Assignment 2

1.

This dataset is not linearly separable but it can be separated using non-linear boundary, without any outliers

This dataset is also not linear separable but without noise

Linearly separable without any noise

Non-Linearly separable with many outliers

Non-Linearly separable with many outliers

Data 1

Data 2

Data 3

Data 4

In <u>data 1,2,4 and 5</u>: Kernel used is rbf, because it is non-linearly separable data. The data can not be separated by a linear line, therefore we use rbf kernel which divides the data non-linearly and smoothly.

In <u>data 3</u>, it can be easily separated by linear lines, there linear kernel of sym is used.

SVM

1. Linear Kernel

I have used C hyperparameter. Large value of C (like 10) will Try to overfit the data, and make smaller margins. It will try To avoid the outliers at the cost of margin size. Whereas, Smaller size of C will underfit the data but make larger margins.

a.) One-vs-Rest

- Data 1

K =	1	2	3	4	5
c=1	50.0	35.0	40.0	40.0	30.0
c=0.1	50.0	45.0	40.0	45.0	35.0
c=10	50.0	35.0	40.0	40.0	40.0

As, we can see in most of the cases c=0.1 is giving the best result. Therefore, best result is when margin is big and no overfitting. There was no noise or outliers in data, therefore small c was best.

Confusion matrix (I have taken only for c=1 and for all K-folds)

[[17. 28.]

[33. 22.]]

K =	1	2	3	4	5
c=1	75.0	90.0	85.0	90.0	85.0
c=0.1	70.0	90.0	85.0	90.0	85.0
c=10	75.0	90.0	85.0	95.0	85.0

The trend shows, very tiny value of c gives less accuracy. c=1 would fit best for this because it has relatively more noise.

Confusion matrix (I have taken only for c=1 and for all K-folds)

K =	1	2	3	4	5
c=1	100.0	100.0	100.0	100.0	100.0
c=0.1	100.0	100.0	100.0	100.0	100.0
c=10	100.0	100.0	95.0	100.0	100.0

Only once accuracy fallen down, i.e. at c = 10. There overfitting is there which results in less accuracy, due to larger value of c.

Confusion matrix (I have taken only for c=1 and for all K-folds)

[[34. 0. 0.]

[0. 33. 0.]

[0. 0. 33.]]

K =	1	2	3	4	5
c=1	52.75	56.75	51.0	54.75	47.25
c=0.1	53.0	58.75	51.75	48.0	47.25
c=10	52.75	55.75	50.5	54.75	47.25

The accuracy is fluctuating with c. But c=1, is consistently giving best results. Therefore, moderate level of overfitting will give good result in this case.

Confusion matrix (I have taken only for c=1 and for all K-folds)

[[478. 428.] [522. 572.]]

K =	1	2	3	4	5
c=1	80.75	86.5	85.5	86.5	82.75
c=0.1	81.5	86.25	85.0	85.25	82.75
c=10	80.75	86.5	85.5	86.5	82.75

The accuracy is fluctuating with c. But c=1, is consistently giving best results. Therefore, moderate level of overfitting will give good result in this case.

Confusion matrix (I have taken only for c=1 and for all K-folds)

[[837. 149.] [163. 851.]]

2. RBF Kernel

-data 1

K=	1	2	3	4	5
	100.0	100.0	100.0	100.0	100.0

Confusion matrix

[[50. 0.] [0. 50.]]

- Data 2

K=	1	2	3	4	5
	100.0	100.0	100.0	100.0	100.0

Confusion matrix

- Data 3

K=	1	2	3	4	5
	100.0	100.0	100.0	100.0	100.0

Confusion Matrix

[[34. 0. 0.]

[0. 33. 0.]

[0. 0. 33.]]

K=	1	2	3	4	5
	85.5	87.75	89.25	88.75	89.25

Confusion Matrix

[[901. 139.] [99. 861.]]

K=	1	2	3	4	5
	80.0	85.75	83.75	84.0	79.0

[[814. 164.] [186. 836.]]

1. Linear kernel

b) One-vs-One

k = 1,	C	=	1	ie ri
50.0				
k = 1,	C	4	0.1	
50.0	Ε¢	lit	View	
50.0 k = 1,	C	=	10	
50.0			7	
k = 2,	C	=	1	
35.0				
k = 2,	C	=	0.1	
35.0				
k = 2,	C	=	10	
35.0				
k = 3,	C	=	1	
40.0				
k = 3,	С	=	0.1	
40.0				
k = 3,	C	=	10	
40.0			1.0	
k = 4,	C	=	1	
40.0				
k = 4	C	=	0.1	
45.0	_		10	
k = 4	C	=	10	
40.0	_			
k = 5	C	=	1	
30.0 k = 5,	_		0 1	
K = 5, 35.0	C	=	0.1	
k = 5	c		10	
35.0	٠	-	10	
[[17.	- 32	28	1	
[33	3	22	`iı_	
[33.	- 4			

Data 1

Data 2

Data 1

Data 2

K =	1	2	3	4	5
c=1	100.0	100.0	100.0	100.0	100.0
c=0.1	100.0	100.0	100.0	100.0	100.0
c=10	100.0	100.0	100.0	100.0	100.0

Confusion Matrix

[[34. 0. 0.]

[0. 33. 0.]

[0. 0. 33.]]

- Data 4


```
k = 1, C = 1
80.75
k = 1, C = 0.1
80.75
k = 1, C = 10
80.75
k = 2, C = 1
86.5
k = 2, C = 0.1
86.5
k = 2, C = 10
86.5
k = 3, C = 1
85.5
k = 3, C = 0.1
85.0
k = 3, C = 10
85.5
k = 4, C = 1
86.5
k = 4, C = 0.1
86.5
k = 4, C = 10
86.5
k = 5, C = 1
 = 5, C = 0.1
 = 5, C = 10
  837. 149.]
163. 851.]]
 [ 837.
```

- For rbf, graph is plotted.

3. Kaggle

I have used tf idf vectorizer because our features were not of same dimension, e.g.

X1 = 22 342 52 213 X2 = 34 23

Both have different number of features. Thus, we converted the X1, X2....Xn into a string and passed them in tf idf vectorizer.

Then, I used SVM classifier. I tried many values of C, but C=0.3529 best fitted the data and predicted the best value. This is a small value of C, therefore, the classifier doesn't work too hard to avoid misclassification during our training. That is overfitting was avoided. And because of tiny value of C it is a large margin svm classifier.

For removing outliers, I trained the classifier with X,Y. Then predicted the values for same X. Then I compared the predicted values from original Y. If they matches then I kept it, Else I removed it from X and Y. This gave us a new X and Y which I further used to fitting the classifier.

OLD DATA SET

Part C

```
k = 1, C = 1
99.375
k = 1, C = 0.1
100.0
k = 1, C = 10
99.375
k = 2, C = 1
100.0
k = 2, C = 0.1
100.0
k = 2, C = 10
100.0
k = 3, C = 1
100.0
k = 3, C = 0.1
100.0
k = 3, C = 10
100.0
k = 4, C = 1
100.0
k = 4, C = 0.1
100.0
k = 4, C = 10
100.0
k = 5, C = 1
100.0
k = 5, C = 0.1
100.0
k = 5, C = 10
100.0
[[ 392.
[[ 392. 0.]
[ 1. 407.]]
```

Earlier, DT- 95
Logistic - 100
Gaussian Naive Bayes- 96
SVM IS BETTER

Part A

```
k = 1, C = 0.1
81.0714285714
k = 1, C = 10
81.0714285714
k = 2, C = 1
82.1428571429
K = 2, C = 0.1
82.1428571429
k = 2, C = 10
82.1428571429
k = 3, C = 1
83.2142857143
k = 3, C = 0.1
83.2142857143
k = 3, C = 10
83.2142857143
k = 4, C = 1
81.4285714286
k = 4, C = 0.1
81.4285714286
k = 4, C = 10
81.4285714286
k = 5, C = 1
81.6666666667
k = 5, C = 0.1
81.6666666667
k = 5, C = 10
81.6666666667
                                                                   5.]
                   5.
[[ 366.
            1.
                         3.
                                2.
                                       5.
                                              4.
                                                     4.
                                                            8.
                                                                   7.]
     0.
          464.
                 12.
                         1.
                                4.
                                       2.
                                              3.
                                                     4.
                                                           15.
                                                                  4.]
                 306.
                        17.
                                 3.
                                              7.
                                                           15.
     3.
            3.
                                       4.
                                                     9.
                                                                  11.]
     2.
                  16.
                       341.
                                 1.
                                              1.
                                                     9.
                                                           13.
            1.
                                      18.
                                              3.
                                                                  34.]
     2.
            1.
                  12.
                         2.
                              337.
                                       7.
                                                     6.
                                                           6.
                                                                   5.]
    10.
                                     301.
            3.
                   3.
                        27.
                                7.
                                             16.
                                                     2.
                                                           35.
           2.
     6.
                  4.
                         1.
                                2.
                                      16.
                                            397.
                                                     1.
                                                            9.
                                                                  0.]
                                                   358.
                                                                  36.]
     2.
            3.
                  10.
                          7.
                                3.
                                      13.
                                              1.
                                                            4.
                  22.
                               13.
                                      23.
                                              5.
                                                     4.
                                                          288.
                                                                   9.]
     6.
           14.
                        17.
                               44.
                                       9.
                                                           17.
            2.
                   3.
                         8.
                                              4.
                                                    34.
                                                                 282.]]
```

Earlier,

DT - 75% Logistic- 82%; Gaussian Naive Bayes - 57%; SVM IS BETTER

One-One VS One-Every

Accuracy - one vs one Time Consuming- one vs one