# **Artificial Intelligence**

Project Phase 0 Report

Mohammad Mahdi Islami Student No. 810195548

## a .آشنایی اولیه با داده ها

قطعه کدی که به منظور رسم نمودار ها نوشته شده به صورت زیر است:

```
import matplotlib.pyplot as plt
 import pandas as pd
import numpy as np
 def solve_equation(A,B,C,E,F,G):
        #Eq1 => Aw + Bb = C
Eq1 = np.array([[A,B], [E,F]])
        Eq2 = np.array([C,G])
        Ans = np.linalg.solve(Eq1, Eq2)
        return Ans
df = pd.read csv("houses.csv")
df = df.drop(columns=['LotConfig','Neighborhood'])
df = df.fillna(df.mean())
df.plot.scatter(x='MSSubClass', y='SalePrice',c='Blue',title='Year Built')
df.plot.scatter(x='LotArea', y='SalePrice',c='Blue',title='Lot Area')
df.plot.scatter(x='OverallQual', y='SalePrice',c='Blue',title='Overall Qual')
df.plot.scatter(x='LotFrontage', y='SalePrice',c='Blue',title='Lot Frontage')
df.plot.scatter(x='OverallCond', y='SalePrice',c='Blue',title='Overall Cond')
df.plot.scatter(x='BedroomAbvGr', y='SalePrice',c='Blue',title='Bedroom AbvGr')
df.plot.scatter(x='TotRmsAbvGrd', y='SalePrice',c='Blue',title='Tot RmsAbvGrd')
df.plot.scatter(x='TotalBsmtSF', y='SalePrice',c='Blue',title='Total BsmtSF')
df.plot.scatter(x='YearBuilt', y='SalePrice',c='Blue',title='Year Built')
Ans = solve_equation(np.sum(np.square(df['OverallQual'])), np.sum(df['OverallQual']),
                                      np.sum(df['OverallQual']*df['SalePrice']), np.sum(df['OverallQual']),
                                      1133, np.sum(df['SalePrice']))
print(Ans)
x = df['OverallQual']
y = Ans[0]*x + Ans[1]
df.plot.scatter(x='OverallQual', y='SalePrice',c='Blue',title='Overall Qual')
plt.plot(x, y, '-r')
plt.grid()
plt.show()
Rmse = np.sqrt(np.square(np.subtract(Ans[0]*df['OverallQual'] + Ans[1],df['SalePrice'])).mean())
print(Rmse)
```



Fig1. Plot SalePrice vs LotArea



Fig2 Plot SalePrice vs YearBuilt



Fig3. Plot **SalePrice vs Year Built** 



Fig4. Plot **SalePrice vs OverallQual** 



Fig5. Plot SalePrice vs BsmSF



Fig6. Plot **SalePrice vs LotFrontage** 



Fig7. Plot **SalePrice vs Bedroom AbvGrd** 



Fig8. Plot **SalePrice vs Tot RmsAbvGrd** 



Fig9. Plot **SalePrice vs Overall Cond** 

## مقادیر به دست آمده برای L rmse با مقادیر ستون های مختلف دیتافریم

#### **MSSubClass**

[02+1.77271990e 02-4.31348617e-] 65.38453639003524

#### LotArea

[5.58012398e-03 1.21951289e+02] 61.650314655270805

### **Lot Frontage**

[ 1.30982549 85.25980132] 60.74348767764437

#### **Overall Cond**

[ -9.50029829 227.72230868] 64.84900887423757

#### BedroomAbvGr

[ 18.29119825 123.14813241] 63.91979790611292

#### **TotRmsAbvGrd**

[24.81374092 17.12019498] 54.72251470597509',

#### **TotalBsmtSF**

[ 0.104487 67.00858358] 51.43029609703544

#### **YearBuilt**

[-3.16005452e-01 7.98961406e+02] 71.2429241935347

## **Overall Qual**

[ W = **41.08498196** , b = **-74.47264601**] L rmse = **38.54794652807224** 



طبق محاسبات انجام شده نموداری که مولفه ی افقی آن را Overall Qual تشکیل میدهد داری مقدار کمینه L rmse است بنابر این نموداری که بیشتر رفتار خطی دارد را این نمودار در نظر میگیریم.

b و W مشتق ضمنی نسبت به W و W در معادله خطی از فرمول Lrmse مشتق ضمنی نسبت به W و W گرفته برابر صفر قرار میدهیم تا مقدار کمینه خط را به ما بدهد:

$$\hat{y} = wx + b$$
  $L_{RMSE}(\hat{y}, y) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2}$ 

$$\frac{\partial}{\partial x} = \omega x + b$$

$$\int_{N}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{2} \rightarrow \mathcal{H}_{in}$$

$$\Rightarrow \int_{1}^{N} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)^{$$

مشتق تابع برای به دست آوردن مینیمم Fig10.



Fig10. Overall Qual Figure



Fig10. Overall Qual Figure With predicted Line

برای محاسبه Knn طبق فرمول گفته شده در لینک راهنما ابتدا داده ها را استاندارد میکنیم تا تاثیر داده های با مقیاس بزرگ اثر داده ها با مقیاس کوچک را از بین نبرد.

$$X_{s} = \frac{X - Min}{Max - Min}$$

سپس با استفاده از فرمول اقلیدسی فاصله دو نقطه فاصله ی خانه ی سفارشی را با خانه های دیتافریم اندازه گیری کرده و با توابع موجود در numpy از آنها ۱۰ خانه نزدیک به خانه سفارشی را انتخاب کرده و قیمت آن ها را میانگین میگیریم. باید توجه داشته باشیم که به جای دو بعد از ۹ بعد برخورداریم و مجموع تفاضلات این ۹ بعد متناظر با هم ملاک اندازه گیری ماست.

$$D = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
def read_dataframe(filename):
    idf = pd.read_csv(filename)
    idf = idf.drop(columns=['LotConfig', 'Neighborhood'])
    idf = idf.fillna(idf.mean())
    return idf
def standardalize dataframe(df):
   sdf = df - df.min()
sdf = sdf / (sdf.max() - sdf.min())
    return sdf
data = [70,11435,8,67.66037735849056,7,3,7,792,1929]
df = read_dataframe("houses.csv")
SalePrice = df['SalePrice']
Id = df['Id']
sdf = standardalize dataframe(df)
sdf = sdf.drop(columns=['Id','SalePrice'])
ddf = df.drop(columns=['Id','SalePrice'])
idf = idf - ddf.min()
idf = idf / (ddf.max() - ddf.min())
def predict(dataframe):
   distance = np.square(np.subtract(sdf, dataframe.iloc[0]))
   Ans = distance.sum(axis=1)
   Ans = np.sqrt(Ans)
   Min = idx = np.argpartition(Ans, 10)
   Ans1 = SalePrice[idx[:10]]
   avg = Ans1.mean()
    return avg
Price = predict(idf)
print(Price)
```