- I. Sea Y_1, Y_2, \ldots, Y_n una muestra aleatoria de una distribución uniforme en el intervalo $[0, \theta]$. Considere el estimador $\frac{n+1}{n}Y_{max}$ ¿El estimador propuesto es consistente?
- **2.** Sea Y_1, Y_2, \ldots, Y_n una muestra aleatoria de una población con media μ y varianza σ^2 . Considere los siguientes tres estimadores para μ :

$$\hat{\mu}_1 = \frac{1}{2}(Y_1 + Y_2), \quad \hat{\mu}_2 = \frac{1}{4}Y_1 + \frac{Y_2 + \ldots + Y_{n-1}}{2(n-2)} + \frac{1}{4}Y_n, \quad \hat{\mu}_3 = \bar{Y}$$

- Demuestre que cada uno de los tres estimadores es insesgado
- Encuentre la eficiencia de $\hat{\mu}_3$ con respecto a $\hat{\mu}_2$ y $\hat{\mu}_1$, respectivamente.
- 3. Sea Y_1, \ldots, Y_n una muestra aleatoria de una distribución normal con media μ y varianza σ^2 .
 - Si μ es desconocida y σ^2 es conocida, demuestre que \bar{Y} es suficiente para μ
- Si μ es conocida y σ^2 es desconocida, demuestre que $\sum_{i=1}^n (Y_i \mu)^2$ es suficiente para σ^2
 - Si μ y σ^2 son desconocida, demuestre que $\sum_{i=1}^n Y_i$ y $\sum_{i=1}^n Y_i^2$ son conjuntamente suficientes para μ y σ^2 (luego \bar{Y} y $\sum_{i=1}^n (Y_i \bar{Y})^2$ son conjuntamente suficientes para μ y σ^2).
- **4.** Suponga que Y_1, Y_2, \ldots, Y_n constituyen una muestra aleatoria de una distribución de Poisson con media λ . Encuentre un estimador para λ a través del método de momentos.
- 5. Si Y_1, Y_2, \ldots, Y_n denotan una muestra aleatoria de una distribución normal con media μ y varianza σ^2 , encuentre los estimadores de μ y σ^2 por medio del método de momentos.
- **6.** Sean Y_1, Y_2, \ldots, Y_n variables aleatorias uniformes independientes y distribuidas idénticamente en el intervalo $(0, 3\theta)$. Deduzca un estimador para θ a través del método de momentos.
- 7. Suponga que Y_1, Y_2, \ldots, Y_n constituyen una muestra aleatoria de una distribución uniforme con función de densidad de probabilidad

$$f(y,\theta) = \begin{cases} \frac{1}{2\theta+1}, & 0 \le y \le 2\theta+1, \\ 0, & \text{de lo contrario.} \end{cases}$$

a) Encuentre el MLE de θ