# $x foil\_polar.m$ user guide

# Lorenzo Frascino - Palma Caputo

### Contents

| 1 | Introduction     | 2           |
|---|------------------|-------------|
|   | I/O 2.1 Inputs   | 2<br>2<br>2 |
| 3 | Code description | 2           |
| 4 | Test case        | 4           |

#### 1 Introduction

The function xfoil-polar.m allows to evaluate the  $C_d - C_l$  polar of an airfoil by using the software xfoil [1]. The lift coefficient  $C_l$  is obtained by direct surface pressure integration

$$C_l = \int C_p d\bar{x} \tag{1}$$

where the integral is performed in the clockwise direction around the airfoil contour. The pressure coefficient  $C_p$  is calculated using the Karman-Tsien compressibility correction.

The drag coefficient  $C_d$  is obtained by applying the Squire-Young formula at the last point in the wake. For further information, please refer to [1].

## 2 I/O

Inputs and outputs are listed in the 2 following subsections.

#### 2.1 Inputs

- NACA: number of the NACA airfoil, if the airfoil of interest is NACA. Example: having in input '0012' means that the airfoil is NACA 0012;
- numPanel: number of panels in which the airfoil is divided;
- Re\_number: Reynolds number;
- FirstAlfa: first value of the angle of attack;
- LastAlfa: last value of the angle of attack;
- DeltaAlfa: pace between one angle of attack and the following one.

Number of iterations is set to 100. Number of panels is still one of the inputs as to allow user to control convergence.

#### 2.2 Outputs

- $C_l$ : lift coefficient;
- $C_d$ : drag coefficient.

### 3 Code description

After having inserted inputs, the code creates an array of angle of attack Alfa\_vec that will then be given to xfoil.

In order not to having overwriting with existing files, it is then checked the possibility and eventually existing files are deleted.

```
1 Alfa_vec
       str2num(FirstAlfa):str2num(DeltaAlfa):str2num(LastAlfa);
   saveGeometry = 'Airfoil_geometry.txt'; % Create .txt file to ...
       save airfoil coordinates
   savePolar = 'Polar.txt';
                                           % Create .txt file to ...
       save the polar
   % Delete files if they exist
6
   if (exist(saveGeometry, 'file'))
7
       delete(saveGeometry);
10
   if (exist(savePolar,'file'))
11
12
       delete (savePolar);
  end
13
```

The following step is the creation of a .TXT file with commands which have to be passed to xfoil.

```
1 %% WRITING XFOIL COMMANDS
  % Create the airfoil
   f_input = fopen('xfoil_input.txt','w');
                                                                    % Create ...
         input file for xfoil
   fprintf(f.input,'y\n');
fprintf(f.input,['naca ' NACA '\n']);
  fprintf(f_input, 'PPAR\n');
fprintf(f_input, ['N ' numPanel '\n']);
fprintf(f_input, '\n\n');
8
10
11
   % Data for the polar
12
  fprintf(f_input, 'OPER\n');
13
   fprintf(f_input,'visc\n');
   fprintf(f_input,[Re_number '\n']);
   fprintf(f_input,['iter' iter'\n']);
16
   fprintf(f_input, 'pacc\n');
fprintf(f_input, [savePolar '\n\n']);
17
18
19
20
    for i = 1:length(Alfa_vec)
         fprintf(f_input, 'a %2.4f\n', Alfa_vec(i));
21
22
23
   fprintf(f_input,'pacc\n\n');
25
   % Save the airfoil data points
fprintf(f_input,['PSAV ' saveGeometry '\n']);
26
27
   % Close file
   fclose(f_input);
```

After having run the software, data file is read and lift and drag coefficient imported from the file. In addition, it is possible to plot the polar in the main with the new-obtained values of  $C_l$  and  $C_d$ .

```
1 %% RUNNING XFOIL (MUST BE IN THE SAME DIRECTORY!)
2 cmd = 'xfoil.exe < xfoil.input.txt';
3 [status,result] = system(cmd);
```

```
4
5
6 %% READ DATA FILE
7 filePol = fopen(savePolar);
8 A = textscan(filePol,'%f %f %f %f %f %f', 'Headerlines',12);
9 fclose(filePol);
10 alfa = A{1}(:,1);
11 Cl = A{2}(:,1);
12 Cd = A{3}(:,1);
13
14
15 figure(1);
16 plot(Cd,C1,'k.-')
17 xlabel('Drag coefficient C_d');
18 ylabel('Lift coefficient C_l');
19 grid on;
```

IN ORDER TO WORK, THE MAIN AND FUNCTION MUST BE IN THE SAME DIRECTORY AS THE SOFTWARE XFOIL!

#### 4 Test case

The inputs that had been chosen for the test case are listed below. An example for a MAIN is the following:

The code provides the  $C_d - C_l$  polar in figure 1.



Figure 1:  $C_d - C_l$  polar for the test case.

# References

[1] xfoil User's Guide. MIT. URL: https://web.mit.edu/drela/Public/web/xfoil/xfoil\_doc.txt.