Problem Description of Modeling a Leak from the SX-115 Tank at the Hanford S/SX Tank Farm

P.C. Lichtner February 21, 2011

Problem Description

The saturation profile is computed for both steady-state and transient conditions in a 1D vertical column consisting of a layered porous medium representing the Hanford sediment in the vicinity of the S/SX tank farm. The transient case simulates a leak from the base of the SX-115 tank. This problem description is taken from Lichtner et al. (2004).

Governing Equations

The moisture profile is calculated using parameters related to the Hanford sediment at the S/SX tank farm based on the Richards equation for variably saturated porous media. The Hanford sediment is composed of five layers with the properties listed in Tables 1 and 2. The governing equations consist of Richards equation for variably saturated fluid flow given by

$$\frac{\partial}{\partial t}\varphi s\rho + \nabla \cdot q\rho = Q, \tag{1}$$

and solute transport of a tracer

$$\frac{\partial}{\partial t}\varphi C + \boldsymbol{\nabla}\cdot \left(\boldsymbol{q}C - \varphi s\tau D\boldsymbol{\nabla}C\right) = Q_C. \tag{2}$$

In these equations φ denotes the spatially variable porosity of the porous medium assumed to constant within each stratigraphic layer, s gives the saturation state of the porous medium, ρ represents the fluid density in general a function of pressure and temperature, C denotes the solute concentration, D denotes the diffusion/dispersion coefficient, τ represents tortuosity, Q and Q_C denote source/sink terms, and q denotes the Darcy velocity defined by

$$q = -\frac{k_{\text{sat}}k_r}{\mu}\nabla(p - \rho gz), \tag{3}$$

with saturated permeability k_{sat} , relative permeability k_r , fluid viscosity μ , pressure p, formula weight of water W, acceleration of gravity g, and height z. Van Genuchten capillary properties are used for relative permeability according to the relation

$$k_r = \sqrt{s_{\text{eff}}} \left\{ 1 - \left[\left(s_l^{\text{eff}} \right)^{1/m} \right]^m \right\}^2, \tag{4}$$

where s_{eff} is related to capillary pressure P_c by the equation

$$s_{\text{eff}} = \left[1 + (\alpha |P_c|)^n\right]^{-m},\tag{5}$$

where $s_{\rm eff}$ is defined by

$$s_{\text{eff}} = \frac{s - s_r}{1 - s_r},\tag{6}$$

and where s_r denotes the residual saturation. The quantity n is related to m by the expression

$$m = 1 - \frac{1}{n}, \quad n = \frac{1}{1 - m}.$$
 (7)

The capillary pressure P_c and fluid pressure p are related by the (constant) gas pressure p_g^0

$$P_c = p_g^0 - p, (8)$$

where $p_g^0 = 101,325$ Pa is set to atmospheric pressure.

Semi-Analytical Solution for Steady-State Conditions

For steady-state conditions the saturation profile satisfies the equation

$$\frac{d}{dz}\rho q_z = 0, (9)$$

or assuming an incompressible fluid

$$q_z = q_z^0, (10)$$

where q_z^0 denotes infiltration at the surface. Thus the pressure is obtained as a function of z by solving the ODE

$$\frac{dp}{dz} = -\frac{\mu q_z^0}{k_{\text{sat}}k_r} - \rho g,\tag{11}$$

using Eqns.(4) and (5) to express the relative permeability k_r as a function of pressure. For the special case of zero infiltration it follows that

$$p(z) = p_0 - \rho g(z - z_0), \tag{12}$$

with $p(z_0) = p_0$. The saturation profile is obtained from Eqns.(5) and (6).

Model Parameters

Model parameters used in the simulations are listed in Tables 1 and 2. Although not needed here, thermal properties are also listed. Diffusivity was set to 10^{-9} m² s⁻¹ and tortuosity was set to one.

Table 1: Stratigraphic sequence used in the calculations, after Ward et al. (1996).

Formation	Abbrev.	Thickness [m]
Backfill	BF	16.0
Hanford Fine Sand	HF	23.0
Plio-Pleistocene	PP	6.0
Upper Ringold Gravel	URG	3.0
Middle Ringold Gravel	MRG	20.0

Table 2: Parameters for material and thermal properties for intrinsic rock density ρ_s , heat capacity c, thermal conductivity κ , porosity φ , residual water saturation s_r , van Genuchten parameters α and λ , and vertical water saturated permeability k_{sat} . Data taken from Khaleel and Freeman (1995), Khaleel et al. (2001), and Pruess et al. (2002).

Formation	$ ho_s$	С	$\kappa_{ m dry}$	$\kappa_{ m wet}$	φ	s_r	α	m	$k_{\rm sat}$
	$\rm g~cm^{-3}$	$J kg^{-1} K^{-1}$	W	m^{-1}	_	_	m^{-1}		m ²
BF	2.8	800	0.5	2	0.2585	0.0774	1.008e-3	0.658	1.24e-12
HF	2.8	800	0.5	2	0.3586	0.0837	9.390e-5	0.469	1.23e-13
PP	2.8	800	0.5	2	0.4223	0.2595	6.840e-5	0.456	1.37e-14
URG	2.8	800	0.5	2	0.2625	0.2130	2.961e-5	0.386	5.27e-14
MRG	2.8	800	0.5	2	0.1643	0.0609	6.330e-5	0.392	7.33e-14

Simulation Results

The calculations are carried out for an isothermal system using Richards equation. First, the steady-state saturation profile is obtained without the tank leak present. Then using the steady-state profile as the initial condition the tank leak is turned on. The results for the steady-state saturation and pressure profiles are shown in Figure 1 for infiltration rates at the surface of 0, 8 and 80 mm/y. The mean infiltration rate at the Hanford site is approximately 8 mm/y. A 1D column 68 m heigh with the water table located at a height of 6 m from the bottom is used in the simulation. A uniform grid spacing of 0.5 m is used to discretize Richards equation.

Shown in Figure 2 is the saturation at different times following a two week leak releasing 60,000 gallons from the SX-115 tank at a depth of 16 m. In the simulation a release rate of 1.87×10^{-3} kg/s is used.

References

Khaleel, R., E.J. Freeman (1995) Variability and scaling of hydraulic properties for 200 area soils, Hanford Site. Report WHC-EP-0883. Westinghouse Hanford Company,

Richland, WA.

- Khaleel, R., T.E. Jones, A.J. Knepp, F.M. Mann, D.A. Myers, P.M. Rogers, R.J. Serne, and M.I. Wood (2000) Modeling data package for S-SX Field Investigation Report (FIR). Report RPP-6296, Rev. 0. CH2M Hill Hanford Group, Richland, WA.
- Lichtner, P.C., Yabusaki, S.B., Pruess K., and Steefel, C.I. (2004) Role of Competitive Cation Exchange on Chromatographic Displacement of Cesium in the Vadose Zone Beneath the Hanford S/SX Tank Farm, *VJZ*, **3**, 203–219.
- Pruess, K., S. Yabusaki, C. Steefel, and P. Lichtner (2002) Fluid flow, heat transfer, and solute transport at nuclear waste storage tanks in the Hanford vadose zone. Available at www.vadosezonejournal.org. Vadose Zone J. 1:68–88.

Figure 1: Steady-state saturation and pressure profiles for infiltration rates of 0, 8 and 80 mm/y. The water table is located at 6 m from the bottom of the computational domain.

Figure 2: Simulation of a tank leak with a duration of two weeks showing the saturation profile for different times indicated in the figure.

Figure 3: The solute concentration profile corresponding to Figure 2 for different times indicated in the figure.

PFLOTRAN Input Files

Listing of PFLOTRAN input file including a tracer. Note that the stratigraphic zone specification in REGION is grid independent as is the grid size specification in keyword GRID. Therefore to change the grid spacing only the line: NXYZ 1 1 136, needs to be changed. Also note that a line beginning with a colon (:) is read as a comment.

PFLOTRAN input file pflotran.in:

```
:Description: 1D infiltration problem for the SX-115 tank at Hanford
: == debugging =-----
:VECVIEW_RESIDUAL
:VECVIEW SOLUTION
MODE RICHARDS
:---- runtime -----
CHECKPOINT 100000
RESTART restart.chk 0.d0
PRIMARY_SPECIES
Tracer
OUTPUT
REFERENCE_POROSITY 0.25d0
: -- time stepping ------
TIMESTEPPER
TS_ACCELERATION 8
TYPE structured
NXYZ 1 1 136
:1.
:1.
:/
BOUNDS
0.d0 1.d0
0.d0 68.d0
: -- flow solvers ------
```

```
NEWTON_SOLVER FLOW
PRECONDITIONER_MATRIX_TYPE AIJ
RTOL 1.d-8
ATOL 1.d-8
STOL 1.d-30
:NO_INFINITY_NORM
:NO PRINT CONVERGENCE
:PRINT_DETAILED_CONVERGENCE
LINEAR_SOLVER FLOW
:KSP_TYPE FGMRES
:KSP_TYPE PREONLY
:PC TYPE LU
: -- transport solvers ------
NEWTON_SOLVER TRANSPORT
PRECONDITIONER_MATRIX_TYPE AIJ
RTOL 1.d-12
ATOL 1.d-12
STOL 1.d-30
:NO_INFINITY_NORM
:NO_PRINT_CONVERGENCE
:PRINT_DETAILED_CONVERGENCE
LINEAR_SOLVER TRANSPORT
:KSP TYPE PREONLY
:PC_TYPE LU
FLUID_PROPERTY
DIFFUSION_COEFFICIENT 1.d-9
MATERIAL_PROPERTY BF
ID 1
SATURATION_FUNCTION BF
POROSITY 0.2585
TORTUOSITY 1.0
PERMEABILITY
PERM_ISO 1.24e-12
MATERIAL_PROPERTY HF
SATURATION_FUNCTION HF
POROSITY 0.3586
TORTUOSITY 1.0
PERMEABILITY
PERM_ISO 3.37028e-13
MATERIAL_PROPERTY PP
SATURATION_FUNCTION PP
POROSITY 0.4223
TORTUOSITY 1.0
PERMEABILITY
```

```
PERM_ISO 3.73463e-14
MATERIAL_PROPERTY URG
SATURATION_FUNCTION URG
POROSITY 0.2625
TORTUOSITY 1.0
PERMEABILITY
PERM_ISO 1.4392e-13
MATERIAL PROPERTY MRG
ID 5
SATURATION_FUNCTION MRG
POROSITY 0.1643
TORTUOSITY 1.0
PERMEABILITY
PERM_ISO 2.00395e-13
: == saturation / permeability functions ====================
SATURATION_FUNCTION BF
SATURATION_FUNCTION_TYPE VAN_GENUCHTEN
RESIDUAL_SATURATION 0.0774
LAMBDA 0.6585
ALPHA 1.008d-3
SATURATION_FUNCTION HF
SATURATION FUNCTION TYPE VAN GENUCHTEN
RESIDUAL_SATURATION 0.08366
LAMBDA 0.46944
ALPHA 9.40796e-5
SATURATION_FUNCTION PP
SATURATION FUNCTION TYPE VAN GENUCHTEN
RESIDUAL_SATURATION 0.25953
LAMBDA 0.45587
ALPHA 6.85145e-5
SATURATION_FUNCTION URG
SATURATION_FUNCTION_TYPE VAN_GENUCHTEN
RESIDUAL_SATURATION 0.21295
LAMBDA 0.38594
ALPHA 2.96555e-5
SATURATION_FUNCTION MRG
SATURATION_FUNCTION_TYPE VAN_GENUCHTEN
RESIDUAL SATURATION 0.06086
LAMBDA 0.39215
ALPHA 6.34015e-5
:PERIODIC TIMESTEP 1
:PERIODIC TIME 0.025 y
times y 1. 10. 100.
```

```
FORMAT TECPLOT POINT
FORMAT HDF5
FINAL_TIME 100. y
INITIAL_TIMESTEP_SIZE 1.e-6 y
MAXIMUM_TIMESTEP_SIZE 1.e-1 y
: -- regions ------
:BLOCK 1 1 1 1 1 136
COORDINATES
0.d0 0.d0 0.d0
1.d0 1.d0 68.d0
REGION Top
:BLOCK 1 1 1 1 136 136
FACE TOP
COORDINATES
0.d0 0.d0 68.d0
1.d0 1.d0 68.d0
REGION Bottom
:BLOCK 1 1 1 1 1 1
FACE BOTTOM
COORDINATES
0.d0 0.d0 0.d0
1.d0 1.d0 0.d0
REGION BF
:BLOCK 1 1 1 1 105 136
COORDINATES
0.d0 0.d0 52.d0
1.d0 1.d0 68.d0
REGION HF
:BLOCK 1 1 1 1 59 104
COORDINATES
0.d0 0.d0 29.d0
1.d0 1.d0 52.d0
REGION PP
:BLOCK 1 1 1 1 47 58
COORDINATES
0.d0 0.d0 23.d0
1.d0 1.d0 29.d0
REGION URG
:BLOCK 1 1 1 1 41 46
COORDINATES
0.d0 0.d0 20.d0
1.d0 1.d0 23.d0
REGION MRG
:BLOCK 1 1 1 1 1 40
```

```
COORDINATES
0.d0 0.d0 0.d0
1.d0 1.d0 20.d0
REGION Leak
:BLOCK 1 1 1 1 103 103
COORDINATES
0.d0 0.d0 51.d0
1.d0 1.d0 51.d0
: -- flow conditions -----
FLOW CONDITION Inlet
TYPE
:FLUX 3.17098d-10 ! 1 cm/y
:FLUX 1.5855d-10 ! 5 mm/y
FLUX 2.53678e-10 ![m/s] (8 mm/y)
:FLUX 0.d0
:FLUX file 200w_recharge_1951-2000_daily.dat
FLOW_CONDITION Initial
TYPE
PRESSURE hydrostatic
DATUM 0.d0 0.d0 6.d0
PRESSURE 101325.d0
skip
FLOW_CONDITION source
RATE mass_rate
INTERPOLATION STEP
RATE file src.dat ! 8.4e-4~kg/s for 2 weeks (60,000 gallons)
noskip
TRANSPORT_CONDITION Inlet
TYPE dirichlet
CONSTRAINT_LIST
0.d0 Inlet
TRANSPORT_CONDITION Initial
TYPE zero_gradient
CONSTRAINT_LIST
0.d0 Initial
TRANSPORT_CONDITION source
TYPE dirichlet
CONSTRAINT_LIST
0.d0 well
```

```
CONSTRAINT Initial
CONCENTRATIONS
Tracer 1.e-10
CONSTRAINT Inlet
CONCENTRATIONS
Tracer 5.e-1
CONSTRAINT well
Tracer 1.d0 T
BOUNDARY_CONDITION Inlet
FLOW_CONDITION Inlet
TRANSPORT_CONDITION Inlet
REGION Top
BOUNDARY_CONDITION Outlet
FLOW_CONDITION Initial
TRANSPORT_CONDITION Initial
REGION Bottom
INITIAL_CONDITION Initial
FLOW CONDITION Initial
TRANSPORT_CONDITION Initial
REGION all
:skip
SOURCE_SINK Source
FLOW_CONDITION source
TRANSPORT_CONDITION source
REGION Leak
:noskip
: -- stratigraphy ------
MATERIAL BF
REGION BF
STRATA
MATERIAL HF
REGION HF
STRATA
MATERIAL PP
REGION PP
STRATA
MATERIAL URG
REGION URG
STRATA
MATERIAL MRG
REGION MRG
```

Source/sink file src.dat:

:time rate [kg/s]
0.d0 0.187e-4
1.21292e6 0.187e-4
1.21293e6 0.
1.e12 0.