	officiency to togethe
	AVI tree (Adelson/Velski/Lendis) (Balancel BST)
Control of the Contro	In a binary carch tree to perform any operation. The worst case officiency (time taken) is order of n. O(n).
**	An AVI tree is a RST wherein in worst care to perform any operation we take o(logn) time
	AVI tree is a BST soherein the balance factor of each node is either 0, +1 or -1.
	Balance factor = ht. of ut - ht. of night sub tree subtree
ā.	eg: (10)° (5) Left subtree =0 Right " = 0 Bal factor = 0
	20)
	8 (0) uft=1 right=1 Bal = 1-1=0
	3000
	eg (10)
	S 201
	IS CAVL
->	If a BST is not an AVL tree, to convert a BST to an AVL tree we perform an operation
	called sotalion
->	Pren are 2 types of notations:
	Single rotation
2	Doubh rotation

Splay tree Splay tree is a self organizing BST with a property that recently accoused elements will be the root node. Splay tree was invented by Daniel Steator and Robert Porjan. Applications of splay tree au. 1 Cache memory 2 Virtual memory mgmt (3) Routing tables To construct a splay we do the following rotations 1 Zig (right noth) 2 Zag (uft) 3 Zig - zag 2ag - zig 3 | zig-zig 200 - 209 & Combruet a splay for the given elements:

taken from word retrieval TRIE - data structure to implement diction any The most popular data structure and to represent a set of strings. There are 2 types of TRIES. 2 Compressed TRIE TRIE is a multiway search tree eg: TRIE for the words bear bell bid, bull sell, stack, stop. Standard TRIE. not Compressed frie [ell]

Hacking tracking is a procure to mapping muge amount of data into a smaller (table) with the help of a The table which stores the data is called hash table. To convert the data coils a hack value we we the hash function. If h is the hash function and n'is the data then the back function can be denoted as h(n). A simple hash function can be represented as h(x) = x mod 10 where 10 is the size of the hash table. 54 63 25 78 11 54 mod 10 = 4 63 mod 10 = 3 ł 11 63 54 25 7 B 78 If se, and se me trucher to be stored and if $h'(x_1) = h(x_2)$ collision

	1. / \	1.			
eg:					
	21 = 77		2 = 27		
	n(x) =	7	h(x2) = 7		
	callisian can	be a	avoided using a technique:		
	collision can be avoided using a techniques: open addressing separate chaining				
00	AP PARATE Chains	ng			
	SCHOOL CHANN	ng			
	0				
	Open adduring.				
(1)	Linear probin	9 ((2) guadratie (3) Double hashing		
m(n)	= nemod 10	0	bug ping -		
VICE					
[is	1.	•			
	Linear probing				
	scorch for next free slot h(x) = 0 mod 10 18				
	h(%) =		89		
	0	19	28		
	1	28			
	2	39	3 9 55		
	3				
	y		75		
	\$	55			
		75			
	6				
	7	70			
*	8	78	i=0,1,2,3,4		
70	9 1	89	-		
43	$h(2) = (z + i) \mod S_{I \times E}$				
re_	$\eta(2) = (2 + 1) \eta(0) 31 \times 10^{-1}$				
~					
7	0-719				
	1 > 28				
	$2 \rightarrow 39$				
	$3 \rightarrow 0$				

SIZE-1 Quadratic probing i= 0,1,2... n-1 h(n) = (h(n) + i2) mod 10 78 >= semodio 89 19 19 28 39 28 39 1(78) = 8 med 10=8 h, (89) = (9+1) mod 10:0 5 19 collides so (1) (.9+1) mod 10=0 78 g 28 collèdes 89 (1) \$(8+1) mod 10=9X (8+4) mod 10=2 39 collides (1) 9+1 mod 10 = 0 x (3) Double hashing (9+4) mod 10 = 3 We use 2 hack functions h(x) = xmod10+ (x+5) mod 10 Separate chaining - was concept of L.L to avoid collision. h(x) = n mod10

classmate 19 28 39 54 S a