

POLITECHNIKA WARSZAWSKA

Wydział Matematyki i Nauk Informacyjnych

PRACA DYPLOMOWA MAGISTERSKA

ANALIZA MOŻLIWOŚCI WYKORZYSTANIA W ALGORYTMIE CMA-ES WIEDZY O OGRANICZENIACH KOSTKOWYCH

AUTOR:

INŻ. ROBERT JAKUBOWSKI

PROMOTOR:

dr hab. inż. Jarosław Arabas

PROF. NZW. PW

Warszawa Maj 2016

Spis treści

1	Stre	eszczenie	4				
2	Wstęp						
	2.1	Cel pracy	5				
3	Techniki uwzględniania ograniczeń 6						
	3.1	Transformacje rozwiązań	6				
		3.1.1 Powrót?	6				
		3.1.2 Rzutowanie	6				
		3.1.3 Reinicjalizacja	7				
		3.1.4 Odbicie	7				
		3.1.5 Próbkowanie	7				
		3.1.6 Zawijanie	7				
	3.2	Błądzenie przypadkowe	8				
	3.3	Metoda przeprowadzania testów	8				
		3.3.1 Skrypty	8				
	3.4	Wyniki testów	9				
	3.5	Wnioski	9				
4	Testowanie algorytmu CMA-ES						
	4.1	Metoda przeprowadzania testów	10				
	4.2	Wnioski	10				
5	Wpływ technik na efektywność CMA-ES 11						
	5.1	Idea	11				
	5.2	Szczegóły	11				
6	Podsumowanie 12						
	6.1	Wyniki	12				
	6.2	Możliwości rozwoju	12				

1. Streszczenie

- 2. Wstęp
- 2.1. Cel pracy

3. Techniki uwzględniania ograniczeń

Niektóre problemy optymalizacyjne posiadają ograniczenia. Szukając rozwiązania należy zapewnić, że rozwiązanie będzie dopuszczalne. Zgodnie z ——łącze—— techniki, które w tym pomagają można podzielić w następujący sposób:

- definicja przestrzeni przeszukiwań zapewnienie, że podczas krzyżowań, mutacji
 i innych zmian punktów, żaden z punktów nie wypadnie poza przestrzeń przeszukiwań,
- modyfikacja funkcji celu zmienienie funkcji celu tak, aby funkcja celu dla punktów spoza ograniczeń zwracały gorsze wyniki,
- transformacja rozwiązań punkty, które są poza ograniczeniami zostają zamieniane na punkty, które znajdują się w ograniczeniach.

W tej pracy skupiono się na transformacji rozwiązań

3.1. Transformacje rozwiązań

Nie istnieje jedna technika transformacji rozwiązań spoza ograniczeń, na dopuszczalne. W kolejnych podrozdziałach opisane są metody transformacji rozwiązań, które były badane. Każda z technik jest opisana słownie oraz pseudokodem. Opis słowny zawiera wyjaśnienie, co się dzieje z punktem, który znalazł się poza ograniczeniem. W pseudokodzie x jest punktem, który poddajemy naprawie.

3.1.1. Powrót?

Nowy punkt zostaje odrzucony i wraca do poprzedniej pozycji.

x = x

3.1.2. Rzutowanie

Punkt jest transformowany do najbliższego punktu, który spełnia ograniczenie. Oznacza to, że dla każdej współrzędnej sprawdzany jest warunek zawierania się w ograniczeniach. Dla współrzędnych, dla których nie jest on spełniony, wartość jest zamieniana na wartość ograniczenia (dolnego lub górnego), które jest najbliżej.

```
dla każdej współrzędnej i jeżeli lb(i) > x(i) x(i) = lb(i) jeżeli ub(i) < x(i) x(i) = ub(i)
```

3.1.3. Reinicjalizacja

Punkt jest przenoszony do pozycji początkowej. W tej pracy był to jednocześnie środek układu współrzędnych oraz środek symetrii ograniczeń.

$$x = x0$$

3.1.4. Odbicie

Dla każdej współrzędnej sprawdzane są warunki na ograniczenie. W przapadku współrzędnych, na których punkt jest poza ograniczeniem, wartość punktu tej współrzędnej jest symetrycznie odbita względem ograniczenia, którego warunek został złamany.

3.1.5. Próbkowanie

Punkt jest powtórnie losowany dopóty, dopóki spełnia ograniczenia kostkowe.

3.1.6. Zawijanie

Dla każdej współrzędnej sprawdzane są warunki na ograniczenie. W przapadku współrzędnych, na których punkt jest poza ograniczeniem, różnica, pomiędzy ograniczeniem a wartością współrzędnej punktu, jest zapamiętywana. Tę różnicę odkładamy na przeciwległym ograniczeniu po stronie, która jest wewnątrz ograniczenia. W tym miejscu

znajduje się nowa wartość współrzędnej punktu. W intuicyjny sposób można to wyjaśnijć tak, że dla punktów nie ma ograniczeń, a przestrzeń przeszukiwań po każdym wymiarze jest jakby "zawinięta".

```
dla każdej współrzędnej i 

jeżeli lb(i) > x(i) 

x(i) = ub(i) - (lb(i) - x(i)) 

jeżeli ub(i) < x(i) 

x(i) = lb(i) + (x(i) - ub(i))
```

3.2. Błądzenie przypadkowe

Można się spodziewać, że algorytm CMA-ES dla funkcji stałej będzie zachowywał się analogicznie do błądzenia przypadkowego. Takie założenie skłoniło autorów, żeby przyjrzeć się błądzeniu przypadkowemu z ograniczeniami. Błądzenie przypadkowe jest algorytmem dużo prostrzym, niż CMA-ES, więc umożliwia większe możliwości testowania i wyciągania wniosków.

Niech $X_1, X_2, ...$ będą niezależnymi n-wymiarowymi zmiennymi losowymi o wartości oczekiwanej równej $\{0\}^n$. Błądzeniem przypadkowym nazywamy sekwencję zmiennych losowych:

$$S_0 = 0, S_i = X_1 + X_2 + \dots + X_i \tag{1}$$

3.3. Metoda przeprowadzania testów

W celu przeprowadzenia testów napisano szereg skryptów w języku MATLAB. Testy te obserwowały wpływ metod uwzględniania ograniczeń na ruch punktu. W rezultacie miały one pokazać rozkład prawdopodobieństwa punktu dla danej metody. Metody wybrane do testowania są takie jak w podrozdziale —-link—- Ponadto badano 2 różne metody losowania punktów: rozkład normalny oraz jednostajny. W przypadku rozkładu jednostajnego losowano z przedziału znacząco mniejszego od ograniczeń kostkowych.

3.3.1. Skrypty

Skrypty zostały zbudowane zgodnie z poniższym pseudokodem.

```
x - błądzący punkt
punkty - tablica wszystkich położeń punktu x
```

3.4. Wyniki testów

3.5. Wnioski

4. Testowanie algorytmu CMA-ES

Zgodnie z założeniami poczynionymi w rozdziale 3 testy algorytmu CMA-ES miały przynieść rezultaty zbliżone do testów błądzenia przypadkowego.

4.1. Metoda przeprowadzania testów

Do przeprowadzania testów została użyta biblioteka przygotowana przez Nikolausa Hansena, współautora algorytmu CMA-ES. Podobnie, jak w przypadku błądzenia przypadkowego, wykorzystano implementację w języku MATLAB —przypis—.

4.2. Wnioski

- 5. Wpływ technik na efektywność CMA-ES
- 5.1. Idea
- 5.2. Szczegóły

6. Podsumowanie

- 6.1. Wyniki
- 6.2. Możliwości rozwoju

Literatura

Oświadczenie

Oświadczam, że pracę magisterską pod tytułem "Analiza możliwości wykorzystania w algorytmie CMA-ES wiedzy o ograniczeniach kostkowych", której promotorem jest dr hab. inż. Jarosław Arabas prof. nzw. PW, wykonałem samodzielnie, co poświadczam własnoręcznym podpisem.

.....