Tissue-Class Segmentation

Kristin Linn

Image segmentation

- We are often interested in subdividing or segmenting the brain into meaningful biological regions of interest (ROIs) for an analysis.
- Examples: tissue segmentation, segmentation of gray matter structures, segmentation of pathology (MS lesions, tumors, ...)

Goals of this tutorial

- Perform tissue segmentation in R using FSL and ANTs.
- ▶ Discuss multi-atlas label fusion techniques for segmentation.
- Perform automatic MS lesion segmentation using OASIS.

Loading Data

▶ Let's read in the training T1s and brain mask for subject 05.

```
library(ms.lesion)
library(neurobase)
library(fslr)
library(scales)
library(extrantsr)
all_files = get_image_filenames_list_by_subject(
  group = "training",
 type = "coregistered")
files = all files$training05
t1 = readnii(files["MPRAGE"])
mask = readnii(files["Brain Mask"])
# t1s = lapply(files, function(x) readnii(x["MPRAGE"]))
# t1 = t1s[[5]]
# masks = lapply(files, function(x) readnii(x["Brain_Mask"]
\# mask = masks[[5]]
```

Tissue Segmentation: Large Outliers

- Many tissue class segmentations are based on k-means clustering.
- ▶ These methods can be skewed by large outliers.

```
hist(t1, mask = mask, breaks = 2000)
```


Where are the outliers

We see some values that may have been improperly segmentated:

```
ortho2(t1, t1 > 400, xyz = xyz(t1 > 400))
```


Tissue Segmentation using FSL FAST

- FAST is based on a hidden Markov random field model and an Expectation-Maximization algorithm.
- It jointly produces a bias field corrected image and a probabilistic tissue segmentation.
- More robust to noise and outliers than finite mixture model-based methods that do not incorporate spatial information.

Tissue Segmentation using FSL FAST

The fslr function fast calls fast from FSL (Zhang, Brady, and Smith 2001). The --nobias option tells FSL to not perform inhomogeneity correction (was already performed in ANTsR).

Results

FAST assumes three tissue classes and produces an image with the three labels, ordered by increasing within-class mean intensities. In a T1 image, this results in:

Level 1: CSF

Level 2: Gray Matter

Level 3: White Matter

White Matter

ortho2(t1, t1fast == 3, col.y = alpha("red", 0.5), text = "

Gray Matter

```
ortho2(t1, t1fast == 2, col.y = alpha("red", 0.5), text = "
```


CSF

ortho2(t1, t1fast == 1, col.y = alpha("red", 0.5), text = "

Windowing

White Matter

ortho2(t1, robust_fast == 3, col.y = alpha("red", 0.5), tex

Gray Matter

ortho2(t1, robust_fast == 2, col.y = alpha("red", 0.5), tex

CSF

ortho2(t1, robust_fast == 1, col.y = alpha("red", 0.5), text

FAST Results

- overall the results look good
- not much difference after dampening outliers using robust_window
- FAST is robust to noise

Tissue Segmentation using ANTsR, extrantsr

▶ Uses Atropos (Avants et al. 2011)

```
t1\_otropos = otropos(a = t1, x = mask) # using original da t1seg = t1\_otropos\$segmentation
```

White Matter

```
ortho2(t1, t1seg == 3, col.y = alpha("red", 0.5), text = "
```


Gray Matter

```
ortho2(t1, t1seg == 2, col.y = alpha("red", 0.5), text = "0
```


CSF

ortho2(t1, t1seg == 1, col.y = alpha("red", 0.5), text = "(

Tissue Segmentation using ANTsR, extrantsr

```
robust_t1_otropos = otropos(a = rb, x = mask) # using robust
robust_t1seg = robust_t1_otropos$segmentation
```

White Matter

```
ortho2(t1, robust_t1seg == 3, col.y = alpha("red", 0.5), te
```


Gray Matter

```
ortho2(t1, robust_t1seg == 2, col.y = alpha("red", 0.5), te
```


CSF

ortho2(t1, robust_t1seg == 1, col.y = alpha("red", 0.5), te

References

Avants, Brian B, Nicholas J Tustison, Jue Wu, Philip A Cook, and James C Gee. 2011. "An Open Source Multivariate Framework for N-Tissue Segmentation with Evaluation on Public Data." *Neuroinformatics* 9 (4). Springer: 381–400.

Zhang, Yongyue, Michael Brady, and Stephen Smith. 2001. "Segmentation of Brain MR Images Through a Hidden Markov Random Field Model and the Expectation-Maximization Algorithm." Medical Imaging, IEEE Transactions on 20 (1): 45–57. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=906424.