Численные методы Лекция 5

Е.А. Яревский

02 декабря 2020

Минимизация квадратичной формы

Рассмотрим задачу минимизации квадратичной формы,

$$\Phi(\mathbf{x}) = \frac{1}{2} \langle \mathbf{x}, A\mathbf{x} \rangle - \langle \mathbf{x}, \mathbf{b} \rangle.$$

Эта задача эквивалентна решению линейной системы $A\mathbf{x} = \mathbf{b}$. Действительно, пусть \mathbf{x} — минимум. Для любого \mathbf{s}

$$\Phi(\mathsf{x}) \leq \Phi(\mathsf{x}+\mathsf{s}) = \Phi(\mathsf{x}) + \frac{1}{2}\langle \mathsf{s}, A\mathsf{x} \rangle + \frac{1}{2}\langle \mathsf{x}, A\mathsf{s} \rangle + \frac{1}{2}\langle \mathsf{s}, A\mathsf{s} \rangle - \langle \mathsf{s}, \mathsf{b} \rangle.$$

Если матрица A симметрична, то

$$0 \le \langle \mathbf{s}, A\mathbf{x} \rangle - \langle \mathbf{s}, \mathbf{b} \rangle + \frac{1}{2} \langle \mathbf{s}, A\mathbf{s} \rangle = \langle \mathbf{s}, A\mathbf{x} - \mathbf{b} \rangle + \frac{1}{2} \langle \mathbf{s}, A\mathbf{s} \rangle.$$

Положительность выполнена, когда матрица A положительно определена и $A\mathbf{x} - \mathbf{b} = \mathbf{0}$.

Метод сопряжённых направлений

Существуют различные методы поиска минимума $\Phi(x)$:

- координатный спуск, наискорейший (градиентный) спуск...

Рассмотрим метод сопряжённых направлений.

Если матрица A положительно определена и симметрична, то

$$\langle \mathsf{x}, \mathsf{y} \rangle_{A} = \langle \mathsf{x}, A\mathsf{y} \rangle$$

– скалярное произведение. Введем ортонормированный базис $\mathbf{e}_i,\ i=1:m$, в пространстве с нормой $\langle\cdot,\cdot\rangle_A$.

Назовём задаваемые этим базисом направления сопряжёнными.

Если \mathbf{r}_0 – заданная точка, то произвольная \mathbf{r} задаётся как $\mathbf{r} = \mathbf{r}_0 + \sum_{i=1}^m \alpha_i \mathbf{e}_i$. Вычислим

$$\Phi(\mathbf{r}) = \frac{1}{2} \langle \mathbf{r}_0 + \sum_{i=1}^m \alpha_i \mathbf{e}_i, A \mathbf{r}_0 + \sum_{i=1}^m \alpha_i A \mathbf{e}_i \rangle - \langle \mathbf{r}_0 + \sum_{i=1}^m \alpha_i \mathbf{e}_i, \mathbf{b} \rangle =$$

$$= \Phi(\mathbf{r}_0) + \sum_{i=1}^m \left[\frac{1}{2} \alpha_i^2 + \alpha_i \langle A \mathbf{r}_0, \mathbf{e}_i \rangle - \alpha_i \langle \mathbf{b}, \mathbf{e}_i \rangle \right].$$

Нет перекрестных слагаемых – независимая минимизация по всем направлениям. В точке минимума

$$\frac{\partial \Phi}{\partial \alpha_i} = \alpha_i + \langle A\mathbf{r}_0 - \mathbf{b}, \mathbf{e}_i \rangle = 0,$$

тогда $\alpha_i = -\langle A\mathbf{r}_0 - \mathbf{b}, \mathbf{e}_i \rangle$.

Берем произвольный базис в пространстве, и ортогонализуем его в скалярном произведении $\langle *, * \rangle_A$. Например, ортогонализация Грама-Шмидта.

Проблема: нужно хранить ВСЕ вектора, количество операций растет с ростом размерности как \dots ?

Вычислим производную:

$$\Phi(\mathbf{x} + \mathbf{h}) - \Phi(\mathbf{x}) = \langle \mathbf{h}, A\mathbf{x} \rangle - \langle \mathbf{h}, \mathbf{b} \rangle + O(||\mathbf{h}||^2),$$

И

$$\Phi'(\mathbf{x}) = A\mathbf{x} - \mathbf{b}.$$

т.о., минимум квадратичного функционала ищется точно решением линейной системы.

Пусть x_* — точка минимума, а $\{p_i\}$, i=1:n, — некий базис в пространстве. Для любой точки x_0 , разность x_*-x_0 раскладывается по базису:

$$x_* - x_0 = \sum_{i=1}^n \alpha_i p_i, \qquad x_* = x_0 + \sum_{i=1}^n \alpha_i p_i.$$

Каждое следующее приближение вычисляется как

$$x_k = x_0 + \sum_{i=1}^k \alpha_i p_i = x_{k-1} + \alpha_k p_k.$$

Выбираем произвольный вектор x_0 . На каждой итерации находим

$$\alpha_k = \arg\min_{\alpha_k} \Phi(x_{k-1} + \alpha_k p_k).$$

Базисные вектора p_k вычисляются по формулам

$$p_1 = -\Phi'(x_0), \qquad p_{k+1} = -\Phi'(x_k) + \beta_k p_k,$$

где $\Phi'(x) = Ax - b$.

Коэффициенты β_k выбираются так, что вектора p_k и p_{k+1} были ортогональны в новом скалярном произведении:

$$\beta_k = \frac{\langle \Phi'(x_k), p_k \rangle}{\langle A p_k, p_k \rangle}.$$

Для всех векторов в $\langle *, * \rangle_A$ автоматически получаем:

$$\langle p_k, p_m \rangle_A = \langle A p_k, p_m \rangle = 0, \quad \forall k, m, k \neq m.$$

В терминах невязки $r_k = b - Ax_k = -\Phi'(x_k)$, окончательно метод записывается как

$$r_1 = b - Ax_0, \quad p_1 = r_1,$$
 $loop: \quad \alpha_k = \frac{\langle r_k, r_k \rangle}{\langle Ap_k, p_k \rangle},$
 $x_{k+1} = x_k - \alpha_k Ap_k, \quad r_{k+1} = r_k - \alpha_k Ap_k,$
 $\beta_k = \frac{\langle r_{k+1}, r_{k+1} \rangle}{\langle r_k, r_k \rangle},$
 $p_{k+1} = r_{k+1} + \beta_k p_k, \quad \text{endloop}.$

Сходимость

Для симметричной положительно определенной матрицы размерности n, метод сходится к решению системы не более, чем за n шагов (в точной арифметике!).

Более тонкий анализ показывает, что число итераций не превышает m, где m — число различных собственных значений матрицы A.

Вычислительная сложность:

На каждой итерации — $O(n^2)$ операций, основное их количество — умножение матрицы на вектор при вычислении нового скалярного произведения. Суммарная вычислительная сложность метода не превышает $O(n^3)$, так как число итераций не больше n.

Оптимизация скорости сходимости

Вернёмся к процессу

$$x^{k+1} = x^k + H_k(b - Ax^k) = (I - H_kA)x^k + H_kb.$$

Выберем простейший стационарный процесс:

$$H_k \equiv H = \tau I$$
.

Скорость сходимости определяется максимальным по модулю с.з. матрицы I - au A.

Пусть A – положительно определена, тогда $\lambda_i(A)>0$.

Часто бывают известны оценки $0<\mu\leq\lambda_i\leq M<\infty.$

Скорость сходимости определяется величиной

$$q(au) = \max_{\mu \le \lambda \le M} |1 - au \lambda|.$$

Нужно найти такое au, чтобы q(au) было минимально.

Минимальное значение достигается, когда функция $1-\tau\lambda$ меняет знак (как функция λ) на интервале $\mu \leq \lambda \leq M$, и значения на концах равны по модулю:

$$1 - \tau_{opt}\mu = -(1 - \tau_{opt}M).$$

Тогда

$$au_{opt} = 2/(\mu + M),$$
 $q(au_{opt}) = rac{M - \mu}{M + \mu} = rac{\kappa - 1}{\kappa + 1},$

где $\kappa = \kappa^*(A) = M/\mu$ — число обусловленности. Число итераций N_{iter} для уменьшения погрешности в e раз:

$$N_{iter} = 1/(-\ln q).$$

При $\kappa \gg 1$, $N_{iter} \sim \kappa$.

Сходимость метода сопряженных градиентов

Оценка скорости сходимости:

$$||x_k - x_*||_A \le \left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}\right)^{\kappa} ||x_0 - x_*||_A.$$

Число итераций N_{iter} для уменьшения погрешности в e раз:

$$N_{iter}=1/(-\ln q)pprox \sqrt{\kappa}/2$$
 при $\kappa\gg 1.$

Элементарные ортогональные преобразования

Рассмотрим вначале матрицы для N = 2.

Ортогональная матрица называется матрицей вращения, если

$$Q = \left[egin{array}{ccc} \cos heta & \sin heta \ -\sin heta & \cos heta \end{array}
ight].$$

Вектор $y = Q^{\top} x$ получается поворотом x на угол θ против часовой стрелки. Ортогональная матрица называется матрицей отражения, если

$$Q = \left[egin{array}{ccc} \cos heta & \sin heta \ \sin heta & -\cos heta \end{array}
ight].$$

Вектор $y=Q^{\top}x$ получается отражением x относительно прямой, идущей под углом $\theta/2$.

Оба преобразования позволяют обнулять выбранные элементы, 👢 👢 🔊 🔾

Отражения Хаусхолдера

Матрица (отражение) Хаусхолдера (матрица отражений) для ненулевого v:

$$H = I - 2vv^{\top}/v^{\top}v$$
.

Умножение H на x — отражение относительно гиперплоскости, ортогональной v.

Матрица $vv^{\top} = \{v_{ij}\}, \ v_{ij} = v_i v_j.$

Очевидно, что $H = H^{\top}$ и

$$HH^{\top} = \left(I - 2\frac{vv^{\top}}{v^{\top}v}\right)\left(I - 2\frac{vv^{\top}}{v^{\top}v}\right) = I - 4\frac{vv^{\top}}{v^{\top}v} + \frac{4}{(v^{\top}v)^2}vv^{\top}vv^{\top} = I.$$

Преобразование удобно использовать для обнуления выбранных компонент вектора.

Пусть задан вектор x, и мы хотим найти преобразование H такое, чтобы Hx был кратен $e_1 = (1,0,...,0)$ – первому столбцу I.

$$Hx = \left(I - \frac{2vv^{\top}}{v^{\top}v}\right)x = x - \frac{2vv^{\top}x}{v^{\top}v}.$$

T.o. v находится в плоскости, образованной e_1 и x, $v=x+\alpha e_1$.

$$\mathbf{v}^{\mathsf{T}}\mathbf{x} = \mathbf{x}^{\mathsf{T}}\mathbf{x} + \alpha \mathbf{x}_{1}, \quad \mathbf{v}^{\mathsf{T}}\mathbf{v} = \mathbf{x}^{\mathsf{T}}\mathbf{x} + 2\alpha \mathbf{x}_{1} + \alpha^{2}.$$

$$Hx = \left(1 - 2\frac{x^{\top}x + \alpha x_1}{x^{\top}x + 2\alpha x_1 + \alpha^2}\right)x - 2\alpha \frac{v^{\top}x}{v^{\top}v}e_1.$$

Чтобы обнулить коэффициент при x, выбираем $\alpha=\pm||x||_2$. Очень простое представление!

$$v = x \pm ||x||_2 e_1, \quad Hx = \left(I - \frac{2vv^\top}{v^\top v}\right)x = \mp ||x||_2 e_1.$$

Для минимизации погрешности вычисления H выбирают

$$v = x + \operatorname{sign}(x_1)||x||_2 e_1$$
, так что $||v||_2 \ge ||x||_2$.

Умножение на матрицы Хаусхолдера

$$HA = \left(I - \frac{2vv^{\top}}{v^{\top}v}\right)A = A + vw^{\top}, \quad w = \beta A^{\top}v, \quad \beta = -2/v^{\top}v.$$

Для умножения на м.Х. слева (и справа) требуется $\sim N^2$ операций.

QR-разложение

Произвольная матрица A может быть представлена в виде произведения ортогональной Q и верхней треугольной R матриц:

$$A = QR$$
.

Будем приводить матрицу к верхней треугольной с помощью последовательности преобразований Хаусхолдера. Возьмем в качестве вектора x первый столбец матрицы A:

$$x_1 = (a_{11}, a_{21}, \ldots, a_{N1})^{\top}.$$

Умножаем A слева на H_1 , построенную, как описано раньше. Получим $A^{(1)}=H_1A$, у которой первый столбец — нулевой, кроме диагонального элемента a_{11} .

На І-ом шаге определяем блочную матрицу

$$H_I = \begin{bmatrix} I_I & 0 \\ 0 & V_I \end{bmatrix}, \quad A^{(I)} = H_I A^{(I-1)}.$$

Размерность V_I равна N-I+1, она строится по вектору

$$x_{l} = (a_{l,l}^{(l-1)}, a_{l+1,l}^{(l-1)}, \dots, a_{N,l}^{(l-1)})^{\top}.$$

После ${\it N}-1$ шага получаем правую треугольную матрицу

$$A^{(N-1)} = H_{N-1}H_{N-2} \dots H_1A = HA.$$

Умножаем на H^{\top} ,

$$A = H^{\top} A^{(N-1)},$$

получаем требуемое равенство.

Количество операций $\sim 4/3~N^3$ (как решение СЛАУ).

Матрицы Хессенберга (почти треугольные м.)

Матрица A называется верхней матрицей Хессенберга (правой почти треугольной), если $a_{ij}=0$ при j< i-1 (т.е. нижняя субдиагональ – ненулевая).

Приведение к верхней матрице Хессенберга.

Строим последовательность матриц $A^{(I)}$ таких, что первые I столбцов матрицы $A^{(I)}$ имеют вид первых I столбцов верхней матрицы Хессенберга, $a_{ij}=0$ при j< i-1 и $j\leq I$.

По элементам I+1 столбца матрицы $A^{(I)}$ строим матрицу отражений H_{I+1} так, чтобы в матрице $B=H_{I+1}A^{(I)}$ элементы $b_{1,I+1},b_{2,I+1},\ldots,b_{I,I+1}$ были те же, что в $A^{(I)}$,

а $b_{l+3,l+1},\ldots,b_{N,l+1}$ — нулевыми.

Определим $A^{(l+1)} = H_{l+1}A^{(l)}H_{l+1}$.

Умножение справа на H_{l+1}^{\top} не меняет первые l+1 столбцов B, так что требуемый вид сохраняется.

Получаем подобные матрицы $A^{(I)}$, вплоть до $A^{(N-1)}$.

Если матрица A симметрична: то

$$(A^{(l+1)})^{\top} = H_{l+1}(A^{(l)})^{\top}H_{l+1},$$

и все матрицы $A^{(I)}$ симметричны.

Т.о., матрица $A^{(N-1)}$ является трёхдиагональной.

Количество операций для приведения – $O(N^3)$.

Литература

- 1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М., *Численные методы*, М.: Бином. Лаборатория знаний, 2012. 636 с. Параграфы 6.1 6.2, 6.6, 6.7, 6.11.
- 2. Голуб Д.Х, Ван Лоун Ч.Ф., *Матричные вычисления*, М.: Мир, 1999. 548 с. Параграфы 5.2, 8.2, 9.1.