The Square Divisibility Lemma

James Costa

Proof. For any integer n, if n^2 is divisible by 2, then n is divisible by 2. (i.e. For any $n \in \mathbb{Z}$, if $2 \mid n^2$, then $2 \mid n$).

Let $n \in \mathbb{Z}$ be arbitrary. Suppose by way of contradiction that n^2 is divisible by 2 but n is not divisible by 2 (i.e. $2 \mid n^2$ and $2 \nmid n$). By The Division Algorithm, n is either even or odd (i.e. n = 2q + r for some unique $q, r \in \mathbb{Z}$, where $0 \le r < 2$). It will be demonstrated, in either case, that a contradiction occurs.

Case 1 (r = 0 meaning n is even):

By definition of even, n=2q for some $q\in\mathbb{Z}.$ So, $2\mid n,$ which contradicts the assumption that $2\nmid n.$

Case 2 (r = 1 meaning n is odd):

By definition of odd, n=2q+1 for some $q\in\mathbb{Z}$. By the distributive property, $n^2=(2q+1)^2=(2q+1)(2q+1)=4q^2+4q+1$. Factoring out 2 from the first two terms yields $n^2=2(2q^2+2q)+1$. Because $q\in\mathbb{Z}$, we have that $(2q^2+2q)\in\mathbb{Z}$. Since n^2 is odd, $2\nmid n^2$. This contradicts the assumption that $2\mid n^2$.

In both cases we yield a contradiction, meaning that our assumption that if $n \in \mathbb{Z}$, then $2 \mid n^2$ and $2 \nmid n$ is false. Therefore, if n^2 is divisible by 2, then n is divisible by 2 for any integer n.