Aplicação interativa para simulação de epidemias utilizando o modelo SEIRD

Washington Botelho da Rocha Neto^{1,*}

¹Departamento de Estatística e Informática, Bacharelado em Sistemas de Informação, Universidade Federal Rural de Pernambuco, Recife, Brasil

ABSTRACT

Este trabalho descreve a implementação de um modelo SEIRD (Suscetível, Exposto, Infectado, Recuperado e Morto) para a simulação de epidemias, com foco em doenças de grande impacto como a COVID-19 e suas variantes. A abordagem metodológica se baseia na utilização da linguagem de programação Python e do framework Streamlit para o desenvolvimento de uma aplicação web interativa. O objetivo é fornecer uma ferramenta acessível para a visualização e análise da dinâmica de propagação de doenças, permitindo a exploração de diferentes cenários e parâmetros epidemiológicos.

Introdução

Esta ferramenta interativa e acessível visa a compreensão da dinâmica de epidemias de alto impacto, como COVID-19 e sarampo, por meio da implementação de um modelo SEIRD. A aplicação web, desenvolvida em Python e Streamlit, permite aos usuários ajustar parâmetros epidemiológicos e visualizar a evolução da doença em um dashboard intuitivo. Este dashboard inclui gráficos de linha que mostram o número de indivíduos em cada estado (Suscetível, Exposto, Infectado, Recuperado, Morto) ao longo do tempo, além de outros gráficos relevantes para a análise do cenário simulado.

O principal objetivo deste trabalho é implementar o modelo SEIRD para simular a dinâmica de epidemias. Para atingir esse objetivo, serão desenvolvidos os seguintes pontos: desenvolvimento de uma aplicação web interativa, definição de parâmetros do modelo, execução de simulações, visualização de resultados em um dashboard intuitivo e facilitação da análise e compreensão dos dados.

Referencial Teórico

Conceitos Fundamentais em Epidemiologia e Modelagem de Epidemias

Para a implementação de um modelo de simulação de epidemias, é fundamental a compreensão dos conceitos que o sustentam, desde a base da modelagem matemática até os parâmetros que descrevem a dinâmica da doença.

Modelos Compartimentais em Epidemiologia

Modelos compartimentais representam uma abordagem amplamente utilizada na epidemiologia matemática para descrever a dinâmica de doenças infecciosas. Eles dividem a população em grupos mutuamente exclusivos, ou "compartimentos", com base no estado de cada indivíduo em relação à doença. No contexto epidemiológico, esses compartimentos podem representar os estados de suscetibilidade, exposição, infecção e recuperação. O fluxo de indivíduos de um compartimento para outro ao longo do tempo é regido por um conjunto de equações diferenciais, o que constitui a base teórica para a construção do modelo SEIRD.

Modelo SEIR

O modelo SEIR (Suscetível, Exposto, Infectado, Recuperado) é uma extensão do modelo clássico SIR, particularmente relevante para doenças com um período de incubação significativo. Ele divide a população em quatro compartimentos e simula a evolução dos indivíduos entre esses grupos ao longo do tempo. Os compartimentos são: Suscetíveis (S), que podem contrair a doença; Expostos (E), que foram infectados, mas ainda não são contagiosos; Infectados (I), que estão doentes e podem transmitir o vírus; e Recuperados (R), que se curaram e adquiriram imunidade.

Modelo SEIRD

O modelo SEIRD é uma variação do modelo SEIR que inclui um compartimento adicional para indivíduos mortos (D). Essa modificação é essencial para a simulação de epidemias com uma taxa de mortalidade notável, como a COVID-19. A inclusão do compartimento D permite que a ferramenta separe os indivíduos que se recuperam com imunidade daqueles que faleceram em decorrência da doença, fornecendo uma análise mais completa e precisa do impacto da epidemia na população.

^{*}w.neto@ufrpe.br

Parâmetros Epidemiológicos

Os parâmetros epidemiológicos são os coeficientes que regem as equações diferenciais do modelo, determinando a velocidade e a intensidade do fluxo de indivíduos entre os compartimentos. No contexto do modelo SEIRD, os principais parâmetros são: taxa de contato (β) , período de incubação (α) , taxa de recuperação (γ) e taxa de mortalidade (μ) .

Número Básico de Reprodução (R₀)

O Número Básico de Reprodução (R_0) é uma métrica crucial em epidemiologia, representando o número médio de novas infecções causadas por um único indivíduo infectado em uma população completamente suscetível. Se $R_0 > 1$, a doença tende a se espalhar, enquanto se $R_0 < 1$, ela tende a desaparecer. O R_0 pode ser calculado a partir dos parâmetros do modelo SEIRD.

Trabalhos Relacionados

A implementação do modelo SEIRD em Python foi elaborada com base nas diretrizes e metodologias apresentadas no artigo de Tannenbaum. Este trabalho serviu como pilar fundamental, orientando cada etapa do processo. O artigo detalha o cálculo das equações diferenciais, a definição dos parâmetros epidemiológicos, a execução do modelo e a criação de um gráfico interativo para visualização dos resultados.

Método

Nesta seção, detalhamos a abordagem metodológica adotada para a implementação da aplicação interativa de simulação de epidemias. Apresentamos os materiais e as ferramentas de desenvolvimento, a arquitetura do modelo e o processo de criação da interface gráfica.

Modelagem e Simulação da Dinâmica da Epidemia

Para a simulação da dinâmica de epidemias, utilizamos o modelo SEIRD. Este modelo compartimental foi implementado através de um sistema de equações diferenciais ordinárias (EDOs), utilizando a biblioteca NumPy para operações numéricas e SciPy para a resolução das EDOs.

As equações do modelo são descritas da seguinte forma:

$$\frac{dS}{dt} = -\frac{\beta SI}{N}$$

$$\frac{dE}{dt} = \frac{\beta SI}{N} - \sigma E$$

$$\frac{dI}{dt} = \sigma E - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

$$N = S + E + I + R + D$$

Onde S, E, I, R e D representam o número de indivíduos em cada compartimento, e N é a população total. Os parâmetros β , α , γ e μ são as taxas de transmissão, incubação, recuperação e mortalidade, respectivamente.

Definindo parâmetros para as variantes da COVID19

Os parâmetros utilizados no projeto para simular a COVID e suas variantes foram inferidos com base em uma série de artigos científicos, incluindo revisões sistemáticas e meta-análises, para se obter dados primários para cada variante, como o período de incubação, a taxa de mortalidade e o número de reprodução (R_0). Os dados ausentes foram obtidos através de estimativas com base em informações publicadas na literatura científica que indicavam maior transmissibilidade e letalidade dessa variante em comparação com a original. Com esses dados em mãos, os parâmetros foram calculados: a taxa de incubação (σ) foi derivada como o inverso do período de incubação, e a taxa de infecção (σ) foi calculada a partir do σ 0 e das taxas de mortalidade e recuperação, garantindo que os valores fossem coerentes com a dinâmica epidemiológica observada. Este processo permitiu criar um conjunto de parâmetros robusto e cientificamente fundamentado para cada variante, que é essencial para a modelagem precisa da propagação da doença.

Desenvolvimento da Aplicação Web e Interface

A aplicação web foi desenvolvida utilizando a linguagem de programação Python e o framework Streamlit. O Streamlit foi escolhido por sua capacidade de transformar scripts Python em interfaces interativas de forma rápida. O desenvolvimento da interface seguiu as etapas de controles de entrada (widgets como sliders e caixas de texto), visualização de dados com a biblioteca 'plotly' e a organização do dashboard.

Resultados

O resultado final foi uma aplicação Streamlit com uma interface simples e intuitiva. A página inicial apresenta o projeto, explica brevemente o modelo e os parâmetros utilizados. Na interface, a coluna da esquerda contém a seleção do preset da doença e os campos para modificação dos parâmetros, além de um botão para rodar a simulação. A maior parte da tela é ocupada pela visualização dos resultados, incluindo gráficos de evolução dos compartimentos e métricas-chave como o R_0 , o pico de infectados e o percentual de óbitos.

Figure 1. Página inicial da aplicação. 2025

Figure 2. Resultado da simulação da COVID-19 original. 2025

Figure 3. Resultado da simulação da variante Omicron. 2025

Conclusão

Este trabalho teve como objetivo principal a construção de um simulador de epidemias, utilizando o modelo epidemiológico SEIRD para representar a dinâmica de propagação da COVID-19 e suas variantes. O principal desafio técnico enfrentado foi a parametrização do modelo, que exigiu a coleta e a adaptação de dados complexos sobre as taxas de infecção, incubação, recuperação e mortalidade. Os resultados alcançados demonstram que a simulação, embora seja uma aproximação da realidade baseada nos dados disponíveis, é funcional e validada. Concluímos que a maior força do modelo reside na sua flexibilidade: os parâmetros podem ser ajustados com um conjunto de dados mais preciso para refletir com maior exatidão diferentes cenários epidemiológicos. Assim, a plataforma desenvolvida não se limita à COVID-19 e se projeta como uma ferramenta adaptável para simular a propagação de outras doenças que se encaixem no padrão do modelo SEIRD, abrindo caminho para futuros trabalhos focados na análise de estratégias de intervenção em epidemias.

References

TANNENBAUM, Michael. Simulating compartmental models in epidemiology using Python + Jupyter Widgets. Medium, 13 jan. 2021. Disponível em: https://medium.com/data-science/simulating-compartmental-models-in-epidemiology-using-python-jupyter-widgets-8d76bdaff5c2

WU, Y. et al. Incubation Period of COVID-19 Caused by Unique SARS-CoV-2 Strains: A Systematic Review and Meta-analysis. 2022.

XAVIER, C. R. et al. Characterisation of Omicron Variant during COVID-19 Pandemic and the Impact of Vaccination, Transmission Rate, Mortality, and Reinfection in South Africa, Germany, and Brazil. BioTech, 2022.

YADAV, S. K.; KUMAR, V.; AKHTER, Y. Modeling Global COVID-19 Dissemination Data After the Emergence of Omicron Variant Using Multipronged Approaches. Current Microbiology, v. 79, n. 286, 2022. Disponível em: https://doi.org/10.1007/s00284-022-02985-4.

HE, W. et al. Estimation of the basic reproduction number, average incubation time, asymptomatic infection rate, and case fatality rate for COVID-19: Meta-analysis and sensitivity analysis. 2020. Disponível em: https://doi.org/10.1101/2020.04.28.20083758. FOERSTER, D. et al. Parametrization of Worldwide Covid-19 data for multiple variants: How is the SAR-Cov2 virus evolving?. 2024. Disponível em: https://doi.org/10.1101/2024.04.09.24305557.

Agradecimentos

Agradecemos à Universidade Federal Rural de Pernambuco (UFRPE) e ao Departamento de Estatística e Informática pelo suporte durante o desenvolvimento deste trabalho.