Supervised

1. Decision Stump

Total Run Time: O(ndk) (k thresholds for each of d features)

PSEUDO CODE HERE with O(n) on steps

2. Decision Tree

PSEUDO CODE HERE with O(n) on steps

3. Naive Bayes

Bayes Rule: $p(y_i|x_i) = \frac{p(x_i|y_i) \cdot p(y_i)}{p(x_i)}$

PSEUDO CODE HERE with O(n) on steps

- 4. KNN
 - Non-Parametric
 - fit cost: store O(nd)
 - Prediction Cost: O(nd)
 - depends on norm
 - Usage:

PSEUDO CODE HERE with O(n) on steps

- 5. Linear Regression
- 6. Non-linear Regression (Supervised)

Unsupervised

- 1. K-Means (Unsupervised)
 - Parametric (k, W weights)
 - fit cost: store O(ndk)
 - update: O(nd)
 - Prediction Cost: O(nd)
 - depends on initialization
 - Usage: convex clustering, vector quantization, Outlier Detection

PSEUDO CODE HERE with O(n) on steps

- 2. DBSCAN (Unsupervised)
 - Non-Parametric (ϵ , MinNbr)
 - fit cost: store O()
 - update: O()
 - Prediction Cost: O()
 - problem: different densities
- 3. Outlier Detection Methods
 - Model-based methods
 - Graphical approaches (scatter plot)
 - Cluster-based methods (k-means DBSCAN)
 - Distance-based methods (KNN)
 - Supervised-learning methods
- 4. Recommender?

Something

1. Golden Rule:

Test data must not influence int the training phase in

2. Fundamental Trade Off:

 $E_{test} = (E_{test} - E_{train}) + E_{train}$

 E_{appx} gets smaller as n larger, grows as model gets complicated

- 3. Ensemble Methods
- 4. Cross-Validation

k-fold CV runtime: O()

PSEUDO CODE HERE with O(n) on steps

- 5. Definitions
- 6. Linear Algebra Notes

- $w^T x_i = \sum_{j=1}^d w_j x_{ij}, x_i, w \text{ is } d \ge 1$
- $a^T A b = b^T B^T a$ both sides are vectors
- $\frac{1}{2} ||Xw y||_2^2 = \frac{1}{2} \sum_{i=1}^n (w^T x_i y_i) = \frac{1}{2} w^T X^T X w w^T X^T y + \frac{1}{2} y^T y$ $\nabla \text{const} = 0, \nabla w^t b = w, \nabla \frac{1}{2} w^T A w = A w \text{ if } A \text{ sym-}$
- $\nabla \frac{1}{2} ||Xw y||_2^2 = X^T X w X^T y$
- Normal equation $X^T X w = X^T y$ $(Xw y)^T V (Xw y) = \sum_{i=1}^n v_i (w^T x_i y_i)^2$

Run Time

- $\bullet \ X^Ty:O(nd) \\ \bullet \ X^TX:O(nd^2)$
- solve d x d system of equations : $O(d^3)$
- solve normal equation : $O(d^3 + nd^2)$

Gradient Descent

- $w^{t+1} = w^t \alpha^t \nabla f(w^t) = w^t X^T (Xw^t y)$ (least
- cost O(nd) no need to form X^TX
- total cost O(ndt)
- faster for large d, works generally
- 7. Multivariable Calc Notes
- 8. Probability Notes