# 15.094J Robust Modeling, Optimization and Computation

Lecture 14: RO in the unit commitment problem in electricity production

#### Outline

- Background
  - Unit commitment problem
- New challenges
  - Increasing uncertainty in supply/demand
- Adaptive Robust Optimization
- Conclusions

# Electric Power System Operations

- Day-Ahead Decision Making: Unit Commitment
  - Generators must be committed before real-time operation (long startup time)



# Challenges: Growing Uncertainty

- Supply uncertainty (Renewables like wind are exhibiting 40% annual growth)
- Demand uncertainty



## Current Practice: Reserve Adjustment

 Deterministic Reserve adjustment approach Incorporating extra resources called reserve
 [Sen and Kothari 98] [Billinton and Fotuhi-Firuzabad 00]

#### Drawbacks:

- 1. Uncertainty not explicitly modeled
- 2. Both system and locational requirement are preset, heuristic, ad hoc

#### Current practice: MIO

```
Min c'x +b'y
s.t. Fx<f (min-up/down times, start-up/shut-down)
Hy<h (energy balance, reserve requirement and capacity ransmission limit, and ramping constraints)
Ax+By<g (min-max generation capacity constraints)
I<sub>u</sub> y=d

x binary (commitment variables)
y>0 (dispatch variables).
```

# Stochastic Optimization

Stochastic optimization approach
 Uncertainty modeled by distributions and scenarios
 [Takriti et. al. 96, 00] [Ozturk et. al. 05][Wong et. al. 07]

#### Weakness:

[Wu et. al. 07]

- 1. Hard to select "right" scenarios in large systems
- 2. The huge number of scenarios needed make the problem intractable for large scale problems.

## Adaptive Robust Optimization

Two-stage robust optimization framework



## **Model of Uncertainty**

Uncertainty model of net load variation

$$\mathcal{D}^{t}(\bar{\mathbf{d}}^{t}, \hat{\mathbf{d}}^{t}, \Delta^{t}) := \left\{ \mathbf{d}^{t} \in \mathbb{R}^{N_{d}} : \sum_{i \in N_{d}} \frac{|d_{i}^{t} - \bar{d}_{i}^{t}|}{\hat{d}_{i}^{t}} \leq \Delta^{t}, \right.$$
$$d_{i}^{t} \in \left[\bar{d}_{i}^{t} - \hat{d}_{i}^{t}, \bar{d}_{i}^{t} + \hat{d}_{i}^{t}\right], \forall i \in N_{d} \right\}$$





#### **ARO**

#### Re-formulation of ARO

$$Min_x$$
 (c'x +max<sub>d in D</sub> min<sub>y in O(y,d)</sub> b'y)

s.t. Fx<f , x binary

$$O(y,d)=\{y: H y(d)$$

By duality min  $y \in O(y,d)$  b'y is the same as

$$S(x,d)=\max_{\lambda, \phi, \eta} \lambda'(Ax-g)-\phi'h+\eta'd$$

s.t. 
$$-\lambda'B-\phi'H+\eta'I_{II}=b'$$

$$\phi>0$$
,  $\lambda>0$ ,  $\eta$  free

#### Re-formulation of ARO

$$R(x)=\max_{d \text{ in } D} \min_{y \text{ in } O(y,d)} b'y \text{ can be rewritten:}$$

$$R(x)=\max_{d,\lambda,\phi,\eta} \lambda'(Ax-g)-\phi'h+\eta'd$$
 bilinear problem

s.t. 
$$-\lambda'B-\phi'H+\eta'I_u=b'$$

d in D

$$\phi>0$$
,  $\lambda>0$ ,  $\eta$  free

#### Benders Decomposition Algorithm

- Initialization: Get feasible  $x_0$ , solve bilinear problem  $R(x_0)$  and obtain  $d_1$ ,  $\lambda_1$ ,  $\phi_1$ ,  $\eta_1$ . Set k=1.
- Iteration k:
  - Step 1: Solve MIO:  $min_{x,a}$  c'x+a s.t. a >  $\lambda_\iota$ '(Ax-g)- $\phi_\iota$ 'h+  $\eta_\iota$ 'd , i=1,...,k Fx<f, x binary.

Let  $(x_k, a_k)$  optimal solution. Set  $L=c'x_k+a_k$ 

- Step 2: Solve R(x<sub>k</sub>) and obtain d<sub>k+1</sub>,  $\lambda_{k+1}$ ,  $\phi_{k+1}$ ,  $\eta_{k+1}$ . Set U=c'x<sub>k</sub>+R(x<sub>k</sub>)
- -- Step 3: If U-L  $<\epsilon$ , stop and return  $x_k$  otherwise k=k+1, go to Step 1.

## Inner Problem: Solving R(x)

- Recall R(x)=max  $_{d,\,\lambda,\,\phi,\,\eta}$   $\lambda'(Ax-g)-\phi'h+\eta'd$  s.t.  $-\lambda'B-\phi'H+\eta'l_u=b'$  d in D,  $\phi>0$ ,  $\lambda>0$ ,  $\eta$  free
- Idea: Linearize:  $\eta' d = \eta_j' d_j + (\eta \eta_j)' d_j + (d d_j)' \eta_j$
- Algorithm converges to stationary point
- In practice 2-3 iterations are needed.

#### A Real-World Example: ISO-NE Power System

- 312 Generators
- 174 Loads
- 2816 Nodes
- 4 representative trans lines
- 24-hr data: gen/load/reserve
- Total gen cap: 31.4GW
- Total forecast load: 14.1GW



#### Computation Procedure and Measures

- Solve AdptRob and ResAdj UC solutions for  $\Delta^t = 0, 0.1 \text{Nd},...,\text{Nd}$  for all t.
- Fix UC solutions, simulate dispatch over load samples
  - 1000 load samples from  $\left[\bar{d}_i^t \hat{d}_i^t, \bar{d}_i^t + \hat{d}_i^t\right]$
- Compute average dispatch cost and std.
- Avg dispatch cost: Economic efficiency
- Standard deviation: Price and Operation Stability
- Robustness to distributions

#### Computational Results (I-a): Average dispatch cost

#### **Average Dispatch Cost under Normal Distribution**



2.7% relative saving or 472.9k\$

Avg Dispatch Cost Relative Saving := (ResAdj – AdptRob)/ResAdj

0.65% - 2.7%

#### Design using Probability Law: Average dispatch cost

#### **Average Dispatch Cost under Normal Distribution**



Design the uncertainty set By probability law: CLT

$$\Delta^t/\sqrt{N_d}$$
 vs  $\Delta^t/N_d$ 

Relative Saving: 1.86% to 6.96%

Absolute Saving: \$321.2k to \$1.27Million

## Computational Results (II): Volatility of Costs

| Budget of<br>Uncertainty | AdptRob<br>Std disp cost<br>(\$k) | ResAdj<br>Std disp cost<br>(\$k) | ResAdj/<br>AdptRob |
|--------------------------|-----------------------------------|----------------------------------|--------------------|
| 0.1                      | 47.5                              | 687.5                            | 14.48              |
| 0.2                      | 46.4                              | 687.5                            | 8.62               |
| 0.3                      | 45.4                              | 377.8                            | 8.32               |
| 0.4                      | 44.2                              | 366.7                            | 8.29               |
| 0.5                      | 44.1                              | 377.2                            | 8.55               |
| 0.6                      | 44.0                              | 370.9                            | 8.43               |
| 0.7                      | 44.0                              | 377.1                            | 8.58               |
| 0.8                      | 43.9                              | 370.7                            | 8.44               |
| 0.9                      | 43.9                              | 357.9                            | 8.15               |
| 1.0                      | 43.9                              | 361.0                            | 8.22               |

Coeff Var: 44k/17.2M=0.25% 370k/17.3M=2.1%

Significant reduction in cost volatility!

#### Computational Results (III): Robustness to Distribution

#### Avg Dispatch Cost of AdptRob



Relative difference: 0.0368% - 0.0920%

Absolute difference: \$6.3k - \$15.8k

#### Computational Results: Robustness to Distribution





Relative difference: 1.00% - 2.19%

Absolute difference: \$174.4k - \$382.2k

#### **Concluding Remarks**

saves dispatch cost (6.92% \$1.27M)

**Economic Efficiency** 

Significantly reduces cost volatility



Reduces Price & System Operation Volatility

 robust against load distributions



Data Driven Approach
Demand Modeling

Reference: Adaptive Robust Optimization for Security Constrained Unit Commitment Problems, D. Bertsimas, E. Litvinov, A. Sun, J. Zhao, T. Zheng, *IEEE Transactions on Power Systems 2012*