Data Warehousing and Data Mining Mini Project

Jawaharlal Nehru Technological University Anantapur, Ananthapuramu

in partial fulfillment of the requirements for the award of the degree of

BACHELOR OF TECHNOLOGY IN INFORMATION TECHNOLOGY

Submitted by

20121A1207	B. Ganesh
20121A1208	B. Vyshnavi
20121A1209	B. Venkata Bhavana
20121A1210	B. Bindhu Siva Sree
20121A1211	B. Lalith Kumar

Under the Supervision of

Ms. CH. Prathima, *M.Tech.(ph.d)*Professor
Department of Information Technology

Department of Information Technology SREE VIDYANIKETHAN ENGINEERING COLLEGE

(AUTONOMOUS)

(Affiliated to JNTUA, Ananthapuramu, Approved by AICTE, Accredited by NBA & NAAC) Sree Sainath Nagar, Tirupati – 517 102, A.P., INDIA 2022-2023

DATA SETS

Adult Data Set

Abstract: Predict whether income exceeds \$50K/yr based on census data. Also known as "Census Income" dataset.

Data Set

Data Set Characteristics:	Multivariate	Number of Instances:	48842	Area:	Social
Attribute Characteristics:	Categorical, Integer	Number of Attributes:	14	Date Donated	1996-05- 01
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	2662217

Source:

Donor:

Ronny Kohavi and Barry Becker

Data Mining and Visualization

Silicon Graphics.

e-mail: ronnyk '@' live.com for questions.

Data Set Information:

Extraction was done by Barry Becker from the 1994 Census database. A set of reasonably clean records was extracted using the following conditions: ((AAGE>16) && (AGI>100) && (AFNLWGT>1)&& (HRSWK>0))

Prediction task is to determine whether a person makes over 50K a year.

Attribute Information:

Listing of attributes:

>50K, <=50K.

age: continuous.

work class: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov,

Without-pay, Never-worked.

fnlwgt: continuous.

education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.

education-num: continuous.

marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.

occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces. relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried. race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.

sex: Female, Male.

capital-gain: continuous. capital-loss: continuous.

hours-per-week: continuous.

native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

Anuran Calls(MFCCs)

Abstract: Acoustic features extracted from syllables of anuran (frogs) calls, including the mily, the genus, and the species labels (multilabel).

Data Set Characteristic	Multivariate	Number of Instances:	7195	Area:	Life
Attribute Characteristics:	Real	Number of Attributes:	22	Date Donated	2017- 02-24
Associated Tasks:	Classification, Clustering	Missing Values?	N/A	Number of Web Hits:	71989

Source:

Eng. Juan Gabriel Colonna < juancolonna '@' icomp.ufam.edu.br>, Prof. Eduardo Freire <nakamura '@' icomp.ufam.edu.br>, Prof. Α. P. Cristo Nakamura Marco <marco.cristo '@' gmail.com>, and collaborator Prof. Biologist Marcelo Gordo <mgordo '@' ufam.edu.br> Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 1200 - Coroado I, Manaus - AM, 69067-005, Brasil.

Data Set Information:

This dataset was used in several classifications tasks related to the challenge of anuran species recognition through their calls. It is a multilabel dataset with three columns of labels. This dataset was created segmenting 60 audio records belonging to 4 different families, 8 genus, and 10 species. Each audio corresponds to one specimen (an individual frog), the record ID is also included as an extra column. We used the spectral entropy and a binary cluster method to detect audio frames belonging to each syllable. The segmentation and feature extraction were carried out in Matlab. After the segmentation we got 7195 syllables, which became instances for train and test the classifier. These records were collected in situ under real noise conditions (the background sound). Some species are from the campus of Federal University of Amazonas, Manaus, others from Mata Atlântica, Brazil, and one of them from Córdoba, Argentina. The recordings were stored in way format with 44 triangular filters. These coefficients were normalized between -1 ≤ mfcc ≤ 1. The amount of instances per class

Families:

Bufonidae 68

Dendrobatidae 542

Hylidae 2165

Leptodactylidae 4420

Genus:

Adenomera 4150

Ameerega 542

Dendropsophus 310

Hypsiboas 1593

Leptodactylus 270

Osteocephalus 114

Rhinella 68

Scinax 148

Species:

AdenomeraAndre 672

AdenomeraHylaedact… 3478

Ameeregatrivittata 542

HylaMinuta 310

HypsiboasCinerascens 472

HypsiboasCordobae 1121

LeptodactylusFuscus 270

OsteocephalusOopha… 114

Rhinellagranulosa 68

ScinaxRuber 148

Attribute Information:

Mel-frequency cepstral coefficients (MFCCs) are coefficients that collectively make up an mel-frequency cepstrum (MFC). Due to each syllable has different length, every row (i) was normalized acording to MFCCs_i/(max(abs(MFCCs_i))).

DATASET

Accelerometer

Abstract: Accelerometer data from vibrations of a cooler fan with weights on its blades. It can be used for predictions, classification and other tasks that require vibration analysis, specially in engines.

Data Set Characteristics:	Multivariate	Number of Instances:	153000	Area:	Computer
Attribute Characteristics:	Integer, Real	Number of Attributes:	5	Date Donated	2021-05-02
Associated Tasks:	Classification Regression	Missing Values?	N/A	Number of Web Hits:	52287

Source:

Gustavo Scalabrini Sampaio

gustavo.sampaio '@' mackenzista.com.br

Postgraduate Program in Electrical Engineering and Computing, Mackenzie Presbyterian University, São Paulo, Brazil.

Arnaldo Rabello de Aguiar Vallim Filho

arnaldo.aguiar '@' mackenzie.br

Computer Science Dept., Mackenzie Presbyterian University, São Paulo, Brazil.

Leilton Santos da Silva

leilton '@' emae.com.br

EMAE†" Metropolitan Company of Water & Energy, São Paulo, Brazil.

Leandro Augusto da Silva

leandroaugusto.silva '@' mackenzie.br

Postgraduate Program in Electrical Engineering and Computing, Mackenzie Presbyterian University, São Paulo, Brazil.

Donator:

Gustavo Scalabrini Sampaio

Data Set Information:

This dataset was generated for use on 'Prediction of Motor Failure Time Using An Artificial Neural Network' project (DOI: 10.3390/s19194342). A cooler fan with weights on its blades

was used to generate vibrations. To this fan cooler was attached an accelerometer to collect the vibration data. With this data, motor failure time predictions were made, using an artificial neural networks. To generate three distinct vibration scenarios, the weights were distributed in three different ways: 1) 'red' – normal configuration: two weight pieces positioned on neighboring blades; 2) 'blue' - perpendicular configuration: two weight pieces positioned on blades forming a 90Â angle; 3) 'green' - opposite configuration: two weight pieces positioned on opposite blades. A schematic diagram can be seen in figure 3 of the paper.

Devices used:

Akasa AK-FN059 12cm Viper cooling fan (Generate the vibrations) MMA8452Q accelerometer (Measure vibration)

Data collection method:

17 rotation speeds were set up, ranging from 20% to 100% of the cooler maximum speed at 5% intervals; for the three weight distribution configurations in the cooler blades. Note that the Akasa AK-FN059 cooler has 1900 rpm of max rotation speed. The vibration measurements were collected at a frequency of 20 ms for 1 min for each percentage, generating 3000 records per speed. Thus, in total, 153,000 vibration records were collected from the simulation model.

Attribute Information:

There are 5 attributes in the dataset: wconfid,pctid,x,y and z.

wconfid: Weight Configuration ID (1 - 'red' - normal configuration; 2 - 'blue' - perpendicular configuration; 3 - 'green' - opposite configuration) pctid: Cooler Fan RPM Speed Percentage ID (20 means 20%, and so on).

x: Accelerometer x value.

y: Accelerometer y value.

z: Accelerometer z value.

Data set

wconfid	pcd	х	У	Z	
1	20	1.004	0.09	-0.125	
1	20	1.004	-0.043	-0.125	
1	20	0.969	0.09	-0.121	
1	20	0.973	-0.012	-0.137	
1	20	1	-0.016	-0.121	
1	20	0.961	0.082	-0.121	
1	20	0.973	-0.055	-0.109	
1	20	1	0.012	-0.133	
1	20	0.969	-0.102	-0.141	
1	20	0.973	-0.059	-0.125	
1	20	1.012	0.043	-0.133	
1	20	0.996	-0.109	-0.148	
1	20	0.988	-0.02	-0.125	
1	20	1.012	0.043	-0.129	
1	20	0.996	-0.09	-0.152	
1	20	0.965	-0.102	-0.117	
1	20	1.004	0.055	-0.121	
1	20	0.988	-0.059	-0.141	
1	20	0.969	-0.086	-0.117	
1	20	1.039	0.094	-0.117	
1	20	0.984	0.113	-0.148	
1	20	1.008	0.012	-0.141	
1	20	0.996	0.035	-0.141	
1	20	0.988	-0.066	-0.125	
1	20	0.965	-0.156	-0.113	
1	20	0.992	0.059	-0.129	
1	20	0.992	-0.031	-0.125	
1	20	0.973	-0.133	-0.148	
1	20	1.031	0.102	-0.145	
1	20	0.984	-0.035	-0.125	
1	20	0.984	-0.004	-0.137	
1	20	1	0.098	-0.125	
1	20	1.031	-0.012	-0.129	
1	20	0.965	-0.148	-0.152	
1	20	1.012	0.102	-0.129	
1	20	1.008	-0.008	-0.133	
1	20	0.965	-0.129	-0.164	
1	20	1.004	0.145	-0.121	
1	20	1.008	0.004	-0.121	
1	20	0.984	0.027	-0.121	
1	20	1.031	0.07	-0.117	
1	20	0.977	-0.051	-0.152	
1	20	0.98	-0.094	-0.117	

T			T	ı	
1	20	1.02	0.082	-0.125	
1	20	0.98	-0.012	-0.137	
1	20	0.977	-0.09	-0.125	
1	20	1.023	0.109	-0.109	
1	20	0.992	0.008	-0.137	
1	20	1.004	0.004	-0.133	
1	20	0.996	0.078	-0.133	
1	20	1	-0.039	-0.125	
1	20	0.965	0.113	-0.117	
1	20	0.973	-0.027	-0.117	
1	20	1.008	-0.02	-0.121	
1	20	0.965	0.09	-0.121	
1	20	0.957	-0.047	-0.113	
1	20	1.012	-0.004	-0.125	
1	20	0.969	-0.051	-0.133	
1	20	1	0.121	-0.125	
1	20	1.016	0.023	-0.121	
1	20	0.988	-0.121	-0.156	
1	20	0.992	-0.035	-0.137	
1	20	1	0.039	-0.125	
1	20	0.992	-0.094	-0.156	
1	20	0.969	-0.086	-0.129	
1	20	1	0.051	-0.121	
1	20	0.984	0.082	-0.148	
1	20	1.031	0.102	-0.121	
1	20	0.996	0	-0.145	
1	20	0.973	-0.09	-0.125	
1	20	0.961	-0.023	-0.133	
1	20	0.988	0.023	-0.137	
1	20	0.984	-0.082	-0.121	
1	20	0.965	-0.152	-0.148	
1	20	0.992	0.008	-0.129	
1	20	0.996	-0.051	-0.121	
1	20	0.969	-0.141	-0.148	
1	20	0.996	0.094	-0.141	
1	20	1.027	-0.031	-0.133	
1	20	0.977	-0.09	-0.145	
1	20	0.996	0.109	-0.133	
1	20	1.047	-0.016	-0.113	
1	20	0.973	-0.133	-0.148	
1	20	0.988	0.055	-0.129	
1	20	1.02	0.008	-0.129	
1	20	1.004	0.148	-0.121	
1	20	1.023	0.078	-0.121	
1	20	0.996	-0.031	-0.137	

Classification

Data set used → ADULT DATA SET

Selecting a Classifier:

At the top of the classify section is the Classifier box. This box has a text field that gives the name of the currently selected classifier, and its options. Clicking on the text box brings up a GenericObjectEditor dialog box, just the same as for filters, that you can use to configure the options of the current classifier. The Choose button allows you to choose one of the classifiers that are available in WEKA.

Test Options:

The result of applying the chosen classifier will be tested according to the options that are set by clicking in the Test options box. There are four test modes:

- 1. Use training set. The classifier is evaluated on how well it predicts the class of the instances it was trained on.
- 2. Supplied test set. The classifier is evaluated on how well it predicts the class of a set of instances loaded from a file. Clicking the Set... button brings up a dialog allowing you to choose the file to test on.
- 3. Cross-validation. The classifier is evaluated by cross-validation, using the number of folds that are entered in the Folds text field.
- 4. Percentage split. The classifier is evaluated on how well it predicts a certain percentage of the data which is held out for testing. The amount of data held out depends on the value entered in the % field.

The Class Attribute:

The classifiers in WEKA are designed to be trained to predict a single 'class' attribute, which is the target for prediction. Some classifiers can only learn nominal classes; others can only learn numeric classes (regression problems); still others can learn both. By default, the class is taken to be the last attribute in the data. you want to train a classifier to predict a different attribute, click on the box below the Test options box to bring up a drop-down list of attributes to choose from.

Training a Classifier:

Once the classifier, test options and class have all been set, the learning process is started by clicking on the Start button. While the classifier is busy being trained, the little bird moves around. You can stop the training process at any time by clicking on the Stop button. When training is complete, several things happen. The Classifier is output area to the right of display is filled with text describing the results of training and testing. A new entry appears in the Result list box. We look at the result list below; but first we investigate the text that has been output.

The Classifier Output Text:

The text in the Classifier output area has scroll bars allowing you to browse the results. Of course, you can also resize the Explorer window to get a larger display area.

The output is split into several sections:

- 1. Run information. A list of information giving the learning scheme options, relation name, instances, attributes and test mode that were involved in the process.
- 2. Classifier model (full training set). A textual representation of the classification model that was produced on the full training data.
- 3. The results of the chosen test mode are broken down thus
- 4. Summary. A list of statistics summarizing how accurately the classifier was able to predict the true class of the instances under the chosen test mode.
- 5. Detailed Accuracy By Class. A more detailed per-class break down of the classifier's prediction accuracy.
- 6. Confusion Matrix. Shows how many instances have been assigned to each class. lements show the number of test examples whose actual class is the row and whose predicted class is the column.

Implementation in Weka:

- 1) Start □ Programs □ Weka
- 2) Click on explorer.
- 3) Click on open file.
- 4) Select dataset file and click on open.
- 5) Click on edit button which shows weather table on weka

Procedure for Constructing Decision Tree:

- 1) Open Start □ Programs □ Weka
- 2) Open explorer.
- 3) Click on open file and select adult dataset
- 4) Select Classifier option on the top of the Menu bar.
- 5) Select Choose button and click on Tree option.
- 6) Click on J48.

0

40

- 7) Click on Start button and output will be displayed on the right side of the window.
- 8) Select the result list and right click on result list and select Visualize Tree option.
- 9) Then Decision Tree will be displayed on new window.

Result

Algorithm—J-48 === Run information === Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2 Relation: adult Instances: 32560 Attributes: 15 39 State-gov 77516 **Bachelors** 13 Never-married Adm-clerical Not-in-family White Male 2174

United-States

<=50K

Test mode: evaluate on training data

```
=== Classifier model (full training set) ===
```

```
J48 pruned tree
2174 \le 6849
  Never-married = Married-civ-spouse
 0 <= 1762
      13 <= 12
        13 \le 8
           2174 <= 3942: <=50K (1606.0/149.0)
           2174 > 3942
             2174 <= 5060: <=50K (15.0/3.0)
             2174 > 5060: >50K (11.0)
         13 > 8
           2174 <= 5060
             40 <= 34: <=50K (777.0/111.0)
             40 > 34
               39 <= 35: <=50K (2505.0/532.0)
               39 > 35
                 0 <= 1504
                   Adm-clerical = Exec-managerial
                      White = White
                        State-gov = Self-emp-not-inc: \leq 50K (89.0/29.0)
                        State-gov = Private: >50K (331.0/125.0)
                        State-gov = State-gov: \leq 50K (17.0/6.0)
                        State-gov = Federal-gov: >50K (16.0/3.0)
                        State-gov = Local-gov: >50K (42.0/20.0)
                        State-gov = ?: >50K(0.0)
                        State-gov = Self-emp-inc: >50K (98.0/35.0)
                        State-gov = Without-pay: >50K(0.0)
                        State-gov = Never-worked: >50K(0.0)
                      White = Black
                        77516 <= 209236: >50K (10.0)
                        77516 > 209236
                          39 <= 45
                            77516 <= 275703: <=50K (2.0)
                            77516 > 275703: >50K (5.0/1.0)
                      | 39 > 45: <=50K (5.0)
                      White = Asian-Pac-Islander
                        40 <= 47: >50K (6.0/2.0)
```

 $| \ | \ | \ | \ | \ 40 > 47$: <=50K (9.0/1.0)

```
White = Amer-Indian-Eskimo: <=50K (6.0)
  White = Other: >50K(0.0)
Adm-clerical = Handlers-cleaners: <=50K (125.0/29.0)
Adm-clerical = Prof-specialty
  White = White
    State-gov = Self-emp-not-inc
      Not-in-family = Husband: \leq 50K (11.0/2.0)
      Not-in-family = Not-in-family: <=50K (0.0)
      Not-in-family = Wife: >50K (5.0/1.0)
      Not-in-family = Own-child: \leq 50K(0.0)
      Not-in-family = Unmarried: <=50K (0.0)
      Not-in-family = Other-relative: \leq 50K (0.0)
    State-gov = Private
      Bachelors = Bachelors: >50K(0.0)
      Bachelors = HS-grad: <=50K (30.0/14.0)
      Bachelors = 11th: >50K (0.0)
      Bachelors = Masters: >50K(0.0)
      Bachelors = 9th: >50K (0.0)
      Bachelors = Some-college
         77516 \le 111283: \le 50K (7.0/1.0)
         77516 > 111283: >50K (56.0/23.0)
      Bachelors = Assoc-acdm: >50K (14.0/5.0)
      Bachelors = Assoc-voc
         77516 \le 249585: >50K (14.0/3.0)
         77516 > 249585: <=50K (7.0/2.0)
      Bachelors = 7 \text{th-8th:} > 50 \text{K} (0.0)
      Bachelors = Doctorate: >50K(0.0)
      Bachelors = Prof-school: >50K (0.0)
      Bachelors = 5th-6th: >50K (0.0)
      Bachelors = 10th: >50K (0.0)
      Bachelors = 1\text{st-4th}: >50K (0.0)
      Bachelors = Preschool: >50K(0.0)
      Bachelors = 12th: >50K (0.0)
    State-gov = State-gov
      77516 <= 140854: <=50K (3.0)
      77516 > 140854: >50K (12.0/3.0)
    State-gov = Federal-gov: >50K (14.0/2.0)
    State-gov = Local-gov: \leq 50K (5.0/2.0)
    State-gov = ?: >50K(0.0)
    State-gov = Self-emp-inc
      39 <= 53: >50K (5.0/2.0)
      39 > 53: <=50K (2.0)
    State-gov = Without-pay: >50K(0.0)
    State-gov = Never-worked: >50K(0.0)
  White = Black
    Not-in-family = Husband: >50K (5.0/1.0)
    Not-in-family = Not-in-family: \leq 50K (0.0)
    Not-in-family = Wife: \leq 50K (4.0)
    Not-in-family = Own-child: <=50K (0.0)
    Not-in-family = Unmarried: <=50K (0.0)
```

```
Not-in-family = Other-relative: <=50K (0.0)
  White = Asian-Pac-Islander: >50K (4.0/1.0)
  White = Amer-Indian-Eskimo: \leq 50K (4.0/1.0)
  White = Other: >50K(1.0)
Adm-clerical = Other-service: <=50K (212.0/37.0)
Adm-clerical = Adm-clerical
  State-gov = Self-emp-not-inc: >50K (4.0/1.0)
  State-gov = Private
    Male = Male
      40 <= 53
        40 <= 43: <=50K (106.0/31.0)
        40 > 43
           Bachelors = Bachelors: >50K(0.0)
           Bachelors = HS-grad
             77516 <= 163847: <=50K (10.0/1.0)
             77516 > 163847: >50K (7.0/1.0)
           Bachelors = 11th: >50K (0.0)
           Bachelors = Masters: >50K(0.0)
           Bachelors = 9th: >50K (0.0)
           Bachelors = Some-college
            39 <= 39: <=50K (2.0)
            39 > 39: >50K (8.0/1.0)
           Bachelors = Assoc-acdm: >50K(0.0)
           Bachelors = Assoc-voc: >50K(0.0)
           Bachelors = 7th-8th: >50K (0.0)
           Bachelors = Doctorate: >50K(0.0)
           Bachelors = Prof-school: >50K (0.0)
           Bachelors = 5th-6th: >50K (0.0)
           Bachelors = 10th: >50K (0.0)
           Bachelors = 1\text{st-4th}: >50K (0.0)
           Bachelors = Preschool: >50K(0.0)
           Bachelors = 12th: >50K (0.0)
      40 > 53: >50K (8.0/1.0)
    Male = Female
      Bachelors = Bachelors: >50K(0.0)
      Bachelors = HS-grad
        40 \le 52
         39 <= 50: >50K (37.0/12.0)
        | 39 > 50: <=50K (15.0/2.0)
        40 > 52: <=50K (4.0)
      Bachelors = 11th: >50K (0.0)
      Bachelors = Masters: >50K(0.0)
      Bachelors = 9th: >50K (0.0)
      Bachelors = Some-college
         77516 <= 156526
          39 <= 44: <=50K (5.0)
          39 > 44
            39 <= 46: >50K (2.0)
            39 > 46: <=50K (7.0/2.0)
        77516 > 156526: >50K (21.0/4.0)
```

```
Bachelors = Assoc-acdm: >50K (2.0)
      Bachelors = Assoc-voc: >50K (3.0/1.0)
      Bachelors = 7th-8th: >50K (0.0)
      Bachelors = Doctorate: >50K(0.0)
      Bachelors = Prof-school: >50K (0.0)
      Bachelors = 5th-6th: >50K (0.0)
      Bachelors = 10th: >50K (0.0)
      Bachelors = 1st-4th: >50K(0.0)
      Bachelors = Preschool: >50K(0.0)
      Bachelors = 12\text{th}: >50K (0.0)
  State-gov = State-gov
   39 <= 45: <=50K (13.0/3.0)
   39 > 45
     39 <= 49: >50K (2.0)
   | 39 > 49: <=50K (5.0/2.0)
  State-gov = Federal-gov
    40 <= 39: <=50K (4.0)
    40 > 39: >50K (81.0/28.0)
  State-gov = Local-gov: <=50K (27.0/11.0)
  State-gov = ?: <=50K(0.0)
  State-gov = Self-emp-inc: >50K (4.0/1.0)
  State-gov = Without-pay: <=50K (0.0)
  State-gov = Never-worked: <=50K (0.0)
Adm-clerical = Sales
  State-gov = Self-emp-not-inc
    13 <= 10
      40 <= 54: <=50K (60.0/10.0)
      40 > 54
        40 <= 70
          77516 <= 126513: >50K (7.0/2.0)
          77516 > 126513: <=50K (18.0/5.0)
        40 > 70: >50K (6.0/1.0)
    13 > 10
      40 <= 55: >50K (4.0/1.0)
      40 > 55: <=50K (3.0/1.0)
  State-gov = Private
    Bachelors = Bachelors: <=50K (0.0)
    Bachelors = HS-grad: <=50K (175.0/67.0)
    Bachelors = 11th: <=50K (0.0)
    Bachelors = Masters: <=50K (0.0)
    Bachelors = 9th: <=50K (0.0)
    Bachelors = Some-college
      2174 <= 1409: >50K (146.0/63.0)
      2174 > 1409
        2174 \le 3103: >50K (4.0/1.0)
        2174 > 3103: <=50K (5.0)
    Bachelors = Assoc-acdm
      40 <= 53
        2174 <= 1506: <=50K (11.0/2.0)
        2174 > 1506: >50K (3.0/1.0)
```

```
40 > 53: >50K (5.0/1.0)
    Bachelors = Assoc-voc: <=50K (19.0/9.0)
    Bachelors = 7 \text{th-8th:} <= 50 \text{K} (0.0)
    Bachelors = Doctorate: <=50K (0.0)
    Bachelors = Prof-school: <=50K (0.0)
    Bachelors = 5th-6th: <=50K (0.0)
    Bachelors = 10th: <=50K (0.0)
    Bachelors = 1st-4th: <=50K(0.0)
    Bachelors = Preschool: <=50K (0.0)
    Bachelors = 12th: <=50K (0.0)
  State-gov = State-gov: \leq 50K (2.0/1.0)
  State-gov = Federal-gov: >50K (1.0)
  State-gov = Local-gov: <=50K (1.0)
  State-gov = ?: <=50K (0.0)
  State-gov = Self-emp-inc: >50K (71.0/28.0)
  State-gov = Without-pay: <=50K (0.0)
  State-gov = Never-worked: \leq 50K(0.0)
Adm-clerical = Craft-repair
  State-gov = Self-emp-not-inc
   39 <= 56: <=50K (101.0/19.0)
   39 > 56
      39 <= 62: >50K (12.0/4.0)
   | 39 > 62: <=50K (4.0)
  State-gov = Private
    13 <= 9: <=50K (515.0/182.0)
    13 > 9
      39 <= 48
        40 <= 47
           2174 <= 1506: <=50K (170.0/57.0)
           2174 > 1506
            39 <= 42: >50K (4.0)
            39 > 42
               2174 <= 4101: <=50K (2.0)
              2174 > 4101: >50K (3.0/1.0)
          40 > 47: > 50K (54.0/20.0)
        39 <= 59
           2174 \le 3942
             40 <= 52: >50K (80.0/23.0)
             40 > 52: <=50K (4.0/1.0)
           2174 > 3942: <=50K (5.0)
      | 39 > 59: <=50K (13.0/2.0)
  State-gov = State-gov: <=50K (22.0/6.0)
  State-gov = Federal-gov
    Bachelors = Bachelors: >50K (0.0)
    Bachelors = HS-grad: >50K (12.0/3.0)
    Bachelors = 11th: >50K (0.0)
    Bachelors = Masters: >50K(0.0)
    Bachelors = 9th: >50K (0.0)
    Bachelors = Some-college: <=50K (11.0/2.0)
```

```
Bachelors = Assoc-acdm: >50K(2.0)
    Bachelors = Assoc-voc: >50K (5.0/2.0)
    Bachelors = 7th-8th: >50K (0.0)
    Bachelors = Doctorate: >50K(0.0)
    Bachelors = Prof-school: >50K(0.0)
    Bachelors = 5th-6th: >50K (0.0)
    Bachelors = 10th: >50K (0.0)
    Bachelors = 1st-4th: >50K(0.0)
    Bachelors = Preschool: >50K (0.0)
    Bachelors = 12th: >50K (0.0)
  State-gov = Local-gov: <=50K (47.0/18.0)
  State-gov = ?: <=50K(0.0)
  State-gov = Self-emp-inc
    Bachelors = Bachelors: <=50K (0.0)
    Bachelors = HS-grad
      77516 <= 116165: <=50K (7.0)
      77516 > 116165
         40 <= 49
        | 39 <= 51: <=50K (6.0/2.0)
        | 39 > 51: >50K (2.0)
         40 > 49: > 50K (4.0)
    Bachelors = 11th: <=50K (0.0)
    Bachelors = Masters: <=50K (0.0)
    Bachelors = 9th: <=50K (0.0)
    Bachelors = Some-college
      40 <= 42: <=50K (4.0)
      40 > 42: > 50K (7.0/1.0)
    Bachelors = Assoc-acdm: \leq 50K (2.0/1.0)
    Bachelors = Assoc-voc: \leq 50K (2.0/1.0)
    Bachelors = 7 \text{th-8th:} <= 50 \text{K} (0.0)
    Bachelors = Doctorate: <=50K (0.0)
    Bachelors = Prof-school: <=50K (0.0)
    Bachelors = 5th-6th: <=50K (0.0)
    Bachelors = 10th: <=50K (0.0)
    Bachelors = 1 \text{st-4th}: <= 50 \text{K} (0.0)
    Bachelors = Preschool: <=50K (0.0)
    Bachelors = 12\text{th}: <=50\text{K} (0.0)
  State-gov = Without-pay: <=50K (0.0)
  State-gov = Never-worked: <=50K (0.0)
Adm-clerical = Transport-moving
  State-gov = Self-emp-not-inc: \leq 50K (40.0/14.0)
  State-gov = Private: <=50K (289.0/97.0)
  State-gov = State-gov
    40 <= 39: >50K (2.0)
    40 > 39: <=50K (8.0)
  State-gov = Federal-gov
    77516 <= 177499: <=50K (5.0)
    77516 > 177499: >50K (7.0/1.0)
  State-gov = Local-gov: \leq 50K (37.0/6.0)
  State-gov = ?: <=50K(0.0)
```

```
State-gov = Self-emp-inc
    Bachelors = Bachelors: >50K(0.0)
    Bachelors = HS-grad: <=50K (5.0/1.0)
    Bachelors = 11th: >50K (0.0)
    Bachelors = Masters: >50K (0.0)
    Bachelors = 9th: >50K (0.0)
    Bachelors = Some-college: >50K (5.0)
    Bachelors = Assoc-acdm: >50K(0.0)
    Bachelors = Assoc-voc: >50K(0.0)
    Bachelors = 7th-8th: >50K (0.0)
    Bachelors = Doctorate: >50K(0.0)
    Bachelors = Prof-school: >50K (0.0)
    Bachelors = 5th-6th: >50K (0.0)
    Bachelors = 10th: >50K (0.0)
    Bachelors = 1\text{st-4th}: >50K (0.0)
    Bachelors = Preschool: >50K(0.0)
    Bachelors = 12th: >50K (0.0)
  State-gov = Without-pay: <=50K (0.0)
  State-gov = Never-worked: \leq 50K(0.0)
Adm-clerical = Farming-fishing: <=50K (224.0/39.0)
Adm-clerical = Machine-op-inspct
  State-gov = Self-emp-not-inc
    13 <= 9: <=50K (3.0)
    13 > 9: >50K (4.0)
  State-gov = Private
    2174 <= 2829: <=50K (336.0/103.0)
    2174 > 2829
      2174 <= 3908: <=50K (19.0/5.0)
      2174 > 3908: >50K (8.0/1.0)
  State-gov = State-gov: >50K (4.0)
  State-gov = Federal-gov: <=50K (4.0/1.0)
  State-gov = Local-gov
    77516 <= 205706: <=50K (3.0)
    77516 > 205706: >50K (3.0/1.0)
  State-gov = ?: <=50K(0.0)
  State-gov = Self-emp-inc: <=50K (3.0)
  State-gov = Without-pay: <=50K (0.0)
  State-gov = Never-worked: <=50K (0.0)
Adm-clerical = Tech-support
  77516 <= 161857
    Bachelors = Bachelors: >50K(0.0)
    Bachelors = HS-grad
      39 <= 49: <=50K (13.0/3.0)
      39 > 49: >50K (8.0/2.0)
    Bachelors = 11th: >50K (0.0)
    Bachelors = Masters: >50K(0.0)
    Bachelors = 9th: >50K (0.0)
    Bachelors = Some-college: >50K (31.0/11.0)
    Bachelors = Assoc-acdm: \leq 50K (11.0/4.0)
    Bachelors = Assoc-voc
```

```
77516 <= 72844: <=50K (3.0)
      77516 > 72844: >50K (10.0/4.0)
    Bachelors = 7th-8th: >50K (0.0)
    Bachelors = Doctorate: >50K(0.0)
    Bachelors = Prof-school: >50K(0.0)
    Bachelors = 5th-6th: >50K (0.0)
    Bachelors = 10th: >50K (0.0)
    Bachelors = 1\text{st-4th}: >50K (0.0)
    Bachelors = Preschool: >50K(0.0)
    Bachelors = 12th: >50K (0.0)
  77516 > 161857: >50K (73.0/18.0)
Adm-clerical = ?
  13 <= 10
    Not-in-family = Husband
      Bachelors = Bachelors: <=50K (0.0)
      Bachelors = HS-grad: <=50K (98.0/27.0)
      Bachelors = 11th: <=50K (0.0)
      Bachelors = Masters: <=50K (0.0)
      Bachelors = 9th: <=50K (0.0)
      Bachelors = Some-college
         40 <= 49
           77516 <= 110445: <=50K (6.0/1.0)
           77516 > 110445
             77516 <= 263024: >50K (7.0/1.0)
             77516 > 263024: <=50K (5.0/1.0)
        40 > 49: <=50K (7.0/2.0)
      Bachelors = Assoc-acdm: <=50K (0.0)
      Bachelors = Assoc-voc: \leq 50K(0.0)
      Bachelors = 7 \text{th-8th:} <= 50 \text{K} (0.0)
      Bachelors = Doctorate: <=50K (0.0)
      Bachelors = Prof-school: <=50K (0.0)
      Bachelors = 5th-6th: <=50K (0.0)
      Bachelors = 10th: <=50K (0.0)
      Bachelors = 1 \text{st-4th}: <=50 \text{K} (0.0)
      Bachelors = Preschool: <=50K (0.0)
      Bachelors = 12th: <=50K (0.0)
    Not-in-family = Not-in-family: <=50K (1.0)
    Not-in-family = Wife
      77516 <= 179973: <=50K (5.0)
      77516 > 179973: >50K (6.0/1.0)
    Not-in-family = Own-child: <=50K (0.0)
    Not-in-family = Unmarried: \leq 50K(0.0)
    Not-in-family = Other-relative: \leq 50K(0.0)
  13 > 10: >50K (11.0/3.0)
Adm-clerical = Protective-serv
  State-gov = Self-emp-not-inc: >50K(0.0)
  State-gov = Private
    White = White: <=50K (27.0/7.0)
    White = Black
 | | 77516 <= 98361: <=50K (2.0)
```

```
77516 > 98361: >50K (7.0/2.0)
                 White = Asian-Pac-Islander: \leq 50K (0.0)
                 White = Amer-Indian-Eskimo: <=50K (0.0)
                 White = Other: <=50K (0.0)
               State-gov = State-gov
                 White = White: <=50K (28.0/7.0)
                 White = Black: >50K (3.0/1.0)
                 White = Asian-Pac-Islander: \leq 50K (0.0)
                 White = Amer-Indian-Eskimo: >50K (1.0)
                 White = Other: <=50K (0.0)
               State-gov = Federal-gov: <=50K (4.0/2.0)
               State-gov = Local-gov
                39 <= 56: >50K (73.0/21.0)
                39 > 56: <=50K (5.0)
               State-gov = ?: >50K(0.0)
               State-gov = Self-emp-inc: <=50K (2.0/1.0)
               State-gov = Without-pay: >50K(0.0)
               State-gov = Never-worked: >50K(0.0)
             Adm-clerical = Armed-Forces: <=50K (0.0)
            Adm-clerical = Priv-house-serv: <=50K (5.0)
          0 > 1504: <=50K (51.0)
    2174 > 5060
      2174 <= 6514: >50K (66.0)
      2174 > 6514: <=50K (4.0)
13 > 12
  40 <= 31
    Not-in-family = Husband: <=50K (232.0/70.0)
    Not-in-family = Not-in-family: <=50K (1.0)
    Not-in-family = Wife
      United-States = United-States: >50K (67.0/24.0)
      United-States = Cuba: >50K (1.0)
      United-States = Jamaica: >50K(0.0)
      United-States = India: >50K(0.0)
      United-States = ?: <=50K (2.0)
      United-States = Mexico: >50K (0.0)
      United-States = South: >50K(0.0)
      United-States = Puerto-Rico: >50K (0.0)
      United-States = Honduras: >50K (0.0)
      United-States = England: >50K (0.0)
      United-States = Canada: <=50K (1.0)
      United-States = Germany: >50K (0.0)
      United-States = Iran: >50K (0.0)
      United-States = Philippines: >50K (0.0)
      United-States = Italy: >50K(0.0)
      United-States = Poland: <=50K (1.0)
      United-States = Columbia: >50K (0.0)
      United-States = Cambodia: >50K (0.0)
      United-States = Thailand: >50K(0.0)
      United-States = Ecuador: >50K (0.0)
      United-States = Laos: >50K(0.0)
```

```
United-States = Taiwan: >50K (1.0)
    United-States = Haiti: >50K (0.0)
    United-States = Portugal: >50K (0.0)
    United-States = Dominican-Republic: >50K (0.0)
    United-States = El-Salvador: >50K (0.0)
    United-States = France: >50K(0.0)
    United-States = Guatemala: >50K (0.0)
    United-States = China: >50K(0.0)
    United-States = Japan: >50K(0.0)
    United-States = Yugoslavia: >50K (0.0)
    United-States = Peru: >50K (0.0)
    United-States = Outlying-US(Guam-USVI-etc): >50K (0.0)
    United-States = Scotland: >50K (0.0)
    United-States = Trinadad&Tobago: >50K (0.0)
    United-States = Greece: >50K(0.0)
    United-States = Nicaragua: >50K (0.0)
    United-States = Vietnam: >50K (0.0)
    United-States = Hong: >50K (0.0)
    United-States = Ireland: >50K (0.0)
    United-States = Hungary: >50K (0.0)
    United-States = Holand-Netherlands: >50K (0.0)
  Not-in-family = Own-child: \leq 50K (3.0/1.0)
  Not-in-family = Unmarried: <=50K (0.0)
  Not-in-family = Other-relative: <=50K (2.0)
40 > 31
 39 \le 28
   39 <= 25: <=50K (68.0/17.0)
   39 > 25
      Male = Male: <=50K (117.0/53.0)
      Male = Female: >50K (30.0/7.0)
 39 > 28
    Adm-clerical = Exec-managerial: >50K (827.0/188.0)
    Adm-clerical = Handlers-cleaners
      2174 <= 2176: <=50K (18.0/6.0)
      2174 > 2176: >50K (2.0)
    Adm-clerical = Prof-specialty
      Not-in-family = Husband: >50K (962.0/262.0)
      Not-in-family = Not-in-family: <=50K (2.0)
      Not-in-family = Wife: >50K (121.0/29.0)
      Not-in-family = Own-child: <=50K (2.0)
      Not-in-family = Unmarried: >50K(0.0)
      Not-in-family = Other-relative: \leq 50K (4.0)
    Adm-clerical = Other-service
      40 <= 52: <=50K (33.0/6.0)
      40 > 52: >50K (3.0/1.0)
    Adm-clerical = Adm-clerical
      United-States = United-States
        39 <= 61: >50K (104.0/41.0)
        39 > 61: <=50K (6.0/1.0)
    United-States = Cuba: >50K(0.0)
```

```
United-States = Jamaica: >50K(0.0)
United-States = India: <=50K (3.0)
United-States = ?: >50K (5.0/1.0)
United-States = Mexico: <=50K (3.0)
United-States = South: \leq 50K (2.0/1.0)
United-States = Puerto-Rico: >50K (0.0)
United-States = Honduras: >50K (0.0)
United-States = England: <=50K (1.0)
United-States = Canada: >50K (0.0)
United-States = Germany: >50K (2.0)
United-States = Iran: >50K(1.0)
United-States = Philippines
  Bachelors = Bachelors
   39 <= 44: >50K (9.0/1.0)
   39 > 44: <=50K (3.0)
  Bachelors = HS-grad: >50K (0.0)
  Bachelors = 11th: >50K (0.0)
  Bachelors = Masters: >50K(0.0)
  Bachelors = 9th: >50K (0.0)
  Bachelors = Some-college: >50K(0.0)
  Bachelors = Assoc-acdm: >50K (0.0)
  Bachelors = Assoc-voc: >50K(0.0)
  Bachelors = 7th-8th: >50K (0.0)
  Bachelors = Doctorate: >50K(0.0)
  Bachelors = Prof-school: <=50K (3.0/1.0)
  Bachelors = 5th-6th: >50K (0.0)
  Bachelors = 10th: >50K (0.0)
  Bachelors = 1\text{st-4th}: >50K (0.0)
  Bachelors = Preschool: >50K (0.0)
  Bachelors = 12th: >50K (0.0)
United-States = Italy: >50K (2.0)
United-States = Poland: >50K(0.0)
United-States = Columbia: >50K (0.0)
United-States = Cambodia: >50K(0.0)
United-States = Thailand: >50K (0.0)
United-States = Ecuador: >50K (0.0)
United-States = Laos: >50K (1.0)
United-States = Taiwan: >50K (0.0)
United-States = Haiti: >50K(0.0)
United-States = Portugal: >50K (0.0)
United-States = Dominican-Republic: >50K (0.0)
United-States = El-Salvador: >50K (0.0)
United-States = France: >50K(0.0)
United-States = Guatemala: >50K (0.0)
United-States = China: <=50K (1.0)
United-States = Japan: >50K (0.0)
United-States = Yugoslavia: >50K(0.0)
United-States = Peru: >50K (0.0)
United-States = Outlying-US(Guam-USVI-etc): >50K (0.0)
United-States = Scotland: >50K (0.0)
```

```
United-States = Trinadad&Tobago: >50K (0.0)
   United-States = Greece: >50K(0.0)
   United-States = Nicaragua: >50K (0.0)
   United-States = Vietnam: <=50K (1.0)
   United-States = Hong: >50K (0.0)
   United-States = Ireland: >50K(0.0)
   United-States = Hungary: >50K(0.0)
   United-States = Holand-Netherlands: >50K (0.0)
Adm-clerical = Sales
   State-gov = Self-emp-not-inc
     40 <= 46: >50K (23.0/7.0)
     40 > 46: <=50K (33.0/10.0)
   State-gov = Private
     Bachelors = Bachelors: >50K (209.0/68.0)
     Bachelors = HS-grad: >50K (0.0)
     Bachelors = 11th: >50K (0.0)
     Bachelors = Masters
      39 <= 56
         40 <= 47
        | 39 <= 51
             77516 <= 163516: <=50K (5.0/1.0)
              77516 > 163516: >50K (9.0/1.0)
           39 > 51: <=50K (2.0)
         40 > 47: >50K (9.0)
      39 > 56: <=50K (5.0/1.0)
     Bachelors = 9th: >50K (0.0)
     Bachelors = Some-college: >50K(0.0)
     Bachelors = Assoc-acdm: >50K(0.0)
     Bachelors = Assoc-voc: >50K(0.0)
     Bachelors = 7th-8th: >50K (0.0)
     Bachelors = Doctorate: <=50K (2.0)
     Bachelors = Prof-school: <=50K (6.0/2.0)
     Bachelors = 5th-6th: >50K (0.0)
     Bachelors = 10th: >50K (0.0)
     Bachelors = 1\text{st-4th}: >50K (0.0)
     Bachelors = Preschool: >50K(0.0)
     Bachelors = 12th: >50K (0.0)
   State-gov = State-gov: <=50K (1.0)
   State-gov = Federal-gov: \leq 50K (3.0/1.0)
   State-gov = Local-gov: >50K(1.0)
   State-gov = ?: >50K(0.0)
   State-gov = Self-emp-inc: >50K (62.0/16.0)
   State-gov = Without-pay: >50K(0.0)
   State-gov = Never-worked: >50K (0.0)
Adm-clerical = Craft-repair
   State-gov = Self-emp-not-inc
     Bachelors = Bachelors
       40 <= 52: <=50K (16.0/4.0)
       40 > 52: >50K (2.0)
\mid Bachelors = HS-grad: <=50K (0.0)
```

```
Bachelors = 11th: <=50K (0.0)
    Bachelors = Masters: >50K (5.0/1.0)
    Bachelors = 9th: <=50K (0.0)
    Bachelors = Some-college: \leq 50K(0.0)
    Bachelors = Assoc-acdm: \leq 50K(0.0)
    Bachelors = Assoc-voc: <=50K (0.0)
    Bachelors = 7 \text{th-} 8 \text{th}: <= 50 \text{K} (0.0)
    Bachelors = Doctorate: \leq 50K (1.0)
    Bachelors = Prof-school: <=50K (2.0)
    Bachelors = 5th-6th: <=50K (0.0)
    Bachelors = 10th: <=50K (0.0)
    Bachelors = 1 \text{st-4th}: <=50 \text{K} (0.0)
    Bachelors = Preschool: <=50K (0.0)
    Bachelors = 12th: <=50K (0.0)
  State-gov = Private: >50K (83.0/34.0)
  State-gov = State-gov: >50K(1.0)
  State-gov = Federal-gov: \leq 50K (3.0/1.0)
  State-gov = Local-gov
   39 <= 44: <=50K (6.0)
 | 39 > 44: >50K (2.0)
  State-gov = ?: >50K(0.0)
  State-gov = Self-emp-inc: \leq 50K (10.0/3.0)
  State-gov = Without-pay: >50K(0.0)
  State-gov = Never-worked: >50K(0.0)
Adm-clerical = Transport-moving
  White = White
   39 <= 44: <=50K (14.0/3.0)
   39 > 44
   | 39 <= 52: >50K (8.0/1.0)
  | 39 > 52: <=50K (5.0)
  White = Black: \leq 50K (3.0)
  White = Asian-Pac-Islander: >50K (1.0)
  White = Amer-Indian-Eskimo: \leq 50K (0.0)
  White = Other: <=50K (0.0)
Adm-clerical = Farming-fishing
  77516 <= 34574: >50K (8.0/1.0)
  77516 > 34574: <=50K (40.0/10.0)
Adm-clerical = Machine-op-inspct: <=50K (32.0/11.0)
Adm-clerical = Tech-support
  United-States = United-States: >50K (66.0/18.0)
  United-States = Cuba: >50K(0.0)
  United-States = Jamaica: >50K (0.0)
  United-States = India: <=50K (1.0)
  United-States = ?: <=50K (1.0)
  United-States = Mexico: >50K(0.0)
  United-States = South: >50K (0.0)
  United-States = Puerto-Rico: >50K (0.0)
  United-States = Honduras: >50K (0.0)
  United-States = England: <=50K (1.0)
  United-States = Canada: >50K (0.0)
```

```
United-States = Germany: >50K (0.0)
           United-States = Iran: \leq 50K (1.0)
           United-States = Philippines: >50K (2.0)
           United-States = Italy: >50K(0.0)
           United-States = Poland: >50K(0.0)
           United-States = Columbia: >50K(0.0)
           United-States = Cambodia: >50K(0.0)
           United-States = Thailand: >50K (0.0)
           United-States = Ecuador: >50K(0.0)
           United-States = Laos: >50K(0.0)
           United-States = Taiwan: >50K (0.0)
           United-States = Haiti: >50K(0.0)
           United-States = Portugal: >50K (0.0)
           United-States = Dominican-Republic: >50K (0.0)
           United-States = El-Salvador: >50K (0.0)
           United-States = France: >50K(0.0)
           United-States = Guatemala: >50K (0.0)
           United-States = China: >50K(0.0)
           United-States = Japan: >50K (0.0)
           United-States = Yugoslavia: >50K (0.0)
           United-States = Peru: >50K (0.0)
           United-States = Outlying-US(Guam-USVI-etc): >50K (0.0)
           United-States = Scotland: >50K (0.0)
           United-States = Trinadad&Tobago: >50K (0.0)
           United-States = Greece: >50K(0.0)
           United-States = Nicaragua: >50K (0.0)
           United-States = Vietnam: >50K (0.0)
           United-States = Hong: >50K(0.0)
           United-States = Ireland: >50K(0.0)
           United-States = Hungary: >50K (0.0)
           United-States = Holand-Netherlands: >50K (0.0)
        Adm-clerical = ?
           40 <= 43
             40 <= 38: >50K (2.0)
             40 > 38
               77516 <= 369909: <=50K (27.0/7.0)
               77516 > 369909: >50K (3.0)
           40 > 43: >50K (19.0/7.0)
        Adm-clerical = Protective-serv: >50K (47.0/12.0)
        Adm-clerical = Armed-Forces: >50K (0.0)
        Adm-clerical = Priv-house-serv: <=50K (1.0)
0 > 1762
  0 <= 1980: >50K (585.0/14.0)
  0 > 1980
    0 <= 2163: <=50K (63.0)
    0 > 2163
      13 <= 12
        0 \le 2174: >50K (5.0)
        0 > 2174
   | | 0 <= 2206: <=50K (14.0)
```

```
0 > 2206
               0 \le 2415
                 0 \le 2392
                   0 \le 2246: >50K (2.0)
                   0 > 2246
                  | 39 <= 67: <=50K (13.0/1.0)
                | 39 > 67: >50K (4.0/1.0)
              | 0 > 2392: >50K (10.0)
           | 0 > 2415: <=50K (10.0)
 Never-married = Divorced
  13 <= 12: <=50K (3526.0/167.0)
  13 > 12
    40 <= 43
      0 <= 1668: <=50K (455.0/52.0)
      0 > 1668
     0 \le 2231: \le 50K (12.0/1.0)
     | 0 > 2231: >50K (9.0/2.0)
    40 > 43
      Adm-clerical = Exec-managerial
        0 <= 880
           Bachelors = Bachelors: <=50K (63.0/28.0)
           Bachelors = HS-grad: <=50K (0.0)
           Bachelors = 11th: <=50K (0.0)
           Bachelors = Masters
             0 <= 0
               77516 <= 118462: <=50K (5.0/1.0)
               77516 > 118462: >50K (22.0/6.0)
             0 > 0: <=50K (2.0)
           Bachelors = 9th: <=50K (0.0)
           Bachelors = Some-college: <=50K (0.0)
           Bachelors = Assoc-acdm: <=50K (0.0)
           Bachelors = Assoc-voc: <=50K (0.0)
           Bachelors = 7 \text{th-8th:} <= 50 \text{K} (0.0)
           Bachelors = Doctorate: >50K (2.0)
           Bachelors = Prof-school: <=50K (2.0/1.0)
           Bachelors = 5th-6th: <=50K (0.0)
           Bachelors = 10th: <=50K (0.0)
           Bachelors = 1 \text{st-4th}: <=50 \text{K} (0.0)
           Bachelors = Preschool: <=50K (0.0)
           Bachelors = 12th: <=50K (0.0)
        0 > 880: > 50K (8.0)
      Adm-clerical = Handlers-cleaners: >50K (1.0)
      Adm-clerical = Prof-specialty
         State-gov = Self-emp-not-inc
           13 <= 14
             77516 <= 90338: >50K (3.0)
             77516 > 90338: <=50K (6.0/1.0)
           13 > 14: > 50K (4.0)
        State-gov = Private: <=50K (49.0/16.0)
```

```
State-gov = State-gov
          77516 <= 230657: <=50K (7.0/1.0)
          77516 > 230657: >50K (3.0)
        State-gov = Federal-gov: >50K (4.0/1.0)
        State-gov = Local-gov: \leq 50K (40.0/2.0)
        State-gov = ?: <=50K(0.0)
        State-gov = Self-emp-inc: \leq 50K (4.0/1.0)
        State-gov = Without-pay: \leq 50K(0.0)
        State-gov = Never-worked: <=50K (0.0)
      Adm-clerical = Other-service: >50K (7.0/2.0)
      Adm-clerical = Adm-clerical: \leq 50K (9.0/1.0)
      Adm-clerical = Sales: <=50K (49.0/17.0)
      Adm-clerical = Craft-repair
        77516 <= 143833: >50K (3.0/1.0)
        77516 > 143833: <=50K (5.0)
      Adm-clerical = Transport-moving: <=50K (3.0)
      Adm-clerical = Farming-fishing: <=50K (3.0)
      Adm-clerical = Machine-op-inspct: <=50K (0.0)
      Adm-clerical = Tech-support: <=50K (0.0)
      Adm-clerical = ?: <=50K (7.0)
      Adm-clerical = Protective-serv
        White = White: <=50K (6.0/2.0)
        White = Black: >50K (3.0)
        White = Asian-Pac-Islander: >50K (0.0)
        White = Amer-Indian-Eskimo: >50K (0.0)
        White = Other: >50K(0.0)
      Adm-clerical = Armed-Forces: <=50K (0.0)
      Adm-clerical = Priv-house-serv: <=50K (1.0)
Never-married = Married-spouse-absent: <=50K (410.0/26.0)
Never-married = Never-married
 13 <= 12
    0 \le 2080: \le 50K (8238.0/88.0)
    0 > 2080
   0 \le 2377: \le 50K (18.0/2.0)
      0 > 2377: >50K (9.0)
 13 > 12
   13 <= 14: <=50K (2120.0/189.0)
    13 > 14
     39 <= 32: <=50K (63.0/6.0)
     39 > 32
        0 \le 653
          Adm-clerical = Exec-managerial: >50K (11.0/2.0)
          Adm-clerical = Handlers-cleaners: >50K (0.0)
          Adm-clerical = Prof-specialty
             State-gov = Self-emp-not-inc: >50K (13.0/4.0)
             State-gov = Private
              39 <= 52
                 40 <= 42: >50K (12.0/2.0)
                 40 > 42
```

```
| | Male = Female: >50K (5.0)
            | 39 > 52: <=50K (9.0/1.0)
             State-gov = State-gov: \leq 50K (6.0/1.0)
             State-gov = Federal-gov: >50K (5.0/1.0)
             State-gov = Local-gov: \leq 50K (4.0/1.0)
             State-gov = ?: >50K(0.0)
             State-gov = Self-emp-inc: <=50K (1.0)
             State-gov = Without-pay: >50K(0.0)
             State-gov = Never-worked: >50K(0.0)
          Adm-clerical = Other-service: >50K(1.0)
          Adm-clerical = Adm-clerical: >50K(0.0)
          Adm-clerical = Sales: >50K(0.0)
          Adm-clerical = Craft-repair: >50K (1.0)
          Adm-clerical = Transport-moving: >50K (0.0)
          Adm-clerical = Farming-fishing: >50K (0.0)
          Adm-clerical = Machine-op-inspct: >50K (1.0)
          Adm-clerical = Tech-support: >50K (0.0)
          Adm-clerical = ?: <=50K (2.0/1.0)
          Adm-clerical = Protective-serv: >50K (0.0)
          Adm-clerical = Armed-Forces: >50K (0.0)
          Adm-clerical = Priv-house-serv: >50K (0.0)
     | 0 > 653: >50K (11.0)
Never-married = Separated
  13 <= 12: <=50K (885.0/22.0)
  13 > 12
    Bachelors = Bachelors
      2174 <= 4687: <=50K (85.0/10.0)
      2174 > 4687: >50K (3.0/1.0)
    Bachelors = HS-grad: \leq 50K(0.0)
    Bachelors = 11th: <=50K (0.0)
    Bachelors = Masters
      Male = Male
        Adm-clerical = Exec-managerial: >50K (4.0)
        Adm-clerical = Handlers-cleaners: >50K (0.0)
        Adm-clerical = Prof-specialty: <=50K (3.0/1.0)
        Adm-clerical = Other-service: >50K (0.0)
        Adm-clerical = Adm-clerical: >50K (0.0)
        Adm-clerical = Sales: >50K(0.0)
        Adm-clerical = Craft-repair: >50K(0.0)
        Adm-clerical = Transport-moving: >50K (0.0)
        Adm-clerical = Farming-fishing: >50K (0.0)
        Adm-clerical = Machine-op-inspct: >50K (0.0)
        Adm-clerical = Tech-support: >50K(0.0)
        Adm-clerical = ?: >50K(0.0)
        Adm-clerical = Protective-serv: >50K (0.0)
        Adm-clerical = Armed-Forces: >50K (0.0)
        Adm-clerical = Priv-house-serv: >50K (0.0)
      Male = Female: <=50K (14.0/2.0)
    Bachelors = 9th: <=50K (0.0)
    Bachelors = Some-college: <=50K (0.0)
```

```
Bachelors = Assoc-acdm: <=50K (0.0)
       Bachelors = Assoc-voc: \leq 50K(0.0)
       Bachelors = 7 \text{th-8th:} <= 50 \text{K} (0.0)
       Bachelors = Doctorate
         77516 <= 192286: <=50K (3.0)
         77516 > 192286: >50K (4.0)
       Bachelors = Prof-school
         77516 <= 129246: <=50K (2.0)
         77516 > 129246: >50K (6.0)
       Bachelors = 5th-6th: <=50K (0.0)
       Bachelors = 10th: <=50K (0.0)
       Bachelors = 1 \text{st-4th}: <= 50 \text{K} (0.0)
   Bachelors = Preschool: <=50K (0.0)
      Bachelors = 12th: <=50K (0.0)
  Never-married = Married-AF-spouse
    Bachelors = Bachelors: >50K(3.0)
     Bachelors = HS-grad: <=50K (13.0/3.0)
     Bachelors = 11th: <=50K (0.0)
     Bachelors = Masters: <=50K (0.0)
    Bachelors = 9th: <=50K (0.0)
    Bachelors = Some-college: >50K (3.0/1.0)
    Bachelors = Assoc-acdm: <=50K (2.0)
     Bachelors = Assoc-voc: >50K (1.0)
    Bachelors = 7 \text{th-8th:} <= 50 \text{K} (0.0)
    Bachelors = Doctorate: <=50K (0.0)
    Bachelors = Prof-school: <=50K (0.0)
     Bachelors = 5th-6th: <=50K (0.0)
    Bachelors = 10th: <=50K (0.0)
    Bachelors = 1 \text{st-4th}: <= 50 \text{K} (0.0)
    Bachelors = Preschool: <=50K (0.0)
    Bachelors = 12th: <=50K (0.0)
Never-married = Widowed: <=50K (973.0/65.0)
2174 > 6849
  13 <= 10
    40 <= 35
    | 39 <= 27: <=50K (5.0)
      39 > 27
         40 <= 34: >50K (29.0)
         40 > 34
           Bachelors = Bachelors: >50K (0.0)
           Bachelors = HS-grad: >50K (12.0/2.0)
           Bachelors = 11th: >50K (0.0)
           Bachelors = Masters: >50K(0.0)
           Bachelors = 9th: >50K (0.0)
           Bachelors = Some-college: <=50K (2.0)
           Bachelors = Assoc-acdm: >50K(0.0)
           Bachelors = Assoc-voc: >50K(0.0)
           Bachelors = 7th-8th: >50K (0.0)
           Bachelors = Doctorate: >50K(0.0)
           Bachelors = Prof-school: >50K (0.0)
```

```
| | | | | Bachelors = 5th-6th: >50K (0.0)
| | | | | Bachelors = 10th: >50K (0.0)
| | | | Bachelors = 1st-4th: >50K (0.0)
| Bachelors = 1st-4th: >50K (0.0)
| Bachelors = Preschool: >50K (0.0)
| A0 > 35
| 39 <= 60: >50K (384.0/4.0)
| 39 > 60
| | 2174 <= 9562: >50K (20.0)
| | 2174 > 9562
| | | 2174 <= 10566: <=50K (4.0)
| | 2174 > 10566: >50K (18.0/1.0)
| 13 > 10: >50K (925.0/2.0)
```

Number of Leaves: 719

Size of the tree: 901

Time taken to build model: 1.43 seconds

=== Evaluation on training set ===

Time taken to test model on training data: 0.17 seconds

=== Summary ===

Mean absolute error

Correctly Classified Instances 28696 88.1327 % Incorrectly Classified Instances 3864 11.8673 % Kappa statistic 0.6554

0.1794

Root mean squared error 0.2995

Relative absolute error 49.0749 %

Root relative squared error 70.0543 %

Total Number of Instances 32560

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

=== Confusion Matrix === a b <-- classified as 23454 1265 | a = <=50K 2599 5242 | b = <=50K

Output

Fig 1.1: Loading data into weka

FIG 1.2: classification

Fig 1.3,1.4,1.5,1.6: output

Fig 1.7: Tree visualization

Fig 1.8: curve visualization

Naive Bayes

Bayesian Learning provides a probabilistic approach to inference.

It is based on the assumption that the quantities of interest are governed by probability distributions and that optimal decisions can be made by reasoning about these probabilities together with observed data. Bayesian learning algorithms calculate explicit probabilities for hypotheses. Each observed training example can incrementally decrease or increase the estimated probability that a hypothesis is correct. This provides a more flexible approach to learning than algorithms that completely eliminate a hypothesis if it is found to be inconsistent with any single example. Prior knowledge can be combined with observed data to determine the final probability of a hypothesis. In Bayesian learning, prior knowledge is provided by asserting

1) a prior probability for each candidate hypothesis, and

2) a probability distribution over observed data for each possible hypothesis. Bayesian methods can accommodate hypotheses that make probabilistic predictions New instances can be classified by combining the predictions of multiple hypotheses, weighted by their probabilities.

They require initial knowledge of many probabilities. When these probabilities are not known in advance they are often estimated based on background knowledge previously available data, and assumptions about the form of the underlying distributions. They require significant computational cost. They can provide a standard of optimal decision making against which other practical methods can be measured.

Implementation in Weka:

Open Start -> Programs -> Weka

Open explorer.

Click on **open file** and select **Adult.csv**

Select **Classify option** on the top of the Menu bar.

Select Choose button and click on weka->classifier->bayes->NaiveBayes.

Click on **Start button** and output will be displayed on the **right side** of the window.

Result

```
=== Run information ===
Scheme:
            weka.classifiers.bayes.NaiveBayes
Relation:
           adult
Instances: 32560
Attributes: 15
         39
        State-gov
        77516
        Bachelors
        13
        Never-married
        Adm-clerical
        Not-in-family
        White
        Male
        2174
        0
        40
        United-States
        <=50K
Test mode: evaluate on training data
=== Classifier model (full training set) ===
Naive Bayes Classifier
                               Class
Attribute
                         <=50K
                                    >50K
                       (0.76)
                                      (0.24)
39
                       36.8489
                                  44.105
mean
 std. dev.
                        13.8031
                                  10.364
 weight sum
                        24719
                                   7841
 precision
                         1.0139
                                   1.0139
State-gov
 Self-emp-not-inc
                       1818.0
                                   725.0
 Private
                        17734.0
                                   4964.0
                        945.0
 State-gov
                                    354.0
                         90.0
 Federal-gov
                                    372.0
```

Local-gov	1477.0	618.0
?	1646.0	192.0
Self-emp-inc	495.0	623.0
Without-pay	15.0	1.0
Never-worked	8.0	1.0
[total]	24728.0	7850.0
77516		
mean	190345.459	188004.5351
std. dev.	106479.7029	0 102535.5228
weight sum	24719	7841
precision	68.0227	68.0227
Bachelors		
Bachelors	3134.0	2222.0
HS-grad	8827.0	1676.0
11th	1116.0	61.0
Masters	765.0	960.0
9th	488.0	28.0
Some-college	5905.0	1388.0
Assoc-acdm	803.0	266.0
Assoc-voc	1022.0	362.0
7th-8th	607.0	41.0
Doctorate	108.0	307.0
Prof-school	154.0	424.0
5th-6th	318.0	17.0
Priv-house-serv	149	2.0
[total]	24734.0	7856.0
Not-in-family		
Husband	7276.0	5919.0
Not-in-family	7449.0	857.0

Wife	824.0	746.0
Own-child	5002.0	68.0
Unmarried	3229.0	219.0
Other-relative	945.0	38.0
[total]	24725.0	7847.0
White		
White	20699.0	7118.0
Black	2738.0	388.0
Asian-Pac-Islander	764.0	277.0
Amer-Indian-Eskimo	276.0	37.0
Other	247.0	26.0
[total]	24724.0	7846.0
Male		
Male	15128	3.0 6663.0
Female	9593	.0 1180.0
[total]	2472	1.0 7843.0
2174		
mean		467 4029.7337
std. dev.	965.0	9 14582.8927
weight sum	2471	19 7841
precision	847.44	192 847.4492
0		
mean		3.0231 194.5982
std. dev.		0.1925 594.0944
weight sum	2	24719 7841
precision	47.8681	17 8681
precision	77.0001 4	77.0001
40		
mean	38.8175	45.4355
	- 7 -	•

std. dev.	12.3269	10.9806
weight sum	24719	7841
precision	1.0538	1.0538
United-States		
United-States	21999.0	7172.0
Cuba	71.0	26.0
Jamaica	72.0	11.0
India	61.0	41.0
?	438.0	147.0
Mexico	611.0	34.0
South	65.0	17.0
Puerto-Rico	103.0	13.0
Honduras	13.0	2.0
England	61.0	31.0
Canada	83.0	40.0
Germany	94.0	45.0
Iran	26.0	19.0
Philippines	138.0	62.0
Italy	49.0	26.0
Poland	49.0	13.0
Columbia	58.0	3.0
Cambodia	13.0	8.0
Thailand	16.0	4.0
Ecuador	25.0	5.0
Laos	17.0	3.0
Taiwan	32.0	21.0
Haiti	41.0	5.0
Portugal	34.	0 5.0
Dominican-Republic	69.0	3.0
El-Salvador	98.0	0 10.0
France	18.	0 13.0
Guatemala	6	52.0 4.0

China	56.0	21.0
Japan	39.0	25.0
Yugoslavia	11.0	7.0
Peru	30.0	3.0
Outlying-US(Guam-USVI-etc)	15.0	1.0
Scotland	10.0	4.0
Trinadad&Tobago	18.0	3.0
Greece	22.0	9.0
Nicaragua	33.0	3.0
Vietnam	63.0	6.0
Hong	15.0	7.0
Ireland	20.0	6.0
Hungary	11.0	4.0
Holand-Netherlands	2.0	1.0
[total]	24761.0	7883.0

Time taken to build model: 0.11 seconds

=== Evaluation on training set ===

Time taken to test model on training data: 0.35 seconds

=== Summary ===

C	orrectly Classified Instances	27193	83.5166 %
In	acorrectly Classified Instance	s 5367	16.4834 %
K	appa statistic	0.5032	
M	lean absolute error	0.1728	
R	oot mean squared error	0.3713	
R	elative absolute error	47.2607 %	
R	oot relative squared error	86.8377 %	
T	otal Number of Instances	32560	

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

=== Confusion Matrix ===

a b <-- classified as 23099 1620 | a = <=50K 3747 4094 | b = >50K

Output

Fig 2.1: naviebayes dataset view

Fig 2.2: naivebayes view

Fig 2.3,2.4,2.5: Result

Clustering

Clustering is the process of grouping a set of data objects into multiple groups or *clusters* o that objects within a cluster have high similarity, but are very dissimilar to objects in other clusters. Dissimilarities and similarities are assessed based on the attribute values describe escribing the objects and often involve distance measures. Clustering as a data mining tool has its roots in many application areas such as biology, security, business intelligence, and Web search.

Algorithm: *k*-means. The *k*-means algorithm for partitioning, where each cluster scenter is represented by the mean value of the objects in the cluster.

Input: *k*: the number of clusters, *D*: a data set containing *n* objects.

Output: A set of *k* clusters.

Method:

Arbitrarily choose k objects from D as the initial cluster centers; **Repeat** (Re) assign each object to the cluster to which the object is the most similar, based on the mean value of the objects in the cluster; update the cluster mew means, that is, calculate the mean value of the objects for each cluster; **until** no change;

Implementation in Weka

Steps for run K-mean Clustering algorithms in WEKA

- 1. Open WEKA Tool.
- 2. Click on WEKA Explorer.
- 3. Click on Preprocessing tab button.
- 4. Click on open file button.
- 5. Choose iris data set and open file.
- 6. Click on cluster tab and Choose k-mean and select use training set test.
- 7. Click on start button.

Result

```
=== Run information ===
```

Scheme:

weka.clusterers.SimpleKMeans -init 0 -max-candidates 100 -periodic-pruning 10000 -mindensity 2.0 -t1 -1.25 -t2 -1.0 -N 2 -A "weka.core.EuclideanDistance -R first-last" -I 500 -numslots 1 -S 10

Relation: Acmii

Instances: 7195

Attributes: 26

MFCCs_1

MFCCs_2

MFCCs_3

MFCCs_4

MFCCs_5

MFCCs_6

MFCCs_7

MFCCs_8

MFCCs_9

MFCCs_10

MFCCs_11

MFCCs_12

MFCCs_13

MFCCs_14

MFCCs_15

MFCCs_16

MFCCs_17

MFCCs_18

MFCCs_19

MFCCs_20

MFCCs_21

MFCCs_22

Family

Genus

Species

RecordID

Test mode: evaluate on training data

=== Clustering model (full training set) ===

kMeans

Number of iterations: 15

Within cluster sum of squared errors: 6667.792973183623

Initial starting points (random):

Cluster 0: 1,0.766848,0.761217,0.454927,-0.008135,0.228177,0.022602,0.142533,0.290178 0.225708,0.009719,0.457463,-0.199074,-0.295366,0.289808,0.159816,-0.117387,-0.052753 33 675, 0.074759,-0.029766,-0.218756,Hylidae,Hypsiboas,HypsiboasCinerascens,3633214 Cluster: ,0.051892,- .011486,0.471796,0.252316,0.140863,- .073924 .021872,0.215224,0.114 761,-0.258898,-0.030776,0.268448,-0.046265 0.256193,0.000348,0.226305,0.123726,- lidae, Adenomera,AdenomeraHylaedactylus,21

Missing values globally replaced with mean/mode

Final cluster centroids:

Clu	ıster#		
Full Data (7195.0)	0 (2466.0)	1 (4729.0)	
0.9899	0.9762	0.997	
0.3236	0.3733	0.2977	
0.3112	0.4467	0.2406	
0.446	0.3451	0.4986	
0.127	0.0768	0.1532	
0.0979	0.1667	0.0621	
	Full Data (7195.0) 0.9899 0.3236 0.3112 0.446 0.127	(7195.0) (2466.0) 0.9899 0.9762 0.3236 0.3733 0.3112 0.4467 0.446 0.3451 0.127 0.0768	Full Data (7195.0) (2466.0) (4729.0) 0.9899 0.9762 0.997 0.3236 0.3733 0.2977 0.3112 0.4467 0.2406 0.446 0.3451 0.4986 0.127 0.0768 0.1532

MFCCs_7	-0.0014	0.0674	-0.0373
MFCCs_8	-0.0004	-0.0263	0.0132
MFCCs_9	0.1282	0.0449	0.1716
MFCCs_10	0.056	0.0303	0.0694
MFCCs_11	-0.1157	0.0017	-0.1769
MFCCs_12	0.0434	0.0617	0.0338
MFCCs_13	0.1509	0.0138	0.2225
MFCCs_14	-0.0392	-0.024	-0.0472
MFCCs_15	-0.1017	0.0203	-0.1654
MFCCs_16	0.0421	0.0142	0.0566
MFCCs_17	0.0887	-0.0095	0.1399
MFCCs_18	0.0078	0.0155	0.0037
MFCCs_19	-0.0495	0.0159	-0.0836
MFCCs_20	-0.0532	0.0069	-0.0846
MFCCs_21	0.0373	-0.0066	0.0602
MFCCs_22	0.0876	-0.0124	0.1397
Family	Leptodactylidae	Hylidae	Leptodactylidae
Genus	Adenomera	Hypsiboas	Adenomera
Species	AdenomeraHylaedactylus	HypsiboasC	Cor AdenomeraHylaedactylus
RecordID	25.22	37.8751	18.6209

Time taken to build model (full training data): 0.22 seconds

=== Model and evaluation on training set ===

Clustered Instances

- 0 2466(34%)
- 1 4729 (66%)

Output

Fig 3.1: cluster view

Fig 3.2,3.3: Result

Fig 3.4,3.5 : data view

Linear regression

Numeric prediction is the task of predicting continuous values for given input. example, it required to predict the salary of employees with 10 years of experience, or tomorrow's tmperature. The most widely used approach for numeric prediction is regression. Regression analysis can be used to model the relationship between a set of predictor variables and a response variable (which is continuous-valued). The response variable is also referred to as the predicted attribute.

Regression analysis is a good choice when all of the predictor variables are continuous valued as well. Many problems can be solved by linear regression, and even more can be tackled by, applying transformations to the variables so that a nonlinear problem can be converted to a linear one. Several software packages exist to solve regression problems. Examples include SAS, SPSS, and S-Plus. Simple Linear regression analysis involves a response variable, y, an a single redictor variable, x. It is the simplest form of regression, and models y as a linear function of x. That is

$$y = b + wx$$

where the variance of y is assumed to be constant, and b and w are regression coefficients specifying the Y-intercept and slope of the line, respectively.

Implementation in Weka

Procedure:

- 1) Open Start -> Programs -> Weka
- 2) Open explorer.
- 3) Click on open file and select Dataset
- 4) Select Classify option on the top of the Menu bar.
- 5) Select Choose button and click on weka->classifiers->functions->Linear Regression.
- 6) Click on Start button and output will be displayed on the right side of the window.

Result

=== Run in	formation ===
Scheme:	weka.classifiers.functions.SimpleLinearRegression
Relation:	accelerometer
Instances:	153000
Attributes:	5
wc	onfid
pct	id
X	
у	
Z	
Test mode:	evaluate on training data
=== Classif	Tier model (full training set) ===
Linear regro	ession on x
-0.06 * x - 0	0.06
Predicting () if attribute value is missing.
Time taken	to build model: 0.12 seconds
=== Evalua	tion on training set ===
Time taken	to test model on training data: 0.3 seconds
=== Summ	ary ===
Correlation	coefficient 0.0912

Mean absolute error 0.2432

Root mean squared error 0.5149

Relative absolute error 99.5363 %

Root relative squared error 99.5836 %

Total Number of Instances 153000

Output

Fig 4.1:Loading data

Fig 4.2: linear regression

Fig 4.3: Result

Fig 4.4: Data View

