Функциональный анализ

Осень 2023

Оглавление

Оглавление			1
1	Введение		2
	1.1	Зачем изучать функциональный анализ	3
2	Метрические пространства		5
	2.1	Банаховы пространства	8
	2.2	Пространства ограниченных функций	
	2.3	Пространство последовательностей с sup нормой	13
	2.4	Пространства n раз непрерывно дифференцируемых функ-	
		ций на отрезке	
3	Пространство суммируемых функций (Лебега L^p)		15
	3.1^{-}	Теория меры	15
	3.2	Классические неравенства	
	3.3	Пространство Лебега	
	3.4	Пространства l_n^p, l^p	
	3.5	Неполное нормированное пространство	26
4	Пот	полнение метрического пространства	28
	4.1	Пополнение метрического пространства	29
	4.2	Теорема о вложенных шарах	
	4.3	Сепарабельные пространства	
	4.4	Нигде не плотные множества	
	4.5	Полные семейства элементов	
	4.6	Полные и плотные множества в L^p	41
5	Метрические компакты 4		
	5.1		55

Глава 1

Введение

12.09.23

День рождения функционального анализа — 1932 год. В этом году вышла книжка «Теория линейных операторов», автор — С. Банах. Главная цель функционального анализа — изучение линейных операторов (но не только их). Главным объектом у нас будет X — линейное топологическое пространство. Оно же линейное пространство над $\mathbb C$ (или $\mathbb R$). Есть непрерывные операции

1.
$$(x,z) \to x+z$$
 $x,z \in X$

2.
$$(\alpha, x) \to \alpha x \quad \alpha \in \mathbb{C}$$

Если у нас есть топологическое пространство, то у нас есть все любимые объекты из математического анализа — пределы, непрерывность, производные, интегралы.

Пусть есть X,Y — линейные топологические пространства. Также есть линейное отображение $A:X\to Y$

Определение 1.1 (Линейное отображение).

$$A(\alpha x + \beta z) = \alpha Ax + \beta Az$$

Если $\dim X < +\infty$, $\dim Y < +\infty$, то это линейная алгебра.

$$A: X \to X, \dim X = n, A = A^* \Rightarrow \exists OHB\{u_i\}_{i=1}^n$$

 λ_j — j-е собственное число

$$Au_j = \lambda_j u_j$$

Теорема 1.1 (Гильберт). X — гильбертово (сепарабельное) пространство. $A = A^*, A: X \to X \Rightarrow \exists$ ОНБ из собственных векторов.

Если $\dim Y=1$, т.е. $Y=\mathbb{C}$ (или \mathbb{R}), то $A:X\to\mathbb{C},$ A — линейный функционал.

В математическом анализе мы изучаем $f:\mathbb{C}\to\mathbb{C}.$ В функциональном анализе же у нас X — пространство функций, $f\in X$

$$D(f) = f' \quad D: X \to Y \tag{1.1}$$

и здесь мы задаемся вопросами о следующих свойствах D(f)

- компактность
- самосопряжённость
- непрерывность

Отцы основатели функционального анализа:

- Ф. Гильберт (1862–1943) Гильбертовы пространства;
- С. Банах (1892–1945) Банаховы пространства;
- Ф.Рисс (1880–1956) пространства Лебега L^p .

Ну и хочется ещё упомянуть для вас, компьютер саентистов, отцов основателей кибернетики, которые оставили немалый след в функциональном анализае

- Н. Винер (1894–1964);
- Д. фон Нейман (1903–1957). Про его архитектуру, наверное, чтото слышали?

1.1. Зачем изучать функциональный анализ

Во-первых, он позволяет посмотреть на задачу с высокого уровня абстракции.

Рассмотрим пространство непрерывных функций C[a,b], там введём норму $|f|=\max_{x\in[a,b]}|f(x)|$. Рассмотрим пространство многочленов $P_n=\{\sum_{k=0}^n a_k x^k, a_k\in\mathbb{R}\}$ Существует ли такой многочлен, на котором инфимум достигается? И если да, то единственный ли он?

$$E_n(f) = \inf_{p \in P_n} ||f - p|| = \min_{p \in P_n} ||f - p||$$

На первый вопрос ответ да, это следует из общей теоремы функционального анализа.

$$\dim P_n = n + 1 < +\infty$$

На второй же вопрос ответ тоже да, и тут функциональный анализ ни при чём. Суть в том, что у многочлена степени n не может быть больше n корней.

Ну и ещё немаловажные причины

- 1. язык функционального анализа междисциплинарный язык математики;
- 2. его результаты применяются в математической физике, которая у нас будет в следующем семестре;
- 3. это интересно и важно. 0, 1, 2 = o(3);
- 4. у нас будет экзамен, на котором придется говорить уже нам.

Дополнительная литература по курсу. Первая рассчитана на студентов: в некоторых местах рассказывается, как придумать доказательство, как прийти к тому, что требуется, а не в обратную сторону, как обычно. Остальные же книги поумнее.

- 1. А.Н.Колмогоров, С.В. Фомин «Элементы теории функций и Ф.А.»;
- 2. М.Рид, Б. Саймон. 1 том «методы современной физики». Тонкая (можно осилить), рассказывается также про применение ФА;
- 3. А.В. Канторович, Г.Г Акилов «Функциональный анализ». Похожа на энциклопедию. Но там можно найти всё;
- 4. К. Итосида «Функциональный анализ»;
- 5. У. Рудин.

Глава 2

Метрические пространства

Начнём с того, что все знают. Надо ведь с чего-то начать. Мы будем несколько раз к ним возвращаться, а не изучим всё сразу. Один из полезных результатов — новое описание компакта в метрических пространствах. Он будет самым рабочим. А компакт — вещь очень полезная. Компакты в гигантских пространствах напоминают компакты в \mathbb{R}^n или в \mathbb{C}^n и обладают теми же полезными свойствами.

Определение 2.1 (Метрика). X — множество. $\rho: X \times X \to \mathbb{R},$ ρ — метрика, если при $x \in X \land y \in X \land z \in X$ она обладает следующими свойствами

1.
$$\rho(x,y) \ge 0 \land (\rho(x,y) = 0 \Leftrightarrow x = y)$$

2.
$$\rho(y, x) = \rho(x, y)$$

3.
$$\rho(x,z) \le \rho(x,y) + \rho(y,z)$$

Введём стандартное обозначение открытого шара. $x \in X, r > 0$ $B_r(x) = \{y \in X : \rho(x,y) < r\}$ — шар с радиусом $r. \{B_r(x)\}_{r>0}$ — база окрестности в точке x.

G — открытое, если $\forall \, x \in G \, \exists \, r > 0 B_r(x) \subset G$.

F — замкнутое $\Leftrightarrow F \subset X \land X \setminus F$ — открытое.

В метрическом пространстве удобно характеризовать замкнутое множества с помощью последовательностей. Вспомним, что такое сходящаяся последовательность.

 $\{x_n\}_{n=1}^\infty$ — последовательность $\land \forall n \in \mathbb{N} x_n \in X \land \lim_{n \to \infty} x_n = x_0 \Leftrightarrow \lim_{n \to \infty} \rho(x_n, x_0) = 0$

 (X, ρ) — метрическое пространство \Rightarrow (F — замкнутое \Leftrightarrow $\{x_n\}_{n=1}^{\infty}$ — последовательность $\land \forall \, n \in \mathbb{N} x_n \in F \land (\lim_{n \to \infty} x_n = x_0 \Rightarrow x_0 \in F))$

Определение 2.2 (Фундаментальная последовательность). $\{x_n\}_{n=1}^{\infty}$ — фундаментальная $\Leftrightarrow \forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n \in \mathbb{N} \forall m \in \mathbb{N} ((n > N \land m > N)) \Rightarrow \rho(x_n, x_m) < \varepsilon) \Leftrightarrow \lim_{n,m \to \infty} \rho(x_n, x_m) = 0$

Замечание 2.1. $\exists x_0 \lim_{n \to \infty} x_n = x_0 \Rightarrow \{x_n\}_{n=1}^{\infty} - фундаментальная$

Определение 2.3 (Полное метрическое пространство). (X, ρ) — полное, если все фундаментальные последовательности имеют предел, лежащий в X

Почему хорошо жить в полном метрическом пространстве?

Замечание 2.2 (о пользе полноты). $F: X \to \mathbb{R}, (X, \rho)$ — метрическое пространство, F — непрерывная.

Стоит задача найти $x_0 \in X$ т.ч. $F(x_0) = 0$

Алгоритм: $\{x_n\}_{n=1}^{\infty}$, $\lim_{n\to\infty} F(x_n) = 0$, $\lim_{n,m\to\infty} \rho(x_n,x_m) = 0$ Если (X,ρ) — полное, то $\lim_{n\to\infty} x_n = x_0$, $F(x_0) = 0$ А если нет, то из наших вычислений вообще ничего не следует, возможно, решения вообще нет.

Пример 2.1. \mathbb{R}^n , \mathbb{C}^n — полные.

Пример 2.2. $\mathbb{R}^n \setminus \{\mathbb{O}_n\}$ — неполное.

Пример 2.3. \mathbb{Q} — неполное.

Потом приведем примеры поинтереснее. Кстати, древние греки пришли в ужас, когда узнали, что \mathbb{Q} — неполное.

Определение 2.4. (X, ρ) — метрическое пространство, $A \subset X, A$ — ограниченное, если

$$\exists R > 0 \exists x_0 \in XA \subset B_R(x_0)$$

Теорема 2.1 (Свойства фундаментальных последовательностей). (X, ρ) — метрическое пространство, $\{x_n\}_{n=1}^{\infty}$ — фундаментальная последовательность, тогда выполняется:

- 1. $\{x_n\}_{n=1}^{\infty}$ ограниченная, т.е. $\exists R > 0 \exists x_0 \in X \forall n \in \mathbb{N} x_n \in B_R(x_0)$
- 2. $\exists \{x_{n_k}\}_{k=1}^{\infty}$ подпоследовательность $\exists a \lim x_{n_k} = a \Rightarrow \lim_{n \to \infty} x_n = a$
- 3. $\{\varepsilon_k\}_{k=1}^{\infty}$ произвольная последовательность действительных чисел $\land \forall \, k \in \mathbb{N} \varepsilon_k > 0 \Rightarrow \exists \, \{x_{n_k}\}_{k=1}^{\infty}$ подпоследовательность $\forall \, j \in \mathbb{N} (j > k \Rightarrow \rho(x_{n_k}, x_{n_j}) < \varepsilon_k)$

1 утверждение. Возьмём $\varepsilon=1$, тогда из фундаментальности $\exists N \, \forall \, n \in \mathbb{N} (n>N \Rightarrow \rho(x_n,x_N)<1).$

Возьмём $R = \max\{\rho(x_1,x_N),\dots,\rho(x_{N-1},x_N)\}+1.$ Единичка на всякий случай.

Тогда
$$\forall n \in \mathbb{N} x_n \in B_R(x_N)$$
.

2 утверждение. Возьмём $\varepsilon > 0$, тогда по фундаментальности $\exists N \forall n \in \mathbb{N} \forall m \in \mathbb{N} ((\underline{n} > \underline{N} \land m > N) \Rightarrow \rho(x_n, x_m) < \varepsilon)$. Возьмём это N.

 $\exists a \lim x_{n_k} = a \Rightarrow \exists n_k (\rho(x_{n_k}, \overline{a) < \varepsilon \land \underline{n_k} > N}).$ Возьмём это n_k .

Возьмём некоторое m>N. Тогда $\rho(x_m,a)<\underline{\rho(x_m,x_{n_k})}+\rho(x_{n_k},a)<2\varepsilon$

3 утверждение. Докажем по индукции:

 $\varepsilon_1:\exists n_1 \forall n \in \mathbb{N} \forall m \in \mathbb{N} ((n>n_1 \land m>n) \Rightarrow \rho(x_m,x_n)<\varepsilon_1).$ Выберем n_1 , тогда $\forall m \in \mathbb{N} (m>n_1 \Rightarrow \rho(x_m,x_{n_1})<\varepsilon_1).$

 ε_k : по индукции выбрали $n_1,\ldots,n_{k-1},\,k\geq 2.\,\,\forall\,j\in (1\ldots k-1)\forall\,m\in\mathbb{N}(m>n_j\Rightarrow \rho(x_m,x_{n_j})<\varepsilon_j).$ Из фундаментальности исходной последовательности $\exists\,n_k(n_k>n_{k-1}\wedge\forall\,m\in\mathbb{N}(m>n_k\Rightarrow\rho(x_m,x_{n_k})<\varepsilon_k))$

Следствие 2.1. $(X, \rho), \{x_n\}$ — фундаментальная последовательность, тогда

$$\exists \{x_{n_k}\}$$
 т.ч. $\sum_{k=1}^{\infty} \rho(x_{n_k}, x_{n_{k+1}}) < +\infty$

Доказательство. По 3 свойству при $\varepsilon_k = \frac{1}{2^k}$.

Теорема 2.2 (О замкнутом подмножестве). (X, ρ) — метрическое пространство, тогда

- 1. (X, ρ) полное, $Y \subseteq X$, Y замкнутое $\Rightarrow (Y, \rho)$ полное
- 2. $Y \subseteq X$, (Y, ρ) полное $\Rightarrow Y$ замкнутое

1 утверждение. Доказательство следует прямо из определения. Знаем, что Y — замкнутое подниножество полного пространства. Берем фундаментальную последовательность. $Y \subset X$, пусть $\{x_n\}_{n=1}^{\infty}, \forall n \in \mathbb{N} x_n \in Y$ — фундаментальная. $\forall n \in \mathbb{N} x_n \in X, X$ — полное $\Rightarrow \exists x_0 \in X \lim_{n \to \infty} x_n = x_0. Y$ — замкнутое, значит $x_0 \in Y \Rightarrow (Y, \rho)$ — полное. \square

2 утверждение. Второй пункт не труднее первого. Пусть $\{x_n\}_{n=1}^{\infty}$ — произвольная фундаментальная последовательность в Y.

Y- полное $\Rightarrow \exists x_0 \in Y \lim_{n \to \infty} x_n = x_0 \Rightarrow Y-$ замкнутое из-за произвольности последовательности.

2.1. Банаховы пространства

Сначала введём понятие полунормы.

Определение 2.5 (полунорма). Пусть X — линейное пространство над $\mathbb R$ или $\mathbb C$. Отображение $p:X\to\mathbb R$ называется полунормой, если при $x\in X\wedge y\in X\wedge (\lambda\in\mathbb R\vee\lambda\in\mathbb C)$

- 1. $p(x + y) \le p(x) + p(y)$ (полуаддитивность)
- 2. $p(\lambda x) = |\lambda| p(x)$

Свойство 2.1. p — полунорма \Rightarrow

$$\forall x \in Xp(x) \ge 0 \land p(0) = 0$$

Доказательство.
$$p(\mathbb{O}) = p(0 \cdot \mathbb{O}) = 0 \cdot p(\mathbb{O}) = 0$$
. Пусть $x \in X \Rightarrow \mathbb{O} = x + (-x) \Rightarrow p(\mathbb{O}) \le p(x) + \underbrace{p(-x)}_{p(x)} = 2p(x) \Rightarrow p(x) \ge 0$

Определение 2.6 (Норма). X — линейное пространство, p : $X \to \mathbb{R}$. p — норма $\Leftrightarrow (p$ — полунорма $\land (p(x) = 0 \Leftrightarrow x = \mathbb{0}))$. Будем обозначать ||x|| := p(x).

 $(X,||\cdot||)$ будем обозначать нормированное пространство. и при $(x\in X\wedge y\in X)$ $\rho(x,y):=||x-y||.$ Тогда $(X,||\cdot||)$ — метрическое пространство.

Определение 2.7 (банахово пространство). $(X, ||\cdot||)$ — банахово, если оно полное

Еще пару определений перед критерием банахова пространства.

Определение 2.8 (подпространство в алгебраическом смысле). X — линейное пространство, $L \subset X$. L — подпространство в алгебраическом смысле $\Leftrightarrow \forall x \in L \forall y \in L \forall \alpha \in K \forall \beta \in K \alpha x + \beta y \in L$.

Определение 2.9 (подпространство). $(X, ||\cdot||), L \subset X, L -$ подпространство, если

- L подпространство в алгебраическом смысле
- $L = \overline{L} \ (\overline{L}$ замыкание)

Теперь нам потребуется сходимость рядов. Для того, чтобы говорить о сходимости, нужна топология.

Определение 2.10 (Сходимость).

$$(X, ||\cdot||) \quad \{x_k\}_{k=1}^{\infty} \quad S_n = \sum_{k=1}^n x_k$$

 $\sum_{k=1}^{\infty} x_k(*), (*)$ сходится, если $\exists \lim_{\substack{n \to \infty \\ k=1}} S_n = S \in X$

В \mathbb{R}^n (или в \mathbb{C}^n) если у нас была абсолютная сходимость, то была и обычная, но вообще говоря, это не так.

Теорема 2.3 (Критерий полноты нормированного пространства (банаховости)). $(X, ||\cdot||)$ - полное \Leftrightarrow из абсолютной сходимости ряда следует сходимость ряда.

Доказательство. Предположим, что наше пространство полное (\Rightarrow). (X, ρ) — полное, $\{x_k\}_{k=1}^{\infty}$.

$$\sum_{k=1}^{\infty} ||x_k||$$
 сходится (**)

Цель такая: последовательность S_n — фундаментальная. Сейчас применим критерий Коши к ряду (**). Это ряд из чисел, так что всё в порядке. Пусть $\varepsilon > 0$. По критерию Коши $\exists N \in \mathbb{N} \forall n \in \mathbb{N} \forall p \in \mathbb{N} (n > N)$ $N \Rightarrow \sum_{k=n}^{n+p} ||x_k|| < \varepsilon$). $S_n = \sum_{k=1}^n x_k$.

$$S_n = \sum_{k=1}^n x_k.$$

$$\sum_{k=n+1}^{n+p} ||x_k|| = \underline{||S_{n+p} - S_n||} = \left|\left|\sum_{k=1}^p x_{n+k}\right|\right| \le \sum_{k=1}^p ||x_{n+k}|| \le \underline{\varepsilon}$$

$$\Rightarrow \underline{\{S_n\}_{n=1}^{\infty} - \text{фундаментальная}, (X, \rho) - \text{полное}}$$

$$\Rightarrow \exists S \in X \lim_{n \to \infty} S_n = S$$

$$\Rightarrow \sum_{k=1}^{\infty} x_k \text{ сходится}$$

Мы так запаслись номерами, чтобы выражение было меньше ε

Теперь (⇐). У нас кроме определения ничего нет. Возьмём какуюто фундаментальную последовательность. Откуда взять предел? Есть соотношения между элементами последовательности. Возьмём подпоследовательность, ведь у нас есть следствие 2.1! Из свойств фундаментальных последовательностей, мы знаем, что существует подпоследовательность

$$\{x_{n_k}\}_{k=1}^{\infty}:||x_{n_1}||+\sum_{k=1}^{\infty}||x_{n_{k+1}-x_{n_k}}||<+\infty$$

$$\Rightarrow x_{n_1}+\sum_{k=1}^{n}(x_{n_{k+1}}-x_{n_k})-\text{сходится, но:}$$

$$S_m=x_{n_1}+\sum_{k=1}^{m-1}(x_{n_{k+1}}-x_{n_k})=x_{n_m}\Rightarrow\exists\,S\in X\lim_{n\to\infty}x_{n_m}=S$$

2.2. Пространства ограниченных функций

Определение 2.11. Пусть A — произвольное множество. Стандартное обозначение m(A) — множество всех ограниченных функций.

$$m(A) = \{f: A o \mathbb{R} \text{ или } \mathbb{C}, \sup_{x \in A} |f(x)| < \infty \}$$

$$f \in m(A), ||f||_{\infty} = \sup_{x \in A} |f(x)|.$$

Теорема 2.4.
$$(m(A), ||\cdot||_{\infty})$$
 — банахово пространство

Доказательство. Нужно проверить две вещи. Во-первых, что норма удовлетворяет аксиомам нормы. А во-вторых, что пространство с таким определением является полным. Просто по определению, никаких хитрых критериев. Возьмём фундаментальную подпоследовательность и покажем, что у нее есть предел.

Проверяем, что $\|\cdot\|_{\infty}$ удовлетворяет аксиомам нормы.

$$||f||_{\infty} = \sup_{x \in A} |f(x)| \ge 0, ||f||_{\infty} 0 \Rightarrow f(x) 0 \forall x \in A \text{ r.e. } f = 0$$

 $\lambda \in \mathbb{R}$ (или \mathbb{C}). $||\lambda f|| = \sup_{x \in A} |\lambda| \cdot ||f||_{\infty}$

Нужно проверить неравенство треугольника.

 $f,g\in m(A)$. x — фиксированная точка в A

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty} \forall x \in A$$

$$\Rightarrow ||f+g||_{\infty} = \sup_{x \in A} |f(x)+g(x)| \le ||f||_{\infty} + ||g||_{\infty}$$

Теперь мы проверили аксиомы нормы. Доказываем полноту. $\{f_n\}$ — фундаментальная в m(A).

$$\varepsilon > 0 \,\exists\, N \in \mathbb{N} : (m > N \land n > N) \Rightarrow ||f_n - f_m||_{\infty} < \varepsilon \text{ T.e. } \sup_{x \in A} |f_n(x) - f_m(x)|$$

Первый вопрос: откуда взять претендента на роль предела? Еще желательно, чтобы он был единственный. Фиксируем x. Если для супремума есть неравенство, то и для x тем более. $|f_n(x) - f_m(x)| < \varepsilon$ при n,m>N. $\Rightarrow \{f_n(x)\}_{n=1}^{\infty}$ — последовательность чисел в $\mathbb C$ или $\mathbb R$.

$$\Rightarrow \{f_n(x)\}_{n=1}^{\infty}$$
 — фундаментальная $\Rightarrow \exists \lim_{n \to \infty} f_n(x)$

$$f(x) = \lim_{n \to \infty} f_n(x) \forall \, x \in A$$
х фиксированный

$$\begin{split} |f_n(x) = f_m(x)| < \varepsilon \quad \text{пусть } m \to \infty \\ \Rightarrow |f_n(x) - f(x)| \le \varepsilon, x \in A \, \forall \, x \in A \\ \Rightarrow ||f_n - f||_\infty = \sup_{x \in A} |f_n(x) - f(x)| \le \varepsilon \text{ при } n > A \end{split}$$

Последнее сображение, которое нужно добавить, это то, что f — элемент A. Мы можем записать f как $f = (f - f_n) + f_n$, $f_n \in m(A)$, $f - f_n \in m(A)$.

$$\Rightarrow \lim_{n \to \infty} ||f - f_n|| = 0 \Leftrightarrow \lim_{n \to \infty} f_n = f \in m(A)$$

Давайте заметим, что у нас получилось определение равномерной непрерывности из математического анализа.

$$\lim_{n \to \infty} f_n = f \in m(A) \Leftrightarrow \lim_{n \to \infty} \sup_{x \in A} |f_n(x) - f(x)| = 0 \Leftrightarrow f_n \underset{A, n \to \infty}{\Longrightarrow} f$$

Определение 2.12 (Топологический компакт). Множество K — топологический компакт, если оно обладает следующими свойствами

- 1. $\forall \{G_{\alpha}\}_{\alpha \in A}, G_{\alpha}$ открытые множества $K \subset \bigcup_{\alpha \in A} G_{\alpha} \exists \{\alpha_{j}\}_{j=1}^{n}, K \subset \bigcup_{j=1}^{n} G_{\alpha_{j}}$
- 2. Хаусдорфовость $\forall x,y(x\neq y)\in K\,\exists\, U,V$ открытые множества, $x\in U,y\in V,U\cap V=\varnothing$

Определение 2.13. $C(K) = \{f : K \to \mathbb{R}, f \text{ непрерывна}\}$

$$||f||_{C(K)} = ||f||_{\infty} = \sup_{x \in K} |f(x)| = \max_{x \in K} |f(x)|$$

Следствие 2.2. K — топологический компакт $\Rightarrow C(K)$ — банахово

Доказательство. $C(K) \subset m(K)$. C(K) — подпространство в алгебраическом смысле. Проверим, что C(K) — замкнуто в m(K)

$$\{f_n\}, f_n = C(K), \lim_{n \to \infty} |f - f_n|_{\infty} = 0 \Leftrightarrow f_n \underset{K, n \to \infty}{\Longrightarrow} f \Rightarrow f \in C(K) \Rightarrow C(K)$$

тогда
$$m(K)$$
 — полное и $C(K)$ — полное.

2.3. Пространство последовательностей с sup нормой

Определение 2.14.
$$\mathbb{C}^n, n \in \mathbb{N}, l_n = \{x^\infty = (x_1, \dots, x_n), x_j \in \mathbb{C}\}$$

$$||x||_\infty = \max_{1 \le j \le n} |x_j|$$

 $A = \{1, 2, \dots, n\}, l_n^{\infty} = m(A) \Rightarrow l_n^{\infty}$ — полное Удобно думать, что последовательность — это функция на множестве натуральных чисел.

Определение 2.15 (l^{∞}) .

$$\begin{split} l^\infty &= \{X = \{x_j\}_{j=1}^\infty, \sup_{j \in \mathbb{N}} |x_j| < +\infty\} \\ ||x||_\infty \sup_{j \in \mathbb{N}} |x_j| \quad A &= \{1, 2, 3, \dots, n, \dots\} \\ X &= \{x\}_{j=1}^\infty \in m(A), f(j) = x_j \\ f:A \to \mathbb{C} \\ l^\infty &:= m(\mathbb{N}) \Rightarrow l^\infty - \text{ полное} \end{split}$$

Определение 2.16.

$$c = \{X = \{x\} j_{j=1}^{\infty}, x_j \in \mathbb{C} \quad \exists \lim_{n \to \infty} x_n = x_0\}$$
$$c \subset l^{\infty}, ||x|| = ||x||_{\infty} = \sup ||X||$$
$$c_0 = \{x = \{x\}_{j=1}^{\infty}, \lim_{n \to \infty} x_j = 0\}, c_0 \subset c \subset l^{\infty}$$

 c, c_0 — замкнутые подпространства в $l^{\infty} \Rightarrow c, c_0$ — банаховы.

2.4. Пространства n раз непрерывно дифференцируемых функций на отрезке

Определение 2.17. (норма n производной)

$$n \in \mathbb{N}$$
 $C^{(n)}[a, b] = \{f : [a, b] \to \mathbb{R}\} \exists f^{(n)} \in C[a, b]$
$$|||f||_{(n)} = \max_{0 \le k \le n}, f^0 = f$$

Теорема 2.5. В $C^{(n)}[a,b]$ — банахово.

Доказательство.

$$\{f_m\}_{m=1}^{\infty}$$
 — фундаментальная последовательность в $C^{(n)}[a,b]$ $\varepsilon>0$ $\exists \ N: (m>n\ \land\ q>n)\Rightarrow ||f_m-f_q||_{C^{(n)}}<\varepsilon\Rightarrow ||f_m^{(k)}< f_q^{(k)}||_{\infty}<\varepsilon$ $k=0,1,\ldots,n$

19.09.23

Глава 3

Пространство суммируемых функций (Лебега L^p)

Сейчас будет небольшой экскурс в теорию меры, которая была на математическом анализе. Мы ничего доказывать не будем и поверим, что все утверждения верны и в общем случае.

3.1. Теория меры

Определение 3.1 (Мера). (X,U,μ) — пространство с мерой. X — множество, U — σ -алгебра подмножества X

- 1. $\varnothing \in U$
- $2. \ A \in U \Rightarrow X A \in U$
- 3. $\{A_n\}_{n=1}^{\infty}, A_n \in U, A \infty_{n=1} A_n \Rightarrow A \in U$

$$\mu: U \to [0, +\infty]$$

- мера, если
 - 1. $\mu(\emptyset) = 0$
 - 2. $A = U_{n=1}^{\infty}\{A_n\}, A_n \cap A_m = \emptyset, n \neq m, A_n \in U \Rightarrow \mu(A) = \sum_{n=1}^{\infty} \mu A_n$ (счетная аддитивность)

Предположения:

1. μ — полная мера, то есть $A \in U, \mu(A) = 0 \Rightarrow (\forall B \subset A \Rightarrow B \in A)$

$$U, (\Rightarrow \mu B) = 0$$

2.
$$\mu - \sigma$$
-конечна, то есть $X = \bigcup_{i=1}^{\infty} X_i, \mu(X_i) < +\infty$

Пока можем думать, что речь идет о мере Лебега. Потом приведём другие примеры. В теории пространств будем считать, что функция действует из X в $\mathbb R$ или в $\mathbb C$ (не особо важно).

Определение 3.2 (Измеримая функция). $f: X \to \overline{\mathbb{R}}.$ f — измерима, если

$$\forall \, c \in \mathbb{R}, x \ \underbrace{\{x: c < f(x)\}}_{\text{измеримое множество}} \in U$$

$$f: X \to \mathbb{C} \Rightarrow f = u + iv, u, v: X \to \mathbb{R}$$

f — измерима, если u,v — измеримы

Как же определяется интеграл? Пусть есть какой-то элемент σ -алгебры $e\in U,\ \chi_e(x)=\begin{cases} 1,x\in E\\ 0,x\notin e \end{cases}$. Множество простых функций определяется как

$$S = \{g(x) = \sum_{k=1}^{n} c_k \chi_{e_k}, c_k \in \mathbb{C}, e_k \in U\}$$

$$g\in S, \int_X g(x)d\mu=\sum_{k=1}^n c_k\mu e_k.$$
 $f(x)$ — измеримая, если $f(x)\geq e, x\in X$

Определение 3.3 (Произвольно измеримая функция).

$$\int_X f d\mu = \sup \left\{ \int_X g(x) d\mu : 0 \le g(x) \le g(x), x \in X, c_k \in \mathbb{R}, c_k > 0 \right\}$$

Определение 3.4 (Измеримая функция). f — измерима, если

$$f_{+}(x) = \max_{(x)} f(x), 0 \land f_{-}(x) = \max(-f(x), 0) \Rightarrow f = f_{+} - f_{-}$$

Если $\int_X f_+ d\mu$ — конечен или $\int_X f_- d\mu$ — конечен, то $\int_X f d\mu = \int_X f_+ d\mu$ — $\int_X f_- d\mu$ Если f — измеримая, $f: X \to \mathbb{C} \Rightarrow f = u + iv$

$$\int_X f d\mu = \int_X u d\mu + i \int_X v d\mu$$

Определение 3.5 (Множество суммируемых функций). $L(X,\mu)$ — множество суммируемых функций =

$$\left\{ f_i : \int_X |f| d\mu < +\infty \right\}, |f| = f_+ + f_-$$

Прежде чем двигаться дальше, приведем примры других мер (кроме мер Лебега)

Пример 3.1. $E \subset \mathbb{R}^n$, E — измерима по Лебегу, λ — мера Лебега, $w(x) \geq 0, x \in E, w$ — измерима по Лебегу.

 $e\subset E, e$ — измеримо по Лебегу. $\mu e=\int_e w(x)d\lambda, w(x)$ — плотность меры $\mu,\,w(x)$ — её вес.

Вторая мера в каком-то смысле противоположная. Она сосредоточна на наборе точек и называется дискретной.

Пример 3.2. X — множество $(X \neq \emptyset), a \in X$

$$\sigma_n, e \subset X, \sigma_a(e) = \begin{cases} 1, a \in E \\ 0, a \notin e \end{cases}$$

 $\forall e, e \subset X, e$ — измеримо

Пример 3.3 (Дискретная мера). X — бесконечное множество. $\{a_j\}_{j=1}^{\infty}, a_j \in X, a_j \neq a_k, j \neq k$ $\{h_j\}_{j=1}^{\infty}, h_j > 0$

$$\mu - \sum_{\gamma=1}^{\infty} h_j \delta_{a_j}, e \subset X \quad \mu E = \sum_{\{j: a_j \in E\}} h_j$$

План такой: хотим ввести норму на множестве интегрирумеых функций. Для этого нам надо ввести некоторые неравенства.

3.2. Классические неравенства

Теорема 3.1 (Неравенство Юнга). $p>1, \frac{1}{p}+\frac{1}{q}=1$ (q-сопряженный показатель)

$$\Rightarrow ab \le \frac{a^p}{p} + \frac{b^p}{q}$$

Доказательство. Пусть b — фиксировано, $\varphi(x) = \frac{x^p}{p} - xb, x \in [0, +\infty)$. Хотим найти $\min_{x \in [0, +\infty)} \varphi(x)$. Для этого посмотрим, где производная обращается в 0. $\varphi'(x) = x^{p-1} - b, \ \varphi'(x_0) = 0 \Leftrightarrow x_0 = b^{\frac{1}{p-1}} \Rightarrow \varphi(x) > \varphi(x) > \varphi(x) > \varphi(x_0) \ \forall \ x \neq x_0, x \geq 0$. Таким образом, x_0 — строгий локальный минимум.

$$\varphi(x_0) = \frac{1}{p} b^{\frac{p}{p-1}} - b^{\frac{p}{p-1}} = b^{\frac{p}{p-1}} \left(\frac{1}{p} - 1\right) = \frac{b^q}{q}$$

$$-\frac{1}{q} = \frac{1}{p} - 1 = \frac{1-p}{p} \Rightarrow q = \frac{p}{p-1}$$

$$\varphi(x) \ge -\frac{b^q}{q} \,\forall \, x \in [0, +\infty) \text{ то есть ОК}$$

$$\varphi(x_0) = \frac{1}{p} b^{\frac{p}{p-1}} - b^{\frac{p}{p-1}} = b^{\frac{p}{p-1}} \left(\frac{1}{p} - 1\right) = \frac{b^q}{q}$$

Замечание 3.1. Равенство в неравенстве Юнга достигается только при $a=b^{\frac{1}{p-1}}$

Теорема 3.2 (Неравенство Гельдера). (X,U,μ) — пространство с мерой. f,g — измеримые, $p>1,\frac{1}{p}+\frac{1}{q}=1$ \Rightarrow

$$\int_{X} |fg| d\mu \le \left(\int_{X} |f|^{p} d\mu \right)^{\frac{1}{p}} \cdot \left(\int_{X} |g|^{q} d\mu \right)^{\frac{1}{q}} \tag{*}$$

Если p=q=2, то это «Неравенство Коши-Бунаковского-Шварца», или на молодёжном математическом сленге неравенство КБШ

Доказательство. Для начала отбросим какие-то простые случаи. $A = \left(\int_X |f|^p d\mu\right)^{\frac{1}{p}}, B = \left(\int_X |g|^q d\mu\right)^{\frac{1}{q}}.$ Если $A = 0 \Leftrightarrow |f| = 0$ почти всюду по $\mu \Leftrightarrow f(x) = 0$ почти всюду по μ (то есть $\mu\{x: f(x) \neq 0\} = 0$) На всякий случай поясним, почему функция равна 0 почти всюду по мере μ

$$\int_X |f| d\mu = 0 \Rightarrow e = \{x : f(x) = 0\}, m \in \mathbb{N}, e_m = \{x : |f(x)| > \frac{1}{m}\}$$

$$e = \bigcup_{m=1}^\infty e_m \quad \int_X |f| d\mu \ge \int_{e_m} |f| d\mu \ge \frac{1}{m} \mu e_m \Rightarrow \mu e_m = 0 \Rightarrow \mu E = 0$$

$$\Rightarrow f(x) \cdot g(x) = 0 \text{ п.в.} \quad 0 \le 0 \tag{*}$$

Если $A = +\infty$, то (*)

пусть
$$0 < A < +\infty, 0 < R < +\infty$$

Неравенство Гельдера однородное, то есть если мы f умножим на константу, то левая и правая часть умножится на неё же, аналогично с g. Иногда бывает удобно ввести нормировку.

$$f_1(x) = \frac{f(x)}{A}, g_1(x) = \frac{g(x)}{B}, \int_X |f_1(x)|^p d\mu = \frac{A^p}{A^p} = 1, \int_X |g_1(x)|^q d\mu = 1$$

Пусть x — фиксирован, $a = |f(x)|, b = |g(x)| \stackrel{\text{н.Юнга}}{\Rightarrow}$

$$|f_1(x)| \cdot |g_1(x)| \le \frac{|f_1(x)|^p}{p} + \frac{|g_1(x)|^q}{q}$$
 проинтегрируем X по μ $\Rightarrow \int_x |f_1| \cdot |g_1| d\mu \le \frac{1}{p} \int_X |f_1|^p d\mu + \frac{1}{q} \int_X |g_1|^q d\mu = \frac{1}{p} + \frac{1}{q} = 1$

Умножаем на $AB \Rightarrow \int_X |fg| d\mu \le AB$

Теорема 3.3 (Неравенство Минковского). $(X,U,\mu),\ f,g$ — измеримые, $1\leq p<+\infty$ \Rightarrow

$$\underbrace{\left(\int_{X}|f(x)+g(x)|^{p}d\mu\right)^{\frac{1}{p}}}_{C}\leq\underbrace{\left(\int_{X}|f(x)|^{p}d\mu\right)^{\frac{1}{p}}}_{A}+\underbrace{\left(\int_{X}|fg(x)|^{p}d\mu\right)^{\frac{1}{p}}}_{B}$$
(*)

Доказательство. Сначала разберём простые случаи. p=1,x — фиксирован. $|f(x)+g(x)|\leq |f(x)|+|g(x)|$ проинтегрируем по $X\Rightarrow (*)$ при p=1. Теперь пусть p>1. Если $A=+\infty$, или $B=+\infty$, или C=0, то (*).

Теперь же пусть $A<+\infty, B<+\infty, C>0$. Доказателсьвто будет в два этапа. На первом этапе получим гораздо более слабое утверждение, вообще не то, что требуется в теореме, но оно нам понадобится. Докажем, что $C<+\infty$.

 $a, b \in \mathbb{R} \Rightarrow |a+b| \le |a|+|b| \le 2\max(|a|,|b|) \Rightarrow |a+b|^p \le 2^p \max(|a|^p,|b|^p) \le 2^p (|a|^p+|b|^p) \Rightarrow$ при фиксированном x

$$|f(x)+g(x)|^p \leq 2^p (|f(x)|^p + |g(x)|^p)$$
 проинтегрируем по X

20

 $\Rightarrow C^p \leq 2^p (A^p + B^p) \Rightarrow C < +\infty$. Первая часть доказательства закончена.

$$C^p = \int_X |f+g|^p d\mu = \int_X |f+g| \cdot |f+g|^{p-1} d\mu \leq \int_X |f| \cdot |f+g|^{p-1} d\mu + \int_X |g| \cdot |f+g|^{p-1} d\mu$$

$$\int_X |f| \cdot |f+g|^{p-1} d\mu \overset{\text{н. Гельдера}}{\leq} \left(\int_X |f+g| d\mu \right)^{\frac{1}{p}} \cdot \left(\underbrace{\int_X |f+g| d\mu}_A \right)^{(p-1)q} = AC$$

$$\int_{X} |g| \cdot |f + g|^{p-1} d\mu \stackrel{\text{аналогично}}{\leq} BC^{\frac{p}{q}} \Rightarrow$$

$$C^{p} \leq (A + B)C^{\frac{p}{q}}, \quad 0 < C < +\infty \Rightarrow$$

$$C^{p - \frac{p}{q}} = C \Rightarrow C \leq A + B(\text{ это (*)})$$

3.3. Пространство Лебега

Отсюда и до определения L^{∞} очень аккуратно с \mathcal{L} и L читать. Тут точно есть путаница, но записи лекции нет, чтобы ее устранить.

Определение 3.6. (X,U,μ) — пространство с мерой. $L(X,\mu)$ — пространство суммируемых функций. $1 \le p < +\infty$ $\mathcal{L}^p(X,\mu) = \{f: |f|^p \in L(X,\mu)\}$

$$f \in L^p(X,\mu), ||f||_p = \left(\int_X |f(x)|^p d\mu\right)^{\frac{1}{p}}$$

Проверим, что $||f||_p$ — это полунорма на $L^p(X,\mu).$ $c\in\mathbb{R}$ (или \mathbb{C}). $||cf||_p=|c|||f||_p$

 $||f+g||_p \leq ||f||_p + ||g||_p —$ неравенство Минковского $||f||=0 \Leftrightarrow \int_X |f(x)|^p d\mu = 0 \Leftrightarrow f(x)=0 \text{ почти всюду по мере } \mu \text{ на } X.$

Пример 3.4. $L[0,1], \lambda$ — мера Лебега на [0,1].

функция Дирихле $\varphi(x)=\begin{cases} 1,x\in\mathbb{Q}\\ 0,x\notin\mathbb{Q} \end{cases}$ $\int_0^1|\varphi(x)|d\lambda=0.$

 $N=\{f-$ измерима $\wedge f(x)=0$ почти всюду на X по $\mu\}$. $||f||_p=0 \Leftrightarrow f\in N$ (не зависит от p). Рецепт приготовления пространства с нормой из полуфбриката. пространство с полунормой. N — подпространство в L^p , $L^p=L^p/N$ — факторпространство.

 $g,f\in L^p,f$ $g\Leftrightarrow f-\underline{g}\in N\Leftrightarrow f(x)=g(x)$ почти всюду по $\mu.$ \overline{f} — класс эквивалентности, $\overline{f}=\{g:f\ g\}.$

 $||\overline{f}||_p:=||f||,$ то есть можно взять любую функцию из класса эквивалнентности.

$$||\overline{f}||_p = 0 \Leftrightarrow \int_X |f|^p d\mu = 0 \Leftrightarrow f \in N \Rightarrow \overline{f} = N = \overline{0} \Rightarrow$$

 $||\overline{f}||_p$ — норма на L^p . Говорят, что $f\in L^p$, возьмём функцию из L^p , но имеют в виду, что возьмут класс экивалентности, а из него возьмут функцию

Одна из главных целей — доказать, что эти пространства Банаховы. Сначала определим $L^{\infty}(X,\mu)$ (существенно ограниченные функции).

Определение 3.7
$$(L^{\infty}(X,\mu))$$
. $f \in L^{\infty}(X,\mu)$, если

 $\exists c > 0 | f(x) | \leq c$ почти всюду на X по $\mu(\mu \{x : |f(x)| > c\} = 0)$

Возьмём точную нижнюю грань этой константы. $||f||_{\infty} = \inf\{c \ge 0 : \mu\{x : ||f(x)|| > c\} = 0\}$ (существуенный sup, или на подлом англосаксонском ess $\sup_X f$)

Свойство 3.1.
$$f \in \mathcal{L}^{\infty}(X,\mu) \Rightarrow \mu\{f(x) > ||f||_{\infty}\} = 0$$

Доказательство. $e = \{x : |f(x) > ||f||_{\infty}\}, m \in \mathbb{N}.$ $e_m = \{x : |f(x)| > ||f||_{\infty} + \frac{1}{m}\} \Rightarrow \mu e_m = 0$ по определеннию ess $\sup_X f \Rightarrow e = \bigcup_{m=1}^{\infty} e_m \Rightarrow \mu e = 0$

$$||f||_{\infty}$$
 — полунорма на \mathcal{L}^{∞} $\lambda \neq 0 \quad |\lambda f(x)| \leq |\lambda| \cdot c \Leftrightarrow |f(x) \leq c \Rightarrow ||\lambda f||_{\infty} = |\lambda|||f||_{\infty},$ $f,g \in \mathcal{L}^{\infty}, x \in X \Rightarrow |f(x) + g(x)| \leq |f(x)| + |g(x)| \leq ||f||_{\infty} + ||g||_{\infty}$ для п.в. x на $X \Rightarrow ||f + g||_{\infty} < ||f||_{\infty} + ||g||_{\infty}$

 $||f||_{\infty}=0\Leftrightarrow \mu\{x:|f(x)|>0\}=0\Leftrightarrow f(x)=0$ п.в. на $X\Leftrightarrow f\in N=\{f$ — измерима, f(x)=0 п.в. на $X\}$

$$L^{\infty} = \mathcal{L}^{\infty}/N$$

Все, что Н.А. доказал для меры Лебега, верно и для других мер. Те доказательства и так были не особо веселые, чтобы их повторять.

Теорема 3.4 (Фату). $(X, U, \mu), \{g_n\}_{n=1}^{\infty}, g_n$ — измеримые, $g_n(x) \geq 0$

$$g_n(x) \xrightarrow[\text{п.в.}]{} g(x) \qquad \int_X g_n(x) d\mu \leq C$$
 не зависит от п
$$\Rightarrow \int_X g(x) d\mu \leq C$$

Первая существенная теорема, которая нам встретилась.

Теорема 3.5 (полнота пространства Лебега). $(X, U, \mu), 1 \le p \le +\infty \Rightarrow L^p(X, \mu)$ — банаховы.

Доказательство. при $1 \le p < +\infty$ воспользуемся критерием полноты (если сходится ряд из норм, то сам ряд сходится)

$$\{f_n\}_{n=1}^{\infty}, f_n \in L^p, \sum_{n=1}^{\infty} ||f_n||_p \le C < +\infty$$

$$S_n(x) = \sum_{k=1}^n f_k(x)$$

Докажем, что $\lim_{n\to\infty}||S_n(x)-f(x)||_p=0$. Существует ли $f(x)=\lim_{n\to\infty}S_n(x)$ почти всюду на X?

Рассмотрим $\sigma_n(x) = \sum_{k=1}^n |f_k(x)| \Rightarrow \sigma_n(x)$ возрастает $\Rightarrow \exists \sigma(x) = \lim_{n \to \infty} \sigma_n(x)$. Возможно, $\sigma(x) = +\infty$ для некоторых x.

$$||\sigma_n||_p \le \sum_{k=1}^n ||f_k||_p \le C$$

$$\int_{X} |\sigma_{n}(x)|^{p} d\mu \leq C^{p} \wedge \sigma_{n}(x)^{p} \underset{n \to \infty}{\longrightarrow} \sigma_{(x)}^{p} \, \forall \, x \in X \stackrel{\text{\tiny T. } \Phi_{\text{ary}}}{\Rightarrow}$$

 $\int_X \sigma(x)^p d\mu \le c^p$ Самое главное, что мы из этого заключаем: $\sigma(x) < +\infty$ п.в. на X по $\mu.$

$$x\in X$$

$$\sum_{k=1}^{\infty}|f_k(x)|<+\infty\Rightarrow\sum_{k=1}^{\infty}f_k(x)-$$
 сходится
$$f(x):=\sum_{k=1}^{\infty}f_k(x)$$
 определена п.в. на $X,\lim_{n\to\infty}S_n(x)=f(x)$
$$\sum_{k=1}^{\infty}||f_k||_p<+\infty, \varepsilon>0$$

Применим критерий Коши: $\exists N \in \mathbb{N} \quad m > n > N \Rightarrow \sum_{k=n+1}^m ||f_k||_p < \varepsilon \Rightarrow ||S_m(x) - S_n(x)||_p \leq \sum_{k=n+1}^m ||f_k||_p < \varepsilon$

$$\int_{x} |S_{m}(x) - S_{n}(x)|^{p} d\mu < \varepsilon^{p}(n \text{ фиксировано}) \wedge |S_{m}(x) - S_{n}(x)|^{m} \underset{m \to \infty}{\longrightarrow} |f(x) - S_{n}(x)|$$

$$\stackrel{\Phi_{\text{ату}}}{\Rightarrow} \int_{X} |f - S_{n}|^{p} d\mu \leq \varepsilon^{p} \Rightarrow ||f - S_{n}|| \leq \varepsilon$$

 $f-S_n\in L_p, S+n\in L^p\Rightarrow f=(f-S_n)+S_n\Rightarrow f\in L_p$ и $||f-S_n||_p\underset{n\to\infty}{\longrightarrow} 0$ Теперь осталось рассмотреть случай $p=\infty.$ $\{f_n\}_{n=1}^\infty$ фундаментальная, $f_n\in L^\infty,$

$$|f_n(x)| \le ||f_n||_{\infty} \quad x \in X \setminus e_n, \mu e_n = 0 \quad n \in \mathbb{N}$$

 $e=\cup_{n=1}^{\infty}, X_1=X\setminus e\Rightarrow f_n\in m(X_1)$ — ограниченная функция. $m(X_1)$ — полное $\Rightarrow \{f_n\}$ — фундаментальна в $m(X_1)\Rightarrow \exists ./f\in m(X_1)$ — $\sup_{x\in X_1}|f(x)-f_n(x)|\underset{n\to\infty}{\longrightarrow} 0$. Положим f(x)=0 если $x\in e\Rightarrow \lim_{n\to\infty}||f_n-f||_{L\infty}=0$ —

3.4. Пространства l_n^p, l^p

 $n \in \mathbb{N}, 1 \le p < +\infty.$

Определение 3.8.

$$l_n^p = \left\{ \mathbb{R}^n, x = (x_1, \dots, x_n), x_j \in \mathbb{R}, ||x||_p = \left(\sum_{j=1}^n |x_j|^p\right)^{\frac{1}{p}} \right\}$$

Рассмотрим $X = \{1, 2, ..., n\}$. Возьмём дискретную меру $\mu(j) = 1$ при $1 \le j \le n$, $l_n^p = L^p(X, \mu)$. $f \in L^p(X, \mu)$, $f(j) = x_j \Rightarrow l_n^p$ — полное. Посмотрим, что будет обозначать сходимость этой нормы.

Теорема 3.6.
$$\{x^{(m)}\}_{m=1}^{\infty}, x=(x_1,\ldots,x_n), x^{(m)}=(x_1^{(m)},\ldots,x_n^{(m)}), x^{(m)}\in l_n^p, q\leq p\leq +\infty$$

$$\lim_{m \to \infty} ||x - x^{(m)}||_p = 0 \Leftrightarrow \lim_{m \to \infty} x_j^{(m)} = x_j, 1 \le j \le n$$

 $Доказательство. \Rightarrow$

Пусть j — фиксировано, $\lim_{m\to\infty} x^{(m)} = x$ в l_n^p .

При
$$p<+\infty$$
 $||x-x^{(m)}||_p=\left(\sum_{i=1}^n|x_i-x_i^{(m)}|^p\right)^{\frac{1}{p}}\geq |x_j-x_j^{(m)}.$ Так как $||x-x^{(m)}||_p\underset{m\to\infty}{\longrightarrow}0\Rightarrow\lim_{m\to\infty}|x_j-x_j^{(m)}|=0.$ При $p=\infty$ $||x-x^{(m)}||_\infty=\max_{1\leq i\leq m}\{|x_i-x_i^{(m)}|\}\geq |x_j-x_j^{(m)}|.$ Так как

 $||x - x^{(m)}||_{\infty} \xrightarrow[m \to \infty]{} 0 \Rightarrow \lim_{m \to \infty} |x_j - x_j^{(m)}| = 0$ Теперь ←

$$1 \le j \le n \quad \lim_{m \to \infty} |x_j - x_j^{(m)}| = 0 \Rightarrow \left(\sum_{j=1}^n ||x_j - x_j^{(m)}|^p\right)^{\frac{1}{p}} \underset{m \to \infty}{\longrightarrow} 0$$
 и $\Rightarrow \max_{1 \le j \le n} |x_j - x_j^{(m)}| \underset{m \to \infty}{\longrightarrow} 0$

Определение 3.9. $l_p = \{x: \{x_j\}_{j=1}^{\infty}, x_j \in \mathbb{R}(\mathbb{C}) \land \sum_{j=1}^{\infty} |x_j|^p < 0$

$$||x||_p = \left(\sum_{j=1}^{\infty} |x_j|^p\right)^{\frac{1}{p}}$$

$$X=\mathbb{N},\, \mu(j)=1,\, \mu=\sum_{n=1}^\infty\sigma_n$$

$$l^p=L^p(\mathbb{N},\mu)\Rightarrow \text{ полное} \qquad 1\leq p<+\infty$$

Замечание 3.2. $\{x^{(m)}\}_{m=1}^{\infty}, x^{(m)} \in l^p, \lim_{m \to \infty} ||x^{(m)} - x||_p = 0 \Rightarrow \forall j \lim_{m \to \infty} x_j^{(m)} = 0$ x_i Например, $\not =$ при $e_m = (0, 0, \dots, 0, 1, 0, 0, \dots)$

Рис. 3.1: Примеры единичных шаров в l_2^p

Пусть j фиксировано. $\lim_{m\to\infty}(e_m)_j=0$ $||e_m-\mathbb{O}||_p=1$ $\forall\,p,1\le p\le +\infty.$ В качестве упражнения доказать, что l^p — полное непосредственно.

На рисунке 3.1 приведены примеры единичных шаров в $l_2^p=\{(x,y):(|x|^p+|y|^p)^{\frac{1}{p}}\},1\leq p<+\infty.$ Для l_2^∞ норма определяется $||(x,y)||_\infty=\max(|x|,|y|)$

3.5. Неполное нормированное пространство

Определение 3.10 (Финитное линейное пространство).

$$F = \{x - \{x_j\}_{j=1}^{\infty}, x_j \in \mathbb{R}(\mathbb{C}) \exists \ N(x) \in \mathbb{N} : n > N(x) \Rightarrow x_n = 0\}$$

 $F \subset l^p \ 1 \leq p \leq +\infty$. $(F, ||\cdot||_p)$ — не полное, F — не замкнуто. Будем брать геометрическую прогрессию и обрывать ее на некотором члене.

$$x^{(m)} = \left\{ \frac{1}{2}, \frac{1}{4}, \dots, \frac{1}{2^m}, 0, 0, 0, \dots \right\} \in F$$

$$X = \left\{ \frac{1}{2^k} \right\} \in l^p$$

$$1 \le p < +\infty \quad ||x - x^{(m)}||_p = \left(\sum_{k=m+1}^{\infty} \frac{1}{2^{kp}} \right)^{\frac{1}{p}} \xrightarrow[m \to \infty]{} 0$$

Следовательно, F — не замкнуто.

В качестве упражнения проверить, что \overline{F} в $l^p=$? при $p<+\infty$ и при $p = \infty$.

Теорема 3.7.
$$C[a,b], ||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}}, 1 \leq p < +\infty$$

$$(C[a,b], ||\cdot||) - \text{ не полное}$$

Доказательство. При $p=1, [a,b]=[-1,1], f\in C[a,b], \int_a^b |f(x)|^p dx=$ $0 \Leftrightarrow f(x) \equiv 0$. Предъявим фундаментальную последовательность, предел которой не будет непрерывной функцией.

$$f_n = \begin{cases} 0, -1 \leq x \leq 0 \\ nx, x \in [0, \frac{1}{n}] \end{cases}, f \in C[-1, 1]$$
 $1, x \in [\frac{1}{n}, 1]$ f_n — фундаментальная в $(C[-1, 1], p = 1)$

Пусть m > n.

$$\int_{-1}^{1} |f_m(x) - f_n(x)| dx = \frac{1}{2} \left(\frac{1}{n} - \frac{1}{m} \right) \le \frac{1}{2n} \underset{n,m \to \infty}{\longrightarrow} 0$$

Γ ЛАВА 3. ПРОСТРАНСТВО СУММИРУЕМЫХ ФУНКЦИЙ (ЛЕБЕГА L^p)

27

Пусть
$$\exists$$
 ./ $f \in C[-1,1]: ||f - f_n||_1 \xrightarrow[n \to \infty]{} 0$

$$m \ge n \qquad \int_{\frac{1}{n}}^{1} \underbrace{|f(x) - 1|}_{=0} dx \xrightarrow[m \to \infty]{0}$$
$$\int_{\frac{1}{n}}^{1} |f(x) - 1| dx \le \int_{0}^{1} |f(x) - f_{m}(x)| dx \xrightarrow[m \to \infty]{0} 0$$

$$\Rightarrow f(x) = 1, x \in \left[\frac{1}{n}, 1\right] \forall n$$

$$\begin{cases} \Rightarrow f(x)=1, x\in(0,1], f \text{ непрерывна }, f(0)=1\\ \text{аналогично } f(x)\equiv 0 \text{ на } [-1,0] \end{cases} \Rightarrow \text{ противоречие}$$

Глава 4

Пополнение метрического пространства

26.09.23

Мы привели несколько примеров нормированных пространств, не являющихся полными. Приведём еще один пример.

Определение 4.1.

$$P = \left\{ p(x) = \sum_{k=0}^{n} a_k x^k, a_k \in \mathbb{R}, n \ge 0 \right\}$$

Р (подпространство в алгебраическом смысле) $\subset C[a,b], ||p||_{\infty} = \max_{x \in [a,b]} |p(x)| \ e^x \notin P, \ p_n(x) = \sum_{k=0}^n \frac{x^k}{k!}, \Rightarrow p_n \underset{[a,b],n \to \infty}{\Longrightarrow} e^x$ это не многочлен, потому что если сколько-то раз продифференцировать многочлен, он станте тождественным $0 \Rightarrow \overline{P} \setminus P \ni e^x \Rightarrow P$ — не замкнуто $\Rightarrow P$ — не полное.

$$\overline{\mathbf{P}} = C[a,b]$$

Теорема 4.1 (Вейерштрасса, 1885). $f \in C[a,b], \forall \varepsilon > 0 \exists p \in P$ т.ч. $||f-p|| < \varepsilon$ (любую функцию на отрезке можно приблизить многочленами)

$$p_n \underset{G}{\Longrightarrow} f \Rightarrow f$$
 аналитическая в G

4.1. Пополнение метрического пространства

Несколько простых свойств метрики, и все следуют из неравенства треугольника

Теорема 4.2 (Свойства метрики). (X, ρ) — метрическое

1.
$$x, y, z, u \in X \Rightarrow |\rho(x, u) - \rho(y, z)| \le \rho(x, y) + \rho(u, z)$$

2.
$$\rho: X \times X \to \mathbb{R} \Rightarrow \rho(x,y)$$
 — непрерывная функция

3.
$$A\subset X, A$$
 — подмножество, $\rho(x,A)=\inf_{y\in A}\rho(x,y)\Rightarrow \rho(x,A)$ — непрерывная функция от x

4.
$$A \subset X, A = \overline{A}, x_0 \notin A \Rightarrow \rho(x_0, A) > 0$$

Доказательство. 1.
$$\rho(x,u) \leq \rho(x,y) + \rho(y,u) \leq \rho(x,y) + \rho(y,z) + \rho(z,u) \Rightarrow \rho(x,u) - \rho(y,z) \leq \rho(x,y) + \rho(z,u)$$
 Аналогично $\rho(y,z) - \rho(x,u) \leq \dots$ из всего \Rightarrow 1)

2. Докажем непрерывность с помощью последовательности. $\rho(x,y)$ — непрерывная?

$$\lim_{n \to \infty} x_n = x, \lim_{n \to \infty} y_n = y \Leftrightarrow \lim_{n \to \infty} \rho(x_n, x) = 0 = \lim_{n \to \infty} \rho(y_n, y)$$

$$\rho(x,y) - \rho(x_n,y_n) | \stackrel{(1)}{\leq} \rho(x,x_n) + \rho(y,y_n) \underset{n \to \infty}{\longrightarrow} 0 \Rightarrow \lim_{n \to \infty} \rho(x_n,y_n) = \rho(x,y)$$

3. $A \subset X$, $x, z \in X$, $|\rho(x, A) - \rho(z, A)| \le ?$ Пусть $y \in A$

$$\rho(x,y) \le \rho(x,z) + \rho(z,y) \Rightarrow \rho(x,A) \le \rho(x,z) + \rho(z,y) \,\forall \, y \in A$$
$$\Rightarrow \rho(x,A) \le \rho(x,z) + \inf_{y \in A} \rho(z,y) = \rho(x,z) + \rho(z,A) \Rightarrow$$
$$\rho(x,A) - \rho(z,A) \le \rho(x,z)$$

Но нам нужен модуль. Можем сказать, что x и z ничем не отличаются, аналогично $\rho(z,A)-\rho(x,A)\leq \rho(x,z)\Rightarrow 3$

4.

$$x_0 \notin A \Rightarrow x_0 \in X \setminus A$$
 открытое

$$\Rightarrow \exists \, \delta > 0 \quad B_{\delta}(x_0) \subset X \setminus A \Rightarrow \rho(x_0, A) \geq \delta$$

Перед определением пополнения нам потребуется несколько определений, связанных с отображениями в метрических пространствах. $(X, \rho), (Y, d)$ — метрические простарнства. $T: X \to Y$.

Определение 4.2 (Изометрическое вложение).

$$d(T_x, T_z) = \rho(x, z) \quad \forall x, z \in X$$

Обозначение: $X \hookrightarrow Y$

Определение 4.3 (Изометрия). T — изометрическое вложение, T(X) = Y

Определение 4.4 (Изометричность пространств). $(X, \rho), (Y, d)$ изометричны, если $\exists \ T : X \to Y, T$ — изометрия

Свойство 4.1. T — изометрическое вложение $\Rightarrow T$ — инъективное, непрерывное

Доказательство. $x,z\in X,T:X\to Y$, пусть $T_x=T_z\Rightarrow d(T_x,T_z)=0$ Значит, исходное расстояние тоже 0 по свойству метрики. $d(x,z)=0\Rightarrow x=z$

Инъективность проверили, теперь непрерывность, это еще проще.

$$\lim_{n \to \infty} = x \Leftrightarrow \lim_{n \to \infty} \rho(x, x_n) = 0 \Rightarrow \lim_{n \to \infty} d(T_{X_n}, T_x) = 0 \Rightarrow \lim_{n \to \infty} T_{X_n} = T_x$$

Свойство 4.2. Если T — изометрия, то $\exists T^{-1}$ — изометрия.

Свойство 4.3. «Изометричность» — отношение эквивалентности на множестве метрических пространств

И наконец

Определение 4.5 (Пополнение м. пространства). (X, ρ) — метрическое пространство. (Z, d) — полное метрическое пространство. (Z, d) — пополнение (X, ρ) , если существует $T: X \to Z$

- 1. T изометрическое вложение
- 2. $\overline{T(X)} = Z$

Замечание 4.1. Не обязательно искать пространство, удовлетворяющее и второму свойству. Достаточно найти такое, которое удовлетворяет первому. (X, ρ) — метрическое пространство, (U, d) — полное метрическое пространство. Пусть $\exists T: X \to U$ — изометрическое вложение. Если 2 свойство не выполняется, то легко такое Z построить. Возьмём замыкание образа. $Z = \overline{T(X)} \Rightarrow (Z, d)$ — пополнение X.

Теперь обещанная теорема. Возьмём любое метрическое пространство и покажем, что у него есть пополнение.

Теорема 4.3 (О пополнении метрического пространства). (X, ρ) — метрическое $\Rightarrow \exists$ пополнение (Z, d)

Доказательство. Есть классическое доказательство с рассмотрением всех фундаметнальных последовательностей, рассмотрением фактор-пространства, муторным разбором случаев. Мы пойдем другим путём. Будет короткое, но фантастически непонятное доказательство в том смысле, что непонятно, как его придумать.

Мы собираемся использовать $m(X) = \{f: X \to \mathbb{R}, \sup_{x \in X} |f(x)| < +\infty\}$

$$||f||_{m(X)} = ||f||_{\infty} = \sup_{x \in X} |f(x)|$$

m(X) — полное пространство.

Каждой точке мы сопоставим функцию. Вот такая идея! $\varphi: X \to m(X)$. Оно же будет изометрическим вложением, то есть будет сохранять расстояния.

Сначала будет маленькое облегчающее предположение про X, от которого мы потом откажемся. Пусть X — ограниченное, то есть $\exists \, M>0$ т.ч. $\forall \, x,y \in X \, \rho(x,y) \leq M$. Единственная цель предположения — формула для φ будет чуть проще. Вообще, можно было бы обойтись и без него.

 $t \in X, t$ — фиксирован, $f_t(x) = \rho(x,t)$. При фиксированном t — это

функция на X. Именно сюда наше отображение будет отображать t. Одной точке — целая функция, понятно?

$$\varphi(t) := f_t(x) \text{ r.e. } \varphi : t \to f_t(x)$$

 $|f_t(x)| \le M \Rightarrow f_t \in m(X)$

Самое главное. Проверим, что отображение сохраняет расстояния. Это очень легко. Возьмём 2 точки.

Пусть
$$t, s \in X$$
, $||f_t - f_s||_{\infty} = \sup_{x \in X} |\rho(x, y) - \rho(x, s)|$
 $|\rho(x, t) - \rho(x, s)| \le \rho(t, s)$, Пусть $x = t \Rightarrow |\rho(t, t) - \rho(t, s)| = \rho(t, s)$
 $\Rightarrow ||\varphi(t) - \varphi(s)||_{\infty} = \rho(t, s) \Rightarrow \varphi$ — изометрическое вложение

Посмотрим, что будет, если откажемся от этого облегчающего предположения. Надо будет чуть исправить отображение φ . X — любое метрическое пространство. $a \in X$ — фиксированная точка.

$$t \in X, f_t(x) = \rho(x, t) - \rho(x, a) \Rightarrow |f_t(x)| \le \rho(a, t) \Rightarrow f_t \in m(X)$$

Раньше мы могли так брать и не вылетать из пространства из-за ограниченности. Вычтем эту штуку, чтоыб попасть, куда надо.

$$t,s\in X\Rightarrow f_t(x)-f_s(x)=
ho(x,t)-
ho(x,s)\overset{(1)}{\Rightarrow}||f_t-f_s||_\infty=
ho(s,t)$$
 Пополнение $X\colon \overline{\varphi(X)}^{||\cdot||_\infty}=Z,(Z,||\cdot||_\infty)$

Таким образом, изучение метрических пространств можно свести к изучению подмножества пространства непрерывных функций.

Замечание 4.2. Забегая далеко вперёд. $(X, ||\cdot||)$ — нормированное, X^* — множество непрерывных линейных функционалов на X, X^* — полное (ВСЕГДА).

Мы построим каноническое вложение
$$\pi: X \to \underbrace{(X^*)^*}_{\text{полное}}, \ \overline{\varphi(x)}^{X^{**}}$$
 — пополнение X.

4.2. Теорема о вложенных шарах

Когда-то в анализе была теорема Кантора о том, что если есть последовательность вложенных друг в друга отрезков, то их пересечение не пусто. Мы докажем похожее утверждение для метрических пространств. Оказывается, то утверждение было связано с полнотой вещественной прямой $\mathbb{R}.$ (X,ρ) — метрическое пространство, $r>0, x\in X$ Введём стандартное обозначение замкнутого шара.

$$D_r(x) = \{ y \in X : \rho(x, y) \le r \}$$

Теорема 4.4 (О вложенных шарах). (X, ρ) — метрическое пространство. X — полное ($|\Leftrightarrow (\forall \{D_n\}_{n=1}^{\infty}, D_n = D_{r_n}(x_n)), D_{n+1} \subset D_n$, $\lim_{n\to\infty} r_n = 0 \Rightarrow \bigcap_{n=1}^{+\infty} D_n \neq \varnothing$). По сранению с теоремой Кантора у нас есть дополнительное предположение о стремлении к нулю, которое здесь важно, а на прямой было как данность.

Доказательство. \Rightarrow X — полное

$$\{D_n\}_{n=1}^{\infty}, D_n = D_{r_n}(x_n), D_{n+1} \subset D_n, \lim_{n \to \infty} r_n = 0$$

Надо проверить, что центры шаров образуют фундаментальную последовательность, то есть что $\{x_n\}_{n=1}^{\infty}$ — фундаментальная. Пусть $\varepsilon > 0 \quad \exists \ N \in \mathbb{N} \quad r_n < \varepsilon$ при $n \geq N$.

$$(n > N \land m > N) \Rightarrow (x_n \in D_n \land x_m \in D_n) \Rightarrow \rho(x_n, x_m) \le$$

 $\leq \rho(x_n, x_N) + \rho(x_m, x_N) \le 2\varepsilon$

$$X$$
 — полное $\Rightarrow \exists \lim_{n \to \infty} x_n = x$

любое фиксированное $m \in \mathbb{N}$ $x_n \in D_m \, \forall \, n \geq m, D_m$ — замкнутое

$$\Rightarrow \lim_{n \to \infty, n \ge m} x_n = x \in D_m$$

$$\Rightarrow x \in \bigcap_{m=1}^{\infty} D_m$$

 \leftarrow

Ничего кроме определения для доказательства полноты у нас нет. Пусть $\{x_n\}_{n=1}^\infty$ — фундаментальная. Возьмём достаточно быстро убывающую последовательность $\varepsilon_k=\frac{1}{2^k}$. Существует $\{x_{n_k}\}_{k=1}^\infty$, $\rho(x_{n_k},x_{n_{k+1}})<\frac{1}{2^{k+1}}$. $D_k=D_{\varepsilon_k}(x_{n_k})$

$$\begin{cases} y \in D_{k+1} \Rightarrow \rho(y, x_{n_{k+1}}) \le \frac{1}{2^{k+1}} \\ \rho(x_{n_k}, x_{n_{k+1}}) < \frac{1}{2^{k+1}} \end{cases} \Rightarrow$$

$$\rho(y, x_{n_k}) \le \rho(y, x_{n_{k+1}}) + \rho(x_{n_{k+1}}, x_{n_k}) < \frac{1}{2^{k+1}} + \frac{1}{2^{k+1}} = \frac{1}{2^k}$$
$$\Rightarrow y \in D_k \Rightarrow D_{k+1} \subset D_k$$

Мы взяли произвольный элемент из D_{k+1} и показали, что он принадлежит D_k , то есть показали вложенность элементов последовательности.

$$\Rightarrow \exists x \in \bigcap_{k=1}^{\infty} D_k \quad \rho(x, x_{n_k}) \le \frac{1}{2^k} \Rightarrow \lim_{k \to \infty} x_{n_k} = x$$

По свойству фундаметнальных последовательностей из первой лекции $\lim_{n\to\infty} x_n = x$

Замечание 4.3. В условиях теоремы пересечение вложенных шаров $\bigcap_{n=1}^{\infty} D_n$ состоит из одной точки.

Доказательство. Пусть $x \in \bigcap_{n=1}^{\infty} D_n, \Rightarrow \rho(x, x_n) \in r_n, \lim_{n \to \infty} r_n = 0 \Rightarrow$ $\lim_{n\to\infty} x_n = x$. А мы знаем, что предел в метрическом пространстве единственный.

Замечание 4.4. Условие, что $\lim_{n\to\infty} r_n = 0$ в теореме существенно.

Пример 4.1 (Замкнутые множества). $\{F_n\}_{n=1}^{\infty}, F_n$ – замкнутое, $F_{n+1} \subset$ $F_n, F_n \subset \mathbb{R}, \bigcap_{n=1}^{\infty} F_n = \varnothing, F_n = [n, +\infty)$

Пример 4.2 (По теореме).

$$X[1.+\infty) \quad \rho(x,y) = \begin{cases} 1 + \frac{1}{x+y}, & x \neq y \\ 0, & x = y \end{cases}$$

Проверим, что ρ — метрика. x, y, z

$$\rho(x,y) + \rho(y,z) = 1 + \frac{1}{x+y} + 1 + \frac{1}{y+z} > 1 + 1 > 1 + \frac{1}{x+z} = \rho(x,z)$$

Проверяем полноту. Пусть $\{x_n\}_{n=1}^\infty$ фундаментальная, $\varepsilon=\frac{1}{2}\Rightarrow$

$$\exists N \in \mathbb{N} : (n \ge N \land m \ge N) \rho(x_n, x_m) < \frac{1}{2} \Rightarrow \left(\rho(x_n, x_N) < \frac{1}{2} \land \rho(x_m, x_N) < \frac{1}{2} \right) \Rightarrow$$

$$x_N = x_{N+1} = x_{N+2} = \dots$$

$$\Rightarrow \exists \lim_{n \to \infty} x_n = X_N \Rightarrow (X, \rho) - \text{полное}$$

Полноту проверили.
$$r_n=1+\frac{1}{2n}, x_n=n; D_n=D_{r_n}(n), h\in D_n.$$
 Пусть $x\neq n, x\in D_n\Rightarrow \rho(x,x_n)=1+\frac{1}{x+n}\leq 1+\frac{1}{2n}$

Замечание 4.5 (Домашнее задание). Если $(X, ||\cdot||)$ — банахово, то $D_{n+1} \subset D_n\{D_n\}_{n=1}^{\infty} \Rightarrow \bigcap_{n=1}^{\infty} D_n \neq \emptyset$ (требование $\lim_{n \to \infty} r_n = 0$ лишнее)

4.3. Сепарабельные пространства

 (X, ρ) — метрическое пространство,

Определение 4.6 (A плотно в C). $A \subset X, C \subset X$. A плотно в C, если $C \subset \overline{A} \Leftrightarrow$

$$\forall x \in C \,\forall \, \varepsilon > 0 \,\exists \, a \in A \, \rho(x,A) < \varepsilon \Leftrightarrow \forall \, \varepsilon > 0 \, C \subset \bigcup_{a \in A} B_{\varepsilon}(a)$$

Любой элемент C можно сколь угодно хорошо приблизить элементами из A.

Определение 4.7 (A всюду плотно в C). A — всюду плотно в X, если $\overline{A} = X$

Чем же полезно это свойство? Если хотят доказать свойство для X, то часто доказывают сначала для всюду плотного подмножества.

Определение 4.8 (Сепарабельное пространство). (X, ρ) — сепарабельное, если $\exists E \subset X, E = \{x_n\}_{n=1}^{\infty}, \overline{E} = X$

Теорема 4.5. $n \in \mathbb{N}, q \leq p \leq +\infty$,

 l_n^p — сепарабельное

Доказательство.

$$l_n^p = (\mathbb{R}^n, ||\cdot||_p) = \{x = (x_1, \dots, x_n), x_j \in \mathbb{R}, ||x||_p\}$$
$$E = \mathbb{Q}^n = \{x = (x_1, \dots, x_n), x_j \in \mathbb{Q}\}$$

Если
$$(\mathbb{C}^n, ||\cdot||_p), \tilde{\mathbb{Q}} = \{x + iy, \, x, y \in \mathbb{Q}\}, E = \tilde{\mathbb{Q}}^n$$

Теорема 4.6. F — финитные последовательности, $1 \le p \le +\infty$

$$(F,||\cdot||_p)$$
 — сепарабельно

Доказательство. $E = \bigcup_{n=1}^{\infty}$, $\mathbb{Q}^n = \{x = (x_1, x_2, \dots, x_{N(x)}, 0, 0, \dots,), x_j \in \mathbb{Q}\}$. Попросту говоря, все финитные последовательности, координаты которых рациональны.

Теорема 4.7.
$$l^p, 1 \le p < +\infty, C_0$$
 — сепарабельные

Доказательство. На прошлой лекции мы доказали, что

$$(F,||\cdot||_p),\overline{F}^{||\cdot||_p}=l^p$$
 при $1\leq p<+\infty$ $\begin{cases} E=\bigcup_{n=1}^\infty\mathbb{Q}^n-\text{ всюду плотно в }F\\ F-\text{ всюду плотное в }l^p\end{cases}$ \Rightarrow E всюду плотно в $l^p,1\leq p<+\infty$

Почему любой элемент из l^p может быть приближен финитной последоватностью? Мы ее просто отрезаем. \square

Ответ на упражнение для читателя, которое было на прошлой лекции: F — подпространство в алгебраическом смысле, $F \subset l^{\infty}$, $\overline{F}^{||\cdot||_{\infty}} = C_0$

$$x_0 \in C_0 \Leftrightarrow x = \{x_n\}_{n=1}^{\infty}, \lim_{n \to \infty} x_n = 0$$

берем первые m координат и дополняем их нулями

$$x^{(m)} = (x_1, \dots, x_m, 0, 0, \dots, 0, \dots) \Rightarrow x^{(m)} \in F$$
$$||x - x^{(m)}||_{\infty} = \sup_{k > m} |x_k| \underset{m \to \infty}{\longrightarrow} 0$$

Остаётся вопрос, почему C_0 — замкнутое множество. Можно в лоб, а можно по-учёному рассудить.

пусть
$$\{y^{(m)}\}_{m=1}^{\infty}, y^{(m)} \in C_0, y^{(m)} \underset{m \to \infty}{\longrightarrow} y$$
 в C_0

$$\Rightarrow \lim_{m \to \infty} ||y - y^{(m)}||_{\infty} = 0 \qquad y = \{y_n\}_{n=1}^{\infty}, \lim_{n \to \infty} y_n = 0 ???$$

А это равномерная сходимость на множестве натуральных чисел, то есть это тот случай, когда можно менять местами пределы.

$$\lim_{n \to \infty} y_n = \lim_{m \to \infty} \underbrace{\lim_{n \to \infty} y_n^{(m)}}_{=0} = 0$$

Упражнение: C — сепарабельное, $C \subset l^{\infty}$

Теорема 4.8. l^{∞} — не сепарабельное

Какой бы шарик из X мы бы не предъявили, там всегда будет элемент всюду плотного множества.

ГЛАВА 4. ПОПОЛНЕНИЕ МЕТРИЧЕСКОГО ПРОСТРАНСТВАЗТ

Доказательство.

$$A \subset \mathbb{N} \quad X_n^A = \begin{cases} 1, n \in A \\ 0, n \notin A \end{cases}$$

Мощность $\{A,A\subset\mathbb{N}\}$ — континуум (> счётное). Это и будет центр пересекающихся шариков. Посмотрим, каким будет расстояние между двумя разными точками.

$$A \subset \mathbb{N}, C \subset \mathbb{N}, A \notin \mathbb{C}$$

$$X_n^A - X_n^c = \begin{cases} 1 \\ 0 \\ -1 \end{cases} \Rightarrow ||x^A - x^C||_{\infty} = \sup_{n \in \mathbb{N}} |X_n^A - _n^C| = 1$$

То есть если 2 множества не равны, то расстояние между ними единица.

$$B_{\frac{1}{2}}(x^A) \cap B_{\frac{1}{2}}(x^C) = \varnothing$$

Мы предъявили несчётный набор дизъюнктных шариков. E — всюду плотно в $l^\infty \Rightarrow \forall \, A \subset \mathbb{N} \, \exists \, e_A \in B_{\frac{1}{2}}(x^A)$

$$A \neq C \Rightarrow e_A \neq e_C,$$
 $\underbrace{\{e_A\}_{a \subset \mathbb{N}}}_{\text{несчётно}} \subset E \Rightarrow E$ несчётно

То, что у всех шариков одинаковый радиус — это просто приятный бонус. \Box

Теорема 4.9. (X, ρ) — сепарабельное, $Y \subset X \Rightarrow (Y, \rho)$ — сепарабельное.

Доказательство. $\exists E = \{x_n\}_{n=1}^{\infty}$ — всюду плотно в $X, x_0 \in X$

$$\begin{split} \rho(x_n,Y) &= \inf_{y \in Y} \rho(x_n,y) \Rightarrow \\ \exists \ \{y_{n,k}\}_{k=1}^{\infty} & \lim_{k \to \infty} \rho(x_n,y_{n,k}) = \rho(x_n,Y) \\ y_{n,k} \in Y, \ F &= \{y_{n_k}\}_{n,k} - \text{счётное} \ , F \subset Y \end{split}$$

Проверим, что F — всюду плотно в Y. Пусть $y \in Y, \varepsilon > 0 \Rightarrow \exists x_n : \rho(y,x_n) < \varepsilon$. Из этого неравенства мы делаем вывод, что $\rho(x_n,Y) < \varepsilon$. Значит, $\exists \, k : \rho(x_n,y_{n,k}) < \varepsilon \Rightarrow$

$$\rho(y, y_{n,k}) \le \rho(y, x_n) + \rho(x_n, y_{n,k}) < \varepsilon + \varepsilon = 2\varepsilon$$

Следствие 4.1. X — бесконечное множество $\Rightarrow m(X)$ — не сепарабельное.

 $\@ifnextchar[{\it Доказательство}$. Можно слово в слово повторить доказательство для l^{∞} , но мы воспользуемся последними доказанными теоремами.

$$\exists \ \{a_j\}_{j=1}^\infty, a_j \in X, a_j \neq a_i \text{ при } i \neq j$$

$$Y = \{f \in m(X), f(x) = 0 \text{ если } x \neq a_j\} \sup_{j \in \mathbb{N}} |f(a_j)| < +\infty$$

$$Y \text{ изометрично } l^\infty, f \in Y, T(f) = \{f(a_j)\}_{j=1}^\infty \in l^\infty$$

$$Y - \text{ не сепарабельно } \Rightarrow \text{ и по последней теореме}$$

$$m(X) - \text{ не сепарабельно}$$

Теорема 4.10.

C[a,b] — сепарабельно

1 часть.

$$L = \{$$
 ломаные $\}$ $a = x_0 < x_1 < \ldots < x_n = b$ $\{y_k\}_{k=0}^n, y_k \in \mathbb{R}$ $L(x)$ — ломаные $L(x_k) = y_k, \ k = 0, 1, \ldots, n$ $l(x)$ линейная на $[x_k, x_{k+1}]$

Отметим, что L — всюду плотное множество в пространстве непрерывных функций. Это связано с равномерной непрерывностью. Никаких надежд на то, что оно будёт счётным нет.

пусть
$$f \in C[a,b], \, \varepsilon > 0 \Rightarrow \exists \, \delta > 0 : |x-y| < \delta$$

$$\Rightarrow |f(x) - f(y)| < \varepsilon$$

$$\exists \, \{x_k\}_{k=0}^n - \text{разбиение} \quad x_{k+1} - x_k < \delta$$

$$y_k := f(x_k) \quad L(x) - \text{ломаная}$$

$$\Rightarrow |f(x) - L(x)| < \varepsilon \Rightarrow ||f - L||_{\infty} \le \varepsilon \Rightarrow \overline{\mathcal{L}} = C[a,b]$$

как сделать так, чтобы множество ломаных было счётным? возьмём в качестве вершин элементы $\mathbb Q$

$$E=\{L\in\mathcal{L},\,x_k,y_k\in\mathbb{Q}\}$$
 — счетное множество
$$\begin{cases} \mathcal{L}\subset\overline{E}\\ \overline{\mathcal{L}}=C[a,b] \end{cases}\Rightarrow E$$
 — всюду плотно, т.е. $\overline{E}=C[a,b]$

2 часть. по т. Вейерштрасса замыкание многочленов — тоже пространство непрерывных функций.

$$P = \{p(x) = \sum_{k=0}^{n} a_k x^k\} \quad \overline{P} - C[a, b]$$

$$E = \{p(x) = \sum_{k=0}^{n} a_k x^k, a_k \in \mathbb{Q}\}$$

$$\begin{cases} P \subset \overline{E} \\ \overline{P} = C[a, b] \end{cases} \Rightarrow \overline{E} = C[a, b]$$

4.4. Нигде не плотные множества

Определение 4.9. (X, ρ) — метрическое пространство. $A \subset X, A$ — **нигде не плотно** в X, если

$$\forall B_r(x)$$
 при $r>0, x\in X$ $B_r(x)\not\subset \overline{A}\Leftrightarrow \operatorname{Int}(\overline{A})=\varnothing\Leftrightarrow$

Если мы рассмотрим замыкание, никакого шарика там не будет. Иначе: если мы рассмотрим внутренность замыкания, она будет пустой.

$$\forall r > 0, x \in X \quad B_r(x) \exists B_{r_1}(x_1) \subset B_r(x), B_{r_1}(x_1) \cap A = \emptyset$$

$$\Leftrightarrow \forall r > 0, x \in XD_r(x) \exists D_{r_1}(x_1) \subset D_r(X), D_{r_1}(x_1) \cap A = \emptyset$$

Скоро докажем связь между нигде не плотными множествами и полными пространствами. Но сперва определение, которое не будет часто встречаться, но сам факт — полезный.

Определение 4.10 (множество первой категории). $M\subset X, (X, \rho).$ M — множество первой категории, если

$$M = \bigcup_{j=1}^{\infty} E_j, E_j$$
 нигде не плотно в X

M — **множество второй категории**, если M нельзя представить в виде объединения счетного числа нигде не плотных множеств.

Теорема 4.11 (Бэр, о категориях). (X, ρ) — полное $\Rightarrow X$ — множество второй категории.

Доказательство. Можно было бы даже от противного. Но мы возьмём семейство $\{M_j\}_{j=1}^{\infty}$, M_j — нигде не плотно в X, $E - \bigcup_{j=1}^{\infty} M_j$. Мы докажем, что найдётся хоть одна точка, которая принадлежит X и не принадлежит E. Это и будет обозначать, что X невозможно представить в виде такого объединения.

$$x_0 \in X$$
 $D_0 = \{y: \rho(x_0,y) \le 1\}$ M_1 — нигде не плотно $\Rightarrow \exists D_1 = D_{r_1}(x_1) \subset D_0, D_1 \cap M_1 = \varnothing$ $r_1 < 1$

Теперь мы то же соображение применим к множеству M_2 , которое тоже нигде не плотно

$$\exists D_2 = D_{r_2}(x_2) \subset D_1, D_2 \cap M_2 = \varnothing$$

$$r_2 < \frac{1}{2}$$

и так далее $\begin{cases} \{D_n\}_{n=1}^\infty, D_n = D_{r_n}(x_n), D_{n+1} \subset D_n \\ D_n \cap M_n = \varnothing, r_n < \frac{1}{n} \end{cases}$ по теореме о вложенных шарах $\Rightarrow \exists \ x \in \cap_{n=1}^\infty D_n, (x \in D_n \land x \in X \setminus E) \Rightarrow x \notin M_n \ \forall \ n \Rightarrow x \notin E$

4.5. Полные семейства элементов

Теперь мы будем понимать полноту в совершенно другом смысле. Сначала вспомним, что такое линейная оболочка пространства.

Определение 4.11 (Линейная оболочка). X — линейное пространство над $\mathbb{R}(\mathbb{C})$. Рассмотрим семейство $\{x_{\alpha}\}_{{\alpha}\in A}$ — семейство элементов, $x_{\alpha}\in X$.

$$\mathcal{L}\{x_{\alpha}\}_{\alpha \in A} = \left\{ \sum_{k=1}^{n} c_{k} x_{\alpha_{k}}, c_{k} \in \mathbb{R}(\mathbb{C}), n \in \mathbb{N} \right\}$$

Определение 4.12 (Полное семейство). $(X, ||\cdot||), \{x_{\alpha}\}_{\alpha \in A}$ — полное семейство, если $\overline{\mathcal{L}\{x_{\alpha}\}_{\alpha \in A}} = X$. То есть линейная оболочка всюду плотна в X.

Пример 4.3. $C[a,b], \{x^n\}_{n=0}^{+\infty}$ — полное семейство в C[a,b], так как $P = \mathcal{L}\{x^n\}_{n=0}^{+\infty}, \overline{P} = C[a,b]$

Пример 4.4. l^p , $1 \le p < +\infty$, C_0

$$e_n=(1,0,0,\dots,0,\underbrace{1}_n,0,\dots),\{e_n\}_{n=1}^\infty$$
 — полное семейство
$$\mathcal{L}\{e_n\}_{n=1}^\infty=F$$
 — финитная последовательность

Упражнение: C — что полное семейство?

03.10.23

Утверждение 4.1. $(X,||\cdot||)$ - нормированное пространство. В нём существует $\{x_n\}_{n=1}^{\infty}$ — полное семейство

$$X$$
 — сепарабельное

Доказательство. Рассмотрим линейную оболочку $L = \mathcal{L}\{x_n\}_{n=1}^{\infty} = \{x = \sum_{j=1}^{n} c_j x_j, c_j \in \mathbb{R}(\mathbb{C})\}. \ \overline{L} = X.$

$$E=\{x=\sum_{j=1}^n c_jx_j,c_j\in\mathbb{Q}\}$$
 — счётное всюду плотное
$$(L\subset\overline{E}\,\wedge\,\overline{L}=X)\Rightarrow\overline{E}=X$$

П

Замечание 4.6. $l^{\infty}, E = \{x = \{x_n\}_{n=1}^{\infty}, x_n \in \mathbb{Q}, \sup_{n \in \mathbb{N}} |x_n| < +\infty\}.$ $\overline{E} = l^{\infty}, E$ — не счётное.

4.6. Полные и плотные множества в L^p

Сначала небольшое замечание. (X,U,μ) — пространство с мерой $e\in U$ — измеримые множества, $\chi_e(x)=\begin{cases} 1,x\in E\\ 0,x\notin E \end{cases}$ — характеристическая функция. $\chi\in L^\infty(X,\mu),\, \forall\, e\in U$

$$\chi_e \in L^p(X,\mu)$$
 при $1 \le p < +\infty \Leftrightarrow \int_X (\chi_e(x))^p d\mu < +\infty \Leftrightarrow \mu e < +\infty$

Теорема 4.12. (X,U,μ) — пространство с мерой \Rightarrow

$$\{\chi_e\}_{e\in U} -\text{полное семейство в }L^\infty(X,\mu)$$

$$\{\chi_e\}_{e\in U,\mu E<+\infty} -\text{полное семйество в }L^p(X,\mu), 1\leq p<+\infty$$

Для доказательства этой теоремы нужно будет вспомнить теорему Лебега из анализа (она у нас уже была).

Теорема 4.13 (Лебег).
$$\{h_n(x)\}_{n=1}^{\infty}$$
 — измеримые, $\varphi(x)$. $\int_X \varphi(x) d\mu < +\infty, |h_n(x)| \leq \varphi(x)$ п.в. на X

$$h_n(x) \xrightarrow[n \to \infty]{\text{п.в. по } \mu} h(x) \Rightarrow \lim_{n \to \infty} \int_X h_n(x) d\mu = \int_X h(x) d\mu$$

Доказательство. Вспомним конструкцию, которая была в математическом анализе. f — измеримая, $f(x) \ge 0, x \in X$. Рассмотрим разбиение множества X, а по нему построим соотвествующую простую функцию

$$n \in \mathbb{N}$$
 $e_k = \{x \in X : \frac{k}{n} \le f(x) < \frac{k+1}{n}\}, k = 0, 1, \dots, n^2 - 1$
 $e_{n^2} - \{x : f(x) \ge n\} \Rightarrow X = \bigcup_{k=0}^{n^2} e_k, e_k \cap e_j = \emptyset(k \ne j)$

Теперь построим измеримые функции, потом они будут простыми.

$$g_n(x) = \sum_{k=1}^{n^2} \frac{k}{n} \chi_{e_k} \quad 0 \le g_n(x) \le f(x), x \in X$$

$$f(x) \le g_n(x) + \frac{1}{n}, x \in \bigcup_{k=0}^{n^2-1} e_k$$

Теперь все готово, чтобы обсудить случай L^{∞} . Пусть $f \in L^{\infty}(X, \mu) \Rightarrow n \geq ||f||_{\infty} \Rightarrow \mu(e_{n^2}) = 0. \Rightarrow |f(x) - g_n(x)| \leq \frac{1}{n}$ для п.в. $x \in X$ $\Rightarrow ||f - g_n||_{\infty} \xrightarrow[n \to \infty]{} 0, g_n \in \mathcal{L}\{\chi_e\}_{e \in U}$ $\Rightarrow f \in \overline{\mathcal{L}\{\chi_e\}_{e \in U}}$

Посмотрим теперь, что происходит с конечными p. Тут вспоминаем теорему Лебега, она была верна для интеграла Лебега, но верна и для

ГЛАВА 4. ПОПОЛНЕНИЕ МЕТРИЧЕСКОГО ПРОСТРАНСТВАЗ

произвольной меры.

$$\begin{cases} f(x) \in L^p(X,\mu), 1 \le p < +\infty & |f(x) - g_n(x)|^p \le |f(x)|^p \\ g_n(x)f(x) & \Rightarrow |f(x) - g_n(x)|^p \xrightarrow[n \to \infty]{} 0 \end{cases}$$

Jefer

все, что надо — убедиться, что мера конечная $\lim_{n\to\infty} \left(\int_V |f-g_n|^p d\mu \right)^{\frac{1}{p}} = 0$

$$f \in L^{p} \Rightarrow \mu e_{k} < +\infty \quad f(x) \geq \frac{k}{n}, x \in e_{k} \Rightarrow \left(\int_{X} |f|^{p} d\mu\right)^{\frac{1}{p}} \geq \left(\int_{e_{k}} \left(\frac{k}{n}\right)^{p} d\mu\right)^{\frac{1}{p}} = \frac{k}{n} (\mu e_{k})^{\frac{1}{p}} \Rightarrow \mu e_{k} < +\infty$$
$$\Rightarrow f \in \overline{\mathcal{L}\{\chi_{e}\}_{e \in U, \mu e < +\infty}}$$

Теперь покажем, что для произвольных f рассуждение тоже верно. Рассмотрим замыкание линейное оболчоки

$$\begin{cases} f: X \to \mathbb{R}, \Rightarrow f = f_{+} - f_{-}, f_{+}(x) \ge 0, f_{-}(x) \ge 0 \\ f: X \to \mathbb{C} \Rightarrow f = u + iv; u, v: X \to \mathbb{R} \end{cases} \Rightarrow \begin{cases} f: X \to \mathbb{R}, f \in L^{p}, f \in \overline{\mathcal{L}\{\chi_{e}\}_{e \in U}} \\ (p = \infty \, \forall e, p < +\infty, \mu e < +\infty) \end{cases}$$

Теперь, зная эту теорему, посмотрим, какое множество будет полным в пространстве l^{∞}

Следствие 4.2.
$$l^{\infty},A$$
 \subset $\mathbb{N},$ X^A $=$ $\{x_n^A\}_{n=1}^{\infty},X_n^A$ $=$ $\begin{cases} 1,n\in A\\ 0,n\notin A \end{cases}$ \Rightarrow

 $\{X^A\}_{A\subset\mathbb{N}}$ — полное семейство в l^∞

Доказательство. $l^\infty=L^\infty(\mathbb{N},\mu), \mu(n)=1\,\forall\,n\in\mathbb{N}\quad\forall\,A\subset\mathbb{N},A$ — измеримо

$$\chi_A = X^A \Rightarrow \{X^A\}_{A \subset \mathbb{N}}$$
 — полное семейство

Теорема 4.14. $(\mathbb{R}^n, U, \lambda), \lambda$ — классическая мера Лебега. U — измеримые по Лебегу множества.

$$\mathcal{R} = \left\{ \Delta = \prod_{j=1}^n [a_j, b_j), a_j < b_j; a_j, b_j \in \mathbb{R} \right\}$$
 — множество ячеек

$$\Rightarrow \{\chi_{\Delta}\}_{\Delta \in \mathcal{R}}$$
 — полное семейство в $L^p(\mathbb{R}^n, \lambda), 1 \leq p < +\infty$

Достаточно рассмотреть характеристические множества ячеек.

Доказательство. Собираемся приблизить множество линейной комбинацеий характеристических функций ячеек. Вспомним определение внешней меры.

$$e \in U, \lambda(e) < +\infty$$

$$\lambda(e) = \inf \left\{ \sum_{k=1}^{\infty} \lambda(\Delta_k), e \subset \bigcup_{k=1}^{\infty} \Delta_k, \Delta_k \in \mathcal{R}, \Delta_k \cap \Delta_j = \emptyset \right\}$$

Сначала просто по определению нижней грани. $\forall \varepsilon > 0 \Rightarrow \exists \{\Delta_k\}_{k=1}^n$. $\lambda(e) \leq \sum_{k=1}^{\infty} \lambda(\Delta_k) < \lambda(e) + \varepsilon$. $e \subset \bigcup_{k=1}^{\infty} \Delta_k, \Delta_k \in \mathcal{R}, \Delta_k \cap \Delta_j = \emptyset$ при $k \neq j$.

$$A = \bigcup_{k=1}^{\infty} \Delta_k, e \subset A, \lambda(A \setminus e) < \varepsilon$$

$$\exists N \in \mathbb{N} \quad \sum_{k=N+1}^{\infty} \lambda(\Delta_k) < \varepsilon, B = \bigcup_{k=1}^{n} \Delta_k$$

$$\Rightarrow \lambda(A \setminus B) < \varepsilon$$

$$||\chi_{e} - \chi_{b}||_{p} \leq ||\chi_{e} - \chi||_{p} - ||\chi_{A} - \chi_{B}||_{p} \leq \left(\int_{A \setminus e} \mathbb{1} d\mu\right)^{\frac{1}{p}} + \left(\int_{A \setminus B} \mathbb{1} d\mu\right)^{\frac{1}{p}} < \varepsilon^{\frac{1}{p}} + \varepsilon^{\frac{1}{p}} = 2\varepsilon^{\frac{1}{p}}$$

$$\chi_b = \sum_{k=1}^{N} \chi_{\Delta_k} \in \mathcal{L}\{\chi_{\Delta}\}_{\Delta \in \mathcal{R}}$$

$$\begin{cases} \overline{\mathcal{L}\{\chi_e\}_{e \in U}} = L^p \\ \chi_e \in \overline{\mathcal{L}\{\chi_{\Delta}\}_{\Delta \in \mathcal{R}}} \end{cases} \Rightarrow \overline{\mathcal{L}\{\chi_{\Delta}\}_{\Delta \in \mathcal{R}}} = L^p, 1 \le p < +\infty$$

Следствие 4.3. $E\subset\mathbb{R}^n,\,E$ — измеримые по Лебегу, $1\leq p<+\infty$ $\Rightarrow L^p(E,\lambda)$ — сепарабельные $(\lambda$ — мера лебега)

Доказательство. Докажем, что $L^p(\mathbb{R}^n,\lambda)$ — сепарабельное.

$$\mathcal{R} = \left\{ \Delta = \prod_{j=1}^n [a_j, b_j), a_j < b_j, \ a_j, b_j \in \mathbb{R}
ight\}$$
 — полные семейства в L^p

Теперь мы возьмём только такие ячейки, полуинтервалы которых мы перемножаем, имеют рациональные концы. Пока что можем сказать, что это счётное множество.

$$R_0 = \left\{ \Delta = \prod_{j=1}^n [a_j, b_j), a_j < b_j, \ a_j, b_j \in \mathbb{Q} \right\}$$
 — счётное множество

$$\Delta \in \mathcal{R} \quad 0$$

$$\Rightarrow \exists \Delta_0 \in R_0, \Delta \subset \Delta_0, \lambda(\Delta_0 \setminus \Delta) < \varepsilon$$

$$\Rightarrow ||\chi_{\Delta_0} - \chi_{\Delta}||_p = ||\chi_{\Delta_0 \setminus \Delta}||_p = \left(\int_{\Delta_0 \setminus \Delta} \mathbb{1} dx\right)^{\frac{1}{p}} = (\lambda(\Delta_0 \setminus \Delta))^{\frac{1}{p}} < \varepsilon^{\frac{1}{p}}$$

$$\Rightarrow \forall \Delta \in \mathcal{R} \chi_{\Delta} \in \overline{\mathcal{L}\{\chi_{\Delta}\}_{\Delta \in R_0}}$$

 R_0 — полное счётное семейство $\stackrel{\text{утверждение}}{\Rightarrow} L^p(\mathbb{R}^n,\lambda)$ — сепарабельное.

$$E\subset\mathbb{R}^n, E$$
 — измеримое $,f\in L^p(E,\lambda)$ пусть $f(x)=0, x\in\mathbb{R}^n\setminus E\Rightarrow f\in L^p(\mathbb{R}^n,\lambda)$

 $\Rightarrow L^p(E,\lambda)$ — подпространство $L^p(\mathbb{R}^n,\lambda)\Rightarrow L^p(E,\lambda)$ — сепарабельно

Определение 4.13. (X,U,μ) — пространство с мерой. (X,ρ) — метрическое пространство. μ — борелевская мера, если (G — открытое $\Rightarrow G \in U)$

 β — минимальная σ -алгебра, содержащая все открытые множества. β — **борелевские множества**, то есть $\beta \subset U$.

Чем же хороши борелевские меры? Оказывается, они безумно связаны с непрерывными функциями

Замечание 4.7. Пусть $f: X \to \mathbb{R}, f$ — непрерывная $\Rightarrow f^{-1}((c, +\infty)), c \in \mathbb{R}, (c, \infty)$ — открытое в \mathbb{R} . Определение непрерывной функции из топологии: прообраз любого открытого множества открыт. Так как прообраз f открыт в $X \Rightarrow f$ — измеримая по μ , если μ — борелевская.

Замечание 4.8. λ — мера Лебега в \mathbb{R}^n , тогда λ — борелевская.

Еще более специальное определение. Этим свойством мера Лебега тоже обладает.

Определение 4.14 (регулярная мера). $(X, U, \mu), (X, \rho), \mu$ — борелевская. μ — регулярная мера, если $\forall e \in U$

$$\sup_{\{F\subset e,F\,-\,\mathrm{Замкнутоe}\}}\{\mu(F)\}=\mu e=\inf_{\{e\subset G,G\,-\,\mathrm{открытоe}\}}\mu G$$

Замечание 4.9. λ -мера Лебега — регулярная.

На самом деле эти 2 свойство друг из друга следуют, но мы это доказывать не будем.

Теорема 4.15. $(X, U, \mu), (X, \rho), \mu$ — регулярная мера \Rightarrow непрерывная функция плотна В $L^p(X, \mu), 1 \le p < +\infty$.

$$\overline{C(X) \cap L^p(X\mu)}^{||\cdot||_p} = L^p(X,\mu)$$

Доказательство. Мы уже знаем, что полное семейство — это семейство характеристических функций всех измеримых функций, и мы будем этим изо всех сил пользоваться. Возьмём какую-то характеристическую функцию из множества и ее будем приближать непрерывными функциями.

 $\{\chi_e\}_{e\in U, \mu e<+\infty}$ — полное семейство.

пусть $e\in U, \mu e<+\infty, \ 0, \mu$ — регулярная \Rightarrow $\exists \ F\subset e\subset G, F$ — замкнутое, G — открытое. $\mu(G\setminus F)<\varepsilon$

Когда мы попадем в $X \setminus G$ она будет равна нулю.

$$\varphi(x) = \frac{\rho(x, X \setminus G)}{\rho(x, X \setminus G) + \rho(x, F)}$$

Нужно позаботиться о том, чтобы знаменатель не был равен нулю. $\rho(x,A)$ — непрерывная функция $\forall\,A\subset X.\ X\setminus G$ — замкнутое, F — замкнутое. Если $\rho(x,F)=0\Rightarrow x\in F\Rightarrow x\notin X\setminus G\Rightarrow \rho(x,X\setminus G)>0$

$$\Rightarrow \rho(x, X \setminus G) + \rho(x, F) > 0 \,\forall \, x \in X \Rightarrow \varphi \in C(X)$$

ГЛАВА 4. ПОПОЛНЕНИЕ МЕТРИЧЕСКОГО ПРОСТРАНСТВАТ

$$\varphi(x) = 0, x \in X \setminus G, \varphi(x) = 1, x \in F \quad \forall x \in X \le \varphi(x) \le 1$$

Понятно, что модуль $\varphi(x)$ совпадает с характеристической функцией множества e.

$$\chi_e(x) - \varphi(x)| \le 1 \quad \forall x \in X$$

$$\chi_e(x) - \varphi(x) = 0 \quad x \in F \text{ или } x \in X \setminus G$$

$$\Rightarrow ||\chi_e - \varphi||_p = \left(\int_X |\chi_e(x) - \varphi(x)|^p d\mu\right)^{\frac{1}{p}} = \left(\int_{G \setminus F} |\chi_e(x) - \varphi(x)|^p d\mu\right)^{\frac{1}{p}} \le$$

$$\le (\mu(G \setminus F))^{\frac{1}{p}} < \varepsilon^{\frac{1}{p}}$$

$$\Rightarrow \chi_e \in \overline{C(X)}^{||\cdot||_p}$$

Тем самым мы доказали, что $\varphi(x)$ может быть приближена непрерывными функциями. Может быть, стоить отметить, что $\mu G < \mu E + \varepsilon < p + \infty$ $\int_X |\varphi(x)|^p d\mu - \int_G |\varphi(x)|^p d\mu < \mu(g) \Rightarrow \varphi \in L^p(X,\mu)$

Раз утверждение верно для любых регулярных мер, то оно верно и для меры Лебега.

Глава 5

Метрические компакты

Топологический компакт: из любого подпокрытия можно выбрать конечное подпокрытие.

$$\forall \{x_n\}_{n=1}^{\infty}, x_n \in K \quad \exists \{x_{n_j}\}_{j=1}^{\infty} \text{ т.ч. } \exists \lim_{j \to \infty} x_{n_j} = x_0, x_0 \in K$$

2. K – компакт $\Rightarrow K$ – ограниченное замкнутое множество.

Пример 5.1. \mathbb{R}^n , K – компакт $\Leftrightarrow K$ – ограниченное, замкнутое

Замечание 5.1. НИ В КОЕМ СЛУЧАЕ!!!

K – ограниченное замкнутое, $\not\Rightarrow K$ – компакт

Замечание 5.2. $l^2=\{x=\{x_n\}_{n=1}^\infty,||x||_2=(\sum_{n=1}^\infty|x_n|^2)^{\frac{1}{2}}<+\infty,x_n\in\mathbb{R}(\mathbb{C})\}$

$$D = \{x \in l^2 : ||x||_2 \le 1\}$$
 — ограниченное, замкнутое

$$e_n=(0,0,\dots,0,\underbrace{1}_n,0,0,\dots),\ n\neq m\quad ||e_n-e_m||_2=\sqrt{2}\Rightarrow \forall\, \{e_{n_j}\}$$
 – не фундаментальная. Тогда $\nexists\lim_{j\to\infty}e_{n_j}\Rightarrow D$ – не компакт.

Определение 5.1 (относительный компакт). $(X, \rho), A \subset X, A$ — относительно компактно, если \overline{A} — компакт. Или можно сказать

$$\Leftrightarrow \forall \{x_n\}_{n=1}^{\infty}, x_n \in A \exists \{x_{n_j}\}_{j=1}^{\infty}, \exists \lim_{j \to \infty} x_{n_j} = x_0, x_0 \in X$$

Предел не обязательно принадлежит A. А в компакте предел обязательно лежит в A.

Мы получим новое описание компактных и относительно компактных множеств. В \mathbb{R}^n мы описывали относительные компакты. Для описания компакта нужно добавить замыкание.

Еще несколько определений:

Определение 5.2 (
$$\varepsilon$$
-сеть). (X, ρ) – метрическое пространство. $A\subset X, \varepsilon>0$ $F-\varepsilon$ -сеть для A , если

$$\forall a \in A \,\exists f \in F : \rho(a, f) < \varepsilon$$

$$(\Leftrightarrow \forall a \in AB_{\varepsilon}(a) \cap F \neq \varnothing) \Leftrightarrow (A \subset \bigcup U_{f \in F}B_{\varepsilon}(f))$$

Определение 5.3. A – вполне ограниченное множество, если для $\forall \varepsilon > 0 \exists$ конечная ε -сеть для A.

Описание компактных и относительно-компактных множеств в терминах почти ограниченных — как раз наша главная цель. Мы будем использовать это новое описание так: если мы в полном метрическом пространстве, то там относительная компактность и вполне ограниченность — одно и то же. А проверять вполне ограниченность - гораздо проще, чем проверять относительную компактность. Предъявим ε -сеть и всё!

Замечание 5.3. $(X, \rho), A$ – вполне ограниченное $\Rightarrow A$ – ограничено.

Пример 5.2. $(\mathbb{R}^n,||\cdot||_2)=l_n^2$ $A\subset\mathbb{R}^N$. A – ограниченное $\Leftrightarrow A$ вполне ограниченное

Доказательство. A — ограниченное $\Leftrightarrow \exists M > 0, \forall x - (x_1, \dots, x_n) \in A \Rightarrow |x_j| \leq M$ $A \subset \mathbb{Q} = \{|x_j| \leq M, 1 \leq j \leq n\}$ Как же построить ε —сеть?

Рис. 5.1: классный поясняющий рисуночек

Пусть
$$\varepsilon>0,\ Q=\bigcup Q_j, l$$
 — сторона Q_j
$$\operatorname{diam} Q_j=\sup_{x,y\in Q_j}\rho(x,y)=\sqrt{n}\cdot l<\varepsilon\Rightarrow l<\frac{\varepsilon}{\sqrt{n}}$$

$$l=\frac{M}{N}, N\in\mathbb{N},\ \exists\ N:\frac{M}{N}<\frac{\varepsilon}{\sqrt{n}}\Rightarrow$$
 F — вершины Q_j — ε -сеть

EC = equicontinuous

Убедимся в пространстве l^2

Пример 5.3. $D \subset l^2, D = \{x \in l^2 : ||x||_2 \le 1\}$ Убедимся, что D – не вполне ограниченное.

Доказательство.

$$\{e_n\}_{n=1}^{\infty}, e_n = (0, \dots, 0, \underbrace{1}_n, 0, \dots), n \neq m, ||e_n - e_m|| = \sqrt{2}$$

$$B_{\frac{1}{2}}(e_n) \cap B_{\frac{1}{2}}(e_m) = \varnothing$$

$$\varepsilon = \frac{1}{2}, F - \frac{1}{2}\text{-сеть для } D$$

$$\Rightarrow \forall n \exists f_n \in F \cap B_{\frac{1}{2}}(e_n), f_n \neq f_m (n \neq m) \text{ так как } B_{\frac{1}{2}}(e_n) \cap B_{\frac{1}{2}}(e_m) = \varnothing$$

$$\{f_n\}_{n=1}^{\infty} \subset F \Rightarrow F - \text{не конечное}$$

Теперь посмотрим для l^{∞}

Пример 5.4. $\Pi = \{x = \{x_n\}_{n=1}^{\infty}, \, |x_n| < \frac{1}{2^n}\} \subset l^2$. Проверим, что Π – вполне ограничено. 0

$$\exists M \in \mathbb{N} \quad \left(\sum_{k=N+1}^{\infty} \left(\frac{1}{2^k}\right)^p\right)^{\frac{1}{p}} < \varepsilon$$

$$\Pi^* = \{x = \{x_1, \dots, x_N, 0, 0, \dots\}\}, |x_j| \le \frac{1}{2^j}, \ 1 \le j \le N \quad x_{N+k} = 0, k \in \mathbb{N}$$

Если мы забудим, про нули, то можем думать, что Π^* лежит в \mathbb{R}^n , и там оно ограниченное, а значит и вполне ограниченное. $\Pi^* \subset \mathbb{R}^n$, Π^* – ограниченное \Rightarrow вполне ограниченное $\Rightarrow \exists \ F \subset \Pi^*$ – конечная ε -сеть. Докажем, что F – 2ε -сеть для Π .

$$x \in \Pi$$
 $\Rightarrow x = \underbrace{(x_1, \dots, x_N, 0, \dots)}_y + \underbrace{(0, 0, \dots, 0, x_{N+1}, x_{N+2}, \dots)}_z$ $||z||_2 < \varepsilon$ $y \in \Pi^* \Rightarrow \exists f \in F : ||y - f||_2 < \varepsilon \Rightarrow$ $||x - f||_2 = ||(y - f) + z||_2 \le ||y - f||_2 + ||z||_2 < 2\varepsilon$ $\Rightarrow \Pi$ – вполне ограничено

Таким образом, все множества можно описать в пространстве l^{∞} . Перед тем, как доказывать основную теорему, несколько свойств вполне ограниченных множеств.

Свойство 5.1. 1. A — вполне ограничено $\Rightarrow \overline{A}$ — вполне ограничено

- 2. $A \subset Y \subset X, A$ вполне ограничено в $X \Rightarrow A$ вполне ограниченое в Y.
- 3. A вполне ограничено \Rightarrow (A, ρ) сепарабельно.

1 свойство. $A\subset X, \varepsilon>0$. F – конечная ε -сеть для A. Проверим, что $F-(2\varepsilon$ -сеть) для \overline{A}

пусть
$$x \in \overline{A} \Rightarrow \exists y \in A : \rho(x,y) < \varepsilon, \exists f \in F : \rho(y,f) < \varepsilon$$

 $\Rightarrow \rho(x,f) \le \rho(x,y) + \rho(y,f) < 2\varepsilon$

2 свойство. Проблема в том, что надо двигать точки. Мы уже так делали, когда доказывали сепарабельность. $A\subset Y\subset X, \varepsilon>0, \{x_k\}_{k=1}^n$ – ε -сеть для $A,\,x_k\in X$

 $A \subset \bigcup_{k=1}^n B_{\varepsilon}(x_k)$, если $A \cap B_{\varepsilon}(x_k) \neq \emptyset$, то пусть $y_k \in A \cap B_{\varepsilon}(x_k)$ (если $= \emptyset$, то не будем выбирать)

Мы найдем ε -сеть из точек множества A, тогда она точно будет обслуживать и Y. Как же и куда сдвигать точки?

$$E = \{y_k\}_{k=1}^n$$

$$x \in A \Rightarrow \exists x_k : \rho(x, x_k) < \varepsilon \Rightarrow A \cap B_{\varepsilon}(x_k) \neq \varnothing \Rightarrow y_k \in B_{\varepsilon}(x_k) \Rightarrow$$

$$\rho(x_k, y_k) < \varepsilon \Rightarrow \rho(x, y_k) \leq \rho(x, x_k) + \rho(x_k, y_k) < 2\varepsilon \Rightarrow$$

$$E - (2\varepsilon)\text{-сеть для } A, E \subset A$$

3 свойство. $n \in \mathbb{N}, F_n - \left(\frac{1}{n}\right)$ -сеть для A, F_n – конечное.

$$F$$
 (счетное) = $\bigcup_{n=1}^{\infty} F_n$ – плотно в A , то есть $A \subset \overline{F}$

Утверждение 5.2 (о разбиении). $(X, \rho), A \subset X, \varepsilon > 0.$ F – конечная ε -сеть для $A \Rightarrow$

$$\exists \{C_j\}_{j=1}^n \quad A = \bigcup_{j=1}^n C_j \quad C_j \cap C_k = \varnothing, j \neq k, \operatorname{diam} C_j \leq 2\varepsilon, C_j \neq \varnothing$$

Доказательство.

$$F = \{x_k\}_{k=1}^n, A \subset \bigcup_{k=1}^n B_{\varepsilon}(x_k)$$

$$C_1 = A \cap B_{\varepsilon}(x_1)$$

$$C_2 = (A \cap B_{\varepsilon}(x_2)) \setminus C_1$$

$$C_k = A \cap B_{\varepsilon}(x_k) \setminus \left(\bigcup_{j=1}^{k-1}\right) \quad k = 2, \dots, n$$

если $C_k=\varnothing$, то забудем о нём. $C_k\subset B_{\varepsilon(x_k)}\Rightarrow {\rm diam}\, C_k\le 2\varepsilon$

Теперь у нас всё готово для доказательства теоремы о том, как описывать компакты в терминах вполне ограниченных множеств.

Теорема 5.1 (Хаусдорф). (X, ρ) – метрическое пространство,

A – компакт \Leftrightarrow

1.
$$A$$
 полное, то есть $\forall \{x_n\}_{n=1}^{\infty}$ $\subset A, \{x_n\}$ – фундаментальная $\exists \lim x_n = x_0 \in A$

2. A – вполне ограничено

Высока вероятность, что спросят на экзамене эту теорему, пытаясь вытянуть.

 $Доказательство. \Rightarrow$

A – компакт, $\{x_n\}_{n=1}^{\infty}$ – фундаментальная, $x_n \in A$. A – компакт $\Rightarrow \exists \{x_{n_j}\}, \lim_{k \to \infty} x_{n_j} = x_0, x_0 \in A$. Тогда по свойствам фундаментальных последовательностей $\lim_{n\to\infty}x_n=x_0\Rightarrow (A,\rho)$ — полное метрическое пространство. Проверили первое условие. Теперь надо проверить второе: сначала покроем наш компакт безумным количеством шариков, а они ведь открытые множества, а среди них существует конечное подпокрытие.

$$0\quad A\subset\bigcup_{a\in A}B_{>}(a)\,\wedge\,A-\text{компакт}\ \Rightarrow,\exists\ \{a_j\}_{j=1}^n,a_j\in A:$$

$$A\subset\bigcup_{j=1}^nB_{\varepsilon}(a_j)\Rightarrow F=\{a_j\}_{j=1}^n-\varepsilon\text{-сеть для }A$$

Это была тривиальная часть теоремы.

 \Leftrightarrow .

 $\{x_n\}_{n=1}^\infty, x_n\in A$ Собираемся применять лемму о разбиении. $\varepsilon_1=\frac{1}{2}.$ По лемме $\exists\,\{C_j^{(1)}\}_{j=1}^{N_1}.\ A=\bigcup_{j=1}^{N_1}C_j^{(1)}, \mathrm{diam}\,C_j^{(1)}\leq 1.$ Когда-то в детстве мы азнимались бесконечным делением пополам. Тут будем делать то же самое. $\exists j : C^{(1)}_{j}$ содержит бесконечное число элементов $\{x_n\}$.

$$A_1 := C_j^{(1)}.$$

$$arepsilon_2=rac{1}{2^2},\;$$
 по лемме о разбиении к $A_1\Rightarrow\exists\;\{C_j^{(2)}\}_{j=1}^{N_2}$
$$\dim C_j^{(2)}\leqrac{1}{2}\quad A_1=igcup_{j=1}^{N_2}C_j^{(2)}$$

 $\exists \ 1 \leq j \leq N_2 \quad C_j^{(2)}$ содержит бесконечное количетсво элементов в x_n

и так далее
$$\{A_m\}_{m=1}^{\infty}, A_{m+1} \subset A_m, \operatorname{diam}_{A_m} \leq \frac{1}{2^m}$$
 A_m содержит бесконечное число элементов $\{x_n\}_{n=1}^{\infty}(*)$
 $X_{n_1} \in A_1, \quad \exists \ n_2 > n_1 : x_{n_2} \in A_2 \text{ т.к. } (*)$
и так далее $\exists \ n_k \text{ т.ч. } n_k > n_{k-1} \quad x_{n_k} \in A_k$
 $\{x_{n_k}\}_{k=1}^{\infty}, x_{n_k} \in A_k, \operatorname{diam} A_k \underset{k \to \infty}{\longrightarrow} 0 \quad A_{k+1} \subset A_k$
 $\Rightarrow \{x_{n_k}\}_{k=1}^{\infty} - \text{фундаментальная } \wedge A - \text{полное}$
 $\Rightarrow \exists \lim_{k \to \infty} x_{n_k} = x_0, x_0 \in A$

Часто описывают компакт, но фактически говорят об относительный компкте. Для описания компакта, опять же, надо просто добавить замкнутость.

Следствие 5.1. (X, ρ) – метрическое, $A \subset X$.

- 1. A относительно компактно $\Rightarrow A$ вполне ограничено
- 2. (X, ρ) полное, A относительно компактно $\Leftrightarrow A$ вполне ограничено

Будем изо всех сил пользоваться теоремой Хаусдорфа.

1 утверждение. A – относителько компактно, $\Rightarrow \overline{A}$ – компакт, тогда по теореме Хаусдорфа \overline{A} – вполне ограничено, $A \subset \overline{A} \Rightarrow A$ вполне ограничено.

2 утверждение. (X, ρ) – полное, A – вполне ограничено, тогда по ранее доказанному свойству $(\overline{A}$ – вполне ограничено \wedge \overline{A} – замкнутое в $X \Rightarrow \overline{A}$ – полное) \Rightarrow по теореме Хаусдорфа \overline{A} компакт \Rightarrow A – относительно компактно.

Оказывется, можно вместо конечных ε -сетей можно утверждать чуть большее.

Следствие 5.2. (X, ρ) – полное, $A \subset X$. Если для $\forall \varepsilon > 0 \exists$ относительно компактная ε -сеть, то A – относительно компактно

Доказательство. $0, F-\varepsilon$ -сеть для A. F — относителько компактно $\Rightarrow F$ вполне ограничено, $\exists \, E$ — конечная ε -сеть для $F \Rightarrow E - (2\varepsilon)$ -сеть для $A \Rightarrow A$ — вполне ограничено $\Rightarrow -A$ — относительно компактно. \square

5.1. Относительно компактные множества в C(K)

Определение 5.4. (K,ρ) – метрический компакт. $C(K)=\{f:K\to\mathbb{R}(\mathbb{C}), f$ – непрерывная $\},||f||=\max_{x\in K}|f(x)|\Phi\subset C(K)$. Φ – равностепенно непрерывна, если

$$\forall \varepsilon > 0 \,\exists \, \delta > 0 \,\forall f \in \Phi, \, \forall x, y \in K, \rho(x, y) < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$

EC – equicontinuous.

Раностепенная непрерывность отличается от равномерной непрерывности тем, что δ не зависит от f, но от ε конечно зависит. Некоторый вариант теоремы Арцелла-Асколи, который, возможно, доказывали на дифурах:

Теорема 5.2 (Асколи-Арцелла). K — компакт, (K, ρ) , $\Phi \subset C(K)$. Φ — относительно компактно \Leftrightarrow

- 1. Φ ограниченное в C(K)
- 2. Ф 00 равностепенно непрерывно
- 3. $\Phi \in EC$ equicontinuous

Доказательство. С самого начала отметим, что C(K) – полное. Вместо проверки относительной компактности Φ будем проверять вполне ограниченность.

 Φ — относительно компактно \Rightarrow Φ — вполне ограничено \Rightarrow Φ — ограничено, то есть \exists M \geq 0 т.ч. ||f|| \leq M \forall f \in Φ \Leftrightarrow \forall x \in K, \forall f \in Φ |f(x)| \leq M. ε > 0 \exists ε -сеть $\{\phi_j\}_{j=1}^n, \phi_j \in C(K), \, \phi_j$ — равномерно непрерывна \exists $\delta_j > 0$

$$x,y \in K, \rho(x,y) < \delta_j \Rightarrow |\phi_j(x) - \phi_j(y)| < \varepsilon$$
 $\delta = \min_{1 \le j \le n} \delta_j$ (продолжение следует) / (упражнение)