	doc_1		doc_2		decision	id
cases	authors	Iohannes Blaschke		Kevin Luna K. Klymko Johannes Blaschke Accelerating GMRES with Deep Learning in Real-Time 2021-03-19 00:00:00		
	title	Accelerating GMRES with Deep Learning in Real-Time.	source journal	SupportedSources.SEMANTIC_SCHOLAR ArXiv		l
	publication_date	2021-03-19 00:00:00	volume	abs/2103.10975		ı
	source	SupportedSources.OPENALEX	doi		DUPLICATES 214	l
	journal volume	arXiv (Cornell University)	urls	https://www.semanticscholar.org/paper/22209ae3cb6c6a0ca33a58b2375d58b903428514		5 214
	doi	None	id	id-169794819884136897		l
	urls	https://openalex.org/W3136298896	abstract	GMRES is a powerful numerical solver used to find solutions to extremely large systems of linear equations. These systems of equations appear in many applications in science and engineering. Here we demonstrate a real-time machine learning algorithm that can be used to accelerate the time-to-solution for GMRES. Our framework is novel in that is integrates the deep learning algorithm in an in situ fashion: the AI-accelerator gradually learns how to optimize the time to solution without requiring user input		
	id	id1770712446202720729		(such as a pre-trained data set). We describe how our algorithm collects data and optimizes GMRES. We demonstrate our algorithm by implementing an accelerated		
	abstract			(MLGMRES) solver in Python. We then use MLGMRES to accelerate a solver for the Poisson equation – a class of linear problems that appears in may applications.		
	versions			Informed by the properties of formal solutions to the Poisson equation, we test the performance of different neural networks. Our key takeaway is that networks which are capable of learning non-local relationships perform well, without needing to be scaled with the input problem size, making them good candidates for the extremely large problems encountered in high-performance computing. For the inputs studied, our method provides a roughly 2×acceleration.		
			versions			