Recent Advances on HE for Multiple Parties

Yongsoo Song (Seoul National University)

Mar 26, 2023

The 2nd FHE.org Conference

Roadmap

01 Background

02 Research Landscape

03 New Multi-key CKKS & B/FV Schemes

Use Cases of HE: Scenario 1

- Privacy-preserving personalized services
- Can be implemented with a standard (single-key) HE

Use Cases of HE: Scenario 2

* Image courtesy of Seonhong Min

- Secure data aggregation and analysis
- The key management problem arises
- Need for HE variants with distributed authority

Building Multiparty Protocols from HE

- Key Generation Encryption Evaluation (Distributed) Decryption
 - (+) Low communication cost, user-friendly
 - (-) High computational complexity (cloud)

Direction 1 – Threshold HE (ThHE)

- **Setup:** parameters, a set of parties P_1, \dots, P_n
- Key Generation Protocol
 - Build a joint public key pk
 - Each party P_i obtains a secret share s_i
- Encryption & Evaluation
 - The public key pk is commonly used
- Decryption
 - t out of n shares $s_1, ..., s_n$ can be used to recover the secret s
 - Distributed decryption by t parties

Direction 2 – Multi-key HE (MKHE)

 (pk_1, sk_1)

- **Setup:** parameters
- Key Generation Algorithm
 - Each party P_i generates its own key pair
- Encryption
 - Output a single-key ciphertext

 (pk_2, sk_2)

ThHE vs MKHE

Threshold HE

(+) Efficiency

Comparable to single-key HE

(–) Static & Interactive

A set of parties should be determined at the beginning and cannot be changed later.

The joint key generation requires interaction.

Multi-key HE

(+) Flexibility & Dynamism

Independent key generation & encryption

Anyone can join the computation at any time

(–) Inefficient

Large ciphertext & expensive operation

Depending on the number of parties

Research Landscape (ThHE)

ThHE (t out of n access structure)

|t| < n

Very limited results
[BGG+18] Impractical
[MBH22] Stronger
assumption in decryption

Multiparty HE (MPHE) t = n

[AJL+12] Theoretic [MTBH20,Park21] Interactive key generation (relin. key) **MKHE**

Multi-group HE (MGHE)

[KLSW21] The best of two

worlds: MP+MKHE

Non-interactive keygen

Check out our **poster 1**:)

Research Landscape (MKHE)

MKHE

Old papers (~2017)
[LATV12,CM15,MW16, PS16,BP16,CZW17]
Theoretic studies,
Mostly based on GSW,
No implementation

MK-TFHE

[CCS19] Hybrid product between MK-RLWE & SK-GSW, quadratic complexity w/ n, first MKHE implementation [KMS21] Quasi-linear complexity. Visit our **poster 2.**

MK-CKKS/BFV

[CDKS19] MK relinearization w/ quadratic complexity [KKLSS22] Linear complexity. **More in this talk.**

Overview of [CDKS19]

- Encryption is the same as single-key CKKS
- A fresh ciphertext is a pair $c = (c_0, c_1) \in R_Q^2$ such that $c_0 + c_1 s \approx m \pmod{Q}$.
- Let $c = (c_0, c_1)$, $c' = (c'_0, c'_1)$ be fresh ciphertexts under secrets s, s'.
 - Then we define $c + c' = (c_0 + c'_0, c_1, c'_1) \pmod{Q}$
 - Decryptable by two keys as $(c_0 + c_0') + c_1 s + c_1' s' \approx m + m' \pmod{Q}$.
- In general, an MK ciphertext is of the form $\mathbf{c} = (c_0, c_1, ..., c_n)$
 - *n* is the number of parties associated with the ciphertext.

• $c_0 + c_1 s_1 + \dots + c_n s_n \approx m \pmod{Q}$.

MK Homomorphic Mult [CDKS19]

- Input: $\mathbf{c} = (c_0, c_1, ..., c_n), \mathbf{c}' = (c'_0, c'_1, ..., c'_n)$
- Step 1: Simple product
 - Compute $c \otimes c' = (c_{i,j})_{0 \le i,j \le n}$ where $c_{i,j} = c_i \cdot c'_j$.
 - Encryption of mm', under secret $(s_i \cdot s_j)_{0 \le i,j \le n}$.
- Step 2: Relinearization
 - Need a key-switching key for $s_i \cdot s_j$
 - Combine public keys of P_i and P_j to relinearize $c_{i,j}$:

$$((c_{i,j} \boxdot b_j) \boxdot v_i, (c_{i,j} \boxdot b_j) \boxdot u_i, c_{i,j} \boxdot d_i)$$
 under $(1, s_i, s_j)$.

• Require a quadratic complexity with n.

MK Homomorphic Mult [CDKS19]

- Input: $\mathbf{c} = (c_0, c_1, ..., c_n), \mathbf{c}' = (c'_0, c'_1, ..., c'_n)$
- Step 1: Simple product
 - Compute $c \otimes c' = (c_{i,j})_{0 \le i,j \le n}$ where $c_{i,j} = c_i \cdot c'_j$.
 - Encryption of mm', under secret $(s_i \cdot s_j)_{0 \le i,j \le n}$.
- Step 2: Relinearization
 - Need a key-switching key for $s_i \cdot s_j$
 - Combine public keys of P_i and P_j to relinearize $c_{i,j}$:
 - $((c_{i,j} \odot b_j) \odot v_i, (c_{i,j} \odot b_j) \odot u_i, c_{i,j} \odot d_i)$ under $(1, s_i, s_j)$.
 - Require a quadratic complexity with n.

- a: a common random
- r_i : a second secret key
- $\boldsymbol{b}_i + s_i \cdot \boldsymbol{a} \approx \boldsymbol{0} \pmod{Q}$
- $d_i + r_i \cdot a \approx s_i \cdot g \pmod{Q}$
- $\boldsymbol{v}_i + s_i \cdot \boldsymbol{u}_i \approx -r_i \cdot \boldsymbol{g} \pmod{Q}$

Motivation

• Eventually we aim to compute $(c_0^*, c_1^*, ..., c_n^*)$ where

$$c_0 = \sum_{i,j} (c_{i,j} \odot \boldsymbol{b}_j) \odot \boldsymbol{v}_i,$$

$$c_k = \sum_j (c_{k,j} \odot \boldsymbol{b}_j) \odot \boldsymbol{u}_k + \sum_i c_{i,k} \odot \boldsymbol{d}_i \quad \text{for } k \neq 0.$$

- Quadratic complexity is inevitable if we compute all $c_{i,j} = c_i \cdot c_j'$.
- Can we relinearize this term directly from c_i and c_j' without computing $c_{i,j}$?
- It seems infeasible since it involves a gadget decomposition $h(c_{i,j})$ but h is not a homomorphism.

Homomorphic Gadget Decomp. [KKLSS22]

- Main Idea: the primary goal of gadget decomposition is to find a short vector in the inverse image $g^{-1}(\cdot)$.
- **Definition**: a gadget decomposition $h: R_Q \to R^k$ is called homomorphic if $h(a) + h(b) \in g^{-1}(a+b), \ h(a) \circ h(b) \in g^{-1}(ab)$ for all a, b.
- It is a fascinating fact that the RNS-based decomposition is homomorphic!
 - From the property that $[a]_{q_i} \cdot [b]_{q_i} = ab \pmod{q_i}$.

Implication

Suppose that h is homomorphic

- In the relinearization, we substitute $h(c_{i,j})$ with $h(c_i) \circ h(c'_j)$. Then:
 - $\sum_i c_{i,k} \odot \mathbf{d}_i = \sum_i h(c_{i,k}) \cdot \mathbf{d}_i$ becomes $\sum_i (h(c_i) \circ h(c_k')) \cdot \mathbf{d}_i = h(c_k') \cdot (\sum_i h(c_i) \circ \mathbf{d}_i)$
 - Here $(\sum_i h(c_i) \circ d_i)$ is independent from k, so is pre-computable).
 - A similar can be done for $\sum_{j} c_{k,j} \odot \boldsymbol{b}_{j} = \sum_{j} h(c_{k,j}) \cdot \boldsymbol{b}_{j}$.

Results & Other Issues

- We achieve a linear complexity (asymptotically optimal)
- Applying it to BFV is not straightforward (due to the unnatural tensor product), but still possible.
- The new multiplication introduces a larger error, but there is an easy fix.

Conclusion

• ThHE / MPHE / MKHE / MGHE techniques have developed significantly.

The need is acute & fast enough to be useful.

It is time to put these tools into practice!

