

# Trabajo Practico

17 de mayo de 2024

Algoritmos y Estructuras de Datos

## Grupo AlgoTango

| Integrante                         | LU      | Correo electrónico         |
|------------------------------------|---------|----------------------------|
| Orsi, Lautaro Manuel               | 689/23  | Lautaorsi@gmail.com        |
| Zerbetto De Palma, Gerardo Gabriel | 900/22  | g.zerbetto@gmail.com       |
| Simoza Sanchez, Valeria Andreina   | 1027/22 | vsimoza.vs@gmail.com       |
| Prieto, Matias                     | 382/23  | matiasprieto2003@gmail.com |



# Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: (++54+11) 4576-3300

http://www.exactas.uba.ar

#### 1. Especificación

#### Redistribucion De Los Frutos 1.1.

```
\operatorname{proc} \operatorname{redistribucionDeLosFrutos} (\operatorname{in} \operatorname{recursos} : \operatorname{seq}\langle \mathbb{Z} \rangle, \operatorname{in} \operatorname{cooperan} : \operatorname{seq}\langle \mathsf{Bool} \rangle) : \operatorname{seq}\langle \mathbb{Z} \rangle
                 \texttt{requiere}~\{|recursos| = |cooperan| \land recursosValidos(recursos)\}
                \frac{fondoMonetario(recursos, cooperan)}{|recursos|})\bigg)\bigg)\bigg\}
                 \texttt{aux fondoMonetario} \left( \texttt{recursos} : seq \langle \mathbb{R} \rangle, \texttt{cooperan} : seq \langle \mathsf{Bool} \rangle \right) : \mathbb{R} = \sum_{j=0}^{|recursos|-1} \left( \texttt{if} \left( cooperan[j] = true \right) \texttt{then} \left( recursos[j] \right) \texttt{else} \right) = \sum_{j=0}^{|recursos|-1} \left( \texttt{if} \left( cooperan[j] = true \right) \texttt{then} \left( recursos[j] \right) \texttt{else} \right) = \sum_{j=0}^{|recursos|-1} \left( \texttt{if} \left( cooperan[j] = true \right) \texttt{then} \left( recursos[j] \right) \texttt{else} \right) = \sum_{j=0}^{|recursos|-1} \left( \texttt{if} \left( cooperan[j] = true \right) \texttt{then} \left( recursos[j] \right) \texttt{else} \right)
                 pred recursosValidos (recursos:seq\langle \mathbb{R}\rangle) {
                            (\forall i : \mathbb{Z})(0 \le i < |recursos| \longrightarrow_L recursos[i] > 0)
```

#### Desarrollo 1.1

Para este ejercicio implementamos un aux fondo Monetario que calcula —en base a las listas cooperan y recursos— una sumatoria de la totalidad de recursos que seran redistribuidos al finalizar el paso temporal, sumando al fondo los recursos de aquellos que cooperen y sin sumar los que no.

Empleamos este aux para luego calcular el recurso de cada individuo, si este decidia cooperar su recurso sera la division equitativa y si no cooperaba su recurso sera la plata obtenida mas la division equitativa.

#### 1.2. Trayectoria De Los Frutos Individuales a Largo Plazo

pred trayectorias Validas (trayectorias:  $seq\langle seq\langle \mathbb{R}\rangle\rangle$ ) {

```
proc trayectoriaDeLosFrutosIndividualesALargoPlazo (inout trayectorias: seq\langle seq\langle \mathbb{R}\rangle\rangle, in cooperan: seq\langle \mathsf{Bool}\rangle, in apues-
tas: seq\langle seq\langle \mathbb{R}\rangle\rangle, in pagos: seq\langle seq\langle \mathbb{R}\rangle\rangle, in eventos: seq\langle seq\langle \mathbb{N}\rangle\rangle)
                            requiere \{trayectoriasValidas(trayectorias)\}
                            \land mismaLongitud(trayectorias, pagos, apuestas, eventos, cooperan)
                            \land pagosPositivos(pagos)
                            \land apuestasValidas(apuestas)
                            \land longitugApuestasPagos(apuestas, pagos)
                            \land longitudSublistas(pagos)
                            \land longitudSublistas(apuestas)
                            \land longitudSublistas(eventos)
                            \land longitudEventosApuestas(eventos, apuestas)
                            asegura \{|trayectorias| = |old(trayectorias)| \land (\forall i : \mathbb{Z})(0 \le i < |old(trayectorias)| \longrightarrow_L (trayectorias[i][0] = i < |old(trayectorias[i][0] = i < |old(
                            (old(trayectorias)[i])[0]) \land_L(\forall j : \mathbb{Z})(0 \le j < |eventos[i]| \longrightarrow_L trayectorias[i][j+1] = calculo De Recursos Segun Cooperacion
                            (trayectorias, pagos, apuestas, eventos, cooperan, i, j)))
                            aux calculoDeRecursosSegunCooperacion (trayectorias,pagos,apuestas:seq\langle seq\langle \mathbb{R}\rangle\rangle,eventos:seq\langle seq\langle \mathbb{N}\rangle\rangle,cooperan:
                            seq(\mathsf{Bool}), individuo: \mathbb{Z}, ronda: \mathbb{Z}): \mathbb{R} = \mathsf{if}\ cooperan[individuo] = true\ \mathsf{then}\ fondoMonetarioRepartido(trayectorias, pagos,
                            apuestas, eventos, cooperan, ronda) else calculoRecursos(trayectorias[individuo][ronda],
                            pagos[individuo][eventos[individuo][ronda]], apuestas[individuo][eventos[individuo][ronda]]]) + fondo Monetario Repartido Proposition (alternativo de la companya del companya de la companya de la companya del companya de la companya del companya de la companya de la companya de la companya del companya de la companya 
                            (trayectorias, pagos, apuestas, eventos, cooperan, ronda) fi;
                            aux calculoRecursos (recurso,pago,apuesta:\mathbb{R}) : \mathbb{R} = recurso * pago * apuesta;
                            aux fondoMonetario (trayectorias,pagos,apuestas: seq\langle seq\langle \mathbb{R}\rangle, eventos: seq\langle seq\langle \mathbb{N}\rangle, cooperan: seq\langle \mathsf{Bool}\rangle, ronda:
                           \mathbb{Z}\rangle\rangle):\mathbb{R}=\sum_{l=0}^{|cooperan|-1}\inf[cooperan[h]]=true\ \mathsf{then}\ calculoRecursos(trayectorias[h][ronda],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h][eventos[h][ronda]],pagos[h]
                            apuestas[h][eventos[h][ronda]]) else 0 fi;
                            \textbf{aux fondoMonetarioRepartido} \ (\text{trayectorias,pagos,apuestas:} seq \langle seq \langle \mathbb{R} \rangle \rangle, \text{eventos:} seq \langle seq \langle \mathbb{N} \rangle \rangle, \text{cooperan:} seq \langle \mathsf{Bool} \rangle, \text{ronda:} \mathbb{Z})
                           : \mathbb{R} = \frac{fondoMonetario(trayectorias, pagos, apuestas, eventos, cooperan, ronda)}{}
                                                                                                                                                                                            |cooperan|
                           \texttt{aux sumaApuestas} \ (\texttt{apuestas} : seq \langle seq \langle \mathbb{R} \rangle \rangle, \ \texttt{individuo} : \mathbb{Z}) : \mathbb{R} \ = \ \sum_{h=0}^{|apuestas[individuo]|-1} apuestas[individuo][h] \ ;
                            \texttt{pred mismaLongitud} \ (\text{lista: } seq\langle T\rangle, \text{pagos,apuestas:} seq\langle seq\langle \mathbb{R}\rangle\rangle, \text{eventos:} seq\langle seq\langle \mathbb{N}\rangle\rangle, \text{cooperan:} seq\langle \mathsf{Bool}\rangle) \ \{ (\text{pagos,apuestas:} seq\langle seq\langle \mathbb{R}\rangle\rangle, \text{eventos:} seq\langle seq\langle \mathbb{N}\rangle\rangle, \text{cooperan:} seq\langle \mathsf{Bool}\rangle) \} \}
                                               |lista| = |cooperan| = |apuestas| = |pagos| = |eventos|
```

#### Desarrollo 1.2

En este ejercicio actualizamos la trayectoria de cada individuo basandonos en sus recursos y evento correspondiente por ronda (con su respectivo pago y apuesta). Usamos el aux calculoDeRecursosSegunCooperacion en el que calculamos los recursos que le quedarán al individuo teniendo en cuenta primeramente si coopera o no. En el primer caso recibe recursos únicamente del fondo monetario distribuido entre el total de los individuos (aux fondoMonetarioRepartido) y en el otro caso se calcula su ganancia individual (aux calculoRecursos) y se suma el fondo monetario distribuido.

#### Aclaración

En el pred apuestas Validas definimos por interpretación que las apuestas individuales son mayores a 0 y menores a 1, ya que no encontramos referencias en el tp al rango exacto que deben tener.

## 1.3. Trayectoria Extraña Escalera

```
\begin{aligned} &\operatorname{proc\ trayectoriaExtra\~naEscalera\ (in\ trayectoria:\ seq\langle\mathbb{R}\rangle): \mathsf{Bool}\ \\ &\operatorname{requiere}\ \{|trayectoria|>0\}\\ &\operatorname{asegura}\ \{res=true\iff \left((|trayectoria|=1)\vee(|trayectoria|=2\wedge\neg(todosIguales(trayectoria))\vee_L(|trayectoria|>2\wedge hayUnicoMax(trayectoria))\right)\}\\ &\operatorname{pred\ hayUnicoMax}\ (\operatorname{trayectoria}:\ seq\langle\mathbb{R}\rangle)\ \{\\ &(CantidadMaximos(trayectoria)=1\wedge\neg(UnMaxEnLimite(trayectoria)))\vee(CantidadMaximos(trayectoria)=0\wedge UnMaxEnLimite(trayectoria))\\ &\}\\ &\operatorname{pred\ todosIguales\ (lista:seq\langle\mathbb{R}\rangle)\ \{}\\ &(\forall i,j:\mathbb{Z})(0\leq i<|lista|\wedge 0\leq j<|lista|\wedge i\neq j\longrightarrow_L lista[i]=lista[j])\\ &\}\\ &\operatorname{pred\ UnMaxEnLimite\ (Trayectoria:seq\langle\mathbb{R}\rangle)\ \{}\\ &(lista[0]>lista[1]\wedge lista[|lista|-1]\leq lista[|lista|-2])\vee(lista[0]\leq lista[1]\wedge lista[|lista|-1]>lista[|lista|-2])\\ &\}\\ &\operatorname{aux\ CantidadMaximos\ (lista:}seq\langle\mathbb{R}\rangle):\mathbb{Z}=\sum_{i=1}^{|lista|-2}\operatorname{if\ }\left(\left((lista[i-1]<lista[i])\wedge(lista[i]>lista[i+1])\right)\right)\operatorname{then\ }(1)\operatorname{else\ }(0)\operatorname{fi\ };\\ \end{aligned}
```

#### Desarrollo 1.3:

En este ejercicio, utilizamos una separacion en 3 distintos casos, 2 de ellos unicos y uno generalizado, es importante notar que la trayectoria que se recibe es una lista que representa los recursos a medida que avanzan las rondas (o pasos temporales). El primero, siendo que |trayectoria| es 1 (se juega una ronda) sabemos que sera maximo local pues no tiene vecinos El segundo, siendo que |trayectoria| es 2 y que, si son distintos, trivialmente alguno es mayor que el otro siendo entonces el maximo local

El ultimo y mas general, dada una secuencia de mas de 2 elementos se busca si efectivamente hay algun numero mayor que sus numeros vecinos y que ademas sea el **unico** con esa propiedad en la secuencia

### 1.4. Individuo Decide Si Cooperar O No

proc individuoDecideSiCooperarONo (in individuo:  $\mathbb{N}$ , in recursos:  $seq\langle\mathbb{R}\rangle$ , inout cooperan:  $seq\langle\mathsf{Bool}\rangle$ , in apuestas:  $seq\langle seq\langle\mathbb{R}\rangle\rangle$ , in pagos:  $seq\langle\mathbb{R}\rangle$ , in eventos:  $seq\langle seq\langle\mathbb{R}\rangle\rangle$ )

```
requiere \{mismaLongitud(recursos, pagos, apuestas, eventos, cooperan)\}
\land individuo < |eventos|
\land pagosPositivos(pagos)
\land apuestasValidas(apuestas)
\land longitudApuestasPagos(apuestas, pagos)
\land longitudSublistas(apuestas)
\land longitudSublistas(eventos)
\land longitudSublistas(pagos)
\land longitudEventosApuestas(eventos, apuestas)
\texttt{asegura}\ \{(\exists Trayectorias, TrayectoriasNegadas: seq\langle seq\langle \mathbb{Z}\rangle\rangle)(\exists CooperanNegadaseq\langle \mathsf{Bool}\rangle)
\bigg( \Big( Validar Trayectoria (Trayectorias, cooperan, apuestas, pagos, eventos, recursos) \Big)
\land \Big( \neg (old(cooperan)[individuo]) = cooperanNegada[Individuo] \Big)
\wedge \ (\forall i: \mathbb{Z}) \Big( 0 \leq i < |cooperan| \ \wedge \ i \neq Individuo \ \wedge \ cooperan[i] = cooperanNegada[i] \Big)
\land \left(ValidarTrayectorias(TrayectoriasNegada, cooperanNegada, apuestas, pagos, eventos, recursos)\right) \\ |
\land cooperan[Individuo] = old(cooperan[Individuo]) \Big)
\lor \Big( \big( Trayectorias [Individuo][|eventos[0]|-1] < Trayectorias Negada [Individuo][|eventos[0]|-1] \Big)
\land cooperan[Individuo] = cooperanNegada[Individuo]) \bigg) \}
pred ValidarTrayectoria (trayectorias: seq\langle seq\langle \mathbb{R}\rangle\rangle, cooperan: seq\langle \mathsf{Bool}\rangle, apuestas: seq\langle seq\langle \mathbb{R}\rangle\rangle, pagos: seq\langle \mathbb{R}\rangle, eventos:
seq\langle seq\langle \mathbb{N}\rangle\rangle, recursos: seq\langle \mathbb{R}\rangle) {
     (\forall i: \mathbb{Z}) (0 \leq i < |recursos| \longrightarrow_L (trayectorias[i][0] = recursos[i]) \land_L
     (\forall j : \mathbb{Z})(0 \leq j < |eventos[i]| \longrightarrow_L
     trayectorias[i][j+1] = calculo De Recursos Segun Cooperacion (trayectorias, pagos, apuestas, eventos, cooperan, i, j)))
*preds pagosPositivos, apuestasValidas, longitudApuestasPagos, longitudSublistas, mismaLongitud, longitudEvento-
sApuestas y calculoDeRecursosSegunCooperacion (con sus dependencias) declarados en ejercicio 1.2
Desarrollo 1.4:
```

La dificultad de este ejercicio aparece en no tener la secuencia de trayectorias individuales, viendo que calcularlas llevaria mucha complejidad planteamos un cuantificador y predicamos sobre el, analizando las posibles secuencias trayectorias y trayectoriasNegada (siendo esta ultima la que corresponderia al caso de la negacion del booleano de cooperacion del individuo) podemos, utilizando los predicados y auxiliares del ejercicio 1.2 y la lista de recursos verificar que efectivamente estas listas son las que deberiamos obtener si calcularamos las trayectorias al largo plazo.

Para validar esta trayectoria comparamos que las primeras posiciones de la trayectoria correspondan a los recursos (basicamente, que el punto de partida de la trayectoria sea correcta) y luego, verificamos que cada posicion N de la lista, sea correspondiente a calcular los recursos N rondas para cada individuo, partiendo de la base de la ronda 0 (recursos). Es importante notar, que para el caso trayectoriasNegada utilizaremos la lista cooperanNegada, pues el calculo dependera de si el individuo coopera o no.

Al final, podemos observar que utilizando la comparación de la ultima posición de trayectoria del individuo (basandonos en la cantidad de eventos) con la ultima posición de la trayectoriaNegada asignamos, segun corresponda el valor original (en el primer caso) y el valor negado en el segundo.-

## 1.5. Individuo Actualiza Apuesta

```
proc individuoActualizaApuesta (in individuo: \mathbb{N}, in recursos: seq\langle\mathbb{R}\rangle, in cooperan: seq\langle\mathsf{Bool}\rangle, inout apuestas: seq\langle seq\langle\mathbb{R}\rangle\rangle, in pagos: seq\langle seq\langle\mathbb{R}\rangle\rangle, in eventos: seq\langle seq\langle\mathbb{R}\rangle\rangle)

requiere \{individuo < |recursos| \land pagosPositivos(pagos) \land mismaLongitud(recursos, cooperan, apuestas, pagos, eventos)
\land apuestasValidas(apuestas) \land longitudApuestasPagos(apuestas, pagos)
\land longitudEventosApuestas(eventos, apuestas) \land longitudSublistas(pagos) \land longitudSublistas(apuestas) \land longitudSublistas(eventos)\}
asegura \{(\forall potencialApuesta: seq\langle\mathbb{R}\rangle)
(esMaximaGanancia(potencialApuesta, recursos[individuo], pagos[individuo], eventos[individuo]) \land L
apuestaValida(potencialApuesta) \land L \mid potencialApuesta \mid = |apuestas[individuo]|)
\longrightarrow_L apuestas[individuo] = potencialApuesta\}
```

pred esMaximaGanancia (apuesta:  $seq\langle\mathbb{R}\rangle$ , recurso:  $\mathbb{R}$ , pago:  $seq\langle\mathbb{R}\rangle$ , evento:  $seq\langle\mathbb{N}\rangle$ ) {

\*pagosPositivos, mismaLongitud, apuestasValidas, longitudEventosApuestas, longitudSublistas y longitudApuestasPagos definidos en el ejercicio 1.2

#### Desarrollo 1.5:

En esta especificacion elegimos predicar acerca del cuantificador sobre las potenciales apuestas que existen para decidir cuales generan una ganancia maxima. El predicado esMaximaGanancia es el que justamente decide si la potencialApuesta es la de mayor ganancia posible y evaluando otraApuesta para verificar que efectivamente no haya ninguna otra que la supere.

# 2. Demostracion de correctitud

```
 \begin{array}{l} {\rm proc\ frutoDelTrabajoPuramenteIndividual\ (in\ recurso: \mathbb{R},\ in\ apuesta: \langle\ s:\mathbb{R},\ c:\mathbb{R}\rangle,\ in\ pago: \langle\ s:\mathbb{R},\ c:\mathbb{R}\rangle,\ in\ eventos: \\ seq\langle {\rm Bool}\rangle,\ {\rm out\ res: \mathbb{R}}) \\ {\rm requiere\ } \{apuesta_c + apuesta_s = 1 \land pago_c > 0 \land pago_s > 0 \land apuesta_c > 0 \land apuesta_s > 0 \land recurso > 0\} \\ {\rm asegura\ } \{res = recurso(apuesta_cpago_c)^{\#apariciones(eventos,True)}(apuesta_spago_s)^{\#apariciones(eventos,False)}\} \\ {\rm Donde\ } \#apariciones(eventos,\ True)\ es\ el\ auxiliar\ utilizado\ en\ la\ teorica,\ y\ \#(eventos,\ True)\ es\ su\ abreviacion \\ \end{array}
```

```
res := recurso;
i := 0;
while (i < |eventos|) do
    if eventos[i] then
        res := res * apuesta.c * pago.c;
else
        res := res * apuesta.s * pago.s;
endif
    i := i + 1
endwhile</pre>
```

Para demostrar que la especificacion es correcta respecto a la implementacion, hay que demostrar la tripla de Hoare del requiere, la implementacion y el asegura.

Primero demostramos la correctitud del ciclo. Para esto planteamos:

```
P_c \equiv i = 0 \land res = recurso \land apuesta_c + apuesta_s = 1 \land pago_c > 0 \land pago_s > 0 \land apuesta_c > 0 \land apuesta_s > 0 \land recurso > 0
Q_c \equiv res = recurso (apuesta_c pago_c)^{\#(eventos, True)} (apuesta_s pago_s)^{\#(eventos, False)}
I \equiv 0 \le i \le |eventos| \land_L res = recurso (apuesta_c pago_c)^{\#(subseq(eventos, 0, i), True)} (apuesta_s pago_s)^{\#(subseq(eventos, 0, i), False)}
B \equiv i < |eventos|
Fv = |eventos| - i
```

Queremos ver que se cumplan:

```
Querenos ver que se cumpian. 1)P_c \longrightarrow I
2)\{I \land B\}while....endwhile\{I\}
3)I \land -B \longrightarrow Q_c
4)\{I \land B \land v_0 = Fv\}while....endwhile\{Fv < v_0\}
5)I \land Fv \le 0 \longrightarrow -B
1) P_c \longrightarrow I:
(i = 0 \land res = recurso \land apuesta_c + apuesta_s = 1 \land pago_c > 0 \land pago_s > 0 \land apuesta_c > 0 \land apuesta_s > 0 \land recurso > 0) \longrightarrow (0 \le i \le |eventos| \land_L res = recurso(apuesta_c pago_c)^{\#(subseq(eventos,0,i),True)}(apuesta_s pago_s)^{\#(subseq(eventos,0,i),False)})
```

Aumo que el antecedente es verdadero. Como i = 0, reemplazo i por 0

```
 (res = recurso \land apuesta_c + apuesta_s = 1 \land pago_c > 0 \land pago_s > 0 \land apuesta_c > 0 \land apuesta_s > 0 \land recurso > 0) \longrightarrow \\ (0 \le 0 \le |eventos| \land_L res = recurso(apuesta_c pago_c)^{\#(subseq(eventos,0,0),True)}(apuesta_s pago_s)^{\#(subseq(eventos,0,0),False)}) \\ \equiv (res = recurso \land apuesta_c + apuesta_s = 1 \land pago_c > 0 \land pago_s > 0 \land apuesta_c > 0 \land apuesta_s > 0 \land recurso > 0) \longrightarrow \\ (1 + (res = recurso \land apuesta_c + apuesta_s = 1 \land pago_c > 0 \land pago_s > 0 \land apuesta_c > 0 \land apuesta_s > 0 \land recurso > 0) \longrightarrow \\ (2 + (res = recurso \land apuesta_c + apuesta_s = 1 \land pago_c > 0 \land pago_s > 0 \land apuesta_c > 0 \land apuesta_s > 0 \land recurso > 0) \longrightarrow \\ (2 + (res = recurso \land apuesta_c + apuesta_s = 1 \land pago_c > 0 \land pago_s > 0 \land apuesta_c > 0 \land apuesta_s > 0 \land recurso > 0)
```

```
res = recurso(apuesta_cpago_c)^{\#(<>,True)}(apuesta_spago_s)^{\#(<>,False)}
\equiv (res = recurso \land apuesta_c + apuesta_s = 1 \land pago_c > 0 \land pago_s > 0 \land apuesta_c > 0 \land apuesta_s > 0 \land recurso > 0) \longrightarrow (res = recurso \land apuesta_c + apuesta_s = 1 \land pago_c > 0 \land pago_s > 0 \land apuesta_c > 0 \land apuesta_s > 0 \land recurso > 0)
res = recurso(apuesta_cpago_c)^0(apuesta_spago_s)^0
 \equiv (res = recurso \land apuesta_c + apuesta_s = 1 \land paqo_c > 0 \land paqo_s > 0 \land apuesta_c > 0 \land apuesta_s > 0 \land recurso > 0) \longrightarrow
res = recurso
Como siempre es verdadero, se cumple P_c \longrightarrow I
2) \{I \wedge B\} while....endwhile \{I\}: Para demostrar esto hay que demostrar I \wedge B \longrightarrow wp(while...endwhile, I)
            wp(while...endwhile, I) \equiv wp(if...endif, wp(i := i+1, I) \equiv wp(if...endif, def(i) \land L (0 \le i + 1 \le |eventos| \land L
res = recurso(apuesta_cpago_c)^{\#(subseq(eventos,0,i+1),True)}(apuesta_spago_s)^{\#(subseq(eventos,0,i+1),False)}))
\equiv (def(eventos[i]) \land_L (eventos[i] = true \land wp(res := res * apuesta_c * pago_c, 0 \le i + 1 \le |eventos| \land_L |eventos|)
res = recurso(apuesta_cpago_c)^{\#(subseq(eventos,0,i+1),True)}(apuesta_spago_s)^{\#(subseq(eventos,0,i+1),False)})) \lor (eventos[i] = false \land (eventos[i]) \lor (eventos[i]) \lor (eventos[i])
wp(res := res * apuesta_s * pago_s, 0 \le i + 1 \le |eventos| \land_L
res = recurso(apuesta_cpago_c)^{\#(subseq(eventos,0,i+1),True)}(apuesta_spago_s)^{\#(subseq(eventos,0,i+1),False)})))
\equiv 0 \leq i < |eventos| \land_L (eventos[i] = \text{true} \land 0 \leq i+1 \leq |eventos| \land_L \\ res = recurso(apuesta_cpago_c)^{\#(subseq(eventos,0,i+1),True)-1} (apuesta_spago_s)^{\#(subseq(eventos,0,i+1),False)}) \lor (eventos[i] = \text{false} \land 0 \leq i+1 \leq |eventos| \land_L res = recurso(apuesta_cpago_c)^{\#(subseq(eventos,0,i+1),True)} (apuesta_spago_s)^{\#(subseq(eventos,0,i+1),False)-1})
           Utilizando la propiedad P \longrightarrow (Q \vee R) \leftrightarrow (P \longrightarrow Q) \vee (P \longrightarrow R) vemos los casos de la implicación original por separado
Caso eventos[i]=true:
            (0 \leq i \leq |eventos| \land_L res = recurso(apuesta_cpago_c)^{\#(subseq(eventos,0,i),True)}(apuesta_spago_s)^{\#(subseq(eventos,0,i),False)} \land (0 \leq i \leq |eventos| \land_L res = recurso(apuesta_cpago_c)^{\#(subseq(eventos,0,i),True)}(apuesta_spago_s)^{\#(subseq(eventos,0,i),True)})
i < |eventos|) \longrightarrow (0 \le i < |eventos| \land_L (eventos[i] = \text{true} \land 0 \le i + 1 \le |eventos| \land_L \\ res = recurso(apuesta_cpago_c)^{\#(subseq(eventos,0,i+1),True)-1} (apuesta_spago_s)^{\#(subseq(eventos,0,i+1),False)}))
            \equiv (0 \leq i < |eventos| \land_L res = recurso(apuesta_c pago_c)^{\#(subseq(eventos,0,i),True)} (apuesta_s pago_s)^{\#(subseq(eventos,0,i),False)} \longrightarrow (0 \leq i < |eventos| \land_L res = recurso(apuesta_c pago_c)^{\#(subseq(eventos,0,i),True)} (apuesta_s pago_s)^{\#(subseq(eventos,0,i),False)} \longrightarrow (0 \leq i < |eventos| \land_L res = recurso(apuesta_c pago_c)^{\#(subseq(eventos,0,i),True)} (apuesta_s pago_s)^{\#(subseq(eventos,0,i),False)} \longrightarrow (0 \leq i \leq |eventos| \land_L res = recurso(apuesta_c pago_c)^{\#(subseq(eventos,0,i),True)} (apuesta_s pago_s)^{\#(subseq(eventos,0,i),False)} \longrightarrow (0 \leq i \leq |eventos| \land_L res = recurso(apuesta_c pago_c)^{\#(subseq(eventos,0,i),True)} (apuesta_s pago_s)^{\#(subseq(eventos,0,i),False)} \longrightarrow (0 \leq i \leq |eventos| \land_L res = recurso(apuesta_c pago_c)^{\#(subseq(eventos,0,i),False)} (apuesta_s pago_s)^{\#(subseq(eventos,0,i),False)} (apuesta_s pago_c)^{\#(subseq(eventos,0,i),False)} (apuesta_s pago_c)^{\#(subseq(eventos,0,i),False)} (apuesta_s pago_c)^{\#(subseq(eventos,0,i),False} (apuesta_s pago_c)^{\#(eventos,0,i),False} (apuesta_s pago_c)^{\#(eventos,0,i)} (apuesta_s pago_c)^{\#(eventos,0,i)} (apuesta_s pago_c)^{\#(event
0 \leq i < |eventos| \land_L (eventos[i] = \text{true} \land 0 \leq i + 1 \leq |eventos| \land_L \\ res = recurso(apuesta_cpago_c)^{\#(subseq(eventos,0,i+1),True) - 1} (apuesta_spago_s)^{\#(subseq(eventos,0,i+1),False)})
           \equiv (0 \leq i < |eventos| \land_L res = recurso(apuesta_c pago_c)^{\#(subseq(eventos,0,i),True)} (apuesta_s pago_s)^{\#(subseq(eventos,0,i),False)} \longrightarrow (1 \leq i \leq |eventos| \land_L res = recurso(apuesta_c pago_c)^{\#(subseq(eventos,0,i),True)} (apuesta_s pago_s)^{\#(subseq(eventos,0,i),False)} \longrightarrow (1 \leq i \leq |eventos| \land_L res = recurso(apuesta_c pago_c)^{\#(subseq(eventos,0,i),True)} (apuesta_s pago_s)^{\#(subseq(eventos,0,i),False)} \longrightarrow (1 \leq i \leq |eventos| \land_L res = recurso(apuesta_c pago_c)^{\#(subseq(eventos,0,i),True)} (apuesta_s pago_s)^{\#(subseq(eventos,0,i),False)} \longrightarrow (1 \leq i \leq |eventos| \land_L res = recurso(apuesta_c pago_c)^{\#(subseq(eventos,0,i),True)} (apuesta_s pago_s)^{\#(subseq(eventos,0,i),False)} \longrightarrow (1 \leq i \leq |eventos| \land_L res = recurso(apuesta_c pago_c)^{\#(subseq(eventos,0,i),True)} (apuesta_s pago_s)^{\#(subseq(eventos,0,i),False)} \longrightarrow (1 \leq i \leq |eventos| \land_L res = recurso(apuesta_c pago_c)^{\#(subseq(eventos,0,i),True)} (apuesta_s pago_s)^{\#(subseq(eventos,0,i),True)} (apuesta_s pago_s)^{\#(subseq(eventos,0,i),True} (apuesta_s pago_s)^{\#(eventos,0,i),True} (apuesta_s pago_s)^{\#(eventos,0,i),True} (apuesta_s pago_s)^{\#(eventos,0,i),True} (apuesta_s pago_s)^{\#(eventos,0,i),True} (apuesta_s pago_s)^{\#(eventos,0,i),True} (apuesta_s
(eventos[i] = \text{true} \land 0 \leq i + 1 \leq |eventos| \land_L \\ res = recurso(apuesta_cpago_c)^{\#(subseq(eventos,0,i+1),True)-1} (apuesta_spago_s)^{\#(subseq(eventos,0,i+1),False)})
           Asumo verdadero el antecedente y reemplazo res
\equiv 0 \le i < |eventos| \longrightarrow (eventos[i] = true \land 0 \le i + 1 \le |eventos| \land_L
recurso(apuesta_cpago_c)^{\#(subseq(eventos,0,i),True)}(apuesta_spago_s)^{\#(subseq(eventos,0,i),False)} =
recurso(apuesta_cpago_c)^{\#(subseq(eventos,0,i+1),True)-1}(apuesta_spago_s)^{\#(subseq(eventos,0,i+1),False)})
           Este predicado significa que si el elemento actual es true, contar las apariciones de trueen eventos hasta el elemento
anterior va a dar uno menos, lo cual es verdadero
Caso eventos[i]=false:
```

```
(0 \leq i \leq |eventos| \land_L res = recurso(apuesta_cpago_c)^{\#(subseq(eventos,0,i),True)}(apuesta_spago_s)^{\#(subseq(eventos,0,i),False)} \land i < |eventos|) \longrightarrow (0 \leq i < |eventos| \land_L (eventos[i] = false \land 0 \leq i+1 \leq |eventos| \land_L res = recurso(apuesta_cpago_c)^{\#(subseq(eventos,0,i+1),True)}(apuesta_spago_s)^{\#(subseq(eventos,0,i+1),False)-1}))
Haciendo lo mismo que en el caso anterior:
\equiv 0 \leq i < |eventos| \longrightarrow (eventos[i] = false \land 0 \leq i+1 \leq |eventos| \land_L recurso(apuesta_cpago_c)^{\#(subseq(eventos,0,i),True)}(apuesta_spago_s)^{\#(subseq(eventos,0,i),False)} = recurso(apuesta_cpago_c)^{\#(subseq(eventos,0,i+1),True)}(apuesta_spago_s)^{\#(subseq(eventos,0,i+1),False)-1})
```

Este predicado significa que si el elemento actual es false, contar las apariciones de falseen eventos hasta el elemento

anterior va a dar uno menos, lo cual es verdadero

Como ambos casos de la implicacion son verdaderos, la implicacion es verdadera.

```
3) I \wedge -B \longrightarrow Q_c
```

```
0 \leq i \leq |eventos| \land_L res = recurso(apuesta_cpago_c)^{\#(subseq(eventos,0,i),True)} (apuesta_spago_s)^{\#(subseq(eventos,0,i),False)} \land i > |eventos| \longrightarrow res = recurso(apuesta_cpago_c)^{\#(eventos,True)} (apuesta_spago_s)^{\#(eventos,False)}
```

```
\equiv i = |eventos| \land_L res = recurso(apuesta_cpago_c)^{\#(subseq(eventos,0,i),True)} (apuesta_spago_s)^{\#(subseq(eventos,0,i),False)} \longrightarrow res = recurso(apuesta_cpago_c)^{\#(eventos,True)} (apuesta_spago_s)^{\#(eventos,False)}
```

Asumo verdadero el antecedente y reemplazo i por  $\left|eventos\right|$ 

```
\equiv res = recurso(apuesta_cpago_c)^{\#(subseq(eventos,0,|eventos|),True)}(apuesta_spago_s)^{\#(subseq(eventos,0,|eventos|),False)} \longrightarrow res = recurso(apuesta_cpago_c)^{\#(eventos,True)}(apuesta_spago_s)^{\#(eventos,False)}
```

Como subseq(eventos, 0, |eventos|) = eventos:

```
\equiv res = recurso(apuesta_cpago_c)^{\#(eventos,True)}(apuesta_spago_s)^{\#(eventos,False)} \longrightarrow res = recurso(apuesta_cpago_c)^{\#(eventos,True)}(apuesta_spago_s)^{\#(eventos,False)}
```

Ambos lados de la implicacion son iguales, entoces la implicacion es verdadera

4)  $\{I \wedge B \wedge v_0 = Fv\}$  while....endwhile  $\{Fv < v_0\}$ :

Para demostrar esto hay que demostrar:  $(I \land B \land v_0 = Fv) \longrightarrow wp(while...endwhile, Fv < v_0)$ 

$$wp(while...endwhile, |eventos| - i < v_0) \equiv wp(if...endif, wp(i := i + 1, |eventos| - i < v_0) \equiv wp(if...endif, |eventos| - (i + 1) < v_0)$$

```
 \equiv def(eventos[i]) \land_L ((eventos[i] = \text{true} \land wp(res := res * apuesta_c * pago_c, |eventos| - (i+1) < v_0)) \lor \\ (eventos[i] = \text{false} \land wp(res := res * apuesta_s * pago_s, |eventos| - (i+1) < v_0))) \\ \equiv 0 \le i < |eventos| \land_L (eventos[i] = \text{true} \land |eventos| - (i+1) < v_0) \lor (eventos[i] = \text{false} \land |eventos| - (i+1) < v_0) \\ \equiv 0 \le i < |eventos| \land_L (eventos[i] = \text{true} \lor eventos[i] = \text{false}) \land |eventos| - (i+1) < v_0 \equiv |eventos| - (i+1) < v_0
```

Volviendo a la equivalencia original:

```
(I \land B \land v_0 = Fv) \longrightarrow wp(while...endwhile, Fv < v_0) \equiv (I \land B \land v_0 = |eventos| - i) \longrightarrow 0 \le i < |eventos| \land_L |eventos| - (i + 1) < v_0
```

Asumo verdadero el antecedente y reemplazo  $v_0$  por |eventos| - i  $\equiv (I \land B) \longrightarrow 0 \le i < |eventos| \land_L |eventos| - (i+1) < |eventos| - i \equiv (I \land B) \longrightarrow 0 \le i < |eventos| \land_L |eventos| - i - 1 < |eventos| - i$ 

Como el consecuente es siempre verdadero, la implicacion es verdadera

#### 5) $I \wedge Fv \leq 0 \longrightarrow -B$

$$I \land |eventos| - i \le 0 \longrightarrow i \ge |eventos| \equiv I \land |eventos| \le i \longrightarrow i \ge |eventos|$$

La implicacion es siempre verdadera

Con esto queda demostrado, por Teorema del Invariante y Teorema de Terminacion de Ciclo, que vale la siguiente tripla de Hoare:

```
\{i=0, res=recurso\} while....end while \{res=recurso(apuesta_cpago_c)^{\#(eventos,True)}(apuesta_spago_s)^{\#(eventos,False)}\} \}
```

Solo queda demostrar que  $P_c$  cumple:

```
(apuesta_c + apuesta_s = 1 \land pago_c > 0 \land pago_s > 0 \land apuesta_c > 0 \land apuesta_s > 0 \land recurso > 0) \longrightarrow wp(res := recurso; i := 0, P_c)
```

```
\equiv (apuesta_c + apuesta_s = 1 \land pago_c > 0 \land pago_s > 0 \land apuesta_c > 0 \land apuesta_s > 0 \land recurso > 0) \longrightarrow \\ wp(res := recurso; wp(i := 0, res = recurso \land i = 0 \land apuesta_c + apuesta_s = 1 \land pago_c > 0 \land pago_s > 0 \land apuesta_c > 0)
```

 $0 \land apuesta_s > 0 \land recurso > 0))$ 

 $\equiv (apuesta_c + apuesta_s = 1 \land pago_c > 0 \land pago_s > 0 \land apuesta_c > 0 \land apuesta_s > 0 \land recurso > 0) \longrightarrow wp(res := recurso; res = recurso \land 0 = 0 \land apuesta_c + apuesta_s = 1 \land pago_c > 0 \land pago_s > 0 \land apuesta_c > 0 \land apuesta_c > 0 \land recurso > 0)$ 

 $\equiv (apuesta_c + apuesta_s = 1 \land pago_c > 0 \land pago_s > 0 \land apuesta_c > 0 \land apuesta_s > 0 \land recurso > 0) \longrightarrow recurso = recurso \land 0 = 0 \land apuesta_c + apuesta_s = 1 \land pago_c > 0 \land pago_s > 0 \land apuesta_c > 0 \land apuesta_s > 0 \land recurso > 0$ 

Como el consecuente es siempre verdadero, la implicacion es verdadera

Al demostrar esto queda demostrado que la especificacion es correcta respecto de la implementacion ya que la postcondicion del ciclo es equivalente a la postcondicion