Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут»

Розрахункова робота

з курсу "Електропривод і електропостачання"

на тему: **РОЗРАХУНОК ТА ВИБІР ЕЛЕКТРИЧНОЇ МЕРЕЖІ КАР'ЄРУ**

Варіант №6

Виконав:

Студент 4 курсу, IEE

гр.ОБ-11

Павленко М.О.

Перевірив: доц. Зайченко С.В.

3MICT

Вступ

- 1. Розрахунок та вибір живлячої мережі
- 2. Розрахунок електричних навантажень та вибір трансформаторів
- 3. Розрахунок та вибір електричних мереж
- 4. Вибір апаратів управління
- 5. Розрахунок та вибір захисного заземлення
- 6.Розрахунок техніко економічних показників
- 7.Література

·				
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання згідно варіанту 7

Схема електропостачання кар'єра

Змн.	Арк.	№ докум.	Підпис	Дата

Таблиця 1

Nº	Lж, км	L,к м	І,км	E1	E2	Е3	СБ-1	Рос б, кВт	Н,к Вт	К,к Вт	СБ2
1	2	3	4	5	6	7	8	9	10	11	12
6	6	0,6	150	EIII- 20/55	EP- 500	E- 2001	2СБШ- 200	100	100	100	СБО- 20

1. Розрахунок та вибір живлячої мережі

Визначаємо напругу живлення ЛЕП орієнтовно за формулою:

$$U = 4.34 \times \sqrt{\text{L} + 0.16 \times P} = 4.34 \times \sqrt{6 + 0.16 \times 1466.65} = 67.32 \text{kB}$$

де L_{κ} – довжина живлячої лінії, км (L=6 км відповідно до варіанту); P – активна потужність, кBт.

Визначення електричного навантаження ГПП:

$$S_P^{\Pi\Pi\Pi} = K_{\Pi M} \times \sqrt{(\Sigma P)^2 + (\Sigma Q)^2} = 0,93 \times \sqrt{1466,65^2 + 1416^2} = 1895,95 \text{ кВ} \times \text{А}$$
 де $\sum P_p$ і $\sum Q_p$ — сума відповідних потужностей по всьому обладнанню; K_{HM} — коефіцієнт для електроприймачів кар'єру на шинах ГПП (K_{HM} = 0,93). Вибираємо трансформатор ТМН .

Обираємо одну повітряну ЛЕП:

$$I_p = \frac{S_p}{\sqrt{3} \times U} = \frac{1895,95}{\sqrt{3} \times 220} = 5 A$$

Густина струму $j_{ek} = 2,5 \ A/_{MM^2}$

$$S = \frac{I_p}{j_{ek}} = \frac{5}{2.5} = 2$$
MM²

Приймаємо дріт повітряної ЛЕП А-4 перерізом 5 мм²; $I_{\text{доп}} = 42 \text{ A}$

2. Розрахунок електричних навантажень та вибір трансформаторів

Визначення електричних навантажень і вибір потужностей трансформаторів здійснюються за наступними формулами:

$$P_p = K_n \times \sum P_{n_i}$$
, кВт

$$K_n = 0.43 + 0.57 \times \frac{P_{\text{H}}.\text{ M.}}{\sum P_{n_i}} = 0.43 + 0.57 \times \frac{200}{100 + 200 + 200} = 0.715$$

						Арк.
					Розрахунок та вибір електричної мережі кар'єру	4
Зм	н. Арк.	№ докум.	Підпис	Дата		4

$$P_p = 0.715 \times 100 + 100 + 200 = 286$$
кВт

Середньозважений коефіцієнт потужності

$$\cos \varphi = \frac{\sum (P_{n_i} \times \cos \varphi)}{P_{n_i}} = \frac{100 \times 1 + 100 \times 0.7 + 200 \times 0.75}{100 + 100 + 200} = 0.9$$

де $\cos \varphi_P = 1$ – для освітлення;

 $\cos \varphi_H = 0.7$ – для бурових верстатів;

 $\cos \varphi_K = 0.75$ - для стрічкових конвеєрів.

Приймачі		$ m P_{\scriptscriptstyle H},$		Коефіцієнти			Розрахункова потужність			
електрое нергії	Кількість	Встановлена потужність Р _н , кВт	Кп	ŋ	cos φ	tg φ	$P_{pi} = K_{\Pi i} \cdot \sum_{i=1}^{n} P_{H i}$ $\kappa \mathbf{B} \mathbf{T}$	$Q_{\delta^{3}} = \frac{\sum P_{i^{3}} \cdot tgq}{\eta}$ KBap	$\rho_{p}S_{p}$, kBA	
1	2	3	4	5	6	7	8	9	10	
ПП1 ЕШ-20/55	1	560	0,69	0,8	0,9	0,48	386,4	336	512,05	
ПП2 EP-500	1	520	0,65	0,78	0,9	0,48	338	320	465.45	
УТП Н Р К	1 1 1	100 100 200	0,71 0,71 0,71	0,97 0,97 0,97	0,7 1 0,75	0,67 0,67 0,67	71 71 142	69.07 69.07 138.14	99.05 99.05 198.1	
ПКТП1 2СБУ- 200	1	300	0,6	0,89	0,87	0,5	180	168,5	246.56	
ПП3 E-2001	1	92	0,5	0,84	0,87	0,57	46	52.44	69.75	
ПКТП2 СБО-20	1	300	0,7	0,92	0,84	0,6	210	257,14	331.99	
Всього							1466,65	1416	2022	

Змн.	Арк.	№ докум.	Підпис	Дата

Розраховуємо реактивну потужність Р, Н і К:

$$Q_{p_P}=rac{P_n imes tg arphi_n}{\eta}=rac{100 imes 0,67}{0,97}=69,07$$
 квар $Q_{p_H}=rac{P_n imes tg arphi_n}{\eta}=rac{100 imes 0,67}{0,97}=69,07$ квар $Q_{p_K}=rac{P_n imes tg arphi_n}{\eta}=rac{200 imes 0,67}{0,97}=138,14$ квар

Повна розрахункова потужність Р, Н і К:

$$S_{p_P} = \sqrt{P_{p_P}^2 + Q_{p_P}^2} = \sqrt{71^2 + 69.07^2} = 99.05 \text{ kB} \times \text{A}$$

$$S_{p_H} = \sqrt{P_{p_H}^2 + Q_{p_H}^2} = \sqrt{71^2 + 69.07^2} = 99.05 \text{ kB} \times \text{A}$$

$$S_{p_K} = \sqrt{P_{p_K}^2 + Q_{p_K}^2} = \sqrt{142^2 + 138.14^2} = 198.1 \text{ kB} \times \text{A}$$

Розраховуємо повну загальну розрахункову потужність:

$$P_{P_{\Sigma}} = P_{p_P} + P_{p_H} + P_{p_K} = 71 + 71 + 142 = 284 \text{ кВт}$$

$$Q_{p_{\Sigma}} = Q_{p_P} + Q_{p_H} + Q_{p_K} = 51,\!8 + 103,\!6 + 103,\!6 = 276,\!28 \text{ квар}$$

$$S_{p_{\Sigma}} = S_{p_P} + S_{p_H} + S_{p_K} = 78,\!7 + 157,\!4 + 157,\!4 = 396,\!2 \text{ кВ} \times \text{A}$$

Вибір потужності трансформатора

Для ПКТП1:

$$S_P = \sqrt{(P_P + \Delta P_{\text{Tp}})^2 + (Q_P + \Delta Q_{\text{Tp}})}$$

$$S_P = \sqrt{(180 + 8)^2 + (168.5 + 40)^2} = 280,74 \text{ kB} \times A$$

Де
$$\Delta P_{\text{тр}} = 0.02 \times S_{\text{н.т.}} = 0.02 \times 400 = 8 \text{ кВт}$$

$$\Delta Q_{ ext{ iny Tp}} = 0$$
,1 $imes$ $S_{ ext{ iny H.T.}} = 0$,1 $imes$ 400 $=$ 40квар

 $S_{\text{н.т.}} = 400$ — номінальне значення трансформатора

Для УТП:

$$S_P = \sqrt{(284 + 12.6)^2 + (276.28 + 63)^2} = 450.64 \text{ kB} \times \text{A}$$

 $\Delta P_{\text{Tp}} = 0.02 \times S_{\text{H.T.}} = 0.02 \times 630 = 12.6 \text{ kBT}$

$\Delta Q_{\rm Tp}=0.1\times S_{\rm \scriptscriptstyle H.T.}=0,$	$1 \times 630 = 63$ квар
--	--------------------------

Змн.	Арк.	№ докум.	Підпис	Дата

 $S_{\text{н.т.}} = 630$ — номінальне значення трансформатора

Згідно розрахованих значень вибираємо трансформатори (табл. 1.2).

Таблиця 1.2 Марки трансформаторів для робочого обладнання.

No	Розрахункове	S_p	Марка
Дільниці	S_p , $K_B \cdot A$	трансформа-	трансформатора
	•	тора, Кв-А	
ПКТП 1	280.74	400	TM 400
УТП	450.64	630	TM 630

3. Розрахунок та вибір електричних мереж

3.1.

Для ЕШ-20/55:
$$I_P = \frac{K_n \times \sum P_n}{\sqrt{3} \times U \times \cos \varphi} + \frac{K_n \times \sum S_{\text{H.T.}}}{\sqrt{3} \times U} = \frac{0.69 \times 386.4}{\sqrt{3} \times 6 \times 0.9} + \frac{0.69 \times 465.45}{\sqrt{3} \times 6} = 34,23 \text{ A}$$

$$I_p \le I_{\pi} 34,23 \le 49$$

 $I_{\pi}=49$ - допустиме значення струму, A;

Для **EP-500:**
$$I_P = \frac{K_n \times \sum P_n}{\sqrt{3} \times U \times \cos \varphi} + \frac{K_n \times \sum S_{\text{H.T}}}{\sqrt{3} \times U} = \frac{0.65 \times 338}{\sqrt{3} \times 6 \times 0.9} + \frac{0.65 \times 375.96}{\sqrt{3} \times 6} = 46,99$$
А $I_p \le I_{_{\rm I}} 46.99 \le 49$

 I_{π} =49 - допустиме значення струму, A;

Використовуємо кабелі гнучкі екрановані КГЕУШ 3х4+1х2,5+3х1,5;

Обираємо повітряну лінію з неізольованим провідником алюмінієвий А-10;

Використовуємо кабелі гнучкі екрановані КГЕУШ 3х4+1х2,5+3х1,5;

Обираємо повітряну лінію з неізольованим провідником алюмінієвий А-16;

Для УТП (група електроспоживачів підключених через трансформатор ТМ - 1600)

H:
$$I_p = \frac{S_p}{\sqrt{3} \times U} = \frac{99.05}{\sqrt{3} \times 0.4} = 142.96 A$$

$$I_p\!\leq\!I_{_{\rm I\! I}}\ 142.96\leq 182$$

 $I_{\rm d}$ =182 - допустиме значення струму, А;

Використовуємо кабелі гнучкі екрановані КГЕШ 3х35+1х10+3х4;

Обираємо повітряну лінію з неізольованим провідником алюмінієвий А-185;

P:
$$I_p = \frac{S_p}{\sqrt{3} \times U} = \frac{99.05}{\sqrt{3} \times 0.4} = 142.96 A$$

						Арк.
					Розрахунок та вибір електричної мережі кар'єру	7
Змн.	Арк.	№ докум.	Підпис	Дата		/

$$I_p \le I_{\text{m}} 142.96 \le 250$$

 $I_{\pi}=250$ - допустиме значення струму, A;

Використовуємо кабелі гнучкі екрановані КГЕШ 3х50+1х10+3х4;

Обираємо повітряну лінію з неізольованим провідником алюмінієвий А-185;

K:
$$I_p = \frac{S_p}{\sqrt{3} \times U} = \frac{198.1}{\sqrt{3} \times 0.4} = 245.93 A$$

 $I_p \le I_{\pi} 245.93 \le 250$

 $I_{\pi}=250$ - допустиме значення струму, A;

Використовуємо кабелі гнучкі екрановані КГЕШ 3х50+1х10+3х4;

Обираємо повітряну лінію з неізольованим провідником алюмінієвий А-120;

Для **E-2001**:
$$I_P = \frac{K_n \times \sum P_n}{\sqrt{3} \times U \times \cos \varphi} + \frac{K_n \times \sum S_{\text{H.T.}}}{\sqrt{3} \times U} = \frac{0.5 \times 46}{\sqrt{3} \times 0.4 \times 0.87} + \frac{0.5 \times 69.75}{\sqrt{3} \times 0.4} = 86,48 \text{ A}$$

 $I_p \le I_\pi 86,48 \le 88$

Ід=88 - допустиме значення струму, А;

Використовуємо кабелі гнучкі екрановані КГУШ 3х10+1х6+3х2,5;

Обираємо повітряну лінію з неізольованим провідником алюмінієвий А-95;

Для 2СБУ-200:
$$I_{\rm H} = \frac{P_{\rm H}}{\sqrt{3} \times U_{\rm H} \times \eta_{\rm H} \times \cos \varphi} = \frac{300}{\sqrt{3} \times 6 \times 0.89 \times 0.87} = 37,31 \, A$$

 $I_p \le I_{\pi} 37,31 \le 88$

 $I_{\text{д}}$ =88 - допустиме значення струму, A;

Використовуємо кабелі гнучкі екрановані КГЕШ 3х35+1х10+3х4;

Обираємо повітряну лінію з неізольованим провідником алюмінієвий А-16;

Для СБО-20: :
$$I_{\rm H}=\frac{P_{\rm H}}{\sqrt{3}\times U_{\rm H}\times \eta_{\rm H}\times \cos\varphi}=\frac{300}{\sqrt{3}\times 6\times 0.92\times 0.84}=37.35~A$$

 $I_p \le I_{\pi} 37,35 \le 49$

 $I_{\text{д}}\!\!=\!\!49$ - допустиме значення струму, A;

Використовуємо кабелі гнучкі екрановані КГЕУШ 3х4+1х2,5+3х1,5;

Обираємо повітряну лінію з неізольованим провідником алюмінієвий А-16;

3.2 Перевірка мереж за втратою напруги

Вибрана площа перерізу провідників ЛЕП повинна відповідати як економічним, так і технічним умовам, тому мережу перевіряємо за втратою напруги.

Розрахуємо ΔU для лінії з (E-2001), В:

						Арк.
					Розрахунок та вибір електричної мережі кар'єру	0
Змн.	Арк.	№ докум.	Підпис	Дата		8

$$\Delta U_{\pi} = \frac{\sqrt{3} \times I_{\text{H}}}{U_{\text{H}}} \times L \times (r_0 \times \cos \varphi_p + X_0 \times \sin \varphi_p),$$
де
$$r_0 = \frac{1}{J \times S \times 10^{-6}} = \frac{1}{2.5 \times 10^6 \times 137,8 \times 10^{-6}} = 0.0029 \text{м} - \text{питомий активний опір}$$
 проводу;

Х₀- питомий індуктивний опір проводу;

 I_p – max розрахунковий струм в мережі.

$$\Delta U = \frac{\sqrt{3} \times p}{U_{\rm H}} \times L \times (r_0 \times \cos \varphi_{\rm H} + X_0 \times \sin \varphi_p) =$$

$$= \frac{\sqrt{3} \times 270.5}{380} \times 0.5 \times (0.0029 \times 0.8 + 0.14 \times 0.6) = 0.04$$

$$\Delta U\% \le \Delta U_{\rm MOR}\%$$

 $4\% \le \pm 5\%$, умова виконується.

Втрати не перевищують допустимі значення.

3.3.Перевірка мереж за механічною міцністю

У процесі проектування кар'єрних повітряних ЛЕП використовують типові конструкції пересувних і стаціонарних опор, для яких рекомендовані визначені площі перерізів проводів. Мінімальна площа перерізу проводів для повітряних високовольтних ліній за умови механічної міцності має бути не менше 35 мм² для алюмінієвих проводів. Для повітряних ЛЕП напругою до 1000В мінімальна площа перерізу алюмінієвих проводів має бути 16 мм². Враховуючи всі умови, маємо наступні значення площ поперечних перерізів (табл. 2.2).

Таблиця 2.2

№ дільниці	Марка кабелю	Переріз S, мм²
ЕШ 20/55	КГЕУШ 3х4+1х2,5+3х1,5;	35
EP-500	КГЕУШ 3х4+1х2,5+3х1,5;	35
Н	КГЕШ 3х35+1х10+3х4;	185
P	КГЕШ 3х50+1х10+3х4;	70
К	КГЕШ 3х50+1х10+3х4;	120
E-2001	КГУШ 3х10+1х6+3х2,5;	95
2СБУ-200	КГЕУШ 3х4+1х2,5+3х1,5;	35
СБ0-20	КГЕШ 3х35+1х10+3х4;	35

					Розрахунок та вибір електричної мережі кар'єру
Змн.	Арк.	№ докум.	Підпис	Дата	

4. Вибір апаратів управління

Всі апарати управління вибираємо за умов їх тривалої роботи, перевіривши на термічну і динамічну стійкість.

Одна з умов вибору ϵ (див. табл. 3):

 $I_{\text{H.a}} \ge I_{\text{p}}$,

 ${
m де}I_{
m H.a}$ — максимальний струм, на який розрахований апарат управління.

Таблиця 3. Апарати управління

	I_p , A	Ina, A	Апарат управління
Автоматичні вимикачі			
A1	273	320	A4477
A2	206,4	320	A4477
A3	222,3	320	A4477
Пункти приключення			
ПП1	91,2	630	КРУ 6 кВ серии КУ6С
ПП2	1197,8	630	КРУ 6 кВ серии КУ6С
ПП3	285,4	630	КРУ 6 кВ серии 2КВЭ-6
Роз'єднувачі			
P1	33,9	160	ПВР-0,38У1
P2, P3, P4, P5	79,4	160	ПВР-0,38У1
Запобіжники			
П1	33,9	160	ПНБ – 2
П2, П3, П4, П5	79,4	160	ПНБ – 2
Магнітні пускачі			
KM1	206,4	250	ПМЛ - 7
KM2	222,3	250	ПМЛ - 7
1	92,2	114	ЯКНО6Е
2	285,4	336	ЯКНО6Е

3мн.	Арк.	№ докум.	Підпис	Дата

3	374,1	380	ЯКНО6Е
4	33,9	49	ЯКНО6Е
5	270,5	274	ЯКНО6Е
6	342	347	ЯКНО6Е

5. Розрахунок та вибір захисного заземлення

Визначаємо струм замикання на землю $I_{\text{p.з.}}$:

$$I_{\text{p.3.}} = \frac{U_{\text{H}} \times (35 \times l_{\text{K}} + l_{\text{B}})}{350} = \frac{380 \times (35 \times 1 + 11)}{350} = 50 \text{ A}$$

де $U_{\rm H}$ – номінальна напруга мережі, В;

 $l_{\mbox{\tiny K}}, l_{\mbox{\tiny B}}$ — загальна довжина зв'язаних між собою кабельних і повітряних ліній, км ($l_{\mbox{\tiny K}}=1$; $l_{\mbox{\tiny B}}=11$).

Опір захисного заземлення R_3 визначаємо за формулою:

$$R_3 = \frac{U_{\text{posp.}}}{I_{\text{p.s.}}} = \frac{65,3}{50} = 1,3 \text{ Om}$$

 $R_3 \leq 4 \text{ Om}$

де $U_{\text{розр.}} = 65,3$

Опір центрального контуру $R_{3.к.}$, Ом:

$$R_{\scriptscriptstyle 3.K.} = R_{\scriptscriptstyle 3} - r_{\scriptscriptstyle \Pi p} - r_{\scriptscriptstyle \Gamma K} = 4 - 2 - 0$$
,5 = 1,5 Ом

де r_{np} – опір магістрального заземлюючого проводу ($r_{np} = 2 \text{ Ом}$);

 r_{x} – опір заземлюючої жили гнучкого кабелю ($r_{rk} = 0.5~0$ м).

Опір розтіканню струму $R_{\rm Tp}$ для окремого заземлювача (трубчастого):

$$R_{\rm Tp} = \frac{\rho}{2 \times \pi \times l} \times \left(\ln \frac{2 \times l}{d} + \frac{1}{2} \times \ln \frac{4 \times t + l}{4 \times t - l} \right)$$

$$R_{\rm Tp} = \frac{7 \times 10^4}{2 \times 3.14 \times 200} \times \left(\ln \frac{2 \times 200}{10} + \frac{1}{2} \times \ln \frac{4 \times 150 + 200}{4 \times 150 - 200} \right) = 58,3 \text{ OM},$$

де ρ – питомий опір грунту ($\rho = 7 \cdot 10^4$ Ом/см);

l – відстань від поверхні землі до середини заземлювача (l = 200 см);

d – діаметр прута (d = 10 см);

$$t = h + 0.5 \times l = 50 + 0.5 \times 200 = 150$$
 cm

						Арк.
					Розрахунок та вибір електричної мережі кар'єру	11
Змн.	Арк.	№ докум.	Підпис	Дата		11

h – відстань від поверхні землі до верхньої точки заземлювача (h = 50 см); опір розтіканню смуг:

$$R_{\text{смуг}} = \frac{
ho}{2 imes \pi imes l} imes \left(\ln \frac{2 imes l^2}{b imes h}
ight) = \frac{7 imes 10^4}{2 imes 3,14 imes 700} imes \left(\ln \frac{2 imes 700^2}{20 imes 50}
ight) = 18,3 \; ext{Ом}$$

де l – довжина смуги (l = 700 см);

b –ширина смуги (b = 20 см);

h – глибина закладання смуги (h = 50 см).

необхідна кількість трубчастих елементів:

$$n = \frac{R_{\rm Tp}}{R_{\rm 3K} \times \eta} = \frac{58,3}{1,5 \times 0,75} = 52$$

 $\eta = 0.75$ - коефіцієнт екранування.

6. Визначення техніко – економічних показників

Визначаємо річну витрату електроенергії:

$$W=P_p imes au_p=1466,65 imes7200=10559880\ ^{
m KBT} imes ^{
m FOД}/_{
m pik}$$
 $V=Q_p imes au_p=1172,64 imes7200=10195200\ {
m KBap} imes {
m FOД}$

 $au_p = 7200$ год – кількість робочих годин в році

Середньозважене значення коефіцієнта потужності:

$$tg\varphi_{\rm cp} = \frac{10559880}{10195200} = 1,03$$

Питома витрата електроенергії на 1 т видобутку корисної копалини: $\omega = \frac{W}{A} = \frac{10559880}{2500000} = 4.22 \; \text{кВт·год/т}$

$$\omega = \frac{W}{A} = \frac{10559880}{2500000} = 4.22 \text{ кВт·год/т}$$

де A – річна продуктивність кар'єру (A = 2,5 млн. т/р.)

Змн.	Арк.	№ докум.	Підпис	Дата

Список літератури

- 1. Методичні вказівки до виконання розділу дипломного проекту «електропостачання» та розрахункової роботи з курсу «електропривод і електропостачання»
- 2. Справочник энергетика карьера / под ред. В. А. Голубева. М. Недра 1986 г.
- 3. Волотовский С. А. и др. Электрификация горных работ. К. Вища шк. 1980
- 4. http://forca.com.ua/knigi/navchannya/konspekt-lekcii-z-kursu-elektrichnisistemi-i-merezhi 4.html
- 5. http://rvs-tehno-m.ru/Kabel.htm

				·
Змн.	Арк.	№ докум.	Підпис	Дата