Convex Optimization

Tutorial 2

Tanmay Garg CS20BTECH11063

- In our problem our main variable is X, which denote the currency exchanges that we carry out, with $X_{ij} \ge 0$ the amount of currency j we exchange on the market for currency i
- For each currency j, we exchange into i, a total of $\sum_i X_{ij}$ is exchanged, the vector representing this would be $X^T 1$
- For the exchange of X_{ij} of currency j, we receive $\frac{X_{ij}}{F_{ij}}$ of currency i. We receive a total amount of currency i which is $\sum_j \frac{X_{ij}}{F_{ij}}$, the vector representing this would be X/F 1
- The amount of currency after all exchanges would be equal to

$$\circ \quad pea = c_{init} - X^T 1 + \frac{X}{F} 1$$

• The cost function for this entire transaction is

$$\circ coe = \sum_{j} (c_{init} - pea) \sqrt{\frac{F_{j1}}{F_{1j}}}$$

- The following are the constraints
 - $\circ X \ge 0$
 - $\circ X_{ii} = 0, \forall i$
 - \circ $c_{init} \geq X^T 1$
 - ∘ $pea \ge c_{req}$
- We minimize the cost function with X, pea being the optimization variables
- The constraints were given in the problem statement
- The cost function was written based on the "currency holdings value" in USD
- Our main variable was X, and we had to find its optimal value so that it can minimize our cost of exchanges in USD