Filing Date: October 1, 2004 First Named Inventor: Huai Lin

Amendments to the Claims

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims

1. (Cancelled)

2. (Cancelled)

3. (Currently amended) The A system for controlling a permanent magnet electric motor (12) according to claim 1, comprising:

a motor controller (16), said motor controller (16) using phase currents of the permanent magnet electric motor (12) at a preset speed ω to generate voltage-controlling signals used to obtain changes in torque T of the permanent magnet electric motor (12); and

a power stage (14), said power stage (14) receiving the voltage-controlling signals from the motor controller (16) and feeding them back to the permanent magnet electric motor (12), wherein said motor controller (16) is a park vector rotator unit that generates continuously rotating angles.

4. (Currently amended) The system for controlling a permanent magnet electric motor according to any one of elaims 1 to claim 3, said system continuously responding to changes of the preset speed and torque of the permanent magnet electric motor (12) as well as to changes in ambient conditions.

5. (Cancelled)

6. (Cancelled)

Filing Date: October 1, 2004 First Named Inventor: Huai Lin

7. (Cancelled)

8. (Currently amended) The A method for controlling a permanent magnet electric motor according to claim 7 (12) comprising:

determining a current of each phase of the permanent magnet electric motor (12) at a preset speed ω;

obtaining voltage controlling signals at the preset speed ω in relation to changes in torque of the permanent magnet electric motor (12); and

feeding the voltage controlling signal back to the permanent magnet electric motor (12); computing a current torque T of the permanent magnet electric motor (12);

wherein said computing a current torque T comprises rotating the currents of each phase of the permanent magnet electric motor by an angle $-\theta_n$ to output two currents I_d and I_q , according to the following relations on a d-q axis fixed on a rotor axis of the permanent magnet electric motor (12):

$$\begin{split} I_d &= 2/3 \, \, x \, \left[i_a \, x \, \cos(\theta_n) + i_b \, x \, \cos(\theta_n + 120^\circ) + i_c \, x \, \cos(\theta_n - 120^\circ) \right] \, \text{and} \\ I_q &= 2/3 \, \, x \, \left[i_a \, x \, \sin(\theta_n) + i_b \, x \, \sin(\theta_n + 120^\circ) + i_c \, x \, \sin(\theta_n - 120^\circ) \right]. \end{split}$$

9. (Currently amended) The A method for controlling a permanent magnet electric motor (12) according to claim 6 comprising:

determining a current of each phase of the permanent magnet electric motor (12) at a preset speed ω;

obtaining voltage controlling signals at the preset speed ω in relation to changes in torque of the permanent magnet electric motor (12); and

feeding the voltage controlling signal back to the permanent magnet electric motor (12), wherein said determining a current of each phase of the permanent magnet electric motor (12) comprising measuring a current of two phases thereof and calculating a current of a third phase using the relation: $\sum_{three \ phases} i = 0;$

wherein said obtaining voltage controlling signals comprises:

Filing Date: October 1, 2004 First Named Inventor: Huai Lin

computing a current rotating angle θ_{n+1} ; computing two voltage outputs V_q and V_d ; and rotating the voltage outputs V_q and V_d by the angle θ_{n+1} .

- 10. (Previously presented) The method for controlling a permanent magnet electric motor according to claim 9, wherein said computing a current rotating angle θ_{n+1} is done using a current torque T and a preset speed ω of the permanent magnet electric motor (12) with the formula $\theta_{n+1} = \theta_n + k_1 \times \omega + k_2 \times T$ where k_1 and k_2 are constants.
- 11. (Previously presented) The method for controlling a permanent magnet electric motor according to claim 10, wherein said computing two voltage outputs V_q and V_d comprises:

computing the voltage output V_q on a d-q axis fixed on a rotor axis: $V_q = PI (I^* - I_d) + k_3 \times I_q$ where k_3 is a constant, "PI" referring to a proportional and integral operator, defined as follows: $PI(x) = ax + b \int x \, dt$ where a and b are constants and integration is over time; and

computing the voltage output V_d , according to the following equation on the d-q axis fixed on the rotor axis: $V_d = k_5 \times I_d + k_4 \times I_q \times \omega$ where k_4 and k_5 are constants.

- 12. (Previously presented) The method for controlling a permanent magnet electric motor according to claim 10, wherein said obtaining voltage controlling signals comprises obtaining three voltage controlling signals V_a , V_b and V_c according to the following equations: $V_a = V_d \times \cos(\theta_{n+1}) + V_q \times \sin(\theta_{n+1}), \ V_b = V_d \times \cos(\theta_{n+1} + 120^\circ) + V_q \times \sin(\theta_{n+1} + 120^\circ) \text{ and } V_c = V_d \times \cos(\theta_{n+1} 120^\circ) + V_q \times \sin(\theta_{n+1} 120^\circ).$
- 13. (Previously presented) The method for controlling a permanent magnet electric motor according to claim 5, wherein constants are set based on a number of parameters selected in the group comprising a sampling rate of a computer to be used, conditions of a power drive, sensitivity of current sensors used for current measurements and characteristics of the permanent magnet electric motor (12).

Filing Date: October 1, 2004 First Named Inventor: Huai Lin

14. (Previously presented) A circuit for controlling a permanent magnet threephases electric motor provided with a rotor and a stator, comprising:

a rotator allowing rotation of current signals of the phases of the permanent magnet electric motor (12) from a stationary frame to two decoupled current components in a rotor synchronous frame along a direct axis (I_d) and a quadrature axis (I_q) respectively;

a proportional and integral operator for deriving a voltage (V_q) along the quadrature axis and a voltage (V_d) along the direct axis;

a rotator allowing rotating the voltages V_q and V_d back from the rotor synchronous frame to the stationary frame to yield terminal voltages V_a , V_b and V_c of the permanent magnet electric motor;

wherein a current rotating angle θ_{n+1} is computed using a current torque T and a preset speed ω of the permanent magnet electric motor with a formula as follows: $\theta_{n+1} = \theta_n + k_1 \times \omega + k_2 \times T$ where k_1 and k_2 are constants.

15. (Previously presented) A method for controlling a permanent magnet threephases electric motor provided with a rotor and a stator, comprising:

rotating current signals of the phases of the permanent magnet electric motor (12) from a stationary frame to two decoupled current components in a rotor synchronous frame along a direct axis (I_d) and a quadrature axis (I_q) respectively;

deriving a voltage (V_q) along the quadrature axis therefrom;

deriving a voltage (V_d) along the direct axis;

rotating the voltages V_q and V_d back from the rotor synchronous frame to the stationary frame to yield terminal voltages V_a , V_b and V_c of the permanent magnet electric motor;

wherein a current rotating angle θ_{n+1} is computed using a current torque T and a preset speed ω of the permanent magnet electric motor (12) with a formula as follows: $\theta_{n+1} = \theta_n + k_1 \times \omega + k_2 \times T$ where k_1 and k_2 are constants.

16. (Previously presented) A method for controlling a permanent magnet electric motor having three-phases each supporting a current i_a, i_b and i_c respectively, comprising:

Filing Date: October 1, 2004 First Named Inventor: Huai Lin

determining the currents i_a , i_b and i_c ;

rotating the currents i_a , i_b and i_c by an angle $-\theta_n$ to yield currents I_d and I_q ;

computing a current torque of the permanent magnet electric motor (12);

computing a current rotating angle θ_{n+1} ;

computing a voltage output V_q ;

computing a voltage output V_d ;

rotating the voltages V_q and V_d by the rotating angle θ_n+1 to yield three voltage controlling signals V_a , V_b and V_c ; and

applying the voltage controlling signals V_a , V_b and V_c to the permanent magnet electric motor;

wherein a current rotating angle θ_{n+1} is computed using the current torque T and a preset speed ω of the permanent magnet electric motor (12) with a formula as follows: $\theta_{n+1} = \theta_n + k_1 \times \omega + k_2 \times T$ where k_1 and k_2 are constants.