Probabilités discrètes

I. Espace probabilisé

Soit Ω un ensemble qu'on appellera l'univers. Ses parties sont les évènements.

Une tribu sur Ω : famille \mathcal{F} de sous-ens de Ω tq : $\emptyset, \Omega \in \mathcal{F}$, $A \in \mathcal{F} \Rightarrow \Omega \setminus A \in \mathcal{F}$, $(A_n)_n \in \mathcal{F}^{\mathbb{N}} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{F}$

 (Ω, \mathcal{F}) est appelé espace probabilisable

 $\mathcal{P}(\Omega)$ est une tribu. Si $A \subset \Omega$, $\{\emptyset, A, \overline{A}, \Omega\}$ est la tribu engendrée par A

$$\forall (A_n) \in \mathcal{F}^{\mathbb{N}}, \bigcap_{n \in \mathbb{N}} A_n \in \mathcal{F} \qquad A, B \in \mathcal{F} \Longrightarrow A \setminus B \in \mathcal{F}$$

 $A, B \in \mathcal{F}$ sont dits incompatibles si $A \cap B = \emptyset$

Une probabilité sur $(\Omega, \mathcal{F}): P: \mathcal{F} \to [0,1]$ tq $P(\Omega) = 1$, et si $(A_n)_n \in \mathcal{F}^{\mathbb{N}}$ 2 à 2 disjoints, $P(\bigcup A_n) = \sum P(A_n)$

 $P(A) = 1 \Rightarrow A$ "presque sûr" $P(A) = 0 \Rightarrow$ "presque impossible"

$$(\Omega, \mathcal{F}, P)$$
 est appelé espace probabilisé $P(\emptyset) = 0$

$$A \subset B \Rightarrow P(A) \le P(B) \text{ et } P(B \setminus A) = P(B) - P(A)$$
 $P(A) = 1 - P(A)$

Continuité séquentielle :
$$(A_n) \in \mathcal{F}^{\mathbb{N}} \uparrow \Rightarrow P(\bigcup A_n) = \lim_{n \to \infty} P(A_n)$$
 $(A_n) \in \mathcal{F}^{\mathbb{N}} \downarrow \Rightarrow P(\bigcap A_n) = \lim_{n \to \infty} P(A_n)$

Sous-additivité (inégalité de Boole) :
$$(A_n)_n \in \mathcal{F}^{\mathbb{N}}$$
 $P(\bigcup_{n \in \mathbb{N}} A_n) \leq \sum_{n \in \mathbb{N}} P(A_n)$

II. Conditionnement et indépendance

 (Ω, \mathcal{F}, P) espace probabilisé

$$B \in \mathcal{F} \text{ tq } P(B) \neq 0, A \in \mathcal{F}$$
 $P_B(A) = P(A \mid B) = \frac{P(A \cap B)}{P(B)} \text{ est la proba conditionnelle de } A \text{ sachant } B$

$$B \in \mathcal{F} \operatorname{tq} P(B) \neq 0$$
 $P_B : \begin{cases} \mathcal{F} \to [0,1] \\ A \mapsto P_B(A) \end{cases}$ est une probabilité sur (Ω, \mathcal{F})

Formule de Bayes séquentielle : $P(A_1 \cap ... \cap A_n) = P(A_1)P(A_2 \mid A_1)...P(A_n \mid A_1 \cap ... \cap A_{n-1})$

Un système complet dénombrable d'évènements est une partition dénombrable de Ω :

$$(A_n)_{n\in\mathbb{N}}$$
 tq $\forall i\neq j, A_i\cap A_j=\emptyset$ et $\bigcup A_n=\Omega$

Loi des probas totales :
$$(E_n)_n$$
 sys complet d'evts $\Rightarrow \forall B, P(B) = \sum_{k=0}^{+\infty} P(B \mid E_k) P(E_k)$

Marche aussi si on a seulement :
$$(E_n)$$
 2 à 2 disjoints tels que $P(\cup E_n) = 1$
$$P(A \mid B) = \frac{P(A)P(B \mid A)}{P(B)}$$

Formule de Bayes :
$$(E_n)$$
 sys cpt d'evt, $B \in \mathcal{F}$ tq $P(B) \neq 0 \Rightarrow \forall k \in \mathbb{N}$, $P(E_k \mid B) = \frac{P(E_k)P(B \mid E_k)}{\sum_{n \in \mathbb{N}} P(E_n)P(B \mid E_n)}$

 $A, B \in \mathcal{F}$ sont indépendants si $P(A \cap B) = P(A)P(B)$

 $(A_n)_n$ deux à deux indépendants si $\forall i \neq j$, A_i et A_j sont indépendants

$$(A_n)_n$$
 mutuellement ind. : $\forall I \subset \mathbb{N}$ finie, $P(\bigcap_{i \in I} A_i) = \prod_{i \in I} P(A_i)$

A, B indépendants \Rightarrow Si $P(A) > 0, P(B \mid A) = P(B)$

A et \overline{B} sont indépendants

III. Variable aléatoire discrète

E ensemble. Une variable aléatoire discrète sur (Ω, \mathcal{F}) à val dans E est une application $X : \Omega \to E$ tq:

 $X(\Omega)$ fini ou dénombrable

$$\forall x \in E, X^{-1}(\{x\}) \in \mathcal{F}$$

On note
$$X^{-1}(\{x\})$$
 " $(X = x)$ "

 $X:\Omega \to E \text{ vad.} \quad X(\Omega) = \{x_n \mid n \in I(\subset \mathbb{N})\}, x_i \neq x_j \quad \forall A \subset E, X^{-1}(A) \in \mathcal{F} \text{ est not\'e } "(X \in A)"$ $(X = x_n)_{n \in I} \text{ est un sys cpt d'evt}$

 $A \in \mathbb{F}$ $1_A : \begin{cases} \Omega \to \mathbb{R} \\ \omega \mapsto 1 \text{ si } \omega \in A, 0 \text{ sinon} \end{cases}$ est une vad, la variable aléatoire indicatrice de A

 $X:\Omega \to E$ vad, $f:E \to F \Rightarrow f\circ X:\omega \mapsto f(X(\omega))$ est une variable aléatoire discrète notée f(X)

E, F. Un couple de variables aléatoires discrètes à valeurs dans $E \times F$ est une vad $X : \Omega \rightarrow E \times F$

 $X = (X_1, X_2)$ couple de vad à val dans $E \times F$. Alors X_1 (resp X_2) est une vad à val dans E (resp F)

 $X_1:\Omega \to E, X_2:\Omega \to F \text{ vad. Alors } X:\omega \mapsto (X_1(\omega),X_2(\omega)) \text{ est un couple de vad.}$

 $X:\Omega\to E \text{ vad. } \mathcal{F}=\mathcal{G}(X(\Omega)) \text{ est une tribu sur } X(\Omega). \text{ La loi de probabilité } P_X \text{ est la}$

probabilité sur $(X(\Omega), \mathcal{F})$ définie par : $P_X : A \mapsto P(X \in A)$

Deux vad X et Y sur (E, \mathbb{S}) sont équiréparties (ont la même loi) si $P_{X} = P_{Y}$

Germe de proba : X vad sur Ω à val dans $\{x_n\}_{n\in\mathbb{N}}$. $(p_n)_{n\in\mathbb{N}}$ tq $\sum p_n=1$ \Rightarrow $\exists P$ sur (Ω, \mathbb{F}) tq $\forall n, P(X=x_n)=p_n$

 $X=(X_1,X_2)$ couple de vad. La loi conjointe de X_1 et X_2 est la loi de X, qui est entièrement déterminée par :

$$X(\Omega) = X_1(\Omega) \times X_2(\Omega)$$
 $\forall x_1 \in X_1, x_2 \in X_2$, $P(X = (x_1, x_2))$ notée $P_X(x_1, x_2)$

 $X=(X_1,X_2)$ couple de vad. $X(\Omega)=\{(x_i,y_j)\,|\,i\in I,j\in J\}$ où $I\subset \mathbb{N},J\subset \mathbb{N}$ et x_i et y_i deux à deux disctincts.

 $\forall i \in I, P(X_1 = x_i) = \sum_{j \in J} P_X(x_i, y_j) \qquad \forall j \in J, P(X_2 = y_j) = \sum_{i \in I} P_X(x_i, y_j) \text{ sont les lois marginales}$

Loi conjointe ⇒ lois marginales MAIS PAS L'INVERSE

X,Y vad sur $(\Omega, \mathcal{F}, P), x \in X(\Omega)$ tq $P(X = x) \neq 0, \mathcal{F} = \mathcal{G}(Y(\Omega))$

 $A \mapsto P(Y \in A \mid X = x)$ est une proba sur $(Y(\Omega), \mathcal{J})$, la loi conditionnelle de Y sachant (X = x)

X vad réelle. $F_X: x \mapsto P(X \le x)$ est la fonction de répartition de *X*

 $F_{\scriptscriptstyle X}$ est croissante, continue à droite sur ${\mathbb R}.$

 $\lim_{x \to -\infty} F_X(x) = 0, \lim_{x \to +\infty} F_X(x) = 1$

 $a \le b \in \mathbb{R} \Rightarrow P(a < X \le b) = F_X(b) - F_X(a)$

X,Y vad sur Ω . X et Y sont indépendantes si $\forall x \in X(\Omega), y \in Y(\Omega), P((X=x) \cap (Y=y)) = P(X=x)P(Y=y)$

X,Y indpdts $\Leftrightarrow P_{(x,y)}(x,y) = P_{x}(x)P_{y}(y)$ càd loi conjointe = produit des lois marginales

X et Y vad sont indépendantes $\Leftrightarrow \forall A \subset X(\Omega), \forall B \subset Y(\Omega), P((X \in A) \cap (Y \in B)) = P(X \in A)P(Y \in B)$

 $X_1...X_n$ vad : mutuellement indpdtes si $\forall i, \forall x_i \in X_i(\Omega)$, $(X_1 = x_1)...(X_n = x_n)$ sont mut. indpdts $(X_n)_{n \in \mathbb{N}}$ suite de vad indépendantes si $\forall I \subset \mathbb{N}$ finie non vide, les $(X_i)_{i \in I}$ sont mut. indptes

X,Y vad indpdtes. f,g def sur $X(\Omega),Y(\Omega) \Rightarrow f(X)$ et g(Y) vad indpdtes

IV. Espérance et variance

X vad réelle à val dans $\{x_n\}_{n\in\mathbb{N}}$ a une espérance finie si $\sum x_n P(X=x_n)$ est ABSOLUMENT convergente Dans ce cas, $E(X)=\sum_{n=0}^{+\infty}x_n P(X=x_n)$ est l'espérance de X

Une vad réelle est centrée si elle a une espérance finie telle que E(X) = 0

X vad à val dans \mathbb{N} . Elle admet une espérance finie ssi $\sum P(X \ge n)$ cv. Dans ce cas, $E(X) = \sum_{n=1}^{+\infty} P(X \ge n)$

Thm du transfert : X vad dans $E = \{x_n\}_{n \in \mathbb{N}}$, avec $x_i \neq x_j$, $f : E \to \mathbb{R}$. f(X) a une esp finie $ssi \sum f(x_n)P(X = x_n)$

alors
$$E(f(X)) = \sum_{n=0}^{+\infty} f(x_n) P(X = x_n)$$

X,Y vadr à esp finie, $a,b \in \mathbb{R} \Rightarrow E(aX+bY)$ existe et est égale à aE(X)+bE(Y)

X à val dans $\mathbb{R}^+ \Rightarrow E(X) \ge 0$

 $\forall \omega \in \Omega, X(\omega) \leq Y(\omega) \Rightarrow E(X) \leq E(Y)$

X,Y vadr esp finie, indépendantes $\Rightarrow E(XY) = E(X)E(Y)$

Réciproque fausse. Généralisable à n variable mut. indpdtes

X vadr tq X^2 a une esp finie ("a un moment d'ordre 2") \Rightarrow X aussi,

et
$$V(X) = E((X - E(X))^2) \ge 0$$
 est la variance de X

$$\sigma(X) = \sqrt{V(X)}$$
 est l'écart-type de X

$$V(X) = E(X^2) - E(X)^2$$
 $\forall a, b \in \mathbb{R}, V(aX + b) = a^2V(X)$

X vadr mmt 2, $\sigma(X) > 0$. $\frac{X}{\sigma(X)}$ est d'écart-type, c'est la variable réduite associée à X

$$\frac{X - E(X)}{\sigma(X)}$$
 est la variable centrée réduite associée à X

X,Y vadr esp finie. Si (X-E(X))(Y-E(Y)) admet une esp finie,

cov(X,Y) = E[(X - E(X))(Y - E(Y))] est la covariance de X est Y

Cauchy-Schwarz: X, Y vadr mmt 2, alors XY a une espérance finie et $E(XY)^2 \le E(X^2)E(Y^2)$

$$\forall (a_n), (b_n), (p_n) \text{ den, } p_n \geq 0, \ \sum_{n=0}^{+\infty} |a_n b_n| \ p_n \leq \sqrt{\sum_{n=0}^{+\infty} a_n^2 p_n} \ \sqrt{\sum_{n=0}^{+\infty} b_n^2 p_n}$$

X,Y vadr mmt $2 \Rightarrow \exists cov(X,Y) = E(XY) - E(X)E(Y)$

La covariance est un opérateur bilinéaire symétrique

X,Y vadr mmt 2, indpdtes \Rightarrow cov(X,Y) = 0 ("non corrélées")

RECIPROQUE FAUSSE

$$V(X_1 + ... + X_n) = \sum_{i} V(X_i) + 2\sum_{i < j} \text{cov}(X_i, X_j)$$

$$X,Y$$
 vadr mmt 2, $\sigma(X) > 0$, $\sigma(Y) > 0$ $\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sigma(X)\sigma(Y)}$ est le cof de corrélation

$$X,Y \text{ vadr mmt 2} \qquad |\cos(X,Y)| \le \sigma(X)\sigma(Y) \qquad (\Rightarrow \text{si } \exists, |\rho(X,Y)| \le 1)$$

Inégalité de Markov :
$$X$$
 v.a. dans $\overline{\mathbb{R}^+} \Rightarrow \forall a > 0, P(X \ge a) \le \frac{E(X)}{a}$ et en particulier, $P(X \ge kE(X)) \le \frac{1}{k}$

Inégalité de Bienaymé-Chebychev : X v.a. réelle : $\forall a > 0, P(|X - E(X)| \ge a) \le \frac{V(X)}{a^2}$

V. Variables aléatoires à valeurs entières

$$X \text{ vad à val dans } \mathbb{N}, D = \{t \in \mathbb{R} \mid \exists E(t^X)\}. \ G_X : \begin{cases} D \to \mathbb{R} \\ t \mapsto E(t^X) = \sum_{n=0}^{+\infty} P(X=n)t^n \end{cases} \text{ est la fonction génératrice de } X$$

$$X \text{ vad}\mathbb{N}$$
 Le rayon de CV de $\sum P(X=n)t^n$ est ≥ 1 . $\forall |t| \leq 1, \exists E(t^X)$

$$X \text{ vad}\mathbb{N}. \qquad \forall k \in \mathbb{N}, P(X = k) = \frac{G_X^{(k)}(0)}{k!} \qquad \exists E(X) \Leftrightarrow G_X \text{ dérivable en 1, alors } E(X) = G_X \text{ '(1)}$$

 $\exists V(X) \Leftrightarrow G_{\scriptscriptstyle X} \text{ deux fois dérivable en 1, alors } G_{\scriptscriptstyle X} \text{ "(1)} = E(X(X-1)) \text{ et } V(X) = G_{\scriptscriptstyle X} \text{ "(1)} + G_{\scriptscriptstyle X} \text{ '(1)} - G_{\scriptscriptstyle X} \text{ '(1)}^2$

 $G_X = G_Y \Longrightarrow$ même loi de proba

$$X,Y$$
 vad $\mathbb N$ INDEPENDANTES \Longrightarrow $G_{X+Y}=G_XG_Y$ (généralisable à n mut indpdtes)

VI. Lois usuelles

1. Loi géométrique

Loi géométrique : succession d'épreuves de Bernouilli (pile ou face) iid., premier succès ?

X suit une loi géométrique de paramètre $p \in]0,1[\ (X \sim \mathbb{S}(p))$ si $X(\Omega) = \mathbb{N}^*$ et $\forall k \in \mathbb{N}^*, P(X=k) = p(1-p)^{k-1}$

$$X \text{ vad loi g\'eom } p.$$
 Rayon de $G_X : R = \frac{1}{1-p} > 1$ $G_X(t) = \frac{pt}{1-(1-p)t}$ $E(X) = \frac{1}{p}$ $V(X) = \frac{1-p}{p^2}$

 $X \text{ vad}\mathbb{N}^*$. Loi géom $\Leftrightarrow \forall n, k > 0, P(X > n + k \mid X > n) = P(X > k)$ (loi sans mémoire)

2. Loi de Poisson

X suit une loi de Poisson de paramètre $\lambda > 0$ $(X \sim \mathcal{P}(\lambda))$ si $X(\Omega) = \mathbb{N}$ et $\forall k \in \mathbb{N}, P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$

X vad loi Poisson $\lambda > 0$

Rayon de
$$G_X: R = +\infty$$
 $G_X(t) = e^{\lambda(t-1)}$ $E(X) = \lambda = V(X)$

$$G_{X}(t) = e^{\lambda(t-1)}$$

$$E(X) = \lambda = V(X)$$

X,Y vad Poisson λ,μ indpdtes $\Rightarrow X+Y$ suit une loi de Poisson de paramètre $\lambda+\mu$

VII. Résultats asymptotiques

$$(X_n)_{n\in\mathbb{N}}$$
 suite de vad loi bin de param (n,p_n) tq $np_n \to \lambda > 0$ $\Rightarrow \forall k \in \mathbb{N}, \lim_{n \to +\infty} P(X_n = k) = e^{-\lambda} \frac{\lambda^k}{k!}$

$$\Rightarrow \forall k \in \mathbb{N}, \lim_{n \to +\infty} P(X_n = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

Loi faible des grands nombres : $(X_n)_{n\in\mathbb{N}^*}$ suite de vadr 2 à 2 indpdtes, de même loi, mmt 2.

$$\forall n \in \mathbb{N}^*, \text{ on note } S_n = \sum_{k=1}^n X_k \text{ et } m = E(X_1). \text{ Alors } \forall \varepsilon > 0, \lim_{n \to +\infty} P\left(\left|\frac{S_n}{n} - m\right| \ge \varepsilon\right) = 0$$