Circuiti Sequenziali Macchine Non Completamente Specificate

Introduzione
Compatibilità
Riduzione del numero degli stati
Metodo generale

FSM non completamente specificate

- Sono macchine in cui per alcune configurazioni degli ingressi e stati correnti non sono specificati gli stati futuri e/o le configurazioni d'uscita
- Una sequenza di ingresso si dice applicabile se:
 - Per ogni simbolo d'ingresso della sequenza, la funzione stato prossimo δ è specificata, tranne, al più, l'ultimo
- Due stati s_i e s_i si dicono compatibili se
 - Partendo da s_i e da s_j
 - lacktriangle Usando ogni possibile sequenza di ingresso applicabile $f I_{lpha}$
 - Si ottengono le stesse sequenze d'uscita ovunque queste siano specificate
- La compatibilità tra s_i e s_j si indica con: s_i v s_j

Compatibilità

- La compatibilità è una relazione più debole di quella di indistinguibilità
 - Non vale la proprietà transitiva cioè se $\mathbf{s_i} \lor \mathbf{s_j}$ e $\mathbf{s_j} \lor \mathbf{s_k}$ può non essere $\mathbf{s_i} \lor \mathbf{s_k}$
- Si consideri a tale proposito il seguente esempio:

- La regola di Paull-Unger è stata estesa per trattare il caso delle macchine non completamente specificate
- Due stati sono compatibili se e solo se, per ogni simbolo di ingresso ia valgono le due seguenti relazioni:

$$\lambda(\mathbf{s}_{\mathbf{i}}, \mathbf{i}_{\alpha}) = \lambda(\mathbf{s}_{\mathbf{j}}, \mathbf{i}_{\alpha})$$

- Se ambedue sono specificati
- Se uno o entrambi non sono specificati l'uguaglianza si ritiene soddisfatta

$$\delta(\mathbf{s}_{i}, \mathbf{i}_{\alpha}) = \delta(\mathbf{s}_{j}, \mathbf{i}_{\alpha})$$

- Se ambedue sono specificati
- Se uno o entrambi non sono specificati la compatibilità si ritiene soddisfatta

- Poiché gli insiemi s ed I hanno cardinalità finita, dopo un certo numero di passi si ricadrà necessariamente in una delle due seguenti condizioni:
- s_i * s_j
 - Se i simboli d'uscita sono diversi
 - Se gli stati prossimi sono già stati verificati come non compatibili
- s_i ∨ s_j
 - Se i simboli d'uscita sono uguali
 - Se gli stati prossimi sono già stati verificati come compatibili
 - Se gli stati prossimi sono già stati parte della sequenza di controllo

- Le relazioni di compatibilità possono essere identificate grazie alla Tabella delle Implicazioni
 - Si costruisce in modo analogo a quello visto per le macchine completamente specificate
- Ogni elemento della tabella contiene:
 - Il simbolo di compatibilità
 - Se gli stati corrispondenti sono compatibili
 - Il simbolo di non compatibilità
 - Se gli stati corrispondenti non sono compatibili
 - Le coppie di stati a cui si rimanda la verifica
 - Se non è possibile pronunciarsi sulla compatibilità

- La relazione di compatibilità non è transitiva
 - I vincoli vanno mantenuti anche nelle successive fasi della minimizzazione
 - Non si può immediatamente concludere che tutte le compatibilità sono soddisfatte
- È necessaria una analisi ulteriore della tabella delle implicazioni

Tabella degli stati

Tabella delle implicazioni Primo passo Tabella delle implicazioni Secondo passo

	0	1		
a	e/0	a/0		
b	d/0	b/0		
С	e/-	c/-		
đ	a/1	a/1		
е	a/-	b/-		

Tabella delle implicazioni

Grafo di compatibilità

Classi di compatibilità

- Introduciamo ora alcune utili definizioni
 - Classe di compatibilità
 - Insieme di stati compatibili fra di loro a coppie
 - Sul grafo di compatibilità una classe di compatibilità è un poligono completo

- Classe di compatibilità non contenuta in nessun altra classe
- Sul grafo di compatibilità una classe di massima compatibilità è un poligono completo non contenuto in nessun altro

Classi di compatibilità

- Per procedere alla descrizione del metodo di riduzione occorrono ancora le seguenti definizioni:
 - Insieme di classi di compatibilità chiuso
 - Per ogni classe dell'insieme tutti gli stati futuri ad essa relativi sono contenuti in almeno una classe dell'insieme
 - Tutti i vincoli sono rispettati
 - Copertura della tabella degli stati
 - Insieme di classi di compatibilità per cui ogni stato della tabella è contenuto in almeno una classe

- Minimizzare il numero di stati comporta
 - Trovare l'insieme chiuso minimo di classi di compatibilità
 - Verificare che l'insieme trovato copra l'insieme degli stati su cui è definita la macchina
- Si noti che
 - L'insieme di tutte le classi di massima compatibilità è chiuso e copre l'insieme degli stati
- Associando un nuovo stato ad una classe di massima compatibilità si ottiene una nuova macchina:
 - Con un numero di stati potenzialmente minore di quello della macchina di partenza
 - Non necessariamente minimo
- Le classi di compatibilità non sono sempre disgiunte

Esempio (continua)

Grafo di compatibilità

Classi di massima compatibilità

Classi di massima compatibilità

Classi di massima compatibilità

Classi di massima compatibilità

Copertura

$$soleta = \{a, c, e\}$$

$$s1 = \{e, c, d\}$$

$$S2 = \{a, b, c\}$$

Nota:

La soluzione è un insieme chiuso di classi di massima compatibilità e copre tutti gli stati

Tale copertura, tuttavia, non è necessariamente minima

- Si ricerca un insieme più piccolo
 - ► Gli stati nella classe s0={a,c,e} sono già coperti dalle due classi s1 ed s2

Il nuovo insieme di classi di massima compatibilità è:

$$S0 = \{a,b,c\}$$

 $S2 = \{c,d,e\}$

Si deve verificare che il nuovo insieme sia chiuso

- Le due classi s0={a,b,c} ed s2={c,d,e} non formano un insieme chiuso in quanto il vincolo (a,e) da cui dipende dvc e cve non è contenuto né in s0 né in s2
- Si osservi che, scegliere erroneamente un insieme di classi non chiuso comporta l'impossibilità di costruire la macchina minima

	0	1	
a	e/0	a/0	
b	d/0	b/0	
С	e/-	c/-	
d	a/1	a/1	
е	a/-	b/-	

	0	1	
S 0	S2/0	S0/0	
s2	??/1	S0/1	
	•		
	$c \rightarrow \epsilon$	≘/- → :	52/-
	$d \rightarrow a$	$a/1 \rightarrow a$	S0/1

- Tuttavia si nota che lo stato c è già coperto dalla classe so per cui è possibile escluderlo dalla classe s2
- Le classi risultanti da questa ultima scelta sono dunque:

- Le due classi so ed so formano un insieme chiuso
 - Tutti i vincoli sono soddisfatti da un classe dell'insieme

- Sulla base di:
 - Tabella degli stati della macchina iniziale
 - Insieme chiuso delle classi di compatibilità
- Si determina la nuova tabella degli stati corrispondente alla macchina ridotta

Tabella degli stati Classi di compatibilità Tabella deg

Tabella degli stati ridotta

	0	1					0	1
a	e/0	a/0	{a, b,	$c\} \rightarrow$	so —	S 0	S3/0	S0/0
b	d/0	b/0						
С	e/-	c/-						
d	a/1	a/1	{d, e}	→ S3		s 3	S0/1	S0/1
е	a/-	b/-						