Методичка по матАНАЛизу

1. Аннотация

Введем понятия:

- 1. \mathbb{R}^{m} *m*-мерное координатное пространство.
- 2. Точка $x=(x_1,x_2,\ldots,x_m)$ точка m-мерного пространства, $x_j\in\mathbb{R},\ j=1,2,\ldots,m$ координата точки.
- 3. $x,y\in\mathbb{R}^m$; $\rho_e(x,y)=\sqrt{\sum\limits_{j=1}^m(x_j-y_j)^2}$ расстояние между точками x и y.
- 4. $\mathbb{E}^m = (\mathbb{R}^m, \rho_e) m$ -мерное евклидово пространство.
- 5. $\mathcal{M} = (M, \rho)$ метрическое пространство, где $M \subset \mathbb{R}^m$ некоторое множество, $\rho(x, y)$ функция, задающая расстояние между точками x, y множества M (метрика).
- 6. $B_{\varepsilon}(x_0) = \{x \in \mathbb{E}^m : \rho(x, x_0) < \varepsilon\}$ m-мерный шар с центром в точке x_0 и радиусом ε (шаровая ε -окресность точки x_0).
- 7. $\Pi_{r_1,r_2,\dots r_m}(x_0) = \{x \in \mathbb{E}^m : |x_j x_{0j}| < r_j, \ j = 1,2,\dots,m\}$ m-мерный прямоугольник с центром x_0 и сторонами $2r_1,2r_2,\dots,2r_m$.
- 8. $\Pi_r(x_0) = \{x \in \mathbb{E}^m : |x_j x_{0j}| < r\}$ m-мерный квадрат с центром в точке x_0 и стороной 2r.

Предложение:

- 1. В любую шаровую окрестность можно вписать прямоугольную окрестность.
- 2. В любую прямоугольную окрестность можно вписать шаровую окрестность.

Доказательство: Пусть $B_{\varepsilon}(x_0)$, $\Pi_r(x_0)$ – шаровая и прямоугольная окрестности точки $x_0, r = (r_1, r_2, \dots, r_m)$. Везьмем $\delta = min\{r_1, r_2, \dots, r_m\}$, тогда:

- 1. $\Pi_{\delta}(x_0) \subset B_{\varepsilon}(x_0), \quad \delta = \frac{\varepsilon}{\sqrt{m}}.$
- 2. $B_{\varepsilon}(x_0) \subset \Pi_{\delta}(x_0), \ \delta = \varepsilon.$

1.1. Предел последовательности точек в n-мерном евклидовом пространстве.

Обозначим $\mathcal{M} = (M, \rho), \{x^n\}_{n=1}^{\infty}$ – последовательность точек в \mathcal{M} .

Определение: Последовательность $\{x^n\} \subset \mathcal{M}$ точек метрического пространства сходится к точке $a \in \mathcal{M}$, если:

$$\lim_{n \to \infty} \rho(x^n, a) = 0$$

$$\left[\lim_{n\to\infty} x^n = a\right] \stackrel{\text{def}}{=} \left[\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : \forall n \geqslant N \mapsto \rho(x^n, a) < \varepsilon\right]$$

Любой шар с центром в точке a и радиусом ε содержит все члены последовательности $\{x^n\}$ за исключением быть может конечного числа N.

<u>Лемма:</u> Сходящаяся последовательность точек ограничена.

Доказательство:

$$\lim_{n \to \infty} x^n = a \stackrel{def}{\Rightarrow} \lim_{n \to \infty} y_n = 0$$

где $y_n = \rho(x^n, a)$. Тогда $\{y_n\}$ – бесконечно малая последовательность $\Rightarrow \{y_n\}$ – ограничена, т. е. $\exists \ C > 0 \ : \ 0 \leqslant y_n = \rho(x^n, a) \leqslant C$.

Лемма: Сходящаяся последовательность точек имеет единственный предел.

Доказательство: Будем доказывать от противного: предположим, что

$$\exists \ a \neq b : \begin{cases} \lim_{n \to \infty} x^n = a \\ \lim_{n \to \infty} x^n = b \end{cases} \Rightarrow$$

(1)
$$\forall \varepsilon > 0 \; \exists \; N_1 = N_1(\varepsilon) : \; \forall n \geqslant N_1 \mapsto \rho(x^n, a) < \frac{\varepsilon}{2}$$

(2)
$$\forall \varepsilon > 0 \; \exists \; N_2 = N_2(\varepsilon) : \; \forall n \geqslant N_2 \mapsto \rho(x^n, b) < \frac{\varepsilon}{2}$$

Рассмотрим $N = max\{N_1, N_2\}$, тогда:

$$\forall \varepsilon > 0 \; \exists \; N \; : \; \forall n \geqslant N \mapsto \rho(a, b) \leqslant \rho(x^n, a) + \rho(x^n, b) < \varepsilon$$

Таким образом, получаем, что $\rho(a,b) = 0 \implies a = b$ – противоречие.

1.2. Теорема Больцано-Вейерштрасса и критерий Коши сходимости последовательности.

Определение: Последовательность точек $\{x^n\} \subset \mathcal{M}$ ограничена, если $\exists R > 0 \ \forall n \mapsto \rho(x^n, 0) \leqslant R$.

$$x^n \xrightarrow[n \to \infty]{} a \Leftrightarrow \forall j \ x_j^n \xrightarrow[n \to \infty]{} a_j$$

Доказательство:

 $Heoбxoдимость (\Rightarrow)$

По условию дано:

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : \ \forall n \geqslant N \mapsto \rho(x^n, a) < \varepsilon$$

Тогда:

$$\rho(x^n, a) = \sqrt{\sum_{j=1}^m (x_j^n - a_j)^2} \Rightarrow |x_j^n - a_j| \leqslant \rho(x^n, a) < \varepsilon$$

Таким образом получаем:

$$[\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : \ \forall n \geqslant N \ \& \ \forall j = 1, 2, \dots, m \mapsto |x_j^n - a_j| < \varepsilon] \stackrel{def}{=} \lim_{n \to \infty} x_j^n = a_j$$

 $\square ocmamoчность$ (\Leftarrow)

Запишем определение покоординатной сходимости:

$$\forall \varepsilon > 0 \; \exists \; N_j = N_j(\varepsilon) : \; \forall n \geqslant N_j \mapsto |x_j - a_j| < \frac{\varepsilon}{\sqrt{m}}$$

Пусть $N = max\{N_1, N_2, \dots, N_m\} \Rightarrow \forall n \geqslant N \mapsto |x_j - a_j| < \frac{\varepsilon}{\sqrt{m}}$ для всех j.

$$\rho(x^n, a) = \sqrt{\sum_{j=1}^m (x_j^n - a_j)^2} < \sqrt{m \cdot \frac{\varepsilon^2}{m}} = \varepsilon \Rightarrow$$

$$\lim_{n \to \infty} x^n = a$$

<u>Теорема [Теорема Больцано-Вейерштрасса]:</u> Из любой ограниченной последовательности $\{x^n\} \subset \mathbb{E}^m$ можно выделить сходящуюся подпоследовательность $\{x^{k_n}\} \subset \mathbb{E}^m$.

Доказательство:

 $\{x^n\} \subset \mathbb{E}^m$ является ограниченной $\stackrel{def}{\Rightarrow} \exists R > 0 \ \forall n \mapsto \rho_e(x^n,0) \leqslant R$. Тогда для всех j последовательность $\{x^n_j\}$ так же ограничена $(x^n_j - j$ -ая компонента).

 $\{x_1^n\}$ ограничена, тогда по теореме Больцано-Вейерштрасса для числовой последовательности существует подпоследовательность $\{x_1^{k_{n_1}}\}$ такая, что $x_1^{k_{n_1}} \xrightarrow[n_1 \to \infty]{} a_1$.

Возьмём подпоследовательность $\{x^{k_{n_1}}\}\subset\mathbb{E}^m$ (по номерам k_{n_1} выбираем из последовательности $\{x^n\}$ точки). И рассмотрим числовую последовательность $\{x_2^{k_{n_1}}\}$. Она ограничена (как подпоследовательность ограниченной последовательности) и следовательно, по теореме Больцано-Вейерштраса существует подпоследовательность $\{x_2^{k_{n_2}}\}$ такая, что $x_2^{k_{n_2}}\xrightarrow[n_2\to\infty]{}a_2$. При этом все еще справедливо $x_1^{k_{n_2}}\xrightarrow[n_2\to\infty]{}a_1$.

$$\{x^{n}\} \subset \mathbb{E}^{m} \Rightarrow \{x_{1}^{n}\} \Rightarrow \{x_{1}^{k_{n_{1}}}\} \Rightarrow x_{1}^{k_{n_{1}}} \xrightarrow[n_{1} \to \infty]{} a_{1}$$

$$\{x^{k_{n_{1}}}\} \subset \mathbb{E}^{m} \Rightarrow \{x_{2}^{k_{n_{1}}}\} \Rightarrow \{x_{2}^{k_{n_{2}}}\} \Rightarrow \begin{cases} x_{2}^{k_{n_{2}}} \xrightarrow[n_{2} \to \infty]{} a_{2} \\ x_{1}^{k_{n_{2}}} \xrightarrow[n_{2} \to \infty]{} a_{1} \end{cases}$$

$$\{x^{k_{n_{2}}}\} \subset \mathbb{E}^{m} \Rightarrow \{x_{3}^{k_{n_{2}}}\} \Rightarrow \{x_{3}^{k_{n_{3}}}\} \Rightarrow \begin{cases} x_{3}^{k_{n_{3}}} \xrightarrow[n_{3} \to \infty]{} a_{3} \\ x_{2}^{k_{n_{3}}} \xrightarrow[n_{3} \to \infty]{} a_{2} \\ x_{1}^{k_{n_{3}}} \xrightarrow[n_{3} \to \infty]{} a_{1} \end{cases}$$

. . .

$$\{x^{k_{n_{m-1}}}\} \subset \mathbb{E}^m \Rightarrow \{x_m^{k_{n_{m-1}}}\} \Rightarrow \{x_m^{k_{n_m}}\} \Rightarrow \begin{cases} x_m^{k_{n_m}} \xrightarrow[n_m \to \infty]{} a_m \\ \dots \\ x_1^{k_{n_m}} \xrightarrow[n_m \to \infty]{} a_1 \end{cases}$$

Таким образом мы нашли подпоследовательность $\{x^{k_{n_m}}\}\subset \mathbb{E}^m$ такую, что $x^{k_{n_m}}\xrightarrow[n_m\to\infty]{}a=(a_1,a_2,\ldots,a_m).$

Определение: Последовательность точек $\{x^n\}\subset \mathcal{M}$ называется фундаменталной, если $\forall \varepsilon>0\ \exists N=N(\varepsilon):\ \forall n\geqslant N\ \&\ \forall k\geqslant N\mapsto \rho(x^n,x^k)<\varepsilon.$

<u>Определение:</u> Метрическое пространство \mathcal{M} , в котором любая фундаментальная последовательность точек $\{x^n\} \subset \mathcal{M}$ является сходящейся, называется *полным*.

Теорема [Критерий Коши]: для того, чтобы последовательность $\{x^n\} \subset \mathbb{E}^m$ сходилась, необходимо и достаточно, чтобы она была фундаментальной.

Доказательство:

 $Heoбxoдимость (\Rightarrow)$

$$x^n \xrightarrow[n \to \infty]{} a \Rightarrow \forall \varepsilon > 0 \ \exists N = N(\varepsilon) :$$

$$\forall n \geqslant N \mapsto \rho(x^n, a) < \frac{\varepsilon}{2}$$

$$\forall k \geqslant N \mapsto \rho(x^k, a) < \frac{\varepsilon}{2}$$

$$\rho(x^n, x^k) \leqslant \rho(x^n, a) + \rho(x^k, a) < \varepsilon$$

 $Достаточность (\Leftarrow)$

Докажем, что евклидово пространство \mathbb{E}^m является полным, то есть любая фундаментальная последовательность этого пространства является сходящейся.

Рассмотрим последовательность $\{x^n\} \subset \mathbb{E}^m$, которая является фундаментальной. Распишем по определению:

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : \ \forall n \geqslant N \ \& \ \forall k \geqslant N \longmapsto \rho(x^n, x^k) < \varepsilon$$

Воспользуемся утверждением:

$$\forall j \longmapsto |x_j^n - x_j^k| \leqslant \rho(x^n, x^k) < \varepsilon$$

Таким образом, получаем, что последовательность $\{x_j\}$ является фундаментальной, отсюда, по теореме Коши для обычной числовой последовельности, она являтся сходящейся, то есть:

$$\forall \varepsilon > 0 \; \exists \; N = N(\varepsilon) : \; |x_i - a_i| < \varepsilon$$

Последовательность $\{x^n\} \subset \mathbb{E}^m$ имеет покоординатную сходимость, а этого, как известно, достаточно для сходимости последовательности $\{x^n\}$.

Замечание: Таким образом, мы доказали, что в евклидовом пространстве справедлив критерий Коши.

Замечание: Для произвольных метрик может существовать последовательность, которая является фундаментальной, но при этом не сходится.

Контрпример: Рассмотрим метрическое пространство $\mathcal{M} = (\mathbb{Q}, \rho), \, \rho(x,y) = |x-y|$. Рассмотрим последовательность $x_1 = 1, \, x_{n+1} = \frac{1}{2}(x_n + \frac{2}{x_n})$. Данная последовательность является фундаментальной, но при этом не является сходящейся в \mathcal{M} .

1.3. Внутренние, предельные, изолированные точки множества.

Определение: точка x_0 множества $X \subset \mathcal{M} = (M, \rho)$ называется внутренней точкой множества, если существует $B_r(x_0)$: $B_r(x_0) \subset X$.

Определение: точка x_0 называется предельной точкой множества $X \subset \mathcal{M} = (M, \rho)$, если любая окрестность точки x_0 содержит по крайней мере одну точку множества X, отличную от x_0 .

$$\forall \varepsilon > 0 \; \exists \; x_{\varepsilon} \in X : x_{\varepsilon} \neq x_0 \; \& \; x_{\varepsilon} \in B_{\varepsilon}(x_0)$$

<u>Определение:</u> точка x_0 множества $X \subset \mathcal{M} = (M, \rho)$ называется *изолированной точкой множества*, если у этой точки существует окрестность, не содержащая никаких других точек множества X.

$$\exists r > 0 : \forall x \in B_r(x_0) : \ x \neq x_0 \mapsto x \notin X$$

Определение: точка x_0 называется точкой прикосновения множества $X \subset \mathcal{M} = (M, \rho)$, если любая окрестность этой точки содержит по крайней мере одну точку множества X.

$$\forall \varepsilon > 0 \; \exists \; x_{\varepsilon} \in X \; : \; x_{\varepsilon} \in B_{\varepsilon}(x_0)$$

Определение: точка x_0 называется *граничной точкой множества* $X \subset \mathcal{M} = (M, \rho)$, если в любой ее окрестности существуют точки, как принадлежащие множеству X, так и не принадлежащие ему.

$$\forall \varepsilon > 0 \; \exists \; x'_{\varepsilon} \in X \; \& \; x''_{\varepsilon} \notin X : x'_{\varepsilon}, x''_{\varepsilon} \in B_{\varepsilon}(x_0)$$

1.4. Открытые и замкнутые множества, их свойства.

Определение: Множество $X \subset \mathcal{M}$ называется *открытым*, если любая его точка внутренняя.

Определение: Множество $X \subset \mathcal{M}$ называется *замкнутым*, если оно содержит все свои предельные точки.

Теорема: открытые множества метрического пространства \mathcal{M} обладают следующими свойствами:

- 1. \mathcal{M}, \varnothing открытые множества.
- 2. $\bigcup_{\alpha \in A} X_{\alpha}$ объединение любого числа открытых множеств X_{α} есть открытое множество.
- 3. $\bigcap_{i=1}^{K} X_{i}$ пересечение конечного числа открытых множеств X_{i} есть открытое множество.

Доказательство свойства 2: Возьмём произвольную точку $x \in X = \bigcup_{\alpha \in A} X_{\alpha}$, тогда существует множество X_{α_0} , такое что $x \in X_{\alpha_0}$. Но X_{α_0} – открытое множество (по условию), поэтому $\exists \ \varepsilon_0 : B_{\varepsilon_0}(x) \subset X_{\alpha_0} \subset X$, таким образом, получается, что любая точка множества

X входит в него с некоторой ε -окрестностью, это значит, что X – открытое множество.

Доказательство свойства 3: Возьмём произвольную точку $x \in X = \bigcap_{j=1}^K X_j$, тогда $x \in X_j$, j = 1, 2, ..., K. Но каждое X_j – открытое множество, поэтому $\forall \ j \ \exists \ \varepsilon_j : B_{\varepsilon_j}(x) \subset X_j$. Пусть $\varepsilon = \min\{\varepsilon_1, \varepsilon_2, ..., \varepsilon_K\}$, тогда $\forall \ j \ B_{\varepsilon}(x) \subset X_j \Rightarrow B_{\varepsilon}(x) \subset X$, это значит, что X – открытое множество.

Теорема:

1.
$$Y \setminus (\bigcap_{\alpha \in A} X_{\alpha}) = \bigcup_{\alpha \in A} (Y \setminus X_{\alpha})$$

2.
$$Y \setminus (\bigcup_{\alpha \in A} X_{\alpha}) = \bigcap_{\alpha \in A} (Y \setminus X_{\alpha})$$

Доказательство (1):

Пусть
$$x \in Y \setminus \left(\bigcap_{\alpha \in A} X_{\alpha}\right) \Rightarrow [x \in Y] \& \left[x \notin \bigcap_{\alpha \in A} X_{\alpha}\right] \Rightarrow \exists \alpha' \in A : x \notin X_{\alpha'}.$$

Пусть
$$x \in \bigcup_{\alpha \in A} (Y \setminus X_{\alpha}) \Rightarrow \exists \alpha' : x \in Y \setminus X_{\alpha'} \Rightarrow [x \in Y] \& [x \notin X_{\alpha'}].$$

Таким образом в обоих случаях мы приходим к тому, что $\exists \alpha' \in A : [x \in Y] \& [x \notin X_{\alpha'}].$

Доказательство (2): Проводим аналогичные рассуждения.

Теорема: множество X метрического пространства \mathscr{M} является замкнутым $\Leftrightarrow CX = \mathscr{M} \backslash X$ – открытое множество. Причем CX называется дополнением множества X.

Доказательство:

 $Heoбxoдимость (\Rightarrow)$

Доказываем от противного: предположим, что CX не является открытым множеством $\Rightarrow \exists \ x_0 \in CX: \ x_0$ не является внутренней точкой $CX \Rightarrow$

$$\forall \varepsilon > 0 \; \exists \; x_{\varepsilon} \neq x_0 : \; x_{\varepsilon} \notin CX \; \& \; x_{\varepsilon} \in B_{\varepsilon}(x_0)$$

тогда x_0 по определению является предельной точкой множества X и при этом $x_0 \notin X$ (т. к. $x_0 \in CX$); получается, что существует предельная точка множества X, не лежащая в этом множестве, но по условию X – замкнутое множество, а значит сожержит все свои предельные точки, таким образом приходим к противоречию.

 $Достаточность (\Leftarrow)$

Доказываем от противного: предположим, что X не является замкнутым множеством, тогда:

 $\exists \ x_0 \notin X: \ x_0$ – предельная точка множества X

По определению предельной точки:

$$\forall \varepsilon > 0 \; \exists \; x_{\varepsilon} \neq x_0 : \; x_{\varepsilon} \in X \; \& \; x_{\varepsilon} \in B_{\varepsilon}(x_0)$$

Тогда любой шарик $B_{\varepsilon}(x_0)$ с радиусом $r=\varepsilon$ и центром в точке x_0 не содержится в $CX \Rightarrow x_0$ не является внутренней точкой множества CX, но при этом $x_0 \in CX$, поскольку $x_0 \notin X$; однако, по условию CX – открытое множество, а значит должно содержать все свои внутренние точки. Таким образом, приходим к противоречию.

Теорема: замкнутые множества обладают следующими свойствами:

- 1. \mathcal{M}, \emptyset замкнутые множества.
- 2. $\bigcap_{\alpha \in A} X_{\alpha}$ пересечение любого числа замкнутых множеств X_{α} есть замкнутое множество.
- 3. $\bigcup_{i=1}^{K} X_j$ объединение конечного числа замкнутых множеств X_j есть замкнутое множество.

Доказательство свойства 2: Воспользуемся теоремой о дополнении множества X: рассмотрим $C(\bigcap_{\alpha \in A} X_{\alpha}) = \mathcal{M} \setminus (\bigcap_{\alpha \in A} X_{\alpha}) = \bigcup_{\alpha \in A} (\mathcal{M} \setminus X_{\alpha})$. X_{α} — замкнутое множество $\Rightarrow \mathcal{M} \setminus X_{\alpha}$ — открытое множество $\Rightarrow \bigcup_{\alpha \in A} (\mathcal{M} \setminus X_{\alpha}) = C(\bigcap_{\alpha \in A} X_{\alpha})$ — открытое множество, тогда по теореме о дополнении множества $\bigcap_{\alpha \in A} X_{\alpha}$ — замкнутое множество.

Доказательство свойства 3: Воспользуемся теоремой о дополнении множества X: рассмотрим $C(\bigcup_{j=1}^K X_j) = \mathcal{M} \setminus (\bigcup_{j=1}^K X_j) = \bigcap_{j=1}^K (\mathcal{M} \setminus X_j)$. X_j — замкнутое множество $\Rightarrow \mathcal{M} \setminus X_j$ — открытое множество $\Rightarrow \bigcap_{j=1}^K (\mathcal{M} \setminus X_j) = C(\bigcup_{j=1}^K X_j)$ — открытое множество, тогда по теореме о дополнении множества $\bigcup_{j=1}^K X_j$ — замкнутое множество.

Замечание:

- 1. Если X открытое множество, то X = int X.
- 2. Если X замкнутое множество, то $\overline{X} = X$.
- 3. Пусть G открытое множество, тогда в общем случае $int(\overline{G}) \neq G$.
- 4. Пусть F замкнутое множество, тогда в общем случае $\overline{int}F \neq F$.

1.5. Внутренность, замыкание и граница множества.

Определение: intX – совокупность всех внутренних точек множества $X \subset \mathcal{M}$ называется внутренностью множества X.

Определение: \overline{X} – замыкание множества $X \subset \mathcal{M}$ – операция присоединения к множеству X всех его предельных точек.

Определение: ∂X – граница множествва X – совокупность всех граничных точек множества X.

1.6. Компакты.

Определение: Множество $X \subset \mathcal{M}$ называется *компактом*, если если из любой последовательности его точек можно выделить сходящуюся подпоследовательность, предел которой принадлежит множеству X.

$$\forall \{x^n\} \subset X \exists \{x^{k_n}\} \subset X : \lim_{n \to \infty} x^{k_n} = a \in X$$

Определение: Множество $X \subset \mathbb{R}^m$, любые 2 точки которого можно соеденить лежащей в нем непрерывной кривой, называется линейно связным (непрерывной кривой в m-мерной пространстве). («Введение в математический анализ.» Л. Д. Кудрявцев том 2).

Определение: Множества X_1 и X_2 метрического пространства \mathcal{M} называются *отделимыми*, если ни одно из них не содержит точек прикосновения другого.

Определение: Множество X метрического пространства \mathcal{M} называется $censuremath{\mathfrak{e}}$ я, если его нельзя представить в виде объединения двух отделимых множеств.

Определение: Открытое связное множество называется областью.

1.7. Метрическое пространство.

Определение: Пусть M – произвольное множество, для любых точек $x,y \in M$ поставим в соответствие число $\rho(x,y) \geqslant 0$ такое что

- 1. $\rho(x,y) = 0 \Leftrightarrow x = y$
- $2. \ \rho(x,y) = \rho(y,x)$
- 3. $\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$

тогда $\mathcal{M} = (M, \rho)$ называется метрическим пространством, а функция $\rho(x, y)$ – его метрикой.

Теорема [Неравенство Коши-Буняковского]: для любых точек $a_1, b_1, \ldots, a_m, b_m$ справедливо:

$$\left(\sum_{j=1}^{m} a_{j} b_{j}\right)^{2} \leqslant \sum_{j=1}^{m} a_{j}^{2} \cdot \sum_{j=1}^{m} b_{j}^{2}$$

Доказательство: Рассмотрим многочлен:

$$p(z) = \sum_{j=1}^{m} (a_j + b_j z)^2 = A + 2Bz + Cz^2$$

$$A = \sum_{j=1}^{m} a_j^2; \quad B = \sum_{j=1}^{m} a_j b_j; \quad C = \sum_{j=1}^{m} b_j^2$$

Заметим, что при любых значениях z многочлен $p(z) \geqslant 0$, поскольку является суммой неотрицательных членов, тогда справедливо $B^2 - AC \leqslant 0 \Rightarrow B^2 \leqslant AC$ (дискриминант квадратного уравнения, деленный на 4). Подставляя A, B, C получаем исходное неравенство.

Теорема [Неравенство Минковского]: для любых $a_1, b_1, \ldots, a_m, b_m$ справедливо:

$$\sqrt{\sum_{j=1}^{m} (a_j + b_j)^2} \leqslant \sqrt{\sum_{j=1}^{m} a_j^2} + \sqrt{\sum_{j=1}^{m} b_j^2}$$

Доказательство:

$$\sum_{j=1}^{m} (a_j + b_j)^2 = \sum_{j=1}^{m} a_j^2 + 2 \sum_{j=1}^{m} a_j b_j + \sum_{j=1}^{m} b_j^2$$

$$\sum_{j=1}^{m} a_j^2 + 2 \sum_{j=1}^{m} a_j b_j + \sum_{j=1}^{m} b_j^2 \stackrel{\text{K-B}}{\leqslant} \left(\sqrt{\sum_{j=1}^{m} a_j^2} \right)^2 + 2 \sqrt{\sum_{j=1}^{m} a_j^2} \cdot \sqrt{\sum_{j=1}^{m} b_j^2} + \left(\sqrt{\sum_{j=1}^{m} b_j^2} \right)^2$$

Свернём правую чать по формуле квадрата суммы и получим:

$$\sum_{j=1}^{m} (a_j + b_j)^2 \leqslant \left(\sqrt{\sum_{j=1}^{m} a_j^2} + \sqrt{\sum_{j=1}^{m} b_j^2}\right)^2$$

Примеры метрических пространств:

$$\mathcal{M} = (M, \rho), \ \rho = \begin{cases} 0, x = y \\ 1, x \neq y \end{cases}$$
$$\mathbb{E}^m = (\mathbb{R}^m, \rho_e), \ \rho_e(x, y) = \sqrt{\sum_{j=1}^m (x_j - y_j)^2}$$
$$\mathcal{M} = (\mathbb{R}^m, \rho_1), \ \rho_1(x, y) = \max_{1 \leq j \leq m} |x_j - y_j|$$

1.8. Компакты в метрическом пространстве и описание компактов в n-мерном евклидовом пространстве.

Определение: Множество $X \subset \mathbb{E}^m$ называется ограниченным, если существует m-мерный шар $B_R(0)$ такой, что $X \subset B_R(0)$ («Курс математического анализа» Л. Д. Кудрявцев том 2).

Теорема: $X \subset \mathbb{E}^m$ является компактом $\Leftrightarrow X$ – ограниченное и замкнутое множество.

Доказательство:

 $Heoбxoдимость (\Rightarrow)$

Пусть $X \subset \mathbb{E}^m$ является компактом, докажем, что X является замкнутым множеством. Возьмём произвольную предельную точку a множества X и будем рассматривать её окрестности: $B_{\frac{1}{2}}(a)$:

 $r_1=1$, тогда по определению предельной точки $\exists x_1 \neq a: x_1 \in X \& x_1 \in B_1(a)$ $r_2=\frac{1}{2}$, тогда по определению предельной точки $\exists x_2 \neq a: x_2 \in X \& x_2 \in B_{\frac{1}{2}}(a)$

 $r_n=rac{1}{n},$ тогда по определению предельной точки $\exists \ x_n
eq a: x_n \in X \ \& \ x_n \in B_{rac{1}{n}}(a)$

. . .

Таким образом, мы построили последовательность точек $\{x^n\} \subset X$ такую, что выполняется следующее:

$$\forall \varepsilon > 0 \ \exists N = \frac{1}{\varepsilon} : \ \forall n \geqslant N \mapsto \rho(a, x^n) < \frac{1}{n} < \varepsilon$$

или, что то же самое:

$$\lim_{n \to \infty} x^n = a$$

но, по условию, X – компакт, а значит $a \in X$, таким образом, в силу произвольности точки a, компакт X содержит все свои предельные точки, а значит, является замкнутым множеством.

Заметим, что неограниченное множество X не может быть компактом, так как в неограниченном множестве можно построить последовательность точек, которая не будет являться сходящейся.

 $\square ocmamoчность (\Leftarrow)$

Пусть $X \subset \mathbb{E}^m$ – ограниченное, замкнутое множество. Возьмём последовательность точек $\{x^n\} \subset X$, по теореме Больцано-Вейерштрасса, в силу ограниченности этой последовательности, из нее можно выделить сходящуюся подпоследовательность $\{x^{k_n}\} \xrightarrow[n \to \infty]{} a$, в силу замкнутости множества $a \in X$, но тогда получается, что X – компакт.

2. Билет 2

2.1. Предел числовой функции нескольких переменных.

<u>Обозначения:</u> $\mathscr{M} = (\mathbb{M}, \rho), \ a \in \mathscr{M}, \ \mathscr{U}(a), \ w = f(x)$ - некоторая функция, заданная в $\mathscr{U}(a)$, за исключением, быть может, самой точки a.

Определение (по Гейне):

$$\overline{\left[\lim_{x\to a} f(x) = b\right] \stackrel{def}{=} \left[\forall \{x^n\} : [x^n \xrightarrow[n\to\infty]{} a] \& [x^n \neq a \ \forall n] \mapsto w^n = f(x^n) \xrightarrow[n\to\infty]{} b\right]}.$$

Определение (по Коши):

$$\overline{\left[\lim_{x\to a} f(x) = b\right]} \stackrel{def}{=} \left[\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \left[\forall x : \ 0 < \rho(x,a) < \delta\right] \mapsto |f(x) - b| < \varepsilon\right].$$

Пример:

$$w = f(x,y) = \frac{2xy}{x^2 + y^2} \;,$$

$$x^2 + y^2 \neq 0, \; \vec{0} = (0,0)$$

$$[\lim_{(x,y) \to \vec{0}} f(x,y) - \text{не существует}]$$

Рассмотрим последовательности:

$$\{z^n\}' = \{(x^n, y^n)\} = \left(\frac{1}{n}, \frac{1}{n}\right), \quad \rho(\{z^n\}', \vec{0}) = \frac{\sqrt{2}}{n} \xrightarrow[n \to \infty]{} 0$$

$$\{z^n\}'' = \{(x^n, y^n)\} = \left(-\frac{1}{n}, \frac{1}{n}\right), \quad \rho(\{z^n\}'', \vec{0}) = \frac{\sqrt{2}}{n} \xrightarrow[n \to \infty]{} 0$$

Однако $f(\{z^n\}') = 1$, $f(\{z^n\}'') = -1$. Поэтому предел функции f(x,y) в точке $\vec{0} = (0,0)$ не существует.

<u>Предложение:</u> Пусть $a \in \mathcal{M}$ и w = f(x), w = g(x) определены в $\mathcal{U}(a)$, за исключением, быть может, самой точки a; $\lim_{x \to a} f(x) = b$, $\lim_{x \to a} g(x) = c$. Тогда:

$$\lim_{x \to a} [f(x) \pm g(x)] = b \pm c$$

$$\lim_{x \to a} [f(x) \cdot g(x)] = b \cdot c$$

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{b}{c}, \ c \neq 0$$

12

Доказательство аналогично доказательству для функций одной переменной.

Определение: Функция $\alpha = \alpha(x)$, определенная в $\mathscr{U}(a)$, за исключением, быть может, самой точки a, называется бесконечно малой, если $\lim_{x\to a} \alpha(x) = 0$.

Предложение:

 $[f(x):\lim_{x o a}f(x)=b]\Rightarrow [lpha=lpha(x)=f(x)-b$ – бесконечно малая при x o a].

2.2. Предел функции по множеству.

Обозначения: a - предельная точка множества $A \subset \mathcal{M}, \ w = f(x)$ определена в A.

Определение: Предел функции по множеству:

$$\left[\lim_{x\xrightarrow[x\in A]} af(x) = b\right] \stackrel{def}{=} \left[\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in A : \ 0 < \rho(x,a) < \delta \mapsto |f(x) - b| < \varepsilon\right]$$

Обозначения: $D \subset \mathbb{E}^m$ - неограниченное множество. w = f(x) - определена на D.

Определение: Предел функции при $x \to \infty$:

$$\left[\lim_{x\to\infty}f(x)=b\right]\stackrel{def}{=}\left[\forall\varepsilon>0\ \exists\delta=\delta(\varepsilon)>0:\forall x\in D:\rho(x,\vec{0})>\delta\mapsto|f(x)-b|<\varepsilon\right]$$

Здесь $\vec{0} = (0, ..., 0)_m$.

Определение: Пусть функция w = f(x) определена на множестве $\prod_r (x_0, y_0) = \{(x, y) \in \mathbb{E}^2 : 0 < |x - x_0| < r_1, 0 < |y - y_0| < r_2\}$ и $\forall x \in (x_0 - r_1, x_0 + r_1), \ x \neq x_0 \exists \lim_{y \to y_0} f(x, y) = \varphi(x), \ \exists \lim_{x \to x_0} \varphi(x) = b.$ Тогда говорят, что у функции w = f(x, y) существует повторный предел $\lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = b$. Пусть $\forall y \in (y_0 - r_2, y_0 + r_2), \ y \neq y_0 \exists \lim_{x \to x_0} f(x, y) = \psi(y), \ \exists \lim_{y \to y_0} \psi(y) = c$. Тогда говорят, что у функции w = f(x, y) существует повторный предел $\lim_{y \to y_0} \lim_{x \to x_0} f(x, y) = c$.

Замечание: Из существования предела функции в точке не следует существование повторных пределов. А из существования и равенства повторных пределов не следует существования предела в точке.

Примеры:

1.

$$w = f(x, y) = \frac{2xy}{x^2 + y^2}, \ x^2 + y^2 \neq 0$$

$$\lim_{y \to 0} \lim_{x \to 0} f(x, y) = \lim_{x \to 0} \lim_{y \to 0} f(x, y) = 0$$

Но предел функции в точке (0,0) не существовует.

2.

$$w = f(x, y) = \begin{cases} x \cdot \sin\left(\frac{1}{y}\right), & y \neq 0 \\ 0, & y = 0 \end{cases}$$

$$|f(x,y)| \le |x| \le \sqrt{x^2 + y^2} < \delta = \varepsilon$$

$$[\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in A : \ 0 < \rho(x, a) < \delta \mapsto |f(x) - b| < \varepsilon]$$

$$\lim_{(x,y)\xrightarrow[y\neq 0]{0}} f(x,y) = 0$$
 $\lim_{y\to 0} \lim_{x\to 0} f(x,y) = 0$, однако

 $\lim_{x\to 0} \lim_{y\to 0} f(x,y)$ — не существует.

<u>Предложение:</u> Пусть w = f(x,y) определена в $\prod_r (x_0,y_0) = \{(x,y) \in \mathbb{E}^2 : 0 < |x-x_0| < r_1, \ 0 < |y-y_0| < r_2\}$ и $\lim_{(x,y) \to (x_0,y_0)} f(x,y) = b$. Пусть, кроме того, $\forall x : 0 < |x-x_0| < r_1 \exists \lim_{y \to y_0} f(x,y) = \varphi(x)$ и $\forall y : 0 < |y-y_0| < r_2 \exists \lim_{x \to x_0} f(x,y) = \psi(y)$. Тогда повторные пределы существуют и равны числу b.

2.3. Непрерывность функции нескольких переменных в точке и по множеству.

Определение: Функция w=f(x), определенная в $\mathscr{U}(a)\subset \mathscr{M}$ называется непрерывной в точке a, если $\lim_{x\to a}f(x)=f(a)$.

Обозначения: w = f(x) определена на $A \subset \mathcal{M}$ и a предельная точка множества A.

Определение: Функция w = f(x) называется непрерывной в точке a по множеству A, если $\lim_{x \to a} f(x) = f(a)$.

Определение: Функция w = f(x) называется непрерывной на множестве $\mathbb{X} \subset \mathcal{M}$, если она непрерывна в каждой точке множества \mathbb{X} по множеству \mathbb{X} .

Предложение:

[f – непрерывна в точке $a\in\mathscr{M}]\Leftrightarrow [\Delta f(x)=f(x)-f(a)$ – бесконечно малая при x o a]

Обозначения:

$$w = f(x), \ x \in \mathbb{E}^m; \ \Delta_k f(x^0, \Delta x_k) = f(x_1^0, ..., x_{k-1}^0, x_k^0 + \Delta x_k, x_{k+1}^0, ..., x_m^0) - f(x^0)$$

Частичное приращение функции w = f(x) в точке $x^0 = (x_1^0, ..., x_m^0)$ соответствуют приращению Δx_k аргумента x_k .

Определение: Функция w = f(x) называется непрерывной в точке x^0 по переменной x_k , если $\lim_{\Delta x_k \to 0} \Delta_k f(x^0, \Delta x_k) = 0$.

Замечание: Из непрерывности функции w = f(x) в точке $x^0 = (x_1^0, ..., x_m^0)$ следует непрерывность функции по каждой переменной, но из непрерывности функции по каждой переменной не следует непрерывность функции в точке.

Контрпримеры:

1.

$$w = f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0; \\ 0, & x^2 + y^2 = 0. \end{cases}$$

$$\Delta_x f(\vec{0}, x) = \Delta_y f(\vec{0}, y) = 0.$$

Функция непрерывна в точке $\vec{0} = (0,0)$ по переменной x и по переменной y. Однако пусть y = kx, тогда:

 $\lim_{(x,y)\to \vec{0}} f(x,y) = \lim_{x\to 0} \frac{kx^2}{(1+k^2)x^2} = \frac{k}{1+k^2} \neq 0$, при $k\neq 0$. Поэтому функция f(x,y) не является непрерывной в точке $\vec{0}$.

2.

$$w = f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0; \end{cases}$$

Функция f непрерывна в точке $\vec{0}$ по переменной x и по переменной y, непрерывна по множеству y=kx, однако не является непрерывной в точке $\vec{0}$ по множеству $y=x^2$: $\lim_{(x,y)\to\vec{0}} f(x,y)=\frac{1}{2}\neq 0$.

2.4. Свойства функций, непрерывных на компакте: ограниченность, достижение точных нижней и верхней граней, равномерная непрерывность (теорема Кантора).

Предложение: Пусть функции w = f(x) и w = g(x) непрерывны в точке $a \in \mathcal{M}$. Тогда функции $f \pm g$, $f \cdot g$, $\frac{f}{g}$ - непрерывны в точке a, в случае частного $g(a) \neq 0$.

Обозначения: $x \in \mathbb{E}^m, \ x_j = \varphi_j(t), \ t \in T \subset \mathbb{E}^k, \ j = 1, ..., m; \ \forall t \in T \subset \mathbb{E}^k \mapsto x \in \mathbb{X} \subset \mathbb{E}^m.$

Теорема [О непрерывности суперпозиции функций]: Пусть функция $x_j = \varphi_j(t), j = 1, ..., m$, непрерывна в точке a, функция f – непрерывна в точке $b = (b_1, ..., b_m)$, причем $b_j = \varphi_j(a), j = 1, ..., m$. На $T \subset \mathbb{E}^k$ определена сложная функция

$$F(t) = f(\varphi_1(t), ..., \varphi_m(t))$$

Тогда функция $F(t) = f(\varphi_1(t), ..., \varphi_m(t))$ непрерывна в точке a.

Доказательство:

$$[w=f(x) \text{ непрерывна в точке } b] \stackrel{def}{=}$$

$$[\forall \varepsilon>0 \ \exists \delta=\delta(\varepsilon)>0: [\forall x: \ \rho(x,b)<\delta] \mapsto |f(x)-f(b)|<\varepsilon]$$

$$[\varphi_j$$
 непрерывна в точке $a, j=1,...,m] \stackrel{def}{=} [\forall \delta > 0 \ \exists \sigma_j = \sigma_j(\varepsilon) > 0,$

$$j=1,...,m: [\forall t:\ \rho(t,a)<\sigma_j]\mapsto |\varphi_j(t)-\varphi_j(a)|<\frac{\delta}{\sqrt{m}}]$$

$$\exists \sigma=\sigma(\varepsilon)=\min\{\sigma_1,...,\sigma_m\}\Rightarrow \forall t:\rho(t,a)<\sigma\Rightarrow |x_j-b_j|<\frac{\delta}{\sqrt{m}}$$

$$\rho(x,b)=\sqrt{\sum_{j=1}^m(x_j-b_j)^2}<\sqrt{\sum_{j=1}^m\frac{\delta^2}{m}}=\delta\mapsto |f(x)-f(b)|<\varepsilon\Rightarrow$$

$$\Rightarrow |f(\varphi_1(t),...,\varphi_m(t))-f(\varphi_1(a),...,\varphi_m(a))|<\varepsilon\Rightarrow |F(t)-F(a)|<\varepsilon$$

$$[\forall \varepsilon>0\ \exists \sigma>0: [\forall t:\ \rho(t,a)<\sigma]\mapsto |F(t)-F(a)|<\varepsilon]\stackrel{def}{=}[F(t)-\text{непрерывна в точке a.}]$$

Теорема [О локальном сохранении знака непрерывной функции]: пусть w = f(x) определена на $\mathscr{U}(a) \subset \mathbb{E}^m$ и непрерывна в точке $x = a, f(a) \neq 0$. Тогда $\exists \delta > 0 : \forall x : \rho(x, a) < \delta \mapsto f(x) \cdot f(a) > 0$.

Доказательство: используется " ε - δ " определение непрерывности функции функции в точке и выбором $0 < \varepsilon < |f(a)|$.

Теорема Вейерштрасса: Пусть функция w = f(x) непрерывна на компакте $\mathbb{X} \subset \mathbb{E}^m$. Тогда она ограничена на \mathbb{X} и достигает на \mathbb{X} своих верхней и нижней граней.

Доказательство (по Бесову): проведем доказательство лишь для случая верхней грани. Как увидим, оно повторяет доказательство теоремы Вейерштрасса для одномерного случая: $\mathbb{X} = [a, b]$.

Пусть $B:=\sup_{\mathbb{X}}f\leqslant +\infty$. Из определения верхней грани следует, что существует последовательность точек $\{x^n\},\ x^n\in\mathbb{X}\ \forall n\in\mathbb{N}$ такая,

 $\lim_{n\to\infty} f(x^n) = B$. Последовательность $\{x^n\}$ ограничена в силу ограниченности множества \mathbb{X} . В силу теоремы Больцано-Вейерштрасса выделим из $\{x^n\}$ сходящуюся подпоследовательность $\{x^{n_k}\}_{k=1}^{\infty}$. Пусть $x^0 = \lim_{k\to\infty} x^{n_k}$. Точка x^0 принадлежит \mathbb{X} в силу замкнутости \mathbb{X} . Следовательно, f непрерывна в точке x^0 по множеству \mathbb{X} .

Теперь из соотношений

$$f(x^{n_k}) \to B, \ f(x^{n_k}) \to f(x^0)$$
 при $k \to \infty$

вытекает, что $f(x^0) = B$, т.е. что верхняя грань функции f достигается в точке $x^0 \in \mathbb{X}$, Следовательно, верхняя грань $\sup_{\mathbb{X}} f$ конечна, а функция f ограничена сверху на \mathbb{X} .

Аналогично доказывается, что функция f достигает своей нижней грани на $\mathbb X$ и ограничена снизу на $\mathbb X$. Теорема доказана.

Определение: функция f называется равномерно непрерывной на множестве $\mathbb{X} \subset \mathcal{M}$, если для любого положительного числа ε найдется положительное число δ такое, что для всех точек $x', x'' \in \mathbb{X}$, таких, что $\rho(x', x'') < \delta$, выполняется неравенство $|f(x') - f(x'')| < \varepsilon$.

На языке кванторов: $\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x', \ x'' \in \mathbb{X}, \ \rho(x', x'') < \delta \mapsto |f(x') - f(x'')| < \varepsilon$

Теорема [Теорема Кантора]: Пусть функция f непрерывна на компакте $\mathbb{X} \subset \mathbb{E}^m$. Тогда f равномерно непрерывна на \mathbb{X} .

Доказательство(по Бесову): Предположим, что теорема неверна, то есть, что существует f, непрерывная, но не равномерно непрерывная на X. Тогда:

$$\exists \varepsilon_0 > 0 : \forall \delta > 0 \ \exists x, \ y \in \mathbb{X} : \ \rho(x, y) < \delta : \ |f(x) - f(y)| \geqslant \varepsilon_0$$

Будем в качестве δ брать $\delta_n = \frac{1}{n}$ и обозначать через x^n , y^n соответствующую пару точек x, y. Тогда имеем:

$$x^n, y^n \in \mathbb{X}, \rho(x^n, y^n) < \frac{1}{n},$$

$$|f(x^n) - f(y^n)| \geqslant \varepsilon_0 > 0.$$

Выделим из последовательности x^n сходящуюся подпоследовательность $\{x^{n_k}\}_{k=1}^\infty$, $\lim_{k\to\infty}x^{n_k}=x^0$, что возможно по теореме Больцано-Вейерштрасса в силу ограниченности x^n . Тогда из $\rho(x^n,y^n)<\frac{1}{n}$ следует, что $\lim_{k\to\infty}y^{n_k}=x^0$. Точка $x^0\in\mathbb{X}$, так как \mathbb{X} замкнуто. В силу непрерывности f в точке x^0 по множеству \mathbb{X} имеем: $f(x^{n_k})\to f(x^0)$, $f(y^{n_k})\to f(x^0)$ при $k\to\infty$, так что

$$|f(x^{n_k}) - f(y^{n_k})| \leq |f(x^{n_k}) - f(x^0)| + |f(y^{n_k}) - f(x^0)| \to 0$$
, при $k \to \infty$

Это противоречит тому, что

$$|f(x^{n_k}) - f(y^{n_k})| \geqslant \varepsilon_0 > 0 \ \forall k \in \mathbb{N}$$

Теорема доказана.

2.5. Теорема о промежуточных значениях функции, непрерывной в области.

Теорема [Прохождение непр. функции через промежуточные значения]:

Пусть функция w = f(x) непрерывна на линейно связном множестве $\mathbb{X} \subset \mathbb{E}^m$, $a, b \in \mathbb{X}$ f(a) = A, f(b) = B. Пусть число C лежит между числами A и B. Тогда на любой кривой соединяющей точки a и b и лежащей в \mathbb{X} , найдется точка c, такая, что f(c) = C.

Доказательство: Пусть $[\alpha, \beta] \subset \mathbb{E}^1$, $x_j = \varphi_j(t)$, $\varphi_j(\alpha) = a_j$, $\varphi_j(\beta) = b_j$, j = 1, ..., m; $a = (a_1, ..., a_m)$, $b = (b_1, ..., b_m)$, $\varphi_j(\beta) = a_j$, φ_j

$$\Gamma = \{\varphi_1(t), ..., \varphi_m(t), \alpha \leqslant t \leqslant \beta\}$$

соединяющая точки a и b, $\Gamma \subset \mathbb{X}$.

Рассмотрим функцию одной переменной $F(t) = f(\varphi_1(t), ..., \varphi_m(t))$. По теореме о непрерывности суперпозиции функций F(t) - непрерывна на $[\alpha, \beta]$ $F(\alpha) = A$, $F(\beta) = B \Rightarrow \exists \gamma \in (\alpha, \beta) : F(\gamma) = C$ (т. Больцано - Коши). Тогда $c = (\varphi_1(\gamma), ..., \varphi_m(\gamma)) \Rightarrow f(c) = C$.

3. Билет 3

3.1. Частные производные функции нескольких переменных.

<u>Определение:</u> f определена $\mathscr{U}(a) \subset \mathbb{E}^m$. Если существует и конечен $\lim_{\Delta x_k \to 0} \frac{\Delta_k f(a, \Delta x_k)}{\Delta x_k} = b \in R$, то этот предел называется частной производной функции w = f(x) в точке а по аргументу x_k .

Обозначение. $\frac{\partial f}{\partial x_k}(a)$ или f'_{x_k}

$$\Delta_k f(a, \Delta x_k) = f(a_1, \dots, a_{k-1}, a_k + \Delta x_k, a_{k+1}, \dots, a_m) - f(a_1, \dots, a_m)$$

(Только на месте k-ого аргумента есть приращение).

Замечания.

1. При вычислении $\frac{\partial f}{\partial x_k}(x)$ вычисляется как для функций одной переменной x_k при фиксированных остальных переменных (остальные переменные – постоянные).

2.
$$\left[\exists \frac{\partial f}{\partial x_j}(a), j=1,\ldots,m\right] \not\Rightarrow [f$$
 непрерывна в точке а]

Контрпример.

$$\omega = f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0 \end{cases}$$
$$\frac{\partial f}{\partial x}(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = 0$$
$$\frac{\partial f}{\partial y}(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y} = 0$$

Однако, f не является непрерывной в точке (0,0), т.к. в этой точке у нее не существует $\lim_{(x,y)\to(0,0)} f(x,y)$.

3. Определение частной производной функции w = f(x) дано для внутренней точки множества определения функции. Оно не пригодно для граничной предельной точки множетсва, поскольку в граничной точке не всегда можно определить частное приращение. Поэтому частная производная в граничной предельной точке множества определения функции находится как предел частной производной по множеству.

Точка $a \in X$ — предельная граничная точка.

$$\frac{\partial f}{\partial x}(a) = \lim_{\substack{(x,y) \to (a_1, a_2) \\ (x,y) \in X}} \frac{\partial f}{\partial x}(x,y)$$

$$\frac{\partial f}{\partial y}(a) = \lim_{\substack{(x,y) \to (a_1, a_2) \\ (x,y) \in X}} \frac{\partial f}{\partial y}(x,y)$$

Рис. 1: Пример того, как частную производную следует искать как предел по множеству в точке а.

3.2. Дифференцируемость функции в точке

Некоторые замечания, которые нужны для определения дифференцируемости функции в точке:

Рассмотрим w=f(x), она определена в $\mathscr{U}(a), a=(a_1,\ldots,a_m), \Delta x=(\Delta x_1,\ldots,\Delta x_m): a+\Delta x=(a_1+\Delta x_1,\ldots,a_m+\Delta x_m)\in \mathscr{U}(a)$

Рассмотрим
$$\rho = \sqrt{(\Delta x_1)^2 + \ldots + (\Delta x_m)^2}$$
, $\rho \to 0 \Leftrightarrow \Delta x \to \bar{0}$, где $\bar{0} = \underbrace{(0, 0 \ldots, 0)}^m$.

 $\Delta f(a,\Delta x) = f(a+\Delta x) - f(a)$ – Полное приращение функции в точке а, соответствующее приращению аргументов $\Delta x = (\Delta x_1, \dots, \Delta x_m)$.

Определение: Функция f называется дифференцируемой в точке a, если

Условие 1:

$$\Delta f(a, \Delta x) = A_1 \Delta x_1 + \ldots + A_m \Delta x_m + \alpha_1(\Delta x) \Delta x_1 + \ldots + \alpha_m(\Delta x) \Delta x_m$$

где A_j – постоянные, $j=1,\ldots,m$, не зависят от Δx , $\alpha_j=\alpha_j(\Delta x)$ – б.м. функции при $\Delta x \to 0$; $\alpha_j=0$ при $\bar{\Delta x}=\bar{0}$.

Условие 2:

$$\Delta f(a, \Delta x) = A_1 \Delta x_1 + \ldots + A_m \Delta x_m + o(\rho), \rho \to 0$$

(По сути ρ – расстояние от точки Δx до $\bar{0}$).

Предложение. Условия 1 и 2 определения дифференцируемости функции в точке эквиваленты.

Доказательство.

 $1 \Rightarrow 2$

Покажем, что $\alpha_1(\Delta x)\Delta x_1 + \ldots + \alpha_m(\Delta x)\Delta x_m = o(\rho), \ \rho \to 0, \ \rho \neq 0$

Заметим, что

$$\left| \frac{\Delta x_j}{\rho} \right| \leqslant 1, \ \rho = \sqrt{(\Delta x_1)^2 + \ldots + (\Delta x_m)^2}$$

$$|\alpha_1 \Delta x_1 + \ldots + \alpha_m \Delta x_m| \leqslant \rho \cdot (|\alpha_1| \frac{|\Delta x_1|}{\rho} + \ldots + |\alpha_m| \frac{|\Delta x_m|}{\rho}) \leqslant \rho \cdot (|\alpha_1| + \ldots + |\alpha_m|)$$

В силу того, что $\rho \to 0 \Leftrightarrow \Delta x \to \bar{0}$, $|\alpha_1| + \ldots + |\alpha_m|$ также стремиться к нулю, как конечная сумма б.м. функций. Значит, $\rho \cdot (|\alpha_1| + \ldots + |\alpha_m|) = o(\rho)$. Показали, что это выражение действительно есть б.м. функция.

 $2 \Rightarrow 1$

$$o(\rho) = \frac{\rho^2}{\rho} \frac{o(\rho)}{\rho} = \frac{(\Delta x_1)^2 + \dots + (\Delta x_m)^2}{\rho} \frac{o(\rho)}{\rho}$$
$$o(\rho) = (\frac{\Delta x_1}{\rho} \frac{o(\rho)}{\rho}) \Delta x_1 + \dots + (\frac{\Delta x_m}{\rho} \frac{o(\rho)}{\rho}) \Delta x_m$$

Понятно, что $\alpha_j = \frac{\Delta x_j}{\rho} \frac{o(\rho)}{\rho}$, но $\frac{\Delta x_j}{\rho}$ величина ограниченная, а $\frac{o(\rho)}{\rho} \to 0$, $\rho \to 0 \Rightarrow$ при $\Delta x \to \bar{0}$. $\alpha_j = 0, \ j = 1, \ldots, m$, только при $\Delta x = \bar{0}$. Доказано.

3.3. Достаточные условия дифференцируемости функции в точке

<u>Теорема 2.</u> Пусть w = f(x) определена в $\mathscr{U}(a) \subset \mathbb{E}^m$ и в этой окрестности существуют $\frac{\partial f}{\partial x_j}$, $j = 1, \ldots, m$. Если $\frac{\partial f}{\partial x_j}$, $j = 1, \ldots, m$ непрерывны в точке a, то функция f дифференцируема в точке a.

Докательство. Проведем доказательство для $m=2, \ w=f(x,y), \ a=(a_1,a_2).$ Рассмотрим точку $(a_1+\Delta x,a_2+\Delta y)\in \mathscr{U}(a).$

Рассмотрим

$$\Delta f(a, (\Delta x, \Delta y)) = f(a_1 + \Delta x, a_2 + \Delta y) - f(a_1, a_2)$$

$$\Delta f(a, (\Delta x, \Delta y)) = f(a_1 + \Delta x, a_2 + \Delta y) - f(a_1, a_2 + \Delta y) + f(a_1, a_2 + \Delta y) - f(a_1, a_2)$$

Введем функцию $\varphi(x) = f(x, a_2 + \Delta y)$ и $\psi(y) = f(a_1, y)$

$$\Delta f(a, (\Delta x, \Delta y)) = \Delta \varphi(a_1, \Delta x) + \Delta \psi(a_2, \Delta y) =$$

$$= \varphi(a_1 + \Delta x) - \varphi(a_1) + \psi(a_2 + \Delta y) - \psi(a_2)$$

По теореме Лагранжа для функции одной переменной: $\exists \theta_1: \ 0 < \theta_1 < 1$ и $\exists \theta_2: \ 0 < \theta_2 < 1:$

$$f(a_{1} + \Delta x, a_{2} + \Delta y) - f(a_{1}, a_{2} + \Delta y) = f'_{x}(a_{1} + \theta_{1}\Delta x, a_{2} + \Delta y)\Delta x$$

$$f(a_{1}, a_{2} + \Delta y) - f(a_{1}, a_{2}) = f'_{y}(a_{1}, a_{2} + \theta_{2}\Delta y)\Delta y$$

$$f'_{x}(a_{1} + \theta_{1}\Delta x, a_{2} + \Delta y) = f'_{x}(a_{1}, a_{2}) + \alpha_{1}(\Delta x, \Delta y); \ \alpha_{1} \to 0, \ (\Delta x, \Delta y) \to (0, 0)$$

$$f'_{y}(a_{1}, a_{2} + \theta_{2}\Delta y) = f'_{y}(a_{1}, a_{2}) + \alpha_{2}(\Delta x, \Delta y); \ \alpha_{2} \to 0, \ (\Delta x, \Delta y) \to (0, 0)$$

$$\Delta f(a_{1}, \Delta x, \Delta y) = f'_{x}(a_{1}\Delta x) + f'_{y}(a_{1}\Delta x) + \alpha_{1}\Delta x + \alpha_{2}\Delta y$$

Получили в точности определение дифференцируемости функции f в точке a. Доказано.

Примеры. (Доказательство дифференцируемости ф-ции в точке) $w = f(x,y), \ \bar{0} = (0,0), \ \rho = \sqrt{x^2 + y^2}$ $f(x,y) - f(0,0) = \frac{\partial f}{\partial x}(0,0)\Delta x + \frac{\partial f}{\partial y}(0,0)\Delta y + o(\rho), \ \rho \to 0.$

Пример 1. $f(x,y) = y^2 \sin x$

Заметим, что f(x,0) = f(0,y) = f(0,0) = 0

Из определения частной производной: $\frac{\partial f}{\partial x}(0,0) = \lim_{x\to 0} \frac{f(x,0) - f(0,0)}{x} = 0.$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y} = 0.$$

Частные производные равны нулю, значит, надо показать, что $f(x,y) = o(\rho), \ \rho \to 0$. Надо показать, что $F(x,y) = \frac{f(x,y)}{\sqrt{x^2 + y^2}} \to 0$, при $(x,y) \to (0,0)$.

$$|F(x,y)| = |\frac{y^2 \sin x}{\sqrt{x^2 + y^2}}| \leqslant \frac{y^2}{\sqrt{x^2 + y^2}} \leqslant [|y| \leqslant \sqrt{x^2 + y^2}] \leqslant \frac{\sqrt{x^2 + y^2}^2}{\sqrt{x^2 + y^2}} = \sqrt{x^2 + y^2} \leqslant \delta = \varepsilon$$

$$[\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) = \varepsilon : \forall (x,y) : 0 < \rho = \sqrt{x^2 + y^2} < \delta \mapsto |F(x,y)| < \varepsilon] \stackrel{def}{=} [\lim_{(x,y) \to (0,0)} F(x,y) = 0] \Leftrightarrow [f(x,y) = o(\rho), \rho \to 0].$$

Пример 2.
$$f(x,y) = \sqrt{|xy|}$$
, $\bar{0} = (0,0)$ $f(x,0) = f(0,y) = f(0,0) = 0 \Rightarrow \frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$ $F(x,y) = \frac{\sqrt{|xy|}}{\sqrt{x^2+y^2}}$.

Перейдем к полярным координатам: $x = \rho \cos \varphi$, $y = \rho \sin \varphi$, $F(x,y) = \sqrt{|\cos \varphi \sin \varphi|}$ $\varphi = \frac{\pi}{2} \Rightarrow F(\rho,\varphi) = 0$

$$\varphi = \frac{2}{4} \Rightarrow F(\rho, \varphi) = \frac{1}{\sqrt{2}} \neq 0$$

Значит, f не является дифференцируемой в точке (0, 0).

Пример 3.(Очень важный для понимания теории)

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0 \end{cases}$$

$$\begin{split} f(x,0) &= x^2 \sin \frac{1}{|x|}, x \neq 0 \\ f(0,y) &= y^2 \sin \frac{1}{|y|}, y \neq 0 \\ f(0,0) &= 0 \\ \frac{\partial f}{\partial x}(0,0) &= \lim_{x \to 0} = \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} x \sin \frac{1}{|x|} = 0 \\ \frac{\partial f}{\partial y}(0,0) &= \lim_{y \to 0} = \frac{f(0,y) - f(0,0)}{y} = \lim_{y \to 0} y \sin \frac{1}{|y|} = 0 \end{split}$$

Теперь докажем, что эта функция дифференцируема в (0, 0)

Введем функцию

$$F(x,y) = \frac{f(x,y)}{\sqrt{x^2 + y^2}} = \sqrt{x^2 + y^2} \sin \frac{1}{\sqrt{x^2 + y^2}}$$

$$|F(x,y)| \leqslant \sqrt{x^2 + y^2} < \delta = \varepsilon$$

$$\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) = \varepsilon : \forall (x,y) : 0 < \rho = \sqrt{x^2 + y^2} < \delta \mapsto |F(x,y)| < \varepsilon] \stackrel{def}{=}$$

$$\left[\lim_{(x,y)\to(0,0)} F(x,y) = 0\right] \Leftrightarrow \left[f(x,y) = o(\rho), \rho \to 0\right] \Rightarrow$$

$$\Rightarrow f$$
дифференцируема в $(0,0)$

Посмотрим на частные производные этой функции по х и у вне точки (0, 0):

$$\frac{\partial f}{\partial x}(x,y) = 2x \sin \frac{1}{\sqrt{x^2 + y^2}} - \frac{x^2 + y^2}{(\sqrt{x^2 + y^2})^3} \cos \frac{1}{\sqrt{x^2 + y^2}}$$

 $\lim_{(x,y)\to(0,0)} \frac{\partial f}{\partial x}(x,y)$ не существует $\Rightarrow f'_x$ не является непрерывной в (0,0).

Пример показывает, что непрерывность частных производных в точке не является необходимым условием дифференцируемости функции.

Замечание. Непрерывность частных производных функции f в точке не является необходимым условием дифференцируемости функции в точке. Это условие достаточно (Теорема 2).

3.4. Дифференцируемость сложной функции

Рассматриваем функции $x_j = \varphi_j(t)$ в окрестности точки $t^0 = (t^0_1, \dots, t^0_k) \in \mathbb{E}^k$, $j = 1, \dots, m$. Рассматриваем функцию w = f(x), которая определена в окрестности точки $a = (a_1, \dots, a_m)$, причем $a_j = \varphi_j(t^0)$, $j = 1, \dots, m$. $F(t) = f(\varphi_1(t), \dots, \varphi_m(t))$ – суперпозиция функций f и функций $\varphi_1(t) \dots$ (сложная функция)

Теорема 3 [О дифференцируемости сложной функции]:

Пусть функции φ_j , $j=1,\ldots,m$ дифференцируемы в точке t^0 , функция f дифференцируема в точке , причем $a_j=\varphi_j(t^0),\ j=1,\ldots,m$. Тогда $F(t)=f(\varphi_1(t),\ldots,\varphi_m(t))$ дифференцируема в точке t^0 и

$$\frac{\partial F}{\partial t_j}(t^0) = \frac{\partial f}{\partial x_1}(a)\frac{\partial \varphi_1}{\partial t_j}(t^0) + \frac{\partial f}{\partial x_2}(a)\frac{\partial \varphi_2}{\partial t_j}(t^0) + \ldots + \frac{\partial f}{\partial x_m}(a)\frac{\partial \varphi_m}{\partial t_j}(t^0), j = 1, \ldots, k$$

Доказательство. $t^0 + \Delta t \in \mathscr{U}(t^0), a + \Delta x \in \mathscr{U}(a), \rho = \sqrt{(\Delta t_1)^2 + \ldots + (\Delta t_k)^2}.$

Условия дифференцируемости функции φ_i в точке t^0 :

$$\Delta \varphi_j(t^0, \Delta t) = \frac{\partial \varphi_j}{\partial t_1}(t^0)\Delta t_1 + \ldots + \frac{\partial \varphi_j}{\partial t_k}(t^0)\Delta t_k + o(\rho), \ \rho \to 0; \ \rho \to 0 \Leftrightarrow \Delta t \to \bar{0}.$$

Условия дифференцируемости функции f в точке a:

$$\Delta f(a, \Delta x) = \frac{\partial f}{\partial x_1}(a)\Delta x_1 + \ldots + \frac{\partial f}{\partial x_m}(a)\Delta x_m + \alpha_1 \Delta x_1 + \ldots + \alpha_m \Delta x_m.$$

Подставим вместо $\Delta x_1 \dots \Delta x_m$ приращения функции φ :

$$\Delta f(a, \Delta x) = \frac{\partial f}{\partial x_1}(a) \left[\frac{\partial \varphi_1}{\partial t_1}(t^0) \Delta t_1 + \dots + \frac{\partial \varphi_1}{\partial t_k}(t^0) \Delta t_k + o(\rho) \right] + \dots$$

$$\dots + \frac{\partial f}{\partial x_m}(a) \left[\frac{\partial \varphi_m}{\partial t_1}(t^0) \Delta t_1 + \dots + \frac{\partial \varphi_m}{\partial t_k}(t^0) \Delta t_k + o(\rho) \right] + \dots$$

$$+ \alpha_1 \left[\frac{\partial \varphi_1}{\partial t_1}(t^0) \Delta t_1 + \dots + \frac{\partial \varphi_1}{\partial t_k}(t^0) \Delta t_k + o(\rho) \right] + \dots$$

$$\dots + \alpha_m \left[\frac{\partial \varphi_m}{\partial t_1}(t^0) \Delta t_1 + \dots + \frac{\partial \varphi_m}{\partial t_k}(t^0) \Delta t_k + o(\rho) \right].$$

Перегруппируем слагаемые:

$$\left[\frac{\partial f}{\partial x_{1}}(a)\frac{\partial \varphi_{1}}{\partial t_{1}}(t_{0}) + \dots + \frac{\partial f}{\partial x_{m}}(a)\frac{\varphi_{m}}{\partial t_{1}}(t_{0})\right] \Delta t_{1} + \dots \\
\dots + \left[\frac{\partial f}{\partial x_{1}}(a)\frac{\partial \varphi_{1}}{\partial t_{k}}(t_{0}) + \dots + \frac{\partial f}{\partial x_{m}}(a)\frac{\varphi_{m}}{\partial t_{k}}(t_{0})\right] \Delta t_{k} + \\
+ o(\rho)\left[\frac{\partial f}{\partial x_{1}}(a) + \dots + \frac{\partial f}{\partial x_{m}}(a) + \alpha_{1} + \dots + \alpha_{m}\right] + \\
+ \rho\left[\alpha_{1}\frac{\partial \varphi_{1}}{\partial t_{1}}(t^{0}) + \dots + \alpha_{m}\frac{\partial \varphi_{m}}{\partial t_{1}}(t^{0})\right] \frac{\Delta t_{1}}{\rho} + \dots \\
\dots + \rho\left[\alpha_{1}\frac{\partial \varphi_{1}}{\partial t_{k}}(t^{0}) + \dots + \alpha_{m}\frac{\partial \varphi_{m}}{\partial t_{k}}(t^{0})\right] \frac{\Delta t_{k}}{\rho}.$$

$$\Delta F(t^0, \Delta t) = \frac{\partial F}{\partial t_1}(t^0)\Delta t_1 + \ldots + \frac{\partial F}{\partial t_k}(t^0)\Delta t_k + o(\rho)\gamma + \rho\Lambda_1 + \ldots + \rho\Lambda_k$$

 γ - ограниченна, $\Delta x_j = \Delta \varphi_j \xrightarrow[\Delta t \to \bar{0}]{} 0, \, \rho \to 0 \Leftrightarrow \Delta t \to \bar{0} = (0, \dots, 0). \, \Rightarrow \alpha_j \to 0$, при $\rho \to 0$

$$\Lambda_j = \left[\alpha_1 \frac{\partial \varphi_1}{\partial t_1}(t^0) + \ldots + \alpha_m \frac{\partial \varphi_m}{\partial t_1}(t^0)\right] \frac{\Delta t_j}{\rho} \to 0, \ \rho \to 0$$

Перепишем:

$$\Delta F(t^0, \Delta t) = \frac{\partial F}{\partial t_1}(t^0)\Delta t_1 + \dots + \frac{\partial F}{\partial t_k}(t^0)\Delta t_k + o(\rho), \ \rho \to 0$$

Доказано.

3.5. Дифференциал. Инвариантность формы дифференциала отностительно замены переменных.

Рассматриваем функцию w=f(x) определенную в $\mathscr{U}(a)\subset\mathbb{E}^m$. Мы предполагаем, что f дифференцируема в точке а. Поскольку функция дифференцируема в точке а, то

$$\Delta f(a, \Delta x) = \frac{\partial f}{\partial x_1}(a)\Delta x_1 + \ldots + \frac{\partial f}{\partial x_m}(a)\Delta x_m + o(\rho), \rho \to 0$$

Определение: Дифференциалом функции f в точке а называется главная линейная часть (относительно Δx_j) приращения функции f в точке а, соответствующая приращению аргументов $\Delta x = (\Delta x_1, \dots, \Delta x_n)$.

$$df(a) = \frac{\partial f}{\partial x_1}(a)\Delta x_1 + \ldots + \frac{\partial f}{\partial x_m}(a)\Delta x_m$$

Поскольку дифференциал независимой переменной x_i есть произвольное число, то $dx_i = \Delta x_i$.

$$df(a) = \frac{\partial f}{\partial x_1}(a)dx_1 + \dots + \frac{\partial f}{\partial x_m}(a)dx_m \qquad (*)$$

Предложение. [Инвариантность формы 1-го дифференциала]

Выражение (*) универсально, оно справедливо и в случае, когда $x_j = \varphi_j(t), \ t \in \mathscr{U}(t^0) \subset \mathbb{E}^k, \ a_j = \varphi_j(t^0), \ j = 1, \ldots, \ m \ (\varphi_j$ дифференцируема в точке t^0).

Доказательство.

$$d\varphi_j(t^0) = \frac{\partial \varphi_j}{\partial t_1}(t^0)dt_1 + \ldots + \frac{\partial \varphi_j}{\partial t_k}(t^0)dt_k, \ j = 1, \ldots, m$$

Введем функцию $F(t) = f(\varphi_1(t), \dots, \varphi_m(t))$

$$dF(t^{0}) = \frac{\partial F}{\partial t_{1}}(t^{0})dt_{1} + \dots + \frac{\partial F}{\partial t_{k}}(t^{0})dt_{k}$$

$$dF(t^{0}) = \left[\frac{\partial f}{\partial x_{1}}(a)\frac{\partial \varphi_{1}}{\partial t_{1}}(t^{0}) + \dots + \frac{\partial f}{\partial x_{m}}(a)\frac{\partial \varphi_{m}}{\partial t_{1}}(t^{0})\right]dt_{1} + \dots$$

$$+ \left[\frac{\partial f}{\partial x_{1}}(a)\frac{\partial \varphi_{1}}{\partial t_{k}}(t^{0}) + \dots + \frac{\partial f}{\partial x_{m}}(a)\frac{\partial \varphi_{m}}{\partial t_{k}}(t^{0})\right]dt_{k}$$

Перегруппируем:

$$dF(t^{0}) = \frac{\partial f}{\partial x_{1}}(a) \left[\frac{\partial \varphi_{1}}{\partial t_{1}}(t^{0})dt_{1} + \dots + \frac{\partial \varphi_{1}}{\partial t_{k}}(t^{0})dt_{k} \right] + \dots + \frac{\partial f}{\partial x_{m}}(a) \left[\frac{\partial \varphi_{m}}{\partial t_{1}}(t^{0})dt_{1} + \dots + \frac{\partial \varphi_{m}}{\partial t_{k}}(t^{0})dt_{k} \right]$$

Получаем:

$$dF(t^0) = \frac{\partial f}{\partial x_1}(a)dx_1 + \ldots + \frac{\partial f}{\partial x_m}(a)dx_m$$

Доказано.

3.6. Производная по направлению и градиент, их связь и геомертический смысл.

Рассматриваем функцию w = f(x) определенную в $\mathscr{U}(a) \subset \mathbb{E}^m$. Мы предполагаем, что f дифференцируема в точке а. Возьмём единичный вектор $\vec{n} = (\cos \alpha_1, \dots, \cos \alpha_m), |\vec{n}| = 1$.

$$l: \begin{cases} x_1 = a_1 + t \cos \alpha_1; \\ \dots \\ \dots \\ x_m = a_m + t \cos \alpha_m; \end{cases}$$

Рассмотрим суперпозицию:

$$F(t) = f(a_1 + t \cos \alpha_1, \dots, a_m + t \cos \alpha_m)$$

F дифференцируема в точке t=0.

Определение: Производной функции f по направлению l в точке x=a называется производная функции F в точке t=0.

Обозначения.

$$\frac{\partial f}{\partial l}(a) = \lim_{t \to 0} \frac{f(a_1 + t \cos \alpha_1, \dots, a_m + t \cos \alpha_m) - f(a)}{t}$$

$$\frac{\partial f}{\partial l}(a) = \frac{\partial f}{\partial x_1}(a)\cos\alpha_1 + \ldots + \frac{\partial f}{\partial x_m}(a)\cos\alpha_m$$

Определение: Градиентом функции f называется вектор

$$\operatorname{grad} f(a) = \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_m}(a)\right)$$

Из этого определения и выражения для производной по направлению l в точке a функции f мы получаем:

$$\frac{\partial f}{\partial l}(a) = (\operatorname{grad} f(a), \vec{n})$$

<u>Предложение.</u> Градиент функции f в точке a характеризует направление и величину максимального роста производной по направлению функции f в точке a.

Доказательство.

По определению производной по направлению в точке а:

$$\frac{\partial f}{\partial l}(a) = |\operatorname{grad} f(a)| |\vec{n}| \cos \varphi = |\operatorname{grad} f(a)| \cos \varphi$$

 $\cos \varphi$ имеет наибольшее значение равное $1 \Rightarrow \cos \varphi = 1 \Rightarrow \vec{n}$ и grad – направление совпадают, т.к. в этом случае $\varphi = 0$. Доказано.

3.7. Необходимые условия дифференцируемости

Необходимое условие 1.

[f дифференцируема в точке $\mathbf{a}]\Rightarrow [\exists rac{\partial f}{\partial x_j}(a),\ j=1,\ldots,m]$

Доказательство.

Возьмем j=k, рассматриваем $\Delta x=(0,\dots,0,\Delta x_k,0,\dots,0)$. Тогда $\Delta f(a,\Delta x)=\Delta_k f(a,\Delta x_k)$. Тогда используя 1-ое условие определения получим:

$$\Delta f(a, \Delta x) = A_1 \Delta x_1 + \ldots + A_m \Delta x_m + \alpha_1(\Delta x) \Delta x_1 + \ldots + \alpha_m(\Delta x) \Delta x_m$$

Получаем следующее:

$$\Delta_k f(a, \Delta x_k) = A_k \Delta x_k + \alpha_k \Delta x_k$$

$$\frac{\Delta_k f(a, \Delta x_k)}{\Delta x_k} = A_k + \alpha_k \to A_k, \ \Delta x_k \to 0 \Rightarrow A_k = \frac{\partial f}{\partial x_k}(a)$$

В силу произвольности мы доказано для всех переменных. Доказано.

Таким образом мы уточнили определение, например, перепишем определение 1:

$$\Delta f(a, \Delta x) = \frac{\partial f}{\partial x_1}(a)\Delta x_1 + \ldots + \frac{\partial f}{\partial x_m}(a)\Delta x_m + \alpha_1(\Delta x)\Delta x_1 + \ldots + \alpha_m(\Delta x)\Delta x_m$$

Необходимое условие 2. Если $w = f(x), x \in \mathbb{E}^m$ дифференцируема в точке a, то f непрерывна в точке a.

Доказательство.

$$\Delta f(a,\Delta x) = f(a+\Delta x) - f(a) = \frac{\partial f}{\partial x_1}(a)\Delta x_1 + \ldots + \frac{\partial f}{\partial x_m}(a)\Delta x_m + \alpha_1(\Delta x)\Delta x_1 + \ldots + \alpha_m(\Delta x)\Delta x_m.$$
 Если $\Delta x \to \bar{0}$, то $f(a+\Delta x) - f(a) \to 0 \Rightarrow$ f непрерывна в точке а. Доказано.

Необходимое условие 3.(Не было в лекции Знаменской)

Пусть функция f дифференцируема в точке (x_0, y_0, z_0) . Тогда в этой точке функция f имеет производную по любому направлению и эта производная находится по формуле

$$\frac{\partial f}{\partial l}(x_0, y_0, z_0) = \frac{\partial f}{\partial x}\cos\alpha + \frac{\partial f}{\partial y}\cos\beta + \frac{\partial f}{\partial z}\cos\gamma$$

[Взято из Кудрявцева, Том 2, стр. 267]

4. Билет 4

4.1. Частные производные высших порядков.

Определение: Пусть $\omega = f(x)$ - дифференцируема в $D \subset \mathbb{E}^m, D$ - область. И $\forall x \in D \ \exists \frac{\partial f}{\partial x_j}(x), \ j = \overline{1,m}.$

Пусть $g_j = \frac{\partial f}{\partial x_j}$, и в точке x: $\exists \frac{\partial g_j}{\partial x_k}(x)$. Тогда

$$\frac{\partial g_j}{\partial x_k}(x) = \frac{\partial}{\partial x_k} \left(\frac{\partial f}{\partial x_j} \right) (x)$$

называется частной производной 2-го порядка функции f в точке x. Частные производные высших порядков определяются так же.

Обозначения:

$$\frac{\partial^2 f}{\partial x_k \partial x_j}(x), \ f''_{x_j x_k}(x), \ f^{(2)}_{x_j x_k}(x)$$
$$j = k : \ \frac{\partial^2 f}{\partial x_j^2}(x)$$

Примечание: если $k \neq j$, производная $\frac{\partial^2 f}{\partial x_k \partial x_j}$ называется смешанной.

4.2. Независимость смешанной частной производной от порядка дифференцирования.

Примеры:

1.

$$f(x,y) = \operatorname{arctg}\left(\frac{x}{y}\right)$$

$$\frac{\partial f}{\partial x} = \frac{1}{1 + \frac{x^2}{y^2}} \cdot \frac{1}{y} = \frac{y}{y^2 + x^2}$$

$$\frac{\partial f}{\partial y} = \frac{1}{1 + \frac{x^2}{y^2}} \cdot \left(-\frac{x}{y^2}\right) = -\frac{x}{y^2 + x^2}$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{y^2 + x^2 - 2y^2}{(x^2 + y^2)^2} = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

$$\frac{\partial^2 f}{\partial x \partial y} = -\frac{y^2 + x^2 - 2x^2}{(x^2 + y^2)^2} = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

2.

$$f(x,y) = \begin{cases} xy \cdot \frac{x^2 - y^2}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$

$$f(x,0) = f(0,y) = f(0,0) = 0 \Rightarrow \frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$$

$$f'_x = y \frac{x^2 - y^2}{x^2 + y^2} + xy \frac{2x(x^2 + y^2) - 2x(x^2 - y^2)}{(x^2 + y^2)^2} = \frac{y(x^4 - y^4) + 4x^2y^3}{(x^2 + y^2)^2}$$

$$f'_y = x \frac{x^2 - y^2}{x^2 + y^2} + xy \frac{-2y(x^2 + y^2) - 2y(x^2 - y^2)}{(x^2 + y^2)^2} = \frac{x(x^4 - y^4) + 4x^3y^2}{(x^2 + y^2)^2}$$

$$\frac{\partial f}{\partial x}(x, y) = \begin{cases} \frac{yx^4 - y^5 + 4x^2y^3}{(x^2 + y^2)^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$

$$\frac{\partial f}{\partial y}(x, y) = \begin{cases} \frac{x^5 - xy^4 - 4x^3y^2}{(x^2 + y^2)^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$

$$\frac{\partial f}{\partial y}(x, y) = \begin{cases} \frac{x^5 - xy^4 - 4x^3y^2}{(x^2 + y^2)^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$

$$\frac{\partial^2 f}{\partial y \partial x}(0, 0) = \lim_{x \to 0} \frac{f'_x(0, y) - f'_x(0, 0)}{y} = \lim_{x \to 0} \frac{-y^5}{y^5} = -1$$

$$\frac{\partial^2 f}{\partial x \partial y}(0, 0) = \lim_{x \to 0} \frac{f'_y(x, 0) - f'_y(0, 0)}{x} = \lim_{x \to 0} \frac{x^5}{x^5} = 1$$

$$\frac{\partial^2 f}{\partial x \partial y} \neq \frac{\partial^2 f}{\partial y \partial x}$$

Из этих примеров видно, что в общем случае смешанные производные зависят от порядка дифференцирования.

<u>Теорема:</u> Пусть в $\mathscr{U}(a) \subset \mathbb{E}^2$ определены $\frac{\partial^2 f}{\partial x \partial y}$ и $\frac{\partial^2 f}{\partial y \partial x}$, и эти производные непрерывны в точке $a=(a_1,a_2)$, тогда

$$\frac{\partial^2 f}{\partial x \partial y}(a) = \frac{\partial^2 f}{\partial y \partial x}(a)$$

Доказательство: Рассмотрим функцию

$$U(x,y) = f(x,y) - f(x,a_2) - f(a_1,y) + f(a_1,a_2)$$

Пусть $\Pi = \{(x,y) : |x-a_1| \leqslant r_1, |y-a_2| \leqslant r_2\}, \ \Pi \subset \mathscr{U}(a)$, где определены смешанные производные. Фиксируем $y \in (a_2-r_2, a_2+r_2)$ и на интервале (a_1-r_1, a_1+r_1) рассмотрим функцию

$$\varphi(x) = f(x, y) - f(x, a_2)$$

 φ дифференцируема на интервале (a_1-r_1,a_1+r_1) и $U(x,y)=\varphi(x)-\varphi(a_1)$. Тогда, по теореме Лагранжа $\exists \theta_1: 0<\theta_1<1$:

$$U(x,y) = \varphi'(a_1 + \theta_1 \Delta x) \Delta x$$

где $\Delta x = x - a_1$

$$U(x,y) = [f'_{x}(a_1 + \theta_1 \Delta x, y) - f'_{x}(a_1 + \theta_1 \Delta x, a_2)] \Delta x$$

К выражению, стоящему в [...] применим теорему Лагранжа.

 $\exists \theta_2 : 0 < \theta_2 < 1:$

$$U(x,y) = f_{xy}''(a_1 + \theta_1 \Delta x, a_2 + \theta_2 \Delta y) \Delta y \Delta x$$

где $\Delta y = y - a_2$.

Аналогично фиксируем $x \in (a_1 - r_1, a_1 + r_1)$ и на интервале $(a_2 - r_2, a_2 + r_2)$ получаем

$$U(x,y) = f''_{yx}(a_1 + \theta_3 \Delta x, a_2 + \theta_4 \Delta y) \Delta y \Delta x$$

$$f_{yx}''(a_1 + \theta_3 \Delta x, a_2 + \theta_4 \Delta y) = f_{xy}''(a_1 + \theta_1 \Delta x, a_2 + \theta_2 \Delta y)$$

Учитывая непрерывность в точке a при $\Delta x \to 0, \Delta y \to 0$, получаем $f_{xy}^{''}(a) = f_{yx}^{''}(a)$.

Определение: Функция $\omega = f(x,y)$ называется n раз дифференцируемой в точке $x=a\in\mathbb{E}^m$, если все ее частные производные порядка n-1 есть дифференцируемые функции

Теорема: (без доказательства) Пусть $\omega = f(x,y)$ дважды дифференцируема в точке a, тогда

$$\frac{\partial^2 f}{\partial x \partial y}(a) = \frac{\partial^2 f}{\partial y \partial x}(a)$$

4.3. Дифференциалы высших порядков. Отсутствие инвариантности их формы.

Определение: Пусть $\omega = f(x)$ дважды дифференцируема в $D \subset \mathbb{E}^m$. $\forall x \in D \ df(x) = \sum_{j=1}^m \frac{\partial f}{\partial x_j}(x) dx_j$. Тогда дифференциалом 2 порядка будем называть

$$d^{2}f(x) = d(df)(x) = \sum_{j=1}^{m} d\left(\frac{\partial f}{\partial x_{j}}\right)(x)dx_{j} = \sum_{j=1}^{m} \left(\sum_{k=1}^{m} \frac{\partial^{2} f}{\partial x_{k} \partial x_{j}}(x)dx_{k}\right)dx_{j}$$

Дифференциалы высших порядков определяются таким же образом.

Замечание: Если рассмотреть дифференциал, как оператор

$$d = \left(dx_1 \frac{\partial}{\partial x_1} + \dots + dx_m \frac{\partial}{\partial x_m} \right)$$

То дифференциал *n*-ого порядка можно записать в виде

$$d^{n} = \left(dx_{1}\frac{\partial}{\partial x_{1}} + \dots + dx_{m}\frac{\partial}{\partial x_{m}}\right)^{n}$$

Предложение: Дифференциалы высших порядков не обладают свойством инвариантности формы.

Доказательство: Пусть $\omega = f(x), x_j = \varphi_j(t), j = \overline{1,m}, f, \varphi_j$ - дважды дифференцируемы.

$$df(x) = \sum_{j=1}^{m} \frac{\partial f}{\partial x_j}(x)dx_j, \ dx_j = \sum_{i=1}^{k} \frac{\partial \varphi_j}{\partial t_i}(i)dt_i$$

$$d^{2}f(x) = \sum_{i=1}^{m} \sum_{j=1}^{m} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) dx_{i} dx_{j} + \sum_{j=1}^{m} \frac{\partial f}{\partial x_{j}}(x) d^{2}x_{j}$$

причем

$$\sum_{j=1}^{m} \frac{\partial f}{\partial x_j}(x) d^2 x_j \neq 0$$

4.4. Формула Тейлора для функций нескольких переменных.

Теорема [Разложение с остаточным членом в форме Лагранжа]: Пусть функция $\omega = f(x)$ обладает непрерывными частными производными порядка n+1 в шаре $B_{\delta}(a)$, Δx таково, что $a+\Delta x \in B_{\delta}(a)$. Тогда найдется $0<\theta<1$ такое, что

$$f(a + \Delta x) = f(a) + \sum_{k=1}^{n} \frac{d^k f(a)}{k!} + r_{n+1}(\theta)$$

где

$$r_{n+1}(\theta) = \frac{d^{n+1}f(a+\theta\Delta x)}{(n+1)!}$$

Примечание: dx_j трактуется как Δx_j

Доказательство: $a + \Delta x \in B_{\delta}(a) \Rightarrow a - \Delta x \in B_{\delta}(a), \forall t \in [-1, 1], a + t\Delta x \in B_{\delta}(a).$

$$f(a+t\Delta x) = f(a_1 + t\Delta x_1, \dots, a_m + t\Delta x_m) = \varphi(t)$$

$$\varphi(0) = f(a)$$

$$\varphi'(t) = \sum_{j=1}^{m} \frac{\partial f}{\partial x_j} (a + t\Delta x_j) \Delta x_j = df(a + t\Delta x)$$

$$\varphi^{(k)}(t) = \sum_{j_k=1}^{m} \cdots \sum_{j_1=1}^{m} \frac{\partial^k f}{\partial x_{j_k} \dots \partial x_{j_1}} \Delta x_{j_1} \dots \Delta x_{j_k} = d^k f(a + t\Delta x)$$

По формуле Тейлора

$$\varphi(t) = \varphi(0) + \sum_{k=1}^{n} \frac{\varphi^{k}(0)}{k!} t^{k} + r_{n+1}(\theta)$$

где

$$r_{n+1}(\theta) = \frac{\varphi^{(n+1)}(\theta t)}{(n+1)!} t^{(n+1)}$$

Подставив t=1 получим требуемое равенство.

Теорема [Разложение с остаточным членом в форме Пеано]: (без доказательства) Пусть f n-раз дифференцируема в точке x=a, тогда

$$f(a + \Delta x) = f(a) + \sum_{k=1}^{n} \frac{d^k f(a)}{k!} + o(\rho), \ \rho \to 0, \ \rho = \rho(\Delta x, 0)$$

5. Билет 5

5.1. Необходимые определения и предложения билета.

Определение: множество $Q = [a_1, b_1) \times [a_2, b_2) \times \cdots \times [a_m, b_m)$ будем называть клеткой в \mathbb{E}^m .

Определение: множество $G \subset \mathbb{E}^m$ будем называть клеточным, если оно является объединением **конечного** числа попарно непересекающихся клеток:

$$G = \bigcup_{j=1}^{k} Q_j, \qquad Q_i \cap Q_j = \emptyset, \ i \neq j.$$

G - клеточное множество

G - не клеточное множество

Свойства клеточных множеств:

1° Объединение **конечного** числа попарно непересекающихся клеточных множеств есть клеточное множество. Доказательство:

G и H - клеточные множества. Тогда:

$$G = \bigcup_{j=1}^{k} Q_j, \qquad H = \bigcup_{j=k+1}^{n} Q_j.$$

Значит:

$$G \cup H = \bigcup_{j=1}^n Q_j$$
 — клеточное множество.

 2° Пересечение двух клеток есть клетка.

Доказательство:

Пусть $Q_1 = [a_1, b_1) \times [a_2, b_2) \times \cdots \times [a_m, b_m)$, а $Q_2 = [c_1, d_1) \times [c_2, d_2) \times \cdots \times [c_m, d_m)$. Тогда возможны два случая: а) $\exists j \colon [a_i, b_i) \cap [c_i, d_i) = \varnothing \Rightarrow Q_1 \cap Q_2 = \varnothing$ - клетка;

б)
$$\forall j \longmapsto [a_j,b_j) \cap [c_j,d_j) = [e_j,f_j) \Rightarrow Q_1 \cap Q_2 = [e_1,f_1) \times [e_2,f_2) \times \ldots \times [e_m,f_m)$$
 - клетка.

 3° Пересечение двух клеточных множеств есть клеточное множество.

Доказательство:

Пусть G_1 и G_2 - клеточные множества.

$$G_1 = Q_1^1 \cup Q_2^1 \cup \ldots \cup Q_k^1$$

$$G_2 = Q_1^2 \cup Q_2^2 \cup \ldots \cup Q_n^2$$

 $G_2 = Q_1^2 \cup Q_2^2 \cup \ldots \cup Q_n^2$ Обозначим $Q_{ij} = Q_i^1 \cap Q_j^2, \ i = \overline{1,k}, \ j = \overline{1,n}.$ Q_{ij} - клетка (свойство $\mathbf{2}^\circ$).

 $G_1 \cap G_2 = \bigcup_{i,j} Q_{ij} = \bigcup_{i=1}^k \bigcup_{j=1}^n Q_{ij}$ - объединение попарно непересекающихся клеток есть клеточное множество.

4° Разность двух клеток есть клеточное множество.

Доказательство:

 Q_1 и Q_2 - клетки. $Q=Q_1\cap Q_2$ - клетка (свойство ${\bf 2}^\circ$). Тогда

$$Q_1 \backslash Q_2 = Q_1 \backslash Q.$$

Существует такое разбиение клетки Q_1 на более мелкие клетки, что Q является одной из них $\Rightarrow Q_1 \backslash Q_2$ - клеточное множество.

 5° Разность двух клеточных множеств есть клеточное множество.

Доказательство:

$$G_1 = \bigcup_{j=1}^k Q_j^1,$$
 $G_2 = \bigcup_{j=1}^n Q_j^2.$ $G_1 \setminus Q_1^2 = \bigcup_{i=1}^k \left(Q_i^1 \setminus Q_1^2 \right) = \bigcup_{i=1}^k G_{i1}$

$$G_1 \backslash Q_1^2 = \bigcup_{i=1}^k \left(Q_i^1 \backslash Q_1^2 \right) = \bigcup_{i=1}^k G_{i1}$$

 G_{i1} - клеточное множество (свойство $\mathbf{4}^{\circ}$).

 $G_{i1} \cap G_{j1} = \emptyset$, если $i \neq j \Rightarrow G_1 \backslash Q_1^2$ - клеточное множество (свойство $\mathbf{1}^{\circ}$).

Аналогично для других клеток G_2

$$G_1 \backslash G_2 = G_1 \backslash \left(\bigcup_{j=1}^n Q_j^2\right) = \bigcap_{j=1}^n \left(G_1 \backslash Q_j^2\right)$$

Последнее является клеточным множеством по свойству 3° . Откуда получаем, что $G_1 \backslash G_2$ - клеточное множество.

6° Объединение **конечного** числа клеточных множеств есть клеточное множество.

Доказательство:

1) G_1 и G_2 .

$$G_1 \cup G_2 = (G_1 \backslash G_2) \cup (G_2 \backslash G_1) \cup (G_1 \cap G_2);$$

Последние три скобки являются попарно непересекающимися клеточными множествами $\stackrel{1^{\circ}}{\Rightarrow} G_1 \cup G_2$ - клеточное множество.

2) Далее для G_3, G_4, \ldots, G_n по индукции.

Таким образом, объединение, пересечение и разность конечного числа клеточных множеств есть клеточное множество.

Определение: мерой клетки Q назовем число:

$$\overline{m(Q) = (b_1 - a_1) \cdot (b_2 - a_2) \cdot \dots \cdot (b_m - a_m)};$$

$$m(\emptyset) = 0.$$

Определение: мерой клеточного множества G назовем число:

$$m(G) = \sum_{j=1}^{k} m(Q_j); \qquad m(\emptyset) = 0$$

Лемма: мера клеточного множества G не зависит от способа разбиения этого множества на клетки.

Доказательство:

Пусть $G=Q_1\cup Q_2\cup\ldots\cup Q_k$ и также $G=Q_1'\cup Q_2'\cup\ldots\cup Q_n'$. Тогда обозначим $Q_{ij}=Q_i\cap Q_j',\ i=\overline{1,k},\ j=\overline{1,n}$. Понятно, что

$$Q_i = \bigcup_{j=1}^n Q_{ij}, \qquad \qquad Q'_j = \bigcup_{i=1}^k Q_{ij}.$$

Тогда:

$$m(G) = \sum_{i=1}^{k} m(Q_i) = \sum_{i=1}^{k} \sum_{j=1}^{n} m(Q_{ij}) = \sum_{j=1}^{n} \sum_{i=1}^{k} m(Q_{ij}) = \sum_{j=1}^{n} m(Q'_j) = m(G).$$

<u>Предложение 1:</u> если клеточные множества G_1, G_2, \ldots, G_n попарно не пересекаются, то для $G = \bigcup_{j=1}^n G_j$ выполняется $m(G) = G_j$

$$\sum_{j=1}^{n} m(G_j).$$

Доказательство:

$$G_j = igcup_{i=1}^{k_j} Q_i^j, \ j = \overline{1,n}.$$
Тогда

$$G = \bigcup_{j=1}^{n} G_j = \bigcup_{j=1}^{n} \bigcup_{i=1}^{k_j} Q_i^j = \bigcup_{\substack{1 \le j \le n, \\ 1 \le i \le k_j}} Q_i^j$$

Все клетки из последнего объединения попарно не пересекаются, поэтому:

$$m(G) = \sum_{\substack{1 \leqslant j \leqslant n, \\ 1 \leqslant i \leqslant k_j}} m(Q_i^j) = \sum_{j=1}^n m(G_j).$$

Предложение 2: если G_1 и G_2 - клеточные множества и $G_1 \subset G_2$, то $m(G_2) = m(G_1) + m(G_2 \setminus G_1)$, $m(G_1) \leqslant m(G_2)$.

Доказательство:

 $G_2 = G_1 \cup (G_2 \backslash G_1) = G_1 \cup G$.

$$G_1 \cap G = \varnothing \stackrel{\text{i.i.}}{\Longrightarrow} m(G_2) = m(G_1) + m(G_2 \backslash G_1) \Rightarrow m(G_1) \leqslant m(G_2).$$

<u>Предложение 3:</u> если G_1, G_2, \dots, G_k - клеточные множества, $G = \bigcup_{j=1}^k G_j$, то $m(G) \leqslant \sum_{j=1}^k m(G_j)$.

Доказательство:

Для G_1 и G_2 по предложению 2, а далее по индукции.

Предложение 4: для любого клеточного множества G и $\forall \varepsilon > 0 \ \exists G_{\varepsilon}, G^{\varepsilon}$ - клеточные множества такие, что:

 $\overline{1) \ G_{\varepsilon} \subset \overline{G_{\varepsilon}} \subset \operatorname{int} G \subset G;} \qquad m(G) - m(G_{\varepsilon}) < \varepsilon;$ $2) \ G \subset \overline{G} \subset \operatorname{int} G^{\varepsilon} \subset G^{\varepsilon}; \qquad m(G^{\varepsilon}) - m(G) < \varepsilon.$

Доказательство:

1) $G = Q_1 \cup Q_2 \cup \ldots \cup Q_k$.

Рассмотрим отдельную клетку $Q = [a_1, b_1) \times [a_2, b_2) \times \ldots \times [a_m, b_m]$

$$m(Q_a) = \prod_{j=1}^{m} (b_j - a_j - 2a), Q_a \subset Q$$

$$S_j = \prod_{\substack{i=1,\\i\neq j}}^m (b_i - a_i);$$

Тогда

$$m(Q) \leqslant m(Q_a) + 2a \cdot \sum_{j=1}^{m} S_j = m(Q_a) + 2aS \Rightarrow m(Q) - m(Q_a) \leqslant 2aS = \frac{\varepsilon}{2} < \varepsilon$$

Тогда для одной клетки $a=\frac{\varepsilon}{4S}$. Так как $G=Q_1\cup Q_2\cup\ldots\cup Q_k$, то $a=\frac{\varepsilon}{4Sk}$.

Получаем $G_{\varepsilon} = \bigcup_{i=1}^{k} (Q_a)_i$.

Таким образом, $G_{\varepsilon} \subset \overline{G_{\varepsilon}} \subset \operatorname{int} G \subset G$.

Рис. 2: Случай при m=2

2) Доказывается аналогично 1).

5.2. Определение измеримости по Жордану множества в m-мерном евклидовом пространстве.

Определение: множество $X \subset \mathbb{E}^m$ называется измеримым по Жордану, если $\forall \varepsilon > 0 \ \exists G_\varepsilon$ и G^ε - клеточные множества такие, что $G_\varepsilon \subset X \subset G^\varepsilon$ и $m(G^\varepsilon) - m(G_\varepsilon) < \varepsilon$.

Определение: мерой измеримого по Жордану множества $X \subset \mathbb{E}^m$ называется такое число m(X), что $\forall G_{\varepsilon}, G^{\varepsilon}$ таких, что $G_{\varepsilon} \subset X \subset G^{\varepsilon} \longrightarrow m(G_{\varepsilon}) \leqslant m(X) \leqslant m(G^{\varepsilon})$.

<u>Лемма:</u> для любого измеримого по Жордану множества X его мера m(X) существует и единственна, причем

$$m(X) = \overline{m}(X) = \underline{m}(X),$$

где $\overline{m}(X)=\inf_{X\subset G^{arepsilon}}m(G^{arepsilon})$ - верхняя (внешняя) мера X; $\underline{m}(X)=\sup_{G_{arepsilon}\subset X}m(G_{arepsilon})$ - нижняя (внутренняя) мера X.

Доказательство:

Так как
$$G_{\varepsilon} \subset X \subset G^{\varepsilon}$$
, то $m(G_{\varepsilon}) \leq m(G^{\varepsilon}) \Rightarrow \{m(G_{\varepsilon})\}$ ограничена сверху $\Rightarrow \exists \alpha = \sup_{G_{\varepsilon}} m(G_{\varepsilon}) = \underline{m}(X)$.

Аналогично: $\{m(G^{\varepsilon})\}$ ограничена снизу $\Rightarrow \exists \beta = \inf_{G^{\varepsilon}} m(G^{\varepsilon}) = \overline{m}(X)$.

По теореме об отделимости множеств: $m(G_{\varepsilon}) \leqslant \alpha \leqslant \beta \leqslant m(G^{\varepsilon})$.

Пусть
$$m(X) = \alpha$$
. $\forall \varepsilon > 0 \longmapsto 0 \leqslant \beta - \alpha \leqslant m(G^{\varepsilon}) - m(G_{\varepsilon}) < \varepsilon$. Откуда $\beta = \alpha \Rightarrow m(X)$ единственна.

Предложение 5: пусть множество X измеримо по Жордану и $\forall \varepsilon > 0 \ \exists G^{\varepsilon} \colon X \subset G^{\varepsilon}, \ m(G^{\varepsilon}) < \varepsilon.$ Тогда m(X) = 0.

Доказательство:

Возьмем $G_{\varepsilon} = \emptyset$. Тогда: $\forall \varepsilon > 0 \longmapsto G_{\varepsilon} \subset X \subset G^{\varepsilon} \& m(G^{\varepsilon}) - m(G_{\varepsilon}) = m(G^{\varepsilon}) < \varepsilon \implies 0 \leqslant m(X) < \varepsilon \implies m(X) = 0.$

Замечание: измеримое по Жордану множество, обладающее свойством из предыдущего предложения, будем называть множеством меры нуль.

Предложение 6: подмножество множества меры нуль есть множество меры нуль.

Доказательство:

Пусть m(X)=0 и $Y\subset X$. Тогда $\forall \varepsilon>0$ $\exists G^{\varepsilon}: X\subset G^{\varepsilon}, m(G^{\varepsilon})<\varepsilon$. Как следствие: $\forall \varepsilon>0$ $\exists G^{\varepsilon}: Y\subset X\subset G^{\varepsilon}, m(G^{\varepsilon})<\varepsilon \Rightarrow m(Y)=0$.

Предложение 7: объединение конечного числа множеств меры нуль есть множество меры нуль.

Доказательство:

$$m(X_1)=m(X_2)=0.$$
 $\forall arepsilon>0$ $\exists G_1^{arepsilon}: X_1\subset G_1^{arepsilon}, m(G_1^{arepsilon})<rac{arepsilon}{2};$ $\exists G_2^{arepsilon}: X_2\subset G_2^{arepsilon}, m(G_2^{arepsilon})<rac{arepsilon}{2}.$ Тогда $X_1\cup X_2\subset G_1^{arepsilon}\cup G_2^{arepsilon}=G^{arepsilon}.$ $m(G^{arepsilon})\stackrel{\mathrm{np.3}}{\leqslant} m(G_1^{arepsilon})+m(G_2^{arepsilon})<rac{arepsilon}{2}+rac{arepsilon}{2}=arepsilon \Rightarrow m(X_1\cup X_2)=0.$ Далее по индукции.

5.3. Критерий измеримости.

Теорема [Критерий измеримости]:

[X – измеримо по Жордану $] \iff [X]$ ограничено и $m(\partial X) = 0$].

Доказательство:

⇒:

X - измеримо по Жордану: $\forall \varepsilon > 0 \ \exists G_{\varepsilon}, G^{\varepsilon} \colon G_{\varepsilon} \subset X \subset G^{\varepsilon},$ $m(G^{\varepsilon}) - m(G_{\varepsilon}) < \frac{\varepsilon}{3};$

Из предложения $4 \Rightarrow \exists \widetilde{G}^{\varepsilon} : \overline{G^{\varepsilon}} \subset \operatorname{int} \widetilde{G}^{\varepsilon} \subset \widetilde{G}^{\varepsilon}, \ m(\widetilde{G}^{\varepsilon}) - m(G^{\varepsilon}) < \frac{\varepsilon}{2}$;

 $\exists \widetilde{G_{\varepsilon}} : \overline{\widetilde{G_{\varepsilon}}} \subset \operatorname{int} G_{\varepsilon} \subset G_{\varepsilon}, \ m(G_{\varepsilon}) - m(\widetilde{G_{\varepsilon}}) < \frac{\varepsilon}{2}.$

Тогда:

$$m(\widetilde{G^{\varepsilon}}) - m(\widetilde{G_{\varepsilon}}) = m(\widetilde{G^{\varepsilon}}) - m(G^{\varepsilon}) + m(G^{\varepsilon}) - m(G_{\varepsilon}) + m(G_{\varepsilon}) - m(\widetilde{G_{\varepsilon}}) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

 $\widetilde{G_{arepsilon}}$ не содержит точки ∂X , а $\widetilde{G^{arepsilon}}$ содержит их все, откуда: $\widetilde{G^{arepsilon}} \setminus \widetilde{G_{arepsilon}}$ - клеточное множество и $\partial X \subset \widetilde{G^{arepsilon}} \setminus \widetilde{G_{arepsilon}}$

 $m(\widetilde{G}^{\varepsilon} \setminus \widetilde{G}_{\varepsilon}) = m(\widetilde{G}^{\varepsilon}) - m(\widetilde{G}_{\varepsilon}) < \varepsilon \Rightarrow m(\partial X) = 0.$

X - ограничено $\Rightarrow \exists Q$ - клетка: $X \subset Q$;

$$[m(\partial X) = 0] \stackrel{\text{def}}{=} [\forall \varepsilon > 0 \ \exists G^{\varepsilon} : \partial X \subset G^{\varepsilon}, m(G^{\varepsilon}) < \varepsilon]$$

 $Q\backslash G^{\varepsilon}$ - клеточное множество $\Rightarrow Q\backslash G^{\varepsilon}=\bigcup_{j=1}^kQ_j$, где Q_j не содержат точек ∂X .

Тогда есть два варианта:

$$[Q_j \subset X]$$
 либо $[Q_j \cap X = \varnothing]$

Пусть без потери общности $Q_1,Q_2,...,Q_l$: $Q_j\subset X,\,j=\overline{1,l};$ $Q_{l+1}, Q_{l+2}, \dots, Q_k: Q_j \cap X = \emptyset, j = \overline{l+1,k};$

$$\widetilde{G_{\varepsilon}} = \bigcup_{j=1}^{l} Q_{j}, \quad \widetilde{G^{\varepsilon}} = \widetilde{G_{\varepsilon}} \cup G^{\varepsilon} = Q \setminus \left(\bigcup_{j=l+1}^{k} Q_{j}\right)$$

 $\widetilde{G_\varepsilon} \subset X \subset \widetilde{G^\varepsilon}$ $m(G^{arepsilon})=m(\widetilde{G^{arepsilon}})-m(\widetilde{G_{arepsilon}})$ < arepsilon imes X измеримо по Жордану.

Примеры неизмеримых по Жордану множеств.

$$\boxed{1} \ X=\{x\in[0,1]:x\in\mathbb{Q}\},\ X\subset\mathbb{E}^1.$$
 $\partial X=[0,1]\Rightarrow m(\partial X)=1\neq0\Rightarrow X$ неизмеримо.

$$\fbox{2}$$
 $Y=X\times X$, где X из $\fbox{1}$. $\partial Y=[0,1]\times[0,1]\Rightarrow m(\partial Y)=1\neq 0\Rightarrow Y$ неизмеримо.

$$\boxed{3}$$
 X из $\boxed{1}$. $X = \{a_1, a_2, \dots, a_n, \dots\}, 0 \leqslant a_i \leqslant 1$

Пусть
$$B = \bigcup_{j=1}^{\infty} \left(a_j - \frac{\varepsilon}{2^j}; a_j + \frac{\varepsilon}{2^j} \right), \ 0 < \varepsilon < \frac{1}{2}.$$

В открыто как объединение открытых множеств.

Обозначим
$$B_k = \bigcup_{j=1}^k \left(a_j - \frac{\varepsilon}{2^j}; a_j + \frac{\varepsilon}{2^j} \right)$$

Обозначим
$$B_k = \bigcup_{j=1}^k \left(a_j - \frac{\varepsilon}{2^j}; a_j + \frac{\varepsilon}{2^j}\right)$$

$$m(B_k) \leqslant \sum_{j=1}^k \frac{\varepsilon}{2^{j-1}} = \varepsilon \left(\frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2^{k-1}}\right) = \varepsilon \frac{1 - \frac{1}{2^k}}{\frac{1}{2}} = 2\varepsilon \left(1 - \frac{1}{2^k}\right) < 2\varepsilon$$

Тогда
$$\underline{m}(B) \leqslant 2\varepsilon < 1$$
. Но $[0,1] \subset B \Rightarrow \overline{m}(B) > 1$.

To есть $m(B) \neq \overline{m}(B) \Rightarrow B$ неизмеримо.

5.5.Измеримость объединения, пересечения и разности измеримых множеств.

 1° Если X_1 и X_2 измеримы по Жордану, то $X_1 \cup X_2$, $X_1 \cap X_2$, $X_1 \setminus X_2$ - измеримые по Жордану множества.

Доказательство:

 X_1 и X_2 измеримы по Жордану $\Rightarrow X_1$ и X_2 ограничены и $m(\partial X_1) = m(\partial X_2) = 0$. Тогда и $m(\partial X_1 \cup \partial X_2) = 0$.

$$\underbrace{\partial(X_1 \cup X_2) \subset \partial X_1 \cup \partial X_2; \ \partial(X_1 \cap X_2) \subset \partial X_1 \cup \partial X_2; \ \partial(X_1 \setminus X_2) \subset \partial X_1 \cup \partial X_2}_{\Downarrow}$$

$$m(\partial(X_1 \cup X_2)) = m(\partial(X_1 \cap X_2)) = m(\partial(X_1 \setminus X_2)) = 0 \Rightarrow$$

$$m(\partial(X_1 \cup X_2)) = m(\partial(X_1 \cap X_2)) \stackrel{\psi}{=} m(\partial(X_1 \setminus X_2)) = 0 \Rightarrow$$

 $\Rightarrow X_1 \cup X_2, X_1 \cap X_2$ и $X_1 \setminus X_2$ измеримы.

Конечная аддитивность меры Жордана. 5.6.

 ${f 2}^{\circ}$ Пусть X_1, X_2, \ldots, X_k - измеримые по Жордану множества, тогда множество $X = igcup_k^k X_j$ измеримо и:

1)
$$m(X) \leq \sum_{j=1}^{k} m(X_j);$$

2) Если
$$X_j \cap X_i = \emptyset$$
 при $i \neq j$, то $m(X) = \sum_{j=1}^k m(X_j)$.

Доказательство: (для k=2, а дальше по индукции)

1) X_1 и X_2 измеримы по Жордану $\Rightarrow X = X_1 \cup X_2$ измеримо.

$$\forall \varepsilon > 0 \ \exists G_1^{\varepsilon}, G_2^{\varepsilon} \colon X_1 \subset G_1^{\varepsilon}, \ X_2 \subset G_2^{\varepsilon} \ \text{и}$$
:

$$m(X_1) > m(G_1^{\varepsilon}) - \frac{\varepsilon}{2}$$

$$m(X_2) > m(G_2^{\varepsilon}) - \frac{\overline{\varepsilon}}{2}$$

Тогда $G^{\varepsilon}=G_1^{\varepsilon}\cup G_2^{\varepsilon}$ - клеточное множество и $X\subset G^{\varepsilon}.$

Получаем:

 $m(X) \leqslant m(G^{\varepsilon}) \leqslant m(G_1^{\varepsilon}) + m(G_2^{\varepsilon}) < m(X_1) + m(X_2) + \varepsilon.$

В силу произвольности $\varepsilon \Rightarrow m(X) \leqslant m(X_1) + m(X_2)$

*

2)
$$X_1 \cap X_2 = \emptyset$$
, $X = X_1 \cup X_2$

$$orall arepsilon > 0 \ \exists G^1_arepsilon, G^2_arepsilon \colon G^1_arepsilon \subset X_1, \ G^2_arepsilon \subset X_2$$
 и:

$$m(G_{\varepsilon}^1) > m(X_1) - \frac{\varepsilon}{2}$$

$$m(G_{\varepsilon}^2) > m(X_2) - \frac{\varepsilon}{2}$$

$$G_{\varepsilon}=G_{\varepsilon}^1\cup G_{\varepsilon}^2$$
 и $G_{\varepsilon}^1\cap G_{\varepsilon}^2=\varnothing$, а также $G_{\varepsilon}^1\cup G_{\varepsilon}^2\subset X$.

Тогда
$$m(X) \geqslant m(G_{\varepsilon}) = m(G_{\varepsilon}^1) + m(G_{\varepsilon}^2) > m(X_1) + m(X_2) - \varepsilon$$
.

В силу произвольности $\varepsilon > 0$ получаем $m(X) \geqslant m(X_1) + m(X_2)$

Из [*] и [**] $\Rightarrow m(X) = m(X_1) + m(X_2)$.

5.7. Измеримость и мера цилиндра в (m+1)-мерном пространстве.

Предложение: пусть $X\subset \mathbb{E}^m,\ m\geqslant 1$, - измеримо, тогда множество $Y=X\times [a,b)\subset \mathbb{E}^{m+1}$ - измеримо. m(Y)=m(X)(b-a).

Доказательство:

$$[X$$
 измеримо] $\stackrel{\text{def}}{=} [\forall \varepsilon > 0 \ \exists G_{\varepsilon}, G^{\varepsilon} : G_{\varepsilon} \subset X \subset G^{\varepsilon}, \ m(G^{\varepsilon}) - m(G_{\varepsilon}) < \frac{\varepsilon}{b-a}].$

Рассмотрим клеточные множества: $\widetilde{G_{\varepsilon}} = G_{\varepsilon} \times [a,b)$ и $\widetilde{G^{\varepsilon}} = G^{\varepsilon} \times [a,b)$;

Тогда
$$\widetilde{G_{\varepsilon}} \subset Y \subset \widetilde{G^{\varepsilon}}$$
, а $m(\widetilde{G_{\varepsilon}}) = m(G_{\varepsilon})(b-a)$ и $m(\widetilde{G^{\varepsilon}}) = m(G^{\varepsilon})(b-a)$;

Получаем: $m(\widetilde{G}^{\varepsilon}) - m(\widetilde{G}_{\varepsilon}) = (m(G^{\varepsilon}) - m(G_{\varepsilon}))(b-a) < \frac{\varepsilon}{b-a}(b-a) = \varepsilon \Rightarrow Y$ измеримо.

6. Билет 6

6.1. Определенный интеграл Римана.

Обозначения:

y=f(x) некоторая функция, $x\in[a,b]$ T — разбиение отрезка $[a,b]:T=\{a=x_0< x_1<\ldots< x_n=b\}$ $\Delta x_j=x_j-x_{j-1},\ \Delta_T=\max_{1\leqslant j\leqslant n}\Delta x_j$ — мелкость разбиения $\xi_j\in[x_{j-1},x_j],\ j=\overline{1,n}$

Определение: Число $I\{T,\xi\} = \sum_{j=1}^{n} f(\xi_j) \Delta x_j$ называется интегральной суммой.

Определение: Число I называется пределом интегральных сумм $I\{T,\xi\}$ при $\Delta_T \longrightarrow 0$, Если $\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0 : \forall T : \Delta_T < \delta \; \& \; \forall \{\xi\} \longmapsto |I\{T,\xi\} - I| < \varepsilon$.

Определение: Функция y = f(x) называется интегрируемой на [a,b], если существует конечный предел I интегральных сумм $I\{T,\xi\}$ при $\overline{\Delta_T \longrightarrow 0}$.

Указанный предел I называется определенным интегралом функции f на [a,b].

Обозначение: $I = \int_a^b f(x) dx$

Пример: $y(x) \equiv C, x \in [a,b]$

$$I\{T,\xi\} = C(b-a) \Rightarrow I = \int_a^b Cdx = C(b-a)$$

Предложение:[Необходимое условие интегрируемости функции]:

$$[f$$
 – интегрируема на $[a,b]$ $]$ \Rightarrow $[f$ – ограничена на $[a,b]$

Доказательство: от противного:

Пусть f не является ограниченной на [a,b] это означает, что $\exists k$: на $[x_{k-1},x_k]$ функция не является ограниченной, то есть, $|f(\xi_k)|\Delta x_k$ может быть как угодно большим за счет выборки точки $\xi_k \Rightarrow I\{T,\xi\}$ неограчена и предел $I\{T,\xi\}$ $\Delta_T \to 0$ не существует – противоречие.

Замечание: Не всякая ограниченная функция является интегрируемой на отрезке.

Пример: функция Дирихле на любом отрезке [a,b] ограничена

$$y = D(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{J} \end{cases}$$

Однако:

$$\xi'_j \in \mathbb{Q}, j = \overline{1,n}$$

$$\xi''_j \in \mathbb{J}, j = \overline{1,n}$$

$$I\{T,\xi'\} = b - a \neq 0$$

 $I\{T,\xi''\}=0$, отсюда D(x) не является интегрируемой

6.2.Верхние и нижние суммы Дарбу, их свойства.

Определение: Пусть y = f(x), $x \in [a,b]$, ограничена на данном отрезке; Т-разбиение отрезка [a,b].

$$T = \{a = x_0 < x_1 < \dots < x_n = b\}, \ \Delta x_j = \underline{x_j} - x_{j-1}$$
 $m_j = \inf_{[x_{j-1}, x_j]} f(x), \ M_j = \sup_{[x_{j-1}, x_j]} f(x), \ j = \overline{1, n}, \ \text{тогда}$:

$$\underline{S}_T = \sum_{j=1}^n m_j \Delta x_j$$
-нижняя сумма Дарбу по разбиению Т

$$\overline{S}_T = \sum_{j=1}^n M_j \Delta x_j$$
–верхняя сумма Дарбу по разбиению Т

Очевидно, что при фиксированном Т выполняется $\underline{S}_T \leqslant I\{T,\xi\} \leqslant \overline{S}_T$

Свойство 1: Для фиксированного Т выполняется:

$$\forall \varepsilon > 0 \ \exists \xi', \xi'' : \overline{S}_T - I\{T, \xi'\} < \varepsilon, \ I\{T, \xi''\} - \underline{S}_T < \varepsilon$$

Доказательство: из определения
$$M_j = \sup_{[x_{j-1},x_j]} f(x)$$
 $\forall \varepsilon > 0 \; \exists \xi_j' \in [x_{j-1},x_j]: \; f(\xi_j') > M_j - \frac{\varepsilon}{b-a} \; \Rightarrow \; M_j - f(\xi_j') < \frac{\varepsilon}{b-a}$

$$\sum_{j=1}^{n} (M_j - f(\xi_j')) \Delta x_j < \sum_{j=1}^{n} \frac{\varepsilon}{b-a} \Delta x_j = \varepsilon \implies \sum_{j=1}^{n} (M_j - f(\xi_j')) \Delta x_j =$$

$$\overline{S}_T - I\{T,\xi'\} < \varepsilon$$

Второе неравество доказывается аналогично.

Определение: T'-измельчение разбиения T, если $T' = T \cup \{b_1 \dots b_k\}$, то есть, мы добавляем еще k точек, таким образом $\Delta_{T'} \leqslant \Delta_T$.

Свойство 2: При измельчении разбиения T нижние суммы Дарбу не уменьшаются, а верхние не увеличиваются. T'-измельчение разбиения $T, \underline{S}_T \leqslant \underline{S}_{T'} \leqslant \overline{S}_{T'} \leqslant \overline{S}_T$

Доказательство: Добавим одну точку на $[x_{j-1},x_j]: b \in (x_{j-1},x_j), \Delta x_j = \Delta x_j' + \Delta x_j'', M_j' \leqslant M_j; M_j'' \leqslant M_j,$ тогда:

$$\overline{S}_T - \overline{S}_{T'} = M_j \Delta x_j - (M'_j \Delta x'_j + M''_j \Delta x''_j) = (M_j - M'_j) \Delta x' + (M_j - M''_j) \Delta x'' \geqslant 0$$

$$\Rightarrow \overline{S}_{T'} \leqslant \overline{S}_T$$

Аналогично доказывается для нижних сумм.

Свойство 3: Пусть T' и T'' произвольные разбиения отрезка [a,b], тогда: $\underline{S}_{T'} \leqslant \overline{S}_{T''}, \underline{S}_{T''} \leqslant \overline{S}_{T''}$

Доказательство: $T = T' \cup T''$ -измельчение разбиений T', T''

Тогда из свойства 2 следует, что $\underline{S}_{T'}\leqslant \underline{S}_T\leqslant \overline{S}_{T''}$ и $\underline{S}_{T''} \leqslant \underline{S}_T \leqslant \overline{S}_T \leqslant \overline{S}_{T'}$

Свойство 4: существуют числа I, I:

 $\underline{I} = \sup_{T} \underline{S}_{T}, \ \overline{I} = \inf_{T} \overline{S}_{T}$ такие, что для произвольных разбиений T', T'' выполняется: $\underline{S}_{T'} \leqslant \underline{I} \leqslant \overline{I} \leqslant \overline{S}_{T''}$

I-верхний интеграл Дарбу

I-нижний интеграл Дарбу.

Доказательство: следует из свойства 3 и теоремы об отделимости множеств.

Свойство 5 [Лемма Дарбу]:

$$1)[\underline{I} = \lim_{\Delta_T \to 0} \underline{S}_T] \stackrel{\text{def}}{=} [\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall T : \Delta_T < \delta \longmapsto \underline{I} - \underline{S}_T < \varepsilon]$$

$$2)[\overline{I} = \lim_{\Delta_T \to 0} \overline{S}_T] \stackrel{\text{def}}{=} [\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall T : \Delta_T < \delta \longmapsto \overline{S}_T - \overline{I} < \varepsilon]$$

Доказательство: 2)

$$M = \sup_{[a,b]} f(x), \ m = \inf_{[a,b]} f(x)$$

$$a)M = m$$
 – тривиальный случай;

$$\mathrm{b})M>m;\; \overline{I}=\inf_{T}\overline{S}_{T}$$
 из определения inf

$$\forall \varepsilon > 0 \; \exists T^* : \; \overline{S}_{T^*}^{\ \ l} < \overline{I} + \frac{\varepsilon}{2} \; \Rightarrow \; \overline{S}_{T^*} - \overline{I} < \frac{\varepsilon}{2}$$

$$\forall \varepsilon > 0 \; \exists T^*: \; \overline{S}_{T^*} < \overline{I} + \frac{\varepsilon}{2} \; \Rightarrow \; \overline{S}_{T^*} - \overline{I} < \frac{\varepsilon}{2}$$
 T -произвольное разбиение: $\Delta_T = \max_j \Delta x_j < \frac{\varepsilon}{2(M-m)k}$

k-количество точек разбиения T^* , лежащих на (a,b)

рассмотрим $T' = T \cup T^*$

$$0\leqslant \overline{S}_T-\overline{S}_{T'}\leqslant (M-m)k\Delta_T<rac{arepsilon}{2}$$
 (оценили сверху) отсюда:

$$0 \leqslant \overline{S}_T - \overline{S}_{T'} \leqslant \frac{\varepsilon}{2} \ (1)$$

Из свойств 3 и
$$\overline{4}$$
: $\overline{I} \leqslant \overline{S}_{T'} \leqslant \overline{S}_{T^*}$

$$0 \leqslant \overline{S}_{T'} - \overline{I} \leqslant \overline{S}_{T^*} - \overline{I} < \frac{\varepsilon}{2} \implies$$

$$\overline{S}_{T'} - \overline{I} < \frac{\varepsilon}{2}$$
 (2)

Складываем (1) и (2), получаем $\overline{S}_T - \overline{I} < \varepsilon$

```
Итак:\forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) = \frac{\varepsilon}{2(M-m)k} > 0 \ \forall T : \Delta_T < \delta \longmapsto \overline{S}_T - \overline{I} < \varepsilon
```

6.3. Критерий интегрируемости функции.

Теорема 1: Пусть функция f ограничена на [a,b] [f] интегрируема на [a,b] $] \Leftrightarrow [\forall \varepsilon > 0 \; \exists T : \; \overline{S}_T - \underline{S}_T < \varepsilon]$

Доказательство [Heoбходимость]: \Rightarrow

 $\begin{bmatrix} f \text{ интегрируема на } [a,b] \end{bmatrix} \stackrel{\text{def}}{=} \left[\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall T : \\ \Delta_T < \delta \ \& \ \forall \{\xi\} \longmapsto |I - I\{T,\xi\}| < \frac{\varepsilon}{4} \right]$ из свойства 1: $\exists \xi', \, \xi'' : \\ \overline{S}_T - I\{T,\xi'\} < \frac{\varepsilon}{4}, \, I\{T,\xi''\} - \underline{S}_T < \frac{\varepsilon}{4}, \, \text{тогда}$ $\overline{S}_T - \underline{S}_T = |\overline{S}_T - I\{T,\xi'\} + I\{T,\xi'\} - I + I - I\{T,\xi''\} + I\{T,\xi''\} - \underline{S}_T | \leq \overline{S}_T - I\{T,\xi'\} + |I\{T,\xi''\} - I| + |I - I\{T,\xi''\}| + |I\{T,\xi''\} - \underline{S}_T < 4 \cdot \frac{\varepsilon}{4} = \varepsilon \Rightarrow \forall \varepsilon > 0 \ \exists T : \ \overline{S}_T - \underline{S}_T < \varepsilon$

Доказательство [Достаточность]: \Leftarrow

```
\forall \varepsilon > 0 \ \exists T_\varepsilon^*: \ \overline{S}_{T^*} - \underline{S}_{T^*} < \varepsilon Из свойства 4: существуют числа \underline{I}, \overline{I}: \ \forall T \longmapsto \underline{S}_T \leqslant \underline{I} \leqslant \overline{I} \leqslant \overline{S}_T \Rightarrow 0 \leqslant \overline{I} - \underline{I} \leqslant \overline{S}_{T^*} - \underline{S}_{T^*} < \varepsilon \text{ так как это выполняется для любых } \varepsilon > 0 \Rightarrow \text{ это возможно лишь при } \overline{I} - \underline{I} = 0, \ \overline{I} = \underline{I} = I По Лемме Дарбу: \forall \varepsilon > 0 \ \exists \delta_1 = \delta_1(\varepsilon) > 0: \ \forall T: \Delta_T < \delta_1 \longmapsto \overline{S}_T - \overline{I} < \varepsilon для этого же \varepsilon \ \exists \delta_2 = \delta_2(\varepsilon) > 0: \ \forall T: \Delta_T < \delta_2 \longmapsto \underline{I} - \underline{S}_T < \varepsilon \delta = \min\{\delta_1, \delta_2\} \Rightarrow \forall T \ \Delta_T < \delta \longmapsto \overline{S}_T - I < \frac{\varepsilon}{2}, \ I - \underline{S}_T < \frac{\varepsilon}{2} \forall T \ \Delta_T < \delta \ \& \ \forall \xi = \{\xi_j\} \longmapsto \underline{S}_T \leqslant I \leqslant \overline{S}_T \ (1) также используем то, что \underline{S}_T \leqslant I\{T,\xi\} \leqslant \overline{S}_T \Rightarrow -\overline{S}_T \leqslant -I\{T,\xi\} \leqslant -S_T \ (2) Сложим (1) и (2) \Rightarrow |I - I\{T,\xi\}| \leqslant \overline{S}_T - \underline{S}_T < \varepsilon
```

6.4. Классы интегрируемых функций.

Теорема 2: Если y = f(x) непрерывна на отрезке [a,b], то f интегрирума на [a,b].

Доказательство: f ограничена на [a,b] по первой теореме Вейерштрасса, f равномерно непрерывна на [a,b] по теореме Кантора \Rightarrow $\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0 : \forall x', \; x'' \in [a,b] : \; |x'-x''| < \delta \longmapsto |f(x') - f(x'')| < \frac{\varepsilon}{b-a}$ Для этого же $\varepsilon \; \exists T : \; \Delta_T < \delta, \; T = \{a = x_0 < x_1 < \ldots < x_n = b\}$ По 2 теореме Вейерштрасса $\forall j \; \exists x'_j, \; x''_j \in [x_{j-1},x_j] :$

$$\begin{split} M_j &= \max_{[x_{j-1},x_j]} f(x) = f(x_j'), \, m_j = \min_{[x_{j-1},x_j]} f(x) = f(x_j'') \\ \text{тогда из р.н. получаем, что } \forall j \, M_j - m_j < \frac{\varepsilon}{b-a} \Rightarrow \\ \overline{S}_T - \underline{S}_T &= \sum_{j=1}^n \big(M_j - m_j \big) \Delta x_j < \frac{\varepsilon}{b-a} \sum_{j=1}^n \Delta x_j = \frac{\varepsilon(b-a)}{b-a} = \varepsilon \Rightarrow \\ \forall \varepsilon > 0 \, \exists T : \, \overline{S}_T - \underline{S}_T < \varepsilon. \end{split}$$

Теорема 3: Если функция y = f(x) определена на отрезке [a,b] и монотонна на отрезке, то f интегрируема на [a,b].

Доказательство: для неубывающей функции: $\forall x \in [a,b] \longmapsto$ $f(a) \leqslant f(x) \leqslant f(b) \Rightarrow$ ограничена $\forall \varepsilon > 0 \; \exists T: \; \Delta_T < \frac{\varepsilon}{f(b) - f(a)}, \, T = \{a = x_0 < x_1 < \ldots < x_n = b\}$ $j = \overline{1,n} [x_{j-1},x_j] \longrightarrow M_j = f(x_j), m_j = f(x_{j-1})$ $\overline{S}_T - \underline{S}_T = \sum_{i=1}^n (M_j - m_j) \Delta x_j < \frac{\varepsilon}{f(b) - f(a)} (f(x_1) - f(x_0) + f(x_2) - \frac{\varepsilon}{f(b)} (f(x_1) - f(x_0)) + \frac{\varepsilon}{f(a)} (f(x_0) - f(x_0))$ $-f(x_1) + \ldots + f(x_n) - f(x_{n-1}) = \frac{\varepsilon(f(b) - f(a))}{f(b) - f(a)} = \varepsilon \Rightarrow$ $\forall \varepsilon > 0 \ \exists T : \ \overline{S}_T - S_T < \varepsilon$

Теорема 4: Если функция y = f(x) ограничена на [a,b] и $\forall \varepsilon > 0$ существует конечное число интервалов, покрывающих точки разрыва функции f, сумма длин которых не превосходит $\varepsilon \Rightarrow f$ интегрируема на [a,b]

Доказательство: Пусть
$$M = \sup_{[a,b]} f(x), m = \inf_{[a,b]} f(x)$$

Доказательство: Пусть $M = \sup_{[a,b]} f(x), \ m = \inf_{[a,b]} f(x)$ $\forall \varepsilon > 0 \ \exists X_1 = \bigcup_{j=1}^n \delta^1_j$ – интервал, покрывающий точки разрыва и $|\delta^1_j|$ – его длина $\Rightarrow \sum_{j=1}^n |\delta^1_j| < \frac{\varepsilon}{2(M-m)}$

(a,b) – открытое, $\overline{X_1}$ – замкнутое $\Rightarrow X_2$ – открытое, то есть, мы отбросили интервалы с точками разрыва.

 $X_2 = \bigcup_{i=1}^{\kappa} \delta_j^2$ на каждом $\delta_j^2 - f$ непрерывна $\Rightarrow f$ равномерно непрерывна на $\overline{X_2}$ (Замыкание, то есть $\overline{X_2}$ компакт – ограниченное и замкнутое)

Тогда из опр. р.н. $\exists \delta = \delta(\varepsilon) > 0: \forall x', \, x'' \in \overline{X_2} \longmapsto |f(x') - f(x'')| < \frac{\varepsilon}{2(b-a)}, \, T = \{\delta_j^1, \, \delta_i^2\}_{j=1, \ i=1}^n, \, \text{то есть концы интервалов образует разбиение отрезка } [a,b].$

$$\overline{S}_T - \underline{S}_T = \sum_{j=1}^n (M_j - m_j) |\delta_j^1| + \sum_{i=1}^k (M_i - m_i) |\delta_i^2| \leqslant (M - m) \sum_{j=1}^n |\delta_j^1| + \frac{\varepsilon}{2(b-a)} \sum_{i=1}^k |\delta_i^2| < \frac{\varepsilon}{2} + \frac{\varepsilon(b-a)}{2(b-a)} = \varepsilon \Rightarrow \forall \varepsilon > 0 \ \exists T: \ \overline{S}_T - \underline{S}_T < \varepsilon \Rightarrow f$$
 интегрируема на $[a,b]$.

Следствие: Если функция y = f(x) ограничена на [a,b] и имеет на нем конечное число точек разрыва, то f интегрируема на [a,b]

Рассмотрим пример функции, имеющей на отрезке бесконечное число точек разрыва:

Пример:
$$f(x) = \left\{ \begin{array}{c} 1, \ x \in \left(\frac{1}{2n}, \frac{1}{2n-1}\right], n \in \mathbb{N} \\ -1, \ x \in \left(\frac{1}{2n+1}, \frac{1}{2n}\right], n \in \mathbb{N} \end{array} \right.$$

$$x \in [0,1]$$

$$\forall \varepsilon > 0 \; \exists N = N(\varepsilon) : \; \forall n \geqslant N \longmapsto 0 < \frac{1}{n} < \frac{\varepsilon}{4}$$

Точки разрыва $\frac{1}{n},\ n>1$ на [0,1]. $\forall \varepsilon>0\ \exists N=N(\varepsilon):\ \forall n\geqslant N\longmapsto 0<\frac{1}{n}<\frac{\varepsilon}{4}$ Оставшиеся N точек вне данного интервала покрываем интервалами длины $\frac{\varepsilon}{4N}$, тогда сумма длин итервалов покрытия равна $\frac{\varepsilon}{4}+N\frac{\varepsilon}{4N}=\frac{\varepsilon}{2}<\varepsilon\Rightarrow$ интегрируема по теореме 4.

Билет 7 7.

Некоторые свойства определенного интеграла.

Свойство 1:

$$\int_{a}^{a} f(x)dx = 0$$

Свойство 2:

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

Свойство 3:

Если f, g интегрируемы на [a,b], то $\forall \alpha, \beta \in \mathbb{R}$ функция $h = \alpha f + \beta g$ интегрируема на [a,b].

Доказательство:

$$I_h\{\tau,\xi\} = \sum_{j=1}^{n} [\alpha f(\xi_j) + \beta g(\xi_j)] \Delta x_j = \alpha \cdot \sum_{j=1}^{n} f(\xi_j) \Delta x_j + \beta \cdot \sum_{j=1}^{n} g(\xi_j) \Delta x_j = \alpha I_f\{\tau,\xi\} + \beta I_g\{\tau,\xi\}.$$

Свойство 4:

Если f и g интегрируемы на [a,b], то $h=f\cdot g$ интегрируема на [a,b].

Доказательство:

$$\exists A>0 \land \exists B>0: |f(x)|\leqslant A, |g(x)|\leqslant B \ \forall x\in [a,b]\Rightarrow h \text{ ограничена на } [a,b]$$
 $|h(x')-h(x'')|=|f(x')g(x')-f(x'')g(x'')|=|f(x')g(x')-f(x'')g(x')+f(x'')g(x')-f(x'')g(x'')|\leqslant |g(x')|\cdot |f(x')-f(x'')|+|f(x'')|\cdot |g(x')-f(x'')|\leqslant B|f(x')-f(x'')|+A|g(x')-g(x'')|\Rightarrow [M_j(h)-m_j(h)]\leqslant B[M_j(f)-m_j(f)]+A[M_j(g)-m_j(g)]$

$$f,g$$
 интегрируемы на $[a,b]\Rightarrow \forall arepsilon>0$ $\exists T':\overline{S}_{T'}(f)-\underline{S}_{T'}(f)<rac{arepsilon}{2B}$ $\exists T'':\overline{S}_{T''}(g)-\underline{S}_{T''}(g)<rac{arepsilon}{2A}$

$$T=T'\cup T''$$

$$\underline{S}_{T'}(f) \leqslant \underline{S}_{T}(f) \leqslant \overline{S}_{T}(f) \leqslant \overline{S}_{T'}(f) \Rightarrow \overline{S}_{T}(f) - \underline{S}_{T}(f) \leqslant \overline{S}_{T'}(f) - \underline{S}_{T'}(f) < \frac{\varepsilon}{2B}$$

$$\underline{S}_{T''}(g) \leqslant \underline{S}_{T}(g) \leqslant \overline{S}_{T}(g) \leqslant \overline{S}_{T''}(f) \Rightarrow \overline{S}_{T}(g) - \underline{S}_{T}(g) \leqslant \overline{S}_{T''}(g) - \underline{S}_{T''}(g) < \frac{\varepsilon}{2A}$$

$$\Rightarrow \overline{S}_{T}(h) - \underline{S}_{T}(h) < A \cdot \frac{\varepsilon}{2A} + B \cdot \frac{\varepsilon}{2B} = \varepsilon \Rightarrow h \text{ интегрируемая на } [a, b].$$

Свойство 5:

f интегрируема на [a,b] & $[c,d] \in [a,b] \Rightarrow f$ интегрируема на [c,d].

Доказательство:

$$\forall \varepsilon > 0 \ \exists T : \overline{S_T} - \underline{S_T} < \varepsilon$$

$$\underline{T'} = T \cup \{c, d\}$$

$$\overline{S_{T'}} - \underline{S_{T'}} \leqslant \overline{S_T} - \underline{S_T} < \varepsilon$$

Рассмотрим разбиение T^* отрезка [c,d], порождаемое разбиением T', то есть в T^* включены все точки разбиения T', лежащие на

отрезке $[c,d]. \Rightarrow \overline{S_{T^*}} - S_{T^*} \leqslant \overline{S_T} - S_T < \varepsilon$

Свойство 6: Если f интегрируема на отрезке [a,c] и [c,b], то f интегрируема на [a,b] и

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Доказательство: Пусть a < c < b: $\forall \ \varepsilon > 0 \quad \exists T', T''$ отрезков [a,c] и [c,b] $\overline{S_{T'}} - \underline{S_{T'}} < \frac{\varepsilon}{2}, \quad \overline{S}_{T''} - \underline{S_{T''}} < \frac{\varepsilon}{2}$ $T = T' \cup T''$ – разбиение отрезка [a,b]. $\underline{S}_{T'} = \underline{S}_T^1 \leqslant \overline{S}_T^1 = \overline{S}_{T'}$ $\underline{S}_T^2 = \overline{S}_T^2 \leqslant \overline{S}_T^2 = \overline{S}_{T''}$ $\overline{S}_T - \underline{S}_T = \overline{S}_T^1 + \overline{S}_T^2 - \underline{S}_T^1 - \underline{S}_T^2 < \varepsilon \Rightarrow f$ интегируема на [a,b] \Rightarrow интегральная сумма на [a,b] есть сумма интегральных сумм на [a,c] и [c,b]. Пусть c < a < b или a < b < c:

[a,b] есть часть отрезка [c,b] или $[a,c]\Rightarrow$ ввиду того, что интегрируемая на отрезке интегрируема на любом его участке, то f интегрируема на [a,b].

Пусть a < b < c:

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx - \int_{b}^{c} f(x)dx \Rightarrow \int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Аналогично доказывается для c < a < b.

Свойство 7: Пусть f ограничена на $(a,b], \forall \alpha > 0: 0 < \alpha < b-a, f$ интегрируема на $[\alpha + a, b],$ тогда при любом доопределении f в точке a, получится функция, интегрируемая на [a,b] и $\int\limits_a^b f(x)dx = \lim\limits_{\alpha \to 0} \int\limits_{a+\alpha}^b f(x)dx.$

Доказательство:

$$\exists A > 0 : \forall x \in (a,b] \longmapsto |f(x)| \leqslant A, f(a) = B$$
$$M = \max\{A, |B|\} \Rightarrow \forall x \in [a,b], |f(x)| \leqslant M$$
$$\forall \varepsilon > 0 \ \exists \alpha = \alpha(\varepsilon) > 0 : \ 2M\alpha < \varepsilon/2$$

Для $[a+\alpha,b]$ найдется такое $\exists T: \overline{S_T} - \underline{S_T} < \varepsilon/2$

$$\exists T' = T \cup \{a\}, \overline{S_{T'}} - \underline{S_{T'}} = \overline{S_T} - \underline{S_T} + (M_0 - m_0)\alpha < \varepsilon/2 + 2M\alpha < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

7.2. Оценки определенного интеграла.

Оценка 1: f интегрируема на [a,b] & $f(x) \ge 0 \ \forall x \in [a,b] \Rightarrow \int_a^b f(x) dx \ge 0$.

Доказательство: $f(x) \geqslant 0 \ \forall x \in [a,b] \Rightarrow \forall T \ \& \ \forall \{\xi\} \mapsto I\{T,\xi\} \geqslant 0, I - \ \text{предел интегральных сумм.}$

Теперь надо доказать, что при $\Delta_T \to 0 \mapsto I \geqslant 0$

От противного:

$$I < 0 \Rightarrow \varepsilon = \frac{|I|}{2} \ \exists \delta(\varepsilon) > 0 : \forall T, \Delta_T < \delta \mapsto |I\{T,\xi\} - I| < \frac{|I|}{2} \Rightarrow I - \frac{|I|}{2} < I\{T,\xi\} < I + \frac{|I|}{2} < 0 \Rightarrow I\{T,\xi\} < 0 -$$
 противоречие.

Оценка 2:

f непрерывна на [a,b] & $f(x) \ge 0$, $\forall x \in [a,b]$ & $f(x) \ne 0 \Rightarrow \int_{a}^{b} f(x) dx \ge \gamma > 0$.

Доказательство:

 $\exists x_0 \in (a,b): f(x_0) = 2\alpha > 0 \Rightarrow$ [по теореме о сохранении знака непрерывной функции] $\Rightarrow \exists [c,d] \subset [a,b], x \in [c,d]: f(x) \geqslant \alpha > 0$ на $[c,d] \Rightarrow f(x) - \alpha \geqslant 0$ на $[c,d] \stackrel{\text{св-во 5 } \text{ и оп-ка 1}}{\Rightarrow} \int\limits_{c}^{d} (f(x) - \alpha) dx \geqslant 0 \Rightarrow \int\limits_{c}^{d} f(x) dx \geqslant \int\limits_{c}^{d} \alpha dx = \alpha (d-c) = \gamma > 0$

$$\int_{c}^{d} f(x)dx \geqslant \gamma > 0 \Rightarrow \int_{a}^{c} f(x)dx + \int_{c}^{d} f(x)dx + \int_{d}^{b} f(x)dx \geqslant 0 + \gamma + 0 > 0$$

Опенка 3:

f, g интегрируемы на [a,b] & $\forall x \in [a,b] \mapsto f(x) \geqslant g(x) \Rightarrow \int_a^b f(x) dx \geqslant \int_a^b g(x) dx$.

Доказательство:

$$f(x) - g(x) \geqslant 0 \ \forall x \in [a,b] \overset{\text{oil-Ka}}{\Rightarrow} \int\limits_a^b [f(x) - g(x)] dx \geqslant 0 \overset{\text{cb-Bo } 3}{\Rightarrow} \int\limits_a^b f(x) dx - \int\limits_a^b g(x) \geqslant 0$$

Оценка 4: Если y=f(x) интегрируема на [a,b], то y=|f(x)| интегрируема на [a,b] и

$$\left| \int_{a}^{b} f(x) dx \right| \leqslant \int_{a}^{b} |f(x)| dx$$

Доказательство:

Пусть f — интегрируема.

$$T = \{ a = x_0 < x_1 < \dots < x_n = b \}$$

$$M_j = \sup_{[x_{j-1}, x_j]} f(x), m_j = \inf_{[x_{j-1}, x_j]} f(x)$$

$$\overline{M}_j = \sup_{[x_{j-1}, x_j]} |f(x)|, \, \overline{m}_j = \inf_{[x_{j-1}, x_j]} |f(x)|$$

$$\overline{M}_i - \overline{m}_i \leqslant M_i - m_i \quad (*)$$

1)
$$M_j > 0, \ m_j > 0 \Rightarrow$$
 очевидное равенство в $(*)$

2) $M_i < 0, m_i < 0 \Rightarrow$ очевидное равенство в (*)

3)
$$M_j > 0, m_j < 0 \Rightarrow \overline{M}_j - \overline{m}_j < M_j - m_j$$

Из (*) следует:

$$\overline{S}_T(|f|) - \underline{S}_T(|f|) \leqslant \overline{S}_T(f) - \underline{S}_T(f) < \varepsilon$$

$$\forall \varepsilon > 0 \ \exists T : \ \overline{S}_T(|f|) - S_T(|f|) < \varepsilon \Rightarrow$$

$$\Rightarrow |f|$$
 интегрируема и $-|f(x)| \leqslant f(x) \leqslant |f(x)|$

Вспомним, что если y = f(x) и y = g(x) интегрируемы на [a,b] и $f(x) \geqslant g(x) \, \forall x \in [a,b]$, то $\int\limits_a^b f(x) dx \geqslant \int\limits_a^b g(x) dx$, тогда

$$-\int_{a}^{b} |f(x)| dx \le \int_{a}^{b} f(x) dx \le \int_{a}^{b} |f(x)| dx \Rightarrow$$
$$\Rightarrow \left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$$

Замечание: |f| – интегрируема $\not\Rightarrow f$ – интегрируема.

Пример:

$$y = \tilde{D}(x) = \begin{cases} 1, & x \in \mathbb{Q}; \\ -1, & x \in \mathbb{I}; \end{cases}$$

Оценка 5:

Пусть y = f(x), y = g(x) интегрируемы на [a,b] и $g(x) \ge 0 \ \forall x \in [a,b]$. Если $M = \sup_{[a,b]} f(x), m = \inf_{[a,b]} f(x)$, то

$$m\int_{a}^{b} g(x)dx \leqslant \int_{a}^{b} f(x) \cdot g(x)dx \leqslant M\int_{a}^{b} g(x)dx$$

Доказательство:

$$m \leqslant f(x) \leqslant M \ \forall x \in [a,b] \ g(x) \geqslant 0 \Rightarrow m \cdot g(x) \leqslant f(x) \cdot g(x) \leqslant M \cdot g(x)$$

⇒ исходное условие доказано исходя из оценки 3 и свойства 3.

M такое, что

$$\int_{a}^{b} f(x)dx = \mu(b-a)$$

Доказательство: Из оценки интегрирования неравенств (результата предыдущего пункта) при $g \equiv 1 \Rightarrow m(b-a) \leqslant \int\limits_a^b f(x) dx \leqslant M(b-a)$

$$\Rightarrow \mu = \frac{\int\limits_{a}^{b} f(x)dx}{b-a}.$$

Теорема [Интегральная теорема о среднем]: Пусть f и g интегрируемы на [a,b]. $M = \sup_{[a,b]} f(x), m = \inf_{[a,b]} f(x)$ и $g(x) \geqslant 0 \ \forall x \in [a,b]$ (либо $g(x)\leqslant 0$). Тогда $\exists \mu: m\leqslant \mu\leqslant M$ такая, что

$$\int_{a}^{b} f(x) \cdot g(x) dx = \mu \int_{a}^{b} g(x) dx$$

В частности, если f непрерывна на [a,b], то $\exists\,\xi\in[a,b]$:

$$\int_{a}^{b} f(x) \cdot g(x) dx = f(\xi) \cdot \int_{a}^{b} g(x) dx$$

Доказательство:

$$1. 1) \int_{a}^{b} g(x)dx = 0$$

 $\overset{a}{\Rightarrow}$ оценка интегрирования неравенства $\Rightarrow\int\limits_{a}^{b}f(x)g(x)=0$ и $\mu-$ любое число

2. 2)
$$\int_{a}^{b} g(x)dx > 0$$

 \Rightarrow a Оценка интегрирования неравенства

$$m\leqslant \frac{\int\limits_a^b f(x)g(x)dx}{\int\limits_a^b g(x)dx}\leqslant M$$
 и $\mu=\frac{\int\limits_a^b f(x)g(x)dx}{\int\limits_a^b g(x)dx}$ Если f непрерывна на $[a,b]\Rightarrow \exists$ $\xi:\mu=f(\xi)$

Предложение:

Пусть f интегрируема на $[a,b], m = \inf_{[a,b]} f, M = \sup_{[a,b]} f \Rightarrow \exists \mu : m \leqslant \mu \leqslant M : \int_a^b f(x) dx = \mu(b-a),$ если f непрерывна на [a,b], то $\exists \xi \in [a,b] : \int_a^b f(x) dx = f(\xi)(b-a) \ [g \equiv 1].$

7.3. Интегралы с переменным верхним пределом. Вычисление определеннных интегралов.

Определение: Пусть y = f(x) интегрируема на $[a,b] \Rightarrow \forall x \in [a,b]$ существует

$$\int_{a}^{x} f(t)dt = F(x)$$

Этот интеграл называется интегралом с переменным верхним пределом.

Теорема: Любая непрерывная на [a,b] функция y=f(x) имеет на этом отрезке первообразную. Одной из первообразных является функция

$$F(x) = \int_{a}^{x} f(t)dt, x \in [a,b]$$

Доказательство: $\forall x \in [a,b], \ x + \Delta x \in [a,b]$. Докажем, что

$$\lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x} = f(x)$$

$$F(x + \Delta x) - F(x) = \int_{x}^{x + \Delta x} f(t)dt$$

По теореме о среднем $\exists \xi$, лежащая между x и $x + \Delta x$: $F(x + \Delta x) - F(x) = f(\xi)\Delta x \Rightarrow \frac{F(x + \Delta x) - F(x)}{\Delta x} = f(\xi)$ Так как f непрерывна на [a,b], то при $\Delta x \to 0 \Rightarrow f(\xi) \xrightarrow[\Delta x \to 0]{} f(x)$ и

$$\lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x} = F'(x)$$

Замечание: Из доказательства теоремы следует, что

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

Предложение: Если f интегрируема на [a,b], то F непрерывна на [a,b].

Доказательство: $\forall x \in [a,b], x + \Delta x \in [a,b], F(x + \Delta x) - F(x) = \Delta F(x,\Delta x). \ \Delta F(x,\Delta x) = \int\limits_{x}^{x + \Delta x} f(t) dt = \mu \Delta x : m \leqslant \mu \leqslant M$ (Формула

среднего значения) $\Delta x \to 0 \Rightarrow \Delta F(x,\Delta x) \to 0 \Rightarrow F$ непрерывна в X.

Замечание: Если f непрерывна на $[a,b] \Rightarrow \forall \Phi(x) = \int\limits_a^x f(t)dt + C$. $\Phi(a) = C$, $\Phi(b) = \int\limits_a^b f(x)dx + C \quad \Rightarrow \int\limits_a^b f(x)dx = \Phi(b) - \Phi(a)$.

Теорема [Формула Ньютона-Лейбница]: Если f непрерывна на [a,b], то $\int_a^b f(x)dx = \Phi(b) - \Phi(a)$, где Φ — любая первообразная функции f.

Доказательство: См. предыдущее замечание..

Теорема 7: Если f: 1) интегрируема на [a,b]; 2) обладает на [a,b] первообразной Φ ; то справедлива формула $\int_a^b f(x)dx = \Phi(b) - \Phi(a)$.

Замечание: 1) y = sgnx, $x \in [-1,1]$ интегрируема на [-1,1], но не обладает первообразной. 2) $F(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, |x| \leqslant 1, x \neq 0 \\ 0, x = 0 \end{cases}$ явля-

ется первообразной для $f(x) = \begin{cases} 2x \sin\frac{1}{x^2} - \frac{2}{x}\cos\frac{1}{x^2}, & |x| \leqslant 1, \ x \neq 0 \\ 0, \ x = 0 \end{cases}$ $F'(0) = \lim_{x \to 0} \frac{x^2 \sin\frac{1}{x^2}}{x} = 0$, но f не является интегрируемой на [-1,1] (не ограничена).

Теорема [Замена переменных в определенном интегрировании]: Пусть выполнены следующие условия: 1) y = f(x) непрерывна на [a,b] 2) x = g(t) непрерывно дифференцируема на $[\alpha,\beta]$ 3) $g(\alpha) = a, g(\beta) = b$ и $\forall t \in [\alpha,\beta] \longmapsto a \leqslant g(t) \leqslant b$ тогда справедлива формула $\int_a^b f(x) dx = \int_\alpha^\beta f(g(t))g'(t) dt$.

Доказательство: Φ — первообразная функции $f \Rightarrow \int_a^b f(x)dx = \Phi(b) - \Phi(a)$. Т.к. Φ и g дифференцируемы на [a,b] и $[\alpha,\beta]$ соответственно, то $\frac{d}{dt} \Big[\Phi(g(t)) \Big] = \Phi'(g(t)) \cdot g'(t)$, но $\Phi'(x) = f(x) \to \Phi'(g(t)) = f(g(t)) \Rightarrow \frac{d}{dt} \Big[\Phi(g(t)) \Big] = f(g(t)) \cdot g'(t)$ По условию $f(g(t)) \cdot g'(t)$ непрерывна на $[\alpha,\beta]$ и $\Phi(g(t))$ — её первообразная.

$$\int_{\alpha}^{\beta} f(g(t))g'(t)dt = \Phi(g(\beta)) - \Phi(g(\alpha)) = \Phi(b) - \Phi(a) = \int_{a}^{b} f(x)dx$$

Теорема [Формула интегрирования по частям]: Пусть u = u(x), v = v(x) непрерывно дифференцируемые на [a,b]. Тогда

$$\int_{a}^{b} u dv = [uv]|_{a}^{b} - \int_{a}^{b} v du$$

Доказательство: Функция $u \cdot v$ является первообразной функции uv' + u'v. Каждая их этих функций непрерывная \Rightarrow

$$\int_{a}^{b} [uv' + u'v]dx = [uv]|_{a}^{b}$$

8. Билет 8

8.1. Геометрические приложения определенного интеграла.

Площадь криволинейной трапеции.

Определение: Пусть на [a,b] задана непрерывная функция $f: \forall x \in [a,b] \to f(x) \geqslant 0$ Множество $G = \{(x,y): a \leqslant x \leqslant b, 0 \leqslant y \leqslant f(x)\}$ называется криволинейной трапецией. Измеримость криволинейной трапеции по Жордану была доказана ранее. (нет \odot)

Предложение: Площадь m(X) криволинейной трапеции X определяется формулой $m(X) = \int_{a}^{b} f(x) dx$.

Доказательство: f интегрируема на $[a,b] \Rightarrow \forall \varepsilon > 0 \ \exists T : \overline{S_T} - \underline{S_T} < \varepsilon \ \text{HO} \ m(G_{\varepsilon}) = \underline{S_T} \leqslant I \leqslant \overline{S_T} = m(G^{\varepsilon}) \ m(G_{\varepsilon}) \leqslant m(X) \leqslant m(G^{\varepsilon})$ $m(X) = I = \int_a^b f(x) dx$.

Площадь криволинейного сектора.

Определение: $r = r(\varphi)$ непрерывна на $[\alpha, \beta]$. Криволинейный сектор X измерим по Жордану.

Приложение: Площадь m(X) криволинейного сектора X вычисляется по формуле $m(X) = \frac{1}{2} \int_{-\infty}^{\beta} r^2(\varphi) d\varphi$.

Доказательство:
$$T = \{\alpha = \varphi_0 < \varphi_1 < \dots < \varphi_n = \beta\}$$
 $\Delta \varphi_i = \varphi_i - \varphi_{i-1}, \ i = \overline{1,n} \ R_i = \max_{[\varphi_{i-1},\varphi_i]} r(\varphi)$ $r_i = \min_{[\varphi_{i-1},\varphi_i]} r(\varphi)$

$$\overline{S_T} = \frac{1}{2} \sum_{i=1}^n R_i^2 \Delta \varphi_i,$$
 $\underline{S_T} = \frac{1}{2} \sum_{i=1}^n r_i^2 \Delta \varphi_i$. Это верхняя и нижняя сумма Дарбу функции $\frac{1}{2} r^2(\varphi)$. Это функция интегрируема на $[\alpha, \beta]$.

$$\underline{S_T} \leqslant I \leqslant \overline{S_T}$$
 и $I = m(X) = \frac{1}{2} \int_{\alpha}^{\beta} r^2(\varphi) d\varphi$.

Объем тела вращения:.

Определение: Тело, полученное путем вращения криволинейной трапеции вокруг оси Ox назовём телом вращения.

<u>Предложение:</u> Объем m(X) тела вращения X криволинейной трапеции вокруг Ox вычисляется по формуле $m(X) = \pi \int_{a}^{b} [f(x)]^{2} dx$.

Доказательство:
$$T = a = x_0 < x_1 < \dots < x_n = b$$
 $M_i = \max_{[x_{i-1}, x_i]} f(x),$ $m_i = \min_{[x_{i-1}, x_i]} f(x)$ $\overline{S_T} = \pi \sum_{i=1}^n M_i^2 \Delta x_i,$ $\underline{S_T} = \pi \sum_i^n m_i^2 \Delta x_i$ Это

суммы Дарбу функции $y = \pi f^2(x)$, которая интегрируема на [a,b] $\underline{S_T} \leqslant m(X) = I \leqslant \overline{S_T} \Rightarrow m(X) = I = \pi \int_a^b f^2(x) dx$.

Длина дуги кривой.

 $\Gamma = \{ \vec{r} = \vec{r}(t), \quad \alpha \leqslant t \leqslant \beta \}$ непрерывно дифференцируема \Rightarrow спрямляемая кривая.

<u>Предложение:</u> Если кривая Γ непрерывно дифференцруема, то ее длина L вычисляется по формуле $L = \int_{\alpha}^{\beta} |\vec{r}'(t)| dt$.

Доказательство:
$$S'(t)=|\vec{r}'(t)|\ L=S(\beta)-S(\alpha)=\int\limits_{0}^{\beta}S'(t)dt=\int\limits_{0}^{\beta}|\vec{r}'(t)|dt.$$

1.
$$\vec{r} = \vec{r}(t) = \{x(t), y(t), z(t)\}, t \in [\alpha, \beta] \ L = \int_{\alpha}^{\beta} \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} dt$$

2.
$$y = f(x), \ \alpha \leqslant x \leqslant \beta \ L = \int_{\alpha}^{\beta} \sqrt{1 + [f'(x)]^2} dx$$

3.
$$r = r(\varphi), \varphi_1 \leqslant \varphi \leqslant \varphi_2$$

$$\begin{cases} x = r \cos(\varphi) \\ y = r \sin(\varphi) \end{cases}$$

$$\begin{cases} x' = r' \cos(\varphi) - r \sin(\varphi) \\ y' = r' \sin(\varphi) + r \cos(\varphi) \end{cases}$$

$$(x')^{2} + (y')^{2} = (r')^{2} + (r)^{2} \tag{1}$$

$$L = \int_{\alpha}^{\beta} \sqrt{(r')^2 + (r)^2} d\varphi \tag{2}$$

8.2. Вычисление площади поверхнности вращения.

Пусть $y = f(x), x \in [a,b]$ и f(x) непрерывна на [a,b]. Рассмотрим поверхность Π вращения графика функции f вокруг Ox. $T = \{a = x_0 < x_1 < \dots < x_n = b\}$. $A_0(x_0, f(x_0)), A_1(x_1, f(x_1)) \dots A_n(x_n, f(x_n))$. Строим ломанную $A_0, A_1 \dots A_n$. При вращении ломанной вокруг оси Ox, получаем поверхность Π_T , составлящую одну из боковых поверхностей усеченных конусов, обозначим эту площадь за P_T . $P_T = 2\pi \sum_{i=1}^n \frac{f(x_{i-1}) + f(x_i)}{2} l_i = \pi \sum_{i=1}^n [f(x_{i-1}) + f(x_i)] l_i$, где l_i - длина звена $A_{i-1}A_i$.

Определение: Число P называется пределом площади P_T при мелкости разбиения, стремящимся к нулю, если $\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0 : \forall T : \Delta_T < \delta \to |P_T - P| < \varepsilon.$

Определение: Поверхность Π называется квадрируемой, если существует предел площадей P_T при мелкости разбиения, стремещейся $\overline{\kappa}$ 0. При этом P называется площадью поверхности Π .

<u>Предложение:</u> Если y = f(x) непрерывно дифференцируема на $[a,b], f(x) \geqslant 0 \ \forall x \in [a,b],$ то поверхность вращения Π графика y = f(x) вокруг x, квадрируема и ее площадь вычисляется по форумуле $P = 2\pi \int\limits_a^b f(x) \sqrt{1+[f'(x)]^2} dx$. **Без доказательства**.

8.3. Криволинейные интегралы.

$$\boxed{\mathbb{E}^2} \qquad \Gamma = \{\vec{r} = \vec{r}(t), \ \alpha \leqslant t \leqslant \beta\} - \text{спрямляемая кривая, } \vec{r}(t) = \{x = \varphi(t), \ y = \psi(t)\} \qquad f, P, Q - \text{непрерывные на } \Gamma$$
 функции
$$\Gamma = \{\alpha = t_0 < t_1 < \ldots < t_k = \beta\} - \text{разбиение} \qquad M_j(x_j, y_j) - \text{точка, } x_j = \varphi(t_j), \ y_j = \psi(t_j), \ j = 0, 1, \ldots, k$$

$$\Delta s_j = \int\limits_{t_{i-1}}^{t_j} \sqrt{\left[\varphi'(t)\right]^2 + \left[\psi'(t)\right]^2} dt, \ \Delta s_T = \max\limits_{1 \leqslant j \leqslant k} \Delta s_j \qquad \tau_j \in [t_{j-1}, t_j], \ N_j(\xi_j, \eta_j) - \text{точка, } \xi_j = \varphi(\tau_j), \ \eta_j = \psi(\tau_j) \qquad \Delta x_j = 0$$

$$x_j - x_{j-1} = \int_{t_{j-1}}^{t_j} \varphi'(t)dt = \varphi(t_j) - \varphi(t_{j-1})$$

$$\sigma_T = \sum_{j=1}^k f(N_j) \Delta s_j$$

$$\sigma_T^x = \sum_{j=1}^k P(N_j) \Delta x_j$$

$$\sigma_T^y = \sum_{j=1}^k Q(N_j) \Delta y_j$$

Определение: число I является пределом σ_T при $\Delta s_T \to 0$, если

$$\left[\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall T : \Delta s_T < \delta \ \& \ \forall \{N_j\}_{j=1}^k \mapsto |\sigma_T - I| < \varepsilon\right]$$

Определение: число $I_{x,y}$ является пределом $\sigma_T^{x,y}$ при $\Delta s_T \to 0$, если

$$\left[\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall T : \Delta s_T < \delta \ \& \ \forall \{N_j\}_{j=1}^k \mapsto |\sigma_T^{x,y} - I_{x,y}| < \varepsilon\right]$$

Число I называется κp иволинейным интегралом 1-го pода:

$$\int_{\Gamma} f(x,y)ds = I$$

Числа $I_{x,y}$ называются криволинейными интегралами 2-го рода:

$$\int_{\Gamma} P(x,y)dx = I_x \qquad \int_{\Gamma} Q(x,y)dy = I_y$$

$$\int\limits_{\Gamma} P(x,y)dx + Q(x,y)dy$$
 — общий криволинейный интеграл 2-го рода

Замечание: криволинейные интегралы 2-го рода зависят от направления обхода кривой, и при его изменении у этих интегралов меняется знак.

8.4. Существование криволинейных интегралов, их вычисление.

Теорема: Пусть $\Gamma = \{x = \varphi(t), y = \psi(t), \alpha \leqslant t \leqslant \beta\}$ – гладкая кривая, функции f, P, Q непрерывны на Γ . Тогда криволинейные интегралы 1-го и 2-го рода от этих функций по кривой Γ существуют и вычисляются по формулам

$$\int_{\Gamma} f(x,y)ds = \int_{\alpha}^{\beta} f(\varphi(t),\psi(t))\sqrt{\left[\varphi'(t)\right]^2 + \left[\psi'(t)\right]^2}dt = I$$

$$\int_{\Gamma} P(x,y)dx = \int_{\alpha}^{\beta} P(\varphi(t), \psi(t))\varphi'(t)dt = I_{x}$$

$$\int_{\Gamma} Q(x,y)dy = \int_{\alpha}^{\beta} Q(\varphi(t), \psi(t))\psi'(t)dt = I_{y}$$

Доказательство:

$$\sigma_T = \sum_{j=1}^k f(N_j) \Delta s_j = \sum_{j=1}^k f(\varphi(\tau_j), \psi(\tau_j)) \int_{t_{j-1}}^{t_j} \sqrt{[\varphi'(t)]^2 + [\psi'(t)]^2} dt$$

$$\sigma_T - I = \sum_{j=1}^k \int_{t_{j-1}}^{t_j} \left[f(\varphi(\tau_j), \psi(\tau_j)) - f(\varphi(t), \psi(t)) \right] \sqrt{[\varphi'(t)]^2 + [\psi'(t)]^2} dt$$

$$\Phi(t) = \sqrt{[\varphi'(t)]^2 + [\psi'(t)]^2} > 0 \ \forall t \in [\alpha, \beta] \text{(т.к. гладкая кривая)}$$

$$M = \max_{[\alpha, \beta]} \Phi(t), \ m = \min_{[\alpha, \beta]} \Phi(t) > 0 \Rightarrow m \Delta t_j \leqslant \Delta s_j \leqslant M \Delta t_j$$

$$\frac{\Delta s_j}{M} \leqslant \Delta t_j \leqslant \frac{\Delta s_j}{m} \Rightarrow \Delta s_T \to 0 \Leftrightarrow \Delta_T \to 0$$

$$F(t) = f(\varphi(t), \psi(t)) \text{ непрерывна на } [\alpha, \beta] \Rightarrow F(t) \text{ PH на } [\alpha, \beta] \text{ (т. Кантора), т.е.}$$

$$\left[\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall t', t'' \in [\alpha, \beta] : |t' - t''| < \delta \mapsto |F(t') - F(t'')| < \frac{\varepsilon}{L} \right] \text{ (L - длина кривой)}$$

$$\forall T : \Delta_T < \delta \Rightarrow \frac{\Delta s_T}{M} < \Delta_T < \delta \Rightarrow |\sigma_T - I| < \frac{\varepsilon}{L} \int_{-\infty}^{\beta} \sqrt{[\varphi'(t)]^2 + [\psi'(t)]^2} dt = \frac{\varepsilon}{L} \cdot L = \varepsilon$$

8.5. Несобственный интеграл.

Определение: Пусть y = f(x) интегрируема на $[a, \xi] \ \forall \xi : \xi > a$. Символ $\int\limits_a^{+\infty} f(x) dx$ называется несобственным интегралом функции y = f(x) по промежутку $[a; +\infty)$. Если существует и конечен предел $\lim_{\xi \to +\infty} I(\xi) = A, \ A \in R$, то несобственный интеграл $I = \int\limits_a^{+\infty} f(x) dx$ назовается сходящимся и равен числу A. Обозначение: $\int\limits_a^{+\infty} f(x) dx < \infty \equiv$ интеграл сходится. Соглашение: несобственный интеграл будет записываться как $\int\limits_a^b f(x) dx$, где $b = +\infty$ или b - вертикальная асимптота f(x).

Свойства несобственных интегралов и их вычисление:

1.
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \ \forall c: \ a \leqslant c < b:$$

$$\left[\int_{a}^{b} f(x)dx < \infty\right] \Leftrightarrow \left[\int_{c}^{b} f(x)dx < \infty\right]$$

2.
$$\left[\left[\int_a^b f(x) dx < \infty \right] \right] \Rightarrow \int_a^b \left[\alpha f(x) + \beta g(x) \right] dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$$

3. Пусть y = f(x) непрерывна на [a,b) и $F'(x) = f(x) \ \forall x \in [a,b)$ и $\lim_{x \to b-0} F(x) = F(b-0) \in R$. Тогда:

$$\int\limits_a^b f(x)dx = F(b-0) - F(a)$$
 Формула Ньютона-Лейбница

4.
$$[u, v -$$
 непрерывно дифференцируемы на $[a,b)$ и $\exists \lim_{\xi \to b - 0} u(\xi)v(\xi) = u(b-0)v(b-0) \in \mathbb{R}, \int_a^b u'(x)v(x)dx < \infty] \Rightarrow [\int_a^b u(x)v'(x)dx < \infty]$ $\Rightarrow \int_a^b u(x)v'(x)dx = uv|_a^{b-0} - \int_a^b u'(x)v(x)dx]$

5. Пусть y = f(x) непрерывна на $[a,b), x = \varphi(t)$ непрерывна дифференцируема и возрастает на $[\alpha,\beta), \varphi(\alpha) = a, \lim_{t \to \beta = 0} \varphi(t) = b$. Тогда:

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt$$

при условии сходимости хотя бы одного интегралов равенства

$$\left[\left[\int_a^b f(x) dx < \infty \right] \& \left[\int_a^b g(x) dx < \infty \right] \& \left[f(x) < g(x) \right] \right] \Rightarrow \int_a^b f(x) dx < \int_a^b g(x) dx$$

8.6. Несобственные интегралы от неотрицательных функций:

Теорема 1: $\left[\int\limits_a^b f(x)dx < \infty\right] \Leftrightarrow \left[I(\xi) = \int\limits_a^\xi f(x)dx \right]$ ограничена на [a,b].

Доказательство: Необходимость: $\int\limits_a^b f(x)dx < \infty \Rightarrow I(\xi)$ ограничена на [a,b). $\int\limits_a^b f(x)dx \stackrel{\text{def}}{=} \exists \lim_{\xi \to b-0} I(\xi) = A \in R \Rightarrow A = \sup_{\xi \in [a,b)} I(\xi)$ (A – это точная вер

 $\Rightarrow 0 \leqslant I(\xi) \leqslant A \Rightarrow$ функция ограничена. Достаточность: $I(\xi)$ ограничена на $[a,b) \Rightarrow \int\limits_a^b f(x)dx < \infty$ $I(\xi)$ ограничена на $[a,b) \stackrel{\text{def}}{=} \exists C > 0$: $\forall \xi \in [a,b) \longmapsto 0 \leqslant I(\xi) \leqslant C \Rightarrow \exists A = \sup_{\xi \in [a,b)} I(\xi)$ Из $A = \sup_{\xi \in [a,b)} I(\xi)$ следует:

- 1. $\forall \xi \in [a,b) \mapsto I(\xi) \leqslant A$
- 2. $\forall \varepsilon > 0 \; \exists \xi_{\varepsilon} \in (a, b) : I(\xi_{\varepsilon}) > A \varepsilon$ $\xi_{\varepsilon} = \delta \; \Rightarrow \; \forall \xi \in (\delta, b) \longmapsto I(\xi) \geqslant I(\xi_{\varepsilon}) > A - \varepsilon$

Тогда $\forall \varepsilon > 0 \; \exists \delta \in (a,b) : \forall \xi \in (\delta,b) \longmapsto 0 \leqslant A - I(\xi) < \varepsilon \stackrel{\text{def}}{=} \lim_{\xi \to b - 0} I(\xi) = A \in R \stackrel{\text{def}}{=} \int\limits_a^b f(x) dx < \infty.$

Теорема 2 [Признак сравнения]: Пусть $\forall x \in [a,b) \longmapsto 0 \leqslant f(x) \leqslant g(x)$. Тогда:

1.
$$\int_{a}^{b} g(x)dx < \infty \Rightarrow \int_{a}^{b} f(x)dx < \infty$$

2.
$$\int_{a}^{b} f(x)dx = \infty \Rightarrow \int_{a}^{b} g(x)dx = \infty$$

Доказательство:

1. $\int_a^b g(x)dx < \infty \iff$ (Из T_1) $G(\xi) = \int_a^\xi g(x)dx$ ограничена на полуинтервале $\stackrel{\text{def}}{=} \exists C \geqslant 0 : \forall \xi \in [a,b) \longmapsto G(\xi) \leqslant C$.

$$I(\xi) = \int\limits_a^\xi f(x) dx \leqslant \int\limits_a^\xi g(x) dx \leqslant C \ \Rightarrow$$
 (из $T_1 \int\limits_a^b f(x) dx < \infty$.

2.
$$\int_{a}^{b} f(x)dx = \infty \Rightarrow \int_{a}^{b} g(x)dx = \infty.$$

В противном случае: $\int_a^b g(x)dx < \infty \Rightarrow$ (из Π_1) $\int_a^b f(x)dx < \infty$.

Следствие (Признак сравнения в предельной форме)

Если f(x) > 0 g(x) > 0 $\forall x \in [a,b)$ $f(x) \sim g(x)$ $x \to b-0$, $\int\limits_a^b f(x) dx$ $\int\limits_a^b g(x) dx$ ведут себя одинаково.

Доказательство:

$$\left[\lim_{x\to b-0}\frac{f(x)}{g(x)}=1\right]\Rightarrow\left[\varepsilon=1/2.\ \exists \delta\in(a,b):\forall x\in(\delta,b)\mapsto|\frac{f(x)}{g(x)}-1|<\frac{1}{2}$$
 $\frac{1}{2}g(x)< f(x)<\frac{3}{2}g(x)$ Далее просто применяем T_2 .

8.7. Критерий Коши сходимости несобственных интегралов.

Пусть функция интегрируема в собственном смысле на промежутке из [a,b). Тогда:

$$\left[\int_{a}^{b} f(x)dx < \infty\right] \iff \left[\forall \varepsilon > 0 \; \exists \delta \in (a,b) : \; \forall \xi', \, \xi'' \in (\delta,b) \longmapsto \left|\int_{\xi'}^{\xi''} f(x)dx\right| < \varepsilon\right]$$

Доказательство:

$$\left[\int_{a}^{b} f(x)dx < \infty\right] \iff \left[\exists \lim_{\xi \to b - 0} \int_{a}^{\xi} f(x)dx = \lim_{\xi \to b - 0} I(\xi) = A \in R\right] \iff$$

$$\iff \left[\forall \varepsilon > 0 \ \exists \delta \in (a, b) : \ \forall \xi', \xi'' \in (\delta, b) \longmapsto |I(\xi') - I(\xi'')| < \varepsilon\right]$$

$$|I(\xi') - I(\xi'')| = \left|\int_{\xi'}^{\xi''} f(x)dx\right| < \varepsilon$$

8.8. Абсолютная и условная сходимость несобственных интегралов.

Определение 1 Интеграл $\int_a^b f(x)dx$ называется абсолютно сходящимся, если $\int_a^b |f(x)|dx < \infty$.

Определение 2 Если $\int\limits_a^b |f(x)| dx = \infty$, а $\int\limits_a^b f(x) dx < \infty$, $\int\limits_a^b f(x) dx$ называется условно сходящимся.

Предложение: Если интеграл сходится абсолютно, то и он сам сходится.

Доказательство: $\forall \xi' \xi'' \in (a,b) \left| \int\limits_{\xi'}^{\xi''} f(x) dx \right| \leqslant \int\limits_{\xi'}^{\xi''} |f(x)| dx$. Тогда по критерию Коши $\left| \int\limits_{\xi'}^{\xi''} f(x) dx \right|$ сходится и из T_2 сходится и $\int\limits_{\xi'}^{\xi''} |f(x)| dx$.

<u>Предложение:</u> Если $\int_{a}^{b} g(x)dx$ сходится абсолютно, то $\int_{a}^{b} f(x)dx$ и $\int_{a}^{b} [f(x) + g(x)]dx$ ведут себя одинаково.

Доказательство: Абсолютная сходимость: $|f(x)+g(x)|\leqslant |f(x)|+|g(x)|$ Если $\int\limits_a^b |f(x)|dx<\infty\Rightarrow\int\limits_a^b |f(x)+g(x)|dx<\infty$ В другую сторону: $\int\limits_a^b |f(x)+g(x)|dx<\infty\Rightarrow f(x)=\left[f(x)+g(x)\right]-g(x)\Rightarrow |f(x)|\leqslant |f(x)+g(x)|+|g(x)|\Rightarrow$ по $T_2\int\limits_a^b |f(x)+g(x)|dx<\infty$.

8.9. Признаки Дирихле и Абеля сходимости интегралов.

Теорема [Признак Дирихле]: Если выполнены условия:

1. f(x) непрерывна, g(x) непрерывно дифференцируема на [a,b)

2.
$$F(x) = \int_a^b f(t)dt$$
 ограничена на $[a,b)$

3.
$$g(x)$$
монотонна на $[a,b)$ и $\lim_{x\to b-0}g(x)=0$

Тогда
$$\int_{a}^{b} f(x) \cdot g(x) dx < \infty$$
.

Доказательство:

$$\exists M > 0: |F(x)| \leqslant M, \forall x \in [a, b)$$
$$\xi'' > \xi' > a$$
$$\forall \xi', \xi'' \in [a, b)$$

Сделаем замену для интегрирования по частям: u = g(x), du = g'(x)dx, dv = f(x)dx, v = F(x).

$$\int_{\xi'}^{\xi''} f(x)g(x)dx = g(x) \cdot F(x) \Big|_{\xi'}^{\xi''} - \int_{\xi'}^{\xi''} g'(x)F(x)dx$$

$$\Big| \int_{\xi'}^{\xi''} f(x)g(x)dx \Big| \leqslant M(|g(\xi')| + |g(\xi'')|) + \Big| \int_{\xi'}^{\xi''} g'(x)F(x)dx \Big| \leqslant M(|g(\xi')| + |g(\xi'')|) + \int_{\xi'}^{\xi''} |g'(x)F(x)|dx \leqslant M(|g(\xi')| + |g(\xi'')|) + \int_{\xi'}^{\xi''} |g'(x)F(x)|dx \leqslant M(|g(\xi')| + |g(\xi'')|) + \int_{\xi'}^{\xi''} |g'(x)G(x)| + |g(\xi'')| +$$

Следствие (Признак Абеля): Если выполняются условия:

1. f(x) непрерывна, g(x) непрерывно дифференцируема на [a,b)

$$2. \int_{a}^{b} f(x) < \infty$$

3. g(x) монотонна и ограничена на [a,b)

Тогда
$$\int_{a}^{b} f(x) \cdot g(x) dx < \infty$$
.

Доказательство: Из условия 3 следует, что
$$\exists \lim_{x \to b = 0} g(x) = g(b - 0) \in R$$
 $g_1(x) = g(x) - g(b - 0) \xrightarrow[x \to b = 0]{\text{по Дирихле}} \int_a^b f(x)g_1(x)dx < \infty$ $\int_a^b f(x)g_1(x)dx = \int_a^b f(x)g(x)dx - g(b - 0) \int_a^b f(x)dx \int_a^b f(x)g_1(x)dx$ и $\int_a^b f(x)dx$ сходятся, значит сходится и $\int_a^b f(x)g(x)dx$

9. Билет 9

9.1. Числовые ряды.

<u>Определение:</u> Пусть задана числовая последовательность $\{u_k\}_{k=1}^{\infty}$. Выражение $u_1 + u_2 + \ldots + u_k + \ldots$ будем называть *числовым* рядом.

Обозначение: $\sum_{k=1}^{\infty} u_k \ u_k$ – член ряда. $S_n = \sum_{k=1}^n u_k$ – n-ая частичная сумма ряда.

Определение: Ряд $\sum_{k=1}^{\infty} u_k$ сходится, если последовательность $\{S_n\}_{n=1}^{\infty}$ сходится и $S=\lim_{n\to\infty} S_n$ – сумма ряда. Если $\{S_n\}_{n=1}^{\infty}$ расходится,

то и ряд $\sum_{k=1}^{\infty} u_k$ расходится.

Обозначения: $\sum\limits_{k=1}^{\infty}u_{k}<\infty$ – ряд сходится $\sum\limits_{k=1}^{\infty}u_{k}=\infty$ – ряд расходится

Примеры:

1.
$$\sum_{k=1}^{\infty} (-1)^{k-1} = 1 - 1 + 1 - 1 + \dots + 1 - 1 + \dots$$
$$S_1 = 1, S_2 = 0, S_3 = 1, S_4 = 0, \dots$$

$$S_{2k-1}=1, S_{2k}=0 \Rightarrow \{S_n\}_{n=1}^\infty$$
 расходящаяся $\Rightarrow \sum_{k=1}^\infty u_k=\infty$

2.
$$\sum_{k=1}^{\infty} q^{k-1} = 1 + q + \ldots + q^{n-1} + \ldots$$

$$S_n = 1 + q + \ldots + q^{n-1} = \frac{1 - q^n}{1 - q} = \frac{1}{1 - q} - \frac{q^n}{1 - q}$$

a)
$$|q| < 1 \Rightarrow \lim_{n \to \infty} q^n = 0 \Rightarrow \lim_{n \to \infty} S_n = \frac{1}{1 - q} = S$$

6)
$$|q| > 1 \Rightarrow \lim_{n \to \infty} |q|^n = \infty \Rightarrow \sum_{k=1}^{\infty} q^{k-1} = \infty$$

B)
$$q = 1 \Rightarrow S_n = n \xrightarrow[n \to \infty]{} +\infty \Rightarrow \sum_{k=1}^{\infty} q^{k-1} = \infty$$

г)
$$q = -1 \Rightarrow$$
 пример 1) $\Rightarrow \sum_{k=1}^{\infty} q^{k-1} = \infty$

3.
$$\sum_{k=1}^{\infty} \frac{x^{k-1}}{(k-1)!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^k}{k!} + \dots$$
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} + e^{\xi x} \cdot \frac{x^n}{n!}, \quad 0 < \xi < 1$$
$$|e^x - S_n| \leqslant e^x \cdot \frac{x^n}{n!} \xrightarrow[n \to \infty]{} 0$$

9.2. Критерий Коши сходимости ряда.

Теорема:

$$\left[\sum_{k=1}^{\infty}u_{k}<\infty\right]\Leftrightarrow\left[\text{Выполнено условие Коши: }\forall\varepsilon>0\exists N=N(\varepsilon):\forall n\geqslant N\ \&\ \forall p\in\mathbb{N}\mapsto\left|\sum_{k=n+1}^{n+p}u_{k}\right|<\varepsilon\right]$$

Доказательство: $|S_{n+p} - S_n| = \left| \sum_{k=n+1}^{n+p} u_k \right|$ Условие теоремы означает, что $\{S_n\}$ – фундаментальна $\Leftrightarrow \{S_n\}$ сходится

Обозначение: $r_n = \sum\limits_{k=n+1}^{\infty} u_k$ – n-й остаток числового $p n \partial a$

Следствие:

$$\left[\sum_{k=1}^{\infty} u_k < \infty\right] \Leftrightarrow \left[\{r_n\}_{n=1}^{\infty} \text{ сходится}\right]$$

Доказательство:

$$[\{r_n\}_{n=1}^\infty$$
 сходится] \Leftrightarrow $[\{r_n\}_{n=1}^\infty$ фундаментальна] \Leftrightarrow [условие Коши]

Следствие [Необходимое условие сходимости числового ряда]:

$$\left[\sum_{k=1}^{\infty} u_k < \infty\right] \Rightarrow \left[\lim_{k \to \infty} u_k = 0\right]$$

Доказательство: Следует из условия критерия Коши при p=1.

$$\left[\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : \forall n \geqslant N \mapsto |u_{n+1}| < \varepsilon\right] \stackrel{\text{def}}{=} \left[\lim_{k \to \infty} u_k = 0\right]$$

Отрицание условия Коши:

$$\left[\exists \varepsilon_0 > 0 : \forall n \ \exists n_0 \geqslant n \ \& \ \exists p_0 \in \mathbb{N} : \left| \sum_{k=n_0+1}^{n_0+p_0} u_k \right| \geqslant \varepsilon_0 \right]$$

Пример: $\sum\limits_{k=1}^{\infty} rac{1}{k}$ – гармонический ряд $\lim\limits_{k o\infty} rac{1}{k} = 0$, <u>**но**</u>

$$\exists \varepsilon_0 = \frac{1}{4} : \forall n \ \exists n_0 = n \ \& \ \exists p_0 = n : \sum_{k=n+1}^{2n} \frac{1}{k} =$$

$$= \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} \geqslant \frac{1}{2n} \cdot n = \frac{1}{2} > \frac{1}{4} = \varepsilon_0$$

Предложение 1: Добавление (отбрасывание) <u>конечного</u> числа членов ряда не влияет на его поведение.

Доказательство: $\sum_{k=1}^{\infty} u_k \pm \sum_{k=1}^{k_0} \alpha_k = \sum_{k=1}^{\infty} \tilde{u}_k \ \forall n > n_0 \mapsto \tilde{S}_n = S_n + A, \quad A = \sum_{k=1}^{k_0} \alpha_k \text{ Если } \{S_n\} \text{ сходится}], то <math>\{\tilde{S}_n\}$ сходится [расходится].

Предложение 2: $\tilde{u}_k = cu_k, \ c \in \mathbb{R}, \ c \neq 0 \Rightarrow \sum_{k=1}^{\infty} u_k$ и $\sum_{k=1}^{\infty} \tilde{u}_k$ ведут себя одинаково.

9.3. Знакопостоянные ряды: признак сравнения сходимости, признаки Даламбера и Коши, интегральный признак.

$$\sum_{k=1}^{\infty}u_k,u_k\geqslant 0\quad \forall k,\quad \{S_n\}_{n=1}^{\infty}$$
 – неубывающая.

Теорема 2 [Критерий сходимости числового ряда с неотр. членами]:

$$\left[\sum_{k=1}^{\infty} u_k < \infty\right] \Leftrightarrow \left[\{S_n\}_{n=1}^{\infty} \text{ ограничена}\right]$$

Доказательство:

$$[\{S_n\}_{n=1}^\infty$$
 сходится] \Leftrightarrow $[\{S_n\}_{n=1}^\infty$ ограничена] (т.к. монотонная)

Теорема 3 [Признак сравнения]: $\forall k \mapsto 0 \leqslant u_k \leqslant \tilde{u}_k$

1.
$$\sum_{k=1}^{\infty} \tilde{u}_k < \infty \Rightarrow \sum_{k=1}^{\infty} u_k < \infty$$

2.
$$\sum_{k=1}^{\infty} u_k = \infty \Rightarrow \sum_{k=1}^{\infty} \tilde{u}_k = \infty$$

Доказательство:

1.
$$\sum_{k=1}^{\infty} \tilde{u}_k < \infty$$
, r.e. $\exists \lim_{n \to \infty} \tilde{S}_n = \tilde{S} \in \mathbb{R}$

$$\forall n \mapsto S_n \leqslant \tilde{S}_n \leqslant \tilde{S} \Rightarrow \{S_n\}$$
 ограничена $\stackrel{T.2}{\Longrightarrow} \sum_{k=1}^{\infty} u_k < \infty$

2.
$$\sum_{k=1}^{\infty} u_k = \infty \xrightarrow{1} \sum_{k=1}^{\infty} \tilde{u}_k = \infty$$
 иначе в противном случае по пункту а) $\sum_{k=1}^{\infty} u_k < \infty$ (противоречие)

Замечание:

- 1. В **Теореме 3** $\forall k$ можно заменить на $\forall k \geqslant k_0, k_0 \in \mathbb{N}$, т.к. отбрасывание конечного числа членов ряда не влияет на его поведение.
- 2. Неравенство $0 \leqslant u_k \leqslant \tilde{u}_k$ можно заменить $0 \leqslant u_k \leqslant c\tilde{u}_k, c > 0$, т.к. умножение на действительное число c не влияет на поведение числового ряда.

Следствие:

$$[\forall k\mapsto u_k>0, \tilde{u}_k>0$$
 и $u_k\sim \tilde{u}_k]\Rightarrow \left[\sum_{k=1}^\infty u_k, \sum_{k=1}^\infty \tilde{u}_k$ ведут себя одинаково $\right]$

Доказательство:

$$\left[\lim_{k\to\infty}\frac{u_k}{\tilde{u}_k}=1\right]\stackrel{\mathrm{def}}{=}\left[\forall\varepsilon>0\ \exists K=K(\varepsilon):\forall k\geqslant K\mapsto\left|\frac{u_k}{\tilde{u}_k}-1\right|<\varepsilon\right]\Rightarrow$$

$$\Rightarrow \forall k \geqslant K \mapsto (1 - \varepsilon)\tilde{u}_k < u_k < (1 + \varepsilon)\tilde{u}_k$$

 $0 < \varepsilon < \frac{1}{2}$ Утверждение следует из **Теоремы 3** и **Замечания 2**.

Примеры:

1.
$$\sum_{k=1}^{\infty} u_k, u_k = \frac{1}{3+b^k}, b > 0$$

а)
$$b\leqslant 1\Rightarrow \lim_{k\to\infty}u_k\neq 0\Rightarrow$$
 не выполнено $\mathbf{HYC}\Rightarrow \sum_{k=1}^\infty u_k=\infty$

б)
$$b > 1$$

$$u_k = \frac{1}{3 + b^k} \leqslant \left(\frac{1}{b}\right)^k = q^k, \quad 0 < q < 1$$
$$\sum_{k=1}^{\infty} q^k < \infty \xrightarrow{\cdot 3} \sum_{k=1}^{\infty} u_k < \infty$$

$$2. \sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}, \quad 0 < \alpha \leqslant 1$$

$$\frac{1}{k^{\alpha}} \geqslant \frac{1}{k}, \quad \sum_{k=1}^{\infty} \frac{1}{k} = \infty \xrightarrow{T.3} \sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} = \infty$$

3.
$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \sum_{k=1}^{\infty} u_k$$
 $k > 1 \Rightarrow \frac{1}{k^2} \leqslant \frac{1}{k(k-1)} = \tilde{u}_k$

$$\frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k} \Rightarrow \tilde{S}_n = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n-1} - \frac{1}{n} = 1 - \frac{1}{n} \xrightarrow[n \to \infty]{} 1$$

$$\sum_{k=1}^{\infty} \tilde{u}_k < \infty \Longrightarrow \sum_{k=1}^{\infty} \frac{1}{k^2} < \infty$$

$$\forall \alpha \geqslant 2 \mapsto \frac{1}{k^{\alpha}} \leqslant \frac{1}{k^2} \Rightarrow \sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} < \infty$$
 при $\alpha \geqslant 2$

Теорема 4 [Признак сравнения]:

$$\left[\forall k\mapsto u_k>0, \tilde{u}_k>0\ \mathrm{и}\ \frac{u_{k+1}}{u_k}\leqslant \frac{\tilde{u}_{k+1}}{\tilde{u}_k}\right]\Rightarrow$$

1.
$$\sum_{k=1}^{\infty} \tilde{u}_k < \infty \Rightarrow \sum_{k=1}^{\infty} u_k < \infty$$

2.
$$\sum_{k=1}^{\infty} u_k = \infty \Rightarrow \sum_{k=1}^{\infty} \tilde{u}_k = \infty$$

Доказательство:

$$\times \begin{cases} \frac{u_2}{u_1} \leqslant \frac{\tilde{u}_2}{\tilde{u}_1} \\ \frac{u_3}{u_2} \leqslant \frac{\tilde{u}_3}{\tilde{u}_2} \\ \dots \\ \frac{u_k}{u_{k-1}} \leqslant \frac{\tilde{u}_k}{\tilde{u}_{k-1}} \end{cases} \Rightarrow \frac{u_k}{u_1} \leqslant \frac{\tilde{u}_k}{\tilde{u}_1} \Rightarrow u_k \leqslant c\tilde{u}_k, \ c = \frac{u_1}{\tilde{u}_1} > 0$$

Утверждение Теоремы 4 следует из Теоремы 3 и Замечания 2.

Теорема 5 [Признак Даламбера]:

$$\forall k \ [\forall k \geqslant k_0] \mapsto u_k > 0$$

1.
$$\left[\frac{u_{k+1}}{u_k} \leqslant q < 1\right] \Rightarrow \left[\sum_{k=1}^{\infty} u_k < \infty\right]$$

2.
$$\left[\frac{u_{k+1}}{u_k} \geqslant 1\right] \Rightarrow \left[\sum_{k=1}^{\infty} u_k = \infty\right]$$

Доказательство:

1.
$$\tilde{u}_k = q^k$$

$$\frac{\tilde{u}_{k+1}}{\tilde{u}_k} = q \Rightarrow \frac{u_{k+1}}{u_k} \leqslant \frac{\tilde{u}_{k+1}}{\tilde{u}_k} = q < 1$$

$$\sum_{k=1}^{\infty} \tilde{u}_k = \sum_{k=1}^{\infty} q^k < \infty \xrightarrow{T.4} \sum_{k=1}^{\infty} u_k < \infty$$

2.
$$\tilde{u}_k = 1$$

$$\frac{u_{k+1}}{u_k} \geqslant \frac{\tilde{u}_{k+1}}{\tilde{u}_k} = 1, \quad \sum_{k=1}^{\infty} \tilde{u}_k = \infty \xrightarrow{T.4} \sum_{k=1}^{\infty} u_k = \infty$$

Теорема 6 [Признак Даламбера в предельной форме]:

$$[\forall k \mapsto u_k > 0] \& \left[\lim_{k \to \infty} \frac{u_{k+1}}{u_k} = L \in \mathbb{R} \right] \Rightarrow$$

1.
$$[L < 1] \Rightarrow \left[\sum_{k=1}^{\infty} u_k < \infty\right]$$

2.
$$[L > 1] \Rightarrow \left[\sum_{k=1}^{\infty} u_k = \infty\right]$$

Доказательство:

1.
$$L < 1 \Rightarrow \exists \alpha > 0 : L = 1 - 2\alpha \Rightarrow L + \alpha = 1 - \alpha = q < 1$$

$$\varepsilon = \alpha \ \exists K = K(\varepsilon) : \forall k \geqslant K \mapsto 0 < \frac{u_{k+1}}{u_k} < L + \alpha = 1 - \alpha = q < 1 \xrightarrow{T.5} \sum_{k=1}^{\infty} u_k < \infty$$

2.
$$L > 1 \Rightarrow \exists \alpha > 0 : L = 1 + \alpha \Rightarrow L - \alpha = 1$$

$$\varepsilon = \alpha \ \exists K = K(\varepsilon) : \forall k \geqslant K \mapsto \frac{u_{k+1}}{u_k} > L - \alpha = 1 \xrightarrow{T.5} \sum_{k=1}^{\infty} u_k = \infty$$

Замечание:

1. В **Теореме 5** неравенство $\frac{u_{k+1}}{u_k} \leqslant q < 1$ <u>нельзя</u> заменить неравенством $\frac{u_{k+1}}{u_k} < 1$.

$$\sum_{k=1}^{\infty} \frac{1}{k} \mapsto \frac{k}{k+1} < 1 \ \forall k, \ \underline{\mathbf{Ho}} \ \sum_{k=1}^{\infty} \frac{1}{k} = \infty$$

2. Для L=1 (в **Теореме 6**) признак Даламбера в предельной форме «не работает».

$$\sum_{k=1}^{\infty} \frac{1}{k} = \infty, \quad \lim_{k \to \infty} \frac{k}{k+1} = 1$$

$$\sum_{k=1}^{\infty} \frac{1}{k^2} < \infty, \quad \lim_{k \to \infty} \frac{k^2}{(k+1)^2} = 1$$

Теорема 7 [Признак Коши]:

$$\forall k \ [\forall k \geqslant k_0] \mapsto u_k \geqslant 0$$

1.
$$\left[\sqrt[k]{u_k} \leqslant q < 1\right] \Rightarrow \left[\sum_{k=1}^{\infty} u_k < \infty\right]$$

2.
$$\left[\sqrt[k]{u_k} \geqslant 1\right] \Rightarrow \left[\sum_{k=1}^{\infty} u_k = \infty\right]$$

Доказательство:

1.
$$\tilde{u}_k = q^k \Rightarrow \sqrt[k]{u_k} \leqslant \sqrt[k]{\tilde{u}_k} = q < 1 \Rightarrow u_k \leqslant \tilde{u}_k$$

$$\sum_{k=1}^{\infty} \tilde{u}_k < \infty \xrightarrow{T.3} \sum_{k=1}^{\infty} u_k < \infty$$

2.
$$\tilde{u}_k = 1 \Rightarrow \sqrt[k]{u_k} \geqslant \sqrt[k]{\tilde{u}_k} = 1 \Rightarrow u_k \geqslant \tilde{u}_k$$

$$\sum_{k=1}^{\infty} \tilde{u}_k = \infty \xrightarrow{T.3} \sum_{k=1}^{\infty} u_k = \infty$$

Теорема 8 [Признак Коши в предельной форме]:

$$[\forall k \mapsto u_k \geqslant 0] \& \left[\lim_{k \to \infty} \sqrt[k]{u_k} = L \in \mathbb{R}\right] \Rightarrow$$

1.
$$[L < 1] \Rightarrow \left[\sum_{k=1}^{\infty} u_k < \infty\right]$$

2.
$$[L > 1] \Rightarrow \left[\sum_{k=1}^{\infty} u_k = \infty\right]$$

Доказательство:

1.
$$L < 1 \Rightarrow \exists \alpha > 0 : L = 1 - 2\alpha \Rightarrow L + \alpha = 1 - \alpha = q < 1$$

$$\varepsilon = \alpha \ \exists K = K(\varepsilon) : \forall k \geqslant K \mapsto 0 \leqslant \sqrt[k]{u_k} < L + \alpha = 1 - \alpha = q < 1 \xrightarrow{T.7} \sum_{k=1}^{\infty} u_k < \infty$$

2.
$$L > 1 \Rightarrow \exists \alpha > 0 : L = 1 + \alpha \Rightarrow L - \alpha = 1$$

$$\varepsilon = \alpha \ \exists K = K(\varepsilon) : \forall k \geqslant K \mapsto \sqrt[k]{u_k} > L - \alpha = 1 \xrightarrow{T.7} \sum_{k=1}^{\infty} u_k = \infty$$

Замечание:

1. В **Теореме 7** неравенство $\sqrt[k]{u_k} \leqslant q < 1$ <u>нельзя</u> заменить неравенством $\sqrt[k]{u_k} < 1$.

2. Для L=1 (в **Teopeme 8**) признак Коши в предельной форме «не работает».

3. Предельный признак Коши более сильный, чем предельный признак Даламбера.

$$\sum_{k=1}^{\infty} u_k, \ u_k = \frac{3 + (-1)^k}{2^{k+1}}, \ \frac{u_{k+1}}{u_k} = \frac{1}{2} \cdot \frac{3 + (-1)^{k+1}}{3 + (-1)^k}$$

$$\begin{cases} k = 1 : \frac{u_2}{u_1} = \frac{1}{2} \cdot 2 = 1 \\ k = 2 : \frac{u_3}{u_2} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \end{cases} \Rightarrow \lim_{k \to \infty} \frac{u_{k+1}}{u_k} \text{ не существует}$$

$$\sqrt[k]{u_k} = \frac{1}{2} \sqrt[k]{\frac{3+(-1)^k}{2}} \xrightarrow[k \to +\infty]{} \frac{1}{2} < 1 \Rightarrow$$
 сходится по предельному признаку Коши

Теорема 9 [Признак Коши—Маклорена][интегральный признак]: Пусть f – неотрицательная и невозрастающая на $[m; +\infty), m \in \mathbb{N}$. Тогда

$$\left[\sum_{k=m}^{\infty} f(k) < \infty\right] \Leftrightarrow \left[\exists \lim_{n \to \infty} \alpha_n = \alpha \in \mathbb{R}, \ \alpha_n = \int_{m}^{n} f(x) dx\right], \ n \geqslant m+1$$

$$\left(\lim_{n \to \infty} \alpha_n = \int_{m}^{+\infty} f(x) dx\right)$$

Доказательство: $\forall k \geqslant m+1 \mapsto k-1 \leqslant x \leqslant k \Rightarrow f(k) \leqslant f(x) \leqslant f(k-1)$ [k-1;k]: f – монотонная и ограниченная $\Rightarrow f$ интегрируема

$$f(k) \leqslant \int_{k-1}^{k} f(x)dx \leqslant f(k-1), \ k \geqslant m+1$$

$$+ \begin{cases} f(m+1) \leqslant \int_{m}^{m+1} f(x)dx \leqslant f(m) \\ f(m+2) \leqslant \int_{m+1}^{m} f(x)dx \leqslant f(m+1) \\ \dots \\ f(n) \leqslant \int_{n-1}^{n} f(x)dx \leqslant f(n-1) \end{cases}$$

$$S_n = \sum_{k=m}^n f(k)$$

$$S_n - f(m) \leqslant \int\limits_m^n f(x) dx \leqslant S_{n-1} \Rightarrow \{\alpha_n\}$$
 сходится $\Leftrightarrow \{S_n\}$ ограничена

Примеры:

$$1. \ \sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}, \ \alpha > 1$$

$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx < \infty, \text{ если } \alpha > 1 \Rightarrow \sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} < \infty \text{ при } \alpha > 1.$$

$$2. \ \sum_{k=2}^{\infty} \frac{1}{k \ln^{\beta} k}$$

$$\int_{2}^{+\infty} \frac{dx}{x \ln^{\beta} x} < \infty \ \text{при } \beta > 1 \Rightarrow \sum_{k=2}^{\infty} \frac{1}{k \ln^{\beta} k} < \infty \ \text{при } \beta > 1.$$

9.4. Знакопеременные ряды, абсолютная и условная сходимость, признаки Лейбница, Дирихле и Абеля.

Определение: Если $\sum\limits_{k=1}^{\infty}|u_k|<\infty\Rightarrow\sum\limits_{k=1}^{\infty}u_k$ – абсолютно сходящийся ряд.

Предложение:

$$\left[\sum_{k=1}^{\infty} |u_k| < \infty\right] \Rightarrow \left[\sum_{k=1}^{\infty} u_k < \infty\right]$$

Доказательство: По Критерию Коши сходимости числового ряда:

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : \forall n \geqslant N \ \& \ \forall p \in \mathbb{N} \mapsto \sum_{k=n+1}^{n+p} |u_k| < \varepsilon$$

$$\left| \sum_{k=n+1}^{n+p} u_k \right| \leqslant \sum_{k=n+1}^{n+p} |u_k| < \varepsilon$$

Определение: Если $\sum\limits_{k=1}^{\infty}|u_k|=\infty$ и $\sum\limits_{k=1}^{\infty}u_k<\infty$, то $\sum\limits_{k=1}^{\infty}u_k-$ условно сходящийся ряд.

Примеры:

1.
$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^{\alpha}}, \ \alpha > 1$$

$$\left| \frac{(-1)^{k-1}}{k^{\alpha}} \right| = \frac{1}{k^{\alpha}}, \quad \sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} < \infty \text{ при } \alpha > 1 \Rightarrow \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^{\alpha}} \text{ еходится абсолютно.}$$
2.
$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} = \sum_{k=1}^{\infty} u_k$$

$$|u_k| = \frac{1}{k}, \quad \sum_{k=1}^{\infty} \frac{1}{k} = \infty$$

$$\sum_{k=1}^{\infty} u_k = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n} + \dots$$

$$\ln(1+x) = x - \frac{x}{2} + \frac{x}{3} - \dots + \frac{(-1)^n x^n}{n} + R_{n+1}(x)$$

$$R_{n+1}(x) = [\ln(1+x)]^{(n+1)} (\theta x) \cdot \frac{x^{n+1}}{(n+1)!}, \quad 0 < \theta < 1$$

$$[\ln(1+x)]^{(n+1)} (\theta x) = \frac{(-1)^n n!}{(1+\theta x)^{n+1}}$$

$$\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^n}{n} + R_{n+1}(1)$$

$$|R_{n+1}(x)| \leqslant \frac{|x|^{n+1}}{n+1}$$

$$|S_n - \ln 2| = |R_{n+1}(1)| \leqslant \frac{1}{n+1} \xrightarrow{n \to \infty} 0$$

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} = \ln 2 \Rightarrow \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \text{ еходится условно}$$

Тождество Абеля: $\{u_k\}_{k=1}^{\infty}, \{v_k\}_{k=1}^{\infty}, \quad S_n = u_1 + \ldots + u_n, \quad u_k = S_k - S_{k-1}, \ k=2,3,\ldots$

$$\sum_{k=n}^{n+p} u_k v_k = \sum_{k=n}^{n+p} S_k v_k - \sum_{k=n}^{n+p} S_{k-1} v_k = \sum_{k=n}^{n+p} S_k v_k - \sum_{k=n-1}^{n+p-1} S_k v_{k+1} = \sum_{k=n}^{n+p} S_k v_k - \sum_{k=n-1}^{n+p-1} S_k v_k = \sum_{k=n-1}^{n+p} S_k v_k - \sum_{k=n-1}^{n+p-1} S_k v_k = \sum_{k=n-1}^{n+p-1} S_k v_k - \sum_{k=n-1}^{n+p-1} S_k v_k = \sum_{k=n-1}^{n+p$$

$$= \sum_{k=n}^{n+p-1} S_k(v_k - v_{k+1}) + S_{n+p}v_{n+p} - S_{n-1}v_n$$

$$\sum_{k=n}^{n+p} (S_k - S_{k-1})v_k = S_{n+p}v_{n+p} - S_{n-1}v_n - \sum_{k=n}^{n+p-1} S_k(v_{k+1} - v_k)$$

Теорема [Признак Лейбница]:

$$\left[\sum_{k=1}^{\infty} (-1)^{k-1} v_k, \ 0 \leqslant v_{k+1} \leqslant v_k, \ v_k \xrightarrow[k \to \infty]{} 0\right] \Rightarrow \left[\sum_{k=1}^{\infty} (-1)^{k-1} v_k < \infty\right]$$

Доказательство: $S_{2n} = v_1 - v_2 + v_3 - v_4 + \ldots + v_{2n-1} - v_{2n} \geqslant 0$ $S_{2n} = v_1 - \underbrace{(v_2 - v_3)}_{\geqslant 0} - \underbrace{(v_4 - v_5)}_{\geqslant 0} - \ldots - \underbrace{(v_{2n-2} - v_{2n-1})}_{\geqslant 0} - v_{2n} \Rightarrow S_{2n} \leqslant v_1 \ \forall n$

 $\{S_{2n}\}$ – неубывающая и ограниченная $\Rightarrow \lim_{n \to \infty} S_{2n} = S \in \mathbb{R}$ $S_{2n-1} = S_{2n} + v_{2n} \Rightarrow S_{2n-1} \xrightarrow[n \to \infty]{\geqslant 0} S_{2n-1}$

Теорема [Признак Дирихле]: Пусть

1.
$$\{\mathscr{U}_n\}$$
 – послед. частичных сумм $\sum\limits_{k=1}^\infty u_k$ ограниченна, $\mathscr{U}_n=\sum\limits_{k=1}^n u_k$

2.
$$\{v_k\}$$
 – монотонна и $v_k \xrightarrow[k \to \infty]{} 0$

Тогда
$$\sum_{k=1}^{\infty} u_k v_k < \infty$$

Доказательство: $\exists C>0: \forall n\in\mathbb{N}\mapsto |\mathscr{U}_n|\leqslant C\ \{v_k\}$ – невозрастающая и $v_k\xrightarrow[k\to\infty]{}0\Rightarrow \forall \varepsilon>0\ \exists K=K(\varepsilon): \forall k\geqslant K\mapsto 0\leqslant v_k\leqslant \frac{\varepsilon}{2C}$

$$\forall p \in \mathbb{N} \mapsto \left| \sum_{k=n}^{n+p} u_k v_k \right| \leqslant C v_{n+p} + C v_n + C \sum_{k=n}^{n+p-1} (v_k - v_{k+1}) \leqslant 2C v_n < \varepsilon$$

Следствие [Признак Абеля]: Пусть

$$1. \sum_{k=1}^{\infty} u_k < \infty$$

2. $\{v_k\}$ – монотонна и ограниченна

Тогда
$$\sum_{k=1}^{\infty} u_k v_k < \infty$$

Доказательство: $\{v_k\}$ монотонна и ограниченна $\Rightarrow \{v_k\}$ сходится $\Rightarrow \lim_{k \to \infty} v_k = v \in \mathbb{R}$ $\tilde{v}_k = v_k - v$ монотонна и $\tilde{v}_k \xrightarrow[k \to \infty]{} 0$ $\{\mathscr{U}_n\}$ сходится

$$\Rightarrow \{\mathscr{U}_n\}$$
 ограниченна
$$\sum_{k=1}^{\infty} u_k \tilde{v}_k = \sum_{k=1}^{\infty} u_k v_k - v \sum_{k=1}^{\infty} u_k \implies \sum_{k=1}^{\infty} u_k v_k < \infty$$

Примеры:

$$1. \sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{k}}, \quad \frac{1}{\sqrt{k}}$$
 убывает и $\frac{1}{\sqrt{k}} \xrightarrow[k \to \infty]{} 0 \Rightarrow \sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{k}} < \infty$ (по признаку Лейбница)

 $2. \sum_{k=1}^{\infty} \frac{\cos kx}{k}, \quad x$ – фиксированное число, $x \neq 2\pi m$, т.к. получится гармонический ряд

$$v_k = \frac{1}{k}, \ u_k = \cos kx, \ S_n = \sum_{k=1}^n \cos kx$$

$$\sin\frac{x}{2} \cdot S_n = \sum_{k=1}^n \sin\frac{x}{2} \cdot \cos kx = \frac{1}{2} \sum_{k=1}^n \left[\sin\left(\frac{2k+1}{2}\right) x - \sin\left(\frac{2k-1}{2}\right) x \right] =$$

$$= \frac{1}{2} \left[\sin\frac{3x}{2} - \sin\frac{x}{2} + \dots + \sin\left(\frac{2n+1}{2}\right) x - \sin\left(\frac{2n-1}{2}\right) x \right]$$

$$|S_n| = \left| \frac{\sin\left(\frac{2n+1}{2}\right)x - \sin\frac{x}{2}}{2\sin\frac{x}{2}} \right| \leqslant \frac{1}{\left|\sin\frac{x}{2}\right|} \ \forall n, \ x \neq 2\pi m \Rightarrow \sum_{k=1}^{\infty} \frac{\cos kx}{k} < \infty \ ($$
по признаку Дирихле)

3.
$$1 + \frac{1}{2} - \frac{2}{3} + \frac{1}{4} + \frac{1}{5} - \frac{2}{6} + \frac{1}{7} + \frac{1}{8} - \frac{2}{9} + \dots = \sum_{k=1}^{\infty} \left(\frac{1}{3k-2} + \frac{1}{3k-1} - \frac{2}{3k} \right)$$

$$v_k = \frac{1}{k}$$

$$u_1 = 1, u_2 = 1, u_3 = -2, u_4 = 1, u_5 = 1, u_6 = -2, \dots$$

$$S_1 = 1, S_2 = 2, S_3 = 0, S_4 = 1, S_5 = 2, S_6 = 0, \dots$$

$$S_n \leqslant 2 \ \forall n \Rightarrow \sum_{k=1}^{\infty} u_k < \infty \ ($$
по признаку Дирихле $)$

9.5. Независимость суммы абсолютно сходящегося ряда от порядка слагаемых.

Теорема [Коши]: Если $\sum_{k=1}^{\infty} u_k$ сходится абсолютно и $\sum_{k=1}^{\infty} u_k = S$, то любой $\sum_{k=1}^{\infty} \tilde{u}_k$, полученный из исходного перестановкой членов,

является абсолютно сходящимся и $\sum_{k=1}^{\infty} \tilde{u}_k = S$.

Доказательство:
$$\circledast S_n = \sum_{k=1}^n u_k, \quad \tilde{S}_n = \sum_{k=1}^n \tilde{u}_k$$

$$\left[\sum_{k=1}^{\infty} u_k \text{ cx. a6c.}\right] \Leftrightarrow \left[\forall \varepsilon > 0 \ \exists N_1 = N_1(\varepsilon) : \forall n \geqslant N_1 \ \& \ \forall p \in \mathbb{N} \mapsto \sum_{k=n+1}^{n+p} |u_k| < \frac{\varepsilon}{2}\right]$$
$$\left[\sum_{k=1}^{\infty} u_k = S\right] \stackrel{\text{def}}{=} \left[\forall \varepsilon > 0 \ \exists N_2 = N_2(\varepsilon) : \forall n \geqslant N_2 \mapsto |S_n - S| < \frac{\varepsilon}{2}\right]$$

 $N_0 = \max\{N_1; N_2\}$

$$\forall p \in \mathbb{N} \mapsto \sum_{k=N_0+1}^{N_0+p} |u_k| < \frac{\varepsilon}{2}, \quad |S_{N_0} - S| < \frac{\varepsilon}{2}$$

 $ilde{S}_n: orall n \geqslant N: ilde{S}_N$ содержит все N_0 первых членов исходного ряда

$$|\tilde{S}_n - S| = |(\tilde{S}_n - S_{N_0}) + (S_{N_0} - S)| \le \underbrace{|\tilde{S}_n - S_{N_0}|}_{n - N_0} + \frac{\varepsilon}{2}$$

Число $p \in \mathbb{N}$ выбираем таким образом, чтобы $N_0 + p$ был больше номеров членов ряда, содержащихся в $\tilde{S}_n - S_{N_0} \Rightarrow |\tilde{S}_n - S_{N_0}| \leqslant \sum_{k=N_0+1}^{N_0+p} |u_k| < \frac{\varepsilon}{2}$, тогда

$$|\tilde{S}_n - S| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Для доказательства абсолютной сходимости повторяем \circledast для рядов $\sum_{k=1}^{\infty} |u_k|$ и $\sum_{k=1}^{\infty} |\tilde{u}_k|$.

9.6. Теорема Римана о перестановках членов условно сходящегося ряда.

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2 = \sum_{k=1}^{\infty} u_k \ 1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \dots + \frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n} + \dots = \sum_{k=1}^{\infty} \tilde{u}_k$$

$$\begin{cases} \tilde{S}_{3m} = \frac{1}{2} \sum_{k=1}^{3m} \left(\frac{1}{2k-1} - \frac{1}{2k} \right) = \frac{1}{2} S_n, \ n = 3m \xrightarrow[m \to \infty]{} \frac{1}{2} \ln 2 \\ \tilde{S}_{3m-1} = \frac{1}{2} S_n + \frac{1}{4n} \xrightarrow[m \to \infty]{} \frac{1}{2} \ln 2 \end{cases} \Rightarrow \sum_{k=1}^{\infty} \tilde{u}_k = \frac{1}{2} \ln 2$$

Теорема [Римана]: Если числовой ряд сходится условно, то каково бы ни было число S, члены ряда можно переставить так, что полученный ряд сходится к S.

9.7. Произведение абсолютно сходящихся рядов.

Теорема [О сумме сходящихся рядов]: Если $\sum\limits_{k=1}^{\infty}u_k=\mathscr{U}\in\mathbb{R},\qquad \sum\limits_{k=1}^{\infty}v_k=\mathscr{V}\in\mathbb{R},$ то

$$\sum_{k=1}^{\infty} (u_k \pm v_k) = \mathscr{U} \pm \mathscr{V}$$

Доказательство:

$$\mathcal{U}_n = \sum_{k=1}^n u_k, \qquad \mathcal{V}_n = \sum_{k=1}^n v_k$$
$$S_n = \sum_{k=1}^n (u_k \pm v_k) = \mathcal{U}_n \pm \mathcal{V}_n \xrightarrow[n \to \infty]{} \mathcal{U} \pm \mathcal{V}$$

Теорема [О произведении абсолютно сходящихся рядов]:

$$\left[\sum_{k=1}^\infty u_k=\mathscr{U}\text{ - абс. сход.},\sum_{k=1}^\infty v_k=\mathscr{V}\text{ - абс. сход.}\right]\Rightarrow$$

$$\Rightarrow \left[\sum_{k,l=1}^{\infty} u_k v_l = \sum_{j=1}^{\infty} w_j \, \operatorname{сход.} \, \operatorname{абс.} \, \operatorname{и} \, \sum_{j=1}^{\infty} w_j = \mathscr{U} \cdot \mathscr{V} \right]$$

Доказательство: $\bar{S}_n = \sum_{j=1}^n |w_j|$ Пусть m – наибольший индекс из индексов k и l, входящих в $\bar{S}_n \Rightarrow \bar{S}_n \leqslant (|u_1| + |u_2| + \ldots + |u_m|)(|v_1| + |v_2| + \ldots + |v_m|)$ $\sum_{k=1}^\infty u_k$ и $\sum_{k=1}^\infty v_k$ сход. абс. $\Rightarrow \{\bar{\mathcal{U}}_m\}, \{\bar{\mathcal{V}}_m\}$ ограничены $\Rightarrow \{\bar{S}_n\}$ ограничена $\Rightarrow \sum_{j=1}^\infty |w_j| < \infty \Rightarrow \sum_{j=1}^\infty w_j$ сход. абс. $\mathcal{W}_n = (u_1 + \ldots + u_n)(v_1 + \ldots + v_n) \xrightarrow[n \to \infty]{} \mathcal{U} \cdot \mathcal{V} \Rightarrow \sum_{j=1}^\infty w_j = \mathcal{U} \cdot \mathcal{V}$

10. Билет 10

10.1. Понятия функциональных последовательностей и рядов.

Определение: [функциональная последовательность]:

Пусть $X \subset \mathbb{R}$ — произвольное множество.

$$\forall n \in \mathbb{N} \leftrightarrow y = f_n(x), x \in X$$

Множество занумерованных функций $f_1, f_2 \dots f_n \dots$ называют функциональной последовательностью, где

 f_n — член последовательности

X — область определения

Определение: [функциональный ряд]:

сумма

$$\sum_{k=1}^{\infty} f_k(x) = f_1(x) + \dots + f_n(x) + \dots$$

членов функциональной последовательности $\{f_n(x)\}_{k=1}^{\infty}$ называется функциональным рядом.

Замечание: изучение функциональных рядов эквивалентно изучению функциональных последовательностей:

1. Каждому функциональному ряду

$$\sum_{k=1}^{\infty} f_k(x)$$

соответствует функциональная последовательность его частичных сумм

$${S_n(x) = \sum_{k=1}^n f_k(x)}_{n=1}^{\infty}$$

2. Каждой функциональной последовательности $\{S_n(x)\}_{k=1}^{\infty}$ соответствует функциональный ряд с членами $f_1(x) = S_1(x), f_2(x) = S_2(x) - S_1(x) \dots, f_n(x) = S_n(x) - S_{n-1}(x), \dots$

Примеры:

1.

$$f_n(x) = \begin{cases} 1 - nx & , \ 0 \le x \le \frac{1}{n} \\ 0 & , \ \frac{1}{n} < x \le 1 \end{cases}$$

2.
$$1 + \sum_{k=1}^{\infty} \frac{x^k}{k!} = 1 + \frac{x}{1!} + \dots + \frac{x^n}{n!} + \dots$$
$$S_{n+1}(x) = 1 + \frac{x}{1!} + \dots + \frac{x^n}{n!}$$

 $S_{n+1}(x)$ отличается от e^x по формуле Маклорена с остаточным членом в форме Лагранжа на $R_{n+1}(x) = \frac{e^{\theta x}}{(n+1)!}x^{n+1}$, $0 < \theta < 1$

10.2. Сходимость функциональных рядов и последовательностей в точке и на множестве.

Определение: [сходимость в точке]:

Зафиксируем точку $x_0 \in X$ и рассмотрим числовую последовательность $\{f_n(x_0)\}_{k=1}^{\infty}$. Если указанная последовательность сходится, то функциональную последовательность $\{f_n(x)\}_{k=1}^{\infty}$ называют сходящейся в точке x_0 .

Замечание: аналогичное верно и для функциональных рядов: Если числовой ряд $\sum_{k=1}^{\infty} f_k(x_0)$ сходится, то функциональный ряд $\sum_{k=1}^{\infty} f_k(x)$ называют сходящимся в точке x_0 .

Определение: [область сходимости]:

Множество точек в которых сходится функциональная последовательность (или функциональный ряд) называют областью сходимости функциональной последовательности (функционального ряда).

Замечание: область сходимости функциональной последовательности(ряда) может совпадать с его областью определения X, составлять его части или быть \varnothing .

Определение: [предельная функция]:

 $\widetilde{\Pi}$ усть $\widetilde{X} \subset X$ — область сходимости функциональной последовательности $\{f_n(x)\}_{k=1}^{\infty}$, совокупность пределов, взятых в точке $x \in \widetilde{X}$ определяет на \widetilde{X} функцию y = f(x). Эта функция называется предельной функцией y = f(x) функциональной последовательности. Определение: [сумма ряда]:

Пусть $\widetilde{X} \subset X$ — область сходимости функционального ряда $\sum_{k=1}^{\infty} f_k(x)$, совокупность пределов, взятых в точке $x \in \widetilde{X}$ определяет на \widetilde{X} функцию y = S(x). Эта функция называется суммой ряда y = S(x) функциональной последовательности.

10.3. Понятие равномерной сходимости на множестве.

Определение: [равномерная сходимость функциональной последовательности]: Функциональная последовательность $\{f_n(x)\}_{n=1}^{\infty}$ сходится равномерно к функции y=f(x) на множестве X если:

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \colon \forall n \geqslant N \ \& \ \forall x \in X \longmapsto |f_n(x) - f(x)| < \varepsilon$$

(-):
$$\exists \varepsilon_0 > 0 : \forall n \ \exists n_0 \ge n \ \& \ \exists x_n \in X : |f_{n_0}(x_n) - f(x_n)| \ge \varepsilon_0$$

Обозначение: $f_n(x) \stackrel{x \in X}{\underset{n \to \infty}{\Longrightarrow}} f(x)$ Примеры:

1.

$$f_n(x) = \begin{cases} 1 - nx & , \ 0 \le x \le \frac{1}{n} \\ 0 & , \ \frac{1}{n} < x \le 1 \end{cases}$$
$$f(x) = \begin{cases} 0 & , \ 0 < x \le 1 \\ 1 & , \ x = 0 \end{cases}$$

 $\exists \varepsilon_0 = \frac{1}{4} \ \forall n \ \exists N = n \ \& \ \exists x_n = \frac{1}{2n} : \ |f_n(x_n) - f(x_n)| = \frac{1}{2} > \frac{1}{4} = \varepsilon_0 \ f_n(x)$ сходится неравномерно к f(x) = 0 на [0,1]. 2. $X = [\delta, 1]$

$$f_n(x) = \begin{cases} 1 - nx & , \delta \leqslant x \leqslant \frac{1}{n} \\ 0 & , \frac{1}{n} < x \leqslant 1 \end{cases}$$

Для заданного $\delta > 0$ $\exists N \ \forall n \geqslant N \longmapsto$

$$f_n(x) \equiv 0$$
 на $[\delta, 1]$ $f(x) \equiv 0$ на $[\delta, 1]$

Тогда $f_n(x) \stackrel{x \in [\delta;1]}{\underset{n \to \infty}{\Longrightarrow}} 0.$

Замечания:

- 1. N в определении не зависит от x, а только от ε . Один номер для всех $x \in X$ одновременно.
- 2. Из сходимости функциональной последовательности $\{f_n(x)\}_{n=1}^{\infty}$ в каждой точке $x \in X$ НЕ следует равномерная сходимость на X.

Замечание: Если $f_n(x) \stackrel{x \in X}{\underset{n \to \infty}{\Longrightarrow}} f(x)$, то $f_n(x) \stackrel{x \in X'}{\underset{n \to \infty}{\Longrightarrow}} f(x)$, где $X' \subset X$.

$$f_n(x) = \begin{cases} 1 - nx &, \delta \leqslant x \leqslant \frac{1}{n} \\ 0 &, \frac{1}{n} < x \leqslant 1 \end{cases}$$

Определение: [равномерная сходимость функционального ряда]:

Функциональный ряд

$$\sum_{k=1}^{\infty} f_k(x)$$

равномерно сходится к S(x) на множестве X , если $S_n(x) \stackrel{x \in X}{\underset{n \to \infty}{\Longrightarrow}} S(x)$

10.4. Критерий Коши равномерной сходимости.

Теорема [Критерий Коши для функциональной последовательности]: Функциональная последовательность $f_n(x) \implies f(x)$

сходится тогда или только тогда, когда выполнено условие Коши равномерной сходимости функциональной последовательности:

$$[\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : \forall n \geqslant N \ \& \ \forall p \in \mathbb{N} \ \forall x \in X \longmapsto |f_{n+p}(x) - f_n(x)| < \varepsilon]$$
 Доказательство:

1.
$$Heo6xo\partial umocmb \Rightarrow :$$
 $f_n(x) \underset{n \to \infty}{\overset{x \in X}{\Rightarrow}} f(x)$

Тогда:

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : \forall n \geqslant N \ \& \ \forall x \in X \longmapsto |f_n(x) - f(x)| < \varepsilon/2$$

$$\forall p \in \mathbb{N} |f_{n+p}(x) - f(x)| < \varepsilon/2$$

Воспользуемся правилом треугольника:

$$|f_{n+p}(x) - f_n(x)| \le |f_{n+p}(x) - f(x)| + |f_n(x) - f(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

2. Достаточность \Leftarrow :

$$\left[\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \colon \forall n \geqslant N \ \& \ \forall p \in \mathbb{N} \ \& \ \forall x \in X \longmapsto |f_{n+p}(x) - f_n(x)| < \varepsilon\right]$$

Зафиксируем $x \in X$, тогда $\exists f(x)$ — предельное значение последовательности $\{f_n(x)\}_{n=1}^{\infty}$.

Тогда
$$f_{n+p}(x) \xrightarrow[n \to \infty]{} f(x)$$

В неравенстве перейдем к предельному при $p \longrightarrow \infty$:

$$\forall n \geqslant N \ \& \ \forall x \in X \Rightarrow |f_n(x) - f(x)| \leqslant \frac{\varepsilon}{2} < \varepsilon$$

Тогда получим, что $f_n(x) \overset{x \in X}{\underset{n \to \infty}{\Longrightarrow}} f(x)$ по определнию.

Теорема [Критерий Коши для функционального ряда]: Ряд $\sum_{k=1}^{\infty} f_k(x) \stackrel{x \in X}{\Rightarrow} S(x)$ тогда и только тогда, когда выполнено условие Коши:

 $\left[\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \colon \forall n \geqslant N \& \ \forall p \in \mathscr{N} \ \& \ \forall x \in X \longmapsto \left| \sum\limits_{k=n+1}^{n+p} f_k(x) \right| < \varepsilon \right]$ Замечание: критерий Коши для функциональных рядов следует из критерия Коши для функциональных последовательностей, так как:

$$\left| \sum_{k=n+1}^{n+p} f_k(x) \right| = |S_{n+p}(x) - S_n(x)|$$

Отрицание условия Коши:

Для функциональной последовательности:

$$\exists \varepsilon_0 > 0 : \forall n \ \exists n_0 \ge n \ \& \ \exists p_0 \in \mathbb{N} \ \& \ \exists x_n \in X : |f_{n_0 + p_0}(x_n) - f_{n_0}(x_n)| \ge \varepsilon_0$$

Для функционального ряда:

$$\exists \varepsilon_0 > 0 \colon \forall n \ \exists n_0 \geqslant n \ \& \ \exists p_0 \in \mathbb{N} \ \& \ \exists x_n \in X \colon \left| \sum_{k=n+1}^{n+p} f_k(x_n) \right| \geqslant \varepsilon_0$$

10.5. Критерии равномерной сходимости функциональной последовательности и функционального ряда.

Теорема 1 [ѕир-критерий для функциональной последовательности]:

$$f_n(x) \stackrel{x \in X}{\underset{n \to \infty}{\Longrightarrow}} f(x)$$
 тогда и только тогда, когда

$$\lim_{n \to \infty} \sup_{x \in X} |f_n(x) - f(x)| = 0$$

Доказательство:

Обозначим $M_n = \sup_{x \in X} |f_n(x) - f(x)|.$

Тогда запишем наше равенство в виде:

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : \forall n \geqslant N \mapsto 0 \leqslant M_n < \varepsilon$$

1. $Heoбxodumocmb \Rightarrow$:

$$[f_n(x) \underset{n \to \infty}{\overset{x \in X}{\Longrightarrow}} f(x)] \stackrel{def}{=} [\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : \forall n \geqslant N \ \& \ \forall x \in X \longmapsto |f_n(x) - f(x)| < \frac{\varepsilon}{2}]$$

Отсюда, $M_n \leqslant \frac{\varepsilon}{2} < \varepsilon$

2. Достаточность \Leftarrow :

$$\forall x \in X \longmapsto |f_n(x) - f(x)| \leqslant M_n$$

То есть:

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : \forall n \geqslant N \ \& \ \forall x \in X \longmapsto |f_n(x) - f(x)| < \varepsilon$$

Теорема 2 [sup-критерий для функционального ряда]:

Функциональный ряд $\sum_{k=1}^{\infty} f_k(x)$ равномерно сходится к S(x) на множестве X тогда и только тогда, когда

$$\lim_{n \to \infty} \sup_{x \in X} |r_n(x)| = 0$$

Доказательство:

$$r_n(x) = \sum_{k=1}^{\infty} f_k(x) - \sum_{k=1}^{n} f_k(x) = \sum_{k=n+1}^{\infty} f_k(x)$$

To ects
$$r_n(x) = S(x) - S_n(x)$$

Но $S_n(x) \stackrel{x \in X}{\underset{n \to \infty}{\Longrightarrow}} S(x)$ тогда и только тогда, когда $r_n(x) \stackrel{x \in X}{\underset{n \to \infty}{\Longrightarrow}} 0$.

Примеры: 1. $f_n(x) = nx^2e^{-nx}$, $x \in [2, +\infty) = X$ $\lim_{n \to \infty} \frac{n \to \infty}{e^{nx}} = 0 \Rightarrow y = f(x) \equiv 0$ $f'_n(x) = nx(2 - nx)e^{-nx} = 0$ $x_n = \frac{2}{n}$ — точка максимума, при $x > \frac{2}{n}$, $n > 1 \Rightarrow f'_n(x) < 0 \Rightarrow f_n$ убывает на X;

$$\sup_{X} f_n(x) \leqslant f(\frac{2}{n}) = \frac{4}{ne^2} \underset{n \to \infty}{\longrightarrow} 0$$

Отсюда, $f_n(x) \stackrel{x \in X}{\underset{n \to \infty}{\Longrightarrow}} 0$. 2. $f_n(x) = n^2 x^2 e^{-nx}$, X = (0,2)

$$\lim_{n \to \infty} \frac{n^2 x^2}{e^{nx}} = 0$$

$$\Rightarrow y = f(x) \equiv 0$$

$$f'_n(x) = n^2 x (2 - nx) e^{-nx} = 0$$

 $x_n = \frac{2}{n}, n > 1$ – точка максимума. \Rightarrow

$$\sup_{X} f_n(x) = \frac{4}{e^2} \underset{n \to \infty}{\not\to} 0$$

3.

$$f_n(x) = \frac{\ln(nx)}{\sqrt{nx}}, X = (0,1)$$

 $\forall n \ \exists n_0 = n \ \& \ \exists p_0 = n \ \& \ \exists x_n = \frac{1}{n}$

$$|f_{2n}(x_n) - f_n(x_n)| = \left| \frac{\ln 2}{\sqrt{2}} - \frac{\ln 1}{\sqrt{1}} \right| = \frac{\ln 2}{\sqrt{2}} > \varepsilon_0 = \frac{\ln 2}{2\sqrt{2}}$$

Отсюда, равномерной сходимости нет.

10.6. Свойства равномерно сходящихся последовательностей и рядов.

Теорема 1: если члены функционального ряда

$$\sum_{k=1}^{\infty} f_k(x)$$

непрерывны на [a,b] и ряд сходится равномерно на [a,b] к функции y=S(x), то сумма ряда y=S(x) непрерывна на [a,b]. Доказательство:

 $\left[S_n(x) \overset{x \in [a,b]}{\underset{n \to \infty}{\Longrightarrow}} S(x) \right] \overset{def}{=} \left[\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \colon \forall n \geqslant N \ \& \ \forall x \in [a,b] \longmapsto |S_n(x) - S(x)| < \frac{\varepsilon}{3} \right]$ Возьмем $n_0 \geqslant N \Rightarrow |S_{n_0}(x) - S(x)| < \frac{\varepsilon}{3}$ При $x_0 \in [a,b]$ выполняется: $|S_{n_0}(x_0) - S(x_0)| < \frac{\varepsilon}{3}$ В силу непрерывности f_k на [a,b], S_{n_0} непрерывна на [a,b], в частности в точке $x_0 \in [a,b]$, то есть: $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) \colon \forall x \in [a,b] \colon |x - x_0| < \delta \longmapsto |S_{n_0}(x) - S_{n_0}(x_0)| < \frac{\varepsilon}{3} \ \forall x \in [a,b] \colon |x - x_0| < \delta \longmapsto |S(x) - S_{n_0}(x_0)| + |S_{n_0}(x_0) - S_{n_0}(x_0)| + |S_{n_0}(x_0) - S_{n_0}(x_0)| < \frac{\varepsilon}{3} \cdot 3 = \varepsilon$

В силу произвольности выбора точки $x_0 \in [a,b]$ функция y = S(x) непрерывна на [a,b].

Теорема 1': если члены функциональной последовательности $\{f_n(x)\}_{n=1}^{\infty}$ в каждой точке $x \in X$ непрерывны на [a,b] и последовательность сходится равномерно на [a,b] к функции f(x), то y = f(x) непрерывна на [a,b]. Замечание: пусть ряд

$$\sum_{k=1}^{\infty} f_k(x)$$

удовлетворяет условиям теоремы 1 и $S(x) = \sum_{k=1}^{\infty} f_k(x)$.

$$\forall x_0 \in [a,b] \longmapsto \lim_{x \to x_0} S(x) = S(x_0)$$

Отсюда.

$$\lim_{x \to x_0} \sum_{k=1}^{\infty} f_k(x) = \sum_{k=1}^{\infty} \lim_{x \to x_0} f_k(x)$$

При выполнении условий теоремы 1 возможен почленный переход к пределу под знаком суммы для равномерно сходяшегося функционального ряда, члены которого есть непрерывные функции.

Теорема 2: если члены функционального ряда $\sum_{k=1}^{\infty} f_k(x)$ непрерывны на [a,b] и ряд сходится равномерно на [a,b] к функции y = S(x),

то функциональный ряд $\sum_{k=1}^{\infty} \int_{a}^{x} f_{k}(t)dt$ также сходится равномерно на [a,b] к функции $y = \int_{a}^{x} S(t)dt$.

Доказательство: $\sum_{k=1}^{\infty} f_k(x)$ сходится равномерно на [a,b] к y = S(x): $\forall \varepsilon > 0 \; \exists N = N(\varepsilon)$: $\forall n \geqslant N \; \& \; \forall x \in [a,b] \longmapsto |S_n(x) - S(x)| < \frac{\varepsilon}{b-a} \; \Pi$ о теореме 1 S непрерывны на [a,b], следовательно S и f_k — интегрируемые функции ($\forall k$) на [a,b]. Обозначим:

$$I(x) = \int_{a}^{x} S(t)dt$$

И

$$I_n(x) = \sum_{k=1}^n \int_a^x f_k(t)dt = \int_a^x \left[\sum_{k=1}^n f_k(t)\right]dt = \int_a^x S_n(t)dt$$
$$|I(x) - I_n(x)| = \left|\int_a^x [S(t) - S_n(t)]dt\right| \leqslant \int_a^x |S_n(t) - S(t)|dt \leqslant \frac{\varepsilon}{b - a}(x - a) < \varepsilon$$

Итак: $\forall \varepsilon > 0 \ \exists N = N(\varepsilon)$: $\forall n \geqslant N \ \& \ \forall x \in [a,b] \longmapsto |I(x) - I_n(x)| < \varepsilon$, то есть функциональный ряд

$$\sum_{k=1}^{\infty} \int_{a}^{x} f_k(t)dt$$

сходится равномерно на [a,b] к функции

$$\int_{a}^{x} S(t)dt = \int_{a}^{x} \left[\sum_{k=1}^{\infty} f_k(t)\right]dt$$

И

$$\sum_{k=1}^{\infty} \int_{a}^{x} f_k(t)dt = \int_{a}^{x} \left[\sum_{k=1}^{\infty} f_k(t)\right]dt$$

<u>Теорема 2':</u> если члены функциональной последовательности $\{f_n(x)\}_{n=1}^{\infty}$ непрерывны на [a,b]. и $f_n(x) \stackrel{[a,b]}{\underset{n\to\infty}{\Rightarrow}} f(x)$, то $\int\limits_a^x f_n(t)dt \stackrel{[a,b]}{\underset{n\to\infty}{\Rightarrow}} f(t)dt$.

Замечания:

- 1. В теоремах 2,2' отрезок [a,x] можно заменить отрезком $[x_0,x] \subset [a,b]$.
- 2. Теоремы 2 и 2' остаются справедливыми, если функции $y = f_k(x)$ интегрируемы на [a,b].

<u>Теорема 3:</u> если члены функционального ряда $\sum_{k=1}^{\infty} f_k(x)$ непрерывно-дифференцируемы на [a,b] и функциональный ряд $\sum_{k=1}^{\infty} f_k'(x)$ сходится равномерно на [a,b], а числовой ряд $\sum_{k=1}^{\infty} f_k(x_0)$ ($x_0 \in [a,b]$) сходится, то функциональный ряд $\sum_{k=1}^{\infty} f_k(x)$ сходится равномерно на [a,b] к функции y = S(x) и $S'(x) = \sum_{k=1}^{\infty} f_k'(x)$ Доказательство: Обозначим:

$$\widetilde{S}(x) = \sum_{k=1}^{\infty} f'_k(x)$$

Из условия теорем 3 и 1 $y=\widetilde{S}(x)$ непрерывна на [a,b]. Ряд $\sum_{k=1}^{\infty}f_k'(x)$ можно почленно интегрировать (по теореме 2), то есть:

$$\int_{x_0}^x \widetilde{S}(t)dt = \sum_{k=1}^\infty \left[\int_{x_0}^x f_k'(t)dt \right]$$

Согласно теореме 2 ряд сходится равномерно на [a,b]. Но $\int_{x_0}^x f_k'(t)dt = f_k(x) - f_k(x_0)$, следовательно:

$$\sum_{k=1}^{\infty} \left[\int_{x_0}^{x} f'_k(t)dt \right] = \sum_{k=1}^{\infty} f_k(x) - \sum_{k=1}^{\infty} f_k(x_0)$$

Ряды слева и справа равномерно-сходящиеся, а значит, $\sum_{k=1}^{\infty} f_k(x)$ сходится равномерно на [a,b].

$$\int_{x_0}^{x} \widetilde{S}(t)dt = S(x) - S(x_0)$$

Левая часть – интеграл с переменным верхним пределом и его производная равна $\widetilde{S}(x) \Rightarrow$ правая часть – дифференцируемая функция и $S'(x) = \widetilde{S}(x)$, то есть

$$\left(\sum_{k=1}^{\infty} f_k(x)\right)' = \sum_{k=1}^{\infty} f'_k(x)$$

Замечания:

- 1. По условию теоремы 3: $\widetilde{S}(x) = S'(x)$ непрерывная функция $\Rightarrow S$ непрерывно-дифференцируемая на [a,b].
- 2. Теорема 3 остается справедливой, если функции $y = f_k(x)$ являются дифференцируемыми функцими.

Теорема 3': если члены функциональной последовательности $\{f_n(x)\}_{n=1}^{\infty}$ являются непрерывно-дифференцируемыми функциями на [a,b], числовая последовательность $\{f_n(x_0)\}_{n=1}^{\infty}$ сходится, где $x_0 \in [a,b]$; а функциональная последовательность $\{f_n(x)\}_{n=1}^{\infty}$ равномерно сходится на [a,b], то $\{f_n(x)\}_{n=1}^{\infty}$ сходится равномерно на [a,b] к функции y=f(x) и справедливо равенство

$$f'(x) = \lim_{n \to \infty} f'_n(x), x \in [a,b]$$

Замечение: можно сделать важный вывод: равномерная сходимость не выводит из класса непрерывных функций, а в случае равномерной сходимости производных – из класса непрерывно дифференцируемых функций.

10.7. Достаточные признаки сходимости функциональных рядов.

Теорема 1 [Признак Вейерштрасса]: Если для функционального ряда

$$\sum_{k=1}^{\infty} f_k(x)$$

можно указать такой числовой ряд с неотрицательными членами $\sum_{k=1}^{\infty} a_k < \infty$, что $\forall k \geqslant k_0$ и $\forall x \in X$ выполняется: $0 \leqslant |f_k(x)| \leqslant a_k$, то функциональный ряд

$$\sum_{k=1}^{\infty} f_k(x)$$

сходится абсолютно и равномерно на X.

Доказательство:

$$\sum_{k=1}^{\infty} a_k < \infty \Leftrightarrow \forall \varepsilon > 0 \ \exists N_1 = N_1(\varepsilon) \colon \forall n \geqslant N_1 \ \& \ \forall p \in \mathbb{N} \longmapsto \sum_{k=n+1}^{n+p} a_k < \varepsilon$$

$$\exists N = \max\{N_1, k_0\} \ \Rightarrow \forall n \geqslant N \& \forall x \in X \& \forall p \in \mathbb{N} \longmapsto$$

$$\left| \sum_{k=n+1}^{n+p} f_k(x) \right| \leqslant \sum_{k=n+1}^{n+p} |f_k(x)| \leqslant \sum_{k=n+1}^{n+p} a_k < \varepsilon$$

Следствие: если сходится числовой ряд

$$\sum_{k=1}^{\infty} a_k,$$

где $a_k = \sup_{x \in X} |f_k(x)|$, то функциональный ряд $\sum_{k=1}^{\infty} f_k(x)$ сходится абсолютно и равномерно на X.

Теорема 2 [Признак Дирихле]: Если:

1.

$$\sum_{k=1}^{\infty} u_k(x)$$

имеет равномерно ограниченную на X последовательность частичных сумм $\{S_n(x)\}_{n=1}^{\infty}$:

$$\exists M > 0 : \forall x \in X \& \forall n \in \mathbb{N} \longmapsto |S_n(x)| \leqslant M$$

2. $\{v_k(x)\}_{k=1}^{\infty}$ монотонна на X и равномерно стремится к 0: $v_k(x) \leqslant v_{k+1}(x) \ \forall x \in X \& \ \forall k \ [v_k(x) \geqslant v_{k+1}(x)]$ и $v_k(x) \overset{x \in X}{\underset{k \to \infty}{\Longrightarrow}} 0$:

то
$$\sum_{k=1}^{\infty} u_k v_k$$
 сходится равномерно на X .

Теорема 2 [Признак Абеля]: Если:

- 1. $\sum_{k=1}^{\infty} u_k(x)$ равномерно сходится на X.
- 2. $\{v_k(x)\}_{k=1}^{\infty}$ равномерно ограничена и монотонна на X.

то
$$\sum_{k=1}^{\infty} u_k v_k$$
 сходится равномерно на X .

11. Билет 11

11.1. Степенные ряды с комплексными числами

<u>Определение:</u> $\sum\limits_{k=0}^{\infty}c_k(\zeta-a)^k;\ c_k,a\in\mathbb{C}-$ фиксированные числа, $\zeta\in\mathbb{C}$ - переменная.

Такой функциональные ряд называется степенным.

 c_k - коэф. степенного ряда. Этот ряд сходится в точке а.

 $\zeta-a=z\Rightarrow\sum_{k=0}^{\infty}c_kz^k$ - будем рассматривать такой степенной ряд, который сходится в т. z=0

11.2. Теорема 1. [Первая теорема Абеля]

- 1. Если степенной ряд $\sum_{k=0}^{\infty} c_k z^k$ сходится в т. $z_0 \neq 0$, то он сходится абсолютно в круге: $K_0 = \{z = \mathbb{C} : |z| < |z_0|\}$
- 2. Если степенной ряд $\sum_{k=0}^{\infty} c_k z^k$ расходится в т. z_1 , то он расходится в любой т. $z:|z|>|z_1|$

Доказательство:

1)
$$\sum_{k=0}^{\infty} c_k z_0^k < \infty \Rightarrow c_k z_0^k \xrightarrow[k \to \infty]{} 0 \Rightarrow$$
 Ограничена: $\exists M > 0 : \forall k \Rightarrow |c_k z_0^k| \leqslant M$

$$\forall z: |z| < |z_0|$$

$$|c_k z^k| = |c_k z_0^k \left(\frac{z}{z_0}\right)^k| \leqslant M \cdot [q(z)]^k, |q(z)| < 1 \Rightarrow \sum_{k=0}^{\infty} q^k(z) < \infty \Rightarrow$$

$$\Rightarrow \sum_{k=0}^{\infty} |c_k z^k| < \infty \Rightarrow \sum_{k=0}^{\infty} c_k z^k$$
 сходится абсолютно в точке $z \in K_0$

В силу произвольности точки $z\Rightarrow\sum\limits_{k=0}^{\infty}c_kz^k$ сходится абсолютно в K_0

2)
$$\sum_{k=0}^{\infty} c_k z_1^k = \infty \Rightarrow \forall z : |z| > |z_1| -$$
ряд $\sum_{k=0}^{\infty} c_k z^k$ расходится, если бы в точке z_2 :

$$|z_2|>|z_1|$$
 ряд $\sum\limits_{k=0}^{\infty}c_kz_2^k<\infty\stackrel{1)}{\Rightarrow}\sum\limits_{k=0}^{\infty}c_kz_1^k<\infty$ - противоречие.

Следствие 1. Если $\sum_{k=0}^{\infty} c_k z_0^k < \infty, z_0 \neq 0$, то $\forall \rho : 0 < \rho < |z_0|$ в круге $K_{\rho} = \{z \in \mathbb{C} : |z| \leqslant \rho\}$ ряд $\sum_{k=0}^{\infty} c_k z^k$ сходится равномерно.

Доказательство:

$$\exists M>0: \forall k\Rightarrow |c_k z_0^k|\leqslant M$$

 $\forall z \in K_{\rho}$

$$|c_k z^k| = |c_k z_0^k \cdot \frac{z^k}{z_0^k}| \leqslant M \left(\frac{\rho}{|z_0|}\right)^k = M \cdot q^k$$

 $|q|=rac{
ho}{|z_0|}<1$ $(rac{
ho}{|z_0|}$ не зависит от z),

$$\sum\limits_{k=0}^{\infty}q^k<\infty\stackrel{\text{По пр. Вей.}}{\Rightarrow}\sum\limits_{k=0}^{\infty}c_kz^k$$
 сходится равномерно в круге $K_
ho$

Следствие 2 Если в т. $z_0 \neq 0$ выполнено $\sum\limits_{k=0}^{\infty} c_k z_0^k < \infty$, то

- 1) $\sum_{k=m}^{\infty} c_k z^{k-m}$ сходится абсолютно в круге K_0 и равномерно в круге $K_{
 ho}$
- (2) $\sum_{k=1}^{\infty} k c_k z^{k-1}$ сходится абсолютно в круге K_0 и равномерно в круге $K_{
 ho}$

Доказательство:

1)
$$\forall z \in k_0 \Rightarrow |c_k z^{k-m}| = |c_k z_0^k \left(\frac{z}{z_0}\right)^{k-m} \cdot \frac{1}{z_0^m}| \leqslant$$

$$\frac{M}{|z_0|^m} \cdot |\frac{z}{z_0}|^{k-m} = \frac{M}{|z_0|^m} \cdot q^{k-m}(z), \quad q(z) = |\frac{z}{z_0}| < 1$$

$$\sum\limits_{k=m}^{\infty}q^{k-m}<\infty$$
 - сходится абсолютно в K_0

$$\forall z \in K_1 \Rightarrow |c_k z^{k-m}| \leqslant \frac{M}{|z_0|^m} \cdot q_1^{k-m}, \quad q_1 = \frac{\rho}{|z_0|} < 1.$$

 $0 < q_1 < 1$ - не зависит от $z \Rightarrow$ по признаку Вейр. в K_1 ряд сходится равномерно $2) \ \forall z \in K_0$

$$|kc_k z^{k-1}| = \left|\frac{c_k z_0^k}{z_0} \cdot k\left(\frac{z}{z_0}\right)^{k-1}\right| \leqslant \frac{M}{|z_0|} \cdot kq^{k-1}(z), \ q(z) = \left|\frac{z}{z_0}\right| < 1$$

$$\sum\limits_{k=1}^{\infty}kq^k(z)<\infty$$
 по признаку Даламбера

11.3. Теорема 2. [О радиусе сходимости степенного ряда].

Для любого степенного ряда существует R $(R\geqslant 0$ или $R=+\infty)$ такое, что 1) $0< R<\infty \Rightarrow \sum_{k=0}^{\infty} c_k z^k <\infty$ в круге $K=\{z\in\mathbb{C}: |z|< R\}$ и расходится в $\mathbb{C}\backslash\overline{K}$

$$(2)R=0$$
, то $\sum\limits_{k=0}^{\infty}c_kz^k<\infty$ только в $z=0$

3)
$$R = +\infty$$
, to $\sum_{k=0}^{\infty} c_k z^k < \infty \ \forall z \in \mathbb{C}$

R - называется радиусом сходимости степенного ряда $\sum\limits_{k=0}^{\infty} c_k z^k$

K - круг сходимости.

Доказательство: Пусть $\mathscr{D}\subset\mathbb{C}$ - множество сходимости степенного ряда; $\mathscr{D}\neq\varnothing$, т.к. $0\in\mathscr{D}$

1) \mathscr{D} - огран., $\exists z_0 \in \mathscr{D}, \ z_0 \neq 0$

 $R=\sup_{z\in\mathscr{D}}|z|$ - сущ. т.к. \mathscr{D} огранич. мн-во. Докажем: $\forall\,z\in K\Rightarrow\sum\limits_{k=0}^\infty c_kz^k<\infty\,\,\forall z\in\mathbb{C}\backslash\overline{K}\Rightarrow\sum\limits_{k=0}^\infty c_kz^k=\infty\,\,$ По определению $\sup\,\forall z'\in K\,\,\exists z_1\in\mathscr{D}:\,|z'|<|z_1|\leqslant R,\,\,$ т.к. $\sum\limits_{k=0}^\infty c_kz_1^k<\infty\Rightarrow\,$ 1-я теорема Абеля $\sum\limits_{k=0}^\infty c_k(z')^k<\infty\,\,$ и сходится абсолютно $\Rightarrow\,$ В силу произв. $z'\in K\Rightarrow\sum\limits_{k=0}^\infty c_kz^k$ сходится абс. в круге K Пусть $z'\notin K\Rightarrow\,|z'|>R\Rightarrow\,$ по опред. $\sup z'\notin\mathscr{D}\Rightarrow\sum\limits_{k=0}^\infty c_k(z')^k=\infty\Rightarrow\,$ расходится вне круга K 2) \mathscr{D} - огран.; если $\mathscr{D}=\{0\}$, то ряд сход в т. z=0 и расх в $z\neq0$ $\sum\limits_{k=0}^\infty c_kz^k<\infty\,\,$ z=0 $\Rightarrow\,$ R=0 3) \mathscr{D} - неогранич. $\Rightarrow\,$ $\forall\,$ $z\in\mathbb{C}$ $\exists\,$ $z'\in\mathscr{D}:$ $|z|<|z'|,\sum\limits_{k=0}^\infty c_k(z')^k<\infty\,\,$ |z|=0 $|z|<|z'|,\sum\limits_{k=0}^\infty c_k(z')^k<\infty\,\,$

11.4. Теорема 3. [Вторая теорема Абеля].

Если $0 < R < +\infty$, R - радиус сходимости $\sum\limits_{k=0}^{\infty} c_k z^k$ и $\sum\limits_{k=0}^{\infty} c_k R^k < \infty$, то на [0,R] ряд $\sum\limits_{k=0}^{\infty} c_k z^k$ сх. равномерно и его сумма $S(x) = \sum\limits_{k=0}^{\infty} c_k x^k$ непрерывна $\forall x \in [0,R]$ Доказательство: $\sum\limits_{k=0}^{\infty} \underbrace{c_k R^k}_{U_k} \cdot \underbrace{\left(\frac{x}{R}\right)^k}_{V_k} 1 \right) \sum\limits_{k=0}^{\infty} c_k R^k < \infty$ 2) $V_k = \left(\frac{x}{R}\right)^k - 0 \leqslant V_k \leqslant 1 \quad \forall x \in [0;R]$ $V_{k+1} = \left(\frac{x}{R}\right)^{k+1} < \left(\frac{x}{R}\right)^k = 0$

 $V_k \quad \forall k$

 \Downarrow признак Абеля $\sum\limits_{k=0}^{\infty}c_kx^k<\infty$ сходится равномерно на [0,R] $f_k(x)=c_kx^k$ - непрерывна на [0;R]

 $S(x) = \sum_{k=0}^{\infty} c_k x^k$ непреревна на [0;R]

11.5. Теорема 4.

$$\sum_{k=0}^{\infty} c_k z^k$$

$$1) \lim_{k \to \infty} \sqrt[k]{|c_k|} = \rho \quad (\rho \geqslant 0, \rho = +\infty) \Rightarrow R = \frac{1}{\rho} \ 2) \ \text{Если} \ |c_k| > 0 \ \forall k \ \text{и} \ \lim_{k \to \infty} \frac{|c_{k+1}|}{|c_k|} = \rho \ (\rho \geqslant 0, \rho = +\infty) \Rightarrow R = \frac{1}{\rho}.$$

Доказательство: $K=\{z\in\mathbb{C}:|z|<\frac{1}{\varrho}\}$

$$z_0 \in K: \sqrt[k]{|c_k z_0^k|} = |z_0| \sqrt[k]{|c_k|} \underset{k \to \infty}{\longrightarrow} |z_0| \cdot \rho < \frac{1}{\rho} \cdot \rho = 1$$

$$\sum_{k=0}^{\infty}|c_kz_0^k|<\infty\ z_1:|z_1|>\tfrac{1}{\rho}\ \sqrt[k]{|c_kz_1^k|}=|z_1|\sqrt[k]{|c_k|}\underset{k\to\infty}{\longrightarrow}|z_1|\cdot>\tfrac{1}{\rho}\cdot\rho\Rightarrow\ \text{По признаку}$$

Коши
$$\sum_{k=0}^{\infty} c_k z_1^k = \infty$$
.

Пример (показывает, для чего нужна формула Коши-Адамара):

$$\sum_{k=1}^{\infty} z^{k^2} = z + z^4 + z^9 + z^{16} + z^{25} + \dots + z^{k^2} + \dots \\ \{c_k\} = \{c_1 = 1, c_2 = c_3 = 0, c_4 = 1, c_5 = c_6 = c_7 = c_8 = 0, c_9 = 1, \dots\}$$

$$\lim_{k \to \infty} \sqrt[k]{|c_k|} = \lim_{k \to \infty} \sqrt[k^2]{|c_{k^2}|} = 1 \Rightarrow R = 1.$$

11.6. Теорема 5. [Формула Коши-Адамара].

Если R - радиус сходимости $\sum\limits_{k=0}^{\infty}c_kz^k$, тогда $R=\frac{1}{\lim\limits_{k\to\infty}\sqrt[k]{|c_k|}}$.

Доказательство: 1) $\{\sqrt[k]{|c_k|}\}$ - неогр. 2) $\overline{\lim_{k\to\infty}}\sqrt[k]{|c_k|}=L>0; \quad L\in R$ 3) $\overline{\lim_{k\to\infty}}\sqrt[k]{|c_k|}=0\Rightarrow \{\sqrt[k]{|c_k|}\}$ сходится к 0 1) Для бескон. числа номеров $k\in\mathbb{N}$

$$|c_k z^k| > 1 \quad \forall z \neq 0, \ z \in \mathbb{C}$$

$$\sum_{k=0}^{\infty} c_k z^k = \infty$$

 $\sum\limits_{k=0}^{\infty}c_kz^k<\infty$ только для z=0 2) Докажем, что а) $\forall z:|z|<rac{1}{L}$ ряд сходится б) $\forall z:|z|>rac{1}{L}$ ряд расходится а) $z:=|z|<rac{1}{L}$

Тогда $\exists \varepsilon > 0 : |z| < \frac{1}{L+\varepsilon} < \frac{1}{L}$ $\varepsilon > 0 \exists k_0(\varepsilon) : \forall k \geqslant k_0 \Rightarrow \sqrt[k]{|c_k|} < L + \frac{\varepsilon}{2}$

 $\sqrt[k]{|c_k z^k|} = |z| \sqrt[k]{|c_k|} \leqslant \frac{L + \frac{\varepsilon}{2}}{L + \varepsilon}$

 \Downarrow По признаку Коши $\sum\limits_{k=0}^{\infty}c_kz^k<\infty$ в круге $K=\{z:|z|<\frac{1}{L}\}$ б) $\forall z:|z|>\frac{1}{L}\Rightarrow\exists\, \varepsilon>0:|z|>\frac{1}{L-\varepsilon}>\frac{1}{L}$ [$\exists\ \{c_{k_n}\}:\lim_{n\to\infty}\sqrt[k_n]{|c_{k_n}|}=L$] $\stackrel{\mathrm{def}}{=}$ [$\varepsilon>0:|z|>\frac{1}{L-\varepsilon}>0:|z|>\frac{1}{L-\varepsilon}>0$]

 $0 \; \exists \, n_0 : \forall n \geqslant n_0 \mapsto L - \varepsilon < \sqrt[k_n]{|c_{k_n}|} < L + \varepsilon \,] \sqrt[k_n]{|c_{k_n}|} = |z| \sqrt[k_n]{|c_{k_n}|} > \frac{1}{L - \varepsilon} \cdot (L - \varepsilon) = 1 \quad \forall n \geqslant n_0 \Rightarrow |c_{k_n} z^{k_n}| > 1 \Rightarrow \Rightarrow \text{ Не выполняется необходимых условий сходимости}$

 \Downarrow Ряд расходится $\forall z: |z|>rac{1}{L}$ 3) $\overline{\lim_{k o\infty}}\sqrt[k]{|c_k|}=0\Rightarrow \{\sqrt[k]{|c_k|}\}$ сходится к 0.

 $\forall z \in \mathbb{C}, \ z \neq 0: \frac{1}{2|z|} = \varepsilon: \quad \exists \ k_0(\varepsilon): \forall k \geqslant k_0 \Rightarrow \sqrt[k]{|c_k|} < \frac{1}{2|z|} \Rightarrow \Rightarrow \sqrt[k]{|c_k| \cdot |z^k|} = |z| \sqrt[k]{|c_k|} < |z| \cdot \frac{1}{2|z|} = \frac{1}{2} < 1$ \tag{1} По признаку Коши

$$\sum_{k=0}^{\infty} c_k z^k < \infty \quad \forall z \in \mathbb{C}$$

11.7. Теорема 6.

Для рядов

$$\sum_{k=0}^{\infty} c_k z^k, \qquad \sum_{k=0}^{\infty} \frac{c_k z^{k+1}}{k+1}, \qquad \sum_{k=0}^{\infty} k c_k z^{k-1}$$
1) 2) 3)

радиус сходимости один и тот же.

- 1) R_1, K_1
- 2) R_2, K_2
- 3) R_3, K_3

Надо доказать: $R_1 = R_2 = R_3 = R$.

Доказательство: $\forall k \in \mathbb{N} \Rightarrow \frac{1}{k+1} < 1 \leqslant k$

$$\left| \frac{c_k}{k+1} z^{k+1} \right| \leqslant |z| \cdot |c_k z^k| \leqslant |z|^2 \cdot |k c_k z^{k-1}| \underbrace{|z| \cdot |c_k z^k|}_{1)} \underbrace{|z| \cdot |c_k z^k|}_{2} \underbrace{|z|^2 \cdot |k c_k z^{k-1}|}_{2)} \underbrace{\left| \frac{c_k}{k+1} z^{k+1} \right| \leqslant |z| \cdot |c_k z^k|}_{2)}$$

1)
$$\forall z \neq 0 \in K_3 \Rightarrow \sum_{k=0}^{\infty} c_k z^k < \infty \Rightarrow R_1 \geqslant R_3$$

2)
$$\forall z \neq 0 \in K_1 \Rightarrow \sum_{k=0}^{\infty} \frac{c_k}{k+1} z^{k+1} < \infty \Rightarrow R_1 \leqslant R_2$$

В результате: $R_3 \leqslant R_1 \leqslant R_2$ Надо доказать, что $R_2 \leqslant R_3$ $z \in K_2$ $\exists \, \rho < R_2 : z \in K_{\rho} \quad |kc_k z^{k-1}| = |kc_k z^{k-1} \cdot \frac{k+1}{k+1} \cdot \frac{z^2}{z^2}| = |\frac{c_k}{k+1} \cdot z^{k+1} \cdot \frac{k(k+1)}{z^2}| = |\frac{c_k}{k+1} \cdot \rho^{k+1} \cdot \frac{k(k+1)}{z^2} \cdot \left(\frac{z}{\rho}\right)^{k+1} | \stackrel{\exists M>0}{\leqslant} \leqslant \frac{M}{|z|^2} k(k+1) q_1^{k+1}, \text{ где } |q_1| < 1 \quad q_1 = \frac{z}{\rho}$

$$\Downarrow \forall z \in K_2 \Rightarrow \sum_{k=0}^{\infty} k c_k z^{k-1} < \infty \Rightarrow R_3 \geqslant R_2$$

Тогда в сумме $R_1 = R_2 = R_3 = R$

12. Билет 12

12.1. Степенные ряды с действительными членами.

Теорема:. Если R – радиус сходимости степенного ряда и выполнено следующее:

$$\sum_{k=0}^{\infty} a_k (x-a)^k = f(x), \ x \in (a-R, a+R), \ x, \ a_k, \ a \in \mathbb{R}$$

TO

1. f бесконечно дифференцируемая функция на (a - R, a + R) и выполняется:

$$f^{(m)}(x) = \sum_{k=m}^{+\infty} k(k-1) \dots (k-(m-1)) a_k (x-a)^{k-m}$$

2.
$$\forall x \in (a - R, a + R) \mapsto \int_{a}^{x} f(t)dt = \sum_{k=0}^{\infty} \frac{a_k}{k+1} (x-a)^{k+1}$$

Доказательство: $\forall \rho: 0 < \rho < R$ на $[a-\rho;a+\rho]$ равномерная сходимость \Rightarrow всё можно делать.

Следствие. $a_n = \frac{f^{(k)}(a)}{k!}$

12.2. Бесконечная дифференцируемость суммы степенного ряда на интервале сходимости.

Покажем, что сумма степенного ряда дифференцируема в интервале сходимости. <u>Теорема:</u>. Сумма степенного ряда $f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$ дифференцируема в интервале сходимости и производная равна

$$f'(x) = \sum_{n=1}^{\infty} nc_n (x - x_0)^{n-1},$$

причём ряды $\sum_{n=1}^{\infty}nc_n\left(x-x_0\right)^{n-1}$ и $\sum_{n=0}^{\infty}c_n\left(x-x_0\right)^n$ имеют одинаковый радиус сходимости. Доказательство. Члены ряда $c_n\left(x-x_0\right)^n$

являются непрерывно дифференцируемыми на всей числовой прямой функциями. Пусть $R = \frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{|c_n|}}$ радиус сходимости ряда

 $\sum_{n=0}^{\infty} c_n \left(x-x_0\right)^n$ и точка x принадлежит интервалу сходимости (x_0-R,x_0+R) . Тогда существует отрезок $[a,b]\subset (x_0-R,x_0+R)$, вклю-

чающий точку x. Рассмотрим ряд $\sum_{n=1}^{\infty} nc_n (x-x_0)^{n-1}$, полученный почленным дифференцированием ряда $\sum_{n=0}^{\infty} c_n (x-x_0)^n$. Вычислим его радиус сходимости R'

$$R' = \frac{1}{\overline{\lim_{n \to \infty}}} \sqrt[n-1]{|nc_n|} = \frac{1}{\overline{\lim_{n \to \infty}}} \sqrt[n-1]{|c_n|} \sqrt[n-1]{|c_n|} \sqrt[n-1]{n} = \frac{1}{\overline{\lim_{n \to \infty}} (|c_n|^{\frac{1}{n}})^{\frac{n}{n-1}}} = R$$

Таким образом, ряды $\sum_{n=1}^{\infty} nc_n (x-x_0)^{n-1}$ и $\sum_{n=0}^{\infty} c_n (x-x_0)^n$ имеют одинаковый интервал сходимости, и, следовательно, на отрезке [a,b] ряд $\sum_{n=1}^{\infty} nc_n (x-x_0)^{n-1}$ сходится равномерно. По теореме о дифференцируемости суммы функционального ряда сумма степенного ряда f(x) дифференцируема в точке x и верна формула

$$f'(x) = \sum_{n=1}^{\infty} nc_n (x - x_0)^{n-1}$$

что полностью доказывает теорему. \square Теперь в силу доказанной теоремы при дифференцировании суммы степенного ряда вновь получаем степенной ряд с тем же радиусом сходимости. Это позволяет нам сформулировать следующую теорему: **Теорема**:. Сумма степенного ряда $f(x) = \sum_{n=0}^{\infty} c_n (x-x_0)^n$ дифференцируема любое количество раз и верна формула

$$f^{(k)}(x) = \sum_{n=k}^{\infty} c_n n(n-1)(n-2) \dots (n-k+1) (x-x_0)^{n-k}$$

причём радиусы сходимости всех получающихся рядов одинаковы. Доказательство. По предыдущей теореме функция $f(x) = \sum_{n=0}^{\infty} c_n \left(x - x_0\right)^n$ дифференцируема и $f'(x) = \sum_{n=1}^{\infty} n c_n \left(x - x_0\right)^{n-1}$, причём радиусы сходимости обоих рядов совпадают. Далее, пусть существует

$$f^{(k-1)}(x) = \sum_{n=k-1}^{\infty} c_n n(n-1)(n-2) \dots (n-k+2) (x-x_0)^{n-k+1}$$

Применяя к функции $f^{(k-1)}(x)$ предыдущую теорему, получаем, что $f^{(k-1)}(x)$ дифференцируема и верна формула

$$f^{(k)}(x) = (f^{(k-1)}(x))' = \sum_{n=k}^{\infty} c_n n(n-1)(n-2) \dots (n-k+2)(n-k+1) (x-x_0)^{n-k},$$

причём радиусы сходимости рядов для $f^{(k-1)}(x)$ и $f^{(k)}(x)$ совпадают. Тем самым, следуя методу математической индукции, полностью доказывает эту теорему. \square

12.3. Единственность представления функции степенным рядом.

Определение: Регулярная функция. Пусть в каждой точке $z \in \mathbb{E}$, где \mathbb{E} – множество точек комплексной плоскости, поставлено в соответствие комплексное число ω . На множестве \mathbb{E} определена функция комплексного переменного, $\omega = f(z)$. Если $\forall \varepsilon > 0 \; \exists \; \sigma = \sigma_{\varepsilon} > 0$: $\forall z : |z-a| < \sigma_{\varepsilon} \longmapsto |f(z)-f(a)| < \varepsilon$, то функцию f(z) называют непрерывной в точке а. И , наконец, Функция комплексного переменного f(z) называется регулярной в точке a, если она определена в некоторой окрестности точки a и представима в некотором круге $|z-a| < \rho, \, \rho > 0$, сходящимся к f(z) степенным рядом $f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$ (*).

Теорема [Единственность представления функции степенным рядом]: Функция f(z), регулярная в точке a, единственным образом представляется рядом (*).

Доказательство. Пусть функция f(z) имеет два представления в виде степенного ряда в круге $K = \{z : |z - a| < \rho\}$, где $\rho > 0$, т.е.

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n = \sum_{n=0}^{\infty} \widetilde{c_n} (z-a)^n \quad (**)$$

Теперь покажем, что $c_n = \widetilde{c_n}$, для $n = 0, 1, 2, \ldots$ По условию ряды $\sum\limits_{n=0}^{\infty} c_n (z-a)^n$ и $\sum\limits_{n=0}^{\infty} \widetilde{c_n} (z-a)^n$ сходятся в круге K, и поэтому эти ряды сходятся равномерно в круге $K_1 = \{z: |z-a| \leqslant \rho_1 < \rho\}$, а их общая сумма – непрерывная в круге K_1 функция. В частности, функция f(z) непрерывна в точке a. Подходя к пределу при $z \to a$ в равенстве (**), получаем $c_0 = \widetilde{c_0}$. Отбрасывая одинаковые слагаемые c_0 и $\widetilde{c_0}$ в равенстве (**), получаем после деления на (z-a) равенство:

$$c_1 + c_2(z-a) + c_3(z-a)^2 + \cdots = \widetilde{c_1} + \widetilde{c_2}(z-a) + \widetilde{c_3}(z-a)^2 + \ldots$$

которое справедливо в круге K с выколотой точкой a. Ряды в левой и правой части сходятся равномерно в круге K_1 . Переходя в равенстве к пределу при $z \to a$, получаем $c_1 = \widetilde{c_1}$. Справедливость равенства $c_n = \widetilde{c_n}$ при любой $n \in (N)$ устанавливается при помощи индукции.

12.4. Достаточные условия разложимости бесконечно дифференцируемой функции в степенной ряд

Теорема [Достаточные условия сходимости ряда Тейлора к функции]: Если f бесконечно дифференцируемая функция на $(a-\delta,a+\delta),\,\delta>0$ и $\exists M>0: \forall x\in (a-\delta,a+\delta)\mapsto |f^{(k)}(x)|\leqslant M\;,\,k=0,1,\ldots$, то ряд Тейлора сходится к функции f(x) в каждой точке x нашего интервала:

$$f(x) = f(a) + \sum_{k=1}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k, \ \forall x \in (a - \delta, a + \delta)$$

Доказательство. Достаточные условия разложимости бесконечно дифференцируемой функции в степенной ряд.

$$\mathbf{r}_n(x)=rac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$$
 , где ξ между x и a
$$|\mathbf{r}_n(x)|\leqslant M\cdot rac{|x-a|^{n+1}}{(n+1)!}$$
 т.к. $|x-a|\geqslant 0\Rightarrow \lim_{k\to\infty}rac{|x-a|^k}{k!}=0$, тогда справедливо следующее:

$$\forall x \in (a - \delta, a + \delta) \ \forall n \in \mathbb{N} \longmapsto |\mathbf{r}_n(x)| \leqslant M \cdot \frac{|x - a|^{n+1}}{(n+1)!} \underset{n \to \infty}{\longrightarrow} 0 \quad \Box .$$

12.5. Ряд Тейлора

Пусть функция f – бесконечно дифференцируема в точке a (т.е в этой точке у функции f существует производная любого порядка), тогда **Определение:** Рядом Тейлора функции f в точке a называется следующее выражение:

$$f(a) + \sum_{k=1}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$$

Замечание. Если функция регулярна в точке *a*, то она раскладывается в степенной ряд и этот степенной ряд и есть ряд Тейлора, однако не все функции раскладываются в степенной ряд, поэтому справедливо следующее выражение:

$$f(x) \neq f(a) + \sum_{k=1}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$$

Пример. Рассмотрим следующую функцию:

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

Эта функция непрерывная в нуле. Найдем ее производные:

$$f'(x) = \frac{2}{x^3} \cdot e^{-\frac{1}{x^2}}$$

$$f''(x) = \left[\left(\frac{2}{x^3} \right)^2 - \frac{6}{x^4} \right] \cdot e^{-\frac{1}{x^2}}$$

$$f'''(x) = \left[\left(\frac{2}{x^3} \right)^3 - \frac{12}{x^7} - \frac{2^4}{x^4} + \frac{24}{x^5} \right] \cdot e^{-\frac{1}{x^2}}$$

Таким образом $f^{(m)}(x) = Q_{3m}(\frac{1}{x}) \cdot e^{-\frac{1}{x^2}}$, где $Q_{3m}(\frac{1}{x})$ – многочлен степени 3m от $\frac{1}{x}$. Тогда понятно, что

$$\lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x^k} = 0 \Rightarrow$$

$$\Rightarrow f^{(m)}(x) = \begin{cases} Q_{3m}(\frac{1}{x}) \cdot e^{-\frac{1}{x^2}}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

Тогда $\forall x \neq a$ ряд Тейлора будет представлять собой нулевой ряд, хотя сама функция не нулевая $\Rightarrow f(x) \neq f(a) + \sum_{k=1}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$. \square

12.6. Формула Тейлора с остаточным членом в интегральной форме.

Функция f – бесконечно дифференцируема в некоторой окрестности точки a, тогда этой функции соответствует некоторый ряд:

$$f(a) + \sum_{k=1}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$$

Обозначение. $P_n(x) = f(a) + \sum_{k=1}^n \frac{f^{(k)}(a)}{k!} (x-a)^k - n$ -ая частичная суммма ряда Тейлора (многочлен Тейлора). Тогда, если $\mathbf{r}_n(x) = f(x) - P_n(x) \underset{n \to \infty}{\longrightarrow} 0$, то это означает, что ряд Тейлора сходится к функции f в точке x:

$$f(x) = f(a) + \sum_{k=1}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k$$

Теорема:. Если $f^{(n+1)}$ непрерывна на $(a-\delta,a+\delta),\ \delta>0,$ то:

1. $\mathbf{r}_n(x) = \frac{1}{n!} \int_a^x (x-t)^n f^{(n+1)}(t) dt$, т.е. её остаточный член на этом интервале представим в интегральной форме.

2.
$$\mathbf{r}_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$$

Доказательство.

1. Доказательство будем проводить при помощи мат. индукции:

(a) Мы знаем, что
$$f(x)-f(a)=\int\limits_{a}^{x}f^{'}(t)dt.$$
 Тогда:

$$\begin{cases} u=f^{'}(t) \ , \ dv=dt \\ du=f^{''}(t)dt \ , \ v=-(x-t), \ \text{x - это константа} \end{cases}$$

получаем, что
$$f(x) - f(a) = -f'(t)(x-t) \Big|_a^x + \int_a^x (x-t)f''(t)dt =$$

$$= f'(a)(x-a) + \frac{1}{1!} \int_{a}^{x} (x-t)f''(t)dt \Rightarrow$$

$$\Rightarrow f(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{1}{1!} \int_{-\infty}^{\infty} (x - t)f''(t)dt.$$

Получили при n=1 остаточный член в интегральной форме (получена база индукции).

(b) Предположим, что при n-1 верно, тогда найдем для n:

$$f(x) = f(a) + \sum_{k=1}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{1}{(n-1)!} \int_a^x (x-t)^{n-1} f^{(n)}(t) dt$$

Тогда:

$$\begin{cases} u = f^{n}(t), dv = (x - t)^{n-1} dt \\ du = f^{n+1}(t) dt, v = -\frac{(x-t)^{n}}{n} \end{cases}$$

получаем, что
$$f(x) = f(a) + \sum_{k=1}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k - \frac{(x-t)^n f^{(n)}(t)}{n!} \bigg|_a^x + \frac{1}{n!} \int_a^x (x-t)^n f^{(n+1)}(t) dt$$
. Тогда получаем, что:

$$f(x) = f(a) + \sum_{k=1}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + \frac{1}{n!} \int_{a}^{x} (x-t)^{n} f^{(n+1)}(t) dt \square$$

2. Это просто остаточный член в форме Лагранжа (доказывалось в прошлом семестре).

13. Билет 13

- 13.1. Разложение в ряд Тейлора основных элементарных функций: e^x , $\cos x$, $\sin x$, $\ln(1+x)$, $(1+x)^{\alpha}$.
- 1. Показательная и гиперболические функции.

$$y = e^x, x \in \mathbb{R} \ x \in (-\rho, \rho), \ \rho > 0$$

Поскольку $(e^x)^{(k)} = e^x$, то $0 < f(x) < e^\rho$ и $0 < f(x)^{(k)} < e^\rho$. Ряд Тейлора функции $y = e^x$ сходится к ней на $(-\rho, \rho)$ по теореме о достаточном условии представимости функции её рядом Тейлора. $\forall \rho > 0 \Rightarrow R = +\infty$

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

$$y = \operatorname{sh} x, \ y = \operatorname{ch} x, \ x \in \mathbb{R}$$

$$\operatorname{sh} x = \frac{e^{x} - e^{-x}}{2}, \ \operatorname{ch} x = \frac{e^{x} + e^{-x}}{2}$$

$$\operatorname{sh} x = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}, \ \operatorname{ch} x = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}, \ R = +\infty$$

2. Тригонометрические фунции.

$$y = \sin x, \ y = \cos x, \ x \in \mathbb{R} \ |f^{(k)}(x)| \le 1, \ \forall k = 0, 1, 2, \dots$$

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}, \ \cos x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}, \ R = +\infty$$

3. Степенная функция.

$$y = (1+x)^{\alpha}, \ \alpha \in \mathbb{R}$$

1) $\alpha=0,\ y=1$ 2) $\alpha=n,\ n\in\mathbb{N},\ f(x)=\sum_{k=0}^{\infty}C_{n}^{k}x^{k}$ - бином Ньютона 3) α - произвольное, $\alpha\in\mathbb{R}$

$$f^{(n+1)}(x) = \alpha(\alpha - 1) \dots (\alpha - n)(1+x)^{\alpha - (n+1)}$$

$$\mathbf{r}_n(x) = \frac{\alpha(\alpha - 1)\dots(\alpha - n)}{n!} \int_{0}^{x} \left(\frac{x - t}{1 + t}\right)^n (1 + t)^{\alpha - 1} dt$$

Пусть $t=x au,\,0\leqslant au\leqslant1,$ тогда dt=xd au

$$\mathbf{r}_n(x) = \frac{\alpha(\alpha - 1)\dots(\alpha - n)}{n!} x^{n+1} \int_0^1 \left(\frac{1 - \tau}{1 + x\tau}\right)^n (1 + x\tau)^{\alpha - 1} d\tau$$

Пусть |x| < 1, тогда $|1 + \tau x| \ge 1 - \tau$

$$(1+x\tau)^{\alpha-1} \le \beta(x) = \begin{cases} (1+|x|)^{\alpha-1}, & \alpha \ge 1\\ (1-|x|), & \alpha < 1 \end{cases}$$

 $|\alpha| \leqslant m, m \in \mathbb{N}$. Тогда $\forall n > m$

$$\left|\frac{\alpha(\alpha-1)\dots(\alpha-n)}{n!}\right|\leqslant \frac{m(m+1)\dots(m+n)}{n!}\leqslant \frac{(m+n)!}{n!}=$$

$$= (n+1)(n+2)\dots(n+m) \leqslant (2n)^m$$

В итоге

$$|\mathbf{r}_n(x)| \leqslant 2^m \beta(x) |x| \frac{n^m}{\left(\frac{1}{|x|}\right)^n} \xrightarrow{n \to +\infty} 0$$

Так как

$$a = \frac{1}{|x|} > 1 \qquad \lim_{n \to +\infty} \frac{n^m}{a^n} = 0$$

Следовательно

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} C_{\alpha}^{k} x^{k}, \ C_{\alpha}^{k} = \frac{\alpha(\alpha-1)\dots(\alpha-(k-1))}{k!}, \ |x| < 1, \ R = 1$$

В частности:

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k, \ \frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^k x^k, \ |x| < 1$$

4. Логарифмические функции.

$$y = \ln(1-x), \ y' = -\frac{1}{1-x} = -\sum_{k=0}^{\infty} x^k$$

$$y = \ln(1+x), \ y' = -\frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^k x^k$$

Раскладываем в интервалах сходимости каждую функцию в ряд Тейлора, а потом почленно интегрируем, и помним, что при почленном интегрировании радиус сходимости не меняется.

$$y = \ln(1-x) = -\sum_{k=0}^{\infty} \frac{x^{k+1}}{k+1} = -\sum_{k=1}^{\infty} \frac{x^k}{k}, |x| < 1$$

$$y = \ln(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{k+1}}{k+1} = -\sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^k}{k}, |x| < 1$$

5. Обратные тригонометрические функции.

Обратные тригонометрические функции можно разложить в ряд Тейлора, сначала продифференцировав и воспользовавшись известными результатами.

13.2. Разложение в степенной ряд комплекснозначной функции e^z .

Докажем, что

$$e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!}, \ R = +\infty$$

$$\cos z = \sum_{k=0}^{\infty} \frac{(-1)^k z^{2k}}{(2k)!}, \quad \sin z = \sum_{k=0}^{\infty} \frac{(-1)^k z^{2k+1}}{(2k+1)!}, \quad R = +\infty$$

Доказательство: Так как z = x + iy и по формуле Эйлера: $e^{i\varphi} = \cos(\varphi) + i\sin(\varphi)$, то

$$e^z = e^{x+iy} = e^x (\cos y + i \sin y)$$

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$
, $\cos y = \sum_{k=0}^{\infty} (-1)^k \frac{y^{2k}}{(2k)!}$, $\sin y = \sum_{k=0}^{\infty} (-1)^k \frac{y^{2k+1}}{(2k+1)!}$

$$e^{iy} = \cos y + i \sin y = \sum_{k=0}^{\infty} (-1)^k \frac{y^{2k}}{(2k)!} + i \sum_{k=0}^{\infty} (-1)^k \frac{y^{2k+1}}{(2k+1)!} =$$

$$= \sum_{k=0}^{\infty} \frac{(iy)^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{(iy)^{2k+1}}{(2k+1)!} = \sum_{k=0}^{\infty} \frac{(iy)^k}{k!} = e^{iy}$$

$$e^z = \sum_{k=0}^{\infty} \frac{x^k}{k!} \cdot \sum_{k=0}^{\infty} \frac{(iy)^k}{k!}$$

Докажем, что

$$\sum_{k=0}^{\infty} \frac{(z_1 + z_2)^k}{k!} = \sum_{k=0}^{\infty} \frac{z_1^k}{k!} \cdot \sum_{k=0}^{\infty} \frac{z_2^k}{k!}$$

$$\sum_{k=0}^{\infty} \frac{(z_1 + z_2)^k}{k!} = \sum_{k=0}^{\infty} \frac{1}{k!} \cdot \sum_{j=0}^{k} C_k^j z_1^j z_2^{k-j} = \sum_{k=0}^{\infty} \sum_{j=0}^{k} \frac{1}{k!} \cdot \frac{k!}{j! \cdot (k-j)!} z_1^j z_2^{k-j} =$$

$$= \sum_{k=0}^{\infty} \sum_{j=0}^{k} \frac{z_1^j}{j!} \cdot \frac{z_2^{k-j}}{(k-j)!} = \frac{z_1^0}{0!} \cdot \frac{z_2^0}{0!} + \left(\frac{z_1^0}{0!} \cdot \frac{z_2^1}{1!} + \frac{z_1^1}{1!} \cdot \frac{z_2^0}{0!}\right) +$$

$$+ \left(\frac{z_1^0}{0!} \cdot \frac{z_2^2}{2!} + \frac{z_1^1}{1!} \cdot \frac{z_2^1}{1!} + \frac{z_1^2}{2!} \cdot \frac{z_0^0}{0!}\right) + \dots$$

Это можно проиллюстрировать следующим образом: Мы обходим таблицу по диагоналям, так что сумма индексов элементов была константа для каждой группы слагаемых. Тогда действительно:

$$\sum_{k=0}^{\infty} \frac{(z_1 + z_2)^k}{k!} = \sum_{k=0}^{\infty} \sum_{j=0}^k \frac{z_1^j}{j!} \cdot \frac{z_2^{k-j}}{(k-j)!} = \sum_{k=0}^{\infty} \frac{z_1^k}{k!} \cdot \sum_{k=0}^{\infty} \frac{z_2^k}{k!}$$

Тогда по доказанной выше лемме:

$$e^z = \sum_{k=0}^{\infty} \frac{x^k}{k!} \cdot \sum_{k=0}^{\infty} \frac{(iy)^k}{k!} = \sum_{k=0}^{\infty} \frac{(x+iy)^k}{k!} = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

	u_0	u_1	u_2	u_3	• • •
v_0	$u_0 \cdot v_0$	$u_1 \cdot v_0$	$u_2 \cdot v_0$	• • •	
v_1	$u_0 \cdot v_1$	$u_1 \cdot v_0$	• • •		
v_2	$u_0 \cdot v_2$	• • •			
v_3	• • •				
• • •					

Теперь

$$e^{iz} = \sum_{k=0}^{\infty} \frac{(iz)^k}{k!} = \sum_{k=0}^{\infty} \frac{(iz)^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{(iz)^{2k+1}}{(2k+1)!} =$$

$$= \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!} + i \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!}$$

$$e^{-iz} = \sum_{k=0}^{\infty} \frac{(-iz)^k}{k!} = \sum_{k=0}^{\infty} \frac{(-iz)^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{(-iz)^{2k+1}}{(2k+1)!} =$$

$$= \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!} - i \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!}$$

$$\frac{e^{iz} + e^{-iz}}{2} = \cos z = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!}$$
$$\frac{e^{iz} - e^{-iz}}{2} = \sin z = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!}$$

Что и требовалось доказать.

14. Анализ функции

Теперь можно перейти к анализу заданной функции:

$$f(x) = \ln(x+1) \tag{3}$$

Значение функции в точке $x_0 = 0$: $f(x_0) = 0$

14.1. Касательная к графику функции в точке

Уравнение касательной к графику функции в точке $x_0 = 0$:

$$y = 1 \cdot x + (0)$$

14.2. Производная 3-ой степени

Из предисловия нетрудно заметить, что

$$f^{(1)}(x) = \frac{1}{(x+1)} \tag{4}$$

$$f^{(2)}(x) = \frac{(-1)}{((x+1)^2)} \tag{5}$$

...Следующую часть простейших преобразований оставляем читателю...

После небольшого количества элементарных преобразований получаем:

$$f^{(3)} = \frac{(0 - ((-1) \cdot (2 \cdot (x+1))))}{(((x+1)^2)^2)} \tag{6}$$

В точке $x_0 = 0$: $f^{(3)}(x_0) = 2$

14.3. Разложение по формуле Тейлора

Разложим функцию по формуле Тейлора в точке 0 до x^4 :

$$f(x) = \ln(x+1) = 0 + \frac{1}{1} \cdot (x)^{1}$$

$$-\frac{1}{2} \cdot (x)^{2} + \frac{2}{6} \cdot (x)^{3} - \frac{6}{24} \cdot (x)^{4}$$

$$+o((x)^{4})$$
(7)

14.4. График функции

15. Подсчет погрешности

Подсчитаем погрешность величины f:

$$f = (x + (y^2)) - z$$

Для значений величин:

$$x = 5, \, \delta_x = 0.01$$

$$y = 2, \, \delta_y = 0.02$$

$$y = 2, \, \delta_y = 0.02$$

 $z = 3, \, \delta_z = 0.03$

$$\delta_f = \sqrt{((1) \cdot 0.01)^2 + ((4) \cdot 0.02)^2 + ((-1) \cdot 0.03)^2} = 0.0860233$$