Differential Equations Notes Based on Lectures and "An Introduction to ODEs"

 $\theta\omega\theta$

Not in University of Cambridge skipped some talks irrelevant to contents

 $E ext{-}mail:$ not telling you

Contents

Ι	Basic Calculus	1
1	Differentiation 1.1 Definitions and methods	1
	1.2 Order of magnitude	1
	1.3 Taylor's Theorem and L'Hopital's Theorem	1
2	Integration	2
	2.1 Definition	62
	2.2 Fundamental Theorem of Calculus	
	2.3 Techniques of Integration	4
3	Introduction to multivariable functions	4
	3.1 Partial derivative	4
	3.2 Multivariable chain rule	4
	3.3 Applications of multivariable chain rule	5
	3.3.1 Change of variables	Ę
	3.3.2 Implicit Differentiation	Į.
	3.3.3 Differentiation of an integral wrt its parameters	Ę
II	I First order linear ODEs	ϵ
4	Terminology	•
5	Prelude: Exponential functions	(
6	Rules for linear ODEs	7
7	Inhomogeneous(forced) first order ODEs with constant coefficients	7
	7.1 Constant forcing	7
	7.2 Eigenfunction forcing	8
8	First order ODEs of non-constant coefficients	8
9	Discrete equations	Ş
	9.1 Numerical integration	(
	9.2 Series solutions	g

10 First order nonlinear ODEs	10
10.1 Separable equations	10
10.2 Exact equations	10

Basic Calculus

1 Differentiation

1.1 Definitions and methods

Definition 1.1 (Derivative). The derivative of a function f(x) wrt its argument x is the function

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

We define higher derivatives recursively by

$$\frac{\mathrm{d}^n f}{\mathrm{d}x^n} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}^{n-1} f}{\mathrm{d}x^{n-1}} \right).$$

For the derivative to exist, we need

$$\lim_{h \to 0-} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0+} \frac{f(x+h) - f(x)}{h}.$$

Rules for differentiation:

- 1. Chain rule: (f(g(x)))' = f'(g(x))g'(x).
- 2. Product rule: $(u \cdot v)' = u \cdot v' + u' \cdot v$.
- 3. **Leibniz's rule**: generalisation of product rule.¹

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n}(u\cdot v) = \sum_{k=0}^n \binom{n}{k} u^{(k)} v^{(n-k)}.$$

¹ There are multiple ways to prove, e.g. by induction.

1.2 Order of magnitude

The goal is to compare the sizes of functions, in the vicinity of specific points.

Definition 1.2 (Little and Big o). We say f(x) = o(g(x)) as $x \to x_0$ if $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$. We say f(x) = O(g(x)) as $x \to x_0$ if $\exists M, \delta > 0, |x - x_0| < \delta \Rightarrow |f(x)| \leqslant M |g(x)|$. The infinite case is defined similarly.

To find the tangent line to f at x_0 , note that

$$\frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x=x_0} = \frac{f(x_0+h) - f(x_0)}{h} + \frac{o(h)}{h} \quad \text{when } h \to 0$$
$$\Longrightarrow f(x_0+h) = f(x_0) + \frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x=x_0} h + o(h) \quad \text{when } h \to 0$$

1.3 Taylor's Theorem and L'Hopital's Theorem

We want to approximate a function f(x) with a polynomial of order n:

$$f(x) = \underbrace{a_0 + a_1 x + \dots + a_n x^n}_{P_n(x)}.$$

INTEGRATION 2

Differentiating recursively we get

$$P_n(x) = f(x_0) + (x - x_0)f'(x_0) + \dots + \frac{(x - x_0)^n}{n!}f^{(n)}(x_0).$$
 (1.1)

Alternatively, we can write $f(x) = P_n(x) + E_n$, where E_n is called the *remainder/error*. By generalisation of $f(x+h) = f(x) + hf'(x) + o(h), h \to 0$, we get

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f'(x) + \dots + \frac{h^n}{n!}f^{(n)}(x) + o(h^n).$$
 (1.2)

By refining the range of $o(h^n)$ we get

Theorem 1.1 (Taylor). If the first n+1 derivatives of f(x) exist, then

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f'(x) + \dots + \frac{h^n}{n!}f^{(n)}(x) + O(h^{n+1}).$$

Using this we can prove

Theorem 1.2 (L'Hopital). Let f and g be differentiable at $x = x_0$ and

$$\lim_{x \to x_0} f(x) = f(x_0) = 0, \quad \lim_{x \to x_0} g(x) = g(x_0) = 0.$$

Proof. (Not rigorous) As $x \to x_0$,

$$\frac{f(x)}{g(x)} = \frac{f(x_0) + (x - x_0)f'(x_0) + o(x - x_0)}{g(x_0) + (x - x_0)g'(x_0) + o(x - x_0)}
= \frac{(x - x_0)f'(x_0) + o(x - x_0)}{(x - x_0)g'(x_0) + o(x - x_0)}
\rightarrow \frac{f'(x_0)}{g'(x_0)}.$$

Note that it can be applied recursively.

2 Integration

2.1 Definition

All functions mentions are assumed to be well-hehaved.

We evaluate the area under the curve of f(x) by considering

$$\sum_{n=0}^{N-1} f(x_n) \Delta x$$

where $\Delta x = \frac{b-a}{N}$ and $x_n = a + n\Delta x$.

Theorem 2.1 (MVT). For a continuous function f(x):

$$\int_{x_n}^{x_{n+1}} f(x) \, \mathrm{d}x = f(x_c)(x_{n+1} - x_n) \quad \text{for some } x_c \in (x_n, x_{n+1}).$$

Estimate $f(x_c)$ as follows:

$$f(x_c) = f(x_n) + O(x_c - x_n) = f(x_n) + O(x_{n+1} - x_n).$$

Hence

$$\int_{x_n}^{x_{n+1}} f(x) dx = f(x_c)(x_{n+1} - x_n)$$

$$= [f(x_n) + O(x_{n+1} - x_n)](x_{n+1} - x_n)$$

$$= \Delta x f(x_n) + O(\Delta x^2).$$

Therefore the error $\epsilon = O(\Delta x^2)$. It follows that

$$\int_{a}^{b} f(x) dx = \lim_{\Delta x \to 0} \left\{ \left[\sum_{n=0}^{N-1} f(x_n) \Delta x \right] + O(N \Delta x^2) \right\}.$$

Hence

Definition 2.1 (Definite integral).
$$\int_a^b f(x) dx = \lim_{N \to \infty} \sum_{n=0}^{N-1} f(x_n) \Delta x$$

2.2 Fundamental Theorem of Calculus

Theorem 2.2 (FTC). Let

 $F(x) = \int_{a}^{x} f(t) \, \mathrm{d}t,$

then

$$\frac{\mathrm{d}F}{\mathrm{d}x} = f(x).$$

Proof. From the definition of derivative:

$$\frac{\mathrm{d}F}{\mathrm{d}x} = \lim_{h \to 0} \frac{1}{h} \left\{ \int_a^{x+h} f(t) \, \mathrm{d}t - \int_a^x f(t) \, \mathrm{d}t \right\}$$

$$= \lim_{h \to 0} \frac{1}{h} \int_x^{x+h} f(t) \, \mathrm{d}t$$

$$= \lim_{h \to 0} \frac{1}{h} \left(f(x)h + O(h^2) \right)$$

$$= f(x).$$

Corollary 2.3.

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{x}^{b} -f(t) \, \mathrm{d}t.$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{g(x)} f(t) \, \mathrm{d}t = \frac{\mathrm{d}}{\mathrm{d}x} F(g(x)) = \frac{\mathrm{d}F}{\mathrm{d}g} \frac{\mathrm{d}g}{\mathrm{d}x} = f(g(x)) \frac{\mathrm{d}g}{\mathrm{d}x}.$$

Definition 2.2 (Indefinite integral).

$$\int f(x) \, \mathrm{d}x = \int_{x_0}^x f(t) \, \mathrm{d}t.$$

2.3 Techniques of Integration

skipped

3 Introduction to multivariable functions

Lecture 5.

3.1 Partial derivative

Definition 3.1. The partial derivative of f(x,y) wrt x is

$$\left. \frac{\partial f}{\partial x} \right|_{y} = \lim_{\delta x \to 0} \frac{f(x + \delta x, y) - f(x, y)}{\delta x}.$$
 (3.1)

Similarly

$$\left.\frac{\partial f}{\partial y}\right|_x = \lim_{\delta y \to 0} \frac{f(x,y+\delta y) - f(x,y)}{\delta y}.$$

We can take them in any order to form cross derivatives.

Note that

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right). \tag{3.2}$$

3.2 Multivariable chain rule

Theorem 3.1. For well-behaved functions, we have

$$\mathrm{d}f = \frac{\partial f}{\partial x} \mathrm{d}x + \frac{\partial f}{\partial y} \mathrm{d}y \tag{3.3}$$

Proof. Note that

$$\begin{split} \delta f &= f(x+\delta x,y+\delta y) - f(x+\delta x,y) + f(x+\delta x,y) - f(x,y) \\ &= f(x+\delta x,y) + \delta y \frac{\partial f}{\partial y}(x+\delta x,y) + o(\delta y) - f(x+\delta x,y) \\ &+ f(x,y) + \delta x \frac{\partial f}{\partial x}(x,y) + o(\delta x) - f(x,y) \\ &= \delta y \frac{\partial f}{\partial y}(x+\delta x,y) + \delta x \frac{\partial f}{\partial x}(x,y) + o(\delta x) + o(\delta y) \\ &= \delta y \left(\frac{\partial f}{\partial y}(x,y) + \delta x \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}(x,y)\right) + o(\delta x)\right) + \delta x \frac{\partial f}{\partial x}(x,y) + o(\delta x) + o(\delta y) \\ &= \delta y \frac{\partial f}{\partial y}(x,y) + \delta x \frac{\partial f}{\partial x}(x,y) + \delta x \delta y \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}(x,y)\right) + o(\delta x) + o(\delta y) + o(\delta x \delta y). \end{split}$$

Taking limit gives the result.

Remark. For f(x(t), y(t)), we have

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \lim_{\delta x, \delta y, \delta t \to 0} \left[\frac{\partial f}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t} \right] = \frac{\partial f}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t}.$$
 (3.4)

And integral form:

$$\int \mathrm{d}f = \int \frac{\partial f}{\partial x} \mathrm{d}x + \int \frac{\partial f}{\partial y} \mathrm{d}y \tag{3.5}$$

In this case we need to specify the path of integral as there might be some priority

issues.

3.3 Applications of multivariable chain rule

3.3.1 Change of variables

It is often useful to write a DE in a different coordinate system before solving it. Need to transform the derivatives into the new coordinate system.

Example. Change from cartesian coordinates to polar coordinates: $x = r \cos \theta, y = r \sin \theta$. Firstly, write

$$f = f(x(r, \theta), y(r, \theta)).$$

We have

$$\frac{\partial f}{\partial r} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta.$$

Similar for other partial derivatives.

By regarding $\frac{\partial f}{\partial r}$ as $\frac{\mathrm{d}f}{\mathrm{d}r}$ with θ fixed, we get this result.

3.3.2 Implicit Differentiation

Consider $f(x, y, z) = c, c \in \mathbb{R}$. f describes a surface in 3d space. f(x, y, z) = c implicitly defines x(y, z), y(x, z), z(x, y). However, we can find $\frac{\partial z}{\partial x}$ here using implicit differentiation.

Consider f(x, y, z(x, y)) = c.

$$\mathrm{d}f = \frac{\partial f}{\partial x} \mathrm{d}x + \frac{\partial f}{\partial y} \mathrm{d}y + \frac{\partial f}{\partial z} \mathrm{d}z.$$

Finding the partial derivative for x:

$$\begin{split} \frac{\partial f}{\partial x}\Big|_{y} &= \frac{\partial f}{\partial x}\Big|_{yz} \frac{\partial x}{\partial x}\Big|_{y} + \frac{\partial f}{\partial y}\Big|_{xz} \frac{\partial y}{\partial x}\Big|_{y} + \frac{\partial f}{\partial z}\Big|_{xy} \frac{\partial z}{\partial x}\Big|_{y} \\ &= \frac{\partial f}{\partial x}\Big|_{yz} + \frac{\partial f}{\partial y}\Big|_{xz} \frac{\partial y}{\partial x}\Big|_{y} + \frac{\partial f}{\partial z}\Big|_{xy} \frac{\partial z}{\partial x}\Big|_{y}.\\ \iff \frac{\partial f}{\partial x}\Big|_{y} &= \frac{\partial f}{\partial x}\Big|_{yz} + \frac{\partial f}{\partial z}\Big|_{xy} \frac{\partial z}{\partial x}\Big|_{y}\\ \iff 0 &= \frac{\partial f}{\partial x}\Big|_{yz} + \frac{\partial f}{\partial z}\Big|_{xy} \frac{\partial z}{\partial x}\Big|_{y}\\ \iff \frac{\partial z}{\partial x}\Big|_{y} &= -\frac{\partial f/\partial x|_{yz}}{\partial f/\partial z|_{xy}} \end{split}$$

Note that $\frac{\partial f}{\partial x}\Big|_{uz} \neq 0$ in general.

Remark. Reciprocal rule still holds as long as the same variable(s) are held fixed. e.g.

$$\left. \frac{\partial r}{\partial x} \right|_{y} = \frac{1}{\left. \frac{\partial x}{\partial r} \right|_{y}} \quad \text{but} \quad \left. \frac{\partial r}{\partial x} \right|_{y} \neq \frac{1}{\left. \frac{\partial x}{\partial r} \right|_{\theta}}.$$

3.3.3 Differentiation of an integral wrt its parameters

Consider a family of functions $f(x;\alpha)$, where α is the parameter. Define

$$I(\alpha) = \int_{a(\alpha)}^{b(\alpha)} f(x; \alpha) \, \mathrm{d}x.$$

Notice the subscripts are very important since they discribes different functions

Since
$$\frac{\partial y}{\partial x}\Big|_{y} = 0$$

Since f = c along the surface z(x, y).

$$\frac{\mathrm{d}I}{\mathrm{d}\alpha} = \lim_{\delta\alpha \to 0} \frac{I(\alpha + \delta\alpha) - I(\alpha)}{\delta\alpha}$$
Draw a graph steps.
$$= \lim_{\delta\alpha \to 0} \frac{1}{\delta\alpha} \left[\int_{a(\alpha + \delta\alpha)}^{b(\alpha + \delta\alpha)} f(x; \alpha + \delta\alpha) \, \mathrm{d}x - \int_{a(\alpha)}^{b(\alpha)} f(x; \alpha) \, \mathrm{d}x \right]$$

$$= \lim_{\delta\alpha \to 0} \frac{1}{\delta\alpha} \left[\int_{a(\alpha)}^{b(\alpha)} f(x; \alpha + \delta\alpha) - f(x; \alpha) \, \mathrm{d}x - \int_{a(\alpha)}^{a(\alpha + \delta\alpha)} f(x; \alpha + \delta\alpha) \, \mathrm{d}x + \int_{b(\alpha)}^{b(\alpha + \delta\alpha)} f(x; \alpha + \delta\alpha) \, \mathrm{d}x \right]$$

$$= \int_{a(\alpha)}^{b(\alpha)} \frac{\partial f}{\partial\alpha} \, \mathrm{d}x - f(a; \alpha) \lim_{\delta\alpha \to 0} \frac{a(\alpha + \delta\alpha) - a(\alpha)}{\delta\alpha} + f(b; \alpha) \lim_{\delta\alpha \to 0} \frac{b(\alpha + \delta\alpha) - b(\alpha)}{\delta\alpha}.$$
When $\delta\alpha$ is

Hence,

$$\frac{\mathrm{d}I}{\mathrm{d}\alpha} = \frac{\mathrm{d}}{\mathrm{d}\alpha} \int_{a(\alpha)}^{b(\alpha)} f(x;\alpha) \,\mathrm{d}x = \int_{a(\alpha)}^{b(\alpha)} \frac{\partial f}{\partial \alpha} \,\mathrm{d}x + f(b;\alpha) \frac{\mathrm{d}b}{\mathrm{d}\alpha} - f(a;\alpha) \frac{\mathrm{d}a}{\mathrm{d}\alpha}$$

Draw a graph to understand the steps.

When $\delta \alpha$ is very small, we can approximate the latter two integrals with the area of the rectangle of hight $f(a; \alpha)$ and width $a(\alpha + \delta \alpha) - a(\alpha)$.

First order linear ODEs

4 Terminology

Definition 4.1. An *ordinary differential equation* is a differential equation involving a function of one variable. A *partial differential equation* is (a) differential equation(s) involving a function of more than one variable.

nth order DE: the highest order of derivative is n.

Linear: dependent variable appears linearly.

5 Prelude: Exponential functions

Consider $f = a^x, a > 0$, we have

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h} = a^x \lim_{h \to 0} \frac{a^h - 1}{h}$$
$$= \lambda a^x.$$

Hence

Definition 5.1. Define $\exp(x) = e^x$ as the solution to the DE

$$\frac{\mathrm{d}f}{\mathrm{d}x} = f(x), \quad f(0) = 1.$$

Therefore e is the value of a such that $\lambda = 1$. i.e.,

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1.$$

Define $\ln(x)$ as the inverse of e^x such that $e^{\ln(x)} = x$. Consider $a^x = e^{\ln(a)x}$, so

$$\frac{\mathrm{d}f}{\mathrm{d}x} = (\ln a)a^x, \lambda = \ln a.$$

The exponential function is the eigenfunction of the differential operator.

The *eigenfunction* of an operator is unchanged by the action of the operator, except for a multiplicative scaling by the eigenvalue.

6 Rules for linear ODEs

1. Any linear homogeneous ODE with constant coefficients has solutions of form $e^{\lambda x}$, the eigenfunction. By *homogeneous* we mean that all terms involve the dependent variable or its derivatives.

This means that y = 0 is a trivial solution for all homogeneous ODEs.

Constant coefficients imply that the independent variable does not appear explicitly in DE.

- 2. For linear homogeneous ODEs, any constant multiple of a solution is also a solution.
- **3.** An nth order ODE has n independent solutions.

For constant coefficient ODEs, this rule follows from the fundamental theorem of algebra.

4. An nth order ODE requires n initial/boundary conditions.

7 Inhomogeneous(forced) first order ODEs with constant coefficients

7.1 Constant forcing

Example. Consider the equation

$$5y' - 3y = 10.$$

Solution steps:

- 1. Write the general solution $y = y_p + y_c$ where y_p is a particular integral and y_c is a complementary function
- 2. Find y_p by simply setting y' = 0. In this case, y = -10/3.
- 3. Insert general solution into DE:

$$5(y_p + y_c)' - 3(y_p + y_c) = 10$$

$$\iff 5y_c' + 10 - 3y_c = 10$$

$$\iff 5y_c - 3y_c' = 0.$$

Note that y_c is a solution to corresponding homogeneous equation.

- 4. Solve for y_c . In this case, $y_c = Ae^{3x/5}$.
- 5. Combine y_p and y_c .

7.2 Eigenfunction forcing

Example problem: In a sample of rock, isotope A decays to isotope B at a rate proportional to a, the number of nuclei of A. B decays to C at a rate proportional to b, the number of nuclei of B. Find b(t).

We have

$$\frac{\mathrm{d}a}{\mathrm{d}t} = -k_a a \Longrightarrow a = a_0 e^{-k_a t}$$

$$\frac{\mathrm{d}b}{\mathrm{d}t} = k_a a - k_b b,$$

which means $\dot{b} + k_b b = k_a a_0 e^{-k_a t}$. RHS is called a *forcing term*, and it is an eigenfunction of differential operator.

We guess the form of the particular integral

$$b_p = ce^{-k_a t},$$

then the equation becomes

$$-k_a c + k_b c = k_a a_0 \iff c = \frac{k_a}{k_b - k_a} a_0, \quad \text{for } k_b \neq k_a.$$

Since the general solution for the DE is $b = b_p + b_c$,

$$\dot{b_c} + k_b b_c = 0 \Longleftrightarrow b_c = De^{-k_b t}.$$

Hence

$$b = \frac{k_a}{k_b - k_a} a_0 e^{-k_a t} + De^{-k_b t}.$$

If b(0) = 0, D = -c, then

$$b = \frac{k_a}{k_b - k_a} a_0 \left(e^{-k_a t} - e^{-k_b t} \right).$$

Taking the ratio of b and a:

$$\frac{b(t)}{a(t)} = \frac{k_a}{k_b - k_a} \left(1 - e^{(k_a - k_b)t} \right).$$

We can date the age without knowing a_0 is. This result allows rocks and other materials to be dated by measuring ratio of isotopes.

8 First order ODEs of non-constant coefficients

The general form is

$$a(x)y' + b(x) + y = c(x).$$

The standard form is

$$y' + p(x)y = f(x).$$

Solved using integrating factors, multiply by IF μ :

$$\mu y' + (\mu p)y = \mu f.$$

DISCRETE EQUATIONS 9

If $\mu p = \mu'$, LHS= $(\mu y)'$ by product rule. Hence we want $p = \mu'/\mu$.

$$\int p \, \mathrm{d}x = \int \frac{\mu'}{\mu} \, \mathrm{d}x = \ln \mu \Longrightarrow \boxed{\mu = e^{\int p(x) \, \mathrm{d}x}}.$$

Thus the DE becomes

$$(\mu y)' = \mu f \Longleftrightarrow y = \frac{1}{\mu} \int \mu f \, \mathrm{d}x.$$

9 Discrete equations

A discrete equation is an equation involving a function evaluated at a discrete set of Lecture 8 points.

9.1 Numerical integration

Consider a discrete representation of $y(x), y(x_1), \ldots, y(x_n)$. One approximation to y' is

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x_n} \approx \frac{y_{n+1} - y_n}{h}, \quad h = \frac{x_n}{n},$$

given that x_i are uniformly distributed. This is called the *Forward Euler* approximation, but it is not the best approximation of the derivative in most contexts.

Example. Consider 5y' - 3y = 0. We can approximate the equation by

$$5\frac{y_{n+1} - y_n}{h} - 3y = 0,$$

which is called a difference equation, and deduce that

$$y_{n+1} = \left(1 + \frac{3h}{5}\right) y_n,$$

which is called a recurrence relation.

Apply recurrence relation repeatedly:

$$y_n = \left(1 + \frac{3h}{5}\right)^n y_0 = \left(1 + \frac{3x_n}{5n}\right)^n y_0.$$

Euler's definition of e^x is

$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n.$$

It can be shown that this definition is equivalent to the previous definition. Hence

$$y(x) = \lim_{n \to \infty} y_n = y_0 e^{3x/5}.$$

Note for finite $n, y_n < y(x)$.

9.2 Series solutions

A powerful way to solve ODEs is to seek solutions in the form of an infinite power series.

$$y(x) = \sum_{n=0}^{\infty} a_n x^n.$$

Plug into DE and find a solution.

Example. Consider 5y' - 3y = 0. Let

$$y(x) = \sum_{n=0}^{\infty} a_n x^n, \quad y' = \sum_{n=1}^{\infty} n a_n x^{n-1}.$$

Multiply both sides by x:

$$xy' = \sum_{n=1}^{\infty} na_n x^n,$$

 $xy = \sum_{n=0}^{\infty} a_n x^{n+1} = \sum_{n=1}^{\infty} a_{n-1} x^n.$

Then the DE becomes

$$5\sum_{n=1}^{\infty} na_n x^n - 3\sum_{n=1}^{\infty} a_{n-1} x^n = 0$$
$$\iff \sum_{n=1}^{\infty} x^n \left(5na_n - 3a_{n-1}\right) = 0.$$

This holds for every $x \in \mathbb{R}$, so it holds if and only if

$$\forall x \in \mathbb{R}, 5na_n - 3a_{n-1} = 0 \Longleftrightarrow a_n = \frac{3}{5n}a_{n-1} \Longleftrightarrow a_n = \left(\frac{3}{5}\right)^n \frac{a_0}{n!}.$$

Hence

$$y = a_0 \sum_{n=0}^{\infty} \left(\frac{3}{5}\right)^n \frac{x^n}{n!} = a_0 e^{3x/5}.$$

This converges for all x, so $y(x) = a_0 e^{3x/5}$ is a solution.

10 First order nonlinear ODEs

General form is

$$Q(x,y)\frac{\mathrm{d}y}{\mathrm{d}x} + P(x,y) = 0. \tag{10.1}$$

10.1 Separable equations

(10.1) is separable if and only if it can be written in the form

$$q(y)dy = p(x)dx$$

and we simply solve x, y by integrating both sides.

10.2 Exact equations

(10.1) is an exact equation if and only if

$$Q(x,y)\mathrm{d}y + P(x,y)\mathrm{d}x \tag{*}$$

is an exact differential of function f(x,y). i.e., df = Qdy + Pdx. If this holds, then (10.1) implies that df = 0 and f(x,y) is constant. We can use multivariable chain rule to check.

$$\mathrm{d}f = \frac{\partial f}{\partial x}\mathrm{d}x + \frac{\partial f}{\partial y}\mathrm{d}y \Longrightarrow \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}x} = 0.$$

Comparing with (10.1), if (*) is an exact differential, then $\exists f(x)$ such that

$$\frac{\partial f}{\partial x} = P(x, y), \quad \frac{\partial f}{\partial y} = Q(x, y).$$
 (**)

Hence

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial P}{\partial y} \wedge \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial Q}{\partial x}$$

$$\iff \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.$$

If it holds throughout a *simply connected* domain \mathcal{D} , then Pdx+Qdy is an exact differential of a single-valued function f(x,y) in D. Henc we can use this to check exact equations.

f(x,y) can be found by integrating (**).

Example. Consider

$$6y(y-x)\frac{dy}{dx} + (2x - 3y^2) = 0.$$

Here $P = 2x - 3y^2$, Q = 6y(y - x). We have

$$\frac{\partial P}{\partial y} = -6y = \frac{\partial Q}{\partial x},$$

so it is an exact equation. Note that

$$\int \frac{\partial f}{\partial x} dx = x^2 - 3xy^2 + h(y),$$

$$\frac{\partial f}{\partial y} = (x^2 - 3xy^2 + h(y))'_y = -6xy + h'(y) = 6y(y - x),$$

$$\Longrightarrow h' = 6y^2 \Longrightarrow h = .$$

Hence $f(x, y) = x^2 - 3xy^2 + 2y^3 + C$ and

$$x^2 - 3xy^2 + 2y^3 = C$$

is the general solution.