LITERATURE SURVEY

S1.No	Author & Year of Publication	Journal	Title of the paper	Solution Proposed	Advantage(s)	Limitation(s)
1.	M. Babar, F. Arif, M. Jan, Z. Tan,F.Khan,2019	Future Generation Computer Systems	Urban data managemen t system: Towards Big Data analytics for Internet of Things	Dynamic energy-efficient data offloading scheduling algorithm DEED.	An intricate device framework for data offloading of IoT applications.	Extensive experiments are in need to verify the performance of DEED.
2.	M. Sarowar, M. Kamal, N. Dey,2019	Theoretical and Applied Informatio n Technology	A Comprehens ive Review–IoT Application s for Big Data	Utilizing the EHR platform and consumer social health profile information exploration methods,	The proposed framework also offers an efficient way to link Spark and Microsoft Azure-based streaming data from wearable devices to forecast diseases.	A cloud framework that supports the dataset of records of the disease
3.	M. Shahbaz, C. Gao, L. Zhai, F. Shahzad, Y. Hu,2019	IEEE	Investigatin g the adoption of big data analytics in healthcare.	model	treatment and increases the strategic level	Further studies can increase the sample size and apply this study model from a multicultural perspective

4.	Ismail, A., Abdlerazek, S., & El-Henawy, I. M., 2020	IEEE	Developme nt of Smart Healthcare System Based on Speech Recognition	Using Support Vector Machine and Dynamic Time Warping Sustainabilit y	The program approach offered a broad computer structure that manages EHR computer focused on streaming data from connected medical devices and patient history for patients	Future research is to apply this theoretical program to its data utilizing deep learning techniques.
5.	Alizadehsani R, Roshanzamir M, Abdar M, Beykikhoshk A, Khosravi A, Nahavandi S, Plawiak P, Tan RS, Acharya UR,2020	IEEE	Hybrid genetic-discretized algorithm to handle data uncertainty in diagnosing stenosis of coronary arteries	The algorithms used K-NN), Naive Bayes, Decision tree J48, JRip, SVM, Stochastic Gradient Decent (SGD) and Decision Table classifiers.	Benefit of having a reliable feature selection method for HD disease prediction with using minimal number of attributes instead of having to consider all available ones	An extension can be made by applying analysis to other bioinformatics diseases' datasets, and see the performance of these classifiers to classify and predict diseases.
6.	Komal Kumar Napa, G.Sarika Sindhu, D.Krishna Prashanthi, A.Shaeen Sulthana,2020	IEEE	Analysis and Prediction of Cardio Vascular Disease using Machine Learning Classifiers	Random Forest, Decision Tree, Logistic Regression, Support vector machine (SVM), K-nearest neighbors (KNN)	Permits solve complex actual-global issues with numerous constraints. Address problems like having little or nearly no categorized records availability	Random forest machine learning classifier has achieved a greater accuracy which outperformed all the classifiers under analysis in classifying patients with Cardio Vascular Disease

7.	N. Saranya, P. Kaviyarasu, A. Keerthana, C. Oveya,2020	IEEE	Heart Disease Prediction using Machine Learning	Random Forest, KNN, Logistic Regression, Ensemble model with Logistic Regression, Ensemble model without Logistic Regression	There are huge benefits to having feature selection methods so as to minimise the number of attributes that one has to use in order to build an accurate model by checking the correlation between various attributes and their impact on the accuracy of the models.	Future researchers should work towards improving the existing accuracies. They can create their own dataset using the existing datasets available in order to increase the sample size and allow predictive models to train on a larger dataset thereby increasing the chances of obtaining improved accuracy
8.	Suraj Raut Rishabh Magar Rohan Memane Prof. V. S. Rupnar,2020	IJ Publication	HEART DISEASE PREDICTI ON USING MACHINE LEARNIN G	Support Vector Machine (SVM) , Decision Tree , Naïve Bayes Algorithm, Logistic Regression	Damage can be reduced considerably if the patient is diagnosed in the early stages and proper treatment is provided to them.	The future work of this research study is to use more optimization techniques, feature selection algorithms, and classification algorithms to improve the performance of the predictive system for the diagnosis of heart disease

9.	Harshit Jindal et	IEEE	Heart	KNN ,	It is cost	Special focus should
	al,2021		disease	Logistic	efficient and	be put towards
			prediction	Regression,	faster than the	removing false
			using	LR based	algorithms that	positives and false
			machine	model	the previous	negatives from the
			learning		researchers	existing models. The
			algorithms		used.	predictive models
						should be accessible to
						the people in the form
						of a web or a mobile
						application so that
						people can try to be
						aware of their heart
						condition and consult
						a medical professional
						if their results predict
						a related disease.
1()						
10.	Akella, Aravind	IEEE	Machine	Logistic	can effectively	further studies should
10.	and Akella,	IEEE	learning	regression,	detect the	include data from
10.		IEEE	learning algorithms	regression, Decision	detect the presence of	include data from other HCV cohorts
10.	and Akella,	IEEE	learning algorithms for	regression, Decision tree, Random	detect the presence of liver fibrosis in	include data from other HCV cohorts and perhaps consider
10.	and Akella,	IEEE	learning algorithms for predicting	regression, Decision tree, Random Forest,	detect the presence of liver fibrosis in patients with	include data from other HCV cohorts and perhaps consider other disease features
10.	and Akella,	IEEE	learning algorithms for predicting coronary	regression, Decision tree, Random Forest, Support	detect the presence of liver fibrosis in patients with chronic	include data from other HCV cohorts and perhaps consider other disease features to clearly discern the
10.	and Akella,	IEEE	learning algorithms for predicting coronary artery	regression, Decision tree, Random Forest, Support vector	detect the presence of liver fibrosis in patients with	include data from other HCV cohorts and perhaps consider other disease features to clearly discern the disease state of the
10.	and Akella,	IEEE	learning algorithms for predicting coronary	regression, Decision tree, Random Forest, Support vector machine, K-	detect the presence of liver fibrosis in patients with chronic	include data from other HCV cohorts and perhaps consider other disease features to clearly discern the
10.	and Akella,	IEEE	learning algorithms for predicting coronary artery	regression, Decision tree, Random Forest, Support vector machine, K- nearest	detect the presence of liver fibrosis in patients with chronic	include data from other HCV cohorts and perhaps consider other disease features to clearly discern the disease state of the
10.	and Akella,	IEEE	learning algorithms for predicting coronary artery	regression, Decision tree, Random Forest, Support vector machine, K- nearest neighbors	detect the presence of liver fibrosis in patients with chronic	include data from other HCV cohorts and perhaps consider other disease features to clearly discern the disease state of the
10.	and Akella,	IEEE	learning algorithms for predicting coronary artery	regression, Decision tree, Random Forest, Support vector machine, K- nearest	detect the presence of liver fibrosis in patients with chronic	include data from other HCV cohorts and perhaps consider other disease features to clearly discern the disease state of the
10.	and Akella,	IEEE	learning algorithms for predicting coronary artery	regression, Decision tree, Random Forest, Support vector machine, K- nearest neighbors	detect the presence of liver fibrosis in patients with chronic	include data from other HCV cohorts and perhaps consider other disease features to clearly discern the disease state of the
10.	and Akella,	IEEE	learning algorithms for predicting coronary artery	regression, Decision tree, Random Forest, Support vector machine, K- nearest neighbors	detect the presence of liver fibrosis in patients with chronic	include data from other HCV cohorts and perhaps consider other disease features to clearly discern the disease state of the
10.	and Akella,	IEEE	learning algorithms for predicting coronary artery	regression, Decision tree, Random Forest, Support vector machine, K- nearest neighbors	detect the presence of liver fibrosis in patients with chronic	include data from other HCV cohorts and perhaps consider other disease features to clearly discern the disease state of the
10.	and Akella,	IEEE	learning algorithms for predicting coronary artery	regression, Decision tree, Random Forest, Support vector machine, K- nearest neighbors	detect the presence of liver fibrosis in patients with chronic	include data from other HCV cohorts and perhaps consider other disease features to clearly discern the disease state of the