Introdução ao LAT_EX

Módulo 2: Ambientes em geral, figuras e tabelas.

X Semana Acadêmica da Física Geferson Lucatelli¹^a, A. C. Calígula¹^b 5 de dezembro de 2017

Universidade Federal do Rio Grande

¹Instituto de Matemática, Estatística e Física

^agefersonlucatelli@gmail.com

baugusto cesar cal@hotmail.com

Sumário

- 1. Ambientes
 - 1.1. Listas

Listas por itens

Lista ordenadas

1.2. Alinhamento

- 1.3. Expressões Matemáticas
- 2. Tabelas
 - 2.1. Criando Tabelas
- 3. Figuras
 - 3.1. Inserindo Figuras
- 4. Referenciando objetos

Ambientes

Para que servem os ambientes?

Ambientes

Um ambiente é uma região do texto que tem um tratamento especial. Um ambiente é iniciado com \begin{} e terminado com \end{}, onde o nome do ambiente está entre as chaves. Exemplos de ambientes são:

- Listas
 - itemize
 - enumerate
- Alinhamento
 - \flushleft
 - \flushright
 - \center
- Matemático
 - equation
 - eqnarray
 - align
- Tabelas
- Figuras

Ambientes de listas por itens.

LISTAS POR ITENS - ITEMIZE

Os ambientes de listas possuem o mesmo modelo de código.

```
\begin{ambiente_de_lista}
\item texto
\item texto
\end{ambiente_de_lista}
```

LISTAS POR ITENS - ITEMIZE

Exemplo de lista utilizando o ambiente itemize:

- Primeiro item
- Segundo item
- Terceiro item

\begin{itemize}
\item Primeiro item
\item Segundo item
\item Terceiro item
\end{itemize}

SUBLISTAS - ITEMIZE

Exemplo de sublista:

- Primeiro item
 - Primeiro subitem
 - Segundo subitem
- Segundo item

```
\begin{itemize}
\item Primeiro item
\begin{itemize}
\item Primeiro subitem
\item Segundo subitem
\end{itemize}
\item Segundo item
\end{itemize}
```

Ambientes de listas ordenadas

LISTAS ORDENADAS - ENUMERATE

O ambiente enumerate gera listas numeradas.

- 1. Primeiro item
- 2. Segundo item
- 3. Terceiro item

```
\begin{enumerate}
\item Primeiro item
\item Segundo item
\item Terceiro item
\end{enumerate}
```

SUBLISTAS ORDENADAS

Também é possível gerar sublistas ordenadas.

- 1. Primeiro item
 - 1.1 Primeiro subitem
 - 1.2 Segundo subitem
- 2. Segundo item

```
\begin{enumerate}
\item Primeiro item
\begin{enumerate}
\item Primeiro subitem
\item Segundo subitem
\end{enumerate}
\item Segundo item
\end{enumerate}
```

MAIS SOBRE O ENUMERATE

O ambiente enumerate nos permite controlar o formato da lista. Para isto, precisamos adicionar no preambulo o pacote,

\usepackage{enumerate}

a modificação é feita ao iniciar o ambiente, da seguinte forma,

\begin{enumerate}[opção]

onde as opções podem ser:

- i) i)
- (i) (i)
- I) I)
- (a) (a)

Listas - Exercício

Reproduzir a lista abaixo!

- 1) Primeiro item
 - i) Primeiro subitem
 - primeiro subsubitem
 - ii) Segundo subitem
 - segundo subsubitem
- 2) Segundo item

Listas - Exercícios (solução)

```
\begin{enumerate}[1)]
\item Primeiro item
    \begin{enumerate}[i)]
    \item Primeiro subitem
        \begin{itemize}
        \item primeiro subsubitem
        \end{itemize}
    \item Segundo subitem
        \begin{itemize}
        \item segundo subsubitem
        \end{itemize}
    \end{enumerate}
\item Segundo item
\end{enumerate}
```

Ambientes de alinhamento

ALINHAMENTO

Normalmente o LATEX mantêm os textos com o alinhamento "justificado". Para modificar o alinhamento, podemos utilizar 3 opções:

- flushleft, alinhado à esquerda;
- flushright, alinhado à direita;
- center, centralizado.

O código para utilizar estes alinhamento é o seguinte,

```
\begin{alinhamento}
texto, frase ou parágrafo
\end{alinhamento}
```

Uma das principais utilidades do LATEX vem agora.

Expressões matemáticas!

Expressões Matemáticas

Como escrever uma expressão matemática como abaixo?

$$x_H(t) = x_H(0)\cos(\omega t) + \frac{1}{m\omega} \underbrace{\left[\frac{ie^{-i\omega t}}{2} - \frac{ie^{i\omega t}}{2}\right]}_{\sin(\omega t)} p_H(0) + \frac{q\mathcal{E}}{2m\omega^2} \left(1 - e^{-i\omega t}\right)$$

- lembando que para usar ambientes matemáticos, é preciso adicionar os pacotes amsmath e amssymb ao preâmbulo;
- chaves são interpretadas como delimitadores de grupo e para serem impressas devem estar acompanhadas com \, ou seja, escrevemos \{ \} ;
- espaços em branco são ignorados pelo compilador;
- como padrão, todas as letras são escritas em itálico.

Expressões Matemáticas

O alfabeto grego é largamente utilizado para escrever equações. A seguir, apresentamos uma lista de caracteres do alfabeto e o respectivo comando:

Γ	\Gamma	α	\alpha	κ	\kappa	σ	\sigma
Δ	\Delta	β	\beta	\varkappa	\varkappa	ς	\varsigma
Θ	\Theta	γ	\gamma	λ	\label{lambda}	au	\tau
Λ	\Lambda	δ	\delta	μ	\mu	v	\upsilon
Ξ	\Xi	ϵ	\epsilon	ν	\nu	ϕ	\phi
Π	\Pi	ε	\varepsilon	ξ	\xi	φ	\varphi
\sum	\Sigma	ζ	\zeta	0	0	χ	\chi
Υ	\Upsilon	η	\eta	π	\pi	ψ	\psi
Φ	\Phi	θ	\theta	$\overline{\omega}$	\varpi	ω	\omega
Ψ	\Psi	ϑ	\vartheta	ρ	\rho	F	\digamma
Ω	\Omega	ι	\iota	ϱ	\varrho	∂	\partial

EXPRESSÕES MATEMÁTICAS: AMBIENTES "\$\$ \$\$" E EQUATION

- As equações matemáticas podem ser escritas de maneiras diferentes:
 - O comando x+1=1 produz x+1=1 (insere no texto);
 - O comando \$\$x+1=1\$\$ produz (insere em uma linha separada)

$$x + 1 = 1;$$

• O comando

\begin{equation}
x+1=1
\end{equation}
produz

$$x + 1 = 1; \tag{1}$$

• o comando "\$\$ \$\$" insere equações rápidas sem enumerá-las, já com o ambiente equation, elas são enumeradas;

Expressões Matemáticas: ambiente align

- o ambiente align permite escrever múltiplas linhas de quações;
- é muito útil quando se quer resolver passo a passo uma equação!;
- por exemplo,

$$f(x) = 2x^5 + 3x^4 + x^3 + 2x^2 + 5x + 8$$
 (2)
= $q(x) - h(x)$ (3)

produz

```
\begin{align} f(x) &= 2x^{5} + 3x^{4} + x^{3} \cdot \\ & \neq 2x^{2} + 5x + 8 \\ &= g(x) - h(x) \\ &= dalign}
```

• toda a equação se alinha verticalmente com base no carácter que acompanha o símbolo &.

Como construir as equações?

ÍNDICES E EXPOENTES

- Para criar expoentes e sub-índices, utilizamos os comandos ^ e _, respectivamente;
- Exemplo: Escrevendo

```
\begin{equation*}
\sum_{i = 1}^{n},\quad \prod_{i = 1}^{n}
\end{equation*}
```

obtemos

$$\sum_{i=1}^{n}, \quad \prod_{i=1}^{n}$$

- o uso de "*" após equation revome a enumeração da equação;
- o mesmo se aplica para o ambiente align;
- para inserir somatórias com múltiplos índices, use

$$\sum_{\substack{i \neq j \\ j=1}} \tag{4}$$

ÍNDICES E EXPOENTES

Para inserir somatórias com múltiplos índices,

$$\sum_{\substack{i \neq j \\ j=1}} \tag{5}$$

use

```
\begin{align}
\sum_{\substack{ i\neq j\\ j=1}}
\end{align}
```

• índices ou expoentes compostos devem ser inseridos dentro do delimitador {}. Por exemplo,

```
\begin{align*}
e^{-x^2 -y^2}, \quad T_{x,y}
\end{align*}
```

produz

$$e^{-x^2-y^2}, T_{x,y}$$

Frações

- Frações são criadas utilizando os comandos \frac{numerador}{denominador} e raízes com \sqrt[n]{radicando};
- Exemplo: Escrevendo
 \begin{align*}
 \frac{\sqrt[3]{xy}}{2}, \qquad\frac{\sqrt{xy}}{2}
 \end{align*}

obtemos

$$\frac{\sqrt[3]{xy}}{2}$$
, $\frac{\sqrt{xy}}{2}$

• frações inseridas ao longo do texto ou dentro de um numerador/denominador são reduzidas em tamanho, como por exemplo $\frac{x}{y}$, mas podem ser ajustadas usando o comando

\cfrac{num}{den}, assim fica
$$\frac{x}{y}$$
;

LIMITES

- Para escrever limites, usamos o comando \lim;
- Exemplo: Escrevendo

obtemos

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \tag{6}$$

FUNÇÕES MATEMÁTICAS

A seguir, apresentamos alguns exemplos de funções matemáticas:

\arccos \arcsin \arctan \arg \cos \cosh	<pre>\coth \csc \deg \det \dim \exp</pre>	<pre>\hom \inf \ker \lg \lim \liminf</pre>	<pre>\limsup \ln \log \max \min \Pr</pre>	<pre>\sec \sin \sinh \sup \tan \tanh</pre>
\cosh \cot	\exp \gcd	\liminf	\Pr	\tanh

Derivadas

• Para adicionar derivadas ou derivadas parciais, escrevemos:

e obtemos

$$\frac{d}{dx}\left[3x^2\right]$$
 , $\frac{\partial}{\partial x}\left[3x^2+2xy^3\right]$;

• Os comandos \left e \right são utilizados para ajustar automaticamente qualquer delimitador ((), [] ou {}) ao tamanho da equação.

Integrais

- Para adicionar integrais e limites de integração, utilizamos os comandos \int\limits{}^{{}};
- Exemplo: Escrevendo

```
\begin{align*}
\int\limits_{x_{0}}^{x}x dx
\end{align*}
```

obtemos

$$\int_{x_0}^{x_1} x dx$$

• OBS: não é necessário usar o comando \limits. Sem ele o resultado é

$$\int_{x_0}^{x_1} x dx.$$

Integrais

• para aplicação dos limites de integração após a integração, use

$$\int\limits_{x_0}^{x_1} x dx = \frac{x^2}{2} \Big|_{x_0}^{x_1}, \qquad \text{\begin\{align\}} \\ \text{\int\limits}_{x_0}^{x_1} x dx = \frac{x^2}{2} \Big|_{x_0}^{x_1}, \qquad \text{\frac}_{x^2}_{2}\Big|^{x_1} x_1\}_{x_0}, \\ \text{\(usar \left| n\~ao funciona);}$$

• integrais múltiplas indefinidas são inseridas com os comandos \iint, \iiint,\idotsint. Respectivamente:

$$\iiint, \qquad \iiint, \qquad \iiint \int, \qquad , \int \cdots \int$$
 (8)

• para inserir uma integral fechada, use o comando \oint, respectivamente

$$\oint (9)$$

Matrizes

- Para escrever matrizes, utilizamos ambientes matriciais;
- abaixo, temos alguns comandos para os diferentes tipos de delimitadores;

```
• pmatrix produz ();
```

- bmatrix produz [];
- Bmatrix produz { };
- vmatrix produz | |;
- Vmatrix produz || ||

```
\begin{align*}
\begin{pmatrix}
a & b & c\\
d & e & f\\
g & h & i
\end{pmatrix}
\end{align*}
```

$$\begin{pmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{pmatrix}$$

Grupos de Equações

• é possível agrupar equações das seguintes formas:

$$\begin{cases}
\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \\
\nabla \cdot \mathbf{B} = 0
\end{cases}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$
(10)

```
\begin{align}
\begin{cases}
\nabla \cdot{\bf E} = \dfrac{\rho}{\varepsilon_0}\\
\nabla \cdot {\bf B}=0\\
\nabla \times {\bf E}=-
\dfrac{{\partial} {\bf B}}{{\partial} t}\\
\nabla \times {\bf B}=\mu_0 {\bf J}+
\mu_0\varepsilon_0 \dfrac{{\partial} {\bf E}}{{\partial} t}
\end{cases}
\end{align}
```

Grupos de Equações

e

$$\begin{cases}
\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} & \text{(11a)} \\
\nabla \cdot \mathbf{B} = 0 & \text{(11b)} \\
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} & \text{(11c)} \\
\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} & \text{(11d)}
\end{cases}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$
 (11d)

```
\begin{numcases}{}
\nabla \cdot{\bf E} =\dfrac{\rho}{\varepsilon_0}\\
\nabla \cdot {\bf B}=0\\
\nabla \times {\bf E}=-
\dfrac{{\partial} {\bf B}}{{\partial} t}\\
\  \bf B}=\mu_0 {\bf J}+
\mu_0\varepsilon_0 \dfrac{{\partial} {\bf E}}{{\partial} t}
\end{numcases}
```

Equações Matriciais

 Como exercício, escreva uma equação matricial semelhantre à abaixo:

$$\begin{pmatrix} x & u \\ y & v \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ g & h \end{pmatrix} \tag{12}$$

 note que matrizes também podem ser utilizadas para agrupar ou escrever sistemas de equações;

Outros operadores e objetos matemáticos

- operadores e objetos matemáticos devem ser inseridos dentro de um ambiente matemático;
- na notação usual, vetores são representados com uma seta " \rightarrow "sobre um caracter. O comando é \vec{a} ; e produz \vec{a} ;
- chapéus ^ são incluídos pelo comando \$\hat{a}\$ ou \$\widehat{a}\$: \hat{a};
- o símbolo \sim é inserido com $\hat{a}\$ ou $\hat{a}\$ ou $\hat{a}\$:

Outros operadores e objetos matemáticos

Algums exemplos de objetos mais utilizados são listados abaixo. Veja todos eles na ferramenta "Structure" do seu compilador.

\xrightarrow{abc}	\$\xrightarrow{r}\$			
abc	<pre>\$\underrightarrow{abc}\$</pre>			
$\stackrel{abc}{=}$	<pre>\$\stackrel{abc}{=}\$</pre>			
ä	<pre>\$\ddot{a}\$</pre>			
\longrightarrow	\$\longrightarrow\$			
\Longrightarrow	\$\Longrightarrow\$			
$\sim,\simeq,\approx,\approxeq$	<pre>\$\sim, \simeq, \approx, \approxeq\$</pre>			
$\leq, \geq, \lesssim, \gg$	<pre>\$\leq, \geq, \lesssim, \gg\$</pre>			
$\times, \otimes, \odot, \oplus$	<pre>\$\times, \otimes, \odot, \oplus\$</pre>			

PACOTE PHYSICS

• O pacote **physics**, quando incluido no preâmbulo, adiciona comandos convenientes para fácil acesso à símbolos matemáticos usados comumente. Por exemplo:

$\mathbf{a}, \vec{\mathbf{a}}, \hat{\mathbf{a}}$	\$\vb{a}, \va{a}, \vu{a}\$
a, \vec{a}, \hat{a}	\$\vb*{a}, \va*{a}, \vu*{a}\$
•, ×, ×	<pre>\$\vdot, \cross, \cp\$</pre>
$oldsymbol{ abla}\cdot,oldsymbol{ abla},oldsymbol{ abla} imes, abla^2$	<pre>\$\div, \grad, \curl, \laplacian\$</pre>
$\mathrm{d}x,\frac{\mathrm{d}}{\mathrm{d}x},\frac{\partial}{\partial x}$	\$\dd{x}, \dv{x}, \pdv{x}\$
$d^n x, \frac{d^n f}{dx^n}, \frac{\partial^n f}{\partial x^n}$	\$\dd[n]{x}, \dv[n]{f}{x}, \pdv[n]{f}{x}\$
$ x\rangle,\langle x $	\$\ket{x}, \bra{x}\$
$\langle a b\rangle$, $ a\rangle\langle b $	\$\braket{a}{b}, \op{a}{b}\$
$\langle a \rangle$, $\langle \Psi a \Psi \rangle$, $\langle n a m \rangle$	\$\expval{a}, \ev{a}{\Psi}, \mel{n}{a}{m}\$

ESTILIZANDO FONTES

É muito comum, em muitas vezes, ocorrer carência de símbolos matemáticos. Para isso, é possível modificar o estilo da fonte das letras do alfabeto latino dentro do ambiente matemático. Alguns exemplos são:

\mathbf{AaBbCc} texto negrito AaBbCc \mathit{AaBbCc} texto itálico AaBbCc \mathrm{AaBbCc} texto padão AaBbCc \mathcal{ABC} texto caligráfico ABC \mathbb{ABC} texto em lousa ABC, requer amssymb \mathscr{ABC} texto estilizado ABC, requer mathrsfs; \mathfrak{AaBbCc} texto \mathfrak{AaBbCc};

Criando Tabelas.

- Uma tabela é especificada pelo ambiente tabular;
- a criação de uma tabela é feita da seguinte forma:
 \begin{tabular}{espec}
 em que o argumento espec especifica a quantidade de colunas e o
 seu alinhamento:
 - | adiciona uma linha vertical;
 - 1 indica uma coluna alinhada à esquerda;
 - r indica uma coluna alinhada à direita;
 - c indica uma coluna com texto centralizado;
- Quanto ao preenchimento da tabela, utilizamos:
 - & para passar para a próxima coluna;
 - \\ para terminar uma linha e criar para uma nova;
 - \hline para criar uma linha horizontal.

- uma tabela pode ser inserida dentro do ambiente table, o que faz dela um objeto flutuante;
- vantagens de utilizar esse tipo de ambiente:
 - posição correta da tabela no texto;
 - permite a inserção de rótulos e legendas;
 - faz com que a tabela apareça em um índice de tabelas;
- Para usar este ambiente é preciso usar o comando \begin{table}[pos]
 em que pos indica a posição desejada para se posicionar a tabela verticalmente na página:
 - h no local onde o texto ocorreu;
 - t no topo da página;
 - **b** no fim da página;
 - p em uma página especial contendo somente objetos flutuantes;

- Para adicionar uma legenda usamos, ainda dentro do ambiente table, o comando \caption{legenda}
- A seguir apresentamos uma tabela criada como objeto flutuante e os comandos utilizados para que fosse gerada:

TABELAS

RS	Temperatura Máxima (° C)
Porto Alegre	39
Santa Maria	40
Rio Grande	40
Pelotas	40
Caxias do Sul	38

```
\begin{table}[h]
\begin{tabular}{c|c}
   \toprule
   \textbf{RS}
                            &\textbf{Temperatura Máxima} (^{\circ}C)$\\
   \midrule
  Porto Alegre
                            &39\\ \hline
  Santa Maria
                            &40\\ \hline
  Rio Grande
                            &40\\ \hline
  Pelotas
                            &40\\ \hline
  Caxias do Sul
                            &38\\ \hline
   \bottomrule
\end{tabular}
\end{table}
```

EXEMPLOS DE TABELAS

Qualidade da construção	a	b	c
Boa vedação Média Má vedação	$ \begin{array}{ c c c } 0,15 \\ 0,20 \\ 0,25 \end{array} $	$\begin{array}{ c c c } 0,010 \\ 0,015 \\ 0,020 \end{array}$	$\begin{array}{c c} 0,007 \\ 0,014 \\ 0,022 \end{array}$

Resistência	Expressão	Efeito	
R_1	$\frac{1}{h_i 2\pi r_1 L}$	Inalterada	
R_2	$\frac{\ln(r_2/r_1)}{K_t 2\pi L}$	Inalterada	
R_3	$\frac{\ln(r_3/r_2)}{K_{iso}2\pi L}$	Aumenta	
R_4	$\frac{1}{h_e 2\pi r_3 L}$	Diminui	

EXEMPLO DE TABELAS

Material Isolante	Kgf/m^3	$k \frac{Kcal}{mh \circ C}$	Resistência Mecânica: Kgf/m^2	Resistência à temperatura: ${}^{\circ}C$	Permeabilidade $g/m.h.mmHg$
Aço ordinário	7800	45 a 50			Nula
Vidro	2500	0,65			Nula
Concreto	2300	1,2			22,3
Pedra (granito)	2600	3			
Alvenaria	1800	0,84			220,98
Asfalto	2120	0,65			
Madeira (pinho)	550	0,14 a 0,3			6,0 a 9,0
Serragem de madeira	200	0,06			
Fibra de madeira aglomerada (Eucatex frigorífico)	210	0,028	20		30 a 2800
Cortiça	200	0,045	1	100	66
Cortiça aglomerada	200	0,036		100	
La de vidro	100 a 200	0,025 a 0,045		540	80
Lã de rocha	100 a 200	0,025 a 0,035		600	
Vermiculite (cortiça mineral)	70	0,04	Fraca	1000	10 a 39
Concreto celular	300 a 600	0,049 a 0,12			
Espuma de plástico	25	0,035		80	
Espuma de borracha	80	0,03		65	
Poliestireno expandido (styropor)	15 a 30	0,028	0,3 a 0,7		1,3 a 1,82
Espuma fanólica rígida	30 a 45	0,026	Fraca		
Espuma rígida de Poliestireno (styrofoan)	30	0,028	1,0 a 2,0		
Espuma rígida de poliuretano (moltopren)	30 a 45	0,02	2		Baixa
Espuma rígida de vidro (foamglass)	145	0,046	7	430	Nula

Figuras

Vamos agora trabalhar com figuras.

Inserindo Figuras

 Para acrescentar figuras nos documentos, será necessária a declaração de um novo pacote

\usepackage{graphicx}

 Assim, podemos incluir figuras com o seguinte comando no corpo do texto

\includegraphics[opt]{nomedafigura}

- Como opt podemos passar as seguintes opções:
 - width: Redimensiona a figura para a largura especificada;
 - heigth: Redimensiona a figura para a altura especificada;
 - angle: Rotaciona a figura no sentido horário (em graus);
 - scale: Redimensiona a figura na proporção especificada.

Inserindo Figuras

- Existe um ambiente específico para tratar uma figura como um objeto flutuante chamado figure, e permite inserir legendas;
- a seguir, apresentamos um exemplo

```
\begin{figure}[h]
\centering
\includegraphics[width=0.99\linewidth]{nomedafigura}
\caption{Uma figura qualquer}
\label{label_da_figura}
\end{figure}
```

- as opções do ambiente figura são os mesmos que das tabelas;
- em adicional, muitas vezes a opção h não faz o que gostaríamos. Se isso ocorrer, use H e o LATEX irá colocar a figura exatamente onde ela é inserida no texto;
- OBS: use isso em últimos casos;

Inserindo Figuras

FIGURA 1: Uma figura qualquer

Inserindo mais de uma figura

Podemos adicionar mais de uma figura no mesmo ambiente ao utilizar o comando \includegraphics[tamanho]{nomedafigura}. Porém, temos que ter cuidado com os tamanhos das figuras e as posições.

- Figura lado a lado: incluir os comandos \includegraphics[]{}
 um em baixo do outro
- Figura em cima e embaixo: incluir os comandos \includegraphics[]{} separados por \\

Exemplo - Figura Lado a Lado

```
\begin{figure}[h]
\centering
\includegraphics[scale=0.15]{images/furg.png}
\includegraphics[scale=0.1]{images/imef2.png}
\caption{Exemplo:lado a lado}
\end{figure}
```


FIGURA 2: Exemplo:lado a lado

Exemplo - Figura em cima e embaixo

\begin{figure}[h]
\centering
\includegraphics[scale=0.15]{images/furg.png}
\includegraphics[scale=0.1]{images/imef2.pm}
\caption{Exemplo: em cima e embaixo}
\end{figure}

FIGURA 3: Exemplo: em cima e embaixo

Inserindo figuras com subtítulos

Para ter um controle de títulos e subtítulos de figuras devemos utilizar o ambiente subfigure e o pacote subcaption no preambulo.

FIGURA 4: Exemplo de figuras com subtítulos

Inserindo figuras com subtítulos - Código

```
\begin{figure}[h]
 \centering
\begin{subfigure}{0.5\textwidth}
      \centering
      \includegraphics[scale=0.1]{images/furg.png}
     \caption{FURG}
\end{subfigure}%
\begin{subfigure}{0.5\textwidth}
     \centering
      \includegraphics[scale=0.1]{images/imef2.png}
     \caption{IMEF}
\end{subfigure}
 \caption{Exemplo de figuras com subtítulos}
\end{figure}
```

Referenciando objetos

Referenciando figuras, tabelas e equações ao longo do texto.

LIDANDO COM REFERÊNCIAS

Uma das grandes vantagens do LATEX é a facilidade de fazer referências a figuras, tabelas, equações, artigos, livros, etc..

Para citar alguma figura, tabela ou equação, devemos adicionar o

Para citar alguma figura, tabela ou equação, devemos adicionar o comando,

\label{nome}

em que nome será utilizado para a citação. Para chamar no texto, devemos utilizar o comando,

\ref{nome}

LIDANDO COM REFERÊNCIAS - EXEMPLO

$$\nabla \cdot \vec{E} = \frac{Q}{\varepsilon_0} \tag{13}$$

FIGURA 5: Logo FURG

A equação (??) é a primeira equação de Maxwell. A FIGURA \ref{GURA} é o logo da FURG.

Lidando com referências - Código do Exemplo

```
\begin{equation}
\nabla \cdot \vec{E} = \frac{Q}{\varepsilon_0} \label{maxwell}
\end{equation}
\begin{figure}[h]
\centering
\includegraphics[scale=0.05]{furg.png}
\caption{Logo FURG}
\label{furg}
\end{figure}
A equação (\ref{maxwell}) é a primeira equação de Maxwell.
A {\sc Figura} \ref{furg} é o logo da FURG.
```

O PACOTE CLEVEREF

 Com o pacote cleveref é possível referenciar multiplos objetos ao mesmo tempo. Por exemplo usando o código:

```
\begin{align}
a = b + c \label{a} \\
c = d + e \label{b} \\
e = f + g \label{c} \\
g = h + j \label{d}
\end{align}
```

As \cref{a,b,c,d} são do tipo recorrente.

• Obtemos:

$$a = b + c \tag{14}$$

$$c = d + e \tag{15}$$

$$e = f + g \tag{16}$$

$$g = h + j \tag{17}$$

As ??????? são do tipo recorrente.

O PACOTE CLEVEREF

- Note que o pacote automaticamente adiciona eqs., os numeros das equações inicial e final referenciadas além da conjunção to. A linguagem padrão do pacote é inglês.
- Para modificar as conjunções para português, basta renovar os comandos no preâmbulo:

```
\newcommand{\crefrangeconjunction}{}
%Para varias referências (ex: eqs. 5 à 10)
\newcommand{\crefmiddleconjunction}{}
%Para equações não consecutivas (ex:eqs 3, 5 e 10)
\newcommand{\crefpairconjunction}{}
%Para pares de referências (ex:eqs. 3 e 4)
Com a conjunção desejada entre parênteses.
```

Fim do Módulo II!!! Dúvidas?

References I

Referências

- Google (2017). https://www.google.com. [Online].
- Lees-Miller, D. J. (2015a). An interactive introduction to latex, part 1: The basics. Curso Online.
- Lees-Miller, D. J. (2015b). An interactive introduction to latex, part 2: Structured documents & more. Curso Online.
- Lees-Miller, D. J. (2015c). An interactive introduction to latex, part 3: Not just papers, presentations & more. Curso Online.
- Lucatelli, G., Ramos, L. G., and Becker, M. V. (2016). Minicurso latex. Curso de curta duração.
- Overleaf (2017). Real-time Collaborative Writing and Publishing Tools with Integrated PDF Preview. https://www.overleaf.com/latex/templates/. [Online].

References II

```
Stack Exchange (2017). https://tex.stackexchange.com/. [Online]. Wikibooks (2016). Latex. https://en.wikibooks.org/wiki/LaTeX. [Online].
```

