

	$\sigma_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\sigma_{1}^{\sharp 1}{}_{lpha}$	$\sigma_{1}^{\#2}$ α
$\sigma_{1}^{\#1}\dagger^{lphaeta}$	$\frac{1}{k^2(2r_3+r_5)}$	0	0	0
$\sigma_{1}^{\#2} \dagger^{\alpha\beta}$	0	0	0	0
$\sigma_{1}^{\sharp 1} \dagger^{lpha}$	0	0	$\frac{1}{k^2 \left(-r_1 + 2 r_3 + r_5 \right)}$	0
$\sigma_1^{\#2} \uparrow^{\alpha}$	0	0	0	0

traints	#	1	3	3	2	12
Source constraints	SO(3) irreps	$\sigma_{0^{-}}^{\#1} == 0$	$\sigma_{1}^{\#2\alpha} == 0$	$\sigma_{1}^{\#2}\alpha\beta == 0$	$\sigma_{2+}^{\#1}\alpha\beta == 0$	Total #:

	$\sigma_{0}^{\#1}$	$\sigma_0^{\#1}$	
$\sigma_{0}^{\#1}$ †	$\frac{1}{6 k^2 (-r_1 + r_3)}$	0	
$\sigma_{0}^{\#1}$ †	0	0	

$\omega_{2^{-}}^{\#1} \alpha$	0	$k^2 r$	
$\omega_2^{\#1}$	0	0	
	$\omega_2^{\#1} +^{lphaeta}$	$\omega_{2^{ ext{-}}}^{\#1} +^{lphaeta\chi}$	

_	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$\omega_{1}^{\#1}{}_{lpha}$	$\omega_{1}^{#2}$ α
$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$k^2 (2 r_3 + r_5)$	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	0	0	0	0
$\omega_{1}^{\sharp 1} \dagger^{lpha}$	0	0	$k^2 \left(-r_1 + 2 r_3 + r_5 \right)$	0
$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0	0

(No massive particles)

Unitarity conditions

 $r_1 < 0 \&\& (r_5 < r_1 - 2r_3 || r_5 > -2r_3) || r_1 > 0 \&\& -2r_3 < r_5 < r_1 - 2r_3$