# **Convex Optimization II**

Lecture 4: Convex Sets

Hamed Shah-Mansouri

Department of Electrical Engineering Sharif University of Technology

1400-2

1/18

#### **MOTIVATION**

- The watershed between tractable and intractable problems is not linearity, but convexity.
- Only the very basic concepts and results in convex sets are covered without proofs.
- This lecture and the next two lectures on convex functions and problems are primarily mathematical, but a wide range of applications will soon follow.

#### References

- All materials and figures in this lecture are from [1].
  - [1] S. Boyd and L. Vandenberghe, *Convex Optimization*, first edition, Cambridge University Press, 2004.
- Thanks to Prof. Vincent Wong and Prof. Stephen Boyd for all the slides used in this lecture.

◆□▶◆御▶◆意≯◆意≯・意

#### LINE AND AFFINE SET

**line** through  $x_1$ ,  $x_2$ : all points

$$x = \theta x_1 + (1 - \theta) x_2 \qquad (\theta \in \mathbf{R})$$



affine set: contains the line through any two distinct points in the set

**example**: solution set of linear equations  $\{x \mid Ax = b\}$ 

(conversely, every affine set can be expressed as solution set of system of linear equations)

# LINE SEGMENT AND CONVEX SET

**line segment** between  $x_1$  and  $x_2$ : all points

$$x = \theta x_1 + (1 - \theta)x_2$$

with  $0 \le \theta \le 1$ 

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

examples (one convex, two nonconvex sets)







# CONVEX COMBINATION AND CONVEX HULL

**convex combination** of  $x_1, \ldots, x_k$ : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with 
$$\theta_1 + \cdots + \theta_k = 1$$
,  $\theta_i \ge 0$ 

**convex hull conv** S: set of all convex combinations of points in S





# CONE AND CONVEX CONE

- A set C is called a **cone**, if for every  $x \in C$  and  $\theta > 0$ , we have  $\theta x \in C$ .
- A set C is a **convex cone** if it is convex and a cone, which means that for any  $x_1, x_2 \in C$  and  $\theta_1, \theta_2 \ge 0$ , we have

$$\theta_1 x_1 + \theta_2 x_2 \in C$$

- A point of the form  $\theta_1 x_1 + \cdots + \theta_k x_k$  with  $\theta_1, \dots, \theta_k \ge 0$  is called a conic combination of  $x_1, \dots, x_k$ .
- A set C is a convex cone if and only if it contains all conic combinations of its elements.

# HYPERPLANE AND HALFSPACE

**hyperplane**: set of the form  $\{x \mid a^T x = b\}$   $(a \neq 0)$ 



**halfspace:** set of the form  $\{x \mid a^T x \leq b\}$   $(a \neq 0)$ 



- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

**→□→→□→→□→ □ →○○** 

#### **POLYHEDRA**

solution set of finitely many linear inequalities and equalities

$$Ax \leq b$$
,  $Cx = d$ 

 $(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \leq \text{is componentwise inequality})$ 



polyhedron is intersection of finite number of halfspaces and hyperplanes

Hamed Shah-Mansouri (Sharif)

### **EUCLIDEAN BALL**

• A Euclidean ball with center  $x_c \in \mathbf{R}^n$  and radius r > 0

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\}$$
  
= \{x \left| (x - x\_c)^T (x - x\_c) \left| r^2\}  
= \{x\_c + ru \left| ||u||\_2 \left| 1\}.

- $B(x_c, r)$  consists of all points within a distance r of the center  $x_c$ .
- A Euclidean ball is a convex set.

# NORM BALLS AND NORM CONES

**norm:** a function  $\|\cdot\|$  that satisfies

- $||x|| \ge 0$ ; ||x|| = 0 if and only if x = 0
- ||tx|| = |t| ||x|| for  $t \in \mathbf{R}$
- $||x + y|| \le ||x|| + ||y||$

notation:  $\|\cdot\|$  is general (unspecified) norm;  $\|\cdot\|_{\text{symb}}$  is particular norm norm ball with center  $x_c$  and radius r:  $\{x\mid \|x-x_c\|\leq r\}$ 

norm cone:  $\{(x,t) \mid ||x|| \le t\}$ 

Euclidean norm cone is called secondorder cone



norm balls and cones are convex



# HOW TO INVESTIGATE CONVEXITY OF A SET

practical methods for establishing convexity of a set  ${\cal C}$ 

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls,  $\dots$ ) by operations that preserve convexity
  - intersection
  - affine functions
  - perspective function
  - linear-fractional functions

# OPERATIONS THAT PRESERVE CONVEXITY INTERSECTION

the intersection of (any number of) convex sets is convex

#### example:

$$S = \{ x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3 \}$$

where  $p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$ 

for m=2:





# OPERATIONS THAT PRESERVE CONVEXITY AFFINE FUNCTION

suppose 
$$f: \mathbf{R}^n \to \mathbf{R}^m$$
 is affine  $(f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m)$ 

• the image of a convex set under f is convex

$$S \subseteq \mathbf{R}^n \text{ convex} \quad \Longrightarrow \quad f(S) = \{f(x) \mid x \in S\} \text{ convex}$$

ullet the inverse image  $f^{-1}(C)$  of a convex set under f is convex

$$C \subseteq \mathbf{R}^m$$
 convex  $\implies f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\}$  convex

#### examples

- scaling, translation, projection
- solution set of linear matrix inequality  $\{x \mid x_1A_1 + \cdots + x_mA_m \leq B\}$  (with  $A_i, B \in \mathbf{S}^p$ )
- hyperbolic cone  $\{x \mid x^T P x \leq (c^T x)^2, \ c^T x \geq 0\}$  (with  $P \in \mathbf{S}^n_+$ )

Hamed Shah-Mansouri (Sharif) Convex Ontimization II 13/18

# OPERATIONS THAT PRESERVE CONVEXITY PERSPECTIVE AND LINEAR-FRACTIONAL FUNCTION

perspective function  $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$ :

$$P(x,t) = x/t,$$
 dom  $P = \{(x,t) \mid t > 0\}$ 

images and inverse images of convex sets under perspective are convex

linear-fractional function  $f: \mathbb{R}^n \to \mathbb{R}^m$ :

$$f(x) = \frac{Ax + b}{c^T x + d},$$
 dom  $f = \{x \mid c^T x + d > 0\}$ 

images and inverse images of convex sets under linear-fractional functions are convex

# OPERATIONS THAT PRESERVE CONVEXITY LINEAR-FRACTIONAL FUNCTION

$$f(x) = \frac{1}{x_1 + x_2 + 1}x$$





### SEPARATING HYPERPLANE THEOREM

if C and D are disjoint convex sets, then there exists  $a \neq 0$ , b such that

$$a^Tx \leq b \text{ for } x \in C, \qquad a^Tx \geq b \text{ for } x \in D$$



the hyperplane  $\{x \mid a^T x = b\}$  separates C and D

strict separation requires additional assumptions ( $e.g.,\ C$  is closed, D is a singleton)

#### SUPPORTING HYPERPLANE THEOREM

**supporting hyperplane** to set C at boundary point  $x_0$ :

$$\{x \mid a^T x = a^T x_0\}$$

where  $a \neq 0$  and  $a^T x \leq a^T x_0$  for all  $x \in C$ 



supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

#### **SUMMARY**

- Definition of line, line segment, affine set, convex set, convex combination, convex hull, and convex cone.
- Definition of hyperplane, halfspace, and polyhedron.
- Operations that preserve convexity.
- Separating hyperplane theorem and supporting hyperplane theorem.
- Convexity is the watershed between easy and hard optimization problems. Recognize convexity.
- Reading: Sections 2.1 2.3, and 2.5 in [1] by Boyd and Vandenberghe.