Math 357 Long quiz 04

2024–02–14 (W)

Your name:	

Let **Q** denote the field of rational numbers; given a prime $p \in \mathbf{Z}_{>0}$, let $\mathbf{F}_p \cong \mathbf{Z}/(p)$ denote the finite field with p elements; and let t be an indeterminate. For each of the quotient rings below, characterize its algebraic structure as "field", "integral domain but not field", or "ring but not integral domain". Justify your characterization.

$$R_1 = F_5[t]/(t^3 - t^2 + 2t - 1)$$
 $R_2 = Q[t]/(t^3 - t^2 + 2t - 1)$ $R_3 = Q[t]/(t^6 - 300)$

Solution: We analyze each quotient ring in turn.

 R_1 : Ring but not integral domain. Let $f_1=t^3-t^2+2t-1\in F_5[t]$. Because deg $f_1=3$, f_1 is reducible if and only if it has a linear factor $t-\alpha$ for some $\alpha\in F_5$, which we have shown is equivalent to the statement that α is a zero of the function $f_1:F_5\to F_5$. Evaluating the function f_1 at the five elements of F_5 , we find that $f_1(-1)=0$. Thus f_1 is reducible; in fact,

$$f_1 = (t+1)(t^2-2t-1)$$

It follows that t-1 and t^2-2t-1 are zero divisors in R_1 . Hence R_1 is a (commutative) ring that is not an integral domain.

 R_2 : Field. Let $f_2=t^3-t^2+2t-1\in \mathbf{Z}[t]$. We may be tempted to apply the reduction homomorphism corresponding to the proper ideal $(5) \triangleleft \mathbf{Z}$ to f_2 . This gives the polynomial $f_1 \in \mathbf{F}_5[t]$, which we just showed is reducible. However, this does not imply that f_2 is reducible! Indeed, if we apply the reduction homomorphism corresponding to the proper ideal $(2) \triangleleft \mathbf{Z}$, then we get

$$\bar{f}_2 = t^3 + t^2 + 1$$

Because $\deg \bar{f}_2 = 3$, \bar{f}_2 is reducible if and only if it has a linear factor, which is equivalent to the function \bar{f}_2 having a zero in F_2 . It is straightforward to check that the function \bar{f}_2 has no zero in F_2 , so \bar{f}_2 is irreducible, and thus $f_2 \in \mathbf{Z}[t]$ is irreducible. Finally, Gauß's lemma implies that $f_2 \in \mathbf{Q}[t]$ is irreducible. Hence $(f_2) \subseteq \mathbf{Q}[t]$ is maximal, so R_2 is a field.

 R_3 : Field. Let $f_3=t^6-300\in \mathbf{Z}[t]$. Note that $300=2^2\cdot 3\cdot 5^2$. In particular, 3 divides all coefficients of f_3 except the leading coefficient, and 3^2 does not divide the constant term. Thus we may apply the Eisenstein–Schönemann criterion to f_3 using the prime ideal $(3) \triangleleft \mathbf{Z}$ to conclude that f_3 is irreducible in $\mathbf{Q}[t]$. Hence $(f_3) \unlhd \mathbf{Q}[t]$ is maximal, so R_3 is a field.

 $^{^{1}}$ One can check that -1 is the only zero of f_{1} in F_{5} , and that it has multiplicity 1.

 $^{^2}$ An analogous argument works with other proper ideals of **Z**; for example, the principal ideals generated by one of 3,4,6,8,9,10,12,13.