

SINAIS E SISTEMAS LINEARES

DEPARTAMENTO DE ELETROELETRÔNICA

Prof. Dr. Walterley A. Moura

contato: walterley@gmail.com

Representação de Sinais Periódicos de tempo contínuo em **Séries de Fourier**

MOTIVAÇÃO

Interesse em funções periódicas:

- (a) Muitas fontes de energia elétrica de interesse prático geram formas de ondas periódicas:
- retificadores de onda completa e meia onda alimentados por ondas senoidais;
- geradores de varredura para controle de feixe eletrônico de tubos de imagem (osciloscópios ou televisões);
- osciladores eletrônicos para testes de equipamentos;
- geradores síncronos (geradores de energia elétrica), embora projetados para produzirem ondas senoidais, na prática, não conseguem gerar ondas senoidais perfeitas, embora as ondas geradas sejam periódicas.
- (b) Qualquer não linearidade em um circuito elétrico submetido a excitação senoidal dá origem a uma função periódica não senoidal.
- (c) Funções senoidais periódicas aparecem em outros ramos da engenharia.

SÉRIES DE FOURIER

Em 1822, o matemático francês Jean-Baptiste Joseph Fourier (1768-1830, matemático, físico e historiador) mostrou que ondas senoidais podem ser usadas como bases para descrever qualquer tipo de função.

Fourier usou essa ideia como ferramenta analítica no estudo das ondas e dos fluxos de calor.

A técnica para se **transformar** um sinal em suas componentes senoidais é chamada **transformada de Fourier**.

Revisando...

 \blacktriangleright Um conjunto de exponenciais complexas harmonicamente relacionadas é um conjunto de exponenciais periódicas com frequências fundamentais que são múltiplas de uma única frequência positiva ω_0 , ou seja,

$$\phi(t) = e^{jk\omega_0 t}, \quad k = 0, \pm 1, \pm 2,...$$

$$k = 0 \longrightarrow \phi(t) = 1$$

$$k \neq 0 \longrightarrow \phi_k(t)$$
 é periódico

frequência fundamental:
$$f_k = |k| \omega_0$$
 e $T_0 = \frac{2\pi}{\omega_0}$

 \mapsto a k-ésima harmônica de $\phi_k(t)$ continua sendo periódica com período T_0 .

Resposta dos sistemas LIT às exponenciais complexas

- É vantajoso representar sinais em sistemas LIT como combinações lineares de sinais básicos, desde que possuam as seguintes propriedades:
- i) O conjunto de sinais básicos pode ser usado para construir uma classe ampla e útil de sinais;
- ii) A resposta de um sistema LIT para cada sinal deve ser simples suficiente na sua estrutura para fornecer uma representação conveniente, a resposta a qualquer sinal construído como combinação linear de sinais básicos

A análise de Fourier resulta do fata de que essas duas propriedades são satisfeitas pelo conjunto de sinais exponenciais complexas no tempo contínuo e discreto, ou seja, sinais da forma

$$e^{st} \longrightarrow$$
 para tempo contínuo $z^n \longrightarrow$ para tempo discreto $s \in z$ são números complexos

➤ A importância das exponenciais complexas no estudo de sistemas LIT decorre do fato de que a resposta de um sistema LIT para uma entrada exponencial complexa é a mesma exponencial complexa com apenas mudança de amplitude, ou seja

Tempo contínuo:
$$e^{st} \longrightarrow H(s)e^{st}$$

Tempo discreto:
$$z^n \longrightarrow H(z)z^n$$

$$H(s)$$
 e $H(z)$ são fatores de amplitude

As entradas são denominadas autofunções do sistema, H(s) e H(z) são denominadas de autovalor do sistema.

- Demonstração que as exponenciais complexas são autofunções de um sistema LIT, ou seja, Y=kX
- > Sabemos que para um sistema LIT, tem-se:

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$
fazendo $x(t) = e^{st}$, temos:
$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$

$$y(t) = \int_{-\infty}^{\infty} h(\tau)e^{s(t-\tau)}d\tau = \int_{-\infty}^{\infty} h(\tau)e^{st}e^{-s\tau}d\tau$$

$$y(t) = e^{st} \left[\int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau \right] = H(s) e^{st}$$

$$H(s) = \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau$$

supondo que a integral acima convirja

➤ De maneira semelhante, podemos mostrar que sequências exponenciais complexas são autofunções de sistemas LIT de tempo discreto.

Seja
$$x[n] = z^n$$

$$y[n] = \sum_{k=-\infty}^{+\infty} h[k]x[n-k]$$

$$= \sum_{k=-\infty}^{+\infty} h[k]z^{n-k} = z^n \sum_{k=-\infty}^{+\infty} h[k]z^{-k}$$

$$H[z] = \sum_{k=-\infty}^{+\infty} h[k]z^{-k}$$

$$y[n] = z^n H[n]$$

Decomposição da entrada em termos de autofunções

Suponha que x(t) seja a combinação linear de "n" exponenciais complexas:

$$x(t) = \sum_{k} a_k e^{s_k t} = a_1 e^{s_1 t} + a_2 e^{s_2 t} + \dots + a_k e^{s_k t}$$

Da propriedade da autofunção, a resposta de cada exponencial separadamente é:

$$a_{1}e^{s_{1}t} \longrightarrow a_{1}H(s_{1})e^{s_{1}t}$$

$$a_{2}e^{s_{2}t} \longrightarrow a_{2}H(s_{2})e^{s_{2}t}$$

$$\vdots$$

$$a_{k}e^{s_{k}t} \longrightarrow a_{k}H(s_{k})e^{s_{k}t}$$

Da propriedade da superposição, a resposta à soma é a soma das respostas, assim temos:

$$y(t) = \sum_{k} a_{k} H(s_{k}) e^{s_{k}t}$$

$$= a_{1} H(s_{1}) e^{s_{1}t} + a_{2} H(s_{2}) e^{s_{2}t} + \dots + a_{k} H(s_{k}) e^{s_{k}t}$$

> Analogamente, para tempo discreto, temos:

$$x[n] = \sum_{k} a_{k} z_{k}^{n} = a_{1} z_{1}^{n} + a_{2} z_{2}^{n} + \dots + a_{k} z_{k}^{n}$$
$$y[n] = \sum_{k} a_{k} H(z_{k}) z_{k}^{n}$$

Conclusão:

➤ Tanto para tempo contínuo como para tempo discreto, se a entrada de um sistema LIT for representada por uma combinação linear de exponenciais complexas, a saída também pode ser representada por uma combinação linear dos mesmos sinais complexos.

➤ Foi exatamente isso que Euler descobriu e motivou Fourier e outros depois dele a considerar a questão da extensão da classe de sinais de poderia ser representada como uma combinação linear de exponenciais complexas.

Representação de sinais periódicos de tempo contínuo em séries de Fourier

Representação de sinais periódicos pela Série Trigonométrica de Fourier

a) Consideraremos um sinal x(t) constituído por senos e cossenos de frequência ω_0 e todas as suas harmônicas, incluindo a harmônica zero:

$$x(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos n\omega_0 t + b_n \sin n\omega_0 t)$$

$$\omega_0 = \frac{2\pi}{T_0} \rightarrow \text{frequência fundamental}$$
(1)

$$\omega_0 T_0 = 2\pi$$

Se x(t)é períodico então, $x(t) = x(t + T_0)$

Demonstração:

$$x(t+T_{0}) = a_{0} + \sum_{n=1}^{\infty} \left[a_{n} \cos n\omega_{0} (t+T_{0}) + b_{n} \sin n\omega_{0} (t+T_{0}) \right]$$

$$= a_{0} + \sum_{n=1}^{\infty} \left[a_{n} \cos (n\omega_{0}t + n\omega_{0}T_{0}) + b_{n} \sin (n\omega_{0}t + n\omega_{0}T_{0}) \right]$$

$$= a_{0} + \sum_{n=1}^{\infty} \left[a_{n} \cos (n\omega_{0}t + 2\pi n) + b_{n} \sin (n\omega_{0}t + 2\pi n_{0}) \right]$$

$$\cos (n\omega_{0}t + 2\pi n) = \cos (n\omega_{0}t) \quad \text{e} \quad \sin (n\omega_{0}t + 2\pi n_{0}) = \sin (n\omega_{0}t_{0})$$

$$x(t+T_{0}) = a_{0} + \sum_{n=1}^{\infty} \left[a_{n} \cos (n\omega_{0}t) + b_{n} \sin (n\omega_{0}t) \right] = x(t)$$

14

b) Cálculo a₀

Integrando a equação (1) em um período T_0 :

$$\int_{T_0} x(t)dt = \int_{T_0} \left[a_0 + \sum_{n=1}^{\infty} \left(a_n \cos n\omega_0 t + b_n \sin n\omega_0 t \right) \right] dt$$

$$= \int_{T_0} a_0 dt + \int_{T_0} \sum_{n=1}^{\infty} \left(a_n \cos n\omega_0 t + b_n \sin n\omega_0 t \right) dt$$

$$= a_0 \int_{T_0} dt + \sum_{n=1}^{\infty} \left(\int_{T_0} a_n \cos n\omega_0 t dt + \int_{T_0} b_n \sin n\omega_0 t \right) dt$$

$$\int_{T_0} x(t) dt = a_0 \int_{T_0} dt$$

$$\int_{T_0} x(t) dt = a_0 \left[t \right]_{0}^{T_0} = a_0 T_0 \longrightarrow a_0 = \frac{1}{T_0} \int_{T_0} x(t) dt$$

c) Cálculo an

Multiplicando a equação (1) por $\cos m\omega_0 t$ e integrando em um período T_0 :

$$\int_{T_0} x(t) \cos m\omega_0 t \, dt = \int_{T_0} a_0 \cos m\omega_0 t \, dt + \int_{T_0} \sum_{n=1}^{\infty} \left(a_n \cos m\omega_0 t \cos n\omega_0 t + b_n \cos m\omega_0 \sin n\omega_0 t \right) dt$$

$$= a_0 \int_{T_0} \cos m\omega_0 t \, dt + \sum_{n=1}^{\infty} \left[a_n \int_{T_0} \cos m\omega_0 t \cos n\omega_0 t \, dt + b_n \int_{T_0} \cos m\omega_0 \sin n\omega_0 t \, dt \right]$$

$$\Rightarrow A = \int_{T_0} \cos n\omega_0 t \cos m\omega_0 t \, dt = \frac{1}{2} \left[\frac{\sin (n-m)\omega_0 t}{(n-m)\omega_0} + \frac{\sin (n+m)\omega_0 t}{(n+m)\omega_0} \right]_0^{T_0} = \begin{cases} \frac{T_0}{2}, & m=n\neq 0 \\ 0, & m\neq n \end{cases}$$

$$\Rightarrow B = \int_{T_0} \sin n\omega_0 t \cos m\omega_0 \, dt = -\frac{1}{2} \left[\frac{\cos (n-m)\omega_0 t}{n-m} + \frac{\cos (n+m)\omega_0 t}{n+m} \right]_0^{T_0} = 0, \text{ para todo } n \text{ m}$$

$$\Rightarrow C = \int_{T_0} \sin n\omega_0 t \sin m\omega_0 \, dt = \frac{1}{2} \left[\frac{\sin (n-m)\omega_0 t}{n-m} - \frac{\sin (n+m)\omega_0 t}{n+m} \right]_0^{T_0} = \begin{cases} \frac{T_0}{2}, & m \neq 0 \\ 0, & m\neq n \end{cases}$$

16

$$\int_{T_0} x(t) \cos m\omega_0 t \, dt = \sum_{n=1}^{\infty} \left(a_n \int_{T_0} \cos m\omega_0 t \cos n\omega_0 t \, dt + b_n \int_{T_0} \cos m\omega_0 \sin n\omega_0 t \, dt \right)$$

$$\int_{T_0} x(t) \cos m\omega_0 t \, dt = \sum_{n=1}^{\infty} a_n \int_{T_0} \cos m\omega_0 t \cos n\omega_0 t \, dt = \sum_{n=1}^{\infty} a_n \frac{T_0}{2}, \quad m = n$$

$$\int_{T_0} x(t) \cos m\omega_0 t \, dt = a_m \frac{T_0}{2}$$

Portanto,

$$a_m = \frac{2}{T_0} \int_{T_0} x(t) \cos m\omega_0 t \, dt$$

d) Cálculo b_n

Multiplicando a equação (1) por sen $m\omega_0 t$ e integrando em um período T_0 :

$$\int_{T_0} x(t) \operatorname{sen} m\omega_0 t \, dt = \int_{T_0} a_0 \operatorname{sen} m\omega_0 t \, dt + \int_{T_0} \sum_{n=1}^{\infty} (a_n \operatorname{sen} m\omega_0 t \operatorname{cos} n\omega_0 t + b_n \operatorname{sen} m\omega_0 \operatorname{sen} n\omega_0 t) \, dt$$

$$= a_0 \int_{T_0} \operatorname{sen} m\omega_0 t \, dt + \sum_{n=1}^{\infty} \left(a_n \int_{T_0} \operatorname{sen} m\omega_0 t \cos n\omega_0 t \, dt + b_n \int_{T_0} \operatorname{sen} m\omega_0 \operatorname{sen} n\omega_0 t \, dt \right)$$

$$= a_0 \int_{T_0} \operatorname{sen} m\omega_0 t \, dt + \sum_{n=1}^{\infty} \left(a_n \int_{T_0} \operatorname{sen} m\omega_0 t \cos n\omega_0 t \, dt + b_n \int_{T_0} \operatorname{sen} m\omega_0 \operatorname{sen} n\omega_0 t \, dt \right)$$

$$\int_{T_0} x(t) \operatorname{sen} m\omega_0 t \, dt = \sum_{n=1}^{\infty} b_n \int_{T_0} \operatorname{sen} m\omega_0 \operatorname{sen} n\omega_0 t \, dt$$

$$\int_{T_0} x(t) \operatorname{sen} m\omega_0 t \, dt = \sum_{n=1}^{\infty} b_n \frac{T_0}{2}, \ m = n$$

$$\int_{T_0} x(t) \operatorname{sen} m\omega_0 t \, dt = b_m \frac{T_0}{2} \longrightarrow b_m = \frac{2}{T_0} \int_{T_0} x(t) \cos m\omega_0 t \, dt$$

OBS.:

$$\mapsto \int_{T_0} \operatorname{sen} n\omega_0 t \cos m\omega_0 t \, dt$$

$$sen(a+b) = sen a cos b + sen b cos a$$
 (i)

$$\operatorname{sen}(a-b) = \operatorname{sen} a \cos b - \operatorname{sen} b \cos a$$
 (ii)

Somando equação (i) com a equação (ii), temos

$$\operatorname{sen}(a+b) + \operatorname{sen}(a-b) = 2\operatorname{sen} a \cos b \to \operatorname{sen} a \cos b = \frac{1}{2} \left[\operatorname{sen}(a+b) + \operatorname{sen}(a-b) \right]$$

$$\operatorname{sen} n\omega_0 t \cos m\omega_0 t = \frac{1}{2} \left[\operatorname{sen}(n+m)\omega_0 t + \operatorname{sen}(n-m)\omega_0 t \right]$$

$$\int_{T_0} \operatorname{sen} n\omega_0 t \cos m\omega_0 t \, dt = \frac{1}{2} \int_{T_0} \left[\operatorname{sen}(n+m)\omega_0 t + \operatorname{sen}(n-m)\omega_0 t \right]$$

$$= -\frac{1}{2} \left[\frac{\cos(n+m)\omega_0 t}{n+m} + \frac{\cos(n-m)\omega_0 t}{n-m} \right]_0^{T_0}$$

Representação de sinais periódicos pela Série Exponencial de Fourier

- a) Combinação linear de exponenciais complexas harmonicamente relacionadas.
 - Para um sinal periódico, com período T, temos:

$$x(t) = x(t + T_0)$$

e o período fundamental de x(t) é o menor valor positivo de T, diferente de zero

$$\omega_0 = \frac{2\pi}{T_0} \rightarrow \text{frequência fundamental}$$

> A exponencial complexa periódica é dada por:

$$x(t) = e^{j\omega_0 t}$$

Ao sinal da equação anterior está associado o conjunto de exponenciais complexas harmonicamente relacionadas

$$\phi(t) = e^{jk\omega_0 t} = e^{jk\frac{2\pi}{T_0}t}, \quad k = 0, \pm 1, \pm 2, \dots$$

$$k = 0 \longrightarrow \phi(t) = 1$$

$$k \neq 0 \longrightarrow \phi_k(t) \text{ é periódico}$$

frequência: $\omega_k = |k| \omega_0$

 \mapsto a frequência ω_0 é denominada fundamental;

 \mapsto a frequência $2\omega_0$ é denominada 2^a harmônica;

 \mapsto a frequência $3\omega_0$ é denominada 3^a harmônica;

:

 \mapsto a frequência $k\omega_0$ é denominada k-ésima harmônica;

Podemos fazer um combinação linear de exponenciais complexas harmonicamente relacionadas:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk\frac{2\pi}{T_0}t}$$
 (2)

- → a função dada acima é também periódica;
- \rightarrow o termo para k = 0 é uma constante;
- \rightarrow os termos para $k=\pm 1$ possuem frequência fundamental iguais a ω_0 e são denominados de *componentes fundamentais* ou *componentes de primeira harmônica*;
- \rightarrow os temos para $k=\pm 2$, tem a metade do período e são denominados de componentes de *segunda harmônica* e assim sucessivamente.
- A representação de um sinal periódico pela equação anterior acima é denominada representação por série exponencial de Fourier.

b) Determinação da representação de um sinal de tempo contínuo por série de Fourier

Considere a equação anterior, e multipliquemos ambos os lados por

 $e^{-jn\omega_0 t}$, temos:

$$x(t)e^{-jn\omega_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk\frac{2\pi}{T_0}t} e^{-jn\omega_0 t}$$

integrando ambos os lados entre 0 e $T_0 = \frac{2\pi}{\omega_0}$, temos:

$$\int_{0}^{T_{0}} x(t)e^{-jn\omega_{0}t}dt = \int_{0}^{T} \sum_{k=-\infty}^{+\infty} a_{k}e^{jk\omega_{0}t}e^{-jn\omega_{0}t}dt$$

$$\int_{0}^{T_{0}} x(t)e^{-jn\omega_{0}t}dt = \sum_{k=-\infty}^{+\infty} a_{k} \left[\int_{0}^{T} e^{jk\omega_{0}t}e^{-jn\omega_{0}t}dt\right]$$

$$\int_{0}^{T_{0}} x(t)e^{-jn\omega_{0}t}dt = \sum_{k=-\infty}^{+\infty} a_{k} \left[\int_{0}^{T} e^{j(k-n)\omega_{0}t}dt\right]$$

$$\operatorname{para} k = n \longrightarrow \int_{0}^{T_{0}} e^{j(k-n)\omega_{0}t} dt = \int_{0}^{T_{0}} dt = t \Big|_{0}^{T_{0}} = T$$

$$\operatorname{para} k \neq n \longrightarrow \int_{0}^{T_{0}} e^{j(k-n)\omega_{0}t} dt = \int_{0}^{T_{0}} \left[\cos(k-n)\omega_{0}t \right] dt + j \int_{0}^{T_{0}} \left[\sin(k-n)\omega_{0}t \right] dt = 0$$

$$\int_{0}^{T_{0}} e^{j(k-n)\omega_{0}t} dt = \begin{cases} T_{0}, k = n \\ 0, k \neq n \end{cases}$$

Consequentemente para k = n, temos:

$$\int_{0}^{T} x(t)e^{-jn\omega_{0}t}dt = \sum_{k=-\infty}^{+\infty} a_{k} \left[\int_{T} e^{j(k-n)\omega_{0}t}dt \right] = T_{0} \sum_{k=-\infty}^{\infty} a_{k} = T0a_{n}$$

$$a_{n} = \frac{1}{T_{0}} \int_{T_{0}} x(t)e^{-jn\omega_{0}t}dt$$

Conclusão:

Se uma função periódica x(t) tem uma representação em série de Fourier, então os coeficientes são dados por:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

$$\omega_0 = \frac{2\pi}{T}$$

Forma alternativa para a representação da série de Fourier

Suponha que x(t) seja real e que possa ser representado pela equação

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$
 (a)

> Se x(t) é real então $x^*(t) = x(t)$, então:

$$x(t)^* = \left(\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}\right)^* = \sum_{k=-\infty}^{+\infty} a_k^* \left(e^{jk\omega_0 t}\right)^* = \sum_{k=-\infty}^{+\infty} a_k^* e^{-jk\omega_0 t}$$

$$x(t)^* = x(t)$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k^* e^{-jk\omega_0 t}$$
Substituindo k por $-k$, temos:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_{-k}^* e^{jk\omega_0 t}$$
 (b)

Comparando a equação (a) com a equação (b), impõe que:

$$\mapsto a_k = a_{-k}^*$$

- \mapsto Que é equivalente escrever: $a_{-k} = a_k^*$
- \mapsto Se os a_k são reais, podemos escrever que: $a_{-k} = a_k$
- Para obter a forma alternativa da série de Fourier, podemos escrever a equação (a) da seguinte maneira:

$$x(t) = a_0 + \sum_{k=1}^{+\infty} \left\{ a_k e^{jk\omega_0 t} + a_{-k} e^{-jk\omega_0 t} \right\}$$

As duas parcelas dentro do somatório são conjugados complexos. Assim, podemos escreyer:

$$x(t) = a_0 + \sum_{k=1}^{+\infty} \left\{ a_k e^{jk\omega_0 t} + a_{-k} e^{-jk\omega_0 t} \right\}$$
$$= a_0 + \sum_{k=1}^{+\infty} 2 \operatorname{Re} \left\{ a_k e^{jk\omega_0 t} \right\}$$

Escrevendo a_k na forma retangular, temos: $a_k = b_k + jc_k$

Dai, temos:

$$x(t) = a_0 + \sum_{k=1}^{+\infty} 2\operatorname{Re}\left\{ (b_k + jc_k) e^{jk\omega_0 t} \right\}$$

$$= a_0 + \sum_{k=1}^{+\infty} 2\operatorname{Re}\left\{ (b_k + jc_k) (\cos k\omega_0 t + j \sin k\omega_0 t) \right\}$$

$$= a_0 + \sum_{k=1}^{+\infty} \left[B_k \cos k\omega_0 t + C_k \operatorname{sen} \cos k\omega_0 t \right]$$

Propriedades da Série de Fourier de tempo Continuo.

i) Linearidade

ightharpoonup Sejam x(t) e y(t) dois sinais periódicos com período T e que possuem coeficientes da série de Fourier:

$$x(t) \xrightarrow{\mathcal{F}} a_k$$

$$y(t) \xrightarrow{\mathcal{F}} b_k$$

$$z_k(t) \xrightarrow{\mathcal{F}} c_k$$

x(t) e y(t) tem o mesmo período T e qualquer combinação linear terá também o mesmo T. Portanto, se

$$z(t) = Ax(t) + By(t) \longrightarrow c_k = Aa_k + Bb_k$$

ii) Deslocamento no tempo

Sejam x(t) um sinal periódicos com período. Se um deslocamento no tempo é aplicado é preservado o período da função resultante.

$$y(t) = x(t - t_0)$$

Os coeficientes de série de Fourier do sinal resultante é dado por:

$$b_k = \frac{1}{T} \int_T x(t - t_0) e^{-jk\omega_0 t} dt$$

Substituindo, $\tau = t - t_0$

$$b_k = \frac{1}{T} \int_T x(t - t_0) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_T x(\tau) e^{-jk\omega_0(\tau + t_0)} d\tau$$

$$= e^{-jk\omega_0 t_0} \frac{1}{T} \int_T x(\tau) e^{-jk\omega_0 \tau} d\tau$$

$$b_k = e^{-jk\omega_0 t_0} a_k$$

Assim, obtemos:

$$x(t) \xrightarrow{\mathcal{F}} a_k$$

$$y(t) \xrightarrow{\mathcal{F}} b_k = e^{-jk\omega_0 t_0} a_k$$

iii) Reflexão no tempo

> Sejam x(t) um sinal periódicos com período T. Se uma reflexão no tempo é aplicada é preservado o período da função resultante.

$$y(t) = x(-t)$$

> A representação do sinal em série de Fourier do sinal resultante é dado por:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$y(t) = x(-t) = \sum_{k=-\infty}^{\infty} a_k e^{-jk\omega_0 t}$$
, fazendo $k = -m$

$$y(t) = \sum_{m=-\infty}^{\infty} a_{-m} e^{jm\omega_0 t} = \sum_{k=-\infty}^{\infty} a_{-k} e^{jk\omega_0 t}$$

$$b_k = a_{-k}$$

$$x(t) \xrightarrow{\mathcal{F}} a_k$$

$$x(-t) \xrightarrow{\mathcal{F}} b_k = a_{-k}$$

> Se x(t) for uma função par, temos:

$$x(t) = x(-t) \longrightarrow a_{-k} = a_k$$

> Se x(t) for uma função ímpar, temos:

$$x(t) = -x(-t) \longrightarrow a_{-k} = -a_k$$

iv) Mudança de escala de tempo

Sejam x(t) um sinal periódicos com período T. Se uma mudança na escala e tempo é aplicada em geral ocorre mudança do período da função resultante.

$$y(t) = x(\alpha t)$$

A representação do sinal em série de Fourier do sinal resultante é dado por:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$x(\alpha t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 \alpha t} = \sum_{k=-\infty}^{\infty} a_k e^{jk(\alpha\omega_0)t}$$

$$\tilde{\omega}_0 = \alpha\omega_0$$

$$\tilde{T} = \frac{2\pi}{\tilde{\omega}_0} \longrightarrow \tilde{T} = \frac{2\pi}{\alpha\omega_0} \longrightarrow \tilde{T} = \frac{1}{\alpha}T_0$$

35

v) Multiplicação de sinais

Sejam x(t) e y(t) dois sinais periódicos com período T, a multiplicação das funções preserva o período T.

$$z(t) = x(t)y(t)$$

> Os coeficientes da série de Fourier de x(t) e y(t) são:

$$x(t) \xrightarrow{\mathcal{F}} a_k$$

$$y(t) \xrightarrow{\mathcal{F}} b_k$$

> A representação do sinal em série de Fourier do sinal resultante é dado por:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \longrightarrow a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

$$y(t) = \sum_{k=-\infty}^{\infty} b_k e^{jk\omega_0 t} \longrightarrow b_k = \frac{1}{T} \int_T y(t) e^{-jk\omega_0 t} dt$$

$$z(t) = x(t)y(t)$$

$$z(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} \longrightarrow c_k = \frac{1}{T} \int_T z(t) e^{-jk\omega_0 t} dt$$

$$c_k = \frac{1}{T} \int_T x(t)y(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_T \sum_{n=-\infty}^{\infty} a_n e^{jn\omega_0 t} \sum_{l=-\infty}^{\infty} b_l e^{jl\omega_0 t} e^{-jk\omega_0 t} dt$$

$$= \frac{1}{T} \int_T \sum_n \sum_l a_n e^{jn\omega_0 t} b_l e^{jl\omega_0 t} e^{-jk\omega_0 t} dt$$

$$= \frac{1}{T} \int_T \sum_n \sum_l a_n b_l e^{jn\omega_0 t} e^{jl\omega_0 t} e^{-jk\omega_0 t} dt$$

$$= \frac{1}{T} \int_T \sum_n \sum_l a_n b_l e^{j(n+l)\omega_0 t} e^{-jk\omega_0 t} dt$$

$$= \sum_n \sum_l a_n b_l \frac{1}{T} \int_T e^{j(n+l)\omega_0 t} e^{-jk\omega_0 t} dt = \sum_n \sum_l a_n b_l \frac{1}{T} \int_T e^{j(n+l-k)\omega_0 t} dt$$

$$n+l=k \longrightarrow \frac{1}{T} \int_{T} e^{0} dt = \frac{1}{T} t \Big|_{0}^{T} = 1$$

$$n+l \neq k \longrightarrow \frac{1}{T} \int_{T} e^{-j(k-n-l)\omega_{0}t} dt = 0$$

$$\longrightarrow \frac{1}{T} \int_{T} e^{-j(k-n-l)\omega_{0}t} dt = \delta \left[k-n-l\right]$$

$$c_k = \sum_n a_n \sum_l b_l \delta[k - n - l]$$

> Lembrar que:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

> Então:

$$\sum_{l=-\infty}^{\infty} b[l] \delta[k-n-l] = \sum_{l=-\infty}^{\infty} b[l] \delta[(k-n)-l] = b[k-n] = b_{k-n}$$

$$c_k = \sum_n a_n b_{k-n}$$

vi) Convolução de sinais

Sejam x(t) e y(t) dois sinais periódicos com período T, a convolução das funções é dada por

$$z(t) = x(t) * y(t) = \int_{-\frac{T}{2}}^{\frac{T}{2}} x(\tau)y(t-\tau)d\tau$$

$$= \int_{-\frac{T}{2}}^{\frac{T}{2}} \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0\tau} \sum_{l=-\infty}^{\infty} b_l e^{jl\omega_0(t-\tau)}d\tau$$

$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \int_{-\frac{T}{2}}^{\frac{T}{2}} a_k b_l e^{j(k-l)\omega_0\tau} e^{jl\omega_0 t} d\tau$$

$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} a_k b_l e^{jl\omega_0 t} \left[\int_{-\frac{T}{2}}^{\frac{T}{2}} e^{j(k-l)\omega_0\tau} d\tau \right]$$

$$\int_{-\frac{T}{2}}^{\frac{T}{2}} e^{j(k-l)\omega_0\tau} d\tau = \begin{cases} T, & k=l \\ 0, & k \neq l \end{cases} \longrightarrow \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{j(k-l)\omega_0\tau} d\tau = T\delta(k-l)$$

$$z(t) = \sum_{k=-\infty}^{\infty} Ta_k \sum_{l=-\infty}^{\infty} b_l \delta(k-l) e^{jl\omega_0 t} = \sum_{k=-\infty}^{\infty} Ta_k b_k e^{jk\omega_0 t}$$

$$c_k = Ta_k b_k$$

vii) Diferenciação de sinais

$$y(t) = \frac{dx(t)}{dt}$$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$\frac{dx(t)}{dt} = \frac{d}{dt} \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} \frac{\partial}{\partial t} (a_k e^{jk\omega_0 t})$$

$$= \sum_{k=-\infty}^{\infty} jk\omega_0 a_k e^{jk\omega_0 t}$$

$$= \sum_{k=-\infty}^{\infty} b_k e^{jk\omega_0 t}$$

$$x(t) \xrightarrow{SF} a_k$$

$$\frac{dx(t)}{dt} \xrightarrow{SF} jk\omega_0 a_k$$

vii) Integração de sinais

$$y(t) = \int_{-\infty}^{t} x(\tau) d\tau$$

$$\int_{-\infty}^{t} x(t) dt = \int_{-\infty}^{t} \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0\tau} d\tau$$

$$= \sum_{k=-\infty}^{\infty} a_k \int_{-\infty}^{t} e^{jk\omega_0\tau} d\tau$$

$$= \sum_{k=-\infty}^{\infty} a_k \frac{e^{jk\omega_0\tau}}{jk\omega_0} \Big|_{-\infty}^{t} = \sum_{k=-\infty}^{\infty} \frac{a_k}{jk\omega_0} \left(e^{jk\omega_0t} - e^{-\infty} \right)$$

$$= \sum_{k=-\infty}^{\infty} \frac{a_k}{jk\omega_0} e^{jk\omega_0t}$$

$$= \sum_{k=-\infty}^{\infty} b_k e^{jk\omega_0t}$$

$$x(t) \xrightarrow{SF} a_k$$

$$\int_{-\infty}^{t} x(t) dt \xrightarrow{SF} \frac{1}{jk\omega_0} a_k$$

viii) Relação de Parseval para sinais periódicos de tempo contínuo.

$$\frac{1}{T} \int_{T} |x(t)|^{2} dt = \sum_{n=-\infty}^{\infty} |a_{n}|^{2} \longrightarrow \text{Relação de Parseval}$$

- \succ Para uma função real mostramos que: $a_{\scriptscriptstyle k}=a_{\scriptscriptstyle -k}^*$
- \triangleright Sejam x(t) e y(t) dois sinais periódicos reais com período T:

$$z(t) = x(t)y(t), x(t) \text{ e } y(t) \text{ sinais reais}$$
Fazendo $y(t) = x^*(t) = x(t), b_k = a_{-k}^* \longrightarrow b_{n-k} = a_{n+k}^*$
Então, $z(t) = x(t)x^*(t) = |x(t)|^2$

$$c_k = \sum_{n=-\infty}^{\infty} a_n b_{n-k} = \sum_{n=-\infty}^{\infty} a_n a_{n+k}^*$$

> Os coeficientes de série de Fourier do sinal de y(t) é dado por:

$$c_{k} = \frac{1}{T} \int_{0}^{T} |x(t)|^{2} e^{-jk\omega_{0}t} dt = \sum_{n=-\infty}^{\infty} a_{n} a_{n+k}^{*}$$

Colocando k = 0, obtemos:

$$\frac{1}{T} \int_{0}^{T} |x(t)|^{2} dt = \sum_{n=-\infty}^{\infty} |a_{n}|^{2} \longrightarrow \text{Relação de Parseval}$$

Exercícios

$$x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & T_1 < |t| < \frac{T}{2} \end{cases}$$

$$a_0 = \frac{1}{T} \int_{-T_1}^{T_1} 1 dt = \frac{1}{T} t \Big|_{-T_1}^{T_1} = \frac{1}{T} (T_1 + T_1) \implies \boxed{a_0 = \frac{2T_1}{T}}$$

$$a_{k} = \frac{1}{T} \int_{-T_{1}}^{T_{1}} 1e^{-jk\omega_{0}t} dt = \frac{1}{T} \frac{e^{-jk\omega_{0}t}}{\left(-jk\omega_{0}\right)} \bigg|_{-T_{1}}^{T_{1}} = \frac{2}{k\omega_{0}T} \frac{1}{j2} \left(e^{jk\omega_{0}T_{1}} - e^{-jk\omega_{0}T_{1}}\right) = 2 \frac{\operatorname{sen}(k\omega_{0}T_{1})}{k\omega_{0}T}$$

$$\omega_0 T = 2\pi \Rightarrow \boxed{a_k = \frac{\operatorname{sen}(k\omega_0 T_1)}{\pi k}}$$

(a) fazendo
$$T = 4T_1$$
:

$$a_0 = \frac{2T_1}{T} = \frac{2T_1}{4T_1} = \frac{1}{2}$$

$$a_{k} = \frac{\operatorname{sen}(k\omega_{0}T_{1})}{\pi k} = \frac{\operatorname{sen}(k\omega_{0}\frac{T}{4})}{\pi k} = \frac{\operatorname{sen}(\frac{\pi k}{2})}{\pi k}$$

Período de
$$a_k : \frac{\omega_0}{2\pi} = \frac{m}{N} \Rightarrow \frac{\pi/2}{2\pi} = \frac{m}{N} \Rightarrow \boxed{N=4}$$

$$a_1 = a_{-1} = 1/\pi$$

$$a_3 = a_{-3} = -1/3\pi$$

$$a_5 = a_{-5} = 1/5\pi$$

$$a_7 = a_{-7} = -1/7\pi$$

$$a_{0} = a_{-0} = 1/9\pi$$

$$a_2 = a_4 = \dots = a_{2k} = 0, \quad k = \pm 1, \pm 2, \pm 3, \dots$$

(b) fazendo
$$T = 8T_1$$
:

$$a_0 = \frac{2T_1}{T} = \frac{2T_1}{8T_1} = \frac{1}{4}$$

$$a_k = \frac{\operatorname{sen}(k\omega_0 T_1)}{\pi k} = \frac{\operatorname{sen}\left(k\omega_0 \frac{T}{8}\right)}{\pi k} = \frac{\operatorname{sen}\left(\frac{\pi k}{4}\right)}{\pi k}$$

Período de
$$a_k: \frac{\omega_0}{2\pi} = \frac{m}{N} \Rightarrow \frac{\pi/4}{2\pi} = \frac{m}{N} \Rightarrow \boxed{N=8}$$

(c) fazendo $T = 16T_1$:

$$a_0 = \frac{2T_1}{T} = \frac{2T_1}{16T_1} = \frac{1}{8}$$

$$a_{k} = \frac{\operatorname{sen}(k\omega_{0}T_{1})}{\pi k} = \frac{\operatorname{sen}(k\omega_{0}\frac{T}{16})}{\pi k} = \frac{\operatorname{sen}(\pi k)}{\pi k}$$

Período de
$$a_k : \frac{\omega_0}{2\pi} = \frac{m}{N} \Rightarrow \frac{\pi/8}{2\pi} = \frac{m}{N} \Rightarrow \boxed{N = 16}$$

Gráfico do espectro de amplitudes $a_k \times k$

Equação da envoltória

$$a_k = 2 \frac{\operatorname{sen}(k\omega_0 T_1)}{k\omega_0 T}, \quad \omega = k\omega_0 \quad \Rightarrow \quad f(\omega) = Ta_k = 2 \frac{\operatorname{sen}(\omega T_1)}{\omega} \quad \text{(função envoltória)}$$

Gráfico da envoltória

Série de Fourier de: x(t)

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$= a_0 + \sum_{k=1}^{\infty} \left(a_k e^{jk\omega_0 t} + a_{-k} e^{-jk\omega_0 t} \right), \quad a_k = a_{-k}$$

$$= \frac{1}{2} + \sum_{k=1}^{\infty} 2a_k \left(\frac{e^{jk\omega_0 t} + e^{-jk\omega_0 t}}{2} \right)$$

$$= \frac{1}{2} + 2\sum_{k=1}^{\infty} a_k \cos(k\omega_0 t)$$

$$= \frac{1}{2} + \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2k-1} \cos(2k-1)\omega_0 t$$

$$= \frac{1}{2} + \frac{2}{\pi} \left(\cos \omega_0 t - \frac{1}{3} \cos 3\omega_0 t + \frac{1}{5} \cos 5\omega_0 t - \frac{1}{7} \cos 5\omega_0 t + \dots + \right)$$

Script para o Matlab para encontra a série de Fourier de x(t)

```
syms x
sum=0;
for i=1:20;
  sum = sum + (2/pi)*(-1)^(i-1)*cos((2*i-1)*x)/(2*i-1);
end
soma=sum+0.5;
t=-4*pi:0.01:4*pi;
for k=1:length(t)
  y(k)=subs(soma,x,t(k));
end
plot(t,y)
grid
```


Resposta de um sistema LIT a entradas periódicas.

- Um sinal periódico pode ser expresso como uma soma de exponenciais de duração infinita;
- Sabemos determinar a resposta de um sistema LIT a uma exponencial de duração infinita;
- Assim, um sinal periódico x(t) pode se descrito pela seguinte exponencial de Fourier:

$$x(t) = \sum_{n=-\infty}^{\infty} a_n e^{jn\omega_0 t}, \quad \omega_0 = \frac{2\pi}{T}$$

 \mapsto Para um sistema LIT, temos:

Exemplo: Considere um circuito RC, dado abaixo e suponha que x(t) = sen t. e com período $T = \pi$.

 \mapsto EDO do circuito:

$$Ri(t) + \frac{1}{C} \int_{-\infty}^{t} i(t) dt = x(t)$$

$$y(t) = \frac{1}{C} \int_{-\infty}^{t} i(t) dt \longrightarrow i(t) = Cy'(t)$$

Logo,

$$RCy' + y = x$$

→ Séries de Fourier da entrada e da saída

$$x(t) = \sum_{n=-\infty}^{\infty} a_n e^{jn\omega_0 t} \longrightarrow y(t) = \sum_{n=-\infty}^{\infty} a_n H(jk\omega_0) e^{jn\omega_0 t}$$

$$T = \pi \longrightarrow \omega_0 = 2$$

$$x(t) = \sum_{n=-\infty}^{\infty} a_n e^{j2nt}, \quad y(t) = \sum_{n=-\infty}^{\infty} a_n H(j2k) e^{j2nt} \quad \text{e} \quad y' = \sum_{n=-\infty}^{\infty} j2na_n H(j2k) e^{j2nt}$$

→ Substituindo na EDO, temos:

$$RCy' + y = x$$

$$RC\sum_{n=-\infty}^{\infty} j2na_{n}H(j2n)e^{j2nt} + \sum_{n=-\infty}^{\infty} H(j2n)e^{j2nt} = \sum_{n=-\infty}^{\infty} a_{n}e^{j2nt}$$

$$\sum_{n=-\infty}^{\infty} \left[RCj2na_n H(j2n) e^{j2nt} + H(j2n) e^{j2nt} \right] = \sum_{n=-\infty}^{\infty} a_n e^{j2nt}$$

$$\sum_{n=-\infty}^{\infty} H(j2n)[RCj2n+1]a_n e^{j2nt} = \sum_{n=-\infty}^{\infty} a_n e^{j2nt},$$

 \mapsto Portanto,

$$H(j2n)[RCj2n+1]=1 \longrightarrow H(j2n)=\frac{1}{RCj2n+1}$$

$$y(t) = \sum_{n=-\infty}^{\infty} a_n H(j2n) e^{j2nt} \longrightarrow y(t) = \sum_{n=-\infty}^{\infty} a_n \frac{1}{RCj2n+1} e^{j2nt}$$

 \mapsto Cálculo de a_n :

$$a_n = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-jn\omega_0 t} \longrightarrow a_n = \frac{1}{\pi} \int_0^{\pi} \operatorname{sen} t e^{-j2nt} dt$$

54

$$\frac{1}{\pi} \int_{0}^{\pi} \sin t \, e^{-j2nt} \, dt = \frac{1}{\pi} \frac{e^{-j2nt} \cos t + j2n \sin t}{4n^2 - 1} \bigg|_{0}^{\pi}$$

$$= \frac{1}{\pi} \left\{ \frac{e^{-j2n\pi} \cos \pi + j2n \sin \pi}{4n^2 - 1} - \frac{e^0 \cos 0 + j2n \sin 0}{4n^2 - 1} \right\}$$

$$= \frac{1}{\pi} \left[\frac{-1}{4n^2 - 1} - \frac{1}{4n^2 - 1} \right] = \frac{1}{\pi} \left(\frac{-2}{4n^2 - 1} \right)$$

$$= \frac{2}{\pi} \frac{1}{1 - 4n^2}$$

$$y(t) = \sum_{n = -\infty}^{\infty} a_n \frac{1}{RCj2n+1} e^{j2nt} = \sum_{n = -\infty}^{\infty} \left(\frac{2}{\pi} \frac{1}{1 - 4n^2}\right) \frac{1}{RCj2n+1} e^{j2nt}$$

$$y(t) = \sum_{n=-\infty}^{\infty} \frac{2}{\pi (1-4n^2)(RCj2n+1)} e^{j2nt}$$