

MARMARA UNIVERSITY

FACULTY OF ENGINEERING
MECHANICAL ENGINEERING

ME4084 INTERNAL COMBUSTION ENGINES II FINAL EXAM PROJECT

STUDENT NAME Oğuzalp ÇETİN

STUDENT NUMBER 150418031

SUBMITTED TO PROF. DR. Mehmet Zafer GÜL

List of Figures

Figure 1: 2JZ engine	
Figure 2: Lotus Engine Model	4
Figure 3: Fuel Data	5
Figure 4: Cylinder Geometric Data	5
Figure 5: Intake and Exhaust Valve Data	6
Figure 6: Intake and Exhaust Port Data	
Figure 7: Figure 6: Intake and Exhaust Pipe Data	7
Figure 8: Test Points	8
Figure 9: Boundary Conditions	8
Figure 10: Valve Timings	9
Figure 11: Valve Timing Diagram	9
Figure 12:Pressure and Temperature vs CA for 3rd Cylinder at 2800 rpm	0
Figure 13: Pressure and Temperature vs CA for 3rd Cylinder at 6800 rpm	0
Figure 14: Simulated Performance Curves of 2JZ engine	1
List of Tables	
Table 1: Cylinder geometry	
Table 2: Valve parameters	3

ENGINE SPECIFICATIONS

First of all, I choose 2JZ-GTE engine to analyze. It is used in Supra MK-4 and my version is without VVT.

Figure 1: 2JZ engine

- 4 stroke, inline
- 6 cylinders, 3L SI engine

Table 1: Cylinder geometry

Bore (mm)	86
Stroke (mm)	86
Connecting Rod (mm)	142
Compression Ratio	10.0
Pin offset (mm)	35.75

Total of 24 valves with 12 intake and 12 exhaust valves, total of 4 valves per cylinder

Table 2: Valve parameters

	Intake Valves	Exhaust Valves
Valve Lift (mm)	8.26	8.41
Valve Open (deg)	3 deg bTDC	53 deg bBDC
Valve Close (deg)	50 aBDC	3 deg aTDC

Valve Throat Diameter (mm)	33.6	29
Runner Diameter (mm)	36	36

SIMULATION

Figure 2: Lotus Engine Model

After placing components of my model, I set the followings as shown.

Figure 3: Fuel Data

	Bore (mm)	Stroke (mm)	Rod Length (mm)	Pin Offset (mm	Compression Ratio	Phase (ATDC)
Cyl 1	86.0000	86.0000	142.00	1.00	10.00	0.00
Cyl 2	86.0000	86.0000	142.00	1.00	10.00	480.00
Cyl 3	86.0000	86.0000	142.00	1.00	10.00	240.00
Cyl 4	86.0000	86.0000	142.00	1.00	10.00	600.00
Cyl 5	86.0000	86.0000	142.00	1.00	10.00	120.00
Cyl 6	86.0000	86.0000	142.00	1.00	10.00	360.00

Figure 4: Cylinder Geometric Data

Intake Poppet Valve Data:

	Valve Open (deg)	Valve Close (deg)	Dwell at Max (deg		MOP (deg)	Lift Option	Data Action	Opening Lash	Closing Lash
Pval 2	3.00	50.00	15.00	8.260	106.00	Def. Fast	Scale	0.00000	0.00000
Pval 3	3.00	50.00	15.00	8.260	106.00	Def. Fast	Scale	0.00000	0.00000
Pval 6	3.00	50.00	15.00	8.260	106.00	Def. Fast	Scale	0.00000	0.00000
Pval 7	3.00	50.00	15.00	8.260	106.00	Def. Fast	Scale	0.00000	0.00000
Pval 10	3.00	50.00	15.00	8.260	106.00	Def. Fast	Scale	0.00000	0.00000
Pval 11	3.00	50.00	15.00	8.260	106.00	Def. Fast	Scale	0.00000	0.00000
Pval 14	3.00	50.00	15.00	8.260	106.00	Def. Fast	Scale	0.00000	0.00000
Pval 15	3.00	50.00	15.00	8.260	106.00	Def. Fast	Scale	0.00000	0.00000
Pval 18	3.00	50.00	15.00	8.260	106.00	Def. Fast	Scale	0.00000	0.00000
Pval 19	3.00	50.00	15.00	8.260	106.00	Def. Fast	Scale	0.00000	0.00000
Pval 22	3.00	50.00	15.00	8.260	106.00	Def. Fast	Scale	0.00000	0.00000
Pval 23	3.00	50.00	15.00	8.260	106.00	Def. Fast	Scale	0.00000	0.00000

Exhaust Poppet Valve Data:

	Valve Open (deg)	Valve Close (deg)	Dwell at Max (deg	Max Lift (mm)	MOP (deg)	Lift Option	Data Action	Opening Lash	Closing Lash
Pval 1	53.00	3.00	10.00	8.410	-120.00	Def. Fast	Scale	0.00000	0.00000
Pval 4	53.00	3.00	10.00	8.410	-120.00	Def. Fast	Scale	0.00000	0.00000
Pval 5	53.00	3.00	10.00	8.410	-120.00	Def. Fast	Scale	0.00000	0.00000
Pval 8	53.00	3.00	10.00	8.410	-120.00	Def. Fast	Scale	0.00000	0.00000
Pval 9	53.00	3.00	10.00	8.410	-120.00	Def. Fast	Scale	0.00000	0.00000
Pval 12	53.00	3.00	10.00	8.410	-120.00	Def. Fast	Scale	0.00000	0.00000
Pval 13	53.00	3.00	10.00	8.410	-120.00	Def. Fast	Scale	0.00000	0.00000
Pval 16	53.00	3.00	10.00	8.410	-120.00	Def. Fast	Scale	0.00000	0.00000
Pval 17	53.00	3.00	10.00	8.410	-120.00	Def. Fast	Scale	0.00000	0.00000
Pval 20	53.00	3.00	10.00	8.410	-120.00	Def. Fast	Scale	0.00000	0.00000
Pval 21	53.00	3.00	10.00	8.410	-120.00	Def. Fast	Scale	0.00000	0.00000
Pval 24	53.00	3.00	10.00	8.410	-120.00	Def. Fast	Scale	0.00000	0.00000

Figure 5: Intake and Exhaust Valve Data

Intake Port Data:

	No of Valves	Valve Throat Dia (mm)	Port Type	CF at 0.3 L/D
Port 2	2	33.60	Default Good Port	0.6400
Port 3	2	33.60	Default Good Port	0.6400
Port 5	2	33.60	Default Good Port	0.6400
Port 7	2	33.60	Default Good Port	0.6400
Port 9	2	33.60	Default Good Port	0.6400
Port 11	2	33.60	Default Good Port	0.6400

Exhaust Port Data:

	No of Valves	Valve Throat Dia (mm)	Port Type	CF at 0.3 L/D
Port 1	2	29.00	Default Good Port	0.7800
Port 4	2	29.00	Default Good Port	0.7800
Port 6	2	29.00	Default Good Port	0.7800
Port 8	2	29.00	Default Good Port	0.7800
Port 10	2	29.00	Default Good Port	0.7800
Port 12	2	29.00	Default Good Port	0.7800

Figure 6: Intake and Exhaust Port Data

Intake Pipes (Ports) Data:

	Length (mm)	Diameter (mm)	No. of Meshes	Wall Thickness (mm)	Cooling Type	Wall Material	Wall Factor	Label
Pipe 2	0.000 250.000	36.000 36.000	20	1.00	Water Cooled	Aluminium	Def Surface Roughness (mm)	Inlet port 1 (copied)
Pipe 3	0.000 250.000	36.000 36.000	20	1.00	Water Cooled	Aluminium	Def Surface Roughness (mm)	Inlet port 1 (copied)
Pipe 5	0.000 250.000	36.000 36.000	20	1.00	Water Cooled	Aluminium	Def Surface Roughness (mm)	Inlet port 1 (copied)
Pipe 7	0.000 250.000	36.000 36.000	20	1.00	Water Cooled	Aluminium	Def Surface Roughness (mm)	Inlet port 1 (copied)
Pipe 9	0.000 250.000	36.000 36.000	20	1.00	Water Cooled	Aluminium	Def Surface Roughness (mm)	Inlet port 1 (copied)
Pipe 11	0.000 250.000	36.000 36.000	20	1.00	Water Cooled	Aluminium	Def Surface Roughness (mm)	Inlet port 1 (copied)

Exhaust Pipes (Ports) Data:

	Length (mm)	Diameter (mm)	No. of Meshes	Wall Thickness (mm)	Cooling Type	Wall Material	Wall Factor	Label
Pipe 1	0.000 250.000	36.000 36.000	20	1.00	Water Cooled	Aluminium	Def Surface Roughness (mm)	exhaust port 1 (copied)
Pipe 4	0.000 250.000	36.000 36.000	20	1.00	Water Cooled	Aluminium	Def Surface Roughness (mm)	exhaust port 1 (copied)
Pipe 6	0.000 250.000	36.000 36.000	20	1.00	Water Cooled	Aluminium	Def Surface Roughness (mm)	exhaust port 1 (copied)
Pipe 8	0.000 250.000	36.000 36.000	20	1.00	Water Cooled	Aluminium	Def Surface Roughness (mm)	exhaust port 1 (copied)
Pipe 10	0.000 250.000	36.000 36.000	20	1.00	Water Cooled	Aluminium	Def Surface Roughness (mm)	exhaust port 1 (copied)
Pipe 12	0.000 250.000	36.000 36.000	20	1.00	Water Cooled	Aluminium	Def Surface Roughness (mm)	exhaust port 1 (copied)

Figure 7: Figure 6: Intake and Exhaust Pipe Data

For calculations, I created 8 test points from 800 to 7800 that increase by 1000. Also, I set following parameters as shown.

Figure 8: Test Points

	/ State Test Data				[a]a]	()						
est Points Test Point	Heat - Phase He Speed (rpm)	at - Period Heat - Two-Zone Fuel Humidity Option	Specific Humidity (kg/kg)	Relative	Ambient Air Pressure (bar-abs)	Actuators Ambient Air Temperature (C)	Inlet No.	Inlet Boundary Pressure (har-ahs)	Inlet Boundary Temperature (C)	Exit No.	Exit Boundary Pressure (bar-abs)	Exit Temp Initialisation
1	800	Specific Humidity (kg/kg)	0.0130000	0.8745018	1.00000	20.00	1	1.00000	20.00	1	1.10000	Use Cyl 1 at EVO
2	1800	Specific Humidity (kg/kg)	0.0130000	0.8745018	1.00000	20.00	1	1.00000	20.00	1	1.10000	Use Cyl 1 at EVO
3	2800	Specific Humidity (kg/kg)	0.0130000	0.8745018	1.00000	20.00	1	1.00000	20.00	1	1.10000	Use Cyl 1 at EVO
4	3800	Specific Humidity (kg/kg)	0.0130000	0.8745018	1.00000	20.00	1	1.00000	20.00	1	1.10000	Use Cyl 1 at EVO
5	4800	Specific Humidity (kg/kg)	0.0130000	0.8745018	1.00000	20.00	1	1.00000	20.00	1	1.10000	Use Cyl 1 at EVO
6	5800	Specific Humidity (kg/kg)	0.0130000	0.8745018	1.00000	20.00	1	1.00000	20.00	1	1.10000	Use Cyl 1 at EVO
7	6800	Specific Humidity (kg/kg)	0.0130000	0.8745018	1.00000	20.00	1	1.00000	20.00	1	1.10000	Use Cyl 1 at EVO
8	7800	Specific Humidity (kg/kg)	0.0130000	0.8745018	1.00000	20.00	1	1.00000	20.00	1	1.10000	Use Cyl 1 at EVO

Figure 9: Boundary Conditions

For combustion modelling, single wiebe function with parameters of 10 and 2 is used to predict burning rate and Annand heat release model with parameters of 0.2 and 0.8 is used to calculate convective and radiative heat transfer coefficients.

RESULTS

Figure 10: Valve Timings

Firing order of cylinders is 1-5-3-6-2-4 as we can see from Figure-10.

Figure 11: Valve Timing Diagram

Figure 12:Pressure and Temperature vs CA for 3rd Cylinder at 2800 rpm

Figure 13: Pressure and Temperature vs CA for 3rd Cylinder at 6800 rpm

Figure 14: Simulated Performance Curves of 2JZ engine

REFERENCES

- 1. https://www.engine-specs.net/toyota/2jz-gte.html
- 2. https://australiancar.reviews/2jz-ge-toyota-engine/
- $\textbf{3.} \quad \underline{\text{https://lotusproactive.wordpress.com/wp-content/uploads/2013/08/getting-started-with-lotus-engine-simulation.pdf}$