Pre-training LongT5 for Vietnamese Multi-document Summarization Task

Nicolay Rusnachenko¹, The Anh Le², Ngoc Diep Nguyen³

rusnicolay@gmail.com, anhlt@vimaru.edu.vn, diepnn83@gmail.com

¹Bauman Moscow State Technical University
²Vietnam Maritime University, Hai Phong, Viet Nam
³CyberIntellect, Moscow, Russia

Introduction Transformer Models Vietnamese Models Task

Outline

Structure of the talk:

- Overview of the Transformer Models
- Text Summarization in Vietnamese
- LongT5 Application

Introduction Transformer Models Vietnamese Models Task

Sparse Attention Global + Local Attention Affection on future models

Transformer Models

Transofrmer Introduction

Before 2017:

ENCODER

DECODER

- 2017 Encoder-Decoder with Self-Attention (Transformer)^[1]
 Language models Based on Transofrmers: BERT (language models)
- [1] Ashish Vaswani et al. "Attention is All You Need". In: Proceedings of the 31st International Conference on Neural Information Processing Systems. NIPS'17. Long Beach, California, USA: Curran Associates Inc., 2017, pp. 6000–6010. isbn: 9781510860964.

Long-Ranged Input for Transformers

Main limitation for input $X \in \mathbb{R}^N$:

• $O(N^2)$ original self-attention^[1] computation complexity;

How to address this problem:

- Sparse version^[2] of self-attention: Reformer, Longformer^[3]
- 2 #1 with Global Attention

^[2] Joshua Ainslie et al. "ETC: Encoding long and structured inputs in transformers". In: arXiv preprint arXiv:2004.08483 (2020).

^[3] Iz Beltagy, Matthew E Peters, and Arman Cohan. "Longformer: The long-document transformer". In: arXiv preprint arXiv:2004.05150 (2020).

Relative Position Encoding

BERT^[4] exploits absolute position encoding $X \in \mathbb{R}^N$. ETC proposes **relative**:

- Now position is label $I_{i,j}$ of **connection** of $x_i \in X$ with other X
- Distance clipping: k limit window
 - Ik outside after i,
 - I_{-k} outside radius k before i.
- Result in α_{I}^{K} learnable vectors of relative positions

^[4] Jacob Devlin et al. "Bert: Pre-training of deep bidirectional transformers for language understanding". In: arXiv preprint arXiv:1810.04805 (2018).

Global + Local Attention

- n_l main input components: **now windowed** (sparsed)
- n_g global input components ($n_g << n_l$)

Affection on Future Models for Text Summarization

Model	Dataset	R-1 R-2 R-L
BART	XSum	45.14 22.27 37.25
	CNN/DailyMail	44.17 21.47 41.11
PEGASUS	Multi-News	47.52 18.72 24.91
	arXiv	44.21 16.95 38.83
T5	CNN/DailyMail	43.41 20.99 40.77
	Multi-News	47.48 18.60 24.31
	BigPatent	67.05 52.24 58.70
	arXiv	45.86 18.40 41.62
	PubMed	48.94 22.92 45.40
LED (16K)	arXiv	46.63 19.62 41.83
BigBird-PEGASUS	arXiv	46.63 19.02 41.77
	PubMed	46.32 20.65 42.33
	BigPatent	60.64 42.46 50.01
PRIMERA	arXiv	47.60 20.80 42.60
	Multi-News	49.90 21.10 25.90
LongT5 (4K)	CNN/DailyMail	42.49 20.51 40.18
	BigPatent	70.38 56.81 62.73
	arXiv	48.28 21.63 44.11
	PubMed	49.98 24.69 46.46

LongT5^[5]

[5] Mandy Guo et al. "LongT5: Efficient Text-To-Text Transformer for Long Sequences". In: Findings of the Association for Computational Linguistics: NAACL 2022. Seattle, United States: Association for Computational Linguistics, July 2022, pp. 724–736. doi: 10.18653/v1/2022.findings-naacl.55. url: https://aclanthology.org/2022.findings-naacl.55.

Introduction Transformer Models Vietnamese Models Task

Vietnamese Models

Vietnamese models

Vietnamese Model Results

Model	$\begin{array}{c} { m ViMs} \\ { m R-1~R-2} \end{array}$	VMDS R-1 R-2
LSA	62.5 36.0	62.9 37.0
LexRank	69.5 46.4	$48.2 \ 39.2$
TextRank	$62.8\ 41.6$	66.2 40.8
SVR	64.5 39.7	66.9 44.3
SVMRank	$63.5 \ 41.0$	$67.4 \ 46.2$
MART	$65.1\ 42.4$	$70.2\ 49.6$
CNN	$56.1\ 42.1$	$52.8\ 40.0$
LSTM	70.7 <u>43.1</u>	$52.5 \ 39.6$
XLM-R-large + k -means	_	77.4 51.2
PhoBERT-large $+ k$ -means	_	77.450.9
viBERT4news $+$ k -means	_	$77.4\ 52.0$

Introduction Transformer Models Vietnamese Models Task

Description Training Evaluation

Task

Multi-document Text Summarization¹

VLSP2022 - Vietnamese abstractive multi-document summarization (Abmusu) task is to develop summarization systems that could create abstractive summaries automatically for a set of documents on a topic:

- Domain: Vietnamese news text.
- Input: Multiple news documents on the same topic.
- Output: Corresponding abstractive summary

¹ https://vlsp.org.vn/vlsp2022

Introduction Transformer Models Vietnamese Models Task

Description Training Evaluation

Collections²

Dataset	#doc	#samples	# docs	#words	#words
	πασc	Пратрісь	per cluster	per document	per summary
NewsCorpus	14 896 998	_	_	_	_
VMDS	628	300	3.00	1308.00	153.00
ViMs	1 945	300	6.50	2208.00	192.00
$VLSP2022_{train}$	621	200	3.11	1925.75	168.48
$\rm VLSP2022_{valid}$	304	100	3.04	1815.41	167.68
$VLSP2022_{train+valid}$	925	300	3.00	1853.00	162.00
$VLSP2022_{test}$	914	300	3.05	1762.40	153.05

² https://paperswithcode.com/dataset/vnds

Training Setup

- LongT5_{LARGE}-TGlobal (2K/512) is a case insensitive LongT5 version with Transient Global Attention mechanism with 2048/512 input/output tokens respectively, and size of the original T5_{LARGE}
- 10⁶ docs from NewsCorpus processed by VnCoreNLP³, syllables as '_ '
- Consider paragraphs as subdocuments (<doc-sep>)
- Tokenizer: SentencePiece4 model for vocabulary
- Input: <doc-sep>, <sent-sep>, <eos> tokens
- Summary: PEGASUS principle sentence selection algo, 5 sentences.

³ https://github.com/vncorenlp/VnCoreNLP

⁴ https://github.com/google/sentencepiece

Pre-training Detail⁷

- ullet Using flaxformer 5 library (GIN scripts over original t5x) and jax 6
- 2 x NVidia A100 (40GB each), BatchSize=8, Speed: 4 steps/sec
- Train for 925K steps (2.67 days) and then to 1.4M (4.05 days)

⁵ https://github.com/google/flaxformer

⁶ https://github.com/google/jax

⁷ Yellow borders illustrates area we started to track the result behavior of summarization model

Fine-tunning

• Joined: ViMs, VMDS and VLSP2022_{train+valid} datasets

• **Split:** 8:1:1 for train/dev/test

- ViLongT5* (preliminary) 5K steps (BatchSize=8)
- ViLongT5 (final) 10K steps

Input Result Summary

tại tuần lễ đổi mới sáng tạo win-win tại tuần lễ đổi mới sáng tạo win-win của huawei , giám đốc điều hành của huawei , giám đốc điều hành hôi đồng quản trị kiệm chủ tịch hội đồng quản trị kiệm hội đồng quản lý cơ sở hạ tầng ict hội đồng quản lý cơ sở hạ tầng ict của huawei, ông david wang, đã có bài của huawei, ông david wang, đã có bài phát biểu quan trong mang tên "ổi mới phát biểu quan trong mang tên "ổi mới sáng tạo và thấp sáng kỷ nguyên 5 . 5g sáng tạo và thấp sáng kỷ nguyên 5 . 5g " . trong bài phát biểu , ông wang nói (eos) . trong bài phát biểu , ông wang nói nhiều về bước phát triển tiếp theo của nhiều về bước phát triển tiếp theo của công nghệ 5g mà công ty gọi là 5 . 5g , công nghệ 5g mà công ty gọi là 5 . 5g , cũng như lộ trình đổi mới sáng tạo của cũng như lộ trình đổi mới sáng tạo của ngành 5-10 năm tới . " tầm nhìn đến năm ngành 5-10 năm tới . tầm nhìn đến năm 2025 , yêu cầu dịch vụ mang đa dạng 2025 , yêu cầu dịch vụ mang đa dạng và quy mô lớn sẽ tạo ra tiềm năng cực và quy mô lớn sẽ tạo ra tiềm năng cực lớn cho thị trường mới "

lớn cho thị trường mới (eos)

new markets"

at huawei win-win innovation week, the ex- at huawei win-win innovation week, the executive director of the board and chairman ecutive director of the board and chairman of the ict infrastructure management board of the ict infrastructure management board of huawei, mr. david wang, gave an im- of huawei, david wang, gave a keynote portant speech entitled "change" creative speech entitled "Innovate and light up the new and light up the 5. 5q era". dur-era of 5. 5q (eos). In his keynote, Mr. ing the keynote , mr. wang talked a lot wang talked a lot about the next step of about the next development of 5q technol- the development of 5q technology which the ogy which the company calls 5 . 5g , as company calls 5 . 5g, as well as the roadmap well as the industry 's innovation roadmap for the change innovation of the industry in for the next 5-10 years. "vision to 2025, the next 5-10 years with a vision to 2025, diverse and large-scale network service re- diverse and large-scale network service reguirements will create huge potential for guirements will create huge potential for new markets (eos)

Experiment Results

Model	Rank	Dataset	Rouge Scores (F1)		
			R-1	R-2	R-L
hybrid _{the_coach team}	#1	VLSP2022 _{valid}	51.68	31.50	48.93
$LexRank+MMR_{baseline}$	#8	$VLSP2022_{valid}$	48.36	26.50	44.21
rule _{baseline}	#10	$VLSP2022_{valid}$	46.40	25.82	42.84
ViLongT5*	#13	VLSP2022 _{valid}	45.70	24.83	42.85
anchor _{baseline}	#19	VLSP2022 _{valid}	43.81	19.31	39.28
ViT5 _{abstractive-baseline}	#20	$VLSP2022_{valid}$	31.29	30.77	27.97
hybrid _{the_coach team}	#1	VLSP2022 _{test}	49.62	29.37	47.01
$LexRank+MMR_{baseline}$	#6	$VLSP2022_{test}$	47.72	26.25	43.39
rule _{baseline}	#7	$VLSP2022_{test}$	46.27	26.11	42.73
ViLongT5	#10	$VLSP2022_{test}$	45.16	24.48	42.08
anchor _{baseline}	#19	VLSP2022 _{test}	43.21	18.86	38.69
$ViT5_{abstractive-baseline}$	#20	$VLSP2022_{test}$	32.26	14.97	28.95

Conclusion

- We provide the survey of abstractive text summarization models
- We experiment with the finetuned version and result summaries represent the retelling of the most salient sentences
- The best submissions adopt hybrid summarization, which might be in further experiment as LexRank + ViLongT5

Thank you for attention!