Fonction racine n-ième

Théorème 1 (et définition)

 $n \in \mathbb{N}^*$

La fonction $x\mapsto x^n$ est continue et strictement croissante sur \mathbb{R}_+ donc elle est bijective de \mathbb{R}_+ vers \mathbb{R}_+ et admet une bijection réciproque appelée *fonction racine n-ième* et notée $x\mapsto x^{\frac{1}{n}}$ ou $x\mapsto \sqrt[n]{x}$.

Exemple 2 $-\sqrt[1]{x} = x$,

- $\sqrt[2]{x} = \sqrt{x} = x^{\frac{1}{2}}$ (racine carrée),
- $\sqrt[3]{x} = x^{\frac{1}{3}}$ appelée la racine cubique de x.

Notation 3

$$\sqrt[n]{x^p} = (x^p)^{\frac{1}{n}} = x^{\frac{p}{n}}$$

Résolution de l'équation $x^n = a$

- si *n* est pair et $a \ge 0$ alors $x = \sqrt[n]{a}$ ou $x = -\sqrt[n]{a}$
- si *n* est impair et $a \ge 0$ alors $x = \sqrt[n]{a}$
- si n est pair et a < 0 alors pas de solution.
- si *n* est impair et $a \le 0$ alors $x = -\sqrt[n]{-a}$

Exemple 4 1.
$$x^3 = 8 \iff x = \sqrt[3]{8} = 8^{\frac{1}{3}} = (2^3)^{\frac{1}{3}} = 2$$

2.
$$x^3 + 1 = 0 \iff x^3 = -1 \iff x = -\sqrt[3]{1} = -1$$

3.
$$x^4 = 3 \iff x = \sqrt[4]{3}$$
 ou $x = -\sqrt[4]{3}$