

Deep Learning - MAI

Guided lab - CNNs

Dario Garcia Gasulla dario.garcia@bsc.es

Outline

- 1. Fully connected networks applied to MNIST
- 2. CNNs applied to MNIST
- 3. CNNs applied to CIFAR10

MNIST

- MNIST is a black and white handwritten digit recognition dataset
- First testing ground for new Altechniques
- See how far you can get using a fully connected network

CIFAR₁₀

- CIFAR is a classification problem of low-resolution images (32x32)
- Version with 10 and 100 classes
- https://www.cs.toronto.edu/ ~kriz/cifar.html

Let's look at the code

Get used to handling and loading data. It's a big part of any DL experiment.

Look into "flow_from_directory" from keras to avoid memory issues, when loading large datasets.

Experiment 1 (FC & MNIST)

- Code
 - https://raw.githubusercontent.com/UPC-MAI-DL/UPC-MAI-DL .github.io/master/ codes/1.FNN-CNN/mnist fnn example.py
- Launcher
- Data
 - https://s3.amazonaws.com/img-datasets/mnist.npz
 - Within P9, store in ~/.keras/datasets

"wget" to download from internet to your pc "scp" to upload from your pc to P9

Experiment 2 (CNN & MNIST)

- Code
 - https://raw.githubusercontent.com/UPC-MAI-DL/UPC-MAI-DL .github.io/master/_codes/1.FNN-CNN/mnist_cnn_example.py
- Launcher
 - Adapt the launcher for experiment 1

Experiment 3 (CNN & CIFAR10)

- Code
 - Adapt the code from experiment 2
 - Notice data dimensions
- Launcher
 - Adapt the launcher for experiment 1
- Data
 - https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
 - Rename to cifar-10-batches-py.tar.gz and store in ~/.keras/datasets

Practical tips

- * "tail -f file.out" to keep open for reading a live file
- model.summary()
 - track volumes
 - track complexity

Layer (type)	Output	Shape	Param #
input_2 (InputLayer)	(None,	150, 150, 3)	0
conv2d_4 (Conv2D)	(None,	148, 148, 16)	448
max_pooling2d_4 (MaxPooling2	(None,	74, 74, 16)	0
conv2d_5 (Conv2D)	(None,	72, 72, 32)	4640
max_pooling2d_5 (MaxPooling2	(None,	36, 36, 32)	0
conv2d_6 (Conv2D)	(None,	34, 34, 64)	18496
max_pooling2d_6 (MaxPooling2	(None,	17, 17, 64)	0
flatten_1 (Flatten)	(None,	18496)	0
dense_1 (Dense)	(None,	512)	9470464
dense_2 (Dense)	(None,	1)	513

Dario Garcia-Gasulla (BSC) dario.garcia@bsc.es

