Air Quality Toolkit Documentation

Release 1

Jack McKew

CONTENTS:

1	Stitcher	1
2	CSV Formatter	2
3	Factorizer	3
Рy	Python Module Index	

ONE

STITCHER

Stitcher. **Stitcher** (*filepath_list*, *filename*, *scale*, *headers_list*, *output_filename*)

This function sums multiple dataframes together and outputs a csv of the result.

- **filepath_list** (*list[str]*) This should be a list of filepaths to assosciated filename list.
- **filename** (list[str]) This should be a list of filenames to assosciated filepath (filepath_list) list.
- **scale** (list[float]) This should be a list of scalars to scale assosicated filename dataframe by.
- headers_list (list[int]) This should be a list of numbers to exclude number of columns from dataframes.
- output_filename (str.) Output filename.

TWO

CSV FORMATTER

CSVFormatter.csvformatter(filename, olm_state, output_filename)

This function formats dataset outputs from air quality modelling software to CSV format.

- **filename** (*str.*) This should be a string of the filename to convert to CSV.
- olm_state (bool.) This should be a boolean value specifying if the file is OLM format (x and y information header).
- **output_filename** (*str.*) Output filename.

THREE

FACTORIZER

Factorizer.calcrow(row)

This function is used for multiplying entire pandas dataframe single row by scalar value located in the last column of the dataframe.

Parameters row(float.) – This should be the slice from the pandas dataframe.

Returns pd. Series – The row multiplied by the scalar in the last column of the row

Factorizer.factorizer(dataset_filename, factor_filename, output_filename)

This function mutiplies air quality datasets with vectors given.

- dataset_filename (str.) This should be a string of the filename containing the dataset.
- **factor_filename** (str.) This should be a string of the filename containing the vector dataset to mutiply with.
- output_filename (str.) Output filename.

FOUR

NO2PROCESSOR

NO2Processor.process(header_length, initial, exceedance, background_name, input_data, out-put_filename)

This function applies air quality modelling functions and generates statistics.

- header_length (int.) This should be an integer declaring how many header columns in the dataset
- initial (float.) This should be an float declaring initial percentage to work with eg 0.1 = 10%
- **exceedance** (*int*.) This should be an integer declaring how many exceedances eg compare if any are greater than 246
- **background_name** (*str.*) This should be a string representing input background NO2 filename (Must be located in same directory as .exe).
- input_data (str.) This should be a string representing input filename (Must be located in same directory as .exe).
- output_filename (str.) Output filename.

FIVE

STATISTICS GENERATOR

 $\begin{tabular}{ll} Statistics_Generator. \textbf{Statistics_Generator}(settings, & header_length, & input_data, & out-put_filename) \end{tabular}$

This function generates statistics on given input datasets.

- **settings** (dict[str:int]) This should be a dictionary of settings with their name as the key and state as value.
- header_length (int.) This should be an integer declaring how many header columns in the dataset
- input_data (str.) This should be a string representing input filename (Must be located in same directory as .exe).
- output_filename (str.) Output filename.

PYTHON MODULE INDEX

```
C
CSVFormatter, 2
f
Factorizer, 3
n
NO2Processor, ??
S
Statistics_Generator, ??
Stitcher, 1
```