

离散数学笔记

图论

作者: Shan Hongqi 时间: Nov 9, 2022

版本: 0.1

明知道会错的但还想尝试的勇气现在去哪里了——《万一对了呢》by ChiliChill

目录

1 邻接矩阵																					1													
	1.1	简单图																			 								 . .					1
	1.2	正则图																			 								 					5
	1.3	圈和割																			 								 . .					8
	1.4	生成树																			 								 				1	1

第1章 邻接矩阵

邻接矩阵用于描述点之间的连通关系,方便起见暂时只讨论简单无向图(无重边、无自环)邻接矩阵的性质,故下文中的图,若无特殊标明,均代表简单无向图。

1.1 简单图

先考虑较为一般的简单图。

定义 1.1 (简单图的邻接矩阵)

给定一个简单图 Γ , 点集 $V\Gamma = v_1, v_2, \ldots, v_n$, 边集 $E\Gamma$ 是 $V\Gamma$ 中一些无序二元组构成集合,若 $\{v_i, v_j\} \in E\Gamma$, 则称 v_i 与 v_j 是邻接 (adjacent) 的。

简单图 Γ 的邻接矩阵是 $n \times n$ 的实对称矩阵 $A = A(\Gamma)$, 其中元素定义为:

$$a_{ij} = \begin{cases} 1, & \text{if } v_i \text{ and } v_j \text{ are adjacent;} \\ 0, & \text{otherwise.} \end{cases}$$

我们对定义出来的邻接矩阵的性质很感兴趣,不妨暂且研究其代数性质。因为没有自环,可以简单得到 ${\rm tr}({\bf A})=0$ 。而图在任意重标号后仍然是不变的,所以在重标号后的矩阵也会有一些相似性,谱性质正是在行和列进行轮换过程中的不变量。

实对称矩阵具有很优美的性质:

定理 1.1 (对称矩阵的谱定理)

- 一个对称的 $n \times n$ 矩阵 A 具有下述性质:
 - 1. A有n个特征值均为实数,包含重复的特征值,且每一个特征值的代数重数等于代数重数;
 - 2. 特征空间相互正交, A 可正交对角化。

证明 先证明其特征值为实数。可以使用共轭来证明一个数是实数,即 $a \in \mathbb{R} \Leftrightarrow a = \bar{a}$ 。若 $\mathbf{A}x = \lambda x$,注意到 $\mathbf{A}\bar{x} = \bar{\mathbf{A}}\bar{x} = \overline{\lambda}\bar{x} = \bar{\lambda}\bar{x}$,又有 $\mathbf{A}^T = \mathbf{A}$,于是考虑凑 $\mathbf{A}x$ 来得到 λ 与 $\bar{\lambda}$:

$$\overline{x^T} \mathbf{A} x \begin{cases} = \overline{x^T} \mathbf{A}^T x = \overline{(\mathbf{A} x)^T} x = \overline{\lambda} \overline{x^T} x \\ = \overline{x^T} (\mathbf{A} x) = \overline{x^T} (\lambda x) = \lambda \overline{x^T} x \end{cases}$$

得到 $(\bar{\lambda} - \lambda) \overline{x^T} x = 0$, 由 $\overline{x^T} x = \sum_{i=1}^n x_i^2 \neq 0$, 故 $\bar{\lambda} - \lambda = 0$, 即 λ 均为实数。

下面证明任意两特征向量正交: 设 ν_1 与 ν_2 是不同特征值 λ_1,λ_2 的特征向量,为证明 $\nu_1\cdot\nu_2=0$,计算:

$$\lambda_1 \mathbf{v}_1 \cdot \mathbf{v}_2 = (\lambda_1 \mathbf{v}_1)^{\mathrm{T}} \mathbf{v}_2 = (A \mathbf{v}_1)^{\mathrm{T}} \cdot \mathbf{v}_2$$
$$= \left(\mathbf{v}_1^{\mathrm{T}} A^{\mathrm{T}}\right) \mathbf{v}_2 = \mathbf{v}_1^{\mathrm{T}} (A \mathbf{v}_2)$$
$$= \mathbf{v}_1^{\mathrm{T}} (\lambda_2 \mathbf{v}_2)$$
$$= \lambda_2 \mathbf{v}_1^{\mathrm{T}} \mathbf{v}_2 = \lambda_2 \mathbf{v}_1 \cdot \mathbf{v}_2$$

又 $\lambda_1 \neq \lambda_2$,故有 $\nu_1 \cdot \nu_2 = 0$ 。

通过这两个性质可以得到剩下部分的证明, 笔者能力有限, 这里给不出证明。

不妨通过邻接矩阵定义图的谱:

定义 1.2 (谱)

图 Γ 的谱 (spectrum) 被定义为包含 $\mathbf{A}(\Gamma)$ 的特征值及重数的集合。若有 s 个不同的特征向量 $\lambda_0 > \lambda_1 > \dots > \lambda_{s-1}$,以及它们的重数 $m(\lambda_0), m(\lambda_1), \dots, m(\lambda_{s-1})$,我们可以将其写作:

Spec
$$\Gamma = \begin{pmatrix} \lambda_0 & \lambda_1 & \dots & \lambda_{s-1} \\ m(\lambda_0) & m(\lambda_1) & \dots & m(\lambda_{s-1}) \end{pmatrix}$$

例如对于完全图 K4 的邻接矩阵:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

可以简单地求出它的谱为:

Spec
$$K_4 = \begin{pmatrix} 3 & -1 \\ 1 & 3 \end{pmatrix}$$

为了找到这些代数量与图的关系,我们称 $\mathbf{A} = \mathbf{A}(\Gamma)$ 的特征值为图 Γ 的特征值,特征多项式 $\det(\lambda \mathbf{I} - \mathbf{A})$ 被称为图 Γ 的特征多项式,并用 $\chi(\Gamma; \lambda)$ 表示,它通常是这样的形式:

$$\chi(\Gamma; \lambda) = \lambda^n + c_1 \lambda^{n-1} + c_2 \lambda^{n-2} + c_3 \lambda^{n-3} + \dots + c_n$$

我们发现 $\chi(\Gamma;\lambda)$ 和图的形状有些关联。

命题 1.1 (图的特征多项式的系数)

图 Γ 的特征多项式 $\chi(\Gamma; \lambda) = \lambda^n + c_1 \lambda^{n-1} + c_2 \lambda^{n-2} + c_3 \lambda^{n-3} + \ldots + c_n$ 有如下性质:

- 1. $c_1 = 0$;
- 2. $-c_2$ 是 Γ 中边的条数;
- 3. $-c_3$ 是 Γ 中三角形 (三元环) 的数量。

证明

- 1. $c_1 = 0$ 是显然的,因为 tr(A) = 0。
- 2. 考虑两行的主子式, 若其非零, 只能是形如

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

的形式,且该主子式存在,当且仅当这两行对应的有连边。注意到该主子式的值为-1,故 $(-1)^2c_2 = -|E\Gamma|$,其中 $|E\Gamma|$ 是边集的大小。

3. 证明类似 2, 我们取出三行的主子式:

分别表示:

不难发现只有第三种三元环对 c_3 有贡献,且值为2,这就得到了该性质。

推论 1.1 (特征多项式的约化公式)

对于图 Γ , 若 ν_1 的度数为 1, 且与 ν_2 相连,则有:

$$\chi(\Gamma;\lambda) = \lambda \chi(\Gamma_1;\lambda) - \chi(\Gamma_{12};\lambda)$$

其中 Γ_1 是删掉 ν_1 的导出子图, Γ_{12} 是删掉 ν_1, ν_2 的导出子图。

证明 由于 v₁ 有大量的 0, 故考虑用代数余子式进行展开。

$$\begin{vmatrix} \lambda & -1 & 0 & 0 \\ -1 & \lambda & \cdots & a_{2n} \\ 0 & \vdots & \ddots & \vdots \\ 0 & a_{n2} & \cdots & \lambda \end{vmatrix} = \lambda \chi(\Gamma_1; \lambda) - \begin{vmatrix} -1 & 0 & 0 & 0 \\ a_{32} & \lambda & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n2} & a_{n3} & \cdots & \lambda \end{vmatrix} = \lambda \chi(\Gamma_1; \lambda) - \chi(\Gamma_{12}; \lambda)$$

上面的公式可以用于快捷地求无环图的特征多项式,因为无论如何删除,必存在一个度为1的点。

命题 1.2 (特征值幂和)

令 $\mathbf{A} = \mathbf{A}(\Gamma)$, 其特征根为 $\lambda_1, \lambda_2, \dots, \lambda_r$, 则有:

- 1. $\sum_{i=1}^{r} \lambda_i^2$ 是 Γ 中边数的 2 倍;
- 2. $\sum_{i=1}^{r} \lambda_i^3 \in \Gamma$ 中三元环数量的 6 倍。

证明 这里只给出证明思路。

注意在图上的回路,例如长度为l的回路的条数等于 $\operatorname{tr} \mathbf{A}^l$ 。

在这个命题中,给出了它们各种幂次和的值,从 $\sum \lambda_i = 0, \sum \lambda_i^2 = 2m$ 可见 λ 存在一个上界。

命题 1.3 (特征值上界)

若 $\lambda_0 = \max_i \{\lambda_i\}$, 则有

$$\lambda_0 \le \left(\frac{2m(n-1)}{n}\right)^{\frac{1}{2}}$$

另一种类似形式的上界是 $\lambda_0 \leq \sqrt{2m-n+1}$ (Yuan 1988)。

证明 不会,但是感觉能做,先放着等回来填坑。

关于特征多项式的更多性质要等到后面才学、不写了。

定义 1.3 (邻接代数)

定义在图 Γ 上的邻接代数 (adjacency algebra) 是邻接矩阵 $\mathbf{A} = \mathbf{A}(\Gamma)$ 的多项式形式的代数,记作 $\mathcal{A}(\Gamma)$,其每一个元素都是 \mathbf{A} 的幂的线性组合。

A 的幂有什么性质, 为什么这样定义代数呢?

首先对于图 Γ 中起点为 v_i ,终点为 v_j ,且长度为l的一条路径(walk),我们将其写为数列的形式: $\{u_0,u_1,u_2,\ldots,u_l\}$,其中 $u_0=v_i,u_l=v_i$,其中 $u_{t-1},u_t,t\in 1,2,\ldots,l$ 是连通的。

定理 1.2

图 Γ 中起点为 v_i , 终点为 v_i , 且长度为 l 的路径的条数为 \mathbf{A}^l 中 (i,j) 位置的值。

 \Diamond

证明 考虑归纳法:

- 1. l = 1 时显然成立;
- 2. 若 l = L 成立,下面证明 l = L + 1 时成立:

考虑与 v_j 相邻的节点 v_h ,则起点为 v_i ,终点为 v_j ,且长度为L+1的路径必经过 v_h ,且到 v_h 的长度为L,所以统计 v_i 到 v_h 的路径条数:

$$\sum_{\{y_h, y_i\} \in E\Gamma} \left(\mathbf{A}^L \right)_{ih} = \sum_{h=1}^n \left(\mathbf{A}^L \right)_{ih} a_{hj} = \left(\mathbf{A}^{L+1} \right)_{ij}$$

满足题中形式, 故成立。

综上,对于 $I ∈ \mathbb{N}^*$,该性质成立。

如果 Γ 中任意两个顶点存在一条路径经过他们,则称 Γ 是连通 (connected) 的。连接 v_i, v_j 的路径中最短的长度称为 v_i, v_i 的距离 (distance),记作 $\partial(v_i, v_i)$ 。图 Γ 的直径 (diameter) 定义为 $\sup_{x, y \in V\Gamma} \partial(x, y)$ 。

定理 1.3

连通图 Γ 中的邻接代数 $\mathcal{A}(\Gamma)$ 与直径 $d = \sup_{x,y \in V\Gamma} \partial(x,y)$ 满足:

$$d + 1 \le \dim \mathcal{A}(\Gamma)$$

证明 取 $\partial(x,y) = d$, 即存在一条路径 $\{w_0, w_1, \dots, w_d\}$, $w_0 = x, w_d = y$, 不难发现,对于 w_n, w_m ,有 $\partial(w_n, w_m) = |n-m|$ 。故 $\forall l \in 1, 2, \dots, d$, $\exists p, q \in [0, d]$, $\partial(p, q) = l$,由上一个定理不难得到,存在一个位置 (p, q),有 $(\mathbf{A}^i)_{pq} \neq 0$,且 $(\mathbf{A}^i)_{pq} \neq 0$,是 $(\mathbf{A}^i)_{pq} \neq 0$,以 $(\mathbf{A}^i)_{pq} \neq 0$,我们,我们就可以继续完成。

图的谱和邻接代数有密切的联系。邻接矩阵作为实对称矩阵, 其最小多项式次数与邻接代数的维度相等, 所以我们找到了不同特征根的数量的上界:

推论 1.2

直径为 d 的连通图至少有 d+1 个特征根。

~

下面来看一个例子:

命题 1.4 (完全图的谱)

$$\operatorname{Spec}\left(K_{n}\right) = \left(\begin{array}{cc} -1 & n-1\\ n-1 & 1 \end{array}\right)$$

证明 直接计算:

$$|\lambda \mathbf{I} - \mathbf{A} (K_n)| = \begin{vmatrix} \lambda & -1 & \cdots & -1 \\ -1 & \lambda & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & \lambda \end{vmatrix} = \begin{vmatrix} \lambda - n + 1 & -1 & \cdots & -1 \\ \lambda - n + 1 & \lambda & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ \lambda - n + 1 & -1 & \cdots & \lambda \end{vmatrix}$$
$$= (\lambda - n + 1) \begin{vmatrix} 1 & -1 & \cdots & -1 \\ 1 & \lambda & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & -1 & \cdots & \lambda \end{vmatrix} = (\lambda - n + 1)(\lambda + 1)^{n-1}$$

故

$$\operatorname{Spec}\left(K_{n}\right) = \left(\begin{array}{cc} -1 & n-1\\ n-1 & 1 \end{array}\right)$$

1.2 正则图

下面研究特殊图的性质。

定义 1.4 (正则图)

一个图被称为正则 (regular) 或 k-正则 (k-regular) 的, 当且仅当每个顶点的度数为 k。

正则图的邻接矩阵每行每列的和是相同的,所以会有一些有意思的性质。

定理 1.4 (正则图特征值的性质)

若 Γ 是一个k-正则图,则有:

- 1. k 是 Γ 的一个特征值;
- 2. 如果 Γ 连通,则k的重数为1;
- 3. 特征值绝对值的上界为 k。

证明

- 1. 注意到对于 k-正则图的邻接矩阵,每行每列的和都为 k,可构造 $\mathbf{u} = [1, 1, ..., 1]^T$,有 $\mathbf{A}\mathbf{u} = k\mathbf{u}$,故 $k \in \Gamma$ 的一个特征值;
- 2. 注意 \mathbf{x} 左乘 \mathbf{A} 相当于对于每个位置,选取 k 个与其相邻的数相加,所以关注 \mathbf{x} 中的最大值,记为 x_j 。有 $(\mathbf{A}\mathbf{x})_j = kx_j \Leftrightarrow \sum_i x_i = kx_j$,其中 i 代表与 j 邻接的点。这个式子中,由 $x_i \leq x_j$,得到 $x_i = x_j$,再对 i 进行操作,可将这个性质传递到整个连通块,也就是整个图。故 $\mathbf{x} = x_j \mathbf{u}$,也就是所有的 \mathbf{x} 都是 \mathbf{u} 的 \mathbf{e} 的 \mathbf{e} 为 $\mathbf{1}$ 。
- 3. 过程与 2 相似,不过取绝对值最大的元素 y_i ,可以得到 $|\lambda||y_i| = |\sum_i y_i| \le \sum_i |y_i| \le k|y_i|$,故 $|\lambda| \le k$ 。

命题 1.5 (Hoffman 1963)

令 J 是 $n \times n$ 的全 +1 矩阵,则 J ∈ $\mathcal{A}(\Gamma)$ 当且仅当 Γ 连通且正则。

证明

- 1. 先证"⇒":
 - (a). 由 $\mathbf{J} \in \mathcal{A}(\Gamma)$, 故 \mathbf{J} 可以被表示为关于 \mathbf{A} 的多项式。因为 \mathbf{A} 与 \mathbf{J} 都是实对称矩阵,故 $\mathbf{J}\mathbf{A} = \mathbf{A}\mathbf{J}$,考虑位置 (i,j),由 $\sum_{k=1}^{n} \mathbf{A}_{kj} = \sum_{k=1}^{n} \mathbf{A}_{ik}$,即点 i 的度数与点 j 的度数相等,故 Γ 是正则图;
 - (b). 若 Γ 不连通,即存在点对 v_i, v_j 之间没有路径连通,则 $\forall l > 0, \mathbf{A}_{ij}^l = 0$,而 $\mathbf{J}_{ij} \neq 0$,矛盾!;
- 2. 再证 "⇐":

令 Γ 为连通且 k-正则的,则 k 是 Γ 的一个特征值,所以 \mathbf{A} 的最小多项式 $p(\lambda)$ 满足 $p(\lambda) = (\lambda - k)q(\lambda)$ 的形式,由 $p(\mathbf{A})$,带入得 $\mathbf{A}q(\mathbf{A}) = kq(\mathbf{A})$,这意味着 $q(\mathbf{A})$ 的每一列都是 \mathbf{A} 关于特征值 k 的特征向量,由定理 1.4, $q(\mathbf{A})$ 的每一列都是 \mathbf{u} 的倍数。又 $q(\mathbf{A})$ 是对称矩阵,得到 $q(\mathbf{A})$ 的元素全部相等,是 \mathbf{J} 的倍数,故 $\mathbf{J} \in \mathcal{A}(\Gamma)$ 。

我们还可以进一步得到 q(A) 与 J 的关系:

命题 1.6

令 Γ 是一个 n 个点 k-正则的连通图,将它们不同的特征值记为 $k > \lambda_1 > \cdots > \lambda_{s-1}$,若 $q(\lambda) = \prod_i (\lambda - \lambda_i)$,

有:

$$\mathbf{J} = \left(\frac{n}{q(k)}\right) q(\mathbf{A})$$

证明 由上一个命题知 $q(\mathbf{A}) = \alpha \mathbf{J}$, 其中 α 是常数, 下面考虑特征值。 $\alpha \mathbf{J}$ 的特征值是 αn , 而 $q(\mathbf{A})$ 有 q(k) 与 $q(\lambda_i)$, 但由题知仅有 $q(k) \neq 0$, 故得到 $\alpha = q(k)/n$ 。

这一部分与矩阵联系较为紧密、有许多重要的种类、不妨再来回顾一下相关的知识。

定义 1.5 (循环矩阵)

一个 $n \times n$ 的矩阵 S 被成为循环矩阵 (circulant matrix),当且仅当其中的元素满足 $s_{ij} = s_{1,j-i+1}$,j-i+1 的 计算是在模n 意义下的,故S 可以被看作是由第一行生成的,记作 $[s_1, s_2, \ldots, s_n]$ 。

若令 \mathbf{W} 是单位循环矩阵, 即 $\mathbf{W} = [0,1,0,...,0]$, S 可被表示为:

$$\mathbf{S} = \sum_{i=1}^{n} s_i \mathbf{W}^{i-1}$$

可以注意到 W 可以作为乘法循环群的生成元,可见特征值在该过程中有特殊的性质,我们有:

命题 1.7

n 阶单位循环矩阵 **W** 的特征值为 1, ω , ω^2 , ..., ω^{n-1} , 其中 $\omega = \exp(2\pi i/n)$ 。由此得到 **S** 的特征值为:

$$\lambda_r = \sum_{i=1}^n s_i \omega^{(i-1)r}, r \in \{0, 1, \dots, n-1\}$$

证明 直接计算:

$$|\lambda \mathbf{I} - \mathbf{W}| = \begin{vmatrix} \lambda & -1 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & 0 & \cdots & \lambda \end{vmatrix} = \lambda \begin{vmatrix} \lambda & -1 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda \end{vmatrix} + (-1)^{n-1} \times (-1) \begin{vmatrix} -1 & 0 & \cdots & 0 \\ \lambda & -1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -1 \end{vmatrix}$$

故可将 λ 写成n次单位根的形式。

我们把循环矩阵的定义放到图中:

定义 1.6 (循环图)

图 Γ 被称为循环图 (circulant graph), 当且仅当邻接矩阵 $A(\Gamma)$ 是循环矩阵。

循环图 Γ 的 **A** 的第一行为 $[0, a_2, \ldots, a_n]$,代入上面命题可得到:

定理 1.5 (循环图的特征值)

循环图 Γ 的特征值为:

$$\lambda_r = \sum_{i=2}^n a_i \omega^{(i-1)r}, r \in \{0, 1, \dots, n-1\}$$

此时n个特征值并非总是不同的。

对于一个 n 元环构成的图,记为 C_n , $\mathbf{A}(C_n)$ 的第一行为 $[0,1,0,\ldots,0,1]$,由上面的定理可以得到其特征值为 $\lambda_r = 2\cos(2\pi r/n)$,可以得到 C_n 的谱:

Spec
$$C_n = \begin{pmatrix} 2 & 2\cos 2\pi/n & \dots & 2\cos(n-1)\pi/n \\ 1 & 2 & \dots & 2 \end{pmatrix}$$
 $(n \text{ odd})$
Spec $C_n = \begin{pmatrix} 2 & 2\cos 2\pi/n & \dots & 2\cos(n-2)\pi/n & -2 \\ 1 & 2 & \dots & 2 & 1 \end{pmatrix}$ $(n \text{ even})$

我们来看另一个可能暗示结构上的性质的图:

定义 1.7 (线图)

定义在 Γ 上的线图 (line graph) 记为 $L(\Gamma)$,其每个顶点对应 Γ 中的一条边,两个顶点是邻接的当且仅当它们代表的边有公共顶点。

对于 n 个顶点和 m 条边的图,将其顶点与边标号可得 $V\Gamma = \{v_1, v_2, ..., v_n\}$ 与 $E\Gamma = \{e_1, e_2, ..., e_m\}$ 。我们 定义图 Γ 的关系矩阵 $\mathbf{X} = \mathbf{X}(\Gamma) \in \mathbb{R}^{n \times m}$:

$$(\mathbf{X})_{ij} = \begin{cases} 1, & \text{if } v_i \text{ and } e_j \text{ are incident} \\ 0, & \text{otherwise} \end{cases}$$

可以得到关于 X 的一些性质:

引理 1.1

对于图 Γ 与如上定义的 X, 令 $A = A(\Gamma), A_L = A(L(\Gamma)), 有:$

- 1. $\mathbf{X}^T \mathbf{X} = \mathbf{A}_L + 2\mathbf{I}_m$
- 2. 若 Γ 是 k-正则的,则 $\mathbf{X}\mathbf{X}^T = \mathbf{A}_L + k\mathbf{I}_n$

证明 写出矩阵乘的形式:

$$(\mathbf{X}^T\mathbf{X})_{ij} = \sum_{k=1}^n (\mathbf{X})_{ki} (\mathbf{X})_{kj}$$

注意到右侧正是 A_L 的定义,第二条的证明与第一条相似。

引理 1.2 (线图特征值的下界)

对于 $L(\Gamma)$ 的任一特征值 λ , 有 $\lambda \geq -2$ 。

证明 矩阵 $\mathbf{X}^T\mathbf{X}$ 元素都是非负的,若 $\mathbf{X}^T\mathbf{X}\mathbf{z} = \lambda \mathbf{z}$,左乘 \mathbf{z}^T ,由 $\mathbf{z}^T\mathbf{X}^T\mathbf{X}\mathbf{z} = ||\mathbf{X}\mathbf{z}||^2 \ge 0$,故 $\mathbf{X}^T\mathbf{X}$ 的特征值 λ 非负,也就是 $|\lambda \mathbf{I} - \mathbf{X}^T\mathbf{X}| = 0$ 的解非负,由 $\mathbf{X}^T\mathbf{X} - 2\mathbf{I}_m = \mathbf{A}_L$ 可得 A_L 的特征值不小于 -2。

事实上,并非只有线图满足这个性质,更多满足该性质的图后面会补充。

正则图的线图仍然是正则图,对于 k-正则图 Γ ,线图 $L\Gamma$ 是 2(k-1)-正则图,由正则图特征值的性质,正则图与其线图可能存在一些联系:

定理 1.6 (Sachs 1967)

若 Γ 是 k-正则图, 有 n 个点与 m = nk/2 条边,则有:

$$\chi(L(\Gamma);\lambda) = (\lambda+2)^{m-n}\chi(\Gamma;\lambda+2-k)$$

证明 构造两个 n+m 阶的矩阵:

$$\mathbf{U} = \begin{bmatrix} \lambda \mathbf{I}_n & -\mathbf{X} \\ \mathbf{0} & \mathbf{I}_m \end{bmatrix}, \quad \mathbf{V} = \begin{bmatrix} \mathbf{I}_n & \mathbf{X} \\ \mathbf{X}^T & \lambda \mathbf{I}_m \end{bmatrix}$$

可以得到它们的乘积:

$$\mathbf{U}\mathbf{V} = \begin{bmatrix} \lambda \mathbf{I}_n - \mathbf{X}\mathbf{X}^T & \mathbf{0} \\ \mathbf{X}^T & \lambda \mathbf{I}_m \end{bmatrix}, \quad \mathbf{V}\mathbf{U} = \begin{bmatrix} \lambda \mathbf{I}_n & \mathbf{0} \\ \lambda \mathbf{X}^T & \lambda \mathbf{I}_m - \mathbf{X}^T \mathbf{X} \end{bmatrix}$$

由 $\det(\mathbf{U}\mathbf{V}) = \det(\mathbf{V}\mathbf{U})$, 以及分块矩阵行列式的性质, 可得 $\lambda^m \det(\lambda \mathbf{I}_n - \mathbf{X}\mathbf{X}^T) = \lambda^n \det(\lambda \mathbf{I}_m - \mathbf{X}^T\mathbf{X})$, 有:

$$\chi(L(\Gamma); \lambda) = \det(\lambda \mathbf{I}_m - \mathbf{A}_L)$$

$$= \det\left((\lambda + 2)\mathbf{I}_m - \mathbf{X}^T \mathbf{X}\right)$$

$$= (\lambda + 2)^{m-n} \det\left((\lambda + 2)\mathbf{I}_n - \mathbf{X}\mathbf{X}^T\right)$$

$$= (\lambda + 2)^{m-n} \det\left((\lambda + 2 - k)\mathbf{I}_n - \mathbf{A}\right)$$

$$= (\lambda + 2)^{m-n} \chi(\Gamma; \lambda + 2 - k)$$

由Γ的谱:

Spec
$$\Gamma = \begin{pmatrix} k & \lambda_1 & \dots & \lambda_{s-1} \\ 1 & m_1 & \dots & m_{s-1} \end{pmatrix}$$

可以得到 $L(\Gamma)$ 的谱:

Spec
$$L(\Gamma) = \begin{pmatrix} 2k-2 & k-2+\lambda_1 & \dots & k-2+\lambda_{s-1} & -2 \\ 1 & m_1 & \dots & m_{s-1} & m-n \end{pmatrix}$$

命题 1.8

对于n个点 k-正则的连通图 Γ ,定义其补图 Γ^c 为有相同的点集,边集互补的图,也就是 $A + A_c = J - I$,则有:

$$(\lambda + k + 1)\chi(\Gamma^c; \lambda) = (-1)^n(\lambda - n + k + 1)\chi(\Gamma; -\lambda - 1)$$

命题 1.9

对于n个点 k-正则的连通图 Γ , 定义其补图 Γ^c 为有相同的点集, 边集互补的图, 也就是 $\mathbf{A} + \mathbf{A}_c = \mathbf{J} - \mathbf{I}$, 则有:

$$(\lambda+k+1)\chi(\Gamma^c;\lambda)=(-1)^n(\lambda-n+k+1)\chi(\Gamma;-\lambda-1)$$

1.3 圈和割

定义 1.8 (点空间与边空间)

图 Γ 的点空间 (vertex-space) 记为 $C_0(\Gamma)$,代表所有映射 $f:V\Gamma \to \mathbb{C}$ 。图 Γ 的边空间 (edge-space) 记为 $C_1(\Gamma)$,代表所有映射 $f:E\Gamma \to \mathbb{C}$ 。

令 $V\Gamma = \{v_1, v_2, ..., v_n\}$, $E\Gamma = \{e_1, e_2, ..., e_m\}$,知 $C_0(\Gamma)$, $C_1(\Gamma)$ 分别是 n, m 维的向量空间。又所有 $\eta: V\Gamma \to \mathbb{C}$ 可以被表示为一个列向量 $\mathbf{y} = [y_1, y_2, ..., y_n]^T$,其中 $y_i = \eta(v_i)$, $i \in 1, 2, ..., n$,于是我们可以定义一组 基 $\{\omega_1, \omega_2, ..., \omega_n\}$:

$$\omega_i(v_j) = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{otherwise} \end{cases}$$

以相同的方式也可以定义对于 $C_1(\Gamma)$ 的一组基 $\{\epsilon_1, \epsilon_2, \ldots, \epsilon_m\}$:

$$\epsilon_i(e_j) = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{otherwise} \end{cases}$$

上面讨论的都是无向图,现在讨论边的定向:

定义 1.9 (关联矩阵)

 Γ 的关联矩阵 (incidence matrix) 记为 \mathbf{D} , 代表给 Γ 定向, 是一个 $n \times m$ 的矩阵, 元素为:

$$d_{ij} = \begin{cases} +1, & \text{if } v_i \text{ is the positive end of } e_j; \\ -1, & \text{if } v_i \text{ is the negatice end of } e_j; \\ 0, & \text{otherwise.} \end{cases}$$

D 的每一列只有两个非零元素,可以将 **D** 看作 $C_1(\Gamma)$ 到 $C_0(\Gamma)$ 的一个线性映射的代表,不妨记这种线性映射为 D。这个映射也叫做关联映射。 $\forall \xi: E\Gamma \to \mathbb{C}$,函数 $D\xi: V\Gamma \to \mathbb{C}$ 定义为:

$$D\xi(v_i) = \sum_{j=1}^{m} d_{ij}\xi(e_j), j \in \{1, 2, \dots, n\}$$

命题 1.10 (关联矩阵的秩)

令 c 表示 Γ 中连通块的数量, Γ 的关联矩阵 \mathbf{D} 的秩为 n-c。

证明 D 在对 Γ 适当重标号后可以被表示为:

$$\left[\begin{array}{cccc} \mathbf{D}^{(1)} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{D}^{(2)} & \dots & \mathbf{0} \\ \vdots & \vdots & & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{D}^{(c)} \end{array}\right]$$

其中 $\mathbf{D}^{(i)}$ 是 Γ 的一连通部分 $\Gamma^{(i)}$ 的关联矩阵。只要证明 $\mathbf{D}^{(i)}$ 的秩为 n_i-1 , 其中 $n_i=|V\Gamma^{(i)}|$, 就可以得出 \mathbf{D} 的 秩为 $\sum_{i=1}^c n_i-1=n-c$ 。

令 \mathbf{d}_j 代表 $\mathbf{D}^{(i)}$ 中与 Γ 里与 v_j 相关的行。由于在 \mathbf{D}^i 的每列中仅有一个 +1 与 -1,所以 \mathbf{D}^i 每行之和为零向量,得到 \mathbf{D}^i 的秩最多为 n_i -1。那么令一组不全为 0 的系数 α ,有 $\sum \alpha_j \mathbf{d}_j = 0$,j 取遍 $\mathbf{D}^{(i)}$ 中的点。注意到对于一列,仅有两个值非空,则两行对应系数相等,又由 $\Gamma^{(i)}$ 连通,该等价关系可以传递,故所有的 α_j 相等,这也就得到了 $\sum \mathbf{d}_j = 0$,也就是 $\mathbf{D}^{(i)}$ 的秩为 n_i -1。

定义 1.10 (图的秩)

图 Γ 的秩 (rank) $r(\Gamma) = n - c$, 余秩 $s(\Gamma) = m - n + c$, 其中 c 表示 Γ 中连通块的数量。

现在研究邻接映射 D 的核与 Γ 性质的练习。令边集 $Q \subseteq E\Gamma$ 使得 $\langle Q \rangle$ 是一个环,则 Q 有两种环定向 (cycleorientations) 方式,我们选择一种环定向,定义 $\xi_Q \in C_1(\Gamma)$:

- 1. 若 $e \in Q$, 且在图中的定向与环定向相同,则 $\xi_O(e) = +1$;
- 2. 若 $e \in Q$, 且在图中的定向与环定向不同,则 $\xi_O(e) = -1$;
- 3. 若 $e \notin Q$,则 $\xi_Q(e) = 0$ 。

定理 1.7 (D 中核的性质)

- 1. 图 Γ 关联矩阵 D 的核是一个维度为 Γ 的余秩的线性空间;
- 2. 若 Q 是 Γ 中的一个环,则 ξ_O ∈ ker Q。

证明

- 1. D 的秩为 n-c, 而 $C_1(\Gamma)$ 的维度为 m, 说明 $\ker D$ 的维度为 $m-(n-c)=s(\Gamma)$;
- 2. 不妨用列向量 \mathbf{x}_Q 来表示 ξ_Q ,由于 D 代表 $C_1(\Gamma)$ 与 $C_0(\Gamma)$ 的基,我们用 \mathbf{D} 来表示 D。现在讨论 \mathbf{D} 的一行 \mathbf{d}_i 与 \mathbf{x}_O 的内积 $(\mathbf{D}\mathbf{x}_O)_i$:

此处只画出了两条不在 Q 中的边,其他边同理,可以发现若 Q 中的边不与 v_i 相连,则对应的值为 0;若 v_i 与 Q 中的边相连,则由 ξ_Q 的定义,必仅有一个 -1 项与 +1 项,两者抵消,值也为 0,即 $\mathbf{D}\mathbf{x}_Q = \mathbf{0}$,也就是 $\xi_Q \in \ker Q$ 。

若 ρ , σ , 在 Γ 的边空间中,可以定义它们的内积 (inner product): (其中上面加横线表示复共轭)

$$(\rho,\sigma) = \sum_{e \in E\Gamma} \rho(e) \overline{\sigma(e)}$$

定义 1.11 (cycle-subspace 与 cut-subspace)

 Γ 的 cycle-subspace 是 Γ 关联映射的核。 Γ 的 cut-subspace 是 $C_1(\Gamma)$ 的正交补。

第一条是由上面的定理引申出的,也就是所有代表 Γ 中环的向量都属于 cycle-subspace。存在两个集合 $V_1, V_2 \subsetneq V\Gamma$,且 $V_1 \cap V_2 = \emptyset$ 、 $V_1 \cup V_2 = V\Gamma$,令 $H \subseteq E\Gamma$,包含 $E\Gamma$ 中所有一端在 V_1 中而另一端在 V_2 中的边,则称 H 是一个割 (cut)。类似于环定向,我们定义 H 的割定向 (cut-orientations),标定 V_1 与 V_2 作为 H 中边的出边与入边,然后定义 H 上的函数 $\xi_H \in C_1(\Gamma)$:

- 1. 若 $e \in H$,且在图中的定向与割定向相同,则 $\xi_H(e) = +1$;
- 2. 若 $e \in H$, 且在图中的定向与割定向不同,则 $\xi_H(e) = -1$;
- 3. 若 $e \notin H$, 则 $\xi_H(e) = 0$ 。

定义 1.12 (等周数)

对于任意的非空点集 $X \subseteq V\Gamma$,存在一个割将 $V\Gamma$ 划分为 X 与 $\Gamma \backslash X$,记为 δX ,则其等周数 (isoperimetric number, 或称 Cheeger constant) 定义为:

$$i(\Gamma) = \min_{|X| \le |V\Gamma|/2} \frac{|\delta X|}{|X|}$$

例如 $i(K_n) = \lceil n/2 \rceil$ 。

命题 1.11

- 1. Γ 的 cut-subspace 是一个维度为 Γ 的秩的线性空间。
- 2. 对于 Γ 中的割 H,则 ξ_H 属于 Γ 的 cut-subspace。

证明

- 1. cycle-subspace 的维数是 m-n+c, cut-subspace 作为它的正交补, 维度是 $n-c=r(\Gamma)$;
- 2. 若H是 Γ 中的割,则存在 V_1,V_2 定义如上,类似地,再令 \mathbf{x}_H 为代表 ξ_H 的列向量,有

$$\mathbf{x}_{H}^{t} = \pm \frac{1}{2} \left[\sum_{v_{i} \in V_{1}} \mathbf{d}_{i} - \sum_{v_{i} \in V_{2}} \mathbf{d}_{i} \right]$$

其中 \mathbf{d}_i 是关联矩阵中于 v_i 相关的行向量,等式右边的符号取决于取决于两种割定向的选取。注意到若 $\mathbf{Dz} = \mathbf{0}$,则 $\mathbf{d}_i \mathbf{z} = 0$, $\forall v_i \in V$,还可以得到 $\mathbf{x}_H^T \mathbf{z} = 0$,所以 ξ_H 是 cycle-subspace 的正交补,由定义得,这是 cut-subspace。

定义 1.13

令 D 为 Γ 定向后的关联矩阵,A 是 Γ 的邻接矩阵,拉普拉斯矩阵 (Laplacian matrix) Q 定义为:

$$\mathbf{Q} = \mathbf{D}\mathbf{D}^T = \Delta - \mathbf{A}$$

其中 Δ 是一个对角矩阵, $(\Delta)_{ii}$ 的值为 v_i 的度数,可以看出Q与 Γ 的定向无关。

证明 $(\mathbf{D}\mathbf{D}^T)_{ii}$ 是 \mathbf{D} 中行 \mathbf{d}_i 与 \mathbf{d}_i 的内积,下面讨论两边 (i,j) 位置的元素:

- 1. 若 $i \neq j$,这两行在同一个位置同时非零,当且仅当存在一条边连接 v_i 与 v_j 。这两个非零元素分别为 +1 与 -1,故此时 (\mathbf{DD}^T) $_{ii} = -1 = -(\mathbf{A})_{ii}$;
- 2. 若 i = j, $(\mathbf{DD}^T)_{ii}$ 是 \mathbf{d}_i 与自己的内积,又其中非零元素个数为 v_i 的度数,故 $(\mathbf{DD}^T)_{ii} = \Delta_{ii}$ 。

命题 1.12 (Laplacian 谱)

令 Q 的特征值为 $\mu_0 \leq \mu_1 \leq \cdots \leq \mu_{n-1}$, 我们有:

- 1. $\mu_0 = 0$, 对应的特征向量为 [1,1,...,1];
- 2. 若 Γ 连通,则 $\mu_1 > 0$;
- 3. 若 Γ 是k-正则的,则 $\mu_i = k \lambda_i$,其中 λ_i 是 Γ 降序排序后第i个特征值。

1.4 生成树

关注 cycle-subspace 与 cut-subspace 的基是一个很好的锻炼机会,这个问题被 Kirchhoff(1847) 在对电路网络的研究中解决了。现在把注意力放在连通图上,因为非连通图的 cycle-subspace 与 cut-subspace 是分量对应空间的直和,故在本章中仍有 Γ 表示 n 个点与 m 条边的连通图,故 $r(\Gamma) = n - 1$, $s(\Gamma) = m - n + 1$,我们假定 Γ 已经被定向了。

定义 1.14 (生成树)

 Γ 的生成树 (spanning tree) 是 Γ 的一个子图,有n个点与n-1条边,且该子图连通。

在此处用T表示生成树,方便起见,有时也用T也表示它的边集,由这个定义可以直接得到:

引理 1.3

T是连通图 Γ 的生成树,则:

- 1. $\forall g \in E\Gamma, g \notin T$, 仅存在一个环包含 $g \vdash T$ 中的边;
- 2. $\forall h \in E\Gamma, g \in T$,仅存在一个割包含 $h \vdash T$ 外的边。

我们用 $\operatorname{cyc}(T,g)$ 与 $\operatorname{cut}(T,h)$ 来表示这个唯一的环与割。我们用 Γ 中的定向来分别给 $\operatorname{cyc}(T,g)$ 与 $\operatorname{cut}(T,h)$ 进行环定向与割定向。于是可以在 $C_1(\Gamma)$ 中,按照上一节的定义来定义两个元素: $\xi_{(T,g)}$ 与 $\xi_{(T,h)}$ 。

定理 1.8

与上一个引理中的定义相同, 我们有:

- 1. g 跑遍 $E\Gamma T$ 时,m n + 1 个 $\xi(T,g)$ 构成 Γ 的 cycle-subspace 的一组基;
- 2. h 跑遍 T 时,n-1 个 $\xi(T,h)$ 构成 Γ 的 cut-subspace 的一组基。

证明

- 1. 上一中我们证明了 $\xi_{(T,g)}$ 在 cycle-subspace 中,注意到不存在两个 $g \neq g'$,有 cyc(T,g) = cyc(T,g'),共有m-n+1个向量,而 cycle-subspace 正有m-n+1维,所以可以得到其构成 cycle-subspace 的一组基;
- 2. 类似上一条证明, 自证不难。

环与割只是图的一部分,直接用关联矩阵来描述较为麻烦,我们来考虑关联矩阵的子矩阵的性质,便于导 出环与割。

命题 1.13 (Poincare 1901)

对于图 Gamma 的关联矩阵 D 的任意子矩阵,其行列式只有三种取值: 0、+1 与 -1。

证明 今这个子矩阵为S。

- 1. 若 \mathbf{S} 的每一列都有两个非零元素,则可以得到列的和为 $\mathbf{0}$,此时 $\det \mathbf{S} = \mathbf{0}$ 。若 \mathbf{S} 有其中一列没有非零元素,则 $\det \mathbf{S} = \mathbf{0}$;
- 2. 对于存在一列仅有一个非零元素的 S, 对这一列进行展开,得到 $\det S = \pm \det S'$,其中 S' 是 S 的余子式,持续这个过程,直到抵达 1. 中结果,或最终只有一个元素 +1 或 -1。

经过上述过程,可以发现 det S 仅有三种可能的结果: 0、+1 与 -1。

命题 1.14

 \overline{H} \overline{H}

证明

- 1. \Leftarrow : \dot{A} $\langle U \rangle$ 是 Γ 的生成树, \mathbf{D}_U 是由 U 的关联矩阵 \mathbf{D}' 的 n-1 行组成的,由 $\langle U \rangle$ 是连通的,故 \mathbf{D}' 的秩为 n-1,所以 \mathbf{D}_U 是可逆的。
- 2. ⇒: 若 \mathbf{D}_U 是可逆的, 故 \mathbf{D}' 有 $(n-1) \times (n-1)$ 的子矩阵, 因此 \mathbf{D}' 的秩为 n-1。由 |U| = n-1, $\langle U \rangle$ cycle-subspace 的维度为 0, 故 $\langle U \rangle$ 是 Γ 的生成树。

$$\mathbf{D} = \left[\begin{array}{cc} \mathbf{D}_T & \mathbf{D}_N \\ & \mathbf{d}_n \end{array} \right]$$

其中 \mathbf{D}_T 是 n-1 阶的可逆方阵,最后一行 \mathbf{d}_n 与其他行线性相关。

对于剩下的边,令 \mathbf{C} 表示代表 $\xi_{(T),e_j}$, $n \leq j \leq m$ 标准基的向量作为列组成的矩阵, \mathbf{C} 可以被表示为:

$$\mathbf{C} = \left[\begin{array}{c} \mathbf{C}_T \\ \mathbf{I}_{m-n+1} \end{array} \right]$$

 \mathbf{C} 的每一列表示一个环,且属于 \mathbf{D} 的核,有 $\mathbf{DC} = 0$,故

$$\mathbf{C}_T = -\mathbf{D}_T^{-1}\mathbf{D}_N$$

用相同的方式来表示 T 中的边,令 \mathbf{K} 的每一列表示 $\xi_{T,e_j}, 1 \leq j \leq n-1$,它可以被写为:

$$\mathbf{K} = \begin{bmatrix} \mathbf{I}_{n-1} \\ \mathbf{K}_T \end{bmatrix}$$

因为 **K** 的每一行都属于 cycle-subspace 的正交补, 故 $CK^T = 0$, 故 $C_T + K_T^T = 0$, 因此:

$$\mathbf{K}_T = (\mathbf{D}_T^{-1} \mathbf{D}_N)^T$$

上面关于 C_T 与 K_T 的等式展示了基础的环与割与 T 的关系可以由关联矩阵推出,我们还可以使用这种代数的方法简单地证明下面这个命题:

定理 1.9

对于 Γ 的生成树T,若 Γ 中的边 $a \in T, b \notin T$,则:

$$b \in \text{cut}(T, a) \Leftrightarrow a \in \text{cyc}(T, b)$$

证明 这个结果可以直接由 C_T 与 K_T 的结果推出,因为我们由 $C_T + K_T = 0$ 。