Data Science for Biostatisticians

- How to use the command line
 - Basic Unix commands
 - Chaining commands
 - o I/O
 - Piping and redirection
 - Using a text editor
 - Installing software via a package manager
 - Installing software from source
- How to obtain data
 - From text files (CSV, TSV)
 - From unstructured text
 - From JSON files
 - From XML files
 - From Excel files
 - From a web (REST) API
 - From scraping the web
 - From a relational database
 - From a NoSQL database
 - From a SPARQL database
- How to clean data
 - Cleaning text data with string functions
 - Cleaning text with regular expressions
 - Setting validation rules
 - Mapping to standard vocabularies
- How to work with DataFrames
 - Anatomy of a DataFrame
 - Indexing and extracting subsets
 - Sorting
 - Tall to Wide
 - Wide to Tall
 - The split-apply-combine pattern
 - Grouping
 - Function application
 - Concatenating DataFrames
 - Merging and joining DataFrames
 - Saving and exporting DataFrames

- How to explore data
 - Summary statistics
 - Constructing meaningful tables
 - Introduction to statistical visualization
 - Working with domain experts
- How to work with missing data and outliers
 - Identifying outliers
 - Types of missing data
 - Simple methods
 - Single imputation
 - Multiple imputation
- How to model data
 - Review of probability models
 - Review of data transformations
 - Review of linear models
 - Review of Generalized linear models
 - Multi-level models
 - Fitting models to data
 - Fitting nonlinear models to data
 - o Interpreting model fits
 - Checking model assumptions
 - Using simulations
 - Combining information from multiple sources
- How to build a pipeline
 - Why build a pipeline
 - Chaining steps
 - Cross-validation and pipelines
- How to display results
 - Native plotting libraries
 - o Graphics for the web
 - Graphics for high-dimensional data
 - Making interactive plots
 - Plotting geographical data
 - Plotting graphical and network data
- How to improve performance
 - Profiling and benchmarking code
 - Understanding algorithmic complexity
 - Choice of data structures and algorithms
 - Wrapping native code
 - Running jobs in parallel
- How to make analysis reproducible
 - Literate programming

- Version control
- Automating tasks
- Using VMs and Docker containers for reproducible environments
- Testing code and test generators
- Code coverage
- Use of make to build projects
- How to work with data too big for RAM
 - Buy more RAM
 - o Change of algorithm/data structure
 - Lazy evaluation
 - Memory Mapping
 - Sub-sampling
 - Distributed computing
- Case studies (interspersed throughout course)
 - Working with EHR data
 - Working with image data
 - Working with genomics data
 - Working with survey data
 - Working with Quantified Self data