

Introduction to In-Silico Learning

Data Mining Algorithms

Giacomo Bergami

1/38

Use Case

Clash Royale (1/2)

- Clash Royale is a Real Time Strategy game combining collectible card games, tower defense, and multiplayer online battle arena.
- Prior to each battle, players construct a deck of eight cards which they use to attack and defend against their opponent's cards.
- At the start of each game, both players begin with four randomly chosen cards from their deck of eight.

2/38

Clash Royale (2/2)

- The API selects all the 1-versus-1 battles.
- From the API, we have no information concerning the randomly selected cards, but just the whole deck of 8.
- For each battle, we know who was the winner.
- We want to implement a recommendation system suggesting the best cards that might bring to an easy victory.

Working Plan

- In order to provide good suggestions, we need to mine only the card decks that are always winning in our dataset.
- From these cards, return the most frequent subset of card patterns.
- Use the most frequent subset of card patterns to generate good association rules.

http://github.com/kekepins/clash-royal-analytics/

4/38

Introduction

Enumerating Data Mining Algorithm

- Mining and Learning are both search processes
- Therefore, by using a trivial generate-and-test approach we can define the following

Algorithm 1 Returning hypotheses when \mathcal{L}_h is known

- 1: **function** Enumerate(Q, D, \mathcal{L}_h)
- 2: **for each** $h \in \mathcal{L}_h$ **do**
- if Q(h, D) then yield h
- 4: end if
- 5: end for
- 6: end function

5/38

Frequent Itemset's Search Space

Given the set of all the items $\{E, K, M, O, Y\} = \mathcal{L}_e$, the set of all the possible itemsets is $\wp(\{E, K, M, O, Y\}) = \mathcal{L}_h$. We can efficiently traverse it if we use \supseteq as the \preceq relationship to visit the sets.

Why Association Analysis?

This kind of analysis permits to hilight when two events are correlated to each other:

- In market basket analysis, we want to check which are the products that the customer is more likely to buy given the elements that has already bought.
- In earth science, we want to associate patterns of events happening between biosphere, lithosphere, hydrosphere and atmosphere.
- In healthcare, comorbidity could be studied through event correlation.

7/38

Mining Association Rules.

Two step approach:

- 1. Frequent Itemsets Generation
 - Generate all the itemsets whose support is greater than a minsupport threshold.

2. Rule Generation

■ Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

Frequent Itemset Generation

Definition

- lacktriangle The set of all the possible items (elements, events) is I.
- An observation of a sequence of events is called transacrions. *T* is the set of all the observed transactions.
 - I can be defined as $I = \bigcup_{t \in T} t$
- The set set of all the possible transactions is $2^I \equiv \wp(I)$, which is a poset $(2^I, \subseteq)$ that could be represented as a lattice. This is the set of all the possible itemsets.
- For each itemset, we could evaluate its <u>support number</u>, that is the number of distinct transactions containing the considered itemset:

$$\sigma(X) = |\{t \in T \mid X \subseteq t\}|$$

FP-Growth vs. A Priori

Why do we explain FP-Growth instead the simplest A Priori for the **frequent itemset generation**?

- It uses a divide and conquer strategy for increasing the size of the frequent itemsets
- The FP-Tree efficiently evalutes the **support number**
- It provies a compact representation of all the databases' transactions.
- If the *compaction factor* of the data is high (there are a lot of common subsequences), this algorithm outperforms A Priory by several orders of magnitude.

10/38

FP-Growth: a) creating the FP-Tree

The FP-Tree maps each transition in the database T as a path in the tree.

- The more the paths overlap, more is the compression we could achieve
- This allows to represent the data structure in main memory without performing multiple I/O (or random accesses) to the database.
- Instead of generating a complete lattice of all the possible frequent solutions, we generate a tree with a support number information.

Example (1/13)

TID	Itemsets
1	$\{M,O,N,K,E,Y\}$
2	$\{D,O,N,K,E,Y\}$
3	$\{M, A, K, E\}$
4	$\{M, U, C, K, Y\}$
5	$\{C,O,O,K,I,E\}$

Database T of 5 itemsets

12/38

Example (2/13)

TID	Itemsets	Item (I)	$\sigma(\cdot)$
1	$\{M,O,N,K,E,Y\}$	M	3
2	$\{D,O,N,K,E,Y\}$	O	3
3	$\{M, A, K, E\}$	Ν	2
4	$\{M, U, C, K, Y\}$	K	5
5	$\{C,O,O,K,I,E\}$	Е	4
		Υ	3
		D	1
		Α	1
		U	1
		C	2
		I	1

Counting the total number of item occurences

Example (3/13)

minsupport=3

TID	Itemsets	Item (I)	$\sigma(\cdot)$
1	$\{M,O,N,K,E,Y\}$	М	3
2	$\{D,O,N,K,E,Y\}$	O	3
3	$\{M,A,K,E\}$	K	5
4	$\{M, U, C, K, Y\}$	Е	4
5	$\{C,O,O,K,I,E\}$	Y	3

We want to consider only itemsets that occur at least 3 times

14/38

Example (4/13)

TID	Itemsets	Item (I)	$\sigma(\cdot)$
1	$\{M,O,N,K,E,Y\}$	K	5
2	$\{D,O,N,K,E,Y\}$	Е	4
3	$\{M,A,K,E\}$	M	3
4	$\{M, U, C, K, Y\}$	O	3
5	$\{C,O,O,K,I,E\}$	Y	3

Sorting the I table by descending support order

- With the whole set of I = 11, the total number of all the possible itemsets is $2^{11} = 2048$ (impossible to plot!)
- After pruning the initial space search to I = 5, we reduce the visit to $2^5 = 32$.

Example (5/13)

Item (I)	$\sigma(\cdot)$
K	5
Е	4
M	3
O	3
Y	3

TID	Itemsets
1	$\{K, E, M, O, Y\}$
2	$\{K, E, O, Y\}$
3	$\{K, E, M\}$
4	$\{K, M, Y\}$
5	$\{K, E, O\}$

Rewriting the itemset using the same order from I

16/38

Example (6/13)

$\{K,E,M,O,Y\}$

- Starting from the null root, we start creating a path following the order given by *I*
- Each item in the *I* table will contain a pointer to the first occurrence of the item in the first path.
- The nodes in blue will represent the newly inserted or updated ones.

Example (7/13)

Null (K:2) (E:2) (M:1) (Y:1) (Y:1)

$\{K,E,O,Y\}$

- Increment the already visited nodes.
- Create a new branch if there does not exist a path immediately providing the next itemset
- Point the last path occurrence of an item to the next one for traversing ease (dashed lines).

18/38

Example (8/13)

null K:3 E:3 M:2 V:1 - Y:1

$\{K,E,M\}$

At this stage, we're just incrementing the elements, given that there already exists a path containing the elements of choice.

Example (9/13)

20/38

Example (10/13)

FP-Growth: b) Frequent Itemset Generation

After completing the generation of the tree, we want to use such datastructure to minimize the DB access for generating the frequent itemsets.

■ Given that the longest set contains all the elements, the worst case scenario for creating such trie is $O(|I|^2)$

22/38

FP-Growth: b) Frequent Itemset Generation

Run the algorithm FP-FREQIT(x, τ , R, I) with the current item x and R initialized as empty over the current FP-Tree τ .

FP-FreqIt(x, τ , R, I'):

- 1. Insert *x* in the result set *R*, *R* passed by reference.
- 2. Create a PrefixSubtree_x containing only the subpaths in T from the root to the nodes labelled with the last character c in x, so that all the leaves are labelled c.
- 3. Restructure the pruned tree as follows:
 - 3.1 For each node, replace its support count as the sum of the supports of all the descendant leaves.
 - 3.2 Update $\sigma(x)$ in the support table by summing the support of the x-labelled nodes in the subtree.
 - 3.3 Remove from σ and I' all the nodes that are x or do not pass the minimum support threshold in σ (passed by copy).
 - 3.4 Run FP-FreqIt(xy, PrefixSubtree_x, R, I') for each node $y \in I'$.

Example (11/13)

 $\mathsf{FP\text{-}Freqlt}(Y,\tau,\{Y\},I)$

Item (I)	$\sigma(\cdot)$
K	3
Е	2
M	2
O	2
Y	3

24/38

Example (12/13)

FP-FreqIt(YK, PrefixSubtree $_Y$, $\{Y, YK\}$, I')

Item (I')	$\sigma(\cdot)$
K	3

Example (13/13)

 $\mathsf{FP\text{-}Freqlt}(O,\tau,\{Y,YK,O\},I)$

Item (I)	$\sigma(\cdot)$
K	3
Е	3
M	1
O	3

26/38

Visiting \mathcal{L}_h (1/2)

- In the worst case scenario, we will compute a PrefixSubtree for each node in the lattice.
- Given that min-support is anti-monotonic, we can prune specializations!

Visiting \mathcal{L}_h (2/2)

Let us now analyse some advantages of the FP-Tree:

- It allows a Divide and Conquer strategy to parallelize the algorithm (generation of different PrefixTrees).
- If we need to expand the nodes without any additional information on the lattice structure, we will be forced to visit the same element multiple times.
- By duplicating the σ information into the tree, we can then update it while pruning PrefixTree without scanning the whole T.

28/38

Association Rule Mining

Definition

- An association rule $X \to Y$ shall be interpreted as "if X appears, then it is also likely that Y appears, too". Moreover, $X \cap Y = \emptyset$.
- Those rules are generated from the 2^I elements. This implies that for any $Z \in 2^I$ we can generate a set of association rules $X \to Y$ where $Z = X \cup Y$.

29/38

Metrics

We could evaluate any rule $X \to Y$ mainly through two measures:

■ **support**: how many times it could be applied in the dataset (*high support*: *should apply to a large amount of cases*):

$$s(X \to Y) = \frac{\sigma(X \cup Y)}{|T|}$$

■ confidence: the frequency of *Y* when also *X* appears (*high* confidence: should be often correct):

$$c(X \to Y) = \frac{\sigma(X \cup Y)}{\sigma(X)}$$

■ lift: compares the rule confidence with the null hypothesis's confidence (*high lift: indicates the rule is not just a coincidence*):

$$\ell(X \to Y) = \frac{\sigma(X \cup Y)}{\sigma(X)\sigma(Y)}$$

Drawback of Confidence

Association Rule: Tea \rightarrow Coffee

	Coffee	¬Coffee	
Tea	15	5	=20
¬Tea	75	5	=80
	=90	=10	

- $c(\text{Tea} \rightarrow \text{Coffee}) = \frac{15}{20} = 0.75 \text{ but } \mathbb{P}(\textit{Coffe}) = 0.9$
- Albeit in this case confidence is hight, if trivially interpreted might be misleading!
- $c(\neg \text{Tea} \rightarrow \text{Coffee}) = 0.9375$

31/38

Statistical Independence

Given a population of 1000 students, where:

- 600 know how to swim (S)
- 700 know how to bike (B)
- 420 know how to do both (S,B)

$$\mathbb{P}(SB) = \frac{420}{1000} = 0.42$$
 $\mathbb{P}(S)\mathbb{P}(B) = \frac{600}{1000} \frac{700}{1000} = 0.42$

- $\blacksquare \mathbb{P}(SB) = \mathbb{P}(S)\mathbb{P}(B)$: statistical independence
- $\mathbb{P}(SB) > \mathbb{P}(S)\mathbb{P}(B)$: positively correlated
- $\mathbb{P}(SB) < \mathbb{P}(S)\mathbb{P}(B)$: negatively correlated

Association Rule: Tea \rightarrow Coffee

As we will now see, the lift will tell us that this rule is negatively determined, and therefore it is not relevant for our use-case.

	Coffee	$\neg Coffee$	
Tea	15	5	=20
¬Tea	75	5	=80
	=90	=10	

•
$$c(\text{Tea} \rightarrow \text{Coffee}) = \frac{15}{20} = 0.75 \text{ but } \mathbb{P}(\textit{Coffe}) = 0.9$$

■
$$lift(Tea \rightarrow Coffee) = \frac{\mathbb{P}(Coffee|Tea)}{\mathbb{P}(Coffee)} = 0.8\overline{3}$$

■
$$lift(\neg Tea \rightarrow Coffee) = \frac{\mathbb{P}(Coffee|\neg Tea)}{\mathbb{P}(Coffee)} = \approx 1.041\overline{6}$$

33/38

Pattern Evaluation

- Association rule algorithms tend to produce too many rules:
 - many of them are uninteresting or redundant
 - Redundant if $\{A, B, C\} \rightarrow \{D\}$ and $\{A, B\} \rightarrow \{D\}$ have the same support and confidence.
- Interestingness measures can be used to prune and rank the derived rules
- In the original formulation of association rules, support and confidence are the only measures that are used.

Heuristic General-to-Specific Algorithm

- FP-Tree growth uses a general-to-specific algorithm using min support as an anti-monotinic quality criterion.
- There exist many interesting mining and learning tasks for which the quality criterion is neither monotonic nor anti-monotonic.
 - In these cases, it is too inefficient to perform a complete search space:
 - We need to use a branch-and-bound technique.

35/38

36/38

Heuristic Algorithm: Implementation

Algorithm 2 Branch-and-Bound hypotheses search

```
1: function (Q, D, \mathcal{L}_h)
        Queue := \{\top\}
                               Th = \emptyset
2:
        while Queue \neq \emptyset do
3:
             h := pop(Queue)
4:
             if Q(h, D) then
5:
                  Th := Th \cup \{h\}
6:
             else
7:
                  Queue:= Queue\cup { d \in \mathcal{L}_h \mid d \leq h }
8:
             end if
9:
             prune(Queue)
10:
         end while
11:
         return Th
12:
13: end function
```

Heuristic Algorithm for Association Rule Mining

- Run the frequent itemset algorithm, from which we will obtain all the possible σ measures that we are going to use for lift.
- For each frequent itemset X, generate a lattice having a top element $T = X \to \emptyset$.
- Specialize each hypothesis *h* by moving the elements on the premises to the consequences one at a time.
- Use both as a prune and as a quality strategy Q(h, D) the min lift criterion: lift(h) > 1.

37/38

Further Work

- Given that the *lift* is monotonic, implement a specific to general algorithm working as follows:
 - 1. Add to the queue all the leaves $X \to Y$ where |X| = 1 and $X \cup Y$ is a frequent itemset.
 - 2. If $X \to Y$ satisfies the minimum lift of 1, then add the current hypothesis h to the result set.
 - 3. Otherwise, for all the rules $Z \to T$ s.t. $\neg(X \to Y \preceq Z \to T)$ add $X \cap Z \to Y \cup T$ to the queue.