CMSC 141 Automata and Language Theory Regular Languages

Mark Froilan B. Tandoc

August 20, 2014

Another look in our FA

Deterministic Finite Automata (DFA)

A DFA is (formally) defined using a "five-tuple" $M = (Q, \Sigma, \delta, S, F)$ where

- $Q \Rightarrow$ finite set of states, e.g. $\{q_0, q_1, q_2\}$
- Σ \Rightarrow input alphabet, e.g. $\{a, b\}$
- $egin{aligned} \delta &\Rightarrow ext{ transition function, } Q imes \Sigma
 ightarrow Q \ \delta(q_0,a) = q_1 \ \delta(q_0,b) = q_2 \end{aligned}$
- $S \Rightarrow$ start state, where $S \in Q$
- $F \Rightarrow$ set of final(accepting) states, where $F \subseteq Q$

Simpler Notations for DFA's

Specifying DFA using five-tuple is both tedious and hard to read

five-tuple

$$M = (Q, \Sigma, \delta, q_0, F)$$
 where:

- $Q = \{q_0, q_1, q_2, ..., q_5\}$
- $\Sigma = \{a, b\}$
- $\delta(q_0, a) = q_1 \ \delta(q_0, b) = q_3 \ \delta(q_1, a) = q_4 \ \delta(q_1, b) = q_2$
- $F = \{q_1, q_2\}$

Simpler Notations for DFA's

Transition diagram or transition table can be used as alternatives

transition table			
δ	а	b	
$ ightarrow q_0$	q_1	q ₃	
$\underline{ *q_1}$	q_4	q ₂	
* q 2	q_1	q ₅	
q ₃	q ₃	q ₃	
q_4	q_4	q_4	
q 5	q_4	q_4	

Instantaneous Descriptions of DFAs

- We represent the status of an execution of a DFA with the pair (currentState, remainingInput)
- Such pair is known as an ID and provide a snapshot of the process
- The acceptance of a string is demonstrated by a sequence of such IDs

Instantaneous Descriptions of DFAs

 $(q_0, aba) \vdash^* (q_1, \varepsilon)$

Exercises

Do we really need states q_3 , q_4 and q_5 ? Create DFAs for:

- $\{w|w \text{ has alternating symbols}\}$ over $\Sigma = \{a, b\}$
- $\{w|w \text{ has a substring } 01\} \text{ over } \Sigma = \{0,1\}$
- lacksquare $\{w|w \text{ has odd number of 1's}\}$ over $\Sigma=\{0,1\}$
- $\{w|w \text{ has even number of 1's and 0's}\}$ over $\Sigma = \{0,1\}$

- Whether automation or artwork, design is a creative process
- Put yourself in the place of the machine you are designing
- After every scanned symbol, you must decide if the string seen so far is in the language
- To make these decisions, you must remember some things about the string as you read them

Example

Design a DFA for $\{w|w \text{ has odd number of 1's}\}$ over $\Sigma = \{0,1\}$

Example

Design a DFA for $\{w|w \text{ has odd number of 1's}\}$ over $\Sigma = \{0,1\}$

■ What do we need to remember?

Example

Design a DFA for $\{w|w \text{ has odd number of 1's}\}$ over $\Sigma = \{0,1\}$

■ We simply remember if the number of 1's seen so far is odd or even giving us two states

Example

Design a DFA for $\{w|w \text{ has odd number of 1's}\}$ over $\Sigma = \{0,1\}$

■ Now we assign transitions by changing states as we read the symbols

Example

Design a DFA for $\{w|w \text{ has odd number of 1's}\}$ over $\Sigma = \{0,1\}$

■ We set the start state where no symbol is seen so far

Example

Design a DFA for $\{w|w \text{ has odd number of 1's}\}$ over $\Sigma = \{0,1\}$

■ Last, we set the states where we wanted to accept the strings

Non-deterministic Finite Automata (NFA)

- In DFAs, for each input, there is one and only one state to transition and we can only be in a single state in a given time
- NFAs allows us to be in multiple states simultaneously
- We can also look at it as if the machine creates a copy of itself on a different state
- In an NFA, a state may have zero, one, or many exiting arrows for each alphabet symbol

Acceptance in NFAs

- There would be a need to modify the definition of acceptance in NFAs
- A string x is accepted by an NFA if there is a path (one is enough) that eventually ends in a final state

Why the need for non-determinism?

- Use of non-determinism often simplifies the design of FA
- Consider $L = \{w | w \text{ ends in } 01\}$

Challenge: create a DFA of the language

 q_0

 q_0

Formal Definition of an NFA

NFAs are defined almost the same as DFAs using a "five-tuple" $M = (Q, \Sigma, \delta, S, F)$ where

- \blacksquare $Q \Rightarrow$ finite set of state, e.g. $\{q_0, q_1, q_2\}$
- lacksquare $\Sigma \Rightarrow$ input alphabet, e.g. $\{0,1\}$
- $\delta \Rightarrow$ transition function, $Q \times \Sigma \rightarrow P(Q)$ The transition function takes a state and an input symbol and produces the set of possible next states e.g.

TICAL STATES C.g.		
δ	0	1
q_0	$\{q_0,q_1\}$	$\{q_0\}$
q_1	Ø	$\{q_2\}$
q_2	Ø	Ø

- lacksquare $S \stackrel{\neg}{\Rightarrow}$ start state, where $S \in Q$ e.g. q_0
- $F \Rightarrow$ set of final states, where $F \subseteq Q$ e.g. $\{q_2\}$

$NFA \Leftrightarrow \overline{DFA}$

- All DFAs are NFAs.
- Can every NFA be converted to an equivalent DFA?

$NFA \Leftrightarrow DFA$

- All DFAs are NFAs.
- Can every NFA be converted to an equivalent DFA?
- DFA and NFA recognize the same class of languages (regular languages).

Consider the following NFA

- Let $M = \{Q, \Sigma, \delta, q_0, F\}$ be the given NFA
- We construct an equivalent DFA $M' = \{Q', \Sigma, \delta', q'_0, F'\}$

Every state in M' is a set of states from the NFA.

Start from the initial state where $q_0' = \{0\}$

$$\delta'(\{0\},1) = \{0\}$$

$$\delta'(\{0\},0) = \{0,1\}$$

$$\delta'(\{0,1\},1) = \\ \delta(0,1) \cup \delta(1,1) \\ \delta'(\{0,1\},1) = \\ \{0\} \cup \{2\}$$

$$\delta'(\{0,1\},0) = \\ \delta(0,0) \cup \delta(1,0) \\ \delta'(\{0,1\},0) = \\ \{0,1\} \cup \emptyset$$

$$\delta'(\{0,2\},1) = \\ \delta(0,1) \cup \delta(2,1) \\ \delta'(\{0,2\},1) = \\ \{0\} \cup \emptyset$$

$$\delta'(\{0,2\},0) = \\ \delta(0,0) \cup \delta(2,0) \\ \delta'(\{0,2\},0) = \\ \{0,1\} \cup \emptyset$$

If a state in M' is a final state if it contains at least one final state from the NFA.

References

- Previous slides on CMSC 141
- M. Sipser. Introduction to the Theory of Computation. Thomson, 2007.
- J.E. Hopcroft, R. Motwani and J.D. Ullman. Introduction to Automata Theory, Languages and Computation. 2nd ed, Addison-Wesley, 2001.
- E.A. Albacea. Automata, Formal Languages and Computations, UPLB Foundation, Inc. 2005
- JFLAP, www.jflap.org