In [69]:

import numpy, pandas, scipy
#Rescaling the data
from sklearn.preprocessing import MinMaxScaler
df=pandas.read_csv("C:/Users/ABHISHEK/Desktop/GITAM ML/GITAM ML LAB/redwinequality.csv")
df.shape

Out[69]:

(1599, 12)

In [45]:

df.head()

Out[45]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pН	sulphates	alcoh
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9
4											•

In [70]:

df.describe()

Out[70]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total su dio
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000
4							>

In [73]:

```
#Seperating data into input and output components
x=df.iloc[:,0:11]
y=df.iloc[:,11:]
df.describe()
```

Out[73]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total su dio:
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000
4							>

In [74]:

x.head(2)

Out[74]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides		total sulfur dioxide	density	рН	sulphates	alcoh
0	7.4	0.70	0.0	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9
1	7.8	0.88	0.0	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9
4											

In [80]:

```
#if no argument then prints all y
y.head(3)
```

Out[80]:

	quality
0	5
1	5
2	5

```
In [81]:
```

```
#defining the scaler
scaler=MinMaxScaler(feature_range=(0,1))
print(scaler)
print(type(scaler))
```

MinMaxScaler(copy=True, feature_range=(0, 1))
<class 'sklearn.preprocessing.data.MinMaxScaler'>

In [82]:

```
rescaledX=scaler.fit_transform(x)
numpy.set_printoptions(precision=2) #Setting precision for the output
print(rescaledX[0:5,:])
```

```
[[0.25 0.4 0. 0.07 0.11 0.14 0.1 0.57 0.61 0.14 0.15]

[0.28 0.52 0. 0.12 0.14 0.34 0.22 0.49 0.36 0.21 0.22]

[0.28 0.44 0.04 0.1 0.13 0.2 0.17 0.51 0.41 0.19 0.22]

[0.58 0.11 0.56 0.07 0.11 0.23 0.19 0.58 0.33 0.15 0.22]

[0.25 0.4 0. 0.07 0.11 0.14 0.1 0.57 0.61 0.14 0.15]]
```

In [83]:

```
rescaledX.max()
```

Out[83]:

1.00000000000000000

In [84]:

```
from sklearn.preprocessing import StandardScaler
#code for standardzing the data
scaler=StandardScaler().fit(x)
print(scaler)
print(type(scaler))
```

StandardScaler(copy=True, with_mean=True, with_std=True)
<class 'sklearn.preprocessing.data.StandardScaler'>

In [85]:

```
rescaledX=scaler.transform(x)
print(rescaledX[0:5,:])
```

```
[[-0.53  0.96 -1.39 -0.45 -0.24 -0.47 -0.38  0.56  1.29 -0.58 -0.96]

[-0.3  1.97 -1.39  0.04  0.22  0.87  0.62  0.03 -0.72  0.13 -0.58]

[-0.3  1.3 -1.19 -0.17  0.1 -0.08  0.23  0.13 -0.33 -0.05 -0.58]

[ 1.65 -1.38  1.48 -0.45 -0.26  0.11  0.41  0.66 -0.98 -0.46 -0.58]

[-0.53  0.96 -1.39 -0.45 -0.24 -0.47 -0.38  0.56  1.29 -0.58 -0.96]]
```

```
In [86]:
```

```
rescaledX.mean()
```

Out[86]:

2.5450106517076758e-15

In [87]:

```
from sklearn.preprocessing import Normalizer
#code for normalizing the data
scaler=Normalizer().fit(x)
normalizedX=scaler.transform(x)
print(normalizedX[0:5,:])
```

```
[[1.95e-01 1.85e-02 0.00e+00 5.01e-02 2.00e-03 2.90e-01 8.97e-01 2.63e-02 9.26e-02 1.48e-02 2.48e-01]
[1.07e-01 1.21e-02 0.00e+00 3.57e-02 1.35e-03 3.44e-01 9.21e-01 1.37e-02 4.40e-02 9.35e-03 1.35e-01]
[1.35e-01 1.32e-02 6.95e-04 3.99e-02 1.60e-03 2.60e-01 9.38e-01 1.73e-02 5.66e-02 1.13e-02 1.70e-01]
[1.74e-01 4.36e-03 8.72e-03 2.96e-02 1.17e-03 2.65e-01 9.34e-01 1.55e-02 4.92e-02 9.03e-03 1.53e-01]
[1.95e-01 1.85e-02 0.00e+00 5.01e-02 2.00e-03 2.90e-01 8.97e-01 2.63e-02 9.26e-02 1.48e-02 2.48e-01]]
```

In [88]:

Out[88]:

0.999999996141229

In [91]:

```
from sklearn.preprocessing import Binarizer
#code for binarizing the data
binarizer=Binarizer(threshold=0.5).fit(x)
binaryX=binarizer.transform(x)
print(binaryX[0:5,:])
```

```
[[1. 1. 0. 1. 0. 1. 1. 1. 1. 1. 1.]

[1. 1. 0. 1. 0. 1. 1. 1. 1. 1. 1.]

[1. 1. 0. 1. 0. 1. 1. 1. 1. 1. 1.]

[1. 0. 1. 1. 0. 1. 1. 1. 1. 1.]

[1. 1. 0. 1. 0. 1. 1. 1. 1. 1.]
```

```
In [92]:
```

```
print(binaryX.min())
print(binaryX.max())
```

0.0

1.0

In [94]:

```
print(x.mean(axis=0))
```

fixed acidity	8.319637
volatile acidity	0.527821
citric acid	0.270976
residual sugar	2.538806
chlorides	0.087467
free sulfur dioxide	15.874922
total sulfur dioxide	46.467792
density	0.996747
рН	3.311113
sulphates	0.658149
alcohol	10.422983
dtypo: float64	

dtype: float64

In [97]:

print(x.std(axis=0))

fixed acidity	1.741096
volatile acidity	0.179060
citric acid	0.194801
residual sugar	1.409928
chlorides	0.047065
free sulfur dioxide	10.460157
total sulfur dioxide	32.895324
density	0.001887
рН	0.154386
sulphates	0.169507
alcohol	1.065668
LL C7 LC4	

dtype: float64

In [98]:

```
from sklearn.preprocessing import scale
#code for mean removal
data_standardized=scale(x)
```

In [100]:

```
print(data_standardized.mean(axis=0))
print(data_standardized.std(axis=0))
```

```
[ 3.55e-16 1.73e-16 -8.89e-17 -1.24e-16 3.91e-16 -6.22e-17 4.44e-17 2.36e-14 2.86e-15 6.75e-16 7.11e-17]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
```

In [101]:

```
# Method1: One-hot encoding directly from pandas using "pandas.get_dummies"
ids = [1, 2, 3, 4, 5, 6, 7]
place = ['Bangladesh','France','Germany','India','Nepal','Spain','Srilanka']
df = pandas.DataFrame(list(zip(ids, place)),
    columns=['Ids', 'Place'])
print(df)
print()
y = pandas.get_dummies(df.Place, prefix='P')
print(y)
```

```
Ids
              Place
0
     1
        Bangladesh
     2
             France
1
2
     3
            Germany
3
     4
              India
4
     5
              Nepal
5
              Spain
     6
     7
           Srilanka
```

	P_Bangladesh	P_France	P_Germany	P_India	P_Nepal	P_Spain	P_Srilanka
0	1	0	0	0	0	0	0
1	0	1	0	0	0	0	0
2	0	0	1	0	0	0	0
3	0	0	0	1	0	0	0
4	0	0	0	0	1	0	0
5	0	0	0	0	0	1	0
6	0	0	0	0	0	0	1

In [108]:

```
# Method2: One-hot encoding using "LabelBinarizer".
from sklearn.preprocessing import LabelBinarizer
ids = [11, 22, 33, 44, 55, 66, 77]
countries = ['France', 'Spain', 'Germany', 'France', 'Spain']
df = pandas.DataFrame(list(zip(ids, countries)),
    columns=['Ids', 'Countries'])
y = LabelBinarizer().fit_transform(df.Countries)
print(y)
```

```
[[1 0 0]
[0 0 1]
[0 1 0]
[1 0 0]
[0 0 1]]
```

```
In [110]:
```

```
# Method3: One-hot encoding using "OneHotEncoder".
from sklearn.preprocessing import OneHotEncoder
x = [[11, "France"], [22, "Spain"], [33, "Germany"], [44, "France"], [55, "Spain"]]
\# x = [[1, 'Bangladesh'], [2, 'France'], [3, 'Germany']]
y = OneHotEncoder().fit_transform(x).toarray()
print(y)
[[1. 0. 0. 0. 0. 1. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 1.]
 [0. 0. 1. 0. 0. 0. 1. 0.]
 [0. 0. 0. 1. 0. 1. 0. 0.]
 [0. 0. 0. 0. 1. 0. 0. 1.]]
In [116]:
#Label Encoding
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
input_classes = ['suzuki', 'ford', 'suzuki', 'toyota', 'ford', 'bmw']
label_encoder.fit(input_classes)
print("\nClass mapping: ")
for i, item in enumerate(label_encoder.classes_):
 print(item,'-->', i)
Class mapping:
bmw --> 0
ford --> 1
suzuki --> 2
toyota --> 3
In [119]:
# Encoded Lables
labels = ['toyota', 'ford', 'bmw', 'suzuki', 'bmw']
encoded_labels = label_encoder.transform(labels)
print("\nLabels =", labels)
print("Encoded labels =", list(encoded labels))
Labels = ['toyota', 'ford', 'bmw', 'suzuki', 'bmw']
Encoded labels = [3, 1, 0, 2, 0]
In [122]:
# Decoding the Lables
encoded_labels = [3, 2, 0, 2, 1]
decoded_labels = label_encoder.inverse_transform(encoded_labels)
print("\nEncoded labels =", encoded_labels)
print("Decoded labels =", list(decoded_labels))
Encoded labels = [3, 2, 0, 2, 1]
Decoded labels = ['toyota', 'suzuki', 'bmw', 'suzuki', 'ford']
```

In []:			