

Testing Digital Systems I

Lecture 9: Boolean Testing Using Fault Models (D-Algorithm, PODEM)

Instructor: M. Tahoori

Copyright 2011, M. Tahoori

TDS I: Lecture 9

1

D Algorithm (More Examples)

Copyright 2011, M. Tahoori

TDS I: Lecture 9

Example: u/1

- Inconsistency
 - d = 0 and m = 1
 - cannot justify r = 1 (equivalence)
- Backtrack
 - Remove B = 0 assignment

Copyright 2011, M. Tahoori

TDS I: Lecture 9

Example: u/1

- Backtrack
 - Need alternate propagation D-cube for v

Lecture 9

17

Motivation

- IBM introduced semiconductor DRAM memory into its mainframes – late 1970's
- Memory had error correction and translation circuits
 - To improved reliability
- D-ALG failed to generate test for these circuits
 - Search too undirected
 - Large XOR-gate trees
 - Must set all external inputs to define output
- Needed a better ATPG tool

Copyright 2011, M. Tahoori

TDS I: Lecture 9

23

PODEM -- Goel IBM (1981)

- Path Oriented DEcision Making
- New concepts introduced:
 - Expand binary decision tree only around primary inputs
 - This reduced size of tree from 2ⁿ to 2^{num_PI}
 - Use X-PATH-CHECK
 - To test whether D-frontier still there
 - D-Algorithm tends to continue intersecting D-Cubes
 - Even when D-Frontier disappeared
 - Objectives
 - bring ATPG closer to propagating D (D) to PO
 - Backtracing
 - To obtain a PI assignment given an initial objective

Copyright 2011, M. Tahoori

TDS I: Lecture 9

24

Assigning Input Values (PODEM)

- 1. Assign value to an unassigned primary input
- 2. Determine all implications of assignment
- 3. If test is generated, exit; else
- 4. Is test is possible with additional input assignments?
 - fault site doesn't have fault value assigned
 - Path of unassigned leads from D (D) to an output
 - If yes, go to 1, if no
- 5. Change input assignments to untried combination, go to 2
 - If no untried combination exists untestable fault

Copyright 2011, M. Tahoori

TDS I: Lecture 9

Example: Test For k/1

- Put D' on k
 - D-Alg: assigned a D' to k and propagate it to output f
 - PODEM: try to justify 0 on k

Copyright 2011, M. Tahoori

TDS I: Lecture 9

Lecture 9 13

25

PODEM

- Major aspects
 - Which primary input should be assigned a logic value?
 - What value to assign to the selected primary input?
 - Determining inconsistencies in primary input assignments
 - Handling inconsistencies

Copyright 2011, M. Tahoori

TDS I: Lecture 9

51

Which PI to Choose?

- Decision gate
 - Logic value at the output of a gate is such that only one input of the gate can control its output to the desired value
 - AND with output 0
- Imply gate
 - Logic value at the output of a gate is such that all inputs of the gate must be at a particular value in order to control its output to the desired value
 - AND with output 1
- To justify a logic value at the output of a decision gate, choose the "easiest" input.
 - The shortest logical path to primary inputs or has the best controllability
- To justify a logic value at the output of an imply gate, choose the "hardest" input
 - The longest logical path to primary inputs or has the worst controllability

Copyright 2011, M. Tahoori

TDS I: Lecture 9

52

What Value to Assign?

- Path from the objective site to the selected primary input has an even number of inversions
 - Assign the <u>same</u> value to PI as the objective
- Path from the objective site to the selected primary input has an odd number of inversions
 - Assign the <u>opposite</u> value of the objective to PI

Copyright 2011, M. Tahoori

TDS I: Lecture 9

53

Inconsistencies in PI Assignment

- After every primary input assignment, an implication step is performed.
- During implication, inconsistencies in primary input assignments are detected using the following rules:
 - If there are conflicting assignments at the same signal line of the network
 - If the logic value at the fault site doesn't activate the fault
 - If there is no path from the fault site to a primary output such that all side inputs of that path are either X or set at non-controlling values

Copyright 2011, M. Tahoori

TDS I: Lecture 9

54

Handling Inconsistencies

- Backtracking
 - Flip the logic value at the primary input
 - Which was the last one to be assigned a value
 - Stack of primary inputs that have been assigned values
 - After flipping implication step is performed
 - No inconsistency detected
 - Continue
 - Otherwise
 - That primary input is removed from the stack and
 - X is assigned to that primary input
 - POP the next assigned PI from stack and repeat

Copyright 2011, M. Tahoori

TDS I: Lecture 9

55