

The Area Between Two Curves That Intertwine

by Sophia

WHAT'S COVERED

In this lesson, you will learn how to find areas of regions when the curves intertwine. Specifically, this lesson will cover:

- 1. Introduction: A Strategy
- 2. Finding Areas of Regions Between Two Curves That Intertwine

1. Introduction: A Strategy

Consider the region shown in the figure below.

The graph of f(x) has a parabolic shape, and the graph of g(x) is linear. Observe the following:

- On the interval [a, c], the graph of f(x) is above the graph of g(x).
- On the interval [c, d], the graph of g(x) is above the graph of f(x).
- On the interval [d, b], the graph of f(x) is above the graph of g(x).

Recall from the last tutorial that $\int_a^b (f(x)-g(x))dx$ is the area of the region between two graphs as long as $f(x) \ge g(x)$, meaning that the graph of f(x) is at least as high as the graph of g(x) on [a, b].

Considering the region again, it stands to reason that the integral expression for the total area is:

$$\int_a^c (f(x)-g(x))dx + \int_c^d (g(x)-f(x))dx + \int_d^b (f(x)-g(x))dx$$

This is our strategy for calculating the area of a region between two curves when the curves intertwine.

☆ BIG IDEA

When finding the area of the region between two curves y = f(x) and y = g(x), keep the following in mind:

• If $f(x) \ge g(x)$ on [a, b], then the area between the curves is $\int_a^b [f(x) - g(x)] dx$.

• If $f(x) \le g(x)$ on [a, b], then the area between the curves is $\int_a^b [g(x) - f(x)] dx$.

That is, the integrand is "upper – lower."

2. Finding Areas of Regions Between Two Curves That Intertwine

 \rightleftharpoons EXAMPLE Find the total area bounded by the graphs of $y = x^3$ and y = 4x. The graph of the region is shown in the figure below.

First, find the points where the graphs intersect:

$$x^{3} = 4x$$

$$x^{3} - 4x = 0$$

$$x(x^{2} - 4) = 0$$

$$x(x + 2)(x - 2) = 0$$

$$x = 0, x = -2, x = 2$$

- On the interval [-2, 0], the graph of $y = x^3$ is above the graph of y = 4x.
- On the interval [2, 0], the graph of y = 4x is above the graph of $y = x^3$.

Thus, the total area is $\int_{-2}^{0} (x^3 - 4x) dx + \int_{0}^{2} (4x - x^3) dx$.

Now evaluate each integral, starting with $\int_{-2}^{0} (x^3 - 4x) dx$.

$$\int_{-2}^{0} (x^3 - 4x) dx$$
 Start with the first integral.

$$= \left(\frac{1}{4}x^4 - 2x^2\right)\Big|_{-2}^{0}$$
 Apply the fundamental theorem of calculus.
Note: $\int 4x dx = 4\left(\frac{1}{2}x^2\right) = 2x^2$

$$= \left[\frac{1}{4}(0)^4 - 2(0)^2\right] - \left[\frac{1}{4}(-2)^4 - 2(-2)^2\right]$$
 Substitute the upper and lower endpoints.
$$= 0 - [-4]$$
 Evaluate the parentheses.

The area of this part of the region is ⁴ units².

Now evaluate the second integral, $\int_0^2 (4x - x^3) dx$.

$$\int_0^2 (4x - x^3) dx$$
 Start with the second integral.

$$= \left(2x^2 - \frac{1}{4}x^4\right)\Big|_0^2 \quad \text{Apply the fundamental theorem of calculus.}$$

$$= \left(2x^2 - \frac{1}{4}x^4\right)\Big|_0^2 \quad \text{Note: } \int 4x dx = 4\left(\frac{1}{2}x^2\right) = 2x^2$$

$$= \left[2(2)^2 - \frac{1}{4}(2)^4\right] - \left[2(0)^2 - \frac{1}{4}(0)^4\right]$$
 Substitute the upper and lower endpoints.

$$= 4 - 0$$
 Evaluate the parentheses.

$$= 4$$
 Simplify.

The area of this part of the region is 4 units^2 .

Thus, the total area bounded by the graphs of $y = x^3$ and y = 4x is 4+4=8 units².

WATCH

Here is another example of intertwining curves. In the video, we will find the total area between $f(x) = \frac{9}{x}$ and g(x) = x over the interval [1, 4].

ピ TRY IT

Consider the region bounded by the graphs of $y = x^2$ and y = 4 between x = 1 and x = 4.

Find the exact area of the region.

The graph of the region is shown below.

Between x = 1 and x = 2, the graph of y = 4 is above the graph of x^2 . The integral used to find the area is $\int_1^2 (4 - x^2) dx$.

Evaluate the integral:

$$=4x-\frac{1}{3}x^3\bigg|_1^2\qquad \int 4dx=4x$$

$$\int x^2dx=\frac{1}{3}x^3$$

$$=\left(4(2)-\frac{1}{3}(2)^3\right)-\left(4(1)-\frac{1}{3}(1)^3\right)\qquad \text{Evaluate when } x=2 \text{ and } x=1 \text{, then subtract.}$$

$$=\frac{16}{3}-\frac{11}{3}\qquad \text{Simplify within each group of parentheses.}$$

$$=\frac{5}{3}\qquad \text{Simplify.}$$

The area of the first region is $\frac{5}{3}$ square units.

Between x = 2 and x = 4, the graph of y = 4 is below the graph of x^2 . The integral used to find the area is $\int_2^4 (x^2 - 4) dx$.

Evaluate the integral:

$$=\frac{1}{3}x^3 - 4x \Big|_2^4 \qquad \int x^2 dx = \frac{1}{3}x^3$$

$$\int 4dx = 4x$$

$$= \left(\frac{1}{3}(4)^3 - 4(4)\right) - \left(\frac{1}{3}(2)^3 - 4(2)\right) \qquad \text{Evaluate when } \mathbf{x} = \mathbf{4} \text{ and } \mathbf{x} = 2 \text{, then subtract.}$$

$$= \frac{16}{3} - \left(-\frac{16}{3}\right) \qquad \text{Simplify within each group of parentheses.}$$

$$= \frac{32}{3} \qquad \text{Simplify.}$$

The area of the first region is $\frac{32}{3}$ square units.

In conclusion, the total area between the graphs of y = 4 and $y = x^2$ between x = 1 and x = 4 is equal to $\frac{5}{3} + \frac{32}{3} = \frac{37}{3}$ square units.

Ŷ

SUMMARY

In this lesson, you learned the **strategy** for **finding the area of regions between two curves that intertwine**, which is a natural extension of the area computations that you investigated in the last tutorial. The main idea is to make sure that the integrand is "upper function – lower function" to ensure that the definite integral yields a positive result (area).

Source: THIS TUTORIAL HAS BEEN ADAPTED FROM CHAPTER 4 OF "CONTEMPORARY CALCULUS" BY DALE HOFFMAN. ACCESS FOR FREE AT WWW.CONTEMPORARYCALCULUS.COM. LICENSE: CREATIVE COMMONS ATTRIBUTION 3.0 UNITED STATES.