Complex Analysis

Tyler Chang December 15, 2018

Basic Definitions

Let $z = re^{i\theta} = x + iy$ be a complex number.

- $|z| = r = \sqrt{x^2 + y^2}$ is called the *modulus* of z.
- arg $z = \theta$ is called the argument of z.
 - Note that arg z is not well-defined since $re^{i\theta} = re^{i(\theta + 2\pi m)}$ for all $m \in \mathbb{Z}$.
- Arg $z = \theta$, where $-\pi < \theta \le \pi$ is called the *principle argument* of z.
 - Note that Arg z is well-defined, but not continuous since there is a "slit" on \mathbb{R}_{-} (the negative real-axis), where Arg z "jumps" in value from $-\pi$ to π or vice versa.

Let f = u + iv be a complex-valued function.

- If f is one-to-one on $\mathbb{C} \setminus \mathbb{R}_-$, the *inverse* is not well-defined unless it is independent of arg z. For example, the inverse of $e^{i\theta}$ is given by $\log z = \log |z| + i \arg z$, and therefore not well-defined. We call the range of arg z the *branch* of $\log z$. Log $z = \log |z| + i \operatorname{Arg} z$ is then called the *principle branch* of the function, and is well-defined, but typically not continuous.
- A complex-valued function is said to be a linear fractional transformation (LFT) if it is of the form $w(z) = \frac{ax+b}{cz+d}$ where $a, b, c, d \in \mathbb{C}$ and $ad-bc \neq 0$.
 - Every LFT is a composition of complex-valued translations, dilations, and inversions.
 - 3 pairs $(z_1, w(z_1)), (z_2, w(z_2)), \text{ and } (z_3, w(z_3))$ uniquely determine an LFT.
 - The image of a circle or line under an LFT is either a circle or a line.
- A complex-valued function f is said to be differentiable at a point z_0 if $\lim_{z \to z_0} \frac{f(z) f(z_0)}{z z_0}$ exists (for every direction, determined by arg z). If the limit exists, it is called f'(z).

Let $\gamma(t)$ where $a \leq t \leq b$ be a path from A to B. Let $P = u_1(x,y) + iv_1(x,y)$, $Q = u_2(x,y) + iv_2(x,y)$ be a complex-valued functions (in the complex plane with z = x + iy).

- P dx + Q dy is called a differential.
- $\int_{\gamma} P \ dx + Q \ dy = \int_{\gamma} P dx + \int_{\gamma} Q dy$ is called the *line integral* of that differential.

- P dx + Q dy is called exact if there exists dh = P dx + Q dy.
- The line integral $\int_{\gamma} P \ dx + Q \ dy$ is independent of path if it has the same value for all paths with the same endpoints, i.e., the differential $P \ dx + Q \ dy$ is somehow conservative in a sense, depending only on its endpoints.
- P dx + Q dy is exact if and only if $\int_{\gamma} P dx + Q dy$ is independent of path.
- A differential P dx + Q dy is closed if $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$.
- Exact always implies closed, but closed only implies exact in a star-shaped region D, meaning every point in D is "visible" from some central point.
- Green's Theorem tells us that if P and Q are smooth on a domain D with piecewise smooth boundary, and the partials of P and Q exist and are continuous to ∂D , then

$$\int_{\partial D} P \ dx + Q \ dy = \int \int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \ dy.$$

Holomorphic/Analytic Functions

A complex function f = u + iv is said to be *holomorphic* or *analytic* on an open domain D if f is once continuously differentiable everywhere in D. Some equivalent conditions follow:

• Both partial derivatives of u and v exist in D and the Cauchy-Riemann equations hold:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$.

- f dz is closed. Note, this implies that f dz is exact if D is star-shaped. This is important because it implies $\int_{\gamma} f dz$ is independent of paths.
- f is continuous and $\int_{\partial R} f \ dz = 0$ for all rectangles R in D.
- If f'(z) exists for all $z \in D$, then f' must be continuous, so f is automatically analytic if it is just differentiable everywhere in D.

For f analytic in D, the Fundamental Theorem of Calculus holds, i.e., the integral $\int_{\gamma} f' dz = f(B) - f(A)$ is independent of paths. Furthermore, in a star-shaped region, there exists an analytic F such that F' = f and $F(z) = \int_{z_0}^{z} f(\xi) d\xi$.

If D is star-shaped and bounded with piecewise smooth boundary and f is continuous on \overline{D} , then by Green's theorem $\int_{\partial D} f \ dz = 0$ (Cauchy's theorem). The Cauchy Integral Formula follows:

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(w)}{w - z} dw.$$

It follows by interchanging the order of integration that f is infinitely differentiable and

$$f^{(m)}(z) = \frac{m!}{2\pi i} \int_{\partial D} \frac{f(w)}{(w-z)^{m+1}} dw.$$

In fact, the closed path ∂D can be replaced by any loop in D enclosing z.

Furthermore, for f analytic in a ball $B(r, z_0)$ centered at z_0 with radius r, then the Taylor series

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(m)}(z_0)}{m!} (z - z_0)^k$$

converges uniformly. The largest radius R for which f is analytic in $B(R, z_0)$ is called the radius of convergence. As a corollary, if f is analytic in a star-shaped region, then f is determined globally by its local behavior, since f's Taylor series at each point can be extrapolated to determine f's behavior in the entire star-shaped region. A function f that is analytic on the entire complex plane is called *entire*, and *Liouville's theorem* tells us that every bounded entire function is identically equal to a constant.

If f is not analytic in a ball around z_0 , but is instead analytic in the annulus $r_1 < |z - z_0| < r_2$, then f has a Laurent series

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^k,$$

where $a_k = \frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f(z)}{(z-z_0)^{k+1}} dz$, with the line integral evaluated counterclockwise. Now consider any singularity, i.e., point s where f is not analytic. If s is isolated, then in some annulus $0 < |z-s| < \varepsilon$, f is analytic with a Laurent series $f(z) = \sum_{k=-\infty}^{\infty} a_k (z-s)^k$.

- If all $a_k = 0$ for all k < 0, then f is a removable singularity, meaning f is actually analytic in the ball $B(\varepsilon, s)$.
- If $a_k \neq 0$ for only finitely many k < 0, then s is a pole, meaning f behaves like an analytic function near a_k , but diverges such that $f(s) \to \infty$.
- If $a_k = 0$ for infinitely many k < 0, then s is an essential singularity, meaning $\lim_{z \to s} f(z)$ does not exist. In fact, the limit of a sequence $f(z_n)$ where $z_n \to s$ attains nearly every value, depending on the path taken by z_n .

A function f that is analytic except at isolated singularities, each of which is a pole, is called *meromorphic*. A function f is meromorphic in $\mathbb{C}^* = \mathbb{C} \cup \{\infty\}$ if and only if f is rational.

If f is analytic and one-to-one in D, then f is said to be univalent on D. Every analytic function f is univalent except in a neighborhood of any critical points (points where f'(z) = 0). Furthermore, if f is nonconstant, then by the open mapping theorem, f maps open sets to open sets. If follows that f^{-1} exists and is analytic except in a neighborhood of f's critical points. Furthermore, if f is univalent, then f is conformal, meaning f preserves angles.

Harmonic Functions

A function u(x, y) on a two-dimensional domain D is said to be harmonic if it satisfies Laplace's equation: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$. If f = u + iv is an analytic function, then u and v are real-valued harmonic functions. It follows that every analytic function is harmonic. Furthermore, for all $z_0 \in D$, every harmonic function u has a local harmonic conjugate, i.e., a harmonic function v such that f = u + iv is analytic in some neighborhood of z_0 . If D is star-shaped, then v is a harmonic conjugate to u on all of D.

Every harmonic function also satisfies the mean value property,

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta.$$

If h is a bounded complex-valued harmonic function on D that extends to the boundary, then h must attain its maximum on ∂D . Furthermore, if $|h(z)| \leq M$ for all $z \in D$ and $|h(z_0)| = M$ for some $z_0 \in D$, then $h \equiv C$, where C is a constant. These properties are often referred to as the maximum principle.

Dirichlet showed that if $h(\theta)$ is continuous on a circle S, then there exists a unique harmonic function $\tilde{h}(re^{i\theta})$ defined on the disk \mathbb{D} with boundary S such that $\tilde{h} = h$ on S. His solution is given by

$$\tilde{h}(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} h(e^{i(\theta-\phi)}) P_r(\phi) d\phi$$

where $P_r(\phi) = \sum_{k=-\infty}^{\infty} r^{|k|} e^{ik\phi}$ is the Poisson kernel.

Contour Integration and the Residue Theorem

The residue theorem generalizes Cauchy's theorem. Let z_0 be an isolated singularity of f(z). Then if $f(z) = \sum_{-\infty}^{\infty} a_n(z-z_0)^n$, $0 < |z-z_0| < \rho$, then the residue of f at z_0 is given

Res
$$(f, z_0) = a_{-1} = \frac{1}{2\pi i} \int_{|z-z_0|=r<\rho} f(z) dz.$$

Furthermore, if D is a star-shaped bounded domain in \mathbb{C} with p.w. smooth boundary (as in Cauchy's theorem), and f is meromorphic in D (with singularities z_i) and smooth in \overline{D} , then

$$\int_{\partial D} f(z)dz = 2\pi i \sum_{i=1}^{\infty} \operatorname{Res}(f(z), z_i).$$

Contour integration is a process for integrating meromorphic (or equivalently, rational) functions f using the residue theorem. Suppose we wish to integrate a rational function f over some path γ (most commonly, a subset of the real axis, i.e., a definite real integral). Suppose f cannot be integrated over γ , but can be integrated over another path ϕ in D, with the same endpoints as γ . Then using the residue theorem, $\int_{\gamma} f = \sum_{i=1}^{n} \text{Res}(f(z), z_i) - \int_{\phi} f$ where z_i

are singularities contained in the loop $\gamma \cup \phi$, and each integral is taken in the counterclockwise direction.

To make residues easy to compute, there are three rules:

- If z_0 is a simple pole (only a_{-1} is nonzero) then $a_{-1} = \lim_{z \to z_0} (z z_0) f(z)$.
- If z_0 is a pole of order n, then $a_{-1} = \lim_{z \to z_0} \frac{d^{(n+1)}}{dz^{(n+1)}} ((z-z_0)^n f(z))$.
- If f, g are analytic at z_0 and g has a simple zero at z_0 , then $\frac{f}{g}$ has a simple pole if and only if $f(z_0) \neq 0$.

Furthermore, when constructing loops, one must avoid singularities. The fractional residue theorem tells us that for a simple pole z_0 , for C_{ε} an arc of the circle $|z - z_0| = \varepsilon$ with an angle of $\alpha > 0$ oriented counterclockwise, $\lim_{\varepsilon \to 0} \int_{C_{\varepsilon}} f(z) dz = \alpha i \operatorname{Res}(f, z_0)$.

Homotopy, Winding Numbers, and Simply Connected Regions

The logarithmic integral of an analytic function f over a closed curve γ in D is given by $\frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f} dz = \frac{1}{2\pi} \int_{\gamma} d(\arg f(z)) dz$. The logarithmic integral is always a nonnegative integer, and the change in arg f around γ is given by 2π times the logarithmic integral. If D is a bounded domain, with p.w. smooth boundary and f is meromorphic in \overline{D} with no zeros or poles on ∂D , then the logarithmic integral of f around the boundary of D is equal to $N_0 - N_\infty$ where N_0 denotes the number of zeros of f in D, and N_∞ denotes the number of poles (with multiplicity). This property is called the argument principle and can be used to perform root-finding on f. Furthermore, if g is also analytic in \overline{D} and |f| dominates |g|, then f and f + g have the same number of zeros in D.

Furthermore, if $f(z_0) = w_0$, then there exists a neighborhood $N_{\delta} = |w - w_0| < \delta$ in which f attains all $w \in N_{\delta}$ the same number of times. Let U_{ε} be a sufficiently small neighborhood of z_0 . Then the number of times f hits $w \in N_{\delta}$ is given by the winding number of the image $f(\partial U_{\varepsilon})$ around w_0 .

The winding number of a closed curve $\gamma(t)$ $(a \le t \le b)$ about a point z_0 is given by

$$W(\gamma, z_0) = \frac{h(b) - h(a)}{2\pi}$$

and tells the integer number of times γ "wraps around" z_0 (i.e., the change in $\arg(z-z_0)$ around γ divided by 2π). Two curves $\gamma_0(t)$ and $\gamma_1(t)$ defined in a domain D are homotopic if there exists a curve $\gamma(s,t)$, $0 \le s \le t$, such that $\gamma(0,t) = \gamma_0(t)$, $\gamma(1,t) = \gamma_1(t)$, and $\gamma(s,t)$ is jointly continuous in both s and t. If γ_0 is a point, then $\gamma_1(t)$ is said to be homotopic to a point. Equivalently, this implies that $W(\gamma_1(t),\xi) = 0$ for all $\xi \notin D$. A simply connected domain is defined as a domain in which every curve γ is homotopic to a point.

This terminology allows us to generalize Cauchy's theorem, so that if f is analytic in D with p.w. smooth boundary, and $\gamma \subset D$ is a closed curve with $W(\gamma, \xi) = 0$ for all $\xi \notin D$, then

 $\int_{\gamma} f(z)dz = 0$. Note, this implies that an analytic f is infinitely differentiable in any *simply* connected domain. Furthermore, the condition that ∂D is p.w. smooth can be dropped if we are willing to "back off" slightly from the edge of D.

Analytic Continuation and Reflection

Consider now a function f defined by its Taylor series $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$. In some ball $B(R, z_0)$. The goal of this section is to extend f to its entire natural domain.

In fact, if γ is any (not necessarilly closed) curve on which f has no singularities, and we can define a sequence of partially overlapping balls $B(R_n, z_n)$ such that each $z_n \in \gamma$, then f can be extended along the entire path γ by power series centered at z_n . This process is called analytic continuation, and the resulting function f will be analytic in $\bigcup_n B(R_n, z_n)$ if and only if this sequence of balls does not "wrap around" any singularities (in which case, f may not agree where $B(R_n, z_n)$ wrap back on themselves). Furthermore, if f can be continued along two paths γ_0 and γ_1 which are homotopic by a sequence γ_s of paths along which f can also be analytically continued, then the continuations of f along γ_0 and γ_1 agrees (the Monodromy theorem). It follows that f can be analytically continued along any path in a simply connected domain.

Alternatively, if D is a domain that is symmetric about the real-axis, and f^+ is analytic on the top-half of D (D^+), then f^+ can be reflected across the real-axis to the bottom half D_- by $f^-(z) = \overline{f}(\overline{z})$ for all $z \in D_-$. This reflecton defines an analytic function f on all of D if $\lim_{z\to\mathbb{R}} f^+(z) \in \mathbb{R}$ for all limit points in $D \cap \mathbb{R}$. It follows that by applying a LFT, to any domain E whose boundary shares an arc or line in \mathbb{C}^* , a similar reflection can be performed, if E's image under the LFT satisfies the properties above.

Hyperbolic and Spherical Geometries

Let $f: \mathbb{D} \to \mathbb{D}$ be analytic (where \mathbb{D} denotes the open unit disk). Then Schwarz's lemma tells us that if f(0) = 0 and $|f(z)| \le |z|$, then f is a rotation if any $z_0 \ne 0$ satisfies $|f(z_0)| = |z_0|$, and a contraction otherwise. This generalizes to Pick's lemma: If $f: \mathbb{D} \to \mathbb{D}$ is analytic then

$$|f'(z)| \le \frac{1 - |f(z)|^2}{1 - |z|^2},$$

and if equality holds for any $z_0 \in D$, then f is a conformal self-map of D.

Let $f: \mathbb{D} \to \mathbb{D}$ be conformal. The hyperbolic length of a curve γ is defined by

$$\ell(\gamma) = 2 \int_{\gamma} \frac{|dz|}{1 - |z|^2},$$

and $\ell(\gamma) = \ell(f \circ \gamma)$. The hyperbolic distance between two points is then defined by

$$\rho(z_1, z_2) = \inf_{\gamma} \ell(\gamma),$$

where the inf is taken over all curves γ connecting z_1 and z_2 . Note that this inf is obtained for some unique path γ , called the *hyperbolic geodesic*. Note that in such a *hyperbolic geometry*, the sum of all angles in a triangle is strictly less than 180°.

Similarly, the *chordal metric* is defined for two points p and q on \mathbb{C}^* by taking the inverse stereoscopic projection of \mathbb{C}^* onto the sphere, and computing the length of the line segment joining p and q on the sphere. The *chordal distance* is given by twice the length of the shortest such line segment (which corresponds to an arc of a great circle on the sphere). Note that in general, the *chordal geodesic* is not necessarilly unique, and the sum of angles in a triangle is strictly greater than 180°.