PATENT

PETER ALAN HUNT, et al. Application No.: 09/647,054 Page 2

 $\begin{array}{c|c}
Q^{2} & Q^{3} \\
Q^{1} & Q^{3} \\
R^{N} & M' & R^{C}
\end{array}$

wherein:-

w indicates a bond at a chiral centre of the structure which centre may be in the R or S configuration or a mixture thereof;

R and R² is an amino acid side chain group which may be the same or different;

M^I and M^{II} may be the same or different and are selected from the group consisting of hydrogen, C₁-C₄ alkyl, chloro and C₁-C₄ alkoxy;

 R^N is $-N(Z^I)Pg^N$ where Z^I is selected from the group consisting of hydrogen, methyl and part of a cyclic amino acid sidechain joined to Q^I , and PgN is a protecting group for amine;

R^C is selected from the group consisting of a carboxy terminal part of the mimetic, hydrogen, R, and -CH₂R;

 $Q_1 = R^1$ which has the same definition as R and R^2 above and $Q^2 = Z$ where Z is selected from the group consisting of hydrogen, methyl, ethyl, formyl and acetyl, -CH₂R, and -C(O)R or alternatively Z is part of a cyclic amino acid side chain group joined to R^2 ; or Q^1 and Q^2 taken together represent a cyclic group;

 Q^3 is selected from the group consisting of Y, C(O)NHCH(R)Y-, - C(O)ENHCH(R)Y-, - $C(O)N(Q^5)CH(R)Y$ - wherein Y is selected from the group consisting of C(O) and CH_2 and Q^5 is a covalent bond from the Q^4 group to the nitrogen atom in Q^3 to form a bicyclic ring system or alternatively, is selected from the group consisting of hydrogen, C_1 - C_4 alkyl, chloro and C_1 - C_4 alkoxy and E is $(AA)_n$ where n is 1-300 and AA is an amino acid residue; and

 Q^4 is selected from the group consisting of CH(M¹), C(O), CH(Q⁵)CH₂ and CH(Q⁵) C(O),

with the provisos that when:-

- (i) $\sqrt{Q^4} = CH(M^1)$, Y is C(O);
- (ii) $Q^4 = C(O)$, Y is CH₂;
- (iii) $Q^4 = CH(Q^5)CH_2$, Y is C(O);
- (iv) $Q^4 \stackrel{\searrow}{=} CH(Q^5)C(O)$, Y is CH_2 ; and
- (v) $Q^3 = -C(O)N(Q^5)CH(R)Y$, Q^5 is a covalent bond from the Q^4 group to the nitrogen atom in Q^3 which is a cyclization forming a bicyclic ring system.
- 75. A peptide mimetic as claimed in claim 74 wherein when Q_1 and Q_2 form a cyclic group, Q_1Q_2 is selected from the group consisting of -CH(R)C(O)-, -

 $CH_2CH(R)C(O)$ -, $-CH_2CH_2CH(R)C(O)$ -

-CH(R)CH₂-, -CH₂CH(R)CH₂-, -CH₂CH(R)CH₂-, -CH₂CH(R)-,

-CH₂CH₂CH(R)-, -CH(R)CH₂CH₂-, -CH₂CH(R)CH₂CH₂-,

-CH(R)CH₂C(O)- and -CH₂CH(R)CH₂C(ϕ)

- 76. A peptide mimetic as claimed in Claim 74 wherein n is 1-30.
- 77. A peptide mimetic as claimed in Claim 74 wherein E represents a loop of n amino acids which additionally incorporate non-alpha amino acid(s), alpha dialkyl amino acid(s) or other amino acid which provides the peptide mimetic with increased binding affinity or increased ease of detection, identification or purification.
 - 78. A peptide mimetic as claimed in Claim 74 wherein Q^1 is R, Q^2 is Z, Q^3 is Y.
- 79. A peptide mimetic as claimed in Claim 74 wherein Q^1 is R, Q^2 is Z, Q^3 is C(O)NHCH(R)Y and Q^5 is M^1 .
- 80. A peptide mimetic as claimed in Claim 74 wherein Q^1 is R, Q^2 is Z, Q^3 is C(O)NHCH(R)C(O)-NHCH(R)Y and Q^5 is M^1 .
- 81. A peptide mimetic as claimed in Claim 74 wherein Q^1 is R, Q^2 is Z, Q^3 is $C(O)N(Q^5)CH(R)Y$ and Q^5 is a covalent bond to Q^3 .

CONT.

82. A peptide mimetic as claimed in Claim 74 wherein Q^1 is $CH(R)C(O)Q^2$, Q^2 is a covalent bond to Q^1 , Q^3 is Y and Q^5 is M^1 .

83. A peptide mimetic as claimed in Claim 74 wherein Q^1 is $CH_2CH(R)C(O)Q^2$, Q^2 is Q^1 , Q^3 is X and Q^5 is M^1 .

84. A peptide mimetic as claimed in Claim 74 wherein R^C is C(O)Pg^C where Pg^C is a protecting group for carboxylic acid.

85. A peptide mimetic as claimed in Claim 84 wherein Pg^C is selected from the group consisting of alkoxy, benzyloxy, allyloxy, fluorenyl methyloxy, amines forming easily removable amides, a cleavable linker to a solid support, the solid support itself, hydroxy-NHR, C(O)R and the remaining C-terminal portion of the mimetic.

86. A peptide mimetic as claimed in Claim 85 wherein PgC is methoxy or ethoxy.

87. A peptide mimetic as claimed in Claim 74 wherein Pg^N is a protecting group for an amine.

88. A peptide mimetic as claimed in Claim 74 wherein Pg^N is selected from the group consisting of Boc, Cbz, Fmoc, Alloc, trityl, a cleavable linker to a solid support, the solid support itself, hydrogen, R, C(O)R and the remaining N terminal portion of the mimetic.

89. A peptide mimetic as claimed in Claim 74 wherein M^I or M^{II} is methoxy.

90. A peptide mimetic as claimed in Claim 4 wherein M^I or M^{II} is methyl.

91. Compounds I(i)a having the structure:

wherein R¹, R² and R³ are amino acid side chain groups, Pg^N is a protecting group for amino, Pg^C is a protecting group for carboxylic acid and M indicates

Page 5

a bond at a chiral center of the structure which centre may be in the R or S configuration or a mixture thereof.

92. Compounds I(i)a as claimed in Claim 91 where R_1 and $R_2 \neq H$.

93. Compounds I(ii)a having the structure:

wherein R¹, R² and R³ are amino acid side chain groups, Pg^N is a protecting group for amino, Pg^C is a protecting group for carboxylic acid and M indicates a bond at a chiral center of the structure which centre may be in the R or S configuration or a mixture thereof.

94. Compounds I(ii)a as claimed in Claim 93 where R_1 and $R_2 \neq H$.

95. Compounds II(i)a having the structure:

wherein R_1 , R_2 R_3 and R^4 are amino acid side chain groups, Pg^N is a protecting group for amino, Pg^C is a protecting group for carboxylic acid and m indicates a bond at a chiral center of the structure which centre may be in the R or S configuration or a mixture thereof.

- 96. Compounds II(i)a as claimed in Claim 95 where R_1 and $R_2 \neq H$.
- 97. Compounds II(iii)a having the structure:

Page 6

wherein R_1 , R_2 R_3 and R^4 are amino acid side chain groups, Pg^N is a protecting group for amino, Pg^C is a protecting group for carboxylic acid and m indicates a bond at a chiral center of the structure which centre may be in the R or S configuration or a mixture thereof.

- 98. Compounds II(iii)a as claimed in Claim 97 where R_1 and $R_2 \neq H$.
- 99. Compounds III(i)a having the structure:

wherein R_1 , R_2 , R_3 , R_4 and R^5 are amino acid side chain groups, Pg^N is a protecting group for amino, Pg^C is a protecting group for carboxylic acid and M indicates a bond at a chiral center of the structure which centre may be in the R or S configuration or a mixture thereof.

100. Compounds III(iii)a having the structure:

Page 7

III(iii)a

wherein R^1 , R^2 , R^3 , R^4 and R^5 are amino acid side chain groups, Pg^N is a protecting group for amino, Pg^C is a protecting group for carboxylic acid and m indicates a bond at a chiral center of the structure which centre may be in the R or S configuration or a mixture thereof.

101. Compounds IV(i)a having the structure:

wherein R_1 , R_2 R_3 and R^4 are amino acid side chain groups, Pg^N is a protecting group for amino, Pg^C is a protecting group for carboxylic acid and m indicates a bond at a chiral center of the structure which centre may be in the R or S configuration or a mixture thereof.

102. Compounds IV(ii)a having the structure:

Page 8

$$R^2$$
 HN
 R^4
 R^1
 R^1
 R^1
 R^2
 R^4
 R^4
 R^1
 R^4
 R^1
 R^2
 R^4
 R^4
 R^6
 R^6
 R^6
 R^6
 R^7
 R^4
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6
 R^7
 R^6
 R^6

wherein R_1 , R_2 R_3 and R^4 are amino acid side chain groups, Pg^N is a protecting group for amino, Pg^C is a protecting group for carboxylic acid and ∞ indicates a bond at a chiral center of the structure which centre may be in the R or S configuration or a mixture thereof.

103. Compounds V(i)a having the structure:

$$R^2$$
 N
 R^3
 R^4
 R^1
 Pg^N
 O
 Pg^C
 $V(i)a$

wherein R_1 , R_2 R_3 and R^4 are amino acid side chain groups, Pg^N is a protecting group for amino, Pg^C is a protecting group for carboxylic acid and m indicates a bond at a chiral center of the structure which centre may be in the R or S configuration or a mixture thereof.

104. Compounds V(ii)a having the structure:

V(ii)a

Page 9

wherein R_1 , R_2 R_3 and R^4 are amino acid side chain groups, Pg^N is a protecting group for amino, Pg^C is a protecting group for carboxylic acid and M indicates a bond at a chiral center of the structure which centre may be in the R or S configuration or a mixture thereof.

105. Compounds VI(i)a having the structure:

wherein R_1 , R_2 R_3 and R^4 are amino acid side chain groups, Pg^N is a protecting group for amino, Pg^C is a protecting group for carboxylic acid and M indicates a bond at a chiral center of the structure which centre may be in the R or S configuration or a mixture thereof.

106. Compounds VI(ii)a having the structure:

 $\mbox{VI(ii)a}$ wherein $R_1,\,R_2\,\,R_3$ and \mbox{R}^4 are amino acid side chain groups, \mbox{Pg}^N is a protecting group for amino, Pg^C is a protecting group for carboxylic acid and № indicates a bond at a chiral center of the structure which centre may be in the R or S configuration or a mixture thereof.

107. A process for making mimetics I(i)a having the structure:

Page 10

wherein R^1 , R^2 and R^3 are amino acid side chain groups, Pg^N is a protecting group for amino and Pg^C is a protecting group for carboxylic acid and m indicates a bond at a chiral center of the structure which centre may be in the R or S configuration or a mixture thereof wherein compounds having the structure:

are reacted with vinyl magnesium bromide to form compounds having the

structure:

which are then reacted with compounds having the structure:

to form compounds having the structure:

which are then reacted with compounds having the structure:

