In [2]:

```
import scipy as sps
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from tqdm.notebook import tqdm

import plotly.graph_objects as go
import plotly.express as px
import plotly.offline

from mpl_toolkits.basemap import Basemap
sns.set(font_scale=1.5)
```

1. Станции велопроката

Попробуем начать с исследования датасета со станциями велопроката.

In [3]:

```
1 stations = pd.read_csv('cycle-share-dataset/station.csv')
2 
3 stations.head()
```

Out[3]:

	station_id	name	lat	long	install_date	install_dockcount	modification_date
0	BT-01	3rd Ave & Broad St	47.618418	-122.350964	10/13/2014	18	NaN
1	BT-03	2nd Ave & Vine St	47.615829	-122.348564	10/13/2014	16	NaN
2	BT-04	6th Ave & Blanchard St	47.616094	-122.341102	10/13/2014	16	NaN
3	BT-05	2nd Ave & Blanchard St	47.613110	-122.344208	10/13/2014	14	NaN
4	CBD-03	7th Ave & Union St	47.610731	-122.332447	10/13/2014	20	NaN

Визуализируем их на карте.

In [4]:

Можно видеть, что координаты точек разбиваются на два кластера.

Для каждой в поле станции current_dockcount указана её вметсимость, т.е. количество слотов для велосипедов. Визуализируем это информацию, используя радиус и цвет точки, указывающей местоположение станции.

```
In [5]:
```


Видно, что существуют три станции, в которых current_dockcount = 0. Это значит, что они были выведены из строя.

По графику ничего нельзя сказать о зависимости вместимости станции от её расположения.

2. Поездки

Загрузим теперь данные о поездках.

In [6]:

b'Skipping line 50794: expected 12 fields, saw 20\n'

```
In [7]:
```

```
1 trips.head()
```

Out[7]:

	trip_id	starttime	stoptime	bikeid	tripduration	from_station_name	to_station_name	fron
0	431	2014-10- 13 10:31:00	2014-10- 13 10:48:00	SEA00298	985.935	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	
1	432	2014-10- 13 10:32:00	2014-10- 13 10:48:00	SEA00195	926.375	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	
2	433	2014-10- 13 10:33:00	2014-10- 13 10:48:00	SEA00486	883.831	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	
3	434	2014-10- 13 10:34:00	2014-10- 13 10:48:00	SEA00333	865.937	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	
4	435	2014-10- 13 10:34:00	2014-10- 13 10:49:00	SEA00202	923.923	2nd Ave & Spring St	Occidental Park / Occidental Ave S & S Washing	

In [8]:

```
1 trips.shape
```

Out[8]:

(286857, 12)

Визуализируем поездки с помощью прямых линий, соединяющих станции.

In [9]:

```
1
   trips_general = trips[['trip_id', 'from_station_id', 'to_station_id']]
 3
   joined = trips_general.merge(stations, left_on='from_station_id',
                                 right_on = 'station_id', how='left',
                                 suffixes=(' st',' to'))
 5
 6
 7
   joined = joined[['trip_id', 'from_station_id',
                     'to_station_id', 'lat', 'long']]
 8
   joined = joined.merge(stations, left_on='to_station_id',
 9
                          right on = 'station id', how='left',
10
                          suffixes=('_from','_to'))
11
12
   joined = joined[['trip_id', 'from_station_id',
13
                     'to_station_id', 'lat_from', 'long_from',
14
15
                     'lat_to', 'long_to']]
```

In [10]:

```
In [11]:
```

```
unique_trips = joined.drop(columns='trip_id').drop_duplicates()
```

In [12]:

```
plt.figure(figsize=(8, 8))
 1
 2
   sns.set_style('white')
3
4
   for index, line in tqdm(unique trips.iterrows()):
5
       plt.plot([line.long from, line.long to], [line.lat from, line.lat to],
6
                color='blue',
7
                 alpha=trips count.loc[line.from station id, line.to station id]/
8
                           np.max(trips_count))
9
10 plt.title('Поездки')
11 plt.xlabel('longitude')
12 plt.ylabel('lattitude')
13 plt.show()
```

Error rendering Jupyter widget: missing widget manager

Можно видеть, что станции разбиваются на два кластера в разных частях города. Перемещения велосипедов из кластера в кластер случаются реже, чем перемещения внутри кластеров.

По графику (прозрачности отрезков), также, видно, что наиболее частыми были поездки в центральном районе города.

Займемся исследованием популярности поездок более подробно.

3. Поиск популярных маршрутов

Для начала посмотрим, сколько уникальных маршрутов всего представлено в датасете.

In [13]:

```
1 routes = set()
2
v 3 for route in trips.values:
4    routes.add((route[7], route[8]))
5    routes.add((route[8], route[7]))
6
7 print(f'Кол-во маршрутов: {len(routes)//2}')
```

Кол-во маршрутов: 1554

```
In [14]:
```

```
1 print(f'Кол-во возможных маршрутов: {stations.shape[0]*(stations.shape[0] - 1)//2
```

Кол-во возможных маршрутов: 1653

Почти все возможные маршруты представлены в датасете.

Напишем универсальный метод, который по датасету возвращает словарь (маршрут: его количество в датасете), ключи (маршруты) в котором отсортированы по убыванию популярности.

In [15]:

```
def most popular(trip):
 1
 2
       d = \{\}
 3
 4
        for route in trip.values:
 5
            from to = (route[7], route[8])
            if from_to in d:
 6
 7
                d[from to] += 1
 8
            else:
 9
                d[from to] = 1
10
       d = {k: v for k, v in sorted(d.items(), key=lambda item: item[1])[::-1]}
11
12
13
        return d
```

Также напишем функцию отрисовки n самых популярных маршрутов на карте.

```
In [16]:
```

```
def plot popular(popular dict, n=10):
 1
       px.set_mapbox_access_token(open("public_key").read())
 2
 3
       fig = px.scatter mapbox(stations, lat="lat", lon="long",
 4
                                zoom=11)
       top = list(popular dict.keys())[:n]
 5
 6
 7
       for route in top:
 8
            st from = route[0]
 9
            st to = route[1]
            from lon = stations[stations.station id == st from].long.values[0]
10
            from lat = stations[stations.station id == st from].lat.values[0]
11
            to lon = stations[stations.station id == st to].long.values[0]
12
            to lat = stations[stations.station id == st to].lat.values[0]
13
14
15
            fig.add trace(go.Scattermapbox(mode = "markers+lines",
16
                                            lon = [from lon, to lon],
17
                                            lat = [from lat, to lat],
18
                                            marker = {'size': 10}))
19
20
       fig.show()
```

3.1. В зависимости от выходного или рабочего дня

Для этого заведем отдельный признак - is_holiday.

```
In [17]:
```

```
In [18]:
```

```
working_popular = most_popular(trips[trips.is_holiday == 1])
```

plot_popular(working_popular, 15)

In [20]:

```
nonworking_popular = most_popular(trips[trips.is_holiday == 0])
plot_popular(nonworking_popular, 15)
```


Результат: как видим, вне зависимости от того, рабочий день или нет, самые популярные маршруты оказываются в центре города. Можно заметить, что в рабочие дни маршруты короче по дистанции, причем есть такие, которые вырождаются в одну точку (где взял велосипед, там его и сдал). Это может быть связано с тем, что люди, работающие в центре, берут велосипед на обеденный перерыв, или чтобы доехать до деловой встречи, расположенной недалеко.

В выходные же маршруты длиннее, не вырождаются в одну точку, зачастую протянуты вдоль набережной. Все эти факторы указывают на то, что эти поездки скорее "прогулочные", нежели "деловые".

3.2. В зависимости от времени суток

In [21]:

Ночь:

In [22]:

- 1 night_popular = most_popular(trips[trips.time_of_day == 0])
- 2 plot_popular(night_popular, 10)

Много популярных маршрутов ночью связаны с районами South Lake Union и Capitol Hill. Если посчитать про эти районы в интернете, то они отличаются обилием баров и ночных клубов, что объясняет получившийся результат.

Утро:

In [23]:

```
morning_popular = most_popular(trips[trips.time_of_day == 1])
plot_popular(morning_popular, 10)
```


Здесь много маршрутов ведут в Belltown - деловой центр города. С утра туда едут на работу люди, которые живут не очень далеко и могут добираться на работу на велосипеде.

День:

In [24]:

```
day_popular = most_popular(trips[trips.time_of_day == 2])
plot_popular(day_popular, 10)
```


Результат похож на самые популярные маршруты в рабочие дни, основные поездки происходят в самом центре, где много офисов, что подтверждает нашу ранее высказанную догадку о том, что это поездки "по делам".

Вечер:

In [25]:

```
1 evening_popular = most_popular(trips[trips.time_of_day == 3])
2 plot_popular(evening_popular, 10)
```


Самый интересный результат получился здесь. Видно, что вечером остается чуть-чуть деловой активности, но и в районах с большим количеством баров появляется много маршрутов :)