Support Vector Regression (SVR) Analysis Report

1. Introduction

Support Vector Regression (SVR) is a machine learning model used for predicting continuous values (like prices, temperatures, etc.). Unlike simple linear regression, SVR can handle complex relationships in data using different **kernel functions**. This report explains how different SVR models performed on a given dataset and which one works best.

2. Methodology

2.1 How SVR Works

SVR tries to fit the best possible line (or curve) while keeping errors within a certain margin (called **epsilon**). The equation is:

Y=wX+bY=wX+b

- Y = Target variable (what we predict).
- X = Features (input data).
- $\mathbf{w} = \text{Weights (how much each feature matters)}.$
- $\mathbf{b} = \text{Bias (starting point)}.$

2.2 Steps Taken

Step 1: Data Preprocessing

- Checked for missing data (no empty values).
- Exploratory Data Analysis (EDA): Studied how features relate to the target.
- Encoded categorical data (converted text into numbers).
- Scaled features (to ensure all features contribute equally).
- Split data:
 - o 70% Training set (to train the model).
 - o 30% Testing set (to check performance).

Step 2: Model Training

- Tested different kernel functions:
 - Linear (straight line).
 - o Polynomial (curved line).
 - o RBF (Radial Basis Function) (flexible curve).
 - o Sigmoid (S-shaped curve).
- Tuned **hyperparameters** (C, epsilon, gamma) to improve accuracy.

Step 3: Performance Evaluation

Measured using:

- R^2 Score (0-1): Closer to 1 = better fit.
- Mean Absolute Error (MAE): Average prediction error.
- Mean Squared Error (MSE): Larger errors penalized more.

3. Model Comparison & Results

Model Type	Kernel	Key Settings	R ² Score	Performance
Linear SVR	linear	Default	0.8950	Best model (strong linear trend).
Polynomial SVR (Degree 3)	poly	C=1.0	-0.0508	Very poor (data not polynomial).
RBF SVR (Default)	rbf	C=10	-0.0558	Bad (default settings not good).
Sigmoid SVR	sigmoid	C=1.0	-0.0574	Worst (sigmoid doesn't fit).
Optimized RBF SVR	rbf	C=100, epsilon=0.1	-0.0302	Better than default but still bad.

Key Findings:

- 1. Linear SVR works best ($R^2 = 0.8950$) \rightarrow Data has a strong linear trend.
- 2. **Polynomial & Sigmoid kernels fail** → Data doesn't fit curves well.
- 3. **RBF kernel can improve with tuning**, but still worse than Linear SVR.
- 4. **Higher C** (C=100) helps slightly, but not enough to beat Linear SVR.

4. Recommendations

Best Model Choice:

Use Linear SVR (it's simple and works best).

Avoid These Models:

- Polynomial & Sigmoid SVR (they perform terribly).
- **Default RBF SVR** (needs heavy tuning to be useful).

If You Want to Try Non-Linear Models:

- Optimize RBF SVR further (test different gamma, C, and epsilon).
- Try feature engineering (create new features to help non-linear kernels).

General Tips:

- ✓ Always scale features (SVR is sensitive to feature scales).
- ✓ Start with Linear SVR (if it works well, no need for complex kernels).
- ✓ Use cross-validation to find the best hyperparameters.

5. Conclusion

- Best Model: Linear SVR ($R^2 = 0.8950$) \rightarrow Simple and effective.
- Avoid: Polynomial, Sigmoid, and default RBF kernels (they fail).
- Tuning RBF helps but isn't worth it yet (stick with Linear SVR unless data changes).

Final Decision: Use Linear SVR for reliable predictions.