Massachusetts Institute of Technology

Instructors: Erik Demaine, Jason Ku, and Justin Solomon

Problem Set 0

Problem Set 0

Name: Akshay Raman

Problem 0-1.

(a)
$$A \cap B = \{6, 12\}$$

(b)
$$|A \cup B| = |\{1, 3, 6, 9, 12, 13, 15\}| = 7$$

(c)
$$|A - B| = |\{1, 9, 13\}| = 3$$

Problem 0-2.

(a)
$$E[X] = \frac{1*0+3*1+3*2+1*3}{8} = 1.5$$

(b)
$$E[Y] = \frac{21*21}{36} = 12.25$$

(c)
$$E[X + Y] = E[X] + E[Y] = 13.75$$

Problem 0-3.

(a) True.
$$100 \equiv 18 \pmod{2} \iff 2|100 - 18 \iff 2|82$$

(b) False.
$$100 \equiv 18 \pmod{3} \iff 3|100 - 18 \iff 3|82$$

(c) False.
$$100 \equiv 18 \pmod{4} \iff 4|100 - 18 \iff 4|82$$

Problem 0-4.

Proof by induction.

For all $n \in \mathbb{N}$,

$$P(n) := \sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2$$

Base Case: P(0) is true, both sides evaluate to 0.

Inductive Step: Assume P(n) is true, where n is a non-negative integer.

Problem Set 0

Then

$$\sum_{i=1}^{n} i^{3} + (n+1)^{3} = \left[\frac{n(n+1)}{2}\right]^{2} + (n+1)^{3}$$
$$= \frac{(n+1)^{2}(n^{2} + 4n + 4)}{4}$$
$$= \left[\frac{(n+1)(n+2)}{2}\right]^{2}$$

which proves P(n+1) is true.

So it follows by induction that P(n) is true for all non-negative n.

Problem Set 0 3

Problem 0-5. *Proof by induction.*

Let P(n) be the proposition that, for all $n \ge 1$, any connected graph G = (V, E) with |V| = n and |E| = n - 1 is acyclic.

Base Case: P(1) is true, since that graph only has a single vertex and no edges.

Inductive Step: Assume P(n) is true, where any connected graph G(n) with n vertices and n-1 edges is acyclic. Consider a connected graph G(n+1) with n+1 vertices and n edges. Since G(n+1) is connected, all vertices are connected by an edge. The average degree is 2n/(n+1) < 2. So there must be at least one vertex with degree 1. This vertex cannot be part of a cycle since nodes in a cycle require a degree ≥ 2 . Removing this (weakest) vertex and the associated edge yields a graph in G(n) which is acyclic by P(n). So, P(n+1) is also true.

So it follows by induction that P(n) is true for all $n \ge 1$.

Problem 0-6. Submit your implementation to alg.mit.edu.

```
def count_long_subarray(A):
      Input: A | Python Tuple of positive integers
      Output: count | number of longest increasing subarrays of A
      111
      count = 1
      length = 1 # max size
      current = 1 #current subarray size
8
      for i in range(1, len(A)):
9
          if A[i-1] < A[i]:
              current += 1
          else:
              current = 1
14
          if current == length:
              count += 1
16
          elif current > length:
              length = current
18
              count = 1
      return count
```