Busca Cega (Exaustiva) e Heurística

Busca – Aula 2

Ao final desta aula a gente deve saber:

- Conhecer as várias estratégias de realizar Busca não-informada (Busca Cega)
- Determinar que estratégia se aplica melhor ao problema que queremos solucionar
- Evitar a geração de estados repetidos.
- Entender o que é Busca Heurística
- Saber escolher heurísticas apropriadas para o problema.

Busca Cega (Exaustiva)

Estratégias para determinar a ordem de expansão dos nós

- I. Busca em largura
- 2. Busca de custo uniforme

Agora veremos essas

- 3. Busca em profundidade
- 4. Busca com aprofundamento iterativo

Busca de Custo Uniforme

- Modifica a busca em largura:
 - expande o nó da fronteira com menor custo de caminho na fronteira do espaço de estados
 - ° cada operador pode ter um custo associado diferente, medido pela função g(n), para o nó n.
 - onde g(n) dá o custo do caminho da origem ao nó n
- Na busca em largura: g(n) = profundidade (n)
- Algoritmo:

função <u>Busca-de-Custo-Uniforme</u> (*problema*) retorna <u>uma solução ou falha</u>

Busca-Genérica (problema, Insere-Ordem-Crescente)

Busca de Custo Uniforme

Busca de Custo Uniforme Fronteira do exemplo anterior

- $\mathbf{F} = \{S\}$
 - ordenadamente na fronteira
- F = {A, B, C}
 - o testa A, expande-o e guarda seu filho GA ordenadamente
 - obs.: o algoritmo de geração e teste guarda na fronteira todos os nós gerados, testando se um nó é o objetivo apenas quando ele é retirado da lista!
- F= {B, GA, C}
 - ° testa B, expande-o e guarda seu filho G_B ordenadamente
- ightharpoonup F= {G_B, G_A, C}
 - ° testa G_B e para!

Busca de Custo Uniforme

- 💌 Esta estratégia é completa
- 🍯 É ótima se
 - $^{\circ}$ g (sucessor(n)) \geq g (n)
 - custo de caminho no mesmo caminho não decresce
 - i.e., não tem operadores com custo negativo
 - o caso contrário, teríamos que expandir todo o espaço de estados em busca da melhor solução.
 - Ex. Seria necessário expandir também o nó C do exemplo, pois o próximo operador poderia ter custo associado = -13, por exemplo, gerando um caminho mais barato do que através de B
- Custo de tempo e de memória
 - o teoricamente, igual ao da Busca em Largura

- Modificação da Busca em Profundidade
- Evita o problema de caminhos muito longos ou infinitos impondo um limite máximo (l) de profundidade para os caminhos gerados.
 - ° $l \ge d$, onde l é o limite de profundidade e d é a profundidade da primeira solução do problema

- Esta estratégia tenta limites com valores crescentes, partindo de zero, até encontrar a primeira solução
- $^{\circ}$ fixa profundidade = i, executa busca
- ° se não chegou a um objetivo, recomeça busca com profundidade = i + n (n qualquer)
- piora o tempo de busca, porém melhora o custo de memória!
- 📍 Igual à Busca em Largura para i=1 e n=1

- Combina as vantagens de busca em largura com busca em profundidade.
- 🎴 É ótima e completa
 - com n = I e operadores com custos iguais
- Custo de memória:
 - o necessita armazenar apenas b.d nós para um espaço de estados com fator de expansão b e limite de profundidade d
- Custo de tempo:
 - O(b_d)
- Bons resultados quando o espaço de estados é grande e de profundidade desconhecida.

Comparando Estratégias de Busca Exaustiva

Critério	Largura	Custo Uniforme	Profun- didade	Aprofun- damento Iterativo
Tempo	þď	þ _q	b ^m	þď
Espaço	þď	þď	bm	bd
Otima?	Sim	Sim*	Não	Sim
Completa?	Sim	Sim	Não	Sim

A seguir...

Busca heurística

Estratégias de Busca Exaustiva (Cega)

- Encontram soluções para problemas pela geração sistemática de novos estados, que são comparados ao objetivo;
- São ineficientes na maioria dos casos:
 - o utilizam apenas o custo de caminho do nó atual ao nó inicial (função g) para decidir qual o próximo nó da fronteira a ser expandido.
 - o essa medida nem sempre conduz a busca na direção do objetivo.
- Como encontrar um barco perdido?
 - ° não podemos procurar no oceano inteiro...
 - observamos as correntes marítimas, o vento, etc...

Estratégias Busca Heurística (Informada)

- Utilizam conhecimento específico do problema na escolha do próximo nó a ser expandido
 - barco perdido
 - correntes marítimas, vento, etc...
- Aplicam de uma função de avaliação a cada nó na fronteira do espaço de estados
 - essa função estima o custo de caminho do nó atual até o objetivo mais próximo utilizando uma função heurística.
 - Função heurística
 - estima o custo do caminho mais barato do estado atual até o estado final mais próximo.

Busca Heurística

- Classes de algoritmos para busca heurística:
- I. Busca pela melhor escolha (Best-First search)
- 2. Busca com limite de memória
- 3. Busca com melhora iterativa

Busca pela Melhor Escolha

Best-First Search

- P Busca pela Melhor Escolha BME
 - Busca genérica onde o nó de menor custo "aparente" na fronteira do espaço de estados é expandido primeiro
- Duas abordagens básicas:
 - I. Busca Gulosa (Greedy search)
 - ° 2. Algoritmo A*

Busca pela Melhor Escolha

Algoritmo geral

Função-Insere

- o insere novos nós na fronteira ordenados com base na Função-Avaliação
 - Que está baseada na função heurística

função <u>Busca-Melhor-Escolha</u> (problema, Função-Avaliação)

retorna uma solução

Busca-Genérica (problema, Função-Insere)

BME: Busca Gulosa

- Semelhante à busca em profundidade com backtracking
- Tenta expandir o nó mais próximo do nó final com base na estimativa feita pela função heurística *h*
- Função-Avaliação
 - ° função heurística h

Funções Heurísticas

- Função heurística h
 - estima o custo do caminho mais barato do estado atual até o estado final mais próximo.
- Funções heurísticas são específicas para cada problema
- Exemplo:
 - o encontrar a rota mais barata de Canudos a Petrolândia
 - $h_{dd}(n) = distância direta entre o nó <math>n$ e o nó final.

Funções Heurísticas

- Como escolher uma boa função heurística?
 - o ela deve ser admissível
 - ° i.e., nunca superestimar o custo real da solução
- Distância direta (h_{dd}) é admissível porque o caminho mais curto entre dois pontos é sempre uma linha reta
- Veremos mais sobre isso na próxima aula

Exemplo: encontrar a rota mais barata de Canudos a Petrolândia hdd(n) = distância direta entre o nó n e o nó final

Busca Gulosa

- Custo de busca mínimo!
 - o não expande nós fora do caminho
- Porém *não* é ótima:
 - o escolhe o caminho que é mais econômico à primeira vista
 - Belém do S. Francisco, Petrolândia = 4,4 unidades
 - o porém, existe um caminho mais curto de Canudos a Petrolândia
 - Jeremoabo, P.Afonso, Petrolândia = 4 unidades
- A solução via Belém do S. Francisco foi escolhida por este algoritmo porque
 - $h_{dd}(BSF) = 1,5 \text{ u., enquanto } h_{dd}(Jer) = 2,1 \text{ u.}$

Busca Gulosa

- Não é completa:
 - o pode entrar em looping se não detectar a expansão de estados repetidos
- o pode tentar desenvolver um caminho infinito
- Custo de tempo e memória: O(bd)
 - o guarda todos os nós expandidos na memória

BME: Algoritmo A*

- A* expande o nó de menor valor de f na fronteira do espaço de estados
- Tenta minimizar o custo total da solução combinando:
 - Busca Gulosa (h)
 - econômica, porém não é completa nem ótima
 - Busca de Custo Uniforme (g)
 - ineficiente, porém completa e ótima
- 🎙 f Função de avaliação do A*:
 - \circ f (n) = g (n) + h (n)
 - \circ g (n) = distância de n ao nó inicial
 - $^{\circ}$ h(n) = distância estimada de n ao nó final

Algoritmo A*

- Se h é admissível, então f (n) é admissível também
 - $^{\circ}$ i.e., f nunca irá superestimar o custo real da melhor solução através de n
 - o pois g guarda o valor exato do caminho já percorrido.
- Com A*, a rota escolhida entre *Canudos* e *Petrolândia* é de fato a mais curta, uma vez que:
 - \circ f (BSF) = 2,5 u + 1,5 u = 4 u
 - \circ f (Jeremoabo) = 1,5 u + 2,1 u = 3,6 u

Algoritmo A*: outro exemplo

Viajar de Arad a Bucharest

Straight ☐ line distance				
to Bucharest				
Arad	366			
Bucharest	- 0			
Craiova	160			
Dobreta	242			
Eforie	161			
Fagaras	178			
Giurgiu	77			
Hirsova	151			
Iasi	226			
Lugoj	244			
Mehadia	241			
Neamt	234			
Oradea	380			
Pitesti	98			
Rimnicu Vilcea	193			
Sibiu	253			
Timisoara	329			
Urziceni	80			
Vaslui	199			
Zerind	374			

Se fosse pela Busca Gulosa...

Usando A*

Algoritmo A*: Análise do comportamento

- A estratégia é completa e ótima
- Custo de tempo:
 - exponencial com o comprimento da solução, porém boas funções heurísticas diminuem significativamente esse custo
 - o fator de expansão fica próximo de I
- Custo memória: O (bd)
 - guarda todos os nós expandidos na memória, para possibilitar o backtracking

Algoritmo A*

Análise do comportamento

- A estratégia apresenta eficiência ótima
 - o nenhum outro algoritmo ótimo garante expandir menos nós
- A* só expande nós com $f(n) \le C^*$, onde C^* é o custo do caminho ótimo
- Para se garantir otimalidade do A*, o valor de f em um caminho particular deve ser não decrescente!!!
 - \circ f (sucessor(n)) \geq f(n)
 - i.e., o custo de cada nó gerado no mesmo caminho nunca é menor do que o custo de seus antecessores

Algoritmo A*

Análise do comportamento

- f = g + h deve ser não decrescente
 - o g é não decrescente (para operadores não negativos)
 - custo real do caminho já percorrido
 - h deve ser não-crescente (consistente, monotônica)

 - \Box i.e., quanto mais próximo do nó final, menor o valor de h
 - isso vale para a maioria das funções heurísticas
- Quando *h* não é consistente, para se garantir otimalidade do A*, temos:
 - o quando f(suc(n)) < f (n)</pre>
 - \circ usa-se f(suc(n)) = max (f(n), g(suc(n)) + h(suc(n)))

A* define Contornos

 $f(n) \le C^*$ fator de expansão próximo de I

Busca com Limite de Memória Memory Bounded Search

- IDA* (Iterative Deepening A*)
 - o igual ao aprofundamento iterativo, porém seu limite é dado pela função de avaliação (f), e não pela profundidade (d).
 - o necessita de menos memória do que A*
- SMA* (Simplified Memory-Bounded A*)
 - O número de nós guardados em memória é fixado previamente

IDA* - Iterative Deepening A*

SMA* - Simplified Memory-Bounded A*

Próxima aula

- Princípios para obtenção de funções heurísticas
- Algoritmos de Melhorias Iterativas

Sistemas Inteligentes
Busca - Funções Heurísticas e Algoritmos de Melhorias
Interativas

Ao final desta aula, a gente deve...

- Especificar boas funções heurísticas para o nosso problema
- Conhecer os algoritmos de melhorias Interativas e suas aplicações

Inventando Funções Heurísticas

- PComo escolher uma boa função heurística h?
 - o h depende de cada problema particular.
 - h deve ser admissível
 - i.e., não superestimar o custo real da solução
- Existem estratégias genéricas para definir h :
 - 1) Relaxar restrições do problema
 - 2) "Aprender" a heurística pela experiência
 - Aprendizagem de máquina

(I) Relaxando o problema

- Problema Relaxado:
 - versão simplificada do problema original, onde os operadores são menos restritivos
- Exemplo: jogo dos 8 números
 - Operador original
 - um número pode mover-se de A para B se A é adjacente a B e B está vazio
 - busca exaustiva $\approx 3^{22}$ estados possíveis
 - ° Operadores relaxados:
 - I. um número pode mover-se de A para B se A é adjacente a B (h2)
 - 2. um número pode mover-se de A para B se B está vazio
 - 3. um número pode mover-se de A para B (hI)

(I) Relaxando o problema

Start State

Goal State

Heurísticas para o jogo dos 8 números

h1 = no. de elementos fora do lugar (h1=7)

h2 = soma das distâncias de cada número à posição final (h2 = 2+3+3+2+4+2+0+2=18)

- (I) Relaxando o problema
- O custo de uma solução ótima para um problema relaxado é sempre uma heurística admissível para o problema original.
- Existem softwares capazes de gerar automaticamente problemas relaxados
 - Se o problema for definido em uma linguagem formal
- Existem também softwares capazes de gerar automaticamente funções heurísticas para problemas relaxados

Escolhendo Funções Heurísticas

- É sempre melhor usar uma função heurística com valores mais altos
 - o i.e., mais próximos do valor real do custo de caminho
 - ** contanto que ela seja admissível **
- No exemplo anterior, h_2 é melhor que h_1
 - $\circ \forall n, h_2(n) \geq h_1(n)$
 - A* com h₂ expande menos nós do que com h₁
- h_i domina $h_k \Rightarrow h_i(n) \ge h_k(n) \ \forall n$ no espaço de estados
 - ∘ h₂ domina h₁

Escolhendo Funções Heurísticas

- Caso existam muitas funções heurísticas para o mesmo problema,
 - e nenhuma delas domine as outras,
 - usa-se uma heurística composta:
 - $h(n) = max (h_1(n), h_2(n),...,h_m(n))$
- Assim definida, h é admissível e domina cada função hi individualmente
- Existem software capazes de gerar automaticamente problemas relaxados
 - Se o problema for definido em uma linguagem formal

- (2) Aprendendo a heurística
 - Definindo h com aprendizagem automática
 - (I) Criar um corpus de exemplos de treinamento
 - Resolver um conjunto grande de problemas
 - e.g., 100 configurações diferentes do jogo dos 8 números
 - Cada solução ótima para um problema provê exemplos
 - Cada exemplo consiste em um par
 - (estado no caminho "solução", custo real da solução a partir daquele ponto)

(2) Aprendendo a heurística

- (2) Treinar um algoritmo de aprendizagem indutiva
 - Que então será capaz de prever o custo de outros estados gerados durante a execução do algoritmo de busca

Qualidade da função heurística

- Medida através do fator de expansão efetivo (b*)
- b* é o fator de expansão de uma árvore uniforme com
 N nós e nível de profundidade d
- $ON = 1 + b^* + (b^*)^2 + ... + (b^*)^d$, onde
 - N = total de nós expandidos para uma instância de problema
 - d = profundidade da solução
- Mede-se empiricamente a qualidade de h a partir do conjunto de valores experimentais de N e d.
 - uma boa função heurística terá o b* muito próximo de

Qualidade da função heurística

Observações:

- O Se o custo de execução da função heurística for maior do que expandir os nós, então ela não deve ser usada.
- o uma boa função heurística deve ser eficiente e econômica.

Experimento com 100 problemas

	Search Cost			Effective Branching Factor		
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$A*(h_1)$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	227	73	2.78	1.42	1.24
1.4	3473941	539	113	2.83	1.44	1.23
16	-	1301	211	13-41	1.45	1.25
18		3056	363	-	1.46	1.26
20	122	7276	676	72.1	1.47	1.27
22		18094	1219	28	1.48	1.28
24		39135	1641	24	1,48	1.26

Uma boa função heurística terá o b^* muito próximo de 1.

Na sequência....

Algoritmos de Melhorias Iterativas

Algoritmos de Melhorias Iterativas

- Dois exemplos clássicos
 - O Subida da encosta
 - ° Têmpera simulada

Algoritmos de Melhorias Iterativas Iterative Improvement Algorithms

- Ideia geral
 - o começar com um estado inicial
 - configuração completa, solução aceitável
 - o e tentar melhorá-lo iterativamente
 - E.g., ajustar a imagem da TV com antena interna
- Os estados são representados sobre uma superfície (gráfico)
 - a altura de qualquer ponto na superfície corresponde à função de avaliação do estado naquele ponto

Exemplo de Espaço de Estados

Algoritmos de Melhorias Iterativas

- O algoritmo se "move" pela superfície em busca de pontos mais altos
 - Objetivos (onde a função de avaliação é melhor)
 - Objetivos são estados mais adequados
- O ponto mais alto corresponde à solução ótima
 - o máximo global
 - nó onde a função de avaliação atinge seu valor máximo
- Aplicações: problemas de otimização
 - o por exemplo, linha de montagem, rotas, etc.

Algoritmos de Melhorias Iterativas

- Esses algoritmos guardam apenas o estado atual, e não vêem além dos vizinhos imediatos do estado
 - Contudo, muitas vezes são os melhores métodos para tratar problemas reais muito complexos.
- Duas classes de algoritmos:
 - Subida da Encosta ou Gradiente Ascendente
 - Hill-Climbing
 - só faz modificações que melhoram o estado atual.
 - Têmpera Simulada
 - Simulated Annealing
 - pode fazer modificações que pioram o estado temporariamente para fugir de máximos locais

Subida da Encosta - Hill-Climbing

- O algoritmo não mantém uma árvore de busca:
 - o guarda apenas o estado atual e sua avaliação
- É simplesmente um "loop" que se move
 - o na direção crescente da função de avaliação
 - para maximizar
 - ou na direção decrescente da função de avaliação
 - para minimizar
 - Pode ser o caso se a função de avaliação representar o custo, por exemplo...

Subida da Encosta: algoritmo

função Hill-Climbing (problema) retorna uma solução

```
variáveis locais: atual (o nó atual), próximo (o próximo nó)

atual ← Estado-Inicial do Problema

loop do

próximo ← sucessor do nó atual de maior/menor valor

(i.e., expande nó atual e seleciona seu melhor filho)

se Valor[próximo] < Valor[atual] (ou >, para minimizar)

então retorna nó atual (o algoritmo pára)

atual ← próximo

end
```

Exemplo de Subida da Encosta Cálculo da menor rota com 5 nós

- grado inicial = (N1, N2, N3, N4, N5)
- 🚺 f = soma das distâncias diretas entre cada nó, na ordem escolhida (admissível!)
- 🌅 operadores = permutar dois nós quaisquer do caminho
- 🕙 restrição = somente caminhos conectados são estados válidos
- 🎑 estado final = nó onde valor de f é mínimo
- eI = {NI, N2, N3, N4, N5}f(NI, N2, N3, N4, N5) = 10
- \bullet e2 = {N2, N1, N3, N4, N5}
 - \circ f(N2, N1, N3, N4, N5) = 14
- \bullet e3 = {N2, N1, N4, N3, N5}
 - \circ f(N2, N1, N3, N4, N5) = 9!!!

Subida da Encosta Problemas

- O algoritmo move-se sempre na direção que apresenta maior taxa de variação para *f*
- Isso pode levar a 3 problemas:
 - I. Máximos locais
 - 2. Planícies (platôs)
 - 3. Encostas e picos

Subida da Encosta

Máximos locais

- Os máximos locais são picos mais baixos do que o pico mais alto no espaço de estados
 - o máximo global solução ótima
- Nestes casos, a função de avaliação leva a um valor máximo para o caminho sendo percorrido
 - a função de avaliação é menor para todos os filhos do estado atual, apesar de o objetivo estar em um ponto mais alto
 - essa função utiliza informação "local"
 - ° e.g., xadrez:
 - leliminar a Rainha do adversário pode levar o jogador a perder o jogo.

Subida da Encosta Máximos locais

- O algoritmo pára no máximo local
 - só pode mover-se com taxa crescente de variação de f
 - restrição do algoritmo
 - Exemplo de taxa de variação negativa
 - Jogo dos 8 números:
 - nover uma peça para fora da sua posição correta para dar passagem a outra peça que está fora do lugar tem taxa de variação negativa!!!

Subida da Encosta Platôs (Planícies)

- Uma região do espaço de estados onde a função de avaliação dá o mesmo resultado
 - o todos os movimentos são iguais (taxa de variação zero)
- O algoritmo pára depois de algumas tentativas
 - Restrição do algoritmo
- Exemplo: jogo 8-números
 - o em algumas situações, nenhum movimento possível vai influenciar no valor de f, pois nenhum número vai chegar ao seu objetivo.

Subida da Encosta Encostas e Picos

- Apesar de o algoritmo estar em uma direção que leva ao pico (máximo global), não existem operadores válidos que conduzam o algoritmo nessa direção
 - Os movimentos possíveis têm taxa de variação zero ou negativa
 - restrição do problema e do algoritmo
- Exemplo: cálculo de rotas
 - quando é necessário permutar dois pontos e o caminho resultante não está conectado.

Subida da Encosta Problemas - solução

- Nos casos apresentados, o algoritmo chega a um ponto de onde não faz mais progresso
- Solução: reinício aleatório (random restart)
 - O algoritmo realiza uma série de buscas a partir de estados iniciais gerados aleatoriamente
 - Cada busca é executada
 - até que um número máximo estipulado de iterações seja atingido, ou
 - até que os resultados encontrados não apresentem melhora significativa
 - O algoritmo escolhe o melhor resultado obtido com as diferentes buscas.
 - Objetivo!!!

Subida da Encosta: análise

- O algoritmo é completo?
 - SIM, para problemas de otimização
 - uma vez que cada nó tratado pelo algoritmo é sempre um estado completo (uma solução)
 - NÃO, para problemas onde os nós não são estados completos
 - e.g., jogo dos 8-números
 - semelhante à busca em profundidade
- O algoritmo é ótimo?
 - TALVEZ, para problemas de otimização
 - quando iterações suficientes forem permitidas...
 - NÃO, para problemas onde os nós não são estados completos

Subida da Encosta: análise

- O sucesso deste método depende muito do formato da superfície do espaço de estados:
 - o se há poucos máximos locais, o reinício aleatório encontra uma boa solução rapidamente
 - ° caso contrário, o custo de tempo é exponencial.

Têmpera Simulada -Simulated Annealing

- Este algoritmo é semelhante à Subida da Encosta, porém oferece meios para escapar de máximos locais
 - o quando a busca fica "presa" em um máximo local, o algoritmo não reinicia a busca aleatoriamente
 - o ele retrocede para escapar desse máximo local
 - esses retrocessos são chamados de passos indiretos
- Apesar de aumentar o tempo de busca, essa estratégia consegue escapar dos máximos locais

Têmpera Simulada

- Analogia com cozimento de vidros ou metais:
 - o processo de resfriar um líquido gradualmente até ele se solidificar
- O algoritmo utiliza um mapeamento de resfriamento de instantes de tempo (t) em temperaturas (T).

Têmpera Simulada

- Nas iterações iniciais, não escolhe necessariamente o "melhor" passo, e sim um movimento aleatório:
 - se a situação melhorar, esse movimento será sempre escolhido posteriormente;
 - caso contrário, associa a esse movimento uma probabilidade de escolha menor do que 1.
- Essa probabilidade depende de dois parâmetros, e decresce exponencialmente com a piora causada pelo movimento,
 - \circ e^{Δ E/T}, onde:

```
\Delta E = Valor[próximo-nó] - Valor[nó-atual]
```

T = Temperatura

Têmpera Simulada: algoritmo

```
função Anelamento-Simulado (problema, mapeamento)
         retorna uma solução
    variáveis locais: atual, próximo, T (temperatura que controla a
                             probabilidade de passos para trás)
   atual ← Faz-Nó(Estado-Inicial[problema])
   for t \leftarrow 1 to \infty do
      T \leftarrow \mathsf{mapeamento}[t]
      Se T = 0
           então retorna atual
      próximo ← um sucessor de atual escolhido aleatoriamente
      \Delta E \leftarrow Valor[próximo] - Valor[atual]
      Se \Lambda E > 0
            então atual ← þróximo
            senão atual \leftarrow próximo com probabilidade = e^{-\Delta E/T}
```

Têmpera Simulada

- Para valores de T próximos de zero
 - ° a expressão ∆E/T cresce
 - ° a expressão e-△E/T tende a zero
 - o a probabilidade de aceitar um valor de próximo menor que corrente tende a zero
 - o algoritmo tende a aceitar apenas valores de próximo maiores que corrente
- Conclusão
 - o com o passar do tempo (diminuição da temperatura), este algoritmo passa a funcionar como Subida da Encosta

Têmpera Simulada

- Implementação (dica)
 - Gerar número aleatório entre (0,1) e comparar com o valor da probabilidade
 - Se número sorteado < probabilidade, aceitar movimento para trás

Análise

- O algoritmo é completo
- O algoritmo é ótimo se o mapeamento de resfriamento tiver muitas entradas com variações suaves
 - isto é, se o mapeamento diminui T suficientemente devagar no tempo, o algoritmo vai encontrar um máximo global ótimo.

Próximas aulas

- Busca com não determinismo/ambientes parcialmente observáveis
- Programação por Satisfação de Restrições CSP