Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Subjectul III (30 de puncte)

Pentru itemul 1, scrieți pe foaia de examen litera corespunzătoare răspunsului corect.

1. Utilizând metoda backtracking se generează toate matricele pătratice de ordinul 4 ale căror elemente aparțin mulțimii {0,1}, cu proprietatea că pe fiecare linie şi pe fiecare coloană există o singură valoare 1. Primele 4 soluții generate sunt, în această ordine:

	1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1	1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0	1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1	1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
	Care este a opta sol		–	(4p.)
a.	0 1 0 0	b. 0 1 0 0	c. 0 1 0 0	d. 0 0 1 0
	1 0 0 0	1 0 0 0	0 0 1 0	1 0 0 0
	0 0 0 1	0 0 1 0	1 0 0 0	0 1 0 0
	0 0 1 0	0001	0 0 0 1	0 0 0 1

Scrieți pe foaia de examen răspunsul pentru fiecare dintre cerințele următoare.

- 2. Se consideră subprogramul f, definit alăturat.
 a) Ce valoare are f(25)?
 b) Dar expresia f(1)+f(5)+f(15)? (6p.)

 int f(int n)
 { if (n>20) return 0; else return 5+f(n+5);}
 }
- 3. Se consideră subprogramul cifre, care primește prin intermediul primului parametru, a, un număr natural cu maximum 8 cifre nenule și returnează, prin intermediul celui de-al doilea parametrul b, cel mai mic număr care se poate forma cu toate cifrele distincte ale lui a.
 - a) Scrieți definiția completă a subprogramului cifre. (4p.)
 - b) Se consideră fişierul text date.in ce conține pe prima linie un număr natural nenul n (n≤100), iar pe a doua linie n numere naturale, separate prin câte un spațiu, fiecare număr având maximum 8 cifre nenule. Scrieți un program C/C++ care citeşte toate numerele din fişierul text date.in şi afişează pe ecran, despărțite prin câte un spațiu, numerele situate pe a doua linie a fişierului, formate numai din cifre distincte ordonate strict crescător, folosind apeluri utile ale subprogramului cifre. În cazul în care nu există niciun astfel de număr se va afişa valoarea 0.

```
Exemplu: dacă fişierul date.in are conținutul alăturat, atunci se vor afișa numerele: 16 269 (6p.) 6 16 175 333 242477 321 269
```

4. Scrieți un program C/C++ care citeşte de la tastatură un număr natural nenul n (n≤100) şi 2*n numere naturale de maximum 3 cifre; primele n reprezintă elementele tabloului unidimensional a, iar următoarele n elementele tabloului unidimensional b; fiecare tablou are elementele numerotate începând de la 1. Programul construieste în memorie şi afişează pe ecran, cu spații între ele, cele n elemente ale unui tablou unidimensional c, în care orice element c₁ (1≤i≤n) se obține conform definiției următoare:

```
c_i = \int a_i concatenat cu b_i, dacă a_i < b_i

L b_i concatenat cu a_i, altfel
```

Exemplu: dacă se citesc n=3, a=(12,123,345) şi b=(1,234,15), atunci se afişează elementele tabloului c astfel: