The goal of this discussion section is to get familiar with Markov chains.

Participation in discussion section counts as 5% of the grade. Completion of the worksheets counts as 20% of the grade. Submit your worksheet work by April 21st at 2:59pm.

Let's consider a model of population dynamics of two species in competition. We are interested to know which population will survive or if both might coexist after a long time. To model that we consider a finite birth and death chain (X_n, Y_n) in $[0, \ldots, n] \times [0, \ldots, n]$ with the following transitions:

- $(i,j) \rightarrow (i,j)$ with a probability m_{ij}
- $(i,j) \rightarrow (i+1,j)$ with a probability p_{ij}
- $(i,j) \rightarrow (i,j+1)$ with a probability q_{ij}
- $(i,j) \rightarrow (i-1,j)$ with a probability r_{ij}
- $(i,j) \rightarrow (i,j-1)$ with a probability s_{ij}
- (0,0) is the only absorbing state (if you're at (0,0) you remain there)
- If one coordinate is 0 or n, then there is no birth probability.

- 1. Complete the figure on the left.
- 2. For n = 2, try to sketch the associated Markov chain. Hint: define A, B, C, D, E, F, G, H, I the 9 possible states using the figure on the right, and write the transition probability to go from one state to another.

3. Define the transition matrix \mathcal{P} .

- 4. Using Python, assign some values for m_{ij} , p_{ij} , q_{ij} , r_{ij} , s_{ij} (be consistent with the transition matrix properties) and predict the long-term distribution. Try for 3 different cases.
- 5. Submit your work on Catcourses under the assignment Worksheet 12 as a .ipynb.