LÓGICA MATEMÁTICA

Professora: Izabel Cristina

TABELA VERDADE DA NEGAÇÃO

O símbolo que representa a **negação** é uma pequena cantoneira (¬) ou um sinal de til (~), antecedendo a frase.

NEGAÇÃO DE UMA PROPOSIÇÃO COMPOSTA

Negação de uma proposição conjuntiva: ~ (p e q)

Para negar uma proposição no formato de conjunção (**p e q)**, faremos o seguinte:

- 1. Negaremos a primeira parte (~p);
- 2. Negaremos a segunda parte (~q);
- 3. Trocaremos E por OU.

Segue exemplo:

"Não é verdade que João é médico e Pedro é dentista"

- 1. Nega-se a primeira parte (~p) = João não é médico;
- 2. Nega-se a segunda parte (~q) = Pedro não é dentista;
- 3. Troca-se E por OU, e o resultado final será o seguinte:

JOÃO NÃO É MÉDICO OU PEDRO NÃO É DENTISTA

Traduzindo para a linguagem da lógica, dizemos que:

$$\sim$$
 (p \wedge q) = \sim p v \sim q

Para chegar à essa conclusão vamos fazer a comparação entre as tabelas verdade das duas proposições acima.

Primeiro vamos desenvolver a tabela verdade do $(p \land q)$.

p	q	$\mathbf{p} \wedge \mathbf{q}$
V	V	V
V	F	F
F	V	F
F	F	F

Em seguida construiremos a coluna que é a negativa \sim ($p \land q$). Logo, o que é verdadeiro vira falso, e o que é falso vira verdadeiro.

p	q	$\mathbf{p} \wedge \mathbf{q}$	~(p ∧ q)
V	V	V	F
V	F	F	V
F	V	F	V
F	F	F	V

Agora, será feita a tabela verdade das duas negativas, de **p** e de **q**.

p	q	~p	~q
V	V	F	F
V	F	F	V
F	V	V	F
F	F	V	V

Passamos à coluna final: ~p v ~q. A disjunção é a estrutura do ou. Para ser verdadeira basta que uma das sentenças também o seja.

p	q	~p	~q	~p V ~q
V	V	F	F	F
V	F	F	V	V
F	V	V	F	V
F	F	V	V	V

Comparando as duas colunas abaixo, resultado da estrutura ($\sim p \lor \sim q$) com a estrutura $\sim (p \land q)$. Teremos:

~(p ∧ q)	~p V ~q
F	F
V	V
V	V
V	V

Do ponto de vista lógico, para negar **p e q**, negaremos **p**, negaremos **q**, e trocaremos **e** por **ou**.

Negação de uma proposição disjuntiva: ~ (p ou q)

Para negar uma proposição no formato de disjunção (**p ou q**), faremos o seguinte:

- Negaremos a primeira parte (~p);
- 2. Negaremos a segunda parte (~q);
- 3. Trocaremos OU por E.

Segue exemplo:

"Não é verdade que Pedro é dentista ou Paulo é engenheiro"

- 1. Nega-se a primeira parte (~p) = Pedro não é dentista;
- 2. Nega-se a segunda parte (~q) = Paulo não é engenheiro;
- 3. Troca-se OU por E, e o resultado final será o seguinte:

PEDRO NÃO É DENTISTA E PAULO NÃO É ENGENHEIRO

Traduzindo para a linguagem da lógica, dizemos que:

$$\sim$$
 (p v q) = \sim p \wedge \sim q

Para chegar à essa conclusão vamos fazer a comparação entre as tabelas verdade das duas proposições acima.

Colocando a tabela verdade de **p v q**, e fazendo a negação da coluna da **disjunção**, teremos:

p	q	p V q	~(p V q)
V	V	V	F
V	F	V	F
F	V	V	F
F	F	F	V

Construindo as colunas de negações de **p** e **q**, fazendo a conjunção **~p** e **~q**, teremos os seguintes resultados:

p	q	~p	~q	~p ∧~q
V	V	F	F	F
V	F	F	V	F
F	V	V	F	F
F	F	V	V	V

Comparando as duas colunas abaixo, resultado da estrutura ($\sim p \land \sim q$) com a estrutura $\sim (p \lor q)$. Teremos:

~(p V q)	~p ∧~q
F	F
F	F
F	F
V	V

Do ponto de vista lógico, para negar "p ou q", negaremos p, negaremos q, e trocaremos ou por e.

Negação de uma proposição condicional: ~ (p → q)

Para negar uma proposição no formato de condicional, faremos o seguinte:

- 1. Mantém-se a primeira parte; e
- 2. Nega-se a segunda parte.

Por exemplo, como seria a negativa de:

"Se chover, então levarei o guarda-chuva"?

1. Mantendo a primeira parte: "Chove" E

2. Negando a segunda parte: "eu não levo o guarda-chuva"

Resultado final:

"Chove e eu não levo o guarda-chuva".

Na linguagem apropriada, concluímos que:

$$\sim (p \rightarrow q) = p \wedge \sim q$$

Estrutura Lógica	É verdade quando	É falso quando	
$\mathbf{p} \wedge \mathbf{q}$	p e q são, ambos, verdade	um dos dois for falso	
p V q	um dos dois for verdade	p e q , ambos, são falsos	
$p \rightarrow q$	Nos demais casos	p é verdade e q é falso	
p ↔ q tiverem valores lógicos igu		p e q tiverem valores lógicos diferentes	
~p p é falso		p é verdade	

Negativa de (p e q)	~p ou ~q
Negativa de (p ou q)	~p e ~q
Negativa de (p → q)	p e ~q
Negativa de (p↔q)	[(p e ~q) ou (q e ~p)]

TABELA VERDADE

Na **tabela verdade** são colocados os valores lógicos possíveis (**verdadeiro ou falso**) para cada uma das proposições simples que formam a proposição composta e a combinação destes.

O **número de linhas** da tabela dependerá da quantidade de sentenças que compõem a proposição. A tabela verdade de uma proposição formada por **n** proposições simples terá **2**ⁿ **linhas**.

Com o objetivo de colocarmos todas as possibilidades possíveis de valores lógicos na tabela, devemos preencher cada coluna com 2^{n-k} valores **verdadeiros** seguidos de 2^{n-k} valores **falsos**, com **k** variando de **1** até **n**.

Para construirmos a **tabela verdade** de uma **proposição composta** qualquer, teremos que seguir uma certa ordem de precedência dos conectivos.

Começaremos sempre trabalhando com o que houver dentro dos parênteses. Só depois, passaremos ao que houver fora deles. Em ambos os casos, sempre obedecendo à seguinte ordem:

- 1. Faremos as negações (~);
- 2. Faremos as conjunções ou disjunções, na ordem em que aparecerem;
- 3. Faremos a condicional;
- 4. Faremos o bicondicional.

Para construir a tabela-verdade da seguinte proposição composta:

$$P(p,q) = (p \land \neg q) \lor (q \land \neg p)$$

1º passo: negação de q

р	q	~q
V	V	F
V	F	V
F	V	F
F	F	V

+

2º passo: conjunção

p	q	~q	p∧~q
V	V	F	F
V	F	V	V
F	V	F	F
F	F	V	F

3º passo: negação de p

p	q	~p
V	V	F
V	F	F
F	V	V
F	F	V

4º passo: conjunção

p	q	~p	q∧~p
V	V	F	F
V	F	F	F
F	V	V	V
F	F	V	F

5º passo: uma vez trabalhados os dois parênteses, faremos a disjunção

que os une

p∧~q	q∧~p	$(p \land \sim q)V(q \land \sim p)$
F	F	F
V	F	V
F	V	V
F	F	F

EXERCÍCIO

Construir a tabela-verdade da seguinte proposição composta:

$$P(p, q, r) = (p \land \neg q) \rightarrow (q \lor \neg r)$$

Observações:

- 1. A leitura dessa proposição é a seguinte: **Se p e não q, então q ou não r**.
- 2. A condicional só será **falsa** se tivermos **VERDADEIRO na primeira parte** e **FALSO na segunda**.
- 3. Lembrar que existe uma ordem de precedência a ser observada, de modo que devem iniciar pelos parênteses.

OBRIGADO!

+