Teoria da Computação

Guilherme Henrique de Souza Nakahata

Universidade Estadual do Paraná - Unespar

08 de Abril de 2024

Notação assintótica

- Notação Ω e Θ;
- $f(n) = \Omega(g(n))$ significa que g(n) é um limite inferior assintótico para f(n);
- $f(n) = \Theta(g(n))$ significa que f(n) é limitada assintoticamente superior e inferiormente por g(n);

- Seja f(n) e g(n) função dos números inteiros para os reais;
- Dizemos que f (n) é $\Omega(g(n))$ se existirem constantes positivas c e n_0 tais que:
- $f(n) \geq cg(n)$;
- Para todo n $\geq n_0$.

- f (n) é Ω (g(n)) se \exists c>0 e n_0 > 0 tais que f (n) \geq c g(n), \forall n \geq n_0 ;
- $\Omega(g(n)) = \{f(n): \exists c>0 \in n_0 > 0 \text{ tais que } f(n) \ge cg(n), \forall n \ge n_0.$

Exemplo 1: Seja
$$f(n) = 10$$
. É $f(n) = \Omega(1)$?

Exemplo 2: Seja
$$f(n) = n$$
. É $f(n) = \Omega(1)$?

Exemplo 3: Seja
$$f(n) = \frac{1}{n}$$
. É $f(n) = \Omega(1)$?

Exemplo 1: Seja f(n) = 10. É $f(n) = \Omega(1)$? **Resposta:** SIM, pois tomando c = 1 e $n_0 = 0$, então $10 \ge 1$ para $n \ge n_0$.

Exemplo 2: Seja
$$f(n) = n$$
. É $f(n) = \Omega(1)$?

Exemplo 3: Seja
$$f(n) = \frac{1}{n}$$
. É $f(n) = \Omega(1)$?

Exemplo 1: Seja f(n) = 10. É $f(n) = \Omega(1)$? **Resposta:** SIM, pois tomando c = 1 e $n_0 = 0$, então $10 \ge 1$ para $n \ge n_0$.

Exemplo 2: Seja f(n) = n. É $f(n) = \Omega(1)$? **Resposta:** SIM, pois tomando c = 1 e $n_0 = 1$, então $n \ge 1$ para $n \ge n_0$.

Exemplo 3: Seja $f(n) = \frac{1}{n}$. É $f(n) = \Omega(1)$?

Exemplo 1: Seja f(n) = 10. É $f(n) = \Omega(1)$? **Resposta:** SIM, pois tomando c = 1 e $n_0 = 0$, então $10 \ge 1$ para $n \ge n_0$.

Exemplo 2: Seja f(n) = n. É $f(n) = \Omega(1)$? **Resposta:** SIM, pois tomando c = 1 e $n_0 = 1$, então $n \ge 1$ para $n \ge n_0$.

Exemplo 3: Seja $f(n) = \frac{1}{n}$. É $f(n) = \Omega(1)$? **Resposta:** Não, pois $\frac{1}{n}$ tende para zero (0), logo não é possível limitar inferiormente por uma constante positiva.

- Dizemos que f (n) é $\Theta(g(n))$ se existirem constantes positivas c_1 e c_2 e n_0 tais que:
- c1 g(n) \leq f (n) \leq c2 g(n);
- para todo n $\geq n_0$;
- Dizemos que f (n) = $\Theta(g(n))$ se somente se:
 - $\bullet \ f(n) = \Omega(g(n))$
 - f(n) = O(g(n))

• Sejam
$$f(n) = \frac{1}{2}n^2 - 3n e g(n) = n^2$$
;

• Mostrar que $f(n) = \Theta(g(n))$;

- Sejam $f(n) = \frac{1}{2}n^2 3n e g(n) = n^2$;
- Mostrar que $f(n) = \Theta(g(n))$;
- Encontrar c_1 , c_2 e n_0 tq
- $c_1 n^2 \le \frac{1}{2} n^2 3n \le c_2 n^2, n \ge n_0$

- Sejam $f(n) = \frac{1}{2}n^2 3n e g(n) = n^2$;
- Mostrar que $f(n) = \Theta(g(n))$;
- Encontrar c_1 , c_2 e n_0 tq
- $c_1 n^2 \leq \frac{1}{2} n^2 3n \leq c_2 n^2, n \geq n_0$;
- $c_1 \leq \frac{1}{2} \frac{3}{n} \leq c_2$

- Sejam $f(n) = \frac{1}{2}n^2 3n e g(n) = n^2$;
- Mostrar que $f(n) = \Theta(g(n))$;
- Encontrar c_1 , c_2 e n_0 tq
- $c_1 n^2 \leq \frac{1}{2} n^2 3n \leq c_2 n^2, n \geq n_0$;
- $c_1 \leq \frac{1}{2} \frac{3}{n} \leq c_2$;
- n₀?
- *c*₁?
- c_2 ?

• Sejam
$$f(n) = \frac{1}{2}n^2 - 3n e g(n) = n^2$$
;

- Mostrar que $f(n) = \Theta(g(n))$;
- Encontrar c_1 , c_2 e n_0 tq
- $c_1 n^2 \leq \frac{1}{2} n^2 3n \leq c_2 n^2, n \geq n_0$;
- $c_1 \leq \frac{1}{2} \frac{3}{n} \leq c_2$;
- $n_0 = 1$;
- $c_1 \leq \frac{1}{2} 3$
- $c_1 \leq -2, 5$;

- Sejam $f(n) = \frac{1}{2}n^2 3n e g(n) = n^2$;
- Mostrar que $f(n) = \Theta(g(n))$;
- Encontrar c_1 , c_2 e n_0 tq
- $c_1 n^2 \leq \frac{1}{2} n^2 3n \leq c_2 n^2, n \geq n_0$;
- $c_1 \leq \frac{1}{2} \frac{3}{n} \leq c_2$;
- $n_0 = 1$;
- $c_1 \leq \frac{1}{2} 3$
- $c_1 \leq -2,5$;
- $c_2 = ?$;

- Sejam $f(n) = \frac{1}{2}n^2 3n e g(n) = n^2$;
- Mostrar que $f(n) = \Theta(g(n))$;
- Encontrar c_1 , c_2 e n_0 tq
- $c_1 n^2 \leq \frac{1}{2} n^2 3n \leq c_2 n^2, n \geq n_0$;
- $c_1 \leq \frac{1}{2} \frac{3}{n} \leq c_2$;
- $n_0 = 1$;
- $c_1 \leq \frac{1}{2} 3$
- $c_1 \leq -2, 5$;
- $c_2 \le -2, 5$;

 Podemos usar limites para saber a taxa de crescimento de uma função em relação a outra:

$$\bullet \lim_{n\to\infty} \frac{f(n)}{g(n)} = c$$

•
$$f(n) = \Theta(g(n))$$

Exemplo: Considere as funções $f(n) = 2n^2 + 3n$ e $g(n) = n^2$. Podemos calcular o limite:

$$\lim_{n\to\infty}\frac{2n^2+3n}{n^2}$$

- Podemos usar limites para saber a taxa de crescimento de uma função em relação a outra:
 - $\bullet \lim_{n\to\infty} \frac{f(n)}{g(n)} = c$
 - $f(n) = \Theta(g(n))$

Exemplo: Considere as funções $f(n) = 2n^2 + 3n$ e $g(n) = n^2$. Podemos calcular o limite:

$$\lim_{n\to\infty}\frac{2n^2+3n}{n^2}$$

$$\lim_{n\to\infty}\frac{\frac{2n^2}{n^2}+\frac{3n}{n^2}}{1}$$

 Podemos usar limites para saber a taxa de crescimento de uma função em relação a outra:

$$\bullet \lim_{n\to\infty} \frac{f(n)}{g(n)} = c$$

•
$$f(n) = \Theta(g(n))$$

Exemplo: Considere as funções $f(n) = 2n^2 + 3n$ e $g(n) = n^2$. Podemos calcular o limite:

$$\lim_{n \to \infty} \frac{2n^2 + 3n}{n^2} = \lim_{n \to \infty} \left(2 + \frac{3}{n} \right)$$

- Podemos usar limites para saber a taxa de crescimento de uma função em relação a outra:
 - $\bullet \lim_{n\to\infty} \frac{f(n)}{g(n)} = c$
 - $f(n) = \Theta(g(n))$

Exemplo: Considere as funções $f(n) = 2n^2 + 3n$ e $g(n) = n^2$. Podemos calcular o limite:

$$\lim_{n\to\infty}\frac{2n^2+3n}{n^2}=\lim_{n\to\infty}\left(2+\frac{3}{n}\right)=2$$

Como o limite é uma constante finita, podemos concluir que $f(n) = \Theta(g(n))$.

- Podemos usar limites para saber a taxa de crescimento de uma função em relação a outra:
 - $\bullet \lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$
 - f(n) = O(g(n))

Exemplo: Considere as funções f(n) = n e $g(n) = n^2$. Podemos calcular o limite:

$$\lim_{n\to\infty}\frac{n}{n^2}=\lim_{n\to\infty}\frac{1}{n}=0$$

Como o limite é 0, podemos concluir que f(n) = O(g(n)).

- Podemos usar limites para saber a taxa de crescimento de uma função em relação a outra:
 - $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$
 - $f(n) = \Omega(g(n))$

Exemplo: Considere as funções $f(n) = n^3$ e $g(n) = n^2$. Podemos calcular o limite:

$$\lim_{n\to\infty}\frac{n^3}{n^2}=\lim_{n\to\infty}n=\infty$$

Como o limite é ∞ , podemos concluir que $f(n) = \Omega(g(n))$.

Exercício sobre Limites e Taxa de Crescimento

Exercício:

- Determine se a função $f(n) = \log n$ é O(g(n)), $\Omega(g(n))$ ou $\Theta(g(n))$, onde $g(n) = \sqrt{n}$;
- Determine se a função $f(n) = \sqrt{n}$ é O(g(n)), $\Omega(g(n))$ ou $\Theta(g(n))$, onde g(n) = n;
- Determine se a função $f(n) = n^2$ é O(g(n)), $\Omega(g(n))$ ou $\Theta(g(n))$, onde $g(n) = n^3$.

Exercício sobre Limites e Taxa de Crescimento

Exercício: Determine se a função $f(n) = \log n$ é O(g(n)), $\Omega(g(n))$ ou $\Theta(g(n))$, onde $g(n) = \sqrt{n}$.

Resolução: Podemos usar limites para determinar a relação entre f(n) e g(n).

- Calculamos o limite: $\lim_{n\to\infty} \frac{f(n)}{g(n)}$.
- Se o limite for uma constante finita, então $f(n) = \Theta(g(n))$.
- Se o limite for 0, então f(n) = O(g(n)).
- Se o limite for ∞ , então $f(n) = \Omega(g(n))$.

Calculamos o limite:

$$\lim_{n\to\infty}\frac{\log n}{\sqrt{n}}$$

Esse limite é indeterminado. Podemos aplicar a regra de L'Hôpital, derivando numerador e denominador uma vez:

$$\lim_{n\to\infty}\frac{\frac{1}{n}}{\frac{1}{2\sqrt{n}}}=\lim_{n\to\infty}\frac{2\sqrt{n}}{n}=0$$

Como o limite é 0, podemos concluir que f(n) = O(g(n)).

Exemplo de Algoritmo com Custo

Algoritmo 1:

```
1: for i = 1 to n:
2: print(i)
```

Custo:

- Linha 1: *n* iterações
- Linha 2: *n* iterações

Algoritmo 2:

```
1: for i = 1 to n:
2: for j = 1 to n:
3: print(i, j)
```

Custo:

- Linha 1: *n* iterações
- Linha 2: n iterações, totalizando n² iterações
- Linha 3: n² iterações

Exemplo de Algoritmo para Análise

Algoritmo para Análise:

```
1: x = 0
2: for i = 1 to n:
3: x = x + 1
4:
5: y = 0
6: for j = 1 to n:
7: for k = 1 to j:
     y = y + 1
8:
9:
10: z = 0
11: for p = 1 to n:
12: for q = 1 to n:
13:
          z = z + p * q
```

Análise de Custo:

- Linhas 1, 5 e 10: custo constante
- Linhas 2-3: n iterações, custo O(n)
- Linhas 6-8: n^2 iterações, custo $O(n^2)$
- Linhas 11-13: n^2 iterações, custo $O(n^2)$

Exercício: Algoritmo com Laços For

Algoritmo 3:

```
1: for i = 1 to n:

2: for j = 1 to i:

3: print(i, j)

4:

5: x = 0

6: for i = 1 to n:

7: x = x + i
```

Exercício: Analise o custo do algoritmo 3 e escreva o custo de cada linha.

INSERTION-SORT (A)		cost	times
1 for	$j \leftarrow 2 \text{ to length}[A]$	c_1	n
2	$\mathbf{do}\ key \leftarrow A[j]$	C2	n - 1
3	\triangleright Insert $A[j]$ into the sorted		
	sequence $A[1 j - 1]$.	0	n-1
4	$i \leftarrow j-1$	C_4	n-1
5	while $i > 0$ and $A[i] > key$	C5	$\sum_{i=2}^{n} t_i$
5	$\mathbf{do}\ A[i+1] \leftarrow A[i]$	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	$i \leftarrow i - 1$	C7	$\sum_{j=2}^{n} (t_j - 1)$
3	$A[i+1] \leftarrow key$	C8	n-1

INSERTION-SORT (A)		cost	times
1 fo	$\mathbf{r} \ j \leftarrow 2 \ \mathbf{to} \ length[A]$	c_1	n
2	do $key \leftarrow A[j]$	C2	n-1
3	\triangleright Insert $A[j]$ into the sorted	- 5	
	sequence $A[1j-1]$.	0	n-1
4	$i \leftarrow j-1$	C_4	n-1
5	while $i > 0$ and $A[i] > key$	C5	$\sum_{j=2}^{n} t_j$
5	do $A[i+1] \leftarrow A[i]$	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	$i \leftarrow i - 1$	C7	$\sum_{j=2}^{n} (t_j - 1)$
3	$A[i+1] \leftarrow key$	C8	n-1

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8(n-1) + c_8($$

 $t_j =$ número de vezes que o teste do laço **while** é executado para cada valor de j.

Bibliografia Básica

- LEWIS, H. R.; PAPADIMITRIOU, C. H. Elementos de Teoria da Computação. 2 ed. Porto Alegre: Bookman, 2000.
- VIEIRA, N. J. Introdução aos Fundamentos da Computação. Editora Pioneira Thomson Learning, 2006.
- DIVERIO, T. A.; MENEZES, P. B. Teoria da Computação: Máquinas Universais e Computabilidade. Série Livros Didáticos Número 5, Instituto de Informática da UFRGS, Editora Sagra Luzzato, 1 ed. 1999.

Obrigado! Dúvidas?

Guilherme Henrique de Souza Nakahata

guilhermenakahata@gmail.com

https://github.com/GuilhermeNakahata/UNESPAR-2024