Linguagens Formais e Autômatos

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2021/1

INF/UFG – LFA 2021/1 – H. Longo

(1 – 1 de

Roteiro

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (2 – 152 de 153)

Modelos de dispositivos computacionais.

Autômatos Finitos ightarrow dispositivos memória ilimitada, mas apenas de leitura.

Autômatos com Pilha → dispositivos com memória ilimitada, de leitura e escrita, mas de acesso restrito como pilha.

Máquina de Turing → Similar aos autômatos, mas com memória ilimitada e de acesso irrestrito.

Máquinas de Turing

Modelo Simplificado

- Fita infinita é a memória ilimitada.
- Cabeça de leitura/gravação move-se para a esquerda ou para a direita na fita.
- Conteúdo inicial da fita é a cadeia de entrada (demais posições da fita em branco).
- ▶ Processa até produzir uma saída (aceita/rejeita/...).

INF/UFG - LFA 2021/1 - H. Longo Definições básicas (3 - 152 de 153) INF/UFG - LFA 2021/1 - H. Longo Definições básicas (4 - 152 de 153)

Definição 1.1

- ▶ Uma Máquina de Turing é definida pela 7-upla $M = (S, \Sigma, \Gamma, \delta, s_0, s_a, s_r)$, onde:
 - \triangleright S é o conjunto de estados,
 - ▶ Σ é o alfabeto de entrada ($\square \notin \Sigma$),
 - $ightharpoonup \Gamma$ é o alfabeto da fita ($\subseteq \Gamma$ e $\Sigma \subset \Gamma$),
 - $\delta: S \times \Gamma \to S \times \Gamma \times \{E, D\}$ é a função de transição,
 - ▶ $s_0 \in S$ é o estado inicial,
 - $ightharpoonup s_a \in S$ é o estado de aceitação, e
 - ▶ $s_r \in S$ é o estado de rejeição $(s_a \neq s_r)$.

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (5 - 152 de 153)

Máquinas de Turing

 $M = (S, \Sigma, \Gamma, \delta, s_0, s_a, s_r).$

Definição 1.2

- $\blacktriangleright \mathcal{L}(M)$: linguagem de M.
 - Linguagem reconhecida por M.
 - Coleção de cadeias que M aceita.

Definição 1.3

- ► Linguagem *L* Turing-reconhecível:
 - Existe uma máquina de Turing M tal que $\mathcal{L}(M) = L$.
 - Linguagem recursivamente enumerável.

INF/UFG - LFA 2021/1 - H. Longo

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (6 - 152 de 153)

Máquinas de Turing

- ▶ Resultados possíveis de $M = (S, \Sigma, \Gamma, \delta, s_0, s_a, s_r)$:
 - aceita, rejeita ou cicla.
 - \blacktriangleright M falha em aceitar uma cadeia se entra no estado s_r ou quando cicla.
 - Se M cicla, M simplesmente não para (não necessariamente repetindo os mesmos passos).

Definição 1.4

- ightharpoonup M decide uma linguagem $\mathcal L$ se a reconhece e para com qualquer entrada.
- ▶ Uma linguagem é decidível se alguma máquina de Turing a decide.
 - Linguagem recursiva.
- ► Toda linguagem decidível é Turing-reconhecível, mas nem toda linguagem Turing-reconhecível é decidível!!!

A tese de Church-Turing

- Nos anos 30-40 do século XX, Church e Turing conjecturaram que qualquer computação que possa ser implementada por processos mecânicos (i.e., por uma máquina) pode também ser implementada por uma máquina de Turing.
- Argumentos favoráveis à tese de Turing:
 - Qualquer computação que possa ser feita por qualquer computador digital existente também pode ser feita por uma máquina de Turing.
 - Ninguém conseguiu ainda encontrar um problema, resolúvel por um algoritmo qualquer, para o qual não possa ser desenvolvida uma máquina de Turing.
 - Foram propostos modelos alternativos para a computação mecânica, mas nenhum deles é mais poderoso do que a máquina de Turing.

Notação

- Entrada para uma Máquina de Turing é sempre uma cadeia definida sobre um alfabeto.
- ▶ Se a entrada for outro objeto, o mesmo deve ser representado como uma cadeia.
 - Cadeias podem representar objetos como polinômios, grafos, gramáticas, autômatos e combinações de tais objetos.
- Codificação:
 - $ightharpoonup \langle O \rangle$ representa o objeto O.
 - $ightharpoonup \langle O_1, O_2, \dots, O_k \rangle$ representa os objetos O_1, O_2, \dots, O_k .
- A codificação em si pode ser feita de diversos modos.
 - ▶ Uma Máquina de Turing sempre pode traduzir uma codificação para outra qualquer!

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (9 - 152 de 153)

Máquina de Turing Universal

- ▶ Máquina de Turing capaz de simular qualquer outra máquina de Turing.
- A máquina deve conter na fita:
 - O conjunto de instruções sobre o comportamento da máquina a ser simulada;
 - O conteúdo da fita da máquina a ser simulada.
- Possibilita respostas sobre o comportamento de outras máquinas de Turing.
 - Muitas dessas questões são indecidíveis, ou seja, a função em questão não pode ser calculada por nenhuma máquina de Turing.
 - Ex: Problema de determinar se uma máquina de Turing em particular vai parar para uma entrada dada (ou para qualquer entrada) é indecidível.

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (10 - 152 de 153)

Linguagens decidíveis

- Problemas decidíveis:
 - Um dado autômato finito aceita uma cadeia em particular?
 - A linguagem de um autômato finito é vazia?
 - Dois autômatos finitos são equivalentes?
- Outros problemas computacionais podem ser formulados como a pertinência a uma certa linguagem.
 - Mostrar que a linguagem é decidível equivale a mostrar que o problema computacional é decidível.

Linguagens decidíveis

Problema da aceitação para DFA's

- $\mathcal{L}_{DFA} = \{\langle A, w \rangle \mid A \text{ \'e um } DFA \text{ que aceita a cadeia } w\}.$
 - Codificações de todos os DFA's com as cadeias que os mesmos aceitam.
- ► Testar se $\langle A, w \rangle$ pertence à linguagem \mathcal{L}_{DFA} equivale a testar se o DFA A aceita a cadeia w.

Alguns problemas indecidíveis

- Uma dada gramática livre de contexto é ambígua?
- Uma dada linguagem livre de contexto é inerentemente ambígua?
- ▶ A intersecção de duas linguagens livres de contexto é vazia?
- ▶ Duas linguagens livres de contexto são iguais?
- Uma dada linguagem livre de contexto é igual a Σ*?
- Para uma linguagem em particular pode ser possível obter uma resposta a qualquer uma dessas questões. Contudo, não há nenhum algoritmo geral que dê resposta (em tempo útil) para toda e qualquer linguagem livre de contexto.

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (13 - 152 de 153)

Máquinas de Turing

Exemplo 1.5

- $ightharpoonup \mathcal{L} = \{u \# u \mid u \in \{0, 1\}^*\}.$
- ▶ Máquina de Turing para verificar se $w = u \# u \in \mathcal{L}$, com $u \in \{0, 1\}^*$:
 - 1. Verificar se o símbolo # pertence a w.
 - Em caso negativo, rejeita.
 - Verificar se posições relativas à direita e à esquerda do símbolo # contém o mesmo símbolo.
 - ► Em caso negativo, rejeita.
 - Após testar os símbolos à esquerda do símbolo #, verificar se ainda tem símbolos à direita sem testar.
 - ▶ Em caso positivo rejeita e em caso negativo aceita.

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (14 - 152 de 153)

Máquinas de Turing

Exemplo 1.6

Máquinas de Turing

Exemplo 1.6

 $ightharpoonup \mathcal{L} = \{u \# u \mid u \in \{0, 1\}^*\}.$

INF/UFG - LFA 2021/1 - H. Longo Definições básicas (40 - 152 de 153)

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (60 - 152 de 153)

Exemplo 1.6

 $\mathcal{L} = \{ u \# u \mid u \in \{0, 1\}^* \}.$

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (113 - 152 de 153)

Máquinas de Turing

- ▶ Uma Máquina de Turing é definida pela 7-upla $M = (S, \Sigma, \Gamma, \delta, s_0, s_a, s_r)$, onde:
 - ► S é o conjunto de estados,
 - Σ é o alfabeto de entrada ($\bot \notin \Sigma$),
 - $ightharpoonup \Gamma$ é o alfabeto da fita ($\subseteq \Gamma \in \Sigma \subset \Gamma$),
 - ▶ $\delta: S \times \Sigma \to S \times \Gamma \times \{E, D\}$ é a função de transição,
 - $ightharpoonup s_0 \in S$ é o estado inicial,
 - $ightharpoonup s_a \in S$ é o estado de aceitação, e
 - $ightharpoonup s_r \in S$ é o estado de rejeição $(s_a \neq s_r)$.

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (114 - 152 de 153)

Máquinas de Turing

Definição 1.7

- ▶ Configuração C = usv:
 - ▶ s: Estado corrente no processamento ($s \in S$).
 - ▶ uv: Conteúdo da fita $(u, v \in \Gamma^*)$.
 - \triangleright v_1 : Posição da cabeça de leitura/gravação ($v = v_1 v_2 \dots v_k$).
- ightharpoonup Configuração C_1 gera configuração C_2 se a máquina passa da configuração C_1 para a C_2 em um único passo.

Exemplo 1.8

► Configuração 1011*s*_i01111:

Máquinas de Turing

- Funcionamento:
 - $ightharpoonup a, b, c \in \Gamma$.
 - $u, v \in \Gamma^*$.
 - $s_i, s_j \in S$.
 - $\delta(s_i, b) = (s_i, c, E) \Rightarrow uas_i bv \text{ gera } us_i acv.$
 - $\delta(s_i, b) = (s_j, c, D) \Rightarrow uas_i bv \text{ gera } uacs_i v.$
 - $\delta(s_i, b) = (s_i, c, E) \Rightarrow s_i b v \text{ gera } s_i c v.$
 - $\delta(s_i, b) = (s_i, c, D) \Rightarrow s_i b v \text{ gera } c s_i v.$

Definição 1.9

- $M = (S, \Sigma, \Gamma, \delta, s_0, s_a, s_r).$
- ▶ M aceita a entrada w se existe uma sequência de configurações C_1, C_2, \ldots, C_k , tal que:
 - $ightharpoonup C_1 = s_0 w$ é a configuração inicial,
 - ightharpoonup Cada C_i gera C_{i+1} , e
 - $ightharpoonup C_k$ é uma configuração de aceitação.
- $ightharpoonup s_a$ é o estado de uma configuração de aceitação.
- $ightharpoonup s_r$ é o estado de uma configuração de rejeição.

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (117 - 152 de 153)

Máquinas de Turing

Função de transição

- $\delta(s_i, \sigma) = (s_j, \gamma, m).$
 - ▶ A MT muda do estado s_i para o s_j , lê σ da fita de entrada, grava γ e move a cabeça de leitura uma posição à esquerda ou à direita.

Representação gráfica

- $\triangleright \sigma \rightarrow \gamma, m$:
 - σ : símbolo da cadeia de entrada lido na fita ($\sigma \in \Gamma$).
 - γ : símbolo gravado na mesma posição do símbolo lido ($\gamma \in \Gamma$).
 - m: movimento da cabeça de leitura ($m \in \{E, D\}$).

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (118 - 152 de 153

Máquinas de Turing

Função de transição

- $\delta(s_i, \sigma) = (s_j, \gamma, m).$
 - ▶ A MT muda do estado s_i para o s_j , lê σ da fita de entrada, grava γ e move a cabeça de leitura uma posição à esquerda ou à direita.

Representação gráfica

- $ightharpoonup \sigma_1, \ldots, \sigma_\ell \to \gamma, m.$
 - Equivale a ℓ transições $\delta(s_i, \sigma_k) = (s_j, \gamma, m), k = 1, \dots, \ell$.

Máquinas de Turing

Função de transição

- $\delta(s_i, \sigma) = (s_j, \gamma, m).$
 - ▶ A MT muda do estado s_i para o s_j , lê σ da fita de entrada, grava γ e move a cabeça de leitura uma posição à esquerda ou à direita.

Representação gráfica

- $ightharpoonup \sigma
 ightharpoonup m$.
 - ► Equivale à transição $δ(s_i, σ) = (s_j, σ, m)$.

Exemplo 1.10

- $ightharpoonup \mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- \triangleright $w \in \mathcal{L}$.
- ▶ Máquina de Turing M que reconhece \mathcal{L} :
 - 1. Percorrer a fita, da esquerda para a direita, e marcar um 0 e pular um 0.
 - Fita contém apenas um $0 \Rightarrow$ aceita.
 - Fita contém um número ímpar n > 1 de 0's \Rightarrow rejeita.
 - 2. Mover a cabeça de leitura/gravação para o início da fita.
 - 3. Voltar ao passo 1.

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (121 - 152 de 153)

Máquinas de Turing

Exemplo 1.11

- $\mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (122 - 152 de 153)

Máquinas de Turing

Exemplo 1.11

- $\mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

Máquinas de Turing

- $\mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

Exemplo 1.11

- $ightharpoonup \mathcal{L} = \{0^{2^n} \mid n \geqslant 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

INF/UFG – LFA 2021/1 – H. Longo

Definições básicas (125 – 152 de 153)

Máquinas de Turing

Exemplo 1.11

- $\mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r):$

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (126 - 152 de 153)

Máquinas de Turing

Exemplo 1.11

- $\mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

Máquinas de Turing

- $\mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

Exemplo 1.11

- $\mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

Definições básicas (129 – 152 de 153)

Máquinas de Turing

Exemplo 1.11

- $\mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (130 - 152 de 153)

Máquinas de Turing

Exemplo 1.11

INF/UFG - LFA 2021/1 - H. Longo

- $\mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

Máquinas de Turing

- $\mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

Exemplo 1.11

- $\mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

INF/UFG – LFA 2021/1 – H. Longo

Definições básicas (133 – 152 de 153)

Máquinas de Turing

Exemplo 1.11

- $\mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

\$00000 \$1000 \$200 \$300 \$00

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (134 - 152 de 153)

Máquinas de Turing

Exemplo 1.11

- $\mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

\$00000 \$1000 \$20

 $_{\mathsf{L}}\mathsf{XX}s_{2}\mathsf{X}_{\mathsf{L}}$

x0x x0x x0x x0x x0x

Máquinas de Turing

Exemplo 1.11

- ► $\mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

\$00000 \$1000 \$1000 \$2

 $\bot xs_10x \bot$

⊔XXS2X⊔ ⊔XXXS2⊔

Exemplo 1.11

- $ightharpoonup \mathcal{L} = \{0^{2^n} \mid n \geqslant 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

\$00000 \$1000 \$1000 \$2

LXXS₂XL LXXXS₂L LXXS₄XL

INF/UFG – LFA 2021/1 – H. Longo

Definições básicas (137 – 152 de 153)

 $\square XXS_2X \square$

 $\square XXXS_2 \square$

 $_{
m L}$ XX S_4 X $_{
m L}$

 $\Box XS_4XX\Box$

 $\Box S_4 XXX \Box$

Máquinas de Turing

Exemplo 1.11

- $\mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

\$00000 \$1000 \$200 \$3200 \$300 \$300 \$300 \$34000 \$34000 \$34000 \$34000 \$34000 \$34000 \$3400

LXXS₂XL LXXXS₂L LXXS₄XL LXS₄XXL

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (138 - 152 de 153)

Máquinas de Turing

Exemplo 1.11

INF/UFG - LFA 2021/1 - H. Longo

- $\mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

\$_00000 \[\sigma_{1}000 \[\sigma_{2}00 \[\sigma_{3}0 \[\sigma_{0}x_{2} \]
\[\sigma_{0}x_{4}x_{2} \]
\[\sigma_{4}x_{4} \]
\[\sigma_{4}x_{4} \]
\[\sigma_{4}x_{4} \]
\[\sigma_{1}x_{4} \]
\

Máquinas de Turing

Exemplo 1.11

- ▶ $\mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

\$0000 \$1000 \$1000 \$200 \$30 \$30 \$32 \$32 \$34 \$400 \$4

 $\Box XXS_2X\Box$

∟XXX*S*2∟

 $_{
m L}$ XX s_4 X $_{
m L}$

 $\Box XS_4XX\Box$

 $\Box S_4 XXX \Box$

 $S_4 \cup XXX \cup$

Exemplo 1.11

- $ightharpoonup \mathcal{L} = \{0^{2^n} \mid n \geqslant 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r):$

s_0 0000	$\square XXS_2X \square$
<i>∟s</i> ₁000	$_{L}XXXs_2L$
∟x <i>s</i> ₂ 00	⊔XXS4X⊔
∟x0 <i>s</i> ₃ 0	$_{L}Xs_{4}XXL$
$\Box x0xs_2\Box$	∟S4XXX∟
∟x0 <i>s</i> 4x∟	s_4 \perp XXX \perp
∟x <i>s</i> ₄0x∟	$\Box S_1 XXX \Box$
<i>∟s</i> ₄ x0x <i>∟</i>	
<i>s</i> ₄□x0x□	
$\Box s_1 x 0 x \Box$	
$\bot xs_10x$	

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (141 – 152 de 153)

Máquinas de Turing

Exemplo 1.11

- $\mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r):$

s_0 0000
<i>∟s</i> ₁000
∟x <i>s</i> ₂ 00
∟x0 <i>s</i> ₃ 0
$_{ m L}$ x0x s_2 $_{ m L}$
$_{ m L}$ x0 s_4 x $_{ m L}$
$\bot x s_4 0 x \bot$
$_{L}s_{4}x0x_{L}$
s_4 \perp x 0 x \perp
$\Box s_1 x 0 x \Box$
$\bot xs_10x$

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (142 - 152 de 153)

LXXS₂XL LXXXS₂L LXXS₄XL LXS₄XXL LS₄XXXL S₄LXXXL LS₁XXXL

 $\bot XS_1XX \bot$

Máquinas de Turing

Exemplo 1.11

- $\mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

s_0 0000	$_{L}XXs_{2}X_{L}$
<i>∟s</i> ₁000	$_{ m L}$ XXX s_2 $_{ m L}$
∟x <i>s</i> ₂ 00	$_{ m L}$ XX s_4 X $_{ m L}$
∟x0 <i>s</i> ₃ 0	$_{\sqcup}X\mathit{s}_{4}XX_{\sqcup}$
$\bot x0xs_2 \bot$	$_{ ightharpoonup} s_4 x x x_{ ightharpoonup}$
_x0 <i>s</i> 4x∟	s_4 \perp XXX \perp
∟x <i>s</i> ₄0x∟	$\Box s_1 xxx \Box$
<i>∟s</i> ₄ x0x <i>∟</i>	$\Box X s_1 X X \Box$
s_4 \sim 0 \sim	$\square XXS_1X \square$
$\Box s_1 x 0 x \Box$	
$\bot x s_1 0 x \bot$	

Máquinas de Turing

- $\mathcal{L} = \{0^{2^n} \mid n \ge 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

s_0 0000	$\Box XXs_2X\Box$
$_{-}s_{1}000$	$_{ m L}$ XXX s_2 $_{ m L}$
∟x <i>s</i> ₂ 00	$_{L}XX\mathit{S}_{4}X_{L}$
∟x0 <i>s</i> ₃ 0	$_{L}X\mathit{S}_{4}XXL$
$\Box x0xs_2 \Box$	$_{\lrcorner s_{4}xxx_{\lrcorner}}$
$\Box x0s_4x\Box$	s_4 \perp XXX \perp
$\bot x s_4 0 x \bot$	$\Box s_1 xxx \Box$
$_{\perp}s_{4}x0x_{\perp}$	$\square X s_1 X X \square$
s_4 \perp x 0 x \perp	$_{L}XXs_{1}X_{L}$
$\Box s_1 x 0 x \Box$	$_{L}XXXs_{1}_{L}$
Y C. OY	

Exemplo 1.11

- $ightharpoonup \mathcal{L} = \{0^{2^n} \mid n \geqslant 0\}.$
- $M = (\{s_0, s_1, s_2, s_3, s_4, s_a, s_r\}, \{0\}, \{0, x, \bot\}, \delta, s_0, s_a, s_r)$:

s_0 0000	
<i>∟s</i> ₁ 000	
∟x <i>s</i> ₂ 00	
∟x0 <i>s</i> ₃ 0	
$\bot x0xs_2 \bot$	
$\bot x0s_4x$ \bot	
∟x <i>s</i> ₄ 0x∟	
$_{L}s_{4}x0x_{L}$	
s_4 \sim 0 \times \sim	
$\bot s_1 x 0 x \bot$	

 $\bot x s_1 0 x \bot$

 \square XXX S_2 \square \square XX S_4 X \square \square XS $_4$ XX \square \square S $_4$ XXX \square \square S $_1$ XXX \square \square XS $_1$ XX \square \square XXS $_1$ X \square \square XXX S_1 X \square \square XXX S_1 X \square \square XXXX S_1

 $\Box XXS_2X\Box$

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (145 – 152 de 153)

Máquinas de Turing

Exemplo 1.12

- $\mathcal{L} = \{u \# u \mid u \in \{0, 1\}^*\}.$
- ▶ Máquina de Turing para verificar se $w = u#u \in \mathcal{L}$, com $u \in \{0, 1\}^*$:
 - 1. Verificar se o símbolo # pertence a w.
 - ► Em caso negativo, rejeita.
 - Verificar se posições relativas à direita e à esquerda do símbolo # contém o mesmo símbolo.
 - Em caso negativo, rejeita.
 - Após testar os símbolos à esquerda do símbolo #, verificar se ainda tem símbolos à direita sem testar.
 - Em caso positivo rejeita e em caso negativo aceita.

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (146 - 152 de 153)

Máquinas de Turing

Exemplo 1.12

 $M = (\{s_0, \ldots, s_{13}, s_a, s_r\}, \{0, 1, \#\}, \{0, 1, \#, x, \sqcup\}, \delta, s_0, s_a, s_r):$

Exemplos de máquinas de Turing

Exemplo 1.13

 $\mathcal{L} = \{a^i b^{2i} \mid i \ge 1\}.$

Exemplos de máquinas de Turing

Exemplo 1.14

• $\mathcal{L} = \{a^i b^{3i} \mid i \ge 1\}.$

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (149 - 152 de 153)

Exemplos de máquinas de Turing

Exemplo 1.15

 $\mathcal{L} = \{0^i 1^i 0^i 1^i \mid i \ge 0\}.$

INF/UFG - LFA 2021/1 - H. Longo

Definições básicas (150 - 152 de 153)

Máquinas de Turing

Exemplo 1.16

- $\blacktriangleright \mathcal{L} = \{a^i b^j c^k \mid i \cdot j = k \text{ e } i, j, k \geqslant 1\}.$
- ► MT para verificar se $u \in \mathcal{L}$, com $u \in \{a, b, c\}^+$:
 - 1. Verificar se u é da forma $aa^*bb^*cc^*$ (da esquerda para a direita).
 - ► Em caso negativo, rejeita.
 - 2. Retornar cabeça de leitura/gravação para a extremidade esquerda.
 - Marcar um a e percorrer a fita para a direita até encontrar um b. Alternadamente, marcar b's e c's.
 - ► Marcou todos os *c*'s e sobrou *b*'s, rejeita.
 - 4. Se existir a's sem marcar, desmarcar b's e repetir passo ??.
 - 5. Verificar se todos os c's estão marcados.
 - Em caso positivo aceita e em caso negativo rejeita.

Exemplos de máquinas de Turing

Exemplo 1.17

► Qual é a linguagem aceita pela MT abaixo?

Livros texto

R. P. Grimaldi

Discrete and Combinatorial Mathematics – An Applied Introduction. Addison Wesley, 1994.

D. J. Velleman

How To Prove It – A Structured Approach.

Cambridge University Press, 1996.

J. E. Hopcroft; J. Ullman.

Introdução Ā Teoria de Autômatos, Linguagens e Computação. Ed. Campus.

T. A. Sudkamp.
Languages and Machines – An Introduction to the Theory of Computer Science.
Addison Wesley Longman, Inc. 1998.

J. Carroll; D. Long.
Theory of Finite Automata – With an Introduction to Formal Languages.
Prentice-Hall, 1989.

Introduction to the Theory of Computation.
PWS Publishing Company, 1997.

H. R. Lewis; C. H. Papadimitriou Elementos de Teoria da Computação. Bookman, 2000.

Bibliografia (1721 - 152 de 153)

INF/UFG - LFA 2021/1 - H. Longo