Matemáticas e Ingeniería Informática

Hoja 7: Dualidad

1. Sea \mathcal{C} la base canónica de de \mathbb{R}^3 y \mathcal{C}^* su base dual. Dada la siguiente base de \mathbb{R}^3 :

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\},\,$$

halla la base dual \mathcal{B}^* , expresando sus elementos en términos de las coordenadas en la base \mathcal{C}^* .

- **2.** Sean $E_1^*, E_2^*, E_3^* : \mathbb{R}^3 \to \mathbb{R}$ los elementos de la base dual estándar de \mathbb{R}^3 .
 - (a) Comprueba que los elementos $E_1^* E_2^* + 5E_3^*$, $3E_1^* + E_2^* + E_3^*$, $2E_2^* E_3^*$ forman una base de $(\mathbb{R}^3)^*$.
 - (b) Halla la base de \mathbb{R}^3 de la cual $\{E_1^* E_2^* + 5E_3^*, 3E_1^* + E_2^* + E_3^*, 2E_2^* E_3^*\}$ es dual.
 - (c) Halla una base del anulador de $\langle 3E_1^* + E_2^* + E_3^*, 2E_2^* E_3^* \rangle$.
- **3.** Calcula las bases de $(\mathbb{R}^2)^*$ duales de $\mathcal{B}_1 = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$ y de $\mathcal{B}_2 = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right\}$. ¿Hay algún vector compartido por \mathcal{B}_1 y \mathcal{B}_2 ? ¿Hay algún elemento compartido por las duales?
- **4.** En \mathbb{R}^3 se consideran las bases canónica, $\mathcal{C} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\},$

$$\mathcal{B}_1 = \{ \vec{u}_1 = (1,0,1), \vec{u}_2 = (-1,1,1), \vec{u}_3 = (1,-1,0) \} \quad \text{y} \quad \mathcal{B}_2 = \{ \vec{v}_1 = (2,1,1), \vec{v}_2 = (1,1,1), \vec{v}_3 = (1,-1,1) \}.$$

- (a) Calcula sus bases duales expresadas en la dual de la base canónica.
- (b) Todo elemento del dual $\omega \in (\mathbb{R}^3)^*$ se puede expresar en cualquiera de las 3 bases duales:

$$\mathcal{C}^* = \{E_1^*, E_2^*, E_3^*\}; \qquad \qquad \mathcal{B}_1^* = \{U_1^*, U_2^*, U_3^*\}; \qquad \qquad \mathcal{B}_2^* = \{V_1^*, V_2^*, V_3^*\}.$$

Calcula las matrices de cambio de base

$$P_1$$
: de \mathcal{C}^* a \mathcal{B}_2^* ; P_2 : de \mathcal{B}_1^* a \mathcal{C}^* ; P_3 : de \mathcal{B}_2^* a \mathcal{B}_1^* .

- (c) Expresa la matriz identidad como el producto, en el orden adecuado, de las tres matrices anteriores.
- (d) Calcula las coordenadas en la base \mathcal{B}_1^* de la forma lineal cuyas coordenadas en la base \mathcal{B}_2^* son (3, -2, 1).
- **5.** Sea E el espacio vectorial de los polinomios reales p(x) de grado no mayor que 2. Definimos formas lineales $\ell_1, \ell_2, \ell_3 : E \to \mathbb{R}$ mediante: $\ell_1[p(x)] = p(0)$, $\ell_2[p(x)] = p'(0)$ y $\ell_3[p(x)] = p''(0)$.
 - (a) Demuestra que $\mathcal{B}_0^* = \{ \ell_1, \ell_2, \ell_3 \}$ es una base de E^* .
 - (b) Dada la siguiente base de E: $\mathcal{B}_1 = \{x, 1 + x^2, 3x x^2\}$, halla la base dual \mathcal{B}_1^* , expresando sus elementos como combinaciones lineales de ℓ_1, ℓ_2, ℓ_3 .

6. Sean $E_1^*, E_2^*, E_3^* : \mathbb{R}^3 \to \mathbb{R}$ los elementos de la base dual estándar de \mathbb{R}^3 .

Sea $A: \mathbb{R}^3 \to \mathbb{R}^3$ el endomorfismo dado por $A(\mathbf{x}) = \begin{bmatrix} 2 & 2 & 1 \\ 0 & 1 & 2 \\ 3 & 3 & 5 \end{bmatrix} \mathbf{x}$ y sea A^* el endomorfismo dual.

- (a) Halla la matriz de A^* usando la base $\{E_1^*, E_2^*, E_3^*\}$ tanto en salida como en llegada,
- (b) Halla la matriz de A^* usando la base $\{E_1^*, E_1^* + E_2^*, E_1^* + E_2^* + E_3^*\}$ en salida y la base $\{E_1^*, E_2^*, E_3^*\}$ en llegada.
- 7. Sea $f: \mathbb{M}_2(\mathbb{R}) \to \mathbb{M}_2(\mathbb{R})$ la aplicación lineal dada por

$$f\left(\begin{array}{cc}a&b\\c&d\end{array}\right)=\left(\begin{array}{cc}a+5b&b+3c+2d\\c-d&d\end{array}\right).$$

Sea $f^*: (\mathbb{M}_2(\mathbb{R}))^* \to (\mathbb{M}_2(\mathbb{R}))^*$ su aplicación dual.

- (a) Encuentra la matriz A^* de f^* respecto de la base canónica C^* (tanto en el espacio de partida como en el de llegada).
- (b) Encuentra la matriz D^* de f^* respecto de la base C^* y la dual de la base \mathcal{B} formada por los elementos siguientes:

$$v_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, v_3 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, v_4 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

- (c) Encuentra las coordenadas de la forma lineal $f^*(E_1^+ + E_2^* + 2E_3^* + E_4^*)$ respecto de \mathcal{B}^* .
- 8. Se considera en $(P^{(1)}[x])^*$, el espacio dual de $P^{(1)}[x]$, las formas lineales $I_{r,s}$ dadas por la siguiente regla:

$$I_{r,s}: P^{(1)}[x] \longrightarrow \mathbb{R}.$$

 $a+bx \longmapsto \int_{-1}^{1} (r+sx)(a+bx) dx$

para ciertos r, s fijados. Se considera $\mathcal{C} = \{e_1 = 1, e_2 = x\}$ la base canónica de $P^{(1)}[x]$.

- (a) Encontrar formas lineales f_1 y f_2 del tipo anterior, tales que $f_i(e_j) = 1$ si i = j y 0 en otro caso. En otras palabras, describir la base dual de la canónica de $P^{(1)}[x]$ en términos de formas lineales del tipo $I_{r,s}$.
- (b) Calcular la matriz de la dual de la aplicación $D: P^{(1)}[x] \longrightarrow P^{(1)}[x]$ que a cada polinomio le asocia su derivado, en la base $\{f_1, f_2\}$.
- **9.** Sean $f_1, f_2: P^{(3)}[x] \longrightarrow \mathbb{R}$. las formas dadas por:

$$f_1(a + bx + cx^2 + dx^3) = b + 2c + 3d$$
, $f_2(p(x)) = 2p(1) - p(0)$

respectivamente. Considerando bases canónicas y sus duales, calcular:

- (a) $Ker(f_1)$, $Ker(f_2)$, $Im(f_1^*)$ e $Im(f_2^*)$.
- (b) $\text{Im}(f_1)$, $\text{Im}(f_2)$, $\text{Ker}(f_1^*)$ y $\text{Ker}(f_2^*)$.
- (c) $Ann(\{f_1, f_2\}).$
- (d) Ann(Ker $f_1 \cap \text{Ker } f_2$).

Comprobar en cada caso que las dimensiones son las esperadas.