EAE 298 Aeroacoustics Fall Quarter 2016 Homework #1

John Karasinski

October 17, 2016

Problem 1. [50 pts]

The values in the wav file are in volts. B&K measurement microphones invert the pressure a negative voltage from the microphone corresponds to a positive pressure. When you apply the calibration constant, account for this sign reversal. For this problem, the pre-calculated constant calibration factor is 116 pascals/volt. Convert the time series in voltage to pascals. (Assume that all of the power in the boom waveform is within the range of flat response of the microphone).

Part (a)

[10 pts] Plot the waveform in pascals as a function of time. What is the peak pressure in the time domain? Notice the shape of the first arrival it has the classic N wave shape of a sonic boom. Notice the duration in time from the positive-pressure peak to the negative-pressure peak.

Solution

Figure 1: The waveform in pascals as a function of time. Peak pressure is noted at 75.25 Pa, and the duration in time from the positive-pressure peak to the negative-pressure peak is noted at 0.13 sec.

Part (b)

[30 pts] Calculate and plot the single-sided power spectral density function (G_{xx}) .

Solution

Part (c)

 $[10~{
m pts}]$ Convert and plot the standard narrowband sound pressure level with the reference pressure of 20 micro-Pascal.

Solution

Problem 2. [50 Pts]

Write a computer program to convert the narrow band spectra to one-third octave and octave band spectra.

[20 pts] Convert the narrowband spectrum to one-third octave band spectrum and make a plot. [20 pts] Convert the one-third octave band spectrum to octave band spectrum and make a plot. [10 pts] Convert the octave band spectrum to the overall sound pressure level.

Solution

Figure 2: The standard narrowband, 1/3 octave, and octave sound pressure levels with the reference pressure of 20 micro-Pascal. This recording has an overall sound pressure level of 119.74 dB.

1/3 Octave Results

Frequency (Hz)	SPL (dB)
1.55	107.79
3.10	112.28
4.92	113.83
6.20	112.92
7.81	112.52 110.56
9.84	10.90 103.97
12.40	103.86
15.62	103.30 104.95
19.68	104.95 102.79
24.80	102.79
31.25	98.47
39.37	102.24
49.60	97.26
62.50	94.23
78.74	93.97
99.21	93.81
125.00	96.48
157.49	95.39
198.42	93.97
250.00	90.44
314.98	88.02
396.85	84.40
500.00	85.15
629.96	84.34
793.70	76.32
1000.00	76.47
1259.92	76.88
1587.40	76.70
2000.00	70.88
2519.84	68.87
3174.80	62.93
4000.00	57.71
5039.68	55.22
6349.60	45.59
8000.00	37.86
10079.36	32.84
12699.20	31.75
16000.00	32.09
20158.73	32.95

Octave Results

Frequency (Hz)	SPL (dB)
1.95	107.79
3.90	116.13
7.81	115.24
15.62	108.73
31.25	105.43
62.50	100.20
125.00	100.13
250.00	96.27
500.00	89.42
1000.00	81.33
2000.00	78.25
4000.00	64.60
8000.00	46.46

```
import matplotlib.pyplot as plt
 import numpy as np
3 import pandas as pd
4 import scipy.signal
5 import seaborn as sns
6 import soundfile as sf
 sns.reset_orig()
 colors = sns.color_palette('deep', 10)
12 # Problem 1
13
14
# Load the audio file
audio, fs = sf.read('Boom_F1B2_6.wav')
17
18 df = pd.DataFrame(audio)
19 df.columns = ['Voltage']
20 df['Time'] = np.array(df.index) / fs
22 # Convert to pascals
23 df['Pascals'] = df.Voltage * -116.
24
25 # Find the peak pressure
26 maxPeak = df.ix[df.Pascals.idxmax()]
minPeak = df.ix[df.Pascals.idxmin()]
28
29
 def plot1a():
30
     f, ax = plt.subplots()
31
     df.plot(x='Time', y='Pascals', legend=False, color=colors[0], ax=ax)
33
     plt.xlim(xmin=0.2)
34
35
     plt.ylim(-100, 100)
     plt.ylabel('Pressure (Pascals)')
36
37
     arrowprops = dict(arrowstyle="-",
38
                      shrinkA=5, shrinkB=5,
39
                      connectionstyle="arc3")
40
41
     ax.annotate('Peak Pressure, {:2.2f} Pa'.format(maxPeak.Pascals),
42
                xy=(maxPeak.Time, maxPeak.Pascals),
43
                 xytext=(25, 25), textcoords='offset points',
44
                 arrowprops=arrowprops,
45
                 horizontalalignment='left', verticalalignment='bottom')
46
47
     ax.annotate('',
48
                xy=(minPeak.Time, minPeak.Pascals),
49
                 xytext=(maxPeak.Time, minPeak.Pascals),
50
                 arrowprops=arrowprops)
51
     plt.text((maxPeak.Time + minPeak.Time) / 2, 1.1 * minPeak.Pascals,
```

```
'{:2.2f} sec'.format(minPeak.Time - maxPeak.Time),
54
             horizontalalignment='center')
56
     plt.vlines(x=maxPeak.Time, ymax=0, ymin=minPeak.Pascals, linestyles='--')
58
     plt.tight_layout()
59
     plt.savefig('tex/figs/Pascals_vs_Time.pdf')
60
     plt.clf()
  #plot1a()
62
63
  64
  # Calculate the single sided power spectral density function
  f, Gxx = scipy.signal.periodogram(df.Pascals, fs=fs, return_onesided=True)
67
68
  def plot1b():
69
     plt.plot(f, Gxx, marker='o', color=colors[0])
70
71
     plt.xlim(0, 50)
72
     plt.xlabel('Frequency (Hz)')
73
     plt.ylabel('Power Spectral Density')
74
75
     plt.tight_layout()
76
     plt.savefig('tex/figs/G_xx.pdf')
77
     plt.clf()
78
  #plot1b()
79
  # Calculate and plot standard narrowband sound pressure level
83 Pref = 20E-6
85 T = len(df) / fs
86 SPL = 10 * np.log10((Gxx / T) / Pref ** 2)
87 df = pd.DataFrame([f, SPL]).T
88 df.drop(0, inplace=True)
  df.columns = ['Frequency', 'SPL']
89
90
91
  def plot1c():
92
     df.plot(x='Frequency', y='SPL', logx=True, color=colors[0])
93
94
     plt.xlabel('Frequency (Hz)')
95
     plt.ylabel('Narrowband Sound Pressure Level (dB)')
96
97
     plt.tight_layout()
98
     plt.savefig('tex/figs/narrowband.pdf')
99
     plt.clf()
  #plot1c()
  # Problem 2
104
  106
107
```

```
def generate_octaves(octave=1., upper_frequency=10E3):
       fc30 = 1000
109
       m = np.arange(1, 80)
       center = fc30 * 2 ** (-10 + (m * octave))
       upper = center * 2 ** (octave / 2)
113
       lower = center / 2 ** (octave / 2)
       freqs = pd.DataFrame([lower, center, upper]).T
116
       freqs.columns = ['lower', 'center', 'upper']
       return freqs.query('upper < @upper_frequency')</pre>
121
   def sum_octaves(df, octave=1.):
       octave = generate_octaves(octave, upper_frequency=df.Frequency.max())
123
       res = []
125
       for i, band in octave.iterrows():
           b = df.query('@band.lower < Frequency < @band.upper')</pre>
126
           Lp = 10 * np.log10((10 ** (b.SPL / 10)).sum())
           if Lp > 0:
128
               res.append([band.center, Lp])
129
130
       res = pd.DataFrame(res)
       res.columns = ['Frequency', 'SPL']
       return res
133
134
   third = sum_octaves(df, octave=1 / 3)
   full = sum_octaves(third, octave=1.)
137
   overall = 10 * np.log10((10 ** (full.SPL / 10)).sum())
138
130
140
   def plot2():
141
       f, ax = plt.subplots()
142
       df.plot(x='Frequency', y='SPL', logx=True,
143
                color=colors[0], legend=False, ax=ax)
144
       third.plot(x='Frequency', y='SPL', logx=True,
145
                   marker='o', color=colors[1], legend=False, ax=ax)
146
       full.plot(x='Frequency', y='SPL', logx=True,
147
                  marker='o', color=colors[2], legend=False, ax=ax)
148
149
       plt.xlabel('Frequency (Hz)')
       plt.ylabel('Sound Pressure Level (dB)')
       plt.legend(['Narrowband', 'One Third', 'Octave'])
       plt.title('Overall SPL: {:2.2f} dB'.format(overall))
       plt.tight_layout()
       plt.savefig('tex/figs/octaves.pdf')
156
       plt.clf()
   #plot2()
```