Práctica:

CAPÍTULO 3 (segunda parte)

Cuando no se especifica lo contrario, el producto interno en \mathbb{R}^n es x^Ty y el espacio vectorial \mathbb{R}^n se considera con suma y producto por escalares habituales.

- 1. Sea V un espacio vectorial con producto interno y W un subespacio vectorial de V. Demostrar las siguientes proposiciones:
 - a) $v \in W^{\perp}$ si y solo si v es ortogonal a todo vector $u \in U$ donde $\langle U \rangle = W$.
 - b) W^{\perp} es un subespacio vectorial de V.
 - c) $(W^{\perp})^{\perp} = W$.
- 2. Sean $A = (a_{ij})$ y $B = (b_{ij})$ matrices reales de tamaño $n \times n$ y

$$\langle A, B \rangle = \sum_{i,j} a_{ij} b_{ij},$$

un producto interno en el espacio de las matrices reales $n \times n$.

- a) Hallar una base ortogonal para $\mathbb{R}^{n \times n}$ para dicho producto interno.
- $b) \ \ \text{Hallar} \ W^{\perp} \ \text{siendo} \ W \subseteq \mathbb{R}^{2 \times 2} \ \text{el espacio generado por} \left\{ \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\} \subset \mathbb{R}^{2 \times 2}.$

$$c) \ \ \text{idem } b) \ \text{para} \ W = \left\{ \begin{bmatrix} a & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, a,b,c \in \mathbb{R} \right\}.$$

- 3. Calcular el complemento ortogonal del subespacio de \mathbb{R}^3 generado por los vectores (1,1,2) y (1,2,3). *Sugerencia:* Pensar los vectores como filas de una matriz A.
- 4. Si V es el complemento ortogonal de W en \mathbb{R}^n , ¿existe una matriz tal que el espacio fila coincide con V y el espacio nulo es W?
- 5. Determinar si las siguientes afirmaciones son verdaderas o falsas.
 - a) Si V es ortogonal a W, entonces V^{\perp} es ortogonal a W^{\perp} .
 - b) Si V es ortogonal a W y W es ortogonal a Z entonces V es ortogonal a Z.
- 6. Sea S el hiperplano de \mathbb{R}^4 que contienen a todos los vectores que satisfacen la ecuación $x_1 + x_2 + x_3 + x_4 = 0$. Calcular una base para el espacio S^{\perp} .
- 7. Sean

$$u^{1} = \begin{bmatrix} 0 \\ 1 \\ -4 \\ -1 \end{bmatrix}, u^{2} = \begin{bmatrix} 3 \\ 5 \\ 1 \\ 1 \end{bmatrix}, u^{3} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -4 \end{bmatrix}, u^{4} = \begin{bmatrix} 5 \\ -3 \\ -1 \\ 1 \end{bmatrix}, x = \begin{bmatrix} 10 \\ -8 \\ 2 \\ 0 \end{bmatrix}.$$

Sean $V = \langle \{u^1, u^2, u^3\} \rangle \subseteq \mathbb{R}^4$ y $W = \langle \{u^4\} \rangle \subseteq \mathbb{R}^4$.

- a) Probar que $V = W^{\perp}$.
- b) Escribir x como suma de dos vectores, uno en V y el otro en W.
- 8. En cada uno de los siguientes casos, considerar a L como el subespacio de \mathbb{R}^3 tal que $L = \langle a \rangle$. Calcular $proy_{s/L}$ b y comprobar que el vector $b proy_{s/L}$ b es perpendicular al vector a.

a)
$$b = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$
 y $a = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

b)
$$b = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$$
 y $a = \begin{bmatrix} -1 \\ -3 \\ -1 \end{bmatrix}$.

- 9. Si la ecuación Ax = b tiene solución, entonces existe un único p en $C(A^T)$ solución del sistema.
- 10. Sea W un subespacio vectorial de V y $\{w^1,\ldots,w^p\}$ base ortogonal de W. Sea $v\in V-W$, probar que $v-proy_{s/W}$ v es perpendicular a w para todo $w\in W$.
- 11. Sea W un subespacio de \mathbb{R}^n con una base ortogonal $\{w^1,\ldots,w^p\}$ y sea $\{v^1,\ldots,v^q\}$ una base ortogonal de W^\perp .
 - a) Explicar por qué $\{w^1, \dots, w^p, v^1, \dots, v^q\}$ es un conjunto ortogonal.
 - b) Explicar por qué el conjunto definido en el ítem anterior genera \mathbb{R}^n . Sugerencia: Utilizar el ejercicio 10..
 - c) Demostrar que $\dim W + \dim W^{\perp} = n$.