Supplementary Homework Exercises for Section 11.2: Series (part 2)

Exercises

Answer each of the following questions.

S1. Let
$$a_n = \frac{2n}{3n+1}$$
.

- (a) Determine whether $\{a_n\}$ converges.
- (b) Determine whether $\sum_{n=1}^{\infty} a_n$ converges.
- S2. Determine whether each of the following series is convergent or divergent. If the series converges, find its sum.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{2n}$$

(b)
$$\sum_{n=2}^{\infty} \frac{n^2}{n^2 - 1}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1+2^n}{3^n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{3^n}{1+2^n}$$

(e)
$$\sum_{n=1}^{\infty} \arctan n$$

(f)
$$\sum_{n=1}^{\infty} \ln \left(\frac{n}{2n+1} \right)$$

(g)
$$\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1} \right)$$

S3. What is wrong with the following calculation?

$$0 = 0 + 0 + 0 + \cdots$$

$$= (1 - 1) + (1 - 1) + (1 - 1) + \cdots$$

$$= 1 - 1 + 1 - 1 + 1 - 1 + \cdots$$

$$= 1 + (-1 + 1) + (-1 + 1) + (-1 + 1) + \cdots$$

$$= 1 + 0 + 0 + 0 + \cdots$$

$$= 1$$