Math 571 - Homework 1 (Due 5/17/23)

Problem 0.1 (R:1:2*). Show that for any positive integer n, if n is not a perfect square, then \sqrt{n} is irrational.

Suppose $\sqrt{n} = p/q$ where p and q are integers with no common factors, i.e., gcd(p,q) = 1. Then $n = p^2/q^2$ so $nq^2 = p^2$. But we know that $gcd(p^2, q^2) = 1$ and that if gcd(a, b) = 1 and a|bc, then a|c, thus $p^2|n$. This means $n = n'p^2$ and so $n'q^2 = 1$, thus n' = 1 hence $n = p^2$.

Problem 0.2 (R:1:4*). Let E be a non-empty subset of an ordered set (S, <); suppose that α is a lower bound for E in S and β is an upper-bound for E in S. Show that $\alpha \leq \beta$. Can $\alpha = \beta$? Is this still true if $E = \emptyset$?

As E is non-empty, let $s \in E$, then $\alpha \le s \le \beta$. It could be that $E = \{s\}$ and so $\alpha = s = \beta$. If $E = \emptyset$, then for $s \in S$, s is both a lower-bound and an upper-bound for E, thus if |S| > 1 it is possible that $\beta < \alpha$.

Problem 0.3 (R:1:5). Let A be a non-empty set of real numbers bounded below. Let $-A = \{-a \mid a \in A\}$. Show that

$$\inf(A) = -\sup(-A)$$

Let $\alpha = \inf(A)$. We have $\alpha \leq a$ for all $a \in A$ and thus $-\alpha \geq -a$ for all $a \in A$. So -A is bounded above by $-\alpha$.

Suppose that β is any upper-bound for -A, then, as above, $-\beta$ is a lower-bound for A and hence $-\beta \leq \alpha$, but then $-\alpha \leq \beta$. Thus $-\alpha = \sup(-A)$. This yields the desired result.

Problem 0.4 (R:1:6). Fix b > 1.

(a) If n, m, p, q are integers, n, q > 0, and r = m/n = p/q, prove that

$$(b^m)^{1/n} = (b^p)^{1/q}.$$

Explain why it makes sense to define $b^r = (b^m)^{1/n}$.

The equality is trivial

$$(b^m)^{1/n} = (b^p)^{1/q} \iff ((b^m)^{1/n})^{nq} = ((b^p)^{1/q})^{nq} \iff b^{mq} = b^{pn} \iff mq = pn$$

Because of this it makes sense to define $b^r = b^{m/n}$ where r = m/n for any m, n such that r = m/n.

(b) Prove that $b^{r+s} = b^r b^s$ if r and s are rational.

Let r = m/n and s = p/q, then

$$b^{r+s} = b^{(qm+np)/qn} = (b^{qm+np})^{1/nq} = (b^{qm}b^{np})^{1/nq} = b^{qm/nq}b^{np/nq} = b^rb^s$$

Here we do use that $x^{1/k}y^{1/k} = (xy)^{1/k}$ this is easily shown by

$$x^{1/k} = a$$
 and $y^{1/k} = b \iff x = a^k$ and $b = y^k$ (1)

$$\implies xy = a^k b^k = (ab)^k \tag{2}$$

$$\iff (xy)^{1/k} = ab = x^{1/k}y^{1/k} \tag{3}$$

(c) If $x \in \mathbb{R}$, define $B(x) = \{b^t \mid t \in \mathbb{Q} \land t \leq x\}$. Prove that

$$b^r = \sup(B(r))$$

when r is rational. Explain why it makes sense to define

$$b^x = \sup(B(x))$$

for every real x.

Suppose r < s are rational, then $b^{s-r} = b^{m/n}$ where m/n > 0. Clearly, $b^m > 1$ and if $a^n = b^m$, then a > 1 so $b^{m/n} = b^{s-r} > 1$, that means $b^s/b^r > 1$ and so $b^s > b^r$.

This implies immediately that $b^r = \sup(B(r))$.

We know B(x) is bounded above for each $x \in \mathbb{R}$ since if $r \in \mathbb{Q}$ and r > x we have $b^r \geq B(x)$. So $b^x = \sup(B(x))$ exists.

(d) Prove that $b^{x+y} = b^x b^y$ for every real x and y.

Let's see that B(x)B(y) = B(x+y). Suppose $b^r = b^s b^t \in B(x)B(y)$, then $s \le x$ and $t \le y$ so $r = s + t \le x + y$ and $b^r = b^{s+t} \in B(x+y)$. Conversely, take $b^r \in B(x+y)$, then r < x + y. Then r - y < x and we get r - y < t < x. But s = r - t < y so r = s + t with r < x and s < y, hence $b^r = b^s b^t \in B(x)B(y)$. So $b^{x+y} = \sup(B(x)B(y))$.

We need to see that $\sup(B(x)B(y)) = \sup(B(x))\sup(B(y))$. Clearly, $b^xb^y = \sup(B(x))\sup(B(y)) \ge B(x)B(y)$ so $b^xb^y \ge \sup(B(x)B(y)) = \sup(B(x+y)) = b^{x+y}$.

To finish, show $\sup(B(x+y)) \leq \sup(B(x)) \sup(B(y))$. Suppose $a < b^x b^y$, then $a/b^x < b^y$ so there is r < y with $a/b^x < b^r$. Now $a/b^r < b^x$ so there is s < x with $a/b^r < b^s$ so $a < b^r b^s < \sup(B(x)B(y))$ Thus $b^x b^y \leq \sup(B(x)B(y))$.

Problem 0.5 (R:1:8). Show that \mathbb{C} can not be made into an ordered field.

This is "sort of" trivial. In an ordered field, $a^2 \ge 0$ for all a. This is by definition for a > 0 and trivial for a = 0 so we need to see that it holds for a < 0. If a < 0, then -a > 0, this is because $a > 0 \implies 0 = a + (-a) > 0 + (-a) = -a$. So (-a)(-a) > 0, if we can just show $(-a)(-a) = a^2$, then we are done.

For this it would be nice to argue (-a) = -1(a) and so $(-a)(-a) = (-1)^2a^2$ and then we just need to see that $(-1)^2 = 1^2$. If we knew 0a = 0, then (1 + (-1))a = 0 so 1a + (-1)a = a + (-1)a = 0 and by the uniqueness of inverses, (-1)a = -a. This also gives $(-1)^2 = -1(-1) = -(-1) = 1$.

So we need 0a = 0 and we are done. For this we have 0a + a = 1a + 1a = (0 + 1)a = 1a = a. So 0a + a = a. adding -a to both sides gives 0a = 0. Yeah!

Problem 0.6 (R:1:14*). Show that for $w, z \in \mathbb{C}$

$$|w + z|^2 + |w - z|^2 = 2|w|^2 + 2|z|^2$$
.

Use this to compute $|1+z|^2 + |1-z|^2$ given that |z| = 1.

Getting $|1 + z|^2 + |1 - z|^2 = 2|w| + 2|z| = 2 + 2 = 4$ given that |z| = 1 is trivial by letting w = 1.

For the main part we have

$$|w+z|^{2} + |w-z|^{2} = (w+z)\overline{(w+z)} + (w-z)\overline{(w-z)}$$

$$= (w+z)(\bar{w}+\bar{z}) + (w-z)(\bar{w}-\bar{z})$$

$$= w\bar{w} + z\bar{w} + w\bar{z} + z\bar{z} + w\bar{w} - z\bar{w} - w\bar{z} + z\bar{z}$$

$$= 2|w|^{2} + 2|z|^{2}$$

Problem 0.7 (R:1:17). Show that for $x, y \in \mathbb{R}^k$,

$$||x+y||_2^2 + ||x-y||_2^2 = 2||x||_2^2 + 2||y||_2^2$$
. (Parallelogram Law)

How does this generalize the Pythagorean theorem?

This is proved exactly as in the previous problem:

$$||x + y||_{2}^{2} + ||x - y||_{2}^{2} = (x + y)^{H}(x + y) + (x - y)^{H}(x - y)$$

$$= (x^{H} + y^{H})(x + y) + (x^{H} - y^{h})(x - y)$$

$$= x^{H}x + x^{H}y + y^{H}x + y^{H}y + x^{H}x - x^{H}y - y^{H}x + y^{H})y$$

$$= 2||x||_{2}^{2} + 2||y||_{2}^{2}$$

Problem 0.8 (R:1:18). Show that if $k \geq 2$ and $x \in \mathbb{R}^k$, there is $y \in \mathbb{R}^k$, $y \neq 0$ such that $\langle x, y \rangle = 0$.

If you recall how this goes, drop the $k \geq 2$ and show that given any non-zero pairwise orthogonal x_1, x_2, \ldots, x_l $(l \leq k)$ in \mathbb{R}^k , you can find x_{l+1}, \ldots, x_k so that x_1, x_2, \ldots, x_k are pairwise orthogonal.

This is basically Gram-Schmidt from linear algebra. For just one vector x, take y such that $y \neq \alpha x$, then set $\hat{y} = y - \frac{\langle x, y \rangle}{\langle x, x \rangle} x$. Note that

$$\langle x, \hat{y} \rangle = \left\langle x, y - \frac{\langle x, y \rangle}{\langle x, x \rangle} x \right\rangle = \langle x, y \rangle - \frac{\langle x, y \rangle}{\langle x, x \rangle} \langle x, x \rangle = \langle x, y \rangle - \langle x, y \rangle = 0$$

Notice that if x were a unit vector, then the orthogonal projection of y onto x is just $\langle x, y \rangle x$ and so $\hat{y} = \langle x, y \rangle x$.

If $\{x_1, \ldots, x_k\}$ are mutually orthogonal unit vectors, then the orthogonal projection of y onto $S = \text{span}\{x_1, \ldots, x_k\}$ is

$$\operatorname{proj}_{S}^{\perp}(y) = \sum_{i=1}^{k} \langle y, x_i \rangle x_i$$

From the Pythagorean theorem, this is the point in S closest to y in the $\|\cdot\|_2$ -norm.