

□ 专家系统已经应用到数学、物理、化学、医 学、地质、气象、农业、法律、教育、交通 运输、机械、艺术、以及计算机科学本身, 其至渗透到政治、经济、军事等重大决策部 门,产生了巨大的社会效益和经济效益,成 为人工智能的重要分支

- □7.1 专家系统的产生和发展
- □7.2 专家系统的概念

□7.3 专家系统的工作原理

- √7.1 专家系统的产生和发展
- □7.2 专家系统的概念
- □7.3 专家系统的工作原理

- □ 第一阶段 : 初创期 (20世纪60年代中期 20
- ◆ DENDRAL 系统(1968 年, 斯坦福大学费根鲍姆等人) ——推断化学分子结构的专家系统
- ◆ MYCSYMA 系统(1971年,麻省理工学院) ——用于数学运算的数学专家系统

特点:高度的专业化。

专门问题求解能力强。

结构、功能不完整。

移植性差。

缺乏解释功能。

- □ 第二阶段:成熟期(20世纪70年代中期-20世纪80年代初)
- ◆ MYCIN 系统(斯坦福大学)——血液感染病诊断专家系统
- ◆ PROSPECTOR 系统(斯坦福研究所) ——探矿专家系统
- ◆ CASNET 系统(拉特格尔大学):用于青光眼诊断与治疗。
- ◆ AM 系统(1981 年, 斯坦福大学): 模拟人类进行概括、抽象和归纳推理, 发现某些数论的概念和定理。
- ◆ HEARSAY 系统(卡内基一梅隆大学)——语音识别专家系统

□ 第二阶段:成熟期(20世纪70年代中期-20世纪80年代初)

特点:

- ①单学科专业型专家系统。
- ②系统结构完整,功能较全面,移植性好。
- 3具有推理解释功能,透明性好。
- 4采用启发式推理、不精确推理。
- 5 用产生式规则、框架、语义网络表达知识。
- 6 用限定性英语进行人一机交互。

□ 第三阶段:发展期(20世纪80年代至今)

- ◆ 专家系统 XCON (DEC 公司、卡内基一梅隆大学): 为 VAX 计算机系统制订硬件配置方案。
- ◆ 专家系统开发工具:
 - ▶骨架系统: EMYCIN、KAS、EXPERT 等。
 - ▶通用型知识表达语言: OPS5 等。
 - >专家系统开发环境: AGE 等。

- □ 第三阶段:发展期(20世纪80年代至今)
- ◆ 我国研制开发的专家系统:
 - > 施肥专家系统(中国科学院合肥智能机械研究所)
 - > 新构造找水专家系统(南京大学)
 - > 勘探专家系统及油气资源评价专家系统(吉林大学)

> 子幼油旺宁汤账丰宝亥统(北吉由医当啶)

▶服装剪裁专家系统及花布图案设计专家系统(浙江大学)

- □7.1 专家系统的产生和发展
- √7.2 专家系统的概念

□7.3 专家系统的工作原理

- □ 7.2.1 专家系统的定义
- □ 7.2.2 专家系统的特点
- □ 7.2.3 专家系统的类型
- □ 7.2.4 专家系统的应用

- □ 7.2.1 专家系统的定义
- □ 7.2.2 专家系统的特点
- □ 7.2.3 专家系统的类型
- □ 7.2.4 专家系统的应用

7.2.1 专家系统的定义

1. 定义

■ 费根鲍姆 (E. A. Feigenbaum):

"专家系统是一种智能的计算机程序,它运用知识和推理来解决只有专家才能解决的复杂问题。"

■ 专家系统:一类包含知识和推理的智能计算机程序

0

7.2.1 专家系统的定义

2. 专家系统的基本组成

- □ 7.2.1 专家系统的定义
- □ 7.2.2 专家系统的特点
- □ 7.2.3 专家系统的类型
- □ 7.2.4 专家系统的应用

7.2.2 专家系统的特点

- ① 具有专家水平的专业知识
- ② 能进行有效的推理
- ③ 启发性
- 4 灵活性
- ⑤ 透明性
- 6 交互性

一个计算机程序系统的透明性:系统自身及其行为能被用户所理解。

7.2.2 专家系统的特点

□ 专家系统与传统程序的比较

(1)编程思想:

传统程序 = 数据结构+算法

专家系统 = 知识+推理

(2)传统程序:关于问题求解的知识隐含于程序中。

专家系统:知识单独组成知识库,与推理机分离。

(3)处理对象:

传统程序:数值计算和数据处理。

专家系统:符号处理。

7.2.2 专家系统的特点

□ 专家系统与传统程序的比较

(4)传统程序:不具有解释功能。

专家系统:具有解释功能。

(5)传统程序:产生正确的答案。

专家系统:通常产生正确的答案,有时产生错误的智

案

(6)系统的体系结构不同。

- □ 7.2.1 专家系统的定义
- □ 7.2.2 专家系统的特点
- □ 7.2.3 专家系统的类型
- □ 7.2.4 专家系统的应用

7.2.3 专家系统的类型

专家类型种类	解决的问题	代表性的专家系统
解释	根据感知数据推理情况描述	DENDRAL, PROSPECTOR
<u>滚</u> 断	根据观察结果推理系统是否有保障	MYCIN、CASNET、PUFF、PIP、 DART
预测	指导给定情况可能产生的后果	PLANT/ds、I&W、TYT
设 计	根据给定的要求进行相应的设计	XCON, KBVLSI
规 划	设计动作	NOAH、SECS、TATR
控制	控制整个系统的行为	YES/MVS
监督	比较观察结果和期望结果	REACTOR
修理	执行计划来实现规定的扑救措施	ACE, DELTA
数 学	诊断、调整、修改学生行为	GUIDON
调试	建议故障的扑救措施	TIMM/TUNER

- □ 7.2.1 专家系统的定义
- □ 7.2.2 专家系统的特点
- □ 7.2.3 专家系统的类型
- □ 7.2.4 专家系统的应用

7.2.4 专家系统的应用

领域	泵 统	功 能
医学	MYCIN CASNET PIP INTERNIST PUFF ONCOCIN VM	细菌感染性疾病诊断和治疗 查光眼的诊断和治疗 肾脏病诊断 内科病诊断 肺功能试验结果解释 癌症化学治疗咨询 人工肺心机激技
地质学	PROSPECTOR DIPMETER ADVISOR DRILLING ADVISOR MUD HYDRO ELAS	帮助地质学家评估某一地区的矿物储量 油并记录分析 诊断和处理石油钻并设备的"钻头钻者"问题 诊断和处理闭钻探泥浆有关的问题 水源总量咨询 油并记录解释
计算机系 统	DART RIXCON YES/MVS PTRANS IDT	计整机硬件系统故障诊断 配置 VAX 计整机 监控和控制 MVS 操作系统 管理 DEC 计整机系统的建造和配置 定位 PDP 计整机中有缺陷的单元

7.2.4 专家系统的应用

化拳	DENDRAL MOLGEN CRYSALIS SECS SPEX	根据质谐数据来推断化合物的分子结构 DNA 分子结构分析和合成 通过电子云密度图推断一个蛋白质的三维结构 帮助化学家制定有机合成规划 帮助科学家设计复杂的分子生物学的实验
数学	MACS YMA AM	数学问题求解 从基本的数学和集合论中发现概念
工程	SACON DELTA REACTOR	帮助工程师发现结构分析问题的分析策略 帮助识别和排除机车故障 帮助操作人员检测和处理核反应堆事故
军事	AIRPLAN HASP TATR RTC	用于航空母胶周围的空中交通运输计划的变排 海洋声纳信号识别和胶股跟踪 帮助空军制定攻击敌方机场的计划 通过解释话达图像进行胶船分类

- □7.1 专家系统的产生和发展
- □7.2 专家系统的概念
- √7.3 专家系统的工作原理

7.3 专家系统的工作原理

专家系统的一般结构