Homework-Phase

程昊 1801213964 前沿交叉学科研究院 2019 年 5 月 18 日

1 Problem

One popular formulation of the phase retrieval problem is solving a system of quadratic equations in the form

$$y_r = \left| \left\langle a_r, z \right\rangle \right|^2, r = 1, 2, \dots, m$$

where $z \in \mathcal{C}^n$ is the decision variable, $a_r \in \mathcal{C}^n$ are known sampling vectors, $\langle a_r, z \rangle$ is the inner product between a_r and z in \mathcal{C}^n , |a| is the magnitude of $a \in \mathcal{C}$ and $y_r \in \mathcal{R}$ are the observed measurements.

2 Algorithms

2.1 Wirtinger flow

Wirtinger flow 算法分为初始化和迭代两步。其初始化算法如1所示, 迭代算法如2所示

Algorithm 1 Wirtinger Flow: Initialization

Require: Observations $\{y_r\} \in \mathbb{R}^m$.

Set

$$\lambda^2 = n \frac{\sum_r y_r}{\sum_r \|\boldsymbol{a_r}\|^2}$$

Set z_0 , normalized to $||z_0|| = \lambda$ to be the eigenvector corresponding to the largest eigenvalue of

$$\boldsymbol{Y} = \frac{1}{m} \sum_{r=1}^{m} y_r \boldsymbol{a_r} \boldsymbol{a_r^*}$$

Ensure: Initial guess z_0 .

Algorithm 2 Wirtinger Flow: Iteration

Require: z_0 .

$$z_{\tau+1} = z_{\tau} - \frac{\mu_{\tau+1}}{\|z_0\|^2} \left(\frac{1}{m} \sum_{r=1}^m \left(|a_r^* z|^2 - y_r \right) (a_r a_r^*) z \right)$$

$$:= z_{\tau} - \frac{\mu_{\tau+1}}{\|z_0\|^2} \nabla f(z_{\tau})$$

$$\mu_{\tau} = \min \left(1 - e^{-\tau/\tau_0}, \mu_{\text{max}} \right)$$

3 Experiment

3.1 Gaussian

如图所示,相对误差随着迭代次数的增加而迅速减小。图中显示,大约 2000 次迭代就可以通过 Wirtinger Flow 算法进行精确恢复。

