Calculus I, Tutorial Problem Sheet, Week 3

Functions: Even, odd and inverse functions

- Q1. Are the following functions even, odd or neither? Justify your answers.
 - (a) f(x) = (x-1)(x-2)
 - (b) $f(x) = \sum_{k=0}^{n} x^{2k+1}$
 - (c) $f(x) = \frac{x}{(x^2+1)\cos x}$

Solution:

- (a) $f(x)=x^2-3x+2$, so $f(-x)=x^2+3x+2$. Since $f(x)\neq f(-x)$ and $f(x)\neq -f(-x)$ this function is neither even nor odd.
- (b) $f(-x) = \sum_{k=0}^n (-1)^{2k+1} x^{2k+1} = -\sum_{k=0}^n x^{2k+1} = -f(x)$ hence this function is odd.
- (c) x is odd, but both $x^2 + 1$ and $\cos x$ are even, hence f(x) is the product of one odd function and two even functions and is therefore an odd function.
- Q2. If $f: \mathbb{R} \to \mathbb{R}$ is an even function and $g: \mathbb{R} \to \mathbb{R}$ is an odd function then determine whether the following functions are even, odd or neither? Justify your answers.

(a)
$$f_1(x) = \begin{cases} f(x) & \text{if } x > 0 \\ -f(x) & \text{if } x < 0 \end{cases}$$

(d)
$$f_2(x) = (g \circ g)(x)$$

Solution:

(a) On $\mathbb{R}\setminus\{0\}$

$$f_1(-x) = \begin{cases} f(-x) & \text{if } -x > 0 \\ -f(-x) & \text{if } -x < 0 \end{cases} = \begin{cases} f(x) & \text{if } x < 0 \\ -f(x) & \text{if } x > 0 \end{cases} = -f_1(x) \text{ hence this function is odd}$$

(b)
$$f_2(-x)=(g\circ g)(-x)=g(g(-x))=g(-g(x))=-g(g(x))=-(g\circ g)(x)=-f_2(x)$$
 hence this function is odd.

- Q3. Which of the following functions are injective? Find the inverses of those which are and specify the domain of the inverse.
 - (a) $f(x) = (1-x)^2$ in [1,2]
 - (b) f(x) = (x-1)/(x+2) in $\mathbb{R} \setminus \{-2\}$
 - (c) $f(x) = x^2 + 2x 1$ in [-2, 2]

Solution:

(a). It is injective. Apply horizontal line test.

Write
$$y = f^{-1}(x)$$
 and use $f(y) = x$. So $f(y) = (y-1)^2 = x$ hence $y = 1 + \sqrt{x} = f^{-1}(x)$.

$$\operatorname{Dom} f^{-1}=\operatorname{Ran} f=[0,1].$$

(b). It is injective. Apply horizontal line test.

Write $y = f^{-1}(x)$ and use f(y) = x.

So
$$f(y) = (y-1)/(y+2) = x$$
 hence $y = (2x+1)/(1-x) = f^{-1}(x)$.

 $\mathsf{Dom}\, f^{-1} = \mathsf{Ran}\, f = \mathbb{R} \backslash \{1\}.$

(c) It is not injective. Apply horizontal line test or eg. f(-2) = -1 = f(0).

Limits

Q4. Consider the given graph of the function f(x). Are the following statements true or false?

- (a) $\lim_{x\to 2} f(x)$ does not exist, (b) $\lim_{x\to 2} f(x) = 1$, (c) $\lim_{x\to 1} f(x)$ does not
- (d) $\lim_{x\to a} f(x)$ exists $\forall a \in (-1,1)$ (e) $\lim_{x\to a} f(x)$ exists $\forall a \in (1,3)$.

Solution:

- (a) false, (b) true, (c) true, (d) true,
- Q5. In each case either evaluate the limit, or state that no limit exists

(a)
$$\lim_{x \to \pi/2} x \sin x$$
, (b) $\lim_{x \to 1} \frac{x^4 - 1}{x^3 - 1}$, (c) $\lim_{x \to \pi} \frac{\cos x}{1 - \pi}$. (d) $\lim_{x \to 1} \frac{x - 1}{\sqrt{x + 3} - 2}$,

(e)
$$\lim_{x\to 0} \frac{x^2}{1-\cos 2x}$$
 (f) $\lim_{x\to 3} \frac{(x^2+x-12)}{(x-3)^2}$, (g) $\lim_{h\to 0} \frac{1+1/h}{1+1/h^2}$.

Solution:

(a)
$$\pi/2$$
,

(b)
$$\lim_{x \to 1} \frac{x^4 - 1}{x^3 - 1} = \lim_{x \to 1} \frac{(x^2 + 1)(x + 1)(x - 1)}{(x - 1)(x^2 + x + 1)} = \lim_{x \to 1} \frac{(x^2 + 1)(x + 1)}{x^2 + x + 1} = 4/3.$$

(c)
$$\frac{1}{\pi - 1}$$
.

(d)
$$\lim_{x\to 1} \frac{x-1}{\sqrt{x+3}-2} = \lim_{x\to 1} \frac{(x-1)(\sqrt{x+3}+2)}{(\sqrt{x+3}-2)(\sqrt{x+3}+2)} = \lim_{x\to 1} \frac{(x-1)(\sqrt{x+3}+2)}{x+3-4} = 4.$$

(e) $\lim_{x\to 0} \frac{x^2}{1-\cos 2x} = \lim_{x\to 0} \frac{x^2(1+\cos 2x)}{(1-\cos 2x)(1+\cos 2x)} = \lim_{x\to 0} \frac{(2x)^2(1+\cos 2x)}{4\sin^2 2x} = 1/2.$

(e)
$$\lim_{x\to 0} \frac{x^2}{1-\cos 2x} = \lim_{x\to 0} \frac{x^2(1+\cos 2x)}{(1-\cos 2x)(1+\cos 2x)} = \lim_{x\to 0} \frac{(2x)^2(1+\cos 2x)}{4\sin^2 2x} = 1/2$$

(f)
$$\frac{(x^2+x-12)}{(x-3)^2}=\frac{(x+4)(x-3)}{(x-3)^2}=\frac{x+4}{x-3}$$
 hence no limit exists. (g) $\lim_{h\to 0}\frac{1+1/h}{1+1/h^2}=\lim_{h\to 0}\frac{h^2+h}{h^2+1}=0.$

(g)
$$\lim_{h\to 0} \frac{1+1/h}{1+1/h^2} = \lim_{h\to 0} \frac{h^2+h}{h^2+1} = 0.$$

Q6. If $f(x) > 0 \ \forall \ x \neq a$ and $\lim_{x \to a} f(x) = L$, can we conclude that L > 0? Justify your answer.

Solution:

No. An example is provided by $f(x)=x^2$ with a=0 so that L=0 which is not positive.

Q7. Does $\lim_{x\to 0} \frac{\sin(x+|x|)}{x}$ exist?

If the limit exists then find it.

The left-sided and right-sided limits exist but are not equal, hence the limit does not exist.

Q8. Calculate the limit as $x \to \infty$ of the following

(a)
$$\frac{6x+7}{1-2x}$$
, (b) $\frac{x^2}{x^2+\sin^2 x}$.

Solution:

(a)
$$\lim_{x\to\infty} \frac{6x+7}{1-2x} = \lim_{x\to\infty} \frac{6+\frac{7}{x}}{\frac{1}{x}-2} = -3.$$

(b) First note that
$$0 \le \frac{\sin^2 x}{x^2} \le \frac{1}{x^2}$$
.

As $\lim_{x\to\infty}\frac{1}{x^2}=0$ then by the pinching theorem $\lim_{x\to\infty}\frac{\sin^2x}{x^2}=0$.

Thus
$$\lim_{x \to \infty} \frac{x^2}{x^2 + \sin^2 x} = \lim_{x \to \infty} \frac{1}{1 + \frac{\sin^2 x}{2}} = 1.$$