ECE440: Homework #5

DAVID KIRBY

Due: 07 May 2020

1. Problem P3, Chapter 5 (50%)

Consider the following network. With the indicated link costs, use Dijkstra's shortest-path algorithm to compute the shortest path from x to all nodes. Show how the algorithm works by computing a table similar to Table 5.1.

Step	N'	D(z),p(z)	D(y),p(y)	D(w),p(w)	D(v),p(v)	D(u),p(u)	D(t),p(t)
0	X	8,x	6,x	6,x	3,x	∞	∞
1	VX	8,x	$_{6,x}$	$_{6,x}$	_	$_{6,\mathrm{v}}$	7,v
2	VWX	8,x	$_{6,x}$	-	-	$_{6,\mathrm{v}}$	7,v
3	vwxy	8,x	_	-	-	$_{6,\mathrm{v}}$	7,v
4	uvwxy	8,x	-	-	-	-	7,v
5	tuvwxy	8,x	-	-	-	-	-
6	tuvwxyz	=	-	-	-	-	=

2. Problem P5, Chapter 5 (50%)

Consider the network shown below, and assume that each node initially knows the costs to each of its neighbors. Consider the distance-vector algorithm and show the distance table entries at node z.

Table 1: Initial Neighbors

Table 2: After One-hop

											to		
		u	V	X	У	\mathbf{Z}			u	\mathbf{V}	\mathbf{X}	У	\mathbf{Z}
from	u	∞	∞	∞	∞	∞		u	0	1	∞	2	∞
	V	∞	∞	∞	∞	∞		V	1	0	3	∞	6
	X	∞	∞	∞	∞	∞	from				0		
	у	∞	∞	∞	∞	∞		У	2	∞	3	0	∞
	${f z}$	∞	6	2	∞	∞		\mathbf{Z}	∞	6	2	∞	0

Table 3: Minimum distance vectors

				to		
		u	V	\mathbf{X}	У	\mathbf{Z}
	u	0	1	4	2	6
from	V	1	0		3	5
	X	4	3 3 5	0	3	2
	у	2	3	3	0	5
	\mathbf{Z}	6	5	2	5	0