Zadaci

Zadatak 1. Učitajte podatke iz prošle zadaće $(X_a \ i \ y_a \ te \ X_b \ i \ y_b)$ te nove podatke $X_c \ i \ y_c$. Postavite SVM modele koje ćete učiti na učitanim podacima. Koristite ugrađene klase iz modula sklearn.svm. Pratite sljedeće upute:

- 1. Primijenite model SVC s linearnom jezgrenom funkcijom na učitane podatke
- 2. Ispišite koeficijente θ_0 i θ .
- 3. Ispišite potporne vektore.
- 4. Izračunajte širinu dobivene margine.
- 5. Grafički prikažite podatke, dobivenu hiperravninu koja razdvaja podatke i potporne vektore.
- 6. Usporedite rezultate iz prošle zadaće s ovom. Odgovorite u kakvom su odnosu dobivene vrijednosti margina u prošloj zadaći i ovoj?

(Učinite to za podatke X_a, podatke X_b i X_c.)

Odaberite jedan od dva skupa podataka (X_a ili podatke X_b). Što će se dogoditi ako iz njega maknete određeni dio podataka? Koristeći *numpy.random.choice* (ili bilo koju drugu metodu), nasumično odaberite 1000 podataka te na njima ponovite gornji postupak. Usporedite rezultate s gore dobivenim (parametre, margine, potporne vektore). Što možete zaključiti o ulozi potpornih vektora?

Implementirajte funkciju hinge(x,y) koja računa broj krivo određenih predikcija modela za skup podataka x. Testirajte funkciju na vlastitom primjeru (od npr. 4-5 podataka). Sada proučite ugrađenu hinge_loss funkciju [Link] te ju pokrenite na primjeru kojeg ste odabrali, rezultati vam se moraju poklapati. Također, pokrenite vašu funkciju na nekom od SVC modela koje ste implementirali prethodno u zadatku.

Zadatak 2. Učitajte podatke $X_{-}d$, $y_{-}d$. Koristeći ugrađeni model SMV-a klasificirajte učitane podatke. Ispišite dobivene koeficijente i izračunajte širinu dobivene margine. Grafički prikažite podatke i dobivenu hiperravninu. Među podacima možete uočiti stršeće vrijednosti, kako one utječu na SVM?

Zadatak 3. Učitajte podatke $X_{-}e$, $y_{-}e$. Podijelite skup primjera na skup za učenje i skup za testiranje u omjeru 80%:20%. Trenirajte SVM model na podacima za učenje, zatim ispišite dobivene koeficijente i izračunajte širinu dobivene margine. Ispitajte točnost modela na skupu za testiranje koristeći prethodno implementiranu hinge funkciju. Postupak ponovite više puta (npr. 10) te uprosječite rezultate.

Kao i u prethodnim zadacima grafički prikažite podatke i dobivenu hiperravninu. Možete primijetiti kako ovi podaci nisu linearno separabilni, kako to utječe na SVM?

Zadatak 4. Neka je zadana funkcija $g(z) = \frac{1}{1+e^{-z}}$. Pokažite kako je 1-g(z) = g(-z).

Zadatak 5. Izračunajte gradijent *maximum likelihood* kriterijske funkcije koju ste vidjeli na predavanju.

Zadatak 6. Neka su zadani podaci $X \in \mathbb{R}^{m \times n}$ i pripadne izlazne vrijednosti $y \in \mathbb{R}^{m \times (k-1)}$ koje označavaju pripadnost nekog podatka jednoj od klasa $0,1,\cdots,k-1$. Na ovim podacima možemo provesti proces učenja klasifikacijskog modela. Jedan od takvh modela je logistička regresija. Logistička regresija kao model funkciju koristi $h_{\theta}(x) = \frac{1}{1+e^{-\theta^T x}}$, gdje su θ parametri koje model uči. Znamo kako se učenje svodi na minimizaciju funkcije $J(\theta) = \frac{1}{m} \sum_{i=1}^m \left[-y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) - (1-y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$ te kako do rješenje tog minimizacijskog problema možemo doći gradijentnom metodom.

- 1. Implementirajte gradijentnu metodu za slučaj binarne klasifikacije (k=2). Neka vaša funkcija koja pokreće gradijentnu metodu kao argumente prima stopu učenja α i broj iteracija metode.
- 2. Isprobajte implementiranu funkciju na podacima X_a , y_a . Odaberite proizvoljno stopu učenja α i broj iteracija.
- 3. Isprobajte implementiranu funkciju na podacima X_c , y_c Kako se logistička regresija ponaša prema podacima koji imaju stršeće vrijednosti? Hiperparametre α i broj iteracija odredite koristeći metodu *pretraživanja rešetke*. Napravite rešetku koja će biti definirama vrijednostima α , npr. između 0.0001, 0.1 i brojem iteracija između 100, 200. Za svaki par hiperparametara izračunajte točnost modela (accuracy) i odaberite onaj model s najvećom točnošću.
- 4. Isprobajte implementiranu funkciju na podacima X_d , y_d . Dodatno nacrtajte graf promjene funkcije cilja kroz iteracije. Opišite dobiveni graf.

Accuracy koristite kao što je navedeno: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html

