

Química Nivel superior Prueba 2

Lunes 14 de noviembre de 2016 (mañana)

	Nun	nero	ae c	onvo	cator	ia de	ei aiur	mno	
		ļ		<u> </u>				<u> </u>	

2 horas 15 minutos

Instrucciones para los alumnos

- Escriba su número de convocatoria en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- · Conteste todas las preguntas.
- Escriba sus respuestas en las casillas provistas a tal efecto.
- En esta prueba es necesario usar una calculadora.
- Se necesita una copia sin anotaciones del cuadernillo de datos de química para esta prueba.
- La puntuación máxima para esta prueba de examen es [95 puntos].

245024

International Baccalaureate
Baccalaureat International
Bachillerato Internacional

Conteste todas las preguntas. Escriba sus respuestas en las casillas provistas.

- **1.** El 1,2-etanodiol, HOCH₂CH₂OH, tiene una amplia variedad de usos como la eliminación del hielo de los aviones y la transferencia de calor en una celda solar.
 - (a) El 1,2-etanodiol se puede obtener de acuerdo con la siguiente reacción.

 $2CO(g) + 3H_2(g) \rightleftharpoons HOCH_2CH_2OH(g)$

(i) Deduzca la expresión de la constante de equilibrio, K_c , para esta reacción.	[1]
(ii) Indique cómo afectará la posición de equilibrio y el valor de K_c el aumento de presión de la mezcla de reacción a temperatura constante.	[2]
Posición de equilibrio:	
\mathcal{K}_{c} :	

(iii) Calcule la variación de entalpía, ΔH^{\ominus} , en kJ, para esta reacción usando la sección 11 del cuadernillo de datos. La entalpía del enlace carbono-oxígeno en el CO(g) es 1077 kJ mol $^{-1}$.

[3]

 													. ,					 			 				 		 							 					 	
 						•												 		•	 				 		 							 					 	
 						•												 			 				 		 							 					 	
 			•			•												 		•	 				 	•								 					 	
 	٠		•	-	 ٠	•		 ٠	•		 ٠	•		 ٠	•	•		 		•	 	٠		•	 	•	 					 •	•	 	٠		 ٠		 	
 	•	 •	•	-		•		 •	٠	-	 •	•		 ٠	•	•	-	 	•	•	 	•		•	 	•	 	•	•	 •	-	 •	•	 	•	-	 •	•	 	

/		4.	
(Pregun	ta 1 · c	ntinii	acion)
(i i eguii	ta i. C	Onthina	acioii,

(b)	(i)	Calcule ΔH^{\ominus} , en kJ, para esta reacción similar que se muestra abajo usando los datos de $\Delta H^{\ominus}_{\rm f}$ de la sección 12 del cuadernillo de datos. $\Delta H^{\ominus}_{\rm f}$ del HOCH $_2$ CH $_2$ OH(l) es $-454.8{\rm kJmol}^{-1}$.	[1]
		$2CO(g) + 3H_2(g) \rightleftharpoons HOCH_2CH_2OH(l)$	
	(ii)	Deduzca por qué las respuestas a los apartados (a)(iii) y (b)(i) son diferentes.	[1]
	(iii)	ΔS^{\ominus} para la reacción de (b)(i) es $-620,1\mathrm{JK^{-1}}$. Comente sobre la disminución de entropía.	[1]
	(iv)	Calcule el valor de ΔG^{\ominus} , en kJ, para esta reacción a 298 K usando su respuesta a (b)(i). (Si no obtuvo una respuesta a (b)(i), use los datos $-244,0\mathrm{kJ}$, aunque este no sea el valor correcto.)	[2]

Véase al dorso

	(v) Comente la afirmación de que a medida que aumenta la temperatura la reacción se hace menos espontánea.
	Determine el estado de oxidación promedio del carbono en el eteno y en el 1,2-etanodiol.
Eteno	:
1,2-et	anodiol:
	Explique por qué el punto de ebullición del 1,2-etanodiol es significativamente mayor que el del eteno.

(Pregunta 1: continuación)

(f) Prediga los datos de RMN de ¹H para el ácido etanodioico y el 1,2-etanodiol completando la tabla.

[2]

	Número de señales	Patrón de desdoblamiento
Ácido etanodioico:		
1,2-etanodiol:		No requerido

Véase al dorso

2.		oncentración de una solución de un ácido débil, como el ácido etanodioico, se puede rminar por titulación con una solución estándar de hidróxido de sodio, NaOH(aq).	
	(a)	Distinga entre un ácido débil y un ácido fuerte.	[1]
	Ácid	o débil:	
	Ácid	o fuerte:	
	(b)	Sugiera por qué es más conveniente expresar la acidez usando la escala de pH en lugar de usar la concentración de iones hidrógeno.	[1]
	(c)	Una muestra impura de 5,00 g de ácido etanodioico hidratado, (COOH) ₂ •2H ₂ O, se disolvió en agua para preparar 1,00 dm³ de solución. Se titularon muestras de 25,0 cm³ de esta solución con solución de hidróxido de sodio 0,100 mol dm⁻³ usando un indicador adecuado.	
		$(COOH)_2(aq) + 2NaOH(aq) \rightarrow (COONa)_2(aq) + 2H_2O(l)$	
		El valor medio de la titulación fue de 14,0 cm ³ .	
		(i) Sugiera un indicador adecuado para esta titulación. Use la sección 22 del cuadernillo de datos.	[1]

	Calcule la cantidad, en mol, de NaOH en 14,0 cm³ de solución 0,100 mol dm⁻³.	
(iii)	Calcule la cantidad, en mol, de ácido etanodioico en la muestra de 25,0 cm ³ .	
(iv)	Determine el porcentaje de pureza del ácido etanodioico hidratado en la muestra inicial.	
(d) Dibı	uje la estructura de Lewis (representación de electrones mediante puntos) del ion iodioato, -OOCCOO	

Véase al dorso

(Pregunta 2: continuación)

 (e) Resuma por qué todas las longitudes de enlace C–O en el ion etanodicato son iguale y sugiera su valor. Use la sección 10 del cuadernillo de datos. 	es [2]
	• •
(f) Explique cómo los iones etanodioato actúan como ligandos.	[2]

3. La solución de tiosulfato de sodio reacciona a temperatura ambiente con ácido clorhídrico diluido para formar un precipitado de azufre.

$$Na_2S_2O_3(aq) + 2HCl(aq) \rightarrow S(s) + SO_2(g) + 2NaCl(aq) + X$$

(a) Identifique la fórmula y el símbolo de estado de X. [1]

(b) Sugiera por qué el experimento se debería llevar a cabo bajo campana extractora o en un laboratorio bien ventilado. [1]

.....

(Pregunta 3: continuación)

(c) El precipitado de azufre torna la mezcla opaca, por eso, una marca debajo de la mezcla de reacción desaparece con el transcurso del tiempo.

Se añadieron $10.0\,\mathrm{cm^3}$ de ácido clorhídrico $2.00\,\mathrm{mol\,dm^{-3}}$ a $50.0\,\mathrm{cm^3}$ de solución de tiosulfato de sodio a la temperatura T_1 . Los estudiantes midieron el tiempo que tarda la marca en desaparecer a simple vista. El experimento se repitió a diferentes concentraciones de tiosulfato de sodio.

Experimento	[Na ₂ S ₂ O ₃ (aq)] / mol dm ⁻³	Tiempo, t, para que la marca desaparezca / s ± 1 s	$\frac{1}{t}^* / 10^{-3} s^{-1}$
1	0,150	23	43,5
2	0,120	27	37,0
3	0,090	36	27,8
4	0,060	60	16,7
5	0,030	111	9,0

^{*} Se puede usar la inversa del tiempo en segundos como medida de la velocidad de reacción.

[Fuente: Adaptado de http://www.flinnsci.com/]

NA CONTRACTOR OF THE CONTRACTO	[0]
Muestre que el ácido clorhídrico añadido al matraz en el experimento 1 está en exceso.	[2]
· · · · · · · · · · · · · · · · · · ·	

	•	٠	•	 •	•	•	•	٠		•	 •	•	•	٠	•	•	•		•	•	 	•	•		 •	•	•	•	•	•	٠	•	•	•	•	•	•		 	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	
																					 		-			-													 		•									•									

(Pregunta 3: continuación)

(d) Dibuje, en los ejes provistos, la línea de ajuste de $\frac{1}{t}$ en función de la concentración de tiosulfato de sodio. [2]

(e) (i) Use el gráfico para explicar el orden de reacción con respecto al tiosulfato de sodio.

(Esta pregunta continúa en la página siguiente)

Véase al dorso

[2]

-	_	4.	
Promints	אי רח	ntınııa	CION
Pregunta	a 5. CO	IIIIII	

(ii) En un experimento diferente, se halló que esta reacción es de primer orden co respecto al ácido clorhídrico. Deduzca la expresión de velocidad total para la reacción.	n [1]
(f) Un estudiante decidió llevar a cabo otro experimento usando una solución de tiosulfa de sodio 0,075 mol dm ⁻³ en las mismas condiciones. Determine el tiempo que tarda marca en desaparecer.	

- (g) Se llevó a cabo un experimento adicional a mayor temperatura, T_2 .
 - (i) En los mismos ejes, dibuje aproximadamente curvas de distribución de energía de Maxwell-Boltzmann a las dos temperaturas T_1 y T_2 , donde $T_2 > T_1$. [2]

(Pregunta 3: continuación)

((ii)	E	kpli	que	e p	or	que	é a	ma	ayor	r te	mp	era	atur	аа	um	enta	a la	ve	loci	dad	d de	e re	acc	ción			[2]
								٠.					٠.		٠.				٠.			٠.		٠.				
								٠.					٠.						٠.			٠.		٠.				
				—				—			—																	
. ,	Sugi						•											cida	ade	s de	e re	aco	ciór	n ob	oten	idas	s a	[1]
. ,	•						•											cida	ade	s d	e re	aco	ciór	n ob	oten	idas	s a	[1]
. ,	•						•											cida	ade	s de	e re	eaco	ciór		oten	idas	s a	[1]
. ,	•						•													s d	e re		ciór		oten	idas		[1]

Véase al dorso

(0)	Indique la natación nuclear AV nara el r	nagnasia 26	
(a)	Indique la notación nuclear, ^A ZX, para el r	nagnesio-zo.	
(b)	La espectrometría de masas de una mu	estra de magnesio dio los sign	ijentes resultados
(0)	La espectionietha de masas de dha mu	estra de magnesio dio los sigu	nentes resultados
		% abundancia	
	Mg-24	78,60	
	Mg-25	10,11	
	Mg-26	11,29	
	Calcule la masa atómica relativa, A_r , de cifras decimales.	esta muestra de magnesio co	n dos
		esta muestra de magnesio co	n dos
		esta muestra de magnesio co	n dos
		esta muestra de magnesio co	n dos
		esta muestra de magnesio co	n dos
		de emisión o absorción en la por qué la mayoría de los com	región visible
(c)	Los iones magnesio no producen líneas del espectro electromagnético. Sugiera magnesio usados en un laboratorio esco	de emisión o absorción en la por qué la mayoría de los com	región visible

(d)	(i)	Explique la convergencia de las líneas en un espectro de emisión del hidrógeno.
	(ii)	Indique qué se puede determinar a partir de la frecuencia del límite de convergencia.
(e)		magnesio arde en el aire para formar un compuesto blanco, óxido de magnesio. mule una ecuación para la reacción del óxido de magnesio con agua.
(e) 		
(e) (f)	For	
	For	mule una ecuación para la reacción del óxido de magnesio con agua.
	For	mule una ecuación para la reacción del óxido de magnesio con agua.
	For	mule una ecuación para la reacción del óxido de magnesio con agua.

Véase al dorso

(h)	Desc	criba la estructura y el enlace en el óxido de magnesio sólido.
(i)	El cl	oruro de magnesio se puede electrolizar.
	(i)	Deduzca las semiecuaciones para las reacciones en cada electrodo cuando se electroliza cloruro de magnesio fundido y muestre los símbolos de estado de los productos. El punto de fusión del magnesio y del cloruro de magnesio es de 922 K y 987 K respectivamente.
,		
Ano	do (ele	ectrodo positivo):
Ano	do (ele	ectrodo positivo):
		ectrodo positivo):
		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·
	odo (e	lectrodo negativo):
	odo (e	lectrodo negativo):
Cáto	odo (el	lectrodo negativo): Identifique el tipo de reacción que se produce en el cátodo (electrodo negativo). Indique los productos que se obtienen cuando se electroliza una solución acuosa

(Pregunta 4: continuación)

(j)	Los potenciales de electrodo estándar se miden con respecto al electrodo estándar de hidrógeno. Describa un electrodo estándar de hidrógeno.	[2]
(k)	Una semicelda de magnesio, $Mg(s)/Mg^{2+}(aq)$, se puede conectar a una semicelda de cobre, $Cu(s)/Cu^{2+}(aq)$.	
	(i) Formule una ecuación para la reacción espontánea que se produce cuando se completa el circuito.	[1]
	(ii) Determine el potencial estándar, en V, para la pila. Refiérase a la sección 24 del cuadernillo de datos.	[1]
	(iii) Prediga, dando una razón, la variación del potencial de la celda cuando aumenta la concentración de iones cobre.	[2]

Véase al dorso

5.	El propan	o y el propeno son miembros de diferentes series homólogas.	
	(a) Dibu	uje las fórmulas estructurales completas del propano y el propeno.	[1]
	Propano:		
	Propeno:		
	(b) (i)	Dibuje diagramas para mostrar cómo se forman los enlaces sigma (σ) y pi (π) entre átomos.	[2]
	Sigma (σ)):	
	Pi (π):		

(Pregunta 5: continuación)

(ii) Indique el número de enlaces sigma (σ) y pi (π) en el propano y el propeno.	[2]
\ 11	indique el numero de cinaces signia (0) y pi (1/1) en el propano y el propeno.	14

	Número de enlaces sigma (σ)	Número de enlaces pi (π)
Propano		
Propeno		

- (c) Tanto el propano como el propeno reaccionan con bromo.
 - (i) Indique una ecuación y la condición requerida para la reacción de 1 mol de propano con 1 mol de bromo.

.....

(ii) Indique una ecuación para la reacción de 1 mol de propeno con 1 mol de bromo. [1]

.....

(iii) Indique el tipo de cada reacción con bromo.

[1]

[2]

Propano:

Propeno:

(Esta pregunta continúa en la página siguiente)

Véase al dorso

(Pregunta 5: continuación)

(d)	Construya el mecanismo de la formación de 2-bromopropano a partir de bromuro de hidrógeno y propeno usando flechas curvas para representar el movimiento de los electrones.	[3]

6.	Un is	somero estructural del C ₄ H ₉ Br es una molecula quiral.	
	(a)	Dibuje la forma tridimensional de cada enantiómero de este isómero en la que muestre la relación espacial que existe entre ellos.	[2]
	(1.)		
	(b)	Cuando un enantiómero sufre sustitución por hidrólisis alcalina, aproximadamente el 75 % de las moléculas del producto muestran inversión de la configuración. Comente sobre los mecanismos que se producen.	[2]
	(c)	Sugiera por qué la velocidad de la hidrolisis alcalina de un enantiómero del yodopropano es mayor que la de un enantiómero del bromopropano.	[1]

- 7. Esta es una pregunta sobre el ácido metanoico, HCOOH, un ácido débil.
 - (a) Calcule el pH del ácido metanoico $0,0100\,\mathrm{mol\,dm^{-3}}$ e indique cualquier suposición que realice. $K_a = 1,6 \times 10^{-4}$.

[3]

Cálculo	ı:										
Suposio	ción:										

(b) (i) Dibuje aproximadamente un gráfico de pH en función del volumen de una base fuerte añadida a un ácido débil y muestre cómo determinar el p K_a del ácido débil. [2]

PH
7 Volumen en el punto de equivalencia
Volumen de base fuerte añadido

(Pregunta 7: continuación)

	(11)		gió	•	-	•							-	•									•	þ)C	O	er	1 16	a		[[2]
• •		٠.	 			٠.	•	 •		•	 •	 •	 •	 •	 	•	-			•		•		•	 •								
		٠.	 			٠.	•	 •		•	 •	 •	 •	 •	 	•	•			•		•		•									
		٠.	 			٠.															 	•											
			 																		 		-										

No escriba en esta página.

Las respuestas que se escriban en esta página no serán corregidas.

