Zeros & Poles

Sébastien Boisgérault, Mines ParisTech, under CC BY-NC-SA 4.0

November 28, 2017

Contents

Exercises	1
The Weierstrass-Casorati Theorem	1
Question	1
Answer	2
The Maximum Principle	2
Question	2
Answer	3
The Π Function	3
Questions	3
Answers	4
Singularities and Residues	6
Question	6
Answer	7
Integrals of Functions of a Real Variable	8
Questions	9
Answers	9
References	12

Exercises

The Weierstrass-Casorati Theorem

Question

Let $f:\Omega\to\mathbb{C}$ be a holomorphic function and let $a\in\mathbb{C}$ be an essential singularity of f. Show that the image of f is dense in \mathbb{C} :

$$\forall w \in \mathbb{C}, \ \forall \epsilon > 0, \ \exists z \in \Omega, \ |f(z) - w| < \epsilon.$$

Hint: assume instead that some complex number w is *not* in the closure of the image of f; study the function $z \mapsto 1/(f(z) - w)$ in a neighbourhood of a.

Answer

Assume that the image of f is not dense in \mathbb{C} ; let then $w \in \mathbb{C}$ be such that

$$\exists \epsilon > 0, \ \forall z \in \Omega, \ |f(z) - w| \ge \epsilon.$$

The function $z \in \Omega \mapsto 1/(f(z) - w)$ is defined and holomorphic. As it satisfies

$$\forall z \in \Omega, \left| \frac{1}{f(z) - w} \right| \le \frac{1}{\epsilon},$$

it is also bounded. Thus, the point a is a removable singularity of the function, that can be extended as a holomorphic function g on $\Omega \cup \{a\}$:

$$\forall z \in \Omega, \ g(z) = \frac{1}{f(z) - w}$$

By construction, g has no zero in Ω , thus a is either not a zero of g, or a zero of finite multiplicity. Since

$$\forall z \in \Omega, \ f(z) = w + \frac{1}{g(z)}$$

in the first case $f(z) \to w + 1/g(a)$ when $z \to a$ thus a is a removable singularity of a; in the second one, $|f(z)| \to +\infty$ when $z \to a$ thus a is a pole of f.

Note that either way, there is a non-negative integer p and a holomorphic function $h: \Omega \cup \{a\} \to \mathbb{C}$ such that $h(a) \neq 0$ and

$$\forall z \in \Omega \cup \{a\}, \ q(z) = h(z)(z-a)^p.$$

As the function g has no zero on Ω , the function h has no zero on $\Omega \cup \{a\}$; the function 1/h is defined and holomorphic on $\Omega \cup \{a\}$, $1/h(a) \neq 0$ and

$$\forall\,z\in\Omega,\;f(z)=w+\frac{1}{g(z)}=w+\frac{1}{h(z)}\frac{1}{(z-a)^p}.$$

Therefore, the point a is either a removable singularity of f (if p = 0), or a pole of order p (if $p \ge 1$).

The Maximum Principle

Question

Let Ω be an open connected subset of the complex plane and let $f:\Omega\to\mathbb{C}$ be a holomorphic function. Show that if |f| has a local maximum at some $a\in\Omega$, then f is constant.

Answer

For any holomorphic function $f:\Omega\to\mathbb{C}$ and $a\in\Omega$, the point a is a zero of the holomorphic function $z\mapsto f(z)-f(a)$. We will prove shortly that if a is a zero of finite multiplicity of this function, |f| does not have a local maximum at a. The conclusion of the proof follows by the Isolated Zeros Theorem.

Suppose that there is a positive integer p such that

$$f(z) = f(a) + g(z)(z - a)^p$$

for some holomorphic function $g: \Omega \to \mathbb{C}$ such that $g(a) \neq 0$; there is a function $\epsilon_a: \Omega \to \mathbb{C}$ such that $\epsilon_a(z) \to 0$ when $z \to a$ and

$$f(z) = f(a) + g(a)(z - a)^p + \epsilon_a(z)(z - a)^p$$

Assume that $f(a) \neq 0$ (if f(a) = 0, it is plain that |f(a)| = 0 cannot be a local maximum of |f| at a). Let α , β and γ be some real numbers such that

$$f(a) = |f(a)|e^{i\alpha}, \ g(a) = |g(a)|e^{i\beta}, \ \gamma = \frac{\theta - \alpha}{p}.$$

For small enough values r > 0, we have

$$|f(a+re^{i\gamma}) - (|f(a)| + |g(a)|r^p)e^{i\alpha}| \le |\epsilon_a(a+re^{i\gamma})|r^p \le \frac{|g(a)|}{2}r^p,$$

which yields

$$|f(a+re^{i\gamma})| \ge |f(a)| + |g(a)|r^p - \frac{|g(a)|}{2}r^p > |f(a)|.$$

Therefore f has no maximum at a.

The Π Function

We introduce the Π function, a holomorphic extension of the factorial.

Questions

1. Find the domain in the complex plane of the function

$$\Pi: z \mapsto \int_0^{+\infty} t^z e^{-t} \, dt$$

and show that it is holomorphic.

2. Prove that whenever $\Pi(z)$ is defined, $\Pi(z+1)$ is also defined and

$$\Pi(z+1) = (z+1)\Pi(z).$$

Compute $\Pi(n)$ for every $n \in \mathbb{N}$.

3. Let Ω be an open connected subset of the complex plane that contains the domain of Π and such that $\Omega + 1 \subset \Omega$. Prove that if Π has a holomorphic extension on Ω (still denoted Π), it is unique and satisfies the functional equation

$$\forall z \in \Omega, \ \Pi(z+1) = (z+1)\Pi(z).$$

4. Prove the existence of such an extension Π on

$$\Omega = \mathbb{C} \setminus \{ k \in \mathbb{Z} \mid k < 0 \}.$$

5. Show that every negative integer is a simple pole of Π ; compute the associated residue.

Answers

1. The function $t \in \mathbb{R}_+^* \mapsto t^z e^{-t}$ is continuous and thus measurable. Additionally, for any t > 0,

$$|t^z e^{-t}| = |e^{z \ln t} e^{-t}| = e^{(\text{Re } z) \ln t} e^{-t} = t^{\text{Re } z} e^{-t},$$

hence it is integrable if and only if Re z > -1: the domain of Π is

$$\{z \in \mathbb{C} \mid \operatorname{Re} z > -1\}$$

and it is open. Now, let z and h be complex numbers in this domain; the associated difference quotient satisfies

$$\begin{split} \frac{\Pi(z+h) - \Pi(z)}{h} &= \int_0^{+\infty} \frac{t^{z+h} - t^z}{h} e^{-t} dt \\ &= \int_0^{+\infty} \frac{t^h - 1}{h} t^z e^{-t} dt \\ &= \int_0^{+\infty} \frac{e^{h \ln t} - 1}{h} t^z e^{-t} dt \\ &= \int_0^{+\infty} \left[\frac{e^{h \ln t} - 1}{h \ln t} \right] t^z \ln t \, e^{-t} dt \end{split}$$

The integrand converges pointwise when $h \to 0$:

$$\forall t > 0, \lim_{h \to 0} \left[\frac{e^{h \ln t} - 1}{h \ln t} \right] t^z \ln t \, e^{-t} = t^z \ln t \, e^{-t}.$$

Additionally, we have

$$\forall z \in \mathbb{C}^*, \ \left| \frac{e^z - 1}{z} \right| \le e^{|z|};$$

indeed, for any nonzero complex number z, the Taylor expansion of e^z at the origin provides

$$\left| \frac{e^z - 1}{z} \right| = \left| \sum_{n=0}^{+\infty} \frac{1}{(n+1)!} z^n \right| = \sum_{n=0}^{+\infty} \frac{1}{(n+1)!} |z|^n \le \sum_{n=0}^{+\infty} \frac{1}{n!} |z|^n.$$

Hence,

$$\left| \frac{e^{h \ln t} - 1}{h \ln t} \right| \le e^{|h| |\ln t|} \le \max(t^{|h|}, t^{-|h|})$$

and our integrand is dominated by

$$\max(t^{z+|h|}, t^{z-|h|}) \ln t e^{-t}$$

which is integrable whenever Re(z - |h|) > -1. Finally, Lebesgue's dominated convergence theorem applies and Π is holomorphic.

2. If $\operatorname{Re} z > -1$, then $\operatorname{Re}(z+1) > -1$ and

$$\Pi(z+1) = \int_0^{+\infty} t^{z+1} e^{-t} dt.$$

By integration by parts,

$$\Pi(z+1) = [t^{z+1}(-e^{-t})]_0^{+\infty} - \int_0^{+\infty} (z+1)t^z(-e^{-t}) dt$$
$$= (z+1)\Pi(z).$$

We have

$$\Pi(0) = \int_0^{+\infty} e^{-t} dt = [-e^{-t}]_0^{+\infty} = 1$$

and hence, by induction, $\Pi(n) = n!$ for any $n \in \mathbb{N}$.

3. There is at most one holomorphic extension Π of the original function to the connected open set Ω by the isolated zeros theorem (two extensions would be identical on the original domain of Π , which is a non-empty open set: the set of zeros of their difference would not be isolated).

It is plain that the function $z \mapsto \Pi(z+1) - (z+1)\Pi(z)$ is defined and holomorphic on Ω , a connected open set of the plane. Similarly, by the isolated zeros theorem, it is identically zero and hence the functional equation $\Pi(z+1) = (z+1)\Pi(z)$ holds on Ω .

4. We may define the extension $\Pi(z)$ as

$$\Pi(z) = \frac{\Pi(z+n)}{(z+1)(z+2)\cdots(z+n)}$$

for any natural number n such Re(z+n) > -1. This definition does not depend on the choice of n: if m > n, we have Re(z+m) > -1 and

$$\Pi(z+m) = \Pi(z+n) \times (z+n+1) \cdots (z+m),$$

hence

$$\frac{\Pi(z+m)}{(z+1)(z+2)\cdots(z+m)} = \frac{\Pi(z+n)}{(z+1)(z+2)\cdots(z+n)}.$$

It is plain that this extension of the original function Π is holomorphic.

5. Let n be a positive integer. Let z be a complex number such that |z - (-n)| < 1; it satisfies Re(z + n) > -1 and thus

$$\Pi(z) = \frac{\Pi(z+n)}{(z+1)(z+2)\cdots(z+n)}.$$

Consequently,

$$(z - (-n))\Pi(z) = \frac{\Pi(z+n)}{(z+1)(z+2)\cdots(z+n-1)}$$

and

$$\lim_{z \to -n} (z - (-n))\Pi(z) = \frac{\Pi(0)}{(-n-1)(-n-2)\cdots(-1)} = \frac{(-1)^{n-1}}{(n-1)!}.$$

As this number differ from zero, z=-n is a simple pole of Π and

$$res(\Pi, -n) = \frac{(-1)^{n-1}}{(n-1)!}.$$

Singularities and Residues

Question

Analyze the singularities (location, type, residues) of

$$z\mapsto \frac{\sin\pi z}{\pi z},\ z\mapsto \frac{1}{(\sin\pi z)^2},\ z\mapsto \sin\frac{\pi}{z},\ z\mapsto \frac{1}{\sin\frac{\pi}{z}}.$$

Answer

The function $z \mapsto \sin \pi z$ is defined and holomorphic in \mathbb{C} . Its Taylor expansion, valid for any $z \in \mathbb{C}$, is

$$\sin \pi z = \sum_{n=0}^{+\infty} \frac{(-1)^n \pi^{2n+1}}{(2n+1)!} z^{2n+1}.$$

The function $z\mapsto \frac{\sin\pi z}{\pi z}$ is therefore defined and holomorphic in \mathbb{C}^* where its Laurent expansion is

$$\frac{\sin \pi z}{\pi z} = \sum_{n=0}^{+\infty} \frac{(-1)^n \pi^{2n}}{(2n+1)!} z^{2n}.$$

The series on the right-hand side of this equation has no negative power of z: it is a power series that converges for any $z \in \mathbb{C}^*$, thus its open disk of convergence is actually \mathbb{C} . Its limit is a holomorphic function that extends $z \mapsto \frac{\sin \pi z}{\pi z}$ to \mathbb{C} , hence 0 is a removable singularity of this function (and its residue is 0).

The singularities of $z \mapsto 1/(\sin \pi z)^2$ are the zeros of $z \in \mathbb{C} \mapsto \sin \pi z$: the integers. The function is invariant if we substitute z + k to z for any $k \in \mathbb{Z}$, hence we may limit our analysis of the singularities to the origin. If z is not an integer, we have

$$\frac{1}{(\sin \pi z)^2} = \frac{1}{\pi^2 z^2} \left(\frac{\pi z}{\sin \pi z} \right)^2.$$

The function $z \mapsto (\pi z/\sin \pi z)^2$ has a removable singularity at the origin and the value of its holomorphic extension at the origin is nonzero (it is 1), thus the origin is a double pole of the function. We have therefore

$$\operatorname{res}\left(z\mapsto\frac{1}{(\sin\pi z)^2},0\right)=\lim_{z\to 0}\left[\frac{z^2}{2}\frac{1}{(\sin\pi z)^2}\right]'.$$

We have

$$\left[\frac{z^2}{2}\frac{1}{(\sin\pi z)^2}\right]' = \frac{1}{\pi}\left(\frac{(\pi z)\sin\pi z - (\pi z)^2\cos\pi z}{(\sin\pi z)^3}\right).$$

The Taylor expansions of the functions \sin and \cos on $\mathbb C$ provide

$$\sin w = w \left(\sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} w^{2n} \right) = w - \frac{w^3}{6} + w^5 \left(\sum_{n=2}^{+\infty} \frac{(-1)^n}{(2n+1)!} w^{2n-4} \right)$$

and

$$\cos w = 1 - \frac{w^2}{2} + w^4 \left(\sum_{n=2}^{+\infty} \frac{(-1)^n}{(2n)!} w^{2n-4} \right),$$

thus there are entire functions f and g such that

$$w \sin w - w^2 \cos w = \left(w^2 - \frac{1}{6}w^4\right) - \left(w^2 - \frac{1}{2}w^4\right) + w^6 f(w)$$

and

$$(\sin w)^3 = w^3 g(w), g(0) = 1.$$

Consequently,

res
$$\left(z \mapsto \frac{1}{(\sin \pi z)^2}, 0\right) = \lim_{w \to 0} \frac{1}{\pi} \frac{w/3 + w^3 f(w)}{g(w)} = 0.$$

Alternatively, to compute the residue, we may notice that if z is not an integer

$$\frac{1}{(\sin \pi z)^2} = \frac{1}{(\sin \pi (-z))^2},$$

thus if $\sum_{n=-\infty}^{+\infty} a_n z^n$ is the Laurent expansion of the right-hand side in $D(0,1) \setminus \{0\}$, the Laurent expansion $\sum_{n=-\infty}^{+\infty} (-1)^n a_n z^n$ is also valid in the same annulus. The uniqueness of the Laurent expansion yields $a_n=0$ for every odd n, thus the residue of the function at the origin – which is a_{-1} – is zero.

The function $z \mapsto \sin \frac{\pi}{z}$ is defined and holomorphic on \mathbb{C}^* . It has a Laurent expansion in this annulus, which is

$$\sin\frac{\pi}{z} = \sum_{n=0}^{+\infty} \frac{(-1)^n \pi^{2n+1}}{(2n+1)!} z^{-(2n+1)}.$$

There are an infinite number of nonzero coefficients associated with negative powers of z, thus 0 is an essential singularity of this function. Its residue at 0 is the coefficient of z^{-1} , which is π .

The zeros of $z \in \mathbb{C} \mapsto \sin \pi z$ are the integers, thus $z \mapsto 1/\sin \frac{\pi}{z}$ is defined and holomorphic on the open set $\Omega = \mathbb{C}^* \setminus \{1/k \mid k \in \mathbb{Z}^*\}$. We can write the function as the quotient of f(z) = 1 and $g(z) = \sin \frac{\pi}{z}$. The functions f and g are defined and holomorphic in \mathbb{C}^* and

$$g'(z) = \left(\cos\frac{\pi}{z}\right)\left(-\frac{\pi}{z^2}\right).$$

Thus, for any $k \in \mathbb{Z}^*$, 1/k is a simple pole of $z \mapsto 1/\sin \frac{\pi}{z}$ and

$$\operatorname{res}\left(z \mapsto \frac{1}{\sin\frac{\pi}{z}}, \frac{1}{k}\right) = \frac{1}{\left(\cos\frac{\pi}{k^{-1}}\right)\left(-\frac{\pi}{(k^{-1})^2}\right)} = \frac{(-1)^{k+1}}{\pi k^2}.$$

The origin z=0 is also singularity of $z\mapsto 1/\sin\frac{\pi}{z}$, but it is not isolated, thus its residue is not defined.

Integrals of Functions of a Real Variable

See "Technologie de calcul des intégrales à l'aide de la formule des résidus" (Demailly 2009, chap. III, sec. 4) for a comprehensive analysis of the computation of integrals with the the residue theorem.

Questions

1. For any $n \geq 2$, compute

$$\int_0^{+\infty} \frac{dx}{1+x^n}.$$

2. Compute

$$\int_0^{+\infty} \frac{\sqrt{x}}{1+x+x^2} \, dx.$$

Answers

1. Let f be the function $z \mapsto 1/(1+z^n)$, defined and holomorphic on

$$\Omega = \mathbb{C} \setminus \left\{ e^{\frac{i(2k+1)\pi}{n}} \mid k \in \{0, \dots, n-1\} \right\}.$$

Let r > 1 and define the rectifiable paths γ_1 , γ_2 and γ_3 as

$$\gamma_1 = [0 \to r], \ \gamma_2 = re^{i[0 \to 2\pi/n]}, \ \gamma_3 = [re^{i2\pi/n} \to 0],$$

then set $\gamma = \gamma_1 \mid \gamma_2 \mid \gamma_3$. It is plain that

$$\lim_{r \to 0} \int_{\gamma_1} \frac{dz}{1 + z^n} = \int_0^{+\infty} \frac{dx}{1 + x^n}.$$

Similarly,

$$\int_{\overline{\gamma_3}} \frac{dz}{1+z^n} = \int_0^1 \frac{re^{i\frac{2\pi}{n}}dt}{1+(rt)^n(e^{i\frac{2\pi}{n}})^n} = e^{i\frac{2\pi}{n}} \int_0^r \frac{dx}{1+x^n},$$

thus

$$\lim_{r\to 0}\int_{\gamma_3}\frac{dz}{1+z^n}=-e^{i\frac{2\pi}{n}}\int_0^{+\infty}\frac{dx}{1+x^n}.$$

Finally, by the M-L inequality,

$$\left| \int_{\gamma_0} \frac{dz}{1+z^n} \right| \le \frac{1}{r^n - 1} \times \left(\frac{2\pi}{n} r \right),$$

hence

$$\lim_{r \to +\infty} \int_{\gamma_2} \frac{dz}{1+z^n} = 0.$$

On the other hand, the complex number $e^{i\frac{\pi}{n}}$ is the unique singularity of f in the interior of γ ; more precisely, we have $\operatorname{ind}(\gamma, e^{i\frac{\pi}{n}}) = 1$. The function f is the quotient of the holomorphic functions $p: z \in \mathbb{C} \mapsto 1$ and $q: z \in \mathbb{C} \mapsto 1 + z^n$; the derivative of q at this singularity is

$$q'(e^{i\frac{\pi}{n}}) = n(e^{i\frac{\pi}{n}})^{n-1} = n(e^{i\frac{\pi}{n}})^n e^{-i\frac{\pi}{n}} = -ne^{-i\frac{\pi}{n}},$$

thus

$$\operatorname{res}(f, e^{i\frac{\pi}{n}}) = \frac{p(e^{i\frac{\pi}{n}})}{q'(e^{i\frac{\pi}{n}})} = -\frac{e^{i\frac{\pi}{n}}}{n}$$

Given these results, the residue theorem provides

$$\left(1 - e^{i\frac{2\pi}{n}}\right) \int_0^{+\infty} \frac{dx}{1 + x^n} = (i2\pi) \times \left(-\frac{e^{i\frac{\pi}{n}}}{n}\right)$$

or equivalently,

$$\int_0^{+\infty} \frac{dx}{1+x^n} = \frac{\pi}{n} \frac{2i}{e^{i\frac{\pi}{n}} - e^{-i\frac{\pi}{n}}} = \frac{\frac{\pi}{n}}{\sin\frac{\pi}{n}}.$$

2. Let \log_0 be the function defined on $\mathbb{C} \setminus \mathbb{R}_+$ by

$$\log_0 z = \log(-z) + i\pi.$$

This function is an analytic choice of the logarithm on $\mathbb{C} \setminus \mathbb{R}_+$: it is holomorphic and $\exp \circ \log_0$ is the identity. It also satisfies

$$\log_0 r e^{i\theta} = (\ln r) + i\theta, \ r > 0, \ \theta \in]0, 2\pi[.$$

We use this function to define

$$f: z \mapsto \frac{e^{\frac{1}{2}\log_0 z}}{1+z+z^2}.$$

The roots of the polynomial $z\mapsto 1+z+z^2$ are j and j^2 , where $j=e^{i\frac{2\pi}{3}}$, thus f is defined and holomorphic in $\Omega=\mathbb{C}\setminus\mathbb{R}_+\setminus\{j,j^2\}$.

Now, let r > 1 and $0 < \alpha < 2\pi/3$; we define four rectifiable paths that depend on r and α :

$$\gamma_1 = [r^{-1}e^{i\alpha} \to re^{i\alpha}],$$

$$\gamma_2 = re^{i[\alpha \to 2\pi - \alpha]},$$

$$\gamma_3 = [re^{i(2\pi - \alpha)} \to r^{-1}e^{i(2\pi - \alpha)}],$$

$$\gamma_4 = r^{-1}e^{i[2\pi - \alpha \to \alpha]}.$$

We also consider their concatenation

$$\gamma = \gamma_1 \mid \gamma_2 \mid \gamma_3 \mid \gamma_4$$
.

We have

$$\int_{\gamma_1} f(z) dz = \int_{r^{-1}}^r \frac{e^{\frac{1}{2}((\ln x) + i\alpha)}}{1 + xe^{i\alpha} + x^2 e^{i2\alpha}} e^{i\alpha} dx$$
$$= e^{i3\alpha/2} \int_{r^{-1}}^r \frac{\sqrt{x}}{1 + xe^{i\alpha} + x^2 e^{i2\alpha}} dx$$

and thus by the dominated convergence theorem¹

$$\lim_{\alpha \to 0} \int_{\gamma_1} f(z) \, dz = \int_{r^{-1}}^r \frac{\sqrt{x}}{1 + x + x^2} \, dx.$$

Similarly,

$$\begin{split} \int_{\gamma_3^{\leftarrow}} f(z) \, dz &= \int_{r^{-1}}^r \frac{e^{\frac{1}{2}((\ln x) + i(2\pi - \alpha))}}{1 + xe^{-i\alpha} + x^2 e^{-i2\alpha}} \, e^{-i\alpha} dx \\ &= -e^{-i3\alpha/2} \int_{r^{-1}}^r \frac{\sqrt{x}}{1 + xe^{-i\alpha} + x^2 e^{-i2\alpha}} \, dx \end{split}$$

and thus by the dominated convergence theorem

$$\lim_{\alpha \to 0} \int_{\gamma_3} f(z) \, dz = \int_{r^{-1}}^r \frac{\sqrt{x}}{1 + x + x^2} \, dx$$

On the other hand,

$$\left| e^{\frac{1}{2}\log_0 z} \right| = e^{\operatorname{Re}(\frac{1}{2}\log_0 z)} = e^{\frac{1}{2}\ln|z|} = |z|^{\frac{1}{2}};$$

by the M-L inequality, this equality provides

$$\left| \int_{\gamma_2} f(z) \, dz \right| \le \frac{r^{\frac{1}{2}}}{-1 - r + r^2} \times 2(\pi - \alpha)r$$

and

$$\left| \int_{\gamma_4} f(z) \, dz \right| \le \frac{r^{-\frac{1}{2}}}{1 - r^{-1} - r^{-2}} \times 2(\pi - \alpha) r^{-1},$$

hence

$$\lim_{r \to +\infty} \left(\lim_{\alpha \to 0} \int_{\gamma_2} f(z) \, dz \right) = \lim_{r \to +\infty} \left(\lim_{\alpha \to 0} \int_{\gamma_4} f(z) \, dz \right) = 0.$$

Now the function f is the quotient of the two functions $z \mapsto e^{\frac{1}{2}\log_0 z}$ and $z \mapsto 1+z+z^2$, defined and holomorphic in a neighbourhood of the singularities j and j^2 . The derivative of $z \mapsto 1+z+z^2$ is $z \mapsto 1+2z$, it is nonzero at j and j^2 . Thus,

$$\operatorname{res}(f,j) = \frac{e^{\frac{1}{2}\log_0 j}}{1+2j} = \frac{e^{i\frac{\pi}{3}}}{i\sqrt{3}}$$

and

$$\operatorname{res}(f, j^2) = \frac{e^{\frac{1}{2}\log_0 j^2}}{1 + 2j^2} = \frac{e^{i\frac{2\pi}{3}}}{-i\sqrt{3}}.$$

¹the function $(\alpha,x)\mapsto \left|\sqrt{x}/(1+xe^{i\alpha}+x^2e^{i2\alpha})\right|$ is defined and continuous in the compact set $[0,\pi/2]\times[r^{-1},r]$, thus it has a finite upper bound.

The winding number of γ around j and j^2 is 1; by the residue theorem,

$$2\int_0^{+\infty} \frac{\sqrt{x}}{1 + x + x^2} dx = (i2\pi)(\text{res}(f, j) + \text{res}(f, j^2))$$

or equivalently

$$\int_0^{+\infty} \frac{\sqrt{x}}{1+x+x^2} \, dx = \frac{\pi}{\sqrt{3}} \left(e^{i\frac{\pi}{3}} - e^{i\frac{2\pi}{3}} \right) = \frac{\pi}{\sqrt{3}}.$$

References

Demailly, Jean-Pierre. 2009. Fonctions holomorphes et surfaces de riemann. https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/variable_complexe.pdf.