Discrete Differential Geometry

Maxwell Thum

January 2, 2023

Introduction

This is an interactive blueprint to help with the formalisation of several definitions and results from *discrete differential geometry*, using Keenan Crane's textbook as a general template.

The actual Lean code can be found at (https://github.com/maxwell-thum/DDG_Lean3). This blueprint is adapted from the blueprint of Thomas F. Bloom and Bhavik Mehta's Unit Fractions project (https://github.com/b-mehta/unit-fractions), which was itself based on the blueprint created by Patrick Massot for the Sphere Eversion project (https://github.com/leanprover-community/sphere-eversion).

This blueprint uses Patrick Massot's leanblueprint plugin (https://github.com/PatrickMassot/leanblueprint) for plasTeX (http://plastex.github.io/plastex/).

Chapter 1

Combinatorial Surfaces

Definition 1.1. An (finite) abstract simplicial complex is a pair (V, \mathcal{K}) , where V is a finite set, $\mathcal{K} \subseteq \mathcal{P}(V)$ is a set of subsets of V, every $\sigma \in \mathcal{K}$ is finite, and for all $\sigma \in \mathcal{K}$, $\sigma' \subseteq \sigma$ implies $\sigma' \in \mathcal{K}$. V is called the set of vertices and elements of \mathcal{K} are called simplices.

Definition 1.2. Let (V, \mathcal{K}) be a finite simplicial complex. For $k \in \mathbb{N}$, an abstract k-simplex is a simplex $\sigma \in \mathcal{K}$ consisting of exactly k+1 vertices.