sine basis 02

Design matrix

Statistics: p-values adjusted for search volume

SQt-	level	cluster-level				peak-level						_
						· - /- /			<u>n</u>	mm mm mm		
p	С	p_{FWE-c}	corrFDR-c	orr [^] E	$p_{ m uncorr}$	P _{FWE-c}	g corrFDR-co	orr	(Z ₌)	$p_{rac{uncorr}{uncorr}}$		
		1.000	0.802	8	0.414	1.000	0.965	2.63	2.62	0.004	0	-8 4
		1.000	0.802	8	0.414	1.000	0.965	2.63	2.62	0.004	-10	28 22
		1.000	0.802	10	0.360	1.000	0.965	2.63	2.62	0.004	-52	-60 -38
		1.000	0.802	2	0.705	1.000	0.965	2.62	2.61	0.004	32	40 34
		1.000	0.802	7	0.447	1.000	0.965	2.62	2.61	0.005	-30	-72 -38
		1.000	0.802	3	0.632	1.000	0.965	2.62	2.61	0.005	10	38 6
		1.000	0.802	8	0.414	1.000	0.965	2.62	2.61	0.005	32	18 -22
		1.000	0.802	6	0.483	1.000	0.965	2.61	2.60	0.005	10	12 40
		1.000	0.802	4	0.574	1.000	0.965	2.61	2.60	0.005	-20	-72 -28
		1.000	0.802	3	0.632	1.000	0.965	2.61	2.60	0.005	56	-36 4
		1.000	0.802	6	0.483	1.000	0.965	2.60	2.59	0.005	0	42 42
		1.000	0.802	4	0.574	1.000	0.965	2.60	2.59	0.005	4	-94 10
		1.000	0.802	2	0.705	1.000	0.971	2.59	2.58	0.005	-28	36 18
		1.000	0.802	5	0.525	1.000	0.971	2.59	2.58	0.005	-2	-16 18
		1.000	0.802	6	0.483	1.000	0.976	2.58	2.57	0.005	-24	-14 62
		1.000	0.802	2	0.705	1.000	0.976	2.58	2.57	0.005	52	-2 -34
		1.000	0.802	7	0.447	1.000	0.976	2.57	2.56	0.005	12	52 18
		1.000	0.802	3	0.632	1.000	0.985	2.56	2.55	0.005	-16	-48 8
		1.000	0.802	5	0.525	1.000	0.985	2.56	2.55	0.005	16	-80 -26
		1.000	0.802	8	0.414	1.000	0.985	2.55	2.54	0.006	-66	-18 22
		1 000	0 000	0	0 414	1.000	0.997	2.47	2.46 2.53	0.007	-66 10	-24 28 - 76 44
		1.000	0.802	0	0.414	1.000	0.985	2.54	4.53	0.006	18	-76 44

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 2.33, p = 0.010 (1.00 Ω) egrees of freedom = [1.0, 498.0]

Extent threshold: k = 0 voxels

FWHM = 7.1 6.9 7.3 mm mm mm; 3.5 3.4 3.7 {voxels}

Expected voxels per cluster, $\langle k \rangle = 12.855$ Volume: 1663728 = 207966 voxels = 4303.3 resels

Expected number of clusters, $\langle c \rangle = 185.23$ Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 44.67 voxels)

FWEp: 5.065, FDRp: Inf, FWEc: 294, FDRo? 4968