Discussion #6

Linear Models

1. Which of the following models are linear? Select all that apply.

 \Box A. $\hat{y} = \theta_1 x + \theta_2 \sin(x)$

 $\Box B. \ \hat{y} = \theta_1 x + \theta_2 \sin(x^2)$

 \Box C. $\hat{y} = \theta_1$

 \square D. $\hat{y} = (\theta_1 x + \theta_2) x$

 \Box E. $\hat{y} = \ln(\theta_1 x + \theta_2) + \theta_3$

2. Which of the following are true about the optimal solution $\hat{\theta}$ to ordinary least squares (OLS)? Recall that the least squares estimate $\hat{\theta}$ solves the normal equation $(\mathbb{X}^T\mathbb{X})\theta = \mathbb{X}^T\mathbb{Y}$.

$$\hat{\theta} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{Y}$$

 \square A. Using the normal equation, we can derive an optimal solution for simple linear regression with an L_2 loss.

 \square B. Using the normal equation, we can derive an optimal solution for simple linear regression with an L_1 loss.

 \square C. Using the normal equation, we can derive an optimal solution for a constant model with an L_2 loss.

 \square D. Using the normal equation, we can derive an optimal solution for a constant model with an L_1 loss.

 \square E. Using the normal equation, we can derive an optimal solution for the model specified option B in question 1 ($\hat{y} = \theta_1 x + \theta_2 \sin(x^2)$).

3. Which of the following conditions are required for the least squares estimate in Question 2?

 \square A. $\mathbb X$ must be full column rank.

 \square B. \mathbb{Y} must be full column rank.

 \square C. \mathbb{X} must be invertible.

 \square D. $\mathbb{X}^{\mathbb{T}}$ must be invertible.

Discussion #6

Geometry of Least Squares

- 4. Suppose we have a dataset represented with the design matrix span(\mathbb{X}) and response vector \mathbb{Y} . We use linear regression to solve for this and obtain optimal weights as $\hat{\theta}$. Label the following terms on the geometric interpretation of ordinary least squares:
 - \mathbb{X} (i.e., span(\mathbb{X}))
 - The response vector \mathbb{Y}
 - The residual vector $\mathbb{Y} \mathbb{X}\hat{\theta}$
- The prediction vector $\mathbb{X}\hat{\theta}$ (using optimal parameters)
- A prediction vector $\mathbb{X}\alpha$ (using an arbitrary vector α).

- (a) What is always true about the residuals in least squares regression? Select all that apply.
 - \square A. They are orthogonal to the column space of the design matrix.
 - \square B. They represent the errors of the predictions.
 - \square C. Their sum is equal to the mean squared error.
 - \square D. Their sum is equal to zero.
 - \square E. None of the above.
- (b) Which are true about the predictions made by OLS? Select all that apply.
 - ☐ A. They are projections of the observations onto the column space of the design matrix.
 - \square B. They are linear combinations of the features.
 - \square C. They are orthogonal to the residuals.
 - \square D. They are orthogonal to the column space of the features.

Discussion #6

	□ E.	None of the above.
(c)	$ \begin{array}{l} \text{pendent } \\ \hat{y} = \hat{\theta_0} + \\ \end{array} $	simple linear regression to our data (x_i, y_i) , $i = 1, 2, 3$, where x_i is the indevariable and y_i is the dependent variable. Our regression line is of the form $\hat{\theta}_1 x$. Suppose we plot the relationship between the residuals of the model and ad find that there is a curve. What does this tell us about our model?
	□ A.	The relationship between our dependent and independent variables is well represented by a line.
	□ B.	The accuracy of the regression line varies with the size of the dependent variable.
	□ C.	The variables need to be transformed, or additional independent variables are needed.
(d)	Which ar	e the following is true of the mystery quantity $\vec{v} = (I - \mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T)\mathbb{Y}$?
	\Box A.	The vector \vec{v} represents the residuals for any linear model.
	□ B.	If the \mathbb{X} matrix contains the $\vec{1}$ vector, then the sum of the elements in vector \vec{v} is 0 (i.e. $\sum_i v_i = 0$).
	□ C.	All the column vectors x_i of \mathbb{X} are orthogonal to \vec{v} .
	\square D.	If X is of shape n by p , there are p elements in vector \vec{v} .
	□ E.	For any α , $\mathbb{X}\alpha$ is orthogonal to \vec{v} .

Linear Regression Fundamentals (Extra)

- 5. In this problem, we will review some of the core concepts in linear regression.
 - Suppose we create a linear model with parameters $\hat{\theta} = [\hat{\theta}_0, \dots, \hat{\theta}_p]$. As we saw in lecture, given an observation \vec{x} , such a model makes predictions $\hat{y} = \hat{\theta} \cdot \vec{x} = \hat{\theta}_0 + \hat{\theta}_1 x_1 + \hat{\theta}_2 x_2 + \dots + \hat{\theta}_p x_p$.
 - (a) Suppose $\hat{\theta} = [2, 0, 1]$ and we receive an observation $\vec{x_1} = [1, 2, 3]$. What $\hat{y_1}$ value will this model predict for the given observation?
 - (b) Suppose the true y_1 was 3.5. What will be the L_2 loss for our prediction $\hat{y_1}$ from the previous part?
 - (c) Suppose we receive another observation $\vec{x_2} = [1, 5, 1]$. What $\hat{y_2}$ value will this model predict for the given observation?
 - (d) Suppose the true y_2 was 4. What will be the mean squared error of our model, given the two observations?