

Всероссийская олимпиада по физике имени Дж. К. Максвелла

Заключительный этап Экспериментальный тур Комлект задач подготовлен Центральной предметно-методической коммиссией по физике Всероссийской олимпиады школьников

Авторы задач

7 класс

1. Замятнин М.

2. Шеронов А.

8 класс

1. Чжан М.

2. Кармазин С.

Общая редакция — Замятнин М., Слободянин В. Верстка — Зикрацкий Г., Елисеев М.

354349, Краснодарский край, г. Сочи Образовательный центр «Сириус»

7 КЛАСС

7.1 Неравноплечий рычаг

1. Проденьте нитки в отверстия рычага и сделайте петли, как изображено на рисунке.

2. Определите плотность пластилина.

Подвешивать рычаг и выданное оборудование к рычагу можно только за прикрепленные к нему петли! Шприц разбирать нельзя! Плотность воды $\rho_0 = 1000 \; \mathrm{kr/m^3}$.

Оборудование: рычаг с тремя отверстиями, 2 бруска пластилина, нитки, шприц, пластиковая тарелка, штатив, емкость с водой, салфетки и поднос для поддержания чистоты.

7.2 Склянка

Определите плотность темного стекла, из которого изготовлена склянка. Плотность воды $\rho_{\rm o}=1000~{\rm kr/m^3}.$

Оборудование: склянка из темного стекла, пластмассовый стаканчик, бумажный стакан с водой, шприц, поднос и салфетки для поддержания чистоты, стикеры.

РЕШЕНИЯ ЗАДАЧ

7.1 Неравноплечий рычаг

Подвесим рычаг с пустым шприцом массой m за центральную петлю и с помощью пластилина уравновесим его. К противоположной петле прикрепим исследуемый пластилин и наберем воду массой m_1 в шприц, чтобы рычаг оказался в равновесии. Запишем правило моментов относительно точки подвеса рычага: $V \rho g l_2 = m_1 l_1 g$.

Погрузим пластилин в воду и, убавляя/добавляя массу воды в шприце, добъемся равновесия системы. Запишем правило моментов для этого случая: $V(\rho-\rho_0)gl_2=m_2l_1g$, где V – объем пластилина, m_2 – новая масса воды в шприце. Разделив одно уравнение на другое, получим:

 $rac{
hoho_{\scriptscriptstyle 0}}{
ho}=rac{m_{\scriptscriptstyle 2}}{m_{\scriptscriptstyle 1}}\,.$ Откуда:

 $\rho = \frac{m_1}{m_1 - m_2} \rho_0.$

Для авторской установки $\rho = 1360 \text{ кг/м}^3$.

Чтобы применить данный метод, необходимо предварительно убедиться, что для выбранной массы исследуемого пластилина достигается равновесие с частично заполненным шприцем для пластилина в воздухе. Возможно стоит поменять местами пластилин и шприц.

7.2 Склянка

Заполняем шприцем склянку и определяем её внутренний объем V. Теперь найдем ее массу, для этого ставим пустую склянку в пластмассовый стакан и наполняем этот стакан водой до тех пор-

пластмассовый стакан и наполняем этот стакан водой до тех пор, пока она не всплывёт. Делаем отметку (AA) на стикере, наклеенном на стенку стаканчика. Вынимаем из воды склянку и вновь делаем на стикере отметку (BB). Теперь мерным цилиндром доливаем в стакан воды до верхней отметки. Масса долитой воды равна массе M склянки.

Определяем внешний объем $V + V_{\rm cm}$ склянки. Для этого нали-

ваем в стакан воду до уровня (AA). Опускаем пустую склянку в пластмассовый стакан и наполняем ее водой до тех пор, пока она не погрузится полностью в воду, оставаясь на плаву. Вновь делаем на стикере отметку (CC). Мы получим уравнение:

$$\rho_{R}(V+V_{CT})=m+M.$$

Из этого уравнения находим:

$$V_{\rm cr} = \frac{m+M}{\rho_{\rm B}} - V.$$

Плотность стекла:

$$ho_{\text{ct}} = rac{M}{V_{\text{CT}}} = rac{M}{rac{m+M}{
ho_{\text{B}}} - V} =
ho_{\text{B}} rac{M}{m+M-
ho_{\text{B}} V} = 2,4 \text{ r/cm}^3.$$

8 КЛАСС

8.1 Какой Архимед?!

Определите плотность стекла из которого изготовлена колба. Плотность воды $\rho_{\rm o}=1000~{\rm kr/m^3}.$

Оборудование: стеклянная колба, весы электронные, два стаканчика (один с водой), шприц, салфетки для поддержания чистоты и пленка для защиты весов от воды.

8.2 Светит, но не греет!

Снимите вольтамперную характеристику светодиода при его прямом включении и изобразите ее на графике.

Определите сопротивление светодиода $R_{_0}=U_{_0}/I_{_0}$ при силе тока через него $I_{_0}=1.8$ мА и напряжении $U_{_0}$ на нем.

Рассчитайте:

- 1. Какое сопротивление $R_{\rm x}$ нужно включить последовательно со светодиодом и источником питания напряжением $U_{\rm x}=2.5~{\rm B},$ чтобы сила тока в цепи равнялась $I_{\rm 1}=1.0~{\rm mA}?$
- 2. В каких пределах изменяется напряжение $U_{\rm D}$ на светодиоде при изменении силы тока $I_{\rm D}$ через него от 0,4 мA до 3 мA?

Оборудование: светодиод, макетная плата, набор резисторов — 4 штуки, соединительные провода — 4 штуки, батарейный отсек, три батарейки, мультиметр, миллиметровая бумага (2 листа формата A5 для построения графиков).

Примечание:

- а) Прямым включением светодиода называется такое его подключение к источнику постоянного напряжения, при котором через светодиод течет ток (светодиод излучает свет).
- б) Внутреннее сопротивление источника постоянного напряжения не учитывайте.

РЕШЕНИЯ ЗАДАЧ

8.1 Какой Архимед?!

- 1. Установим на весы колбу и измерим ее массу m.
- 2. Обнуляем показания весов кнопкой «TARE». Заполним колбу до верху водой. Показания весов позволят найти точное значение внутреннего объема $V_{\scriptscriptstyle 1}$ колбы.
- 3. Поместим стаканчик с водой на весы и погрузим в него колбу до отметки (черточки) на ней. При этом колба не должна касаться дна стакана. Снимем показания весов m_1 . Перевернём колбу и вновь погрузим её в стакан до той же отметки. Снимем показания весов m_2 . Сумма m_1 и m_2 позволит определить объем колбы $V_{\rm o}$, включая объем стекла.
- 4. Объем стекла $V = V_2 V_1$.
- 5. Плотность стекла равна $\rho=m/V$.

8.2 Светит, но не греет!

С помощью омметра определим сопротивления резисторов, входящих в комплект: 1,0 кОм -2 шт, 4,3 кОм, 20 кОм. На макетной колодке соберем цепь, представленную на рисунке. Определим полярность подключения источника питания, при которой светодиод загорается. Величину сопротивления R изменяем, создавая различные комбинации включения резисторов. Для каждого значения R измеряем напря-

жение на и резисторе R, а затем рассчитываем силу тока в цепи $I=U_{\rm R}/R$ и напряжение на диоде $U_{\rm D}=U-U_{\rm R}$. Результаты измерений и рассчеты представлены в таблице.

Соединяем прямой линией начало координат с точкой на BAX светодиода, соответствующей силе тока I_0 = 1,8 мА. По ее наклону получаем сопротивление светодиода в этой точке $R_0 = U_0/I_0$ = 1,1 кОм (здесь U_0 — напряжение на светодиоде, при котором сила тока равна I_0).

$\mathcal{N}_{\!$	R, кОм	U_{D} , B	U, B	I_{D} , м \mathbf{A}
1	0,4	1,98	4,55	6,14
2	0,5	1,97	4,55	5,27
3	0,8	1,92	4,55	3,30
4	1,0	1,90	4,55	2,70
5	2,0	1,85	4,55	1,38
6	4,2	1,82	4,55	0,65
7	20,0	1,75	4,55	0,14
8	24,2	1,71	4,55	0,12
9	1,0	1,86	3,05	1,20

Уравнение нагрузочной прямой $I=U_{\rm x}/R_{\rm x}-U_{\rm D}/R_{\rm x}$. Проводим на графике нагрузочную прямую, проходящую через точку $U_{\rm x}=2,5~{\rm B}$ на оси абсцисс и точку BAX, соответствующую силе тока $I_{\rm 1}=1~{\rm mA}$. Эта прямая имеет коэффициент углового наклона 1,48. Отсюда находим $R_{\rm x}=670~{\rm Om}$.

Из графика следует, что при изменении силы тока через светодиод от $0.4~\rm mA$ до $3.0~\rm mA$ напряжение на нем изменяется в пределах от $1.8~\rm B$ до $1.9~\rm B$.