

Environmental assessment and decision support for the process design of tailings valorization

PhD research plan: Lugas Raka Adrianto

27.01.2020

Motivation (1)

Trends: Demand of metals $\uparrow\uparrow$, but the ore grade $\downarrow\downarrow$ (Van der Voet et al., 2019)

Mining operation

Environmental burdens

Primary resources processing

Metal production

Motivation (2)

Tailings

The problem

Leaching and long-term environmental impacts (Lottermosser, 2010)

The opportunity

If properly managed, it could be future resources (JRC, 2019)

The SULTAN project

Transforming extractive-waste problem into a resource-recovery opportunity

15 PhD students/ "ESR"

8 Universities and research institutes

Work packages (WP)

My role in WP4:

On what?

1

2

Environmental assessment

Metals recovery

Minerals valorization

State of current research

Emissions from tailings storage

Assessing impacts of mining

Empirical models

Reactive transport

Stee

Time perspective

(Bakas et al 2015) (Doka and Hischier, 2005) (Hellweg et al, 2005)

LCA of tailings management

Song et al, 2017

Adians Reid Sarkkii

Regionalized assessment

Northey et al, 2017 Werner et al, 2019 Prospective LCA for emerging technologies

Upscaling frameworks

Piccino et al, 2016 Zhou et al, 2017

Process simulation

Abadias et al, 2019 Reuter et al, 2015

Learning effects

Gavankar et al, 2015 Caduff et al, 2012 Sustainability benefits of mine waste's valorization

Industrial ecology in mining

Segura-Salazar et al, 2019 Kinnunen, 2019

LCA of mine residues' valorization

Joyce et al, 2019 Rahul et al, 2019

Future metal demand

Van der Voet et al, 2019 Elshkaki et al, 2016

Starting points and research gaps

Emissions from tailings storage

Assessing impacts of mining

Prospective LCA for emerging technologies

Sustainability benefits of mine waste's valorization

Available leaching models

Caps

Lacking applicability on other sites

Lacking applicability on applicability on other sites

Lacking applicability on applicability on applicability on applicability on other sites

Frameworks for upscaling and simulations

Limited LCA studies

Missing inventories for tailings conversion

- 1) Environmental performance metrics
- 2) Demand model

Unclear phase and scale

No scenario coupling

Research questions

- 1. How can mine tailings storage's emissions be modelled as a function of site-specific characteristics? How do pollutant emissions evolve over time?
- 2. How can various **small-scale** results be compared with **larger scale** systems from a life cycle assessment point of view?
- 3. What **recommendations** can be provided for process designers of tailings valorization technologies and policy makers?

Methodology – Research parts

Part 1 – Conventional tailings management

Part 1 – Conventional tailings management

Aim: Highlight potential hotspot regions and mines

Influential beneficiation parameters:

Metal grade, mineralogy, reagent chemicals

Ore deposits influence chosen beneficiation technology

Route b ...Route n Route a

Specific tailings characteristics (linked to other models)

Emissions predictions

Life cycle inventory improvement

Part 1 – Conventional tailings management

Part 2 – Prospective LCA of emerging processes

Part 2 – Prospective LCA of emerging processes

Aim: Identify hotspots at early stage

 Inventory collection of 10 process modules (This study)

 Design feedback based on LCA interpretation (This study)

Part 2 – Prospective LCA of emerging processes

Approach

Useful frameworks (foreground inventories)

- Technology upscaling and learning
- Process-oriented model, metallurgical simulation

Analysis

- Contribution analysis
- Sensitivity

Part 3 – Scenarios: Reprocessing of tailings as alternatives

Part 3 – Scenarios: Reprocessing of tailings as alternatives

Aim: Environmental consequences of materials use

Resource recovery from inactive stocks (i.e. tailings)

Additional Impacts

- Metal recovery processes
- Mineral residue valorization processes

Environmental benefits

- Less 'landfilling'
- Avoid primary metal production
- Substitute of building materials

Environmental implications of reprocessing tailings

(This study)

Part 3 – Scenarios: Reprocessing of tailings as alternatives

Research parts as planned publications

Relevance for science and economy

Parameterized LCA of conventional tailings storage

Prospective LCA of novel valorization processes

Environmental implications of tailings reprocessing as alternatives

 Global environmental assessment by means of site-specific factors Structured methods to assess environmental performance of emerging technologies

Scientific contribution

Time schedule

Thank you!

Any questions?

