# Типы уравнений первого порядка

### Содержание

| 1 | Уравение с разделёнными переменными    | 1 |
|---|----------------------------------------|---|
| 2 | Уравнение с разделяющимися переменными | 1 |
| 3 | Линейное уравнение                     | 1 |
| 4 | Уравнение Бернулли                     | 2 |
| 5 | Уравнение Риккати                      | 3 |
| 6 | Однородное уравнение                   | 4 |
| 7 | Дробно-линейное уравнение              | 4 |
| 8 | Обощённо-однородное уравнение          | 5 |
| 9 | Уравнение в полных дифференциалах      | 6 |

## І. Уравение с разделёнными переменными

$$\frac{\mathrm{d} x}{g(x)} + \frac{\mathrm{d} y}{h(y)} = 0$$

$$U(x, y) = \int \frac{\mathrm{d} x}{g(x)} + \int \frac{\mathrm{d} y}{h(y)} + C$$

## II. Уравнение с разделяющимися переменными



## III. Линейное уравнение

$$y' + p(x)y = q(x)$$
,  $p(x), q(x) \in \mathcal{C}\left(\langle a, b \rangle\right)$ 

- Если  $q(x) \equiv 0$ , то уравнение y' + p(x)y = 0 называется линейным однородным (ЛОУ)
- Иначе y' + p(x)y = q(x) линейным неоднородным (ЛНУ)

$$y_{\mathrm{OH}}(x,C)=y_{\mathrm{OO}}(x,C)+y_{\mathrm{Vacthoe}\ \mathrm{Heoghop, model}}$$
общее неоднородное (все реш. ЛНУ) (все реш. ЛОУ)  $y_{\mathrm{Vacthoe}\ \mathrm{Heoghop.}}$  (какое-то решение ЛНУ)

#### Алгоритм.

1. Ищем уоо:

$$y_{\rm OO} = Ce^{-\int p(x) \, dx}$$

**Примечание.** Сюда, при допуске C=0, входит  $y\equiv 0,\quad x\in \mathbb{R},$  "потерянное" при выводе этой формулы

2. Ищем  $y_{\rm ЧH}$ :

Будем искать в виде

$$y_{\text{HH}} = C(x) \cdot e^{-\int p(x) \, dx}$$

Замечание. Эту формулу обязательно надо записать

Подставим это в ЛНУ:

$$\underbrace{C'(x) \cdot e^{-\int p(x) \; \mathrm{d} \, x} + C(x) \cdot e^{-\int p(x) \; \mathrm{d} \, x} \cdot \left(-p(x)\right)}_{y'_{\mathrm{HH}} \; \mathrm{как \; произведения}} + p(x)\underbrace{C(x) e^{-\int p(x) \; \mathrm{d} \, x}}_{y_{\mathrm{HH}}} \equiv q(x)$$

Контрольная точка. Второй и третий член должны сократиться

$$C'(x) = e^{\int p(x) dx} q(x)$$
$$C(x) = \int e^{\int p(x) dx} q(x) dx + 0$$
<sub>(C<sub>2</sub>)</sub>

Подставляем в формулу для  $y_{\text{ЧН}}$ :

$$y_{\rm HH} = \int e^{\int p(x) \, \mathrm{d}x} q(x) \, \mathrm{d}x \cdot e^{-\int p(x) \, \mathrm{d}x}$$

**Замечание.** Если p(x) можно проинтегрировать (т. е.  $\int p(x) \, \mathrm{d}\, x = \xi(x) + C_1$ ), нужно вместо  $C_1$  записать какую-то конкретную константу (читайте: ноль). Мы ведь искали **частное** решение, а не континуум

3. Ищем у<sub>ОН</sub>:

$$y_{\text{OH}} = y_{\text{OO}} + y_{\text{YH}} = Ce^{-\int p(x) \, dx} + e^{-\int p(x) \, dx} \cdot \int e^{\int p(x) \, dx} q(x) \, dx$$

**Замечание.** Неберущийся неопределённый интеграл нужно записывать в виде интеграла с переменным верхним пределом, в нижнем пределе которого стоит выбранная числовая константа

$$y_{\text{OH}} = e^{-P(x)} \left( C + \int_{x_0}^x e^{P(s)} q(s) \, ds \right), \qquad P(x) = \int_{x_0}^x p(t) \, dt$$

Замечание. Не стоит здесь пользоваться готовой формулой. Нужно идти по алгоритму

### IV. Уравнение Бернулли

$$y' + p(x)y + r(x)y^{\tau} = 0, \qquad p(x), r(x) \in \mathcal{C}\left(\langle a, b \rangle\right)$$

#### Замечание.

• При  $\tau > 0$  уравнение имеет тривиальное решение  $y \equiv 0, \quad x \in (a,b)$ 

• При  $\tau = 0, 1$  – это не уравнение Бернулли, а линейное

Стандартная замена:

$$u = y^{1-\tau}, \qquad u' = (1-\tau)y^{-\tau}y'$$

Замечание. Здесь прямая замена не нужна – просто делим на  $y^{\tau}$ 

Получаем уравнение:

$$(1-\tau)^{-1}u' + p(x)u + r(x) = 0$$

### V. Уравнение Риккати

$$y' + p(x)y + r(x)y^2 = q(x)$$

Иногда решается:

1. Если известно какое-то частное решение: Пусть  $y = \eta(x)$  – решение уравнения на некотором промежутке, то есть

$$\eta'(x) \equiv q(x) - p(x)\eta(x) - r(x)\eta^2(x),$$
 ha  $\langle a, b \rangle$ 

Замена  $y = z + \eta(x)$  преобразует наше уравнение в уравнение Бернулли

$$z' - \left(p(x) + 2r(x)\right)z + r(x)z^2 = 0$$

2. Если  $r(x) \neq 0$  на  $\langle a,b \rangle$  и  $r(x) \in \mathcal{C}^1\bigg(\langle a,b \rangle\bigg)$ :

Уравнение приводится к виду

$$u' + au^2 = s(x), \qquad a \neq 0$$

при помощи композиции двух замен:

(а) Линейная замена

$$y = \gamma(x)z,$$
  $y' = \gamma'z + \gamma z',$   $z = y\gamma^{-1}$ 

позволяет сделать коэффициент при квадратичном члене ненулевой константой

(b) Сдвигающая замена

$$z = u + \delta(x),$$
  $z' = u' + \delta'x',$   $u = z - \delta$ 

позволяет аннулировать линейный член, сохраняя коэффициент при  $z^2$  неизменным

3. Если уравнение имеет вид

$$u' = au^2 + cx^{\sigma}, \qquad \sigma \neq 0, -2$$

Оно называется специальным уравнением Риккати

**Замечание.** При  $\sigma=0$  – это уравнение с разделяющимися переменными, а при  $\sigma=-2$  – обобщённо-однородное

В последнем случае замена

$$u = x^{-1}v^{-1}$$

сводит уравнение к уравнению с разделяющимися переменными

$$xv' = -(cv^2 + v - a)$$

Специальное уравнение Риккати интегрируется в квадратурах тогда и только тогда, когда

$$k = \frac{\sigma}{2\sigma + 4} \in \mathbb{Z} \quad (k \neq 0), \qquad \text{то есть} \quad \sigma = \frac{4k}{1 - 2k} \quad (k \in \mathbb{Z})$$

Алгоритм.

(а) Сделаем замену обеих переменных:

$$\begin{cases} x = t^{\frac{1}{2} - k} = t^{\frac{1}{\sigma + 2}}, & t = x^{\frac{2}{1 - 2k}} > 0 \\ u = z(t)t^{k - \frac{1}{2}} = zt^{-\frac{1}{\sigma + 2}}, & z = ux \end{cases}$$

$$\frac{\mathrm{d}\,u}{\mathrm{d}\,x} = \frac{\mathrm{d}(zt^{k-\frac{1}{2}})}{\mathrm{d}\,t} \cdot \frac{\mathrm{d}\,t}{\mathrm{d}\,x} = \frac{t^{k-\frac{1}{2}}\dot{z} + (k-\frac{1}{2})t^{k-\frac{3}{2}}z}{(\frac{1}{2}-k)t^{-\frac{1}{2}-k}} = \frac{t^{2k}}{\frac{1}{2}-k}\dot{z} - t^{2k-1}z$$

Получаем уравнение

$$t\dot{z} + \left(k - \frac{1}{2}\right)z + a_0z^2 = c_0t, \qquad a_0 \coloneqq \left(\frac{1}{2} - k\right)a, \quad c_0 \coloneqq \left(\frac{1}{2} - k\right)c$$

Это уравнение сводится к уравнению с разделяющимися переменными, если коэффициент при линейном члене равен -1/2

#### (b) "Обнуляем" *k*:

В зависимости от знака k используется одна из замен, сохраняющих структуру уравнения и позволяющих уменьшать |k| на 1:

 $\bullet$  k > 0:

$$z = a^{-1} + tv_1^{-1}, \qquad \dot{z} = v_1^{-1} - tv_1^{-2}\dot{v_1}, \qquad v_1 = t(x - a^{-1})^{-1}$$

• *k* < 0:

$$z = t(v_1 + d)^{-1},$$
  $\dot{z} = (v_1 + d)^{-1} - t(v_1 + d)^{-2}\dot{v_1},$   $v_1 = tz^{-1} - d$ 

$$d := \left(\frac{1}{2} + k\right) \left(\frac{1}{2} - k\right)^{-1} c^{-1}$$

В результате нескольких таких замен придём к уравнению

$$t\dot{v_k} + \left(-\frac{1}{2}\right)v_k + a_k v_k^2 = c_k t$$

(с) Завершающая замена

$$v_k = t^{1/2}w, \qquad \dot{v_k} = \frac{t^{-1/2}w}{2} - t^{1/2}\dot{w}, \qquad w = t^{-1/2}v_k$$

приводит уравнение к уравнению с разделяющимися переменными

$$t^{1/2}\dot{w} = a_k w^2 - c_k$$

# VI. Однородное уравнение

**Определение 1.** h(x,y) называется однородной функцией степени k, если  $h(sx,sy) = s^k h(x,y)$ 

Уравнения

$$y' = h\left(rac{y}{x}
ight)$$
 и  $M(x,y) \,\mathrm{d}\, x + N(x,y) \,\mathrm{d}\, y,$   $M,N$  – однородные порядка  $k$ 

называются однородными (порядка 0)

То есть, уравнение однородное, если каждое его слагаемое имеет одну и ту же суммарную степень по x и y Стандартная замена:

$$y(x) = u(x)x, \qquad \left[ \begin{array}{l} y' = u'x + u \\ \operatorname{d} y = u \operatorname{d} x + x \operatorname{d} u \end{array} \right., \qquad u = x^{-1}y$$

**Контрольная точка.** После замены **каждое** слагаемое должно содержать  $x^k$ 

Сокращаем на  $x^k$ , группируем слагаемые при dx и dy – получаем уравнение с разделяющимися переменными

# VII. Дробно-линейное уравнение

$$y' = \left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$$

Числитель и значенатель задают прямые, пусть  $l_1 = a_1x + b_1y + c_1$ ,  $l_2 = a_2x + b_2y + c_2$  Возможны два случая:

$$\bullet \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0$$



Пусть  $(x_*, y_*)$  – решение системы

$$\begin{cases} a_1x + b_1y + c_1 = 0 \\ a_2x + b_2y + c_2 = 0 \end{cases}$$

или, что то е самое, точка пересечения прямых  $l_1$  и  $l_2$ 

После сдвига начала координат в точку  $(x_*, y_*)$  прямые не будут иметь свободных членов Итак, после замены

$$u = x - x_*,$$
  $v = y - y_*,$   $du = dx,$   $dv = dy$ 

или y'(x) = v'(u) получаем однородное уравнение

$$v' = h\left(\frac{a_1u + b_1v}{a_2u + b_2v}\right)$$

$$\bullet \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = 0$$



Тогда  $b_1 \neq 0$  и  $\frac{b_2}{b_1} = \frac{a_2}{a_1} = k$ В этом случае замена

$$u = a_1 x + b_1 y,$$
  $y = \frac{1}{b_1} (u - a_1 x),$   $y' = \frac{1}{b_1} (u' - a_1)$ 

сразу приводит уравнение к уравнению с разделяющимися переменными:

$$u' = b_1 h \left( \frac{u + c_1}{ku + c_2} \right) + a_1$$

## VIII. Обощённо-однородное уравнение

**Определение 2.** Уравнение называется обощённо-однородным, если каждое его слагаемое имеет один и тот же суммарный порядок по x и y при условии, что x, d x имеют порядок 1, а y, d y — порядок  $m \neq 0$ 

Тогда  $y' = \frac{\mathrm{d}\ x}{\mathrm{d}\ y}$  имеет порядок m-1

Аргументы входящих в уравнение функций типа логарифма или тригонометрических должны иметь нулевой порядок

Таким образом, чтобы установить, является ли уравнение обобщённо-однородным, надо приравнять порядки всех слагаемых, получая систему многих уравнений с одной неизвестной m. Если повезёт, такое число m найдётся. Тогда замена

$$y = z^m, y' = mz^{m-1}z', z = y^{1/m}$$

сведёт уравнение к однородному, но не всегда:

**Проблема.** Проблема возникает, когда y может принимать значения разных знаков (ОДЗ этого не запрещает), и отсутсвует инвариантность относительно замены  $y = -\widetilde{y}$ 

В таком случае надо отдельно проверить  $y(x) \equiv 0$  Дальше возможно три случая:

• Общий:

Замена

$$y = (xu)^m$$
,  $y' = m(xu)^{m-1}(u + xu')$ ,  $u = x^{-1}y^{1/m}$ 

приведёт к уравнению с разделяющимися переменными (но придётся решить два раза для разных знаков y)

ullet Если  $\exists\,q\in\mathbb{Z}:m=2q$  Делаем замену

$$y = x^{2q}u$$
,  $y' = 2qx^{2q-1}u + x^{2q}u'$ ,  $u = x^{-2q}y$ 

Она не фиксирует знак y, так что не придётся решать уравнение второй раз Также получаем сразу уравнение с разделяющимися переменными

• Если  $\exists \, q \in \mathbb{Z} : m = (2q)^{-1}$ , при этом x тоже меняет знак, и отсутсвует инвариантность относительно замены  $x = -\widetilde{x}$ 

Надо следать замену

$$y = |x|^{\frac{1}{2q}}u, \qquad y' = \sigma \frac{\mathrm{d}\,y}{\mathrm{d}\,|x|} = \sigma \bigg( (2q)^{-1} |x|^{\frac{1}{2q}-1}u + |x|^{\frac{1}{2q}}u' \bigg), \quad \mathrm{где}\,\, u' = \frac{\mathrm{d}\,u}{\mathrm{d}\,|x|}, \qquad u = |x|^{-\frac{1}{2q}}y$$

где  $\sigma = \operatorname{sign} x$ 

Получается уравнение с разделяющимися переменными и параметром  $\sigma$ 

Контрольная точка. В ответе не должно остаться  $\sigma$  (т. е. каждая  $\sigma$  должна "найти" свой |x|)

Примечание.  $\sigma|x|=x$ 

### IX. Уравнение в полных дифференциалах

$$M(x,y) d x + N(x,y) d y = 0$$

$$\tag{1}$$

Определение 3. Уравнение (1) называется уравнением в полных дифференциалах (УПД), если

$$\exists U(x,y) \in \mathcal{C}^1\bigg(B\bigg): \begin{cases} U'_x = M \\ U'_y = N \end{cases}$$

Если нашлась такая U, то  $U(x,y)\equiv C$  – ответ

Утверждение 1. Уравнение (1) является УПД тогда и только тогда, когда

$$M_y' - N_x' \equiv 0$$
 локально (2)

Проверяем (2)

Ищем U:

$$U'_{x} = M \implies U(x,y) = \int M(x,y) \, dx + C(y)$$

$$U'_{y} = N \implies \left( \int M(x,y) \, dx \right)'_{y} + C'(y) = N(x,y)$$

$$C(y) = \int N(x,y) \, dy + \int \left( \int M(x,y) \, dx \right)'_{y} \, dy + 0$$
(3)

или

$$U'_{y} = N \implies U(x, y) = \int N(x, y) \, dy + C(x)$$

$$U'_{x} = M \implies \left( \int N(x, y) \, dy \right)'_{x} + C'(x) = M(x, y)$$

$$(4)$$

$$C(y) = \int M(x,y) \, dx + \int \left( \int N(x,y) \, dy \right)'_x \, dx + 0$$

Подставляем C(y) в первое выражение, получаем U(x,y)

Контрольная точка. В (3) и (4) не должно остаться x

**Замечание.** Может оказаться, что  $C'\equiv 0.$  Тогда можно считать, что  $C(y)\equiv 0$  (нужна ведь произвольная константа)