Cloud Computing Assignment: MPI on the cloud

Léo Unbekandt

March 7, 2014

Contents

1	Sett	ings											1
	1.1	Parameters				 							1
	1.2	Automation of the execution					•						2
2	Res	ults											2
	2.1	Small matrices computation				 							2
	2.2	Large matrices computation				 							3
	2.3	Speedup Evolution				 							3
	2.4	Cloud irregularity				 	•	•			•	•	4
3	Pric	eing											4
A	Res	ults											5
В	Erre	ors screenshot											6

1 Settings

1.1 Parameters

Different sizes of matrix have been chosen in order to study the scalability of MPI on a cloud based cluster. (128, 256, 512, 1024, 1360). The deployed cluster has been composed of 1, 2, 4, 8 or 16 nodes. These values are really convenient as they are all powers of two, so the computation domain can be equally divided among the different virtual machines. The size of cluster is however limited by the quota in vCPUs (32) or Memory (50GB) and finally the different flavors of virtual machines which have been used:

- 1 m1.tiny (512MB RAM, 1vCPU)
- 2 m1.small (2GB RAM, 1vCPU)
- 3 m1.medium (4GB RAM, 2vCPUs)

• 4 - m1.large (8GB RAM, 4vCPUS)

When a virtual machine has more than 1 vCPU, the MPI flag -npernode is used, in order to execute one instance of the application per vCPU, otherwise. Otherwise, it is useless to choose high quality flavors.

1.2 Automation of the execution

These tests have been run using only one command to avoid a maximum of human interactions. A ruby script has been developed to create the nodes cluster and to destroy it. When the cluster has been built, it automatically runs ansible in order to configure the nodes and install Open MPI on them.

Once the platform is ready, another script is able to run the experiments with the different kinds of matrix et get the output result back. (run_matrix_multiply.sh)

Finally a last script (run_experiment.sh) takes care to:

- 1. Build a cluster with N nodes and flavor F
- 2. Run MPI experiments
- 3. Get the results
- 4. Shutdown the cluster
- 5. Restart with other parameters

This last program takes care of everything, nothing else has to be done, except reading and interpreting the results! Please read the README.md

2 Results

The results in this section come from VMs of flavor 1 because I've been able to execute 16-nodes computation. They have only one CPU and 512MB of RAM.

2.1 Small matrices computation

The raw data results can be read in Appendix A. First, for the small matrices (128 rows/columns), it is observable that the communication between the nodes becomes too heavy and even if the computation time is reduced, the overall duration increased hugely. Whatever is the flavor, the performance increases when the number of nodes is low, and then, they get strongly worse.

2.2 Large matrices computation

In the case of large matrices computation, the results are closer to what has to be expected, they are better and better but with a speed-up which is not linear.

2.3 Speedup Evolution

The two previous results can be illustrated in the following graph.

With a small matrix, the speed up is getting lower than 1 quickly. It means that the execution time is increasing when the number of nodse is increasing. However, when the matrix get bigger, the speed up increases when the number of VMs increases.

2.4 Cloud irregularity

We have to keep in mind that the hardware is shared among all the user, our tasks don't get dedicated CPUs for example. Consequently, some results may be inadequate. For instance we can se in the measure done with flavor 3 instances, it has been faster to compute the multiplication of a 1360×1360 matrix than a 1024×1024 matrix which is logically abnormal.

3 Pricing

The price for a single instance with one CPU on Amazon EC2 depends of the flavor:

- m1.tiny \$0.065 per hour
- m1.small \$0.130 per hour
- m1.medium \$0.260 per hour
- m1.large \$0.520 per hour

For small-scale experiments like these ones, the price would be completely negligible, however for MPI operations, the lesser the communications, the faster the execution. As a result, it is more interesting to take high-CPUs instances. For instance, in the case of intensive computational MPI tasks, one m1.large is more interesting than four m1.t iny. The price per CPU is identical.

Technical difficulties

Only one limitation linked to the OpenStack cluster has been encountered. With the current quota it should have been possible to deploy a 32 nodes cluster. However when booting 32 VMs, only 24 were working correctly, the last 8 got the status "ERROR". Screenshot

Conclusion

To conclude. we can see that MPI on the cloud is working well, however the communication overhead is more important than on a supercomputer and it's important to be aware of it. Furthermore the performance may be unstable, the instances may share their CPUs with other resource-consuming instances.

Appendices

A Results

	128	256	512	1024
1	0.0221	0.1784	1.6523	43.8849
2	0.0186	0.1260	0.9865	29.6860
4	0.2568	0.1083	0.8879	16.5539
8	0.2630	0.0826	0.5524	11.1385
16	0.5145	0.2203	1.1342	11.8693

Table 1: Computation time according to the number of nodes to the size of the matrix for VMs flavor 1

	128	256	512	1024
1	0.0221	0.1787	1.6726	71.6537
2	0.0203	0.1198	1.2978	31.3095
4	0.0187	0.0811	0.9964	17.7449
8	0.2711	0.0669	0.5174	8.9784
16	0.3011	0.2976	0.4117	4.9098

Table 2: Computation time according to the number of nodes to the size of the matrix for VMs flavor 2

	128	256	512	1024	1360
1	0.0137	0.0937	0.8426	34.9952	21.3736
2	0.0169	0.0758	0.6042	11.7280	11.0668
4	0.2616	0.0698	0.4093	6.0268	6.4729
8	0.3310	0.0868	0.4060	6.0640	6.0757

Table 3: Computation time according to the number of nodes to the size of the matrix for VMs flavor 3

	128	256	512	1024
1	0.0223	0.1798	1.7618	41.7868
2	0.0212	0.1254	1.8515	34.9107
4	0.0213	0.1011	0.7157	18.3058

Table 4: Computation time according to the number of nodes to the size of the matrix for VMs flavor 4

B Errors screenshot

ID	Name	Status	Networks
afdd91af-3d11-4516-94b7-241da30911df	s202926vm-1	ACTIVE	public=10.7.2.154; s202926-net=192.168.111.2
cbf733ce-7d45-4553-afc6-72c948d70c52	s202926vm-10	ACTIVE	public=10.7.2.198; s202926-net=192.168.111.12
aaa9e163-52b8-42ec-9537-e834e12eb189	s202926vm-11	ACTIVE	public=10.7.2.219; s202926-net=192.168.111.13
24791ea7-ca44-4bf8-af01-b01cc4ac3a30	s202926vm-12	ACTIVE	public=10.7.2.220; s202926-net=192.168.111.14
013952ae-f334-4630-9c9d-a3dbdabb7521	s202926vm-13	ACTIVE	public=10.7.2.26; s202926-net=192.168.111.15
148d6042-91e6-4b52-8e99-e775f1dd4707	s202926vm-14	ACTIVE	public=10.7.2.247; s202926-net=192.168.111.16
704874db-98bd-417e-86be-adc4a57065cd	s202926vm-15	ACTIVE	public=10.7.2.28; s202926-net=192.168.111.17
195c5094-59e2-4d2b-a71f-198b55c2c769	s202926vm-16	ACTIVE	public=10.7.2.39; s202926-net=192.168.111.18
661f46ac-42a6-4d7f-81cf-2a9cc3b65246	s202926vm-17	ACTIVE	public=10.7.3.28; s202926-net=192.168.111.19
2d2326c3-0ff7-41de-b389-cd4708ab29a4	s202926vm-18	ACTIVE	public=10.7.3.29; s202926-net=192.168.111.20
b9621549-4dc4-44ca-a4d9-4026ae2f76cc	s202926vm-19	ACTIVE	public=10.7.3.30; s202926-net=192.168.111.21
6227406a-5b60-4f68-ae05-d10d9e4d6f84	s202926vm-2	ACTIVE	public=10.7.2.175; s202926-net=192.168.111.4
f386016b-5fbd-4f1c-b485-c3e98bbc3e33	s202926vm-20	ACTIVE	public=10.7.3.32; s202926-net=192.168.111.23
1732b7e2-c1ca-4095-9a29-98163042d39f	s202926vm-21	ACTIVE	public=10.7.3.31; s202926-net=192.168.111.22
1058ad83-1f64-4e5e-a63d-c5951bba9fa1	s202926vm-22	ACTIVE	public=10.7.3.33; s202926-net=192.168.111.24
56341d75-7770-4e61-b219-50fd4007bdc4	s202926vm-23	ACTIVE	public=10.7.3.34; s202926-net=192.168.111.25
d8177434-58f7-40b5-8aa0-73b7c6ba9908	s202926vm-24	ACTIVE	public=10.7.3.35; s202926-net=192.168.111.26
2f5956e9-9d1a-4755-8083-15445aa60de2	s202926vm-25	ERROR	
8e093744-27dd-443b-906d-fe2c1e63f8a9	s202926vm-26	ERROR	
4e8eb83e-9a05-487d-9e83-9b2089dd500b	s202926vm-27	ERROR	
2e521869-d5dc-4812-beac-63459bce6585	s202926vm-28	ERROR	
1e1db464-7630-45cd-9de5-360311468093	s202926vm-29	ERROR	
cde012a5-c732-4363-b769-d533bf51f304	s202926vm-3	ACTIVE	public=10.7.2.186; s202926-net=192.168.111.5
0e1be90d-7d6a-40bd-9e9f-6ac84ce066f3	s202926vm-30	ERROR	
3cf0ad06-b6a0-4491-9013-ce705064fa22	s202926vm-31	ERROR	
6df3610f-d359-4c58-ab5e-0d5be1a2a4aa	s202926vm-32	ERROR	
ef3132a2-5b0c-42d3-a04b-bcf2acb2c023	s202926vm-4	ACTIVE	public=10.7.2.187; s202926-net=192.168.111.6
b84db0e5-5476-4214-8786-14dd74bdbb51	s202926vm-5	ACTIVE	public=10.7.2.191; s202926-net=192.168.111.7
11cfb3bc-6835-409e-af2c-707ac71a1e67	s202926vm-6	ACTIVE	public=10.7.2.192; s202926-net=192.168.111.8
271942b6-c59c-44fe-a381-999db8946987	s202926vm-7	ACTIVE	public=10.7.2.193; s202926-net=192.168.111.9
e8303e5b-9ede-479c-9716-9ca8edc492fa	s202926vm-8	ACTIVE	public=10.7.2.195; s202926-net=192.168.111.10
22f37919-d1b1-42e8-a978-a7e5db127cfe	s202926vm-9	ACTIVE	public=10.7.2.197; s202926-net=192.168.111.11
 202926@senbazuru-01:~/assignment\$ date	+	+	