

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ _	Фундаментальные науки
КАФЕДРА	Прикладная математика

Отчёт по лабораторной работе \mathcal{N}_2

Итерационные методы решения систем линейных алгебраических уравнений

Студент:	Φ Н2- $52Б$	А.И. Токарев			
	(Группа)	(Подпись, дата)	(И. О. Фамилия)		
			Ю. А. Сафронов		
		(Подпись, дата)	(И.О. Фамилия)		
Проверил:					
		(Подпись, дата)	(И. О. Фамилия)		

Оглавление

1.	Краткое описание алгоритмов	3
	1.1. Метод простой итерации	3
	1.2. Метод Якоби	3
	1.3. Методы релаксации и Зейделя	3
2.	Исходные данные	4
3.	Результаты расчетов	5
1	Koumnonthulie ponnochi	6

1. Краткое описание алгоритмов

Дана система линейных алгебраических уравнений:

$$\sum_{j=1}^{n} a_{ij} x_i = f_i, \quad i = \overline{1, n}. \tag{1}$$

Будем искать решение итерационными методами, т.е. последовательно приближаясь к решению. Общий вид стационарных итерационных методов:

$$B\frac{x^{k+1} - x^k}{\tau} + Ax^k = f.$$

1.1. Метод простой итерации

$$B = E, \quad \frac{x^{k+1} - x^k}{\tau} + Ax^k = f, \quad k \in \mathbb{N};$$
$$x^k = -(\tau A - E)x^{k-1} + \tau f.$$

1.2. Метод Якоби

Представим матрицу A в виде суммы

$$A = L + D + U.$$

где L — нижняя треугольная, U — верхняя треугольная, а D - диагональная матрицы.

$$B = D$$
, $D(x^{k-1} - x^k) + Ax^k = f$, $k \in \mathbb{N}$;
 $x^{k+1} = -D^{-1}(L+U)x^k + D^{-1}f$.

1.3. Методы релаксации и Зейделя

$$B = D + \omega L, \quad \tau = \omega \quad (D + \omega L) \frac{x^{k+1} - x^k}{\omega} + Ax^k = f, \quad k \in \mathbb{N};$$
$$(E + \omega D^{-1}L)x^{k+1} = ((1 - \omega)E - \omega D^{-1}U)x^k + \omega D^{-1}f;$$

 $\omega > 0$ — метод релаксации, $\omega = 1$ — частный случай, метод Зейделя.

Для метода релаксации существуют удобные расчетные формулы, которые помогают упростить вычисления.

$$x_i^{k+1} + \omega \sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{k+1} = (1 - \omega) x_i^k - \omega \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}} x_j^k + \omega \frac{f_i}{a_{ii}}, i = \overline{1, ..., n};$$

$$x_1^{k+1} = (1 - \omega)x_1^k - \omega \sum_{j=2}^n \frac{a_{1j}}{a_{11}}x_j^k + \omega \frac{f_1}{a_{11}};$$

$$x_2^{k+1} = -\omega \frac{a_{21}}{a_{22}}x_1^{k+1} + (1 - \omega)x_2^k - \omega \sum_{j=3}^n \frac{a_{2j}}{a_{22}}x_j^k + \omega \frac{f_2}{a_{22}};$$
...

$$x_i^{k+1} = -\omega \sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{k+1} + (1-\omega) x_i^k - \omega \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}} x_j^k + \omega \frac{f_i}{a_{ii}}, \quad i = \overline{3, 4, ..., n-1};$$

$$x_n^{k+1} = -\omega \sum_{j=1}^{i-1} \frac{a_{nj}}{a_{nn}} x_j^{k+1} + (1-\omega) x_n^k + \omega \frac{f_n}{a_{nn}}$$

2. Исходные данные

Для СЛАУ матрица A и столбец правой части f_A имеют вид

$$A = \begin{pmatrix} 175.4000 & 0.0000 & 9.3500 & -0.960 \\ 0.5300 & -46.0000 & 0.2300 & 5.1900 \\ -0.6300 & 5.4400 & 190.6000 & 9.7000 \\ 6.2300 & -8.8900 & -9.8800 & -153.4000 \end{pmatrix}, \quad f_A = \begin{pmatrix} 985.3600 \\ 348.170 \\ 2284.7700 \\ -638.7800 \end{pmatrix}.$$

Так же нужно решить СЛАУ с трехдиагональной матрицей A размерности n=220.

$$\begin{pmatrix} b_1 & c_1 & 0 & \dots & 0 \\ a_2 & b_2 & c_2 & \dots & 0 \\ 0 & a_3 & b_3 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & a_{n-1} & b_{n-1} & c_{n-1} \\ 0 & \dots & 0 & a_n & b_n \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ \dots \\ f_{n-1} \\ f_n \end{pmatrix},$$

 $a_i = c_i = 1; b_i = 4; i = \overline{1, ..., n}; d_1 = 6; d_i = 10 - 2(i \mod 2), i = \overline{2, ..., n - 1}; d_n = 9 - 3(n \mod 2).$

3. Результаты расчетов

Результаты с точностью $\varepsilon = 10^{-7}$ приведены в таблице.

Метод	C	Оценка	Крит. 1.	Крит. 1.	Крит. 2.	Крит. 2.	Крит. 3.	Крит. 3.
	$ G_1 $	числа	Норма	Число	Норма	Число	Норма	Число
	$ G_2 $	итераций	ошибки	итераций	ошибки	итераций	ошибки	итераций
П. И.								
$\tau = 0.0089$	0.8367	104	$5.927 \cdot 10^{-9}$	62	$5.384 \cdot 10^{-7}$	49	$3.357 \cdot 10^{-8}$	57
П. И.								
$\tau = 0.007$	0.7196	54	$2.588 \cdot 10^{-6}$	38	$2.588 \cdot 10^{-6}$	38	$1.653 \cdot 10^{-7}$	45
Якоби	0.1630	9	$1.906 \cdot 10^{-8}$	8				
Зейдель	0.3115	8	1.181	2				
	0.1033							
Релакс	0.4050	57	1.181	19				
$\omega = 1.3$	0.4343							
Релакс	0.0935	85	1.181	56				
$\omega = 0.3$	0.731							

4. Контрольные вопросы

1. Почему условие ||C|| < 1 гарантирует сходимость итерационных методов решения СЛАУ?

$$\|x^{k+1}-x^k\|=\|(Cx^k+y)-(Cx^{k-1}+y)\|=\|C(x^k-x^{k-1})\|\leq \|C\|\|x^k-x^{k-1}\|$$
 Пусть $\|C\|<1$, следовательно, оператор C является сжимающим. Существует единственная неподвижная точка x , которая и является решением системы.

Пусть x^* — решение СЛАУ Ax = b, которое которое мы решаем итерационным методом $x^{k+1} = Cx^k + y$, тогда:

$$x^{k+1}-x^*=(Cx^k+y)-(Cx^*+y)=C(x^k-x^*),$$
 тогда, если $\|C\|<1$, то
$$\|x^{k+1}-x^*\|=\|C(x^k-x^*)\|\leq \|C\|\|x^k-x^*\|\leq \|C\|^2\|x^{k-1}-x^*\|\leq \ldots \leq$$

$$<\|C\|^{k+1}\|x^0-x^*\|\to 0$$
 при $k\to\infty$

- 2. Каким следует выбирать итерационный параметр τ в методе простой итерации для увеличения скорости сходимости? Как выбрать начальное приближение x^0 ?
 - Нужно выбрать значение $\mathbf{\tau}\in(0;\frac{2}{\lambda_{max}})$, чтобы норма матрицы C была минимальной. Оптимальным будет значение $\mathbf{\tau}=\frac{2}{\lambda_{min}+\lambda_{max}}$. Начальное приближение можно выбрать любым.
- 3. На примере системы из двух уравнений с двумя неизвестными дайте геометрическую интерпретацию метода Якоби, метода Зейделя и метода релаксации. Геометрическая интерпретация метода Зейделя.

Приведём геометрическую интерпретацию метода Зейделя в случае m=2, т.е. в случае решения системы:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$

Первое уравнение системы задаёт на плоскости x_1Ox_2 прямую l_1 , второе - прямую l_2 (рис. (1)). Расчётные формулы метода принимают следующий вид:

$$\begin{cases} x_1^{(k+1)}=b_{12}x_2^{(k)}+c_1,\\ x_2^{(k+1)}=b_{21}x_1^{(k)}+c_2, \end{cases}$$
 где $b_{12}=-\frac{a_{12}}{a_{11}},\ c_1=\frac{b_1}{a_{11}},\ b_{21}=-\frac{a_{21}}{a_{22}},\ c_2=\frac{b_2}{a_{22}}.$

Рис. 1. Графическая интерпретация метода Зейделя.

Пусть приближение $x^{(k)}$ уже найдено. Тогда при определении $x_1^{(k+1)}$ координата $x_2 = x_2^{(k)}$ фиксируется и точка x перемещается параллельно оси Ox_1 до пересечения с прямой l_1 .

Координата x_1 точки пересечения принимается за $x_1^{(k+1)}$. Затем точка x перемещается вдоль прямой $x_1=x_1^{(k+1)}$ до пересечения с прямой l_2 . Координата x_2 точки пересечения принимается за $x_2^{(k+1)}$.

На рис. (1) приведены геометрические иллюстрации, отвечающие сходящемуся и расходящемуся итерационному процессу Зейделя. Видно, что характер сходимости может измениться при перестановке уравнений.

Метод релаксации.

Суть метода релаксации состоит в том, что после вычисления очередной i-ой компоненты (k+1)-го приближения по формуле Зейделя

$$\widetilde{x}_{i}^{(k+1)} = b_{i1}x_{1}^{(k+1)} + b_{i2}x_{2}^{(k+1)} + \dots + b_{i,i-1}x_{i-1}^{(k+1)} + b_{i,i+1}x_{i+1}^{(k)} + \dots + b_{im}x_{m}^{(k)} + c_{i}$$

производят дополнительно смещение этой компоненты на величину $(\omega-1)(\widetilde{x}_i^{(k+1)}-x_i^{(k)})$, где ω -параметр релаксации. Таким образом, i-ая компонента (k+1)-го приближения вычисляется по формуле:

$$x_i^{(k+1)} = \widetilde{x}_i^{(k+1)} + (\omega - 1)(\widetilde{x}_i^{(k+1)} - x_i^{(k)}) = \omega \widetilde{x}_i^{(k+1)} + (1 - \omega)x_i^{(k)}.$$

На рис.(2) показано несколько первых итераций метода при значении параметра релаксации $\omega = 1.25$.

Рис. 2. Графическая интерпретация метода релаксации.

При $\omega=1$ метод релаксации совпадает с методом Зейделя. При $\omega>1$ его называют методом последовательной верхней релаксации, а при $\omega<1$ - методом последовательной нижней релаксации.

Рис. 3. Графическая интерпретация метода Якоби.

Если домножить одно из уравнений на (-1), то изменится только направление движения по x_i (но не величина, с которой двигаемся).

Если поменять порядок уравнений местами, то прямые, задаваемые данными уравнениями, поменяются местами. В обоих случаях гарантировать сходимость/расходимость невозможно.

4. При каких условиях сходятся метод простой итерации, метод Якоби, метод Зейделя и метод релаксации? Какую матрицу называют положительно определённой?

Сходимость метода простой итерации.

Пусть выполнено условие

Тогда: 1) решение \overline{x} системы x = Bx + c, где B — квадратная матрица с элементами $b_{ij}(i, j = 1, 2, ..., m), c$ — вектор-столбец с элементами $c_i(i = 1, 2, ..., m),$ существует и единственно;

2) при произвольном начальном приближении x^0 метод простой итерации сходится и справедлива оценка погрешности:

$$||x^{(n)} - \overline{x}|| \le ||B||^n ||x^{(0)} - \overline{x}||.$$

Сходимость метода Зейделя.

Теорема: Пусть ||B|| < 1, где ||B|| - одна из норм $||B||_{\infty}$, $||B||_{1}$. Тогда при любом выборе начального приближения x^{0} метод Зейделя сходится со скоростью геометрической прогрессии, знаменатель которой $q \leq ||B||$.

Теорема: Пусть выполнено условие $||B_1|| + ||B_2|| < 1$. Тогда при любом выборе начального приближения метод Зейделя сходится и верна оценка погрешности:

$$||x^{(n)} - \overline{x}|| \le q^n ||x^{(0)} - \overline{x}||,$$

где
$$q = \frac{\|B_2\|}{(1-\|B_1\|)} < 1.$$

Теорема: Пусть A-симметричная положительно определённая матрица. Тогда при любом выборе начального приближения $x^{(0)}$ метод Зейделя сходится со скоростью геометрической прогрессии.

Сходимость метода релаксации.

Если A — симметричная положительно определённая матрица, то при любом значении параметра ω (0 < ω < 2) метод релаксации сходится. Можно выбрать параметр ω > 1 так, чтобы метод релаксации сходился существенно быстрее, чем методы Якоби и Зейделя.

Сходимость метода Якоби. Пусть A — симметричная положительно определённая матрица с диагональным преобладанием, т.е. $a_{ii} > \sum_{i \neq j} |a_{ij}|, i = 1, 2, \ldots, n$. Тогда метод Якоби сходится.

Матрица A называется положительно определённой, если $\exists \delta > 0 : (Ax, x) \ge \delta \|x\|^2$.

5. Выпишите матрицу C для методов Зейделя и релаксации.

Для метода релаксации: $C = -\omega(D + \omega L)^{-1}A + E$,

Для метода Зейделя: $C = -(D+L)^{-1}A + E$.

6. Почему в общем случае для остановки итерационного процесса нельзя использовать критерий $\|x^k - x^{k-1}\| < \varepsilon$?

Потому что этот критерий не гарантирует сходимость к верному решению. Мы можем изначально построить неверный итерационный метод, но он, благодаря этому критерию, сойдется к неверному решению.

7. Какие ещё критерии окончания итерационного процесса Вы можете предложить?

Для метода Зейделя и релаксации:

$$1.\|x^{k+1} - x^k\| \le \varepsilon;$$

$$2.\|x^{k+1} - x^k\| \le \frac{1 - \|G_1 + G_2\|}{\|G_2\|} \varepsilon;$$

$$3.||x_{k+1} - x_k|| \le \varepsilon ||x_k|| + \varepsilon_0.$$

Для метода Якоби и метода простой итерации:

$$1.\|x^{k+1} - x^k\| \le \varepsilon;$$

$$2.\|x^{k+1} - x^k\| \le \frac{1 - \|C\|}{\|C\|} \varepsilon;$$

$$||x_{k+1} - x_k|| \le \varepsilon ||x_k|| + \varepsilon_0.$$