Problem 1. Describle all possible complex 3-dimensional complex representations of \mathbb{Z} modulo equivalence.

Solution: Since \mathbb{Z} is generated by 1, we only need to consider ρ_1 given representation $\rho: \mathbb{Z} \to GL_3(\mathbb{C})$. By Jordan Decomposition theorem, it's sufficient to categorize 3×3 Jordan normal form as follows:

1. Diagonal matrix with nonzero distinct diagonal entries. $\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix}$, where λ_i are nonzero and distinct.

2. Diagonal matrix with two identical diagonal entries. $\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix}$, where λ_i are nonzero and distinct.

nzero and distinct.

3. Diagonal matrix with identical diagonal entries. $\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_1 \end{pmatrix}$, where λ_1 nonzero.

4. One 2×2 Jordan block and one 1×1 block. $\begin{pmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix}$, where λ_i are nonzero.

5. One 3×3 Jordan block. $\begin{pmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 1 \\ 0 & 0 & \lambda_1 \end{pmatrix}$, where λ_1 nonzero.

Problem 2. Let $G = \mathbb{Z}_n$ be a cyclic group of order n coprime to p. Show that any linear representation of G over a field F of characteristic p is a direct sum of irreducible representations.

Proof: For any representation $\rho: \mathbb{Z}_n \to GL(\mathbb{F}_p)$, only need to consider ρ_1 because \mathbb{Z}_n is generated by 1. Up to choosing a basis, we can write ρ_1 as matrix T, where $T^n = I$, the minimal polynomial of A divides $x^n - 1$, where $x^n - 1 = 0$ has no multiple roots given gcd(n,p) = 1, then $T^n - 1 = f(T)g(T)$, f is irreducible. Take V = ker(f(T)), then it is an invariant subspace, thus the representation can be written as $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$, where A, B, C are block matrices. Then it's sufficient to show that B = 0. Since $T^n = I$, then $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}^n = \begin{pmatrix} A^n & \sum_{k=0}^{n-1} \binom{p}{n} A^k B C^{n-k-1} \\ 0 & C^n \end{pmatrix}$, then notice that in order to make summation 0, we have to have B=0. Finally by doing the same on matrix C and A, eventually we can obtain that any representation can be decomposed into direct sum of irreducible representation.

Problem 3. What is going to be the tensor product of two copies of the representation V_2 of the group S_3 .

Solution: Representation V_2 is $\rho: S_3 \to GL(\mathbb{R}^2)$, and we pick standard basis $\{e_1, e_2\}$ of \mathbb{R}^2 . Let $x = (1\ 2\ 3)$ and $y = (1\ 2)$, then the matrix representations are:

$$M_x = \begin{pmatrix} \cos(2\pi/3) & -\sin(2\pi/3) \\ \sin(2\pi/3) & \cos(2\pi/3) \end{pmatrix}, M_y = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

The basis of $\mathbb{R}^2 \otimes \mathbb{R}^2$ is $\{e_1 \otimes e_1, e_1 \otimes e_2, e_2 \otimes e_1, e_2 \otimes e_2\}$, and by the definition of tensor product of two representation $\rho^1, \rho^2, \rho'_s(v_1 \cdot v_2) = \rho^1_s(v_1) \cdot \rho^1_s(v_2)$. So we only need to compute for basis.

$$\rho'_{x}(e_{1} \otimes e_{1}) = M_{x}e_{1} \otimes M_{x}e_{1} = \frac{1}{4}e_{1} \otimes e_{1} - \frac{\sqrt{3}}{4}e_{1} \otimes e_{2} - \frac{\sqrt{3}}{4}e_{2} \otimes e_{1} + \frac{3}{4}e_{2} \otimes e_{2}$$

$$\rho'_{x}(e_{1} \otimes e_{2}) = M_{x}e_{1} \otimes M_{x}e_{2} = \frac{\sqrt{3}}{4}e_{1} \otimes e_{1} + \frac{1}{4}e_{1} \otimes e_{2} - \frac{3}{4}e_{2} \otimes e_{1} - \frac{\sqrt{3}}{4}e_{2} \otimes e_{2}$$

$$\rho'_{x}(e_{2} \otimes e_{1}) = M_{x}e_{2} \otimes M_{x}e_{1} = \frac{\sqrt{3}}{4}e_{1} \otimes e_{1} - \frac{3}{4}e_{1} \otimes e_{2} + \frac{1}{4}e_{2} \otimes e_{1} - \frac{\sqrt{3}}{4}e_{2} \otimes e_{2}$$

$$\rho'_{x}(e_{2} \otimes e_{2}) = M_{x}e_{2} \otimes M_{x}e_{2} = \frac{3}{4}e_{1} \otimes e_{1} + \frac{\sqrt{3}}{4}e_{1} \otimes e_{2} + \frac{\sqrt{3}}{4}e_{2} \otimes e_{1} + \frac{1}{4}e_{2} \otimes e_{2}$$

then the result is

$$\begin{pmatrix} \frac{1}{4} & \frac{\sqrt{3}}{4} & \frac{\sqrt{3}}{4} & \frac{3}{4} \\ -\frac{\sqrt{3}}{4} & \frac{1}{4} & -\frac{3}{4} & \frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & -\frac{3}{4} & \frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{3}{4} & -\frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{4} & \frac{1}{4} \end{pmatrix}$$

the other one is

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Problem 4. Show that $PSL(2, \mathbb{Z}_5)$ is a simple group (it is the quotient of $SL(2, \mathbb{Z}_5)$ modulo the central subgroup consisting of diagonal matrices).

Proof: $PSL(2, \mathbb{Z}_5) \simeq A_5$, which is simple.

Problem 5. Describe character table of elements of A_4 .

Solution: A_4 has four conjugacy classes, namely $C_1 = [e]$, $C_2 = [(1\ 2)(3\ 4)]$, $C_3 = \{(1\ 2\ 3), (1\ 3\ 4), (1\ 4\ 2), (2\ 4\ 3)\}$ and $C_4 = \{(1\ 3\ 2), (1\ 4\ 3), (1\ 2\ 4), (2\ 3\ 4)\}$. There are four isomorphism classes of irreducible representations, with dimensions satisfying $|A_4| = 12 = d_1^2 + d_2^2 + d_3^2 + d_4^2$, the only solution to that is $d_1 = d_2 = d_3 = 1$, $d_4 = 3$. The characteristic table lookes like:

	C_1	C_2	C_3	C_4
χ_1	1	1	1	1
χ_2	1	a	b	c
χ_3	1	d	е	f
χ_4	3	g	h	i

By orthogonal theorem, $\langle \chi_1, \chi_2 \rangle = \frac{1}{12}(1+3a+4b+4c) = 0$. Since $\chi_2(x) = a$ is the trace of a 1×1 matrix, and $x^2 = 1$, then $a = \pm 1$. Similarly with b, c, the possible values are $1, \omega, \omega^2$ where ω is the third root of unity. However, b or c equals 1 is impossible from the equation, and hence a = 1. Same procedure for χ_3 . Finally for χ_4 , by checking $\langle \chi_1, \chi_4 \rangle = 0$, $\langle \chi_2, \chi_4 \rangle = 0$ and $\langle \chi_3, \chi_4 \rangle = 0$, we can obtain that g = -1, h = i = 0. The complete character map is as follows:

	C_1	C_2	C_3	C_4
χ_1	1	1	1	1
χ_2	1	1	ω	ω^2
χ ₃	1	1	ω^2	ω
χ_4	3	-1	0	0