第八次课学习要求:本次课开始恒定磁场的学习

- 结合课件"恒定磁场-1-2020",观看金课建设平台上的8.2-8.6视频.
- 2、要求掌握以下知识点
 - (1) 知道磁感应强度定义;
 - (2) 区分开磁感应线与静电场中电场线;
- (3) 领会磁通量的概念,会由定义计算均匀磁场中通过平面的磁通量:
- (4) 理解磁场中的高斯定律,它反映了磁场什么性质,会运用该定理求解某些情况下的磁通量问题;
- (5) 重点掌握毕奥-萨伐尔定律,领会磁场叠加原理,会运用 毕奥-萨伐尔定律和磁场叠加原理计算载流导线激发的磁场中磁 感应强度的分布。

§ 7 恒定磁场

2

§ 7-1 磁场、磁感应强度 磁场的高斯定理

- § 7-2 毕奥—萨伐尔定律
- § 7-3 安培环路定律
 - § 7-4 磁场对运动电荷的作用
- § 7-5 磁场对电流的作用
 - § 7-6 磁介质、铁磁质

§ 7-1 磁场、磁感应强度 磁场的高斯定理

- 一、磁现象、磁场
 - 二、磁感应强度

三、磁场中的高斯定理

一、磁现象、磁场

安培指出: 电荷的运动是一切磁现象的根源。

磁场的性质

- (1) 磁场是物质的一种形态,具有能量、质量、动量等。
- (2)磁场是由运动电荷(或电流)产生的,它又对放入其中的运动电荷(或电流)有力的作用;

运动电荷(电流) 磁场传递 运动电荷(电流) 磁相互作用

二、磁感应强度

——反映磁场强弱的物理量

设计实验检验空间一点的磁感应强度

$$\frac{F_m}{qv\sin\theta}$$
是定值

$$\frac{F_{\max}}{qv} = \frac{F_m}{qv\sin\theta} = B$$

B为该点的磁感应 强度的大小。

• 磁感应强度是一个矢量,它反映了该点磁场的强弱和方向性;

• 其大小定义为
$$B = \frac{F_{\text{max}}}{qv} = \frac{F_m}{qv \sin \theta}$$

- 其正方向规定为: 磁场中某点的小磁针N极的稳定指向。
- 其单位是特斯拉(T)或高斯(Gs)

$$1 T = 10^4 Gs$$

三、磁场中的高斯定理

1. 磁感应线 (或 \vec{B} 线)

方向:线上每一点的切线

大小:线的疏密反映该点磁场的强弱

$$B = \frac{\mathrm{d}\Phi_m}{\mathrm{d}S_\perp}$$

直线电流的磁感应线

圆电流的磁感应线 通电螺线管的磁感应线

磁感应线的性质: a. 空间中任意两条磁感应线不相交;

- b.任何磁场中的磁感应线都是闭合回线, 无头无尾;
- c.磁感应线的环绕方向与电流I的流向构成右手螺旋关系

2、磁通量穿过磁场中任一曲面的磁感应线的条数

$$\Phi_m = \vec{B} \cdot \vec{S} = BS \cos \theta$$

10

3、磁场中的高斯定理

$$\Phi_{m} = \iint_{S} \vec{B} \cdot d\vec{S} = ?$$

$$\iint_{S} \vec{B} \cdot d\vec{S} = 0$$

穿过任一闭合曲面的磁通量为零

——磁场中的高斯定理

磁场是无源场。

$$div\vec{B} = 0$$
 或 $\nabla \cdot \vec{B} = 0$ 高斯定理的微分形式

迪拉克(P.A. M. Dirac 1931)指出,已有的量子理论允许存在磁单极子。如果在实验中找到了磁单极子,磁场的高斯定理和整个电磁理论就要作重大的修改。

寻找磁单极子的实验研究具有重要的的理论意义。但至今还没发现磁单极子。

人们仍然认为:

磁场是电流或变化的电场产生的。

1. 求均匀磁场中 半球面的磁通量

四、毕奥一萨伐尔定律

1. 毕奥一萨伐尔定律内容

静电场: 取
$$dq$$
 ——— $d\vec{E}$ ——— $\vec{E} = \int d\vec{E}$

磁 场: 取
$$Id\vec{l}$$
 \longrightarrow $d\vec{B}$ \longrightarrow $\vec{B} = \int d\vec{B}$

大小:
$$dB = \frac{\mu_0}{4\pi} \frac{Idl \sin \theta}{r^2}$$

方向: 右手螺旋法则判定

毕一萨定律:
$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \vec{r}}{r^3}$$

$$\frac{P}{Id\vec{l}} \otimes d\vec{B}$$

$$\mu_0 = 4\pi \times 10^{-7} \, \text{N/A}^2$$

真空中的磁导率

由电流元指向场点P的矢径

大小:
$$dB = \frac{\mu_0}{4\pi} \frac{Idl \sin \theta}{r^2}$$

方向: 右手螺旋法则判定

毕一萨定律:

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \vec{e}_r}{r^2}$$

$$\mu_0 = 4\pi \times 10^{-7} \,\mathrm{N/A^2}$$

真空中的磁导率

 $\vec{r}(\vec{e}_{\nu})$ 一由电流元指向场点P的矢径(单位矢量)

例如:

2. 毕一萨定律的应用

解题步骤

计算任意形状的载流导线的磁场

1. 分割载流导线,取电流元

2.确定
$$d\vec{B}$$
的表达式 $d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \vec{r}}{r^3}$

3. 判断 $d\vec{B}$ 方向。建立坐标系,将 $d\vec{B}$ 投影到坐标轴上 dB_x , dB_y , dB_z ; $\Rightarrow B_x = \int dB_x$, $B_y = \int dB_y$,

$$B_z = \int dB_z;$$
 会成 $\vec{B} = B_x \vec{i} + B_y \vec{j} + B_z \vec{k}$

2-1 磁场 磁感应强度 磁场高斯定理

毕真---萨伐尔定律的应用

例1. 求载流直导线的磁场

已知: 真空中I、 α_1 、 α_2 、a

解:建立如图坐标系Oxy

在距O为I处任取电流元 $Id\vec{l}$

则由毕—萨定律可知

大小
$$dB = \frac{\mu_0}{4\pi} \frac{Idl \sin \alpha}{r^2}$$

方向
$$Id\vec{l} \times \vec{r}$$

$$B = \int dB = \int \frac{\mu_0}{4\pi} \frac{Idl \sin \alpha}{r^2}$$

统
$$l = a \cot(\pi - \alpha) = -a \cot \alpha$$

积 $dl = a \csc^2 \alpha d\alpha$
発 $r = a/\sin \alpha$
量 $B = \int \frac{\mu_0}{4\pi} \frac{I \sin \alpha dl}{r^2}$

$$B = \int \frac{\mu_0}{4\pi} \frac{I \sin \alpha \alpha I}{r^2}$$

$$= \int \frac{\mu_0}{4\pi} \frac{\sin^2 \alpha}{a^2} I \sin \alpha \frac{a d \alpha}{\sin^2 \alpha}$$

$$= \int_{\alpha_1}^{\alpha_2} \frac{\mu_0}{4\pi a} I \sin \alpha d \alpha$$

$$= \frac{\mu_0 I}{4\pi a} (\cos \alpha_1 - \cos \alpha_2)$$

$$B = \frac{\mu_0 I}{4\pi a} (\cos \alpha_1 - \cos \alpha_2)$$

方向

$$B = \frac{\mu_0 I}{4\pi a} (\cos \alpha_1 - \cos \alpha_2)$$

无限长载流直导线 $\alpha_1 \to 0$, $\alpha_2 \to \pi$ $B = \frac{\mu_0 I}{2\pi a}$

$$B = \frac{\mu_0 I}{2\pi a}$$

半无限长载流直导线
$$\alpha_1 = \pi/2$$
, $\alpha_2 \rightarrow \pi$ $B = \frac{\mu_0 I}{4\pi a}$

$$B = \frac{\mu_0 I}{4\pi a}$$

直导线延长线上

$$B = ?$$

$$\alpha = 0$$
 $dB = 0$ $B = 0$

19

例2. 求圆电流的磁场

已知: R、I,求轴线上P 点的磁感应强度。

解:建立坐标系Oxy

任取电流元 $Id\vec{l}$

$$\mathrm{d}B = \frac{\mu_0}{4\pi} \frac{I \mathrm{d}l}{r^2}$$

$$Id\vec{l} \times \vec{r}$$

分析对称性、写出分量式

$$\vec{B}_{\perp} = \int d\vec{B}_{\perp} = 0$$
 $B_{//} = \int dB_{//} = \int \frac{\mu_0}{4\pi} \frac{Idl \sin \alpha}{r^2} = B_x$

统一积分变量 $\sin \alpha = R/r$

$$B_x = \int dB_x = \int \frac{\mu_0}{4\pi} \frac{Idl \sin \alpha}{r^2}$$

$$= \frac{\mu_0 IR}{4\pi r^3} \int dl \qquad = \frac{\mu_0 IR}{4\pi r^3} \cdot 2\pi R$$

$$=\frac{\mu_0 I R^2}{2(R^2+x^2)^{3/2}}$$

讨论
$$B = \frac{\mu_0 IR^2}{2(R^2 + x^2)^{3/2}}$$

1.
$$x >> R$$
 $B = ?$

1.
$$x >> R$$
 $B = ?$ $B = \frac{\mu_0 I R^2}{2x^3}$

2.
$$x = 0$$
 $B = ?$

载流圆环 圆心角
$$\theta = 2\pi$$

$$\begin{pmatrix} \vec{B} \\ \otimes \end{pmatrix}$$

$$B = \frac{\mu_0 I}{2R}$$

载流圆弧

圆心角
$$\theta$$

$$B = \frac{\mu_0 I}{2R} \bullet \frac{\theta}{2\pi} = \frac{\mu_0 I \theta}{4\pi R}$$

线圈的磁矩

$$\vec{m} = IS\vec{e}_n$$

反映线圈磁性大小的物理量。

多匝线圈的磁矩
$$\vec{m} = NIS \vec{e}_n$$

$$B = \frac{\mu_0 I R^2}{2x^3} = \frac{\mu_0 I \pi R^2}{2\pi x^3} = \frac{\mu_0 m}{2\pi x^3} \qquad \therefore \vec{B} = \frac{\mu_0 \vec{m}}{2\pi x^3}$$

五、磁场的叠加原理

• 实验表明:同电场一样,稳恒电流的磁场也满足叠加原理。即在由几个电流共同激发的磁场中,某点的磁感应强度 \vec{B} 等于各个电流单独存在时在该点产生的磁感应强度 \vec{B}_1 , \vec{B}_2 ,…, \vec{B}_n 的矢量和,即

$$\vec{B} = \vec{B}_1 + \vec{B}_2 + \dots + \vec{B}_n = \sum_{i} \vec{B}_{i}$$

利用叠加原理求组合导线的磁场

例1 如图, 求圆心O点的 \vec{B}

$$B = \frac{\mu_0 I}{4R} \otimes$$

$$B = \frac{\mu_0 I}{4R} + \frac{\mu_0 I}{2\pi R}$$

$$B = \frac{\mu_0 I}{8R} \quad \odot$$

$$B = \frac{\mu_0 I}{6R} + \frac{\nu_0 I}{\pi R} (1 - \frac{\sqrt{3}}{2})$$

 \otimes

解: 令 \vec{B}_1 、 \vec{B}_2 、 \vec{B}_{ac} 、 \vec{B}_{cb} 、 \vec{B}_{ab} 分别代表长直导线**1**、**2**、和 三角形框的边 ac 、 cb 、 ab在O点处产生的磁感应强度。

则接叠加原理
$$\vec{B} = \vec{B}_1 + \vec{B}_2 + \vec{B}_{ac} + \vec{B}_{cb} + \vec{B}_{ab}$$
 26

2-1 磁场 磁感应强度 磁场高斯定理

由毕--萨定律,有

$$B_1 = \frac{\mu_0 I}{4\pi (\overline{Oe})} (\cos 0^0 - \cos 30^0)$$
 方向:
垂直纸面向外;

由毕--萨定律,有

$$B_2 = \frac{\mu_0 I}{4\pi (\overline{Ob})} (\cos 90^0 - \cos 180^0)$$

方向: 垂直纸面向里;

$$= \frac{\mu_0 I}{4\pi (l/\sqrt{3})} (0+1)$$

$$= \frac{\mu_0 I}{4\pi l} \sqrt{3}$$

$$= \frac{1}{a} \frac{I}{a} \frac{2}{e}$$

2-1 磁场 磁感应强度 磁场高斯定理

$$B_{ab} = \frac{\mu_0 I_{ab}}{4\pi \left(\sqrt{3}l / 6\right)} \left(\cos 30^{\circ} - \cos 150^{\circ}\right) = \frac{3\mu_0 I_{ab}}{2\pi l} \bigotimes$$

$$B_{ac} = \frac{\mu_0 I_{ac}}{4\pi (\sqrt{3}l / 6)} (\cos 30^{\circ} - \cos 150^{\circ}) = \frac{3\mu_0 I_{ac}}{2\pi l} \quad \bigcirc$$

$$B_{cb} = \frac{\mu_0 I_{cb}}{4\pi (\sqrt{3}l / 6)} (\cos 30^{\circ} - \cos 150^{\circ}) = \frac{3\mu_0 I_{cb}}{2\pi l} \quad \bigcirc$$

2-1 磁场 磁感应强度 磁场高斯定理

$$B = -B_1 + B_2 + B_{ac} + B_{cb} - B_{ab} = -B_1 + B_2$$

$$= -\frac{\mu_0 I}{4\pi l} (2\sqrt{3} - 3) + \frac{\mu_0 I}{4\pi l} \sqrt{3}$$

$$=\frac{\mu_0 I}{4\pi l} (3 - \sqrt{3})$$

方向:垂直纸面向里。

2-1 磁场 磁感应强度 磁场高斯定理

例3 无限长载流直导线弯成如图形状

$$I = 20 \text{ A}$$
 $a = 4 \text{ cm}$

求: $P \setminus R \setminus S \setminus T$ 四点的 \overline{R}

解:
$$P$$
点 $B_p = B_{LA} + B_{L'A}$

$$= 0 + \frac{\mu_0 I}{4\pi a} = 5 \times 10^{-5} \text{ T}$$

$$\mathbf{R} \stackrel{\mathbf{d}}{=} \mathbf{B}_{R} = \mathbf{B}_{LA} + \mathbf{B}_{L'A}$$

$$= \frac{\mu_0 I}{4\pi a} (\cos 0 - \cos \frac{3}{4}\pi) + \frac{\mu_0 I}{4\pi a} (\cos \frac{1}{4}\pi - \cos \pi)$$

$$=1.71\times10^{-5} \text{ T}$$

S点
$$B_{LA} = \frac{\mu_0 I}{4\pi a} (\cos 0 - \cos \frac{3}{4}\pi)$$
 方向 \otimes R I I $B_{L'A} = \frac{\mu_0 I}{4\pi a} (\cos \frac{3}{4}\pi - \cos \pi)$ 方向 \bullet L A P A $B_p = B_{LA} - B_{L'A} = 7.07 \times 10^{-5} \, \text{T}$ 方向 \otimes S A T

$$B_{LA} = \frac{\mu_0 I}{4\pi a} (\cos 0 - \cos \frac{\pi}{4})$$
 方向 \otimes

$$B_{L'A} = \frac{\mu_0 I}{4\pi a} (\cos \frac{3}{4}\pi - \cos \pi)$$
 方向 \otimes

$$B_p = B_{LA} + B_{L'A} = 2.94 \times 10^{-5} \text{ T}$$
 方向 \otimes

例 4 两平行载流直导线 水 两线中点 \vec{B}_A 过图中矩形的磁通量

解: I_1 、 I_2 在A点的磁场

$$egin{aligned} B_1 &= B_2 = rac{\mu_0 I_1}{2\pi \, d/2} \ &= 2.0 imes 10^{-5} \; \mathrm{T} \ B_A &= B_1 + B_2 = 4.0 imes 10^{-5} \; \mathrm{T} \ \end{pmatrix}$$

如图在距1为r处取一宽为dr的面元,则有

$$d\Phi_m = \vec{B} \cdot d\vec{S} = Bldr$$

$$B = \frac{\mu_0 I_1}{2\pi r} + \frac{\mu_0 I_2}{2\pi (d-r)}$$

方向 •

$$\Phi_{m} = \int d\Phi_{m} = \int_{r_{1}}^{r_{1}+r_{2}} \left[\frac{\mu_{0}I_{1}}{2\pi r} + \frac{\mu_{0}I_{2}}{2\pi (d-r)} \right] dr$$

$$= \frac{\mu_{0}I_{1}l}{2\pi} \ln \frac{r_{1}+r_{2}}{r_{1}} + \frac{\mu_{0}I_{2}l}{2\pi} \ln \frac{d-r_{1}}{d-r_{1}-r_{2}}$$

$$= 2.26 \times 10^{-6} \text{ Wb}$$

例 5 均匀带电圆环

已知: $q \times R \times \omega$ 圆环绕轴线匀速旋转。

求圆心处的 \bar{B}

解: 带电体转动,形成运流电流。

$$I=rac{q}{T}=rac{q}{2\pi/\omega}=rac{q\,\omega}{2\pi}$$

$$B = \frac{\mu_0 I}{2R} = \frac{\mu_0 q \,\omega}{4\pi R}$$

例6 均匀带电圆盘

已知: $q \setminus R \setminus \omega$ 圆盘绕轴线匀速旋转。

求圆心处的 克及圆盘的磁矩

解:如图取半径为r,宽为dr的环带。

元电流
$$dI = \frac{dq}{T} = \frac{dq}{2\pi/\omega} = \frac{\omega}{2\pi} dq$$

其中
$$\sigma = -$$

$$dI = \sigma \omega r dr$$

$$dB = \frac{\mu_0 dI}{2r} = \frac{\mu_0}{2r} \sigma \omega r dr$$

$$B = \int dB = \int \frac{\mu_0 dI}{2r} = \int_0^R \frac{\mu_0}{2r} \sigma \omega r dr$$

$$=\frac{\mu_0\sigma\omega R}{2}=\frac{\mu_0\omega q}{2\pi R}$$

线圈磁矩
$$\vec{m} = IS\vec{n}$$

$$m = \int dm = \int_0^R \pi r^2 \sigma \omega r dr = \frac{\pi \sigma \omega R^4}{4}$$

方向:

例7

宽度为a的无限长金属平板,均匀通电流I,求: 图中P点的磁感应强度。

解:建立坐标系

将板细分为许多无限长直导线

每根导线宽度为 dx 通电流 $i = \frac{I}{a} dx$

$$d B = \frac{\mu_0 i}{2\pi x} = \frac{\mu_0 I d x}{2\pi ax}$$

所有dB 的方向都一样: ◎

$$B = \int_{d}^{a+d} \frac{\mu_{o} I \, \mathrm{d} x}{2\pi a x} = \frac{\mu_{o} I}{2\pi a} \ln \frac{a+d}{d}$$

38