Abstract Algebra

: Lecture 9

Leo

2024.10.22

Theorem 1. A_n is a simple group when $n \ge 5$.

Remark 2. Let $G = \operatorname{Sym}(\Omega) = S_n$, if $|\Omega| = n$.

- each element of G is a product of transpositions.
- each even permutation of Ω is a product of some 3-cycles.

证明. Let $N \triangleleft A_n$, s.t. $N \neq \{e\}$. We aim to prove $N = A_n$.

Claim 1: N cotains a 3-cycle.

Let $e \neq g \in N$ s.t. $|\operatorname{Fix}(g)| \geqslant |\operatorname{Fix}(x)|$ for all $x \in A_n$. In which $\operatorname{Fix}(x) = \{\omega \in \Omega | \omega^x = \omega, \ x \in S_n\}$ called the set of fixed points of x.

Remark 3. Since g is a even permutation, $|\operatorname{Fix}(g)| \leq n-3$.

If $|\operatorname{Fix}(g)| = n - 3$ then g is a 3-cycle as claimed.

To complete the proof of the claim, we assume that $|\operatorname{Fix}(g)| < n-3$. Then relabling if necessary,

we may write
$$g = \begin{cases} (12345...)... \\ (1234)(5...)... \\ (123)(45...)... \end{cases}$$
 or $g = (12)(34)$ which means that we write g into a product $(12)(34)(5...)...$

of disjoint cycles and put the longest cylce in the first place, and relabling if necessary.

If
$$Fix(g) \cap \{1, 2, 3, 4, 5\} = \emptyset$$
 and so $Fix(g) \subseteq \{6, 7, \dots, n\}$. In particular, $1^g = 2$.

Let $\sigma = (345)$ and $h = [\sigma, g]$. Then $h \in N$ and $1^{\sigma} = 2^{g^{-1}} = 1$. So $1 \in \text{Fix}(h)$ and h fixes each point in Fix(g). Thus $|\text{Fix}(h)| \ge |\text{Fix}(g)| + 1$, and h = 1 by our assumption. Then $[\sigma, g] = 1 \Rightarrow \sigma g = g\sigma$ it is obviously wrong, just need to consider the result of conjugacy action of σ .

This is a contradiction, so g is not a product of two disjoint cycles. It is just a 3-cycle as we claimed.

Remark 4. If g = (12)(34) then h = (354) also has more fixed points.

Lemma 5. Let
$$g = (ijk...), \ \sigma \in S_n, \ g^{\sigma} = (i^{\sigma}j^{\sigma}k^{\sigma}...).$$

- **Remark 6.** 1. $|\operatorname{Fix}(g)| = n 3 \Leftrightarrow g \text{ is a 3-cycle.}$
- 2. As g is even, if g is not a 3-cycle, then either g moves at least 5 points or g is a product of two disjoint transpositions.
 - Claim 2: N contains all 3-cycles.
- **Remark 7.** each 3-cycle is conjugate to (123) by even permutations. Let (ijk) be an arbitrary 3-cycle. Then there exists $x \in S_n$ such that $(ijk)^x = (123)$.
 - 1. If $\{i, j, k\} \cap \{1, 2, 3\} = \emptyset$, then let x = (1i)(2k)(3j)(23). Then $(ijk)^x = (123)$.
- 2. Assume $|\{i, j, k\} \cap \{1, 2, 3\}| = 1$. WLOG, i = 1 and $\{j, k\} \cap \{2, 3\} = \emptyset$. Let x = (2j)(3k). Then $(ijk)^x = (123)$.
 - 3. Assume $|\{i,j,k\} \cap \{1,2,3\}| = 2$. WLOG, i = 1, j = 2 and k = 4. Let x = (k35).

That means all 3-cycles are in N since $N \triangleleft A_n$, and each element fo A_n is a product of 3-cycles so $N = A_n$.

Remark 8. If G is simple then for all $e \neq g \in G$, the normal closure $g^G = G$ where $g^G = \langle g^x | x \in G \rangle$.

Permutation Group

Definition 9. For a set Ω , each subgroup of $Sym(\Omega)$ is called a permutation group on Ω .

Theorem 10. (Cayley) Every finite group is isomorphic to a permutation group.

证明. Let G be a group, $G = \{g_1, g_2, \dots g_n\} = \Omega$. For each element $x \in G$ define a permutation on Ω by $\hat{x}: g_i \mapsto g_i x$. Then $\hat{x} \in \operatorname{Sym}(\Omega)$ (the proof of \hat{x} is a bijection is easy to check).

Let $\hat{G} = \{\hat{x} | x \in G\}$ then \hat{G} is a group which isomorphic to G since $\hat{x}\hat{y} = \widehat{x}\hat{y}$. Also $\hat{G} \leqslant \operatorname{Sym}(\Omega)$

For any $g_i, g_j \in G$ there exists $\hat{x} \in \hat{G}$ s.t. $g_i^{\hat{x}} = g_j$. So \hat{G} is transitive on Ω . And such \hat{x} is unique. So \hat{G} is regular on Ω which means only the identity permutation fixes some point of Ω .