EDF Scheduler Implementation

This Report verifies system implementation with the EDF scheduler using: 1) Analytical methods: System hyper period, CPU load, URM method, Time demand analysis techniques. 2) Simso offline simulator. 3) Keil simulator in run-time.

** Author: Ahmad Akram **

Task	Periodicity(ms)	Deadline(ms)	Execution Time
Button_1_Monitor	50	50	135us
Button_2_Monitor	50	50	138us
Periodic_Transmitter	100	100	183us
Uart_Receiver	20	20	165us
Load_1_Simulation	10	10	5ms
Load_2_Simulation	100	100	12ms

Analytical Methods

• System Hyper Period

The smallest interval of time after which the periodic patterns of all the tasks is repeated: Hyper Period = Least Common Multiple (10, 20, 50, 100) = 100 ms.

CPU Load

(Total time of all tasks / system time = Ti*Pi)

CPU Load =
$$((0.00135 * 2) + (0.00138 * 2) + (0.00183 * 1) + (0.00165 * 5) + (5 * 10) + (12 * 1)) / 100 = 0.62.$$

URM Method

$$URM = n (2^{(1/n)} - 1) = 6 (2^{(1/6)} - 1) = 0.73477.$$

Since Total Utilization (U) \leq Rate-Monotonic utilization bound (URM), (0.62) \leq (0.73477), Therefore the system is **schedulable**.

• Time Demand Analysis

```
1^{st} deadline (p = 10): L1 Task
w(10) = 5,
                                        w(10) <10, L1 Task is schedulable
2<sup>nd</sup> deadline (p = 20): Rx Task
w(20) = 0.00165 + (20/10)5 = 10.00165, w(20) < 20, Rx Task is schedulable
3^{rd} deadline (p = 50): B1 Task
w(50) = 0.00135 + (50/20)0.00165 + (50/10)5 = 25.0055.
                                       w(50) <50, B1 Task is schedulable
3<sup>th</sup> deadline (p = 50): B2 Task
w(50) = 0.00138 + 0.00135 + (50/20)0.00165 + (50/10)5 = 25.0068
                                       w(50) <50, B2 Task is schedulable
4<sup>th</sup> deadline (p = 100): Tx Task
w(100)=0.00183+(100/50)0.00138+(100/50)0.00135+(100/20)0.00165+(100/
10)5 = 50.0155
                                       w(100) <100, Tx Task is schedulable
4<sup>th</sup> deadline (p = 100): L2 Task
w(100)
=12+0.00183+(100/50)0.00138+(100/50)0.00135+(100/20)0.00165+(100/10
) = 62.0155,
                                      w(100) <100, L2 Task is schedulable
```

Hence, This system is schedulable.

Simso offline simulator

KEIL simulator

Pins Configurations	Task Tracing	
PIN0(16)	Tick Hook	
PIN1(17)	Button 1 Task	
PIN2(18)	Button 2 Task	
PIN3(19)	Periodic Transmitter Task	
PIN4(20)	UART Receiver Task	
PIN5(21)	Load 1 Simulation Task	
PIN6(22)	Load 2 Simulation Task	
PIN7(23)	Idle Task	

Keil Simulation at runtime:

In Conclusion

I can clearly verify that the EDF has been successfully implemented, as each task executes based
on its deadline and preempts currently executing tasks (ex., Rx, B1, and B2 preempt L2 when
their deadlines come), and based on my results above, I have proven that the system is
completely schedulable.