Arbirary CFPQ to Dyck language constrained querying

Semyon Grigorev
Saint Petersburg State University
7/9 Universitetskaya nab.
St. Petersburg, 199034, Russia
semen.grigorev@jetbrains.com, rsdpisuy@gmail.com

This reduction is inspired by construction which is described in [?].

Let we have a context-free grammar $\mathcal{G} = (\Sigma, N, P, S)$ in BNF where Σ is a terminal alphabet, N is a nonterminal alphabet, P is a set of productions, $S \in N$ is a start nonterminal. Also we have a directed labeled graph G = (V, E, L) where $E \subseteq V \times L \times V$ and $L \subseteq \Sigma$.

We should construct new input graph G' and new grammar \mathcal{G}' such that \mathcal{G}' specifies a Dyck language and there is a simple mapping from CFPQ(\mathcal{G}' , \mathcal{G}') to CFPQ(\mathcal{G} , \mathcal{G}). Step-by-step example with description is provided below.

Let the input grammar is

$$S \to a \ S \ b \mid a \ C \ b$$
$$C \to c \mid C \ c$$

Let the input graph is

- 1. Let $\Sigma_{()} = \{t_{(},t_{)}|t \in \Sigma\}.$
- 2. Let $N_{()} = \{N_{()}, N_{)} | N \in N\}.$
- 3. Let $M_{\mathcal{G}} = (V_{\mathcal{G}}, E_{\mathcal{G}}, L_{\mathcal{G}})$ is a directed labeled graph, where $L_{\mathcal{G}} \subseteq (\Sigma_{()} \cup N_{()})$. This graph is created by the same way as described in [?] but it is not required that grammar should be in CNF. Let $x \in V_{\mathcal{G}}$ and $y \in V_{\mathcal{G}}$ is "start" and "final" vertices respectively. This graph may be treated as finite automaton, so it can be minimized and we can compute an ε -closure is input grammar contains ε productions. The graph $M_{\mathcal{G}}$ for our example:

The minimized version:

- 4. For each $v \in V$ create $M_{\mathcal{G}}^v$: unique instance of $M_{\mathcal{G}}$.
- 5. New graph G' is a graph G where each label t replaced with $t^i_{)}$ and some additional edges are created:

- For each $v \in V$ add an edge $(v', S_{(\cdot)}, v)$.
- $\bullet \mbox{ For each } v \in V \mbox{ and respective } M^v_{\mathcal{G}} :$
 - reattach all edges outgoing from x^v ("start" of $M_{\mathcal{G}}^v$) to v;
 - reattach all edges incoming to y^v ("final" of $M_{\mathcal{G}}^v$) to v.

New input graph is ready:

6. New grammar $\mathcal{G}' = (\Sigma', N', P', S')$ where $\Sigma' = \Sigma_{()} \cup N_{()}$, $N' = \{S'\}$, $P' = \{S' \rightarrow b_{(} S' b_{)}; S' \rightarrow b_{(} b_{)} \mid b_{(}, b_{)} \in \Sigma'\} \cup \{S' \rightarrow S' S'\}$ is a set of productions, $S' \in N'$ is a start nonterminal.

Now, if CFPQ($\mathcal{G}', \mathcal{G}'$) contains pair (u_0', v') such that $e = (u_0', S_(u_1') \in E')$ — an extension edge (step 5, first subitem), then $(u_1', v') \in \text{CFPQ}(\mathcal{G}, G)$ In our example we can find the next path: $7 \xrightarrow{S_0} 1 \xrightarrow{S_0} 22 \xrightarrow{b(0)} 25 \xrightarrow{C_0} 26 \xrightarrow{a(0)} 1 \xrightarrow{a(0)} 2 \xrightarrow{C_0} 33 \xrightarrow{C_0} 34 \xrightarrow{c(0)} 2 \xrightarrow{C_0} 33 \xrightarrow{C_0} 43 \xrightarrow{c(0)} 33 \xrightarrow{C_0} 43 \xrightarrow{c(0)} 33 \xrightarrow{C_0} 34 \xrightarrow{c(0)} 33 \xrightarrow{C_0} 34 \xrightarrow{c(0)} 33 \xrightarrow{C_0} 34 \xrightarrow{c(0)} 33 \xrightarrow{C_0} 34 \xrightarrow{c(0)} 33 \xrightarrow{C_0} 33 \xrightarrow{C_0} 34 \xrightarrow{c(0)} 33 \xrightarrow{c(0)} 33 \xrightarrow{c(0)} 33 \xrightarrow{c(0)} 34 \xrightarrow{c$

References

[1] Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. 2017. Optimal Dyck reachability for data-dependence and alias analysis. Proc. ACM Program. Lang. 2, POPL, Article 30 (December 2017), 30 pages. DOI: https://doi.org/10.1145/3158118