

EXAMEN DE FIN D'ÉTUDES SECONDAIRES **2017**

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE
Mathématiques II	C-D	Durée de l'épreuve 2h45
		Date de l'épreuve 13.06.2017
		Numéro du candidat

Question I (23 points)

Soit la fonction f définie sur $D_f = D_f = \mathbb{R} : f(x) = e^x x^3$

1. Étudier f:

(a) (3) Limites aux bornes de D_f et asymptotes parallèles aux axes éventuelles.

(b) (4) Fonction dérivée et tableau des variations avec limites et extréma.

(c) (5) Fonction dérivée seconde et tableau de concavité avec les points d'inflexion éventuels.

(d) (2) Tangente T_1 à C_T en x=1.

(e) (4) Représentation graphique de C_f et de T_f dans un repère orthonormé. (1 unité \approx 2 cm)

2.

(a) (1) Montrer que la fonction F est une primitive de f sur IR:

$$F(x) = e^x(x^3 - 3x^2 + 6x - 6)$$

- (b) (2) Calculer l'aire $A(\lambda)$ délimitée par Ox et la courbe C_f sur $[\lambda;0]$ où λ est un réel strictement négatif.
- (c) (2) Calculer $\lim_{\lambda \to -\infty} A(\lambda)$.

Question II (16 points)

1. (6) Résoudre dans IR :
$$e^{2x+1} + 2e^{x+1} - e^x < 2$$

2. (4) Résoudre dans IR :
$$log_{0.5}(x-1) \le log_{0.5}(4-3x) - 1$$

3. (a) (3) Calculer:
$$\lim_{x \to +\infty} \left(\frac{x+1}{x-1} \right)^{2x}$$

(b) (1) Déduire de (a) :
$$\lim_{x \to +\infty} \left(\log_{\sqrt{e}} \left(\frac{x+1}{x-1} \right)^{2x} \right)$$

4. (2) Calculer:
$$\lim_{x \to 0^{-}} \frac{\arccos(e^x)}{\sin x}$$

1/2

Question III (14 points)

1. Soit a un réel strictement positif et distinct de 1. Démontrer en justifiant :

(a) (1)
$$\forall x > 0$$
: $(log_a x)' = \frac{1}{xlna}$

- (b) (3) $\forall x \in IR: (a^x)' = a^x lna$
- 2. (6) Calculer la primitive F de f qui s'annule en e, sur un intervalle à préciser :

$$f(x) = \frac{1 + \ln x^2 - \ln^2 x}{x \ln x}$$

 $f(x) = \frac{1 + \ln x^2 - \ln^2 x}{x \ln x}$ (4) Calculer les primitives F de f sur IR: $f(x) = \arctan(2x)$ 3.

Question IV (7 points)

Soit la fonction f définie sur IR- $\{1\}$ et C_f sa courbe représentative dans un repère.

$$f(x) = x - \frac{xe^x}{e^x - e}$$

- (4) Montrer que la droite d'équation y = x est une asymptote oblique pour C_f . 1.
- 2. (3) Déterminer la position de Cf par rapport à cette asymptote oblique.