Orbit Mechanics Tutorial

Hao Ye

yehao0809@gmail.com

Directed by Prof. Urs Hugentobler

1st --Keplerian Orbits (analytical way)

2rd --Numerical Integration of Satellite Orbits (numerical way)

3rd --Orbits Integration with Different Force Models(software)

Content

Six Keplerian orbital elements

- --- semimajor axis α Shape of orbit
- --- numerical eccentricity e
- --- Inclination i
- --- Right ascension Ω of the ascending node
- --- Argument of perigee ω
- --- Perigee passing time T_0

Orientation of orbital plane

Six Keplerian orbital elements

Satellite	a[km]	е	i [deg]	Ω [deg]	ω [deg]
GOCE	6629	0.004	96.6	257.7	144.2
GPS	26560	0.01	55	60	0
MOLNIYA	26554	0.7	63	245	270
GEO	Geostationary	0	0	0	0
MICHIBIKI	Geosynchronous	0.075	41	195	270

Main tasks

- 2D orbit
- Mean anomaly, eccentric anomaly and true anomaly
- 2. 2D plane ⇒ 3D trajectory in space-fixed system
- 3D orbit
- Tracks on the ground
- 4. Orbit in earth-fixed system → Orbit in topo-centric system
- Azimuth and elevation orbit
- Judge visibility

Keplerian elements ──Orbits in 2D plane

Keplerian elements

──Orbits in 2D plane

$$n = \sqrt{\frac{GM}{a^3}} \qquad M(t) = n \cdot (t - T_0)$$

Mean anomaly

Kepler's equation: $M = E - e \sin E$ $\Delta E_i < 10^{-6}$

Eccentric anomaly

$$r = a(1 - e\cos E) \qquad \tan \frac{v}{2} = \sqrt{\frac{1 + e}{1 - e}} \tan \frac{E}{2}$$

Radius
True anomaly

 $x = r \cos v$ $y = r \sin v$

2D coordinates

Keplerian elements ──Orbits in 2D plane

Keplerian elements ──Orbits in 2D plane

Mean anomaly Eccentric anomaly True anomaly

2D plane 3D plane in space-fixed system

2D plane >3D plane in space-fixed system

$$\vec{r}_b = r(\cos \nu, \sin \nu, 0) \qquad \qquad \vec{r} = R_3(-\Omega)R_1(-i)R_3(-\omega)\vec{r}_b$$

$$\dot{\vec{r}}_b = \sqrt{\frac{GM}{a(1-e^2)}}(-\sin \nu, e + \cos \nu, 0) \qquad \qquad \dot{\vec{r}} = R_3(-\Omega)R_1(-i)R_3(-\omega)\vec{r}_b$$

$$R_{1}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} R_{2}(\theta) = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix} R_{3}(\theta) = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Task III

Rotating rate:
$$\dot{\Omega}_E = \frac{2\pi}{86164s}$$

Rotating angle: $\theta_0(t) = \dot{\Omega}_E t$

$$\vec{r}_{Earth-fixed}(t) = \mathbf{R}_3(\theta_0(t)) \cdot \vec{r}_{Space-fixed}(t)$$

$$R_3(\theta) = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Task III

Space-fixed system

Earth-fixed system

Ground-tracks on the Earth surface

Latitude

$$\tan \lambda = \frac{y_{Earth-fixed}}{x_{Earth-fixed}}$$

Longitude

$$\tan \psi = \frac{z_{Earth-fixed}}{\sqrt{x_{Earth-fixed}^2 + y_{Earth-fixed}^2}}$$

Task III

Ground-tracks on the Earth surface

Wettzell

 $(4075.53022,931.78130,4801.61819)_{T}$

Key point:

You should move the center of the coordinate system to the Wettzell

Transformation

$$d = R - r$$

Rotation

$$\boldsymbol{d_{hori}} = Q_1 R_2 (90 - \varphi) R_3(\lambda) \boldsymbol{d}$$

Earth-fixed system

☐ Topocentric system

Transformation

$$d = R - r$$

Rotation

$$d_{hori} = Q_1 R_2 (90 - \varphi) R_3(\lambda) d$$

Notice:

$$Q_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Left hand --->right hand

Earth-fixed system

☐ Topocentric system

h = elevation angle, measured up from horizon z = zenith angle, measured from vertical A = Azimuth angle, measured clockwise from North

$$tan A = \frac{y}{x}$$

$$\cos z = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

$$E = \frac{\pi}{2} - z$$

Judge the Visibility

Rule:

Elevation angle>0---->visible

Earth-fixed system

☐ Topocentric system

Satellites	GOCE	GPS	MOLNIYA	GEO	MICHIBIKI
Visibility time/s	1589	35121	67794	86400	16349
Percentage/%	1.84	40.65	78.47	100	18.96

Or some other formats you like......

Tips in programming

- Avoid using loop
- Avoid putting all the code in one function and trying to design the structure of your task
- Check your input parameters and typing errors
- Try to use the debugging of MATLAB and be patient
- No hesitation to get help from you tutor

