Singular Value Decomposition

Boston University CS 506 - Lance Galletti

Characteristics of a dataset to look for

Characteristics of a dataset to look for

Characteristics of a dataset to look for

Goal

Examine this matrix and uncover its linear algebraic properties to:

 Approximate A with a smaller matrix B that is easier to store but contains similar information as A

Goal

Examine this matrix and uncover its linear algebraic properties to:

- 1. Approximate A with a smaller matrix B that is easier to store but contains similar information as A
- 2. Dimensionality Reduction / Feature Extraction

Goal

Examine this matrix and uncover its linear algebraic properties to:

- 1. Approximate A with a smaller matrix B that is easier to store but contains similar information as A
- 2. Dimensionality Reduction / Feature Extraction
- 3. Anomaly Detection & Denoising

Definition: The vectors in a set $V = \{\vec{v}_1, ..., \vec{v}_n\}$ are **linearly independent** if

$$a_1 \overrightarrow{v}_1 + \dots + a_n \overrightarrow{v}_n = \overrightarrow{o}$$

can only be satisfied by $\mathbf{a_i} = \mathbf{0}$

Note: this means no vector in that set can be expressed as a **linear combination** of other vectors in the set.

Definition:

The **determinant** of a square matrix A is a scalar value that encodes properties about the **linear mapping** described by A.

2x2:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 $\det(A) = \operatorname{ad} - \operatorname{bc}$

Definition:

The **determinant** of a square matrix A is a scalar value that encodes properties about the **linear mapping** described by A.

3x3:

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} det(A) = a \cdot det\begin{pmatrix} e & f \\ h & i \end{pmatrix} - b \cdot det\begin{pmatrix} d & f \\ g & i \end{pmatrix} + c \cdot det\begin{pmatrix} d & e \\ g & h \end{pmatrix}$$

Definition:

The **determinant** of a square matrix A is a scalar value that encodes properties about the **linear mapping** described by A.

n X n:

Can recursively compute it. How?

Property:

n vectors $\{\vec{v}_1, ..., \vec{v}_n\}$ in an n-dimensional space are **linearly independent** iff the matrix **A**:

$$A = [\overrightarrow{V}_1, ..., \overrightarrow{V}_n] (n \times n)$$

has non-zero determinant.

Q: Can **m** > **n** vectors in an **n**-dimensional space be linearly independent?

Definition:

The **rank** of a matrix **A** is the dimension of the vector space spanned by its column space. This is equivalent to the maximal number of linearly independent columns / rows of **A**.

Definition:

A matrix A is full-rank iff rank(A) = min(m, n)

Note: Get the rank of a matrix through the Gram-Schmidt process

Matrix Factorization

Any matrix **A** of rank **k** can be factored as

$$A = UV$$

where

U is n x k V is k x m

Matrix Factorization

To store an **n x m** matrix **A** requires storing **m** · **n** values.

However, if the rank of the matrix of **A** is **k**, since **A** can be factored as

$$A = UV$$

which requires storing **k(m + n)** values.

In Practice

Most datasets are full rank despite containing a lot of redundant /similar information...

In Practice

Most datasets are full rank despite containing a lot of redundant /similar information...

In Practice

Most datasets are full rank despite containing a lot of redundant /similar information...

But we might be able to approximate the dataset with a lower rank one that contains similar information.

Goal:

Approximate **A** with **A**^(k) (low-rank matrix) such that

- **1. d(A, A^(k))** is small
- 2. **k** is small compared to **m** & **n**

Frobenius Distance

$$d_F(A, B) = ||A - B||_F = \sqrt{\sum_{i,j} (a_{ij} - b_{ij})^2}$$

i.e. the pairwise sum of squares difference in values of A and B

Definition:

When **k < rank(A)**, the **rank-k approximation** of **A** (in the least squares sense) is

$$A^{(k)} = \underset{\{B|rank(B)=k\}}{\operatorname{arg\,min}} d_F(A, B)$$

Matrix Factorization Improved

Not only can we factorize a matrix \mathbf{A} of rank \mathbf{k} as $\mathbf{A} = \mathbf{UV}$. But we can factorize \mathbf{A} using a process called Singular Value Decomposition where:

$$A = U\Sigma V^T$$

Definition:

The Singular Value Decomposition of a rank-r matrix A has the form

$$A = U\Sigma V^T$$

where

U is n x r

The **columns** of **U** are orthogonal & unit length ($U^TU = I$)

V is m x r

The **columns** of **V** are orthogonal & unit length ($V^TV = I$)

Definition:

The Singular Value Decomposition of a rank-r matrix A has the form

$$A = U\Sigma V^{T}$$

where
$$\Sigma = \begin{pmatrix} \sigma_1 & & & 0 \\ & \sigma_2 & & \\ & & \ddots & \\ 0 & & & \sigma_r \end{pmatrix}$$

with
$$\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r > 0$$

 σ_i is the square root of the eigenvalues of A^TA and are called **singular values**

Find $A^{(k)}$ by decomposing A:

$$A = \begin{pmatrix} U_1 & U_2 \end{pmatrix} \begin{pmatrix} \Sigma_1 & & \\ & \Sigma_2 \end{pmatrix} \begin{pmatrix} V_1 & V_2 \end{pmatrix}$$

$$\mathbf{A}^{(k)} = \mathbf{U}_1 \mathbf{\Sigma}_1 \mathbf{V}_1^{\mathsf{T}}$$

Where

 U_1 is $\mathbf{n} \times \mathbf{k}$ Σ_1 is $\mathbf{k} \times \mathbf{k}$ V_1 is $\mathbf{m} \times \mathbf{k}$

1	1	1	0	0
2	2	2	0	0
1	1	1	0	0
5	5	5	0	0
0	0	0	2	2
0	0	0	3	3
0	0	0	1	1

0.18	0
0.36	0
0.18	0
0.90	0
0	0.53
0	0.80
0	0.27

9.64	0
0	5.29

0.58	0.58	0.58	0	0
0	0	0	0.71	0.71

1	1	1	0	0
2	2	2	0	0
1	1	1	0	0
5	5	5	0	0
0	0	0	2	2
0	0	0	3	3
0	0	0	1	1

0.18	0
0.36	0
0.18	0
0.90	0
0	0.53
0	0.80
0	0.27

9.64	0
0	0

0.58	0.58	0.58	0	0
0	0	0	0.71	0.71

1	1	1	0	0
2	2	2	0	0
1	1	1	0	0
5	5	5	0	0
0	0	0	2	2
0	0	0	3	3
0	0	0	1	1

0.18	0
0.36	0
0.18	0
0.90	0
0	0.53
0	0.80
0	0.27

9.64	0
0	0

X

0.58	0.58	0.58	0	0
0	0	0	0.71	0.71

1	1	1	0	0
2	2	2	0	0
1	1	1	0	0
5	5	5	0	0
0	0	0	2	2
0	0	0	3	3
0	0	0	1	1

1	1	1	0	0
2	2	2	0	0
1	1	1	0	0
5	5	5	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

The **i**th **singular vector** represents the direction of the ith most variance.

$$\Sigma = \begin{pmatrix} \sigma_1 & & & 0 \\ & \sigma_2 & & \\ & & \ddots & \\ 0 & & & \sigma_r \end{pmatrix}$$

Singular Values express the importance / significance of a singular vector

Property:

$$d_F(A, A^{(k)})^2 = \sum_{i=k+1}^r \sigma_i^2$$

Note: the larger **k** is, the smaller the distance.

To find the right **k** you can:

- 1. Look at the singular value plot to find the elbow point
- 2. Look at the residual error of choosing different **k**

Related to Principal Component Analysis (PCA)

SVD and PCA are related

See demo

Dimensionality Reduction

Idea: project the data onto a subspace generated from a subset of singular vectors / principal components.

We want to project onto the components that capture most of the variance / information in the data.

Which principal component should we project on?

Anomaly Detection

Define $O = A - A^{(k)}$

The largest rows of **O** could be considered anomalies