Homework 1

Math 123

Due February 3, 2023 by 5pm

Name:

Topics covered: graph, subgraph, cycle, path, vertex degrees,

Instructions:

- This assignment must be submitted on Gradescope by the due date. Gradescope Entry Code: RZ277D.
- If you collaborate with other students (which is encouraged!), please mention this near the corresponding problems.
- If you are stuck, please ask for help (from me, a TA, a classmate).

Problem 1. Prove that the graph below is isomorphic to the Petersen graph.¹

Solution. We do this by labeling the vertices of the graph with 2-element subsets of $\{1, \ldots, 5\}$ so that edges correspond to disjointness.

Problem 2. How many cycles of length n are there in the complete graph K_n ?

Solution. Denote $V(K_n) = \{1, \ldots, n\}$. An *n*-cycle can be expressed as an ordering (a_1, \ldots, a_n) of $1, \ldots, n$ (each vertex appearing once). Note that reversing the order (a_n, \ldots, a_1) specifies the same cycle. Furthermore, changing the cycle by a cyclic permutation does not change the cycle, e.g. for n = 3, 123 and 231 and 312 each describe the same cycle. The number of sequences (a_1, \ldots, a_n) is n!, and the number of sequences equivalent to a given one is $2 \cdot n$ (coming from cyclic permutations and reversing direction), so the total number of n-cycles is $n!/(2n) = \frac{(n-1)!}{2}$.

Problem 3. Define the hypercube graph Q_k as the graph with a vertex for each tuple (a_1, \ldots, a_k) with coordinates $a_i \in \{0, 1\}$ and with an edge between (a_1, \ldots, a_k) and (b_1, \ldots, b_k) if they differ in exactly one coordinate.²

- (a) Prove that two 4-cycles in Q_k are either disjoint, intersect in a single vertex, or intersect in a single edge.
- (b) Let $K_{2,3}$ be the complete bipartite graph with 2 red vertices, 3 blue vertices, and all possible edges between red and blue vertices. Prove that $K_{2,3}$ is not a subgraph of any hypercube Q_k .

¹Hint: label the graph.

²Suggestion: Draw Q_k for k=2 and k=3.

Solution.

(a) A 4-cycle containing vertex a is determined by two coordinates i, j and the other vertices b, c, d of the 4-cycle are obtained by either changing i, j or both, respectively. Denote $C_{i,j}(a)$ the corresponding 4-cycle containing a.

Assume two 4-cycles are not disjoint. Choose a common vertex a, so that the two cycles can be denoted $C_{i,j}(a)$ and $C_{k,\ell}(a)$ as above. Then either $\{i,j\}$ and $\{k,\ell\}$ are either disjoint or share a single index. In the first case (disjoint), then $C_{i,j}(a)$ and $C_{k,\ell}(a)$ intersect only at a. In the second case, then $C_{i,j}(a)$ and $C_{k,\ell}(a)$ share a single edge. This completes the proof.

(b) The graph $K_{2,3}$ contains two 4-cycles C, D that have two edges in common. This property is not shared by 4-cycles in Q_k by (a), so $K_{2,3}$ is not a subgraph of Q_k .

Problem 4. For a graph G = (V, E), the complement of G is the graph $\bar{G} = (V, \bar{E})$, where $\{u, v\} \in \bar{E}$ if and only if $\{u, v\} \notin E$. Prove or disprove: If G and H are isomorphic, then the complements \bar{G} and \bar{H} are also isomorphic.

Solution. This statement is true. Suppose $\phi: V(G) \to V(H)$ is gives an isomorphism between G and H. This means that $\{u,v\} \in E(G)$ if and only if $\{\phi(u),\phi(v)\} \in E(H)$. Equivalently, $\{u,v\} \notin E(G)$ if and only if $\{\phi(u),\phi(v)\} \notin E(H)$. This says exactly that ϕ gives an isomorphism between \bar{G} and \bar{H} .

Problem 5.

- (a) Determine the complement of the graphs P_3 and P_4 . (Recall that P_n is the path with n vertices. It has n-1 edges.)
- (b) We say that G is self-complementary if G is isomorphic \bar{G} . Prove that if G is self-complementary with n vertices, then either n is divisible by 4 or n-1 is divisible by 4.

In fact, whenever n or n-1 is divisible by 4, there is a self-complementary graph with n vertices – see the bonus problem below.

Solution.

- (a) the complement of P_3 is a union of P_2 and P_1 . The complement of P_4 is isomorphic to P_4 .
- (b) Assume G is self-complementary with n vertices. Then G and \bar{G} have the same number of edges, which is half the number of edges of K_n . Since K_n has $\binom{n}{2} = \frac{n(n-1)}{2}$ edges, G has $\frac{n(n-1)}{4}$ edges. Since this number is an integer and n and n-1 are not both even, either n or n-1 is divisible by 4.

Problem 6. Prove that the Petersen graph has no cycles of length 3 or 4. ⁴

Solution. Let's write $X = \{1, 2, 3, 4, 5\}$.

First we argue that there is no 3-cycle. The existence of a 3-cycle would mean there are 2-element subsets $A, B, C \subset X$ that are pairwise disjoint. This would force X to have at least 6 elements, a contradiction.

³Hint: count edges

⁴Hint: use the definition of Petersen graph given in class.

Next observe that if $A \neq C \subset X$ are 2-element subsets that are not disjoint, then A and C have exactly one element in common, i.e. $A \cup C$ has 3 elements. Then there is a unique 2-element subset $B \subset X$ so that A, C are both disjoint from B.

Suppose for a contradiction that G has a 4-cycle (A, B, C, D, A) with A, B, C, D distinct 2-element subsets of X. Since there are no 3-cycles, then A, C are not disjoint, and since they are distinct, $A \cap C$ has exactly one element and $A \cup C$ has three elements. Since A, C are both adjacent to both B and D, this means $A \cup C$ is disjoint from B and D. But $A \cup C$ has three elements and X has only five elements, so this forces B = D, a contradiction.

Problem 7 (Bonus). Let G, H be a self-complementary graphs, and assume G has with 4k vertices. Construct a self-complementary graph obtained by taking the union of G and H and adding some edges.⁵ Deduce that if either n or n-1 is divisible by 4, then there is a self-complementary graph with n vertices.

Solution. Form a graph G * H by starting with $G \cup H$ and combining each even-degree vertex of G to every vertex of H.

To see that G * H is self-complementary, the key observation is that when we take the complement of G, odd-degree vertices become even-degree vertices and vice versa (this is because since the degree of vertices in K_{4k} is 4k-1, which is odd). Consequently, when we take complement of G * H, then odd-degree vertices of G are connected to every vertex of G. But odd-degree vertices of G are even-degree vertices of G, so the complement is $G \cup H$ with even degree vertices of G connected to every vertex of G.

Now $P_4 * \cdots * P_4$ is a self-complementary graph with 4k vertices and $K_1 * P_4 * \cdots * P_4$ is a self-complementary graph with 4k + 1 vertices.

⁵Hint: How does the degree of even/odd vertices of G change after taking the complement?