README — Carrinho Controlado por Voz com IA (Arduino UNO R4 WiFi)

Visão Geral

Este projeto apresenta um carrinho inteligente controlado por voz, desenvolvido com o Arduino UNO R4 WiFi. Ele é capaz de receber comandos de voz via aplicativo no celular, mover-se em diferentes direções e até operar de forma autônoma com uma IA embutida (modo automático com sensores e TinyML).

O objetivo é unir automação, robótica e inteligência artificial em um projeto acessível e funcional ideal para feiras de tecnologia, TCCs e experimentos de IoT.

🖕 Funcionalidades Principais

- Controle por voz via app (Android/iOS)
- Conexão Wi-Fi com servidor HTTP local embutido no Arduino
- Controle de direção: frente, ré, esquerda, direita, parar
- Modo autônomo com sensor ultrassônico (desvia de obstáculos)
- Base para integração com IA (TinyML ou comportamento heurístico)
- Código aberto e fácil de adaptar

😾 Componentes Necessários

Componente	Quantidade	Observações
Arduino UNO R4 WiFi	1	Controlador principal
Driver L298N ou TB6612	1	Controle de motores DC
Motores DC com rodas	2	6-12V
Sensor Ultrassônico HC-SR04	1	Medição de distância
Fonte/Bateria 7.4V ou 6V	1	Alimentação dos motores
Fios, protoboard e chassi	_	Montagem

😇Ligações Básicas

Driver L298N → Arduino

- ENA → D5 (PWM)
- IN1 \rightarrow D6
- IN2 → D7

- IN3 → D8
- IN4 → D9
- ENB → D10 (PWM)

Sensor Ultrassônico

- TRIG \rightarrow D2
- ECHO \rightarrow D3
- VCC \rightarrow 5V
- GND \rightarrow GND

Alimentação

- Bateria → Driver (motores)
- Arduino via USB ou regulador 5V
- Todos os GNDs conectados

🎉 Código Fonte

O código principal está em <u>Carrinho R4WiFi.ino</u>. Ele implementa:

- Servidor HTTP embutido (porta 80)
- Parser JSON de comandos recebidos via POST
- Funções de movimento e controle PWM
- Lógica de desvio de obstáculos no modo autônomo

Exemplo de requisição enviada pelo app:

```
{
    "cmd": "forward",
    "arg": 200
}
```

O Arduino responde com:

```
{
  "mode": "remote",
  "distance_cm": 42
}
```

ℰApp de Controle por Voz

Opção 1 — Tasker + AutoVoice (Android)

- 1. Instale o **Tasker** e o **AutoVoice**.
- 2. Configure um perfil de voz ("Avançar", "Parar", etc.).

3. Use a ação **HTTP Request** no Tasker para enviar POST para:

```
http://<IP_DO_ARDUINO>/
Corpo (Body):

{"cmd":"forward"}
```

4. O carrinho executará o comando correspondente.

Opção 2 — App Personalizado

Crie um app em **Flutter** ou **React Native** com botão de microfone \rightarrow reconhece fala (API Google Speech) \rightarrow envia POST para o Arduino.

in IA Embutida (TinyML)

A UNO R4 WiFi permite rodar **modelos leves de IA (TinyML)** via TensorFlow Lite Micro. Use o <u>Edge Impulse</u> para:

- 1. Treinar um modelo de detecção simples (ex.: padrão de obstáculos).
- 2. Exportar como .tflite .
- 3. Integrar no código (veja comentário // aqui colocar TFLM inference).

Também é possível implementar um comportamento heurístico (ex.: aprender rota com base na distância média percorrida).

Estrutura de Pastas Sugerida

Como Subir no GitHub

```
git clone https://github.com/<SEU_USUARIO>/<NOME_REPO>.git
cd <NOME_REPO>
cp -r /seu/projeto/* .
```

```
git add .
git commit -m "Versão inicial do carrinho de voz com IA"
git push origin main
```

ĞTestes e Calibração

- Teste primeiro os motores e direção (sem IA)
- Ajuste velocidade PWM conforme a bateria
- Verifique a distância mínima segura para o sensor ultrassônico
- Use logs no Serial Monitor para depuração