```
Code:
from sklearn import datasets
from sklearn.model selection import train test split
from sklearn.svm import SVC
from sklearn.metrics import accuracy score, confusion matrix,
classification report
# Load dataset
data = datasets.load breast cancer()
X = data.data
y = data.target
# Split dataset into training set and test set
X train, X test, y train, y test = train test split(X, y, test size=0.3,
random state=42)
# Define kernels
kernels = ['linear', 'poly', 'rbf', 'sigmoid']
# Iterate over each kernel
for kernel in kernels:
    print("Kernel:", kernel)
    # SVM model with current kernel
    svm model = SVC(kernel=kernel)
    svm model.fit(X train, y train)
    y pred = svm model.predict(X test)
    # Accuracy
    accuracy = accuracy score(y test, y pred)
    print("Accuracy:", accuracy)
```

```
# Confusion Matrix
confusion_mat = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(confusion_mat)

# Classification Report
class_report = classification_report(y_test, y_pred)
print("Classification Report:")
print(class_report)
```

Output:

Kernel: linear

Accuracy: 0.9649122807017544

Confusion Matrix:

[[59 4]

[2 106]]

Classification Report:

	precision	recall	f1-score	support
		0 0 1	0.05	
0	0.97	0.94	0.95	63
1	0.96	0.98	0.97	108
accuracy			0.96	171
macro avg	0.97	0.96	0.96	171
weighted avg	0.96	0.96	0.96	171

Kernel: poly

Accuracy: 0.9415204678362573

Confusion Matrix:

[[54 9]

[1 107]]

Classification Report:

support	f1-score	recall	precision	
63	0.92	0.86	0.98	0
108	0.96	0.99	0.92	1
171	0.94			accuracy
171	0.94	0.92	0.95	macro avg
171	0.94	0.94	0.94	weighted avg

Kernel: rbf

Accuracy: 0.935672514619883

Confusion Matrix:

[[52 11]

[0 108]]

Classification Report:

	precision	recall	f1-score	support
0	1.00	0.83	0.90	63
1	0.91	1.00	0.95	108
accuracy			0.94	171
macro avg	0.95	0.91	0.93	171
weighted avg	0.94	0.94	0.93	171

Kernel: sigmoid

Accuracy: 0.4678362573099415

Confusion Matrix:

[[8 55]

[36 72]]

Classification Report:

	precision	recall	f1-score	support
0	0.18	0.13	0.15	63
1	0.57	0.67	0.61	108
accuracy			0.47	171
macro avg	0.37	0.40	0.38	171
weighted avg	0.43	0.47	0.44	171

```
CODE:
```

```
import pandas as pd
from sklearn.model selection import train test split
from sklearn.svm import SVC
from sklearn.metrics import accuracy score, confusion matrix,
classification report
# Load the dataset
data = pd.read_csv("../content/UniversalBank (1).csv")
# Drop irrelevant columns if necessary and split features and target
variable
X = data.drop(['ID', 'ZIP Code', 'Personal Loan'], axis=1)
y = data['Personal Loan']
# Split dataset into training set and test set
X_train, X_test, y_train, y_test = train_test split(X, y, test size=0.3,
random state=42)
# Define kernels
kernels = ['linear', 'poly', 'rbf', 'sigmoid']
# Iterate over each kernel
for kernel in kernels:
    print("Kernel:", kernel)
```

```
# SVM model with current kernel
   svm model = SVC(kernel=kernel)
   svm model.fit(X train, y train)
   y pred = svm model.predict(X test)
   # Accuracy
   accuracy = accuracy score(y test, y pred)
   print("Accuracy:", accuracy)
   # Confusion Matrix
   confusion mat = confusion_matrix(y_test, y_pred)
   print("Confusion Matrix:")
   print(confusion mat)
   # Classification Report
   class report = classification report(y test, y pred)
   print("Classification Report:")
   print(class report)
   print("----\n")
OUTPUT:
Kernel: linear
Accuracy: 0.9473333333333334
Confusion Matrix:
[[1334
       91
[ 70 87]]
Classification Report:
            precision recall f1-score support
                        0.99
              0.95
                                  0.97
0.69
          0
                                           1343
               0.91
                                            157
         1
                         0.55
                                          1500
                                   0.95
   accuracy
                                           1500
              0.93 0.77
                                 0.83
  macro avg
                                  0.94
               0.95
                         0.95
                                           1500
weighted avg
Kernel: poly
Accuracy: 0.904
Confusion Matrix:
[[1343
       01
[ 144 13]]
Classification Report:
            precision recall f1-score support
                                           1343
               0.90 1.00 0.95
                1.00
                         0.08
                                  0.15
                                            157
```

accuracy			0.90	1500
macro avg	0.95	0.54	0.55	1500
weighted avg	0.91	0.90	0.87	1500

Kernel: rbf

Accuracy: 0.89933333333333333

Confusion Matrix:

[[1336 7] [144 13]]

Classification Report:

	precision	recall	f1-score	support
0	0.90	0.99	0.95	1343 157
accuracy			0.90	1500
macro avg	0.78	0.54	0.55	1500
weighted avg	0.88	0.90	0.86	1500

Kernel: sigmoid

Accuracy: 0.862666666666667

Confusion Matrix:

[[1244 99] [107 50]]

Classification Report:

	precision	recall	f1-score	support
0	0.92	0.93	0.92	1343
1	0.34	0.32	0.33	157
accuracy			0.86	1500
macro avg	0.63	0.62	0.63	1500
weighted avg	0.86	0.86	0.86	1500
