- 1. 기계 학습에서 학습이란 무엇인지를 정리하시오(2점).
- (가중치, 손실함수가 무엇인지를 정리하고, 데이터, 가중치, 손실함수를 이용하여 학습이 무엇인지를 정리함.)
 - 1) 가중치: 가중치는 모델의 핵심 요소 중 하나로, 입력 데이터와 연관된 가중치가 모델의 학습 중에 조정됩니다. 이러한 가중치는 입력 데이터와 연산을 수행하여 예측을 생성하거나 분류를 수행하는 모델의 핵심 파라미터입니다.
 - 2) 손실 함수: 손실 함수는 모델의 예측과 실제 값 사이의 차이를 <mark>측정</mark>하는 함수입니다. 학습 과정 중에 목표는 손실 함수를 최소화하는 방향으로 모델의 가중치를 조정하는 것입니다. 손실 함수는 모델의 성능을 측정하고 개선하기 위한 목표 함수로 사용됩니다.
 - 3) 학습이란 무엇인가: 모델은 초기에 데이터로부터 예측을 생성하고, 손실 함수를 통해 예측의 정확도를 평가한 후, 가중치를 조정하여 손실을 최소화

2. 확률적 경사 하강법의 소스 코드를 분석하시오(2점). (Page 173, 4장 모델 훈련, 첨부 파일 참조)

$n_{epochs} = 50$

ㄴ전체 학습 에포크(epoch)의 수를 설정합니다. 전체 데이터 세트를 몇 번 반복하여 학습할 것인지를 결정하는 파라미터

to, t1 = 5,50 #학습 스케줄 하이퍼파라미터

ㄴ학습 스케줄링(learning schedule)의 하이퍼파라미터인 t0와 t1을 설정합니다. 학습 스케줄링은 학습률을 조절하는 데 사용

def learning_schedule(t):

ㄴ학습 스케줄링 함수를 정의

return t0 / (t + t1)

ㄴ 에포크와 데이터 포인트 인덱스를 기반으로 학습률을 계산하는 데 사용

theta = np.random.randn(2,1) #무작위 초기화

ㄴ무작위 초기화를 통해 선형 회귀 모델의 파라미터인 theta를 초기화 theta는 2x1 크기의 벡터로, 두 개의 파라미터를 가짐

for epoch in range(n_epochs):

ㄴ총 에포크 횟수에 대한 루프를 시작

for i in range(m):

ㄴ에포크 내에서 데이터 포인트를 하나씩 처리하는 루프를 시작, m은 전체 데이터 샘플의 수

random_index = np.random.randint(m)

∟무작위로 데이터 포인트를 선택하기 위해 0부터 m-1 사이의 무작위 인덱스를 선택

xi = X_b[random_index:random_index+1]

yi = y[random_index:random_index+1]

ㄴ선택한 무작위 데이터 포인트를 xi와 yi로 저장합니다. xi는 입력 데이터 포인트이고, yi는 해당 입력 데이터 포인트에 대응하는 정답값

gradients = 2 * xi.T.dot (xi.dot(theta) - yi)

ㄴ 경사 벡터(그래디언트)를 계산, 경사 하강법에서 가중치 업데이트에 사용

eta = learning_schedule (epoch * m + I)

ㄴ학습 스케줄링 함수를 호출하여 현재 학습률(eta)를 얻음, 에포크와 데이터 포인트 인덱스를 기반으로 학습률이 조정

theta = theta - eta gradients

ㄴ경사 하강법의 업데이트 규칙을 사용하여 가중치 theta를 업데이트, 새로운 가중치는 현재 가중치에서 학습률과 경사를 곱한 값만큼 조정