Problema B

Resgate em Queda Livre

Arquivo fonte: resgate.{ c | cpp | java | py }

Autor: Leandro Zatesko, UFFS (beecrowd | 1552)

Ó, meu Deus! Um grupo de pessoas está caindo em queda livre! Elas saltaram todas exatamente ao mesmo tempo de vários aviões que estavam exatamente à mesma altura. A intenção era realizar o maior e mais belo salto sincronizado da História. No entanto, o malévolo Loki, para se deleitar com a insignificância humana, sabotara os paraquedas, e agora a única esperança está numa ação conjunta do Homem-Aranha com o Homem-de-Ferro. Como ambos são muito nerds, notaram que as pessoas estavam caindo todas num mesmo plano paralelo ao solo, a despeito da resistência do ar e de outros fatores. Então, bolaram um plano infalível. Primeiro, o aracnídeo unirá todas as pessoas através de cabos de teia entre elas.

Uma vez que não haja pessoa que não esteja conectada ao grupo, o playboy poderá eletromagnetizar o grupo todo e, segurando na mão de uma apenas das pessoas do grupo, pousar todas elas em segurança.

1.414 D

1.414 D

1.414 E

Figura B.1: Todas possíveis ligações

Figura B.2: Menor custo de teia

Mas não há muito tempo para divagações. O Homem-Aranha precisa agir rápido, o que no caso dele significa gastar o mínimo possível de teia. Para tanto, o Homem-de-Ferro em seu screen projetou numa malha cartesiana o plano em que as pessoas estão, usando o centímetro como unidade de medida, e obteve as coordenadas de cada pessoa na malha. Agora, J.A.R.V.I.S. está computando qual o mínimo necessário de teia de que o Homem-Aranha precisará. Dependendo da resposta, o Homem-de-Ferro não esperará pelo garoto e improvisará alguma outra peripécia.

Fórmula para calcular distância entre dois pontos: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Input

A entrada é constituída por vários casos de teste. A primeira linha de entrada contém um inteiro C que determina a quantidade de casos de teste. Cada caso de teste começa com um inteiro positivo n (n \leq 500), o qual representa o número de pessoas no grupo. Seguem, então, n linhas, cada uma designando uma pessoa do grupo pelas suas coordenadas x e y na malha (0 \leq x, y \leq 10 4).

Output

Para cada caso de teste, seu programa deverá imprimir uma linha contendo o valor com precisão de duas casas decimais correspondente ao comprimento mínimo de teia, em metros, necessário para se conectarem todas as pessoas do grupo. Atente para que o separador das casas decimais seja. (ponto), não, (vírgula).

Exemplo de entrada 1

Exemplo de saída 1

2	6.06
5	0.04
0 0	
0 100	
100 200	
200 400	
300 300	
4	
1 5	
1 4	
2 3	
3 2	