Course Notes for

CS 1501 Algorithm Implementation

By
John C. Ramirez
Department of Computer Science
University of Pittsburgh

- These notes are intended for use by students in CS1501 at the University of Pittsburgh and no one else
- These notes are provided free of charge and may not be sold in any shape or form
- These notes are NOT a substitute for material covered during course lectures. If you miss a lecture, you should definitely obtain both these notes and notes written by a student who attended the lecture.
- Material from these notes is obtained from various sources, including, but not limited to, the following:
 - Algorithms in C++ by Robert Sedgewick
 - Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne
 - Introduction to Algorithms, by Cormen, Leiserson and Rivest
 - Various Java and C++ textbooks
 - Various online resources (see notes for specifics)

Dynamic Programming

- Consider each element in the list one at a time
 - For which M values will this new item give a solution?
 - Store a record of those solutions in an array indexed from 1 to M
 - Each time we get a solution for a value of M, put it in the array and use it for future solutions

For example:

- Let's say our desired M value for the problem is 50
- Let's say the first two items in our list are 15 and 30
 - > Item 1 (15) could solve the problem by itself if M happened to be 15
 - > Item 2 (30) could solve the problem by itself if M happened to be 30
 - > Both together could solve the problem if M happened to be 45

- We continue in this way with each new element in our list
 - Which value of M could this solve directly (M = to its value)
 - Which other values of M could this solve if we add it to other items that have been considered
 - For each new answer we find we fill in the value in the array
 - Once the value for our goal M has been filled in, we have a solution
- Let's see how this can actually be done in the next slide

store

26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
5	4		6	2		5		6	6	3		5		6	5	4		6	2	6	5		6	6

size

1	2	3	4	5	6	7	8	9	10
15	30	21	6	11	8	4	19	44	17

- Assume our store array is initially all 0s
- Loop j from 1 to N
 - Loop i from 1 to M
 - if (i == size[j]) and store[i] is 0, set store[i] = j
 - if store[i] is 0 and (store[i size[j]] > 0) and (store[i size[j]] != j)
 set store[i] = j

5

not yet assigned

previous solution is not j (since e) can use j only one time in a solution)

there is a solution size[j]
positions before this, so
adding item j will make a
new solution

- Once store[M] is filled in we can extract the individual components in the answer
- In the example shown

```
store[50] = 6 \rightarrow \text{size}[6] = 8

store[50-size[6]] = store[42] = 4 \rightarrow \text{size}[4] = 6

store[42-size[4]] = store[36] = 3 \rightarrow \text{size}[3] = 21

store[36-size[3]] = store[15] = 1 \rightarrow \text{size}[1] = 15

store[15-size[1]] = store[0] \rightarrow \text{sentinel} \rightarrow \text{done}
```

- Look at the code in subset.java
 - Run-time is clearly Theta(MN) → WHY?
 - But note that we are using a lot of space here
- This solution can be very good (pseudo polynomial) but it can also be very poor
- Let's consider some scenarios...

- This instance shows the worst case behavior of the branch and bound solution
 - All combinations of the elements (~2^19) before last must be tried but to no avail until the last element is tried by itself
 - It is poor because we don't exceed the "bound" until we add the last item so the technique doesn't help us eliminate execution paths
 - The dynamic programming solution in this case is much better

$$MN == (1000)(20) == 20000 << 2^19 == 524288$$

N = 4, M = 1111111111 1234567890 1357924680 1470369258 1111111111

- ▶ This instance shows the worst case behavior of the dynamic programming solution
 - Recall that our array must be size M, or 11111111111
 - First, we are using an incredible amount of memory
 - We must also process all answers from 1 up to M = 1111111111, so this is a LOT of work

```
MN == (111111111111)(4) == 44444444444
```

- Since N = 4, the branch and bound version will actually work in very few steps and will be much faster – worst case 2^4 == 16
- This is why we say dynamic programming solutions are "pseudo-polynomial" and not actually polynomial

- Consider another problem:
 - Given N types of items, each with size S_i and value V_i
 - Given a KnapSack of capacity M
 - What is the maximum value of items that can fit into the Knapsack?
 - Note the number of each item available is indefinite
 - Alternate versions can restrict the number of each item
- Idea: We want to cram stuff into our knapsack so that it has the highest value
 - But different items are bigger / smaller so we have to choose our items carefully

- Simple Case:
 - If all items have the same size
 - Easy solution!
 - Take only the most valuable item Ex: US paper currency
- Ok, but can't we just figure out the optimal value/size ratio and use only that item?
 - Yes if we can take a "fraction" of an item, but no otherwise

Consider the following example with M = 9

<u>Item</u>	<u>Size</u>	<u>Value</u>	Value/Size
1	3	7	7/3
2	6	16	8/3
3	7	19	19/7
4	5	15	3

- Item 4 has the highest value/size ratio
- It we take 1 4/5 of item 4, our KnapSack will be full and have the optimal value of 27
 - But we cannot take a "fraction" of an item
- In this case the actual solution is 1 of item 1 and 1 of item 2 for a value of 23
 - Item 4 is not chosen at all!

- So how to solve KnapSack?
 - One way is Recursive Exhaustive Search using Branch and Bound
 - Add as many of item 1 as we can without overfilling (passing the bound)
 - Then backtrack, substituting item 2 (if it will fit) rather than the last item 1
 - Continue substituting until all combinations of items have been tried
 - This is similar to Subset Sum but more complex because we are considering two different variables:
 - Sum of sizes (must stay within bound M)
 - Sum of values (try to maximize)

- How about using dynamic programming?
 - Approach is similar to that of subset sum
 - We first consider solving the problem with ONLY the first item type (allowing mult. occurrences)
 - For this type we want to solve KnapSack for ALL M values from 1 up to our actual desired value
 - We then consider the second item type and repeat the process – substitute second item when it will give a bigger value
 - Fundamental differences from Subset Sum
 - We are maximizing a value
 - We need an extra array
 - We can consider items more than one time


```
for (int j = 1; j \le N; j++) // Try each item, one at a time
    // Given the current item, solve the knapsack problem for each
    // i from 1 up to the stated value for M. Note that, unlike the
    // Subset Sum problem, the sizes of the items do not have to equal
    // M -- instead they must be <= M.
    for (int i = 1; i \le M; i++) // Try each capacity i up to M
       if (i >= size[j]) // Will item j fit into knapsack of size i?
       // If current solution for knapsack of size i is less than
       // solution would be by adding item j, then add item j. Unlike
       // subset sum, j can be added multiple times
               if (curstore[i] < curstore[i - size[j]] + val[j])</pre>
                       curstore[i] = curstore[i - size[j]] + val[j];
                       maxstore[i] = j;
                                      • Note the nested for loops
                                         Same basic structure as subset sum
                                         Same runtime of Theta(NM)
                                         See Knap.java for the rest of the
```

Row j indicates state of the curstore array after item j has been considered

Knapsack Problem

► Ex: consider N = 5, M = 15

Index: 1 2 3 4 5

Size: 3 4 7 8 9

Value: 4 5 10 11 13

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1			4	4	4	8	8	8	12	12	12	16	16	16	20
2				5	5		9	10		13	14		17	18	
3							10			14	15		18	20	
4								11							21
5									13			17			

- Consider one more problem:
 - Given a string S of length n
 - Given a string T of length m
 - We want to find the minimum Levenshtein Distance (LD) between the two, or the minimum number of character changes to convert one to the other
 - Consider changes to be one of the following:
 - Change a character in a string to a different char
 - Delete a character from one string
 - Insert a character into one string

For example:

LD("WEASEL", "SEASHELL") = 3

- Why? Consider "WEASEL":
 - Change the W in position 1 to an S -> SEASEL
 - Add an H in position 5 -> SEASHEL
 - Add an L in position 8 -> SEASHELL
- Result is SEASHELL
 - We could also do the changes from the point of view of SEASHELL if we prefer – try as an exercise
- How can we determine this distance?
 - We can define it in a recursive way initially
 - Later we will use dynamic programming to improve the run-time

Generally speaking:

- We want to calculate D[n, m] where n is the length of S and m is the length of T
 - From this point of view we want to determine the distance from S to T
 - If we reverse the arguments, we get the (same)
 distance from T to S (but the edits may be different)

```
If n = 0 // base case S is empty
return m (m appends will create T from S)
else if m = 0 // base case T is empty
return n (n deletes will create T from S)
else
```

Consider character n of S and character m of T

Now we have some possibilities

If characters match

- return D[n-1, m-1]
 - > Result is the same as the strings with the last character removed (since it matches)
- Recursively solve the same problem with both strings one character smaller
- If characters do not match -- more poss. here
 - We could have a mismatch at that char:
 - return D[n-1, m-1] + 1
 - Example:

 Change X to Y, then recursively solve the same problem but with both strings one character smaller

- S could have an extra character
 - return D[n-1, m] + 1
 - Example:

- Delete Y, then recursively solve the same problem,
 with S one char smaller but with T the same size
- S could be missing a character there
 - return D[n, m-1] + 1
 - Example:

 Add X onto S, then recursively solve the same problem with S the original size and T one char smaller

- Unfortunately, we don't know which of these is correct until we try them all!
- So to solve this problem recursively we must try them all and choose the one that gives the minimum result
 - This yields 3 recursive calls for each original call (in which a mismatch occurs) and thus can give a worst case run-time of Theta(3ⁿ)
- How can we do this more efficiently?
 - Let's build a table of all possible values for n and m using a two-dimensional array
 - Basically we are calculating the same values but from the bottom up rather than from the top down
- See pseudocode from handout
 - http://en.wikipedia.org/wiki/Levenshtein_distance

- Idea: As we proceed column by column (or row by row) we are finding the edit distance for prefixes of the strings
 - We use these to find out the possibilities for the successive prefixes
 - For each new cell D[i, j] we are taking the minimum of the cells
 - -D[i-1, j] + 1
 - > Delete a char from S at this point to generate T
 - -D[i, j-1] + 1
 - > Insert a char into S at this point to generate T
 - -D[i-1, j-1] + cost[i,j]
 - > Where cost is 1 if characters don't match, 0 otherwise
 - > Change char at this point in S if necessary

D[i-1,j-1] D[i-1,j]

Edit Distance

D[i,j-1]

		S	Е	Α	S	Н	Е	L	L
	0	1	2	3	4	5	6	7	8
W	1		2	3	4	5	6	7	8
Е	2	2	1	2	3	4	5	6	7
Α	3	3	2	1	2	3	4	5	6
S	4	3	3	2	1	2	3	4	5
Е	5	4	3	3	2	2	2	3	4
L	6	5	4	4	3	3	3	2	3


```
function LevenshteinDistance(char s[1..m], char t[1..n]):
// for all i and j, d[i,j] will hold the Levenshtein distance between
// the first i characters of s and the first j characters of t
declare int d[0..m+1, 0..n+1] set each element in d to zero
// source prefixes can be transformed into empty string by
// dropping all characters
for i from 1 to m + 1:
    d[i, 0] := i
// target prefixes can be reached from empty source prefix
// by inserting every character
for j from 1 to n + 1:
    d[0, j] := j
for j from 1 to n + 1:
     for i from 1 to m + 1:
         if s[i] = t[j]:
            substitutionCost := 0
         else:
            substitutionCost := 1
        d[i, j] := minimum(d[i-1, j] + 1, // deletion)
                           d[i, j-1] + 1, // insertion
                            d[i-1, j-1] + substitutionCost) // subst
return d[m + 1, n + 1] // final answer is in bottom right location
```

- At the end the value in the bottom right corner is our final edit distance
- See example in on web site
- Try one yourselves to see what is going on
 - Fill in the squares on the next slide
 - To see the solution see the slide after next
 - We are starting with ROTTEN
 - We want to generate PROTEIN
 - Note the initialization of the first row and column
 - Base cases
 - We will trace this during our synchronous lecture

		Р	R	0	Т	Е	I	N
	0	1	2	3	4	5	6	7
R	1							
0	2							
Т	3							
Т	4							
Е	5							
N	6							

		Р	R	0	Т	Е	I	N
	0	1	2	3	4	5	6	7
R	1	1	1	2	3	4	5	6
0	2	2	2	1	2	3	4	5
Т	3	3	3	2	1	2	3	4
Т	4	4	4	3	2	2	3	4
Е	5	5	5	4	3	2	3	4
N	6	6	6	5	4	3	3	<i>3</i>

Why is this cool?

- Run-time is Theta(MN) worst case
 - As opposed to the 3ⁿ of the recursive version
- Unlike the pseudo-polynomial subset sum and knapsack solutions, this solution does not have any anomalous worst case scenarios
 - There is a price, which is the space required for the matrix
 - Optimized versions can reduce this from Theta(MN) space to Theta(M+N) space
- For more actual implementations,

Seehttp://en.wikibooks.org/wiki/Algorithm Implementation/Strings/Levenshtein_distance

Dynamic Programming

- Dynamic programming is also useful for a lot of other problems:
 - ▶ TSP (run-time Theta(n²2n) exponential but better than Theta(n!) of the brute force algo)
 - Various other sequencing problems
 - Ex: DNA / RNA sequence alignment
 - Ex: String longest common subsequences
 - All Pairs Shortest Path (in a directed graph)
 - Optimizing word wrap in a document
 - See:
 http://en.wikipedia.org/wiki/Dynamic_programming

