Introduction to Basic R: Cluster Analysis

Introduction to Bioinformatics
Presented by Tran Ba Thien
March 19 2023

Machine learning algorithms

Type of outcome	Supervised learning	Un-supervised learning
Categorical /Discrete	Classification (Logistic regression, SVM,)	Clustering (Hierarchical, K-means,)
Continuous	Regression (Linear regression, Rigde/LASSO,)	Dimensionality reduction (PCA, t-SNE, UMAP,)

CLASSICAL MACHINE LEARNING

Content

- What is cluster analysis?
- Hierarchical clustering
- > K-means clustering

What is clustering?

- The organization of unlabeled data into similarity groups called clusters.
- A cluster is a collection of data items which are "similar" between them, and "dissimilar" to data items in other clusters.
- The similarity or dissimilarity between objects or data points is calculated using a distance metric.

Measurement of distance metric

- Manhattan distance
- Minkowski distance
- Pearson correlation distance
- Binary distance
- Euclidean distance:

$$d_{(Q,P)} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

ID	Flipper Length (mm)	Body Mass (g)
Α	187	3350
В	184	3325
С	187	3250
D	224	5650
Е	202	3875

Distance between A and B:

$$d_{(A,B)} = \sqrt{(187 - 184)^2 + (3350 - 3325)^2}$$

= 25.18

Distance between A and D?

ID	Flipper Length (mm)	Body Mass (g)
Α	187	3350
В	184	3325
С	187	3250
D	224	5650
Е	202	3875

Distance between A and B:

$$d_{(A,B)} = \sqrt{(187 - 184)^2 + (3350 - 3325)^2}$$

= 25.18

Distance between A and D:

$$d_{(A,D)} = \sqrt{(187 - 224)^2 + (3350 - 5650)^2}$$

= 2300.29

ID	Flipper Length (mm)	Body Mass (g)
Α	187	3350
В	184	3325
С	187	3250
D	224	5650
E	202	3875

$$x_{scaled} = \frac{x - mean}{sd}$$
Scaling

ID	Flipper Length (mm)	Body Mass (g)
Α	-0.58	-0.53
В	-0.76	-0.56
С	-0.58	-0.63
D	1.62	1.73
Е	0.31	-0.01

Distance between A and B:

$$d_{(A,B)} = \sqrt{(187 - 184)^2 + (3350 - 3325)^2}$$

= 25.18

Distance between scaled A and scaled B?

Distance between A and D:

$$d_{(A,B)} = \sqrt{(187 - 224)^2 + (3350 - 5650)^2}$$

= 2300.29

Distance between scaled A and scaled D?

ID	Flipper Length (mm)	Body Mass (g)
Α	187	3350
В	184	3325
С	187	3250
D	224	5650
E	202	3875

$$x_{scaled} = \frac{x - mean}{sd}$$

Scaling

ID	Flipper Length (mm)	Body Mass (g)
Α	-0.58	-0.53
В	-0.76	-0.56
С	-0.58	-0.63
D	1.62	1.73
Е	0.31	-0.01

Distance between A and B:

$$d_{(A,B)} = \sqrt{(187 - 184)^2 + (3350 - 3325)^2}$$

= 25.18

Distance between A and D:

$$d_{(A,B)} = \sqrt{(187 - 224)^2 + (3350 - 5650)^2}$$

= 2300.29

Distance between scaled A and scaled B:

$$d_{(A,B)} = \sqrt{((-0.58) - (-0.76))^2 + ((-0.53) - (-0.56))^2}$$

= 0.18

Distance between scaled A and scaled D:

$$d_{(A,D)} = \sqrt{((-0.58) - 1.62)^2 + ((-0.53) - 1.73)^2}$$

= 3.15

```
> subDT[,c(5,6)]
  flipper_length_mm body_mass_g
                187
                           3350
                184
                           3325
                187
                           3250
                           5650
                224
                202
                           3875
> dist(subDT[,c(5,6)], method = "euclidean")
    25.17936
 100.00000
              75.05998
D 2300.29759 2325.34406 2400.28519
  525.21424 550.29447
                         625.17997 1775.13633
```

Other method

```
> scale(subDT[,c(5,6)])
  flipper_length_mm body_mass_g
         -0.5849313 -0.53219085
         -0.7639919 -0.55682931
         -0.5849313 -0.63074471
          1.6234828 1.73454795
          0.3103717 -0.01478308
attr(,"scaled:center")
flipper_length_mm
                        body_mass_g
            196.8
                             3890.0
attr(,"scaled:scale")
flipper_length_mm
                        body_mass_g
          16.7541
                          1014.6736
> dist(scale(subDT[,c(5,6)]), method = "euclidean")
B 0.18074776
C 0.09855386 0.19371677
D 3.16467972 3.30914572 3.23600098
E 1.03405914 1.20335836 1.08672731 2.18733167
```

Hierarchical clustering

- Grouping similar data points together in a hierarchy of clusters.
- Two types: agglomerative and divisive.

ID	Flipper Length (mm)	Body Mass (g)
А	-0.58	-0.53
В	-0.76	-0.56
С	-0.58	-0.63
D	1.62	1.73
Е	0.31	-0.01

0					
	Α	В	C	D	Е
А	0	0.18	0.10	3.16	1.03
В		0	0.19	3.31	1.20
С			0	3.24	1.09
D				0	2.19
E					0

0					
	Α	В	C	D	Е
Α	0	0.18	0.10	3.16	1.03
В		0	0.19	3.31	1.20
С			0	3.24	1.09
D				0	2.19
E					0

1					
	AC	В	D	Е	
AC	0	?	?	?	
В		0	3.31	1.20	
D			0	2.19	
E				0	

Hierarchical clustering

Distance metric depends on the linkage (dissimilarity between 2 clusters) method used to merge or split clusters:

- Centroid Linkage: the distance between their mean vectors of the points in each cluster
- Single Linkage: the shortest distance between any two data points in the two clusters.
- Complete Linkage: the maximum distance between any two data points in the two clusters.
- Average Linkage: the average distance between all possible pairs of data points in the two clusters.

16

0					
	Α	В	C	D	E
Α	0	0.18	0.10	3.16	1.03
В		0	0.19	3.31	1.20
С			0	3.24	1.09
D				0	2.19
E					0

1				
	AC	В	D	Е
AC	0	0.19	3.24	1.09
В		0	3.31	1.20
D			0	2.19
Е				0

1				
	AC	В	D	Е
AC	0	0.19	3.24	1.09
В		0	3.31	1.20
D			0	2.19
Е				0

2			
	ACB	D	E
ACB	0	3.31	1.20
D		0	2.19
Е			0

2			
	ACB	D	E
ACB	0	3.31	1.20
D		0	2.19
E			0

3			
	ACBE	D	
ACBE	0	3.31	
D		0	

Hierarchical clustering in R

dist.ma <- dist(scale(subDT[,5:6]), method = "euclidean")
hc <- hclust(dist.ma, method="complete")</pre>

Hierarchical clustering in R

Hierarchical clustering in R

fviz_dend(type="rectangle", ...)

fviz_dend(type="circular", ...)

fviz_dend(type="phylogenic", ...)

K-means clustering

- A method of grouping data points into clusters based on their similarities.
- The "K" in K-means refers to the number of clusters that the algorithm will try to form.

How K-means clustering work?

1. *k* initial "means" are randomly generated within the data domain.

2. *k* clusters are created by associating every observation with the nearest mean.

3. The centroid of each of the *k* clusters becomes the new mean.

4. Steps 2 and 3 are repeated until convergence has been reached.

How many k is optimal?

Common methods:

- Elbow method
- Average silhouette method
- Gap statistic method

How many k is optimal?

km = kmeans(scale(dt[,5:6]), center=2, nstart=20)
fviz_cluster(km, scale(dt[,5:6]), ellipse.type="convex")

km3 = kmeans(scale(dt[,5:6]), center=3, nstart=20) fviz_cluster(km3, scale(dt[,5:6]), ellipse.type="convex")

Spectral clustering

Summary

Name	Function in R	You want to:
Scaling	scale()	
Distance Matrix Computation	dist()	
Visualization of Dendrogram	fviz_dend()	
Hierarchical clustering	hclust()	View at once the clusterings obtained for each possible number of clusters, from 1 to n
Visualizing the Optimal Number of Clusters	fviz_nbclust()	
K-means clustering	kmeans()	Partition the observations into a pre-specified number of clusters
Visualize Clustering Results	fviz_cluster()	

Homework

Download the BetaMatrix.tsv data from:

https://drive.google.com/file/d/1tOdeLpEzhEcsDPU6Vz_dIQsV0UZy0bz 0/view?usp=share_link

Base on value of 200 CpG sites, do the following requests:

- 1. Draw dendrogram.
- 2. How many optimal *k* clusters does each method (Elbow, average silhouette, gap statistic method) tell you?
- 3. Draw clustering results from K-means clustering algorithm.

Thanks for listening! Have a nice week!