

QUANTUM DISCOVERY

Superposition, entanglement, and interferences

PASQAL www.pasqal.com office@pasqal.com 7 rue Léonard de Vinci 91300 Massy France

Classical computing

Microprocessor chip

Central processing unit (CPU)

- A transistor is a physical realization of a bit
- CPUs are integrated circuits made of billions of transistors
- At processor level, programs are series of instructions in the form of logical operations (AND, OR, XOR, NOT, etc)

Quantum computing

Quantum processing unit (QPU)

Quantum processing units exploit three phenomena:

- Superposition: to describe the state of a quantum bit or an ensemble of quantum bits at any time
- Entanglement: to understand some special correlations quantum bits exhibit when they interact with each other
- Interference: to understand what is going on when acting on quantum bits either globally (i.e. analog quantum computing) or locally (i.e. digital quantum computing)

Neutral atom arrays

Classical bit

Superposition principle

Measurement

Superposition principle

Multiple qubits

Multiple qubits

Two quantum bits

Two quantum bits

Three classical bits

Three quantum bits

Memory space

N \rightarrow 2^N qubits bits

Separable state

Entangled state

Entangled state

Separable state

Entangled state

Entangled state

Physical interpretation

Hadamard H-gate

Bit-flip X-gate

C-NOT gate

Measurement

Quantum circuit - Quantum random number generator (QNRG)

Quantum circuit - Grover's search algorithm

Classical

4

tries

Quantum

1

try

Number	Bits
0	00
1	01
2	10
3	11

Number	Bits
0	00
1	01
2	10
3	11

Quantum circuit - Grover's search algorithm: Step 1 - Superposition

Quantum circuit - Grover's search algorithm: Step 1 - Superposition

Quantum circuit - Grover's search algorithm: Step 2 - Oracle

Quantum circuit - Grover's search algorithm: Step 2 - Oracle

Quantum circuit - Grover's search algorithm: Step 3 - Reflector

Quantum circuit - Grover's search algorithm: Step 3 - Reflector

Quantum circuit - Grover's search algorithm: Step 3 - Reflector

Quantum circuit - Grover's search algorithm: Step 4 - Measurement

Quantum circuit - Grover's search algorithm: Step 4 - Measurement

Quantum circuit - Grover's search algorithm: N-entries, M-target states

Conclusion

- → In quantum computing, a quantum bit or qubit is a basic unit of quantum information
 the quantum version of the classical binary bit
- → A qubit is a two-state (or two-level) quantum-mechanical system, one of the simplest quantum systems in quantum mechanics
- → Quantum mechanics allows the qubit to be in a coherent superposition of both states simultaneously
- → Operations on qubits modify the amplitudes, i.e. the coefficients in the superposition
- → At physical level, operations on qubits make quantum mechanical systems to interfere with each other
- → Starting from a uniform superposition of all possible configurations, a quantum algorithm implements a serie of interferences that makes the output state belonging to the set of the problem solution

