内积空间

定义

定义: 内积空间

设 X 为线性空间,定义二元函数 $\langle\cdot,\cdot\rangle:X^2\to\mathbb{R}$,如果它对于任意的 $x,y,z\in X,\alpha\in\mathbb{R}$ 满足以下性质,则称该函数为内积,称 $(X,\langle\cdot,\cdot\rangle)$ 为内积空间。

- 关于第一个变量线性: $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$
- 关于第二个变量共轭线性: $\langle z, \alpha x + \beta y \rangle = \bar{\alpha} \langle z, x \rangle + \bar{\beta} \langle z, y \rangle$
- 共轭对称: $\langle x,y\rangle = \overline{\langle y,x\rangle}$
- 非负性: $\langle x, x \rangle \geq 0$
- 非退化性: $\langle x, x \rangle \geq 0 \Leftrightarrow x = 0$

内积诱导的范数

性质: 内积诱导出的范数

设 $(X,\langle\cdot,\cdot\rangle)$ 为内积空间,定义 $\|x\|=\sqrt{\langle x,x\rangle}$,则它是一个合法的范数。(之后默认内积空间的范数就为它)

• 证明 非负性、非退化性、齐次性都比较容易证明,三角不等式证明见下表的两个性质。

性质: Schwarz 不等式 设 $(X,\langle\cdot,\cdot\rangle)$ 为内积空间,则 $|\langle x,y\rangle|\leq \|x\|\|y\|$,其中等号成立当且仅当 x,y 线性相关。

• 证明 观察到 $\langle x-ay,x-ay\rangle=\|x\|^2-\overline{a}\langle x,y\rangle-a\langle y,x\rangle+|a|^2\|y\|^2\geq 0$,取 $a=\frac{\langle y,x\rangle}{\|y\|^2}$,可以直接得到结论。同理,等号成立时还可以利用非退化性得到 x-ay=0。

性质: 三角不等式 设 $(X,\langle\cdot,\cdot\rangle)$ 为内积空间,则 $\|x+y\|\leq \|x\|+\|y\|$,其中等号成立当且仅当存在实数 $c\geq 0$ 使得 x=cy 或者 y=0。

• 证明

 $\|x+y\|^2 = \|x\|^2 + \|y\|^2 + 2\operatorname{Re}\langle x,y\rangle \leq \|x\|^2 + \|y\|^2 + 2|\langle x,y\rangle| \leq \|x\|^2 + \|y\|^2 + 2\|x\|\|y\| = (\|x\| + \|y\|)^2$ 对等号进行进一步分析容易得到上述结论。

性质: 平行四边形等式 设 $(X,\langle\cdot,\cdot\rangle)$ 为内积空间,则范数 $\|\cdot\|$ 是由某个内积诱导出来的当且仅当对平行四边形成立等式:

$$||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$$

[注]已知范数之后,可以反过来定义合法的内积。对于实内积,可以定义为

$$\langle x,y
angle = rac{1}{4} (\|x+y\|^2 - \|x-y\|^2)$$

对于复内积,可以定义为

$$\langle x,y
angle = rac{1}{4}(\|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2)$$

称它为极化恒等式。

内积的连续性,完备化

性质: 连续性

设 $(X,\langle\cdot,\cdot\rangle)$ 为内积空间, $x_n,x,y_n,y\in X$,若 $x_n\to x,y_n\to y$,则 $\langle x_n,y_n\rangle\to\langle x,y\rangle$ 。

• 证明 $|\langle x_n,y_n\rangle-\langle x,y\rangle|\leq \|x_n\|\|y_n-y\|+\|x_n-x\|\|y\| o 0$,其中用到了 Schwarz 不等式。

定义: Hilbert 空间 = 内积空间 + 完备

设 $(X,\|\cdot\|)$ 为内积空间同时也是赋范空间,其范数为从内积诱导出来的,如果它还是 Banach 空间,则称它为Hilbert 空间。

定义: 内积空间下等距同构

设 $(X,\langle\cdot,\cdot\rangle_X),(Y,\langle\cdot,\cdot\rangle_Y)$ 为内积空间,映射 $T:X\to Y$ 为线性算子,且为一一映射,对于由内积诱导出来的范数,满足 $\langle Tx_1,Tx_2\rangle_Y=\langle x_1,x_2\rangle_X, \forall x_1,x_2\in X$,则称 T 为从 X 到 Y 的(内积空间意义下的)等距同构,称 X 和 Y(在内积空间意义下)等距同构。

• $\langle Tx_1, Tx_2 \rangle_Y = \langle x_1, x_2 \rangle_X, \forall x_1, x_2 \in X$ 和 $\|Tx\|_Y = \|x\|_X, \forall x \in X$ 等价。

性质: 内积空间存在唯一完备化

设 X 为内积空间,则存在对应的 Hilbert 空间 \hat{X} ,使得 X 与其在 \hat{X} 的子空间 Y 等距同构,并且 Y 在 \hat{X} 中稠密。这样的 Hilbert 空间是唯一的,即如果存在另外一个这样的 Hilbert 空间 \hat{X}' ,则 \hat{X} 和 \hat{X}' 等距同构。

[例] 考虑函数空间 C[0,1] 和上面的范数 $\|\cdot\|_{\infty}$,可以取 x(t)=1+t, y(t)=1-t,可以验证它不满足平行四边形等式,因此,该范数不是由某个内积诱导出来的。

[例] 考虑数列空间 l^p 和上面的范数 $\|\cdot\|_p$,取 $x=(1,1,0,0,\cdots),y=(1,-1,0,0,\cdots)$,可以验证,当 $p\neq 2$ 时不满足平行四边形。

[例] 考虑数列空间 l^2 ,定义内积为 $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^\infty x_i y_i$,考虑到 l^2 的性质和 Cauchy-Schwarz 不等式,容易验证它有限并且是合法的内积,由它诱导出来的范数为 $\|\cdot\|_2$ 。由于空间 l^2 完备,因此它是 Hilbert 空间。

[例] 考虑空间 \mathbb{K}^n ,定义内积为 $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i$,容易验证它是合法的内积,并且它诱导出来的范数就是 $\|\cdot\|_2$ 。由于空间 \mathbb{K}^n 完备,因此它也是 Hilbert 空间。

[例] 考虑函数空间 C[a,b],定义内积为 $\langle x,y\rangle=\int_a^b x(t)\overline{y(t)}dt$,利用关于函数的 Cauchy-Schwarz 不等式,容易验证它是合法内积,由它诱导出来的范数为 $\|\cdot\|_2$ 。由于 $(C[a,b],\|\cdot\|_2)$ 不完备,因此它不是 Hilbert 空间。

正交补及正交投影

正交和正交补

[定义:元素正交] 设 X 为内积空间,对于 $x,y \in X$,若 $\langle x,y \rangle = 0$,则称 x 和 y 正交,记做 $x \perp y$ 。

[定义:元素和集合正交] 设 X 为内积空间,对于 $x\in X, M\subset X$,若 $\langle x,y\rangle=0, \forall y\in M$,则 x 和 M 正交,记做 $x\perp M$ 。

[定义:正交补] 设 X 为内积空间,对于 $M\subset X$,称 $M^\perp=\{x\in X:x\perp M\}$ 为 M 的正交补。

[定义:集合正交] 设 X 为内积空间,对于 $M,N\subset X$,若 $\langle x,y\rangle=0, \forall y\in M,x\in N$,则 M 和 N 正交,记做 $M\perp N$ 。

[性质:零元素的正交性] 0 与所有元素都正交; $X^{\perp} = \{0\}$ 。

[性质: 正交补为闭线性子空间] M^{\perp} 总为 X 的闭线性子空间。

• **[证明]** 对于 M^\perp 中的任意两个元素 x, y, 可以证明它们线性组合也正交于 M, 因此 M^\perp 为 X 的线性子空间。同时若 M^\perp 中有一个收敛序列,利用内积的连续性,可以证明它的极限也正交于 M,因此 M^\perp 为闭子集。

[定义: 凸集] 设 X 为线性空间,C 为 X 的非空子集,并且对于任意的 $x,y\in C,\lambda\in[0,1]$,有 $\lambda x+(1-\lambda)y\in C$,则称 C 为 X 的凸子集。

[性质:最佳逼近元唯一存在(完备非空凸集)] 设 X 为内积空间,M 为 X 的非空凸集,由内积诱导出的范数 使得 M 完备,则对于 X 中任意一点 x 都存在 M 中的最佳逼近元。

• **[证明]** 根据元素列和集合距离定义,可以找到 M 中的数列 (y_n) 使得 $\|x-y_n\| \to \rho(x,M)$ 。然后利用 柯西性【内积诱导出的范数】(平行四边形等式)和【凸集】的性质,证明数列 (y_n) 为柯西列(即, $\|y_n-y_m\| \to 0$)。然后利用 M 的完备性,说明存在 M 中的点 y 使得 $\|x-y\| = \rho(x,M)$ 。唯一性:如果存在另一点,则 $\|y-y'\| \to 0$ 。

[性质:最佳逼近元唯一存在(闭线性子空间)] 设 X 为 Hilbert 空间,M 为 X 的闭线性子空间,则对于 X 中任意一点 x 都存在 M 中的最佳逼近元 y; 更进一步,有 $x-y\perp M$ 。

• [证明] 由于 X 完备,M 闭集,因此 M 也完备。显然,M 也是凸集,因此,直接利用前面的性质可以证得 M 中存在最佳逼近元。令 z=x-y,对于 M 中的任意一点 γ ,观察到

$$\|z-\lambda\gamma\|^2=\|x-(y+\lambda\gamma)\|^2=\|z\|^2-rac{|\langle z,\gamma
angle|^2}{\|\gamma\|^2}, ext{ for some } \lambda$$

注意到由于 M 为线性子空间,因此 $y+\lambda\gamma\in M$,因此,上式不可能小于 $\|z\|^2$,从而说明了 z 和 M 中任意一点正交 $\langle z,\gamma\rangle$,即有 $x-y\perp M$ 。

直和和正交分解定理

[定义: 直和] 设 X 为线性空间,M 、N 为 X 的线性子空间,对于 X 中的任意元素 x ,都存在唯一的 $y \in M, z \in N$,使得 x = y + z ;则称 X 为 M 和 N 的直和,记做 $X = M \oplus N$ 。

- [等价定义] $X = M \oplus N$ 当且仅当 $X = \text{span}(M \cup N), M \cap N = \{0\}$ 。
- [例] 对于 $X=\mathbb{R}^2$,可以令 $M=\mathbb{R}\times\{0\}, N=\{0\}\times\mathbb{R}$ 。

[性质: 正交分解定理] 设 H 为 Hilbert 空间,M 为 H 的闭子空间,则 $H=M\oplus M^\perp$ 。

• **[证明]** 利用前面的定义,可以看到,对于 H 中的任意元素 x,都在 M 中存在唯一一最佳逼近元 y,同时 $z=x-y\perp M$,即 $z\in M^\perp$ 。归纳起来就是,对于任意元素 x,都能找到 $y\in M, z\in M^\perp$,使得 x=y+z。下面证明唯一性,如果存在另外的 y' 和 z',有 $x=y+z=y'+z'\Rightarrow y-y'=z-z'\in M\cap N=\{0\}$ 。

正交投影和正交投影算子

[定义: 正交投影] 设 H 为 Hilbert 空间,M 为 H 的闭子空间,已知 $H=M\oplus M^\perp$,则对于 H 中的任意元素,都能找到 $y\in M,z\in M^\perp$,使得 x=y+z。定义 $P_M:H\to M,P_Mx=y$ 为从 H 到 M 的正交投影。

[性质] P_M 为有界线性算子, $||P_M|| < 1$ 。

• **[证明]** 由正交分解定理可以知道,对于 H 中的任意元素 x ,都能找到 $y\in M,z\in M^\perp$,使得 x=y+z 。不难看出, P_M 为线性算子,即说明 $P_M(ax_1+bx_2)=ay_1+by_2=aP_Mx_1+bP_Mx_2$ 。为了证明有界性,观察到 $\|x\|^2=\langle y+z,y+z\rangle=\|y\|^2+\|z\|^2\geq \|y\|^2=\|P_Mx\|^2$ 即可。

[性质] $P_M^2 = P_M$.

• [证明] 观察到对于 $y \in M$,可以做正交分解 y = y + 0,即 $P_M(P_M x) = P_M y = y$ 。

[性质] 值域 $R(P_M)=M$,零空间 $N(P_M)=M^{\perp}$ 。

• [证明] 由定义可知, $R(P_M)\subset M$,同时对于 M 中任意的 y,都有 $P_My=y$ 。类似地,对于 M^\perp 中任意的 z,有 $P_Mz=0$ 。

[性质] 设 H 为 Hilbert 空间,M 为 H 的闭子空间,则 $(M^\perp)^\perp = M$ 。

• [证明] 显然就是在 M 中任意取一元素,证明它垂直于 M^\perp 中任意元素(显然);以及在 $(M^\perp)^\perp$ 中任意取一元素 x,证明它属于 M。对于任意的 $x\in (M^\perp)^\perp$,可以分解 x=y+z,其中 $y\in M\subset (M^\perp)^\perp$,则 $z=x-y\in (M^\perp)^\perp$ (闭线性子空间)。由于 $z\in (M^\perp)^\perp\cap M^\perp$,可知 z=0。因此, $x=y\in M$ 。

[性质] 设 X 为内积空间,M 为 X 的非空子集,则 $(\mathrm{span}(M))^\perp=M^\perp, (\overline{M})^\perp=M^\perp$ 。

引理: 内积的连续性

设X为内积空间,若 $x_n o x$, $x,x_n,y\in X$,则有 $\langle x_n,y
angle o \langle x,y
angle$ 。

证明

利用 Schwarz 不等式:

$$|\langle x_n,y
angle -\langle x,y
angle|=|\langle x_n-x,y
angle|\leq \|x_n-x\|\|y\| o 0$$
1.

由于 $M\subset\overline{M}$,因此 $(\overline{M})^\perp=\{x\in X:x\perp y, \forall x\in\overline{M}\}\subset\{x\in X:x\perp y, \forall x\in M\}=M^\perp$ 对于任意的 $x\in M^\perp$,对于任意的 $y\in\overline{M}$,都存在数列 $y_n\in M$,使得 $y_n\to y$ 。由内积的连续性有:

$$\langle x, y_n \rangle \to \langle x, y \rangle = 0$$

因此, $x \in (\overline{M})^{\perp}$, 即 $M^{\perp} \subset (\overline{M})^{\perp}$ 。

综上,
$$M^{\perp} = (\overline{M})^{\perp}$$
。

2.

由于 $M \subset \operatorname{span}(M)$, 因此

$$(\operatorname{span}(M))^{\perp} = \{x \in X : x \perp y, orall x \in \operatorname{span}(M)\} \subset \{x \in X : x \perp y, orall x \in M\} = M^{\perp}$$
 .

对于任意的 $x\in M^\perp$,对任意的 $y\in {\rm span}(M)$ 都可以表示为 $y=\sum_{i=1}^n a_iy_i$,其中 $y_i\in M, a_i\in \mathbb{K}$,可以看到:

$$\langle x,y
angle = \sum_{i=1}^n \langle x, a_i y_i
angle = \sum_{i=1}^n \overline{a_i} \langle x, y_i
angle = 0$$

即,有
$$x \in (\operatorname{span}(M))^{\perp}$$
,即 $M^{\perp} \subset (\operatorname{span}(M))^{\perp}$ 。

因此,
$$M^{\perp} = (\operatorname{span}(M))^{\perp}$$
。

完全集

[定义: 完全集] 设 X 为赋范空间, $M\subset X$,并且 $\mathrm{span}(M)$ 在 X 中稠密,则称 M 为 X 的完全集。 **[性质]** 设 H 为 Hilbert 空间,M 为 H 的非空子集,则 M 在 H 中为完全集当且仅当 $M^\perp=\{0\}$ 。

- [证明] 若 M 为 H 的完全集,则有 $M^\perp=(\mathrm{span}(M))^\perp=(\overline{\mathrm{span}(M)})^\perp$,前一个等号用到前述定理,后一个等号为闭包相等。
- [证明正向] 当 $\overline{\operatorname{span}(M)} = H$ 时, $M^{\perp} = H^{\perp} = \{0\}$ 。
- [证明反向] 当 $(\operatorname{span}(M))^{\perp}=\{0\}$ 时, $H=\overline{\operatorname{span}(M)}\oplus\overline{\operatorname{span}(M)}^{\perp}$,即 $\operatorname{span}(M)=H$ 。

标准正交集和标准正交基

[定义:正交集、标准正交集、标准正交序列、标准正交组] ${\mathfrak Q} X$ 为内积空间, ${\mathfrak M}$ 为 X 的非空子集:

- 如果 M 中两两元素正交,则称 M 为正交集
- $\exists M \ni X$ 的正交集,且任给 $x \in M$ 有 ||x|| = 1,则称 M 为标准正交集
- 若标准正交集 M 为可数集,即 $M=\{e_n:n\geq 1\}$,则称 M 为标准正交序列
- 若标准正交集 M 为有限集,即 $M=\{e_1,\cdots,e_n\}$ 则称 M 为标准正交组

标准正交集

[定理: 勾股定理] 设 X 为内积空间,M 为 X 的标准正交集,则对于任意不同的 $e_1,\cdots,e_n\in M$,存在 $a_1,\cdots,a_n\in\mathbb{K}$,使得 $\|\sum_{i=1}^n a_ie_i\|^2=\sum_{i=1}^n |a_i|^2$ 。

• [证明] 等号左边写成内积形式,利用【标准】和【正交】性质即可得到。

[定理:线性无关] 设 X 为内积空间, M 为 X 的标准正交集, 则 M 线性无关。

• [证明] 如果存在 $a_1,\cdots,a_n\in\mathbb{K}$,使得 $\sum_{i=1}^n a_ie_i=0$,那么根据上面式子,可以得到所有的系数都为零,即线性无关。

[例] \mathbb{K}^n 上的 $\{e_i:i\in[n]\}$,它表示只有第 i 位为 1,其他都为 0,它是一个标准正交基。

[例] l^2 上的 $\{e_i:i\geq 1\}$,它表示数列只有第i 位为 1,其他都为 0,它是一个标准正交序列。

[例] 在 $C[0,2\pi]$ 上定义内积 $\langle x,y
angle=\int_0^{2\pi}x(t)\overline{y(t)}dt$, $e_n(t)=rac{1}{\sqrt{2\pi}}e^{int}, n\geq 0$ 构成标准正交序列。

[例] 在 $C[0,2\pi]$ (实函数)上定义内积 $\langle x,y \rangle = \int_0^{2\pi} x(t)y(t)dt$, $f_n(t) = \frac{1}{\sqrt{\pi}}\cos(nt), n \geq 0$ 构成标准正交序列。

[性质: Bessel 不等式] 设 X 为内积空间, $M=\{e_n:n\geq 1\}$ 为标准正交集,对于任意 $x\in X$,令 $y=\sum_{i=1}^N\langle x,e_i\rangle e_i,\;z=x-y,\;$ 有 $y\perp z,\;\|y\|^2=\sum_{i=1}^N|\langle x,e_i\rangle|^2\leq\|x\|^2$ 。

• [证明] 利用内积空间性质容易证明。

[定理: Hilbert 空间中的标准正交序列] 设 $M=\{e_n:n\geq 1\}$ 为 Hilbert 空间 H 中的标准正交序列, $a_i\in\mathbb{K}$,则:

- 1. 级数 $S_n = \sum_{i=1}^n a_i e_i$ 在 H 收敛,当且仅当, $\sum_{i=1}^\infty |a_i|^2 < \infty$;
- 2. 若该级数在 H 中收敛于 $x = \sum_{i=1}^\infty a_i e_i$,则 $a_i = \langle x, e_i
 angle$;
- 3. 任取 $x \in H$,级数 $\sum_{i=1}^{\infty} \langle x, e_i
 angle e_i$ 在 H 收敛。
- **[证明 1]** 令 $s_n = \sum_{i=1}^n |a_i|^2$,观察到 $S_n S_m = s_n s_m$,因此 S 为柯西列当且仅当 s 为柯西列。由于完备性,s 收敛,则 s 为柯西列,则 S 为柯西列,则 S 收敛。

- [证明 2] 由级数收敛的定义 $S_n o x$,直接取内积就可以得到。
- [证明 3] 由 Bessel 不等式再加上第一个结论可以证明。

[性质:标准正交序列和重排完美性] 设 $a_i\in\mathbb{K}$ 为非零序列,设 $\tau:\mathbb{N}\to\mathbb{N}$ 为——映射,则级数 $S_n=\sum_{i=1}^n a_ie_i$ 和级数 $S_n'=\sum_{i=1}^n a_{\tau(i)}e_{\tau(i)}$ 的收敛性和收敛的极限一样。

• [证明] 观察到 $\sum_{i=1}^n a_{ au(i)} = \sum_{i=1}^n a_i$, $\sum_{i=1}^n a_{ au(i)} e_{ au(i)} = \sum_{i=1}^n a_i e_i$.

[性质:每个元素关于标准正交集元素相关] 设 M 为内积空间 X 的标准正交集,对于 X 中的任意元素 x , $M_x=\{e\in M: \langle x,e\rangle \neq 0\}$ 为至多可数集。

- **[注]** X 中的标准正交集可能为不可数集合,但是对于任意一个元素来说,只有至多可数个正交集元素和它相关。
- [证明] 构造 $M_{x,m}=\{e\in M: |\langle x,e\rangle|>rac{1}{m}\}$,有 $|M_{x,m}|/m\leq\sum_{e\in M_{x,m}}|\langle x,e\rangle|^2\leq \|x\|^2$,可以看 出 $M_{x,m}$ 元素个数有限,而 $M_x=\cup_{m=1}^\infty M_{x,m}$,因此, $M_x=\{e\in M: \langle x,e\rangle\neq 0\}$ 为至多可数集。

标准正交基

[定义:标准正交基] 设 H 为内积空间,M 为 H 的标准正交集,并且 $\overline{\mathrm{span}(M)}=H$,则称 M 为 H 的(完全)标准正交基。

[定理] 以下命题等价:

- 1. *M* 为标准正交基;
- 2. 任意 $x \in H$ 有 $x = \sum_{e \in M} \langle x, e \rangle e$;
- 3. 对于任意 $x,y\in H$,有 $\langle x,y \rangle = \sum_{e\in M} \langle x,e \rangle \langle e,y \rangle$;
- 4. 任意 $x\in H$,有 Parseval 等式 $\|x\|^2=\sum_{e\in M}|\langle x,e
 angle|^2$ 。
- **[证明 1 to 2]** 1 中能利用的信息是 $z=x-y=0\Leftrightarrow x\in (\overline{\operatorname{span}(M)})^\perp=H^\perp\Leftrightarrow x\in M^\perp\Leftrightarrow z\perp M_x \text{ and } x\perp M/M_x$
- [证明 2 to 3] 对 x 和 y 都应用 2 中的结论,然后自然写出来就能得到 3 中结论。
- [证明 3 to 4] 只需令 x = y 即可。
- [证明 4 to 1] 对于任意 $x \in (\overline{\operatorname{span}(M)})^{\perp} \subset H$,对其应用 3 中条件,可以得到 $\|x\|^2 = 0 \Rightarrow x = 0$,因此 $(\overline{\operatorname{span}(M)})^{\perp} = \{0\}$,由正交分解定理 $\overline{\operatorname{span}(M)} = H$ 。

[定理: Gram-Schmidt 标准正交化方法] 从内积空间 X 中一组线性无关的元素 $\{x_i\}$ 出发,每次令 $v_n = x_n - \sum_{i=1}^{n-1} \langle x_n, e_i \rangle e_i$, $e_n = v_n / \|v_n\|$,可以得到一组标准正交序列使得 $\mathrm{span}\{e_1, \cdots, e_n\} = \mathrm{span}\{x_1, \cdots, x_n\}$ 。

- [证明正交] 写出来做内积,可以发现每一个v 都和之前的e 都正交。
- [证明合理性] 由于 x 线性无关,因此所有的 v 都不为零,因此不会出现被零除。
- [证明 span 相同] 对于任意的 n, n 之前的 e 为 n 之前的 x 的线性组合, 因此, span 相同。

[定理] 设 H 为 Hilbert 空间, $H
eq \{0\}$,N 为 H 的标准正交集,则存在 H 的标准正交基 M,使得 $N \subset M$

- **[推论]** 任意 Hilbert 空间 *H* 必有标准正交基。
- [证明] $N = \{x\}$, where $||x|| = 1, x \in H$.
- [证明] 会用到 Zorn 引理,设一个 H 中包含 N 的标准正交集的集合,证明其极大元和标准正交基的的对应 关系。

• **[H 可分时证明标准正交基存在性]** 这时有 Hamel 基或者 Schauder 基,再应用 Gram-Schmidt 可以知道肯定存在相应的标准正交基。

[注: 可分 Hilbert 空间只有两类: \mathbb{K}^n 和 l^2] 若 Hilbert 空间 H 为有限维,H 和 \mathbb{K}^n 在内积空间意义下等距同构;若 Hilbert 空间 H 为无限维,H 和 l^2 在内积空间意义下等距同构。

Hilbert 空间上有界线性泛函的表示

有界线性泛函的表示

[定义:用内积定义的泛函] 设 X 为内积空间,对于 $y_0\in X$,定义线性泛函 $f\in X^*$: $f_{y_0}(x)=\langle x,y_0\rangle, \forall x\in X$

- **[性质]** 上述泛函 $f \in X'$,并且 $||f|| = ||y_0||$ 。
- [证明] $|f_{y_0}(x)| \leq \|y_0\| \|x\| \Rightarrow \|f_{y_0}\| \leq \|y\|$, $|f_{y_0}(y_0)| = \|y_0\|^2 \Rightarrow \|f_{y_0}\| \geq \|y\|$.

[定理:有界线性泛函 Riesz] 若 H 为 Hilbert 空间,则任取 $f \in H'$,存在唯一的 $y_0 \in H$,使得 $f(x) = f_{y_0}(x)$ 。

- [证明存在性] 如果 f=0,容易证明。考虑 $f\neq 0$,这时 $N(f)\subseteq H$,因此有 $N(f)^\perp\neq \{0\}$ 。考虑一个 $z_0\in N(f)^\perp$,有 $v=f(x)z_0-f(z_0)x, \forall x\Rightarrow f(v)=0\Rightarrow \langle v,z_0\rangle=0\Rightarrow f(x)=\langle x,\frac{f(z_0)z_0}{||z_0||^2}\rangle$
- [证明唯一性] $\langle x,y_1-y_2 \rangle = 0, \forall x \Rightarrow \|y_1-y_2\| = 0 \text{ (let } x=y_1-y_2) \Rightarrow y_1=y_2$
- [注] 完备性是必要的,不然不能应用正交分解定理得到 $N(f)^{\perp}
 eq \{0\}$ 。

有界共轭双线性泛函

[定义: 共轭双线性泛函] 设 X,Y 为线性空间, $f:X\times Y\to \mathbb{K}$ 为映射,如果满足以下要求,则称 f 为共轭双线性泛函。

- $f(x_1 + x_2, y) = f(x_1, y) + f(x_2, y), f(x, y_1 + y_2) = f(x, y_1) + f(x, y_2)$
- $f(\alpha x, \beta y) = \alpha \overline{\beta} f(x, y)$

[例] 若 X=Y 为内积空间,则 $f(x,y)=\langle x,y\rangle$ 为共轭双线性泛函。

[定义:有界共轭双线性泛函] $f:X\times Y\to\mathbb{K}$ 为共轭双线性泛函,且存在常数 $C\geq 0$,使得 $|f(x,y)|\leq C\|x\|\|y\|, \forall x\in X,y\in Y$ 。

[定义:有界共轭双线性泛函的范数] 定义范数为 $\|f\|=\sup_{x
eq 0, y
eq 0}rac{|f(x,y)|}{\|x\|\|y\|}$ 。

[例] 设 M,N 为内积空间,并且 $T\in B(M,N)$,令 $f(x,y)=\langle Tx,y\rangle_N$ 为有界共轭双线性泛函,并且 $\|f\|=\|T\|_{ullet}$

- **[证明]** $\|f\| = \|T\| \Rightarrow |h(x,y)| \le \|Tx\| \|y\| \le \|T\| \|x\| \|y\|$ 。前一个不等号由 Schwarz 不等式得到,后一个不等式由有界线性算子的定义得到。
- [证明] $\|f\|=\|T\|\Rightarrow\|Tx\|=\sup_y rac{|f(x,y)|}{\|y\|}\leq \sup_y \|f\|\|x\|=\|f\|\|x\|, orall x\in X$ 。

[定理:有界共轭双线性泛函 Riesz] 设 M,N 为 Hilbert 空间, $f:M\times N\to \mathbb{K}$ 为有界共轭双线性泛函,则存在唯一的 $T\in B(M,N)$,使得 $f(x,y)=\langle Tx,y\rangle_N$,并且 $\|f\|=\|T\|$ 。

- [证明存在性] 令 $T:M\to N$,令 g(y)=f(x,y),利用前一个 Riesz 可以知道它存在于 N。T 的线性性由线性性和 Riesz 性质得到;通过 f 的有界性证明了 T 的有界性。
- [证明唯一性] 假设有 T_1, T_2 , 都满足 $x \in M, y \in N$ 的任意性证明了 $T_1 = T_2$.

• [证明] ||f|| = ||T|| 见前面的例子。

伴随算子

[定义: 伴随算子] 对于 $T\in B(M,N)$ 和 $T^*\in B(N,M)$,如果 $\langle Tx,y\rangle_N=\langle x,T^*y\rangle_M, \forall x\in M,y\in N$,则称 T^* 为 T 的伴随算子。

[性质: 伴随算子唯一存在] 对于任意 $T \in B(M,N)$, 其伴随算子唯一存在。

• [证明] 可以定义 $f(x,y)=\langle Tx,y\rangle_N$,令 $h:N\times M\to \mathbb{K}, h(y,x)=f(x,y)$,应用上述定理,可以知道,存在唯一的 $T^*\in B(N,M)$,使得 $\langle Tx,y\rangle_N=\langle x,T^*y\rangle_M, \forall x\in M,y\in N$ 。

[例] 矩阵 $T \in \mathbb{R}^{m \times n}$ 可以看做从 \mathbb{K}^n 到 \mathbb{K}^m 的有界线性算子,其伴随算子为其共轭转置矩阵 $T^* = T^\top$ 。

[例] $T_a:l^2 o l^2, T_ax=\{a_ix_i\}$,for some $a\in l^\infty$ 为有界线性算子,其伴随算子为 $T_a^*=T_a$ 。

[性质: 伴随算子] 设 M,N 为 Hilbert 空间,S,T 为从 M 到 N 的有界线性算子,则:

- $||T|| = ||T^*||$
- $(S+T)^* = S^* + T^*$
- $(\alpha T)^* = \overline{\alpha} T^*$
- $(T^*)^* = T$
- $||T^*T|| = ||T||^2$
- $T=0 \Leftrightarrow T^*=0$
- 若 L 也是 Hilbert 空间,R 为从 N 到 L 的有界线性算子,则 $(RS)^* = S^*R^*$
- **[证明]** 1: 根据伴随算子的定义和 Riesz 表示定理的定义,有 $||T|| = ||f|| = ||T^*||$; 2-4: 根据定义和线性性; 5:

 $\|T^*T\|=\sup_{\|x\|=1}\|T^*Tx\|=\sup_{\|x\|=1}|\langle T^*Tx,x
angle|=\sup_{\|x\|=1}|\langle Tx,Tx
angle|=\sup_{\|x\|=1}\|Tx\|^2=\|T\|^2$; 6: 利用 5 的结论可以直接得到。