Homework

- (1) Suppose that the change in the value of a portfolio over a 10-day time horizon is normally distributed with a mean of zero and a standard deviation of 20 million. Compute the 10-day 99% VaR and ES for the portfolio.
- (2) Consider two independent random variables L_1 and L_2 with the following distributions:
 - $P(L_1 = 0) = 0.98, P(L_1 = 10) = 0.02$
 - $P(L_2 = 0) = 0.98, P(L_2 = 10) = 0.02$
 - 1. Prove that $VaR_{0.98}$ is not subadditive.
 - 2. Determine whether $VaR_{0.99}$ is subadditive.
 - 3. Find $ES_{0.98}$ for $L_1, L_2, L_1 + L_2$, respectively.
- (3) A bank has two 10 million one-year loans. The probabilities of default are as follows:
 - $\mathbb{P}(\text{Neither loan defaults}) = 0.975$
 - $\mathbb{P}(\text{Loan 1 defaults, Loan 2 does not default}) = 1.25\%$
 - $\mathbb{P}(\text{Loan 2 defaults, Loan 1 does not default}) = 1.25\%$
 - $\mathbb{P}(Both loans default) = 0\%$

If a default occurs, all losses between 0% and 100% of the principal are equally likely. If the loan does not default, a profit of 0.2 million is made.

- 1. Compute one-year 99% VaR for the Loan 1.
- 2. Compute one-year 99% VaR for the bank loan portfolio.
- 3. Compute the one-year 99% expected shortfall (ES) for the Loan 1 and bank loan portfolio, respectively.
- (4) VaR monotonicity says that If $L_1 \leq L_2$, then $VaR_{\alpha}(L_1) \leq VaR_{\alpha}(L_2)$. Justify the following statement:
 - If $L_1 < L_2$ almost surely, then $VaR_{\alpha}(L_1) < VaR_{\alpha}(L_2)$ for any $\alpha < 1$.
- (5) Prove that if f is an increasing function and X = f(Z) for some random variable Z, then $VaR_{\alpha}(X) = f(VaR_{\alpha}(Z))$.
- (6) Prove the monotonicity of Expected Shortfall (ES).