TECHNISCHE UNIVERSITÄT BERLIN

Fakultät II, Institut für Mathematik

Ferus/Frank/Krumke

SS 2001 08.10.2001

Oktober–Klausur (Verständnisteil) Analysis II für Ingenieure

Name:	Vorname:
MatrNr.:	Studiengang:
zugelassen. Die Lösungen sind in Rein Bleistift geschriebene Klausuren könner	Blatt mit Notizen sind keine Hilfsmittel nschrift auf A4 Blättern abzugeben. Mit n nicht gewertet werden. Die Gesamtklauden, wenn in jedem der beiden Teile der erreicht werden.
Rechenaufwand mit den Kenntnissen	rständnisaufgaben, sie sollten ohne großen aus der Vorlesung lösbar sein. Geben Sie ie Bearbeitungszeit beträgt eine Stunde .

1	2	3	4	\sum

Begründungen nicht vergessen!

1. Aufgabe

(5 Punkte)

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine Funktion und $N_f(c)$ die Niveaumenge von f zum Niveau $c \in \mathbb{R}$. Kann f eingeschränkt auf $N_f(c)$ ein lokales Maximum oder Minimum annehmen? Bestimmen Sie diese wenn möglich!

2. Aufgabe

(5 Punkte)

Es sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine 2-mal stetig differenzierbare Funktion. In den Punkten $P_1, P_2, P_3 \in \mathbb{R}^2$ gelte für den Gradienten und die Hesse-Matrix der Funktion f:

$$\operatorname{grad} f(P_1) = (0,0), \quad \operatorname{grad} f(P_2) = (2,0), \quad \operatorname{grad} f(P_3) = (0,0),$$

$$H_f(P_1) = \begin{pmatrix} -3 & 0 \\ 0 & 5 \end{pmatrix}, \quad H_f(P_2) = \begin{pmatrix} -2 & 0 \\ 0 & -25 \end{pmatrix}, \quad H_f(P_3) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Geben Sie für jeden der drei Punkte P_1 , P_2 und P_3 an, ob dort ein lokales Maximum, ein lokales Minimum oder kein Extremalpunkt von f vorliegt.

3. Aufgabe

(5 Punkte)

Sei $f: \mathbb{R}^3 \to \mathbb{R}$ definiert durch f(x, y, z) = x + y + 2z. Sei weiter $\gamma: [0, 1] \to \mathbb{R}^3$ eine beliebige Schraubenlinie, die vom Punkt (0, 0, 0) zum Punkt (0, 0, 3) läuft. Bestimmen Sie für $\vec{v} = \operatorname{grad} f$ den Wert des Integrals

$$\int_{\gamma} \vec{v} \, \vec{ds}.$$

4. Aufgabe

(5 Punkte)

Gegeben sei das stetig differenzierbare Vektorfeld $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ und eine glatte, orientierte Fläche F mit glatter, bezüglich F positiv orientierter Randkurve K. Es gelte:

$$\int_{K} \vec{v} \ \vec{ds} = 2.$$

Bestimmen Sie wenn möglich den Wert des Integrals

$$\iint_{E} \operatorname{rot} \vec{v} \ d\vec{O}.$$

Begründen Sie Ihre Antwort.