¿Se puede hacer el proyecto?

- Tenemos un proyecto complejo dividido en varias tareas
- Algunas tareas tienen como requisito otras tareas

¿Cómo sabemos si es posible realizar el proyecto completo?

Requisitos inconsistentes

Si la tarea B tiene como requisito la tarea A, entonces escribimos

$$A \rightarrow B$$

Si existe alguna secuencia "circular" de requisitos:

$$X \to R \to \cdots \to K \to X$$

... entonces no es posible realizar el proyecto

¿Es la única condición?

¿Cómo lo verificamos en el computador?

Si recibimos la lista de tareas y de requisitos

... ¿cómo hacemos un programa que revise esto?

¿Cuál será la forma más eficiente de hacerlo?

¿Qué datos recibo?

```
—la tarea 0 no tiene prerregusitos
0:
              —la tarea 1 tiene como prerrequisito la tarea 0
1:
              —la tarea 2 tiene como prerrequisito la tarea 1
2:
         8 — la tarea 3 tiene como prerrequisitos las tareas
3: 2
                2, 6 y 8
       5 9 —... y así sucesivamente
4:
5:
   6
6: 7
7:
8:
```

¿Cómo represento los datos visualmente?

La representación visual anterior se conoce como **grafo**

La representación visual anterior se conoce como grafo:

- un conjunto *V* de **vértices**, o nodos
- ... + un conjunto *E* de **aristas**, o arcos

La complejidad de un algoritmo tiene ahora dos parámetros incluidos en una misma expresión matemática: |V| y |E|

P.ej., O(|V|+|E|), que escribimos O(V+E) $O(|E|\log|V|)$, que escribimos $O(E\log V)$

Hay dos tipos principales de grafos

1. Direccionales (como el del ejemplo): cada arista tiene una *dirección* —va *de un vértice al otro*

2. No direccionales:

las aristas no tienen dirección —van, o están, entre vértices

Hay dos formas de representar un grafo en la memoria del computador

1. Listas de adyacencias

Cada nodo tiene una lista de los nodos a los que tiene una arista

2. Matriz de adyacencias

La coordenada x, y de la matriz indica si la arista (x, y) está en el grafo

El grafo direccional anterior representado por 10 listas de adyacencias, $\alpha[i]$

Dibujemos el grafo de un proyecto

¿Algún problema con este proyecto?

¿Qué pasa en este caso?

¿Algún problema con este proyecto?

Los grafos direccionales pueden contener ciclos

Si el grafo direccional que representa a un proyecto tiene un ciclo, entonces el proyecto no puede llevarse a cabo

¿Cómo podemos buscar ciclos en un grafo de manera eficiente?

Definimos la relación es posterior a

Diremos que una tarea Y es posterior a una tarea X si:

$$X \to Y$$

Existe una tarea Z tal que $X \rightarrow Z$, y Y es posterior a Z

Significa que X debe realizarse antes que Y

¿Qué pasa si una tarea es posterior a sí misma?

Si una tarea **es posterior a** sí misma, entonces forma parte de un **ciclo**

¿Cómo podemos identificar las tareas posteriores a una tarea?

Pensemos en la definición de la propiedad

```
posteriores(X):
P \leftarrow \emptyset
for Y \text{ tal que } X \rightarrow Y:
P \leftarrow P \cup \{Y\}
P \leftarrow P \cup posteriores(Y)
return P
```

¿Cuáles tareas, o nodos, son posteriores a X?

¿Cuáles nodos son posteriores a N?

¿Cuáles nodos son posteriores a R?

¿Cuáles nodos son posteriores a H?

¿Cuáles nodos son posteriores a B?

¿Cuáles nodos son posteriores a K?

¿Cuáles nodos son posteriores a B?

Espera ... ya preguntamos por los nodos posteriores a *B*

Nodos por los que ya pasamos

Estamos haciendo llamadas a *posteriores*() repetidas: con el mismo nodo como parámetro

Es más, si el nodo forma parte de un ciclo, entonces el algoritmo no termina

¿Cómo se soluciona esto?

```
posteriores(X):
         if X está pintado: return Ø
         pintar X
         P \leftarrow \emptyset
         for Y tal que X \rightarrow Y:
                  P \leftarrow P \cup \{Y\}
                  P \leftarrow P \cup posteriores(Y)
         return P
```

Veamos ahora: ¿cuáles son los nodos posteriores a T:

T no está pintado, lo pintamos; hay una sola arista que sale de T, la que va a X ... sigámosla

Pintamos X, y buscamos los nodos posteriores a X

Hay dos aristas que salen de X; seguimos la que va a N ... y dejamos pendiente la que va a R

Pintamos *N*, y buscamos los nodos posteriores a *N*

Hay una sola arista que sale de N; la seguimos

Pintamos R, y buscamos los nodos posteriores a R

Hay una sola arista que sale de *R*; la seguimos

Pintamos *H*, y buscamos los nodos posteriores a *H*

Hay dos aristas que salen de *H*; seguimos la que va a *B* ... y dejamos pendiente la que va a *K*

Pintamos *B*, y buscamos los nodos posteriores a *B*

No hay aristas que salgan de *B*; volvemos a *H*

Seguimos buscando nodos posteriores a H

Seguimos la segunda arista que sale de *H*; la que va a *K*

Pintamos *K*, y buscamos los nodos posteriores a *K*

Hay dos aristas que salen de *K*; tratamos de seguir la que va a *B*, pero notamos que *B* ya fue visitado ... volvemos a *K*

Seguimos buscando nodos posteriores a K

Ahora tratamos de seguir la que va a X, pero notamos que X ya fue visitado ... volvemos a K, y de ahí a H, a R, a N, y a X

Seguimos buscando nodos posteriores a X

En X, habíamos dejado pendiente la arista que va a R; ahora tratamos de seguirla, pero notamos que R ya fue visitado ... volvemos a T

i Listo!

Desde *T* no hay nada más que hacer ... terminamos

¿Cómo identificamos ciclos?

Ok, podemos identificar las tareas posteriores a una tarea

Ahora, viendo este algoritmo, ¿se nos ocurre algo?

¿Podemos usar este enfoque para identificar ciclos?

Algo así como esto

¡Algoritmo, date cuenta de que esto es un ciclo!

... ¿y como esto?

¡Y que esto otro, no!

Regla de los ciclos

Si el nodo que vamos a visitar, Y, está pintado, entonces (no lo visitamos y) hay dos posibilidades:

- si estamos en un nodo posterior a Y, entonces hay un ciclo
- si no estamos en un nodo posterior a *Y*, entonces no hay un ciclo (al menos por ahora)

Hasta que posteriores(X) retorne, todos los nodos visitados (que van siendo pintados) son posteriores a X

```
hay ciclo luego de(X):

if X está pintado de gris: return true

if X está pintado de negro: return false

Pintar X de gris

for Y tal que X \to Y:

if hay ciclo luego de(Y), return true
```

Pintar *X* de negro

return false

```
hay ciclo en(G(V, E)):

for X \in V:

if X está pintado, continue

if hay ciclo luego de (X):

return true

return false
```

El algoritmo hay ciclo en en acción

¿Hay un ciclo luego de **B**?

No

OK, ¿hay un ciclo luego de H?

¿Hay un ciclo luego de **H**?

¿Hay un ciclo luego de **K**?

¿Hay un ciclo luego de **K**?

¿Hay un ciclo luego de X?

¿Hay un ciclo luego de N?

¿Hay un ciclo luego de R?

Algortimos de este tipo se llaman de "búsqueda en profundidad"

Los algoritmos de **búsqueda en profundidad** (o *DFS*) llegan hasta el final de una "rama" (una secuencia de aristas) antes de empezar a explorar otra

¿Cuál es la complejidad de estos algoritmos?