Problem 1 (Support vector machine)

00	YO5631027 楊敏文 ML#7	
00	$(\alpha) \phi([\alpha]) = [\alpha]$	
0	$\phi(\chi_i) = \phi[-1] = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$	
0	$\phi(\chi_2) = \phi([1]) = [1]$ $\phi(\chi_3) = \phi([1]) = [1]$	
000	$\phi(\pi_4) = \phi(\pi_3) = \pi_3$ $\phi(\pi_4) = \phi(\pi_3) = \pi_3$	
000	(b) $K(\chi_1, \chi_1) = [-1 \ 1][-1] = 3$ $K(\chi_1, \chi_2) = [-1 \ 1][-1] = 1$	
0	$K(\chi_1,\chi_2) = \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1$ $K(\chi_1,\chi_4) = \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 0$ $K(\chi_2,\chi_2) = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = 1$	
000	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
00	$K(x_3, x_4) = [111] [5] = 0$ $K(x_4, x_4) = [000] [8] = 0$	
0	$(c) L(w)b, \lambda i) = \frac{1}{2} w ^2 - \sum_{i=1}^{2} \lambda_i [y_i(w)\phi_i + b) - 1]$ $= \frac{1}{2} w ^2 - \sum_{i=1}^{2} \lambda_i [y_i(w)\phi_i + b) + \sum_{i=1}^{2} \lambda_i$	
0	W= = Aiyi pi	
0	b=1-WTDi Chryrculture	

(d)
$$S = W - \sum_{i=1}^{4} \lambda_i y_i \phi_i = 0$$

$$\frac{\partial L}{\partial L} = \sum_{i=1}^{4} \lambda_i y_i = 0$$

$$\begin{aligned} & = \frac{4}{\lambda_{1}} \lambda_{1} - \frac{1}{\lambda_{2}} \frac{2}{\lambda_{1}} \frac{1}{\lambda_{1}} \lambda_{1} y_{1} y_{1} y_{1} y_{1} y_{1} y_{2} y_{1} y_{2} \\ & = \frac{4}{\lambda_{1}} \lambda_{1} - \frac{1}{\lambda_{2}} \frac{2}{\lambda_{1}} \frac{1}{\lambda_{2}} \lambda_{1} \lambda_{2} y_{1} y_{1} y_{1} y_{1} y_{1} y_{2} y_{1} y_{2} y_{2}$$

0)

$$\int \frac{\partial Ln}{\partial \lambda} = 1 - 3\lambda_1 + \frac{1}{2}\lambda_2 - \frac{1}{2}\lambda_3 - \lambda = 0$$

$$\frac{\partial Ln}{\partial \lambda} = 1 + \frac{1}{2}\lambda_1 - \lambda_2 + \frac{1}{2}\lambda_3 + \lambda = 0$$

$$\frac{\partial Ln}{\partial \lambda} = 1 - \frac{1}{2}\lambda_1 + \frac{1}{2}\lambda_2 - \frac{1}{2}\lambda_3 - \lambda = 0$$

$$\frac{\partial Ln}{\partial \lambda} = 1 - \lambda_2 + \frac{1}{2}\lambda_3 + \lambda_4 = 0$$

$$\frac{\partial Ln}{\partial \lambda} = \lambda_1 - \lambda_2 + \frac{1}{2}\lambda_3 + \lambda_4 = 0$$

Problem 2 (Support vector machine)

(a) Develop an SVM classifier to differentiate the images of digit 0 to the images of digit 1. Use soft-

margin SVM classifier and an RBF kernel.										
cost \ gamma	2 ⁻¹⁴	2^{-13}	2 ⁻¹²	2-11	2^{-10}	2-9	2-8	2-7	2 ⁻⁶	
2 ⁻⁵	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	
2-4	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	
2-3	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	
2-2	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	
2-1	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	100	
1	99.5	99.5	99.5	99.5	99.5	99.5	99.5	100	100	
2	99.5	99.5	99.5	99.5	99.5	99.5	100	100	100	
2^2	99.5	99.5	99.5	99.5	99.5	100	100	100	100	
2 ³	99.5	99.5	99.5	99.5	100	100	100	100	100	
10 fold-validat	tion									
cost \ gamma	2-14	2 ⁻¹³	2 ⁻¹²	2-11	2 ⁻¹⁰	2-9	2 ⁻⁸	2 ⁻⁷	2 ⁻⁶	
2-5	92.9	92.9	92.9	92.9	92.9	92.9	92.9	92.9	92.9	
2-4	92.9	92.9	92.9	92.9	92.9	92.9	92.9	92.9	92.9	
2-3	92.9	92.9	92.9	92.9	92.9	92.9	92.9	92.9	92.9	
2-2	92.9	92.9	92.9	92.9	92.9	92.9	92.9	92.9	92.9	
2-1	92.9	92.9	92.9	92.9	92.9	92.9	92.9	92.9	97	
1	93	93	93	93	93	93	93	97	98.9	
2	93	93	93	93	93	93	97	98.9	99.6	
2^2	93	93	93	93	93	97	98.9	99.6	99.7	
2^3	93.1	93.1	93.1	93.1	97	98.9	99.6	99.7	99.7	

Discussion:

我們由 test data 丟入 model 可以發現,雖然差別不大(99.5~100%),但大致趨勢是 cost 和 gamma 越大,其準確率也越高。

而從 training data 的 10 fold cross-validation,則可以看到較大的差別(92.9%~99.7%),同樣的也呈現,當 cost 和 gamma 越大,其準確率也越高。

(b) Try linear and polynomial kernels with various kernel parameters. Compare and report the performance of the kernels on the test data.

Kernel: linear(-t 0)								
cost \ gamma	2-14	2-13	2-12	2-11	2-10	2-9	2-8	2-7	2 ⁻⁶

2 ⁻⁵	100	100	100	100	100	100	100	100	100
2-4	100	100	100	100	100	100	100	100	100
2-3	100	100	100	100	100	100	100	100	100
2-2	100	100	100	100	100	100	100	100	100
2-1	100	100	100	100	100	100	100	100	100
1	100	100	100	100	100	100	100	100	100
2	100	100	100	100	100	100	100	100	100
2^2	100	100	100	100	100	100	100	100	100
2^3	100	100	100	100	100	100	100	100	100
Kernel: linea	r and cr	oss-validatio	on(-t 0 –v :	10)					
cost \ gamma	$a 2^{-14}$	2 ⁻¹³	2 ⁻¹²	2 ⁻¹¹	2 ⁻¹⁰	2-9	2-8	2-7	2-6
2 ⁻⁵	98.9	99.6	99.7	99.7	99.6	99.6	99.8	99.8	99.8
2-4	98.9	99.6	99.7	99.7	99.6	99.6	99.8	99.8	99.8
2-3	98.9	99.6	99.7	99.7	99.6	99.6	99.8	99.8	99.8
2-2	98.9	99.6	99.7	99.7	99.6	99.6	99.8	99.8	99.8
2-1	98.9	99.6	99.7	99.7	99.6	99.6	99.8	99.8	99.8
1	98.9	99.6	99.7	99.7	99.6	99.6	99.8	99.8	99.8
2	98.9	99.6	99.7	99.7	99.6	99.6	99.8	99.8	99.8
22	98.9	99.6	99.7	99.7	99.6	99.6	99.8	99.8	99.8
2^3	98.9	99.6	99.7	99.7	99.6	99.6	99.8	99.8	99.8
Kernel: polyr	nomial(-	t 1)							
cost \ gamma	$a 2^{-14}$	2 ⁻¹³	2 ⁻¹²	2 ⁻¹¹	2 ⁻¹⁰	2-9	2-8	2-7	2-6
2 ⁻⁵	93	93	93	93	93	93	93	93	93
2-4	93	93	93	93	93	93	93	93	93
2-3	93	93	93	93	93	93	93	93	93
2-2	93	93	93	93	93	93	93	93	93
2-1	93	93	93	93	93	93	93	93	93
1	93	93	93	93	93	93	93	93	93
2	93	93	93	93	93	93	93	93	93

2^2	93	93	93	93	93	93	93	93	93	
23	93	93	93	93	93	93	93	93	93	
Kernel: polynomial and cross-validation(-t 1 –v 10)										
cost \ gamma	2 ⁻¹⁴	2 ⁻¹³	2-12	2-11	2-10	2-9	2-8	2 ⁻⁷	2-6	
2-5	50	50	50	50	50	50	50	50	50	
2-4	50	50	50	50	50	50	50	50	50	
2-3	50	50	50	50	50	50	50	50	50	
2-2	50	50	50	50	50	50	50	50	50	
2-1	50	50	50	50	50	50	50	50	50	
1	50	50	50	50	50	50	50	50	50	
2	50	50	50	50	50	50	50	50	50	
2^2	50	50	50	50	50	50	50	50	50	
2 ³	50	50	50	50	50	50	50	50	50	

Discussion:

由上圖分別做 linear 和 polynomial kernel 可以發現,linear 的 kernel 的辨識準確率較高,甚至大於 (a)小題使用 RBF 的準確率。上網查詢資料後,發現可能因為當 number of features 很大時(此題為 28x28=784),由 RBF kernel 投影到更高維度並不會增加準確率,反而 linear 會有較好的表現。