### To Do

Read Sections 6.1 – 6.2.

Assignment 4 is due Friday November 25.

### **Last Class**

- (1) Least Squares Estimates
- (2) Simple Linear Regression Model
- (3) Maximum Likelihood Estimates for Simple Linear Regression Model

# **Today's Class**

- (1) Distribution of  $\tilde{\beta}$  the Maximum Likelihood Estimator of the Slope (with Proof)
- (2) Distribution of  $S_e^2$  the Estimator of  $\sigma^2$  (no Proof)

# **Least Squares Line**

## The least squares line is

$$y = \hat{\alpha} + \hat{\beta}x$$

#### where

$$\hat{\beta} = \frac{S_{XY}}{S_{XX}}$$
 and  $\hat{\alpha} = \overline{y} - \hat{\beta} \overline{x}$ 

## STAT 231 versus STAT 230 Scatterplot with Least Squares Line



## Least Squares and Estimation

The least squares line can be used to estimate y for a given x:

$$y = \hat{\alpha} + \hat{\beta}x$$

However to quantity the uncertainty in this estimate we need a statistical model.

## Simple Linear Regression Model

For data  $(x_i, y_i)$ , i = 1, 2, ..., nwe assume the model

$$Y_i \sim G(\alpha + \beta x_i, \sigma)$$
 for  $i = 1, 2, ..., n$   
independently and where the  $x_i$ 's,  $i = 1, 2, ..., n$   
are assumed to be known constants.

### **Theorem**

#### For the model

$$Y_i \sim G(\alpha + \beta x_i, \sigma)$$
 for  $i = 1, 2, ..., n$ 

independently where the  $x_i$ 's, i = 1,2,...,n are known constants, the maximum likelihood estimates of  $\alpha$  and  $\beta$  are given by

$$\hat{\beta} = \frac{S_{XY}}{S_{XY}}$$
 and  $\hat{\alpha} = \overline{y} - \hat{\beta} \, \overline{x}$ 

which are also the least squares estimates.

## **Interval Estimation**

Now that we have a statistical model for our data we can now develop a pivotal quantity which can be used to find an interval estimate for the STAT 231 final grade for a student with a STAT 230 final grade of x.

This will require several other results first.

# Theorem – Distribution of $\widetilde{\beta}$

$$Y_i \sim G(\alpha + \beta x_i, \sigma)$$
 for  $i = 1, 2, ..., n$ 

independently where the  $x_i$ 's, i = 1,2,...,n are known constants and then

$$\widetilde{\beta} \sim G\left(\beta, \frac{\sigma}{\sqrt{S_{XX}}}\right)$$

where

$$\widetilde{\beta} = \frac{S_{XY}}{S_{XX}} = \frac{1}{S_{XX}} \sum_{i=1}^{n} (x_i - \overline{x}) (Y_i - \overline{Y}) = \sum_{i=1}^{n} \frac{(x_i - \overline{x})}{S_{XX}} Y_i$$

# Pivotal Quantity for $\beta$

**Since** 

$$\widetilde{\beta} \sim G \left( \beta, \frac{\sigma}{\sqrt{S_{XX}}} \right)$$

then

$$\frac{\widetilde{\beta} - \beta}{\sigma / \sqrt{S_{XX}}} \sim G(0,1)$$

is a pivotal quantity which could be used for finding confidence intervals and a test statistic if we knew  $\sigma$ . Usually we don't know  $\sigma$ .

# Estimate of $\sigma^2$ in Simple Linear Regression

In general  $\sigma^2$  is unknown so we estimate it using

$$s_e^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2$$

Note: 
$$\sum_{i=1}^{n} \left( y_i - \hat{\alpha} - \hat{\beta} x_i \right)^2$$

is called the sum of squared errors and  $s_e^2$  is called the mean squared error.

s<sub>e</sub><sup>2</sup> is more easily calculated using

$$s_e^2 = \frac{1}{n-2} \left( S_{YY} - \hat{\beta} S_{XY} \right)$$

# Estimate of $\sigma^2$ in Simple Linear Regression

 $s_e^2$  is not the maximum likelihood estimate of  $\sigma^2$  but we use it to estimate  $\sigma^2$  since  $E(S_e^2) = \sigma^2$  where

$$S_e^2 = \frac{1}{n-2} \sum_{i=1}^n \left( Y_i - \widetilde{\alpha} - \widetilde{\beta} x_i \right)^2$$

$$\widetilde{\beta} = \frac{1}{S_{yy}} \sum_{i=1}^{n} (x_i - \overline{x})^2 Y_i$$
 and  $\widetilde{\alpha} = \overline{Y} - \widetilde{\beta} \overline{x}$ 

# Distribution of $S_e^2$

It can also be shown that

$$\frac{(n-2)S_e^2}{\sigma^2} \sim \chi^2(n-2)$$

Note that there are *n* - 2 degrees of freedom due to the two restrictions:

$$\sum_{i=1}^{n} \left( y_i - \widetilde{\alpha} - \widetilde{\beta} x_i \right) = 0 \quad \text{and}$$

$$\sum_{i=1}^{n} \left( y_i - \widetilde{\alpha} - \widetilde{\beta} x_i \right) x_i = 0$$

These 2 equations in 2 unknowns determine the maximum likelihood estimates of  $\alpha$  and  $\beta$ .

## Theorem

#### **Since**

$$\frac{\widetilde{\beta} - \beta}{\sigma / \sqrt{S_{XX}}} \sim G(0,1) \text{ and } \frac{(n-2)S_e^2}{\sigma^2} \sim \chi^2(n-2)$$

#### independently then

$$\frac{\widetilde{\beta} - \beta}{S_e / \sqrt{S_{XX}}} \sim t(n-2)$$

This pivotal quantity can be used to construct confidence intervals and test hypotheses for  $\beta$ .