

PRÉSENTATION A.

DÉFINITION

On considère une droite graduée d'origine O et un point M de cette droite, d'abscisse x.

La valeur absolue de x, notée |x|, est la distance entre le point M et l'origine O.

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x \le 0 \end{cases}$$

La valeur absolue d'un nombre permet de considérer ce nombre sans tenir compte de son signe.

La fonction valeur absolue f(x) = |x| est représentée cicontre.

On voit qu'elle est toujours positive. En particulier |-3| = 3.

PROPRIÉTÉ

Soit x et y deux nombres réels.

- $|x| \ge 0$
- \bullet |-x| = |x|
- $|x \times y| = |x| \times |y|$

• $|x| = 0 \Leftrightarrow x = 0$

•
$$|x| = |y| \Leftrightarrow x = y \text{ ou } x = -y$$

Exemples:

•
$$\left| -\frac{2}{3} \right| = \frac{2}{3}$$

•
$$|2| = 2$$

• $\left|-\frac{2}{3}\right| = \frac{2}{3}$
• $|-4 \times 6| = |-4| \times |6| = 4 \times 6 = 24$

Soit $a \in \mathbb{R}^+$ (réel positif ou nul).

- L'ensemble des solutions $x \in \mathbb{R}$ de l'équation |x| = a est $\{-a; a\}$
- L'ensemble des solutions $x \in \mathbb{R}$ de l'équation $|x| \le a$ sont [-a; a]
- L'ensemble des solutions $x \in \mathbb{R}$ de l'équation $|x| \ge a$ sont $]-\infty;-a] \cup [a;+\infty[$

Exemples:

- |x| > 2 donc $x \in]-\infty$; $2[\cup]2$; $+\infty[$
- $|x| \le 5$ donc $x \in [-5; 5]$

B. DISTANCE ENTRE DEUX POINTS

Soit A et B deux points d'une droite graduée d'abscisses respectives a et b. La distance entre A et B, notée d(A;B), est le nombre |b-a|.

Remarque

Une distance est une valeur positive, donc d(A; B) = d(B; A) et par définition de la valeur absolue on a bien : |b - a| = |a - b|.

N PROPRIÉTÉ

Si a et r sont deux réels avec r > 0:

$$|x-a| \le r \Leftrightarrow x \in [a-r;a+r]$$

La distance entre les réels a et x est inférieure ou égale à r.

Exemples:

- $|x-4| < 10 \Leftrightarrow -10 \le x 4 \le 10$ $\Leftrightarrow -6 \le x \le 14$ $\Leftrightarrow x \in [-6; 14]$
- |x-4| < 10: on a a=4 et r=10 donc d'après la propriété, les solutions sont : $x \in [4-10;4+10]$ donc $x \in [-6;14]$