Taiwan Sign Language Translation

Team: 王蕣婷 林于湘 林妘鑫 洪睿謙 陳郁婷 張育禔 楊畯棋 賴藍

平

Presenter: 洪睿謙 陳郁婷

Demo

久/相見/ 無 =好久不見

Contents

TSL Translation

01

Introduction

Why we started this project?

03

Experiments

What have we done?

02

Data & Methods

How to make this happen?

04

Conclusion & Prospect

What's next?

TSL Translation

Ol INTRODUCTIO N

Motivation

Introduction •

Motivation

Introduction •

探究台灣手語翻譯服務現況,思考解決方案。期望改善使用者可能

面臨的困境並提升生活品質與便利性。

Goal

Introduction •

Ordinary People

Interpreter

Deaf People

TSL Translation

Goal

Introduction •

- 手語隱含文化獨特性
- 語言系統與時俱進
- Hand gesture recognition
- Hand pose estimation & tracking

新技術+AI = 持續性的研究與學習價值

TSL Translation

02

Data & Methods

Data Collection

Data & Methods

手語是多重且連續性的資料, 包含:

- 1. 手形
- 2. 位置
- 3. 動作型態
- 4. 方向
- 5. 表情

Data Collection

Data & Methods

來源	參考 Youtube 手語教學, 自行拍攝
內容	涵蓋六大主題常用語 「年齡、問候、家人、時間、住家、描述」
筆數	共 <mark>55 個字詞</mark> , 可組合至少 25 個短句
特徵	保留手形、位置(胸部以上)、動作型態及方向

有買久一你誰租棒零我無

今天 昨天 明天 台北 桃園 手語 朋友 什麼 將近 父母 一共 家裡 他們 吃飯 房子 銀行 認識 見她 比較 是嗎 一樣 生日 天氣 上課 孩子 相見 運動 年齡 名字

星期一 星期二 星期三 星期四 星期五 星期六 星期天 捷運站 高鐵到 我問你 還沒有 完了嗎

我們兩個 幾月幾號 會不會呢

Data Collection

Data & Methods

我問你 我問你 我問你 手語 會不會 呢

我問你/手語/會不會呢

= 請問你會不會打手語

55 words
60 frames (2 sec * 30 fps)

Hands & Pose Tracking Solution

Data & Methods

Hands

- Palm detection model: TFLite model, TF.js model
- Hand landmark model: TFLite model, TFLite model (sparse),
 TF.js model
- Model card, Model card (sparse)

Pose

- Pose detection model: TFLite model
- Pose landmark model: TFLite model (lite), TFLite model TFLite model (heavy)
- Model card

Holistic

Hand recrop model: TFLite model

Data Preprocessing

Data & Methods

- Remove unused landmarks (face, pose 1~10, 23~32) and visibility
- Keep <u>55 landmarks</u> (right & left hands, pose o, 11~22)
- Each has xyz axis
- 55 * 3 = 165 features

以鼻子為中 心 轉換相對座 標

Workflow

Data & Methods

TSL Translation

03

EXPERIMENTS

Our Journey Begins Here...

- Small datasets to test models (10 words)
- 2. Began with famous RNN model LSTM
- 3. Turned to GRU model to increase

speed

Speed		
	LSTM	GRU
Train accuracy	0.7333	0.9193
Train loss	0.7887	0.2065
Test accuracy	0.7333	0.9000
Test loss	0.8419	0.1724

Experiments

GRU

Sticking with GRU...

4. Bigger datasets based on GRU model

	GRU-10	GRU-55
Epoch	30	75
Train accuracy	0.9193	0.9573
Train loss	0.2065	0.1321
Test accuracy	0.9000	0.8909
Test loss	0.1724	0.4429
Real-time test	60% (6/10)	42% (23/55)

Experiments

More
experiments
based on

GRU model

GRU Model Architecture

Experiments

Input shape (60, 165)

Experiments

Boss 1

GRU model no longer performs as well with 55 words

What have we done?

5. Chose **ELU** instead of ReLU to preserve features

	ReLU	ELU
Train accuracy	0.9420	0.9910
Train loss	0.1960	0.0420
Test accuracy	0.8850	0.9330
Test loss	0.3750	0.2030
Real-time test	55% (30/55)	67% (37/55)

113280 296448 148224
10.500.000
148224
33024
32896
7095

Experiments

Discovered a BUG in Coordinate Transformation

BREAKING

NEWS

Experiments

Hand coordinates was not transformed into relative coordinate!!

What's wrong?

Experiments

We looked into the data

(m)

	ELU Old data	ELU New data?
Train accuracy	0.9910	0.9911
Train loss	0.0420	0.0389
Test accuracy	0.9330	0.9333
Test loss	0.2030	0.2127
Real-time test	67% (37/55)	51% (28/55)

What's wrong?

	ELU Old data	ELU New data?
Train accuracy	0.9910	0.9911
Train loss	0.0420	0.0389
Test accuracy	0.9330	0.9333
Test loss	0.2030	0.2127
Real-time test	67% (37/55)	51% (28/55)

Experiments

When hand isn't detected it'll be filled with 0

55		0	0.179544	0.258691
56		0	0.17962	0.258704
57			0.179072	0.258694
58			0.179499	0.258627
59			0.179671	0.260061

What have we done?

6. Implemented mask to preserve "0"

Experiments

Only keep the results where the value is true (0 - nose = obtain value)

Tuning Model

7. Increase model size (add to GRU 256,512)

	New data (128, 256)	New data (256, 512)
Train accuracy	0.9810	0.9880
Train loss	0.0640	0.0410
Test accuracy	0.9390	0.9450
Test loss	0.2110	0.1700
Real-time test	67% (37/55)	75% (41/55)

Experiments

Boss 3

Ceiling: reach the maximum potential

What have we done?

- 8. Increase model size (add to GRU 512,1028)
- 9. Increase number of videos (add to 100)

	v=60 (512, 1028)	v=100 (512, 1028)
Train accuracy	0.9940	0.9970
Train loss	0.0320	0.1890
Test accuracy	0.9650	0.9820
Test loss	0.1090	0.0530
Real-time test	76% (42/55)	87% (48/55)

Hyperparameters Fine Tuning

10. Used AutoKeras instead of grid search

RNNBlock

autokeras.RNNBlock(return_sequences=Fa lse, bidirectional=None, num_layers=None, layer_type=None)

DenseBlock

autokeras.DenseBlock(num_layers=None, num_units=None, use_batchnorm=None, dropout=None)

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 60, 165)]	0
cast_to_float32 (CastToFloat	(None, 60, 165)	0
bidirectional (Bidirectional	(None, 60, 330)	328680
bidirectional_1 (Bidirection	(None, 330)	492030
dense (Dense)	(None, 64)	21184
batch_normalization (BatchNo	(None, 64)	256
re_lu (ReLU)	(None, 64)	0
dense_1 (Dense)	(None, 55)	3575
classification_head_3 (Softm	(None, 55)	0

Hyperparameters Fine Tuning

10. Used AutoKeras instead of grid search

	v=100 (512, 1028)	AutoKeras
Train accuracy	0.9970	0.9991
Train loss	0.189	0.0270
Test accuracy	0.982	0.9927
Test loss	0.053	0.0504
Real-time test	87% (48/55)	95% (52/55)

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 60, 165)]	0
cast_to_float32 (CastToFloat	(None, 60, 165)	0
bidirectional (Bidirectional	(None, 60, 330)	328680
bidirectional_1 (Bidirection	(None, 330)	492030
dense (Dense)	(None, 64)	21184
batch_normalization (BatchNo	(None, 64)	256
re_lu (ReLU)	(None, 64)	0
dense_1 (Dense)	(None, 55)	3575
classification_head_3 (Softm	(None, 55)	0
Total params: 845,725 Trainable params: 845,597 Non-trainable params: 128		

TSL Translation

04

CONCLUSION & PROSPECT

Review: Comparison of All Model

Conclusion & Prospect

Review: Comparison of Datasets

Conclusion & Prospect

More words

More

videos

Conclusion

Conclusion & Prospect

- AutoKeras outperforms V10 (GRU 512) on all numerical aspects
- Currently V10 has the upper hand in terms of real-time due to technical difficulties (time)

Conclusion

Conclusion & Prospect

GRU performs better on smaller datasets

Comparable with previous TSL project

Conclusion & Prospect

	Previous	Ours
Words	7	55
Number of videos	200	100
Frames	90	60 ↓
Model	LSTM	GRU
Best test accuracy	0.9963	0.9927

Real-time test:

95%

(52/55)

Confusion Matrix

Conclusion & Prospect

Taiwan Sign Language Translation

王蕣婷 林于湘 林妘鑫 洪睿謙 陳郁婷 張育禔 楊畯棋 賴藍平