King County Housing Prices

MODULE 1 FINAL PROJECT

KRYSTIAN DENNIS 12 AUGUST 2019

Contact Information

- Krystian Dennis
- krystiandennis@gmail.com
- Jupyter Notebook and Presentation can be found at:
- https://github.com/krystiandennis/mo d1-final-project

Outline

Outline

- 1 Objectives and Dataset
- 2 Initial Observations
- ▶ 3 Cleaning the Data
- ▶ 4 Preparing Data for Analysis
- ▶ 5 Data Model
- ► 6 Model Results
- 7 Recommendations

Objective and Data Set

- ▶ The King County House Price Dataset contained records of over 21,000 home sales the Seattle area from Sept 2014-Sept 2015
- ► The dataset included 19 variables ranging from number of bathrooms to square footage of the basement
- ► The objective was to use these variables to create a model capable of predicting the sales price of similar properties in the area

Unique ID	Date sold	House price	Number of bedrooms	Number of bathrooms	Square footage (home)	Square footage (lot)
Number of floors	Waterfront view	Viewed or not	Overall condition	Overall grade by KC	Square footage (upper)	Square footage (basement)
Year built	Year renovated	Zip code	Latitude coordinates	Longitude coordinates	Square footage of living space (neighbors)	Square footage of lot (neighbors)

Initial Observations

- The dataset contains categorical (like bedrooms) and continuous variable (like sqft_lot)
- The data appears skewed for variables like sqft_above
- There appears to be missing data for variables like yr_renovated

Cleaning The Data

- ► Three variables were missing values
 - 'waterfront' was missing 11% of values
 - ► Replaced with '0'
 - 'view' was missing 0.2% of values
 - Replaced with '0'
 - 'yr_renovated missing 18% of values
 - ► Replaced with '0'
- One variables contained placeholders
 - 'sqft_basement' contained 2% of '?'
 - ► Replaced with '0'

- 0.8

- 0.4

Preparing Data for Analysis

- Variables not demonstrating linear relationship with 'price' removed from dataset
- Outliers removed from dataset
 - ▶ IQR*1.5
- All variables min-max scaled
- Continuous variables log transformed
- Independent variables with high correlation to each other removed from dataset

Data Model

- Simple Linear Regression used on continuous variable to determine inclusion in model
 - r-squared above 0.2
 - p-value below 0.05
- Recursive Feature Elimination used to construct model
 - 2 variables
 - 4 variables
 - All variables

 Performance of model evaluated using linear regression

Model Results

- Approximately 60% of variation in house prices can be explained by the model
- Model cross-validated with only -0.03 difference of MSE between actual and predicted house prices.

Dep. Variable:	price	R-squared:	0.597
Model:	OLS	Adj. R-squared:	0.597
Method:	Least Squares	F-statistic:	3901.
Date:	Sun, 11 Aug 2019	Prob (F-statistic):	0.00
Time:	23:49:26	Log-Likelihood:	14267.
No. Observations:	13154	AIC:	-2.852e+04
Df Residuals:	13148	BIC:	-2.848e+04
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-0.0809	0.003	-26.817	0.000	-0.087	-0.075
sqft_living	0.3380	0.010	34.692	0.000	0.319	0.357
bathrooms	-0.0267	0.004	-6.224	0.000	-0.035	-0.018
grade	0.1276	0.004	34.746	0.000	0.120	0.135
lat	0.4185	0.005	89.909	0.000	0.409	0.428
sqft_living15	0.0777	0.006	12.518	0.000	0.066	0.090

Omnibus:	811.922	Durbin-Watson:	1.988
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1049.265
Skew:	0.582	Prob(JB):	1.43e-228
Kurtosis:	3.747	Cond. No.	20.6

Conclusion

- ▶ Up 60% of the variation in house prices can be explained by the model
- 'sqft_living' and 'lat' influence house prices most strongly
- Model tends to predict a higher house price than the actual house prices
 - ▶ To improve model, more variables will be included in model