Примеры оформления решенных заданий КР№1

Задание 1. Дан универсум U={x | x – целое, $0 \le x \le 9$ } и множества A, B, C, D из U, заданные описанием или перечислением своих элементов. Выяснить, из каких элементов состоят множества B и D, а также множество М \subseteq U, заданное так, как указано ниже в таблице.

Nº	Α	В	С	D	
0	{1, 2, 3, 5, 7, 9}	{х∈U х - нечётное}	{3, 6, 8, 9}	$\{x \in \mathbb{N} \mid 4 \le x \le 9\}$	

<u>Решение.</u> В = $\{x \in U \mid x - \text{нечётное}\} = \{1, 3, 5, 7, 9\}$. D = $\{x \in \mathbb{N} \mid 4 \le x \le 9\} = \{4, 5, 6, 7, 8, 9\}$.

- МСС, значит, в М могут присутствовать только элементы 3, 6, 8, 9 из множества С.
- − |M|=3, значит, в М в точности 3 элемента.
- -6 ∈ M, значит, в M есть элемент 6: {3, (6), 8, 9}.
- (D\B) \cap C \subseteq M. (D\B) \cap C=({4, 5, 6, 7, 8, 9}\{1, 3, 5, 7, 9}) \cap {3, 6, 8, 9}={4,6,8} \cap {3,6,8,9}={6, 8}. {6, 8} \subseteq M, значит, в M есть также элемент 8: {3,(6),8}, 9}.
- {2,3,4} \cap M= \varnothing , значит, в М нет элементов 2, 3, 4: {3, 6,8) 9}.

 $M = \{6, 8, 9\}.$

<u>Задание 2.</u> Упростить выражение, заданное в таблице, символьными преобразованиями (с помощью свойств операций над множествами) и проверить правильность полученного результата с помощью диаграмм Эйлера.

$$\boxed{ 0 \mid (B \setminus A \cup \overline{B \cup C} \cup \overline{B} \Delta \overline{A} \cup (A \cap C) \setminus B) \cap ((B \cup \overline{A}) \cap \overline{C} \cup \overline{A} \cap \overline{B})}$$

Решение.

$$(B \land A \cup \overline{B} \cup \overline{C} \cup \overline{B} \triangle \overline{A} \cup (A \cap C) \land B) \cap ((B \cup \overline{A}) \cap \overline{C} \cup \overline{A} \cap \overline{B}) =$$

$$= (B \land A \cup \overline{B} \cap \overline{C} \cup \overline{B} \triangle \overline{A} \cup (A \cap C) \land B) \cap ((B \cup \overline{A}) \cap \overline{C} \cup \overline{A} \cap \overline{B}) =$$

$$= (B \land A \cup \overline{B} \cap \overline{C} \cup \overline{B} \triangle \overline{A} \cup (A \cap C) \cap \overline{B}) \cap ((B \cup \overline{A}) \cap \overline{C} \cup \overline{A} \cap \overline{B}) =$$

$$= (B \land A \cup \overline{B} \cap (\overline{C} \cup (A \cap C)) \cup \overline{B} \triangle \overline{A}) \cap ((B \cup \overline{A}) \cap \overline{C} \cup \overline{A} \cap \overline{B}) =$$

$$= (B \land A \cup \overline{B} \cap ((\overline{C} \cup A) \cap (\overline{C} \cup C)) \cup \overline{B} \triangle \overline{A}) \cap ((B \cup \overline{A}) \cap \overline{C} \cup \overline{A} \cap \overline{B}) =$$

$$= (B \land A \cup \overline{B} \cap ((\overline{C} \cup A) \cap U) \cup \overline{B} \triangle \overline{A}) \cap ((B \cup \overline{A}) \cap \overline{C} \cup \overline{A} \cap \overline{B}) =$$

$$= (B \land A \cup \overline{B} \cap (\overline{C} \cup A) \cup \overline{B} \triangle \overline{A}) \cap ((B \cup \overline{A}) \cap \overline{C} \cup \overline{A} \cap \overline{B}) =$$

$$= (B \land A \cup \overline{B} \cap \overline{C} \cup \overline{A} \cap \overline{B}) =$$

$$= (B \land A \cup \overline{B} \cap \overline{C} \cup \overline{A} \cap \overline{B}) =$$

$$= (B \land A \cup \overline{B} \cap \overline{C} \cup \overline{A} \cap \overline{B}) =$$

$$= ((B \cup \overline{A}) \cap \overline{C} \cup \overline{A} \cap \overline{B}) = ((\overline{A} \cup B) \cap \overline{C} \cup \overline{A} \cap \overline{B}) =$$

$$= ((B \cup \overline{A}) \cap \overline{C} \cup \overline{A} \cap \overline{B}) = ((\overline{A} \cup B) \cap \overline{C} \cup \overline{A} \cap \overline{B}) =$$

$$= ((B \cup \overline{A}) \cap \overline{C} \cup \overline{A} \cap \overline{B}) = ((\overline{A} \cup B) \cap \overline{C} \cup \overline{A} \cap \overline{B}) =$$

$$= ((B \cup \overline{A}) \cap \overline{C} \cup \overline{A} \cap \overline{B}) = ((\overline{A} \cup B) \cap \overline{C} \cup \overline{A} \cap \overline{B}) =$$

$$= ((B \cup \overline{A}) \cap \overline{C} \cup \overline{A} \cap \overline{B}) = ((\overline{A} \cup B) \cap \overline{C} \cup \overline{A} \cap \overline{B}) =$$

$$= ((B \cup \overline{A}) \cap \overline{C} \cup \overline{A} \cap \overline{B}) = ((\overline{A} \cup B) \cap \overline{C} \cup \overline{A} \cap \overline{B}) =$$

$$= ((B \cup \overline{A}) \cap \overline{C} \cup \overline{A} \cap \overline{B}) = (((\overline{A} \cup B) \cap \overline{C} \cup \overline{A} \cap \overline{B}) =$$

$$= ((B \cup \overline{A}) \cap \overline{C} \cup \overline{A} \cap \overline{B}) = (((\overline{A} \cup B) \cap \overline{C} \cup \overline{A} \cap \overline{B}) =$$

$$= ((B \cup \overline{A}) \cap \overline{C} \cup \overline{A} \cap \overline{B}) = (((\overline{A} \cup B) \cap \overline{C} \cup \overline{A} \cap \overline{B}) =$$

Проверим правильность полученного результата с помощью диаграмм Эйлера. Порядок выполнения действий:

Для каждого действия построим диаграмму Эйлера, на которой закрасим область, соответствующую результату операции.

Итоговая диаграмма, полученная при поэтапном упрощении исходного выражения, совпала с диаграммой для полученного ранее упрощенного выражения. Выражение упрощено верно.

Задание 3.

Даны множества $X = Y = \{1, 2, 3, 4, 5\}$ и соответствия $Q_i \subseteq X \times Y$, i = 1, ..., 4.

 $Q_1 = \{(2,2),(1,2),(3,2),(4,5),(5,4)\}, Q_2 = \{(2,2),(3,2),(4,2),(1,3),(2,3)\},\$

 $Q_3 = \{(2,3),(3,2),(1,4),(3,1),(4,5)\}, Q_4 = \{(5,2),(1,3),(2,5),(4,1),(3,4)\}.$

Определить, каким является каждое из соответствий Q_i (i=1,...,4) (всюду определенное, сюръективное, функциональное, инъективное, биективное). Затем для каждого из соответствий Q_i (i=1,...,4), с учетом его свойств, выполнить следующее:

- 3.1. Если соответствие Q_i всюду определено, функционально, но не инъективно, то построить разбиение области определения соответствия на классы эквивалентности по отношению P: «два элемента эквивалентны между собой тогда и только тогда, когда они принадлежат прообразу одного и того же элемента».
- 3.2. Если соответствие Q_i сюръективно, инъективно, но не функционально, то построить разбиение области значений соответствия на классы эквивалентности по отношению R: «два элемента эквивалентны между собой тогда и только тогда, когда они принадлежат образу одного и того же элемента».
- 3.3. Если соответствие Q_i не инъективно и не функционально, то найти нижнюю и верхнюю грани множества Q_i , введя на этом множестве отношение порядка, по которому сравниваются векторы одинаковой размерности (если $a=(a_1,a_2)$ и $b=(b_1,b_2)$, то a < b тогда и только тогда, когда $a_i \le b_i$, i=1,2, и хотя бы одно из этих неравенств строгое).
- 3.4. Если соответствие Q_i является биекцией, то построить соответствующую ему перестановку на множестве X и разложить ее на циклы.

Решение.

Свойства соответствий:

	Q_1	Q ₂	Q ₃	Q_4
всюду	Да	Нет	Нет	Да
определено		$\{1, 2, 3, 4\} \neq X$	$\{1, 2, 3, 4\} \neq X$	
сюръективно	Нет	Нет	Да	Да
	{2, 5, 4}≠Y	{2, 3}≠Y		
функционально	Да	Нет	Нет	Да
		{2, 3} – образ 2	{1, 2} – образ 3	
инъективно	Нет	Нет	Да	Да
	{1,2,3} – прообраз 2	{2, 3, 4} – прообраз 2		
биективно	Нет	Нет	Нет	Да

Выполним пункты 3.1 – 3.4 с учетом свойств соответствий.

Соответствие Q₁.

Так как соответствие Q_1 всюду определено, функционально, но не инъективно, построим разбиение области определения соответствия Q_1 на классы эквивалентности по отношению P: «два элемента эквивалентны между собой тогда и только тогда, когда они принадлежат прообразу одного и того же элемента».

Разбиение области значений $\Pi p_1 Q_1 = \{1,2,3,4,5\}$ на классы эквивалентности:

$$\Pi p_1 Q_1 = \{1,2,3,4,5\} = \{1,2,3\} \cup \{4\} \cup \{5\}.$$

- 1 –й класс: прообраз элемента 2∈Пр₂Q₁: {1, 2, 3},
- $2 \ddot{u}$ класс: прообраз элемента 5∈Пр₂Q₁: {4},
- 3 –й класс: прообраз элемента $4 \in \Pi p_2 Q_1$: $\{5\}$.

Соответствие Q_2 .

Поскольку соответствие Q_2 не инъективно и не функционально, найдем нижнюю и верхнюю грани множества Q_2 . Нижняя грань множества Q_2 : $\{(1, 3), (2, 2)\}$. Верхняя грань множества Q_2 : $\{(2, 3), (4, 2)\}$.

Соответствие Q₃.

Т.к. соответствие Q_3 сюръективно и инъективно, но не функционально, то построим разбиение области значений соответствия на классы эквивалентности по отношению R: «два элемента эквивалентны между собой тогда и только тогда, когда они принадлежат образу одного и того же элемента».

Разбиение области значений $\Pi p_2 Q_3 = \{1,2,3,4,5\}$ на классы эквивалентности:

$$\Pi p_2 Q_3 = \{1,2,3,4,5\} = \{4\} \cup \{3\} \cup \{1,\,2\} \cup \{5\}.$$

- 1 – \check{u} класс: образ элемента 1 из области определения соответствия {4},
- $2 \check{u}$ класс: образ элемента 2 из области определения соответствия {3},
- $3 \check{u}$ класс: образы элемента 3 из области определения соответствия $\{1, 2\}$,
- $4 \check{u}$ класс: образ элемента 4 из области определения соответствия {5}.

Соответствие Q₄.

Поскольку соответствие $Q_4=\{(5,2),(1,3),(2,5),(4,1),(3,4)\}$ является биекцией, построим соответствующую ему перестановку на множестве X и разложим ее на циклы.

Перестановка на множестве X и ее разложение на циклы:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix} = (1,3,4)(2,5)$$