

SOLUTION OF EXERCISESHEET 5

Exercise 5-1

Exercise 5-2

Exercise 5-3

1. To show: If f is pseudorandom, than Π_{CTR} is CPA-secure.

Proof by contradiction. We assume there exists an adversary \mathcal{A} , which can break Π_{CTR} . Then we construct the distinguisher \mathcal{B} , who can distinguish f from a truly random function and invokes \mathcal{A} as follows:

 \mathcal{B} has access to an oracle \mathcal{O}_B that runs either the pseudorandom permutation function f or a randomly choosen permutation function f^* . \mathcal{B} has to give \mathcal{A} access to an encryption oracle \mathcal{O}_{Enc} . \mathcal{O}_{Enc} is realised by answering with $Enc_k(m)$ on the input m, where f_k is replaced with the oracle \mathcal{O}_B . Thus, c looks like $c = (IV, m \oplus s)$, where $s = \mathcal{O}_B(IV)||\mathcal{O}_B(IV+1)||...||\mathcal{O}_B\left(IV+\left\lceil\frac{|m|}{n}\right\rceil\right)$ with the last bits truncated so |s| = |m|. \mathcal{B} than samples a bit $b \leftarrow \$\{0,1\}$ and forwards $c_b \leftarrow Enc(k,m_b)$ to \mathcal{A} . \mathcal{B} then outputs the same bit b' which \mathcal{A} outputs.

 ${\cal B}$ is efficient, because he only forwards messages which can be done in constant time and invokes ${\cal A}$ which is efficient.

To analyse the success distuiguish two cases: If \mathcal{O}_B runs a pseudorandom permutation function f then \mathcal{B} perfectly simulates Π_{CTR} to $\mathcal{A}. \Rightarrow Pr[\mathcal{B}^{f(\cdot)}(1^{\lambda}) = 1] = Pr[PrivK_{\Pi^{CTR},\mathcal{A}}^{CPA} = 1] = \frac{1}{2} + non - negl(\lambda)$, because \mathcal{A} is an efficient adversary against die CPA-security of Π_{CTR} If the oracle runs a randomly choosen function f^* and \mathcal{A} queries the encryption oracle at least q

times we have $Pr[\mathcal{B}^{f^*(\cdot)}(1^{\lambda})=1]=\frac{1}{2}+\frac{q(\lambda)}{2^{\lambda}}.$

Now we subtract those two cases:

 $|Pr[\mathcal{B}^{f(\cdot)}(1^{\lambda}) = 1] - Pr[\mathcal{B}^{f^*(\cdot)}(1^{\lambda}) = 1]| = \left| \frac{1}{2} + non - negl(\lambda) - \frac{1}{2} - \frac{q(\lambda)}{2^{\lambda}} \right| = non - negl(\lambda) - \frac{1}{2} - \frac{q(\lambda)}{2^{\lambda}}$

 $\frac{q(\lambda)}{2^{\lambda}} = non - negl(\lambda).$ So the distiguisher \mathcal{B} can distinguish between f and f^* with a non-negligible gab which is a contradiction to the pseudorandomness of f. Therefore such an adversary \mathcal{A} against the CPA-security of Π_{CTR4} cannot exist.

2. To show: Π_{CTR} is not CCA-secure.

In the game for CCA-security the adversary \mathcal{A} has access to an encryption oracle \mathcal{O}_{Enc} and a decryption oracle \mathcal{O}_{Dec} .

 \mathcal{A} gives the challenger the two messages $m_0=0^\lambda$ and $m_1=1^\lambda$ and gets the ciphertext $c_b=(IV,c_b')$ back. Then \mathcal{A} askes the decryption oracle \mathcal{O}_{Dec} for the decoding of $c_b^*=(IV,c_b'^*)$, where $c_b'^*$ is c_b' with the last bit flipped. Since c_b^* is not equals to c_b , \mathcal{O}_{Dec} will answer the query. The result is than either $0^{\lambda-1}1$ or $1^{\lambda-1}0$, because the only difference to computation of $c_b' \oplus s = m$ is the last bit of c_b' . If the result is $0^{\lambda-1}1$ the adversary returns b'=0, if the result is $1^{\lambda-1}0$ b'=1.

Exercise 5-4