Конспект к экзамену по матану

Владимир Латыпов

 $donrumata 03 @\,gmail.com$

Содержание

1	Теория меры	3
2	Многообразия	3
	2.1 Разбиение единицы	3
	2.2 Гладкие многообразия	4
3	Ряды Фурье и приближение функций	6
	3.1 Пространства Лебега	6
	3.2 Гильбертовы пространства	6

1 Теория меры

2 Многообразия

2.1 Разбиение единицы

Lemma 2.1.1 Открытое множество в \mathbb{R}^n представимо как объединение шаров с рациональными ценрами и радиусам, в нём содержащихся.

Theorem 2.1.2 (theorem 2: Теорема Линдлёфа) Из открытого покрытия множества в \mathbb{R}^n можно выделить счётное подпокрытие.

Proof

- Не важно, открыто ли покрытие в \mathbb{R}^n или в M, т.ч. считаем, что множество представлено в виде объединения.
- \cdot Рассмотрим все шары, содержащиеся хотя бы в одном элементе покрытия \to достаточно их объединить (занумеруем).

Theorem 2.1.3 (theorem 3: Теорема Лебега (о компакте)) Для открытого покрытия метрического компакта существует ε , что любое пересекающееся с K множество диаметра $\leq \varepsilon$ содержится в каком-то элементе покрытия.

Proof От противного — построим последовательность для $\varepsilon = \frac{1}{n}$. По секвенциальной компактности выделим сходящуюся подпоследовательность. Её предел — в элементе покрытия. Тогда множества с какого-то момента содержатся в нём. Противоречие. \square

Theorem 2.1.4 (theorem 4: Разбиение единицы) Для открытого покрытия компакта в \mathbb{R}^n существует разбиение единицы, отвечающее ему, т.е.

- \cdot конечный набор финитных функций $C^{(\infty)}(\mathbb{R}^n o [0,1])$, тч:
- $\cdot \ \mathrm{supp} \$ каждой \in какому-то элементу покрытия.
- Сумма набора ≤ 1 всегда
- На компакте в точности равна 1

Proof Фнукция $au(x) = e^{-\frac{1}{(t+1)^2} - \frac{1}{(t-1)^2}}$ (на [0,1], иначе - 0). Периодизируем, поделим на период, получим θ . Тогда $\tilde{\theta}$ (периодизированная θ) \equiv 1. Через ε из леммы Лебега возьмём малое h и получим для точки m из \mathbb{Z}^n перемноженную и промасштабированную штуку $\theta_{m(x)} = \prod_{i=1}^n \theta(\frac{x_i}{h} - m_i)$. Тогда возьмём в набор те, которые содержатся в каком-либо элементе покрытия.

Theorem 2.1.5 (theorem 5: Равносильность существования локального и глобального гладкого продолжения) Если для каждой точки множества существует окрестность и r —гладкое продолжение отображения, то существует таковое и на объединении окрестностей.

2.2 Гладкие многообразия

Definition 2.2.6 Регулярное оторбражение на произвольном множестве — существует регулярное продолжение на открытое.

Definition 2.2.7 $\mathbb{M}_{kn}^{(r)}$ (k-мерное многобразие в \mathbb{R}^n класса r) — множество в \mathbb{R}^n , тч для каждой точки существует локальная параметризация — окрестность (открытое в M множество, содержащее это точку) и регулярный класса r гомеоморфизм $\varphi:\Pi_k\to U$, где Π_k — стандартный куб или полукуб, причём $\varphi(\mathbb{0})=x$. Точки, где это куб — внутренние, где полукуб — краевые.

 ∂M — край — множество краевых точек. Не завит от параметризации (следствие из теоремы о регулярности перехода).

Definition 2.2.8 Нуль-мерное многообразие — *дискретное* множество точек, то есть никакая — не предельная.

Example 2.2.9 Многообразия:

- · Открытое множество в \mathbb{R}^n многообразие без края класса ∞ (тождественная паараметризация)
- \cdot Путь (простой, незамкнутый, регулярный, на [0,1]).
- · Образ открытого в \mathbb{R}^k множества при регулярном гомеоморфизме. Частный случай график отображения, где $\varphi:(u,f(u))$.
- \cdot Поверхность вращения в \mathbb{R}^3 (параметризуем, решая уравнения)
- Сфера (локальная параметризация— через сферические коодринаты, иначе— вращаем)
- Цилиндрическая поверхность то же самое, но переходим к сферическим координатам только по первым l-1 переменным.
- Тор параметризуем через угол на центральной окружности и на подвешенной к ней

Theorem 2.2.10 (theorem 10: Задание многообразия через систему уравнений) Подмножество открытого, где r —гладкое регулярное отображение $\Phi:G\subset\mathbb{R}^{k+m}\to\mathbb{R}^m$ равно нулю, — $\mathbb{M}_{k,k+m}^{(r)}$.

Proof НУО, нелулевой минор — по последним координатам (y). По Т. о неявном отображении возьмём куб с ребром $a \to \text{шар}$ с радусом b и неявное отображение: последние координаты по первым. Тогда параметризация:

$$\varphi(u)=(x_0+au,f(x_0+au))$$

Definition 2.2.11 Переход от параметризации φ к $\psi - L : \binom{W_1 \to W_2}{\psi^{-1} \circ \varphi}$, то есть по φ -параметру точки из пересечения стандартных окрестностей даёт ψ -параметр.

Theorem 2.2.12 (theorem 12: Регулярность перехода) $L \in C^{(r)}$ и регулярно.

3 Ряды Фурье и приближение функций

3.1 Пространства Лебега

Definition 3.1.13 Програнство Лебега $L_{p(E,\mu)}, p\in [1,\infty]$ — множество функций п. в. $_{\mu}E \to \overline{\mathbb{R}}$ или $\overline{\mathbb{C}}$, для которых

$$\begin{cases} \parallel f \parallel_p = \left(\int_E |f|^p d\mu \right)^{1/p} < \infty & p \in [1, \infty) \\ \parallel f \parallel_\infty = \underset{E}{\operatorname{ess sup}} |f| < \infty & p = \infty \end{cases}$$

Definition 3.1.14 Пространство L_p (обозначается без указания множества и меры) — множество 2π -периодических функций п. в. $\mathbb{R} \to \overline{\mathbb{R}}$ или $\overline{\mathbb{C}}$, для которых $\|f\| = \|f\|_{L_{p([-\pi,\pi],\mu_1)}} < \infty.$

Theorem 3.1.15 Полнота

3.2 Гильбертовы пространства

Definition 3.2.16 Гильбертово пространство — *полное* линейное пространство со скалярным произведением и нормой, им порождённой.

Example 3.2.17 Пространство $L_2(E,\mu)$ со скалярным произведением:

$$\langle f, g \rangle = \int_{E} f \overline{g} \, \mathrm{d}\mu$$

(суммируемость $f\overline{g}$ — за счёт неравенства Гёлдера для p=q=2)

Полнота доказана в Теореме 3.1.15

Частные случаи:

- \cdot ℓ_2^m Евклидово пространство
- \cdot ℓ_2 последовательности
- \cdot $\ell_2(\mathbb{Z})$ двусторонние последовательности

Lemma 3.2.18 Сходящийся в $\mathcal H$ ряд можно скалярно умножать на вектор почленно

Theorem 3.2.19 (theorem 19: Критерий сходимости ортогонального ряда) Сходимость ряда в \mathcal{H} равносильна сходимости $\sum \|x\|^2$, причём

$$\|\sum_{i=1}^{\infty}x\|^2 = \sum_{i=1}^{\infty}\|x\|^2$$

Corollary 3.2.20 Перестановка сходящейся в $\mathcal H$ последовательности тоже сходится и имеет тот же предел

Theorem 3.2.21 (theorem 21: Вычисление коэфициентов ортогонального ряда) Если $\left\{e_k\right\}_{k=1}^{\infty}$ — ОС, а $\sum_{i=1}^{\infty}c_ke_k \to x$, то коэфициенты однозначно вычислаются по формуле

$$c_k = \frac{\langle x, e_k \rangle}{\|e_k\|^2}$$

Theorem 3.2.22 (theorem 22: Свойства частичных сумм Фурье)

- 1. S_n ортогональная проекция x на $\mathcal{L}(\{e_k\})$
- 2. S_n элемент наилучшего приближения к x из $\mathcal{L}(\{e_k\})$, причём равенство достигается только при $y=S_n$
- $||S_n|| \le ||x||$

Corollary 3.2.23 (corollary 23: Неравенство Бесселя) Сумма квадратов норм Ряда Фурье x не больше $\|x\|^2$.

Theorem 3.2.24 (theorem 24: Рисс, Фишер)

- 1. Ряд Фурье вектора x сходится
- 2. Сумма ряда Фурье ортогональная проекция x на $\mathcal{L}(\{e_k\})$
- 3. Сходится именно к $x \iff$ выполняется *уравнение замкнутости* (то есть в нер-ве Бесселя достигается равенство).

Definition 3.2.25 Базис: любой вектор раскладывается по этой системе

Definition 3.2.26 Полная система: не существует отличного от нуля вектора, ортогонального всем вектора (то есть нельзя добавить ещё однин вектор, чтобы осталвалась ОС)

Definition 3.2.27 Замкнутая система: для любого вектора выполнено *уравнение замкнутости*

Theorem 3.2.28 (theorem 28: Харакетеристика базиса) Утверждения эквивалентны для ОС $\{e_k\}_{k=1}^{\infty}$:

- 1. $\left\{e_k\right\}_{k=1}^{\infty}$ базис
- 2. $\forall x, y$ выполнено обобщённое уравнение замкнутости:

$$\langle x,y\rangle = \sum_{i=0}^{\infty} c_{k(x)} \overline{c_{k(y)}} \; \|e_k\|^2$$

- 3. $\{e_k\}$ полная система
- 4. $\{e_k\}$ замкнутая система
- 5. $\mathcal{L}(\{e_k\})$ плотна в \mathcal{H}

Theorem 3.2.29 (theorem 29: Грамм, Шмидт) систему можно ортонормировать, не изменяя линейную оболочку никакого префикса, притом единственным с точностью до коэфициентов ± 1 образом

Example 3.2.30 (example 30: Ортогональные базисы многочленов) Весовая функция → вводим скалярное произведение

Theorem 3.2.31 (theorem 31: Существование элемента наилучшего приближения)