## Chap1-2: Outline

Distinguish between two kinds of infinite sets, the enumerable and the nonenumerable (可枚举集和不可枚举集)

- The concepts
- Examples of enumerable sets
- Examples of nonenumerable sets



### An intuitive definition

An enumerable, or countable set is one whose elements can be enumerated: arranged in a single list.

## Example

- $\bullet$  The set  ${\bf Z}^+$  of positive integers:  $1,2,3,4,\ldots$
- The set of integers:  $0, -1, 1, -2, 2, \dots$



## Some remarks on the intuitive definition

- The list may be empty, finite or unending
- The following list of integers is not acceptable

$$-1, -2, -3, \ldots, 0, 1, 2, 3, \ldots$$

So each element of the set must appear as the nth entry, for some  $n \in \mathbf{Z}^+$ 

It is ok if some members show up more than once on the list,
e.g.,

$$\mathbf{Z}^+: 1, 1, 2, 2, 3, 3, \dots$$

• It is also ok if no element shows up on some positions of the list, e.g.

$$\mathbf{Z}^+: 1, -, 2, -, 3, -, \dots$$



# Terminology regarding functions

- Let A and B be nonempty sets. A function from A to B is an assignment of exactly one element of B to each element of A.
- A partial function from A to B is an assignment of at most one element of B to each element of A. For  $a \in A$ , if no element of B is assigned to a, we say that f(a) is undefined, denoted by  $f(a) = \perp$ .
- The domain of f is the set of elements a such that f(a) is defined.
- If f(a) is defined and f(a) = b, we say that b is the image of a. The range of f is the set of all images of elements of A.



# Terminology regarding functions (2)

- A function f is said to be one-to-one, or injective if  $\forall a \forall b (f(a) = f(b) \rightarrow a = b)$ . A function is said to be an injection if it is one-to-one.
- A function f from A to B is called onto, or surjective if  $\forall b \in B \exists a \in A(f(a) = b)$ . A function is said to be an surjection if it is onto.
- A function f is a one-to-one correspondence, or a bijection if it is both one-to-one and onto.
- ullet Two sets A and B are equinumerous (等势的) if there is a bijection between A and B



## The formal definition

#### Definition

A set is enumerable if it is the range of some partial function from  ${f Z}^+$ .

### Proposition.

The following are equivalent:

- A set A is enumerable
- ullet There exists a surjection from  ${f Z}^+$  to A
- There exists an injection from A to  ${\bf Z}^+$
- There exists a bijection between A and a subset of  $\mathbf{Z}^+$ .

Proof: Exercise



# Examples

- The empty set, any finite set
- The set of negative integers
- The set of even positive integers
- Any subset of positive integers
- The set of integers





# Example: $\mathbf{Z}^+ \times \mathbf{Z}^+$

Different ways of proving that it is enumerable

A pairing function is an injection from  ${f Z}^+ imes {f Z}^+$  to  ${f Z}^+$ 

## Method 1: Cantor's pairing function

$$(1,1)-(1,2)$$
  $(1,3)$   $(1,4)$   $(1,5)$  ...  $(2,1)$   $(2,2)$   $(2,3)$   $(2,4)$   $(2,5)$  ...  $(3,1)$   $(3,2)$   $(3,3)$   $(3,4)$   $(3,5)$  ...  $(4,1)$   $(4,2)$   $(4,3)$   $(4,4)$   $(4,5)$  ...  $(5,1)$   $(5,2)$   $(5,3)$   $(5,4)$   $(5,5)$  ...  $\vdots$   $\vdots$   $\vdots$   $\vdots$   $\vdots$   $\vdots$   $\vdots$ 

$$J(m,n) = \frac{(m+n-2)(m+n-1)}{2} + m$$



# Example: $\mathbf{Z}^+ \times \mathbf{Z}^+$ (2)

#### Method 2

- Imagine we have a hotel with an enumerable infinity of rooms
- Each day we have an enumerable infinity of guests
- How should we accommodate all the guests?
  - In Day 1, we put each guest in every other room
  - In Day 2, we put each guest in every other remaining room
  - . . .
- What is the pairing function?
  - j(1,n) = 2n 1, 2n's remain
  - j(2,n) = 2(2n-1), 4n's remain,
  - j(3,n) = 4(2n-1), 8n's remain
  - $j(m,n) = 2^{m-1}(2n-1)$



# Example: $\mathbf{Z}^+ \times \mathbf{Z}^+$ (3)

### Method 3

• 
$$f(m,n) = 2^m 3^n$$



# More examples

- The set of positive rational numbers
- ullet The set of ordered k-triples of positive integers, for any fixed k
- The set of finite sequences of positive integers
  - Method 1:  $f((a_1, ..., a_n)) = J(n, J_n((a_1, ..., a_n)))$
  - Method 2:  $f((a_1,\ldots,a_n))=p_1^{a_1}\cdot\ldots\cdot p_n^{a_n}$
- The set of finite sets of positive integers
- any subset of an enumerable set
- the union of any two enumerable sets
- The set of finite strings from an enumerable alphabet of symbols



# Examples of nonenumerable sets

### Cantor's diagonal argument

### $\mathsf{Theorem}$

The set of functions from  ${\bf Z}^+$  to the set  $\{0,1\}$  is not enumerable.

|                         | 1        | 2        | 3        | 4        |    |
|-------------------------|----------|----------|----------|----------|----|
| $s_1$                   | $s_1(1)$ | $s_1(2)$ | $s_1(3)$ | $s_1(4)$ |    |
| s <sub>2</sub>          | $s_2(1)$ | $s_2(2)$ | $s_2(3)$ | $s_2(4)$ |    |
| 53                      | $s_3(1)$ | $s_3(2)$ | $s_3(3)$ | $s_3(4)$ |    |
| 54                      | $s_4(1)$ | $s_4(2)$ | $s_4(3)$ | $s_4(4)$ |    |
| <i>S</i> <sub>4</sub> : | ÷        | :        | :        | ÷        | ٠. |



# Examples of nonenumerable sets

#### Cantor's Theorem

The set of all sets of positive integers is not enumerable.

Proof: diagonal argument

### Corollary

The set of real numbers is not enumerable.

Proof: We construct an injection from  $P(\mathbf{Z}^+)$  to (0,1):  $f(S)=0.a_1a_2\ldots a_n\ldots$ , where  $a_n=1$  if  $n\in S$ , and 2 otherwise.





## A more general result

### **Theorem**

For any set S, there does not exist a surjection from S to P(S).



# Some terminology

- Theorem: important general result
- Lemmas: less important results on the way to a theorem
- Corollaries: directly follow from a theorem
- Propositions: free-standing less important results



