These are NOT notes. They are	e a <u>visual aid(</u> 20%) for a <u>ve</u>	erbal explanation(80%).
Use [2] and []	in & to get	0 2
$M_3q - M_3q_X$	- m, ax = M	Xx/
100	7	
	N39 = 0x (M2	$+ M_3 + M_1$
7.54 Mz = M3 6	7 = 0x (3+M,)	
EX. / m	ass less cable	STATIC EQUIL
Find tenion In the calle. Find force The brailwat exerts an rod.	30° T = T2 = T0E1 = (9 L)	length L uniform Mass 'M' Let M' Se Mass & Sign.
for Sign 1 to Fr	- T23 = -M93	$\frac{1}{2} \sum_{i=1}^{Nd} \frac{1}{2} \sum_{i=1}^{Nd} \frac{1}{2}$

These are NOT notes. They are a visual aid(20%) for a verbal explanation(80%). PIVUT

Interpreting Torque

Torque can be interpreted from two perspectives. First, FIGURE 12.21a shows that the quantity $F \sin \phi$ is the tangential force component F_t . Consequently, the torque is

$$\tau = rF_t \tag{12.21}$$

In other words, torque is the product of r with the force component F_t that is perpendicular to the radial line. This interpretation makes sense because the radial component of \vec{F} points straight at the pivot point and cannot exert a torque.

FIGURE 12.21 Two useful interpretations of the torque.

Alternatively, FIGURE 12.21b shows that $d = r \sin \phi$ is the distance from the pivot to the **line of action**, the line along which force \vec{F} acts. Thus the torque can also be written

 $|\tau| = dF = (r \sin \theta) F = r F \sin \theta$ (42.22)

The distance d from the pivot to the line of action is called the **moment arm** (or the lever arm), so we can say that the torque is the product of the force and the moment arm. This second perspective on torque is widely used in applications.

NOTE Equation 12.22 gives only $|\tau|$, the magnitude of the torque; the sign has to be supplied by observing the direction in which the torque acts.

Chapter II

Stress = [Elastic] strain

"Hooke's Law ' | Yearngs

"Elastic behavior" Bulk

