Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number. $\alpha = 0.95^t \alpha_0$ point $\alpha = \frac{1}{\sqrt{t}}\alpha_0$ $\alpha = e^t \alpha_0$

Correct

Correct

Consider this figure:

Correct

Correct

Try using Adam

point

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta=0.9.$ What would happen to your red curve as you vary β ? (Check the two that apply) point temperature

days Decreasing β will shift the red line slightly to the right. **Un-selected is correct**

Increasing β will shift the red line slightly to the right.

green line \$\$\beta = 0.98) that is slightly shifted to the right.

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a

Decreasing β will create more oscillation within the red line. True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta = 0.98 that had a lot of oscillations. Increasing β will create more oscillations within the red line. **Un-selected is correct**

point

These plots were generated with gradient descent; with gradient descent with

momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm? (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β) (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β) (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply) Try mini-batch gradient descent

Suppose batch gradient descent in a deep network is taking excessively long to find a

Correct Try initializing all the weights to zero Un-selected is correct Try tuning the learning rate α Correct

Correct

Adam combines the advantages of RMSProp and momentum

Try better random initialization for the weights

10. Which of the following statements about Adam is False?

 $\beta_1 = 0.9, \beta_2 = 0.999, \varepsilon = 10^{-8}$)

Adam should be used with batch gradient computations, not with minibatches. Correct We usually use "default" values for the hyperparameters β_1,β_2 and ε in Adam (

The learning rate hyperparameter α in Adam usually needs to be tuned.

point

