Математический анализ

1 семестр

24 февраля 2025 г.

Содержание

1.	Вве	едение	3
	1.1.	Элементы математической логики	3
	1.2.	Наивная теория множеств	3
	1.3.	Декартово произведение множеств. Бинарные отношения	5
	1.4.	Вещественные числа	6

1. Введение

1.1. Элементы математической логики

Используем распространенные символы математической логики $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$ для обозначения соответственно отрицания «не» и связок «и», «или», «влечет», «равносильно».

Записи $A \Rightarrow B$, означающей, что A влечет B или, что то же самое, B следует из A, мы часто будем придавать другую словесную интерпретацию, говоря, что B есть необходимый признак или необходимое условие A и, в свою очередь, A — достаточное условие или достаточный признак B. Таким образом, соотношение $A \Leftrightarrow B$ можно прочитать любым из следующих способов:

A необходимо и достаточно для B;

A тогда и только тогда, когда B;

A, если и только если B;

A равносильно B.

Некоторые логические законы:

$$(A \Leftrightarrow B) \equiv ((A \Rightarrow B) \land (B \Rightarrow A))$$

$$(A \Rightarrow B) \equiv (\neg A \lor B) \equiv (B \lor \neg A) \equiv (\neg (\neg B) \lor \neg A) \equiv (\neg B \Rightarrow \neg A)$$

$$\neg (A \lor B) \equiv (\neg A \land \neg B)$$

$$\neg (A \land B) \equiv (\neg A \lor \neg B)$$

1.2. Наивная теория множеств

«Под *множеством* мы понимаем объединение в одно целое определенных, вполне различимых объектов нашей интуиции или нашей мысли» – так описал понятие «множество» Георг Кантор, основатель теории множеств. Это описание нельзя назвать определением, поскольку оно апеллирует к понятиям, ранее не определенным.

Основные предпосылки канторовской («наивной») теории множеств:

- $1^{\circ}\,$ множество может состоять из любых различимых объектов;
- $2^{\circ}\:$ множество однозначно определяется набором составляющих его объектов;
- 3° любое свойство определяет множество объектов, которые этим свойством обладают.

Если x — объект, P — свойство, P(x) — обозначение того, что х обладает свойством P, то через $\{x \mid P(x)\}$ обозначают весь класс объектов, обладающих свойством P. Объекты, составляющие класс или множество, называют элементами класса или множества. Слова «класс», «семейство», «совокупность», «набор» в наивной теории множеств употребляют как синонимы термина «множество».

Замечание (Парадокс Рассела). Множество всех множеств – противоречивое понятие.

Доказательство. Пусть $K = \{M \mid P(M) \}$, где P(M) означает, что M не содержит себя в качестве своего элемента.

Тогда, если K – множество, то верно или P(K), или $\neg P(K)$. Действительно, P(K) невозможно, так как из определения K тогда бы следовало, что K содержит K, то есть что верно $\neg P(K)$; с другой стороны, $\neg P(K)$ тоже невозможно, поскольку это означает, что K содержит K, а это противоречит определению K как класса тех множеств, которые сами себя не содержат. Следовательно, K – не множество.

То, что x пренадлежит множеству X, то есть является его элементом, обозначают $x \in X$ (или $X \ni x$), а отрицание этого утверждения $x \notin X$ (или $X \not\ni x$).

Горорят, что множества *равны*, если они состоят из одних и тех же элементов, то есть $A = B \Leftrightarrow \forall x((x \in A) \Leftrightarrow (x \in B))$. Отрицание равенства обозначают $A \neq B$.

Говорят, что A является nodмножеством множества B, или что B включает A, или что B содержит A, если каждый элемент A является элеметнтом множества B. Обозначают $A \subset B$ или $A \supset B$.

$$(A \subset B) := \forall x ((x \in A) \Rightarrow (x \in B)).$$

Если $A \subset B$ и $A \neq B$, то будем говорить, что включение $A \subset B$ строгое или что A – собственное подмножество B. Используя приведенные определения, можно заключить, что

$$(A = B) \Leftrightarrow (A \subset B) \land (B \subset A).$$

 $\Pi y cmым$ называется множество, несодержащее элементов. Обозначается символом \varnothing . Пустое множество является подмножеством любого множества.

Основные операции над множествами:

Пересечение множеств $(A \cap B) := \{x \mid x \in A \land x \in B\}$

Объединение множеств $(A \cup B) := \{x \mid x \in A \lor x \in B\}$

Разность множнеств $(A \backslash B) := \{x \mid x \in A \land x \notin B\}$

Симметрическая разность $(A \triangle B) := (A \backslash B) \cup (B \backslash A)$

Дизъюнктное объединение $A \sqcup B = A \cup B \iff A \cap B = \emptyset$

Объединение N множеств
$$\bigcup_{n=1}^N A_n := \{x \mid \exists n_0 : x \in A_{n_0}\}$$

Пересечение N множеств
$$\bigcap_{n=1}^N A_n := \{x \mid \forall n \in \{1,...,N\} : x \in A_n\}$$

Пусть $\{X_{\alpha}\}_{\alpha\in I}$ — семейство множеств, тогда

Объединение семейства множеств
$$\bigcup_{\alpha \in I} X_{\alpha} := \{x \mid \exists \alpha \in I : x \in X_{\alpha}\}$$

Пересечение семейства множеств
$$\bigcap_{\alpha \in I} X_\alpha := \{x \mid \forall \alpha \in I : x \in X_\alpha\}$$

Теорема 1.1 (Законы де Моргана). Пусть X – множество, $\{A_{\alpha}\}_{{\alpha}\in I}$ – семейство множеств. Тогда

$$X \setminus \left(\bigcup_{\alpha \in I} A_{\alpha}\right) = \bigcap_{\alpha \in I} X \setminus A_{\alpha} \tag{1}$$

$$X \setminus \left(\bigcap_{\alpha \in I} A_{\alpha}\right) = \bigcup_{\alpha \in I} X \setminus A_{\alpha} \tag{2}$$

Доказательство.

$$X \backslash \left(\bigcup_{\alpha \in I} A_{\alpha}\right) = \{x \mid x \in X \land \forall \alpha \in I \ x \notin A_{\alpha}\} = \{x \mid \forall \alpha \in I \ x \in X \backslash A_{\alpha}\} = \bigcap_{\alpha \in I} X \backslash A_{\alpha}$$

$$X \setminus \left(\bigcap_{\alpha \in I} A_{\alpha}\right) = \{x \mid x \in X \land \exists \alpha \in I \ x \notin A_{\alpha}\} = \{x \mid \exists \alpha \in I \ x \in X \backslash A_{\alpha}\} = \bigcup_{\alpha \in I} X \backslash A_{\alpha}$$

1.3. Декартово произведение множеств. Бинарные отношения

Определение 1.1. Пусть X и Y – множества. Множество образованное всеми упорядоченными парами (x,y), первый член которых есть элемент из X, а второй – элемент из Y, называется npsmum или dekapmosum npoussedehuem mhosecems X и Y.

$$X \times Y := \{(x, y) \mid x \in X \land y \in Y\}$$

Для семейства из n множеств:

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_i \in A_i\}$$

Определение 1.2. *Бинарным отношением* \mathcal{R} на множестве X называют любое подмножество $X \times X$.

$$\mathcal{R} \subset X \times X$$

То что $(x,y) \in \mathcal{R}$ обозначают $x\mathcal{R}y$.

Свойства бинарных отношений:

- 1. \mathcal{R} рефлексивное, если $\forall x \in X \ x \mathcal{R} x$;
- 1'. \mathcal{R} иррефлексивное, если $\forall x \in X \neg (x\mathcal{R}x)$;
- 2. \mathcal{R} симметричное, если $\forall x, y \in X \ x \mathcal{R} y \Rightarrow y \mathcal{R} x$
- 2'. \mathcal{R} антисимметричное, если $\forall x, y \in X \ (x\mathcal{R}y \land y\mathcal{R}x) \Rightarrow x = y$
- 3. \mathcal{R} транзитивно, если $\forall x, y, z \in X(x\mathcal{R}y \land y\mathcal{R}z) \Rightarrow x\mathcal{R}z$

Определение 1.3. Бинарное отношение, которое рефлексивно, симметрично и транзитивно, называется *отношением эквивалентности*.

Утверждение. Если бинарное отношени иррефлексивно и транзитивно, то оно и антисимметрично.

Доказательство. О/п: Пусть \mathcal{R} – симметрично, то есть $\forall x,y \in X \ x\mathcal{R}y \Rightarrow y\mathcal{R}x$. Тогда по транзитивности $(x\mathcal{R}y \wedge y\mathcal{R}x) \Rightarrow x\mathcal{R}x$, что противоречит с иррефлексивностью.

Следовательно, \mathcal{R} – антисимметрично.

1.4. Вещественные числа

Определение 1.4. Множество ℝ называется множеством вещественных чисел, а его элементы – вещественными числами, если выполнен следующий набор условий, называемый *аксиоматикой* вещественных чисел:

I. Есть две бинарные операции такие, что $(\mathbb{R},+,\cdot)$ – **поле**, то есть выполнены **аксиомы поля**:

I.1
$$\forall x, y, z \in \mathbb{R} \ x + (y + z) = (x + y) + z$$

I.2
$$\forall x, y \in \mathbb{R}$$
 $x + y = y + x$

I.3
$$\exists 0 \in \mathbb{R} : \forall x \in \mathbb{R} \ x + 0 = x$$

I.4
$$\forall x \in \mathbb{R} \exists (-x) \in \mathbb{R} : x + (-x) = 0$$

I.5
$$\forall x, y, z \in \mathbb{R}$$
 $x \cdot (y \cdot z) = (x \cdot y) \cdot z$

I.6
$$\forall x, y \in \mathbb{R}$$
 $x \cdot y = y \cdot x$

I.7
$$\exists 1 \in \mathbb{R} : \forall x \in \mathbb{R} \ x \cdot 1 = x$$

I.8
$$\forall x \in \mathbb{R} \setminus \{0\} \exists (x^{-1}) \in \mathbb{R} : x \cdot x^{-1} = 1$$

I.9
$$\forall x, y, z \in \mathbb{R} \ (x+y) \cdot z = x \cdot z + y \cdot z$$

II. \mathbb{R} – **линейно упорядоченное множество**, то есть между элементами \mathbb{R} определено бинарное отношение \leq со следующими свойствами:

II.1
$$\forall x, y \in \mathbb{R} \ ((x \le y) \lor (y \le x)) \equiv 1$$

II.2
$$\forall x \in \mathbb{R} \ x \leq x$$

II.3
$$\forall x, y \in \mathbb{R} \ (x \le y \land y \le x) \Rightarrow (x = y)$$

II.4
$$\forall x, y, z \in \mathbb{R} \ (x \le y \land y \le z) \Rightarrow (x \le z)$$

II.5
$$\forall x, y, z \in \mathbb{R}$$
 $x < y \Rightarrow x + z < y + z$

II.6
$$0 \le x \land 0 \le y \Rightarrow 0 \le x \cdot y$$

III. Аксиома полноты (непрерывности)

Если A и B – непустые подмножества $\mathbb R$ и $\forall a \in A, \forall b \in B$ верно, что $a \leq b$, тогда $\exists c \in \mathbb R : a \leq c \leq b$.

Список литературы

- [1] Виноградов О.Л., Громов А. Л. Курс математического анализа: В 5 частях.
- [2] Зорич В. А. Математический анализ.
- [3] Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: В 3 т.
- [4] Математический анализ(stepic)