1 Thermodynamics

1.1 Heat Capacities

- Equation can either be in the form: $c_p=A+BT+CT^2+DT^3+ET^{-2}$ or $c_p/R=A+BT+CT^2+DT^3+ET^{-2}$
- Reference sources for preset compounds:
 - Elementary Principles of Chemical Processes 3rd ed R. Felder, R. Rousseau (Wiley, 2005)
 - Introduction to Chemical Engineering Thermodynamics 7th Ed. J. M. Smith,
 H. C. van Ness, M. M. Abbott (McGraw-Hill)
- Possible calculation mode(s):

Inputs	Outputs
Eqn mode (c _p or c _p /R)	ΔΗ
Preset chemical compound	ΔU
Parameter A [optional]	$\Delta S (= \int c_p/T \ dT)$
Parameter B [optional]	, , ,
Parameter C [optional]	
Parameter D [optional]	
Parameter E [optional]	
Initial temperature T1	
Final temperature T2	

Units for presets: T in K, ΔH & ΔU in J/mol and ΔS in J/(mol.K)

1.2 Antoine Equation

- Equation can either be in the form: $\ln(p^*) = A \frac{B}{C+T}$ or $\lg(p^*) = A \frac{B}{C+T}$
- Units for presets: Vapour pressure p* in kPa, T in °C
- Possible calculation mode(s):

Inputs	Outputs
Logarithm base used (log 10 or natural log) [mandatory]	Vapour pressure P
Temperature T [mandatory]	
Antoine parameter A [mandatory]	
Antoine parameter B [mandatory]	
Antoine parameter C [mandatory]	
Preset chemical compound [optional]	
Logarithm base used (log 10 or natural log) [mandatory]	Temperature T
Vapour pressure P [mandatory]	
Antoine parameter A [mandatory]	
Antoine parameter B [mandatory]	
Antoine parameter C [mandatory]	
Preset chemical compound (optional)	
Logarithm base used (log 10 or natural log) [mandatory]	Antoine parameter A
Vapour pressure P [mandatory]	
Temperature T [mandatory]	
Antoine parameter B [mandatory]	
Antoine parameter C [mandatory]	
Preset chemical compound (optional)	
Logarithm base used (log 10 or natural log) [mandatory]	Antoine parameter B
Vapour pressure P [mandatory]	

Temperature T [mandatory] Antoine parameter A [mandatory]	
Antoine parameter C [mandatory]	
Preset chemical compound (optional)	
Logarithm base used (log 10 or natural log) [mandatory]	Antoine parameter C
Vapour pressure P [mandatory]	
Temperature T [mandatory]	
Antoine parameter A [mandatory]	
Antoine parameter B [mandatory]	
Preset chemical compound (optional)	

- Reference sources for preset compounds:
 - Elementary Principles of Chemical Processes 3rd ed R. Felder, R. Rousseau (Wiley, 2005)
 - Introduction to Chemical Engineering Thermodynamics 7th Ed. J. M. Smith,
 H. C. van Ness, M. M. Abbott (McGraw-Hill)

1.3 2nd Virial Equation of State

- Units: All temperatures in Kelvins and all pressures in bar
- Calculation scheme using Pitzer correlations:

$$T_{r} \equiv \frac{T}{T_{c}} \text{ and } P_{r} \equiv \frac{P}{P_{c}}$$

$$B^{0} = 0.083 - \frac{0.422}{T_{r}^{1.6}} \text{ and } B^{1} = 0.139 - \frac{0.172}{T_{r}^{4.2}}$$

$$\hat{B} = B^{0} + \omega B^{1} \text{ and } B = \hat{B} \frac{RT_{c}}{P_{c}}$$

$$\frac{dB^{0}}{dT_{r}} = \frac{0.675}{T_{r}^{2.6}} \text{ and } \frac{dB^{1}}{dT_{r}} = \frac{0.722}{T_{r}^{5.2}}$$

$$H^{R} = RT_{c}P_{r} \left(B^{0} - T_{r} \frac{dB^{0}}{dT_{r}} + \omega \left(B^{1} - T_{r} \frac{dB^{1}}{dT_{r}} \right) \right) \text{ and } S^{R} = -RP_{r} \left(\frac{dB^{0}}{dT_{r}} + \omega \frac{dB^{1}}{dT_{r}} \right)$$

$$\frac{dB}{dT_{r}} = \frac{S^{R}}{P}$$

$$Z = 1 + \hat{B} \frac{P_{r}}{T_{r}}$$

$$V = Z \frac{RT}{P}$$

Possible calculation mode(s):

Inputs	Outputs
Preset chemical compound	Reduced temperature T _r
System temperature T	Reduced pressure P _r
Critical temperature T _c	Pitzer coefficient B^0 , B^1 , \hat{B} , B
System pressure P Critical pressure P _c	Pitzer derivatives $\frac{dB^0}{dT_r}$, $\frac{dB^1}{dT_r}$, $\frac{dB}{dT_r}$
Acentric factor ω	Residual enthalpy H ^R
	Residual entropy S ^R
	Molar volume V
	Compressibility factor Z

1.4 van der Waals Equation of State

- Units: All temperatures in Kelvins and all pressures in bar
- · Calculation scheme:

$$\circ \quad T_r \equiv \frac{T}{T_c} \text{ and } P_r \equiv \frac{P}{P_c}$$

$$\circ \quad a = \frac{27}{64} \frac{R^2 T_c^2}{P_c} \text{ and } b = \frac{RT_c}{8P_c}$$

 \circ V is solved from: $P = \frac{RT}{V-b} - \frac{a}{V^2}$ (iterative calculation using Newton-Raphson method)

$$\circ \quad H^R = RT\left(\frac{\rho b}{1-\rho b} - \frac{2\rho a}{RT}\right) \text{ and } S^R = R\ln\left(1 - \frac{\rho a}{RT} + \frac{\rho^2 ab}{RT}\right)$$

$$O$$
 $Z = \frac{1}{1-\rho h} - \frac{\rho a}{RT}$ where $\rho = \frac{1}{V}$

Possible calculation mode(s):

Inputs	Outputs
Preset chemical compound	Reduced temperature T _r
System temperature T	Reduced pressure P _r
Critical temperature T _c	Van der Waals EoS parameters a, b
System pressure P	Residual enthalpy H ^R
Critical pressure P _c	Residual entropy S ^R
	Molar volume V
	Compressibility factor Z

1.5 Fugacity

- Units: All temperatures in Kelvins, all pressures in bar, all fugacities in bar and all volumes in cm³/mol
- Calculation scheme:

$$\begin{array}{ll} \circ & T_r \equiv \frac{T}{T_c} \, \text{and} \, P_r \equiv \frac{P}{P_c} \\ \\ \circ & B^0 = 0.083 - \frac{0.422}{T_r^{1.6}} \, \text{and} \, B^1 = 0.139 - \frac{0.172}{T_r^{4.2}} \end{array}$$

$$\circ \quad \hat{B} = B^0 + \omega B^1$$

$$v^{sat} = V_c Z_c^{(1-T_r)^{2/7}}$$
 (Rackett equation)

$$\circ \quad \phi = \exp\left(\hat{B}\frac{P_r}{T_r}\right) \text{ and } \phi^{sat} = \exp\left(\hat{B}\frac{P_r}{T_r}\right)$$

o Three possibilities for physical state:

•
$$P < P^{sat}$$
: $f = \phi P$ (vapour)

■ P > P^{sat}:
$$f = \phi^{sat}P^{sat} \times \exp\left(\frac{V^L}{RT}(P - P^{sat})\right)$$
 (liquid, Poynting correction factor)

- P = P^{sat}: $f = \phi P$ (vapour-liquid equilibrium)
- Possible calculation mode(s):

Inputs	Outputs
Preset chemical compound	Physical state (this determines if the system
System temperature T	is in liquid or vapour phase)
Critical temperature T _c	Reduced temperature T _r
System pressure P	Reduced pressure P _r
Critical pressure Pc	Pitzer coefficient B ⁰ , B ¹ , \hat{B}
Acentric factor ω	Molar volume at saturation V _{sat}
Critical molar volume V _c	Poynting correction factor PCR
Critical compressibility factor Z _c	Fugacity coefficient Φ
	Fugacity coefficient at saturation Φ _{sat}
	Fugacity f

1.6 Cross-Virial Binary Vapour Mixture Calculations

• Units: All temperatures in Kelvins, all pressures in bar, all fugacities in bar and all volumes in cm³/mol

•
$$\omega_{ij} = \frac{1}{2} (\omega_i + \omega_j), (T_c)_{ij} = \sqrt{(T_c)_i (T_c)_j}, (Z_c)_{ij} = \frac{1}{2} ((Z_c)_i + (Z_c)_j)$$

•
$$(V_c)_{ij} = \left(\frac{1}{2}\left((V_c)_i^{\frac{1}{3}} + (V_c)_j^{\frac{1}{3}}\right)\right)^3, (P_c)_{ij} = \frac{(Z_c)_{ij}R(T_c)_{ij}}{(V_c)_{ij}}$$

•
$$(T_r)_{ii} = \frac{T}{(T_c)_{ii}}, (T_r)_{jj} = \frac{T}{(T_c)_{jj}}, (T_r)_{ij} = \frac{T}{(T_c)_{ij}}$$

•
$$(P_r)_{ii} = \frac{P}{(P_c)_{ii}}, (P_r)_{jj} = \frac{P}{(P_c)_{jj}}, (P_r)_{ij} = \frac{P}{(P_c)_{ij}}$$

•
$$B_{ii}^0 = 0.083 - \frac{0.422}{T_{r,ii}^{1.6}}, B_{ii}^0 = 0.083 - \frac{0.422}{T_{r,ij}^{1.6}}, B_{ij}^0 = 0.083 - \frac{0.422}{T_{r,ij}^{1.6}}$$

•
$$B_{ii}^1 = 0.139 - \frac{0.172}{T_{r,ii}^{4.2}}, B_{jj}^1 = 0.139 - \frac{0.172}{T_{r,ij}^{4.2}}, B_{ij}^1 = 0.139 - \frac{0.172}{T_{r,ij}^{4.2}}$$

•
$$\widehat{B_{ii}} = B_{ii}^0 + \omega_{ii}B_{ii}^1$$
, $\widehat{B_{ij}} = B_{ij}^0 + \omega_{jj}B_{ij}^1$, $\widehat{B_{ij}} = B_{ij}^0 + \omega_{ij}B_{ij}^1$

•
$$\widehat{B}_{ii} = B_{ii}^{0} + \omega_{ii} B_{ii}^{1}, \widehat{B}_{jj} = B_{jj}^{0} + \omega_{jj} B_{jj}^{1}, \widehat{B}_{ij} = B_{ij}^{0} + \omega_{ij} B_{ij}^{1}$$

• $B_{ii} = \frac{\widehat{B}_{ii}R(T_{c})_{ii}}{(P_{c})_{ii}}, B_{jj} = \frac{\widehat{B}_{jj}R(T_{c})_{jj}}{(P_{c})_{ij}}, B_{ij} = \frac{\widehat{B}_{ij}R(T_{c})_{ij}}{(P_{c})_{ij}}$

$$\bullet \quad \delta_{ij} = 2B_{ij} - B_{ii} - B_{jj}$$

•
$$\widehat{\phi}_i = \exp\left(\frac{P}{RT}(B_{ii} + y_j^2 \delta_{ij})\right)$$
 and $\widehat{\phi}_j = \exp\left(\frac{P}{RT}(B_{jj} + y_i^2 \delta_{ji})\right)$

•
$$f_{ii} = \widehat{\phi}_i y_i P$$
 and $f_{jj} = \widehat{\phi}_j y_j P$

•
$$B_{mix} = \sum \sum y_i y_j B_{ij} = y_1^2 B_{11} + 2y_1 y_2 B_{12} + y_2^2 B_{22}$$

•
$$Z_{mix} = 1 + \frac{B_{mix}P}{RT}$$

1.7 Bubble, Dew & Flash Calculations

- For ideal and non-ideal systems
- Equations used:
 - Margules for non-ideal liquid phase
 - Pitzer and cross-virial for non-ideal vapour phase
- Supported types of systems: ideal gas + ideal solution (up to 4 components), ideal gas + non-ideal solution (up to 3 components), non-ideal gas + non-ideal solution (up to 2 components)

	2 components	3 components	4 components
Ideal vapour phase	√	✓	✓
+ ideal liquid phase			
Ideal vapour phase	✓	✓	
+ non-ideal liquid			
phase			
Non-ideal vapour	√		
phase + non-ideal			
liquid phase			

Ideal vapour phase +	$y_i P = x_i P_i^{sat}$
ideal liquid phase	Compute P_{bbp} at constant T (we know x_i):
	$P_{bbp} = \sum y_i P = \sum x_i P_i^{sat}(T)$

	Compute T_{bbp} at constant P (we know x_i): [iteration using Newton-Raphson]
	$P = \sum y_i P = \sum x_i P_i^{sat} (\mathbf{T_{bbp}})$
	Compute T_{dp} at constant P (we know y_i): [iteration using Newton-Raphson]
	$1 = \sum x_i = \sum \frac{y_i P}{P_i^{sat}(T_{dn})}$
	Compute P_{dp} at constant T (we know y_i):
	$1 = \sum x_i = (\mathbf{P_{dp}}) \left(\sum \frac{y_i}{P_i^{sat}(T)} \right)$
	Flash calculations: [iteration using Newton-Raphson]
	$z_i F = \mathbf{x}_i L + y_i V = y_i \frac{P}{P_i^{sat}(T)} (F - V) + y_i V$
	$\sum \mathbf{y_i} = \sum \frac{z_i F}{\frac{P}{P_i^{sat}(T)}(F - V) + V} = 1$ $\mathbf{y_i} \mathbf{P} = \mathbf{x_i} \mathbf{y_i} (\mathbf{x_i}, \mathbf{x_j}, \dots) \mathbf{P_i^{sat}}$
Ideal vapour phase + non-ideal liquid phase	$y_i P = x_i \gamma_i (x_i, x_j,) P_i^{sat}$ Compute P_{bbp} at constant T (we know x_i):
	$\mathbf{P_{bbp}} = \sum_{i} \mathbf{y_i} P = \sum_{i} x_i \gamma_i(x_i) P_i^{sat}(T)$
	Compute T_{bbp} at constant P (we know x_i): [iteration using Newton-Raphson]
	$P = \sum \mathbf{y_i} P = \sum x_i \gamma_i(x_i) P_i^{sat} (\mathbf{T_{bbp}})$
	Compute T_{dp} at constant P (we know y_i): [iteration using Newton-Raphson]
	$1 = \sum_{i} \mathbf{x}_{i} = \sum_{i} \frac{y_{i}P}{y_{i}(\mathbf{x}_{i})P_{i}^{sat}(T_{dr})}$
	Compute P_{dp} at constant T (we know y_i): [iteration using Newton-Raphson]
	$1 = \sum_{i} x_{i} = (P_{dp}) \left(\sum_{i} \frac{y_{i}}{\gamma_{i}(x_{i})P_{i}^{sat}(T)} \right)$
	Flash calculations: [iteration using Newton-Raphson]
	$z_i F = \mathbf{x_i} L + y_i V = y_i \frac{P}{\gamma_i(\mathbf{x_i}) P_i^{sat}(T)} (F - V) + y_i V$
	$\sum \mathbf{y_i} = \sum \frac{z_i F}{\frac{P}{\gamma_i(\mathbf{x_i})P_i^{sat}(T)}(F - V) + V}$ $\mathbf{y_i} \widehat{\boldsymbol{\phi}_i}(\mathbf{T}, \mathbf{P}, \mathbf{y_{j \neq i}}, \dots) \mathbf{P}$
Nan idaal waxay ahaa	$\frac{\gamma_i(\mathbf{x}_i)P_i^{sat}(T)}{(T-V)+V}$
Non-ideal vapour phase + non-ideal liquid phase	$y_i \phi_i(T, P, y_{j \neq i}, \dots) P$ $= \gamma_i(x_i, x_j, \dots) x_i$
	$\times P_i^{sat} \phi_i^{sat} \exp \left(\frac{V^L}{RT} (P - P_i^{sat}) \right)$
	Compute P_{bbp} at constant T (we know x_i): [iteration using Newton-Raphson]
	$P_{bbp} = \sum y_i P_{bbp} = \sum \frac{x_i \gamma_i(x_i) P_i^{sat}(T)}{\widehat{\phi}_i(T, P_{bbp}, y_i)}$

Compute T_{bbp} at constant P (we know x_i): [iteration using Newton-Raphson]

$$P = \sum \mathbf{y_i} P = \sum \frac{x_i \gamma_i(x_i) P_i^{sat} (\mathbf{T_{bbp}})}{\widehat{\phi}_i (\mathbf{T_{bbp}}, P, \mathbf{y_j})}$$

Compute T_{dp} at constant P (we know y_i): [iteration using Newton-Raphson]

$$1 = \sum \mathbf{x_i} = \sum \frac{y_i \hat{\phi}_i (\mathbf{T_{dp}}, P, y_j) P}{\gamma_i (\mathbf{x_i}) P_i^{sat} (\mathbf{T_{dp}})}$$

Compute P_{dp} at constant T (we know y_i): [iteration using Newton-Raphson]

$$1 = \sum x_i = (P_{dp}) \left(\sum \frac{y_i \widehat{\phi}_i(T, P_{dp}, y_j)}{\gamma_i(x_i) P_i^{sat}(T)} \right)$$

Flash calculations: [iteration using Newton-Raphson]

$$z_{i}F = \mathbf{x}_{i}L + y_{i}V = y_{i}\frac{P}{\gamma_{i}(\mathbf{x}_{i})P_{i}^{sat}(T)}(F - V) + y_{i}V$$

$$\sum \mathbf{y}_{i} = \sum \frac{z_{i}F}{\frac{P\widehat{\phi}_{i}(T, P, \mathbf{y}_{j})}{\gamma_{i}(\mathbf{x}_{i})P_{i}^{sat}(T)}(F - V) + V}$$

- For each calculation mode key in all editable fields. Please ensure all input compositions add up to unity
- For Antoine presets, pressure is in kPa (using natural logarithm) and temperature is in °C
- For non-ideal liquid phase binary mixtures, use
 - o A₁₂=A₂₁ and C=0 for 1-parameter Margules, and
 - C=0 for 2-parameter Margules
- For non-ideal liquid phase ternary mixtures, use
 - o Aij=Aji and C=0 for 1-parameter Margules, and
 - C=0 for 2-parameter Margules

1.8 Steam Calculations

- Using linear interpolation of IAPWS-IF97 reference tables.
- Saturated properties and superheated/subcooled properties are both supported

2 Fluid Mechanics

2.1 Standard Atmosphere Calculations

- Calculation mode: The only input required is altitude z in metres.
- Troposphere (0-11km) [adiabatic conditions, B \neq 0]: $T = T_0 Bz \rightarrow \frac{P}{P_0} = \left(\frac{T_0 Bz}{T_0}\right)^{\frac{MTY}{RB}}$
 - o surface temperature $T_0 = 288.15$ K, lapse rate B = 0.00650 K/m
- Stratosphere (11-20km) [isothermal conditions, B=0]: $T = T_c \rightarrow \frac{P = P_c \exp\left(\frac{M_r g(z_c z)}{RT_c}\right)}{RT_c}$
 - o stratosphere base temperature $T_c = 216.65$ K, $P_c = 22.6$ kPa, $z_c = 11$ km

2.2 Friction Factor Calculations

 Dimensionless variables as inputs/outputs: Fanning friction factor φ, Reynolds number Re, relative roughness e/D

Calculation modes:

Laminar	Re → e/D	$a = \frac{16}{}$
flows	e/D → Re	Ψ Re
Turbulent	Re $\rightarrow \varphi$	$\varphi = \frac{10}{Re}$ $\frac{1}{\sqrt{\varphi}} = 4.03 \lg \left(\frac{Re}{1/\sqrt{\varphi}}\right) - 0.50$
flows,		$\sqrt{\varphi} = 1.03 \text{lg} \left(1 / \sqrt{\varphi} \right) = 0.30$
smooth		(Iterate using Newton-Raphson)
pipe	$\varphi \rightarrow Re$	$Re = 1.33067 \left(1/\sqrt{\varphi}\right) e^{0.571361(1/\sqrt{\varphi})}$
Turbulent	$Re \rightarrow \varphi$	$\varphi = 0.079Re^{-0.25}$ $Re = \left(\frac{0.079}{\varphi}\right)^4$
flows,	$\varphi \rightarrow Re$	(0.079)4
Blasius		$Re = \left(\frac{1}{\sqrt{n}}\right)$
(smooth		Ψ
pipe)	-	
Turbulent	$e/D \rightarrow \varphi$	$\frac{1}{\sqrt{\varphi}} = 4.0 \lg \left(\frac{D}{e}\right) + 2.2765$
flows,		$\sqrt{\varphi}$ nois (e) + 2.27 cc
rough pipe	$\varphi \rightarrow e/D$	$a = -0.25\left(\frac{1}{1}\right) + 0.569125$
		$\frac{e}{D} = 10$
Colebrook	e/D & Re → φ	$\frac{e}{D} = 10^{-0.25 \left(\frac{1}{\sqrt{\varphi}}\right) + 0.569125}$ $\frac{1}{\sqrt{\varphi}} = -4 \lg \left(\frac{e}{3.715D} + \frac{1.255}{Re\sqrt{\varphi}}\right)$
Colobicon	σεσικού	$\frac{1}{\sqrt{1}} = -4 \lg \left(\frac{c}{2.715D} + \frac{1.233}{D} \right)$
		, · , , , , , , , , , , , , , , , , , ,
	0.0- > -/0	(Iterate using Newton-Raphson)
	φ & Re \rightarrow e/D	$\frac{e}{D} = -0.018575e^{-0.57565\left(\frac{1}{\sqrt{\varphi}}\right)} \times \frac{\left(251 \times 10^{0.25(1/\sqrt{\varphi})} (1/\sqrt{\varphi}) - 200Re\right)}{Re}$
		$(251 \times 10^{0.25(1/\sqrt{\varphi})}(1/\sqrt{\varphi}) - 200Re)$
		X Re
	φ & e/D \rightarrow Re	$((1/\sqrt{\varphi})_{2}) ((1/\sqrt{\varphi})_{2})$
	,	$R_{\alpha} = \frac{186493 \times 2^{\left(\frac{1}{4} - 3\right)} 5^{\left(\frac{1}{4} - 2\right)} (1/\sqrt{\varphi})}{1}$
		$Re = -\frac{\left(\frac{(1/\sqrt{\varphi})}{+3}\right)\left(\frac{(1/\sqrt{\varphi})}{+2}\right)}{\left(\frac{(1/\sqrt{\varphi})}{+2}\right)}$
		$2^{\begin{pmatrix} 4 & 13 \end{pmatrix}} 5^{\begin{pmatrix} 4 & 12 \end{pmatrix}} (e/D) - 743$
Chen	e/D & Re $\rightarrow \varphi$	1 $\left(\frac{e}{D}\right)$ 5.0452 $\left(\frac{e}{D}\right)^{1.1098}$ $\left(7.149\right)^{0.8981}$
		$Re = -\frac{186493 \times 2^{\left(\frac{(1/\sqrt{\varphi})}{4} - 3\right)} 5^{\left(\frac{(1/\sqrt{\varphi})}{4} - 2\right)} (1/\sqrt{\varphi})}{2^{\left(\frac{(1/\sqrt{\varphi})}{4} + 3\right)} 5^{\left(\frac{(1/\sqrt{\varphi})}{4} + 2\right)} (e/D) - 743}$ $\frac{1}{\sqrt{\varphi}} = -4 \lg \left(\frac{\left(\frac{e}{D}\right)}{3.7065} - \frac{5.0452}{Re} \lg \left(\frac{\left(\frac{e}{D}\right)^{1.1098}}{2.8257} + \left(\frac{7.149}{Re}\right)^{0.8981}\right)\right)$
	φ & Re \rightarrow e/D	Iterate using binary search with $10^{-9} < \frac{e}{D} < 10^{-1}$
		• If iterated φ is too high, reduce e/D
		• If iterated φ is too low, increase e/D
	φ & e/D \rightarrow Re	Iterate using binary search with $10^3 < Re < 10^{10}$
		• If iterated φ is too high, reduce Re
		• If iterated φ is too low, increase Re

3 Reaction Kinetics

3.1 Kinetic Data Analysis

3.2 Single Reactor Performance Calculator

- For batch reactor, plug flow reactor (PFR) and continuous stirred-tank reactor (CSTR)
- If the fractional change in system volume ε_a is left blank, its value is assumed to be zero.

- Reference source for reactor sizing equations: Table 5.2 Performance Equations for nth-order Kinetics, in Chemical Reaction Engineering 3rd Ed., Octave Levenspiel (John Wiley & Sons)
- Possible calculation mode(s):

Inputs	Outputs
Reaction order n [mandatory – default value	Conversion X
is 0 th order]	Space/reactor time t or τ
Reaction rate constant k [mandatory]	
Fraction change in system volume ε_a	
[optional, assumed zero if left blank]	
Initial concentration c _{A0} [mandatory]	
Final concentration c _A	
Reaction order n [mandatory – default value	Final concentration c _A
is 0 th order]	Space/reactor time t or τ
Reaction rate constant k [mandatory]	
Fraction change in system volume ε_a	
[optional, assumed zero if left blank]	
Initial concentration c _{A0} [mandatory]	
Conversion X	
Reaction order n [mandatory – default value	Conversion X
is 0 th order]	Final concentration c _A
Reaction rate constant k [mandatory]	
Fraction change in system volume ε_a	
[optional, assumed zero if left blank]	
Initial concentration c _{A0} [mandatory]	
Space/reactor time t or τ	

3.3 CSTRs in Series

4 Heat & Mass Transfer

- 4.1 Convective Heat Transfer
- 4.2 Transient Heat Transfer
- 4.3 Heat Exchanger
- 4.4 Mass Diffusivity Coefficients
- 4.5 Convective Mass Transfer

5 Fluid-Solid Systems

5.1 Single Particle Motion Properties

- For all single particle settling regimes (Stokes, Intermediate, Newton). Assumes perfectly spherical particle.
- Calculation scheme:
 - o First assumes Stokes' Law applies:

$$U_T = \frac{x^2(\rho_p - \rho_f)g}{18\mu}$$

$$Re_p = \frac{x U_T \rho_f}{\mu}$$

o If calculated $Re_p > 0.3$, assume Newton Law instead:

$$U_T = 1.74 \sqrt{\frac{xg(\rho_p - \rho_f)}{\rho_f}}$$

- $C_D = 0.44$ $Re_p = \frac{xU_T\rho_f}{\mu}$
- \circ If calculated $Re_p < 500$, assume intermediate region:
 - Iterate C_D via binary search to solve $C_D = \frac{1}{Re^2} \frac{4}{3} \frac{x^3 \rho_f (\rho_p \rho_f) g}{u^2}$ and $C_D = \frac{1}{Re^2} \frac{4}{3} \frac{x^3 \rho_f (\rho_p \rho_f) g}{u^2}$ $\frac{24}{Re_p}$ $\left(1 + 0.15Re_p^{0.687}\right)$ simultaneously
 - Then as usual $Re_p = \frac{xU_T\rho_f}{r}$

5.2 Packed & Fluidised Bed Calculations

5.3 Pneumatic Transport

Calculation scheme:

$$\circ \quad A = \frac{\pi D^2}{4}, \ G_p = \frac{M_p}{A}$$

$$\circ \quad U_{SALT} = \left[\frac{M_p}{\rho_{fA}} \times 10^{(1440x + 1.96)} \times \left(\sqrt{gD} \right)^{(1100x + 2.5)} \right]^{\left(\frac{1}{1100x + 3.5}\right)}$$
(Rizk)

$$\circ \quad U_{fs} = \left(1 + \frac{m}{100}\right) \times \max(U_{SALT}, U_{CH})$$

o
$$U_{pH} = U_{fs} (1 - 0.0638x^{0.3}\rho_p^{0.5})$$
 (Hinkle)

$$\circ \quad \varepsilon_H = 1 - \frac{G_p}{\rho_p U_{pH}} \text{ and } U_{fH} = \frac{U_{fS}}{\varepsilon_H}$$

$$\circ Re_p = \frac{\rho_f(U_{fH} - U_{pH})x}{\mu}$$

$$C_D = \frac{24}{Re_p} \left(1 + 0.1806 Re_p^{0.6459} \right) + \left(\frac{0.4251}{1 + \frac{6880.95}{Re_p}} \right)$$

$$\circ \quad U_T = \sqrt{\frac{4}{3}} \frac{gx}{c_D} \left(\frac{\rho_p - \rho_f}{\rho_f} \right)$$

$$\circ \quad \frac{\rho_f^{0.77}}{2250D} \Big(\frac{G_p}{\rho_P}\Big)^2 = (\varepsilon_{CH}^{-4.7} - 1)(1 - \varepsilon_{CH})^2 \rightarrow \text{Iterate for } \varepsilon_{CH} \text{ using Newton-Raphson}$$

$$O \quad U_{CH} = \varepsilon_{CH} \left(U_T + \frac{G_p}{\rho_P(1 - \varepsilon_{CH})} \right) \text{ (Punwani et. al.) } \rightarrow \text{ Check that } U_{CH} < U_{SALT} \text{ ,}$$
 otherwise recalculate again up till C_D

$$\circ \quad f_p = \frac{_{3\rho_f D}}{_{8\rho_p x}} C_D \left(\frac{U_{fH} - U_{pH}}{U_{pH}} \right)^2 \text{ and } F_{pwH} = \frac{_{2f_p G_p U_{pH}}}{_{D}}$$

$$\circ \quad Re_f = \frac{\rho_f U_{fs} D}{\mu}$$

$$0 \quad \frac{1}{\sqrt{f_f}} = -4 \lg \left(\frac{\left(\frac{e}{D}\right)}{3.7065} - \frac{5.0452}{Re} \lg \left(\frac{\left(\frac{e}{D}\right)^{1.1098}}{2.8257} + \left(\frac{7.149}{Re}\right)^{0.8981} \right) \right) \text{ (Chen)}$$

$$\circ \quad F_{fw} = \frac{2f_f \rho_f U_{fs}^2}{D}$$

$$O \quad U_T \varepsilon_V^2 - \left(U_T + U_{fs} + \frac{G_p}{\rho_p} \right) \varepsilon_V + U_{fs} = 0 \Rightarrow \text{solve using quadratic formula}$$

$$\circ \quad \mathit{U}_{f\mathit{V}} = \frac{\mathit{U}_{f\mathit{s}}}{\mathit{\varepsilon}_{\mathit{V}}} \text{ and } \mathit{U}_{p\mathit{V}} = \frac{\mathit{G}_{p}}{\mathit{\rho}_{p}(1-\mathit{\varepsilon}_{\mathit{V}})}$$

o
$$F_{pwV} = 0.057 G_p \sqrt{\frac{g}{D}}$$
 (Konno & Saito)

• Pressure drop terms:

$$P_1 - P_2 = \underbrace{\frac{1}{2}\varepsilon\rho_f U_f^2}_{(1)} + \underbrace{\frac{1}{2}(1-\varepsilon)\rho_p U_p^2}_{(2)} + \underbrace{F_{fw}L}_{(3)} + \underbrace{F_{pw}L}_{(4)} + \underbrace{\rho_p L(1-\varepsilon)g\sin\theta}_{(5)} + \underbrace{\rho_f L\varepsilon g\sin\theta}_{(6)}$$

- (1) pressure drop due to initial gas acceleration (decide what is the starting direction)
- (2) pressure drop due to initial particle acceleration (decide what is the starting direction)
- (3) pressure drop due to gas-to-wall friction
- (4) pressure drop related to solids-to-wall friction
- (5) pressure drop due to the static head of solids (=0 for horizontal)
- (6) pressure drop due to the static head of gas (=0 for horizontal)
- Equivalent length approach: ΔP across one 90° bend = ΔP across 7.5m vertical pipe

6 Process Control

6.1 Laplace Transforms

6.2 2nd Order Dynamics

- For all step response types of second order transfer functions (overdamped, critically damped, underdamped): $G(s) = \frac{constant}{\tau^2 s^2 + 2\zeta \tau s + 1} = \frac{1}{As^2 + Bs + C}$
- Inputs: Parameters A, B and C
- Calculation scheme:

 - $Ose = \frac{a}{b} = \exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right)$
 - O Decay ratio (successive maxima): $DR = \frac{c}{b} = \exp\left(-\frac{2\pi\zeta}{\sqrt{1-\zeta^2}}\right) = \frac{a^2}{b^2} = (OS)^2$
 - Period of oscillation: $p = \frac{2\pi t}{\sqrt{1-\zeta^2}}$

 - o Radian freq: ω = 2πf
 - o <u>Settling time</u> $t_s = -\frac{\ln(0.05\sqrt{1-\zeta^2})}{\zeta\omega_n}$: time needed for response to come within specified % (e.g. 5%) of its final value
 - \circ Rise time t_r : time needed for response to reach its final value for the first time. Characterizes speed of response. Iterated using binary search using the time-domain step response function

$$y(t) = KM \left(1 - e^{-\frac{\zeta t}{\tau}} \left(\cos \sqrt{1 - \zeta^2} \frac{t}{\tau} + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \sqrt{1 - \zeta^2} \frac{t}{\tau} \right) \right)$$

o <u>Natural period of oscillations</u> (special case signifying 'frictionless' or 'no damping' situation): $\omega_n = \omega|_{\zeta=0} = \frac{1}{\tau}$

7 Process Safety & Health

7.1 Probit Calculations

- Probit correlation used: $Y = k_1 + k_2 \ln V$ (parameter values k_1, k_2 from Chemical Process Safety, Fundamentals with Applications, by Daniel A. Crowl & Joseph F. Louvar (Prentice Hall))
- Probit variable vs. probability conversion: $P = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{Y-5} \exp\left(-\frac{u^2}{2}\right) du = \frac{1}{2} \operatorname{erf}\left(\frac{Y-5}{\sqrt{2}}\right) + \frac{1}{2}$
- Units of causative variable V are dependent on user input, unless preset is chosen
- Please fill in: both k1 and k2, and only one of V, P or Y

7.2 Flammability Calculations

7.3 Source Term Calculations

7.4 Pasquill-Gifford Model

- Models supported: Puff (instantaneous release), Plume (continuous release, steadystate)
- Pasquill stability class correlations are utilised in dispersion coefficient calculations (Reference source: Chemical Process Safety, Fundamentals with Applications, 3rd ed, Prentice Hall by Daniel A. Crowl & Joseph F. Louvar)

Puff	$\langle C \rangle (x, y, z, t) = \frac{Q_m^*}{\sqrt{2}\pi^{3/2}\sigma_x\sigma_y\sigma_z} \exp\left[-\frac{1}{2}\left(\left(\frac{x - u_x t}{\sigma_x}\right)^2 + \left(\frac{y}{\sigma_y}\right)^2 + \left(\frac{z}{\sigma_z}\right)^2\right)\right]$
	$\langle \mathcal{C} \rangle (u_x t, 0, 0, t) = \frac{Q_m^*}{\sqrt{2} \pi^{3/2} \sigma_x \sigma_y \sigma_z}$
	$\langle \mathcal{C} \rangle (x, 0, 0, t) = \frac{Q_m^*}{\sqrt{2} \pi^{3/2} \sigma_x \sigma_y \sigma_z} \exp \left[-\frac{1}{2} \left(\left(\frac{x - u_x t}{\sigma_x} \right)^2 \right) \right]$
Plume	$\langle C \rangle (x, y, z) = \frac{Q_m}{\pi \sigma_y \sigma_z u_x} \exp \left[-\frac{1}{2} \left(\left(\frac{y}{\sigma_y} \right)^2 + \left(\frac{z}{\sigma_z} \right)^2 \right) \right]$
	$\langle \mathcal{C} \rangle (x,0,0) = \frac{Q_m}{\pi \sigma_y \sigma_z u_x}$