

# **Lahore University of Management Sciences**

## **MATH 101 - Calculus I**

Spring 2017-2018

| Ali Ashher Zaidi ; Tanveer Iqbal ; Hira Nadeem                            |  |  |
|---------------------------------------------------------------------------|--|--|
| 9-151 ; 9-139 ; 9-117A                                                    |  |  |
|                                                                           |  |  |
| TBA                                                                       |  |  |
| ali.zaidi@lums.edu.pk; tanveer.lqbal@lums.edu.pk; hira.nadeem@lums.edu.pk |  |  |
| 8017 ; 8294 ; 8935                                                        |  |  |
| Noreen Sohail &<br>Shazia Zafar /                                         |  |  |
| TBA                                                                       |  |  |
| Lms.lums.edu.pk login through ID and password                             |  |  |
|                                                                           |  |  |

| Course Basics             |                           | •        |       |
|---------------------------|---------------------------|----------|-------|
| Credit Hours              | 3                         |          |       |
| Lecture(s)                | Nbr of Lec(s) Per<br>Week | Duration | 75min |
| Recitation/Lab (per week) | Nbr of Lec(s) Per<br>Week | Duration |       |
| Tutorial (per week)       | Nbr of Lec(s) Per<br>Week | Duration |       |

| Course Distribution        |              |
|----------------------------|--------------|
| Core                       |              |
| Elective                   |              |
| Open for Student Category  | All students |
| Close for Student Category | None         |

| COI    | IDCE | DESCR | IDTIO | NI |
|--------|------|-------|-------|----|
| 1.1.11 |      |       |       |    |

This is the first course of a two semester course sequence. This course covers limits, continuity, differentiation and its applications, integrals and techniques of integration, applications of integrals, early transcendental functions.

### COURSE PREREQUISITE(S)

Calculus-I (Math-101)

#### **COURSE OBJECTIVES**

- The main objective is for students to learn the differential and integral calculus of a function of a single variable.
- Students should be able to apply single variable calculus to a variety of applications such as related rates, numerical
- approximation, and optimization.

Students should acquire a basic conceptual understanding of limit, continuity, derivative, and integral

#### **Learning Outcomes**

- Prove a limit formally
  - Calculate a limit informally
  - Understand when the Intermediate Value Theorem can be applied and do so when appropriate Understand when the Extreme Value Theorem can be applied and do so when appropriate

Students should be able to



# **Lahore University of Management Sciences**

Understand derivates as a rate of change

Find local extrema using derivatives

Find global extrema

Understand Riemann integrals as a limit of Riemann sums

Understand derivatives as limits

Use Riemann sums to approximate definite integrals

Apply integration and differentiation techniques covered in class

Calculate derivatives of common functions
Calculate derivatives of inverses of functions

Find equations of tangent lines Make linear approximations

Determine continuity or discontinuity of a function at a point

Understand when the Mean Value Theorem can be applied and do so when appropriate

Apply the Fundamental Theorem of Calculus

Evaluate improper integrals

#### **Grading Breakup and Policy**

Quizzes (5 best out of 6) 15% Homework (30 out of 30) 10% Midterm 35% Final 40%

### Examination Detail

| Examination DC  | Xamination Detail                                                                                                           |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Midterm<br>Exam | Yes/No: Yes Combine/Separate: Combine Duration: 75min Preferred Date: Exam Specifications: No notes/No books/No calculators |  |  |  |
| Final Exam      | Yes/No: Yes Combine/Separate: Combine Duration: 180min Exam Specifications: No notes/No books/No calculators                |  |  |  |

| COURSE OVERVIEW             |                                             |                                     |                            |
|-----------------------------|---------------------------------------------|-------------------------------------|----------------------------|
| Week/<br>Lecture/<br>Module | Topics                                      | Recommended<br>Readings             | Objectives/<br>Application |
| 1                           | Review of functions, Introduction to limits | Strang 1.1-1.7 T&F 1.1,1.2,1.3, 1.4 | Limit                      |
| 2                           | Limits and continuity                       | Strang 2.6-2.7 T&F 1.5              | Limit, continuity          |
| 3                           | Derivatives, Derivatives of polynomials     | Strang 2.1-2.2 T&F 2.1,2.2,2.3      | Derivatives                |
| 4                           | Slopes and tangent lines                    | Strang 2.3 T&F 1.6                  | Derivatives                |
| 5                           | Differentiation of trig functions           | Strang 2.4 T&F 2.4                  | Derivatives                |
| 6                           | Solution of $y''+k^2y=0$                    | Course notes                        | Application of derivatives |
| 7                           | Product and quotient rules                  | Strang 2.5 T&F 2.2                  | Derivatives                |
| 8                           | Chain rule                                  | Strang 4.1 T&F 2.5                  | Derivatives                |
| 9                           | Implicit differentiation and related rates  | Strang 4.2 T&F 2.6,2.7              | Application of derivatives |
| 10                          | Linear approximation                        | Strang 3.1 T&F 3.7                  | Application of derivatives |



# **Lahore University of Management Sciences**

| 11 | Inverse functions and their derivatives   | Strang 4.3-4.4 T&F 6.1                      | Derivatives                |
|----|-------------------------------------------|---------------------------------------------|----------------------------|
| 12 | Extrema                                   | Strang 3.2-3.3 T&F 3.1, 3.3, 3.6            | Application of derivatives |
| 13 | Mean Value Theorem                        | Strang 3.8 T&F 3.2                          | Application of derivatives |
| 14 | L'Hopital's rule                          | Strang 3.8 T&F 6.6                          | Application of derivatives |
| 15 | In definite integrals                     | Strang 5.4 T&F 4.1, 4.3                     | Integrals                  |
| 16 | Riemann sums and the definite integral    | Strang 5.1-5.3, 5.5-5.6 T&F 4.5             | Integrals                  |
| 17 | Exponential function and its derivative   | Strang 6.1-6.4, T&F 6.1, 6.2, 6.3, 6.4, 6.5 | Derivatives                |
| 18 | Solution of y'=ky                         | Course notes T&F 4.2                        | Application of derivatives |
| 19 | Solution of ay"+by'+cy=0                  | Course notes                                | Application of derivatives |
| 20 | Fundament theorem of calculus             | Strang 5.4, 5.7 T&F 4.7                     | Derivatives and Integrals  |
| 21 | Integrals of elementary functions         | Strang 5.4, 5.6, 5.8 T&F 7.1                | Integrals                  |
| 22 | Integration by parts                      | Strang 7.1 T&F 7.2                          | Integrals                  |
| 23 | Trigonometric integrals                   | Strang 7.2 T&F 7.4                          | Integrals                  |
| 24 | Integration by trigonometric substitution | Strang 7.3 T&F 7.4                          | Integrals                  |
| 25 | Integration by partial fractions          | Strang 7.4 T&F 7.3                          | Integrals                  |
| 26 | Improper integrals                        | Strang 7.5 T&F 7.6                          | Integrals                  |

\* (T & F stands for Thomas and Finney)

### Textbook(s)/Supplementary Readings

Text Book: Calculus and Analytic Geometry by Thomas and Finney

 $\textbf{Reference: Calculus by Gilbert Strang, } \underline{\text{http://ocw.mit.edu/resources/res-}18-001-calculus-online-textbook-spring-} 2005/\text{textbook/} \underline{\text{textbook-spring-}2005/\text{textbook/}} \underline{\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook/}} \underline{\text{textbook-spring-}2005/\text{textbook/}} \underline{\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{textbook-spring-}2005/\text{text$