INTITUTO POLITÉCNICO DO PORTO INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO MESTRADO EM ENGENHARIA ELETROTÉCNICA

CALLEBE SOARES BARBOSA

VICTOR EMANUEL SOARES BARBOSA

CARLOS TEIXEIRA

ESTUDO DO IMPACTO DE AÇÕES DE RE-DESPACHO TENDO EM CONTA PERTURBAÇÕES EM PARTES DA REDE ELÉTRICA PORTUGUESA

PORTO

RESUMO

Escreva aqui o texto de seu resumo... UTFPRTEX

Palavras-chave: .

LISTA DE FIGURAS

Figura	1:	Esquema simplificado da Organização do Sistema Elétrico Nacional.	8
Figura	2:	Correlação entre o Preço de Mercado e a Produção Renovável	
		(2015-16)	9
Figura	3:	Repartição da Produção	10
Figura	4:	Consumo e Produção Máximos Anuais	11
Figura	5:	Diagrama de Consumo no Dia de Ponta Anual	11
Figura	6:	Satisfação do Consumo	12
Figura	7:	Cenário 1, anterior à modificação	13
Figura	8:	Satisfação do Consumo	16
Figura	9:	Análise dos geradores antes e após o cenário 1	17
Figura	10:	Análise do carregamento das linhas antes e após o cenário 1 .	17
Figura	11:	Análise dos Barramentos Antes e Após o Cenário 1	18
Figura	12:	Cenário 2, anterior à modificação	19
Figura	13:	Vista ampliada do cenário 2, anterior à modificação	20
Figura	14:	Cenário 2, após a modificação	22
Figura	15:	Vista ampliada do cenário 2, após a modificação	22
Figura	16:	Análise ativa global antes e após o cenário 2	24
Figura	17:	Análise reativa global antes e após o cenário 2	25
Figura	18:	Análise dos geradores antes e após o cenário 2	26
Figura	19:	Análise do carregamento das linhas antes e após o cenário 2 .	26
Figura	20:	Análise dos barramentos antes e após o cenário 2	27

LISTA DE TABELAS

1	Produção Nacional 2015/2016	10
2	Dados globais iniciais	14
3	Dados Locais Iniciais	15
4	Dados iniciais para o caso 2	21
5	Dados após modificação para o caso 2	23
6	Dados gerais após caso 2	24
7	Interligação com a Espanha antes e após o cenário 2	27

LISTA DE SÍMBOLOS

SUMÁRIO

1 Introdução	6
1.1 Objetivos	6
1.2 Motivações	6
1.3 Organização do texto	6
2 Caracterização da rede elétrica nacional	. 7
2.1 Análise da rede elétrica nacional	7
2.2 Caracterização das centrais	8
2.3 Caracterização da RNT	8
2.4 Perfil de produção nacional	8
2.5 Perfil de Consumo Nacional	10
3 Cenários Proposto	13
3.1 Cenário 1	13
3.1.1 Anterior à modificação	13
3.1.2 Análise do impacto da modificação	16
3.1.2.1 Analisar geradores	17
3.1.2.2 Análise das linhas	17
3.1.2.3 Análise dos barramentos	18
3.2 Cenário 2	18
3.2.1 Anterior à modificação	18
3.2.2 Análise do impacto da modificação	21
3.2.2.1 Análise global	24
3.2.2.2 Analisar geradores	
3.2.2.3 Análise das linhas	26
3.2.2.4 Análise dos barramentos	27
3.2.2.5 Análise da interligação com a Espanha	27
4 Conclusão	28

1 INTRODUÇÃO

- 1.1 OBJETIVOS
- 1.2 MOTIVAÇÕES
- 1.3 ORGANIZAÇÃO DO TEXTO

2 CARACTERIZAÇÃO DA REDE ELÉTRICA NACIONAL

2.1 ANÁLISE DA REDE ELÉTRICA NACIONAL

A produção de energia elétrica em Portugal é aberta ao livre mercado e concorrência, tendo dois regimes legais, a saber (REN, 2017):

- Produção em regime ordinário (PRO): relativo à produção de eletricidade a partir de fontes não renováveis ou em grandes centrais hídricas;
- Produção em regime especial (PRE): relativo à produção de eletricidade a partir de fontes renováveis ou cogeração.

O transporte, ou transmissão, da energia elétrica é realizada através da Rede Nacional de Transporte , a saber a rede de 150 a 400 kV, através de concessão pelo Estado Português em regime de serviço público e exclusividade à Redes Energéticas Nacionais . Tal concessão inclui planeamento, construção, operação e manutenção da RNT (REN, 2017).

A rede de distribuição é efetivada através da exploração da Rede Nacional de Distribuição . A rede de baixa tensão é operada através de contratos estabelecidos entre os municípios e as distribuidoras (REN, 2017).

Em relação ao consumo, no Portugal Continental há 6,1 milhões de consumidores em maioria na baixa tensão, 23 500 na média tensão, 350 na alta tensão e muito alta tensão, até 400 kV. O consumidor é livre para escolher o seu comercializador de energia elétrica (REN, 2017).

O Sistema Elétrico Nacional , ilustrado de forma simplificada na Figura 1, é composto pela parte da produção: PRO, PRE e importação; pela parte do transporte: RNT; pela parte de comercialização: Comercializador Liberalizado e Comercializador de Último Recurso ; e por fim, pela parcela da distribuição: clientes do mercado liberalizado e do CUR. Os comercializadores liberalizados e de último recurso estão enquadrados no Mercado Organizado. A Entidade Reguladora dos Serviços Energéticos é quem estabelece as tarifas pagas pelos comercializadores para acenderem à RNT

e RND. Todo esse sistema está sob o enquadramento legislativo e regulamentar da Direção Geral de Energia e Geologia (GIL, 2010).

Figura 1: Esquema simplificado da Organização do Sistema Elétrico Nacional. Fonte: (GIL, 2010)

- 2.2 CARACTERIZAÇÃO DAS CENTRAIS
- 2.3 CARACTERIZAÇÃO DA RNT
- 2.4 PERFIL DE PRODUÇÃO NACIONAL

Segunda a Association (2016b, p. 5), desde 2000 as fontes renováveis apresentaram um crescimento continuo na matriz energética portuguesa, sobre tudo a geração eólica. Este franco crescimento foi proveniente de uma política europeia e nacional que tem como objetivo a melhoria da segurança de abastecimento, redução da dependência energética e redução dos impactos ambientais do sistema elétrico.

Como resultado da política energética portuguesa, em 2016 57% da produção de energia elétrica em Portugal se deu através de fontes renováveis. Face ao ano anterior as fontes renováveis aumentaram 10% na participação da produção (NACIONAIS, 2016, p. 8). O aumento da produção renovável e 2016 deve-se, em parte, da entrada da central hidroelétrica de Frades II, equipada com 780 MW, e do crescimento

em 236 MW de potência instalada em parques eólicos portugueses. Seguindo assim uma tendência de crescimento desde 2014, o que pode ser verificada através das estatísticas diária disponibilizadas pela REN (2017). Em 2016 a geração hidráulica representou 28% da produção nacional, enquanto a geração eólica representou 22%, a biomassa representou 5% e a solar contribuiu com 1%.

Um fato importante sobre a geração renovável em 2016 é que devido a sua grande participação na produção de energia houve uma redução no preço médio do MWh no mercado ibérico de eletricidade, valor este que esteve situado em 39,4 €/MWh (ASSOCIATION, 2016a, p. 4). Comparado ao ano de 2015, quando o custo médio esteve em 50,4 €/MWh e a contribuição das renováveis para a matriz energética foi de 48 %, nota-se uma relação entre o custo €/MWh e a produção renovável. A Figura 2 deixa mais explicita esta relação entre o anos de 2015 e 2016.

Figura 2: Correlação entre o Preço de Mercado e a Produção Renovável (2015-16) Fonte: Association (2016a, p. 10)

Já pelo lado das fontes não renováveis a geração por termoelétricas a carvão e a gás natural ambas representaram, em 2016, 21% da produção. Face ao ano anterior a produção a carvão sofreu uma queda de 14%, já a produção a gás natural cresceu 18% (NACIONAIS, 2016, p. 8). Os dados a produção nacional em 2016 estão dispostas Gráfico 3, e para fins de comparação está a Tabela 1.

Figura 3: Repartição da Produção Fonte: Nacionais (2016, p. 8)

Geração	2015	2016	Variação(%)
Hídrica	8.453	15.413	82
Eólica	11.334	12.188	8
Biomassa	2.618	2.687	3
Solar	760	781	3
Carvão	13.677	11.698	-14
Gás Natural	9.807	11.571	18
Produção por Bombagem	1.160	1.217	5
Saldo Importador	2.266	-5.085	-
Produção Não Renovável	23.840	23.587	-1
Produção Renovável	23.165	31.069	34
Produção Total	48.165	55.873	16

Tabela 1: Produção Nacional 2015/2016

Fonte: Nacionais (2016, p. 10)

2.5 PERFIL DE CONSUMO NACIONAL

Em relação ao consumo nacional Portugal vem apresentando um crescimento continuo desde 2012, e se consolida em 2016 com um total de 49,3 TWh, um consumo menor apenas 5,6% do máximo histórico registrado em 2010. Tal crescimento no consumo tem relação direta com o crescimento social e económico do pais, e indica uma tendência para os próximos anos(NACIONAIS, 2016, p. 6).

O gráfico da Figura 4 apresenta a relação dos máximos de consumo e produção registrados desde 2012. Este gráfico torna claro a evolução dos picos de produção sobre os máximos de consumo ao longo dos anos. A relação entre picos de

produção e consumo representam uma margem que assegura atendimento da carga mesmo nos dias de maior pico.

Figura 4: Consumo e Produção Máximos Anuais Fonte: Nacionais (2016)

Em 2016 o dia de maior pico no consumo ocorreu no dia 17 de fevereiro, já em 2015 o dia de maior pico no consumo foi registrado no dia 7 de janeiro. Mas apenas em 2016, mesmo no horário de pico todo o consumo foi atendido pela geração nacional, ou seja não houve saldo importador. Como pode ser visto na Figura 5 (ASSOCIATION, 2016a).

Figura 5: Diagrama de Consumo no Dia de Ponta Anual Fonte: Nacionais (2016)

Em 2016 houve um total de 1130 horas em que a eletricidade renovável por si só, foi suficiente para suprir as necessidades elétricas de Portugal. Ainda neste ano,

entre as 6:45h do dia 7 e 17:45h do dia 11 de maio, foi registrado um período de 107 horas consecutivas em que a produção renovável excedeu o consumo elétrico (ASSOCIATION, 2016a). Estes fato que demonstra que mesmo com o aumento do consumo, a geração renovável e supera o consumo em vários períodos relevantes.

Segundo a Association (2016a) em 2016 houve um importante marco do saldo exportador de 5,1 TWh, que constitui uma inversão na tendência de importação apresentada nos últimos 15 anos. O gráfico da Figura 6 trás um comparativo da satisfação do consumo anual entre 2007 e 2016.

Figura 6: Satisfação do Consumo Fonte: Nacionais (2016, p. 10)

3 CENÁRIOS PROPOSTO

3.1 CENÁRIO 1

3.1.1 Anterior à modificação

A região escolhida para o cenário 1 foi a interligação entre a subestação de Bouca e Zezere, na região central de Portugal como pode ser visto na Figura 7. A mudança no cenário atual é a retirada de uma das duas linha que interligam o barramento da subestação de Bouca com o barramento de 145 kV de Zezere.

Figura 7: Cenário 1, anterior à modificação Fonte: Caso Simulado no *PowerWorld*[®] *Simulator*

A subestação de Bouca se interliga apenas com o barramento de 145 kV de Zezere e com o barramento de Cabril, o qual possui uma unidade geradora de 104

MW. Existe apenas uma linha de Bouca a Zezere o qual apresenta uma sobrecarga 128% no transito de potência no sentido Cabril Bouca. A interligação entre bouca e Zezere é feita por duas linhas que apresentam respectivamente 72,5% e 72,6% de carregamento.

A subestação de Zezere possui 3 barramentos; o primeiro de 145 kV que interligam a Bouca e Falaguei, o segundo que 230 kV que interligam Santarem, Penela e Cast Bode. O terceiro barramento de 63 kV é onde está conectado uma carga de 111M e um gerador de 22,1 MW. Os dados globais do sistema antes das alterações propostas estão dispostas na tabela 2.

	MW	MVAr
Perdas	229,50	-376,75
Geração	6794,0	-306,1
Cargas	6564,5	1814,2

Tabela 2: Dados globais iniciais

Fonte: Autoria Própria

Carregamento das Linhas				
Carregamento (%)				
Cabril	Bouca	128,5		
Bouca	Zezere	73,4		
Falaguei	Zezere	52,6		
Panela	Zezere	47,1		
Zezere	Santarem	81,5		
Cast Bode	Zezere	25		
	~ 5			

Tensão nas Barras				
Módulo Ângulo				
Cabril	1,04	30,889		
Bouca	1,05	29,566		
Zezere	1,0399	22,006		
Falaguei	1,03	30,919		
Panela	1,0473	26,098		
Santarem	1,0269	14,32		
Cast Bode	1,04	22,019		

Geradores				
	MW	Mvar		
Cabril	104,2	-82,29		
Bouca	49,6	96,14		
Zezere	22,1	-23,24		
Cast Bode	137,2	41,46		
Falaguei	148	65,76		

Tabela 3: Dados Locais Iniciais Fonte: Autoria Própria

3.1.2 Análise do impacto da modificação

Figura 8: Satisfação do Consumo Fonte: Caso Simulado no *PowerWorld*® *Simulator*

3.1.2.1 Analisar geradores

Figura 9: Análise dos geradores antes e após o cenário 1 Fonte: autoria própria

3.1.2.2 Análise das linhas

Figura 10: Análise do carregamento das linhas antes e após o cenário 1 Fonte: autoria própria

3.1.2.3 Análise dos barramentos

Figura 11: Análise dos Barramentos Antes e Após o Cenário 1 Fonte: autoria própria

3.2 CENÁRIO 2

3.2.1 Anterior à modificação

O cenário 2 escolhido foi na subestação de Pocinho, à margem do Rio Douro, noroeste de Portugal, retratado na Figura 12. O cenário será a retirada da linha que liga o gerador de Pocinho à subestação de Pocinho, que atualmente está funcionando com 102% da sua capacidade de trânsito de potência.

Figura 12: Cenário 2, anterior à modificação Fonte: autoria própria

Os barramentos que estão diretamente ligados ao barramento (subestação) de Pocinho, circulada em vermelho na Figura 13, são: M. Cavale, Armamar, Chafariz, Saucelle (Espanha), 489 (Espanha) e Aldeadav (Espanha); todas estas subestações ligadas a Pocinho estão circuladas em azul na Figura 13.

Figura 13: Vista ampliada do cenário 2, anterior à modificação Fonte: autoria própria

Os dados globais antes da modificação são os mesmos do caso 1, como pode ser visto na Tabela 2. Na Tabela 4 são descritos os valores de geração de potência ativa e reativa do gerador de Pocinho, carregamento das linhas em conexão com a subestação de Pocinho, módulo e ângulo dos barramentos ligados a Pocinho, potência ativa e reativa líquida entre Portugal e Espanha na região próxima a Pocinho, bem como o sentido do fluxo de potência nas linhas.

	Carregamento	o das linhas			
	Sentido da Potência		Carregamento (%)		
Pocinho	< -	M. Cavale	2		
Pocinho	->	Armamar	17,3		
Pocinho	< -	Chafariz	6		
Pocinho	->	Saucelle	32,9		
Pocinho	->	489	29,6		
Pocinho	->	Aldedav	29,2		
	Tensão na	s barras			
		Módulo	Ângulo		
	Pocinho	1,0376	32,275		
Portugal	M. Cavale	1,0493	33,348		
roitugai	Armamar	1,0484	28,552		
	Chafariz	1,04	32,932		
	Saucelle	1	32,206		
Espannha	489	1	30,837		
	Aldeadav	1	30,832		
Geradores					
		MW	MVar		
Portugal	Pocinho	180	243		
i ortugai	Chafariz	38	-98		
	Saucelle	0	-137		
Espannha	489	0	-92		
	Aldeadav	0	-91		
Interligação com Espanha					
Portugal –	> Espanha	208,9 MW	320,5 MVAr		

Tabela 4: Dados iniciais para o caso 2

Fonte: Autoria Própria

3.2.2 Análise do impacto da modificação

Realizando a modificação, abertura da linha que liga o gerador de Pocinho à subestação de Pocinho, conforme a Figura 14 e com vista ampliado na Figura 15. Na Tabela 5 são descritos os valores para análise após a modificação do caso 2.

Figura 14: Cenário 2, após a modificação Fonte: autoria própria

Figura 15: Vista ampliada do cenário 2, após a modificação

Fonte: autoria própria

Carregamento das linhas					
	Sentido da Potência		Carregamento (%)		
Pocinho	< -	M. Cavale	4,3		
Pocinho	< -	Armamar	9		
Pocinho	< -	Chafariz	21,8		
Pocinho	->	Saucelle	13,8		
Pocinho	->	489	21,5		
Pocinho	->	Aldedav	21,2		
	Tensão na	s barras			
		Módulo	Ângulo		
	Pocinho	1,0155	25,644		
Portugal	M. Cavale	1,0384	28,661		
Fortugal	Armamar	1,0498	25,102		
	Chafariz	1,0400	27,690		
	Saucelle	1	25,349		
Espannha	489	1	23,953		
	Aldeadav	1	23,950		
Geradores					
	_	MW	MVar		
Portugal	Pocinho	0	0		
Fortugal	Chafariz	38	-18		
	Saucelle	0	-54		
Espannha	489	0	-29		
	Aldeadav	0	-29		
Interligação com Espanha					
Portugal -	> Espanha	207,2 MW	104,8 MVAr		

Tabela 5: Dados após modificação para o caso 2

Fonte: Autoria Própria

Inicialmente é possível verificar que a linha entre Pocinho e Armamar alterou o sentido do fluxo de potência. Isso pode ser explicado pelo facto que o gerador de Pocinho estava a enviar potência para a interligação com a Espanha e ainda alimentava Armamar; com a sua retirada, houve necessidade de alimentar a interligação com a Espanha com potência ativa de outros geradores, como as outras linhas em contacto com Pocinho já estavam no sentido de enviar potência para ela, ficou apenas a linha com Armamar a alterar o sentido. Os dados globais do sistema após a

modificação estão mostrados na Tabela 6. A seguir irá ser analisado com mais detalhes os impactos do caso em estudo.

	MW	MVAr
Perdas	207,58	-568,00
Geração	6772,1	-504,4
Cargas	6564,5	1814,2

Tabela 6: Dados gerais após caso 2

Fonte: Autoria Própria

3.2.2.1 Análise global

Os impactos da modificação na análise global estão resumidos no gráfico da Figura 16 para a potência ativa e na Figura 17 para a potência reativa.

Figura 16: Análise ativa global antes e após o cenário 2

Fonte: autoria própria

Pelas Figuras 16 e 17 é atestado que as cargas não variaram, o que mostra que apenas foi retirado geração. Um facto interessante é que as perdas ativas globais diminuíram, isso pode ser explicado porque as linhas que aumentaram o carregamento foram as linhas Pocinho - Chafariz e Pocinho - M. Cavale, sendo que a Pocinho - Chafariz passou de 6% para 21,8% de carregamento, conforme Figura 19.

Figura 17: Análise reativa global antes e após o cenário 2

Fonte: autoria própria

Observando o gráfico da Figura 17 é visto que houve maior produção de potência reativa capacitiva a fim de atender a também elevação das potência reativa capacitiva das perdas, estas devido ao aumento de carregamento das linhas, o que ocasiona maior efeito capacitivo nas linhas de transmissão.

3.2.2.2 Analisar geradores

O impacto da modificação nos geradores dos barramentos próximos estão resumidas no gráfico da Figura 18. É evidente a saída da contribuição do gerador de Pocinho, outro facto evidente é a redução da geração de potência reativa capacitiva neste grupo de geradores. Tal redução de capacitivo pode ser explicado pelo fato que antes o gerador de Pocinho gerava apenas potência reativa indutiva, com a saída dele, os outros geradores tiveram que gerar menos capacitivo.

Figura 18: Análise dos geradores antes e após o cenário 2

Fonte: autoria própria

3.2.2.3 Análise das linhas

Os impactos da modificação no carregamento das linhas ligadas à subestação de Pocinho estão resumidos no gráfico da Figura 19.

Figura 19: Análise do carregamento das linhas antes e após o cenário 2 Fonte: autoria própria

3.2.2.4 Análise dos barramentos

Os impactos da modificação nos barramentos ligados à subestação de Pocinho estão resumidos no gráfico da Figura 20.

Figura 20: Análise dos barramentos antes e após o cenário 2

Fonte: autoria própria

3.2.2.5 Análise da interligação com a Espanha

Os impactos da modificação na interligação com a Espanha estão resumidos na Tabela 7.

	MW	MVAr
Antes	208,9	320,5
Depois	207,2	104,8

Tabela 7: Interligação com a Espanha

antes e após o cenário 2 Fonte: Autoria Própria

4 CONCLUSÃO

REFERÊNCIAS

ASSOCIATION, APREN Portuguese Renewable Energy. **Eletricidade Renovável Em Revista**. [S.I.]: Lisboa: APREN, 2016.

ASSOCIATION, APREN Portuguese Renewable Energy. **Wind Farms in Portugal**. [S.I.]: Lisboa: E2P, 2016.

GIL, João. Análise e previsão da evolução do custo da eletricidade em portugal. **Instituto superior Técnico, Universidade Técnica de Lisboa, Portugal**, 2010.

NACIONAIS, Redes Energéticas. Dados Técnicos 2016. [S.I.]: Lisboa: REN, 2016.

REN. **O SETOR ELÉTRICO**. 2017. Disponível em: https://www.ren.pt/pt-PT-/o_que_fazemos/eletricidade/o_setor_eletrico/.