基礎コンピュータ工学 第5章 機械語プログラミング (パート8:シフト命令)

https://github.com/tctsigemura/TecTextBook

本スライドの入手:

基礎コンピュータ工学第5章 機械語プログラミ

シフト(桁ずらし)命令

- データの2進数を左右に桁移動する命令のこと.
- TeC は4種類(実質は3種類)の命令を持っている。
- 左シフト(論理・算術)

• 右シフト (論理)

右シフト(算術)

基礎コンピュータ工学第5章 機械語プログラミ

2 / 11

SHLA (Shift Left Arithmetic) 命令

左算術(算術= Arithmetic)シフト命令. レジスタの値を左に 1 ビットずらす.(シフトする)

C フラグ 上の図のように変化する.

S フラグ 結果が負なら 1, それ以外は 0 になる.

Zフラグ 結果がゼロなら 1, それ以外は 0 になる.

フローチャート: Java のシフト演算子を流用する.

基礎コンピュータ工学第5章 機械語プログラミ

ニーモニック: SHLA GR

命令フォーマット: 1バイトの長さを持つ.

第1	バイト
OP	GR XR
1001_2	$GR \ 00_2$

例題 5-4: SHLA 命令を実行して確かめる. (イルミネーション?) (次のプログラムを GO に何かデータをセットしたあとで GO を表示したまま実行する.)

00	90	LO	SHLA	GO	
01	FF		HALT		
02	AO 00		JMP	LO	

注:左シフトは×2を計算している.

基礎コンピュータ工学第5章 機械語プログラミ

*/1

SHLL (Shift Left Logical) 命令

左論理(論理= Logical)シフト命令。 レジスタの値を左に1ビットずらす。(シフトする) (SHLL 命令と SHLA 命令の動作は全く同じ。)

フラグ SHLA と同じ

フローチャート: SHLA と同じ

ニーモニック: SHLL GR

命令フォーマット: 1バイトの長さを持つ.

	•
第1	バイト
OP	GR XR
10012	GR 01 ₂

基礎コンピュータ工学第5章 機械語プログラミ

左シフトを用いた×2計算

符号	なし数	の×2	符号付き数の × 2
0000	0001	(1)	1111 1111 (-1)
0000	0010	(2)	1111 1110 (-2)
0000	0100	(4)	1111 1100 (-4)
0000	1000	(8)	1111 1000 (-8)
0001	0000	(16)	1111 0000 (-16)
0010	0000	(32)	1110 0000 (-32)
0100	0000	(64)	1100 0000 (-64)
1000	0000	(128)	1000 0000 (-128)
0000	0000	(ERR)	0000 0000 (ERR)

SHLL 命令はこちら用

SHLA 命令はこちら用

基礎コンピュータ工学第5章 機械語プログラミ

6/1

SHRA (Shift Right Arithmetic) 命令

右算術(算術= Arithmetic)シフト命令。 レジスタの値を右に1ビットずらす。(シフトする)

フラグ SHLA と同じ

フローチャート: Java のシフト演算子を流用する.

 $GR \leftarrow GR >> 1$

命令フォーマット: 1バイトの長さを持つ.

第1バイト OP GR XR 1001₂ GR 10₂

注: SHRA は符号付き数の ÷ 2を計算している.

基礎コンピュータ工学第5章 機械語プログラミ

SHRL (Shift Right Logical) 命令

右論理 (論理 = Logical) シフト命令。 レジスタの値を右に1ビットずらす。(シフトする)

フラグ SHLA と同じ

フローチャート: Java のシフト演算子を流用する.

 $GR \leftarrow GR >>> 1$

命令フォーマット: 1バイトの長さを持つ.

第1バイト

OP GR XR

1001₂ GR 11₂

注: SHRL は符号なし数の÷2を計算している.

基礎コンピュータ工学第5章 機械語プログラミ

8/1

右シフトを用いた ÷ 2計算(1)

符号なし数の ÷ 2	符号付き数の÷2
1100 0000 (192)	1100 0000 (-64)
0110 0000 (96)	1110 0000 (-32)
0011 0000 (48)	1111 0000 (-16)
0001 1000 (24)	1111 1000 (-8)
0000 1100 (12)	1111 1100 (-4)
0000 0110 (6)	1111 1110 (-2)
0000 0011 (3)	1111 1111 (-1)
0000 0001 (1)	1111 1111 (-1)
0000 0000 (0)	1111 1111 (-1)

SHRL 命令を使用する SHRA 命令を使用する

基礎コンピュータ工学第5章 機械語プログラミ

右シフトを用いた ÷ 2計算(2)

符号作	付き正数の	の÷2	符号付き負数の ÷ 2
0100	0000	(64)	1100 0000 (-64)
0010	0000	(32)	1110 0000 (-32)
0001	0000	(16)	1111 0000 (-16)
0000	1000	(8)	1111 1000 (-8)
0000	0100	(4)	1111 1100 (-4)
0000	0010	(2)	1111 1110 (-2)
0000	0001	(1)	1111 1111 (-1)
0000	0000	(0)	1111 1111 (-1)
0000	0000	(0)	1111 1111 (-1)

SHRA 命令使用

SHRA 命令使用

基礎コンピュータ工学第5章 機械語プログラミ

まとめ

学んだこと

- TeC のシフト命令は 1 ビットシフトする.
- TeC は4種類 (実質は3種類) のシフト命令を持っている.
- シフト命令はイルミネーション(?)に使用できる。
- 左シフト (論理・算術) は,

符号付き・なし兼用の×2計算に使用できる。

- 右シフト (論理) は、符号なし数の ÷ 2計算に使用できる。
- 右シフト(算術)は、符号付き数の + 2計算に使用できる。

演習

- ビットの右回転(例題5-5を参考に)
- シフト命令を使用した「× 7の計算」(例題 5 6を参考に)
- シフト命令を使用した「÷ 4の計算」
- シフト命令を使用した「× 1. 5の計算」

基礎コンピュータ工学第5章 機械語プログラミ

11 / 11