Name: Ananya Prasad Reg No: 20BCE10093

Semester: Fall 2022-23

Course cods: MAT2002

Faculty: Dr Navneet Verma

Date: 21-0ct-2022

1) a
$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
, $M_{SE} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{bmatrix}$

For Mros, Mros: Mr.Ms

we know that 1+1=1 This is the sinary or ,

$$M_{POS} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Now, by sumplifying each element cross

Total number of vertices = = 7

deg (a) + deg (b) + deg (a') + deg (b') + deg (c) + deg (d) + deg (e)

Now by handshaking -theorem, we know that

each region is bounded by seages.

: r-regiones are bounded by 3r-edges.

: By Euler's formula, r=2-n+e

$$\frac{2e}{3} = 2 - n + e$$

Now, substituting values,

Now this is a contradiction.

s. k (2,2,3) is non-planar.

7 1

e

```
s(b) Tree T with $ '
vertices = 3 , degree = 2

vertices 4 , degree = 3

vertices = 2 , degree = 4
```

By Handshaking Theorem, sum of all digrees = 2 * sum ob edges. $(3v \times 2b) + (4v \times 3b) + (3v \times 4b) + (kv \times 1b) = 2 * edges$

k = pendant verticu

3x2+4x3+3x4+ KXI = 2xedges -1 1)
number of edges = number of vertices -1

: edges =
$$(3+4+3+k)-1$$

: edges = $10+k-1$
edges = $9+k \rightarrow ②$

: substituting values of @ in O,

$$6 + 12 + 12 + k = 2 (9 + k)$$

$$15$$

$$30 + k = 2 (9 + k)$$

$$15 + k = 9 + k \Rightarrow 15 - 9 = k - k = 6 = k$$

$$15 - 9 = k = 6$$

: rotal number of pendant vertices are= 62

. 2

b(x; y) = x y' + x'y + x'y = DNF.

to get CNF,

Here, f' = xy as in the total function f(x1y) has 4 terms

Now, +"(x,y) = (xy)"

By demorgans law \Rightarrow (x, y)' = x' + y'(x + y)' = x'y'

(x, y) = (x' + y')

:. CNF = (x'+y')

PTO

5

By trustal algorithm,

supl

Eage .		neight	• —
Ав		2	
ВС		7	\longrightarrow \bigcirc \checkmark
co :	1.6	9	- & komsa wop
DE	=	5	
EA		Gx.	- x forms a wop
AC		8	- 7 x torms a loop
Ab		,4×	> 3 × cant take this as it forms a loop
BE		Gx	→ ③ × forms a loop
Ø D		3/	\longrightarrow \bigcirc
CE		8	- A x forms a cycle

step2

Select the edge with minimum weight

AB = First Granch

sup3

Select the next edge having minimal weight and add-that edge.

