Student: Arfaz Hossain Instructor: Muhammad Awais Assignment: HW-7 [Sections 10.7 & Date: 03/14/22 Course: Math 101 A04 Spring 2022 10.81

Find the Maclaurin series of the function.

$$f(x) = 8 \cos 6\pi x$$

Let f be a function with derivatives of all orders throughout some interval containing 0 as an interior point. The Maclaurin series of f, shown below, is the Taylor series generated by f at x = 0.

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \frac{f'''(0)x^3}{3!} + \dots + \frac{f^{(n)}(0)x^n}{n!} + \dots$$

Take the first few derivatives of 8 $\cos 6\pi x$ to find a pattern.

 $f(x) = 8 \cos 6\pi x$

 $f'(x) = -48\pi \sin 6\pi x$

 $f''(x) = -288\pi^2 \cos 6\pi x$

 $f'''(x) = 1728\pi^3 \sin 6\pi x$

 $(-1)^{n}$

 $8 \cdot 6^{2n} \cdot \pi^{2n}$

Generalize the function and its derivatives. Notice that the even numbered derivatives all contain cosine, while the odd numbered derivatives all contain sine. Thus, when looking for a pattern, first find two separate formulas, one for f⁽²ⁿ⁾ and one for $f^{(2n+1)}$

Start with the even numbered derivatives. The fourth derivative has been added to the list to m alternates.

make it easier to see a pattern. Notice that the sign of the derivatives Write an alternating factor that represents this pattern.	n = 0	$f(x) = 8 \cos 6\pi x$
	n = 1	$f''(x) = -288\pi^2 \cos 6\pi x$
	n = 2	$f^{(4)} = 10,368\pi^4 \cos 6\pi x$

Now determine the coefficient, not including the sign. The pattern for the coefficient is often easier to see in a factored form. Write the formula to describe the coefficient.

Therefore,	$f^{(2n)}(x) = 0$	- 1) ⁿ • 8 •	• 6 ²ⁿ • π ^{2r}	COS 6x

Now examine the odd numbered derivatives. The fifth derivative has been added to the list to make it easier to see a pattern. Write the formula for $f^{(2n+1)}(x)$.

$f^{(2n+1)}(x) = (-1)^{n+1}$	•8•6 ²ⁿ⁺¹	• _π 2n + 1	ein 6v
(X) = (= 1)	.0.0	- 11	5 111 0 X

n	f ^(2n + 1) (x)
n = 0	$f'(x) = -48\pi \sin 6\pi x$
n = 1	$f'''(x) = 1728\pi^3 \sin 6\pi x$
n = 2	$f^{(5)}(x) = -62,208\pi^5 \sin 6\pi x$

n

n = 0

(2n)ء

coefficient

8 • 36 • π²

• 1296 • π⁴

Notice that at x = 0, $\cos x = 1$ and $\sin x = 0$. Now recall that in the formula for a Maclaurin series, the derivatives are evaluated at x = 0. Simplify the expressions for $f^{(2n)}(0)$ and $f^{(2n+1)}(0)$.

$$f^{(2n)}(0) = (-1)^n \cdot 8 \cdot 6^{2n} \cdot \pi^{2n}$$
 and $f^{(2n+1)}(0) = 0$

Since $-288\pi^2 \cos 6\pi x$ for all n, only even powers of x occur in the Maclaurin series for $f(x) = 8 \cos 6\pi x$. Complete the first two nonzero terms of the Maclaurin series by evaluating $f^{(2n)}(0)$ for n = 0 to obtain the first term of the sequence, f(0) = 48. Then evaluate $f^{(2n)}(0)$ for n = 1 to obtain $f''(0) = -288\pi^2$. Dividing by 2! gives the coefficient for the x^2 -term.

$$\begin{split} f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \frac{f'''(0)x^3}{3!} + \dots + \frac{f^{(n)}(0)x^n}{n!} + \dots \\ &= 8 + 0x + \left(-144\pi^2x^2\right) + \frac{0x^3}{3!} + \dots + \frac{f^{(n)}(0)x^n}{n!} + \dots \end{split}$$

Finally, write the Maclaurin series for f in summation notation. Only the non-zero terms are shown in the expansion below.

Find the Maclaurin series of the function by substituting $(-1)^n \cdot 8 \cdot 6^{2n} \cdot \pi^{2n}$ for the general term $\frac{f^{(2n)}(0)x^{(2n)}}{(2n)!}$.

$$8-144\pi^2x^2+\cdots+\frac{f^{(2n)}(0)x^{(2n)}}{(2n)!}+\cdots=\sum_{n=0}^{\infty}\frac{\left(-1\right)^n\cdot 8\cdot 6^{2n}\cdot \pi^{2n}\cdot x^{2n}}{(2n)!}$$