Министерство образования и науки РФ ФГБПОУ ВПО Тульский государственный университитет КАФЕДРА АВТОМАТИКИ И ТЕЛЕМЕХАНИКИ

МЕТОД ЭЙЛЕРА ДЛЯ РЕШЕНИЯ СИСТЕМ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Реферат	
по курсу «Вычислительный	практикум»

Вариант № 4

Выполнил:	студент группы 220601	Белым А.А.
		(подпись)
Проверил:	к. т. н., доцент	Карцева А.С.
		(подпись)

Содержание

Co	одержание	2
1	Общие сведения о дифференциальных уравнениях	3
2	Метод Эйлера для решения дифференциальных уравнений	4
3	Метод Эйлера для решения систем дифференциальных уравнений	6
4	Вывод	8
Cı	писок литературы	9

1. Общие сведения о дифференциальных уравнениях

Дифференциальные уравнения связаны с построением моделей динамики (движения) объектов исследования. Они описывают, как правило, изменение параметров объектов во времени (хотя могут быть и другие случаи). Результатом решения дифференциальных уравнений являются функции, а не числа, как при решении алгебраических уравнений, поэтому они и более трудоемки.

При использовании численных методов решение дифференциальных уравнений представляется в табличном виде, т.е. получается совокупность значений (X_n, Y_n) . Решение носит шаговый характер, т.е. по одной или нескольким начальным точкам (X, Y) за один шаг находят следующую точку, затем следующую и т.д. Решение между двумя соседними значениями аргумента $h = X_{n+1} - X_n$ называется шагом.

Однако прежде чем обсуждать методы решения, приведем некоторые сведения из курса дифференциальных уравнений.

В зависимости от числа независимых переменных, дифференциальные уравнения делятся на две категории: обыкновенные дифференциальные уравнения (ОДУ), содержащие одну независимую переменную, и уравнения с частными производными, содержащими несколько независимых переменных (например, в механике сплошных сред искомой функцией является плотность, t^0 , напряжение и др., а аргументами - координаты рассматриваемой точки в пространстве и время).

Обыкновенные дифференциальные уравнения могут содержать одну или несколько производных от искомой функции y = f(x) и могут быть записаны в виде:

$$F(x, y, y', ..., y^{(n)}) = 0, (1)$$

где х – независимая переменная.

Наивысший порядок (n) производной, входящей в уравнение (1) называется порядком дифференциального уравнения. В частности

 $F(x,y,y^\prime)=0$ - дифференциальное уравнение I порядка.

F(x, y, y', y'') = 0 - дифференциальное уравнение II порядка.

В ряде случаев удается выразить старшую производную в явном виде

$$y' = f(x, y); y'' = f(x, y, y').$$

Такие уравнения называют уравнениями, разрешенными относительно старшей производной.

Линейным дифференциальным уравнением называется уравнение, линейное относительно искомой функции и её производных.

Системой дифференциальных уравнений первого порядка называют систему вида

$$\begin{cases} \frac{dy_1}{dx} &= f_1(x, y_1..y_n) \\ \frac{dy_2}{dx} &= f_2(x, y_1..y_n) \\ \dots & \dots \\ \frac{dy_n}{dx} &= f_n(x, y_1..y_n) \end{cases}$$

Решением дифференциального уравнения (1) n -го порядка называется всякая функция $y=\phi(x)$, которая после ее подстановки в (1) превращает его в тождество. Решение ОДУ может быть общим и частным.

Общее решение ОДУ n -го порядка содержит n произвольных постоянных $C_1, C_2, C_3, ..., C_n$, т.е. решение ОДУ имеет вид: $y = \phi(x, C_1, C_2, ..., C_n)$.

Частное решение ОДУ получается из общего, если произвольным постоянным задать определенные значения.

2. Метод Эйлера для решения дифференциальных уравнений

Будем искать решение на ряде дискретных точек $t_0, t_1, ..., t_n$, удаленных друг от друга на расстоянии $h = t_{n+1} - t_n = const$, в виде

$$x(t_1) = x(t_0) + \int_{t_0}^{t_1} f(x, t)dt,$$

полученном путем интегрирования уравнения dx = f(x,t)dt .

Если принять, что на отрезке $[t0,t1] \ x' = x'(t_0) = f(x_0,t_0) = const$, то

$$x(t_1) = x(t_0) + f(x,t)(t_1 - t_0)$$

или, обозначив $t_1 - t_0 = h$, в дискретном виде

$$x_1 = x_0 + x_0' h.$$

Для точки x_{n+1} можно записать

$$x_{n+1} = x_n + x_n'h.$$

Полученное выражение известно как явный (прямой) метод Эйлера.

Искомая функция x(t) на шаге интегрирования была аппроксимирована прямой, совпадающей с касательной в точке $x_n = x(t_n)$.

В указанном выражении производная вычислялась в точке (x_0,t_0) . Можно также выразить x_1 через x_0 и производную в точке (x_1,t_1) , т.е. $x_1'=f(x_1,t_1)$. Тогда получим

$$x_1 = x_0 + x_1'h$$

Или в общем виде

$$x_{n+1} = x_n + x'_{n+1}h$$

Эта формула называется неявным (обратным) методом Эйлера.

Последнюю формулу можно представить в виде $x_{n+1} = x_n + f(x_{n+1}, t_{n+1})h$, где x_{n+1} входит и в правую часть . Поэтому эта формула пригодна, когда будет предсказано значение x_{n+1} , например, с помощью явного метода Эйлера. Таким образом, мы пришли к понятию «предсказание», когда определяется значение искомой функции в последующей точке. На основе найденного «предсказания» можно рассчитать значение $x'_{n+1} = f(x_{n+1}, t_{n+1})$ и использовать его при коррекции, которую выполним по неявной формуле Эйлера. Из-за ошибки «предсказания» может быть получена неточная коррекция. Чаще всего «предсказание» используется в качестве начального приближения для решения уравнения методом Ньютона.

Еще одну формулу численного интегрирования можно получить, приняв $f(x,t)=\frac{1}{2}(x'_n+x'_{n+1}),$ тогда:

$$x_{n+1} = x_n + \frac{1}{2}(x'_n + x'_{n+1}).$$

Это формула трапеции, которую иногда называют модифицированным методом Эйлера.

Это также неявная формула интегрирования, т. к. неизвестная величина x_{n+1}' входит в правую часть. Значение переменной x_{n+1} получают из решения нелинейного алгебраического уравнения

$$x_{n+1} = x_n + \frac{1}{2}(f(x_n, t_n) + f(x_{n+1}, t_{n+1}))$$

методом Ньютона.

Алгоритм неявного метода Эйлера отличается от алгоритма метода трапеции отсутствием в формуле определения x составляющей $f(x_0,t_0)$ и вместо $\frac{1}{2}h$ используется h .

3. Метод Эйлера для решения систем дифференциальных уравнений

Метод Эйлера легко обобщается для случая системы обыкновенных дифференциальных уравнений (первой степени).

Пусть дана система

$$\begin{cases} \frac{dy_1}{dx} &= f_1(x, y_1..y_n) \\ \frac{dy_2}{dx} &= f_2(x, y_1..y_n) \\ \dots & \dots \\ \frac{dy_n}{dx} &= f_n(x, y_1..y_n) \end{cases}$$

Интегрируя обе части уравнений системы и перенося $y_{01}, y_{02}, ..., y_{0n}$ в правые части, получаем:

$$\begin{cases} y_{11} &= y_{01} + \int_{x0}^{x1} f_1(x, y_1..y_n) \\ y_{12} &= y_{02} + \int_{x0}^{x1} f_2(x, y_1..y_n) \\ \dots & \dots \\ y_{1n} &= y_{0n} + \int_{x0}^{x1} f_n(x, y_1..y_n) \end{cases}$$

Считая, что функции $f_1(x,y_1..y_n)=f_1(x_0,y_{01}..y_{0n})=const,$ $f_2(x,y_{01}..y_{0n})=f_2(x_0,y_{01}..y_{0n})=const,$..., $f_n(x,y_{01}..y_{0n})=f_n(x_0,y_{01}..y_{0n})=const$ на отрезке $[x_0,x_1]$, получаем:

$$\begin{cases} y_{11} &= y_{01} + f_1(x_0, y_{01}..y_{0n})(x_1 - x_0) \\ y_{12} &= y_{02} + f_2(x_0, y_{01}..y_{0n})(x_1 - x_0) \\ \dots & \dots \\ y_{1n} &= y_{0n} + f_n(x_0, y_{01}..y_{0n})(x_1 - x_0) \end{cases},$$

или в матричной форме, принимая $h = x_1 - x_0$:

$$Y_1 = Y_0 + F_0 \cdot h.$$

Соответственно, для узла x_{n+1} формула имеет вид

$$\begin{cases} y_{(i+1)1} &= y_{i1} + f_1(x_i, y_{i1}..y_{in})(x_{i+1} - x_i) \\ y_{(i+1)2} &= y_{i2} + f_2(x_i, y_{i1}..y_{in})(x_{i+1} - x_i) \\ \dots & \dots \\ y_{(i+1)n} &= y_{in} + f_n(x_i, y_{i1}..y_{in})(x_{i+1} - x_i) \end{cases},$$

или в матричной форме:

$$Y_{i+1} = Y_i + F_i \cdot h.$$

Однако следует учитывать, что данный метод даёт лишь очень приближенные результаты - его погрешность составляет величину порядка $(x_1-x_0)^n$.

4. Вывод

Метод Эйлера — наиболее простой численный метод решения обыкновенных дифференциальных уравнений. Метод Эйлера является одношаговым методом первого порядка точности, основанном на аппроксимации интегральной кривой кусочно- линейной функцией.

Метод имеет невысокую точность (порядка расстояния между узлами h в случае единственного уравнения и h^n в случае системы уравнений, где n - число уравнений системы) и характеризуется вычислительной неустойчивостью, поэтому для практического нахождения решений задачи Коши метод Эйлера применяется редко. Однако в виду своей простоты метод Эйлера находит свое применение в теоретических исследованиях дифференциальных уравнений, задач вариационного исчисления и ряда других математических проблем.

Список литературы

- 1. Киреев В.И. Пантелеев А.В. Численные методы в примерах и задачах: Учеб. пособие. 3-е изд. стер. М. Высш. шк., 2008.
- 2. Н.С.Бахвалов, Н.П.Жидков, Г.М.Кобельков. Численные методы. М.: Наука, 2001.
 - 3. Интернет-ресурс "Википедия свободная энциклопедия" —
- http://ru.wikipedia.org/wiki/Метод_Эйлера