Geometría Básica. Junio 2016.

Duración 2 horas. No se permite ningún tipo de material.

Justificar concisa y razonadamente todas las respuestas.

Ejercicio 1. (3 puntos)

Sean $\angle V$ y $\angle W$ dos ángulos con vértices en V y W respectivamente. Los lados de $\angle V$ están sobre las rectas r y s, con $r \cap s = \{V\}$ y los lados de $\angle W$ están sobre las rectas r' y s', con $r' \cap s' = \{W\}$. Suponemos que $r \perp r'$ y $s \perp s'$.

- a) Si $\angle V$ y $\angle W$ son agudos, probar que $\angle W = \angle V$ (indicación: usar una traslación que trasforme W en V).
- b) Si $\angle V$ es agudo y $\angle W$ es obtuso, probar que $\angle W = \pi \angle V$. Si $\angle V$ y $\angle W$ son obtusos, probar que $\angle W = \angle V$.

Ejercicio 2. (4 puntos)

- a) Definir qué es una homotecia del plano.
- b) Si η es una homotecia de razón k y A y B son dos puntos del plano, probar que $d(\eta(A), \eta(B)) = kd(A, B)$.
 - c) Definir semejanza.
- d) Probar que, para toda semejanza δ del plano, existe un número k tal que, para todo par de puntos A, B, se verifica $d(\delta(A), \delta(B)) = kd(A, B)$.

Ejercicio 3. (3 puntos)

Sean r y s dos rectas del espacio que se cruzan, es decir, que no son paralelas y no se cortan. Sea ρ_r , ρ_s las rotaciones de ejes r y s, respectivamente, y ambas con ángulo de rotación π .

Determinar qué tipo de isometría es la composición $\rho_r \circ \rho_s$.

Soluciones

Ejercicio 1.

a) Sean $\angle V = \angle \{\overline{r}, \overline{s}\}\ y \ \angle W = \angle \{\overline{r'}, \overline{s'}\}\ ambos\ agudos.$

Sea τ una traslación que transforma W en V. Llamamos $\tau(\overline{r'}) = \overline{r''}$ y $\tau(\overline{s'}) = \overline{s''}$, entonces tenemos que $\tau(r')$ es paralela a r' y perpendicular a r y de modo análgo $\tau(s')$ es perpendicular a s. El ángulo $\tau(\angle W) = \angle\{\overline{r''}, \overline{s''}\}$ es congruente con $\angle W$, y tenemos los siguientes ángulos con vértice en V:

$$\angle \{\overline{r}, \overline{s}\}, \angle \{\overline{r''}, \overline{s''}\}, \angle \{\overline{r}, \overline{r''}\}, \angle \{\overline{s}, \overline{s''}\}$$

y estos dos últimos son ángulos rectos, pues los lados están en rectas perpendiculares. Tenemos:

$$\angle\{\overline{r},\overline{r''}\}\pm\angle\{\overline{r},\overline{s}\}=\angle\{\overline{s},\overline{r''}\}=\angle\{\overline{s},\overline{s''}\}\pm\angle\{\overline{r''},\overline{s''}\},$$

lo que pasado a medidas nos dice:

$$\pi/2 \pm \angle V = \pi/2 \pm \angle W$$
,

y ambos signos \pm deben ser iguales, pues $\angle V$ y $\angle W$ están en el intervalo $[0, \pi/2]$, dado que $\angle V$ y $\angle W$ son agudos. Luego $\angle V = \angle W$.

Hay varias demostraciones alternativas válidas y que han sido propuestas por varios compañeros en sus exámenes:

Otra solución: Se considera la figura de la página siguiente.

Sean P y Q los puntos de corte de r con r' y de s con s'. Por último sea A el punto de corte de s con r'. Entonces $\angle A = \pi/2 - \angle W$, por ser $\triangle \{A, W, Q\}$ rectángulo y $\angle A = \pi/2 - \angle V$ por ser $\triangle \{A, V, Q\}$ rectángulo. Con lo cual $\angle V = \angle W$.

b) Si $\angle V$ es agudo y $\angle W$ es obtuso, basta considerar el suplementario $\angle W'$ de $\angle W$ cuyos lados están en las mismas rectas que $\angle W$. Como $\angle W'$ es agudo, por el apartado a) tenemos que $\angle W' = \angle V$. Y como $\angle W = \pi - \angle W'$, entonces $\angle W = \pi - \angle V$.

Ejercicio 2.

- a) Definición 7.1
- b) Teorema 7.4
- c) Definición 7.8
- d) Teorema 7.12: El número k se obtiene multiplicando las razones de las homotecias que aparecen en la expresión de la semejanza δ como

producto de homotecias e isometrías y después aplicando el Teorema 7.4 (apartado b) y que las simetrías consevan las distancias.

Ejercicio 3.

La composición $\rho_r \circ \rho_s$ es un movimiento helicoidal. Lo haremos demostrando todos los detalles, aunque no se ha exigido que todo estuviera probado para valorar este ejercicio con la máxima puntuación.

Primero veamos que las rectas r y s están contenidas respectivamente en dos planos paralelos, es decir, existen dos planos π_1 y π_2 , tales que $\pi_1 \cap \pi_2 = \emptyset$ y de modo que $r \subset \pi_1$ y $s \subset \pi_2$.

Los planos π_1 y π_2 se construyen facilmente utilizando el Ejercicio 11.3. En efecto: por el Ejercicio 11.3 existe una recta perpendicular t a r y s. Si $t \cap r = \{P\}$ y $t \cap s = \{Q\}$, tomamos los planos π_1 ortogonal a t y que pasa por P y π_2 ortogonal a t y que pasa por Q (Corolario 11.11). Veamos que π_1 y π_2 son disjuntos. Supongamos que $\pi_1 \cap \pi_2 \neq \emptyset$ y sea $R \in \pi_1 \cap \pi_2$. Tomamos el plano λ que pasa por Q y contiene a t. La intersección de λ con π_1 es una recta l_1 perpendicular a t (definición 11.8) y la intersección de λ con π_2 es una recta l_2 perpendicular a t. Al estar l_1 , l_2 , t en el plano λ y ser l_1 , l_2 perpendiculares a t que pasan por R, tienen que coincidir y entonces P = Q, lo que contradice la hipótesis que r y s son disjuntas.

Sin usar el Ejercicio 11.3:

Tomamos $A \in s$ y el plano α que contiene a P y a r, a continuación

tomamos la recta r' en α paralela a r que pasa por P. Sea π_2 el plano que contiene a s y a r'. El plano π_2 no corta a r (esto se dejaba al cuidado del lector en la resolución del libro): por reducción al absurdo, si $Q \in \pi_2 \cap r$, π_2 es el plano que contiene a r' y a Q y por tanto es el plano que contiene a r y r' (r y r' están en un plano al ser paralelas). Pero s corta a r' y está en π_2 , por tanto s también cortaría a r, lo que va contra la hipótesis.

Del mismo modo se construye π_1 . Veamos que $\pi_1 \cap \pi_2 = \emptyset$. Supongamos que m es la recta $\pi_1 \cap \pi_2$. Como π_1 contiene a r y r no corta a π_2 entonces $r \cap m = \emptyset$ y por tanto son paralelos. Del mismo modo $s \cap m = \emptyset$ y por tanto son también paralelos, con lo que r y s son paralelos (Ejercicio 11.2) lo que contradice la hipótesis. Sin usar el Ejercicio 11.2 basta tomar un plano ortogonal a m y 11.13 es también ortogonal a r y s y por 11.14 se tiene que r y s son paralelas.

Ahora $\rho_r = \sigma_{\gamma_1} \circ \sigma_{\pi_1} = \sigma_{\pi_1} \circ \sigma_{\gamma_1}$, donde γ_1 es un plano ortogonal a π_1 y que contiene a r, observe que γ_1 contiene rectas perpendiculares a π_1 . Del mismo modo $\rho_s = \sigma_{\gamma_2} \circ \sigma_{\pi_2} = \sigma_{\pi_2} \circ \sigma_{\gamma_2}$. Entonces:

$$\rho_r \circ \rho_s = \sigma_{\gamma_1} \circ \sigma_{\pi_1} \circ \sigma_{\pi_2} \circ \sigma_{\gamma_2}$$

y como $\pi_1 \| \pi_2$ entonces $\sigma_{\pi_1} \circ \sigma_{\pi_2}$ es una traslación τ paralela a las rectas ortogonales a ambos planos.

Con lo cual:

$$\rho_r \circ \rho_s = \sigma_{\gamma_1} \circ \tau \circ \sigma_{\gamma_2} = \tau \circ \sigma_{\gamma_1} \circ \sigma_{\gamma_2}$$

la última igualdad es gracias a que τ es una traslación paralela a rectas de γ_1 .

Además γ_1 y γ_2 se cortan, en particular $t = \gamma_1 \cap \gamma_2$ es la recta ortogonal común a r y s (ver solución del Ejercicio 11.3) y es una recta perpendicular a ambos planos π_1 y π_2 . Veamos esto sin utilizar 11.3: γ_1 , al ser perpendicular a π_1 , contiene rectas perpendiculares a γ_1 (Teorema 11.17(ii)) cualquiera de tales rectas es perpendicular tambien a π_2 , en particular corta a π_2 , con lo que $\gamma_1 \cap \pi_2 \neq \emptyset$. La recta $\gamma_1 \cap \pi_2$ no puede ser paralela a s, pues en ese caso r y s serían paralelas, luego γ_1 corta a r y en particular a γ_2 . La recta t que pasa por el punto $\gamma_1 \cap r$ y es perpendicular a π_1 y π_2 está en $\gamma_1 \cap \gamma_2$ por 11.17(ii) (y es por tanto $t = \gamma_1 \cap \gamma_2$).

$$\rho_r \circ \rho_s = \tau \circ \sigma_{\gamma_1} \circ \sigma_{\gamma_2} = \tau \circ \rho_{t,\varphi}$$

donde $\rho_{t,\varphi}$ es una rotación de eje t y ángulo φ , que es el doble del ángulo formado por γ_1 y γ_2 . Luego $\rho_r \circ \rho_s$ es un movimiento helicoidal, pues τ es traslación paralela a $t = \gamma_1 \cap \gamma_2$.