Análisis de las transiciones de comportamiento en crecimiento de tumores usando una simulación con autómata celular

Sergio Rodríguez Calvo

Diciembre 2017

Índice

- 1. Objetivos y alcance
- 2. Estado del arte
- 3. Introducción a los autómatas celulares
- 4. Introducción a la enfermedad del cáncer
- 5. Modelización
- 6. Parámetros de la simulación
- 7. Modelo de eventos
- 8. Mitosis
- 9. Implementación
- 10. Experimentos
- 11. Resultado propio
- 12. Demostración

Objetivos y alcance

Objetivos:

- Encontrar artículos científicos sobre "Simulación de crecimiento de tumores con autómatas celulares".
- Extraer información de los artículos y seleccionar candidatos.
- Hacer implementación propia y reproducir los experimentos y sus resultados.
- Comparar los resultados obtenidos.

Alcance:

 Implementación propia siguiendo la modelización de los autores y reproducir los experimentos del artículo.

Estado del arte

- Simulated Brain Tumor Growth Dynamics Using a Three-Dimensional Cellular Automaton, de A. Kansal, S. Torquato, G. Harsh, E. Chiocca, T. Deisboeck, 2000.
- A cellular automaton model for tumour growth in inhomogeneous environment, de T. Alarcon, H. Byrne, P. Maini, 2003.
- A Cellular automata model of tumor-immune system interactions, de D.G.
 Mallet, L.G. De Pillis, 2006.
- Cellular Automaton of Idealized Brain Tumor Growth Dynamics, de A. Kansal,
 S. Torquato, G. Harsh, E. Chiocca, T. Deisboeck, 2009.
- Analysis of behaviour transitions in tumor growth using a cellular automaton simulation, de José Santos, Ángel Monteagudo, 2014.

Introducción a los autómatas celulares

Conus textile shell

Conway's game of life

Introducción a los autómatas celulares

SE					W		E		SW	S
					SW	S	SE			
	NW	N	NE							
	W		E	v						
	SW	S	SE	v						
NE									NW	N
[Ini]					NW	N	NE		W	

Introducción al cáncer

- Nombre genérico para agrupar a más de 200 enfermedades que provocan proliferación descontrolada de células.
- Es una enfermedad genética, multigénica, multifactorial y multiorgánica.
- Fases:
 - Crecimiento.
 - Angiogénesis.
 - Vascularización (metástasis).

Introducción al cáncer

Modelización

- Célula:
 - Genoma: SG, IGI, EA, EI y GI.
 - Propiedades:
 - Tasa de mutación base (m).
 - Tamaño del telómero (tl).
- Rejilla de tamaño 50 posiciones en tres dimensiones.

Parámetros de la simulación

- Valor para tamaño de la rejilla (t).
- Valor por defecto para el parámetro *tasa de mutación base* (m).
- Valor por defecto para el parámetro tamaño del telómero (tl).
- Valor para definir probabilidad de muerte por daño genético (e).
- Valor para parámetro de factor de incremento de tasa de mutación base (i).
- Valor para definir la probabilidad de que una célula cancerosas mate a un vecino para efectuar la mitosis (g).
- Valor para definir probabilidad de **muerte aleatoria** (a).

Modelo de eventos

Mitosis

Implementación

```
def run(self):
 for iteration in range(self.iterations):
     events = self.pop_events(iteration) if iteration in self.mitotic_agenda else []
     for event in events: # event is a tuple with three elements == position
         cell = self.cells[event]
         if self.experiments.random_death_test():
             self.kill_cell(event)
         elif self.experiments.genetic_damage_test(cell.mutations(), cell.genome.ea):
             self.kill_cell(event)
         else:
             test_1, test_2, test_3 = self.first_test(cell),
                                      self.second_test(cell, iteration),
                                      self.third test(cell)
             if test_1 and test_2 and test_3: #Perform mitosis
                 self.copy_and_choose_new_position(event, cell, iteration)
                 self.push event(iteration + self.future mitotic event(), event)
             elif test 3:
                 self.push_event(iteration + self.future_mitotic_event(), event)
             else: # Telomer is 0 and EI is OFF
                 self.kill_cell(event)
     if iteration in self.mitotic_agenda: # Remove current iteration
         del self.mitotic_agenda[iteration]
```

Experimento: tasa de mutación m = 10.000

Resultado propio: tasa de mutación base m = 10.000

Experimento: tasa de mutación m = 100.000

Resultado propio: tasa de mutación base m = 100.000

Demostración

- Células sanas
- Células cancerosas

¿Alguna pregunta?

