Exercises (7) October 24, 2023

- 1. Let $F = \{F_1, F_2, \ldots\}$ be a countable collection of connected compact sets in \mathbb{R}^n such that $F_{k+1} \subseteq F_k$ for each $k \geq 1$. Prove that the intersection $\bigcap_{k=1}^{\infty} F_k$ is connected and closed.
- 2. Let (S, d) be an connected metric space which is not bounded. Prove that for every a in S and every r > 0, the set $\{x : d(x, a) = r\}$ is nonempty.
- 3. Prove that if A is connected in a metric space M and $A\subseteq B\subseteq \mathrm{cl}(A),$ then B is connected.
- 4. Show that $A \subseteq \mathbb{R}$ is connected if and only if it is an interval (an interval is a set of the form [a,b], (a,b), [a,b), (a,b], where a or b can be $\pm \infty$ on an open end of the interval).