Illumination and shading

Adding "reality" to images Light sources and lighting models Surface properties Shading algorithms

Flat Gouraud Phong

Rendering: setting up the scene

- Given
- Object surfaces
 - Light sources
- Camera
- Compute
 - Colour of each pixel on the screen
 - This is colour that bounces off the surface point and goes in the direction of the camera (viewer)

Light

- Sources
 - Ambient
 - Directional: diffuse
 - Directional: point source
 - Divergence
- Location
 - w.r.t object
 - w.r.t. camera
- Colour √

Inputs to computation

- Light sources (emitters)
 - Colour (emission spectrum)
 - Geometry (position and direction)
 - Directional attenuation
- · Surfaces (reflectors)
 - Colour (reflectance and absorption spectrum of the material)
 - Geometry (position, orientation of each surface patch)
 - Micro-structure

Light sources

- · Ambient light
 - Global, background light
 - No spatial of directional characteristics seems to come from all directions
 - Makes objects visible
 - Does not depend on the orientation or position of a surface
 - Does not depend on the orientation or position of a camera
 - Does not have diffuse or specular reflection components

Light sources

- Diffuse Light parallel
 - Has parallel light rays that travel in one direction along the specified vector (e.g. sunlight)
 - Contributes to diffuse and specular reflections, which depend on the orientation of an object's surface (with respect to light direction vector) but not its position

Light sources • Diffuse Light - point source Light source located at a fixed point in space (e.g. light bulb) Radiates light equally in all directions away from the light

- Light is attenuated as a function of distance, i.e. its brightness decreases as distance from the light source increases
- The rate of decrease is defined by an attenuation factor
- Contributes to diffuse and specular reflections, which depend on the orientation and position of a surface

Light sources

- · Spot Light
 - Light source located at a fixed point in space (e.g. light bulb)
 - Light radiating from the source forms a cone defined by a vector in a particular direction and by the angle determining its spread
 - Light is attenuated as a function of distance, i.e. its brightness decreases as distance from the light source increases (defined by an attenuation factor)
 - Contributes to diffuse and specular reflections, which depend on the orientation and position of a surface

Surfaces

Reminder

- Properties
 - Geometry (position, orientation of each surface patch)
 - Colour (reflectance and absorption spectrum of the material)
 - Micro-structure

Surfaces

Reminder

Micro-structure

- Defines reflectance properties

Reflectance

- Diffuse: Matte surfaces

- Specular: Shiny surfaces

Computing reflectance: shading model

- Requires
 - Surface geometry, microstructure and colour
 - Positions and type of light sources
 - Position of the viewer (camera)
- · Combines the three contributions:
 - Ambient light
 - Diffuse reflectance
 - Specular reflectance

Pixel colour: Ambient + Diffuse + Specular

Shading model

Ambient term: colour

- Colour / intensity of ambient light: \textbf{I}_{α}
 - Colour is normally assumed white, i.e. $I_a = [1.0, 1.0, 1.0]$;
- Object colour: ambient coefficient K_a
 Represents the reflectivity of ambient light
 0 < K_a < 1; 0: no reflectivity; 1: full reflectivity
- · Complete ambient term:

 $A = K_{\alpha} I_{\alpha}$

Shading model Ambient term: reflectance - No physical interpretation - Does not depend on light position - Looks the same seen from anywhere

Shading model Diffuse term: colour and reflectance Colour / intensity of diffuse light: I_d Colour must be defined, I_d=[f_d, g_d, b_d]; Object colour: material diffuse reflectivity coefficient K_d

 $D = K_d I_d \cos \theta_d$

· Complete diffuse term:

orientation

Shading model Specular term: Reflectance • Object surface: Mirror (ideal case) - Light reflected in accordance with the Snell's Law: The angle of reflection equals to the angle of incidence (with respect to the surface normal) - The amount of light reflected towards the viewer / camera varies, depending on the relative position of the light source, position of the viewer and surface

Shading model Specular term: Reflectance - The amount of light reflected within Width of the "cone the cone decreases from the centre outwards (as a function of exponential decay) The rate of decay n is a "shininess factor" - Object colour: material specular reflectivity coefficient K_s Colour / intensity of specular light: $\mathbf{I}_{\mathbf{S}}$ Colour must be defined, I_s = [r_s, g_s, b_s]; Common assumption: I_s = I_d Shininess factor n $S = K_s I_s (\cos \theta_s)^n$

A complete shading model

Combines all the terms:

Complete specular term:

Pixel colour: Ambient + Diffuse + Specular

$$I = A + D + S$$

$$I = K_a I_a + K_d I_d \cos \theta_d + K_s I_s (\cos \theta_s)^n$$

where $\cos \theta_{s/d} = N \cdot L_{s/d}$ dot product

Algorithms for shading of surfaces

- Shading model so far showed how to compute reflectance for individual points on a surface
- Shading varies across surfaces
- Point-by-point computation very expensive
- Three approaches for computing shading for polygonal surfaces
 - Flat shading
 - Gouraud shading
 - Phong shading

Flat shading

- One reflectance value per polygon surface
- Advantages
 - Computationally simple
- Drawbacks
 - Not very realistic for curved surfaces
 - Polygon structure visibly obvious

Gouraud shading

- Interpolates the reflectance (colour) across the surface of each polygon from a subset of points for which reflectance has been computed from the model
- Advantages
 - Visually more realistic than flat shading
- Drawbacks
 - Some artifacts may still be visible
 - Computationally more expensive than flat shading

Gouraud shading Input Surface normals Algorithm Service and surface calculate vertex normals by interpolating surface normals

Technical issues

- Normal vectors must be normalised (i.e. length always set to 1) (WHY?)
- · After interpolation vectors must be re-normalised
- Transforming normal vectors (e.g. after change of the view or after changing position of an object) is not straighforward
- see e.g. http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture15/lecture15.ppt

Credits

- This presentation has used slides from various web sources, including:
 - www.classes.cec.wustl.edu/~cse452/lectures/lect11_Illumina tion_2pp.pdf
 - http://www1.cs.columbia.edu/~cs4160/slides/lecture15.ppt#7 67,2,Rendering: 1960s (visibility)
 - groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture15/l ecture15.ppt
 - http://artis.imag.fr/~Nicolas.Holzschuch/cours/class9.pdf

Homework

- A surface is of a uniform red colour.
 - Given two vertices at
 - V1 = [-80 00 58]
 - V2 = [-65 -47 58]
 - their vertex normals
 - N1 = [-0.80 -0.04 0.60]
 - N2 = [-0.65 -0.50 0.60]
 - a vector specifying the direction of light • [-0.30 -2.20 2.80]

 - and light colour vector • [1 0.5 0.5]

compute the colours (RGB vectors) of the 10 points lying on the line joining the