Goal: Develop tools for computing limits without relying on tables and graphs.

Limit laws

- $\lim_{x \to a} k =$
- $\lim_{x \to a} x =$

Assume that $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist. Then we have the following:

- $\lim_{x \to a} f(x) \pm g(x) =$
- $\bullet \ \lim_{x \to a} kf(x) =$
- $\lim_{x \to a} f(x)g(x) =$
- Assuming $\lim_{x\to a} g(x) \neq 0$, then $\lim_{x\to a} \frac{f(x)}{g(x)} =$
- Let n be a positive integer. Then $\lim_{x\to a} (f(x))^n =$
- Let n be a positive integer. Then $\lim_{x\to a} \sqrt[n]{f(x)} =$

Example 1

Find the limit using limit laws: $\lim_{x\to 4} \frac{x^2-9}{x-3}$

Example 2

Use the following graphs to find the limit: $\lim_{x\to 2} xf(x) - g(x)$

Direct Substitution Property and Limits of Piecewise Functions

Example 3

Determine $\lim_{x\to 3} g(x)$, where $g(x) = \begin{cases} \sqrt{7-x} & \text{if } x \leq 3\\ x-2 & \text{if } x > 3 \end{cases}$.

Limits in the "0/0" form:

Example 4

Find the following limits:

a.
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$$

b.
$$\lim_{x \to 1} \frac{3x^2 + 4x - 7}{x^2 - x}$$

Example 5

Find the following limits:

(a)
$$\lim_{x \to 0} \frac{x}{\sqrt{4+x}-2}$$

(b)
$$\lim_{x \to 5} \frac{\frac{1}{5} - \frac{1}{x}}{x - 5}$$

Squeeze Theorem

Statement:

Example 6 Determine $\lim_{x\to 1} g(x)$ assuming g(x) is a function such that $2x-1\leq g(x)\leq x^2$.

Example 7

Let h(x) be a function such that $1-x^2 \le h(x) \le x+3$. Does the squeeze theorem show that $\lim_{x\to 0} h(x)$ does not exist? Explain your answer using complete sentences.

Example 8

Determine $\lim_{x\to 0} x^2 \sin\left(\frac{3\pi}{x}\right)$.

