Languages, automata and computation II Tutorial 2 – WQO

Winter semester 2024/2025

A binary relation \leq on a set X is **quasi-order** if it is reflexive and transitive. An antichain is a subset of X whose elements are pairwise incomparable by \leq .

Exercise 1. Let (X, \preceq) be a quasi-order. Prove that the following conditions are equivalent.

- (a) For any infinite sequence a_1, a_2, \ldots of elements of X there are indexes i < j such that $a_i \leq a_j$.
- (b) X does not contain any infinite antichain or any infinite strictly decreasing sequence.
- (c) For any infinite sequence a_1, a_2, \ldots of elements of X there is an infinite increasing subsequence, i.e. there are indices $i_1 < i_2 < \ldots$ with $a_{i_1} \leq a_{i_2} \leq \ldots$

Whenever any of the conditions (a)-(c) holds we call the relation \leq well quasi-order or WQO.

Exercise 2. Decide which of the following orders are WQO.

- (a) (\mathbb{N}, \leq)
- (b) (\mathbb{Z}, \leq)
- (c) $(\mathbb{N}, |)$, where | is the divisibility relation.
- (d) (X, \preceq) where X is finite and \preceq is any quasi-order on X.
- (e) $(\mathbb{N}^2, \leq_{lex})$, where \leq_{lex} is the lexicographic order.
- (f) $(\{a,b\}^*, \leq_{lex})$, where \leq_{lex} is the lexicographic order on words.

Exercise 3 (Dickson's lemma). Let (X, \leq_X) , (Y, \leq_Y) be a WQO. Prove that $(X \times Y, \leq_{X \times Y})$ is a WQO, where $(x, y) \leq_{X \times Y} (x', y') \iff (x \leq_X x' \land y \leq_Y y')$. Conclude that (\mathbb{N}^d, \leq) is a WQO, where \leq is the pointwise partial order.

Exercise 4. Prove that any subset of \mathbb{N}^d has finitely many minimal elements.

Exercise 5. Let $\mathcal{P}_{fin}(X)$ be the set of all finite subsets of X. For a quasi-order \leq on X we define a quasi-order \leq * on $\mathcal{P}_{fin}(X)$ as follows: $A \leq$ * B if and only if there is an injection $f: A \to B$ such that $a \leq f(a)$ for all $a \in A$. Prove that if (X, \leq) is a WQO, then also $(\mathcal{P}_{fin}(X), \leq^*)$ is a WQO.

Exercise 6 (Higman's lemma). Let Σ be a finite alphabet and \preceq be the subsequence relation on words. Prove that (Σ^*, \preceq) is s WQO.