

Ayudantía

3 de julio de 2021

 $1^{\underline{0}}$ semestre 2021 - Profesor: J. L. Reutter

Lógica de Primer Orden

Pregunta 1 (I2 2014-2)

Por mostrar, cómo obtener una fórmula en LPO $\varphi_{\alpha}(x,y)$ dada una operación α . Tal que (a, b) $\in \alpha(\mathfrak{U})$ si y solo si existe una asignación (1) $\sigma(x) = a$, $\sigma(y) = b$ y (2) $(\mathfrak{U}, \sigma) \models \varphi_{\alpha}(x,y)$

Posible respuesta

Construimos nuestra fórmula de forma inductiva, sean β , α operaciones y φ_{α} , φ_{β} las fórmulas respectivas que estamos construyendo (de forma arbitraria).

Si $\alpha = R$, entonces:

$$\varphi_{\alpha}(x,y) = R(x,Y)$$

Si $\alpha = \beta^-$, entonces:

$$\varphi_{\alpha}(x,y) = \varphi_{\beta}(y,x)$$

Si $\alpha = \beta_{=}$, entonces:

$$\varphi_{\alpha}(x,y) = \varphi_{\beta}(x,x)$$

Si $\alpha = \beta^c$, entonces:

$$\varphi_{\alpha}(x,y) = \neg \varphi_{\beta}(x,y)$$

Si $\alpha = \beta_1$ o β_2 , entonces:

$$\varphi_{\alpha}(x,y) = \exists z (\varphi_{\beta_1}(x,z) \land \varphi_{\beta_2}(z,y))$$

Ahora debemos mostrar que la fórmula es correcta

Los cinco casos son análogos, supongamos el caso $\alpha = \beta_1$ o β_2 , sobrecargando un poco la notación:

$$(\mathbf{a}, \mathbf{b}) \in \alpha(\mathfrak{U}) \to \mathbf{existe}$$
 una asignación (1) $\sigma(x) = \mathbf{a}, \ \sigma(y) = \mathbf{b}$ y (2) $(\mathfrak{U}, \sigma) \models \varphi_{\alpha}(x, y)$

Por construcción $\varphi_{\alpha}(x,y) = \exists z (\varphi_{\beta_1}(x,z) \land \varphi_{\beta_2}(z,y))$ y sea σ tal que $\sigma(x) = a$, $\sigma(y) = b$.

Por definición de $\alpha(\mathfrak{U}) \exists c \in A$ tq $(a, c) \in \beta_1$ y $(c, b) \in \beta_2$. Como construimos la fórmula de manera inductiva, si z = c se tiene que $\mathfrak{U} \models \varphi_{\beta_1}(a, c)$ y también que $\mathfrak{U} \models \varphi_{\beta_2}(c, b)$. Es decir, $\mathfrak{U} \models \varphi_{\beta_1}(a, c) \land \varphi_{\beta_2}(c, b)$

Por lo tanto $\mathfrak{U} \models \varphi_{\alpha}(a,b)$

$$(\mathbf{a}, \mathbf{b}) \in \alpha(\mathfrak{U}) \leftarrow \text{existe una asignación (1) } \sigma(x) = \mathbf{a}, \ \sigma(y) = \mathbf{b} \ \mathbf{y} \ (\mathbf{2}) \ (\mathfrak{U}, \sigma) \models \varphi_{\alpha}(x, y)$$

Sabemos que $\mathfrak{U} \models \varphi_{\alpha}(a,b)$, es decir, $\mathfrak{U} \models \varphi_{\beta_1}(a,c)$ y $\mathfrak{U} \models \varphi_{\beta_2}(c,b)$ con z = c. Luego, por definición $(a,c) \in \beta_1$ y $(c,b) \in \beta_2$. Entonces $(a,b) \in \beta_1$ o β_2 y por ende $(a,b) \in \alpha(\mathfrak{U})$

Pregunta 2

Suponga que R es una relación de aridad tres que representa la fila, columna y número en un sudoku clásico. El alfabeto corresponde a los números naturales del 1 al 9.

Represente estas reglas de un sudoku clásico mediante fórmulas en LPO (estas reglas se satisfacen para una asignación tal que el sudoku corresponde a una solución válida):

1) Un bloque no puede tener dos números iguales.

Por simplicidad definimos el primer bloque, análogo para los otros bloques.

$$\varphi_1(z_1, z_2, ..., z_9) = R(1, 1, z_1) \wedge R(1, 2, z_2) \wedge R(1, 3, z_3) \wedge R(2, 1, z_4) \wedge R(2, 2, z_5) \wedge R(2, 3, z_6) \wedge R(3, 1, z_7) \wedge R(3, 2, z_8) \wedge R(3, 3, z_9) \rightarrow \neg(\bigvee_{z_1, ..., z_9} z_i = z_j)$$

2) Una fila o columna no puede tener dos números iguales

Por simplicidad definimos la primera fila, análogo para las otras filas y columnas

$$\varphi_2(z) = R(1,1,z_1) \wedge R(1,2,z_2) \wedge R(1,3,z_3) \wedge R(1,4,z_4) \wedge R(1,5,z_5) \wedge R(1,6,z_6) \wedge R(1,7,z_7) \wedge R(1,8,z_8) \wedge R(1,9,z_9) \rightarrow \neg(\bigvee_{z_1,\dots,z_9} z_i = z_j)$$

3) Todos las posiciones tienen algún número

$$\varphi_3 = \forall x, \forall y, \exists z R(x, y, z)$$

4) No hay dos números distintos en una misma casilla

$$\varphi_4(z) = \forall x, \forall y \ R(x, y, z) \land R(x, y, c) \rightarrow z = c$$