Vanshika Novang	
30018	Date
102103510	Page
PARAMETER ESTIMATION	
Given - Random Sample ($\kappa_1, \kappa_2, \dots, \kappa_{2r-2}$) $L(\theta_1, \theta_2) = \frac{\pi}{1} \frac{1}{2\pi e^2} e^{-\left(-\frac{\kappa_1 - \mu}{2r-2}\right)}$ $i=1 \sqrt{2\pi e^2}$	z_n
Taring natural log of likelihood $ \ln L(\theta_1, \theta_2) = \sum_{i=1}^{n} \left(-\left(\frac{x_i - y_i}{3e^2}\right)^2\right) $	d frn
To find MLE, diff. Log likeli	hood wist on, of
$\frac{\partial \ln L(\theta_1, \theta_2)}{\partial \theta_1} = \underbrace{\sum \left(\underline{x}_1^2 - \underline{\mu} \right)}_{i=1}$) = 0
$\Rightarrow \underbrace{\xi}_{i=1} \mathcal{X}_{i} - n \psi = 0$	
$\frac{\partial_{1}}{\partial x_{1}} = \frac{1}{1} \sum_{i=1}^{\infty} x_{i}^{i}$	
$\theta_{g} \frac{\partial \ln L(\theta_{1}, \theta_{g})}{\partial \theta_{g}} = \frac{2}{i=1} \left(-\frac{(\alpha_{i} - \alpha_{g})^{2}}{2} \right)$	$\frac{(\theta_2)^2}{(\theta_2)^2} + 1 = 0$
$\frac{\sum_{i=1}^{n} \left(\frac{\alpha_{i} - \theta_{i}}{\theta_{2}^{2}}\right)^{2} - \underline{n} = 0}{\theta_{2}}$	
$\frac{\theta_2^2 = 1 \leq (\alpha_i - \theta_1)^2}{\theta_2^{n-1}}$	
$\theta_{3} = \frac{1}{1} \sum_{i=1}^{n} \left(x_{i} - \theta_{i} \right)^{2}$	Sample Variance

1

Гон

$$L(\theta) = \sum_{i=1}^{n} \binom{m}{m} \theta^{\lambda_i} (1-\theta)^{m-\lambda_i}$$

Taring In

$$\ln \left(L(\theta) \right) = \sum_{i=1}^{n} \left(\ln \binom{m}{x_i} + \chi_i \ln \left(\theta \right) + \left(m - \chi_i^2 \right) \ln \left(1 - \theta \right) \right)$$

$$\frac{\partial}{\partial \theta} \ln \left(L(\theta) \right) = \frac{2}{5} \left(\frac{\chi_{i}^{2}}{\theta} - \frac{m - \chi_{i}^{2}}{1 - \theta} \right) = 0$$

Solving for
$$\theta$$

$$\sum_{i=1}^{n} X_{i} \left(1-\theta\right) = \sum_{i=1}^{n} \left(m-X_{i}\right) \theta$$

$$\frac{\partial}{\partial z} = \frac{\partial}{\partial z} \times \frac{\partial}{\partial z} = \frac{\partial}{\partial z} \times \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial z} = \frac{\partial}{\partial z} \times \frac$$

$$\theta = 1 \leq X_1$$