Índice general

1.		Espacios Métricos				
	1.1.	Definición y Ejemplos	4			
	1.2.	Equivalencias y propiedades básicas	(
	1.3.	Construcción de métricas a partir de otras	-			
	1.4.	Métricas relacionadas con $\mathbb R$	9			
	1.5.	Distancia entre conjuntos	9			
	1.6.	Isometrías	1			
2.	Conjuntos abiertos y conjuntos cerrados 1					
		Conjuntos abiertos	1:			
		Conjuntos cerrados	10			
		Puntos adherentes y puntos de acumulación	1			
		Relación entre conjuntos cerrados y puntos adherentes	20			
	2.5.		25			
	2.6.	Frontera de un conjunto	2			
	2.7.	Conjuntos densos, fronterizos y nada-densos	2!			
3.		npacidad	29			
		Conjuntos acotados y diámetro	29			
		Conjuntos precompactos y separables	29			
		Conjuntos compactos	29			
	3.4.	Conjuntos relativamente compactos	30			
4.	Sucesiones en Espacios Métricos 3					
	4.1.	Sucesiones	3			
		Sucesiones convergentes en Espacios Métricos	35			
	4.3.	Sucesiones de Cauchy	3!			
	4.4.		30			
	4.5.	Teorema de Baire	3'			
5.	Lim	ite y continuidad en Espacios Métricos	38			
	5.1.	Limite de una función	38			
		Funciones continuas	39			
		Continuidad de la composición de funciones	4			
		Continuidad y preimagenes de conjuntos abiertos o cerrados	4			
		Continuidad y conjuntos compactos	42			
	5.6.	Homeomorfismos	4			
	5.7.		4			
	5.8.	Teorema del Punto fijo de Banach	4			
6.	Conjuntos conexos 4					
		Conjuntos conexos y disconexos	4			
		Cerradura y unión de conexos	4'			
	0.4.	Cerradura y union de conexos	_			
		Componentes de un Conjunto	48			

ÍNDICE GENERAL	3
6.5. Conjuntos conexos en $(\mathbb{R},)$	 51

Capítulo 1

Espacios Métricos

1.1. Definición y Ejemplos

Definición 1.1 (Espacio Pseudométrico)

Una dupla (M,d) donde M es un conjunto no vacio y d es una función $d: M \times M \to \mathbb{R}$ es un espacio pseudométrico si satisface que para cualesquiera $x,y,z\in M$ se cumplen:

- 1) d(x,x) = 0
- **2)** $d(x,y) \ge 0$
- **3)** d(x,y) = d(y,x)
- **4)** $d(x,y) \le d(x,z) + d(z,y)$

[Observaciones]

- 1. A los elementos de M les llamaremos puntos.
- **2.** A d se le llama pseudométrica (O écart) de M o del espacio (M, d)
- 3. A 4) se le conoce como desigualdad del triángulo

Definición 1.2 (Espacio Métrico)

Una dupla (M,d) donde M es un conjunto no vacio y d es una función $d: M \times M \to \mathbb{R}$ es un espacio métrico si satisface que para cualesquiera $x,y,z\in M$ se cumplen:

- **1)** d(x,x) = 0
- 2) $x \neq y \Rightarrow d(x,y) > 0$
- **3)** d(x,y) = d(y,x)
- **4)** $d(x,y) \le d(x,z) + d(z,y)$

[Observaciones]

- 1. A los elementos de M les llamaremos puntos.
- **2.** A d se le llama métrica de M o del espacio (M, d)
- 3. A 4) se le conoce como desigualdad del triángulo

Ejemplos 1.3

- 1. (\mathbb{R}, d) donde d(x, y) = |x y| para cualesquiera $x, y \in \mathbb{R}$ es un espacio métrico.
- **2.** (\mathbb{C},d) donde $d(z_1,z_2)=|z_1-z_2|$ para cualesquiera $z_1,z_2\in\mathbb{C}$ es un espacio métrico.
- **3.** (\mathbb{R}^n, d) donde d(x, y) = ||x y|| para cualesquiera $x, y \in \mathbb{R}^n$ es un espacio métrico llamado espacio Euclidiano.
- **4.** (\mathbb{R}^n, d) donde para cualesquiera $(x_1, x_2, ..., x_n), (y_1, y_2, ..., y_n) \in \mathbb{R}^n, d((x_1, x_2, ..., x_n), (y_1, y_2, ..., y_n)) = |x_1 y_1| + |x_2 y_2| + ... + |x_n y_n|$ es un espacio métrico.
- **5.** (\mathbb{R}^n, d) donde para cualesquiera $(x_1, x_2, ..., x_n), (y_1, y_2, ..., y_n) \in \mathbb{R}^n, d((x_1, x_2, ..., x_n), (y_1, y_2, ..., y_n)) = \max\{|x_1 y_1|, |x_2 y_2|, ..., |x_n y_n|\}$ es un espacio métrico.
- **6.** (\mathbb{R}^2, d) donde para cualesquiera $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2, d((x_1, x_2), (y_1, y_2)) = \sqrt{(x_1 y_2)^2 + 4(x_2 y_2)^2}$ es un espacio métrico.
- 7. Sea $M = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}$ la esfera unitaria en \mathbb{R}^3 . Si para cualesquiera $x, y \in M$, d(x, y) es la longitud de arco más pequeño que une x y y, entonces (M, d) es un espacio métrico.
- **8.** Sea $M = \{(x, y) : x^2 + y^2 = 1\}$ el círculo unitario en \mathbb{R}^2 . Si para cualesquiera $x, y \in M$, d(x, y) es la longitud de arco más pequeño que une x y y, entonces (M, d) es un espacio métrico.
- 9. Sean (M,d) un espacio métrico y $S \subseteq M$ tal que $S \neq \emptyset$, entonces $(S,d) = (S,d \upharpoonright_S)$ es un espacio métrico. La métrica de este espacio se llama métrica relativa inducida por d en S y (S,d) es llamado subespacio métrico de M.
- **10.** Sean $M \neq \emptyset$, definimos $d: M \times M \to \mathbb{R}$ como para cualesquiera $x, y \in \mathbb{R}$, d(x, y) = 0 si x = y y d(x, y) = 1 si $x \neq y$, entonces (M, d) es un espacio métrico. A d suele llamarsele métrica discreta y a (M, d) espacio métrico discreto.
- 11. Sea V un espacio vectorial sobre \mathbb{R} equipado de una norma $\|$, para cualesquiera $x, y \in V$ definimos $d(x,y) := \|x y\|$, entonces (V,d) es un espacio métrico.
- 12. Sea V un espacio vectorial sobre \mathbb{R} equipado de un producto interno \cdot , para cualesquiera $x,y\in V$ definimos $d(x,y):=\|x-y\|$ donde $\|$ es la norma inducida por \cdot , entonces (V,d) es un espacio métrico.
- **13.** Sea A un conjunto no vacio, denotamos por B(A) al conjunto de todas las funciones $f:A\to\mathbb{R}$ que son acotadas y para cualesquiera $f,g\in B(A)$ definimos $d(f,g)=\sup\{|f(x)-g(x)|:x\in A\}$, entonces (B(A),d) es un espacio métrico.

A menos que se exprese lo contrario, cada vez que consideremos proposiciones o ejemplos en \mathbb{R}^n ,

consideremos al espacio métrico Euclidiano que denotamos por $(\mathbb{R}^n, \parallel)$. Analogamente para \mathbb{C} con la distancia del ejemplo 2 y lo denotamos por (\mathbb{C}, \mid)

1.2. Equivalencias y propiedades básicas

Lema 1.4

Sea (M, d) un espacio pseudométrico, entonces

$$\forall x, y, z, t \in M : |d(x, y) - d(z, t)| \le d(x, z) + d(y, t)$$

Corolario 1.5

Sea (M,d) un espacio pseudométrico, entonces

$$\forall x, y, z \in M : |d(x, z) - d(y, z)| \le d(x, y)$$

Proposición 1.6

Sea (M,d) un espacio métrico, entonces (M,d) es un espacio pseudométrico.

Corolario 1.7

Sea (M,d) un espacio métrico, entonces

$$\forall x, y, z, t \in M : |d(x, y) - d(z, t)| \le d(x, z) + d(y, t)$$

Corolario 1.8

Sea (M, d) un espacio métrico, entonces

$$\forall x, y, z \in M : |d(x, z) - d(y, z)| \le d(x, y)$$

Sean M un conjunto no vacio y d una función $d: M \times M \to \mathbb{R}$. (M, d) es un espacio métrico si y sólo si para cualesquiera $x, y, z \in M$ se cumplen:

- **1)** $d(x,y) \ge 0$
- 2) $d(x,y) = 0 \Leftrightarrow x = y$
- **3)** $d(x,y) \le d(x,z) + d(z,y)$

Proposición 1.10

Sean M un conjunto no vacio y d una función $d: M \times M \to \mathbb{R}$. (M, d) es un espacio métrico si y sólo si para cualesquiera $x, y, z \in M$ se cumplen:

- 1) $d(x,y) = 0 \Leftrightarrow x = y$
- **2)** $d(x,y) \le d(x,z) + d(z,y)$

1.3. Construcción de métricas a partir de otras

Proposición 1.11

Sean (M,d) un espacio métrico y $f:M\to M$ inyectiva. Si d' es la función:

$$\begin{array}{cccc} d' & : M \times M & \to & \mathbb{R} \\ & d'(x,y) & \mapsto & d(f(x),f(y)) \end{array}$$

Entonces (M, d') es un espacio métrico.

Proposición 1.12

Sean (M, d) un espacio métrico y $d': M \times M \to M$ tal que para cualesquiera $x, y \in M$, $d'(x, y) = \min\{1, d(x, y)\}$, entonces (M, d') es un espacio métrico.

Teorema 1.13

Sea (F, ρ) un espacio pseudométrico, definimos la relación \sim en F como sigue, para cualesquiera $x, y \in F$, $x \sim y$ si y sólo si $\rho(x, y) = 0$, entonces

- 1) \sim es una relación de equivalencia
- **2)** Si $x \sim y$ y $z \sim w$, entonces $\rho(x,z) = \rho(y,w)$
- 3) Si $M = F/\sim$, para cualesquiera $\alpha, \beta \in M$ tomamos $x \in \alpha, y \in \beta$ y definimos $d(\alpha, \beta) := \rho(x, y)$, entonces (M, d) es un espacio métrico

Teorema 1.14

Sean $M \neq \emptyset$ y $d_1, d_2, ..., d_n$ métricas sobre M, definimos $d': M \times M \to M$ como sigue, para cualesquiera $x, y \in M$, $d'(x, y) = \sum_{i=1}^n d_i(x, y)$, entonces (M, d') es un espacio métrico.

Teorema 1.15

Sean (M, d) un espacio métrico y $d': M \times M \to M$ tal que para cualesquiera $x, y \in M$, $d'(x, y) = \frac{d(x, y)}{1 + d(x, y)}$, entonces (M, d') es un espacio métrico.

Teorema 1.16

Sean $(M, d_M), (S, d_S)$ espacios métricos, para cualesquiera $x = (x_1, x_2) \in M$ y $y = (y_1, y_2) \in S$ definimos

- 1) $d_{M\times S}(x,y) = d_M(x_1,y_1) + d_S(x_2,y_2)$
- **2)** $d_1(x,y) = \max \{d_M(x_1,x_2), d_S(x_1,x_2)\}$
- **3)** $d_2(x,y) = \sqrt{d_M(x_1,y_1)^2 + d_S(x_2,y_2)^2}$

Entonces d_1, d_2 y $d_{M \times S}$ son métricas para $M \times S$.

Teorema 1.17

Sean $M \neq \emptyset$ y $\{d_n\}$ una sucesión de métricas para M tales que

$$\forall x, y \in M : \forall n \in \mathbb{N} : d_n(x, y) \le 1$$

Entonces $d' = \sum_{n=0}^{\infty} \frac{d_n}{2^n}$ es una métrica sobre M.

1.4. Métricas relacionadas con \mathbb{R}

Teorema 1.18

Sea M el conjunto de todas las sucesiones reales acotadas y $d: M \times M \to M$ tal que para cualesquiera $\{x_n\}, \{y_n\} \in M, d(\{x_n\}, \{y_n\}) = \sup\{|x_n - y_n| : n \in N\}$, entonces (M, d) es un espacio métrico.

Teorema 1.19

Sea M el conjunto de todas las sucesiones reales y $d: M \times M \to M$ tal que para cualesquiera $\{x_n\}, \{y_n\} \in M, d(\{x_n\}, \{y_n\}) = \sum_{n=0}^{\infty} \frac{1}{n!} \cdot \frac{|x_n - y_n|}{1 + |x_n - y_n|}$, entonces (M, d) es un espacio métrico.

Teorema 1.20

Sea C[a,b] el conjunto de todas las funciones continuas de valores reales en el intervalo [a,b], para cualesquiera $f,g\in C[a,b]$ definimos

$$d(f,g) = \int_{a}^{b} \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} dx$$

Entonces (C[a, b], d) es un espacio métrico.

1.5. Distancia entre conjuntos

Definición 1.21 (Distancia de un punto a un conjunto)

Sean (M,d) un espacio métrico, $x_0 \in M$ y $S \subseteq M$ no vacio. La distancia de x_0 a S, denotada $d(x_0,S)$ es el ínfimo de $\{d(x_0,x):x\in S\}$, esto es:

$$d(x_0, S) := \inf \{ d(x_0, x) : x \in S \}$$

[Observaciones]

1. Definimos $d(S, x_0)$ como $d(x_0, S)$, es decir $d(S, x_0) := d(x_0, S) = \inf \{ d(x_0, x) : x \in S \}$.

Proposición 1.22

Sean (M, d) un espacio métrico, $x_0, y_0 \in M$ y $S \subseteq M$ no vacio, entonces

- 1) $d(x_0, S) \ge 0$
- **2)** $x_0 \in A \Rightarrow d(x_0, A) = 0$
- 3) $|d(x_0, A) d(y_0, A)| \le d(x_0, y_0)$

Definición 1.23 (Distancia entre conjuntos)

Sean (M,d) un espacio métrico y $A,B\subseteq M$ no vacios. La distancia de A a B, denotada d(A,B) es el ínfimo de $\{d(x,y):x\in A \ \land \ y\in B\}$, esto es:

$$d(A,B) := \inf \left\{ d(x,y) : x \in A \land y \in B \right\}$$

Proposición 1.24

Sean (M,d) un espacio métrico y $A,B\subseteq M$ no vacios, entonces

- **1)** $d(A, B) \ge 0$
- **2)** $A \cap B \neq \emptyset \Rightarrow d(A,B) = 0$
- **3)** d(A, B) = d(B, A)

Lema 1.25

Sean (M,d) un espacio métrico y $A,B\subseteq M$ no vacios, entonces

$$d(A, B) = \inf \{ d(x, B) : x \in A \} = \inf \{ d(A, y) : y \in B \}$$

1.6. Isometrías

Definición 1.26 (Isometría)

Sean (M,d_M) y (S,d_S) espacios métricos. Una isometría de M a S es una función biyectiva

$$f:M\to S$$

Tal que

$$\forall x, y \in M : d_M(x, y) = d_S(f(x), f(y))$$

[Observaciones]

- 1. M y S son isométricos si existe una isometría de M a S.
- **2.** Si $g: M \to S$ satisface que $\forall x, y \in M: d_M(x, y) = d_S(g(x), g(y))$, diremos que g preserva distancias.

Proposición 1.27

Sean $(M, d_M), (S, d_S), (N, d_N)$ espacios métricos, entonces

- 1) M es isométrico a M
- 2) Si M es isométrico a S, entonces S es isométrico a M
- 3) Si S es isométrico a M y M es isométrico a N, entonces S es isométrico a N.

Proposición 1.28

Sean (M,d_M) y (S,d_S) espacios métricos y $f:M\to S$ una función sobreyectiva tal que

$$\forall x, y \in M : d_M(x, y) = d_S(f(x), f(y))$$

Entonces f es una isometría.

Corolario 1.29

Sean (M,d_M) y (S,d_S) espacios métricos y $f:M\to S$ una función tal que

$$\forall x, y \in M : d_M(x, y) = d_S(f(x), f(y))$$

Entonces M es isométrico a algún subespacio E de S.

Ejemplos 1.30

1. \mathbb{R}^2 y \mathbb{C} son isométricos

Capítulo 2

Conjuntos abiertos y conjuntos cerrados

2.1. Conjuntos abiertos

Definición 2.1 (Bola abierta)

Sea (M, d) un espacio métrico. Si $a \in M$ y $r \in \mathbb{R}$ con r > 0, al conjunto $\{x \in M : d(x, a) < r\}$ le llamamos bola (abierta) de radio r y centro a (En M) y se denota $B_M(a; r)$ o B(a; r) si no hay lugar a confusión.

Proposición 2.2

Sea (M,d) un espacio métrico, entonces para cualesquiera reales $r_1, r_2 > 0$ y $x \in M$ se cumple que

$$r_1 < r_2 \Rightarrow B(x; r_1) \subseteq B(x; r_2)$$

Definición 2.3 (Punto interior)

Sean (M,d) un espacio métrico, $S \subseteq M$ y $a \in S$. Diremos que a es un punto interior de S (En M) si existe un real r > 0 tal que $B(a;r) \subseteq S$.

Definición 2.4 (Interior de un conjunto)

Sean (M,d) un espacio métrico y $S\subseteq M$, definimos el interior de S (En M), denotado int(S), como sigue:

 $int(S) := \{x \in S : x \text{ es un punto interior de } S\}$

Definición 2.5 (Conjunto abierto)

Sean (M,d) un espacio métrico y $S \subseteq M$. S es llamado abierto (En M) si todos sus puntos son interiores, esto es, si $S \subseteq int(S)$.

Proposición 2.6

Sea (M, d) un espacio métrico, entonces

- 1) M es un conjunto abierto
- 2) Ø es un conjunto abierto
- 3) Para cualquier real r > 0 y cualquier $a \in M$, B(a; r) es un conjunto abierto

Proposición 2.7

Sean (M,d) un espacio métrico y $A,B,S\subseteq M,$ entonces

- 1) $int(S) \subseteq S$
- 2) S es abierto $\Leftrightarrow S = int(S)$
- **3)** $A \subseteq B \Rightarrow int(A) \subseteq int(B)$
- 4) int(S) es abierto

Teorema 2.8

Sean (M, d) un espacio métrico y $A \subseteq M$, entonces

- 1) int(A) es el \subseteq -máximo conjunto abierto contenido en A
- 2) $int(A) = \bigcup \{B \subseteq A : B \text{ es abierto}\}\$

Teorema 2.9

Sea (M,d) un espacio métrico, entonces la unión arbitraria de cualquier colección arbitraria de conjuntos abiertos (En M) es un conjunto abierto (En M).

Teorema 2.10

Sea (M,d) un espacio métrico, entonces la intersección finita de conjuntos abiertos (En M) es un conjunto abierto (En M).

Teorema 2.11

Sean (M, d) un espacio métrico y $A, B \subseteq M$, entonces

- 1) $int(A) \cup int(B) \subseteq int(A \cup B)$
- **2)** $int(A) \cap int(B) = int(A \cap B)$

Definición 2.12 (Vecindad o entorno)

Sean (M, d) un espacio métrico, $S \subseteq M$ y $a \in M$. S es un entorno de a si S es abierto y $a \in S$.

[Observaciones]

- ${f 1.}$ Otra forma de enunciarlo es la siguiente: Un entorno de un punto a es cualquier conjunto abierto que lo contenga.
 - $\mathbf{2}$. A un entorno de a tambien se le llama vecindad de a.

Proposición 2.13

Sean (M, d) un espacio métrico y $a \in M$, entonces

- 1) Para cualquier $r \in \mathbb{R}_+$, B(a;r) es un entorno de a
- **2)** Para cualquier entorno S de a, existe un $r_0 \in R_+$ tal que $B(a; r_0) \subseteq S$
- 3) Para cualquier conjunto abierto S y $b \in S$, S es un entorno para b
- 4) Si F es cualquier familia de entornos de a, entonces $\bigcup F$ es un entorno de a
- 5) Si F es una familia finita de entornos de a, entonces $\bigcap F$ es un entorno de a

2.2. Conjuntos cerrados

Definición 2.14 (Bola cerrada)

Sea (M,d) un espacio métrico. Si $a \in M$ y $r \in \mathbb{R}$ con r > 0, al conjunto $\{x \in M : d(x,a) \leq r\}$ le llamamos bola cerrada de radio r y centro a (En M) y se denota $B_M[a;r]$ o B[a;r] si no hay lugar a confusión.

Proposición 2.15

Sea (M, d) un espacio métrico, entonces para cualesquiera reales $r_1, r_2 > 0$ y $x \in M$ se cumple que

$$r_1 < r_2 \Rightarrow B[x; r_1] \subseteq B[x; r_2]$$

Definición 2.16 (Superficie esférica)

Sea (M,d) un espacio métrico. Si $a \in M$ y $r \in \mathbb{R}$ con r > 0, al conjunto $\{x \in M : d(x,a) = r\}$ le llamamos superficie esférica de radio r y centro a (En M) y se denota $S_M(a;r)$ o S(a;r) si no hay lugar a confusión.

Proposición 2.17

Sean (M, d), $a \in M$ y r un real positivo, entonces

- 1) $B(a;r) \subseteq B[a;r]$
- 2) $S(a;r) \subseteq B[a;r]$
- **3)** $B(a;r) \cap S(a;r) = \emptyset$
- **4)** $B[a;r] = B(a;r) \cup S(a;r)$
- **5)** B(a;r) = B[a;r] S(a;r)

Definición 2.18 (Conjunto cerrado)

Sean (M, d) un espacio métrico y $S \subseteq M$. Diremos que S es cerrado (En M) si M - S es un conjunto abierto (En M).

Sean (M,d) un espacio métrico y $S\subseteq M$, entonces S es abierto si y solo si M-S es cerrado.

Proposición 2.20

Sea (M,d) un espacio métrico, entonces

- 1) M es un conjunto cerrado
- 2) \emptyset es un conjunto cerrado
- 3) Para cualquier real r > 0 y cualquier $a \in M$, B[a; r] es un conjunto cerrado
- 4) Para cualquier real r > 0 y cualquier $a \in M$, S(a; r) es un conjunto cerrado

Teorema 2.21

Sea (M, d) un espacio métrico, entonces la intersección arbitraria de cualquier colección arbitraria de conjuntos cerrados (En M) es un conjunto cerrado (En M).

Teorema 2.22

Sea (M, d) un espacio métrico, entonces la unión finita de conjuntos cerrados (En M) es un conjunto cerrado (En M).

2.3. Puntos adherentes y puntos de acumulación

Definición 2.23 (Punto adherente)

Sean (M,d) un espacio métrico, $S \subseteq M$ y $x \in M$. x es un punto adherente a S si para cada real r > 0, se cumple que B(x;r) y S tienen al menos un punto en común.

[Observaciones]

1. x no necesariamente es un punto de S.

Teorema 2.24

Sean (M, d) un espacio métrico, $S \subseteq M$ y $x \in M$. x es un punto adherente a S si y solo si todo entorno de x contiene puntos de S.

Definición 2.25 (Cerradura)

Sean (M,d) un espacio métrico y $S\subseteq M$. El conjunto de todos los puntos adherentes a S se llama cerradura de S y se denota \overline{S} , esto es:

 $\overline{S} := \{ x \in M : x \text{ es adherente a } S \}$

Proposición 2.26

Sean (\overline{M}, d) un espacio métrico y $S \subseteq M$, entonces $S \subseteq \overline{S}$.

Definición 2.27 (Punto de acumulación)

Sean (M,d) un espacio métrico, $S\subseteq M$ y $a\in M$. a es un punto de acumulación de S si a es adherente a $S-\{a\}$.

Teorema 2.28

Sean (M,d) un espacio métrico, $S\subseteq M$ y $x\in M$. x es un punto de acumulación de S si y solo si todo entorno de x contiene puntos de S distintos de S.

Definición 2.29 (Conjunto derivado)

Sean (M,d) un espacio métrico y $S \subseteq M$. El conjunto de todos los puntos de acumulación de S se llama conjunto derivado de S y se denota S', esto es:

 $S' := \{x \in M : x \text{ es un punto de acumulacion de } S\}$

Teorema 2.30

Sean (M, d) un espacio métrico y $S \subseteq M$, entonces $\overline{S} = S \cup S'$.

Teorema 2.31

Sean (M, d) un espacio métrico y $S \subseteq M$, entonces $S' \subseteq \overline{S}$.

Teorema 2.32

Sean (M, d) un espacio métrico y $A, B \subseteq M$. Si $A \subseteq B$, entonces $A' \subseteq B'$.

Corolario 2.33

Sean (M,d) un espacio métrico y $A,B\subseteq M.$ Si $A\subseteq B,$ entonces $\overline{A}\subseteq \overline{B}.$

Definición 2.34 (Punto aislado)

Sean (M,d) un espacio métrico, $S\subseteq M$ y $x\in M.$ Si $x\in S$ pero $x\notin S'$, diremos que x es un punto aislado de S.

Teorema 2.35

Sean (M,d) un espacio métrico, $S\subseteq M$ y $x\in S'$, entonces para todo real r>0, B(x;r) tiene infinitos puntos de S.

Corolario 2.36

Sean (M,d) un espacio métrico, $A\subseteq M,\,x\in A'$ y S un entorno de x, entonces $(S-\{x\})\cap A$ contiene una infinidad de puntos.

Corolario 2.37

Sean (M,d) un espacio métrico y $S\subseteq M$. Si S es finito, entonces S no tiene puntos de acumulación.

Corolario 2.38

Sean (M,d) un espacio métrico y $S\subseteq M$. Si S tiene un punto de acumulación, entonces S es infinito.

Teorema 2.39

Sean (M, d) un espacio métrico y $S \subseteq M$, entonces $(\overline{S})' = S'$.

2.4. Relación entre conjuntos cerrados y puntos adherentes

Teorema 2.40

Sean (M,d) un espacio métrico y $A,B\subseteq M$ tales que A es abierto y B es cerrado, entonces:

- 1) A B es abierto.
- 2) B A es cerrado.

Teorema 2.41

Sean (M,d) un espacio métrico y $S\subseteq M$, entonces las siguientes afirmaciones son equivalentes:

- 1) S es cerrado
- 2) $\overline{S} \subseteq S$
- 3) $\overline{S} = S$
- 4) $S' \subseteq S$

Corolario 2.42

Sean (M, d) un espacio métrico y $S \subseteq M$. Si $S' = \emptyset$, entonces S es cerrado.

Corolario 2.43

Sean (M, d) un espacio métrico y $S \subseteq M$, entonces S' y \overline{S} son cerrados.

Teorema 2.44

Sean (M,d) un espacio métrico y $S \subseteq M$. Si S tiene una infinidad de puntos, entonces S es cerrado.

Teorema 2.45

Sean (M,d) un espacio métrico y $S\subseteq M$ tal que $\overline{S}\neq\emptyset$, entonces las siguientes afirmaciones son equivalentes

- 1) $x \in \overline{A}$
- **2)** d(x, A) = 0
- 3) Para todo entorno S de x, $S \cap A \neq \emptyset$

Proposición 2.46

Sean (M, d) un espacio métrico, $a \in M$ y $r \in \mathbb{R}_+$, entonces $B[a : r] \subseteq \overline{B(a; r)}$.

Teorema 2.47

Sean (M,d) un espacio métrico y $A,B\subseteq M,$ entonces

- 1) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$
- 2) $\overline{A \cup B} = \overline{A} \cup \overline{B}$

Teorema 2.48

Sean (M, d) un espacio métrico y $A \subseteq M$, entonces

- 1) \overline{A} es el \subseteq -mínimo conjunto cerrado contenido en A
- **2)** $\overline{A} = \bigcap \{B \subseteq M : A \subseteq B \text{ y } B \text{ es cerrado}\}\$

Teorema 2.49

Sean (M, d) un espacio métrico y $A \subseteq M$, entonces

1)
$$\overline{M-A} = M - int(A)$$

2)
$$M - \overline{A} = int(M - A)$$

Definición 2.50 (Conjunto perfecto)

Sean (M,d) un espacio métrico y $S\subseteq M$. Diremos que el conjunto S es perfecto si S'=S.

2.5. Subespacios

Teorema 2.51

Sean (M,d) un espacio métrico y (S,d) un subespacio de (M,d), entonces para todo $x \in S$ y todo real r > 0 se cumple que:

$$B_S(x;r) = B_M(x;r) \cap S.$$

Ejemplos 2.52

- **1.** $B_{\mathbb{R}}(0;1) = (-1,1), B_{[0,1]}(0;1) = [0,1) \text{ y } [0,1) = (-1,1) \cap [0,1].$
 - **2.** Sea (M,d) un espacio métrico discreto, entonces todo $S\subseteq M$ es abierto y cerrado.
 - **3.** Los intervalos de la forma [0,x) o (x,1] con $x \in (0,1)$ son abiertos en $([0,1],\|)$ pero no en $(\mathbb{R},\|)$

Teorema 2.53

Sean (M,d) un espacio métrico, (S,d) un subespacio de (M,d) y $X\subseteq M$, entonces

X es abierto en $S \Leftrightarrow X = A \cap S$ p.a. conjunto abierto A en M.

Teorema 2.54

Sean (M,d) un espacio métrico, (S,d) un subespacio de (M,d) y $Y\subseteq M$, entonces

Y es cerrado en $S \Leftrightarrow Y = B \cap S$ p.a. conjunto cerrado B en M.

Corolario 2.55

Sean (M,d) un espacio métrico, (S,d) un subespacio de (M,d) tal que S es abierto en M y $Y\subseteq M$, entonces

Yes abierto en $S \Leftrightarrow Y$ es abierto en M

Corolario 2.56

Sean (M,d) un espacio métrico, (S,d) un subespacio de (M,d) tal que S es abierto en M y $Y\subseteq M$, entonces

Y es cerrado en $S \Leftrightarrow Y$ es cerrado en M

Proposición 2.57

Sean $a, b \in \mathbb{I}$ y $S = \{x \in (a, b) : x \in \mathbb{Q}\}$, entonces S es cerrado en \mathbb{Q} .

2.6. Frontera de un conjunto

Definición 2.58 (Frontera)

Sean (M,d) un espacio métrico y $S\subseteq M$. Un punto $x\in M$ es llamado punto frontera de S si para todo real r>0, $B_M(x;r)$ tiene puntos de S y puntos de M-S.

Definición 2.59 (Conjunto frontera)

Sean (M,d) un espacio métrico y $S\subseteq M$. El conjunto frontera de S, denotado ∂S , es el conjunto de todos los puntos frontera de S, esto es:

 $\partial S := \{x \in M : x \text{ es punto frontera de } S\}$

Sean (M, d) un espacio métrico y $S \subseteq M$, entonces $\partial S = \overline{S} \cap \overline{M - S}$.

Teorema 2.61 (Propiedades de la frontera)

Sean (M, d) un espacio métrico y $A \subseteq M$, entonnces

- 1) ∂A es cerrado
- 2) $\partial A = \partial (M A)$
- 3) Si $\partial A \neq \emptyset$, entonces las siguientes afirmaciones son equivalentes
 - **3.1)** $x \in \partial A$
 - **3.2)** d(x, A) = d(x, M A) = 0
 - **3.3)** Para todo entorno S de $x, S \cap A \neq \emptyset$ y $S \cap (M A) \neq \emptyset$
- **4)** $\partial A = \overline{A} int(A)$
- 5) $\overline{A} = A \cup \partial A$
- **6)** A es cerrado $\Leftrightarrow \partial A \subseteq A$
- 7) A es abierto $\Leftrightarrow A \cap \partial A = \emptyset$
- 8) Para todo $x \in M$, $\partial(\{x\}) = \emptyset$
- **9)** $\partial(\emptyset) = \emptyset$
- **10)** $\partial(M) = \emptyset$

Proposición 2.62

Dados $a \in \mathbb{R}^n$ y un real r > 0, se cumple que $\overline{B(a;r)} = B[a;r]$.

Dados $a \in \mathbb{R}^n$ y un real r > 0, se cumple que $\partial(B(a;r)) = S(a;r)$.

Proposición 2.64

 $\partial \mathbb{Q} = \mathbb{R}$.

Definición 2.65 (Borde)

Sean (M,d) un espacio métrico y $S \subseteq M$. El borde de S, denotado b(S), es el conjunto

$$b(S) := S \cap \partial(S)$$

Teorema 2.66 (Propiedades del borde)

Sean (M, d) un espacio métrico y $A \subseteq M$, entonnces

- 1) A es cerrado $\Leftrightarrow b(A) = \partial(A)$
- **2)** A es abierto $\Leftrightarrow b(A) = \emptyset$
- **3)** b(A) = A int(A)
- **4)** $b(M A) = \partial(A) b(A)$

2.7. Conjuntos densos, fronterizos y nada-densos

Definición 2.67 (Conjunto denso)

Sean (M, d) un espacio métrico y $S \subseteq M$. Diremos que S es denso en M (O simplemente que S es denso si no hay lugar a confusión) si $\overline{S} = M$.

Proposición 2.68

Sea (M,d) un espacio métrico, entonces M es el único subconjunto de M que es cerrado y denso.

 $\mathbb Q$ es denso en $\mathbb R.$

Proposición 2.70

 \mathbb{I} es denso en \mathbb{R} .

Teorema 2.71

Sean (M,d) un espacio métrico y $A\subseteq M$ entonces las siguientes afirmaciones son equivalentes

- 1) A es denso
- **2)** $\forall x \in M : d(x, A) = 0$
- 3) Para todo conjunto abierto y no vacio $S, S \cap A = \emptyset$

Lema 2.72

Sean (M, d) un espacio métrico y $A \subseteq M$, entonces

- 1) $(M \overline{A}) \cup A$ es denso
- 2) $(M-A) \cup int(A)$ es denso

Definición 2.73 (Conjunto fronterizo)

Sean (M, d) un espacio métrico y $A \subseteq M$. Diremos que A es fronterizo en M (O simplemente que A es fronterizo si no hay lugar a confusión) si M - A es denso.

Definición 2.74 (Conjunto nada-denso)

Sean (M,d) un espacio métrico y $A\subseteq M$. Diremos que A es nada-denso en M (O simplemente que A es

nada-denso si no hay lugar a confusión) si $M - \overline{A}$ es denso.

Teorema 2.75

Sean (M, d) un espacio métrico y $A, B \subseteq M$, entonces

- 1) Ø es fronterizo y nada-denso
- 2) M no es fronterizo ni nada-denso
- 3) A es nada-denso $\Leftrightarrow \overline{A}$ es fronterizo
- 4) Si A es cerrado y fronterizo, entonces A es nada-denso
- $\mathbf{5}$) Si A es nada-denso, entonces A es fronterizo
- **6)** A es fronterizo $\Leftrightarrow int(A) = \emptyset$
- 7) Si A es abierto y fronterizo, entonces $A = \emptyset$
- 8) Si A es nada-denso, entonces $int(\overline{A}) = \emptyset$
- 9) Si $A \subseteq B$ y B es fronterizo, entonces A es fronterizo
- 9) Si $A \subseteq B$ y B es nada-denso, entonces A es nada-denso

Teorema 2.76

Sean (M,d) un espacio métrico y $A\subseteq M$. Si A es abierto o cerrado, entonces $\partial(A)$ es nada-denso.

Teorema 2.77

Sean (M, d) un espacio métrico y $A \subseteq M$, entonces b(A) es fronterizo.

Teorema 2.78

Sean (M, d) un espacio métrico y $A_1, A_2, ..., A_n \subseteq M$. Si $A_1, A_2, ..., A_n$ son nada-densos, entonces $\bigcup_{i=1}^n A_i$ es nada-denso.

Lema 2.79

Sean (M,d) un espacio métrico y $A,B\subseteq M.$ Si B es nada-denso y A-B es fronterizo, entonces A es fronterizo.

Capítulo 3

Compacidad

- 3.1. Conjuntos acotados y diámetro
- 3.2. Conjuntos precompactos y separables
- 3.3. Conjuntos compactos

Definición 3.1 (Conjunto acotado)

Sean (M,d) un espacio métrico y $S\subseteq M$. Diremos que S es acotado si existe un real r>0 y un $a\in M$ tales que $S\subseteq B(a;r)$.

Definición 3.2 (Cubierta)

Sean (M,d) un espacio métrico, $S\subseteq M$ y F una colección de subconjunto de M. Diremos que F es una cubierta de S (O que F cubre a S) si $S\subseteq\bigcup_{A\subseteq F}A$.

Definición 3.3 (Cubierta abierta)

Sean (M,d) un espacio métrico, $S\subseteq M$ y F una cubierta de S. Diremos que F es una cubierta abierta si cada $A\in F$ es un conjunto abierto en M.

Definición 3.4 (Compacidad)

Sean (M,d) un espacio métrico y $S \subseteq M$. Diremo que S es compacto si y sólo si toda cubierta abierta de S contiene una subcubierta finita (De S).

[Observaciones]

1. Diremos que un espacio métrico (M,d) es compacto su $M\subseteq M$ es compacto.

Teorema 3.5

Sean (M,d) un espacio métrico y $S\subseteq M$ compacto, entonces S es cerrado y acotado.

Teorema 3.6

Sean (M,d) un espacio métrico y $S\subseteq M$ compacto, entonces todo subconjunto infinito de S tiene un punto de acumulación en S.

Lema 3.7

Sean (M,d) un espacio métrico y $S\subseteq M.$ Si $S'=\emptyset,$ entonces existe $R\subseteq \mathbb{R}_+$ tal que

$$C = \{B(x;r) : x \in S \ \land \ r \in R\}$$

Es una cubierta abierta de S.

Teorema 3.8

Sean (M,d) un espacio métrico compacto y $X\subseteq M$ cerrado, entonces X es compacto.

3.4. Conjuntos relativamente compactos

Capítulo 4

Sucesiones en Espacios Métricos

4.1. Sucesiones

Definición 4.1 (Sucesión finita)

Sea A un conjunto no vacio. Una sucesión finita en A es una función $f:\{1,2,...,n\}\to A$.

[Observaciones]

- **1.** El rango de f, $f[\{1, 2, ..., n\}] = \{f(1), f(2), ..., f(n)\}$ se denota $\{f_1, f_2, ..., f_n\}$.
- $\mathbf{2.}$ A una sucesión finita en A tambien se le llama sucesión finita de puntos en A.

Definición 4.2 (Sucesión infinita o sucesión)

Sea A un conjunto no vacio. Una sucesión infinita en A (O simplemente sucesión en A) es una función $\mathbb{Z}_+ \to A$.

[Observaciones]

- 1. $f \subseteq \mathbb{Z}_+ \times A$
- **2.** Denotamos a $f \subseteq \mathbb{Z}_+$ por $\{f_n\}$ donde f_n es llamado el n-ésimo termino de la sucesión y $f_n = f(n)$.

Definición 4.3 (Sucesión creciente de enteros)

Sea $\{a_n\}$ una sucesión en \mathbb{Z}_+ , diremos que $\{a_n\}$ es estrictamente creciente si

$$\forall n \in \mathbb{Z}_+ : a_n < a_{n+1}$$

Sea $\{a_n\}$ una sucesión en \mathbb{Z}_+ . Si $\{a_n\}$ es estrictamente creciente, entonces

$$\forall m, n \in \mathbb{Z}_+ : m < n \Rightarrow a_m < a_n$$

Teorema 4.5

Sea $\{a_n\}$ una sucesión en \mathbb{Z}_+ , entonces las siguientes afirmaciones son equivalentes

- 1) $\{a_n\}$ es estrictamente creciente
- **2)** $\forall n \in \mathbb{Z}_+ : a_n < a_{n+1}$
- 3) $\forall m, n \in \mathbb{Z}_+ : m < n \Rightarrow a_m < a_n$

Teorema 4.6

Sea $\{a_n\}$ una sucesión en \mathbb{Z}_+ . Si $\{a_n\}$ es estrictamente creciente, entonces

$$\forall n \in \mathbb{Z}_+ : n \le a_n$$

Definición 4.7 (Subsucesión)

Sean A un conjunto no vacio, $\{x_n\}$ y $\{y_n\}$ sucesiones en A. Diremos que $\{y_n\}$ es una subsucesión de $\{x_n\}$ si existe una sucesión de puntos en \mathbb{Z}_+ , $\{k_n\}$ estrictamente creciente y tal que

$$\{y_n\} = \{x_{k_n}\}$$

4.2. Sucesiones convergentes en Espacios Métricos

Definición 4.8 (Sucesión convergente en un espacio métrico)

Sean (M,d) un espacio métrico y $\{x_n\}$ una sucesión de puntos en M. Diremos que $\{x_n\}$ converge si existe

un $p \in M$ tal que

$$\forall \varepsilon > 0 : \exists N \in \mathbb{Z}_+ : \forall n \in \mathbb{Z}_+ : n \ge N \Rightarrow d(x_n, p) < \varepsilon$$

[Observaciones]

- 1. Si $\{x_n\}$ converge y $p \in M$ es el punto que satisface la propiedad anterior, diremos que:
 - ·) $\{x_n\}$ converge a $p \in M$
 - $\cdot \cdot$) $x_n \to p$ cuando $n \to \infty$
 - \cdots) $x_n \to p$
- **2.** Si no existe un $p \in M$ tal que $x_n \to p$, diremos que $\{x_n\}$ diverge.
- **3.** Cuando tengamos sucesiones con puntos en más de un espacio métrico, digamos (S, d_S) y (M, d_M) , diremos que $\{x_n\}$ converge en S o bien que $\{x_n\}$ converge en M.

Proposición 4.9

Sean $\{x_n\}$ una sucesión de puntos en \mathbb{R}^n y $p \in \mathbb{R}^n$, entonces

$$x_n \to p \Leftrightarrow d(x_n, p) \to 0$$

Teorema 4.10

Sean (M,d) un espacio métrico, $p \in M$ y $\{x_n\}$ una sucesión de puntos en M, entonces

$$x_n \to p \text{ en } (M,d) \Leftrightarrow d(x_n,p) \to 0 \text{ en } (\mathbb{R},|)$$

Teorema 4.11

Sean (M, d) un espacio métrico y $\{x_n\}$ una sucesión de puntos en M, entonces $\{x_n\}$ converge a lo más a un punto $p \in M$.

Definición 4.12 (Limite de una sucesión en un espacio métrico)

Sean (M,d) un espacio métrico y $\{x_n\}$ una sucesión de puntos en M. Si $\{x_n\}$ converge a $p \in M$, al punto p le llamaremos limite de $\{x_n\}$ y lo denotamos por $\lim_{n \to \infty} x_n$, esto es

$$\lim_{n\to\infty} x_n = p \Leftrightarrow \forall \varepsilon > 0 : \exists N \in \mathbb{Z}_+ : \forall n \in \mathbb{Z}_+ : n \ge N \Rightarrow d(x_n, p) < \varepsilon$$

Ejemplos 4.13

1. Sea T = (0,1], entonces $\left\{\frac{1}{n}\right\}$ no converge en (T,|).

Teorema 4.14

Sean (M,d) un espacio métrico, $\{x_n\}$ una sucesión de puntos en $M, p \in M$ y T el rango de $\{x_n\}$. Si $x_n \to p$, entonces

- a) T es acotado
- b) $p \in \overline{T}$

Corolario 4.15

Sean (M,d) un espacio métrico, $\{x_n\}$ una sucesión de puntos en $M, p \in M$ y T el rango de $\{x_n\}$. Si $x_n \to p$ y T es infinito, entonces $p \in T'$.

Teorema 4.16

Sean (M,d) un espacio métrico, $T \subseteq M$ y $p \in M$, entonces $p \in T'$ si y sólo si para todo real r > 0, B(p;r) tiene infinitos puntos de T.

Teorema 4.17

Sean (M,d) un espacio métrico, $p \in M$ y $T \subseteq M$, entonces $p \in \overline{T}$ si y sólo si existe una sucesión de puntos en T, $\{x_n\}$ tal que $x_n \to p$.

Corolario 4.18

Sean (M, d) un espacio métrico y $T \subseteq M$, entonces

 $\overline{T} = \{p : \text{Existe una sucesi\'on en } T \text{ que converge a } p\}$

Teorema 4.19

Sean (M,d) un espacio métrico, $p \in M$ y $\{x_n\}$ una sucesión de puntos en M, entonces $x_n \to p$ si y sólo si toda subsucesión de x_n converge a p.

Teorema 4.20

Sean (M,d) un espacio métrico y $S \subseteq M$, entonces S es cerrado si y sólo si para toda sucesión $\{x_n\}$ de puntos en S y cualquier punto $p \in M$, se cumple que si $x_n \to p$, entonces $p \in S$.

4.3. Sucesiones de Cauchy

Definición 4.21 (Sucesión de Cauchy en Espacios Métricos)

Sean (M,d) un espacio métrico y $\{x_n\}$ una sucesión de puntos en M. Diremos que $\{x_n\}$ es una sucesión de Cauchy si

$$\forall \varepsilon > 0 : \exists N \in \mathbb{Z}_+ : \forall n, m \in \mathbb{Z}_+ : n, m \ge N \Rightarrow d(x_n, x_m) < \varepsilon$$

[Observaciones]

1. A la condición anterior se le conoce como 'Condición de Cauchy'.

Teorema 4.22

Sean (M, d) un espacio métrico y $\{x_n\}$ una sucesión de puntos en M tal que $\{x_n\}$ converge, entonces $\{x_n\}$ es una sucesión de Cauchy.

Ejemplos 4.23

1. Consideremos T=(0,1] y el espacio métrico (T,|), entonces $\left\{\frac{1}{n}\right\}$ es una sucesión de Cauchy, pero no converge.

Proposición 4.24

Sean (M,d) un espacio métrico, $S \subseteq M$ un subespacio de M y $\{x_n\}$ una sucesión de puntos en S. Si $\{x_n\}$ es una sucesión de Cauchy en M, entonces es una sucesión de Cauchy en S.

Teorema 4.25

Sea $\{x_n\}$ una sucesión de puntos en \mathbb{R}^n , entonces

 $\{x_n\}$ converge $\Leftrightarrow \{x_n\}$ es una sucesión de Cauchy

Ejemplos 4.26

- 1. La sucesión definida por $x_n = \sum_{i=1}^n \frac{(-1)^{i-1}}{i}$ converge en \mathbb{R} .
- **2.** Si $\{a_n\}$ es una sucesión de puntos en \mathbb{R} tal que $\forall n \geq 1 : |a_{n+2} a_{n+1}| \leq \frac{1}{2} |a_{n+1} a_n|$, entonces $\{a_n\}$ converge.

4.4. Espacios Métricos completos

Definición 4.27 (Espacios Métricos completos)

Un espacio métrico (M,d) es llamado completo si toda sucesión de Cauchy en M converge en M.

[Observaciones]

1. Un subconjunto $S \subseteq M$ es llamado completo si (S,d) es un espacio métrico completo.

Ejemplos 4.28

- **1.** $(\mathbb{R}^n, \parallel)$ es un espacio métrico completo.
- 2. $((0,1],|\,)$ no es un espacio métrico completo.
- **3.** (\mathbb{R}^n, d) donde para cualesquiera $x, y \in \mathbb{R}^n$ tales que $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n), d(x, y) = \max\{|x_i y_i| : i \in \{1, 2, ..., n\}\}.$

Teorema 4.29

Sean (M,d) un espacio métrico, $\{x_n\}$ una sucesión de puntos en M y T el rango de $\{x_n\}$. Si $\{x_n\}$ es una sucesión de Cauchy y T es finito, entonces $\{x_n\}$ converge a algún punto $p \in T$.

Teorema 4.30

Sean (M,d) un espacio métrico y $T\subseteq M.$ Si T es compacto, entonces T es completo.

4.5. Teorema de Baire

Capítulo 5

Limite y continuidad en Espacios Métricos

5.1. Limite de una función

Definición 5.1 (Limite de una función)

Sean $(S, d_S), (T, d_T)$ espacios métricos, $A \subseteq S, f : A \to T, p \in A'$ y $b \in T$. Diremos que el limite de f cuando x tiende a p es b (O que f se aproxima a b cuando x se aproxima a p) si

$$\forall \varepsilon > 0 : \exists \delta > 0 : 0 < d_S(x, p) < \delta \Rightarrow d_T(f(x), b) < \varepsilon$$

Y lo denotamos $\lim_{x\to p} f(x) = b$ o como $f\to b$ cuando $x\to p$.

[Observaciones]

- 1. Es necesario que p sea punto de acumulación de A para asegurar que si $x \neq p$, podemos elegir puntos arbitrariamente cerca de p.
 - **2.** No requerimos que p este en el dominio A de f ni que b este en su imagen.

Teorema 5.2

Sean $(S, d_S), (T, d_T)$ espacios métricos, $A \subseteq S, f: A \to T, p \in A'$ y $b \in T$, entonces las siguientes afirmaciones son equivalentes

- 1. $\lim_{x \to p} f(x) = b$.
- **2.** $\forall \varepsilon > 0 : \exists \delta > 0 : x \in B_S(p; \delta) \cap A, x \neq p \Rightarrow f(x) \in B_T(p; \varepsilon)$
- **3.** Para toda sucesión $\{x_n\}$ en $A \{p\}$ se cumple que si $x_n \to p$, entonces $f(x_n) \to b$.

Corolario 5.3

Sean $(S, d_S), (T, d_T)$ espacios métricos, $A \subseteq S, f: A \to T, p \in A'$ y $b \in T$. Si $\lim_{x \to p} f(x)$ existe, entonces es único.

5.2. Funciones continuas

Definición 5.4 (Función continua)

Sean $(S, d_S), (T, d_T)$ espacios métricos, $f: S \to T$ y $p \in S$. f es continua en p si

$$\forall \varepsilon > 0 : \exists \delta > 0 : d_S(x, p) < \delta \Rightarrow d_T(f(x), f(p)) < \varepsilon$$

[Observaciones]

- 1. f es continua en $A \subseteq S$ si f es continua en cada $x \in A$.
- **2.** f esta definida sobre todo el espacio S, pero con esto no perdemos generalidad pues si $f: M \to T$ con M un espacio métrico y $S \subseteq M$, entonces (S, d_M) es un espacio métrico si $S \neq \emptyset$.

Lema 5.5

Sean $(S, d_S), (T, d_T)$ espacios métricos, $f: S \to T$ y $p \in S$, entonces

- 1) Si f es continua en p y $p \in S'$, entonces $\lim_{x \to p} f(x) = f(p)$
- 2) Si $p \notin S'$, entonces f es continua en p

Corolario 5.6

Sean $(S, d_S), (T, d_T)$ espacios métricos, $f: S \to T$ y $p \in S'$, entonces f es continua en p si y solo si $\lim_{x \to p} f(x) = f(p)$.

Teorema 5.7

Sean $(S, d_S), (T, d_T)$ espacios métricos, $f: S \to T$ y $p \in S$, entonces las siguientes afirmaciones son equivalentes

- 1. f es continua en p.
- **2.** $\forall \varepsilon > 0 : \exists \delta > 0 : f[B_S(p; \delta)] \subseteq B_T(f(p); \varepsilon)$
- **3.** Para toda sucesión $\{x_n\}$ en S se cumple que si $x_n \to p$, entonces $f(x_n) \to f(p)$.

El Teorema anterior puede enunciarse como sigue: Para las funciones continuas, el simbolo de limite y el de función son intercambiables. Esto se debe a que en términos de simbolos, el inciso 3 dice que

$$\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n)$$

Nosotros no usamos esta notación ya que requiere cierto cuidado, pues puede ocurrir que $\{f(x_n)\}$ converga pero $\{x_n\}$ diverga.

Proposición 5.8

Sean $(M, d_M), (S, d_S)$ espacios métricos, $x \in M, y \in S, \{x_n\}$ una sucesión en M y $\{y_n\}$ una sucesión en S, entonces

$$x_n \to x \land y_n \to y \Leftrightarrow (x_n, y_n) \to (x, y)$$

Proposición 5.9

Sea (S, d) un espacio métrico, entonces d es continua.

Proposición 5.10

Sean (S,d) un espacio métrico, $x,y \in S$ y $\{x_n\}$, $\{y_n\}$ sucesiones en S. Si $x_n \to x$ y $y_n \to y$, entonces $d(x_n,y_n) \to d(x,y)$.

Si f es continua en un punto p se dice que la continuidad de f es una propiedad local pues depende

del comportamiento de f en una vecindad de p, en cambio una propiedad de f que depende de su comportamiento en todo su dominio se dice global.

En este sentido, la continuidad puntual de f es una propiedad local y la continuidad de f en su dominio es una propiedad global.

5.3. Continuidad de la composición de funciones

Teorema 5.11

Sean $(S, d_S), (T, d_T), (U, d_U)$ espacios métricos, $p \in S$, $f : S \to T$, $g : f[S] \to U$ funciones y $h = g \circ f$. Si f es continua en p y g es continua en f(p), entonces h es continua en p.

5.4. Continuidad y preimagenes de conjuntos abiertos o cerrados

Considere el siguiente Teorema como un recordatorio de las propiedades de las funciones

Teorema 5.12

Sean A, B conjuntos, $X_1, X_2 \subseteq A, Y_1, Y_2 \subseteq B$ y $f: A \to B$ una función, entonces

- 1) $f[f^{-1}[Y_1]] \subseteq Y_1$
- **2)** $X_1 \subseteq f^{-1}[f[X_1]]$
- 3) $X_1 \subseteq X_2 \Rightarrow f[X_1] \subseteq f[X_2]$
- **4)** $Y_1 \subseteq Y_2 \Rightarrow f^{-1}[Y_1] \subseteq f^{-1}[Y_2]$
- **5)** $f[X_1 \cup X_2] = f[X_1] \cup f[X_2]$
- **6)** $f^{-1}[Y_1 \cup Y_2] = f^{-1}[Y_1] \cup f^{-1}[Y_2]$
- 7) $f[A X_1] \subseteq B f[X_1]$
- 8) $f^{-1}[B Y_1] = A f^{-1}[Y_1]$

Teorema 5.13

Sean $(S, d_S), (T, d_T)$ espacios métricos y $f: S \to T$, entonces f es continua en S si y solo si para todo $Y \subseteq T$ abierto en T, $f^{-1}[Y]$ es abierto en S.

Teorema 5.14

Sean (S, d_S) , (T, d_T) espacios métricos y $f: S \to T$, entonces f es continua en S si y solo si para todo $Y \subseteq T$ cerrado en T, $f^{-1}[Y]$ es cerrado en S.

5.5. Continuidad y conjuntos compactos

Teorema 5.15

Sean $(S, d_S), (T, d_T)$ espacios métricos y $f: X \subseteq S \to T$. Si f es continua en X y X es compacto, entonces f[X] es compacto.

Corolario 5.16

Sean $(S, d_S), (T, d_T)$ espacios métricos y $f: X \subseteq S \to T$ una función. Si f es continua en X y X es compacto, entonces f[X] es cerrado y acotado en T.

Teorema 5.17

Sean $(S, d_S), (T, d_T)$ espacios métricos y $f: X \subseteq S \to T$ una función. Si S es compacto y f es inyectiva y continua en S, entonces $f^{-1}: f[S] \to S$ es continua en f[S].

5.6. Homeomorfismos

Definición 5.18 (Homeomorfismo)

Sean $(S,d_S),(T,d_T)$ espacios métricos y $f:X\subseteq S\to T$ una función. Diremos que f es un homeomorfismo si

- 1) f es biyectiva
- 2) f es continua
- 3) f^{-1} es continua

[Observaciones]

1. Si existe un homeomorfismo entre S y T diremos que son homeomorfos.

Teorema 5.19

Sean $(S, d_S), (T, d_T)$ espacios métricos y $f: X \subseteq S \to T$ un homeomorfismo, entonces

- 1) f^{-1} es un homeomorfismo.
- **2)** Para todo $X \subseteq S$ abierto en S, f[X] es abierto en T
- 3) Para todo $X \subseteq S$ cerrado en S, f[X] es cerrado en T
- 4) Para todo $X \subseteq S$ compacto, f[X] es compacto

Una propiedad invariante bajo homeomorfismos se llama propiedad topológica, ser cerrado, abierto o compacto son propiedades topológicas.

Teorema 5.20

Sean $(S, d_S), (T, d_T)$ espacios métricos y $f: X \subseteq S \to T$ una función. Si f es un un homeomorfismo que preserva distancias, entonces f es una isometría.

5.7. Continuidad uniforme

Definición 5.21 (Función uniformemente continua)

Sean $(S, d_S), (T, d_T)$ espacios métricos y $f: X \subseteq S \to T$ una función. f es uniformemente continua en $A \subseteq S$ si

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x, p \in A : d_S(x, p) < \delta \Rightarrow d_T(f(x), f(y))$$

[Observaciones]

- 1. δ depende solo de ε y no de x o p.
- 2. En el otro tipo de continuidad, el cuantificador de la p esta por detras de la ε .

Teorema 5.22

Sean $(S, d_S), (T, d_T)$ espacios métricos y $f: S \to T$ una función uniformemente continua en $A \subseteq S$, entonces f es continua en A.

Ejemplos 5.23

- **1.** Sea $f:[0,1]\to\mathbb{R}$ definida por $f(x)=\frac{1}{x}$ para todo $x\in\mathbb{R}$, entonces f es continua en (0,1] pero no uniformemente continua en (0,1].
 - **2.** Sea $f:[0,1]\to\mathbb{R}$ definida por $f(x)=x^2$ para todo $x\in\mathbb{R}$, entonces f es uniformemente continua.

Teorema 5.24

Sean (S, d_S) , (T, d_T) espacios métricos $A \subseteq S$ y $f: S \to T$ una función. Si f es continua en A y A es compacto, entonces f es uniformemente continua en A.

5.8. Teorema del Punto fijo de Banach

Definición 5.25 (Punto fijo)

Sean (S,d) un espacio métrico y $f:S\to S$ una función. Un punto $p\in S$ se llama punto fijo de f si f(p)=p.

Definición 5.26 (Contracción)

Sean (S,d) un espacio métrico y $f:S\to S$ una función. Diremos que f es una contracción de S si existe un $\alpha\in\mathbb{R}$ con $0<\alpha<1$ tal que

$$\forall x, y \in S : d(f(x), f(y)) \le \alpha d(x, y)$$

[Observaciones]

1. α es llamada constante de contracción.

Teorema 5.27

Sean (S,d) un espacio métrico y $f:S\to S$ una contracción de S, entonces f es uniformemente continua en S.

Teorema 5.28 (Del punto fijo de Banach) Sean (S,d) un espacio métrico completo y $f:S\to S$ una contracción de S, entonces f tiene un único punto fijo.

Capítulo 6

Conjuntos conexos

6.1. Conjuntos conexos y disconexos

Definición 6.1

Sean (S,d) un espacio métrico, S es disconexo si existen $A,B\subseteq S$ abiertos no vacios tales que $S=A\cup B$.

[Observaciones]

- 1. S es conexo si no es disconexo.
- **2.** $X \subseteq S$ es conexo si (X, d) es conexo.

Ejemplos 6.2

- **1.** $\mathbb{R} \{0\}$ es disconexo.
- **2.** Si $(a,b) \subseteq \mathbb{R}$, entonces (a,b) es conexo.
- **3.** \mathbb{Q} es disconexo.
- **4.** Si $\delta > 0$ y $x \in \mathbb{Q}$, entonces $B_{\mathbb{Q}}(x; \delta)$ es disconexo.
- 5. Todo espacio métrico (S,d) contiene al menos un conjunto conexo no vacio.

Definición 6.3

Sean (S,d) un espacio métrico y $f:S\to\mathbb{R}$ una función. Diremos que f es binaria si f es continua y $f[S]\subseteq\{0,1\}$.

Proposición 6.4

 $(\{0,1\},|)$ es un espacio métrico discreto.

Proposición 6.5

Sea (S,d) un espacio métrico discreto, entonces cada $A \subseteq S$ es abierto y cerrado en S.

Teorema 6.6

Sea (S,d) un espacio métrico, entonces S es conexo si y solo si toda función binaria con dominio S es constante

Teorema 6.7

Sean $(S, d_S), (T, d_T)$ espacios métricos, $f: S \to T$ y $X \subseteq S$. Si f es continua en X y X es conexo, entonces f[X] es conexo.

Ejemplos 6.8

- 1. Todo intervalo en \mathbb{R} es conexo.
- **2.** Si $f: S \to \mathbb{R}^n$ con $S \subseteq \mathbb{R}$ un intervalo, entonces f[X] es conexo y a f[X] se le llama curva en \mathbb{R}^n .

6.2. Cerradura y unión de conexos

Teorema 6.9

Sean (S,d) un espacio métrico y F una familia de subconjuntos conexos de S, entonces

$$\bigcap_{A \in F} A \neq \emptyset \Rightarrow \bigcup_{A \in F} A$$
es conexo

6.3. Componentes de un Conjunto

Definición 6.10

Sean (S,d) un espacio métrico y $x \in S$. La componente en S de x es el conjunto

$$\bigcup_{S}(x) := \bigcup \{ A \subseteq S : A \text{ es conexo y } x \in A \}$$

[Observaciones]

1. $\bigcup_{S}(x)$ tambien se llama componente (Componente conexa) de S.

Teorema 6.11

Sean (S, d) un espacio métrico y $x, y \in S$, entonces

- 1) $\bigcup_{S}(x)$ es conexo.
- 2) $\bigcup_{S}(x)$ es el \subseteq -mayor conjunto conexo que contiene a x.

3)
$$\bigcup_{S}(x) = \bigcup_{S}(y) \circ \bigcup_{S}(x) \cap \bigcup_{S}(y) = \emptyset$$

Teorema 6.12

Sea (S,d) un espacio métrico, entonces $\bigcup_{x \in S} \bigcup_S (x)$ es partición de S.

6.4. Arco-conexidad

Definición 6.13 (Conjunto Arco-conexo)

Un conjunto $S \subseteq \mathbb{R}^n$ es arco-conexo si para cualesquiera dos puntos $a, b \in S$ existe una función $f : [0,1] \to S$ tal que f(0) = a y f(1) = b.

[Observaciones]

- 1. La función descrita anteriormente se llama camino de a hacia b.
- **2.** Si $f(0) \neq f(1)$, entonces f[[0,1]] se llama arco que une a con b.

- ${f 3.}$ Con esta notación, S es arco-conexo si cualesquiera dos puntos en S pueden unirse con un arco contenido en S.
 - 4. La arco-conexidad tambien se llama camino-conexidad.
 - **5.** Si f(t) = tb + (1-t)a con $t \in [0,1]$ la curva que une a con b se llama segmento de recta.

Ejemplos 6.14

- 1. Todo conjunto convexo en \mathbb{R}^n es arco-conexo.
- **2.** Para cualesquiera $\varepsilon > 0$ real y $x \in \mathbb{R}^n$, tenemos que $B(x; \varepsilon)$ es arco-conexo.
- **3.** La unión de dos discos cerrados tangentes en \mathbb{R}^n es arco-conexo, es decir que para cualesquiera reales $\delta_1, \delta_2 > 0$ y $x, y \in \mathbb{R}^n$ se cumple que si $|B[x; \delta_1] \cap B[y; \delta_2]| = 1$, entonces $B[x; \delta_1] \cup B[y; \delta_2]$ es arco-conexo.

Teorema 6.15

Sea $S \subseteq \mathbb{R}^n$ arco-conexo, entonces S es conexo.

Teorema 6.16

Sea $S \subseteq \mathbb{R}^n$ abierto y conexo, entonces S es arco-conexo.

Lema 6.17

Sean S un conjunto, F una partición de S y $F' \subseteq F$ tal que F es partición de S, entonces F' = F.

Lema 6.18

Sean (S,d) un espacio métrico y $T\subseteq S$ abierto, entonces para todo $x\in T, \bigcup_T(x)$ es abierto en S.

Lema 6.19

Sean (S,d) un espacio métrico, $T \subseteq S$ abierto y F una familia de subconjuntos de T tal que

- 1) F es partición de T
- 2) Para todo $A \in F$, A es abierto
- 3) Para todo $A \in F$, A es conexo

Entonces
$$F \subseteq \{\bigcup_T(x) : x \in T\}$$

Teorema 6.20

Sea $S \subseteq \mathbb{R}^n$ abierto, entonces $S = \bigcup_{i=1}^{\infty} A_i$ con cada A_i abierto, conexo, no vacio y siendo la unión ajena, además esta representación es única.

Definición 6.21

Sea $S \subseteq \mathbb{R}^n$, diremos que

- 1) S es una región abierta si S es un conjunto abierto y conexo.
 - 2) S es una región si $S = T \cup \hat{T}$ para algun subconjunto abierto y conexo T tal que $\hat{T} \subseteq \partial T$.
 - 3) S es una región cerrada si $S = T \cup \partial T$ con T un conjunto abierto y conexo.

[Observaciones]

1. A las regiones abiertas tambien se les llama dominios.

Lema 6.22

Sean (S, d) un espacio métrico, $X \subseteq S$ conexo tal que $X = U \cup V$ con U y V conjuntos ajenos y abiertos en X, entonces

- 1) $U = \emptyset$ o $V = \emptyset$
- 2) U y V son cerrados en X

Corolario 6.23

Sean (S,d) un espacio métrico, $X\subseteq S$ conexo tal que $X=U\cup V$ con U y V conjuntos ajenos y abiertos en X, entonces

$$U=U\cap X=\overline{U}\cap X\ \text{y}\ V=V\cap X=\overline{V}\cap X$$

Lema 6.24

Sean (M,d) un espacio métrico, $S\subseteq M$ abierto y $T\subseteq M$, entonces

$$S\cap \overline{T}\subseteq \overline{S\cap T}$$

Teorema 6.25

Sean (M,d) un espacio métrico, $A,B\subseteq M$ tales que A es conexo y $A\subseteq B\subseteq \overline{A}$, entonces B es conexo.

Ejemplos 6.26

1. El conjunto $\{(x, sen(\frac{1}{x})) : x \in (0, 1]\} \cup \{(x, 0) : x \in [-1, 0]\}$ es conexo.

6.5. Conjuntos conexos en $(\mathbb{R}, |)$

Lema 6.27

Sea $S \subseteq \mathbb{R}$ tal que $|S| \ge 2$, entonces

$$(\forall a,b \in S: a < b \Rightarrow (a,b) \subseteq S) \Rightarrow S$$
es un intervalo

Teorema 6.28

Sea $S \subseteq \mathbb{R}$ tal que $|S| \ge 2$, entonces

 $(\forall a, b \in S : a < b \Rightarrow (a, b) \subseteq S) \Leftrightarrow S$ es un intervalo

Teorema 6.29

Sea $S \subseteq \mathbb{R}$ conexo, entonces

- 1) $S = \emptyset$ o
- 2) $S = \{x\}$ para algun $x \in \mathbb{R}$ o
- 3) S es un intervalo