

Persamaan Lanjar

 Persamaan lanjar atau linear adalah persamaan matematis yang menggambarkan hubungan antara variabel yang memiliki pangkat tertinggi satu. Dalam bentuk umum, persamaan linear dapat dituliskan sebagai:

$$ax + b = 0$$

atau dalam bentuk yang lebih umum untuk dua variabel:

$$ax + by + c = 0$$

di mana:

- a, b, dan c adalah konstanta (angka tetap),
- 🛼 x dan y adalah variabel,
- a dan b tidak boleh keduanya sama dengan nol

Persamaan Lanjar

DELEKANIK NE GERI MAR PANGO

Persamaan lanjar merupakan suatu bentuk persamaan-persamaan yang menyajikan banyak variabel bebas

$$\begin{bmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix}$$

Penyelesaian

Metode Gauss

$\lceil a_{11} \rceil$	a_{12}	a_{13}	 a_{1n}	b_1
a_{21}	a_{22}	a_{23}	 a_{2n}	b_2
	a_{32}		a_{3n}	b_3
$\lfloor a_{n1} \rfloor$	a_{n2}	a_{n3}	 a_{nn}	b_n

C_{11}	c_{12}	c_{13}	 c_{1n}	d_1
0	c_{22}	c_{23}	 c_{2n}	d_2
0	0	c_{33}	 c_{3n}	d_3
L 0	0	0	 c_{nn}	d_{n}

Proses eliminasi pada metode ini terdiri atas tiga Operasi Baris Elementer (OBE)

- 1. Pertukaran: urutan dua persamaan dapat ditukar karena pertukaran tersebut tidak berpengaruh pada solusi akhir.
- 2. Penskalaan: persamaan dapat dikali dengan konstanta bukan nol, sebab perkalian tersebut tidak berpengaruh pada solusi akhir.
- 3. Penggantian: persamaan bisa diganti dengan penjumlahan persamaan itu dengan penggandaan persamaan lain.

$$x_1 + 2x_2 + 3x_3 = 6$$

 $2x_1 + 5x_2 + 10x_3 = 17$
 $x_1 + 3x_2 + 10x_3 = 18$

$$\begin{bmatrix} 1 & 2 & 3 & 6 \\ 2 & 5 & 10 & 17 \\ 1 & 3 & 10 & 18 \end{bmatrix}$$

$$B_2 = B_2 - 2B_1$$

$$B_3 = B_3 - B_1$$

$$x_3 = \frac{7}{3} = 2\frac{1}{3}$$

$$x_2 + 4x_3 = 5$$

$$x_2 = 5 - 4x_3$$

$$= \left(5 - 4.2\frac{1}{3}\right)$$

$$= 5 - 4.\frac{7}{3}$$

$$= 5 - \frac{28}{3} = -\frac{13}{3}$$

$$\begin{bmatrix} 1 & 2 & 3 & 6 \\ 0 & 1 & 4 & 5 \\ 0 & 1 & 7 & 12 \end{bmatrix} \longrightarrow B_3 = B_3 - B_2$$

$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$x_1 + 2x_2 + 3x_3 = 6$$

$$x_1 = 6 - 2x_2 - 3x_3$$

$$+2x_{2} + 3x_{3} = 6$$

$$1 = 6 - 2x_{2} - 3x_{3}$$

$$= 6 - 2\left(\frac{-13}{3}\right) - 3\left(\frac{7}{3}\right)$$

$$= 6 + \frac{26}{3} - \frac{21}{3}$$

$$= \frac{23}{3} = 7\frac{2}{3}$$

Tentukan Nilai x, y dan z

$$\begin{bmatrix} 1 & 2 & 1 & 6 \\ 1 & 3 & 2 & 9 \\ 2 & 1 & 2 & 12 \end{bmatrix} \implies \begin{bmatrix} 1 & 2 & 1 & 6 \\ 0 & 1 & 1 & 3 \\ 0 & -3 & 0 & 0 \end{bmatrix} \implies \begin{bmatrix} 1 & 2 & 1 & 6 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 3 & 9 \end{bmatrix}$$

$$B_3 = B_3 - 2B_1$$

 $B_2 = B_2 - B_1$

$$B_3 = B_3 + 3B_2$$

= 0

$$3z = 9$$
 $x + 2y + z = 6$
 $z = \frac{9}{3} = 3$ $x = 6 - 2y - z$
 $x = 6 - 2(0) - 3$
 $x = 6 - 0 - 3$
 $y + z = 3$
 $y = 3 - z$

$$= 3 - 3$$
 Jadi nilai dari x=3, y=0, dan z=3

Post Test

Tentukan himpunan penyelesaian dari sistem persamaan berikut dengan metode Gauss!

$$x_1 + 2x_2 = 3$$
$$4x_1 + 10x_2 = 20$$

$$3x_1 + 2x_2 = 10$$
$$9x_1 - 7x_2 = 43$$

$$2x - 4y + 3z = -19$$
$$3x - y + 2z = -11$$
$$x + 2y - 5z = 18$$

$$2x - y + 2z = 9$$

 $x - 6y - 3z = -28$
 $3x + 2y + z = 16$

Post Test

Tentukan himpunan penyelesaian dari sistem persamaan berikut dengan metode Gauss!

$$4x_1 + 2x_2 = 20$$
$$2x_1 + 8x_2 = 24$$

$$2x_1 + x_2 = 10$$
$$2x_1 + 8x_2 = 24$$

$$x - 4y - 4z = 3$$

$$2x + 9y + z = 13$$

$$-x + 3y + 2z = 1$$

$$3x + 2y - 5z = 2$$

$$2x - y + 4z = 4$$

$$-5x + 3y - z = 0$$

Metode Gauss - Jordan

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} & b_2 \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} & b_3 \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} & b_n \end{bmatrix}$$

Г1	0	0	 0	d_1
0	1	0	 0	d_2
0	0	1	 0	d_3
[0	0	0	 1	d_n

$$x_1 + 2x_2 = 3$$

$$2x_1 + 5x_2 = 10$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 10 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 4 \end{bmatrix}$$

$$B_2 = B_2 - 2B_1 \qquad B_1 = B_1 - 2B_2$$

$$x_1 = -5 \text{ dan } x_2 = 4$$

$$x + y + z = 6$$

 $x + 2y + 3z = 14$
 $x + 4y + 9z = 36$

$$\begin{bmatrix} 1 & 1 & 1 & 6 \\ 1 & 2 & 3 & 14 \\ 1 & 4 & 9 & 36 \end{bmatrix}$$

Γ1	1	1	6]
0	1	2	8
L ₁	4	9	36

$$\Rightarrow$$

 $B_3 = B_3 - B_1$

$$\begin{array}{c|ccccc}
 & 1 & 1 & 1 & 6 \\
0 & 1 & 2 & 8 \\
0 & 3 & 8 & 30
\end{array}$$

$$B_2 = B_2 - B_1$$

$$\begin{array}{c|ccccc} & \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & 8 \\ 0 & 0 & 2 & 6 \end{bmatrix}$$

$$B_3 = B_3 - 3B_2$$

$$B_3 = \frac{1}{2}B_3$$

$$\begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & 8 \\ 0 & 0 & 1 & 3 \end{bmatrix} \quad \bigstar$$

$$\begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 2 & 8 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

 $B_1 = B_1 - B_2$

$$\begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 8 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 2 & 8 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

$$B_1 = B_1 + B_3$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

$$B_2 = B_2 - 2B_3$$

$$x = 1$$
$$y = 2$$
$$z = 3$$

Post Test

Tentukan himpunan penyelesaian dari sistem
Persamaan Berikut menggunakan metode Gauss Jordan!

$$4x_1 + 2x_2 = 20$$
$$x_1 + 4x_2 = 12$$

$$2x_1 + x_2 = 10$$
$$2x_1 + 8x_2 = 24$$

$$2x - 4y + 3z = -19$$
$$3x - y + 2z = -11$$
$$x + 2y - 5z = 18$$

$$2x - y + 2z = 9$$

$$x - 6y - 3z = -28$$

$$3x + 2y + z = 16$$

Metode Gauss - Seidel

$$x_{1} = \frac{1}{a_{11}}(b_{1} - a_{12}x_{2} - a_{13}x_{3} - \dots - a_{1n}x_{n})$$

$$x_{2} = \frac{1}{a_{22}}(b_{2} - a_{21}x_{1} - a_{23}x_{3} - \dots - a_{2n}x_{n})$$

$$x_{n} = \frac{1}{a_{nn}}(b_{n} - a_{n1}x_{1} - a_{n2}x_{2} - \dots - a_{nn-1}x_{n-1})$$

$$2x_1 + x_2 = 10$$
$$x_1 + 4x_2 = 12$$

dengan nilai awal: $x_1 = 1$ dan $x_2 = 1$.

Buatlah persamaan di atas menjadi:

$$x_1 = (10 - x_2)/2$$

$$x_2 = (12 - x_1)/4$$

$$x_1 = (10 - 1)/2 = 4.5$$

 $x_2 = \frac{1}{4}(12 - 4.5) = 1.875$

$$x_1 = (10 - 1.984)/2 = 4.008$$

 $x_2 = \frac{1}{4}(12 - 4.008) = 1.998$

$$x_1 = (10 - 1.875)/2 = 4.0625$$

 $x_2 = \frac{1}{4}(12 - 4.0625) = 1.984375$

$$x_1 = (10 - 1.998)/2 = 4.001$$

 $x_2 = \frac{1}{4}(12 - 4.001) = 1.99975$

$$x_1 = (10 - 1.99975)/2 = 4.000125$$

 $x_2 = \frac{1}{4}(12 - 4.000125) = 1.9999687$

$$x_1 = (10 - 1.9999687)/2 = 4.000016$$

 $x_2 = \frac{1}{4}(12 - 4.000016) = 1.999996$

Referensi

- Munir, Rinaldi. 2008. Metode Numerik Revisi Kedua.
 Informatika Bandung: Bandung
- Cahya Rahmad, ST, M.Kom. Dr. Eng, "Diktat Kuliah Matematika Numerik", Program Studi Manajemen Informatika, Politeknik Negeri Malang

TERIMA KASIH

