Type 3

Prove that $S^{i,j}, S^{i,j}_c \in \mathbf{SU}(n)$, and using diagonal matrices as in Problem 12.12, prove that the matrices $S^{i,j}$ can be used to form the real part of a Hermitian matrix and the matrices $S^{i,j}_c$ can be used to form the imaginary part of a Hermitian matrix.

(3) Use (1) and (2) to prove that the matrices in $\mathbf{SU}(n)$ span all Hermitian matrices. It follows that $\mathbf{SU}(n)$ spans $\mathbf{M}_n(\mathbb{C})$ for $n \geq 3$.

Problem 14.7. Consider the complex matrix

$$A = \begin{pmatrix} i & 1 \\ 1 & -i \end{pmatrix}.$$

Check that this matrix is symmetric but not Hermitian. Prove that

$$\det(\lambda I - A) = \lambda^2,$$

and so the eigenvalues of A are 0, 0.

Problem 14.8. Let $(E, \langle -, - \rangle)$ be a Hermitian space of finite dimension and let $f: E \to E$ be a linear map. Prove that the following conditions are equivalent.

- (1) $f \circ f^* = f^* \circ f$ (f is normal).
- (2) $\langle f(x), f(y) \rangle = \langle f^*(x), f^*(y) \rangle$ for all $x, y \in E$.
- (3) $||f(x)|| = ||f^*(x)||$ for all $x \in E$.
- (4) The map f can be diagonalized with respect to an orthonormal basis of eigenvectors.
- (5) There exist some linear maps $g, h: E \to E$ such that, $g = g^*, \langle x, g(x) \rangle \geq 0$ for all $x \in E, h^{-1} = h^*$, and $f = g \circ h = h \circ g$.
- (6) There exist some linear map $h \colon E \to E$ such that $h^{-1} = h^*$ and $f^* = h \circ f$.