

## Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at <a href="http://about.jstor.org/participate-jstor/individuals/early-journal-content">http://about.jstor.org/participate-jstor/individuals/early-journal-content</a>.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

the apparatus under the air-pump, and measuring the electrolytic resistance at a pressure of 1.1 inches. This gives at  $64^{\circ}.6..e=589.6$ ,

and it is shown, that the chances are 3 to 2 that the unexplained difference is mere error of observation. The mere escape of the gas, therefore, does not change e.

This change of temperature produces no alteration of metallic affinities, as is shown by the intensity of Daniell's cell being the same at  $64^{\circ}$  and  $163^{\circ}$ . The expression of this is e=zo-2cu.o. That for a cell excited with dilute sulphuric acid =zo-cu.o-ho, and it is found to decrease 27.9 for  $100^{\circ}$ . The mean of all gives 25.1; and, if we might suppose this rate to be uniform through the thermometric scale, it would give  $2386^{\circ}$ , midway between the melting points of gold and cast-iron, for the temperature at which this affinity would cease.

The author concludes by expressing his doubts, that the combination of these gases is in any case produced by heat; and suggests that light is more probably the agent when the combustion is rapid, and the capillary force of the surfaces in contact with them, at lower temperatures, aided by some actinic influence extricated by the heat. Finally, he points out as a promising subject of mathematical research, the application of the undulatory theory to the phenomena of conducted and latent heat.

Sir William R. Hamilton read a paper by Professor Young, of Belfast, on an extension of a theorem of Euler.

The object of the author is to extend and generalize the theorem of Euler,—that the sum of four squares, multiplied by the sum of four squares, produces the sum of four squares. He commences by examining into the construction of the four-square formula, with the view of ascertaining whether any thing like a definite law or principle connects its component

parts together; and from which a formula for a greater number of squares might be suggested. Such a principle is found to govern the generation of the four-square results, when these are arrived at by a peculiar process, which the author exhibits. The same process is then extended to the case of eight squares; and it is found that

$$(s'^2 + t'^2 + u'^2 + v'^2 + w'^2 + x'^2 + y'^2 + z'^2) \times$$

$$(s^2 + t^2 + u^2 + v^2 + w^2 + x^2 + y^2 + z^2) =$$

$$(ss' + tt' + uu' + vv' + ww' + xx' + yy' + zz')^2 + (st' - ts' + uv' - vu' + wx' - xw' + yz' - zy')^2 + (su' - us' + vt' - tv' + yw' - wy' + xz' - zx')^2 + (sv' - vs' + tu' - ut' + wz' - zw' + xy' - yx')^2 + (sw' - ws' + xt' - tx' + uy' - yu' + zv' - vz')^2 + (sx' - xs' + tw' - wt' + yv' - vy' + zu' - uz')^2 + (sy' - ys' + zt' - tz' + vx' - xv' + wu' - uw')^2 + (sz' - zs' + ty' - yt' + vw' - wv' + ux' - xu')^2.$$

These results are verified by the actual development of the several squares; which development, by the mutual cancelling of all the double products, reduces itself to the sixty-four squares furnished by the product of the proposed factors, when multiplied together in the ordinary way.

The author then enters into a more minute examination of the constitution of the preceding polynomial; and shows that the cancelling of the aforesaid double products is a necessary consequence of that constitution.

It is further shown that the product continues to be of the same form as each of the factors, when the coefficients  $a^0$ ,  $a^1$ ,  $a^2$ ,  $a^3$ , &c., are introduced in order, in connexion with the squares entering those factors.

Sir William Rowan Hamilton stated also a theorem respecting products of sums of eight squares, which does not essentially differ from the foregoing, and was communicated to him by John T. Graves, Esq., about the end of the year 1843.