МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

МАТЕМАТИКА

22.05.2015 г. – <u>ВАРИАНТ 1</u>

Отговорите на задачите от 1. до 20. включително отбелязвайте в листа за отговори!

- 1. Кое е най-голямото от посочените числа?
- **A)** $\sqrt{(-2)^2}$
- **Б)** ⁴√8

B) $\sqrt[3]{-4}$

 Γ) 16⁰

- **2.** Ако $a = 2^{\frac{2}{3}}$, а $b = 2^{-\frac{3}{2}}$, то ab е равно на:
- **A)** 2^{-1}

- **Б)** $2^{-\frac{4}{9}}$
- **B)** $2^{-\frac{5}{6}}$

- Γ) 2^{-5}
- **3.** Множеството от допустимите стойности на израза $A = \frac{1}{|x| + \sqrt{2}}$ е:
- **A)** $x \in (-\infty; +\infty)$

b) $x \in \left(-\infty; -\sqrt{2}\right) \cup \left(\sqrt{2}; +\infty\right)$

B) $x \in (-\infty; 0) \cup (0; +\infty)$

- Γ) $x \in \left[-\sqrt{2}; \sqrt{2}\right]$
- **4.** Решенията на неравенството $\frac{(x-2)^2(x+1)}{x-3} < 0$ са:
- **A)** $x \in (-1;3]$

b) $x \in (-\infty; -1) \cup (3; +\infty)$

B) $x \in (-1; 2) \cup (3; +\infty)$

- $\Gamma) \ x \in (-1,2) \cup (2,3)$
- 5. Стойността на израза $\lg \frac{1}{100} + \log_2 64 \log_{\frac{1}{3}} 27 + \log_5 1$ е равна на:
- **A)** 1

Б) 2

B) 5

Γ) 7

- **6. НЕВЯРНОТО** твърдение за функцията $f(x) = x^2 2x$ е:
- **A)** Стойността на функцията f(x) при x = 0 е равна на 0.
- **Б**) Графиката на функцията f(x) е парабола.
- **B)** Функцията f(x) е дефинирана за всяко x.
- Γ) Графиката на функцията f(x) е симетрична спрямо ординатната ос Oy.
- 7. Кое от уравненията има два отрицателни реални корена?

A)
$$-3x^2 + 7x + 2 = 0$$

b)
$$3x^2 + 7x + 2 = 0$$

B)
$$-3x^2 + 7x - 2 = 0$$

$$\Gamma$$
) $3x^2 + 7x - 2 = 0$

8. Изразът $\cos \alpha . \cos (90^{\circ} + \alpha)$ е тъждествено равен на:

A)
$$\sin 2\alpha$$

b)
$$-\frac{1}{2}\sin 2\alpha$$

B)
$$-\cos^2 \alpha$$

$$\Gamma$$
) $\cos^2 \alpha$

9. В правоъгълния $\triangle ABC (\angle ACB = 90^{\circ})$ височината CH дели хипотенузата AB на отсечки $AH = 2 \,\mathrm{cm}$ и BH = 8 cm. Тангенсът на $\angle CBA$ е равен на:

A)
$$\frac{2\sqrt{5}}{5}$$
 B) $\frac{\sqrt{5}}{5}$

b)
$$\frac{\sqrt{5}}{5}$$

B)
$$\frac{1}{2}$$

10. На чертежа $MN \parallel AB$. Ако MO: OA = 3:5, то отношението

M

CN: NA е равно на:

- **11.** Ако x_1 и x_2 са реалните корени на уравнението $3x^2 14x + 6 = 0$, то сумата от реципрочните им стойности е равна на:
- **A)** $-\frac{14}{3}$
- **b**) $-\frac{7}{6}$

- **B**) $\frac{3}{14}$

12. Ако n е естествено число, то първите четири члена на числова редица с общ член

$$a_n = \frac{(-1)^{1-n} . n}{n+1}$$
 ca:

A) $\frac{1}{2}; \frac{2}{3}; \frac{3}{4}; \frac{4}{5}$

b) $\frac{1}{2}; -\frac{2}{3}; \frac{3}{4}; -\frac{4}{5}$

B) $\frac{1}{2}$; $-\frac{2}{3}$; $-\frac{3}{4}$; $-\frac{4}{5}$

 Γ) $\frac{1}{2}$; $-\frac{2}{3}$; $-\frac{3}{4}$; $\frac{4}{5}$

13. Намерете първия член на аритметична прогресия, ако $a_4 = 1$ и $a_7 = -11$.

A) -11

Б) –4

B) 13

Г) 17

14. Ако за $\angle AOB$ е дадено, че върхът му е точката O на чертежа, лъчът OA^{-} съвпада с положителната посока на оста Ox и $tg \angle AOB = \sqrt{3}$, то лъчът OB^{-} лежи:

А) само в І квадрант

- **Б)** в I или в III квадрант
- **В)** във II или в IV квадрант
- Г) само в III квадрант

15. В купа има 5 сини и 12 бели жетона. Каква е вероятността при едновременно изтегляне на два жетона точно един от тях да е бял?

- $\mathbf{A)} \; \frac{C_5^2.C_{12}^2}{C_{17}^2}$
- $\mathbf{E}) \; \frac{C_{17}^2}{C_5^1.C_{12}^1}$
- **B)** $\frac{C_5^1 + C_{12}^1}{C_{15}^2}$
- $\Gamma) \; \frac{C_5^1.C_{12}^1}{C_{12}^2}$

16. В школа по танци участват 6 души на възраст 15 г., 9 г., 36 г., 17 г., 28 г. и 21 г. На каква възраст е новодошъл участник в школата, ако медианата на статистическия ред от първоначалните 6 данни съвпада с медианата на статистическия ред от новополучените 7 данни за възрастта на участниците в школата?

A) 18

Б) 19

B) 20

Γ) 26,5

17. Около $\triangle ABC$ е описана окръжност k(O;R). Ако

 $\angle AOC = 120^{\circ}$ и $\angle CAB = \alpha$, страната AB е равна на:

A) $2R\sin\alpha$

b) $2R\sin(120^{\circ}-\alpha)$

B) $2R\sin(120^{\circ} + \alpha)$

 Γ) $R\sin(60^{\circ}+\alpha)$

18. За $\triangle ABC$ на чертежа е дадено, че $BC = 3 \,\mathrm{cm}$, $AC = 4 \,\mathrm{cm}$

и $\cos(\alpha+\beta)=\frac{1}{3}$. Дължината на страната AB е равна на:

- **A)** $\sqrt{17}$ cm **B)** $\sqrt{33}$ cm
- Γ) 6 cm

19. Даден е трапец с основи 12 ст и 9 ст и диагонали 11 ст и 18 ст. Лицето на трапеца е равно на:

- **A)** $35\sqrt{2} \text{ cm}^2$ **B)** 100 cm^2
- Γ) 55.5 cm²

20. В успоредника ABCD AC = 10 cm, BD = 6 cm и

 $\angle ADB = 90^{\circ}$. Намерете лицето на успоредника.

A) 12 cm^2

b) 18 cm^2

B) 24 cm^2

 Γ) 36 cm²

Отговорите на задачите от 21. до 25. включително запишете в свитъка за свободните отговори!

21. Намерете корените на уравнението $\sqrt{x+2} - \sqrt{3-x} = 1$.

22. Като използвате квадратната мрежа, намерете стойността на $\cos \alpha$.

23. В банка са вложени 5000 лв. при сложна годишна лихва. Намерете лихвения процент, ако след две години сумата е нараснала с 408 лв.

24. На чертежа четириъгълникът АВСО е описан около окръжност с радиус 2 и AD+BC=9. Изразете чрез числото π лицето на фигурата, получена от четириъгълника след "изрязване" на вписания в него кръг. \boldsymbol{A}

25. Точките M и N лежат съответно на страните AC и BC на $\triangle ABC$,

$$AM=2CM$$
, $CN=2BN$ и $S_{\triangle MNC}=14\,\mathrm{cm}^2$. Намерете лицето на $\triangle ABC$.

Пълните решения с необходимите обосновки на задачите от 26. до 28. включително запишете в свитъка за свободните отговори!

26. Решете уравнението
$$(x+1)(x-2)(x+3)+(x-1)(x+3)(x-5)+(x+3)(x-2)(x-3)=0$$
.

27. Кодът на сейф се състои от 4 различни цифри и не започва с нула. Известно е, че числото, образувано от първите две цифри (цифрата на хилядите и стотиците), е квадрат на естествено число. Най-много колко различни опита са необходими, за да се отвори сейфът?

28. Даден е $\triangle ABC$ със страна AB = a и $\angle BAC = 30^{\circ}$. Построена е окръжност k, която минава през върха B на $\triangle ABC$, пресича страната му AB в точка D и се допира до ACв точка C. Намерете радиуса на окръжността, ако AD:DB=1:2.

ФОРМУЛИ

Квадратно уравнение

$$ax^2+bx+c=0\,,\;\;a\neq 0$$
 $D=b^2-4ac$ $x_{1,2}=\frac{-b\pm\sqrt{D}}{2a}$ при $D\geq 0$ $ax^2+bx+c=a\big(x-x_1\big)\big(x-x_2\big)$ Формули на Виет: $x_1+x_2=-\frac{b}{a}$ $x_1x_2=\frac{c}{a}$

Квадратна функция

Графиката на $y = ax^2 + bx + c$, $a \neq 0$ е парабола с връх точката $\left(-\frac{b}{2a}; -\frac{D}{4a}\right)$

Корен. Степен и логаритъм

$$\begin{array}{l} \sqrt[2k]{a^{2k}} = \left| a \right| & 2^{k+1}\sqrt[3]{a^{2k+1}} = a \quad \text{при} \quad k \in \mathbb{N} \\ \\ \frac{1}{a^m} = a^{-m}, \ a \neq 0 & \sqrt[n]{a^m} = a^{\frac{m}{n}} \quad \sqrt[n]{k} \overline{a} = \sqrt[nk]{a} & \sqrt[nk]{a^{mk}} = \sqrt[n]{a^m} \quad \text{при} \quad a \geq 0, k \geq 2, n \geq 2 \quad \text{и} \quad m, n, k \in \mathbb{N} \\ \\ a^x = b \Leftrightarrow \log_a b = x & a^{\log_a b} = b & \log_a a^x = x \quad \text{при} \quad a > 0, b > 0 \quad \text{и} \quad a \neq 1 \end{array}$$

Комбинаторика

Брой на пермутациите на n елемента: $P_n = n.(n-1)...3.2.1 = n!$

Брой на вариациите на n елемента k -ти клас: $V_n^k = n.(n-1)...(n-k+1)$

Брой на комбинациите на n елемента k -ти клас: $C_n^k = \frac{V_n^k}{P_k} = \frac{n.(n-1)...(n-k+1)}{k.(k-1)...3.2.1}$

Вероятност за настъпване на събитието A:

$$p(A) = \frac{\textit{брой на благоприятните случаи}}{\textit{брой на възможните случаи}}, \quad 0 \le p(A) \le 1$$

Прогресии

Аритметична прогресия: $a_n = a_1 + (n-1)d$ $S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$

Геометрична прогресия: $a_n = a_1 \cdot q^{n-1}$ $S_n = a_1 \cdot \frac{q^n - 1}{q - 1}, \ q \neq 1$

Формула за сложна лихва: $K_n = K.q^n = K.\left(1 + \frac{p}{100}\right)^n$

Зависимости в триъгълник и успоредник

Правоъгълен триъгълник:
$$c^2 = a^2 + b^2$$
 $S = \frac{1}{2}ab = \frac{1}{2}ch_c$ $a^2 = a_1c$ $b^2 = b_1c$

$$c^2 = a^2 + b^2$$

$$S = \frac{1}{2}ab = \frac{1}{2}ch_c$$

$$a^2 = a_1 c$$

$$b^2 = b_1 c$$

$$h_c^2 = a_1 b_1$$

$$h_c^2 = a_1 b_1$$
 $r = \frac{a+b-c}{2}$ $\sin \alpha = \frac{a}{c}$ $\cos \alpha = \frac{b}{c}$ $\tan \alpha = \frac{a}{b}$ $\cot \alpha = \frac{b}{a}$

$$\sin \alpha = \frac{a}{c}$$

$$\cos \alpha = \frac{b}{c}$$

$$\operatorname{tg} \alpha = \frac{a}{b}$$

$$\cot \alpha = \frac{b}{a}$$

Произволен триъгълник:

$$a^{2} = b^{2} + c^{2} - 2bc\cos\alpha$$
 $b^{2} = a^{2} + c^{2} - 2ac\cos\beta$ $c^{2} = a^{2} + b^{2} - 2ab\cos\gamma$ $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$

Формула за медиана:

$$m_a^2 = \frac{1}{4} (2b^2 + 2c^2 - a^2)$$

$$m_b^2 = \frac{1}{4} (2a^2 + 2c^2 - b^2)$$

$$m_a^2 = \frac{1}{4} (2b^2 + 2c^2 - a^2)$$
 $m_b^2 = \frac{1}{4} (2a^2 + 2c^2 - b^2)$ $m_c^2 = \frac{1}{4} (2a^2 + 2b^2 - c^2)$

Формула за ъглополовяща: $\frac{a}{b} = \frac{n}{m}$

$$\frac{a}{b} = \frac{n}{m}$$

$$l_c^2 = ab - mn$$

Формула за диагоналите на успоредник:

$$d_1^2 + d_2^2 = 2a^2 + 2b^2$$

Формули за лице

Триъгълник:

$$S = \frac{1}{2}ch_c$$

$$S = \frac{1}{2}ab\sin\gamma$$

$$S = \frac{1}{2}ch_c$$
 $S = \frac{1}{2}ab\sin\gamma$ $S = \sqrt{p(p-a)(p-b)(p-c)}$

$$S = pr$$

$$S = pr$$
 $S = \frac{abc}{AR}$

Успоредник:

$$S = ah_a$$

$$S = ab \sin \alpha$$

$$S = ah_a$$
 $S = ab\sin\alpha$ Трапец: $S = \frac{a+b}{2}h$

Четириъгълник:

$$S = \frac{1}{2}d_1d_2\sin\varphi$$

Описан многоъгълник: S = pr

Тригонометрични функции

α°	0°	30°	45°	60°	90°
α rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tgα	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_
$\cot g \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

	$-\alpha$	90°−α	90°+α	180°-α
sin	$-\sin\alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$
cos	$\cos \alpha$	$\sin \alpha$	$-\sin\alpha$	$-\cos\alpha$
tg	$-tg\alpha$	$\cot g \alpha$	$-\cot g \alpha$	$-tg\alpha$
cotg	$-\cot g \alpha$	tg α	$-\operatorname{tg}\alpha$	$-\cot g \alpha$

$$\begin{split} \sin\left(\alpha\pm\beta\right) &= \sin\alpha\cos\beta\pm\cos\alpha\sin\beta & \cos\left(\alpha\pm\beta\right) = \cos\alpha\cos\beta\mp\sin\alpha\sin\beta \\ tg\left(\alpha\pm\beta\right) &= \frac{tg\,\alpha\pm tg\,\beta}{1\mp tg\,\alpha\,tg\,\beta} & \cos\left(\alpha\pm\beta\right) = \frac{\cot\alpha\cos\beta\mp\sin\alpha\sin\beta}{\cot\beta\pm\cot\beta} \\ \sin2\alpha &= 2\sin\alpha\cos\alpha & \cos2\alpha &= \cos^2\alpha-\sin^2\alpha = 2\cos^2\alpha-1 = 1 - 2\sin^2\alpha \\ tg\,2\alpha &= \frac{2tg\,\alpha}{1-tg^2\,\alpha} & \cot 2\alpha &= \frac{\cot^2\alpha-1}{2\cot\beta\alpha} \\ \sin^2\alpha &= \frac{1}{2}(1-\cos2\alpha) & \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) \\ \sin^2\alpha &= \frac{1}{2}(1-\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha &= \cos^2\alpha - \sin^2\alpha &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha &= \cos^2\alpha &= \cos^2\alpha - \cos^$$

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

Математика – 22 май 2015 г.

ВАРИАНТ 1

Ключ с верните отговори

Въпроси с изборен отговор

Въпрос	ьпрос Верен отговор	
No		точки
1	A	2
2	В	2 2
3	A	2
4	Γ	2
5	Γ	2
6	Γ	2
7	Б	2
8	Б	2 2 2 2 3 3
9	В	2
10	Γ	2
11	Γ	3
12	Б	3
13	В	3
14	Б	3
15	Γ	3
16	Б	3 3 3 3 3
17	Б	3
18	В	3
19	Б	3
20	В	3
21	2	4
22	$2 2\sqrt{13}$	4
	$-\frac{2}{\sqrt{13}}$ или $-\frac{2\sqrt{13}}{13}$	
23	4%	4
24	$S = 18 - 4\pi$ или $S = 2(9 - 2\pi)$	4
25	$S_{\Delta ABC} = 63 \mathrm{cm}^2$	4
26	$x_1 = -3$, $x_2 = 1$, $x_3 = 3$	10
27	336	10
28	$R = \frac{a}{3}$	10

Въпроси с решения

26. Критерии за оценяване

По решението

I начин

1. Изнасяне на множител (x+3) и представяне на уравнението във вида $(x+3)\lceil (x+1)(x-2)+(x-1)(x-5)+(x-2)(x-3)\rceil = 0$. (2 т.)

- му $(x+3)(x^2-x-2+x^2-6x+5+x^2-5x+6)=0$ за всяко събираемо по 1 точка. (3 т.) 3. За правилно приведение и свеждане на уравнението до еквивалентното му
- $(x+3)(3x^2-12x+9)=0.$ (2 т.)

4. За намиране на трите корена
$$x_1 = -3$$
, $x_2 = 1$, $x_3 = 3$. (3 т.)

II начин

- 1.Правилно разкриване на скобите (по 1точка за всяко от трите събираеми) и свеждане на уравнението до еквивалентното му $3x^3 3x^2 27x + 27 = 0$. общо (4 т.)
- 2. Последователно получаване на еквивалентните уравнения

$$3(x^3 - x^2 - 9x + 9) = 0 : 3 \Leftrightarrow x^2(x - 1) - 9(x - 1) = 0 \Leftrightarrow (x - 1)(x^2 - 9) = 0.$$
 (2 T.)

3. Свеждане до уравнението
$$(x-1)(x+3)(x-3)=0$$
. (1 т.)

4. За намиране на трите корена
$$x_1 = -3$$
, $x_2 = 1$, $x_3 = 3$. (3 т.)

Решение

I начин
$$(x+1)(x-2)(x+3)+(x-1)(x+3)(x-5)+(x+3)(x-2)(x-3)=0 \Leftrightarrow (x+3)[(x+1)(x-2)+(x-1)(x-5)+(x-2)(x-3)]=0 \Leftrightarrow (x+3)(x^2-x-2+x^2-6x+5+x^2-5x+6)=0 \Leftrightarrow (x+3)(3x^2-12x+9)=0 \Leftrightarrow (3(x+3)(x^2-4x+3)=0 \Leftrightarrow 3(x+3)(x-1)(x-3)=0.$$

Корените на равнението са $x_1 = -3$, $x_2 = 1$, $x_3 = 3$.

II начин: Преобразуваме лявата страна на уравнението и получаваме еквивалентното уравнение:

$$3x^{3} - 3x^{2} - 27x + 27 = 0 \iff 3(x^{3} - x^{2} - 9x + 9) = 0 \mid : 3 \iff x^{2}(x - 1) - 9(x - 1) = 0 \iff (x - 1)(x^{2} - 9) = 0 \iff (x - 1)(x + 3)(x - 3) = 0.$$

Корените на уравнението са $x_1 = -3$, $x_2 = 1$, $x_3 = 3$.

27. Критерии за оценяване

- 1. Записване на точните квадрати, по-малки от 100, на естествените числа. (2 т.)
- 2. Отхвърляне на числата 1 (01), 4 (04) и 9 (09). (1 т.)
- 3. Определяне на 6-те възможни двуцифрени числа (точни квадрати), които заемат първите 2 позиции на кода. (1т.)
- 4. Определяне на възможностите за наредба на неизползваните 8 цифри на трета и четвърта позиция в кода – $V_8^2 = 8.7 = 56$. (4 т.)
- 4. Правилен извод за пресмятане на опитите като произведение от 6 възможности за първите 2 цифри и 56 възможности за вторите две цифри (6.56) . (1 т.)
- 5. Получаване на правилния максимален брой 336 опита за отваряне на сейфа. (1 т.)

Решение

Точните квадрати, по-малки от 100, на естествени числа, са: 1, 4, 9, 16, 25, 36, 49, 64 и 81.

Тъй като кодът не започва с нула, не може първите две цифри да са квадратите на 1, 2 и $3\left(1^2=1,\ 2^2=4,\ 3^2=9\right)$, т.е. наредбата 01.., 04.. , или 09.. е невъзможна.

Двуцифрените числа, които са точни квадрати и могат да са първите две цифри на шифъра, са: 16, 25, 36, 49, 64 и 81.

Възможностите за цифрите на десетиците и на единиците, които се избират измежду останалите 8 цифри, неангажирани за първите 2 позиции, са $V_8^2 = 8.7 = 56$ на брой. Следователно максималният брой опити за отваряне на сейфа е 6.56 = 336.

28. Критерии за оценяване

1. За намиране на
$$AD = \frac{a}{3}$$
 и $DB = \frac{2a}{3}$. (1 т.).

2. За намиране на
$$AC = a \frac{\sqrt{3}}{3}$$
. (2 т.)

3. За намиране на
$$BC = a \frac{\sqrt{3}}{3}$$
. (2 т.)

І начин на продължение на решението

4. За извода, че
$$∢ABC = 30^\circ$$
. (1т.)

5. За намиране на
$$\angle CDB = 60^{\circ}$$
, $\angle DCB = 90^{\circ}$ или $CD = \frac{a}{3}$. (2 т.)

6. За извода, че
$$R = \frac{1}{2}DB$$
 или изразяване на R чрез CD от $\triangle CDB$. (1 т.)

7. За верен отговор
$$R = \frac{a}{3}$$
. (1 т.)

II начин на продължение на решението

4. За извода, че
$$∢ABC = 30^\circ$$
. (1т.)

5. За намиране на
$$\widehat{CD} = 60^{\circ}$$
. (1 т.)

6. За намиране на
$$\widehat{CB} = 120^{\circ}$$
. (1 т.)

7. За намиране на
$$\widehat{DCB} = 180^{\circ}$$
. (1 т.)

8. За извода, че
$$DB = 2R$$
, $R = \frac{DB}{2} = \frac{a}{3}$. (1 т.)

III начин на продължение на решението

4. За намиране на
$$CD = \frac{a}{3}$$
. (2 т.)

5. За доказване, че
$$\triangle BCD$$
 е правоъгълен. (2 т.)

6. За извода, че
$$DB = 2R$$
, $R = \frac{DB}{2} = \frac{a}{3}$. (1 т.)

Решение

От даденото съотношение AD:DB=1:2 следва, че $AD=\frac{a}{3}$ и

$$A$$
 D B

$$DB = \frac{2a}{3}$$
.

За допирателната AC и секущата AB имаме $AC^2 = AB.AD = a.\frac{a}{3}$, откъдето получаваме,

че
$$AC = a\frac{\sqrt{3}}{3}$$
 . (От подобните триъгълници $\triangle ACD \sim \triangle ABC \Rightarrow \frac{AC}{AB} = \frac{AD}{AC}$,

$$\Rightarrow AC^2 = AB.AD = a.\frac{a}{3} AC = a\frac{\sqrt{3}}{3}$$
).

От косинусова теорема за $\triangle ABC$: $BC^2 = AB^2 + AC^2 - 2AB.AC.\cos 30^\circ$ получаваме, че

$$BC = a\frac{\sqrt{3}}{3}.$$

І начин на продължение на решението

Следователно AC = BC и $\angle ABC = 30^{\circ}$. Следователно

$$\widehat{CD}=60^\circ, \sphericalangle ACD=30^\circ, \sphericalangle CDB=60^\circ$$
. Оттук следва, че $\sphericalangle DCB=90^\circ \Rightarrow DB=2R, R=\frac{a}{3}$.

Или от косинусова теорема за ADC: $CD^2 = AD^2 + AC^2 - 2AD.AC.\cos 30^\circ$, $CD = \frac{a}{3}$.

От синусова теорема за
$$\triangle CDB$$
 : $\frac{CD}{\sin 30^{\circ}} = 2R$, $R = \frac{a}{3}$.

II начин на продължение на решението

Следователно AC = BC и $\angle ABC = 30^{\circ}$. Оттук следва, че $\widehat{CD} = 2 \angle ABC = 60^{\circ}$.

От
$$∢CAB = \frac{\widehat{BC} - \widehat{CD}}{2} \Rightarrow \widehat{BC} = 2 ∢CAB + \widehat{CD}$$
, откъдето $\widehat{CB} = 120^\circ$ и следователно

$$\widehat{DCB} = 180^{\circ}$$
 и DB е диаметър. Оттук $DB = 2R$, $R = \frac{DB}{2} = \frac{a}{3}$.

III начин на продължение на решението

От косинусова теорема за ADC: $CD^2 = AD^2 + AC^2 - 2AD.AC.\cos 30^\circ$, $CD = \frac{a}{3}$.

От равенството $BD^2 = CD^2 + BC^2$ $\left(\frac{4a^2}{9} = \frac{a^2}{9} + \frac{3a^2}{9}\right)$ следва, че $\triangle BCD$ е правоъгълен

и $\angle BCD = 90^{\circ}$, а DB е диаметър, откъдето DB = 2R, $R = \frac{DB}{2} = \frac{a}{3}$.