學號: R06922075 系級: 資工碩一 姓名: 翁瑋

1. (1%)請比較有無normalize(rating)的差別。並說明如何normalize. (collaborator:)

Normalize方法為對rating標準化,將每個值減掉平均後除掉標準差,使得整體的標準差為1,平均為0,以下表格為比較有無標準差後的訓練表現與kaggle結果:

	沒有標準化	有標準化
Local train val_loss	0.8841	0.7651
kaggle public score	0.88685	0.85535
kaggle private score	0.88516	0.85455

loss採用自訂的rmse做標準,可以看到有標準化後的表現比較好,而且在訓練時有經過標準化的資料收斂速度也較快。

2. (1%)比較不同的latent dimension的結果。 (collaborator:)

latent dimension	kaggle public score	kaggle private score
16	0.92331	0.92050
32	0.89668	0.89652
64	0.87339	0.87481
128	0.87098	0.86927
256	0.86449	0.86428

可以看到,隨著latent dimension的上升,在kaggle上的rmse也跟著減少,我認為 是因為較多的維度可以做出來的組合越多,在預測方面也能更精準。

3. (1%)比較有無bias的結果。 (collaborator:)

	有bias	無bias
Local train val_loss	0.8712	0.8779
kaggle public score	0.87098	0.88000
kaggle private score	0.86927	0.88152

沒有bias的模型在表現上略遜有bias的模型一籌,大概是因為對於特定的 User跟Movie真的有特定的評分偏差。

4. (1%)請試著用DNN來解決這個問題,並且說明實做的方法(方法不限)。並比較 MF和NN的結果,討論結果的差異。 (collaborator:)

一樣將User跟Movie先embedding成128的vector, 再使用concatenate層將兩個向量合成一個256維的向量,後接3層DNN,分別為256,128,64,用relu當activation,最後一層輸出一維,activation使用linear,以下為比較:

	MF	DNN
kaggle public	0.85535	0.87857
kaggle private	0.85455	0.87808

5. (1%)請試著將movie的embedding用tsne降維後,將movie category當作label來作圖。

(collaborator:)

試著用sklearn的TSNE將原本128維的向量降為2維的向量, 並用以下的分類方式將每部電影標上顏色: Children's, Animation, Comedy, Musical, Action, Adventure, Fantasy, Sci-Fi, Drama, Romance, Documentary, Western, Thriller, War, Mystery, Horror, Crime, Film-Noir

6. (BONUS)(1%)試著使用除了rating以外的feature, 並說明你的作法和結果, 結果 好壞不會影響評分。

(collaborator:)

使用User的Gender作為bias,觀察是否不同的性別對於電影評分會有特定高分或低分的偏差,將每個使用者的性別依照男女編為0或1,並將0/1 embedding成一個特定的值當作bias,最後跟原本dot的結果還有movie, user的 bias加起來當作output,以下為kaggle結果:

	有使用Gender	沒有使用Gender
kaggle public	0.87462	0.86093
kaggle private	0.87906	0.86415