STA 601/360 Homework 10

Yifei Wang

21 November, 2019

1. Hoff problem 10.1: Reflecting random walks

It is often useful in MCMC to have a proposal distribution which is both symmetric and has support only on a certain region. For example, if we know $\theta > 0$, we would like our proposal distribution $J(\theta_1|\theta_0)$ to have support on positive θ values. Consider the following proposal algorithm:

- sample $\tilde{\theta} \sim \mathbf{uniform}(\theta_0 \delta, \theta_0 + \delta)$;
- if $\tilde{\theta} < 0$, set $\theta = -\tilde{\theta}$;
- if $\tilde{\theta} > 0$, set $\theta = \tilde{\theta}$.

In other words, $\theta_1 = |\tilde{\theta}|$. Show that the above algorithm draws samples from a symmetric proposal distribution which has support on positive values of θ . It may be helpful to write out the associated proposal density $J(\theta_1|\theta_0)$ under the two conditions $\theta_0 \leq \delta$ and $\theta_0 > \delta$ separately.

Let's discuss two conditions $0 < \theta_0 + \theta_1 < \delta$ and $\theta_0 + \theta_1 \ge \delta$ separately. When $\theta_0 + \theta_1 \ge \delta$ we have $0 < |\theta_0 - \delta| \le \theta_1 = \tilde{\theta} \le \theta_0 + \delta$. Thus we have

$$J(\theta_1|\theta_0) = J(\tilde{\theta}|\theta_0) = \frac{1}{2\delta} = J(\theta_0|\tilde{\theta}) = J(\theta_0|\theta_1)$$

When $0 < \theta_0 + \theta_1 \le \delta$, we have $0 < \theta_1 < |\theta_0 - \delta|$ and $\theta_0 - \delta \le \tilde{\theta} \le \theta_0 + \delta$. So for θ_1 it is either $0 < \theta_1 = \tilde{\theta}$ or $\tilde{\theta} < 0 < \theta_1 = -\tilde{\theta}$, and similarly for θ_0 . Thus we have

$$\begin{split} J(\theta_1|\theta_0) &= J(\theta_1 = \tilde{\theta}|\theta_0) + J(\theta_1 = -\tilde{\theta}|\theta_0) \\ &= \frac{1}{2\delta} + \frac{1}{2\delta} \\ &= J(\theta_0 = \tilde{\theta}|\theta_1) + J(\theta_0 = -\tilde{\theta}|\theta_1) \\ &= J(\theta_0|\theta_1) \end{split}$$

The above two conditions cover all possibilities of the choice of $theta_0$ and θ_1 , and under either conditions we prove that $J(\theta_1|\theta_0) = J(\theta_0|\theta_1)$. Thus we could say that the proposal algorithm is a symmetric distribution.

2. Math Problem

Consider the following sampling model

$$y_1, \ldots, y_n | \theta \sim p(y | \theta_1, \theta_2),$$

and prior

$$\theta_1 \sim g(\theta_1), \ \theta_2 \sim h(\theta_2)$$

where

$$\theta_1, \theta_2 \in \mathbb{R}$$

Write down in the simplest form possible the acceptance probability for Metropolis-Hastings based on the following proposals:

• Full conditional:

$$J(\theta_1^{\star}|\theta_1^{(s)},\theta_2^{(s)}) = p(\theta_1|y_1,\ldots,y_n,\theta_2^{(s)})$$

• Prior:

$$J(\theta_1^{\star}|\theta_1^{(s)},\theta_2^{(s)}) = g(\theta_1)$$

• Random walk:

$$J(\theta_1^{\star}|\theta_1^{(s)},\theta_2^{(s)}) = Normal(\theta_1^{(s)},\delta^2)$$

We know that the acceptance probability of Metropolis-Hastings algorithm (when sampling a new θ_1) takes the form of

$$r = \frac{p(\theta_1^{\star}, \theta_2^{(s)} | y_1, \dots, y_n)}{p(\theta_1^{(s)}, \theta_2^{(s)} | y_1, \dots, y_n)} \times \frac{J(\theta_1^{(s)} | \theta_1^{\star}, \theta_2^{(s)})}{J(\theta_1^{\star} | \theta_1^{(s)}, \theta_2^{(s)})}$$

• Full conditional:

$$r = \frac{p(\theta_1^{\star}, \theta_2^{(s)} | y_1, \dots, y_n)}{p(\theta_1^{(s)}, \theta_2^{(s)} | y_1, \dots, y_n)} \times \frac{J(\theta_1^{(s)} | \theta_1^{\star}, \theta_2^{(s)})}{J(\theta_1^{\star} | \theta_1^{(s)}, \theta_2^{(s)})}$$

$$= \frac{p(\theta_2^{(s)} | y_1, \dots, y_n) p(\theta_1^{\star} | y_1, \dots, y_n, \theta_2^{(s)})}{p(\theta_2^{(s)} | y_1, \dots, y_n) p(\theta_1^{(s)} | y_1, \dots, y_n, \theta_2^{(s)})} \times \frac{p(\theta_1^{(s)} | y_1, \dots, y_n, \theta_2^{(s)})}{p(\theta_1^{\star} | y_1, \dots, y_n, \theta_2^{(s)})}$$

$$= 1$$

• Prior:

$$r = \frac{p(\theta_1^{\star}, \theta_2^{(s)} | y_1, \dots, y_n)}{p(\theta_1^{(s)}, \theta_2^{(s)} | y_1, \dots, y_n)} \times \frac{J(\theta_1^{(s)} | \theta_1^{\star}, \theta_2^{(s)})}{J(\theta_1^{\star} | \theta_1^{(s)}, \theta_2^{(s)})}$$

$$= \frac{p(y_1, \dots, y_n | \theta_1^{\star}, \theta_2^{(s)}) g(\theta_1^{\star}) h(\theta_2^{(s)})}{p(y_1, \dots, y_n | \theta_1^{\star}, \theta_2^{(s)}) g(\theta_1^{(s)}) h(\theta_2^{(s)})} \times \frac{g(\theta_1^{(s)})}{g(\theta_1^{\star})}$$

$$= \frac{p(y_1, \dots, y_n | \theta_1^{(s)}, \theta_2^{(s)})}{p(y_1, \dots, y_n | \theta_1^{(s)}, \theta_2^{(s)})}$$

• Random walk:

$$r = \frac{p(\theta_1^{\star}, \theta_2^{(s)} | y_1, \dots, y_n)}{p(\theta_1^{(s)}, \theta_2^{(s)} | y_1, \dots, y_n)} \times \frac{J(\theta_1^{(s)} | \theta_1^{\star}, \theta_2^{(s)})}{J(\theta_1^{\star} | \theta_1^{(s)}, \theta_2^{(s)})}$$

$$= \frac{p(y_1, \dots, y_n | \theta_1^{\star}, \theta_2^{(s)}) g(\theta_1^{\star}) h(\theta_2^{(s)})}{p(y_1, \dots, y_n | \theta_1^{(s)}, \theta_2^{(s)}) g(\theta_1^{(s)}) h(\theta_2^{(s)})} \times \frac{\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\delta^2} (\theta_1^{(s)} - \theta_1^{\star})^2\right)}{\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\delta^2} (\theta_1^{\star} - \theta_1^{(s)})^2\right)}$$

$$= \frac{p(y_1, \dots, y_n | \theta_1^{(s)}, \theta_2^{(s)}) g(\theta_1^{\star})}{p(y_1, \dots, y_n | \theta_1^{(s)}, \theta_2^{(s)}) g(\theta_1^{(s)})}$$