```
library(knitr)
```

```
data <- read.csv("uval.csv")</pre>
```

Question 1

Table 1: Coefficients & Std. Error of linear model

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-0.03525	0.00665	-5.30037	0.00000
underval	0.00476	0.00218	2.18614	0.02898
log(gdp)	0.00630	0.00079	7.96591	0.00000

Since the coefficient of log(gdp) is positive, this model does not seem to support the idea of "catching-up" as countries with higher GDP have a higher economic growth rate. However, it does support the idea that under-valuing a currency boosts economic growth as the coefficient of underval is positive, indicating a positive underval index, which represents undervaluing, leads to higher economic growth.

Question 2

Q2 a)

Table 2: Coefficients & Std. Error of linear model

	Estimate	Std. Error	t value	Pr(> t)
underval	0.01361	0.00290	4.69667	0
$\log(\mathrm{gdp})$	0.02892	0.00317	9.13254	0

Q2 b) It is more appropriate to use factor(year) as there are only unique years that are 5 years apart. As such, modelling this way we will have a slope for each 5-year interval rather than a single slope for each increment of year.

Q2 c)

Plot of coefficient of each year across years

Q2 d)

Since the coefficient of log(gdp) is positive, this model does not seem to support the idea of "catching-up" as countries with higher GDP have a higher economic growth rate. However, it does support the idea that under-valuing a currency boosts economic growth as the coefficient of underval is positive, indicating a positive underval index, which represents undervaluing, leads to higher economic growth.

Question 3

Q3 a)

Table 3: \mathbb{R}^2 values for each linear model

	Model 1	Model 2
R^2	0.04855	0.42924
Adj. R^2	0.04709	0.33214

Q3 b)

```
# Taken from textbook chapter 3 page 77
cv.lm <- function(data, formulae, nfolds = 5) {</pre>
    data <- na.omit(data)</pre>
    formulae <- sapply(formulae, as.formula)</pre>
    n <- nrow(data)</pre>
    fold.labels <- sample(rep(1:nfolds, length.out = n))</pre>
    mses <- matrix(NA, nrow = nfolds, ncol = length(formulae))</pre>
    colnames <- as.character(formulae)</pre>
    for (fold in 1:nfolds) {
        test.rows <- which(fold.labels == fold)</pre>
        train <- data[-test.rows, ]</pre>
        test <- data[test.rows, ]</pre>
        for (form in 1:length(formulae)) {
             current.model <- lm(formula = formulae[[form]], data = train)</pre>
             predictions <- predict(current.model, newdata = test)</pre>
             test.responses <- eval(formulae[[form]][[2]], envir = test)</pre>
             test.errors <- test.responses - predictions</pre>
             mses[fold, form] <- mean(test.errors^2)</pre>
        }
    }
    return(colMeans(mses))
loocv.mse <- cv.lm(data, c("growth ~ underval + log(gdp)", "growth ~ underval + log(gdp) + factor(count
```

```
loocv.mse <- cv.lm(data, c("growth ~ underval + log(gdp)", "growth ~ underval + log(gdp) + r
names(loocv.mse) <- c("Model 1", "Model 2")
kable(loocv.mse, caption = "$\\hat{MSE}$ of linear models by LOOCV")</pre>
```

Table 4: \hat{MSE} of linear models by LOOCV

2
0.001030348892
0.000952766927