Component Separation for HI Intensity Mapping with GNILC

Department of Physics and Astronomy

September 17, 2025

Supervisors: Prof. Mario Santos & Dr. Karin

Outline

- Introduction
- Simulation Cosmological signal
- Simulation Foregrounds
- GNILC method
- Next steps

Introduction

- We want to understand the distribution of matter in the universe
- HI line is a powerful tracer
- Challenge: Foregrounds are orders of magnitude brighter than HI signal - Foreground cleaning is essential
- ullet Goal: Recover the HI signal angular power spectrum C_ℓ^{HI} after foreground removal

Map Simulation

- We use simulations to test GNILC component separation method before real data
- They allow us to run GNILC under controlled conditions
- Simulations are represented as a 3D cube:
 - Sky position (RA, Dec) ightarrow 2D maps
 - ullet Frequency $u
 ightarrow ext{redshift z (line-of-sight)}$

HI Power Spectrum

 We want to construct 2D angular power spectrum of HI intensity over some frequency

Brightness temperature $\delta T_b(\hat{n})$

$$\delta T_b(\hat{n}) = \int dz \ W(z) \ \delta_{\rm HI}(r(z)\hat{n}, z)$$

where,

- $\delta_{HI} = \Delta \rho_{HI}/\rho_{HI}$ is the fractional HI density fluctuation and W(z) is the window function uniform in redshift z range
- ullet Taking the inverse Fourier Transform of δ_{HI} in k-space,

$$\delta_{HI}(r,z) = \int \frac{d^3k}{(2\pi)^3} \, \delta^*(k,z) \, e^{ikr} \tag{1}$$

• With comoving position r along direction \hat{n} and redshift z

HI Power Spectrum

- The sky appears to be a sphere We construct δT_{HI} in spherical Harmonics $Y_{\ell m}$
- From equation 1, We expand the e^{ikr} using the plane-wave spherical expansion,

$$e^{ikr} = 4\pi \sum_{\ell m} i^{\ell} j_{\ell} (kr) Y_{\ell m}(k) Y_{\ell m}^{*}(r)$$
 (2)

Where, j_{ℓ} is the spherical Bessel function

• Then substituting this into δT_{HI} ,

$$\delta T_b(\hat{n}) = 4\pi \sum_{\ell m} i^{\ell} \int dz \, W(z)$$

$$\times \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \, \delta_{\mathrm{HI}}(\mathbf{k}, z) j_{\ell}(kr(z)) \, Y_{\ell m}(\hat{\mathbf{k}}) \, Y_{\ell m}^*(\hat{n}) \quad (3)$$

HI Power Spectrum

• Expanding the δT_{HI} in spherical Harmonics $Y_{\ell m}$,

$$\delta T_b = \sum_{\ell m} a_{\ell m} Y_{\ell m} \tag{4}$$

• Explicitly, we can identify the harmonic coefficients $a_{\ell m}$ from equation 3,

$$a_{\ell m} = 4\pi i^{\ell} \int dz \, W(z) \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} \, \hat{\delta}_{\mathrm{HI}}(\mathbf{k}, z) \, j_{\ell}(kr(z)) \, Y_{\ell m}^{*}(\hat{\mathbf{k}})$$
(5)

• Finally the angular power spectrum C_ℓ can be estimated by average over m for fixed ℓ

$$C'_{\ell}s$$

$$C_{\ell} = \frac{1}{2\ell+1} \sum_{\ell m} |a_{\ell m}|^2$$

Angular Power Spectrum C_ℓ

- ullet From previous equation, we want to calculate $\langle a_{\ell m} a_{\ell' m'}^*
 angle$
- Considering the Dirac delta and the completeness relation,

$$\langle \delta_{\mathrm{HI}}(\mathbf{k}, z) \, \delta_{\mathrm{HI}}^*(\mathbf{k}', z) \rangle = (2\pi)^3 \, \delta^3(\mathbf{k} - \mathbf{k}') \, P_{\mathrm{c}}(k), \tag{6}$$

- Intuitively, modes with k = k' are correlated; and $k \neq k'$ their correlation vanishes
- Using equation (6) we get the exact angular power spectrum,

$$C_{\ell} = \frac{2}{\pi} \int k^2 dk \ P_c(k) \left[\int dz \ W(z) D(z) j_{\ell}(kr(z)) \right]^2$$
 (7)

- This equation is computationally demanding (for $\ell > 10^3$), in this project we compute $C_{\ell m}$ from exact equation ($\ell < 10^3$)
- ullet The Limber approximation is valid for large $(\ell=\pi/ heta)$ values

C_{ℓ} from simulations

- Astrophysical components: Galactic synchrotron, Galactic free-free and extragalactic point sources
- Before testing GNILC, we add components and cosmological signal to have one single cube

GNILC Method

Definition

We denote the observed sky as $x_i(p)$ in both pixel p and frequency i space, and is the sum of HI signal $s_i(p)$ and foreground components $f_i(p)$,

$$x(p) = s(p) + f(p) \tag{8}$$

All in $N_{ch} \times 1$ column vector

- From these sky observations x(p), with GNILC we want to decompose them using needlets (type of spherical wavelet)
- We compute the covariance matrices $R_x = \langle x(p) \ x(p)^T \rangle$,

$$R(p) = R_s(p) + R_f(p)$$

• Where $R_s(p) = \langle s(p) \ s(p)^T \rangle$ the covariance matrix of the HI signal

GNILC

• For General case, the s(p), can be expressed as a linear combination of $(N_{chan} - m)$ independent templates t,

$$s = St$$

- Where S is the mixing matrix $N_{chan} \times (N_{chan} m)$
- We can also find $R_s = \langle s s^T \rangle = \langle S R_t S^T \rangle$
- Using the internal Linear combination (ILC), we want to estimate s by linear operation,

$$\hat{s} = Wx \tag{9}$$

• Where, W weight matrix which Keeps the HI signal while minimizing the total variance -> Key

Next steps:

- Computing the covariance matrices
- Construct GNILC weight matrix
- perform a 'constrained' Principal Component Analysis (PCA)

References

- Olivari, L. C. (2018). Approach to probe the large-scale structure of the Universe.
- Olivari, L. C (2016). (GNILC) Generalized Needlet Internal Linear Combination
- De Caro, B., Carucci, et all. (2025). eGNILC approach for HI intensity mapping.
- Dai, X., Ma, Y. (2025). Expanded Generalized Needlet Internal Linear Combination (eGNILC).