PROBABILISTIC MACHINE LEARNING LECTURE 22 SUMMARY AND CLEANUP

Philipp Hennig 17 July 2023

UNIVERSITAT TUBINGEN

FACULTY OF SCIENCE
DEPARTMENT OF COMPUTER SCIENCE
CHAIR FOR THE METHODS OF MACHINE LEARNING

The course so far Intermediate summary, more to come in the final lectures

Probabilities: the language of reasoning under uncertainty

Lectures 1-3

- ▶ We can describe all inference tasks by assigning **probabilities**, (or, for continuous variables probability density functions) jointly to all variables in the problem.
- Probabilities and pdfs satisfy "the rules of probability":

$$\int_{\mathbb{R}^d} p(x) dx = 1$$

$$p_{X_1}(x_1) = \int_{\mathbb{R}} p_X(x_1, x_2) dx_2$$

$$p(x_1 \mid x_2) = \frac{p(x_1, x_2)}{p(x_2)}$$

$$p(x_1 \mid x_2) = \frac{p(x_1) \cdot p(x_2 \mid x_1)}{\int p(x_1) \cdot p(x_2 \mid x_1) dx_1}$$

sum rule

product rule

Bayes' Theorem.

Definition (Exponential Family, simplified form)

Consider a random variable X taking values $x \in \mathbb{X} \subset \mathbb{R}^n$. A probability distribution for X with pdf of the functional form

$$p_w(x) = h(x) \exp\left[\phi(x)^{\mathsf{T}} w - \log Z(w)\right] = \frac{h(x)}{Z(w)} e^{\phi(x)^{\mathsf{T}} w} = p(x \mid w)$$

is called an **exponential family** of probability measures. The function $\phi: \mathbb{X} \to \mathbb{R}^d$ is called the **sufficient** statistics. The parameters $w \in \mathbb{R}^d$ are the natural parameters of p_w . The normalization constant $Z(w): \mathbb{R}^d \to \mathbb{R}$ is the partition function. The function $h(x): \mathbb{X} \to \mathbb{R}_+$ is the base measure. For notational convenience, it can be useful to re-parametrize the natural parameters w as $w := \eta(\theta)$ in terms of canonical parameters θ .

Exponential Families: typed reasoning

Lectures 4-

Exponential Families have Conjugate Priors

- ► Consider the exponential family $p_w(x \mid w) = h(x) \exp \left[\phi(x)^\mathsf{T} w \log Z(w)\right]$
- ▶ its conjugate prior is the exponential family $F(\alpha, \nu) = \int \exp(\alpha^{\mathsf{T}} w \nu \log Z(w)) dw$

$$p_{\alpha}(w \mid \alpha, \nu) = \exp\left[\binom{w}{-\log Z(w)}^{\mathsf{T}} \binom{\alpha}{\nu} - \log F(\alpha, \nu)\right]$$
 because
$$p_{\alpha}(w \mid \alpha, \nu) \prod_{i=1}^{n} p_{w}(x_{i} \mid w) \propto p_{\alpha} \left(w \mid \alpha + \sum_{i} \phi(x_{i}), \nu + n\right)$$

and the predictive is

$$p(x) = \int p_w(x \mid w) p_\alpha(w \mid \alpha, \nu) dw = h(x) \int e^{(\phi(x) + \alpha)^{\mathsf{T}} w + (\nu + 1) \log Z(w) - \log F(\alpha, \nu)} dw$$
$$= h(x) \frac{F(\phi(x) + \alpha, \nu + 1)}{F(\alpha, \nu)}$$

Computing $F(\alpha, \nu)$ can be tricky. In general, this is **the** challenge when constructing an EF.

Gaussians: Inference as Linear Algebra

Lectures 5-

products of Gaussians are Gaussians

$$\mathcal{N}(x; a, A) \mathcal{N}(x; b, B)$$

$$= \mathcal{N}(x; c, C) \mathcal{N}(a; b, A + B)$$

$$C := (A^{-1} + B^{-1})^{-1} \quad c := C(A^{-1}a + B^{-1}b)$$

▶ linear projections of Gaussians are Gaussians

$$\begin{aligned} p(z) &= \mathcal{N}(z; \mu, \Sigma) \\ \Rightarrow & p(Az) &= \mathcal{N}(Az, A\mu, A\Sigma A^{\mathsf{T}}) \end{aligned}$$

marginals of Gaussians are Gaussians

$$\int \mathcal{N} \left[\begin{pmatrix} \mathbf{X} \\ \mathbf{y} \end{pmatrix}; \begin{pmatrix} \mu_{\mathbf{X}} \\ \mu_{\mathbf{y}} \end{pmatrix}, \begin{pmatrix} \Sigma_{\mathbf{XX}} & \Sigma_{\mathbf{XY}} \\ \Sigma_{\mathbf{yX}} & \Sigma_{\mathbf{yy}} \end{pmatrix} \right] \, \mathrm{d}\mathbf{y} = \mathcal{N}(\mathbf{X}; \mu_{\mathbf{X}}, \Sigma_{\mathbf{XX}})$$

▶ (linear) conditionals of Gaussians are Gaussians

$$p(x \mid y) = \frac{p(x, y)}{p(y)}$$

$$= \mathcal{N}\left(x; \mu_x + \Sigma_{xy}\Sigma_{yy}^{-1}(y - \mu_y), \Sigma_{xx} - \Sigma_{xy}\Sigma_{yy}^{-1}\Sigma_{yx}\right)$$

Bayesian inference becomes linear algebra

$$\begin{split} &\text{If } p(x) = \mathcal{N}(x; \mu, \Sigma) \qquad \text{and} \qquad p(y \mid x) = \mathcal{N}(y; A^\mathsf{T} x + b, \Lambda), \text{ then} \\ &p(B^\mathsf{T} x + c \mid y) = \mathcal{N}[B^\mathsf{T} x + c; B^\mathsf{T} \mu + c + B^\mathsf{T} \Sigma A (A^\mathsf{T} \Sigma A + \Lambda)^{-1} (y - A^\mathsf{T} \mu - b), B^\mathsf{T} \Sigma B - B^\mathsf{T} \Sigma A (A^\mathsf{T} \Sigma A + \Lambda)^{-1} A^\mathsf{T} \Sigma B] \end{split}$$

prior
$$p(w) = \mathcal{N}(w; \mu, \Sigma) \Rightarrow p(f) = \mathcal{N}(f_x; \phi_x^\mathsf{T} \mu, \phi_x \Sigma \phi_x)$$

likelihood $p(y \mid w, \phi_X) = \mathcal{N}(y; \phi_x^\mathsf{T} w, \sigma^2 l) = \mathcal{N}(y; f_x, \sigma^2 l)$
posterior on \mathbf{w} $p(w \mid \mathbf{y}, \phi_X) = \mathcal{N}(w; \mu + \Sigma \phi_X (\phi_X^\mathsf{T} \Sigma \phi_X + \sigma^2 l)^{-1} (\mathbf{y} - \phi_X^\mathsf{T} \mu),$
 $\Sigma - \Sigma \phi_X (\phi_X^\mathsf{T} \Sigma \phi_X + \sigma^2 l)^{-1} \phi_X^\mathsf{T} \Sigma)$
 $= \mathcal{N}\left(w; (\Sigma^{-1} + \sigma^{-2} \phi_X \phi_X^\mathsf{T})^{-1} \left(\Sigma^{-1} \mu + \sigma^{-2} \phi_X \mathbf{y}\right),$
 $(\Sigma^{-1} + \sigma^{-2} \phi_X \phi_X^\mathsf{T})^{-1}\right)$
posterior on f $p(f_x \mid \mathbf{y}, \phi_X) = \mathcal{N}(f_x; \phi_X^\mathsf{T} \mu + \phi_X^\mathsf{T} \Sigma \phi_X (\phi_X^\mathsf{T} \Sigma \phi_X + \sigma^2 l)^{-1} (\mathbf{y} - \phi_X^\mathsf{T} \mu),$
 $\phi_X^\mathsf{T} \Sigma \phi_X - \phi_X^\mathsf{T} \Sigma \phi_X (\phi_X^\mathsf{T} \Sigma \phi_X + \sigma^2 l)^{-1} \phi_X^\mathsf{T} \Sigma \phi_X)$
 $\mathcal{N}\left(f_x; \phi_x (\Sigma^{-1} + \sigma^{-2} \phi_X \phi_X^\mathsf{T})^{-1} \left(\Sigma^{-1} \mu + \sigma^{-2} \phi_X \mathbf{y}\right),$
 $\phi_X (\Sigma^{-1} + \sigma^{-2} \phi_X \phi_X^\mathsf{T})^{-1} \phi_X^\mathsf{T}\right)$

$$\begin{split} p(f(\bullet) \mid \mathbf{w}) &= \mathcal{N}(f(\bullet); \phi(\bullet)^{\mathsf{T}} \mathbf{w}, \sigma l) \\ p(f(\bullet)) &= \int p(f(\bullet) \mid \mathbf{w}) p(\mathbf{w}) \, \mathrm{d} \mathbf{w} \\ &= \mathcal{N}(f(\bullet); \phi(\bullet)^{\mathsf{T}} \mu, \phi(\bullet)^{\mathsf{T}} \Sigma \phi(\circ) + \sigma l) \end{split}$$

using the abstraction / encapsulation

$$\begin{array}{ll} m(\bullet) := \phi(\bullet)^{\mathsf{T}} \mu & m : \mathbb{X} \to \mathbb{R} & \text{mean function} \\ k(\bullet, \circ) := \phi(\bullet)^{\mathsf{T}} \Sigma \phi(\circ) & k : \mathbb{X} \times \mathbb{X} \to \mathbb{R} & \text{covariance function, aka. kernel} \end{array}$$

Algorithm 1 Linear Algebra for/as Gaussian (process) inference – efficient data-loading and book-keeping

```
Input: sufficient statistics K = k_{XX} + \sigma^2 l, \bar{y} = y - \mu_X, initial guesses \alpha_0, C_0
Output: defragmented statistics S, C_i, \alpha_i
    1 procedure Train(K, v, C_0 = 0, \alpha_0 = 0)
              for i \in \{1, \ldots, n\} do
                                                                                                                                                                                    /\!\!/ Action – load, \mathbf{s}_i \in \mathbb{R}^{N \times k_i}
                                                                                                                                                                     /\!\!/ Observation – compute, \mathbf{z}_i \in \mathbb{R}^{N \times k_i}
                  d_i \leftarrow (I - C_{i-1}K)s_i = s_i - C_{i-1}z_i
                                                                                                                                                                                  /\!\!/ low-rank update, \mathbf{d}_i \in \mathbb{R}^{N \times k_i}
            \begin{array}{c|c} H_i \leftarrow \mathbf{s}_i^\top K d_i = \mathbf{z}_i^\top d_i \\ C_i \leftarrow C_{i-1} + d_i H_i^{-1} d_i^\top \\ \alpha_i \leftarrow C_i \mathbf{y} = \alpha_{i-1} + d_i H_i^{-1} d_i^\top \overline{\mathbf{y}} \end{array} 
                                                                                                                                                                            /\!\!/ Schur complement, H_i \in \mathbb{R}^{k_i \times k_i}
                                                                                                                                                                                                     // Inverse estimate
                                                                                                                                                                                                   // Solution Estimate
              end for
              return S = [s_i]_{i < i}, \alpha_i, C_i
  11 end procedure
   12 procedure PREDICT(x, S, \alpha, C)
       k_{vs} \leftarrow k[x, S]
                                                                                                                                                                                     // Covariance to Observations
                                                                                                                                                                                                        // Point estimate
                                                                                                                                                                                                             // Uncertainty
   16 end procedure
```

$$p(f) = \mathcal{GP}(f; m, k) \quad p(y \mid f_x) = \sigma(yf_x) = \begin{cases} \sigma(f) & \text{if } y = 1 \\ 1 - \sigma(f) & \text{if } y = -1 \end{cases} \quad \text{using } \sigma(x) = 1 - \sigma(-x).$$

Find maximum posterior probability for **latent** *f* at **training points**

$$\hat{\mathbf{f}} = \arg\max\log p(\mathbf{f}_X \mid y)$$

► Assign approximate Gaussian posterior at training points

$$q(f_X) = \mathcal{N}(f_X; \hat{\boldsymbol{f}}, -(\nabla \nabla^{\mathsf{T}} \log p(f_X \mid \boldsymbol{y})|_{f_Y = \hat{\boldsymbol{f}}})^{-1}) =: \mathcal{N}(f_X; \hat{\boldsymbol{f}}, \hat{\boldsymbol{\Sigma}})$$

 \triangleright approximate posterior **predictions** at f_x for **latent function**

$$q(f_X \mid y) = \int p(f_X \mid f_X)q(f_X) df_X = \int \mathcal{N}(f_X; m_X + k_{XX}K_{XX}^{-1}(f_X - m_X), k_{XX} - k_{XX}K_{XX}^{-1}k_{XX})q(f_X) df_X$$

= $\mathcal{N}(f_X; m_X + k_{XX}K_{XX}^{-1}(\hat{f} - m_X), k_{XX} - k_{XX}K_{XX}^{-1}k_{XX} + k_{XX}K_{XX}^{-1}\hat{\Sigma}K_{XX}^{-1}k_{XX})$

compute predictions for label probabilities:

Deep Learning: Any deep network as a GP

Laplace approximations as a general too

1. Realise that the loss is a **negative log-posterior**

$$\mathcal{L}(\boldsymbol{\theta}) = \left(\frac{1}{N} \sum_{i=1}^{N} \underbrace{\ell(y_i; f(x_i, \boldsymbol{\theta}))}_{\text{empirical risk}} + \underbrace{r(\boldsymbol{\theta})}_{\text{regularizer}}\right) = -\sum_{i=1}^{N} \log p(\boldsymbol{y} \mid \boldsymbol{\theta}) - \log p(\boldsymbol{\theta}) = -\log p(\boldsymbol{\theta} \mid \boldsymbol{y}) + \text{const.}$$

- 2. Train the deep net as usual to find $\theta_* = \arg \max_{\theta \in \mathbb{R}^0} p(\theta \mid y)$
- 3. At θ_* , compute a Laplace approximation of the log-posterior, with $\Psi := \nabla \nabla^\intercal \log p(\theta_* \mid y)$

$$\log p(\boldsymbol{\theta} \mid \boldsymbol{y}) + \text{const.} = \mathcal{L}(\boldsymbol{\theta}) \approx \mathcal{L}(\boldsymbol{\theta}_*) + \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}_*)^{\mathsf{T}} \Psi(\boldsymbol{\theta} - \boldsymbol{\theta}_*) = \log \mathcal{N}(\boldsymbol{\theta}; \boldsymbol{\theta}_*, -\Psi^{-1})$$

4. Linearize $f(x, \theta)$ around θ_* , with $[J(x)]_{ij} = \frac{\partial f_i(x, \theta_*)}{\partial \theta_j}$ as $f(x, \theta) \approx f(x, \theta_*) + J(x, \theta_*)(\theta - \theta_*)$

thus
$$p(f(\bullet) \mid \mathcal{D}) = \int p(f \mid w) \, dp(w) \approx \mathcal{GP}(f(\bullet); f(\bullet, \boldsymbol{\theta}_*), -J(\bullet)\Psi^{-1}J(\circ))$$
 with
$$\mathbb{E}(f(\bullet)) = f(\bullet, \boldsymbol{\theta}_*) \qquad \text{the trained net as the mean function}$$

$$\operatorname{cov}(f(\bullet), f(\circ)) = -J(\bullet)\Psi^{-1}J(\circ)^\mathsf{T} \qquad \text{the Laplace tangent kernel as the covariance function}$$

Markov Chains: $\mathcal{O}(T)$ inference in time series

Assume:

$$p(x_t \mid X_{0:t-1}) = p(x_t \mid x_{t-1})$$

and $p(y_t \mid X) = p(y_t \mid x_t)$

$$p(x_{t}|Y_{1:t-1}) = \int p(x_{t}|x_{t-1})p(x_{t-1}|Y_{1:t-1})dx_{t-1}$$

$$p(x_{t}|Y_{0:t}) = \frac{p(y_{t}|x_{t})p(x_{t}|Y_{0:t-1})}{\int p(y_{t}|x_{t})p(x_{t}|Y_{0:t-1})dx_{t}}$$

$$p(x_{t}|Y) = p(x_{t}|Y_{0:t}) \int p(x_{t+1}|x_{t}) \frac{p(x_{t+1}|Y)}{p(x_{t+1}|Y_{1:t})}dx_{t+1}$$

The Toolbox

Framework:

$$\int p(x_1,x_2)\,dx_2=p(x_1)$$

$$p(x_1, x_2) = p(x_1 \mid x_2)p(x_2)$$

$$p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)}$$

Modelling:

- ► Directed Graphical Models
- ► Exponential Families (also as likelihoods)
- Gaussian Distributions
- ► Kernels
- ► Markov Chains
- Deep Networks

Computation:

- autodiff
- ► MAP with Laplace approximations
- Linear algebra as a computational primitive

Bayesian Hierarchical Learning beyond analytical inference

Bayesian Hierarchical Learning

$$p(f \mid \mathbf{y}, \mathbf{x}, \boldsymbol{\theta}) = \frac{p(\mathbf{y} \mid f, \mathbf{x}, \boldsymbol{\theta})p(f \mid, \boldsymbol{\theta})}{\int p(\mathbf{y} \mid f, \mathbf{x}, \boldsymbol{\theta})p(f \mid, \boldsymbol{\theta}) df} = \frac{p(\mathbf{y} \mid f, \mathbf{x}, \boldsymbol{\theta})p(f \mid, \boldsymbol{\theta})}{p(\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta})}$$

- Model parameters like θ are also known as hyper-parameters.
- This is largely a computational, practical distinction:

data are observed → condition variables are the things we care about → full probabilistic treatment parameters are the things we have to deal with to get the model right → integrate out hyper-parameters are the top-level, too expensive to properly infer → fit

The model evidence in Bayes' Theorem is the (marginal) likelihood for the model. So we would like

$$p(\boldsymbol{\theta} \mid \boldsymbol{y}) = \frac{p(\boldsymbol{y} \mid \boldsymbol{\theta})p(\boldsymbol{\theta})}{\int p(\boldsymbol{y} \mid \boldsymbol{\theta}')p(\boldsymbol{\theta}') d\boldsymbol{\theta}'}$$

$$p(f \mid \theta) = \mathcal{GP}(f; m_{\theta}, k_{\theta})$$
 e.g. $m_{\theta}(\bullet) = \phi(\bullet)^{\mathsf{T}} \theta$, or $k_{\theta}(\bullet, \circ) = \theta_1 \exp\left(-\frac{(\bullet - \circ)^2}{2\theta_2^2}\right)$.

► The evidence in Bayes' theorem is the marginal likelihood for the model

$$p(f \mid \mathbf{y}, \mathbf{x}, \boldsymbol{\theta}) = \frac{p(\mathbf{y} \mid f, \mathbf{x}, \boldsymbol{\theta})p(f \mid, \boldsymbol{\theta})}{\int p(\mathbf{y} \mid f, \mathbf{x}, \boldsymbol{\theta})p(f \mid, \boldsymbol{\theta}) df} = \frac{p(\mathbf{y} \mid f, \mathbf{x}, \boldsymbol{\theta})p(f \mid, \boldsymbol{\theta})}{p(\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta})}$$

▶ For Gaussians and Gaussian processes, die evidence has analytic form:

$$\underbrace{\mathcal{N}(\mathbf{y}; \phi_{\mathbf{X}}^{\boldsymbol{\theta^{\mathsf{T}}}} \mathbf{w} + \mathbf{b}, \Lambda)}_{p(\mathbf{y}|f, \mathbf{x}, \boldsymbol{\theta})} \cdot \underbrace{\mathcal{N}(\mathbf{w}, \mu, \Sigma)}_{p(f)} = \underbrace{\mathcal{N}(\mathbf{w}; m_{\mathsf{post}}^{\boldsymbol{\theta}}, V_{\mathsf{post}}^{\boldsymbol{\theta}})}_{p(f|\mathbf{y}, \mathbf{x}, \boldsymbol{\theta})} \cdot \underbrace{\mathcal{N}(\mathbf{y}; \phi_{\mathbf{X}}^{\boldsymbol{\theta^{\mathsf{T}}}} \mu + b, \phi_{\mathbf{X}}^{\boldsymbol{\theta^{\mathsf{T}}}} \Sigma \phi_{\mathbf{X}}^{\boldsymbol{\theta}} + \Lambda)}_{p(\mathbf{y}|\boldsymbol{\theta}, \mathbf{x})}$$

$$\mathcal{N}(\mathbf{y}; t^{\boldsymbol{\theta}}(\mathbf{X}), \Lambda^{\boldsymbol{\theta}}) \cdot \mathcal{GP}(f, \mu^{\boldsymbol{\theta}}, k^{\boldsymbol{\theta}}) = \mathcal{GP}(f; m_{\mathsf{post}}^{\boldsymbol{\theta}}, V_{\mathsf{post}}^{\boldsymbol{\theta}}) \cdot \mathcal{N}(\mathbf{y}; \mu^{\boldsymbol{\theta}}(\mathbf{X}), \Lambda^{\boldsymbol{\theta}} + k^{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{X}))$$

$$\begin{split} \hat{\boldsymbol{\theta}} &= \arg\max_{\boldsymbol{\theta}} p(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{\theta}) = \arg\max_{\boldsymbol{\theta}} \int \mathcal{N}(\boldsymbol{y}; f(\boldsymbol{X}), \Lambda_{\boldsymbol{\theta}}) \cdot \mathcal{N}(f_{\boldsymbol{X}}, \mu_{\boldsymbol{X}}, k_{\boldsymbol{X}\boldsymbol{X}}) \, df_{\boldsymbol{X}} \\ &= \arg\max_{\boldsymbol{\theta}} \mathcal{N}(\boldsymbol{y}; \mu_{\boldsymbol{X}}; k_{\boldsymbol{X}\boldsymbol{X}} + \Lambda_{\boldsymbol{\theta}}) \int \mathcal{N}(f_{\boldsymbol{X}}; \mu_{\boldsymbol{y},\boldsymbol{X}}, v_{\boldsymbol{y},\boldsymbol{X}\boldsymbol{X}}) \, df_{\boldsymbol{X}} \\ &= \arg\max_{\boldsymbol{\theta}} \mathcal{N}(\boldsymbol{y}; \quad \mu_{\boldsymbol{X}}^{\boldsymbol{\theta}}, \quad k_{\boldsymbol{X}\boldsymbol{X}}^{\boldsymbol{\theta}} + \Lambda^{\boldsymbol{\theta}}) \\ &= \arg\max_{\boldsymbol{\theta}} \log \mathcal{N}(\boldsymbol{y}; \quad \mu_{\boldsymbol{X}}^{\boldsymbol{\theta}}, \quad k_{\boldsymbol{X}\boldsymbol{X}}^{\boldsymbol{\theta}} + \Lambda^{\boldsymbol{\theta}}) \\ &= \arg\min_{\boldsymbol{\theta}} -\log \mathcal{N}(\boldsymbol{y}; \quad \mu_{\boldsymbol{X}}^{\boldsymbol{\theta}}, \quad k_{\boldsymbol{X}\boldsymbol{X}}^{\boldsymbol{\theta}} + \Lambda^{\boldsymbol{\theta}}) \\ &= \arg\min_{\boldsymbol{\theta}} \frac{1}{2} \left(\underbrace{(\boldsymbol{y} - \mu_{\boldsymbol{X}}^{\boldsymbol{\theta}})^{\mathsf{T}} \left(k_{\boldsymbol{X}\boldsymbol{X}}^{\boldsymbol{\theta}} + \Lambda^{\boldsymbol{\theta}}\right)^{-1} \left(\boldsymbol{y} - \boldsymbol{\phi}_{\boldsymbol{X}}^{\boldsymbol{\theta}\mathsf{T}} \boldsymbol{\mu}\right) + \log |k_{\boldsymbol{X}\boldsymbol{X}}^{\boldsymbol{\theta}} + \Lambda^{\boldsymbol{\theta}}|}{\log |k_{\boldsymbol{X}}^{\boldsymbol{\theta}} + \Lambda^{\boldsymbol{\theta}}|} \right) + \frac{N}{2} \log 2\pi \end{split}$$

The Evidence framework beyond GP regression

Laplace approximations yield approximate evidence:

- ► For general likelihoods, the evidence $p(y \mid \theta) = \int p(y \mid f, \theta) p(f \mid \theta) df$ will be intractable
- If we approximate it with a Gaussian by a Laplace approximation, we need to be careful with the constant term. Say we have found $f^* = \arg\max\log p(f\mid y)$ and $\Psi = -\nabla\nabla\log p(f\mid y)$. Then

$$p(\mathbf{y} \mid \boldsymbol{\theta}) = \int p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f}) d\mathbf{f}$$

$$\approx \int \exp\left(\log p(\mathbf{y} \mid \mathbf{f}^*) + \log p(\mathbf{f}^*) - \frac{1}{2} (\mathbf{f} - \mathbf{f}^*) \Psi(\mathbf{f} - \mathbf{f}^*)\right) d\mathbf{f}$$

$$= p(\mathbf{y} \mid \mathbf{f}^*) p(\mathbf{f}^*) \cdot (2\pi)^{D/2} |\Psi|^{1/2}$$

▶ If the prior happens to be Gaussian $p(f) = \mathcal{N}(f; m, K)$, we get

$$\log p(y \mid \theta) \approx \log p(y \mid f^*) - \frac{1}{2}(f^* - m)K^{-1}(f^* - m) - \frac{1}{2}\log |B|$$
with $|B| = |K| \cdot |K^{-1}| + \underbrace{\nabla \nabla^{\mathsf{T}} \log p(y \mid f^*)}_{=:W}|^{-1} = |I + K \cdot W|$.

A special option: The EM algorithm

Maximizing model Evidence

The general recipe for hyperparameter inference:

Consider a model with parameters θ , observed data y and latent variables z

▶ Ideally, we would like to maximize the marginal (log-) likelihood (evidence)

$$\log p(\mathbf{y} \mid \boldsymbol{\theta}) = \log \left(\int p(\mathbf{y}, \mathbf{z} \mid \boldsymbol{\theta}) \, d\mathbf{z} \right) \tag{*}$$

- if we can not do this integral, we can try **Laplace** (as above). This is nearly always *possible* (if $\log p(y \mid z)$ is twice differentiable), bu it is fundamentally an approximation.
- however, in some cases, we may be able to compute the Expectation of the "complete data" log likelihood (for a fixed value θ_*)

$$q(\boldsymbol{\theta}, \boldsymbol{\theta}_*) = \int p(\mathbf{z} \mid \mathbf{y}, \boldsymbol{\theta}_*) \log p(\mathbf{y}, \mathbf{z} \mid \boldsymbol{\theta}) d\mathbf{z}$$

and then Maximize $q(\theta, \theta_*)$ with respect to θ . This can be easier than (\star) because the log "simplifies things" (e.g. turns products into sums, thus factors into components).

<u>Definition:</u> The Expectation Maximizatiion (EM) algorithm:

Consider a model with parameters θ , observed data y and latent variables z.

while not converged, do:

E compute the Expected complete data log-likelihood

$$q(\boldsymbol{\theta}, \boldsymbol{\theta}_t) = \int p(\boldsymbol{z} \mid \boldsymbol{y}, \boldsymbol{\theta}_t) \log p(\boldsymbol{y}, \boldsymbol{z} \mid \boldsymbol{\theta}) d\boldsymbol{z}$$

M Set θ_{t+1} to Maximize $\theta_{t+1} = \arg \max_{\theta} q(\theta, \theta_{t+1})$.

We will see on Thursday why this is a meaningful thing to do.

Example: EM for Gauss-Markov Models

completed in this week's exercise

Consider the Gauss-Markov Model with $z := [x_t]_{t=0,...,T}$ and $\theta := (A, Q, H, R)$.

$$p(\mathbf{z}, \mathbf{y} \mid \boldsymbol{\theta}) = p(\mathbf{x}_0) \prod_{t=1}^{T} p(\mathbf{x}_t \mid \mathbf{x}_{t-1}, \boldsymbol{\theta}) p(\mathbf{y}_t \mid \mathbf{x}_t, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}_0; m_0, P_0) \prod_{t=1}^{T} \mathcal{N}(\mathbf{x}_t; A\mathbf{x}_{t-1}, Q) \mathcal{N}(\mathbf{y}_t, H\mathbf{x}_t, R)$$

Here it is actually possible to compute $p(y \mid \theta)$ (see last lectures), but that term can only be maximized numerically. Instead, notice that the complete-data log-likelihood neatly separates into local terms

$$\log p(\mathbf{z}, \mathbf{y} \mid \boldsymbol{\theta}) = \log \mathcal{N}(\mathbf{x}_0) + \sum_{t=1}^{T} \log \mathcal{N}(\mathbf{x}_t; A\mathbf{x}_{t-1}, Q) + \sum_{t=1}^{T} \log \mathcal{N}(\mathbf{y}_t; H\mathbf{x}_t, R)$$

And the expectation of a log-Gaussian is easy to compute, because

$$\int (W\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \Sigma^{-1} (W\mathbf{x} - \boldsymbol{\mu}) \cdot \mathcal{N}(\mathbf{x}; \mathbf{m}, \mathbf{V}) \, d\mathbf{x} = (\boldsymbol{\mu} - W\mathbf{m})^{\mathsf{T}} \Sigma^{-1} (\boldsymbol{\mu} - W\mathbf{m}) + \operatorname{tr}(W^{\mathsf{T}} \Sigma^{-1} WV)$$

Rest: Homework.

Summary:

➤ The Evidence in Bayes' theorem is the marginal likelihood of the model

$$p(\mathbf{y} \mid \theta) = \int p(\mathbf{y}, \mathbf{z} \mid \theta) \, d\mathbf{z}$$

- In principle it provides the "next level" for Bayesian inference on θ . But it is often intractable.
- ► Laplace approximations provide a *general, approximate* way to approximate the Evidence
- ▶ in *some* models, the **EM** algorithm offers a tractable iterative solution.

Please cite this course, as