Juho Salmi

Ilmastonmuutoksen systeemidynaaminen mallinnus ja simulointi

Sähkötekniikan korkeakoulu

Kandidaatintyö Espoo 5.10.2013

Vastuuopettaja:

TkT Pekka Forsman

Työn ohjaajat:

DI Tomi Sorasalmi

TkT Pekka Forsman

Tekijä: Juho Salmi

Työn nimi: Ilmastonmuutoksen systeemidynaaminen mallinnus ja simulointi

Päivämäärä: 5.10.2013 Kieli: Suomi Sivumäärä:5+18

Koulutusohjelma: Automaatio- ja systeemitekniikka

Vastuuopettaja: TkT Pekka Forsman

Ohjaajat: DI Tomi Sorasalmi, TkT Pekka Forsman

Placeholderina alkuperäinen tehtävänanto: Systeemidynamiikkaa on käytetty paljon ympäristöongelmien sekä ilmastonmuutoksen mallintamisessa. Kandityön tarkoituksena on tehdä kirjallisuustarkastelu ilmastonmuutoksen mallintamisessa käytetyistä systeemidynaamisista malleista, eri lähestymistavoista, eri resoluution malleista ja sovellusalueista. Pyritäänkö malleilla ymmärtämään ilmastonmuutosta paremmin vai kommunikoimaan jo tiedossa olevia ongelmia. Käyttävätkö vain päättäjät malleja vai onko kehitetty suurelle yleisölle tarkoitettuja malleja/pelejä. Mitä uutta systeemidynaaminen mallintaminen on tuonut ilmastonmuutoksen mallintamiseen.

Avainsanat: Systeemidynamiikka, ilmastonmuutos

Author: Juho Salmi Title: Modeling and Simulating Climate Change with System Dynamics Date: 5.10.2013 Language: Finnish Number of pages:5+18 Degree programme: Automation and Systems Technology Supervisor: D.Sc. (Tech.) Pekka Forsman Advisors: M.Sc. (Tech.) Tomi Sorasalmi, D.Sc. (Tech.) Pekka Forsman Abstract in English. Keywords: System dynamics, climate change

Esipuhe

Otaniemi, 24.9.2013

Juho T. Salmi

Sisällysluettelo

Ti	ivist	elmä	ii
Tiivistelmä (englanniksi) Esipuhe			iii iv
1	Joh	danto	1
2	Systeemidynamiikka		3
	2.1	Systeemidynamiikan historia	3
	2.2	Systeemiajattelu ja päätöksenteko	
	2.3	Takaisinkytketyt systeemit	6
	2.4	Viiveet, varastot ja virtaukset	7
3	Ilmastonmuutoksen mallintaminen		10
	3.1	Ilmastomallien historia	10
	3.2	C-ROADS-ilmastomalli	11
		3.2.1 C-ROADS-ilmastomallin käyttö	12
		3.2.2 Hiilidioksidi	12
		3.2.3 Maapallolle varastoitunut lämpöenergia	
	3.3	En-ROADS-ilmastomalli	16
	3.4	FREE-ilmastomalli	16
	3.5	Erilaiset ilmastomallit	16
	3.6	Ilmastonmuutoksen ongelmanratkaisu systeemidynamiikalla $\ \ \ldots \ \ .$	16
4	Yht	seenveto	17
V	Viitteet		

1 Johdanto

Ihmiselle on luontaista ajatella, että asioille on selkeät ja suoraviivaiset syy-seuraussuhteet: yksi asia vaikuttaa toiseen. Maailma ei kuitenkaan olen niin yksinkertainen ja lineaarinen, vaan asiat ovat mitä moninaisimmin tavoin vuorovaikutuksessa toistensa kanssa. Systeemidynamiikka on tapa ymmärtää, mallintaa ja simuloida tätä vuorovaikutusta sekä niiden muodostamaa monimutkaista systeemiä.

Systeemidynaaminen malli rakentuu varantojen, virtausten sekä takaisinkytkettyjen silmukoiden varaan. Systeemidynamiikan tapa lähestyä asioita tarjoaa erinomaiset työkalut päätöksenteolle ja ajattelulle yleisesti. Yksi keskeinen systeemidynamiikan etu on sen ilmaisuvoima. Kausaalidiagrammit kiteyttävät hyvin, mistä systeemidynaamisessa mallissa on kyse. Lisäksi systeemidynaamisia malleja on verrattaen luonteva lähteä rakentamaan tunnettujen ja tutkittujen kausaliteettien varaan. Systeemidynaamiset mallit ovat myös laskennallisesti kevyitä, joten mallin parametrien muuttamisen vaikutusten demonstroiminen käy hetkessä.

Ilmastonmuutos on tilastollisesti merkittävää ja pitkäkestoista muutosta globaalissa tai paikallisessa ilmastossa. Tässä kandidaatintyössä keskitytään ihmisen toiminnasta johtuvaan globaaliin ilmastonmuutokseen, erityisesti ilmaston lämpenemiseen.

Ilmastonmuutosta mallinnetaan, jotta kykenisimme arvioimaan, millaisia vaikutuksia toiminnallamme on, ja millaisin päätöksin voisimme saada ilmaston kehittymään haluttuun suuntaan. Ilmastoa ja sen muutosta mallinnetaan tieteellisiin tarkoituksiin pääasiassa tarkoilla fysikaalisilla malleilla. Tarkat mallit ovat laskennallisesti raskaita, eivätkä ne ole maallikon tai poliittisen päättäjän ymmärrettävissä. Systeemidynamiikalla voidaan ilmastomalli esittää ymmärrettävässä muodossa siten, että päättäjä kykeneei hahmottamaan, mistä mallissa on kyse. Tämän lisäksi systeemidynaaminen simulaatio on ajettavissa hetkessä, joten esimerkiksi ympäristöpoliittisten päätösten seuraukset on nopeasti havainnollistettavissa.

Systeemidynamiikan yksi keskeisistä sanomista on ymmärryksen luominen. Systeemidynamiikan yksi tunnustetuimmista asiantuntijoista, prof. John Sterman, kirjoittaa kirjassaan Business Dynamics, että kirjan lukijalla ei ole syytä huoleen, oli tämä matemaattisesti suuntautunut tai ei, sillä kirjasta löytyy ymmärrettävää ja mielenkiintoista sisältöä jokaiselle. Systeemidynamiikka on keino johdattaa kuka tahansa ymmärtämään toimintaympäristöään. Tämä ajatusmalli on pidetty mielessä tätä työtä kirjoitettaessa, ja pyrkimys on ollut, että työn sisältö olisi kenen tahansa omaksuttavissa.

Tämän kandidaatintyön tavoite on tutustua systeemidynamiikkaan ja sekä tutkia

sen soveltamista ilmastonmuutoksen mallintamiseen ja simulointiin.

Luvussa 2 otetaan katsaus systeemidynamiikan perusperiaatteisiin. Luvussa 3 tutustutaan ilmastonmuutokseen ja sen mallintamiseen. Ilmastonmuutoksen systeemidynaaminen mallintaminen havainnollistetaan kahta esimerkkiä käyttäen. Lopuksi luvussa 4 tehdään yhteenveto tämän kandidaatintyön löydöksistä ja havainnoista.

2 Systeemidynamiikka

Systeemi eli järjestelmä (eng. system) tarkoittaa toistensa kanssa vuorovaikutuksessa olevien osien muodostamaa kokonaisuutta [5]. Systeemidynamiikka (eng. system dynamics) on tietokoneavusteinen lähestymistapa päätöksentekoon ja mutkikkaiden systeemien (eng. complex system) mallintamiseen [12]. Mutkikkaalle systeemille ei ole yksikäsitteistä määritelmää [15], mutta systeemidynamiikalla kyetään mallintamaan erityisesti systeemien takaisinkytkentöjä ja epälineaarisuuksia [12], jotka ovat systeemin mutkikkuutta lisääviä ominaisuuksia [15].

Tämän luvun tavoite on tutustuttaa lukija systeemidynamiikan perusperiaatteisiin, jotka ovat välttämättömiä luvun 3 systeemidynamiisten ilmastomallien ymmärtämiseksi. Alaluvussa 2.1 selvitetään, miksi ja miten systeemidynamiikka syntyi ja kehittyi, alaluvussa 2.2 tutustutaan systeemiajatteluun ja päätöksentekoon, alaluvussa 2.3 systeemien takaisinkytkentöihin sekä alaluvussa 2.4 systeemien viiveisiin, varastoihin ja virtauksiin.

2.1 Systeemidynamiikan historia

Systeemidynamiikan on alunperin perustanut Jay W. Forrester, joka vuonna 1956 siirtyi MIT:ssä sähkötekniikan alalta Sloan School of Managementiin tekemään operaatiotutkimusta. Forrester alkoi tutkia, miksi General Electricin tehtailla työskenneltiin välillä kolmessa vuorossa ja välillä jouduttiin puolet työntekijöistä irtisanomaan. Forrester alkoi yhdistellä säätö- ja systeemiteoriaa operaatiotutkimukseen ja ryhtyi simuloimaan teollisuustuotantoa sekä luomaan sille säätöjärjestelmiä tietokoneavusteisesti. Tämän tutkimuksen pohjalta syntyi systeemidynamiikka ja alan ensimmäinen julkaisu Industrial Dynamics [6]. [8]

Forresterin [7, s. 398–399] mukaan sen aikainen operaatiotutkimus ei tarjonnut hyviä työkaluja laajoihin, ylimmän tason johtamisen haasteisiin. Operaatiotutkimuksessa keskityttiin pääsääntöisesti yksittäisten, irrallisten päätösten seurausten hahmottelemiseen oletuksella, että päätöksen seuraukset eivät vaikuta päätöksentekoon vaikuttaviin tekijöihin. Oletusta kutsutaan avoimen silmukan oletukseksi. Tällaisella tarkastelulla pystyttiin yksinkeraistamaan analyysiä, mutta näin kyettiin tarkastelemaan riittävällä tarkkuudella vain yksinkertaisia, lineaarisia tilanteita, siinä missä systeemidynamiikalla pystytään ottamaan huomioon mutkikkaidenkin järjestelmän osien takaisinkytkennät ja epälineaarisuudet. Takaisinkytkettyjä systeemeitä oli jo pitkään tutkittu ja hyödynnetty insinööritieteissä, biologiassa ja taloustieteessä, mutta niitä oli vasta hiljattain alettu ymmärtää.

Samat takaisinkytkettyjen systeemien periaatteet olivat yleistettävissä eri tieteenaloille, minkä johdosta monilla aloille otettiin systeemidynaamisia menetelmiä käyttöön. Systeemidynamiikasta kehittyikin nopeasti hyvin poikkitieteellinen ala. [12, 7, 10]

2.2 Systeemiajattelu ja päätöksenteko

Systeemiajattelu (eng. systems thinking) on tapa jäsentää maailma mielessään mutkikkaana systeeminä, ja sen työkaluna voi käyttää systeemidynamiikkaa [10, s. 4–5]. Sterman [10, s. 4–5] vertaa systeemidynamista mallintamista lentosimulaattoriin: lentosimulaattori opettaa turvallisesti lentäjän lentämään ja systeemidynamiikka johtajan systeemiajattelemaan eli hahmottamaan johtamansa organisaation systeeminä.

Systeemidynamiikan asiantuntijat käyttävät usein sanontaa: "Tie helvettiin on kivetty hyvillä aikomuksilla."Stermanin [10, s. 5–6] mukaan hyvää tarkoittavilla päätöksillä saatetaan tehdä ongelmia pahemmiksi, sillä monilla päätöksillä on seurauksia, joita on vaikea ennalta arvioida.

Päätöksenteon maailmankuvan voi jakaa tapahtumasuuntautuneeseen ja takaisinkytkentäsuuntautuneeseen. Seuraava kuva 1 esittää tapahtumasuuntautunutta maailmankuvaa. Tapahtumasuuntautuneisuus on ihmiselle luontevaa, sillä se on lineaarista ja suoraviivaista: jokaisella teolla on seurauksensa. Kun on tilanne ja asetetut tavoitteet, niin ongelma syntyy siitä, kun ne poikkeavat toisistaan. Mitä enemmän tilanne ja tavoite poikkeavat toisistaan, sitä suurempi ongelma. Ongelman ratkaisemiseksi tarvitaan päätös, joka johtaa haluttuun lopputulokseen. Päätös voi kuitenkin vaikuttaa ympäröivään tilanteeseen mitä moninaisimmin tavoin. Tapahtumasuuntautuneessa maailmankuvassa tätä ei tyypillisesti huomioida, ja päätöksistä saattaa seurata odottamattomia sivuvaikutuksia. [10, s. 10]

Kuva 1: Tapahtumasuuntautunut maailmankuva. [10, s. 10]

Stermanin [10, s. 11] mukaan sivuvaikutuksia ei ole todellisuudessa kuitenkaan olemassa. On vain olemassa vuorovaikutussuhteita, joita ei ole otettu huomioon. Seu-

raava kuva 2 esittää takaisinkytkentäsuuntautunutta maailmankuvaa. Systeemiajattelijan maailmankuva on takaisinkytkentäsuuntautunut, ja hän ymmärtää päätösten vaikuttavan ympäristön tekijöihin, jotka puolestaan vaikuttavat päätöksiin.

Kuva 2: Takaisinkytkentäsuuntautunut maailmankuva. [10, s. 11]

Maailmankuvaa voi edelleen laajentaa. Seuraava kuva 3 on laajennettu edellisestä kuvasta 2 ottamaan huomioon useampia systeemin tekijöitä. Systeemiajattelija hahmottaa, että päätöksillä on myös muita seurauksia, ja nekin muuttavat ympäristöä. Muuttuva ympäristö vaikuttaa myös tavoitteisiin – niin omiin kuin muidenkin. Kun ympäristö ja muiden tavoitteet muuttuvat, tekevät muut päätöksiään sen pohjalta, mikä puolestaan muuttaa ympäristöä. [10, s. 11–12]

Kuva 3: Laajennettu takaisinkytkentäsuuntautunut maailmankuva. [10, s. 11]

2.3 Takaisinkytketyt systeemit

Systeemeillä on tuloja ja lähtöjä. Tulot (myös sisääntulo, eng. input) ovat systeemiin tulevia arvoja, jotka vaikuttavat systeemin käyttäytymiseen. Lähdöt (myös ulostulo, eng. output) ovat systeemin käyttäytymisestä seuraavia arvoja. Erilaisilla tuloilla saadaan systeemistä erilaiset lähdöt. Takaisinkytkentä (eng. feedback) tarkoittaa systeemin lähdön käyttämistä systeemin tulona. Tällöin systeemi kytkeytyy takaisin itseensä, muodostaa kytkennöistä silmukan (eng. loop) ja vaikuttaa itse itseensä. Takaisinkytkennästä käytetään erityisesti ihmistieteiden puolella myös termiä "palaute". [10, 12]

Stermanin [10, s. 12] mukaan takaisinkytkennät vaikuttavat systeemin mutkikkuuteen enemmän kuin järjestelmän osien mutkikkuus itse. Tämän vuoksi takaisinkytkentöjen löytäminen on keskeisin osa systeemidynaamista mallinnusta.

Systeemidynaamisia malleja esitetään kausaalidiagrammein, joihin merkitään systeemin osat eli muuttujanimet sekä niiden väliset vuorovaikutussuhteet kausaaliyhteysnuolten avulla. Nuolet piirretään lähtemään muuttujasta, joka vaikuttaa nuolen päätepisteen muuttujaan. Toisin sanoen nuoli kuvaa sitä, että nuolen alkupään muuttujan arvo eli lähtö toimii nuolen loppupään tulona. Nuoliin merkitään plustai miinusmerkki sen mukaan, kasvattaako vaiko vähentääkö lähtömuuttujan arvon kasvu tulomuuttujan arvoa. Nuolet piirretään kaareviksi, jotta systeemin dynamiikkaa, etenkin silmukat, olisi helpompi hahmottaa. [10]

Systeemeissä on sisäsyntyisiä eli endogeenisiä (eng. endogenous) sekä ulkosyntyisiä eli eksogeenisiä (eng. exogenous) muuttujia. Sisäsyntyisen muuttujan arvo määräytyy systeemin sisäisen dynamiikan seurauksena, kun taas ulkosyntyisen muuttujan arvo annetaan systeemin ulkopuolelta, eikä näin ollen riipu systeemin tilasta. [10]

Takaisinkytkettyjä silmukoita on kahdenlaisia: negatiivisia ja positiivisia. Positiiviset silmukat ovat itseään vahvistavia. Seuraavassa kuvassa 4 on positiivinen takaisinkytketty silmukka, jossa kanojen määrä lisää munien määrää, mikä puolestaan lisää kanojen määrää. Positiiviset silmukat merkitään kausaalidiagrammiin kuvan 4 mukaisesti R-kirjaimella, mikä tulee englannin kielen sanasta "reinforcing"eli suomeksi "vahvistava". [10, s. 12–13][12]

Kuva 4: Positiivinen takaisinkytketty silmukka. [10, s. 13]

Negatiiviset silmukat ovat itseään tasapainottavia. Seuraavassa kuvassa 5 on negatiivinen takaisinkytketty silmukka, jossa kanojen lisääntyminen johtaa siihen, että useampi niistä ylittää tien ja jää auton alle, mikä puolestaan vähentää kanojen määrää, mikä puolestaan vähentää tien ylityksiä. Negatiiviset silmukat merkitään kuvan 5 mukaisesti B-kirjaimella, mikä tulee englannin kielen sanasta "balancing"eli suomeksi "tasapainottava". [10, s. 12–14]

Kuva 5: Negatiivinen takaisinkytketty silmukka. [10, s. 13]

Silmukka on positiivinen, kun siinä on parillinen määrä negatiivisia kytkentöjä. Kuvan 4 positiivisessa silmukassa on nolla negatiivista kytkentää. Silmukka on negatiivinen, kun siinä on pariton määrä negatiivisia kytkentöjä. Kuvan 5 negatiivisessa silmukassa on yksi negatiivinen kytkentä. [10, s. 12–14]

2.4 Viiveet, varastot ja virtaukset

Viiveet aiheuttavat systeemiin hitautta, aiheuttavat värähtelyitä sekä johtavat siihen, että päätösten seuraukset johtavat pitkällä aikajänteellä erilaisiin tilanteisiin kuin lyhyellä aikajänteellä. Seuraavassa kuvassa 6 on esitetty systeemi, jossa hinnan nousu lisää viiveellä tuotantoa. Kausaalidiagrammeihin viiveet merkitään nuolen päälle joko kahdella poikkiviivalla tai laatikolla, jossa lukee "viive". [10, s. 150–152]

Kuva 6: Viiveellinen systeemi [10, s. 150]

Varastot ovat systeemin osia, joiden arvo kertyy. Ne tuottavat systeemiin muistia sekä hitautta ja niillä voi kuvata viiveitä. Varastot myös kertovat päättäjille, mikä on systeemin tila. Varastoon voi tulla sisäänvirtauksia ja sieltä voi lähteä ulosvirtauksia. Sisäänvirtaukset kerryttävät ja ulosvirtaukset kuluttavat varaston arvoa. Seuraava kuva 7 on yksinkertainen kausaalidiagrammiesitys varastosta ja virtauksista. Varastot merkitään kausaalidiagrammiin suorakulmioilla, virtauskytkennät virtausnuolilla, virtausmuuttujat venttiilisymboleilla sekä systeemin ulkopuoliset lähteet ja nielut pilvillä. [10, s. 191–197]

Kuva 7: Yksinkertainen kausaalidiagrammi varastoista ja virtauksista. [10, s. 150]

Varaston matemaattinen esitys vastaa integraattoria, joka integroi sisäänvirtauksen ja ulosvirtauksen erotusta alkuhetkestä t_0 hetkeen t:

$$Varasto(t) = \int_{t_0}^{t} \left(Sis\ddot{a}\ddot{a}nvirtaus(s) - Ulosvirtaus(s) \right) ds + Varasto(t_0)$$
 (1)

[10, s. 194–195]

Varastot ja virtaukset ovat intuitiivinen esitystapa, mutta saman dynamiikan voi esittää ilmankin niitä [10, s. 191–230]. Seuraavassa kuvassa 8 on esitetty kuvan 5 negatiivisesti takaisinkytketty silmukka varastojen ja virtausten avulla. Kanojen määrä voidaan ajatella varastona ja tien ylitykset virtauksena, joka vähentää kanojen määrää. Kanojen määrä säätää tien ylitykset -venttiiliä: mitä enemmän kanoja, sitä avonaisempi venttiili ja suurempi virta.

Kuva 8: Kuvan 5 negatiivisesti takaisinkytketyn silmukan esitys varastojen ja virtausten avulla.

3 Ilmastonmuutoksen mallintaminen

Ilmastonmuutoksen mallintamiseen tarvitaan aina jonkinlainen fysikaalinen malli. Raskaimmissa fysikaalisissa malleissa ilmakehä ja meret saatetaan pilkkoa lukuisiksi osiksi neliökilometrin alueisiin ja useisiin kerroksiin. Näiden osien keskinäistä vuorovaikutusta simuloidaan erilaisin kasvihuonekaasujen parametrein. Mitä tarkempi malli, sitä kauemmin sen simuloiminen kestää. [11]

Systeemidynaamiset fysiikkamallit ovat pääsääntöisesti karkeita ja ottavat huomioon vain yksittäisiä maailmanlaajuisia suureita. Näin ollen mallin simuloiminen on nopeaa. Tässä työssä esiteltävien systeemidynaamisten ilmastomallien simuloiminen vie kotikoneella sekunnin murto-osan. Systeemidynaamiset fysiikkamallit viritetään ja validoidaan historiadatalla sekä tarkkojen fysiikkamallien avulla: kun systeemidynaaminen fysiikkamalli tekee oikeita ennustuksia historiadatan pohjalta sekä vastaavia ennustuksia kuin yleisesti hyväksytyt fysiikkamallit, voidaan malli katsoa oikeaksi. [4, 11]

Fysiikkamallin voi laajentaa ihmisiin. Eri tieteenaloja yhdistelevistä malleista käytetään tässä työssä nimitystä yhdistetty malli (eng. intergrated assessment model). Yhdistetyillä ilmastomalleilla voidaan esimerkiksi tutkia, miten ilmastonmuutos, väestönkasvu, talouskasvu ja hyvinvointi vaikuttavat toisiinsa. [14]

Tässä työssä ilmastomalleja esiteltäessä ja vertailtaessa keskitytään systeemidynamiikan kannalta keskeisiin asioihin. Tutkitaan, mitä on mallinnettu ja jätetty mallintamatta, millaisia ovat mallin keskeiset takaisinkytkennät ja mitkä muuttujat on mallinnettu ulkosyntyisiksi.

Tämän luvun tavoitteena on tutustuttaa lukija ilmastonmuutoksen mallintamiseen ensin yleisesti ja sitten systeemidynaamisiin malleihin pureutuen. Aluksi alaluvussa 3.1 tutustutaan ilmastonmuutoksen ja ilmastomallien historiaan sekä hahmotellaan, miksi mallintamiseen on alettu käyttää myös systeemidynaamisia menetelmiä. Seuraavat alaluvut 3.2 ja 3.3 esittelevät systeemidynaamiset Climate Interactiven C-ROADS- ja En-ROADS-ilmastomallit. Lopuksi alaluvussa 3.5 otetaan lyhyt katsaus muutamaan muuhun tunnettuun ilmastomalliin.

3.1 Ilmastomallien historia

1930-luvulla tehtiin ensimmäisiä havaintoja ilmaston lämpenemisestä. Keskustelu ilmaston lämpenemisestä jäi spekulaation tasolle ja sitä pidettiin vain jonkinlaisena ilmastosyklinä. Lämpenemisen ei uskottu olevan ihmisen aiheuttamaa osittain siksi, että ihmistä pidettiin heikkona luonnon voimien rinnalla. 1950-luvulla tehtiin en-

simmäiset tieteelliset havainnot hiilidioksidin kertymisestä ilmakehään ja tästä seuraavasta ilmaston lämpenemisestä, mikä käynnisti ilmastonmuutoksen tutkimuksen.

[1]

1960-luvulla luotiin ensimmäiset matemaattiset ilmastomallit ja tehtiin ensimmäiset löydökset takaisinkytkennöistä, jotka saattaisivat tehdä ilmastosta yllättävänkin epävakaan. Samaan aikaan sään ennustamiseksi kehitetyt ilmakehän tietokonemallit tukivat löydöksiä. Ilmastonlämpenemistä ei kuitenkaan osattu nähdä vielä uhkana. Ilmastotutkimus kehittyi hitaasti, mutta sai kunnon sykäyksen 1980-luvun loppulle tultaessa ilmastonmuutokseen jälleen havahduttaessa. [1] Tällöin perustettiin Hallitustenvälinen ilmastonmuutospaneeli IPCC (Intergovernmental Panel on Climate Change) kokoamaan ja arvioimaan ihmisen aiheuttaman ilmaston lämpenemistä ja sen vaikutuksia koskevaa tieteellistä tietämystä. [9].

1990-luvulla ilmastomallit olivat päässeet lyhyen aikavälin ennusteissa jo varsin hyvään tarkkuuteen, mutta pitkän aikajakson ennusteet olivat eri malleilla eriävät. 2000-luvun aikana tiedeyhteisö alkoi puhua jo konsensuksesta, että ilmasto mitä ilmeisimmin lämpenee ihmisen toiminnan seurauksena. [1]

3.2 C-ROADS-ilmastomalli

C-ROADS-ilmastomalli on fysikaalinen ja perustuu Fiddamanin [3] kehittämään systeemidynaamiseen FREE-ilmastomalliin. C-ROADS-ilmastomalli koostuu useasta alimallista. Kullekin kasvihuonekaasulle on oma alimallinsa, samoin metsien kasvamiselle ja tuhoutumiselle, meren pinnan korkeudelle sekä maapallolle kertyneelle lämpöenergialle. [2, 11]

Seuraavaksi tutustutaan C-ROADS:n keskeisiin alimalleihin. Havainnollistamisessa käytetään apuna mallin kausaalidiagrammeja, joista on selkeyden vuoksi piilotettu osa muuttujista ja vuorovaikutukista. Malliin on otettu Kioton ilmastosopimuksen [13] mukaiset kasvihuonekaasut: hiilidioksidi (CO_2) , metaani (CH_4) , typpidioksidi (N_2O) , perfluorohiiliyhdisteet (PFC), rikkiheksafluoridi (SF_6) sekä hydrofluorihiiliyhdisteet (HFC) [2, 11]. Mutkikkaimmin mallissa on esitetty hiilidioksidin kiertokulku, joten kasvihuonekaasuista tässä työssä esitetään vain sen alimalli.

3.2.1 C-ROADS-ilmastomallin käyttö

3.2.2 Hiilidioksidi

Seuraava kuva 9 on yksinkertaistettu hiilidioksidin alimalli, jossa on kuusi varastomuuttujaa, joista kukin kuvaa hiilidioksidivarastoa. Näitä varastoja ovat: ilmakehä (C in Atmosphere), biomassa (C in Biomass), maaperä (C in Humus), metsät (C AF Sequestered) sekä merten pinta- (C in Mixed Layer) ja syvät (C in Deep Ocean) kerrokset. Näistä ainoastaan ilmakehässä oleva hiilidioksidi vaikuttaa ilmaston lämpötilaan. Hiilidioksidia ei poistu systeemistä, mutta sitä tulee systeemiin kahdesta lähteestä. Merkittävin lähde on ihmisen suoraan aiheuttamat päästöt (Global total C emissions), joka on systeemiin mallinnettu ulkosyntyisenä muuttujana. Hiilidioksidia syntyy myös ilmakehään vapautuneen metaanin hapettuessa (C from CH4 oxidation).

Ilmakehän hiilidioksidia liukenee merten pintakerroksiin (Flux Atm to Ocean), josta se voi joko vapautua takaisin ilmakehään tai vajota meren syvempiin kerroksiin (Diffusion Flux). Ilmakehän hiilidioksidia sitoutuu myös metsiin ja biomassaan. Biomassasta hiilidioksidi voi vapautua takaisin ilmakehään tai vajota maaperään, josta se voi edelleen vapautua takaisin ilmakehään. Myös metsistä hiilidioksidi voi vapautua takaisin ilmakehään. Hiilidioksidin kohdalla ilmastonlämpenemistä ehkäistään siis vähentämällä hiilidioksidi- ja metaanipäästöjä sekä lisäämällä metsien ja muun biomassan määrää.

Varastomuuttujilla on ylä- ja alarajansa: metsiä ei voi kaataa loputtomasti eikä meriin voi liueta loputtomasti hiilidioksidia.

Kuva 9: C-ROADS-ilmastomallin hiilidioksidin kiertokulku. [2]

3.2.3 Maapallolle varastoitunut lämpöenergia

Seuraava kuva 10 on C-ROADS-ilmastomallin lämpöenergian kiertokulun kausaalidiagrammi. Mallissa on kaksi varastomuuttujaa lämpöenergialle: ilmakehä ja pintavedet (Heat in Atmosphere and Upper Ocean) sekä merten syvät kerrokset (Heat in Deep Ocean). Lämpöenergiaa systeemiin tulee auringon säteilystä ilmakehään, josta se voi siirtyä joko merten syvyyksiin tai kadota avaruuteen. Ilmakehän kasvihuonekaasujen lisääntyminen vähentää lämmön virtaa avaruuteen (Feedback Cooling) ja ilmakehän lämpötilan nousu lisää sitä.

Kuva 10: C-ROADS-ilmastomallin lämpöenergian kiertokulku. [2]

Seuraava kuva 11 on C-ROADS-ilmastomallin merenpinnan nousun kausaalidiagrammi.

Kuva 11: C-ROADS-ilmastomallin merenpinnan nousu. [2]

Seuraava kuva 12 on C-ROADS-ilmastomallin metsien kasvun kausaalidiagrammi.

Kuva 12: C-ROADS-ilmastomallin metsien kasvu. [2]

3.3 En-ROADS-ilmastomalli

3.4 FREE-ilmastomalli

3.5 Erilaiset ilmastomallit

3.6 Ilmastonmuutoksen ongelmanratkaisu systeemidynamiikalla

4 Yhteenveto

Keskitytään hyvin paljon Stermanin ja Fiddamanin tutkimukseen, eikä esitetä kritiikkiä.

Viitteet

- [1] American Institute of Physics. The Discovery of Global Warming.
- [2] Climate Interactive. C-ROADS-ilmastomalli.
- [3] Thomas S Fiddaman. Feedback Complexity in Integrated Climate-Economy Models by. PhD thesis, Massachusetts Institute of Technology, 1997.
- [4] Thomas S Fiddaman. Exploring policy options with a behavioral climate-economy model. System Dynamics Review, 18(2):243–267, 2002.
- [5] Robert L. Flood and Ewart R. Carson. Dealing with Complexity: An Introduction to the Theory and Application of Systems Science. Plenum Publishing Corporation, New York, 2nd edition, 1988.
- [6] Jay W Forrester. Industrial Dynamics. 1961.
- [7] Jay W. Forrester. Industial Dynamics After the First Decade. *Management Science*, 14(7):398–415, 1968.
- [8] Jay W Forrester. The Beginning of System Dynamics, 1989.
- [9] Intergovernmental Panel on Climate Change. IPCC:n historiasivu.
- [10] John D. Sterman. Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-Hill, Boston, 2000.
- [11] John D. Sterman, Thomas Fiddaman, Travis Franck, Andrew Jones, Stephanie McCauley, Philip Rice, Elizabeth Sawin, and Lori Siegeld. Management Flight Simulators to Support Climate Negotiations: The C-ROADS Climate Policy Model John D. Sterman. (September):1–36, 2011.
- [12] System Dynamics Society. What is system dynamics?
- [13] United Nations Framework Convention on Climate Change. *Kyoto Protocol Reference Manual*. Bonn, 2008.
- [14] U.S. Department of Energy. Climate Change Intergrated Assessment Research. Technical report, U.S. Department of Energy, 2009.
- [15] Lotfi a. Zadeh. Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. *IEEE Transactions on Systems, Man, and Cybernetics*, SMC-3(1):28–44, 1973.