Semaine 2

22 novembre 2021

PIERRE-GABRIEL BERLUREAU ★★★☆

Lorsque X est un ensemble, si $\mathcal T$ est un sous-ensemble de $\mathcal P(X)$, on dit que $\mathcal T$ est une topologie sur X si et seulement si

- $-\emptyset \in \mathcal{T} \text{ et } X \in \mathcal{T};$
- Pour tout ensemble I, pour toute famille $(U_i)_{i \in I}$ d'éléments de \mathcal{T} , $\bigcup_{i \in I} U_i \in \mathcal{T}$;
- Pour tout $U, V ∈ T, U \cap V ∈ T$.
- 1. Soit *X* un ensemble. Montrer que $\{\emptyset, X\}$ et $\mathcal{P}(X)$ sont des topologies sur *X*.
- 2. On suppose que \mathcal{T} est une topologie sur X. Soit $n \in \mathbb{N}^*$ et U_1, \ldots, U_n n éléments de \mathcal{T} . Montrer que $U_1 \cap \cdots \cap U_n \in \mathcal{T}$.
- 3. Si U est une partie de \mathbb{R} , on dit que U est un ouvert de R si et seulement si

$$\forall x \in u, \exists \varepsilon \in \mathbb{R}_+^*,]x - \varepsilon, x + \varepsilon \subset U$$

- 4. Les ensembles suivants sont-ils des ouverts de \mathbb{R} ?
 - \emptyset
 - $-\mathbb{R}$
 - [a, b], où $a, b \in \mathbb{R}$ avec a < b
 -]a,b[, où $a,b ∈ \mathbb{R}$ avec a < b
- 5. Montrer que l'ensemble des ouverts de \mathbb{R} est une topologie sur \mathbb{R} .
- 6. Soit X et I deux ensembles avec $I \neq \emptyset$. Soit $(\mathcal{T}_i)_{i \in I}$ une famille de topolgies sur X. Montrer que $\bigcap_{i \in I} \mathcal{T}_i$ est une topologie sur X. Qu'en est-il de $\bigcup_{i \in I} \mathcal{T}_i$?
- 7. Soit X un ensemble avec A un sous-ensemble de $\mathcal{P}(X)$. Montrer que l'on peut définir la plus petite topologie sur X contenant A.

MATTEO DELFOUR ★★☆☆☆

Déterminer toutes les fonctions de R dans R telles que

$$\forall x, y \in \mathbb{R}, \quad f(x - f(y)) = 2 - x - y$$

1

YANIS GRIGY ★★★☆☆

Montrer que l'ensemble des nombres premier est infini.

LOUIS MARCHAL ***

Montrer que pour tout $n \in \mathbb{N}^*$, le nombre $\frac{3+4i}{5}$ n'est pas une racine $n^{\text{\`e}me}$ de 1.

SHEMS ★★★☆☆

Calculer, pour tout $m \in \mathbb{N}$, $\int_0^{\frac{\pi}{4}} \sin^{2m} t \cos(2mt) dt$ et $\int_0^{\frac{\pi}{4}} \cos^m(t) dt$.