```
In [1]: import pandas as pd
import seaborn as sns
```

Out[5]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Pedigree	Age	Out
0	6	148	72	35	0	33.6	0.627	50	
1	1	85	66	29	0	26.6	0.351	31	
2	8	183	64	0	0	23.3	0.672	32	
3	1	89	66	23	94	28.1	0.167	21	
4	0	137	40	35	168	43.1	2.288	33	
763	10	101	76	48	180	32.9	0.171	63	
764	2	122	70	27	0	36.8	0.340	27	
765	5	121	72	23	112	26.2	0.245	30	
766	1	126	60	0	0	30.1	0.349	47	
767	1	93	70	31	0	30.4	0.315	23	

768 rows × 9 columns

```
In [8]: 1 sns.countplot(x=y);
```



```
In [9]:
              y.value_counts()
 Out[9]:
         0
              500
         1
              268
         Name: Outcome, dtype: int64
In [11]:
           1
              from sklearn.preprocessing import MinMaxScaler
              scaler = MinMaxScaler()
              x_scaled = scaler.fit_transform(x)
In [14]:
              from sklearn.model_selection import train_test_split
              x_train,x_test,y_train,y_test = train_test_split(x_scaled,y,random_stat
In [15]:
              x.shape
Out[15]: (768, 8)
In [16]:
             x_train.shape
Out[16]: (576, 8)
In [17]:
           1 x_test.shape
Out[17]: (192, 8)
```

on.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is ta ken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.

mode, _ = stats.mode(_y[neigh_ind, k], axis=1)

In [26]: 1 ConfusionMatrixDisplay.from_predictions(y_test,y_pred)


```
In [27]:
              print(classification_report(y_test,y_pred))
                       precision
                                     recall f1-score
                                                        support
                    0
                             0.79
                                       0.88
                                                 0.83
                                                            130
                    1
                                       0.50
                                                 0.57
                             0.66
                                                             62
             accuracy
                                                 0.76
                                                            192
                                       0.69
                                                 0.70
                                                            192
            macro avg
                             0.72
         weighted avg
                             0.75
                                       0.76
                                                 0.75
                                                            192
In [33]:
              import matplotlib.pyplot as plt
              import numpy as np
In [36]:
              error = []
              for k in range (1,41):
           3
                  knn = KNeighborsClassifier(n_neighbors = k)
           4
                  knn.fit(x_train, y_train)
           5
                  pred=knn.predict(x_test)
           6
                  error.append(np.mean(pred!=y_test))
         statistic is taken will be eliminated, and the value None will no longe
         r be accepted. Set `keepdims` to True or False to avoid this warning.
           mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neighbors\_classific
         ation.py:228: FutureWarning: Unlike other reduction functions (e.g. `sk
         ew`, `kurtosis`), the default behavior of `mode` typically preserves th
         e axis it acts along. In SciPy 1.11.0, this behavior will change: the d
         efault value of `keepdims` will become False, the `axis` over which the
         statistic is taken will be eliminated, and the value None will no longe
         r be accepted. Set `keepdims` to True or False to avoid this warning.
           mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neighbors\_classific
         ation.py:228: FutureWarning: Unlike other reduction functions (e.g. `sk
         ew`, `kurtosis`), the default behavior of `mode` typically preserves th
         e axis it acts along. In SciPy 1.11.0, this behavior will change: the d
         efault value of `keepdims` will become False, the `axis` over which the
         statistic is taken will be eliminated, and the value None will no longe
```

r be accepted. Set `keepdims` to True or False to avoid this warning.

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neighbors_classific

mode, = stats.mode(y[neigh ind, k], axis=1)

```
In [38]: 1 plt.figure(figsize=(16,9))
2 plt.xlabel('Value of K')
3 plt.ylabel('Error')
4 plt.grid()
5 plt.xticks(range(1,41))
6 plt.plot(range(1,41),error,marker='.')
```

Out[38]: [<matplotlib.lines.Line2D at 0x24c115ed8e0>]


```
In [39]: 1 knn = KNeighborsClassifier(n_neighbors = 33)
```

```
In [40]: 1 knn.fit(x_train, y_train)
```

Out[40]: KNeighborsClassifier(n_neighbors=33)

```
In [41]: 1 y_pred=knn.predict(x_test)
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neighbors_classificati on.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is ta ken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.

mode, _ = stats.mode(_y[neigh_ind, k], axis=1)

In [42]:	1	<pre>print(classification_report(y_test,y_pred))</pre>
----------	---	--

	precision	recall	f1-score	support
0	0.79	0.94	0.86	130
1	0.79	0.48	0.60	62
accuracy			0.79	192
macro avg	0.79	0.71	0.73	192
weighted avg	0.79	0.79	0.78	192

In []: