Universidad Nacional Autónoma de México Facultad de Ciencias Álgebra Moderna I

Primer examen parcial de recuperación

Ángel Iván Gladín García No. cuenta: 313112470 angelgladin@ciencias.unam.mx

3 de junio de 2020

Ejercicio 1. (25 puntos)

Pruebe que si $\alpha = \beta_1 \beta_2 \cdots \beta_m$ es un producto de r_i -ciclos disjuntos β_i , entonces el entero positivo s más pequeño con $\alpha^s = 1$ es el mínimo cómun múltiplo de $\{r_1, r_2, \dots, r_m\}$.

Demostraci'on. Como por hipótesis los β_i son disjuntos, podemos usar el hecho de que conmutan para poder hacer lo siguiente,

$$\alpha^n = (\beta_1 \beta_2 \cdots \beta_m)^n = \beta_1^n \beta_2^n \cdots \beta_m^n$$

para toda $n \in \mathbb{Z}$. Supongamos que $\alpha^n = 1$ si y sólo si $\beta^n_i = 1$ para $1 \le i \le m$. Como α es un n-ciclo y β_i es un r_i -ciclo, se sigue que que todo r_i divide a n, y éso a su vez implica que el $m.c.m.(r_1, r_2, \ldots, r_m) \mid n$. Como $\beta^n_i = 1$ para $1 \le i \le m$ justo aseguramos que n es el entero más pequeño. Renombrando a $m.c.m.(r_1, r_2, \ldots, r_m) = s = n$, se sigue que s es el entero mas pequeño positivo tal que $\alpha^s = 1$.

Ejercicio 2. (25 puntos)

Sea S un subconjunto no vacío de un grupo G y definimos una relación en G dado por $a \sim b$ si y sólo si $ab^{-1} \in S$. Muestre que \sim es una relación de equivalencia si y sólo si S es un subgrupo de G.

Demostración.

- Reflexividad: Como $aa^{-1} = 1 \in S$, por tanto $a \sim a$.
- Simetría: Se tiene que $a \sim b$, entonces $ab^{-1} \in S$, entonces $(ab^{-1})^{-1} \in S$, de ahí que $ba^{-1} \in S$. Por tanto $b \sim a$.
- Transitividad: Si $a \sim b$ y $b \sim c$, se tiene que $ab^{-1} \in S$ y $bc^{-1} \in S$, pero se tiene que $(ab^{-1})(bc^{-1}) \in S$, lo cual implica que $ac^{-1} \in S$. Por tanto $a \sim c$.

Se asumió que S era un subgrupo de G por un teorema¹ visto en clase.

Ejercicio 3. (25 puntos)

Demuestra el Teorema de Wilson: Si p es un primo, entonces

$$(p-1)! \equiv -1 \mod p$$

Demostración. Consideremos el grupo G de elementos no cero de \mathbb{Z}_p forma un grupo multiplicativo como $G = ((\mathbb{Z}/p\mathbb{Z})^{\times}, \cdot)$ donde $(\mathbb{Z}/p\mathbb{Z})^{\times} = \{[1], [2], \dots, [p-1]\}$ y (\cdot) como el producto en \mathbb{Z} , también se tiene que G es abeliano por \mathbb{Z} .

¹ **Teorema 2.2** Un subconjunto S de un grupo G es un subgrupo si y sólo si $1 \in S$ y $s, t \in S$ implica que $st^{-1} \in S$

Observemos que como p es primo y sea $x \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ tal que $x^2 = 1$ si tiene que:

$$x^2 \equiv 1 \mod p$$

$$\iff x^2 - 1 \equiv 0 \mod p$$

$$\iff (x+1)(x-1) \equiv 0 \mod p$$

$$x = np \pm 1$$

Concluyendo así que x = 1 ó x = p - 1.

Tambien observando que se cumple que $(p-2)! \equiv 1 \mod p$.

Por tanto,

$$(p-1)! \equiv (p-2)! \cdot (p-1) \equiv -1 \mod p$$

Ejercicio 4. (25 puntos)

Un grupo G es abeliano si y sólo si la función $\varphi: G \to G$ dada por $\varphi(g) = g^{-1}$ es un automorfismo².

Demostraci'on.

 (\Longrightarrow) Supongamos que G es abeliano. Sean $g,h\in G$. Si $\varphi(g)=\varphi(h)$, entonces se tiene que $g^{-1}=h^{-1}$, lo que implica que g = h provando así que φ es inyectiva.

Sea $g \in G$, se tiene que $g^{-1} \in G$ y $\varphi(g^{-1}) = (g^{-1})^{-1} = g$ teniendo así que φ es suprayectiva.

Para concluir, sean $g, h \in G$ se sigue que:

$$\varphi(gh) = (gh)^{-1} = h^{-1}g^{-1}$$

$$= g^{-1}h^{-1}$$
 Por ser G abeliano.
$$= \varphi(g)\varphi(h)$$

Teniendo así que φ es un automorfismo.

 (\Leftarrow) Supongamos que la función $\varphi: G \to G$ dada por $\varphi(g) = g^{-1}$ es un automorfismo. Sean $g, h \in G$, entonces:

$$h^{-1}g^{-1}=(gh)^{-1}$$

$$=\varphi(gh)$$

$$=\varphi(g)\varphi(h)$$
 Por ser φ un homomorfismo.
$$=g^{-1}h^{-1}$$

Lo que implica que gh = hg. Como $g, h \in G$ fueron arbitrarios, se concluye que G es abeliano.

²Un automorfismo de un grupo G es un isomorfismo $\varphi: G \to G$.