Control Chart Basics

Data Science for Quality Management:
Process Control and Control Charts
with Wendy Martin

Learning objectives:

Discern between when to react, and when to leave the process alone

Describe the anatomy of a control chart

 Control charts are tools that allow the detection of through-time changes in a process.

• By understanding when process changes occur, the **source** of these changes may be detected, and countermeasures can be implemented against unwanted changes

 Control charts are not necessarily control methods; they are tools for process study.

 Control charts, in and of themselves, will improve nothing.

 Action must be taken by the process owner(s).

Control Charts
 provide us with the ability to distinguish between common and special causes

Main Applications

- 1. To monitor output
- 2. To guide modifications in the improvement of output quality
- 3. To determine the true capability of a process

Who Invented Control Charts?

 Dr. Walter Shewhart at Bell Laboratories developed Control Charts in 1924

Who Invented Control Charts?

The goal was to minimize two types of errors:

- React when we should not (Type I Error)
- Not react when we should (Type II Error)

Common Causes of Variation

- The inherent variation of the process
- Cannot be improved by "tweaking" (over-adjustment)

- When a Special Cause of Variation is present
- Requires immediate attention and investigation

The outcome of an investigation leads to:

- Correction to restore the process, with
- Prevention to prevent recurrence; OR
- Incorporation of the special cause, to make the event common to the process

- IIAA Investigate, Identify, take Appropriate Action
- IIPP Investigate, Identify, Prevent (negative), Propagate (positive)

 Remember, Special causes that are ignored become part of the process and common cause variability

Anatomy of a Control Chart

Time or Sample Number

Some Standard Control Chart Pattern Rules

 2

 2

 3

 4

 5

 6

 1
 2

 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25

Points Outside the Limits

Runs (8 points above/below)

Trends (6 increasing/decreasing)

Common Control Charts

Variables Charts

Location

- (Mean) Chart
- (Median) Chart
- Individuals Chart

Spread

- Range Chart
- Standard Deviation Chart
- Moving Range Chart

Common Control Charts

Attribute Charts

Proportions

- p Chart
- np Chart

Rates

- c Chart
- u Chart

Sources

The material used in the PowerPoint presentations associated with this course was drawn from a number of sources. Specifically, much of the content included was adopted or adapted from the following previously-published material:

- Luftig, J. An Introduction to Statistical Process Control & Capability. Luftig & Associates, Inc. Farmington Hills, MI, 1982
- Luftig, J. Advanced Statistical Process Control & Capability. Luftig & Associates, Inc. Farmington Hills, MI, 1984.
- Luftig, J. A Quality Improvement Strategy for Critical Product and Process Characteristics. Luftig & Associates, Inc. Farmington Hills, MI, 1991
- Luftig, J. Guidelines for Reporting the Capability of Critical Product Characteristics. Anheuser-Busch Companies, St. Louis, MO. 1994
- Spooner-Jordan, V. Understanding Variation. Luftig & Warren International, Southfield, MI 1996
- Luftig, J. and Petrovich, M. Quality with Confidence in Manufacturing. SPSS, Inc. Chicago, IL 1997
- Littlejohn, R., Ouellette, S., & Petrovich, M. Black Belt Business Improvement Specialist Training, Luftig & Warren International, 2000
- Ouellette, S. Six Sigma Champion Training, ROI Alliance, LLC & Luftig & Warren, International, Southfield, MI 2005