- \bullet Escher/Amann: Analysis 1+2, Birkhäuser
- Ebbinghaus: Einfühung in die Mengenlehre, BI-Wissenschaftsverlag
- Teubner-Taschenbuch der Mathematik, Teubner 1996
- Springer-Taschenbuch der Mathematik, Springer 2012

Kapitel 1

Grundbegriffe aus Mengelehre und Logik

Mengenlehre: Universalität von Aussagen

Logik: Regeln des Folgerns, wahre/falsche Aussagen

Definition 1.1 (Definition Aussage)

Sachverhalt, dem man entweder den Wahrheitswert "wahröder "falschßuordnen kann, aber nichts anders.

Beispiel

5 ist eine Quadratzahl \rightarrow falsch (Aussage)

Die Elbe fließt durch Dresden \rightarrow wahr (Aussage)

Mathematik ist rot \rightarrow ??? (keine Aussage)

Definition 1.2 (Menge)

Zusammenfassung von bestimmten wohlunterscheidbaren Objekten der Anschauung oder des Denkens, welche die Elemente der Menge genannt werden, zu einem Ganzen. (Cantor, 1877)

Beispiel

 $M_1 := \text{Menge aller Städte in Deutschland}$

 $M_2 := \{1; 2; 3\}$

Für ein Objekt m und eine Menge M gilt stets $m \in M$ oder $m \notin M$

Für die Mengen M und N gilt M=N, falls dieselben Elemente enthalten sind $\{1;2;3\}=\{3;2;1\}=\{1;2;2;3\}$

- $N \subseteq M$, falls $n \in M$ für jedes $n \in N$
- $N \subset M$, falls zusätzlich $M \neq N$

Definition 1.3 (Aussageform)

Sachverhalt mit Variablen, der durch geeignete Ersetzung der Variablen zur Aussage wird.

Beispiel

- A(X) := Die Elbe fließt durch X
- B(X;Y;Z) := X + Y = Z
- aber A(Dresden), B(2;3;4) sind Aussagen, A(Mathematik) ist keine Aussage
- A(X) ist eine Aussage fü jedes $X \in M_1 \to \text{Generalisierung von Aussagen durch Mengen}$

Bildung und Verknüpfung von Aussagen

$\mid A$	B	$\neg A$	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$A \iff B$
w	w	f	w	w	W	w
w	f	f	f	w	f	f
f	w	W	f	W	W	f
f	f	W	f	f	W	w

Beispiel 1.4

- \neg (3 ist gerade) \rightarrow w
- (4 ist gerade) \wedge (4 ist Primzahl) \rightarrow f
- (3 ist gerade) \vee (3 ist Primzahl) \rightarrow w
- (3 ist gerade) \Rightarrow (Mond ist Würfel) \rightarrow w
- (Die Sonne ist heiß) \Rightarrow (es gibt Primzahlen) \rightarrow w

Auschließendes oder: (entweder A oder B) wird realisiert durch $\neg (A \iff B)$.

Aussage
form A(X) sei für jedes $X \in M$ Aussage: neue Aussage mittels Quantoren

- ∀: "für alle"
- ∃: ës existiert"

Beispiel 1.5

 $\forall n \in \mathbb{N} : n \text{ ist gerade } \to f$ $\exists n \in \mathbb{N} : n \text{ ist gerade } \to \mathbf{w}$

Definition 1.6 (Tautologie bzw. Kontraduktion/Widerspruch)

Zusammengesetzte Aussage, die unabhängig vom Wahrheitsgehalt der Teilaussagen stest wahr bzw. falsch ist.

Beispiel 1.7

- Tautologie (immer wahr): $(A) \vee (\neg A), \neg (A \wedge (\neg A)), (A \wedge B) \Rightarrow A$
- Widerspruch (immer falsch): $A \wedge (\neg A), A \iff \neg A$
- besondere Tautologie: $(A \Rightarrow B) \iff (\neg B \Rightarrow \neg A)$

Satz 1.8 (Morgansche Regeln)

Folgende Aussagen sind Tautologien:

- $\bullet \neg (A \land B) \iff \neg A \lor \neg B$
- $\bullet \neg (A \lor B) \iff \neg A \land \neg B$

Bildung von Mengen

Seien M und N Mengen

- Aufzählung der Elemente: {1; 2; 3}
- mittels Eigenschaften: $\{X \in M \mid A(X)\}$
- $\emptyset := \text{Menge}$, die keine Elemente enthält
 - leere Menge ist immer Teilmenge jeder Menge M
 - Warnung: $\{\emptyset\} \neq \emptyset$
- Verknüpfung von Mengen wie bei Aussagen

Definition 1.9 (Mengensystem)

Ein Mengensystem \mathcal{M} ist eine Menge, bestehend aus anderen Mengen.

- $\bigcup M := \{X \mid \exists M \in \mathcal{M} : X \in M\}$ (Vereinigung aller Mengen in \mathcal{M})
- $\bigcap M := \{X \mid \forall M \in \mathcal{M} : X \in M\}$ (Durchschnitt aller Mengen in \mathcal{M})

Definition 1.10 (Potenzmenge)

Die Potenzmenge \mathcal{P} enthält alle Teilmengen einer Menge M.

$$\mathcal{P}(X) := \{ \tilde{M} \mid \tilde{M} \subset M \}$$

Beispiel:

•
$$M_3 := \{1; 3; 5\}$$

 $\rightarrow \mathcal{P}(M_3) = \{\emptyset, \{1\}, \{3\}, \{5\}, \{1; 3\}, \{1; 5\}, \{3; 5\}, \{1; 3; 5\}\}$

Satz (de Morgansche Regeln für Mengen):

- $(\bigcup_{N \in \mathcal{N}} N)^C = \bigcap_{N \in \mathcal{N}} N^C$ $(\bigcap_{N \in \mathcal{N}} N)^C = \bigcup_{N \in \mathcal{N}} N^C$

Definition 1.11 (Kartesisches Produkt)

$$M \times N := \{m, n \mid m \in M \land n \in N\}$$

(m, n) heißt geordnetes Paar (Reihenfolge wichtig!)

allgemeiner:
$$M_1 \times ... \times M_k := \{(m_1, ..., m_k) \mid m_j \in M_j, j = 1, ..., k\}$$

 $M^k := M \times ... \times M := \{(m_1, ..., m_k) \mid m_j \in M_j, j = 1, ..., k\}$

Satz 1.12 (Auswahlaxiom)

Sei \mathcal{M} ein Mengensystem nichtleerer paarweise disjunkter Mengen M.

- Es existiert eine Auswahlmenge M, die mit jedem $M \in \mathcal{M}$ genau 1 Element gemeinsam hat.
- beachte: Die Auswahl ist nicht konstruktiv!

Aufbau einer mathematischen Theorie

Axiome \rightarrow Beweise \rightarrow Sätze ("neue" wahre Aussagen) \rightarrow ergibt Ansammlung (Menge) wahrer Aussagen

Formulierung mathematischer Aussagen

- typische Form eines mathematischen Satzes: "Wenn A gilt, dann gilt auch B."
- formal: $A \Rightarrow B$ bzw. $A(X) \Rightarrow B(X)$ ist stets wahr (insbesondere falls A wahr ist) Beispiel
 - $X \in \mathbb{N}$ und ist durch 4 teilbar $\Rightarrow X$ ist durch 2 teilbar
 - beachte: Implikation auch wahr, falls X = 5 oder X = 6, dieser Fall ist aber uninteressant
 - genauer meint man sogar $A \wedge C \Rightarrow B$, wobei C aus allen bekannten wahren Aussagen besteht
 - \bullet man sagt: B ist **notwendig** für A, da A nur wahr sein kann, wenn B wahr ist
 - \bullet man sagt: A ist **hinreichend** für B, da B stets wahr ist, wenn A wahr ist

Mathematische Beweise

- **direkter Beweis:** finde Zwischenaussagen $A_1, ..., A_k$, sodass für A auch wahr: $(A \Rightarrow A_1) \land (A_1 \Rightarrow A_2) \land ... \land (A_k \Rightarrow B)$
- Beispiel: Zeige $x>2\Rightarrow x^2-3x+2>0$ $(x>2)\Rightarrow (x-2>0)\wedge (x-1>0)\Rightarrow (x-2)\cdot (x-1)\Rightarrow x^2-3x+2>0$
- indirekter Beweis: auf Grundlage der Tautologie $(A \Rightarrow B) \iff (\neg B \Rightarrow \neg A)$ führt man direkten Beweis $\neg B \Rightarrow \neg A$ (das heißt angenommen B falsch, dann auch A falsch)
- praktisch formuliert man das auch so: $(A \land \neg B) \Rightarrow ... \Rightarrow (A \land \neg A)$
- Beispiel: Zeige $x^2 3x + 2 \le 0$ sei wahr $\neg B \Rightarrow (x 2) \cdot (x 1) \le 0 \Rightarrow 1 \le x \le 2 \Rightarrow \neg A$

2.1 Relationen und Funktionen

Definition 2.1 (Relation)

Seien M und N Mengen. Dann ist jede Teilmenge R von $M \times N$ eine Relation. $(x,y) \in R$ heißt: x und y stehen in Relation zueinander

Beispiel

M ist die Menge aller Menschen. Die Liebesbeziehung x liebt y sieht als geordnetes Paar geschrieben so aus: (x,y). Das heißt die Menge der Liebespaare ist das: $L:=\{(x,y)\mid x\ liebt\ y\}$. Und es gilt: $L\subset M\times M$.

Die Relation $R \subset M \times N$ heißt **Ordnungsrelation** (kurz. Ordnung) auf M, falls für alle $a, b, c \in M$ gilt:

- $(a, a) \in R$ (reflexiv)
- $(a,b),(b,a) \in R$ (antisymetrisch)
- $(a,b),(b,c) \in R \Rightarrow (a,c) \in R \text{ (transitiv)}$
- z.B. $R = \{(X, Y) \in \mathcal{P}(Y) \times \mathcal{P}(Y) \mid X \subset Y\}$

Eine Ordnungsrelation heißt **Totalordnung**, wenn zusätzlich gilt: $(a,b) \in R \lor (b,a) \in R$

Beispiel

Seien m, n und o natürliche Zahlen, dann ist $R = \{(m, n) \in \mathbb{N} \times \mathbb{N} \mid x \leq y\}$ eine Totalordnung, da

- $m \leq m$ (reflexiv)
- $(m < n \land n < m) \Rightarrow m = n \text{ (antisymetrisch)}$
- $(m \le n \land n \le o) \Rightarrow m \le o \text{ (transitiv)}$
- $m \le n \lor n \le m$ (total)

Eine Relation auf M heißt Äquivalenzrelation, wenn für alle $a, b, c \in M$ gilt:

- $(a, a) \in R$ (reflexiv)
- $(a,b),(b,a) \in R$ (symetrisch)
- $(a,b),(b,c) \in R \Rightarrow (a,c) \in R \text{ (transitiv)}$

Obwohl Ordnungs- und Äquivalenzrelation die gleichen Eigenschaften haben, haben sie unterschiedliche Zwecke: Ordnungsrelationen ordnen Elemente in einer Menge (z.B. das Zeichen < ordnet die Menge der natürlichen Zahlen), während Aquivalenzrelationen eine Menge in disjunkte Teilmengen (Äquivalenzklassen) ohne Rest aufteilen.

Wenn R eine Ordnung auf M ist, so wird häufig geschrieben:

```
a \leq b bzw. a \geq b falls (a, b) \in \mathbb{R}
```

a < b bzw. a > b falls zusätzlich $a \neq b$

Definition 2.2 (Abbildung/Funktion)

Eine Funktion F von M nach N (kurz: $F: M \to N$), ist eine Vorschrift, die jedem Argument/Urbild $m \in M$ genau einen Wert/Bild $F(m) \in N$ zuordnet.

D(F) := M heißt Definitionsbereich/Urbildmenge

N heißt Zielbild

```
F(M') := \{ n \in N \mid n = F(m) \text{ für ein } m \in M' \} \text{ ist Bild von } M' \subset M
```

$$F^{-1}(N') := \{ m \in M \mid n = F(m) \text{ für ein } N' \} \text{ ist Urbild von } N' \subset N$$

R(F) := F(M) heißt Wertebereich/Bildmenge

$$graph(F) := \{(m, n) \in M \times N \mid n = F(m)\}$$
 heißt Graph von F

 $F_{|M'|}$ ist Einschränkung von F auf $M' \subset M$

Unterschied Zielmenge und Wertebereich: $f(x) = \sin(x)$:

Zielmenge: \mathbb{R}

Wertebereich: [-1;1]

Funktionen F und G sind gleich, wenn

- $\bullet \ D(F) = D(G)$
- $F(m) = G(m) \quad \forall m \in D(F)$

Manchmal wird auch die vereinfachende Schreibweise benutzt:

- $F: M \to N$, obwohl $D(F) \subseteq M$ (z.B. $\tan : \mathbb{R} \to \mathbb{R}$, Probleme bei $\frac{\pi}{2}$)
- gelegentlich spricht man auch von "Funktion F(m)ßtatt Funktion F

Lemma 2.3 (Komposition/Verknüpfung)

```
Die Funktionen F: M \to N und G: N \to P sind verknüpft, wenn
```

```
F \circ G : M \to P \text{ mit } (F \circ G)(m) := G(F(m))
```

Eigenschaften von Funktionen:

- injektiv: Zuordnung ist eineindeutig $\rightarrow F(m_1) = F(m_2) \Rightarrow m_1 = m_2$
- Beispiel: x^2 ist nicht injektiv, da F(2) = F(-2) = 4
- surjektiv: $F(M) = N \quad \forall n \in N \ \exists m \in M : F(m) = n$
- Beispiel: sin(x) ist nicht surjektiv, da es kein x für y=27 gibt
- bijektiv: injektiv und surjektiv

Für bijektive Abbildung $F: M \mapsto N$ ist Umkehrabbildung/inverse Abbildung $F^{-1}: N \mapsto M$ definiert durch: $F^{-1}(n) = m \iff F(m) = n$

Hinweis: Die Notation $F^{-1}(N')$ für Urbild bedeutet nicht, dass die inverse Abbildung F^{-1} existiert.

Satz 2.4

Sei $F:M\to N$ surjektiv. Dann existiert die Abbildung $G:N\to M$, sodass $F\circ G=id_N$ (d.h. $F(G(n))=n\quad \forall n\in N$)

Definition 2.5 (Rechenoperation/Verknüpfung)

Eine Rechenoperation auf einer Menge M ist die Abbildung $*: M \times M \to M$ d.h. $(m, n) \in M$ wird das Ergbnis $m * n \in M$ zugeordnet.

Eigenschaften von Rechenoperationen:

- hat neutrales Element $e \in M : m * e = m$
- ist kommutativ m * n = n * m
- ist assotiativ k * (m * n) = (k * m) * n
- hat ein inverses Element $m' \in M$ zu $m \in M : m * m' = e$

e ist stets eindeutig, m' ist eindeutig, wenn die Operation * assoziativ ist.

Beispiele:

- Addition $+: (m, n) \mapsto m + n$ Summe, neutrales Element heißt Nullelement, inverses Element -m
- Multiplikation : $(m, n) \mapsto m \cdot n$ Produkt, neutrales Element Eins, inverses Element m^{-1} Addition und Multiplikation sind distributiv, falls $k(m+n) = k \cdot m + k \cdot n$

Definition 2.6 (Körper)

Eine Menge M ist ein Körper K, wenn man auf K eine Addition und eine Multiplikation mit folgenden Eigenschaften durchführen kann:

- es gibt neutrale Elemente 0 und $1 \in K$
- Addition und Multiplikation sind jeweils kommutativ und assoziativ
- Addition und Multiplikation sind distributiv
- es gibt Inverse -k und $k^{-1} \in K$
 - \rightarrow die reellen Zahlen sind ein solcher Körper

Eine Menge M habe die Ordnung " \leq " und diese erlaubt die Addition und Multiplikation, wenn

- $a \le b \iff a + c \le b + c$
- $a < b \iff a \cdot c < b \cdot c \quad c > 0$
 - \rightarrow Man kann die Gleichungen in gewohnter Weise umformen.

Ein Körper K heißt angeordnet, wenn er eine Totalordnung besitzt, die mit Addition und Multiplikation verträglich ist.

Isomorphismus bezüglich einer Struktur ist die bijektive Abbildung $I: M_1 \mapsto M_2$, die die vorhandene Struktur auf M_1 und M_2 erhält, z.B.

- Ordnung \leq_1 auf M_1 , falls $a \leq_1 b \iff I(a) \leq_2 I(b)$
- Abbildung $F_i: M_i \to M_i$, falls $I(F_1(a)) = F_2(I(a))$
- Rechemoperation $*_i: M_i \times M_i \to M_i$, falls $I(a *_1 b) = I(a) *_2 I(b)$
- spezielles Element $a_i \in M_i$, falls $I(a_1) = a_2$

Ës gibt 2 verschiedene Arten von reellen Zahlen, meine und Prof. Schurichts. Wenn wir einen Isomorphismus finden, dann bedeutet das, dass unsere Zahlen strukturell die selben sind."

Beispiele: $M_1 = \mathbb{N}$ und $M_2 = \{\text{gerade Zahlen}\}$, jeweils mit Addition, Multiplikation und Ordnung $\to I: M_2 \to M_2$ mit $I(k) = 2k \quad \forall k \in \mathbb{N}$

→ Isomorphismus, der die Addition, Ordnung und die Null, aber nicht die Multiplikation erhält

Bemerkungen zum Fundament der Mathematik

Forderungen an eine mathematische Theorie:

- widerspruchsfrei: Satz und Negation nicht gleichzeitig herleitbar
- vollständig: alle Aussagen innerhalb der Theorie sind als wahr oder falsch beweisbar

zwei Unvollständigkeitssätze:

- jedes System ist nicht gleichzeitig widerspruchsfrei und vollständig
- in einem System kann man nicht die eigene Widerspruchsfreiheit zeigen

Teil II

Zahlenbereiche

Kapitel 3

Natürliche Zahlen

 \mathbb{N} sei diejenige Menge, die die **Peano-Axiome** erfüllt, das heißt

- N sei induktiv, d.h. es existiert ein Nullelement und eine injektive Abbildung NtoN mit $\nu(n) \neq 0 \quad \forall n$
- Falls $N \subset \mathbb{N}$ induktiv in \mathbb{N} $(0, \nu(n) \in N \text{ falls } n \in N \Rightarrow N = \mathbb{N}$
- $\rightarrow \mathbb{N}$ ist die kleinste induktive Menge

Nach der Mengenlehre ZF (Zermelo-Fraenkel) existiert eine solche Menge $\mathbb N$ der natürlichen Zahlen. Mit den üblichen Symbolen hat man:

- \bullet 0 := \emptyset
- $1 := \nu(0) := \{\emptyset\}$
- $2 := \nu(1) := \{\emptyset, \{\emptyset\}\}\$
- $3 := \nu(2) := \{\emptyset, \{\emptyset, \{\emptyset\}\}\}\$

Damit ergibt sich in gewohnter Weise $\mathbb{N} = \{1; 2; 3; ...\}$

anschauliche Notation $\nu(n) = n + 1$ (beachte: noch keine Addition definiert!)

Theorem 3.1 Falls \mathbb{N} und \mathbb{N}' die Peano-Axiome erfüllen, sind sie isomorph bezüglich Nachfolgerbildung und Nullelement. Das heißt alle solche \mathbb{N}' sind strukturell gleich und können mit obigem \mathbb{N} identifiziert werden.

Satz 3.2 (Prinzip der vollständigen Induktion)

Sei $\{A_n \mid n \in N\}$ eine Menge von Aussagen A_n mit der Eigenschaft:

- 1. IA: A_0 ist wahr
- 2. IS: $\forall n \in \mathbb{N} \text{ gilt } A_n \Rightarrow A_{n+1}$

 A_n ist wahr für alle $n \in \mathbb{N}$

Lemma 3.3

Es gilt:

- 1. $\nu(n) \cup \{0\} = \mathbb{N}$
- 2. $\nu(n) \neq n \quad \forall n \in \mathbb{N}$

Satz 3.4

(rekursive Definition/Rekursion) Sei B eine Menge und $b \in B$. Sei F eine Abbildung mit F: $B \times \mathbb{N} \mapsto B$. Dann liefert nach Vorschrift: f(0) := b und $f(n+1) = F(f(n), n) \quad \forall n \in \mathbb{N}$ genau eine Abbildung $f : \mathbb{N} \mapsto B$. Das heißt eine solche Abbildung exstiert und ist eindeutig.

Rechenoperationen:

- Definition Addition '+': $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and \mathbb{N} durch $n+0 := n, n+\nu(m) := \nu(n+m) \quad \forall n, m \in \mathbb{N}$
- Definition Multiplikation '.': $\mathbb{N} \times \mathbb{N} \mapsto \mathbb{N}$ auf \mathbb{N} durch $n \cdot 0 := 0$, $n \cdot \nu(m) := n \cdot m + n \quad \forall n, m \in \mathbb{N}$ Für jedes feste $n \in \mathbb{N}$ sind beide Definitionen rekursiv und eindeutig definiert.

$$\forall n \in \mathbb{N} \text{ gilt: } n+1=n+\nu(0)=\nu(n+0)=\nu(n)$$

Satz 3.5

Addition und Multiplikation haben folgende Eigenschaften:

- es existiert jeweils ein neutrales Element
- kommutativ
- assoziativ
- distributiv

Es gilt $\forall k, m, n \in \mathbb{N}$:

- $m \neq 0 \Rightarrow m + n \neq 0$
- $m \cdot n = 0 \Rightarrow n = 0$ oder m = 0
- $m + k = n + k \Rightarrow m = n$ (Kürzungsregel der Addition)
- $m \cdot k = n \cdot k \Rightarrow m = n$ (Kürzungsregel der Multiplikation)

Ordnung auf \mathbb{N} : Relation $R := \{(m, n) \in \mathbb{N} \times \mathbb{N} \mid m \leq n\}$ wobei $m \leq n \iff n = m + k$ für ein $k \in \mathbb{N}$

Satz 3.6

Es gilt auf \mathbb{N} :

- $m \le n \Rightarrow \exists! k \in \mathbb{N} : n = m + k$, nenne n m := k (Differenz)
- Relation R (bzw. \leq) ist eine Totalordnung auf N
- Ordnung ≤ ist verträglich mit der Addition und Multiplikation

Beweis

```
Sei n=m+k=m+k'\Rightarrow k=k'

Sei n=n+0\Rightarrow n\leq n\Rightarrow reflexiv

sei k\leq m, m\leq n\Rightarrow\exists l,j: m=k+l, n=m+j=(k+l)+j=k+(l+j)\Rightarrow k\leq n\Rightarrow transitiv

sei nun m\leq nundn\leq m\Rightarrow n=m+j=n+l+j\Rightarrow 0=l+j\Rightarrow j=0\Rightarrow n=m\Rightarrow antisymmetrisch

Totalordnung, d.h. \forall m,n\in\mathbb{N}: m\leq n oder n\leq m

IA: m=0 wegen 0=n+0 folgt 0\leq n\forall n

IS: gelte m\leq n oder n\leq m mit festem m und \forall n\in\mathbb{N}, dann

falls n\leq m\Rightarrow n\leq m+1

falls m< n\Rightarrow \exists k\in\mathbb{N}: n=m+(k+1)=(m+)1+k\Rightarrow m+1\leq n

m\leq n oder n\leq m gilt für m+1 und \forall n\in\mathbb{N}, also \forall n,m\in\mathbb{N}
```

sei $m \le n \Rightarrow \exists j : n = m + j \Rightarrow n + k = m + j + k \Rightarrow m + k \le n + k$

Ganze und rationale Zahlen

Frage: Existiert eine natürliche Zahl x mit n = n' + x für ein gegebenes n und n'?

Antwort: Das geht nur falls $n \le n'$, dann ist x = n - n'

Ziel: Zahlenbereichserweiterung, sodass die Gleichung immer lösbar ist. Ordne jedem Paar $(n, n') \in \mathbb{N} \times \mathbb{N}$ eine neue Zahl als Lösung zu. Gewisse Paare liefern die gleiche Lösung, z.B. (6,4), (5,3), (7,5). Diese müssen mittels Relation identifiziert werden.

$$\mathbb{Q} := \{ (n_1, n_1'), (n_2, n_2') \in (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) \mid n_1 + n_2' = n_1' + n_2 \}$$

Definition 4.1

 \mathbb{Q} ist die Äquivalenzrelation auf $\mathbb{N} \times \mathbb{N}$.

Beispiel

$$(5,3) \sim (6,4) \sim (7,5)$$
 bzw. $(5-3) \sim (6-4) \sim (7-5)$ $(3,6) \sim (5,8)$ bzw. $(3-6) \sim (5-8)$

Beweis

offenbar $((n, n'), (n, n')) \in \mathbb{Q} \Rightarrow \text{reflexiv}$ falls $((n_1, n'_1), (n_2, n'_2)) \in \mathbb{Q} \Rightarrow (n_2, n'_2), (n_1, n'_1)) \in \mathbb{Q} \Rightarrow \text{symmetrisch}$ sei $((n_1, n'_1), (n_2, n'_2)) \in \mathbb{Q}$ und $((n_2, n'_2), (n_3, n'_3)) \in \mathbb{Q} \Rightarrow n_1 + n'_2 = n'_1 + n_2, n_2 + n'_3 = n'_2 + n_3 \Rightarrow n_1 + n'_3 = n'_1 + n_3 \Rightarrow ((n_1, n'_1), (n_3, n'_3)) \in \mathbb{Q} \Rightarrow \text{transitiv}.$

setze $\overline{\mathbb{Z}} := \{[(n, n')] \mid n, n' \in \mathbb{N}\}$ Menge der ganzen Zahlen, [ganze Zahl] Kurzschreibweise: $\overline{m} := [(m, m')]$ oder $\overline{n} := [(n, n')]$

Satz 4.2

Sei $[(n, n')] \in \overline{\mathbb{Z}}$. Dann existiert eindeutig $n* \in \mathbb{N}$ mit $(n*, 0) \in [(n, n')]$, falls $n \geq n'$ bzw. $(0, n*) \in [(n, n')]$ falls n < n'.

Beweis

$$n \ge n' \Rightarrow \exists! n* \in \mathbb{N} : n = n' + n* \Rightarrow (n*, 0) \sim (n, n')$$

$$n < n' \Rightarrow \exists! n* \in \mathbb{N} : n + n* = n' \Rightarrow (0, n*) \sim (n, n')$$

Frage: Was hat $\overline{\mathbb{Z}}$ mit \mathbb{Z} zu tun?

Antwort: identifiziere (n,0) bzw. (n-0) mit $n \in \mathbb{N}$ und identifiziere (0,n) bzw. (0-n) mit Symbol -n

 \Rightarrow ganze Zahlen kann man eindeutig den Elementen folgender Mengen zuordnen: $\mathbb{Z} := \mathbb{N} \cup \{(-n) \mid n \in \mathbb{N}\}$

Rechenoperationen auf $\overline{\mathbb{Z}}$:

- Addition: $\overline{m} + \overline{n} = [(m, m')] + [(n, n')] = [(m + n, m' + n')]$
- Multiplikation: $\overline{m} \cdot \overline{n} = [(m, m')] \cdot [(n, n')] = [(mn + m'n', mn' + m'n)]$

Satz 4.3

Addition und Multiplikation sind eindeutig definiert, d.h. unabhängig von Repräsentant bezüglich $\mathbb Q$

Beweis

Sei
$$(m_1, m'_1) \sim (m_2, m'_2), (n_1, n'_1) \sim (n_2, n'_2)$$

 $\Rightarrow m_1 + m'_2 = m'_1 + m_2, n_1 + n'_2 = n'_1 + n_2$
 $\Rightarrow m_1 + n_1 + m'_2 + n'_2 = m'_1 + n'_1 + m_2 + n_2$
 $\Rightarrow (m_1, m'_1) + (n_1, n'_1) \sim (m_2, m'_2) + (n_2, n'_2)$

Satz 4.4

Für Addition und Multiplikation auf \mathbb{Z} gilt $\forall \overline{m}, \overline{n} \in \overline{\mathbb{Z}}$:

- 1. es existiert eine neutrales Element: 0 := [(0,0)], 1 := [(1,0)]
- 2. jeweils kommutativ, assoziativ und gemeinsam distributiv
- 3. $-\overline{n} := [(n', n)] \in \mathbb{Z}$ ist invers bezüglich der Addition zu $[(n, n')] = \overline{n}$
- 4. $(-1) \cdot \overline{n} = -\overline{n}$
- 5. $\overline{m} \cdot \overline{n} = 0 \iff \overline{m} = 0 \lor \overline{n} = 0$

Beweis

- 1) offenbar $\overline{n} + 0 = 0 + \overline{n} = \overline{n}$ und $\overline{n} \cdot 1 = 1 \cdot \overline{n} = \overline{n}$
- 2) Fleißarbeit \rightarrow SeSt
- 3) offenbar $\overline{n} + (-\overline{n}) = (-\overline{n}) + \overline{n} = [(n+n', m+m')] = 0$
- 4) $(-1) \cdot \overline{n} = [(0,1)] \cdot [n,n'] = [n',n] = -\overline{n}$
- 5) ÜA

Satz 4.5

Für $\overline{m}, \overline{n} \in \mathbb{Z}$ hat die Gleichung $\overline{m} = \overline{n} + \overline{x}$ die Lösung $\overline{x} = \overline{m} + (-\overline{n})$.

Ordnung auf $\overline{\mathbb{Z}}$: betrachte Relation $R := \{(\overline{m}, \overline{n}) \in \overline{\mathbb{Z}} \times \overline{\mathbb{Z}} \mid \overline{m} \leq \overline{n}\}$

Satz 4.6

R ist Totalordnung auf \mathbb{Z} und verträglich mit Addition und Multiplikation

Ordnung verträglich mit Addition: $\overline{n} < 0 \iff 0 = \overline{n} + (-\overline{n}) < -\overline{n} = (-1) \cdot \overline{n}$

beachte: $\mathbb{Z} := \mathbb{N} \cup \{(-n) \mid n \in \mathbb{N}_{>0}\}$

Satz 4.7

 \mathbb{Z} und $\overline{\mathbb{Z}}$ sind isomorph bezüglich Addition, Multiplikation und Ordnung.

Beweis

betrachte Abbildung
$$I: \mathbb{Z} \to \overline{\mathbb{Z}}$$
 mit $I(k) := [(k,0)]$ und $I(-k) := [(0,k)] \quad \forall k \in \mathbb{N} \Rightarrow \ddot{U}A$

Notation: verwende stets \mathbb{Z} , schreibe m, n, \dots statt $\overline{m}, \overline{n}, \dots$ für ganze Zahlen in \mathbb{Z}

Frage: Existiert eine ganze Zahl mit $n = n' \cdot x$ für $n, n' \in \mathbb{Z}, n' \neq 0$ **Antwort:** im Allgemeinen nicht **Ziel:** Zahlbereichserweiterung analog zu $\mathbb{N} \to \mathbb{Z}$ ordne jedem Paar $(n, n') \in \mathbb{Z} \times \mathbb{Z}$ neue Zahl x zu schreibe (n, n') auch als $\frac{n}{n'}$ oder n : n' identifiziere Paare wie z.B. $\frac{4}{2}, \frac{6}{3}, \frac{8}{4}$ durch Relation $\mathbb{Q} := (\frac{n_1}{n'_2}, \frac{n_2}{n'_2}) \in (\mathbb{Z} \times \mathbb{Z}_{\neq 0}) \times (\mathbb{Z} \times \mathbb{Z}_{\neq 0}) \mid n_1 n'_2 = n'_1 n_2$ $\Rightarrow \mathbb{Q}$ ist eine Äquivalenzrelation auf $\mathbb{Z} \times \mathbb{Z}_{\neq 0}$

setze $\mathbb{Q} := \left[\frac{n}{n'}\right] \mid (n,n') \in \mathbb{Z} \times \mathbb{Z}_{\neq 0}$ Menge der rationalen Zahlen beachte: unendlich viele Symbole $\frac{n}{n'}$ für gleiche Zahl $\left[\frac{n}{n'}\right]$ wir schreiben später $\frac{n}{n'}$ für die Zahl $\left[\frac{n}{n'}\right]$ offenbar gilt die Kürzungsregel: $\left[\frac{n}{n'}\right] = \left[\frac{kn}{kn'}\right] \quad \forall k \in \mathbb{Z}_{\neq 0}$

Rechenoperationen auf \mathbb{Q} :

• Addition: $\left[\frac{m}{m'}\right] + \left[\frac{n}{n'}\right] := \left[\frac{mn' + m'n}{m'n'}\right]$ • Multiplikation: $\left[\frac{m}{m'}\right] \cdot \left[\frac{n}{n'}\right] := \left[\frac{mn}{m'n'}\right]$

Satz 4.8

Mit Addition und Multiplikation ist \mathbb{Q} ein Körper mit neutralen Elementen: $0 = \begin{bmatrix} 0_{\mathbb{Z}} \\ 1_{\mathbb{Z}} \end{bmatrix} = \begin{bmatrix} 0_{\mathbb{Z}} \\ n_{\mathbb{Z}} \end{bmatrix}, 1 := \begin{bmatrix} \frac{1}{2} \\ 1_{\mathbb{Z}} \end{bmatrix} = \begin{bmatrix} \frac{n}{n} \end{bmatrix} \neq 0$ inversen Elementen: $-\begin{bmatrix} \frac{n}{n'} \end{bmatrix} = \begin{bmatrix} \frac{-n}{n} \end{bmatrix}, \begin{bmatrix} \frac{n}{n'} \end{bmatrix}^{-1} = \begin{bmatrix} \frac{n'}{n} \end{bmatrix}$

Ordnung auf \mathbb{Q} : für $[\frac{n}{n'}] \in \mathbb{Q}$ kann man stets n' > 0 annehmen Realtion: $R := \{([\frac{m}{m'}], [\frac{n}{n'}]) \in \mathbb{Q} \times \mathbb{Q} \mid mn' \leq m'n, m', n' > 0\}$ gibt Ordnung \leq

Satz 4.9

 \mathbb{Q} ist ein angeordneter Körper (d.h. \leq ist eine Totalordnung undv erträglich mit Addition und Multiplikation).

Notation: schreibe vereinfacht nur noch $\frac{n}{n'}$ für die Zahl $\left[\frac{n}{n'}\right] \in \mathbb{Q}$ und verwende auch Symbole p, q, \dots für Elemente aus \mathbb{Q}

Gleichung $p \cdot x = q$ hat stets eindeutige Lösung: $x = q \cdot p^{-1} \ (p, q \in \mathbb{Q}, p \neq 0)$

Frage: $\mathbb{N} \subset \mathbb{Z} \to \mathbb{Z} \subset \mathbb{Q}$? Antwort: Sei $\mathbb{Z}_{\mathbb{Q}} := \frac{n}{1} \in \mathbb{Q} \mid n\mathbb{Z}, I : \mathbb{Z} \to \mathbb{Z}_{\mathbb{Q}}$ mit $I(n) = \frac{n}{1} \Rightarrow I$ ist Isomorphismus bezüglich Addition, Multiplikation und Ordnung. In diesem Sinn: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$

Folgerung 4.10

Körper $\mathbb Q$ ist archimedisch angeordnet, d.h. für alle $q \in \mathbb Q \exists n \in \mathbb N : q <_{\mathbb Q} n$.

Beweis

Sei
$$q = \left[\frac{k}{k'}\right]$$
 mit $k' > 0$
 $n := 0$ falls $k < 0 \Rightarrow q = \left[\frac{k}{k'}\right] < \left[\frac{0}{k'}\right] = 0 = n$
 $n := k + 1$ falls $k \ge 0 \Rightarrow q = \left[\frac{k}{k'}\right] < \left[\frac{k+1}{k'}\right] = n$

Reelle Zahlen

Frage: Frage: algebraische Gleichung $a_0 + a_1 x + \cdots + a_x^k = 0 \ (a_j \in \mathbb{Z})$ i.A nur für k = 1 lösbar (d.h. lin. Gl.)

Beispiel 5.1

 $x^2-2=0$ keine Lösung in \mathbb{Q} . Angenommen es existiert eine Lösung $x=\frac{m}{n}\in\mathbb{Q}$, o.B.d.A. höchstens eine der Zahlen m,n gerade $\Rightarrow \frac{m^2}{n^2}=2 \Rightarrow m^2=2n^2 \Rightarrow m$ gerade $\stackrel{m=2k}{\Rightarrow} 4k^2=2n^2 \Rightarrow 2n^2 \Rightarrow 2k^2=n^2 \Rightarrow n$ gerade $\Rightarrow \frac{1}{2}$.

Offenbar $1, 4^2 < 2 < 1, 5^2, 1, 41^2 < 2 < 1, 42^2, \dots$, falls es $\sqrt{2}$ gibt, kann diese in $\mathbb Q$ beliebig genau approximiert werden. Es folgt, dass $\mathbb Q$ anscheinend "Lücken" hat. **Fläche auf dem Einheitskreis** kann durch rationale Zahlen beliebig genau approximiert werden. Falls "Flächenzahl" π existiert, ist das **nicht** Lösung einer algebraischen Gleichung (Lindemann 1882).

Ziel: Konstruktion eines angeordneten Körpers, der diese Lücken füllt.

5.1 Struktur von archimedisch angeordneten Körper (allg.)

 \mathbb{K} sei ein (bel.) Körper mit bel. Elementen 0, 1 bzw. $0_K, 1_K$.

Satz 5.2

Sei \mathbb{K} Körper. Dann gilt $\forall a, b \in \mathbb{K}$:

- [1) $0, 1, (-a), b^{-1}$ sind eindeutig bestimmt
- $[1) (-0) = 0, 1^{-1} = 1$
- (1) $-(-a) = a, (b^{-1})^{-1} = b \ (b \neq 0)$
- [1) $-(a+b) = (-a) + (-b), (a^{-1}b^{-1}) = (a^{-1}b^{-1}) (a \neq 0)$
- [1) $-a = (-1) \cdot a$, (-a)(-b) = ab, $a \cdot 0 = 0$
- [1) $ab = 0 \iff a = 0 \text{ oder } b = 0$
- [1) a + x = b hat eindeutige Lösung x = b + (-a) =: b a Differenz ax = b hat eindeutige Lösung $x = a^{-1}b := \frac{b}{a}$ Quotient

Beweis

- [zu 1) vgl. lin. Algebra
- [zu 1) betrachte 0 + 0 = 0 bzw. $1 \cdot 1 = 1$
- [zu 1) $(-a) + a = 0 \stackrel{komm}{\Rightarrow} a = -(-a)$ Rest analog
- [zu 1) $a + b = ((-a) + (-b)) \Rightarrow$ Behauptung, Addition und Multiplikation analog
- [zu 1) $a \cdot 0 = 0$ vgl. lin. Algebra

$$1a + (-1)a = 0 \Leftrightarrow (1-1)a = 0 \Rightarrow (-1)a = -1, (-a)(-b) = (-1)(-a)b \stackrel{3.5}{=} ab$$

 $[zu\ 1)\ (\Leftarrow): nach\ 5)$

$$(\Rightarrow)$$
 sei $a \neq 0$ (sonst klar) $\Rightarrow 0 = a^{-1} \cdot 0 \stackrel{ab=0}{=} a^{-1}ab = b \Rightarrow \text{Beh.}$

[zu 1)
$$a + x = b \Leftrightarrow x = (-a) + a \neq x = (-a) + b$$
, für $ax = b$ analog

Setze für alle $a, \ldots a_k \in \mathbb{K}, n \in \mathbb{N}_{>1}$

Vielfache $n \cdot a$ (kein Produkt in $\mathbb{K}!$)

Potenzen $a^n = \prod_{k=1}^n a_k$ für $n \in \mathbb{N}_{\geq 1}$ damit (-n)a := n(-a), $0_{\mathbb{N}}a = 0_{\mathbb{N}}$ für $n \in \mathbb{N}_{\geq 1}$ $a^{-n} = (a^-1)^n$, $a^{0_{\mathbb{N}}} := 1_{\mathbb{K}}$ für $n \in \mathbb{N}_{\geq 1}$, $a \neq 0$ beachte $: 0^0 = (0_{\mathbb{N}})^{0_{\mathbb{N}}}$ nicht definiert!

Rechenregeln $\forall a, b \in \mathbb{K}, \overline{m, n} \in \mathbb{Z}$ (sofern Potenz definiert)

Komplexe Zahlen (kurzer Überblick)

```
Problem: x^2 = -1 keine Lösung in \mathbb{R} \Rightarrow Körpererweiterung \mathbb{R} \to \mathbb{C}
Betrachte Menge der komplexen Zahlen \mathbb{C} := \mathbb{R} \times \mathbb{R} = \mathbb{R}^2
  mit Addition und Multiplikation:
         (x, x') + (y, y') = (x + y, x' + y')

(x, x') \cdot (y, y') = (xy - x'y', xy' + x'y)
  \mathbb{C} ist ein Körper mit (vgl. lin Algebra):
         0_{\mathbb{K}} = (0,0), 1_{\mathbb{K}} = (1,0), -(x,y) = (-x,-y) \text{ and } (x,y)^{-1} = \left(\frac{x}{x^2+y^2}, \frac{-y}{x^2+y^2}\right)
         mit imaginärer Einheit \iota = (0,1)
         z = x + \iota y statt z = (x, y) mit x := \operatorname{Re}(z) Realteil von z, y := \operatorname{Im}(z) Imaginärteil von z
         komplexe Zahl z = x + \iota y wird mit reeller Zahl x \in \mathbb{R} identifiziert
         offenbar \iota^2 = (-1,0) = -1, d.h. z = \iota \in \mathbb{C} und löst die Gleichung z^2 = -1 (nicht eindeutig,
         auch (-\iota)^2 = -1
         Betrag |\cdot|: \mathbb{C} \to \mathbb{R}_{>0} mit |z|:=\sqrt{x^2+y^2} (ist Betrag/Länge des Vektors (x,y))
         es gilt:
            a) \operatorname{Re}(z) = \frac{z+\overline{z}}{2}, \operatorname{Im}(z) = \frac{z+\overline{z}}{2\iota}
b) \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}, \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}
            c) |z| = 0 \iff z = 0
            d) |\overline{z}| = |z|
            e) |z_1 \cdot z_2| = |z_1| \cdot |z_2|
            f) |z_1 + z_2| \le |z_1| + |z_2| (Dreiecks-Ungleichung: Mikoswski-Ungleichung)
```

Beweis

SeSt

Teil III

Metrische Räume und Konvergenz

Konvergenz: grundlegender Begriff in Analysis

Kapitel 7

Grundlegen Ungleichungen

Satz 7.1 (Geometrisches und arithmetisches Mittel)

Seien $x_1, \ldots, x_n \in \mathbb{R}_{>0}$ $\Rightarrow \sqrt[n]{x_1, \ldots, x_n} = \frac{x_1, \ldots, x_n}{n}$ geoemtrisches Mittel
Gleichheit gdw $x_1 = \cdots = x_n$.

Beweis

Zeige zunächst mit vollständiger Induktion

$$\prod_{i=1}^{n} x_i \Longrightarrow \sum_{i=1}^{n} x_i \ge n, \text{ mit } x_1 = \dots = x_n$$

$$(7.1)$$

- (IA) n = 1 klar
- (IS) (7.1) gelte für n, zeige (7.1) für n+1 d.h. $\prod_{i=1}^{n+1} = 1$, falls alle $x_i = 1 \Rightarrow$ Behauptung

Sonst oBdA
$$x_n < 1$$
, $x_{n+1} > 1$: mit $y_n := x_n x_{n+1}$ gilt $x_1 \cdot \dots \cdot x_{n-1} \cdot y_n = 1$

$$\Rightarrow x_1 + \dots + x_{n+1} = \underbrace{x_1 + \dots + x_{n-1}}_{\geq (\text{IV})} + y_n - y_n + x_n + x_{n+1}$$

$$\stackrel{\geq}{\geq} (\text{IV})$$

$$\geq n + \underbrace{(x_{n+1} - 1)}_{>n} \underbrace{(1 - x_n)}_{>n}$$

$$\stackrel{\text{voll.Ind.}}{\Rightarrow} (7.1) \forall n \in \mathbb{N}$$
allg. sei nun $g := \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}} \Rightarrow \prod_{i=1}^n \frac{x_i}{g} = 1$

$$\stackrel{(7.1)}{\Rightarrow} \sum_{i=1}^n \frac{x_i}{g} \geq n \Rightarrow \text{ Behauptung}$$

Aussage über Gleichheit nach nochmaliger Durchsicht.

Satz 7.2 (allg. Bernoulli-Ungleichung)

Seien $\alpha, x \in \mathbb{R}$. Dann

1)
$$(1+x)^{\alpha} \ge 1 + \alpha x \ \forall x > -1, \alpha > 1$$

2) $(1+x)^{\alpha} \le 1 + \alpha x \ \forall x \ge -1, 0 < \alpha < 1$

Beweis

zu 2) Sei
$$\alpha = \frac{m}{n} \in \mathbb{Q}_{<1}$$
, d.h. $m \le n$

$$\Rightarrow (1+x)^{\frac{m}{n}} = \sqrt[n]{(1+x)^m \cdot 1^{n-m}} \text{Definition}$$

$$\leq \frac{m(1+x) + (n-m) \cdot 1}{n}$$

$$= \frac{n+mx}{n} = 1 + \frac{m}{n}x, \text{ für } \alpha \in \mathbb{Q} \Rightarrow \text{ Behauptung}$$
Sei $\alpha \in \mathbb{R}$ angenommen $(1+x)^{\alpha} > 1 + \alpha x \ (x \ne 0, \text{ sonst klar!})$

$$\stackrel{Satz5.8}{\Rightarrow} \exists \in \mathbb{Q}_{<1} \begin{cases} x > 0 \ \alpha < q < \frac{(1+x)^{\alpha}-1}{x} \\ x < 0\alpha q \end{cases} \Rightarrow$$

$$1 + qx < (1+x)^{\alpha} \stackrel{Satz5.20}{\leq} (1+x)^q \Rightarrow \cancel{t} \Rightarrow \text{ Behauptung}$$
zu 1) Sei $1 + \alpha x \ge 0$, sonst klar
$$\Rightarrow \alpha x \ge -1 \stackrel{2}{\Rightarrow} (1 + \alpha x)^{\frac{1}{\alpha}} \ge$$

Satz 7.3 (Young'sche Ungleichung)

Sei
$$p, q \in \mathbb{R}, p, q > 1$$
 mit $\frac{1}{q} + \frac{1}{q} = 1 \Rightarrow ab \leq \frac{a^p}{p} + \frac{b^q}{q} \ \forall a, b \geq 0$ (Gleichheit gdw $a^p = b^q$)
Spezialfall $(p = q = 2)$: $ab \geq \frac{a^2 + b^2}{2}$ gilt $\forall a, b \in \mathbb{R}$ (folgt direkt $0 \leq (a - b)^2$)

 $1 + \frac{1}{\alpha}\alpha x = 1 + x \Rightarrow$ Behauptung und Gleichheit ist Selbststudium.

Beweis

Sei
$$a, b > 0$$
 (sonst klar!) $\Rightarrow \left(\frac{b^q}{a^p}\right)^{\frac{p}{q}} = \left(1 + \left(\frac{b^q}{a^p} - 1\right)\right)^{\frac{p}{q}} \stackrel{Bern.Ungleichung}{\leq} 1 + \frac{1}{q}\left(\frac{b^q}{a^p} - 1\right)$

$$= \frac{1}{p} + \frac{1}{q} + \frac{1}{q}\frac{b^q}{a^p} - \frac{1}{q}$$

$$\stackrel{\cdot a^p}{\Rightarrow} a^p \frac{b^{\frac{p}{q}}}{a} = a^{p(1 - \frac{1}{q})}b = ab \leq \frac{a^p}{p} + \frac{b^q}{q}$$

Satz 7.4 (Höldersche Ungleichung)

Sei
$$p, q \in \mathbb{R}$$
; $p, q > 0$ mit $\frac{1}{q} + \frac{1}{p} = 1$

$$\Rightarrow \sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|\right)^{\frac{1}{p}} \, \forall x, y \in \mathbb{R}$$

Bemerkung

- 1) Ungleichung gilt auch für $x_i, y_i \in \mathbb{C}$ (nur Beträge gehen ein)
- 2) für p=q=2 heißt Ungleichung Cauchy-Schwarz-Ungleichung (Gleichheit gdw $\exists x \in \mathbb{R} x_i =$ $\alpha y_i \text{ oder } y_i = \alpha x_i \ \forall i)$

Beweis

Faktoren rechts seien \mathcal{X} und \mathcal{Y} d.h.

$$\mathcal{X}^{p} = \sum_{i=1}^{n} |x_{i}|^{\frac{1}{p}}, \mathcal{Y}^{p} = \sum_{i=1}^{n} |y_{i}|^{\frac{1}{q}}, \text{ falls } \mathcal{X} = 0 \Rightarrow x_{i} = 0 \ \forall i \Rightarrow \text{ Behauptung, analog für } \mathcal{Y} = 0$$

$$\text{Seien } \mathcal{X}, \mathcal{Y} > 0 \overset{Satz7.3}{\Rightarrow} \frac{|x_{i}y_{i}|}{\mathcal{X}\mathcal{Y}} \leq \frac{1}{p} \frac{|x_{i}|^{p}}{\mathcal{X}^{p}} + \frac{1}{q} \frac{|y_{i}|^{q}}{\mathcal{Y}^{p}} \forall i$$

$$\Rightarrow \frac{1}{\mathcal{X}\mathcal{Y}} \sum_{i=1}^{n} |x_{i}y_{i}| \leq \frac{1}{p} \frac{\mathcal{X}^{p}}{\mathcal{X}^{p}} + \frac{1}{q} \frac{\mathcal{Y}^{p}}{\mathcal{Y}^{p}} = 1 \overset{\mathcal{X}\mathcal{Y}}{\Rightarrow} \text{ Behauptung.}$$

Satz 7.5 (MInkowski-Ungleichung)

Sei
$$p \in \mathbb{R}, p \ge 1 \Rightarrow \left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{\frac{1}{p}} \forall x, y \in \mathbb{R}$$

Bemerkung

- 1) Ungleichung gilt auch für $x_i, y_i \in \mathbb{C}$ (vgl. Beweis)
- 2) ist Δ -Ungleichung für p-Normen (vgl. später)

Beweis

Beweis
$$p = 1$$
 Beh. folgt aus Δ -Ungleichung $|x_i + y_i| \stackrel{Satz5.5}{\leq} |x_i| + |y_i| \forall i$

$$p>1$$
sei $\frac{1}{p}+\frac{1}{q}=1,$ $z_i:=|x_i+y_i|^{p-1}\forall i$

$$\begin{split} \mathcal{S}^p &= \sum_{i=1}^n |z_i|^q & q = \frac{p}{p-1} \\ &= \sum_{i=1}^n |+x_i+y_i| \cdot |z_i|^q \\ &= \sum_{i=1}^n |x_i+y_i| + \sum_{i=1}^n |z_i| & \Delta\text{-Ungleichung} \\ &\leq \left(\mathcal{X} + \mathcal{Y}\right) \left(\sum_{i=1}^n |z_i|^q\right)^{\frac{1}{p}} & \text{H\"older-Ungleichung} \\ &= \left(\mathcal{X} + \mathcal{Y}\right) \mathcal{S}^{\frac{p}{q}} \\ &\Rightarrow \text{Behauptung} & p = \frac{p}{q} + 1 \end{split}$$

Metrische Räume

Definition (Metrik)

Sei X Menge und Abbildung $d: X \times X \to \mathbb{R}$ heißt Metrik auf X falls $\forall x, y, z \in X$

- a) $d(x,y) = 0 \Leftrightarrow x = y$
- b) d(x,y) = d(y,x) (Symmetrie)
- c) $d(x,z) \le d(x,y) + d(y,z)$ (Δ -Ungleichung)

(X, d) heißt metrischer Raum.

Man hat $d(x,y) = 0 \forall x, y \in X$, dann

$$0 = d(x, x) = d(x, y) + d(y, x)$$
 a), c)

$$= 2d(x, y) \forall x, y$$
 b)

$$\text{nach b), c)}$$

$$|d(x, y) - d(z, y)| \le d(x, y) \forall x, y, z \in X$$
 (8.1)

Beispiel 8.1 (Standardmetrik)

d(x,y) := |x-y| ist Metrik auf $X = \mathbb{R}$ bzw. $X = \mathbb{C}$

Eig. a), b), c) klar c)
$$|x-z||(x+y)-(x-z)|$$
 $\leq |x+y|+|y+z|$ Δ -Ungleichung für \mathbb{R} , \mathbb{C} -Betrag

Beispiel 8.2 (diskrete Metrik)

Diskrete Metrik auf beliebiger Menge X.

$$d(x,y) = \begin{cases} 0 & \mathbf{x} = \mathbf{y} \\ 1 & x \neq y \end{cases}$$

ist offenbar eine Metrik.

Beispiel 8.3 (induzierte Metrik)

Sei (X, d) metrischer Raum, $Y \subset X$

 \Rightarrow (Y,d) ist metrischer Raum mit <u>induzierter Metrik</u> $\tilde{d}(x,y) := d(x,y) \forall x,y \in Y$

wichtiger Spezialfall: normierte Vektorraum(VR)

Definition (Norm)

Sei X Vektorraum über $K = \mathbb{R}$ oder $K = \mathbb{C}$.

Abbildung $\|\cdot\|: X \to \mathbb{R}$ heißt Norm auf X falls $\forall x, y \in X, \forall \lambda \in \mathbb{R}$ gilt:

- a) $||x|| = \Leftrightarrow x = 0$
- b) $\|\lambda x\| = |\lambda| \|x\|$ (Homogenität)
- c) $||x+y|| \le ||x|| + ||y||$ (Δ -Ungleichung)

 $(X, \|\cdot\|)$ heißt <u>normierter Raum</u>.

 $Metrik \leftarrow Norm$

Abbildung \neq VR, Abstand x, 0

man hat
$$||x|| \le 0 \forall x \in X$$
, denn $0 = ||x - x|| \le ||x|| + ||-x|| = 2||x||$ a), c), b)

Analog Satz 5.5 folgt

$$|||x|| - ||y||| \le ||x - y|| \forall x, y \in X \tag{8.2}$$

 $\|\cdot\|: X \to \mathbb{R}_{\geq 0}$ heißt <u>Halbraum</u> falls nur b), c) gelten analog Beispiel 8.1 folgt.

Satz 8.4

Sei $(X, \|\cdot\|)$ normierter Raum, dann X metrischer Raum mit Metrik $d(x, y) := \|x - y\| \forall x, y \in X$.

Beispiel 8.5

 $X = \mathbb{R}^n$ ist Vektorraum über \mathbb{R} , Elemente in \mathbb{R}^n $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n),$

man hat unter anderem folgende Normen auf \mathbb{R}^n

$$p\text{-Norm}: |x|_p := \left(\sum_{i=0}^n |x_i|^p\right)^{\frac{1}{p}} \tag{1 \leq p < \infty}$$

Maximum-Norm : $|x|_p := \max\{|x_i| \mid i = 1, ... n\}$

a), b) jeweils klar, c) für
$$\begin{cases} |\cdot|_p & \text{ist Minkowski-Ungleichung} \\ |\cdot|_{\infty} & \text{wegen} \quad |x_i + y_i| \leq |x_i| + |y_i| \forall i \end{cases}$$

Standardnorm in \mathbb{R}^n : $|\cdot| = |\cdot|_{p=2}$ heißt <u>eukldische Norm</u>.

Definition (Skalarprodukt)

 $\langle x,y\rangle=\sum_{i=1}^n$ heißt Skalarprodukt (inneres Produkt) von $x,y\in\mathbb{R}^n$ offenbar $\langle x,y\rangle=|x|_2\forall x\in comp$ nur für euklidische Räume gibt es Skalarprodukt (nur für euklische Norm!). Man hat $|\langle x,y\rangle|\leq |x|_2\cdot|y|_2\forall x,y\in\mathbb{R}^n$ Cauchy-Schwarsche Ungleichung (CSU), denn

$$|\langle x,z\rangle|=|\sum_{i=1}^n x_iy_i|\leq \sum_{i=1}^n |x_iy_i|$$
 Δ -Ungleichung in $\mathbb R$ $\leq |x|_2\cdot |y|_2$ Hölder-Ungleichung mit $p=q=2$

Beispiel 8.6

 $X = \mathbb{C}^n$ ist Vektorraum über \mathbb{C} , $x = (x_1, \dots, x_n) \in \mathbb{C}^n$, $x_i \in \mathbb{C}$ analog zum Bsp. 8.5 sind $|\cdot|_p$ und $|\cdot|_\infty$ Normen auf \mathbb{C}^n $\langle x, y \rangle = \sum_{i=1}^n \bar{x}_i y_i \forall x_i, y_i \in \mathbb{C}$ heißt Skalarprodukt von $x, y \in \mathbb{C}^n$ (beachte $\langle x, y \rangle \in \mathbb{C}$, $\langle x, x \rangle = |x|^2$) $\overset{\text{wie oben}}{\Rightarrow} |\langle x, y \rangle| \leq |x| \cdot |y| \forall x, y \in \mathbb{C}^n$

Definition (Orthogonalität)

 $x, y \in \mathbb{R}^n(\mathbb{C}^n)$ heißen orthogonal falls $\langle x, y \rangle = 0$

Beispiel 8.7

Sei M beliebige Menge, $f: M \to \mathbb{R}$ $||f|| := \sup\{|f(x)| \mid x \in M\}$. Dann ist

$$\mathcal{B}(M) := \{ f : M \to \mathbb{R} \mid ||f|| < \infty \}$$

Menge der beschränkte Funktionen auf ${\cal M}$

 $\overline{\mathcal{B}(M)}$ ist Vektorraum auf \mathbb{R}

- a) ((f+g)(x) = f(x) + g(x)
- b) $(\lambda f)(x) = \lambda f(x)$
- c) Nullelement ist Nullfunktion $f(x) = 0 \forall x \in M$

 $\|\cdot\|$ ist Norm auf $\mathcal{B}(M)$, denn a), b) klar

$$\begin{split} \|f+g\| := & \sup\{|f(x)+g(x)| \mid x \in M\} \\ & \leq & \sup\{|f(x)|+|g(x)| \mid x \in M\} \\ & \leq & \sup\{|f(x)|\} \end{split} \qquad \Delta\text{-Ungleichung in } \mathbb{R}$$

${\bf Konvergenz}$

${\bf Vollst \ddot{a}ndigke it}$

${\bf Kompaktheit}$

Reihen

Teil IV

Funktionen und Stetigkeit

Kapitel 13

Funktionen