— Logische Äquivalenzen —

Abschnitt 1: Aussagenlogik

Hier sind ein paar einfache logische Äquivalenzen. Für beliebige Formeln $\psi, \varphi, \vartheta \in AL$ gilt:

- $\neg \neg \psi \equiv \psi$ (Elimination der doppelten Negation)
- $\neg(\psi \land \varphi) \equiv \neg\psi \lor \neg\varphi$ $\neg(\psi \lor \varphi) \equiv \neg\psi \land \neg\varphi$ (De Morgan'sche Gesetze)
- $\psi \wedge (\varphi \vee \vartheta) \equiv (\psi \wedge \varphi) \vee (\psi \wedge \vartheta)$ $\psi \vee (\varphi \wedge \vartheta) \equiv (\psi \vee \varphi) \wedge (\psi \vee \vartheta)$ (Distributivgesetze)
- $\psi \to \varphi \equiv \neg \varphi \to \neg \psi$ (Kontraposition)
- $\psi \wedge (\psi \vee \varphi) \equiv \psi \vee (\psi \wedge \varphi) \equiv \psi$ (Absorption)
- $\psi \wedge \psi \equiv \psi$ $\psi \vee \psi \equiv \psi$ (Idempotenz von \wedge und \vee)
- $\psi \land \varphi \equiv \varphi \land \psi$ $\psi \lor \varphi \equiv \varphi \lor \psi$ (Kommutativität von \land und \lor)
- $\psi \wedge (\varphi \wedge \vartheta) \equiv (\psi \wedge \varphi) \wedge \vartheta$ $\psi \vee (\varphi \vee \vartheta) \equiv (\psi \vee \varphi) \vee \vartheta$ (Assoziativität von \wedge und \vee)
- $\psi \to \varphi \equiv \neg \psi \lor \varphi$
- $\psi \leftrightarrow \varphi \equiv (\psi \to \varphi) \land (\varphi \to \psi)$

Aus dem Abschnitt zu funktionaler Vollständigkeit erhalten wir folgende Äquivalenzen:

- (1) $\psi \wedge \varphi \equiv \neg(\neg \psi \vee \neg \varphi)$ $\psi \vee \varphi \equiv \neg(\neg \psi \wedge \neg \varphi)$
- (2) $\psi \lor \varphi \equiv \neg \psi \to \varphi$
- (3) $\neg \psi \equiv \psi \rightarrow 0$ (Dies folgt aus (1))
- (4) $\neg \psi \equiv 1 \oplus \psi$

Wichtige Äquivalenzen mit 0 und 1:

- $\psi \lor 0 \equiv \psi$ (Neutralität von 0 bezüglich \lor)
- $\psi \wedge 1 \equiv \psi$ (Neutralität von 1 bezüglich \wedge)
- $\psi \wedge 0 \equiv 0$ (Absorption von 0 bezüglich \wedge)
- $\psi \lor 1 \equiv 1$ (Absorption von 1 bezüglich \lor)
- $\bullet \ \psi \vee \neg \psi \equiv 1$
- $\psi \wedge \neg \psi \equiv 0$ (Tertium non datur)
- $\psi \to 0 \equiv \neg \psi$ (siehe oben (3))
- $\psi \to 1 \equiv 1$
- $1 \rightarrow \psi \equiv \psi$
- $0 \rightarrow \psi \equiv 1$
- $\psi \leftrightarrow \neg \psi \equiv 0$
- $1 \leftrightarrow \psi \equiv \psi$
- $0 \leftrightarrow \psi \equiv \neg \psi$