Многоуровневая система управления коалициями сложных технических объектов

Дмитрий Макров, Константин Яковлев, Александр Панов

Институт системного анализа РАН

18 декабря 2014 г.

Общий вид архитектуры

Знаковая картина мира — новый способ представления знаний

Структура знака.

Процедура формирования знака.

Распознающий автомат — модель компонент знака

R-автомат R_i^j является бесконечным автоматом Миля с переменной структурой и конечной памятью и определяется следующим набором $R_i^j = \langle X_i^j \times \hat{X}_i^{j+1}, 2^{\mathcal{Z}_i^j}, X_i^{*j} \times \hat{X}_i^j, \varphi_i^j, \bar{\eta}_i^j \rangle$.

Процедуры самоорганизации и структуры на множестве знаков

Обобщение по образам знаков с образованием нового знака.

Сцена, образующаяся за счёт ролевой структуры действия, интерпретируемого экземпляром значения.

Задача планирования как задача поиска пути на графе регулярной декомпозиции

Алгоритм LIAN

Результаты экспериментов планирования траекторий

Задача задачи робастного управления сложным техническим объектом

Вид управляемой нелинейной системы

$$\frac{dx}{dt} = (A_0 + \varepsilon A_1(x,t))x + (B_0 + \varepsilon B_1(x,t))u = (A_{cl} + \varepsilon D(x,t,\varepsilon))x = F(x,t,\varepsilon),$$

$$x(0) = x_0,$$

$$x \in X \subset \mathbb{R}^n, u \in \mathbb{R}^r, t \in [0,\infty), 0 < \varepsilon \le \varepsilon_0$$

I. Критерий оптимальности и общий вид формально оптимального управления для задачи синтеза робастного по параметру управления

$$\begin{split} I(u) &= \tfrac{1}{2} \int_0^\infty (x^T Q(x,\varepsilon) x + u^T R(x,\varepsilon) u) dt \to \min, \\ u &= -R^{-1}(x,\varepsilon) B^T(x,\varepsilon) K(x,\varepsilon) x, \\ -K(x,\varepsilon) A(x,\varepsilon) - A^T(x,\varepsilon) K(x,\varepsilon) + K(x,\varepsilon) S(x,\varepsilon) K(x,\varepsilon) - Q(x,\varepsilon) = 0, \\ S(x,\varepsilon) &= B(x,\varepsilon) R^{-1}(x,\varepsilon) B^T(x,\varepsilon), R(x,\varepsilon), \\ Q &= Q_0 + \varepsilon Q_1(x) + \dots, \quad K(x,\varepsilon) = K_0 + \varepsilon K_1(x), \quad R(x,\varepsilon) = R_0 + \varepsilon R_1(x). \end{split}$$

Нелинейный закон управления

$$\begin{split} -K_0A_0 - A_0{}^TK_0 + K_0S_0K_0 - Q_0 &= 0, \quad S_0 = B_0R_0^{-1}B_0{}^T. \\ K_1(x) &= \int\limits_0^\infty \exp((A_0 - S_0K_0)^T\sigma)\tilde{Q}_1(x) \exp((A_0 - S_0K_0)\sigma)d\sigma, \\ \tilde{Q}_1(x) &> 0 \ x \in X \\ Q_2 &= -K_1\left(A_1 - B_1R_0^{-1}B_0^TK_0\right) - \left(A_1 - B_1R_0^{-1}B_0^TK_0\right)^TK_1 + \\ &\quad + \left(K_1B_0 + K_0B_1\right)R_0^{-1}(K_1B_0 + K_0B_1)^T, \\ Q_3 &= K_1B_1R_0^{-1}(K_1B_0 + K_0B_1)^T + \left(K_1B_0 + K_0B_1\right)R_0^{-1}B_1^TK_1, \\ Q_4 &= K_1B_1R_0^{-1}B_1^TK_1. \end{split}$$

II. Условие устойчивости замкнутой системы относительно одного класса нестационарных возмущений.

$$\begin{array}{l} \int_{t_0}^{t_0+l} \varphi(\bar{\boldsymbol{x}}(t,t_0,\boldsymbol{x}_0,\varepsilon),t,\varepsilon) dt < -\delta \|\boldsymbol{x}_0\|^d \boldsymbol{I}, \quad d,\delta,\boldsymbol{I} = const, \\ \varphi(\bar{\boldsymbol{x}},t,\varepsilon) = \varepsilon {\boldsymbol{x}_0}^T \exp(\boldsymbol{A}_{cl}^T \cdot (t-t_0)) K_0 D(\bar{\boldsymbol{x}},t,\varepsilon) \exp(\boldsymbol{A}_{cl} \cdot (t-t_0)) \boldsymbol{x}_0 \end{array}$$

Примеры задач реактивного управления

1. Вывод продольных характеристик полета самолета вертикального взлета и посадки на заданный режим

2. Управления абстрактной нелинейной системой второго порядка

