On the solvability of 8-puzzle

Yuxin Wu CST14 ppwwyyxxc@gmail.com

1 Introduction

Putting integers 1-8 randomly into a matrix of order 3, leaving a blank, gives us a valid "pattern". We define the target pattern T as follows:

$$T = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & \square \end{bmatrix}$$

If by moving the blank to its neighbors, one pattern can be transformed to another in finite steps, we say the two patterns are connected.

Define the "sequential ordering" of a pattern $I = (a_{ij})_{3\times3}$ as $(a_{11}a_{12}a_{13}a_{21}a_{22}a_{23}a_{31}a_{32}a_{33})$, which is a permutation of 1-8(omitting the blank symbol).

Define the "snake ordering" (because the path looks like a snake!) of a pattern $I = (a_{ij})_{3\times3}$ as $S(I) = (a_{11}a_{12}a_{13}a_{23}a_{22}a_{21}a_{31}a_{32}a_{33})$, which is also a permutation of 1-8 (omitting the blank symbol).

We will prove that a pattern is connected to the target pattern if and only if its sequential ordering has even number of inversions. 1

2 Necessity

It's obvious that every move doesn't change the parity of the number of inversions in its sequential ordering. And the sequential ordering of T is (1, 2, 3, 4, 5, 6, 7, 8).

Thus the proof is trival.

And it's easy to see by bijection that there are $\frac{9!}{2}$ patterns which have odd number of inversions.

3 Sufficiency

We consider the groups of patterns with the same snake ordering. It's trival that:

- 1. Every snake ordering has 9 different patterns correspondent to it.
- 2. In a given pattern, the blank can move to any place without changing the snake ordering. (Just walk along the "snake path")

Every move can be regarded as a permutation applied to the snake ordering. For example:

$$P_1 = \begin{bmatrix} a & \square & b \\ c & d & e \\ f & g & h \end{bmatrix} \rightarrow P_2 = \begin{bmatrix} a & d & b \\ c & \square & e \\ f & g & h \end{bmatrix}$$

¹http://en.wikipedia.org/wiki/inversions

The correspondent snake ordering: $(a,b,e,d,c,f,g,h) \rightarrow (a,d,b,e,c,f,g,h)$ The permutation is: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 4 & 2 & 5 & 6 & 7 & 8 \end{pmatrix}$ Or to write in the form of cycle: $\sigma = (2,3,4)$

Label the places in the matrix as follows: $L = \begin{bmatrix} 1 & 2 & 3 \\ 6 & 5 & 4 \\ 7 & 8 & 9 \end{bmatrix}$, and denote σ_{ij} as the permutation

of moving the blank from the place i to the place j. The above example shows that $\sigma_{25} = (2, 3, 4)$. We have the following results by calculation:

- 1. $\sigma_{ij} = \sigma_{ii}^{-1}$
- 2. $\sigma_{i(i+1)}$ is an identical permutation. (Since the matrix is labelled along the "snake path")
- 3. $\sigma_{16} = (1, 2, 3, 4, 5)$
- 4. $\sigma_{25} = (2, 3, 4)$
- 5. $\sigma_{49} = (4, 5, 6, 7, 8)$
- 6. $\sigma_{58} = (5, 6, 7)$

We first try to find the subgroup G generating by all the σ_{ij} .

It's obvious that G is the subgroup of the symmetric group with 8 symbols S_8 . We claim that: G is the group of all even permutations with 8 symbols E_8 .²

The proof requires the following lemmas in Group Theory:

Lemma 1. All the 3-cycles can generate E_n .

Proof. By definition, every element in E_n is the product of even number of transpositions. But every product of two transpositions is equal to the product of some 3-cycles by the following rules:

- 1. (a,b)(a,c) = (a,b,c)
- 2. (a,b)(c,b) = (a,c,b)
- 3. (a,b)(a,b) = ()
- 4. (a,b)(c,d) = (a,b,c)(a,d,c)

Therefore the proof is done.

Lemma 2. All the 3-cycles of the form (1, i, j) can generate E_n .

Proof. Use
$$(a,b,c) = (1,b,c)(1,c,a)$$
 and Lemma 1.

Lemma 3. All the 3-cycles of the form (1,2,k) can generate E_n .

Proof. Use
$$(1,2,k) = (1,2,k), (1,k,2) = (1,2,k)^{-1}, (1,i,j) = (1,2,j)(1,2,i)(1,2,j)(1,2,j)$$
 and Lemma 2.

Lemma 4. All the consecutive 3-cycles (cycles of the form $(k, k+1, k+2), k \le n-2$) can generate $E_n (n \geq 5)$.

²http://en.wikipedia.org/wiki/Parity_of_a_permutation

Proof. Since (1,2,3) = (1,2,3), (1,2,4) = (2,3,4)(2,3,4)(1,2,3), we can apply induction on the formula

$$(1,2,i) = (1,2,i-1)(1,2,i-2)(i-2,i-1,i)(1,2,i-1)(1,2,i-2), (i \ge 5)$$

It follows that all the consecutive 3-cycles generate all the (1,2,k). Then by Lemma 3, the proof is done.

Theorem 1. $G = E_8$

Proof. We have:

$$\begin{aligned} (1,2,3) &= \sigma_{16}\sigma_{25}\sigma_{61} \\ (2,3,4) &= \sigma_{25} \\ (3,4,5) &= \sigma_{61}\sigma_{25}\sigma_{16} \\ (4,5,6) &= \sigma_{49}\sigma_{58}\sigma_{94} \\ (5,6,7) &= \sigma_{58} \\ (6,7,8) &= \sigma_{94}\sigma_{58}\sigma_{49} \end{aligned}$$

Then by Lemma 4, E_8 is the subgroup of G.

Moreover, since $\sigma_{16}, \sigma_{25}, \sigma_{49}, \sigma_{58} \in E_8$, therefore $E_8 = G$.

Now we go back our original problem:

Theorem 2. Every pattern whose sequential ordering has even number of inversions is connected to the target pattern.

Proof. As pointed out before, the blank can move freely without changing the snake ordering. Then to transform a snake ordering to another, all the permutations σ_{ij} can be combined sequentially in any possible order.

Since $|G| = |E_8| = \frac{8!}{2}$, therefore from S(T), $\frac{8!}{2}$ different snake ordering can be achieved. So $\frac{8!}{2} \times 9 = \frac{9!}{2}$ different patterns are connected with T.

From the proof of necessity, $\frac{9!}{2}$ patterns are proved disconnected with T. Thus the proof is finished.

Writing a simple program is enough to prove our proposition, saving the time to read all these...