

Class objectives

By the end of today's class you will understand:

Stationary vs Non-stationary data

Augmented Dickey-Fuller Test

Autoregressive Moving Average Model (ARMA)

AutoRegressive Integrated Moving Average (ARIMA)

Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

Stationarity

In a stationary process, the mean and variance are constant across time.

Non-stationary

A time series with an upward or downward trend is **not stationary**.

Stationarity

My west and the series model.

There are strategies to transform a non-stationary time series into a stationary one.

Auto-Regressive Model

$$y_{\rm t} = \mu + a_1 y_{\rm t-1} + \epsilon_{\rm t}$$

8

Auto-Regressive (AR) Models

01

Past values are used to predict future values.

02

Therefore assumes some degree of autocorrelation.

An AR model may have one significant lag, or it may have multiple.

Second-order AR model

$$y_{t} = \mu + a_1 y_{t-1} + a_2 y_{t-2} + \epsilon_{t}$$

AR Model Summary

An AR model predicts future values based on:

Past values at a specified lag.

102 The number of significant lags.

$$y_{\mathrm{t}} = m \epsilon_{\mathrm{t-1}} + \epsilon_{\mathrm{t}}$$

Past errors (plus current error) are used to predict future values.

ARMA Model

Combines features of AR and MA models.

Past values and errors are used to predict future values.

ARIMA Model

$$\Delta y_{t} = \mu + \alpha_{1} \Delta y_{t-1} + \alpha_{2} \Delta y_{t-2} + \epsilon_{t}$$

Combines features of AR and MA models.

Past values and errors are used to predict future values.

ARIMA creates differences (Δy) of the data as part of the process.

AIC & BIC

Akaike Information Criterion, Bayesian Information Criterion.

Assess how well a model fits the data (goodness of fit), and complexity.

Higher-order models are penalized for complexity.

Lower scores are better.

Why is Volatility Important to Understand?

Higher volatility = More Risk

Diversified Portfolio

By understanding volatility of individual assets (stocks, bonds, etc), a more diversified portfolio can be constructed

Derivatives

Some assets are particularly sensitive to volatility, e.g. derivatives.

ARMA

Auto-Regressive component:

Future values predicted based on **past values**.

Moving Average component:

Future values predicted based on past errors.

Like ARMA, GARCH also has auto-regressive and moving average components.

Heteroskedasticity

Volatile Periods in the US Stock Market

Volatility and returns tend to cluster.

GARCH is a model designed to take specific advantage of that.

