Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum ...

Úloha č					
Název úlohy:					
Jméno:		Obor:	FOF	FAF	FMUZV
Datum měření:	Datum o	devzdá	ní:		

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Posuzoval:	dne:

Pracovní úkoly

- 1. Změřte dobu kmitu T_0 dvou stejných nevázaných fyzických kyvadel.
- 2. Změřte doby kmitů T_i dvou stejných fyzických kyvadel vázaných slabou pružnou vazbou vypouštěných z klidu při počátečních podmínkách
 - (a) $y_1 = y_2 = A \dots \text{doba kmitu } T_1$
 - (b) $y_1 = -y_2 = A \dots \text{doba kmitu } T_2$
 - (c) $y_1 = 0, y_2 = A$
 - i. doba kmitu T3
 - ii. doba $T_S/2$, za kterou dojde k maximální výměně energie mezi kyvadly
- 3. Vypočtěte kruhové frekvene ω_0 , ω_1 , ω_2 , ω_3 a ω_4 odpovídající dobám T_0 , T_1 , T_2 , T_3 a T_S , ověřte měřením platnost vztahů odvozených pro ω_3 a ω_4 .
- 4. Vypočtěte stupeň vazby κ .
- 5. Pro jednu pružinu změřte závislost stupně vazby na vzdálenosti zavěšení pružiny od uložení závěsu kyvadla a graficky znázorněte.

Teoretická část

Budeme studovat kmity dvou fyzických kyvadel vázaných slabou pružinou upevněnou ve vzdálenosti l od uložení závěsů kyvadel (viz obrázek 1). Po upevnění pružiny se rovnovážná poloha obou kyvadel vychýlí ze svislého směru o úhel α směrem k sobě. Okamžitou výchylku $\varphi_1(t)$ resp. $\varphi_2(t)$ uvažujeme od této nové rovnovážné polohy.

Po vyřešení pohybových rovnic dostáváme pro malé výchylky [1]

$$\varphi_1(t) = a_1 \cos(\omega_1 t) + b_1 \sin(\omega_1 t) + a_2 \cos(\omega_2 t) + b_2 \sin(\omega_2 t)
\varphi_2(t) = a_1 \cos(\omega_1 t) + b_1 \sin(\omega_1 t) - a_2 \cos(\omega_2 t) - b_2 \sin(\omega_2 t),$$
(1)

kde a_1 , b_1 , a_2 a b_2 jsou integrační konstanty, které určíme z počátečních podmínek. Úhlové frekvence ω_1 a ω_2 můžeme vypočítat podle vzorce [1]

$$\omega_1 = \sqrt{\frac{D}{I}}$$

$$\omega_2 = \sqrt{\frac{D + 2D^*}{I}},$$
(2)

kde I je moment setrvačnosti kyvadla, D je direkční moment kyvadla a D^* je direkční moment pružiny. Žádnou z těchto veličin však nebudeme měřit a úhlové rychlosti ω_1 a ω_2 změříme přímo při vhodně zvolených počátečních podmínkách.

Pro různé počáteční podmínky vychází:

1. Pro $\varphi_1(0)=\varphi_2(0)=A,\,\dot{\varphi_1}(0)=\dot{\varphi_2}(0)=0$ dostáváme

$$\varphi_1 = \varphi_2 = A\cos(\omega_1 t). \tag{3}$$

2. Pro $\varphi_1(0)=-\varphi_2(0)=A,\,\dot{\varphi_1}(0)=\dot{\varphi_2}(0)=0$ dostáváme

$$\varphi_1 = -\varphi_2 = A\cos(\omega_2 t). \tag{4}$$

3. Pro $\varphi_1(0)=0,\,\varphi_2(0)=A,\,\dot{\varphi_1}(0)=\dot{\varphi_2}(0)=0$ dostáváme

$$\varphi_1 = A \sin(\omega_4 t) \cdot \sin(\omega_3 t)
\varphi_2 = A \cos(\omega_4 t) \cdot \cos(\omega_3 t),$$
(5)

Obrázek 1: Nákres experimentu (přezato z [1])

kde

$$\omega_3 = \frac{1}{2}(\omega_2 + \omega_1)$$

$$\omega_4 = \frac{1}{2}(\omega_2 - \omega_1).$$
(6)

Pokud je vazba slabá, je ω_2 jen o málo větší než ω_1 a pohyb kyvadel můžeme považovat za harmonický s úhlovou frekvencí ω_3 a v čase proměnnou amplitudou $A\sin(\omega_4 t)$ ($A\cos(\omega_4 t)$ pro druhé kyvadlo).

Pro úhlové rychlosti ω_1 , ω_2 a ω_3 označíme odpovídající periody T_1 , T_2 a T_3 resp. Dále zavedeme dobu T_S jako polovinu periody odpovídající ω_4 . Platí tedy vztahy

$$T_1\omega_1 = 2\pi$$
 $T_2\omega_2 = 2\pi$ $T_3\omega_3 = 2\pi$ $T_5\omega_4 = \pi$ (7)

Standardní odchylku úhlové rychlosti počítáme vždy jako $\sigma_{\omega} = \omega \cdot \sigma_{T}/T$.

S nahlédnutím do (5) je T_S zřejmě doba mezi dvěma časy, kdy je amplituda kyvadla nulová (viz obrázek 2). Stupeň vazby κ je definován jako [1]

$$\kappa = \frac{D^*}{D + D^*} \,. \tag{8}$$

S využitím (2) můžeme (8) upravit na

$$\kappa = \frac{\omega_2^2 - \omega_1^2}{\omega_2^2 + \omega_1^2} \,. \tag{9}$$

Standardní odchylku stupně vazby σ_{κ} v závislosti na odchylkách σ_{ω_1} a σ_{ω_2} určíme jako

$$\sigma_{\kappa} = \sqrt{\left(\frac{\partial \kappa}{\partial \omega_{1}}\right)^{2} \cdot \sigma_{\omega_{1}}^{2} + \left(\frac{\partial \kappa}{\partial \omega_{2}}\right)^{2} \cdot \sigma_{\omega_{2}}^{2}} = \frac{4\omega_{1}^{2}\omega_{2}^{2}}{(\omega_{1}^{2} + \omega_{2}^{2})^{2}} \sqrt{\left(\frac{\sigma_{\omega_{1}}}{\omega_{1}}\right)^{2} + \left(\frac{\sigma_{\omega_{2}}}{\omega_{2}}\right)^{2}}$$
(10)

Měřící přístroje

Vzdálenost upevnění pružiny od uložení závěsů kyvadla l jsme měřili svinovacím metrem s nejmenším dílkem 1 mm. Standardní odchylku σ_l odhadujeme také na 1 mm. Dobu kyvu jsme měřili sonarem, který snímal polohu kyvadla v čase se vzorkovací frekvencí 25 Hz. Výstup jsme zobrazili v programu Logger Lite a odečetli dobu většího počtu kyvů (většinou 9 nebo 10). Standardní odchylku určení času odhadujeme na 0.1 s. Protože jsme odečítali dvě hodnoty od sebe, považujeme standardní odchylku změřeného času za $\sqrt{2} \cdot 0.1$ s. Pokud jsme měřili

Obrázek 2: Časová závislost výchylky prvního kyvadla φ_1 při počátečních podmínkách $\varphi_1(0) = 0$, $\varphi_2(0) = A$ a $\dot{\varphi}_1(0) = \dot{\varphi}_2(0) = 0$, pokud zanedbáme tlumení. Závislost φ_2 je oproti φ_1 posunutá o čas $T_S/2$. Doba T_4 je perioda odpovídající úhlové rychlosti ω_4 a platí $T_4 = 2T_S$. (převzato z [1])

dobu n kyvů, považujeme za standardní odchylku $\frac{1}{n}\sqrt{2}\cdot0.1$ s. Uvádíme pouze výsledné časy a jejich odchylky. Co se týče doby T_S , měřili jsme vždy pouze polovinu periody (tedy přímo dobu T_S), protože energické ztráty byly příliš vysoké a po dvou periodách byl již celý systém téměř v klidu. Navíc přesný čas, kdy byla amplituda nulová bylo obtížné přesně určit (viz obrázek 2). Vzhledem k těmto skutečnostem odhadujeme standardní odchylku σ_{T_S} vždy na 0.3 s.

Výsledky měření

Nejdříve jsme změřili periodu obou kyvadel, když nebyly vázány, abychom se ujistili, že skutečně kmitají stejně. Naměřené T_0 a odpovídající $\omega_0 = 2\pi/T_0$ jsou uvedeny v tabulce 1.

kyvadlo	T_0 (s)	$\omega_0 \; (\mathrm{s}^{-1})$
levé	1,88(2)	3,35(3)
pravé	1,88(2)	3,35(3)

Tabulka 1: Kmity nevázáných kyvadel

Časy T_1, T_2, T_3 a T_S jsme změřili s dvěma pružinami A $(k = 7\,\mathrm{N\,m^{-1}})$ a B $(k = 4\,\mathrm{N\,m^{-1}})$ při $l = 27.8(1)^{\mathrm{i}}\mathrm{cm}$ Spolu s odpovídajícími $\omega_1, \, \omega_2, \, \omega_3$ a ω_4 a vypočtenými κ jsou uvedeny v tabulce 2.

	T_1 (s)	$\omega_1 \; (\mathrm{s}^{-1})$	T_2 (s)	$\omega_2 \; (\mathrm{s}^{-1})$	T_3 (s)	$\omega_3 \; (\mathrm{s}^{-1})$	T_S (s)	$\omega_4~(\mathrm{s}^{-1})$	κ
A	1,87(2)	3,37(3)	1,71(2)	3,67(4)	2,12(2)	2,96(3)	21,2(3)	0,148(2)	0,087(13)
В	1,87(2)	3,36(4)	1,79(2)	3,51(3)	1,83(2)	3,43(4)	40,4(3)	0,0777(6)	0,045(13)

Tabulka 2: Kmity vázaných kyvadel při různých počátečních podmínkách

S pružinou A jsme navíc změřili T_1 a T_2 pro různé vzdálenosti upevnění pružiny l. Spolu s odpovídajícími ω_1 , ω_2 a vypočtenými κ jsou uvedeny v tabulce 3. Závislost $\kappa(l)$ je vynesena do grafu 1.

Diskuze

Teoretické hodnoty ω_3 a ω_4 podle vztahu (6) jsou pro $l=27.8(1)\,\mathrm{cm}$:

• Pružina A:
$$\omega_3 = 3,52(3) \,\mathrm{s}^{-1}$$

 $\omega_4 = 0,15(3) \,\mathrm{s}^{-1}$

 $^{^{}i}$ Číslo v závorce označuje standardní odchylku v řádu poslední uvedené cifry, např. 0,50(12) znamená hodnotu 0,50 se standardní odchylkou 0,12.

l	T_1 (s)	$\omega_1 \; (\mathrm{s}^{-1})$	T_2 (s)	$\omega_2 \; (\mathrm{s}^{-1})$	κ
27,8(1)	1,87(2)	3,37(3)	1,71(2)	3,67(4)	0,087(13)
24(1)	1,87(2)	3,36(3)	1,75(2)	3,57(3)	0,066(11)
19(1)	1,87(2)	3,36(3)	1,80(2)	3,50(3)	0,041(11)
14(1)	1,87(2)	3,36(3)	1,83(2)	3,43(3)	0,022(11)
9(1)	1,88(2)	3,35(3)	1,86(2)	3,39(3)	0,011(11)

Tabulka 3: Kmity kyvadel vázaných pružinou A upevněnou v různých vzdálenostech od uložení závěsu

Graf 1: Závislost stupně vazby κ na vzdálenosti upevnění pružiny A od uložení závěsů kyvadel l

• Pružina B: $\omega_3 = 3{,}44(3)\,\mathrm{s}^{-1}$ $\omega_4 = 0{,}08(3)\,\mathrm{s}^{-1}$

Všechny naměřené hodnoty se velmi přesně shodují s teoretickými, až na ω_3 s pružinou A (naměřeno $2,96(3)\,\mathrm{s}^{-1}$), která se od teoretické výrazně liší. Vzhledem k tomu, že naměřené ω_4 velmi přesně odpovídá naměřeným ω_1 a ω_2 , je nejpravděpodobnější příčinou hrubá chyba při měření periody T_3 (pravděpodobně chybný odečet počtu měřených period). Nemůžeme ale vyloučit, že se o hrubou chybu nejedná a pohyb kyvadel našemu modelu neodpovídá. V každém případě je měření neprůkazné a mělo by se zopakovat.

Pokud upevníme pružinu s tuhostí k ve vzdálenosti l od upevnění kyvadla, působí při malých výchylkách (tj. $\sin(\varphi) \approx \varphi$) na kyvadlo silou

$$F = -k \cdot l \cdot \varphi \tag{11}$$

a působí momentem síly $M = F \cdot l$

$$M = -k \cdot l^2 \cdot \varphi \,. \tag{12}$$

Porovnáním s definicí direkčního momentu

$$M = -D \cdot \varphi \tag{13}$$

snadno nahlédneme, že pro direkční moment pružiny D^* platí

$$D^* = -k \cdot l^2 \,. \tag{14}$$

Dosazením do (8) dostáváme pro slabé vazby a krátké vzdálenosti l (tj. $D^* \ll D$)

$$\kappa = a \cdot l^2 \,, \tag{15}$$

kde $a=D^*/D$. Proto jsme v grafu 1 fitovali závislost funkcí $\kappa(l)=a\cdot l^2$. Všechny hodnoty leží velmi přesně na této křivce.

Závěr

Změřili jsme dobu kmitu dvou nevázaných fyzických kyvadel, hodnoty jsou uvedeny v tabulce 1.

Dále jsme měřili periody těchto kyvadel při vazbě různými pružinami upevněnými v různých vzdálenostech od uložení závěsů a při různých počátečních podmínkách. Naměřené doby kmitů T_1, T_2, T_3 a T_S pro l=27.8(1) cm jsou uvedeny v tabulce 2. Teoretický vztah (6) nesplňuje pouze ω_3 pro pružinu A, tato hodnota je pravděpodobně zatížena hrubou chybou.

Dále jsme s pružinou A měřili závislost stupně vazby na vzdálenosti jejího upevnění od uložení závěsů kyvadel. Naměřené hodnoty jsou uvedeny v tabulce 3 a vyneseny do grafu 1. Hodnoty téměř dokonale kopírují teoretickou závislost pro slabé vazby $\kappa = a \cdot l^2$.

Seznam použité literatury

1. Studium kmitů vázaných oscilátorů.