WHAT IS CLAIMED IS:

1	1.	A method for counteracting a pathologic change in a signal-transduction
2	pathway invo	lving a member of the steroid/thyroid hormone super-family, comprising
3	administering	g to a mammalian subject in need an effective amount of a compound capable of
4	inhibiting TG	F-β signaling through a TGF-β receptor.
1	2.	The method of claim 1 wherein the receptor is a steroid hormone receptor.
1	3.	The method of claim 2 wherein the pathologic change is down- or up-
2	regulation of the steroid hormone receptor.	
1	4.	The method of claim 3 wherein the down- or up-regulation involves TGF-β.
1	5.	The method of claim 3 wherein the down- or up-regulation is induced by
2	TGF-β.	
1	6.	The method of claim 1 wherein the pathologic change is a TGF-β induced
2	change in the	activity or signaling of a steroid hormone receptor.
	7	
1 2	7.	The method of claim 2 wherein the steroid hormone receptor is glucocorticoid
2	receptor.	
1	8.	The method of claim 1 wherein the receptor is a thyroid hormone receptor.
•	0.	The memora of claim 1 who can the receptor to a my total normalistic receptor.
1	9.	The method of claim 8 wherein the pathologic change is down- or up-
2	regulation of	a thyroid hormone receptor.
1	10.	The method of claim 9 wherein the down- or up-regulation involves TGF-β.
1	11.	The method of claim 9 wherein the down- or up-regulation is induced by
2	TGF-β.	

3	12.	The method of claim 8 wherein the pathologic change is a TGF-β induced
4	change in the	e activity or signaling of a thyroid hormone receptor.
1	13.	The method of claim 1 wherein the receptor is a retinoic acid receptor.
1	14.	The method of claim 13 wherein the pathologic change is down- or up-
2	regulation of	a retinoic acid receptor.
1	15.	The method of claim 14 wherein the down- or up-regulation involves TGF-β
1	16.	The method of claim 14 wherein the down- or up-regulation is induced by
2	TGF-β.	
1	17.	The method of claim 13 wherein the pathologic change is a TGF-β induced
2	change in the	e activity or signaling of a retinoic acid receptor.
1	18.	The method of claim 1 wherein the TGF- β receptor is a TGF β -R1 kinase.
1	19.	The method of claim 18 wherein the compound is capable of binding to said
2	TGFβ-R1 kii	nase.
1	20.	The method of claim 19 wherein the compound is capable of binding to an
2	additional re	ceptor kinase.
1	21.	The method of claim 20 wherein the additional receptor kinase is an activin
2	receptor (Alk	(4).
1	22.	The method of claim 1 wherein the compound is a non-peptide small
2	molecule.	
1	23.	The method of claim 22 wherein the compound is a small organic molecule.

1 24. The method of claim 23 wherein the small organic molecule is a compound of 2 formula (1)

$$Z^{6}$$

$$Z^{7}$$

$$Z^{8}$$

$$Z^{8$$

- 3 or the pharmaceutically acceptable salts thereof
- 4 wherein R³ is a noninterfering substituent;
- each Z is CR² or N, wherein no more than two Z positions in ring A are N, and wherein two adjacent Z positions in ring A cannot be N;
- 7 each R² is independently a noninterfering substituent;
- 8 L is a linker;
- 9 n is 0 or 1; and
- 10 Ar' is the residue of a cyclic aliphatic, cyclic heteroaliphatic, aromatic or 11 heteroaromatic moiety optionally substituted with 1-3 noninterfering substituents.
- 1 25. The method of claim 24 wherein the compound is a quinazoline derivative.
- The method of claim 25 wherein Z^3 is N; and Z^5 - Z^8 are CR^2 .
- The method of claim 25 wherein Z^3 is N; and at least one of Z^5 - Z^8 is nitrogen.
- 1 28. The method of claim 25 wherein R³ is an optionally substituted phenyl moiety.
- 1 29. The method of claim 28 wherein R³ is selected from the group consisting of 2-2 4-, 5-, 2,4- and 2,5-substituted phenyl moieties.
- 1 30. The method of claim 29 wherein at least one substituent of the phenyl moiety 2 is an alkyl(1-6C), or halo.

1 31. The method of claim 23, wherein the small organic molecule is a compound of 2 formula (2)

$$Y_3$$
 Y_4
 Y_6
 Y_1
 X_1
 X_2

3 wherein Y₁ is phenyl or naphthyl optionally substituted with one or more substituents selected from halo, alkoxy(1-6 C), alkylthio(1-6 C), alkyl(1-6 C), haloalkyl (1-4 5 6C), -O-(CH₂)_m-Ph, -S-(CH₂)_m-Ph, cyano, phenyl, and CO₂R, wherein R is hydrogen or 6 alkyl(1-6 C), and m is 0-3; or phenyl fused with a 5- or 7-membered aromatic or non-7 aromatic ring wherein said ring contains up to three heteroatoms, independently selected 8 from N, O, and 9 Y₂, Y₃, Y₄, and Y₅ independently represent hydrogen, alkyl(1-6C), alkoxy(1-6 C), haloalkyl(1-6 C), halo, NH₂, NH-alkyl(1-6C), or NH(CH₂)_n-Ph wherein n is 0-3; or an 10 adjacent pair of Y₂, Y₃, Y₄, and Y₅ form a fused 6-membered aromatic ring optionally 11 12 containing up to 2 nitrogen atoms, said ring being optionally substituted by one or more substituents independently selected from alkyl(1-6 C), alkoxy(a-6 C), haloalkyl(1-6 C), halo, 13 NH₂, NH-alkyl(1-6 C), or NH(CH₂)_n-Ph, wherein n is 0-3, and the remainder of Y₂, Y₃, Y₄, 14 and Y₅ represent hydrogen, alkyl(1-6 C), alkoxy(1-6C), haloalkyl(1-6 C), halo, NH₂, NH-15 alkyl(1-6 C), or NH(CH₂)_n-Ph wherein n is 0-3; and 16 one of X_1 and X_2 is N and the other is NR₆, wherein R₆ is hydrogen or alkyl(1-17 6 C). 18

1 32. The method of claim 23 wherein the small organic molecule is a compound of 2 formula (3)

$$X_1$$
 X_2
 X_2
 X_3

3 wherein Y₁ is naphthyl, anthracenyl, or phenyl optionally substituted with one 4 or more substituents selected from the group consisting of halo, alkoxy(1-6 C), alkylthio(1-6 C), alkyl(1-6 C), -O-(CH₂)-Ph, -S-(CH₂)_n-Ph, cyano, phenyl, and CO₂R, wherein R is 5 hydrogen or alkyl(1-6 C), and n is 0, 1, 2, or 3; or Y₁ represents phenyl fused with an 6 aromatic or non-aromatic cyclic ring of 5-7 members wherein said cyclic ring optionally 7 contains up to two heteroatoms, independently selected from N, O, and S; 8 9 Y_2 is H, NH(CH₂)_n-Ph or NH-alkyl(1-6 C), wherein n is 0, 1, 2, or 3; Y₃ is CO₂H, CONH₂, CN, NO₂, alkylthio(1-6 C), -SO₂-alkyl(C1-6), 10 alkoxy(C1-6), SONH₂, CONHOH, NH₂, CHO, CH₂NH₂, or CO₂R, wherein R is hydrogen or 11 12 alkyl(1-6 C); one of X₁ and X₂ is N or CR', and other is NR' or CHR' wherein R' is 13 hydrogen, OH, alkyl(C-16), or cycloalkyl(C3-7); or when one of X_1 and X_2 is N or CR' then 14

33. The method of claim 23 wherein the small organic molecule is a compound of formula (4)

$$R^3$$
 N
 (4)
 R^2

the other may be S or O.

15

1

2

and the pharmaceutically acceptable salts and prodrug forms thereof; wherein

- 4 Ar represents an optionally substituted aromatic or optionally substituted
- 5 heteroaromatic moiety containing 5-12 ring members wherein said heteroaromatic moiety
- 6 contains one or more O, S, and/or N with a proviso that the optionally substituted Ar is not

7 wherein R⁵ is H, alkyl (1-6C), alkenyl (2-6C), alkynyl (2-6C), an aromatic or

8 heteroaromatic moiety containing 5-11 ring members;

X is NR¹, O, or S;

10 R¹ is H, alkyl (1-8C), alkenyl (2-8C), or alkynyl (2-8C);

2 represents N or CR⁴;

each of R³ and R⁴ is independently H, or a non-interfering substituent;

each R² is independently a non-interfering substituent; and

n is 0, 1, 2, 3, 4, or 5. In one embodiment, if n>2, and the R²'s are adjacent,

they can be joined together to form a 5 to 7 membered non-aromatic, heteroaromatic, or

aromatic ring containing 1 to 3 heteroatoms where each heteroatom can independently be O,

17 N, or S.

9

15

16

1

34. The method of claim 23 wherein the small organic molecule is a compound of

2 formula (5)

$$Z^{6}$$
 Z^{5}
 Z^{8}
 Z^{8

3 or the pharmaceutically acceptable salts thereof;

wherein each of Z^5 , Z^6 , Z^7 and Z^8 is N or CH and wherein one or two Z^5 , Z^6 ,

5 Z^7 and Z^8 are N and wherein two adjacent Z positions cannot be N;

6	wherein m and n are each independently 0-3;
7	wherein two adjacent R1 groups may be joined to form an aliphatic
8	heterocyclic ring of 5-6 members;
9	wherein R ² is a noninterfering substituent; and
10	wherein R ³ is H or CH ₃ .