Vectors

Overview and Learning Outcomes

- Vectors in 2-D, 3-D and n-D
 - Perform algebraic and geometric operations on vectors : addition, subtraction, multiplication
 - Understand equivalent and collinear vectors
- Norm, Dot Product, and Distance in \mathbb{R}^n
 - Compute norm of a vector in \mathbb{R}^n
 - Determine distance between two vectors in \mathbb{R}^n
 - Compute the dot product between two vectors in \mathbb{R}^n
 - Compute angle between two nonzero vectors in \mathbb{R}^n

Overview and Learning Outcomes

• Orthogonality

- Determine whether two vectors are orthogonal
- Find equations for lines/planes using a normal vector and a point on the line/plane

• Vector and Parametric equations

- Express equations of lines in \mathbb{R}^2 and \mathbb{R}^3 using either vector or parametric equations
- Express equations of planes in \mathbb{R}^n using either vector or parametric equations

I. Vectors in 2-D, 3-D, and n-D

Scalar

Vector

: Only magnitude, e.g., temperature a, t, x, y: Both magnitude and direction, e.g. force f, x, w, v Notation

Length of the arrow — Magnitude of vector

Direction of arrowhead

Direction of vector

Equivalent or Equal vectors: Same length and direction

$$\mathbf{v} = \mathbf{w}$$

Zero vector: Initial and terminal points coincide; length is zero; denoted by **0**.

Vector Addition

Parallelogram Rule for Vector Addition: If \mathbf{v} and \mathbf{w} are vectors in 2-D or 3-D that are positioned so their initial points coincide, then the two vectors form adjacent sides of a parallelogram, and the sum $\mathbf{v} + \mathbf{w}$ is the vector represented by the arrow from the common initial point of \mathbf{v} and \mathbf{w} to the opposite vertex of the parallelogram. [Fig. 1]

Triangle Rule for Vector Addition: If \mathbf{v} and \mathbf{w} are vectors in 2-D or 3-D that are positioned so that the initial point of \mathbf{w} is at the terminal point of \mathbf{v} then the sum $\mathbf{v} + \mathbf{w}$ is the vector represented by the arrow from the initial point of \mathbf{v} to the terminal point of \mathbf{w} . [Fig. 2]

Vector Addition(contd.)

• Construct $\mathbf{v} + \mathbf{w}$ and $\mathbf{w} + \mathbf{v}$ by triangle rule to see that

$$\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$$

• Sum obtained by triangle rule is the same as sum obtained by the parallelogram rule

Vector Subtraction

The negative of a vector \mathbf{v} denoted by $-\mathbf{v}$: Same length as \mathbf{v} but of opposite direction

Difference of v from w denoted by $\mathbf{w} - \mathbf{v} : \mathbf{w} - \mathbf{v} = \mathbf{w} + (-\mathbf{v})$ [Fig. 3]

Position v and w so their initial points coincide and draw vector from terminal point of v to terminal point of w. [Fig. 4]

Scalar Multiplication

v is a nonzero vector in 2-D or 3-D

k is a nonzero scalar

Scalar product of \mathbf{v} by k: vector whose length is |k| times the length of \mathbf{v} direction is same as \mathbf{v} if k is + direction is opposite to \mathbf{v} if k is -

If k = 0 or $\mathbf{v} = \mathbf{0}$, then define $k\mathbf{v}$ to be $\mathbf{0}$.

Parallel and Collinear Vectors

They mean the same because translating a vector does not change it!

Associative Law for Addition

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

Vectors in Coordinate Systems

$$\mathbf{v} = (v_1, v_2) \text{ or } \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 components of the vector

• Two vectors are equivalent/equal if their components are equal $\mathbf{v} = (v_1, v_2, v_3)$ and $\mathbf{w} = (w_1, w_2, w_3)$ are equal if and only if $v_1 = w_1$, $v_2 = w_2$ and $v_3 = w_3$.

Vectors with Initial Point NOT at Origin

$$\mathbf{v} = \overrightarrow{P_1P_2} = \overrightarrow{OP_2} - \overrightarrow{OP_1} = (x_2, y_2) - (x_1, y_1) = (x_2 - x_1, y_2 - y_1)$$

• Easily extends to 3-D

n-D space

Real line : R^1

Set of all ordered pairs of real numbers (2-tuples): R^2 $\mathbf{v}=(v_1,v_2)$

Set of all ordered triples of real numbers (3-tuples): R^3 $\mathbf{v} = (v_1, v_2, v_3)$

Set of all ordered *n*-tuples called *n*-D space: R^n $\mathbf{v} = (v_1, v_2, \dots, v_n)$

Zero vector in $R^n : \mathbf{0} = (0, 0, ..., 0)$

Definition of equivalent/equal vectors carries over from 2-D/3-D.

n-D space (contd.)

Definition. If $\mathbf{v} = (v_1, v_2, \dots, v_n)$ and $\mathbf{w} = (w_1, w_2, \dots, w_n)$ in \mathbb{R}^n , and if k is any scalar, then we define

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2, \dots, v_n + w_n)$$

$$k\mathbf{v} = (kv_1, kv_2, \dots, kv - n)$$

$$-\mathbf{v} = (-v_1, -v_2, \dots, -v_n)$$

$$\mathbf{w} - \mathbf{v} = \mathbf{w} + (-\mathbf{v}) = (w_1 - v_1, w_2 - v_2, \dots, w_n - v_n)$$

n-D space (contd.)

Theorem. If \mathbf{u} , \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^n , and if k and m are scalars, then

1.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

2.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

3.
$$u + 0 = 0 + u = u$$

4.
$$\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$$

5.
$$k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$$

$$6. (k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$$

7.
$$k(m\mathbf{u}) = (km)\mathbf{u}$$

8.
$$1u = u$$

n-D space (contd.)

Theorem. If v is a vector in \mathbb{R}^n and k is a scalar, then

1.
$$0\mathbf{v} = \mathbf{0}$$

2.
$$k0 = 0$$

3.
$$-1\mathbf{v} = -\mathbf{v}$$

From: http://www.mathworks.com/help/images/color7.gif

Definition. If w is a vector in \mathbb{R}^n , then w is said to be a **linear combination** of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ in \mathbb{R}^n if it can be expressed in the form

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \dots + k_n \mathbf{v}_n$$

where k_1, k_2, \ldots, k_n are scalars called **coefficients** of the linear combination.

II. Norm, Dot Product, and Distance in \mathbb{R}^n

Norm of a vector: Length of a vector \mathbf{v} denoted by $\|\mathbf{v}\|$.

Definition. If $\mathbf{v} = (v_1, v_2, \dots, v_n)$ is a vector in \mathbb{R}^n , then the **norm/length/magnitude** of \mathbf{v} is defined by

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} \tag{1}$$

Norm of a vector (contd.)

Theorem. If \mathbf{v} is a vector in \mathbb{R}^n and k is a scalar, then

- 1. $\|\mathbf{v}\| \ge 0$
- 2. $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = \mathbf{0}$
- 3. $||k\mathbf{v}|| = |k|||\mathbf{v}||$

Unit vector

- A vector of norm 1.
- Useful for specifying direction when length is not relevant
- If \mathbf{v} is any nonzero vector in \mathbb{R}^n , then a unit vector that is in the same direction as \mathbf{v} is

The Standard Unit Vectors

Unit vectors in the positive directions of the coordinate axes in \mathbb{R}^2 and \mathbb{R}^3

$$\mathbf{i} = (1,0) \text{ and } \mathbf{j} = (0,1)$$
 $\mathbf{i} = (1,0,0), \mathbf{j} = (0,1,0) \text{ and } \mathbf{k} = (0,0,1)$

Standard unit vectors in \mathbb{R}^n :

$$\mathbf{e}_1 = (1, 0, 0, \dots, 0), \mathbf{e}_2 = (0, 1, 0, \dots, 0), \dots, \mathbf{e}_n = (0, 0, 0, \dots, 1)$$

Distance in \mathbb{R}^n

Definition. If $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are points in \mathbb{R}^n , then the **distance** between \mathbf{u} and \mathbf{v} denoted by $d(\mathbf{u}, \mathbf{v})$ is defined by

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$$

Dot Product

• Angle between **u** and **v** satisfies $0 \le \theta \le \pi$

Definition. If \mathbf{u} and \mathbf{v} are nonzero vectors in R^2 and R^3 , and if θ is the angle between \mathbf{u} and \mathbf{v} , then the **dot product** (also called **Euclidean inner product**) of \mathbf{u} and \mathbf{v} is denoted by $\mathbf{u} \cdot \mathbf{v}$ and is defined as

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta \tag{1}$$

If $\mathbf{u} = 0$ or $\mathbf{v} = 0$ then we define $\mathbf{u} \cdot \mathbf{v}$ to be 0.

- Angle θ can be obtained as $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$
- θ is acute if $\mathbf{u} \cdot \mathbf{v} > 0$
- θ is obtuse if $\mathbf{u} \cdot \mathbf{v} < 0$
- $\theta = \pi/2$ if $\mathbf{u} \cdot \mathbf{v} = 0$

Component Form of Dot Product

If $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ are two nonzero vectors, then the component form of their dot product is given by

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3 \tag{1}$$

Definition. If $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are vectors in \mathbb{R}^n , then the **dot product** (also called the **Euclidean inner product**) of \mathbf{u} and \mathbf{v} denoted by $\mathbf{u} \cdot \mathbf{v}$ is defined by

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

Algebraic Properties of the Dot Product

$$\mathbf{v} \cdot \mathbf{v} = v_1^2 + v_2^2 + \dots + v_n^2 = \|\mathbf{v}\|^2$$

Length of a vector in terms of a dot product: $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$

Theorem. If \mathbf{u} , \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^n and k is a scalar, then

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ [Symmetry]
- 2. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ [Distributive]
- 3. $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v}$ [Homogeneity]
- 4. $\mathbf{v} \cdot \mathbf{v} \ge 0$ and $\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = \mathbf{0}$ [Positivity]

Algebraic Properties of the Dot Product (contd.)

Additional properties of dot product:

Theorem. If \mathbf{u} , \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^n and k is a scalar, then

1.
$$\mathbf{0} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{0} = 0$$

2.
$$(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$$

3.
$$\mathbf{u} \cdot (\mathbf{v} - \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} - \mathbf{u} \cdot \mathbf{w}$$

4.
$$(\mathbf{u} - \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} - \mathbf{v} \cdot \mathbf{w}$$

5.
$$k(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (k\mathbf{v})$$

Angles in \mathbb{R}^n

$$\theta = \cos^{-1}\left(\frac{\mathbf{u}\cdot\mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}\right)$$

 θ not defined unless its argument satisfies the inequalities

$$-1 \le \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} \le 1$$

Fortunately, the inequalities are indeed satisfied due to Cauchy-Schwarz Inequality

Theorem. Cauchy-Schwarz Inequality

If
$$\mathbf{u} = (u_1, u_2, \dots, u_n)$$
 and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are vectors in \mathbb{R}^n ,

$$|\mathbf{u} \cdot \mathbf{v}| \le \|\mathbf{u}\| \|\mathbf{v}\|$$

or in terms of components

$$|u_1v_1 + u_2v_2 + \dots + u_nv_n| \le (u_1^2 + u_2^2 + \dots + u_n^2)^{1/2}(v_1^2 + v_2^2 + \dots + v_n^2)^{1/2}$$

Geometry in \mathbb{R}^n

Concepts from geometry extend to \mathbb{R}^n

Theorem. If \mathbf{u} , \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^n and k is a scalar, then

1.
$$\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$$
 [Triangle inequality for vectors]

2.
$$d(\mathbf{u}, \mathbf{v}) \le d(\mathbf{u}, \mathbf{w}) + d(\mathbf{w}, \mathbf{v})$$
 [Triangle inequality for distances]

III. Orthogonality

Orthogonal Vectors: Angle θ between two nonzero vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n is

$$\theta = \cos^{-1} \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} \right)$$

Definition. Two nonzero vectors \mathbf{u} and \mathbf{v} in R^n are said to be **orthogonal** if $\mathbf{u} \cdot \mathbf{v} = 0$. A nonempty set of vectors in R^n is called an **orthogonal set** if all pairs of distinct vectors in the set are orthogonal.

Lines and Planes Determined by Points and Normals

Line in \mathbb{R}^2 determined uniquely by its slope and one of its points Plane in \mathbb{R}^2 determined uniquely by its "inclination" and one of its points

Use a nonzero vector **n**, called a **normal**, that is orthogonal to the line or plane

to specify slope or inclination.

$$\mathbf{n} \cdot \overrightarrow{P_0 P} = 0$$

$$\mathbf{n} \cdot \overrightarrow{P_0P} = 0$$

$$\overrightarrow{P_0P} = (x - x_0, y - y_0)$$

$$\mathbf{n} = (a, b)$$

$$\mathbf{n} = (a, b)$$

$$a(x - x_0) + b(y - y_0) = 0$$

(a,b,c)

Point-normal equation of line

Point-normal equation of plane?

Vector and Parametric Equations of Lines in \mathbb{R}^2 and \mathbb{R}^3

- Previously, equations of lines and planes determined in point-normal form
- Here, look at other ways of specifying lines and planes
- Equation for a line that contains point x_0 and is parallel to vector \mathbf{v}

For any point \mathbf{x} on line L in \mathbb{R}^2 or \mathbb{R}^3 , vector form of line

$$\mathbf{x} - \mathbf{x_0} = t\mathbf{v}$$
 or $\mathbf{x} = \mathbf{x_0} + t\mathbf{v}$

If $\mathbf{x}_0 = \mathbf{0}$, line passes through origin.

Variable t called a parameter;

x traces out the line L as t varies from $-\infty$ to ∞ ; Extends to R^n

Vector and Parametric Equations of Planes in \mathbb{R}^3

Equation for the plane W that contains point $\mathbf{x_0}$ and is parallel to the noncollinear vectors $\mathbf{v_1}$ and $\mathbf{v_2}$

Vector form of plane

 $\mathbf{x} - \mathbf{x_0} = t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2$ or $\mathbf{x} = \mathbf{x_0} + t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2$ If $\mathbf{x}_0 = \mathbf{0}$, plane passes through the origin.

Variable t_1 and t_2 called *parameters*;

x traces out the plane W as t_1 and t_2 are independently varied from $-\infty$ to ∞ ;

Extends to \mathbb{R}^n

Parametric equations are formed when vectors are expressed in terms of their components