Assignment 2

A **large language model (LLM)** is a type of artificial intelligence (AI) model designed to process and generate human-like text. These models are based on deep learning techniques

Key Features of LLMs:

 Trained on massive datasets: They learn from vast amounts of text data from books, articles, and

websites.

Capable of understanding context: They generate coherent and contextually relevant responses.

 Used in various applications: Chatbots, content generation, code writing, and even medical or

legal text processing.

How They Work

LLMs use **deep learning**, specifically **transformer architectures**, to process and generate humanlike text. They learn patterns, grammar, and contextual meaning from large datasets. The most wellknown transformer model is **GPT (Generative Pre-trained Transformer)**, developed by OpenAI.

LLMs follow a two-step process:

- Pre-training: The model is trained on massive amounts of text to learn language patterns.
- **Fine-tuning**: It is then adapted for specific tasks like answering questions, summarization, or translation.

models

t5 model

Feature	T5 (2019, by Google)
Model Type	Seq2Seq (Encoder-Decoder) Transformer
Training Objective	Text-to-Text Framework – Every NLP task is framed as a text generation task (e.g., translation summarization, classification)
Architecture	Encoder-Decoder (like BERT for encoding + GPT for decoding)

Context Understanding	Processes full input, then generates output (good for both understanding and generation ta
Fine-tuning Usage	Very flexible – Can handle classification, Q&A, summarization, translation, and more
Memory & Parameters	Varies (T5-Small: 60M, T5-Base: 220M, T5-Large: 770M, T5-XL: 3B, T5-XXL: 11B)
Real-time Adaptation	Can be fine-tuned for different NLP applications but not designed for chatbot-style memory

Gpt2 model

- GPT-2 (Generative Pre-trained Transformer 2) is a language model developed by OpenAI in 2019. It is the second version in the GPT series and was designed to generate human-like text.
- **♦** Key Features of GPT-2:
- 1. Transformer-Based Architecture
 - 1. Uses decoder-only architecture (like GPT-3 and GPT-4).
 - 2. Based on **self-attention** mechanisms for text generation.

2. Autoregressive Model

- 1. Predicts the **next word** based on previous words.
- 2. Generates text **sequentially**, improving coherence.

BERT model

- BERT (Bidirectional Encoder Representations from Transformers) is a deep learning model developed by Google AI in 2018. It is one of the most influential large language models designed for natural language processing (NLP) tasks.
- ♦ Key Features of BERT:
- 1. Bidirectional Understanding Unlike traditional models that read text left-to-right or right-to-left, BERT reads the entire sentence at once, understanding context better.
- 2. Pre-trained on Large Datasets BERT is trained on massive amounts of text data, such as Wikipedia and BooksCorpus.
- 3. Fine-Tuning for Specific Tasks After pre-training, BERT can be fine-tuned for tasks like:
 - 1. Text classification (e.g., spam detection)
 - 2. Question answering (e.g., Google Search)

3. Named entity recognition (e.g., identifying names in text)

1. Architecture Type

Feature	T5 (Text-to-Text Transfer Transformer)	BERT (Bidirectional Encoder Representations from Transformers)	GPT-2 (Generative Pretrained Transformer 2)
Туре	Encoder-Decoder (Seq2Seq)	Encoder-Only	Decoder-Only
Directionality	Bidirectional + Autoregressive (depends on task)	Fully Bidirectional	Left-to-right (Autoregressive)

2. Pretraining Objective

Feature	T5	BERT	GPT-2
Task	Span corruption (Masked Sequence-to-Sequence Learning)	Masked Language Modeling (MLM)	Causal Language Modeling (CLM)
Training Strategy	Converts all NLP tasks into a text- to-text format	Predicts masked words given context	Predicts next word in sequence

3. Strengths & Use Cases

Feature	T5	BERT	GPT-2
Best for	Text generation, translation, summarization, question answering	Text classification, Named Entity Recognition (NER), Sentiment Analysis	Creative text generation, story writing, dialogue generation
Fine- tuning	Flexible, works for multiple NLP tasks	Works well for classification & extraction tasks	Mostly used for generative tasks

4. Weaknesses

Feature	T5	BERT	GPT-2
Limitations	Computationally expensive due to Seq2Seq nature	Cannot generate text, only understands and classifies	Poor at bidirectional understanding, lacks

	comprehension compared to
	BERT

5. Model Size

Feature	T5 (Base)	BERT (Base)	GPT-2 (Base)
Parameters	220M	110M	117M

Summary

- **T5**: A versatile **text-to-text model** that can perform multiple NLP tasks (generation, classification, QA, etc.).
- **BERT**: A strong **understanding model**, good for classification and extracting information.
- **GPT-2**: A **generative model**, best for free-text generation but lacks deep comprehension.