Datová propustnost metody stop-and-wait v závislosti na zpoždění mezi koncovými body

Vít Knobloch, Filip Krul

Březen 2021

1 Výhody metody stop-and-wait

Metoda stop-and-wait je nejjednodušší z rodiny ARQ metod. Zajišťuje tedy spolehlivost přenosu dat, data přijdou všechna a nepoškozená. Velikou výhodou je snadná implementace jak senderu, tak receivera. Sender stačí jednovláknový s timeoutem na příjem acknowledgů. Receiver může spoléhat na to, že data přijdou ve správném pořádí a bez mezer.

2 Nevýhody metody stop-and-wait

Hlavní nevýhodou metody stop-and-wait je nízká přenosová rychlost, kdy data do plynou mnohem pomaleji, než jak rychle je dokáží koncové body zpracovávat, většinu času se čeká na přenos dat v síti. Nevhodně zvolený timeout může přenos dat výrazně zpomalit, pokud je síť nespolehlivá a ztrácí se větší množství paketů.

3 Datová propustnost v teorii

Maximání datová propustnost v případě bezproblémové síťové komunikace závisí téměř výhradně na zpoždění mezi koncovými body. Kde množství přeposlaných dat za sekundu D_s vyjadřuje vztah:

$$D_s = P_s \frac{1000}{p_{ms}} \tag{1}$$

Kde P_s je velikost jednoho paketu a p_{ms} je ping mezi koncovými uzly v milisekundách. Navíc při ztrátě nebo poškození packetu se čeká na time-out, který je v nejméně stejně dlouhý jako délka odezvy a odeslání ztraceného packetu pak trvá dvojnásobek času. Datovou propustnost je poté potřeba upravit v závislosti na error rate E_r :

$$D_s = P_s \frac{1000}{p_{ms}} (1 - E_r) \tag{2}$$

Následující tabulka propustnosti v závislosti na odezvě je platná pro velikost paketu 1KB.

Ping (ms)	Propustnost (KB/s)
15	66,6
30	33,3
100	10
250	4
500	2

4 Datová propustnost v praxi

Provedli jsme měření na localhostu s odezvou nastavenou pomocí nástroje Net-Derper. Podle dat zachycených ve Wiresharku byla sestavena následující tabulka:

Ping (ms)	Propustnost (KB/s)
15	32,1
30	18,4
100	7,9
250	3,7
500	1,9

Ze zjištěných dat vyplývá, že skutečná datová propustnost je menší než odhadovaná. To ale není překvapující, odhad pracoval pouze s prodlevou způsobenou síťovým přenosem, ale zanedbával zpoždění způsobené koncovými programy. Navíc skutečná odezva způsobená loopback přenosem a NetDerperem byla o trochu větší než nastavená odezva. Fakt, že reálná propustnost je tím bližší odhadu, čím vyšší je nastavené zpoždění, podporuje tuto hypotézu.