

M2201 - Théorie des graphes

Matrices d'adjacence et premiers algorithmes

TD3

1 Matrices d'adjacence.

Donnez les matrices d'adjacence M1 et M2 des graphes suivants :

2 Puissance de matrices d'adjacence.

Quelle est la valeur des éléments suivants :

 $M1^{2}[0,0]$? $M1^{2}[0,2]$? $M1^{2}[0,4]$? $M1^{2}[2,0]$? $M2^{2}[0,0]$? $M2^{2}[0,2]$? $M2^{2}[0,4]$? $M2^{2}[2,0]$?

Vérifiez que ces valeurs correspondent bien au nombre de chemins distincts de longueur 2 reliant les sommets concernés.

3 Degré d'un sommet dans un graphe non orienté.

Écrire une fonction qui détermine le degré d'un sommet S dans un graphe non orienté G à N sommets.

4 Degrés entrant et sortant d'un sommet dans un graphe orienté.

Écrire une fonction qui détermine le degré sortant d'un sommet S dans un graphe orienté G à N sommets.

Écrire une fonction qui détermine le degré entrant d'un sommet S dans un graphe orienté G à N sommets.

5 Degré maximum d'un graphe non orienté.

Écrire une fonction qui détermine le degré maximum $\Delta(G)$ d'un graphe non orienté G à N sommets.

6 Graphes complets.

Écrire une fonction qui détermine si un graphe non orienté G à N sommets est complet.

7 Tournois.

Écrire une fonction qui détermine si un graphe orienté G à N sommets est un tournoi.

8 Graphes réguliers.

Écrire une fonction qui, à partir d'un graphe non orienté G à N sommets, retourne -1 si le graphe n'est pas régulier et l'entier k si le graphe est k-régulier.

9 Graphes eulériens.

Écrire une fonction qui détermine si un graphe connexe non orienté G à N sommets contient un cycle eulérien.

Écrire une fonction qui détermine si un graphe connexe non orienté G à N sommets contient une chaîne eulérienne.

10 Arbres.