9.4 Closures of Relations

Zhang Yanmei

ymzhang@bupt.edu.cn

QQ: 11102556

College of Computer Science & Technology

Beijing University of Posts & Telecommunications

Closures of Relations

Definition

■ The *closure*(闭包) of a relation *R* with respect to property *P* is the relation obtained by adding the *minimum number of ordered pairs* to *R* to obtain property *P*.

• 3 elements:

- \blacksquare R_1 contains R
- \blacksquare R_1 possesses the property P
- If R_2 contains R and possesses the property P, then R_2 contains R_1

Closures of Relations

- In terms of the digraph representation of *R*
 - To find the *reflexive closure* 🕫 🗟
 - add loops.
 - To find the *symmetric closure* **Z**
 - add arcs in the opposite direction.
 - To find the transitive closure
 - if there is a path from a to b, add an arc from a to b.

Reflexive Closure

Theorem:

- Let R be a relation on A.
- The *reflexive closure* of R, denoted $\mathbf{r}(R)$, is $R \cup \Delta$, $\Delta = \{(\mathbf{x}, \mathbf{x}) \mid \mathbf{x} \in A\}$.

Method:

- Add loops to all vertices on the digraph representation of R.
- Put 1's on the diagonal of the connection matrix of R. $M_R \vee M_{\Delta}$

$r(R)=R\cup\Delta$

Proof:

- $R \cup \Delta$ is reflexive, and $R \subseteq R \cup \Delta$,
- suppose $S \subseteq A \times A$, be reflexive, and $R \subseteq S$.
- If $(a,b) \in R \cup \Delta$,
 - case 1: $(a,b) \in R$, so $(a,b) \in S$.
 - case 2: $(a,b) \in \Delta$, so a=b, S is reflexive, then $(a,b) \in S$.
- So $R \cup \Delta \subseteq S$, $r(R) = R \cup \Delta$.

Symmetric closure

Theorem

- Let R be a relation on A.
- The *symmetric closure* of R, denoted s(R), is the relation $R \cup R^{-1}$, $R^{-1} = \{(b,a) \mid (a,b) \in R\}$.

$$S(R) = R \cup R^{-1}$$

Proof:

- $If(a,b) \in R$, then $(b,a) \in R^{-1}$. $If(a,b) \in R^{-1}$, then $(b,a) \in R$.
- $so(a,b) \in R \cup R^{-1}$, and $(b,a) \in R \cup R^{-1}$.
- so $R \cup R^{-1}$ is symmetric, and $R \subseteq R \cup R^{-1}$,
- suppose $S \subseteq A \times A$, be symmetric, and $R \subseteq S$.
- If $(a,b) \in R \cup R^{-1}$,
 - case 1: $(a,b) \in R$, so $(a,b) \in S$.
 - case 2: $(a,b) \in R^{-1}$, so $(b,a) \in R$, $(b,a) \in S$, and S is symmetric, then $(a,b) \in S$.
- So $R \cup R^{-1} \subseteq S$, $s(R) = R \cup R^{-1}$.

Theorem

- R is symmetric
 - If and only if
- $R = R^{-1}$

 Note: in digraph of a symmetric relation, use undirected edges instead of arcs

35

Example R r(R)s(R)

Paths & Dark

- Suppose that R is a relation on a set A. A path of length n in R from a to b is a finite sequence $\pi: a, x_1, x_2, ..., x_{n-1}, b$, beginning with a and ending with b, such that
 - $a R x_1, x_1 R x_2, ..., x_{n-1} R b$

Path Jo

- π_1 : 1, 2, 5, 4, 3 is a path of length 4 from vertex 1 to vertex 3
- π_2 : 1, 2, 5, 1 is a path of length 3 from vertex 1 to itself
- π_3 : 2, 2 is a path of length 1 from vertex 2 to itself

- $R^n: x R^n y$ means that there is a path of length n from x to y in R.

 $R^n(x)$
- R^* : $x R^* y$ means that there is some path in R from x to y.
 - $R^*(x) \qquad \bigwedge^n(x) \qquad \text{there is some path in } R$
- The relation R^* is sometimes called the *connectivity relation* for R.

- Let $A = \{1, 2, 3, 4, 5, 6\}$
- R is shown as in figure

- Let $A = \{a, b, c, d, e\}$
 - $R = \{(a, a), (a, b), (b, c), (c, e), (c, d), (d, e)\}.$
- Compute (a) R^2 ; (b) R^*

faib.cidie)

Cl >d.

OLRZA

只要有好的世色和的

 $R = \{(a, a), (a, b), (b, c), (c, e), (c, d), (d, e)\}.$

Theorem

If R is a relation on $A = \{a_1, a_2, ..., a_n\}$, then

$$M_{R^2} = M_R \odot M_R$$

$$M_{R^2} = M_R \odot M_R \triangleq (M_R)_{\odot}^2$$

$$M_{p^2} = M_R O M_R \stackrel{>}{=} (M_R)_0^2$$

Proof

- Let $M_R = [m_{ij}]$ and $M_{R^2} = [n_{ij}]$.
 - the i, jth element of $M_R \otimes M_R$ is equal to 1
 - $m_{ik}=1$ and $m_{kj}=1$ for some $k, 1 \le k \le n$.
- By definition of the matrix M_R
 - $a_i R a_k$ and $a_k R a_j$
 - $a_i R^2 a_j$, and so $n_{ij} = 1$.
- Therefore
 - position i, j of $M_R \otimes M_R$ is equal to 1
 - $n_{ij} = 1.$
- $\bullet \quad \mathbf{So} \ \mathbf{M}_R \otimes \mathbf{M}_R = \mathbf{M}_{R^2}$

- Let $A = \{a, b, c, d, e\}$
 - $R = \{(a, a), (a, b), (b, c), (c, e), (c, d), (d, e)\}.$
- Compute *R*²

Example cont.

Theorem

■ For $n \ge 2$ and R a relation on a finite set A, we have

$$M_{R^n} = M_R \odot M_R \odot \cdots \odot M_R$$
 (*n* factors)
 $\triangleq (M_R)_{\odot}^n$

Proof by induction

- Let P(n) be the assertion that the statement holds for an integer $n \ge 2$.
- Basis Step: P(2) is true by Theorem 1.

Ahr JB

Induction Step

- Consider the matrix $M_{R^{k+1}}$. Let $M_{R^{k+1}} = [x_{ij}]$, $M_{R^k} = [y_{ij}]$, and $M_R = [m_{ij}]$
- If $x_{ij} = 1$, we must have a path of length k + 1 from a_i to a_j .
- If we let a_s be the vertex that this path reaches just before the last vertex a_j , then there is a path of length k from a_i to a_s and a path of length 1 from a_s to a_i .
- Thus $y_{is} = 1$ and $m_{sj} = 1$, so $M_R \odot M_R$ has a 1 in position i, j.
- similarly, if $M_{R^k} \odot M_R$ has a 1 in position i, j, then $x_{ij} = 1$.
- $S_{\mathbf{O}} M_{R^{k+1}} = M_{R^k} \odot M_R$

Induction Step

$$\therefore$$
 P(k): $M_{R^k} = M_R \odot \cdots \odot M_R$ (k factors)

$$\therefore M_{R^{k+1}} = M_{R^k} \odot M_R = (M_R \odot M_R \odot \cdots \odot M_R) \odot M_R$$

hence

$$P(k+1): M_{R^{k+1}} = M_R \odot \cdots \odot M_R \odot M_R (k+1 \text{ factors})$$

- is true.
- Thus by the principle of mathematical induction, P(n) is true for all n

QED

Transitive closure

- The transitive closure of a relation R is the smallest transitive relation containing R.
- Review: R is transitive iff R^n is contained in R for all n.
- Hence, if there is a path from x to y then there must be an arc from x to y, or (x, y) is in R.

Theorem

$$t(R) = R^* = \bigcup_{i=1}^{\infty} R^i$$

■ Let *R* be a relation on a set *A*. then *R** is the transitive closure of *R*.

- Proof: we must show that *R**
 - 1) is a transitive relation
 - \blacksquare 2) contains R
 - 3) is the smallest transitive relation which contains *R*

Proof of Part 1)

- Suppose (x, y) and (y, z) are in R*. Show (x, z) is in R*.
 - By definition of R^* , (x, y) is in R^m for some m and (y, z) is in R^n for some n.
 - Then (x, z) is in $R^n \circ R^m = R^{m+n}$ which is contained in R^* .
 - Hence, R^* must be transitive.

Proof of Part 2)

- Easy from the definition of R^*
- $R^*=R \cup R^2 \cup R^3 \cup ...$
- So $R \subseteq R^*$

Proof of Part 3)

- Now suppose *S* is any transitive relation that contains *R*, show *S* contains *R** (that is *R** is the smallest such relation).
- \blacksquare $R \subseteq S$, so $R^2 \subseteq S^2 \subseteq S$ since S is transitive.
- Therefore $R^n \subseteq S^n \subseteq S$ for all n. (Why?)
- Hence S must contain R^* since it must also contain the union of all the powers of R.

• Q. E. D.

Useful Results for Transitive Closure

Theorem:

- If $A \subseteq B$ and $C \subseteq B$, then $A \cup C \subseteq B$.
- Theorem:
 - If $R \subseteq S$ and $T \subseteq U$ then $R \circ T \subseteq S \circ U$.
- Corollary:
 - $\blacksquare \text{ If } R \subseteq S \text{ then } R^n \subseteq S^n$

If $R \subseteq S$ and $T \subseteq U$ then $R^{\circ} T \subseteq S^{\circ} U$

- Proof:
- If $(a,b) \in R \circ T$, then exist $(a,c) \in T$ and $(c,b) \in R$ for some c.
- Because $R \subseteq S$ and $T \subseteq U$, so $(a,c) \in U$ and $(c,b) \in S$.
- Therefore $(a,b) \in S^{\circ}U$.
- Hence $R \circ T \subseteq S \circ U$.

• Q. E. D.

- Proof: Use theroem 1 or a proof by induction:
- *Basis*: Obviously true for n = 1.
- Induction:
 - The induction hypothesis:
 - assume theorem is true for n. $R^n \subseteq S^n$
 - Show it must be true for n + 1.

- $R^{n+1} = R^n$ o R so if (x, y) is in R^{n+1} then there is a z such that (x, z) is in R and (z, y) is in R^n .
- But since $R \subseteq S$ and $R^n \subseteq S^n$, (x, z) is in S and (z, y) is in S^n .
- $S^{n+1} = S^n \circ S$, (x, y) is in S^{n+1} .
- Hence $R^{n+1} \subseteq S^{n+1}$.

- Let
 - $A=\{1, 2, 3, 4\}$
 - $R=\{(1,2),(2,3),(3,4),(2,1)\}$
- Find the transitive closure of R.

$$(M_R)_{\odot}^2 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} M_R _{\odot}^4 \end{bmatrix} = (M_R)_{\odot}^6 = \dots$$

$$(M_R)_{\odot}^3 = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = (M_R)_{\odot}^5 = (M_R)_{\odot}^7 = \dots$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$$

$$M_{R^{\infty}} = M_R \vee (M_R)_{\odot}^2 \vee (M_R)_{\odot}^3 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$College of Computer Science & Technology, BUPT$$

Theorem

Let A be a set with |A|=n, and let R be a relation on A. Then

$$R^* = \bigcup_{i=1}^n R^i = R \cup R^2 \cup ... \cup R^n$$

Proof

Let a and $b \in A$ and suppose that $a, x_1, x_2, ..., x_{m-1}, b$ is a path of length m from a to b in R.

a parth of length m.

- $\bullet (a, x_1) \in R$
- $(x_1, x_2) \in R$
- **.** . . .
- $(x_{m-1}, b) \in R$

Proof

- There are m+1 elements in the path, but we have only n distinct elements in A.
 - So, there must be some same vertex in the path, say $x_i = x_j = c$, i < j
 - $(a, x_1) \in R$
 - $(x_1, x_2) \in R$
 - **...**
 - $(x_{i-1}, x_i) \in R$
 - $(x_i, x_{i+1}) \in R$
 - **...**
 - $(x_{i-1}, x_i) \in R$
 - $(x_j, x_{j+1}) \in R$
 - ...
 - $(x_{m-1}, b) \in R$
- The red edges form a cycle in the path, we get a new path by deleting the cycle

Proof

- $\bullet (a, x_1) \in R$
- $(x_1, x_2) \in R$
- ...
- $(x_{i-1}, x_i) \in R$
- $(x_j, x_{j+1}) \in R$
- **.** . . .
- $(x_{m-1}, b) \in R$

- A path from a to b $(x_i = x_j = c)$
 - $a, x_1, x_2, ..., x_{i-1}, c, x_{j+1}, ..., x_{m-1}, b$
- The length is k = m j + i.
- The process can continue until $k \le n$, so we have
 - $R^m \subset R^k$
- Therefore

$$R^* = \bigcup_{i=1}^n R^i = R \cup R^2 \cup ... \cup R^n$$

QED

Algorithm 1 for t(R)

- procedure transitive closure (M_R : zero-one $n \times n$ matrix)
 - $A := M_R$
 - B := A
 - for i:=2 to n
 - $A := A O M_R$
 - $B := B \vee A$
 - return B {B is the zero-one matrix for R*}

Analysis

- Complexity of Algorithm
 - $M_{R^*} = M_R \vee (M_R)_{\odot}^2 \vee ... \vee (M_R)_{\odot}^n$
 - $(n-1)*(n^2*2n+n^2)$ is $O(n^4)$.

Some definitions

- W_k : a Boolean matrix, for $1 \le k \le n$
 - W_k has a 1 in position i, j
 - If and only if
 - there is a path from a_i to a_j in R whose interior vertices, if any, come from the set $\{a_1, a_2, ..., a_k\}$
- What about W_0 W_n ?
 - $\bullet \quad \text{Let } W_0 = W_R$
 - $W_n = W_R^*$
 - $W_0, W_1, W_2, \dots, W_n$

Composition of paths

- Let
 - $\blacksquare \pi_1: a, x_1, x_2, \dots, x_{n-1}, b$
 - π_2 : $b, y_1, y_2, \dots, y_{m-1}, c$
- The composition of π_1 and π_2 is the path
 - $\pi_2 \circ \pi_1 : a, x_1, x_2, \dots, x_{n-1}, b, y_1, y_2, \dots, y_{m-1}, c$ $\boxed{ [N_2 \circ T_1] }$
 - Note the order of composition!

Example

 Consider the relation whose digraph is given in Figure and the paths

Warshall's Algorithm

- begin with the matrix of R, and
- compute each matrix W_k from the previous matrix W_{k-1} , and,
- reach W_R^* in n steps,

沃舍尔算院 Warshall's Algorithm

- Procedure Warshall(M_R : zero-one n×n matrix)
 - $W:=M_R$
 - for k:=1 to n /* 下面直接更新W*/
 - for i := 1 to n
 - for j := 1 to n
 - $W[i,j] := W[i,j] \vee (W[i,k] \wedge W[k,j])$
 - return $W \{W_n \text{ is the zero-one matrix for } R^*\}$

Wn is t(R) Proof (1)

- Proof: Use a proof by induction.
- Suppose

$$W_{k+1} = [t_{ij}]$$

- $W_k = [s_{ij}]$
- $Basis: k = 1, W_1 := M[i,j] \lor (M[i,1] \land M[1,j]).$
 - case 1: a_1 is not an interior vertex, so T[i,j] = M[i,j].
 - case 2: a_1 is an interior vertex, so T[i,j] = 1.
 - So W_I has a 1 in position i, j iff there is a path from a_i to a_j in R whose interior vertices come from the set $\{a_1\}$.

Wn is t(R) Proof (2)

- Induction:
 - The induction hypothesis:
- assume W_k has $s_{ij} = 1$, iff there is a path from a_i to a_j in R whose interior vertices, if any, come from the set $\{a_1, a_2, ..., a_k\}$.
 - Show it must be true for W_{k+1} .
 - $t_{ij} = 1$ if and only if either $s_{ij} = 1$ or $s_{i,k+1} = 1$ and $s_{k+1,j} = 1$.

W_n is t(R) Proof (3)

- case 1: $s_{ij} = 1$, then all interior vertices must actually come from the set $\{a_1, a_2, ..., a_k\}$.
- $case 2: s_{i,k+1} = 1 \text{ and } s_{k+1,j} = 1,$
 - So a_{k+1} is an interior vertex.
 - Two subpaths
 - a_i to a_{k+1} and a_{k+1} to a_j

Wn is t(R) Proof (4)

- Hence W_n has $t_{ij} = 1$, *iff* there is a path from a_i to a_j in R whose interior vertices, if any, come from the set $\{a_1, a_2, ..., a_n\}$.
- So $W_n = R^* = t(R)$.

manual operation

• *Step1*:

• First transfer to W_k all 1's in W_{k-1} .

• *Step2*:

- List the locations $p_1, p_2, ...,$ in column k of W_{k-1} , where the entry is 1.
- List the locations $q_1, q_2, ...,$ in row k of W_{k-1} , where the entry is 1.

Step3:

• Put 1's in all the positions p_i , q_j of W_k (if they are not already there)

Example (1)

- Let
 - $A=\{1, 2, 3, 4\}$
 - $= R = \{(1, 2), (2, 3), (3, 4), (2, 1)\}$
- Find the transitive closure of R.

Example

KAAA

(N1,看第到哪件为1,把这一个写的一个 坚持句。

W2 着第二例和行为1. 把色作约8 第二约3年8月

Wie 看第K到哪时制, 抱这一约与第K约

College of Computer Science & Technology, BUPT

homework

- § 9.4
 - **20**, 22, 28

Useful Results for Transitive Closure

Theorem:

- If R is transitive then so is R^n
- Trick proof: Show $(R^n)^2 = (R^2)^n \subset R^n$ だけばる
- Theorem:
 - If $R^k = R^j$ for some j > k, then $R^{j+m} = R^n$ for some $n \ge j$.
 - We don't get any new relations beyond R^{j} .