K-means (clustering) A centroid - based Teehnique

Example (2 dimensions)

0 1	voriable	Vasiable
Individual	1	2
1	1	1
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Fuclidean Distance.

=
$$\int (x_i^2 - m_i^2)^2 + (x_j^2 - m_j^2)^2$$

 $x_i^2 > (x_j^2 = observed data point m_i^2 = mean | centroid$
 $x_i^2 = \int (1-5)^2 + (1-7)^2$

5tep-1 Decide how many clusters = \$\int 16 + 36 = \int 52 = 7.21

 $(2) = (1.5-1)^{2} + (2-1)^{2}$

5tep-2 Decide centroids choose random centroids.

1.12
211-22
$(1.5-5)^2+(2-7)^2$
6.10

Individual Data	Distance (F) from C,	Distance (E)
point	(1,1)	(5,7)
1 (1,1)	0	7.21
2 (1.5,2)	1.12	6.10
3 (3,4)	3.61	3.64
4 (5,7.) 5 (3.5,5)	4.72	2.5
6 (4.5,5)	5.31	2.06
7 (3.5,4.5)	4.30	2.92

$$K_1 = C_1(1,1) = \{1,2,3\}$$
 $K_2 = C_2(5,7) = \{4,5,6,7\}$

Step-4 New centrold mean
$$(1 + c_2)$$

No. of data points in k1
 $m_1 = \frac{1}{3} [1+1.5+3] + \frac{1}{3} [1+2+4]$

$$m_2 = \frac{1.63}{4} \begin{bmatrix} 2.33 \\ \text{Nio. of data points in } \\ \text{K2} \end{bmatrix}$$

$$m_2 = \frac{1}{4} \begin{bmatrix} 5 + 3.5 + 4.5 + 3.5 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 7 + 5 + 5 + 4.5 \end{bmatrix}$$

$$= 4.12, 5.38$$

Individual	Distance	Distance
Data points	C, (1.83,2.33)	6 (4.12, 5.38)
1(1,1)	1.57	5.32
	0.47	4.26
3	2.04	1.78
4	5.64	1.84
5	3.15	0.73
6	3.78	0.54
7	2.74	1.08

$$K_1 = \{1,2\}$$
 $K_2 = \{3,4,5,6,7\}$

Step-5 New centorids

$$m_1 : \frac{1}{2} \left[1 + 1.5 \right] + \frac{1}{2} \left[1 + 2 \right]$$

$$m_2 = \frac{1.25}{5} \begin{bmatrix} 3+5+3.5+4.5+3.5 \end{bmatrix} + \frac{1}{5} \begin{bmatrix} 4+.7+5+5+4.5 \end{bmatrix}$$

Individual Data points	Distance c,(1.25,1.5)	Distance c ₂ (3.9,5.1) 5.02
1 2 3 4 5	0.56 3.05 6.66 4.16	3.92 1.42 2.20 0.41 0.61
6	4.78	6.72

$$K_1 = \{1, 2\}$$
 $K_2 = \{3, 4, 5, 6, 7\}$