Abstract algebra I Homework 3 uwu

B13902022 賴昱錡

Due: 1st October 2025

1)
(a)
Claim: If G is cyclic and H is isomorphic to G , then H is cylic.
<i>Proof.</i> Suppose the isomorphism is $\varphi: G \to H$ and $G = \langle x \rangle \infty$, then every element of H can be written as the form $\varphi(x^d)$ for some integer d , also: $\varphi(x^d) = \varphi(x)^d$. Hence, H is generated by $\varphi(x)$, i.e., by claim above, $H = \langle \varphi(x) \rangle$ is cyclic.
$(\mathbb{Z}/15\mathbb{Z})^{\times} = \{\bar{1}, \bar{2}, \bar{4}, \bar{7}, \bar{8}, \bar{11}, \bar{13}, \bar{14}\}$ and $\mathbb{Z}/8\mathbb{Z} = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{5}, \bar{6}, \bar{7}\}$. Since $\mathbb{Z}/8\mathbb{Z}$ is a cyclic group of order 8 under addition, and $(\mathbb{Z}/15\mathbb{Z})^{\times}$ is not cyclic, they are not isomorphic.
(b)
(c)
(d)
(e)
(f)
(g)
(h)

2)

Suppose $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ and $\begin{pmatrix} c & -d \\ d & c \end{pmatrix}$ are two elements in G. Then we have:

$$\varphi\begin{pmatrix} \begin{pmatrix} a & -b \\ b & a \end{pmatrix} + \begin{pmatrix} c & -d \\ d & c \end{pmatrix} \end{pmatrix} = \begin{pmatrix} a+c & -b-d \\ b+d & a+c \end{pmatrix}$$
$$= (a+c) + (b+d)i$$
$$= (a+bi) + (c+di)$$
$$= \varphi\begin{pmatrix} \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \end{pmatrix} + \varphi\begin{pmatrix} \begin{pmatrix} c & -d \\ d & c \end{pmatrix} \end{pmatrix}$$

Thus, $\varphi:G\to\mathbb{C}$ is a homomorphism. To prove φ is isomorphic, we need to prove the injectivity and surjectivity. Suppose $\binom{a-b}{b-a}$ and $\binom{c-d}{d-c}$ For the injectivity, suppose $\binom{a-b}{b-a}$ and $\binom{c-d}{d-c}$ are distinct elements in G, i.e., $a\neq c\vee b\neq d$. Since $\varphi(\binom{c-d}{d-c})=c+di$, $\varphi(\binom{a-b}{b-a})=a+bi\neq \varphi(\binom{c-d}{d-c})$, the φ is injective.

For every element x = r + si in \mathbb{C} , where $r, s \in \mathbb{R}$, it can correspond to a unique real matrix $\binom{r-s}{s}$ in G. Thus, $\varphi(G) = \mathbb{C}$, the surjectivity is proved. Hence, G and \mathbb{C} are isomorphic!

3)

(a)

Suppose $H = \langle h \rangle, h \in G$ is a normal subgroup of G. Since any subgroup of a cyclic group is cyclic, the subgroup N of H can be written as the form $\langle h^d \rangle, d \in \mathbb{Z}$.

Suppose $g \in G$, since H is normal in G, $g^{-1}hg = h^i \in H$ for some integer i in [1, n] Then for any integer r, we have:

$$g^{-1}(h^d)^r g = (g^{-1}hg)^{rd} = (h^d)^{ir} \in N$$

Thus, for all $g \in G$ and elements in $N = \langle x^d \rangle$ (Let $n \in N$), we have $g^{-1}ng \in N$, N is normal in G.

(b)

Let $G = S_4$, the symmetry group on 4 letters. Let $H = V = \{e, (12)(34), (14)(23), (13)(24)\}$, the Klein four group. Obviously H is a non-empty subset of G. Since every non-identity element in H is a product of two disjoint transposition, their order is 2, i.e, their inverses are themselves, so also in H. We need to show that for any two elements x, y in H, $xy^{-1} = xy \in H$. By some calculating, we can find that the product of any element and itself is the identity, and the product of any two distinct elements is also a double transposition (two disjoint transposition), thus in H. By subgroup criterion, $H \leq G$.

Since G can be generated using u=(12) and v=(1234) by definition. To show H is normal in G, checking $uHu^{-1}=H$ and $vHv^{-1}=H$ is enough, since any elements can be expressed as the product of u and v. And by some easy calculations we know $uHu^{-1}=H$ and $vHv^{-1}=H$ are both true. Hence, H is normal in G.

Let $N = \{e, (12)(34)\}$, since $hNh^{-1} = N \forall h \in H$, N is a normal subgroup of H (N is non-empty, it's closed under taking inverse and product/compositions, so $N \leq H$). Taking $g = (123) \in G$, since $gNg^{-1} = \{e, (13)(24)\} \neq N$, N is not normal in H. This is a counterexample.

4)

Claim: Left cosets are in bijection via left multiplication. In other words, given a group G, a subgroup H, and two left cosets xH, yH of H, where $x, y \in G$, left multiplication by yx^{-1} creates a bijection between xH and yH.

Proof. We can prove the correctness, injectivity, surjectivity of the mapping. Suppose x, y are in G.

First note that if g = xh, $h \in H$, $x \in G$ then $(yx^{-1})g = yh$, thus the left multiplication of yx^{-1} can map any elements in xH to yH. Here proves the correctness.

Given two distinct elements $xh_1, xh_2 \in xH$, $h_1, h_2 \in H$, $(yx^{-1})xh_1 = yh_1$ and $(yx^{-1})xh_2 = yh_2$ are also distinct since if $yh_1 = yh_2$ then we will get $xh_1 = xh_2$ (by cancelling yx^{-1}), contradiction appeared. Thus, the map is injective.

Every element in yH takes the form as $yh = (yx^{-1})xh$, $h \in H$, it arises as the image of left multiplication by yx^{-1} . Thus, the map is surjective. From these properties, we know left cosets are in bijection via left multiplication.

Take any $g \in G$ and $n \in N$. Since φ is a homomorphism and H is abelian, we have:

$$\varphi(gng^{-1}n^{-1}) = \varphi(g)\varphi(n)\varphi(g^{-1})\varphi(n^{-1})$$
$$= \varphi(g)\varphi(g^{-1})\varphi(n)\varphi(n^{-1})$$
$$= \varphi(gq^{-1})\varphi(nn^{-1}) = e_H$$

Where e_H is the identity element of H, thus, $gng^{-1}n^{-1} \in \ker \varphi$. By hypothesis, $\ker \varphi \in N$, so $gng^{-1}n^{-1} \in N$. Since $gng^{-1} = (gng^{-1}n^{-1})n \in N$, we can conclude that $gNg^{-1} \subset N \ \forall g \in G$. Since the left coset, right coset and the conjugate have the same size with subgroup, i.e. $|gNg^{-1}| = N$, $gNg^{-1} = N \ \forall g \in G$ is true, and N is normal subgroup of G. By the claim above, we can easily know the size of left coset of subgroup N is the same as N, so is the right coset (The bijectivity is also proved in the same way as claim.). Thus, $|gNg^{-1}| = N$, which implies $gNg^{-1} = N$, N is the normal subgroup of G.