CIRCUITOS CON DIODOS

Problema Nº1:

$$v_s = \stackrel{\wedge}{V_s} senwt$$

 $R_1=2K\Omega$; $V_{B1}=4,3V$; $V_{B2}=2,3V$; D_1 y D_2 : Diodos de silicio

Graficar en forma correlativa y de acuerdo con los sentidos de referencia indicados, las formas de onda de la tensión de entrada v_s , la tensión de salida v_o , las corrientes en los diodos y la corriente en R_1 , para los siguientes casos:

a)
$$\stackrel{\wedge}{V_s}$$
 = 8V ; **b)** $\stackrel{\wedge}{V_s}$ = 4V

Problema Nº2: Repetir el problema anterior para el siguiente circuito:

$$v_s = \stackrel{\wedge}{V_s} senw$$

$$R_1=1K\Omega$$
; $R_C=4K\Omega$

Tensiones de ruptura de los diodos: $|V_{R1}| = 4.3V$; $|V_{R2}| = 2.3V$

Problema Nº3:

a) Para el circuito regulador de tensión paralelo de la figura, determinar los valores mínimo y máximo posibles para la carga R_{C} .

b) Calcular el valor admisible de la tensión de ripple a la entrada para garantizar un zumbido en la salida no superior al 5% de los 6,2V.

 V_1 =9 V ; R_1 =6,8 Ω

Para el diodo: V_R =6,2 V ; I_{ZMIN} = 5 al 10% de I_{ZMAX} ; $r_z \cong$ 5 Ω

 $P_{DMAX} = a_1) 1 W ; a_2) 5 W$

Problema Nº4: Un diodo de Si P⁺N corto del lado N se utiliza en el siguiente circuito:

NOHACER

 $N_D = 6.10^{15} \text{at/cm}^3$; $T_{tn} = 6 \text{ns}$; $A = 4.10^{-4} \text{cm}^2$; $\varepsilon_{rSi} = 12$; $\varepsilon_0 = 8,85.10^{-14} \text{F/cm}$; $q = 1,6.10^{-19} \text{C}$

I_S =10 fA ; V_{j0}=0,8V ;
$$C_j = \frac{C_{j0}}{(1-V_D/V_{j0})^{0.5}}$$
 ; V_{BB}=10V ; R=48,5KΩ ; V_s=2V.sen(2Π.f.t)

- a) Determinar el punto de reposo y los componentes del modelo incremental del diodo. Admitir $V_{DQ}=0,7V$. Calcular las componentes alternas de la tensión y la corriente sobre el diodo, para los casos a1) f=600KHz y a2) f=6MHz. Verificar el cumplimiento de las condiciones de validez del modelo.
- **b)** Repetir el punto a) invirtiendo la polaridad de la fuente de alimentación V_{BB} . Considerar que la resistencia dinámica del diodo en inversa es de $10M\Omega$.

Problema N°5: Graficar en escala y en forma correlativa las formas de onda de la corriente y las tensiones sobre el diodo y sobre la resistencia en función del tiempo. Verificar por simulación con software adecuado. Hacerlo bajo las siguientes condiciones (comparar y extraer conclusiones):

Yo fui directo a simularlo. ¿La idea es hacer algo de

Diodo Т V_H V_{l} 1N4001 5µs +10V -10V а b 1N914 5µs +10V-10V 1N914 50ns +10V -10V

SIMULAR ! Tiempos de Commutación?

Problema No 6: a) El circuito indicado en la figura 6a) corresponde a un **rectificador de media onda**. Analizar su funcionamiento y graficar **en forma correlativa** en función del tiempo, la forma de onda de: la tensión aplicada, la corriente por el diodo, y la tensión sobre R_L. Indicar qué valores mediría sobre R_L (del orden de algunos Kohms), un tester digital en modo DC y en modo AC.

b) Repetir el punto a) para el circuito indicado en la figura 6b), correspondiente a un **rectificador de onda completa**.

Problema No 7.- a) En la figura 7a) se muestra el circuito de una **fuente de tensión continua**, formada por una etapa rectificadora de media onda excitada por la señal de salida de un transformador de 220Vef/12Vef y con un capacitor Cf a la salida en paralelo con la carga R_L . Analizar su funcionamiento y graficar **en forma correlativa** en función del tiempo, la forma de onda de: la tensión aplicada al circuito por el secundario del transformador, las corrientes en el capacitor, en la resistencia de carga y en el diodo, la tensión sobre R_L y la tensión de ripple sobre la carga.

Obtener el valor de la tensión continua de salida V_0 para $R_L=100K\Omega$; $R_L=1K\Omega$ y $R_L=0,1K\Omega$. Analizar la dependencia del valor medio de V_0 y la tensión de ripple, con C_f .

b) Repetir el análisis realizado en el punto a) para el esquema circuital de la figura 7b). Comparar los resultados.

Problema No 8.- a) Uniendo los circuitos de los problemas 3 y 7 - figura 8a) - se obtiene una fuente de tensión continua, regulada por un diodo zener. El análisis realizado para el problema 3 demostraba que el ripple entre la entrada y la salida se reduce considerablemente por la presencia del zener. Obtener en este caso los valores máximo y mínimo de R_L para el cual la fuente mantiene su valor aproximadamente constante (es decir, que se comporte como una fuente de tensión continua casi ideal). **b)** En la figura 8b) se reemplaza el zener por el circuito integrado (CI) LM7805, conocido como regulador de tensión, cuya función es similar a la del zener pero presentando mejores características de regulación. Analizar la hoja de datos de este CI y obtener los valores máximo y mínimo de R_L para el cual la fuente mantiene su valor aproximadamente constante. Comparar con el obtenido en a).

Datos: $C_f = 470 \text{ uF}$; Zener de 5 V / 5W $\frac{220 \text{ v} / 12 \text{ v}}{\sqrt{3} \text{ e}^{220 \text{ v} / 12 \text{ v}}}$

-Figura 8a) Figura 8b)