Aishwarya Ledalla

MAE 598: Design Optimization

Dr. Max Yi Ren

Project 2:

ANSYS DOE and Design Optimization

11/17/2021

Objectives:

- Design a brake disc for emergency braking conditions with minimal volume
- Minimize the maximum stress in the brake disc
- Maximize the first natural frequency of the brake disc
- Minimize the maximum temperature in the brake disc

Define Input Parameters:

Static Structural Setup:

Given:

The brake disc has to sustain the pressure from the hydraulically actuated brake pads during sudden braking conditions. Stresses are induced due to friction between the brake pads and the disc. The disc also experiences centrifugal body forces due to its rotation. Resultant stresses generated due these forces can lead to material failure. Therefore, it is of prime importance to make sure that the stresses in the disc are minimized.

Modal Setup:

Given:

Free modal analysis is performed to ensure that the disc's first natural frequency is higher than the engine firing frequency. This guarantees that the disc does not experience failure due to resonance.

Transient Thermal Setup:

Given:

Braking in a vehicle takes place due to friction between the brake pads and the rotor disc. This leads to heat flux generation in the disc which consequently results in increase in its temperature and thermal stresses. Emergency braking conditions induce high temperatures that damage the

contact surfaces. It is therefore essential to minimize the temperature to prevent disc wear and tear.

Design of Experiments:

- I only evaluated designs which were reasonable and within limitation. For example, I eliminated all experiments which Ansys could not evaluate due to geometrical conflicts, i.e., the design where the disk had a smaller outer radius than the outer radius of the brake pads.
- I first chose the Sparse Grid method because I thought it would be best for Ansys to adaptively sample points as it runs the experiment. But I could not perform a sensitivity analysis, so I switched to the <u>Latin Hypercube Sampling Design (LHSD)</u>.
- You can find my DOE using Sparse Grid in Appendix A.
- The upper and lower bounds of input parameters:

• I initially had 18 points experimental data but I removed the ones Ansys could not evaluate using the custom sampling DOE type:

Table of	Table of Outline A2: Design Points of Design of Experiments							
	А	В	С	D	Е	F	G	
1	Name 💌	P8 - rotor •	P9 - rotor_OD (mm)	P10 - rotor_ID • (mm)	P4 - Equivalent Stress Maximum (Pa)	P6 - Total Deformation Reported Frequency (Hz)	P7 - Temperature Maximum (C)	
2	DP 1	25.333	131.67	76	1.1185E+07	1923.5	312.76	
3	DP 2	26.333	125	77	1.7134E+07	2056.3	309.03	
4	: DP 3	22.667	126.67	70	1.1685E+07	2067.4	317.65	
5	DP 4	25.667	135	80	1.139E+07	1808.4	309.16	
6	DP 5	27	130	79	1.1464E+07	1939.9	308.98	
7	DP 6	23.667	128.33	82	1.1659E+07	1838.6	316.03	
8	DP 7	23.333	133.33	72	1.0849E+07	1887.4	316.59	
9	DP 8	25	123.33	74	1.7312E+07	2138.4	312.04	
10	DP 9	26.667	136.67	68	1.1992E+07	1883.7	306.6	

Response Surface

- I used Non-parametric Regression as my response surface since my data was highly nonlinear and limited. I also did not trust my data and thought it would be better to not fit right through my DOE data. I chose Kriging as my response surface for the Sparse Grid DOE since I trusted my DOE data.
- You can find my response surface through Kriging in Appendix A.
- I used 1/3 of my experimental data for verification since more points is always good for learning.

Properties of Outline A2: Response Surface					
	A	В			
1	Property	Value			
2	■ Design Points				
3	Preserve Design Points After DX Run				
4	■ Failed Design Points M	1anagement			
5	Number of Retries	0			
6	■ Meta Model				
7	Response Surface Type	Non-Parametric Regression			
8	■ Refinement				
9	Refinement Type	Manual			
10	■ Verification Points				
11	Generate Verification Points				
12	Number of Verification Points	3			
13	■ Design Point Report				
14	Report Image	None			

Table of	Table of Outline A2: Response Points							
	А	В	С	D	Е	F	G	
1	Name 🔻	P8 - rotor_thickness (mm)	P9 - rotor_OD (mm)	P10 - rotor_ID • (mm)	P4 - Equivalent Stress Maximum (Pa)	P6 - Total Deformation Reported Frequency (Hz)	P7 - Temperature Maximum (C)	
2	Response Point	25	125	75	1.6577E+07	2112.8	312.65	
*	New Response Point							

Table of Schematic G3: Response Surface							
	A	В	С	D			
1		P4 - Equivalent Stress Maximum	P6 - Total Deformation Reported Frequency	P7 - Temperature Maximum			
2	■ Coefficient of Determ	mination (Best Value = 1)					
3	Learning Points	0.99936	0.99905	0.99922			
4	■ Root Mean Square Error (Best Value = 0)						
5	Learning Points	60973	3.2784	0.10415			
6	■ Relative Maximum Ab	osolute Error (Best Value = 0%)					
7	Learning Points	★ 3.3749	★ 3.2499	★ 2.8418			
8	■ Relative Average Ab	solute Error (Best Value = 0%)					
9	Learning Points	★ 2.244	★ 2.8836	★ 2.5196			

Table of	Table of Outline A20: Verification Points							
	А	В	С	D	Е	F	G	
1	Name 🔻	P8 - rotor_thickness (mm)	P9 - rotor_OD (mm)	P10 - rotor_ID • (mm)	P4 - Equivalent Stress Maximum (Pa)	P6 - Total Deformation Reported Frequency (Hz)	P7 - Temperature Maximum (C)	
2	1 DP 12	27.449	113.11	67.79	₹	₹	×	
3	2 DP 10	22.502	112.67	80.097	₹ x	%	₹	
4	3 DP 11	27.012	112.68	82.305	₹ x	₹	₹	
*	New Verification Point							

Sensitivity Analysis:

Optimization:

• I used <u>Multi-objective Genetic Algorithm (MOGA)</u>to optimize my design since I had multiple objectives. I did not choose to run multiple single-objective simulations using

Screening because I trusted my data and thought the results between MOGA and Screening would not be significantly different.

- I used MOGA for my first DOE Optimization as well which is included in Appendix A.
- I unfortunately did to have the option to use Adaptive Multi-Objective Optimization (AMO) or Adaptive Single-Objective Optimization (ASO), otherwise I would have chosen AMO.

Propertie	es of Outline A2: Optimization	▲ û X
	A	В
1	Property	Value
2	■ Design Points	
3	Preserve Design Points After DX Run	
4	Failed Design Points Mana	gement
5	Number of Retries	0
6	■ Optimization	
7	Method Selection	Manual
8	Method Name	MOGA 💌
9	Estimated Number of Evaluations	2000
10	Tolerance Settings	V
11	Verify Candidate Points	
12	Number of Initial Samples	100
13	Number of Samples Per Iteration	100
14	Maximum Allowable Pareto Percentage	70
15	Convergence Stability Percentage	2
16	Maximum Number of Iterations	20
17	Maximum Number of Candidates	3
18	■ Optimization Status	
19	Converged	Yes
20	Pareto Percentage	1
21	Stability Percentage	1.3355
22	Number of Iterations	8
23	Number of Evaluations	687
24	Number of Failures	0
25	Size of Generated Sample Set	100
26	Number of Candidates	3
27	■ Design Point Report	
28	Report Image	None

Table of Schematic G4: Optimization						
	A	В	С	D		
1	■ Optimization Study					
2	Minimize P4	Goal, Minimize P4 (Defa	ult importance)			
3	Maximize P6	Goal, Maximize P6 (Def	ault importance)			
4	Minimize P7	Goal, Minimize P7 (Defa	ult importance)			
5	■ Optimization Method					
6	MOGA	The MOGA method (Multi-Objective Genetic Algorithm) is a variant of the popular NSGA-II (Non-dominated Sorted Genetic Algorithm-II) based on controlled elitism concepts. It supports multiple objectives and constraints and aims at finding the global optimum.				
7	Configuration	Generate 100 samples initially, 100 samples per iteration and find 3 candidates in a maximum of 20 iterations.				
8	Status	Converged after 687 e	valuations.			
9	■ Candidate Points					
10		Candidate Point 1	Candidate Point 2	Candidate Point 3		
11	P8 - rotor_thickness (mm)	27.105	27.068	26.849		
12	P9 - rotor_OD (mm)	133.72	133.79	133.35		
13	P10 - rotor_ID (mm)	77.622	77.736	77.749		
14	P4 - Equivalent Stress Maximum (Pa)	→ 1.0527E+07	= 1.053E+07	- 1.0526E+07		
15	P6 - Total Deformation Reported Frequency (Hz)	1889.7	1886.8	1888		
16	P7 - Temperature Maximum (C)	X 308.68	X 308.66	X 308.82		

• Volume of each candidate:

Candidates	Volume of Brake Disk		
Initial	9.9667e+05 mm³		
Optimal 1	1.23e+06 mm ³		
Optimal 2	1.2291e+06 mm ³		
Optimal 3	1.2109e+06 mm ³		

- Candidate 3 is the best since it minimizes volume and maximum stress. The first natural frequency is also the highest. I am willing to tradeoff the slightly higher temperature.
- I included the Candidate Points, Tradeoff, Samples, and Sensitives of the Optimization below.

Project Schematic:

Optimal Design:

Initial:

Final:

Volume reduction: - 19.409%

• The volume increased by 19.4% after it was optimized for the other objectives.

Discussion:

- 1. What are your design variables, constraints, and objectives?
 - Variables:
 - o Thickness, outer radius, and inner radius of break disk
 - Constraints:
 - No given constraints in this project
 - Objectives:
 - Minimize maximum stress, maximize first natural frequency, and minimize maximum temperature in/of the break disk
 - o Minimize volume (dependent minimization)

2. What are the potential trade-offs between your objectives?

 There are tradeoffs between the total volume, maximum stress, maximum temperature, and first natural frequency. Larger surface area between the brake pads and the disk would result in lower stress and temperature in the disk but that would increase volume and affect cost and the first natural frequency of the of the brake disk.

3. Are your variables continuous? Or are they discrete/integer?

• All my output and input variables are continuous.

4. Do you have analytical objective/constraint functions? And are they differentiable?

- I have differentiable objectives.
- 5. Based on the above answers, what optimization methods will you choose?
 - I chose MOGA.
- 6. Perform a sensitivity analysis and comment on the importance of your variables? Also, do you observe monotonicity (i.e., the objective always goes up or down with a variable)?
 - There is monotonicity with each objective.
 - The maximum stress is highly sensitive to the disk thickness, and highly insensitive to the outer diameter.
 - The natural frequency is highly insensitive to the outer diameter.
 - And finally, the maximum thickness is highly insensitive to the thickness of the disk.
- 7. Compare your optimal design against the initial one (e.g., see the following comparison on the brake disc design) AND comment on whether the optimal design is reasonable.
 - The optimal design had a larger volume than the original design. It is not a reasonable design to consider. The major source of error came from not including the volume objective in my DOE and not optimizing with respect to the volume.
 - To fix this issue and to get a better design, I can re-perform my design optimization while including volume as an output parameter.

References:

 $\underline{https://github.com/DesignInformaticsLab/DesignOptimization2021Fall/blob/main/Project/Projec}\\ \underline{t\%202\%20ansys\%20design\%20optimization.md}$

Appendix A

Design of Experiments:

• The upper and lower bounds of input parameters:

Table of	Table of Outline A2: Design Points of Design of Experiments						
	Α	В	С	D	Е	F	G
1	Name 💌	P8 - rotor_thickness (mm)	P9 - rotor_OD • (mm)	P10 - rotor_ID • (mm)	P4 - Equivalent Stress Maximum (Pa)	P6 - Total Deformation Reported Frequency (Hz)	P7 - Temperature Maximum (C)
2	DP 0	25	125	75	1.5219E+07	2081.2	311.51
3	2	22.5	125	75	1.3213E+07	2036.7	319.82
4	3	27.5	125	75	1.512E+07	2130.2	306.68
5	4	25	112.5	75	7	7	7
6	5	25	137.5	75	1.1321E+07	1812.6	310
7	6	25	125	67.5	1.3717E+07	2177.2	311.62
8	7	25	125	82.5	1.3903E+07	1875.4	311.07

Sensitivity Analysis:

Optimization:

Table of Schematic F4: Optimization							
	A	В	С	D			
1	■ Input Parameters						
2	Name	Lower Bound	Upper Bound				
3	P8 - rotor_thickness (mm)	22.5	27.5				
4	P9 - rotor_OD (mm)	112.5	137.5				
5	P10 - rotor_ID (mm)	67.5	82.5				
6	■ Parameter Relationships						
7	Name	Left Expression	Operator	Right Expression			
*	New Parameter Relationship	New Expression	<=	New Expression			

Table of Schematic F4: Optimization						
	A	В	С	D		
1	■ Optimization Study					
2	Minimize P4	Goal, Minimize P4 (Defa	ult importance)			
3	Maximize P6	Goal, Maximize P6 (Defa	ault importance)			
4	Minimize P7	Goal, Minimize P7 (Defa	ult importance)			
5	■ Optimization Method					
6	MOGA	The MOGA method (Multi-Objective Genetic Algorithm) is a variant of the popular NSGA-II (Non-dominated Sorted Genetic Algorithm-II) based on controlled elitism concepts. It supports multiple objectives and constraints and aims at finding the global optimum.				
7	Configuration	Generate 3000 samples initially, 600 samples per iteration and find 3 candidates in a maximum of 20 iterations.				
8	Status	Converged after 8135	evaluations.			
9	■ Candidate Points					
10		Candidate Point 1	Candidate Point 2	Candidate Point 3		
11	P8 - rotor_thickness (mm)	24.892	24.892	24.961		
12	P9 - rotor_OD (mm)	137.49	137.49	137.46		
13	P10 - rotor_ID (mm)	67.553	67.653	67.68		
14	P4 - Equivalent Stress Maximum (Pa)	→ 9.9012E+06	→ 9.9078E+06	→ 9.9178E+06		
15	P6 - Total Deformation Reported Frequency (Hz)	1909.1	1907.5	1909.2		
16	P7 - Temperature Maximum (C)	XX 310.5	X 310.49	X 310.24		