ДИФЕРЕНЦИАЛНА ГЕОМЕТРИЯ ЗАДАЧИ ЗА КРИВИ

1 зад. Спрямо ОКС
$$K=$$
 $0\overrightarrow{e_1}\overrightarrow{e_2}\overrightarrow{e_3}$ в E^3 е дадена линията
$$c: \begin{cases} x^1=3q\\ x^2=3q^2,\ q>0\ .\\ x^3=2q^3 \end{cases}$$

- а) Намерете векторните инварианти на c;
- b) Докажете, че c е обща винтова линия и намерете уравнения на цилиндричната повърхнина, която я съдържа;
- c) От всяка точка P на линията c върху допирателната, по посока противоположна на допирателния вектор \vec{t} е нанесена отсечка с дължина $d=3q.(2q^2+1)$ до точка Q. Когато точката P описва линията c, точката Q описва линията \bar{c} . Намерете бинормалния вектор \bar{b} и торзията $\bar{\tau}$ на \bar{c} ;
- d) Намерете уравнения на нормалната равнина и на главната нормала в точката $P_0(3,3,2)$ от линията c.

2 зад. Спрямо ОКС $K = \overrightarrow{Oe_1e_2e_3}$ в E^3 е дадена линията

$$c: \begin{cases} x^1 = \cos\alpha . \cos q & q > 0 \\ x^2 = \cos\alpha . \sin q, & \alpha = const. \\ x^3 = \sin\alpha . q & \alpha \in \left(0; \frac{\pi}{2}\right) \end{cases}$$

- а) Намерете естествените уравнения на линията c;
- b) Намерете уравнения на геометричното място \bar{c} на центровете на кривина на линията c. Каква линия е \bar{c} ?
- с) Намерете уравнения на оскулачната равнина и допирателната в точката $P_0 \in c$, получена за $q_0 = \frac{\pi}{4}$.
- 3 зад. Нека $c: x = x(s), x \in C^3(I)$ е линия, зададена спрямо естествения си параметър. Линията \bar{c} : $\bar{x} = \int \vec{b}(s)ds$, където $\vec{b}(s)$ е бинормалният вектор на линията c. Да се изразят векторните и скаларните инварианти на \bar{c} чрез тези на c.

4 зад. Спрямо ОКС $K=\overrightarrow{Oe_1e_2e_3}\,$ в E_3 е дадена линия γ с уравнения: $\gamma:\begin{cases} x^1=2q\\ x^2=\ln q,\ q>0.\\ x^3=q^2 \end{cases}$

$$\gamma: \begin{cases} x^1 = 2q \\ x^2 = \ln q, \ q > 0. \end{cases}$$
$$x^3 = q^2$$

- а) Намерете уравненията на нормалната равнина и бинормалата в точка P_0 (2, 0, 1) от кривата γ .
- b) Докажете, че γ е обща винтова линия и намерете уравнения на цилиндричната повърхнина, която я съдържа;
- с) От всяка точка P на линията γ върху бинормалата, по посока **противоположна** на бинормалния вектор \vec{b} е нанесена отсечка с дължина $d=2q^2+1$ до точка Q. Когато точката P описва линията γ , точката Q описва линията $\bar{\gamma}$. Намерете бинормалния вектор \bar{b} и торзията $\bar{\tau}$ на $\bar{\gamma}$.

5 зад. Спрямо ОКС
$$K=0$$
 $\vec{e}_1\vec{e}_2\vec{e}_3$ в E_3 е дадена линията γ с уравнения:
$$\gamma: \begin{cases} x^1=e^q\cos q\\ x^2=e^q\sin q\,,\;q>0.\\ x^3=0 \end{cases}$$

От всяка точка P на γ по бинормалата в положителна посока е нанесена отсечка $P\bar{P}$ с дължина $d=\frac{1}{2\sqrt{2}\varkappa}$ ($\varkappa(q)$ е кривината в точка от γ). Когато P описва линията ν . \bar{P} описва линия $\bar{\nu}$.

- а) Намерете координатни параметрични уравнения на линията $\bar{\gamma}$;
- b) Да се намерят естествени уравнения на $\bar{\gamma}$ и да се докаже, че тя е обща винтова линия.

6 зад. Дадена е правилна линия $c: x = x(s), x \in C^3(I)$ с постоянна кривина и ненулева торзия. Нека \overline{c} е геометричното място на центровете на кривина на линията c.

- а) Да се изразят векторните и скаларните инварианти на \overline{c} чрез тези на c. Да се докаже, че $\overline{\varkappa} = const.$
- b) Да се намери геометричното място на центровете на кривина на линията \bar{c} .

7 зад. Спрямо ОКС $K = \overrightarrow{Oe_1e_2e_3}$ в E^3 е дадена кривата линия

$$c: \begin{cases} x^1 = ch \ q \\ x^2 = sh \ q \ , \ q \ge 0. \\ x^3 = q \end{cases}$$

- а) Да се намерят скаларните и векторните инварианти на c и да се докаже, че тя е обща винтова линия;
- b) Да се намерят уравнения на оскулачната равнина и главната нормала в точката $P_0(1, 0, 0)$ на линията c:
- c) От всяка точка P на линията c върху бинормалата, по посока на бинормалния вектор \vec{b} е нанесена отсечка с дължина $\sqrt{2}q$. ch q до точка Q. Когато точката Pописва кривата c, точката Q описва кривата \bar{c} . Да се намерят уравнения на кривата \bar{c} . Да се докаже, че \bar{c} е равнинна и да се намери равнината, в която лежи.

8 зад. Спрямо ОКС $K=O\overset{\longrightarrow}{e_1e_2e_3}$ в E^3 е дадена правилната крива $\gamma:\begin{cases} x^1=ch\ q\\ x^2=2sh\ q,\ q\in\mathbb{R}.\\ x^3=e^q \end{cases}$

$$\gamma: \begin{cases} x^1 = ch \ q \\ x^2 = 2sh \ q, \ q \in \mathbb{R}. \end{cases}$$

$$x^3 = e^q$$

- а) Да се намерят бинормалният вектор и торзията в произволна точка на кривата;
- b) Да се докаже, че кривата е равинна и да се намери общо уравнение на равнината, която я съдържа.

9 зад. Спрямо ОКС
$$K=0$$
 \vec{e}_1 \vec{e}_2 \vec{e}_3 в E^3 е дадена крива линия γ с уравнения:
$$\gamma:\begin{cases} x^2=\frac{1}{2}q^2\\ x^2=\frac{1}{6}q^3 & q>0.\\ x^3=q \end{cases}$$

а) Да се намерят скаларните и векторните инварианти на у;

- b) Да се докаже, че у е обща витлова линия. Да се определи постоянното направление, сключващо постоянен ъгъл с допирателния вектор в точките на у и да се намери този ъгъл;
- c) От всяка точка P на кривата γ по главната нормала е нанесена отсечка $P\bar{P}$ с дължина $d=\frac{1}{\sqrt{\varkappa}}$ ($\varkappa(q)$ е кривината в точка от γ). Когато Р описва кривата γ, \bar{P} описва крива $\bar{\gamma}$. Докажете, че $\bar{\gamma}$ е права линия.

10 зад. Спрямо ОКС
$$K=$$
 $0\overrightarrow{e_1e_2e_3}$ в E^3 е дадена кривата линия
$$c:\begin{cases} x^2=\frac{1}{2}q^2\\ x^2=\frac{1}{6}q^3 \ q>0.\\ x^3=q \end{cases}$$

- а) Да се намерят скаларните и векторните инварианти на c и да се докаже, че тя е обща винтова линия:
- б) Да се намерят уравнения на ректифициращата равнина и бинормалата в точката $P(2, \frac{4}{3}, 2)$ на линията c;
- в) От всяка точка $\,P\,$ на линията c върху допирателната, по посока противоположна на допирателния вектор \vec{t} е нанесена отсечка с дължина $\frac{1}{2}(2+q^2)q$ до точка Q. Когато точката P описва кривата c, точката Q описва кривата \bar{c} . Да се намерят уравнения на кривата \bar{c} . Да се докаже, че \bar{c} е равнинна и да се намери равнината, в която лежи.
- 11 зад. Нека $c: x = x(s), x \in C^3(I)$ е крива линия, зададена спрямо естествения си параметър. Кривата $\overline{c} = \int \vec{b}(s) ds$, където $\vec{b}(s)$ е бинормалният вектор на кривата c, се нарича придружаваща крива на кривата c.
 - а) Да се изразят векторните и скаларните инварианти на \overline{c} чрез тези на c;
 - b) Да се намерят координатни параметрични уравнения, кривина и торзия на кривата \overline{c} , ако

$$c: \begin{cases} x^{1} = a(q - \sin q) \\ x^{2} = a(1 - \cos q), q \in (0; \pi), a = const., a > 0. \\ x^{3} = 4a.\cos\frac{q}{2} \end{cases}$$

- 12 зад. Оскулачните равнини на трикратно гладка правилна крива са успоредни на дадена (фиксирана) права. Да се докаже, че кривата е равнинна.
- 13 зад. Оскулачните равнини на трикратно гладка правилна крива минават през фиксирана точка. Докажете, че кривата е равнинна.
- 14 зад. Допирателните на трикратно гладка крива минават през фиксирана точка. Докажете, че кривата е права линия.
- 15 зад. Нека $c: x = x(s), x \in C^2(I)$ е правилна крива линия, зададена спрямо естествения си параметър с торзия $\tau \equiv 0$ и кривина $\kappa = const. > 0$. Докажете, че линията c лежи върху окръжност с радиус $R=\frac{1}{\kappa}$.

- 16 зад. Главните нормали на трикратно гладка правилна крива минават през фиксирана точка. Докажете, че кривата е окръжност (или дъга от окръжност).
- 17 зад. Нека c: x = x(s), $x \in C^2(I)$ е правилна пространствена крива линия, зададена спрямо естествения си параметър. Кривата $\overline{c}: \overline{x} = x(s) + \int \vec{b}(s) ds$, където $\vec{b}(s)$ е бинормалният вектор на линията c, се нарича спрегната крива на кривата c. Ако \overline{c} е трикратно гладка правилна линия, да се изразят скаларните и векторните инварианти на \overline{c} чрез тези на c в съответните точки на двете криви.

18 зад. (Криви на Бертран)

Две трикратно гладки правилни криви c и \overline{c} се наричат криви на Бертран, ако в съответните точки нормалите на c са нормали и на \overline{c} .

Да се докаже, че:

- а) Разстоянието между съответните точки на c и \overline{c} е постоянно;
- b) Ъгълът между допирателните в съответните точки на c и \overline{c} е постоянен;
- с) Съществува линейна връзка между кривината и торзията на c и между кривината и торзията на \overline{c}