Nirma University

Institute of Technology Semester End Examination (RPR), June-2022

B.Tech. in Computer Science & Engineering, Semester -VII 2CS701 – Compiler Construction

Roll / Exam No.	Supervisor's initial with date	
Time: 3	Hours Max. Man	ks : 10
Instructio	 Attempt all questions. Figures to right indicate full marks. Use section-wise separate answer book. Draw neat sketches wherever necessary. 	
	SECTION – I	
Q.1 (A) CO1BL3	Do as directed Demonstrate step by step compiler processing for following statement through all phases of compiler:	[18] (6)
(B) CO2BL5	Interest = (Principal * Rate * Term) / 100 Is following grammar SLR? Justify. $S \rightarrow L - R$ $S \rightarrow R$ $L \rightarrow * R$ $L \rightarrow id;$ $R \rightarrow L$	(6)
(C) CO2BL5	Check whether the given grammar is LL(1) or not. Prove your answer with proper parsing table and explanation. (E is NULL) $S \to iEtSS' \mid a$ $S' \to eS \mid \mathcal{E}$ $E \to b$	(6)
Q.2	Do as directed.	[16]
(A) CO1BL1	Define terms Activation Tree and Activation Record in static allocation of space with example.	(6)
(B) CO2BL6	Design the Recursive Descent Parser for the following grammar. $E \to TE'$ $E' \to +TE'$ $T \to FT'$ $T' \to *FT' \mid \varepsilon$ $F \to (E) \mid id$ OR	(6)
(B) CO2BL6	Convert the following C code into 3 address code: while $(x < y)$ { $x:=x+1$; if $(x\%2==1)$ then $y:=y+1$; else $y:=y-2$: /	(6)

- (C) Explain the following issues for the design of a code generator. (4)
- CO1BL1 1. Register allocation 2. Instruction Selection
 - 2. Histraction Selection

Q.3 Do as directed.

[**16**] (6)

- (A) "For any Top down parsing, left recursion removal and left factoring CO1BL2 are important". Write your opinion about the statement and justify with suitable example.
- (B) What is annotated tree? Explain it by designing an annotated tree (6) CO2BL2 for the string "5 + 3 * 4" with the following grammar rules.

Production	Semantic Rules
$L \to E$ return	Print ("answer is" + E.val)
$E \rightarrow E_1 + T$	$E.val = E_1.val + T.val$
$E \to T$	E.val = T.val
$T \rightarrow T_1 * F$	$T.val = T_1.val + F.val$
$T \to F$	T.val = F.val
F → (E)	F.val = E.val
F → Num	F.val = (int) Num.lexval

OR

(B) Design a LL(1) Parse table for the following grammar. Explain the CO2BL3 error recovery strategy for the input string "aab".

$$S \rightarrow AbS \mid e \mid \epsilon$$

$$A \rightarrow a \mid cAd$$

(C) Construct the minimized DFA for the transition table of DFA given (4) CO2BL6 below.

States	а	В
1	2	6
2	1	3
3	2	4
4	4	2
5	4	5
6	5	4

Accepting state = {3,6}

Starting State = {1}

Section II

Q.4 Do as directed.

[18]

- (A) Compare various representations of three address statement with [6] CO1BL4 suitable example.
 - (B) Construct the DAG for the given below expression

[6]

CO2BL3
$$((x + y) - ((x + y) / (x - y))) + ((x + y) * (x - y))$$

(C) What is dead code in code optimization? Eliminate the dead code [6] CO4BL3 from the following code fragment, if exists:

int x;

Q.5 Do as directed.

[16]

(A) Construct operator precedence function table from below given [6] CO2BL3 operator precedence relation table.

	id	+	*	\$
id		.>	.>	.>
+	<.	.>	<.	.>
*	<.	.>	.>	٠>
\$	<.	<.	<.	.>

(B) Trace LR Parsing for input string "baaab" using below given LR [6] CO2BL3 parse table. Does input string match the Grammar? Why?

LR Parse Table						
	Action			Goto		
State	a	b	\$	S	T	
0	s3	s4		1	2	
1			acc			
2	s3	s4	a		5	
3	s3	s4			6	
4	r3	r3	r3			
5			r1			
6	r2	r2	r2			

Production Rules

1.
$$S \rightarrow TT$$

2.
$$T \rightarrow aT$$

3.
$$T \rightarrow b$$

OR

(B) Perform optimal registers allocation using graph coloring method [6] CO4BL3 for below given register interference graph

(C) Differentiate Synthesized and Inherited attributes with suitable [4] CO1BL4' example.

Q.6 Do as directed.

[16]

- (A) What do you mean leader in basic blocks? Write all properties of [6] CO1BL1 leader.
- (B) Write translation scheme to calculate decimal value from BCD code. [6] CO2BL3 For example, value of 1001 0111 0101 is 975.

OR

- (B) Generate Syntax Directed Definition to translate infix expression to [6] CO2BL3 postfix expression
- (C) Apply left recursion elimination to following grammar: [4]

CO2BL4
$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid sd \mid \epsilon$