Computing Truncated Joint Approximate Eigenbases for Model Order Reduction

Fredy Vides¹

Joint work with Terry Loring²

¹ Scientific Computing Innovation Center Universidad Nacional Autónoma de Honduras **UNAH-CU**

> ²Department of Mathematics and Statistics The University of New Mexico, Albuquerque

> > MATHMOD 2022

Motivation:

- Model reduction for ND-system realizations.
- Equivariant neural network model reduction/identification.
- Stabilization of dynamic recurrent neural network models.

Main Problem

Apoximage joint diagonalization

Given X_1, \ldots, X_d in $\mathbb{R}^{n \times n}$, a d-tuple $\lambda = (\lambda_1, \ldots, \lambda_d) \in \mathbb{R}^d$. Find $W \in \mathbb{C}^{n \times r}$ with orthonormal columns such that

$$W = \arg\min_{\hat{W} \in \mathbb{C}^{n \times r}} \sum_{j=1}^{d} \left\| X_j \hat{W} - \hat{W} \Lambda_j \right\|_F^2.$$
 (1)

for $\Lambda_j = \in \mathbb{R}^{r \times r}$, denoting a diagonal matrix with diagonal elements realtively close to the element λ_j of λ (usually $\Lambda_j = \lambda_j I_r$).

Remark

Solutions to problem (1) can be used for model order reduction.

Quadratic localizers

Quadratic psudospectrum

Given $\varepsilon>0$ and finitely many Hermitian matrices X_1 , ..., X_d . A d-tuple λ is an element of the quadratic ε -pseudospectrum of (X_1,\ldots,X_d) if there is unit vector \mathbf{v} so that

$$\sqrt{\sum_{j=1}^{d} \|X_{j}\mathbf{v} - \lambda_{j}\mathbf{v}\|^{2}} \leq \varepsilon.$$
 (2)

If (2) is true for $\varepsilon = 0$ then we say λ is an element of the quadratic spectrum of (X_1, \ldots, X_d) .

Notation

 $Q\Lambda_{\varepsilon}(X_1,\ldots,X_d)$ denotes the quadratic ε -pseudospectrum of (X_1,\ldots,X_d) .

Autoencoders for Model Simplification

Model sparsification via local autoencoder identification

Implicitly one computes devices of the form:

to obtain an approximate representation $\hat{\mathbf{x}}(t)$ of the original signal $\mathbf{x}(t)$ based on coded signal $\mathbf{y}(t)$.

- ▶ The device E is called an encoder.
- ► The device **D** is a decoder.

Recursive representation of 2D-LTI systems

2D-LTI system:

$$\begin{array}{c|c}
x_t^{(1)} & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

This block diagram is equivalent to:

$$x_1(t+1) = A_1x_1(t), x_2(t+1) = A_2x_1(t+1),$$
 (5)

Output coupling of recurrent 2D-LTI systems

Coupled 2*D*-LTI system. For the updated states generated by the recurrent system (4), we consider a system output of the form:

$$\hat{y}(t) = W \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$
 (6)

QPS and model reduction

Remark

Given a discrete-time 2*D*-system with states $x_1(t)$ and $x_2(t)$ in \mathbb{R}^n :

$$x_1(t+1) = A_1 x_1(t), x_2(t+1) = A_2 x_1(t+1),$$
 (7)
 $y(t) = W \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$

Let:

$$\begin{split} H_1 &= A_1^\top A_1, \\ H_2 &= A_2^\top A_2, \\ H_2 &= A_1^\top A_2 + A_2^\top A_1. \end{split}$$

QPS and model reduction

Remark

If H_1, H_2, H_3 approximately commute, we can apply the AJD algorithm presented in this contribution to find a matrix $V \in \mathbb{R}^{n \times r}$ with orthonormal columns for some suitable $0 < r \ll n$, that can be used to compute a ROM.

$$\hat{x}_1(t+1) = V^{\top} A_1 V \hat{x}_1(t), \ \hat{x}_2(t+1) = V^{\top} A_2 V \hat{x}_1(t+1),$$

$$y(t) = W \begin{bmatrix} V \hat{x}_1(t) \\ V \hat{x}_2(t) \end{bmatrix}$$

Example (LTI ROM simulation via QPS):

Let us consider the discrete-time system with states $x_1(t)$ and $x_2(t)$ in \mathbb{R}^{400} :

$$x_1(t+1) = A_1 x_1(t), x_2(t+1) = A_2 x_1(t+1),$$
 (8)
 $y_1(t) = \hat{e}_{1,400}^{\top} x_1(t), y_2(t) = \hat{e}_{2,400}^{\top} x_2(t),$

for some given matrices $A_1, A_2 \in \mathbb{R}^{400 \times 400}$ such that $A_1A_2 = A_2A_1$, and that the corresponding hermitian matrices H_1, H_2, H_3 approximately commute.

We can compute a ROM simulation for this model obtaining the following result.

Example (LTI ROM simulation via QPS):

Figure: Illustration of QPS-ROM simulation for the LTI system.

Conclusion

QPS MOR techniques can be used for reduced order modeling of recurrent *ND*-system representations.

Future work

- Extend the structured matrix representation techniques presented in this contribution to other types of systems.
- Apply QPS ROM to equivariant neural network model identification/reduction.
- Combine QPS ROM Python implementations with other ROM Pyhton libraries.

References

- A. Cerjan, T. Loring, F. Vides (2020). Quadratic pseudospectrum for identifying localized states. URL https://arxiv.org/abs/2204.10450.
- 2. Vides, F. (2021). Sparse system identification by low-rank approximation. CoRR, abs/2105.07522. URL https://arxiv.org/abs/2105.07522.
- Vides, F. (2021). Computing Semilinear Sparse Models for Approximately Eventually Periodic Signals. URL https://arxiv.org/abs/2110.08966.
- Loring, T. A., F. Vides (2022). Computing Truncated Joint Approximate Eigenbases for Model Order Reduction. URL https://arxiv.org/pdf/2201.05928.pdf
- 5. F. Vides. NeuralNOR GitHub web page: https://github.com/FredyVides/NeuralNOR

Questions?

Thanks!