

MLE and MAP

GU 4241

Statistical Machine Learning

Xiaofei Shi

Theoretical foundation: probability

• In order to translate our task into formal mathematical problem, we need the language of

Probability: the study of uncertainty

A brief introduction to probability

Random variables

refer to an event whose status is unknown:

- A = "the stock price of google is going to increase by 0.1% tomorrow": binary

- A = "the app you use for food delivery"

- A = "the chance of snow in NYC tomorrow" : continuous

: discrete

- The set of all possible outcomes
 - All of the possible outcomes a random variable can take

Probability

A variety of useful facts can be derived from just three axioms:

- 1. $0 \le P(A) \le 1$
- 2. P(true) = 1, P(false) = 0
- 3. $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Joint probability

P(A, B)

If we assume independence, then P(A, B) = P(A) P(B)

Snow tomorrow	Snow today
1	1
0	0
1	0
1	1
0	1
1	1
0	0
0	0

Joint probability

P(A, B)

If we assume independence, then P(A, B) = P(A) P(B)

P[snow tomorrow] = $\frac{1}{2}$ P[snow today] = $\frac{1}{2}$ P[snow today and tomorrow] = ?

Snow tomorrow	Snow today
1	1
0	0
1	0
1	1
0	1
1	1
0	0
0	0

Joint probability

P(A, B)

If we assume independence, then P(A, B) = P(A) P(B)

P[snow tomorrow] = $\frac{1}{2}$ P[snow today] = $\frac{1}{2}$ P[snow today and tomorrow] = $\frac{3}{8}$

Snow tomorrow	Snow today
1	1
0	0
1	0
1	1
0	1
1	1
0	0
0	0

Conditional probability

P(A | B): The fraction of cases where A is true if B is true

$$P(A = 0.2)$$

$$P(A|B = 0.5)$$

Conditional probability

- In some cases, given knowledge of one or more random variables we can improve upon our prior belief of another random variable
- P[snow tomorrow] = ½
 P[snow tomorrow | snow today] = ¾
 P[no snow tomorrow | snow today] = ¼

Snow tomorrow	Snow today
1	1
0	0
1	0
1	1
0	1
1	1
0	0
0	0

Chain rule

• The joint probability can be calculated in terms of conditional probability:

$$P(A,B) = P(A|B) P(B)$$

 Together with Bayes rule (which is actually derived from it) this is one of the most powerful rules in probabilistic reasoning

Bayes rule

Often it would be useful to derive the rule a bit further:

- Derive from chain rule
- One of the most important rules for this class

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{\sum_{A} P(B|A)P(A)}$$

This results from: $P(B) = \sum_{A} P(B,A)$

P(B,A=1)

P(B,A=0)

An example

- Suppose you have a coin, if I flip it, what's the probability it will fall with the head up?
- You might want to flip the coin several times

An example

- Suppose you have a coin, if I flip it, what's the probability it will fall with the head up?
- You might want to flip the coin several times

- The probability is % because frequency of heads in all flips
- Would you bet money on this estimation?

What about your prior knowledge?

• Rather than estimating a single parameter, we obtain a distribution over possible values of this parameter

Bayesian learning

Use Bayes rule:

$$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

Or equivalently:

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$
 posterior likelihood prior

Prior distribution

- Beliefs in an event in the absence of any other information
- Source of prior:
 - Represents expert knowledge (philosophical approach)
 - Simple posterior form (engineer's approach)
- Uninformative priors:
 - Uniform distribution
 - inappropriate distribution
- Conjugate priors:
 - closed-form representation of posteriors

Conjugate prior

Eg. 1 Coin flip problem

Likelihood given Bernoulli model:

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Conjugate prior

Eg. 1 Coin flip problem

Likelihood given Bernoulli model:

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

If prior is Beta distribution,

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

Then posterior is Beta distribution

$$P(\theta|D) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

Conjugate prior

Beta prior:

$Beta(\beta_H, \beta_T)$ More concentrated as values of β_H , β_T increase

Conjugate prior $P(\theta) \sim Beta(\beta_H, \beta_T)$ $P(\theta|D) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$

Posterior:

$$P(\theta) \sim Beta(\beta_H, \beta_T)$$

$$P(\theta|D) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

As
$$n = \alpha_H + \alpha_T$$
 increases

Conjugate prior:

- ullet Gaussian prior + Gaussian sample distribution ullet Gaussian posterior
- Beta prior + Bernoulli sample distribution → Beta posterior
- Gamma prior + exponential sample distribution → Gamma posterior
- Dirichlet prior + multinomial sample distribution → Dirichlet posterior

Posterior distribution

- The approach seen so far is what is known as a Bayesian approach
- Prior information encoded as a distribution over possible values of parameter
- Using the Bayes rule, we can get an updated posterior distribution over parameters

Maximum likelihood principle (MLE)

Data likelihood: $P(D|M) = q^{n_1}(1-q)^{n_2}$

We would like to find: $\underset{q}{\operatorname{arg max}} q^{n_1} (1-q)^{n_2}$

Or more generally,
$$\hat{P}(\text{dataset} \mid M) = \hat{P}(x_1 \land x_2 \dots \land x_n \mid M) = \prod_{k=1}^n \hat{P}(x_k \mid M)$$

- Our goal is to determine the values for the parameters in M
- We can do this by maximizing the probability of generating the observed samples

An example: Coin flips

MLE (idalilized:
$$\theta$$
) θ (θ) θ =: $f(\theta)$ $f(\theta$

MLE v.s. MAP

Maximum Likelihood estimation (MLE):

Choose value that maximizes the probability of observed data

$$\widehat{\theta}_{MLE} = \arg\max_{\theta} P(D|\theta)$$

Maximum a posteriori (MAP) estimation:

Choose value that is most probable given observed data and prior belief

$$\widehat{\theta}_{MAP} = \arg \max_{\theta} P(\theta|D)$$

$$= \arg \max_{\theta} P(D|\theta)P(\theta)$$

MAP: Coin flips

MAP: Moximize a postorior

Machinoed
$$\theta^{AH}$$
 (1- θ) θ^{AH} prior θ^{AH} (1- θ) θ^{AH} postorior θ^{AH} (1- θ) θ^{AH} postorior θ^{AH} θ^{A

References

- Kevin Murphy: Machine Learning: A probabilistic perspective, Chapter 2, 5, 6
- Tom Mitchell: Machine Learning, Chapter 6
- Ziv Bar-Joseph, Tom Mitchell, Pradeep Ravikumar and Aarti Singh: CMU 10-701

