Capítulo 1

Especificação

Apresenta-se neste capítulo do projeto de engenharia a concepção, a especificação do sistema a ser modelado e desenvolvido.

1.1 Características gerais

O software Simulador de difusão térmica 3D, é um software programado sob o Paradigma Orientado ao Objeto em C++, capaz de simular a transferência de calor em objetos tridimensionais, com formas e superfícies complexas e definidas pelo usuário, o qual também pode definir quais materiais constituem o objeto, e qual o método utilizado para calcular as propriedades termofísicas para cada material. Também é permitido a renderização 3D do objeto, e salvar os resultados em formato pdf.

Para resolver o problema da transferência do calor, é modelado a equação diferencial por diferenças finitas implícitas, especificamente pelo método BTCS (*Backward Time Centered Space*), que é incondicionalmente estável. As condições iniciais, são inseridas pelo usuário, e as condições de contorno externo são definitas por regiões que não trocam calor com o meio externo (condição de contorno de Neumann).

Nome	Simulador de difusão térmica 3D
Componentes principais	Método numérico implícito BTCS.
	Métodos de correlação e interpolação para
	propriedades termofísicas.
	Renderização 3D.
Missão	Simulador de transferência de calor em
	objetos 3D com superfícies complexas,
	formado por materiais com propriedades
	depententes da temperatura. E auxiliar no
	ensino das diversas disciplinas abrangidas
	por este trabalho.

Tabela 1.1: Características básicas do programa

1.2 Especificação

Deseja-se desenvolver um software com interface gráfica amigável ao usuário, onde seja possível desenhar o objeto 3D, por meio de perfis, com o usuário escolhendo a temperatura e o material. A simulação é governada pela Equação da Difusão Térmica, a qual é modelada por diferenças finitas, pelo método BTCS, com fronteiras seladas.

Na dinâmica de execução, o usuário deverá escolher o tamanho do objeto, a temperatura, em qual perfil está desenhando, o material e suas propriedades termofísicas, e um ponto de monitoramento e estudo. O usuário terá a liberdade para utilizar um dentre três métodos para obter as propriedades dos materiais: propriedades constantes, correlação e interpolação.

Após os desenhos do usuário e colocado o simulador para rodar, o simulador irá calcular a temperatura iterativamente em cada ponto, e só passará para o próximo tempo se o erro entre iterações for menor que um valor aceitável. Posteriormente, o desenho será atualizado e mostrará a nova distribuição de temperatura, e plotará os gráficos com os novos valores calculados.

O software será programado em C++, com paradigma orientado ao objeto, utilizando a biblioteca Qt para criar a interface do usuário, e qcustomplot para gerar os gráficos.

Para calcular as propriedades termofísicas dos materiais, são utilizados três modelos: propriedades constantes, por correlação e por interpolação.

Os principais termos e suas unidades utilizadas neste projeto estão listadas abaixo:

- Dados relativos ao material:
 - $-c_p$ capacidade térmica $[J/g \cdot K]$
 - k condutividade térmica $[W/m\cdot K]$
 - $-\rho$ massa específica $[kg/m^3]$
- Dados relativos ao objeto
 - $-\Delta x, \Delta y$ distância entre os centros dos blocos, valor inicial: 1px=0.0026m [m];
 - $-\Delta z$ distância entre perfis, valor inicial: 0.05m [m];
 - -T temperatura no nodo [K];
- Variáveis usadas na simulação:
 - -i posição do nodo em relação ao eixo x;
 - -k posição do nodo em relação ao eixo y;
 - -g qual grid/perfil está sendo analisado;
 - -t tempo atual;
 - $-\nu$ número da iteração.

1.2.1 Requisitos funcionais

Apresenta-se a seguir os requisitos funcionais.

1	
RF-01	O programa deve ter uma interface gráfica amigável.
RF-02	O usuário tem a liberdade de desenhar qualquer objeto 3D, escolhendo também sua temperatura em cada ponto.
RF-03	O usuário tem a liberdade de escolher o material em cada ponto do objeto, juntamente com o método para obter as propriedades termofísicas.
RF-04	O usuário poderá escolher um ponto de estudo, cuja temperatura será monitorada ao longo do tempo, juntamente com todas as linhas cardeais partindo desse ponto.
RF-05	O usuário poderá escolher uma região de fonte ou sumidouro.
RF-06	O usuário poderá salvar e/ou carregar dados da simulação.
RF-07	O usuário poderá salvar os resultados da simulação em um arquivo pdf.
RF-08	O usuário pode adicionar materiais no simulador, e escolhar a forma de calcular suas propriedades termofísicas: constante, correlação ou interpolação.
RF-09	O usuário poderá comparar as propriedades termofísicas dos materiais.
RF-10	O usuário poderá acompanhar a evolução da temperatura em uma superfície 2D em todo intervalo de tempo.
RF-11	O usuário poderá visualizar o objeto 3D desenhado em uma ja- nela separada.

1.2.2 Requisitos não funcionais

RNF-01	Os cálculos devem ser feitos utilizando-se o método numérico de diferenças finitas BTCS.
RNF-02	O programa deverá ser multi-plataforma, podendo ser executado em $Windows,\ GNU/Linux$ ou $Mac.$

RNF-03	A performance do programa pode ser alterada com a mudança
	do modelo de paralelismo.
RNF-04	A interface gráfica deve ser desenvolvida pela biblioteca Qt.
RNF-05	O usuário pode definir as propriedades físicas da simulação,
	como intervalo de tempo e espaço.

1.3 Casos de uso

Tabela 1.2: Exemplo de caso de uso

Nome do caso de uso:	Cálculo da temperatura
Resumo/descrição:	Cálculo da distribuição de temperatura em determina-
	das condições.
Etapas:	1. Escolha da temperatura e do material
	2. Desenhar o objeto desenhado
	3. Escolher um ponto de estudo
	4. Rodar a simulação e analisar resultados
	5. Salvar objeto e resultados em pdf
Cenários alternativos:	Um cenário alternativo envolve uma entrada de propri-
	edades de um metal obtidas em laboratório, escolher se
	essas propriedades vão ser calculadas por correlação ou
	interpolação.

1.3.1 Diagrama de caso de uso geral

O diagrama de caso de uso geral da Figura 1.1 mostra o usuário desenhando um objeto com material padrão do simulador, escolhendo um ponto de estudo, rodando a simulação, analisando os resultados e salvando o objeto e resultados em pdf.

1.3.2 Diagrama de caso de uso específico

O caso de uso específico na Figura 1.2 mostra um cenário onde o usuário quer utilizar os valores da condutividade térmica obtidos em laboratório. Ele deve montar um arquivo .txt com esses valores (a forma de criar esse arquivo é descrito no Apêndice B), e carregar no simulador.

O usuário terá a liberdade de comparar seu material com outros padrões do simulador, e escolhe-lo para o desenho do objeto.

Figura 1.1: Diagrama de caso de uso – Caso de uso geral

Figura 1.2: Diagrama de caso de uso específico