Вопросы на ЗАЧЕТ

«Криптографические алгоритмы защиты информации»

ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ

Тема 1. Дисциплина Криптографические методы защиты информации. Основные понятия.

- 1. Предмет КМЗИ, цели и задачи дисциплины.
- 2. Понятие криптография
- 3. Понятие криптоанализ
- 4. Понятие стеганография
- 5. Шифрование
- 6. Дешифрование
- 7. Кодирование
- 8. Основные методы шифрования и дешифрования
- 9. Основные методы методов кодирования
- 10. Основные методы криптоанализа
- 11. Основные методы стеганографии

Тема 2. История криптографии

- 12. Криптография в Древнем мире
- 13. Криптография в древнем Египте
- 14. Криптография в Атбаше
- 15. Криптография в Скитале
- 16. Тайнописи
- 17. Криптография от Средних веков до Нового времени
- 18. Криптография в британских колониях и США
- 19. Криптография на Руси и в России
- 20. Криптография в литературе
- 21. Криптография Первой мировой войны
- 22. Криптография Второй мировой войны
- 23. Германия: «Энигма», «Fish»
- 24. Математическая криптография
- 25. Открытая криптография и государство
- 26. Современный этап криптографии

Тема 3. Правовые основы защиты информации.

- 27. Правовые основы защиты информации в компьютерных системах;
- 28. Атаки и угрозы безопасности, каналы утечки информации.
- 29. Основные способы защиты информации.
- 30. Закон об охране программ для ЭВМ и баз данных.
- 31. Закон о защите личных данных.

Тема 4. Симметричные системы шифрования

- 32. Симметричные системы шифрования с одним ключом.
- 33. Достоинства и недостатки шифров с одним ключом.
- 34. Создание шифров на основе блочных алгоритмом перестановки.
- 35. Стандарты шифрования DES, 3DES и ГОСТ.
- 36. Стандарт шифрования AES

Тема 5. Асимметричные системы шифрования (с открытым ключом)

37. Асимметричные системы шифрования с открытым ключом.

- 38. Достоинства и недостатки шифров с открытым ключом.
- 39. Способы передачи секретного ключа.
- 40. Создание ключа на основе псевдослучайных последовательностей.
- 41. Примеры шифров на основе алгоритма Эль-Гамаля и алгоритма RSA.

Тема 6. Использование шифров для защиты информации

- 42. Аутентификация (подмена данных, хэш-функция, защита от подмены данных).
- 43. Цифровая подпись (создание цифровой подписи, атаки и защита цифровой подписи).
- 44. Стандарты на электронно-цифровую подпись: DSS и ГОСТ Р 34.10-94.
- 45. Цифровая подпись на базе шифра RSA и шифра Эль-Гамаля.

Тема 7. Хэш-функции

- 46. Определение хэш-функция
- 47. Назначение хэш-функций
- 48. Основные принципы построений хэш-функций
- 49. Принцип работы «Итеративная последовательная схема»
- 50. Принцип работы «Сжимающая функция на основе симметричного блочного алгоритма»
- 51. Применение хэш-функций в цифровой подписи
- 52. Проверка паролей с помощью хэш-функции
- 53. Сравнительная характеристика наиболее известных функций

Тема 8. Криптографические протоколы.

- 54. Основные понятия, классификация протоколов.
- 55. Протоколы аутентификации (разделение доступа к информации пароли).
- 56. Протоколы цифровой подписи (связь аутентификации и цифровой подписи).

Тема 9. Средства идентификации и аутентификации в компьютерных системах

- 57. Классификация средств идентификации и аутентификации в КС
- 58. Аутентификация по многоразовым паролям.
- 59. Протокол аутентификации Kerberos.
- 60. Протокол аутентификации RADIUS.
- 61. Аутентификация по предъявлению цифрового сертификата.
- 62. Использование смарт-карт и USB-ключей с шифрованием.
- 63. Генерация ключевой пары вне устройства.
- 64. Генерация ключевой пары с помощью устройства.

ПРАКТИЧЕСКИЕ ЗАДАНИЯ

(приветствуется использование ПК для построения алгоритма и решения задачи, Python)

ЗАДАНИЕ 1. Сообщение, зашифрованное в пункте А шифром простой замены в алфавите из букв русского языка и знака пробела (-) между словами, передается в пункт Б отрезками по 12 символов. При передаче очередного отрезка сначала передаются символы, стоящие на четных местах в порядке возрастания их номеров, начиная со второго, а затем - символы, стоящие на нечетных местах (также в порядке возрастания их номеров), начиная с первого. В пункте В полученное шифрованное сообщение дополнительно шифруется с помощью некоторого другого шифра простой замены в том же алфавите, а затем таким же образом, как и из пункта А, передается в пункт В. По перехваченным в пункте В

отрезкам:

СО-ГЖТПНБЛЖО РСТКДКСПХЕУБ -Е-ПФПУБ-ЮОБ СП-ЕОКЖУУЛЖЛ СМЦХБЭКГОЩПЫ УЛКЛ-ИКНТЛЖГ

восстановите исходное сообщение, зная, что в одном из переданных отрезков зашифровано слово

КРИПТОГРАФИЯ.

ЗАДАНИЕ 2. Расшифруйте исходное изречение, зашифрованное методом перестановки: Изречение французского философа Жана-Поля Сартра: ИНККО ОТСОЧ ЯЧПОТ ЕАРЕЯ ОЛНЕА АЕМТК ОНСТШ

ЗАДАНИЕ 3. Расшифруйте исходное изречение, зашифрованное методом перестановки: Изречение немецкого ученого-гуманиста Эразма Роттердамского: ЙЫТЫР КСТНА ЛАТЕН ТЕАДЗ ОСИИЦ АТУПЕ РОООО

ЗАДАНИЕ 4. Вам пришло зашифрованное сообщение:

ЫЛЧУЩЗКГУВ

Найдите исходное сообщение, если известно, что шифрпреобразование заключалось в следующем. Пусть x1, x2 - корни трехчлена x2+3x+1. К порядковому номеру каждой буквы в стандартном русском алфавите (33 буквы) прибавлялось значение многочлена f(x)=x6+3x5+x4+x3+4x2+4x+4, вычисленное либо при x=x1, либо при x=x2 (в неизвестном нам порядке), а затем полученное число заменялось соответствующей ему буквой.

ЗАДАНИЕ 5.

Текст
ЦЗЩИОНФЛЦЩРИОПЖЩЭЩХЖНФЛТЪЙ
ЗНЛУФ_АЩЛЗПИАЗНЭПЬОИВЛОПАЛ
АПАЛТЪЙЗЛЖФЛЦЗВХФОЛХПИОЩОН
ЛЪИЦЩУДЁЩЭПЖЪВЛЗПЁУЪХЖНШЛИ
ЪЮЭЩУЩЭЛЭЛЩОАЗНОЩЮЛОФАИОФ.
получен из исходного текста шифром простой замены. А текст ЯАЧЕЕТВТВРАКНОО_ЛТКЛЛОРСТА
РИФШЫ_ПС_ЫЗХО_ЫКЫК_ОВОТЕНЕ

ЛСЯДЫП_ЧРВПСАК_ЕЗ_СГРМАОТН СВ_ЕПР_Н_КТСЫОРААИТОООТИК_ ТРИ_НО_ТЧЧЬЫШВЮ_ФАИ_МЕИСЯ.

получен из исходного простым перестановочным шифром. Найти исходное сообщение.

ЗАДАНИЕ 6.

Расшифруйте исходное изречение, зашифрованное методом перестановки:

Изречение польского писателя-фантаста Станислава Лема:

ТОУМА МЕЖЕЧ ЫАООО ОММГЗ ЕСНМЕ ДЕООО ЧЫАОД НЛОТМ УМООО ТДЕРО ЕОЧОМ МОООО

ЗАДАНИЕ 7.

Расшифруйте исходное изречение, зашифрованное методом перестановки:

Изречение датского ученого-физика Нильса Бора:

ТПРРО УСЕБД ООДИН ОБЖВЛ ООЕЕУ ИОЧОЕ НАДЮ ЩНЬЕУ ОТДБУ

ЗАДАНИЕ 8.

Расшифруйте исходное изречение, зашифрованное методом перестановки:

Изречение американского писателя Джона Стейнбека:

АРЕНО ЫЕТМО ЕЖОИБ ЕДДЖЙ ЯПТВС ОДОКМ ПСИОЖ ОЙЛГО ОИЕНТ

ЗАДАНИЕ 9

Зашифруйте число 2, используя алгоритм RSA.

ЗАДАНИЕ 10

Шифрование методом блочной перестановки. Зашифруйте фразу «Чтобы пройти Путь воина, ты должен укрепить свое сердце» с помощью блочного алгоритма перестановки. Напишите программу для шифрования текста.

Описание алгоритма блочной перестановки. Исходный текст записывается в строки таблицы (например, по 15 символов в строке). Затем буквы текста переставляются по определенным правилам внутри шифруемого блока символов. Пустые ячейки таблицы можно заполнить любыми символами. Для получения шифротекста надо считать буквы по столбцам и записать их в виде строки с разбивкой на пятерки букв.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
К	P	И	п	T	0	A	Н	A	л	И	3	ш	И	Φ
P	0	В	A	н	Н	0	Г	0	T	E	К	С	T	A

Например: задан открытый текст «КРИПТОАНАЛИЗ ШИФРОВАННОГО ТЕКСТА». разбивка текста на блоки по 5 букв «КРИПТ ОАНАЛ ИЗШИФ РОВАН НОГОТ ЕКСТА». шифротекст будет иметь вид «АТСКЕ ТОГОН НАВОР ФИШЗИ ЛОНАО ТПИРК».

ЗАДАНИЕ 11

Шифрование методом блочной перестановки с ключом. Зашифровать фразу «Чтобы пройти Путь воина, ты должен укрепить свое сердце» с помощью блочного алгоритма перестановки с ключом. Напишите программу для шифрования и дешифрования. Выполните криптоанализ шифрованного текста.

Описание алгоритма блочной перестановки с ключом. Символы шифруемого текста переставляются по определенным правилам внутри шифруемого блока символов. В качестве ключа выбирается любое слово и записывается в верхнюю строку таблицы. Например, в качестве ключа возьмем слово «информация». Буквы ключа нумеруются в алфавитном порядке (A=1, И=2, вторая И=3; М=4) и записываются в следующую строку таблицы. В следующих строках записывается исходный текст. Пустые ячейки можно заполнить любым символом (например, «ь»).

И	H	Φ	0	P	M	A	Ц	И	R
2	5	8	6	7	4	1	9	3	10
M	E	T	0	Д	Б	Л	0	ч	Н
0	Й	п	E	P	E	С	T	A	Н
0	В	К	И	И	К	л	Ю	ч	Ь

Для получения шифротекста надо выписать буквы по столбцам (с учетом нумерации столбцов, заданной ключевым словом). Для расшифровки надо записать шифротекст в таблицу по столбцам (учитывая номера столбцов).

Например: задан открытый текст «МЕТОД БЛОЧНОЙ ПЕРЕСТАНОВКИ и КЛЮЧ». Получаем шифротекст вида «ЛСЛМООЧАЧБЕКЕЙВОЕИДРИТПКОТЮННЬ».

Список использованных источников

- 1. Коржик В.И., Яковлев В.А. Основы криптографии, 2017 http://www.iprbookshop.ru/66798.html
- 2. Фороузан Бехроуз А. Криптография и безопасность сетей Интернет-Университет Информационных Технологий (ИНТУИТ), Вузовское образование, 2017
- 3. Торстейнсон П. Ганеш Г.А. Криптография и безопасность в технологии .NET БИНОМ. Лаборатория знаний, 2015