Действия с линейни изображения. Връзка със съответните операции с матрици

Твърдение 17.1. Нека $\varphi: U \to V$, $\psi: U \to V$ са линейни изображения на линейни пространства над поле F, а $\lambda \in F$. Тогава

$$\varphi + \psi : U \longrightarrow V, \quad (\varphi + \psi)(u) := \varphi(u) + \psi(u), \quad \forall u \in U$$

е линейно изображение на U във V, което се нарича сума на φ и ψ . Аналогично,

$$\lambda \varphi : U \longrightarrow V, \quad (\lambda \varphi)(u) := \lambda \varphi(u), \quad \forall u \in U$$

е линейно изображение, което се нарича произведение на λ и φ .

Доказателство. Прилагайки определението за сума на линейни изображения, линейността на φ , ψ , комутативността на събирането във V, дистрибутивния закон над векторен множител във V и отново определението за $\varphi + \psi$, получаваме

$$(\varphi + \psi) \left(\sum_{i=1}^{n} x_i u_i \right) = \varphi \left(\sum_{i=1}^{n} x_i u_i \right) + \psi \left(\sum_{i=1}^{n} x_i u_i \right) = \sum_{i=1}^{n} x_i \varphi(u_i) + \sum_{i=1}^{n} x_i \psi(u_i) =$$

$$= \sum_{i=1}^{n} x_i [\varphi(u_i) + \psi(u_i)] = \sum_{i=1}^{n} x_i (\varphi + \psi)(u_i)$$

за произволни $u_i \in U$ и $x_i \in F$. Това доказва, че $\varphi + \psi : U \to V$ е линейно изображение.

Съгласно определението за $\lambda \varphi$, линейността на φ , дистрибутивноя закон над векторен множител във V, $\alpha(\beta v) = (\alpha \beta)v$ за $\forall v \in V$, $\forall \alpha, \beta \in F$, комутативността на умножението във F, отново $(\alpha \beta)v = \alpha(\beta v)$ и определението за $\lambda \varphi$ имаме

$$(\lambda \varphi) \left(\sum_{i=1}^{n} x_i u_i \right) = \lambda \varphi \left(\sum_{i=1}^{n} x_i u_i \right) = \lambda \left[\sum_{i=1}^{n} x_i \varphi(u_i) \right] =$$

$$= \sum_{i=1}^{n} \lambda(x_i \varphi(u_i)) = \sum_{i=1}^{n} x_i [\lambda \varphi(u_i)] = \sum_{i=1}^{n} x_i (\lambda \varphi)(u_i)$$

за произволни $u_i \in U$ и $x_i \in F$. Следователно изображението $\lambda \varphi: U \to V$ е линейно.

Твърдение 17.2. Нека U и V са линейни пространства над поле F. Тогава множеството $\operatorname{Hom}(U,V)$ на линейните изображения $U \to V$ е линейно пространство над F относно поточково определените операции събиране и умножение c елемент на F.

Доказателство. Аксиомите за линейно пространство в $\operatorname{Hom}(U,V)$ следват от съответните аксиоми във V след остойностяване в произволен вектор $u\in U$. По-точно, от определението за събиране на линейни изображения и асоциативността на събирането във V имаме

$$[\theta + (\psi + \varphi)](u) = \theta(u) + (\psi + \varphi)(u) = \theta(u) + [\psi(u) + \varphi(u)] =$$
$$= [\theta(u) + \psi(u)] + \varphi(u) = (\theta + \psi)(u) + \varphi(u) = [(\theta + \psi) + \varphi](u)$$

за всяко $u \in U$, откъдето $\theta + (\psi + \varphi) = (\theta + \psi) + \varphi$.

Определението за събиране на линейни изображения и комутативността на събирането във V дават

$$(\psi + \varphi)(u) = \psi(u) + \varphi(u) = \varphi(u) + \psi(u) = (\varphi + \psi)(u)$$
 sa $\forall u \in U$,

откъдето $\psi + \varphi = \varphi + \psi$.

Нулевото изображение

$$\mathbb{O}: U \longrightarrow V, \quad \mathbb{O}(u) = \overrightarrow{\mathcal{O}}_V \quad \text{sa} \quad \forall u \in U$$

играе ролята на нулев вектор в Hom(U,V), съгласно

$$(\varphi + \mathbb{O})(u) = \varphi(u) + \mathbb{O}(u) = \varphi(u) + \overrightarrow{\mathcal{O}}_V = \varphi(u)$$
 3a $\forall u \in U$

по правилото за събиране на линейни изображения, определението на $\mathbb O$ и дефиниционното равенство на нулевия вектор $\overrightarrow{\mathcal O}_V$ на V. Това доказва, че $\varphi+\mathbb O=\varphi$ и $\mathbb O$ изпълнява дефиниционното равенство на нулевия вектор в $\operatorname{Hom}(U,V)$.

Произволно линейно изображение $\varphi:U\to V$ има противоположно $(-\varphi):=(-1)\varphi\in \mathrm{Hom}(U,V)$ за $-1\in F.$ По-точно, за произволен вектор $u\in U$ е в сила

$$[\varphi + (-\varphi)](u) = \varphi(u) + [(-1)\varphi](u) = \varphi(u) + [(-1)\varphi(u)] =$$
$$= \varphi(u) + [-\varphi(u)] = \overrightarrow{\mathcal{O}}_V = \mathbb{O}(u),$$

съгласно правилото за събиране на линейни изображения, правилото за умножение на линейно изображения със скалар, Твърдение 2.4 (v) и определението за $\mathbb O$. Оттук, $\varphi+(-\varphi)=\mathbb O$ и $-\varphi$ е противоположен вектор на $\varphi\in \mathrm{Hom}(U,V)$. Нека $\varphi:U\to V,\,\psi:U\to V$ са линейни изображения, а $\lambda,\mu\in F$. От определенията за умножение на линейно изображение със скалар и събиране на линейни изображения, както и от дистрибутивния закон над векторен множител във V получаваме

$$[\lambda(\varphi + \psi)](u) = \lambda[(\varphi + \psi)](u) = \lambda[\varphi(u) + \psi(u)] =$$
$$= \lambda\varphi(u) + \lambda\psi(u) = (\lambda\varphi)(u) + (\lambda\psi)(u) = (\lambda\varphi + \lambda\psi)(u)$$

за всички $u\in U$. Това доказва дистрибутивния закон $\lambda(\varphi+\psi)=\lambda\varphi+\lambda\psi$ над векторен множител в $\mathrm{Hom}(U,V)$.

За дистрибутивния закон $(\lambda + \mu)\varphi = \lambda \varphi + \mu \varphi$ над скаларен множител е достатъчно да забележим, че

$$[(\lambda + \mu)\varphi](u) = (\lambda + \mu)\varphi(u) = \lambda\varphi(u) + \mu\varphi(u) =$$
$$= (\lambda\varphi)(u) + (\mu\varphi)(u) = (\lambda\varphi + \mu\varphi)(u)$$

за всички $u \in U$, съгласно определението за умножение на линейно изображение със скалар, дистрибутивния закон над скаларен множител във V и определението за събиране на линейни изображения.

От определението за умножение на линейно изображение със скалар и $(\alpha\beta)v = \alpha(\beta)v)$ за произволни $v \in V, \alpha, \beta \in F$ имаме

$$[(\lambda\mu)\varphi](u)=(\lambda\mu)\varphi(u)=\lambda[\mu\varphi(u)]=\lambda[(\mu\varphi)(u)]=[\lambda(\mu\varphi)](u)\quad\text{за всички}\quad u\in U.$$
 Това доказва $(\lambda\mu)\varphi=\lambda(\mu\varphi).$

Накрая, определението за произведение на линейно изображение със скалар и 1.v=v за $1\in F,\,v\in V$ дават

$$(1.\varphi)(u) = 1.\varphi(u) = \varphi(u)$$

за всички $u \in U$, откъдето $1.\varphi = \varphi$.

Твърдение 17.3. Нека U е линейно пространство над поле F с размерност $\dim U = n$, а V е линейно пространство над F с $\dim V = m$. Тогава пространството $\operatorname{Hom}(U,V)$ на линейните изображения на U във V е изоморфно на пространството $M_{m \times n}(F)$ на матриците с m реда и n стълба. По-точно, за всеки избор на базис $e = (e_1, \ldots, e_n)$ на U и базис $f = (f_1, \ldots, f_m)$ на V, съответствието

$$A: \operatorname{Hom}(U,V) \longrightarrow M_{m \times n}(F),$$

съпоставящо на линейно изображение $\varphi: U \to V$ матрицата \mathcal{A}_{φ} на φ спрямо базисите е u f е линеен изоморфизъм.

Доказателство. Съответствието \mathcal{A} е инективно, защото матрицата \mathcal{A}_{φ} на линейно изображение $\varphi: U \to V$ спрямо базисите e и f определя еднозначно φ . Съответствието \mathcal{A} е сюрективно, защото всяка матрица $A \in M_{m \times n}(F)$ се реализира като матрица на линейно изображение $U \to V$ спрямо базиса e на U и базиса f на V.

За произволни $\varphi, \psi \in \mathrm{Hom}(U,V),$ от определенията за матрица на линейното изображение, събиране на линейни изображения и събиране на наредени n-торки следва

$$f\mathcal{A}_{\varphi+\psi} = (\varphi+\psi)(e) = ((\varphi+\psi)(e_1), \dots, (\varphi+\psi)(e_n)) =$$

$$= (\varphi(e_1) + \psi(e_1), \dots, \varphi(e_n) + \psi(e_n)) = (\varphi(e_1), \dots, \varphi(e_n)) + (\psi(e_1), \dots, \psi(e_n)) =$$

$$= \varphi(e) + \psi(e) = f\mathcal{A}_{\varphi} + f\mathcal{A}_{\psi} = f(\mathcal{A}_{\varphi} + \mathcal{A}_{\psi}).$$

Съгласно Лема 16.4 (ii) за линейно независимите вектори f_1,\dots,f_m , това е достатъчно за

$$\mathcal{A}_{\varphi+\psi} = \mathcal{A}_{\varphi} + \mathcal{A}_{\psi}.$$

Аналогично, за произволни $\lambda \in F$ и $\varphi \in \mathrm{Hom}(U,V)$, определенията за матрица на линейно изображение, произведение на линейно изображение със скалар и умножение на наредена n-торка със скалар дават

$$f\mathcal{A}_{\lambda\varphi} = (\lambda\varphi)(e) = ((\lambda\varphi)(e_1), \dots, (\lambda\varphi)(e_n)) = (\lambda\varphi(e_1), \dots, \lambda\varphi(e_n)) =$$
$$= \lambda(\varphi(e_1), \dots, \varphi(e_n)) = \lambda\varphi(e) = \lambda(f\mathcal{A}_{\varphi}) = f(\lambda\mathcal{A}_{\varphi}).$$

Прилагаме Лема 16.4 (ii) към линейно независимите вектори f_1,\dots,f_m и получаваме

$$\mathcal{A}_{\lambda\varphi}=\lambda\mathcal{A}_{\varphi}.$$

Съгласно Твърдение 15.2, това установява линейността на биективното изображение

$$\mathcal{A}: \operatorname{Hom}(U,V) \longrightarrow M_{m \times n}(F)$$

и доказва, че \mathcal{A} е линеен изоморфизъм.

Твърдение 17.4. Ако $\varphi: U \to V \ u \ \psi: V \to W \ ca$ линейни изображения на пространства над поле $F, \ mo$

$$\psi \varphi : U \longrightarrow W, \quad (\psi \varphi)(u) := \psi(\varphi(u)), \quad \forall u \in U$$

е линейно изображение, което се нарича произведение на φ и ψ .

Доказателство. От определението за $\psi \varphi$, както и от линейността на φ и ψ имаме

$$(\psi\varphi)\left(\sum_{i=1}^{n} x_i u_i\right) = \psi\left(\varphi\left(\sum_{i=1}^{n} x_i u_i\right)\right) = \psi\left(\sum_{i=1}^{n} x_i \varphi(u_i)\right) = \sum_{i=1}^{n} x_i \psi(\varphi(u_i)) = \sum_{i=1}^{n} x_i (\psi\varphi)(u_i)$$

за произволни $u_i \in U$ и $x_i \in F$. Следователно произведението $\psi \varphi : U \to W$ на линейни изображения е линейно изображение.

Твърдение 17.5. Произведението на линейни изображения има следните свойства:

(i) асоциативност: $\theta(\psi\varphi) = (\theta\psi)\varphi$ за всички линейни изображения $\varphi: U \to V, \ \psi: V \to W, \ \theta: W \to T;$

(ii) дистрибутивни закони за събиране и умножение: $\theta(\psi+\varphi)=\theta\psi+\theta\varphi$ за линейни изображения $\varphi,\psi:U\to V,\ \theta:V\to W\ u\ (\theta+\psi)\varphi=\theta\varphi+\psi\varphi$ за линейни изображения $\varphi:U\to V,\ \theta,\psi:V\to W;$

(iii) $\lambda(\psi\varphi)=[(\lambda\psi)\varphi]=[\psi(\lambda\varphi)]$ за линейни изображения $\varphi:U\to V,$ $\psi:V\to W$ и $\lambda\in F.$

Доказателство. (i) За произволен вектор $u \in U$ е в сила

$$[\theta(\psi\varphi)](u) = \theta[(\psi\varphi)(u))] = \theta(\psi(\varphi(u))) = (\theta\psi)(\varphi(u)) = [(\theta\psi)\varphi](u)$$

съгласно правилото за умножение на линейни изображения. Това доказва асоцитивността $\theta(\psi\varphi)=(\theta\psi)\varphi$ на умножението на линейни изображения.

(ii) Определенията за умножение и събиране на линейни изображения, както и линейността на θ дават

$$[\theta(\psi+\varphi)](u) = \theta((\psi+\varphi)(u)) = \theta(\psi(u)+\varphi(u)) =$$

= $\theta(\psi(u)) + \theta(\varphi(u)) = (\theta\psi)(u) + (\theta\varphi)(u) = (\theta\psi+\theta\varphi)(u)$

за произволен вектор $u \in U$. Оттук, $\theta(\psi + \varphi) = \theta \psi + \theta \varphi$. Аналогично,

$$[(\theta + \psi)\varphi](u) = (\theta + \psi)(\varphi(u)) = \theta(\varphi(u)) + \psi(\varphi(u)) =$$
$$= (\theta\varphi)(u) + (\psi\varphi)(u) = (\theta\varphi + \psi\varphi)(u)$$

за всяко $u \in U$ от определенията за умножение и събиране на линейни изображения. Това е достатъчно за $(\theta + \psi)\varphi = \theta \varphi + \psi \varphi$.

(iii) За произволен вектор $u \in U$ е изпълнено

$$[\lambda(\psi\varphi)](u) = \lambda[(\psi\varphi)(u)] = \lambda(\psi(\varphi(u))) = (\lambda\psi)(\varphi(u)) = [(\lambda\psi)\varphi](u)$$

по определението за умножение на линейни изображения и определението за умножение на линейно изображение със скалар. Следователно $\lambda(\psi\varphi)=(\lambda\psi)\varphi$. От споменатите определения и линейността на ψ имаме

$$[\lambda(\psi\varphi)](u) = \lambda(\psi(\varphi(u))) = \psi(\lambda\varphi(u)) = \psi((\lambda\varphi)(u)) = [\psi(\lambda\varphi)](u),$$

откъдето $\lambda(\psi\varphi) = \psi(\lambda\varphi)$.

ТВЪРДЕНИЕ 17.6. Ако $\varphi: U \to V$ е линейно изображение с матрица $\mathcal{A}_{\varphi} \in M_{m \times n}(F)$ спрямо базис $e = (e_1, \dots e_n)$ на U и базис $f = (f_1, \dots, f_m)$ на V, а $\psi: V \to W$ е линейно изображение с матрица $\mathcal{A}_{\psi} \in M_{k \times m}(F)$ спрямо базиса f на V и базис $g = (g_1, \dots, g_k)$ на W, то матрицата на $\psi \varphi: U \to W$ спрямо базиса e на U и базиса e на e

$$\mathcal{A}_{\psi\varphi} = \mathcal{A}_{\psi}\mathcal{A}_{\varphi} \in M_{k\times n}(F).$$

Доказателство. От определенията на матриците $\mathcal{A}_{\psi\varphi}, \mathcal{A}_{\varphi}, \mathcal{A}_{\psi}$, определението на произведение на линейни изображения, Лема 16.1 и асоциативността на умножението на матрици следва

$$g\mathcal{A}_{\psi\varphi} = (\psi\varphi)(e) = ((\psi\varphi)(e_1), \dots, (\psi\varphi)(e_n)) = (\psi(\varphi(e_1)), \dots, \psi(\varphi(e_n))) =$$
$$= \psi(\varphi(e_1), \dots, \varphi(e_n)) = \psi(\varphi(e)) = \psi(f\mathcal{A}_{\varphi}) = \psi(f)\mathcal{A}_{\varphi} = (g\mathcal{A}_{\psi})\mathcal{A}_{\varphi} = g(\mathcal{A}_{\psi}\mathcal{A}_{\varphi}).$$

Прилагаме Лема 16.4 към линейно независимата система вектори $g=(g_1,\ldots,g_k)$ и получаваме, че $\mathcal{A}_{\psi\varphi}=\mathcal{A}_{\psi}\mathcal{A}_{\varphi}.$