Den 20:e Nordiska Matematiktävlingen

Torsdagen den 30 mars, 2006

Skrivtid: 4 timmar. Varje problem är värt 5 poäng.

Problem 1

Låt B och C vara punkter på två givna strålar som utgår från en punkt A, så att |AB| + |AC| är konstant.

Bevisa att det existerar en punkt $D \neq A$, sådan att de omskrivna cirklarna till trianglarna ABC passerar genom D för varje val av B och C.

Problem 2

De reella talen x, y och z, som inte alla är lika, uppfyller sambanden

$$x + \frac{1}{y} = y + \frac{1}{z} = z + \frac{1}{x} = k$$
.

Bestäm alla möjliga värden på k.

Problem 3

Följden $\{a_n\}$ av positiva heltal bestäms av

$$a_0 = m$$
 och $a_{n+1} = a_n^5 + 487$ för alla $n \ge 0$.

Bestäm alla värden på m för vilka följden innehåller så många kvadratiska tal som det är möjligt.

Problem 4

Rutorna på ett schackbräde av storleken 100×100 färgas med 100 olika färger. Varje ruta målas i en enda färg och varje färg används exakt 100 gånger.

Visa att det på brädet existerar en rad eller en kolumn, i vilken minst 10 olika färger har använts.

Enda tillåtna hjälpmedel är skrivdon och linjal.