

Nano-Imprint Lithography: Alignment and Distortions <u>Jérôme Rêche</u>, Anaïs De Lehelle d'Affroux, Api Warsono | 2023/05/12

Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France

Les besoins de la micro-electronique?

Trois critères cités

- Vitesse
- Les critères cachés

Compatibilité

Résolution

Coût

- Intégration
- Remplacement procédé actuel
- Environnement

• ...

Répétabilité

- Uniforme
- D'une fois sur l'autre
- Stabilité long termes
- ...

- 1. La technologie NIL utilisée au LETI
- 2. Overlay: principe et application au NIL
- 3. La distorsion quelle contribution?
- 4. L'alignement bilan et correction
- 5. Conclusions & perspectives

Procédé de nanoimpression au CEA-Leti

Création d'un moule souple intermédiaire

7- Démoulage

Réplication

- Caractérisations
 - Défectivité
 - Overlay
 - SEM cross-section : Forme des motifs et profondeur

6- Stabilisation UV/Thermique

■ CD-SEM : Statistique sur les CD

8a - Ouverture resine

8b - Gravure Si

- 1. La technologie NIL utilisée au LETI
- 2. Overlay: principe et application au NIL
- 3. La distorsion quelle contribution?
- 4. L'alignement bilan et correction
- 5. Conclusions & perspectives

L'overlay

Principe de base

~5nm jusqu'à ½ taille de la boite (15µm ici)

Dans le cadre d'un NIL dit « wafer scale »

Global alignment

- 1. La technologie NIL utilisée au LETI
- 2. Overlay: principe et application au NIL
- 3. La distorsion quelle contribution?
- 4. L'alignement bilan et correction
- 5. Conclusions & perspectives

Indicateurs d'évolution de la distorsion

Contribution suivant l'axe Y > l'axe X

Jusqu'à +/- 13 µm de distorsion

Zone de distorsion faible répétable

Amélioration sur X et Y

Signature répétable et réduite

- Prise en compte sur le Hardware
- Paramétrage procédé
 - Temps d'attentes
 - Contrôle des vitesses
 - Gestion de la température

< 2 µm dans les deux axes!

- 1. La technologie NIL utilisée au LETI
- 2. Overlay: principe et application au NIL
- 3. La distorsion quelle contribution?
- 4. L'alignement bilan et correction
- 5. Conclusions & perspectives

Un alignement deux optiques

Avant la mise en contact d'impression

- Centrage du master
- Visualisation des marques dans la gamme de recherche
- Alignement des marques sur un même axe

- Alignement marques « Male-Femelle »
- Apprentissage premier wafer puis traitement automatique
- Possibilité d'ajouter des corrections

La mesure OVL

Measure	Х	Y
Mean (nm)	-194.1	-250.4
3σ (nm)	2947.1	3161.7
Mean + 3σ (nm)	3141.2	3412.1

Model		
XTran (nm)	-193.0	
YTran (nm)	-258.9	
Rot (urd)	10.5	

- Translation X et Y
- Une rotation globale
- → Impossible de mettre plus de corrections

Transcription en un modèle

Décalage moyen < 250nm dans les deux axes

Application des corrections

Measure	X	Υ
Mean (nm)	-194.1	-250.4
3σ (nm)	2947.1	3161.7
Mean + 3σ (nm)	3141.2	3412.1

Après

Measure	Χ	Υ	Mo	del
Mean (nm)	-126.5	-300.2	XTran (nm)	-126.6
3σ (nm)	3175.8	1160.1	YTran (nm)	-299.8
Mean + 3σ (nm)	3302.4	1460.3	Rot (urd)	-1.4

- Fluctuation valeur moyenne sans amélioration notable
- Amélioration forte sur l'axe Y → Il reste l'équivalent de la distorsion
- Rotation fortement amélioré

Corrections fonctionnelles mais limités en précision

- 1. La technologie NIL utilisée au LETI
- 2. Overlay: principe et application au NIL
- 3. La distorsion quelle contribution?
- 4. L'alignement bilan et correction
- 5. Conclusions & perspectives

Conclusions

- Distorsion en dessous des 2 µm dans les deux axes
- Un alignement pur proche des 250 nm (X/Y)

Measure	Χ	Υ	
Mean (nm)	-126.5	-300.2	
3σ (nm)	3175.8	1160.1	
Mean + 3σ (nm)	3302.4	1460.3	

- Correction OVL avec un modèle dédier
 - Des fluctuations importante du plaque à l'autre qui limite le résultat
 - Un part restante très proche de la distorsion

Des résultats prometteurs mais qui demandent à être stabilisés

Perspectives

- Amélioration de l'alignement global
 - Définir les limites de répétabilité
 - Changement d'optique
 - Diminution de la distance WS/Substrat lors de l'alignement
- Réduction de la distorsion
 - Obtenir moins de 1 µm sur les deux axes
 - Exploration de phénomènes physique supplémentaires
 - Prise en compte de la distorsion dans la réalisation des masters

overlay

Global alignment

modeled

Retour en force des aspects « défectivité »

residue

Merci de votre attention!