

BVRIT HYDERABADCollege of Engineering for Women

SALES PREDICTION

Team No: 12

M.Rithisha-21WH5A1207 K.Sree Vyshnavi-21WH5A1209 B.Shivani-21WH5A1211 B.Mounika-21WH5A1212

TABLE OF CONTENTS

- Problem statement
- Python Packages Used
- Types of Algorithms used
- Randomforest Regression
- Linear Regression
- Logistic Regression
- Output
- Comparison Table
- Execute of code

Problem Statement

 We will be predicting a full year worth of sales for three items at two stores located in three different countries. This dataset is completely fictional, but contains many effects that you see in real-world data, e.g., weekend and holiday effect, seasonality, etc. The dataset is small enough to allow you to try numerous different modeling approaches.

Python Packages Used

- numpy
- pandas
- scikit learn
- r2 score
- Matplotlib

Types of Algorithms used

- Randomforest Regression Algorithm
- Linear Regression Algorithm
- Logistic Regression Algorithm

Random Forest Regression

- Random Forest Regression Algorithm:
 - Random forest regression is a machine learning algorithm that uses a group of decision trees to predict a numerical value.

Linear Regression

- Linear Regression Algorithm:
 - It is a popular algorithm used in statistics to model the relationship between a dependent variable and one or more independent variables.

Logistic Regression

- Logistic Regression Algorithm:
 - Logistic regression is a statistical method used for binary classification problems.

row_id	target	
26298	397.253	
26299	578.94	
26300	157.266	
26301	689.625	
26302	953.268	
26303	287.214	
26304	590.842	
26305	752.689	
26306	198.446	
26307	1034.202	
26308	1589.249	
26309	444.573	
26310	403.381	
26311	659.742	
26312	208.348	
26313	792.148	
26314	1215.38	
26315	315.543	
26316	332.921	
26317	514.564	
26318	146.339	
26319	554.942	
26320	857.902	
26321	266.354	
26322	505.539	

Output-Deployment

date		sales
2002-02-21		[177]
country		Flag
store		
KaggleMart		
product		
Kaggle Hat		
Clear	Submit	

Output-GUI

Comparison Table

Algorithm	Accuracy
Randomforest Regression	0.94
Linear Regression	0.24
Logistic Regression	-0.61

Execute of code

Here's a link to colab.com.

THANK YOU