Homological Characterization and Unique Factorization Property

of Regular Local Rings

Trishita Patra Supervisor: Dr. Md. Ali Zinna

Department of Mathematics and Statistics (DMS) Indian Institute of Science Education and Research Kolkata (IISER Kolkata)

May 12, 2023

Table of Contents

- 1 Introduction
- 2 Definitions and Required Results
- 3 Proof of the Theorem 1
- 4 Proof of the Theorem 2

Table of Contents

- 1 Introduction
- Definitions and Required Results
- 3 Proof of the Theorem 1
- Proof of the Theorem 2

Aim: To Prove

Theorem 1 (Serre's Characterization of Regular Local Rings)

Let A be a noetherian local ring. Then A is regular iff gl.dim $A<\infty$ and moreover, if gl.dim $A<\infty$, then gl.dim $A=\dim A$.

Aim: To Prove

Theorem 1 (Serre's Characterization of Regular Local Rings)

Let A be a noetherian local ring. Then A is regular iff gl.dim $A<\infty$ and moreover, if gl.dim $A<\infty$, then gl.dim $A=\dim A$.

Theorem 2

Any regular local ring is unique factorization daomain.

Topics studied

- Presented required results from Commutative Algebra last semester.
- Homological Algebra

Complexes and Homology

Projective Modules

Projective Resolution

The Functors Tor

The Functors Ext

Projective Dimension

Injective Dimension

Global Dimension

Cont...

- Dimension Theory
 The Hilbert-Samuel Polynomial
 Dimension Theorem
- Regular Local Rings
 Homological Characterisation
 UFD Property

Table of Contents

- 1 Introduction
- 2 Definitions and Required Results
- 3 Proof of the Theorem 1
- 4 Proof of the Theorem 2

- A is a commutative ring with identity and M is a unitary A-module. A is called a **local ring**, if $A \neq 0$ and has a unique maximal ideal.

- A is a commutative ring with identity and M is a unitary A-module. A is called a **local ring**, if $A \neq 0$ and has a unique maximal ideal.
- Example : For prime ideal \mathfrak{p} , $A_{\mathfrak{p}}$ is a local ring with maximal ideal $\mathfrak{p}A_{\mathfrak{p}}$.

- A is a commutative ring with identity and M is a unitary A-module. A is called a **local ring**, if $A \neq 0$ and has a unique maximal ideal.
- Example : For prime ideal \mathfrak{p} , $A_{\mathfrak{p}}$ is a local ring with maximal ideal $\mathfrak{p}A_{\mathfrak{p}}$.
- The intersection of all maximal ideals of A is called **Jacobson** radical, <u>r(A)</u>.

- A is a commutative ring with identity and M is a unitary A-module. A is called a **local ring**, if $A \neq 0$ and has a unique maximal ideal.
- Example : For prime ideal \mathfrak{p} , $A_{\mathfrak{p}}$ is a local ring with maximal ideal $\mathfrak{p}A_{\mathfrak{p}}$.
- The intersection of all maximal ideals of A is called **Jacobson** radical, <u>r(A)</u>.

Nakayama's Lemma

Let M be a finitely generated A-module. If $\underline{r}M = M$, then M = 0.

Let A be noetherian local ring with maximal ideal \mathfrak{m} .

Definition

 $\mathfrak a$ is called a **ideal of definitiion of** A if, $\mathfrak m^n \subset \mathfrak a \subset \mathfrak m$, for some integer $n \in \mathbb N$.

Let A be noetherian local ring with maximal ideal \mathfrak{m} .

Definition

 $\mathfrak a$ is called a **ideal of definitiion of** A if, $\mathfrak m^n\subset\mathfrak a\subset\mathfrak m$, for some integer $n\in\mathbb N$.

Define, $P_{\mathfrak{a}}(M, n) = I_{A}(M/\mathfrak{a}^{n}M)$.

Let A be noetherian local ring with maximal ideal \mathfrak{m} .

Definition

 $\mathfrak a$ is called a **ideal of definitiion of** A if, $\mathfrak m^n\subset\mathfrak a\subset\mathfrak m$, for some integer $n\in\mathbb N$.

Define, $P_{\mathfrak{a}}(M, n) = I_{A}(M/\mathfrak{a}^{n}M)$.

Theorem (Samuel)

For a local ring A, a finitely generated A-module, M and an ideal of definition of A, $\mathfrak a$ generated by r elements. Then $P_{\mathfrak a}(M,n)$ is a polynomial function of degree less than or equal to r.

Let A be noetherian local ring with maximal ideal \mathfrak{m} .

Definition

 $\mathfrak a$ is called a **ideal of definitiion of** A if, $\mathfrak m^n \subset \mathfrak a \subset \mathfrak m$, for some integer $n \in \mathbb N$.

Define, $P_{\mathfrak{a}}(M, n) = I_{A}(M/\mathfrak{a}^{n}M)$.

Theorem (Samuel)

For a local ring A, a finitely generated A-module, M and an ideal of definition of A, $\mathfrak a$ generated by r elements. Then $P_{\mathfrak a}(M,n)$ is a polynomial function of degree less than or equal to r.

Define, $d(M) = deg(P_a(M, n))$.

- **Height** of a prime ideal \mathfrak{p} , ht $\mathfrak{p} = \sup \{r \mid \text{ there exists in } A \text{ a chain } \mathfrak{p}_0 \subset \ldots \subset \mathfrak{p}_r = \mathfrak{p} \}.$

- **Height** of a prime ideal \mathfrak{p} , ht $\mathfrak{p} = \sup \{r \mid \text{ there exists in } A \text{ a chain } \mathfrak{p}_0 \subset \ldots \subset \mathfrak{p}_r = \mathfrak{p} \}.$
- Coheight of a prime ideal p,

```
\operatorname{coht} \mathfrak{p} = \sup \{ r \mid \text{ there exists in } A \text{ a chain } \mathfrak{p} = \mathfrak{p}_0 \subset \ldots \subset \mathfrak{p}_r \}
```

- **Height** of a prime ideal \mathfrak{p} , ht $\mathfrak{p} = \sup \{r \mid \text{ there exists in } A \text{ a chain } \mathfrak{p}_0 \subset \ldots \subset \mathfrak{p}_r = \mathfrak{p} \}.$
- **Coheight** of a prime ideal p,

$$\operatorname{coht} \mathfrak{p} = \sup \{ r \mid \text{ there exists in } A \text{ a chain } \mathfrak{p} = \mathfrak{p}_0 \subset \ldots \subset \mathfrak{p}_r \}$$

- Krull Dimension of M,

$$\dim M = \sup_{\mathfrak{p} \in \mathsf{Supp}(M)} \mathsf{coht}\,\mathfrak{p}$$

where, $Supp(M) = \{ \mathfrak{p} \in Spec(A) \mid M_{\mathfrak{p}} \neq 0 \}.$

- dim A = sup{ lengths of chains of prime ideals in A }.

- dimA = sup{ lengths of chains of prime ideals in A }.
- **Chevalley dimension s(M)**, for $M \neq 0$, is defined to be the least integer r for which there exist r elements a_1, \ldots, a_r in \mathfrak{m} such that $M/(a_1, \ldots, a_r)$ M is of finite length as an A-module.

- dim A = sup{ lengths of chains of prime ideals in A }.
- **Chevalley dimension s(M)**, for $M \neq 0$, is defined to be the least integer r for which there exist r elements a_1, \ldots, a_r in \mathfrak{m} such that $M/(a_1, \ldots, a_r)$ M is of finite length as an A-module.
- If M = 0, then dimM = -1 = s(M).

- dim A = sup{ lengths of chains of prime ideals in A}.
- **Chevalley dimension s(M)**, for $M \neq 0$, is defined to be the least integer r for which there exist r elements a_1, \ldots, a_r in \mathfrak{m} such that $M/(a_1, \ldots, a_r)$ M is of finite length as an A-module.
- If M = 0, then dimM = -1 = s(M).

Dimension Theorem

Let M be a finitely generated module over a noetherian local ring A. Then $\dim M = d(M) = s(M)$.

Global Dimension

Homological Dimension

The least integer n, if exixts, such that there exists a projective resolution of M, of length n.

If no such *n* exists, $hd_A(M) = \infty$.

If M = 0, $hd_A(M) = -1$.

Global Dimension

Homological Dimension

The least integer n, if exixts, such that there exists a projective resolution of M, of length n.

If no such *n* exists, $hd_A(M) = \infty$.

If M = 0, $hd_A(M) = -1$.

Global Dimension

$$gl.dim A = sup_M(hd_A M)$$

Global Dimension

Homological Dimension

The least integer n, if exixts, such that there exists a projective resolution of M, of length n.

If no such *n* exists, $hd_A(M) = \infty$.

If M = 0, $hd_A(M) = -1$.

Global Dimension

$$gl.dim A = sup_M(hd_A M)$$

Result

For a noetherian local ring A, we have

$$gl. \dim_A = \operatorname{hd}_A k$$

Regular Local Ring

Definition

A noetherian local ring, A with dimA = r, is said to be **regular**, if \mathfrak{m} can be generated by r elements.

Regular Local Ring

Definition

A noetherian local ring, A with dimA = r, is said to be **regular**, if \mathfrak{m} can be generated by r elements.

Set of generators of $\mathfrak m$ for regular local rings is called **regular** system of parameters of A

Difinition

For a non-zero A-module, M, a sequence a_1, \ldots, a_r of elements of \mathfrak{m} is called an M-sequence if a_i is not a zero-divisor of $M/(a_1, \ldots, a_{i-1}) M$ for $1 \le i \le r$.

That is, for i = 1, the condition means that a_1 is not a zero divisor of M ...

Cont...

Proposition

Let M be a non-zero A-module and a_1, \ldots, a_r an M-sequence. Then $r \leq \dim M$.

Corollary*

A noetherian local ring \boldsymbol{A} is regular if and only if its maximal ideal is generated by an A-sequence.

Cont...

Proposition

Let M be a non-zero A-module and a_1, \ldots, a_r an M-sequence. Then $r \leq \dim M$.

Corollary*

A noetherian local ring *A* is regular if and only if its maximal ideal is generated by an A-sequence.

Proof

Step 1: (\Rightarrow) Let $\{a_1, \ldots, a_r\}$ generate \mathfrak{m} . *A* is I.D so is $A/(a_1)$. Cont.

Step 2: (\Leftarrow) Let $\{a_1, \ldots, a_r\}$ be an *A*-sequence. Use previous

Proposiition and Samuel's theorem.

Required Results

Corollary

A regular local ring is an integral domain.

Proposition

Let A be a regular local ring of dimension r and let a_1, \ldots, a_j be any j elements of $\mathfrak{m}, \ 0 \leq j \leq r$. Then the following statements are equivalent:

- $\{a_1, \ldots, a_j\}$ is a part of a regular system of parameters of A.
- $A/\left(a_1,\ldots,a_j
 ight)$ is a part of a regular local ring of dimension r-j.

Cont...

Lemma*

Let M be a non-zero A-module and let $a \in \mathfrak{m}$ be not a zero divisor of M. Then $\operatorname{hd}_A M / aM = \operatorname{hd}_A M + 1$, where both sides may be infinite.

Proof

Step 1: $0 \rightarrow M \xrightarrow{a_M} M \longrightarrow M/aM \rightarrow 0$

Step 2: Exact sequence:

$$\mathsf{Tor}^{A}_{n+1}(M,k) \to \mathsf{Tor}^{A}_{n+1}(M/aM,k) \to \mathsf{Tor}^{A}_{n}(M,k) \stackrel{\mathsf{Tor}^{A}_{n}(a_{M},k)}{\longrightarrow} \mathsf{Tor}^{A}_{n}(M,k)$$

Step 3: For every $n \in \mathbb{N}$. Now, since a being in \mathfrak{m} , a_k is zero, we get

$$\operatorname{\mathsf{Tor}}^{A}_{n}(a_{M},k)=a\operatorname{\mathsf{Tor}}^{A}_{n}(1_{M},k)=\operatorname{\mathsf{Tor}}^{A}_{n}(1_{M},a_{k})=0$$

Step 4: For *A* be a noetherian local ring, *M* a finitely generated *A*-module, $\operatorname{hd}_A M \leq n \Leftrightarrow \operatorname{Tor}_{n+1}^A(M,k) = 0$.

Cont...

Lemma*

Let A be a noetherian local ring such that $\mathfrak{m} \neq \mathfrak{m}^2$ and such that every element of $\mathfrak{m} - \mathfrak{m}^2$ is a zero-divisor. Then any A-module of finite homological dimension is free.

Proof

Step 1: $\mathfrak{m} \in \mathsf{Ass}(M) \Longleftrightarrow k = A/\mathfrak{m} \hookrightarrow A \text{ is an } A - \text{monomorphism}$

Step 2: Exact sequence: $0 \rightarrow k \rightarrow A \rightarrow A/k \rightarrow 0$

Step 3: $\operatorname{Tor}_{n+1}^A(M,A/k) \to \operatorname{Tor}_n^A(M,k) \to \operatorname{Tor}_n^A(M,A)$

Step 4: We have $\operatorname{hd}_A M = n$, $\operatorname{Tor}_{n+1}^A(M,A/k) = 0$ and $\operatorname{Tor}_n^A(M,k) \neq 0$,

implying $\operatorname{Tor}_n^A(M,A) \neq 0$. Now, since *A* is free as *A*-module,

 $\operatorname{Tor}_n^A(M,A) = 0 \,\forall \, n \geq 1$, which implies that, n = 0.

Step 5:Tor₁^A $(M, k) = 0 \implies hd_A M \le 0 \iff M$ is projective.. Hence M is free.

Required Results

Lemma

Let $\mathfrak{a},\mathfrak{b}_0,\mathfrak{b}_1,\ldots,\mathfrak{b}_n$ be ideals of a ring A with \mathfrak{b}_0 prime and $\mathfrak{a}\subset\bigcup_{0\leq i\leq n}\mathfrak{b}_i$. Then there exists a proper subset J of $\{0,1,2,\ldots,n\}$ such that $\mathfrak{a}\subset\bigcup_{j\in J}\mathfrak{b}_j$.

Proposition

Let A be a local ring and M a finitely generated A module. Then the following conditions are equivalent:

- (i) M is free.
- (ii) *M* is projective.

Table of Contents

- 1 Introduction
- Definitions and Required Results
- 3 Proof of the Theorem 1
- 4 Proof of the Theorem 2

Serre's Characterization of Regular Local Rings

Theorem

Let *A* be a noetherian local ring. Then *A* is regular iff gl.dim $A < \infty$ and moreover, if gl.dim $A < \infty$, then gl.dim $A = \dim A$.

Serre's Characterization of Regular Local Rings

Theorem

Let *A* be a noetherian local ring. Then *A* is regular iff gl.dim $A < \infty$ and moreover, if gl.dim $A < \infty$, then gl.dim $A = \dim A$.

Skech of Proof

Step 1: The maximal ideal \mathfrak{m} of A is generated by an A-sequence. \iff gl.dim $A \leq \infty \implies$ gl.dim $A = \dim A$.

Step 2:(\Rightarrow) Take *A*-sequence, $\operatorname{hd}_A \frac{A}{\mathfrak{m}} = r = \operatorname{gl.dim} A$. Also by Proposition and Samuel's Theorem, $\operatorname{dim} A = r$.

Step 3:(\Leftarrow) Induction on $r = \operatorname{rank}_k \mathfrak{m}/\mathfrak{m}^2$. r = 0, Nakayama's Lemma.

step 4:r > 0. There exists $a \in \mathfrak{m} - \mathfrak{m}^2$ which is not a zero divisor. Since otherwise, A/\mathfrak{m} is free, i.e. $\mathfrak{m} = 0$.

Step 5: $\overline{\mathfrak{m}}/\overline{\mathfrak{m}}^2$ is a k-vector space with $\operatorname{rank}_k \overline{\mathfrak{m}}/\overline{\mathfrak{m}}^2 = r - 1$. use induction hypothesis.

Required Results

Corollary*

A noetherian local ring \boldsymbol{A} is regular if and only if its maximal ideal is generated by an A-sequence.

Lemma*

Let M be a non-zero A-module and let $a \in \mathfrak{m}$ be not a zero divisor of M. Then $\operatorname{hd}_A M / aM = \operatorname{hd}_A M + 1$, where both sides may be infinite.

Lemma*

Let A be a noetherian local ring such that $\mathfrak{m} \neq \mathfrak{m}^2$ and such that every element of $\mathfrak{m} - \mathfrak{m}^2$ is a zero-divisor. Then any A-module of finite homological dimension is free.

Corollary*

Let A be a noetherian local ring with $\mathrm{gl.\,dim}\,A<\infty$. If $a\in\mathfrak{m}-\mathfrak{m}^2$ is not a zero divisor of A, then $\mathrm{gl.\,dim}\,A/Aa<\infty$.

Corollary

Corollary

Let A be a regular local ring and let \mathfrak{p} be a prime ideal of A. Then $A_{\mathfrak{p}}$ is a regular local ring.

Corollary

Corollary

Let A be a regular local ring and let \mathfrak{p} be a prime ideal of A. Then $A_{\mathfrak{p}}$ is a regular local ring.

Skech of Proof

Step 1: To prove : $gl \cdot dim A_p \le gl \cdot dim A$

Step 2: An *A*-free resolution of the *A*-module A/\mathfrak{p} with $n \leq \operatorname{gl.dim} A$.

 $0 \to F_n \to F_{n-1} \to \cdots \to F_0 \to A/\mathfrak{p} \to 0$

Step 3: $A_{\mathfrak{p}}$, we obtain an $A_{\mathfrak{p}}$ -free resolution of $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$,

 $0 \to F_n \otimes_A A_\mathfrak{p} \to F_{n-1} \otimes_A A_\mathfrak{p} \to \cdots \to F_0 \otimes_A A_\mathfrak{p} \to A_\mathfrak{p}/\mathfrak{p} A_\mathfrak{p} \to 0$

Step 4: $\mathrm{gl} \cdot \dim A_{\mathfrak{p}} = \mathrm{hd}_{A_{\mathfrak{p}}} A_{\mathfrak{p}}/\mathfrak{p} A_{\mathfrak{p}} \leq n \leq \mathrm{gl} \cdot \dim A$

Table of Contents

- 1 Introduction
- Definitions and Required Results
- 3 Proof of the Theorem 1
- 4 Proof of the Theorem 2

Let A be an ID.

Definition(Prime element)

 $p \in A$ is said to be prime if Ap is aprime ideal.

Definition(UFD)

An ID, A is called an UFD if every element can be written as $u\prod_{1\leq i\leq n}p_i$, where u is a unit in A, p_i are prime elements and $n\in\mathbb{N}$.

Lemma

Let A be a noetherian domain. Then A is a unique factorization domain \iff every prime ideal of height 1 of A is principal.

Lemma

Let A be a noetherian domain. Then A is a unique factorization domain \iff every prime ideal of height 1 of A is principal.

Skech of Proof

Step 1:(\Rightarrow) To show $\mathfrak p$ with height 1 is principal. Let $a \in \mathfrak p$. then

 $\exists p|a\ni Ap\subset \mathfrak{p} \implies Ap=\mathfrak{p}$

Step 2: (\Leftarrow) Any irreducible element, a is prime. Let $\mathfrak p$ be a minimal prime ideal with containg Aa.

By Principal Ideal Theorem, $\mathfrak{p}=Ap$ with p prime p|a. Hence $\mathfrak{p}=Ap=Aa$ implying a is a prime.

Theorem

Any regular local ring is a UFD.

Theorem

Any regular local ring is a UFD.

Skech of Proof

```
Step 1: Induction on \dim A = r.
```

Step 2: r=0, A is field. $r\geq 1$, Use previous Lemma.By Nakayama's Lemma $\mathfrak{m}\neq \mathfrak{m}^2$. Show $a\in \mathfrak{m}-\mathfrak{m}^2$ is prime.

Step 3: Case I : $a \in \mathfrak{p}$.

step 4: Case II : *a* ∉ p.

Step 5: Let $S = \{1, a, a^2, ...\}$ and let $B = S^{-1}A$. Show $\mathfrak{p}B$ is B-projective.

i) B_{qB} is UFD for qB prime ideal, by IH.

ii) $\mathfrak{p}B_{qB}$ is principal, hence B_{qB} -free.

Step 6: $\mathfrak{p}B$ has a finite resolution.

Step 7: pB = Bp. Claim :p = Ap.

Required Results

Step II: Proposition*

Let M be an A-module. A set of elements x_1, \ldots, x_n of M is a minimal set of generators of M if and only if their canonical images $\bar{x}_1, \ldots, \bar{x}_n$ in $M/\mathfrak{m}M$ form a basis of the k-vector space $M/\mathfrak{m}M$. In particular, the cardinality of any minimal set of generators of M is equal to the rank of the k-vector space $M/\mathfrak{m}M$.

Step II: Corollary

Let $\{a_1, \ldots, a_j\}$ be a part of a regular system of parameters of a regular local ring A. Then $\mathfrak{p}=(a_1,\ldots,a_j)$ is a prime ideal of A of height j.

Step 5: Lemma*

Let A be a noetherian ring and P a finitely generated A module. Then P is projective if and only if, $P_{\mathfrak{p}}$ is $A_{\mathfrak{p}}$ -free for every $\mathfrak{p} \in \operatorname{Spec}(A)$.

Required Results

Proposition

For an A-module M and $n \in \mathbb{Z}^+$, TFCE:

- (i) $hd_A M \leq n$.
- (ii) If $0 \to K_n \to P_{n-1} \to \dots \to P_0 \to M \to 0$ is exact with P_j being A-projective for $0 \le j \le n-1$, then K_n is A-projective.

Corollary*

Let $\mathfrak a$ be a non-zero projective ideal of a ring A such that $\mathfrak a$ has a finite free resolution. Then $\mathfrak a\cong A$.

The End

Thank You!