## **Linear Regression**

## **Basics**

- $\label{eq:linear hypothesis: h(x) = \theta_1 x + \theta_0, \ \theta_i (i=1,2 \ \text{for 2D cases}).}$
- cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2, \quad h_{\theta}(x) = \sum_{i=0}^n \theta_i x_i = \theta^T x$$

 $\mathbb{I} \ \ \text{best choice for} \ \theta = \arg\min_{\theta} \ J(\theta)$ 

## Gradient Descent (GD) Algorithm

Algorithm.

Given a starting point \theta in dom J
while converence criterion is satisfied
 Calculate gradient \nabla J(\theta)
 Update \theta \leftarrow \theta - \alpha\nabla J(\theta)

 $\theta$  Is usually initialized randomly, and  $\alpha$  is so-called learning rate.

For linear regression,

$$\begin{split} \theta_j &\leftarrow \theta_j - \alpha \frac{\partial J(\theta)}{\partial \theta_j}, \ \forall j = 0, 1, \cdots, n, \ x_0^{(i)} = 1 \\ \frac{\partial J(\theta)}{\partial \theta_j} &= \frac{\partial}{\partial \theta_j} \frac{1}{2} \sum_{i=1}^m (\theta^T x^{(i)} - y^{(i)})^2 \\ &= \frac{\partial}{\partial \theta_j} \frac{1}{2} \sum_{i=1}^m (\sum_{j=0}^n \theta_j x_j^{(i)} - y^{(i)})^2 \\ &= \sum_{i=1}^m (\theta^T x^{(i)} - y^{(i)}) x_j^{(i)} \end{split}$$

- $\ \square$  Another commonly used form  $J(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) y^{(i)})^2.$
- $\ \square \ m$  is introduced to scale the objective function to deal with differently sized training set.

## Matrix Form

$$X = \left[ \begin{array}{c} (x^{(1)})^T \\ \vdots \\ (x^{(m)})^T \end{array} \right], Y = \left[ \begin{array}{c} y^{(1)} \\ \vdots \\ y^{(m)} \end{array} \right] J(\theta) = \frac{1}{2} \sum_{i=1}^m (\theta^T x^{(i)} - y^{(i)})^2 = \frac{1}{2} (X\theta - Y)^T (X\theta - Y)$$

 $\ \square \ \ \mbox{Minimize} \ J(\theta) = \frac{1}{2} (Y - X\theta)^T (Y - X\theta)$ 

$$\begin{split} \nabla_{\theta}J(\theta) &= \nabla_{\theta}\frac{1}{2}(Y - X\theta)^T(Y - X\theta) \\ &= \frac{1}{2}\nabla_{\theta}tr(Y^TY - Y^TX\theta - \theta^TX^TY + \theta^TX^TX\theta) \\ &= \frac{1}{2}\nabla_{\theta}tr(\theta^TX^TX\theta) - X^TY \\ &= \frac{1}{2}(X^TX\theta + X^TX\theta) - X^TY \\ &= X^TX\theta - X^TY \end{split}$$

Theorem. Normal Equation

The matrix  $A^TA$  is invertible if and only if the columns of A are linearly independent. In this case, there exists only one least-squares solution.

$$\theta = (X^T X)^{-1} X^T Y$$