Experiment No. 3

To study Edge detection with Canny

Date of Performance:31/07/2023

Date of Submission: 07/08/2023

**Aim:** To study Edge detection with Canny

**Objective:** Perform Canny Edge detector using Noise reduction using Gaussian filter ,Gradient calculation along the horizontal and vertical axis Non-Maximum suppression of false edges ,Double thresholding for segregating strong and weak edges ,Edge tracking by hysteresis

**Theory:** The Canny edge detector is an edge detection operator that uses a multi-stage algorithm to detect a wide range of edges in images. It was developed by John F. Canny in 1986. Canny also produced a computational theory of edge detection explaining why the technique works.



What are the three stages of the Canny edge detector

To fulfill these objectives, the edge detection process included the following stages.

- Stage One Image Smoothing.
- Stage Two Differentiation.
- Stage Three Non-maximum

Suppression. The basic steps involved in

this algorithm are:

- Noise reduction using Gaussian filter
- Gradient calculation along the horizontal and vertical axis
- Non-Maximum suppression of false edges
- Double thresholding for segregating strong and weak edges
- Edge tracking by hysteresis

Now let us understand these concepts in detail:

#### Noise reduction using Gaussian filter

This step is of utmost importance in the Canny edge detection. It uses a Gaussian filter for the removal of noise from the image, it is because this noise can be assumed as edges due to sudden intensity change by the edge detector. The sum of the elements in the Gaussian kernel is 1, so the kernel should be normalized before applying convolution to the image. In this Experiment, we will use a kernel of size  $5 \times 5$  and sigma = 1.4, which will blur the image and remove the noise from it. The equation for Gaussian filter kernel is

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

$$K_x = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}, K_y = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix}.$$

after applying these kernel we can use the gradient magnitudes and the angle to further process this step. The magnitude and angle can be calculated as

$$|G| = \sqrt{I_x^2 + I_y^2},$$
  

$$\theta(x, y) = \arctan\left(\frac{I_y}{I_x}\right)$$

#### Non-Maximum Suppression

This step aims at reducing the duplicate merging pixels along the edges to make them uneven. For each pixel find two neighbors in the positive and negative gradient directions, supposing that each neighbor occupies the angle of pi /4, and 0 is the direction straight to the right. If the magnitude of the current pixel is greater than the magnitude of the neighbors, nothing changes, otherwise, the magnitude of the current pixel is set to zero.

### Double Thresholding

The gradient magnitudes are compared with two specified threshold values, the first one is lower than the second. The gradients that are smaller than the low threshold value are suppressed, the gradients higher than the high threshold value are marked as strong ones and the corresponding pixels are included in the final edge map. All the rest gradients are marked as weak ones and pixels corresponding to these gradients are considered in the next step.

#### • Edge Tracking using Hysteresis

Since a weak edge pixel caused by true edges will be connected to a strong edge pixel, pixel W with weak gradient is marked as edge and included in the final edge map if and only if it is involved in the same connected component as some pixel S with strong gradient. In other words, there should be a chain of neighbor weak pixels connecting W and S (the neighbors are 8 pixels around the considered one). We will make up and implement an algorithm that finds all the connected components of the gradient map considering each pixel only once. After that, you can decide which pixels will be included in the final edge map. Below is the implementation.

```
import numpy as np
import os
import cv2
import matplotlib.pyplot as plt

# defining the canny detector function
# here weak_th and strong_th are thresholds
for # double thresholding step
def Canny_detector(img, weak_th = None, strong_th = None):

# conversion of image to grayscale
  img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# Noise reduction step
```

```
img = cv2.GaussianBlur(img, (5, 5), 1.4)
# Calculating the gradients
  gx = cv2.Sobel(np.float32(img), cv2.CV_64F, 1, 0, 3)
  gy = cv2.Sobel(np.float32(img), cv2.CV_64F, 0, 1, 3)
# Conversion of Cartesian coordinates to polar
  mag, ang = cv2.cartToPolar(gx, gy, angleInDegrees = True)
# setting the minimum and maximum
thresholds # for double thresholding
  mag_max = np.max(mag)
  if not weak_th:weak_th = mag_max *
  0.1 if not strong_th:strong_th =
  mag max * 0.5
# getting the dimensions of the input image
  height, width = img.shape
# Looping through every pixel of the
grayscale # image
  for i x in
    range(width): for
    i_y in
    range(height):
       grad_ang = ang[i_y, i_x]
       grad ang = abs(grad ang-180) if abs(grad ang)>180 else abs(grad ang)
 # selecting the neighbours of the target
 pixel # ccording to the gradient
 direction
# In the x axis direction
       if grad ang\leq 22.5:
         neighb_1x, neighb_1y = i_x1,
         i_y neighb_2x, neighb_2y = i_x
         +1, i_y
# top right (diagonal-1) direction
elif grad_ang>22.5 and grad_ang\leq=(22.5 + 45):
         neighb_1_x, neighb_1_y = i_x-1, i_y-1
         neighb_2_x, neighb_2_y = i_x + 1, i_y + 1
# In y-axis direction
```

```
elif grad_ang>(22.5 + 45) and grad_ang<=(22.5 +
         90): neighb_1_x, neighb_1_y = i_x, i_y-1
         neighb_2x, neighb_2y = i_x,
i_y + 1 \# top left (diagonal-2) direction
       elif grad_ang>(22.5 + 90) and grad_ang<=(22.5 +
         135): neighb_1x, neighb_1y = i_x-1, i_y + 1
         neighb_2x, neighb_2y = i_x + 1, i_y-1
# Now it restarts the cycle
       elif grad_ang>(22.5 + 135) and grad_ang<=(22.5 + 180):
         neighb_1x, neighb_1y = i_x-1, i_y
         neighb_2x, neighb_2y = i_x + 1, i_y
# Non-maximum suppression step
       if width>neighb_1x>= 0 and
         height>neighb_1y>= 0: if mag[i_y,
         i_x]<mag[neighb_1_y, neighb_1_x]:
            mag[i_y, i_x] = 0
            continue
       if width>neighb_2x>= 0 and
         height>neighb_2y>= 0: if mag[i_y,
         i_x]<mag[neighb_2_y, neighb_2_x]:
            mag[i_y, i_x] = 0
  weak ids =
  np.zeros_like(img)
  strong ids =
  np.zeros_like(img) ids =
  np.zeros_like(img)
# double thresholding
  step for i_x in
  range(width):
    for i_y in range(height):
       grad_mag = mag[i_y,
       i_x if
       grad_mag<weak_th:</pre>
         mag[i_y, i_x] = 0
       elif strong_th>grad_mag>=
         weak_th: ids[i_y, i_x] = 1
       else:
```

```
ids[i_y, i_x] = 2
```

# finally returning the magnitude of # gradients of edges return mag

frame = cv2.imread('food.jpeg')

# calling the designed
function for # finding edges
canny\_img = Canny\_detector(frame)

# Displaying the input and output image plt.figure()
f, plots = plt.subplots(2, 1)
plots[0].imshow(frame)
plots[1].imshow(canny\_img)

#### **OUTPUT:**

Input Image



# Output Image

# Code:

```
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('/img.jpg',0)
```

```
edges = cv2.Canny(img,80,100)
plt.subplot(121),plt.imshow(img,cmap='gray')
plt.title('original Image'),plt.xticks([]),plt.yticks([])
plt.subplot(122),plt.imshow(edges,cmap='gray')
plt.title('edge Image'),plt.xticks([]),plt.yticks([])
plt.show
```

## **Output:**

<function matplotlib.pyplot.show(close=None, block=None)>





#### **Conclusion:**

In summary, the Canny edge detection algorithm produces an effective method of locating and emphasizing edges within images. This method is particularly good at identifying sharp variations in pixel brightness that signify object borders and important details. The Canny algorithm successfully suppresses noise while displaying important edges by carefully choosing threshold values. Its widespread use in a variety of disciplines, including image analysis and computer vision, emphasizes how essential it is for identifying important visual clues. Canny edge detection continues to be a key technique in the dynamic field of image processing, facilitating improved feature extraction, object recognition, and image comprehension.