Solving systems of XOR equations

Jules Massart

October 2023

1 The System

Let $(n, m) \in \mathbb{N}$.

Let $(y_1, y_2, \dots, y_n) \in \mathbb{N}^n$ and (S) be the following system in \mathbb{N}^m :

$$a_{1,1}x_1 \oplus a_{1,2}x_2 \oplus \cdots \oplus a_{1,m}x_m = y_1$$
$$a_{2,1}x_1 \oplus a_{2,2}x_2 \oplus \cdots \oplus a_{2,m}x_m = y_2$$

$$a_{n,1}x_1 \oplus a_{n,2}x_2 \oplus \cdots \oplus a_{n,m}x_m = y_n$$

with $a_{i,j} \in \{0,1\}$.

$$s = \min_{i \in \mathbb{N}^*} \{ i \mid 2^i \ge y_k, k \in [1, n] \}.$$

Let $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$ can be represented by the matrix:

$$M = \begin{bmatrix} b_{y_1,1} & b_{y_1,2} & \cdots \\ b_{y_2,1} & b_{y_2,2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

where $b_{y_i,j}$ represents the j-th bit of y_i (indexed from 1).

Let's work in the field \mathbb{F}_2 from now on.

Since XOR is a bit-by-bit operation, the system (S) can be decomposed into m systems on each column of M, where $A = (a_{i,j})_{1 \le i \le n, 1 \le j \le m}$. Furthermore, let's assume that $\operatorname{rank}(A) = m$.

Let (L_1, L_2, \ldots, L_s) denote the columns of M.

Let's solve $A \cdot X_1 = L_1$. This can be done using Gaussian elimination. The same procedure applies for X_2, X_3, \ldots, X_s to produce the matrix $R = [X_1, X_2, \ldots, X_s]$.

Going back in R, for all $i \in [1, m], x_i = \sum_{k=1}^{s} 2^k \cdot R_{i,k}$.

A Python implementation can be found on github.com/Herivelismus/xor_solver.