

Use of R environment in **Evolutionary Ecology**

Why R??

PROS

- Beautiful plots
- Big data
- Loop through files and analysis
- Repeat same analysis any time
- Open free language = big online community to help

CONS

- Not pushing buttons to get quick results*
- Learn to code*

- CONS
- Not pushing buttons to get quick results
- Learn to code

- PROS
- Understanding what we are doing
- Learn how to code!

We are not goint to jump blindly into a bunch of code.

Baby steps

Basic R: How? Where?

Basic R: How? Where?

Script (commands you want to run)

objects (data) loaded in R Environment

Basic R: How? Where?

File > New File > R Script (Ctrl+Shift+N)

Write something nice!

Comment

#

Notes for yourself that will be ignored by R # you should define the purpose of the script # kind of input file and describe each step

Basic commands

Objects: any data saved in R environment

many kinds of objects can be saved in R memory variables, vectors, dataframes...

variables

Information stored with a unique name numerical values or text (string)

Basic commands

Declare variables:

```
3 <- three

three -> 3

two <- 2

three = 3

variable = "text string"
```

Execute with **Ctrl+Enter** and will appear at "Environment"

Basic commands

R does statistics and basic math

Operators:

Basic commands

```
a = 2
b = 10*4
sum_ab = a+b
```

```
> a=10*4
> b=2
> sum_ab=a+b
> sum_ab
[1] 42
>
```

you can call an object any time

The first rule of the coding club:
"If you are typing a lot your are doing it wrong"

Use 'Tab':

(autocomplete)

Basic commands

• First command:

cat()

It is a powerful tool to concatenate and write files.

But you will use me mainly to print things on screen

Basic commands: cat

Try to use cat() to print something in your console

cat(Hello World!)

Ctrl+Enter

Basic commands: cat

Tell R something is text by using "quotation marks"

cat("Hello World!")
cat(sum_ab)

Basic commands: cat

- Commands may have multiple arguments
- Arguments are separated by commas ","
- Concatenate various arguments with cat()

cat("The answer is", sum_ab)

Basic commands: cat

Arguments can modify commands behaviour

sep: how to separate arguments when printing

\n <- will print each argument in a different line

cat("The answer is", sum_ab, sep="\n")

Basic R Basic commands

Summarysing

- commands() can have many arguments
- arguments modify command behaviour
- arguments are separated by commas,
- text is defined with "quotation marks"

cat("The answer is", sum_ab, sep="\n")

Basic R Basic commands

Commands have help information check other arguments for cat:

?cat
help(cat)

Let's analyse our first data in R!

https://tinyurl.com/evolecopract

- Download excel file into a new folder
- Open Excel file

Dataset

Head and body measurements from lizards (*Podarcis sicula*) from two Adriatic islands

Excel file

Variables in columns
Observations in rows

Ехр	ort	from	Excel
	•••	•	

File>Save As: comma separated (.csv)

	1	CODE	Sex	Popi	Group	Altve	procesed	Spots	Jaws.ec	HeadWi	Tailten BodyLengt
1	2	PK021	fem	PK	PK-F	yes	TRUE	3	1,392	0.899	9.438 6.150
	3.	PK022	fem	PK	PK-F	no	TRUE	5	1.290	0.855	9.319 6.340
9	4	PK023	fem	PK	PK-F	yes	TRUE	- 6	1.277	0.849	1.060 5.894
3	5	PK024	fem	PK	PK-F	yes	TRUE	4	1.315	0.852	8.727 5.848
	6	PK025	fem	PK	PK-F	yes	TRUE	- 4	1.408	0.933	6.938 6.367
	7	PK026	fem	PΚ	PK-F	yes	TRUE	- 4	1.206	0.856	8.804 5.994
4	B.	PK027	fem	PK	PK-F	yes	TRUE	2	1,299	0.830	7.260 6.175
3	9	PK028	fem	PK	PK-F	no	FALSE	2	1.365	0.897	8.086 6.234
9	10	PK029	fem	PK	PK-F	no	TRUE	2	1.385	0.912	7.849 6.043
1	ŭ.	PK030	fem	PK	PK-F	yes	FALSE	3	1.282	0.836	0.933 5.573
1	12	PK031	fem	PK.	PK-F	no	TRUE	- 6	1.122	0.879	6.498 6.053
3	15	PK032	fem	PK	PK-F	yes	TRUE	. 5	1.295	0.856	6.462 5.929
1	14	PK033	fem	px	PK-F	no	TRUE	9	1.336	0.888	II.849 6.220
1	15	PK034	fem	PK	PK-F	no.	TRUE	3	1.297	0.821	9.233 6.452
1	16:	PK035	fem	PK	PK-F	yes	TRUE	2	1.345	0.871	2.920 6.642
ì	17	PK036	fem	PK	PK-F	yes	TRUE	1	1.234	0.858	2.299 5.662
1	in:	PK037	fem	PK.	PK-F	yes	FALSE	. 5	1.327	0.860	6.129 5.719
1	19	PK038	fem	PK	PK-F	no	FALSE	- 5	1.359	0.953	4.977 6.264
7	10	PK039	fem	PK	PK-F	no	FALSE	6	1.358	0.929	8.960 6.166
q	11	PK040	fem	PK	PK-F	yes	TRUE	3	1,442	0.942	7.592 6.362
1	12	PK041	fem	PK.	PK-F	no	FALSE	5	1.281	0.892	8.352 6.588
1	13	PK042	fem	PK	PK-F	yes	TRUE	6	1.359	0.894	8.221 5.881
2	14	PK043	fem	PK	PK-F	no	FALSE	3	1.311	0.928	8.949 6.311
2	15	PK044	tem	PK.	PK-F	yes	TRUE	- 4	1.425	0.905	1.922 6.380
3	26	PK045	fem	PK	PK-F	no	FALSE	6	1.402	0.926	9.174 6.569
3	17	PK046	fem	PK	PK-F	no	TRUE	4	1.372	0.903	7.839 6.186
274	26	PK001	mal	PK	PK-M	yes	TRUE	- 5	1,437	0.994	8.664 6.007
2	19.	PK003	mat	PK	PK-M	no	TRUE	2	1.508	1.091	6.943 6.748
1	10	PK004	mal	PK	PK-M	yes	TRUE	3	1.608	1.094	1.559 6.456
1	12	PK005	mal	PK.	PK-M	no	TRUE	1	1.405	1.010	8.467 6.024
L	12	numbe	inal	that	DW AR	and the	THEFT		1.630	1.053	4 961 4 935

Browse files in R: Working Directory

getwd()

To check the working directory (where R is reading your files from)

setwd()

To tell R where to find the files to analyse

setwd("path/")

1. Copy the path of the folder where you file is at

2 . Paste it in R script and replace "\" with "/"

setwd("D:/Dropbox/MOSKY/CURRO/CLASS/evoleco20")

getwd() # check wd

Import files to R

read.table()

Check **?read.table** to see arguments You need three arguments

- "file name"
- separator of columns (sep=",")
- header=? (TRUE/FALSE)

1	CODE	Sex.	Popu	Group	Alive	processed	Spots
2	PK021	fem	PK.	PK-F	yes	TRUE	3
3	PK022	fem	PK	PK-F	no	TRUE	. 5
4	PK023	fem	PK	PK-F	yes	TRUE	- 6
5	PK024	fem	PK.	PK-F	yes	TRUE	4
5	PK025	fem	PK	PK-F	yes	TRUE	4
7	PK026	fem	PK	PK-F	yes	TRUE	- 4
11	PK027	fem	PK	PK-F	yes	TRUE	2
9	PK028	fem	PK.	PK-F	mo	FALSE	2
10	PK029	fem	PK	PK-F	no	TRUE	2
11	PKDDD	fem	PK	PK-F	yes	FALSE	3
12	PK031	fem	PK	PK-F	no	TRUE	- 6
13	PK032	tem	PK	PK-F	yes	TRUE	5
14	PK033	fem	PK	PK-F	no	TRUE	9
15	PK034	fem	PK.	PK-F	no:	TRUE	3
16	PK035	fem	PK	PK-F	yes	TRUE	2
17	PK036	fem	PK	PK-F	yes	TRUE	1
18	PK037	fem	PK.	PK-F	yes	FALSE	5
15	PK038	fem	PK	PK-F	no.	FALSE	5
20	PK035	fem	PK	PK-F	no	FALSE	
21	PK040	fem	PK	PK-F	yes	TRUE	3
22	PK041	fem	PK.	PK-F	mo	FALSE	5
23	PK042	fem	PK	PK-F	yes	TRUE	- 6
24	PK043	fem	PK	PK-F	no:	FALSE	3
25	PK044	fem	PK	PK-F	yes	TRUE	4
26	PK045	fem	PK.	PK-F	no:	FALSE	6
27	PK045	fem	PK	PK-F	no	TRUE	4
28	PK001	mel	PK.	PK-M	yes	TRUE	5
29	PK003	mal	PK	PK-M	no	TRUE	2
30	PK004	mal	PK	PK-M	yes	THUE	3
21	PK005	mal	PK.	PK-M	mo	TRUE	1
9.9	menne	and.	nu	PHE NA	market.	TRACE	

Import files to R

This way we see it, but can't we save it in R environment?

Basic R Basic commands

Save files to R environment

You can redirect the output of most commands to an object

```
lizards <- read.table( ... )
```

Check your data!!

- Read the description in 'Environment'
- head(lizards)
- tail(lizards)
- str(lizards)

Basic R ERRORS?

Export from Excel

```
File>Options>Advaced
```

In "Editing options"

Uncheck:

☐ Use system separators

Decimal separator [.]

Thousands separator [,]

File>Save As: comma separated (.csv)

lizards = read.table(. . .)

Basic R ERRORS?

Export from Excel

```
Open file, replace all "," with "."
Save
```

Check your data!!

- Read the description in 'Environment' 86 observarions (individuals)
- head(lizards)
- tail(lizards)
- str(lizards)

Check your data again!!

str(lizards)

data frame organisation: \$
Each column from our excel is a different variable stored in a different \$ slot

lizards\$Sex

```
'data.frame': 86 obs. of 11 variables:
$ CODE : chr "PK021" "PK022" "PK023" "PK024" ...
$ Sex : chr "fem" "fem" "fem" ...
$ Population: chr "PK" "PK" "PK" "PK" ...
$ Group : chr "PK-F" "PK-F" "PK-F" ...
$ Alive : chr "yes" "no" "yes" "yes" ...
$ procesed : logi TRUE TRUE TRUE TRUE TRUE TRUE ...
$ Spots : int 3 5 6 4 4 4 2 2 2 3 ...
$ JawLength : num 1.39 1.29 1.28 1.31 1.41 ...
$ Headwidth : num 0.899 0.855 0.849 0.852 0.933 0.856 0.83 0.897 0.912 0.836 ...
$ TailLength: num 9.44 9.32 1.06 8.73 6.94 ...
$ BodyLength: num 6.15 6.34 5.89 5.85 6.37 ...
```

R differentiates some types of variables

Sex and Population "chr"

```
$ Sex : chr "fem" "fem" "fem" "fem" ...
$ Population: chr "PK" "PK" "PK" "PK" ...
```

Pod Mrčaru

Pod Kopište

- Are categorical variables
- We will use them to define groups
- In most analysis they are used as "grouping", "treatment" or "explanatory variables"

R differentiates some types of variables

Tail Length and Body Length "num"

```
$ TailLength: num 9.44 9.32 1.06 8.73 6.94 ...
$ BodyLength: num 6.15 6.34 5.89 5.85 6.37 ...
```

- Continuous numerical variables
- In mostly are used as "response variables"
- We will analyse if their values are different among groups

Let's analyse the data

Is there significant differences in Body Lenght between males and females?

Let's analyse the data

Is there significant differences in Body Lenght between males and females?

aov() = analysis of variance = ANOVA

2 arguments

formula: response variable ~ grouping variable

data frame name: lizards

Let's analyse the data

ANOVA

aov(BodyLength~Sex, data=lizards)

```
Summarice: summary()

summary(aov(...))

Pr(>F)
1.91e-05 ***
```

Save for later results aov <- summary(aov(. . .))

BASIC PLOT

boxplot(BodyLength~Sex, data=lizards)

EXERCISE

Now try to do the same for Head Width and Populations

Are there significant differences in Head Width between Populations?

You will need: aov(), summary(), and boxplot()

save results to a file

```
First check format str(results_aov)

This is ugly
```

We actually want it as the output that appears in Console

```
> results_aov

Df Sum Sq Mean Sq F value Pr(>F)

Sex 1 3.761 3.761 20.55 1.91e-05 ***

Residuals 84 15.374 0.183
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

save results to a file

1.- <u>capture output</u> as seen on screen: capture.output results_aov <- summary(aov(...))

capture.output(results_aov)

print_aov <- capture.output(results_aov)</pre>

2.- print to a file: 'cat' with argument "file" and "sep"

cat(print_aov, sep="\n", file="aov_out.txt")