M392C NOTES: TOPICS IN ALGEBRAIC TOPOLOGY

ARUN DEBRAY MARCH 7, 2017

Git hash: 3c03077 (Updated 2017-03-07 23:38:20 -0600)

These notes were taken in UT Austin's M392C (Topics in Algebraic Topology) class in Spring 2017, taught by Andrew Blumberg. I live-TeXed them using vim, so there may be typos; please send questions, comments, complaints, and corrections to a.debray@math.utexas.edu. Alternatively, these notes are hosted on Github at https://github.com/adebray/equivariant_homotopy_theory, and you can submit a pull request. Thanks to Rustam Antia-Riedel, Gill Grindstaff, and Yixian Wu for catching a few errors; to Andrew Blumberg, Ernie Fontes, Tom Gannon, Richard Wong, Valentin Zakharevich, and an anonymous reader for some clarifications and suggestions; and to Yuri Sulyma for adding some remarks and references.

CONTENTS

1.	G-spaces: 1/17/17	1
2.	Homotopy theory of <i>G</i> -spaces: 1/19/17	6
3.	Elmendorf's theorem: 1/24/17	11
4.	Bredon cohomology: 1/26/17	14
5.	Smith theory: 1/31/17	17
6.	The localization theorem and the Sullivan conjecture: 2/2/17	20
7.	Question-and-answer session: 2/2/17	24
8.	Dualities: Alexander, Spanier-Whitehead, Atiyah, Poincaré: 2/7/17	28
9.	Transfers and the Burnside category: 2/9/17	31
10.	Homotopy theory of spectra: 2/14/17	34
11.	The equivariant stable category: 2/16/17	38
12.	The Wirthmüller isomorphism: 2/21/17	42
13.	Tom Dieck splitting: 2/23/17	45
14.	Question-and-answer session II: 2/24/17	48
15.	The Burnside category and Mackey functors: 2/28/17	50
16.	Mackey functors: 3/2/17	54
17.	Brown representability: 3/7/17	57
References		59

G-spaces: 1/17/17

This class will be an overview of equivariant stable homotopy theory. We're in the uncomfortable position where this is a big subject, a hard subject, and one that is poorly served by its textbooks. Algebraic topology is like this in general, but it's particularly acute here. Nonetheless, here are some references:

- Adams, "Prerequisites (on equivariant stable homotopy) for Carlsson's lecture." [Ada84]. This is old, and some parts of it don't reflect how we do things now.
- The Alaska notes [May96], edited by May, is newer, and is written by many authors. Some of it is a grab bag, and some parts (e.g. the rational equivariant bits) aren't entirely right. It's also not a textbook.
- Appendix A of Hill-Hopkins-Ravenel [HHR16]. This is a paper which resolved an old conjecture on manifolds using equivariant stable homotopy theory, but let this be a lesson on referee reports: the authors

were asked to provide more background, and so wrote a 150-page appendix on this material. Their suffering is your gain: the appendix is a well-written introduction to equivariant stable homotopy theory, albeit again not a textbook.

There are arguably two very serious modern applications of equivariant stable homotopy theory:

- The first is trace methods in algebraic K-theory: Hochschild homology and its topological cousins are equipped with natural S^1 -actions (the same S^1 -action coming from field theory). This is how people other than Quillen compute algebraic K-theory.
- The other major application is Hill-Hopkins-Ravenel's settling of the Kervaire invariant 1 conjecture in [HHR16].

The nice thing is, however you feel about the applications, both applications require developing new theory in equivariant stable homotopy theory. Hill-Hopkins-Ravenel in particular required a clarification of the foundations of this subject which has been enlightening.

In this class, we hope to cover the foundations of equivariant stable homotopy theory. On the one hand, this will be a modern take, insofar as we emphasize the norm and the presheaf on orbit categories (these will be explained in due time), the modern emerging consensus on how to think of these things, different than what's written in textbooks. The former is old, but has gained more attention recently; the latter is new. Moreover, there's an increasing sense that a lot of the foundations here are best done in ∞ -categories. We will not take this appoach in order to avoid getting bogged down in ∞ -categories; moreover, this class is supposed to be rigorous. It will sometimes be clear to some people that ∞ -categories lie in the background, but we won't talk very much about them

We'll cover some old topics such as Smith theory and the Segal conjecture, and newer ones such as trace methods and Hill-Hopkins-Ravenel, depending on student interest. We will not have time to discuss many topics, including equivariant cobordism or equivariant surgery theory.

Prerequisites. If you don't know these prerequisites, that's okay; it means you're willing to read about it on your own.

- Foundations of unstable homotopy theory at the level of May's *A Concise Course in Algebraic Topology* [May99]. For example, we'll discuss equivariant CW complexes, so it will help to know what a CW complex is.
- A little bit of category theory, e.g. found in Mac Lane [Mac78] or Riehl [Rie16].
- This class will not require much in the way of simplicial methods (simply because it's hard to reconcile simplicial methods with non-discrete Lie groups), but you will want to know the bar construction. An excellent source for this is [Rie14, Chapter 4].
- A bit of abstract homotopy theory, e.g. what a model structure is. Good sources for model categories are [Rie14, Part III] and [Hov99].

If you don't know these, feel free to ask the professor for references. His advisor suggested that a foundation for the stable category is Lewis-May-Steinberger's account [LMS86] of the equivariant category and let G = *, but perhaps this isn't necessarily a good reference for nontrivial groups.

Unstable equivariant questions are very natural, and somewhat reasonable. But stable questions are harder; they ultimately arise from reasonable questions, but the formulation and answers are hard: even discussing the equivariant analogue of $\pi_0 S^0$ requires some representation theory — and yet of course it should. Thus there's a lot of foundations behind hard calculations. There will be problem sets; if you want to learn the material (or are an undergrad), you should do the problem sets.

Categories of topological spaces. The category of topological spaces we consider is Top, the category of compactly generated, weak Hausdorff spaces (and continuous maps); we'll also consider Top_{*}, the category of based, compactly generated, weak Hausdorff spaces and continuous, based maps. This is an important and old trick which eliminates some pathological behavior in quotients. It's reasonable to imagine that point-set topology shouldn't be at the heart of foundational issues, but there are various ways to motivate this, e.g. to make Top more resemble a topos or the category of simplicial sets.

Definition 1.1. Let *X* be a topological space.

• A subset $A \subseteq X$ is **compactly closed** if $f^{-1}(A)$ is closed for every $f: Y \to X$, where Y is compact and Hausdorff.

G-spaces: 1/17/17 3

- *X* is **compactly generated** if every compactly closed subset of *X* is closed.
- *X* is **weak Hausdorff** if the diagonal map $\Delta: X \to X \times X$ is closed when $X \times X$ has the compactly generated topology.

The intuition behind compact generation is that the topology is determined by compact Hausdorff spaces. The weak Hausdorff topology is strictly stronger than T_1 (points are closed), but strictly weaker than Hausdorff spaces. Any space you can think of without trying to be pathological will meet these criteria.

There is a functor k from all spaces to compactly generated spaces which adds the necessary closed sets. This has the unfortunate name of k-ification or **kaonification**; by putting the compactly generated topology on $X \times X$, we mean taking $k(X \times X)$. There's also a "weak Hausdorffification" functor w which makes a space weakly Hausdorff, which is some kind of quotient. ¹

When computing limits and colimits, it's often possible to compute it in the category of spaces and then apply k and w to return to Top. This is fine for limits, but for colimits, w is particularly badly behaved: you cannot compute the colimit in Top by computing it in Set and figuring out the topology; more generally, it will be some kind of quotient.

Nonetheless, there are nice theorems which make things work out anyways.

Proposition 1.2. Let $Z = \text{colim}(X_0 \to X_1 \to X_2 \to ...)$ be a sequential colimit (sometimes called a **telescope**); if each X_i is weak Hausdorff, then so is Z.

Proposition 1.3. Consider a diagram

where f is a closed inclusion. If A, B, and C are weakly Hausdorff, then B \coprod_A C is weakly Hausdorff.

These are the two kinds of colimits people tend to compute, so this is reassuring.

One reason we require regularity on our topological spaces is the following, which is not true for topological spaces in general.

Lemma 1.4. Let X, Y, and Z be in Top; then, the natural map

$$Map(X \times Y, Z) \longrightarrow Map(X, Map(Y, Z))$$

is a homeomorphism.

Enrichments. The categories Top and Top_* are enriched over themselves (as will categories of *G*-spaces, which we'll see later). This means a brief digression into enriched categories.

Definition 1.5. Let $(V, \otimes, 1)$ be a symmetric monoidal category.² Then, an **enrichment** of a category C over V means

- for every $x, y \in C$, there is a hom-object $\underline{C}(x, y)$, which is an object in V,
- for every $x \in C$, there is a unit $1 \to C(x, x)$,
- composition $C(x, y) \otimes C(y, z) \rightarrow C(x, z)$ is associative and unital, and
- the underlying category is recovered as C(x, y) = Map(1, C(x, y)).

A great deal of category theory can be generalized to enriched categories, including V-enriched functors, V-enriched natural transformations, V-enriched limits and colimits, and more. The canonical reference is Kelley [Kel84], available free and legally online. It covers just about everything we need except for the Day convolution, which can be read from Day's thesis [Day70]. Another good source, with a view towards homotopy theory, is [Rie14, Chapter 3].

Definition 1.6. Let C and D be enriched over V. Then, an **enriched functor** $F: C \to D$ is an assignment of objects in C to objects in D and maps $C(x, y) \to D(Fx, Fy)$ that are V-morphisms, and commute with composition.

A category enriched over Top is called a **topological category**.

 $^{^{1}}$ The k functor is right adjoint to the forgetful map, which tells you what it does to limits.

²Briefly, this means V has a tensor product ⊗ and a unit 1; there are certain axioms these must satisfy.

Exercise 1.7. Work out the definition of enriched natural transformations.

This brings us to the beginning.

 $\sim \cdot \sim$

Let G be a group. We'll generally restrict to finite groups or compact Lie groups; this is not because these are the only interesting groups, but rather because they are the only ones we really understand. If you can come up with a good equivariant homotopy theory for discrete infinite groups, you will be famous. Throughout, keep in mind the examples C_p (the cyclic group of order p, sometimes also denoted \mathbb{Z}/p), C_{p^n} , the symmetric group S_n , and the circle group S^1 .

There's a monad M_G on Top which sends $X \mapsto G \times X$, and analogously M_G^* on Top_{*} sending $X \to G_+ \wedge X$; then, one can define the category of G-spaces GTop (resp. based G-spaces GTop_{*}) to be the category of algebras over M_G (resp. M_G^*). This is probably not the most explicit way to define G-spaces, but it makes it evident that GTop and GTop_{*} are complete and cocomplete.

More explicitly, GTop is the category of spaces $X \in \mathsf{Top}$ equipped with a continuous action $\mu \colon G \times X \to X$. That is, μ must be associative and unital. Associativity is encoded in the commutativity of the diagram

$$G \times G \times X \xrightarrow{1 \times \mu} G \times X$$

$$\downarrow^{m} \qquad \qquad \downarrow^{\mu}$$

$$G \times X \xrightarrow{\mu} X.$$

The morphisms in *G*Top are the *G*-equivariant maps $f: X \to Y$, i.e. those commuting with μ :

$$G \times X \longrightarrow G \times Y$$

$$\downarrow^{\mu_X} \qquad \downarrow^{\mu_Y}$$

$$X \longrightarrow Y.$$

It's possible (but not the right idea) to let \underline{G} denote³ the category with an object * such that $\underline{G}(*,*) = G$. Then, GTop is also the category of functors $\underline{G} \to \mathsf{Top}$, with morphisms as natural transformations. This realizes GTop as a **presheaf category**; it will eventually be useful to do something like this, but not in this specific way.

When we write Map(X, Y) in GTop or $GTop_*$, we could mean three things:

- (1) The set of *G*-equivariant maps $X \to Y$.
- (2) The space of *G*-equivariant maps $X \to Y$ in the subspace topology of all maps from $X \to Y$. As this suggests, *G*Top admits an enrichment over Top (resp. *G*Top, admits an enrichment over Top,).
- (3) The *G*-space of all maps $X \to Y$, where *G* acts by conjugation: $f \mapsto g^{-1}f(g \cdot)$. This means *G*Top is enriched in itself, as is GTop $_*$.

Each of these is useful in its own way: for constructions it may be important to be self-enriched, or to only look at G-equivariant maps. We will let $\operatorname{Map}^G(X,Y)$ or $\operatorname{Map}(X,Y)$ denote (2) or its underlying set (1), and $G\operatorname{Map}(X,Y)$ denote (3).

It turns out you can recover Map^G from Map: the equivariant maps are the fixed points under conjugation of all maps. This is written $\operatorname{Map}(X,Y)^G = \operatorname{Map}^G(X,Y)$.

Throughout this class, "subgroup" will mean "closed subgroup" unless specified otherwise.

Definition 1.8. Let *X* be a *G*-set and $H \subseteq G$ be a subgroup. Then, the *H*-fixed points of *X* is the space $X^H := \{x \in X \mid hx = x \text{ for all } h \in H\}$. This is naturally a *WH*-space, where WH = NH/H (here *NH* is the normalizer of *H* in *G*).⁴

Definition 1.9. The **isotropy group** of an $x \in X$ is $G_x := \{h \in G \mid hx = x\}$.

These are useful in the following two ways.

- (1) Often, it will be helpful to reduce questions from GTop to Top using $(-)^H$.
- (2) It's also useful to induct over isotropy types.

³There isn't really a standard notation for this category, but the closest is *BG*. This notation emphasizes the fact that groupoids are Quillen equivalent to 1-truncated spaces.

⁴If $H \leq G$, then X^H is also a G/H-space.

1 G-spaces: 1/17/17 5

Now, we'll see some examples of *G*-spaces.

Example 1.10. Let H be a subgroup of G; then, the **orbit space** G/H is a useful example, because it corepresents the fixed points by H. That is, $X^H \cong G \operatorname{Map}(G/H, X)$. These spaces will play the role that points did when we build things such as equivariant CW complexes.

Example 1.11. Let $H \subset G$ as usual and $U : G\mathsf{Top} \to H\mathsf{Top}$ be the forgetful functor. Then, U has both left and right adjoints:

- The left adjoint sends X to the **balanced product** $G \times_H X := G \times X / \sim$, where $(gh, x) \sim (g, hx)$ for all $g \in G$, $h \in H$, and $x \in X$. Despite the notation, this is *not* a pullback! (In the based case, the balanced product is $G_+ \wedge_H X$.) G acts via the left action on G. This is called the **induced** G-action on $G \times_H X$.
- The right adjoint is $F_H(G,X)$ (or $F_H(G_+,X)$ in the based case), the space of H-maps $G \to X$, with G-action (gf)(g') = f(g'g). This is called the **coinduced** G-action on $F_H(G,X)$.

Remark. Here is a categorical perspective on "change of group." Quite generally, a group homomorphism $G \xrightarrow{f} H$ induces adjunctions

$$G\mathsf{Top} \xrightarrow{\stackrel{f_!}{\underset{f}{\longleftarrow}}} H\mathsf{Top}.$$

These are given by $f_1(X) = H \times_G X$ and $f_*(X) = F_G(H,X)$ for a G-space X, where H is given the structure of a G-space by f. When H = *, an H-space is just a space, and $f_1(X) = X_G$ is the space of orbits while $f_*(X) = X^G$ is the space of fixed points. Observe that similar statements hold for categories of modules, given a ring homomorphism $R \xrightarrow{f} S$.

In fact, these are both cases of very general abstract nonsense. Let BG denote the category with one object * with Hom(*,*) = G; as we have said above, we can (naïvely) write GTop as the functor category Top^{BG} . A group homomorphism $G \xrightarrow{f} H$ induces a functor $BG \xrightarrow{F} BH$ (it is not quite true that the two are equivalent—think about why this is). Now $f^*: H$ Top $\to G$ Top is just restriction along F:

$$BG \xrightarrow{f^*(Y)} \mathsf{Top}$$

$$F \downarrow \qquad \qquad Y$$

$$BH$$

According to abstract nonsense, restriction along *F* has a left and right adjoint, called *left and right Kan extension along F*:

$$BG \xrightarrow{X} \mathsf{Top} \qquad BG \xrightarrow{X} \mathsf{Top}$$

$$\downarrow \eta \qquad f_{1}(X) = \mathsf{Lan}_{F} X \qquad F \qquad f_{*}(X) = \mathsf{Ran}_{F} X$$

$$BH \qquad BH$$

These diagrams do not commute, but there are natural maps $X \stackrel{\eta}{\Longrightarrow} f^*f_!(X)$ and $f^*f_*(X) \stackrel{\epsilon}{\Longrightarrow} X$. When H is the trivial group, BH is the trivial category, and it is known that left/right Kan extensions of a functor X along a functor to the trivial category pick out the colimit/limit of X. That is, still viewing a G-space X as a functor $BG \rightarrow Top$, we have $X_G = \mathop{\rm colim}_{BG} X$ and $X^G = \mathop{\rm lim}_{BG} X$.

For an introduction to Kan extensions, we recommend [Rie16, Chapter 6] (which is almost the same as [Rie14, Chapter 1] but with some more amusing examples). Like much of category theory, this is ultimately all trivial, but it may be highly non-trivial to understand why it is trivial.

Example 1.12. Let V be a finite-dimensional real representation of G, i.e. a real inner product space on which G acts in a way compatible with the inner product. (This is specified by a group homomorphism $G \to O(V)$.) The one-point compactification of V, denoted S^V , is a based G-space; the unit disc D(V) and unit sphere S(V) are unbased spaces, but we have a quotient sequence

$$S(V)_+ \longrightarrow D(V)_+ \longrightarrow S^V$$
.

⁵This actually is a group action, since if $a, b, g \in G$, then (a(bf))(g) = (bf)(ga) = f(gab) = (ab(f))(g).

If $V = \mathbb{R}^n$ with the trivial *G*-action, S^V is S^n with the trivial *G*-action, so these generalize the usual spheres; thus, these S^V are called **representation spheres**.

We will let S^n denote $S^{\mathbb{R}^n}$, namely our preferred model for the *n*-sphere with trivial *G*-action.

Beginnings of homotopy theory.

Definition 1.13. A *G*-homotopy is a map $h: X \times I \to Y$ in *G*Top, where *G* acts trivially on *I*. We generally think of it, as usual, as interpolating between h(-,0) and h(-,1). This is the same data as a path in G Map(X,Y). A *G*-homotopy equivalence between *X* and *Y* is a map $f: X \to Y$ such that there exists a $g: Y \to X$ such that there are *G*-homotopies $gf \sim id_X$ and $fg \sim id_Y$.

The (well, a) natural question that might arise: what are *G*-weak equivalences and *G*-CW complexes? This closely relates to obstruction theory — CW complexes are test objects.

To define *G*-CW complexes, we need cells. One choice is $G/H \times D^{n+1}$ and $G/H \times S^n$, where the actions on D^{n+1} and S^n are trivial. This is a plausible choice (and in fact, will be the right choice), but it's not clear why — why not $G \times_H D(V)$ or $G \times_H S(V)$ for some *H*-representation *V*? Ultimately, this comes from a (quite nontrivial) theorem that these can be triangulated in terms of the cells $G/H \times D^{n+1}$ and $G/H \times S^n$. This is one of several triangulation results proven in the 1970s, which are now assumed without comment, but if you like this kind of math then it's a very interesting story.

Definition 1.14. A *G*-CW complex is a sequential colimit of spaces X_n , where X_{n+1} is a pushout

$$\bigvee G/H \times S^n \longrightarrow X_n$$

$$\downarrow \qquad \qquad \downarrow$$

$$\bigvee G/H \times D^{n+1} \longrightarrow X_{n+1},$$

where H varies over all closed subgroups of G.

That is, it's formed by attaching cells just as usual, though now we have more cells.

This immediately tells you what the homotopy groups have to be: $[G/H \times S^n, X]$, which by an adjunction game is isomorphic to $\pi_n(X^H)$. We let $\pi_n^H(X) := \pi_n(X^H)$. Thus, we can define weak equivalences.

Definition 1.15. A map $f: X \to Y$ of G-spaces is a **weak equivalence** if for all subgroups $H \subset G$, $f_*: \pi_n^H(X) \to \pi_n^H(Y)$ is an isomorphism.

These homotopy groups have a more complicated algebraic structure: they're indexed by the lattice of subgroups of *G* and the integers. This is fine (you can do homological algebra), but some things get more complicated, including asking what the analogue of connectedness is!

One quick question: do we need all subgroups H? What if we only want finite-index ones? The answer, in a very precise sense, is that if you're willing to use fewer subgroups, you get fewer cells $G/H \times S^n$, and that's fine, and you get a different kind of homotopy theory.

Finally, the Whitehead theorem is true for *G*-CW complexes. This follows for the same reason as in May's course: it follows word-for-word after proving the equivariant HELP lemma (homotopy extension lifting property), which is true by the same argument.

We'll next talk about presheaves on the orbit category, leading to Bredon cohomology.

Homotopy theory of *G*-spaces: 1/19/17

"It's nice to write down, but oh so false."

Last time, we saw the definition of a *G*-CW complex, but no examples were provided. Today, we'll start with some examples.

Recall that a *G*-CW complex is a sequential colimit $X = \text{colim}_n X_n$, where X_n is formed by attaching cells $G/H \times D^n$ along maps $G/H \times S^{n-1} \to X_{n-1}$: just like the CW complexes we know and love, but with new cells G/H

⁶Illman's thesis [Ill72] is a reference, albeit not the most accessible one.

indexed by the closed subgroups $H \subset G$. The idea is that you're building up a space by attaching different spaces with different isotropy groups (G/H) has isotropy group H, just by construction).

Example 2.1 (Zero-dimensional complexes). The zero-dimensional complexes are G/H or disjoint unions $\coprod_i G/H_i$. This is an instance of the slogan that "orbits are points." Keep in mind that if G is a compact Lie group, this might not be zero-dimensional in other, more familiar kinds of dimension.

Example 2.2. Let S^1 act on \mathbb{R}^2 by rotation along the origin. This also induces a C_n -action, as $C_n \subseteq S^1$ as the n^{th} roots of unity. Let V denote this C_n -space.

Let D(V) denote the unit disc in V, and S^V denote its one-point compactification, a representation sphere. Then, D(V) looks like wedges of pie, as the origin is fixed. On S^V , the point at infinity is also fixed, so we obtain a beachball.

Now let's consider V as an S^1 -space, and write down the CW structure on S^V . There are two fixed points, and each one is a 0-cell $S^1/S^1 \times *$, but there is one 1-cell $S^1 \times I$ attached to the endpoints (thought of as a meridian rotated around the sphere).

Now let's consider the beachball for C_2 on S^V , where there are two hemispheres and C_2 rotates by a half-turn. What's the G-CW structure on this?

- There are two 0-cells $C_2/C_2 \times *$, corresponding to the two fixed points, the north and south poles.
- There is a single free 1-cell $C_2 \times I$, corresponding to the boundary of the hemispheres.
- There is a single 2-cell $C_2 \times D^2$.

Last time, we discussed other prospective cells $G \times_H S(V)$ and $G \times_H D(V)$; these can be decomposed in terms of the actual cells we use. One point to observe about these cells is that G does not act on them by permuting non-equivariant cells around, but rather in a more complicated way; there is virtue in the simplicity of the G-cells we have chosen to work with.

Exercise 2.3. C_2 also acts on S^2 by the antipodal map, which has no fixed points. Write a C_2 -CW cell structure for this C_2 -space.

Example 2.4. The torus $S^1 \times S^1$ has an S^1 -action given by $z(z_1, z_2) = (zz_1, z_2)$. With this action, the torus can be viewed as an S^1 -CW complex with one 0-cell $S^1/e \times *$ and one 1-cell $S^1 \times [0, 1]$, with the attaching map sending 0 and 1 to *. Note that the largest cell we used here was a 1-cell, whereas in the nonequivariant construction of the torus, we are required to use a 2-cell. Check out Figure 1 for a picture.

FIGURE 1. The S^1 -CW structure on the torus in Example 2.4. There is one 0-cell and one 1-cell.

Example 2.5. Let T be a solid equilateral triangle in the plane, so $D_6 = \langle r, s \mid r^3 = s^2 = 1, srs = r^{-1} \rangle$ acts on it by rotations and reflections.

- There are three 0-cells: the center is a fixed point, so a $D_6/D_6 \times *$. The three vertices are an orbit, with the stabilizer of each vertex conjugate to $\langle s \rangle$ inside D_6 , so they form a 0-cell of the form $D_6/\langle s \rangle \times *$. Similarly, the midpoints of each edge are an orbit with each stabilizer conjugate to $\langle s \rangle$, so they're also a 0-cell of the form $D_6/\langle s \rangle \times *$.
- There are three 1-cells: the three line segments from the center to a vertex are an orbit for $D_6/\langle s \rangle$, so form a $D_6/\langle s \rangle \times [0,1]$. Similarly, the three line segments from the center to the midpoint of an edge form a $D_6/\langle s \rangle \times [0,1]$. The six line segments from a vertex to the center of a midpoint are a free orbit of D_6 , hence form a $D_6/e \times [0,1]$.
- The triangle minus these 0- and 1-cells is a free orbit, a $D_6/e \times D^2$.

4

FIGURE 2. The D_6 -equivariant structure on a solid triangle, as in Example 2.5. Each cell is depicted in a different color. The three 0-cells are purple $(D_6/\langle s \rangle \times *)$, blue $(D_6/\langle s \rangle \times *)$, and green $(D_6/D_6 \times *)$; the three 1-cells are yellow $(D_6/\langle s \rangle \times [0,1])$, orange $(D_6/\langle s \rangle \times [0,1])$, and red $(D_6/e \times [0,1])$; the one 2-cell is gray $(D_6/e \times D^2)$.

See Figure 2 for a picture.

There will be additional examples of *G*-CW complexes on the homework, some with richer structure.

Remark. At this point in class, the professor mentioned that these notes are hosted on Github at https://github.com/adebray/equivariant_homotopy_theory. Since there aren't very many sources for learning this material, and existing ones tend to have few examples, the hope is that these notes can be turned into a good source of lecture notes for learning this material. So as you're learning this material, feel free to add examples, insert comments (e.g. "this section is confusing/unmotivated"), and let me know if you want access to the repository.

Remark.

- (1) There is a technical issue of a G-CW structure on a product of G-CW complexes; namely, there are technical difficulties in cleanly putting a G-CW structure on $G/H_1 \times G/H_2$ involving triangulation. We won't digress into this: it's straightforward for finite groups, but a theorem for compact Lie groups, and required revisiting the foundations. Similarly, if $H \subset G$, we'd like the forgetful functor G-Top $\to H$ -Top to send G-CW complexes to H-CW complexes. This is again possible, yet involves technicalities.
- (2) A nicer fact is that computing the fixed points of a *G*-CW complex is straightforward. Recall that $(-)^H$ is a right adjoint, which can be seen by realizing it as the limit of the diagram

Thus, we don't expect it to commute with colimits in general. However, it does commute with many important ones, as in the following proposition.

Proposition 2.6. The fixed point functor $(-)^H$ commutes with

- (1) pushouts where one leg is a closed inclusion, and
- (2) sequential colimits along closed inclusions.

This is great, because it means we can commute $(-)^H$ through the construction of a G-CW complex! In particular, on each cell,

$$(G/K \times D^n)^H \cong (G/K)^H \times D^n$$
,

so we need to understand $(G/K)^H \cong \operatorname{Map}^G(G/H, G/K)$. We will return to this important point.

Two approaches to the Whitehead theorem. We'll now discuss some homotopy theory of *G*-spaces and the Whitehead theorem. The first will be a hands-on proof using the HELP lemma. This is an elegant approach to unstable homotopy theory due to Peter May in which one lemma gives quick proofs of several theorems. In the equivariant case, it allows a quick reduction to the non-equivariant case; it will be useful to see a proof of this nature. Ultimately, we will take a different approach involving model categories, and this will be the second perspective.

Definition 2.7. Let $X, Y \in \text{Top}$ and $f: X \to Y$ be continuous. Then, f is n-connected if $\pi_q(f): \pi_q(X) \to \pi_q(Y)$ is an isomorphism when q < n and surjective when q = n.

We wish to generalize this to the equivariant case.

Definition 2.8. Let θ : {conjugacy classes of subgroups of G} \rightarrow { $x \in \mathbb{Z} \mid x \ge -1$ }.

- A map $f: X \to Y$ of G-spaces is θ -connected if for all $H \subset G$, f^H is $\theta(H)$ -connected.
- A *G*-CW complex is θ -dimensional if all cells of orbit type G/H have (nonequivariant) dimension at most $\theta(H)$.

Theorem 2.9 (Equivariant HELP lemma). Let A, X, Y, and Z be G-CW complexes such that $A \subseteq X$ is θ -dimensional and let $e: Y \to Z$ be a θ -connected G-map. Given $g: A \to Y$, $h: A \times I \to Z$, and $f: X \to Z$ such that $eg = hi_0$ and $f: H_1$, there exist maps $\tilde{g}: X \to Y$ and $\tilde{h}: X \times I \to Z$ that make the following diagram commute:

This is a massive elaboration of the idea of a Hurewicz cofibration. The best way to understand this is to prove it (though it's not an easy proof).

In the non-equivariant case, one reduces to working one cell at a time, inductively extending over the cells of X not in A.⁷ In this case, look at $S^{n-1} \subseteq D^n$. Now you just do it: at this point, there's no way to avoid writing down explicit homotopies.

Exercise 2.10. Think about this argument, and then read the proof in [May99].

The equivariant case is very similar: in the same way, one can reduce to inductively attaching a single cell in the case where X is a finite CW complex. This comes via a map $G/H \times S^{n-1} \to G/H \times D^n$, but the only interesting content is in the nonequivariant part, so we can reduce again to $S^{n-1} \to D^n$ with trivial G-action! This allows us to finish the proof in the same way. It also says that the homotopy theory of G-spaces is lifted from ordinary homotopy theory, in a sense that model categories will allow us to make precise.

The first consequence of Theorem 2.9 is:

Theorem 2.11. Let $e: Y \to Z$ be a θ -connected map and $e_*: [X,Y] \to [X,Z]$ be the map induced by composition.

- If X has dimension less than θ , e_* is a bijection.⁸
- If X has dimension θ , e_* is a surjection.

The proof is an exercise; filling in the details is a great way to get your hands on what the HELP lemma is actually doing. Hint: consider the pairs $\emptyset \to X$ and $X \times S^0 \to X \times I$, and apply the HELP lemma.

Corollary 2.12 (Equivariant Whitehead theorem). Let $e: Y \to Z$ be a weak equivalence of G-CW complexes. Then, e is a G-homotopy equivalence.

Proof. This is also a standard argument: using Theorem 2.11, e_* is a bijection, so we can pull back $\mathrm{id}_Z \in [Z,Z]$ to an inverse $(e_*)^{-1}(\mathrm{id}_Z) \in [Z,Y]$, which is a homotopy inverse to e.

One can continue and prove the cellular approximation theorem in this way, and so forth. We won't do this, because we'll approach it from a model-categorical perspective.

One thing that's useful, not so much for this class as for enriching your life, is to learn how to approach this from the perspective of abstract homotopy theory, learning about disc complexes and so forth. You can prove

 $^{^{7}}$ This requires reducing to the case where X is a finite CW complex, but taking a sequential colimit recovers the theorem for all CW complexes X.

⁸We say that *X* has dimension less than *θ* if for all closed subgroups *H* ⊂ *G*, all cells of orbit type *G/H* have (nonequivariant) dimension at most *n* for some *n* ≤ *θ(H)*.

theorems such as the HELP lemma and its consequences in a general setting, and then specialize them to the cases you need. This is a great way to "just do it" without needing model categories.

Anyways, we'll now define a model structure on GTop and GTop $_*$. If you don't know what a model category is, now is a good time to review.

Proposition 2.13. There is a model structure on GTop (and on GTop_{*}) defined by the following data.

Cofibrations: The maps $f: X \to Y$ such that for all $H \subset G$, $f^H: X^H \to Y^H$ is a cofibration. **Weak equivalences:** The maps $f: X \to Y$ such that for all $H \subset G$, $f^H: X^H \to Y^H$ is a weak equivalence.

So we once again parametrize everything over subgroups of G and use fixed points. This is a cofibrantly generated model category; the cofibrations are specified by generators of acyclic cofibrations in a similar manner to Top. That is, in Top, one can choose generators $I = \{S^{n-1} \to D^n\}$ and $J = \{D^n \to D^n \times I\}$; in GTop, we instead take $I_G = \{G/H \times I\}$ and $J_G = \{G/H \times J\}$.

These are cells that we used to define *G*-CW complexes, and this is no coincidence: it's a general fact about cofibrantly generated model categories that follows from the small object argument⁹ that cofibrant objects are retracts of "cell complexes" built from the things in *I*, and cofibrations are retracts of cellular inclusions of cell complexes. In this sense, CW complexes are inevitable.

The Whitehead theorem (Corollary 2.12) now falls out of the general theory of model categories.

Theorem 2.14 (Whitehead theorem for model categories). Let $f: X \to Y$ be a weak equivalence of cofibrant-fibrant objects in a model category. Then, f is a homotopy equivalence.

In Top and GTop, all objects are fibrant, so this is particularly applicable.

The orbit category. We'll begin talking about the orbit category in the rest of today's lecture, and discuss the bar construction next class.

Definition 2.15. The **orbit category** \mathcal{O}_G is the full subcategory of GTop on the objects G/H.

That is, its objects are the spaces G/H, where $H \subset G$ is closed, and its morphisms are Map^G $(G/H, G/K) \cong (G/K)^H$. These maps are the same thing as subconjugacy relations, i.e. those of the form

$$(2.16) gHg^{-1} \subseteq K,$$

since for all $h \in H$, h(gK) = gK if and only if $K = g^{-1}hgK$ if and only if $gHg^{-1} \subseteq K$. A G-map $f : G/H \to G/K$ is completely specified by what it does to the identity coset f(eH) = gK, and this g implies the subconjugacy relation (2.16), since, as above, h(gK) = gK for all $h \in H$.

There's another description of the orbit category.

Proposition 2.17. Let G be a finite group. Then, the orbit category \mathcal{O}_G is equivalent to the category of finite transitive G-sets and G-maps.

The observation that ignites the proof is that if $x \in X$ has isotropy group H, then its orbit space is isomorphic to G/H.

Definition 2.18. Given a *G*-space *X*, we obtain a presheaf on the orbit category, namely a functor $X^{(-)}: \mathscr{O}_G^{\mathsf{op}} \to \mathsf{Top}$, by sending $G/H \to X^H$. This assignment itself is a functor $\psi: G\mathsf{Top} \to \mathsf{Fun}(\mathscr{O}_G^{\mathsf{op}}, \mathsf{Top})$.

Proposition 2.19. Fun($\mathscr{O}_G^{\mathsf{op}}$, Top) has a projective model structure where the weak equivalences and fibrations are taken pointwise.

The point is the following result, a revisionist interpretation of Elmendorf's theorem. ¹⁰

Theorem 2.20. ψ is the right adjoint in a Quillen equivalence; the left adjoint θ is evaluation at G/e.

The point is, these two model categories have the same homotopy theory.

Exercise 2.21. Check that evaluation at G/e is a left adjoint to ψ .

⁹The small object argument is a beautiful piece of basic mathematics that everybody should know. If you don't know it, your homework is to read enough about model categories to get to that point. In general, there may be large objects and transfinite induction, but for the case we care about large cardinals won't arise.

 $^{^{10}}$ Elmendorf proved that these two categories have the same homotopy theory, but his proof was more explicit.

Lecture 3.

Elmendorf's theorem: 1/24/17

"What's bad about this proof?"

"It appeals to machinery we didn't develop in this class?"

"No, that's perfectly fine."

We'll start by reviewing the connection between the orbit category and *G*-sets.

Let *X* be a finite *G*-set. Then, *X* is the coproduct (disjoint union) of a bunch of orbits:

$$X \cong \coprod_{i} G/H_{i}$$
.

The way you see this is that for any $x \in X$, its orbit is isomorphic to G/G_x . This is yet another manifestation of the slogan that "orbits are points." But it also implies that, rather than just presheaves on \mathcal{O}_G , one could work with certain presheaves on the category of finite G-sets, and this perspective will turn out to be useful. By "certain" we mean a compatibility with orbits.

Last time, we talked about Elmendorf's theorem in the form of Theorem 2.20. It's also possible to state it in a more general form.

Theorem 3.1 (Elmendorf). The functor $G\mathsf{Top} \to \mathsf{Fun}(\mathscr{O}_G^{\mathsf{op}}, \mathsf{Top})$ determined by $X \mapsto \left(G/H \mapsto X^H\right)$ induces an equivalence of $(\infty, 1)$ -categories, where the weak equivalences on the left and right are specified by a family \mathscr{F} .

Without delving into $(\infty, 1)$ -categories, this means

- the homotopy categories are equivalent, and
- homotopy limits and colimits behave identically.

In other words, from the perspective of abstract homotopy theory, these are the same.

Definition 3.2. By a **family** of subgroups \mathscr{F} of G, we mean a collection of subgroups of G closed under conjugation and taking subgroups.

Examples include the set of all subgroups, the set of just the identity, and the set of finite subgroups. The latter is useful for some S^1 -equivariant spaces, where one tends to lose control of the S^1 -fixed points, but the finite subgroups behave better.

Definition 3.3. Let \mathcal{F} be a specified family of subgroups of G.

- In *G*Top, the weak equivalences specified by \mathscr{F} are the maps $f: X \to Y$ such that $f^H: X^H \to Y^H$ is a weak equivalence for all $H \in \mathscr{F}$.
- For Fun(\mathcal{O}_G^{op} , Top), a weak equivalence specified by \mathscr{F} is a pointwise weak equivalence at G/H for all $H \in \mathscr{F}$.

We'll give two proofs of Theorem 3.1. The first will be model-categorical.

Recall¹¹ if $F: C_{\leftarrow} D: G$ is a Quillen adjunction, then the left and right derived functors (LF,RG) is an adjunction on the homotopy categories (Ho C, Ho D). If K denotes fibrant replacement in D and Q denotes cofibrant replacement in C, then the derived functors are LF = FQ and RG = GK.¹²

Definition 3.4. That (F, G) is a **Quillen equivalence** means that for any cofibrant $X \in C$ and fibrant $Y \in D$, then $FX \to Y$ is a weak equivalence iff its adjoint $X \to GY$ is.

This is equivalent to asking that (LF, RG) are equivalences of categories.

This is a kind of curious way to look at an equivalence of categories. One says that $G: D \to C$ creates the weak equivalences of D if for every morphism f of D, f is a weak equivalence iff Gf is.

Lemma 3.5. If G creates the weak equivalences of D and for all cofibrant X the unit map $X \to GFX$ is a weak equivalence, then (F, G) is a Quillen equivalence.

¹¹If this is not review to you, then exercise: learn this material!

¹²This does require cofibrant and fibrant replacement to be functorial, which is not true in every model category, but will be true for pretty much everything we study.

This is a useful tool for extending model categories along free-forgetful adjunctions; for example, if you have a model category and want to understand abelian group or ring objects in this category, often their weak equivalences are detected by the forgetful functor.

Proof sketch of Theorem 3.1. We want to apply Lemma 3.5 to the adjunction

$$\operatorname{Fun}(\mathscr{O}_G^{\operatorname{op}},\operatorname{\mathsf{Top}}) \xrightarrow{\theta} G\operatorname{\mathsf{Top}},$$

where $\theta: X \mapsto X(G/e)$ is evaluation at G/e and $\psi: Y \mapsto \{Y^H\}$. The first condition, that ψ detects the weak equivalences, is straightforward, so we need to check that $X \mapsto \{X(G/e)^H\}$ is a weak equivalence for all cofibrant

Cellular objects model the generating cofibrations, so cofibrant objects are retracts of cellular objects. Since weak equivalences are preserved under retracts, then we can check on cellular objects. Here it's easier, since $(-)^H$ commutes with the relevant colimits and is suitably cellular.

The missing steps in this proofs can be filled in by explicitly identifying the cofibrant objects in Fun(\mathcal{O}_G^{op} , Top). These are free diagrams on the orbit category; not hard to write down, but messy enough to avoid on the chalkboard.

Remark. Elmendorf's original proof of his theorem was in the 1980s did not use model categories, even though Quillen had already introduced them at the time. Until the mid-1990s (30 years after Quillen introduced them), many homotopy theorists avoided them, thinking of them as formal gobbledygook. However, about the time EKMM introduced a symmetric monoidal category of spectra, people began realizing they were unavoidable.

You might not like the given proof of Elmendorf's theorem because it's extremely inexplicit: cofibrant replacement is an infinite process, and many of the steps involved are quite abstract. The next proof will be more explicit, building a (homotopical) right adjoint to ψ .

This proof will go through the bar construction, a categorical tool that's extremely useful. References for it include May's "Geometry of iterated loop spaces" [May72], Riehl's monograph [Rie14], and Vogt's "Tensor products of functors."

Second proof of Theorem 3.1. Let $M: \mathcal{O}_G \to \mathsf{Top}$ realize orbits as spaces: G/H is sent to the topological space G/H, and an equivariant map f is forgotten to a continuous map f . Given an $X \in \text{Fun}(\mathcal{O}_G^{\text{op}}, \text{Top})$, let

$$\Phi(X) := |B_{\bullet}(X, \mathcal{O}_G, M)|$$

denote the geometric realization of the simplicial bar construction. Let's be a little more explicit about this. $B_{\bullet}(X, \mathcal{O}_G, M)$ is a simplicial space that sends

$$[n] \longmapsto \coprod_{G/H_{n-1} \to \cdots \to G/H_0} X(G/H_0) \times M(G/H_{n-1}).$$

As usual, the face maps are defined by composition, and the degeneracies by inserting the identity map. Since G acts on M(-) simplicially (i.e., in a way compatible with the face and degeneracy maps), then $|B_{\bullet}(X, \mathcal{O}_{G}, M)|$ is a G-space (passing through the coend formula for the geometric realization).

If $H \subseteq G$, we want to understand $\Phi(X)^H$. Because the G-action passed through geometric realization,

$$\Phi(X)^H \cong |B_{\bullet}(X, \mathcal{O}_G, M^H)| \cong |B_{\bullet}(X, \mathcal{O}_G, \operatorname{Map}_{\mathcal{O}_G}(G/H, -))|.$$

Let X(G/H) denote the constant simplicial space $[n] \mapsto X(G/H)$. Then, by general theory of the bar construction for any corepresented functor, there's a simplicial map

$$(3.6) B_{\bullet}(X, \mathcal{O}_{G}, \operatorname{Map}_{\mathcal{O}_{G}}(G/H, -)) \longrightarrow X(G/H)$$

defined by composing and applying X, and this is a simplicial homotopy equivalence (you can write down a retraction). Thus, $\Phi(X)^H \cong X(G/H)$. In other words, Φ is a homotopy inverse, since taking H-fixed points of $\Phi(X)$ gives back what you started with.

 $\Phi(X)$ is still an infinite-dimensional object, but it's much more explicit, and you can work with it.

¹³This is called an **extra degeneracy argument** in the literature. There's an observation probably due to John Moore which approximately says that if you have a simplicial object with an extra degeneracy condition playing well with the preexisting ones, then it must be contractible; this argument is applied to the fiber of (3.6).

⋖

Applications of this perspective. We'll be able to use Elmendorf's theorem to make some constructions that would be hard to imagine without the orbit category.

Definition 3.7. Let \mathscr{F} be a family of subgroups of G. Then, the **classifying space** for \mathscr{F} is specified by the universal property that if Z has \mathscr{F} -isotropy, then $[Z, E\mathscr{F}]$ has a unique element. An explicit construction is to let $\widetilde{E}\mathscr{F}$ denote the presheaf on the orbit category where

$$\widetilde{E}\mathscr{F}(G/H) := \begin{cases} *, & H \in \mathscr{F} \\ \varnothing, & H \notin \mathscr{F}, \end{cases}$$

and let $E\mathscr{F} := \Phi(\widetilde{E}\mathscr{F})$.

If you unwind the definition, this is the bar construction applied to G in the category of G-spaces with weak equivalences given by \mathscr{F} , meaning it deserves to be called a classifying space.

Another useful notion is the *G*-connected components.

Definition 3.8. Let X be a G-space and $x \in X^G$. Let Y_x be the presheaf on the orbit category sending H to the connected component containing $x \in X^H$. Then, the G-connected component of x is $\Phi(Y_x)$.

The third useful application is defining Eilenberg-Mac Lane spaces. This will lead us to cohomology (and then to Smith theory and other things). These will be constructed by working pointwise, then applying Φ .

Definition 3.9. Let *G* be a finite group, A **coefficient system** is a presheaf $X \in \text{Fun}(\mathcal{O}_G^{\text{op}}, \text{Ab})$.

Elmendorf's theorem says that for any coefficient system, we have an Eilenberg-Mac Lane G-space. You could say here that (Bredon) cohomology is completely determined: cohomology is the things represented by Eilenberg-Mac Lane spaces. But it will be good to see it explicitly. Bredon cohomology is explicit, but there are serious drawbacks: it has poor formal properties, and you need a lot of geometric insight to compute things. We'll later see that this abelian category (meaning we can do homological algebra) is the wrong one; we'll later see this is a \mathbb{Z} -graded cohomology theory (or rather graded on subgroups of \mathbb{Z}); this will be the wrong answer, especially if you want Poincaré duality, and the right answer uses a grading by the representation ring. But we'll get there.

Remark. Another application of Elmendorf's theorem, which we will not discuss in detail (unless we get to the slice filtration), is Postnikov towers. They're constructed in the same way, by either using the small object argument or killing homotopy groups.

Here are some examples of coefficient systems (which are often denoted with underlines).

Example 3.10.

- (1) For a G-space X, the coefficient system $\underline{\pi}_n(X)$ $(n \ge 2)$ sends $G/H \mapsto \{\pi_n X^H\}$. This is an example of a general formula: given a functor $\mathsf{Top} \to \mathsf{Ab}$, we can compose to obtain a map $\mathsf{Fun}(\mathscr{O}_G^{\mathsf{op}}, \mathsf{Top}) \to \mathsf{Fun}(\mathscr{O}_G^{\mathsf{op}}, \mathsf{Ab})$.
- (2) In the same way, $H_n(X)$ sends $G/H \mapsto \{H_n(X^H; \mathbb{Z})\}.$

We will now define Bredon cohomology, which is what you think it is.

Definition 3.11. Let X be a G-CW complex and X_n denote its n-skeleton. Let

$$C_n(X) := H_n(X_n, X_{n-1}; \mathbb{Z}),$$

i.e. this coefficient system sends $G/H \mapsto H_n((X^H)_n, (X^H)_{n-1}; \mathbb{Z})$. The connecting homomorphism comes as usual from the triple $((X^H)_n, (X^H)_{n-1}, (X^H)_{n-2})$. The connecting homomorphism comes as usual

The **Bredon cohomology** for the coefficient system M is

$$H_G^n(X; M) := H^n(\operatorname{Hom}_{\operatorname{Fun}(\mathscr{O}_c^{\operatorname{op}}, \operatorname{Ab})}(\underline{C}_{\bullet}(X), M)).$$

That is, it's the cohomology of the cochain complex of natural transformations from $C_{\bullet}(X)$ to M.

¹⁴For *G* a compact Lie group, the definition is almost the same, but we need to use $Fun(h\mathscr{O}_G^{op}, Ab)$, taking presheaves on the homotopy category. For finite groups these definitions coincide.

 $^{^{15}}$ This requires knowing how to obtain a CW structure on X^H given a G-CW structure on X. If G is finite, this is easy to see; for general compact Lie groups, though, this requires a triangulation argument. One wants the resulting coefficient system to be independent of the choice of triangulation, but as in the nonequivariant case, this is proven via an axiomatic characterization of cohomology.

⋖

Example 3.12. Give S^2 the C_2 -action that rotates by π , and call it Z, and let M denote the constant coefficient system at \mathbb{Z} . First, we compute the cells:

<u>C</u>₂(Z)(C₂/e) = Z ⊕ Z and <u>C</u>₂(Z)(C₂/C₂) = 0.
 <u>C</u>₁(Z)(C₂/e) = Z ⊕ Z and <u>C</u>₁(Z)(C₂/C₂) = 0.
 <u>C</u>₀(Z)(C₂/e) = Z ⊕ Z and <u>C</u>₀(Z)(C₂/C₂) = Z ⊕ Z.

Exercise 3.13. Figure out the differentials in the above example.

We'll continue to discuss Bredon cohomology next lecture, and introduce an axiomatic viewpoint. This is basic and fundamental, but not too relevant to the rest of the class. It's also good to calculate; there are surprisingly few examples out in the world.

Lecture 4.

Bredon cohomology: 1/26/17

"Smith's theorem was proven by Smith, hence the name."

Today I was running about two minutes late. Sorry, everybody! (What I missed: Andrew discussed holding a "Q and A" session next week on a weeknight, perhaps with pizza. If you're interested in this, email him to let him know which nights work for you.)

Today we're going to talk more about Bredon cohomology, including an analogue of the Eilenberg-Steenrod axioms for it. Then, we'll turn to the circle of ideas around Smith theory, including the Sullivan conjecture (which we won't prove, because it's hard). Smith theory discusses when one can recover $H_*(X^G)$ from a G-action on X and on $H_*(X)$.

Recall that if *X* is a *G*-CW complex, we defined Bredon cohomology as follows: we set up a chain complex of coefficient systems (i.e. functors $\mathcal{O}_G^{\text{op}} \to \text{Ab})$ $\underline{C}_*(X)$, where

$$C_n(G/H) := H^n((X^n)^H, (X^{n-1})^H; \mathbb{Z}).$$

The differential $\partial: \underline{C}_n(X) \to \underline{C}_{n-1}(X)$ is induced by the connecting morphism in the long exact sequence for the triple (X^n, X^{n-1}, X^{n-2}) ; that $\partial^2 = 0$ is something you have to check, though it's not very difficult.

With this you can define two things:

 \bullet The Bredon cohomology with coefficients in a coefficient system M is

$$H_G^n(X; M) := H^n(\operatorname{Hom}_{\operatorname{\mathsf{Fun}}(\mathscr{O}_G^{\operatorname{op}}, \operatorname{\mathsf{Ab}})}(\underline{C}_*(X), M)).$$

We defined this last time.

• For homology to be covariant, we need the coefficient system M to be a functor $\mathcal{O}_G \to \mathsf{Ab}$ rather than $\mathcal{O}_G^\mathsf{op} \to \mathsf{Ab}$ (e.g. $\underline{H}^*(X)$ for a G-space X, which sends $G/H \mapsto \{H^n(X^H)\}$). With M such a coefficient system, the **Bredon homology** with coefficients in M is

$$H_n^G(X; M) := H_n(\underline{C}_n(X) \otimes_{\mathscr{O}_C} M).$$

By this tensor product, we mean a coend:

$$\underline{C}_{n}(X) \otimes_{\mathscr{O}_{G}} M = \int_{G/H}^{G/H \in \mathscr{O}_{G}} \underline{C}_{n}(X)(G/H) \otimes M(G/H)$$

$$= \coprod_{G/H} \underline{C}_{n}(X)(G/H) \otimes M(G/H) / \sim,$$

where if
$$f \in \text{Map}_{\mathcal{O}_G}(G/H, G/K), (f^*y, z) \sim (y, f_*z).^{16}$$

The whole philosophy of Bredon (co)homology is that you understand the cohomology or homology through the fixed-point sets and the lattice of subgroups of *G*.

¹⁶Tensor products are particular instances of coends; instead of inducing an equivalence $mr \otimes n \sim m \otimes rn$, you flip a map across the two objects. One might write $y \cdot f$ for f^*y and $f \cdot z$ for f_*z to emphasize this point of view.

Example 4.1. Let's return to Example 3.12. We had a C_2 -action on S^2 . There were two 0-cells, one 1-cell $C_2 \times I$, and one 2-cell $C_2 \times D^2$, and the chain complexes $C_n(C_2/H)$ as we wrote down last lecture. We aim to compute the Bredon cohomology for the constant coefficient system $M = \mathbb{Z}$ (so $M(C_2/H) = \mathbb{Z}$ for all H).

The orbit category for C_2 is particularly simple:

$$C_2/e$$

$$\downarrow$$

$$C_2/C_2$$

So a coefficient system is determined by a map $M_1 \to M_2$ and an involution on M_2 . In our case, $\underline{C}_k(X)(C_2/e) = \mathbb{Z} \oplus \mathbb{Z}$ for k = 0, 1, 2, and the involution flips the two factors. Therefore we obtain a chain complex of coefficient systems which is

$$0 \longrightarrow \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{f_1} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{f_2} \mathbb{Z} \oplus \mathbb{Z} \longrightarrow 0$$

at C_2/e and

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow \mathbb{Z} \oplus \mathbb{Z} \longrightarrow 0$$

at C_2/C_2 . Next we need to determine the differentials. By definition, these are determined by the cellular boundary maps, i.e. the attaching maps. Let (x, y) denote the standard basis of $\mathbb{Z} \oplus \mathbb{Z}$.

- f_1 sends $(x, y) \mapsto (x + y, x + y)$. f_2 sends $(x, y) \mapsto (x y, y x)$,

Next, we compute the Hom from this coefficient system to the constant coefficient system \mathbb{Z} . These groups are evidently determined by what happens at the C_2/e spot. For the first two terms, we are looking at maps $\mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z}$ that are equivariant (where $g \in C_2$ acts by transposition on the left and trivially on the right). Such a map is determined by where it sends (1,0), and so these two terms are isomorphic to \mathbb{Z} . The last term is simply all homomorphisms $\mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$, which is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$. Therefore, we have the cochain complex

$$0 \longrightarrow \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow 0$$
.

Computing the differentials, we find that the first map is $(a, b) \mapsto a + b$ and the second map is 0. Taking the cohomology of this complex then produces

$$H^n(S^V; \underline{\mathbb{Z}}) = \begin{cases} \mathbb{Z}, & n = 0, 2\\ 0, & \text{otherwise.} \end{cases}$$

Remark. We're used to reading off properties of a space from its cohomology, and this is still true here, if harder. For example, H^0 tells us the number of connected components of S^2/C_2 .

We want cohomology to have nice formal properties analogous to the Eilenberg-Steenrod axioms. We'll think of H_G as a general G-equivariant cohomology theory of pairs $H_G^n(X,A;M)$, but in our case this will just be $H_G^n(X/A;M)$.

- (1) H_G^* should be invariant under weak equivalences: a weak equivalence $X \to Y$ should induce an isomorphism $H_G^n(Y; M) \xrightarrow{\cong} H_G^n(X; M)$.
- (2) Given a pair $A \subseteq X$, we get a long exact sequence

$$\cdots \longrightarrow H^n_G(X,A;M) \longrightarrow H^n_G(X;M) \longrightarrow H^n_G(A;M) \xrightarrow{\delta} H^{n+1}(X,A;M) \longrightarrow \cdots$$

(3) The excision axiom: if $X = A \cup B$, then

$$H_G^n(X/A; M) \cong H_G^n(B/(A \cap B); M).$$

(4) The Milnor axiom:

$$H_G^n\left(\bigvee_i X_i; M\right) = \prod_i H_G^n(X_i; M).$$

(5) Finally, for now we impose the dimension axiom: our points are orbits G/J, so we ask that $H^n(G/H;M)$ is concentrated in degree 0.

 \boxtimes

Some of these are easier than others: Bredon cohomology is manifestly homotopy-invariant in the same ways as ordinary cohomology, so invariance under weak equivalence and the Milnor axiom are immediate, and excision follows because if all spaces involved are CW complexes, $X/A \cong B/(A \cap B)$.

What takes more work is the dimension axiom and the long exact sequence. We'll show that $\underline{C}_n(X)$ is a projective object, and hitting projective objects with Hom produces a long exact sequence by homological algebra. (Recall that an object P in a category where you can do homological algebra is **projective** if $\operatorname{Hom}(P,-)$ is exact, which is equivalent to maps to P lifting across surjections $M \to P$.)

Proof of the dimension and long exact sequence axioms. Observe that $\underline{C}_n(X)$ splits as a direct sum of pieces $H_n(G/H_+ \land S^n) \cong \widetilde{H}_0(G/H)$ indexed by the cells G/H of X. At G/K, $H_0(G/H) = \mathbb{Z}[\pi_0(G/H)^K]$. This is a free abelian group, and we'll directly use the lifting criterion to prove this is projective. That is, we'll write down an isomorphism

$$\varphi : \operatorname{Hom}_{\operatorname{Fun}(\mathscr{O}_{G}^{\operatorname{op}},\operatorname{Ab})}(\underline{H}_{0}(G/H),M) \xrightarrow{\cong} M(G/H).$$

This immediately proves $\underline{H}_0(G/H)$ is projective: evaluating a coefficient system on an exact sequence produces an exact sequence, and we've shown $\text{Hom}(\underline{H}_0(G/H), -)$ is evaluation of a coefficient system.

The map φ takes a homomorphism θ and applies it to $\mathrm{id}_{G/H}$, which produces something in M(G/H). Why is this an isomorphism? The Yoneda lemma is a fancy answer, but you can prove it in a more elementary manner.

Exercise 4.2. Calculate that any $\theta \in \operatorname{Hom}_{\operatorname{Fun}(\mathscr{O}_G^{\operatorname{op}},\operatorname{Ab})}(H_0(G/H),M)$ is determined by where the identity id $\in \operatorname{Map}_{\mathscr{O}_c}(G/H,G/H)$ is sent, implying φ is an isomorphism.

Thus, we've effectively calculated the value at G/H, proving the dimension axiom as well.

The Eilenberg-Steenrod axioms hold for Bredon homology, and the proof is the same.

Remark. Let's foreshadow a little bit. In ordinary homotopy theory, one can show that the Eilenberg-Steenroad axioms plus the value on points determine a cohomology theory, and this is still true in the equivariant case. But then one wonders about Brown representability and what happens when you remove the dimension axiom — and indeed there are lots of interesting examples of generalized equivariant cohomology theories.

Exercise 4.3. We constructed a functor \underline{H} : $\operatorname{Fun}(\mathscr{O}_G^{\operatorname{op}}, \operatorname{\mathsf{Top}}) \to \operatorname{\mathsf{Fun}}(\mathscr{O}_G^{\operatorname{op}}, \operatorname{\mathsf{Ab}})$. Show that $\underline{H}M$ represents $H^n_G(-;M)$.

This slick definition of \underline{H} is one of the advantages of working with presheaves on the orbit category.

Remark. You might also want to have a universal coefficient sequence, but it's more complicated. The short exact sequence in ordinary homotopy theory depends on the existence of short projective resolutions. Here, we have enough projectives and injectives, but resolutions are longer. Thus, taking an injective resolution of M and filtering the resulting double complex, one obtains a spectral sequence

$$\operatorname{Ext}^{p,q}(\underline{C}_*(X),M) \Longrightarrow H_G^{p+q}(X;M).$$

Warning: indexing might be slighly off.

There's a corresponding Tor spectral sequence.

Since the category is more complicated, one expects to have to do more work. But sometimes there are nice results nonetheless; Smith theory is an example. This theorem is very old, from the 1940s, so none of the cohomology in the statement is equivariant.

Theorem 4.4 (Smith). Let G be a finite p-group and X be a finite G-CW complex such that (the underlying topological space of) X is an \mathbb{F}_p -cohomology sphere. Then, X^G is either empty or an \mathbb{F}_p -cohomology sphere of smaller dimension.

There are sharper statements, but we can prove this one. It's the start of a long program to understand $H_*(X^G)$ using algebraic data calculated from X and the action of G on X. One useful tool in this is the **Borel construction** (well, a Borel construction) $EG \times_G X$ (where this is the usual balanced product, not a pullback). This is a "fattened up" version of X/G.

Definition 4.5. The **Borel cohomology** of *X* is $H_c^*(X) := H^*(EG \times_G X)$.

¹⁷A space *X* is an \mathbb{F}_p -cohomology sphere if there is an isomorphism of graded abelian groups $H^*(X;\mathbb{F}_p) \cong H^*(S^n;\mathbb{F}_p)$ for some *n*.

Warning! This notation is potentially confusing. Outside of the field of equivariant homotopy theory, "equivariant cohomology" generally means Borel cohomology, not Bredon cohomology. In equivariant homotopy theory, H_G^* can be used to denote both. We will always make the coefficient system for Bredon cohomology explicit, so that $H_G^*(X)$ unambiguously refers to Borel cohomology, as is standard in the literature.¹⁸

The finiteness in Theorem 4.4 is key: Elmendorf's theorem lets us build a C_p -complex with non-equivariant homotopy type S^n and any set of fixed points. Thus, in the infinite-dimensional case, we should be looking at a different thing than the fixed points, namely the homotopy fixed points.

Definition 4.6. The **homotopy fixed points** of a *G*-space *X* is $X^{hG} := Map(EG, X)^G$.

This can also be defined as a homotopy limit. This is "easy" to compute (relative to the rest of equivariant homotopy theory, that is), as there are spectral sequences, nice models for *EG*, and other tools.

The terminal map $EG \to *$ induces a map $X^G \to X^{hG}$. The Sullivan conjecture is all about when this happens: when you p-complete, things become really nice. (There will be a precise statement next lecture.)

Returning to Theorem 4.4, we can use Bredon cohomology to give an easy, modern proof. The idea is to adroitly choose coefficient systems such that we recover $H^n(X)$, $H^n(X^G)$, and $H^n((X/G)/G)$ from Bredon cohomology. They'll fit into exact sequences, and using tools like Mayer-Vietoris, we'll get inequalities on the ranks of groups. This will also use the fact that a short exact sequence of coefficient systems induces a long exact sequence on H_G^* . The proof will be beautiful and short, unlike Smith's original proof!

Theorem 4.4 is sufficiently classical that there are several different proofs. Ours illuminates Bredon cohomology at the expense of obscuring the overarching goal of Smith theory. There's another proof by Dwyer and Wilkerson in "Smith theory revisited" [DW88], a short, beautiful paper which is highly recommended. It uses the unstable Steenrod algebra to prove Theorem 4.4 and more.

Over the next day or so, there will be a problem set and a course webpage. Doing the problem sets is recommended!

Lecture 5.

Smith theory: 1/31/17

"It seems that the people registered for the class and the people showing up for class are disjoint."

Today, we will give one or two proofs of Theorem 4.4: let G be a finite p-group, X be a finite-dimensional G-CW complex such that as a topological space, X is an \mathbb{F}_p -cohomology sphere (i.e. as graded abelian groups, $H^*(X;\mathbb{F}_p) \cong H^*(S^n;\mathbb{F}_p)$). Then, either $X^G = \emptyset$, or $H^*(X^G;\mathbb{F}_p) \cong H^*(S^m;\mathbb{F}_p)$ as graded abelian groups, for some $m \leq \dim X$. We'll try to be consistent with the notation in [May87, May96].

Proof of Theorem 4.4. First, we can quickly reduce to the case where $G = \mathbb{Z}/p$: if $H \subset G$ is a normal subgroup, then $X^G \cong (X^H)^{G/H}$, so you can induct on the order of the group using the Sylow theorems. Thus, we will assume $G = \mathbb{Z}/p$, whose orbit category is simple:

There is a cofiber sequence

$$X_{+}^{G} \longrightarrow X_{+} \longrightarrow X/X^{G}$$

which is not particularly deep. We're going to construct three special coefficient systems L, M, and N such that

$$H_G^*(X;L) \cong \widetilde{H}^*((X/X^G)/G; \mathbb{F}_p)$$

$$H_G^*(X;M) \cong H^*(X; \mathbb{F}_p)$$

$$H_G^*(X;N) \cong H^*(X^G; \mathbb{F}_p).$$

¹⁸The nLab uses a different convention: Borel cohomology is $H_G^*(X;A)$, and Bredon cohomology is $H^*(X_G)$.

These will fit into exact sequences which will imply the inequalities we wanted.¹⁹

How to we construct custom coefficient systems? Since these constructions commute with colimits, it suffices to determine them via computation at n = 0 and X = G/H for subgroups $H \subset G$, meaning just e and G.

For L, we want to recover $\widetilde{H}^0((X/X^G)/G; \mathbb{F}_p)$ for X = G/e and X = G/G.

- For X = G/e, we want $\widetilde{H}^0((G/\emptyset)/G; \mathbb{F}_p) \cong \widetilde{H}^0(G_+/G) \cong \mathbb{F}_p$.
- For X = G/G, we get $\widetilde{H}^0((*/*)/G; \mathbb{F}_n) = 0$.

So we conclude $L(G/e) = \mathbb{F}_p$ and L(G/G) = 0.

For M, a similar calculation shows we need $H^0(G/e) \cong \mathbb{F}_p[G]^{20}$ and $H^0(G/G) = \mathbb{F}_p$, and for N, we need N(G/e) = 0 and $N(G/G) \cong \mathbb{F}_p$.

Remark. Almost everything in this proof generalizes; we will only need X to be an \mathbb{F}_p -cohomology sphere in order to know dimensions of a few things. But this technique of customized coefficient systems can be used elsewhere.

Let I denote the **augmentation ideal** of $\mathbb{F}_p[G]$, i.e. the kernel of the map $\mathbb{F}_p[G] \to \mathbb{F}_p$ sending all $g \mapsto 1$. We will let I^n refer to the coefficient system which assigns I^n to G/e and 0 to G/G.

As coefficient systems, $M/I \cong \mathbb{F}_p$, and therefore there is a short exact sequence of coefficient systems

$$0 \longrightarrow I \longrightarrow M \longrightarrow N \oplus L \longrightarrow 0.$$

This implies a long exact sequence in Bredon cohomology:

$$\cdots \longrightarrow H^q_G(X;I) \longrightarrow H^q_G(X;M) \longrightarrow H^q_G(X;N \oplus L) \longrightarrow H^{q+1}_G(X;I) \longrightarrow \cdots$$

Exactness at $H^q(X; N \oplus L)$ implies

$$\operatorname{rank} H_G^q(X; N) + \operatorname{rank} H_G^q(X; L) \leq \operatorname{rank} H_G^q(X; M) + \operatorname{rank} H_G^{q+1}(X; I).$$

That is,

(5.1)
$$\operatorname{rank} H^{q}(X^{G}; \mathbb{F}_{p}) + \operatorname{rank} \widetilde{H}^{q}((X/X^{G})/G; \mathbb{F}_{p}) \leq \operatorname{rank} H^{q}(X; \mathbb{F}_{p}) + \operatorname{rank} H_{G}^{q+1}(X; I).$$

We'll use this to strongly constrain rank $H^q(X^G; \mathbb{F}_p)$, but first we need another inequality coming from another exact sequence. Namely, the following sequence of coefficient systems is exact:

$$0 \longrightarrow L \longrightarrow M \longrightarrow I \oplus N \longrightarrow 0.$$

This is because $I^p = 0$ and for $0 \le n \le p-1$, $I^n/I^{n+1} \cong \mathbb{F}_p$. In particular, $I^{p-1} \cong \mathbb{F}_p \cong L$, so we can think of M/L as M/I^{p-1} . Now we play the same game: the induced long exact sequence is

$$\cdots \longrightarrow H_G^q(X;L) \longrightarrow H_G^q(X;M) \longrightarrow H_G^q(X;I \oplus N) \longrightarrow H_G^{q+1}(X;L) \longrightarrow \cdots$$

which implies

$$\operatorname{rank} H_G^q(X;N) + \operatorname{rank} H_G^q(X;I) \leq \operatorname{rank} H_G^q(X;M) + \operatorname{rank} H_G^{q+1}(X;L),$$

i.e.

$$(5.2) \operatorname{rank} H^{q}(X^{G}; \mathbb{F}_{p}) + \operatorname{rank} H^{q}_{G}(X; I) \leq \operatorname{rank} H^{q}(X; \mathbb{F}_{p}) + \operatorname{rank} H^{q+1}((X/X^{G})/G; \mathbb{F}_{p}).$$

Let's use this to prove

(5.3)
$$\operatorname{rank} \widetilde{H}^{q}((X/X^{G})/G; \mathbb{F}_{p}) + \sum_{i=q}^{q+r} \operatorname{rank} H^{i}(X^{G}; \mathbb{F}_{p}) \leq \operatorname{rank} \widetilde{H}^{q+r+1} + \sum_{i=q}^{q+r} \operatorname{rank} H^{i}(X; \mathbb{F}_{p}).$$

¹⁹TODO: M is H^0 applied to some spaces and map. What are they?

²⁰Here, $\mathbb{F}_p[G]$ is the **group ring**, the \mathbb{F}_p -algebra of functions $G \to \mathbb{F}_p$ with addition taken pointwise and multiplication determined by requiring $\delta_g \cdot \delta_h = \delta_{gh}$, where δ_g is a delta function, equal to 1 at g and 0 elsewhere.

Let

$$\begin{split} &a_q \coloneqq \operatorname{rank} H^q(X^G; \mathbb{F}_p) \\ &b_q \coloneqq \operatorname{rank} H^q(X; \mathbb{F}_p) \\ &c_q \coloneqq \operatorname{rank} H^q((X/X^G)/G; \mathbb{F}_p) \\ &d_q \coloneqq \operatorname{rank} H^q_G(X; I). \end{split}$$

Then, (5.1) and (5.2) say

$$a_q + c_q \le b_q + d_{q+1}$$
 and $a_q + d_q \le b_q + c_{q+1}$.

Now, adding (5.1) for q even and (5.2) for q odd proves (5.3).

When q = 0 and r is large, the finite-dimensionality of X implies that

(5.4)
$$\sum_{i} \operatorname{rank} H^{i}(X^{G}; \mathbb{F}_{p}) \leq \sum_{i} \operatorname{rank} H^{i}(X; \mathbb{F}_{p}).$$

This is already an interesting bound, especially relative to the amount of work we've put in.

Specializing to *X* an \mathbb{F}_p -cohomology sphere, (5.4) means

$$\sum_{i} \operatorname{rank} H^{i}(X^{G}; \mathbb{F}_{p}) \leq 2.$$

We want to show this sum isn't 1 (so that we get the cohomology of a sphere) and that the top nonzero rank is at most n. We will do this with another short exact sequence of coefficient systems:

$$0 \longrightarrow I^{n+1} \longrightarrow I^n \longrightarrow L \longrightarrow 0.$$

From this, we get another long exact sequence. Applying the Euler characteristic, we obtain that

(5.5)
$$\chi(X) = \chi(X^G) + p\widetilde{\chi}((X/X^G)/G).$$

Here

$$\widetilde{\chi}(Y) := \sum_{i} (-1)^{i} \operatorname{rank} \widetilde{H}^{i}(Y)$$

is the reduced Euler characteristic.

Equation (5.5) already implies that $\chi(X) \equiv \chi(X^G) \mod p$, so $\sum \operatorname{rank} H^*(X^G; \mathbb{F}_p) \neq 1$ in our case.

Exercise 5.6.

- (1) Think about choices of q and r that allow you to deduce $m \le n$, finishing the proof.
- (2) Small changes need to be made to this argument when p = 2; what are they?

This is an appealing proof: some fairly simple calculations and a dash of formal theory very effectively led to the result. We'll give another proof with different advantages and disadvantages.

Smith theory naturally leads to questions about how to recover $H^*(X^G)$ algebraically from some equivariant cohomology theory on X. Last time, we introduced Borel cohomology $H^*_G(X) := H^*(EG \times_G X)$, where EG is a free G-space that's nonequivariantly contractible (which is simple to construct with the bar construction or through Elmendorf's theorem).

In the following, all cohomology is understood to have coefficients in \mathbb{F}_p . Recall that the Bredon cohomology of X is defined to be $H_G^*(X) := H^*(EG \times_G X)$. For a subgroup $H \subset G$, let $S_H \subset H^*(BG)$ be the multiplicative set generated by the classes in $H^2(BG)$ that are images of the Bockstein homomorphism $H^1(BG) \to H^2(BG)$ of the elements that are nontrivial in $H^1(BH)$. This uses the fact that Borel cohomology is an $H^*(BG)$ -module: $H^*(EG \times_G X) \cong H^*(EG/G) = H^*(BG)$, and using the terminal map $X \to X$ we get a map $H^*(BG) \to H^*(EG \times_G X)$.

Theorem 5.7. Let G be a finite p-group and $H \subset G$ be a subgroup. Then, there is an isomorphism $S_H^{-1}H_G^*(X) \xrightarrow{\cong} S_H^{-1}H_G^*(X^H)$.

There's a rich theory of unstable modules over the Steenrod algebra \mathcal{A}_p , which could fill a whole semester. There's a functor Un which produces unstable \mathcal{A}_p -modules, in a sense by only keeping the unstable part.

Theorem 5.8 (Dwyer-Wilkerson [DW88]).

$$H^*(X^G) \cong \mathbb{F}_p \otimes_{H^*(BG)} \mathrm{Un}(S_G^{-1}H^*(EG \times_G X)).$$

The proof uses arguments that were hard to think of, but easy to follow. We'll use these theorems to prove Smith's theorem using the Serre spectral sequence for

$$X \longrightarrow EG \times_G X \longrightarrow BG$$
.

This will be the nicest kind of spectral sequence argument: everything degenerates.

Theorem 5.7 is an example of a general class of **localization theorems** in equivariant cohomology. In these theorems, one considers the fiber sequence $X_+^G \to X_+ \to X/X^G$, and wants to show that for some functor E, $E(X_+^G) \cong E(X_+)$. This boils down to showing $E(X/X^G)$ vanishes, which will always follow from showing that E vanishes on G-spaces whose G-actions are free away from the basepoint. In general, this will reduce to considering cells, so one considers $E(G/H_+ \land \bigvee_{\alpha} S^{q_{\alpha}})$ for some wedge of spheres.

In our case, $E(G/H_+ \wedge \bigvee_{\alpha} S^{q_{\alpha}})$ is

$$S_H^{-1}H_G^*\left(G/H_+ \wedge \bigvee_{\alpha} S^{q_{\alpha}}\right) = S_H^{-1}H^*\left(EG \times_G \left(G/H_+ \wedge \bigvee_{\alpha} S^{q_{\alpha}}\right)\right)$$

Now, the term $EG \times_G G/H \cong EG/H \cong BH$, so we have a piece that looks like $H^*(BH)$, which is how BH inserts itself into the argument.

Exercise 5.9. Finish the Serre spectral sequence proof of Theorem 4.4. Hint: there's a simple geometric reason why the spectral sequence collapses, which is what makes this whole thing go.

Soon we'll start talking about the stable category. As preparation for this, if you don't already know it, it's good to remind yourself of it.

The Q&A session will be Thursday at 8:30 PM.

Lecture 6.

The localization theorem and the Sullivan conjecture: 2/2/17

"The number of children he had was a monotonically increasing function."

There are three goals in today's lecture.

- (1) We'll discuss the localization theorem (Theorem 5.7) again, and prove it, providing a bit more context for where it came from.
- (2) We'll talk about the Sullivan conjecture. This is really Sullivan's attack on Adams' conjecture, and is a very important story. We won't prove the conjecture, because it's hard, but the context around it was a major motivation for a lot of the work in algebraic and geometric topology in the past 40 years. Sullivan wrote up some notes for a class of his at MIT, which have been published as [Sul05], and you should read them: they are enlightening and contain all of the jokes he told in class!
- (3) We'll introduce the stable category, discussing Spanier-Whitehead duality and the Pontrjagin-Thom construction. If you want points (orbits) to have Spanier-Whitehead duals, you're inexorably forced to construct this stable category.

The localization theorem. Recall that the Borel cohomology $H^*(EG \times_G X)$ is an $H^*(BG)$ -module, through the map $EG \times_G X \to EG \times_G *= BG$. Thus, we should compute $H^*(BG)$ as a ring. In the case we care about, $G = (\mathbb{Z}/p)^n$; let's start with n = 1.

There's a nice geometric model for $B\mathbb{Z}/p$ as an "infinite-dimensional lens space:" let S^{∞} denote the unit sphere in an infinite-dimensional complex Hilbert space, ²¹ and give it a C_p -action by $z \mapsto e^{2\pi i/p}z$. Then, the infinite-dimensional lens space is S^{∞}/C_p .

The quotient $S^{\infty} \to S^{\infty}/C_p$ is a covering map, and S^{∞} is contractible. The proof goes through some version of the Eilenberg swindle:

- There is a homotopy from id_{S^∞} to $s:(x_1,x_2,\dots)\mapsto (0,x_1,x_2,\dots)$. In fact, it's a straight-line homotopy.
- There is a straight-line homotopy from s to $(0, x_1, ...) \mapsto (1, 0, 0, ...)$.

²¹Alternatively, you could choose S^{∞} to be the colimit of S^n for all n, through the inclusion $S^n \hookrightarrow S^{n+1}$ at the equator. These two choices are not homeomorphic, but produce homotopy equivalent models of $B\mathbb{Z}/p$.

Thus S^{∞}/C_p is the quotient of a contractible space by a free G-action, so it deserves to be called $B\mathbb{Z}/p$. You can set up a cell structure on $B\mathbb{Z}/p$ as with finite-dimensional lens spaces, and therefore compute that

$$H^k(B\mathbb{Z}/p) \cong \begin{cases} \mathbb{Z}/p, & k \text{ even} \\ 0, & k \text{ odd.} \end{cases}$$

Using the universal coefficient theorem, you can then deduce that

$$H^k(B\mathbb{Z}/p;\mathbb{Z}/p) \cong \mathbb{Z}/p$$

for all *k*. Now we want to deduce the ring structure.

Recall that if

$$0 \longrightarrow M \longrightarrow L \longrightarrow N \longrightarrow 0$$

is a short exact sequence, it induces a long exact sequence in cohomology:

$$\cdots \longrightarrow H^k(-; M) \longrightarrow H^k(-; L) \longrightarrow H^k(-; N) \stackrel{\beta}{\longrightarrow} H^{k+1}(-; M) \longrightarrow \cdots$$

Let's apply this to the short exact sequences

$$0 \longrightarrow \mathbb{Z} \xrightarrow{p} \mathbb{Z} \longrightarrow \mathbb{Z}/p \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \mathbb{Z}/p \xrightarrow{p} \mathbb{Z}/p^{2} \longrightarrow \mathbb{Z}/p \longrightarrow 0.$$

This is a map of short exact sequences, inducing a map of their long exact sequences.

$$(6.1) \qquad \cdots \longrightarrow H^{q}(X; \mathbb{Z}) \longrightarrow H^{q}(X; \mathbb{Z}) \longrightarrow H^{q}(X; \mathbb{Z}/p) \longrightarrow H^{q+1} \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow H^{q}(X; \mathbb{Z}/p) \longrightarrow H^{q}(X; \mathbb{Z}/p^{2}) \longrightarrow H^{q} * (X; \mathbb{Z}/p) \stackrel{\beta}{\longrightarrow} H^{q+1}(X; \mathbb{Z}/p) \longrightarrow \cdots$$

The map $\beta: H^q(X; \mathbb{Z}/p) \to H^{q+1}(X; \mathbb{Z}/p)$ will be called the **Bockstein homomorphism**, and is a simple example of a cohomology operation.

We now assume p is odd.

Lemma 6.2. If n is odd, the Bockstein for $B\mathbb{Z}/p$ is an isomorphism; if n is even, it's 0.

Proof. First, observe that the diagram

$$H^{n}(B\mathbb{Z}/p;\mathbb{Z}) \xrightarrow{f} H^{n}(B\mathbb{Z}/p;\mathbb{Z}/p) \xrightarrow{g} H^{n+1}(B\mathbb{Z}/p;\mathbb{Z}) \xrightarrow{g} H^{n+1}(B\mathbb{Z}/p;\mathbb{Z})$$

$$\downarrow^{\pi}$$

$$H^{n+1}(B\mathbb{Z}/p;\mathbb{Z}/p)$$

commutes, and the top row is exact.

- If *n* is even, *f* is an isomorphism, so g = 0, so $\beta = 0$.
- if *n* is odd, *g* and π are surjections, so β is a surjection between two F_p-vector spaces of the same rank, so β is an isomorphism.

Next, a nice way to compute the cup product. The map $B\mathbb{Z}/p \to \mathbb{CP}^{\infty}$ is cellular, and is a homeomorphism when restricted to even-dimensional cells. As the cell structure determines the cup product structure, the cup products on $H^{\text{even}}(B\mathbb{Z}/p;\mathbb{Z}/p)$ and $H^{\text{even}}(\mathbb{CP}^{\infty};B\mathbb{Z}/p)\cong \mathbb{Z}/p[y_1]$ agree. On the odd-dimensional cells, the cup product is graded commutative rather than strictly commutative, so we get an exterior algebra. Therefore we conclude that

$$H^*(B\mathbb{Z}/p;\mathbb{Z}/p) \cong \Lambda(x_1) \otimes \mathbb{Z}/p[y_1],$$

where $|x_1| = 1$, $|y_1| = 2$, and $\beta x_1 = y_1$.

By essentially the same argument, one can compute the cohomology ring for $B(\mathbb{Z}/p)^n$.

Proposition 6.3. As rings, there is an isomorphism

$$H^*(B(\mathbb{Z}/p)^n; \mathbb{Z}/p) \cong \Lambda(x_1, \dots, x_n) \otimes \mathbb{Z}/p[y_1, \dots, y_n],$$

where $\beta x_i = y_i$.

Exercise 6.4. Figure out the slight changes needed for p = 2.

Recall that the localization theorem asserted that if G is a finite p-group, $S_H^{-1}H^*(EG \times_G X) \cong S_H^{-1}H^*(EG \times_G X^G)$, where S is the multiplicative system generated by images of the Bockstein homomorphism in $H^*(BG; \mathbb{Z}/p)$. We'll prove this in the case when G is abelian.

We mentioned last time that it's possible to inductively reduce to considering $H^*(BH) \otimes H^*(\bigvee S^{q_i})$. It's now clear²² that something in *S* restricts to 0 in $H^*(BH)$, completing the proof (in the abelian case).

The localization fails terribly for infinite nonabelian compact Lie groups G. For example, for any topological space K, there exists a G-CW complex X such that X is nonequivariantly contractible, X is finite-dimensional, and $X^G \simeq K$.

The Sullivan conjecture.

Theorem 6.5 (Sullivan conjecture). Let G be a finite, abelian p-group. Then, $X^{hG} \to H^G$ is an equivalence on p-completions.

Recall that $X^{hG} := \text{Map}(EG, X)^G$, so this asserts a weak equivalence (after *p*-completing) $\text{Map}(EG, X)^G \to \text{Map}(*, X)^G$.

By p-completion, we mean Bousfield localization at \mathbb{F}_p cohomology. This produces the category of spaces where equivalences are detected by $H^*(\neg; \mathbb{F}_p)$. The most familiar example of completion is **rationalization**, a localization where equivalences are detected by rational homotopy groups, and one of Sullivan's biggest achievements was providing a completely algebraic description of the rational homotopy category in [Sul77]. More broadly, he had the insight that to study a problem in homotopy theory, one could localize at \mathbb{Q} and at each \mathbb{F}_p and study each piece, which has been a very fruitful approach.

p-completion falls into the collection of basic life skills for homotopy theorists, so if you haven't seen it before, you should read about it. The standard reference is [BK72], but this is 500 pages and hard to read.

Sullivan's conjecture is an algebro-geometric attack on the Adams conjecture. This was within Sullivan's program to find algebraic models of manifolds. This is still being done today, and is what led Sullivan to think about string topology and related things.

Let X be a manifold. We first have the homotopical data of X, $C^*(X;\mathbb{Q})$ and $C^*(X;\mathbb{F}_p)$, which are "commutative rings." That X is a manifold means we can see Poincaré duality, which doesn't appear in all \mathbb{E}_{∞} dg algebras. But we still need some way to encode additional geometry obstructions, e.g. a way to encode the tangent and normal bundles.

It's been an interesting, but as yet unsuccessful attack, to use a Frobenius algebra structure to try to obtain this geometric data. It's neat to think about what the \mathbb{E}_{∞} analogue of a Frobenius algebra is, and this is intimately related to Lurie's approach to the cobordism hypothesis [Lur09], thinking about fully dualizable objects in a symmetric monoidal ∞ -category.

This circle of ideas is also related to surgery theory; there's been lots of cool work by smart people in it, and *L*-theory was invented basically as an algebraic home for these geometric objects.

Sullivan was interested in the Adams conjecture because it says that one can identify the tangent bundle inside K-theory K(X) with its Adams operations ψ^k , as fiberwise homotopy types.

Sullivan's idea, motivated by Quillen, was to use the theory of étale homotopy types. This translates some questions about scheme theory into homotopy theory. For example, if X is a variety (more generally a scheme), one can assign some profinite topological object, built out of something like a system of hypercovers.²⁴ So if you take the profinite completion of the complex points $X(\mathbb{C})^{\wedge}$, it has an action of the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ — and another crazy interpretation of the Adams conjecture is that the profinite completion of K(X) can be interpreted in this way, and has an action of $(\widehat{\mathbb{Z}})^*$ ($\widehat{\mathbb{Z}}$ is the Galois group of the maximal abelian extension over \mathbb{Q}). The conjecture is that this action is by the Adams operations.

²²TODO: I didn't follow this proof in class.

 $^{^{23}}$ They're not literally commutative; instead, they're \mathbb{E}_{∞} dg algebras. They also have more structure as modules over the Steenrod algebra.

²⁴If you don't know what this is, it's an example of an extremely interesting construction which you should look up sometime.

There's a deep and inadequately understood story (which could be an opportunity for you) connecting p-adically completed complex K-theory KU_p^{\wedge} to number theory, specifically the Iwasawa algebra. Adams noticed this, but it's too interesting to be a coincidence.

Anyways, stable fiberwise homotopy types are invariant under this $(\widehat{\mathbb{Z}})^*$ -action, which led Sullivan to ask questions about $(X(\mathbb{C})^{\wedge})^{hC_2}$ versus $X(\mathbb{R})^{\wedge}$. The references [Sul05, Sul74] are both excellent for this.

For reasons of scope, we can't go into too much more detail, but you should definitely look this stuff up. The takeaway is that equivariant homotopy theory has been motivated by seemingly unrelated questions about manifolds. There's been a lot of interesting interplay between algebraic and geometric topology in the last half century, and this is one of the cites of contact.

The stable category and stable phenomena. There are lots of ways to think about where stabilization comes from.

(1) The Freudenthal suspension theorem says that if X is nondegenerately based (meaning the based inclusion $\max * \hookrightarrow X$ is a cofibration) and n-1-connected, then $\pi_q(X) \to \pi_{q+1}(\Sigma X)$ is an isomorphism for q < 2n-1 and a surjection when q = 2n-1. It's easier to see that cohomology groups are stable under suspension, but this tells us that homotopy groups stabilize in a range that increases at about twice the rate that the connectivity of X does. Since $\Sigma^n X$ is at least n-connected, this suggests you could replace X by the sequence $X, \Sigma X, \ldots, \Sigma^n X, \ldots$, and keep track of that instead, regarding it as a repository for the **stable homotopy groups** $\pi^S_n(X) := \operatorname{colim}_k \pi_{n+k}(\Sigma^k X)$. One way to think of this is as formally making homotopy theory into a homology theory (which it isn't a prioiri); you end up taking the same kind of colimit.

You could do this equivariantly: we have representation spheres. But it's not entirely clear what to do.

(2) Another perspective is that the stable category is the result of inverting the canonical map 26

$$(6.6) \qquad \qquad \bigvee_{i=1}^{k} X \to \prod_{i=1}^{k} X.$$

Again, this is something you can think about making precise; the stable category is the initial triangulated category constructed from Top in which (6.6) is an isomorphism. In particular, this forces the homotopy category to be additive.

Again, we could do this equivariantly.

(3) Suppose we have a functor F from finite CW complexes to Top such that F(*) = *, and suppose F commutes with filtered colimits and preserves weak equivalences (e.g. if it's topologically or simplicially enriched, for formal reasons). By taking colimits, we can obtain a functor \widehat{F} from CW complexes to Top. We say F is **excisive** if it takes pushouts to pullbacks; this is an old perspective, which was used to show the Dold-Thom theorem, that the infinite symmetric product SP^{∞} is a cohomology theory. In any case, if F is excisive, $\{F(S^n)\}$ represents a cohomology theory. Namely, the homotopy pushout

$$S^{n} \longrightarrow D^{n+1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^{n+1} \longrightarrow S^{n+1}$$

creates suspension, and via F, becomes a pullback creating Ω . Asking what the excisive functors are leads to the stable category, and is also something you could do equivariantly.

(4) Another perspective: what is the Spanier-Whitehead dual of a point? Taking shifts, what's the Spanier-Whitehead dual of S^n ? Equivariantly, one wants to know the Spanier-Whitehead duals of G/H_+ . This is important for defining Poincaré duality, etc. Nonequivariantly, the best way to answer this is the Pontrjagin-Thom construction, which not only answers this, but provides a deep understanding for what the stable homotopy groups of the spheres are. We'll do this equivariantly next time, and it will tell us what the spheres are.

²⁵The map comes from the loop-suspension adjunction, which gives us a unit $X \to \Omega \Sigma X$, hence a map $\Omega^q X \to \Omega^{q+1} \Sigma X$, and the map on homotopy groups is π_0 of that map. This is the based version of the mapping space and Cartesian product adjunction: $\Sigma X := S^1 \wedge X$ and $\Omega X := \operatorname{Map}(S^1, X)$ are adjoint functors.

²⁶The existence of this map follows from the universal property of the product.

There's a choice here: you could just say "let's take the category of orthogonal *G*-spectra," but having some motivation for why we're doing and what we're doing is important.

Lecture 7. -

Question-and-answer session: 2/2/17

Question 7.1. So, why does anyone care about Spanier-Whitehead duality?

One answer is that Spanier-Whitehead duality formally implies Poincaré duality. Poincaré duality is a remarkable fact about the cohomology of manifolds, which is one good reason to care.

Another is that it's the real setting for the Euler characteristic — really. The Euler characteristic arises as a trace, and therefore some kind of categorical duality should appear.

Being more specific, let's consider a closed symmetric monoidal category C with unit \mathbb{S} (so secretly we're thinking of the stable homotopy category). Spanier-Whitehead duality consists of two maps $\varepsilon: X \wedge Y \to \mathbb{S}$ and $M: \mathbb{S} \to X \wedge Y$, such that the composition

$$X \cong \mathbb{S} \wedge X \xrightarrow{M \wedge \mathrm{id}} X \wedge Y \wedge X \xrightarrow{\mathrm{id} \wedge (\varepsilon \circ \tau)} X \wedge \mathbb{S} \cong X$$

is the identity.

Using an adjunction, you can show $X \cong F(Y, \mathbb{S})$ and $Y \cong F(X, \mathbb{S})$, and so X is the dual of its dual. This has lots of formal consequences, includin Poincaré duality, the construction of things such as the Euler characteristic, and more. The Spanier-Whitehead dual of X is often denoted DX.

Suppose that we're in an algebraic category, say $H\mathbb{Q}$ -module spectra (the rational stable homotopy category). Then, $H\mathbb{Q}$ is the unit, so $DX = C^*(X;\mathbb{Q})$ (maps from X to \mathbb{Q}). That is, the Spanier-Whitehead dual embeds the unstable homotopy theory of X, as long as you remember the \mathbb{E}_{∞} -ring structure on DX (which is bizarre, e.g. it's not connective). There's a quite nontrivial theorem that \mathbb{E}_{∞} maps between DX and DY correspond to maps of *spaces* between X and Y.

This sort of data is useful for algebraicizing manifolds, and that would be nice for classifying manifolds, a goal with fairly broad applications outside of homotopy theory. And Spanier-Whitehead duality has important consequences on this: Sullivan began it by showing [Sul77] that the \mathbb{E}_{∞} -ring structure on $C^*(X;\mathbb{Q})$ controls the rationalization $X_{\mathbb{Q}}$, and Mandell ended it by showing that the \mathbb{E}_{∞} structure on $C^*(X;\mathbb{F}_p)$ controls X_p^{\wedge} .

Question 7.2. What are some of the obstacles to extending equivariant homotopy theory to groups that aren't compact Lie groups?

One cornerstone of homotopy theory is the Pontrjagin-Thom construction, which depends on the weak Whitney embedding theorem: that a manifold can be embedded in some high-dimensional \mathbb{R}^N . This still works equivariantly but only for compact Lie groups — a G-manifold X can be embedded in some high-dimensional G-representation. This is again an important piece in the equivariant Pontrjagin-Thom construction, and its failure for noncompact groups is one major reason things don't work. There are other things that require compactness (e.g. descending chain arguments). People have tried and not gotten anywhere.

In stable homotopy theory, there's a modification of the orbit category into something called the Burnside category, and we'll see that it controls a lot of the stable homotopy theory of *G*-spaces. In fact, if you have something that strongly resembles the Burnside category, you have something that looks like equivariant stable homotopy theory. Clark Barwick and his collaborators have been working on studying presheaves on things that look like Burnside categories.

A lot of it boils down to the fact that compact Lie groups have a tractable representation theory.

Question 7.3. Recall $E\mathscr{F}$, the classifying space for a family of subgroups. What is it used for?

If you want to focus attention on a family of subgroups, you play with $E\mathscr{F}$. One common example is S^1 -spaces, in which there are many constructions that are fixed by the finite subgroups of S^1 , so having that family \mathscr{F} is helpful, and for this one can smash with $E\mathscr{F}$.

There are various other applications. One is called **isotropy separation**, which splits up \mathcal{F} into pieces that can be detected with different kinds of isotropy subgroups, and one can induct on this in nice cases.

Question 7.4. What does it mean that *K*-theory and the Adams operations determine the tangent bundle?

It's a somewhat implicit statement: any possible algebraic statement about the tangent bundle can be translated into an equivalent statement in K(X) that uses the Adams operations.

Question 7.5. How many notions of *G*-spectra are there?

One way you talk about equivariant stable homotopy theory is a **universe**, a countably infinite-dimensional inner product space containing the irreducible representations you care about infinitely often. Then, you have Spanier-Whitehead duality for G/H iff G/H embeds in the universe, and you get different flavors of homotopy theory depending on which universes you use. There are lots of models here — depending on what you mean, spectra objects or diagrams on \mathcal{O}_G might not be the right thing for naïve spectra; instead, you need transfers, so you have to consider sheaves on the Burnside category.

The choice of universe also affects which suspensions you invert: if V is in your universe, you can invert Σ^V . Of course, there are probably many different point-set models for stable homotopy, but they'll give you the same answer.

Question 7.6. Can you go over how to design a coefficient system such that its cohomology is something obtained from *X*?

For example, let's try to determine M such that $H_G^*(X; M) \cong H^*(X)$. The reason it suffices to determine what M(G/H) is on all closed subgroups $H \subset G$ is the dimension axiom!

So if $G = \mathbb{Z}/p$, you can assign $M(G/e) := H^0(G/e)$ and $M(G/G) := H^0(G/G)$, and the map between them is H^0 of the map $G/e \to G/G$.

Question 7.7. So far, we've mostly seen G-equivariant homotopy theory where G is a finite cyclic group. Is there anything interesting for nonabelian groups, etc?

Part of the problem is that computing examples is not easy, and it gets much harder when you have a complicated lattice of subgroups. [LMS86] is 500 pages, and there are scarcely any examples, because the computations for nontrivial examples are so hard!

Peter May invented this stuff and set a bunch of grad students to work on it, but there wasn't a lot of buzz until Carlsson proved the Segal conjecture, and then again more recently with Hill-Hopkins-Ravenel. So there haven't been a lot of computations, period. If you do make an interesting computation with, say, the monster group, by all means write it up!

So for the most part people have studied cyclic groups and S^1 . There's been a little discussion of dihedral actions, and some stuff with the symmetric groups.

There's also some stuff done for profinite groups. This is in some sense easy to set up formally, especially because you mostly care about finite-index subgroups. People who study Galois actions (e.g. Carlsson's program to lift the Quillen-Lichtenbaum conjecture into this context) care about this.

Question 7.8. So we've spent some time looking at *EG*, a contractible space with a free *G*-action, and its quotient *BG*. What things do people do with these objects?

BG is a classifying space for principal G-bundles (and therefore for $G = O_n$ or U_n , also vector bundles of rank n). That is, homotopy classes of maps $X \to BG$ are identified with isomorphism classes of principal G-bundles on X. There's a book by May, "Classifying spaces and fibrations," which is excellent and goes into great detail on this stuff. Because BU_n classifies complex vector bundles of rank n, it's used to construct complex K-theory (and same for BO_n and real K-theory).

In our case, smashing with EG is often a way to localize.

A third reason to care about this is group cohomology and other purely algebraic stuff. The group cohomology of *G* is the cohomology of *BG*, and there are plenty of applications of group cohomology.

So though BG may be infinite-dimensional, it's very simple homotopically.

Question 7.9. What's going on with the construction to the right adjoint to the functor ψ in the proof of Elmendorf's theorem? What's a coend?

Adrian said some stuff here; I wasn't able to get it down. He motivated the bar construction as the thing whose homotopy colimits are ordinary colimits, I think?

Anyways, our setup is that we have a presheaf on the orbit category $X \in \text{Fun}(\mathscr{O}_G^{\text{op}}, \text{Top})$ and want to produce a G-space. The right adjoint²⁷ to ψ is the geometric realization of the bar construction $B_{\bullet}(X, \mathscr{O}_G, M)$. The

 $^{^{27}}$ Recall that the left adjoint was evaluation at G/e.

bar construction is a generalization of the bar resolution to compute the derived tensor product: the functor $M: \mathcal{O}_G \to \mathsf{Top}$ sending G/H to the space G/H is thought of as a "right \mathcal{O}_G -module;" instead of tensoring a bunch of elements togther, we get a bunch of arrows, meaning we can replace with a coproduct. In some sense, it would be nice to take a tensor product with X, but we have to do so in a derived sense, hence the bar construction.

A coend is a functor that behaves like geometric realization: there's two functors with opposite variance, and you want to glue along their common edge, just like in geometric realization.

Question 7.10. How did Elmendorf formalize his proof, given that it was done before model categories were available?

He didn't: Elmendorf's paper is eminently readable, and simply provides an equivalence of homotopy categories. It was not lifted into model categories unti much later. This stuff was all put into use fairly recently: for example, not that long ago, it was known to experts but not written down that a left Quillen adjoint that's part of a Quillen equivalence preserves homotopy limits.

Here, someone asked about the Freudenthal suspension theorem, and this led to a digression.

Remark. Modern cryptography depends on some hardness assumptions, that some functions, such as the discrete log in a finite field, are hard to compute (but easy to check answers to). There's a paper by Impagliazzo which asks what cryptography and security would look like if certain assumptions were false or true, with cute names for different worlds. Imagine doing that for the Freudenthal suspension theorem — what if the stable range were at about n instead of about 2n? What if it were n/2?

Question 7.11. In non-equivariant rational homotopy theory, there's a standard, completely algebraic description of the rational homotopy category. Does this also work for the rational equivariant homotopy category?

This is very hard — someone was working on this, but the work actually depended on an incorrect calculation, and some of it had to be redone. There are people working on an algebraic model for rational *G*-spectra, but the algebraic models are *very* complicated.

Question 7.12. We've seen that representations of G play a huge role in equivariant homotopy theory; these could be thought of as relating to K-theory of BG (e.g. the representation ring RO(G) is $KO^0(BG)$). More generally, do KO(BG) or MO(BG) play a special role "controlling" the G-equivariant stable category?

People certainly care about computing K-theory or bordism of BG. As to whether those control the G-equivariant stable category—that might be true, but I don't think anything like that has been said.

Question 7.13. This question comes from GitHub: suppose you're defining a coefficient system M over $G = C_p$. This is determined by $M(C_p/e)$, $M(C_p/C_p)$, and a map between them. How do you get the map?

The map is determined by functoriality: in the cases we used to prove Theorem 4.4, which is where this question arose, $M(C_p/e)$ and $M(C_p/C_p)$ are both defined to be H^0 of something, so the map between them is H^0 of the map $C_p/e \to C_p/C_p$.

Question 7.14. Do you want to talk about the unstable Steenrod functor Un?

You don't want to know.

Question 7.15. Does Un appear in the theorem as a technical necessity or for deep reasons?

It's very deep, and there's a whole theory of unstable modules over the Steenrod algebra. This involves some extra restrictions.

Question 7.16. So how many kids did Denis Sullivan have?

About 7 or 8 by the end of [Sul05]; one is now also a math professor. There are lots of other anecdotes in the notes: once he was frustrated with some calculations he was doing, so he hurled the book into the Atlantic ocean. While he was on a boat to Oxford.

Question 7.17. Do we have any previews of the Clark school, besides what few things they've posted on the arXiv?

They've been doing some really hard stuff: the idea is that *G*-spectra should be presheaves of spectra on Burnside categories, or statements like *G*-spectra being the initial stable *G*-symmetric monoidal category... you know what the theorems should be, but the proofs are technical. Riehl-Verity technology should make some of this easier, hopefully.

Question 7.18. What does it mean that "the Spanier-Whitehead dual of a point involves taking shifts?"

We've been a little careless about basepoints: this is really the pointed point, so S^0 ; thus, we really should have said the Spanier-Whitehead duals of spheres.

Question 7.19. The Fruedenthal suspension theorem requires inclusion of the basepoint to be a cofibration. If you add a disjoint basepoint, is that the case?

Yes. You can think of a cofibration as a slightly weaker version of a closed inclusion. This is no big technical obstacle: the **whisker construction** replaces the basepoint with a line segment, so the homotopy theory is unchanged and the other end of the line segment can be a basepoint that's cofibrantly included.

Question 7.20. What's a natural example of a genuine *G*-spectrum of interest?

One is the equivariant sphere spectrum. Thinking of cohomology theories, there's equivariant K-theory KU_G , different kinds of equivariant bordism, and KR (a genuine equivariant spectrum that's built from K-theory).

Question 7.21. Is there an equivariant approach to de Rham theory, e.g. starting with manifolds and equivariant differential forms?

Rationally, this can work, but integrally there are issues. Relatedly, defining a *G*-manifold is not too hard, and there are nice things like the equivariant tubular neighborhood theorem, but there are some subtleties.

Question 7.22. One of the interpretations of the homotopy category of a model category is localization at the weak equivalences. This suggests that one only needs to look at weak equivalences. So if you only specify weak equivalences, do you get a unique model category?

No, you might not get one at all, and if you do, it won't be unique. What it means is (modulo some scary set-theoretic issues) that the homotopy theory only depends on the weak equivalences. If you have a category with weak equivalences, you can form the **Dwyer-Kan localization**, an associated simplicial category, and then take the associated quasicategory or ∞ -category. Under some hypotheses, you can then retreat to a model-categorical structure. One commonly heard analogy is that a model category is like choosing a basis for a vector space (where the basis-independent answer reflects the underlying ∞ -category).

Another perspective is that model categories are like axiomatic obstruction theory, axiomatizing the cellular inclusions (cofibrations) or extension questions common when considering CW theory.

Question 7.23. One way to define the stable category is to invert the canonical map from a finite wedge of things to a product of those things. How can we make this precise?

The goal is to localize with respect to something. There's some set-theoretical issues that Bousfield was good at addressing, but if you have a set of morphisms, you can localize with respect to them, and that's what we're doing here. The Stacks project is a good resource for learning about localization.

The fact that finite wedges and finite products are the same is another way that spectra resemble abelian groups, for which finite products and finite coproducts agree.

Question 7.24. Where's the best place to learn non-equivariant stable homotopy theory?

Adams' book [Ada74], with good calculations, but its construction of the stable category isn't so pleasant. It might be better to consider [MMSS01]. It assumes you already know why you care, then takes the historical constructions and shows how they all relate together. It may seem scary, but looking at the constructions shows they're all not so bad.

Adams' infinite loop spaces book [Ada78] is good bedtime reading.

Question 7.25. We talked about the notion of an excisive functor, and there's a notion of an excisive pair in unstable homotopy theory. Are the two related?

Both deserve the name "excisive" because they satisfy some sort of Mayer-Vietoris principle: excisive functors take pushouts to pullbacks, for example.

Question 7.26. By \mathbb{RP}^{∞} , do we just mean the colimit of \mathbb{RP}^n over all n?

Yes, and also for \mathbb{CP}^{∞} . However, there are models for them based on the unit sphere in an infinite-dimensional Hilbert space modulo a $\mathbb{Z}/2$ (resp. S^1) action. This is homotopic to, but not homeomorphic to, the colimit realizations of \mathbb{RP}^{∞} and \mathbb{CP}^{∞} .

Lecture 8.

Dualities: Alexander, Spanier-Whitehead, Atiyah, Poincaré: 2/7/17

"The sun, it burns!"

Pursuant to promises we made last lecture, today's lecture is about duality. This is a reinvention of the original construction of the stable category — Spanier's original construction of spectra was motivated by answering questions on duality, and we'll proceed similarly, if a bit ahistorically. Since we're in the equivariant setting, the answers will be slightly different.

Alexander duality is a tale as old as time, from what could be called the prehistory of algebraic topology.²⁸

Theorem 8.1 (Alexander duality). Let $K \subset S^n$ be compact, locally contractible, and nonempty. ²⁹ Then, K and $S^n \setminus K$ are **Alexander dual** in that there is an isomorphism

$$\widetilde{H}^{n-i-1}(K;\mathbb{Z}) \cong \widetilde{H}_i(S^n \setminus K;\mathbb{Z}).$$

The proof isn't too hard, e.g. Hatcher does it. This is closely related to considering embeddings in Euclidean spaces, after you take the one-point compactification.

The good part of this proof is that it doesn't depend on the embedding. But there are a few drawbacks:

- (1) K does not determine the homotopy type of $S^n \setminus K$. Knot theory is full of examples, and they tell you that the issues arise for the fundamental group.
- (2) n can vary, and if you embed $S^n \hookrightarrow S^{n+1}$ as the equator, you get different statements.

Motivated by the second issue, Spanier defined the S-category in the 1950s.³⁰

Definition 8.2. The *S*-category S is the category whose objects are the objects in Top and whose morphisms are

$$\operatorname{Map}_{\mathsf{S}}(X,Y) := \operatorname{colim}_{n} \operatorname{Map}_{\mathsf{Top}}(\Sigma^{n}X, \Sigma^{n}Y).$$

By the Freudenthal suspension theorem, the hom-sets stabilize at some finite n. Spanier then defined S-duality, which we might call **Spanier-Whitehead duality**, by specifying that X and Y are S-dual if $Y \cong S^n \setminus X$ in the S-category.

Remark. The *S*-category has some issues: it's neither complete nor cocomplete. We like gluing stuff together, so this is unfortunate.

Spanier proved that to every $X \to S^n$, you can assign a dual $D_n X$, that $\Sigma D_n = D_{n+1}$, and $D_{n+1} \Sigma = D_n$. That is, duality commutes with suspension, so in S, every $X \to S^n$ has a unique S-dual: the duals inside S^n and S^{n+1} are the same in the S-category for sufficiently large n.

Spanier and Whitehead then asked one of their graduate students, Elon Lima, to formalize this *S*-category, leading to the first notion of the category of spectra.

An axiomatic setting for duality. The formal setting for duality is a **closed symmetric monoidal category** C. We're not going to spell out the whole definition, but here are some important parts.

- C is symmetric monoidal, meaning there's a tensor product \wedge : C × C \rightarrow C, which is (up to natural isomorphism) associative and commutative, and has a unit *S*. Commutativity is ensured by the **flip map** $\tau: X \wedge Y \xrightarrow{\cong} Y \wedge X$.
- There is an internal **mapping object** $F(X,Y) \in C$ for any $X,Y \in C$.
- The functors $\wedge X$ and F(X, -) are adjoint (just like the tensor-hom adjunction).

The unit and counit of the tensor-hom adjunction are used to define duality.

Definition 8.3. The **evaluation map** is the unit $X \wedge F(X,Y) \to Y$, and the **coevaluation map** is the counit $X \to F(Y,Y \wedge X)$. The **dual** of X is DX = F(X,S).

You also get a natural map $v: F(X,Y) \wedge Z \rightarrow F(X,Y \wedge)$.

Exercise 8.4. Check that $X \cong F(S,X)$, which follows directly from the axioms.

²⁸If you read between the lines, you can find it in Poincaré's works, but it's from the 1940s or 50s stated explicitly.

²⁹Classically, one works simplicially, picking a triangulation of S^n and letting K be a subpolyhedron.

 $^{^{30}}$ The name "S-category" is somewhat misleading: in those days, suspension was sometimes denoted S instead of Σ to make typeseting easier, and the S in S-category stood for suspension, not spheres.

The adjoint of ε is a map $X \to DDX$.

There are a few good references for this: Dold-Puppe [DP61] is one, and [LMS86] is another, though it presents a somewhat old way of doing things.

Definition 8.5. $X \in \mathbb{C}$ is **strongly dualizable** if there exists an $\eta: S \to X \wedge DX$ such that the following diagram commutes.

(8.6)
$$S \xrightarrow{\eta} X \wedge DX \\ \downarrow \qquad \qquad \downarrow_{\tau} \\ F(X,X) \xleftarrow{\nu} DX \wedge X.$$

Here, the left-hand map comes from an adjunction to the identity $id_X : X \cong X \land S \to X$. The lower map is more explicitly $v : F(X,S) \land X \to F(X,X)$.

Example 8.7. Let R be a commutative ring and $C = \mathsf{Mod}_R$, and let X be a free R-module. If $\{v_i\}$ is a basis for X and $\{f_i\}$ is the dual basis, then the map $\eta: R \to X \otimes_R \mathsf{Hom}_R(X,R)$ is the map sending

$$1 \longmapsto \sum v_i \otimes f_i$$
.

If you unravel what (8.6) is saying, it says that the map

$$x \longmapsto \sum_{i} f_i(x) v_i$$

must be the identity. Thus, X is strongly dualizable iff X is finitely generated and projective. That is, X is strongly dualizable iff it's a retract of a free module, which is a perspective that will be useful later.

Another way to think of this is that *X* is strongly dualizable with dual *Y* iff there exist maps $\varepsilon: X \wedge Y \to S$ and $\eta: S \to X \wedge Y$ such that the compositions

$$X \cong S \wedge X \xrightarrow{\eta \wedge \mathrm{id}_X} X \wedge Y \wedge X \xrightarrow{\mathrm{id}_X \wedge \varepsilon} X \wedge S \cong X$$

and

$$Y \cong Y \land S \xrightarrow{\mathrm{id}_{Y} \land \eta} Y \land X \land Y \xrightarrow{\varepsilon \land \mathrm{id}_{Y}} S \land Y \cong Y$$

are the identity.³¹ From this and a diagram chase, you get some nice results.

Proposition 8.8. If X and Y are dual, then there are isomorphisms $Y \stackrel{\cong}{\to} F(X,S)$ and $X \stackrel{\cong}{\to} DDX$.

To paraphrase Lang, the best way to learn this is to prove all the statements without looking at the proofs, like all diagram chases.

If you like string calculus, you can think of these in terms of *S*- or *Z*-shaped diagrams. In this form, these results are sometimes known as the **Zorro lemmas**.

Another consequence of this formulation is that $- \wedge DX$ is right adjoint to $- \wedge X$, so by uniqueness of adjoints there's a natural isomorphism $- \wedge DX \cong F(X, -)$.

Atiyah duality. The Whitney theorem tells us that for any manifold M and sufficiently large n, there's an embedding $M \hookrightarrow \mathbb{R}^n$. This means we can compute the Spanier-Whitehead dual of a manifold, which is the setting of Atiyah duality. We'll assume M is compact.

By the tubular neighborhood theorem, there's an $\varepsilon > 0$ and a tubular neighborhood M_{ε} such that M_{ε} is the disc bundle of the normal bundle $\nu \to M$.

Thom's thesis [Tho54] supplied an amazing connection between cobordism groups and the stable homotopy groups of the spheres by way of the **Pontrjagin-Thom map** $S^n \to \mathbb{R}^n/(\mathbb{R}^n \setminus M_{\varepsilon})$ (heuristically, crushing everything outside M_{ε}), and $\mathbb{R}^n/(\mathbb{R}^n \setminus M_{\varepsilon}) \cong D(V)/S(V)$, the **Thom space** Tv of the normal bundle to M.

Thus, we get a sequence of maps

$$S^n \longrightarrow Tv \longrightarrow Tv \wedge M_+,$$

 $^{^{31}}$ In some presentations, this is how duality in a symmetric monoidal category is defined; the two approaches are equivalent.

 $^{^{32}}$ Let E be a vector bundle, and choose a metric on E; then, the **disc bundle** D(E) is the subset of vectors with $||x|| \le 1$, and the **sphere bundle** S(E) is the subset of vectors with ||x|| = 1. These are fiber bundles with fiber D^n and S^{n-1} , respectively.

whose composition is called the **Thom diagonal**. This should look remarkably like the duality map η . To construct ε , let $s: M \to v$ be the zero section; then, the composite

$$M \xrightarrow{\Delta} M \times M \xrightarrow{s \times id} \nu \times M$$
.

has trivial normal bundle, and the Pontrjagin-Thom construction yields a map

$$Tv \wedge M_+ \longrightarrow \Sigma^n M_+,$$

and projecting M to a point, we get

$$\varepsilon: Tv \wedge M_+ \longrightarrow S^n.$$

The following theorem is nice, but quite nontrivial, at least from this approach.

Theorem 8.9 (Atiyah duality). η and ε exhibit $T\nu$ and M_+ as n-dual in the S-category.

We'd like $T\nu$ and $\Sigma^{-n}M_+$ to be dual, but we don't know how to show that yet. More accurately, let Σ^{∞} : Top \to S be the functor that sends spaces and maps to themselves, so it makes a little more sense to say that $\Sigma^{\infty}M_+$ and $\Sigma^{-n}\Sigma^{\infty}T\nu$ are dual in the *S*-category.

One surprising consequence is that the tangent bundle and normal bundle define stable homotopy invariants through the Thom spectrum, which raises the question of what Tv looks like for particular examples.

Another is that we can immediately prove Poincaré duality, assuming the Thom isomorphism theorem. Namely, we can establish an isomorphism

$$[DX, H\mathbb{Z}] \cong [S, X_+ \wedge H\mathbb{Z}].$$

Here, we're using the corepresentability of cohomology: we know $H^n(-,\mathbb{Z})$ is represented by $K(\mathbb{Z},n)$, and stitch these together (somehow) into $H\mathbb{Z}$. So the left-hand side is $H^*(DX;\mathbb{Z})$, and the right-hand side is $H_*(X;\mathbb{Z})$.

Applying Theorem 8.9 to (8.10),

$$[\Sigma^{-n}T\nu, H\mathbb{Z}] \cong H^{m-*}(X; \mathbb{Z}).$$

If X is orientable, then the cohomology of the Thom spectrum is the same as the cohomology of X. The Thom isomorphism theorem establishes a degree shift that gets rid of the dependency on n, the dimension of ambient space.

The equivariant setting. We'd like to establish Atiyah duality for G/H.

Definition 8.11. A *G*-manifold is a manifold *M* with a *G*-action by smooth maps.

The theorems of differential topology that we need hold for *G*-manifolds. Namely, there is an equivariant tubular neighborhood theorem, etc. In the smooth case, this goes back to the work of Andrew Gleason in the 1930s, and in the PL case to Lashof in the 1950s. If you like manifold topology, these are really nice proofs to read, avoiding triangulation arguments.

We need one key fact.

Theorem 8.12 (Equivariant Whitney's theorem). Let M be a compact G-manifold. Then, there is a G-equivariant embedding $M \hookrightarrow V$, where V is some finite-dimensional real G-representation.

Now we proceed as before: all of the arguments are exactly the same, including the equivariant Pontrjagin-Thom construction.

But this means that suspension has to be smashing with S^V , the representation sphere for V. So in order for manifolds to have duals (meaning, in order to establish Poincaré duality), we need an S-category whose morphisms are

$$\operatorname{Map}_{S}(X,Y) := \operatorname{colim}_{V} \operatorname{Map}(\Sigma^{V}X, \Sigma^{V}Y),$$

where $\Sigma^V X := S^V \wedge X$. This is not sequential, but there is an equivariant Freudenthal suspension theorem that stabilizes it.

Poincaré duality is one of the oldest results in algebraic topology, and if you don't have it in your theory, what are you even doing? So to obtain Poincaré duality, we are inexorably forced to smash with representation spheres that *G-manifolds embed in*, namely finite-dimensional real representations. So many treatments of equivariant homotopy theory start with defining Σ^V and then they're off to the races, but this is why they're doing this. If you don't need Poincaré duality, then you could do something different.

As before, we want a diagram category akin to the orbit category, but we want Atiyah duality to manifest in it.

Question 8.13. In this setting, what replaces the orbit category?

The naïve choice is the functor category from $\mathcal{O}_G^{\mathsf{op}}$ to the equivariant *S*-category, but this doesn't see enough: it's like only choosing the trivial representation. This is nontrivial to see, though.

So we need extra structure in the orbit category, and this will come through extra structure in \mathcal{O}_G . We'll add extra maps between G/H and G/K called **transfer maps**.

Let M be a G-manifold embedded in some G-representation V, v be its normal bundle, and τ be its tangent bundle. Then, $\tau \oplus v$ is trivial, so the Thom construction applied to it is just smashing with S^V . Thus, we obtain a sequence of maps

$$(8.14) S^{V} \longrightarrow Tv \longrightarrow T(v \oplus \tau) \longrightarrow S^{V} \wedge M_{+}.$$

Exercise 8.15. If you project $M \to *$, you get a map $S^V \to S^V$. Show that the degree of this map is the Euler characteristic $\chi(M)$.

If $K \subset H$ are subgroups of G, then (8.14) defines a map $S^V \to S^V \wedge (H/K)_+$, and we can induce this to get a map $(G/H)_+ \wedge S^V \longrightarrow (G/K)_+ \wedge S^V$.

These are the additional maps we need. We'll go over them again next lecture, but these define the Burnside category, which suffices to define the equivariant stable category! What's really nice is how this derives from some of the oldest constructions and questions in homotopy theory: Thom's thesis can be considered the beginning of modern homotopy theory.

Lecture 9.

Transfers and the Burnside category: 2/9/17

Today, we're going to talk about the Burnside category; there are at least five definitions of it, and we'll provide one. We'll also talk about spectra; some things will be precise, and others will be made precise next time.

Recall that if M is a G-manifold, we can equivariantly embed it in a finite-dimensional real G-representation V, so that we obtain a sequence of maps $S^V \to Tv \to T(v \oplus \tau) \cong S^V \wedge M_+ = \Sigma^V M_+$. (Here v is the normal bundle of M and τ is the tangent bundle.) Thinking of this as a transfer $M \to *$, we'd like to do something similar for G/H. Namely, if $K \subset H$ are subgroups of G, we'd like to define a transfer map $G/K \to G/H$, a stable map (i.e. one that lives in colim Map($\Sigma^V G/H$, $\Sigma^V G/K$)). This will be a "wrong-way" map.

Applying $G \times_H -$ to $H/K \to *$, we get a map $G/K \to G/H$. The transfer for $G/K \to G/H$ is via the transfer $H/K \to *$, induced up from a map $H/K \hookrightarrow V$. Here, V is a G-representation, and the embedding is H-equivariant, where H acts on V by restriction. Thus, we obtain a map $S^V \to S^V \wedge H/K$.

We want to understand how induction works on *H*-spaces whose structure has been defined by restriction from *G*-spaces.

Exercise 9.1. Show that if *X* is a *G*-space and i_H^*X is the *H*-space defined by restriction, $G \wedge_H i_H^*X \cong G/H_+ \wedge X$.

So our map $G \wedge_H S^V \to G \wedge_H (S^V \wedge H/K_+)$ is identified with a map $G/H_+ \wedge S^V \to G/K_+ \wedge S^V$.

Consider the maps in $\operatorname{Hom}_{\mathscr{O}_G}(G/H_1,G/H_2)$ that are determined by subconjugacy, i.e. $G/H_1 \stackrel{\cong}{\to} G/g^{-1}H_1g \to G/H_2$ (we assume $g^{-1}H_1g \subset H_2$). There's a covariant functor from \mathscr{O}_G to the (equivariant) S-category which sends a map f to its representative in the colimit, and we also have a contravariant functor: $G/H_1 \to G/H_2$ takes the transfer map, then the inverse of the conjugation isomorphism.

Definition 9.2. The **Burnside category** B_G is the full subcategory of the S-category spanned by the orbits G/H.

It's a theorem that every map in B_G is a composition of two maps in the images of the two functors $\mathcal{O}_G \to S$ described above, which is pretty neat.

The Burnside category is enriched in Top, because the *S*-category is.

Definition 9.3. The **algebraic Burnside category** is $\pi_0(B_G)$, which is enriched in Ab. A **Mackey functor** is a functor $\pi_0B_G \to \mathsf{Ab}$.

Mackey functors will be our replacement for coefficient systems. They arise in other contexts, so you could care about Mackey functors without caring about equivariant stable homotopy theory (well, you probably secretly do anyways). For that reason, there are definitions of Mackey functors that are less homotopical.

We'd like to define the category of G-spectra to be "spectral Mackey functors," i.e. functors from B_G to spectra. We need to develop tools for this first: we haven't developed a good model for spectra (in particular, a point-set model, not a model of the stable homotopy category), and we want these functors to be enriched, which will require some more work. We'll now begin to develop the tools to surmount these problems.

Recollections about transfers. One concrete example of a transfer map comes from a finite cover $\widetilde{X} \to X$: summing over the fibers defines a transfer map $H^*(\widetilde{X}; \mathbb{Q}) \to H^*(X; \mathbb{Q})$.

Transfers also arise in group cohomology $H^*(G; M)$, where M is a G-module. This is computed by resolving $\mathbb Z$ as a $\mathbb Z[G]$ -module by some resolution P_{\bullet} , then computing $H^*(\operatorname{Hom}_G(P_{\bullet}, M))$. Now suppose $H \subset G$; there are two adjoints to the restriction functor $\operatorname{Mod}_G \to \operatorname{Mod}_H$.

- The left adjoint sends an H-module $N \mapsto \mathbb{Z}[G] \otimes_{\mathbb{Z}[H]} N$. This is called the **induced** G-module $\operatorname{Ind}_H^G N$.
- The right adjoint sends $N \mapsto \operatorname{Map}_H(\mathbb{Z}[G], N)$. This is called the **coinduced** G-module, written $\operatorname{CoInd}_H^G N$.

These definitions, and their names, should look familiar.

Now suppose $H \subset G$ is finite-index, e.g. when G is a finite group. Then

$$\operatorname{Ind}_H^G N \cong \bigoplus_{g \in G/H} gN \qquad \text{ and } \operatorname{CoInd}_H^G N \cong \prod_{g \in G/H} gN.$$

In an additive category, finite sums and finite products are isomorphic, so $\operatorname{Ind}_H^G N \cong \operatorname{CoInd}_H^G N$. When G is finite, the analogous statement about TODO certain sums and products uniquely characterizes the equivariant stable category.³³

So if $H \subset G$, we'd like to build a transfer map $H^*(H;M) \to H^*(G;M)$, where M is a G-module made an H-module by restricting. Induction is left adjoint to the restriction functor i_H^* , so the counit of the adjunction is a map η : $\operatorname{Ind}_H^G i_H^* M \to M$. In particular, $H^*(H;M) \cong H^*(G;\operatorname{Ind}_H^G M) \xrightarrow{\eta} H^*(G;M)$, and this is the desired transfer map.

As group cohomology $H^*(G; M)$ is the cohomology of BG in the local system defined by M, you could ask whether the transfer map is induced from a map $BG \to BH$ (in Top). This is true, and the map is a fibration.³⁴

Diagram spectra. This section is motivated by [MMSS01], an excellent paper that constructs the point-set stable category using diagram spectra. You should absolutely read this paper; it's a masterwork of exposition and making things look simple and clear in retrospect.

The approach of diagram spectra is different from, but equivalent to, the approaches taken in [LMS86, May96]. Our goal is to define a complete, cocomplete, symmetric monoidal category Sp such that

- the *S*-category is a full subcategory of Sp, and
- there is a symmetric monoidal functor Σ^{∞} : Top \rightarrow Sp, which is left adjoint to a right adjoint Ω^{∞} : Sp \rightarrow Top.

There's a sense in which Sp is the smallest category satisfying these hypotheses, or that you get it by adding limits and colimits to S. In particular, we are constructing a stable analogue of the category of topological spaces, *not* its homotopy category.

Remark. Historically, Boardman constructed the stable homotopy category as a formal completion of the *S*-category. Then, people tried to find "point-set models," stable model categories whose homotopy categories are isomorphic to Boardman's category. There are several options, but explicit proofs that their homotopy categories are equivalent to Boardman's are rare in the literature.

Definition 9.4. By a **diagram** D we mean a small category, which we assume is enriched in Top and symmetric monoidal. The category of D-**spaces** is the category Fun(D, Top) of enriched functors.

The category of D-spaces is symmetric monoidal under **Day convolution**. The idea is to build a symmetric monoidal product via left Kan extension: if F and G are D-spaces, the functor $F \wedge G$: $(d_1, d_2) \mapsto F(d_1) \wedge G(d_2)$ is a

³³This is an instance of some life advice from Mike Hill: in order to avoid being confused by constructions in equivariant stable homotopy theory, try computing the analogous construction in group cohomology first. Group cohomology is very concrete, and so it's definitely worth thinking this through in this case.

 $^{^{34}}$ If you don't restrict to finite subgroups, this is not quite true: if $H \subset G$ is a subgroup of infinite index, the map in question only exists on the spectrum level.

 $(D \times D)$ -space. To produce a D-space from this, let $\boxtimes : D \to D$ be the monoidal product on D, and consider the left Kan extension

$$\begin{array}{c}
D \times D \xrightarrow{F \overline{\wedge} G} & \text{Top} \\
 & \downarrow & \downarrow & \downarrow \\
D & & \downarrow & \downarrow & \downarrow \\
D & & \downarrow & \downarrow & \downarrow \\
\end{array}$$

This is our symmetric monoidal product $F \wedge G$. More explicitly,

$$(F \wedge G)(z) = \underset{x \boxtimes y = z}{\text{colim}} F(x) \wedge G(y)$$
$$:= \int_{0}^{x,y \in D} F(x) \wedge G(y) \wedge D(x \boxtimes y, z).$$

This looks like the usual convolution, and the analogy with harmonic analysis can be taken further, e.g. in an unpublished paper of Isaksen-Behrens.

For any $d \in D$, there's an **evaluation** functor $\operatorname{Ev}_d \colon \operatorname{\mathsf{Fun}}(\mathsf{D}, \operatorname{\mathsf{Top}}_*) \to \operatorname{\mathsf{Top}}_*$ sending $X \mapsto X(d)$. It's adjoint to $F_d \colon \operatorname{\mathsf{Top}}_* \to \operatorname{\mathsf{Fun}}(\mathsf{D}, \operatorname{\mathsf{Top}}_*)$ defined by

$$(F_dA)(e) := \operatorname{Map}_{D}(d, e) \wedge A_+.$$

The unit for the symmetric monoidal structure on Fun(D, Top) is F_0S^0 .

Let R be a **commutative monoid object** in Fun(D, Top), which approximately means there are maps $F_0S^0 \to R$, $S^0 \to R(0)$, and a unital, associative, commutative map $R(d) \land R(e) \to R(d \boxtimes e)$. For example, the unital condition is that the composition

$$R(d) \wedge S^0 \longrightarrow R(d) \wedge R(0) \longrightarrow R(d \boxtimes 0) \cong R(d)$$

must be the identity.

In this case, we can define the category Mod_R of R-**modules** in $\mathsf{Fun}(\mathsf{D},\mathsf{Top})$, those D -spaces M with an action map $\mu \colon R \land M \to M$ (satisfying the usual conditions). This is also a symmetric monoidal category (this requires R to be commutative), defined in the same way as the tensor product of modules over a ring: $M \land_R N$ is the coequalizer

$$M \wedge R \wedge N \Longrightarrow M \wedge N \longrightarrow M \wedge_R N.$$

Example 9.5 (Prespectra). Let $D = \mathbb{N}$, with only the identity maps. This is symmetric monoidal under addition: $[m] \boxtimes [n] := [m+n]$. The assignment $S_{\mathbb{N}} : [n] \mapsto S^n$ is a monoid in \mathbb{N} -spaces, and the category of $S_{\mathbb{N}}$ -modules is classically called **prespectra**; the monoidal structure is the identification of $S^m \wedge S^n \cong S^{m+n}$.

Warning! $S_{\mathbb{N}}$ is *not* a commutative monoid! $S^n \wedge S^m \ncong S^m \wedge S^n$.

This was the cause of thirty years of pain and suffering in the community — they didn't know they were unhappy. People knew what the smash product should be on the homotopy category, and wanted a point-set model that's symmetric monoidal, unlike this example.

Symmetric spectra are one answer, which we won't use in this class. If all of this had been stated in terms of the Day convolution from the get-go, people probably would have figured out symmetric spectra as early as the 1960s, but hindsight is always clearer, and here we are. Symmetric spectra were introduced in [HSS00]; see [Sch12] for a detailed introduction.

Example 9.6 (Orthogonal spectra). Let \mathscr{I} denote the category whose objects are finite-dimensional real inner product spaces V, and whose morphisms $\mathscr{I}(V,W)$ are the linear isometric isomorphisms $V \to W$.

In this category, $V \oplus W$ and $W \oplus V$ aren't equal, but are isomorphic, and the isomorphism between them is reflected in the flip between $S^n \wedge S^m$ and $S^m \wedge S^n$. In particular, the assignment $S_{\mathscr{I}} : V \mapsto S^V$ (the one-point compactification of V) is a *commutative* monoid, so the category of $S_{\mathscr{I}}$ -modules is a symmetric monoidal category, called the category of **orthogonal spectra**. This is the model of the stable category that we will use.

Example 9.7 (\mathscr{W} -spaces). Let \mathscr{W} be the category of finite CW complexes (with either all maps or cellular maps; it doesn't really matter). \mathscr{W} -spaces are already like spectra, in a sense, in that they're modules over the identity functor $i: \mathscr{W} \hookrightarrow \mathsf{Top}$. There's a map $\varphi: A \to \mathsf{Map}(B, A \land B)$ sending $a \mapsto (b \mapsto a \land b)$, so if F is a \mathscr{W} -space, we have a sequence of maps

$$A \xrightarrow{\varphi} \operatorname{Map}(B, A \wedge B) \longrightarrow \operatorname{Map}(F(B), F(A \wedge B)).$$

Taking its adjoint defines a map

$$A \wedge F(B) \longrightarrow F(A \wedge B)$$

so F is a module over i.

The assignment $n \mapsto \mathbb{R}^n$ defines a functor $\mathbb{N} \to \mathscr{I}$, and therefore a functor from prespectra to orthogonal spectra; with the right model structures, this induces an equivalence of their homotopy category. Similarly, the assignment $V \mapsto S^V$ defines a functor $\mathscr{I} \to \mathscr{W}$, hence a functor from orthogonal spectra to \mathscr{W} -spaces, and this also will induce a homotopy equivalence.

Definition 9.8. A prespectrum is an Ω -prespectrum if for all $n, X_n \stackrel{\cong}{\to} \Omega^m X_{m+n}$.

Definition 9.9. If *X* is a prespectrum and $q \in \mathbb{Z}$, the q^{th} homotopy group of *X* is

$$\pi_q(X) := \operatorname{colim}_n \pi_{n+q} X(n).$$

A π_* -isomorphism of prespectra is a map that induces an isomorphism on all homotopy groups.

Notice that negative homotopy groups exist, and may be nontrivial.

Remark. This is one approach to defining the stable category, and is not the only one. In [Ada74] (which is an excellent book), Adams uses a more naïve viewpoint of "cells first, maps later" which doesn't require such abstraction, but it would be a huge mess to prove that his model is complete or cocomplete. The diagram spectra approach rigidly separates point-set techniques (easy, but not as useful) from operations on the homotopy category (more useful, but harder), and this separation is often useful. The ∞ -categorical perspective mashes it all together, which can be confusing, but is the only setting in which you can prove things such as the stable category being initial.

We'll reintroduce G-actions soon, and this is pretty slick using orthogonal spectra: we can replace $\mathscr I$ with the category of finite-dimensional G-representations with invariant inner products. Orthogonal spectra also have a really nice homotopy theory relative to symmetric spectra (which have other advantages that don't apply as much to us).

Lecture 10. -

Homotopy theory of spectra: 2/14/17

Today, we're going to discuss the homotopy theory of spectra in the nonequivariant setting. Last time, we discussed D-spaces, where D is a small topological category, and saw that the category of D-spaces is symmetric monoidal. We discussed a few examples:

- Consider D = \mathbb{N} with all maps isomorphisms, as in Example 9.5. There's a *non*commutative monoid $S_{\mathbb{N}}$: $n \mapsto S^n$, and the category of $S_{\mathbb{N}}$ -modules is called prespectra $\operatorname{Sp}^{\mathbb{N}}$; 35 it's a monoidal category, but is *not* symmetric.
- In Example 9.6, we considered D = \mathscr{I} , the category whose objects are real finite-dimensional inner product spaces and whose morphisms are the linear isometric isomorphisms. Here, the monoid $S_{\mathscr{I}}: V \mapsto S^V$ is commutative, and the category of $S_{\mathscr{I}}$ -modules, called orthogonal spectra $S_{\mathscr{I}}$, is symmetric monoidal.

Those are the main examples for us, but there are others:

- When D is the category of finite CW complexes, as in Example 9.7, we obtain \(\psi \)-spaces.
- When D is the category of finite, based sets and based maps, as in Example 10.20, we recover Segal's Γ-spaces.

Because these diagram categories are presheaves on nice categories, they inherit some good properties from Top_{*}; in particular, they are complete and cocomplete, and limits and colimits may be taken pointwise. This is also true for categories of modules over monoids in D-spaces, though it requires more work to prove: computing colimits is a bit harder, just like how the free product of groups is more complicated than the direct product. Categories of rings are *not* bicomplete, though.

We'll use prespectra and orthogonal spectra to define Quillen equivalent models for the stable homotopy category. As such, familiar constructions from stable homotopy theory can be constructed as prespectra and orthogonal spectra.

³⁵There are many different choices of notation for diagram spectra, as seen in [MMSS01] and [MM02], with various fancy decorations.

4

Example 10.1 (Suspension spectra). Let $X \in \text{Top}$. The **suspension spectrum** of X, denoted $\Sigma^{\infty}X$, is the stable homotopy type corresponding to the homotopy type of X.

- In prespectra, the suspension spectrum of X is $\Sigma^{\infty}X$: $[n] \mapsto S^n \wedge X$. The $S_{\mathbb{N}}$ -module structure is the data of the structure maps $S^m \wedge (S^n \wedge X) \to S^{m+n} \wedge X$.
- To define an orthogonal spectrum E, one must define for each finite-dimensional real inner product space V a pointed space E(V) with an O(V)-action and for each pair of such inner product spaces V and W, a structure map $S^V \wedge E(W) \rightarrow E(V \oplus W)$ that's $O(V) \times O(W)$ -equivariant.

Wanting to do this for every space forces our hand: we have to use the trivial action. The suspension spectrum of X sends $V \mapsto S^V \wedge X$, where the O(V)-action is the usual action in the first component and the trivial action in the second component. The structure maps $S^V \wedge S^W \wedge X \to S^{V \oplus W} \wedge X$ are $O(V) \times O(W)$ -equivariant, as desired.

The suspension spectrum of S^0 is the sphere spectrum S_N or $S_{\mathscr{I}}$.

Example 10.2 (Eilenberg-Mac Lane spectra). If *A* is an abelian group, the **Eilenberg-Mac Lane spectrum** *HA* is the spectrum that represents cohomology with coefficients in *A*. If in addition *A* is a commutative ring, *HA* is a commutative monoid in spectra, which defines the ring structure on *A*-cohomology.

- There is an identification $K(A, n) \xrightarrow{\cong} \Omega K(A, n+1)$; let $i_n : \Sigma K(A, n) \to K(A, n+1)$ be its adjoint. As an \mathbb{N} -space, $HA : [n] \mapsto K(A, n)$; the map i_n makes it into a prespectrum. If A is also a commutative ring, one obtains maps $K(A, m) \wedge K(A, n) \to K(A, m+n)$, and these satisfy the axioms to ensure that HA is a commutative ring spectrum.
- For orthogonal spectra, the construction is more complicated, since we must choose a model for K(A, n) with an O_n -action on it. In particular, we must assume A is countable. Given an inner product space V, the A-linearization $A[S^V]$ of S^V is, as a set, A tensored with the reduced free abelian group on K (so the basepoint maps to zero), topologized as the quotient

$$\coprod_{k=0}^{\infty} A^k \times (S^V)^k \twoheadrightarrow A[S^V], \qquad (a_1, \dots, a_k, x_1, \dots, x_k) \longmapsto \sum_{j=1}^k a_j \cdot x_j.$$

This is a model for $K(A, \dim V)$, but has an O(V)-action induced from the O(V)-action on S^V . The structure map $S^V \wedge A[S^W] \to A[S^{V \oplus W}]$ sends

(10.3)
$$v \wedge \left(\sum_{j} a_{j} \cdot w_{j}\right) \longmapsto \sum_{j} a_{j} \cdot (v \wedge w_{j}),$$

and this is $O(V) \times O(W)$ -equivariant, so defines an orthogonal spectrum. If A is a commutative ring, the ring spectrum structure on HA is defined by the multiplication maps $\mu: A[S^V] \wedge A[S^W] \to A[S^{V \oplus W}]$ sending

$$\mu: \left(\sum_{i} a_i x_i\right), \left(\sum_{j} b_j y_j\right) \longmapsto \sum_{i,j} (a_i b_j)(x_i \wedge y_j),$$

and the unit maps $e: S^V \to A[S^V]$ send $x \mapsto 1 \cdot x$. This construction is discussed in more detail in [Sch12, Example I.1.14] and [Sch17, Example V.1.9].

Example 10.4 (Thom spectra). TODO

Definition 10.5. Let $f: X \to Y$ be a map of D-spaces (or prespectra or orthogonal spectra).

- f is a **level equivalence** if for all $d \in D$, $f(d): X(d) \xrightarrow{\sim} Y(d)$ is a weak equivalence.
- f is a **level fibration** if for all $d \in D$, f(d) is a fibration.

That is, *f* is a natural transformation, and it acts through weak equivalences (resp. fibrations).

Theorem 10.6. The category of D-spaces has a model structure, called the **level model structure**, in which the weak equivalences are the level equivalences and the fibrations are level fibrations. Moreover, this model category is cofibrantly generated.

Exercise 10.7. Starting with the usual model structure on Top*, construct the level model structure.

The "cofibrantly generated" part means that cofibrant objects behave like CW complexes, and in particular there is a theory of cellular objects. If F_d : Top $_* \to \text{Fun}(\mathsf{D}, \mathsf{Top}_*)$ is the left adjoint to Ev $_d$ we constructed last time, then the **generating cofibrations** are the maps $F_d(S^{n-1}_+ \to D^n_+)$ for each $n \ge 1$ and $d \in \mathsf{D}$, and the **acyclic cofibrations** are $F_d(D^n_+ \to (D_n \times I)_+)$ for each $n \ge 1$ and $d \in \mathsf{D}$.

Since all spaces are fibrant, all D-spaces are fibrant in the level model structure. The cofibrant objects are the retracts of **cellular objects**, which are built by iterated pushouts

$$\bigvee F_d S_+^{n-1} \longrightarrow X_n$$

$$\bigvee V_d D_+^n \longrightarrow X_{n+1}.$$

While this is all nice, it's not what we're looking for, as it contains no information about stable phenomena. It's like the category of spaces, just with more of them. For example, it's not even true that $X \to \Omega \Sigma X$ is a weak equivalence, which is important if you want Ω and Σ to be homotopy inverses.

Recall that we defined a π_* -isomorphim of prespectra to be a map $f: X \to Y$ such that $\pi_q f: \pi_q X \to \pi_q Y$ is an isomorphism for all q. We'll extend this to orthogonal spectra: let $U: \mathsf{Sp}^{\mathscr{I}} \to \mathsf{Sp}^{\mathbb{N}}$ be pullback by the map $[n] \mapsto \mathbb{R}^n$, i.e. $UX([n]) = X(\mathbb{R}^n)$. U is right adjoint to a left Kan extension $P: \mathsf{Sp}^{\mathbb{N}} \to \mathsf{Sp}^{\mathscr{I}}$.

Definition 10.8. A map of orthogonal spectra $f: X \to Y$ is a π_* -isomorphism if $Uf: UX \to UY$ is a π_* -isomorphism of prespectra.

We also defined an Ω -spectrum in prespectra, or an Ω -prespectrum, to be a prespectrum where the adjoints to the structure maps $X_n \stackrel{\cong}{\to} \Omega^m X_{n+m}$ are homeomorphisms. This is a pretty rigid condition, and so Ω -prespectra have nice properties.

Definition 10.9. Similarly, we define an Ω -spectrum in orthogonal spectra to be an orthogonal spectrum X such that the adjoints to the structure maps $X(U) \stackrel{\cong}{\to} \Omega^V X(U \oplus V)$ are homeomorphisms.

Classically, there were prespectra and then there were spectra (or Ω -spectra), and you would use some "spectrification" functor that took a prespectrum and produced a spectrum of the same homotopy type. Turning the adjoint maps into homeomorphisms looks difficult and is, as it involves some categorical and point-set wizardry. If you like this stuff, check out the appendix of [LMS86]. The first point-set symmetric monoidal model for the stable category [EKMM97] relies on this and even more magic, both clever and surprising.

Since D-spaces are enriched over spaces, it's possible to tensor with the interval and therefore define homotopies of D-spaces in the same way as for spaces. As usual, [X, Y] will denote the set of homotopy classes of maps $X \to Y$.

Definition 10.10. A **stable equivalence** of prespectra is a map $f: X \to Y$ such that for all Ω-prespectra Z, the induced map $[Y, Z] \to [X, Z]$ is an isomorphism.

Theorem 10.11. There are **stable model structures** on the categories of D-spaces, prespectra, and orthogonal spectra in which the weak equivalences are stable equivalences. For $Sp^{\mathbb{N}}$ and $Sp^{\mathscr{I}}$, the stable equivalences are the same as the π_* -isomorphisms.

Remark. You can make the same construction for symmetric spectra, but the stable equivalences are not the same as π_* -isomorphisms, and homotopy groups are consequently finickier. This ultimately comes from the fact that quotients O(n+k)/O(n) get more highly connected as n and k grow in a way that quotients of symmetric groups don't. In any case, since symmetric spectra don't behave so well in the equivariant case, we won't use them.

The stable model structure does in fact manifest stable phenomena: the map $X \to \Omega \Sigma X$ is a weak equivalence. If X and Y are Ω -prespectra and $f: X \to Y$ is a level equivalence, then f is a π_* -isomorphism. That is, the weak equivalences in the stable model structure contain the weak equivalences in the level model structure, and it's possible to use **Bousfield localization** to obtain the stable model structure from the level model structure.

 $^{^{36}}$ If you like ∞-categories, you can say that the level model category is an ∞-category of presheaves, and this is different from the ∞-category of spectra, which is presented by the stable model category.

Let C be a model category and S be a set of maps in C^{37} Bousfield localization produces a new model structure $L_S C$ on C in which the morphisms in S are weak equivalences. The homotopy category and homotopy (co)limits change, but all point-set phenomena remain the same. Localization is given by fibrant replacement.

Definition 10.12. Let C be a topologically enriched model category and S be as above.

• An S-local object in C is an object X such that for all $f: Y \to Z$ in S, the induced map

$$\operatorname{Map}_{\mathcal{C}}(Z,X) \xrightarrow{\simeq} \operatorname{Map}_{\mathcal{C}}(Y,X)$$

is a weak equivalence.

• A map $f: X \to Y$ is an S-local equivalence if for all S-local objects Z, the induced map

$$\operatorname{Map}_{\mathsf{C}}(Y,Z) \xrightarrow{\simeq} \operatorname{Map}_{\mathsf{C}}(X,Z)$$

is a weak equivalence.

The following theorem is due to many people, but Hirschhorn's formulation is particularly nice.

Theorem 10.13 ([Hir03]). Let C be a cofibrantly generated, Top-enriched model category. Then, the Bousfield localization L_SC always exists. Moreover, the weak equivalences are the S-local equivalences, the fibrant objects are the S-local objects, and the cofibrations are exactly those in C.

Example 10.14. One way this is used is to localize the category of spectra such that the *S*-local equivalences are detected by $- \wedge H\mathbb{Q}$ or $- \wedge H\mathbb{F}_p$. This is a slick way to construct the rationalization or *p*-completion, respectively, and in particular makes the localization map functorial. Thus one obtains the rational (or *p*-completed) stable homotopy category.

The stable model structure is obtained by Bousfield localization at the stable equivalences (Definition 10.10). It follows immediately that Ω -prespectra are local objects and stable equivalences are weak equivalences.

Proposition 10.15. The stable model structure is stable, i.e. $X \to \Omega \Sigma X$ is a π_* -isomorphism.

Proof. On homotopy groups, this is asking for $\operatorname{colim}_n \pi_{q+n} X_n \to \operatorname{colim}_n \pi_{q+n} \Omega \Sigma X_n$ to be an isomorphism. But by the Freudenthal suspension theorem, these colimits stabilize to the same stable homotopy group.

This implies that when X is an Ω -prespectrum, $\pi_q X = \pi_q X_0$, and for q < 0, we can define $\pi_q X = \pi_0 (X_{-q})$.

Theorem 10.16. The adjunction $P: \mathsf{Sp}^{\mathbb{N}} \xrightarrow{\perp} \mathsf{Sp}^{\mathscr{I}} : U$ is a Quillen equivalence, and therefore $\mathsf{Ho}(\mathsf{Sp}^{\mathbb{N}}) \cong \mathsf{Ho}(\mathsf{Sp}^{\mathscr{I}})$ as triangulated categories.

This homotopy category is called the stable category. It has a triangulated structure in which suspension Σ is the shift functor and the distinguished triangles are the cofiber sequences $X \xrightarrow{f} Y \to C_f$, where C_f is the homotopy cofiber of f.³⁸

Another sense in which the stable category is stable is that both fiber and cofiber sequences induce long exact sequences of homotopy groups, instead of just fiber sequences.

We'd like to construct a Quillen adjunction Σ^{∞} : Top_* $\sqsubseteq \Sigma^{\mathscr{I}} \mathsf{Sp}^{\mathscr{I}} : \Omega^{\infty}$. Ω^{∞} is just Ev_0 , evaluating at the zero space. If F_d is the adjoint to Ev_d (so that $(F_dA)(e) = \mathsf{Map}_{\mathsf{D}}(d,e)_+ \wedge A$), then we can define $\Sigma^{\infty}A := F_0A \wedge S$, where $S = S_{\mathbb{N}}$ for prespectra and $S = S_{\mathscr{I}}$ for orthogonal spectra.

If R is a monoid in D-spaces, the category of R-modules is equivalent to a category of diagram spaces over a more complicated diagram D_R . This is useful because diagrams are nice, and some things become less complicated. The recipe is that D_R is the category whose objects are the same as D and whose morphisms are

(10.17)
$$\operatorname{Map}_{\mathsf{D}_R}(d,e) = \operatorname{Map}_{\mathsf{Mod}_R}(F_d S^0 \wedge R, F_e S^0 \wedge R).$$

That is, we take the suspension spectrum of the sphere shifted by d and that of the sphere shifted by e.

Exercise 10.18. Show that for $D = \mathbb{N}$, the structure maps for prespectra come out of (10.17) for $R = S_{\mathbb{N}}$. (This is an adjunction game.) The same is true for orthogonal spectra and $S_{\mathscr{I}}$.

 $^{^{37}}$ We want S to contain the weak equivalences in C, but there are important set-theoretic issues. Often, one specifies that S contains a generating set (under filtered colimits) of the weak equivalences of C.

³⁸You can also define the distinguished triangles in terms of fiber sequences.

This feels like a Spanier-Whitehead trick, but constructs the right category. In particular, in D_R -spaces, Σ^{∞} is the left adjoint to evaluating at 0.

It's possible to bootstrap this to define model categories of ring spectra, i.e. algebras over $S_{\mathscr{I}}$.

Definition 10.19. Let $\mathbb{T} : \mathsf{Sp}^{\mathscr{I}} \to \mathsf{Sp}^{\mathscr{I}}$ denote the free associative algebra monad, i.e.

$$\mathbb{T}X := \bigvee_{n \geq 0} X^{\wedge n},$$

so that the category of \mathbb{T} -algebras $\mathsf{Sp}^{\mathscr{I}}[\mathbb{T}]$ is the category of associative monoids in $\mathsf{Sp}^{\mathscr{I}}$. Similarly, let $\mathbb{P}\colon \mathsf{Sp}^{\mathscr{I}}\to \mathsf{Sp}^{\mathscr{I}}$ denote the free commutative algebra monad, so

$$\mathbb{P}X := \bigvee_{n \geq 0} X^{\wedge n} / \Sigma_n,$$

where Σ_n denotes the action of the symmetric group by permutations; thus, the category of \mathbb{P} -algebras $\mathsf{Sp}^{\mathscr{I}}[\mathbb{P}]$ is the category of commutative monoids in $\mathsf{Sp}^{\mathscr{I}}$ (i.e. commutative ring spectra).

The stable model structure on $\operatorname{Sp}^{\mathscr{I}}$ induces one on $\operatorname{Sp}^{\mathscr{I}}[\mathbb{T}]$, in which the weak equivalences and fibrations are detected by those in $\operatorname{Sp}^{\mathscr{I}}$. For $\operatorname{Sp}^{\mathscr{I}}[\mathbb{P}]$, the quotient makes things harder: it has a model structure where the weak equivalences are **positive equivalences** (so those which are detected by **positive** Ω -**spectra**, i.e. those where $X_0 \to \Omega X_1$ need not be an equivalence). But this still doesn't behave very well. Namely, if you try to set the theory up for \mathbb{P} to be the same as that for \mathbb{T} , then you get that $\Omega^\infty \Sigma^\infty S^0$ is a commutative topological monoid. It's a fact that any commutative topological monoid is a product of Eilenberg-Mac Lane spaces, and that $\Omega^\infty \Sigma^\infty S^0$ has nontrivial k-invariants. There's a short paper by Lewis which addresses this [Lew91], showing that there are five very reasonable axioms for the stable category that can't all be true! So people decided to forget about letting Σ^∞ be left adjoint to evaluation at 0, and it's okay, if not perfect.

Example 10.20 (Γ-spaces). Let D be the category of finite based sets and based maps, e.g. $n_+ = \{0, 1, ..., n\}$ with 0 as the basepoint. D-spaces are called Γ-spaces, and agree with Segal's notion of Γ-spaces, which are defined differently. The multiplication comes from the map $\psi: 2_+ \to 1_+$ sending $1, 2 \mapsto 1$.

Let $d_i: n_+ \to 1_+$ send $j \mapsto \delta_{ij}$ (i.e. 1 if i = j, and 0 otherwise). A Γ -space is **special** if the induced map

$$X(n_+) \xrightarrow{\varphi_n} \prod_n X(1_+)$$

is a weak equivalence; it's very special if in addition the composition

$$X(1_+) \times X(1_+) \stackrel{\varphi_2}{\underset{\simeq}{\longleftarrow}} X(2_+) \stackrel{\psi_*}{\underset{\longrightarrow}{\longleftarrow}} X(1_+)$$

induces a commutative monoid structure on $\pi_0 X(1_+)$.

Kan extension defines a functor from D to the category of finite CW complexes, and working with π_* -equivalences of these, one obtains a model structure on the category of Γ -spaces. This is Quillen equivalent to the category of **connective spectra**, i.e. those whose negative homotopy groups vanish.

In the equivariant case, there's even more structure, and notions of "extra special" Γ -spaces. We'll spend most of our time on orthogonal G-spectra, which have nuances of their own, as we'll see starting next time.

Lecture 11.

The equivariant stable category: 2/16/17

"May your first talk be more peaceful."

Today, we'll discuss a model for the equivariant stable category, but first we'll say something about algebras and monads that went by quickly last time.

Last time, we introduced two monads \mathbb{T} and \mathbb{P} on $\mathsf{Sp}^{\mathscr{I}}$, defined as

$$\mathbb{T} X := \bigvee_{k \geq 0} X^{\wedge k} \qquad \qquad \mathbb{P} X := \bigvee_{k \geq 0} X^{\wedge k} / \Sigma_k.$$

Let's delve into this a little more.

Definition 11.1. A **monad** M on a category C is an endofunctor of C which is a monoid in the functor category Fun(C,C).

That is, there's a natural transformation $\mu \colon M^2 \to M$ and a unit, and μ is associative and unital in that the relevant diagrams commute.

There are lots of examples: we've already seen that if G is a group, the assignment $X \to G \times X$ is a monad. More generally, algebraic structures can usually be obtained monadically.

Definition 11.2. Let M be a monad on C. Then, the category C[M] of **algebras over** M is the category whose objects are pairs $X \in C$ and structure maps $m \colon MX \to X$ satisfying associativity and unitality for M, and whose morphisms are the C-morphisms that are compatible with the structure maps.

The associativity diagram, for example, is

$$\begin{array}{ccc}
M^2 X & \xrightarrow{m} & MX \\
\downarrow \mu & & \downarrow n \\
MX & \xrightarrow{m} & X.
\end{array}$$

We require this to commute.

Lots of structures are monadic, e.g. groups are algebras over the free group monad in Set, and similarly for abelian groups, rings, etc. Monads very generally come from free structures in algebra; they also arise from adjunctions: an adjunction $F: C \xrightarrow{} D: G$ defines a monad GF, with the structure map defined by the unit map $G(FG)F \rightarrow GF$. Many monads arise in this way.

There is always a free-forgetful adjunction $F: C_{\bot} \subset C[M]: U$, which has to do with the Barr-Beck theorem. Suppose C is a model category. We'd like to lift this to a model structure on C[M] — when does C[M] have a model structure where the weak equivalences are determined by the forgetful functor U? There are two issues.

- (1) Since C is complete, so is C[M]: the arrows point the right way. But it's not always cocomplete.
- (2) How do we define the model structure?

In order for C[M] to be cocomplete, we'll use a criterion about preserving certain colimits. Since monads tend to arise from adjunctions, the criterion definitely won't be true in general! There are seventeen versions of this criterion in Mac Lane, but we'll only need one, following Hopkins and McClure.

Definition 11.3. Let $f, g: X \rightrightarrows Y$ be two maps. A **reflexive coequalizer** is a coequalizer for f and g together with a simultaneous section $g: Y \to X$ for both f and g.

Exercise 11.4. Prove that if M preserves reflexive coequalizers, then C[M] is cocomplete. (This is hard, but worthwhile.)

Proposition 11.5 (Hopkins-McClure). *Under very mild hypotheses,* \mathbb{T} *and* \mathbb{P} *preserve reflexive coequalizers.*

See [EKMM97] for a proof. $Sp^{\mathscr{I}}$ satisfies these hypotheses, so we've addressed caveat (1).

Theorem 11.6 ([CITE ME: Schwede-Shipley]). Under mild hypotheses, C[M] inherits a model structure from C, where the fibrations are detected by U, and the generating cofibrations are M applied to the generating cofibrations of C.

This is a very general theorem; the hard step is constructing a nice enough filtration on pushouts.

Warning! These hypotheses are met for the associative monad \mathbb{T} , but are *not* met by the commutative monad \mathbb{P} ! This is another formulation of Lewis' paradox: for commutative ring spectra, you have to change the underlying homotopy theory.

Remark. You might be used to thinking of these as the associative and commutative operads. Every operad determines a monad, and the operadic algebras become monadic algebras, but for \mathbb{P} and \mathbb{T} , the explicit form of the monad makes it easier to analyze from the monadic viewpoint.

Returning to diagram spectra, we've been putting a huge emphasis on strict symmetric monoidal structures, rather than just commutativity in the homotopy category. This is useful because it lets you do algebra: if *R* is a ring in the homotopy category, it's very hard to control the category of modules, e.g. the cofiber of a map of modules may not even be a module, the cyclic bar construction isn't a simplicial object, etc. Some people have tried to use

 $^{^{39}}$ This is not how we defined the model structure on G-spaces, but we'll use it to define model structures on rings and module spectra.

operads to fix this, and this is extremely hard: operadic ring spectra are fine, but their modules are not. In a sense, Lurie's ∞-categorical machinery is designed to do this in a more modern way.

A lot of modern homotopy theory has been importing algebraic constructions about rings into homotopy theory, replacing tensor products with smash products. This has been very useful, yet can be hard, and everything is much more tractable with a point-set symmetric monoidal structure.

G-spectra. In this context, we must talk about universes, making choices of which orbits G/H are dualizable. This is closely related to choosing representations V such that $G/H \hookrightarrow V$ equivariantly.

Definition 11.7. A **universe** is a countably infinite-dimensional real inner product space with a G-action through isometries. There is some collection R of irreducible representations such that U contains countably many copies of each irreducible in R, and R always has all of the trivial representations.

Sometimes we'll ask for more structure, such as R being closed under tensor products. The inclusion of the trivial representation is what makes this a strict generalization of ordinary stable homotopy theory: for example, if $U = \mathbb{R}^{\infty}$ with the trivial G-action, the homotopy groups are the nonequivariant homotopy groups. Another common choice of U is a **complete universe**, containing all irreducible representations infinitely often, so all orbits are dualizable.

G-prespectra were defined classically in a manner similar to prespectra. They mix point-set and homotopical data, which is a little odd.

Definition 11.8.

- A *G*-prespectrum *X* is the data of a *G*-space X(V) for every finite-dimensional subspace $V \subset U$ and *G*-maps $S^W \wedge X(V) \to X(V \oplus W)$ for each pair *V* and *W*, such that the structure maps are associative.
- A *G*-prespectrum is an Ω -prespectrum if for all *V* and *W*, the adjoint to the structure map is a homeomorphism: $X(V) \stackrel{\cong}{\to} \Omega^W X(V \oplus W)$.
- The **homotopy groups** of a *G*-prespectrum are

$$\begin{split} \pi_q^H(X) &\coloneqq \operatornamewithlimits{colim}_V \pi_q^H \Omega^V X(V) \\ \pi_{-q}^H(X) &\coloneqq \operatornamewithlimits{colim}_{\substack{N \supset \mathbb{R}^m \\ m > 0}} \pi_0^H \Omega^{V - \mathbb{R}^m} X(V). \end{split}$$

Here $q \ge 0$, \mathbb{R}^m denotes the trivial representation of dimension m, which we specified was in U, and $V - \mathbb{R}^n$ denotes the orthogonal complement.

Proposition 11.9. There is a model structure on G-prespectra where the weak equivalences are the stable equivalences (equivalently, π_* -isomorphisms).

The proof is identical to the nonequivariant case. One cool aspect of this is that homotopy groups are determined by trivial representations, and we'll see that for orthogonal *G*-spectra, this is also true at the point-set level. It's nice to not have to carry around the entire universe, just the trivial representations. We'll use this philosophy in the proof of Theorem 12.2.

Definition 11.10. The **equivariant stable category** (**structured by** U) is the homotopy category of G-prespectra.

This is the category in which we have Poincaré duality for the orbits G/H that embed in U. The functors $\Sigma^V := S^V \wedge -$ and $\Omega^V := \operatorname{Map}(S^V, -)$ are inverse equivalences.

There's an equivariant triangulated structure on the homotopy theory; this hasn't been written down, because it's messy and not super useful. The idea is that a cofiber sequence induces a long exact sequence of equivariant homotopy groups, where the shift is any choice of Σ^V .

⁴⁰Ideally, *U* should not contain other representations. Sometimes people are vague about this, where there may be other representations and you ignore them, but it's better to just not have them.

 $^{^{41}}$ More explicitly, this is a stabilization of the category of presheaves on *BG*. Depending on your definitions, this is more or less a tautology — stabilization in ∞-categories is defined by taking spectrum objects.

Orthogonal *G*-**spectra.** Let's build a point-set model of the equivariant stable category. Let V and V' be finite-dimensional irreducible G-representations (by which we mean finite-dimensional subspaces of U), and let $I_G(V,V')$ be the linear, G-equivariant isometries.⁴²

Definition 11.11. The **complement bundle** E(V, V') is the subbundle of the product bundle $I_G(V, V') \times V'$ consisting of pairs (f, x) such that $x \in V' - f(V)$. Let $\widetilde{I}_G(V, V')$ denote the Thom space of this bundle.

We're trying to create spheres: $\widetilde{I}_G(V,V')$ should topologize $S^{V'-f(V)}$. For example, if $V \subset V'$, this is isomorphic to $O(V') \wedge_{O(V'-V)} S^{V'-V}$.

Let \widetilde{I}_G denote the category whose objects are finite-dimensional subspaces V of U and whose morphisms are $\widetilde{I}_G(V,V')$.

Definition 11.12. An **orthogonal** *G*-**spectrum** is a Top-enriched functor $\widetilde{I}_G \to G$ Top. The category of orthogonal *G*-spectra is denoted Sp^G , or Sp^G_{II} if the universe needs to be explicit.

For the nonequivariant case, we defined D-spaces and spectra to be modules over a certain monoid in them, and then showed that you could think of them as diagram spaces for a more complicated diagram. Here, we've done this all at once — it's simpler to define \widetilde{I}_G than find a module in a simpler category of diagram spaces.

There is a forgetful functor U from Sp^G to the category of G-prespectra; we define a map f in Sp^G to be a π_* -isomorphism if Uf is a π_* -isomorphism. Sp^G is symmetric monoidal under Day convolution, just as before.

Theorem 11.13. Sp^G has a stable model structure in which the weak equivalences are π_* -isomorphisms, the fibrations are levelwise fibrations, and the generating cofibrations are

$$F_V((G/H \times S^{n-1})_+ \longrightarrow (G/H \times D^n)_+).$$

Here, F_V is adjoint to evaluation at V, as before.

Moreover, the smash product is compatible with the model structure. If X is cofibrant, then $X \wedge Y$ computes Tor $X \wedge^L Y$. Another way to say this is that if X is cofibrant, $X \wedge -$ preserves weak equivalences. The proof is where cofibrantly generated model categories: $X \wedge -$ is a colimit, so it commutes with colimits, and cofibrant objects are retracts of cell complexes, so you can reduce to the case where X is a single cell, which admits a direct proof. Once again the stable homotopy category behaves like homological algebra.

Functors on Sp^G . Let $H \subset G$ be a subgroup, so restriction defines a functor $i_H : Sp^G \to Sp^H$. Just as for G-spaces, i_H has a left adjoint $G_+ \land_H -$ and a right adjoint $F_H(G_+, -)$, and these are constructed space-wise.

Proposition 11.14. $G_+ \wedge_H -$ and $F_H(G_+, -)$ are left (resp. right) Quillen functors.

Remark. You might worry what universe you end up in after applying i_H — naïvely you get the H-representations that arise from restriction of G-representations, but you might want all H-representations. The way to address this is to use a change-of-universe functor, which we'll mention shortly. This is a good thing to not be sloppy about, but is annoying, and is why people try to get the universe out of the point-set category. In any case, as in group cohomology, induction and coinduction are isomorphic through the **Wirthmüller isomorphism** (Theorem 12.2).

One thing that's nice to do with *G*-spectra is take fixed points. There are *three* different ways to do this, namely homotopy fixed points, categorical fixed points, and geometric fixed points, and keeping them separate in your head is important.

Sp^G is a *closed* symmetric monoidal category, meaning it has internal function objects. This is true for D-spaces in general, with internal function objects

$$F_{\mathsf{D}}(X,Y)(n) := F(X,Y(n)).$$

This is exactly like the mapping complex of two chain complexes: you're looking at chain maps from X to shifts of Y.

 Sp^G is tensored and cotensored over G-spaces, meaning we can smash G-spectra with G-spaces, and take function objects from G-spaces to G-spectra: if A is a G-space, tensoring with A is $A_+ \land -$ applied levelwise, and cotensoring with A is $F(A_+, -)$ applied levelwise.

Definition 11.15.

 $^{^{42}}$ Unlike the nonequivariant case, we're not taking isometric isomorphisms, so maps in $I_G(V, V')$ must be injective, but may have nontrivial cokernel.

- The **homotopy fixed points** is the functor $X \mapsto F(EG_+, X)^G$. (Here, EG_+ is a G-space, so we're using the cotensor of *G*-spaces and *G*-spectra.)
- The categorical fixed points is the functor $(-)^H: X \mapsto F(G/H_+, X)$. As the notation suggests, this is analogous to $(-)^H$ on G-spaces.

Warning! You might hope that $(\Sigma^{\infty}A_{+})^{H} = \Sigma^{\infty}A_{+}^{H}$, so that fixed points of spaces lead to fixed points of spectra, but this is *not* true. It has a more complicated description called **tom Dieck splitting** as a wedge of other pieces.

Definition 11.16. The **geometric fixed points**, denoted Φ^H or also X^{gH} , is the unique functor such that

- (1) it's (derived) symmetric monoidal: if X and Y are cofibrant, $\Phi^H(X) \wedge \Phi^H(Y) \stackrel{\cong}{\to} \Phi^H(X \wedge Y)$.
- (2) Φ^H preserves homotopy colimits.
- (3) $\Phi^H \Sigma^{\infty} X \cong \Sigma^{\infty} X^H$.

Of course, uniqueness (up to a contractible space of choices) is a theorem, but it's true. We'll also give a preferred construction.

We'll prove that categorical and geometric fixed points detect weak equivalences.

Theorem 11.17.

- (1) A map $X \to Y$ in Sp^G is a weak equivalence iff $X^H \to Y^H$ is a weak equivalence for all subgroups $H \subset G$. (2) A map $X \to Y$ in Sp^G is a weak equivalence iff $\Phi^H X \to \Phi^H Y$ is a weak equivalence for all subgroups $H \subset G$.

This leads one to consider diagrams on categorical or geometric fixed points: because of this perspective, one can define Tate spectra using this philosophy, and this is particularly useful when applied to S^1 -spectra. It was originally developed by John Greenlees, and has recently been repopularized and is being mined for applications, such as Nikolaus-Scholze's description of topological cyclic homology.

We're going to try to understand the equivariant stable category from a few other perspectives: the Wirthmüller isomorphism is an analogue of the isomorphism between finite products and coproducts in spectra, and we'll also learn more about tom Dieck splitting. You can also ask how the transfer maps we talked about characterize the equivariant stable category.

Lecture 12.

The Wirthmüller isomorphism: 2/21/17

Today, we're going to talk about the Wirthmüller isomorphism and tom Dieck splitting. The Wirthmüller isomorphism is the equivariant analogue of the nonequivariant statement that in the stable homotopy category Ho(Sp), finite sums and products are equivalent:

$$(12.1) \qquad \qquad \bigvee_{i=1}^{n} X_{i} \xrightarrow{\cong} \prod_{i=1}^{n} X_{i}.$$

This is a backbone of the stable category: among other things, it ensures Ho(Sp) is additive.

Tom Dieck splitting is another important structural result about $\pi_G^*(\Sigma^{\infty}X)$. When $X = S^0$, this is used to compute the equivariant stable homotopy groups of the spheres (which is, of course, not completely known). This can be used to recover the Burnside category.

Transfers play a key role in both of these results: it's somewhat implicit in the Wirthmüller isomorphism, but is pretty explicit for tom Dieck splitting.

The Wirthmüller isomorphism. In this section, we assume G is a finite group. There is a more general statement for compact Lie groups, but it's more complicated.

Theorem 12.2 (Wirthmüller isomorphism). Let H be a subgroup of G and X be an object of Sp^H . And A then, there is a π_* -isomorphism $G \wedge_H X \xrightarrow{\simeq} F_H(G,X)$.

Exercise 12.3. Adapt the proof of (12.1) for nonequivariant spectra to show that the natural map from finite sums to finite products in Sp^G is also an isomorphism.

⁴³Here, we're implicitly using the complete universe U to define Sp^G and Sp^H .

However, if you only have (12.1), you've described the category of G-spectra structured by a universe with only trivial representations!

Applying Theorem 12.2 to $X = S^0$ computes the Spanier-Whitehead duals of orbits.

Corollary 12.4. In the situation of Theorem 12.2, $\Sigma^{\infty}(G/H)_{+} \cong F_{H}(G,S^{0}) \cong F((G/H)_{+},S^{0})$.

That is, $\Sigma^{\infty}(G/H)_+$ is its own Spanier-Whitehead dual. The slogan is that orbits are self-dual in the equivariant stable category when G is finite.⁴⁴

Recall that the forgetful map $i_H^*: \mathsf{Sp}^G \to \mathsf{Sp}^H$ has a left and a right adjoint, respectively $G \land_H -$ and $F_H(G,-)$. These spectrum-level constructions are induced by applying the space-level functors levelwise.

Exercise 12.5. Show that these definitions of $G \wedge_H -$ and $F_H(G,-)$ are consistent with the structure maps.

There are three approaches to proving Theorem 12.2.

- (1) One is a connectivity argument: show that on the space level, the maps get more and more highly connected.
- (2) Another approach is to construct an explicit inverse, using a transfer map.
- (3) One can also set up a Grothendieck six-functor formalism to prove it, which sets up a general theory for when a lax monoidal functor's left and right adjoints coincide. See [FHM03, May03, BDS16] for a proof using this approach; the first and the third papers set up general theory, and the second shows that it applies to the Wirthmüller map. This makes interesting contact with base-change theory in algebraic geometry.

Warning! The proof of Theorem 12.2 given in [LMS86] is incorrect, and the fix is nontrivial. It takes approach (2). We'll use a connectivity argument, which will introduce some tools we'll find useful later.

Proof of Theorem 12.2 (X connected). Though we assume X is connected, the same proof can be adapted when X is bounded-below. The theorem is true for general X, but this proof may not work in that case.

Let $X \in H\mathsf{Top}_*$. Then, there's a map $\theta: G \wedge_H X \to F_H(G,X)$ defined by

$$\theta(g_1, x)(g_2) = \begin{cases} g_2 g_1 x, & g_2 g_1 \in H \\ *, & \text{otherwise.} \end{cases}$$

Exercise 12.6. Show that θ is a *G*-map.

 θ induces a map $\overline{\theta}$: $G \wedge_H X \to F_H(G,X)$ in Sp^G . We'll show that it's an equivalence by computing the connectivity of θ .

Let $K \subseteq G$, ρ be the regular representation of G, and $m \in \mathbb{N}$. Then, we'll compute the connectivity of

$$\theta_{m,K}: (G \wedge_H \Sigma^{m\rho} X)^K \longrightarrow (G_H(G, \Sigma^{m\rho} X))^K.$$

When G is finite, the sequence $(\rho, 2\rho, 3\rho, ...)$ is cofinal (i.e. the colimits are the same) in the filtered diagram of finite-dimensional representations of the complete universe U. Thus, to understand colim $_{V \subset U} \Omega^V \Sigma^V X$, it suffices to understand what happens when $V = m\rho$.

Exercise 12.7. The reason this is true is that when G is finite, the regular representation ρ contains a copy of every irreducible as a summand. Prove this by doing a character computation.

We'll show the connectivity of $\theta_{m,K}$ is increasing in m, which means that $\pi_*^K \overline{\theta} : \pi_*^K (G \wedge_H X) \to \pi_*^K (F_H(G,X))$ is an isomorphism.

The calculation itself will use the K, H double coset decomposition of G to identify the K-fixed points as a sum and as a product, and we understand the connectivity of both of these from nonequivariant homotopy theory.

Let $S \subset G$ be a set of representatives for the double coset partition of G, i.e. under the $K \times H$ -action $(k,h) \cdot g = k^{-1}gh$. Then,

(12.8)
$$(G \wedge_H Z)^K = \left(\coprod_{g \in S} (KgH)_+ \wedge_H Z \right)^K.$$

Either $g^{-1}Kg \subseteq H$ or it isn't.

 $^{^{44}}$ When G is a compact Lie group, there's a degree shift arising from the tangent representation of G on the Lie algebra of H. TODO: double-check this.

- If $g^{-1}Kg \subseteq H$, then the action is only in Z, so $((KgH)_+ \wedge_H Z)^K = Z^{g^{-1}Kg}$.
- If $g^{-1}Kg \not\subseteq H$, then the action is free, so $((KgH)_+ \wedge_H Z)^K = *$.

In particular (12.8) simplifies to

$$(G \wedge_H Z)^K \cong \bigvee_{\substack{g \in S \\ g^{-1}Kg \subseteq H}} Z^{g^{-1}Kg}.$$

Next we look at $(F_H(G,Z))^K$. If S is a set of representatives of the double cosets, so is $S^{-1} := \{g^{-1} \mid g \in S\}$, so we can decompose

$$(F_H(G,Z))^K \cong \left(F_H\left(\coprod_{g\in S} Kg^{-1}H, Z\right)\right)^K$$

$$\cong \prod_{g\in S} F_H(Kg^{-1}H, Z)^K$$

$$\cong \prod_{g\in S} Z^{(gKg^{-1})\cap H} \cong \prod_{g\in S} Z^{(g^{-1}Kg)\cap H}.$$

This identification sends $f \mapsto \{f(g)\}$; the last equivalence is by using S^{-1} as the set of representatives instead of S. In particular, the space-level Wirthmüller isomorphism may be written

(12.9)
$$\bigvee_{\substack{g \in S \\ \sigma^{-1}K\sigma \subset H}} Z^{g^{-1}Kg} \xrightarrow{\cong} \prod_{g \in S} Z^{(g^{-1}Kg) \cap H}.$$

This is nice-looking, but the indexing sets are slightly different. To overcome this, we'll factor (12.9) as

$$\bigvee_{\substack{g \in S \\ g^{-1}Kg \subseteq H}} Z^{g^{-1}Kg} \xrightarrow{\varphi_1} \prod_{\substack{g \in S \\ g^{-1}Kg \subseteq H}} Z^{(g^{-1}Kg) \cap H} \xrightarrow{\varphi_2} \prod_{g \in S} Z^{(g^{-1}Kg) \cap H},$$

where φ_1 is the natural map from the sum to the product and φ_2 is inclusion. Then, we will estimate the connectivity of φ_1 and φ_2 separately in the case when $Z = \Sigma^{m\rho} X$. Namely, we'd like to show that they're both (m[G:K]+O(1))-connected.

First, what are the fixed points in $(S^{m\rho})^{g^{-1}Kg}$? This is a sphere whose dimension has been shrunk by K, so smashing with it produces something m[G:K]-connected. Then, the usual argument about turning sums into products says that φ_1 is about 2m[G:K]-connected.

For φ_2 , what's the connectivity of the missing factors in the domain? In this case, the connectivity is about m[G:K].

Thus, the connectivity of $\theta_{m,K}$ is m([G,K]+O(1)), ⁴⁵ so the spectrum-level map $\overline{\theta}$ is a π_*^K -isomorphism. More precisely, the cofiber of $\theta: G \wedge_H X \to F_H(G,X)$ has trivial π_*^K , and there's a little bit to do here to check this.

Remark. Let's see how this connects to the transfer. Let V be a G-representation such that there's an embedding $G/H \hookrightarrow V$. Then, we obtain an H-map $G \wedge_H S^V \to S^V$ that takes points in $G \setminus H$ to the basepoint. The adjoint of this map is the G-map $G \wedge_H S^V \to F_H(G, S^V)$.

On the other hand, we have a Pontrjagin-Thom map $S^V \to G \wedge_H S^V$ induced as follows: $G/H \hookrightarrow V$ induces a map $G \wedge_H D(V) \to V$, and therefore a map $S^V \to G \wedge_H D(V)/(G \wedge_H S(V)) \cong G \wedge_H S^V$. The observation is that the composition $S^V \to G \wedge_H S^V \to S^V$ is the identity (you can and should think about this: it's possible to write down an explicit homotopy inverse). This motivates the slogan that "the Wirthmüller isomorphism is the inverse of the transfer map," which we'll say more about later.

Tom Dieck splitting. Tom Dieck splitting is a decomposition of the fixed points of a suspension *G*-spectrum, either of the statements

$$(12.10a) \qquad (\Sigma^{\infty}X)^{G} \cong \bigvee_{(H)\subseteq G} EWH_{+} \wedge_{WH} X^{H}$$

$$(12.10b) \qquad \pi_{*}(\Sigma^{\infty}X)^{G} \cong \bigoplus_{(H)\subseteq G} \pi_{*}^{WH} \left(\Sigma^{\infty}EWH_{+} \wedge_{WH} X^{H}\right).$$

 $^{^{}m 45}$ TODO: I want to run through the connectivity carefully and ensure I made no typos.

By $(H) \subseteq G$, we mean indexing over the conjugacy classes of subgroups of G. Here WH = NH/H as usual; if $H \subseteq G$, then this is G/H. Tom Dieck splitting looks complicated; you might have hoped that Σ^{∞} and $(-)^G$ commute, but they don't, and this is how they don't. But when $X = S^0$, this tells you a decomposition of π^G (S).

We have a cofiber sequence, called the isotropy separation sequence,

$$EG_+ \longrightarrow S^0 \longrightarrow \widetilde{EG}$$

which induces for any spectrum X a cofiber sequence

$$(12.11) (EG_{+} \wedge X)^{G} \longrightarrow X^{G} \longrightarrow (\widetilde{EG} \wedge X)^{G}.$$

Take $X = \mathbb{S} = \Sigma^{\infty} S^0$, giving

$$(\Sigma^{\infty}EG_{+})^{G} \longrightarrow \mathbb{S}^{G} \longrightarrow (\Sigma^{\infty}\widetilde{EG})^{G}.$$

There are three key observations; one is easy, one is harder, and the one was a major structural theorem.

- When X is a suspension spectrum, (12.11) splits.
- The Adams isomorphism tells us the cofiber: $(\Sigma^{\infty}EG_{+})^{G} \simeq \Sigma^{\infty}BG_{+}$.
- The last term is $(\widetilde{EG} \wedge X)^G \cong \Phi^G X$.

Tom Dieck proved tom Dieck splitting by inducting over isotropy sequences, adding one conjugacy class at a time. This is one of the two major methods of induction in equivariant homotopy theory (the other being induction over cells), and was a key step in the resolution of the Kervaire invariant 1 problem [HHR16].

Lecture 13. -

Tom Dieck splitting: 2/23/17

Today, we'll again assume that *G* is a finite group. Some of today's content extends to compact Lie groups, but it's more complicated.

Last time, we saw the Wirthmüller isomorphism (Theorem 12.2), which we said can be used to create the transfer maps. One consequence is Corollary 12.4, that orbits are self-dual under Spanier-Whitehead duality: $D(G/H_+) = \Sigma^{\infty} G/H_+$. You can use this to write down the transfer map: given subgroups $K \subseteq H \subseteq G$, we have the "right-way" map $G/H \to G/K$, and therefore a map $\Sigma^{\infty}(G/K_+) \cong D(G/K_+) \to D(G/H_+) \cong \Sigma^{\infty}(G/H_+)$. By the Wirthmüller isomorphism, this is the same as a map $F(G/K_+, S) \to F(G/H_+, S)$, which is exactly the transfer map!

This is a little circular; if you look carefully into the proof of Theorem 12.2, the transfer map is already there. But the point is more philosophical: the existence of transfers is the same thing as the Wirthmüller isomorphism.

Remark. Transfer maps can be studied in more generality, e.g. in the context of equivariant vector bundles on homogeneous spaces. Rothenberg wrote some stuff, but [LMS86] is probably the best source.

◄

Today we'll talk about tom Dieck splitting. There are several closely related versions of the statement, though going between them requires a deep result called the Adams isomorphism. We'll return to that point later.⁴⁶ Anyways, we'll prove the version in (12.10b).

When $X = S^{\bar{0}}$, this "computes" the equivariant stable homotopy groups of the spheres, and one consequence is that

$$\pi_0^G(\Sigma^\infty S^0) \cong \bigoplus_{(H)\subseteq G} \mathbb{Z},$$

i.e. it's free on the conjugacy classes of subgroups of *G*.

As a consequence of the proof of (12.10b), the generators are given by the Euler characteristics $S \to \Sigma^{\infty} G/H_+ \to S$. This lets us identify homotopy classes of stable maps $G/H_1 \to G/H_2$; since we defined the Burnside category to be the full subcategory of Sp^G on $\Sigma^{\infty} G/H_+$, this amounts to the computation of $\pi_0 B_G$.

Define an abelian group A whose generators are diagrams of the form

(13.1)
$$G/H_1 \stackrel{\theta_1}{\longleftarrow} G/K \stackrel{\theta_2}{\longrightarrow} G/H_2,$$

⁴⁶TODO: I missed one version of the splitting.

⁴⁷TODO: I didn't understand this.

and for which two diagrams $G/H_1 \leftarrow G/K \rightarrow G/H_2$ and $G/H_1 \leftarrow G/K' \rightarrow G/H_2$ are equivalent if there is an isomorphism $f: G/K \rightarrow G/K'$ such that the following diagram commutes.

$$G/H_1$$
 θ_1
 θ_2
 G/H_2 .

The point is that there's an isomorphism $\psi: A \xrightarrow{\cong} \pi_0^{H_1}(\Sigma_+ G/H_2)$, the group of stable maps $G/H_1 \to G/H_2$. We'll calculate these maps in the algebraic Burnside category $\pi_0(B_G)$. The isomorphism ψ takes a diagram of the form (13.1) to the composite $\Sigma_+^{\infty} G/H_1 \to \Sigma_+^{\infty} G/K \to \Sigma_+^{\infty} G/H_2$, where the first map is the transfer for θ_1 and the second is $\Sigma^{\infty} \theta_2$.

Exercise 13.2. Show that ψ is an isomorphism.

This is really nice: we have a nice combinatorial description of the stable maps coming from the structure of *G*. But what's the composition?

The above is more or less true for *G* a compact Lie group. But what follows really requires *G* to be finite.

It seems natural to play double coset games here, but this quickly turns into a notational mess. But if you know about spans, there's only one thing it should be, which is the pullback:

This is true, and we'll give a real proof later. The upshot is really cool: we have a complete combinatorial description of the algebraic Burnside category, including composition. This leads one to Mackey functors: equivariant stable homotopy theory is controlled by a pair of functors out of the orbit category, one covariant and one contravariant, and Mackey functors are nice examples of these.

Remark. We've been tacitly assuming a complete *G*-universe for this, but what if you'd prefer to leave out certain suspensions Σ^V ? In the case of an incomplete *G*-universe *U*, you only consider the orbits $G/H \hookrightarrow U$, and build the incomplete Burnside category and incomplete Mackey functors in this way.

Now let's prove tom Dieck splitting.

Proof of (12.10b). We'll approach this inductively and look a single summand at a time, producing a map

(13.3)
$$\pi_*^{WH} \left(\Sigma^{\infty} EWH_+ \wedge X^H \right) \longrightarrow \pi_*^G (\Sigma^{\infty} X).$$

Recall that WH = NH/H, so we can define a sequence

(13.4)
$$\pi_*^{WH} \left(\Sigma^{\infty} EWH_+ \wedge X^H \right) \xrightarrow{\theta_1} \pi_*^{NH} \left(\Sigma^{\infty} EWH_+ \wedge X^H \right) \xrightarrow{\theta_2} \pi_*^{NH} \left(\Sigma^{\infty} EWH_+ \wedge X \right),$$

where θ_1 is induced by restriction $\pi_*^{WH} \to \pi_*^{NH}$, and θ_2 is induced from the inclusion $X^H \hookrightarrow X$. The Wirthmüller isomorphism induces an isomorphism on homotopy groups $\pi_*^H(X) \stackrel{\cong}{\to} \pi_*^G(G \wedge_H X)$ (by an adjunction game), so we can extend (13.4) with maps

$$\pi_*^{NH}(\Sigma^\infty EWH_+ \wedge X) \xrightarrow{\ \ \ \cong \ \ } \pi_*^G(G \wedge_{NH} \Sigma^\infty EWH_+ \wedge X) \xrightarrow{\ \ \ \theta_4 \ \ } \pi_*^G(\Sigma^\infty X).$$

Here, θ_4 is the adjoint of the *NH*-map $\Sigma^{\infty}EWH_+ \wedge X \to \Sigma^{\infty}X$ that crushes $EWH \to *$. Thus, our goal is to prove that $\theta_2 \circ \theta_1$ and θ_4 are isomorphisms.

 \boxtimes

Recall that a \mathbb{Z} -graded homology theory on G-spaces is a collection of functors $E_q \colon G\mathsf{Top} \to \mathsf{Ab}$ for $q \in \mathbb{Z}$ that are homotopy invariant and such that

$$E_q\left(\bigvee_k X_k\right) \cong \bigoplus_k E_q(X_k),$$

and a map $f: X \to Y$ induces a long exact sequence

$$(13.5) \cdots \longrightarrow E_q(X) \longrightarrow E_q(Y) \longrightarrow E_q(Cf) \xrightarrow{\delta} E_{q-1}(X) \longrightarrow \cdots$$

The key observation is that both sides of (12.10b) specify \mathbb{Z} -graded homology theories.

Definition 13.6. An $X \in G$ Top is **concentrated at a conjugacy class** H if for all K not in the conjugacy class of H in G, X^K is contractible.

Theorem 13.7. Let $h: E_q \to \tilde{E}_q$ be a natural transformation of \mathbb{Z} -graded homology theories. If h is an isomorphism on all X concentrated at a conjugacy class, then h is an isomorphism.⁴⁸

This leads to a very innovative proof, invented by tom Dieck, whose pedagogical importance is just as significant as the theorem statement: we'll set up a sequence of families of subgroups of *G*

$$\{e\} = \mathscr{F}_0 \subseteq \mathscr{F}_1 \subseteq \mathscr{F}_2 \subseteq \cdots \subseteq \mathscr{F}_n = \{H \subseteq G\}$$

such that \mathcal{F}_i is built from \mathcal{F}_{i-1} by adding a conjugacy class not already present. Then, we can induct on i, and since G is finite, this must terminate. This is one of the key techniques of induction in equivariant homotopy theory, along with cellular induction.

Proof of Theorem 13.7. Let's induct: suppose that $\mathscr{F}_i = \mathscr{F}_{i-1} \cup (K)$ for some $K \subseteq G$, and consider any G-space X. There is a natural map $f: X \wedge E\mathscr{F}_{i-1} \to X \wedge E\mathscr{F}_i$, and its cofiber C(f) is concentrated at K!

Suppose that $E_q(X \wedge E\mathscr{F}_{i-1}) \stackrel{\cong}{\to} \tilde{E}_q(X \wedge E\mathscr{F}_{i-1})$. By hypothesis, $E_q(C(f)) \stackrel{\cong}{\to} \tilde{E}_q(C(f))$, since C(f) is concentrated at K. Now, by the long exact sequence (13.5) and the five lemma, the map $E_q(X \wedge E\mathscr{F}_i) \to E_q(X \wedge E\mathscr{F}_i)$ is an isomorphism.

Now, to prove tom Dieck splitting, it suffices to show that the map we defined (the direct sum of (13.3) over all conjugacy classes) is an isomorphism when X is concentrated at a single conjugacy class (H).

First, we'll show that if X is concentrated at (H) and $K \notin (H)$, then (13.3) is trivial for K. Let's consider $\Sigma^{\infty} EWK_+ \wedge X^K$. Look at the space $S^V \wedge EWK_+ \wedge X^K$, and let's consider its L-fixed points for $L \subseteq K$. If $L = \{e\}$, then $(X^K)^L$ is contractible, and otherwise, $(EWK_+)^L$ is contractible, so the smash product is always contractible. We conclude that $\Sigma^{\infty} EWK_+ \wedge X^K$ is contractible, and therefore that

$$\pi_*^{WK} (\Sigma^{\infty} EWK_+ \wedge X^K) = 0.$$

Now we've reduced to showing that (13.3) is an isomorphism when X is concentrated at H, i.e. that (13.4) is an isomorphism (its components aren't) and that θ_4 is an isomorphism.

Let's first tackle θ_4 . This uses an important piece of technology: suppose X and Y are G-spaces and $H \subseteq G$ is normal. Then, there is a **restriction map**

$$\rho_H \colon \operatorname{Map}_G(X,Y) \longrightarrow \operatorname{Map}_{G/H}(X^H,Y^H).$$

This map appears in an essential way in the definition of topological cyclic homology.⁵⁰

Lemma 13.8. Suppose Y is concentrated at (H); then, the restriction map ρ_H : Map_G(X,Y) \rightarrow Map_{G/H}(X^H,Y^H) is an acyclic fibration.

We'll prove this next time with cellular induction; in any case, we only need that ρ_H is a weak equivalence. Anways, we want to show that (13.4) is an isomorphism, so we'll use the restriction map to define an inverse $\pi_*^{NH}(\Sigma^\infty EWH_+ \wedge X) \to \pi_*^{WH}(\Sigma^\infty EWH_+ \wedge X^H)$. That is, consider

$$[S^{n+m\rho_{NH}}, S^{m\rho_{NH}} \wedge EWH_{\perp} \wedge X]$$

and take the *H*-fixed points on both sides; Lemma 13.8 ensures this is an isomorphism.

 $^{^{48}}$ The analogue of this theorem for \mathbb{Z} -graded cohomology theories is also true.

⁴⁹TODO: I got confused and should fix this.

 $^{^{50}}$ The new construction of TC by Nikolaus-Scholze manages to avoid this in a way that is considerably more natural.

As this is a statement about stable homotopy groups, it's desirable to have a spectrum-level equivalence which reduces to this isomorphism; the statement is (12.10a), but the proof is different.

Lecture 14. -

Question-and-answer session II: 2/24/17

Question 14.1. Are orthogonal spectra the same as diagram G-spectra indexed on all finite-dimensional representations of G? If so, what are the advantages of working with only orthogonal representations? Is orthogonality needed to make sense of Ω -spectra?

Much of it is that the representations in question often come with a natural inner product. Also, it's useful to take orthogonal complements sometimes. Nonetheless, it's probably not strictly necessary

Question 14.2. What conditions need to be put on a diagram category D such that D-spectra are Quillen equivalent to orthogonal spectra?

It's hard to be precise about this, but one thing that's common to all of them is an embedding of \mathbb{N} into D producing an adjunction between the forgetful functor and the prolongation functor. We used the forgetful functor to define the homotopy groups. So if you can embed \mathbb{N} into it, it's probably OK, but it's doubtful that a complete, explicit classification exists. Γ -spaces are kind of strange, though.

Question 14.3. There are geometric fixed-points, homotopy fixed-points, and categorical fixed-points. What's the intution for what these three constructions are doing?

Recall that the categorical fixed points are $(-)^H = F(\Sigma_+ G/H, -)$, which tom Dieck splitting tells us is complicated and hard to compute in general. The homotopy fixed points $F(EG_+, -)^G$ are more computable: there's a spectral sequence arising from the filtration of BG. Geometric fixed points $\Phi^H X$, which satisfy the property $\Phi^H \Sigma^\infty X \cong \Sigma^\infty X^H$ (and are uniquely characterized by this, being strong symmetric monoidal, and preserving homotopy colimits), have nice properties.

You can also analyze them in terms of what they do to S^{-V} , i.e. the Spanier-Whitehead dual of S^{V} : geometric fixed points will send it to $S^{-V^{H}}$, whereas categorical fixed points will look more like a tom Dieck splitting.

It's possible to write every spectrum as a colimit of suspension spectra, and this "canonical presentation" is a good way to dissect the differences between these fixed points. We might talk more about this later.

Both the categorical and geometric fixed points detect weak equivalences, so you could use, e.g. the geometric fixed points to define homotopy groups.

Tate spectra fit into this story: the Tate spectrum X^{tC} of X fit into a homotopy pullback diagram where the other three corners are the three kinds of fixed points. TODO: the right diagram. This looks like an arithmetic square, and this analogy can be made precise.

Question 14.4. Is there a similar story for coinvariants? Are there categorical, homotopical, and geometric coinvariants?

Not really, so far: Lewis and May remark that the construction you would write down is hard to control, and hard to derive. It's possible that new work on the foundations of equivariant homotopy theory could enable a better answer, but nothing's been done right now.

Question 14.5. Are there notions of naïve and geuine *G-spaces*? (This question was asked in the homotopy theory chatroom on MathOverflow.)

The terminology is less common than that of naïve and genuine G-spectra; in some sense, it's a little weird to be using terms like "genuine" and "naïve" in the first place to describe mathematical objects. In any case, by a genuine G-space, we mean a functor out of the orbit category, but a naïve G-space would be a functor out of the category containing just G/e, so capturing only the theory of spaces over BG.

On the subject of mathematical literature, the HULK smash product [Man12] is possibly the best mathematical joke of all time.

Question 14.6. You've said that Hill-Hopkins-Ravenel have significantly affected the direction of equivariant stable homotopy theory. Can you elaborate on this?

There's been some interest in S^1 -equivariant methods, but a big piece has been a focus on computations, now that some computations look possible. The use of trace methods is also exciting. There's some work on relating equivariant homotopy theory to motivic homotopy theory, which looks exciting.

Another generalization is to global homotopy theory; Stefan Schwede has a program for setting this up. One of the eventual payoffs will be an equivariant *TMF*, which Lurie has sketched a construction of.

Question 14.7. Has the Tannakian formalism been applied to this context? Maybe instead of a universe of representations, it would be easier to take a category.

This hasn't really been considered; it might be interesting, and it might be hard to work with.

Question 14.8. If you like to think of spectra as infinite loop spaces, what changes in the equivariant case?

For G a finite group, everything is the same: you can use Γ -G-spaces or G- Γ -spaces (which are different notions for the same thing); you can use functors from Γ to G-spaces, and a few other ones. Then, loop spaces come from a \mathbb{E}_{∞} -operad action; for technical reasons you may need to assume there are trivial representations in the universe.

In the case of compact Lie groups, nobody really knows how to set up the theory of infinite loop spaces. In particular, being an \mathbb{E}_{∞} -G-space is not the same as being the zero space of a G-spectrum.

One way to think about this is that on the space level, the \mathbb{E}_{∞} operad controls the transfers. The issue is that we only know how to handle finite-index transfers and norms; maybe you should put them in freely, but you get weird obstructions. There's lots of interesting questions to be asked here, but they are hard and likely not worth your time.

Question 14.9. What is a cyclotomic spectrum?

Fix a prime p; a p-cyclotomic spectrum is an S^1 -spectrum X together with data of an equivalence with its C_p -geometric fixed points as S^1 -spectra.

Recall that the **loop space** of X is $LX := \operatorname{Map}(S^1, X)$. Its suspension spectrum is an example of a cyclotomic spectrum: there is an identification $\Phi^{C_p}(\Sigma_+^{\infty} LX) \cong \Sigma_+^{\infty}(LX)^{C_p} \cong \Sigma_+^{\infty} LX$.

If X is an S^1 -spectrum, we can take $X^{C_p^{n'}} \cong (X^{C_p})^{C_p^{n-1}} \to (\Phi^{C_p}X)^{C_p^{n-1}} \to X^{C_{p^{n-1}}}$, and the homotopy limit of these maps is topological cyclic homology.

Question 14.10. What are cyclonic spectra?

It's not a standard term, and the professor didn't remember off the top of his head.

Question 14.11. Is there an analogue of the regular representation in stable homotopy theory?

The answer is, not really. This relates to the complicated structure of tom Dieck splitting — even in the case for compact Lie groups, where the proofs we gave don't completely generalize, there are versions of the Wirthmüller isomorphism and tom Dieck splitting that have shifts by the tangent representation at the identity coset of G/H. This shift pops up again and again.

Question 14.12. What is currently happening in EDAG? What roadblocks are currently in the way?

When you look at TMF, especially with level structure, it really looks like there should be some underlying equivariant spectrum, and it would be nice to have a way to make this explicit.

There are issues with localization behaving poorly, and ∞ -operads were introduced to make things behave better. It's also conceptually interesting and cool how the action of an ∞ -operad controls what transfers it has, and suspension converts the transfers into norms, and you get a ring spectrum: it's a nice conceptual picture that explains what's going on.

Question 14.13. What applications have there been besides [HHR16] and trace methods?

Both of those are good applications. A lot of the interesting work in chromatic homotopy theory regarding, e.g. homotopy fixed points of subgroups of the Morava stabilizer group, uses *G*-actions. Stable representation theory of finite groups also uses this material. Goodwillie calculus also uses equivariant methods: Nick Kuhn proved in [Kuh04] that the vanishing of extensions in the Taylor tower is equivalent to the vanishing of the Tate spectrum.

There's an analogue of Goodwillie calculus for the equivariant setting, an "equivariant calculus;" since calculus is about passage from the unstable to the stable category, the equivariant stable category plays the analogous role in equivariant calculus.

Completion with respect to the $(\Sigma^{\infty}, \Omega^{\infty})$ -adjunction is important in calculus, in terms of a simplicial resolution, and it's a little weird that you get the same answer if you complete with the correct or the trivial choice.⁵¹

Question 14.14. In a vague sense, the classification of groups splits into two parts: find the simple pieces (finite simple groups) and figure out how to put then together (which is also hard). Algebraic *K*-theory throws out the second part: is there any way to understand the category of finitely-presented groups in this way?

Jeff Smith used a similar method in a different context, but it hasn't been extremely fruitful. People haven't looked into the *K*-theory of finitely presented groups, and it might be interesting.

Question 14.15. What did you mean by the generators of $\pi_0^G(S^0)$ being Euler characteristics as a consequence of tom Dieck splitting?

 $\pi_0^G(S^0)$ is equivariant homotopy classes of maps from S^0 to itself. This is free on conjugacy classes — well, what maps generate? The answer is the composites of the maps $S \to \Sigma^\infty G/H_+$ and the crush map back to S: these are Euler characteristics, in that these are equivariant analogues of the maps whose degrees give Euler characteristics in the nonequivariant case?

Question 14.16. How much more bananas is the equivariant sphere than the sphere?

It's way more complicated: it has $\Omega^V S^V$ in it for all V, and the decomposition is not nice. Maybe for specific groups you can say something nice.

Question 14.17. Knowledge of facts about the sphere spectrum encodes information interesting in other fields. Does knowledge about the equivariant sphere spectrum tell us anything more than the equivariant generalizations of those results?

Presently, no such applications are known.

Question 14.18. Under certain conditions, you can detect the homotopy groups of a spectrum by looking at the 0 level. Can you do this for *G*-spectra by looking at the regular representation?

Better, in fact: in the case of an Ω -G-spectrum, you can compute the homotopy groups at the *trivial* representation.

Question 14.19. What is the status of Grothendieck's approach to homotopy theory?

That's a good question; it's not so clear. People like derivators, because they're 2-categorical and therefore easier to deal with, but they might go away once the higher-categorical foundations get standardized.

Question 14.20. In equivariant homotopy theory, there are multiple kinds of suspension functor. How does one then conclude that cofibers are the same as fibers up to some shift, if there are multiple choices of shift to make?

This is a great exercise for you to work out.

Lecture 15. -

The Burnside category and Mackey functors: 2/28/17

Today, we're going to finish the proof of tom Dieck splitting, at least on the level of homotopy groups (12.10b). We'll defer the spectrum-level theorem (12.10a) to later.

We've reduced to showing that the composite

$$\pi_*^{WH}(\Sigma^{\infty}EWH_+ \wedge X^H) \longrightarrow \pi_*^{NH}(\Sigma^{\infty}EWH_+ \wedge X^H)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

is an isomorphism when X is concentrated at the single conjugacy class (H) for G. The composite of the first two maps is denoted θ_1 . We did this by showing that the two sides of the tom Dieck isomorphism are \mathbb{Z} -graded homology theories, and therefore are determined by their values on spaces concentrated at single conjugacy classes. We'll show separately that θ_1 and θ_2 are isomorphisms.

⁵¹TODO: better word than "choice."

First let's look at θ_2 , by looking at the spaces of the susmension spectrum for

$$(G \wedge_{NH} (EWH_+ \wedge X \wedge S^V))^K$$
.

Fixed points do not commute with suspension on the spectrum level (after all, this is the content of tom Dieck splitting), but they do commute with the smash product for spaces, so this is also

$$(G \wedge_H EWH_+)^K \wedge X^K \wedge S^{V^K}$$
.

If $K \notin (H)$, then $X^K \simeq *$, since X is concentrated at (H). If $K \in (H)$, then $(EWH_+)^K \simeq *$, so either way what we obtain is an isomorphism for θ_2^K .

For θ_1 , we needed to prove Lemma 13.8, that if $H \leq G$ and Y is concentrated at (H), then the restriction map $\operatorname{Map}_G(X,Y) \to \operatorname{Map}_{G/H}(X^H,Y^H)$ is an isomorphism.

Proof of Lemma 13.8. The proof will proceed by cellular induction. Consider attaching a cell to a *G*-space *Z* to form a space \tilde{Z} , which is expressed by the pushout

$$G/K_{+} \wedge S^{n-1} \longrightarrow Z$$

$$\downarrow \qquad \qquad \downarrow$$

$$G/K_{+} \wedge D^{n} \longrightarrow \tilde{Z}.$$

If we apply $Map_G(-, Y)$ to this diagram, it becomes a pullback

$$\operatorname{Map}_{G}(G/K_{+} \wedge S^{n-1}, Y) \longleftarrow \operatorname{Map}_{G}(Z, Y)$$

$$\downarrow^{\psi_{1}} \qquad \qquad \downarrow^{\psi_{2}}$$

$$\operatorname{Map}_{G}(G/K_{+} \wedge D^{n}, Y) \longleftarrow \operatorname{Map}_{G}(\tilde{Z}, Y).$$

Since $\operatorname{Map}_G(G/K_+ \wedge S^{n-1}, Y) \simeq \operatorname{Map}(S^{n-1}, Y^K)$, then ψ_1 is trivial, so ψ_2 is an isomorphism.

$$X_0 := \{ x \in X \mid G_x \not\subseteq H \} \subseteq X.$$

Then, $X \setminus (X_0 \cup X^H)$ is built by attaching cells $G/K_+ \wedge D^n$ with $K \notin (H)$.

The cell attachment computation we just made tells us that it suffices to understand $X_0 \cup X^H$, for which we use a Mayer-Vietoris argument associated to the pullback

$$X_0 \cup X^H \stackrel{\phi_1}{<} X^H$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X_0 \stackrel{\phi_2}{<} X_0 \cap X^H$$

We again apply $\operatorname{Map}_G(-,Y)$; this time, the same argument shows that ϕ_2^* is an isomorphism. Now the map we want factors as

$$\operatorname{Map}_{G}(X,Y) \longrightarrow \operatorname{Map}_{G}(X_{0} \cup X,Y) \longrightarrow \operatorname{Map}_{G}(X^{H},Y) \longrightarrow \operatorname{Map}_{G/H}(X^{H},Y^{H}).$$

The last map comes from the adjunction, and in particular is a known weak equivalence. And by induction, the first two maps are weak equivalences.

□

We'll use Lemma 13.8 to check that the map

$$\pi_{+}^{WH}(\Sigma^{\infty}EWH_{+}\wedge X^{H})\xrightarrow{\theta_{1}}\pi_{+}^{NH}(\Sigma^{\infty}EWH_{+}\wedge X)$$

is an isomorphism, by providing a map in the other direction. Specifically, this is a map of homotopy classes

$$[S^{n+m\rho}, \Sigma^{m\rho}EWH_+ \wedge X] \xrightarrow{\theta_1} [S^{n+m\rho}, \Sigma^{m\rho}EWH_+ \wedge X].$$

We've abused notation a bit here: on the left, ρ is the regular representation for NH, and on the right, it's the regular representation for WH. Lemma 13.8 implies that the map going the other way is an isomorphism when X is concentrated at (H):

$$[S^{n+m\rho}, S^{m\rho} \wedge EWH_+ \wedge X] \stackrel{\cong}{\longrightarrow} [S^{n+m\rho^H}, S^{m\rho^H} \wedge EWH_+ \wedge X^H].$$

This is what we reduced the problem to, so we have completed the proof of tom Dieck splitting for $\pi_G^*(\Sigma^{\infty}X)$ on the level of homotopy groups.

The Burnside category. Let C be a small category with finite limits and finite coproducts. In C, consider the diagram

$$X \xrightarrow{\varphi_1} Y \xleftarrow{\varphi_2} Z$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X' \longrightarrow X' \coprod Z' \longleftarrow Z'.$$

Both of these squares are pullbacks iff $Y \cong X \coprod Z$ with φ_1 and φ_2 the universal maps. This tells us something about how coproducts interact with pullbacks.

Definition 15.1. Let Span(C) be the category whose objects are those of C and whose morphisms $\operatorname{Hom}_{\operatorname{Span}(C)}(X,Y)$ are equivalences classes of diagrams

$$(15.2) Z Y$$

where $X \leftarrow A \rightarrow Y$ and $X \leftarrow A' \rightarrow Y$ are equivalent if there's an isomorphism $h: A \xrightarrow{\cong} A'$ such that the following diagram commutes.

Composition is defined by pullback of spans

Remark. If your category number⁵² is at least 2, you can construct Span(C) as a 2-category, where the 1-morphisms between X and Y are spans (15.2), and the 2-morphisms between $X \leftarrow A \rightarrow Y$ and $X \leftarrow A' \rightarrow Y$ are the diagrams (15.3).

There's a sum on $\operatorname{Hom}_{\operatorname{Span}(C)}(X,Y)$ given by the coproduct of $X \leftarrow A \to Y$ and $X \leftarrow A' \to Y$, which define a map $X \leftarrow A \coprod A' \to Y$. You might worry whether this is compatible with composition, which is why we took the morphisms to be equivalence classes of spans.

This sum does not make Span(C) into an additive category, so let Span⁺(C) denote the **preadditive completion** of Span(C), i.e. $\operatorname{Hom}_{\operatorname{Span}^+(C)}(X,Y)$ is the Grothendieck group of $\operatorname{Hom}_{\operatorname{Span}(C)}(X,Y)$.

Exercise 15.4. Show that the category $GSet^{fin}$ of finite G-sets and G-equivariant maps satisfy the axioms we asked of C.

Definition 15.5. The **Burnside category** B_G is Span⁺(GSet^{fin}).

 $^{^{52}}$ Freed [Fre09] defines the **category number** of a mathematician to be the largest n such that he or she can think hard about n-categories for half an hour without getting a headache.

In Definition 9.2, we defined the Burnside category differently, as the full subcategory of Sp^G on $\Sigma^\infty G/H_+$; these two definitions are equivalent, and the content is that every finite *G*-set is a coproduct of orbits G/K_i .

Proposition 15.6. Let \tilde{B}_G denote the full subcategory of Sp^G spanned by finite G-sets. Then, B_G and $\pi_0 \tilde{B}_G$ are equivalent.

Proof. The functor in question sends $T \mapsto \Sigma^{\infty} T_{+}$ and a span

to $\theta \circ \operatorname{tr}(\tau)$, where tr is the transfer map. Because the transfer behaves well under composition, this is a functor $\operatorname{Span}(G\operatorname{\mathsf{Set}}^{\operatorname{fin}}) \to \pi_0 \tilde{B}_G$, and therefore uniquely determines the functor $B_G \to \pi_0 \tilde{B}_G$. This is essentially surjective (i.e. for objects), and we've already computed that it's an isomorphism on hom sets.⁵³

Definition 15.7. A **Mackey functor** is a functor $B_G^{op} \to \mathsf{Ab}$.

Restricting to spans of the form $X \stackrel{\text{id}}{\leftarrow} X \to Y$ defines a covariant functor $\mathscr{O}_G \to B_G$, and restricting to spans of the form $Y \leftarrow X \stackrel{\text{id}}{\rightarrow} X$ defines a contravariant functor $\mathscr{O}_G^{\text{op}} \to B_G$. Composing with a Mackey functor F defines a pair of functors $\mathscr{O}_G^{\text{op}} \to \text{Ab}$ and $\mathscr{O}_G \to \text{Ab}$. We'll denote the image of an $f: X \to Y$ under these functors as f^* and f_* , and given a diagram

$$X' \xrightarrow{f'} X$$

$$\downarrow^{g'} \qquad \downarrow^{g}$$

$$Y' \xrightarrow{f} Y,$$

Mackey functors satisfy the **Chevalley condition** $g^*f_* = f'_*(g')^*$.

Proposition 15.8. $\pi_*^H(-)$ defines a Mackey functor.

The two functors \mathcal{O}_G , $\mathcal{O}_G^{op} \to Ab$ are evident, coming from the usual maps in the orbit category and the transfer maps, but there are axioms to check.

Let M be a Mackey functor. Then, there exists an object $HM \in \operatorname{Sp}^G$, called the **equivariant Eilenberg-Mac Lane spectrum** for M, whose homotopy groups π_G^* are determined by M.

Definition 15.9. The **cohomology** of an $X \in \operatorname{Sp}^G$ with coefficients in a Mackey functor M is

$$H^n(X;M) := [X, \Sigma^n HM],$$

which defines a \mathbb{Z} -graded cohomology theory. Moreover, one can define an RO(G)-graded cohomology theory

$$H^{V}(X;M) := [X, \Sigma^{V}HM],$$

where V is a representation in U.

The definition of an RO(G)-graded cohomology theory requires some care, and we will investigate this; the naïve definition (which is worth writing down) you might write down is likely to be wrong for subtle reasons.

The central algebraic analogue of the equivariant stable category is given by the category of Mackey functors. Mackey functors form a symmetric monoidal category under something called the box product; we'll define this in detail later, but it's familiar, arising as a Kan extension just like Day convolution.

The point is, it makes sense to talk about commutative monoids in the category of Mackey functors, which are called **Green functors** [Gre71]. These aren't quite the right objects, however: we need to account for stable transfer data, which is what makes the equivariant stable category act the way it does.

The more sophisticated notion of a commutative ring in Mackey functors involves additional multiplicative transfer data; these are called **Tambara functors** or **TNR functors** [Tam93].

Up to now, everything we've done was known to tom Dieck and can be found (perhaps not in this language) in [LMS86]. But this stuff is more modern: this perspective on Tambara functors was popularized by [HHR16].

⁵³TODO: I think this was tom Dieck splitting, but want to make sure.

Multiplicative transfers were originally considered by [Eve63] in representation theory, and [GM95] also wrote about them, but [HHR16] innovated the norm and how it interacts with these multiplicative transfer maps.

This leads to an interesting question about calculations, which appears as soon as you try to start doing things.

Question 15.10. On the homotopy groups $\pi_*^{(-)}$, we have restrictions and transfer maps. What can we say about the composite of a restriction map and a transfer map, or a transfer map and a restriction map?

The answer involves double coset formulae, and can be thought of in a few ways: we'll start with the classical perspective and become more modern.

Next time, we'll talk more about Mackey functors and RO(G)-graded cohomology theories, including how to construct Eilenberg-Mac Lane spectra, which is considerably more difficult than in the nonequivariant case.

Lecture 16.

Mackey functors: 3/2/17

Today, we'll talk about Mackey functors, picking up more or less where we left off. The category of Mackey functors is a replacement for the category of abelian groups for the purpose of defining cohomology theories; it's also an abelian category, but it's more complicated. For now, let's assume *G* is a finite group; we will address the compact case later.

We'll let GSet denote the category of finite G-sets and equivariant maps. When we work with RO(G)-graded theories, it will be important to embed everything in some universe, an infinite G-set containing all finite G-sets up to isomorphism. It's okay to be lax about this at first, but there are subtleties to RO(G)-graded theories that make this important; [GM13] provided the first proof of the folklore result that G-spectra are spectral presheaves on the Burnside category, but there were important coherence issues to work out, for example.

Anyways, we saw last time that a Mackey functor \underline{M} is specified by a pair of functors M_*, M^* , where $M_*: GSet \to Ab$ is covariant, $M^*: (GSet)^{op} \to Ab$ is contravariant, and M_* and M^* agree on objects, so it makes sense to write M(T) or M(G/H) (the latter may also be written M(H)).

Mackey functors are determined by their restrictions to orbits, as $M(A \coprod B) = M(A) \oplus M(B)$ and given a pullback

$$\begin{array}{c|c}
W & \xrightarrow{\alpha} X \\
\downarrow \beta & \downarrow \gamma \\
Y & \xrightarrow{\delta} Z,
\end{array}$$

 $M_*(\beta)M^*(\alpha) = M^*(\delta)M_*(\gamma)$. This resembles the six-functor formalism.

You should think of Mackey functors as abstracting double coset formulae, especially when reading the literature or in representation theory: they tell you something about how restriction and transfer maps commute.

Proposition 16.1. The category of Mackey functors is abelian.

We'll find this useful later, when we need to do homological algebra.

Suppose H and K are subgroups of G and $f: G/H \to G/K$ is a G-map. Then, we call $\operatorname{Res}_H^K := M^*(f)$ a **restriction** map and $\operatorname{Tr}_H^K := M_*(f)$ a **transfer map**.

Example 16.2.

(1) Let X be a G-space. Then, $\pi_n^{(-)}(X)$, the functor sending $G/H \mapsto \pi_n^H(X)$, is a Mackey functor: by the Wirthmüller isomorphism and the fact that orbits are self-dual,

$$\pi_n^H(X) \cong [S^n \wedge G/H_+, X] \cong [S^n, X \wedge G/H_+],$$

so it's clear how a map $G/H \rightarrow G/K$ induces both a right-way and a wrong-way map.

- (2) Let $\underline{\mathbb{Z}}$ denote the **constant Mackey functor** in \mathbb{Z} , which assigns \mathbb{Z} to every object. You have to figure out what the transfers and restrictions are, but in the end the restrictions are the identity and the transfers are multiplication by the Euler characteristic.
- (3) The **Burnside Mackey functor** A(G) is defined by letting A(G)(G/H) be the Grothendieck group of the monoid on H-sets under coproduct. The transfer and restriction maps come from induction and restriction, respectively, between HSet and KSet.

(4) The **representation Mackey functor** R(G) is defined by letting R(G)(G/H) be the Grothendieck group of finite-dimensional H-representations, with transfer and restriction given by $\mathbb{Z}[K] \otimes_{\mathbb{Z}[H]} -$.

The representation Mackey functor contains the information of double coset formulae in representation theory. Namely, suppose H and K are subgroups of G contained in a common subgroup $J \subseteq G$. The universal property of the product gives us a pullback diagram

$$J/H \times J/K \longrightarrow J/K$$

$$\downarrow \qquad \qquad \downarrow$$

$$J/H \longrightarrow J/J.$$

If you apply induction to this, you obtain

(16.3)
$$G \times_{J} (J/H \times J/K) \longrightarrow G \times_{J} (J/K) \cong G/K$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$G/H \longrightarrow G/J.$$

As a finite *G*-set, $J/H \times J/K$ is a coproduct of orbits, determined by their stabilizers.

Exercise 16.4. Compute the stabilizer of a point in $G/H \times G/K$, therefore proving that

$$J/H\times J/K\cong\coprod_{X\in [H\setminus J/K]}G/(H\cap xKx^{-1}).$$

This is good practice for working with double cosets, and how group-theoretically, they behave much like ordinary cosets.

Thus (16.3) becomes

(16.5)
$$\coprod_{X \in [H \setminus J/K]} G/(H \cap xKx^{-1}) \xrightarrow{f_2} G/K$$

$$\downarrow^{f_1} \qquad \qquad \downarrow^{f_1} \qquad \qquad \downarrow^{G/H} \xrightarrow{G/H} \longrightarrow G/J.$$

The point is that explicitly determining what f_1 and f_2 are will produce the double coset formulae. Since $H \cap xKx^{-1}$ is a subgroup of K, we have a map $G/(H \cap xKx^{-1}) \to G/H$, and taking the coproduct over $x \in [K \setminus J/H]$ we obtain f_1 .

 f_2 is harder, but not much harder: after conjugating by x, we obtain a map $G/(x^{-1}Hx \cap K) \to G/K$, so f_2 is conjugation followed by the natural map.

This means that you can compute how Res_H^k and Tr_H^K interact by looking at the two ways around the diagram from G/H to G/K, using the restriction and transfer maps for contravariance and covariance, respectively.

(16.6)
$$\operatorname{Res}_{K}^{G}\operatorname{Tr}_{H}^{G} = \bigoplus_{x \in H \backslash G/K} \operatorname{Tr}_{H \cap xKx^{-1}}^{K} c_{x} \operatorname{Res}_{H \cap xK^{-1}x}^{H},$$

where c_x is the conjuntion map.

Remark. Some treatments define a Mackey functor directly in terms of the restriction and transfer maps with axioms including the double coset formula (16.6). The more abstract approach we took follows [Dre71], while older treatments take the axiomatic approach. In general, the proofs of properties of Mackey functors are sketched or left out in the literature, but [Web00] and [CITE ME: Devinatz] are pretty good references.

RO(*G*)-graded cohomology theories. In the back of your mind, you should be wondering about the connection between *G*-spectra, equivariant cohomology theories, and Mackey functors. In the nonequivariant setting, Brown representability establishes an (almost) equivalence between spectra and cohomology theories. Equivariantly, things are very similar: *G*-spectra play the role of spectra, equivariant cohomology theories play the role of cohomology theories, and, less tautologically, Mackey functors play the role of abelian groups. We'll talk about rings later.

Roughly speaking, an RO(G)-graded cohomology theory should be some collection of functors E^{α} indexed by $\alpha \in \text{RO}(G)$ such that for any G-representation V, $E^{\alpha}(X) \cong E^{\alpha+V}(\Sigma^{V}X)$, and any fixed α should satisfy the wedge and cofiber axioms, taking wedge products to coproducts and cofiber sequences to long exact sequences.

The (well, an) issue that makes this tricky is that you can't really work with isomorphism classes of representations, even though you need that to define RO(G). As a workaround, let's fix a G-universe U and define RO(G; U) to be the category whose objects are finite-dimensional representations V that embed equivariantly in U and whose morphisms $V \to W$ are G-equivariant isometric isomorphisms. We say that two maps $f,g:V \to W$ are **homotopic** if their one-point compactifications $\overline{f}, \overline{g}: S^V \to S^W$ are stably homotopic. We don't have enough structure to set up a model category or anything, but we can define the homotopy category Ho(RO(G; U)) by passing to homotopy classes of maps.

A finite-dimensional G-representation defines a suspension functor

$$\Sigma^{W}$$
: Ho(RO(G ; U)) × Ho(G Top) \longrightarrow Ho(RO(G ; U)) × Ho(G Top)

which sends

$$(V,X) \longmapsto (V \oplus W, \Sigma^W X).$$

This feels a lot like ordinary S^W -suspension, but we're keeping track of the automorphisms of W.

Definition 16.7. An RO(G; U)-graded cohomology theory is a functor E: Ho(RO(G; U)) × Ho(GTop)^{op} \rightarrow Ab, where E(V,X) is generally written $E^V(X)$, together with isomorphisms

$$\sigma_W: E^V(X) \longrightarrow E^{V \oplus W}(\Sigma^W X),$$

such that for each V, $E^V(-)$ satisfies the wedge and cofiber axioms and for each isometric isomorphism $\alpha \colon W \to W'$, the map

$$E^{V}(X) \xrightarrow{\sigma_{W}} E^{V \oplus W}(\Sigma^{W}X)$$

$$\downarrow^{\sigma_{W'}} \qquad \qquad \downarrow^{(\mathrm{id} \oplus \alpha, \mathrm{id})}$$

$$E^{V \oplus W'}(\Sigma^{W'}X) \xrightarrow{(\mathrm{id} \oplus \mathrm{id}, \alpha)} E^{V \oplus W'}(\Sigma^{W}X).$$

We further require that $\sigma_0 = \text{id}$ and the $\{\sigma_W\}$ are transitive: $\sigma_W \circ \sigma_V = \sigma_{V \oplus W}$.

Definition 16.8. The **formal differences** of objects in RO(G; U) are equivalence classes of pairs (V, W) of objects in RO(G; U), where $(V, W) \sim (V', W')$ if $V \oplus W' \cong V' \oplus W$. The pair (V, W) is also denoted $V \ominus W$.

We can extend an $\mathsf{RO}(G; U)$ -graded cohomology theory to formal differences by $E_{V \ominus W}(X) := E_V(\Sigma^W X)$. Let $\tau \colon V \oplus W \to W \oplus V$ be the transposition natural isomorphism. Then, the coherence condition on the $\sigma_{(-)}$ means that the diagram

$$E_{V}(\Sigma^{W}X) \longrightarrow E_{V \oplus W'}(\Sigma^{W \oplus W'}X)$$

$$\downarrow \qquad \qquad \downarrow^{\tau_{*}}$$

$$E_{V'}(\Sigma^{W'}X) \longrightarrow E_{V' \oplus W}(\Sigma^{W' \oplus W}X)$$

commutes.

Remark. When you add ring structures to this story, the coherence conditions become gnarlier: there's a cocycle arising from the pentagon diagram for associativity. Unfortunately, this is not treated well in the literature; Lewis' thesis discusses it, but was not fully published. [CITE ME: Lewis-Mandell] have an appendix which talks about it, and [CITE ME: Duggar] worked it out in the abstract in the motivic setting.

We'll also need to talk about the equivalence between Sp^G and RO(G)-graded cohomology theories; one direction is Brown representability, and the other is more or less straightforward.

You may be asking why we use RO(G)-graded theories at all. One great reason is that there are known examples of \mathbb{Z} -graded cohomology theories that are extremely chaotic, but the RO(G)-graded theories have nice patterns. Another, more recent, realization is that in many cases the RO(G)-graded theories carry more useful information. However, of course, they're extremely hard to compute.

⁵⁴The data of the embedding $V \hookrightarrow U$ is not used in RO(G; U). When we discuss multiplicative structures, this will change.

Lecture 17.

Brown representability: 3/7/17

"I thought it was obvious, but it's obviously not obvious."

Today, we're going to finish the additive correspondence between G-spectra and RO(G)-graded cohomology theories, through Neeman's proof of Brown representability. There will be no class Thursday, so we'll resume after spring break with some computations of RO(G)-graded cohomology theories, including ordinary cohomology and hopefully also twisted K-theory.

Anyways, recall that we defined RO(G)-graded cohomology theories { $E_G^V(X)$ } to be Mackey functors graded on the category RO(G; U), where U is the ambient universe, together with isomorphisms σ^W : $E_G^V(X) \cong E_G^{V \oplus W}(\Sigma^W X)$, together with some additional data.

Before we go on, though, we should talk a little about RO(G).

Definition 17.1. Let G be a group and R be a ring. Then, the **representation ring** of G over R is the Grothendieck construction applied to the category of finite-rank G-representations over R, i.e. the ring of isomorphism classes of finite-rank G-representations over R, where addition is direct sum and multiplication is tensor product. By *the* representation ring, we'll mean $RO(G) := \mathbb{R}(G)$, the ring of real representations.

We can think of $\mathbb{R}(G)$ and $\mathbb{C}(G)$ as a ring of characters: given a representation V, its **character** is the map $\chi_V : G \to \mathbb{R}$ (or to \mathbb{C}) where $\chi_V(g) = \operatorname{tr}(g \cdot)$. Since $\chi_{V \oplus W} = \chi_V + \chi_W$, $\chi_{V \otimes W} = \chi_V \cdot \chi_W$, and for irreducible representations, $\chi_V = \chi_W$ iff $V \cong W$, then the characters detect isomorphism classes, so $\mathbb{R}(G)$ and $\mathbb{C}(G)$ can be thought of as the ring of functions $G \to \mathbb{R}$ (or \mathbb{C}) that are characters.

Exercise 17.2.

- (1) Compute $\mathbb{C}(G)$ for $G = C_p$, and then for C_m where m isn't prime.
- (2) Harder: compute $\mathbb{R}(G)$ for the same G.

One of the important connections in ordinary stable homotopy theory is that cohomology theories are closely related to spectra: every spectrum determines a cohomology theory, and up to a very small ambiguity, a cohomology theory is represented by a spectrum.

Definition 17.3. Let *E* be a *G*-spectrum. Then, we define *E*-cohomology to be the functor $E_G^V(X) := [S^V \wedge X, E]_G$.

This is an RO(G)-graded cohomology theory, but this is something to check. If you want to restrict your universe, there are some nuances that have to be overcome.

If you put in finite *G*-sets (basically points), what you get is a Mackey functor: considering maps out of *X* ensures the transfer maps have the correct variance.

That was the easy direction: the other direction requires Brown representability. This is originally due to [Bro62], and we'll give Neeman's interpretation [Nee96]. It works in any triangulated category, and is very close to the small object argument, which already makes it a good thing.

Fix a triangulated category C that has small coproducts. The stable homotopy categories Ho(Sp) and $Ho(Sp^G)$ are the examples to keep in mind.

Definition 17.4. An $x \in C$ is **compact** if for all countable coproducts over $y_i \in C$,

$$\operatorname{Map}_{\mathsf{C}}\left(x, \coprod_{i} y_{i}\right) \cong \coprod_{i} \operatorname{Map}_{\mathsf{C}}(x, y_{i}).$$

This is not the usual definition of compactness in category theory, which uses filtered colimits, but in the stable setting these are the same as coproducts, motivating our definition. For example, this definition does not characterize compact topological spaces.

Definition 17.5.

- A **generating set** of a category C is a set $T \subseteq \text{ob}(C)$ that **detects zero**, i.e. for all $x \in C$, x = 0 iff $\text{Map}_C(z, x) = 0$ for all $z \in T$. If C is triangulated, we additionally require T to be closed under shift.
- C is **compactly generated** if it has a generating set consisting of compact objects.

We introduce these to skate around set-theoretic issues: at some point, we'd like to take a coproduct over all objects in the category, but that's too large. Instead, taking the coproduct over all generators will have the same power, and is actually well-defined.

For example, dualizable spectra (resp. dualizable G-spectra) are a compact generating set for Ho(Sp) (resp. Ho(Sp^G)).

Theorem 17.6 (Brown representability [Bro62, Nee96]). Let C be a compactly generated triangulated category and $H: C^{op} \to Ab$ be a functor such that

(1)

$$H\left(\coprod_{i} X_{i}\right) \cong \prod_{i} H(X_{i})$$

and

(2) H sends exact triangles $X \to Y \to Z \to X[1]$ to long exact sequences

$$H(X) \longrightarrow H(Y) \longrightarrow H(Z) \longrightarrow H(X[1]) \longrightarrow H(Y[1]) \longrightarrow H(Z[1]) \longrightarrow H(X[2]) \longrightarrow \cdots$$

Then, H is **representable**, i.e. there's an $X \in C$ and a natural isomorphism $\operatorname{Hom}_{C}(-,X) \to H$.

Proof. We're going to build *X* inductively. Fix a generating set *T* for C of compact objects. In the base case, let

$$U_0 := \coprod_{x \in T} H(x)$$
 and $X_0 := \coprod_{\substack{(\alpha, t) \in U_0 \\ \alpha \in H(t)}} t$.

Thus,

$$H(X_0) = H\left(\prod_{(\alpha,t)\in U_0} t\right) \cong \prod_{(\alpha,t)\in U_0} H(t),$$

and in particular there is a distinguished element $\alpha_0 \in H(X_0)$ which is α at the (α, t) factor. By the Yoneda lemma, α_0 specifies a natural transformation θ_0 : Map_C $(-,X_0) \to H$, and by construction, θ_0 is surjective for each $t \in T$.

Now we induct: assume we have X_i and α_i specifying a natural transformation θ_i : Map_C $(-,X_i) \to H$. Then, define

$$U_{i+1} := \coprod_{t \in T} \ker(\theta_i(t) \colon \operatorname{Map}_{\mathsf{C}}(t, X_i) \to H(t)). \quad \text{and} \quad K_{i+1} := \coprod_{(f, t) \in U_{i+1}} t.$$

There's a natural map $K_{i+1} \to X_i$ which applies f; let X_{i+1} be its cofiber. Applying H, this produces a map

$$H(X_{i+1}) \longrightarrow H(X_i) \longrightarrow H(K_{i+1}),$$

and by construction, $\alpha_i \mapsto 0$, so by exactness, we can lift to $\alpha_{i+1} \in H(X_{i+1})$. This α_{i+1} specifies a natural transformation θ_{i+1} : Map_C(-, X_{i+1}) $\to H$, and the following diagram commutes:

$$\operatorname{Map}_{\mathsf{C}}(-,X_{i}) \xrightarrow{\theta_{i}} H$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$\operatorname{Map}_{\mathsf{C}}(-,X_{i+1}).$$

Thus we have a tower $\mathbb{N} \to \mathbb{C}$ sending $i \mapsto X_i$, and we can define

$$X := \operatorname{hocolim} X_i$$
,

which we'll show represents H. The **homotopy colimit** in a triangulated category is TODO.

Remark. Though triangulated categories are a good language to know, as they're historically interesting and often useful, they have drawbacks: the octahedral axiom is awkward, for example, and sometimes the triangulated structure works against you.

For this reason, it can be useful to remember that triangulated categories arise as the homotopy categories of stable ∞ -categories, where there's additional versatility simplifying some arguments. For this reason, we use words such as "cofiber" and "homotopy colimit," because they're secretly the same thing.

Exercise 17.7. The homotopy colimit is also called the telescope. Relate this to the usual definition of a telescope.

Anyways, we'll construct a natural transformation θ : Map_C(-,X) \rightarrow H as follows. Since H sends cofiber sequences to long exact sequences, applying it to

$$\coprod_{i} X_{i} \longrightarrow \coprod_{i} X_{i} \longrightarrow X$$

produces a long exact sequence

$$\cdots \longrightarrow H(X) \longrightarrow \prod_i H(X_i) \longrightarrow \prod_i H(X_i) \longrightarrow \cdots,$$

so in particular we can lift the $\alpha_i \in X_i$ to an $\alpha \in X$, which defines θ as before, and there is a commutative diagram

$$\operatorname{Map}_{\mathsf{C}}(-,X_0) \xrightarrow{\theta_0} H.$$

$$\operatorname{Map}_{\mathsf{C}}(-,X)$$

In particular, θ is surjective on T (namely, $\operatorname{Map}_{C}(t,X) \to H(t)$ is surjective for $t \in T$).

To see that θ is injective on T, we use compactness. Let $f \in \operatorname{Map}_{\mathbb{C}}(t,X)$ be such that $\theta(f) = 0$; we wish to show that f = 0. Since t is compact, f lies in some $\operatorname{Map}_{\mathbb{C}}(t,X_i)$, i.e. $f \in \ker(\operatorname{Map}_{\mathbb{C}}(t,X_i) \to H(t))$. Therefore, $f \in U_{i+1}$, so it's killed in X_{i+1} , and thus is 0 in the colimit. Therefore θ is injective on T, hence and isomorphism.

There exists a largest full triangulated subcategory C' of C that's closed under small coproducts and such that $\theta|_{C'}$ is a natural isomorphism; we'll show that C' = C.

Running the whole argument again,⁵⁶ we obtain a $Z \in C'$ and a natural transformation $\widetilde{\theta} : \operatorname{Map}_{C'}(-, Z) \to H$. We know $\operatorname{Map}_{C'}$ and Map_{C} are isomorphic, and proved that θ and $\widetilde{\theta}$ are isomorphisms on the generating set, we can consider the cofiber of

$$\operatorname{Map}_{\mathsf{C}}(-,Z) \longrightarrow \operatorname{Map}_{\mathsf{C}}(-,X).$$

By the Yoneda lemma, such natural transformations are naturally identified with $\operatorname{Map}_{\mathsf{C}}(Z,X)$, and you can compute the cofiber of $Z \to X$ in terms of these maps. This is 0, so $Z \cong X$.

So we've proven that H is representable when restricted to the objects in the generating set T in C. Furthermore, both H and $Hom_C(-,X)$ take coproducts to products and take cofiber sequences to long exact sequences. As a consequence, we can conclude that the full subcategory C' of C on which the natural transformation $\theta: Hom_C(-,X) \to H$ is an isomorphism is a full triangulated subcategory of C which is closed under small coproducts (in C) and contains T.

Therefore, it suffices to show that for any compactly generated triangulated category C, a full triangulated subcategory C' that contains T and has small coproducts must in fact be all of C. We show this as follows. Without loss of generality assume that C' is the smallest full triangulated subcategory containing T and small coproducts; that is, take C' to be the smallest localizing subcategory containing T.

Now fix an object $c \in C$ and consider the functor $\operatorname{Hom}_{C}(-,c)$. Applying the construction from above, we obtain an object z and a natural transformation $\operatorname{Hom}_{C}(-,z) \to \operatorname{Hom}_{C}(-,c)$. By construction, the object $z \in C'$ — each X_i is in C', and so the homotopy colimit is too. Moreover, the map $\operatorname{Hom}_{C}(t,z) \to \operatorname{Hom}_{C}(t,c)$ is an isomorphism for all $t \in T$.

The Yoneda lemma now implies that we have a map $z \to c$ which corresponds to the natural transformation $\operatorname{Hom}_{\mathsf{C}}(-,z) \to \operatorname{Hom}_{\mathsf{C}}(-,c)$. Consider the cofiber c/z. By the previous paragraph and the fact that $\operatorname{Hom}_{\mathsf{C}}(t,-)$ takes triangles to long exact sequences, $\operatorname{Hom}_{\mathsf{C}}(t,c/z)=0$ for all $t\in T$, and so c/z=0. Therefore c and z are isomorphic. Since z is in C' , $c\in \mathsf{C}'$. As c was chosen arbitrarily, we conclude that C and C' coincide.

Next time, we'll discuss what Brown representability means for G-spectra, and use it to define Eilenberg-Mac Lane spectra as the spectra representing certain cohomology theories. One fun fact about G-spectra is that every \mathbb{Z} -graded cohomology theory uniquely extends to an RO(G)-graded cohomology theory by taking shifts, but this is not true for G-spaces!

 $^{^{55}}$ Dissecting what "largest full triangulated subcategory" means requires a little care, but such a C' exists.

 $^{^{56}}$ It's important that we use the same generating set T for this.

⁵⁷Terminology: a triangulated subcategory that is closed under small coproducts (taken in the ambient category) is called **localizing**.

References

- [Ada74] J.F. Adams. Stable Homotopy and Generalized Homology. Chicago Lectures in Mathematics. The University of Chicago Press, 1974.
- [Ada78] J.F. Adams. Infinite Loop Spaces. Number 90 in Annals of Mathematics Studies. Princeton University Press, 1978.
- [Ada84] J.F. Adams. Prerequisites (on equivariant stable homotopy) for Carlssons's lecture. In Ib H. Madsen and Robert A. Oliver, editors, Algebraic Topology Aarhus 1982, chapter 25, pages 483–532. Springer Berlin Heidelberg, 1984. http://people.virginia.edu/~mah7cd/Conferences/Vietnam2013/AdamsPreReqs.pdf.
- [BDS16] Paul Ballmer, Ivo Dell'Ambrogio, and Beren Sanders. Grothendieck-Neeman duality and the Wirthmüller isomorphism. *Composito Mathematica*, 152(8):1740–1776, 2016. https://www.math.ucla.edu/~balmer/research/Pubfile/GN-duality.pdf.
- [BK72] Aldridge K. Bousfield and Daniel M. Kan. *Homotopy Limits, Completions and Localizations*. Number 304 in Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1972. http://link.springer.com/book/10.1007%2F978-3-540-38117-4.
- [Bro62] Edgar H. Brown. Cohomology theories. Annals of Mathematics, 75(3):467-484, 1962. https://www.maths.ed.ac.uk/~aar/papers/brown3.pdf.
- [Day70] Brian Day. Constructions in Biclosed Categories. PhD thesis, University of New South Wales, 1970. http://www.math.mq.edu.au/~street/DayPhD.pdf.
- [DP61] Albrecht Dold and Dieter Puppe. Homologie nicht-additiver Funktoren. Anwendungen. Annales de l'institut Fourier, 11:201–312, 1961. http://www.maths.ed.ac.uk/~aar/papers/doldpupp.pdf.
- [Dre71] A. W. M. Dress. Notes on the theory of representations of finite groups. Part I: The Burnside ring of a finite group and some AGN-applications. Bielfield University, 1971.
- [DW88] William G. Dwyer and Clarence W. Wilkerson. Smith theory revisited. *Annals of Mathematics*, 127(1):191-198, 1988. https://www.jstor.org/stable/pdf/1971419.pdf.
- [EKMM97] Anthony D. Elmendorf, Igor Kriz, M.A. Mandell, and J.P. May. Rings, Modules, and Algebras in Stable Homotopy Theory. Number 47 in Mathematical Surveys and Monographs. American Mathematical Society, 1997.
- [Eve63] Leonard Evens. A generalization of the transfer map in the cohomology of groups. Transactions of the American Mathematical Society, 108(1):54-65, 1963. http://www.ams.org/journals/tran/1963-108-01/S0002-9947-1963-0153725-1/S0002-9947-1963-0153725-1.pdf.
- [FHM03] H. Fausk, P. Hu, and J.P. May. Isomorphisms between left and right adjoints. *Theory and Applications of Categories*, 11(4):107–131, 2003. https://www.emis.de/journals/TAC/volumes/11/4/11-04.pdf.
- [Fre09] Daniel S. Freed. Remarks on Chern-Simons theory. Bulletin of the American Mathematical Society, 46(2):221-254, 2009. http://www.ams.org/journals/bull/2009-46-02/S0273-0979-09-01243-9/S0273-0979-09-01243-9.pdf.
- [GM95] J.P.C. Greenlees and J.P. May. Equivariant stable homotopy theory. In I.M. James, editor, *Handbook of Algebraic Topology*, pages 277–323. North-Holland, Amsterdam, 1995. https://www.math.uchicago.edu/~may/PAPERS/Newthird.pdf.
- [GM13] Bertrand Guillou and J.P. May, Models of G-spectra as presheaves of spectra, 2013, https://arxiv.org/pdf/1110.3571.pdf.
- [Gre71] J.A. Green. Axiomatic representation theory for finite groups. Journal of Pure and Applied Algebra, 1(1):41–77, 1971.
- [HHR16] M.A. Hill, M.J. Hopkins, and D.C. Ravenel. On the nonexistence of elements of Kervaire invariant one. *Annals of Mathematics*, 184(1):1–262, 2016. https://arxiv.org/pdf/0908.3724.pdf.
- [Hir03] Philip S. Hirschhorn. Model Categories and Their Localizations. Number 99 in Mathematical Surveys and Monographs. American Mathematical Society, 2003.
- [Hov99] Mark Hovey. Model Categories. Mathematical surveys and monographs. American Mathematical Society, 1999.
- [HSS00] Mark Hovey, Brooke Shipley, and Jeff Smith. Symmetric spectra. J. Amer. Math. Soc, 13:149-208, 2000. http://www.math.uiuc.edu/K-theory/0265/symm.pdf.
- [III72] Sören Illman. Equivariant Algebraic Topology. PhD thesis, Princeton University, 1972. http://archive.numdam.org/ARCHIVE/AIF/AIF_1973__23_2/AIF_1973__23_2_87_0/AIF_1973__23_2_87_0.pdf.
- [Kel84] G.M. Kelley. Basic Concepts in Enriched Category Theory. Number 64 in Lecture Notes in Mathematics. Cambridge University Press, 1984. http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf.
- [Kuh04] Nicholas J. Kuhn. Tate cohomology and periodic localization of polynomial functors. *Inventiones mathematicae*, 157(2):345–370, 2004. https://arxiv.org/pdf/math/0307173.pdf.
- [Lew91] L. Gaunce Lewis. Is there a convenient category of spectra? *Journal of Pure and Applied Algebra*, 73(3):233–246, 1991.
- [LMS86] L. Gaunce Lewis Jr., J. Peter May, and Mark Steinberger. Equivariant Stable Homotopy Theory. Number 1213 in Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1986. https://www.math.uchicago.edu/~may/B00KS/equi.pdf.
- [Lur09] Jacob Lurie. On the classification of topological field theories. Current Developments in Mathematics, 2008:129–280, 2009. http://www-math.mit.edu/~lurie/papers/cobordism.pdf.
- [Mac78] Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate Texts in Mathematics. Springer-Verlag New York, 1978.
- [Man12] Michael A. Mandell. The smash product for derived categories in stable homotopy theory. *Advances in Mathematics*, 230(4–6):1531–1556, 2012. https://arxiv.org/pdf/1004.0006.pdf.
- [May72] Peter May. The Geometry of Iterated Loop Spaces. Number 271 in Lecture Notes in Mathematics. Springer-Verlag, 1972. https://www.math.uchicago.edu/~may/B00KS/geom_iter.pdf.
- [May87] J. P. May. A generalization of Smith theory. Proceedings of the American Mathematical Society, 101(4):728-730, 1987. https://math.uchicago.edu/~may/PAPERS/57.pdf.
- [May96] Peter May, editor. Equivariant Homotopy and Cohomology Theory, volume 91 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, 1996. https://www.math.uchicago.edu/~may/B00KS/alaska.pdf.

- [May99] Peter May. A Concise Course in Algebraic Topology. Chicago Lectures in Mathematics. The University of Chicago Press, 1999. https://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf.
- [May03] J.P. May. The Wirthmüller isomorphism revisited. *Theory and Applications of Categories*, 11(5):132–142, 2003. https://www.emis.de/journals/TAC/volumes/11/5/11-05.pdf.
- [MM02] M.A. Mandell and J.P. May. Equivariant orthogonal spectra and S-modules. Number 755 in Memoirs of the American Mathematical Society, American Mathematical Society, 2002. https://www.math.uchicago.edu/~may/PAPERS/MMMFinal.pdf.
- [MMSS01] M. A. Mandell, J. P. May, S. Schwede, and B. Shipley. Model categories of diagram spectra. *Proceedings of the London Mathematical Society*, 82(2):441–512, 2001. https://www.math.uchicago.edu/~may/PAPERS/mmssLMSDec30.pdf.
- [Nee96] Amnon Neeman. The Grothendieck duality theorem via Bousfield's techniques and Brown representability. *Journal of the American Mathematical Society*, 9(1):205–236, 1996. https://www.jstor.org/stable/2152846.
- [Rie14] Emily Riehl. Categorical Homotopy Theory. Cambridge University Press, 2014. http://www.math.harvard.edu/~eriehl/cathtpy.pdf.
- [Rie16] Emily Riehl. Category Theory in Context. Aurora: Dover Modern Math Originals. Dover Publications, 2016. http://www.math.jhu.edu/~eriehl/context.pdf.
- [Sch12] S. Schwede. Symmetric spectra. 2012. http://www.math.uni-bonn.de/~schwede/SymSpec-v3.pdf.
- [Sch17] S. Schwede. Global homotopy theory. 2017. http://www.math.uni-bonn.de/~schwede/global.pdf.
- [Sul74] Denis Sullivan. Genetics of homotopy theory and the Adams conjecture. Annals of Mathematics, 100(1):1-79, 7 1974. http://math1.unice.fr/~cazanave/Gdt/ImJ/Sullivan.pdf.
- [Sul77] D. Sullivan. Infinitesimal Computations in Topology. Number 47 in Publications mathématiques de l'I.H.É.S. 1977. http://archive.numdam.org/ARCHIVE/PMIHES/PMIHES_1977__47_/PMIHES_1977__47__269_0/PMIHES_1977__47__269_0.pdf.
- [Sul05] Denis Sullivan. Geometric Topology: Localization, Periodicity, and Galois Symmetry. Number 8 in K-Monographs in Mathematics. Springer Verlag, 2005. http://www.maths.ed.ac.uk/~aar/books/gtop.pdf.
- [Tam93] Daisuke Tambara. On multiplicative transfer. Comm. Algebra, 21(4):1393–1420, 1993.
- [Tho54] René Thom. Quelques propriétés globales des variétés differentiables. PhD thesis, University of Paris, 1954. http://www.maths.ed.ac.uk/~aar/papers/thomcob.pdf.
- [Web00] Peter Webb. A guide to Mackey functors. In M. Hazewinkel, editor, Handbook of Algebra, volume 2 of Handbook of Algebra, pages 805-836. North-Holland, 2000. http://www-users.math.umn.edu/~webb/Publications/GuideToMF.pdf.