

Data Warehouse

Cinzia Cappiello A.A. 2023-2024

•

1

Outline

- What is a Data Warehouse?
- Data Warehouse Architecture
- Data Warehouse operations

OLTP and **OLAP** systems

OLTP (Standard DB)	<u>OLAP</u>	
Mostly updates	Mostly reads	
Many small transactions	Queries are long and complex	
Current snapshot	History	
Raw data	Summarized, reconciled data	
Thousands of users (e.g., clerical users)	Hundreds of users	

7

OLAP properties

- FASMI
 - o Fast
 - o Analytical
 - o Shared
 - o Multidimensional
 - o Informational

Data Warehouse

What is a Data Warehouse?

- Data should be integrated across the enterprise(s)
- Summary data provide real value to the organization
- Historical data hold the key to understanding data over time
- What-if capabilities are required

11

What is a Data Warehouse?

A single, complete and consistent store of data obtained from a variety of different sources made available to end users, so that they can understand and use it in a business context.

[Barry Devlin]

An alternative definition of Data Warehouse

A data warehouse is a process for transforming data into information and for making it available to users in a timely enough manner to make a difference.

[Forrester Research, April' 96]

Data

13

Data Warehouse

As a dataset: decision support database maintained separately from the organization's operational database

As a process: technique for assembling and managing data from various sources with the purpose of answering business questions. Thus making decisions that were not previously possible

OLAP Properties

- OLAP systems are characterized by FASMI properties:
 - o Fast
 - Analytical
 - Shared
 - Multidimensional
 - o Informational

15

•

Data Warehouse

- A Data Warehouse is a
 - subject-oriented: "the data contained in a data warehouse are primarily concerned with the main entities of interest for the analysis, such as products, customers, orders and sales"
 - Integrated: "The data originating from the different sources are integrated and homogenized as they are loaded into a data warehouse"
 - \circ $\,$ time-variant: "All data entered in a data warehouse are labelled with the time period to which they refer"
 - o non-volatile (persisent): "Once they have been loaded into a data warehouse, data are usually not modified further and are held permanently "
- collection of data that is used primarily in organizational decision making.

[Bill Inmon, Building the Data Warehouse, 1996]

Dimensions of a Data Warehouse

- Data warehouses are <u>very</u> large databases
 - o Terabytes (10¹² bytes)
 - o Petabytes (10¹⁵ bytes): e.g. Geographic Information Systems
 - o Exabytes (10¹⁸ bytes): e.g. National Medical Records
 - o Zettabytes (10²¹ bytes): e.g. Weather reports, including images
 - o yottabytes (10²⁴ bytes): e.g. Intelligence Agency Videos

•

Where is a DW useful

- **Commerce**: sales and complaints analysis, client fidelization, shipping and stock control
- Manufacturing plants: production cost control, provision and order support
- Financial services: risk and credit card analysis, fraud detection
- **Telecommunications**: call flow analysis, subscribers' profiles
- Healthcare structures: patients' ingoing and outgoing flows, cost analysis

•

19

ETL (Extraction, Transformation, Loading)

- Extraction: data are extracted from the available internal and external sources.
- Transformation: the goal of the transformation phase is to improve the quality of the data extracted. Some of the main operations that are executed are:
 - o Data Cleaning
 - o Reconciliation, Entity Matching
 - $\circ \quad \text{Data standardization} \\$
 - Deduplication
- Loading: after being extracted and transformed data are loaded into the data warehoise

•

Metadata

- Metadata contain the following data:
 - o Information about the data warehouse structure (e.g., dimensions, hierarchies, fact)
 - Information about values stored in the data warehouse: each attribute is characterized by its provenance, e.g., which is the data sources from which data were extracted and the transformations to which they have been subjected
 - o Usage statistics of the data warehouse, e.g. number of accesses to a field
 - Description of the application domain and related data properties, data ownership and loading policies

•

22

Examples of data warehouse queries

- Show total sales across all products at increasing aggregation levels for a geography dimension, from state to country to region, for 2017 and 2018.
- Create a cross-tabular analysis of our operations showing expenses by territory in South America for 2017 and 2018. Include all possible subtotals.
- List the top 10 sales representatives in Asia according to sales revenue for automotive products in year 2018, and rank their commissions.

.

OLAP-oriented data models

- must support sophisticated analyses and computations over different dimensions and hierarchies
- Must guarantee fast responce time even to complex queries
- Most appropriate data model: multidimensional model

•

24

Dimensional Fact Model

Allows one to describe a set of

fact schemata

- The components of a fact schema are:
 - o Facts
 - Measures
 - o Dimensions
 - o Dimension Hierarchy

Dimensional Fact Model

- A fact is a concept that is relevant for the decisional process;
 typically it models a set of events of the organization
- A measure is a numerical property of a fact
- A dimension is a fact property defined w.r.t. a finite domain; it describes an analysis coordinate for the fact, it is a perspective for analysing data
- **Dimension Hierarchy**: relate low-level (detailed) concepts to higher-level (general concepts)
 - o Example: Store City Region/Province Country

26

Dimensional Fact Model

- The multidimensional view of data is represented as a data cube or an hypercube
- Cube dimensions are the search keys
- Each dimension may be hierarchical
 - o DATE {DAY-MONTH-TRIMESTER-YEAR}
 - o PRODUCT {BRAND TYPE CATEGORY}

(e.g. LAND ROVER - CARS - VEHICLES)

Cube cells contain metric values

Example sales * ESSELUNGA S.p.A. *
VIA CORRIDONI n.30 - BERGAMO (BG)
P.I.: 04916380159 GSK DENT. AQUAFRESH GSK DENT. AQUAFRESH GSK DENT. AQUAFRESH GSK DENT. AQUAFRESH SCHIACCIATE OLTVAMARI CRACKERS OLIVIA&MARIN GRISS POMODORO OL&MAR 1,19 0,99 0,99 0,99 0,99 1,29 1,79 1,49 8 × 2,99
BONDUE. COCCOLE SPINA
SCONTO FIDATY 30% 23,92 7,20-S MEASURES Price=1.29 Quantity=1 Discount=0 TOTALE EURO
PAGAMENTO SCONTO EURO
PAGAMENTO BUONI SCONTO
PAGAMENTO BANCOMAT 26,44 x 0,04 9,50 16,90 Prod.: RESTO N. CARTA FIDATY: 040*******92 ----- NLOVA RACCOLTA PUNTI --SALDO AD OGGI PUNTI PUNTI SULLA SPESA TOT. PUNTI FIDATY NUOVO SALDO PUNTI 4.744 4.786

Examples

- Store chain
 - o Fact: sales
 - o Measures: sold quantity, gross income
 - o Dimensions: product, time, zone
- Telecom Operator
 - o Fact: phone call
 - o Measures : cost, duration
 - o Dimensions: caller subscriber, called subscriber, time

OLAP operations

- Slice/Dice
- Roll up/Drill down

Typical Olap Operations

slice-and-dice

- The slice operation performs a selection on one dimension of the given cube, resulting in a subcube
- o The **dice** operation defines a subcube by performing a selection on two or more dimension

roll-up

 Aggregates data at a higher level – e.g. last year's sales volume per product category and per region

drill-down

 \circ $\,$ De-aggregates data at the lower level – e.g. for a given product $\,$ category and a given region, show daily sales

pivoting

 $\circ\quad$ Selects two dimensions to re-aggregate data (cube re-orientation)

ranking

- o Sorts data according to predefined criteria
- traditional operations (select, project, join, derived attributes, etc.)

34

Slice/Dice operations

sales Roll Up

Time	Product	Store	Price
T1	P1	PV1	3,5
T1	P2	PV2	4
T1	P1	PV3	4
T2	P2	PV3	5
T2	P2	PV1	4
T2	P1	PV2	3

T1	P1	Lombardia	7,5
T1	P2	Lazio	4
T2	P2	Lombardia	9
T2	P1	Lazio	3

Amount of sales per region

Visualization and Reports

Data may be visualized graphically, in an Excel-like format: tables, hystograms, graphics, 3D surfaces, etc.

Aggregate Queries

Examples:

- Total sales per product category, per supermarket, per day
- Total monthly sales for all the products, per supermarket
- Total monthly sales per category per supermarket
- Avg. monthly sales per category, for all supermarkets

•