Wydział:	Imię i nazwisko Rafał Grabiańs		Rok:	Grupa:	Zespół:	
WIEiT	Zbigniew Królil		II	7	7	
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Interfer	Nr ćwiczenia: 25				
Data wykonania:	Data oddania:	Zwrot do poprawy:	Data oddania:	Data zaliczenia:		
					OCENA:	
18.11.2014	25.11.2014	9.12.2014	16.12.2014	•		

1 Cel ćwiczenia

Celem ćwiczenia był pomiar prędkości dźwięku przy wykorzystaniu zjawiska interferencji falowej przy użyciu rury Quinckego. Ponadto należało wyznaczyć wykładnik κ adiabaty.

2 Wyniki pomiarów

Częstotliowość f [Hz]	Położenie kolejnych minimów [mm]						
	a1	a2	a3	a4	a5	a6	a7
600	155						
700	125	384					
800	92	332					
900	76	286					
1000	65	255	442				
1200	57	214	372				
2000	60	154	245	335	425		
2200	36	122	198	283	360	447	
2400	41	118	190	269	344	420	
2600	24	90	169	235	318	384	
2800	32	101	167	235	300	364	431
2900	34	97	160	225	289	352	415
3000	32	94	153	217	278	340	400
3200	26	85	144	200	260	373	435

Tabela 1: Położenie kolejnych minimów

3 Opracowanie wyników

3.1 Opracowanie pomiaru

3.1.1 Różnice położeń kolejnych minimów

Dla każdego wiersza tabeli obliczyliśmy różnice w położeniach minimów $\Delta_i = a_{i+1} - a_i$. Wyniki wpisaliśmy do tabeli 2.

3.1.2 Średnia wartość długości fali

Dla każdego wiersza wyliczyliśmy średnią wartość długości fali $\overline{\lambda}=2\Sigma\Delta_i/n$

f [Hz]	Różnica położeń minimów [mm]			[mm]	Długość fali f [mm]	Prędkość dzwięku v [m/s]		
	d1	d2	d3	d4	d5	d6		
600	0	0	0	0	0	0		0
700	259	0	0	0	0	0	518	362.6
800	240	0	0	0	0	0	480	384
900	210	0	0	0	0	0	420	378
1000	190	187	0	0	0	0	377	377
1200	157	158	0	0	0	0	315	378
2000	94	91	90	90	0	0	182.5	365
2200	86	76	85	77	87	0	164.4	361.68
2400	77	72	79	75	76	0	151.6	363.84
2600	66	79	66	83	66	0	144	374.4
2800	69	66	68	65	64	67	133	372.4
2900	63	63	65	64	63	63	127	368.3
3000	62	59	64	61	62	60	122.6666666667	368
3200	59	59	56	60	62	113	118.4	378.88

Tabela 2: Wyliczenia na bazie zmierzonych minimów

3.1.3 Obliczenie prędkości dźwięku

Prędkość dźwięku dla każdej z częstotliwości wyliczamy na podstawie trywialnej zależności $v = \lambda \cdot \nu$.

3.2 Wykonanie wykresu zależności v(f)

Mając wyliczoną wartość prędkości dla każdej z badanych częstotliwości otrzymujemy wykres:

Rysunek 1: Wykres zaleznosci v(f)

Widzimy, że dla pomiaru przy najwyższej częstotliwości mamy doczynienia z błędem grubym.

3.3 Obliczenie średniej wartości prędkości i niepewności standardowej typu A

Odrzucając błąd gruby (wynikał on z przegapienia jednego minimum), otrzymujemy prędkość dźwięku v wynoszącą $3.7\cdot 10^2~\frac{m}{s}$ Korzystając z funkcji w LibreOffice Calc otrzymujemy niepewność standardową prędkości na poziomie 7.3 $\frac{m}{s}$

3.4 Obliczenie predkości dźwięku w gazie przy temperaturze 0°C

Korzystając z wyliczonej wartości i formuły:

$$v = \sqrt{\frac{\kappa RT}{\mu}} \tag{1}$$

Otrzymujemy v = 358.2 $\frac{m}{s}$

3.5 Porównanie wartości obliczonej z rzeczywistością

Niestety dopiero uwzględniając współczynnik k = 4, otrzymujemy wartość mieszczącą się w przedziale błędu $358.2\frac{m}{s}+/-29.04\frac{m}{s}$

3.6 Obliczenie współczynnika adiabaty κ

Korzystając z powyższego związku otrzymujemy:

$$\kappa = \frac{v^2 \mu}{RT} \tag{2}$$

Uwzględniając masy molowe pierwiastków występujących w powietrzu i wyliczając średnią ważoną otrzymujemy $\mu=28.97\frac{g}{mol}=2.9\cdot 10^{-2}\frac{kg}{mol}$. Po podstawieniu otrzymujemy κ równą 1.64, która odbiega od rzeczywistej wynoszącej 1.4 o 17% i mieści się w obliczonej poniżej niepewności. Liczymy niepewność złożoną κ :

$$u(\kappa) = \sqrt{(\frac{2v\mu}{RT} \cdot u(v))^2 + (\frac{v^2\mu}{RT^2} \cdot u(T))^2} = \sqrt{(\frac{2 \cdot 358.2 \cdot 2.9 \cdot 10^{-2}}{8.31 \cdot 294} \cdot 29.04)^2 + (\frac{(358.2)^2 \cdot 2.9 \cdot 10^{-2}}{8.31 \cdot (294)^2} \cdot 1)^2}$$
(3)

$$u(\kappa) = \sqrt{0.06098 + 2.68 \cdot 10^{-5}} \approx 0.25 \tag{4}$$

4 Wnioski

Doswiadczenie wykazało poprawność metody wyznaczania prędkości dźwięku w gazach przy pomocy wykorzystania zjawiska interferencji falowej. Uwględniając niepewność rozszerzoną k = 4 uzyskaliśmy wynik zgodny z wartością tabelaryczną dla powietrza w temperaturze 273 K; tabelaryczna = **331** $\frac{m}{s}$ uzyskana w doświadczeniu = **358.2** $\frac{m}{s}$.

Wartość κ przy wykorzystaniu tej samej niepewności rozszerzonej wyniosła **1.64**, w porównaniu do tabelarycznej (**1.4**).