Teorija vjerojatnosti

po predavanjima prof. Šikića

Autor: Lovro Malada

Verzija: v0.1.20241120

Predgovor

Za ovo još nema potrebe, ali ukratko

za teoretičare.

Kod

Main, preamble, operatori, poglavlja. Simbol Xoznačava kraj pojedinog predavanja.

Povratne informacije

Ukoliko ste u toliko neizglednoj situaciji da ispunjavate sva tri sljedeća uvjeta

- (i) čitate ovaj dokument
- (ii) ne poznajete me privatno
- (iii) imate potrebu dati mi povratnu informaciju,

slobodno mi se javite. Možete me zaustaviti na faksu, odazivam se na "Lovre". Jasno, može i mail lovmala.math@pmf.hr.

Sadržaj

Pı	edgo	/or	iii
ı		Zima	7
1		Uvod	9
	1.1	Ponavljanje	9
	1.2	Slučajni elementi	13
2		Funkcije distribucije	21
	2.1	Definicije i osnovna svojstva. Funkcije distribucije slučajnih varijabli .	21
	2.2	Funkcije distribucije slučajnih vektora	38
	2.3	Vjerojatnosti na beskonačno dimenzionalnim prostorima	43
3		Matematičko očekivanje. Momenti	47
	3.1	Definicije i osnovna svojstva	47
Ш		Ljeto	55

Ι

Zima

Dio I: Sadržaj

1	Uvod
1.1	Ponavljanje
1.2	Slučajni elementi
2	Funkcije distribucije
2.1	Definicije i osnovna svojstva. Funkcije distribucije slučajnih varijabli
2.2	Funkcije distribucije slučajnih vektora
2.3	Vjerojatnosti na beskonačno dimenzionalnim prostorima
3	Matematičko očekivanje. Momenti
3.1	Definicije i osnovna svojstva

§1.1 Ponavljanje

U ovom kratkom odjeljku ponovit ćemo osnovnu terminologiju, definicije i rezultate iz male vjerojatnosti te mjere i integrala.

§1.1.i Vjerojatnosni prostor

Osnovni objekt u našim razmatranjima je uređena trojka $(\Omega, \mathcal{F}, \mathbb{P})$.

- $\Omega \neq \emptyset$... skup elementarnih događaja.
- $\mathcal{F} \subseteq \mathcal{P}(\Omega)$... σ -algebra događaja na Ω , tj. vrijedi
 - (i) $\Omega \in \mathcal{F}$,
 - (ii) $A \in \mathcal{F} \Longrightarrow A^{\mathsf{c}} \in \mathcal{F}$.
 - (iii) $(A_n)_n$ niz u $\mathcal{F} \Longrightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{F}$.
- $\mathbb{P} \colon \mathcal{F} \to [0,1] \dots$ vjerojatnost, tj. vrijedi
 - (i) $\mathbb{P}(\Omega) = 1$,
 - (ii) $(A_n)_n$ u parovima disjunktan niz u $\mathcal{F} \Longrightarrow \mathbb{P}\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$.

Za $A \in \mathcal{F}$ kažemo kako je $\mathbb{P}(A)$ vjerojatnost događaja A. Navedimo sada osnovna svojstva vjerojatnosti.

Napomena 1.1.1.

Neka je $(\Omega, \mathcal{F}, \mathbb{P})$ vjerojatnosni prostor. Tada vrijedi

- (a) $\mathbb{P}(\emptyset)=0.$ (b) Ako su $A_1,\,\ldots,\,A_n\in\mathcal{F}$ međusobno disjunktni događaji, onda vrijedi

$$\mathbb{P}(A_1 \cup \cdots \cup A_n) = \mathbb{P}(A_1) + \cdots + \mathbb{P}(A_n).$$

(c) Ako su $A, B \in \mathcal{F}$ td. $A \subseteq B$, onda je $\mathbb{P}(A) \leq \mathbb{P}(B)$.

(d) Neka je $(A_n)_n$ niz u \mathcal{F} . Tada vrijede implikacije

$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots \Longrightarrow \mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_n \mathbb{P}(A_n),$$

 $A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots \Longrightarrow \mathbb{P}\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_n \mathbb{P}(A_n).$

(e) Ako je $(A_n)_n$ niz u \mathcal{F} , onda vrijedi

$$\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq\sum_{n=1}^{\infty}\mathbb{P}(A_n).$$

- (f) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.
- (g) Za $A \in \mathcal{F}$ vrijedi $\mathbb{P}(A^{\mathsf{c}}) = 1 \mathbb{P}(A)$.

Propozicija 1.1.2.

Neka je (Ω, \mathcal{F}) izmjeriv prostor i $\mathbb{P} \colon \mathcal{F} \to [0, 1]$ konačno aditivna funkcija td. $\mathbb{P}(\Omega) = 1$. Tada je \mathbb{P} vjerojatnost ako i samo za svaki niz $(A_n)_n$ u \mathcal{F} td.

$$A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots$$
 i $\bigcap_{n \in \mathbb{N}} A_n = \emptyset$

vrijedi $\lim_n \mathbb{P}(A_n) = 0$.

Neka je $(A_n)_n$ niz u \mathcal{F} . Definiramo

$$\underline{\lim_{n}} A_{n} := \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k} \in \mathcal{F} \dots \text{ limes inferior,}$$

$$\overline{\lim_{n}} A_{n} := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k} \in \mathcal{F} \dots \text{ limes superior.}$$

Propozicija 1.1.3.

Neka je $(A_n)_n$ niz u \mathcal{F} .

- (i) $\underline{\lim}_n A_n \subseteq \overline{\lim}_n A_n$.
- (ii) $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots \Longrightarrow \underline{\lim}_n A_n = \overline{\lim}_n A_n = \bigcup_{n=1}^{\infty} A_n$.
- (iii) $A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots \Longrightarrow \underline{\lim}_n A_n = \overline{\lim}_n A_n = \bigcap_{n=1}^\infty A_n.$
- (iv) $\mathbb{P}(\underline{\lim}_n A_n) \le \liminf_n \mathbb{P}(A_n) \le \limsup_n \mathbb{P}(A_n) \le \mathbb{P}(\overline{\lim}_n A_n)$.

1 Uvod 11

(v)
$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) < +\infty \Longrightarrow \mathbb{P}(\overline{\lim}_n A_n) = 0.$$

Uz dodatnu pretpostavku nezavisnosti događaja $(A_n)_n$ vrijedi i više^a

$$\mathbb{P}(\overline{\lim}_{n} A_{n}) = \begin{cases} 0 & \text{ako } \sum_{n=1}^{\infty} \mathbb{P}(A_{n}) < +\infty \\ 1 & \text{ako } \sum_{n=1}^{\infty} \mathbb{P}(A_{n}) = +\infty. \end{cases}$$

§1.1.ii Kratki pregled nekih rezultata iz mjere i integrala

Neka je $S \neq \emptyset$ te $\mathcal{A} \subseteq \mathcal{P}(S)$. Definiramo

$$\sigma(\mathcal{A}) = \bigcap_{\substack{\mathcal{F} \text{ } \sigma-\text{algebra na } S}} \mathcal{F}.$$

Definicija je dobra budući je $\mathcal{P}(S)$ σ -algebra na S koja sadrži \mathcal{A} .

Propozicija 1.1.4.

Neka su $S_1,\,S_2$ neprazni skupovi te $h\colon S_1\to S_2$ funkcija.

- (i) Ako je S_2 σ -algebra na S_2 , onda je $h^{-1}(S_2)$ σ -algebra na S_1 .
- (ii) Ako je \mathcal{S}_1 $\sigma-$ algebra na S_1 , tada je familija

$$\left\{ E \subseteq S_2 \mid h^{-1}(E) \in \mathcal{S}_1 \right\}$$

 σ -algebra na S_2 .

Dokaz. (i) Jer je S_2 σ -algebra na S_2 , imamo $S_2 \in S_2$. Dakle, $S_1 = h^{-1}(S_2) \in h^{-1}(S_2)$. Neka je $A \in h^{-1}(S_2)$ te neka je $E \in S_2$ td. $A = h^{-1}(E)$. Tada je $E^c \in S_2$ pa imamo

$$A^{\mathsf{c}} = (h^{-1}(E))^{\mathsf{c}} = h^{-1}(E^{\mathsf{c}}) \in h^{-1}(\mathcal{S}_2).$$

Neka je sada $(A_n)_n$ niz u $h^{-1}(S_2)$. Onda postoji niz $(E_n)_n$ u S_2 td. $A_n = h^{-1}(E_n)$ za $n \in \mathbb{N}$. Posebno je $\bigcup_{n=1}^{\infty} E_n \in S_2$ pa imamo

$$\bigcup_{n=1}^{\infty} A_n = h^{-1} \left(\bigcup_{n=1}^{\infty} E_n \right) \in h^{-1}(\mathcal{S}_2).$$

(ii) Označimo familiju iz iskaza s \mathcal{H} . Jer je \mathcal{S}_1 σ -algebra na S_1 , imamo $S_1 \in \mathcal{S}_1$. Prema tome, $h^{-1}(S_2) = S_1 \in \mathcal{S}_1$ pa slijedi $S_2 \in \mathcal{H}$.

^aBorelov zakon 0-1.

Nadalje, ako $A \in \mathcal{H}$, onda $h^{-1}(A) \in \mathcal{S}_1$. Jer je \mathcal{S}_1 σ -algebra slijedi

$$h^{-1}(A^{\mathsf{c}}) = (h^{-1}(A))^{\mathsf{c}} \in \mathcal{S}_1$$

pa imamo $A^{c} \in \mathcal{H}$.

Konačno, neka je $(A_n)_n$ niz u \mathcal{H} . Onda $h^{-1}(A_n) \in \mathcal{S}_1$ pa jer je \mathcal{S}_1 σ -algebra slijedi

$$h^{-1}\left(\bigcup_{n=1}^{\infty} A_n\right) = \bigcup_{n=1}^{\infty} h^{-1}(A_n) \in \mathcal{S}_1.$$

Dakle, $\bigcup_{n=1}^{\infty} A_n \in \mathcal{H}$ i time smo gotovi.

Teorem 1.1.5.

Neka su $S_1,\ S_2$ neprazni skupovi, $\mathcal{A}_2\subseteq\mathcal{P}(S_2)$ te $h\colon S_1\to S_2$ funkcija. Tada vrijedi

$$h^{-1}(\sigma(\mathcal{A}_2)) = \sigma(h^{-1}(\mathcal{A}_2)).$$

Dokaz. $\supseteq h^{-1}(\sigma(A_2))$ je σ -algebra na S_1 koja sadrži $h^{-1}(A_2)$. Po definiciji slijedi

$$\sigma(h^{-1}(\mathcal{A}_2)) \subseteq h^{-1}(\sigma(\mathcal{A}_2)).$$

⊆ Označimo

$$\mathcal{H} := \left\{ E \subseteq S_2 \mid h^{-1}(E) \in \sigma(h^{-1}(\mathcal{A}_2)) \right\}.$$

Prema Propoziciji 1.1.4, \mathcal{H} je σ -algebra na S_2 . Sada imamo

$$A_2 \subseteq \mathcal{H} \Longrightarrow \sigma(A_2) \subseteq \mathcal{H} \Longrightarrow h^{-1}(\sigma(A_2)) \subseteq h^{-1}(\mathcal{H}) \subseteq \sigma(h^{-1}(A_2)).$$

Neka su $(\Omega_1, \mathcal{F}_1)$, $(\Omega_2, \mathcal{F}_2)$ dva izmjeriva prostora. Funkcija $f: \Omega_1 \to \Omega_2$ je izmjeriva (u paru σ -algebri $(\mathcal{F}_1, \mathcal{F}_2)$) ako je $f^{-1}(\mathcal{F}_2) \subseteq \mathcal{F}_1$.

Napomena 1.1.6.

Neka su $(\Omega_1, \mathcal{F}_1)$, $(\Omega_2, \mathcal{F}_2)$ dva izmjeriva prostora te $f \colon \Omega_1 \to \Omega_2$ izmjeriva funkcija.

(a) Neka je $(\Omega_3, \mathcal{F}_3)$ izmjeriv prostor te $g \colon \Omega_2 \to \Omega_3$ izmjeriva funkcija. Onda imamo

$$(g \circ f)^{-1}(\mathcal{F}_3) = f^{-1}(g^{-1}(\mathcal{F}_3)) \subseteq f^{-1}(\mathcal{F}_2) \subseteq \mathcal{F}_1,$$

tako da je i kompozicija $g \circ f \colon \Omega_1 \to \Omega_3$ izmjeriva.

1 Uvod 13

(b) Neka je $\mathcal{G} \subseteq \mathcal{F}_2$ generirajuća familija za \mathcal{F}_2^a . Lako vidimo kako je f izmjeriva ako i samo ako vrijedi $f^{-1}(\mathcal{G}) \subseteq \mathcal{F}_1$.

$$^{a}\sigma(\mathcal{G})=\mathcal{F}_{2}$$

Ponovimo još i koncept produktne te Borelove σ -algebre. Neka su $(\Omega_1, \mathcal{F}_1)$, $(\Omega_2, \mathcal{F}_2)$ dva izmjeriva prostora. Definiramo

$$\mathcal{G} := \{ E_1 \times E_2 \mid E_1 \in \mathcal{F}_1, E_2 \in \mathcal{F}_2 \}.$$

Gornja familija skupova općenito nije σ -algebra na skupu $\Omega_1 \times \Omega_2$, stoga definiramo $\mathcal{F}_1 \otimes \mathcal{F}_2 := \sigma(\mathcal{G})$. Alternativno, $\mathcal{F}_1 \otimes \mathcal{F}_2$ je najmanja σ -algebra u odnosu na koju su projekcije $\pi_1 : \Omega_1 \times \Omega_2 \to \Omega_1$ i $\pi_2 : \Omega_1 \times \Omega_2 \to \Omega_2$ izmjerive funkcije.

Neka je sada (X, \mathcal{U}) topološki prostor. Definiramo Borelovu σ -algebru kao $B_X := \sigma(\mathcal{U})$. Ukoliko su (X_1, \mathcal{U}_1) i (X_2, \mathcal{U}_2) dva topološka prostora, za funkciju $g \colon X_1 \to X_2$ kažemo kako je Borelova ako je izmjeriva u paru Borelovih σ -algebri (B_{X_1}, B_{X_2}) .

Uočimo odmah kako je svaka neprekidna funkcija $g: X_1 \to X_2$ Borelova.

§1.2 Slučajni elementi

Neka je $(\Omega, \mathcal{F}, \mathbb{P})$ vjerojatnosni prostor te (X, \mathcal{U}) topološki prostor.

Definicija 1.2.1. Neka je $f: \Omega \to X$ funkcija. Kažemo kako je f X-**vrijednosni** slučajni element ako je f izmjeriva u paru σ -algebri $(\mathcal{F}, \mathcal{B}_X)$.

Napomena 1.2.2.

(a) Neka je \mathcal{G} bilo koja generirajuća familija za $\mathcal{B}_X{}^a$. Tada vrijedi

$$f$$
 je X – vrijednosni slučajni element $\iff f^{-1}(\mathcal{G}) \subseteq \mathcal{F}$.

- (b) Neka je (Y, V) topološki prostor te $g\colon X\to Y$ funkcija. Ako je f X-vrijednosni slučajni element, a g Borelova, onda je $g\circ f$ Y-vrijednosni slučajni element.
- ^aNpr. \mathcal{U} ili $\{A^{\mathsf{c}} \mid A \in \mathcal{U}\}$.

Definicija 1.2.3. Definiramo sljedeće važne slučajne elemente.

• Neka je $X = \mathbb{R}$, snabdjeven euklidskom topologijom. \mathbb{R} -vrijednosni slučajni element naziva se slučajna varijabla.

- Neka je $X = \overline{\mathbb{R}}$, snabdjeven euklidskom topologijom. $\overline{\mathbb{R}}$ -vrijednosni slučajni element naziva se proširena slučajna varijabla.
- Neka je $X = \mathbb{R}^n$, snabdjeven euklidskom topologijom. \mathbb{R}^n -vrijednosni slučajni element naziva se n-dimenzionalan slučajni vektor.
- Neka je $X=\mathbb{C}$, snabdjeven euklidskom topologijom. \mathbb{C} -vrijednosni slučajni element naziva se kompleksna slučajna varijabla.

Napomena 1.2.4.

- (a) Promatramo li \mathbb{R} , imamo razne generirajuće familije za $\mathcal{B}_{\mathbb{R}}$ otvoreni skupovi, zatvoreni skupovi, poluotvoreni intervali . . .
- (b) Na \mathbb{R}^n možemo promatrati dvije prirodne σ -algebre $-\mathcal{B}_{\mathbb{R}^n}$ i $\mathcal{B}_{\mathbb{R}} \otimes \cdots \otimes \mathcal{B}_{\mathbb{R}}$. Međutim, vrijedi

$$\mathcal{B}_{\mathbb{R}^n} = \underbrace{\mathcal{B}_{\mathbb{R}} \otimes \cdots \otimes \mathcal{B}_{\mathbb{R}}}_{n \text{ puta}}.^a$$

Posebno, za funkciju $(f_1, \ldots, f_n) \colon \Omega \to \mathbb{R}^n$ vrijedi

 (f_1,\ldots,f_n) je slučajni vektor $\iff f_1,\ldots,f_n$ su slučajne varijable.

Za slučajnu varijablu X uvodimo sljedeće oznake

$$(X \in A) \longleftrightarrow \{\omega \in \Omega \mid X(\omega) \in A\}$$

 $(X \le a) \longleftrightarrow X^{-1}(\langle -\infty, a \rangle)$

itd. 🗶

§1.2.i Operacije sa slučajnim varijablama

Prisjetimo se definicije Borelove funkcije te kako je svaka neprekidna funkcija Borelova. Nadalje, iz Napomene 1.2.2 (b) imamo sljedeću propoziciju

 $[^]a \textsc{Ovakva}$ dekompozicija ne prolazi uvijek — ključna je separabilnost od $\mathbb{R}.$

1 Uvod 15

Propozicija 1.2.5.

(i) Neka je X slučajna varijabla i $g\colon \mathbb{R} \to \mathbb{R}$ Borelova funkcija. Tada je $g\circ X$ slučajna varijabla na Ω .

(ii) Neka je X n-dimenzionalni slučajni vektor na Ω i $g: \mathbb{R}^n \to \mathbb{R}^m$ Borelova funkcija. Tada je $g \circ X$ m-dimenzionalni slučajni vektor na Ω .

Primjer 1.2.6.

Neka su $X,\,X_1,\,X_2,\,\dots$ slučajne varijable. Tada su slučajne varijable i

$$Y = \sin X$$
, $Y = \cos X$, $Y = e^X$, $Y = \sum_{k=1}^{n} X_k$, $Y = \left(\sum_{k=1}^{n} X_k^2\right)^{\frac{1}{2}}$.

Korolar 1.2.7.

Neka su X_1 i X_2 slučajne varijable na Ω i $g\colon\mathbb{R}^2\to\mathbb{R}$ Borelova funkcija. Tada je funkcija $Y\colon\Omega\to\mathbb{R}$ definirana s

$$Y(\omega) = g(X_1(\omega), X_2(\omega)),$$

slučajna varijabla na Ω .

Napomena 1.2.8.

Neka je $E \subseteq \Omega$ i $X: E \to \mathbb{R}$. Kažemo kako je X slučajna varijabla (na E) ako je

$$X^{-1}(B) = \{ \omega \in E \mid X(\omega) \in B \} \in \mathcal{F},$$

za sve $B \in \mathcal{B}$. Posebno, $X^{-1}(\mathbb{R}) = E \in \mathcal{F}$, tako da je E uvijek događaj.

Neka su $X_1, X_2 \colon \Omega \to \mathbb{R}$ slučajne varijable. Definiramo

$$(X_1 \vee X_2)(\omega) := \max(X_1(\omega), X_2(\omega))$$

$$(X_1 \wedge X_2)(\omega) := \min(X_1(\omega), X_2(\omega)).$$

Pomoću gornjih funkcija, za $X \colon \Omega \to \mathbb{R}$ definiramo

$$X^+ := X \vee 0 \dots$$
 pozitivan dio funkcije X

$$X^- := (-X) \vee 0 \dots$$
 negativan dio funkcije X.

Uočimo $X^+, X^- \ge 0$ te imamo dekompozicije

$$X = X^{+} - X^{-}$$
 i $|X| = X^{+} + X^{-}$.

Teorem 1.2.9.

Neka su X_1 i X_2 slučajne varijable na Ω te $c \in \mathbb{R}$. Tada su funkcije

$$X_1+X_2, \quad X_1+c, \quad X_1X_2, \quad cX_1, \quad \frac{X_1}{X_2}, \quad |X_1|^c, \quad X_1\lor X_2, \quad X_1\land X_2, \quad X_1^+, \quad X_1^-$$

također slučajne varijable.

Dokaz. Funkcija $g: \mathbb{R}^2 \to \mathbb{R}$ dana s $g(x_1, x_2) = x_1 + x_2$ je neprekidna, tako da je i Borelova pa prema Propoziciji 1.2.5 imamo kako je $X_1 + X_2 = g(X_1, X_2)$ slučajna varijabla. Na isti način pokažemo i za sve ostale funkcije osim $\frac{X_1}{X_2}$ i $|X_1|^c$ (za $c \leq 0$), koje općenito ne moraju biti definirane na cijelom skupu Ω . Međutim, $\frac{X_1}{X_2}$ je definirana na

$$\Omega \setminus \{\omega \in \Omega \mid X_2(\omega) = 0\}.$$

Uvažavajući Napomenu 1.2.8, analogno kao gore pokažemo kako je $\frac{X_1}{X_2}$ slučajna varijabla. Slično i za $|X_1|^c$.

Korolar 1.2.10.

Xje slučajna varijabla na Ω ako i samo ako su X^+ i X^- slučajne varijable na $\Omega.$

Propozicija 1.2.11.

Neka su X_1 i X_2 slučajne varijable na Ω . Tada je svaki od sljedećih skupova također događaj

$$A := \{ \omega \mid X_1(\omega) < X_2(\omega) \},\,$$

$$B \coloneqq \{\omega \mid X_1(\omega) = X_2(\omega)\},\,$$

$$C := \{ \omega \mid X_1(\omega) \le X_2(\omega) \}.$$

Dokaz. Neka je Y dan s $Y(\omega) = X_1(\omega) - X_2(\omega)$. Prema Teoremu 1.2.9, Y je slučajna varijabla. Sada jednostavno imamo

$$A = Y^{-1}(\langle -\infty, 0 \rangle), B = Y^{-1}(\{0\}), C = Y^{-1}(\langle -\infty, 0]).$$

1 Uvod 17

Teorem 1.2.12.

Neka je $(X_n)_n$ niz slučajnih varijabli na Ω .

(i) Funkcije

$$\sup_{n} X_{n}, \quad \inf_{n} X_{n}, \quad \overline{\lim}_{n} X_{n}, \quad \underline{\lim}_{n} X_{n}$$

su slučajne varijable, a skup svih točaka iz Ω za koje niz $(X_n)_n$ konvergira je događaj.

(ii) Ako niz $(X_n)_n$ konvergira prema funkciji X na Ω , tada je i X slučajna varijabla na Ω .

Dokaz. (i) Stavimo $X(\omega) := \sup_n X_n(\omega)$. Tvrdimo kako je za $x \in \mathbb{R}$ skup $\{X \leq x\}$ događaj. Zaista,

$$\{\omega \in \Omega \mid X(\omega) \le x\} = \left\{\omega \in \Omega \mid \sup_{n} X_n(\omega) \le x\right\} = \bigcap_{n \in \mathbb{N}} \left\{\omega \in \Omega \mid X_n(\omega) \le x\right\} \in \mathcal{F}.$$

Budući je $x \in \mathbb{R}$ bio proizvoljan, a skupovi oblika $\langle -\infty, x \rangle$ generiraju \mathcal{B}_r , tvrdnja slijedi. Time smo pokazali kako je sup_n X_n slučajna varijabla. Preko zapisa

$$\inf_{n}(X_n) = -\sup_{n}(-X_n), \quad \overline{\lim}_{n}X_n = \inf_{k}(\sup_{n\geq k}X_k), \quad \underline{\lim}_{n}X_n = \sup_{k}(\inf_{n\geq k}X_k)$$

vidimo kako su i ostala preslikavanja slučajne varijable. Konačno,

$$\{X_n \text{ konvergira }\} = \left\{\omega \in \Omega \mid \overline{\lim_n} X_n(\omega) = \underline{\lim_n} X_n(\omega)\right\},$$

što je događaj prema Propoziciji 1.2.11.

(ii) Uz dane pretpostavke imamo $X=\overline{\lim}_n X_n=\underline{\lim}_n X_n$, tako da je X slučajna varijabla prema (i).

Definicija 1.2.13. Za slučajnu varijablu X kažemo kako je **jednostavna** ako je $X(\Omega)$ konačan skup.

Napomena 1.2.14.

Lako je za vidjeti kako je X jednostavna slučajna varijabla ako i samo ako postoji dekompozicija

$$X = \sum_{k=1}^{n} \alpha_k \mathbf{1}_{A_k},$$

pri čemu su $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, a A_1, \ldots, A_n međusobno disjunktni događaji (koji pokrivaju Ω).

Teorem 1.2.15.

Neka je X nenegativna slučajna varijabla na Ω . Tada postoji rastući niz $(X_n)_n$ nenegativnih jednostavnih slučajnih varijabli td.

$$X = \lim_{n} X_n$$

(točkovni limes na Ω).

Dokaz. Definiramo

$$X_n(\omega) = \begin{cases} \frac{k-1}{2^n} & \text{also je } \frac{k-1}{2^n} \le X(\omega) < \frac{k}{2^n}, & k = 1, \dots, n2^n \\ n & \text{also je } X(\omega) \ge n. \end{cases}$$

Uočimo kako je X_n nenegativna jednostavna slučajna varijabla. Prema konstrukciji, $(X_n)_n$ je rastući niz (po točkama). U slučaju da je $X(\omega) < n$, vrijedi

$$|X_n(\omega) - X(\omega)| < \frac{1}{2^n},$$

tako da je $X = \lim_n X_n$.

Napomena 1.2.16.

- (a) Prethodni teorem vrijedi i u slučaju da X poprima vrijednost i $+\infty$.
- (b) Ako je X ograničena slučajna varijabla, može se pokazati kako je prethodna konvergencija uniformna.

Korolar 1.2.17.

Ako je X slučajna varijabla na Ω , tada je ona limes niza jednostavnih slučajnih varijabli.

Jednostavne slučajne varijable ćemo koristiti za bazu "Lebesgueove indukcije" (sjetimo se definicije Lebesgueovog integrala).

Definicija 1.2.18. Ako neko svojstvo koje ovisi o točkama skupa Ω vrijedi u svim točkama od Ω , osim eventualno podskupa od Ω koji je događaj vjerojatnosti nula, kažemo kako je to svojstvo ispunjeno **gotovo sigurno** i pišemo da je to svojstvo ispunjeno (g.s.).

Dakle, postoji $A \in \mathcal{F}$ td. $\mathbb{P}(A) = 1$ te dotično svojstvo vrijedi u točkama $\omega \in A$.

Definicija 1.2.19. Ako su X, Y slučajne varijable, kažemo kako su one jednake gotovo

1 Uvod 19

sigurno ako je

$$\mathbb{P}\left(\left\{\omega\in\Omega\mid X\left(\omega\right)=Y\left(\omega\right)\right\}\right)=1.$$

Pisat ćemo X = Y (g.s.).

Definicija 1.2.20. Kažemo kako niz slučajnih varijabli $(X_n)_n$ na Ω konvergira gotovo sigurno prema funkciji $X : \Omega \to \mathbb{R}$ (ili $\overline{\mathbb{R}}$) ako vrijedi

$$\mathbb{P}\left(\left\{\omega \in \Omega \mid \lim_{n} X_n(\omega) = X(\omega)\right\}\right) = 1.$$

Pišemo $X_n \xrightarrow{\text{g.s.}} X$.

Napomena 1.2.21.

Kako je (g.s.) limes jedinstven, uvodimo sljedeću konvenciju. (g.s.) limes X ima vrijednost $\lim_n X_n(\omega)$ u točkama iz Ω gdje imamo konvergenciju, a vrijednost 0 na preostalim točkama.

Propozicija 1.2.22.

Ako niz slučajnih varijabli $(X_n)_n$ konvergira (g.s.) prema X, onda je i X slučajna varijabla.

Definicija 1.2.23. σ -algebra inducirana slučajnom varijablom X, koju ćemo označavati sa $\sigma(X)$, definirana je sa

$$\sigma(X) := X^{-1}(\mathcal{B}).$$

Definicija 1.2.24. Neka je $\mathcal{T} = \{X_i \mid i \in I\}$ proizvoljna familija slučajnih varijabli (definirana na istom vjerojatnosnom prostoru). σ -algebra inducirana familijom I, definirana je sa

$$\sigma(\mathcal{T}) \coloneqq \sigma\left(\bigcup_{i\in I} \sigma(X_i)\right).$$

Teorem 1.2.25.

Neka su X, Y slučajne varijable na Ω . Tada vrijedi

$$\sigma(Y) \subseteq \sigma(X) \iff$$
 postoji Borelova funkcija g td. $Y = g(X)$.

⇒ Dokazujemo Lebesgueovom indukcijom.

Pretpostavimo prvo $Y=\mathbf{1}_C,\ C\in\sigma(X)$. Tada je $C=X^{-1}(A)$, za neki $A\in\mathcal{B}$. Definiramo $g=\mathbf{1}_A$ koja je očito Borelova funkcija i vrijedi

$$g(X) = \mathbf{1}_{\{X \in A\}} = \mathbf{1}_C = Y.$$

Neka je $Y = \sum_{j=1}^n y_j \mathbf{1}_{C_j}$. Prema dokazanome, za $j=1,\ldots,n$ postoji Borelova funkcija g_j td. je $g_j(X) = \mathbf{1}_{C_j}$. Onda imamo

$$g(X) = \left(\sum_{j=1}^{n} y_j g_j\right)(X) = \sum_{j=1}^{n} y_j g_j(X) = Y.$$

Konačno, neka je Y po volji. Prema Korolaru 1.2.17, postoji niz jednostavnih slučajnih varijabli na Ω td. $Y = \lim_n Y_n$. Prema dokazanome, za sve $n \in \mathbb{N}$ postoji Borelova funkcija g_n td. je $Y_n = g_n(X)$. Definiramo $g \colon \mathbb{R} \to \mathbb{R}$ s

$$g(x) = \begin{cases} \lim_n g_n(x) & \text{ako limes postoji} \\ 0 & \text{inače.} \end{cases}$$

Lako se vidi kako je g Borelova funkcija te kako vrijedi Y = g(X). X

2 Funkcije distribucije

§2.1 Definicije i osnovna svojstva. Funkcije distribucije slučajnih varijabli

Definicija 2.1.1. Neka je $X: \Omega \to \mathbb{R}$ slučajna varijabla. Za preslikavanje $\mathbb{P}_X: \mathcal{B}_{\mathbb{R}} \to [0,1]$ dano s

$$\mathbb{P}_X(B) := \mathbb{P}(X \in B)$$

kažemo kako je **zakon razdiobe** od X.

Lako se vidi kako je \mathbb{P}_X vjerojatnost na $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.

Definicija 2.1.2. Neka je $X \colon \Omega \to \mathbb{R}$ slučajna varijabla. Za preslikavanje $F_X \colon \mathbb{R} \to [0,1]$ dano s

$$F_X(x) := \mathbb{P}_X(\langle -\infty, x]) = \mathbb{P}(X \le x)$$

kažemo kako je funkcija distribucije od X.

Napomena 2.1.3.

Navedimo osnovna svojstva funkcije distribucije. Korisno je imati graf na pameti, npr.

(a) F_X je neopadajuća. Zaista, neka su $a_1 \leq a_2 \in \mathbb{R}$. Onda imamo

$$(-\infty, a_1] \subseteq (-\infty, a_2] \Longrightarrow X^{-1}((-\infty, a_1]) \subseteq X^{-1}((-\infty, a_2])$$
$$\Longrightarrow (X \le a_1) \subseteq (X \le a_2)$$
$$\Longrightarrow \mathbb{P}(X \le a_1) \le \mathbb{P}(X \le a_2)$$
$$\Longrightarrow F_X(a_1) \le F_X(a_2).$$

(b) F_X je neprekidna zdesna. Zaista, neka je $a \in \mathbb{R}$ te neka je $(a_n)_n$ nerastući niz u \mathbb{R} koji konvergira u a. Imamo

$$\langle -\infty, a_1 \rangle \supseteq \langle -\infty, a_2 \rangle \supseteq \langle -\infty, a_3 \rangle \supseteq \cdots \supseteq \langle -\infty, a \rangle$$

iz čega lako slijedi

$$\bigcap_{n\in\mathbb{N}} \langle -\infty, a_n] = \langle -\infty, a].$$

Onda imamo

$$F_X(a) = \mathbb{P}(X^{-1}(\langle -\infty, a]))$$

$$= \mathbb{P}\left(\bigcap_{n \in \mathbb{N}} X^{-1}(\langle -\infty, a_n])\right)$$

$$= \lim_{n \to \infty} \mathbb{P}(X^{-1}(\langle -\infty, a_n]))$$

$$= \lim_{n \to \infty} F_X(a_n).$$

(c) F_X ima limese u beskonačnosti. Štoviše, vrijedi

$$F_X(-\infty) := \lim_{x \to -\infty} F_X(x) = 0$$
 $F_X(\infty) := \lim_{x \to \infty} F_X(x) = 1.$

Pokažimo npr. prvu izreku. Budući je F_X neopadajuća, dovoljno je pokazati kako je 0 jedini kandidat za limes^a. Neka je $(a_n)_n$ nerastući niz u \mathbb{R} koji konvergira u $-\infty^b$. Slično kao u (b), imamo

$$\langle -\infty, a_1] \supseteq \langle -\infty, a_2] \supseteq \langle -\infty, a_3] \supseteq \dots$$

iz čega lako slijedi

$$\bigcap_{n\in\mathbb{N}} \langle -\infty, a_n] = \emptyset.$$

Onda imamo

$$\lim_{n \to \infty} F_X(a_n) = \lim_{n \to \infty} \mathbb{P}(X^{-1}(\langle -\infty, a_n]))$$

$$= \mathbb{P}\left(\bigcap_{n \in \mathbb{N}} X^{-1}(\langle -\infty, a_n])\right)$$

$$= \mathbb{P}(\emptyset) = 0.$$

Napomena 2.1.4.

 ${\cal F}_X$ ima limese slijeva. Da je tome tako zapravo znamo iz matematičke analize 1 i 2. Pišemo

$$F_X(a-) = \lim_{x \to a-} F_X(x)$$
 $F_X(a+) = \lim_{x \to a+} F_X(x).$

Neka je sada $(a_n)_n$ neopadajući niz u \mathbb{R} td. $a_n \nearrow a$ i $a_n < a$ za sve $n \in \mathbb{N}$. Tada

 $[^]a$ Naime, monotona funkcija $\mathbb{R} \to \mathbb{R}$ uvijek ima limese (u $\overline{\mathbb{R}})$ u beskonačnosti.

^bNekad kažemo i kako $(a_n)_n$ divergira u $-\infty$.

vrijedi $F_X(a-) = \lim_{n\to\infty} F_X(a_n)$ pa imamo $F_X(a-) \leq F_X(a)$. Dakle, za sve $a \in \mathbb{R}$ vrijedi

$$F_X(a-) \le F_X(a) \le F_X(a+).$$

Posebno, F_X je neprekidna u a ako i samo ako vrijedi $F_X(a-) = F_X(a)$. Ukoliko F_X ima prekid u točki a, tada je to prekid prve vrste i vrijedi $F_X(a) \ge F_X(a-)$. Time smo pokazali

$$F_X$$
 ima prekid u točki $a \in \mathbb{R} \iff \mathbb{P}(X = a) > 0$.

Prema tome, skup $\{a \in \mathbb{R} \mid \mathbb{P}(X=a) > 0\}$ je najviše prebrojiv a . X

Neka su X, Y slučajne varijable. Definiramo relaciju \sim s

$$X \sim Y$$
 ako $\mathbb{P}_X = \mathbb{P}_Y$.

Očito $\mathbb{P}_X = \mathbb{P}_Y \Longrightarrow F_X = F_Y$. Vrijedi li obrat? Da!

Teorem 2.1.5.

Ako su X, Y slučajne varijable (ne nužno na istom vjerojatnosnom prostoru) td. $F_X = F_Y$, onda vrijedi $\mathbb{P}_X = \mathbb{P}_Y$.

Prije dokaza teorema izvesti ćemo par pomoćnih rezultata.

Pretpostavimo $F_X = F_Y$. Onda za svaki poluotvoreni interval $\langle a, b |$ vrijedi

$$\mathbb{P}_X(\langle a, b |) = F_X(b) - F_X(a) = F_Y(b) - F_Y(a) = \mathbb{P}_Y(\langle a, b |),$$

tako da se \mathbb{P}_X i \mathbb{P}_Y podudaraju na poluotvorenim intervalima. Nadalje, imamo

$$\langle a, b] \cap \langle c, d] = \begin{cases} \emptyset \\ \text{poluotvoreni interval} \end{cases}.$$

Dakle, klasa koja sadrži prazan skup i poluotvorene intervale zatvorena je na konačne presjeke.

Definicija 2.1.6. Neka je $\Omega \neq \emptyset$ i \mathcal{C} neprazna familija podskupova od Ω . Reći ćemo kako je \mathcal{C} π -sistem ako vrijedi $A, B \in \mathcal{C} \Longrightarrow A \cap B \in \mathcal{C}$.

 $[^]a$ Naime, monotona funkcija $\mathbb{R} \to \mathbb{R}$ ima najviše prebrojivo mnogo prekida.

Napomena 2.1.7.

Uočimo kako π —sistem ne mora sadržavati prazan skup. Nadalje, ako u \mathcal{C} postoje bar dva disjunktna skupa, tada \mathcal{C} mora sadržavati i prazan skup.

Definicija 2.1.8. Neka je $\Omega \neq \emptyset$ i \mathcal{D} familija podskupova od Ω . Reći ćemo kako je \mathcal{D} **Dynkinova klasa** ako vrijedi

- (i) $\Omega \in \mathcal{D}$.
- (ii) $A, B \in \mathcal{D}$ i $A \subseteq B \Longrightarrow B \setminus A \in \mathcal{D}$.
- (iii) Ako je $(A_n)_n$ neopadajući niz u \mathcal{D} , onda vrijedi $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{D}$.

Napomena 2.1.9.

Ako je $\mathcal D$ i π -sistem i Dynkinova klasa, onda je $\mathcal D$ i σ -algebra.

Za $\mathcal{E} \subseteq \mathcal{P}(\Omega)$, s $\mathcal{D}(\mathcal{E})$ označavamo najmanju Dynkinovu klasu koja sadrži familiju \mathcal{E} .

Teorem 2.1.10.

Ako je $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ π -sistem, tada je $\mathcal{D}(\mathcal{C}) = \sigma(\mathcal{C})$.

Dokaz. Svaka σ -algebra je i Dynkinova klasa, tako da je dovoljno dokazati kako je $\mathcal{D}(\mathcal{C})$ π -sistem. Definiramo

$$\mathcal{D}_1 := \{ A \in \mathcal{D}(\mathcal{C}) \mid A \cap B \in \mathcal{D}(\mathcal{C}), \text{ za sve } B \in \mathcal{C} \}.$$

Lako vidimo inkluziju $\mathcal{C} \subseteq \mathcal{D}_1$. Tvrdimo kako je \mathcal{D}_1 Dynkinova klasa.

- $\Omega \cap B = B \Longrightarrow \Omega \in \mathcal{D}_1$.
- $B_1, B_2 \in \mathcal{D}_1, B_1 \subseteq B_2$ te $B \in \mathcal{C}$. Vrijedi

$$(B_2 \setminus B_1) \cap B = (B_2 \cap B) \setminus (B_1 \cap B).$$

Dakle, $B_2 \setminus B_1 \in \mathcal{D}_1$.

• Slično, za DZ.

Dakle, \mathcal{D}_1 je Dynkinova klasa, tako da je $\mathcal{D}_1 = \mathcal{D}(\mathcal{C})$. Stoga, za sve $A \in \mathcal{D}(\mathcal{C})$ i sve $B \in \mathcal{C}$ vrijedi $A \cap B \in \mathcal{D}(\mathcal{C})$. Definiramo

$$\mathcal{D}_2 := \{ A \in \mathcal{D}(\mathcal{C}) \mid A \cap B \in \mathcal{D}(\mathcal{C}), \text{ za sve } B \in \mathcal{D}(\mathcal{C}) \}.$$

Lako vidimo inkluziju $\mathcal{C} \subseteq \mathcal{D}_2$. Prema tome, dovoljno je dokazati kako je \mathcal{D}_2 Dynkinova klasa. Ovo vidimo na sličan način kao za \mathcal{D}_1 . Onda je $\mathcal{D}_2 = \mathcal{D}(\mathcal{C})$ pa je $\mathcal{D}(\mathcal{C})$ π -sistem. \square

Teorem 2.1.11.

Neka je (Ω, \mathcal{F}) izmjeriv prostor i neka je \mathcal{C} π -sistem koji je generirajuća klasa za \mathcal{F} . Ako su P, Q vjerojatnosne mjere na (Ω, \mathcal{F}) , tada vrijedi

$$P = Q \iff P \upharpoonright_{\mathcal{C}} = Q \upharpoonright_{\mathcal{C}}.$$

⇐ Definiramo klasu

$$\mathcal{D} := \{ A \in \mathcal{F} \mid P(A) = Q(A) \}.$$

Tvrdimo kako je \mathcal{D} Dynkinova klasa.

- $P(\Omega) = 1 = Q(\Omega) \Longrightarrow \Omega \in \mathcal{D}$.
- Neka su $A, B \in \mathcal{D}$ te $A \subseteq B$. Imamo

$$P(B \setminus A) = P(B) - P(A) = Q(B) - Q(A) = Q(B \setminus A).$$

pa imamo $B \setminus A \in \mathcal{D}$.

• Neka je $(A_n)_n$ neopadajući niz u \mathcal{D} . Imamo

$$P\left(\bigcup_{n} A_{n}\right) = \lim_{n} P(A_{n}) = \lim_{n} Q(A_{n}) = Q\left(\bigcup_{n} A_{n}\right) \Longrightarrow \bigcup_{n} A_{n} \in \mathcal{D}.$$

Dakle, \mathcal{D} je Dynkinova klasa, a po pretpostavci je $\mathcal{D} \supseteq \mathcal{C}$, tako da je $\mathcal{D} \supseteq \mathcal{D}(\mathcal{C})$. Po Teoremu 2.1.10 imamo $\mathcal{D}(\mathcal{C}) = \sigma(\mathcal{C}) = \mathcal{F} \Longrightarrow \mathcal{D} = \mathcal{F} \Longrightarrow P = Q$.

Dokaz Teorema 2.1.5. Pretpostavimo $F_X = F_Y$. Onda imamo

$$\mathbb{P}_X |_{\mathcal{C}} = \mathbb{P}_Y |_{\mathcal{C}}$$

pri čemu je $\mathcal{C} = \{\emptyset\} \cup \{\langle a, b] \mid a < b\}$, što je π -sistem. Uočimo $\sigma(\mathcal{C}) = \mathcal{B}_{\mathbb{R}}$. Prema Teoremu 2.1.11 vrijedi $\mathbb{P}_X = \mathbb{P}_Y$.

Sada okrećemo pitanje; koje od funkcija jesu funkcije distribucije?

Napomena 2.1.12.

Kada imamo mjeru (vjerojatnost), nalaženje slučajne varijable s tim zakonom razdiobe nije problem.

Neka je \mathbb{P} vjerojatnost na $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$. Je li ona zakon razdiobe neke slučajne varijable? Da! Uzmimo vjerojatnosni prostor $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mathbb{P})$ i definiramo $X \colon \Omega \to \mathbb{R}$ kao identitetu, tj. $X(\omega) = \omega$. Lako vidimo kako je X izmjeriva te vrijedi

$$\mathbb{P}_X(\langle a, b]) = \mathbb{P}(X \in \langle a, b]) = \mathbb{P}(\langle a, b]),$$

tako da je \mathbb{P} zakon razdiobe slučajne varijable X. Pitanje se svodi na nalaženje funkcija koje mogu generirati vjerojatnosnu mjeru na $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.

Krenimo od klase funkcija $F \colon \mathbb{R} \to [0,1]$ koje imaju sljedeća svojstva

- (i) F neopadajuća.
- (ii) F neprekidna zdesna.
- (iii) F ima limese u beskonačnosti; $F(-\infty) = 0$, $F(\infty) = 1$.

Započinjemo s poluotvorenim intervalima $\langle a, b \rangle$. Definiramo $\mathbb{P}_F(\langle a, b \rangle) = F(b) - F(a)$. Uočimo odmah $\mathbb{P}_F(\langle a, b \rangle) \in [0, 1]$. Stavimo nadalje $\mathbb{P}_F(\emptyset) = 0$. Familija

$$\{\emptyset\} \cup \{\langle a, b | \mid a, b \in \mathbb{R}, a < b\}$$

je π -sistem. Pitanje je možemo li uvijek razumno proširiti funkciju s π -prstena na σ -algebru tako da dobijemo mjeru? Ne, treba nam jača struktura!

Definicija 2.1.13. Neka je $\Omega \neq \emptyset$ i \mathcal{S} neprazna familija podskupova od Ω . Reći ćemo kako je \mathcal{S} poluprsten skupova ako vrijedi

- (i) $A, B \in \mathcal{S} \Longrightarrow A \cap B \in \mathcal{S}$.
- (ii) $\emptyset \in \mathcal{S}$.
- (iii) $A, B \in S, A \subseteq B \Longrightarrow$ postoji $n \in \mathbb{N}$ i međusobno disjunktni $E_1, \dots, E_n \in \mathcal{S}$ td.

$$B \setminus A = \bigcup_{i=1}^{n} E_i.$$

Definicija 2.1.14. Neka je $\Omega \neq \emptyset$ i \mathcal{C} neprazna familija podskupova od Ω te neka je $\mu \colon \mathcal{C} \to [0, +\infty)$. Reći ćemo kako je μ konačno aditivna ako vrijedi

- (i) $\mu(\emptyset) = 0$.
- (ii) Ako su $A_1, \ldots, A_n \in \mathcal{C}$ međusobno disjunktni td. $A_1 \cup \cdots \cup A_n \in \mathcal{C}$, onda vrijedi

$$\mu(A_1 \cup \dots \cup A_n) = \sum_{i=1}^n \mu(A_i).$$

Definicija 2.1.15. Neka je $\Omega \neq \emptyset$ i \mathcal{R} neprazna familija podskupova od Ω . Reći ćemo kako je \mathcal{R} prsten skupova ako je zatvoren na konačnu upotrebu operacija \cup , \cap , \setminus , \triangle .

Za $\mathcal{E} \subseteq \mathcal{P}(\Omega)$, s $\mathcal{R}(\mathcal{E})$ označavamo najmanji prsten skupova koja sadrži familiju \mathcal{E} .

Propozicija 2.1.16.

Neka je S poluprsten skupova na Ω . Tada vrijedi

$$\mathcal{R}(\mathcal{S}) = \left\{ \bigcup_{i=1}^m E_i \mid m \in \mathbb{N}, \{E_1, \dots, E_m\} \subseteq \mathcal{S} \text{ međusobno disjunktni} \right\}.$$

Dokaz. Inkluzija $\mathcal{R} \subseteq \mathcal{R}(\mathcal{S})$ je očita, drugu inkluziju za DZ.

Pretpostavimo kako imamo konačno aditivnu funkciju $\mu \colon \mathcal{S} \to [0, \infty)$. Imamo jedinstveno proširenje μ sa \mathcal{S} na $\mathcal{R}(\mathcal{S})$; definiramo $\widetilde{\mu} \colon \mathcal{R}(\mathcal{S}) \to [0, \infty)$ s

$$\widetilde{\mu}(A) = \widetilde{\mu}(E_1 \cup \cdots \cup E_n) := \sum_{i=1}^n \mu(E_i).$$

Ovdje naravno treba pokazati kako je definicija dobra, tj. kako ne ovisi o izboru predstavnika. Nadalje, trebamo dokazati kako je $\tilde{\mu}$ konačno aditivna funkcija, dok je iz same definicije jasno kako se radi o jedinstvenom proširenju. Konačno, ako je μ σ -aditivna, onda je i $\tilde{\mu}$ σ -aditivna. Sve ove tvrdnje treba provjeriti za DZ.

Vratimo se našem starom pitanju u terminu ovih pojmova; ako imamo σ -aditivnu funkciju na prstenu, možemo li je na jedinstven način proširiti do σ -aditivne funkcije na generiranom σ -prstenu? Da! Radi se naravno o Caratheodoryjevoj konstrukciji. \times

Definicija 2.1.17. Neka je $\Omega \neq \emptyset$. **Vanjska mjera** na Ω je funkcija $m^* \colon \mathcal{P}(\Omega) \to [0, \infty]$ td. vrijedi

- (i) $m^*(\emptyset) = 0$.
- (ii) m^* je monotona.
- (iii) m^* je σ -poluaditivna, tj. za $A \subseteq \bigcup_i E_i$ vrijedi $m^*(A) \leq \sum_i m^*(E_i)$.

Za $B \subseteq \Omega$ kažemo kako je **izmjeriv** ako za sve $A \subseteq \Omega$ vrijedi

$$m^*(A) = m^*(A \cap B) + m^*(A \cap B^{c}).$$

Označimo $\mathcal{M}_{m^*} := \{ B \subseteq \Omega \mid B \text{ izmjeriv} \}.$

Teorem 2.1.18.

Ako je m^* vanjska mjera na Ω , tada je \mathcal{M}_{m^*} σ -algebra na Ω i $m^*|_{\mathcal{M}_{m^*}}$ je mjera.

Ovu konstrukciju smo već vidjeli na mjeri i integralu i sada ćemo je iskoristiti kako bi zaokružili naš opis funkcija distribucije.

Neka je μ σ -aditivna funkcija na prstenu \mathcal{R} ; definiramo $\mu^* \colon \mathcal{P}(\Omega) \to [0, +\infty]$ s

$$\mu^*(E) = \inf \left\{ \sum_{i=1}^{+\infty} \mu(E_i) \mid (E_i)_i \text{ niz u } \mathcal{R} \text{ td. } E \subseteq \bigcup_i E_i \right\}.$$

- Za $E_1 = E$ i $E_n = \emptyset$ za $n \ge 2$ dobivamo $\mu^*(E) \le \mu(E)$. S druge strane, iz σ -aditivnosti slijedi σ -poluaditivnost pa imamo $\mu(E) \le \mu^*(E)$. Sve zajedno, imamo $\mu^* \upharpoonright_{\mathcal{R}} = \mu$.
- $\emptyset \in \mathcal{R}$ pa onda $\mu^*(\emptyset) = \mu(\emptyset) = 0$.
- Neka je $A \subseteq B$ te neka je $(E_i)_i$ niz u \mathcal{R} td. $B \subseteq \bigcup_i E_i$. Onda imamo $A \subseteq \bigcup_i E_i$ što povlači $\mu^*(A) \leq \sum_{i=1}^{+\infty} \mu(E_i)$ pa imamo $\mu^*(A) \leq \mu^*(B)$.
- Neka je $A \subseteq \bigcup_i B_i$ te neka je $(E_j^i)_{i,j}$ niz u \mathcal{R} td. $B_i \subseteq \bigcup_j E_j^i$. Onda imamo $A \subseteq \bigcup_j \bigcup_i E_j^i$ što povlači $\mu^*(A) \le \sum_{i,j} \mu(E_j^i)$. Rastavljanjem ove sume¹ slijedi $\mu^*(A) \le \sum_i \left(\sum_j \mu(E_j^i)\right)$ pa imamo $\mu^*(A) \le \sum_i \mu^*(B_i)$.

Za DZ dokazati $\mathcal{R} \subseteq \mathcal{M}_{\mu^*}$.

$$\mu \longrightarrow \mu^* \longrightarrow \mathcal{M}_{\mu^*}$$

Caratheodory i gornji zadatak daju kako je $\mu^* \upharpoonright_{\mathcal{M}_{\mu^*}}$ mjera te $\sigma_p(\mathcal{R}) \subseteq M_{\mu^*}$. Pritom sa $\sigma_p(\mathcal{R})$ označavamo najmanji σ -prsten ² koji sadrži \mathcal{R} . Iz ovoga onda slijedi kako je \mathcal{M}_{μ^*} σ -algebra koja sadrži \mathcal{R} ; $\mu^* \upharpoonright_{\sigma_p(\mathcal{R})}$ i $\mu^* \upharpoonright_{\mathcal{R}}$ su mjere. Dakle, $\mu^* \upharpoonright_{\sigma_p(\mathcal{R})}$ je proširenje od μ .

Sistematizirajmo što smo napravili do sada. Imamo $\Omega \neq \emptyset$ te \mathcal{F} σ -algebru na Ω (dakle, (Ω, \mathcal{F}) je izmjeriv prostor). Neka je nadalje \mathcal{S} poluprsten td. $\sigma_p(\mathcal{S}) = \mathcal{F}$ te μ σ -aditivna funkcija na \mathcal{S} . Prvo ju možemo proširiti do mjere na $\mathcal{R}(\mathcal{S})$, a onda i do mjere na \mathcal{M}_{μ^*} . Imamo

$$S \subseteq \mathcal{R}(S) \subseteq \mathcal{M}_{\mu^*} \Longrightarrow \mathcal{F} = \sigma_p(S) \subseteq \mathcal{M}_{\mu^*}$$

pa je $\mu^*|_{\mathcal{F}}$ proširenje funkcije μ na mjeru na \mathcal{F} . Spojimo li ovaj rezultat s onim o jedinstvenosti proširenja dolazimo do

¹Ovo možemo zbog nenegativnosti.

²Prsten koji je zatvoren na prebrojive unije, ali ne nužno na komplementiranje. Npr. σ -prsten sadrži Ω je i σ -algebra

Teorem 2.1.19.

Neka je (Ω, \mathcal{F}) izmjeriv prostor i \mathcal{S} poluprsten na Ω td. je $\sigma_p(\mathcal{S}) = \mathcal{F}$. Ako je μ σ -aditivna funkcija na \mathcal{S} , onda postoji jedinstveno proširenje od μ na mjeru na \mathcal{F} .

Vratimo se sada na našu situaciju; uzmimo $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ za naš izmjeriv prostor te

$$\mathcal{S} = \{ \langle a, b | \mid a, b \in \mathbb{R}, a \le b \}$$

za naš poluprsten (dopuštamo a=b kako bi besplatno dobili i \emptyset). Lako vidimo $\sigma_p(\mathcal{S})=\mathcal{B}_{\mathbb{R}}$. Neka je sada $F:\mathbb{R}\to [0,1]$ neopadajuća funkcija, neprekidna zdesna i koja ima limese u beskonačnosti; $F(-\infty)=0$ i $F(\infty)=1$. Pitamo se generira li F mjeru na $(\mathbb{R},\mathcal{B}_{\mathbb{R}})$, tj. je li funkcija distribucije neke slučajne varijable.

Definiramo mjeru μ_F na \mathcal{S} . Stavimo

$$\mu_F(\langle a, b]) = F(b) - F(a);$$

iz monotonosti F slijedi $\mu_F(\langle a,b]) \in [0,1]$. Nadalje, lako dokažemo kako je μ_F monotona i konačno aditivna pa prelazimo na σ -aditivnost na \mathcal{S} . Neka je $\langle a_i,b_i|,\ i\in\mathbb{N}$ niz međusobno disjunktnih skupova; BSOMP kako su desni rubovi sljepljeni s narednim lijevim rubovima. Označimo onda

$$\langle a_0, b_0] = \bigcup_i \langle a_i, b_i].$$

Djelovanjem s μ_F , iz monotonosti i konačne aditivnosti slijedi $\mu_F(\langle a,b]) \leq \sum_i \mu_F(\langle a_i,b_i])$. Za obrat imamo malo topološkog tretmana. Fiksirajmo $\varepsilon > 0$ po volji. Za sve $i \in \mathbb{N}$ onda imamo

$$\langle a_i, b_i \rangle \subseteq \left\langle a_i, b_i + \frac{\varepsilon}{2^i} \right\rangle \Longrightarrow \left[a_0 + \varepsilon, b_0 \right] \subseteq \bigcup_i \left\langle a_i, b_i + \frac{\varepsilon}{2^i} \right\rangle.$$

Kompaktnost daje konačan potpokrivač, iz čega brzo slijedi kako se $F(b_0) - F(a_0 + \varepsilon)$ podudara sa

$$\sum_{i=1}^{n_k} \left(F\left(b_i + \frac{\varepsilon}{2^i}\right) - F\left(a_i\right) \right).$$

Pustimo $\varepsilon \to 0$ pa iz neprekidnosti zdesna slijedi druga nejednakost. Dakle, μ_F je σ -aditivna na \mathcal{S} . Zajedno s Teoremom 2.1.19 (za izmjeriv prostor $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$) imamo

Teorem 2.1.20.

Za svaku funkciju $F: \mathbb{R} \to [0,1]$ koja je neopadajuća, neprekidna zdesna i ima limese u beskonačnosti $F(-\infty) = 0$ i $F(\infty) = 1$ postoji jedinstvena vjerojatnost

 \mathbb{P}_F na $(\mathbb{R},\mathcal{B}_{\mathbb{R}})$ td. za sve $a < b \in \mathbb{R}$ vrijedi

$$\mathbb{P}_F(\langle a, b |) = F(b) - F(a).$$

Napomena 2.1.21.

Za Teorem 2.1.20 nam nedostaje jedino $\mathbb{P}_F(\mathbb{R}) = 1$, ali to lako imamo

$$\mathbb{P}_{F}(\mathbb{R}) = \lim_{n} \mathbb{P}_{F}(\langle -n, n]) = \lim_{n} (F(n) - F(-n)) = F(\infty) - F(-\infty) = 1 - 0 = 1.$$

Time imamo potpun opis funkcija distribucije. 🗶

Ako je F neprekidna zdesna te znamo $F \upharpoonright_D$, pri čemu je D gust u \mathbb{R} , onda znamo i F (jer svaki $x \in \mathbb{R}$ možemo aproksimirati nerastućim nizom u D).

Korolar 2.1.22.

Neka su F_1 i F_2 vjerojatnosne funkcije distribucije te neka je D gust skup u \mathbb{R} td. $F_1 \upharpoonright_D = F_2 \upharpoonright_D$. Tada vrijedi $F_1 = F_2$.

Označimo $C(F)=\{x\in\mathbb{R}\mid F$ neprekidna u $x\}$. Tada je $\mathbb{R}\setminus C(F)$ najviše prebrojiv, tako da je C(F) gust u \mathbb{R} .

Korolar 2.1.23.

Ako su F_1 i F_2 vjerojatnosne funkcije distribucije koje se podudaraju u točkama gdje su obje neprekidne, tj. vrijedi

$$F_1 \upharpoonright_{C(F_1) \cap C(F_2)} = F_1 \upharpoonright_{C(F_1) \cap C(F_2)},$$

onda vrijedi $F_1 = F_2$.

Dokaz. Imamo

$$\mathbb{R} \setminus (C(F_1) \cap C(F_2)) = \mathbb{R} \setminus C(F_1) \cup \mathbb{R} \setminus C(F_2),$$

što je prebrojiv skup, tako da je $C(F_1) \cap C(F_2)$ gust u \mathbb{R} . Tvrdnja sada slijedi iz Korolara 2.1.22.

 $\mathbb{R} \setminus C(F)$ može biti prazan, u protivnom postoji niz $(x_n)_n$ (moguće konačan) td. $\mathbb{R} \setminus C(F) = \{x_n \mid n \in I\}$. U svakoj točki x_n onda vrijedi $\mathbb{P}_F(\{x_n\}) > 0$ (skok). Neka je

sada

$$\alpha = \sum_{n} \mathbb{P}_{F}(\{x_{n}\}) = \mathbb{P}_{F}(\mathbb{R} \setminus C(F)) \le 1.$$

Definiramo

$$F_d(x) := \frac{1}{\alpha} \underbrace{\sum_{x_n \le x} \mathbb{P}_F(\{x_n\})}_{G(x)} = \frac{1}{\alpha} \underbrace{\sum_{x_n \le x} (F(x_n) - F(x_n - 1))}_{G(x)}.$$

 F_d je vjerojatnosna funkcija distribucije koja je oblika $\sum_{x_n \leq x} \frac{1}{\alpha} \mathbb{P}_F(\{x_n\})$. Reći ćemo kako je takva funkcija diskretna vjerojatnosna funkcija distribucije.

Definicija 2.1.24. Neka je X slučajna varijabla na $(\Omega, \mathcal{F}, \mathbb{P})$ te neka je $D \in \mathcal{B}_{\mathbb{R}}$ td. $\mathbb{P}_X(D) = 1$. Reći ćemo kako je X koncentrirana na D.

Ako je D najviše prebrojiv, onda kažemo kako je X diskretna slučajna varijabla.

Napomena 2.1.25.

Budući F_d ima ukupne skokove mase 1, slučajna varijabla koja je u pozadini F_d je koncentrirana na $\{x_n\mid n\in I\}$, koji je najviše prebrojiv, tako da je ta slučajna varijabla diskretna. Imamo

Xdiskretna $\iff F_X$ ima skokove na Dukupne mase 1 $\iff F_X(x) = \sum_{y \in D, y \le x} \mathbb{P}(x=y) \quad \text{(poredak nebitan)}\,.$

Neka je sada H=F-G. Onda je H neopadajuća funkcija, neprekidna zdesna i ima limese u beskonačnosti $F(-\infty)=0$ i $F(\infty)=1-\alpha$. Jer F i G imaju prekide u istim točkama i to skokove iste veličine, slijedi kako je H=F-G neprekidna u svakoj točki. Definiramo

$$F_n = \frac{1}{1 - \alpha} H.$$

Reći ćemo kako je F_n funkcija neprekidna vjerojatnosna funkcija distribucije. Imamo

$$F = \alpha F_d + (1 - \alpha) F_n,$$

što je konveksna kombinacija diskretne i neprekidne vjerojatnosne funkcije distribucije.

Primjer 2.1.26

Bernoullijeva slučajna varijabla. Neka su p, q > 0 td. p + q = 1. Definiramo

$$X \sim \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix}$$
.

Tada je X diskretna slučajna varijabla.

Što možemo reći o vjerojatnosnim funkcijama distribucije koje su neprekidne (kao funkcije)? Imat ćemo dvije pojave (od kojih je jedna očekivana).

Prisjetimo se kako smo do mjere \mathbb{P}_F došli tako što započeli s neopadajućom funkcijom, neprekidnom zdesna i koja ima odgovarajuće limese u beskonačnosti. Međutim, mogli smo krenuti i od funkcije G koja je neopadajuća i neprekidna zdesna te napraviti isti postupak;

$$\mu_G(\langle a, b]) = G(b) - G(a) \ge 0.$$

Caratheodory i ostale konstrukcije još uvijek funkcioniraju (DZ), čime dobivamo mjeru μ_G na $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ za koju vrijedi

$$\mu_G(\mathbb{R}) = G(+\infty) - G(-\infty) \in [0, \infty].$$

Odmah uočavamo desni rub. Ipak, ako uzmemo $K\subseteq\mathbb{R}$ ograničen, imamo $\mu_G(K)<\infty,$ a onda slijedi

$$\mu_G(\mathbb{R}) = \sum_{k \in \mathbb{Z}} (G(k) - G(k-1)) = \sum_{k \in \mathbb{Z}} \underbrace{\mu_G(\langle k-1, k \rangle)}_{<\infty}.$$

Dakle, μ_G je σ -konačna. Nadalje, uočimo kako mjeru možemo centrirati. Preciznije, za $c \in \mathbb{R}$ imamo $\mu_{G+c} = \mu_G$.

Primier 2.1.27.

Neka je G(x) = x, tako da vrijedi $\mu_G(\langle a, b]) = b - a$. Jer je G neprekidna slijedi $\mu_G(\{x\}) = 0$ pa imamo

$$\mu_G([a, b]) = \mu_G([a, b]) = \mu_G(\langle a, b|) = b - a.$$

Mjeru μ_G zovemo Lebesgueova mjera i označavamo ju s λ .

Ponoviti ćemo i konstrukciju Lebesgueovog integrala. Neka je $(\Omega, \mathcal{F}, \mu)$ prostor σ -konačne mjere, dakle $\mu \colon \mathcal{F} \to [0, +\infty]$ je σ -aditivna funkcija te postoji niz $(A_n)_n$ u \mathcal{F} koji pokriva Ω td. za sve $n \in \mathbb{N}$ vrijedi $\mu(A_n) < +\infty$.

• Jednostavne funkcije

$$\int_{\Omega} \mathbf{1}_A \mathrm{d}\mu = \mu(A).$$

• Linearnost

$$f = \sum_{k=1}^{n} a_k \mathbf{1}_{A_k} \Longrightarrow \int_{\Omega} f d\mu = \sum_{k=1}^{n} a_k \mu(A_k).$$

• $(f_n)_n$ integrabilne i $f_1 \leq f_2 \leq \ldots \Longrightarrow$ postoji $f \coloneqq \lim_n f_n$, ali može poprimiti i vrijednost $+\infty$ (konvencija $0 \cdot (+\infty) = 0$). Neka je $f^{-1}\left(\left[\frac{k-1}{n}, \frac{k}{n}\right>\right) = A_{k,n}$, što je izmjeriv skup, budući je f izmjeriva funkcija. Slijedi

$$\sum_{k=1}^{n^2} \left(\frac{k-1}{n} A_{k,n} \right) = f_n.$$

Neka je $x\in\Omega$ po volji. Za sve $n\in\mathbb{N}$ postoji jedinstveni $k\in\mathbb{N}$ td. $x\in A_{k,n}$ td. vrijedi $|f(x)-f_n(x)|<\frac{1}{n}$ pa imamo

$$nf^{-1}(f > n) + \sum_{k=1}^{n^2} \left(\frac{k-1}{n} A_{k,n}\right) = f_n.$$

Stoga je definicija

$$\int_{\Omega} f \mathrm{d}\mu := \lim_{n} \int_{\Omega} f_{n} \mathrm{d}\mu$$

dobra; za svaku nenegativnu izmjerivu funkciju f postoji $\int_{\Omega} f d\mu \in [0, +\infty]$.

• Neka je sada $f: \mathbb{R} \to \overline{\mathbb{R}}$ izmjeriva funkcija. Tada vrijedi $f = f^+ - f^-$ po točkama te su f^+ i f^- nenegativne i izmjerive funkcije. Prema pokazanom, postoje integrali $\int_{\Omega} f^+ d\mu$ i $\int_{\Omega} f^- d\mu$.

Reći ćemo kako za funkciju f postoji integral ako je barem jedan od integrala $\int_{\Omega} f^+ \mathrm{d}\mu$ i $\int_{\Omega} f^- \mathrm{d}\mu$ konačan. Reći ćemo kako je funkcija f integrabilna ako su oba integrala $\int_{\Omega} f^+ \mathrm{d}\mu$ i $\int_{\Omega} f^- \mathrm{d}\mu$ konačna. U oba slučaja definiramo

$$\int_{\Omega} f d\mu := \int_{\Omega} f^{+} d\mu - \int_{\Omega} f^{-} d\mu.$$

Napomena 2.1.28.

f integrabilna $\iff f^+$ i f^- integrabilne $\stackrel{\text{linearnost}}{\iff} |f|$ integrabilna.

Na mjeri i integralu smo dokazali teoreme o monotonoj i dominiranoj konvergenciji.

Teorem 2.1.29. (TMK)

Neka su $0 \le f_1 \le f_2 \le \dots$ izmjerive funkcije. Tada je f integrabilna te vrijedi

$$\int_{\Omega} \lim_{n} f_n d\mu = \lim_{n} \int_{\Omega} f_n d\mu.$$

Teorem 2.1.30. (TDK)

Neka je $(f_n)_n$ niz izmjerivih funkcija td. postoji integrabilna funkcija h td. za sve $n \in \mathbb{N}$ vrijedi $|f_n| \leq h$. Pretpostavimo kako postoji $f = \lim_n f_n$ (g.s.). Tada je f integrabilna te vrijedi

 $\int_{\Omega} \lim_{n} f_n d\mu = \lim_{n} \int_{\Omega} f_n d\mu.$

Vratimo se sada na vjerojatnosnu situaciju, zanima nas integral u odnosu na $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \lambda)$.

Teorem 2.1.31.

Neka je $f:[a,b]\to\mathbb{R}$ ograničena funkcija. Tada je f Riemann integrabilna ako i samo ako je f neprekidna osim možda na skupu λ -mjere 0.

Primier 2.1.32.

(a) R−integrabilnost ⇒ L−integrabilnost. Štoviše, pripadni integrali se podudaraju.

Npr. ako je funkcija f po dijelovima neprekidna ili po dijelovima monotona, onda je R-integrabilna pa je i L-integrabilna.

(b) L—integrabilnost \Longrightarrow R—integrabilnost. Klasični primjer je funkcija $\mathbf{1}_{\mathbb{Q}\cap[0,1]}$ koja nije R—integrabilna, ali vrijedi

$$\int_{[0,1]} \mathbf{1}_{\mathbb{Q} \cap [0,1]} = \lambda \left(\mathbb{Q} \cap [0,1] \right) = 0 < +\infty$$

pa je L-integrabilna.

Primjer 2.1.33.

Promotrimo funkciju

$$f(x) = \frac{1}{b-a} \mathbf{1}_{\langle a,b \rangle}.$$

Tada je funkcija $F(x) = \int_{-\infty}^{x} f(t) dt$ neopadajuća, neprekidna zdesna i ima limese u beskonačnosti $F(-\infty) = 0$ i $F(\infty) = 1$. Onda je \mathbb{P}_F vjerojatnost $(\mathbb{P}_F(\langle a,b\rangle) = 1)$. Takvu mjeru nismo mogli naći na partitivnom skupu, ali sada možemo. Za \mathbb{P}_F kažemo kako je uniformna vjerojatnosna distribucija na [a,b] te za $\langle c,d\rangle\subseteq\langle a,b\rangle$ vrijedi

$$\mathbb{P}_F\left(\langle c, d \rangle\right) = \frac{d - c}{b - a}.$$

Takvu distribuciju imamo na skupu $\{1, \ldots, n\}$, ali ne i na \mathbb{N} .

Definicija 2.1.34. Reći ćemo kako je funkcija distribucije F apsolutno neprekidna ako postoji nenegativna Borel-izmjeriva funkcija f td. za sve $x \in \mathbb{R}$ vrijedi

$$F(x) = \int_{-\infty}^{x} f(t)\lambda(\mathrm{d}t).$$

Očito je f i neprekidna kao funkcija. Za funkciju f kažemo kako je **funkcija gustoće** distribucije F.

Kada govorimo o slučajnim varijablama, za slučajnu varijablu X imamo F_X , funkciju distribucije slučajne varijable X te f_X , funkciju gustoće slučajne varijable X. \times

Prisjetimo se kako nas trenutno interesiraju one vjerojatnosne funkcije distribucije koje su neprekidne kao funkcije.

Primjer 2.1.35

(a) Uniformna razdioba, opet. Neka su $a < b \in \mathbb{R}$ te neka je f funkcija dana grafom

Tada je funkcija $F_X = \int_{-\infty}^x f(t) \mathrm{d}t$ dana grafom

(b) Normalna razdioba. Neka su $m, \sigma \in \mathbb{R}, \sigma > 0$. Definiramo

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}.$$

pa je pripadna vjerojatnosna funkcija distribucije

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(t-m)^2}{2\sigma^2}} dt.$$

U računu se pojavljuje zloglasna funkcija $x \mapsto \int_{-\infty}^{x} e^{-t^2} dt$.

Napomena 2.1.36.

Uveli smo termin "apsolutna neprekidnost". I ovdje se radi o konceptu kojeg smo već sreli na mjeri i integralu, a vezan je uz Radon—Nikodymovu teoriju. Neka su μ , ν dvije mjere na izmjerivom prostoru (Ω, \mathcal{F}) . Tada je μ apsolutno

neprekidna u odnosu na ν , u oznaci $\mu \ll \nu$, ako vrijedi

$$E \in \mathcal{F} \wedge \nu(E) = 0 \Longrightarrow \mu(E) = 0.$$

Na mjeri i integralu smo pokazali Radon-Nikodymov teorem.

Teorem 2.1.37. (Radon-Nikodym)

Ako vrijedi $\mu \ll \nu$, onda postoji $\mu-(g.s.)$ jedinstvena izmjeriva funkcija g td. za sve $E \in \mathcal{F}$ vrijedi

$$\mu(E) = \int_{E} f \mathrm{d}\nu.$$

Funkciju g zovemo Radon—Nikodymovom derivacijom od μ u odnosu na ν , odnosno gustoća od μ u odnosu na ν .

U ovom kontekstu vrijedi kako je F apsolutno neprekidna funkcija distribucije ako i samo ako vrijedi $\mathbb{P}_F \ll \lambda$. U tom slučaju je f jedinstven do na skup Lebesgueove mjere 0 te kažemo kako je f funkcija gustoće od F. Ako je F funkcija distribucije od X, tj. vrijedi $F = F_X$, onda kažemo kako X ima gustoću f_X .

Kako prepoznati je li Borelova funkcija $f: \mathbb{R} \to [0, +\infty)$ gustoća neke vjerojatnosne distribucije? Pomoću sljedećeg rezultata.

Teorem 2.1.38.

Neka je $f: \mathbb{R} \to \mathbb{R}$ Borelova. Tada je f funkcija gustoće neke vjerojatnosne distribucije ako i samo ako vrijedi $f \geq 0$ $\lambda-(g.s.)$ i

$$\int_{\mathbb{R}} f(x)\lambda(\mathrm{d}x) = 1.$$

$$\int_{-\infty}^{x} f(t)\lambda(\mathrm{d}t) \to \int_{-\infty}^{\infty} f(t)\lambda(\mathrm{d}t).$$

 \Longrightarrow Za svaki $x\in\mathbb{R}$ imamo $f\cdot\mathbf{1}_{\langle -\infty,x|}\geq 0,$ tako da postoji

$$\int_{\mathbb{R}} f \cdot \mathbf{1}_{\langle -\infty, x]} d\lambda(t) = \int_{-\infty}^{x} f(t) \lambda(dt) =: F(x).$$

Lako vidimo kako je F neopadajuća funkcija $\mathbb{R} \to [0,1]$. Po teoremu o monotonoj konvergenciji slijedi

$$\lim_{x \to \infty} F(x) = \int_{-\infty}^{\infty} f(t)\lambda(\mathrm{d}t) = 1$$

pa je $F(+\infty) = 1$. Konačno, po teoremu o dominiranoj konvergenciji slijedi

$$\begin{cases} (x_n)_n \searrow x \Longrightarrow \lim_n F(x_n) = x \\ (x_n)_n \searrow -\infty \Longrightarrow \lim_n F(x) = F(-\infty) = \int_{-\infty}^{-\infty} f = 0 \end{cases}$$

pa imamo i neprekidnost zdesna i $F(-\infty)=0$. Dakle, F je vjerojatnosna funkcija distribucije, a po samoj definiciji joj je f gustoća.

Napomena 2.1.39.

Sada lako slijede sljedeće tvrdnje.

(a) Neka je F v
jerojatnosna funkcija distribucije s gustoćom f. Tada za sv
e $B\in\mathcal{B}_{\mathbb{R}}$ vrijedi

$$\mathbb{P}_F(B) = \int_B f(t) d(\lambda t).$$

(b) Slično, ako je X slučajna varijabla s gustoćom f_X , onda zbog veze $\mathbb P$ i $\mathbb P_X$ imamo

$$\int_{\Omega} g(x) d\mathbb{P} = \int_{\mathbb{R}} g(t) f_X(t) \lambda(dt).$$

(c) Posebno, za $g=\mathbf{1}_B$ tvrdnja (b) daje

$$\mathbb{P}(X \in B) = \int_{B} f_X(t) \lambda(\mathrm{d}t).$$

Sada ćemo napokon demistificirati i onu drugu skupinu kao funkcije neprekidnih vjerojatnosnih funkcija distribucije. U nju spadaju funkcije kod kojih imamo skupove $E \in \mathcal{B}_{\mathbb{R}}$ td. je $\lambda(E) = 0$, ali je $\mathbb{P}_F(E) > 0$ i za svaku točku $x \in \mathbb{R}$ vrijedi $\mathbb{P}_F(\{x\}) = 0$.

Definicija 2.1.40. Kažemo kako je vjerojatnosna funkcija distribucije F **singularna** ako vrijedi

- (i) F neprekidna na \mathbb{R} (nema skokova).
- (ii) Postoji F' λ -(g.s.) te vrijedi F'(x) = 0 λ -(g.s.).

Neka je F vjerojatnosna funkcija distribucije. Tada postoje α , β , $\gamma \in [0,1]$ td. i vjerojatnosne funkcije distribucije F_d , F_a , F_s td. vrijedi

$$F = \alpha F_d + \beta F_a + \gamma F_s,$$

pri čemu vrijedi $\alpha + \beta + \gamma = 1$ te je F_d diskretna, F_a apsolutno neprekidna te F_s singularna vjerojatnosna funkcija distribucije. Drugim riječima, F je konveksna kombinacija tri poznate vjerojatnosne funkcije distribucije. X

§2.2 Funkcije distribucije slučajnih vektora

Sada promatramo ($\mathbb{R}^n, \mathcal{B}_{\mathbb{R}^n}$). Već smo rekli kako, zbog separabilnosti, vrijedi

$$\mathcal{B}_{\mathbb{R}^n} = igotimes_{i=1}^n \mathcal{B}_{\mathbb{R}}.$$

Slučajnim vektorom smo zvali funkciju $X \colon \Omega \to \mathbb{R}^n$, izmjerivu u odnosu na $(\mathcal{F}, \mathcal{B}_{\mathbb{R}^n})$. Pokazali smo kako za $X(\omega) = (X_1(\omega), \dots, X_n(\omega))$ vrijedi kako je X slučajni vektor ako i samo ako su sve X_1, \dots, X_n slučajne varijable. Nadalje, X inducira mjeru \mathbb{P}_X na $(\mathbb{R}^n, \mathcal{B}_{\mathbb{R}^n})$ td. za sve $E \subseteq \mathcal{B}_{\mathbb{R}^n}$ vrijedi $\mathbb{P}_X(E) = \mathbb{P}(X \in E)$. Posebno, \mathbb{P}_X je vjerojatnost na $(\mathbb{R}^n, \mathcal{B}_{\mathbb{R}^n})$. Time je dana distribucija od X.

Definicija 2.2.1. Neka su X, Y slučajni vektori istog reda (ne nužno na istom vjerojatnosnom prostoru). Reći ćemo kako su slučajni vektori X, Y **jednakodistribuirani**, u oznaci $X \sim Y$, ako vrijedi $\mathbb{P}_X = \mathbb{P}_Y$.

Može li se informacija o \mathbb{P}_X svesti na neku realnu funkciju? Da, na isti način kao u prošlom odjeljku. Koristiti ćemo leksikografski uređaj

$$(a_1,\ldots,a_n) \leq (b_1,\ldots,b_n) \iff a_i \leq b_i \text{ za sve } i \in \{1,\ldots,n\}.$$

Definicija 2.2.2. Neka je X slučajni vektor. Reći ćemo kako je funkcija $F_X \colon \mathbb{R}^n \to [0,1]$ funkcija distribucije slučajnog vektora X ako za sve $x \in \mathbb{R}^n$ vrijedi $F_X(x) = \mathbb{P}(X \le x)$.

Drugim riječima, vrijedi $F_X(x) = \mathbb{P}_X (\{a \in \mathbb{R}^n \mid a \leq x\}).$

Napomena 2.2.3.

Vrijede očekivana svojstva.

- (a) $(x_n)_n \searrow x \Longrightarrow \lim_n F_X(x_n) = F_X(x)$, dakle imamo neprekidnost zdesna.
- (b) Imamo i odgovarajuće limese u beskonačnosti. Neka je $x_m = (x_m^1, \dots, x_m^n)$. Vrijedi

$$\lim_{x_m^i \to -\infty} F_X(x_m) = 0;$$

prema tome, čim je jedna koordinata jednaka $-\infty$, cijeli limes je jednak 0, tj. vrijedi $F_X(x_1,\dots,-\infty,\dots,x_n)=0$.

S druge strane, vrijedi

$$\lim_{\substack{x^i \to \infty \\ i=1,\dots,m}} = 1;$$

štoviše, vrijednost $+\infty$ je nužna na svim koordinatama i tada vrijedi $F_X(+\infty,\dots,+\infty)=1.$

(c) F_X je neopadajuća (DZ, raspisati preko koordinata).

Neka je $\langle a, b \rangle = \{(x_1, \dots, x_n) \mid a_i < x_i \le b_i \text{ za sve } i = 1, \dots, n\}$. Označimo nadalje

$$\Delta_{b-a}F_X(a) = \sum_{\substack{x_i \in \{a_i, b_i\}\\i=1,...,n}} \pm F_X(x_1, \dots, x_n),$$

pri čemu simbol + uzimamo u slučaju kada među x_1, \ldots, x_n imamo paran broj a_i -ova, a simbol - inače. Radi se o sumi 2^n članova.

Neka je X slučajni vektor i \mathbb{P}_X na $(\mathbb{R}^n, \mathcal{B}_{\mathbb{R}^n})$, $F_X \colon \mathbb{R}^n \to [0, 1]$. Zanima nas koliko dobro F_X određuje \mathbb{P}_X te koje su to funkcije F_X distribucije slučajnih vektora. Pristup je potpuno analogan kao kod slučajnih varijabli. Neka je

$$\mathcal{S} = \{ \langle a, b | \mid a, b \in \mathbb{R}^n, a \le b \},\$$

pri čemu za a=b podrazumijevamo \emptyset . Kao i prije, \mathcal{S} je π -sistem i poluprsten te dobivamo

 $\sigma(\mathcal{S}) = \mathcal{B}_{\mathbb{R}^n}$. Iz Teorema 2.1.11 slijedi $F_X = F_Y$ ako i samo ako $\mathbb{P}_X = \mathbb{P}_Y$ $(X \sim Y)$. Za drugo pitanje, kandidati među funkcijama $\mathbb{R}^n \to [0,1]$ su one koje zadovoljavaju svojstva iz Napomene 2.2.3 ((c) je zapravo uvjet $\Delta_{b-a}F(a)\geq 0$). Pokazali smo kako svaka funkcija F_X zadovoljava ta svojstva, međutim, ti uvjeti su i dovoljni.

Teorem 2.2.4.

Funkcija $F: \mathbb{R}^n \to [0,1]$ je funkcija distribucije nekog slučajnog vektora ako i samo ako zadovoljava sljedeće uvjete

- (i) F neprekidna zdesna. (ii) $F(-\infty)=0$ i $F(\infty)=0$. (iii) $\Delta_{b-a}F(a)\geq 0$.

Dokaz. Nužnost smo već pokazali. Za dovoljnost, neka je S gore definiran poluprsten. Prvo definiramo \mathbb{P}_F na S, $\mathbb{P}_F(\langle a, b |) = \Delta_{b-a}F(a)$, tako da imamo funkciju $\mathbb{P}_F \colon S \to [0, 1]$. Kao i prije, slijedi kako je \mathbb{P}_F σ -aditivna na \mathcal{S} . Stoga postoji jedinstveno proširenje na najmanji prsten pa onda i na σ -prsten (opća Caratheodoryjeva konstrukcija). Stoga postoji jedinstveno proširenje $\mathbb{P}_F \colon \mathcal{B}_{\mathbb{R}^n} \to [0,1]$ i ono je vjerojatnost.

Definicija 2.2.5. Neka je X slučajni vektor.

- Ako postoji najviše prebrojiv skup $E\subseteq\mathbb{R}^n$ td. je $\mathbb{P}_X(E)=1$, onda kažemo kako je X diskretan slučajni vektor.
- Ako postoji nenegativna Borelova funkcija $f: \mathbb{R}^n \to \mathbb{R}$ td. za sve $x \in \mathbb{R}^n$ vrijedi

$$F_X(x) = \int_{-\infty}^x f(t) \lambda_n(\mathrm{d}t),$$

pri čemu vrijedi $\lambda_n = \bigotimes_{i=1}^n \lambda_i$, onda kažemo kako je X apsolutno neprekidan slučajni vektor, a za f kažemo kako je **gustoća** slučajnog vektora X i pišemo f_X .

Kao i prije, gustoća apsolutno neprekidnog slučajnog vektora X je jedinstveno određena s F_X do na skup $\lambda-$ mjere 0. Sada nas zanima kada će dana funkcija biti gustoća nekog vektora. Opet je situacija analogna onoj u dimenziji jedan.

Teorem 2.2.6.

Neka je $f: \mathbb{R}^n \to \mathbb{R}$ Borelova funkcija. Tada je f funkcija gustoće nekog slučajnog vektora Xako i samo ako vrijedi $f \geq 0 \ \lambda_n - (\mathrm{g.s.})$ i

$$\int_{\mathbb{R}^n} f(x)\lambda_n(\mathrm{d}x) = 1.$$

Jer je f nenegativna, možemo koristiti Fubinijev teorem pa imamo

$$\int_{\mathbb{R}^n} f(x)\lambda_n(\mathrm{d}x) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_n)\lambda(\mathrm{d}x_1) \dots \lambda(\mathrm{d}x_n)$$

te možemo računati u bilo kojem poretku. Slično,

$$\int_{(-\infty,x]} f(t)\lambda_n(\mathrm{d}t) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f(t_1,\ldots,t_n)\lambda(\mathrm{d}t_1)\ldots\lambda(\mathrm{d}t_n).$$

Neka je sada $X=(X_1,\ldots,X_n)$ slučajan vektor s funkcijom distribucije F_X . Znamo kako onda postoje F_{X_1},\ldots,F_{X_n} funkcije distribucije. Možemo li iz F_{X_i} naći F_X ? Promotrimo radi jednostavnosti situaciju u dimenziji dva. Fiksirajmo npr. x_1 te pustimo $x_2 \nearrow +\infty$. Imamo

$$\lim_{x_2 \nearrow +\infty} F_X(x_1, x_2) = \mathbb{P}_X \left(\left\{ (a_1, a_2) \in \mathbb{R}^2 \mid a_1 \le x_1 \right\} \right)$$

$$= P((x_1, x_2) \in B)$$

$$= \mathbb{P}(X_1 \le x_1) = F_X(x_1).$$

Analogno u dimenziji n dobijemo

$$F_{X_i}(x_i) = F(+\infty, \dots, x_i, \dots, +\infty).$$

Dakle, iz distribucije od X možemo dobiti distribucije svih X_i (marginalne distribucije). Obrat općenito ne možemo provesti, tj. poznavanje F_{X_1}, \ldots, F_{X_n} općenito nije dovoljno za poznavanje F_X .

Primjer 2.2.7

Neka je $X = (X_1, X_2)$, pri čemu su

$$X_1, X_2 \sim \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix}.$$

Tada slučajni vektor X živi samo na točkama (0,0) i (1,1).

S druge strane, neka slučajni vektor živi na

$$\begin{pmatrix} (0,0) & (0,1) & (1,0) & (1,1) \\ q^2 & qp & pq & p^2 \end{pmatrix}.$$

Tada će marginalne distribucije biti iste u oba slučaja, ali će njihove distribucije biti različite.

Na temelju F_{X_1}, \ldots, F_{X_n} može se napraviti jedna posebna distribucija F_Y koju

definiramo s

$$F_Y(x_1, ..., x_n) = \prod_{i=1}^n F_{X_i}(x_i).$$

Očito $F_Y \colon \mathbb{R}^n \to [0,1]$ zadovoljava uvjete (a) i (b) iz Napomene 2.2.3, ali i uvjet (c). Zaista

$$\Delta_{b-a} F_Y(a) = \prod_{i=1}^n (F_{X_i}(b_i) - F_{X_i}(a_i)) \ge 0.$$

Dakle, F_Y je distribucija nekog slučajnog vektora.

Primjer 2.2.8.

Dvodimenzionalna normalna distribucija. Neka su $\mu_1, \mu_2 \in \mathbb{R}, \sigma_1, \sigma_2 > 0$ te $\rho \in \langle -1, 1 \rangle$. Slučajni vektor ima 2-dimenzionalnu normalnu razdiobu ako mu je funkcija gustoće dana s $f(x_1, x_2) = ce^y$, pri čemu je $c = (2\pi\sigma_1\sigma_2\sqrt{1-\rho^2})^{-1}$ te

$$y = -\frac{1}{2(1-\rho^2)} \left[\left(\frac{x_1 - \mu_1}{\sigma_1} \right)^2 - 2\rho \frac{x_1 - \mu_1}{\sigma_1} \cdot \frac{x_2 - \mu_2}{\sigma_2} + \left(\frac{x_2 - \mu_2}{\sigma_2} \right)^2 \right].$$

Provjerimo kako se zaista radi o funkciji gustoće. Jedino netrivijalno je

$$\int_{\mathbb{R}^{2}} f(x_{1}, x_{2}) dx_{1} dx_{2} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x_{1}, x_{2}) dx_{1} dx_{2} = \begin{bmatrix} u = \frac{x_{1} - \mu_{1}}{\sigma_{1}} \\ v = \frac{x_{2} - \mu_{2}}{\sigma_{2}} \end{bmatrix} \\
= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{1}{2\pi \sqrt{1 - \rho^{2}}} \exp\left(-\frac{u^{2} + v^{2} - 2\rho uv}{2(1 - \rho^{2})}\right) du dv \\
= \frac{1}{2\pi \sqrt{1 - \rho^{2}}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \exp\left(-\frac{(u - \rho v)^{2} + (1 - \rho^{2})v^{2}}{2(1 - \rho^{2})}\right) du dv \\
= \begin{bmatrix} w_{1} = \frac{u - \rho v}{\sqrt{1 - \rho^{2}}} \\ w_{2} = v \end{bmatrix} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{w_{1}^{2}}{2}} e^{-\frac{w_{2}^{2}}{2}} dw_{1} dw_{2} \\
= \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{w_{1}^{2}}{2}} dw_{1}\right) \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{w_{1}^{2}}{2}} dw_{2}\right) = 1 \cdot 1 = 1.$$

Primjer 2.2.9

 $n{\rm -dimenzionalna}$ normalna distribucija. Neka je $n\in \mathbb{N}$ te neka su

- $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{R}^n$.
- A ... simetrična pozitivno definitna matrica reda n. Onda je $A^{-1} = [\sigma_{ij}]$ također simetrična pozitivno definitna matrica.

• Q ... kvadratna forma

$$Q(\underbrace{x_1, \dots, x_n}_{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij}(x_i - \mu_i)(x_j - \mu_j) = (x - \mu)A^{-1}(x - \mu)^{\mathsf{T}}.$$

Slučajni vektor ima n-dimenzionalnu normalnu razdiobu ako mu je funkcija gustoće zadana s

$$f(x) = (2\pi)^{-\frac{n}{2}} (\det A)^{\frac{1}{2}} \exp\left(-\frac{1}{2}Q(x)\right).$$

Provjerimo kako se zaista radi o funkciji gustoće. Kao i u Primjeru 2.2.8, jedino netrivijalno je izračunati pripadni integral. Jer je A^{-1} simetrična pozitivno definitna matrica, ona se može dijagonalizirati, tj. postoje ortogonalna matrica U i dijagonalna matrica $D = \operatorname{diag}(d_1, \ldots, d_n)$, pri čemu su svi d_i pozitivni, td. vrijedi

$$UA^{-1}U^{\dagger} = D.$$

Neka je nadalje $y \in \mathbb{R}^n$ td. $x - \mu = y \cdot U$. Imamo

$$\int_{\mathbb{R}^n} \exp\left(-\frac{1}{2}Q(x)\right) dx = \int_{\mathbb{R}^n} e^{-\frac{1}{2}yDy^{\mathsf{T}}} dy$$

$$= \prod_{i=1}^n \left(\int_{\mathbb{R}} e^{-\frac{1}{2}d_i y_i^2} dy\right) = \left[\int_{\mathbb{R}} e^{-\frac{1}{2}ax^2} dx = \sqrt{\frac{2\pi}{a}}\right]$$

$$= \prod_{i=1}^n \left(\frac{2\pi}{d_i}\right)^{\frac{1}{2}},$$

iz čega lako slijedi $\int_{\mathbb{R}^n} f(x) dx = 1$. X

§2.3 Vjerojatnosti na beskonačno dimenzionalnim prostorima

Još malo metrike/topologije. Neka je $\Omega \neq \emptyset$ s metrikom d. S \mathcal{B}_{Ω} označavamo najmanju σ -algebru na otvorenim skupovima. Neka su $x \in \Omega$ i $A \subseteq \Omega$. Definiramo

$$d(x,A) = \inf_{y \in A} d(x,y).$$

Lema 2.3.1.

 $A\subseteq\Omega$ je zatvoren ako i samo ako vrijedi izreka

$$d(x, A) = 0 \iff x \in A.$$

Lema 2.3.2.

Funkcija $\Omega \ni x \mapsto d(x, A)$ je uniformno neprekidna.

Definicija 2.3.3. Neka je $A \subseteq \Omega$. Reći ćemo kako je A

- G_{δ} -skup, ako se može prikazati kao presjek prebrojivo mnogo otvorenih skupova.
- F_{σ} -skup, ako se može prikazati kao unija prebrojivo mnogo zatvorenih skupova.

Napomena 2.3.4.

$$A \text{ je } G_{\delta} - \text{skup } \iff A^{\mathsf{c}} \text{ je } F_{\sigma} - \text{skup.}$$

Lema 2.3.5.

- (i) Svaki zatvoren skup je G_{δ} -skup.
- (ii) Svaki otvoren skup je F_{σ} -skup.

Dokaz. Dovoljno je dokazati tvrdnju (i). Ona lako slijedi iz

$$A = \bigcap_{n \in \mathbb{N}} \left\{ x \in \Omega \mid d(x, A) < \frac{1}{n} \right\}.$$

Budući je funkcija $x \mapsto d(x, A)$ neprekidna, svi skupovi u presjeku su otvoreni.

Definicija 2.3.6. Vjerojatnosna mjera \mathbb{P} na $(\Omega, \mathcal{B}_{\Omega})$ je **regularna** ako za sve $A \in \mathcal{B}_{\Omega}$ vrijedi

$$\mathbb{P}(A) = \sup \{ \mathbb{P}(C) \mid C \subseteq A, C \text{ zatvoren} \}$$
$$= \inf \{ \mathbb{P}(U) \mid A \subseteq U, U \text{ otvoren} \}.$$

Napomena 2.3.7.

Uočimo kako je \mathbb{P} regularna ako i samo ako za sve $A \in \mathcal{B}_{\Omega}$ i svaki $\varepsilon > 0$ postoje zatvoren skup C_{ε} i otvoren skup U_{ε} td. vrijedi $C_{\varepsilon} \subseteq A \subseteq U_{\varepsilon}$ te $\mathbb{P}(U_{\varepsilon} \setminus C_{\varepsilon}) < \varepsilon$.

Teorem 2.3.8.

Svaka vjerojatnosna mjera na $(\Omega, \mathcal{B}_{\Omega})$ je regularna.

Dokaz. Stranica 278 u knjizi.

Pretpostavimo sad kako je Ω potpun separabilan metrički prostor te uzmimo $A \in \mathcal{B}_{\Omega}$. Tada vrijedi

$$\mathbb{P}(A) = \sup \left\{ \mathbb{P}(K) \mid K \subseteq A, K \text{ kompaktan } \right\}.$$

Dakle, na potpunom separabilnom metričkom prostoru svaka mjera je napeta³. X

Promotrimo sada \mathbb{R}^T , pri čemu je T proizvoljan skup indeksa. Neka je $\{t_1,\ldots,t_n\}$ proizvoljan konačan podskup od T. Imamo pripadnu projekciju $\pi_{t_1,\dots,t_n}\colon\mathbb{R}^T\to\mathbb{R}^n$ definiranu s

$$\pi_{t_1,\ldots,t_n}(\omega)=(x_{t_1},\ldots,x_{t_n}).$$

Definicija 2.3.9. Za skup $A\subseteq\mathbb{R}^T$ kažemo kako je cilindar s bazom M nad koordinatama t_1, \ldots, t_n ako postoje neprazan konačni podskup $\{t_1, \ldots, t_n\}$ od T i skup $M \subseteq \mathbb{R}^n$ td. vrijedi

$$A = \pi_{t_1, \dots, t_n}^{-1}(M) = \left\{ \omega \in \mathbb{R}^T \mid (x_{t_1}, \dots, x_{t_n}) \in M \right\}.$$

A je Borelov cilindar ako dodatno vrijedi $M \in \mathcal{B}_{\mathbb{R}^n}$.

S \mathcal{F}^T označavamo familiju⁴ svih Borelovih cilindara na \mathbb{R}^T . Neka je $\mathcal{B}^T = \sigma(\mathcal{F}^T)$. Kažemo kako je \mathcal{B}^T σ -algebra Borelovih skupova u \mathbb{R}^T .

Ako je baza M cilindra A oblika

$$M = \prod_{i=1}^{n} B_i \subseteq \mathbb{R}^n,$$

tada A zovemo pravokutnik u \mathbb{R}^T sa stranicama B_1, \ldots, B_n . A je Borelov pravo**kutnik** ako dodatno vrijedi $B_i \in \mathcal{B}_{\mathbb{R}}$ za sve $i = 1, \ldots, n$.

Konačno, s \mathcal{P}^T označavamo familiju svih Borelovih pravokutnika u \mathbb{R}^T .

Napomena 2.3.10.

- (a) \mathcal{P}^T je pravi podskup od \mathcal{F}^T . (b) Vrijedi

$$\sigma(\mathcal{P}^T) = \sigma(\mathcal{F}^T) = \mathcal{B}^T.$$

Sada imamo ($\mathbb{R}^T, \mathcal{B}^T, -$). Pretpostavimo kako je za svaki neprazan konačan podskup $\{t_1,\ldots,t_n\}$ od T zadana vjerojatnosna funkcija distribucije F_{t_1,\ldots,t_n} . Imamo 1-1korespondenciju između F_{t_1,\ldots,t_n} i $\mathbb{P}_{t_1,\ldots,t_n}$. Cilj nam je pomoću $(F_{t_1,\ldots,t_n})_{\{t_1,\ldots,t_n\}\subset T}$ generirati vjerojatnosnu mjeru na \mathcal{B}^T .

³Ovim pojmom se ne trebamo zamarati.

 $^{^4 \}text{Lako vidimo kako je } \mathcal{F}^T$ algebra.

Uvjeti suglasnosti (Kolmogorova) su sljedeći

(i) Ako je (i_1, \ldots, i_n) proizvoljna permutacija od $(1, \ldots, n)$, onda vrijedi

$$F_{t_{i_1},\dots,t_{i_n}}(x_{i_1},\dots,x_{i_n}) = F_{t_1,\dots,t_n}(x_1,\dots,x_n).$$

(ii) Ako je $m \leq n$, onda vrijedi

$$F_{t_1,\dots,t_m}(x_1,\dots,x_m) = F_{t_1,\dots,t_n}(x_1,\dots,x_m,+\infty,\dots,+\infty).$$

Definicija 2.3.11. Familiju $\{F_{t_1,\dots,t_n}\}$ koja zadovoljava uvjete suglasnosti zovemo suglasna familija.

Od sada pa nadalje pretpostavljamo uvjete suglasnosti. Definiramo $\mathbb{P}^T \colon \mathcal{F}^T \to [0,1]$ na sljedeći način. Neka je $A \in \mathcal{F}^T$, onda je $A = \pi_{t_1,\dots,t_n}^{-1}(M)$. Stavimo

$$\mathbb{P}_T(A) := \mathbb{P}_{t_1, \dots, t_n}(M). \tag{*}$$

Definicija je dobra, tj. ne ovisi o izboru reprezentacije cilindra (DZ).

Teorem 2.3.12.

Neka je $\{F_{t_1,\dots,t_n}\}$ suglasna familija konačno dimenzionalnih funkcija distribucije. Tada postoji vjerojatnosna mjera \mathbb{P}_T na \mathcal{B}^T td. (*) vrijedi za svaki Borelov cilindar A. Osim toga, \mathbb{P}_T je jednoznačno određena sa (*).

Dokaz. Stranice 282 i 283 u knjizi.

Korolar 2.3.13.

 \mathbb{P}_T je σ -aditivna na \mathcal{F}^T .

Dokaz. Prema osnovnom teoremu o proširenju vjerojatnosti imamo kako se \mathbb{P}_T na jedinstven način proširuje do vjerojatnosti na \mathcal{B}^T .

3 Matematičko očekivanje. Momenti

Matematičko očekivanje smo vidjeli na maloj vjerojatnosti. Sada taj pojam uvodimo u kontekstu teorije mjere. Prvo ćemo ponoviti konstrukciju integrala (stranica 33).

§3.1 Definicije i osnovna svojstva

Neka je $(\Omega, \mathcal{F}, \mu)$ prostor mjere. Definiramo

$$S_+ = \{ f : \Omega \to \mathbb{R} \mid f \ge 0, f \text{ izmjeriva}, \operatorname{Im}(f) \text{ konačan} \}.$$

Tada $f \in \mathcal{S}_+$ ima dekompoziciju

$$f = \sum_{k=1}^{n} a_k \mathbf{1}_{A_k},$$

pri čemu su $a_k \in [0, +\infty)$ i $A_k \in \mathcal{F}$. Definicija

$$\int_{\Omega} f d\mu = \sum_{k=1}^{n} a_k \mu(A_k) \in [o, +\infty]$$

je dobra, integral je pozitivno linearan te vrijedi monotonost integrala.

Lema 3.1.1.

Neka su $(f_n)_n$ niz u \mathcal{S}_+ te $f \in \mathcal{S}_+$ td. $f_1 \leq f_2 \leq \cdots \nearrow f$ po točkama. Tada vrijedi

$$\lim_{n} \int_{\Omega} f_n d\mu = \int_{\Omega} f d\mu.$$

Dokaz. Iz monotonosti integrala slijedi $\int_{\Omega} f_n d\mu \leq \int_{\Omega} f d\mu$. Stoga postoji $I := \lim_n \int_{\Omega} f_n d\mu$ te vrijedi $I \leq \int_{\Omega} f d\mu$. Jer je $f \in \mathcal{S}_+$ imamo $f = \sum_{k=1}^p a_k \mathbf{1}_{A_k}$. Definiramo

$$A_{k,n} = \{ \omega \in A_k \mid f_n(\omega) \ge (1 - \varepsilon)a_k \}.$$

Gledamo $g_n \coloneqq \sum_{k=1}^p (1-\varepsilon) a_k \mathbf{1}_{A_{k,n}}$; vrijedi $\int_{\Omega} g_n \mathrm{d}\mu \to (1-\varepsilon) \int_{\Omega} f \mathrm{d}\mu$ i $f_n \ge g_n$ pa imamo

$$\lim_{n} \int_{\Omega} f_n d\mu = \int_{\Omega} f d\mu.$$

Neka je sada $f: \Omega \to \mathbb{R}$ nenegativna izmjeriva funkcija. Definiramo

$$\int_{\Omega} f d\mu = \sup \left\{ \int_{\Omega} g d\mu \mid g \in \mathcal{S}_+, g \le f \right\} \in [0, +\infty].$$

Za $f \in \mathcal{S}_+$ imamo $f \in \{g \in \mathcal{S}_+ \mid g \leq f\}$, tako da se ova definicija podudara s prethodnom. Nadalje, ako su f, g izmjerive funkcije td. $0 \leq f \leq g$, onda $\int_{\Omega} f \mathrm{d}\mu \leq \int_{\Omega} g \mathrm{d}\mu$ (monotonost). Znamo kako se svaka nenegativna izmjeriva funkcija f može odozgo aproksimirati nizom funkcija iz \mathcal{S}_+ , tj. postoji neopadajući niz $(g_n)_n$ u \mathcal{S}_+ td. za sve $\omega \in \Omega$ vrijedi $\lim_n g(\omega) = f(\omega)$. Integral se dobro ponaša s obzirom na limese; po definiciji i monotonosti integrala imamo

$$\int_{\Omega} g_n d\mu \le \int_{\Omega} g_{n+1} d\mu \le \int_{\Omega} f d\mu$$

pa postoji $I := \lim_n \int_{\Omega} g_n d\mu$ i vrijedi $I \leq \int_{\Omega} f d\mu$. Nadalje, za zadani $\int_{\Omega} f d\mu \in [0, +\infty]$ postoji niz $(f_n)_n$ u \mathcal{S}_+ td.

$$\lim_{n} \int_{\Omega} f_n d\mu = \int_{\Omega} f d\mu.$$

Sve ovo je slično kao i prije.

Primjer 3.1.2

Neka je $A \in \mathcal{F}$ td. $\mu(A) = 0$ te neka je $f := (+\infty) \cdot \mathbf{1}_A \notin \mathcal{S}_+$. Definiramo $f_n = n \cdot \mathbf{1}_A \nearrow f$. Jasno, radi se o nenegativnim izmjerivim funkcijama. Imamo

$$\int_{\Omega} f d\mu = \lim_{n} \int_{\Omega} f_{n} d\mu = \lim_{n} n \cdot \mu(A) = 0.$$

Neka je f izmjeriva funkcija te neka je $f=f^+-f^-$ t
d. $\int_{\Omega}f^+\mathrm{d}\mu$, $\int_{\Omega}f^-\mathrm{d}\mu\in[0,+\infty]$. Kažemo kako f ima integral ako je barem jedan od integral
a $\int_{\Omega}f^+\mathrm{d}\mu$ i $\int_{\Omega}f^-\mathrm{d}\mu$ konačan. Kažemo kako je f integrabilna ako su oba integral
a $\int_{\Omega}f^+\mathrm{d}\mu$ i $\int_{\Omega}f^-\mathrm{d}\mu$ konačna. U oba slučaja definiramo

$$\int_{\Omega} f d\mu := \int_{\Omega} f^{+} d\mu - \int_{\Omega} f^{-} d\mu \in [-\infty, +\infty].$$

Napomena 2.1.28; f integrabilna ako i samo ako vrijedi izreka

$$\int_{\Omega} f d\mu \in \mathbb{R} \iff \int_{\Omega} |f| d\mu \in \mathbb{R}.$$

Sada definiramo

$$\mathcal{L}^{1}\left(\Omega,\mathcal{F},\mu\right)=\left\{ f\text{ izmjeriva }\mid f\text{ integrabilna}\right\} .$$

Neka su $f, g \in \mathcal{L}^1(\Omega, \mathcal{F}, \mu)$ td. $\mu(\{w \in \Omega \mid f(\omega) = g(\omega)\}) = 0$. Tada vrijedi $\int_{\Omega} f d\mu = \int_{\Omega} g d\mu$.

Definiramo relaciju \sim s

$$f \sim g$$
 ako $f = g \mu - (g.s.)$.

Lako se vidi kako je \sim relacija ekvivalencije. Definiramo

$$L^{1}(\Omega, \mathcal{F}, \mu) = \mathcal{L}^{1}(\Omega, \mathcal{F}, \mu) /_{\sim}.$$

Definicija 3.1.3. Neka je $(\Omega, \mathcal{F}, \mathbb{P})$ vjerojatnosni prostor i $X \colon \Omega \to \mathbb{R}$ slučajna varijabla. Reći ćemo kako X ima očekivanje ako X ima integral u odnosu na \mathbb{P} . Reći ćemo kako X ima konačno očekivanje ako je X integrabilna u odnosu na \mathbb{P} . U tom slučaju uvodimo oznaku

$$\mathbb{E}[X] \coloneqq \int_{\Omega} X d\mathbb{P}.$$

Primjer 3.1.4.

Neka je

$$X \sim \begin{pmatrix} a_1 & a_2 & \dots \\ p_1 & p_2 & \dots \end{pmatrix}.$$

Na maloj vjerojatnosti je očekivanje od X bilo $\sum_k a_k p_k$, što je u skladu s našom definicijom.

Napomena 3.1.5.

X ima konačno očekivanje ako i samo ako vrijedi izreka

$$\mathbb{E}[|X|] < +\infty \iff X \in \mathcal{L}^{1}(\Omega, \mathcal{F}, \mathbb{P}).$$

×

Neka je $(\Omega, \mathcal{F}, \mathbb{P})$ vjerojatnosni prostor, $X \colon \Omega \to \mathbb{R}$ slučajna varijabla te $g \colon \mathbb{R} \to \mathbb{R}$ Borelova. Prema Propoziciji 1.2.5 (i), $g \circ X$ je slučajna varijabla. Nadalje, X inducira \mathbb{P}_X , za $B \in \mathcal{B}_{\mathbb{R}}$ je $\mathbb{P}_X(B) = \mathbb{P}(X \in B)$. Imamo

$$\int_B \mathrm{d}\mathbb{P}_X = \int_{\mathbb{R}} \mathbf{1}_B \mathrm{d}\mathbb{P}_X = \int_{\mathbb{R}} \mathbf{1}_{X^{-1}(B)} \mathrm{d}\mathbb{P} = \int_{X^{-1}(B)} \mathrm{d}\mathbb{P}.$$

Proširimo po linearnosti na jednostavne funkcije pa onda i na sve izmjerive funkcije. Onda imamo

$$\int_{\Omega}g(X(\omega))\mathrm{d}\mathbb{P}(\omega) \text{ postoji (konačan)} \iff \int_{\mathbb{R}}g(x)\mathrm{d}\mathbb{P}_X(x) \text{ postoji (konačan)}$$

i u tom slučaju su jednaki. Ako X ima gustoću f_X , onda je $\int_{\mathbb{R}} g(x) d\mathbb{P}_X(x) = \int_{\mathbb{R}} g(x) f_X(x) d\lambda(x)$. Posebno, ako postoji $\mathbb{E}X$, tada je

$$\mathbb{E}X = \int_{\mathbb{R}} x f_X(x) d\lambda(x) \quad \left(\int_{\mathbb{R}} x d\mathbb{P}_X(x) \right).$$

Za p > 0 promatramo $g = x^p$.

Definicija 3.1.6. Reći ćemo kako slučajna varijabla X ima p-ti moment, ako postoji

$$\mathbb{E}[X^p] = \int_{\mathbb{R}} x^p \mathrm{d}\mathbb{P}_X(x).$$

Reći ćemo kako ima konačan p-ti moment ako vrijedi

$$\mathbb{E}[|X|^p] = \int_{\mathbb{R}} |x|^p d\mathbb{P}_X(x) < +\infty.$$

Nadalje, za $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ promatramo $g(X) = (X - \mathbb{E}X)^p$.

Definicija 3.1.7. Reći ćemo kako slučajna varijabla X ima p-ti **centralni moment**, ako postoji $\mathbb{E}[g(X)]$. Ako je ta vrijednost konačna, reći ćemo kako X ima p-ti **konačni centralni moment**.

Propozicija 3.1.8.

Neka su $1 \le p < r$. Ako $\mathbb{E}[|X|^r] < +\infty$, onda vrijedi i $\mathbb{E}[|X|^p] < +\infty$.

Neka je $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Zanima nas drugi centralni moment. Jer je $(X - \mathbb{E}X)^2 \ge 0$, postoji

$$\operatorname{Var} X := \mathbb{E}\left[(X - \mathbb{E}X)^2 \right] = \mathbb{E}\left[X^2 - 2X\mathbb{E}X + (\mathbb{E}X)^2 \right].$$

Definicija 3.1.9. Kažemo kako $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ ima konačnu varijancu, ako vrijedi $\mathbb{E}[X^2] < \infty$.

Napomena 3.1.10.

Vrijedi

$$Var X = \mathbb{E}(X^2) - (\mathbb{E}X)^2.$$

Neka je $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ slučajna varijabla te neka su $a, b \in \mathbb{R}$. Onda imamo $aX + b \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ pa računamo

$$Var(aX + b) = \mathbb{E}[(aX + b)^{2}] - (\mathbb{E}(aX + b))^{2}$$

$$= \mathbb{E}(a^{2}X^{2} + 2abX + b^{2}) - (a\mathbb{E}X + b)^{2}$$

$$= a^{2}\mathbb{E}(X^{2}) + 2ab\mathbb{E}X + b^{2} - a^{2}(\mathbb{E}X)^{2} - 2ab\mathbb{E}X - b^{2} = a^{2}VarX.$$

Propozicija 3.1.11.

Neka je X slučajna varijabla i g nenegativna Borelova funkcija td. $\mathbb{E}\left[g(X)\right]<+\infty$. Ako je g parna na \mathbb{R} i neopadajuća na $[0,+\infty>,$ onda za sve $\varepsilon>0$ vrijedi

$$\mathbb{P}\left(|X| \geq \varepsilon\right) \leq \frac{\mathbb{E}[g(X)]}{g(\varepsilon)}.$$

Dokaz.

$$\mathbb{E}\left[g(X)\right] = \int_{|X| \ge \varepsilon} g(X) d\mathbb{P} + \int_{|X| < \varepsilon} g(X) d\mathbb{P}$$

$$\ge \int_{|X| \ge \varepsilon} g(X) d\mathbb{P}$$

$$\ge g(\varepsilon) \int_{|X| \ge \varepsilon} d\mathbb{P}$$

$$= g(\varepsilon) \mathbb{P}\left(|X| \ge \varepsilon\right).$$

Korolar 3.1.12.

Neka je r > 0 te $\mathbb{E}(|X|^r) < +\infty$. Tada za sve $\varepsilon > 0$ vrijedi

$$\mathbb{P}(|X| \ge \varepsilon) \le \frac{\mathbb{E}(|X|^r)}{\varepsilon^r}.$$

Korolar 3.1.13.

Neka je X slučajna varijabla td. su $\mathbb{E} X$ i Var konačni. Tada za sve $\varepsilon>0$ vrijedi

$$\mathbb{P}(|X - \mathbb{E}X| \ge \varepsilon) \le \frac{\operatorname{Var}X}{\varepsilon^2}.$$

Propozicija 3.1.14.

Nkea je X slučajna varijabla i g nenegativna Borelova funkcija td. $\mathbb{E}\left(g(X)\right)<+\infty$ te g parna i nenegativna na $[0+\infty\rangle$. Pretpostavimo kako je sup $g(x)<+\infty$ (g.s.). Tada za sve $\varepsilon>0$ vrijedi

$$\mathbb{P}\left(|X| \ge \varepsilon\right) \ge \frac{\mathbb{E}\left(g(X)\right) - g(\varepsilon)}{(g.s.) \sup g(X)}.$$

Dokaz.

$$\mathbb{E}\left[g(X)\right] = \int_{|X| \ge \varepsilon} g(X) d\mathbb{P} + \int_{|X| < \varepsilon} g(x) d\mathbb{P}$$

$$\leq \sup g(X) \mathbb{P}\left(|X| \ge \varepsilon\right) + g(\varepsilon) \mathbb{P}\left(|X| < \varepsilon\right)$$

$$\leq \sup g(X) \mathbb{P}\left(|X| \ge \varepsilon\right) + g(\varepsilon).$$

Neka je $1 \le p < +\infty$. Definiramo

$$\mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P}) = \{ X \text{ slučajna varijabla } | \mathbb{E}(|X|^p) < +\infty \}.$$

Uvodimo oznaku $\|X\|_p \coloneqq (|X|^p)^{1/p}$. Naravno, želimo doći do norme. Jedini problem je

$$||X||_p = 0 \iff X = 0 \text{(g.s.)}.$$

Stoga gledamo

$$L^{p}(\Omega, \mathcal{F}, \mu) = \mathcal{L}^{p}(\Omega, \mathcal{F}, \mu) /_{\sim},$$

pri čemu je \sim relacija ekvivalencije dana s $X \sim Y$ ako X = Y (g.s.).

Teorem 3.1.15. (Holderova nejednakost)

Iskaz teorema.

Ističe se slučaj $p=2 \iff q=2$. Neka su $X,\,Y\in\mathcal{L}^2(\Omega,\mathcal{F},\mathbb{P})$. Tada vrijedi CSB nejednakost

$$\mathbb{E}\left[\left|XY\right|\right] \leq \left\|X\right\|_{2} \left\|Y\right\|_{2}.$$

Nadalje je s $\langle X, Y \rangle := \mathbb{E}(XY)$ dobro definiran skalarni produkt. Stoga je $(L^2(\Omega, \mathcal{F}, \mathbb{P}), \langle \cdot, \cdot \rangle)$ Hilbertov prostor.

Teorem 3.1.16. (Nejednakost Minkowskog)

Iskaz teorema.

Za $X, Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ definiramo

$$\operatorname{Cov}(X, Y) = \mathbb{E}\left[\left(X - \mathbb{E}X\right)\left(Y - \mathbb{E}Y\right)\right] = \mathbb{E}\left(XY\right) - \mathbb{E}X\mathbb{E}Y.$$

Definicija 3.1.17. Reći ćemo kako su slučajne varijable X i Y nekorelirane ako je Cov(X,Y)=0.

Nadalje, uvodimo oznaku $\sigma_X := \sqrt{\operatorname{Var} X}$, tu vrijednost zovemo standardna devijacija slučajne varijable X. Iz CSB nejednakosti slijedi

$$|\operatorname{Cov}(X,Y)| \le \sigma_X \sigma_Y.$$

Napomena 3.1.18.

$$\sigma_X = 0 \Longrightarrow \text{Var} X = 0 \Longrightarrow X = \mathbb{E} X \text{ (g.s.)}.$$

Ako su pak $\sigma_X > 0$ i $\sigma_Y > 0$, onda je dobro definiran broj

$$\rho_{X,Y} \coloneqq \frac{\mathrm{Cov}(X,Y)}{\sigma_X \sigma_Y},$$

kojeg zovemo koeficijent korelacije slučajnih varijabli X i Y. Vrijedi $|\rho_{X,Y}| \leq 1$. Neka je $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Definiramo preslikavanje

$$\mathcal{F} \ni E \mapsto \int_E X d\mathbb{P} = \int_{\Omega} \mathbf{1}_E X d\mathbb{P}.$$

Za $X \geq 0$ je to preslikavanje mjera pa je neprekidna na padajuće nizove

$$\int_{\{x \in \mathbb{R} | |x| \ge t\}} |x| d\mathbb{P}_X(x) \xrightarrow{t \to \infty} 0.$$

Propozicija 3.1.19.

Neka je r > 0 i $\mathbb{E}(|X|^r) < +\infty$. Tada vrijedi

$$\lim_{x \to \infty} \mathbb{P}\left(|X| \ge x\right) = 0.$$

Dokaz.

$$\mathbb{E}(|X|^r) = \underbrace{\int_{|t| \ge x} |t|^r d\mathbb{P}_X(t)}_{\ge x^r \mathbb{P}(|X| \ge x)} + \int_{|t| < x} |t|^r d\mathbb{P}_X(t).$$

Puštanjem $x \to +\infty$ slijedi tvrdnja.

×

Ljeto