ACTIVITE 3: GRAPHES PONDERES

Exercice 1: Introduction

Sur une carte autoroutière, on a lu que pour se rendre d'une ville D à une ville A, on peut passer par la ville B ou par la ville C. On se propose de déterminer, à l'aide d'un graphe, le trajet le plus court, ou le moins cher en péage pour aller de D à A.

1. Trajet le plus court

Voici les distances séparant deux villes par les autoroutes existantes :

- De D à C : 210 km
- De D à B: 420 km
- De C à A : 420 km
- De B à A : 200 km
- De C à B : 105 km.
- a. Réaliser un graphe étiqueté donc les sommets sont les villes et les étiquettes les distances entre les villes reliées. On dit qu'il s'agit d'un graphe pondéré.
- b. Déterminer le trajet le plus court pour aller de D à A.

2. Trajet le moins cher

- a. Réaliser le graphe pondéré de la situation précédente en remplaçant les distances par les prix des péages, qui sont les suivants :
 - De DàC:20€
 - De DàB:45€
 - De C à A : 19 €
 - De B à A: 40 €
 - De C à B : 20 €
- b. Quel est le trajet pour lequel la somme dépensée en péage est minimale ?

Exercice 2 : Découvrir l'algorithme de Dijkstra

Le graphe pondéré ci-dessous indique la durée du trajet en minutes selon les rues empruntées dans un quartier d'une ville. Lorsqu'une ville à double sens rejoint deux lieux, il se peut qu'elle soit plus empruntée dans un sens que dans l'autre, d'où des durées différentes dans chaque sens.

1. Poids d'une chaîne

Le **poids d'une chaîne** est la somme des durées inscrites sur les arcs qui la composent.

Quel est le poids de chacune des chaînes ci-dessous :

2. Algorithme de Dijkstra

Cet algorithme permet de déterminer le trajet de poids minimal, appelé plus courte chaîne, menant de A à H (par exemple).

Étape	Tâches à effectuer					
1	 Placer tous les sommets du graphe dans la 1^{re} ligne d'un tableau. Sur la 2^e ligne du tableau, écrire le coefficient 0 sous le sommet de départ et le coefficient ∞ sous les autres sommets. 					
2	 Sur la dernière ligne écrite, repérer le sommet X de coefficient minimal. Commencer une nouvelle ligne et rayer toutes les cases vides sous X. 					
3	 Pour chaque sommet Y adjacent à X, calculer la somme P du coefficient de X et du poids de l'arête reliant Y à X. Si P est strictement inférieur au coefficient de Y, inscrire P_X dans la case correspondante de la colonne Y. Sinon, inscrire le coefficient de Y et compléter la ligne par des coefficients de la ligne précédente. 					
4	 S'il reste des sommets non sélectionnés, recommencer à l'étape 2. Sinon, passer à l'étape 5. 					
5	• La longueur minimale est le nombre lu sur la dernière ligne du tableau.					

Recopier et compléter le tableau ci-dessous en suivant les étapes de l'algorithme.

<u>help me Yvan !</u>

nonvolvenousou	000000000000000000000000000000000000000						
00	∞	∞	00	00	∞	- 00	00
00	00	∞	00	00	00	8,	5,
	00						

En déduire la durée minimale du trajet pour aller de A à H et préciser ce trajet.

Exercice 3 : courir oui, mais pas trop non plus

Chuck est un sportif adepte du semi-marathon. Il a décidé de courir un semi-marathon. Pour améliorer sa préparation, il décide d'enchaîner les courses pédestres de 10 km dans différentes villes.

Le graphe pondéré ci-dessous représente les villes A, B, C, D, E, F et H organisant des courses de 10 km, et la ville G est celle organisant le prochain semi-marathon auquel Jonathan est inscrit.

Le poids de chaque arête représente le temps, en minutes, nécessaire pour relier une ville à une autre grâce aux transports en commun.

Chuck vient de courir dans la ville A et souhaite se rendre dans la ville G pour repérer le parcours de son prochain semi-marathon. Déterminer le chemin permettant de relier le plus rapidement la ville A à la ville G, donner la durée de ce parcours en minutes, et les villes traversées.

Exercice 4: application au protocole OSPF

On reprend la situation du chapitre 7 :

- 1. Créer un arbre pondéré où les étiquettes entre les sommets sont le coût de chaque liaison.
- 2. Déterminer à l'aide de l'algorithme de Dijkstra le chemin optimal de R1 à R7.