An Application of the Probabilistic Method to Sum-Free Sets Bharath Jaladi

Lecture Given at PACT 2017: July 25^{th} , 2017 | Updated: September 19^{th} , 2017 | Inspired by and expanded upon a lecture given by Mark Braverman at PACT 2014

Definition A set S is said to be sum-free when, for any two elements $a, b \in S$ (not necessarily distinct), $a + b \notin S$.

Theorem (Erdös) Every nonempty set $B = \{b_1, b_2, ..., b_n\}$ of n non-zero integers contains a sum-free subset A such that $|A| > \frac{n}{3}$.

Proof.

Lemma 1 There exist infinitely many primes p of the form $p = 3j + 2, j \in \mathbb{Z}^+$.

Proof. Assume for the sake of contradiction that there exist finitely many primes p of the form $p=3j+2, k\in\mathbb{Z}^+$. In particular, note here that because j>0, any prime of this form must be greater than 2 and odd. Suppose there are h such primes, $p_1, p_2, ..., p_h$. Clearly, $p_1p_2\cdots p_h$ must be some odd positive integer, g. Consider $P=3p_1p_2\cdots p_h+2$. Note that P is odd and an integer greater than 1. Thus, it must be the case that P is composite, else there would be a contradiction, as it is of the form 3g+2. As such, P must be able to be expressed as the product of odd primes. It can be seen, however, that P is not divisible by 3 or any prime $p_1, p_2, ..., p_h$, as each is a divisor of P-2 and greater than 2. Further, note that any number of the form 3j+3 for $j\in\mathbb{Z}^+$ is divisible by 3 and thus not prime. As a result, P must be able to be expressed as the product of odd primes of the form 3j+1 for $j\in\mathbb{Z}^+$. Suppose the prime factorization of P consists of f such primes (not necessarily distinct), $p'_1, p'_2, ..., p'_f$. That is, P can be expressed as $(3p'_1+1)(3p'_2+1)\cdots(3p'_f+1)$. However, this product will be of the form 3e+1 for some $e\in\mathbb{Z}^+$ (that is, $P\equiv 1\pmod 3$), which is a contradiction, as P was defined to be 3g+2 (that is, $P\equiv 2\pmod 3$).

Let r=3k+2 be a prime such that $r>2\max_i b_i$. Such a prime must exist by Lemma 1. Consider the set $C=\{k+1,k+2,...,2k+1\}$. Note that the elements of C are a subset of the possible values of $a \mod r$ for $a \in \mathbb{Z}$. Let c,d be arbitrary but particular elements of C (not necessarily distinct). It can be seen that $k+1 \le c,d$, and as such, $(k+1)+(k+1)=2k+2\le c+d$. As 2k+2 is greater than the largest element of C, 2k+1, it is clear that C is a sum-free set.

Definition Denote a set S as sum-free with respect to mod c when, for any two elements $a, b \in S$ (not necessarily distinct), $a + b \pmod{c} \notin S$.

C was already shown to be sum-free. With an additional observation, it can be seen that C is sum-free with respect to mod r. Once again consider arbitrary but particular $c, d \in C$ (not necessarily distinct). Clearly, $2k + 1 \ge c, d$. Thus, $c + d \le (2k + 1) + (2k + 1) = 4k + 2 \equiv k$

 \pmod{r} . As such, C can be denoted as sum-free with respect to mod r.

Lemma 2 For any integers x, y, z and $u \in \mathbb{R}$, if $ux \mod w$, $uy \mod w$, and $uz \mod w$ are elements of a set D that is sum-free and sum-free with respect to mod w, then $x + y \neq z$.

Proof. Let $ux \mod w = x'$, $uy \mod w = y'$, and $uz \mod w = z'$. As D is sum-free, it is immediately seen that $x'+y' \neq z'$. ux, uy, and uz can be expressed ux = ra+x', uy = rb+y', and uz = rc+z' for some integers a, b, c. Assume for the sake of contradiction that x+y=z, that is, $\frac{ra+x'}{u} + \frac{rb+y'}{u} = \frac{rc+z'}{u}$. Thus, we have the following.

$$\frac{ra + x'}{u} + \frac{rb + y'}{u} = \frac{rc + z'}{u}$$

$$ra + x' + rb + y' = rc + z'$$

$$a + \frac{x'}{r} + b + \frac{y'}{r} = c + \frac{z'}{r}$$

$$(a + b) + \frac{x' + y'}{r} = c + \frac{z'}{r}$$

In the exact same manner as in the proof of Lemma 2, it can be seen that $0 \le x', y', z' \le r - 1$, thus, $0 \le x' + y' \le 2r - 2$. a, b, c are integers, thus, it must be the case that the fractional part of $\frac{x'+y'}{r}$ must equal $\frac{z'}{r}$. That is, $x'+y' \pmod{r} = z'$, which is a contradiction. \square

Select a q uniformly at random from [1..r-1] and consider the set $A = \{b_i \mid qb_i \pmod{r} \in C\}$. By Lemma 2, A is sum-free. Note that for all i, qb_i is not divisible by r because q, $b_i < r$ and r is prime. Thus, there are 3k+1 possible values qb_i (1,2,...,3k+1) for all i. Note that for a particular b_i , as q ranges over [1..r-1], qb_i \pmod{r} ranges over all elements of C. As a result, for each i

$$Pr[qb_i \in C] = \frac{|C|}{3k+1} = \frac{k+1}{3k+1} > \frac{1}{3}.$$

Using this result, it can be seen that

$$\mathbb{E}[|A|] = \sum_{i=1}^{n} Pr[qb_i \in C] > \sum_{i=1}^{n} \frac{1}{3} > \frac{n}{3}.$$

As $\mathbb{E}[|A|] > \frac{n}{3}$, there must exist some A such that $|A| > \frac{n}{3}$. Thus, there exists a sum-free subset A of B such that $|A| > \frac{n}{3}$.