Problem Set 2 CHEM 30200

2 Magnetism and More Spectroscopy

- 3/3: 1. You propose that you have made a terminal amide (NH₂) complex. You observe two stretching frequencies in the IR spectrum at 2400 cm⁻¹ and 2330 cm⁻¹.
 - (a) Do you have one or two complexes? Rationalize this based on symmetry.
 - (b) If you deuterate this complex, where should the N-D stretches come?
 - 2. Copper (II) acetate is a dimer and the two Cu atoms strongly interact. The EPR spectrum consists of seven lines with intensities of 1:2:3:4:3:2:1. Copper nuclei have I=3/2, and copper acetate consists of a ground state singlet with an accessible triplet excited state. Explain the number and relative intensity of the observed signals.
 - 3. The intensities and frequencies (vs. H_3PO_4) of resonances in the 121.4 MHz $^{31}P\{^{1}H\}$ NMR spectrum of $Pt(PPh_3)\{\eta^3-N(CH_2CH_2PPh_2)_3\}$ are listed below. Determine the chemical shifts (i.e., δ values) and coupling constants, and draw the structure.

Frequency	Intensity
-3393.4	7.8
-3313.5	7.7
-1484.8	31.1
-1404.9	31.3
-833.3	0.7
-753.5	1.9
-673.4	2.0
-593.6	0.6
263.7	7.9
343.7	7.7
1385.5	2.6
1465.6	7.8
1545.8	7.6
1625.6	2.7
3604.5	0.7
3684.6	1.9
3764.4	1.9
3844.7	0.6

- 4. Predict the spin state, μ_{eff} , and χT values for the following ions in the indicated geometry.
 - (a) Tetrahedral Mn(II).
 - (b) Octahedral Ir(III).
 - (c) Octahedral Ru(III).
 - (d) Square planar Co(I).
 - (e) Square planar Pt(II).
 - (f) Octahedral Ni(II).
 - (g) Tetrahedral Cr(0).
- 5. Predict whether the following high-spin ions should have an isotropic EPR g-value greater than, equal, or less than 2.
 - (a) Cu(II).
 - (b) Cr(V).

Problem Set 2 CHEM 30200

- (c) Mn(II).
- (d) Fe(III).
- (e) Co(II).
- 6. If you were handed two vials, one with ferrocene and one with ferrocenium, how could you use XAS and Mossbauer to determine which was which?
- 7. (a) Name 3 pieces of structural information you can get from a K-edge EXAFS spectrum on an unknown TM complex with at least one phosphine ligand.
 - (b) A Mossbauer spectrum of an FeL₅ complex shows two signals with differing isomer shifts and quadrupole splittings. Offer an explanation for this.
- 8. Draw a clearly labeled diagram representing the expected EPR spectrum of an aqueous 63 Cu²⁺ ion (I=3/2) at room temperature. Clearly indicate the position of the isotropic g-value.
- 9. The EPR spectrum of an axially symmetric Cu^{2+} complex in a frozen solution that is 100% ⁶³Cu consists of three well-resolved low field g-parallel components, a fourth component of the multiplet that overlaps the g-perpendicular signal, and some higher field lines. The minima between the four largely resolved components appear at 2720 G, 2810 G, and 2900 G. Given this information and a spectrometer frequency of $9.12\,\mathrm{GHz}...$
 - (a) Compute the value of g_{\parallel} ;
 - (b) Compute the hyperfine coupling constant.
- 10. The structure of the active site of carbon monoxide dehydrogenase was determined from XAS data to be

$$\begin{pmatrix} S & \parallel & S & \\ Mo & & Cu \end{pmatrix}$$
 OH

- (a) Indicate how you could identify the heavy atoms with XANES or EXAFS data, the oxidation state of these atoms, and the coordination environment.
- (b) Your results tell you that the oxidation states of Mo and Cu are 6+ and 1+, respectively. How could you determine the protonation state of the hydroxide (OH or OH₂) with ENDOR spectroscopy?
- 11. For the following fragments, predict the χT and $\mu_{\rm eff}$ values for anti-ferromagnetic, ferromagnetic, and uncoupled scenarios. Using the indicated room temperature χT or $\mu_{\rm eff}$ values, predict the coupling in these fragments. Assume no contributions from spin-orbit coupling.
 - (a) $Cu^{II} X Cu^{II}$, $\chi T = 0.4 \text{ cm}^3 \text{ K mol}^{-1}$.
 - (b) $Ni^{II} X Cr^{II}$, $\chi T = 4.4 \text{ cm}^3 \text{ K mol}^{-1}$.
 - (c) Fe^{III} X Fe^{III}, $\mu_{\rm eff} = 8.4 \, \mu_{\rm B}$.
 - (d) $\text{Fe}^{\text{II}} \text{X} \text{Fe}^{\text{III}}, \chi T = 11 \,\text{cm}^3 \,\text{K} \,\text{mol}^{-1}.$
- 12. You synthesize a series of new metal oxides with each metal center in an O_h coordination environment. The two metals alternate in an edge-sharing AB. You note that when A = Ti(III) and B = Cu(II), the material exhibits strong ferromagnetic exchange. However, when A = Fe(III), a strong antiferromagnetic exchange is observed. Rationalize these two observations.