hjemmeopgave 7

November 1, 2023

1 01035 Matematik 2 Hjemopgave 7

Morten Hay Sørensen s223872

1. november 2023

```
[2]: #imports
from sympy import *
init_printing()
```

1.1 Opgave 1)

Der er givet følgende inhomogene lineære differentialligningssystem

```
[11]: #Definition af symboler
    t = symbols('t', real=True)
    x1,x2 = Function('x_1')(t),Function('x_2')(t)

#Definition af differentialligninger
    deq1 = Eq(diff(x1,t),x2)
    deq2 = Eq(diff(x2,t),-9*x1-6*x2+exp(I*t))

#Print af systemet
    Eq(Matrix([deq1.lhs,deq2.lhs]),Matrix([deq1.rhs,deq2.rhs]))
```

$$\begin{bmatrix} \textbf{11]:} \\ \left[\frac{d}{dt}x_1(t) \\ \frac{d}{dt}x_2(t) \right] = \begin{bmatrix} x_2(t) \\ -9x_1(t) - 6x_2(t) + e^{it} \end{bmatrix}$$

1.1.1 Opgave 1.1)

Der skal findes den fuldstændige løsning til det tilsvarende homogene ligningssystem på formen $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$. Systemmatricen kan let aflæses fra det homogene system som $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -9 & -6 \end{bmatrix}$. Det homogene system bliver da

```
[13]: #definition af matricer
x = Matrix([x1,x2])
A = Matrix([[0,1],[-9,-6]])
#Definition af det homogene system
```

dhom = Eq(diff(x,t),A*x)

#Print af det homogene system
dhom

$$\begin{bmatrix} \textbf{13} \end{bmatrix} \colon \begin{bmatrix} \frac{d}{dt} x_1(t) \\ \frac{d}{dt} x_2(t) \end{bmatrix} = \begin{bmatrix} x_2(t) \\ -9x_1(t) - 6x_2(t) \end{bmatrix}$$

Der kan findes lineært uafhængige løsninger til systemet med sætning 2.11. Egenværdier og - vektorer for systemmatricen undersøges

[14]: A.eigenvects()

[14]:
$$\left[\left(-3, \ 2, \ \left[\left[-\frac{1}{3} \right] \right] \right) \right]$$

Der er altså en reel egenværdi $\lambda=-3$ med algebrarisk mutiplicitet p=2 og den tilhørende egenvektor $\mathbf{v}=\begin{bmatrix} -1\\ 3 \end{bmatrix}$ med geometrisk multiplicitet p>q=1. Med sætning 2.4 kan den første løsning opskrives som

$$\mathbf{x_1}(t) = \mathbf{v}e^{\lambda t} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}e^{2t}, \ \ t \in \mathbb{R}$$

Den næste løsning er så jf. sætning 2.11

$$\mathbf{x_2}(t) = \mathbf{b_1}e^{2t} + \mathbf{b_2}te^{2t}$$

Dette kan løses ved at differentiere x_2 og indsætte det i differentialligningen.

$$\mathbf{\dot{x}_2}(t) = 2\mathbf{b_1}e^{2t} + \mathbf{b_2}e^{2t} + 2\mathbf{b_2}te^{2t}$$

 $\mathbf{x_2}$ er da en løsning til systemet for alle $t \in \mathbb{R}$ når

$$\mathbf{\ddot{x}_2}(t) = \mathbf{Ax_2}(t), \quad t \in \mathbb{R} \Leftrightarrow$$

$$2\mathbf{b_1}e^{2t} + \mathbf{b_2}e^{2t} + 2\mathbf{b_2}te^{2t} = \mathbf{Ab_1}e^{2t} + \mathbf{Ab_2}te^{2t}, \quad t \in \mathbb{R}$$

Systemet kan simplificeres ved at sætte $t = 0 \Rightarrow$

$$2\mathbf{b_1} + \mathbf{b_2} = \mathbf{A}\mathbf{b_1}$$

Og
$$t = 1 \Rightarrow$$

$$\mathbf{Ab_2} = 2\mathbf{b_2}$$

Disse ligninger viser, at $\mathbf{b_2}$ skal være en egenvektor tilhørende egenværdien $\lambda=2$. Det medfører

$$\mathbf{b_2} = \mathbf{v} = \begin{bmatrix} -1\\3 \end{bmatrix}$$

$$\mathbf{b_2} = (\mathbf{A} - 2\mathbf{I})\mathbf{b_1} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

Denne ligning kan løses for $\mathbf{b_1}$

[23]:
$$\left\{b_{11}:\frac{1}{5},\ b_{12}:-\frac{3}{5}\right\}$$

Der kan altså vælges en vektor $\mathbf{b_1} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$. Nu kan løsningen $\mathbf{x_2}(t)$ altså opskrives

$$\mathbf{x_2}(t) = \mathbf{b_1}e^{2t} + \mathbf{b_2}te^{2t} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}e^{2t} + \begin{bmatrix} -1 \\ 3 \end{bmatrix}te^{2t}, \quad t \in \mathbb{R}$$

Den fuldstændige reelle løsning til det homogene system kan nu findes som en linearkombination af de to løsninger $\mathbf{x_1}(t), \mathbf{x_2}(t)$ med reelle koefficienter jf. sætning 2.12. Den fuldstændige løsning til det homogene differentialligningssystem er da

$$\mathbf{x_{hom}}(t) = c_1\mathbf{x_1}(t) + c_2\mathbf{x_2}(t) = c_1\begin{bmatrix} -1\\3 \end{bmatrix}e^{2t} + c_2\left(\begin{bmatrix} 1\\-3 \end{bmatrix}e^{2t} + \begin{bmatrix} -1\\3 \end{bmatrix}te^{2t}\right), \quad c_1,c_2 \in \mathbb{R}$$

1.1.2 Opgave 1.2)

Der skal nu findes en partikulær løsning til det inhomogene system. Påtrykningen på differentialligningen kan skrives som $\mathbf{u} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{it}$. Da giver det mening at gætte på en partikulær løsning på formen $\mathbf{x}_{\mathbf{p}}(t) = \mathbf{v}_{\mathbf{p}}e^{it}$, $\mathbf{v}_{\mathbf{p}} \in \mathbb{C}^2$. Dermed bliver $\mathbf{x}_{\mathbf{p}}(t) = i\mathbf{v}_{\mathbf{p}}e^{it}$. Det indsættes i differentialligningen $i\mathbf{v}_{\mathbf{p}}e^{it} = \begin{bmatrix} 0 & 1 \\ -9 & -6 \end{bmatrix}\mathbf{v}_{\mathbf{p}}e^{it} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}e^{it}$ Dette løses for $\mathbf{v}_{\mathbf{p}} \in \mathbb{C}^2$

[27]:
$$\left\{ v_{p1} : \frac{2}{25} - \frac{3i}{50}, \ v_{p2} : \frac{3}{50} + \frac{2i}{25} \right\}$$

Der kan nu opskrives en v_p

$$\begin{bmatrix} v_{p1} \\ v_{p2} \end{bmatrix} = \begin{bmatrix} \frac{2}{25} - \frac{3i}{50} \\ \frac{3}{50} + \frac{2i}{25} \end{bmatrix}$$

Da bliver den partikulære løsning $\mathbf{x_p} = \mathbf{v_p} e^{it} = \begin{bmatrix} \frac{2}{25} - \frac{3i}{50} \\ \frac{3}{50} + \frac{2i}{25} \end{bmatrix} e^{it}$

1.1.3 Opgave 1.3)

Den fuldstændige løsning til det inhomogene differentialligningssystem. Med sætning 1.20 få at den fuldstændige løsning er summen af løsningen til det homogene system og en partikulær løsning $\mathbf{x}(t) = \mathbf{x}_{hom}(t) + \mathbf{x}_{p}(t) \quad t \in \mathbb{R}.$

Da begge disse er fundet, bliver den fuldstændige løsning

$$\mathbf{x}(t) = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t} + c_2 \left(\begin{bmatrix} 1 \\ -3 \end{bmatrix} e^{2t} + \begin{bmatrix} -1 \\ 3 \end{bmatrix} t e^{2t} \right) + \begin{bmatrix} \frac{2}{25} - \frac{3i}{50} \\ \frac{3}{50} + \frac{2i}{25} \end{bmatrix} e^{it}, \quad c_1, c_2 \in \mathbb{R}$$

1.2 Opgave 2)

Der er givet funktionen $f(t): \mathbb{R} \to \mathbb{R}$ ved $f(t) = \sum_{n=1}^{\infty} \frac{1}{n^{3/2}} (3\sin(2nt) - 2\cos(nt))$

1.2.1 Opgave 2.1)

Der skal findes et tal k > 0, så

$$\sum_{n=1}^{\infty} \frac{k}{n^{3/2}}$$

Er en majorantrække for f. Med definition 5.31 er rækken en majorantrække, når $\frac{k}{n^{3/2}} \geq$ $\frac{1}{n^{3/2}}(3\sin(2nt)-2\cos(nt)) \Leftrightarrow k \geq (3\sin(2nt)-2\cos(nt))$ En mulig majorantrække (dog ikke den mindste) opnås ved at antage de maksimale værdier for sin og cos absolut. Derved bliver $k = 5 > (3\sin(2nt) - 2\cos(nt))$

Da bliver majorantrækken
$$\textstyle \sum_{n=1}^{\infty} \frac{5}{n^{3/2}} \geq \sum_{n=1}^{\infty} \frac{1}{n^{3/2}} (3\sin(2nt) - 2\cos(nt)), \ \ t \in \mathbb{R}$$

1.2.2 Opgave 2.2)

Det skal undersøges, om rækken er uniformt konvergent. Med sætning 5.33 er rækken uniformt konvergent, hvis majorantrækken er konvergent. Med Lemma 4.17 kan rækken omskrives til $\sum_{n=1}^{\infty} \frac{5}{n^{3/2}} = 5 \sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ Da der blot skal vises, hvorvidt rækken er konvergent, kan der ses bort fra konstanten 5. Dette

kan gøres med integralkriteriet (Sætning 4.33). Hvis det uegentlige integral $\int_1^\infty \frac{1}{x^{3/2}} dx$

$$\int_{1}^{\infty} \frac{1}{x^{3/2}} dx$$

er konvergent, så er majorantrækken også konvergent. Det uegentlige integral undersøges som $\int_1^t \frac{1}{x^{3/2}} dx = \frac{1}{-1/2} \left[x^{-\frac{1}{2}} \right]_1^t = -2 \left(t^{-\frac{1}{2}} - 1 \right) \to 2, for \ t \to \infty$ Det uegentlige integral er altså konvergent. Derfor er majorantrækken også konvergent.

$$\int_{1}^{t} \frac{1}{x^{3/2}} dx = \frac{1}{-1/2} \left[x^{-\frac{1}{2}} \right]_{1}^{t} = -2 \left(t^{-\frac{1}{2}} - 1 \right) \to 2, for \ t \to \infty$$

Da majorantrækken $\sum_{n=1}^{\infty} \frac{5}{n^{3/2}}$ til f(t) er konvergent. Er f(t) uniformt konvergent på hele $t \in \mathbb{R}$ ifølge sætning 5.33

1.2.3 Opgave 2.3)

Det skal vurderes, om f er kontinuært. Da der er vist, at den er uniformt konvergent på de reelle tal. Derudover er alle funktionerne f_n også kontinuerte. Ifølge sætning 5.35 er sumfunktionen f så også kontinuert.

1.2.4 Opgave 2.4)

Der defineres en afsnitssum $S_N:\mathbb{R}\to\mathbb{R}$

$$\textstyle \sum_{n=1}^{N} \frac{1}{n^{3/2}} (3 \sin(2nt) - 2 \cos(nt)), \quad N \in \mathbb{N}$$

Der skal bestemmes et $N \in \mathbb{N}$ så der for alle $t \in \mathbb{R}$ gælder, at

$$|f(t) - S_N(t)| \le 2 \cdot 10^{-3}$$

Med korollar 4.35 (i) kan opskrives
$$\int_N^\infty f(x) dx \leq \int_N^\infty \frac{5}{x^{3/2}} dx \leq 2 \cdot 10^{-3}$$

Dette kan løses for N for rundes op for at få antallet af led, der skal medtages. Det uegentlige

integral giver
$$\int_N^t \frac{5}{x^{3/2}} dx = -10 \left(t^{-\frac{1}{2}} - \frac{1}{\sqrt{N}} \right) \to \frac{10}{\sqrt{N}} \ for \ t \to \infty$$
 Dette indsættes i uligheden:
$$\frac{10}{\sqrt{N}} \leq 2 \cdot 10^{-3} \Leftrightarrow N \geq 25 \cdot 10^6$$

Dette viser altså, at der skal $25\cdot 10^6$ led til, før $|f(t)-S_N(t)|\leq 2\cdot 10^{-3}$