# Úvod do organizace počítače

Trendy technologie, základy digitální logiky

## Opakování (předchozí přednáška)

- Pět základních částí počítače
- Principy abstrakce systému, budovaného po vrstvách
- "Flexibilní" data: program určuje interpretaci dat
- Koncepce "program v paměti": Instrukce jsou také data
- Princip lokality: hierarchie paměťového systému
- Vyšší výkon využitím paralelizmu
- Kompilace vs. interpretace

#### Rozklad problému



## Přehled (dnešní přednáška)

- Generace počítačů (dnes málo významné členění)
- Technologie ⇔ aplikace vzájemná podpora vývoje
- Trendy technologie
  - Hardware
  - Software
- Mooreův zákon
- Základy digitální logiky
  - Základní elektronické prvky a jejich chování
  - Pravdivostní tabulky
  - Operace

#### Generace počítačů

- Gen-0: Mechanické počítače (BC do počátku 1940)
- Gen-1: Elektronky (1943-1959)
- Gen-2: Tranzistory (1960-1968)
  - John Bardeen, Walter Brattain a William Shockley
- **Gen-3**: Integrované obvody (1969-1977)
  - průkopník Jack Kilby (1958)
- Gen-4: VLSI (1978-současnost)
- Gen-5: Optické systémy?
   Kvantové systémy?



# Mezníky ve vývoji počítačů

| 1800s | <b>Analytical Engine</b> | Babbage         | První číslicový počítač             |
|-------|--------------------------|-----------------|-------------------------------------|
| 1936  | <b>Z</b> 1               | Zuse            | První releový stroj                 |
| 1943  | COLOSSUS                 | British gov't   | První elektronický počítač          |
| 1944  | Mark I                   | Aiken           | První univerzální počítač           |
| 1946  | ENIAC I                  | Eckert/Mauchley | Začátek moderní počítačové historie |
| 1949  | EDSAC                    | Wilkes          | První počítač s programem v paměti  |
| 1952  | IAS                      | Von Neumann     | Vznik "tradiční" organizace         |
| 1960  | PDP-1                    | DEC             | První minipočítač                   |
| 1964  | 360                      | IBM             | Počítačové rodiny, architektura     |
| 1964  | 6600                     | CDC             | První superpočítač pro VT výpočty   |
| 1974  | 8080                     | Intel           | První procesor na čipu              |
| 1974  | CRAY-1                   | Cray            | První vektorový superpočítač        |
| 1981  | IBM PC                   | IBM             | Éra PC                              |
| 1985  | MIPS                     | MIPS            | První komerční RISC procesor        |
| 1990  | RS6000                   | IBM             | První superskalární mikroprocesor   |
| 2000  | ASCI White               | IBM             | Jeden z nejvýkonnějších počítačů    |

# Trendy technologie

- Technologie ⇔ aplikace podpora (virtuální kruh)
  - Rychlé CPU, nedostatek požadavků na aplikace
  - Požadavky současných aplikací
    - E-komerční servery
    - Databázové servery
    - Pracovní stanice
    - Narůstající poptávka po technologii "mobile computing"
- Technologie
  - Kompilátory
  - Křemík

ISA a organizace počítače

## Opakování: Návrh úrovní abstrakce



#### Výroba IC



#### Postup výroby planárního tranzistoru npn



#### MOS tranzistor



## Základní metriky návrhu

- Funkčnost
- Cena
  - Konstantní náklady návrhové prostředky, infrastruktura
  - Variabilní náklady cena vlastního obvodu, zapouzdření, testy
- Spolehlivost, robustnost
  - Odstup šumu
  - Šumová imunita
  - MTBF
- Výkonnost
  - Rychlost (zpoždění)
  - Spotřeba energie
- Doba potřebná pro uvedení na trh "Time-to-market"

12

#### Cena integrovaného obvodu

- Konstantní náklady
  - Fixní náklady pro vytvoření návrhu
    - vlastní návrh
    - · verifikace návrhu
    - generování masek
  - Ovlivněno složitostí návrhu a produktivitou návrhářů
  - Jsou více významné pro malé objemy výroby
- Variabilní náklady úměrné objemu výroby
  - zpracování křemíku
    - úměrné také ploše čipu
  - zapouzdření
  - testování

```
cena jednoho IC = variabilní náklady jednoho IC + konstantní náklady objem výroby
```

## Konstantní náklady narůstají



# Křemíkový plát (wafer)



Převzato z: http://www.amd.com

#### Variabilní náklady

cena die + cena testování die + cena zapouzdření
variabilní náklady = -----finální výtěžnost při testování
cena waferu
cena die = -----počet die na waferu × výtěžnost die

počet die na waferu = 
$$\frac{\pi \times (\emptyset \text{waferu/2})^2}{\text{plocha die}} - \frac{\pi \times \emptyset \text{waferu}}{\sqrt{2} \times \text{délka hrany die}}$$



výtěžnost die = (1 + (# defektů na jednotku plochy × plocha die)/ $\alpha$ )- $\alpha$ 

#### Příklad výtěžnosti

#### Příklad

- průměr waferu 12 palců, plocha die 2.5 cm², 1 defekt/cm²,
   α = 3 (závisí na složitosti procesu)
- 252 die/wafer (nezapomeňte, wafery jsou kulaté, kdežto die čtvercové)
- výtěžnost die 16%
- 252 x 16% = výtěžnost pouze 40 die/wafer !

- Cena je funkcí plochy die
  - úměrná třetí až čtvrté mocnině plochy die

# Příklad metrik ceny (kolem 1994)

| Chip        | Metal<br>layers | Line<br>width | Wafer<br>cost | Defects/<br>cm <sup>2</sup> | Area<br>(mm²) | Dies/<br>wafer | Yield | Die<br>cost |
|-------------|-----------------|---------------|---------------|-----------------------------|---------------|----------------|-------|-------------|
| 386DX       | 2               | 0.90          | \$900         | 1.0                         | 43            | 360            | 71%   | \$4         |
| 486DX2      | 3               | 0.80          | \$1200        | 1.0                         | 81            | 181            | 54%   | \$12        |
| PowerPC 601 | 4               | 0.80          | \$1700        | 1.3                         | 121           | 115            | 28%   | \$53        |
| HP PA 7100  | 3               | 0.80          | \$1300        | 1.0                         | 196           | 66             | 27%   | \$73        |
| DEC Alpha   | 3               | 0.70          | \$1500        | 1.2                         | 234           | 53             | 19%   | \$149       |
| Super SPARC | 3               | 0.70          | \$1700        | 1.6                         | 256           | 48             | 13%   | \$272       |
| Pentium     | 3               | 0.80          | \$1500        | 1.5                         | 296           | 40             | 9%    | \$417       |

#### Mooreův zákon







Mooreův zákon platil velmi dlouhou dobu

Hustota souvisí s rychlostí. (Jak je známo, činit odhady o rychlosti počítačů je obtížné.)



— Gordon Moore, spoluzakladatel Intelu

#### Trendy technologie

| Rok                 | 2004 | 2006 | 2008 | 2010 | 2012 |
|---------------------|------|------|------|------|------|
| Char. velikost (nm) | 90   | 65   | 45   | 32   | 22   |
| Intg. kapacita (BT) | 2    | 4    | 6    | 16   | 32   |

- Zajímavá fakta o 45nm tranzistorech
  - 30 milionů se jich vejde na hlavičku špendlíku
  - 2,000 jich lze umístit přes lidský vlas
  - Kdyby cena aut klesala stejnou rychlostí od roku 1968 jako cena tranzistoru, stálo by dnešní auto kolem 1 centu

## Kapacita integrovaných obvodů



#### Další příklad Mooreova zákona





#### Průměrná cena tranzistoru



#### Vývoj technologie křemíku



Velikost prvku klesá na 70 % každých 18 až 24 měsíců

#### Velikost waferu



#### Intel CPU

| Chip        | Date    | MHz     | Transist | Memory | Notes                               |
|-------------|---------|---------|----------|--------|-------------------------------------|
| 4004        | 4/1971  | 0.108   | 2,300    | 640    | First microprocessor on a chip      |
| 8008        | 4/1972  | 0.108   | 3,500    | 16 KB  | First 8-bit microprocessor          |
| 8080        | 4/1974  | 2       | 6,000    | 64 KB  | First general-purpose CPU on a chip |
| 8086        | 6/1978  | 5-10    | 29,000   | 1 MB   | First 16-bit CPU on a chip          |
| 8088        | 6/1979  | 5-8     | 29,000   | 1 MB   | Used in IBM PC                      |
| 80286       | 2/1982  | 8-12    | 134,000  | 16 MB  | Memory protection present           |
| 80386       | 10/1985 | 16-33   | 275,000  | 4 GB   | First 32-bit CPU                    |
| 80486       | 4/1989  | 25-100  | 1.2M     | 4 GB   | Built-in 8K cache memory            |
| Pentium     | 3/1993  | 60-233  | 3.1 M    | 4 GB   | Two pipelines; later models had MMX |
| Pentium Pro | 3/1995  | 150-200 | 5.5M     | 4 GB   | Two levels of cache built in        |
| Pentium II  | 5/1997  | 233-400 | 7.5M     | 4 GB   | Pentium Pro plus MMX                |

Pentium III – 800 MHz, 4GB Memory // Pentium 4 – 2+GHz, 4GB

# Konec zvyšování výkonu jednojádrových procesorů



#### Mikroarchitektura Nehalem





Nehalem die

# Westmere die (6 jader)



# Trendy technologie hardware

#### Procesor

2x větší rychlost každých 1.5 roku
 100x větší výkon za poslední dekádu

#### Paměť

- DRAM kapacita: 2x / 2 roky; 64x kapacita za dekádu
- Cena za bit: zlepšení asi o 25% za rok

#### Disk

- kapacita: > 2x kapacita každý 1.0 rok
- Cena za bit: zlepšení asi o 100% za rok (1/2 cena)
- 120x kapacita v poslední dekádě
- Nové jednotky! Giga (10<sup>9</sup>) Tera (10<sup>12</sup>)

# Fyzikální limity Mooreova zákona

- Limity vlivem nutných izolačních vzdáleností (2-3nm)
- Kvantové tunelové efekty => crosstalk
- Jak moc zmenšovat? (0.02 micron / 2nm = 10x)
- O kolik rychlejší? Rychlost = k \* plocha
  - o 3 až 4 řády rychlejší (10³- 10⁴)
  - 2.6 GHz nyní => 5 THz až 10 THz ???
- Kdy? (během příštích 10-15 let ...)

#### Dospěje vývoj počítačů ke svým limitům?

#### Možnosti:

- Rychlejší procesory, algoritmy využívající stávající technologii
- Nárůst šířky pásma sběrnic, které dodávají procesoru data
- Nalezení kompaktnějších způsobů kódování dat v procesu zpracování
- Neustávající zlepšování výkonu procesorů, pamětí a komunikace
- Technologie ⇔ aplikace jedno podporuje rozvoj druhého
  - Kompilátory
  - Křemík
- Bude Mooreův zákon platit navždy? ⊗/ ☺
  - Objevují se "skeptické" názory, že éra platnosti Mooreova zákona je u konce.

# Řešení (?) Mooreova zákona

#### Kvantové počítače ©

- Jiný přístup všechny výsledky najednou
- Jak nalézt "správný" výsledek?
- Implementace: Optika? Křemík? ???
- Zatím jen zprávy o úspěšných pokusech s kvantovými prvky

#### Hluboce experimentální technologie

- Využití spinu pro realizaci paměťového prvku
- DNA Computing (Pattern Matching)

# Nové téma – digitální logika

- Digitální logika viz předmět LS, LOA
- Booleovské operace, Booleova algebra
- Tranzistory a digitální logika
- Základní hradla and, or, not
  - Implementace tranzistoru
  - Pravdivostní tabulky
- Komplexní logické obvody
- Kombinační logické systémy
- Paměťové prvky
- Taktování

## Digitální logika



#### Spolehlivost a robustnost

#### Šum v digitálních integrovaných obvodech

- Šum nežádoucí změny napětí a proudu na logických uzlech
- Mezi dvěma vodiči, umístěnými v těsné blízkosti



- kapacitní vazba
  - změna napětí na jednom vodiči ovlivňuje signál sousedního vodiče
  - přeslechy



- změna proudu v jednom vodiči ovlivňuje signál sousedního vodiče
- Sum napájení a zemí
  - může ovlivnit signálové úrovně v hradle





## Příklad kapacitní vazby

 Zákmity na signálovém vodiči o velikosti 80% napájecího napětí jsou běžné vlivem přeslechů mezi sousedními vodiči.

#### Přeslechy versus technologie



Černý vodič - v klidu —————
Červený vodič aktivní —————

Velikost špiček v závislosti na technologii



Dunlop, Lucent, 2000

#### Statické chování hradla

- Statické parametry hradla statické chování říkají, jak je obvod odolný vzhledem k variacím ve výrobním procesu a jak je závislý na šumu.
- Digitální obvody pracují s Booleovskými proměnnými x ∈{0,1}
- Logická proměnná je asociována s nominální napěťovou úrovní pro každou logickou hodnotu

$$1 \Leftrightarrow V_{OH} \text{ a } 0 \Leftrightarrow V_{OL}$$



Rozdíl mezi V<sub>OH</sub> a V<sub>OL</sub> je logický nebo signálový zdvih V<sub>sw</sub>

#### Převodní charakteristika hradla

Závislost výstupního napětí na vstupním napětí



#### Mapování logických úrovní do napěťové oblasti

Oblasti akceptovatelného vyššího a nižšího napětí jsou vymezeny hodnotami V<sub>IH</sub> a V<sub>IL</sub>, které reprezentují body na převodní charakteristice hradla se ziskem rovným -1.





## Odstup šumu

"Robustní" obvody vyžadují, aby intervaly pro "0" a "1" byly co možná nejširší



## Odstup šumu

 "Robustní" obvody vyžadují, aby intervaly pro "0" a "1" byly co možná nejširší



Požadují se široké pásy napětí, které se reprezentuje jako "0" nebo "1", ale nestačí to …

#### Vlastnost regenerace

Hradlo s vlastností regenerace zajištuje, že rušený signál konverguje zpět na nominální napěťové úrovně.



#### Podmínky regenerace



Aby hradlo bylo regenerativní, musí mít převodní charakteristika zisk v přechodové oblasti větší než 1 (v absolutní hodnotě) a tato oblast musí být omezena dvěma zónami, kde zisk je menší než 1. Takové hradlo má pak dva stabilní operační body.

#### Šumová imunita

- "Šumové pásy" vyjadřují schopnost obvodu "pohltit" šumový signál, generovaný zdrojem šumu
  - zdroje šumu: šum zdroje, přeslechy, interference, ss posun (offset)
- Absolutní hranice pro šum jsou klamné
  - vodiče bez buzení jsou snáze rušeny než linky, buzené zdrojem o nízké impedanci (míníme napěťové rušení)
- Šumová imunita vyjadřuje schopnost systému korektně přenášet a zpracovávat informace za přítomnosti šumu
- Pro správnou šumovou imunitu musí být signálový zdvih (rozdíl mezi V<sub>OH</sub> a V<sub>OL</sub>) a "šumové pásy" dostatečně široké, aby překryly vliv šumu.

#### **Směrovost**

- Hradlo musí být jednosměrné: změny výstupní úrovně nesmí ovlivňovat žádný vstup toho samého obvodu
  - V reálných obvodech je úplná jednosměrnost iluze (např. již kvůli zmíněným kapacitním vazbám mezi vstupem a výstupem)
- Klíčové metriky: výstupní impedance budiče a vstupní impedance vstupu
  - ideálně, výstupní impedance budiče je nulová a
  - vstupní impedance vstupu je nekonečná

## Logický zisk (Fan-In, Fan-Out)

- Fan-out počet hradel připojitelných k výstupu hradla
  - hradla s velkým logickým ziskem jsou pomalejší



- □ Fan-in počet vstupů hradla
  - hradla s velkým počtem vstupů jsou rozměrná a pomalejší

#### Ideální invertor

- Ideální hradlo by mělo mít
  - nekonečný zisk v přechodové oblasti
  - přepínací úroveň umístěnou ve středu logického zdvihu
  - horní a dolní pásy logických úrovní stejné a rovné polovině zdvihu
  - nulovou výstupní a nekonečnou vstupní impedanci



#### Ideální invertor

- Ideální hradlo by mělo mít
  - nekonečný zisk v přechodové oblasti
  - přepínací úroveň umístěnou ve středu logického zdvihu
  - horní a dolní pásy logických úrovní stejné a rovné polovině zdvihu
  - nulovou výstupní a nekonečnou vstupní impedanci



# Definice zpoždění



## Definice zpoždění



## Model zpoždění

Modelový obvod - RC člen 1. řádu



$$v_{out}(t) = (1 - e^{-t/\tau})V$$

$$kde \tau = RC$$

Doba potřebná pro dosažení 50% je rovna

$$t = ln(2) \tau = 0.69 \tau$$

Doba potřebná pro dosažení 90% je rovna

$$t = ln(9) \tau = 2.2 \tau$$

Odpovídá zpoždění hradla typu invertor

## Tranzistory & Digitální logika



hradlo NOT (Invertor)



| Α | Х |
|---|---|
| 0 | 1 |
| 1 | 0 |

Pravdivostní tabulka (funkční popis)

#### **Hradlo NAND**





| Α | В | Х |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

## Hradlo NOR





| A | В | Х |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

#### Hradla AND & OR





| A | В | Х |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

| A | В | X |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

# Integrované obvody



#### Invertory: Jednoduchý tranzistor. model



#### MOS tranzistor



Bulk contact

Řez NMOS tranzistorem

## CMOS invertor



#### Vlastnosti CMOS tranzistoru

- Plný zdvih (rail-to-rail) ⇒ vysoké hranice šumu
  - Logické úrovně nezávisí na relativní velikosti prvku ⇒ tranzistory mohou mít minimální rozměry ⇒ ratioless
- Jedna z cest k  $V_{dd}$  nebo ke GND je otevřena  $\Rightarrow$  nízká výstupní impedance (v řádu  $k\Omega$ )  $\Rightarrow$  velký "fan-out" (i když to vede k degradaci výkonu)
- Extrémně vysoká vstupní impedance (gate MOS tranzistoru je téměř perfektní izolátor) ⇒ téměř nulový vstupní proud v ustáleném stavu
- Žádná přímá cesta mezi napájením a zemí v ustáleném stavu 

  nulová statická výkonová ztráta
- Zpoždění je funkcí kapacity zátěže a odporu tranzistorů

#### Charakteristika NMOS tranzistoru



NMOS tranzistor, 0.25um,  $L_d = 0.25um$ , W/L = 1.5,  $V_{DD} = 2.5V$ ,  $V_T = 0.4V$ 

#### Charakteristika PMOS tranzistoru



PMOS tranzistor, 0.25um,  $L_d = 0.25um$ , W/L = 1.5,  $V_{DD} = 2.5V$ ,  $V_T = -0.4V$ 

#### Zatěžovací charakteristiky invertoru



## Hradla v technologii CMOS



Malý počet výkonných logických obvodů.



Lze postavit celý procesor pouze z hradel NAND?

#### Tranzistory – analogie s "vodními vlnami"

# Elektrony jako molekuly vody, kondenzátor jako nádoba ...

Otevřený p-FET plní kondenzátor nábojem



Otevřený n-FET vyprazdňuje nádobu





**UPA 2015** 

67

# Logický zisk



# "Logický zisk": Počet vstupů hradel buzených výstupem hradla.

Buzení více hradel zpomaluje přechod signálu. Buzení vodičů zpomaluje přechod signálu.

# Podrobnější náhled



# Grafy zpoždění signálu

· Cascaded gates:





## Intuice: Kritické cesty ...



x = g(a, b, c, d, e, f)

Přechod d 0->1 přepne x 0->1, zpoždění je T1. Přechod a 0->1 přepne x 0->1, zpoždění je T2.

# Proč? Vodiče také vykazují zpoždění

 Wires posses distributed resistance and capacitance



Vypadá neškodně, ale ...

 Time constant associated with distributed RC is proportional to the square of the length



 signals are typically "rebuffered" to reduce delay:



#### Operace Booleovy algebry

- 0 & 1: jediné hodnoty pro proměnné a funkce
   B = {0,1} se nazývají Booleovská čísla
- - Úplně definují Booleovskou funkci
  - n proměnných => 2<sup>n</sup> řádek v pravdivostní tabulce => 2<sup>2<sup>n</sup></sup> různých funkcí, protože 2<sup>n</sup> řádek mohu vyplnit právě tolika způsoby
    - Př.: Existuje 16 Booleovských funkcí dvou proměnných
  - Zkrácený zápis: uvedení řádek s nenulovým výstupem

#### Booleova Algebra

- Základní operátory: OR (součet), AND (součin), NOT
- Zákony Booleovy algebry:

| Name             | AND form                                      | OR form                                       |
|------------------|-----------------------------------------------|-----------------------------------------------|
| Identity law     | 1A = A                                        | 0 + A = A                                     |
| Null law         | 0A = 0                                        | 1 + A = 1                                     |
| Idempotent law   | AA = A                                        | A + A = A                                     |
| Inverse law      | $A\overline{A} = 0$                           | $A + \overline{A} = 1$                        |
| Commutative law  | AB = BA                                       | A + B = B + A                                 |
| Associative law  | (AB)C = A(BC)                                 | (A + B) + C = A + (B + C)                     |
| Distributive law | A + BC = (A + B)(A + C)                       | A(B+C) = AB + AC                              |
| Absorption law   | A(A + B) = A                                  | A + AB = A                                    |
| De Morgan's law  | $\overline{AB} = \overline{A} + \overline{B}$ | $\overline{A + B} = \overline{A}\overline{B}$ |

#### Ekvivalence obvodů





| Α | В | C | AB | AC | AB + AC |
|---|---|---|----|----|---------|
| 0 | 0 | 0 | 0  | 0  | 0       |
| 0 | 0 | 1 | 0  | 0  | 0       |
| 0 | 1 | 0 | 0  | 0  | 0       |
| 0 | 1 | 1 | 0  | 0  | 0       |
| 1 | 0 | 0 | 0  | 0  | 0       |
| 1 | 0 | 1 | 0  | 1  | 1       |
| 1 | 1 | 0 | 1  | 0  | 1       |
| 1 | 1 | 1 | 1  | 1  | 1       |

| A | В | С | Α | B+C | A(B + C) |
|---|---|---|---|-----|----------|
| 0 | 0 | 0 | 0 | 0   | 0        |
| 0 | 0 | 1 | 0 | 1   | 0        |
| 0 | 1 | 0 | 0 | 1   | 0        |
| 0 | 1 | 1 | 0 | 1   | 0        |
| 1 | 0 | 0 | 1 | 0   | 0        |
| 1 | 0 | 1 | 1 | 1   | 1        |
| 1 | 1 | 0 | 1 | 1   | 1        |
| 1 | 1 | 1 | 1 | 1   | 1        |

#### Kombinační logika

- Mnoho vstupů a mnoho výstupů
- Výstupy jsou jednoznačně určeny vstupy
- Absence paměťových prvků
- Neobsahuje zpětné vazby (skrytý paměťový prvek)
- Základní kombinační obvody
  - Multiplexery
  - Demultiplexery
  - Dekodéry
  - Komparátory (logické !)
  - Sčítačky

## Majoritní funce

M = f(A, B, C)

 $\mathbf{M} = \overline{\mathbf{A}}\mathbf{B}\mathbf{C} + \mathbf{A}\overline{\mathbf{B}}\mathbf{C} + \mathbf{A}\mathbf{B}\overline{\mathbf{C}} + \mathbf{A}\mathbf{B}\mathbf{C}$ 

| A | ß | O        | М          |
|---|---|----------|------------|
| Q | O | Q        | O          |
| Q | O | 7        | O          |
| O | - | Ö        | O          |
| 0 | - | <b>T</b> |            |
| 1 | 0 | Q        | 0          |
| - | O | 1        | $\bigcirc$ |
| 1 | 1 | 0        | $\odot$    |
| 1 | 1 | 1        | $\odot$    |



UPA 2015

77

## Multiplexer



#### Dekodér



## Komparátor (logický!!!)



# Dvouúrovňová logika



#### **PLA**

12 vstupů 6 výstupů

# Hodiny



#### Taktování hranou signálu



#### NOR SR Latch



# Taktovaný SR Latch



# Taktovaný D Latch



#### Hranový D-klopný obvod



## D flip-flop (D klopný obvod)





#### Závěr

- Vývoj technologie
- Organizace počítače intenzivně využívá pokroky technologie
- Digitální logika & Booleovská čísla
- Základní logická hradla a implementace
- Digitální logika nejnižší úroveň, kterou se v kurzu budeme zabývat
- Koncepce pravdivostních tabulek

## Závěr (pokr.)

#### Digitální logické obvody

- Postavené z prvků (AND, OR, NOT, …)
- Kombinační (jednoduché nebo komplexní)
- Sekvenční
  - synchronní (taktované)
  - asynchronní
- Zopakujte si pravidla Booleovy algebry !!!