Glacier mass balance modelling of the Tibetan Plateau mesh dependence issues

Jakob Heyman¹, Alun Hubbard^{1,2}, Nina Kirchner¹, Arjen P Stroeven¹

- 1. Department of Physical Geography and Quaternary Geology, Stockholm University
- 2. Institute of Geography and Earth Sciences, Aberystwyth University

Outline

- Introduction Glacial history of the Tibetan Plateau
- The model a simple PDD mass balance model
- Model results
 - -Comparison with modern glaciers
 - -Grid resolution variation
 - -Grid resolution variation / climate perturbations
- Summary

Contemporary glaciers

Kuhle (2004): Quat Glac – Ext and Chronol, Vol III

Li et al. (1991): Science Press, Beijing

The model

Simple positive degree day model

Input: 1 km resolution climate data (WorldClim: Hijmans et al. 2006, International Journal of Climatology, 25)

Results

0 mm water equivalent -20000

> 7778 m a.s.l.

Grid resolution variation

10 km

1 km

Grid resolution variation

resolution	nr of grids
1 km	6617600
2.5 km	1058816
5 km	264704
10 km	66176
20 km	16544
40 km	4136

Climate perturbations

Summary

A simple pdd mass balance model with high resolution WorldClim climate data as input reproduce the accumulation areas of modern glaciers reasonably OK

Grid resolution effects the accumulation area significantly Larger grids → smaller accumulation area

