Crossing structures data exploration

Look for outliers in guild

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5.0 40.0 117.0 351.2 713.0 1464.0
```

Figure 1

Total annual big carnivore count per crossing structure

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5.0 35.0 112.0 345.7 668.0 1482.0
```

Figure 2

Total annual small carnivore count per crossing structure

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.0 22.0 86.0 298.2 232.8 2265.0

Figure 3

Total monthly big carnivore count per crossing structure

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.00 21.25 84.00 293.05 232.25 2268.00

Figure 4

Total monthly small carnivore count per crossing structure

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.0 16.0 42.0 157.7 235.8 991.0

Figure 5

Total hourly big carnivore count per crossing structure

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.0 14.0 40.0 155.2 233.0 977.0

Figure 6

Total hourly small carnivore count per crossing structure

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 1.00 20.25 71.50 124.67 207.25 829.00

Figure 7

Total annual big ungulate count per crossing structure

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 5.0 35.0 112.0 345.7 668.0 1482.0

Figure 8

Total annual small ungulate count per crossing structure

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 1.00 10.25 35.50 110.64 120.00 823.00

Figure 9

Total monthly big ungulate count per crossing structure

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.00 21.25 84.00 293.05 232.25 2268.00

Figure 10

Total monthly small ungulate count per crossing structure

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 1.00 5.00 20.00 55.86 70.00 392.00

Figure 11

Total hourly big ungulate count per crossing structure

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.0 14.0 40.0 155.2 233.0 977.0

Figure 12

Total flourly official diffigurate country of orocoming of detail

Look for zeros in the data

Proportion of zeros in the carnivore dataset

Table 1: Number of zeros in the dataset divided by the dataset sample size $\,$

	Proportion of zeros
Annual_bigcarnivore_count_jumpout	0.00
Annual_bigcarnivore_count_underpass	0.00
Monthly_bigcarnivore_count_jumpout	0.05
Monthly_bigcarnivore_count_underpass	0.00
Hourly_bigcarnivore_count_jumpout	0.01
Hourly_bigcarnivore_count_underpass	0.00
Annual_smallcarnivore_count_jumpout	0.00
Annual_smallcarnivore_count_underpass	0.00
Monthly_smallcarnivore_count_jumpout	0.07
Monthly_smallcarnivore_count_underpass	0.00
Hourly smallcarnivore count jumpout	0.02
Hourly_smallcarnivore_count_underpass	0.00

Proportion of zeros in the ungulate dataset

Table 2: Number of zeros in the dataset divided by the dataset sample size

	Proportion of zeros
Annual_bigungulate_count_jumpout	0.00
Annual_bigungulate_count_underpass	0.00
Monthly_bigungulate_count_jumpout	0.00
Monthly_bigungulate_count_underpass	0.00
Hourly_bigungulate_count_jumpout	0.00
Hourly_bigungulate_count_underpass	0.00
Annual smallungulate count jumpout	0.00
Annual_smallungulate_count_underpass	0.00
Monthly smallungulate count jumpout	0.07
Monthly_smallungulate_count_underpass	0.00
Hourly_smallungulate_count_jumpout	0.02
Hourly_smallungulate_count_underpass	0.00

Check for autocorrelation

Run Box-Pierce and Ljung-Box test on the raw data

Build a model of the mean (lm(count~1)) and run Durbin Watson test to test residuals

Look at the variance and the mean

Annual big carnivore count for jumpouts

```
##
##
   Durbin-Watson test
##
## data: Bigcar.ann.count.jump.mod
## DW = 2.0238, p-value = 0.531
## alternative hypothesis: true autocorrelation is greater than 0
##
##
   Box-Pierce test
##
## data: Bigcar.ann.count.jump
## X-squared = 0.044143, df = 1, p-value = 0.8336
##
  Box-Ljung test
##
##
## data: Bigcar.ann.count.jump
## X-squared = 0.047373, df = 1, p-value = 0.8277
```

Total big carnivore annual count for jumpouts


```
## [1] 4841.685
```

[1] 78.78571

Annual small carnivore count for jumpouts

```
##
##
    Durbin-Watson test
##
## data: Smallcar.ann.count.jump.mod
## DW = 1.9989, p-value = 0.4986
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
    Box-Pierce test
##
##
## data: Smallcar.ann.count.jump
## X-squared = 0.019538, df = 1, p-value = 0.8888
##
##
    Box-Ljung test
##
## data: Smallcar.ann.count.jump
## X-squared = 0.020967, df = 1, p-value = 0.8849
```

Figure 15: Total small carnivore annual count for jumpouts


```
## [1] 4607.9
## [1] 74.61905
```

Annual big carnivore count for underpasses

```
##
##
   Durbin-Watson test
##
## data: Bigcar.ann.count.under.mod
## DW = 1.9383, p-value = 0.4404
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
    Box-Pierce test
##
##
## data: Bigcar.ann.count.under
## X-squared = 0.030542, df = 1, p-value = 0.8613
##
##
    Box-Ljung test
##
## data: Bigcar.ann.count.under
## X-squared = 0.034706, df = 1, p-value = 0.8522
```

Figure 17: Total big carnivore annual count for underpasses


```
## [1] 91679.63
```

[1] 848.7826

Annual small carnivore count for underpasses

```
##
##
   Durbin-Watson test
##
## data: Smallcar.ann.count.under.mod
## DW = 2.0357, p-value = 0.5346
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
    Box-Pierce test
##
##
## data: Smallcar.ann.count.under
## X-squared = 0.15411, df = 1, p-value = 0.6946
##
##
    Box-Ljung test
##
## data: Smallcar.ann.count.under
## X-squared = 0.17513, df = 1, p-value = 0.6756
```

Figure 19: Total small carnivore annual count for underpasses


```
## [1] 96785.91
## [1] 840.7826
```

Monthly big carnivore count for jumpouts

```
##
##
    Durbin-Watson test
##
## data: Bigcar.mon.count.jump.mod
## DW = 1.8103, p-value = 0.2628
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
    Box-Pierce test
##
##
## data: Bigcar.mon.count.jump
## X-squared = 0.29141, df = 1, p-value = 0.5893
##
##
    Box-Ljung test
##
## data: Bigcar.mon.count.jump
## X-squared = 0.31174, df = 1, p-value = 0.5766
```

Figure 21:Total big carnivore monthly count for jumpouts


```
## [1] 3094.924
```

[1] 58.77273

Monthly small carnivore count for jumpouts

```
##
##
   Durbin-Watson test
##
## data: Smallcar.mon.count.jump.mod
## DW = 1.776, p-value = 0.2266
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
    Box-Pierce test
##
##
## data: Smallcar.mon.count.jump
## X-squared = 0.42588, df = 1, p-value = 0.514
##
##
    Box-Ljung test
##
## data: Smallcar.mon.count.jump
## X-squared = 0.45559, df = 1, p-value = 0.4997
```

Figure 23:Total small carnivore monthly count for jumpouts


```
## [1] 3114.183
```

[1] 54.84091

Monthly big carnivore count for underpasses

```
##
##
   Durbin-Watson test
##
## data: Bigcar.mon.count.under.mod
## DW = 2.2008, p-value = 0.684
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
    Box-Pierce test
##
##
## data: Bigcar.mon.count.under
## X-squared = 0.37859, df = 1, p-value = 0.5384
##
##
    Box-Ljung test
##
## data: Bigcar.mon.count.under
## X-squared = 0.43267, df = 1, p-value = 0.5107
```

Figure 25:Total big carnivore monthly count for underpasses


```
## [1] 419878.9
```

[1] 777

Monthly small carnivore count for underpasses

```
##
##
   Durbin-Watson test
##
## data: Smallcar.mon.count.under.mod
## DW = 2.2029, p-value = 0.6858
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
    Box-Pierce test
##
##
## data: Smallcar.mon.count.under
## X-squared = 0.3824, df = 1, p-value = 0.5363
##
##
    Box-Ljung test
##
## data: Smallcar.mon.count.under
## X-squared = 0.43703, df = 1, p-value = 0.5086
```

Figure 27:Total small carnivore monthly count for underpasses


```
## [1] 417745.4
```

[1] 769.4545

Hourly big carnivore count for jumpouts

```
##
##
   Durbin-Watson test
##
## data: Bigcar.hou.count.jump.mod
## DW = 1.8696, p-value = 0.2607
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
    Box-Pierce test
##
##
## data: Bigcar.hou.count.jump
## X-squared = 0.34253, df = 1, p-value = 0.5584
##
##
    Box-Ljung test
##
## data: Bigcar.hou.count.jump
## X-squared = 0.35335, df = 1, p-value = 0.5522
```

Figure 29:Total big carnivore hourly count for jumpouts


```
## [1] 1059.957
## [1] 34.46875
```

Hourly small carnivore count for jumpouts

```
##
##
   Durbin-Watson test
##
## data: Smallcar.hou.count.jump.mod
## DW = 1.7977, p-value = 0.1596
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
    Box-Pierce test
##
##
## data: Smallcar.hou.count.jump
## X-squared = 0.89013, df = 1, p-value = 0.3454
##
##
    Box-Ljung test
##
## data: Smallcar.hou.count.jump
## X-squared = 0.91824, df = 1, p-value = 0.3379
```

Figure 31:Total small carnivore hourly count for jumpouts


```
## [1] 1068.379
## [1] 32.64583
```

Hourly big carnivore count for underpasses

```
##
##
   Durbin-Watson test
##
## data: Bigcar.hou.count.under.mod
## DW = 1.6889, p-value = 0.1377
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
    Box-Pierce test
##
##
## data: Bigcar.hou.count.under
## X-squared = 0.8915, df = 1, p-value = 0.3451
##
##
    Box-Ljung test
##
## data: Bigcar.hou.count.under
## X-squared = 0.94841, df = 1, p-value = 0.3301
```

Figure 33:Total big carnivore hourly count for underpasses


```
## [1] 404.2708
\#\#Hourly small carnivore count for underpasses
##
##
    Durbin-Watson test
##
## data: Smallcar.hou.count.under.mod
## DW = 1.6976, p-value = 0.1446
## alternative hypothesis: true autocorrelation is greater than 0
##
##
    Box-Pierce test
##
## data: Smallcar.hou.count.under
## X-squared = 0.86205, df = 1, p-value = 0.3532
##
##
    Box-Ljung test
## data: Smallcar.hou.count.under
## X-squared = 0.91708, df = 1, p-value = 0.3382
```

[1] 42380.75

Figure 35:Total small carnivore hourly count for underpasses


```
## [1] 41486.9
## [1] 400.3125
```

Annual big ungulate count for jumpouts

```
##
##
    Durbin-Watson test
##
## data: Bigung.ann.count.jump.mod
## DW = 1.8833, p-value = 0.3601
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
    Box-Pierce test
##
##
## data: Bigung.ann.count.jump
## X-squared = 0.060206, df = 1, p-value = 0.8062
##
##
    Box-Ljung test
##
## data: Bigung.ann.count.jump
## X-squared = 0.065224, df = 1, p-value = 0.7984
```

Figure 37:Total small carnivore hourly count for jumpouts


```
## [1] 2508.602
```

[1] 42.81081

Annual small ungulate count for jumpouts

```
##
##
    Durbin-Watson test
##
## data: Smallung.ann.count.jump.mod
## DW = 1.9989, p-value = 0.4986
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
##
    Box-Pierce test
##
## data: Smallung.ann.count.jump
## X-squared = 0.019538, df = 1, p-value = 0.8888
##
##
    Box-Ljung test
##
## data: Smallung.ann.count.jump
## X-squared = 0.020967, df = 1, p-value = 0.8849
```

Figure 39:Total small ungulates annual count for jumpouts


```
## [1] 4607.9
## [1] 74.61905
```

Annual big ungulate count for underpasses

```
##
##
   Durbin-Watson test
##
## data: Bigung.ann.count.under.mod
## DW = 1.747, p-value = 0.2684
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
    Box-Pierce test
##
##
## data: Bigung.ann.count.under
## X-squared = 0.28797, df = 1, p-value = 0.5915
##
##
    Box-Ljung test
##
## data: Bigung.ann.count.under
## X-squared = 0.32724, df = 1, p-value = 0.5673
```

Figure 41:Total big ungulates annual count for underpasses


```
## [1] 22667.42
```

[1] 256.3478

Annual small ungulate count for underpasses

```
##
##
    Durbin-Watson test
##
## data: Smallung.ann.count.under.mod
## DW = 2.0357, p-value = 0.5346
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
##
    Box-Pierce test
##
## data: Smallung.ann.count.under
## X-squared = 0.15411, df = 1, p-value = 0.6946
##
##
    Box-Ljung test
##
## data: Smallung.ann.count.under
## X-squared = 0.17513, df = 1, p-value = 0.6756
```

Figure 43:Total small ungulates annual count for underpasses


```
## [1] 96785.91
```

[1] 840.7826

Monthly big ungulate count for jumpouts

```
##
##
    Durbin-Watson test
##
## data: Bigung.mon.count.jump.mod
## DW = 2.2023, p-value = 0.7302
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
    Box-Pierce test
##
##
## data: Bigung.mon.count.jump
## X-squared = 0.37368, df = 1, p-value = 0.541
##
##
    Box-Ljung test
##
## data: Bigung.mon.count.jump
## X-squared = 0.40571, df = 1, p-value = 0.5242
```

Figure 45:Total big ungulates monthly count for jumpouts


```
## [1] 1440.752
## [1] 35.36111
```

Monthly small ungulate count for jumpouts

```
##
##
   Durbin-Watson test
##
## data: Smallung.mon.count.jump.mod
## DW = 1.776, p-value = 0.2266
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
    Box-Pierce test
##
##
## data: Smallung.mon.count.jump
## X-squared = 0.42588, df = 1, p-value = 0.514
##
##
    Box-Ljung test
##
## data: Smallung.mon.count.jump
## X-squared = 0.45559, df = 1, p-value = 0.4997
```

Figure 47:Total small ungulates monthly count for jumpouts


```
## [1] 3114.183
## [1] 54.84091
```

Monthly big ungulate count for underpasses

```
##
##
   Durbin-Watson test
##
## data: Bigung.mon.count.under.mod
## DW = 1.5899, p-value = 0.162
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
    Box-Pierce test
##
##
## data: Bigung.mon.count.under
## X-squared = 0.077875, df = 1, p-value = 0.7802
##
##
    Box-Ljung test
##
## data: Bigung.mon.count.under
## X-squared = 0.089, df = 1, p-value = 0.7655
```

Figure 49:Total big ungulates monthly count for underpasses


```
## [1] 58867.39
```

[1] 233.8182

Monthly small ungulate count for underpasses

```
##
##
   Durbin-Watson test
##
## data: Smallung.mon.count.under.mod
## DW = 2.2029, p-value = 0.6858
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
##
    Box-Pierce test
##
## data: Smallung.mon.count.under
## X-squared = 0.3824, df = 1, p-value = 0.5363
##
##
    Box-Ljung test
##
## data: Smallung.mon.count.under
## X-squared = 0.43703, df = 1, p-value = 0.5086
```

Figure 51:Total small ungulates monthly count for underpasses


```
## [1] 417745.4
```

[1] 769.4545

Hourly big ungulate count for jumpouts

```
##
##
   Durbin-Watson test
##
## data: Bigung.hou.count.jump.mod
## DW = 1.9618, p-value = 0.4299
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
    Box-Pierce test
##
##
## data: Bigung.hou.count.jump
## X-squared = 0.027896, df = 1, p-value = 0.8674
##
##
    Box-Ljung test
##
## data: Bigung.hou.count.jump
## X-squared = 0.028893, df = 1, p-value = 0.865
```

Figure 53:Total big ungulates hourly count for jumpouts


```
## [1] 577.5202
```

[1] 18.63529

Hourly small ungulate count for jumpouts

```
##
##
    Durbin-Watson test
##
## data: Smallung.hou.count.jump.mod
## DW = 1.7977, p-value = 0.1596
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
##
    Box-Pierce test
##
## data: Smallung.hou.count.jump
## X-squared = 0.89013, df = 1, p-value = 0.3454
##
##
    Box-Ljung test
##
## data: Smallung.hou.count.jump
## X-squared = 0.91824, df = 1, p-value = 0.3379
```

Figure 55:Total small ungulates hourly count for jumpouts


```
## [1] 1068.379
## [1] 32.64583
```

Hourly big ungulate count for underpasses

```
##
##
   Durbin-Watson test
##
## data: Bigung.hou.count.under.mod
## DW = 0.97956, p-value = 6.466e-05
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
    Box-Pierce test
##
##
## data: Bigung.hou.count.under
## X-squared = 12.339, df = 1, p-value = 0.0004437
##
##
    Box-Ljung test
##
## data: Bigung.hou.count.under
## X-squared = 13.126, df = 1, p-value = 0.0002912
```

Figure 57:Total big ungulates hourly count for underpasses


```
## [1] 10514.39
```

[1] 121.7708

Hourly small ungulate count for underpasses

```
##
##
    Durbin-Watson test
##
## data: Smallung.hou.count.under.mod
## DW = 1.6976, p-value = 0.1446
\#\# alternative hypothesis: true autocorrelation is greater than 0
##
##
    Box-Pierce test
##
## data: Smallung.hou.count.under
## X-squared = 0.86205, df = 1, p-value = 0.3532
##
##
    Box-Ljung test
##
## data: Smallung.hou.count.under
## X-squared = 0.91708, df = 1, p-value = 0.3382
```

Figure 59:Total small ungulates hourly count for underpasses

[1] 41486.9

[1] 400.3125

Look at whether there is circularity in the dataset

Ungulate and carnivore hours of activity

Figure 61

Big ungulate hour frequency underpasses

Figure 62

Small ungulate hour frequency underpasses

Figure 63

Big ungulate hour frequency jumpouts

Figure 64

Small ungulate hour frequency jumpouts

Figure 65

Big carnivore hour frequency underpasses

Figure 66

Small carnivore hour frequency underpasses

Figure 67

Big carnivore hour frequency jumpouts

Figure 68

Small carnivore hour frequency jumpouts

Ungulate and carnivore months of activity

Figure 69

Big ungulate month frequency jumpouts

Figure 70

Small ungulate month frequency jumpouts

Figure 71

Big ungulates month frequency underpasses

Figure 72

Small ungulates month frequency underpasses

Figure 73

Big carnivore month frequency jumpouts

Figure 74

Small carnivore month frequency jumpouts

Figure 75

Big carnivore month frequency underpasses

Figure 76

Small carnivore month frequency underpasses

Carnivores hours of activity separated by species

Figure 77

Bobcat hour frequency

Figure 78

Coyote hour frequency

Figure 79

Cougar hour frequency

Figure 80

Grizzly Bear hour frequency

Figure 81

Lynx hour frequency

Figure 82

Pine Marten hour frequency

Figure 83

Red Fox hour frequency

Figure 84

Striped Skunk hour frequency

Figure 85

Unknown Bear hour frequency

Figure 86

Wolf hour frequency

Figure 87

Wolverine hour frequency

Figure 88

Black Bear hour frequency