

Automates et analyse lexicale (AAL3) L2 - Examen - 3h8 janvier 2020

Nom: Bonne

Prénom : Année

Numéro d'étudiant : 2020

Consignes:

- Tous documents ou appareils électroniques interdits.
- Vous devez répondre directement sur les traits pointillés.
- Si vous n'avez pas assez de place pour vos réponses (**ce qui ne devrait pas arriver**), écrivez au verso de la dernière feuille, ou demandez une copie d'examen et insérez-y ce sujet complété.
- Inscrivez vos nom, prénom et numéro d'étudiant dans l'onglet ci-dessus avant de le replier et d'en coller les bords seulement.

Les langages considérés seront sur l'alphabet $\Sigma = \{a, b\}$.

Exercice 1

Soit A et B les langages donnés par les expressions rationnelles suivantes : $(ab + abb)^*$ et $(aba + b)^*$. $\textcircled{\circ}$. Donner les 3 plus petits mots de $A \cap B$:

- 1. ε
- 2. abab
- 3. ababb

Exercice 2

Pour tout langage L, on définit le langage $Carres(L) = \{uu \mid u \in L\}$ (l'ensemble des carrés des mots de L).

1. Donner un langage reconnaissable A infini tel que Carres(A) soit reconnaissable :

Expression rationnelle pour A	Expression rationnelle pour $Carres(A)$
a^*	$(aa)^*$

2. Donner un langage reconnaissable B tel que Carres(B) ne soit pas reconnaissable :

Expression rationnelle pour B	Description ensembliste pour $Carres(B)$
a^*b	$\{a^nba^nb \mid n \in \mathbb{N}\}$

3. Donner un langage non reconnaissable C tel que C^* soit reconnaissable :

Description ensembliste pour C	Expression rationnelle pour C^*
$\{a^nb^n\mid n\in\mathbb{N}\}\cup\{a,b\}$	$(a + b)^*$

Exercice 3

Soit A le langage des mots dont la longueur est un carré :

$$A = \{ u \mid \exists k \in \mathbb{N}, |u| = k^2 \}.$$

Le but de cet exercice est de savoir si A est reconnaissable. Soit i et j des entiers tels que i < j.

- 1. Donner un mot non vide de taille minimale dans $(a^{i^2})^{-1}A:a^{2i+1}$
- **2.** Montrer que ce mot n'est pas dans $(a^{j^2})^{-1}A$: $j^2 + 2i + 1$ n'est pas un carré car $(j+1)^2 = j^2 + 2j + 1 > j^2 + 2i + 1$, donc $a^{j^2}a^{2i+1} \not\in A$, donc $a^{2i+1} \not\in (a^{j^2})^{-1}A$.
- 3. Combien A a-t-il de résiduels distincts? une infinité $((a^{i^2})^{-1}A$ pour chaque i)
- **4.** D'après le théorème de Myhill-Nerode, on a donc (cocher la bonne réponse) : $\Box A$ reconnaissable $\Box A$ non reconnaissable

Exercice 4

Soit le langage $A = \{a^m b^n \mid n = m^2\}$. Est-il reconnaissable? ©. Compléter la partie correspondante.

 \mathbf{Oui} , A est reconnu par l'automate fini suivant :

Non.

Par l'absurde, si $A \in \mathsf{Rec}$ alors soit N l'entier donné par

le lemme de l'étoile

On choisit
$$u = a^N b^{N^2}$$
:

alors
$$u \in A$$
 et $|u| \ge N$

donc il existe un découpage u = xyz avec

$$|xy| \leq N, y \neq \varepsilon$$
 et

$$\forall k, \ xy^k z \in A$$

Or pour k = 0 on a:

$$xz = a^{N-|y|}b^{N^2} \not\in A$$

Contradiction avec le lemme de l'étoile

donc A n'est pas reconnaissable.

 \bigcirc . Même question avec le langage $B = \{a^m b^n \mid n \equiv m^2 \mod 2\}$.

Oui, B est décrit par l'expression rationnelle suivante :

$$(aa)^*(bb)^* + (aa)^*a(bb)^*b$$

-	
- IN I	on
ΙN	\mathbf{OH}

Par	l'absurde,	$\operatorname{si} B$	\in Rec	alors	soit N	l'en	tier c	lonné	par
-----	------------	-----------------------	-----------	-------	--------	------	--------	-------	-----

1																							
le																		 			 		

On choisit $u = \dots :$:

alors $u \dots et |u| \dots$

donc il existe un découpage u = xyz avec

$$|xy| \dots y \dots$$
 et

 $\forall k, \ldots \ldots \ldots \ldots$

Or pour $k = \dots \dots \dots$ on a:

.....

Contradiction avec

donc

Exercice 5

Soit L le langage décrit par l'expression rationnelle $(ab+ba)^*a^*$. On se propose de décrire tous les résiduels de L en les ordonnant sous la forme d'un arbre.

1. Donner les expressions rationnelles e_1 , e_2 et e_3 qui décrivent correctement les résiduels L_1 , L_2 et L_3 dans l'arbre ci-dessous.

$$e_1 = b(ab + ba)^*a^* + a^*$$

$$e_2 = a(ab + ba)^*a^*$$

$$e_3 = a^*$$

 $\textbf{2.} \ \text{Compléter par} \ L_0, L_1, L_2, \ L_3, \ L \ \text{ou} \ \emptyset \ \text{les pointillés dans l'arbre des résiduels afin que celui-ci soit correct.}$

3. Quels résiduels contiennent le mot vide? (cocher les bonnes réponses)

4. En déduire l'automate fini déterministe et complet minimal pour L, dont les états sont les cinq résiduels ci-dessus : compléter la table de transition suivante (ne pas oublier d'indiquer, sous forme de flèches, l'état initial et les états terminaux).

$$\begin{array}{c|cccc}
 & a & b \\
 & \leftarrow & L_0 & L_1 & L_2 \\
 & \leftarrow & L_1 & L_3 & L_0 \\
 & L_2 & L_0 & \emptyset \\
 & \leftarrow & L_3 & L_3 & \emptyset \\
 & \emptyset & \emptyset & \emptyset
\end{array}$$

Exercice 6

Soit L le langage décrit par l'expression rationnelle $e = (aa + ab)^*(ba + bb)$.

🛸. Compléter les étapes ci-dessous de l'algorithme de Glushkov pour obtenir un automate fini non déterministe \mathcal{A} pour L.

1. Expression rationnelle linéarisée (on appellera x_1, \ldots, x_8 les nouvelles variables):

$$(x_1x_2 + x_3x_4)^*(x_5x_6 + x_7x_8)$$

3. Table de transitions (indiquer avec des flèches l'état initial et les états terminaux)

2. Tableau des successeurs

début	x_1, x_3, x_5, x_7			a	b
acout	w1, w3, w5, w7		0	1.0	
x_1	x_2	\rightarrow	0	1,3	5,7
x_2	x_1, x_3, x_5, x_7		1	2	_
x_3	x_4		2	1,3	5,7
x_4	x_1, x_3, x_5, x_7		3	_	4
x_5	x_6		4	1,3	5,7
x_6	_		5	6	_
x_7	x_8	\leftarrow	6	_	_
x_8	_		7	_	8
		\leftarrow	8	_	_

 \odot . Déterminiser l'automate \mathcal{A} pour obtenir un automate déterministe *complet* \mathcal{A}' via la table de transition suivante à compléter (indiquer avec des flèches l'état initial et les états terminaux).

		a	b
\rightarrow	0	{1,3}	{5,7}
	$\{1, 3\}$	2	4
	2	{1,3}	{5,7}
	4	{1,3}	{5,7}
	$\{5, 7\}$	6	8
\leftarrow	6	p	p
\leftarrow	8	p	p
	p	p	p

On renommera les états de \mathcal{A}' de 0 à 7 comme suit (vous êtes encouragé à écrire sur votre brouillon la table de transition avec les nouveaux numéros):

Ancien nom	0	$\{1,3\}$	2	4	$\{5, 7\}$	6	8	p
Nouveau nom	0	1	2	3	4	5	6	7

n. Minimiser \mathcal{A}' en complétant les étapes ci-dessous de l'algorithme de Moore.

1. Groupes d'états à l'étape $0: \{0, 1, 2, 3, 4, 7\}$ $\{5, 6\}$

2. a et b séparent 4 de 0, 1, 2, 3, 7

Groupes d'états à l'étape $1: \{0, 1, 2, 3, 7\}$ $\{4\}$ $\{5, 6\}$

3. b sépare 1 de 0, 2, 3, 7

Groupes d'états à l'étape 2 :

$$\{0, 2, 3, 7\}$$
 $\{1\}$ $\{4\}$ $\{5, 6\}$

4. a et b séparent 7 de 0, 2, 3

Groupes d'états à l'étape $3:\{0,2,3\}$ $\{1\}$ $\{4\}$ $\{7\}$ $\{5,6\}$

. En supprimant l'état puits, on obtient l'automate déterministe minimal (non complet) suivant (indiquer les transitions sur le dessin ci-dessous) :

5. En utilisant la méthode du lemme d'Arden, déterminer une expression rationnelle pour le langage décrit par l'automate précédent : écrire puis résoudre le système d'équations sur les langages L_0 , L_1 , L_2 et L_3 en complétant ce qui suit.

$$\begin{cases} L_0 &= aL_1 + bL_2 \\ L_1 &= (a+b)L_0 \\ L_2 &= (a+b)L_3 \end{cases}$$
 Donc $L_2 = a+b$ d'où l'expression pour L_0 :
$$L_0 = a(a+b)L_0 + b(a+b)$$
 donc par le lemme d'Arden:
$$L_3 &= \varepsilon$$

$$L_0 = (a(a+b))^*b(a+b)$$

L'expression rationnelle trouvée est donc $e' = (a(a+b))^*b(a+b)$

 \odot . Que dire de e et e'? Elles sont équivalentes.