Contents

1	DSP'	's RTL	2	
	1.1	Register-Mux Stage	2	
	1.2	DSP	3	
2	DSP'	's Testbench	4	
	2.1	Tb signals, Instantiation and Clock generation	4	
	2.2	Reset check	4	
	2.3	Path 1 check	5	
	2.4	Path 2 check	6	
	2.5	Path 3 check	7	
	2.6	Path 4 check	8	
3	Do fi	ile	8	
4	Ques	QuestaSim Waveform Snippets9		
5	Constrains file			
6	Vivado			
	6.1	Elaboration	10	
	6.1.1	l Massage tab	10	
	6.1.2	Schematic	10	
	6.2	Synthesis	10	
	6.2.1	L Massage tab	10	
	6.2.2	2 Schematic	11	
	6.2.3	3 Utilization Report	14	
	6.2.4	Timing Report	14	
	6.3	Implementation	15	
	6.3.1	L Massage tab	15	
	6.3.2	2 Device	15	
	6.3.3	3 Utilization Report	17	
	6.3.4	1 Timing Report	17	
7	Lintii	ng	18	

1 DSP's RTL

1.1 Register-Mux Stage


```
1 ▼ module reg mux stage (data,clk,rst,mux out,clk en,sel);
        parameter D WIDTH = 18;
        parameter RSTTYPE = "SYNC";
        input [D_WIDTH-1 : 0] data;
         input rst,clk,clk_en,sel;
        output [D_WIDTH-1 : 0] mux_out;
10
        reg [D_WIDTH-1 : 0] data_reg;
11
12
        assign mux_out = (sel) ? data_reg : data;
13
14 ▼
        generate
15 ▼
             if (RSTTYPE == "SYNC") begin
                 always @(posedge clk) begin
16 ▼
17 ▼
                      if (rst)
                          data_reg <= 0;</pre>
19 ▼
                      else if (clk_en)
20
                          data_reg <= data;</pre>
21
                 end
22 ▼
             end else if (RSTTYPE == "ASYNC") begin
23 ▼
                 always @(posedge clk or posedge rst) begin
24 ▼
                      if (rst)
25
                          data_reg <= 0;</pre>
26 ▼
                      else if (clk_en)
27
                          data_reg <= data;</pre>
28
                 end
29
             end
30
         endgenerate
31
    endmodule : reg_mux_stage
```

1.2 DSP

```
module DSP48A1 (A,B,C,D,CARRYIN,M,P,CARRYOUT,CARRYOUTF,CLK,OPMODE,CEA,CEB,CEC,CECARRYIN,CED,CEM,CEP,CEOPMODE, RSTA,RSTB,RSTC,RSTCARRYIN,RSTD,RSTM,RSTP,RSTOPMODE,BCIN,BCOUT,PCIN,PCOUT);
                      parameter A0REG=0, A1REG=1, B0REG=0, B1REG=1, CREG=1, DREG=1, MREG=1, PREG=1, CARRYINREG=1, CARRYOUTREG=1, OPMODEREG=1;
parameter CARRYINSEL = "OPMODE5", B_INPUT = "DIRECT", RSTTYPE = "SYNC";
                      input [1:0] A,B,D,BCIN;
input [47:0] C,PCIN;
input CARRYIN,CLK,CEA,CEB,CEC,CECARRYIN,CED,CEM,CEP,CEOPMODE,RSTA,RSTB,RSTC,RSTCARRYIN,RSTD,RSTM,RSTP,RSTOPMODE;
                      input [7:0] OPMODE;
                     output [35:0] M;
output [47:0] P,PCOUT;
output [17:0] BCOUT;
output CARRYOUT,CARRYOUTF;
                      wire~\texttt{[17:0]}~A0\_\texttt{mux\_out,B0\_mux\_out,B0\_mux0\_out,ALU0\_out,mux\_opmode4\_out,B1\_\texttt{mux\_out,A1\_mux\_out,B0\_mux0\_out,ALU0\_out,mux\_opmode4\_out,B1\_\texttt{mux\_out,A1\_mux\_out,B0\_mux0\_out,ALU0\_out,mux0\_opmode4\_out,B1\_\texttt{mux\_out,A1\_mux\_out,B0\_mux0\_out,ALU0\_out,mux0\_opmode4\_out,B1\_\texttt{mux\_out,A1\_mux\_out,B0\_mux0\_out,B0\_mux0\_out,ALU0\_out,mux0\_opmode4\_out,B1\_\texttt{mux\_out,A1\_mux\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mux0\_out,B0\_mu
                     wire [47:0] C mux_out,ALU1_out;
wire [35:0] multiply_out,M_mux_out;
wire [7:0] OPMODE_mux_out;
                      wire mux_carryin_out,Cin_mux_out,CYO,CYO_mux_out;
                      reg [47:0] mux_x_out,mux_z_out;
                     reg_mux_stage #(.RSTTYPE(RSTTYPE),.D_WIDTH(18)) A0_SIG (A,CLK,RSTA,A0_mux_out,CEA,A0REG);
reg_mux_stage #(.RSTTYPE(RSTTYPE),.D_WIDTH(18)) B0_SIG (B0_mux0_out,CLK,RSTB,B0_mux1_out,CEB,B0REG);
reg_mux_stage #(.RSTTYPE(RSTTYPE),.D_WIDTH(48)) C_SIG (C,CLK,RSTC,C_mux_out,CEC,CREG);
reg_mux_stage #(.RSTTYPE(RSTTYPE),.D_WIDTH(18)) D_SIG (D,CLK,RSTD,D_mux_out,CED,DREG);
                     reg_mux_stage #(.RSTTYPE(RSTTYPE),.D_WIDTH(8)) OPMODE_SIG (OPMODE,CLK,RSTOPMODE,OPMODE_mux_out,CEOPMODE,OPMODEREG);
reg_mux_stage #(.RSTTYPE(RSTTYPE),.D_WIDTH(18)) A1_SIG (A8_mux_out,CLK,RSTA,A1_mux_out,CEA,A1REG);
reg_mux_stage #(.RSTTYPE(RSTTYPE),.D_WIDTH(18)) B1_SIG (mux_opmode4_out,CLK,RSTB,B1_mux_out,CEB,B1REG);
reg_mux_stage #(.RSTTYPE(RSTTYPE),.D_WIDTH(36)) M_SIG (multiply_out,CLK,RSTM,M_mux_out,CEM,MREG);
                     reg_mux_stage #(.RSTTYPE(RSTTYPE),.D_WIDTH(1)) CYI_SIG (mux_carryin_out,CLK,RSTCARRYIN,Cin_mux_out,CECARRYIN,CARRYINREG);
reg_mux_stage #(.RSTTYPE(RSTTYPE),.D_WIDTH(1)) CYO_SIG (CYO,CLK,RSTCARRYIN,CYO_mux_out,CECARRYIN,CARRYOUTREG);
                      reg_mux_stage #(.RSTTYPE(RSTTYPE),.D_WIDTH(48)) P_SIG (ALU1_out,CLK,RSTP,PCOUT,CEP,PREG);
                   assign B0_mux0_out = (B_INPUT == "DIRECT") ? B: (B_INPUT == "CASCADE") ? BCIN : 0;
                   assign BCOUT = B1_mux_out;
                   assign multiply_out = A1_mux_out * B1_mux_out;
                   assign M = M_mux_out;
                   assign mux_carryin_out = (CARRYINSEL == "CARRYIN") ? CARRYIN :

(CARRYINSEL == "OPMODE5") ? OPMODE_mux_out[5] : 0;
                   always @(*) begin case (OPMODE_mux_out[1:0])
                                          2'b00 : mux_x_out = 0;

2'b01 : mux_x_out = {{12{1'b0}}},M_mux_out};

2'b10 : mux_x_out = PCOUT;

2'B11 : mux_x_out = {D_mux_out[11:0],A1_mux_out,B1_mux_out};
                                           default : mux_x_out = 0;
                               case (OPMODE_mux_out[3:2])
                                          2'b00 : mux_z_out = 0;
2'b01 : mux_z_out = PCIN;
2'b10 : mux_z_out = PCOUT;
2'b11 : mux_z_out = C_mux_out;
                                            default : mux_z_out = 0;
                      assign {CYO,ALU1_out} = (OPMODE_mux_out[7]) ? (mux_z_out - (mux_x_out+Cin_mux_out)) : (mux_x_out + mux_z_out + Cin_mux_out)
                     assign CARRYOUT = CYO_mux_out;
assign CARRYOUTF = CYO_mux_out;
         endmodule : DSP48A1
```

2 DSP's Testbench

2.1 Tb signals, Instantiation and Clock generation

2.2 Reset check

```
initial begin
// reset check
RSTA = 1; RSTB = 1; RSTC = 1; RSTD = 1; RSTM = 1; RSTP = 1; RSTOPMODE = 1; RSTCARRYIN = 1;

A = $random(); B = $random(); C = $random(); D = $random();

BCIN = $random(); CARRYIN = $random(); PCIN = $random(); OPMODE = $random();

CEA = $random(); CEB = $random(); CEC = $random(); CED = $random(); CECARRYIN = $random(); CEP = $
```

2.3 Path 1 check

2.4 Path 2 check


```
// path 2 test
// pat
```

2.5 Path 3 check


```
// path 3 test
// path 3 test
A = 20; B = 10; C = 350; D = 25;
BCIN = $random(); CARRYIN = $random(); PCIN = $random(); OPMODE = 8'b0000_1010;

M_exp = 'hc8; P_exp = 0; PCOUT_exp = 0; BCOUT_exp = 'ha; CARRYOUT_exp = 0; CARRYOUTF_exp = 0;

repeat (3) @(negedge CLK);

if ((M == M_exp) && (P == P_exp) && (PCOUT == PCOUT_exp) && (BCOUT == BCOUT_exp) && (CARRYOUT == CARRYOUTF_exp))

$display("path 3 test passed");
else begin
$display("error in path 3");
$stop();
end
```

2.6 Path 4 check

3 Do file

```
vlib work
vlog reg_mux_stage.v DSP48A1.v DSP48A1_tb.v
vsim -voptargs=+acc work.DSP48A1_tb
add wave *
run -all
funit -sim
```

4 QuestaSim Waveform Snippets

5 Constrains file

```
## Clock signal
set_property -dict { PACKAGE_PIN W5 IOSTANDARD LVCMOS33 } [get_ports CLK]
create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 5} [get_ports CLK]

## Configuration options, can be used for all designs
set_property CONFIG_VOLTAGE 1.8 [current_design]
set_property CFGBVS VCCO [current_design]

## SPI configuration mode options for QSPI boot, can be used for all designs
set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design]
set_property BITSTREAM.CONFIG.CONFIGRATE 33 [current_design]
set_property CONFIG_MODE SPIX4 [current_design]
```

The remain is commented so it's unused.

I made the CONFIG_VOLTAGE 1.8 instead of 3.3 due to a warning in vivado.

6 Vivado

6.1 Elaboration

6.1.1 Massage tab

These warnings have shown as there some unused signals in the design

6.1.2 Schematic

6.2 Synthesis

6.2.1 Massage tab

These warnings have shown as we didn't use some input ports.

Snippets

The unconnected inputs as the default design don't use them

The remains blocks are the registers for the signals in the design.

6.2.3 Utilization Report

6.2.4 Timing Report

6.3 Implementation

6.3.1 Massage tab

Nothing added.

6.3.2 Device

Snippets

6.3.3 Utilization Report

6.3.4 Timing Report

7 Linting

These warnings have shown as there is a fixed expressions in the muxes in my design but I can ignore these warnings as I intend to do this.