# Advanced cryptology

#### Differential cryptanalysis

prof. Ing. Róbert Lórencz, CSc.



České vysoké učení technické v Praze, Fakulta informačních technologií Katedra počítačových systémů







Příprava studijních programů Informatika pro novou fakultu ČVUT je spolufinancována Evropským sociálním fondem a rozpočtem Hlavního města Prahy v rámci Operačního programu Praha — adaptabilita (OPPA) projektem CZ.2.17/3.1.00/31952 – "Příprava a zavedení nových studijních programů Informatika na ČVUT v Praze". Praha & EU: Investujeme do vaší budoucnosti

Tato přednáška byla rovněž podpořena z prostředků projektu č. 347/2013/B1a Fondu rozvoje vysokých škol Ministerstva školství, mládeže a tělovýchovy

#### Contents of lectures

- Basic features
- Analysis of the S-box
- Keyed S-box
- The construction of differential characteristics
- Extraction of key bits experiment

2/20

# DC - basic properties I

- Differential cryptanalysis (DC) utilizes a high probability of certain occurrences of PT differences and differences in round of last cipher.
- Let us denote inputs X = [X<sub>1</sub>X<sub>2</sub>...X<sub>n</sub>] and outputs
  Y = [Y<sub>1</sub>Y<sub>2</sub>...Y<sub>n</sub>] of any cryptosystem. Next, let us have two inputs to the system X' a X" and the corresponding outputs of the system Y' a Y".
- Input differential is defined by:  $\triangle X = X' \oplus X'' = [\triangle X_1 \triangle X_2 \dots \triangle X_n]$ , where  $\triangle X_i = X_i' \oplus X_i''$ , and where i represents i-ty bit.
- Similarly  $\triangle Y_i = Y_i' \oplus Y_i''$  is the output difference  $\triangle Y = Y' \oplus Y'' = [\triangle Y_1 \triangle Y_2 \dots \triangle Y_n]$ , where  $\triangle Y_i = Y_i' \oplus Y_i''$ .

3/20

# DC - basic properties II

- Ideally, a random cipher is the probability of occurrence of each differences △Y given △X právě 1/2<sup>n</sup>, where n is the number of bits X.
- DC looks for the operation of the of occurrence of individual  $\triangle Y$  given different inputs  $\triangle X$  with very high probability  $p_D$  greater than  $1/2^n$ .
- Pair of  $(\triangle X, \triangle Y)$  we call difference differential.
- At DC attacker selects a pair of input X' a X'', so that individual  $\triangle X$  gave the corresponding  $\triangle Y$  with high probability.
- In the case of SPN we will try to examine highly probable differential characteristics. The differential characteristics are a sequence of input and output difference in rounds, so that the output from one is input difference of next round.

# DC - basic properties III

- Using highly probable differential characteristics allows us to use the information coming into the last rounds of SPN to derive bits of the last subkey layer.
- As with LC, we will first examine the differential characteristics of individual S-boxes with the fact that the identified properties will help us create the overall differential characteristic.

#### Analysis of S-box

- The outputs of S-box are  $X = [X_1 X_2 X_3 X_4]$  and outputs of S-boxes are  $Y = [Y_1 Y_2 Y_3 Y_4]$ .
- All differential pairs of box  $(\triangle X, \triangle Y)$  we will examine and determine with which probability it occurs  $\triangle Y$  for given  $\triangle X$ .
- For each input pairs  $(X', X'' = X' \oplus \triangle X)$  we express  $\triangle Y$ , for which holds  $(Y', Y'' = Y' \oplus \triangle Y)$ .

# DC - basic properties IV

• for example, for X'=0110 and from substitution Y'=1011. For  $\triangle X=1011$  is  $X''=X'\oplus \triangle X=0110\oplus 1011=1101$  and from the substitution then Y''=1001 a  $\triangle Y=Y'\oplus Y''=1011\oplus 1001=0010$ 

#### Demonstration of differential pairs of S-box

| X    | Y    | $\Delta Y$        |                   |                   |  |  |  |
|------|------|-------------------|-------------------|-------------------|--|--|--|
| Λ    | 1    | $\Delta X = 1011$ | $\Delta X = 1000$ | $\Delta X = 0100$ |  |  |  |
| 0000 | 1110 | 0010              | 1101              | 1100              |  |  |  |
| 0001 | 0100 | 0010              | 1110              | 1011              |  |  |  |
| 0010 | 1101 | 0111              | 0101              | 0110              |  |  |  |
| 0011 | 0001 | 0010              | 1011              | 1001              |  |  |  |
| 0100 | 0010 | 0101              | 0111              | 1100              |  |  |  |
| 0101 | 1111 | 1111              | 0110              | 1011              |  |  |  |
| 0110 | 1011 | 0010              | 1011              | 0110              |  |  |  |
| 0111 | 1000 | 1101              | 1111              | 1001              |  |  |  |
| 1000 | 0011 | 0010              | 1101              | 0110              |  |  |  |
| 1001 | 1010 | 0111              | 1110              | 0011              |  |  |  |
| 1010 | 0110 | 0010              | 0101              | 0110              |  |  |  |
| 1011 | 1100 | 0010              | 1011              | 1011              |  |  |  |
| 1100 | 0101 | 1101              | 0111              | 0110              |  |  |  |
| 1101 | 1001 | 0010              | 0110              | 0011              |  |  |  |
| 1110 | 0000 | 1111              | 1011              | 0110              |  |  |  |
| 1111 | 0111 | 0101              | 1111              | 1011              |  |  |  |

# DC - basic properties 2 I

#### Analysis of S-box

- $\triangle Y$  for  $\triangle X = 1011, 1000, 0100$  is in previous table.
- From the table we see for instance that for  $\triangle X = 1011$  occurs 8 values  $\triangle Y = 0010$ .
- The full expression of the differences for S-box is the following table.
- Ideal S-box should have for all pairs  $(\triangle X, \triangle Y)$  value 1, i.e. only one occurrence (probability  $1/2^4 = 1/16$ ).
- Sum occurrence in rows and columns is equal to 16!

8/20

#### Differential distribution table

|        |   | Output Difference |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|--------|---|-------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|        |   | 0                 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | C | D | Е | F |
|        | 0 | 16                | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| I      | 1 | 0                 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 2 | 4 | 0 | 4 | 2 | 0 | 0 |
| n      | 2 | 0                 | 0 | 0 | 2 | 0 | 6 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 |
| p      | 3 | 0                 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 4 | 2 | 0 | 2 | 0 | 0 | 4 |
| u<br>t | 4 | 0                 | 0 | 0 | 2 | 0 | 0 | 6 | 0 | 0 | 2 | 0 | 4 | 2 | 0 | 0 | 0 |
| 1      | 5 | 0                 | 4 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 4 | 0 | 2 | 0 | 0 | 2 |
| D      | 6 | 0                 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 |
| i      | 7 | 0                 | 0 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 4 |
| f      | 8 | 0                 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 4 | 0 | 4 | 2 | 2 |
| f      | 9 | 0                 | 2 | 0 | 0 | 2 | 0 | 0 | 4 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 |
| e      | Α | 0                 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 2 | 0 | 0 | 4 | 0 |
| r      | В | 0                 | 0 | 8 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 |
| e<br>n | C | 0                 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 6 | 0 | 0 |
| c      | D | 0                 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 |
| e      | Е | 0                 | 0 | 2 | 4 | 2 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
|        | F | 0                 | 2 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 4 | 0 | 2 | 0 | 0 | 2 | 0 |

#### **Keyed S-box**



# DC - keyed S-box I

The key is applied to each input in round and at the end of 4th round. Let △W = [W'\_1 ⊕ W''\_1, W'\_2 ⊕ W''\_2, ..., W'\_n ⊕ W''\_n] is a difference of input to the S-box. Then

$$\triangle W_i = W_i' \oplus W_i'' = (X_i' \oplus K_i) \oplus (X_i'' \oplus K_i) = X_i' \oplus X_i'' = \triangle X_i$$

- Key bits have no impact on the input differentiated value and can be ignored.
- keyed S-box has the same the differential distribution table as not keyed S-box.

# Example of differential cryptanalysis



#### DC - construction of differential characteristics I

#### Example

- Based on description of differential characteristics of an S-box in SPN we can create differential characteristic of whole cipher by mutual connecting of S-boxes in individual rounds.
- In following example is created differential characteristic, which involves S-boxes S<sub>12</sub>, S<sub>23</sub>, S<sub>32</sub> and S<sub>33</sub>.
- On a picture of differential characteristic of SPN (previous slide) is shown a creation of differential characteristic of SPN.
- Diagram illustrates influence of nonzero bit differences in connection network with S-boxes.
- Bold is a route through S-boxes, which are active and has a nonzero difference.
- Differential characteristic is executed over first 3. rounds. Last round serves for incorporation of last subkey and thus also its reveal.

#### DC - construction of differential characteristics II

- We are going to use following difference pairs of S-boxes:
  - $S_{12}: \triangle X = B \rightarrow \triangle Y = 2$  with probability 8/16
  - $S_{23}: \triangle X = 4 \rightarrow \triangle Y = 6$  with probability 6/16
  - ►  $S_{32}$ :  $\triangle X = 2 \rightarrow \triangle Y = 5$  with probability 6/16
  - ▶  $S_{33}$  :  $\triangle X = 2 \rightarrow \triangle Y = 5$  with probability 6/16
- All other S-boxes has zero input differences and thus also zero output differences.
- Input of a differences into cipher is an input into 1st round

$$\triangle P = \triangle U_1 = [0000 \ 1011 \ 0000 \ 0000]$$

Output from first S-boxes is

$$\triangle V_1 = [0000\ 0010\ 0000\ 0000]$$



## DC - construction of differential characteristics III

• and after permutation in 1st round we got input into 2nd round

$$\triangle U_2 = [0000\ 0000\ 0100\ 0000]$$

- Output from 1st round is given with probability 8/16 = 1/2 if given difference △P PT.
- Output from 2nd S-boxes (active S<sub>23</sub>) is

$$\triangle V_2 = [0000\ 0000\ 0110\ 0000]$$

and after permutation the input into 3rd round we have

$$\triangle U_1 = [0000\ 0010\ 0010\ 0000]$$

with probability 6/16 given by  $\triangle U_2$  and probability  $8/16 \times 6/16 = 3/16$  given by  $\triangle P$  PT.

## DC - construction of differential characteristics IV

- While we assume, that differential of 1st and 2nd round are independent, then complete probability is a product of both probabilities.
- For S-boxes  $S_{32}$  and  $S_{33}$  permutation in 3rd round we got

$$\triangle V_3 = [0000\ 0101\ 0101\ 0000]$$
 and  $\triangle U_4 = [0000\ 0110\ 0000\ 0110]$ 

with probability  $(6/16)^2$  given by  $\triangle U_3$  and then for probability  $8/16 \times 6/16 \times (6/16)^2 = 27/1024$  given difference  $\triangle P$  where again we assume independence between individual S-boxes in all rounds.

- In cryptanalysis process be assume couples of PT (and their CT) such, that  $\triangle P = [0000\ 1011\ 0000\ 0000]$ . Occurrence of these couples is 27/1024 likely.
- Such couples we call true couples and couples, which does not comply with this condition we are going to call false couples.

#### Example of differential characteristic



# DC - Extraction of key bits I

- In case of differential characteristic existence for R 1 rounds of SPN cipher, we can execute cipher cryptanalysis with a goal of extracting some subkey bits K<sub>5</sub>.
- This process requires partial decryption of CT xored with subkey K<sub>5</sub> from couple PT/CT.
- Values of differentials  $\triangle U_{4,5} \dots \triangle U_{4,8}$  and  $\triangle U_{4,13} \dots \triangle U_{4,16}$  given by differential characteristic from values  $\triangle P$  we compare trues couples of PT with differences of values gained by partial decryption of CT values (corresponding with true couples of PT) and xor of chosen bits  $K_5$ .
- This comparison we are doing for each true couple of PT (and their CP) woth all possible values of 8 bits of subkey K<sub>5</sub> (256hodnot) - K<sub>5,5</sub>...K<sub>5,8</sub> and K<sub>5,13</sub>...K<sub>5,16</sub>.
- If the match occur, then we increment the counter for given combination of subkey bites.

## **SPN**

## Experimental results of DC

| partial subkey                       | prob   | partial subkey                       | prob   |
|--------------------------------------|--------|--------------------------------------|--------|
| $[K_{5,5}K_{5,8}, K_{5,13}K_{5,16}]$ |        | $[K_{5,5}K_{5,8}, K_{5,13}K_{5,16}]$ |        |
| 1 C                                  | 0.0000 | 2 A                                  | 0.0032 |
| 1 D                                  | 0.0000 | 2 B                                  | 0.0022 |
| 1 E                                  | 0.0000 | 2 C                                  | 0.0000 |
| 1 F                                  | 0.0000 | 2 D                                  | 0.0000 |
| 2 0                                  | 0.0000 | 2 E                                  | 0.0000 |
| 2 1                                  | 0.0136 | 2 F                                  | 0.0000 |
| 2 2                                  | 0.0068 | 3 0                                  | 0.0004 |
| 2 3                                  | 0.0068 | 3 1                                  | 0.0000 |
| 2 4                                  | 0.0244 | 3 2                                  | 0.0004 |
| 2 5                                  | 0.0000 | 3 3                                  | 0.0004 |
| 2 6                                  | 0.0068 | 3 4                                  | 0.0000 |
| 2 7                                  | 0.0068 | 3 5                                  | 0.0004 |
| 2 8                                  | 0.0030 | 3 6                                  | 0.0000 |
| 2 9                                  | 0.0024 | 3 7                                  | 0.0008 |

# DC - extraction of subkey bites - experiment I

- In table on previous slide is a table with some values of subkey values, with probability of a "match"in experiment with 5000 true couples.
- Probability is calculated from: prob = count/5000.
- From table it is obvious, that subkey hex 24 has the biggest probability of a match (0,0244) close to theoretical stated value 27/1024 = 0,0264.