Chapter 1

ε-δ論法と極限

ここまでのこの本では、極限というものを厳密に定義していなかった。また、微分と積分において、イメージで導出できることを最重視し、厳密な議論を避けた箇所が多くある。

厳密には、極限は ε - δ 論法によって定義され、微分積分の基礎理論は極限の議論に基づいている。 ε - δ 論法に踏み込んでいない私たちは、極限というものを語る言葉をまだ持ち合わせていない。

1.1 実数の集合

厳密な理論を展開する上で、知っておくべき言葉の定義を行う。

1.1.1 区間

2つの実数の間の範囲は、区間と呼ばれる。

区間は、端点を含むかどうかによって、開区間、閉区間、半開区間に分類される。

開区間

端点を含まない区間を開区間という。

開区間 $a \le x \le b$ となる実数 x の集合を 開区間 といい、(a,b) と表す。

閉区間

端点を含まない区間を閉区間という。

半開区間

一方の端点を含み、他方の端点を含まない区間を半開区間という。

1.2. 数列の極限 3

1.2 数列の極限

微分を定義するには関数の極限を考えるが、関数の極限の諸性質は、数列の極限から導かれる。 まずは、 $\varepsilon-\delta$ 論法(数列の場合は $\varepsilon-N$ 論法とも呼ばれる)によって数列の極限を定義し、その 性質をひとつひとつ確かめていこう。

1.2.1 εで「一致」をどう表現するか

「限りなく近づく」という表現では、「限りなく」の部分に無限という概念が含まれてしまう。 有限の値 ϵ を使って、無限を表現しようとするのが ϵ - δ 論法である。

* * *

 ε - δ 論法で極限を定義する前に、有限値 ε を使った議論の例を見てみよう。

実数は連続である(数直線には穴がない)ため、 $a \, C \, b$ が異なる実数であれば、 $a \, C \, b$ の間には無 数の実数が存在する。

つまり、aとbが異なる限り、その間の距離 |a-b| は絶対に0にはならない。

|a-b| が 0 にならないということは、ここでも実数の連続性によって、|a-b| より小さい実数が存 在してしまう。

たとえば、 $a \ge b$ の間の中点 $x = \frac{|a-b|}{2}$ は、|a-b| よりも小さい。

a と b の間の中点というと $\frac{a-b}{2}$ だが、正の数 ε と比較するため、絶対値をつけて $\frac{|a-b|}{2}$ としている

|a-b| より小さい実数が存在してしまうと、「任意の」 $\varepsilon > 0$ に対して、 $|a-b| < \varepsilon$ を成り立たせる ことができない。

 ε はなんでもよいのだから、|a-b|より小さい実数を ε として選ぶこともできてしまう。 しかし、|a-b| より小さい実数を ε としたら、 $|a-b| < \varepsilon$ は満たされない。

|a-b| が 0 でないという状況下では、あらゆる実数 ε より |a-b| を小さくすることは不可能である。 したがって、 $|a-b| < \varepsilon$ を常に成り立たせるなら、|a-b| = 0、すなわち a = b となる。

ここまでの考察から直観を取り除いて、この定理の数学的な証明をまとめておこう。

1.2. 数列の極限 5

Proof: 有限値 ε の不等式による一致の表現

 $a \neq b$ と仮定する。

 $\varepsilon_0 = \frac{|a-b|}{2}$ とおくと、絶対値 |a-b| が正の数であることから、 ε_0 も正の数となる。 よって、 $|a-b|<\varepsilon_0$ が成り立つので、

$$|a-b|<rac{|a-b|}{2}$$

 $2|a-b|<|a-b|$
 $2|a-b|-0$
 $|a-b|<0$

絶対値が負になることはありえないので、 $a \neq b$ の仮定のもとでは矛盾が生じる。 したがって、a = bでなければならない。 \Box