Practical 324

Stefano De Sabbata

2020-11-29

Regression analysis

Stefano De Sabbata

This work is licensed under the GNU General Public License v3.0. Contains public sector information licensed under the Open Government Licence v3.0.

Simple regression

The simple regression analysis is a supervised machine learning approach to creating a model able to predict the value of one outcome variable Y based on one predictor variable X_1 , by estimating the intercept b_0 and coefficient (slope) b_1 , and accounting for a reasonable amount of error ϵ .

$$Y_i = (b_0 + b_1 * X_{i1}) + \epsilon_i$$

Least squares is the most commonly used approach to generate a regression model. This model fits a line to minimise the squared values of the **residuals** (errors), which are calculated as the squared difference between observed values the values predicted by the model.

$$redidual = \sum (observed - model)^2$$

A model is considered **robust** if the residuals do not show particular trends, which would indicate that "something" is interfering with the model. In particular, the assumption of the regression model are:

- linearity: the relationship is actually linear;
- **normality** of residuals: standard residuals are normally distributed with mean 0;
- homoscedasticity of residuals: at each level of the predictor variable(s) the variance of the standard residuals should be the same (homo-scedasticity) rather than different (hetero-scedasticity);
- independence of residuals: adjacent standard residuals are not correlated.

Example

The example that we have seen in the lecture illustrated how simple regression can be used to create a model to predict the arrival delay based on the departure delay of a flight, based on the data available in the nycflights13 dataset for the flight on November 20th, 2013. The scatterplot below seems to indicate that the relationship is indeed linear.

$$arr_delay_i = (Intercept + Coefficient_{dep_delay} * dep_delay_{i1}) + \epsilon_i$$

Load the library
library(nycflights13)

```
# November 20th, 2013
flights_nov_20 <- nycflights13::flights %>%
  filter(!is.na(dep_delay), !is.na(arr_delay), month == 11, day ==20)
```


The code below generates the model using the function lm, and the function summary to obtain the summary of the results of the test. The model and summary are saved in the variables delay_model and delay_model_summary, respectively, for further use below. The variable delay_model_summary can then be called directly to visualise the result of the test.

```
# Classic R coding version
# delay_model <- lm(arr_delay ~ dep_delay, data = flights_nov_20)
# delay_model_summary <- summary(delay_model)

delay_model <- flights_nov_20 %$%
    lm(arr_delay ~ dep_delay)

delay_model_summary <- delay_model %>%
    summary()

delay_model_summary
```

```
##
## Call:
## lm(formula = arr_delay ~ dep_delay)
##
## Residuals:
##
       Min
                1Q
                   Median
                                3Q
                                       Max
##
  -43.906 -9.022
                    -1.758
                             8.678 57.052
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.96717
                           0.43748
                                    -11.35
                                              <2e-16 ***
                           0.01788
                                     58.28
                                              <2e-16 ***
## dep_delay
                1.04229
  ---
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 13.62 on 972 degrees of freedom
```

```
## Multiple R-squared: 0.7775, Adjusted R-squared: 0.7773    ## F-statistic: 3397 on 1 and 972 DF, p-value: < 2.2e-16
```

The image below highlights the important values in the output: the adjusted R^2 value; the model significance value p-value and the related F-statistic information F-statistic; the intercept and dep_delay coefficient estimates in the Estimate column and the related significance values of in the column Pr(>|t|).

```
Call:
lm(formula = arr_delay ~ dep_delay)
Residuals:
    Min
                             3Q
             10 Median
                                    Max
-43.906 -9.022 -1.758
                          8.678
                                 57.052
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.96717
                                 -11.35
                                          <2e-16 **
                        0.43748
dep_delay
             1.04229
                                  58.28
                                          <2e-16 ***
                        0.01788
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
Signif. codes:
Residual standard error: 13.62 on 972 degrees of freedom
Multiple R-squared: 0.7775,
                               Adjusted R-squared:
F-statistic:
              3397 on 1 and 972 DF, p-value: < 2.2e-16
```

The output indicates:

- p-value: < 2.2e-16: p < .001 the model is significant;
 - derived by comparing the calulated **F-statistic** value to F distribution 3396.74 having specified degrees of freedom (1, 972);
 - Report as: F(1,972) = 3396.74
- Adjusted R-squared: 0.7773: the departure delay can account for 77.73% of the arrival delay;
- Coefficients:
 - Intercept estimate -4.9672 is significant;
 - dep_delay coefficient (slope) estimate 1.0423 is significant.

```
flights_nov_20 %>%
  ggplot(aes(x = dep_delay, y = arr_delay)) +
  geom_point() + coord_fixed(ratio = 1) +
  geom_abline(intercept = 4.0943, slope = 1.04229, color="red")
```


Checking assumptions

data:

Normality The Shapiro-Wilk test can be used to check for the normality of standard residuals. The test should be not significant for robust models. In the example below, the standard residuals are *not* normally distributed. However, the plot further below does show that the distribution of the residuals is not far away from a normal distribution.

```
delay_model %>%
    rstandard() %>%
    shapiro.test()

##
## Shapiro-Wilk normality test
##
## data:
## W = 0.98231, p-value = 1.73e-09
```

std_res

Homoscedasticity The Breusch-Pagan test can be used to check for the homoscedasticity of standard residuals. The test should be not significant for robust models. In the example below, the standard residuals are homoscedastic.

```
library(lmtest)

delay_model %>%
    bptest()

##

## studentized Breusch-Pagan test
##

## data: .

## BP = 0.017316, df = 1, p-value = 0.8953
```

Independence The Durbin-Watson test can be used to check for the independence of residuals. The test should be statistic should be close to 2 (between 1 and 3) and not significant for robust models. In the example below, the standard residuals might not be completely independent. Note, however, that the result depends on the order of the data.

```
# Also part of the library lmtest
delay_model %>%
   dwtest()

##
## Durbin-Watson test
##
```

```
## DW = 1.8731, p-value = 0.02358
## alternative hypothesis: true autocorrelation is greater than 0
```

Plots The plot.lm function can be used to further explore the residuals visually. Usage is illustrated below. The Residuals vs Fitted and Scale-Location plot provide an insight into the homoscedasticity of the residuals, the Normal Q-Q plot provides an illustration of the normality of the residuals, and the Residuals vs Leverage can be useful to identify exceptional cases (e.g., Cook's distance greater than 1).

```
delay_model %>%
 plot()
```


30

How to report

Leverage Im(arr delay ~ dep delay)

Overall, we can say that the delay model computed above is fit (F(1,972) = 3396.74, p < .001), indicating that the departure delay might account for 77.73% of the arrival delay. However the model is only partially robust. The residuals satisfy the homoscedasticity assumption (Breusch-Pagan test, BP = 0.02, p = 0.9), and the independence assumption (Durbin-Watson test, DW = 1.87, p = 0.02), but they are not normally distributed (Shapiro-Wilk test, W = 0.98, p < .001).

The stargazer function of the stargazer library can be applied to the model delay_model to generate a nicer output in RMarkdown PDF documents by including results = "asis" in the R snippet option.

```
# Install stargazer if not yet installed
# install.packages("stargazer")
```

```
library(stargazer)

# Not rendered in bookdown
stargazer(delay_model)
```

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Sun, Nov 29, 2020 - 11:44:24 PM

Table 1:

	Dependent variable:
	$\operatorname{arr_delay}$
dep_delay	1.042***
	(0.018)
Constant	-4.967***
	(0.437)
Observations	974
\mathbb{R}^2	0.778
Adjusted R ²	0.777
Residual Std. Error	13.618 (df = 972)
F Statistic	$3,396.742^{***} (df = 1;972)$
Note:	*p<0.1; **p<0.05; ***p<0.01

Multiple regression

The multiple regression analysis is a supervised machine learning approach to creating a model able to predict the value of one outcome variable Y based on two or more predictor variables $X_1 ... X_M$, by estimating the intercept b_0 and the coefficients (slopes) $b_1 ... b_M$, and accounting for a reasonable amount of error ϵ .

$$Y_i = (b_0 + b_1 * X_{i1} + b_2 * X_{i2} + \dots + b_M * X_{iM}) + \epsilon_i$$

The assumptions are the same as the simple regression, plus the assumption of **no multicollinearity**: if two or more predictor variables are used in the model, each pair of variables not correlated. This assumption can be tested by checking the variance inflation factor (VIF). If the largest VIF value is greater than 10 or the average VIF is substantially greater than 1, there might be an issue of multicollinearity.

Example

The example below explores whether a regression model can be created to estimate the number of people in Leicester commuting to work using public transport (u120) in Leicester, using the number of people in different occupations as predictors.

For instance, occupations such as skilled traders usually require to travel some distances with equipment, thus the related variable u163 is not included in the model, whereas professional and administrative occupations might be more likely to use public transportation to commute to work.

A multiple regression model can be specified in a similar way as a simple regression model, using the same lm function, but adding the additional predictor variables using a + operator.

```
leicester_2011OAC <- read_csv("2011_OAC_Raw_uVariables_Leicester.csv")</pre>
# u120: Method of Travel to Work, Public Transport
# u159: Employment, Managers, directors and senior officials
# u160: Employment, Professional occupations
# u161: Employment, Associate professional and technical occupations
# u162: Employment, Administrative and secretarial occupations
# u163: Employment, Skilled trades occupations
# u164: Employment, Caring, leisure and other service occupations
# u165: Employment, Sales and customer service occupations
# u166: Employment, Process, plant and machine operatives
# u167: Employment, Elementary occupations
public_transp_model <- leicester_20110AC %$%</pre>
 lm(u120 \sim u160 + u162 + u164 + u165 + u167)
public_transp_model %>%
  summary()
##
## Call:
## lm(formula = u120 ~ u160 + u162 + u164 + u165 + u167)
## Residuals:
##
        Min
                  1Q
                       Median
                                    3Q
                                            Max
## -16.8606 -4.0247 -0.1084
                                3.7912 24.6359
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.19593 0.75048 4.258 2.26e-05 ***
## u160
               0.06912
                         0.01416 4.881 1.24e-06 ***
## u162
               0.17000
                           0.03328 5.108 3.93e-07 ***
## u164
               0.28641
                           0.03589
                                     7.979 4.17e-15 ***
## u165
               0.21311
                           0.03107
                                    6.858 1.25e-11 ***
## u167
               0.32008
                           0.02156 14.846 < 2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 5.977 on 963 degrees of freedom
## Multiple R-squared: 0.436, Adjusted R-squared: 0.4331
## F-statistic: 148.9 on 5 and 963 DF, p-value: < 2.2e-16
# Not rendered in bookdown
stargazer(public_transp_model)
% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
% Date and time: Sun, Nov 29, 2020 - 11:44:25 PM
public_transp_model %>%
 rstandard() %>%
  shapiro.test()
##
   Shapiro-Wilk normality test
##
## data:
## W = 0.9969, p-value = 0.05628
```

Table 2:

	Table 2.
	Dependent variable:
	u120
u160	0.069***
	(0.014)
u162	0.170***
	(0.033)
u164	0.286***
	(0.036)
u165	0.213***
	(0.031)
u167	0.320***
	(0.022)
Constant	3.196***
	(0.750)
Observations	969
\mathbb{R}^2	0.436
Adjusted R^2	0.433
Residual Std. Error	5.977 (df = 963)
F Statistic	$148.884^{***} (df = 5; 96)$
Note:	*p<0.1; **p<0.05; ***p<

```
public_transp_model %>%
  bptest()
##
##
    studentized Breusch-Pagan test
##
## data:
## BP = 45.986, df = 5, p-value = 9.142e-09
public_transp_model %>%
  dwtest()
##
    Durbin-Watson test
##
##
## data:
## DW = 1.8463, p-value = 0.007967
## alternative hypothesis: true autocorrelation is greater than 0
library(car)
public_transp_model %>%
 vif()
```

u160 u162 u164 u165 u167 ## 1.405480 1.486768 1.163760 1.353682 1.428418

The output above suggests that the model is fit (F(5,963) = 148.88, p < .001), indicating that a model based on the number of people working in the five selected occupations can account for 43.31% of the number of people using public transportation to commute to work. However the model is only partially robust. The residuals are normally distributed (Shapiro-Wilk test, W = 1, p = 0.06) and there seems to be no multicollinearity with average VIF 1.37, but the residuals don't satisfy the homoscedasticity assumption (Breusch-Pagan test, BP = 45.99, p < .001), nor the independence assumption (Durbin-Watson test, DW = 1.85, p < .01).

The coefficient values calculated by the 1m functions are important to create the model, and provide useful information. For instance, the coefficient for the variable u165 is 0.21, which indicates that if the number of people employed in sales and customer service occupations increases by one unit, the number of people using public transportation to commute to work increases by 0.21 units, according to the model. The coefficients also indicate that the number of people in elementary occupations has the biggest impact (in the context of the variables selected for the model) on the number of people using public transportation to commute to wor0, whereas the number of people in professional occupations has the lowest impact.

In this example, all variables use the same unit and are of a similar type, which makes interpretating the model relatively simple. When that is not the case, it can be useful to look at the standardized β , which provide the same information but measured in terms of standard deviation, which make comparisons between variables of different types easier to draw. For instance, the values calculated below using the function lm.beta of the library lm.deta indicate that if the number of people employed in sales and customer service occupations increases by one standard deviation, the number of people using public transportation to commute to work increases by lm.deta standard deviations, according to the model.

```
# Install lm.beta library if necessary
# install.packages("lm.beta")
library(lm.beta)

lm.beta(public_transp_model)
```

##

```
## Call:
## lm(formula = u120 ~ u160 + u162 + u164 + u165 + u167)
##
## Standardized Coefficients::
## (Intercept)
                      u160
                                  u162
                                              u164
                                                          u165
                                                                      u167
    0.0000000
##
                0.1400270
                            0.1507236
                                         0.2083107
                                                     0.1931035
                                                                 0.4293988
```

Exercise 9.1

Question 9.1.2: Is the number of people using public transportation to commute to work statistically, linearly related to mean age (u020)?

Question 9.1.3: Is the number of people using public transportation to commute to work statistically, linearly related to (a subset of) the age structure categories (u007 to u019)?