ĐÁP ÁN CHI TIẾT ĐỀ SỐ 3

Câu 1: nhằm 2 mục đích

- Chia tải cho Root name server
- Nâng cao khả năng phòng chống lỗi (hoặc bị tấn công)

Câu 2: D - Truyền lại, ACK, Checksum

Câu 3: A, D x=1, y=0 - Client dùng HTTP 1.1; WebServer dùng HTTP 1.0 hoặc cả client và server đều dùng HTTP 1.0

Câu 4: Các lệnh SMTP cần gõ

MAIL FROM: <a@hotmail.com>
RCPT TO: <b@yahoo.com>
RCPT TO: <c@yahoo.com>
DATA
Hanoi Hotel, 9pm

Câu 5:

Sender gửi: $[0, 1, 2] \times 1(lần) + [3] \times 1(lần) + [1,2,3] \times 1(lần) + [4] \times 1 lần = 8 packet$ Receiver gửi ACK: [0, 0, 1, 2, 3, 4] = 6 lầnVậy cả sender và receiver gửi 8 packet + 6 ack = **14 (gói)**

Câu 6:

Sender gửi: [0,1,2]x1(lần) + [1]x(1lần) + [3,4]x1(lần) + [3]x1lần = 7 segment Receiver gửi ACK [0,2,1,4,3] mỗi số thứ tự 1 lần = 5 ACK Vậy cả sender và receiver đã gửi tổng cộng 7+5=12 gói tin

Câu 7: B - Tăng sức mạnh xử lý của các router

Câu 8:

Tổng số segment cần gửi là $100 \rightarrow B$ cần gửi 50 ACK Số segment bị lỗi gửi lần đầu = 100/4 = 25 segment \rightarrow B phải gửi thêm $25 \times 2 = 50$ ACK cho các segment lỗi này. Vậy tổng số ACK B phải gửi đi là 50 + 50 = 100

Câu 9: Congwin = 34

Câu 10: Chuỗi nhị phân của các ký tự trong đoạn text "MUM" là

M(77) = 01001101U(85) = 01010101

Vậy UDP Checksum của đoạn text trên là

01001101 01010101 01001101 00000000

1001101001010101 → Đảo bit có được UDP Checksum: 0110010110101010

Câu 11: ®

Câu 12:

- Phân đoạn mạng 1 (MTU=1300) cần chuyển 5500 bytes data → phải chia thành 5 datagram (d1, d2, d3, d4 chuyển được 1280 x 4 = 5120 byte data; d5 chuyển nốt 380 bytes data cuối cùng).
- Ở phân đoạn mạng 2 (MTU=1200) mỗi datagram d1, d2, d3, d4 lại bị chia thành 2 datagram nhỏ hơn là d11, d12, d21, d22, d31, d32, d41, d42 trong đó:
 - + d11, d21, d31, d41 mỗi datagram chuyển 1180 byte data.
 - + d12, d22, d32, d42 mỗi datagram chuyển 100 byte data
 - + d5 khi đi qua phân đoạn này không bị phân mảnh (vì chỉ chứa 380 byte < 1200)

Vậy: B nhận tổng cộng 9 datagram: d11, d12, d21, d22, d31, d32, d41, d42 và d5. Datagram thứ 6 B nhận được là d32 chứa 100 byte dữ liệu

Câu 13:

$$A \rightarrow D \rightarrow F = 5$$

Lưu ý: Sinh viên phải trình bày bảng tính toán các bước thực hiện giải thuật Dijsktra

Câu 14:

DA	В	С	
В	(4)	10	
С	11	(3)	
D	(5)	11	
Е	10	(6)	
F	(7)	13	

Câu 15: (13)

Câu 16: D

Câu 17: Mã của các ký tự trong chữ LOVE là 76-79-86-69. Ma trận kiểm tra chẵn lẻ 7x7 010011000100111101010100100101

0	1 0 1 1 1 1	0	0	1	1	1
0	0	0	1	0	0	1
1	1	1	1	0	1	1
0	1	0	1	1	0	1
0	1	0	0	0	1	0
0	1	0	0	0	0	1
1	1	1	1	1	0	1

Câu 18: Mã ACII của "b" là $98 \rightarrow Mã$ nhị phân là 01100010

→ Vậy mã Hamming của ký tự "b" là: **01**0**0**011**1**0010

Lưu ý: nếu SV áp dung luật số lẻ thì mã hamming là **10**0**1**011**0**0010

```
Câu 19:Mã hamming lỗi 1 bit nhận được\underline{10}1\underline{0}101\underline{1}110Xét vị trí 1: có 5 bit 1 tại các vị trí 1,3,5,7,9,11\rightarrow lỗi (bit parity =1)- Xét vị trí 2: có 3 bit 1 tại các vị trí 2,3,6,7,10,11\rightarrow lỗi (bit parity =1)
```

- Xét vị trí 4: có 2 bit 1 tại các vị trí 4, 5,6,7 → không lỗi (bit parity =0)

- Xét vị trí 8: có 3 bit 1 tại các vị trí 8,9,10,11 \rightarrow lỗi 1(bit parity =1)

Chuỗi nhị phân vị trí bit bị lỗi là $1011 \rightarrow \text{vậy}$ bit số 11 đảo lại thành 1

Chỗi nhị phân sửa lại là: **10**1**0**101**1**111

Mã nhị phân của ký tự bên gửi là: 1101111, kí tự gốc là o

Câu 20:

Chuỗi nhị của đoạn text LOVE (76-79-86-69):

Vậy D: 010011000100111101010100100101 hoặc 0x4C4F5645 G = 10101, r=4 vậy

 \rightarrow Thực hiện thuật toán tính CRC sẽ thu được: R = 0010

Phần II – trả lời tự luận

- TCP để người cài đặt tự quyết định dùng GBN hay SR là vì cho phù hợp với môi trường truyền dẫn sau này
- Nghịch lý của Selective Repeat (SR) là: khi kích thước cửa sổ trượt quá lớn so (với khoảng số thứ tự gán cho các packet) thì dẫn đến hiểu nhằm các giá trị ACK → bên gửi sẽ lại gửi trùng lặp các gói tin.

Ví dụ: khoảng số thứ tự gán cho các gói tin là 0, 1, 2, 3. Nếu để windowsize = 3 sẽ dẫn đến tình huống sau bên gửi không phân biệt được bên nhận yêu cầu gửi lại gói tin bị mất hay yêu cầu gửi gói tin kế tiếp (thứ 5 cũng có stt)

Giải pháp: Sử dụng windowsize ≤ ½ Khoảng số thứ tự