CSci370 Computer Architecture: Homework 1

(double-sided)

Due date: On or before Thursday, February 13, 2020 in class

Absolutely no copying others' works

Name:	

- The purpose of homeworks is for students to practice for the exams without others' help, so the penalty of mistakes will be minor.
- Without practicing for the exams properly, students would not be able to do well on the exams.
- 1. The following table shows manufacturing data of a processor:

Wafer	Dies per	Defects per Unit	Cost per
Diameter	Wafer	Area	Wafer
40 cm	80	0.04 defects/cm ²	30

a. (15%) Find the yield.

b. (10%) Find the cost per die.

c.	(15%) If the	e number of	dies per w	afer is incr	eased by 20	% and the	defects
	per area uni	t increase by	y 30%, find	d the die ar	ea and yield	l	

2. Compilers can have a profound impact on the performance of an application. Consider the following two compilers for a program:

Compiler A		Compiler B		
Instruction count	Execution time	Instruction count	Execution time	
1.2×10 ⁹	4.5 s	1.8×10 ⁹	6.0 s	

a. (20%) Find the average CPI for each program given that the processor has a clock cycle time of 3 ns (or 3×10^{-9} s).

b. (20%) Assume the compiled programs run on two different processors. If the execution times on the two processors are the same, how much faster is the clock of the processor running compiler A's code versus the clock of the processor running compiler B's code?

c. (20%) A new compiler is developed that uses 5.0×10^8 instructions and has an average CPI of 1.5. What is the speedup of using this new compiler versus using Compiler A on the original processor?

†Hint: The speedup here is equal to T_A/T_n where

- T_A: the execution time by using the A compiler and
- T_n : the execution time by using the new compiler.