Network Security

C.I.A

Computer Security Basics

- CIA Triad
 - Goals for implementing security practices
 - Confidentiality, Integrity, and Availability
- DAD Triad
 - Goals for defeating the security of an organization
 - Disclosure, Alteration, and Denial

CIA Triad

- Confidentiality
 - Confidential information should not be accessible to unauthorized users
- Integrity
 - Data may only be modified through an authorized mechanism
- Availability
 - Authorized users should be able to access data for legitimate purposes as necessary

Confidentiality

- How secure is the information?
- How secure does the data need to be?
- Confidential information should not be accessible to unauthorized users

- Best methods
 - Physical Protections
 Locked doors, security guards, security cameras, etc.
 - Electronic Protections Encryption, firewalls, 2FA, etc.

Integrity

- How correct is the information?
- Has the data been modified during retrieval, in transit or in storage?
- Data may only be modified through an authorized mechanism
- Best methods
 - Hashing of files & informations
 - Checksums during data transmissions

79054025 255fb1a2 6e4bc422 aef54eb4

Availability

- How much uptime is the system providing?
- Is the data accessible by users at all times?
- Authorized users should be able to access data for legitimate purposes as necessary.
- Best methods
 - Redundancy in system design (components and data)
 - Backup strategies and disaster recovery plan

DAD Triad

- Disclosure
 - Unauthorized individuals gain access to confidential information
- Alteration
 - Data is modified through some unauthorized mechanism
- Denial
 - Authorized users cannot gain access to a system for legitimate purposes
- DAD activities may be malicious or accidental

Security vs Usability

- A tradeoff occurs between the usability of a system and the security of the system.
- As security increases, often usability decreases.

Risk Considerations

Component of Risk: Assets

- Any Item that has a value to the organization
- Examples
 - Information or Data
 - Network Equipment
 - Servers/Computers
 - Software
 - Personnel
 - Processes

Component of Risk: Threats

- Any condition that can cause harm, loss, damage or compromise of an asset
- Examples
 - Natural disasters
 - Cyber attacks
 - Breach of integrity of data
 - Disclosure of confidential data
 - Malware

Component of Risk: Vulnerabilities

- Any weakness in the system design, implementation, software code, or lack of preventive mechanisms.
- Examples
 - Software bugs
 - Misconfigured software
 - Misconfigured network devices

Component of Risk: Risk

- Probability (or likelihood) of the realization of a threat
- Vulnerability without a threat equates to no risk...

RISK = VULNERABILITY + THREAT

Risk Mitigation

- Main goal of security is to minimize risk to a level acceptable to the organization
- Our goal is not necessarily to eliminate all risks

Risk Acceptance

- Organization accepts the risk associated with a system's vulnerabilities and their associated risks
- Risk acceptance is common when the risk is low enough to not apply countermeasures, or adequate countermeasures have already been applied

Risk Avoidance

- Risk is too high toaccept, so the system configuration or design is changed to avoid the risk associated with a specific vulnerability
- Example
 - Utilizing Windows XP is too dangerous in 2020, therefore we would install Windows 10 instead to avoid risks.

Risk Transference

- Transfer the risk to a third-party, for example an insurer
- Example
 - Cost associated with replacing all the servers in a server farm due to a fire is too risky to accept, therefore we purchase fireinsurance for the servers

