

SHEATHING STRUCTURE OF TWO-TERMINAL SEMICONDUCTOR ELEMENT

PUB. NO.: 01-228138 [JP 1228138 A]
PUBLISHED: September 12, 1989 (19890912)

INVENTOR(s): NOMURA TOSHIHIRO

APPLICANT(s): FUJI ELECTRIC CO LTD [000523] (A Japanese Company or
Corporation), JP (Japan)

APPL. NO.: 63-053795 [JP 8853795]

FILED: March 09, 1988 (19880309)

INTL CLASS: [4] H01L-021/52; H01L-023/04

JAPIO CLASS: 42.2 (ELECTRONICS — Solid State Components)

JOURNAL: Section: E, Section No. 857, Vol. 13, No. 551, Pg. 18,
December 08, 1989 (19891208)

ABSTRACT

PURPOSE: To form the structure for the title element into such a free form
that the plane of the structure is a square or the like other than a
circular form and to contrive the improvement of a space factor at the time
of incorporation of the element into a device by a method wherein a
flexible or elastic insulating resin is used instead of a metallic bellows.

CONSTITUTION: In an element of a flat type structure for dealing with a
large capacity, two sheets of metal plates 12 and 14, which respectively
come into contact to an anode and a cathode of a semiconductor element 10,
are constituted of a metallic material having a thermal expansion
coefficient close to that of the element 10 for inhibiting the effect of a
thermal stress due to heat generation at the time of operation of a large
current. A flexible or elastic material is used as an insulating resin 16
sealing the peripheral part between the plates 12 and 14. Accordingly, as
upper and lower flexures due to a pressure welding force F at the time of
assembly of the element of a flat type structure can be absorbed
effectively, a metallic bellows 8 can be omitted. Thereby, the manufacture
of the element of a square flat type structure becomes possible and a space
factor at the time of incorporation of the element into a device is
improved.

⑪ 公開特許公報 (A) 平1-228138

⑤ Int. Cl.

H 01 L 21/52
23/04

識別記号

庁内整理番号

J-8728-5F

B-6412-5F

④ 公開 平成1年(1989)9月12日

審査請求 未請求 請求項の数 1 (全4頁)

⑤ 発明の名称 二端子半導体素子の外装構造

② 特願 昭63-53795

② 出願 昭63(1988)3月9日

③ 発明者 野村年弘 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内

④ 出願人 富士電機株式会社 神奈川県川崎市川崎区田辺新田1番1号

⑤ 代理人 弁理士 浜田治雄

明細書

1. 発明の名称

二端子半導体素子の外装構造

2. 特許請求の範囲

(1) 二端子半導体素子を2枚の金属板で挟持し、これら金属板間の周囲部を可換性または弾力性のある絶縁樹脂で封止したことを特徴とする二端子半導体素子の外装構造。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は、ダイオードやサージ吸収器等の非晶形素子である二端子半導体素子の外装構造に係り、特に大音量の半導体素子として使用される平形構造からなる素子の外装構造に関するもの。

〔従来の技術〕

一般に、ダイオード等の二端子半導体素子の外装構造として、大音量の素子では平形、中音量の素子ではスタッド形、小音量の素子ではワーリード組付式のチューブラ形等の構造

が知られている。

従来、平形構造からなる素子は、第3図に示すように構成されるのが一般的である。この平形構造からなる素子の外径は、一般に円筒形をしており、その内部の半導体素子も円形である。第3図において、参照符1は半導体素子、2、4は金属板、3、5は絶縁板、6は金属のつば、7は絶縁内、8は金属のペローズ、9は気体封入部屋をそれぞれ示す。

第3図における半導体素子1をダイオードと仮定すると、上部電極3がアノード(A)となり、下部電極5がカソード(K)となる。半導体素子1と接する2枚の金属板2、4は、熱応張係数が半導体素子1の熱応張係数に近い金属材料で構成し、例えばモリブデン板を使用する。このように熱応張係数を合せることにより、金属板2、4と半導体素子1との間に生じる熱応力を最小限にし、半導体素子1に熱応力によるクラックが生じるのを防いでいる。また、前記金属板2、4は、電極3、

5と半導体系子1との間の熱伝導力を遮断する効果もあり、これにより平形構造からなる系子の信頼性を高めている。

外部導体と接する電極3、5は、通常鋼合金が用いられる。電極5に接続固定される金属のつば6は、絶縁筒7を支持するように構成されている。さらに金属のペローズ8は、系子の組立時に加えられる大きな圧接力Fによる上下のたわみを吸収する作用を有し、片は筒7の上端部とアノード電極3とにそれぞれ接続固定されている。そして、前記ペローズ8と絶縁筒7とに囲まれた間隙9には、乾燥した空気又は窒素等の絶縁性の良い気体を封入し、これによりリーク電流を抑えている。

【発明が解決しようとする課題】

しかしながら、前述した従来の平形構造からなる系子の外装構造によれば、組立時の圧接力Fによる上下のたわみを吸収するために金属のペローズ8が存在することから、外

形が円形となり、この平形構造からなる系子を袋刃に組込む時にたとえ張して邊に並べても空隙が生じ、占積率(スペースファクタ)が良くならないという問題があった。

また、第3図でも明らかなように、従来の系子は半導体系子1以外の部品点数が多く、このため製造コストの低減が難しく内蔵となる難点があった。

さらに、半導体系子1の厚さに比べて、平形構造からなる系子全体の厚さがかなり厚くなるという問題もあった。

従って、本発明の目的は、袋刃組込み時の占積率を改善し、使用部品点数も少なくして内蔵に製造できると共に、厚さの薄い大音清に適した平形構造の二端子半導体系子の外装構造を提供するにある。

【課題を解決するための手段】

本発明に係る二端子半導体系子の外装構造は、二端子半導体系子を2枚の金属板で挟みし、これら金属板間の周囲部を可換性又は弾

力性のある絶縁樹脂で封止することを特徴とする。

【作用】

本発明に係る二端子半導体系子の外装構造によれば、金属ペローズの代りに可換性または弾力性のある絶縁樹脂を使用することにより、系子組立時の圧接力の吸収を効率的に達成すると共に、調電極の支持体および封止体としての機能も有する。

これにより、平形構造からなる系子(以下、平形構造系子と呼ぶ)を構成する部品点数が従来に比べて大幅に削減できる上に、絶縁筒は方形等の円形以外の形状を金属ペローズに比べて自由に採用できるので、平形構造系子を袋刃に組込む時の占積率も改善することができる。

さらに、部品点数が少なく、しかも比較的簡単な構造であるため、系子全体の厚さを薄くすることも可能となる。

【実施例】

次に、本発明に係る二端子半導体系子の外装構造の実施例につき、図面図面を参照しながら以下詳細に説明する。

第1図は、本発明の一実施例である平形構造系子を示す断面図であり、第2図は平面図である。

第1図において、参照符號10は半導体系子を示し、この系子10は従来と同様のものであるが、本実施例では第2図に示すように平面矩形状に構成することができる。

しかるに、本実施例においては、前記半導体系子10を2枚の金属板12、14で挟みし、これら金属板12、14の間の周囲部を可換性または弾力性のある絶縁樹脂18で封止した構成からなる。

そこで、第1図における半導体系子10をダイオードと仮定すると、金属板12の上面がアノード(A)端子となり、金属板14の下面がカソード(K)端子となる。この場合、

大凸凹を設う平形構造素子においては、大電流動作時の発熱による熱応力の影響を軽減するため、半導体素子10のアノードとカソードにそれぞれ接している2枚の金属板12、14は、熱膨張係数が半導体素子10の熱膨張係数と近い金属材料で構成する。例えば、半導体素子10をシリコンとすれば、半導体シリコンの熱膨張係数、 $4.2 \times 10^{-6}/\text{°C}$ に近い $5.1 \times 10^{-6}/\text{°C}$ の熱膨張係数を有するモリブデン板が金属板12、14として好適に用いられる。)

また、金属板12、14の周囲部を封止している絕縁樹脂16としては可換性または弾力性のある材料を用いることにより、平形構造素子の組立て時ににおける圧接力Fによる上下のたわみを有效地に吸収することができる。このため、従来の平形構造素子で用いた金属ペローズ8を省略することができる。

従って金属ペローズを用いないので形状に対する制限もなくなり、第2図にて示すよう

な正方形の平形構造素子の製作が可能となり、装置への組込み時の占積率も改善される。さらに、金属板12、14は外部導体と接する電極として使用することができるから、平形構造素子としての構成部品数が少なくなり、コストの低減と共に構成が簡単で形状に適した構造となることは明らかである。すなわち、本実施例によれば、従来の平形構造素子における構成部品としての電極3、5、金属のつば6、絕縁部7、金属ペローズ8を全て弾力性のある絶縁樹脂16のみで代行することができ、これにより大幅な構成部品の削減を達成している。

以上、本発明の好適な実施例について説明したが、本発明において平形構造素子の平面形状は前記実施例の正方形に限定されるものではなく、長方形等の組込まれる装置の要求に応じた形状とすることも可能であり、その他本発明の精神を逸脱しない範囲内において種々の設計変更をなし得ることは勿論である。

【発明の効果】

前述した実施例から明らかなように、本発明によれば、大凸凹の平形構造素子を構成する際に二端子半導体素子を2枚の金属板で挟むし、これら金属板間の周囲部を可換性または弾力性のある絶縁樹脂で封止することにより、従来用いられていた金属ペローズが不用となるので、平面が方形等の円形以外の自由な形状とすることができる、装置への組込み時の占積率を改善することができる。

そして、可換性または弾力性のある絶縁樹脂を用い、金属板を外部導体と接する電極として用いることにより、使用部品数が大幅に削減され、製造コストを低減することができる。

さらに、部品数が少なくなり、比較的簡単な構成となるために、素子全体の厚さが薄くできるばかりでなく、平面的にも小型化でき、装置への組込み時の体積で見た占積率も向上させることができる。

4. 製作の簡単な説明

第1図は本発明に係る二端子半導体素子の外装構造の一実施例を示す断面図、第2図は第1図に示す二端子半導体素子の平面図、第3図は従来の平形構造素子の構成を示す断面図である。

- 1、10…半導体素子
- 2、4、12、14…金属板
- 3…アノード電極(△)
- 5…カソード電極(△)
- 6…金属のつば
- 7…絶縁部
- 8…金属のペローズ
- 9…気体封入部
- 16…絶縁樹脂
- F…圧接力

特許出願人
出願人代理人

富士電機株式会社
井理士 岸田治郎

FIG. 1

FIG. 2

FIG. 3

THIS PAGE BLANK (USPTO)