AD-A198 443 LEPORT DOCUMENTATION PAGE

AD A 150 TIE		16. RESTRICTIVE MARKINGS			
28. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/A	VAILABILITY O	FREPORT	WHI I
NA		Approved for Public Release;			
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE NA		Distribution Unlimited			
4. PERFORMING ORGANIZATION REPORT NUMBER(S)		5. MONITORING ORGANIZATION REPORT NUMBER(S)			
			00.	0759	
6s. NAME OF PERFORMING ORGANIZATION	68. OFFICE SYMBOL	PASSE TR	ORING ORGAN	IZATION	
Princeton University (If applicable)		AFOSR/NM			
·					
6c. ADDRESS (City. State and ZIP Code)		7b. ADDRESS (City, State and ZIP Code)			
Princeton, NJ 08544		Building 410 Bolling AFB, DC 20332-6448			
		BOILING AFT	5, DC 2033		
8. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT I	NSTRUMENT ID	ENTIFICATION N	UMBER
AFOSR	NM	AFOSR 87-00)50		
Bc. ADDRESS (City, State and ZIP Code)	L	10. SOURCE OF FUN	IDING NOS.		
Building 410		PROGRAM	PROJECT	TASK	WORK UNIT
Bolling AFB, DC 20332-6448		ELEMENT NO.	NO.	NO.	NO.
11. TITLE (Include Security Classification)		6.1102F	2304		
Sunset over Brownistan,		0.11024	2304	A5	1
12. PERSONAL AUTHOR(S)		- 		<u> </u>	
E. Cinlar					
THE TOUR AND THE COVERED FROM TO		14. DATE OF REPOR	RT (Yr., Mo., Day)	1	ages
	18. SUBJECT TERMS (•
17. COSATI CODES FIELD GROUP SUB. GR. XXXXXXXXXXXXXXXXXXX	> Brownian moti	on; convex maj	orant, Poi	sson random	measures,
FIELD GROUP SUB. GR. XXXXXXXXXXXXXXXXX	> Brownian moti stochastic ge	on; convex maj	orant, Poi	sson random	measures,
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Brownian moti stochastic ge tidentify by block number th a downward do ion with parameted by a. That on and, through to obtain various	on; convex maj ometry; storag rift of rate a ter 2a. Our a process is rel the latter, t us distribution	e allocati Its max im is to s ated to th	imum over a tudy this me convex man random me	measures,
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Brownian moti stochastic ge tidentify by block number th a downward do ion with parameted by a. That on and, through to obtain various	on; convex maj ometry; storag rift of rate a ter 2a. Our a process is rel the latter, t us distribution	e allocati Its max im is to s ated to th	imum over a tudy this me convex man random me	nmeasures,
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Brownian moti stochastic ge tidentify by block number th a downward do ion with parameted by a. That on and, through to obtain various	on; convex maj ometry; storag rift of rate a ter 2a. Our a process is rel the latter, t us distribution	e allocati Its max im is to s ated to th	imum over a tudy this me convex man random me	nmeasures,
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Brownian moti stochastic ge tidentify by block number th a downward do ion with parameted by a. That on and, through to obtain various	on; convex maj ometry; storag rift of rate a ter 2a. Our a process is rel the latter, t us distribution	e allocati Its max im is to s ated to th	imum over a tudy this me convex man random mes. The res	measures,
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Brownian moti stochastic get identify by block number th a downward do ion with parameted by a. That on and, through to obtain various	on; convex majometry; storagerift of rate ater 2a. Our aprocess is relater, tous distribution.	ge allocati Its max im is to s ated to th to a Poisso onal result	sson random on () S imum over a tudy this me convex man random mes. The res	ll time aximum jorant asure. ults are
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	stochastic gestidentify by block numbers the a downward of ion with parameted by a. That on and, through to obtain various of the control of	on; convex maj ometry; storag rift of rate a ter 2a. Our a process is rel the latter, t us distribution	e allocati Its max im is to s ated to th to a Poisso mal result	sson random on () S imum over a tudy this me convex man random mes. The res	ll time aximum jorant asure. ults are
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	stochastic gestidentify by block numbers the a downward of ion with parameted by a. That on and, through to obtain various of the control of	on; convex maj ometry; storag rift of rate a ter 2a. Our a process is rel the latter, t us distribution 5 UNCLASSIFIE 22b TELEPHONE NU	orant, Poi ge allocati Its max im is to s ated to th to a Poisso onal result	sson random on () S imum over a tudy this me convex man random mes. The res	neasures, ll time aximum jorant asure. ults are TIC ECTE 6151988
TIELD GROUP SUB GR. XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	stochastic gestidentify by block numbers the a downward of ion with parameted by a. That on and, through to obtain various of the control of	on, convex maj ometry, storag rift of rate a ter 2a. Our a process is rel the latter, t us distribution 5 UNCLASSIFIE 22b TELEPHONE No (Include Area Co)	orant, Poi ge allocati Its max im is to s ated to th to a Poisso onal result	imum over a tudy this me convex man random mes. The res	nmeasures, ll time aximum jorant asure. ults are TIC ECTE 61.5.1988

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

AFOSR-TR. 88-0759

SUNSET OVER BROWNISTAN*

by

ERHAN ÇINLAR

Princeton University

Department of Civil Engineering and Operations Research
School of Engineering and Applied Science
Princeton, New Jersey 08544

Reports on Statistics and Operations Research

SOR-87-7

^{*}Research supported by the Air Force Office of Scientific Research through their Grant No. 87-0050 to Princeton University.

SUNSET OVER BROWNISTAN

by

Erhan ÇINLAR

Abstract

Consider a Brownian motion with a downward drift of rate a. Its maximum over all time has the exponential distribution with parameter 2a. Our aim is to study this maximum as a stochastic process indexed by a. That process is related to the convex majorant of the standard Brownian motion and, through the latter, to a Poisson random measure. This connection is exploited to obtain various distributional results. The results are of interest in queueing theory.

Access	ion For	4
NTIS DTIC 1 Unanno	MAB 1	
		7
By Distr	ibution/	
Avai	lability Codes	
Dist	Avail and/or Special	C. His
A-		

considered by NEWELL [4] and by COFFMAN, KADOTA, and SHEPP [2], the latter viewing the model as that of storage allocation in computer memory.

Let $Q_t(n)$ be the random variable that is 0 or 1 according as the stall n is empty or occupied at time t. The random vector $Q_t = (Q_t(1), Q_t(2), ...)$ is the state of the system at time t. The process $\{\sum_{i} Q_t(n); t \geq 0\}$ is the queue size process in an M/M/ ∞ system; it is regenerative, and 0 is a regeneration state for it. It follows that the vector (0, 0, ...) is a regeneration state for $\{Q_t; t \geq 0\}$ and that the latter has an equilibrium distribution. Let Q be a random vector (of zeros and ones) whose law is that equilibrium distribution.

The distribution of $\sum_{n} Q(n)$ is Poisson with mean λ . The distribution of $\sum_{n} Q(n)$ is the equilibrium distribution of the queue size process in the M/M/m/m system with arrival rate λ and service rate 1; thus, that distribution is the conditional distribution of $\sum_{n} Q(n)$ given that $\sum_{n} Q(n) \leq m$. Other than these facts and a few conclusions that can be drawn from them by elementary probabilistic considerations, there is not much known about the distribution of Q.

For a > 0, let $\lambda^{1/4} Y_{\lambda}(a,t)$ be the number of empty stalls at time t among those labeled with $n < \lambda - a \lambda^{3/4}$. ALDOUS [1] has shown that the process $\{Y_{\lambda}(a,t); a > 0, t \ge 0\}$ converges weakly, as $\lambda \to \infty$, to a process $\{Y(a,t); a > 0, t \ge 0\}$, which he identified and showed that, in the limit as $t \to \infty$, converges weakly to the process

$$Y(a) = \max_{s \ge 0} (\sqrt{2} B_s - as), \quad a > 0,$$

where B is the standard Brownian motion. He calls $\{Y(a); a > 0\}$ the exponential process, after the well-known fact that Y(a) has the exponential distribution with mean 1/a for each a.

Our main contribution is to supply the probability law of Y in simpler terms. For this purpose we choose to work with

(1.1)
$$Z_a = \frac{1}{\sqrt{2}} Y(\sqrt{2} a) = \max_{t \ge 0} (B_t - at), \quad a > 0,$$

and let D_a be the last time t at which $B_t - at$ touches its zenith Z_a , that is,

$$(1.2) D_a = \sup\{t: B_t - at = Z_a\}, a > 0.$$

It turns out that D_a is the left-derivative of Z at a and, thus, is related to the density of empty stalls in the parking lot, in equilibrium, around $\lambda - a \lambda^{3/4}$ for large λ .

The next section contains a few simple geometric observations. First we relate the process (D,Z) to the convex majorant of the Brownian motion B. Using the hard results of GROENE-BOOM [3] and PITMAN [5] about the latter, we are able to express D and Z in terms of a Poisson random measure on $(0,\infty)\times(0,\infty)$. It follows, in particular, that D has non-stationary independent increments, and that (D,Z) is a non-homogeneous Markov process.

The process $a \to Z_a$ is continuous, concave, and decreases from its limit $+\infty$ at a = 0+ to its limit 0 at ∞ . Therefore, its "hitting time" process

$$(1.3) A_z = \inf\{a: Z_a < z\}, z > 0,$$

is the functional inverse of Z. It turns out that the process A has the same probability law as Z. This observation is also put in the next section.

The last section is devoted to computational issues. We compute the joint distribution of D_a and Z_a and also the transition function of the Markov process (D, Z).

2. ZENITH PROCESS

The problem with the definition (1.1) of Z_a is that it suggests re-drawing the path $t \to B_1 - at$ if we wish to vary a. The following observation circumvents the problem:

(2.1)
$$Z_a = \inf\{x > 0 : x + at > B_t \text{ for all } t \ge 0\}$$
.

Obviously, this is a re-wording of (1.1), but the mental picture it suggests is much more convenient for manipulating a: the line $t \to Z_a + at$ is the infimum of all lines of slope a that never touch B. This picture is drawn in Figure 1 below.

FIGURE 1

Let C denote the convex majorant of B, that is, the minimal convex path that dominates B (see Figure 1 again). Note that Z_a and D_a are determined by C: the line $t \to Z_a + at$ is the infimum of all lines of slope a that never touch C, and D_a is the last time at which that line touches C. In fact, for fixed a > 0, D_a is almost surely the only time t with $C_t = Z_a + at$.

It is known (see GROENEBOOM [3] for instance) that C is continuous and piecewise linear. The countable collection of its vertices has, almost surely, only one accumulation point, namely (0,0). Fix an a > 0; note that $(D_a, Z_a + aD_a)$ is a vertex; let $T_0, T_1,...$ be the lengths of successive intervals of linearity going to the right from D_a ; let $T_{-1}, T_{-2},...$ be those to the left; and let S_i be the slope of C over the interval whose length is denoted by T_i . The following major result was obtained by GROENEBOOM [3]; a simpler proof using the excursions of B may be found in PITMAN [5].

(2.2) THEOREM. The pairs (S_i, T_i) , $i \in \mathbb{Z}$, form a Poisson random measure N on $(0,\infty) \times (0,\infty)$ whose mean measure is

(2.3)
$$v(ds, dt) = \frac{ds}{s} \gamma_s(dt),$$

where γ_s is the gamma distribution with shape index 1/2 and scale parameter $s^2/2$ (the corresponding mean is 1/s²).

The probability law of a Poisson random measure is determined by its mean measure. Thus, the following specifies the probability law of (D, Z). For computational purposes, the representations given here for D_a and Z_a are the key starting points.

(2.4) PROPOSITION. For each a > 0,

$$(2.5) D_a = \int_{[a,\infty)\times(0,\infty)} N(ds,dt) t,$$

$$(2.6) Z_a = \int_a^{\infty} D_s ds = \int_{[a,\infty)\times(0,\infty)} N(ds,dt) (s-a) t.$$

The process D has non-stationary independent increments. The process (D, Z) is a temporally non-homogeneous Markov process.

PROOF. First note that (see Figure 1)

$$D_a = \sum_i T_i \ 1_{[a,\infty)}(S_i),$$

$$Z_a + a D_a = B(D_a) = \sum_i S_i T_i 1_{[a,\infty)}(S_i).$$

Expressed in terms of the Poisson random measure N, these become (2.5) and (2.6). The remaining statements are immediate from the independence of the restrictions of N to disjoint Borel sets.

Figure 2 below shows the qualitative features of D: it is piecewise constant, left-continuous, and decreases from its limit $+\infty$ at a=0+ to its limit 0 at $+\infty$. It follows from (2.6) that Z is continuous, concave, piecewise linear, and decreases from its limit $+\infty$ at a=0+ to 0 at $+\infty$.

FIGURE 2

It was noted by ALDOUS [1] that, for each c > 0, the process $(c^2 D_{ca}, cZ_{ca})_{a>c}$ has the same probability law as (D, Z). This can be seen from the preceding characterization: $a \to c^2 D_{ca}$ jumps at the points S_i/c by the amounts $c^2 T_i$; the pairs $(S_i/c, c^2 T_i)$ form a Poisson random measure that has the same mean measure as N; hence, $a \to c^2 D_{ca}$ has the same law as D.

We end this section with an observation on the process

$$(2.7) A_z = \inf\{a: Z_a < z\}, z > 0.$$

Obviously, $z \to A_z$ is the functional inverse of the one-to-one mapping $a \to Z_a$ of $(0,\infty)$ onto $(0,\infty)$. It follows that the qualitative picture of A is exactly that of Z. In particular, A is piecewise linear and

(2.8)
$$\hat{D_z} = \lim_{\varepsilon \downarrow 0} \frac{A_{z+\varepsilon} - A_z}{\varepsilon} = \frac{1}{D(A_z)}, \quad z > 0.$$

The process \hat{D} is piecewise constant, right-continuous, decreasing.

(2.9) PROPOSITION. The process (\hat{D}, A) has the same probability law as the process (D, Z). In particular, the collection $\{Z(S_i); i \in Z\}$ has the same law as the collection $\{S_i; i \in Z\}$; they form Poisson random measures on $(0, \infty)$ with mean measure ds/s.

PROOF. We put (2.7) and (2.1) together and manipulate:

$$A_z = \inf\{a : \inf\{x : x + at > B_t \text{ for all } t\} < z\}$$

$$= \inf\{a : z + at > B_t \text{ for all } t\}$$

$$= \inf\{a : a + zu > u B_{1/u} \text{ for all } u\}.$$

This shows that A is the zenith process associated with the process $\{uB_{1/u}: u \ge 0\}$, just as Z is

the zenith process associated with B. Since $(uB_{1/u})$ is a standard Brownian motion like B, it follows that A has the same probability law as Z. This proves the first statement, since \hat{D} is the derivative of -A and D is the derivative of -Z.

The points S_i are the jump locations of D, and the points $Z(S_i)$ are those of \hat{D} . This proves the second statement.

3. ENTRANCE LAW AND TRANSITION FUNCTION

We derive the distribution of the random variable (D_a, Z_a) and the transition function of the process (D, Z). The computations rest on the characterization given by Proposition (2.4) and on the well-known formula for the Laplace functional of the Poisson random measure N with mean measure V:

(3.1)
$$E \exp - \int N(dx) f(x) = \exp - \int V(dx) (1 - e^{-f(x)})$$

for every positive Borel function f on $(0,\infty) \times (0,\infty)$.

(3.2) PROPOSITION. For each a > 0,

(3.3)
$$E \exp(-pD_a - qZ_a) = \frac{2a}{a + q + \sqrt{a^2 + 2p}}, \quad p \ge 0, \ q \ge 0;$$

(3.4)
$$P\{D_a \in dt, Z_a \in dz\} = dtdz \frac{2az e^{-(z+az)^2/2t}}{\sqrt{2\pi t^3}}, t > 0, z > 0.$$

In particular,

(3.5)
$$P\{Z_a \in dz\} = dz \, 2ae^{-2az}, \ P\{D_a \in dt\} = dt \int_{1}^{\infty} du \, \frac{ae^{-a^2u/2}}{\sqrt{2\pi u^3}}$$

PROOF. Fix a > 0, $p \ge 0$, $q \ge 0$. In view of (2.5) and (2.6),

$$pD_a + qZ_a = \int_{[a,\infty)\times(0,\infty)} N(ds,dt) (pt + q(s-a)t).$$

Using (3.1) and the form of the mean measure ν given by (2.3), the Laplace transform (3.3) is obtained via elementary calculus. To invert the Laplace transform, first write it as

$$\int_{0}^{\infty} dz \ e^{-qz} \ 2ae^{-az} \ e^{-z\sqrt{a^{2}+2p}}$$

and then recall that $e^{-z\sqrt{2r}}$, $r \ge 0$, is the Laplace transform of H_z , the first time a standard Brownian motion hits the level z, that is,

$$e^{-z\sqrt{a^2+2p}} = \int_0^\infty dt \cdot \frac{z e^{-z^2/2t}}{\sqrt{2\pi t^3}} e^{-(p+a^2/2)t}$$

The rest is trivial.

(3.6) REMARK. Although (3.4) is explicit and shades of exponential and stable distributions can be felt, it does not seem well-suited for probabilistic thinking. The following representation is better, especially for Monte-Carlo methods. For a > 0,

$$a^2 D_a = X (1 - \sqrt{U})^2$$
, $aZ_a = X \sqrt{U} (1 - \sqrt{U})$,

where X and U are independent, U has the uniform distribution on (0,1), and X has the gamma distribution with shape index 3/2 and scale parameter 1/2.

The following specifies the joint Laplace transform of any number of increments of Z (upon taking $f = p_1 1_{A_1} + ... + p_n 1_{A_n}$ with A_1, \ldots, A_n disjoint intervals).

(3.7) PROPOSITION. For any positive Borel function f on $(0,\infty)$,

$$E \exp \int_{(0,\infty)}^{\infty} f(a) dZ_a = \exp -\int_{0}^{\infty} ds \left(\frac{1}{s} - \frac{1}{\sqrt{s^2 + 2\bar{f}(s)}}\right)$$

where $\overline{f}(s)$ is the Lebesgue integral of f over (0,s).

PROOF. Note that

$$\int f(a) dZ_a = - \int f(a) D_a da = - \int N(ds, dt) \overline{f}(s) t,$$

and use (3.1).

As mentioned in Proposition (2.4), the process D has non-stationary independent increments, and the process (D,Z) is a non-homogeneous parameter Markov process. Let

$$(3.8) P_{ab}(t,x; du, dy) = P\{D_b \in du, Z_b \in dy \mid D_a = t, Z_a = x\}$$

for 0 < b < a, 0 < t < u, 0 < x < y (in our zeal to deal with positive random variables, we choose to work with the parameters in decreasing order). In view of (2.5) and (2.6),

$$(3.9) P_{ab}(t,x;du,dy) = P\{t + U \in du, x + (a-b)t + Y \in dy\},$$

where

(3.10)
$$U = \int_{[b,a]\times(0,\infty)} N(ds,dt)t, \qquad Y = \int_{[b,a]\times(0,\infty)} N(ds,dt) (s-b)t.$$

The joint Laplace transform of U and Y can be obtained from (3.1) as in the first step of the proof of (3.2):

(3.11)
$$E e^{-pU-qY} = \frac{b}{a} \cdot \frac{a+q+\sqrt{a^2+2p+2(a-b)q}}{b+q+\sqrt{b^2+2p}}$$

$$= \frac{b}{a} + \frac{a-b}{a} \cdot \frac{1}{2} \cdot \frac{2b}{b+q+\sqrt{b^2+2p}}$$

$$+ \frac{a-b}{a} \cdot \frac{1}{2} \cdot \frac{2b}{b+q+\sqrt{b^2+2p}} \cdot \frac{1}{a-b} \int_{a}^{a} \frac{(c+q)dc}{\sqrt{(c+q)^2+2p-2bq-q^2}}.$$

Inverting this is tedious but manageable. It yields the following for the distribution ep of the pair

(U,Y):

(3.12)
$$c\rho = \frac{b}{a} \delta_{(0,0)} + (1 - \frac{b}{a}) \left(\frac{1}{2} \lambda_b + \frac{1}{2} \lambda_b^* \frac{\mu_{bb} - \mu_{ab}}{a - b} \right)$$

where the asterisque denotes convolution, δ_x is the Dirac measure at x, λ_b is the distribution of (D_b, Z_b) specified by (3.4), and

(3.13)
$$\mu_{ab}(dt, dy) = \frac{e^{-b^2t/2}}{\sqrt{2\pi t^3}} \delta_{(a-b)t}(dy), \quad t > 0, y > 0.$$

Putting the distribution \Leftrightarrow of (U, Y) into (3.9) yields an explicit expression for the transition function P_{ab} . As a by-product, we have the joint distribution of

$$U = D_b - D_a$$
, $Y = Z_b - Z_a - (b - a)D_a$.

Noting that D_a is independent of (U,Y), one can obtain the distribution of $(D_b - D_a, Z_b - Z_a)$ among other things.

However, it is clear that such results are of limited use because of their complexity. Overall, the computational complexity is caused by a confluence of two incompatible operations, addition and multiplication: look at the form (2.3) of the mean measure v; the Haar measure ds/s indicates that the natural group operation on the jump points S_i is multiplication, whereas the jump amounts T_i are additive.

Of course, it is easy to transform the Poisson random measure N into one with a nicer intensity: define f to be the mapping $(s,t) \to (\log s, s^2 t)$; then the image of N under f is the Poisson random measure $\hat{N} = Nf^{-1}$ on $(-\infty,\infty) \times (0,\infty)$ with mean measure $du \gamma(dv)$ where γ is the gamma distribution with shape and scale parameters equal to 1/2. But, then, expressions for D_a and Z_a in terms of \hat{N} have to undo the transformation, and there is no gain at the end. Using $p = \log a$ to index the processes involved (and working with $\hat{Z_p} = Z(e^a)$) does not help either.

On the other hand, it is easy to describe the construction of the path of (D, \mathbb{Z}) over the interval (0,a]. This may be useful for Monte-Carlo purposes.

First, we observe that the conditional distribution of S_{i+1} given $(S_i, S_{i-1},...)$ is the uniform distribution on $(0,S_i)$. Thus, to construct (D,Z) over (0,a], we start with U and X described in Remark (3.6) and generate D_a and Z_a . Then, we let $U_1, U_2,...$ be i.i.d. uniform on (0,1), let $X_1, X_2,...$ be i.i.d. Gaussian with mean 0 and variance 1, and set

(3.14)
$$S_o = a$$
, $S_i = aU_1 U_2 \cdots U_i$, $T_i = (\frac{X_i}{S_i})^2$, $i = 1,2,...$

With these, define

(3.15)
$$D(S_o) = D_a$$
, $D(S_i) = D(S_{i-1}) + T_i$, $i \ge 1$,

$$(3.16) Z(S_o) = Z_a, Z(S_i) = Z(S_{i-1}) + (S_{i-1} - S_i) \cdot D(S_{i-1}), i \ge 1.$$

Then, $(D_b)_{b\in(0,a)}$ is the left-continuous piecewise constant path whose value at S_i is $D(S_i)$, and $(Z_b)_{b\in(0,a)}$ is the continuous piecewise linear path whose value at S_i is $Z(S_i)$. Incidentally, (S_i) , (S_i) , (S

REFERENCES

- [1] D. ALDOUS. Some interesting processes arising as heavy traffic limits in an M/M/∞ storage process. Stochastic Processes and Their Applications, 22 (1986), 291-313.
- [2] E. G. COFFMAN, T. T. KADOTA, and L. A. SHEPP. A stochastic model of fragmentation in dynamic storage allocation. SIAM J. Computing, 14 (1985), 416-425.
- [3] P. GROENEBOOM. The concave majorant of Brownian motion. Ann. Probab. 11 (1983), 1016-1027.
- [4] G. F. NEWELL. The M/M/∞ sservice system with ranked servers in heavy traffic. Lecture Notes in Econ. and Math. Systems, vol. 231. Springer-Verlag, New York, 1984.
- [5] J. W. PITMAN. Remarks on the convex minorant of Brownian motion. In Seminar on Stochastic Processes 1982, pp. 219-227. Birkhäuser, Boston, 1983.