Name: Rohit Kulkarni

USC ID: 5402749044

1.c) Correlation matrix for training data

Correlation matric for test data

1.d) CV for training data

|: population householdsize racepctblack racepctblack racepctblack racepctWhite racepctAsian racePctHsian agePct12121 agePct15124 agePct15

CV for test data

Top 11 features with highest CV for training set:

```
{'population': 2.2411046245803745,
   'racePctHisp': 1.612091005228411,
   'numbUrban': 2.0384614919156445,
   'NumUnderPov': 2.3424431162181505,
   'NumIlleg': 3.0589643472092356,
   'NumImmig': 2.9266352462888148,
   'HousVacant': 1.9684670491351257,
   'NumInShelters': 3.470952139705214,
   'NumStreet': 4.292922989491593,
   'LandArea': 1.6454078602149063,
   'LemasPctOfficDrugUn': 2.552945511727576}
```

Top 11 features with highest CV for test set:

```
: {'population': 2.0771450949119687,
    'racePctHisp': 1.6222157248397688,
    'numbUrban': 1.8792266468028023,
    'NumUnderPov': 2.1530367486954023,
    'NumIlleg': 2.729758056633798,
    'NumImmig': 2.803986484258142,
    'HousVacant': 1.9321407334264848,
    'NumInShelters': 3.5334392704842097,
    'NumStreet': 4.761101784255363,
    'LandArea': 1.7587114847016307,
    'LemasPctOfficDrugUn': 2.563247519271469}
```

1.e) Scatter plot for 11 features selected from CV for training data

Scatter plot for 11 features selected from CV for test data

By looking at the scatter plots and box plots we can't conclude much on the pattern of the plots

Box plot for 11 features selected from CV for training data

Box plot for 11 features selected from CV for test data

1.f) Linear model and test error

```
Coefficients:
[[ 2.13143761e-02 -1.89271223e-02 2.78983299e-01 3.89685109e-03
 -2.93051530e-02 1.10497574e-02 1.75324626e-01 -3.45012797e-01
 -1.19751657e-01 5.61381476e-02 -1.82301243e-01 4.99625643e-02
 -1.71644327e-01 -1.37297267e-01 4.54779925e-02 -2.08226531e-01
  1.37417835e-01 6.15660474e-02 -1.23869637e-01 3.06028422e-01
  -4.45852418e-02 -1.96920314e-01 -3.96805409e-02 -4.33613714e-02
  2.98970048e-02 3.09714952e-02 3.24953633e-02 8.88745268e-02
 -2.10272096e-01 -5.15589445e-02 2.18042489e-02 9.98632456e-02
  2.31875943e-02 2.90526319e-01 -4.62717180e-02 -9.71560865e-03
  5.93142880e-02 5.88516592e-02 5.25623723e-01 2.44825078e-01
  1.84319457e-01 -6.80295252e-01 -1.11274746e-01 -4.04617684e-02
  -2.05636221e-01 -1.70293272e-02 -1.49037221e-02 5.42928899e-02
 -2.05649712e-01 -1.17116758e-01 6.36193074e-02 -1.63658775e-01
  5.12562745e-03 2.81435050e-02 -7.23858488e-04 -2.67532758e-02
 -7.62234260e-02 -2.69472809e-02 9.14541909e-02 3.67034226e-02
 -4.53484355e-02 -1.90428563e-01 1.15724843e-01 -3.00391950e-01
  4.86154165e-01 1.73770168e-02 -2.38724133e-01 -8.94362867e-01
  2.91981766e-01 1.21744429e-01 3.02824220e-02 1.64372416e-01
 -4.56016599e-02 7.70941922e-01 8.13244939e-02 -9.21805280e-02
 -3.12559670e-02 3.12498051e-02 -3.58505817e-02 -3.99161723e-01
  4.70839401e-01 -1.51133142e-01 -1.55101962e-01 -1.41830850e-01
 -4.70683328e-02 3.77447007e-01 8.34231616e-02 -3.29230420e-02
 -8.40862461e-02 9.70369366e-02 1.75632911e-01 1.13311278e-01
  3.85989529e-03 -2.30787143e-02 2.98857941e-02 1.62044204e-02
 -3.07537682e-01 1.93819475e+03 -5.05954898e-03 3.53469065e-01
  -3.31228806e-01 -1.07107541e-01 2.58511207e-01 -1.93818236e+03
 -4.36977106e-02 -5.79812179e-02 -1.14028100e-01 -1.81620946e-02
  3.21726590e-02 2.40608551e-02 -4.12361226e-02 -4.11426519e-02
 -3.20703644e-02 9.75054669e-02 2.54790963e-02 -6.71352640e-02
  1.51807076e-01 5.44358346e-01 1.27718720e-05 4.31458728e-02
 -6.45630097e-02 -1.95277847e-01]]
```

Mean squared error: 0.79

1.g) Ridge regression model with lambda chosen by cross validation

```
0.0466301673441609
reg = linear model.Ridge(alpha = ridgecv.alpha )
reg.fit(x_train,y_train)
Ridge(alpha=0.0466301673441609, copy_X=True, fit_intercept=True,
  max_iter=None, normalize=False, random_state=None, solver='auto',
  tol=0.001)
print(str(reg.coef_))
[[-0.04077452 -0.01668977 0.28501796
                           0.00911114 -0.02737643
                                            0.01862504
  0.16483167 -0.3428528 -0.11222297 0.05206098 -0.08757362
                                            0.04719112
  -0.1033941 -0.13665633 0.04533881 -0.19354963 0.13100954 0.06068982
  0.03714833 0.09745029 0.0193682
                           0.28506243 -0.04739365 -0.01374812
  0.06129166  0.05594509  0.34352763  0.24697165  -0.03163303  -0.30385776
  -0.06907883 -0.03650568 -0.20041145 -0.01817829 -0.02101236 0.05066349
  -0.20345933 -0.10006477 0.0683127 -0.12826298 0.00365858 0.02337131
  0.00484926 -0.02781476 -0.0596613 -0.01004518 0.04821084 0.05439776
  -0.03557448 -0.18473322 0.05231708 -0.24000254 0.48294691 -0.08651599
 -0.17416497 -0.51949951 0.29322348 0.11657756 0.02657123 0.17591443
  -0.0470502
          -0.03695785 -0.29509885 0.3181245 -0.08639896 -0.1693399 -0.11676526
  -0.04744317 0.35523237 0.08537048 -0.0347202 -0.08438798 0.10559869
  0.02784172 -0.06861444 0.09057942 0.35735599 0.02280333 0.04648865
  0.00766469 -0.14290669]]
```

Test error

ViolentCrimesPerPop 0.01803

dtype: float64

1.h) Co-efficient for the Lasso model with standardized features

```
[ 0.00000000e+00 -0.00000000e+00 2.01426606e-01 -1.65122575e-02
 0.00000000e+00 0.00000000e+00 -0.00000000e+00 -6.21841232e-02
-0.00000000e+00 0.00000000e+00 0.00000000e+00 3.15010662e-02
 0.00000000e+00 -0.00000000e+00 0.00000000e+00 -1.36885581e-02
 0.00000000e+00 4.51117999e-03 -3.05682124e-02 0.00000000e+00
 0.00000000e+00 0.00000000e+00 -0.00000000e+00 -4.26998799e-06
 1.01466223e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00
-0.00000000e+00 -0.00000000e+00 0.00000000e+00 -0.00000000e+00
 0.00000000e+00 0.00000000e+00 -0.00000000e+00 -0.00000000e+00
 0.00000000e+00 -0.00000000e+00 1.18132334e-01 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 -0.00000000e+00
-2.49089093e-01 -0.00000000e+00 -0.00000000e+00 -0.000000000e+00
-6.39776748e-02 0.00000000e+00 1.51575917e-01 -0.00000000e+00
-0.00000000e+00 -0.00000000e+00 -0.00000000e+00 -0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
-0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 -0.00000000e+00 0.00000000e+00 -0.00000000e+00
 1.47871465e-01 2.70632274e-02 -0.00000000e+00 9.49705053e-02
-3.85053873e-02 -0.00000000e+00 3.87190610e-02 -7.57426922e-03
-0.00000000e+00 0.00000000e+00 -0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 -0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 4.36337260e-02 0.00000000e+00
-2.45378175e-02 0.00000000e+00 1.44807999e-01 2.60558995e-02
-0.00000000e+00 -0.00000000e+00 3.59220259e-03 0.00000000e+00
-0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
-0.00000000e+00 1.40066957e-02 4.02887357e-02 0.00000000e+00
-0.00000000e+00 0.00000000e+00 -0.00000000e+00 -0.00000000e+00
 0.00000000e+00 -0.00000000e+00 -0.00000000e+00 -0.00000000e+00
-0.00000000e+00 0.00000000e+00 0.00000000e+00 -0.00000000e+00
 0.00000000e+00 -0.00000000e+00 1.82415348e-03 1.96770336e-02
 4.45632839e-03 1.04475884e-02]
```

Test Error

0.07979162370138596

Co-efficient for the Lasso model without standardized features

```
0.07109539 -0.27784678 0. 0.0011751 -0.
                                        0.04073145
       -0.08891917 0.02771806 -0.10354325 0.05391932 0.04011279
-0.10917987 0.
            -0. -0.06268167 -0.0217659 -0.03149086
0.
0.01310179 0.
            0.12481517 0.14171105 -0.08644452 -0.
               -0.19722105 -0.03685726 -0.0107591 0.
0. -0.
-0.13195846 -0.06160317 0.09706191 -0.0750557 -0.
-0.
     -0.00535548 -0. 0.
                               0.
                                        0.03847502
0.
                       -0.07663781 0.05692306 -0.
       -0.07598984 -0.
       -0.06082072 0.22506971 0.06096321 0.00468589 0.12739235
-0.
-0.05984836 0. 0.07417148 -0.06134435 -0.01607479 0.02542797
-0.02501277 -0.01552814 -0. -0. -0.1619326 -0.
       0.1670111 0.09050384 -0.01572268 -0.07872944 0.05915423
0. 0.07703976 -0.03093294 0. 
-0.01682801 -0. -0.02987966 0.00189325
-0.
        0.
0.09245849 0.
0.01123726 -0.04554653 0. -0.
                             0.02395635 0.04084537
0.00131602 0. ]
```

Test Error

0.08361866691992705

Test error is more in the model without standardized features

1.i) PCR Model on the training set with M chosen by cross-validationMSEs for training set

Test Error for PCR Model

0.01881964401002089

1.j) XGBoost model Accuracy

Accuracy:63.72249184837258

Best Score

0.6482943720851919

Best Params

: {'learning_rate': 0.05}

2. Tree-Based Methods

2.b.i) Data Imputation technique to deal with the missing values in the data set: Imputation is replacing missing values with substitute values.

The following are common methods:

- Mean: the mean of the observed values for that variable.
- Substitution: the value from a new individual who was not selected to be in the sample.
- Hot deck: a randomly chosen value from an individual who has similar values on other variables.
- Cold deck: a systematically chosen value from an individual who has similar values on other variables.
- Regression: the predicted value obtained by regressing the missing variable on other variables.
- Stochastic regression: the predicted value from a regression plus a random residual value.
- Interpolation and extrapolation: an estimated value from other observations from the same individual.

2.b.ii) CV for training set

: aa_000 ab_000 ac_000 ad_000 ae_000 ag_000 ag_000 ag_000 ag_001 ag_002 ag_003 ... ee_002 ee_003 ee_004 ee_005 ee_006 ee_007

0 2.450938 2.297635 2.169622 193.924333 23.202587 18.670972 91.97698 34.763699 17.344552 8.544596 ... 2.579055 2.558711 2.606081 2.829186 3.191612 4.962276

1 rows × 170 columns

CV for test set

1 rows × 170 columns

2.b.iii) Correlation matrix for training set

Correlation matrix for test set

2.b.iv) Top 13 feature with highest CV

For Training set

For test set

```
{'ad_000': 193.92433336319496,
                                   {'ag_000': 52.68069460174049,
 'ag_000': 91.97698048338566,
                                     'ak 000': 93.41515521641949,
 'ak_000': 74.5855911285946,
                                    'as_000': 82.90902291563049,
 'as_000': 85.56342057329114,
                                    'au_000': 84.93553042123239,
 'au_000': 67.94631220846355,
                                    'az_009': 59.1000217572831,
 'ay 009': 83.78960830045412,
                                    'ch_000': 56.09322253971697,
 'az 009': 77.0594504458304,
                                    'cs_008': 62.78183247230092,
 'cf 000': 194.35326136275233,
                                     'cs_009': 125.35907975754283,
 'ch_000': 57.88627697279238,
                                    'df_000': 76.40236144718226,
 'co 000': 194.0391530490907,
                                    'dk_000': 45.99352997153798,
 'cs 009': 234.45338812778706,
                                     'dz_000': 48.9167310161583,
 'dh_000': 115.64846213471637,
                                    'ef_000': 49.94978581961838,
 'dj_000': 111.14849878529981}
                                     'eg_000': 57.93011623794346}
```

Scatter plot for 13 features selected from CV for training set

Scatter plot for 13 features selected from CV for test set

Box plot for training set

Box plot for test set

From scatter plots and box plots we can conclude that there seems to be negative skewed class for the data.

2.b.v) Number of positive data and negative data for training set respectively are:

1000

59000

Number of positive data and negative data for test set respectively are:

375

15625

This data set is imbalanced as you can see from the above screenshots.

2.c) Random forest classifier accuracy

Accuracy: 0.992375

Confusion matrix

AUC

0.8568533333333333

ROC

Miscalculation

Misclassfication: 0.008000000000000007

Out of Bag error

0.9939666666666667

Test error

Mean squared error: 0.01

OOB error is much greater compared to test error.

2.d)

There are usually two methods to deal with imbalanced data while using the random forest model. One approach is cost-sensitive learning and the other is sampling. For extremely imbalanced data, random forest generally tends to be biased towards the majority class.

The cost-sensitive approach would be to assign different weights to different classes. So if the minority class is assigned a higher weight and thus higher misclassification cost, then that can help reduce its biasness towards the majority class. You can use the class weight parameter of random forest in scikit-learn to assign weights to each class.

Secondly, there are different methods of sampling such as oversampling the minority class or under sampling the majority class etc... Although simple sampling methods improve the overall model performance, its preferable to go for a more specialized sampling method such as SMOTE and others to get a better model.

Most of the machine learning models suffer from the imbalanced data problem although there are some reasons to believe that generative models generally tend to perform better in case of imbalanced datasets

Random forest classifier accuracy for class balanced data

Accuracy: 0.9888125

Misclassification

```
Misclassfication: 0.011125000000000052
```

Confusion matrix

```
array([[15612, 13],
[ 165, 210]], dtype=int64)
```

AUC

0.7795839999999999

ROC Curve

2.e) Model trees using Weka

=== Summary ===			
Correctly Classified Instances	59568	99.28	olo
Incorrectly Classified Instances	432	0.72	of
Kappa statistic	0.7542		
Mean absolute error	0.011		
Root mean squared error	0.0759		
Relative absolute error	33.648 %		
Root relative squared error	59.2755 %		
Total Number of Instances	60000		

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0.998	0.324	0.995	0.998	0.996	0.760	0.980	0.999	neg
	0.676	0.002	0.862	0.676	0.758	0.760	0.980	0.831	pos
Weighted Avg.	0.993	0.319	0.992	0.993	0.992	0.760	0.980	0.997	

=== Confusion Matrix ===

a	b		< classified as	3
58892	108	Ī	a = neg	
324	676	Ī	b = pos	

Predicting the test set

```
=== Re-evaluation on test set ===
User supplied test set
Relation: Test data
Instances: unknown (yet). Reading incrementally Attributes: 171
=== Summary ===
                                                    98.975 %
Correctly Classified Instances 15836
Incorrectly Classified Instances 164
                                                          1.025 %
                                       0.7578
Kappa statistic
                                        0.0139
Mean absolute error
                                         0.0906
Root mean squared error
Total Number of Instances
                                    16000
=== Detailed Accuracy By Class ===
                 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
                 0.997 \quad 0.296 \quad 0.993 \qquad 0.997 \quad 0.995 \qquad 0.761 \quad 0.977 \quad 0.998 \quad neg
                0.704 0.003 0.833 0.704 0.763 0.761 0.977 0.811 pos
0.990 0.289 0.989 0.990 0.989 0.761 0.977 0.994
Weighted Avg.
=== Confusion Matrix ===
   a b <-- classified as
15572 53 | a = neg
111 264 | b = pos
```

Using 5-fold cross validation method, confusion matrix

=== Stratified cross-validation === === Summary ===

Correctly Classified Instances	59474	99.1233 %
Incorrectly Classified Instances	526	0.8767 %
Kappa statistic	0.7069	
Mean absolute error	0.0122	
Root mean squared error	0.0847	
Relative absolute error	37.156 %	
Root relative squared error	66.1754 %	
Total Number of Instances	60000	

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0.997	0.352	0.994	0.997	0.996	0.710	0.962	0.998	neg
	0.648	0.003	0.788	0.648	0.711	0.710	0.962	0.747	pos
Weighted Avg.	0.991	0.346	0.991	0.991	0.991	0.710	0.962	0.994	

=== Confusion Matrix ===

a b <-- classified as 58826 174 | a = neg 352 648 | b = pos

AUC and ROC Curve

2.f) Model Tree using SMOTE

```
eg_000
              1.0006
Time taken to build model: 1065.97 seconds
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances 114237 96.811 %
Incorrectly Classified Instances 3763 3.189 %
                                            0.9362
Kappa statistic
                                               0.0536
Mean absolute error
Root mean squared error
                                               0.1596
Root mean squared error 0.1596
Relative absolute error 10.7176 %
Root relative squared error 31.9172 %
Total Number of Instances 118000
=== Detailed Accuracy By Class ===
                    TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0.977 0.041 0.960 0.977 0.968 0.936 0.993 0.993 neg
0.959 0.023 0.977 0.959 0.968 0.936 0.993 0.992 pos
Weighted Avg. 0.968 0.032 0.968 0.968 0.968 0.936 0.993 0.992
=== Confusion Matrix ===
     a b <-- classified as
 57670 1330 | a = neg
  2433 56567 | b = pos
```

Accuracy before SMOTE was 99.123% and after SMOTE is 96.811%

AUC and ROC Curve

ISLR 6.8.3) Suppose we estimate the regression coefficients in a linear regression model by minimizing

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \quad \text{subject to} \quad \sum_{j=1}^{p} |\beta_j| \le s$$

for a particular value of s. For parts (a) through (e), indicate which of i. through v. is correct. Justify your answer.

- a) As we increase s from 0, the training RSS will:
- (iv) Steadily decreases: As we increase s from 0, all β 's increase from 0 to their least square estimate values. Training error for 0 β s is the maximum and it steadily decreases to the Ordinary Least Square RSS.

b)	Re	peat	(a)	for	test	RSS	,
----	----	------	-----	-----	------	-----	---

(ii) Decrease initially, and then eventually start increasing in a U shape: When s=0, all β s are 0, the model is extremely simple and has a high test RSS. As we increase s, beta s assume non-zero values and model starts fitting well on test data and so test RSS decreases. Eventually, as beta s approach their full blown OLS values, they start overfitting to the training data, increasing test RSS.

c) Repeat (a) for variance:

(iii) Steadily increase: When s=0, the model effectively predicts a constant and has almost no variance. As we increase s, the models includes more β s and their values start increasing. At this point, the values of β s become highly dependent on training data, thus increasing the variance.

d) Repeat (a) for (squared) bias:

(iv) Steadily decrease: When s=0, the model effectively predicts a constant and hence the prediction is far from actual value. Thus bias is high. As s increases, more β s become non-zero and thus the model continues to fit training data better. And thus, bias decreases.

e) Repeat (a) for the irreducible error:

(v) Remains constant: By definition, irreducible error is model independent and hence irrespective of the choice of s, remains constant.

ISLR 6.8.5) It is well-known that ridge regression tends to give similar coefficient values to correlated variables, whereas the lasso may give quite different coefficient values to correlated variables. We will now explore this property in a very simple setting.

Suppose that n = 2, p = 2, x11 = x12, x21 = x22. Furthermore, suppose that y1+y2 = 0 and x11+x21 = 0 and x12+x22 = 0, so that the estimate for the intercept in a least squares, ridge regression, or lasso model is zero: $^{\circ}\beta 0 = 0$.

a) Write out the ridge regression optimization problem in this setting.

Marie Carlotte Carlot
a) A general form of Ridge regression optimization
P P
Minimize: (4 \$ - \bar{\beta}, \bar{\beta})^2 + \bar{\beta} \bar{\beta}.
2 13 15 20 20 15
This case $\hat{\beta}_s = 0$ and $n = p = 2$. So, the application
1/2 Miles
Minimize: (y-Px-Bx)+(y-Bx-Bx2)+
$\lambda(\beta+\beta^2)$

b) Argue that in this setting, the ridge coefficient estimates satisfy $\hat{\theta}_1 = \hat{\theta}_2$.

c) Write out the lasso optimization problem in this setting.
Dike Ridge regression
$\frac{1}{3} - \frac{2}{3} + \frac{1}{3} + \frac{1}$
Minimize 9- P, 2 7- 12/7- 12
\ \(\langle \(\langle \) \\ \(\langle \) \\\ \(\langle \) \\ \(\langle \) \\ \(\langle \) \\\ \(\langle \) \\\\ \(\langle \) \\\\ \\ \langle \) \\\ \(\langle \) \\\\ \\ \\ \\ \\ \\ \langle \) \\\\\ \\ \\ \\ \\
7 1/13 1 41 8 1 /
d) Argue that in this setting, the lasso coefficients $^{\circ}$ θ_1 and $^{\circ}$ θ_2 are not unique—in other words, there are many
possible solutions to the optimization problem in (c). Describe these solutions.
d) Here is a germetic interpretation of the solve
for the equation in a above . We use the
1 LIBITBLES.
alternate form of lasse contraints P. 18 HBLCS
The have containt take the torm I
which when plotted take the tornlar shape of a
diamond centered at origin(Do). Ment consider
the snaved optimization constant (y-Bn-P, x, 2) +
(4-Br-Br)2 We use the facts X=X
2 - m / 2 + 21 - co N + X = D low ty = 0 to
22 10 12
Simplify 11 to
pritter him of had the treater attact
Minimize: 2. (y-(B+P))
This optimization problem has a simple soly:
B, + B, = 4 This is aline parallel to the
1 1 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
edge of Lesso-diamond B. + B. = S. Now solve to
the rongmal of lasso optimization problem are
contours of the function (y-(B+ P)) x)2 that
touch the Loss-diamond Pith = s. Finelly as
Bal Bal Ral
B, and B, very along the line B, + B= 4
٩.

Camlin Page

Date 1

These contains touch the lasso-diamond edge

\$\beta, + \beta, = S at different points. As a result the

entire edge \$\beta, + \beta, = S is a potential solute the

dasso aprimization problem!

Similar argument (an be made for the opposite

Lisso-diamond edge: \$\beta + \beta = -S

Thus, the lasso problem does not have a

Unique solution. The general form of solution given

by 2. line segment:

\$\beta, + \beta, = S, \beta, \beta o, \beta, \beta o \beta, \beta o

\$\beta, + \beta, = S, \beta, \beta o, \beta, \beta o

\beta, \beta o

\beta, + \beta, = S, \beta, \beta o, \beta, \beta o

\beta, \beta o

\beta, + \beta, = S, \beta, \beta o

\beta, \beta o

\beta, \beta o

\beta, \beta, \beta o

\beta, \beta o

\beta, \beta, \beta, \beta, \beta o

\beta, \beta,

ISLR 8.4.5) Suppose we produce ten bootstrapped samples from a data set containing red and green classes. We then apply a classification tree to each bootstrapped sample and, for a specific value of X, produce 10 estimates of P(Class is Red | X):0.1, 0.15, 0.2, 0.2, 0.55, 0.6, 0.6, 0.65, 0.7, and 0.75.

There are two common ways to combine these results together into a single class prediction. One is the majority vote approach discussed in this chapter. The second approach is to classify based on the average probability. In this example, what is the final classification under each of these two approaches?

p = c(0.1, 0.15, 0.2, 0.2, 0.55, 0.6, 0.6, 0.65, 0.7, 0.75)

A) Majority approach

sum (p >= 0.5) > sum(p < 0.5)

The number of red predictions is greater than the number of green predictions based on a 50% threshold, thus RED.

B) Average approach

mean(p)

The average of the probabilities is less than the 50% threshold, thus GREEN.

ISLR 9.7.3) Here we explore the maximal margin classifier on a toy data set.

Obs.	X_1	X_2	Y
1	3	4	Red
2	2	2	Red
3	4	4	Red
4	1	4	Red
5	2	1	Blue
6	4	3	Blue
7	4	1	Blue

Sketch the observations.

a) We are given n = 7 observations in p = 2 dimensions. For each observation, there is an associated class label.

b) Sketch the optimal separating hyperplane, and provide the equation for this hyperplane

c) Describe the classification rule for the maximal margin classifier. It should be something along the lines of "Classify to Red if $\beta 0 + \beta 1X1 + \beta 2X2 > 0$, and classify to Blue otherwise." Provide the values for $\beta 0$, $\beta 1$, and $\beta 2$.

d) On your sketch, indicate the margin for the maximal margin hyperplane.

e) Indicate the support vectors for the maximal margin classifier.

f) Argue that a slight movement of the seventh observation would not affect the maximal margin hyperplane.

_(j)	By looking at the plot we can come to understanding that it we moved paratical
	would end up not making any change of the maximal margin hyperplane likes it is not
5	support vector.

g) Sketch a hyperplane that is not the optimal separating hyperplane, and provide the equation for this hyperplane.

h) Draw an additional observation on the plot so that the two classes are no longer separable by a hyperplane.

