Math 234A: Homework 3

Lance Remigio

October 3, 2024

Problem 1 (Complex Logarithms). Compute the following:

- (i) Log(i) and log(i)
- (ii) Log(1+i) and log(1+i).
- (iii) Log(-1) and log(-1).

Note: for $z \in \mathbb{C}^{\bullet}$, $\log z$ is a set not a single number.

Solution. (i) Observe that

$$Log(i) = \ln|i| + i \operatorname{Arg}(i)$$
$$= \ln(1) + i \frac{\pi}{2}$$
$$= i \frac{\pi}{2}$$

and

$$\begin{split} \log(i) &= \left\{ \ln|i| + i(\operatorname{Arg}(i) + 2\pi i k) : k \in \mathbb{Z} \right\} \\ &= \left\{ \ln(1) + i\left(\frac{\pi}{2} + 2\pi i k\right) : k \in \mathbb{Z} \right\} \\ &= \left\{ i\left(\frac{\pi}{2} + 2\pi k\right) : k \in \mathbb{Z} \right\}. \end{split}$$

(ii) Notice that

$$Log(1+i) = \ln|1+i| + i \operatorname{Arg}(1+i)$$
$$= \ln(\sqrt{2}) + i\frac{\pi}{4}$$

and

$$\log(1+i) = \left\{ \ln(\sqrt{2}) + i\left(\frac{\pi}{4} + 2\pi k\right) : k \in \mathbb{Z} \right\}.$$

(iii) Observe that

$$Log(-1) = \ln |-1| + i \operatorname{Arg}(-1)$$
$$= \ln |1| + i\pi$$
$$= i\pi$$

and

$$\log(-1) = \{ i(\pi + 2\pi k) : k \in \mathbb{Z} \}.$$

Problem 2 (Complex Powers). Compute the following:

- (i) $(1+i)^{3+i}$
- (ii) $\left(\frac{1+i}{1-i}\right)^i$
- (iii) $(-e)^{i/2}$.

Solution. (i) Observe that

$$(1+i)^{3+i} = \exp((3+i)\log(1+i)).$$

Note that from part (ii) in problem 1, we have

$$\log(1+i) = \ln(\sqrt{2}) + i\left(\frac{\pi}{4} + 2\pi k\right); \text{ for } k \in \mathbb{Z}.$$

Then we see that

$$\exp((3+i)\log(1+i)) = \exp(3+i)\exp(\log(1+i))$$

$$= e^3 \cdot e^i \cdot e^{\ln\sqrt{2}} \cdot e^{i\left(\frac{\pi}{4} + 2\pi k\right)}$$

$$= e^3 \sqrt{2} \cdot e^{i\left(\frac{5\pi}{4} + 2\pi k\right)}; \text{ for } k \in \mathbb{Z}.$$

(ii) Notice that

$$\left(\frac{1+i}{1-i}\right)^i = i^i.$$

So, we must have

$$i^{i} = \exp(i\log(i))$$

$$= \exp\left(i\left(\frac{\pi}{2}i + 2\pi ki\right)\right)$$

$$= \exp\left(-\left(\frac{\pi}{2} + 2\pi k\right)\right); \text{ for } k \in \mathbb{Z}.$$

(iii) Observe that

$$(-e)^{i/2} = (-1)^{1/2} \exp(i) = i \exp(i).$$

Problem 3. (a) Let $A \subseteq \mathbb{C}$. Show that the following statements are equivalent.

- (i) A is closed.
- (ii) For any sequence (a_n) in A such that $a_n \to a \in \mathbb{C}$ implies that $a \in A$.
- (iii) A contains all its accumulation points; that is, if $a \in \mathbb{C}$ is an accumulation point of A, then $a \in A$.
- (b) Given a set $A \subseteq \mathbb{C}$, we define

$$\mathcal{F}_A = \{ F \subseteq \mathbb{C} : F \text{ is closed and } A \subseteq F \}.$$

Define $\overline{A} = \bigcup_{F \in \mathcal{F}_A} F$. Show that $\overline{A} = A \cup A'$ where

$$A' = \{ z \in \mathbb{C} : z \text{ is an accumulation point} \}.$$

Proof. (a) To show that all the statements are equivalent, we will show that $(i) \Longrightarrow (ii) \Longrightarrow (iii) \Longrightarrow (i)$.

 $(i)\Longrightarrow (ii)$ Suppose A is closed. Let (a_n) be a sequence in A where $a_n\to a\in\mathbb{C}$ (note that $a_n\neq a$. Our goal is to show that $a\in A$. Suppose for sake of contradiction that $a\notin A$. Then there exists some $\varepsilon>0$ such that $N_\varepsilon(a)\cap E=\emptyset$; that is, $N_\varepsilon(a)\subseteq A^c$. Hence, we have that $a\in A^c$. But $(a_n)\to a\in\mathbb{C}$ implies that there exists at least one $a_n\neq a$ such that $a_n\in A^c$. However, the sequence (a_n) must be entirely contained in A by assumption which is a contradiction. Thus, $a\in A$.

 $(ii) \Longrightarrow (iii)$ Let (a_n) be a sequence in A where $a_n \neq a \in \mathbb{C}$ where $a \in A$. Our goal is to show that A contains all of its limit points. Let a be a limit point of A. Choose $\varepsilon = 1/n$ and choose $a_n \neq a$ to be a sequence of points in A. Then by assumption, the sequence $(a_n) \to a \in \mathbb{C}$ implies that $a \in A$; that is, we have that

$$N_{1/n}(a) \cap A \neq \emptyset$$
.

Because $a \in A$, we can conclude that A must contain all of it's accumulation points.

 $(iii) \Longrightarrow (i)$ Suppose A contains all of its accumulation points. Our goal is to show that A is closed. It suffices to show that A^c is an open set; that is, we need to find an $\delta > 0$ such that $N_{\delta}(x) \subseteq A^c$ for all $x \in A^c$. To this end, let $x \in A^c$. Then $x \notin A$. This tells us that x cannot be a limit point of A. That is, there exists an $\delta > 0$ such that $N_{\delta}(x) \cap A = \emptyset$. This implies that $N_{\delta}(x) \subseteq A^c$ for some $\delta > 0$, and so A^c must be open. Hence, A must be closed.

- (b) Our goal is to show that $\overline{A} = A \cup A'$. First, we would like to show two lemmas:
 - (*) $A \cup A'$ is a closed set.
 - (**) If F is a closed set and $A \subseteq F$, then $A \cup A' \subseteq F$ as well.

To show that (*) holds, let x be a accumulation point of $A \cup A'$. Our goal is to show that this accumulation point is contained in $A \cup A'$. By definition, we see that for all $\varepsilon > 0$, we have

$$B(x,\varepsilon) \cap ((A \cup A') \setminus \{x\}) \neq \emptyset.$$

To this end, pick a point in this intersection, say, a such that $a \in B(x, \varepsilon)$ and $a \in (A \cup A') \setminus \{x\}$. That is, we have $a \in A$ or $a \in A'$. If $a \in A$, then x is a accumulation point of A, and so $x \in A \cup A'$. If $a \in A'$, then a is a accumulation point of A'. That is, for all $\delta > 0$, we have

$$B(a, \delta) \cap A' \setminus \{a\} \neq \emptyset$$
.

Pick a point in this intersection, say, $p \neq a$ such that $p \in A'$. But this implies that x must be a limit point of A, and so $x \in A'$ and thus $A \cup A'$ must be a closed set.

To show that (**) holds, suppose F is a closed set and that $A \subseteq F$. Our goal is to show that $A \cup A' \subseteq F$. Let $x \in A \cup A'$. Then either $x \in A$ or $x \in A'$. If $x \in A$, then $x \in F$ since $A \subseteq F$. On the other hand, if $x \in A'$, then x is a limit point of A. That is, for all $\delta > 0$, we have

$$B(x,\delta) \cap (A \setminus \{x\}) \neq \emptyset.$$

Since $A \subseteq F$, we can see that

$$B(x,\delta) \cap (F \setminus \{x\}) \neq \emptyset$$

which implies that x is a limit point of F. But F is closed, so x must be contained in F. Thus, we have $A \cup A' \subseteq F$ in both cases.

In what follows, we will show that $\overline{A} = A \cup A'$. To do this, we need to show two inclusions:

- $(1) \ \overline{A} \subseteq A \cup A'$
- (2) $A \cup A' \subseteq \overline{A}$.

Starting with (1), we see that $A \cup A' \subseteq F$ by (*). But this implies that $A \cup A'$ is the smallest closed set containing F, we must have that

$$A \cup A' \subseteq \bigcap_{F \in \mathcal{F}_A} F = \overline{A}$$

which satisfies (1).

With (2), we want to show that $\overline{A} \subseteq A \cup A'$. Note that $A \cup A'$ is a closed set and $\overline{A} \subseteq A \cup A'$. Then immediately we see that $\overline{A} \subseteq A \cup A'$, satisfying (2). Thus, we conclude that $\overline{A} = A \cup A'$.

Problem 4 (Discontinuity of "Arg" Function). (i) Consider the sequence (z_n) with $z_n = -1 + \frac{i}{n}$. Show that $z_n \to -1$.

- (ii) Consider the sequence (w_n) with $w_n = -1 \frac{i}{n}$. Show that $w_n \to -1$ as well.
- (iii) Show that $Arg(z_n) \to \pi$ and $Arg(w_n) \to -\pi$.
- (iv) What did you observe from part (iii)?

Proof. (i) Consider the real and imaginary part of z_n

$$\Re(z_n) = -1$$
 and $\Im(z_n) = \frac{1}{n}$.

Clearly, $\Re(z_n) \to -1$ and $\Im(z_n) \to 0$ as $n \to \infty$. Thus, $(z_n) \to -1 + i0 = -1$.

(ii) Similarly, notice that

$$\Re(w_n) \to -1$$
 and $\Im(w_n) = \frac{-1}{n} \to 0$

as $n \to \infty$. So, $(w_n) \to -1$ as well.

(iii) From parts (i), we see that

$$Arg(z_n) \to Arg(-1) = \pi.$$

However, from part (ii), we see that

$$Arg(w_n) = \tan^{-1}\left(\frac{-1/n}{-1}\right) = -\tan^{-1}\left(\frac{1/n}{-1}\right)$$

implies

$$\lim_{n \to \infty} \operatorname{Arg}(w_n) = -\lim_{n \to \infty} \tan^{-1} \left(\frac{1/n}{-1} \right) = -\tan \left(\frac{0}{-1} \right) = -\pi.$$

Hence, $\operatorname{Arg}(z_n) \to \pi$ but $\operatorname{Arg}(w_n) = -\pi$.

(iv) I observed that by the sequential criterion of continuity, the argument function $\operatorname{Arg}(z)$ is not a continuous function.

Problem 5. (i) Let $a \in \mathbb{C}$ and $\varepsilon > 0$. Show that

$$\overline{B(a,\varepsilon)} = \overline{B}(a,\varepsilon).$$

- (ii) Let $A = \{x + iy : x, y \in \mathbb{Q}\}$. Show that $\overline{A} = \mathbb{C}$. (Hint: 3(b) can be useful here)
- (iii) Let $A, B \subseteq \mathbb{C}$. Show that $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$.

Proof. (i) We will show that $\overline{B(a,\varepsilon)} = \overline{B}(a,\varepsilon)$. It suffices to show two inclusions:

(1)
$$\overline{B(a,\varepsilon)} \subseteq \overline{B}(a,\varepsilon)$$

(2)
$$\overline{B}(a,\varepsilon) \subseteq \overline{B(a,\varepsilon)}$$
.

Starting with (1), let $x \in \overline{B(a,\varepsilon)}$. Then either $x \in B(a,\varepsilon)$ and $x \in (B(a,\varepsilon))'$. If $x \in B(a,\varepsilon)$ and $B(a,\varepsilon) \subseteq \overline{B}(a,\varepsilon)$, we see that $x \in \overline{B}(a,\varepsilon)$. Thus, $B(a,\varepsilon) \subseteq \overline{B}(a,\varepsilon)$. Suppose $x \in (B(a,\varepsilon))'$. Suppose for sake of contradiction that $x \notin \overline{B}(a,\varepsilon)$. Then $d(a,x) > \varepsilon$ for some $\varepsilon > 0$. But this implies that $x \in (B(a,\varepsilon))^c$; that is, $x \notin B(a,\varepsilon)$ and so $x \notin \overline{B}(a,\varepsilon)$ which is a contradiction. Hence, $B(a,\varepsilon) \subseteq \overline{B}(a,\varepsilon)$.

With (2), let $x \in \overline{B}(a, \varepsilon)$. By definition of $\overline{B}(a, \varepsilon)$, we have $d(x, a) \leq \varepsilon$. Then either $d(x, a) < \varepsilon$ or $d(x, a) = \varepsilon$. If $d(x, a) < \varepsilon$, then x is contained in $B(a, \varepsilon)$, and so $x \in \overline{B(a, \varepsilon)}$. Now, suppose $d(x, a) = \varepsilon$. Observe that the closure $\overline{B(a, \varepsilon)}$ contains its boundary points. Thus, $x \in \overline{B(a, \varepsilon)}$. Thus, $\overline{B}(a, \varepsilon) \subseteq \overline{B(a, \varepsilon)}$.

We conclude that (1) and (2) imply $\overline{B(a,\varepsilon)} = \overline{B}(a,\varepsilon)$.

- (ii) Let $A = \{x + iy : x, y \in \mathbb{Q}\}$. Our goal is to show that $\overline{A} = \mathbb{C}$. Note that, by problem 3(b), we see that $\overline{A} = A \cup A'$. We need to show the following two inclusions:
 - (1) $A \cup A' \subseteq \mathbb{C}$
 - (2) $\mathbb{C} \subseteq A \cup A'$.

Starting with (1), suppose $z \in A \cup A'$. Then either $z \in A$ or $z \in A'$. If $z \in A$, then z = x + iy with $x, y \in \mathbb{Q}$. Since $\mathbb{Q} \subseteq \mathbb{R}$, we see that $x, y \in \mathbb{R}$ and so $z \in \mathbb{C}$. If $z \in A'$, then z is a limit point of A. That is, for all $\varepsilon > 0$

$$B(z,\varepsilon)\cap (A\setminus\{z\})\neq\emptyset.$$

Since \mathbb{Q} is dense in \mathbb{R} , we know that every limit point of \mathbb{Q} is contained in \mathbb{R} . Hence, z must be contained in \mathbb{C} . So, $A \cup A' \subseteq \mathbb{C}$.

Let $z \in \mathbb{C}$. Then $z = \alpha + i\beta$ with $\alpha, \beta \in \mathbb{R}$. Our goal is to show that $z \in A \cup A'$; that is, either z is a limit point of A or is an element of A. To this end, suppose that z is not an element of A. Note that $\alpha, \beta \in \mathbb{R}$ which are limit points of \mathbb{Q} . Hence, z must be a limit point of A. Thus, $z \in A'$ and so, $z \in A \cup A'$.

With (1) and (2), we can conclude that $\overline{A} = \mathbb{C}$.

- (iii) Our goal is to show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$; that is, we need to show that
 - $(1) \ \overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$
 - (2) $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$.

Starting with (1), suppose $x \in \overline{A \cup B}$. Then either $x \in A \cup B$ or $x \in (A \cup B)'$. If $x \in A \cup B$, then either $x \in A$ or $x \in B$. If $x \in A$, then $x \in \overline{A}$ since $A \subseteq \overline{A}$ and so $x \in \overline{A} \cup \overline{B}$. Likewise, if $x \in B$, then $x \in \overline{B}$ since $B \subseteq \overline{B}$. Thus, $x \in \overline{A} \cup \overline{B}$. If $x \in (A \cup B)'$, then x is a limit point of $A \cup B$; that is, for all $\varepsilon > 0$

$$B(x,\varepsilon) \cap ((A \cup B) \setminus \{x\}) \neq \emptyset.$$

Hence, there exists $q \in B(x, \varepsilon) \cap ((A \cup B) \setminus \{x\})$. Thus, we have $q \in A \cup B$; that is, either $q \in A$ or $q \in B$. If $q \in A$, then x is a limit point of A. Thus, $x \in A'$ and so $x \in \overline{A}$. Hence, $x \in \overline{A} \cup \overline{B}$. If $q \in B$, then x is a limit point of B. Hence, $x \in B'$ and so $x \in \overline{B}$. Thus, $x \in \overline{A} \cup \overline{B}$. Thus, we see that $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$ which shows (1).

Now, we will show (2). Let $x \in \overline{A} \cup \overline{B}$. Then either $x \in \overline{A}$ or $x \in \overline{B}$. If $x \in \overline{A}$, then $x \in A$ or $x \in A'$. If $x \in A$, then $x \in A \cup B$. Thus, $x \in \overline{A \cup B}$. If $x \in A'$, then x is a limit point of A; that is, for all $\delta > 0$

$$B(x,\delta) \cap (A \setminus \{x\}) \neq \emptyset.$$

Since $A \subseteq A \cup B$, we know that

$$B(x, \delta) \cap ((A \cup B) \setminus \{x\}) \neq \emptyset.$$

Hence, x is a limit point of $A \cup B$ and so $x \in (A \cup B)'$; that is, $x \in \overline{A \cup B}$. On the other hand, if $x \in \overline{B}$, then the proof is analogous to the case that $x \in A'$. Thus, $\overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$.

Together with (1) and (2), we have that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Problem 6. (i) Show that $\mathbb{H} := \{z = x + iy : y > 0\}$ is open.

- (ii) Show that $Q_1 := \{z = x + iy : x > 0, y > 0\}$ is open.
- (iii) Show that $S = \{x + iy : -\pi < y < \pi\}$

Proof. (i) Our goal is to show that \mathbb{H} is an open set. It suffices to show that \mathbb{H}^c is a closed set. Let (z_n) be a sequence in \mathbb{H}^c such that $(z_n) \to z \in \mathbb{C}$. Our goal is to show that $z \in \mathbb{H}^c$. Note that for $z \in \mathbb{H}^c$, z must have the property that $\Im(z) \leq 0$. Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that for any $n \geq N$, we have

$$|\Im(z_n) - \Im(z)| < \varepsilon \Longrightarrow |\Im(z)| < |\Im(z_n)| + \varepsilon \le \varepsilon. \tag{|\Im(z_n)| \le 0}$$

Since $\varepsilon > 0$ is arbitrary, we have that $\Im(z) \leq 0$. Hence, $z \in \mathbb{H}^c$.

(ii) Our goal is to show that Q_1 is open by showing that Q_1^c is closed; that is, we need to show that for any sequence $(z_n) \subseteq Q_1^c$, $(z_n) \to z \in \mathbb{C}$ with $z \in Q_1^c$. Note that $z \in Q_1^c$ if $\Im(z) \le 0$ and $\Re(z) \le 0$. To this end, let (z_n) be a sequence in Q_1^c that converges to $z \in \mathbb{C}$. Let $\varepsilon > 0$. Our goal is to show that $z \in Q_1^c$. Since $(z_n) \to z$, we know that the real and imaginary part must converge. Thus, choose $N \in \mathbb{N}$ such that for any $n \ge N$, we have

$$|\Im(z_n) - \Im(z)| < \varepsilon \tag{1}$$

and

$$|\Re(z_n) - \Re(z)| < \varepsilon. \tag{2}$$

Since $\Re(z_n) \leq 0$ and $\Im(z_n) \leq 0$, (1) and (2) imply that

$$|\Im(z)| < |\Im(z_n)| + \varepsilon \le \varepsilon$$

and

$$|\Re(z)| < |\Re(z_n)| + \varepsilon \le \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we conclude that $|\Re(z)| \le 0$ and $|\Im(z)| \le 0$. Thus, $z \in Q_1^c$

(iii) Our goal is to show that S is open; that is, we need to find $\delta > 0$ such that $B(z, \delta) \subseteq S$ for any $z \in S$. To this end , let $z \in S$. Choose $\delta = \frac{1}{2} \min\{\Im(z) - (-\pi), \pi - \Im(z)\}$. Let $w \in B(z, \delta)$. By the way we chose δ , we have

$$\begin{split} |z-w| < \delta &\iff |\Im(z-w)| < \delta \\ &\iff |\Im(w)| < |\Im(z)| + \delta \\ &\iff |\Im(w)| < \pi. \end{split}$$

Hence, we see that $w \in S$ and so, S is open.

Problem 7. (i) Consider the sequence (z_n) defined by $z_n = -1 + \frac{i}{n}$. Compute $\lim_{n \to \infty} \text{Log}(z_n)$.

- (ii) Consider the sequence (w_n) defined by $w_n = -1 \frac{i}{n}$. Compute $\lim_{n \to \infty} \text{Log}(w_n)$.
- (iii) What did you observe from (i) and (ii)?

Solution. (i) Note that $|z_n| = \sqrt{1 + \frac{1}{n^2}} \to 1$ as $n \to \infty$. Then observe that

$$\lim_{n \to \infty} \text{Log}(z_n) = \lim_{n \to \infty} [\ln |z_n| + i \operatorname{Arg}(z_n)]$$

$$= \lim_{n \to \infty} \ln |z_n| + i \lim_{n \to \infty} \operatorname{Arg}(z_n)$$

$$= \ln(1) + i\pi$$

$$= \pi i.$$
(4-(iii))

(ii) Note that $|w_n| = \sqrt{1 + \frac{1}{n^2}} \to 1$ as $n \to \infty$. Then we see that

$$\lim_{n \to \infty} \text{Log}(w_n) = \lim_{n \to \infty} [\ln |w_n| + i \operatorname{Arg}(w_n)]$$

$$= \lim_{n \to \infty} \ln |w_n| + i \lim_{n \to \infty} \operatorname{Arg}(w_n)$$

$$= \ln(1) - \pi$$

$$= -\pi i$$
(4-(iii))

(iii) I observed that Log(z) is discontinuous by the Sequential Criterion of Continuity.