Rank-65859 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_3 + X_1^2 X_2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 65859

General information

Number of lines	5
Number of points	9
Number of singular points	3
Number of Eckardt points	1
Number of double points	4
Number of single points	4
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^5
Type of lines on points	$3, 2^4, 1^4$

Singular Points

The surface has 3 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

$$1: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1)$$

$$2: P_{12} = \mathbf{P}(0,0,1,1) = \mathbf{P}(0,0,1,1)$$

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_{2}$$

$$\ell_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{11} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{11} = \mathbf{Pl}(0, 0, 1, 0, 0, 1)_{22}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \mathbf{Pl}(0, 0, 0, 1, 0, 0)_{5}$$

$$\ell_{4} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_{1}$$

Rank of lines: (0, 4, 11, 30, 34)

Rank of points on Klein quadric: (0, 2, 22, 5, 1)

Eckardt Points

The surface has 1 Eckardt points:

$$0: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0). T = -1$$

Double Points

The surface has 4 Double points:

The double points on the surface are:

$$P_0 = (1,0,0,0) = \ell_0 \cap \ell_1$$

$$P_5 = (1,1,0,0) = \ell_0 \cap \ell_2$$

$$P_1 = (0,1,0,0) = \ell_0 \cap \ell_3$$

$$P_3 = (0,0,0,1) = \ell_3 \cap \ell_4$$

Single Points

The surface has 4 single points:

The single points on the surface are:

0:
$$P_6 = (1, 0, 1, 0)$$
 lies on line ℓ_1
1: $P_8 = (1, 1, 1, 0)$ lies on line ℓ_2

2:
$$P_{10} = (0, 1, 0, 1)$$
 lies on line ℓ_3

The single points on the surface are:

3:
$$P_{12} = (0,0,1,1)$$
 lies on line ℓ_4

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

$$\begin{array}{c|c} 01234 \\ \hline 0 & 011110 \\ 1 & 10101 \\ 2 & 11001 \\ 3 & 10001 \\ 4 & 01110 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_0	P_5	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_4
in point	P_0	P_2	P_2

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_4
in point	P_5	P_2	P_2

Line 3 intersects

Line	ℓ_0	ℓ_4
in point	P_1	P_3

Line 4 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_2	P_2	P_3

3

The surface has 9 points:

The points on the surface are:

$$\begin{array}{lll} 0: \, P_0 = (1,0,0,0) & 4: \, P_5 = (1,1,0,0) \\ 1: \, P_1 = (0,1,0,0) & 5: \, P_6 = (1,0,1,0) \\ 2: \, P_2 = (0,0,1,0) & 6: \, P_8 = (1,1,1,0) \\ 3: \, P_3 = (0,0,0,1) & 7: \, P_{10} = (0,1,0,1) \end{array}$$

$$B: P_2 = (0, 0, 0, 1)$$
 $7: P_{10} = (0, 1, 0, 1)$