HarvardX PH125.9xData Science: Capstone Choose Your Own!(House Pricing)

Jose Quesada

27/12/2020

Introduccion

This project consists of determining the value of a house according to its location, property characteristics and payment methods using the data set from kaggle House Prices - Advanced Regression Techniques https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data (kaggle competitions download -c house-prices-advanced-regression-techniques).

Importing Data.

Files:

train.csv - the training set test.csv - the test set data_description.txt - full description of each column. sample_submission.csv - a benchmark submission from a linear regression on year and month of sale, lot square footage, and number of bedrooms

```
read_csv <- function(file){
    path_data <- "data"
    filename <- paste(path_data,file,sep="/")
    csv__ <- read.csv(filename)
    csv__
}

test_set <-read_csv('test.csv')
train_set<- read_csv('train.csv')

#Join datasets, For this project we going to join train and set data for the cleansing and EDA,
#later we going to split again by SalesPrices not null as train set and test set is null.
df<- bind_rows(train_set,test_set)</pre>
```

EDA

```
train_set:
  * Dimensions: 1460, 81
  * Memory Usage: 0.7 Mb
test_set:
  * Dimensions: 1459, 80
  * Memory Usage: 0.7 Mb
```

Comparing amount of columns between each dataset we can see that we have 1 more column in the train set vs the test set. **SalePrice** is the additional column in the train set and our **target value** for this model We going to use the train set to predict **SalePrice** on the test, first we going to make some EDA and data cleaning.

Total categorical columns: 43

Categorical Columns				
MSZoning	Street	Alley	LotShape	LandContour
Utilities	LotConfig	LandSlope	Neighborhood	Condition1
Condition2	BldgType	HouseStyle	RoofStyle	RoofMatl
Exterior1st	Exterior2nd	MasVnrType	ExterQual	ExterCond
Foundation	BsmtQual	BsmtCond	BsmtExposure	BsmtFinType1
BsmtFinType2	Heating	HeatingQC	CentralAir	Electrical
KitchenQual	Functional	FireplaceQu	GarageType	GarageFinish
GarageQual	GarageCond	PavedDrive	PoolQC	Fence
MiscFeature	SaleType	SaleCondition	MSZoning	Street
Alley	LotShape	LandContour	Utilities	LotConfig

Total numeric columns: 38

Numerical Columns				
Id	MSSubClass	LotFrontage	LotArea	
OverallQual	OverallCond	YearBuilt	YearRemodAdd	
MasVnrArea	BsmtFinSF1	BsmtFinSF2	BsmtUnfSF	
TotalBsmtSF	X1stFlrSF	X2ndFlrSF	LowQualFinSF	
GrLivArea	BsmtFullBath	BsmtHalfBath	FullBath	
HalfBath	BedroomAbvGr	KitchenAbvGr	TotRmsAbvGrd	
Fireplaces	GarageYrBlt	GarageCars	GarageArea	
WoodDeckSF	OpenPorchSF	EnclosedPorch	X3SsnPorch	
ScreenPorch	PoolArea	MiscVal	MoSold	
YrSold	SalePrice	Id	MSSubClass	

Im going to handle MSSubClass as categorical data although it is shown as numeric column, is actually a categorical data, the numbers is the columns are the type of dwelling involved in the sale, im removing from numeric columns and append as categorical.

Missing Values

For this analysis we going to select just the columns that have missing values, if they not in plot or table its because they not have missing values.

Description of columns with Missing Values:

M: . O .	. 101	
Missing Categorical Columns		
name	prc_na	
PoolQC	0.9965742	
MiscFeature	0.9640288	
Alley	0.9321686	
Fence	0.8043851	
FireplaceQu	0.4864680	
GarageFinish	0.0544707	
GarageQual	0.0544707	
GarageCond	0.0544707	
GarageType	0.0537855	
BsmtCond	0.0280918	
BsmtExposure	0.0280918	
BsmtQual	0.0277492	
BsmtFinType2	0.0274066	
BsmtFinType1	0.0270641	
MasVnrType	0.0082220	
MSZoning	0.0013703	
Utilities	0.0006852	
Functional	0.0006852	
Exterior1st	0.0003426	
Exterior2nd	0.0003426	
Electrical	0.0003426	
KitchenQual	0.0003426	
SaleType	0.0003426	

Missing Numerical Columns		
name	prc_na	
SalePrice	0.4998287	
LotFrontage	0.1664954	
GarageYrBlt	0.0544707	
MasVnrArea	0.0078794	
BsmtFullBath	0.0006852	
BsmtHalfBath	0.0006852	
BsmtFinSF1	0.0003426	
BsmtFinSF2	0.0003426	
BsmtUnfSF	0.0003426	
TotalBsmtSF	0.0003426	
GarageCars	0.0003426	
GarageArea	0.0003426	

By looking in the data_description file, we can determine that we have columns that show us measurements, condition and qualities of additional features of the houses, They are defined with NA when they do not have one of them. To determine if they are really null values, we must compare multiple columns, example if we have NA PoolQC and PoolArea equal to 0 is the NA is not a Missing value, because the house doesnt have a pool, if PoolQC is NA but the PoolArea is greater than 0, we have a missing value.

Identify associated columns

Related Features			
name features	dim features	dtype	
MasVnr	dini_leatures	dtype	
MasVnr	MasVnrArea	numeric	
MasVnr	MasVnrType	categorical	
Bsmt	was viii i ypc	categorical	
Bsmt	BsmtCond	categorical	
Bsmt	BsmtExposure	categorical	
Bsmt	BsmtFinSF1	numeric	
Bsmt	BsmtFinSF2	numeric	
Bsmt	BsmtFinType1	categorical	
Bsmt	BsmtFinType2	categorical	
Bsmt	BsmtFullBath	numeric	
Bsmt	BsmtHalfBath	numeric	
Bsmt	BsmtQual	categorical	
Bsmt	BsmtUnfSF	numeric	
Bsmt	TotalBsmtSF	numeric	
Fireplace	TotalDsilits1	numeric	
Fireplace	FireplaceQu	categorical	
Fireplace	Fireplaces	numeric	
Pool	тпершесь	numeric	
Pool	PoolArea	numeric	
Pool	PoolQC	categorical	
Heating	1 00142	caregoricar	
Heating	Heating	categorical	
Heating	HeatingQC	categorical	
Misc			
Misc	MiscFeature	categorical	
Misc	MiscVal	numeric	
Kitchen			
Kitchen	KitchenAbvGr	numeric	
Kitchen	KitchenQual	categorical	
Exterior		_	
Exterior	Exterior1st	categorical	
Exterior	Exterior2nd	categorical	
Garage			
Garage	GarageArea	numeric	
Garage	GarageCars	numeric	
Garage	GarageCond	categorical	
Garage	GarageFinish	categorical	
Garage	GarageQual	categorical	
Garage	GarageType	categorical	
Garage	GarageYrBlt	numeric	
	-	ı	

Pool

First we going to replace NA in PoolArea to 0, then im replacing PoolQC to No Pool whe Area is equal to 0 and after we going to label encoder the column(It is used to transform non-numerical labels to numerical labels (or nominal categorical variables). Numerical labels are always between 0 and n_classes-1.)

Just for looking into this graph im going to fill NA with 5.

Pool Missing Values			
name prc_na type			
PoolArea	0	numerical	
PoolQC	0	categorical	

MiscFeatures, Alley & Fence

For NA in MiscFeature, its just replace by "None Feature", Alley to "No Alley" and Fence to "No Fence"

MiscF, Alley & Fence Missing Values			
name	prc_na type		
MiscFeature	0	categorical	
Alley	0	categorical	
Fence	0	categorical	

Masonry veneer

Columns:

- MasVnrType.
- 2. MasVnrArea.

This plot show us between 1950 and 2005 BrkFace was the predominant type of MasVnr and after 2005 was Stone, we going to get the mode in every yearn and fill Na values with mode by year and look how many null values we get.

Mansory Veneer			
name prc_na type			
MasVnrArea	0	numerical	
MasVnrType	0	categorical	

Basement

First we are going to replace the null values of columns Bsmt fSF, BsmtFinSF1, BsmtFinSF2 and TotalBsmtSF, by 0. After this we are going to replace the null values of the categorical columns by "No Basement" and "No Basement 1" when BsmtFinSF1 is equal to 0 and "No Basement 2" when BsmtFinSF2 is equal to 0. After the first cleaning we are going to convert the BsmtCond columns, BsmtExposure, BsmtFinType1, BsmtFinType2 and BsmtQual, in numerical values, giving as a classification based on the descriptions that are in the file "data/data_description.txt", to be able to find correlations and finish replacing the null values in these columns, we also transform the BsmtUnfSF column into a percentage of the TotalBsmtSF.

Mansory Veneer			
name	prc_na	type	
BsmtCond	0.0010277	categorical	
BsmtQual	0.0006852	categorical	
BsmtFinType2	0.0003426	categorical	
BsmtExposure	0.0000000	categorical	
BsmtFinSF1	0.0000000	numerical	
BsmtFinSF2	0.0000000	numerical	
BsmtFinType1	0.0000000	categorical	
BsmtFullBath	0.0000000	numerical	
BsmtHalfBath	0.0000000	numerical	
BsmtUnfSF	0.0000000	numerical	
TotalBsmtSF	0.0000000	numerical	

We are going to analyze variables that are highly correlated to replace the null values

Basement Dimensions

	High Correlated Dim				
	Var1	Var2	value		
1	BsmtFinType2	BsmtFinSF2	0.8288252		
3	BsmtFinType1	BsmtFinSF1	0.7122094		
5	BsmtFullBath	BsmtFinSF1	0.6394350		
7	BsmtQual	BsmtCond	0.6344277		
9	BsmtFullBath	BsmtFinType1	0.5877612		
11	TotalBsmtSF	BsmtQual	0.5788890		
13	TotalBsmtSF	BsmtFinSF1	0.5361229		

To complete the null values for BsmtQual im making a linear models() BsmtQual \sim TotalBsmtSF), first calculate z socre of TotalBsmtSF the remove outliers.

TotalBsmtSF(Zscore)

For this model I am going to remove all the TotalBsmtSF that are at least 2.5~z score absolute from the average, this represents 98.8694758 percent of the data.

BsmtQual Vs TotalBsmtSF

 $Linear\ Regression\ BsmtQual \sim TotalBsmtSF$

MSE: 0.8381899

Now im replacing null values with BsmtQual predictions and removing the SE_(Error column) and predic(predictions column), then im making the model for replace null values at BsmtCond.

Bsmt Missing Values			
name	prc_na	type	
BsmtCond	0	categorical	
BsmtExposure	0	categorical	
BsmtFinSF1	0	numerical	
BsmtFinSF2	0	numerical	
BsmtFinType1	0	categorical	
BsmtFinType2	0	categorical	
BsmtFullBath	0	numerical	
BsmtHalfBath	0	numerical	
BsmtQual	0	categorical	
BsmtUnfSF	0	numerical	
TotalBsmtSF	0	numerical	

Fireplace

Im using similar approach as Pool NA's, if Fireplaces =0 the FireplaceQu = "No Fireplace"

Fireplace Missing Values			
name prc_na type			
FireplaceQu	0	categorical	
Fireplaces	0	numerical	