Preference Learning - Part VI

Comparison of warm and cold season k-mean

```
In [1]:
        %matplotlib inline
        import numpy as np # linear algebra
        import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
        import json
        import seaborn as sns
        import math
        from pandas.io.json import json normalize #package for flattening json in pandas df
        import matplotlib.pyplot as plt
        from datetime import date, timedelta, datetime
In [ ]: # Import all preprocessed data necessary for the analysis
        df tou1h = pd.read csv("C:\\Users\\Rockwell\\Desktop\\Paper4\\data_collection\\data_tables\\Consumption_tou20
        13_1h.csv")
        df_Ntou1h = pd.read_csv("C:\\Users\\Rockwell\\Desktop\\Paper4\\data_collection\\data_tables\\Consumption_Ntou
        df_wea1h = pd.read_csv("C:\\Users\\Rockwell\\Desktop\\Paper4\\data_collection\\weather\\LondonWeather2013_int
        erpolated.csv")
        df_tariff_1h = pd.read_csv("C:\\Users\\Rockwell\\Desktop\\Paper4\\data_collection\\data_tables\\df_tariff_1h.
In [2]: | import os
        os.getcwd()
Out[2]: '/Users/Rockwell/Documents/GitHub/Demand-Response'
        # for ios system, import all data necessary for the analysis
        df_tou1h = pd.read_csv('/Users/Rockwell/Desktop/PhD/Paper4PreferenceLearning/data/Consumption_tou2013_1h.csv'
        df_Ntou1h = pd.read_csv('/Users/Rockwell/Desktop/PhD/Paper4PreferenceLearning/data/Consumption_Ntou2013_1h.cs
        df wea1h = pd.read csv('/Users/Rockwell/Desktop/PhD/Paper4PreferenceLearning/data/LondonWeather2013 interpola
        ted.csv')
        df_tariff_1h = pd.read_csv('/Users/Rockwell/Desktop/PhD/Paper4PreferenceLearning/data/df_tariff_1h.csv')
In [4]: # first, create a list of days that belongs to event days
        event_days = set()
        event_series = df_tariff_1h[df_tariff_1h.Event_tags.notnull()].GMT
        for i in event_series:
            event days.add(datetime.strptime(i[:10], "%Y-%m-%\mathbf{d}" ).date()) # add all event dates to the set
        df_help = pd.DataFrame(pd.to_datetime(df_tariff_1h.GMT).dt.date) #str to datatime and extract date then make
        # df_help['GMT'].isin(event_days)] #this shows the event days
        # we can use ~df help['GMT'].isin(event days) to generate any non-flexible period items
        # create TOU and non-TOU demand data in non-flexible hours
        df_wealh_nf = df_wealh[~df_help['GMT'].isin(event_days)]
        df_Ntou1h_nf = df_Ntou1h[~df_help['GMT'].isin(event_days)]
        df_tou1h_nf = df_tou1h[~df_help['GMT'].isin(event_days)]
        # create event data
        df_tariff_1h_event = df_tariff_1h[df_tariff_1h.GMT.isin(event_series)]
        df wealh event = df wealh[df wealh.GMT.isin(event series)]
        df_tou1h_event = df_tou1h[df_tou1h.GMT.isin(event_series)]
In [5]: # seperate the above data set based on the seasonal effect
        # i.e., months of 11, 12, 1, 2, 3 are in a group - cold season
        # months of 4, 5, 6, 7, 8, 9, 10 are in another group - warm season
        cold_season = [11, 12, 1, 2, 3]
        warm\_season = [4, 5, 6, 7, 8, 9, 10]
        df help season = pd.DataFrame(pd.to datetime(df wealh nf.GMT).dt.month)
        df wealh_nf_cold = df_wealh_nf[df_help_season['GMT'].isin(cold_season)]
        df_wealh_nf_warm = df_wealh_nf[df_help_season['GMT'].isin(warm_season)]
        df Ntou1h_nf_cold = df_Ntou1h_nf[df_help_season['GMT'].isin(cold_season)]
        df Ntoulh nf warm = df Ntoulh nf[df help season['GMT'].isin(warm season)]
        df_tou1h_nf_cold = df_tou1h_nf[df_help_season['GMT'].isin(cold_season)]
        df tou1h nf warm = df tou1h nf[df help season['GMT'].isin(warm season)]
        df help season event = pd.DataFrame(pd.to datetime(df wealh event.GMT).dt.month)
        df wealh event cold = df wealh event[df help season event['GMT'].isin(cold season)]
        df_wealh_event_warm = df_wealh_event[df_help_season_event['GMT'].isin(warm_season)]
        df_tou1h_event_cold = df_tou1h_event[df_help_season_event['GMT'].isin(cold_season)]
        df tou1h event warm = df tou1h event[df help season event['GMT'].isin(warm season)]
        df_tariff_1h_event_cold = df_tariff_1h_event[df_help_season_event['GMT'].isin(cold_season)]
        df_tariff_1h_event_warm = df_tariff_1h_event[df_help_season_event['GMT'].isin(warm_season)]
```

1. Groups' Price Responsiveness - K-mean based

The way we analyze the group price responsiveness has three steps:

- 1) for each hosehold group, build a new dataframe, the first column is GMT, the next columns are user ids in the group, the next column is temperature, then the price, day of a week, hour of a day, then the predicted consumption, and last the price responsiveness
- 2) build a function that can generate predicted consumption based on the day of a week, temp, hour to choose the coefficients and then make a prediction.
- 3) plot the properties based on from the smallest unit (day of week, hour, temp) to (day of week, hour), (day of week, temp), (hour, temp), (day of week), (hour), (temp) so we will have very comprehensive price responsiveness of three different groups

```
In [45]: from sklearn.decomposition import PCA
         from sklearn.preprocessing import StandardScaler
         from sklearn.cluster import KMeans
         from mpl_toolkits.mplot3d import Axes3D
         n = 3 # cluster numbers
         n house = 1025 # total household numbers
         houseLabel = [] # store the 24hour group labels for each hoursehold
         hourly_label = [] # used for comparing with warm season clustering distance
         for i in range(1025):
             houseLabel.append('')
         houseLabel = np.array(houseLabel)
         cons_type = ['High Consumption', 'Medium Consumption', 'Low Consumption']
         fig_all = plt.figure(figsize = (13,90))
         for i in range(24):
             if i <= 9:
                 x = df_tou1h_nf_cold[df_tou1h_nf_cold.GMT.str.contains('0' + str(i) + ':00:00')]
                 x.set index('GMT', inplace = True)
                 x = x.fillna(x.mean()).transpose() # data for the specific hour, and fill in null value with mean
                 # PCA without standardization
                 pca nstd = PCA()
                 principleComponents nstd = pca_nstd.fit_transform(x)
                 principleDf nstd = pd.DataFrame(data = principleComponents nstd)
                 kmeans_cold = KMeans(n_clusters = n, init='k-means++').fit(principleDf_nstd.iloc[:,:3])
                 houseLabel = np.core.defchararray.add(houseLabel, kmeans_cold.labels_.astype('str'))
                 hourly_label.append(kmeans_cold.labels_)
             else:
                 x = df_tou1h_nf_cold[df_tou1h_nf_cold.GMT.str.contains(str(i) + ':00:00')]
                 x.set_index('GMT', inplace = True)
                 x = x.fillna(x.mean()).transpose() # data for the specific hour, and filtering out null value
                 # PCA without standardization
                 pca_nstd = PCA()
                 principleComponents_nstd = pca_nstd.fit_transform(x)
                 principleDf nstd = pd.DataFrame(data = principleComponents nstd)
                 kmeans cold = KMeans(n clusters = n, init='k-means++').fit(principleDf nstd.iloc[:,:3])
                 cluster_dict = {}
                 houseLabel = np.core.defchararray.add(houseLabel, kmeans_cold.labels_.astype('str'))
                 hourly_label.append(kmeans_cold.labels_)
         # We obtain the house Label shown below
         # print(houseLabel)
         # Group the house based on their 24 hour labels
         houseLableDf = pd.DataFrame()
         houseLableDf['House'] = df_tou1h_nf_cold.columns[1:]
         houseLableDf['Label'] = houseLabel
         houseGroupDf = houseLableDf.groupby('Label').size().reset_index(name='counts')
         houseGroupDf = houseGroupDf.sort_values(by=['counts'], ascending=False)
         houseGroupDf
```

	Label	counts
115	1000010001000000000211110	409
424	221210111022211121000201	29
125	100001000100000001211110	10
56	1000010000000000000211110	9
191	100001001022211121000201	7
109	1000010001000000000201110	7
103	100001000100000000011110	6
19	012122222211122212122022	5
286	200001000100000000211110	5
418	221210101022211121000201	5
339	220001000100000000211110	5
231	100001100100000000211110	5
177	100001001000000000211110	4
36	10000000100000000211110	4
110	100001000100000000210110	4
124	100001000100000001011110	4
340	220001000100000000211111	4
135	100001000100000100211110	4
129	100001000100000020211110	3
195	100001001100000000211110	3
307	200001001022211121000201	3
358	220001011022211121000201	3
316	200001011022211121000201	3
139	100001000100000121011110	3
153	100001000100210000211110	3
165	100001000120000000211110	3
106	100001000100000000200110	3
136	100001000100000120211110	3
79	100001000022000000211110	3
71	100001000020000000211110	3
130	100001000100000021000201	1
128	100001000100000020200110	1
127	100001000100000020010200	1
126	100001000100000001211200	1
123	100001000100000001001201	1
156	100001000100211100211110	1
158	100001000101000000201110	1
160	100001000102000121210201	1
	100001000122211121001200	
185 183	100001001020001121000201	1
183	100001001000211001211110	1
181	100001001000211000001200	1
180	100001001000200000211110	1
179	100001001000000021211210	1
176	100001001000000000201110	1
175	100001000220000000211110	1
174	100001000122211121011201	1
172	100001000122211121000201	1

	Label	counts
161	100001000102200021011110	1
171	100001000122211121000110	1
170	100001000122211100210201	1
169	100001000122210121000201	1
168	100001000122210001001110	1
167	100001000120210000211110	1
166	100001000120200000011110	1
164	100001000120000000000110	1
163	100001000102211121000210	1
162	100001000102210000211110	1
444	222122111222211121000201	1

445 rows × 2 columns

<Figure size 936x6480 with 0 Axes>

```
In [15]: for i in range(4):
             load = []
             for j in range(24):
                 if j <= 9:
                     x = df_toulh_nf_cold[df_toulh_nf_cold.GMT.str.contains('0' + str(j) + ':00:00')]
                     x.set_index('GMT', inplace = True)
                     x = x.fillna(x.mean())
                     x = x[list(houseLableDf[houseLableDf.Label == houseGroupDf.Label.iloc[i]].House)]
                     load.append(x.mean().mean())
                     x = df_tou1h_nf_cold[df_tou1h_nf_cold.GMT.str.contains(str(j) + ':00:00')]
                     x.set_index('GMT', inplace = True)
                     x = x.fillna(x.mean())
                     x = x[list(houseLableDf[houseLableDf.Label == houseGroupDf.Label.iloc[i]].House)]
                     load.append(x.mean().mean())
             plt.plot(load, label = 'Type ' + str(i) + ' Household')
         plt.legend()
         plt.show()
```


Start to find groups in warm season PCs using the clusters from cold seasons

```
In [68]: from sklearn.decomposition import PCA
         from sklearn.preprocessing import StandardScaler
         from sklearn.cluster import KMeans
         from mpl_toolkits.mplot3d import Axes3D
         n = 3 # cluster numbers
         n_house = 1025 # total household numbers
         opt_inertia = [] # store the optimal inertia list based on k-mean clustering of the corresponding season
         test_inertia = [] # store the test inertia list based on the clustering result from another season
         cons_type = ['High Consumption', 'Medium Consumption', 'Low Consumption']
         for i in range(24):
             if i <= 9:
                 x = df_tou1h_nf_warm[df_tou1h_nf_warm.GMT.str.contains('0' + str(i) + ':00:00')]
                 x.set_index('GMT', inplace = True)
                 x = x.fillna(x.mean()).transpose() # data for the specific hour, and fill in null value with mean
                 # PCA without standardization
                 pca_nstd = PCA()
                 principleComponents nstd = pca nstd.fit transform(x)
                 principleDf nstd = pd.DataFrame(data = principleComponents_nstd)
                 # calculate the optimal inertia based on K-mean clustering
                 kmeans = KMeans(n_clusters = n, init='k-means++').fit(principleDf_nstd.iloc[:,:3])
                 opt_inertia.append(kmeans.inertia_)
                 # calculate the test inertia based on clusters from another season
                 x = df_tou1h_nf_cold[df_tou1h_nf_cold.GMT.str.contains('0' + str(i) + ':00:00')]
                 x.set_index('GMT', inplace = True)
                 x = x.fillna(x.mean()).transpose() # data for the specific hour, and fill in null value with mean
                 # PCA without standardization
                 pca_nstd_cold = PCA()
                 principleComponents nstd cold = pca nstd cold.fit_transform(x)
                 principleDf nstd cold = pd.DataFrame(data = principleComponents nstd cold)
                 # calculate the optimal inertia based on K-mean clustering
                 kmeans_cold = KMeans(n_clusters = n, init='k-means++').fit(principleDf_nstd_cold.iloc[:,:3])
                 dist = 0
                 for j in range(n):
                     centroid = list(principleDf_nstd.iloc[:,:3][kmeans_cold.labels_ == j].mean())
                     df_diff = principleDf_nstd.iloc[:,:3][kmeans_cold.labels_ == j] - principleDf_nstd.iloc[:,:3][kme
         ans_cold.labels_ == j].mean()
                     df_diff = df_diff.pow(2)
                     dist += df_diff.sum().sum()
                 test_inertia.append(dist)
             else:
                 x = df toulh nf warm[df toulh nf warm.GMT.str.contains(str(i) + ':00:00')]
                 x.set_index('GMT', inplace = True)
                 x = x.fillna(x.mean()).transpose() # data for the specific hour, and filtering out null value
                 # PCA without standardization
                 pca_nstd = PCA()
                 principleComponents_nstd = pca_nstd.fit_transform(x)
                 principleDf_nstd = pd.DataFrame(data = principleComponents_nstd)
                 # calculate the optimal inertia based on K-mean clustering
                 kmeans = KMeans(n_clusters = n, init='k-means++').fit(principleDf_nstd.iloc[:,:3])
                 opt_inertia.append(kmeans.inertia_)
                 # calculate the test inertia based on clusters from another season
                 x = df_tou1h_nf_cold[df_tou1h_nf_cold.GMT.str.contains(str(i) + ':00:00')]
                 x.set_index('GMT', inplace = True)
                 x = x.fillna(x.mean()).transpose() # data for the specific hour, and fill in null value with mean
                 # PCA without standardization
                 pca_nstd_cold = PCA()
                 principleComponents nstd cold = pca nstd cold.fit transform(x)
                 principleDf_nstd_cold = pd.DataFrame(data = principleComponents_nstd_cold)
                 # calculate the optimal inertia based on K-mean clustering
                 kmeans_cold = KMeans(n_clusters = n, init='k-means++').fit(principleDf_nstd_cold.iloc[:,:3])
                 dist = 0
                 for j in range(n):
                     centroid = list(principleDf_nstd.iloc[:,:3][kmeans_cold.labels_ == j].mean())
                     df_diff = principleDf_nstd.iloc[:,:3][kmeans_cold.labels_ == j] - principleDf_nstd.iloc[:,:3][kme
         ans_cold.labels_ == j].mean()
                     df_diff = df_diff.pow(2)
                     dist += df_diff.sum().sum()
                 test_inertia.append(dist)
         # The inertia difference over 24 hours in percentage
         inertia_diff_rel_coldToWarm = (np.array(test_inertia) - np.array(opt_inertia)) / np.array(opt_inertia) * 100
         inertia total diff rel coldToWarm = (sum(test inertia) - sum(opt inertia)) / sum(opt inertia) * 100
```

```
In [67]: from sklearn.decomposition import PCA
         from sklearn.preprocessing import StandardScaler
         from sklearn.cluster import KMeans
         from mpl_toolkits.mplot3d import Axes3D
         n = 3 # cluster numbers
         n_house = 1025 # total household numbers
         opt_inertia = [] # store the optimal inertia list based on k-mean clustering of the corresponding season
         test_inertia = [] # store the test inertia list based on the clustering result from another season
         cons_type = ['High Consumption', 'Medium Consumption', 'Low Consumption']
         for i in range(24):
             if i <= 9:
                 x = df_tou1h_nf_cold[df_tou1h_nf_cold.GMT.str.contains('0' + str(i) + ':00:00')]
                 x.set_index('GMT', inplace = True)
                 x = x.fillna(x.mean()).transpose() # data for the specific hour, and fill in null value with mean
                 # PCA without standardization
                 pca_nstd = PCA()
                 principleComponents nstd = pca nstd.fit transform(x)
                 principleDf nstd = pd.DataFrame(data = principleComponents_nstd)
                 # calculate the optimal inertia based on K-mean clustering
                 kmeans = KMeans(n_clusters = n, init='k-means++').fit(principleDf_nstd.iloc[:,:3])
                 opt_inertia.append(kmeans.inertia_)
                 # calculate the test inertia based on clusters from another season
                 x = df_tou1h_nf_warm[df_tou1h_nf_warm.GMT.str.contains('0' + str(i) + ':00:00')]
                 x.set_index('GMT', inplace = True)
                 x = x.fillna(x.mean()).transpose() # data for the specific hour, and fill in null value with mean
                 # PCA without standardization
                 pca_nstd_warm = PCA()
                 principleComponents nstd warm = pca nstd warm.fit_transform(x)
                 principleDf nstd warm = pd.DataFrame(data = principleComponents nstd warm)
                 # calculate the optimal inertia based on K-mean clustering
                 kmeans_warm = KMeans(n_clusters = n, init='k-means++').fit(principleDf_nstd_warm.iloc[:,:3])
                 dist = 0
                 for j in range(n):
                     centroid = list(principleDf_nstd.iloc[:,:3][kmeans_warm.labels_ == j].mean())
                     df_diff = principleDf_nstd.iloc[:,:3][kmeans_warm.labels_ == j] - principleDf_nstd.iloc[:,:3][kme
         ans_warm.labels_ == j].mean()
                     df_diff = df_diff.pow(2)
                     dist += df_diff.sum().sum()
                 test_inertia.append(dist)
             else:
                 x = df tou1h nf cold[df tou1h nf cold.GMT.str.contains(str(i) + ':00:00')]
                 x.set_index('GMT', inplace = True)
                 x = x.fillna(x.mean()).transpose() # data for the specific hour, and filtering out null value
                 # PCA without standardization
                 pca_nstd = PCA()
                 principleComponents_nstd = pca_nstd.fit_transform(x)
                 principleDf_nstd = pd.DataFrame(data = principleComponents_nstd)
                 # calculate the optimal inertia based on K-mean clustering
                 kmeans = KMeans(n_clusters = n, init='k-means++').fit(principleDf_nstd.iloc[:,:3])
                 opt_inertia.append(kmeans.inertia_)
                 # calculate the test inertia based on clusters from another season
                 x = df_tou1h_nf_warm[df_tou1h_nf_warm.GMT.str.contains(str(i) + ':00:00')]
                 x.set_index('GMT', inplace = True)
                 x = x.fillna(x.mean()).transpose() # data for the specific hour, and fill in null value with mean
                 # PCA without standardization
                 pca_nstd_warm = PCA()
                 principleComponents_nstd_warm = pca_nstd_warm.fit_transform(x)
                 principleDf_nstd_warm = pd.DataFrame(data = principleComponents_nstd_warm)
                 # calculate the optimal inertia based on K-mean clustering
                 kmeans_warm = KMeans(n_clusters = n, init='k-means++').fit(principleDf_nstd_warm.iloc[:,:3])
                 dist = 0
                 for j in range(n):
                     centroid = list(principleDf_nstd.iloc[:,:3][kmeans_warm.labels_ == j].mean())
                     df_diff = principleDf_nstd.iloc[:,:3][kmeans_warm.labels_ == j] - principleDf_nstd.iloc[:,:3][kme
         ans_warm.labels_ == j].mean()
                     df_diff = df_diff.pow(2)
                     dist += df_diff.sum().sum()
                 test_inertia.append(dist)
         # The inertia difference over 24 hours in percentage
         inertia_diff_rel_warmToCold = (np.array(test_inertia) - np.array(opt_inertia)) / np.array(opt_inertia) * 100
         inertia_total_diff_rel_warmToCold = (sum(test_inertia) - sum(opt_inertia)) / sum(opt_inertia) * 100
```

Note: there's no clear meaning of comparing two seperate clustering inertia in two different k-mean clusterings (because it could do better even if it's not optimal solution of k-mean clustering in terms of one specific cluster), becaue the optimization objective is to maximize the sum of inertia of all clusters, not just one of them.

```
In [99]: # plot the grouped bar charts based on price, for 3 household types
         fig all = plt.figure(figsize = (12,4))
         ax_Ntou = [] # store subplot objects
         # set width of bar
         barWidth = 0.25
         # Set position of bar on X axis
         r1 = np.arange(len(inertia_diff_rel_warmToCold))
         r2 = [x + barWidth for x in r1]
         ax_Ntou.append(fig_all.add_subplot(1, 1, 1))
         # Make the plot
         ax_Ntou[-1].bar(r1, inertia_diff_rel_coldToWarm, width=barWidth, edgecolor='white', label='Cold to Warm')
         ax_Ntou[-1].bar(r2, inertia_diff_rel_warmToCold, color='indianred', width=barWidth, edgecolor='white', label=
         'Warm to Cold')
         ax_Ntou[-1].grid()
         ax_Ntou[-1].set_xlabel('Hour of Day')
         ax_Ntou[-1].set_ylabel('Relative Inertia Difference (%)')
         ax_Ntou[-1].legend()
         ax_Ntou[-1].set_title('Inertia Difference Based on Different K-mean Clusters')
         plt.tight_layout()
```


So, k-mean clustering based on PCs of the corresponding seasons cannot be simply replaced by the clustering from other seasons, which shows the necessicity of considering the patterns in different seasons in the beginning of our framework design.