

CS-2001 **Data Structures**Fall 2023

Tree

Rizwan Ul Haq

Assistant Professor FAST-NU rizwan.haq@nu.edu.pk

Trees

Hierarchical data structure

- Examples:
 - Indexes in a book have a shallow tree structure
 - A family tree
 - Tree structure of University
- Others?

Unix / Windows file structure

Trees: Basic terminology

- Hierarchical data structure
- Each position in the tree is called a node
- The "top" of the tree is called the root
- The nodes immediately below a node are called its children; nodes with no children are called leaves (or terminal nodes), and the node above a given node is its parent (or father)
- A node x is ancestor of node y if x is father of y or father of some ancestor of y and y is called descendent of x
 - **Note:** Ancestor of a node is its parent, grand parent or grand-grand parent or so on....

Trees: Basic terminology

- Nodes with the same parent are siblings
- A node and collection of nodes beneath it is called a subtree
- The number of nodes in the longest path from the root to a leaf is the depth (or height) of the tree
- is the depth 2 or 3?
- depends on the author

Text book definition of **depth** of a tree

- Depth of a tree is maximum level of any leaf in the tree
- Root of tree is at level 0, and level of any other node in the tree is one more than the level of its father

- Nodes C, H, and I form a subtree
- Nodes H and I are siblings
- C is H's parent, H and I are children of C
- What is the depth of this tree?

Tree Properties

Property

- Number of nodes
- Height
- Root Node
- Leaves
- Max level number
- Ancestors of H
- Descendants of B
- Siblings of E
- Right subtree

Value

- 9
- 4
- Α
- C, D, F, H, I
- 4
- G, E, B, A
- D, E, F, G, H, I
- D, F
- C

Binary Tree

- A commonly used type of tree is a binary tree
 - In a binary tree each node has at most two children
 - Allows to label the children as left and right

- Likewise, the two sub-trees are referred as
 - Left sub-tree
 - Right sub-tree

Binary Tree: Full Node

- A full node is a node where both the left and right sub-trees are non-empty trees
- (OR) if it has exactly two child nodes

Binary Trees

- A tree is called Strictly Binary Tree if every non leaf node has exactly two children
 - A strictly binary tree having **n** leaves always contain **2**ⁿ**-1** nodes
 - It is also known as Full Binary Tree, Proper Binary Tree or 2-Tree
 - Every node is a **full node** or a **leaf node**

Perfect/Complete Binary Tree

- A perfect/Complete binary tree of height h is a binary tree where
 - All leaf nodes have the same depth or level L
 - All other nodes are full-nodes

Binary Tree: Properties

- A perfect/complete binary tree with height h has 2h leaf nodes
- A perfect/complete binary tree of height h has 2^{h + 1} 1 nodes
 - Number of leaf nodes: $L = 2^h$
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$

Binary Tree: Properties (4)

- A perfect/complete binary tree with height h has 2^h leaf nodes
- A perfect/complete binary tree of height h has 2^{h + 1} 1 nodes
 - Number of leaf nodes: L = 2^h
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$
- A perfect/complete binary tree with n nodes has height log₂(n+1)-1

$$n = 2^{h+1} - 1$$

 $2^{h+1} = n + 1$
 $h + 1 = \log_2(n + 1)$
 $\Rightarrow h = \log_2(n + 1) - 1$

Binary Tree: Properties (4)

- A perfect binary tree with height h has 2^h leaf nodes
- A perfect binary tree of height h has 2^{h + 1} 1 nodes
 - Number of leaf nodes: L = 2^h
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$
- A perfect binary tree with n nodes has height $log_2(n + 1) 1$
- Number n of nodes in a binary tree of height h is at least h+1 and at most 2^{h + 1} 1

[Almost] Complete Binary tree

Almost (or Nearly) Complete Binary Tree

- Almost complete binary tree of height h is a binary tree in which
 - 1. There are 2^d nodes at depth d for d = 1, 2, ..., h-1
 - Each leaf in the tree is either at level h or at level h 1
 - 2. The nodes at depth h are as far left as possible

Complete Binary Tree

- Complete binary tree of height h is a binary tree in which
 - 1. There are 2^d nodes at depth d for d = 1, 2, ..., h-1
 - Each leaf in the tree is either at level h or at level h 1
 - 2. The nodes at depth h are as far left as possible

Complete Binary Tree

Condition 2: The nodes at depth h are as far left as possible

- If a node p at depth h−1 has a left child
 - Every node at depth h-1 to the left of p has 2 children
- If a node at depth h−1 has a right child

• It also has a left child

Complete binary tree

Not a Complete binary tree (condition 2 violated)

Full vs. Complete Binary Tree

Complete Binary Trees...

What is the height and number of nodes for each tree?

Complete Binary Tree: Properties

- Total number of nodes n are between
 - At least: perfect binary tree of height h-1 + 1 (i.e., 1 node in the next level) \rightarrow 2^h 1 + 1= 2^h nodes
 - At most: perfect binary tree of height h, i.e., 2^{h+1} -1 nodes

Height h is equal to [Log₂(n)]

Balanced Binary Tree

Balanced binary tree

- For each node, the difference in height of the right and left subtrees is no more than one
- Both Perfect binary trees and complete binary trees are balanced as well

Completely balance binary tree

- Left and right sub-trees of every node have the same height
- A perfect binary tree is completely balanced

Tree ADT

Tree ADT

- Data Type: Any type of objects can be stored in a tree
- Accessor methods
 - root() returns the root of the tree
 - parent(p) returns the parent of a node
 - **children(p)** returns the children of a node
- Query methods
 - **size()** returns the number of nodes in the tree
 - **isEmpty()** returns true if the tree is empty
 - elements() returns all elements
 - **isRoot(p)** returns true if node p is the root
- Other methods
 - Tree traversal, Node addition/deletion, create/destroy

Binary Tree Storage

- Contiguous storage
- Linked-list based storage

Contiguous Storage

Array Storage Example

$\lfloor 1 \rfloor$	A
[2]	В
[3]	С
[4]	D
[5]	Е
[6]	F
[7]	G
[8]	Н
[9]	I

Array Storage

- We can store a binary tree as an array
- Traverse tree in breadth-first order, placing the entries into array
 - Storage of elements (i.e., objects/data) starts from root node
 - Nodes at each level of the tree are stored left to right

Array Storage

- The children of the node with index k are in 2k and 2k + 1
- The parent of node with index k is in k/2

Array Storage Example

- Node 10 has index 5
 - Its children 13 and 23 have indices 10 and 11, respectively

Array Storage Example

- Node 10 has index 5
 - Its children 13 and 23 have indices 10 and 11, respectively
 - Its parent is node 9 with index 5/2 = 2

Array Storage

- Why array index is not started from 0
 - In C++, this simplifies the calculations

```
parent = k >> 1;
left_child = k << 1;
right_child = left_child | 1;</pre>
```


Array Storage Example

Unused nodes in tree represented by a predefined bit

pattern

[1]	Α
[2]	В
[3]	-
[4]	С
[5]	1
[6]	•
[7]	-
[8]	D
[9]	-
[16]	Е

03/10/2023 FAST-NU, Faisalabad

Array Storage: Disadvantage

- Why not store any tree as an array using breadth-first traversals?
 - Because, there is a significant potential for a lot of wasted memory
- Consider the following tree with 12 nodes
 - What is the required size of array?

03/10/2023

Array Storage: Disadvantage

- Why not store any tree as an array using breadth-first traversals?
 - There is a significant potential for a lot of wasted memory
- Consider the following tree with 12 nodes
 - What is the required size of array? 32
 - What will be the array size if a child is added to node K? (Double it)

03/10/2023

Linked List Storage

As Linked List Structure

- We can implement a binary tree by using a struct which stores:
 - An element
 - A left child pointer (pointer to first child)
 - A right child pointer (pointer to second child)

```
struct Node {
    Type value;
    Node *LeftChild, *RightChild;
}*root;
```

- The root pointer points to the root node
 - Follow pointers to find every other element in the tree
- Leaf nodes have LeftChild and RightChild pointers set to NULL

As Linked List Structure: Example

Tree Traversal

Tree Traversal

- To traverse (or walk) the tree is to visit (printing or manipulating) each node in the tree exactly once
 - Traversal must start at the root node
 - There is a pointer to the root node of the binary tree

- Two types of traversals
 - Breadth-First Traversal
 - Depth-First Traversal

Breadth-First Traversal (For Arbitrary Trees)

- All nodes at a given depth d are traversed before nodes at d+1
- Can be implemented using a queue

• Order: ABHCDGIEFJK

Breadth-First Traversal – Implementation

- Create a queue and push the root node onto the queue
- While the queue is not empty:
 - Enqueue all of its children of the front node onto the queue
 - Dequeue the front node

03/10/2023

Depth-First Traversal (For Arbitrary Trees)

- Traverse as much as possible along the branch of each child before going to the next sibling
 - Nodes along one branch of the tree are traversed before backtracking
- Each node could be approached multiple times in such a scheme
 - The first time the node is approached (before any children)
 - The last time it is approached (after all children)

/10/2023 FAST-NU, Faisalabac

Depth-First Tree Traversal (Binary Trees)

- For each node in a binary tree, there are three choices
 - Visit the node first
 - Visit the node after left subtree
 - Visit the node after both the subtrees

- These choices lead to three commonly used traversals
 - Preorder traversal: visit Root (Left subtree) (Right subtree)
 - In-order traversal: (Left subtree) visit Root (Right subtree)
 - Post-order traversal: (Left subtree) (Right subtree) visit Root

Inorder Traversal

- Algorithm
 - 1. Traverse the left subtree in inorder
 - 2. Visit the root
 - 3. Traverse the right subtree in inorder

A, B, C, D, E, F, G, H, I, J

Inorder Traversal

Algorithm

- 1. Traverse the left subtree in inorder
- 2. Visit the root
- 3. Traverse the right subtree in inorder

Example

- Left + Right
- [Left * Right] + [Left + Right]
- (A * B) + [(Left * Right) + E)
- (A * B) + [(C * D) + E]

Inorder Traversal – Implementation

```
void inorder(Node *p) const
   if (p != NULL)
      inorder(p->leftChild);
      cout << p->info << " ";</pre>
      inorder(p->rightChild);
void main () {
   inorder (root);
```

Preorder Traversal

Algorithm

- 1. Visit the node
- 2. Traverse the left subtree
- 3. Traverse the right subtree

Example

- + Left Right
- + [* Left Right] [+ Left Right]
- + (* AB) [+ * Left Right E]
- +*AB + *C D E

Preorder Traversal – Implementation

```
void preorder(Node *p) const
   if (p != NULL)
      cout << p->info << " ";</pre>
      preorder(p->leftChild);
      preorder(p->rightChild);
void main () {
   preorder (root);
```

Postorder Traversal

Algorithm

- 1. Traverse the left subtree
- 2. Traverse the right subtree
- 3. Visit the node

Example

- Left Right +
- [Left Right *] [Left Right+] +
- (AB*) [Left Right * E +]+
- (AB*) [C D * E +]+
- AB* C D * E + +

Postorder Traversal – Implementation

```
void postorder(Node *p) const
   if (p != NULL)
      postorder(p->leftChild);
      postorder(p->rightChild);
      cout << p->info << " ";</pre>
void main () {
   postorder (root);
```

Example: Printing a Directory Hierarchy

- Consider the directory structure presented on the left
 - Which traversal should be used?

