Exponentialabbildung

In diesem Handout bezeichnet S immer eine beliebige reguläre Fläche, p einen Punkt auf S, T_pS die Tangentialebene in p und g eine riemannsche Metrik von S.

1. Wiederholung

Für $p \in S$ und $v \in T_pS$ existiert genau eine Geodäte c_v (definiert zumindest auf einem Intervall I um 0, das wir maximal wählen können), die durch den Punkt p in Richtung v verläuft, also $c_v(0) = p, \dot{c}_v(0) = v$

2. Definition

Für einen Vektor $v \in T_pS$ und der (eindeutigen) Geodäte $c: I \to S$ mit c(0) = p und $\dot{c}(0) = v$, setzen wir, falls c(1) noch existiert, also $1 \in I$:

$$\exp_p(v) := c(1)$$

Die Abbildung $\exp_p : \mathcal{D}_p \subset T_pS \to S$ heißt Exponentialabbildung. Man kann zeigen, dass \exp_p glatt und \mathcal{D}_p offen ist.

3. Umkehrsatz

Um die Exponentialabbildung (zumindest lokal) invertieren zu können, benötigen wir den Umkehrsatz:

Es sei $f: D \to \mathbb{R}^n$ mit $D \subset \mathbb{R}^n$ offen, ein \mathcal{C}^1 -Abbildung. Wenn im Punkt $a \in D$ die Determinante der Jacobimatrix ungleich null, also invertierbar ist, dann gibt es eine offene Umgebung $U \subset D$ von a, und eine offenen Umgebung V von b := f(a), sodass $f: U \to V$ ein Diffeomorphismus ist.¹

Da $d_0exp_p=id:T_pS\to T_pS$ gibt es nach dem Satz eine Umgebung W von $0\in\mathcal{D}_p$, so dass $\exp_p|_W:W\to \exp_p(W)\subset S$ ein Diffeomorphismus ist. Für eine lokale Parametrisierung (U_1,F_1,V_1) der Tangentialebene T_pS erhalten wir durch die Wahlen $U:=F_1^{-1}(W),\,F:=\exp_p\circ F_1|_U$ und $V\subset\mathbb{R}^3$ offen mit $V\cap S=\exp_p(W)$ eine lokale Parametrisierung (U,F,V) von S.

4. Parametrisierungen

Seien X_1, X_2 eine Orthonormalbasis von T_pS und $F_1(u^1, u^2) = \sum_i u^i X_i$, dann heißt die entsprechende Parametrisierung mit $F(u^1, u^2) = \exp_p(\sum_i u^i X_i)$ Parametrisierung durch riemannsche Normalkoordinaten (um den Punkt p).

Für $F_1(r,\varphi) = r \cdot (\cos(\varphi)X_1 + \sin(\varphi)X_2)$ heißt die entsprechende Parametrisierung mit $F(r,\varphi) = \exp_p(r \cdot (\cos(\varphi)X_1 + \sin(\varphi)X_2))$ Parametrisierung durch geodätische Polarkoordinaten (um den Punkt p).

5. Gauß-Lemma

Sei F eine lokale Parametrisierung durch geodätische Polarkoordinaten (r, φ) . Dann hat bzgl. dieser lokalen Parametrisierung die riemannsche Metrik die Form

$$(g_{ij}(r,\varphi))_{ij} = \begin{pmatrix} 1 & 0 \\ 0 & f(r,\varphi)^2 \end{pmatrix}$$

mit einer positiven Funktion $f(r,\varphi)$ die $\lim_{r\to 0} f(r,\varphi) = 0$ und $\lim_{r\to 0} \frac{\partial f}{\partial r}(r,\varphi) = 1$ erfüllt. Alternative Formulierung:

Die Tangenten an radiale Geodäten stehen normal auf die Niveaulinie $N_f(r)$ mit Abstand r = const vom Punkt p.

¹siehe: Königsberger, Konrad: Analysis 2. Springer 2004, S.104