

CSMDM21 - Data Analytics and Mining

An Overview of Data Preprocessing

Module convenor

Dr. Carmen Lam

carmen.lam@reading.ac.uk

Department of Computer Science

Lecture notes and videos powered by Prof. Giuseppe Di Fatta

Data Preprocessing

Data Preprocessing:

- Aggregation
- Sampling
- Dimensionality Reduction
- Feature subset selection
- Feature engineering
- · Discretization and Binarization
- Attribute Transformation

Aggregation

- Combining two or more attributes (or objects) into a single attribute (or object)
- Purpose
 - Data reduction
 - Reduce the number of attributes or objects
 - Change of scale
 - Cities aggregated into regions, states, countries, etc
 - More "stable" data
 - Aggregated data tends to have less variability

Sampling

- Sampling is the main technique employed for <u>data selection</u>.
 - It is often used for both the preliminary investigation of the data and the final data analysis.
- In statistical analysis we typically use samples because obtaining the entire set of data of interest (entire population) is too expensive, time consuming or not feasible.
 - using a sample will work almost as well as using the entire data sets, if the sample is representative.
 - A sample is representative if it has approximately the same property (of interest) as the original set of data
- Sampling is used in Data Analytics and Mining because processing the entire set of data of interest is too expensive or time consuming.

Types of Sampling

Simple Random Sampling

- There is an equal probability of selecting any particular item

Sampling without replacement

- As each item is selected, it is removed from the population
- Each outcome depends on all previous outcomes

Sampling with replacement

- Objects are not removed from the population as they are selected for the sample.
 - In sampling with replacement, the same object can be picked up more than once
 - One outcome does not affect the other outcomes

Stratified sampling

 Split the data into several partitions; then draw random samples from each partition

Sample Size

Curse of Dimensionality

- When dimensionality increases, data becomes increasingly <u>sparse</u> in the space that it occupies.
- Definitions of *density* and *distance* between points, which is critical for clustering and outlier detection, become <u>less meaningful</u>.

Example

- Randomly generate 500 points in \Re^n
- Compute difference between max and min distance between any pair of points

$$f(n) = \log_{10} \left(\frac{\max(dist(v_i, v_j) - \min(dist(v_i, v_j)))}{\min(dist(v_i, v_j))} \right)$$

Dimensionality Reduction

Purpose:

- Avoid curse of dimensionality
- Reduce amount of time and memory required by Data Analytics and Mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

Techniques

- Principle Component Analysis
- Singular Value Decomposition
- Others: supervised and non-linear techniques

Dimensionality Reduction: PCA

- The goal is to find a projection that captures the largest amount of variation in data in the top dimensions (principal components).
 - e₁: 1st PC → max variance
 - e₂: 2nd PC → can be dropped, dimensionality reduction

Feature Subset Selection

- Another way to reduce dimensionality of data
- Redundant features
 - duplicate much or all of the information contained in one or more other attributes
 - Example: purchase price of a product and the amount of sales tax paid
- Irrelevant features
 - contain no information that is useful for the Data Mining task at hand
 - Example: students' ID should be irrelevant to the task of predicting students' Grade Point Average (GPA)

Feature Subset Selection Methods

Exhaustive method:

– Brute-force approach:

 Try all possible feature subsets as input to the Data Mining algorithm. Given n features, there are 2ⁿ subsets.

Heuristic methods:

- Filter approaches:

• Features are selected before Data Mining algorithm is run (e.g., correlation filter).

– Wrapper approaches:

 Use the Data Mining algorithm as a black box to find best subset of attributes (e.g., forward selection, backward elimination)

– Embedded approaches:

 Feature selection occurs as part of the Data Mining algorithm (e.g., LASSO)

Feature Engineering

- Create new attributes that can capture the important information in a data set much more efficiently than the original attributes.
- Three general methodologies:
 - Feature Extraction
 - domain-specific
 - Mapping data to a new space
 - Feature construction
 - combining features

Example: Mapping Data to a New Space

- Fourier transform
- Wavelet transform

Two Sine Waves

Two Sine Waves + Noise

Frequency

Discretization and Binarization

- Different Data Mining applications require specific data formats
 - Categorical only (discretization)
 - Binary only (binarization)
 - Interval/Ratio only (binarization)
- Discretization: transforming interval attribute into categorical
- Binarization: transforming non-binary attribute into a set of binary attributes

Discretization Using Class Labels

Attribute Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values.
 - E.g., simple functions: x^k , log(x), e^x , |x|
 - Normalization and Standardization
 - **Normalization** is the transformation of the variable vectors into vectors of unit length.
 - **Standardization** transforms the variable vector into a vector of unit length, with a mean of zero and a standard deviation of one.

$$x' = \frac{(x-\mu)}{\sigma_x}$$

Next week:

➤ Introduction to KNIME