STATS 2107

Statistical Modelling and Inference II Tutorial 3

Sharon Lee, Matt Ryan

Semester 2 2022

- 1. Suppose Y_1, Y_2, \ldots, Y_n is a random sample of size n from a gamma-distributed population with parameters $\alpha = 2$ and $\lambda = 1/\beta$, that is, with mean 2β and variance $2\beta^2$.
 - (a) Use the method of moment generating functions to show that $X = \frac{2}{\beta} \sum_{i=1}^{n} Y_i$ is a pivotal quantity and has a χ_{4n}^2 distribution. Recall that if $Y \sim \text{Gamma}(\alpha = 2, \lambda = 1/\beta)$, then $M_Y(t) = (1 \beta t)^{-2}$.
 - (b) Use the pivotal quantity X to derive a 95% symmetric confidence interval for β .
 - (c) If a sample of size n=5 yields $\bar{y}=5.39$, use the results from part (b) to give a 95% symmetric confidence interval for β .
- 2. Consider the independent random variables

$$Y_{ij}, i = 1, 2; j = 1, 2, \dots, n_i$$

with $Y_{ij} \sim N(\mu_i, \sigma^2)$. Let

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}.$$

- (a) Prove that S_p^2 is an unbiased estimator for σ^2 .
- (b) Prove that

$$\frac{(n_1 + n_2 - 2)S_p^2}{\sigma^2} \sim \chi_{n_1 + n_2 - 2}^2.$$

(c) Show that

$$\left(\bar{Y}_1 - \bar{Y}_2 - t_{n_1 + n_2 - 2, \alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \bar{Y}_1 - \bar{Y}_2 + t_{n_1 + n_2 - 2, \alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right)$$

is a $100(1-\alpha)\%$ confidence interval for $\mu_1 - \mu_2$ if σ^2 is not known.

3. Suppose we have independent random variables

$$Y_{i,i}, i = 1, 2, 3; j = 1, 2, \dots, n_i$$

with $Y_{ij} \sim N(\mu_i, \sigma^2)$. We would like to do inference on a linear combination of the mean $\theta = a_1\mu_1 + a_2\mu_2 + a_3\mu_3$. An intuitive estimator for θ is $\hat{\theta} = a_1\bar{Y}_1 + a_2\bar{Y}_2 + a_3\bar{Y}_3$, where \bar{Y}_i is the sample mean of $Y_{i1}, Y_{i2}, \ldots, Y_{in_i}$.

- (a) Find the standard error of the estimator $\hat{\theta}$.
- (b) Find the distribution of the estimator $\hat{\theta}$.
- (c) A pooled estimator for σ^2 is

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2 + (n_3 - 1)S_3^2}{n_1 + n_2 + n_3 - 3},$$

where S_i^2 is the sample variance of $Y_{i1}, Y_{i2}, \dots, Y_{in_i}$. State the distribution of

$$W = \frac{(n_1 + n_2 + n_3 - 3)S_p^2}{\sigma^2} \quad \text{and} \quad T = \frac{\hat{\theta} - \theta}{S_p \sqrt{\frac{a_1^2}{n_1} + \frac{a_2^2}{n_2} + \frac{a_3^2}{n_3}}}.$$

- (d) Using the results from part (c), give a $100(1-\alpha)\%$ confidence interval for θ . (e) Using the results from part (c), develop a hypothesis test for testing $H_0: \theta = \theta_0$ vs $H_a: \theta \neq \theta_0$.