1 Lemma 4 (Lemma 3.2.1)

Let x_1, \ldots, x_N be N (p-component) vectors, and let $\bar{x} = \frac{1}{N} \sum_{\alpha=1}^{N} x_{\alpha}$. Then for any vector b, we have

$$\sum_{\alpha=1}^{N} (x_{\alpha} - b)(x_{\alpha} - b)^{T} = \sum_{\alpha=1}^{N} (x_{\alpha} - \overline{\mathbf{z}})(x_{\alpha} - \overline{\mathbf{z}})^{T} + N(\bar{x} - b)(\bar{x} - b)^{T}.$$

Proof.

$$\sum_{\alpha=1}^{N} (x_{\alpha} - b)(x_{\alpha} - b)^{T}$$

$$= \sum_{\alpha=1}^{N} [(x_{\alpha} - \bar{x}) + (\bar{x} - b)][(x_{\alpha} - \bar{x}) + (\bar{x} - b)]^{T}$$

$$= \sum_{\alpha=1}^{N} [(x_{\alpha} - \bar{x})(x_{\alpha} - \bar{x})^{T} + (x_{\alpha} - \bar{x})(\bar{x} - b)^{T} + (\bar{x} - b)(x_{\alpha} - \bar{x})^{T} + (\bar{x} - b)(\bar{x} - b)^{T}]$$

$$= \sum_{\alpha=1}^{N} (x_{\alpha} - \bar{x})(x_{\alpha} - \bar{x})^{T} + \sum_{\alpha=1}^{N} (x_{\alpha} - \bar{x})(\bar{x} - b)^{T} + (\bar{x} - b)\sum_{\alpha=1}^{N} (x_{\alpha} - \bar{x})^{T} + N(\bar{x} - b)(\bar{x} - b)^{T}.$$

Note that $\sum_{\alpha=1}^{N} (x_{\alpha} - \bar{x}) = \sum_{\alpha=1}^{N} x_{\alpha} - N\bar{x} = 0,$

the second and third terms on the right hand side are 0.

Let b = 0, we have

$$\sum_{\alpha=1}^{N} x_{\alpha} x_{\alpha}^{T} = \sum_{\alpha=1}^{N} (x_{\alpha} - \bar{x})(x_{\alpha} - \bar{x})^{T} + N\bar{x}\bar{x}^{T}.$$

That is

$$\sum_{\alpha=1}^{N} (x_{\alpha} - \bar{x})(x_{\alpha} - \bar{x})^{T} = \sum_{\alpha=1}^{N} x_{\alpha} x_{\alpha}^{T} - N \bar{x} \bar{x}^{T}.$$

2 Assertion 5 (Lemma 3.2.3 and Corollary 3.2.1)

Assertion 5 The maximum likelihood estimators of functions of the parameters are those functions of the maximum likelihood estimators of the parameters.

Corollary 3.2.1 If on the basis of a given sample $\hat{\theta}_1, \ldots, \hat{\theta}_m$ are maximum likelihood estimators of the parameters $\theta_1, \ldots, \theta_m$ of a distribution, and if the transformation from $\theta_1, \ldots, \theta_m$ to ϕ_1, \ldots, ϕ_m is one to one, then $\phi_1(\hat{\theta}_1, \ldots, \hat{\theta}_m), \ldots, \phi_m(\hat{\theta}_1, \ldots, \hat{\theta}_m)$ are maximum likelihood estimators of $\phi_1(\theta_1, \ldots, \theta_m), \ldots, \phi_m(\theta_1, \ldots, \theta_m)$.

If the estimators of $\theta_1, \ldots, \theta_m$ are unique, then the estimators of ϕ_1, \ldots, ϕ_m are unique.

Lemma 3.2.3 Let $f(\theta)$ be a real-valued function defined on a set S, and let ϕ be a single-valued function, with a single-valued inverse, on S to a set S^* ; that is, to each $\theta \in S$ there

corresponds a unique $\theta^* \in S^*$, and, conversely, to each $\theta^* \in S^*$ there corresponds a unique $\theta \in S$. Let $g(\theta^*) = f[\phi^{-1}(\theta^*)]$. Then,

- (1) If $f(\theta)$ attains a maximum at $\theta = \theta_0$, $g(\theta^*)$ attains a maximum at $\theta^* = \theta_0^* = \phi(\theta_0)$.
- (2) If the maximum of $f(\theta)$ at θ_0 is unique, so is the maximum of $g(\theta^*)$ at θ_0^* .

Proof. (1) $f(\theta)$ attains a maximum at $\theta = \theta_0$, that is, $f(\theta_0) \ge f(\theta)$ for all $\theta \in S$. For any $\theta^* \in S^*$,

$$g(\theta^*) = f[\phi^{-1}(\theta^*)] = f(\theta) \le f(\theta_0) = f(\phi^{-1}(\theta_0^*)) = g(\theta_0^*).$$

That is, $g(\theta^*)$ attains a maximum at θ_0^* .

(2) If the maximum of $f(\theta)$ at θ_0 is unique, there is strict inequality above for $\theta \neq \theta_0$, and the maximum of $g(\theta^*)$ is unique.

Theorem 3 (Theorem 3.2.1)

If $x_1, x_2, ..., x_N$ constitute a sample from $N(\mu, \Sigma)$ with p < N, the maximum likelihood estimator of μ and Σ are

$$\hat{\mu} = \bar{x} = \frac{1}{N} \sum_{\alpha=1}^{N} x_{\alpha},\tag{4}$$

and

$$\hat{\Sigma} = \frac{1}{N} \sum_{\alpha=1}^{N} (x_{\alpha} - \bar{x})(x_{\alpha} - \bar{x})^{T}, \tag{5}$$

respectively.

Lemma 6 (Corollary 3.2.2)

If x_1, x_2, \ldots, x_N constitutes a sample from $N(\mu, \Sigma)$, where $\sigma_{ij} = \sigma_i \sigma_j \rho_{ij}$, and $\rho_{ii} = 1$, then the maximum likelihood estimator of μ , σ_i^2 , and ρ_{ij} are:

$$\hat{\mu} = \bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha},$$

$$\hat{\sigma}_i^2 = \frac{1}{N} \sum_{\alpha=1}^N (x_{i\alpha} - \bar{x}_i)^2,$$

and

$$\hat{\rho}_{ij} = \frac{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)(x_{j\alpha} - \bar{x}_j)}{\sqrt{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)^2} \sqrt{\sum_{\alpha=1}^{N} (x_{j\alpha} - \bar{x}_j)^2}},$$

respectively.

3 Lemma 8 (Lemma 3.3.1)

Lemma 8 If $C = (c_{\alpha\beta})$ is orthogonal (that is $C^TC = CC^T = I_N$), then $\sum_{\alpha=1}^N x_{\alpha} x_{\alpha}^T = \sum_{\alpha=1}^N y_{\alpha} y_{\alpha}^T,$ where $y_{\alpha} = \sum_{\alpha=1}^N c_{\alpha\beta} x_{\beta}$, for $\alpha = 1, ..., N$.

Proof. Let $X = (x_1, \ldots, x_N)$ and $Y = (y_1, \ldots, y_N)$. Note that $X, Y \in \mathbb{R}^{p \times N}$.

$$Y = (y_1, \dots, y_N) = (\sum_{\beta=1}^N c_{1\beta} x_{\beta}, \dots, \sum_{\beta=1}^N c_{N\beta} x_{\beta}) = (x_1, \dots, x_N) \begin{pmatrix} c_{11} & c_{21} & \dots & c_{N1} \\ c_{12} & c_{22} & \dots & c_{N2} \\ \dots & \dots & \dots & \dots \\ c_{1N} & c_{2N} & \dots & c_{NN} \end{pmatrix}$$

That is $Y = XC^T$.

$$\sum_{\alpha=1}^{N} y_{\alpha} y_{\alpha}^{T} = YY^{T} = XC^{T} (XC^{T})^{T} = XC^{T} CX^{T} = XX^{T} = \sum_{\alpha=1}^{N} x_{\alpha} x_{\alpha}^{T}.$$

4 Unbiasedness

Definition 10 (Definition 3.3.1)

An estimator t of a parameter vector θ , is unbiased if and only if $\mathbb{E}_{\theta}(t) = \theta$.

• We further claim that \bar{X} in (4) is an unbiased estimator of the true mean (i.e., population mean),

$$\mathbb{E}(\bar{X}) = \frac{1}{N} \mathbb{E}(\sum_{\alpha=1}^{N} X_{\alpha}) = \mu.$$

• $\hat{\Sigma}$ in (5) is a biased estimator of Σ ,

$$\mathbb{E}(\hat{\Sigma}) = \frac{1}{N} \mathbb{E}(\sum_{\alpha=1}^{N-1} Z_{\alpha} Z_{\alpha}^{\mathsf{T}}) = \frac{N-1}{N} \Sigma.$$

• S (defined in (2) and (3)) is an unbiased estimator of Σ ,

$$S = \frac{1}{N-1}A = \frac{1}{N-1}\sum_{\alpha=1}^{N}(x_{\alpha}-\bar{x})(x_{\alpha}-\bar{x})^{T}.$$

5 Sufficiency of maximum likelihood estimators

Sufficiency A statistic T is sufficient for a family of distributions of X or for a parameter θ if the conditional distribution of X given T = t does not depend on θ . The sufficient statistic T gives as much information about θ as the entire sample X.

Factorization Theorem A statistic t(y) is sufficient for θ if and only if the density $f(y \mid \theta)$ can be factored as

$$f(y \mid \theta) = g[t(y), \theta]h(y),$$

where $g[t(y), \theta]$ and h(y) are nonnegative and h(y) does not depend on θ .

Theorem 3.4.1

- (1) If x_1, \ldots, x_N are observations from $N(\mu, \Sigma)$, then \bar{x} and S are sufficient for μ and Σ .
- (2) If μ is given, $\sum_{\alpha=1}^{N} (x_{\alpha} \mu)(x_{\alpha} \mu)^{T}$ is sufficient for Σ .
- (3) If Σ is given, \bar{x} is sufficient for μ .
- (4) Note that if μ is given, S is not sufficient for Σ .

Proof. The density of X_1, \ldots, X_N is

(2)
$$\prod_{\alpha=1}^{N} n(x_{\alpha}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$= (2\pi)^{-\frac{1}{2}Np} |\boldsymbol{\Sigma}|^{-\frac{1}{2}N} \exp\left[-\frac{1}{2}\text{tr}\,\boldsymbol{\Sigma}^{-1}\sum_{\alpha=1}^{N}(x_{\alpha}-\boldsymbol{\mu})(x_{\alpha}-\boldsymbol{\mu})'\right]$$

$$= (2\pi)^{-\frac{1}{2}Np} |\boldsymbol{\Sigma}|^{-\frac{1}{2}N} \exp\left\{-\frac{1}{2}\left[N(\bar{x}-\boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\bar{x}-\boldsymbol{\mu}) + (N-1)\text{tr}\,\boldsymbol{\Sigma}^{-1}S\right]\right\}.$$

The right-hand side of (2) is in the form of (1) for \bar{x} , S, μ , Σ , and the middle is in the form of (1) for $\sum_{\alpha=1}^{N} (x_{\alpha} - \mu)(x_{\alpha} - \mu)'$, Σ ; in each case $h(x_{1}, \dots, x_{N}) = 1$. The right-hand side is in the form of (1) for \bar{x} , μ with $h(x_{1}, \dots, x_{N}) = \exp\{-\frac{1}{2}(N-1)\operatorname{tr} \Sigma^{-1}S\}$.