# אלגוריתמים אמיתיים Truthful Algorithms

אראל סגל-הלוי



### בעיה 1: מציאת מסלול זול ביותר

נתונה רשת. לכל קשת יש עלות-מעבר. צריך להעביר חבילה בין שתי נקודות ברשת ( $\kappa$  ->  $\tau$ ), במסלול עם עלות כוללת נמוכה ביותר.



אם העלות של כל קשת ידועה לכולם ("ידע public knowledge) – אנחנו יודעים לפתור (public knowledge) – אבל מה אם העלות של כל קשת ידועה רק אבל מה אם העלות של כל קשת ידועה רק לבעל-הקשת (ידע פרטי, private information)?

### בעיה 2: בחירת פרסומות לדף רשת



### בעיה 2: בחירת פרסומות לדף רשת

נתונות m מפרסמים שונים. לכל מפרסם יש ערך שונה להקלקה על הפרסומת שלו.

בדף יש k מיקומים. לכל מיקום יש אחוזי-הקלקה שונים.

צריך לבחור k מפרסמים ולתת מיקום לכל מפרסם, כך שתוחלת סכום הערכים תהיה גדולה ביותר.

- אם הערך של כל מפרסם ידוע לכולם –
   אלגוריתם חמדני פותר את הבעיה (נוכיח בהמשך).
  - אבל מה אם הערך של כל מפרסם ידוע רק למפרסם?

### בעיה 3: בחירת פרסומות לרדיו

נתונות m מפרסמים שונים. לכל מפרסם יש פרסומת באורך שונה, וגם ערך שונה להשמעת הפירסומת שלו.

בתוכנית יש זמן קצוב T להשמעת פרסומות.

צריך לבחור פרסומות באורך כולל של לכל היותר T, כך שסכום הערכים גדול ביותר.

- אם הערך של כל מפרסם ידוע לכולם (knapsack problem).
- אבל מה אם הערך של כל מפרסם ידוע רק למפרסם?

### אלגוריתם אמיתי

הגדרה: אלגוריתם נקרא **אמיתי** (strategyproof) או **חסין-אסטרטגיה** (non-manipulable) או **לא-ניתן-למניפולציה** (mon-manipulable) אם לכל משתתף *כדאי* להגיד את הערך האמיתי שלו, לא משנה מה עושים האחרים.

- היתרון קל יותר למשתתפים;
- אין צורך "לרגל" אחרי משתתפים אחרים.

### בעיה 0: חישוב מקסימום

יש לי חפץ שאני לא צריך. אני רוצה לתת אותו למי שיפיק ממנו הכי הרבה תועלת. אני שואל כל אחד "כמה שווה לך החפץ?" ורוצה לתת למי שהערך שלו הגבוה ביותר.

אם הערכים ידועים – בעיית חישוב מקסימום.

#### :אם הערכים לא ידועים

- לתת את החפץ בחינם לא אמיתי.
  - . מכרז "מחיר ראשון" לא אמיתי
- . לזרוק את החפץ לפח אמיתי אבל לא יעיל
  - https://youtu.be/ZyATAodMDrQ •
  - ?האם קיים מכרז יעיל ואמיתי

### Second Price Auction – מכרז מחיר שני **Vickrey Auction - מכרז ויקרי**

- : מכרז ויקרי (= מכרז מחיר שני) הוא
- (א) המשתתפים כותבים הכרזות במעטפות;
- (ב) המעטפות נפתחות ומסודרות בסדר יורד;
  - (ג) בעל ההכרזה הגבוהה ביותר זוכה בחפץ;
    - (ד) הזוכה משלם את ההכרזה השניה.

### Vickrey Auction - מכרז ויקרי

- **משפט**: כשלשחקנים יש העדפות קוואזי-ליניאריות, מכרז ויקרי הוא אמיתי.
  - הוכחה: נניח שהערך שלי הוא √ והערך הומקסימלי של האחרים הוא x.
- התועלת הגבוהה ביותר שאני יכול לקוות להשיג במכרז היא (max(0, v-x).
  - . כשאני מכריז √ אני אכן מקבל תועלת זו. סשאני מכריז י

\*\*\*

### Vickrey Auction - מכרז ויקרי

**משפט**: מכרז ויקרי הוא יעיל פארטו (עבור קבוצת כל המשתתפים – כולל המוכר).

**הוכחה**: תוצאה היא יעילה פארטו *אם-ורק-אם* החפץ נמסר למשתתף עם הערך הכי גדול.

- כי אם החפץ נמסר למשתתף אחר, אז המשתתף עם הערך הגדול ביותר יכול לקנות אותו ממנו והקניה תועיל לשני הצדדים.
  - \*\*\* זה בדיוק מה שעושה מכרז ויקרי.

### First Price Auction – מכרז מחיר ראשון

משפט: מכרז מחיר ראשון אינו אמיתי.

#### הוכחה:

- .0 אמירת הערך האמיתי "מבטיחה" תועלת •
- אמירת ערך נמוך יותר מאפשרת להשיג תועלת חיובית. למשל אם הערך שלי 10 והערך השני 5, הכרזה של 6 תיתן לי תועלת 4. \*\*\*

← ?מה הבעיה במכרז לא אמיתי?

#### מכרז מחיר ראשון בפירסום

- המכרזים הראשונים לפירסום לפי מילות חיפוש היו של Overture (לפני גוגל).
  - המכרזים הראשונים היו "מחיר ראשון".
- המהנדסים שמו לב, שהמפרסמים משנים את ההכרזה שלהם שוב ושוב:



נוצר עומס כבד על השרתים.

#### מכרז מחיר שני בפירסום

- בעקבות העומס הכבד על השרתים,
   החליטו המהנדסים של Google שהמכרז
   שלהם יהיה מכרז מחיר שני.
  - המפרסם עם ההכרזה הגבוהה ביותר זוכה, ומשלם *סנט אחד* מעל ההכרזה השניה בגובהה.
    - השלב הבא כמה פרסומות בעמוד אחד.

#### מכרז פירסום – Ad Auction

#### יש כמה חפצים למכירה, כל אחד באיכות **שונה**:



#### מכרז פירסום – Ad Auction

#### הנחות:

 $r_{k}$  יש הסתברות-הקלקה k יש הסתברות-הקלקה

•
$$r_1 > r_2 > ...$$
 [CTR = Click Through Rate]

- $v_j$ יש ערך-הקלקה j מפרסם j
- :כאן: כל מפרסם מעריך את משבצת א כגיי מכאן: כל מפרסם מעריך את  $v_j * r_k$

המטרה שלנו למצוא מכרז שהוא:

- יעיל פארטו•
  - אמיתי•

#### מכרז פירסום – יעילות פארטו

#### משפט:

הקצאת מקומות למפרסמים היא יעילה-פארטו,
 אם-ורק-אם היא ממקסמת את סכום הערכים:

$$v_1 * r_{k(1)} + v_2 * r_{k(2)} + v_3 * r_{k(3)} + \dots$$

#### הוכחה:

- 1) אם ההקצאה לא יעילה פארטו, אז קיים לה שיפור פארטו, ובו סכום הערכים גבוה יותר.
  - 2) אם ההקצאה לא ממקסמת את סכום הערכים, אז ניתן לעבור להקצאה שבה סכום הערכים גבוה יותר ולהעביר כספים בין המשתתפים, ומתקבל שיפור פארטו.

#### מכרז פירסום – מיקסום סכום הערכים

#### אלגוריתם חמדני:

 $v_j$  טדר את המפרסמים בסדר יורד של $\bullet$ 

$$\bullet v_1 > v_2 > \dots$$

.j-תן למפרסם j את המקום הullet

#### מכרז פירסום – מיקסום סכום הערכים

משפט: האלגוריתם החמדני ממקסם סכום ערכים.

הוכחה: נניח בשלילה שיש סדר שונה, k, הממקסם את סכום הערכים. בסדר זה יש מפרסמים j,i שעבורם:

$$v_j < v_i$$
  $r_{k(i)} > r_{k(i)}$ 

נחליף את מפרסמים iו-i. אחרי ההחלפה, i נמצא במקום k(i) השינוי בסכום:

$$v_{i}^{*}(r_{k(j)}-r_{k(i)}) - v_{j}^{*}(r_{k(j)}-r_{k(i)}) = (v_{i}-v_{j})(r_{k(j)}-r_{k(i)}) > 0$$

מכאן שהסדר האחר אינו ממקסם את סכום הערכים – סתירה להנחה. \*\*\*

#### מכרז פירסום

- •אנחנו יודעים איך להקצות מפרסמים למקומות.
- אנחנו צריכים להחליט איך לקבוע את התשלומים.
  - •איך נכליל את מכרז ויקרי למכירת כמה חפצים?

## אלגוריתם ויקרי – קלארק – גרובס Vickrey – Clarke - Groves (VCG)

- יש מספר סופי של **תוצאות** אפשריות.
- לכל משתתף יש **ערך כספי** לכל תוצאה.
- התועלת = ערך התוצאה פחות התשלום <sub>(קואזי-ליניארית)</sub>. האלגוריתם:
- בחר את התוצאה עם סכום-הערכים הגבוה ביותר.
  - עבור כל שחקן:
  - חשב את סכום הערכים של שאר השחקנים.
  - חשב את סכום הערכים של שאר השחקנים •
  - אילו השחקן הנוכחי לא היה משתתף.
- גבה מהשחקן את *ההפר*ש בין שני הסכומים.

דוגמה: ראו בגליון אלקטרוני.

ויקרי – קלארק – גרובס Vickrey – Clarke - Groves (VCG) משפט: אלגוריתם ויקרי-קלארק-גרובס אמיתי. מושגים: ערך = ברוטו (לא כולל המחיר); תועלת = נטו (ערך פחות מחיר).

:התועלת של כל שחקן היא

בערך של השחקן עצמו; (1

;פחות הסכום של שאר השחקנים בלעדיו

3)ועוד הסכום של שאר השחקנים כשהוא פה.

ויקרי – קלארק – גרובס Vickrey - Clarke - Groves (VCG) משפט: אלגוריתם ויקרי-קלארק-גרובס אמיתי. :התועלת של כל שחקן היא סכום הערכים של כל השחקנים (שורה 1,3), פחות מספר שאינו תלוי בהצהרה שלו (שורה 2) השחקן שואף להשיג תועלת גדולה ביותר. לשם כך עליו למקסם את סכום הערכים של כל השחקנים. זה בדיוק מה שעושה אלגוריתם

המשמעות: שיתוף אינטרסים בין הפרט לכלל.

ויקרי-קלארק-גרובס כשהשחקן אמיתי.

# ויקרי – קלארק – גרובס במכרזי פירסום

נחזור לדוגמה קודמת:

$$r_1 = 0.1, \quad r_2 = 0.05,$$
  
 $v_1 = 10, \quad v_2 = 9, \quad v_3 = 6.$ 

#### :1 המחיר למפרסם

- 9\*0.1 + 6\*0.05 סכום האחרים בלעדיו
- - 9\*0.05 סכום האחרים כשהוא נמצא
- $\bullet = 7.5 * 0.1$

#### :2 המחיר למפרסם

- 10\*0.1 + 6\*0.05 סכום האחרים בלעדיו
- - 10\*0.1 סכום האחרים כשהוא נמצא
- $\bullet = 6 * 0.05$