Introduction to Statistical Machine Learning

Xiang Zhou

School of Data Science Department of Mathematics City University of Hong Kong

Mathematical Description of Data

Notations

- input output relation
 - ➤ x: inputs, features/attributes, predictors, covariate, factors, independent variables.
 - ▶ *y*: output, response, observatiions, outcomes, dependent variable.
- $\mathcal X$ and $\mathcal Y$ denote the spaces of the generic x and y variables, respectively.
 - ▶ Generally $\mathcal{X} = \mathbb{R}^p$ or \mathbb{Z}^p ; qualitative features are coded using, for example, dummy variables (such as 0, 1, -1, etc).
 - ▶ Typically $\mathcal{Y} \in \mathbb{R}^1$, or takes a finite number of values as a subset of \mathbb{N} ; it can be a vector in some scenarios.
- (X,Y) denotes the random variable with the joint distribution p(x,y) on the sample space $\mathcal{X} \times \mathcal{Y}$.

Ground truth

• It is usually assumed that the ground truth for the relation between from input to the output is a deterministic input-output mapping from $x \in \mathcal{X}$ to $y_{\text{true}} \in \mathcal{Y}$:

$$y_{\mathsf{true}} = f^{\star}(x)$$

where the ground truth f^* is an unknown function and has to be approximated by learning from the dataset.

ullet The data/observation is a noisy perturbation of y_{true} .

Data as iid r.v.

• In supervised learning, the data (observations, samples) are given as the collection of the pairs

$$D = \{(x_i, y_i) : 1 \le i \le N\} \subset (\mathcal{X} \times \mathcal{Y})^N$$

which is assumed iid samples of the r.v. 1 (X,Y) with an unknown joint distribution p(x,y) on the product space $\mathcal{X} \times \mathcal{Y}$.

- ▶ Regression: \mathcal{Y} is continuous/numeric, e.g., \mathbb{R}^1 or intervals.
- ▶ Classification: \mathcal{Y} is discrete (categorical variable), encoded by integers such as $\{1, \ldots, K\}$. In this case, "y" is usually called "label".
- In unsupervised learning, the observations only have $\{x_i\}$, the information y_i is missing or there is no definition of y variable. The task is to identify the pattern of $\{x_i\}$ itself, such as model/dimensionality reduction and clustering.

Raw data vs features

a remark on "data" defined here and the raw data in data science

- \bullet $\,\mathcal{X}\,$ may not be the raw data collected from a specific application.
- Raw data is usually quite complex and formally very high dimensional;
 the direct use of raw data is probably a bad idea in practice.
- The more useful is the feature, only a few (carefully seleced) factors derived from the raw data.
- This process of feature engineering can be done either by domain experts or advanced machine learning methods.

¹variable selection, model reduction, dimensionality reduction, clustering, interpretable deep learning?, etc.

Xiang Zhou

CityU

Measurement error

- The inputs $x^{(i)} \in \mathcal{X}$ are samples from the marginal distribution p_X , i.e., $x^{(i)} \sim X$; in some cases, they are deterministic and assigned by a procedure of experiment design.
- the observed y_i are assumed to be the *perturbed* truth $f^{\star}(x_i)$ with measurement error ε_i which are assumed to be <u>iid</u> with zero mean and independent from X.

$$y_i = f^{\star}(x_i) + \varepsilon_i.$$

- $\{\varepsilon^{(i)}\}$ are assumed iid and distributed as a generic r.v. $\varepsilon.$
- ullet This is a convenient model/assumption to specify the joint pdf of (X,Y), even though there might be other types of uncertainty in output observations.
- The effect of the measurement noise ε can never be eliminated by any statistical learning algorithms (irreducible error).

• So, the joint distribution $p_{X,Y}(x,y)$ of (X,Y) is completely determined by the triplet:

$$(p_X, f^{\star}, p_{\varepsilon})$$

- $\triangleright p_X$: the distribution of the input
- f^* : the input-output function,
- p_{ε} : the distribution of measurement error.
- You do not know precisely f^* and p_{ε} .
- \bullet The joint distribution p(x,y) manifests through the available dataset D.

Statistics and machine learning

Different terminologies/jargons:

Machine Learning	Statistics	
Supervised learning	Classification/regression	
Unsupervised learning	Clustering	
Semisupervised learning	Classification/regression with missing responses	
Features/outcomes	Covariates/responses	
Training set/test set	Sample/population	
Learner	Statistical model	
Generalization error	Misclassification error/prediction error	

Bayes Rule

Put dataset aside for a while.

Given r.v.s X and Y, find a function $f:\mathcal{X}\to\mathcal{Y}$ so that f(X) can explain Y best in certain sense.

Bayes Rule for regression

conditional expectation as optimal prediction

The best L^2 approximation of a function f of the r.v. X to a r.v. Y is achieved by the conditional probability. The (generalized) squared error¹

$$\mathcal{E}(f) := \mathbb{E} |Y - f(X)|^2 \tag{1}$$

has a minimum at

$$f^*(x) = \mathbb{E}(Y|X=x)$$

i.e.,

$$\mathbb{E}|Y - f^*(X)|^2 = \min_{f: \text{ a Borel function}} \mathbb{E}(|Y - f(X)|^2)$$

 $f^*(x) = \mathbb{E}(Y|X=x)$ is called **Bayes rule**.

Note: We did not assume the additive error model here. The applicability of the theorem here is very general.

¹The jargons "error", "risk", "loss", even "score" are used exchangeable in many cases

CityU

10

Proof.

(undergraduate prob. course)

• We show first that $\mathbb{E}[(Y - f^*(X))h(X)] = 0$ a is true for any function h. Using the double expectation theorem b, we have

$$\mathbb{E}[(Y - f^*(X))h(X)] = \mathbb{E}\left[\mathbb{E}[Y - f^*(X))|X]h(X)\right]$$
$$= \mathbb{E}\left[\mathbb{E}(Yh(X)|X) - f^*(X)h(X)\right] = 0.$$

Note that

$$(y - f(x))^2 = (y - f^*(x))^2 + (f(x) - f^*(x))^2 - 2(y - f^*(x))h(x)$$
where $h(x) = f(x) - f^*(x)$ then for any f

where $h(x) = f(x) - f^*(x)$, then for any f

$$\mathbb{E}(|f(X) - Y|^2) = \mathbb{E}(|f^*(X) - Y|^2) + \mathbb{E}\left[|f(X) - f^*(X)|^2\right]$$
 (2)

asometimes it is denoted $Y - f^*(X) \perp h(X)$, the perpendicular property in L_2 space.

$${}^{b}\mathbb{E}[\mathbb{E}(Y|X)] = \mathbb{E}Y$$

reference for elementary math: Understanding Conditional Expectation via Vector Projection

The following exercise is to directly minimize functions in the function space.

Exercise

Use the method of perturbation to solve ^a

$$\inf_{f} \iint (f(x) - y)^{2} p_{X,Y}(x,y) dx dy$$

where $p_{X,Y}$ is the joint pdf of the r.v.s (X,Y). The optimal f^* satisfies

$$\int_{\mathcal{V}} (f^*(x) - y) p_{X,Y}(x,y) dy = 0, \quad \forall x$$

50

$$f^*(x) = \int_{\mathcal{Y}} y \frac{p_{X,Y}(x,y)}{p_X(x)} dy = \mathbb{E}[Y|X=x]$$

What if changing the L_2 norm to L_p norm ?

aRigorously, f is in the p-weighted L_2 space

- $\mathbb{E} f^*(X) = \mathbb{E} Y$: $f^*(X)$ is an unbiased estimate of Y;
- The variance of the difference between Y and the predicted value $f^*(X)$ at X=x is

$$\sigma_*^2(x) := \mathbb{E}\left[(Y - f^*(X))^2 | X = x \right]$$

• Take average of $\sigma^2(x)$ over x, then the averaged uncertainty is

$$\sigma_*^2 := \mathbb{E}_X \, \sigma_*^2(X) = \mathbb{E}\left[|Y - f^*(X)|^2 \right] = \mathcal{E}(f^*) = \inf_f \mathcal{E}(f)$$

This is the variance of the measurement error $Y - f^*(X)$: irreducible error – the error which can not be reduced further.

• For additive measurement error model where $Y=f^{\star}(X)+\varepsilon$, we have $f^{*}=f^{\star}$ and $\sigma_{*}^{2}=\mathrm{Var}(\varepsilon)$.

We have shown in (2) for any two r.v.s X, Y and an arbitrary function f:

$$\mathcal{E}(f) = \underbrace{\mathbb{E}_{X,Y}(|f(X) - Y|^2)}_{\text{Mean Square Error}}$$

$$= \underbrace{\mathbb{E}_{X,Y}(|f^*(X) - Y|^2)}_{=\mathcal{E}(f^*), \text{Bayes error}} + \underbrace{\mathbb{E}_{X}\left[|f(X) - f^*(X)|^2\right]}_{\text{model error}}$$
(3)

where $f^*(x) = \mathbb{E}(Y|X=x)$ is the Bayes rule.

- Bayes error: irreducible error;
- Model error: the distance from f to the optimal prediction f^* .

Classification

Next, the same idea, $\inf_f \mathcal{E}(f)$, applied to classification problem...

- Assume $Y \in \{1, ..., K\}$ and $X \in \mathbb{R}^p$. So the function $f : \mathcal{X} \to \mathcal{Y}$ we look for is a piece-wise constant \mathcal{Y} -valued function; such a function f is better called classifier f.
- We need a loss function $\ell(Y, f(Y)) : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ for penalizing errors due to misclassification.
- Most common choice for classification problem is the 0-1 loss²

$$\ell(Y, f(X)) = I(Y \neq f(X)) := \begin{cases} 1 & \text{if } Y \neq f(X) \\ 0 & \text{if } Y = f(X) \end{cases}.$$

• The expected prediction error(EPR), or generalization error, is then

$$\mathcal{E}(f) = \mathbb{E}\,\ell(Y, f(X)) = \mathbb{P}(Y \neq f(X)) = 1 - \mathbb{P}(Y = f(X)).$$

 $^{^{1}}$ some references uses the symbol G instead of f

 $^{^2}$ 0-1 loss function here in fact is a K by K identity matrix. $_{\text{CityU}}$

$$\min_{f} \mathcal{E}(f) \Leftrightarrow \max_{f} \mathbb{P}(Y = f(X))$$

$$= \max_{f} \int_{\mathcal{X}} \mathbb{P}(Y = f(x)|X = x) p_{X}(x) dx$$

$$= \int_{\mathcal{X}} \left\{ \max_{f(x)} \mathbb{P}(Y = f(x)|X = x) \right\} p_{X}(x) dx$$

ullet The Bayes rule minimizing $\mathcal{E}(f)$ is

$$f^*(x) = \underset{k}{\operatorname{argmax}} \mathbb{P}(Y = k | X = x).$$

Notation for Bayes classifier

• Bayes classifier: the maximizer of conditional probability

$$f^*(x) = \operatorname*{argmax}_k \mathbb{P}(Y = k | X = x).$$

ullet Bayes error rate: the minimal value of ${\mathcal E}$

$$\inf_f \mathcal{E}(f) = \mathcal{E}(f^*) = 1 - \mathbb{P}(Y = f^*(X))$$

• Bayes decision boundary The boundary separating the K partition domains in $\mathcal X$ on each of which $f^*(x)$ is constant. For the binary classification $(K=2,\mathcal Y=\{-1,1\})$, the boundary corresponds to the level set where $\mathbb P(Y=1|X=x)=\mathbb P(Y=-1|X=x)=0.5$.

Summary of Bayes rule for regression and classification

	regression	classification
$\mathcal{Y} =$	\mathbb{R} , continuous	$\{1,\ldots,K\}$, categorical
model	$Y = f(X) + \varepsilon$	$\mathbb{P}(Y = k X = x)$
$p_{X,Y}(x,y) =$	$p_X(x)p_{\varepsilon}(y-f(x))$	$\sum_{k=1}^{K} \pi_k p_X(x; \theta_k)$ (mixture)
loss	mean squared error (L_2)	0-1 loss (misclassification rate)
$f^*(x) =$	$\mathbb{E}(Y X=x)$	$\operatorname{argmax}_{k} \mathbb{P}(Y = k X = x)$