CAMIL: Clustering and Assembly with Multiple Instance Learning for Phenotype Prediction

Nathan LaPierre (me), Mohammad Arifur Rahman, and Huzefa Rangwala George Mason University, Computer Science Department

Background: Multiple Instance Learning

- Labeled bags containing unlabeled instances
 - In this context: labeled patients and unlabeled reads

Instance, Bag, and Embedded
Spaces (Amores 2013)*

^{*} J. Amores, "Multiple instance classification: Review, taxonomy and comparative study," Artificial Intelligence, vol. 201, no. 1, pp. 81–105, 2013.

Goal: Phenotype Prediction with Metagenomic Data

Predict disease state ("phenotype") of patient based on metagenome data

Qin et al. dataset* (2012)

Type 2 Diabetes

367 Chinese patients

Stool samples

^{*} J. Qin et al., "A metagenome-wide association study of gut microbiota in type 2 diabetes," Nature, vol. 490, no. 7418, pp. 55–60, 2012.

Pipeline

FASTQ Data \rightarrow Assembly \rightarrow Clustering \rightarrow Feature Extraction \rightarrow SVM Classification

CAMIL Feature Extraction

- MIL: Vocabulary-based methods
 - "Bag of Words"

Histogram Bag of Words (H-BoW)

Distance Bag of Words (D-BoW)

Results

Conclusion and Future Work

MIL can be an effective approach towards phenotype prediction

CAMIL is a general example of this kind of method

 Future: different clustering & assembly algorithms, different MIL-based feature extraction methods, instance labels