

Mathematics Specialist Units 3 & 4 Test 4 2016

Section 1 Calculator Free

Vector Calculus and Integration using Trigonometric Identities and Substitution

STUDE	NT'S NAME	: (SOLUTIONS)	
DATE: Friday 20 th May		TIME: 25 minutes	MARKS: 27
INSTRU	UCTIONS:		
Standard Items:		Pens, pencils, pencil sharper, eraser, correction flui Formula Sheet.	id/tape, ruler, highlighters,
Question	s or parts of qu	estions worth more than 2 marks require working to	be shown to receive full marks.
1. (5 marks)		
F	Evaluate the fo	llowing:	
(a) $\int_{-\pi}^{\pi} \cos x$	$y = \cos x$ $= \sqrt{y}$ $= \sin x$ $= \sin x$	function over terval (symmetric

(b)
$$\int_{-\pi}^{\pi} |\cos x| dx$$

$$= 4 \int_{0}^{\frac{\pi}{2}} |\cos x| dx$$

2. (5 marks)

Evaluate the definite integral:

$$\int_{-1}^{\frac{1}{3}} \frac{1}{x^{2}} \sqrt{1 + \frac{1}{x}} dx, \quad \text{given} \quad \int f'(x) (f(x))^{n} dx = \frac{(f(x))^{n+1}}{n+1} + c$$

$$\text{Check:} \quad \text{Therefore} \quad \text{Check:} \quad \text{Therefore} \quad \text{Check:} \quad \text{Therefore} \quad \text{Supplies of the problem} \quad \text{Check:} \quad \text{Therefore} \quad \text{Supplies of the problem} \quad \text{Check:} \quad \text{Therefore} \quad \text{Supplies of the problem} \quad$$

3. (9 marks)

Determine the following integrals:

(a)
$$\int \frac{\sin(2x)}{\cos x} dx$$

$$= \int 2 \sin x \cos x + C$$

$$= -2 \cos x + C$$

(b)
$$\int \sin^4(2x) dx$$
 [5]
=\frac{1}{4}\left(1 - \cos 4x\right)^2 dx \quad \since \cos(2x) = 1 - 2\sin^2 x \quad \qu

4. (8 marks)

Determine the following using the given substitution:

(a)
$$\int \frac{dx}{1+x^2} \quad \text{Let } x = \tan \theta \implies \frac{dx}{d\theta} = \sec^2 \theta \qquad [4]$$

$$= \int \frac{\sec^2 \theta}{1+\tan^2 \theta} d\theta = \int \frac{\sec^2 \theta}{1+\tan^2 \theta} d\theta = \int \frac{\sec^2 \theta}{\sec^2 \theta} d\theta = \int \frac{1}{4} d\theta =$$

End of Questions

Mathematics Specialist Units 3 & 4 Test 4 2016

Section 2 Calculator Assumed

Vector Calculus and

Integration using Trigonometric Identities and Substitution					
STUDENT'S NAM	E:	(SOLUTIONS)			
DATE: Friday 20 th M	Лау	TIME: 25 minutes	MARKS : 27		
INSTRUCTIONS:					
Standard Items:	Pens, pencils, pencil sharper, eraser, correction fluid/tape, ruler, highlighters, Formula Sheet retained from Section 1.				
Special Items:	Drawing instruments, templates, three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment).				
Questions or parts of q	uestions worth more that	an 2 marks require working to be	shown to receive full marks.		
You may wel	sider the photoher the netion. I have obtained the recalculator to evaluate	e the above definite integral.	Unique real number ie the limit of a st / (Riemann) sum. ; asymptote at x = 0, v letined for -1< x < 0 / Comment on your result.		
being does	able to anti	differentiate (to	primitive) just will exist. These cause problems!		
Discu	itinuities a	I Undefined val	ues cause problems!		

 $\int_a^b f(x) dx = F(b) - F(a)$ requires f to be continuous on the interval a < x < b.

Page 1 of 4

*Your clasePast will do nothing unless you place it in complex mude!

6. (13 marks)

The orbit of a planet around its sun is given by the position vector

$$\mathbf{r}(t) = \cos\left(\frac{\pi t}{200}\right)\mathbf{i} - 2\sin\left(\frac{\pi t}{200}\right)\mathbf{j}$$

where t is time measured in Earth days and distance is in appropriate astronomical units.

(a) Determine $\mathbf{r}(0)$ and $\mathbf{r}(400)$. Hence calculate the length of the planet's year. [3]

$$S(0) = 1$$
 $S(400) = 1$

: Length of the planet's year is 400 Earth days

- (c) At what time during the planet's year, is it a maximum distance from its sun? [2]

Using (b), max distance when $\sin^2(\frac{\pi t}{200}) = 1$ $\Rightarrow \frac{\pi t}{200} = \frac{\pi}{2}, \frac{3\pi}{2}, \dots$ $\therefore t = \frac{100}{300}, \frac{300}{300} \text{ day}$ of the year.

(d) Determine the planet's orbiting speed when it is at its maximum distance from its sun.

$$V(t) = \frac{1}{200} \sin\left(\frac{\pi t}{200}\right) \dot{z} - \frac{2\pi}{200} \cos\left(\frac{\pi t}{200}\right) \dot{z}$$

$$\Rightarrow V(100) = \frac{1}{200} \dot{z}$$

$$\text{Ovel } V(300) = \frac{1}{200}(-1) \dot{z}$$

$$\text{Speed} = |V(t)| = \frac{\pi}{200} \text{ apprepriate astro. units / day.}$$

(e) Show that the acceleration vector is a scalar multiple of the position vector.

$$Q(t) = -\frac{\pi^2}{200^2} \cos\left(\frac{\pi t}{200}\right) \frac{1}{2} + \frac{2\pi^2}{200^2} \sin\left(\frac{\pi t}{200}\right) \frac{1}{2}$$

$$= -\frac{\pi^2}{200^2} \left(\cos\left(\frac{\pi t}{200}\right) \frac{1}{2} - 2\sin\left(\frac{\pi t}{200}\right) \frac{1}{2}\right)$$

$$= -\frac{\pi^2}{40000} \int_{-\infty}^{\infty} (t) \sqrt{ie} \ a \ scalar \ multiple}$$
as required.

(f) State the Cartesian equation of the path of the planet.

$$x = \cos\left(\frac{\pi t}{2e\omega}\right) \qquad y = -2\sin\left(\frac{\pi t}{2e\omega}\right)$$

$$\Rightarrow -\frac{1}{2}y = \sin\left(\frac{\pi t}{2e\omega}\right)$$

$$x^{2} + \left(-\frac{1}{2}y\right)^{2} = 1 \qquad \text{since } \cos^{2}\theta + \sin^{2}\theta = 1$$

$$\Rightarrow x^{2} + \frac{y^{2}}{4} = 1$$

$$\Rightarrow x^{2} + y^{2} = 4$$

$$\cos^{2}\theta + \sin^{2}\theta = 1$$

[2]

An object is launched from a point with position vector $\mathbf{r}(0) = 18\mathbf{i} + 4\mathbf{j}$ metres. The velocity vector of the object, t seconds after projection, is given by $\mathbf{v}(t) = -\mathbf{i} - \frac{1}{2\sqrt{16-t}}\mathbf{j}$ ms⁻¹.

(a) Determine the position vector of the object at time *t* seconds.

= (-t+18) = + 16-t

Determine the position vector of the object at time t seconds.

$$\zeta(t) = (-t + c_1)\dot{z} + (\sqrt{16-t} + c_2)\dot{z}$$

$$= (-t + 18)\dot{z} + \sqrt{16-t}\dot{z}$$
(12.4)

$$\zeta(t) = \left(\frac{18-t}{\sqrt{16-t}}\right)$$

(b) Determine the position vector of the point where the object hits the ground.

Hits the grammed when
$$\sqrt{16-t} = 0$$
 Vertical compensate $=$ $t = 16$ is zero.

$$\Gamma(16) = \binom{2}{0} \text{ metres.}$$

Determine the speed and the direction of the object at t = 12 seconds. (c)

[3]

[2]

$$V(12) = \begin{pmatrix} 1 \\ -4 \end{pmatrix}$$
Using Close Pad:
$$+o Pol ([-1, -0.25])$$

$$= 1.03 \quad \angle -2.90 \quad (20.5)$$

$$= \sqrt{(-1)^2 + (-1)^2} = \sqrt{17} \quad \text{ms}^{-1} \quad \text{ie.} \quad \sqrt{17} \quad \text{ms}^{-1} \quad \text{ie.} \quad \sqrt{18} \quad \text{ie.} \quad \sqrt{1$$