Universidade Veiga de Almeida

Curso: Básico das Engenharias

Disciplina: Cálculo Diferencial e Integral I

Professora: Adriana Nogueira

Propriedades de Limites

Suponha que $\lim_{x \to a} f(x) = L$ e $\lim_{x \to a} g(x) = M$. Vale que:

(a)
$$\lim_{x \to a} kf(x) = kL$$
, para qualquer $k \in R$

(b)
$$\lim_{x \to a} f(x) + g(x) = L + M$$

(c)
$$\lim_{x \to a} f(x) - g(x) = L - M$$

(d)
$$\lim_{x \to a} f(x).g(x) = L.M$$

(e)
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{L}{M}$$
, se $M \neq 0$

(f)
$$\lim_{x \to a} [f(x)]^n = L^n$$

(g)
$$\lim_{x \to a} \sqrt{f(x)} = \sqrt[n]{L}$$
, observando que $L > 0$ no caso em que n é par.

 \heartsuit As propriedades acima valem para limites laterais.

Propriedades de limites no infinito

$$(1) \lim_{x \to \infty} k = k$$

$$(2) \lim_{x \to \infty} \frac{1}{x} = 0$$

 $\heartsuit \heartsuit$ As propriedades (a) a (g) valem para limites no infinito.

Propriedades de limites infinitos

$$(1) \lim_{x \to 0^+} \frac{1}{x} = +\infty$$

(2)
$$\lim_{x \to 0^{-}} \frac{1}{x} = -\infty$$

(3) Suponha que $\lim_{x \to a} f(x) = c$ e $\lim_{x \to a} g(x) = 0$, com $c \neq 0$. Então:

(i)
$$\lim_{x\to a} \frac{f(x)}{g(x)} = +\infty$$
 caso $c>0$ e $g(x)\to 0^+,$ ou se $c<0$ e $g(x)\to 0^-;$

(ii)
$$\lim_{x\to a} \frac{f(x)}{g(x)} = -\infty$$
 caso $c>0$ e $g(x)\to 0^-$, ou se $c<0$ e $g(x)\to 0^+$;

(4) Suponha que $\lim_{x\to a}f(x)=+\infty$ e $\lim_{x\to a}g(x)=c$, com $c\neq 0$. Então:

(i)
$$\lim_{x \to a} f(x)g(x) = +\infty$$
 caso $c > 0$;

(ii)
$$\lim_{x \to a} f(x)g(x) = -\infty$$
 caso $c < 0$;

(5) Suponha que $\lim_{x\to a}f(x)=-\infty$ e $\lim_{x\to a}g(x)=c$, com $c\neq 0$. Então:

(i)
$$\lim_{x \to a} f(x)g(x) = -\infty$$
 caso $c > 0$;

(ii)
$$\lim_{x \to a} f(x)g(x) = +\infty$$
 caso $c < 0$;

(6) Suponha que $\lim_{x\to a} f(x) = \infty$ e $\lim_{x\to a} g(x) = c.$ Então:

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x)$$

 $\heartsuit\heartsuit\heartsuit$ As propriedades listadas acima valem para limites laterais.

2