PART III: INTERVAL ENFORCEABLE PROPERTIES OF FINITE GROUPS

William DeMeo

williamdemeo@gmail.com

University of South Carolina

Algebra & Logic Seminar September 28, 2012 For some groups, Sub(G) determines G up to isomorphism.

EXAMPLES

The Klein 4-group, V_4 .

The alternating groups, A_n ($n \ge 4$).

Every finite nonabelian simple group.

For other groups, $\operatorname{Sub}(G)$ is isomorphic to the subgroup lattices of all groups in an infinite class of nonisomorphic groups.

EXAMPLES

$$Sub(G) \cong \mathring{|}$$
 if and only if G is cyclic of prime order.

 $Sub(G) \cong \langle \rangle$ if and only if G is cyclic of order pq.

At the other extreme, there are finite lattices that are not subgroup lattices.

Example: For all G,

$$Sub(G) \ncong$$

We are interested in the *local structure* of subgroup lattices, that is, the possible *intervals*

$$[H,K] := \{X \mid H \leqslant X \leqslant K\} \leqslant Sub(G)$$

where $H \leqslant K \leqslant G$.

We restrict our attention to *upper intervals*, where K = G, and ask two questions:

- What intervals [H, G] are possible?
- What properties of a group G can be inferred from the shape of an upper interval in Sub(G)?

1. What intervals [H, G] are possible?

There is a remarkable theorem relating this question to the *finite lattice* representation problem (FLRP).

THEOREM (PÁLFY AND PUDLÁK(1980))

The following statements are equivalent:

- (A) Every finite lattice is isomorphic to the congruence lattice of a finite algebra.
- (B) Every finite lattice is isomorphic to an interval in the subgroup lattice of a finite group.

2. What properties of G can be inferred from [H, G]?

A group theoretical property $\mathfrak X$ (and the associated class $\mathscr G_{\mathfrak X})$ is

- interval enforceable (IE) provided there exists a lattice L such that if $G \in \mathfrak{G}$ and $L \cong [H, G]$, then G is a \mathfrak{X} -group.
- core-free interval enforceable (cf-IE) provided $\exists L$ st if $G \in \mathfrak{G}, \ L \cong [H, G], \ H$ core-free, then G is a \mathfrak{X} -group.
- **minimal interval enforceable** (min-IE) provided $\exists L$ st if $G \in \mathfrak{G}$, $L \cong [H, G]$, and if G has minimal order (wrt $L \cong [H, G]$), then G is a \mathfrak{X} -group.

Clearly, if \mathfrak{X} is IE, then it is also cf-IE.

There is a simple sufficient condition under which the converse holds.

If $\mathfrak X$ is a group property, let $\mathscr G^c_{\mathfrak X}:=\{G\in\mathfrak G\mid G\nvDash\mathfrak X\}$ denote the class of $(\neg\mathfrak X)$ -groups.

LEMMA

Suppose $\mathfrak X$ is a core-free interval enforceable property. If

$$\mathbf{H}(\mathscr{G}^{c}_{\mathfrak{X}})=\mathscr{G}^{c}_{\mathfrak{X}}$$

then $\mathfrak X$ is an interval enforceable property.

The following are at least core-free interval enforceable:

- $\mathscr{G}_0 = \mathfrak{S}^c$ = the insoluble groups
- $\mathscr{G}_1 = \{G \in \mathfrak{G} \mid (\forall n < \omega) \ (G \neq A_n \text{ and } G \neq S_n)\}$
- ullet $\mathscr{G}_2=$ the subdirectly irreducible groups
- $\mathscr{G}_3 =$ groups with no nontrivial abelian normal subgroups
- $\mathscr{G}_4 = \{G \in \mathfrak{G} \mid C_G(M) = 1 \text{ for all } 1 \neq M \leqslant G\}.$

The following are at least core-free interval enforceable:

- $\mathscr{G}_0 = \mathfrak{S}^c$ = the insoluble groups
- $\mathscr{G}_1 = \{G \in \mathfrak{G} \mid (\forall n < \omega) \ (G \neq A_n \text{ and } G \neq S_n)\}$
- \mathscr{G}_2 = the subdirectly irreducible groups
- \mathcal{G}_3 = groups with no nontrivial abelian normal subgroups
- $\mathscr{G}_4 = \{G \in \mathfrak{G} \mid C_G(M) = 1 \text{ for all } 1 \neq M \leqslant G\}.$

For
$$i = 2, 3, 4$$
,

$$\mathbf{H}(\mathscr{G}_{i}^{c}) \neq \mathscr{G}_{i}^{c}$$

Proof: If $H \in \mathcal{G}_i$, $K \in \mathcal{G}_i^c$, then, $H \times K$ belongs to \mathcal{G}_i^c , but $(H \times K)/(1 \times K) \cong H$ does not.

If a lattice L is isomorphic to an interval in the subgroup lattice of a finite group, then we call L *group representable*.

By the Pálfy-Pudlák Theorem, the FLRP has a negative answer (i.e. $\mathcal{L}_0 \neq \mathcal{L}_3$) if we can find a finite lattice that is not group representable.

If a lattice L is isomorphic to an interval in the subgroup lattice of a finite group, then we call L *group representable*.

By the Pálfy-Pudlák Theorem, the FLRP has a negative answer (i.e. $\mathcal{L}_0 \neq \mathcal{L}_3$) if we can find a finite lattice that is not group representable.

Suppose there exists property \mathfrak{X} such that both \mathfrak{X} and its negation $\neg \mathfrak{X}$ are interval enforceable by the lattices L and L_c , respectively:

$$L \cong [H, G] \implies G \text{ is a } \mathfrak{X}\text{-group}$$

$$\textit{L}_\textit{c} \cong [\textit{H}_\textit{c}, \textit{G}_\textit{c}] \implies \textit{G}_\textit{c} \text{ is not a \mathfrak{X}-group}$$

If a lattice L is isomorphic to an interval in the subgroup lattice of a finite group, then we call L *group representable*.

By the Pálfy-Pudlák Theorem, the FLRP has a negative answer (i.e. $\mathcal{L}_0 \neq \mathcal{L}_3$) if we can find a finite lattice that is not group representable.

Suppose there exists property $\mathfrak X$ such that both $\mathfrak X$ and its negation $\neg \mathfrak X$ are interval enforceable by the lattices L and L_c , respectively:

$$L \cong [H, G] \implies G \text{ is a } \mathfrak{X}\text{-group}$$

$$L_c \cong [H_c, G_c] \implies G_c$$
 is not a \mathfrak{X} -group

Then the lattice

wouldn't be group representable.

As the next result shows, however, if a group property and its negation are interval enforceable by L and L_c , then already at least one of these lattices is not group representable.

LEMMA

If $\mathfrak X$ is a group property that is interval enforceable by a group representable lattice, then $\neg \mathfrak X$ is not interval enforceable by a group representable lattice.

Insolubility is interval enforceable, but solubility is not.

For if $L \cong [H, G]$, then for any insoluble group K we have $L \cong [H \times K, G \times K]$, and $G \times K$ is insoluble.

Note that the group $H \times K$ at the bottom of the interval is not core-free. So a more interesting question is whether a property and its negation could both be *core-free* IE.

CONJECTURE

If \mathfrak{X} is core-free interval enforceable by a group representable lattice, then $\neg \mathfrak{X}$ is not core-free interval enforceable by a group representable lattice.

The following lemma shows that any class of groups that omits certain wreath products cannot be core-free interval enforceable by a group representable lattice.

LEMMA

Suppose $\mathfrak X$ is core-free interval enforceable by a group representable lattice. Then, for any finite nonabelian simple group S, there exists a wreath product group of the form $W = S \wr U$ that is a $\mathfrak X$ -group.

COROLLARY

Solubility is not core-free interval enforceable.

Proof Sketch

Let L be a group representable lattice such that if $L \cong [H, G]$ and $core_G(H) = 1$ then G is a \mathfrak{X} -group.

Since L is group representable, $\exists \mathfrak{X}$ -group G with $L \cong [H, G]$.

Proof Sketch

Let L be a group representable lattice such that if $L \cong [H, G]$ and $core_G(H) = 1$ then G is a \mathfrak{X} -group.

Since *L* is group representable, $\exists \mathfrak{X}$ -group *G* with $L \cong [H, G]$.

We apply the idea of Hans Kurzweil twice:

- Fix a finite nonabelian simple group S.
- Suppose the index of H in G is |G:H|=n.
- Then the action of G on the cosets of H induces an automorphism of the group Sⁿ by permutation of coordinates.
- Denote this by $\varphi : G \to \operatorname{Aut}(S^n)$, and let $\varphi(G) = \overline{G} \leqslant \operatorname{Aut}(S^n)$.

The interval $[D, S^n]$ is isomorphic to Eq(n)', the dual of the lattice of partitions of an n-element set.

The dual lattice L' is an upper interval of Sub(U), namely, $L' \cong [D\overline{G}, U]$.

We conclude that a class of groups that does not include wreath products of the form $S \wr G$, where S is an arbitrary finite nonabelian simple group, is not a
core-free interval enforceable class. The class of soluble groups is an
example.

THEOREM

The following statements are equivalent:

- (B) Every finite lattice is isomorphic to an interval in the subgroup lattice of a finite group.
- (C) For every finite lattice L and every finite collection $\mathscr{G}_1, \ldots, \mathscr{G}_n$ of cf-IE classes of groups.

$$\exists G \in \bigcap_{i=1}^{n} \mathscr{G}_{i} \text{ such that } L \cong [H, G] \text{ and } \operatorname{core}_{G}(H) = 1.$$

(D) For every finite collection \mathcal{L} of finite lattices, there exists a finite group G such that each $L_i \in \mathcal{L}$ is isomorphic to $[H_i, G]$ for some core-free subgroup $H_i \leq G$.

By (C), the FLRP would have a negative answer if we could find a collection $\mathscr{G}_1, \ldots, \mathscr{G}_n$ of cf-IE classes such that $\bigcap^n \mathscr{G}_i$ is empty.

By (D), it makes sense to consider finite collections of finite lattices and ask what can be proved about a group G if one assumes that all of these lattices are isomorphic to upper intervals of $\operatorname{Sub}(G)$.

