US Healthcare Overview

Devin Nicholson, Linsey Stokes, Tyler Koizumi

Project Deliverables

- The group was assigned the task of exploring datasets related to healthcare
 - One dataset was to be extracted from the US Census
 - 6 datasets were explored
 - 2 from Census
- Project Management Plan
- ETL Documentation/Report
- Exploratory questions and visualizations answering those questions

Exploratory Questions

- 1. How many healthcare professionals are in each state?
- 2. Can we predict disease from its symptoms?
- 3. Is there a correlation between the amount of people uninsured and the amount hospitals by state?
- 4. Is there a correlation between poverty and insured people?
- 5. What states have the highest/lowest number of people uninsured/insured?
- 6. Find any correlation between poverty, number of hospitals, and mortality rates by state
- 7. Can we predict mortality rate from poverty status, insurance, and hospital availability

General Processes

This will cover the general ETL process for datasets/visualizations not regarding machine learning/predictions

- 1. Dataset was retrieved as CSV file
- 2. Loaded into Excel Power Query
- 3. Data was cleaned for errors
 - a. Values were removed
- 4. Data only pertaining to states were kept
- 5. The datasets pertaining to poverty, insurance, death rates, and hospitals were merged through state name using inner join function
- 6. If dataset contained multiple years, they were merged and averaged into one
 - a. A copy was made beforehand so that visualizations could be made using unmerged datasets
 - b. Done via creating pivot tables and saving data as CSV
- 7. Datasets were saved as CSV for easy python/pandas usage

X v fx = Table.NestedJoin(#"Changed Type", {"State", "Year"}, #"Death Rates 2015-2019, Individual", {"State", "Year"}, "Death Rates 2015-2019, Individual", JoinKind.Inner)							
□ - 1 ² 3	Year 💌	1 ² ₃ State_Code	A ^B _C State	▼ 1 ² ₃ All_Ages_SAIPE_Poverty_Universe ▼	1 ² 3 All_Ages_in_Poverty_Count	1 ² 3 All_Ages_in_Poverty_Count_LB_90%	1 ² 3 All_Ages_in_Pove
1	2019	1	Alabama	4781642	747478	730491	
2	2015	1	Alabama	4736374	875853	859781	
3	2018	1	Alabama	4763811	801758	785668	
4	2015	2	Alaska	720764	74941	71399	

Number of Healthcare Employees per 100k People by State

10k

Annual Pay per Number of Employees by State

Number of Hospitals per 100k People by State

Number of Staffed Beds per 100k People by State

Crude Death Rate per 100k People by State

Poverty Percentage by State

All Ages in Poverty Percentage

Gross Patient Revenue per Patient Day by State

Disease Prediction

Process

```
# Defining the decision tree algorithm
dtree = DecisionTreeClassifier()
dtree.fit(X_train,y_train)
print('Decision Tree Classifier Created')
# Predicting the values of test data
y_pred = dtree.predict(X_test)
```

- 1. Read Data
- 2. Melt Symptom columns (17) into columns for each symptom (132)
- 3. Set target column and split train and testing values
- 4. Define DecisionTreeClassifier and fit training variables
- 5. Predict accuracy of X_test
- 6. Print visualizations such as confusion matrix and Tree map

	Disease	Symptom_1	Symptom_2	Symptom_3	Symptom_4
0	Fungal infection	itching	skin_rash	nodal_skin_eruptions	dischromic _patches
	Fungal infection	skin_rash	nodal_skin_eruptions	dischromic _patches	NaN
2	Fungal infection	itching	nodal_skin_eruptions	dischromic _patches	NaN
	Fungal infection	itching	skin_rash	dischromic _patches	NaN
4	Fungal infection	itching	skin_rash	nodal_skin_eruptions	NaN

 $\leftarrow \mathsf{Data}\;\mathsf{Before}\;\mathsf{Melt}$

Data After Melt -->

value index	label	abdominal_pain	abnormal_menstruation	acidity	acute_liver_failure
0	Fungal infection	0.0	0.0	0.0	0.0
1	Fungal infection	0.0	0.0	0.0	0.0
2	Fungal infection	0.0	0.0	0.0	0.0
3	Fungal infection	0.0	0.0	0.0	0.0
4	Fungal infection	0.0	0.0	0.0	0.0

Outcome

- The accuracy of the predictions was found to be 100%
- The decision tree generated is to the right
- Each decision node shows the possible symptoms and branches into two parts
 - A disease that can be predicted from the symptom
 - Another symptom that can be used in junction with the preceding symptom(s) to predict a disease
- The tree goes down until all the possible diseases in the dataset are exhausted

Insurance

- Breakdown of types of insurance broken down by state, sorted in alphabetical order
 - Categories of insurance are as follows:
 - Employer
 - Non-Group
 - Medicaid
 - Medicare
 - Military
 - Noninsured
- Texas has the largest uninsured percentage
- Massachusetts has the smallest uninsured percentage

Strongest Indicators:

- Employer insurance has a strong negative correlation with the average poverty percentage (-.78)
- Medicaid insurance has a moderately positive correlation with the average poverty percentage (.62)
- Medicaid insurance has a moderately negative correlation with Employer insurance (-.61)
- Being Uninsured has a weak negative correlation with Employer insurance (-.49)

Number of Hospitals and Percent of Uninsured People

Mortality

Process

- Read in data
- Check correlation
- Drop columns
- Created training and Test data
- Built the model
- Tested the model

```
y = df_corr.pop('Deaths(1 Million)')
X = df_corr
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
```

df_corr.head()					
✓ 0.1s					
	State	Deaths	Number_of_Hospitals	Poverty	Uninsured_Population
0	Alabama	266073	90	4755140.2	2380276
1	Alaska	22287	10	719958.4	489913
2	Arizona	288220	78	6885729.4	3719841
3	Arkansas	161185	51	2911377.8	1284202
4	California	1328284	339	38651294.2	15011457

Outcome

```
model.score[[X_test, y_test]]

    0.2s
0.9563103563671331
```

y_test	predictions	Difference
486960	421936.843	65023.157
288220	288221.588	-1.5884593
263633	278871.558	-15238.558
50441	68443.6593	-18002.659
93242	121158.805	-27916.805
90372	141663.508	-51291.508
62209	70074.8522	-7865.8522
24459	51194.3492	-26735.349
32027	49531.2188	-17504.219
83709	102122.106	-18413.106
161185	164272.072	-3087.072
121739	127570.816	-5831.8159
281499	286253.226	-4754.2256

Questions?

References

- 1. <u>Small Area Income and Poverty Estimates (SAIPE) US Census Bureau</u>
- 2. <u>Hospital Statistics by State</u>
- 3. <u>Disease Symptom Prediction</u>
- 4. <u>Underlying Cause of Death, 1999-2019 Request</u>
- 5. <u>Health Insurance Coverage of the Total Population</u>
- 6. https://www.census.gov/data/developers/data-sets/abs.2019.html

Thank You