

INSTITUTO
SUPERIOR
TÉCNICO

Tecnologias de Redes de Comunicações

2006/2007

ADSL

Fernando M. Silva

Fernando.Silva@ist.utl.pt

Instituto Superior Técnico

ADSL

- ADSL
 - *Asymmetric Digital Subscriber Line*
 - Transmissão assimétrica nos canais ascendentes e descendentes
- Desenvolvido nos anos 90, a seguir ao aparecimento do HDSL
- Motivação e objectivos
 - Ultrapassar os limites de 56Kbit/s dos modems analógicos
 - Adaptar-se ao perfil típico do utilizador de Internet (anos 90), com downloads elevados e uploads moderados
 - Utilização do par de cobre do lacete de assinante

Características

- Compatibilidade com o serviço telefónico (POTS)
- Conectividade permanente
- Facilidade de utilização e configuração
- Fiabilidade do lacete local
- Segurança (ligação ponto a ponto entre o cliente e o operador)
- Amplamente implementado
- Expansível a cenários triple-play

Normalização

- 1994 - Criação do ADSL Forum
 - Divulgação da tecnologia
 - Facilitar o desenvolvimento de arquitecturas , protocolos e interfaces que garantam a interoperabilidade de equipamentos.
- 1995 - As primeiras normas foram aprovadas pelo comite ANSI
 - ANSI Standard T1.413 (1998)
- Adicionados vários anexos e extensões posteriormente
- Um dos anexos, publicado pelo ETSI, define a aplicação da norma aos requisitos Europeus
- Principal referência: ITU G.992.1 (Jun 99, 250 páginas..).

Ritmos de transmissão

Largura de banda ascendente e descendente para uma linha 26AWG (0,4mm de diâmetro)

Modelo de referência

Modelo de referência do sistema ADSL (Recomendação ITU G.991.1)

ATU-C - ADSL Transmission Unit Central Office

ATU-R - ADSL Transmission Unit Remote (modem ADSL)

Splitter

- O *splitter* é basicamente um filtro que impede as frequências até aos 4KHz (POTS) se misturarem com o sinal de ADSL
- Sistema passivo

- Problema: instalação exige presença de um técnico.
 - Alternativa: uADSL (unsplitted ADSL) ou ADSL Lite

Capacidade

- Um sistema ADSL pode transportar até sete fluxos de dados em sete canais de transporte simultaneamente:
 - Até 4 canais descendentes (AS0, AS1, AS2 e AS3), unidireccionais, do operador para o cliente.
 - Até três canais duplex bi-direccionais (LS0, LS1, LS2) entre o operador e o cliente
- Todos os canais individuais são programáveis em qualquer combinação de múltiplos de 32kbit/s
- A capacidade máxima de transporte depende das características do lacete local e de opções de configuração que podem afectar o overhead
- A configuração de ADSL é distinta consoante se use um modo síncrono (STM) ou assíncrono (ATM)
- Os canais AS0 e LS0 são obrigatórios, os restantes opcionais

Diagramas de bloco - Transmissão da central

Modo síncrono (STM)

NOTE – Solid versus dashed lines are used to indicate required versus optional capabilities respectively. This figure is not intended to be complete in this respect, see clauses 6 and 7 for specific details.

Caminhos

- Existem dois caminhos possíveis entre o "Mux/Sync control" e o "Tone ordering"
 - Caminho "fast" - baixa latência
 - Caminho "interleaved" - Menor taxa de erros, maior latencia

Diagramas de bloco - Transmissão da central

Modo assíncrono (ATM)

NOTE – Solid versus dashed lines are used to indicate required versus optional capabilities respectively. This figure is not intended to be complete in this respect, see clauses 6 and 7 for specific details.

Diagramas de bloco - Transmissão do terminal remoto

Modo síncrono (STM)

NOTE – Solid versus dashed lines are used to indicate required versus optional capabilities respectively. This figure is not intended to be complete in this respect, see clauses 6 and 8 for specific details.

Diagramas de bloco - Transmissão do terminal remoto

Modo assíncrono (ATM)

NOTE – Solid versus dashed lines are used to indicate required versus optional capabilities respectively. This figure is not intended to be complete in this respect, see clauses 6 and 8 for specific details.

Ritmos possíveis (STM)

Bearer channel	Lowest Required Integer Multiple	Largest Required Integer Multiple	Corresponding Highest Required Data Rate (kbit/s)
AS0	1	192	6144
AS1	1	144	4608
AS2	1	96	3072
AS3	1	48	1536
LS0	1	20	640
LS1	1	20	640
LS2	1	20	640

Multiplexagem ascendente/descendente

A multiplexagem ascendente/descendente pode ter lugar por Multiplexagem na Frequência (FDM) ou por Cancelamento de Eco

- A técnica de FDM divide a banda entre os canais descendentes e ascendentes
- A técnica de cancelamento de eco permite a sobreposição de canais, mas realiza um cancelamento de eco de modo a eliminar a mistura.

Codificação e modulação

A modulação usada é *Discrete Multitone* (DMT).

- A modulação DMT divide o espectro em vários canais disjuntos e independentes
- A codificação e transmissão dos símbolos é feita independentemente em cada um destes canais

- Em cada canal, o número de bits por símbolo é variável e depende adaptativamente das condições de transmissão

- O objectivo da codificação *Discrete Multitone* é permitir simultaneamente adaptação da capacidade e diversidade na transmissão
- Em caso corrupção de alguns símbolos, o método de codificação seguido permite recuperar os dados transmitidos a partir dos dados recebidos sem erros.

Modulação em cada canal

Em cada canal é usada uma modulação k-QAM, em que k depende de forma adaptativa da relação sinal ruído

Bits por símbolo	Constelação QAM	SNR (BER < 10 ⁻⁷)
4	16-QAM	21,8 dB
6	64-QAM	27,8 dB
8	256-QAM	33,8 dB
9	512-QAM	36,8 dB
10	1024-QAM	39,9 dB

Constelações QAM

Exemplos para 1,2 e 3 4 bits

Bit allocation e bit swapping

- Normalmente, verifica-se uma maior atenuação nas frequências mais altas, pelo que as constelações são normalmente de maior dimensão nas frequências mais baixas
- O mecanismo de atribuição de bits por canal é designado *bit allocation* e é realizado num período inicial de 20
 - Alguns canais podem mesmo ser desligados durante este processo
- Em operação normal, podem ocorrer alterações dinâmicas das condições do canal e, nestes casos, o ADSL prevê a possibilidade de alteração dinâmica da atribuição: processo designado de *bit-swapping*
 - As condições de ruído e de *cross-talk*, resultantes da activação e desactivação de canais, são geralmente as maiores responsáveis pelos processos de *bit swapping*

Exemplo

Exemplo de atribuição de bits num sistema de 6 canais

- Todo o sistema de modulação/desmodulação do sinal é realizado através de processamento digital de sinais (PSD).
- Em particular, a divisão da banda em canais de banda estreita, só é hoje possível em equipamentos de baixo custo pela utilização de técnicas de PSD.
 - Caso contrário, seria preciso implementar 256 filtros de banda estreita e correspondentes portadoras no modulador/desmodulador.
- De facto na prática, isto pode ser feito através do cálculo de Transformadas Discretas de Fourier inversa (modulador) e directa (no desmodulador).
- O cálculo das DFTs pode ser realizado de forma eficiente pela utilização de FFTs (*Fast Fourier Transform*).

Diagrama de blocos

Exemplo

- N.º de bits por portadora numa linha de 2,1Mbits/s / 600 Kbit/s
 - Repare-se na redução do número de bits para frequências mais elevadas

Correcção de erros

- A elevada densidade de codificação usada em ADSL é, simultaneamente, uma causa provável da geração de erros
- Sobretudo em aplicações de tempo real (Video on demand, VoIP, etc), a não inclusão de mecanismos de correcção de erros transforma estes em perda não recuperável de informação
- Para aumentar a robustez do ADSL, é usada um sistema de correcção de erros baseado no código de Reed Solomon

- Princípios essenciais:

- Agrupamento em símbolos
- Envio de informação adicional por cada bloco de símbolos
- Nos códigos de Reed-Solomon, por cada k símbolos são enviados $2t$ símbolos adicionais.
- Deste modo, cada bloco de $n = k + 2t$ símbolos podem ocorrer até t erros em símbolos sem haver perda de informação (ou, por outras palavras, havendo ainda possibilidade de corrigir totalmente os erros que ocorreram).

(Nota: A designação de "parity" é aqui pouco correcta; deveria designar-se FEC (Forward Error Correction)).

- Princípio:
 - Em vez de serem transmitidos os valores dos símbolos, são transmitidos os valores de um polinómio calculados em n pontos diferentes.
 - * Na ausência de erros k pontos seriam suficientes para recuperar os k pontos transmitidos
 - * De forma a permitir recuperar erros, além dos k valores que se pretende transmitir, calcula-se o polinómio em mais $2t$ pontos.
 - Uma escolha habitual em ADSL é $n=255$, $t=8$, conduzindo a $k=255-16=239$

Interleaving

- De modo a reduzir o impacto de "burst de erros", pode ser usada uma técnica de interleaving
- Em ADSL, o interleaving é realizado por uma técnica convolucional. No entanto, no essencial e de um modo simplificado, pode ser interpretado como uma técnica de espalhar os bits sucessivos ao longo da frame.
- Este sistema, que permite reduzir os erros, corresponde também a um aumento da latência na aplicação, devido ao atraso implícito na codificação.

Implementação

Estrutura de tramas ADSL

- Supertramas
 - São o nível mais elevado de representação dos dados: cada supertrama contém 68 tramas, sendo que a primeira é de sincronização (algumas tramas restantes também têm funções especiais)
- Tramas
 - Cada trama está limitada no tempo por intervalos múltiplos de $250\mu s$ (duração de um símbolo).
 - O tamanho e conteúdo da trama depende do transporte utilizado

Formato da trama

- *Fast Byte* - Processamentos relacionados com super-tramas
- *FEC* Forward Error Correction
- *Fast Data* - Dados com menor latência
- *Interleaved Data* - Dados com maior latência, interleaved.

Formato da supertrama

Formato do *fast byte*

In all frames bit 7 = MSB and bit 0 = LSB.

- coex - Embedded operations channel - Controle
- ibx - Indicator bits monitorização.

ADSL simples: arquitectura

ADSL simples: protocolos de dados

?

ADSL +router: arquitectura

ADSL+router: protocolos de dados

7

Evolução do ADSL

- ADSL2
 - Melhoria dos algoritmos de codificação e modulação.
 - Aumento de 25% da capacidade
 - Até 12Mbit/s (d), 1 Mbit/s (u)
- ADSL2+
 - Aumento da largura de banda usada de 1.1MHz para 2.2MHz
 - Duplicação do número de canais do DMT (para 512)
 - Inconveniente: só disponível até 2.5Km do DSLAM

VDSL

- VDSL
 - VHDL - Very High Speed Digital Subscriber Line (ITU - Recomendação G.993.1)
 - VDSL - (ETSI TS 101 270-2)
- Objectivos/vantagens
 - Ritmos simétricos e assimétricos de dezenas de Mbit/s em pares entrada
 - Utiliza até 12MHz da largura de banda
- Inconvenientes
 - Dada a largura de banda exigida, só disponível muito próximo do assinante

Modelo de referência VDSL

- Aplicações previstas
 - FTTC - Fiber To The Cabinet
 - FTTE - Fiber To The Exchange

Modulação

- DMT, Discrete multitone modulation
 - Número de portadoras $N_s = 256 \times 2^n$, $n = 2, 3, 4$

VDSL - Configuração de referência

VDSL - Camadas de protocolos

TPS-TC - Transport Protocol Specific, Transmission Convergence Layer

PMS-TC - Physical Media Specific, Transmission Convergence Layer

VDSL - Pontos de referência

VDSL - Plano de frequências

VDSL - Perfis assimétricos

Perfil	Payload Rate (Mbit/s)	
	Descendente	Ascendente
A1	6,7	2,2
A2	9,6	2,2
A3	15,4	3,4
A4	25,9	4,2

VDSL - Perfis simétricos

Perfil	Payload Rate (Mbit/s)
S1	6,7
S2	9,5
S3	15,5

VDSL - Camada PMD

VDSL - Trama

VDSL2

- ITU VDSL2 (2005)
 - Débitos simétricos até 100Mbit/s
 - Diferentes larguras de banda
 - Tal como no VDSL, ritmo reduz-se fortemente com o aumento do comprimento da linha a partir de 300m.