IT3030 Biostatistics quiz #4 6/9/2020 ID:______ Name:_____

1. (50%) The following table describes the relationship between two exam scores for 10 students in Biostatistics. Answer the following questions.

ID	Exam1	Exam2	
1	46	68	
2	59	57	
3	75	68	
4	84	91	
5	82	76	
6	79	84	
7	57	53	
8	75	84	
9	71	80	
10	61	70	

- (a) Compute the score difference defined by exam2 score minus exam1 score for each of the 10 students.
- (b) Compute the mean value as well as the standard deviation of these 10 pairwise score differences.
- (c) We want to see if students are making progress in exam scores. A null hypothesis is assumed that exam2 score is no different than exam1. Is this a 1-sided or 2-sided test? Why?
- (d) Compute the t value for this test.
- (e) Compute the p-value of this test (with α =0.05). Do you reject the null hypothesis or not? Does this mean the students are making progress or not?

Answer:

>> mean = mean(d) = 4.2000

>> std = std(d) = 9.0037

This is a 1-sided test since we only want to see the exam score gets higher.

>> t=mean/(std/sqrt(10)) = 1.4751

>> p value=1-tcdf(t,10-1) = 0.0871

p-value is greater than 0.05, indicating that we do not reject the null hypothesis. This means we cannot conclude students are making progress.

- 2. (50%) Measurements of WBC (white- blood-cell count) for patients of 3 different diseases are shown below. Assume that WBC is normally distributed.
 - (a) Calculate the estimate of the within-groups variance S_W^2 .
 - (b) Calculate the estimate of the between-group variance S_B^2 .
 - (c) At the 0.05 level of significance, test the null hypothesis that the mean WBC of the 3 groups are identical. Compute and show the F-statistic, the two degree of freedoms used, and the p-value. What do you conclude?
 - (d) If you found that the population means are not identical, use the Bonferrino correction to determine where the differences lie (1 vs 2, 1 vs 3 and 2 vs 3). What is the significance level used in each individual test? Clearly compute your t-statistic and p-value for each of the pairwise t-tests. [Use the same within-groups variance computed from (a).]

<u> </u>			\ / 4	
Groups	Sample	Mean WBC	Standard	
	size n		deviation s	
1: Common cold	269	11526	1341.3	
2: Lung cancer	53	11445	1017.4	
3: AIDS	9	12618	1225.2	

Answer:

- >> n1=269;n2=53;n3=9;x1=11526;x2=11445;x3=12618;s1=1341.3;s2=1017.4;s3=1225.2;
- >> DF1=3-1 = 2;DF2=n1+n2+n3-3 = 328;
- >> sw2=((n1-1)*s1^2+(n2-1)*s2^2+(n3-1)*s3^2)/DF2 = 1.6707e+006 = 1,670,700
- >> x=(n1*x1+n2*x2+n3*x3)/(n1+n2+n3) = 1.1543e+004
- $>> sb2=(n1*(x-x1)^2+n2*(x-x2)^2+n3*(x-x3)^2)/DF1 = 5.4937e+006 = 5,493,700$
- >> F=sb2/sw2 = **3.2883**
- >> 1-fcdf(F,DF1,DF2) = **0.0386**

This p-value is smaller than 0.05. We thus <u>reject the null hypothesis</u> that all three mean values are the same. In other words, the three are not identical.

The new level of significance used in the subsequent pairwise t-test will be 0.05/3 = 0.0167 according to Bonferroni.

Use the same sw2 = 166.5162 and DF2 = n1+n2+n3-3=328 for the following 3 pairwise t-tests.

1 vs 2:

- >> t12=(x1-x2)/sqrt(sw2*(1/n1+1/n2)) = **0.4170**
- >> 2*(1-tcdf(t12,DF2)) = **0.6770**

This is greater than 0.0167. We do not reject the null hypothesis that groups 1 and 2 have the same mean values. No significant difference between the two is concluded.

2 vs 3:

- >> t23=(x2-x3)/sqrt(sw2*(1/n2+1/n3)) = -2.5172
- >> 2*tcdf(t23,DF2) = 0.0123

This is smaller than 0.0167. We believe there exists difference between groups 2 and 3.

1 vs 3:

- >> t13=(x1-x3)/sqrt(sw2*(1/n1+1/n3)) = -2.4932
- >> 2*tcdf(t13,DF2) = **0.0132**

This is smaller than 0.0167. We believe there exists difference between groups 1 and 3.