Dischi

caratteristiche e prestazioni

06/03/07

indice

- dischi
 - caratteristiche generali
 - prestazioni
 - tecniche per migliorare le prestazioni di I/O

© P.Borghese, G.Serazzi a.a. 2006/07 "Impianti Informatici" dischi - 2

dischi: caratteristiche generali

evoluzione delle capacità (legge di Moore)

- legge empirica che all'origine riguardava l'andamento della densità dei transistori per chip (che raddoppia ogni 18 mesi)
- concerne l'incremento della capacità operativa (che si moltiplica approssimativamente per 100 ogni 10 anni)

esempio: evoluzione dischi (densità superficiale)

esempio: evoluzione dischi (data rate)

esempio: evoluzione dischi (tempi di accesso)

osservazione

- la crescita con tassi diversi di alcune grandezze può dare luogo ad alcuni problemi:
 - in particolare la capacità di memoria cresce più rapidamente dei tempi di accesso perciò la densità degli accessi è diminuita nel tempo
 - pericolo di non completo utilizzo (inedia o "starvation") dei dispositivi (processori e dischi)

- la capacità dei dischi è cresciuta dal 1956 al 2005 di 5×10⁷ volte,
- entro 4 anni si pensa di raggiungere 500 Gbit per inch²
- con metodi olografici 1 Tbit può essere contenuto in un volume di 1 cm³ (fonte: Scientific American aug. 05)

livelli gerarchici di memoria

Memorie di massa: Tecnologie

Tecnologie

- Magnetica
- Ottica

Diversi obiettivi:

- Tempo di accesso (msec, nanosec)
- Velocità di trasferimento (Mbyte/sec)
- Capacità (Mbyte/Gbyte)

esercizio 1: calcolo del tempo medio di accesso

Esempio di calcolo del tempo medio di accesso al dato

layer	tempo t	miss rate m	prob. p	pxt
1 Reg	1,00E+00	1,00E-01	1,00E+00	1,00E+00
2 L1	1,00E+00	5,00E-02	1,00E-01	1,00E-01
3 L2	8,00E+00	2,00E-02	5,00E-03	4,00E-02
4 Main mem.	1,00E+02	1,00E-01	1,00E-04	1,00E-02
5 Local disk	1,00E+07	2,00E-02	1,00E-05	1,00E+02
6 Net server	5,00E+07	2,00E-02	2,00E-07	1,00E+01
7 Remote server	4,00E+08	0,00E+00	4,00E-09	1,60E+00
			tot	112,75

$$p(i) = p(i-1) \times m(i-1)$$
 probabilità di arrivare nella ricerca del dato al livello (i) $p(i) \times t(i)$ tempo di accesso al livello (i) tempo totale = $\sum p(i) \times t(i)$

osservazione sulle probabilità e loro calcolo

- gli eventi E(i) a cui competono le probabilità p(i) sono le visite ai diversi livelli della gerarchia di memoria, non sono esclusivi ma:
 - E(k) ⊆ E(j); p(k) ≤ p(j) per k > j la visita al livello (k) richiede di essere prima passati da (j)
 - $\Sigma p(i) > 1$
- passiamo a considerare gli eventi incompatibili E*(i):
 - E*(i): il dato cercato si trova al livello (i)
 - p*(i) = (1- m(i)) × p(i) probabilità che la ricerca si arresti al livello (i)
 - $\Sigma p^*(i) = 1$
 - t*(i): tempo per ottenere il dato residente al livello (i) = somma dei tempi di accesso ai livelli da 1 a (i)
- la tabella della pagina che precede si modifica in quella che segue
- (ovviamente il tempo medio non cambia)

esercizio 2

Esempio di calcolo del tempo medio di accesso al dato (variazione)

	layer	tempo t	miss rate m	p *	t*	p* x t*
1	Reg	1,00E+00	1,00E-01	9,00E-01	1,00E+00	9,00E-01
2	L1	1,00E+00	5,00E-02	9,50E-02	2,00E+00	1,90E-01
3	L2	8,00E+00	2,00E-02	4,90E-03	1,00E+01	4,90E-02
4	Main mem.	1,00E+02	1,00E-01	9,00E-05	1,10E+02	9,90E-03
5	Local disk	1,00E+07	2,00E-02	9,80E-06	1,00E+07	9,80E+01
6	Net server	5,00E+07	2,00E-02	1,96E-07	6,00E+07	1,18E+01
7	Remote server	4,00E+08	0,00E+00	4,00E-09	4,60E+08	1,84E+00

$$\Sigma p^* = 1$$
 tot 112,75

 $p^*(i) = p(i) \times (1-m(i))$ probabilità di trovare il dato al livello (i) $t^*(i)$ tempo per raggiungere il livello (i) tempo totale = $\sum p^*(i) \times t^*(i)$

esercizio 3

Calcolo del tempo medio di accesso con alcuni valori delle miss rate modificati

	layer	tempo t	miss rate m	prob. p	pxt
1	Reg	1,00E+00	1,00E-01	1,00E+00	1,00E+00
2	L1	1,00E+00	5,50E-02	1,00E-01	1,00E-01
3	L2	8,00E+00	2,20E-02	5,50E-03	4,40E-02
4	Main mem.	1,00E+02	1,10E-01	1,21E-04	1,21E-02
5	Local disk	1,00E+07	2,20E-02	1,33E-05	1,33E+02
6	Net server	5,00E+07	2,20E-02	2,93E-07	1,46E+01
7	Remote server	4,00E+08	0,00E+00	6,44E-09	2,58E+00
			_		
				tot	151,47

unità disco

dischi magnetici

Dischi magnetici

È composto da un insieme di piatti di alluminio con rivestimento magnetizzabile

Diametro: 3-50 cm (in genere 9cm=3.5inch)

Principi fisici:

I materiali ferro-magnetici hanno memoria

Scrittura: la corrente crea un campo magnetico (modifica magnetizzazione)

Lettura: il campo magnetico induce una corrente in alternativa, si misura la magneto-resistenza il cui valore dipende dal campo elettrico

- magnetizzazione longitudinale (orizzontale, standard)
- magnetizzazione **perpendicolare** (verticale, si raggiunge una densità × 10)
- ogni *bit* contiene da 50 a 100 grani di materiale ferromagnetico magnetizzato
- heat-assisted recording: (ancora sperimentale), permette bit ancora più piccoli di nuovi materiali, magnetizzati con l'intervento laser che riduce momentaneamente la coercività
- fonte: Scientific American, sept. 2006

Formattazione in tracce e settori

Piatto:

- Velocità di rotazione: 5400 15000 giri/minuto
- Composto da due distinte facce

Formattazione:

- Aggiunta di informazioni di controllo
 - Preambolo
 - ECC (Error Correction Code)
 - Spazi vuoti
- Suddivisione della superficie del disco
 - Tracce (track): partizionata in settori
 - ogni faccia contiene 10000-50000 tracce concentriche
 - Settori (sector): contiene un blocco di dati
 - (100-500) tipicamente di 512 byte
 - contengono numero settore gap- informazioni con sequenza di correzione errori - gap - numero prossimo settore e così via

Formattazione in tracce e settori

Numero di settori per traccia

- Costante
 - Semplice da gestire
 - Sottosfruttamento della capacità ideale

- Diverso nelle diverse zone (Zone Bit Recording)
 - Sfruttamento intensivo della capacità
 - Velocità di trasferimento più veloce ai bordi
 - spostandosi verso l'esterno aumenta la capacità delle tracce e quindi la velocità di trasferimento

Testine

- le testine di lettura/scrittura
 - si muovono insieme e si trovano contemporaneamente sulla stessa traccia per ogni superficie
 - Una per ogni faccia
 - Sollevata (non a contatto) dalla superficie
 - Attuatore:
 - Ogni testina è sorretta da un braccio meccanico
 - Manovra i bracci meccanici che si muovono in modo solidale
 - cilindro: insieme delle tracce di tutte le facce accessibili dalle testine posizionate in un determinato punto
 - seek: operazione meccanica di posizionamento della testina, la sua durata dipende dalle tracce attraversate, mediamente 3-14 ms
- trasferimento: la sua durata è il tempo necessario per leggere/scrivere un blocco
 - dipende da: dimensione del settore, velocità di rotazione e densità dei dati sul supporto, 30-80 MB/sec.
 - buona parte delle unità di controllo dei dischi hanno una cache (velocità di trasferimento fino a 320 MB/sec)
 - ovviamente se il trasferimento avviene dalla cache non c'è né seek né latenza

Controllore del disco

Circuito di controllo:

Può contenere un processore

Funzionalità:

- Movimento della testina
- Correzione degli errori
- Buffering/caching
- Rimappaggio settori danneggiati
- Interfaccia con il bus
 - IDE/ATA
 - SATA
 - SCSI

caratteristiche indicative di dischi (2004)

Characteristics	Seagate ST373453	Seagate ST3200822	Seagate ST94811A
Disk diameter (inches)	2.50	3.50	3.50
Formatted data capacity (GB)	73.4	200	40.0
Cylinders	31310		
Sectors per drive	143,374,744	390,721,968 (LBA mode)	78,140,160 (LBA mode)
Number of disk surfaces (heads)	8	4	2
Rotation speed (RPM)	15,000	7200	5400
Internal disk cache size (MB)	8	8	8
External interface, bandwidth (MB/sec)	Ultra320 SCSI, 320	Serial ATA, 150	Ultra ATA, 100
Sustained transfer rate (MB/sec)	57-86	32-58	34
Minimum seek (read/write) (ms)	0.2/0.4	1.0/1.2	1.5/2.0
Average seek (read/write) (ms)	3.6/4.0	8.5/9.5	12.0/14.0
Mean time to failure (MTTF) hours	1,200,000@25 °C	600,000@25 °C	330,000@25 °C
Warranty (years)	5	3	-
Nonrecoverable read error per bit read	< 1 per 10 ¹⁵	< 1 per 10 ¹⁴	< 1 per 10 ¹⁴
Price in 2004 (\$/GB)	\$5	\$0.5	\$2.5

sistemi di I/O

bus

 bus: link di comunicazione condiviso che usa un insieme di fili per connettere sottosistemi multipli

- vantaggi:
 - basso costo
 - versatilità
- unico schema di connessione
 - si possono aggiungere nuovi dispositivi
 - le periferiche che usano lo stesso tipo di bus possono essere spostate fra sistemi diversi

- svantaggi:
 - collo di bottiglia delle comunicazioni, la larghezza di banda limita il massimo throughput I/O
 - lunghezza del bus
 - numero di dispositivi
- prospettive:
 - interconnessioni seriali ad alta velocità con switch

bus (2)

- tipi di bus
 - processore memoria (corti e ad alta velocità)
 - di I/O (lunghi con ampio range di banda)
 - backplane (permette la coesistenza di memoria e I/O)
 - sono organizzati in modo gerarchico
- comunicazione
 - sincrona (generalmente usata dal bus di memoria); i dispositivi devono avere lo stesso ritmo di clock
 - asincrona (usata dai bus di I/O); il coordinamento della trasmissione è gestito da un protocollo di handshaking; richiede linee addizionali per i segnali di controllo
- trasferimento
 - parallelo
 - seriale

bus (3)

ISAPCISerial ATA

Micro channelAGPPCMCIA

EISAUSBSCSI

VESAIDEFirewire

Bluetooth

Key characteristics of two dominant I/O bus standards				
Characteristic	Firewire (1394)	USB 2.0		
Bus type	I/O	I/O		
Basic data bus width (signals)	4	2		
Clocking	asynchronous	asynchronous		
Theoretical peak bandwidth	50 MB/sec (Firewire 400) 100 MB/sec (Firewire 800)	0.2 MB/sec (low speed) 1.5 MB/sec (full speed) 60 MB/sec (high speed)		
Hot plugable	yes	yes		
Maximum number of devices	63	127		
Maximum bus length (copper wire)	4.5 meters	5 meters		
Standard name	IEEE 1394, 1394b	USE Implementors Forum		

ATA (AT Attachment)

IDE (Integrated Drive Electronics)

EIDE (Extended IDE)

PATA (Parallel ATA)

ATA1 - ATA4

- 16 bit
- 40 fili (40 pin)
- 8,3 -33,3 Mbps

ATA5 - ATA6

- 32 bit
- 66 133 Mbps
- 80 fili (ma 40 pin)
 - 40 originali
 - 40 x messa a terra

Cavo IDE Slave

Ultra DMA

(Direct Memory Access)

due cicli di trasferimento per ciclo di clock

Limitazioni:

- Transfer rate
- Lunghezza cavo (45 cm) e larghezza

SCSI (Small Computer System Interface)

Collega dispositivi eterogenei

- Hard disk
- Unità nastro
- Scanner
- Lettori/masterizzatori CD/DVD
- Stampanti
- · ...

Adapter SCSI Controller SCSI

Incorporato nelle periferiche

SATA (Serial ATA)

Evoluzione dell'ATA

Vantaggi:

- Velocità
- Gestione dei cavi
- Hot Swap

Trasferimento seriale

- No interferenze della connessione parallela
- Facile trasportare un bit alla volta

Caratteristiche:

- Cavi a 7 contatti
- Connessione punto a punto
 - Un cavo per ogni dispositivo collegato
- SATA-150
 - Clock 1,50 Ghz
- SATA-300
- SATA-600

organizzazione I/O

prestazioni dischi

metriche di prestazione di un disco

- tempo di servizio s_{disk}: seek time+rotational latency+data transfer time+overhead controller
 - tempo di seek: posizionamento testine (≈ ms)
 - tempo di latenza: tempo richiesto affinché il settore passi sotto le testine (≈ ms, ½ giro)
 - tempo di trasferimento dei dati : dipende da velocità di rotazione, densità di registrazione, distanza della testina dal centro del disco (≈ MB/sec)
 - overhead controller: gestione trasferimento dati da buffer locale e invio interrupt

Operazione di I/O: tempo di servizio

metriche di prestazione di un disco (2)

- il tempo di risposta r comprende anche il tempo di attesa causato dalla contesa con altre operazioni concorrenti
- dipende da:
 - numero di utenti trovati in attesa (lunghezza della coda)
 - utilizzo del servente
 - tempo medio di servizio
 - variabilità del tempo di servizio (forma della sua distribuzione)
 - tasso di arrivi e sua distribuzione
 - a parità delle altre condizioni una maggiore variabilità determina un tempo di risposta mediamente più grande

metriche di prestazione di un disco (3)

Calcolo delle statistiche risultanti da composizione o somma di diversi fenomeni

- M1: momento del primo ordine; M2: momento del secondo ordine
- il tempo di servizio Ti varia da richiesta a richiesta:
 - Tempo medio ti = M1 =(f1×T1+f2×T2+...+fn×Tn) (f1+f2+...fn=1)
 - Varianza Vi =(f1×T1²+f2×T2²+...+fn×Tn²) M1² = M2 M1²
 - C² = quadrato del coefficiente di variazione
 - C² = Varianza / M1²
- un tempo medio di servizio T è la somma di tempi medi indipendenti:
 - T = t1+t2+...tm (seek+rotazione+trasferimento+overhead)
 - V = V1+V2+...Vm

metriche di prestazione di un disco (4)

- il coefficiente di variazione C = std.dev/M1 è un indice normalizzato della variabilità della distribuzione
- C cresce all'aumentare della dispersione
- C = 1 (esponenziale)
 - 63% dei valori < M1; 90% dei valori < 2.3 M1
- C < 1 (ipoesponenziale); C > 1 (iperesponenziale)
- $C^2 = 0.5$
 - 57% dei valori < M1; 90% dei valori < 2 M1
- $C^2 = 2$
 - 69% dei valori < M1; 90% dei valori < 2.8 M1

esercizio 4: tempo medio di servizio di una op. di I/O

- lettura/scrittura di un settore di 512 Byte = 0.5 KB,
 - velocità di rotazione: 10000 RPM (rotazioni per minuto)
 - velocità di trasferimento dati: 50 MB/sec
 - seek medio: 6ms
 - overhead controller: 0.2ms
 - latenza: (60s/min)x1000/(2x10000giri/min)=3.0ms (tempo per compiere mezza rotazione
 - trasferimento: (0.5KB)x1000 / (50x1024KB/s) = 0.01ms
- tempo totale di servizio di I/O = 6ms+ 3ms+ 0.01ms+ 0.2ms = 9.21ms seek latenza controller trasferimento

esercizio 5: effetti della località degli accessi

- località: effetto come seek nulli
- riprendendo i dati dell'esercizio precedente:
 - località dei dati: seek ha luogo solo nel 25% delle operazioni

$$(6.0 \times 0.25) + (0.5 \times 60 \times 10^{3} / 10000) + (0.5 \text{ KB} / 50 \text{MB} \times 2^{10}) + 0.2 = 1.5 + 3.0 + 0.01 + 0.2 = 4.71 \text{ ms}$$

• tempo medio = $(0.25 \times 6) + 3 + 0.01 + 0.2 = 4.71$ ms

seek latenza controller trasferimento

© P.Borghese, G.Serazzi a.a. 2006/07 "Impianti Informatici" dischi - 39

calcolo del tempo di servizio di una op. di I/O

- tempo medio s = seek + latenza + trasferimento + controller
- ipotesi:
- seek: uniforme fra un valore minimo e un massimo
- latenza di rotazione: uniforme fra 0 e tempo di rotazione completa
- trasferimento: costante
- controller: costante

© P.Borghese, G.Serazzi a.a. 2006/07 "Impianti Informatici" dischi - 40

esercizio 6: Varianza del tempo di servizio di I/O

- V(tempo di seek):
 - $M2 = 0.25 \times (11.6^2 + 11.6 \times 0.4 + 0.4^2) / 3 = 0.25 \times 46.45$
 - $V = M2 M1^2 = 11.61 (0.25 \times 6)^2 = 9.36$ i dati provengono dall'esercizio 5
- V(tempo di latenza):
 - $V = 6^2 / 12 = 3$
- V(tempo di trasferimento):
 - V = 0
- V(tempo di controller):
 - V = 0
- Varianza totale = 9.36 + 3 + 0 + 0 = 12.36

seek latenza controller trasferimento

- coeff. di variazione = $\sqrt{(12.36)/4.71} = 0.747$
- $0.747 < 1 \Rightarrow$ distribuzione ipo-esponenziale

esercizio 6: riassunto grafico

il fenomeno complessivo ha un tempo medio $s = \Sigma T = 4.71$

e varianza = Σ V = 12.36 ; C = 0.747

esercizio 7: variazione sui tempi di trasferimento

il fenomeno complessivo ha un tempo medio $s = \Sigma T = 5.31$

e varianza =
$$\Sigma$$
 V = 15.59; C = 0.744

esercizi 6 e 7: osservazione sulle varianze

Più un fenomeno assume valori diversi più il coefficiente di variazione tende a crescere

esempio: tempo di trasferimento t1 = 0.01; c = 0 nel 90% dei casi t2 = 6; c = 0 nel 10% dei casi t(trasf totale) = 0.609; c(trasf totale) = 2.95

se un fenomeno è la somma di più fenomeni diversi, il coefficiente di variazione totale è minore della media dei singoli coefficienti

esempio: tempo di latenza + trasferimento t(latenza) = 3; c(latenza) = 0.58 t(trasf totale) = 0.609; c(trasf totale) = 2.95 t(latenza + trasferimento) = 3.609 c(latenza + trasferimento) = 0.69

 $c = \sigma / media$

esercizio 8: allocazione dati "non ottimale"

- trasferimento di un file (size = 1MB)
- 1° caso:
 - 1 seek iniziale: 6 ms
 - 1 latenza: 3 ms
 - 1 trasferimento totale 1 MB: 1/50 × 1000 = 20 ms
 - tempo totale: 29 ms
- 2º caso, 10 blocchi da 1/10 MB distribuiti "male" sul disco, ciascuno:
 - 1 seek: 6 ms
 - 1 latenza: 3 ms
 - 1 trasferimento parziale: 2 ms
 - tempo totale: (6 + 3 + 2) × 10 = 110 ms

(non si è tenuto conto dei tempi di overhead del controller)

tecniche per migliorare le prestazioni di I/O

tecniche per migliorare le prestazioni I/O

- le prestazioni I/O possono essere misurate sperimentalmente a diversi livelli della gerarchia di storage.
 - per quantificare sperimentalmente gli effetti delle diverse tecniche di ottimizzazione bisogna misurare i tempi da quando la richiesta è consegnata al sistema storage prima che venga potenzialmente spezzata dal volume manager in richieste dirette a dischi multipli.
- due metriche importanti sono response time e throughput.
- il reciproco del service time è una stima (ottimistica) del throughput massimo (ottenibile con utilizzo = 1)

Prefetching

Write Buffering

Principio di Località:

Spaziale temporale

Ottimizzazione delle prestazioni: Read Caching

I dati più probabili vengono mantenuti in una memoria cache

- Dati: blocchi di 4 Kbyte
- Metodo di alimentazione LRU.

All of the second secon

Read Caching

I dischi hanno spesso una loro cache

Prefetching

Write Buffering

Read miss ratio

- Frazione di operazioni che richiedono l'accesso al disco
- Dato non in cache
- Indica l'efficienza
- Dimensione della cache: ottimale fino al 4% dello storage totale

Ottimizzazione delle prestazioni: Read Caching

$$f(x) = a(x-b)^c$$
 (a,b,c costanti, c = -1)

La relazione funzionale è simile a quella che si trova a livello logico per i buffer dei database

(ma in questo caso il valore di c è circa la metà, in altre parole si trova che il caching a livello fisico è più efficiente di quello ettenute a livello legica)

ottenuto a livello logico).

Prefetching

Write Buffering

Ottimizzazione delle prestazioni: Prefetching

Read Caching

Prefetching

Write Buffering

Precarica in memoria i dati che si presume saranno richiesti a breve

- Accuratezza previsione
- Costi di prefetching (risorse consumate)
- Tempestività dell'operazione (operazione completa prima che i dati servano)

Molti accessi al disco sono sequenziali

- Si può realizzare prefetching sequenziale in occasione di una cache miss
- Molteplici accessi vengono trasformati in uno singolo

Prefetching: Large fetch unit

Read Caching

Prefetching

Write Buffering

Carica anche i dati precedenti e successivi quelli effettivamente richiesti

Response Time penalty

- Occorre attendere che il trasferimento di tutti i dati sia completato
- Implementazioni "furbe"
 - Si precarica fino al blocco target
 - Si caricano i blocchi rimanenti se non arrivano altre richieste di I/O

Prefetching: Read ahead

Read Caching

Prefetching

Write Buffering

Carica i blocchi successivi a quelli richiesti

Si eseguono due operazioni:

- Caricamento blocchi target
- Caricamento blocchi successivi

Prefetching: Preemptible read ahead

Read Caching

Prefetching

Write Buffering

Usa risorse di sistema altrimenti non sfruttate (idle)

- Si divide una richiesta di prefetching in tante piccole sottorichieste
- Si interrompe il prefetching non appena giunge una nuova richiesta di I/O
- Garantisce buone prestazioni anche al crescere della domanda

Approccio ibrido:

- Si legge la traccia richiesta
- Si prosegue di 32 Kbyte
- Se non ci sono nuove richieste si precarica fino a 128 Kbyte

Prestazioni:

 Server: + 50% rispetto a sistema senza prefetching

Ottimizzazione delle prestazioni: Write Buffering

Read Caching

Prefetching

Write Buffering

Mantiene temporaneamente in memoria i blocchi da scrivere sullo storage

Nasconde e differisce il tempo di latenza Rischio di perdita dei dati

- Buffer su memoria non volatile (NVS)
- Buffer trasferito su disco periodicamente

Efficienza

- Write multiple in un'unica operazione
 Meno operazioni fisiche
 - Una write fisica combina operazioni multiple sulla stessa posizione

Prefetching

Write Buffering

Si effettua il *destage* dei blocchi che non necessiteranno di riscritture

- Si inizia quando il numero di blocchi modificati supera l'high mark
- Si termina quando il numero di blocchi modificati è minore del low mark

Il blocco da scaricare (destaging) è selezionato

- Con il metodo Least-recently-written (LRW)
- Quando supera un massimo di età
- Traccia con maggior numero di blocchi modificati

Equilibrio tra eliminazione delle write e scrittura multipla

- *High mark* = 0.8
- Low mark = 0.2

Prefetching

Se Low mark << High mark il destage avviene a lotti

Per minimizzare il tempo di attesa si possono ordinare le write fisiche, in base a:

- Tempo minimo di accesso
- Tempo minimo di posizionamento

Write Buffering

Prefetching

Write Buffering

