This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

 (Currently Amended) A method of communicating between a media access control layer (MAC) and a physical layer (PHY), comprising:

sending a first 100 MHz time-division multiplexed signal on a receive data line pin;

sending a plurality of time-division multiplexed receive control signals on a single receive control $\frac{1}{100}$ pin;

sending a second 100 MHz time-division multiplexed signal on a transmit data line pin;

sending a plurality of time-division multiplexed transmit control signals on a single transmit control line pin,

wherein the receive control signals include a receive data valid signal and a receive error signal and the transmit control signals include a transmit enable signal and a transmit error signal.

- (Currently Amended) The method of claim 1 wherein the time-division multiplexed receive control signals includes a plurality 4 bit segments and wherein each 4 bit segment includes a synchronization bit.
- 3. (Currently Amended) The method of claim 2 wherein the receive data line includes 4 bit segments and wherein the beginning of a each 4 bit segment of the receive data line is determined by the synchronization bit of such each 4 bit segment.
- 4. (Currently Amended) The method of claim 1 wherein the time-division multiplexed receive control signals includes a <u>plurality of</u> 4 bit segments of the receive data line and wherein each 4 bit segment includes a receive data valid bit.
- (Currently Amended) The method of claim 1 wherein the time-division multiplexed receive control signals includes 4 bit segments and wherein each 4 bit segment includes a receive error bit.
- 6. (Currently Amended) The method of claim 1 wherein the time-division multiplexed receive control signals includes a <u>plurality of</u> 4 bit segments and wherein each 4 bit segment includes a carrier sense bit.

- (Currently Amended) The method of claim 1 wherein the time-division multiplexed transmit control signals includes a <u>plurality of</u> 4 bit segments of the transmit data line and wherein each 4 bit segment includes a synchronization bit.
- 8. (Currently Amended) The method of claim 7 wherein the transmit data line includes 4 bit segments and wherein the beginning of α each 4 bit segment of the transmit data line is determined by the synchronization bit of such each 4 bit segment.
- (Currently Amended) The method of claim 1 wherein the time-division multiplexed transmit control signals includes a <u>plurality of</u> 4 bit segments and wherein each 4 bit segment includes a transmit enable bit.
- 10. (Currently Amended) The method of claim 1 wherein the time-division multiplexed transmit control signals includes a <u>plurality of</u> 4 bit segments and wherein each 4 bit segment includes a transmit error bit.
- 11. (Currently Amended) The method of claim 1 further including indicating the speed of the PHY using the receive data line pin.
- 12. (Currently Amended) The method of claim 11 wherein indicating the speed of the PHY using the receive data line pin includes including an interface speed bit in a data segment when a receive control segment indicates no carrier sense, no receive data valid and no receive error.
- 13. (Original) The method of claim 1 further including buffering data transmitted from the PHY to the MAC using an elasticity buffer that is at least 27 bits long.
- 14. (Original) The method of claim 1 further including buffering data transmitted from the PHY to the MAC using an elasticity buffer that long enough to buffer an entire frame of data from a data source having a clock with a frequency tolerance of 0.1%.
- 15. (Currently Amended) An interface between a first media access control layer and a second media access control layer, consisting essentially of:
 - a time-division multiplexed receive data line pin;
- a time-division multiplexed receive control line pin for transmitting different functional types of receive control signals including a receive data valid signal and a receive error signal;
 - a time-division multiplexed transmit data line pin;

- a time-division multiplexed transmit control line pin for transmitting different functional types of transmit control signals including a transmit enable signal and a transmit error signal.
- 16. (Currently Amended) A media access control layer to physical layer interface consisting essentially of:
 - a common clock:
 - a time-division multiplexed receive data line pin;
- a time-division multiplexed receive control line <u>pin</u> for transmitting different functional types of receive control signals including a receive data valid signal and a receive error signal;
 - a time-division multiplexed transmit data line pin;
- a time-division multiplexed transmit control line pin for transmitting different functional types of transmit control signals including a transmit enable signal and a transmit error signal.
- 17. (Currently Amended) The interface of claim 16, wherein said time-division multiplexed receive control line pin contains receive control signals further comprising a carrier sense signal.
 - 18. (Canceled)
- 19. (New) The method of claim 1, wherein the receive control signals further include a synchronization (SYNC) signal and a carrier sense signal.
- (New) The method of claim 1, wherein the transmit control signals further include a synchronization (SYNC) signal.