ANÁLISIS MATEMÁTICO (AMA)

UT3 - Problemas Propuestos: INTEGRACIÓN APROXIMADA

- 1. a) Aproxima el valor de la integral $\int_0^1 \frac{dx}{1+x}$ mediante la fórmula de trapecios con diez subdivisiones del intervalo de integración
 - b) Encuentra una cota para el error cometido en la aproximación
 - c) Compara los valores exacto y aproximado de la integral.
- 2. a) Utiliza el método de los trapecios para aproximar $\frac{\pi}{4} = \int_0^1 \frac{dx}{1+x^2}$ con dos decimales exactos, al menos. ¿Obtienes en realidad la precisión que esperas?
 - b) Trabaja como en a) pero utilizando la regla de Simpson, buscando cuatro decimales exactos, al menos.
- 3. a) Verifica que, si utilizas la regla de Simpson con cuatro subdivisiones del intervalo de integración, puedes aproximar $\log(2) = \int_1^2 \frac{dx}{x}$ con dos decimales exactos, al menos. Encuentra la aproximación en cuestión
 - b) Acota el error cometido al subdividir el intervalo de integración en diez partes iguales y compara el valor exacto de la integral con la aproximación, en este caso. ¿Son compatibles ahora la cota de error y el error que se obtiene realmente?
 - c) Determina el número de subdivisiones a realizar en [1,2] para conseguir aproximar log(2) con siete decimales exactos, al menos y obtén, si es posible, la aproximación en cuestión. Si lo haces verifica que es compatible con el valor exacto.
- 4. Considera la curva de ecuación $y = x^3 1$
 - a) Calcula el área encerrada por f(x) y los ejes coordenadas
 - b) Aproxima el área de a) con dos cifras decimales correctas usando el método de trapecios

ANÁLISIS MATEMÁTICO (AMA)

UT3 - Ejercicios adicionales: INTEGRACIÓN APROXIMADA

- *1. a) Encuentra la ecuación de la parábola que pasa por los puntos (-h, f(-h)), (0, f(0)) y (h, f(h))
 - b) Integra la parábola en [-h, h] para obtener la fórmula de Simpson que aproxima $\int_{-h}^{h} f(x) dx$ con dos subdivisiones
 - c) Comprueba que si f(x) es un polinomio de tercer grado la aproximación hallada en b) es exacta
 - d) Verifica que si $f(x) = \cos(x)$, por ejemplo, la aproximación ya no es exacta.
- 2. Calcula el valor exacto de $\int_0^1 \frac{dx}{(1+x)(2+x)}$ y las aproximaciones que obtienes con los métodos de trapecios y Simpson considerando el intervalo de integración dividido en cuatro subintervalos.
- 3. Considera la integral $\int_1^2 x^3 \log(\sqrt{x}) dx$
 - a) Calcula su valor exacto mediante integración por partes
 - b) Aproxima este valor utilizando la regla de Simpson, con tres decimales exactos, al menos
 - c) Verifica que este último resultado es compatible con el valor hallado en a).
- *4. Considera la integral $\int_0^{1/4} \arcsin(\sqrt{x}) dx$
 - a) Calcula su valor exacto utilizando un cambio de variable e integración por partes
 - b) Aproxima este valor haciendo uso de la regla de trapecios con un error menor que 10^{-3}
 - c) Aproxima la integral utilizando la regla de Simpson, con tres decimales exactos, al menos.
 - 5. a) Aproxima $\int_{1.8}^{2.6} f(x)dx$, mediante trapecios y Simpson, teniendo en cuenta que el integrando se define a partir de la tabla:

x	1.8	2.0	2.2	2.4	2.6	
f(x)	3.12014	4.42569	6.04241	8.03014	10.46675	

b) Si la velocidad de un objecto se conoce a través de la tabla de valores

ſ	$t_{(s)}$	0	5	10	15	20	25	30
	$v_{(m/s)}$	0	1	3	6	9	12.5	15

determina el valor aproximado del espacio recorrido los primeros 30 segundos, haciendo uso de los métodos de trapecios y de Simpson.