Graficas y juegos. Tarea 1(pares).

Diego Méndez Medina, Pablo Trinidad... .

2. Den un ejemplo de una gráfica tal que $m > \binom{n}{2}$. Solución:

Sea
$$n = 3$$
.

Sea n = 3.

$$\binom{3}{2} = \frac{3!}{2!(3-2)!} = \frac{3\times 2}{2} = 3$$

 $\implies m > 3$

Así:

$$V_G = \{v_1, v_2, v_3\}$$

$$A_G = \{v_1v_2, v_2v_3, v_3v_1, v_3v_3\}$$

Den un ejemplo de dos gráficas distintas G y H tales que $n_G=nH$ y $m_G = m_H \text{ pero } G \ncong H.$

Solución:

Considerese la siguiente gráfica:

$$V_G = \{v_1, v_2, v_3, v_4\}$$

$$V_H = \{u_1, u_2, u_3, u_4\}$$

$$A_G = \{v_1v_4, v_2v_3\}$$

$$A_H = \{u_1u_2, u_2u_3\}$$

Veamos por que no son isomorfas:

Como f_A debe ser biyectiva omitiremos los casos donde f_A no es inyectiva.

Así:

Caso 1:

Si
$$\Psi_G(a_1) = v_1 v_3 \Rightarrow \Psi_H(f_A(a_1)) = u_2 u_3 = f_V(v_1) f_V(v_3)$$

$$\implies \Psi_G(a_2) = v_2 v_4 \Rightarrow \Psi_H(f_A(a_2)) = u_1 u_3 = f_V(v_2) f_v(v_4)$$

$$\implies f_V(v_3) = f_V(v_4) = u_3$$
. Con lo que f_v no es inyectiva.

Caso 2:

Si
$$\Psi_G(a_1) = v_2 v_4 \Rightarrow \Psi_H(f_A(a_1)) = u_2 u_3 = f_V(v_1) f_V(v_3)$$

$$\implies \Psi_G(a_2) = v_1 v_3 \Rightarrow \Psi_H(f_A(a_2)) = u_1 u_3 = f_V(v_2) f_v(v_4)$$

$$\implies f_V(v_4) = f_V(v_3) = u_3$$
. Con lo que f_v no es inyectiva.

Recordemos que un ismorfismo ocurre cuando f_V y f_A son biyectivas. f_V no es inyectiva por lo antes mencionado y f_V no es suprayectica por que u_4 no forma parte de la imagen debido a que es el unico vertice de ambas graficas con grado igual a cero.

6. Muestren que si G es bipartita, $H \leq G$ y H no es trivial entonces H tambien es bipartita.

Solución:

Vamos a dar por hecho las premisas, negaremos lo que queremos demostrar y buscaremos alguna contradiccion. Es decir:

- G es una gráfica bipartita.
- $H \leq G$.
- H no es trivial.
- H no es bipartita

Debido a que G es bipartita existen dos conjuntos de vertices, X y Y, t.q $V_G \subseteq X \cup Y$, con $X \neq \emptyset \neq Y$ y $X \cap Y = \emptyset$.

Asi
$$H \subseteq G \Rightarrow V_H \subseteq X \cup Y$$

Definimos a los conjuntos X' y Y' como:

$$X' = X \cap V_H$$
.

$$Y' = Y \cap V_H$$
.

Se observa que:

$$X' \cup Y' = \emptyset$$
.

Como H no es bipartita:

$$\exists v_x \in X' \land \exists u (u \in V_H \backslash Y') \land \exists a \in A_H \text{ t.q } \Psi_H(a) = v_x u$$

Así:

Existe una partición en V_H entre los conjuntos $X'' = X' \cup u$ y Y' y existe una arista que une dos vertices en una partición.

Pero estamos afirmando que existe un elemento en V_H , u, que no existe en V_G y al hacer eso no ocurre que $H \leq G$ sino que $H \geq G$ lo cual contradice una de las premisas.

El hecho de que si H no es bipartita conlleve incongruencias, prueba que H debe ser bipartita tambien. ■

8. Muestren que en un gráfica simple no trivial siempre hay dos vértices(por lo menos) que tienen el mismo grado.

Solución:

Como G no es trivial existen por lo menos dos vertices.

Sea $v \in V_G$ t.q $\forall u \in V_G \setminus v(gra(v) \geq gra(u))$. Es decir v es el o uno de los vertice(s) con grado máximo.

• caso gra(v) = 0 Si ocurre que gra(v) = 0 $\implies \forall u \in V_G(grad(u) = 0) \equiv \neg \exists u \in V_G(grad(v) > 0)$ Es decir que n, con $n \geq 2$, vertices tienen grado 0.

• caso gra(v) = n-1
Si gra(v) = n - 1
$$\forall u \in V_G \backslash v(vu \in A_G) \equiv \neg \exists u \in V_G(vu \notin A_G)$$

Con los casos anteriores queda demostrado que no puede ocurrir que un vertice tenga grado 0 y otro n-1. Entonces al tener n vertices y n-1 posibilidaes al menos dos vertices deben repetir.

10. Demuestren que si k es un número impar entonces no puede existir una gráfica Gk-regular con n_G impar.

Solución:

Sea G una grafica k-regular y M la matriz de incidencia. Recordemos que por la ecuación de grados:

$$\sum_{i=1}^{n} \left[\sum_{j=1}^{m} M_i \right] = \sum_{i=1}^{n} gra(v_i) = 2m$$

Como G es k-regular $\Rightarrow \forall v \in V_G(gra(v) = k)$ Así:

$$\sum_{i=1}^{n} k = 2m$$

$$n \times k = 2m$$

Como k es impar y 2m es par la unica forma de que se cumpla la igualdad es que n sea par.

⇒ No hay manera de que n sea impar por que forzosamente debe ser par. ■

Muestren que si G es simple y $m > \binom{n-1}{2}$ entonces G es conexa. 12. Solución:

Sea G una gráfica simple disconecta tal que $V_G = V_1 \cup V_2$ con $G[V_1]$ desconectada de $G[V_2]$ s.

Es facil intuir que $G[V_1]$ tiene mayor numero de aristas cuando esta es completa y tiene el mayor numero posible de vertices.

Vamos a demostrar lo anterior:

Sea $|V_1| = n_1$ y $|V_2| = n_2$ De tal forma que $n_1 + n_2 = n$.

El mayor número posible de aristas en G, sea $m(n_1, n_2)$, sera cuando en alguno de las particiones exita el mayor numero de vertices posibles y $G[V_1]$ y $G[V_2]$:

Formula que nos da el numero de aristas de ambas graficas completas: $m_G \leq \frac{n_1(n_1-1)}{2} + \frac{n_2(n_2-1)}{2}$

$$m_G \leq \frac{n_1(n_1-1)}{2} + \frac{n_2(n_2-1)}{2}$$

Despejando n_2 tenemos :

$$f(n_1) = n_2 = n - n_1 \tag{1}$$

Ahora lo que queremos obtener es cuando existe el mayor numero de aristas que como habiamos mencionado antes ocurre cuando hay el mayor numero posible de vertices en alguno de las particiones.

Hay que considerar que:

 $n_1, n_2 \ge 1$ y que n es fija.

Resultado de derivar la función :

$$f'(n_1) = 2(n_1 - a)$$

Y ahora debemos encontrar cuando es que $f'(n_2) = 0$.

$$f(n) = 0 \sin n_1 = n.$$

Pero eso no puede pasar por que entonces n_2 seria cero y V_2 seria vacio.

Entonces tomamos como maximo cuando $n_1 = n - 1$ y $n_2 = 1$

Así:

$$m_G \le \frac{(n-1)(n-2)}{2} + \frac{1(0)}{2}$$

 $m_G \leq \frac{(n-1)(n-2)}{2} + \frac{1(0)}{2}$ Este es el numero maximo de aristas donde se cumple que $G[V_1]$ esta desconectada de $G[V_2]$.

Para que sea conexa basta con unir el unico elemento de V_2 con alguno de

 \Longrightarrow El numero minimo de aristas para garantizar la conexidad de una grafica simple es $\frac{(n-1)(n-2)}{2}+1>\binom{n-1}{2}\blacksquare$