Optimización de Procesadores

Ejercicio para Entregar

Resuelve: $a \cdot x^2 + b \cdot x + c = 0$, Soluciones: $x = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$

Dirección	Instrucción	Que hace?
100	LOAD R1, R8, Offset-A	CR[R1] <= Mem[Base + Offset-A]
101	LOAD R2, R8, Offset-B	CR[R2] <= Mem[Base + Offset-B]
102	LOAD R3, R8, Offset-C	CR[R3] <= Mem[Base + Offset-C]
103	SQR R4, R2	CR[R4] <= b^2
104	MUL R5, R1, R3	CR[R5] <= a*c
105	No-Op	
106	No-Op	
107	MUL R5, R5, #4	CR[R5] <= #4*(a*c)
108	No-Op	
109	No-Op	
110	BGE R4, R5, #13	If (b^2 > 4*a*c): PC <= PC + #13; Else: PC++;
111	SUB R6, R4, R5	CR[R6] <= [b^2] - [4*a*c]
112	MUL R1, R1, #2	CR[R1] <= 2*a
113	No-Op	
114	SQRT R6, R6	CR[R6] <= sqrt([b^2]-[4*a*c])
115	No-Op	
116	No-Op	
117	SUB R7, R6, R2	CR[R7] <= [sqrt(b^2-4*a*c)] - [b]
118	No-Op	
119	No-Op	
120	DIV R3, R7, R1	CR[R3] <= [sqrt(b^2-4*a*c)- b] / [2*a]
121	No-Op	
122	No-Op	
123	STORE R3, R8, Offset-X	Mem[Base + Offset-X] <= CR[R3]

<u>Tiempo</u>	0	1	2	3	4	5	6	7	8	9
Read PC Write IR	100 LOAD	101 LOAD	102 LOAD	103 SQR	104 MUL	105 No-Op	106 No-Op	107 MUL	108 No-Op	109 No-Op
Write R_A Write R_B	LOAD	R8	R8	R8	R2	R1 R3	140-Ор	IVIOL	R5	140-Ор
Write AR Write DR			R8+Off A	R8+Off B	R8+Off C	R2^2	R1*R3			R5 * #4
Write CR Write Mem				R1	R2	R3	R4	R5		
Write PC	101	102	103	104	105	106	107	108	109	110

<u>Tiempo</u>	10	11	12	13	14	15	16	17	18	19
Read PC Write IR	110 BGE	111 SUB	112 MUL	113 No-Op	114 SQRT	115 No-Op	116 No-Op	117 SUB	118 No-Op	119 No-Op
Write R_A Write R_B		R4 R5	R4 R5	R1		R6			R2 R6	
Write AR Write DR			R4>R5	R4-R5	R1 * #2		sqrt(R6)			R6-R2
Write CR Write Mem	R5				R6	R1				
Write PC	111	112	113	114	115	116	117	118	119	120

<u>Tiempo</u>	20	21	22	23	24	25	26
Read PC Write IR	120 DIV	121 No-Op	122 No-Op	123 STORE	124	125	126
Write R_A Write R_B		R1 R7			R8		
Write AR Write DR			R1/R7			R8+Off X	
Write CR Write Mem	R7			R3			DIR
Write PC	121	122	123	124	125	126	127

Sin Pipeline: $T_{sin} = 13.4 \, Tc = 52 \, Tc$ Ganancia con No-Op: $S_{con} = \frac{52 \, Tc}{27 \, Tc} = 1.93$

Pipeline, Con No-Op: T_{con} =27Tc

Pipeline, Sin No-Op: $T_{con} = 17 Tc$ Ganancia sin No-Op: $S_{sin} = \frac{52 Tc}{17 Tc} = 3.06$