Билет 27

Определение предела функции по Коши. Эквивалентонсть двух определений предела.

Определение предел функции по Коши

Пусть функция f определена на проколотой окрестности $\dot{S}(x_0)$ точки x_0 . $g \in \mathbb{R}$ называется пределом функции f в точке x_0 , если

$$\forall \varepsilon > 0 \; \exists \delta > 0 : (\forall x \in \dot{S}(x_0)) \; 0 < |x - x_0| < \delta \Rightarrow |f(x) - g| < \varepsilon$$

Теорема

Определения предела по Гейне и по Коши эквивалентны

Доказательство

Пусть f определена на проколотой окрестности \dot{S} точки x_0 Обозначим определение по Гейне буквой Γ , а по Коши — К

1. $K \Rightarrow \Gamma$

Возьмём произвольную $\{x_n\}\subset \dot{S},\,x_n\to x_0$

По Коши

$$\forall \varepsilon > 0 \; \exists \delta > 0 : (\forall x \in \dot{S}) \; 0 < |x - x_0| < \delta \Rightarrow |f(x) - g| < \varepsilon$$

Тогда для такого δ

$$\exists k : (\forall n > k) \ 0 < |x_n - x_0| < \delta \Rightarrow |f(x_n) - g| < \varepsilon \Rightarrow \lim_{n \to \infty} f(x_n) = g \ \Box.$$

2. $\Gamma \Rightarrow K$

Предположим, что определение Коши не выполнено

$$\neg(\forall \varepsilon > 0 \; \exists \delta : (\forall x \in \dot{S}) \; 0 < |x - x_0| < \delta \Rightarrow |f(x) - g| < \varepsilon) \Rightarrow \exists \varepsilon > 0 : (\forall \delta > 0) \; \exists x \in \dot{S} \cap (x_0 - \delta; x_0 + \delta) : |f(x) - g| \ge \varepsilon$$

Тогда построим $\{x_n\}\subset \dot{S}:x_n\to x_0\wedge f(x_n)\not\to g$

$$\forall n \in \mathbb{N} \ \exists \ \delta = \frac{1}{n} \ \exists x_n \in \dot{S} \cap (x_0 - \frac{1}{n}; x_0 + \frac{1}{n}) : |f(x_n) - g| \ge \varepsilon \Rightarrow$$

$$(\forall n \in \mathbb{N}) \ |x_n - x_0| < \frac{1}{n} \Rightarrow x_n \to x_0 \Rightarrow f(x_n) \to g \ (\text{по Гейне}), \ \text{но} \ |f(x_n) - g| \ge \varepsilon$$

Пришли к противоречию, значит определение Коши выполнено □.