Please note that you should type your assignment using either L^AT_EX or Word. Both templates will be provided. **Hand-written assignments will not be graded.** You need to submit a **pdf** version on Gradescope by the due date given.

- 1. (10 points) Check whether the following sentences are propositions or not:
 - (a) (2 points) Taking notes can be helpful.

Yes

(b) (2 points) Golden is the sun.

No

(c) (2 points) How did this happen?

(d) (2 points) A monkey is not a type of animal. Yes

(e) (2 points) Stand up or sit down.

No

- 2. (16 points) Rewrite each of the following statements in the form "If A, then B."
 - (a) (4 points) A door can be opened without a key; therefore it is not locked.

Solution:

If a door can be opened without a key, then it is not locked

(b) (4 points) Playing an instrument well follows from constant practice and dedication.

Solution:

If you constantly practice and are dedicated, then you can play an instrument well

(c) (4 points) You can move a king to a square in chess only if that will not cause it to be captured.

Solution: If it will not result in the king being captured, then you can move a king to that square

(d) (4 points) Being able to drive well is a necessary condition for getting a driver's license.

Solution: If you have a drivers license, then you can drive well.

- 3. (4 points) Several forms of negation are given for each of the following statements. Which one(s) is/are correct?
 - (a) (2 points) It is sunny and it is not raining.
 - A. If it is sunny, then it is raining.
 - B. It is not sunny or it is raining.
 - C. It is not sunny and it's raining.

Solution: B

- (b) (2 points) If I work, I will be tired.
 - A. If I work, then I won't be tired.
 - B. I work, but I am not tired.
 - C. I don't work, but I am tired.

Solution: B

- 4. (20 points) Write truth tables for the following propositions.
 - (a) (10 points) $(\neg B \rightarrow \neg A) \land (A \lor B)$

Solution:

A	В	¬A	¬В	¬B -> ¬A	A \/ B	(¬B -> ¬A)/\(A \/ B)
Т	Т	F	F	Т	T	Т
Т	F	F	Т	F	Т	F
F	Т	Т	F	Т	Т	Т
F	F	Т	Т	Т	F	F

$$(\text{10 points}) \left(A \to (\neg A \vee B) \right) \leftrightarrow (B \wedge A)$$

Solution:

Α	В	¬A	¬A \/ B	A->(¬A \/ B)	(B/\A)	(A->(¬A \/ B) <->(B/\A)
Т	Т	F	T	Т	T	T
Т	F	F	F	F	F	T
F	Τ	Т	T	T	F	F
F	F	Т	F	Т	F	F

- 5. (20 points) Determine whether each of the following propositions is a tautology, satisfiable but not a tautology, or a contradiction. If it is a tautology or a contradiction, please give the proof (truth table or simplification using equivalence laws). If it is satisfiable, please give a truth assignment and a false assignment.
 - (a) (5 points) $(A \lor B \lor \neg A) \to (\neg (C \lor \neg B) \land C)$

Solution: F (Contradiction) $(A \lor \neg A \lor B) \rightarrow (\neg (C \lor \neg B) \land C) \qquad T \rightarrow F$ $(T \lor B) \rightarrow ((\neg C \land B) \land C) \qquad F (Contradiction)$ $T \rightarrow (C \land \neg C \land B)$ $T \rightarrow (F \land B)$

(b) (5 points) $B \rightarrow \neg (A \vee \neg B)$

Solution: Truth argument A is False B is False False argument A is True B is True

A	В	¬В	¬(A \/ ¬B)	B -> (¬(A \/ ¬B))
Т	Т	F	F	F
Т	F	Т	F	T
F	Т	F	Т	T
F	F	Т	F	T

(c) (5 points) $\neg (A \land B) \lor (B \leftrightarrow A)$

Solution: Tautology

Α	В	A <-> B	¬(A /\ B)	¬(A /\ B) \/ (A <-> B)
Т	Т	Т	F	T
Т	F	F	Т	T
F	Т	F	Т	T
F	F	Т	Т	T

(d) (5 points) $(A \leftrightarrow (B \lor C)) \land ((\neg(C \land \neg B) \rightarrow A) \rightarrow \neg A)$

Solution: satisfiable

Truth argument (A B and C are False) False argument (A B and C are True)

ABC ¬A	B\/C *1	A <-> (rBe)	¬(C\/¬B)	rBe->A	rBe ->¬A *2	*1 /\ *2
TTTF	Т	rBe = row before T	F	Т	F	F
TTFF	Т	Т	T	T	F	F
TFTF	Т	Т	F	T	F	F
TFFF	F	F	F	Т	F	F
FTTT	Т	F	F	Τ	Т	F
FTFT	Т	F	Т	F	T	F
FFTT	Т	F	F	T	Т	F
FFFT	F	Т	F	T	Т	T

6. (20 points) Prove the following using a series of equivalence laws (NOT TRUTH TABLES):

(a) (10 points) $((\neg B \land C) \lor (C \land B)) \land (\neg (A \rightarrow \neg B) \lor \neg C) \equiv C \land A \land B$

```
Solution: C \wedge A \wedge B

Proof.

(\neg B \wedge C) \vee (C \wedge B) \equiv C \wedge (\neg B \vee B)

(C) \wedge (T) \equiv C   \wedge   \neg (A \rightarrow \neg B) \equiv (A \wedge B)   \vee   \neg C)

C \wedge (A \wedge B) \vee (C \wedge \neg C)

C \wedge (A \wedge B) \vee (F)

C \wedge A \wedge B
```

(b) (10 points) $((A \rightarrow B) \land (\neg B \rightarrow A)) \lor \neg B$ is a tautology.

```
Solution: Tautology

Proof. \ ((\neg A \lor B) \land (B \lor A)) \lor \neg B
(\neg A \lor B) \land B = B \land (\neg A \land A) \lor (B \land A) = B \land A
B \lor (B \land A) \equiv B
B \lor \neg B
T
Tautology
```

7. (10 points) Simplify the following formula as much as possible (resulting in an **equivalent** formula with as few letters/symbols as possible):

$$(\neg (A \leftrightarrow B) \lor (\neg A \land \neg B)) \lor (A \to C)$$

```
Solution: ¬A∨(¬B∧A)∨C
A↔B≡(A∧B)∨(¬A∧¬B)
¬(A↔B)≡¬(A∧B)∧¬(¬A∧¬B)
(¬A∨¬B)∧(A∨B)
                                                                                  A \rightarrow C \equiv \neg A \lor C
Full so far: (((¬A∨¬B)∧(A∨B))
                                                                                 ∨(¬A∨C)
                                                      ∨(¬A∧¬B))
(\neg A \land A) \lor (\neg A \land B) \lor (\neg B \land A) \lor (\neg B \land B)
                                                      ∨(¬A∧¬B))
                                                                                 ∨(¬A∨C)
         \vee(¬A\wedgeB) \vee(¬B\wedgeA)\vee (F)
                                                      ∨(¬A∧¬B))
                                                                                 ∨(¬A∨C)
                           (\neg A \land B) \lor (\neg B \land A) \lor (\neg A \land \neg B))
                                                                        ∨(¬A∨C)
                                             \neg A \lor (\neg B \land A) \lor (\neg A \lor C)
                                             ¬A∨(¬B∧A)∨C
```