

Analisis Funcional | 2025-I

Nestor Heli Aponte Avila¹ n267452@dac.unicamp.br

Espacios Vectoriales Normados

Definición y Ejemplos

\Diamond	Sea E un espacio	vectorial sobre K.	Una función	.	$\ : E \to \mathbb{R}$	+ es norma	a sii $\forall x. y$	$\epsilon \in E$	$\mathbf{v} \alpha \in \mathbb{K}$.
~	oca L un espacio	vectorial sourc ng.	Ona runcion	11	· L / 11/2	. Continu	ι sn $\iota x, g$	$\subset L$	$y \alpha \subset m_{\infty}$

- $||x|| \ge 0$ e $||x|| = 0 \Leftrightarrow x = 0$.
- $\|\alpha x\| = |\alpha| \|x\|$.
- $||x + y|| \le ||x|| + ||y||$.
- * $(E,\|\cdot\|)$ espacio normado implica espacio métrico, vale la teoría existente para ellos en particular convergencia.
- \diamondsuit Sea $(x_n) \subset E$. Decimos que $x_n \to x \in E$ sii $\lim_{n \to \infty} ||x_n x|| = 0$.

Ejercicio Las operaciones algebraícas en E son funciones continuas.

 \diamondsuit $(E,\|\cdot\|)$ es ${\it Banach}$ sii es completo con la métrica inducida por la norma.

Ejemplo $(\mathbb{R}, \|\cdot\|_2)$ y $(\mathbb{C}, \|\cdot\|_2)$ son espacios de Banach.

 \square Sea E Banach y $F \leq E$ un subespacio vectorial, entonces F es Banach sii F es cerrado en E.

Ejemplo Sea $B(X) := \{f : X \to \mathbb{K} \mid f \text{ es acotada}\}\ e \|f\|_{\infty} := \sup |f(x)|, \text{ entonces } B(X) \text{ es Banach. Sea } [a,b] \subset \mathbb{R}, \text{ conjunto compacto, observe que } C^0[a,b] \le B[a,b] \text{ normado.}$

Ejercicio Complete los detalles del ejemplo, y muestre que $C^0[a,b]$ es Banach.

Ejemplo Considere $C^1[a,b] \leq C^0[a,b]$, no es Banach. Sin embargo con $\|f^{(1)}\|_{\infty^1} := \|f\|_{\infty} + \|f^{(1)}\|_{\infty}$ si que lo es. En general $C^k[a,b]$ es Banach con $\|f^{(k)}\|_{\infty^k} = \sum_{i=0}^k \|f^{(i)}\|_{\infty}$.

- \square Si $B = \{x_1, \dots, x_n\}$ es una base l.i. de E, entonces $\exists c > 0, \forall a \in \mathbb{K}^n$ tal que $\|\sum a_i x_i\| \ge c \sum |a_i|$.
- Todo espacio E tal que dim (E) < ∞ es Banach. Consecuentemente, también lo son todos los $F \le E$ cerrados.

Ejemplo Sea $c_0 = \{(a_k) \subset \mathbb{K} : a_k \to 0\}$ con las operaciones usuales y $\|(a_k)\|_{\infty} := \sup |a_k|$. Así dado c_0 es Banach.

Ejemplo Sea $c_{00} := \{(a_k) \in c_0 : \exists n_0 \in \mathbb{N} \text{ tal que } a_k = 0 \text{ para } k \geq n_0\}$. No cerrado, no Banach.

Espacios L_p , ℓ_p

- \diamondsuit Sea $\mathcal{L}(X,\Sigma,\mu)$ espacio de medida. Consideremos $\mathcal{L}_p(X,\Sigma,\mu)$ el subespacio de las $f:X\to\mathbb{K}$ tales que para $1\leq p<\infty$ el valor $\|f\|_p:=\left(\int_X|f|^p\,d\mu\right)^{\frac{1}{p}}<\infty.$
- \blacksquare Hölder. Sean p,q>1 tales que 1/p+1/q=1. Si $f\in\mathcal{L}_p$ e $g\in\mathcal{L}_q$ entonces $fg\in\mathcal{L}_1$ y $\|fg\|_1\leq \|f\|_p\cdot \|g\|_q$.
- *Minkowski*. Si $f, g \in \mathcal{L}_p$ entonces $f + g \in \mathcal{L}_p$ y $||f + g||_p \le ||f||_p + ||g||_p$
- * Note que $||f||_p = 0 \Rightarrow f = 0$. Ello motiva la siguiente consideración.
- Sean $f, g \in \mathcal{L}_p$. Decimos que $f \sim g$ si f = g μ -casi siempre, es decir, $\exists A \in \Sigma$ tal que $\mu(A) = 0$ y f(x) = g(x) para todo $x \in X \setminus A$.
- \blacksquare El conjunto $L_p = \mathcal{L}_p / \sim$ con las operaciones [f] + [g] = [f+g], [cf] = c[f] y norma $||[f]||_p := ||f||_p$ es Banach.
- \bigcirc Sea \mathcal{L}_{∞} el espacio de las f medibles acotadas μ -cuasi siempre¹. Para cada $x \in X \setminus N$ sean $S_f(N) = \sup |f(x)|$ y $||f||_{\infty} := \inf S_f(N)$ de los $N \in \Sigma$ tales que $\mu(N) = 0$.
- El espacio $L_{\infty} = \mathcal{L}_{\infty}/\sim \text{con } ||[f]||_{\infty} := ||f||_{\infty}$ es Banach.

Ejemplo Sean $p \geq 1$ y $\ell_p = \left\{ (a_k) \subset \mathbb{K} : \sum |a_k|^p < \infty \right\}$. Considere $\Sigma = \wp(\mathbb{N})$ y μ_c la medida de conteo. El espacio ℓ_p coincide con $L_p(\mathbb{N},\wp(\mathbb{N}),\mu_c)$, en este caso las operaciones son simplemente las usuales de sucesiones y $\|(a_n)\|_p = \left(\sum |a_k|^p\right)^{\frac{1}{p}}$. Entonces ℓ_p es Banach.

 \square Hölder-Minkowski en sucesiones. Para p,q>1 tales que 1/p+1/q=1 y $\forall n\in\mathbb{N}$ vale que

$$\sum_{i=1}^{n} |a_{i}b_{i}| \leq \left(\sum_{i=1}^{n} |a_{i}|^{p}\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} |b_{i}|^{q}\right)^{\frac{1}{q}} \quad \mathbf{y} \quad \left(\sum_{i=1}^{n} |a_{i} + b_{i}|^{p}\right)^{\frac{1}{p}} \leq \left(\sum_{i=1}^{n} |a_{i}|^{p}\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |b_{i}|^{p}\right)^{\frac{1}{p}}$$

Ejemplo El espacio $\ell_{\infty} = \{(a_k) \subset \mathbb{K} : \sup |a_k| < \infty\}$ con la norma $\|(a_k)\|_{\infty} = \sup |a_k|$ es Banach. Esto es directo observando que $\ell_{\infty} = L_{\infty}(\mathbb{N}, \wp(\mathbb{N}), \mu_c) = B(\mathbb{N})^2$.

Compacidad

- \diamondsuit $A\subseteq X$ es compacto sii todo cubrimiento abierto de A admite un subcubrimiento finito.
- * En espacios métricos vale decir que toda $(a_k) \subset A$ admite una subsucesión (a_{k_i}) tal que $a_{k_i} \to a \in A$.
- \square Sea $(E, \|\cdot\|)$ con $\dim(E) < \infty$, entonces los compactos de E son precisamente los cerrados y acotados.
- * Colorario. La bola unitaria $B_E := \{x \in E : \|x\| \le 1\}$ es compacta en espacios de dimensión finita.
- $\square \textit{ Riesz. Si } M < E \text{ cerrado y } \theta \in (0,1), \text{ entonces } \exists y \in E \setminus M, \forall x \in M \text{ tal que } \|y\| = 1 \text{ y } \|y x\| \leq \theta.$
- \blacksquare dim(E) < ∞ sii B_E es compacta en E.

 $[|]f(x)| \le k < \infty$ para cada $x \in X \setminus N$ donde $\mu(N \in \Sigma) = 0$.

²Verificando alguna de las dos igualdades.

Espacios Separables

 \Diamond E es separable sii $\exists D \subset E$ enumerable y denso en E.

Ejemplo Espacios con $\dim(E) < \infty$ son separables. Caso de $\mathbb{Q} \subset \mathbb{R}$.

 \square E es separable sii $\exists A \subset E$ enumerable tal que $\langle A \rangle$ es denso en E.

Ejemplo c_0 y ℓ_p son separables, mientras ℓ_{∞} no lo es.

■ Aproximación de Weierstrass. $f:[a,b] \to \mathbb{K}$ continua $\Rightarrow \forall \epsilon > 0, \forall x \in [a,b], \exists P: \mathbb{K} \to \mathbb{K}$ tal que $|P(x)-f(x)| < \epsilon$.

Ejemplo C[a, b] es separable. Hint: $\langle t \rangle$.

Ejemplo $L_p[a,b]$ es separable. Hint: continuas y polinomios.

 \square Si E es separable entonces $F \leq E$ también lo es.

Operadores Lineales

- \bigcirc Un operador lineal continuo es una función $T: E \to F$ que verifica lo siguiente,
 - $\forall x, y \in E, \forall \alpha \in \mathbb{K}$ tenemos $T(\alpha x + y) = \alpha T(x) + T(y)$.
 - $\forall x_0 \in E, \forall \epsilon > 0, \exists \delta > 0 \text{ tal que } ||x x_0|| < \delta \Rightarrow ||T(x) T(x_0)|| < \epsilon.$
- * $\mathcal{L}(E,F) = \{T: E \to F \mid T \text{ es lineal continuo}\}$ es espacio vectorial sobre \mathbb{K} . Si $F = \mathbb{K}$ entonces $\mathcal{L}(E,\mathbb{K}) = E'$, el espacio dual, cuyos elementos son funciones.
- \diamondsuit $E \cong F$ sii $\exists T \in \mathcal{L}(E, F)$ biyectivo cuyo inverso $T^{-1} \in \mathcal{L}(F, E)$.
- \bigcirc Una función $f: E \to F$ es una isometría sii $\forall x \in E$ tenemos ||f(x)|| = ||x||.
- * Si f es lineal entonces es una isometría lineal. Si f es un isomorfismo entonces le llamamos isomorfimo isométrico.

Ejercicio Toda isometría lineal es inyectiva y continua.

Caracterización

- \bigcirc Una función $f:M\to N$ es Lipschitz si $\exists L>0, \forall x,y\in M$ tal que $\|f(x)-f(y)\|\leq L\|x-y\|$.
- $\diamondsuit \ f \ \text{es uniforme continua} \ \text{si} \ \forall \epsilon > 0, \exists \delta > 0, \forall x,y \in M \ \text{tal que} \ \|x-y\| < \delta \Rightarrow \|f(x)-f(y)\| < \epsilon.$
- * Lipschitz \Rightarrow uniforme continua \Rightarrow continua \Rightarrow continua en x_0 .
- Sea $T \in \mathcal{L}(E, F)$. T es Lipschitz $\Leftrightarrow T$ es uniforme continuo $\Leftrightarrow T$ es continuo $\Leftrightarrow \exists x_0 \in E$ tal que T es continuo en $x_0 \Leftrightarrow T$ es continuo en $0 \Leftrightarrow \sup\{\|T(x)\| : x \in B_E\} < \infty \Leftrightarrow \exists C \geq 0, \forall x \in E$ tal que $\|T(x)\| \leq C\|x\|$.
- * Colorario. $T \in \mathcal{L}(E, F)$ biyectivo es isomorfismo sii $\exists C_1, C_2 > 0, \forall x \in E \text{ tal que } C_1 ||x|| \le ||T(x)|| \le C_2 ||x||$.
- \square Sean E, F espacios normados, entonces (a) $||T|| = \sup\{||T(x)|| : x \in B_E\}$ es norma en $\mathcal{L}(E, F)$; (b) $\forall T \in \mathcal{L}(E, F), \forall x \in E$ tenemos $||T(x)|| = ||T|| \cdot ||x||$ y (c) F Banach $\Rightarrow \mathcal{L}(E, F)$ Banach.

* Colorario (c). E' es Banach.

Ejemplo El operador identidad $1_E: E \to E \in \mathcal{L}(E, E)$ para el cual $||1_E|| = 1$; Operador nulo $O: E \to F \in \mathcal{L}(E, F)$ que envía $x \mapsto 0_F$ tenemos ||O|| = 0.

Ejemplo Sea $\varphi \in E'$ e $y \in F$. Sea $\varphi \otimes y : x \mapsto \varphi(x)y \in \mathcal{L}(E,F)$ y tiene norma $\|\varphi\| \cdot \|y\|$.

Ejemplo Sea $(b_n) \in \ell_p$. Considere $T : \ell_\infty \to \ell_p$ tal que $(a_n) \mapsto (a_n b_n)^3$.

Ejemplo Sea $g \in L_p[0,1]$. Como en el ejemplo anterior considere $T: C[0,1] \to L_p[0,1], T(f) = fg$. El operador $T \in \mathcal{L}(C[0,1], L_p[0,1])$ y es llamado *operador multiplicación*.

Ejercicio T lineal en E con $\dim(E) < \infty \Rightarrow T$ continuo. En dimensión infinita no siempre es cierto.

Ejemplo Sea $\mathcal{P}[0,1] \subset C[0,1]$ con la norma $\|\cdot\|_{\infty}$. El operador derivación es lineal, suponga continuo, entonces $\exists C, \forall p \in \mathcal{P}[0,1]$ tal que $\|T(p)\|_{\infty} \leq C\|p\|_{\infty}$. Sea $f_n = t^n$, tenemos $n = \|f'_n\|_{\infty} = \|T(f_n)\|_{\infty} \leq C\|f_n\|_{\infty} = C$.

Teorema Banach-Steinhaus

- Baire. Sea M espacio métrico completo y $(F_n^{\nabla}) \subseteq M$ tal que $M = \bigcup F_n$. Entonces $\exists n_0 \in \mathbb{N}$ tal que $F_{n_0} \neq \emptyset$.
- Banach-Steinhaus. Sean E Banach, F espacio normado y (T_i) una sucesión de operadores en $\mathcal{L}(E,F)$ tales que $\forall x \in E, \exists C_x < \infty$ tal que $\sup \|T_i(x)\| < C_x$. Entonces $\sup \|T_i\| < \infty$.
- * Colorario. Sea $(T_n) \subset \mathcal{L}(E,F)$. Si $\forall x \in E$ la sucesión $(T_n(x)) \to y \in F$ entonces $T(x) = \lim T_n(x) \in \mathcal{L}(E,F)$.

Ejemplo $(x,y)\mapsto \frac{xy}{x^2+y^2}, (0,0)\mapsto 0$ es continua en $\mathbb{R}^2\setminus\{0\}$, en aplicaciones *bilineales* no existen cosas así.

- \diamondsuit Sean E_1, E_2 y F espacios vectoriales. Una aplicación $B: E_1 \times E_2 \to F$ es bilineal sii $\forall x_1 \in E_1, \forall x_2 \in E_2$ fijos, los operadores $B(x_1, \cdot): E_2 \to F$ y $B(\cdot, x_2): E_1 \to F$ son lineales.
- * Colorario. Si E_2 es completo y $B: E_1 \times E_2 \to F$ es bilineal y continuo a trozos entonces $B \in \mathcal{L}(E_1 \times E_2, F)$.

Ejemplo $\forall n \in \mathbb{N}$ sea $\varphi_n : c_{00} \ni (a_j) \mapsto na_n \in \mathbb{K}$. Es claro que $(\varphi_n) \subset (c_{00})'$ y $\|\varphi_n\| = n$, aquí $\forall x \in c_{00}$ se tiene $\sup \|\varphi_n(x)\| < \infty$, sin embargo, $\sup \|\varphi_n\| = \infty$.

Teorema de la Aplicación Abierta

- \Diamond Nos referimos a $B_E(x_0; r) = \{x \in E : ||x x_0|| < r\}$ como bola abierta en E centrada en x_0 de radio r > 0.
- \square Sean E Banach, F espacio normado y $F \leftarrow E : T \in \mathcal{L}(E,F)$. Si existieran R,r > 0 tales que $\overline{T(B_E(0;R))} \supseteq B_F(0;r)$ entonces $T(B_E(0;R)) \supseteq B_F\left(0;\frac{r}{2}\right)$.
- \blacksquare Aplicación Abierta. Sean E e F Banach. Si $F \leftarrow E : \vec{T} \in \mathcal{L}(E,F)$ entonces T es una aplicación abierta.
- * Colorario. En particular si T es una biyección entonces $E \cong F$.

Ejercicio Muestre que $T: c_{00} \to c_{00}$ tal que $(a_n) \mapsto \left(\frac{a_n}{n}\right)$ es lineal, continuo y biyectivo.

Ejemplo En el ejercicio anterior T^{-1} no es continuo.

 $^{^{3}}T$ es llamado *operador diagonal* por (b_{n}) .

Ejemplo Todo subespacio $F^{\nabla} \leq C[0,1]$ tal que $\dim(F) = \infty$ tiene al menos una función f tal que $f \notin C^1[0,1]$. Hint: Contradicción – Aplicación Abierta – Teorema de Riesz.

 \diamondsuit Sean E e F espacios normados y $T: E \to F$ lineal. El *gráfico* de T es el conjunto,

$$G(T) = \{(x, T(x)) : x \in E\} \subseteq E \times F.$$

■ Gráfico Cerrado. Sean E e F Banach y $T: E \to F$ lineal. El operador T es continuo sii G(T) es cerrado en $E \times F$.

Ejercicio Si T no es continuo una de las implicaciones en el Teorema del Gráfico Cerrado continua valiendo.

Ejemplo Sean E Banach y $T: E \to E'$ lineal *símetrico*, es decir, $\forall x, y \in E$ tenemos T(x)(y) = T(y)(x). El operador T es continuo. Hint: Gráfico Cerrado.

Teoremas de Hahn-Banach

☐ *Lemma de Zorn*. Todo conjunto parcialmente ordenado, no vacío y en el cual todo subconjunto totalmente ordenado tiene cota superior, tiene un elemento máximal.

Ejercicio Lemma de Zorn ⇔ Axioma de Elección.

- \blacksquare Hanh-Banach (en \mathbb{K}). Sean E un espacio (sobre \mathbb{K}) normado y $p:E\to\mathbb{R}$ una función tal que,
 - $\forall a > 0, \forall x \in E$ se tiene p(ax) = |a|p(x).
 - $\forall x, y \in E$ su cumple $p(x+y) \le p(x) + p(y)$.

Si $G \leq E$ y $\varphi: G \to \mathbb{K}$ es un operador lineal tal que $\forall x \in G$ se tiene $|\varphi(x)| \leq p(x)$, entonces $\exists \overset{\sim}{\varphi}: E \to \mathbb{K}$ lineal que extiende a φ , es decir, $\overset{\sim}{\varphi}(x)\Big|_G = \varphi(x)$ y que además satisface $\forall x \in E$ que $|\overset{\sim}{\varphi}(x)| \leq p(x)$.

- * Colorario(s).
 - Si φ es continuo entonces $\overset{\sim}{\varphi}$ también y $\|\varphi\| = \|\overset{\sim}{\varphi}\|$.
 - Si E es un espacio normado entonces $\forall x_0 \in E \setminus \{0\}, \exists \varphi \in E' \text{ tal que } \|\varphi\| = 1 \text{ y } \varphi(x_0) = \|x_0\|.$
 - Si $E \neq \{0\}$ y $x \in E$ entonces $||x|| = \sup\{|\varphi(x)| : \varphi \in E' \text{ y } ||x|| \in B_E\}$ cuyo valor alcanza.

Versiones Vectoriales del Teorema de Hahn-Banach

- \diamondsuit Sea E Banach y $P \in \mathcal{L}(E, E)$ es una proyección sii $P^2 = P \circ P = P$.
- * Si $P \neq 0$ entonces $||P|| \geq 1$.
- \square Sea $F \leq E$. Entonces son equivalentes $(a) \exists P \in \mathcal{L}(E, E)$ proyección tal que P(E) = F e $(b) F^{\nabla} \leq E$ e $\exists G^{\nabla} \leq E$ tal que $E = F \oplus G$.
- $* F = \{x \in E : P(x) = x\} e G = \ker(P).$
- $rightharpoonup F \leq E$ es complementado si satisface alguna (a) o (b). Es λ -complementado si $||P|| = \lambda$.

Ejemplo Todo $F \leq E$ con dim $(F) < \infty$ es complementado. Hint: Base + a_i + Hahn-Banach.

Ejemplo Siendo E y F Banach. La proyección $E \times F \ni (x,y) \mapsto (x,0) \in E \times \{0\}$ deja ver que E es 1-complementado.

Ejemplo SI existen espacios cerrados que son no complementados, créditos a Murray (ℓ_p) y Phillips (ℓ_∞) .

- \square Sean G Banach, $F \leq E$ complementado e $T \in \mathcal{L}(F,G)$, entonces $\exists T \in \mathcal{L}(E,G)$.
- \square Si $F \leq E$ no complementado, entonces $\not\exists T \in \mathcal{L}(E,F), \forall x \in F \text{ tal que } T(x) = x.$
- * La identidad no puede ser extendida continuamente a E.
- Phillips. Sean $F \leq E$ e $T \in \mathcal{L}(E, \ell_{\infty})$. Entonces $\exists T \in \mathcal{L}(E, \ell_{\infty})$, con ||T|| = ||T||.
- * Colorario. Si $(\ell_{\infty})^{\nabla} \leq E$ entonces ℓ_{∞} es 1-complementado en E.

Aplicaciones de Hahn-Banach a Espacios Separables

- □ Sean $M^{\nabla} \leq E$, $y_0 \in E \setminus M$ y $d = \text{dist}(y_0, M)$. Entonces $\exists \varphi \in E', \forall x \in M$ tal que $\|\varphi\| = 1$, $\varphi(y_0) = d$ y $\varphi(x) = 0$.
- \blacksquare Si E' es separable, entonces E también.
- $\square \ \forall E$ separable se tiene $E \cong F \leq \ell_{\infty}$ isómetricamente.

Formas geométricas del Teorema de Hahn-Banach ($\mathbb{K}=\mathbb{R}$)

- \diamondsuit Sea $(V, +, \cdot) \neq \{0\}$. El subespacio W < V es hiperplano sii $W < W_1 < V$ implica $W_1 = V$.
- \square W < V es hiperplano sii $\exists \varphi \neq 0 : V \to \mathbb{R}$ lineal tal que $W = \ker(\varphi)$.
- * Si H < V es un hiperplano entonces $v_0 + H = \{v \in V : \varphi(v) = \varphi(v_0) = a \in \mathbb{R}\}$ es un hiperplano afín.
- \square $H^{\nabla} < V$ sii φ es continua.
- \diamondsuit Sea $C^{\vee} \ni 0 \subseteq E$ convexo. Llamamos funcional de Minkowski a la aplicación $p_C : E \to \mathbb{R}$ que envía $x \mapsto \inf\{a > 0 : \frac{x}{a} \in C\}$.
- \square El funcional de Minkowski verifica $\forall b > 0, \forall x, y \in E$ que: (a) $p_C(bx) = bp_C(x)$; (b) $C = \{x \in E : p_C(x) < 1\}$; (c) $\exists M > 0$ tal que $0 \le p_C(x) \le M \|x\|$ e (d) $p_C(x+y) \le p_C(x) + p_C(y)$.
- \square Sean $\emptyset \neq C^{\vee} \subset E$ conexo e $x_0 \in E \setminus C$, entonces $\exists \varphi \in E', \forall x \in C$ tal que $\varphi(x) < \varphi(x_0)$.
- \square Sean $0 \neq \varphi \in E'$ y $\emptyset \neq A^{\vee} \subset E$ convexo, entonces $\varphi(A)^{\vee} \subseteq \mathbb{R}$.
- Primera Forma Geométrica del Teorema de Hahn Banach. Sean $\emptyset \neq A, B \subset E$ disjuntos. Si $A^{\vee} \subset E$ entonces $\exists \varphi \in E', \exists a \in \mathbb{R}, \forall x \in A, \forall y \in B$ se tiene $\varphi(x) < a \leq \varphi(y)$.
- * En este caso decimos que el hiperplano $[\varphi = a]$ separa a A de B.
- Segunda Forma Geométrica del Teorema de Hahn Banach. Sean $\emptyset \neq A, B \subset E$ disjuntos. Si $A^{\nabla} \subset E$ y B es compacto entonces $\exists \varphi \in E', \exists a, b \in \mathbb{R}, \forall x \in A, \forall y \in B$ se tiene $\varphi(x) < a < b \leq \varphi(y)$.
- * Ahora decimos que $\forall c \in (a, b)$ el hiperplano $[\varphi = c]$ separa estrictamente a A de B.
- * Colorario. Si $M^{\nabla} \leq E$ entonces $\forall x_0 \in E \setminus M, \exists \varphi \in E', \forall x \in M$ se tiene $\varphi(x_0) = 1$ y $\varphi(x) = 0$.
- * Colorario. Sea $x_0 \in M \leq E$, entonces $x_0 \in \overline{M}$ sii $\forall \varphi \in E', \forall x \in M$ se tiene $\varphi(x_0) = 0$ siempre que $\varphi(x) = 0$.

References

[1] Martin, D. y Ahlfors, L.V. (1966). Complex Analysis. New York: McGraw-Hill.