ECE 120 Third Midterm Exam Spring 2016

Tuesday, April 19, 2016

Name:	LUTIONS	NetID:	
Discussion Section): 	1	
9:00 AM	[] AB1		
10:00 AM	[] AB2		
11:00 AM	[] AB3		
12:00 PM	[] AB4		
1:00 PM	[] AB5	[] ABA	
2:00 PM	[] AB6		
3:00 PM	[] AB7	[] ABB	
4:00 PM	[] AB8	[] ABC	
5:00 PM	[] AB9	[] ABD	

- Be sure that your exam booklet has 8 pages.
- Write your name, netid and check discussion section on the title page.
- Do not tear the exam booklet apart.
- Use backs of pages for scratch work if needed.
- This is a closed book exam. You may not use a calculator.
- You are allowed one handwritten 8.5 x 11" sheet of notes (both sides).
- Absolutely no interaction between students is allowed.
- Clearly indicate any assumptions that you make.
- The questions are not weighted equally. Budget your time accordingly.
- Show your work.

Problem 1	19 points	
Problem 2	18 points	
Problem 3	22 points	
Problem 4	15 points	
Problem 5	26 points	
Total	100 points	

Problem 1 (19 points): Memory

- 1. (12 points) Complete the logic diagram below for this 256 x 8 RAM constructed from 32 x 4 RAMs. Clearly label all wires and components. Specifically:
 - a. Give the size of the decoder and label its inputs and outputs.
 - b. Draw and label the address lines. E.g. use A[3:0] notation.
 - c. Draw the CS input lines to the 32 x 4 RAMs.

2. (7 points) Consider a 32 x 32 RAM constructed using 16 x 8 RAM chips. **Note**: This part uses different RAMs than was used in part 1.

How many 16 x 8 RAM chip(s) are needed?

Specify the signal widths (number of bits) for each of the following external signals to the 32 x 32 RAM.

Data-In = 32 Address =

5 R/W' =

Problem 2 (18 points): FSM Design

In this problem you will implement a **0101** sequence recognizer. The circuit has one input x, one output z, and the output is 1 if and only if the pattern **0101** has been detected in the input stream.

Example:

Input: **x** = 0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 . . . Output: **z** = 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 . . .

1. (10 points) Draw the *Moore* state diagram, using as few states as possible. Label the states A, B, C, etc. and give the meaning of each state.

State	Meaning	3
Α	_	recognized
В	0	95
С	01	t ₁
\mathcal{D}	010	c ₁
E	0101	ч

2. (3 points) What is the **minimum** number of flip-flops needed to implement your circuit from part 1?

Answer ____3

3. (5 points) Shown below is a 5-bit **shift register**, constructed with 5 positive-edge-triggered D flip-flops. Use this shift register and **only one gate** to implement a circuit which recognizes 0101 *just like the example at the top of the page*. Be sure to label input **x** and output **z**.

Problem 3 (22 points): FSM Circuit Analysis

The circuit below shows a 3-bit synchronous counter constructed using 3 negative-edge-triggered **T flip-flops**.

1. (5 points) Give Boolean expressions for the T_2 , T_1 , T_0 flip-flop inputs, each as a function of the state variables Q_2 , Q_1 , Q_0 .

$$T_2 = Q_2Q + Q_1Q_0 \qquad T_1 = Q_2Q_2 \qquad T_0 =$$

2. (9 points) Complete the following table.

Current State		Flip-Flop Inputs			Next State			
Q_2	Q ₁	Q_0	T ₂	T ₁	T ₀	Q_2^+	Q_1^{\dagger}	Q_0^+
0	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	t	0
0	1	0	0	0	1	0	1	1
0	1	1	1	1	(1	O	0
1	0	0	0	0	1	1	0	1
1	0	1	1	0		0	0	0
1	1	0	0	0	1	1	1	Ī
1	1	1	- 1	Ò	1	0	(0

3. (5 points) Complete the state transition diagram.

4. (3 points) Assuming the start state is $Q_2Q_1Q_0$ =000, in what sequence does this counter count?

Problem 4 (15 points): Von Neumann model

1. (5 points) Which phase(s) of the instruction cycle access memory when processing the LEA instruction? Circle **ALL correct** answers. If a phase is not used at all in processing this instruction, *don't circle it*.

FETCH OPERANDS

DECODE

EVALUATE ADDRESS

STORE RESULT

2. (5 points) Which component(s) of the Von Neumann model are involved in processing the JMP instruction? Processing includes all phases of the instruction cycle. Circle ALL correct answers.

3. (5 points) Which component(s) of the Von Neumann model set the *GatePC* signal in the LC-3 datapath? Circle **ALL correct** answers.

MEMORY PROCESSING UNIT CONTROL UNIT INPUT OUTPUT

Problem 5 (26 points): LC-3 instructions

The following LC-3 program fragment, represented as four hexadecimal numbers, is stored in memory at the indicated locations and the following values are stored in registers:

Address	Instruction
x3FFF	xAFFE
x4000	x2001
x4001	x743F
x4002	x3002

Register	Value
R0	xF021
R1	xF023
R2	xF025
R3	xF027

1. (12 points) Complete the following table. (*Refer to the LC-3 handout at the end of the exam.*)

Address	Instruction	Binary instruction	RTL (Be specific to this instruction)
x3FFF	×AFFE	1010 111 111111110	R7 ← M[M[PC - 2]] setcc
x4000	x2001	0010 000 000000001	ROEMERCHI
x4001	x743F	0111 010 000 111111	M [RO-1] < RZ
x4002	x3002	0011 000 000000010	M [PC+2] ← RO

2. (14 points) Assuming PC is initially set to x4000, trace the execution of the given program segment for **two** instruction cycles, filling in the table below. Write down the values stored in the PC, IR, MAR, MDR, R0, N, Z, and P registers at the end of each instruction cycle. Values for PC, IR, MAR, MDR, and R0 should be written in *hexadecimal*. Values for N, Z, and P should be written in *binary*.

PC	IR	MAR	MDR	R0	N	Z	Р
× 400	x 2001	× 4002	×3002	×3002	0	0	1
× 4002	x 743F	x 300 l	x F025	x 3002	0	0	1

NOTES: RTL corresponds to execution (after fetch!); JSRR not shown

ECE 120

LC-3 Datapath Control Signals

DRMUX $\begin{cases} = 00, \text{ chooses IR[11:9]} \\ = 01, \text{ chooses "110"} \\ = 10, \text{ chooses "110"} \end{cases}$ PCMUX = 01, chooses system bus = 10. chooses address adder output= 00, chooses PC + 1 00A ,00 = 0MA ,10 = A TON ,01 = A SSA9 ,11 = = 10, chooses SEXT IR[8:0] = 11, chooses SEXT IR[10:0] ADDRZMUX = 01, chooses SEXT IR(5:0) ∀FNK < = 00' chooses "0...00" $f = MDR \sim MDR \approx 1 MIO.EM = 1 MIO.EM = 1 = 1 MDR < MIO.EM MIO.EM (0 = 1 MDR < MIO.EM MIO.EM (0 = 1 MDR < MIO.EM M$ ADDRIMUX $\begin{cases} = 0, \text{ chooses PC} \\ = 1, \text{ chooses regiile SR1 OUT} \end{cases}$ tuqni AOM 101 aud mətəyə səsoodə j' cyooses address adder output = 0, Disables memory, MIO: EN **XUMAAM** chooses memory output for MDR input = 0, chooses ZEXT IR(7:0) , ≮namem seldsn∃ , f = = 1, PC contents are put onto system bus = 1, updates Branch Enable (BEM) bit NB8.01 and metays onto the si the but but A .! = UJAstsD bebsol si elîr register île is loaded LD.REG = 1, MDR contents are put onto system bus **GateMDR** = 1, PC is loaded LD.PC bebsol si AOM , l = bebsol si Al , l = SateMARMUX = 1, MARMUX output is put onto system bus רם:וצ LD.MDR LD.CC = 1, updates status bits from system bus bebsol ai AAM , f = AAM.QJ Description lengiz

(= 10, chooses "110"

= 00, chooses [R[11:9]

SR1MUX < = 01, chooses IR[8:6]