Математическая логика

Ипатов Марк

24 апреля 2022 г.

Содержание

1.	Множества, мощность множеств		1
	1.1	Равномощные множества	1
	1.2	Об операциях над мощностями	3
2. Частично упорядоченные множества		5	
	2.1	Про отношение	5

1. Множества, мощность множеств

1.1. Равномощные множества

...тут я ещё не начинал записывать

Определение 1.1. Множества A и B равномощны, если \exists биекция между A и B

Замечание. Равномощность является отношением эквивалентности. Очев.

Возможная, но не совсем корректная трактовка — равномощные множества — содержащие равное количество элементов. Для конечных это действительно верно.

Определение **1.2.** Множество называется счётным, если оно равномощно множеству натуральных чисел.

Пояснение: мы считаем натуральными числами множество $\{1,2,3,\cdots\}$, но никакой разницы с $\{0,1,2,3,\cdots\}$ нет, т.к. существует биекция из одного в другое $-i \rightarrow i-1$.

Пример. Чётные числа — счётное множество. Биекция — $i \to 2 \times i$

Лемма. A, B — счётны $\Rightarrow A \cup B$ — счётно при $A \cap B = \emptyset$.

Доказательство. $\exists f: N \to A \Rightarrow A : \{a_1, a_2, a_3, \dots\}$

Аналогично $B: \{b_1, b_2, b_3, \cdots\}$

Тогда запишем:

$$C: \{a_1, b_1, a_2, b_2, \dots\}, c_{2i-1} = a_i, c_{2i} = b_i$$

Cледcmвиe. \mathbb{Z} — счётно.

Доказательство. $\mathbb{Z} = \{0, 1, 2, \cdots\} \cup \{-1, -2, -3, \cdots\}$, первое равномощно \mathbb{N} , как и второе, а значит \mathbb{Z} — счётно по предыдущей лемме.

Лемма. B — счётное, $A \subset B$, тогда A — конечное или счётное.

Доказательство. B — счётно, тогда можно записать B : $\{b_1, b_2, \cdots\}$

Раз A подмножество, то просто часть элементов отсутствует. Тогда мы пойдём сопоставлять числа оставшимся элементам. Первое оставшееся — 1, второе — 2, и т.д. Тогда или в какой-то момент у нас закончатся оставшиеся числа, т.е. найдётся то, после которого нет оставшихся, и тогда A — конечно, или мы построим биекцию между A и натуральными числами. Это биекция, поскольку это инъекция и сюръекция (мы каждому натуральному поставили число, и всем элементам A что-то одно сопоставили)

Теорема 1.1 (Лемма). Любое бесконечное множество содержит счётное подмножество.

Определение 1.3. Множество X бесконечно, если $\forall i \in \mathbb{N}$ можно найти i различных элементов из X.

Доказательство. Возьмём элемент из X. Назовём его a_1 . Если в X не осталось элементов, значит в нём был всего один элемент. Иначе возьмём из X какой-то другой элемент, назовём его a_2 . Если снова не осталось, то было всего два элемента. И так далее, построили $Y = \{a_1, a_2, a_3, \cdots\}$, и $Y \subset X, f : \mathbb{N} \Leftrightarrow Y$.

Пример. Счётное множество, для которого мы таким процессом не докажем счётность: $X = \{1, 2, 3, \cdots\}, Y = \{2, 4, 6, \cdots\}$. Иными словами, мы все элементы из X далеко не обязательно вытащим.

Пример. Множество (0,1) не является счётным.

Следствие. $A_1, A_2, A_3, \cdots, A_k$ — счётны $A_1 \cup A_2 \cup \cdots A_k$ — счётно

Доказательство. Для дизъюнкных всё хорошо понятно. Для недизъюнктных:

Посмотрим на A_1 и A_2

 A_1 . Оба счётны, а тогда $A_1 \cup A_2 = A_1 \sqcup (A_2 A_1)$

Теперь воспользуемся индукцией по k: База: A_1, A_2 счётны по условию, тогда $A_1 \cup A_2$ тоже счётно. Тогда $(A_1 \cup A_2 \cup A_3 \cdots A_k) = ((\cdots ((A_1 \cup A_2) \cup A_3) \cup \cdots) \cup A_k)$

Лемма. A_1, A_2, \dots счётное число счётных множеств, т.е. для любого $i \exists A_i$.

Тогда $A_1 \cup A_2 \cup \cdots$ тоже счётно.

Доказательство. A_1 счётно, тогда $A_1:\{a_{11},a_{12},a_{13},\cdots\}$. Аналогично $A_2:\{a_{21},a_{22},a_{23},\cdots\}$ И так далее ещё счётное число строк.

Теперь нам нужно эту таблицу представить в виде последовательности. Будем ходить по диагоналям: $a_{11}, a_{12}, a_{21}, a_{13}, a_{22}, a_{31}, \cdots$

Утверждение — любой элемент будет выписан. Рассмотрим элемент множества i номер j, тогда оно будет на i+j-ой диагонали, а значит его номер точно не будет превышать $(i+j)^2$. Тогда получаем, что любой элемент будет выписан.

Это всё для непересекающихся множеств, а для пересекающихся — давайте просто не выписывать элементы, которые уже выписали. \Box

Упражнение. $\mathbb{N}, \mathbb{Z}-$ счётны. [0,1)- несчётно (просто знаем), знаем $\mathbb{R}-$ несчётно. $\mathbb{Q}-$ счётно или нет?

Доказательство. \mathbb{Q}_+ счётно. Давайте представим его в виде $A_1 \cup A_2 \cup \cdots$, где $A_i = \{\frac{m}{i} | m \in \mathbb{N}\}$. Т.к. любое из \mathbb{Q}_+ так представляется, то в такое объединение попадёт всё \mathbb{Q}_+ .

Лемма. A, B — счётны, тогда $A \times B$ — счётно.

Доказательство. A, B — счётны, тогда $A: \{a_1, a_2, \cdots\}, B: \{b_1, b_2, \cdots\}$ Элементы из $A \times B$ выглядят так: (a_i, b_j) , тогда давайте запишем следующее:

 $A_1 = a_1 \times B = \{(a_1,b_1),(a_1,b_2),(a_1,b_3),\cdots\},\ A_2$ аналогично, и так далее. Тогда каждое A_i счётно, и их счётное число, значит их объединение, которое и есть $A \times B$ счётно, по доказанной лемме.

Двигаемся к несчётным множествам.

Лемма. Пусть A бесконечно, а B — конечно. Тогда $A \cup B$ равномощно A.

Доказательство. B заменим на B' = B/A. B' или станет пустым, или останется конечным.

Очевидно, что $A \cup B = A \sqcup B'$

У A есть счётное подмножество $A' = \{a_1, a_2, \cdots\}$, тогда $A = (A A') \cup A'$.

Хотим построить биекцию между $A = A' \cup (A$

A') и $A' \cup B' \cup (A A')$

Между частями $(A \setminus A')$ построим тождественную биекцию. А a_i будем отображать в b_i , если $i \leq k$, а в a_{i-k} если i > k. Понятно, что это биекция. Все элементы возьмём как из B, так и из a_i .

Замечание. Доказательство можно модифицировать для случая, когда B счётно. Тогда давайте на последнем шаге чётные отображать в a_i , а нечётные — в b_i .

Теорема 1.2. Множество X последовательностей (бесконечных) из нулей и единиц не счётно. (Бинарные строки бесконечной длины)

Доказательство. От противного: пусть счётен, тогда есть биекция $f: \mathbb{N} \to X$. Тогда выпишем последовательности $f(1), f(2), f(3), \cdots$. А теперь воспользуемся диагональным (методом Кантора): Посмотрим на элемент a_{11} , возьмём элемент $1-a_{11}$. Затем на элемент a_{22} , возьмём $1-a_{22}$. И так далее, строим последовательность $1-a_{ii}$. Получили бесконечную последовательность нулей и единиц, значит она элемент X. Но при этом она не может быть любой i-ой последовательностью, поскольку её i-ый элемент не совпадает с i-ым элементом строки i по тому, как мы строили нашу последовательность. Противоречие. Значит мы не можем вот так вот выписать наши элементы X, значит биекции f не существует.

Следствие. Множество чисел из отрезка [0,1] несчётно.

Доказательство. Покажем равномощность множеству X из теоремы. Из бесконечной последовательности число получить легко — припишем слева «0,», а все элементы последовательности запишем слитно. Могло показаться, что получили биекцию, но нет. У нас разные последовательности могут соответствовать одному числу — 0, $100000000 \cdots$ и 0, $011111111 \cdots$ — разные последовательности, но являются одним числом. Возьмём две последовательности — 0, $a_{11}a_{12}a_{13}\cdots$, 0, $a_{21}a_{22}a_{23}\cdots$. Утверждение — они задают одно число тогда и только тогда, когда они имеют один префиксы, а затем у одного числа идёт единица и после только нули, а у второго ноль и затем только единицы. Идём слева направо и найдём первый момент, когда они отличаются. В одном ноль, во втором единица. Далее всё идёт сколько0то, как мы предсказали, затем, что-то разойдётся и там можно оценить, что числа у нас уже отличаются на что-то, что не сможем покрыть дальнейшим. Спасибо Близнецу за успешно закрытую собой доску... Но там в любом случае очев = D А все числа такого вида это просто \mathbb{Q} (или что-то такого рода)((На самом деле оно даже не \mathbb{Q} , там только дроби вида сумма какого-то конечного числа отрицательных степеней двойки, что есть подмножество \mathbb{Q})). Тогда $X \equiv [0,1] \sqcup (\mathbb{Q} \cap [0,1])$. Результат пересечения счётен, а значит объединение равномощно бесконечной левой части, т.е. $X \equiv [0,1]$

Теперь знаем, что натуральные счётны, чётные счётны, целые счётны, рациональные положительные счётны, просто рациональные счётны. А вот действительные уже несчётны, т.к. содержат [0,1].

Пример. Множество точек границ треугольника и вписанного круга равномощны, т.к. можно построить биекцию из центра.

ТУТ ПРОПУЩЕНА ЛЕКЦИЯ. ДОСАДНО.

1.2. Об операциях над мощностями

Если хотим сложить множества (мощности), то нам нужна мощность следующего множества

$$A \times \{0\} \cup B \times \{1\}$$

О корректности — если выбирать разные множества одной мощности, то можно построить биекцию и не париться.

Очевидным образом коммутативны.

Произведение мощностей, ожидаемо, мощность произведения множеств.

С возведением в степень чуть сложнее: пусть |A| = a, |B| = b, то $a^b = |A^B|$, где последнее — множество всех функций, действующих из B в A.

Хотим проверить, что $A^{B \sqcup C} = A^B \times A^C$. Имеем $g: B \to A, h: C \to A$, и функция $f: B \cup C \to A$ взаимооднозначно определяет g и h.

Теперь хотим проверить, что $(ab)^c = a^c \times b^c$. Слева имеем $\{f: C \to A \times B\}$, а справа $\{f: C \to A\} \times \{g: C \to B\}$. Но тогда заметим, что там условно у первых функций есть две координаты, мощно рассмотреть проекции на A и на B и всё будет ок.

Остаётся $(a^b)^c = a^{b \times c}$. По сути $a^{b \times c}$ это $\{f | f : B \times C \to A\}$. Что плюс-минус есть $f_c(x) = f(x,c)$ — как только мы фиксируем c, у нас c отображается в функцию f_c , которая в свою очередь есть функция $B \to A$, что и написано слева, ура.

Зачем же нам всё это? Ну допустим хотим узнать, чем разно ω^c (ω — мощность счётного множества, c — континуального). Т.е. это есть $f: \mathbb{R} \to \mathbb{N}$. Знаем, что $\omega^c \leqslant c^c = (2^\omega)^c = 2^{\omega \times c} \leqslant 2^{c \times c} = 2^c$, но, в свою очередь $\omega^c \geqslant 2^c$, т.е. искомое множество зажато между 2^c и 2^c

Ну или ещё вариант — $c^{\omega} = (2^{\omega})^{\omega} = 2^{\omega \times \omega} = 2^{\omega} = c$, но при этом $c^{\omega} \geqslant 2^{\omega}$, снова зажали.

2. Частично упорядоченные множества

2.1. Про отношение

Пусть есть множество A, и ввели отношение эквивалентности $R \subset A \times A$. Оно должно удовлетворять следующим аксиомам:

- 1. $a \in A(a,a) \in R$ рефлексивность
- 2. $a, b \in A, (a, b) \in R \rightarrow (b, a) \in R$ симметричность
- 3. $a, b, c \in A, (a, b), (b, c) \in R \to (a, c) \in R$ транзитивность

Это хорошо, но нам оно не нужно, мы хотим отноешние порядка R', оно должно удовлетворять следующим аксиомам:

- 1. $a \in A(a,a) \in R$ рефлексивность
- 2. $a, b \in A, (a, b) \in R, (b, a) \in R \rightarrow a = b$ антисимметричность
- 3. $a, b, c \in A, (a, b), (b, c) \in R \to (a, c) \in R$ транзитивность

Обычно для него используют значок, например \leq . Можно рисовать более закорючно, но мне влом.

Теперь про частично упорядоченное множество. Возьмём (X, \leqslant) , всё, получили ЧУМ. Простейшие примеры — натуральные, рациональные, действительные числа и операция меньше-или-равно. Можно взять тривиальное отношение — в нём находятся только пары вида $(a, a), a \in X$, т.е. $a \leqslant'' b : a = b$. Ещё отношение порядка — рассмотрим 2^X , с отношением «являться подмножеством». Аксиомы, очевидно, выполняются.

Рассмотрим функции $f: \mathbb{R} \to \mathbb{R}, f \leqslant g \Leftrightarrow \forall x \in \mathbb{R} f(x) \leqslant g(x)$. Тут уже явно видно, что бывают несравнимые элементы. Тут, например, это пары функций, у которых на первой половине первая больше второй, а на второй половине — вторая больше первой.

Можно строить по \leqslant и отношение строгого порядка $<-x< y \Leftrightarrow x \leqslant y, x \neq y$. Его аксиомы:

- 1. $a \in A(a, a) \notin R$ антирефлексивность
- 2. $a, b, c \in A, (a, b), (b, c) \in R \to (a, c) \in R$ транзитивность

А теперь давайте размножать ЧУМы.

Пусть X, Y — ЧУМы. Тогда можно строить:

- 1. $X \sqcup Y$ внутри одной доли используется старое отношение, а элементы из разных долей просто несравнимы
- 2. X+Y- считаем, что любой элемент $X \le$ любого элемента Y. Пример возьмём натуральные числа и ещё раз натуральные числа. Тогда $5 < 6 < \cdots < 1' < 2'$, например.

3. $X \times Y$. Есть два варианта — покоординатно — $(x_1, y_1) \leqslant (x_2, y_2) \Leftrightarrow x_1 \leqslant x_2$ И $y_1 \leqslant y_2$. Второй вариант — лексикографически — $(x_1, y_1) \leqslant (x_2, y_2) \Leftrightarrow (x_1 < x_2)$ ИЛИ $((x_1 = x_2)$ И $(y_1 \leqslant y_2))$

Определение **2.1.** ЧУМ — линейный, если \forall два элемента сравнимы.

Определение **2.2.** Максимальный элемент — тот, больше которого нет. Наибольший элемент — который больше либо равен всех остальных.

Рассмотрим все подмножества трёхэлементного множества $\{a,b,c\}$. Можно нарисовать картинку, как они расположены, но я пока не гений картинок. В общем, если x наибольший, то он максимальный. В обратную сторону далеко не всегда верно.

Определение 2.3. $X,Y-\text{ЧУМы},\,\varphi:X\to Y-$ изоморфизм, тогда и только тогда, когда $\varphi-$ биекция, и $a\leqslant b\Leftrightarrow \varphi(a)\leqslant \varphi(b)$

Пусть ещё пример $-k\leqslant n-k$ делителеь n. И тут мы вспомним, что можно сужать порядок — резать его множество. Давайте сузим наш порядок на множество $\{1,2,3,6\}$ — порядок делимости.

А ещё давайте рассмотрим $2^{\langle a,b\rangle} - \{\varnothing, \{a\}, \{b\}, \{a,b\}\}$. Можно показать, что оно изоморфно предыдущему множеству. Пример изоморфных есть, какие примеры не изоморфны?

Изоморфно ли \mathbb{N}, \leqslant и \mathbb{R}, \leqslant ? Нет, т.к. биекции точно нет. Изоморфно ли \mathbb{N}, \leqslant и \mathbb{Z}, \leqslant ? Нет, т.к. во втором множестве нет наименьшего элемента, а в первом — есть, а наименьший должен переходить в наименьший (выводится довольно понятно, как)

Изоморфно ли \mathbb{Z}, \leqslant и \mathbb{Q}, \leqslant ? Нет, т.к. давайте возьмём 0 и 1 из \mathbb{Z} и отобразим их куда-либо, получили $\varphi(0), \varphi(1)$. Между ними где-то есть $\frac{\varphi(0)+\varphi(1)}{2}$. Подействуем на него φ^{-1} , получим, что прообраз должен жить в \mathbb{Z} между 0 и 1. Но там никого нет! Значит наше предположение о существовании биекции неверно.

Рассмотрим (\mathbb{Z}, \leqslant) и ($\mathbb{Z} + \mathbb{Z}, \leqslant$) Рассмотрим 0 и 0' во втором, между ними находится бесконечное число элементов. Но рассмотрев прообразы, это какие-то два целых, между ними вся бесконечность должна будет поместиться, но нет, т.к. между двумя целыми конечное число элементов.

Onpedenetue 2.4. x, y — соседние, есть $x \leq y$ и между x и y нет элементов и порядок линейный.

Определение 2.5. Линейный порядок называется плотным, если $\forall x, y, x < y \to \exists z : x < z < y$

Теорема 2.1. $X, Y - \mathsf{ЧУM},$ если они конечные ЧУМ с линейными порядками, то они изоморфны тогда и только тогда, когда |X| = |Y|.

Доказательство. Будем брать наименьшие элементы и попарно отображать их друг в друга и удалять. Отношение относительно минимальных и прочих сохраняется, а на меньшем можем построить дальше по индукции. А если размеры не равны, то мы умерли ещё на этапе биекции.

Замечание. Важна конечность! Для просто равномощных бесконечных мы уже видели контрпримеры.

Теорема 2.2. X, Y — счётные ЧУы, имеют плотный и линейный порядок, и в X и Y нет наи-большего и наименьшего элементов, то X изоморфно Y. (такие ЧУМы существуют, например (\mathbb{Q}, \leq))

Глава **#2** 6 из 7 Автор: Ипатов Марк

Доказательство. Выпишем подряд x_i , y_i . Отобразим x_1 в y_1 . А дальше есть x_2 , хотим отобразить куда-то. Отобразим x_2 в такой элемент, который относительно y_1 расположен так же, как x_2 расположен относительно y_1 . Такой найдётся, т.к. нет минимума и максимума. После этого аналогично поступим с y_2 (второй в выписанном списке игреков, если он ещё не взят). Затем так же поступим с x_3 , но теперь уже смотрим на отношения x_3 с x_1, x_2 . Это получится, т.к. нет минимума, максимума и ещё мы плотны. Затем на y_3 и т.д.

Глава **#2** 7 из 7 Автор: Ипатов Марк