VALLIAMMAI ENGINEERING COLLEGE

S.R.M. Nagar, Kattankulathur - 603203

DEPARTMENT OF MATHEMATICS

QUESTION BANK

II YEAR / IV SEMESTER

LHGINEEN.

B.TECH-IT - 1, 2 & 3

MA8391- PROBABILITY AND STATISTICS

Regulation – 2017

Academic Year - 2018 - 19

Prepared by

Mr. V. Dhanasekaran., AP(OG)

Ms. B. Aarthi., AP(OG)

Ms. B. Elakkiavani., (OG)

VALLIAMMAI ENGNIEERING COLLEGE

www.rejinpaul.com OLLEGE

SRM Nagar, Kattankulathur – 603203.

DEPARTMENT OF MATHEMATICS

UNIT I PROBABILITY AND RANDOM VARIABLES

Probability – Axioms of probability – Conditional probability – Baye's theorem – Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential and Normal distributions.

Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential and Normal distributions.							
S.No	QUESTIONS	BTLevel	Competence				
PART - A							
1.	If the probability density function of a random variable X is $f(x) = \frac{1}{4}$ in $-2 < x < 2$ find $P(x > 1)$	BTL1	Remembering				
2.	If X is a geometric variate, taking values $1,2,3\infty$, find $P(X \text{ is odd})$	BTL1	Remembering				
3.	State the memory less property of the exponential distribution.	BTL1	Remembering				
4.	The mean and variance of binomial distribution are 5 and 4 Find the distribution of <i>X</i> .	BTL1	Remembering				
5.	The mean of Binomial distribution is 20 and standard deviation is 4. Find the parameters of the distribution.	BTL1	Remembering				
6.	If the events A and B are independent then show that \overline{A} and \overline{B} are independent.	BTL1	Remembering				
7.	If a random variable X takes values 1,2,3, 4 such that $2P(X=1) = 3P(X=2) = P(X=3) = \frac{5P(X=4)}{1}$. Find the probability distribution of X.	BTL2	Understanding				
8.	Find the Moment generating function of a continuous random variable X whose pdf is $f(x) = \begin{cases} xe^{x/2}, & x > 0 \\ 0, & x \le 0 \end{cases}$	BTL2	Understanding				
9.	If 3% of the electric bulbs manufactured by a company are defective, Find the probability that in a sample of 100 bulbs exactly 5 bulbs are defective.	BTL2	Understanding				
10.	If a random variable X has the MGF $M_X(t) = \frac{2}{2-t}$. Find the standard deviation of X.	BTL2	Understanding				
11.	Show that the function $f(x) = \begin{cases} e^{-x}, x \ge 0 \\ 0, x < 0 \end{cases}$ is a probability density function of a continuous random variable X.	BTL3	Applying				
12.	Show that the moment generating function of the uniform distribution $f(x) = \frac{1}{2a}$, $-a < x < a$, about origin is $\frac{\sinh(at)}{at}$.	BTL3	Applying				
13.	If the MGF of a uniform distribution for a RV X is $\frac{1}{t}(e^{5t} - e^{4t})$. Find E(X).	BTL3	Applying				
	A is known to hit the target in 2 out of 5 shots whereas B is known to hit the target in 3 of 4 shots. Find the probability of the target being hit when they both try?	BTL4	Analyzing				
15.	If the probability that a communication system has high selectivity is 0.54 and the probability that it will have fidelity is 0.81 and the probability that it will have both is 0.18. Find the probability that a system with high fidelity will have high selectivity.	BTL4	Analyzing				
16.	If A dn B are events in S such that $P(A) = 1/3$, $P(B) = 1/4$ and $P(A \cup A) = 1/2$. Find $P(A \cap \overline{B})$ and $P(A \overline{B})$.	BTL4	Analyzing				
17.	The number of hardware failures of a computer system in a week of	BTL5	Evaluating				

	operations has the following p.d.f. Find the mean of the number of failures						s in					
	a week. No of fa	iluros	0	1	2	3	4	5	6			
	Probabil		.18	.28	.25	.18	.06	.04	.01			
18.	The number of ha											
	operations has the											
	No of failures	0	1	2	3	4	5	6			BTL5	Evaluating
	Probability	K	2 K	2 K	K	3 K	K	4 K				
19.	Suppose that, on an average, in every three pages of a book there is one											
	typographical erro										BTL6	Creating
	the book is a Poiss				What is	the pro	obabil	ity if a	it least of	ne		- · · · · · · · · · · · · · · · · · · ·
20.	error on a specific The probability th				c in an	evamir	nation	is 0.6	What is	the		
20.	probability that he					CAAIIIII	iation	18 0.0	. What is	tiic	BTL6	Creating
	ıı J					PART	– B			I		
1. (a)	A random variable	e X has			probabi	lity dis	stribut					
	X 0	1	2	3	4	5	6		7			
	P(X) 0	k	2 <i>k</i>	2 <i>k</i>	3 <i>k</i>	k^2	2 <i>k</i>	2	$7k^2 + k$		BTL1	Remembering
	Find (i) the va				2111	HE	Eq.					
	(ii) P(1							No.				
` /	Find the MGF of										BTL2	Understanding
	A bolt is manufac items as <i>B</i> and ma	•								-		
	produced by A and			-	_					oons	BTL2	Understanding
	defective. All bol										DILL	Onderstanding
	What is the proba					1						
2. (b)	Find the moment	generati	ing func	tion of	a geon	netric r	and <mark>on</mark>	<mark>ı varia</mark>	ible. Als	SO .	BTL1	Remembering
	find its mean.							<u> </u>				
	The probability di											
	$P[X = j] = \frac{1}{2^{j}} (j = 1)$	= 1,2,3) Find	(1)Me	an of X	, (2)P	X is ϵ	even],	(3) P(X i	S	BTL1	Remembering
	odd)						_					
	Find the MGF of										BTL3	Applying
4. (a)	An urn contains 1 5 black balls. Tw											
	the second urn and								•		BTL2	Understanding
	probability that it				· runa		i the i		***************************************			
4. (b)	Find the MGF of	Uniforr	n distril	oution a	and hen	ce find	l its m	ean ai	nd varian	ice.	BTL4	Analyzing
5. (a)	If $f(x) = \begin{cases} ax, \\ a, \\ 3a - a. \\ 0, \end{cases}$	$0 \le \overline{x} \le$	≤ 1						<u></u>			
	a	1 < x <	: 2									
	If $f(x) = \begin{cases} 3x, \\ 3x \end{cases}$. 2	i	is the p	df of X	. Cal	culate					
	$\int 3a - a$	ι, ∠ ≤ .	$X \geq 3$								DEL 0	TT 1 . 1'
											BTL3	Understanding
	` '	he value		1		,•	0.37					
	` '		ulative o					otio==	of V E	nd		
	(iii) If	X_{1}, X_{2} ality that			•				of X. Fi	na		
5. (b)	The probability of									the		
- (-)	probability of his										DEL 7	F 1
	he fire so that the	_	_								BTL5	Evaluating
	than 2/3?											

	(0:0 4 4		<u> </u>
6. (a)	A random variable X has cdf $F(x) = \begin{cases} 0, if \ x < -1 \\ a(1+x), if -1 < x < 1 \\ 1, if \ x \ge 1 \end{cases}$ Find the value of a. also $P(X > 1/4)$ and $P(-0.5 \le X \le 0)$.	BTL2	Understanding
6. (b)	State and Prove forget fullness property of exponential distribution. Using this property solve the following problem: The length of the shower on a tropical island during the rainy season has on exponential distribution with parameter 2, time being measured in minutes. What is the probability that a shower will last more than 3 minutes.	BTL3	Applying
7. (a)	In a normal population with mean 15 and standard deviation 3.5, it is found that 647 observations exceed 16.25. What is the total number of observations in the population.	BTL5	Evaluating
7. (b)	If the probability mass function of a RV X is given by $P(X = x) = k x^3$, $x = 1,2,3,4$, Find the value of k, $P\left[\left(\frac{1}{2} < X < \frac{3}{2}\right) / X > 1\right]$, mean and variance of X.	BTL2	Understanding
	The marks obtained by a number of students for a certain subject is assumed to be normally distributed with mean 65 and standard deviation 5.If 3 students are taken at random from this set Find the probability that exactly 2 of them will have marks over 70?	BTL1	Remembering
	A bag contains 5 balls and it is not known how many of them are white. Two balls are drawn at random from the bag and they are noted to be white. What is the change that all balls in the bag are white?	BTL6	Evaluating
	Out of 2000 families with 4 children each, Find how many family would you expect to have i) at least 1 boy ii) 2 boys iii) 1 or 2 girls iv) no girls	BTL1	Remembering
9. (b)	In an Engineering examination, a student is considered to have failed, secured second class, first class and distinction, according as he scores less than 45%, between 45% and 60% between 60% and 75% and above 75% respectively. In a particular year 10% of the students failed in the examination and 5% of the students get distinction. Find the percentage of students who have got first class and second class. Assume normal distribution of marks.	BTL6	Creating
	In a certain city, the daily consumption of electric power in millions of kilowatt hours can be treated as a RV having Gamma distribution with parameters $\lambda = \frac{1}{2}$ and $k = 3$. If the power plant of this city has a daily capacity of 12 million kilowatt – hours, Find the probability that this power supply will be inadequate on any given day?	BTL1	Remembering
	Suppose that the life of a industrial lamp in 1,000 of hours is exponentially distributed with mean life of 3,000 hours. Find the probability that (i)The lamp last more than the mean life (ii) The lamp last between 2,000 and 3,000 hours (iii) The lamp last another 1,000 hours given that it has already lasted for 250 hours.	BTL4	Analyzing
	Assume that 50% of all engineering students are good in mathematics. Determine the probabilities that among 18 engineering students (i) exactly 10, (ii) At least 10 are good in mathematics.	BTL1	Remembering
	The life (in years) of a certain electrical switch has an exponential distribution with an average life of $\frac{1}{\lambda} = 2$. If 100 of these switches are installed in different systems; find the probability that atmost 30 fail during the first year.	BTL2	Understanding
	The probability mass function of a discrete R. V X is given in the following table:	BTL2	Understanding

X -2 -1 0 1 2 3		
P(X=x) 0.1 k 0.2 2k 0.3 k		
Find (1) the value of k , (2) P(X<1), (3) P(-1< X \le 2), (4)		
E(X)		
12. (b) Let X be a continuous R.V with probability density function		
$f(x) = \begin{cases} xe^{-x}, & x > 0\\ 0, & otherwise \end{cases}$	BTL1	D amamh arin a
Find (1) The cumulative distribution of X,	DILI	Remembering
(2)Moment Generating Function $M_x(t)$ of X ,		
(3) $P(X<2)$,		
(4) E(X)		
13. (a) Find the MGF of the random variable X having the probability density		
function $f(x) = \begin{cases} \frac{x}{4}e^{-x/2} & x > 0 \end{cases}$	BTL1	Remembering
0 otherwise. Also find the first four moments about the	BILI	Remembering
origin.		
13. (b) Let X be a Uniformly distributed R. V. over [-5, 5]. Determine		
(i) $P(X \le 2)$ (ii) $P(X \ge 2)$ (iii) Cumulative distribution function of X (iv) $Var(X)$.	BTL3	Applying
14. (a) The Probability distribution function of a R.V. X is given by	DEL 0	** 1 . 1
$f(x) = \frac{4x(9-x^2)}{81}, 0 \le x \le 3. \text{ Find the mean, variance and } 3^{\text{rd}} \text{ moment}$	BTL2	Understanding
about origin.		
14. (b) Messages arrive at a switch board in a Poisson manner at an average rate of 6		
per hour. Find the probability that exactly 2 messages arrive within one hour,	BTL1	Remembering
no messages arrives within one hour and at least 3 messages arrive within one	DILI	Remembering
hour.		

UNIT II - TWO - DIMENSIONAL RANDOM VARIABLES

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and linear regression – Transformation of random variables – Central limit theorem (for independent and identically distributed random variables).

Q.No.	Question	BT Level	Competence
1 1	Define the distribution function of two dimensional random variables (X,Y) . State any two properties.	BTL -1	Remembering
2.	If the joint pdf of (X, Y) is $f(x, y) = \begin{cases} \frac{1}{4}, & 0 < x, y < 2 \\ 0, & otherwise \end{cases}$. Find $P(X + Y \le 1)$.	BTL -1	Remembering
	Let X and Y be random variables with joint density function $f(x,y) = \begin{cases} 4xy, & 0 < x < 1, & 0 < y < 1 \\ & 0, & otherwise \end{cases}$ formulate the value of E(XY)	BTL -1	Remembering
4.	The joint probability density function of the random variable (X,Y) is given by $f(x, y) = Kxye^{-(x^2 + y^2)}$, $x > 0$, $y > 0$ Calculate the value of K.	BTL -3	Applying
5.	If X has mean 4 and variance 9 while Y has mean -2 and variance 5, they two are independent, Identify $Var(2X + Y-5)$.	BTL -1	Remembering
6.	Assume that the random variable X and Y have the probability density function $f(x,y)$. What is $E(E(X/Y))$?.	BTL -1	Remembering

7.	If random variables X and Y have the joint density function $f(x,y) = \frac{1}{8}(6-x-y)$ for $0 < x < 2$ and $2 < y < 4$, then find $P[X+Y < 3]$.	BTL -3	Applying
	If the joint probability density function of a random variable X and Y is given by $f(x,y) = \begin{cases} \frac{x^3y^3}{16}, & 0 < x < 2, & 0 < y < 2 \\ 0, & otherwise \end{cases}$. Find the marginal functions	BTL -3	Applying
	of X and Y.		
9.	If X and Y have joint pdf $f(x,y) = \begin{cases} x + y, 0 < x < 1, 0 < y < 1 \\ 0, otherwise \end{cases}$ Discuss whether X and Y are independent.	BTL -2	Understanding
10.	The joint probability mass function of a two dimensional random variable (X,Y) is given by $p(x,y) = k(2x + 3y), x = 0,1,2; y = 1,2,3$. Evaluate k .	BTL -5	Evaluating
11.	If X and Y are RVs such that $Y = aX + b$ where a and b are real constants, show that the correlation coefficient between them has magnitude 1.	BTL -3	Applying
12.	What do you mean by correlation between two random variables	BTL -1	Remembering
13.	Distinguish between correlation and regression.	BTL -2	Understanding
14.	If X,Y denote the deviation of variance from the arithmetic mean and if $\rho = 0.5$, $\sum XY = 120$, $\sigma_y = 8$, $\sum X^2 = 90$, Find n, the number of times.	BTL -4	Analyzing
15.	The regression equations are $x + 6y = 14$ and $2x + 3y = 1$. Point out the correlation coefficient between X & Y.	BTL -4	Analyzing
16.	If $\bar{X} = 970$, $\bar{Y} = 18$, $\sigma_x = 38$, $\sigma_y = 2$ and $r = 0.6$, Find the line of regression and obtain the value of X and Y = 20.	BTL -4	Analyzing
17.	Give the acute angle between the two lines of regression.	BTL -2	Understanding
18.	The correlation coefficient of two random variables X and Y is $-\frac{1}{4}$ and their variances are 3 and 5. Find the covariance.	BTL -5	Evaluating
19.	The two regression lines $X+6Y=14$, $2X+3Y=1$. Find the mean values of X and Y.	BTL -6	Creating
20.	State Central Limit Theorem.	BTL -1	Remembering
	PART - B	212 1	1101110111100111118
1.(a)	Three balls are drawn at random without replacement from a box containing 2 white, 3 red and 4 blue balls. If X denotes the number of white balls drawn and Y denotes the number of red balls drawn, Identify the probability distribution of X and Y.	BTL -1	Remembering
1. (b)	If X, Y are RV's having the joint density function $f(x,y) = k(6-x-y), 0 < x < 2, 2 < y < 4$, Point out (i) $P(x < 1, y < 3)$ ii) $P(x < 1/y < 3)$ iii) $P(y < 3/x < 1)$ iv) $P(X + Y < 3)$	BTL -4	Analyzing
2.(a)	The joint distribution of X and Y is given by $f(x,y) = \frac{x+y}{21}$, $x = 1,2,3; y = 1,2$. Find the marginal distributions.	BTL-3	Applying
2.(b)	If the joint probability distribution function of a two dimensional random variable (X,Y) is given by $F(x,y) = \begin{cases} (1-e^{-x})(1-e^{-y}); x > 0, y > 0 \\ 0, & otherwise \end{cases}$. Calculate the marginal densities of X and Y.Are X and Y independent? <i>Find P</i> [1 < X < 3, 1 < Y < 2]	BTL -3	Applying
3. (a)	If the joint pdf of (X, Y) is given by $p(x, y) = K(2x+3y)$, $x=0, 1, 2, 3$. Find all the marginal probability distribution. Also find the probability distribution of $(X+Y)$.	BTL-3	Applying

The joint pdf of X and Y is given by $f(x,y) = \begin{cases} K(x-y), 0 < x < 2, x < y < x \\ 0, otherwise \\ 0, otherwise \end{cases}$ The joint pdf of $K(x)$ is given by $f(x,y) = \begin{cases} F(x,y) = \begin{cases} F(x,y) = (x,y) = ($		TDI 1C C.XZ 1.XZ .	• 1		1	
(i)Find K (ii) Find $f_x(x)$ and $f_y(y)$ (iii) $f_x(\frac{x}{x})$ The joint pdf of (X,Y) is given by $f(x,y) = \begin{cases} 24xy; x > 0, y > 0, x + y \le 1 \\ 0, & otherwise \end{cases}$ Find the conditional mean and variance of Y given X. The joint pdf a bivariate R.V(X, Y) is given by $f(x,y) = \begin{cases} Kxy; 0 < x < 1, 0 < y < 1 \\ 0, & otherwise \end{cases}$ BTL-3 Applying Applying BTL-3 Applying Applying Applying BTL-3 Applying Applying Applying BTL-3 Applying BTL-3 Applying Applying Applying Applying Applying Applying BTL-3 Applying BTL-3 Applying Applying Applying BTL-3 Applying BTL-3 Applying BTL-3 Applying Applying Applying BTL-3 Applying BTL-3 Applying Applying BTL-3 Applying Applying Applying BTL-3 Applying BTL-3 Applying Applying BTL-3 Applying BTL-3 Applying Applying BTL-3 Applying Applying Applying BTL-3 Applying BTL-1 BTL-1 BTL-2 Applying BTL-3 Applying		The joint pdf of X and Y is	given by			
(i)Find K (ii) Find $f_x(x)$ and $f_y(y)$ (iii) $f_x(\frac{x}{x})$ The joint pdf of (X,Y) is given by $f(x,y) = \begin{cases} 24xy; x > 0, y > 0, x + y \le 1 \\ 0, & otherwise \end{cases}$ Find the conditional mean and variance of Y given X. The joint pdf a bivariate R.V(X, Y) is given by $f(x,y) = \begin{cases} Kxy; 0 < x < 1, 0 < y < 1 \\ 0, & otherwise \end{cases}$ BTL-3 Applying Applying BTL-3 Applying Applying Applying BTL-3 Applying Applying Applying BTL-3 Applying BTL-3 Applying Applying Applying Applying Applying Applying BTL-3 Applying BTL-3 Applying Applying Applying BTL-3 Applying BTL-3 Applying BTL-3 Applying Applying Applying BTL-3 Applying BTL-3 Applying Applying BTL-3 Applying Applying Applying BTL-3 Applying BTL-3 Applying Applying BTL-3 Applying BTL-3 Applying Applying BTL-3 Applying Applying Applying BTL-3 Applying BTL-1 BTL-1 BTL-2 Applying BTL-3 Applying	3.(b)	$f(x,y) = \begin{cases} kx(x-y), & 0 < x < 2 \\ 0 & \text{otherwise} \end{cases}$	BTL -1	Remembering		
The joint pdf of (X,Y) is given by 4 . (a) $f(x,y) = \begin{cases} 24xy; x > 0, y > 0, x + y \le 1 \\ 0, & otherwise \end{cases}$ Find the conditional mean and variance of Y given X. The joint pdf a bivariate R.V(X, Y) is given by $f(x,y) = \begin{cases} Kxy; 0 < x < 1, 0 < y < 1 \\ 0, & otherwise \end{cases}$ (1) Find K. (2) Find P(X+Y<1). (3) Are X and Y independent R.V's. From the following table for bivariate distribution of (X, Y) . Find (i) $P(X \le 1)$ (ii) $P(X \le 3)$ (iii) $P(X \le 3)$ (iii) $P(X \le 1)$ (iii) $P(X \ge 1)$ (iii)						333333333
4. (a) $f(x,y) = \begin{cases} 24xy; \ x > 0, y > 0, x + y \le 1 \\ 0, otherwise \end{cases}$ Find the conditional mean and variance of Y given X. The joint pdf a bivariate R.V(X, Y) is given by $f(x,y) = \begin{cases} Kxy; 0 < x < 1, 0 < y < 1 \\ 0, otherwise \end{cases}$ 4. (b) $f(x,y) = \begin{cases} Kxy; 0 < x < 1, 0 < y < 1 \\ 0, otherwise \end{cases}$ (1) Find K. (2) Find P(X+Y < 1). (3) Are X and Y independent R.V's. From the following table for bivariate distribution of (X, Y). Find (i) $P(X \le 1) (ii) P(Y \le 3) (iii) P(X \le 1, Y \le 3) (iv) P(X \le 1/Y \le 3) (v) P(X \le 1/Y \le 3) (v) P(Y \le 3/X \le 1) (vi) P(X + Y \le 4)$ 5. (a) $\begin{cases} Y & 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 0 & 0 & \frac{1}{32} & \frac{2}{32} & \frac{1}{32} & \frac{3}{32} \\ 1 & \frac{1}{16} & \frac{1}{16} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \\ 2 & \frac{1}{13} & \frac{1}{16} & \frac{1}{6} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \\ 2 & \frac{1}{13} & \frac{1}{16} & \frac{1}{6} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \\ 2 & \frac{1}{13} & \frac{1}{16} & \frac{1}{6} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \\ (ii)P(Y < \frac{1}{2}/X > 1) (iii) P(X < Y) (iv) P(X + Y) \le 1.$ The two dimensional random variable (X, Y) has the joint probability mass function $f(x, y) = \frac{x+2y}{27}, x = 0, 1, 2, y = 0, 1, 2. Find the conditional distribution of Y for X = x. Also find the conditional distribution of Y given X = 1.$ 6. (b) $\begin{cases} Find P(X < Y/X < 2Y) & \text{if the joint pdf of } (X, Y) & \text{is } f(x, y) = e^{-(x+y)}, \\ 0 & \frac{1}{28} & \frac{2}{28} & \frac{3}{28} \\ 1 & \frac{3}{14} & \frac{3}{14} & 0 \\ 2 & \frac{1}{18} & 0 & 0 \end{cases}$ BTL-3 Applying Applying Applying BTL-3 Applying BTL-3 Applying			χ,			
Find the conditional mean and variance of Y given X. The joint pdf a bivariate R.V(X, Y) is given by $f(x,y) = \begin{cases} Kxy; 0 < x < 1, 0 < y < 1 \\ 0, & otherwise \end{cases}$ $4.(b) \begin{cases} 1 \text{ Find K.} \\ (2) \text{ Find P(X+Y < I).} \\ (3) \text{ Are X and Y independent R.V's.} \end{cases}$ From the following table for bivariate distribution of (X, Y). Find (i) $P(X \le 1) \text{ (ii) } P(Y \le 3) \text{ (iii) } P(X \le 1, Y \le 3) \text{ (iv) } P(X \le 1/Y \le 1/Y \le 3) \text{ (iv) } P(X \le 1/Y \le 1/Y \le 3) \text{ (iv) } P(X \le 1/Y \le 1/Y$		The joint pdf of (X,Y) is given	ren by			
Find the conditional mean and variance of Y given X. The joint pdf a bivariate R.V(X, Y) is given by $f(x,y) = \begin{cases} Kxy; 0 < x < 1, 0 < y < 1 \\ 0, & otherwise \end{cases}$ $4.(b) \begin{cases} 1 \text{ Find K.} \\ (2) \text{ Find P(X+Y < I).} \\ (3) \text{ Are X and Y independent R.V's.} \end{cases}$ From the following table for bivariate distribution of (X, Y). Find (i) $P(X \le 1) \text{ (ii) } P(Y \le 3) \text{ (iii) } P(X \le 1, Y \le 3) \text{ (iv) } P(X \le 1/Y \le 1/Y \le 3) \text{ (iv) } P(X \le 1/Y \le 1/Y \le 3) \text{ (iv) } P(X \le 1/Y \le 1/Y$	4. (a)	$f(x,y) = \begin{cases} 24xy; & x > 0, y > 0 \end{cases}$	$0, x + y \le 1$		DETECT OF	
The joint pdf a bivariate R.V(X, Y) is given by $f(x,y) = \begin{cases} Rxy; 0 < x < 1, 0 < y < 1 \\ 0, & otherwise \end{cases}$ $f(x,y) = \begin{cases} Rxy; 0 < x < 1, 0 < y < 1 \\ 0, & otherwise \end{cases}$ $(1) \text{ Find K.}$ $(2) \text{ Find P}(X+Y<1).$ $(3) \text{ Are X and Y independent R.V's.}$ From the following table for bivariate distribution of (X, Y). Find (i) $P(X \le 1) \text{ (ii) } P(Y \le 3) \text{ (iii) } P(X \le 1, Y \le 3) \text{ (iv) } P(X \le 1/Y \le 3) \text{ (v) } P(Y \le 3/X \le 1) \text{ (iv) } P(X + Y \le 4)$ $5. \text{ (a)} \qquad \qquad$		[0, 0	therwise		BTL-3	Applying
$f(x,y) = \begin{cases} Kxy; 0 < x < 1, 0 < y < 1\\ 0, & otherwise \end{cases}$ $(1) \text{ Find K.}$ $(2) \text{ Find P(X+Y<1).}$ $(3) \text{ Are X and Y independent R.V's.}$ From the following table for bivariate distribution of (X, Y) . Find (i) $P(X \le 1) \text{ (ii) } P(X \le 3) \text{ (iii) } P(X \le 1, Y \le 3) \text{ (iv) } P(X \le 1/Y \le 3) \text{ (v)}$ $P(Y \le 3/X \le 1) \text{ (vi) } P(X + Y \le 4)$ $5. \text{ (a)} \qquad \qquad$			id variance of 1 given A.			
$f(x,y) = \begin{cases} Kxy; 0 < x < 1, 0 < y < 1\\ 0, & otherwise \end{cases}$ $(1) \text{ Find K.}$ $(2) \text{ Find P(X+Y<1).}$ $(3) \text{ Are X and Y independent R.V's.}$ From the following table for bivariate distribution of (X, Y) . Find (i) $P(X \le 1) \text{ (ii) } P(X \le 3) \text{ (iii) } P(X \le 1, Y \le 3) \text{ (iv) } P(X \le 1/Y \le 3) \text{ (v)}$ $P(Y \le 3/X \le 1) \text{ (vi) } P(X + Y \le 4)$ $5. \text{ (a)} \qquad \qquad$		The joint pdf a bivariate R V	(X V) is given by			
(1) Find K. (2) Find P(X+Y<1). (3) Are X and Y independent R.V's. From the following table for bivariate distribution of (X, Y). Find (i) $P(X \le 1)$ (ii) $P(X \le 1)$ (iii) $P(X \le 1)$ (iiii) $P(X \le 1)$ (iii) P		The joint par a orvariate it.	(Kxy; 0 < x < 1, 0 < y < 1)			
(1) Find K. (2) Find P(X+Y<1). (3) Are X and Y independent R.V's. From the following table for bivariate distribution of (X, Y). Find (i) $P(X \le 1)$ (ii) $P(Y \le 3)$ (iii) $P(X \le 1, Y \le 3)$ (iv) $P(X \le 1, Y \le 3)$ (v) $P(Y \le 3, X \le 1)$ (vi) $P(X = 1, Y \le 3)$ (vi) $P(X \le 1, Y \le 3)$ (vii) $P(X \le 1, Y \le 3)$ (viii) $P(X \le 1, Y \le 1, Y \le 3)$ (viii) $P(X \le 1, Y \le$	1 (b)	f(x,y) =	0, otherwise		DTI 2	Applying
(3) Are X and Y independent R.V's. From the following table for bivariate distribution of (X, Y). Find (i) $P(X \le 1)$ (ii) $P(Y \le 3)$ (iii) $P(X \le 1, Y \le 3)$ (iv) $P(X \le 1/Y \le 3)$ (v) $P(Y \le 3/X \le 1)$ (vi) $P(X + Y \le 4)$ 5. (a) X 1 2 3 4 5 6 X 2 3 4 5 6 X 3 4 5 6 X 4 5 6 X 5 6 X 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.(0)				DIL-3	11 3 8
From the following table for bivariate distribution of (X, Y) . Find (i) $P(X \le 1)$ (ii) $P(Y \le 3)$ (iii) $P(X \le 1, Y \le 3)$ (iv) $P(X \le 1/Y \le 3)$ (v) $P(Y \le 3/X \le 1)$ (vi) $P(X + Y \le 4)$ 5. (a) 1 2 3 4 5 6 0 0 0 $\frac{1}{32}$ $\frac{1}{32}$ $\frac{2}{32}$ $\frac{3}{32}$ $\frac{3}{32}$ 1 $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{2}$ $\frac{1}{$						
$P(X \le 1) \text{ (ii) } P(Y \le 3) \text{ (iii) } P(X \le 1, Y \le 3) \text{ (iv) } P(X \le 1/Y \le 3) \text{ (v)} \\ P(Y \le 3/X \le 1) \text{ (vi) } P(X + Y \le 4) \\ \hline S. \text{ (a)} \\ \hline X \\ \hline Y \\ \hline 1 \\ \hline 2 \\ \hline 0 \\ \hline 0$		1				
5. (a) $ \begin{array}{ c c c c c c c c c }\hline P(Y \le 3/X \le 1) \text{ (vi) } P(X + Y \le 4) \\\hline S. (a) & Y & 1 & 2 & 3 & 4 & 5 & 6 \\\hline O & 0 & 0 & \frac{1}{32} & \frac{2}{32} & \frac{2}{32} & \frac{3}{32} \\\hline 1 & \frac{1}{16} & \frac{1}{16} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \\\hline 2 & \frac{1}{32} & \frac{1}{32} & \frac{1}{64} & \frac{1}{64} & 0 & \frac{2}{64} \\\hline The joint pdf of a two dimensional random variable (X, Y) is given by 5.(b) f(x,y) = xy^2 + \frac{x^2}{8}, 0 \le x \le 2, 0 \le y \le 1. \text{ Compute (i) } P(X > 1/Y < \frac{1}{2}) \\\hline S. (ii) P(Y < \frac{1}{2}/X > 1) \text{ (iii) } P(X < Y) \text{ (iv) } P(X + Y) \le 1. \\\hline The two dimensional random variable (X, Y) has the joint probability mass function f(x,y) = \frac{x+2y}{27}, x = 0,1,2; y = 0,1,2; \text{ Find the conditional distribution of Y given } X = 1. \\\hline S. (a) & \text{Find } P(X < Y/X < 2Y) \text{ if the joint pdf of } (X,Y) \text{ is } f(x,y) = e^{-(x+y)}, \\\hline O \le x < \infty, 0 \le y < \infty. \\\hline The following table represents the joint probability distribution of RV (X, Y). Find the marginal distributions.}\\\hline 7. (a) & & & & & & & & & & & & & & & & & & &$						
5. (a) $\begin{array}{ c c c c c c c c c c c }\hline S. (a) & Y & 1 & 2 & 3 & 4 & 5 & 6 \\\hline 0 & 0 & 0 & \frac{1}{32} & \frac{2}{32} & \frac{2}{32} & \frac{3}{32} \\\hline 1 & \frac{1}{16} & \frac{1}{16} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \\\hline 2 & \frac{1}{32} & \frac{1}{32} & \frac{1}{64} & \frac{1}{64} & 0 & \frac{2}{64} \\\hline The joint pdf of a two dimensional random variable (X, Y) is given by f(x,y) = xy^2 + \frac{x^2}{8}, 0 \le x \le 2, 0 \le y \le 1. Compute (i) P(X > 1 / Y < \frac{1}{2}) BTL-1 Remembering (ii)P(Y < \frac{1}{2} / X > 1) (iii) P(X < Y) (iv) P(X + Y) \le 1. The two dimensional random variable (X, Y) has the joint probability mass function f(x,y) = \frac{x+2y}{27}, x = 0,1,2; y = 0,1,2. Find the conditional distribution of Y for X = x. Also find the conditional distribution of Y given X = 1. 6. (b) Find P(X < Y / X < 2Y) if the joint pdf of (X,Y) is f(x,y) = e^{-(x+y)}, f(x,y) = e^{-(x$				$Y \leq 3$) (V)		
5. (a) $\frac{X}{0}$ 1 2 3 4 5 6 $\frac{1}{32}$ Applying $\frac{1}{32}$ 0 0 0 $\frac{1}{32}$ $\frac{1}{32}$ $\frac{2}{32}$ $\frac{2}{32}$ $\frac{3}{32}$ $\frac{3}{32}$ $\frac{1}{32}$ $\frac{1}{1}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{8}$			<u>> 4)</u>			Applying
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5. (a)		3 4 5	6	BTL-3	
$\frac{1}{2} \frac{1}{\frac{16}{16}} \frac{1}{\frac{16}{16}} \frac{1}{\frac{16}{8}} \frac{32}{\frac{1}{8}} \frac{32}{\frac{1}{8}} \frac{32}{\frac{1}{8}} \frac{32}{\frac{1}{8}}$ $\frac{1}{2} \frac{1}{\frac{32}{32}} \frac{1}{\frac{32}{32}} \frac{1}{\frac{1}{64}} \frac{1}{\frac{1}{64$			1 2 2		DIL 3	
The joint pdf of a two dimensional random variable (X, Y) is given by $f(x,y) = xy^2 + \frac{x^2}{8}, 0 \le x \le 2, 0 \le y \le 1$. Compute $(i) P(X) > 1/Y < \frac{1}{2}$ BTL-1 Remembering $(ii)P(Y < \frac{1}{2}/X > 1)$ (iii) $P(X < Y)$ (iv) $P(X + Y) \le 1$. The two dimensional random variable (X, Y) has the joint probability mass function $f(x,y) = \frac{x+2y}{27}, x = 0,1,2; y = 0,1,2$. Find the conditional distribution of Y for $X = x$. Also find the conditional distribution of Y given $X = 1$. 6. (b) Find $P(X < Y/X < 2Y)$ if the joint pdf of (X,Y) is $f(x,y) = e^{-(x+y)}$, $0 \le x < \infty, 0 \le y < \infty$. The following table represents the joint probability distribution of RV (X, Y) . Find the marginal distributions. 7. (a) $Y = \frac{X}{0} = \frac{X}{128} = \frac{X}{$		1 1 1	32 32 3 1 1 1 1	2 32		
The joint pdf of a two dimensional random variable (X, Y) is given by $f(x,y) = xy^2 + \frac{x^2}{8}, 0 \le x \le 2, 0 \le y \le 1$. Compute $(i) P\left(X > 1/Y < \frac{1}{2}\right)$ BTL-1 Remembering $(ii)P\left(Y < \frac{1}{2}/X > 1\right)$ (iii) $P(X < Y)$ (iv) $P(X + Y) \le 1$. The two dimensional random variable (X, Y) has the joint probability mass function $f(x,y) = \frac{x+2y}{27}, x = 0,1,2; y = 0,1,2$. Find the conditional distribution of Y for $X = x$. Also find the conditional distribution of Y given $X = 1$. 6. (b) Find $P(X < Y/X < 2Y)$ if the joint pdf of (X,Y) is $f(x,y) = e^{-(x+y)}$, $0 \le x < \infty, 0 \le y < \infty$. The following table represents the joint probability distribution of RV (X, Y) . Find the marginal distributions. 7. (a) X X X X X X X X		$\frac{1}{16}$ $\frac{1}{16}$				
5.(b) $f(x,y) = xy^2 + \frac{x^2}{8}$, $0 \le x \le 2$, $0 \le y \le 1$. Compute (i) $P\left(X > 1/Y < \frac{1}{2}\right)$ BTL-1 Remembering (ii) $P\left(Y < \frac{1}{2}/X > 1\right)$ (iii) $P(X < Y)$ (iv) $P(X + Y) \le 1$. The two dimensional random variable (X, Y) has the joint probability mass function $f(x,y) = \frac{x+2y}{27}$, $x = 0,1,2; y = 0,1,2$. Find the conditional distribution of Y for X= x. Also find the conditional distribution of Y given X=1. 6.(b) Find $P(X < Y/X < 2Y)$ if the joint pdf of (X,Y) is $f(x,y) = e^{-(x+y)}$, $O(x,Y) = e^{-(x+y)}$, BTL-3 Applying BTL-3 Applying (X, Y). Find the marginal distributions. 7. (a) $O(x,Y) = xy^2 + \frac{x^2}{8}$, $O(x,Y) = xy^2 + \frac{x^2}{27}$,		32 32	64 64	64		
(ii) $P\left(Y < \frac{1}{2}/X > 1\right)$ (iii) $P(X < Y)$ (iv) $P(X + Y) \le 1$. The two dimensional random variable (X, Y) has the joint probability mass function $f(x,y) = \frac{x+2y}{27}, x = 0,1,2; y = 0,1,2$. Find the conditional distribution of Y for $X = x$. Also find the conditional distribution of Y given $X = 1$. 6.(b) Find $P(X < Y/X < 2Y)$ if the joint pdf of (X, Y) is $f(x, y) = e^{-(x+y)}$, $0 \le x < \infty, 0 \le y < \infty$. The following table represents the joint probability distribution of RV (X, Y) . Find the marginal distributions. 7. (a) $\frac{X}{0}$ $\frac{X}{28}$ $\frac{9}{28}$ $\frac{3}{28}$ $\frac{3}{28}$ $\frac{9}{28}$ $\frac{3}{28}$ $\frac{3}{28}$ $\frac{1}{28}$ $\frac{3}{14}$ $\frac{3}$		_ = =				
(ii) $P\left(Y < \frac{1}{2}/X > 1\right)$ (iii) $P(X < Y)$ (iv) $P(X + Y) \le 1$. The two dimensional random variable (X, Y) has the joint probability mass function $f(x,y) = \frac{x+2y}{27}, x = 0,1,2; y = 0,1,2$. Find the conditional distribution of Y for $X = x$. Also find the conditional distribution of Y given $X = 1$. 6.(b) Find $P(X < Y/X < 2Y)$ if the joint pdf of (X, Y) is $f(x, y) = e^{-(x+y)}$, $0 \le x < \infty, 0 \le y < \infty$. The following table represents the joint probability distribution of RV (X, Y) . Find the marginal distributions. 7. (a) $\frac{X}{0}$ $\frac{X}{28}$ $\frac{9}{28}$ $\frac{3}{28}$ $\frac{3}{28}$ $\frac{9}{28}$ $\frac{3}{28}$ $\frac{3}{28}$ $\frac{1}{28}$ $\frac{3}{14}$ $\frac{3}$	5.(b)	$f(x,y) = xy^2 + \frac{x^2}{9}, 0 \le x \le 1$	$2, 0 \le y \le 1$. Compute (i) $P(X)$	$Y > 1 / Y < \frac{1}{2}$	BTL-1	Remembering
The two dimensional random variable (X, Y) has the joint probability 6. (a) mass function $f(x,y) = \frac{x+2y}{27}, x = 0,1,2; y = 0,1,2$. Find the conditional distribution of Y for $X = x$. Also find the conditional distribution of Y given $X = 1$. 6. (b) Find $P(X < Y/X < 2Y)$ if the joint pdf of (X, Y) is $f(x, y) = e^{-(x+y)}$, $O \le x < \infty, 0 \le y < \infty$. The following table represents the joint probability distribution of RV (X, Y) . Find the marginal distributions. 7. (a) $O = O(X + x) = O(X $		_	The state of the s	2)		
6. (a) mass function $f(x,y) = \frac{x+2y}{27}$, $x = 0,1,2$; $y = 0,1,2$. Find the conditional distribution of Y for $X = x$. Also find the conditional distribution of Y given $X = 1$. 6. (b) Find $P(X < Y/X < 2Y)$ if the joint pdf of (X,Y) is $f(x,y) = e^{-(x+y)}$, $0 \le x < \infty, 0 \le y < \infty$. The following table represents the joint probability distribution of RV (X, Y) . Find the marginal distributions. 7. (a) $Y = \frac{X}{0}$ $0 = \frac{3}{28}$ $0 = \frac{9}{28}$ $0 = \frac{3}{28}$ $0 = \frac{3}{2$		\ <u>E</u> /		at probability		
distribution of Y for X= x. Also find the conditional distribution of Y given X=1. 6.(b) Find $P(X < Y/X < 2Y)$ if the joint pdf of (X,Y) is $f(x,y) = e^{-(x+y)}$, $0 \le x < \infty, 0 \le y < \infty$. The following table represents the joint probability distribution of RV (X, Y) . Find the marginal distributions. 7. (a) $Y = \frac{X}{0}$ $0 = \frac{1}{28}$ $0 = \frac{3}{28}$ $0 = \frac$				-		
X=1. 6.(b) Find $P(X < Y/X < 2Y)$ if the joint pdf of (X, Y) is $f(x, y) = e^{-(x+y)}$, $O \le x < \infty, 0 \le y < \infty$. The following table represents the joint probability distribution of RV (X, Y) . Find the marginal distributions. 7. (a) $Y = \frac{X}{0}$ $O = \frac{1}{28}$ $O = \frac{3}{28}$ $O = $		27	BTL-3	Applying		
6.(b) Find $P(X < Y/X < 2Y)$ if the joint pdf of (X, Y) is $f(x, y) = e^{-(x+y)}$, $O \le x < \infty$, $O \le y < \infty$. The following table represents the joint probability distribution of RV (X, Y) . Find the marginal distributions. The following table represents the joint probability distribution of RV (X, Y) . Find the marginal distributions. Find $P(X < Y/X < 2Y)$ if the joint pdf of a two-dimensional RV(X, Y) is given by			o find the conditional distribution	on of Y given		
The following table represents the joint probability distribution of RV (X, Y). Find the marginal distributions. 7. (a) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
The following table represents the joint probability distribution of RV (X, Y). Find the marginal distributions. 7. (a) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.(b)	Find $P(X < Y/X < 2Y)$ if the	joint pdf of (X, Y) is $f(x, y) =$	$=e^{-(x+y)},$	BTL-3	Applying
(X, Y). Find the marginal distributions.		$0 \le x < \infty, 0 \le y < \infty.$			2120	
(X, Y). Find the marginal distributions. 7. (a) $\begin{array}{ c c c c c c c c c c c c c c c c c c c$		The following table represer	ts the joint probability distri	bution of RV		
7. (a) $\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
7. (a) $\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		v	X			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7. (a)	0	1	2	BTL-3	Applying
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 () 1	·			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 3	3		-	
If the joint pdf of a two-dimensional $RV(X,Y)$ is given by		14	14	0		
7. (b) If the joint pdf of a two-dimensional RV(X,Y) is given by $f(x,y) = \begin{cases} x^2 + \frac{xy}{3}; & 0 < x < 1, 0 < y < 2 \\ 0, & elsewhere \end{cases}$ Applying BTL-3		$\frac{1}{28}$	0	0		
$f(x,y) = \begin{cases} x^2 + \frac{xy}{3}; 0 < x < 1, 0 < y < 2 \\ 0, elsewhere \end{cases}$ Find (i) $P\left(X > \frac{1}{2}\right)$ BTL-3 Applying	7 (h)	If the joint pdf of a two-dim	У			
0, elsewhere	/. (b)	$\int_{f(x,y)} - \int_{0}^{x^{2}} x^{2} + \frac{xy}{3}; 0 < x < 0$	BTL-3 Applying	Applying		
		0, elsew	nere . Tillu (1) T (X >	2)		

	/ 1 1		
	(ii) $P(Y < X)$ and (iii) $P\left(Y < \frac{1}{2} / X < \frac{1}{2}\right)$		
	(ii) $P(Y < X)$ and (iii) $P\left(Y < \frac{1}{2} / X < \frac{1}{2}\right)$ If $f(x,y) = \frac{6 - x - y}{8}$, $0 \le x \le 2$, $2 \le y \le 4$ for a bivariate random variable (X,Y) , Estimate the correlation coefficient ρ .	BTL -2	Understanding
	Two independent random variables X and Y are defined by $f_X(x) = \begin{cases} 4ax: & 0 < x < 1 \\ 0: otherwise \end{cases} \text{ And } f_Y(y) = \begin{cases} 4by: & 0 < y < 1 \\ 0: otherwise \end{cases} \text{ Show}$ that U=X+Y and V=X-Y are uncorrelated	BTL -3	Applying
9. (a)	From the following data, Give (i)The two regression equations (ii) The coefficient of correlation between the marks in Mathematics and Statistics (iii) The most likely marks in Statistics when marks in Mathematics are 30 Marks in Maths: 25 28 35 32 31 36 29 38 34 32 Marks in Statistics: 43 46 49 41 36 32 31 30 33 39	BTL -2	Understanding
9.(b)	Two random variables X and Y have the following joint probability density function $f(x,y) = \begin{cases} x+y; 0 \le x \le 1, 0 \le y \le 1 \\ 0, otherwise \end{cases}$. Formulate the probability density function of the random variable $U = XY$.	BTL -6	Creating
	Estimate the correlation coefficient for the following heights of fathers X, their sons Y X 65 6 67 67 68 69 70 72 Y 67 6 65 68 72 72 69 71	BTL -2	Understanding
10 (b)	The lifetime of a certain brand of an electric bulb may be considered a RV with mean 1200h and standard deviation 250h. Find the probability, using central limit theorem, that the average life time of 60 bulbs exceeds 1250 h.	BTL -4	Analyzing
11.(a)	The equation of two regression lines obtained by in a correlation analysis is as follows: $3x + 12y = 19$, $3y + 9x = 46$.(i) Calculate the correlation coefficient (ii)Mean value of X &Y.	BTL -3	Applying
11.(b)	Let (x, y) be a two-dimensional non-negative continuous random variable having the joint density. $f(x, y) = \begin{cases} 4xy \ e^{-(x^2+y^2)}; x \ge 0, y \ge 0 \\ 0, \ otherwise \end{cases}$. Find the density function of $U = \sqrt{x^2 + y^2}$.	BTL-1	Remembering
12.(a)	If X and Y independent Random Variables with pdf e^{-x} , $x \ge 0$ and e^{-y} , $y \ge 0$. Find the density function of $U = \frac{X}{X + Y}$ and $V = X + Y$. Are they independent.	BTL -1	Remembering
12.(b)	A distribution with unknown mean has variance equal to 1.5. Use central limit theorem to find how large a sample should be taken from the distribution in order that the probability will be atleast 0.95 that the sample mean will be within 0.5 of the population mean.	BTL -4	Analyzing
	Two random variables X and Y have the joint density $f(x,y) = \begin{cases} 2 - x - y, & 0 < x < 1, & 0 < y < 1 \\ & 0, & otherwise \end{cases}$	BTL -6	Creating

	Calculate the Correlati	on coefficient between	X and Y is -1 /11.		
	The following gives the	likely prices X and Y	of a commodity at two		
	cities				
		X	Y		
(b)	Mean	65	67	BTL -4	Analyzing
3.(b)	SD	2.5	3.5	D1L -4	
	The coefficient of corre				
	Find (i) The regression				
	(ii) The likely price of `				
14.(a)	If X and Y each follow an exponential distribution with parameter 1 and				Understanding
14.(a)	are independent, find th	BTL-2	Onderstanding		
	Given $f(x, y) = \frac{1}{8}(x +$	DTI 4	Analyzing		
	and Y. Obtain the correlation coefficient between X and Y.			BTL-4	

UNIT III -TESTING OF HYPOTHESIS

Sampling distributions - Estimation of parameters - Statistical hypothesis - Large sample tests based on Normal distribution for single mean and difference of means -Tests based on t, Chi-square and F distributions for mean, variance and proportion - Contingency table (test for independent) - Goodness of fit.

PART - A

Q.No.	Question	BT Level	Competence
1.	Define the following terms (i)Statistic, (ii)parameter (iii)Standard error (iv)Random sampling	BTL -1	Remembering
2.	Mention the various steps involved in testing of hypothesis	BTL -1	Remembering
3.	What are null and alternate hypothesis?	BTL -1	Remembering
4.	What is the essential difference between confidence limits and tolerance limits?	BTL -1	Remembering
5.	What are the parameters and statistics in sampling	BTL -1	Remembering
6.	State level of significance.	BTL -1	Remembering
7.	Twenty people were attacked by a disease and only 18 were survived. The hypothesis is set in such a way that the survival rate is 85% if attacked by this disease. Will you reject the hypothesis that it is more at 5% level.($Z_{0.05} = 1.645$)	BTL -2	Understanding
8.	A random sample of 25 cups from a certain coffee dispensing machine yields a mean $x = 6.9$ occurs per cup. Use 0.05 level of significance to test, on the average, the machine dispense $\mu = 7.0$ ounces against the null hypothesis that, on the average, the machine dispenses $\mu < 7.0$ ounces. Assume that the distribution of ounces per cup is normal, and that the variance is the known quantity $\sigma^2 = 0.01$ ounces.	BTL -2	Understanding
9.	In a large city A, 20 percent of a random sample of 900 school boys had a slight physical defect. In another large city B, 18.5 percent of a random sample of 1600 school boys had some defect. Is the difference between the proportions significant?	BTL -2	Understanding
10.	A standard sample of 200 tins of coconut oil gave an average weight of 4.95 kg with a standard deviation of 0.21 kg. Do we accept that	BTL -2	Understanding

	the net weight is 5 kg per tin at 5% level of significance?		
11.	Write down the formula of test statistic't' to test the significance of	BTL -3	Applying
	difference between the means.		
12.	What are the applications of t-test?	BTL -3	Applying
13.	What is the assumption of t-test?	BTL -6	Creating
14.	Write the application of 'F' test.	BTL -4	Analyzing
15.	Define 'F' variate.	BTL -4	Analyzing
16.	What are the properties of "F" test?	BTL -3	Applying
17.	State any two applications of ψ^2 -test.	BTL -5	Evaluating
18.	Write the formula for the chi- square test of goodness of fit of a	BTL -5	Evaluating
10.	random sample to a hypothetical distribution.		Evaluating
19.	Give the main use of ψ^2 -test	BTL -6	Creating
	What are the expected frequencies of 2x2 contingency table?		
20.	a b	BTL -4	Analyzing
	c d		
	PART – B		<u>I</u>
	Given a sample mean of 83, a sample standard deviation of 12.5 and		
1.(a)	a sample size of 22 ,test the hypothesis that the value of the	BTL -1	Damanah anin a
	population mean is 70 against the alternative that it is more than 70.		Remembering
	Use the 0.25 significance level.		
	Test of fidelity and selectivity of 190 radio receivers produced the		
	results shown in the following table	İ	
	Fidelity		
	Selectivity Low Average High		
1. (b)	Low 6 12 32	BTL -1	Remembering
	Average 33 61 18		
	High 13 15 0		
	Use 0.01 level of significance to test whether there is a relationship		
	between fidelity and selectivity.		
	A sample of 100 students is taken from a large population. The mean		
2. (a)	height of the students in this sample is 160cms. Can it be reasonably regarded that this sample is from a population of mean 165 cm and	BTL -1	Remembering
	standard deviation 10 cm? Also estimate the 95% fiducial limits for	DIL-1	Kemembering
	the mean.		
	Given the following table for hair color and eye color, identify the		
	value of Chi-square. Is there good association between hair color and eye color?		
	Hair color	 -	
2 (1-)	Fair Brown Black Total	DTI 1	Damanda aria a
2.(b)	Eye Blue 15 5 20 40	BTL -1	Remembering
	color Grey 20 10 20 50		
	Brown 25 15 20 60		
	Total 60 30 60 150		
	10tai 00 30 00 130		

	Two independent samples of sizes 8 and 7 contained the following		
3. (a)	values. Sample I 19 17 15 21 16 18 16 14	BTL -2	Understanding
	Sample II 15 14 15 19 15 18 16 Test if the two populations have the same mean.		
3.(b)	The following data gives the number of aircraft accidents that occurred during the various days of a week. Find whether the accidents are uniformly distributed over the week. Days Sun Mon Tues Wed Thu Fri Sat No. of accidents 14 16 08 12 11 9 14	BTL -3	Applying
	Two independent samples of 8 and 7 items respectively had the		
4. (a)	Sample I 9 11 13 11 15 9 12 14 Sample II 10 12 10 14 9 8 10 following Values of the variable (weight in kgs.) Use 0.05 LOS to test whether the variances of the two population's sample are equal.	BTL -4	Analyzing
4.(b)	The theory predicts that the population of beans in the four groups A, B, C and D should be 9:3:3:1. In an experiment among 1600 beans, the number in the four groups was 882,313,287 and 118. Do the experimental results support the survey?	BTL -4	Analyzing
5. (a)	A group of 10 rats fed on diet A and another group of 8 rats fed on diet B, Recorded the following increase the following increase in weight.(gm) Diet A	BTL -5	Evaluating
	Find the variances are significantly different. (Use F-test)		
5.(b)	The marks obtained by a group of 9 regular course students and another group of 11 part timecourse students in a test are given below: Sample I	BTL -2	Understanding
6. (a)	Sample I 19 17 15 21 16 18 16 14 Sample II 15 14 15 19 15 18 16 Two independent samples of sizes 8 and 7 contained the following values. Test if the two populations have the same variance.	BTL -2	Understanding
6.(b)	In a certain factory there are two independent processes manufacturing the same item. The average weight in a sample of 250 items produced from one process is found to be 120 Ozs, with a standard deviation of 12 Ozs, while the corresponding figures in a sample of 400 items from the other process are 124 and 14. Is the difference between the two sample means significant?	BTL -3	Applying

7. (a)	Number of female births : 4 3 2 Number of Families : 32 178 290 236 Infer whether the data are consistent with the binomial law holds the chance of a male bir birth, namely $p = \frac{1}{2} = q$.	3 4 1 0 64 e hypothesis that the th is equal to female	ΓL -4	Analyzing
7. (b)	Sample Size87Sample Mean1234hrs1	Type II 036hrs 0hrs fricient to warrant that	ΓL -3	Applying
8. (a)	A survey of 320 families with 5 children each redistribution Boys 5 4 3 2 Girls 0 1 2 3 Families 14 56 110 88 Is this result consistent with the hypothesis to births are equally probable?	1	ΓL -6	Creating
8.(b)	The mean produce of wheat from a sample of 200kg per acre and another sample of 150 fields per acre. Assuming the standard deviation of the universe, test if there is a significant difference of the samples?	s gives a mean 220 kg the yield at 11 kg for BT	ΓL -2	Understanding
9. (a)	The nicotine content in milligram of two samples found to be as follows Sample 1 24 27 26 21 25 Sample 2 27 30 28 31 22 36 Can it be said that this samples where from no the same mean.	ВТ	TL -1	Remembering
9.(b)	A simple sample of heights of 6400 English 170cms and a standard deviation of 6.4cms, whi heights of 1600 Americans has a mean of 17 deviation of 6.3cms. Do the data indicate that A average, taller than Englishmen?	ile a simple sample of 2 cm and a standard BT	ΓL -1	Remembering
10.(a)	Sample Size Sample mean deviation fr	squares of om the mean 90 BT	ΓL -1	Remembering
10.(b)	A certain medicine administered to each of 10 p following increases in the B.P. 8, 8, 7, 5, 4, 1,		ΓL -1	Remembering

	concluded that the medici 5% l.o.s	ne was responsi	ible for the	increase in B.P.			
	Mechanical engineers test welds both with respect to						
	X-ray/Appearance	Bad N	Normal	Good			
11.(a)	Bad Normal		51	3 16	BTL -3	Applying	
	Good	ļ <u> </u>	2	21			
	Test for independence using						
11.(b)	5 coins were tossed 320 given below: No. of heads Observed frequencies:	0 1 2 3 15 45 85 9	3 4 5 95 60 20		BTL -5	Evaluating	
	Examine whether the coin						
	A sample of 200 persons of these, 100 were given drug. The result are as foll Number of persons	a drug and the		e not given any			
12.(a)	Cured	65	55	120	BTL -1	Remembering	
	Not cured	35	45	80			
	Total Test whether the drug is e	ffective or not?	100	200			
12.(b)	A certain stimulus admini following increase of bloc 5,2,8,-1,3,0,-2,1,5,0, 4 & will, in general, be accomp	d pressu <mark>re</mark> 6 can it be c	oncluded th	nat the stimulus	BTL -6	Creating	
13.(a)	In a referendum submitted 850menand 560 women favorably. Does this industries between men and women	by the students voted. 500 me icate a signific	to the body en and 320 cant differe	at a university, women voted nce of opinion	BTL -1	Remembering	
	Random samples drawn fr		gave the foll	lowing data			
	James of the neights of the		Place A	Place B			
12 (1-)	Mean height (in inches)		68.50	65.50	рті о	Hadamstan 1!	
13.(b)	S.D (in inches)		2.5	3.0	BTL -2	Understanding	
	No. of adult males in san		1200	1500			
	Test at 5 % level, that the two places.	mean height is t	he same for	adults in the			
14.(a)	In a random sample of 10 consumers of rice. In a sa be consumers of rice. Do between the two cities as concerned?	00 are found to icant difference	BTL -4	Analyzing			
14.(b)	In a year there are 956 bir while in towns A and B c				BTL -2	Understanding	

	births was 0.496.Is there any significant difference in the proportion		
********	of male births in the two Rows?		
	V-DESIGN OF EXPERIMENTS		1 · T .
	y and two way classifications - Completely randomized design – Rando	mized block	k design – Latin
square c	lesign - 2 ² factorial design		
O No	PART – A Question	BT	Commatanaa
Q. No.	Question	Level	Competence
1.	What is the aim of design of experiments?	BTL -1	Remembering
2.	Write the basic assumptions in analysis of variance.	BTL -1	Remembering
3.	When do you apply analysis of variance technique?	BTL -1	Remembering
4.	Define Randomization.	BTL -1	Remembering
5.	Define Replication.	BTL -1	Remembering
6.	Define Local control.	BTL -1	Remembering
7.	What is meant by tolerance limits?	BTL -2	Understanding
8.	What is a completely randomized design.	BTL -2	Understanding
9.	Explain the advantages of a Latin square design?	BTL -2	Understanding
10.	What are the basic elements of an Completely Randomized	BTL -2	Understanding
	Experimental Design?		
11.	Demonstrate the purpose of blocking in a randomized block design?	BTL -3	Applying
12.	Manipulate the Basic principles of the design of experiment?	BTL -3	Applying
13.	Why a2x2 Latin square is not possible? Explain.	BTL -3	Applying
14.	Analyze the advantages of the Latin square design over the other	BTL -4	Analyzing
	design.		
15.	Demonstrate main advantage of Latin square Design over	BTL -4	Analyzing
1.6	Randomized Block Design?	D/DI 4	A 1 '
16.	Write any two differences between RBD and LSD.	BTL -4	Analyzing
17.	What is ANOVA?	BTL -5	Evaluating
18.	What are the uses of ANOVA?	BTL -5	Evaluating
19.	Define experimental error.	BTL -6	Creating
20.	Express 2 ² factorial designs.	BTL -6	Creating
	PART-B		
	The accompanying data resulted from an experiment comparing the	BTL -1	Remembering
1 (0)	degree of soiling for fabric copolymerized with the 3 different mixtures of met acrylic acid. Analyze the classification.		
1.(a)	Mixture 1: 0.56 1.12 0.90 1.07 0.94		
	Mixture 2: 0.72 0.69 0.87 0.78 0.91		
	Mixture 3: 0.62 1.08 1.07 0.99 0.93		
	A set of data involving 4 tropical food stuffs A, B, C, D tried on 20	BTL -2	Understanding
	chicks is given below. All the 20 chicks are treated alike in all		
	respects except the feeding treatments and each feeding treatment is		
1. (b)	given to 5 chicks. Analyze the data:		
1. (0)	A 55 49 42 21 52		
	B 61 112 30 89 63		
	C 42 97 81 95 92		
	D 169 137 169 85 154		

	The following	table shows t	he lives	in hour	s of four	brai	nds of		BTL -1	Remembering
	electric lamps									
		1610, 1650,			1720,	180	0			
2. (a)		1640, 1640,								
		1550, 1600,				174	10, 1820			
		1520, 1530,								
	Identify an ana	-		test the	homoge	eneit	y of the m	ean		
	lives of the fou									
	A company ap							•	BTL -2	Understanding
	sales in 3 seaso			id mons	soon. Th	e fig	ures are			
	given in the fo	llowing table	:		1					
	_		1		lesmen		4			
2.(b)	 	Season	1	2	3		4			
		Summer	45	40	28		37			
	<u>-</u>	Winter	43	41	45		38			
	<u> </u>	Monsoon	39	39	43		41			
	Carry out an A			. ~	****					
	In order to dete								BTL -1	Remembering
	durability of 31									
	from each mak									
	purchase is obs				ows: In	view	of the abo	ove		
	data, what con	clusion can yo	ou draw				5			
3.	Makes			- 51	RM					
		A	В	100	C		- 63			
		5	8		7					
		6	10	766	3					
		8	11		5					
		9	12	N	4	1				
		7	4	7	_1					
	Five doctors ea								BTL -2	Understanding
	observe the nu	•	-			cove	The			
	results are as fo		-	in days	s)					
		Treatm				1				
	Doc		2	3	4	5				
4.	A	10	14	23	18	20				
	В	11	15	24	17	21				
	С	9	12	20	16	19				
	D	8	13	17	17	20				
	E	12	15	19	15	22				
	Estimate the di		he							
	above data at 5									
	Perform a 2-wa	ay ANOVA o	on the da	ta giver	n below:				BTL -3	Applying
								,		
5.			Treatm			<u> </u>				
			1	2			3			
	Treatment 2	1	30		6		38			
1	115441110114 2	2	24	12	9		28			1

	3		33	24	3	5		
	4		36	31		0		
	5		27	35	3	3		
	Use the coding met	thod subtr						
	A chemist wishes t					s on	BTL -2	Understanding
	the strength of a pa							
	variability from or							
	use a randomized	block des	ign ,with the	e bolts of	cloth co	onsider		
	as blocks ,she selec	ets five bo	cal in					
	random order to ea	ch bolt, T	he resulting	tensile st	rength f	ollows		
6.				BOLT				
		1	2	3	4	5		
	1	73	68	74	71	67		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		67	75	72	70		
]		68	78	73	68		
	4	, ,	71	75	75	69		
	Does the tensile str	ength dep	end on chen	nical? Te	st at 109	% level of		
	significance.			other	-	1 0 11	D.T. 4	
	A latin square desi	_				0	BTL -4	Analyzing
	semiconductor lea							
	different methods							
	different operators different plastics. V							
	force required to br							
7.	Plastics/ operator							
	1	A3	2 B B2.4	C1.9	4 D2.2	E1.7		
	2	B2.		D2.3	E2.5			
	3	C2.		E2.5	A2.9			
	4	D2.		B3.2	B2.5	_		
	5	E2.		B2.4	C2.4			
	Analyze these resu				1			
	The following data		_				BTL -1	Remembering
	burners A, B, C. A			-		-		
	made on 3 engines	and were	spread over	3 days.	_			
8. (a)		A 16	B 17	C 20				
		B 16	C 21	A 15				
		C 15	1	B 13				
	Test the hypothesis	s and infe	r that there	is no diff	erence 1	between the		
	burners.							
8.(b)	A variable trial wa						BTL -5	Evaluating
	square design. The	lot yield are						
	given below.	05 D00	100 D0	0				
		25 B23						
		.19 D19						
		19 A14 17 C20						
9.	A farmer wishes to				nt fortili	izers A R C	BTL -1	Remembering
2.	Don the yield of V						DID-1	Kemembering
	Don the yield of V	, 110at. 111 (ciroi due to	<u> </u>	_1			

	variability	in soil ferti	lity he use	s the ferti	lizers in	a Latin	square					
		ent a syndicat	-									
	_	eld sperunita		ono wing t	, wii	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	31110 01 5					
	J = = = = = = = = = = = = = = = = = = =	A18	C21	D25	В	11						
		D22	B12	A15		19						
		B15	A20	C23	D	24						
		C22	D21	B10	A	.17						
		analysis of										
		between the	e fertilizers	at $\alpha = 0.0$	5 and α	=0.01 le	vels of					
	significano											
	_	analysis of			_	sults of a	a Latin	BTL -4	Analyzing			
	Square De	$sign(use \alpha =$				_						
10.		A12	C19	B10	D							
		C18	B12	D6	A	7						
		B22	D10	A5	C2	1						
		D12	A7	C27	B1	7						
		Latin square						BTL -6	Creating			
		ow Yield per										
		treatments	A, B, C,D	and E. 1	Perform	the anal	ysis of					
11.	variance.		100			· G-						
11.			8 E66 D5		B61 C63	- 0						
		D64										
		B69										
		C57			A55	6						
	T T		C57 B60		D57			DEL 2	A 1 '			
		square expe	_				•	BTL -3	Applying			
	-	n the paddy			_		of five					
12.	Terunzers A	A, B, C, D, E	z. Anaryze t 5 A18 E2			118.						
12.		A1			B23							
			B22 D3									
			8 C26 A2									
		D3		23 C28								
	Find out th	he main effe				ne follow	ing 2 ²	BTL -3	Applying			
		xperiment an										
		•	(1)	a	b	ab]					
13.		BLOCKS	00	10	01	11						
		I	64	25	30	60	1					
		II	75	14	50	33	1					
		III	76	12	41	17						
		IV	75	33	25	10	1					
	An experii	ment was pla	nned to stu	dy the effe	ect of sul	phate of	potash	BTL -3	Applying			
	and super phosphate on the yields of potatoes. All the combinations											
14.		s of super ph										
17.	_	re studied in										
		are given in	ned are									
	given in th	e following t	able.									

Analyze the	data and	give your	conclusi	on (with	$\alpha = 1\%$						
	Block	Yields (per plot)									
	T	(1)	K	P	KP						
	1	23	25	22	38						
	п	P	(1)	K	KP						
	11	40	26	36	38						
	III	(1)	K	KP	P						
	111	29	20	30	20						
	IV	KP	K	P	(1)						
	1 V	34	31	24	28						

UNIT 5- STATISTICAL QUALITY CONTROL

Control charts for measurements (X and R charts) – Control charts for attributes (p,c and np charts) – Tolerance limits – Acceptance sampling

Toleran	ice limits – Ad	ceptance sai	припу	PART-A	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
1.	What is Stati	stical quality	control?	I AKI-F	<u> </u>		BTL2	Understanding
2.	Write down a						BTL1	Remembering
3.	What is mear		•				BTL2	Understanding
4.	What is mean			7			BTL1	Remembering
5.	Name the typ		BTL1	Remembering				
6.	Define proce		Chart.		TWG.		BTL2	Understanding
7.	Define produ				- C		BTL2	Understanding
8.	What is conti		7.7				BTL1	Remembering
9.	Write down u		Chart.	SRM	7		BTL3	Applying
10.	Write down t			ling plan	- 5		BTL1	Remembering
11.	Define OC C	* *					BTL3	Applying
12.	Write down t	ypes of Caus	es variatio <mark>n.</mark>	1			BTL4	Analyzing
13.	Write the for	mula for np c	hart.				BTL4	Analyzing
14.	What is mean	nt by AQL an	d LTPD		1		BTL4	Analyzing
15.	What is the fe	ormula for c	chart and p c	hart			BTL1	Remembering
16.	Define Accep	otance Sampl	ing.				BTL5	Evaluating
17.	Explain prod	ucers Risk ar	d Consumer	Risk.			BTL3	Applying
18.	Define Tolera						BTL6	Creating
19.	Define one-si						BTL1	Remembering
20.	Define Two-	Sided Tolera	nce limits.				BTL2	Understanding
			PART					
1.(a)	What do you	understand b	y SQC. Disc	cuss its utility	and limitation	ons?	BTL1	Remembering
	The followin	g data give th	ne weight of a	an automobil	e part. Five sa	amples		
	of four items				,	terval		
	of 1 hour eac	,		l Chart and fi	ind out if the			
	production pr					1		
1 (1)	Sample			parts in ounc			DTI (C 4:
1.(b)	1	10	12	10	12		BTL6	Creating
	2	10	12	13	13			
	3	10	10	9	11			
	4	11	10	9	14			
	5	12	12	12	12			

2.(a)	Write the role	and ad	BTL1	Remembering										
	You are given		samples											
	of size 5 each.				-				_		-			
	the process.													
2.(b)	Sample No	1	2	3	4	5	6	7	8	9	10	BTL2	Understanding	
	(\overline{X})	43	49	37	44	45	37	51	46	43	47			
	R	5	6	5	7	7	4	8	6	4	6			
	The following	doto	aloto	to the	lifo	in ha	ura) 0	f 10	complo	c of 6				
	electric bulbs													
	process. Draw		Cuon											
			111101	Ciiait					11.					
	Sample No. Life time (in hours)													
	1	620)	687	6	66	689)	738	68	6			
	2	501	-	585	5	24	585		653	66	8			
2 (a)	3	673	3	701	6	86	567	'	619	66	0	DTI 2	A	
3.(a)	4	646		626		72	628		631	74		BTL3	Applying	
	5	494	ŀ	984	6	59	643		660	64	0			
	6	634		755	_	25	582		683	55				
	7	619)	710		64	693		770	53				
	8	630		723		14	535		550	57				
	9	482		791		33	612		497	49				
	10	706		524		26	503		661	75	4			
	(Given for $n =$													
	For a sampling													
3.(b)	probability of	_				_						BTL2	Understanding	
	(ii) 0.8%defec							ctive	e (v) 4%	6 dete	ective		\mathcal{E}	
	(vi) 10%defec					1000		L - S		- C 1 - C	4			
	10 samples each in the inspection													
4.	chart for defec		e: 2,	1,1,2,	3,3,3,	1,2,3.	Draw	me a	appropi	Tale C	Ontroi	BTL1	Remembering	
	chart for defec	uves												
	A machine is s	set to d	elive	er pacl	kets o	f a gi	ven w	eigh	t, 10 sa	mples	of size			
	5 each were re					_		_		1				
	Sample No	1	2	3	4	5	6	7	8	9 1	10			
	(\overline{X})	15	17	15	18	17	14	18	15	17	16			
5.(a)	R	7	7	4	9	8	7	12	4	11 5	5	BTL3	Applying	
	Calculate the	values	r the											
	mean chart and	d the ra												
	control.													
	(Conversion fa		15)											
5.(b)	Explain in deta	ail the	R-Cl	nart cl	early'	?						BTL1	Remembering	

	The following for the sample control limits f	s of s	ize 5 e	each. (Calcu	late th	e valu	es for	centr	al line	and			
	process is in co			iai t ai	ia ran	ge em	irt arro	acter		Wilcui	ici tiic			
6.(a)	Sample No	1	2	3	4	5	6	7	8	9	10	BTL3	Applying	
		11.2	11.8	10.8	11.6	11	9.6	10.4	9.6	10.6	10			
	R	7	4	8	5	7	4	8	4	7	9			
	(Conversion fa	actors	for r	1 = 5	are A	$_{2}=0.$	577	$D_3 =$	0, D ₄	= 2.1	15)			
6.(b)	Explain in deta	ail the	e X Ch	art cle	early?							BTL1	Remembering	
	The following									ample	es of			
	100 items each	ı, con		_	produ									
	Sample			ze of			ıber o			ction				
	Number			mple		Defe	ectives	S		ective				
	1			100			5			05				
	2			100			3			03				
	3			100			3			03		D	** 1	
7.(a)	4											BTL2	Understanding	
	5					- 10		E						
	6 7			100			8			06				
	8			100	*		10		.08					
	9			100					.10					
	10			100		10			.04					
	Construct a p-	- char		100		- 7"			•	04				
	15 tape-record			amine	ed for	gualit	v con	trol te	st. Th	e num	ber of			
	defects in each													
	control chart a								<i></i>	1 1		BTL4	Analyzing	
	Unit No (i)		1 2	3 4	5	6 7	8 9	10 11	12 13	3 14 1	.5		, ,	
	No of defects ((c)	2 4	3 1	1	2 5	3 6	7 3	1 4	- 2	1			
	Construct \overline{X} c	hart f	for fol	lowin	g data	l								
	Sample No		1	2	3	4	5	6			8			
8.(a)				28	39	50	42	50			22	BTL5	Evaluating	
0.(a)	Observation			32	52	42	45	29			35	DILS	Dvaraating	
				40	28	31	34	21	3	5 4	14			
	Also determine								0	1	1 0			
	The following													
	size 100.Const the process is i			art 101	tnese	e data	and al	so de	termin	ie wne	emer	DTI 4	Analyzina	
8.(b)	Sample No.	iii coi	1 1	2	3 4	1 5	6	7	8	9 10	<u> </u>	BTL4	Analyzing	
	No. of defect	ives	24			4 26		38		33 4				
	From the infor													
	Sample No.(ea			1	2	3		5 6		8	9			
	No. of defective		100)	12		9		0 6		11	8	BTL5	Evoluating	
).(a)			**	J	טונט	Evaluating								
	State your conclusions. Write all the steps in the construction of the													
	above chart including formula for UCL and LCL. Write the Procedure for acceptance sampling.											BTL2	Understanding	
2.(U)	WITH THE FIOC	cuuit	101 d	ссеріг	met S	ашрш	ıg.					DIL	Understanding	

	Constru	ct a	Cont	rol C	hart t	or f	racti	on d	efect	ives	(n-(Chai	rt) fo	r				
	followin			101 C	iiai t	.01 1.	iacti	on u	CICCI	1 / C3	(P ,	CHai	10					
10.(a)	Sample	_			1	2	3	4	5	6	7	8	9	1	10		BTL6	Creating
10.(a)	Sample				90	65	85	70	80	80	70	_			75		DILO	Creating
	No of de				9	7	3	2	9	5	3	9	6		7			
10.(b)	Explain	Cor	itrol	Limi	ts for	the	sam	ple n	nean	\bar{X} an	ıd sa	mpl	e ran	ge	R.		BTL1	Remembering
11. (a)	An inspe	ections	on of ımbe	10 s er of e	ample defec	es of tive	size unit	e 400 s17,1	each 5,14	1 froi ,26,9	m 10 9,4,1) lot .9,12	s rev 2,9,6	ele	d th	ie	BTL6	Creating
11.(b)	write th	e Pr	ocea	ure to	o ara	w th	e <i>x</i> -	cnari	and	R-cl	nart.						BTL2	Understanding
	Constru			t for	follo	wing									_			
	Sample	e No	٠.					Obse	rvati		T							
				1.			2.2			1.9			1.2		_			
		3		0.	8		1.5			2.1			0.9					
			1	4		1.4			$\frac{1}{0.7}$			1.3		4		DTI 4	A 1	
12.	5			0.4			0.6 2.3			$\frac{0.7}{2.8}$			0.2 2.7		-		BTL4	Analyzing
	6			1.			2.3			1.1			0.1		-			
	7			1.			1.			1.5			2		-			
	8			2			1.6	201		1.8		7/10	1.2					
	9			2.			2			0.5			2.2					
	Comme	nt o	n Sta	te of	Cont	rol.	7		-/		1							
	A machine fills boxes with dry cereal. 15 samples of 4 boxes are drawn											wn						
	randomly. The weights of the sampled boxes are shown as follows.																	
	Draw the control charts for the sample mean and sample range and																	
	determin	ne w	heth	er the	proc	ess	1S 1n	a sta	state of control.									
	Sample	1	2	3	4 5	6	7	8	9	10	11	12	13	14	15			
1.0	No.		_									1	10				D.TT. C	
13.		10	10.3	11.5	11 11.	3 10.	7 11.	3 12.3	3 11	11.3	12.5	11.9	12.1 1	1.9	10.6	5	BTL6	Creating
	Weight	10.2	10.9	10.71	1.1 11.	611.	411.	4 12.1	13.1	12.1	11.9	12.1	11.11	2.1	11.9)		
	of Boxes			-		-	-	-								-		
	(X)		-		0.7 11.			-								-		
		12.4	11.7	12.4	1.4 12.	1 11	10.	3 10.7	7 12.4	11.5	11.3	11.4	11.7	12	12.1			
				1		•	•	•	•				1	1		-		
	The foll	owi	ng ar	e the	X and	d R	valu	es fo	r 20	samp	oles	of re	eadin	gs.	Dra	aw		
	X chart a	and	Rch	art ar	nd wr	ite y	our	conc	lusio	n.								
	Sample	es	1	2	3	4	4	5	6	7		8	9	1	0			
	\overline{X}		34	31.6	30.	$3 \mid 3$	3	35	33.2	33	3 3	2.6	33.8	37	7.8			
14.	R		4	4	2		3	5	2	5		13	19	<u> </u>	6		BTL2	Understanding
17.	Sample	es	11	12	13	_	4	15	16	17		18	19		20		D1L2	Onderstanding
	X			38.4					31.6				31.8					
	R		4	4	14		4	7	5	5		3	9	(6			
	(Giv	Given for $n = 5$ are $A_2 = 0.58$ $D_3 = 0$, $D_4 = 2.12$)																