The reverse mathematics of Cousin's lemma

Jordan Mitchell Barrett math@jmbarrett.nz https://jmbarrett.nz/

Supervisors: Rod Downey, Noam Greenberg

Victoria University of Wellington

Thursday 15th October 2020

Riemann integration

- Let $f: [0,1] \to \mathbb{R}$ be a continuous function.
- A tagged partition of [0,1] is a finite increasing sequence $P = \langle 0 = x_0 < t_0 < x_1 < t_1 < \cdots < t_{n-1} < x_n = 1 \rangle$
- ► Riemann sum: $RS(f, P) := \sum_{P} f(t_i)[x_{i+1} x_i]$
- ▶ Riemann integral: $\int_{R} f = M$ if for all $\varepsilon > 0$, $\exists \delta > 0$ such that $|RS(f, P) M| < \varepsilon$ whenever blocks of P have size $< \delta$

Gauge integration

- ▶ Gauge: positive-valued function $\delta \colon [0,1] \to \mathbb{R}^+$
- ▶ $P = \langle x_i, t_i \rangle$ is δ-fine if $(x_i, x_{i+1}) \subseteq B(t_i, \delta(t_i))$ for all i
- ▶ Gauge integral: $\int_{\mathsf{G}} f = M$ if for all $\varepsilon > 0$, there is gauge δ such that $|\mathsf{RS}(f, P) M| < \varepsilon$ whenever P is δ -fine
- ightharpoonup If we only consider constant gauges \implies Riemann integral
- \blacktriangleright ...what if there are *no* δ -fine partitions?

Cousin's lemma

Cousin's lemma

Every gauge $\delta:[0,1]\to\mathbb{R}^+$ has a δ -fine partition.

Proof.

Ask: is there any point $t \in [0,1]$ such that $\delta(t) > 1$?

Yes: then $P = \langle 0, t, 1 \rangle$ is δ -fine.

No: split [0,1] in half, and see if either half has $\delta(t) > 1/2$, etc.

Must terminate: else we get

$$l_0 \supseteq l_1 \supseteq \cdots$$
. Pick $r \in \bigcap l_n$, then $\delta(r) = 0$; contradiction!

Question

Is this the best proof? What does that even mean?

Reverse mathematics

- ▶ What makes the best proof? Elegance, simplicity, clarity, ...
- ► Reverse mathematics: best = least assumptions (axioms)

"When the theorem is proved from the right axioms, the axioms can be proved from the theorem."

—Harvey Friedman

- ▶ Given theorem φ , weak axiom system S: try to prove $S \vdash \varphi$
- ▶ If we can, then try get a reversal of φ : a proof $\mathcal{B} + \varphi \vdash \mathcal{S}$
 - Need base system \mathcal{B} : φ generally can't prove basic axioms
 - ▶ Shows proof $S \vdash \varphi$ is *optimal*: can't use weaker axioms
- ▶ Why? Shows how (non)constructive a theorem is
 - How complex is the solution relative to the problem?

Second-order arithmetic

- \triangleright Second-order arithmetic: numbers n, m, k, ..., sets A, B, C, ...
- ▶ Standard arithmetic operations +, \cdot , relations =, <, \in
- ▶ Have number quantifiers $\forall x$, $\exists x$, and set quantifiers $\forall X$, $\exists X$
- Subsystems of SOA comprise three main types of axioms:
 - Basic axioms: basic facts of arithmetic. Similar to PA
 - Induction axioms: say induction is valid over a formula arphi

$$\big[\varphi(0) \, \wedge \, \forall n \, \big(\varphi(n) \to \varphi(n+1)\big)\big] \to \forall n \, \varphi(n)$$

► Comprehension axioms: assert the existence of certain sets

$$\exists X \ \forall n \ [n \in X \ \leftrightarrow \ \varphi(n)]$$

Subsystems of second-order arithmetic

- ▶ In order of increasing strength:
- ► RCA₀: basic axioms + induction for Σ_1^0 formulae^[a]+ comprehension for Δ_1^0 (computable) sets
 - ▶ Theorems of RCA₀ \approx theorems of computable mathematics
 - ▶ Base system: generally use $\mathcal{B} = \mathsf{RCA}_0$ in reversals
- ► WKL₀: RCA₀ + weak Kőnig's lemma (every infinite binary tree has an infinite branch)
- Arithmetical formula: no set quantifiers
- ► ACA₀: basic axioms + arithmetical comprehension/induction
- ▶ Π_1^1 formula: $\forall X \ \theta(X)$ for θ arithmetical
- $ightharpoonup \Pi_1^1$ -CA₀: basic axioms $+ \Pi_1^1$ comprehension and induction

[[]a] $\exists x \, \theta(x)$, where $\theta(x)$ contains only bounded number quantifiers.

The reverse math zoo

Π ₁ -CA ₀	Cantor–Bendixson MBS lemma
ACA ₀	\mathbb{R} complete Maximal ideal RT k , $k\geq 3$ Bolzano–Weierstrass V basis
WKL ₀	EVT Heine-Borel Prime ideal Hahn-Banach Gödel's compl. RT ₂
RCA ₀	IVT BCT Soundness $M = (E, \mathcal{I})$ basis

Remember this proof?

Cousin's lemma

Every gauge $\delta:[0,1]\to\mathbb{R}^+$ has a δ -fine partition.

Proof.

Ask: is there any point $t \in [0, 1]$ such that $\delta(t) > 1$?

Yes: then $P = \langle 0, t, 1 \rangle$ is δ -fine.

No: split [0,1] in half, and see if either half has $\delta(t)>1/2$, etc.

Must terminate: else we get $l_0 \supseteq l_1 \supseteq \cdots$. Pick $r \in \bigcap l_n$, then $\delta(r) = 0$; contradiction!

Question

Is this the best proof?

Formalising the proof in SOA

- ► Formally: build a binary tree *T*
- Nodes on level n are dyadic intervals $J = [i/2^n, i+1/2^n]$
- Children of J are its two halves
- ▶ Put *J* in *T* if ancestors are, and

$$\forall r \in J, \ \delta(r) \leq |J|$$

$$\prod_{1}^{1} \text{ formula}$$

- ightharpoonup T must be finite, or WKL gives path $\implies \bot$ as before. \Box
- ▶ Real numbers \cong subsets of \mathbb{N} , so this proof needs Π_1^1 -CA₀!
- ▶ Is this *really* the best we can do?

Our contributions

- \blacktriangleright For continuous functions, can do *much* better than $\Pi^1_1\text{-CA}_0$
 - Enough to consider midpoints, use sequential continuity

Theorem (Barrett, Downey, Greenberg; RCA_0)

Cousin's lemma for continuous functions is equivalent to WKL₀.

- ▶ Baire 0 = continuous, Baire n + 1 = ptwise limit of Baire n
- ▶ Is Π_1^1 -CA₀ the best we can do for Baire *n* functions? Maybe...

Theorem (Barrett, Downey, Greenberg; RCA₀)

Cousin's lemma for Baire 1 functions implies ACA₀.

Theorem (Barrett, Downey, Greenberg; RCA₀)

ACA₀ does **not** imply Cousin's lemma for Baire 2 functions.