Lab4

姓名 学号

孙昊哲 PB20000277

实验目的

- 了解VLAN交换机的特性与应用场合
- 掌握VLAN交换机组网的基本配置方法

实验环境

模拟软件Cisco Packet Tracer 5.2

实验过程

1. 按照下面的图表正确配置与连接实验设备

Switch1	Switch1	Switch2	Switch2
From	То	From	То
FastEthernet 0/1	A1	FastEthernet 0/1	B1
FastEthernet 0/2	A2	FastEthernet 0/2	B2
FastEthernet 0/3	В3	FastEthernet 0/3	А3
FastEthernet 0/17	Switch2,FastEthernet0/17	FastEthernet 0/17	Switch1,FastEthernet0/17

主机IP地址配置

主机	IP地址	子网掩码
A1	192.168.1.11	255.255.255.0
A2	192.168.1.12	255.255.255.0
A3	192.168.1.13	255.255.255.0
B1	192.168.1.21	255.255.255.0
B2	192.168.1.22	255.255.255.0
В3	192.168.1.23	255.255.255.0

如下图的方式配置好每台终端的IP地址

每台主机都可以相互Ping通,因为我们还没有正确设置VLAN

2. 在交换机中我们修改Hostname并且进入CLI窗口在switch1上创建VLAN

在Switch2上创建VLAN

3. 查看VLAN配置的结果

查看Switch1的配置结果

show vlan

show interfaces FastEthernet 0/1 switchport

show interfaces FastEthernet 0/3 switchport

show interfaces FastEthernet 0/17 switchport

问题二:

Ping之后发现只有在同一个部门的可以Ping通,因为我们成功设置了VLAN,只有在同一个局域网中的设备才能够Ping通,避免了冲突

4. VLAN对广播包的处理

- o 在第一次的命令的运行过程中,在经过交换机后需要交换各自的MAC地址表,即ARP消息
- 在交换过各自的MAC地址表后同一个VLAN下的设备后发送ICMP类型信息,即可Ping通,仿 真过程如下图所示:

- 并且在第二次Ping的过程中交换过MAC地址表的设备不需要重新交换地址表,直接发送ICMP 消息即可
- 5. 观察802.1Q帧封装信息,解释其中的含义 首先列出802.1Q的含义

IEEE 802.1Q标准对Ethernet帧格式进行了修改,在源MAC地址字段和协议类型字段之间加入4字节的802.1Q Tag。VLAN帧最小帧长为64字节。

字段	长度	含义
Destination address	6字节	目的MAC地址。
Source address	6字节	源MAC地址。
Туре	2字节	长度为2字节,表示帧类型。取值为0x8100时表示802.1Q Tag帧。 如果不支持802.1Q的设备收到这样的帧,会将其丢弃。
PRI	3比特	Priority,长度为3比特,表示帧的优先级,取值范围为0~7,值越大优先级越高。用于当阻塞时,优先发送优先级高的数据包。如果设置用户优先级,但是没有VLANID,则VLANID必须设置为0x000。
CFI	1比特	CFI (Canonical Format Indicator),长度为1比特,表示MAC地址是否是经典格式。CFI为0说明是标准格式,CFI为1表示为非标准格式。用于区分以太网帧、FDDI(Fiber Distributed Digital Interface)帧和令牌环网帧。在以太网中,CFI的值为0。
VID	12比特	LAN ID, 长度为12比特,表示该帧所属的VLAN。在VRP中,可配置的VLAN ID取值范围为1~4094。0和4095协议中规定为保留的VLAN ID。三种类型: Untagged帧: VID 不计Priority-tagged帧: VID为 0x000VLAN-tagged帧: VID范围0~4095三个特殊的VID: 0x000:设置优先级但无VID0x001:缺省VID0xFFF:预留VID
Length/Type	2字节	指后续数据的字节长度,但不包括CRC检验码。
Data	42~1500 字节	负载 (可能包含填充位) 。
CRC	4字节	用于帧内后续字节差错的循环冗余检验(也称为FCS或帧检验序列)。

验证了我们的表格中所述的内容

6.

	Switch2 trunk	Switch2 dynamic desirable	Switch2 dynamic auto
Switch1 trunk	可以	可以	可以
Switch1 dynamic desirable	可以	可以	可以
Switch1 dynamic auto	可以	可以	不可以

Switch2 Switch2 dynamic Switch2 dynamic trunk desirable auto
--

	Switch2 trunk	Switch2 dynamic desirable	Switch2 dynamic auto
Switch1 trunk	可以	不可以	不可以
Switch1 dynamic desirable	无	无	无
Switch1 dynamic auto	无	无	无