```
In [14]: # Dependencies and Setup
          # ALL FUNCTIONS USED IN THIS EXERCISE ARE BUILT IN PANDAS
          import pandas as pd
          import csv
          # File to Load (Remember to Change These)
          file to load = "Resources/purchase data.csv"
          # Read Purchasing File and store into Pandas data frame
          purchase_data = pd.read_csv(file_to_load)
          purchase_data.head()
Out[14]:
                                   SN Age Gender Item ID
                                                                                  Item Name Price
             Purchase ID
                      0
                               Lisim78 20
                                              Male
                                                      108 Extraction, Quickblade Of Trembling Hands 3.53
                                                      143
                                                                             Frenzied Scimitar 1.56
           1
                      1
                            Lisovynya38
                                              Male
                             Itherque48
                                       24
                                              Male
                                                       92
                                                                                  Final Critic 4.88
           3
                      3 Chamassasya86
                                       24
                                              Male
                                                      100
                                                                                  Blindscythe 3.27
                              Iskosia90 23
                                             Male
                                                      131
                                                                                       Fury 1.44
```

Player Count

· Display the total number of players

Purchasing Analysis (Total)

Run basic calculations to obtain number of unique items, average price, etc.

780

\$2,379.77

- · Create a summary data frame to hold the results
- · Optional: give the displayed data cleaner formatting
- · Display the summary data frame

0

179

\$3.05

```
# Number of Unique Items
        unique_items = len(purchase_data["Item ID"].unique())
        #Average Price
        avg price = purchase data["Price"].mean()
        avg_price_format = "${:,.2f}".format(avg_price)
        # Number of purchase
        #-----
        purchase_number = purchase_data["Purchase ID"].count()
        #Total Revenue
        total revenue = purchase data["Price"].sum()
        total_revenue_format = "${:,.2f}".format(total_revenue)
        # Summary Table 1
        summary 1 = pd.DataFrame([
                              {"Unique items":unique_items, "Average Price": avg_price_format, "Number of purchase": purchase_number,
       summary_1
Out[3]:
           Unique items Average Price Number of purchase Total revenue
```

Gender Demographics

- · Percentage and Count of Male Players
- · Percentage and Count of Female Players
- · Percentage and Count of Other / Non-Disclosed

```
In [10]: unique_players_list = []
         # Create a list of unique players and count
         with open(file_to_load, 'r', encoding='utf-8') as csvfile:
             csvreader = csv.reader(csvfile, delimiter=",")
             #Skip header
             header = next(csvreader)
             for row in csyreader:
                 if row[1] not in unique players list:
                     unique_players_list.append(row[1])
         unique_players = pd.DataFrame([
                         {"Unique Players": len(unique_players list)}
In [13]: unique_players_count = []
         unique gender list = []
         age_list = []
          # Summary table 2: Unique players and Count number of their purchases
         for i in range(len(unique players list)):
             player_i = unique_players_list[i]
             gender_i = " "
             age i = 0
             player_counter = 0
             with open(file_to_load,'r', encoding='utf-8') as csvfile:
                                                                                   Command Prompt - jupyter notebook
                 csvreader = csv.reader(csvfile, delimiter=",")
```

```
#Skip header
       header = next(csvreader)
       for row in csvreader:
           if str(row[1]) == player_i:
               player_counter += 1
               gender_i = str(row[3])
                age_i = row[2]
   unique_players_count.append(player_counter)
   unique_gender_list.append(gender_i)
   age_list.append(age_i)
summary_2 = pd.DataFrame({
                        "Player": unique_players_list,
                        "Count": unique_players_count,
                        "Gender": unique_gender_list,
                        "Age": age_list
})
summary_2.head()
```

Out[13]:

	Player	Count	Gender	Age
0	Lisim78	3	Male	20
1	Lisovynya38	1	Male	40
2	Ithergue48	1	Male	24
3	Chamassasya86	1	Male	24
4	Iskosia90	1	Male	23

Out[22]:

	Gender	Total Count	Percentage of Players
0	Male	484	84.03%
1	Female	81	14.06%
2	Other / Non-Disclosed	11	1.91%

Purchasing Analysis (Gender)

- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. by gender
- · Create a summary data frame to hold the results
- · Optional: give the displayed data cleaner formatting
- · Display the summary data frame

```
In [24]: #-----
         # Summary table 4: Purchase Analysis
        # Create series for each gender
        number of females = summary 3.loc[ summary 3["Gender"] == "Female", "Total Count" ]
        number_of_males = summary_3.loc[ summary_3["Gender"] == "Male", "Total Count" ]
        number_of_others = summary_3.loc[ summary_3["Gender"] == "Other / Non-Disclosed", "Total Count" ]
        purchase count = purchase data.groupby("Gender")["Price"].count()
        average bygender = round(purchase data.groupby("Gender")["Price"].mean(),2)
        purchase_total = purchase_data.groupby("Gender")["Price"].sum()
        players count = summary 2.groupby("Gender")["Player"].count()
        summary_4 = pd.DataFrame({
                                "Purchase Count": purchase count,
                                "Average Purchase Price": average bygender,
                                "Total Purchase Value": purchase total,
                                #"Players Count": players count,
                                "Avg Total Purchase per Person": purchase total / players count
                                })
        summary 4['Average Purchase Price'] = summary 4['Average Purchase Price'].map('${:,.2f}'.format)
        summary 4['Total Purchase Value'] = summary 4['Total Purchase Value'].map('${:,.2f}'.format)
        summary 4['Avg Total Purchase per Person'] = summary 4['Avg Total Purchase per Person'].map('${:,.2f}'.format)
        summary 4
```

Out[24]:

	Purchase Count	Average Purchase Price	Total Purchase Value	Avg Total Purchase per Person
Gender				
Female	113	\$3.20	\$361.94	\$4.47
Male	652	\$3.02	\$1,967.64	\$4.07
Other / Non-Disclosed	15	\$3.35	\$50.19	\$4.56

Age Demographics

- · Establish bins for ages
- Categorize the existing players using the age bins. Hint: use pd.cut()
- · Calculate the numbers and percentages by age group
- Create a summary data frame to hold the results
- Optional: round the percentage column to two decimal points
- · Display Age Demographics Table

```
In [26]: # Change data type to float
summary_2.loc[:, "Age"] = summary_2["Age"].astype("float")
```

```
# Summary table 5: Age Demographics
# Create bins for "Age column"
bins = [0, 9, 14, 19, 24, 29, 34, 39,100]
group_names = [ "<10", "10-14", "15-19", "20-24", "25-29", "30-34", "35-39", "40+"]
summary_2["Age Group"] = pd.cut(summary_2["Age"], bins, labels=group_names)
# Group by "Age group"
summary_2_group = summary_2.groupby(["Age Group"])
# Calculate the numbers and percentages by age group
age group count = summary 2 group["Age Group"].count()
percentage_by_age = age_group_count/ total_players * 100
summary 5 = pd.DataFrame({
                        "Total Count": age_group_count,
                        "Percentage of Players": percentage by age,
                        })
summary_5['Percentage of Players'] = summary_5['Percentage of Players'].map('{:,.2f}%'.format)
summary_5
```

Out[27]:		Total Car	unt Doros
		Total Count	Perce
	Age Group		
	<10	17	2.9
	10-14	22	3.82%
	15-19	107	18.58%
	20-24	258	44.79%
	25-29	77	13.37%
	30-34	52	9.03%
	35-39	31	5.38%
	40+	12	2.08%

```
In [28]: #----
         # Summary table 6: Purchasing Analysis (Age)
         # Have to perform this on a clean df that show unique players
         bins_2 = [0, 9, 14, 19, 24, 29, 34, 39,100]
         group names 2 = [ "<10", "10-14", "15-19", "20-24", "25-29", "30-34", "35-39", "40+"]
         purchase_data["Age Ranges"] = pd.cut(purchase_data["Age"], bins_2, labels=group_names_2)|
         purchase data grouped = purchase data.groupby(["Age Ranges"])["Age Ranges"].count()
         sum purchase price = purchase data.groupby(["Age Ranges"])["Price"].sum()
         avg purchase price = sum purchase price/purchase data grouped
         avg perperson = sum purchase price/ age group count
         summary 6 = pd.DataFrame({
                                 "Purchase Count": purchase data grouped,
                                 "Average Purchase Price": avg purchase price,
                                 "Total Purchase Value": sum purchase price,
                                 "Avg Total Purchase Per Person": avg_perperson
                                  })
         summary_6['Average Purchase Price'] = summary_6['Average Purchase Price'].map('${:,.2f}'.format)
         summary 6['Total Purchase Value'] = summary_6['Total Purchase Value'].map('${:,.2f}'.format)
         summary_6['Avg Total Purchase Per Person'] = summary_6['Avg Total Purchase Per Person'].map('${:,.2f}'.format)
         summary 6
```

Out[28]:

Purchase Count Average Purchase Price Total Purchase Value Avg Total Purchase Per Person

Age Ranges

goagoo				
<10	23	\$3.35	\$77.13	\$4.54
10-14	28	\$2.96	\$82.78	\$3.76
15-19	136	\$3.04	\$412.89	\$3.86
20-24	365	\$3.05	\$1,114.06	\$4.32
25-29	101	\$2.90	\$293.00	\$3.81
30-34	73	\$2.93	\$214.00	\$4.12
35-39	41	\$3.60	\$147.67	\$4.76
40+	13	\$2.94	\$38.24	\$3.19

Out[31]:

Purchase Count Average Purchase Price Total Purchase Price

SN

Lisosia93	5	\$3.79	\$18.96
ldastidru52	4	\$3.86	\$15.45
Chamjask73	3	\$4.61	\$13.83
Iral74	4	\$3.40	\$13.62
Iskadarya95	3	\$4.37	\$13.10

```
# Summary table 8: Most popular items
#Retrieve Item ID, Item Name, and Item Price columns
summary 8 = purchase data[["Item ID", "Item Name", "Price"]]
# Group by Iteam ID and Item Name
summary 8 group = summary 8.groupby(["Item ID", "Item Name"])
#Obtain purchase count, average item price, and total purchase value
purchase_count = summary_8_group["Item ID"].count()
total value = summary 8 group["Price"].sum()
average price = summary 8 group["Price"].mean()
summary 8 = pd.DataFrame({
                        "Purchase Count": purchase count,
                        "Total Purchase Value": total value,
                        "Average Price": average price
                        })
summary 8 sorted = summary 8.sort values(by=['Purchase Count'], ascending=False)
summary 8 sorted['Purchase Count'] = summary 8 sorted['Purchase Count'].map('{:,.0f}'.format)
summary 8 sorted['Total Purchase Value'] = summary 8 sorted['Total Purchase Value'].map('${:,.2f}'.format)
summary_8_sorted['Average Price'] = summary_8_sorted['Average Price'].map('$\{:,.2f\}'.format)
summary 8 sorted.head()
```

Out[33]:

Purchase Count Total Purchase Value Average Price

Item ID	Item Name			
92	Final Critic	13	\$59.99	\$4.61
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$50.76	\$4.23
145	Fiery Glass Crusader	9	\$41.22	\$4.58
132	Persuasion	9	\$28.99	\$3.22
108	Extraction, Quickblade Of Trembling Hands	9	\$31.77	\$3.53

Most Profitable Items

- · Sort the above table by total purchase value in descending order
- · Optional: give the displayed data cleaner formatting
- · Display a preview of the data frame

```
In [34]: #-----
# Sort table above by "Total Purchase"
#------
summary_8_sorted.sort_values(by=['Total Purchase Value'], ascending=False)
summary_8_sorted.head()
```

Out[34]:

Purchase Count	Total Durchago Value	Average Drice
Purchase Count	Total Purchase Value	Average Price

Item ID	Item Name			
92	Final Critic	13	\$59.99	\$4.61
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$50.76	\$4.23
145	Fiery Glass Crusader	9	\$41.22	\$4.58
132	Persuasion	9	\$28.99	\$3.22
108	Extraction, Quickblade Of Trembling Hands	9	\$31.77	\$3.53