Ian Mulchrone

Fundamentals of Data Science

Homework 3

Problem 1

a.

```
CART
```

Accuracy was used to select the optimal model using the largest value. The final value used for the model was cp = 0.0251046.

Accuracy is 94.88%.

b.

c. If UniformCellSize < 2.5 then Class = "benign"
 If UniformCellSize >= 2.5 and UniformCellShape < 2.5 then Class = "benign"
 If UniformCellSize >= 2.5 and UniformCellShape >= 2.5 then Class = "malignant"

Problem 2

a.

```
2170 samples
11 predictor
5 classes: '1', '2', '3', '4', '5'

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 1953, 1953, 1952, 1952, 1952, 1954, ...
Resampling results:

Accuracy Kappa
0.8359511 0.7550537
```

Accuracy is 83.6%

Train Test

Confusion Matrix and Statistics	Confusion Matrix and Statistics							
Reference	Reference							
Prediction 1 2 3 4 5	Prediction 1 2 3 4 5							
1 867 0 0 0 0	1 216 0 0 0 0							
2 0 348 0 0 0	2 0 86 0 0 0							
3 0 0 0 233 0	3 0 0 0 58 0							
4 0 0 0 238 0	4 0 0 0 59 0							
5 0 0 0 52 0	5 0 0 0 13 0							
Overall Statistics	Overall Statistics							
Accuracy : 0.836	Accuracy : 0.8356							
95% CI : (0.8178, 0.8531)	95% CI : (0.7973, 0.8694)							
No Information Rate : 0.4988	No Information Rate : 0.5							
P-Value [Acc > NIR] : < 2.2e-16	P-Value [Acc > NIR] : < 2.2e-16							
Карра : 0.7552	Kappa : 0.7544							
Mcnemar's Test P-Value : NA	Mcnemar's Test P-Value : NA							
Statistics by Class:	Statistics by Class:							

	class: 1	class: 2	class: 3	class: 4	Class: 5	Class: 1	class: 2	class: 3	class: 4	class: 5
Sensitivity	1.0000	1.0000	NA	0.4551	NA Sensitivity	1.0	1.0000	NA	0.4538	NA
Specificity	1.0000	1.0000	0.8659	1.0000	0.97008 Specificity	1.0	1.0000	0.8657	1.0000	0.96991
Pos Pred Value	1.0000	1.0000	NA	1.0000	NA Pos Pred Value	1.0	1.0000	NA	1.0000	NA
Neg Pred Value	1.0000	1.0000	NA	0.8100	NA Neg Pred Value	1.0	1.0000	NA	0.8097	NA
Prevalence	0.4988	0.2002	0.0000	0.3009	0.00000 Prevalence	0.5	0.1991	0.0000	0.3009	0.00000
Detection Rate	0.4988	0.2002	0.0000	0.1369	0.00000 Detection Rate	0.5	0.1991	0.0000	0.1366	0.00000
Detection Prevalence	0.4988	0.2002	0.1341	0.1369	0.02992 Detection Prevalence	0.5	0.1991	0.1343	0.1366	0.03009
Balanced Accuracy	1.0000	1.0000	NA	0.7275	NA Balanced Accuracy	1.0	1.0000	NA	0.7269	NA

The train and test set confusion matrices show that the model performs very similarly on both data sets. They both have problems classifying category 3 and category 5, with neither of them being predicted in both the training and test sets. Because they are so similar in accuracy and categorization, this suggests that there is no concern for overfitting in the model.

Problem 3

a. index = createDataPartition(y=storms_clean\$category, p=0.8, list=FALSE)
train_set = storms_clean[index,]
test_set = storms_clean[-index,]

b.

	Nodes <int></int>	TrainAccuracy <dbl></dbl>	TestAccuracy <dbl></dbl>	MaxDepth <dbl></dbl>	Minsplit <dbl></dbl>	Minbucket <dbl></dbl>
Accuracy	3	0.6990794	0.6990741	1	3	3
1	5	0.8360184	0.8356481	2	5	5
11	7	0.9700806	0.9699074	3	10	10
12	7	0.9700806	0.9699074	3	15	15
13	9	1.000000	1.0000000	4	15	15
14	9	1.000000	1.0000000	4	25	25
15	9	1.000000	1.0000000	5	50	50
16	7	0.9700806	0.9699074	5	75	75
17	7	0.9700806	0.9699074	6	100	100
18	7	0.9200230	0.9027778	6	250	250
19	3	0.6990794	0.6990741	10	500	500

c. Final model: MaxDepth = 4, MinSplit = 15, Minbucket = 15

Confusion Matrix ar	nd Statistic:	5				Confusion Matrix	x and	Statist	ics			
Reference Prediction 1 2 1 867 0 2 0 348 3 0 0 4 0 0	e 3 4 5 0 0 0 0 0 0 233 0 0 0 238 0					Refere Prediction 1 1 216 2 0 3 0 4 0 5 0	2 0 0 86 0 0 58					
5 0 0 Overall Statistics						Overall Statisti	ics	-				
		88				No Informati P-Value [Acc	95% (ion Rat	te : 0.				
ı	Карра : 1						карі	pa : 1				
Mcnemar's Test P-V	√alue : NA					Mcnemar's Test	P-Val	ue : NA				
Statistics by Class	s:					Statistics by Cl	lass:					
Sensitivity Specificity	Class: 1 C 1.0000 1.0000	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000	1.00000 1.00000	Sensitivity Specificity	(1.0 1.0		1.0000 1.0000	1.0000 1.0000	1.00000

1.0000 1.00000 Pos Pred Value

1.0000 1.00000 Neg Pred Value

0.1369 0.02992 Detection Rate

0.1369 0.02992 Detection Prevalence

1.0000 1.00000 Balanced Accuracy

0.1369 0.02992 Prevalence

Test

0.03009

1.0000 1.00000

1.0000 1.00000

0.1366 0.03009

0.1366 0.03009

1.0000 1.00000

0.1366

1.0000 1.0000

0.1343

0.1343

0.1343

1.0000

1.0 1.0000 1.0000

0.1991

0.1991

0.1991

1.0000

1.0

0.5

0.5

0.5

1.0

Accuracy is 100%.

1.0000

1.0000

0.2002

0.2002

0.2002

1.0000

1.0000

1.0000

0.1341

0.1341

0.1341

1.0000

1.0000

1.0000

0.4988

0.4988

0.4988

1.0000

Pos Pred Value

Neg Pred Value

Detection Rate

Detection Prevalence

Balanced Accuracy

Prevalence

Train

Problem 4

a. CART

```
666 samples
11 predictor
2 classes: '-', '+'

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 600, 600, 599, 599, 599, 599, ...
Resampling results:

Accuracy Kappa
0.8844188 0.7668954
```

Overall b. bool1TRUE 179.282437 cont4 97.700068 bool2TRUE 85.622001 72.799821 ages cont3 64.343416 cont6 26.828499 cont5 25.877602 cont2 9.619683 cont1 5.645976 1.504253 credit.score bool3TRUE 0.000000

c.


```
d. CART
```

```
666 samples
6 predictor
2 classes: '-', '+'

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 600, 599, 599, 599, 599, 600, ...
Resampling results:

Accuracy Kappa
0.8663275 0.7310903
```

The new accuracy is 86.63%, down from 88.44% in the full model.

Tree 2

The tree with fewer variables is smaller than the first. With all the variables, the tree has 15 nodes and it is reduced to 13 when using only the top 6 most important variables. The depth, however, remains unchanged at 6 for both trees.