Sommersemester 2015 Übungsblatt 9 15. Juni 2015

Theoretische Informatik

Abgabetermin: 22. Juni 2015, 13 Uhr in die THEO Briefkästen

Hausaufgabe 1 (4 Punkte)

Gegeben sei das Alphabet $\Sigma = \{a, b, c, d\}.$

- 1. Definieren Sie einen Kellerautomaten $K_1 = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, der die Sprache $L_1 = \{ca^ndb^n; n \in \mathbb{N}\}$ mit leerem Keller akzeptiert, so dass also $L_{\epsilon}(K_1) = L_1$ gilt! Geben Sie den Übergangsgraph Ihres Automaten K_1 an.
 - Ist Ihr Automat K_1 deterministisch?
- 2. Wir betrachten für eine beliebige aber feste natürliche Zahl $k_0 \in \mathbb{N}$ (z.B. $k_0 = 2$) die Sprache

$$L_{k_0} = \{c^{k_0}a^nd^{k_0}b^n; n \in \mathbb{N}\}.$$

- (a) Geben Sie für beliebiges $k_0 \ge 1$ ein Verfahren an zur Konstruktion einer Grammatik G_{k_0} in Chomsky-Normalform, so dass G_{k_0} die Sprache L_{k_0} erzeugt. Benützen Sie u.a. indizierte Nichtterminale U_i, V_i .
- (b) Erzeugen Sie für $k_0 = 2$ durch Anwendung Ihres Verfahrens eine konkrete Grammatik G_2 , so dass $L(G_2) = L_2$ gilt.
- 3. Seien $k_0 \in \mathbb{N}$ beliebig aber fest und

$$L = \{c^k a^n d^k b^n; k, n \in \mathbb{N}, k \le k_0\}.$$

Gibt es einen Kellerautomaten K, der L akzeptiert? Begründung!

Hausaufgabe 2 (4 Punkte)

Sei $\Sigma = \{a, b, c\}$. Die Anzahl von Vorkommen eines Zeichens $x \in \Sigma$ in einem Wort $w \in \Sigma^*$ bezeichnen wir mit $\#_x(w)$. Für $w, u \in \Sigma^*$ heißt u Präfix von w, falls es ein $v \in \Sigma^*$ gibt, so dass w = uv gilt.

<u>Beispiel:</u> ab ist Präfix von w = aba, aber ba ist <u>nicht</u> Präfix von w. Es gilt $\#_a(w) = 2$.

Wir definieren die Sprache L als die Menge aller Wörter w aus Σ^* mit der Eigenschaft, dass in jedem Präfix u von w die Anzahl der "öffnenden Klammern" a größer oder gleich der Anzahl der "schließenden Klammern" b ist, d.h.

$$L = \{ w \in \Sigma^* ; \text{ für alle Präfixe } u \text{ von } w \text{ gilt } \#_b(u) \le \#_a(u) \}.$$

1. Zeigen Sie mit Hilfe des Pumping Lemma, dass L nicht regulär ist.

- 2. Definieren Sie einen deterministischen Kellerautomaten $K = (Q, \Sigma, \Delta, \delta, q_0, Z_0, F)$, der die Sprache L mit Endzustand akzeptiert, so dass also L(K) = L gilt! Geben Sie dazu den Übergangsgraphen Ihres Automaten K an.
- 3. Gibt es einen deterministischen Kellerautomaten, der L mit leerem Keller akzeptiert? Begründung!

Hausaufgabe 3 (4 Punkte)

Konstruieren Sie für die folgenden Sprachen jeweils einen Kellerautomaten, der die Sprache erkennt.

- (a) $L_1 = \{a^n b^{3n} ; n \in \mathbb{N}_0\}$
- (b) $L_2 = \{wc\widehat{w} ; w \in \Sigma^*\}$, wobei \widehat{w} das zu w gespiegelte Wort und $\Sigma = \{a, b\}$ ist.
- (c) $L_3 = \{w\widehat{w} ; w \in \Sigma^*\}$, wobei \widehat{w} das zu w gespiegelte Wort und $\Sigma = \{a, b\}$ ist.

Geben Sie – wenn möglich – einen deterministischen Kellerautomaten an.

Hausaufgabe 4 (4 Punkte)

Seien $L = \{a^i b^j c^k ; i = j \text{ oder } j = k\}$ und $L' := \overline{L} \cap a^* b^* c^*$.

- 1. Zeigen Sie mit Hilfe von Ogden's Lemma, dass L' nicht kontextfrei ist.
- 2. Zeigen Sie, dass L nicht deterministisch kontextfrei ist.

Hausaufgabe 5 (4 Punkte)

Für Zwecke dieser Aufgabe nennen wir einen deterministischen Kellerautomaten $K = (Q, \Sigma, \Delta, \delta, q_0, Z_0, F)$, dessen Übergangsfunktion δ so beschaffen ist, dass der Kellerinhalt nie verändert wird, einen ϵ -DFA. Sei L(K) die Sprache, die von einem ϵ -DFA K mit Endzuständen akzeptiert wird.

Geben Sie ein direktes (nicht über ϵ -NFA) Verfahren an, das zu einem beliebigen ϵ -DFA K einen deterministischen endlichen Automaten A definiert, der die Sprache L(K) erkennt!

${\bf Zusatzaufgabe~7~(wird~nicht~korrigiert)}$

Die Sprache P der Palindrome über dem Alphabet $\Sigma = \{0,1\}$ ist gleich der Menge aller Wörter über Σ , die dieselbe Zeichenfolge ergeben, gleich ob man sie rückwärts oder vorwärts liest, d.h. $P = \{w \in \Sigma^* : w = w^R\}$.

- 1. Die Sprache P der Palindrome über dem Alphabet Σ ist kontextfrei. Zeigen Sie, dass P nicht regulär ist.
- 2. Sei $L\subseteq \Sigma^*$ regulär. Zeigen Sie die Regularität der folgenden Menge $L_{\frac{1}{2}P}.$

$$L_{\frac{1}{2}P} = \{ w \in \Sigma^* \, ; \, w^R w \in L \} \, .$$

Hinweis: Die Vorbereitungsaufgaben bereiten die Tutoraufgaben vor und werden in der Zentralübung unterstützt. Tutoraufgaben werden in den Übungsgruppen bearbeitet. Hausaufgaben sollen selbstständig bearbeitet und zur Korrektur und Bewertung abgegeben werden.

Vorbereitung 1

Wir betrachten den Beweis zu dem Satz der Vorlesung, in dem eine k-Band-Turingmaschine M durch eine normale Turingmaschine M' simuliert wird. Geben Sie eine Abschätzung für die Anzahl der Zustände an, die M' haben muss.

Vorbereitung 2

Seien $\Sigma = \{a_1, a_2, \dots, a_n\}$ ein beliebiges n-elementiges Alphabet und $\Sigma' = \Sigma \cup \{\#\}$. Geben Sie eine Turingmaschine $M = (Q, \Sigma', \Gamma, \delta, q_0, \square, F)$ mit höchstens 5 Zuständen an, die bei leerer Eingabe das Alphabet Σ in der Form $\#a_1\#a_2\dots\#a_n$ auf das Band schreibt und mit dem Kopf auf dem letzten, rechtsstehenden Zeichen der Ausgabe anhält.

Vorbereitung 3

Wahr oder falsch? Begründen Sie Ihre Antworten:

- 1. Jede unentscheidbare Sprache enthält eine entscheidbare Teilmenge.
- 2. Jede Teilmenge einer entscheidbaren Sprache ist entscheidbar.
- 3. Für jede unentscheidbare Sprache A gibt es eine echte Obermenge, die ebenfalls unentscheidbar ist.
- 4. Aus "A entscheidbar" und " $A \cap B$ entscheidbar" folgt "B entscheidbar".

Vorbereitung 4

In einem Tresor liegt eine Liste mit 6-stelligen TAN-Nummern. Der Schlüssel zum Öffnen des Tresors ist verloren gegangen und es gibt keine andere Möglichkeit, den Tresor zu öffnen.

Sei A die Menge der Primzahlen, die auf der TAN-Liste vorkommen. Dann ist $A\subseteq \mathbb{N}$ entscheidbar!

Vorbereitung 5

Man zeige oder widerlege:

- 1. Sei $\Sigma = \{0, 1\}$ und $f : \Sigma^* \to \Sigma^*$ eine beliebige (möglicherweise partielle) Funktion. Der Graph von f ist die Relation $G_f = \{(v, w) \in \Sigma^* \times \Sigma^*; f(v) = w\}$.
 - Wenn G_f entscheidbar ist, dann ist f berechenbar.
- 2. Gegeben sei eine berechenbare Auflistung (Codierung) aller Turingmaschinen, die jedem Wort $w \in \{0,1\}^*$ eine Turingmaschine M_w zuordnet. Dann ist die Sprache $L = \{w \mid L(M_w) \text{ ist rekursiv aufzählbar}\}$ entscheidbar.

Tutoraufgabe 1

Zeigen Sie, dass jede (deterministische) Turingmaschine durch einen Queue-Automaten (siehe HA 4 von Blatt 8) simuliert werden kann.

Tutoraufgabe 2

Wir bezeichnen mit TM_k solche Einband-Turingmaschinen, die jede Zelle des Bandes höchstens k-mal ändern dürfen. Dabei gelten nur Übergänge $\delta(q, x) = (q', y, X)$ mit $x \neq y$ als Änderungen einer Zelle des Bandes (mit $X \in \{N, R, L\}$).

- 1. Zeigen Sie, dass die Turingmaschinen TM₂ äquivalent zu herkömmlichen Turingmaschinen sind. Benutzen Sie soviel Band wie nötig.
- 2. Zeigen Sie, dass auch die Turingmaschinen TM_1 äquivalent zu herkömmlichen Turingmaschinen sind. Sie dürfen dabei die Resultate der ersten Teilaufgabe verwenden.

Sie müssen keine expliziten Konstruktionen angeben. Es genügen informelle, aber dennoch vollständige und genaue Beschreibungen.

Tutoraufgabe 3

Sei $\Sigma = \{a, b, *\}$, $\Gamma = \Sigma \cup \{\Box\}$ und $Q = \{q_0, q_1, q_2, q_f\}$. Wir betrachten die Turingmaschine $N = (Q, \Sigma, \Gamma, \delta, q_0, \Box, \{q_f\})$ mit der Übergangsfunktion

$$\delta(q_0, a) = \{(q_0, a, R)\},
\delta(q_0, *) = \{(q_0, a, R)\},
\delta(q_0, *) = \{(q_0, b, R)\},
\delta(q_0, *) = \{(q_0, b, R)\},
\delta(q_0, *) = \{(q_0, b, R)\},
\delta(q_1, a) = \{(q_1, a, b)\},
\delta(q_1, a) = \{$$

- 1. Geben Sie eine deterministische Turingmaschine M an, die die Sprache L(N) erkennt.
- 2. Beschreiben Sie ein allgemeines Verfahren, das zu jeder beliebigen nichtdeterministischen Turingmaschine N eine äquivalente deterministische Turingmaschine M liefert, d. h., so dass L(N) = L(M) gilt.

Tutoraufgabe 4

Eine Menge natürlicher Zahlen läßt sich als Teilmenge von Σ^+ über einem einelementigen Alphabet $\Sigma = \{|\}$ kodieren. Entsprechend werden wir Begriffe für formale Sprachen auf Mengen natürlicher Zahlen anwenden.

Wir betrachten die Menge $G = \{n \in \mathbb{N} : n \neq 1, (\neg \exists \operatorname{Primzahlen}^1 x, y)[2n = x + y] \}.$

- 1. Geben Sie eine knappe Begründung, warum G entscheidbar ist!
- 2. Vermutlich werden Sie keine der Aussagen beweisen können, ob G leer ist oder nicht, denn Sie müssten dazu die Goldbachsche Vermutung beweisen oder widerlegen. Warum können Sie trotzdem zeigen, dass für G das Leerheitsproblem entscheidbar ist?

¹1 ist keine Primzahl