Пусть задан некоторый апекс $\mu(G)$. Возьмём какие-нибудь $a,b \in \mu(G)$, положим d=(a,b). Как выглядит подграф в $\mathrm{GK}(G)$, порождённый a и b? Числа из $\pi(a_{d'})$ соединены рёбрами с числами из $\pi(d)$, а они, в свою очередь, соединены с числами из $\pi(b_{d'})$. Иными словами, множества $(\pi(a_{d'}),\pi(d))$ и $(\pi(d),\pi(b_{d'}))$ образуют полные двудольные графы.

Граф GK для одного числа a представляет собой клику $\pi(a)$. Чтобы добавить ещё одно число b, мы соединяем уже имеющиеся вершины из $\pi(d)$ с новыми вершинами $\pi(b_{d'})$. Будем вместо графа GK с кликами $\pi(a_{d'})$, $\pi(d)$ и $\pi(b_{d'})$ строить граф GKF с вершинами $a_{d'}$, d и $b_{d'}$:

$$a_{d'} \longrightarrow d \longrightarrow b_{d'}$$

Рассмотрим более сложный случай: пусть в графе GK у вершины a есть некоторое множество соседей A, и мы хотим добавить к графу число b. В этом случае мы расщепляем вершину a на две вершины $a_{d'}$ и d и соединяем d с $b_{d'}$:

$$A < \begin{vmatrix} a_{d'} \\ d \\ d \end{vmatrix}$$

Вершины $a_{d'}$, $b_{d'}$ и d, очевидно, все попарно взаимно просты. По построению считаем, что в исходном графе a также взаимно просто со всеми вершинами из A. Однако, новая вершина $b_{d'}$ может иметь общие делители с вершинами из A. Поэтому мы должны проделать ту же операцию со всеми этими вершинами: взять некоторую $a_1 \in A$, посчитать $d_1 = (a_1, b_{d'})$, расщепить a_1 на $(a_1)_{d'_1}$ и d_1 , соединить d_1 с $(b_{d'})_{d'_1}$ и так далее.

Заметим, что если в графе GKF две вершины a и b не смежны, но соединены через единицу (т. е. есть рёбра $a \sim 1 \sim b$), то a и b взаимно просты, и в соответствующем графе GK их делители несмежны. Поэтому если в какой-то момент построения появилась вершина, равная единице, мы можем её выбросить.

Алгоритм на следующей странице.

Алгоритм добавления вершины a к графу с вершинами b_1, \ldots, b_k : Начинаем с множеством непросмотренных вершин, равным $\{b_1, \ldots, b_k\}$ и пустым множеством помеченных вершин.

1) Если непросмотренных вершин нет, переходим к шагу 2. Иначе берём первую непросмотренную вершину b.

b просмотрена (удаляем из множества просмотренных вершин).

d = (a, b)

Если d=1:

переходим к шагу 1

Если $b_{d'} = 1$:

меняем вершину b на d

соединяем рёбрами вершину d со всеми помеченными вершинами вершина d помечена

Если $b_{d'} > 1$:

меняем вершину b на $b_{d'}$

добавляем d к множеству вершин, соединяем d с вершиной $b_{d'}$, со всеми соседями $b_{d'}$ и со всеми помеченными вершинами

вершина d помечена

 $a := a_{d'}$

Если a=1, алгоритм завершается. Иначе переходим к шагу 1.

2) Добавляем a к множеству вершин, соединяем a со всеми помеченными вершинами.

Пусть $\mu(G) = \{a_1, \dots, a_k\}$ и Γ — пустой граф. Чтобы получить $\mathrm{GKF}(G)$, в любом порядке добавляем вершины a_i к графу Γ с помощью указанного алгоритма.