Nội dung tuần 4:

Họ và tên: Nguyễn Huy Đạt

MSSV: 2305CT2334

Bài 1: Viết chương trình cho phép người nhập ma trận mxn theo 2 cách theo bài giảng.


```
11 cach 1:
cont ec "Nhap gia tri cho mang 2 chien: " Le endl.
 for (int 1:0; 1 < R; 1++)
    for (int 7 = 0; 7 60; 7 ++)
      cout << " a [ " << | << | ] = ";
     cin >> acijej
     cout ccendl;
  cout LE "Ma trom many 2 chien: " < Endl
  for (int 1=0; i < R; i++)
     for (int ] = 0; ] < 0; ] ++)
      cont 4 CacidEJD cc "";
    cont cc endl;
  int bER + CT;
  for (int i = 0; i < R; i++)
    for (int J=0; T cc; T++)
    6Ei * C+J] = a[i][J],
```

cout ce " Cach 1 " << endl; cout cc "chuyen mang 2 chien thanh many 1 chien: " cc for (int i=0; ; < R * c; i++) cont < c b [i] < " " cont co endl: 11 Cách 2: Sir dung # m for (int i = 0; i < R; i + +) MC;] = new float [c]; Cout < c " Whap gia tricho mang 2 cluen son dung + " " (cendl; for (int i = 0; i < R; i++) for Cint J=0; T < C; T++) cont ce "M[" << T << "][" << T << "]; cin >7 M[i][j]; cont ecendl. KOKUYO

cout et " Ma tran mang 2 chien su dong * " M; " « cendle for (int i=0; i < R; i++) for (int j=0; J < C; J + +)

{
 cout < M [i] [j] << " " ; cout cc endl; int NER * CJ: for (int i=0; 1 < R; i++) MEITC+JJ=MEIJCJJ cout cc " * * * * 8 8 8 8 8 8 8 8 1" < Cendl; cout < " Cach 2 " exendl; cout ce " Chuyan marry 2 chien thanh mang 1 chien su dung ADM: " LE endl; for (int 1 = 0; 1 < R + C; 1++) cout CC NEIJ CC " 1) contecendl;

Bài 2: Dùng đa năng hoá toán tử (overloading) để định nghĩa các phép toán cộng, trừ, nhân chia.

# include < iostream; using namespace std;		
using names pace 3 to		
Struct so pluc		
5		
double sothus;		
double so ao,		
4:		

Void Display SP (sophue Ketqua) " cc Ketqua so there cc endl; cout ce "So this: contre "so pluc: " ec Ketgia soar co endl; Sophua SetSP (double R, double I) Sophuc Ketqua, Ket qua - so thuc = R; Ketqua sogo = I; return Ketqua; sophue operator + (sophue a, sophue b) Sophuc Ketgua; Ketqua so thuc = a so thuc + b so thuc; Ketqua soao = a soav + b soav; return ket qua; Sophuc operator - (sophuc a, sophuc te) Sophuc Ketqua; Ket qua sothuc = a. so there + b. so thuc; Ket qua sudo = a sudo -b sodo; return Ket qua;

sophuc operator + (sophuc a, sophuc t) Sophuc Ketqua; ket qua sothuc = a sothuc + b sothuc - a soac + b soas; Ket qua so a o = a so there to so a o + a so a o + b , so there; , return ketqua; sophue operator / (sophue a, sophue b) sophuc Ketqua; double man = (b. so thus + b. sothus) + (b. soao + b. soao). Ketqua so thuc = (a. so thuc to sothuc ta so ao to so ad from. Ket qua so a = (a so a o + b so thuc - a so thuc + b so a o / man; return Ket qua; int main () sophuc a, b, c, d, e, f) a = SetSP (5.0, -7.0); 6 = setSP (4.0, 2.0); ca atb; d= a-b; e = a + b; g = a / lo,

cout << "ket qua plup cong la: "ccendl;

Displays P(c);

cout << "ket qua plup tru la. "ccendl;

Displays P(d);

cout << "ket qua plup plup nhan la, "ccendl;

Displays P(e);

cout << endl;

cout << cendl;

cout << cendl;

cout << cendl;

cout << cendl;

Bài 3: Cho dãy số sau: int arr[] = { 1, 4, 2, 3, 6, 5, 8, 9, 7 }; viết chương trình

1) sắp xếp dãy số trên từ bé tới lớn.

2) Cho phép người dùng nhập 1 số tìm kiếm bất kì. Nếu có số đó trong dãy trên thì trả về vị trí của số đó. Ngược lại hiện thị kết quả "Không tìm thấy". Sử dụng phương pháp nhị phân.

```
Bai 3

#include ciostream >

using namespace std;

Void BubbleSort (int arr [])

{
for (int i=0; 1<9-1; i++)

for (int J-i+1; J <9; J++)
```

	{ if (arrci) > arrEJ)
	int tmp = arr Ei]; arr [i] = arr [j]; arr [j] = tmp; 3
3	
5	inary Search (int arr [], int trai, int phai, int so counting
PROBLEM STREET, STREET	int mid = trait (phai - trai) 12; if (arr [mid] == so cantin)
	return mid; if (arr [mid] < so can tim)
7	trai = mid + 1; Belse
7	Phai = mid -1; KOKLYO

return -1 int main () int arr [9] = {1, 4, 2, 3, 6, 5, 8, 9, 73; int Size = size of (arr) / size of (arr[o]); Inti; BubloleSort (arr); cout ce Many dos diroc sap xep: for (int 1=0; 128; 1++) cout & c arr Ei] < " "; cont exendl cant ce "Moi nhap so de tim kiem: (in >> i) int letqua = Binary Search (arr, 0, Size - 1, i); if (Ketqua !: -1) cont ce "Vi tri ana so [" ce i ce "] fairitri: " La Ket qua ccendl;

		Ngày
else		
4		
Cout	Le " Khong tim thay "	<< endl;
retur,	10.	