Lab 2

Programme: Bachelor of Computer Science

(Computer Network and Security)

Subject Code : SECR3443

Subject Name: Computer Organization & Architecture

Session-Sem : 2024/2025-1

Prepared by : 1) Ahmad Hazim Bin Ahmad Najmi (A22EC0034)

2) Muhammad Izzuddin Bin Ahmad Fauzi (A22EC5023)

Section : 03

Group / : 8A

Member ID

Lecturer : Dr. Muhalim Bin Mohamed Amin

Video Link : (if any) http://utm.webex.com/meet/muhalim

Date : 2 January 2025

Turnitin (%)		
Similarity	AI	
20	0	
20		

SECR3443 INTRODUCTION TO CRYPTOGRAPHY (Lab 2)

Name : AHMAD HAZIM BIN AHMAD NAJMI

Student ID : A22EC0034

Name : MUHAMMAD IZZUDDIN BIN AHMAD

FAUZI

Student ID : A22EC5023

Section / Group : 03/8A

Marks

OBJECTIVES:

At the end of the laboratory work, student will be able:

- i. To illustrate the steps of creating public and private key.
- ii. To identify the content of a digital certificate.
- iii. To demonstrate the encryption and decryption of RSA.

INSTRUCTIONS:

Answer all questions of Task 1 and Task 2. This lab work must be performed using *CrypTool*, which need to be downloaded and installed on your PC.

TASK 1: Demonstration of RSA

(a)	Creating <i>p</i> and <i>q</i> .			
	iv. Write down the select	ed values in Table 1.		
		Table 1		
	Selected Matric	A22EC5023		
	Integer Value	225023		
		p	q	
	Initial Value	250	223	
	New Value	251	223]
(b)	Creating modulus, <i>n</i> and k	ev nairs		
	Creating modulus, n and k	cy pans.		
	iii. List the RSA derived	parameters in Table 2.		

			Tab	le 2	
		RSA Modulus	s n	55973	
		$\phi(n)$		55500	
		Public key,	e	2*16+1	-
		Private key,	d	52973	[5 marks]
					1
(c)		Encryption & Decrypt			
	iii.	Fill Table 3 with the o	_	le 3	
		MI	AhmadH]
		M1			
		Data segmentation	A # h # n	n # a # d # H # a # z	
		Characters to Number Conversion, P1	065 # 104 097 # 122	4 # 109 # 097 # 100 # 072 # 2	
		Encrypted data, $CI = PI^e \mod n$		15157 # 12465 # 21953 # 02405 # 21953 # 10193	[5 marks]
(d)	Messa	age Authentication.			
	ii.	Write down the select	ed values i	n Table 4.	
			Tab	le 4	
		e		d	
		2^16+3		8359	-
	iv.	Note the output plaint	ext and wr	ite down your observation.	
		The decrypted messa message!	ige could n	ot be decoded into a text	
					[5 <i>marks</i>]

TASK 2: Generating Keys and User Certificates

RSA Encyption for member 1

RSA Decyption for member 1

vi. Discuss your observation of the derived message.

The output does not match the original plaintext after decryption because RSA is an asymmetric encryption algorithm that uses different keys for encryption and decryption. Each individual has a unique key pair consisting of a public key and a private key. For example, if Member 3 encrypts a message using their public key, the decryption process must use Member 3's private key to retrieve the plaintext. Using Member 2's private key instead will result in an unreadable, gibberish value.

 $\frac{C_n^2}{2}$ RSA decryption of <Lab2a (1)>. ÞSOUShVU∫x**⊒XïNAK-**x,×¶"-plèZô"àm«G>pÔߨyìPKÈ(⊒M½-B}'m?m%*ë⊌SJÑŐ/%‰ì9DŒ3†v5¦"£4ő ⊋ Mp8ÎAO¼**(NAK**ã(⊒ML%t⊟XV"+4Ì™AUS)µMB»¥(E/S)(©AN),ÿo(⊒16)œkй«âDŒ2¸Fêw\$Ð(⊒NQþ(SO1)°(EO1)±" ⊋ ¿ä÷ô**(GS**\(**DIC3)**+>(**DIC1**) ÉF #E19VU*6m3¢5A?U*6ØNUUDC#JW—(\$\$N×VIII*;188~Õ;ÔÝ1e(#\$)%°NEJEI®!...9Pc(NUDý/ÆfþÇæiCANÓ ¬HÞd(##)*6ù@Y-2@C2MD+Sé;(#OII*)#2à(CAN+\$OII)ÿ"-@K\$±{-û]—6M 78(NUDŠÜ»ú",‡g)"3Œa>fŌDZ#Û n¼+lÉt+t@Z!%(#\$á†İttHIŠ+o¼#láivòJÛ(##)û\$)3yÖ)jÙý...NQxh¬=Yê..."t'@Ž(#N@)*û\$SOyŠž4®(#\$YD ¹ób¼**SO**«°éDJ**VI**I(û±½°Úßò¯^**(SSRS**.;ý ò9[DC2]‡öö[GS]@éD7èù'é[S

[5 marks

iv. Write your observation.

Altering even the first number of the ciphertext will corrupt the

message, rendering it unreadable. RSA encrypts messages block by block independently, so any modification to the first block directly affects its decryption.

TASK 3: Hybrid Cryptographic System: RSA and AES

(a)	Encryption. ii. Fill complete Table 7 wit	th the values generate by <i>CrypTools</i> .	
	1	Table 7	
	Document	Lab2b.txt	
	Symmetric/ session key	4E 1C F5 12 93 DB 78 E9 BB 8B 81 56 54 0A 1A 60	
	Public key	179385398862498169068030	
		820834778917814219208771	
		344093215513297030603476	[5
		2168528142674101555059839	marks]
		5729634441592418101360923	
		8665473803648534538816817	
		8273369017124576276453584	
		0681558467062200795653531	
		7000309006051732807937471	
		829069950247135234	
	Encrypted session	D6757FAC4A919F56E947	
	key	FD3DD91B88D9CD30EEF	
		2EBF67B7490C442E96A6	
		A696F9154A695D11328F9	
		6B10621B6E53BA499223CD	
		05C429D454D5D5F5BE2F	

B02FAD13D89D512271D
DE7BF46488389786C4DEE
6C57BF9707C30805114D04D
5DDA0BCB214A9DBCAF
05ACC1002C74EBFB290
B385FB23DFEBC5717AAA5
1D761061000B8

(b **Decryption.**

i. Fill up Table 8 with the generated output as you continue with the process.

Table 8

Recipient	Member 2
Public key	1502784160664622576001662
	5961352925713343725253174
	7024578655210749213767104
	5954203232314534956595084
	8286002513824725254723332
	5457500979835692580675788
	8563169512507977753223827
	6304007745493125432077102
	4714559473416777750918381
	5537224780492822904185899
	960595306492391893831247
	359689507843154013472682

[5

		06859276233	mar
	Symmetric /Session key	4E 1C F5 12 93 DB 78 E9 BB 8B 81 56 54 0A 1A 60	
iv.	Complete Table	9 with the decryption protocol.	
		Table 9	
	$A \rightarrow B$	$\{E(K_s, D) \parallel E(K_{PUB}, K_s)\}$	
	Recipient B	i. Use a private key to decrypt the encrypted session key	
		ii. Retrieve the session key	
		iii. Use the session key to decrypt the encrypted messag	