OBD-JRP Monitoramento Veicular com Java e Raspberry Pi

Aluno: Ricardo Artur Staroski

Orientador: Miguel Alexandre Wisintainer

Roteiro

- Introdução
- Objetivos
- Fundamentação teórica
- Trabalhos correlatos
- Requisitos funcionais e não funcionais
- Especificação
- Implementação
- Operacionalidade da implementação
- Resultados e discussões
- Conclusões
- Vantagens
- Limitações
- Sugestões

Introdução

- TCC1: O que fazer? O que não fazer?
 - Ferramenta didática composta por máquina virtual e ambiente de desenvolvimento?
 - Simulador de tráfego com Google Maps?
 - Display veicular para notificar condutores imprudentes?
 - Que tal alguma coisa com OBD?

Objetivos

- Firmware
 - Monitorar porta OBD2 de um veículo, ler dados e enviá-los a um servidor
- Servidor
 - Java Servlet que recebe os dados e os armazena
- Páginas web
 - Visualizar dos dados e histórico

- OBD
 - California Air Resource Board (CARB)
 - Society of Automotive Engineers (SAE)
 - Conector SAE J1962
 - Protocolos ECU

- Resolução CONAMA nº 357
 - 100% dos carros, até Janeiro 2011

- Interface ELM327
 - Troca de mensagens com a ECU
 - Conexão Serial, USB, WiFi e Bluetooth
 - Interface texto
 - Comandos AT
 - PIDs OBD2

- Raspberry Pi 3 Model B
 - PC do tamanho de um cartão de crédito;
 - processador ARM quad core de 1,2GHz;
 - 1GB de RAM;
 - 1 entrada micro SD (S.O. e armazenamento);
 - Bluetooth e WiFi;
 - 4 portas USB;
 - 1 porta micro USB (alimentação);
 - saída HDMI.

Trabalhos Correlatos

- PyOBD
 - PC e notebooks
 - Interface USB
 - Executar testes
 - Leituras

Trabalhos Correlatos

- EnviroCar
 - Android
 - Interface Bluetooth
 - Upload servidor
 - Leituras
 - Trajeto
 - Compartilhar

RF Firmware

- inicializar automaticamente ao ligar;
- conectar-se ao ELM327 via Bluetooth;
- armazenar dados localmente até enviar ao servidor;
- tentar conectar-se com servidor a cada 5 minutos;
- enviar o número do chassi e dados armazenados localmente.

RNF Firmware

- desenvolvimento em Java SE;
- executar em sistema Raspbian.

RF Servidor

- responder à requisições GET e POST;
- persistir os dados enviados pelo firmware;
- · disponibilizar consulta a partir do chassi;
- apresentar gráficos com dados coletados;
- apresentar tabela com dados coletados.

RNF Servidor

- desenvolvimento em Java EE;
- persistir dados em XML;
- executar no Apache TomCat;
- páginas responsivas;
- páginas em HTML, CSS e JavaScript.

Especificação Firmware

Especificação Servidor

Leitura da interface ELM327

Inicializar ELM327

```
ATEO // reset

ATEO // desativar eco

ATHO // desativar cabeçalhos

ATSO // desativar espaços

ATSPO // protocolo automático
```


PIDs reservados obtém PIDs suportados

```
0100 \rightarrow [01 ... 20]
0120 \rightarrow [21 .. 40]
0140 \rightarrow [41 .. 60]
0160 \rightarrow [61 ... 80]
0180 \rightarrow [81 .. A0]
01\mathbf{A0} \rightarrow [A1 \dots C0]
01CO \rightarrow [ C1 .. E0 ]
01E0 \rightarrow [E1 .. FF]
```


Exemplo de máscara de bits

```
0100 \rightarrow BEBACAFE // 4 bytes
```

```
00 = offset
```

```
      BE
      BA
      CA
      FE

      10111110
      101111010
      11001010
      111111110

      ^
      ^
      ^
      ^
      ^
      ^

      1
      8
      9
      16
      17
      24
      25
      32
```



```
BE: 101111110 \rightarrow 1 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7

BA: 10111010 \rightarrow 9 \quad 11 \quad 12 \quad 13 \quad 15

CA: 11001010 \rightarrow 17 \quad 18 \quad 21 \quad 23

FE: 111111110 \rightarrow 25 \quad 26 \quad 27 \quad 28 \quad 29 \quad 30 \quad 31
```

hexa(dec(offset) + indice) = PID suportado

```
BE: 01 03 04 05 06 07
BA: 09 0B 0C 0D 0F
CA: 11 12 15 17
```

FE: 19 1A 1B 1C 1D 1E 1F

Ler RPM (PID 0C)

01**0C →** 2BC0

Table B.13 — PID \$0C definition

PID	Description	Data	Min.	Max.	Scaling/bit	External test equipment
(hex)		byte	value	Value		SI (Metric) / English display
0C	Engine RPM	A, B	0 min−1	16383.75 min ⁻¹	1/4 rpm per bit	RPM: xxxxx min-1
	Engine RPM shall display revolutions per minute of the engine crankshaft.					

$$dec(2BC0) = 11200$$

$$11200 / 4 = 2800 RPM$$

Ler velocidade (PID 0D)

 $010D \rightarrow 32$

Table B.14 — PID \$0D definition

PID	Description	Data	Min.	Max.	Scaling/bit	External test equipment
(hex)		byte	value	Value		SI (Metric) / English display
0D	Vehicle Speed Sensor	Α	0 km/h	255 km/h	1 km/h per bit	VSS: xxx km/h (xxx mph)

VSS shall display vehicle road speed, if utilized by the control module strategy. Vehicle speed may be derived from a vehicle speed sensor, calculated by the PCM using other speed sensors, or obtained from the vehicle serial data communication bus.

$$dec(32) = 50Km/h$$

Envio dos dados pendentes

Implementação Servidor

Processamento das requisições HTTP

	Ricardo Artur	_		×
□ OBD-JRP ×				
← → C ① obdjrp.ddns.net:8081/obd-jrp-web/		☆	3,41	0 0 0
OBD-JRP				
Vehicle:		View		

	icie: Volks	wagen Gol 2010		
PID	Bytes	Description	Value	1
01	00066500			
03	0100			
04	41	Calculated engine load	25,49	9
05	46	Engine coolant temperature	30	0
06	80	Short term fuel trim Bank 1	0,0	0
07	90	Long term fuel trim Bank 1	12,50	0
OB	65			
OC.	0000	Engine RPM	(0
OD.	00	Vehicle Speed	(0
0E	80			
0F	45	Intake Air Temperature	29	9
11	19	Throttle position	9,80	0
13	01			
14	5780	Oxygen sensor 1 voltage Oxygen sen	0,44 0,00	0
15	OOFF	Oxygen sensor 2 voltage Oxygen sen	0,00 99,22	2
1C	1C			

Resultados e Discussões

PID	Gol	SpaceFox
01	X	X
03	X	X
04	X	X
05	X	X
06	X	
07	X	
0B	X	X
0C	X	X
0D	X	X
0E	X	X
0F	X	X
11	X	X
13	X	X
14	X	
15	X	
1C	X	X
21	X	X
51	X	X

Resultados e Discussões

- Veículos
 - nem todos implementam OBD2
 - montadoras com "jeitinho" brasileiro
- EnviroCar
 - OBD-JRP → monitoramento
 - EnviroCar → rede social
- PyOBD
 - OBD-JRP → embarcado e autônomo
 - − PyOBD → Scanner automotivo no notebook

Conclusões

- Objetivos propostos foram atendidos.
 - Firmware para monitorar veículo;
 - Servidor para recebimento dos dados;
 - Páginas web para consultas.
- Bluetooth
 - Integrado ao Raspberry Pi 3
 - Java: quase uma década sem atualização
 - Python: hobbystas de IoT atualizando

Conclusões

- O Raspberry Pi
 - PC em miniatura;
 - preços de 120 até mais de 500 reais.
- Interface ELM327 Bluetooth
 - instalação simples
 - interface texto
 - preços em torno de 30 reais.

Vantagens

- dimensões reduzidas;
- instalação simples em qualquer veículo que implemente OBD2;
- não depende de interação humana após instalado;
- monitoramento a partir de qualquer computador ou dispositivo móvel com navegador e acesso à internet.

Limitações

- pré-configuração de acesso à internet;
- não possui botão para desligar;
- invólucro indiscreto no veículo;
- não utiliza banco de dados.

Sugestões

- banco de dados;
- sistema cognitivo;
- hardware para desligar;
- computador de bordo;
- integração com GPS.

