MM

Phần thứ hai

LÝ THUYẾT ĐỒ THỊ Graph Theory

Nguyễn Khánh Phương

Bộ môn Khoa học Máy tính, Viện CNTT và Truyền thông, Đại học Bách khoa Hà nội,

E-mail: phuongnk@soict.hust.edu.vn

Nội dung

- Chương 1. Các khái niệm cơ bản
- Chương 2. Biểu diễn đồ thị
- Chương 3. Duyệt đồ thị
- Chương 4. Bài toán cây khung nhỏ nhất
- Chương 5. Bài toán đường đi ngắn nhất

Chương 6. Bài toán luồng cực đại trong mạng

Chương 6 BÀI TOÁN LƯỚNG CỰC ĐẠI TRONG MẠNG (Maximum Flow Problem)

Nội dung chi tiết

6.1. Phát biểu bài toán và các ứng dụng

- 6.2. Lát cắt
- 6.3. Đồ thị tăng luồng và Đường tăng luồng
- 6.4. Thuật toán Ford-Fulkerson
- 6.5. Thuật toán Edmond-Karp
- 6.6. Các ứng dụng

MẠNG VÀ LUÔNG TRONG MẠNG

MANG (Network)

Mạng là đồ thị có hướng G = (V,E):

- Có duy nhất một đỉnh s không có cung đi vào gọi là đỉnh phát (nguồn) và duy nhất một đỉnh t không có cung đi ra gọi là đỉnh thu (đích).
- Mỗi cung e của G được gắn với một số không âm c(e) được gọi là khả năng thông qua của e.

Ví dụ:

LUÒNG TRONG MẠNG

Định nghĩa. Luồng f trong mạng G=(V,E) là phép gán số f(e) cho mỗi cạnh e (f(e) được gọi là luồng trên cạnh e) thoả mãn các điều kiện:

1) Hạn chế về khả năng thông qua (Capacity Rule):

Với mỗi cung e, $0 \le f(e) \le c(e)$

2) Điều kiện cân bằng luồng (Conservation Rule): Với mỗi $v \neq s$, t

$$\sum_{e \in E^{-}(v)} f(e) = \sum_{e \in E^{+}(v)} f(e)$$

trong đó $E^-(v)$ và $E^+(v)$ tương ứng là tập các cung đi vào và đi ra khỏi đỉnh v.

Các điều kiện 1) và 2) được thoả mãn => f là luồng trên mạng.

LUÒNG TRONG MẠNG

Định nghĩa. Luồng f trong mạng G=(V,E) là phép gán số f(e) cho mỗi cạnh e (f(e) được gọi là luồng trên cạnh e) thoả mãn các điều kiện:

1) Hạn chế về khả năng thông qua (Capacity Rule):

Với mỗi cung e, $0 \le f(e) \le c(e)$

2) Điều kiện cân bằng luồng (Conservation Rule): Với mỗi $v \neq s$, t

$$\sum_{e \in E^{-}(v)} f(e) = \sum_{e \in E^{+}(v)} f(e)$$

trong đó $E^-(v)$ và $E^+(v)$ tương ứng là tập các cung đi vào và đi ra khỏi đỉnh v.

Định nghĩa. Giá trị của luồng f là

$$val(f) = \sum_{e \in E^{+}(s)} f(e) = \sum_{e \in E^{-}(t)} f(e)$$

Các cạnh đi ra khỏi đỉnh s

Các cạnh đi vào đỉnh t

(Đẳng thức (*) thu được bằng cách cộng tất cả các điều kiện cân bằng luồng.)

Luồng trong mạng – Ví dụ

Ví dụ:

- Trong 2 số viết bên mỗi cạnh: giá trị luồng trên cạnh là số màu đỏ, số còn lại là khả năng thông qua.
- Các điều kiện 1) và 2) được thoả mãn => f là luồng trên mạng.
- Giá trị luồng là: $val(f) = \sum_{e \in E^{+}(s)} f(e) = \sum_{e \in E^{-}(t)} f(e)$ 8 = f(s,v) + f(s,u) + f(s,w) = f(v,t) + f(w,t) + f(z,t)

LUÔNG TRONG MẠNG

Định nghĩa. Luồng f trong mạng G=(V,E) là phép gán số f(e) cho mỗi cạnh e(f(e)) được gọi là luồng trên cạnh e) thoả mãn các điều kiện:

1) Hạn chế về khả năng thông qua (Capacity Rule):

Với mỗi cung e, $0 \le f(e) \le c(e)$

2) Điều kiện cân bằng luồng (Conservation Rule): Với mỗi $v \neq s$, t

$$\sum_{e \in E^{-}(v)} f(e) = \sum_{e \in E^{+}(v)} f(e)$$

trong đó $E^-(v)$ và $E^+(v)$ tương ứng là tập các cung đi vào và đị ra khỏi đỉnh v.

Định nghĩa. Giá trị của luồng f là

$$val(f) = \sum_{e \in E^{+}(s)} f(e) = \sum_{e \in E^{-}(t)} f(e)$$

Các cạnh đi ra khỏi đỉnh s Các cạnh đi vào đỉnh t

(Đẳng thức (*) thu được bằng cách cộng tất cả các điều kiện cân bằng luồng.)

Bài toán luồng cực đại trong mạng

Bài toán luồng cực đại

Luồng trong mạng G được gọi là luồng cực đại nếu trong số tất cả các luồng trong mạng G nó là luồng có giá trị lớn nhất

Bài toán tìm luồng cực đại trong mạng G được gọi là bài toán luồng cực đại

Luồng với giá trị 8 = 2 + 3 + 3 = 1 + 3 + 4

uồng cực đại có giá trị 10 = 4 + 3 + 3 = 3 + 3 + 4

Các ứng dụng trực tiếp

Mạng	Đỉnh	Cung	Luồng
truyền thông	trạm giao dịch, máy tính, vệ tinh	cáp nối, cáp quang,	voice, video, packets
mạng điện	cổng, registers, processors	dây dẫn	dòng điện
cơ khí	joints	rods, beams, springs	heat, energy
thuỷ lợi	hồ chứa, trạm bơm, nguồn nước	đường ống	dòng nước, chất lỏng
tài chính	nhà băng	giao dịch	tiền
giao thông	sân bay, ga tàu, giao lộ	đường cao tốc, ray, đường bay	hàng hoá, phương tiện, hành khách
hoá học	sites	bonds	energy

Nội dung chi tiết

6.1. Phát biểu bài toán và các ứng dụng

6.2. Lát cắt

- 6.3. Đồ thị tăng luồng và Đường tăng luồng
- 6.4. Thuật toán Ford-Fulkerson
- 6.5. Thuật toán Edmond-Karp
- 6.6. Các ứng dụng

Lát cắt (Cuts)

Lát cắt là cách phân hoạch tập đỉnh của đồ thị thành 2 tập S và T sao cho $s \in S$, $t \in T$.

- Khả năng thông qua cap(S,T) của lát cắt (S,T) là số:

$$cap(S,T) = \sum_{e \in S \to T} c(e),$$

trong đó $S \rightarrow T := \{(v, w) \in E : v \in S, w \in T\}$

Lát cắt nhỏ nhất (hẹp nhất) là lát cắt với kntq nhỏ nhất.

Lát cắt (Cuts)

Lát cắt là cách phân hoạch tập đỉnh của đồ thị thành 2 tập S và T sao cho $s \in S$, $t \in T$.

- Khả năng thông qua cap(S,T) của lát cắt (S,T) là số:

$$cap(S,T) = \sum_{e \in S \to T} c(e),$$

trong đó $S \rightarrow T := \{(v, w) \in E : v \in S, w \in T\}$

Lát cắt

Ví dụ 3: Lát cắt (S_2, T_2) , $S_2 = \{s, 3, 4, 7\}$, $T_2 = \{2, 5, 6, t\}$ có khả năng thông qua 28

Luồng chảy qua lát cắt

Định nghĩa. Giả sử f là luồng trong mạng và (S, T) là lát cắt. Ta gọi giá trị luồng chảy qua lát cắt (S, T) là đại lượng

$$\left(\sum_{e \in S \to T} f(e)\right) - \left(\sum_{e \in T \to S} f(e)\right) = 10$$

10+4+10 0

trong đó: $S \to T = \{(v, w) \in E: v \in S, w \in T\}$ $T \to S = \{(v, w) \in E: v \in T, w \in S\}$

 $S = \{s\}$ $T = \{2, 3, 4, 5, 6, 7, t\}$

Luồng chảy qua lát cắt

Định nghĩa. Giả sử f là luồng trong mạng và (S, T) là lát cắt. Ta gọi giá trị luồng chảy qua lát cắt (S,T) là đại lượng

$$\left(\sum_{e \in S \to T} f(e)\right) - \left(\sum_{e \in T \to S} f(e)\right) = 6+0+8+10 \quad ($$

trong đó: $S \rightarrow T = \{(v, w) \in E: v \in S, w \in T\}$

$$T \rightarrow S = \{(v, w) \in E : v \in T, w \in S\}$$

 $S = \{s, 2, 3, 4\}$

$$T = \{5,6,7,t\}$$

Luồng chảy qua lát cắt

Định nghĩa. Giả sử f là luồng trong mạng và (S, T) là lát cắt. Ta gọi giá trị luồng chảy qua lát cắt (S, T) là đại lượng

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e)$$
 10-

trong đó:
$$S \rightarrow T = \{(v, w) \in E: v \in S, w \in T\}$$

$$T \rightarrow S = \{(v, w) \in E : v \in T, w \in S\}$$

10+8+10

$$S = \{s,3,4,7\}$$

$$T = \{2,5,6,t\}$$

Luồng chảy qua lát cắt (S,T) = ???24

Bổ đề 1. Giả sử f là luồng, và (S, T) là lát cắt. Khi đó giá trị luồng chảy qua lát cắt chính bằng giá trị của luồng

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e) = \sum_{e \in E^{+}(s)} f(e) = \sum_{e \in E^{-}(t)} f(e) = val(f)$$

Bổ đề 1. Giả sử f là luồng, và (S, T) là lát cắt. Khi đó giá trị luồng chảy qua <u>lát cắt chín</u>h bằng giá trị của luồng:

Bổ đề 1. Giả sử f là luồng, và (S, T) là lát cắt. Khi đó giá trị luồng chảy qua lát cắt chính bằng giá trị của luồng:

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e) = \sum_{e \in E^{+}(s)} f(e) = \sum_{e \in E^{-}(t)} f(e) = val(f)$$

Bổ đề 1. Giả sử f là luồng, và (S, T) là lát cắt. Khi đó giá trị luồng chảy qua lát cắt chính bằng giá trị của luồng:

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e) = \sum_{e \in E^+(s)} f(e) = \sum_{e \in E^-(t)} f(e) = val(f)$$

Chứng minh bổ đề: Giả sử f là luồng còn (S, T) là lá cắt. Khi đó

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e) = \sum_{e \in E^+(s)} f(e) = val(f)$$

Chứng minh: Cộng tất cả các ràng buộc cân bằng luồng theo mọi v∈S, đơn

⁴ giản biểu thức ta thu được:

$$0 = \sum_{v \in S} (\sum_{e \in E^+(v)} f(e) - \sum_{e \in E^-(v)} f(e))$$

$$= \sum_{e \in E^+(s)} f(e) - \left(\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e)\right)$$

$$\text{tổng theo các cung theo các cung tím}$$

từ đó suy ra đẳng thức cần chứng minh

Bổ đề 2. Giả sử f là luồng, còn (S, T) là lát cắt. Khi đó $\operatorname{val}(f) \leq \operatorname{cap}(S, T)$.

Chứng minh

$$val(f) = \sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e)$$

$$\leq \sum_{e \in S \to T} f(e)$$

$$\leq \sum_{e \in S \to T} c(e)$$

$$= cap(S, T)$$

Luồng cực đại và lát cắt nhỏ nhất(Max Flow and Min Cut)

Hệ quả. Giả sử f là luồng, còn (S, T) là lát cắt. Nếu val(f) = cap(S, T), thì f là luồng cực đại còn (S, T) là lát cắt hẹp nhất

Luồng trong mạng G được gọi là luồng cực đại nếu trong số tất cả các luồng trong mạng G nó là luồng có giá trị lớn nhất

Lát cắt nhỏ nhất (hẹp nhất): lát cắt với kntq nhỏ nhất

Chứng minh: Xét f' là luồng bất kỳ và (S', T') là lát cắt bất kỳ. Theo bổ đề 2 ta có:

Theo giả thiết Theo bổ đề 2

 $\operatorname{val}(f') \le \operatorname{cap}(S,T) = \operatorname{val}(f) \le \operatorname{cap}(S',T')$

Bổ đề 2. Giả sử f là luồng, còn (S, T) là lát cắt. Khi đó $val(f) \le cap(S, T)$

Định lý về luồng cực đại và lát cắt nhỏ nhất Max-Flow Min-Cut Theorem

Đinh lý (Ford-Fulkerson, 1956): Trong mạng bất kỳ, giá trị của luồng cực đại luôn bằng khả năng thông qua của lát cắt nhỏ nhất.

Giá trị của luồng
$$f$$
 là $val(f) = \sum_{e \in E^+(s)} f(e) = \sum_{e \in E^-(t)} f(e)$ $val(f) = 10+4+14 = 9+9+10=28$

- Khả năng thông qua cap(S,T) của lát cắt (S,T) là số: Lát cắt nhỏ nhất (hẹp nhất) $can(S,T) = \sum_{c(e)} c(e),$ là lát cắt với kntq nhỏ nhất.

$$cap(S,T) = \sum_{e \in S \to T} c(e),$$

trong đó $S \rightarrow T := \{(v, w) \in E : v \in S, w \in T\}$

- Giá trị luồng chảy qua lát cắt (S, T) là đại lượng

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e)$$

trong đó: $S \rightarrow T = \{(v, w) \in E : v \in S, w \in T\}$ $T \rightarrow S = \{(v, w) \in E : v \in T, w \in S\}$

Bổ đề 1. Giá trị luồng chảy qua lát cắt chính bằng giá trị của luồng:

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e) = \sum_{e \in E^{+}(s)} f(e) = val(f)$$

Bổ đề 2. Giá trị luồng nhỏ hơn hoặc bằng khả năng thông qua của lát cắt:

 $\operatorname{val}(f) \leq \operatorname{cap}(S, T).$

Nếu val(f) = cap(S, T), thì f là luồng cực đại còn (S, T) là lát cắt hẹp nhất.

Giá trị của luồng
$$f$$
 là $val(f) = \sum_{e \in E^+(s)} f(e) = \sum_{e \in E^-(t)} f(e)$ $val(f) = 10 + 4 + 14 = 9 + 9 + 10 = 28$

$$S = \{s, 3, 4, 7\}$$

$$T = \{t, 2, 5, 6\}$$

$$T = \{t, 2, 5, 6\}$$

- Khả năng thông qua cap(S,T) của lát cắt (S,T) là số: Lát cắt nhỏ nhất (hẹp nhất) $cap(S,T) = \sum_{c(e)} c(e)$ là lát cắt với kntq nhỏ nhất.

$$cap(S, T) = 10 + 8 + 10 = 28$$
 $cap(S, T) = \sum_{e \in S \to T} c(e),$

trong đó $S \to T := \{(v, w) \in E : v \in S, w \in T\}$

- Giá trị luồng chảy qua lát cắt (S, T) là đại lượng

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e)$$

trong đó:
$$S \rightarrow T = \{(v, w) \in E : v \in S, w \in T\}$$

 $T \rightarrow S = \{(v, w) \in E : v \in T, w \in S\}$

Bổ đề 1. Giá trị luồng chảy qua lát cắt chính bằng giá trị của luồng:

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e) = \sum_{e \in E^{+}(s)} f(e) = val(f)$$

Bổ đề 2. Giá trị luồng nhỏ hơn hoặc bằng khả năng thông qua của lát cắt:

$$\operatorname{val}(f) \leq \operatorname{cap}(S, T).$$

Nếu val(f) = cap(S, T), thì f là luồng cực đại còn (S, T) là lát cắt hẹp nhất.

Giá trị của luồng
$$f$$
 là $val(f) = \sum_{e \in E^+(s)} f(e) = \sum_{e \in E^-(t)} f(e)$

$$Val(f) = 10 + 4 + 14 = 9 + 9 + 10 = 28$$

$$S = \{s, 3, 4, 7\}$$

$$T = \{t, 2, 5, 6\}$$
Lát cắt là cách phân hoạch tập đỉnh của đồ thị thành 2 tập S và T sao cho $s \in S$, $t \in T$.

- Khả năng thông qua cap(S,T) của lát cắt (S,T) là số: Lát cắt nhỏ nhất (hẹp nhất) là lát cắt với kntq nhỏ nhất.

$$cap(S, T) = 10 + 8 + 10 = 28$$

$$cap(S, T) = \sum_{e \in S \to T} c(e),$$

trong đó $S \rightarrow T := \{(v, w) \in E : v \in S, w \in T\}$

Giá trị luồng chảy qua lát cắt (S, T) là đại lượng

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e)$$

trong đó: $S \rightarrow T = \{(v, w) \in E: v \in S, w \in T\}$ $T \rightarrow S = \{(v,w) \in E: v \in T, w \in S\}$

Bổ đề 1. Giá trị luồng chảy qua lát cắt chính bằng giá trị của luồng:

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e) = \sum_{e \in E^{+}(s)} f(e) = val(f)$$

Bổ đề 2. Giá trị luồng nhỏ hơn hoặc bằng khả năng thông qua của lát cắt:

$$val(f) \le cap(S, T)$$
.

Nếu val $(f) = \operatorname{cap}(S, T)$, thì f là luồng cực đại còn(S, T) là lát cắt hẹp nhất.

Giá trị của luồng
$$f$$
 là $val(f) = \sum_{e \in E^+(s)} f(e) = \sum_{e \in E^-(t)} f(e)$ val $(f) = 10 + 4 + 10 = 6 + 8 + 10 = 24$

- Khả năng thông qua cap(S,T) của lát cắt (S,T) là số: Lát cắt nhỏ nhất (hẹp nhất) là lát cắt với kntq nhỏ nhất. $cap(S,T) = \sum_{e \in S \to T} c(e),$

trong đó
$$S \to T := \{(v, w) \in E : v \in S, w \in T\}$$
- Giá trị luồng chảy qua lát cắt (S, T) là đại lượng
$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e)$$
trong đó: $S \to T = \{(v, w) \in E : v \in S, w \in T\}$

$$T \to S = \{(v, w) \in E : v \in T, w \in S\}$$

Bổ đề 1. Giá trị luồng chảy qua lát cắt chính bằng giá trị của luồng:

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e) = \sum_{e \in E^{+}(s)} f(e) = val(f)$$

Bổ đề 2. Giá trị luồng nhỏ hơn hoặc bằng khả năng thông qua của lát cắt:

$$val(f) \le cap(S, T)$$
.

Nếu val(f) = cap(S, T), thì f là luồng cực đại còn(S, T) là lát cắt hẹp nhất.

10

Giá trị của luồng
$$f$$
 là $val(f) = \sum_{e \in E^+(s)} f(e) = \sum_{e \in E^-(t)} f(e) val(f) = 10+4+10 = 6+8+10=24$

$$T = \{t, 2, 5, 6\}$$

- Khả năng thông qua cap(S,T) của lát cắt (S,T) là số: Lát cắt nhỏ nhất (hẹp nhất) $cap(S,T) = \sum_{cap(S,T)} c(e)$ là lát cắt với kntq nhỏ nhất.

$$cap(S, T) = 10 + 8 + 10 = 28$$
 $cap(S, T) = \sum_{e \in S \to T} c(e),$

trong đó $S \to T := \{(v, w) \in E : v \in S, w \in T\}$

- Giá trị luồng chảy qua lát cắt (S,T) là đại lượng

$$=10+8+10-4 \left[\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e) \right]$$

trong đó:
$$S \rightarrow T = \{(v, w) \in E : v \in S, w \in T\}$$

 $T \rightarrow S = \{(v, w) \in E : v \in T, w \in S\}$

Bổ đề 1. Giá trị luồng chảy qua lát cắt chính bằng giá trị của luồng:

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e) = \sum_{e \in E^+(s)} f(e) = val(f)$$

Bổ đề 2. Giá trị luồng nhỏ hơn hoặc bằng khả năng thông qua của lát cắt:

$$\operatorname{val}(f) \leq \operatorname{cap}(S, T).$$

Nếu val(f) = cap(S, T), thì f là luồng cực đại còn (S, T) là lát cắt hẹp nhất.

Giá trị của luồng
$$f$$
 là $val(f) = \sum_{e \in E^+(s)} f(e) = \sum_{e \in E^-(t)} f(e)$ val $(f) = 10 + 4 + 10 = 6 + 8 + 10 = 24$

- Khả năng thông qua cap(S,T) của lát cắt (S,T) là số: Lát cắt nhỏ nhất (hẹp nhất)

 $cap(S,T) = \sum_{e \in S \to T} c(e),$

trong đó $S \rightarrow T := \{(v, w) \in E : v \in S, w \in T\}$

- Giá trị luồng chảy qua lát cắt (S, T) là đại lượng

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e)$$

trong đó: $S \rightarrow T = \{(v, w) \in E: v \in S, w \in T\}$ $T \rightarrow S = \{(v, w) \in E : v \in T, w \in S\}$

là lát cắt với kntq nhỏ nhất.

Bổ đề 1. Giá trị luồng chảy qua lát cắt chính bằng giá trị của luồng:

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e) = \sum_{e \in E^{+}(s)} f(e) = val(f)$$

Bổ đề 2. Giá trị luồng nhỏ hơn hoặc bằng khả năng thông qua của lát cắt:

$$\operatorname{val}(f) \leq \operatorname{cap}(S, T).$$

Nếu val(f) = cap(S, T), thì f là luồng cực đại còn(S, T) là lát cắt hẹp nhất.

Giá trị của luồng
$$f$$
 là $val(f) = \sum_{e \in E^+(s)} f(e) = \sum_{e \in E^-(t)} f(e) val(f) = 10+4+10 = 6+8+10=24$

$$T = \{t, 5, 6, 7\}$$

- Khả năng thông qua cap(S,T) của lát cắt (S,T) là số: Lát cắt nhỏ nhất (hẹp nhất)

$$cap(S, T) = 9 + 15 + 8 + 30 \qquad cap(S, T) = \sum_{e \in S \to T} c(e),$$

$$= 62 \qquad trong \text{ d\'o } S \to T := \{(v, w) \in E : v \in S, w \in T\}$$

- Giá trị luồng chảy qua lát cắt (S, T) là đại lượng

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e)$$

trong đó:
$$S \rightarrow T = \{(v, w) \in E : v \in S, w \in T\}$$

 $T \rightarrow S = \{(v, w) \in E : v \in T, w \in S\}$

là lát cắt với kntq nhỏ nhất.

Bổ đề 1. Giá trị luồng chảy qua lát cắt chính bằng giá trị của luồng:

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e) = \sum_{e \in E^{+}(s)} f(e) = val(f)$$

Bổ đề 2. Giá trị luồng nhỏ hơn hoặc bằng khả năng thông qua của lát cắt:

$$val(f) \le cap(S, T)$$
.

Nếu val(f) = cap(S, T), thì f là luồng cực đại còn(S, T) là lát cắt hẹp nhất.

Giá trị của luồng
$$f$$
 là $val(f) = \sum_{e \in E^+(s)} f(e) = \sum_{e \in E^-(t)} f(e) val(f) = 10+4+10 = 6+8+10=24$

$$T = \{t, 5, 6, 7\}$$

- Khả năng thông qua cap(S,T) của lát cắt (S,T) là số: Lát cắt nhỏ nhất (hẹp nhất)

 $cap(S, T) = 9+15+8+30 \qquad cap(S, T) = \sum_{e \in S \to T} c(e),$ $=62 \qquad trong \text{ d\'o } S \to T := \{(v, w) \in E : v \in S, w \in T\}$

- Giá trị luồng chảy qua lát cắt (S, T) là đại lượng

$$= 6+8+10-0$$

$$= 24$$

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e)$$

trong đó: $S \rightarrow T = \{(v, w) \in E: v \in S, w \in T\}$ $T \rightarrow S = \{(v, w) \in E: v \in T, w \in S\}$

Bổ đề 1. Giá trị luồng chảy qua lát cắt chính bằng giá trị của luồng:

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e) = \sum_{e \in E^{+}(s)} f(e) = val(f)$$

Bổ đề 2. Giá trị luồng nhỏ hơn hoặc bằng khả năng thông qua của lát cắt:

$$\operatorname{val}(f) \leq \operatorname{cap}(S, T).$$

Nếu val(f) = cap(S, T), thì f là luồng cực đại còn (S, T) là lát cắt hẹp nhất.

Nội dung chi tiết

- 6.1. Phát biểu bài toán và các ứng dụng
- 6.2. Lát cắt
- 6.3. Đồ thị tăng luồng và Đường tăng luồng
- 6.4. Thuật toán Ford-Fulkerson
- 6.5. Thuật toán Edmond-Karp
- 6.6. Các ứng dụng

Thuật toán tham lam

Thuật toán tham lam:

- Bắt đầu từ luồng 0 (Luồng có giá trị = 0).
 - Tìm đường đi P từ s đến t trong đó mỗi cung thoả mãn f(e) < c(e)

Tăng luồng dọc theo đường đi P.

Lặp lại cho đến khi gặp bế tắc.

Luồng có giá trị = 10

Ý tưởng thuật toán

Thuật toán tham lam không cho lời giải tối ưu.

Đồ thị tăng luồng

Đồ thị tăng luồng – Tập cung

Mạng đã cho G = (V, E).

- Cung $e = (v, w) \in E$
- Luồng f(e)
- Khả năng thông qua c(e)

Đồ thị tăng luồng: $G_f = (V, E_f)$.

-
$$E_f = \{e: f(e) < c(e) \} \cup \{e^R : f(e) > 0 \}$$

Khả năng thông qua của các cung

$$c_f(e) = \begin{cases} c(e) - f(e) & \text{n\'eu} \ e \in E \\ f(e) & \text{n\'eu} \ e^R \in E \end{cases}$$

$$e = (u,v) \Rightarrow e^R = (v,u)$$

Đồ thị tăng luồng - Ví dụ

Đồ thị tăng luồng: $G_f = (V, E_f)$.

- $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$

- $c_f(e) = \begin{cases} c(e) f(e) & \text{n\'eu} \quad e \in E \\ f(e) & \text{n\'eu} \quad e^R \in E \end{cases}$
- $-c_f(e)$ cho biết lượng lớn nhất có thể tăng luồng trên cung e.
- $-c_f(e^R)$ cho biết lượng lớn nhất có thể giảm luồng trên cung e.

(s,2)

(s,4)

Đồ thị tăng luồng - Ví dụ

Đồ thị tăng luồng: $G_f = (V, E_f)$. $c_f(e) = \begin{cases} c(e) - f(e) \\ f(e) \end{cases}$ nếu $e \in E$ $- E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$ nếu $e^R \in E$ $c_f(e)$ cho biết lượng lớn nhất có thể tăng luồng trên cung e. - c_f(e^R) cho biết lượng lớn nhất có thể giảm luồng trên cung e. (s,4)Đường tăng luồng = đường đi từ s đến t trên đồ thị tăng luồng G_f . (s,2)Khả năng thông qua của đường đi P <u>là</u>: $c_f(P) = \min \{c_f(e): e \in P\}$. (2,3)Xây dựng G_f mới tương ứng (4,3)Tìm đường tăng luồng (2,5)trên G_f mới (3,t)**4** 🖔 (5,t)10 10 Ví dụ: Đường tăng luồng P: $C_f(P) = 4$ s, 4, 3, 2, 5, t G_f

Đường tăng luồng

Đường tăng luồng = đường đi từ s đến t trên đồ thị tăng luồng. (s,4)

– Luồng là cực đại ⇔ không tìm được đường tăng luồng???

(2,3)

(s,2)

Định lý về luồng cực đại và lát cắt nhỏ nhất

Định lý đường tăng luồng (Ford-Fulkerson, 1956): Luồng là cực đại khi và chỉ khi không tìm được đường tăng luồng.

Định lý về luồng cực đại và lát cắt nhỏ nhất (Ford-Fulkerson, 1956): Giá trị của luồng cực đại bằng khả năng thông qua của lát cắt nhỏ nhất.

Ta sẽ chứng minh định lý tổng hợp sau:

Định lý. Giả sử f là luồng trong mạng. Ba mệnh đề sau là tương đương

- (i) Tìm được lát cắt (S, T) sao cho val(f) = cap(S, T).
- (ii) flà luồng cực đại.
- (iii) Không tìm được đường tăng luồng f.

Chứng minh định lý

Chứng minh.

- (i) Tìm được lát cắt (S, T) sao cho val(f) = cap(S, T).
- (ii) f là luồng cực đại. $(i) \Rightarrow (ii)$
 - Suy từ hệ quả của Bổ đề 2.

 $\mathbf{B}\hat{\mathbf{o}}$ $\mathbf{d}\hat{\mathbf{e}}$ 2. Giả sử f là luồng, còn (S, T) là lát cắt. Khi đó $val(f) \leq cap(S, T)$

- (ii) \Rightarrow (iii) (iii) Không tìm được đường tăng luồng f.
 - Chứng minh bằng lập luận phản đề: Nếu tìm được đường tăng thì f không là luồng cực đại.
 - Thực vậy, nếu tìm được đường tăng P, thì tăng luồng dọc theo P ta thu được luồng f' với giá trị lớn hơn.

Chứng minh định lý

- (iii) \Rightarrow (i) (iii) Không tìm được đường tăng luồng f
 - (i) Tìm được lát cắt (S, T) sao cho val(f) = cap(S, T).
 - Giả thiết (iii) \rightarrow f là luồng và G_f không chứa đường đi từ s đến t.
 - Gọi S là tập các đỉnh đạt tới được từ s trong G_f
 - Theo định nghĩa $s \in S$, và theo giả thiết (iii) → $t \notin S$
 - Ta có

$$f(e) = 0, e \in T \rightarrow S,$$

 $f(e) = c(e), e \in S \rightarrow T$

Từ đó suy ra

$$val(f) = \sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e)$$
$$= \sum_{e \in S \to T} c(e)$$
$$= cap(S,T)$$

Mạng đã cho G

Nội dung chi tiết

- 6.1. Phát biểu bài toán và các ứng dụng
- 6.2. Lát cắt
- 6.3. Đồ thị tăng luồng và Đường tăng luồng
- 6.4. Thuật toán Ford-Fulkerson
- 6.5. Thuật toán Edmond-Karp
- 6.6. Các ứng dụng

Thuật toán Ford – Fulkerson

Tăng luồng f dọc theo đường tăng P

Thuật toán Ford-Fulkerson

Thời gian tính

Question: Thuật toán Ford-Fulekerson có phải là thuật toán đa thức? (thuật toán với thời gian tính bị chặn bởi đa thức bậc cố định của độ dài dữ liệu vào)

Answer: Không phải. Nếu khả năng thông qua lớn nhất là C thì thuật toán có thể phải thực hiện cỡ C bước lặp.

Ví dụ sau đây cho thấy thuật toán có thể phải thực hiện rất nhiều bước lặp

Thuật toán F-F không là thuật toán đa thức

Đường tăng luồng P: s, 4, 2, t

Tăng luồng dọc theo P

Đường tăng luồng P': s, 2, 4, t

Tăng luồng dọc theo P'

 G_f 10^9 10^9 10^9 10^9 10^9

Thuật toán thực hiện tằng luồng luân phiên ^Gf dọc theo hai đường tăng luồng P và P'

(s, 4)

2×10⁹ lần lặp

- (s, 2)
- (4, 2)
- (2, t)
- (4, t)

Thời gian tính

Question: Thuật toán Ford-Fulekerson có phải là thuật toán đa thức? (thuật toán với thời gian tính bị chặn bởi đa thức bậc cố định của độ dài dữ liệu vào)

Answer: Không phải. Nếu khả năng thông qua lớn nhất là C thì thuật toán có thể phải thực hiện cỡ C bước lặp.

Khả năng thông qua của các cung là số thực thì tồn tại ví dụ cho thấy thuật toán Ford-Fulkerson không dừng.

Zwick xây dựng ví dụ cho thấy thuật toán có thể không dừng, nếu như khả năng thông qua là số vô tỷ

Ví dụ: Thuật toán không dừng

Zwick xây dựng ví dụ sau đây cho thấy thuật toán Ford-Fulkerson có thể không dừng, nếu như khả năng thông qua là số vô tỷ

Có 6 cung với khả năng thông qua X, 2 cung khả năng thông qua 1 và một cung khả năng thông qua

$$\phi = (\sqrt{5} - 1)/2 \approx 0.618034...$$

❖ Để chỉ ra thuật toán không dừng, ta có thể theo dõi khả năng thông qua của 3 cung nằm ngang của đồ thị tăng luồng trong quá trình thực hiện thuật toán. (Khả năng thông qua của 6 cung còn lại ít nhất là X-3).

Thực hiện thuật toán FF

❖ Thuật toán FF bắt đầu bởi việc sử dụng đường tăng luồng trung tâm trong hình vẽ trên. Giá trị luồng tăng thêm được 1. Val(f)=1.

Trên đồ thị tăng luồng: Các cung nằm ngang theo thứ tự từ trái sang có khả năng rút gọn là 1, 0, φ

Thực hiện thuật toán FF

Thực hiện thuật toán FF

- **�** Giả sử ở đầu lần lặp k các cung đó có khả năng thông qua là ϕ^{k-1} , 0, ϕ^k . Khi đó
 - 1) Tăng luồng dọc theo B thêm ϕ^k , kntq của chúng trở thành ϕ^{k+1} , ϕ^k , 0
 - 2) Tăng luồng dọc theo C thêm ϕ^k , kntq của chúng trở thành ϕ^{k+1} , 0, ϕ^k ,
 - 3) Tăng luồng dọc theo B thêm ϕ^{k+1} , kntq của chúng trở thành 0, ϕ^{k+1} , ϕ^{k+2} ,
 - 4) Tăng luồng dọc theo A thêm ϕ^{k+1} , kntq của chúng trở thành ϕ^{k+1} , 0, ϕ^{k+2} ,
- Sau 4 lần tăng, giá trị của luồng tăng thêm là $2(\phi^{k+}\phi^{k+1})=2\phi^{k+2}$
- * Sau 4n+1 lần tăng luồng, khả năng thông qua sẽ là ϕ^{2n-2} , 0, ϕ^{2n-1} , Khi số lần tăng luồng ra vô cùng, giá trị của luồng sẽ là

$$1 + 2\sum_{i=1}^{\infty} \phi^{i} = 1 + \frac{2}{1 - \phi} = 4 + \sqrt{5} < 7.$$

❖ Mặc dù dễ thấy là giá trị của luồng cực đại trong mạng này là 2X+1.

Giả thiết: Tất cả các khả năng thông qua là các số nguyên trong khoảng từ 0 đến *C*.

Bất biến: Mỗi giá trị luồng f(e) và mỗi khả năng thông qua $c_f(e)$ luôn luôn là số nguyên trong quá trình thực hiện thuật toán.

Định lý: Thuật toán dừng sau không quá $val(f^*) \le nC$ lần lặp.

Chứng minh.

Sau mỗi lần tăng luồng, giá trị của luồng tăng thêm ít nhất 1.

Hệ quả. Thời gian tính của thuật toán Ford-Fulkerson là O(m.n.C) Hệ quả. Nếu C = 1, thì thuật toán đòi hỏi thời gian O(mn).

Nội dung chi tiết

- 6.1. Phát biểu bài toán và các ứng dụng
- 6.2. Lát cắt
- 6.3. Đồ thị tăng luồng và Đường tăng luồng
- 6.4. Thuật toán Ford-Fulkerson
- 6.5. Thuật toán Edmond-Karp
- 6.6. Các ứng dụng

Chọn đường tăng luồng như thế nào?

Cần hết sức cẩn thận khi lựa chọn đường tăng, bởi vì

- Một số cách chọn dẫn đến thuật toán hàm mũ.
- Cách chọn khôn khéo dẫn đến thuật toán đa thức.
- Nếu kntq là các số vô tỷ, thuật toán có thể không dừng

Mục đích: chọn đường tăng sao cho:

- Có thể tìm đường tăng một cách hiệu quả.
- Thuật toán đòi hỏi thực hiện càng ít bước lặp càng tốt.

Chọn đường tăng với

- khả năng thông qua lớn nhất.
 (đường béo fat path)
- khả năng thông qua đủ lớn. (thang độ hoá kntq capacity scaling)
- → số cạnh trên đường đi là ít nhất. (đường ngắn nhất shortest path)

Thuật toán Edmond-Karp

Dùng thuật toán BFS

Edmonds – Karp Algorithm

Edmonds and Karp, JACM 1972

- Nếu đường tăng được chọn là đường ngắn nhất từ s đến t, thì thời gian tính của thuật toán sẽ là $O(|E|^2|V|)$.

Thuật toán Ford-Fulkerson

Tìm đường tăng luồng nhờ thực hiện BFS.

- Dễ thực hiện.
- Đường tăng có ít cạnh nhất.

 $O(|E|^2|V|)$

Thuật toán Edmonds – Karp

```
FOR e \in E 
 f(e) \leftarrow 0 
 G_f \leftarrow dồ thị tăng luồng (residual graph) 
 WHILE (tồn tại đường tang luồng) 
 { 
 tìm đường tang luồng P bởi BFS 
 f \leftarrow augment(f, P) 
 hiệu chỉnh G_f } 
 RETURN f
```


Edmonds-Karp Algorithm

Xây dựng đồ thị tăng luồng G_f

Giá trị luồng = 0

Edmonds-Karp Algorithm

Giá trị luồng = 8

Đường tăng luồng P: s, 2, 5, t

Edmonds-Karp Algorithm

Xây dựng đồ thị tăng luồng G_f

Đường tăng luồng P: s, 2, 4, t

(5, t)

Tăng luồng dọc theo P

Giá trị luồng = 10

Kết luận:

Trên đồ thị G_f , S = tập các đỉnh đạt được từ s bởi BFS(s)

- Lát cắt hẹp nhất (S, T): $S = \{s, 3\}; T = \{2,4,5,t\}$
- Giá trị luồng cực đại: val (f) = 10 + 9 = 19

Xây dựng đồ thị tăng luồng G_f

Giá trị luồng = 19 Đường tăng luồng P: Không tồn tại G_f : 10 10

Ví dụ 1

Tìm luồng cực đại theo thuật toán Edmonds-Karp

