C++ Code Structure

Cooperating with the Compiler

C / C++ Compilation

•In Java (and many other modern languages), the compiler is designed to make multiple passes over code files during compilation.

-In doing this, the compiler first finds all objects, variables, and functions of interest that are available before beginning the actual computation.

C / C++ Compilation

- •In C++, you are required to manually "declare" any object, variable, or function within a code file **before** using it.
 - -Note: "declaring" vs "defining."
 - -"declare" "function X exists."
 - -"define" "this is what function X does."
 - -If you try to use something before it's declared, a compiler error will result.

C / C++ Compilation

- •To simplify the process of declaring relevant code objects, C++ has two core file types.
 - -Header files: "*.h"
 - -Contains relevant declarations
 - -Source files: "*.cpp" ("*.c" in C.)
 - -Contains code definitions
 - -Source **and** header files then #include other header files with needed definitions.

C++ Resources

- Like Java, C++ has a substantial amount of pre-coded resources for use in programs.
 - -This being said, Java's built-in collection is far more extensive than C++'s.
 - -These are also utilized by use of #include, as opposed to Java's import.
 - -However, built-in resources are included through <angle brackets> rather than "quotes."

C++ Resources

•Very common imports:

-<string>

-Includes the std::string class, a C++ counterpart to Java's string. This is *not* a fundamental type in C++.

-<iostream>

- -Includes the std::cout and std::cin output and input streams.
- -As used in class, these are the console output and console input structures, like System. out and System. in from Java.