

Lógica Digital Binária

Guiou Kobayashi guiou.kobayashi@ufabc.edu.br

2º Quadrimestre, 2014

CONTEÚDO PROGRAMÁTICO:

- História e Evolução dos Computadores e Sistemas
- Estrutura de Computadores Digitais
- Lógica Digital Binária
- Processamento
- Instruções e linguagem de máquina
- Microprocessadores modernos: pipeline, super escalar, RISC
- Memórias cache e gerenciamento de memórias
- Arquitetura de computadores pessoais
- Arquitetura de Computadores Paralelos
- Sistemas Computacionais: desempenho e confiabilidade

Revisão Circuitos Digitais

PORTAS LÓGICAS E SUAS FUNÇÕES

Portas Lógicas:

- elementos básicos na implementação de circuitos digitais
- álgebra booleana: **George Boole** (1815-1864): Matemático e filósofo inglês Criador da álgebra booleana, que possibilitou o vínculo da lógica (filosofia) com a matemática.
- tabela da verdade

The symbols and functional behavior for the five basic gates.

PORTAS LÓGICAS E O TRANSISTOR

Implementação das portas lógicas por transístores

(a) A transistor inverter. (b) A NAND gate. (c) A NOR gate.

CONSTRUÇÕES UTILIZANDO SOMENTE NAND OU NOR

Construction of (a) NOT, (b) AND, and (c) OR gates using only NAND gates or only NOR gates.

Vantagem: utiliza um único tipo de circuito transistorizado

ÁLGEBRA BOOLEANA: EQUIVALÊNCIA DE EQUAÇÕES

Álgebra Booleana: exemplo de equivalência

A	В	C	AB	AC	AB + AC
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1
(a)					

Α	В	С	A	B+C	A(B + C)	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	1	0	
0	1	1	0	1	0	
1	0	0	1	0	0	
1	0	1	1	1	1	
1	1	0	1	1	1	
1	1	1	1	1	1	
(b)						

Two equivalent functions. (a) AB + AC. (b) A(B + C).

EQUIVALÊNCIA ELETRÔNICA COM A LÓGICA

(a): Implementação AND eletrônica

(b): Equivalente lógico positivo

(c): Equivalente lógico negativo

A	В	F
0ν	0,	ον
0^	5 ^V	ov
5 ^V	0^	ov
5 ^V	5 ^V	5 ^V
	(a)	

A	В	Щ			
0	0	0			
0	1	0			
1	0	0			
1	1	1			
(b)					

Α	В	F
1	1	1
1	0	1
0	1	1
0	0	0
	(c)	

SSI: Small Scale Integrated: 1 a 10 portas

MSI: Medium Scale Integrated: 10 a 100 portas

LSI: Large Scale Integrated: 100 a 100 mil portas

VLSI: Very Large Scale Integrated: >100 mil portas

An SSI chip containing four gates.

EXERCÍCIO DE ANÁLISE DE UM CIRCUITO LÓGICO

Identificar a função realizada pelo circuito lógico

(a)

ABC ĀBC

(a) The truth table for the majority function of three variables. (b) A circuit for (a).

ÁLGEBRA BOOLEANA: NOTAÇÃO E PROPRIEDADES

Name	AND form	OR form
Identity law	1A = A	0 + A = A
Null law	0A = 0	1 + A = 1
Idempotent law	AA = A	A + A = A
Inverse law	$A\overline{A} = 0$	$A + \overline{A} = 1$
Commutative law	AB = BA	A + B = B + A
Associative law	(AB)C = A(BC)	(A + B) + C = A + (B + C)
Distributive law	A + BC = (A + B)(A + C)	A(B + C) = AB + AC

Exercício de Lógica Booleana

Dado e esquema lógico acima:

- elaborar a Tabela Verdade;
- escrever a equação booleana;
- fatorar / simplificar a equação booleana;
- elaborar novo esquema lógico a partir da equação simplificada
- conferir a Tabela Verdade

ULA: Unidade Lógica e Aritmética

 D_0

DECODIFICAÇÃO OU DEMUTIPLEXADOR

Exemplo: Decodificador 3 bits:

B C Saídas

 $0 \quad 0 \quad D0 = 1$

0 1 D1 = 1

D7 = 1

Decodificação de endereço de memória

A 3-to-8 decoder circuit.

IMPLEMENTAÇÕES DO XOR (OU EXCLUSIVO)

Importante na implementação do Somador Binário

IMPLEMENTAÇÃO DE ALGUMAS OPERAÇÕES DA ULA

Operação Somador Binário

Sem Carry (vai-um)

Completo: Com Carry (vai-um)

A	В	Carry in	Sum	Carry out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(a)

(a) Truth table for full adder. (b) Circuit for a full adder.

IMPLEMENTAÇÃO DE UM BIT DA ULA, COM ALGUMAS OPERAÇÕES

IMPLEMENTAÇÃO DE ULA DE 8 BITS

Eight 1-bit ALU slices connected to make $\,$ in 8-bit ALU. The enables and invert signals are not shown for simplicity.

PROCESSAMENTO E A ULA

Estrutura Interna do Processador:

Típica von Neumann

ULA: Unidade Lógica Aritmética

IMPLEMENTAÇÃO DE ALGUMAS OPERAÇÕES DA ULA

Deslocamento e Rotação (Shift) à esquerda e à direita

A 1-bit left/right shifter.

MEMÓRIA

PROCESSAMENTO E A MEMÓRIA

IMPLEMENTAÇÃO DA MEMÓRIA: LATCHES

(a) NOR latch in state 0. (b) NOR latch in state 1. (c) Truth table for NOR.

A clocked D latch.

Flip-flop, com pulso de relógio (clock)

IMPLEMENTAÇÃO DA MEMÓRIA: EXEMPLO DE CI ELEMENTAR

Octal flip-flop

IMPLEMENTAÇÃO DA MEMÓRIA: EXEMPLO 4 X 3

Memória contendo:

- 4 palavras (words)
- 3 bits por palavra
- endereços: A0 e A1
- sinais de controle

Logic diagram for a 4×3 memory. Each row is one of the four 3-bit words. A read or write operation always reads or writes a complete word.

ORGANIZAÇÃO DE UM CI DE MEMÓRIA REAL DE 4 MEGA

Two ways of organizing a 4-Mbit memory chip.

ACESSOS AO CI DE MEMÓRIA

WR: Escrita (write) RD: Leitura (read)

CS: Seleção (chip select)

CONFIGURAÇÃO PARA MÚLTIPLOS CHIPS (1)

EXEMPLO PARA 8 CIS DE 64K x 1 bit: TOTAL 64K Bytes

CONFIGURAÇÃO PARA MÚLTIPLOS CHIPS (2)

EXEMPLO PARA 2 CIS DE 32K x 8 bit: TOTAL 64K Bytes

28

MAPA DE MEMÓRIA

EXEMPLO PARA ÁREA DE MEMÓRIA DE 64K Bytes: DIVISÃO EM PROGRAMAS E DADOS

EXEMPLO PARA ÁREA DE MEMÓRIA DE 64K Bytes: ÁREAS DE PROGRAMAS E DADOS

TIPOS DE MEMÓRIA

Туре	Category	Erasure	Byte alterable	Volatile	Typical use
SRAM	Read/write	Electrical	Yes	Yes	Level 2 cache
DRAM	Read/write	Electrical	Yes	Yes	Main memory
ROM	Read-only	Not possible	No	No	Large volume appliances
PROM	Read-only	Not possible	No	No	Small volume equipment
EPROM	Read-mostly	UV light	No	No	Device prototyping
EEPROM	Read-mostly	Electrical	Yes	No	Device prototyping
Flash	Read/write	Electrical	No	No	Film for digital camera

A comparison of various memory types.

Bibliografia:

Tanenbaum, A. S. – **Organização Estruturada de Computadores**. Quinta Edição, Prentice Hall Brasil, 2007