Representations of S_d Summer 2020 Reading Project

Matthew Kendall

June 25, 2020

Partitions

Definition

For a positive integer d, p(d) is the number of partitions of d: the number of solutions $(\lambda_1, \ldots, \lambda_k)$, $\lambda_1 \ge \cdots \ge \lambda_k \ge 1$ to $d = \lambda_1 + \cdots + \lambda_k$ over positive integers k.

Generating function of p(d)

The generating function of p(d) is

$$\sum_{d=0}^{\infty} p(d)t^{d} = (1+t+t^{2}+\cdots)(1+t^{2}+t^{4}+\cdots)(1+t^{3}+t^{6}+\cdots)\cdots$$

$$= \prod_{d=0}^{\infty} \left(\frac{1}{1-t^{n}}\right).$$

Example

Coefficient of t^3 is 3: partition 3 as (3), (2,1), (1,1,1), where the multiplicity c_i of i corresponds to choosing t^{ic_i} in factor i.

Matthew Kendall Representations of S_d June 25, 2020 2 / 24

The Young Diagram

To a partition $\lambda = (\lambda_1, \dots, \lambda_k)$ is associated a **Young diagram**:

Define a **tableau** on a Young diagram to be a numbering of the boxes by the integers $1, \ldots, d$. In this section, we will use the canonical numbering shown below:

1	2	3
4	5	
6	7	
8		

The Young Diagram

Given partition λ and a tableau, define two subgroups of S_d :

$$P_{\lambda} = \{g \in S_d : g \text{ preserves each row}\}$$

 $Q_{\lambda} = \{g \in S_d : g \text{ preserves each column}\}$

Introduce two elements a_{λ} and b_{λ} corresponding to P_{λ} and Q_{λ} in the group algebra $\mathbb{C}[S_d]$:

$$a_{\lambda} = \sum_{g \in P_{\lambda}} e_g$$
 and $b_{\lambda} = \sum_{g \in Q_{\lambda}} \operatorname{sgn}(g) \cdot e_g$.

• The Young tableau will be used to describe projection operators for the regular representation of S_d .

Matthew Kendall Representations of S_d June 25, 2020 4 / 24

$\mathbb{C}[S_d]$ acting on $V^{\otimes d}$

If λ is a partition of d, we first look at how a_{λ} and b_{λ} act on the space $V^{\otimes d}$, where V is any vector space.

ullet $\sigma \in \mathcal{S}_d$ acts on a basis of $V^{\otimes d}$ by

$$v_1 \otimes \cdots \otimes v_d \mapsto v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(d)},$$

and extending this action to $V^{\otimes d}$ linearly.

Proposition

The image of a_{λ},b_{λ} viewed as elements of $\operatorname{End}(V^{\otimes d})$ are isomorphic to

$$\operatorname{Im}(a_{\lambda}) \cong \operatorname{Sym}^{\lambda_1} V \otimes \operatorname{Sym}^{\lambda_2} V \otimes \cdots \otimes \operatorname{Sym}^{\lambda_k} V,$$

 $\operatorname{Im}(b_{\lambda}) \cong \Lambda^{\lambda_1} V \otimes \Lambda^{\lambda_2} V \otimes \cdots \otimes \Lambda^{\lambda_k} V.$

◆ロト ◆昼ト ◆差ト ◆差ト 差 めなべ

$\mathbb{C}[S_d]$ acting on $V^{\otimes d}$

Example

Suppose
$$d = 4$$
, $\lambda = (2,2)$: $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$.

Write $v_{1234} = v_1 \otimes v_2 \otimes v_3 \otimes \overline{v_4 \in V}^{\otimes 4}$. Then

$$a_{\lambda}v_{1234} = (e_1 + e_{(12)} + e_{(34)} + e_{(12)(34)})v_{1234}$$

= $v_{1234} + v_{2134} + v_{1243} + v_{2143} = (v_1 \otimes v_2 + v_2 \otimes v_1) \otimes (v_3 \otimes v_4 + v_4 \otimes v_3).$

These elements span $\operatorname{\mathsf{Sym}}^2 V \otimes \operatorname{\mathsf{Sym}}^2 V$. For $\operatorname{\mathsf{Im}} b_\lambda$,

$$b_{\lambda}v_{1234} = (e_1 - e_{(13)} - e_{(24)} + e_{(13)(24)})v_{1234} = v_{1234} - v_{3214} - v_{1432} + v_{3412},$$

which under the isomorphism $v_{1234} \mapsto v_{1324}$ becomes

$$v_{1324}-v_{3124}-v_{1342}+v_{3142}=(v_1\otimes v_3-v_3\otimes v_1)\otimes (v_2\otimes v_4-v_4\otimes v_2).$$

These elements span $\Lambda^2 V \otimes \Lambda^2 V$.

The Young Symmetrizer

Definition

The **Young symmetrizer** is $c_{\lambda} = a_{\lambda}b_{\lambda} \in \mathbb{C}[S_d]$.

Examples:

- When $\lambda=(d)$, b_{λ} fixes every element, so $c_{\lambda}=a_{\lambda}=\sum_{g\in S_d}e_g$.
- When $\lambda=(1,\ldots,1)$, a_{λ} fixes every element, so $c_{\lambda}=b_{\lambda}=\sum_{g\in S_d}\operatorname{sgn}(g)e_g.$

7 / 24

Matthew Kendall Representations of S_d June 25, 2020

The Big Theorem

We will focus on another action of $\mathbb{C}[S_d]$:

• $\mathbb{C}[S_d]$ acts on itself by right multiplication.

Theorem

Some scalar multiple of c_{λ} is idempotent, i.e., $c_{\lambda}^2 = n_{\lambda}c_{\lambda}$, and the image of c_{λ} by right multiplication on $\mathbb{C}[S_d]$ is an irreducible representation V_{λ} of S_d . Every irreducible reresentation of S_d can be obtained from a partition λ in this way.

- This theorem tells us that there is a direct correspondance between conjugacy classes in S_d and irreducible representations of S_d .
- To be proved in the next lecture!

Matthew Kendall Representations of S_d June 25, 2020 8 / 24

Example: S_3

Recall that for a fixed irreducible representation W and a representation V, the projection map

$$\dim W \cdot \frac{1}{|G|} \sum_{g \in G} \overline{\chi_W(g)} \cdot g : V \to V$$

projects V onto the direct sum of copies of W appearing in V ([F-H] equation 2.31).

- Think of c_{λ} as a projection operator for the regular representation $\mathbb{C}[S_d]$ onto the representation $V_{\lambda} = \mathbb{C}[S_d]c_{\lambda}$.
- $\lambda=$ (3) corresponds to the trivial representation U: $c_{\lambda}=\sum_{g\in S_3}e_g$, $c_{\lambda}^2=6c_{\lambda}$, and

$$V_{(3)} = \mathbb{C}[S_3] \cdot \sum_{g \in S_3} e_g = \mathbb{C} \cdot \sum_{g \in S_3} e_g$$

• $\lambda = (1,1,1)$ corresponds to the alternating representation U': $c_{\lambda} = \sum_{g \in S_3} \operatorname{sgn}(g) e_g$, $c_{\lambda}^2 = 6c_{\lambda}$, and

$$V_{(1,1,1)} = \mathbb{C}[S_3] \cdot \sum_{g \in S_3} \operatorname{sgn}(g) e_g = \mathbb{C} \cdot \sum_{g \in S_3} \operatorname{sgn}(g) e_g$$

Matthew Kendall Representations of S_d June 25, 2020 9 / 24

Example: S_3

 $oldsymbol{\circ}$ $\lambda=(2,1)$ corresponds to the standard representation V: In the block

 $c_{\lambda}=a_{\lambda}b_{\lambda}=(e_1+e_{(12)})(e_1-e_{(13)})=1+e_{(12)}-e_{(13)}-e_{(132)},\ c_{\lambda}^2=3c_{\lambda}.$ For the basis $\{1,(12),(13),(23),(123),(132)\}$, the matrix of c_{λ} is

$$\begin{bmatrix} 1 & 1 & -1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 & 0 & -1 \\ -1 & -1 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 & 1 & -1 \\ -1 & -1 & 0 & 1 & 0 & 1 \end{bmatrix}.$$

Columns 1 and 3 form a basis for the column space, so the basis of the image $V_\lambda=\mathbb{C}[S_3]c_\lambda$ is

$$e_1 + e_{(12)} - e_{(13)} - e_{(132)}$$
 and $-e_1 + e_{(13)} - e_{(23)} + e_{(123)}$.

 $\dim V_{\lambda}=2,$ and assuming V_{λ} is irreducible, it must be the standard representation V.

• Note c_{λ} projects $\mathbb{C}[S_d]$ onto *one* copy of V, unlike the projection formula.

Notation for Frobenius Formula

Now we talk about Frobenius's formula for the charater χ_{λ} of V_{λ} .

- $\lambda = (\lambda_1, \dots, \lambda_k)$ be a partition of d.
- k is the number of rows in the Young Diagram of λ .
- C_i is the conjugacy class in S_d formed by i_1 1-cycles, i_2 2-cycles, ..., and i_d d-cycles.
- The character of V_{λ} on $C_{\mathbf{i}}$ is written $\chi_{\lambda}(C_{\mathbf{i}})$.
- $P_j(\mathbf{x}) = x_1^j + x_2^j + \dots + x_k^j$ is the **power sum**.
- $\Delta(\mathbf{x}) = \prod_{1 \le i \le j \le k} (x_i x_j)$ is the **discriminant**.
- If $f(x_1, ..., x_k)$ is a formal power series, let $[f(\mathbf{x})]_{(l_1, ..., l_k)}$ be the coefficient of $x_1^{l_1} \cdots x_k^{l_k}$ in f.
- For the partition λ and an $1 \le i \le k$, let $l_i = \lambda_i + k i$. Since $\lambda_1 \ge \cdots \ge \lambda_k$, the l_i are a strictly decreasing sequence of k nonnegative integers.

4□ > 4□ > 4□ > 4□ > 4□ > 9

Frobenius's Formula

The Frobenius Formula

On the conjugacy class C_i of S_d , the character of V_{λ} on C_i is

$$\chi_{\lambda}(C_{\mathbf{i}}) = \left[\Delta(\mathbf{x}) \cdot \prod_{1 \leq j \leq d} P_{j}(\mathbf{x})^{i_{j}}\right]_{(h, \dots, h)}.$$

Matthew Kendall Representations of S_d June 25, 2020 12 / 24

The Frobenius Formula

$$\chi_{\lambda}(C_{\mathbf{i}}) = \left[\Delta(\mathbf{x}) \cdot \prod_{1 \leq j \leq d} P_{j}(\mathbf{x})^{i_{j}}\right]_{(I_{1}, \dots, I_{k})}$$

Example

The 2 \times 2 block corresponding to d=4, $\lambda=(2,2)$, and C_i is the conjugacy class of (12)(34).

- $\mathbf{i} = (i_1, i_2, i_3, i_4, i_5) = (0, 2, 0, 0, 0).$
- $\lambda = (\lambda_1, \lambda_2) = (2, 2)$.
- k = 2 because there are two rows in the Young tableau.
- $P_i(x) = x_1^j + x_2^j$.
- $\bullet \ \Delta(\mathbf{x}) = (x_1 x_2).$
- $(I_1, I_2) = (2+2-1, 2+2-2) = (3, 2).$

By Frobenius' formula,

$$\chi_{\lambda}(C_{i}) = \left[(x_{1} - x_{2})(x_{1}^{2} + x_{2}^{2})^{2} \right]_{(3,2)} = 1 \cdot 2 = 2 = \chi_{W}((12)(34)).$$

This is the character of the irrep W in the character table of S_4 .

Computing dim V_{λ}

We compute dim V_{λ} as an application of the Frobenius formula.

Vandermonde determinant

For variables x_1, \ldots, x_k , the matrix

$$V = \begin{bmatrix} 1 & x_k & \cdots & x_k^{k-1} \\ \vdots & \vdots & & \vdots \\ 1 & x_1 & \cdots & x_1^{k-1} \end{bmatrix}$$

is called the Vandermonde matrix. We have

$$\det V = \prod_{1 \le i \le j \le k} (x_i - x_j) = \Delta(\mathbf{x}).$$

Matthew Kendall Representations of S_d June 25, 2020 14 / 24

Vandermonde Determinant

Proof.

Let det $V=f(x_1,\ldots,x_k)$. f contains products of terms from each column, so all terms have degree $0+1+\cdots+(k-1)=k(k-1)/2$. If $x_i=x_j,\ i\neq j$, then det V=0, so $(x_i-x_j)|f$. Write

$$f = Q \prod_{1 \le i < j \le k} (x_i - x_j)$$

for some polynomial Q. Degree of terms in f is k(k-1)/2, so Q is constant. Product of diagonal entries in det V is $1 \cdot x_{k-1} \cdot x_{k-2}^2 \cdots x_1^{k-1}$, which is also obtained from the first term of each factor in the product, so Q = 1. This suffices for the proof.

90° € (€) (E) (B) (B)

Matthew Kendall Representations of S_d June 25, 2020 15 / 24

Computing dim V_{λ}

The conjugacy class of the identity corresponds to $\mathbf{i} = (d, 0, \dots, 0)$, so using the Frobenius formula,

$$\dim V_{\lambda} = \chi_{\lambda}(C_{\mathbf{i}}) = [\Delta(\mathbf{x}) \cdot (x_{1} + \dots + x_{k})^{d}]_{(I_{1}, \dots, I_{k})}$$

$$= \left[\det V \cdot \sum_{r_{1} + \dots + r_{k} = d} \frac{d!}{r_{1}! \cdots r_{k}!} x_{1}^{r_{1}} x_{2}^{r_{2}} \cdots x_{k}^{r_{k}}\right]_{(I_{1}, \dots, I_{k})}$$

$$= \left[\sum_{\sigma \in S_{k}} (\operatorname{sgn} \sigma) x_{k}^{\sigma(1) - 1} \cdots x_{1}^{\sigma(k) - 1} \cdot \sum_{r_{1} + \dots + r_{k} = d} \frac{d!}{r_{1}! \cdots r_{k}!} x_{1}^{r_{1}} x_{2}^{r_{2}} \cdots x_{k}^{r_{k}}\right]_{(I_{1}, \dots, I_{k})}$$

 $\dim V_{\lambda} = \chi_{\lambda}(C_{\mathbf{i}}) = [\Delta(\mathbf{x}) \cdot (x_1 + \dots + x_k)^d]_{(l_1,\dots,l_k)}$

Pick $\sigma(k) - 1 x_1$'s from first sum, $\sigma(k-1) - 1 x_2$'s from second sum, and so on so that $r_i = l_i - \sigma(k+1-i) + 1$.

Matthew Kendall Representations of S_d June 25, 2020 16 / 24

Computing dim V_{λ}

The coefficient of $x_1^{l_1} \cdots x_k^{l_k}$ is

$$\sum_{\sigma}\operatorname{sgn}\sigma\cdot\frac{d!}{(\mathit{l}_{1}-\sigma(\mathit{k})+1)!\cdots(\mathit{l}_{\mathit{k}}-\sigma(1)+1)!}$$

for $\sigma \in S_k$ such that $I_j - \sigma(k+1-j) + 1 \ge 0$. This becomes

$$=\frac{d!}{l_1!\cdots l_k!}\sum_{\sigma}\operatorname{sgn}(\sigma)\cdot\frac{l_1!\cdots l_k!}{(l_1-\sigma(k)+1)!\cdots(l_k-\sigma(k)+1)!}$$

$$= \frac{d!}{l_1! \cdots l_k!} \sum_{\sigma} \operatorname{sgn}(\sigma) \cdot \prod_{j=1}^k l_j (l_j - 1) \cdots (l_j - \sigma(k) + 2)$$

$$= \frac{d!}{l_1! \cdots l_k!} \det \begin{bmatrix} 1 & l_k & l_k(l_k - 1) & l_k(l_k - 1)(l_k - 2) & \cdots \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & l_1 & l_1(l_1 - 1) & l_1(l_1 - 1)(l_1 - 2) & \cdots \end{bmatrix}$$

$$= \frac{d!}{l_1! \cdots l_k!} \prod_{1 \le i \le k} (l_i - l_j).$$
 (column reduction)

The dim V_{λ} Formula

Frobenius formula for dim V_{λ}

$$\dim V_{\lambda} = \frac{d!}{l_1! \cdots l_k!} \prod_{i < j} (l_i - l_j).$$

Example

For d=8, $\lambda=(3,2,2,1)$, $(\mathit{l}_{1},\mathit{l}_{2},\mathit{l}_{3},\mathit{l}_{4})=(6,4,3,1)$,

we have

$$\dim V_{\lambda} = \frac{8!}{6!4!3!1!}(6-1)(6-3)(6-4)(4-1)(4-3)(3-1) = 70.$$

Matthew Kendall Representations of S_d June 25, 2020 18 / 24

Hook Length Formula

The **hook length** of a box in a Young diagram is the number of squares directly below or directly to the right of the box.

6	4	1
4	2	
3	1	
1		

Hook length formula

$$\dim V_{\lambda} = \frac{d!}{\prod (\mathsf{Hook}\;\mathsf{lengths})}.$$

Using the same example:

$$\frac{8!}{6\cdot 4\cdot 4\cdot 2\cdot 3}=70.$$

• To be proven from the Frobenius formula.

Exercise 4.19

If V is the standard representation of S_d , prove the decomposition into irreducible representations:

$$\operatorname{\mathsf{Sym}}^2 V \cong U \oplus V \oplus V_{(d-2,2)},$$

$$V \otimes V = \operatorname{\mathsf{Sym}}^2 V \oplus \Lambda^2 V \cong U \oplus V \oplus V_{(d-2,2)} \oplus V_{(d-2,1,1)}.$$

Solution

We will do the first one. Suffices to show for any $g \in S_d$,

$$\chi_{\text{Sym}^2 V}(g) = \chi_U(g) + \chi_V(g) + \chi_{V_{(d-2,2)}}(g).$$

Let g be in conjugacy class C_i , $i = (i_1, \ldots, i_d)$, i_j j-cycles. Use Frobenius formula for $\lambda = (d-2,2)$, $(l_1,l_2) = (d-2+2-1,2+2-2) = (d-1,2)$:

$$\chi_{V_{(d-2,2)}}(C_{\mathbf{i}}) = \left[(x_1 - x_2)(x_1 + x_2)^{i_1}(x_1^2 + x_2^2)^{i_2} \cdots (x_1^d + x_2^d)^{i_d} \right]_{(d-1,2)}.$$

 $\langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$ Matthew Kendall Representations of S_d June 25, 2020 20 / 24

Solution

To get coefficient of (d-1,2) term, we can choose the x_2^2 term in the first factor and second factor in $(-1)i_1$ ways, second factor twice in $\binom{i_1}{2}$ ways, or third factor in i_2 ways, so

$$\chi_{V_{(d-2,2)}}(g) = -i_1 + {i_1 \choose 2} + i_2.$$

Since g fixes i_1 points and g^2 fixes $i_1 + 2i_2$ points, we compute

$$\chi_{V}(g) = \chi_{\mathbb{C}^{d}}(g) - \chi_{U}(g) = i_{1} - 1,$$

 $\chi_{V}(g^{2}) = \chi_{\mathbb{C}^{d}}(g^{2}) - \chi_{U}(g^{2}) = i_{1} + 2i_{2} - 1.$

Finally, check that

$$\chi_{\text{Sym}^2 V}(g) = \frac{1}{2} (\chi_V(g)^2 + \chi_V(g^2)) = \frac{1}{2} ((i_1 - 1)^2 + (i_1 + 2i_2 - 1))$$
$$= \chi_U(g) + \chi_V(g) + \chi_{V_{(d-2,2)}}(g).$$

4 D > 4 A > 4 B > 4 B > B 9 9 9

Matthew Kendall Representations of S_d June 25, 2020 21 / 24

Exercise 4.13

Deduce the hook-length formula from the Frobenius Formula.

Solution

We induct on the number of columns in the Young diagram of $\lambda = (\lambda_1, \dots, \lambda_k)$. For a Young diagram D with k rows, let Π_D be the product of the hook lengths in D. Suffices to show

$$\Pi_D \cdot \prod_{i < j} (l_i - l_j) = l_1! \cdots l_k!. \tag{*}$$

Note that $l_i = \lambda_i + k - i$ is the hook length of leftmost entry in row i. Base case. 1 column and k rows, $l_i = (k+1) - i$, $\Pi_D = l_1 \cdots l_k$,

$$\Pi_{D} \cdot \prod_{1 \leq i < j \leq k} (l_{i} - l_{j}) = l_{1} \cdots l_{k} \cdot \prod_{i=1}^{k-1} (l_{i} - l_{i+1}) \cdots (l_{i} - l_{k})$$

$$= k(k-1) \cdots 1 \cdot \prod_{i=1}^{k-1} (k+1-i-1)! = l_{1}! l_{2}! \cdots l_{k}!.$$

4□ > 4□ > 4 = > 4 = > = 90

Matthew Kendall Representations of S_d June 25, 2020 22 / 24

Solution

Inductive step. Assume (*) works for $c \ge 1$ columns and k rows. Consider Young diagram D with c+1 columns, $\lambda_1, \ldots, \lambda_r > 1$, $\lambda_{r+1}, \ldots, \lambda_k = 1$. Note that for $r < j \le k$, $l_i = \lambda_j + k - j = (k+1) - j$.

Let D' be diagram created from columns $2, \ldots, c+1$ of D. In first column of D', there are r entries, and entry j has hook length $l_j - (k-r) - 1$. The rest is algebra:

$$\Pi_{D} \cdot \prod_{1 \leq i < j \leq k} (l_{i} - l_{j}) = l_{1} \cdots l_{k} \Pi_{D'} \cdot \prod_{i \leq r} (l_{i} - l_{i+1}) \cdots (l_{i} - l_{r}) (l_{i} - (k - r)) \cdots (l_{i} - 1)
\cdot \prod_{r < i \leq k} (l_{i} - l_{i+1}) \cdots (l_{i} - l_{k})
= \left[\prod_{i \leq r} l_{i} (l_{i} - 1) \cdots (l_{i} - k + r) \right] l_{r+1}! \cdots l_{k}! \cdot \left[\Pi_{D'} \prod_{1 \leq i < j \leq r} ((l_{i} - (k - r)) - (l_{j} - (k - r))) \right]
= \left[\prod_{i \leq r} (l_{i} - 1) \cdots (l_{i} - k + r) \right] l_{r+1}! \cdots l_{k}! \cdot \left[(l_{1} - (k - r) - 1)! \cdots (l_{r} - (k - r) - 1)! \right]
= l_{1}! \cdots l_{r}! l_{r+1}! \cdots l_{k}!.$$

4 D > 4 A > 4 B > 4 B > B = 900

References

• W. Fulton and J. Harris, Representation Theory: A First Course, Springer Science+Business Media, Inc., New York, 2004.

Matthew Kendall Representations of S_d June 25, 2020 24 / 24