Métodos Matemáticos da Física

2011/12

Teste 1 24-03-2012

1.a) Encontre pelo método de separação de variáveis soluções da equação de Schrödinger,

$$i\frac{\partial u}{\partial t} = -\frac{\hbar}{2m}\frac{\partial^2 u}{\partial x^2} \,,$$

dadas por funções u(t, x) periódicas em x.

b) Determine a solução da equação de Schrödinger sujeita à condição inicial,

$$u(0,x) = a e^{i k x} + b e^{-i k x}$$

onde $k \in \mathbf{R}$, a, b, são constantes.

- c) Diga justificando se a solução encontrada na alínea b) é função própria dos operadores $\partial/\partial t$, $\partial/\partial x$, $\partial^2/\partial x^2$, e quais os respetivos valores próprios.
- 2. Considere a equação de Laplace,

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 , \qquad 0 \le x \le \ell , \quad y \ge 0 .$$

- a) Encontre pelo método de separação de variáveis soluções u(x,y) satisfazendo as condições fronteira: $u(0,y)=0,\ u(\ell,y)=0,\ \lim_{y\to+\infty}u(x,y)=0.$
- **b)** Determine a expressão da solução geral satisfazendo as mesmas condições fronteira.
- **3.a)** Diga quais as relações entre os produtos internos de vetores $\langle v|u\rangle$, $\langle cu|v\rangle$, e $\langle u|v\rangle$, onde c é um escalar complexo.
- **b)** Diga como se define o operador adjunto de um operador A.
- c) Deduza qual o operador adjunto do produto de operadores AB em termos dos operadores adjuntos de A e de B.
- d) Sejam A e B dois operadores hermíticos. Determine as condições necessárias e suficientes para que o produto AB seja também hermítico.