

Tema 0: Introducción e historia

- Dos grandes revoluciones en la física en el SXX: QM y GR.
- Al juntarlas se desarrolla la QED:
 - Régimen cuantico
 - o Cualquier velocidad
 - Da lugar a genómenos nuevos:
 - Existencia de antipartículas
 - Posibilidad de producir partículas
 - Conexión espín-estadística:

- Entero: BESemientero: FD
- Teorema CPT
 - No existe invariancia uno a uno
 - Si existe la conjunta
- Modelo Estándar.

Tema 1: Ecuaciones de Klein-Gordon y de Dirac

1.0 Roadmap

1.1 Repaso: ¿Qué es una ecuación de onda?

- Ecuación de Schrödinger de una partícula no relativista
 - General, vale para cuiaquier sistema cuántico
 - o EqSchrö para cada partícula lleba a una ecuación de onda
 - Las "instancias" de la ecuacion de Schrödinger suelen llamarse ecuaciones de onda
- Un sistema físico se describe por un ket perteneciente al espacio dde estados del sistema
- La ecolución temporal del estado se obtiene con la actuación del operador de Hamilton
- Lo que cambia del caso no relativista al relativista es el espacio de estados y la forma del hamiltoniano
- Eg: Particula no relativista en una dimensión
 - Al ser cuántico recurrimos a las reglas de cuantización canónicas:
- Espacio de estados del sistema

1.2 Ecuación de Klein-Gordon

- Sistema natural de unidades
- Ecuación de onda de Klein-Gordon
 - o Autoestados del Hamiltoniano
 - Espacio de Minkowski + SdR inercial
 - Métrica de Minkowski
 - Componentes covariantes
 - Klein-Gordon relativista partícula libre spin 0
 - D'Alambertiano
 - Soluciones
 - Energía positiva y negativa
 - Forma covariante de la ecuacion de continuidad
- Generalizaciones de Klein-Gordon al caso de interacciones electromagnéticas
 - Ecuaciones de Maxwell
 - Cuadrivector potencial
 - o Dinámica relativista
 - Acción
 - Momento canónico conjugado
 - Hamiltoniano
 - Operador cuadrimomento
 - Derivada covariante
 - Cuadrivector densidad de carga eléctrica

1.3 Ecuación de Dirac

- Propiedades/condiciones
 - Espinores
 - Hamiltoniano de Dirac
 - Cuadriespinor
- Ecuación de Dirac compacta
 - Notación de Feynmann
 - Matrices gamma
- Representaciones
 - De Dirac
 - Matrices de Pauli
 - o De Weyl
- Propiedades de la matriz de Dirac
 - Conjugado de Dirac
 - o Conservación de la 4corriente
- Teoría de Maxwell-Dirac
 - Densidad lagrangiana
 - Ecuación de Maxwell-Dirac
- Límite no relativista de la ecuación de Dirac
 - Espinores
 - o Funciones de evolución lenta
 - o Reducción no relativista de la ecuación de Dirac
 - Matrices de espín
- Ecuación de Pauli
 - Momento magnético de espín
 - Radio giromagnético
- Átomo de hidrógeno
 - Estructura fina

- o Potencial del átomo de hidrógeno
- Corrección relativista
- o Efecto Lamb e hiperfina
- Ecuación de Dirac en el caso general
 - o Representación de Weyl
 - Onda plana
 - Ansatz
 - Biespinor
 - Soluciones
 - Problemas de las soluciones
 - Helicidad
 - Operadores
- Solución de la ecuación de Dirac para partícula libre
 - Estados de energia negativa
 - Mar de Dirac

Tema 2 : Cuantización del campo electromagnético.

2.1 Cuantización canónica

- Formalismo lagrangiano
- Formalismo Hamiltoniano
- Cuantización
- El oscilador armónico cuántico
 - Resolución algebraica
 - o Operadores escalera y número
 - Propiedades

2.2 Cuantización del campo electromagnético

- Campo electromagnético clásico
 - Cuadripotencial y cuadricorriente
 - o Ecuaciones de Maxwell
 - Gauge
 - Condición de Lorentz
 - o En el vacío
 - o Gauge de radiación
 - Vector de polarización
 - Gauge transverso
 - Base de polarización
- Campo electromagnético en una cavidad
 - Condiciones de contorno periódicas
 - o Desarrollo de Fourier
 - o Densidad de Autoestados Fórmula de cálculo vectorial
 - Solución más General
 - o Potencial vector en una cavidad
 - Cambio de variable
- Cuantización
 - Operadores
 - Estados número
 - Base de números de ocupación
 - o Operadores de campo
 - Representaciones
 - Representación de Schrödinger
 - Representación de Heisenberg
 - Evolución operadores escalera
 - Valores esperados

2.3 Emisión y absorción de fotones por átomos

- Estado estacionario
- Base de Estados
- Absorción y Emisión de un fotón
 - Absorción
 - Aproximación semicleasica
 - Emisión
 - Emisión inducida
 - Emisión espontánea

2.4 Teoría de perturbaciones dependientes del tiempo

- Hamiltoniano de interacción
 - Probabilidad
 - Serie de potencias
- Elementos de Matriz
 - Aproximación de órden 0
 - Aproximación de órden 1: Aproximación de Born
- Aplicaciones; Emisión espontánea
 - Aproximación dipolar

- Elementos de Matriz
- o Hamiltoniano de interacción en Aproximación dipolar
- Vida media de un estado excitado
 - Autoestados con armónicos esféricos
 - Probabilidad de transición

Tema 3: Cuantización canónica covariante de un campo escalar.

3.1 Teoría clásica de campos relativista

- Espacio de Minkowski
 - o Elemento de volumen
 - Principio de mínima acción
 - o Condiciones en la frontera
 - Teorema de Gauss
- Ejemplos
 - 1. Campo escalar real
 - 2. Campo escalar complejo
 - 3. Campo electromagnético
 - 0
- 4.
- 5. Cuadriespinor de Dirac
- Ecuación de Dirac de una partícula cargada

3.2 Campo escalar real

- Momento canónico Conjugado
- Densidad hamiltoniana
- Hamiltoniano clásico
- Relaciones de conmutación

- Evolución en representación de Heisemberg
- Solución general de la ecuación de Klein-Gordon
- Invarianza Lorentz
- Lorentz Invariant Phase Space de una partícula
- Relaciones de conmutación de creación y destrucción
- Estado vacío vs estado nulo
- Interpretación heurística de la delta de Dirac
- Espacio de estados
 - o Conexión espín-estadística
- Valor esperado de la energía en el vacío
 - Transformada de Fourier
 - Densidad de partículas con momento k
- Orden normal de un operador
 - Producto cronológico
 - o Propagador o función de Green
 - Teorema de función de Green
 - Integración por residuos
 - Teorema de Cauchy
 - Integral de Feynman
- Más sobre el operador campo

3.3 Campo escalar complejo

- Momento canónico Conjugado
- Densidad hamiltoniana
- Campo complejo + Electromagnetismo
 - Derivada covariante
- Solución de Klein-Gordon para un campo complejo escalar
 - Conmutadores
 - Partículas y antipartículas
 - Operador carga eléctrica
 - Observables simultáneos
- Repaso de Representaciones
 - Imagen de Schrödinger
 - Imagen de Heisenberg
 - o Imagen de interacción o de Dirac
 - Operador evolución libre
- Ecuación de Schrödinger dependiente del tiempo
 - Método de Von-Neumann
 - Notas de normalización

Tema 4: Matriz S, secciones eficaces y vidas medias.

- Densidad de probabilidad
 - Operador de scattering
 - Elementos de matriz
 - Matriz de reacción
- Casos
 - o Desintegración de Partículas
 - Anchura de Desintegración
 - Nota sobre anchuras
 - Promedio de Estados
 - Canal de Desintegración
 - Fracción de Desintegración o Branching Ratio
 - Colisión de dos Partículas
 - Sección eficaz
 - Sección eficaz diferencial
 - Caso cuántico General
 - Sección eficaz no polarizada
 - Complicaciones
 - Varios estados de espín
 - Varios canales de Desintegración
- Colisiones y desintegraciones a dos cuerpos
 - Anchura a dos cuerpos
 - Caso particular: Colisión elástica
 - Amplitudes de dispersión y teoría de perturbaciones
 - Amplitud de probabilidad de transición
 - Término de autointeracción
 - Contracción
 - Función de Green de dos puntos
 - o Cambio de variables: Coordenadas relativistas
- Diagramas de Feynman
 - o Variables de
 - Reglas de Feynman
 - Flujo de carga
 - Flujo de momento
 - Diagramas de aniquilación
 - Vértices

Tema 5: Cuantización canónica de campos fermiónicos.

• Campos fermiónicos libres

5.1 Cuantización canónica

- Relaciones de conmutación y anticonmutación
- Soluciones de la ecuación de Dirac en función de operadores de creación y destrucción
- Operadores número de particulas y antipartículas
- Espacio de Fock
 - o Principio de exclusión de Pauli
- La función de dos puntos o Propagador

Tema 6: Electrodinámica cuántica.

- Lagrangiano clásico Maxwell-Dirac
- Invarianza Gauge

- Teoría de perturbaciones
- Campo Fermiónico
- Operadores de campo
- Relaciones de conmitación
- Funciones de dos puntos
 - Propagador del fotón
- Amplitudes de dispersión en electrodinámica cuántica
- Dispersión Moller
- Dispersión Bhaba
- Reglas de Feynman en electrodinámica cuántica
- Dispersión Compton
- Propiedades importantes
- Secciones eficaces no polarizadas
 - Dispersión Moller
 - Capa de masas
- Límites de una teoría relativista
 - No relativistas
 - Ultrarrelativista
- Dispersión Bhaba
- Dispersión Compton