Конспект к опросу стр. 1 из 15

1 Определения

1.1 Упорядоченная пара

Для некоторого множества X и I - множество "индексов", тогда $(x_{\alpha})_{\alpha \in I}$ - семейство элементов X. ($\forall \alpha \in I \ x_{\alpha} \in X$)

Упорядоченная пара — семейство из двух элементов, построенная при $I=\{1,2\}$. Обозначается (a,b).

Кроме того,

$$(a,b) = (c,d) \Leftrightarrow a = c, b = d$$

1.2 Декартово произведение

Декартово произведение двух множеств — множество всех упорядоченных пар элементов этих множеств. $A \times B = \{(a,b) : a \in A, b \in B\}$

Кроме того, декартово произведение можно обобщить для произвольного числа множеств. $A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2 \ldots a_n) : a_1 \in A_1, a_2 \in A_2 \ldots a_n \in A_n\}$

1.3 Аксиомы вещественных чисел

1.3.1 Аксиомы поля

В множестве $\mathbb R$ определены две операции, называемые сложением и умножением, действующие из $\mathbb R \times \mathbb R$ в $\mathbb R$ ($+, \cdot : \mathbb R \times \mathbb R \to \mathbb R$), удовлетворяющие следующим свойствам:

Аксоимы сложения (здесь и далее $\forall a \in \mathbb{R}, b \in \mathbb{R}, c \in \mathbb{R}$):

- 1. a + b = b + a коммутативность
- 2. (a + b) + c = a + (b + c) ассоциативность
- 3. $\exists 0 : 0 + a = a$
- 4. $\exists a' : a + a' = \mathbf{0}$

Аксиомы умножения:

- 1. ab = ba коммутативность
- 2. (ab)c = a(bc) ассоциативность
- 3. $\exists \mathbf{1} \neq \mathbf{0} : \forall a \in \mathbb{R} : a \cdot \mathbf{1} = a$
- 4. $\forall a \neq \mathbf{0} : \exists \tilde{a} : a \cdot \tilde{a} = \mathbf{1}$

Аксоима комбинации сложения и умножения:

1. (a+b)c = ac + bc - дистрибутивность

Конспект к опросу стр. 2 из 15

Поле — множество, в котором определены операции $+,\cdot$, удовлетворяющие группе аксиом І. Например, $\mathbb{R},\mathbb{Q},\mathbb{F}_3$

1.3.2 Аксиомы порядка

- 1. $\forall x, y \in \mathbb{R} : x \leq y$ или $y \leq x$
- $2. \ x \le y; y \le x \Rightarrow x = y$
- 3. $x \le y; y \le z \Rightarrow x \le z$ транзитивность
- 4. $x \leq y \Rightarrow \forall z \in \mathbb{R} : x + z \leq y + z$
- 5. $0 \le x$; $0 \le y \Rightarrow 0 \le xy$

Упорядоченное поле — множество, для которого выполняются аксиомы групп I и II.

 \mathbb{F}_3,\mathbb{C} - не упорядоченные поля

 $\mathbb{R}, \mathbb{Q}, \mathcal{R}$ - упорядоченные поля

Дальнейшие аксиомы в следующем вопросе.

1.4 Аксиома Кантора, аксиома Архимеда

1.4.1 Аксиома Архимеда

$$\forall x, y > 0 : \exists n \in \mathbb{N} : nx > y$$

Следствие: существуют сколько угодно большие натуральные числа:

$$\forall y \in \mathbb{R} : \exists n \in \mathbb{N} : n > y$$

Архимедовы поля — упорядоченные поля, в которых выполняется Аксиома Архимеда.

 \mathcal{R} - не архимедово поле

 \mathbb{R}, \mathbb{Q} - архимедовы поля

1.4.2 Аксиома Кантора

Для последовательности вложенных отрезков $\{[a_n,b_n]\}_{n=1}^\infty$ ($\forall n\in\mathbb{N}a_n\leq a_{n+1}\leq b_{n+1}\leq b_n$)

$$\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$$

 $\mathbb Q$ не удволетворяет этой аксиоме, в отличие от $\mathbb R$.

M3137y2019

Конспект к опросу стр. 3 из 15

1.5 Пополненное множество вещественных чисел, операции и порядок в нем

 $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ — пополненное множество вещественных чисел.

Свойства ($\forall x \in \mathbb{R}$):

- $-\infty < +\infty$
- $\pm \infty \cdot \pm \infty = +\infty$
- $\pm \infty \cdot \mp \infty = -\infty$
- $-\infty < x < +\infty$
- $x \pm \infty = \pm \infty$
- $\pm \infty \pm \infty = \pm \infty$
- $\pm \infty \mp \infty$ не определено

Для $\forall x \in \mathbb{R}, x > 0$

• $x \cdot \pm \infty = \pm \infty$

1.6 Максимальный элемент множества

 $M \in A$ называется максимальным элементом множества A, если $\forall a \in A \ a \leq M$

1.7 Последовательность

 $x: \mathbb{N} \to Y$ — последовательность

1.8 Образ и прообраз множества при отображении

Для $A\subset X, f:X\to Y$ образ — множество $\{f(x),x\in A\}\subset Y$ — обозначается f(A) Для $B\subset Y$ прообраз — $\{x\in X:f(x)\in B\}$ — обозначается $f^{-1}(B)$

1.9 Инъекция, сюръекция, биекция

Сюръекция — такое отображение $f: X \to Y$, что f(X) = Y, т.е. $\forall y \in Y \ f(x) = y$ имеет решение относительно x.

Инъекция — такое отображение $f: X \to Y$, что $\forall x_1, x_2 \in X, x_1 \neq x_2 \ f(x_1) \neq f(x_2)$, т.е. $\forall y \in Y \ f(x) = y$ имеет не более одного решения относительно x.

Биекция — отображение, являющееся одновременно сюръекцией и инъекцией, т.е. $\forall y \in Y \ f(x) = y$ имеет ровно одно решение относительно x.

Конспект к опросу стр. 4 из 15

1.10 Векторнозначаная функция, ее координатные функции

Если $F: X \to \mathbb{R}^m; x \mapsto F(x) = (F_1(x), ..., F_m(x))$, то F — векторнозначная функция (значения функции - вектора)

 $F_{1}(x)..F_{m}(x)$ - координатные функции отображения F

1.11 График отображения

$$\Gamma_f = \{(x, y) \in X \times Y : y = f(x)\}$$

1.12 Композиция отображений

 $f:X \to Y, g:Y \to Z$, тогда композиция f и g (обозначается $g \circ f$) — такое отображение, что $g \circ f:X \to Z, x \mapsto g(f(x))$.

Также возможно определение, которое допускает $g: Y_1 \to Z, Y_1 \supset Y$

1.13 Сужение и продолжение отображений

Для $g: X \to Y$ f — сужение g на множество A, если $f: A \subset X \to Y$, $\forall a \in A$ g(a) = f(a) g называется продолжением f.

1.14 ! Предел последовательности (эпсилон-дельта определение)

Если для $(x_n), a \in \mathbb{R}$ выполняется $\forall \varepsilon > 0 \ \exists N \ \forall n > N \ |x_n - a| < \varepsilon$, то a — предел последовательности (x_n) , обозначается $x_n \to a$ или $\lim_{n \to \infty} x_n = a$

1.15 Окрестность точки, проколотая окрестность

Окрестность точки $a=\{x\in\mathbb{R}:|x-a|<\varepsilon\}$, обозначается $U_{\varepsilon}(a)$

Проколотая окрестность точки $a=U_{\varepsilon}(a)\setminus\{a\}$, обозначается $\dot{U}_{\varepsilon}(a)$

1.16 Предел последовательности (определение на языке окрестностей)

$$\forall U(a) \ \exists N \ \forall n > N \ x_n \in U(a)$$

1.17 ! Метрика, метрическое пространство, подпространство

На множестве X отображение $\rho: X \times X \to \mathbb{R}$ называется **метрико**й, если выполняются свойства 1-3:

- 1. $\forall x, y \ \rho(x, y) \ge 0; \rho(x, y) = 0 \Leftrightarrow x = y$
- 2. $\forall x, y \ \rho(x, y) = \rho(y, x)$

3. Неравенство треугольника: $\forall x, y, z \in X \ \rho(x, y) \leq \rho(x, z) + \rho(z, y)$

Метрическое пространство — упорядоченная пара (X, ρ) , где X — множество, ρ — метрика на X.

Подпространством метрического пространства (X,ρ) называется $(A,\rho|_{A\times A})$, если $A\subset X$

1.18 ! Шар, замкнутый шар, окрестность точки в метрическом пространстве

Шар (открытый шар) $B(a,r) = \{x \in X : \rho(a,x) < r\}$

Замкнутый шар $B(a,r) = \{x \in X : \rho(a,x) \le r\}$

Окрестность точки a в метрическом пространстве: $B(a, \varepsilon) \Leftrightarrow U(a)$.

1.19 Линейное пространство

Если K — поле ($K = \mathbb{R}$ unu \mathbb{C}), X — множество, то X называется линейным пространством над полем K (и тогда K называется полем скаляр), если определены следующие две операции:

- 1. $+: X \times X \to X$ сложение векторов
- 2. $\cdot: K \times X \to X$ умножение векторов на скаляры

Для этих операций выполняются соответствующие аксиомы (здесь $A,B,C\in X; a,b\in K$):

1.19.1 Аксиомы сложения векторов

- 1. A + B = B + A
- 2. A + (B + C) = (A + B) + C
- 3. $\exists 0 \in X : A + 0 = A$
- 4. $\exists -A \in X : A + (-A) = 0$ обратный элемент

1.19.2 Аксиомы умножения векторов на скаляры

- 1. $(A+B) \cdot a = A \cdot a + B \cdot a$
- 2. $A \cdot (a+b) = A \cdot a + A \cdot b$
- 3. $(ab) \cdot A = a(b \cdot A)$
- 4. $\exists 1 \in K : 1 \cdot A = A$

Конспект к опросу стр. 6 из 15

1.20 Норма, нормированное пространство

Норма - отображение $X \to \mathbb{R}, x \mapsto ||x||$, если X - линейное пространство (над \mathbb{R} или \mathbb{C}) и выполняется следующее:

- 1. $\forall x \ ||x|| \ge 0, ||x|| = 0 \Leftrightarrow x = 0$
- 2. $\forall x \in X \ \forall \lambda \in \mathbb{R}(\mathbb{C}) \ ||\lambda x|| = |\lambda| \cdot ||x||$
- 3. Неравенство треугольника: $\forall x, y \in X \ ||x + y|| \le ||x|| + ||y||$

Нормированное пространство — упорядоченная пара $(X, ||\cdot||)$, где |||| - норма

1.21 Ограниченное множество в метрическом пространстве

 $A \subset X$ — ограничено, если $\exists x_0 \in X \ \exists R > 0 \ A \subset B(x_0,R)$, т.е. если A содержится в некотором шаре в X.

1.22 Внутренняя точка множества, открытое множество, внутренность

a — внутренняя точка множества D, если $\exists U(a): U(a)\subset D$, т.е. $\exists r>0: B(a,r)\subset D$

D — открытое множество, если $\forall a \in D : a$ — внутренняя точка D

Внутренностью множества D называется $Int(D) = \{x \in D : x - \text{внутр. точка } D\}$

1.23 Предельная точка множества

a — предельная точка множества D, если $\forall \dot{U}(a) \;\; \dot{U}(a) \cap D \neq \emptyset$

1.24 Замкнутое множество, замыкание, граница

D — замкнутое множество, если оно содержит все свои предельные точки.

Замыканием множества D называется $\overline{D} = D \cup ($ множество предельных точек D)

Граница множества — множество его граничных точек. Обозначается $\partial D = \overline{D} \; Int D$

1.25 Изолированная точка, граничная точка

a — изолированная точка D, если $a \in D$ и a — не предельная.

a — граничная точка D, если $\forall U(a) \ U(a)$ содержит точки как из D, так и из D^c

1.26 Описание внутренности множества

- 1. IntD открыто
- 2. $IntD = \bigcup_{\substack{D \supset G \\ G = \text{ открыт}}}$ максимальное открытое множество, содержащееся в D

Конспект к опросу стр. 7 из 15

3.
$$D$$
 — открыто в $X \Leftrightarrow D = IntD$

1.27 Описание замыкания множества в терминах пересечений

 $\overline{D} = \bigcap_{\substack{F\supset D\\F-\text{ замкн.}}} F$ – минимальное (по включению) замкнутое множество, содержащее D.

Если D замкнуто, $\overline{D}=D$.

1.28 Верхняя, нижняя границы; супремум, инфимум

 $E\subset\mathbb{R}.$ E — огр. сверху, если $\exists M\in\mathbb{R}\ \ \forall x\in E\ \ x\leq M.$ Кроме того, всякие такие M называются верхними границами E.

Аналогично ограничение снизу.

Для E — огр. сверху **супремум** (sup E)— наименьшая из верхних границ E.

Для E — огр. снизу инфимум (inf E) — наибольшая из нижних границ E.

1.29 Техническое описание супремума

$$b = \sup E \Leftrightarrow \begin{cases} \forall x \in E \ x \le b \\ \forall \varepsilon > 0 \ \exists x \in E \ b - \varepsilon < x \end{cases}$$

1.30 Последовательность, стремящаяся к бесконечности

$$x_n \to +\infty \quad \forall E > 0 \ \exists N \ \forall n > N \ x_n > E$$

$$x_n \to -\infty \quad \forall E \ \exists N \ \forall n > N \ x_n < E$$

$$x_n \to \infty \Leftrightarrow |x_n| \to +\infty$$

1.31 Компактное множество

 $K\subset X$ — компактное, если для любого открытого покрытия \exists конечное подпокрытие $\Leftrightarrow \exists \alpha_1\dots\alpha_n \quad K\subset \bigcup_{i=1}^n G_{\alpha_i}$

1.32 Секвенциальная компактность

Секвенциально компактным называется множество $A\subset X: \forall$ посл. (x_n) точек A \exists подпосл. x_{n_k} , которая сходится к точке из A

1.33 Определения предела отображения (3 шт)

Для метрических пространств (X, ρ^X) и (Y, ρ^Y) , отображения $f: X \to Y$ и $a \in X : b \in Y$ — предел f при $x \to a$, т.е. $b = \lim_{x \to a} f(x)$, если

M3137y2019

1.33.1 По Коши

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in X \ 0 < \rho^X(a, x) < \delta \quad \rho^Y(f(x), b) < \varepsilon$$

1.33.2 На языке окрестностей

$$\forall U(b) \ \exists V(a) \ \forall x \in \dot{V}(a) \ f(x) \in U(b)$$

1.33.3 По Гейне

 $\forall (x_n)$ — посл.:

- 1. $x_n \to a$
- $2. \ x_n \in X$
- 3. $x_n \neq a$

$$f(x_n) \to b$$

1.34 Определения пределов в $\overline{\mathbb{R}}$

Для $X = \mathbb{R}, Y = \overline{\mathbb{R}}, -\infty < x < +\infty$:

- 1. $\lim_{x \to a} f(x) = +\infty$: $\forall E \ \exists \delta > 0 \ \forall x \in X : 0 < |x a| < \delta \ f(x) > E$
- 2. $\lim_{x \to a} f(x) = -\infty$: $\forall E \ \exists \delta > 0 \ \forall x \in X : 0 < |x a| < \delta \ f(x) < E$
- 3. $\lim_{x \to +\infty} f(x) = c \in \mathbb{R} \quad \forall \varepsilon > 0 \ \exists \delta \ \forall x \in X : x > \delta \ |f(x) c| < \varepsilon$
- 4. $\lim_{x \to -\infty} f(x) = c \in \mathbb{R} \quad \forall \varepsilon > 0 \ \exists \delta \ \forall x \in X : x < \delta \ |f(x) c| < \varepsilon$

Определение на языке окрестностей такое же, как и для произвольного метрического пространства.

1.35 Непрерывность

$$f: D \subset X \to Y \quad x_0 \in D$$

f — **непрерывное** в точке x_0 , если:

- 1. $\lim_{x\to x_0}f(x)=f(x_0)$, либо x_0 изолированная точка D
- 2. $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D \ \rho(x, x_0) < \delta \ \rho(f(x), f(x_0)) < \varepsilon$
- 3. $\forall U(f(x_0)) \ \exists V(x_0) \ \forall x \in V(x_0) \cap D \ f(x) \in U(f(x_0))$
- 4. По Гейне $\forall (x_n): x_n \to x_0; x_n \to D \ f(x_n) \xrightarrow[n \to +\infty]{} f(x_0)$

2 Теоремы

2.1 Законы де Моргана

Пусть $(X_{\alpha})_{\alpha \in A}$ - семейство множеств, Y - множество. Тогда:

1.
$$Y \setminus (\bigcup_{\alpha \in A} X_{\alpha}) = \bigcap_{\alpha \in A} (Y \setminus X_{\alpha})$$
 ①

2.
$$Y \setminus (\bigcap_{\alpha \in A} X_{\alpha}) = \bigcup_{\alpha \in A} (Y \setminus X_{\alpha})$$
 ②

Вариант 2:

1.
$$Y \cap (\bigcup_{\alpha \in A} X_{\alpha}) = \bigcup_{\alpha \in A} (Y \cap X_{\alpha})$$

2.
$$Y \cup (\bigcap_{\alpha \in A} X_{\alpha}) = \bigcap_{\alpha \in A} (Y \cup X_{\alpha})$$

2.2 Неравенство Коши-Буняковского, евклидова норма в \mathbb{R}^m

2.2.1 Неравенство Коши-Буняковского

$$\left(\sum a_i b_i\right)^2 \le \left(\sum a_i^2\right) \left(\sum b_k^2\right)$$

2.2.2 Евклидова норма в \mathbb{R}^m

$$||x|| = \sqrt{\sum_{i}^{m} x_i^2}$$

2.3 $\,$ Аксиома Архимеда. Плотность множества $\mathbb Q$ в $\mathbb R$

2.3.1 Аксиома Архимеда

$$\forall x, y > 0: \exists n \in \mathbb{N}: nx > y$$

2.3.2 Плотность множества $\mathbb Q$ в $\mathbb R$

$$\mathbb Q$$
 плотно в $\mathbb R \stackrel{def}{\Longleftrightarrow} \forall a,b \in \mathbb R, a < b \ (a,b) \cap \mathbb Q \neq \emptyset$

В любом интервале в \mathbb{R} содержится число $\in \mathbb{Q}$.

2.4 Неравенство Бернулли

$$(1+x)^n \ge 1 + nx$$
 $x \ge -1, n \in \mathbb{N}$

$$(1+x)^n \ge 1 + nx + \frac{n(n-1)}{2}x^2$$
 $x > 0, n \in \mathbb{N}$ — более сложная версия

M3137y2019

Конспект к опросу стр. 10 из 15

2.5 Единственность предела и ограниченность сходящейся последовательности

2.5.1 Единственность предела

 (X,ρ) — метрическое пр-во, $a,b\in X,$ (x_n) — послед. в X, $x_n\xrightarrow[n\to+\infty]{}a,$ $x_n\xrightarrow[n\to+\infty]{}b,$ тогда a=b

2.5.2 Ограниченность сходящейся последовательности

Если (X, ρ) — метрическое пр-во, (x_n) — послед. в X, x_n сходится, тогда x_n — ограничена.

2.6 Теорема о предельном переходе в неравенствах для последовательностей и для функций

2.6.1 Для последовательностей

Если $(x_n), (y_n)$ — вещественные последовательности $x_n \to a, y_n \to b, \exists N \ \forall n > N \ x_n \le y_n$, тогда $a \le b$.

2.6.2 Для функций

Если $f,g:X\to\mathbb{R},$ a — предельная точка X, и $\forall x\in X$ $f(x)\leq g(x).$ Тогда $\lim_{x\to a}f(x)\leq \lim_{x\to a}g(x)$

2.7 Теорема о двух городовых

Если $(x_n),(y_n),(z_n)$ - вещ. посл., $\forall n \ x_n \leq y_n \leq z_n, \lim x_n = \lim z_n = a,$ тогда $\exists \lim y_n = a$

2.8 Бесконечно малая последовательность

 (x_n) — вещ. посл. называется бесконечно малой, если $x_n o 0$

2.9 Теорема об арифметических свойствах предела последовательности в нормированном пространстве и в $\mathbb R$

Если $(X, ||\cdot||)$ — норм. пр-во, $(x_n), (y_n)$ — посл. в X, λ_n — посл. скаляров, и $x_n \to x_0, y_n \to y_0, \lambda_n \to \lambda_0$, тогда:

- 1. $x_n \pm y_n \rightarrow x_0 \pm y_0$
- 2. $\lambda_n x_n \to \lambda_0 x_0$
- 3. $||x_n|| \to ||x_0||$

Для $(x_n), (y_n)$ — вещ.посл., $\forall n \ y_n \neq 0, y_0 \neq 0$:

4.
$$\frac{x_n}{y_n} \rightarrow \frac{x_0}{y_0}$$

2.10 Неравенство Коши-Буняковского в линейном пространстве, норма, порожденная скалярным произведением

2.10.1 Неравенство Коши-Буняковского в линейном пространстве

$$\forall x, y \in X \quad |\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$$

2.10.2 Норма, порожденная скалярным произведением

Для лин. пространства X, скалярного произведения $\langle \cdot, \cdot \rangle$

$$\rho: X \to \mathbb{R}$$
 $\rho(x) = \sqrt{\langle x, x \rangle}$ — норма

2.11 Леммы о непрерывности скалярного произведения и покоординатной сходимости в \mathbb{R}^m

2.11.1 О непрерывности скалярного произведения

X - лин. пространство со скалярным произведением, $||\cdot||$ — норма, порожденная скалярным произведением.

Тогда
$$\forall (x_n): x_n \to x, \forall (y_n): y_n \to y \quad \langle x_n, y_m \rangle \to \langle x, y \rangle$$

2.11.2 О покоординатной сходимости в \mathbb{R}^n

 $(x^{(n)})$ — последовательность векторов в \mathbb{R}^m , где задано евклидово скалярное пространство и норма.

Тогда
$$(x^{(n)}) \underset{n \to +\infty}{\to} x^{(0)} \Leftrightarrow \forall i \in \{1,2,\dots m\} \ x_i^{(n)} \underset{n \to +\infty}{\to} x_i^{(0)}$$

2.12 Открытость открытого шара

 $\forall x \in B(a,r) \ x$ — внутренняя точка B(a,r)

2.13 Теорема о свойствах открытых множеств

1. $(G_{\alpha})_{\alpha \in A}$ - семейство открытых множеств в (X, ρ)

Тогда
$$\bigcup_{\alpha \in A} G_{\alpha}$$
 - открыто в X .

2. $G_1, G_2, \dots G_n$ - открыто в X.

Тогда
$$\bigcap_{i=1}^n G_i$$
 - открыто в X .

Примечание. В 1. семейство может быть бесконечным, а в 2. — нет.

2.14 Теорема о связи открытых и замкнутых множеств, свойства замкнутых множеств

$$D$$
 — замкнуто $\Leftrightarrow D^c = X \setminus D$ (дополнение) — открыто.

Свойства:

1. $(F_{\alpha})_{\alpha \in A}$ — замкн. в X

Тогда
$$\bigcap F_{\alpha}$$
 — замкн. в X

2. $F_1 \dots F_n$ — замкн. в X

Тогда $\bigcup F_i$ — замкн. в X

2.15 Теорема об арифметических свойствах предела последовательности (в $\overline{\mathbb{R}}$). Неопределенности

 $(x_n),(y_n)$ — вещ., $x_n o a,y_n o b \quad a,b \in \overline{\mathbb{R}}$. Тогда:

- 1. $x_n \pm y_n \rightarrow a \pm b$
- 2. $x_n y_n \to ab$, если $\forall n \ y_n \neq 0; b \neq 0$
- 3. $\frac{x_n}{y_n} \to \frac{a}{b}$

При условии, что выражения в правых частях имеют смысл.

Если $x_n \to +\infty, y_n$ — огр.снизу $\Rightarrow x_n + y_n \to +\infty$.

Если
$$x_n \to +\infty, y_n > \varepsilon, (\varepsilon > 0)$$
 при $n > N_0 \Rightarrow x_n y_n \to +\infty$

Неопределенности:

- \bullet $\frac{0}{0}$
- 1^{∞}
- $\frac{\pm \infty}{\pm \infty}$
- $\pm \infty \mp \infty$
- 0⁰
- ∞^0

2.16 Теорема Кантора о стягивающихся отрезках

Дана последовательность отрезков $[a_1,b_1]\supset [a_2,b_2]\supset\dots$

Длины отрезков
$$\to 0$$
, т.е. $(b_n - a_n) \xrightarrow[n \to +\infty]{} 0$

Тогда
$$\exists!c\in\mathbb{R} \quad \bigcap_{k=1}^{+\infty} [a_k,b_k] = \{c\}$$
 и при этом $a_n \xrightarrow[n\to+\infty]{} c,b_n \xrightarrow[n\to+\infty]{} c$

2.17 Теорема о существовании супремума

$$E \subset \mathbb{R}, E \neq \emptyset, E$$
 — orp. cbepxy.

Тогда $\exists \sup E \in \mathbb{R}$

2.18 Лемма о свойствах супремума

- 1. $\emptyset \neq D \subset E \subset \mathbb{R}$ $\sup D \leq \sup E$
- 2. $\lambda \in \mathbb{R}$ $(\lambda E = \{\lambda x, x \in E\})$

Пусть $\lambda > 0$, тогда $\sup \lambda E = \lambda \sup E$

3.
$$\sup(-E) = -\inf E$$

2.19 Теорема о пределе монотонной последовательности

- 1. x_n вещ. посл., огр. сверху, возрастает. $\Rightarrow \exists \lim x_n \in \mathbb{R}$
- 2. x_n убывает, огр. снизу. $\Rightarrow \exists \lim x_n \in \mathbb{R}$
- 3. x_n монотонна, огр. $\Rightarrow \exists \lim x_n \in \mathbb{R}$

2.20 Определение числа e, соответствующий замечательный предел

$$e = \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n$$

2.21 Теорема об открытых и замкнутых множествах в пространстве и в подпространстве

 $Y\subset X, X$ — метр.п., Y — подпространство, $D\subset Y\subset X$

- 1. D откр. в $Y \Leftrightarrow \exists G$ откр. в X $D = G \cap Y$
- 2. D замкн. в $Y \Leftrightarrow \exists F$ замкн. в X $D = F \cap Y$

2.22 Теорема о компактности в пространстве и в подпространстве

$$(X, \rho)$$
 — метрич. пространство, $Y \subset X$ — подпространство, $K \subset Y$

Тогда K — комп. в $Y \Leftrightarrow K$ — компактно в X, то есть если K компактно в подпространстве, то оно компактно и в пространстве.

2.23 Простейшие свойства компактных множеств

 (X, ρ) — метрическое пространство, $K \subset X$

- 1. K комп. $\Rightarrow K$ замкн., K огр.
- 2. $X \text{комп}, K \text{замкн.} \Rightarrow K \text{комп}.$

2.24 Лемма о вложенных параллелепипедах

$$[a,b] = \{x \in \mathbb{R}^m : \forall i=1\dots m \ a_i \leq x_i \leq b_i\}$$
 — параллелепипед.

 $[a^{1},b^{1}]\supset [a^{2},b^{2}]\supset\ldots$ — бесконечная последовательность параллелепипедов.

Тогда
$$\bigcap\limits_{i=1}^{+\infty}[a^i,b^i] \neq \!\! \emptyset$$

Если
$$diam[a^n,b^n]=||b^n-a^n|| o 0$$
, тогда $\exists!c\in \bigcap\limits_{i=1}^{\infty}[a^i,b^i]$

2.25 Компактность замкнутого параллелепипеда в \mathbb{R}^m

[a,b] — компактное множество в \mathbb{R}^m

2.26 Теорема о характеристике компактов в \mathbb{R}^m

 $K \subset \mathbb{R}^m$. Эквивалентны следующие утверждения:

- 1. K замкнуто и ограничено
- 2. K компактно
- 3. K секвенциально компактно

2.27 Эквивалентность определений Гейне и Коши

Определение Коши ⇔ определение Гейне.

2.28 Единственность предела, локальная ограниченность отображения, имеющего предел, теорема о стабилизации знака

2.28.1 Единственность предела

$$f:D\subset X o Y,$$
 a — пред. точка D

$$\lim_{x \to a} f(x) = A; \lim_{x \to a} f(x) = B$$

 ${
m Tor}$ да A=B

2.28.2 Локальная ограниченность отображения, имеющего предел

$$f:D\subset X\to Y,$$
 a — пред. точка $D,$ $\exists\lim_{x\to a}f(x)=A$

Тогда $\exists V(a): f$ — огр. на $V(a)\cap D$, т.е. $f(V(a)\cap D)$ содержится в некотором шаре.

2.28.3 Теорема о стабилизации знака

$$f:D\subset X\to Y,$$
 a — пред. точка $D,$ $\exists\lim_{x\to a}f(x)=A$

Пусть $B \in Y, B \neq A$

Тогда $\exists V(a) \ \forall x \in \dot{V}(a) \cap D \ f(x) \neq B$

2.29 Арифметические свойства пределов отображений. Формулировка для $\overline{\mathbb{R}}$

 $f,g:D\subset X\to Y, X$ — метрич. пространство, Y— норм. пространство над $\mathbb{R},$ a— пред. точка D

$$\lim_{x \to a} f(x) = A, \lim_{x \to a} g(x) = B$$

$$\lambda: D \to \mathbb{R}, \lim_{x \to a} \lambda(x) = \lambda_0$$

Тогда:

- 1. $\exists \lim_{x \to a} (f(x) \pm g(x))$ и $\lim_{x \to a} (f(x) \pm g(x)) = A \pm B$
- 2. $\lim_{x \to a} \lambda(x) f(x) = \lambda_0 A$
- 3. $\lim_{x \to a} ||f(x)|| = ||A||$
- 4. Для случая $Y=\mathbb{R}$ и для $B \neq 0$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$$

 $rac{f}{g}$ задано на множестве $D'=D\setminus \{x:g(x)=0\}$

a — пр. точка D' по теореме о стабилизации знака $\exists V(a) \ \forall x \in V(a) \cap D \ g(x)$ — того же знака, что и B, т.е. $g(x) \neq 0$

$$\dot{V}(a)\cap D'=\dot{V}(a)\cap D\Rightarrow a$$
 — пред. точка для D'

Если $Y=\overline{\mathbb{R}}$, можно "разрешить" случай $A,B=\pm\infty$