STELLAR CONSENSUS PROTOCOL

HIDENORI SHINOHARA

ABSTRACT. This is my personal notes on the Stellar consensus protocol. This roughly follows the structure of the white paper on https://www.stellar.org/.

Contents

1.	Basic Properties of Quorums	1
2.	DSet	2
3.	Voting	3

1. Basic Properties of Quorums

Definition 1.1. Let V be a set and $Q: V \to 2^{2^V} \setminus \{\emptyset\}$ be a function such that $\forall v \in V, \forall q \in Q(v), v \in q$. Then we call the pair $\langle V, Q \rangle$ a federated Byzantine agreement system, or FBAS for short.

Definition 1.2. Let $\langle V, Q \rangle$ be an FBAS. $U \subset V$ is called a quorum if and only if $\forall v \in U, \exists q \in Q(v), q \subset U$.

Theorem 1.3. In an FBAS $\langle V, Q \rangle$, the union of two quorums is a quorum.

Proof. Let U_1, U_2 be two quorums. Let $v \in U_1 \cup U_2$. Then $v \in U_i$ for i = 1 or i = 2. Then $q \subset U_i$ for some $q \in Q(v)$. Therefore, $q \subset U_1 \cup U_2$, so $U_1 \cup U_2$ is indeed a quorum.

Theorem 1.4. In an FBAS (V,Q), V is a quorum.

Proof. For any $v \in V$, for any $q \in Q(v)$, $q \subset V$. Therefore, V is indeed a quorum.

Example 1.5. One might imagine that the intersection of quorums is always a quorum. However, this is not true in general.

Let $V = \{v_1, \cdots, v_4\}$ and

- $Q(v_1) = \{\{v_1, v_2, v_3\}, \{v_1, v_2, v_4\}, \{v_1, v_3, v_4\}\},\$
- •
- $Q(v_4) = \{\{v_1, v_2, v_4\}, \{v_1, v_3, v_4\}, \{v_2, v_3, v_4\}\}.$

In other words, $Q(v_i) = \{U \mid U \in 2^V, v_i \in U\}.$

Then $U_1 = \{v_1, v_2, v_3\}$ is a quorum, and $U_2 = \{v_2, v_3, v_4\}$ is a quorum. However, $U_1 \cap U_2 = \{v_2, v_3\}$ is not a quorum because the size of any quorum slice is 3.

Definition 1.6. Let $\langle V, Q \rangle$ be an FBAS. We say $\langle V, Q \rangle$ enjoys quorum intersection if and only if for any pair of quorums $U_1, U_2, U_1 \cap U_2 \neq \emptyset$.

Definition 1.7. Let $\langle V, Q \rangle$ be an FBAS and $B \subset V$. Then the FBAS $\langle V, Q \rangle^B$ is defined to be $\langle V \setminus B, Q^B \rangle$ where $\forall v \in V, Q^B(v) = \{q \setminus B \mid q \in Q(v)\}.$

Theorem 1.8. Definition 1.7 is well-defined. In other words, if $\langle V, Q \rangle$ is an FBAS and $B \subset V$, then $\langle V, Q \rangle^B$ is an FBAS.

Proof. Let $v \in V \setminus B, q' \in Q^B(v)$ be given. Then $q' = q \setminus B$ for some $q \in Q(v)$. By the definition of an FBAS, $v \in q$. Since $v \notin B$, $v \in q \setminus B = q'$. Therefore, $\langle V, Q \rangle^B$ is an FBAS.

Theorem 1.9. Let U be a quorum in FBAS $\langle V, Q \rangle$, let $B \subset V$ be a set of nodes, and let $U' = U \setminus B$. If $U' \neq \emptyset$, then U' is a quorum in $\langle V, Q \rangle^B$.

Proof. Since $U' \neq \emptyset$, it suffices to show that $\forall v \in U', \exists q \in Q^B(v), q \subset U'$. Let $v \in U'$. Then $v \in U$. Since U is a quorum in $\langle V, Q \rangle$, we can find $q \in Q(v)$ such that $q \subset U$. Then $q' = q \setminus B \in Q^B(v)$, and $q' = q \setminus B \subset U \setminus B = U'$. Therefore, U' is a quorum in $\langle V, Q \rangle^B$. \square

2. DSet

Definition 2.1. Let $\langle V, Q \rangle$ be an FBAS and $B \subset V$ be a set of nodes. B is called a dispensable set, or DSet, if and only if the following conditions are satisfied:

- $\langle V, Q \rangle^B$ enjoys quorum intersection.
- B = V or $V \setminus B$ is a quorum in $\langle V, Q \rangle$.

Definition 2.2. Let $\langle V, Q \rangle$ be an FBAS and $v \in V$. v is said to be intact if and only if there exists a DSet B containing all ill-behaved nodes and $v \notin B$. v is said to be befouled if and only if v is not intact.

Theorem 2.3. If B_1 and B_2 are DSets in an FBAS $\langle V, Q \rangle$ enjoying quorum intersection, then $B = B_1 \cap B_2$ is a DSet, too.

Proof. If $B_1 = V$ or $B_2 = V$, then we are done. Suppose otherwise. For any $v \in V$,

$$v \in V \setminus B \iff v \in V \land v \notin B$$

$$\iff v \in V \land (v \notin B_1 \lor v \notin B_2)$$

$$\iff (v \in V \land v \notin B_1) \lor (v \in V \land v \notin B_2)$$

$$\iff (v \in (V \setminus B_1)) \lor (v \in (V \setminus B_2))$$

$$\iff v \in ((V \setminus B_1) \cup (V \setminus B_2)).$$

Thus, $V \setminus B = (V \setminus B_1) \cup (V \setminus B_2)$. By the definition of a DSet, $V \setminus B_1$ and $V \setminus B_2$ are both quorums in $\langle V, Q \rangle$. By Theorem 1.3, $V \setminus B$ is a quorum in $\langle V, Q \rangle$.

We must now show quorum intersection despite B. Let U_a, U_b be quorums in $\langle V, Q \rangle^B$.

- $U_a \setminus B_1$ is a quorum in $(\langle V, Q \rangle^B)^{B_1} = \langle V, Q \rangle^{B_1}$ by Theorem 1.7.
- Similarly, $U_b \setminus B_1$ is a quorum in $\langle V, Q \rangle^{B_1}$, and $U_a \setminus B_2$ and $U_b \setminus B_2$ are both quorums in $\langle V, Q \rangle^{B_2}$.

$$(U_a \setminus B_1) \cup (U_a \setminus B_2) = U_a \setminus (B_1 \cap B_2)$$
$$= U_a \setminus B$$
$$= U_a$$

because U_a is a quorum in $\langle V, Q \rangle^B$. In other words, $(U_a \setminus B_1) \cup (U_a \setminus B_2) \neq \emptyset$. Similarly, $(U_b \setminus B_1) \cup (U_b \setminus B_2) \neq \emptyset$.

Without loss of generality, assume that $U_a \setminus B_1 \neq \emptyset$.

- $V \setminus B_1$ is a quorum in $\langle V, Q \rangle$ because B_1 is a DSet. Similarly, $V \setminus B_2$ is a quorum in $\langle V, Q \rangle$. Because $\langle V, Q \rangle$ enjoys quorum intersection, $(V \setminus B_1) \cap (V \setminus B_2) \neq \emptyset$. In other words, $(V \setminus B_2) \setminus B_1$ is a quorum. By Theorem 1.7, $(V \setminus B_2) \setminus B_1$ is a quorum in $\langle V, Q \rangle^{B_1}$.
- $U_a \setminus B_1$ is a quorum in $(\langle V, Q \rangle^B)^{B_1} = \langle V, Q \rangle^{B_1}$ for the same reason.

Because B_1 is a DSet in $\langle V, Q \rangle$, $\langle V, Q \rangle^{B_1}$ enjoys quorum intersection. Therefore, $(U_a \setminus B_1) \cap ((V \setminus B_2) \setminus B_1) \neq \emptyset$.

$$(U_a \setminus B_1) \cap ((V \setminus B_2) \setminus B_1) = (U_a \cap (V \setminus B_2)) \setminus B_1$$

$$\subset U_a \cap (V \setminus B_2)$$

$$= (U_a \cap V) \setminus B_2$$

$$= U_a \setminus B_2.$$

Thus, $U_a \setminus B_2 \neq \emptyset$. Using the same argument, we can show that $U_b \setminus B_1 \neq \emptyset$ and $U_b \setminus B_2 \neq \emptyset$. Since $U_a \setminus B_1$ and $U_b \setminus B_1$ are quorums in $\langle V, Q \rangle^{B_1}$ and B_1 is a DSet, $(U_a \setminus B_1) \cap (U_b \setminus B_1) \neq \emptyset$ by the definition of a DSet. This implies $(U_a \cap U_b) \setminus B_1 \neq \emptyset$. Therefore, $U_a \cap U_b \neq \emptyset$.

3. Voting

Theorem 3.1. If an FBAS enjoys quorum intersection and contains no ill-behaved node, then two contradictory statements cannot be both ratified.

Proof. Suppose the statement is false and let a, \bar{a} denote two contradictory statements ratified in such an FBAS. Let $U_a, U_{\bar{a}}$ denote quorums ratifying such statements, respectively. By the definition of quorum intersection, $U_a \cap U_{\bar{a}} \neq \emptyset$. Let $v \in U_a \cap U_{\bar{a}}$. This implies that v voted for both a and \bar{a} . However, this goes against the definition of voting. In other words, v must be ill-behaved, which is a contradiction to our assumption.

Theorem 3.2. Let $\langle V, Q \rangle$ be an FBAS. Let $B \subsetneq V$ be a subset containing all the ill-behaved nodes and suppose that $\langle V, Q \rangle^B$ enjoys quorum intersection. Let $v_1 \neq v_2 \in V \setminus B$. If v_1 ratifies a statement a, then v_2 cannot ratify any statement that contradicts a.

Proof. Suppose that the theorem is false and let U_1, U_2 be quorums of v_1, v_2 that ratify a, \bar{a} , respectively where a and \bar{a} are contradictory. Since $v_1 \in U_1 \setminus B$, $U_1 \setminus B \neq \emptyset$. By Theorem 1.9, $U_1' = U_1 \setminus B$ is a quorum in $\langle V, Q \rangle^B$. Similarly, $U_2' = U_2 \setminus B$ is a quorum in $\langle V, Q \rangle^B$. Since $\langle V, Q \rangle^B$ enjoys quorum intersection, $U_1' \cap U_2' \neq \emptyset$. Let $v \in U_1' \cap U_2'$. Then $v \in U_1 \cap U_2$. In order for U_1, U_2 to ratify a, \bar{a} , respectively, v must vote for both a and \bar{a} . However, this is against the definition of voting. v must be an ill-behaved node, so $v \in B$, which is a contradiction because $v \in U_1 \setminus B$.