Trig Final (Solution v16)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The angle measure is 1.9 radians. The arc length is 66 meters. How long is the radius in meters?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

r = 34.74 meters.

Question 2

Consider angles $\frac{-8\pi}{3}$ and $\frac{15\pi}{4}$. For each angle, use a spiral with an arrow head to \mathbf{mark} the angle on a circle below in standard position. Then, find \mathbf{exact} expressions for $\cos\left(\frac{-8\pi}{3}\right)$ and $\sin\left(\frac{15\pi}{4}\right)$ by using a unit circle (provided separately).

Find $cos(-8\pi/3)$

$$\cos(-8\pi/3) = \frac{-1}{2}$$

Find $sin(15\pi/4)$

$$\sin(15\pi/4) = \frac{-\sqrt{2}}{2}$$

Question 3

If $\cos(\theta) = \frac{-65}{97}$, and θ is in quadrant III, determine an exact value for $\sin(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$65^{2} + B^{2} = 97^{2}$$

$$B = \sqrt{97^{2} - 65^{2}}$$

$$B = 72$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant III in a unit circle.

$$\sin(\theta) = \frac{-72}{97}$$

Question 4

A mass-spring system oscillates vertically with a frequency of 8.77 Hz, an amplitude of 2.53 meters, and a midline at y = -7.68 meters. At t = 0, the mass is at the minimum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -2.53\cos(2\pi 8.77t) - 7.68$$

or

$$y = -2.53\cos(17.54\pi t) - 7.68$$

or

$$y = -2.53\cos(55.1t) - 7.68$$