Name:	
MATH 308	"Before software should be reusable, it
Fall 2021	should be usable."
HW 11: Due 11/05	–Ralph Johnson

Problem 1. (10pt) Show that the following sets have the same cardinality by finding a bijection between them (you need not prove that your function is bijective):

(a)
$$A = (-2, 2), B = (5, 6)$$

(b)
$$A = \{0,1\} \times \mathbb{N}, B = \mathbb{N}$$

(c)
$$A = [0, 1], B = (0, 1)$$

Problem 2. (10pt) Show that $\mathbb N$ and $\mathbb Z \times \mathbb Z$ have the same cardinality using the Schröder-Cantor-Bernstein Theorem.

Problem 3. (10pt) In class, we discussed that given a set S, the cardinality of the power set of S, $\mathcal{P}(S)$, is strictly larger. Thus, we can construct sets with arbitrarily large cardinality. Prove this fact, i.e. prove the following:

- (a) $|S| \leq |\mathcal{P}(S)|$, i.e. find an injection $f: S \to \mathcal{P}(S)$.
- (b) there does not exist a bijection $\phi: S \to \mathcal{P}(S)$. [Hint: Show there is not a surjection by considering the set $A := \{s \in S \colon s \notin \phi(s)\} \subseteq S$.]
- (c) Explain why this implies there can be no 'set of all sets.'

Problem 4. (10pt) Determine if the following sets are countable or uncountable (give a brief explanation; however, a formal proof is not necessary):

- (a) $A = \{ \log n \colon n \in \mathbb{N} \}.$
- (b) B = set of perfect squares.
- (c) $C = \{(m, n) \in \mathbb{N} \times \mathbb{N} : 2 \le m \le n^2\}.$
- (d) D = set of all irrational numbers.
- (e) $E = \text{set of linear functions } f : \mathbb{R} \to \mathbb{R}$.
- (f) F = set of all finite binary strings.
- (g) G = set of all binary strings.
- (h) $H = \text{set of all functions } f: \{0,1\} \to \mathbb{N}$.
- (i) $I = \text{set of all functions } f: \mathbb{N} \to \{0, 1\}.$
- (j) J = set of all possible dictionary 'words.'
- (k) $K = \text{set of all subsets of } \mathbb{N}$.

Problem 5. (10pt) Mimic Cantor's proof that the set \mathbb{R} is uncountable to prove that the set of all real numbers without a 7 in their decimal expansion is uncountable.