- Get the Data
- Download the Data

Take a Quick Look at the Data Structure

housing = load_housing_data()
housing.head()

₹		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity	
	0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR BAY	11.
	1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR BAY	
	2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	352100.0	NEAR BAY	
	3	-122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	341300.0	NEAR BAY	
	4	-122.25	37.85	52.0	1627.0	280.0	565.0	259.0	3.8462	342200.0	NEAR BAY	

Next steps: (Generate code with housing

View recommended plots

New interactive sheet

housing.info()

```
2 housing median age 20640 non-null float64
3 total rooms
                      20640 non-null float64
    total_bedrooms
                      20433 non-null float64
    population
                      20640 non-null float64
    households
                      20640 non-null float64
    median income
                      20640 non-null float64
    median_house_value 20640 non-null float64
9 ocean_proximity
                      20640 non-null object
dtypes: float64(9), object(1)
memory usage: 1.6+ MB
```

housing["ocean_proximity"].value_counts()

_		count
	ocean_proximity	
	<1H OCEAN	9136
	INLAND	6551
	NEAR OCEAN	2658
	NEAR BAY	2290
	ISLAND	5
	dtunes int64	

housing.describe()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000	20640.000000	20640.000000	20640.000000	20640.000000
mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	1425.476744	499.539680	3.870671	206855.816909
std	2.003532	2.135952	12.585558	2181.615252	421.385070	1132.462122	382.329753	1.899822	115395.615874
min	-124.350000	32.540000	1.000000	2.000000	1.000000	3.000000	1.000000	0.499900	14999.000000
25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	787.000000	280.000000	2.563400	119600.000000
50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	1166.000000	409.000000	3.534800	179700.000000
75%	-118.010000	37.710000	37.000000	3148.000000	647.000000	1725.000000	605.000000	4.743250	264725.000000
max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	35682.000000	6082.000000	15.000100	500001.000000

Set up the plots

Common imports
import numpy as np
import os

```
# To plot pretty figures
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)
# Where to save the figures
PROJECT ROOT DIR = "."
CHAPTER ID = "end to end project"
IMAGES PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID)
os.makedirs(IMAGES PATH, exist ok=True)
def save fig(fig id, tight layout=True, fig extension="png", resolution=300):
    path = os.path.join(IMAGES PATH, fig id + "." + fig extension)
    print("Saving figure", fig id)
    if tight layout:
        plt.tight layout()
    plt.savefig(path, format=fig extension, dpi=resolution)
%matplotlib inline
import matplotlib.pyplot as plt
housing.hist(bins=50, figsize=(20,15))
save fig("attribute histogram plots")
plt.show()
```



```
# to make this notebook's output identical at every run
np.random.seed(42)
import numpy as np

# For illustration only. Sklearn has train_test_split()
def split_train_test(data, test_ratio):
    shuffled_indices = np.random.permutation(len(data))
    test_set_size = int(len(data) * test_ratio)
    test_indices = shuffled_indices[:test_set_size]
    train_indices = shuffled_indices[test_set_size:]
    return data.iloc[train_indices], data.iloc[test_indices]

train_set, test_set = split_train_test(housing, 0.2)
len(train_set)

Tr 16512
```

```
len(test set)
→ 4128
from zlib import crc32
def test set check(identifier, test ratio):
    return crc32(np.int64(identifier)) & 0xfffffffff < test ratio * 2**32
def split train test by id(data, test ratio, id column):
    ids = data[id column]
    in test set = ids.apply(lambda id : test set check(id , test ratio))
    return data.loc[~in test set], data.loc[in test set]
The implementation of test set check() above works fine in both Python 2 and Python 3. In earlier releases, the following
implementation was proposed, which supported any hash function, but was much slower and did not support Python 2:
import hashlib
def test set check(identifier, test ratio, hash=hashlib.md5):
    return hash(np.int64(identifier)).digest()[-1] < 256 * test ratio
If you want an implementation that supports any hash function and is compatible with both Python 2 and Python 3, here is one:
def test set check(identifier, test ratio, hash=hashlib.md5):
    return bytearray(hash(np.int64(identifier)).digest())[-1] < 256 * test ratio
housing with id = housing.reset index() # adds an `index` column
train set, test set = split train test by id(housing with id, 0.2, "index")
housing with id["id"] = housing["longitude"] * 1000 + housing["latitude"]
train set, test set = split train test by id(housing with id, 0.2, "id")
```

test_set.head()

→		index	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity	id	
	8	8	-122.26	37.84	42.0	2555.0	665.0	1206.0	595.0	2.0804	226700.0	NEAR BAY	-122222.16	11
	10	10	-122.26	37.85	52.0	2202.0	434.0	910.0	402.0	3.2031	281500.0	NEAR BAY	-122222.15	
	11	11	-122.26	37.85	52.0	3503.0	752.0	1504.0	734.0	3.2705	241800.0	NEAR BAY	-122222.15	
	12	12	-122.26	37.85	52.0	2491.0	474.0	1098.0	468.0	3.0750	213500.0	NEAR BAY	-122222.15	
	13	13	-122.26	37.84	52.0	696.0	191.0	345.0	174.0	2.6736	191300.0	NEAR BAY	-122222.16	
Next steps: Generate code with test set Set Set View recommended plots New interactive sheet														

from sklearn.model_selection import train_test_split

train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)

test_set.head()

→		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity	
	20046	-119.01	36.06	25.0	1505.0	NaN	1392.0	359.0	1.6812	47700.0	INLAND	11.
	3024	-119.46	35.14	30.0	2943.0	NaN	1565.0	584.0	2.5313	45800.0	INLAND	
	15663	-122.44	37.80	52.0	3830.0	NaN	1310.0	963.0	3.4801	500001.0	NEAR BAY	
	20484	-118.72	34.28	17.0	3051.0	NaN	1705.0	495.0	5.7376	218600.0	<1H OCEAN	
	9814	-121.93	36.62	34.0	2351.0	NaN	1063.0	428.0	3.7250	278000.0	NEAR OCEAN	

Next steps: Generate code with test_set View recommended plots New interactive sheet

housing["median_income"].hist()

housing["income_cat"].value_counts()

→		count
	income_cat	
	3	7236
	2	6581
	4	3639
	5	2362
	1	822
	dtuna inte#	

housing["income_cat"].hist()

from sklearn.model_selection import StratifiedShuffleSplit

```
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(housing, housing["income_cat"]):
    strat_train_set = housing.loc[train_index]
    strat_test_set = housing.loc[test_index]
```

strat_test_set["income_cat"].value_counts() / len(strat_test_set)

income cat

compare props

income_cat

3

Overall Stratified

0.039826

0.318847

0.350581

0.176308

0.114438

0.039971 0.040213

0.318798 0.324370

0.350533 0.358527

0.176357 0.167393

0.114341 0.109496

_

count

0.350581 0.318847 0.176308 0.114438 0.039826

__

```
housing["income_cat"].value_counts() / len(housing)
```

```
def income_cat_proportions(data):
    return data["income_cat"].value_counts() / len(data)

train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)

compare_props = pd.DataFrame({
    "Overall": income_cat_proportions(housing),
    "Stratified": income_cat_proportions(strat_test_set),
    "Random": income_cat_proportions(test_set),
}).sort_index()

compare_props["Rand. %error"] = 100 * compare_props["Random"] / compare_props["Overall"] - 100

compare_props["Strat. %error"] = 100 * compare_props["Stratified"] / compare_props["Overall"] - 100
```

Random Rand, %error Strat, %error

0.973236

1.732260

2.266446

-5.056334

-4.318374

0.364964

-0.015195

-0.013820

0.027480

-0.084674

```
Next steps: Generate code with compare_props View recommended plots New interactive sheet

for set_ in (strat_train_set, strat_test_set):
    set .drop("income cat", axis=1, inplace=True)
```

Discover and Visualize the Data to Gain Insights

```
housing = strat_train_set.copy()
```

Visualizing Geographical Data

housing.plot(kind="scatter", x="longitude", y="latitude")
save_fig("bad_visualization_plot")

housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.1) save_fig("better_visualization_plot")

The argument **Sharex=False** fixes a display bug (the x-axis values and legend were not displayed). This is a temporary fix (see: https://github.com/pandas-dev/pandas/issues/10611). Thanks to Wilmer Arellano for pointing it out.

Saving figure housing_prices_scatterplot

Looking for Correlations

Drop the non-numerical column before calculating correlation
housing_numeric = housing.drop("ocean_proximity", axis=1)

Calculate the correlation matrix on the numeric data
corr_matrix = housing_numeric.corr()

corr_matrix["median_house_value"].sort_values(ascending=False)

)	median_house_value
median_house_value	1.000000
median_income	0.687151
total_rooms	0.135140
housing_median_age	0.114146
households	0.064590
total_bedrooms	0.047781
population	-0.026882
longitude	-0.047466
latitude	-0.142673
diuna floated	

save_fig("scatter_matrix_plot")

⇒ Saving figure income_vs_house_value_scatterplot

Experimenting with Attribute Combinations

```
housing["rooms_per_household"] = housing["total_rooms"]/housing["households"]
housing["bedrooms_per_room"] = housing["total_bedrooms"]/housing["total_rooms"]
housing["population_per_household"]=housing["population"]/housing["households"]

# Drop the non-numerical column before calculating correlation
# This ensures that the correlation is calculated only on numeric columns,
# including the newly created ones.
housing_numeric = housing.drop("ocean_proximity", axis=1)

# Calculate the correlation matrix on the numeric data
corr_matrix = housing_numeric.corr()
corr_matrix["median_house_value"].sort_values(ascending=False)
```

•	_	_
-	→	⏷
	-	_

	median_house_value
median_house_value	1.000000
median_income	0.687151
rooms_per_household	0.146255
total_rooms	0.135140
housing_median_age	0.114146
households	0.064590
total_bedrooms	0.047781
population_per_household	-0.021991
population	-0.026882
longitude	-0.047466
latitude	-0.142673
bedrooms_per_room	-0.259952

housing.describe()

		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	rooms_per_household	bedrooms_per_room	population_
	count	16512.000000	16512.000000	16512.000000	16512.000000	16354.000000	16512.000000	16512.000000	16512.000000	16512.000000	16512.000000	16354.000000	
	mean	-119.575635	35.639314	28.653404	2622.539789	534.914639	1419.687379	497.011810	3.875884	207005.322372	5.440406	0.212873	
	std	2.001828	2.137963	12.574819	2138.417080	412.665649	1115.663036	375.696156	1.904931	115701.297250	2.611696	0.057378	
	min	-124.350000	32.540000	1.000000	6.000000	2.000000	3.000000	2.000000	0.499900	14999.000000	1.130435	0.100000	
	25%	-121.800000	33.940000	18.000000	1443.000000	295.000000	784.000000	279.000000	2.566950	119800.000000	4.442168	0.175304	
	50%	-118.510000	34.260000	29.000000	2119.000000	433.000000	1164.000000	408.000000	3.541550	179500.000000	5.232342	0.203027	
	75%	-118.010000	37.720000	37.000000	3141.000000	644.000000	1719.000000	602.000000	4.745325	263900.000000	6.056361	0.239816	
	max	-114.310000	41.950000	52.000000	39320.000000	6210.000000	35682.000000	5358.000000	15.000100	500001.000000	141.909091	1.000000	
	1												

Prepare the Data for Machine Learning Algorithms

housing = strat_train_set.drop("median_house_value", axis=1) # drop labels for training set housing_labels = strat_train_set["median_house_value"].copy()

Data Cleaning

 $\overline{\mathbf{T}}$

In the book 3 options are listed:

```
housing.dropna(subset=["total_bedrooms"]) # option 1
housing.drop("total_bedrooms", axis=1) # option 2
median = housing["total_bedrooms"].median() # option 3
housing["total_bedrooms"].fillna(median, inplace=True)
```

To demonstrate each of them, let's create a copy of the housing dataset, but keeping only the rows that contain at least one null. Then it will be easier to visualize exactly what each option does:

sample_incomplete_rows = housing[housing.isnull().any(axis=1)].head()
sample_incomplete_rows

Next steps: Generate code with sample_incomplete_rows View recommended plots New interactive sheet

sample_incomplete_rows.dropna(subset=["total_bedrooms"]) # option 1

longitude latitude housing_median_age total_rooms total_bedrooms population households median_income ocean_proximity

sample_incomplete_rows.drop("total_bedrooms", axis=1) # option 2

7		longitude	latitude	housing_median_age	total_rooms	population	households	median_income	ocean_proximity	=
	1606	-122.08	37.88	26.0	2947.0	825.0	626.0	2.9330	NEAR BAY	ıl.
	10915	-117.87	33.73	45.0	2264.0	1970.0	499.0	3.4193	<1H OCEAN	
	19150	-122.70	38.35	14.0	2313.0	954.0	397.0	3.7813	<1H OCEAN	
	4186	-118.23	34.13	48.0	1308.0	835.0	294.0	4.2891	<1H OCEAN	
	16885	-122.40	37.58	26.0	3281.0	1145.0	480.0	6.3580	NEAR OCEAN	

```
median = housing["total_bedrooms"].median()
sample_incomplete_rows["total_bedrooms"].fillna(median, inplace=True) # option 3
```

/ tmp/ipython-input-144-760120979.py:2: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method($\{col: value\}$, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the

sample_incomplete_rows["total_bedrooms"].fillna(median, inplace=True) # option 3

sample_incomplete_rows

→		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	ocean_proximity	
	1606	-122.08	37.88	26.0	2947.0	433.0	825.0	626.0	2.9330	NEAR BAY	ıl.
	10915	-117.87	33.73	45.0	2264.0	433.0	1970.0	499.0	3.4193	<1H OCEAN	+/
	19150	-122.70	38.35	14.0	2313.0	433.0	954.0	397.0	3.7813	<1H OCEAN	_
	4186	-118.23	34.13	48.0	1308.0	433.0	835.0	294.0	4.2891	<1H OCEAN	
	16885	-122.40	37.58	26.0	3281.0	433.0	1145.0	480.0	6.3580	NEAR OCEAN	

Next steps: Generate code with sample_incomplete_rows View recommended plots New interactive sheet

from sklearn.impute import SimpleImputer
imputer = SimpleImputer(strategy="median")

Remove the text attribute because median can only be calculated on numerical attributes:

housing_num = housing.drop("ocean_proximity", axis=1)
alternatively: housing_num = housing.select_dtypes(include=[np.number])

imputer.fit(housing_num)

imputer.statistics_

```
→ array([-118.51 , 34.26 , 29. , 2119. , 433. , 1164. , 408. , 3.54155])
```

Check that this is the same as manually computing the median of each attribute:

housing_num.median().values

Transform the training set:

X = imputer.transform(housing num)

housing_tr.loc[sample_incomplete_rows.index.values]

₹		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	
	1606	-122.08	37.88	26.0	2947.0	433.0	825.0	626.0	2.9330	ıl.
	10915	-117.87	33.73	45.0	2264.0	433.0	1970.0	499.0	3.4193	
	19150	-122.70	38.35	14.0	2313.0	433.0	954.0	397.0	3.7813	
	4186	-118.23	34.13	48.0	1308.0	433.0	835.0	294.0	4.2891	
	16885	-122.40	37.58	26.0	3281.0	433.0	1145.0	480.0	6.3580	

imputer.strategy

housing tr.head()

_		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	
	12655	-121.46	38.52	29.0	3873.0	797.0	2237.0	706.0	2.1736	11.
	15502	-117.23	33.09	7.0	5320.0	855.0	2015.0	768.0	6.3373	
	2908	-119.04	35.37	44.0	1618.0	310.0	667.0	300.0	2.8750	
	14053	-117.13	32.75	24.0	1877.0	519.0	898.0	483.0	2.2264	
	20496	-118.70	34.28	27.0	3536.0	646.0	1837.0	580.0	4.4964	
Next steps: Generate code with housing tr										

Handling Text and Categorical Attributes

Now let's preprocess the categorical input feature, OCEAN_proximity:

housing_cat = housing[["ocean_proximity"]]
housing_cat.head(10)

from sklearn.preprocessing import OrdinalEncoder
ordinal_encoder = OrdinalEncoder()

```
housing cat encoded = ordinal encoder.fit transform(housing cat)
housing cat encoded[:10]
\rightarrow array([[1.],
         [4.],
         [1.],
         [4.],
         [0.],
         [3.],
         [0.],
         [0.],
         [0.],
         [0.]])
ordinal encoder.categories
→ [array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],
        dtype=object)]
from sklearn.preprocessing import OneHotEncoder
cat encoder = OneHotEncoder()
housing cat 1hot = cat encoder.fit transform(housing cat)
housing_cat_1hot
<</pre>
         with 16512 stored elements and shape (16512, 5)>
By default, the OneHotEncoder class returns a sparse array, but we can convert it to a dense array if needed by calling the
toarray() method:
housing cat 1hot.toarray()
\rightarrow array([[0., 1., 0., 0., 0.],
        [0., 0., 0., 0., 1.],
        [0., 1., 0., 0., 0.],
        [1., 0., 0., 0., 0.],
        [1., 0., 0., 0., 0.],
        [0., 1., 0., 0., 0.]
```

Alternatively, you can set sparse=False when creating the OneHotEncoder:

from sklearn.preprocessing import OneHotEncoder

```
# Remove the sparse=False argument as it's not supported in this scikit-learn version
cat encoder = OneHotEncoder()
housing cat 1hot = cat encoder.fit transform(housing cat)
# Convert the sparse output to a dense array
housing cat 1hot = housing cat 1hot.toarrav()
housing cat 1hot
\rightarrow array([[0., 1., 0., 0., 0.],
       [0., 0., 0., 0., 1.],
       [0., 1., 0., 0., 0.],
       [1., 0., 0., 0., 0.],
       [1., 0., 0., 0., 0.],
       [0., 1., 0., 0., 0.]
cat encoder.categories
== [array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],
       dtype=object)]

    Custom Transformers

Let's create a custom transformer to add extra attributes:
from sklearn.base import BaseEstimator, TransformerMixin
# column index
rooms ix, bedrooms ix, population ix, households ix = 3, 4, 5, 6
class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
    def init (self, add bedrooms per room=True): # no *args or **kargs
         self.add bedrooms per room = add bedrooms per room
    def fit(self, X, y=None):
         return self # nothing else to do
    def transform(self, X):
         rooms per household = X[:, rooms ix] / X[:, households ix]
```

```
population per household = X[:, population ix] / X[:, households ix]
         if self.add bedrooms per room:
              bedrooms per room = X[:, bedrooms ix] / X[:, rooms ix]
              return np.c [X, rooms per household, population per household,
                             bedrooms per room]
         else:
              return np.c [X, rooms per household, population per household]
attr adder = CombinedAttributesAdder(add bedrooms per room=False)
housing extra attribs = attr adder.transform(housing.values)
Note that I hard coded the indices (3, 4, 5, 6) for concision and clarity in the book, but it would be much cleaner to get them dynamically, like
this:
col names = "total rooms", "total bedrooms", "population", "households"
rooms ix, bedrooms ix, population ix, households ix = [
    housing.columns.get loc(c) for c in col names] # get the column indices
Also, housing extra attribs is a NumPy array, we've lost the column names (unfortunately, that's a problem with
Scikit-Learn). To recover a DataFrame, you could run this:
housing extra attribs = pd.DataFrame(
    housing extra attribs,
    columns=list(housing.columns)+["rooms per household", "population per household"],
    index=housing.index)
housing extra attribs.head()
```

→ *		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	ocean_proximity	rooms_per_household	population_per_household	
	12655	-121.46	38.52	29.0	3873.0	797.0	2237.0	706.0	2.1736	INLAND	5.485836	3.168555	ılı
	15502	-117.23	33.09	7.0	5320.0	855.0	2015.0	768.0	6.3373	NEAR OCEAN	6.927083	2.623698	
	2908	-119.04	35.37	44.0	1618.0	310.0	667.0	300.0	2.875	INLAND	5.393333	2.223333	
	14053	-117.13	32.75	24.0	1877.0	519.0	898.0	483.0	2.2264	NEAR OCEAN	3.886128	1.859213	
	20496	-118.7	34.28	27.0	3536.0	646.0	1837.0	580.0	4.4964	<1H OCEAN	6.096552	3.167241	

```
Generate code with housing_extra_attribs
                                      View recommended plots
                                                           New interactive sheet
Transformation Pipelines
Now let's build a pipeline for preprocessing the numerical attributes:
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
num pipeline = Pipeline([
           ('imputer', SimpleImputer(strategy="median")),
            ('attribs adder', CombinedAttributesAdder()),
            ('std scaler', StandardScaler()),
      1)
housing num tr = num pipeline.fit transform(housing num)
housing num tr
→ array([[-0.94135046, 1.34743822, 0.02756357, ..., 0.01739526,
          0.00622264, -0.12112176],
         [1.17178212, -1.19243966, -1.72201763, ..., 0.56925554,
         -0.04081077, -0.81086696],
        [0.26758118, -0.1259716, 1.22045984, ..., -0.01802432,
         -0.07537122, -0.33827252],
         [-1.5707942 , 1.31001828 , 1.53856552 , ..., -0.5092404 ,
         -0.03743619, 0.32286937],
         [-1.56080303, 1.2492109, -1.1653327, ..., 0.32814891,
         -0.05915604, -0.45702273],
         [-1.28105026, 2.02567448, -0.13148926, ..., 0.01407228,
          0.00657083, -0.12169672]])
from sklearn.compose import ColumnTransformer
num attribs = list(housing num)
cat attribs = ["ocean proximity"]
full pipeline = ColumnTransformer([
```

```
6/21/25, 2:31 AM
                                                       Lab3 end to end data mining project.jpynb - Colab
            ("num", num pipeline, num attribs),
            ("cat", OneHotEncoder(), cat attribs),
       1)
  housing prepared = full pipeline.fit transform(housing)
```

housing prepared

```
\rightarrow array([[-0.94135046, 1.34743822, 0.02756357, ..., 0.
          0. , 0. ],
        [ 1.17178212, -1.19243966, -1.72201763, ..., 0.
          0. , 1. ],
        [ 0.26758118, -0.1259716 , 1.22045984, ..., 0.
             , 0. 1,
        [-1.5707942 , 1.31001828 , 1.53856552 , ..., 0.
         0. , 0. ],
        [-1.56080303, 1.2492109, -1.1653327, ..., 0.
          0. , 0. ],
        [-1.28105026, 2.02567448, -0.13148926, ..., 0.
          0. , 0. ]])
```

housing prepared.shape

```
→ (16512, 16)
```

For reference, here is the old solution based on a DataFrameSelector transformer (to just select a subset of the Pandas

DataFrame columns), and a FeatureUnion:

```
from sklearn.base import BaseEstimator, TransformerMixin
```

```
# Create a class to select numerical or categorical columns
class OldDataFrameSelector(BaseEstimator, TransformerMixin):
    def init (self, attribute names):
        self.attribute names = attribute names
    def fit(self, X, y=None):
        return self
    def transform(self, X):
        return X[self.attribute names].values
```

Now let's join all these components into a big pipeline that will preprocess both the numerical and the categorical features:

```
num attribs = list(housing num)
cat attribs = ["ocean proximity"]
old num pipeline = Pipeline([
        ('selector', OldDataFrameSelector(num attribs)),
         ('imputer', SimpleImputer(strategy="median")),
         ('attribs adder', CombinedAttributesAdder()),
        ('std scaler', StandardScaler()),
    1)
old cat pipeline = Pipeline([
        ('selector', OldDataFrameSelector(cat attribs)),
        # Remove the sparse=False argument as it's not supported in this scikit-learn version
        ('cat encoder', OneHotEncoder()),
    1)
from sklearn.pipeline import FeatureUnion
old full pipeline = FeatureUnion(transformer list=[
        ("num pipeline", old num pipeline),
         ("cat pipeline", old cat pipeline),
    1)
old housing prepared = old full pipeline.fit transform(housing)
old housing prepared
<Compressed Sparse Row sparse matrix of dtype 'float64'</p>
       with 198144 stored elements and shape (16512, 16)>
```

The result is the same as with the **ColumnTransformer**:

```
# Ensure the output of the pipelines are dense arrays for comparison
# housing prepared is already a dense NumPy array, so no need to call .toarray()
housing prepared dense = housing prepared
# old housing prepared is a sparse matrix, so we need to convert it to a dense array
old housing prepared dense = old housing prepared.toarray()
# Now compare the dense arrays
np.allclose(housing prepared dense, old housing prepared dense)
→ True

    Select and Train a Model

    Training and Evaluating on the Training Set

from sklearn.linear model import LinearRegression
lin reg = LinearRegression()
lin reg.fit(housing prepared, housing labels)
   ▼ LinearRegression ① ?
   LinearRegression()
# let's try the full preprocessing pipeline on a few training instances
some data = housing.iloc[:5]
some labels = housing labels.iloc[:5]
some_data_prepared = full pipeline.transform(some data)
print("Predictions:", lin reg.predict(some data prepared))
  Predictions: [ 85657.90192014 305492.60737488 152056.46122456 186095.70946094
   244550.679660891
```

Compare against the actual values:

```
print("Labels:", list(some labels))
→ Labels: [72100.0, 279600.0, 82700.0, 112500.0, 238300.0]
some data prepared
→ array([[-0.94135046, 1.34743822, 0.02756357, 0.58477745, 0.64037127,
          0.73260236, 0.55628602, -0.8936472, 0.01739526, 0.00622264,
         -0.12112176, 0. , 1. , 0. , 0.
         [ 1.17178212, -1.19243966, -1.72201763, 1.26146668, 0.78156132,
          0.53361152, 0.72131799, 1.292168 , 0.56925554, -0.04081077,
         -0.81086696, 0. , 0. , 0.
               1,
         [ 0.26758118, -0.1259716 , 1.22045984, -0.46977281, -0.54513828,
         -0.67467519, -0.52440722, -0.52543365, -0.01802432, -0.07537122,
         -0.33827252, 0. , 1. , 0. , 0.
        [ 1.22173797, -1.35147437, -0.37006852, -0.34865152, -0.03636724,
         -0.46761716, -0.03729672, -0.86592882, -0.59513997, -0.10680295,
         0.96120521, 0. , 0. , 0.
         [0.43743108, -0.63581817, -0.13148926, 0.42717947, 0.27279028,
          0.37406031, 0.22089846, 0.32575178, 0.2512412, 0.00610923,
         -0.47451338, 1. , 0. , 0. , 0.
             11)
from sklearn.metrics import mean squared error
housing predictions = lin reg.predict(housing prepared)
lin mse = mean squared error(housing labels, housing predictions)
lin rmse = np.sqrt(lin mse)
lin rmse
p.float64(68627.87390018745)
Note: since Scikit-Learn 0.22, you can get the RMSE directly by calling the Mean squared error() function with
squared=False.
11 11 11
from sklearn.metrics import mean_absolute_error
lin mae = mean absolute error(housing labels, housing predictions)
```

```
lin mae
   '\nfrom sklearn.metrics import mean absolute error\n\nlin mae = mean absolute error(housing labels, housing predictions)\nlin mae\n'
from sklearn.tree import DecisionTreeRegressor
tree reg = DecisionTreeRegressor(random state=42)
tree reg.fit(housing prepared, housing labels)
       DecisionTreeRegressor
   DecisionTreeRegressor(random state=42)
housing predictions = tree reg.predict(housing prepared)
tree mse = mean squared error(housing labels, housing predictions)
tree rmse = np.sart(tree mse)
tree rmse
→ np.float64(0.0)

    Better Evaluation Using Cross-Validation

from sklearn.model selection import cross val score
scores = cross val score(tree reg, housing prepared, housing labels,
                             scoring="neg mean squared error", cv=10)
tree rmse scores = np.sqrt(-scores)
def display scores(scores):
    print("Scores:", scores)
    print("Mean:", scores.mean())
    print("Standard deviation:", scores.std())
display scores(tree rmse scores)
```

```
Scores: [72831.45749112 69973.18438322 69528.56551415 72517.78229792
    69145.50006909 79094.74123727 68960.045444 73344.50225684
    69826.02473916 71077.097539981
   Mean: 71629.89009727491
   Standard deviation: 2914.035468468928
lin scores = cross val score(lin reg, housing prepared, housing labels,
                                       scoring="neg mean squared error", cv=10)
lin rmse scores = np.sqrt(-lin scores)
display scores(lin rmse scores)
→ Scores: [71762.76364394 64114.99166359 67771.17124356 68635.19072082
    66846.14089488 72528.03725385 73997.08050233 68802.33629334
    66443.28836884 70139.79923956]
   Mean: 69104.07998247063
   Standard deviation: 2880.3282098180694
Note: we specify n estimators=100 to be future-proof since the default value is going to change to 100 in Scikit-Learn 0.22
(for simplicity, this is not shown in the book).
from sklearn.ensemble import RandomForestRegressor
forest reg = RandomForestRegressor(n estimators=100, random state=42)
forest reg.fit(housing prepared, housing labels)
₹
        RandomForestRegressor
   RandomForestRegressor(random state=42)
housing predictions = forest reg.predict(housing prepared)
forest mse = mean squared error(housing labels, housing predictions)
forest rmse = np.sqrt(forest mse)
forest rmse
→ np.float64(18650.698705770003)
from sklearn.model selection import cross val score
forest scores = cross val score(forest reg, housing prepared, housing labels,
                                           scoring="neg_mean_squared_error", cv=10)
```

```
forest_rmse_scores = np.sqrt(-forest_scores)
display_scores(forest_rmse_scores)
```

Scores: [51559.63379638 48737.57100062 47210.51269766 51875.21247297 47577.50470123 51863.27467888 52746.34645573 50065.1762751 48664.66818196 54055.90894609]

Mean: 50435.58092066179

Standard deviation: 2203.3381412764606

scores = cross_val_score(lin_reg, housing_prepared, housing_labels, scoring="neg_mean_squared_error",
pd.Series(np.sqrt(-scores)).describe()

```
count 10.000000
mean 69104.079982
std 3036.132517
min 64114.991664
25% 67077.398482
50% 68718.763507
75% 71357.022543
max 73997.080502
dtype: float64
```

- Fine-Tune Your Model
- Grid Search

from sklearn.model_selection import GridSearchCV

```
param_grid = [
    # try 12 (3×4) combinations of hyperparameters
    {'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},
    # then try 6 (2×3) combinations with bootstrap set as False
    {'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]},
]
```


The best hyperparameter combination found:

grid_search.best_params_

→ {'max features': 8, 'n estimators': 30}

grid_search.best_estimator_

RandomForestRegressor

RandomForestRegressor(max_features=8, n_estimators=30, random_state=42)