Introduction to Algorithms: Section 3.2 exercises

crow

February 2025

1 3.2-1

Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic definition of Θ -notation, prove that $\max\{f(n),g(n)\}\in\Theta(f(n)+g(n))$

Solution:

$$\max\{f(n), g(n)\} = \begin{cases} f(n), & \text{if } f(n) > g(n) \\ g(n), & \text{otherwise} \end{cases}$$
 (1)

 $\max\{f(n),g(n)\}$ grows at least as fast as f(n), as if f(n) is returned, it is larger than g(n). Thus $\max\{f(n),g(n)\}\in\Omega(f(n))$. And because f(n) and g(n) are both nonnegative, f(n)+g(n) is larger than f(n) or g(n) individually. So it can be said that $\max\{f(n),g(n)\}\in O(f(n)+g(n))$, because $\max\{f(n),g(n)\}$ can grow no faster than f(n)+g(n). And because Θ -notation characterizes the rate of growth from a constant factor above, and a constant factor below. It can be said that $\max\{f(n),g(n)\}\in\Theta(f(n)+g(n))$, given O(f(n)+g(n)) and $\Omega(f(n))$

$2 \quad 3.2-2$

Explain why the statement, "The running time of algorithm A is at least $O(n^2)$," is meaningless

$3 \quad 3.2-3$

Is $2^{n+1} \in O(2^n)$? Is $2^{2n} \in O(2^n)$?

4 3.2-4

Prove Theorem 3.1:

For any two functions f(n) and g(n), we have $f(n) \in \Theta(g(n))$ if and only if $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$

5 3.2-5

Prove that the running time of an algorithm is $\Theta(g(n))$ if and only if its worst-case running time is O(g(n)) and its best-case running time is $\Omega(g(n))$

6 3.2-6

Prove that $o(g(n)) \cap \omega(g(n))$ is the empty set

7 3.2-7

We can extend our notation to the case of two parameters n and m that can go to ∞ independently at different rates. For a given function g(n,m), we denote by O(g(n,m)) the set of functions

 $O(g(n,m)) \in \{f(n,m) : \text{there exist positive constants } c,n_0, \text{ and } m_0 \text{ such that } 0 \le f(n,m) \le cg(n,m) \text{ for all } n \ge n_0 \text{ or } m \ge m_0\}$

Give corresponding definitions for $\Omega(g(n,m))$ and $\Theta(g(n,m))$

8 Additional Notes

This is still a work in progress