통계패키지활용 자료분석(2024년 겨울학기) 담당교수: 김 태 수 ^{강좌} 100961-31001 본인의 과제 9/10 점 만호 자체 평가

과제명: 제 3차 자료시각화 with plotly

제 출 일	2024년 01월 14일
학 과	산업공학과 ITM전공
학 번	22102009

목차

- I. plotly를 이용한 자료시각화 실습
 - 1) 실습목표
 - 2) 실습내용
- II. 자료분석
 - 1) 자료설명
 - 2) 자료 상세 확인하기
- III. 기후변화 데이터 시각화 작업
- IV. 결론
- V. 부록

I. plotly를 이용한 자료시각화 실습

1) 실습목표

자신이 분석하고자 하는 데이터셋을 찾아 선택한 후, plotly 패키지를 활용하여 원하는 결론을 도출하기 위한 시각화 작업을 원활하게 수행할 수있다.

2) 실습내용

코로나19 상황 당시 검사자, 확진자, 완치자, 사망자의 수를 담고 있는 데이터셋을 plotly 패키지를 활용해 시각화하고 결론을 도출한다.

II. 자료분석

1) 자료설명

2020년 코로나19 확산 당시 대한민국 질병관리본부가 제공한 데이터를 수집 및 재가공한 데이터셋을 사용하였다. NeurIPS 2020에 이 데이터 셋의 일부가 승인되었다. 다양한 데이터들 중 시간에 따른 데이터 추이를 알아보기 위해 Time.csv를 선택하여 분석하였다.

다음은 데이터 셋의 일부이다.

date	time	test	negative	confirmed	released	deceased
#######	16	1	0	1	0	0
#######	16	1	0	1	0	0
#######	16	4	3	1	0	0
#######	16	22	21	1	0	0
#######	16	27	25	2	0	0
#######	16	27	25	2	0	0
#######	16	51	47	3	0	0
#######	16	61	56	4	0	0
#######	16	116	97	4	0	0
#######	16	187	155	4	0	0
#######	16	246	199	6	0	0
#######	16	312	245	11	0	0
#######	16	371	289	12	0	0
#######	16	429	327	15	0	0
######	16	490	414	15	0	0

2) 자료 상세 확인하기

(1) 개요

> summary(df)

C	ate	tı	ıme
Min.	:2020-01-20	Min.	: 0.000
1st Qu	.:2020-02-29	1st Qu.	: 0.000
Median	:2020-04-10	Median	: 0.000
Mean	:2020-04-10	Mean	: 4.123
3rd Qu	.:2020-05-20	3rd Qu.	:16.000
Max.	:2020-06-30	Max.	:16.000

t	tes	t	nega	ıt'	ive	conf	irr	ned
Min.		1	Min.	:	0	Min.	:	1
1st Qu	ı.:	96488	1st Qu		58774	1st Qu	.:	3443
Mediar	1:	503051	Median	:	477303	Median	:	10450
Mean	:	497780	Mean	:	475484	Mean	:	7835
3rd Qu	1.:	782559	3rd Qu	. :	754223	3rd Qu		11116
Max.		1273766	Max.	:	1240157	Max.		12800

released	deceased	date_numeric
Min. : 0	Min. : 0.0	Min. : NA
1st Qu.: 29	1st Qu.: 17.5	1st Qu.: NA
Median: 7117	Median:208.0	Median : NA
Mean : 5604	Mean :157.1	Mean :NaN
3rd Qu.:10100	3rd Qu.:263.5	3rd Qu.: NA
Max. :11537	Max. :282.0	Max. : NA
		NA's :163

(2) 데이터구조

```
> str(df)
'data.frame': 163 obs. of 8 variables:
$ date : Date, format: "2020-01-20" "2020-01-21" "2020-01-22" "2020-01-23" ...
                 : int 1 1 4 22 27 27 51 61 116 187 ...
: int 0 0 3 21 25 25 47 56 97 155 ...
 $ negative
 $ confirmed : int 1 1 1 1 2 2 3 4 4 4 ...
               : int 00000000000...
 $ released
 $ deceased
 $ date_numeric: num NA ...
```

III. 기후변화 데이터 시각화 작업

1) 선 그래프를 이용한 확진자, 완치자, 사망자 수의 시간에 따른 변화 추이 시각화

2) 1)에 animation 및 silde 적용

3) 막대 그래프를 이용해 일일 테스트 수의 변화 시각화

4) Heatmap을 이용한 날짜별 테스트, 확진자, 완치자, 사망자 수의 상관관계 시각화

IV. 결론

- 2020년 코로나19 확진자는 2월 말쯤 급격하게 증가했고 완치자는 그로부터 약 한 달 뒤인 3월 중순쯤 급격하게 증가하였다. 사망자 추이에서 급격한 변화는 없었다.
- 일일 테스트 수 는 2020년 상반기, 3월을 기점으로 급격히 증가하였다. 이는 코로나19가 본격적으로 유행하기 시작한 시점과 거의 일치한다.
- 사망자와 완치자 사이가 양의 상관관계가 가장 강하고 확진자와 테스 트 수가 가장 약한 양의 상관관계를 보였다.

V. 부록: R스크립트 plot_ly(data) %>%

- + add_trace(x = ~date, y = ~confirmed, name = 'Confirmed', type = 'scatter', mode = 'lines') %>%
- + add_trace(x = ~date, y = ~released, name = 'Released',
 type = 'scatter', mode = 'lines') %>%
- + add_trace(x = ~date, y = ~deceased, name = 'Deceased', type = 'scatter', mode = 'lines') data\$date_str <- as.character(data\$date)

```
p <- data %>% plot_ly()
p <- p %>% add_trace(x = ~date, y = ~confirmed, name = '확진
자, type = 'scatter', mode = 'lines', frame = ~date_str)
p <- p %>% add_trace(x = ~date, y = ~released, name = '완치자',
type = 'scatter', mode = 'lines', frame = ~date_str)
p <- p %>% add_trace(x = ~date, y = ~deceased, name = '사망자
', type = 'scatter', mode = 'lines', frame = ~date_str)
                       %>%
                                 animation_opts(1000)
                                                            %>%
       <-
р
               р
animation_slider(currentvalue = list(prefix = "Date: ", font =
list(size = 20)))
р
plot_ly(df, x = ~date, y = ~test, type = 'bar')fig <- plot_ly(data, x
= ~date, y = ~confirmed, name = 'Confirmed', type = 'scatter',
mode = 'lines') %>%
  add_trace(y = ~released, name = 'Released', mode = 'lines')
%>%
  add_trace(y = ~deceased, name = 'Deceased', mode = 'lines')
%>%
 layout(title = 'COVID-19 Cases Over Time',
        xaxis = list(title = 'Date'),
        yaxis = list(title = 'Number of Cases'),
        updatemenus = list(
          list(type = "buttons",
               x = 1.05.
               xanchor = "left",
               y = 0.8,
               yanchor = "bottom",
               buttons = list(
```

```
list(label = "Play",
                       method = "animate",
                       args = list(list(NULL),
                                    list(frame = list(duration =
100, redraw = TRUE), fromcurrent = TRUE))),
                  list(label = "Pause".
                       method = "animate",
                       args = list(list(NULL),
                                    list(frame = list(duration = 0,
redraw = TRUE), fromcurrent = TRUE)))
         ).
         sliders = list(
           list(y = -0.2,
                len = 0.1,
                pad = list(b = 10, t = 10),
                steps = list(
                  list(args = list("frame", list(duration = 100,
redraw = TRUE), fromcurrent = TRUE),
                       label = 'Play',
                       method = 'animate'),
                  list(args = list("frame", list(duration = 0, redraw
= TRUE), fromcurrent = TRUE),
                       label = 'Pause'.
                       method = 'animate')
plot_ly(df, x = \sim date, y = \sim test, type = 'bar')
```

```
correlation_matrix <- cor(data[c('test', 'confirmed', 'released',
  'deceased')])</pre>
```

> plot_ly(x = colnames(correlation_matrix), y =
rownames(correlation_matrix), z = correlation_matrix, type =
"heatmap")