Pesquisa Operacional / Programação Matemática

Introdução: motivação e histórico

Pesquisa operacional

■ Wikipedia:

"ramo interdisciplinar da matemática aplicada que faz uso de modelos matemáticos, estatísticos e de algoritmos na ajuda à tomada de decisões"

■ INFORMS (Institute for operations research and management science):

"The science of better"

Tomada de decisões

- (Em uma estrada) Qual o melhor caminho a tomar?
- (Na bolsa de valores) Em que companhias investir ?
- (Em uma indústria) O que e em que ordem produzir?
- (Em um trabalho em grupo) Que pessoas alocar a que tarefas ?
- (Em uma companhia de distribuição) Que rede (elétrica, de gás, etc.) instalar ?

1

Tomada de decisões (origens)

A humanidade toma decisões desde os princípios da sua existência.

Em geral, as decisões são baseadas em: experiências anteriores intuição

Problema simples de decisão

Temos uma cidade (de beira de estrada), com **cinco crianças** (conforme mostrado abaixo).

Onde devemos construir uma escola de modo que as crianças andem o menos possível ?

Matematicamente: Min $\sum_{i=1...5} c_i$ onde c_i é a quantidade caminhada por cada criança ?

Resposta

- Nem sempre a intuição nos leva a respostas corretas.
- Por isso recorremos a métodos matemáticos

Ainda sobre o problema da escola

■ Note que existe mais de uma (inúmeras ?) maneiras de se olhar para o mesmo problema.

- Função objetivo:
 - □ Minimizar a soma do que todas as crianças andam
 - □ Minimizar a quantidade caminhada pela criança que mais anda
 - □ Minimizar as diferenças entre as quantidades caminhadas pelas crianças
 - Minimizar o número de crianças que andam mais que uma certa distância.
 - Combinações de objetivos (!)

Teoria de decisões

- Queremos decidir:
 - o que comprar
 - \square que caminho tomar
 - □ onde/quando/quanto produzir
 - □ o que instalar
 - □ onde construir
 - □ etc

O que isso tem a ver com "Pesquisa Operacional"?

Histórico

- Como vimos: presente mesmo em sociedades completamente primitivas.
 - □ Ex.: Problema do caminho mínimo para o transporte de comida
 - □ Ex.: Problema de designação de atividades durante caça.

Linha do tempo (de algum tempo):

- □ **1654** Expected value, B. Pascal
- □ **1665** Newton's Method for finding a minimum solution of a function, I. Newton
- □ 1733 First appearance of the normal distribution, A. de Moivre
- □ 1736 Königsberg Bridge Problem, L. Euler

Pontes de Kognisberg

Existe solução?

M

Solução de Euler

- Só existe um caminho euleriano se zero ou dois nós tiverem grau ímpar e todos os demais nós tiverem grau par.
- (E se apenas um nó tiver grau ímpar?)

Por que isso é importante?

■ Entre outras aplicações:

Problema do carteiro chinês: imagine que um carteiro deva entregar cartas todas as ruas de uma cidade. Qual a rota que ele deve percorrer de modo a andar o menos possível?

R.: o caminho euleriano.

(E se o grafo não for Euleriano?).

Kaliningrado

■ Google maps

http://people.engr.ncsu.edu/mfms/SevenBridges/

Um problema similar

- Caminho hamiltoniano
 - □ Um caminho que visita cada vértice de um grafo uma única vez!
- Ciclo hamiltoniano
 - □ Um caminho que visita cada vértice de um grafo uma única vez e retorna ao vértice de partida.

Exercício

■ Tome um tabuleiro de xadrez e um cavalo (lembre-se que, no xadrez, cavalos andam em L). É possível, começando de uma casa qualquer do tabuleiro, fazer todos os movimentos possíveis do tabuleiro (para um cavalo), sem repetir nenhum movimento?

Por que isso é importante?

■ Problema do caixeiro viajante

Caixeiro viajante

Um problema fácil!

M

Um problema nem tão fácil

Um problema muito difícil

■ Pra que tanto ponto?

Voltando à linha do tempo...

- □ 1738 St. Petersburg Problem, D. Bernoulli
- □ **1763** Bayes Rule, T. Bayes
- □ 1788 Lagrangian multipliers, Mécanique Analytique, J. L. Lagrange
- □ 1789 Principle of utility, J. Bentham
- □ 1795 Method of Least Squares, C. F. Gauss, A. Legendre

Continuamos sem saber porque de "pesquisa de operações".

II Guerra Mundial

1936 Time Zero: British military applications — The term "operational research" first used

Problema: Como usar radares ? (Como aumentar a eficiência da informação fornecida por radares)

- Conexão entre radares e redes de telecomunicações.

II Guerra Mundial

Problema: Deslocamento de tropas, suprimentos, etc.

Melhoria das operações utilizadas:

Operations research Pesquisa Operacional

(Ainda atual: ver Guerra no Iraque)

Porém, uma infinidade de outras aplicações desde então!

Muito além da "pesquisa de operações"

A maioria desses problemas é formulada através de modelos matemáticos lineares.

Estatísticas...

■ "If one would take statistics about which mathematical problem is using up most of the computer time in the world, then ... the answer would probably be linear programming. (Laszlo Lovasz)"

- Resolvemos muitos problemas lineares porque:
 - □ problemas lineares representam bem várias situações práticas
 - □ sabemos resolver eficientemente problemas lineares

1947 Simplex method, G. B. Dantzig

(1914-2005)

Linha completa aqui:

http://www.lionhrtpub.com/orms/orms-10-02/frhistorysb1.html

No curso: IPO

- Parte I
 - □ Modelar problemas linearmente
 - □ Resolver usando o método simplex de Dantzig

- Parte II
 - □ Entender problemas importantes (grafos / estoque)
 - □ Resolver usando algoritmos exatos ou aproximados

No curso PM:

- Modelar problemas linearmente
 - □ Resolver usando o método simplex de Dantzig
 - □ Estudar variações do simplex (variáveis canalizadas)
- Modelar problemas lineares com variáveis inteiras
 - □ Resolver usando técnicas apropriadas:
 - □ programação dinâmica
 - \square branch and bound