Teorie

duit

Tuesday, February 1, 2022

4:28 PM

(compreser)

acceloration

vitera:

$$\frac{dx(t)}{dt}$$

(miscan) obsplacement: x(t)

pt cilindru

aric

(grafice)

Limear inductance

vitea

$$T = T^* = \frac{1}{2L} - \lambda^2$$

$$U = U^{\dagger} = \frac{1}{2} C_{0}$$

$$= \frac{1}{2} \cdot g^{2}$$

$$E = \int_0^T u \cdot i dt$$

$$g_{ij} = \frac{(+i - +i)^q}{(+ij)^q}$$

(hydraulic network)

perioods

ruxistente thermal)

f(t) = V: I is coal mostre

(problema voice coil catuator)

i(t) luain de pe grafic, la noi douà Jo. +

grafic, la naidouà

Mechanical-Electrical Analogy

F = I Force is analogous to current

v = V velocity is analogous to voltage

 $\frac{1}{b} = R$ Inverse of the friction coefficient is analogous to resistance

 $\frac{1}{L} = L$ Inverse of the spring constant is analogous to inductance

M = C Mass is analogous to capacitance

Q = I Flow rate is analogous to current

p = V Pressure is analogous to voltage

 $R_f = R$ Hydraulic resistance is analogous to resistance

 $L_f = L$ Fluid inertia is analogous to inductance

 $C_f = C$ Fluid capacitance is analogous to capacitance

Basic Relations in the Electrical and Thermal Domains

	Electrical Domain			Thermal Domain		
Through Variable (FLOW)	Current	1	Amperes or Coulombs/s	Power or heat flux	P _D	Watts or Joules/s
Across Variable (EFFORT)	Voltage	٧	Volts	Temperature	Т	°C or K
Resistance	Electrical resistance	R	Ohms	Thermal resistance	$R_{\Theta AB}$	°C/W or K/W
Capacitance	Electrical capacitance	С	Farads or Coulombs/V	Thermal Capacitance	C_Θ	Joules/°C
"Ohm's Law"	$\Delta V_{AB} = V_A - V_B = I \cdot R_{AB}$			ΔTAB=TA-TB=PD·RθAB (derived from Fourier's Law)		