Review of Precatculus

A. Expanding Binomials:

(x+y)

@ 3x(2x+1)2

3 (a+2b) 4

@ (u-v)

B, Factoring:

@ ZX3-ZXY

3 x2+xy-6y2

@3ax+2x-3ay-24

1 4a(x+y) - za(x+y)

S 2x3/2 + 4x/2

C. Converting Fractional Exponents to Radicals:

3 3 x 1/5

3 7(x+1)2

9 5 w-33

D. Converting Radicals to Fractional Exponents:

 \mathcal{O} $\sqrt[3]{\chi^{4'}}$

3 3 5/x2

3 4 (x+1)3

9 1/3/x2

E. Finding the Equation of a Line in the xy Plane

1 slope = - 3 and passes through (6,4)

3 passes through (3,1) and (2,7)

3 vertical and passes through (2,3)

1 horizontal through (4,-8)

F. Sohring Linear Equations

1 Solve = x + 3 (= x - 1) = 4 for x

@ Solve Ax+B = Cx+D for x

3 Solve c, + c2 = c for c,

The solve $xyy' + x = x^2y' + y^3$ for y'.

6. Rationalizing Denominators

0 13'-12'

 $\sqrt[3]{\sqrt{x'}-1}$

 $3 \frac{4x}{\sqrt{4+x'}-2}$

H. Function notation

 $0 f(x) = 3x^2 + 3x + 1$

£(1) =

f(7) =

f(x+h)=

 $g(x) = \begin{cases} x+1, & x \ge 1 \\ x^3, & x < 1 \end{cases}$

9(0)=

9(1)=

9(2)=

h(1)= h(4)=

h (z)= h(5)= I. Composition Sf(x) = x2+ 4 > g(x) = 2x+3 O f(g(z))= @ g(f(3))= 3 f(g(x))=

@ g(f(x))=

J. Reverse Composition Find two functions whose composition. so equal to the following:

0 y= /x2+4

3 y = 3 (x+7)

3 y = 2 sin x

(y = sin (7x+4)

K, Solveng Log and Exponential Equations 1 log2(3x+1)=4

3 ln (4x+8)-2 ln z = 3

3 24x-1 = 8

@ 3e2x+1 = 6

L. Simplifying Trug Expressions lesing Identities:

0 3 + 2 sin 2 x + 2 cos 2x

3 sin x cot x + cos x

3 4+4tan x+3/cos x

(9) 4 sin 2 cos 2

Review of Precalculus

M. Solving Trig Equations

N. Evaluating Trig Expressions

O, Sketching Graphs of Basic Fundions Sketch a careful graph of each of the following functions labeling all intercepts, asymptotis, and any other important parts of the graph.

$$y = e^{-x^2}$$

0 y = 3/x

P. Expanding a Log Expression

Q, tinding areas and Perimeters Find the area and perimeter of each figure.

R. Funding Volumes and Surface Find the volume and surface area of each figure.

Merrew of Precalculus Solutions

A.
$$0 (x+y)^{2}$$

$$= (x+y)(x+y)$$

$$= [x^{2}+2xy+y^{2}]$$

$$0 3x(2x+1)^{2}$$

$$= 3x(2x+1)(2x+1)$$

$$= 3 \times (4 \times^{2} + 4 \times + 1)$$

$$= \sqrt{12 \times^{3} + 12 \times^{2} + 3 \times}$$

$$= a^{3} + 4a^{2}b + 4ab^{2} + 2a^{2}b + 8ab^{2} + 8b^{3} D, \quad 0 \quad \sqrt[3]{x^{4}} = \sqrt[4]{x^{4}}$$

$$= a^{3} + 6a^{2}b + 12ab^{2} + 8b^{3} \qquad (2) \quad 3 \quad \sqrt[3]{x^{2}} = \sqrt[3]{x^{4}}$$

$$\begin{array}{ll}
 & (u-v)^4 \\
 & = (u-v)(u-v)(u-v)(u-v) \\
 & = (u^2-2uv+v^2)(u^2-2uv+v^2) \\
 & = (u^4-4u^3v+6u^2v^2-4uv^3+v^4)
\end{array}$$

B, 0
$$zx^2 - 2xy^2$$

= $2x(x^2 - y^2)$
= $2x(x - y)(x + y)$
3 $x^2 + xy - 6y^2$
= $(x + 3y)(x - 2y)$

①
$$3ax + 2x - 3ay - 2y$$

= $x(3a+z) - y(3a+z)$
= $(3a+z)(x-y)$

(1)
$$4a(x+y)^2 - 2a(x+y)$$

= $2a(x+y)[2(x+y)-1]$
= $[2a(x+y)[2x+2y-1]$

$$B.(S) 2x^{3/2} + 4x^{1/2}$$

$$= 2x^{1/2}(x^{3/2} + z)$$

$$= \left[2x^{1/2}(x+z)\right]$$

$$c. 0 x^{3/3} = \left[\sqrt[3]{x^2}\right]$$

D,
$$\emptyset$$
 $\sqrt[3]{x^{4}} = \sqrt[4]{x}$

3 $\sqrt[3]{x^{2}} = \sqrt[3]{x^{2}}$

3 $\sqrt[4]{(x+1)^{3}} = \sqrt[4]{(x+1)}$

$$(4) \frac{1}{\sqrt[3]{\chi^2}} = \frac{1}{\chi^{\frac{1}{3}}} = \sqrt{\chi^{-\frac{1}{3}}}$$

E.
$$0 = -\frac{2}{3}$$
 and $(x, y_i) = (6, 4)$
 $y - y_1 = m(x - x_i)$
 $y - 4 = -\frac{2}{3}(x - 6)$
 $y - 4 = -\frac{2}{3}x + 4$
 $y = -\frac{2}{3}x + 4 + 4$

$$y - 1 = -6(x-3)$$

$$y - 1 = -6x + 18$$

$$y = -6x + 18 + 1$$

$$y = -6x + 19$$

F.
$$0 \stackrel{?}{=} x + \frac{1}{3} (\frac{1}{2}x - 1) = 4$$

 $\stackrel{?}{=} x + \stackrel{?}{=} x - \frac{1}{3} = 4$
 $6 \cdot \frac{1}{2}x + 6 \cdot \frac{1}{6}x - 6 \cdot \frac{1}{3} = 6 \cdot 4$
 $3x + x - z = z + 4$
 $4x = z + 4z$
 $4x = z + 4z$
 $4x = z + 4z$
 $4x = z + 4z$

$$Ax + B = Cx + D$$

$$Ax - Cx = D - B$$

$$A - C = D - B$$

$$A - C = D - B$$

$$A - C$$

Review of Precalculus Solutions

$$G = \frac{1}{\sqrt{3^{2}-\sqrt{2}^{2}}} = \frac{1}{(\sqrt{3^{2}+\sqrt{2}})} = \frac{1}{(\sqrt{3^{2}+\sqrt{2}})}$$

Revew of Precalculus Solution

H. D
$$f(1) = 3(1)^2 + 3(1) + 1$$

$$= 3(1)^2 + 3(2) + 1$$

$$= 3(1)^2 + 3(2) + 1$$

$$= 3(1)^2 + 3(2) + 1$$

$$= 3(1)^2 + 3(2) + 1$$

$$= 3(1)^2 + 3(2) + 1$$

$$= 3(1)^2 + 3(2) + 1$$

$$= 3(1)^2 + 3(2) + 1$$

$$= 3(2)^2 + 3(2) + 1$$

$$= 3(2)^2 + 3(2) + 1$$

$$= 3(2)^2 + 3(2) + 1$$

$$= 3(2)^2 + 3(2) + 1$$

$$= 3(2)^2 + 3(2) + 1$$

$$= 3(2)^2 + 3(2) + 1$$

$$= 3(2)^2 + 3(2) + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2 + 1$$

$$= 3(2)^2$$

J.
$$O \ y = \sqrt{x^2 + 4}$$

| Set $u = x^2 + 4$
| $y = \sqrt{u}$
|
| $y = 3(x + 7)^4$
| $u = x + 7$
| $y = 3u^4$
| $u = x + 7$
| $u =$

Review of Precalculus Solutions

L. D 3 + 2 sin x + 2 cos x = 3 + 2 (sin 2x + cos 2x)

= 3 + 2 . 1

3 sinx cotx + cosx = sin x. cos x + cos x

= COSX + COXX

= /2 cosx)

3 4+4 tanx + 3 cos 2x

= 4(1+tanx)+3 secx O. See separate sheet.

= 4 sle2x + 3 sle2x

= 7 sec 2

(9) 4 sin 2 cos 2x = (2 sin x cos x)

= (sin 2x)

= kin 2x

M, Q 2 sinx-1=0 sin x = = =

 $\int \chi = \frac{1}{6} \, \Omega \, \chi = \frac{5\pi}{6}$

3 J3 tan x+1=0

tanx = 1 $\chi = \frac{ST}{6} \sigma \chi = \frac{11T}{6}$

3) 2 Cos x + \square 37 = 0 Cos x = - 3 +

 $\chi = \frac{5\pi}{L}$ or $\chi = \frac{2\pi}{L}$

(A) 2 cos 2x-1 = 0

 $cos^2 x = \frac{1}{2}$

 $\cos x = \pm \frac{1}{\sqrt{2}}$

CMX======

 $x = \frac{\pi}{4}$ 0 $x = \frac{3\pi}{4}$ 0 $x = \frac{5\pi}{4}$ 0 $x = \frac{2\pi}{4}$

N. 0 3

3-13/2

S 1

B -√27

D 3

3 0 (P) -Z

8 F

1 I

9 I

10 2T

 $\bigcirc -\frac{\pi}{3}$

P. Oly x 33

= lnx2+lny3-ln24

= (2 ln x + 3 lny - 4 ln =

2 ln (x+1) x5 (x+4)6

= ln (x+1) + ln x5 - ln (x+y) 6

=[4ln(x+1)+5lnx-6ln(x+y)

3 ln 3/(x+1)21 x4

= ln (x+1) x 4

= ln (x+1) + ln x4-ln x3-ln x44

= 3 ln(x+1)+4 ln x-3 ln x-4 ln x

= /3 ln (x+1) + 3 ln x

A=LW=(5)(2)=/10 f P=21+2W

= 2(5)+2(2)=/14-

3=32+42

P= a+ b+ e

P = 5+3+4 = /12/4

3 A = TR2 = T(2) = /4 Tin ? C = 2TR = 2T(2) = /4TTM

R. OV=LWH = (4)(3)(2) = /24/43

S=2LW+2HW+2LH =2(4)(3)+2(2)(3)+2(4)(2)

QV=TrR3H

= TT (2)2(5) = /20TT fg3

S = 27RH + 277R2

 $= 2\pi(2)(5) + 2\pi(2)^{2}$

= /28Tft2

 $V = \frac{4}{3}\pi R^3 = \frac{4}{3}\pi (3)^3 = \sqrt{36}\pi R^3$

S = 4TR2 = 4T(3)2 = /36T/42

Special Values for Inverse Trig Functions

2	(sen	X			X	1 coy x
- 17	-1			8 5	0	1
· #	- 53/2				TE.	V31/2
-#	-13/2				-	52/2
- #	- 1/2				TI,	1/2
0	0	_			77 2	0
16	1/2			2	V	-1/2
4	52/2				T.	12/2
<u>∓</u> 3	5/2			571	-	V3/2
	-1		- 1	<u>6</u> TT		1
			B		-	
omain o	of Sin x			do	main	of Corx
[-景,]	<u>#.7</u>		2 62			, 7r].

	X	Tan X	
	<u> </u>	u.D. →	-00
	- 1	- √3	
,	7	-1	
-	II do	- \51/3	
	0	0	
	H 6	V31/3	
7	7	1	
77	F	$\sqrt{3}$	
Z		u, D, → + 20	
de	De 44	of Tan X	
20			
	(-	<u> </u>	