Một số phân phối xác suất thông dụng

1. Cú pháp chung

Với biến ngẫu nhiên X có phân phối (luật) được định nghĩa sẵn trong R, cú pháp chung là như sau:

- * Để nhận mật độ của X, dùng lệnh: dluật; bằng cách thêm ký tự d trước luật,
- * Để nhận giá trị của hàm phân phối của X, dùng lệnh: pluật; bằng cách thêm ký tự p trước luật,
- * Để nhận giá trị phân vị của X, dùng lệnh: qluật; bằng cách thêm ký tự q trước luật,
- * Để mô phỏng giá trị của X, dùng lệnh: rluật; bằng cách thêm ký tự r trước luật. Tên của các phân phối phổ biến là: norm (cho phân phối chuẩn), binom (cho nhị thức), geom (cho phân phối hình học), pois (cho phân phối Poisson), t (cho phân phối Student), chi sq (cho phân phối Chi bình phương), exp (cho phân phối mũ), f (cho phân phối Fisher),... Phần bên dưới sẽ trình bày chi tiết, ví dụ và minh họa cho các lệnh này.

2. Mật độ

2.1 Định nghĩa

- * Với biến ngẫu nhiên X rời rạc, "mật độ" của X tại x là xác suất P(X = x).
- * Với biến ngẫu nhiên X có hàm mật độ f_X , "mật độ" của X tại X là $f_X(X)$.

2.2 Lênh

Nếu phân phối của X phụ thuộc vào một hoặc nhiều tham số, tham 1 và tham 2, thì mật độ của X tại x được cho bởi lệnh:

dluật(x, tham1, tham2)

Dưới đây là một số ví dụ:

Luật	Nhị thức	Hình học	Poisson
Tham số	$n \in \mathbb{N}^*, p \in (0,1)$	$p \in (0,1)$	$\lambda > 0$
X ~	B(n,p)	G(p)	$P(\lambda)$
$X(\Omega)$	$\{0,\ldots,n\}$	\mathbb{N}^*	\mathbb{N}
P(X=x)	$\binom{n}{x}p^x(1-p)^{n-x}$	$p(1-p)^{x-1}$	$e^{-\lambda} \frac{\lambda^k}{k!}$
Lệnh	<pre>dninom(x, n, p)</pre>	dgeom(x, p)	<pre>dpois(x, lambda)</pre>

Luật	Đều	Mũ	Chuẩn
Tham	$(a,b) \in \mathbb{R}^2, a < b$	$\lambda > 0$	$\mu \in \mathbb{R}, \sigma > 0$
số			
X ~	U([a,b])	$E(\lambda)$	$N(\mu, \sigma^2)$
$X(\Omega)$	[<i>a</i> , <i>b</i>]	$[0,\infty)$	\mathbb{R}
$f_X(x)$	_1	$\lambda e^{-\lambda x}$	$\frac{1}{2\sigma^2} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
	$\overline{b-a}$		$\sqrt{2\pi\sigma^2}$ e $^{2\sigma}$
Lệnh	dunif(x, a, b)	<pre>dexp(x, lambda)</pre>	<pre>dnorm(x, mu, sigma)</pre>

Tìm hiểu thêm: help ("dgamma"), help ("dt"), help ("dchisq") và help ("df")

2.3. Tính toán

Ví du 1

- a) Cho biến ngẫu nhiên $X \sim B(8,0.3)$. Tính $P(X=4) = \binom{8}{4} 0.3^4 (1-0.7)^{8-4}$.
- b) Cho biến ngẫu nhiên $X \sim N(2,0.12^2)$. Tính hàm mật độ của X tại x = 1.7:

$$f(1.7) = \frac{1}{\sqrt{2\pi \times 0.12^2}} e^{-\frac{(1.7-2)^2}{2\times 0.12^2}}, -\infty < x < \infty$$

```
Giải:
a)

Ta làm:
dbinom(4, 8, 0.3)
[1] 0.1361

Kiểm tra lại bằng lệnh:
choose(8, 4) * 0.3^4 *(1- 0.3)^(8 - 4)
[1] 0.1361

b)
dnorm(1.7, 2, 0.12)
[1] 0.1460692

Kiểm tra lại bằng lệnh:
(1 / sqrt(2 * pi * 0.12^2)) * exp(- (1.7 - 2)^2 / (2 * 0.12^2))
[1] 0.1460692
```

Để tính toán mật độ tại nhiều giá trị, ta nhập \times là vector có các giá trị này. Ta cũng có thể làm tương tự cho một tập các tham số.

Ví dụ 2

- (a) Tính giá trị mật độ của $X \sim B(8,0.3)$ tại $x \in \{4,6\}$.
- (b) Tính giá trị mật độ của $X \sim E(\lambda)$ tại x = 2 và $\lambda = 1, \lambda = 2$ và $\lambda = 3$.

Giải:

(a)

Ta làm:

```
dbinom(c(4, 6), 8, 0.3)
[1] 0.13613670 0.01000188
```

(b) Ta làm:

```
dexp(2, c(1, 2, 3))
[1] 0.135335283 0.036631278 0.007436257
```

Ta cũng có thể lưu kết quả vào một vector để sử dụng sau này.

Ta làm:

```
vec = dexp(2, c(1, 2, 3))
vec
[1] 0.135335283 0.036631278 0.007436257
```

2.4. Biểu diễn bằng đồ thị

Ta có thể biểu diễn đồ thị của hàm xác suất của biến rời rạc X với lệnh plot và tùy chọn type=h.

Ví dụ 3

- a) Vẽ đồ thị hàm xác suất trong Ví dụ 1a): B(8,0.3).
- b) Vẽ hàm mật độ xác suất trong Ví dụ 1b): $N(2,0.12^2)$. Giải:
- a)

plot(0:8, dbinom(0:8, 8, 0.3), type = "h", ylab = "P(X = x)")

b) curve (dnorm (x, 2, 0.12), from=1.5, to=2.5, ylab = "fX(x)")

3. Hàm phân phối

3.1 Định nghĩa

$$F_{x}(x) = P(X \le x)$$

* X rời rạc,

$$F_{_{\!X}}(x) = \sum_{_{k \in X(\Omega) \cap (-\infty,x]}} P(X=k)$$

* X liên tục,

$$F_{X}(x) = \int_{-\infty}^{x} f_{X}(t)dt$$

3.2 Lệnh

Nếu phân phối của X phụ thuộc vào một hoặc nhiều tham số, tham 1 và tham 2, thì hàm phân phối của X tại x được cho bởi lệnh:

```
pluật(x, tham1, tham2)
```

Có thể tính: $P(X > x) = 1 - F_X(x)$, bằng lệnh:

pluật(x, tham1, tham2, lower.tail = FALSE)

3.3 Tính toán

Ví du 4

- a) Xét tiếp Ví dụ 1a). Tính $F_X(4) = P(X \le 4) = \sum_{k=0}^{4} P(X = k)$.
- b) Xét tiếp Ví dụ 1b). Tính $F_X(2.1) = P(X \le 2.1) = \int_{-\infty}^{2.1} \frac{1}{\sqrt{2\pi \times 0.12^2}} e^{-\frac{(x-2)^2}{2\times 0.12^2}} dx$.
- c) Tính P(X > 2), $X \sim E(3)$.

Giải:

a)

pbinom(4, 8, 0.3)
[1] 0.9420324

Ta có thể kiểm tra lai:

```
sum(dbinom(0:4, 8, 0.3))
[1] 0.9420324
```

b)

pnorm(2.1, 2, 0.12)
[1] 0.7976716

c)

pexp(2, 3, lower.tail = FALSE)
[1] 0.002478752

Kiểm tra lại bằng cách tính toán:

$$P(X > 2) = \int_{2}^{\infty} f_{X}(x) dx = \int_{2}^{\infty} 3e^{-3x} dx = \left[-e^{-3x} \right]_{2}^{\infty} = e^{-3 \times 2} = e^{-6}.$$

Và tính

exp(-6)

[1] 0.002478752

3.4 Vẽ đồ thị

Để biểu diễn hàm phân phối của biến ngẫu nhiên rời rạc dùng lệnh stepfun, biến ngẫu nhiên liên tục dùng hàm curve.

Ví dụ 5

- a) Xét tiếp Ví dụ 1a). Vẽ hàm phân phối xác suất của X .
- b) Xét tiếp Ví dụ 1b). Vẽ hàm phân phối.

Giải:

a)

plot(stepfun(0:8, c(0, pbinom(0:8, 8, 0.3))), ylab = "FX(x)", main =
"")

b) curve(pnorm(x, 2, 0.12), from = 1.5, to = 2.5, ylab = "FX(x)")

4. Phân vị

4.1 Định nghĩa

Cho $p \in (0,1)$ và X là một biến ngẫu nhiên.

* Nếu X rời rạc, thì phân vị mức p
 của X, ký hiệu là x_p , là

$$x_p = \inf\{k \in \mathbb{Z}; F_X(k) \ge p\}$$

* Nếu X liên tục, thì phân vị mức p của X, ký hiệu là x_p , là giá trị thỏa $F_X(x_p) = p$.

4.2 Lênh

Nếu phân phối của X phụ thuộc vào một hoặc nhiều tham số, tham 1 và tham 2, thì phân vị mức p của X được cho bởi lênh:

```
qluật(x, tham1, tham2)
```

```
4.2 Tính toán
```

Ví dụ 6

- a) Xét tiếp Ví dụ 1a). Tính phân vị mức 0.25 của X.
- b) Xét tiếp Ví dụ 1b). Tính phân vị mức 0.975 của X.

Giải:

```
a)
qbinom(0.25, 8, 0.3)
[1] 1
```

 $x_{0.25} = \inf\{k \in \mathbb{Z}; F_x(k) \ge 0.25\}.$

Ta có thể kiểm tra lại bằng cách tính các giá trị $F_x(x)$ tại $x \in \{0,1,\dots,7,8\}$:

```
pbinom(0:8, 8, 0.3)
[1] 0.05764801 0.25529833 0.55177381 0.80589565 0.94203235
[6] 0.98870779 0.99870967 0.99993439 1.00000000
```

Khi đó ta thấy rằng $F_x(0) = 0.0576 < 0.25 \le 0.2552 = F_x(1)$, do đó $x_{0.25} = 1$.

```
b)
qnorm(0.975, 2, 0.12)
[1] 2.235196
```

Như vậy, ta đã tính được phân vị mức p = 0.975 của biến $X \sim N(2, 0.12)$: là $x_{0.975}$ sao cho

```
F_X(x_{0.975}) = 0.975.
Kiểm tra lai bằng lệnh
```

pnorm(2.235196, 2, 0.12) [1] 0.9750002

5. Mô phỏng các phân phối được lập trình sẵn

5.1 Lênh

Nếu phân phối của X phụ thuộc vào một hoặc vài tham số, tham 1 và tham 2, thì mô phỏng n biến độc lập có cùng phân phối như X bằng lệnh:

```
rluật(n, tham1, tham2)
```

5.2 Tính toán

Ví du 7

- a) Mô phỏng một mẫu ngẫu nhiên cỡ 10 của phân phối Poisson P(2).
- b) Mô phỏng giá trị ngẫu nhiên của biến $\sum_{i=1}^{80} X_i$, X_1,\dots,X_{80} là các biến ngẫu nhiên độc lập nhau có phân phối Bernoulli B(1,0.02).
- c) Mô phỏng một mẫu ngẫu nhiên cỡ 15 của phân phối $N(2,0.12^2)$. Giải:

a)

```
rpois (10, 2) [1] 0 2 2 3 3 5 1 3 1 2  
b) sum (rbinom (80, 1, 0.02)) [1] 3  
Bổi vì \sum_{i=1}^{80} X_i \sim B(80,0.02), nên ta có thể dùng lệnh sau để mô phỏng biến Y \sim B(80,0.02): rbinom (1, 80, 0.02).  
c) x = rnorm (15, 2, 0.12) x  
[1] 2.021767 1.898343 2.072553 1.974686 2.044200 2.050094  
[7] 2.063342 2.000698 1.702115 1.958284 1.984903 1.897726  
[13] 2.011624 2.074341 1.720218
```

6. Bài tập

Bài 1

Vẽ một biểu đồ cột của hàm xác suất của phân phối siêu bội với N=100, M=25 và cỡ mẫu n=15.

Bài 2

Nếu X có phân phối như trên, đầu tiên tính $P(5 \le X \le 12)$ bằng cách lấy tổng các xác suất được cho bởi hàm xác suất, và sau đó bằng cách sử dụng hàm phân phối tích lũy.

Bài 3

- a) Sử dụng lệnh curve (dexp (x, 0.6), 0, 10) để vẽ hàm mật độ xác suất của phân phối mũ với tham số $\lambda = 0.6$.
- b) Đối với đồ thị nhận được bạn vẽ thêm hàm mật độ xác suất của phân phối mũ với tham số $\lambda = 0.3$ (đảm bảo ban thêm add=T trong lênh curve).
- c) Sử dụng hàm phân phối tích lũy để tính diện tích bên dưới của hai hàm mật độ.

Bài 4

Vẽ hàm xác suất của biến $X \sim P(1)$ với $x \in \{0,...,8\}$.

Bài 5

Vẽ đồ thị hàm mật độ xác suất của biến $X \sim \chi^2(3)$ với $x \in [0,10]$.

Bài 6

Chia cửa sổ đồ thị thành hai phần trên và dưới.

- Trong phần trên, vẽ đồ thị của hàm xác suất của biến $X \sim B(50,0.08)$ lấy ylim=c (0,0.25).
- Trong phần dưới, vẽ đồ thị của hàm xác suất của biến $X \sim P(4)$ với $x \in \{0,...,50\}$ với cùng lựa chọn: y = 0,0.25.

(Điều này minh họa kết quả là khi n đủ lớn và np đủ nhỏ ta có thể xấp xỉ phân phối nhị thực B(n,p) bằng luật Poisson P(np)).

Bài 7

Vẽ đồ thị của hàm mật độ của biến $X \sim B(50,0.4)$ và thêm vào đồ thị này hàm mật độ của biến $Y \sim N(20,12)$ (điều này minh họa kết quả rằng khi n lớn, np lớn và n(1-p) lớn, ta có thể xấp xỉ phân phối nhị thức B(n,p) bằng phân phối chuẩn N(np,np(1-p))).