Cálculo Numérico - IME/UERJ

Lista de Exercícios 6 - Engenharia - Método dos Mínimos Quadrados

1. Estime o valor de f(9,5) pela reta dos mínimos quadrados usando os dados da seguinte tabela:

x	5,3	6,4	7,1	8,5	9,1
f(x)	8,1	15,2	24,5	48,6	54,0

- 2. Estime o valor de f(9,0) ajustando os dados abaixo pelo método dos mínimos quadrados (MMQ) através de:
 - (a) uma reta
 - (b) uma parábola

	1,0							
y	0,5	0,6	0,9	0,8	1,2	1,5	1,7	2,0

3. O número de bactérias, por unidade de volume, existente em uma cultura após x horas é dado na tabela abaixo:

número de horas	0	1	2	3	4	5	6
número de bactérias	32	47	65	92	132	190	275

- (a) Ajuste os dados acima à curva $y=ae^{bx}$ pelo método dos mínimos quadrados.
- (b) Quantas horas são necessárias para que o número de bactérias por unidade de volume ultrapasse 2000?
- 4. Aproxime a tabela abaixo por uma função do tipo $g(x) = 1 + ae^{bx}$ usando mínimos quadrados e estime o valor de y(4,0).

x	0	0,5	1,0	2,5	3,0
y	2,0	2,6	3,7	13,2	21,0