Variable compleja

Los números complejos

Definición 1.1 Un número complejo es una expresión a + bi donde $a, b \in \mathbb{R}$ y i es la unidad imaginaria, fruto de resolver la ecuación $x^2 + 1 = 0$ en \mathbb{R} . Así, definimos $i = \sqrt{-1}$. Si $z \in \mathbb{C} = a + bi$, $a = \operatorname{Re} z$ y $b = \operatorname{Im} z$ son la parte **real** e **imaginaria** de z.

Definición 1.2 La **suma** y **multiplicación** están definidas en los complejos así:

$$(x_1 + y_1i) + (x_2 + y_2i) = (x_1 + x_2) + (y_1 + y_2)i$$

$$(x_1 + y_1i)(x_2 + y_2i) = (x_1x_2 - y_1y_2) + (x_1y_2 + x_2y_1)i$$

Y con estas operaciones (\mathbb{C} , +, ·) es un cuerpo, con $0_{\mathbb{C}} = 0 + 0i$ y $1_{\mathbb{C}} = 1 + 0i$.

Definición 1.3 Dado un complejo z = x + yi, llamamos **conjugado** de z, z a x - yi.

Proposición 1.3.1 Se verifica que $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ y $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$.

Definición 1.4.1 Se denomina **módulo** de un complejo z = x + yi, |z| a $\sqrt{x^2 + y^2}$. Se cumple que $|z| = \sqrt{z\overline{z}}$. El módulo cumple que (1) $|z| \ge 0$, (2) $|z| = 0 \iff z = 0$, (3) $|z_1z_2| = |z_1||z_2|$ y (4) $|z_1 + z_2| \le |z_1| + |z_2|$

Demostración. (4)
$$|z_1 + z_2|^2 = (z_1 + z_2)(\overline{z_1 + z_2}) = (z_1 + z_2)(\overline{z_1} + \overline{z_2}) = z_1\overline{z_1} + z_1\overline{z_2} + z_2\overline{z_1} + z_2\overline{z_2} = z_1\overline{z_1} + z_1\overline{z_2} + z_1\overline{z_2} + z_2\overline{z_2} = |z_1|^2 + |z_2|^2 + 2\operatorname{Re}(z_1\overline{z_2}) \le |z_1|^2 + |z_2|^2 + 2|z_1||z_2| = (|z_1| + |z_2|)^2$$

Definición 1.5 Dado un z = a + bi, aplicando u = p + iq = z/|z|, entonces $|u| = 1 = p^2 + q^2$. El ángulo tal que $p = \cos \alpha$, $q = \sin \alpha$ se denomina **argumento**, arg z. Así, z puede representarse como $z = |z|(\cos \alpha + i \sin \alpha)$. Esta forma es la **forma polar**, y también se representa como $z = |z|e^{i\alpha}$.x

El argumento cumple que (1) arg $\overline{z} = -\arg z$ y (2) arg $z_1z_2 = \arg z_1 + \arg z_2$.

Definición 1.7 / 1.8 El espacio topológico (\mathbb{C} , δ_E) con distancia euclídea no es compacto. Sin embargo, si tomamos $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ entonces sí es compacto, y lo denominamos **plano complejo ampliado**. La **esfera de Riemann**, \mathbb{S} , es la representación del conjunto $\hat{\mathbb{C}}$ en $\mathbb{R}^3_{(\xi,\eta,\zeta)}$ en una esfera con centro (0, 0, 1/2) con ecuación $\xi^2 + \eta^2 + \zeta^2 - \zeta = 0$.

La relación entre la esfera y el plano es

$$\xi = \frac{x}{1+x^2+y^2}, \eta = \frac{y}{1+x^2+y^2}, \zeta = \frac{x^2+y^2}{1+x^2+y^2}$$

La **distancia cordal** entre dos puntos z_1, z_2 es la distancia euclídea entre los puntos P_1, P_2 de la esfera de la esfera de Riemman.

$$\delta(z_1, z_2) = \sqrt{(\xi_1 - \xi_2)^2 + (\eta_1 - \eta_2)^2 + (\zeta_1 - \zeta_2)^2} = \frac{\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}}{\sqrt{(1 + x_1^2 + y_1^2)(1 + x_2^2 + y_2^2)}}$$

Para un punto en el infinito, la distancia es $\delta(z,\infty) = \frac{1}{\sqrt{1+x^2+y^2}}$

Funciones complejas

Definición 2.0 Una función puede ser de tipo $f: \mathbb{R} \to \mathbb{C}$ (f. compleja de var. real) o $f: \mathbb{C} \to \mathbb{C}$ (f. compleja de var. compleja).

Definición 2.1.1 f = f(z) es **continua** en $z_0 \in \mathbb{C}$ si para todo $\epsilon > 0$ existe $\delta > 0$ tal que si $|z - z_0| < \delta$ entonces $|f(z) - f(z_0)| < \epsilon$. f es **uniformemente continua** en $B \subset \mathbb{C}$ si dado $\epsilon > 0$ existe $\delta > 0$ tal que para todo $z_0 \in B$ y para todo z tal que $|z - z_0| < \delta$ entonces $|f(z) - f(z_0)| < \epsilon$. Si f es uniformemente continua es continua, pero no siempre a la inversa.

Teorema 2.1.1 Si $f_1(z)$, $f_2(z)$ están definidas en $A \subset \mathbb{C}$, A abierto, y son continuas en $z_0 \in A$, $f_1 + f_2$ y f_1/f_2 son continuas en z_0 . Así, los polinomios complejos son continuos.

Definición 2.1.2 Una función f(z) en $A \subset S$ es continua en z_0 si para todo $\epsilon > 0$ existe $\eta > 0$ tal que para todo $z \in A$ donde $\delta(z, z_0) < \eta$ entonces $\delta(f(z_0), f(z)) < \epsilon$.

Definición 2.2.1, 2.2.2 Una función f(z) es **derivable** en z_0 si existe el límite $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}$ y es finito. Si $z_0=\infty$, consideramos g(z)=f(1/z) y f es derivable en ∞ si g es derivable en z=0. Una función $f:A\subset\mathbb{C}\to\mathbb{C}$ derivable en todo A se llama función **holomorfa** o **analítica.**

Proposición 2.3.2 Si f es derivable en un punto, también es continua en ese punto.

Proposición 2.3.4 (Regla de la cadena) Sean $g: A \to \mathbb{C}$ y $f: B \to \mathbb{C}$ tales que $g(A) \subset B$. Si g es derivable en z_0 y f es derivable en $g(z_0)$ entonces $f \circ g'(z_0) = f'(g(z_0))g'(z_0)$.

Definición 2.4.1 Una función $f: A \to \mathbb{C}$ es conforme en z_0 si existe exsite $\theta \in [0, 2\pi]$ tal que cualquier curva $\gamma(t)$ diferenciable en t_0 , $\gamma(t_0) = z_0$ y $\gamma'(t_0) \neq 0$ se transforma por f en una curva $\sigma(t) = f(\gamma(t))$ diferenciable en t_0 tal que $\sigma'(t_0) = \gamma'(t_0) + \theta$. Si α es el ángulo en el punto de cruce z_0 entre γ_1 , γ_2 , entonces el ángulo de $f(\gamma_1)$, $f(\gamma_2)$ es α .

Teorema 2.4.1 Si f es derivable en z_0 y $f'(z_0) \neq 0$ entonces f es conforme en z_0 y $\theta = \arg f'(z_0)$. Si f es holomorfa, es conforme. Demostración. Por la regla de la cadena, $\sigma'(t_0) = f'(\gamma(t_0)) \cdot \gamma'(t_0)$ y $\arg \sigma'(t_0) = \arg f'(\gamma(t_0)) + \arg \gamma'(t_0)$

Definición 2.5.1 Una función de variable compleja puede transformarse a una función $f : \mathbb{R}^2 \to \mathbb{R}^2$: f(x,y) = (u(x,y) + v(x,y)) = u(x,y) + v(x,y)i

Teorema 2.5.1 (Ecuaciones de Cauchy-Riemman)

Sea f. $f'(z_0)$ existe sii f es diferenciable como función de dos variables y las funciones u(x, y), v(x, y) satisfacen

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Demostración. Suponemos f derivable en z_0 complejo, con derivada $\lambda = f'(z_0)$. Si tomamos la aplicación lineal $l_c: \mathbb{C} \to \mathbb{C}; \eta \to \lambda \eta$. Entonces $\lim_{\eta \to 0} \left| \frac{f(z_0 + \eta) - f(z_0)}{\eta} - \lambda \right| = \lim_{\eta \to 0} \frac{|f(z_0 + \eta) - f(z_0) - l_c(\eta)|}{|\eta|} = 0$. Escribiendo $f(z_0)$ y $l_c(\eta)$ como componentes reales: (1) $f(z_0) = u(x_0, y_0) + v(x_0, y_0)i = (u(x_0, y_0), v(x_0, y_0))$ su jacobiano es $D = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix}$ y (2) $l_c(\eta) = \lambda \eta = (\lambda_1 + \lambda_2 i)(\eta_1 + \eta_2 i) = (\lambda_1 \eta_1 - \lambda_2 \eta_2, \lambda_1 \eta_2 + \lambda_2 \eta_1)$, que como aplicación lineal $\mathbb{R}^2 \to \mathbb{R}^2$ es $A = \begin{bmatrix} \lambda_1 & -\lambda_2 \\ \lambda_2 & \lambda_1 \end{bmatrix}$. Como el jacobiano la derivada de f en los reales, y A es también la diferencial de f en z_0 , D = A, y se dan las ecuaciones.

Teorema 2.6.1 (Teorema de la función inversa)

Sea f analítica con derivada continua en A. Sea $z_0 \in A$ tal que $f'(z_0) \neq 0$. Entonces, existen U, V abiertos tal que $z_0 \in U$, $f(z_0) \in V$ y $f: U \to V$ es biyectiva. Además, f^{-1} es analítica en V y para todo $z \in U$, $(f^{-1})'(f(z)) = \frac{1}{f'(z)}$.

Series de potencias. Funciones elementales

Definición 3.0.1 Una sucesión de complejos es una aplicación $\mathbb{N} \to \mathbb{C}$ tal que para cada $n \in \mathbb{N}$ se le corresponde $a_n \in \mathbb{C}$.

Definición 3.0.2 Una **serie** es una sucesión de **Definición 3.2.4** La serie $\sum_{n=1}^{\infty} f_n(z)$ converge unicomplejos $\{A_n\}_{n\in\mathbb{N}}$ tal que $A_n = \sum_{i=0}^n a_i$.

Definición 3.0.3 Una sucesión es de Cauchy o fun**damental** si dado $\epsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que para todo $n_1, n_2 \ge n_0$, se tiene que $|a_{n_1} - a_{n_2}| < \epsilon$.

Definición 3.0.4 Se dice que $\{a_n\}_{n\in\mathbb{N}}$ es **convergente** a a si dado $\epsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que para todo $n \ge n_0$ se tiene $|a_n - a| < \epsilon$, y diremos $\lim_{n\to\infty} a_n = a$. Asimismo, A_n es convergente a A $\operatorname{si\,lim}_{n\to\infty} A_n = A.$

Definición 3.0.5 Una serie A_n es absolutamente convergente si la serie $\sum |a_n|$ es convergente.

Teorema 3.1.1 (Criterio de la raíz) Dado $\sum_{i=1}^{\infty} a_i$, sea $\lambda = \lim_{n \to \infty} \sup \sqrt[n]{|a_n|}$. Si $\lambda < 1$ la serie converge y si $\lambda > 1$ diverge.

Teorema 3.1.2 (Criterio del cociente) Dado $\sum_{i=1}^{\infty} a_i$ sea $\beta = \lim_{n \to \infty} \frac{|a_n|}{|a_{n-1}|}$, si $\beta < 1$ la serie converge, y si $\beta > 1$ diverge.

Definición 3.2.0 Una sucesión de variable compleja es una aplicación de tal manera que a cada $n \in \mathbb{N}$ le corresponde una función f_n : $A \to \mathbb{C}$. Representamos la sucesión por $\{f_n\}_{n\in\mathbb{N}}$. Asimismo, una serie de funciones de variable compleja es el resultado de sumar dichas funciones: $F_n(z) = \sum_{i=1}^n f_i$.

Definición 3.2.1 Una sucesión $\{f_n\}_{n\in\mathbb{N}}$ converge en $z_0 \in A$ cuando converge la sucesión numérica $\{f_n(z_0)\}_{n\in\mathbb{N}}$. Diremos que $\{f_n\}_{n\in\mathbb{N}}$ converge pun**tualmente** cuando converge para todo $z \in A$.

Definición 3.2.2 La serie $f_0 + \cdots + f_n + \cdots$ converge en un punto $z_0 \in A$, A abierto en \mathbb{C} si la sucesión $\{F_n(z_0)\}_{n\in\mathbb{N}}$ con $F_n=f_0+\cdots+f_n$ converge. La serie converge puntualmente en A si $\{F_n\}_{n\in\mathbb{N}}$ converge puntualmente en A.

Definición 3.2.3 La sucesión de funciones $\{f_n\}_{n\in N}$

converge uniformemente a f si para todo $\epsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $|f_n(z) - f(z)| < \epsilon$ para todo $z \in A$, $n \ge n_0$.

formemente en A si la sucesión $\{F_n\}_{n\in N}$ converge uniformemente en A.

Teorema 3.2.1 Criterio de la mayorante de Weierstrass) Una condición suficiente para que $\sum_{n=1}^{\infty} f_n$ converja uniformemente en $A \subset \mathbb{C}$ es que exista una serie $\sum_{n=1}^{\infty} a_n$ convergente tal que $|f_n(z)| \le a_n$ para todo z y $n \in \mathbb{N}$. En tal caso, $\sum_{n=1}^{\infty} a_n$ es una mayorante de $\sum_{n=1}^{\infty} f_n$.

Definición 3.3.0 Una serie de potencias es una serie de la forma $\sum_{n=1}^{\infty} a_n (z-z_0)^n$, con $z_0, a_n \in \mathbb{C}$ para todo n. Los a_n se llaman **coeficientes** de la serie. Si $z_0 = 0$, es decir, $\sum_{n=1}^{\infty} a_n z^n$ decimos que la serie está centrada en el origen.

Definición 3.3.1 (Teorema de **Hadamard**) Dada la serie $\sum_{n=1}^{\infty} a_n (z-z_0)^n$ considerando $\lambda = \lim_{n\to\infty} \sup \sqrt[n]{|a_n|}$; si llamamos $R = \frac{1}{\lambda}$, tenemos:

- La serie converge absolutamente en el interior del círculo $D_R = \{z | |z - z_0| < R\}$ y diverge en el exterior $D_R = \{z | |z - z_0| > R\}$
- La convergencia es uniforme en todo circulo de radio $0 \le r < R$

R se llama **radio de convergencia** de la serie.

Teorema 3.3.2 La función definida por la suma de serie de potencias en su círculo de convergencia es derivable en todo punto de dicho círculo:

$$\frac{d}{dz} \left(\sum_{n=0}^{\infty} a_n (z - z_0)^n \right) = \sum_{n=0}^{\infty} n a_n (z - z_0)^{n-1}$$

Definición 3.4.1 La función exponencial compleja

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Su radio de convergencia es $R = \infty$. Cumple

también que $e^{z_1+z_2}=e^{z_1}e^{z_2}$. El exponente puede reescribirse como $e^z=e^{x+yi}=e^xe^{iy}=e^x(\cos y+i\sin y)$

Definición 3.4.2 La función logaritmo se obtiene desde la exponencial. Escribiendo $z = re^{i\theta}$ tenemos que $\log z = \log |r| + i\theta = \log |r| + i \arg(z)$. Como $\arg(z) = \theta + 2\pi k$, el logaritmo principal es $\theta \in [0, 2\pi] = \operatorname{Arg} z$.

Definición 3.4.3 Las funciones seno y coseno se definen a través de sus series de potencias con $R = \infty$:

tmo se obtiene o
$$z = re^{i\theta}$$
 tenog $|r| + i \arg(z)$. mo principal es potencias con

$$\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, \cos(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$
 En este caso los ejes X e Y representan el plano complejo de z . El eje Z representa la parte real de

La derivación es como con los números reales, y las identidades de Euler son idénticas:

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$
, $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$

$$sinh(z) = \frac{e^z - e^{-z}}{2}, cosh(z) = \frac{e^z + e^{-z}}{2}$$

Definición 3.4.4 La función potencial con exponente complejo, z^{ζ} , $\zeta \in \mathbb{C}$ es $z^{\zeta} = e^{\zeta \log z}$

Definición 3.5.1 (Funciones multiformes) Una función f es multiforme cuando w = f(z) puede tomar diferentes valores para el mismo z. Por ejemplo, para $f = \sqrt{z}$, f(2i) = 1 + i y f(2i) = -1 - i. Esto se debe a que $z^{1/2} = e^{\frac{1}{2}\log z} = e^{\frac{1}{2}(\log|z| + i \arg(z))} = |z|^{\frac{1}{2}}e^{i\frac{\operatorname{Arg} z + 2k\pi}{2}}$, k = 0, 1.

Observamos que como k puede tomar dos valores, entonces la función tiene dos ramas, es decir, $w_1 = \sqrt{r}e^{i\frac{\theta}{2}}$, $w_2 = -\sqrt{r}e^{-i\frac{\theta}{2}}$. Por tanto, para completar un ciclo en w necesitamos completar dos ciclos en z (uno por rama). Esto genera una **superficie de Riemann** como la siguiente figura:

En este caso los ejes X e Y representan el plano complejo de z. El eje Z representa la parte real de f(z), y el color representa la imaginaria. El punto de corte del plano es el caso $\sqrt{-a}$, $a \in \mathbb{R} = 0 + i\sqrt{a}$. Sin embargo, el corte es un artefacto de la visualización tridimensional de 4 dimensiones.

Debajo se muestra el ejemplo de $f = \log z$, donde el eje X representa el argumento, y el color representa la parte real.

Vemos que el el plano "cae" de nivel en cada vuelta. Esto es el equivalente a cada rama del logaritmo.

Integración en el campo complejo

Definición 4.0.1 Una curva $\gamma : [a,b] \to \mathbb{C}$ es **rectificable** cuando presenta una longitud finita.

Definición 4.0.2 Una **partición** de un intervalo es el conjunto $\Delta = \{a = t_0 < t_1 < \cdots < t_n = b\}$. La **norma** de la partición es $|\Delta| = \max\{|t_{k-1} - t_k|, k = 0, 1, \cdots, n-1\}$. Una partición Δ' es **más fina** que otra partición Δ cuando $\Delta \subset \Delta'$.

Definición 4.0.3 Dados f, γ, Δ , definimos la suma de Riemman-Stieljes como $S(\Delta, f, \gamma) = \sum_{k=0}^{n-1} f(s_k)[\gamma(t_{k+1}) - \gamma(t_k)]$, con $s_k \in [t_k, t_{k+1}]$. f es **integrable** Riemman-Stieljes (RS) si existe un complejo I tal que para cualquier $\epsilon > 0$ existe una partición Δ_{ϵ} tal que para toda $\Delta_{\epsilon} \subset \Delta$, $|S(\Delta, f, \gamma) - I| < \epsilon$. I se denota por $\int_a^b f \, d\gamma$.

Definición 4.0.4 Si $\gamma(t) = \phi(t) + i\psi(t)$, entonces $\int_a^b f \, d\gamma = \int_a^b f \, d\phi + i \int_a^b f \, d\psi$.

Proposición 4.1.1 Sean f, γ . Entonces existe la integral RS y $\left|\int_a^b f \, \mathrm{d}\gamma\right| \le ML(\gamma)$, donde $M = \max\{|f(t)| \mid t \in [a,b]\}$ y $L(\gamma)$ es la longitud de γ . Demostración. $|S(\Delta,f,\gamma)| \le \sum_{k=0}^{n-1} \left|f(s_k)\right| \left|\gamma(t_{k+1}) - \gamma(t_k)\right| \le (\max\{|f(t)|,t \in [a,b]\}) \sum_{k=0}^{n-1} \left|\gamma(t_{k+1}) - \gamma(t_k)\right| \le ML(\gamma)$

Proposición 4.1.2 Si f es continua en [a,b] y γ define un camino de clase C^1 entonces la integral RS viene dada por $\int_a^b f \, \mathrm{d} \gamma = \int_a^b f \gamma' \mathrm{d} t$ Demostración. Como $\int_a^b f \, \mathrm{d} \gamma = \int_a^b f \, \mathrm{d} \phi + i \int_a^b f \, \mathrm{d} \psi$, vamos a demostrar que $\int_a^b f \, \mathrm{d} \phi = \int_a^b f \, \phi' \, \mathrm{d} t$. Por la definición de I existe para todo $\epsilon > 0$ una partición tal que $\left| \sum_{k=0}^{n-1} f \left(s_k \right) \left[\varphi \left(t_{k+1} \right) - \varphi \left(t_k \right) \right] - \int_a^b f \, d \phi \right| < \epsilon$ Por el teorema del valor intermedio: $\varphi \left(t_{k+1} \right) - \varphi \left(t_k \right) = \varphi' \left(s_k' \right) \left(t_{k+1} - t_k \right)$, luego $\left| \sum_{k=0}^{n-1} f \left(s_k' \right) \varphi' \left(s_k' \right) \left(t_{k+1} - t_k \right) - \int_a^b f \, d \varphi \right| < \epsilon$. Ahora bien, la expresión de sumatorio puede aplicarse a la integral, de modo que $\left| \sum_{k=0}^{n-1} f \left(s_k' \right) \varphi' \left(s_k' \right) \left(t_{k+1} - t_k \right) - \int_a^b f \varphi' \, d t \right| < \epsilon$. Por último, si denominamos S al sumatorio anterior, tenemos que $\left| \int_a^b f \varphi' \, d t - \int_a^b f \, d \varphi \right| \leq 1$ Repetimos para $\left| \int_a^b f \varphi' \, d t - S \right| + \left| S - \int_a^b f \, d \varphi \right| \leq 2\epsilon$. Repetimos para $\left| \int_a^b f \, \varphi' \, d t - \int_a^b f \, d \psi \right| = \int_a^b f \, d \psi$ y finalmente $\left| \int_a^b f \, d \varphi \right| = \int_a^b f \, d \varphi + i \int_a^b f \, d \psi = \int_a^b f \, d \psi$

Definición 4.2.0 Sean f, γ . Se define la **integral de** f **a lo largo de** γ , $\int_{\gamma} f dz$ como $\int_{a}^{b} f \circ \gamma \ d\gamma$ y, si γ es C^{1} , entonces $\int_{\gamma} f dz = \int_{a}^{b} f(\gamma(t))\gamma'(t) \ dt$. La integral cumple:

- Linealidad: $\int_{\gamma} (c_1 f_1 + c_2 f_2) dz = c_1 \int_{\gamma} f_1 dz + c_2 \int_{\gamma} f_2 dz$
- Si $-\gamma$ es el camino opuesto a γ : $\int_{\gamma} f \, dz = -\int_{-\gamma} f \, dz$
- Yuxtaposición: $\int_{\gamma_1 \cup \gamma_2} f \, dz = \int_{\gamma_1} f \, dz + \int_{\gamma_2} f \, dz$
- Se tiene la siguiente stimación: $|\int_{\gamma} f \, dz| \le \int_{\gamma} |f| |dz| = \int_{a}^{b} |f(t)| |\gamma'(t)| \, dt \le ML(\gamma).$

Proposición 4.2.1 Sea $\{f_n\}_{n\in\mathbb{N}}$ una sucesión de funciones, y γ . Si f_n son continuas y $f_n\to f$ entonces $\lim_{n\to\infty}\int_{\gamma}f_n=\int_{\gamma}fdz$. Demostración. Si |dz| es la longitud de la curva, L, entonces $\left|\int_{\gamma}fdz-\int_{\gamma}f_ndz\right|\leq\int_{\gamma}\left|f-f_n\right|\left|dz\right|<\epsilon L$.

También, si $\sum f_n$ converge uniformemente a F, entonces $\sum_{n=1}^{\infty} \int_{\gamma} f_n \, dz = \int_{\gamma} F \, dz$. Demostración. $\int_{\gamma} \left(\sum_{n=1}^{\infty} f_n\right) dz = \int_{\gamma} \left(\lim_{n \to \infty} F_n\right) dz = \lim_{n \to \infty} \int_{\gamma} F_n dz = \lim_{n \to \infty} \int_{\gamma} \left(\sum_{k=1}^{n} f_k\right) dz = \lim_{n \to \infty} \sum_{k=1}^{n} \int_{\gamma} f_k dz = \sum_{n=1}^{\infty} \int_{\gamma} f_n dz$

Proposición 4.3.1 Sean $f, \gamma, \gamma : [a, b] \to \mathbb{C}$ de clase \mathbb{C}^1 . Si F es una frimitiva de F, se tiene que $\int_{\gamma} f \ dz = F(\gamma(a)) - F(\gamma(b))$. Demostración. Si $\int_{\gamma} f \ dz = \int_a^b f(\gamma(t))\gamma'(t) \ dt$, como la derivada de $F(\gamma(t)) = F'(\gamma(t))\gamma'(t) = f(\gamma(t))\gamma'(t)$; por el Teorema Fundamental del Cálculo se cumple que $\int_{\gamma} f \ dz = \int_a^b [F(\gamma(t))]' \ dt = F(\gamma(b)) - F(\gamma(a))$

Proposición 4.3.2 Sea f y γ_1 , γ_2 tales que $\gamma_1(a) = \gamma_2(a)$ y $\gamma_1(b) = \gamma_2(b)$. Entonces $\int_{\gamma_1} f \ dz = \int_{\gamma_2} f \ dz$.

Teorema 4.4.1 (Preliminar del T de Cauchy) Sea f analítica y $\gamma \subset A$ es una curva cerrada y su interior. Entonces $\int_{\gamma} f \ dz = 0$. Demostración. La fórmula de Green indica que $\int_{\gamma} P(x,y) dx + Q(x,y) dy = 0$

 $\iint_A \left[\frac{\partial \mathcal{Q}}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) \right] dx dy \ \, \text{Con } A \ \, \text{el interior de } \gamma.$ Si describimos f = u(x,y) + iv(x,y) operando tenemos que $\int_{\gamma} f dz = \int_{\gamma} (u+iv)(dx+idy) = \int_{\gamma} (udx-vdy) + i \int_{\gamma} (udy+vdx).$ Applicando el teorema de Green tenemos que $\int_{\gamma} f dz = \iint_A \left[-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right] dx dy + \iint_A \left[\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right] dx dy$ y, por las ecs. de Cauchy-Riemman, $-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = \frac{\partial u}{\partial y} - \frac{\partial u}{\partial y} = 0.$ Ídem para la segunda integral.

Teorema 4.4.2 (T de Cauchy-Goursat para el triángulo) Sea $f:A\to\mathbb{C}$, $A\subset\mathbb{C}$ abierto, y f analítica en A {p}. Si T es el triángulo cerrado contenido en A, se tiene $\int_{\partial T} f \, \mathrm{d}z = 0$.

Teorema 4.4.3 (T de Cauchy para un conjunto convexo. Sea f analítica en $A\{p \text{ con } p \in A \text{ y continua en } A$. Entonces $\int_{\partial T} f \, dz = 0$ para todo camino cerrado y rectificable en A.

Consecuencias del Teorema de Cauchy