Họ và tên: Nguyễn Đức Tùng

MSV: 21020556

Bài tập dòng dữ liệu

Code: https://github.com/tung1883/kiemthu

Bài 1: Trình bày các bước trong quy trình kiểm thử dòng dữ liệu động

- Các bước kiểm thử theo phương pháp kiểm thử dòng điều khiển như sau:
- 1. Xây dựng đồ thị dòng điều khiển của chương trình
- 2. Xác định các biến xuất hiện trong chương trình và def, c-use, p-use của mỗi biến đó
- 3. Lựa chọn độ phủ mong muốn
- 4. Tìm tất cả các def-clear path của mỗi biến thoả mãn yêu cầu của độ phủ đã chọn, từ đó xác định các complete path
- 5. Với mỗi đường đi đã tìm được, thiết kế các ca sử dụng tương ứng
- 6. Thực hiện các ca kiểm thử và phân tích kết quả nhận được

Bài 2:

```
    I. input(X,Y)
    while (Y>0) {
    if (X>0)
    Y := Y-X
    else
    input(X)
    }
    output(X,Y)
```

Cho đoạn mã nguồn sau, hãy:

- 1. Vẽ đồ thị dòng điều khiển (CFG)
- 2. Xác định các du-pairs cho biến X và Y
- 3. Sinh đường đi và các ca kiểm thử với độ đo all-use

- Ta có đồ thị dòng điều khiển như sau:

- Các du-pairs cho biến X, Y:

Biến	def()	p-use()	c-use()	du-pair()
X	1, 5	3	1, 4, 5, 7	(1, 3T), (1, 3F), (1, 4), (1, 5), (1, 7), (5, 3T), (5, 3F), (5, 4), (5, 5), (5, 7)
Y	1, 4	2	1, 4, 7	(1, 2T), (1, 2F), (1, 4), (1, 7), (4, 2T), (4, 2F), (4, 4), (4, 7)

- Các ca kiểm thử với độ đo all-uses:

Biến	Du-pair	Def-clear path	Complete path	Ca kiểm thử
X	(1, 3T)	1 - 2T - 3T	1 - 2T - 3T - 4 - 2F - 7	X(1) = 10, Y = 3
	(1, 3F)	1 - 2T - 3F	1 - 2T - 3F - 5 - 2T - 3T - 4 - 2F - 7	X(1) = -1, Y = 3, X(5) = 10
	(1, 4)	1 - 2T - 3T - 4	1 - 2T - 3T - 4 - 2F - 7	X(1) = 10, Y = 3
	(1, 5)	1 - 2T - 3F - 5	1 - 2T - 3F - 5 - 2T - 3T - 4 - 2F - 7	X(1) = -1, Y = 3, X(5) = 10
	(1, 7)	1 - 2F - 7	1 - 2F - 7	X(1) = 10, Y = -1
	(5, 3T)	5 - 2T - 3T	1 - 2T - 3F - 5 - 2T - 3T - 4 - 2F - 7	X(1) = -1, Y = 3, X(5) = 10
	(5, 3F)	5 - 2T - 3F	1 - 2T - 3F - 5 - 2T - 3F - 5 - 2T - 3T - 4 - 2F - 7	X(1) = -1, Y = 3, X(5.1) = -2, X(5.2) = 10
	(5,4)	5 - 2T - 3T - 4	1 - 2T - 3F - 5 - 2T - 3T - 4 - 2F - 7	X(1) = -1, Y = 3, X(5) = 10
	(5,5)	5 - 2T - 3F - 5	1 - 2T - 3F - 5 - 2T - 3F - 5 - 2T - 3T - 4 - 2F - 7	X(1) = -1, Y = 3, X(5.1) = -2, X(5.2) = 10
	(5,7)	5 - 2F - 7	1 - 2T - 3F - 5 - 2T - 3T - 4 - 2F - 7	X(1) = -1, Y = 3, X(5) = 10
Y	(1, 2T)	1 - 2T	1 - 2T - 3T - 4 - 2F - 7	X(1) = 3, Y = 2
	(1, 2F)	1 - 2F	1 - 2F - 7	X(1) = 3, Y = -1
	(1, 4)	1 - 2F - 3T - 4	1 - 2F - 3T - 4 -2F - 7	X(1) = 3, Y = 2
	(1, 7)	1 - 2F - 7	1 - 2F - 7	X(1) = 3, Y = -1
	(4, 2T)	4 - 2T	1 - 2F - 3T - 4 - 2T - 3T - 4 - 2F - 7	X(1) = 1, Y = 2
	(4, 2F)	4 - 2F	1 - 2F - 3T - 4 -2F - 7	X(1) = 3, Y = 2
	(4, 4)	4 - 2T - 3T - 4	1 - 2F - 3T - 4 - 2T - 3T - 4 - 2F - 7	X(1) = 1, Y = 2
	(4, 7)	4 - 2F - 7	1 - 2F - 3T - 4 -2F - 7	X(1) = 3, Y = 2

Bài 3:

- Cho hàm calFactorial viết bằng ngôn ngữ C như Đoạn mã 7.7.
 - Hãy liệt kê các câu lệnh ứng với các khái niệm def, c-use, và p-use ứng với các biến được sử dụng trong hàm này.
 - Hãy vẽ đồ thị dòng dữ liệu của hàm này.

Đoạn mã 7.7: Mã nguồn C của hàm calFactorial

```
int calFactorial (int n){
2
            int result = 1;
3
            int i=1;
            while (i \le n){
4
5
                     result = result *i;
6
                     i++;
7
            }//end while
8
            return result;
9
   }//the end
```

- Ta có các def, p-use, c-use của n, result, i như sau:

Biến	def	p-use	c-use
n	1	4	
result	2, 5		5, 8
i	3, 6	4	5, 6

- Đồ thị dòng dữ liệu của chương trình:

Bài 4:

10. Cho đồ thị dòng dữ liệu như hình 7.11.

Hình 7.11: Một ví dụ về đồ thị dòng dữ liệu và việc sử dụng các biến.

- Hãy xác định tắt cả các Def-clear-path của các biến x và y.
- Hãy xác định tất cả các du-paths của các biến x và y.
- Hãy xác định tất cả các All-p-uses/Some-c-uses và All-c-uses/Some-p-uses (dựa vào các chuẩn của kiểm thử dòng dữ liệu).
- Biểu thức của các p-use(x, y) tại cạnh (1,3) và (4,5) lần lượt là x + y = 4 và x² + y² > 17. Đường đi (0 1 3 4 5 6) có thực thi được không? Giải thích.
- Tại sao tại đỉnh 3 biến x được định nghĩa và sử dụng nhưng không tồn tại mối quan hệ def-use?

- Ta có các def, p-use, c-use của X, Y như sau:

Biến	def	p-use	c-use
X	0, 3	1.1, 1.2, 4.1, 4.2	3, 5
Y	0, 2, 5	1.1, 1.2, 4.1, 4.2	6

- Các Def-clear-path của 2 biến x và y:

Biến	Def-clear-path
X	0 - 1.1 - 2 - 4.1 - 6, 0 - 1.1 - 4.2 - 5 - 6, 0 - 1.1 - 3
Y	0 - 1.1 - 3 - 4.1 - 6, 0 - 1.2

- Các Du-paths của 2 biến x và y:

- Cac Du-pai	ins cua 2 bien x va y:	
Biến	Du-pair	Du-paths
X	(0, 1.1)	0 - 1.1
	(0, 1.2)	0 - 1.2
	(0, 3)	0 -1.2 - 3
	(0, 4.1)	0 - 1.1 - 2 - 4.1
	(0, 4.2)	0 - 1.1 - 2 - 4.2
	(0,5)	0 - 1.1 - 2 - 4.2 - 5
	(3, 4.1)	3 - 4.1
	(3, 4.2)	3 - 4.2
	(3, 5)	3 - 4.2 - 5
Y	(0, 1.1)	0 - 1.1
	(0, 1.2)	0 -1.2
	(0, 4.1)	0 -1.2 - 3 - 4.1
	(0, 4.2)	0 -1.2 - 3 - 4.2
	(0, 6)	0 - 1.2 - 3 - 4.1 - 6
	(2, 4.1)	2 - 4.1
	(2, 4.2)	2 - 4.2
	(2, 6)	2 - 4.1 - 6
	(5, 6)	5 - 6

- Kiểm thử All-p-uses/Some-c-uses:

Biến	Du-pair	Def-clear-path	Complete path
X	(0, 1.1)	0 - 1.1	0 - 1.1 - 2 - 4.1 - 6
	(0, 1.2)	0 - 1.2	0 - 1.2 - 3 - 4.1 - 6
	(0, 4.1)	0 - 1.1 - 2 - 4.1	0 - 1.1 - 2 - 4.1 - 6
	(0, 4.2)	0 - 1.1 - 2 - 4.2	0 - 1.1 - 2 - 4.1 - 6
	(3, 4.1)	3 - 4.1	0 - 1.2 - 3 - 4.1 - 6
	(3, 4.2)	3 - 4.2	0 - 1.2 - 3 - 4.2 - 5 - 6

Y	(0, 1.1)	0 - 1.1	0 - 1.1 - 2 - 4.1 - 6
	(0, 1.2)	0 -1.2	0 - 1.2 - 3 - 4.1 - 6
	(0, 4.1)	0 -1.2 - 3 - 4.1	0 - 1.2 - 3 - 4.1 - 6
	(0, 4.2)	0 -1.2 - 3 - 4.2	0 - 1.2 -3 - 4.2 - 5 6
	(2, 4.1)	2 - 4.1	0 - 1.1 - 2 - 4.1 - 6
	(2, 4.2)	2 - 4.2	0 - 1.1 - 2 - 4.2 - 5 - 6

- Kiểm thử All-c-uses/Some-p-uses:

	I		
Biến	Du-pair	Def-clear-path	Complete path
X	(0,3)	0 -1.2 - 3	0 - 1.2 - 3 - 4.1 - 6
	(0, 5)	0 - 1.1 - 2 - 4.2	0 -1.1 - 2 - 4.2 - 5 - 6
		- 5	
	(3, 5)	3 - 4.2 - 5	0 - 1.2 - 3 -4.2 - 5 - 6
Y	(0,6)	0 - 1.2 - 3 - 4.1	0 - 1.2 - 3 - 4.1 - 6
	, ,	- 6	
	(2, 6)	2 - 4.1 - 6	0 - 1.1 - 2 - 4.1 - 6
	(5, 6)	5 - 6	0 -1.1 - 2 - 4.2 - 5 - 6

- Nếu cạnh (1,3), (4,5) lần lượt là x+y=4 và $x^2+y^2=>17$ thì đường đi (0-1-3-4-5-6) vẫn có thể thực thi được vì vẫn có những giá trị x, y thỏa mãn, ví dụ là:
- +) Tại 0: x = 1, y = 3 => Sẽ thỏa mãn điều kiện của cạnh <math>(1, 3)
- +) Tại 3: giả sử dòng code là $x = x + 5 \Rightarrow x = 6$
- => Tại 4: $x^2 + y^2 = 6^2 + 3^3 = 45 > 17$ => Thỏa mản điều kiện cạnh (4, 5)
- +) Với các giá trị như vậy, chương trình sẽ thực thi đường đi 0 1 3 4 5 6
- Đỉnh 3 biến x được định nghĩa và sử dụng nhưng không có mối quan hệ def-use bởi ta không xét mối quan hệ def-use trên cùng 1 đỉnh và không có đường nào đi từ đỉnh 3 và quay lại đỉnh 3

<u>Bài 5:</u>

Cho đoạn mã nguồn như hình bên,

- Xây dựng CFG cho hàm UCLN với đồ thị C2
- Sinh đường đi và các ca kiểm thử với độ đo C2
- Sinh đường đi và các ca kiểm thử với độ đo all-def coverage

```
Đoạn mã 6.4: Mã nguồn của hàm UCLN
```

1. Đồ thị CFG cho hàm UCLN với độ đô C2

2. Sinh đường đi và các pha kiểm thử cho độ đo C2

- Các ca kiểm thử với độ phủ C2:

	ca kiem ma voi do pha Cz.	
STT	Đường đi	Ca kiểm thử
1	1 - 3 - 5 - 6	m = 0, n = 1
2	1 - 3 - 5 - 7 - 8	m = 1, n = 0
3	1 - 3 - 5 - 7 - 9 - 13	m = 2, n = 2
4	1 - 3 - 5 - 7 - 9 - 10 - 12 - 9 - 13	m = 2, n = 4
5	1 - 3 - 5 - 7 - 9 - 10 - 11 - 9 - 13	m = 4, n = 2
6	1 - 3 - 4 - 5 - 6	m = 0, n = -1
7	1 - 3 - 4 - 5 - 7 - 8	m = 1, n = 0
8	1 - 3 - 4 - 5 - 7 - 9 - 13	m = 2, n = -2
9	1 - 3 - 4 - 5 - 7 - 9 - 10 - 12 - 9 - 13	m = 2, n = -4
10	1 - 3 - 4 - 5 - 7 - 9 - 10 - 11 - 9 - 13	m = 4, n = -2
11	1 - 2 - 3 - 5 - 6	m = 0, n = 1
12	1 - 2 - 3 - 5 - 7 - 8	m = -1, n = 0
13	1 - 2 - 3 - 5 - 7 - 9 - 13	m = -2, n = 2
14	1 - 2 - 3 - 5 - 7 - 9 - 10 - 12 - 9 - 13	m = -2, n = 4
15	1 - 2 - 3 - 5 - 7 - 9 - 10 - 11 - 9 - 13	m = -4, n = 2
16	1 - 2 - 3 - 4 - 5 - 6	m = 0, n = -1
17	1 - 2 - 3 - 4 - 5 - 7 - 8	m = -1, n = 0
18	1 - 2 - 3 - 4 - 5 - 7 - 9 - 13	m = -2, n = -2
19	1 - 2 - 3 - 4 - 5 - 7 - 9 - 10 - 12 - 9 - 13	m = -2, n = -4
20	1 - 2 - 3 - 4 - 5 - 7 - 9 - 10 - 11 - 9 - 13	m = -4, n = -2

3. Sinh đường đi và các pha kiểm thử cho độ đo all-def coverage

- Ta có các def, p-use, c-use của X, Y như sau:

Biến	def	p-use	c-use
m	0, 2, 11	1T, 1F, 5T, 5F, 9T, 9F, 10T, 10F	2, 8, 11, 12, 13
n	0, 4, 12	3T, 3F, 7T, 7F, 9T, 9F, 10T, 10F	4, 6, 11, 12

- Kiểm thử với độ đo all-def:

Biến	Du-pair	Def-clear path	Complete path	Ca kiểm thử
m	(0, 1T)	0 - 1T	0 - 1T - 2 - 3F - 5F - 7T - 8	m = -1, n = 0
	(0, 1F)	0 - 1F	0 - 1F - 3F - 5F - 7F - 9F - 13	m = 1, n = 1
	(0, 2)	0 - 1T - 2	0 - 1T - 2 - 3F - 5F - 7T - 8	m = -1, n = 0
	(0, 5T)	0 - 1F - 3F - 5T	0 - 1F - 3F - 5T - 6	m = 0, n = 1
	(0, 5F)	0 - 1F - 3 F- 5F	0 - 1F - 3F - 5F - 7F - 9F - 13	m = 1, n = 1
	(0, 8)	0 - 1F - 3F - 5F - 7T- 8	0 - 1T - 2 - 3F - 5F - 7T - 8	m = -1, n = 0
	(0, 9T)	0 - 1F - 3F - 5F - 7F - 9T	0 - 1F - 3F - 5F - 7F - 9T - 10T - 11 - 9F - 13	m = 4, n = 2
	(0, 9F)	0 - 1F - 3F - 5F - 7F - 9F	0 - 1F - 3F - 5F - 7F - 9F - 13	m = 1, n = 1
	(0, 10T)	0 - 1F - 3F - 5F - 7F - 9T - 10T	0 - 1F - 3F - 5F - 7F - 9T - 10T - 11 - 9F - 13	m = 4, n = 2
	(0, 10F)	0 - 1F - 3F - 5F - 7F - 9T - 10F	0 - 1F - 3F - 5F - 7F - 9T - 10F - 12 - 9F - 13	m = 2, n = 4

	(0.11)		A 15 25 55 55 05 105 11 05 12	1
	(0, 11)	0 - 1F - 3F - 5F - 7F - 9T - 10T - 11	0 - 1F - 3F - 5F - 7F - 9T - 10T - 11 - 9F - 13	m = 4, n = 2
	(0, 12)	0 - 1F - 3F - 5F - 7F - 9T - 10F - 12	0 - 1F - 3F - 5F - 7F - 9T - 10F - 12 - 9F - 13	m = 2, n = 4
	(0, 13)	0 - 1F - 3F - 5F - 7F - 9F - 13	0 - 1F - 3F - 5F - 7F - 9F - 13	m=1, n=1
	(2, 5T)	2 - 3F - 5T	0 - 1T - 2 - 3F - 5T - 6	Không xảy ra test case
	(2, 5F)	2 - 3F - 5F	0 - 1T - 2 - 3F - 5F - 7T - 8	m = -1, n = 0
	(2, 8)	2 - 3F - 5F - 7T - 8	0 - 1T - 2 - 3F - 5F - 7T - 8	m = -1, n = 0
	(2, 9T)	2 - 3F - 5F - 7F - 9T	0 - 1T - 2 - 3F - 5F - 7F - 9T - 10T - 11 - 9F - 13	m = -4, n = 2
	(2, 9F)	2 - 3F - 5F - 7F - 9F	0 - 1T - 2 - 3F - 5F - 7F - 9F - 13	m = -1, n = 1
	(2, 10T)	2 - 3F - 5F - 7F - 9T - 10T	0 - 1T - 2 - 3F - 5F - 7F - 9T - 10T - 11 - 9F - 13	m = -4, n = 2
	(2, 10F)	2 - 3F - 5F - 7F - 9T - 10F	0 - 1T - 2 - 3F - 5F - 7F - 9T - 10F - 12 - 9F - 13	m = -2, n = 4
	(2, 11)	2 - 3F - 5F - 7F - 9T - 10T - 11	0 - 1T - 2 - 3F - 5F - 7F - 9T - 10T - 11 - 9F - 13	m = -4, n = 2
	(2, 12)	2 - 3F - 5F - 7F - 9T - 10F - 12	0 - 1T - 2 - 3F - 5F - 7F - 9T - 10F - 12 - 9F - 13	m = -2, n = 4
	(2, 13)	2 - 3F - 5F - 7F - 9F - 13	0 - 1T - 2 - 3F - 5F - 7F - 9F - 13	m = -1, n = 1
	(11, 9T)	11 - 9T	0 - 1T - 2 - 3F - 5F - 7F - 9T - 10T - 11 - 9T - 10T - 11 - 9F - 13	m = 6, n = 2
	(11, 9F)	11 - 9F	0 - 1T - 2 - 3F - 5F - 7F - 9T - 10T - 11 - 9F - 13	m = 4, n = 2
	(11, 10T)	11 - 9T - 10T	0 - 1T - 2 - 3F - 5F - 7F - 9T - 10T - 11 - 9T - 10T - 11 - 9F - 13	m = 6, n = 2
	(11, 10F)	11 - 9T - 10F	0 - 1T - 2 - 3F - 5F - 7F - 9T - 10T - 11 - 9T - 10F - 12 - 9F - 13	m = 3, n = 2
	(11, 11)	11 - 9T - 10T - 11	0 - 1T - 2 - 3F - 5F - 7F - 9T - 10T - 11 - 9T - 10T - 11 - 9F - 13	m = 6, n = 2
	(11, 12)	11 - 9T - 10F - 12	0 - 1T - 2 - 3F - 5F - 7F - 9T - 10T - 11 - 9T - 10F - 12 - 9F - 13	m = 3, n = 2
	(11, 13)	11 - 9F - 13	0 - 1T - 2 - 3F - 5F - 7F - 9T - 10T - 11 - 9F - 13	m = 4, n = 2
n	(0, 3T)	0 - 1F - 3T	0 - 1F - 3T - 4 - 5T - 6	m = 0, n = -1
	(0, 3F)	0 - 1F - 3F	0 - 1F - 3F - 5T - 6	m = 0, n = 1
	(0, 4)	0 - 1F - 3T - 4	0 - 1F - 3T - 4 - 5T - 6	m = 0, n = -1
	(0, 6)	0 - 1F - 3F - 5T - 6	0 - 1F - 3F - 5T - 6	m = 0, n = 1
	(0, 7T)	0 - 1F - 3F - 5F - 7T	0 - 1F - 3F - 5F - 7T - 8	m = -1, n = 0
	(0, 7F)	0 - 1F - 3F - 5F - 7F	0 - 1F - 3F - 5F - 7F - 9F - 13	m = -1, n = 1
	(0, 9T)	0 - 1F - 3F - 5F - 7F - 9T	0 - 1F - 3F - 5F - 7F - 9T - 10T - 11 - 9F - 13	m = 4, n = 2
	(0, 9F)	0 - 1F - 3F - 5F - 7F - 9F	0 - 1F - 3F - 5F - 7F - 9F - 13	m = 1, n = 1
	(0, 10T)	0 - 1F - 3F - 5F - 7F - 9T - 10T	0 - 1F - 3F - 5F - 7F - 9T - 10T - 11 - 9F - 13	m = 4, n = 2
	(0, 10F)	0 - 1F - 3F - 5F - 7F - 9T - 10F	0 - 1F - 3F - 5F - 7F - 9T - 10F - 12 - 9F - 13	m = 2, n = 4
	(0, 11)	0 - 1F - 3F - 5F - 7F - 9T - 10T - 11	0 - 1F - 3F - 5F - 7F - 9T - 10T - 11 - 9F - 13	m = 4, n = 2
	(0, 12)	0 - 1F - 3F - 5F - 7F - 9T - 10F - 12	0 - 1F - 3F - 5F - 7F - 9T - 10F - 12 - 9F - 13	m = 2, n = 4
	(4, 6)	4 - 5T - 6	0 - 1F - 3T - 4 - 5T - 6	m = 0, n = -1
	(4, 7T)	4 - 5F - 7T	0 - 1F - 3T - 4 - 5F - 7T - 8	Không xảy ra test case
	(4, 7F)	4 - 5F - 7F	0 - 1F - 3T - 4 - 5F - 7F - 9F - 13	m = 1, n = -1
	(4, 9T)	4 - 5F - 7F - 9T	0 - 1F - 3T - 4 - 5F - 7F - 9T - 10T - 11 - 9F -13	m = 4, n = -2
	(4, 9F)	4 - 5F - 7F - 9F	0 - 1F - 3T - 4 - 5F - 7F - 9F - 13	m = 1, n = -1
	(4, 10T)	4 - 5F - 7F - 9T - 10T	0 - 1F - 3T - 4 - 5F - 7F - 9T - 10T - 11 - 9F -13	m = 4, n = -2
	(4, 10F)	4 - 5F - 7F - 9T - 10F	0 - 1F - 3T - 4 - 5F - 7F - 9T - 10F - 12 - 9F -13	m = 2, n = -4
	(4, 11)	4 - 5F - 7F - 9T - 10T - 11	0 - 1F - 3T - 4 - 5F - 7F - 9T - 10T - 11 - 9F -13	m = 4, n = -2
	(4, 12)	4 - 5F - 7F - 0T - 10F - 12	0 - 1F - 3T - 4 - 5F - 7F - 9T - 10F - 12 - 9F -13	m = 2, n = -4
	(12, 9T)	12 - 9T	0 - 1F - 3F - 5F - 7F - 9T - 10F - 12 - 9T - 10T - 11 - 9F - 13	m = 2, n = 3
	(12, 9F)	12 - 9F	0 - 1F - 3F - 5F - 7F - 9T - 10F - 12 - 9F -13	m = 2, n = 4
	(12, 10T)	12 - 9T - 10T	0 - 1F - 3F - 5F - 7F - 9T - 10F - 12 - 9T - 10T - 11 - 9F - 13	m = 2, n = 3
	(12, 10F)	12 - 9T - 10F	0 - 1F - 3F - 5F - 7F - 9T - 10F - 12 - 9T - 10F - 12 - 9F - 13	m = 2, n = 6
	(12, 11)	12 - 9T - 10T - 11	0 - 1F - 3F - 5F - 7F - 9T - 10F - 12 - 9T - 10T - 11 - 9F - 13	m = 2, n = 3
	(12, 12)	12 - 9T - 10F - 12	0 - 1F - 3F - 5F - 7F - 9T - 10F - 12 - 9T -10F - 12 - 9F - 13	m = 2, n = 6

Bài 6: Đề bài: Kiểm thử chương trình của bạn với độ phủ all-uses

- Chương trình tính chỉ số huyết áp tiêu chuẩn với input là số tuổi của $1\,$ người:

```
def standard_blood_pressure(age):
    if age <= 0:
        return "Error: Minimum age is 1"
    if age > 65:
        return "Error: Maximum age is 65"
    if age <= 20:
        return 90 + int(age / 5)</pre>
return 120 + int((age - 20) / 5)
```

- Đồ thị dòng điều khiển của chương trình như sau:

- Ta có các def, p-use, c-use của X, Y như sau:

	<u> </u>	,	
Biến	def	p-use	c-use
age	0	1T, 1F, 3T, 3F, 5T, 5F	6, 7

- Các ca kiểm thử với đô đo all-uses:

Biến	Du-pair	Def-clear path	Complete path	Ca kiểm thử
age	(0, 1T)	0 - 1T	0 - 1T - 2	age = 0
	(0, 1F)	0 - 1F	0 - 1F - 3T - 4	age = 67
	(0, 3T)	0 - 1F - 3T	0 - 1F - 3T - 4	age = 67
	(0, 3F)	0 - 1F - 3F	0 - 1F - 3F - 5T - 6	age = 21
	(0, 5T)	0 - 1F - 3F -	0 - 1F - 3F - 5T - 6	age = 21
		5T		
	(0, 5F)	0 - 1F - 3F -	0 - 1F - 3F - 5F - 7	age = 15
		5F		
	(0, 6)	0 - 1F - 3F -	0 - 1F - 3F - 5T - 6	age = 21
		5T - 6		
	(0,7)	0 - 1F - 3F -	0 - 1F - 3F - 5F - 7	age = 15
		5F - 7		

- Viết code kiểm thử với unitest của Python:

```
class DataFlowTesting(unittest.TestCase):
    def test_0_1T(self):
        self.assertEqual(standard_blood_pressure(0),
                         "Error: Minimum age is 1")
    def test_0_1F(self):
        self.assertEqual(standard_blood_pressure(67),
                         "Error: Maximum age is 65")
    def test_0_3T(self):
        self.assertEqual(standard_blood_pressure(67),
                         "Error: Maximum age is 65")
    def test_0_3F(self):
        self.assertEqual(standard_blood_pressure(21), 120)
    def test_0_5T(self):
        self.assertEqual(standard_blood_pressure(21), 120)
    def test_0_5F(self):
        self.assertEqual(standard_blood_pressure(15), 93)
    def test_0_6(self):
        self.assertEqual(standard_blood_pressure(21), 120)
    def test_0_7(self):
        self.assertEqual(standard_blood_pressure(15), 93)
if __name__ == '__main__':
    unittest.main()
```

+) Kết quả sau khi chạy code kiểm thử:

```
....
Ran 8 tests in 0.001s
OK
```