環論 (第5回)の解答

問題 5-1

 $a \in A$ とする. $1_A \in I$ より、イデアルの定義から

$$a = a \cdot 1_A \in I$$
.

よって $A \subset I$. 逆の包含は明らかなので A = I.

問題 5-2

 $I \cap J$ がイデアルの条件を満たすことを確かめる.

- (1) $x, y \in I \cap J$ とする. $x, y \in I$ より $x y \in I$. 同様に $x y \in J$. 従って $x y \in I \cap J$.
- (2) $a \in A$, $x \in I \cap J$ とする. $x \in I$ より $ax \in I$. 同様に $ax \in J$. 従って $ax \in I \cap J$. 以上より $I \cap J$ は A のイデアルである.

問題 5-3

Iがイデアルの条件を満たすことを確かめる.

(1) f(x), $g(x) \in I$ とする. このとき,

$$f(a) - g(a) = 0 - 0 = 0.$$

よって $f(x) - g(x) \in I$.

(2) $g(x) \in A$, $f(x) \in I$ とする. このとき,

$$g(a)f(a) = g(a) \times 0 = 0.$$

よって $g(x)f(x) \in I$.

以上(1),(2)より,IはAのイデアルである.

問題 5-4

まず.

$$x^{2} - 1 = (x+1)(x-1) \in (x+1)A, \quad x^{3} + 1 = (x+1)(x^{2} - x + 1) \in (x+1)A.$$

従って $(x^2-1)A+(x^3+1)A\subseteq (x+1)A$. 逆に

$$(x+1) = (x^2-1) \times (-x) + (x^3+1) \times 1 \in (x^2-1)A + (x^3+1)A$$

なので, $(x+1)A \subseteq (x^2-1)A + (x^3+1)A$.