Demostración. Veamos la primera parte. Dado $p \in V$, sabemos que, si $t \in [0,1]$, $\gamma_p(t) = \gamma_v(t) = \exp_{p_0}(t\mathbf{v})$ es la geodésica maximal para el (único) vector \mathbf{v} tal que $\exp_{p_0}(\mathbf{v}) = p$. Sea $\alpha : [a,b] \longrightarrow V$ con $\alpha(a) = p_0$ y $\alpha(b) = p$ otra curva cualquiera.

$$L_0^1(\gamma_p) = \int_0^1 |\gamma_p'(t)| \, dt = \int_0^1 |\gamma_v'(t)| \, dt = \int_0^1 |\gamma_v'(0)| \, dt = |\mathbf{v}|.$$

Vamos a demostrar que $L_a^b(\alpha) \ge |\mathbf{v}|$. Para ello, distinguimos dos casos.

- i) Supongamos en primer lugar que $p=p_0$. En tal caso, $\mathbf{v}=\mathbf{0}$, por lo que, trivialmente, $L_a^b(\alpha) \geq 0 = |\mathbf{v}|$. Además, si $L_a^b(\alpha) = 0$, entonces α es constante; y como $\alpha(a) = p_0$, podemos concluir que $\alpha \equiv p_0 \equiv \gamma_p$.
- ii) Supongamos por tanto que $p \neq p_0$. Por comodidad, reparametrizamos α de manera que $\alpha(0) = p_0$ y $\alpha(1) = p$. Como $\alpha(0) = p_0 \neq p = \alpha(1)$, existirá un $t_0 \geq 0$ tal que $\alpha(t_0) = p_0$ y $\alpha(t) \neq p_0$, para todo $t > t_0$. Tomamos entonces $\alpha|_{[t_0,1]}$. Claramente, $L_0^1(\alpha) \geq L_{t_0}^1(\alpha|_{[t_0,1]})$, por lo que es suficiente trabajar con el trozo de curva $\alpha|_{[t_0,1]}$ y ver que $L_{t_0}^1(\alpha|_{[t_0,1]}) \geq |\mathbf{v}| = L_0^1(\gamma_p)$. Hemos «suprimido» así un posible intervalo en el que, o bien α es constantemente igual a p_0 , o bien α es un lazo, esto es, sale de p_0 y vuelve a pasar por dicho punto más adelante. Volvemos entonces a reparametrizar $\alpha|_{[t_0,1]}$ para que $\alpha(0) = p_0$ y $\alpha(1) = p$. Ahora se verifica además la condición adicional de que $\alpha(t) \neq p_0$, para todo t > 0.

Como V es entorno normal de p_0 , sabemos que $V=\exp_{p_0}(U)$, siendo $U\subset D_{p_0}$ el entorno estrellado del origen $\mathbf{0}$ de $T_{p_0}S$ para el cual $\exp_{p_0}|_U:U\longrightarrow V$ es un difeomorfismo. Tomamos entonces la curva en el tangente

$$\widetilde{\alpha}(t) = \left(\exp_{\mathbf{p}_0}|_U\right)^{-1} \left(\alpha(t)\right) \in U \subset D_{p_0}.$$

Obsérvese en primer lugar que $\widetilde{\alpha}(t) \neq \mathbf{0}$ si t > 0; en efecto, si $\widetilde{\alpha}(t) = \mathbf{0}$ para algún t > 0, se tendría que $\alpha(t) = \exp_{p_0}(\mathbf{0}) = p_0$, una contradicción. Definimos entonces las funciones

$$\begin{cases} r(t) := \left| \widetilde{\alpha}(t) \right| > 0 & \text{si } t > 0, \\ r(0) := 0, & y & V(t) = \frac{\widetilde{\alpha}(t)}{\left| \widetilde{\alpha}(t) \right|} = \frac{\widetilde{\alpha}(t)}{r(t)} & \text{si } t > 0. \end{cases}$$

Claramente, |V(t)|=1, por lo que $\langle V'(t),V(t)\rangle=0$; esto es, V(t) y V'(t) son ortogonales. Además, $\alpha(t)=\exp_{p_0}|_{U}(\widetilde{\alpha}(t))=\exp_{p_0}(r(t)V(t))$. Derivando esta expresión se tiene

$$\alpha'(t) = d(\exp_{p_0})_{r(t)V(t)} (r'(t)V(t) + r(t)V'(t))$$

= $r'(t)d(\exp_{p_0})_{r(t)V(t)} (V(t)) + r(t)d(\exp_{p_0})_{r(t)V(t)} (V'(t)),$

y finalmente, tomando módulos y aplicando el lema de Gauss 5.3.6, obtenemos

$$\begin{aligned} \left| \alpha'(t) \right|^2 &= r'(t)^2 \left| d(\exp_{p_0})_{r(t)V(t)} \left(V(t) \right) \right|^2 + r(t)^2 \left| d(\exp_{p_0})_{r(t)V(t)} \left(V'(t) \right) \right|^2 \\ &+ 2r(t)r'(t) \left\langle d(\exp_{p_0})_{r(t)V(t)} \left(V(t) \right), d(\exp_{p_0})_{r(t)V(t)} \left(V'(t) \right) \right\rangle \\ &= r'(t)^2 \left| V(t) \right|^2 + r(t)^2 \left| d(\exp_{p_0})_{r(t)V(t)} \left(V'(t) \right) \right|^2 + 0 \\ &= r'(t)^2 + r(t)^2 \left| d(\exp_{p_0})_{r(t)V(t)} \left(V'(t) \right) \right|^2 \ge r'(t)^2, \text{ para todo } t \in (0, 1]. \end{aligned}$$

Por tanto, $|\alpha'(t)| \ge |r'(t)| \ge r'(t)$ para todo $t \in (0,1]$. Si ahora calculamos la longitud de α , usando la desigualdad anterior se obtiene el resultado buscado:

$$L_0^1(\alpha) = \int_0^1 |\alpha'(t)| dt = \lim_{\varepsilon \to 0} \int_{\varepsilon}^1 |\alpha'(t)| dt \ge \lim_{\varepsilon \to 0} \int_{\varepsilon}^1 r'(t) dt = \lim_{\varepsilon \to 0} (r(1) - r(\varepsilon))$$
$$= r(1) - r(0) = |\widetilde{\alpha}(1)| = \left| (\exp_{p_0}|_U)^{-1} (\alpha(1)) \right| = \left| (\exp_{p_0}|_U)^{-1} (p) \right| = |\mathbf{v}|.$$

Para concluir la demostración de la primera parte del teorema falta caracterizar la igualdad. Si $L^1_0(\alpha) = L^1_0(\gamma_p) = |\mathbf{v}|$, debe darse la igualdad en todas las desigualdades anteriores. Así, $L^1_0(\alpha) = L^1_0(\gamma_p)$ si, y sólo si, |r'(t)| = r'(t) y $|d(\exp_{p_0})_{r(t)V(t)}(V'(t))| = 0$, lo cual es equivalente a su vez a que r'(t) > 0 y $d(\exp_{p_0})_{r(t)V(t)}(V'(t)) = \mathbf{0}$ para todo $t \in (0,1]$. Como $\exp_{p_0}|_U$ es un difeomorfismo en U y $r(t)V(t) \in U$, entonces $d(\exp_{p_0})_{r(t)V(t)}$ es un isomorfismo lineal. Luego $d(\exp_{p_0})_{r(t)V(t)}(V'(t)) = \mathbf{0}$ si, y sólo si, $V'(t) = \mathbf{0}$ para todo $t \in (0,1]$, es decir, si V(t) es constante, siendo $V(t) = V(1) = \widetilde{\alpha}(1)/|\widetilde{\alpha}(1)| = \mathbf{v}/|\mathbf{v}|$. Así,

$$\alpha(t) = \exp_{\mathbf{p}_0}\left(r(t)V(t)\right) = \exp_{\mathbf{p}_0}\left(r(t)\frac{\mathbf{v}}{|\mathbf{v}|}\right) = \gamma_{\nu}\left(\frac{r(t)}{|\mathbf{v}|}\right) = \gamma_{p}\left(\frac{r(t)}{|\mathbf{v}|}\right),$$

donde, recordemos, r(0) = 0 y $r(1) = |\widetilde{\alpha}(1)| = |\mathbf{v}|$. Por tanto, $\alpha(t)$ es una reparametrización monótona (pues $r'(t) \ge 0$) del segmento de geodésica γ_p .

Probamos ahora la segunda parte del teorema. Sea r>0 de forma que el disco $D(p_0,r)\subset V(p_0)$, y sea $p\in D(p_0,r)$. Tenemos que demostrar que $L_0^1(\gamma_p)\leq L_a^b(\alpha)$, para $\alpha:[a,b]\longrightarrow S$ uniendo p_0 y p. Reparametrizamos de nuevo la curva α para que $\alpha(0)=p_0$ y $\alpha(1)=p$. Si $\alpha\big([0,1]\big)\subset D(p_0,r)\subset V$, entonces la primera parte del teorema nos asegura que $L_0^1(\alpha)\geq L_0^1(\gamma_p)$. Vamos a suponer, por tanto, que la imagen de la curva α se sale del disco $D(p_0,r)$. Sea de nuevo $\mathbf{v}\in U$ el (único) vector verificando que $p=\exp_{\mathbf{p}_0}(\mathbf{v})$.

Como el punto $p \in D(p_0,r) = \exp_{p_0}(D(\mathbf{0},r))$, se tiene que $\mathbf{v} \in D(\mathbf{0},r)$, es decir, $|\mathbf{v}| < r$. Sea entonces $r^* > 0$ tal que $|\mathbf{v}| < r^* < r$, lo que nos asegura que $p \in D(p_0,r^*)$. Representamos por t_0 el primer valor del parámetro en el que la curva α se sale del disco $D(p_0,r^*)$, esto es,

$$t_0 = \inf\{t \in [0,1] : \alpha(t) \not\in D(p_0,r^*)\}.$$

Entonces, $\alpha([0,t_0]) \subset D(p_0,r) \subset V$, y además, en los extremos α verifica $\alpha(0) = p_0$ y $\alpha(t_0) =: p^* \in S(p_0,r^*) \subset D(p_0,r)$ (véase la figura 5.8). Bajo tales condiciones, la primera parte del teorema asegura que $L_0^{t_0}(\alpha|_{[0,t_0]}) \geq L_0^1(\gamma_{p^*})$, donde, como ya es habitual, γ_{p^*} representa el segmento de geodésica radial que une $p_0 = \gamma_{p^*}(0)$ con $p^* = \gamma_{p^*}(1)$, (véase la figura 5.8). Denotemos por $\mathbf{v}^* = \gamma_{p^*}'(0)$. Entonces,

$$L_0^{t_0}(\alpha|_{[0,t_0]}) \ge L_0^1(\gamma_{p^*}) = \int_0^1 |\gamma_{p^*}'(t)| dt = \int_0^1 |\mathbf{v}^*| dt = |\mathbf{v}^*| = \left| \left(\exp_{\mathbf{p}_0} |_U \right)^{-1}(p^*) \right| = r^*;$$
 por lo tanto,

$$L_0^1(\alpha) \ge L_0^{t_0}(\alpha|_{[0,t_0]}) \ge r^* > |\mathbf{v}| = L_0^1(\gamma_p),$$

como se quería demostrar.

Figura 5.8: γ_p minimiza la longitud en los discos geodésicos.