Delaney Aydel

Background

Example

The End

Classifying Actions of $T_n \otimes T_n$ on Path Algebras of Quivers

Delaney Aydel

Miami University

28 June, 2018

Delaney Aydel

${\sf Background}$

Results

Exampl

The Er

Definition

A (finite) quiver $Q = Q_0 \cup Q_1$ is a directed graph with finite vertex set Q_0 and finite arrow set Q_1 . Q is said to be nontrivial if $Q_1 \neq \emptyset$.

Delaney Aydel

Background

Results

Exampl

The Er

Definition

A (finite) quiver $Q = Q_0 \cup Q_1$ is a directed graph with finite vertex set Q_0 and finite arrow set Q_1 . Q is said to be nontrivial if $Q_1 \neq \emptyset$.

Definition

A quiver $Q'=Q_0'\cup Q_1'$ is a subquiver of a quiver $Q=Q_0\cup Q_1$ if $Q_0'=Q_0$ and $Q_1'\subseteq Q_1$. We call Q' a proper subquiver of Q if $Q_1'\subsetneq Q_1$.

Delaney Aydel

Background

Results

Exampl

The End

Definition

Let Q be a quiver. For an arrow $a \in Q_1$, define the source of a, denoted s(a), to be the vertex from which a starts. Define the target of a, denoted t(a), to be the vertex to which a points. (Note that for a trivial path e_i , we have that $s(e_i) = t(e_i) = i$.)

Delaney Aydel

Background

ь ...

Example

The End

Example Quiver

$$Q = \underbrace{0}_{1} \underbrace{0}_{2} \underbrace{0}_{3}$$

Delaney Aydel

Background

Danulan

Example

The End

Example Quiver

$$Q = \underbrace{\begin{array}{c} e_1 & a_1^2 & e_2 & a_2^3 \\ 1 & 2 & a_2^2 & 3 \end{array}}_{2} \underbrace{\begin{array}{c} a_2^3 & e_2 \\ a_2^3 & 3 \end{array}}_{3}$$

Delaney Aydel

Background

D. . . . le .

Example

The End

More Examples

$$Q = \bigoplus_{1}^{\bullet} \bigoplus_{2}^{\bullet} \bigoplus_{3}^{\bullet}$$

Delaney Aydel

Background

ь .

Example

The End

More Examples

$$Q = \underbrace{\begin{matrix} \bullet \\ \bullet \\ 1 \end{matrix}} \qquad \underbrace{\begin{matrix} \bullet \\ 2 \end{matrix}} \qquad \underbrace{\begin{matrix} \bullet \\ 3 \end{matrix}}$$

Delaney Aydel

Background

_ .

Exampl

The Er

Definition

We define a path algebra $\mathbb{R}Q$ as follows. For a field \mathbb{R} , $\mathbb{R}Q$ has a \mathbb{R} -basis given by all nontrivial paths in Q together with the trivial loops. Multiplication is defined by

$$pq = \begin{cases} p \cdot q & \text{if } t(p) = s(q) \\ 0 & \text{otherwise} \end{cases}$$

for paths p and q. Furthermore, if exactly one of p or q is a trivial loop and pq $\neq 0$, then the trivial loop acts as a one-sided identity. The multiplicative identity is $1_{\Bbbk Q} = \sum_{i \in Q_0} e_i$.

Definition

A group G is said to act on Q if G acts on the sets Q_0 and Q_1 such that each element of G acts by quiver automorphism.

Delaney Aydel

Background

Reculto

Example

The End!

Hopf Algebra

Delaney Aydel

Background

Definition (Taft 1971)

The Taft algebra T_n is an n^2 - dimensional Hopf algebra generated by a nonzero element g with $\Delta(g) = g \otimes g$ (that is, g is grouplike), and an element x such that $\Delta(x) = g \otimes x + x \otimes 1$ (i.e., x is (g, 1)-skew-primitive), subject

to relations:

$$g^n = 1,$$
 $x^n = 0,$ $xg = \lambda gx$

for a primitive n^{th} root of unity λ .

Delaney Aydel

Background

Results

Example

THE LI

Definition

Given a Hopf algebra H and an algebra A, we say that H acts on A (from the left) if, for all $h \in H$ and $p, q \in A$,

- 1 A is a left H-module;
- 2 $h \cdot (pq) = \sum (h_1 \cdot p)(h_2 \cdot q)$; and

Background

Б. Б.

The E

Proposition (Kinser, Walton 2016)

Let $Q_0 = \{0, 1, ..., m-1\}$ be the vertex set of a quiver, where m divides n, and \mathbb{Z}_n acts on $\mathbb{k}Q_0$ by $g \cdot e_i = e_{i+1}$. Here, the subscripts are always interpreted modulo m.

- 1 If m < n, then x acts on $\mathbb{R}Q_0$ by 0.
- 2 If m = n, then the action of x on kQ_0 is exactly of the form

$$x \cdot e_i = \gamma \zeta^i(e_i - \zeta e_{i+1})$$
 for all i ,

where $\gamma \in \mathbb{k}$ can be any scalar.

In particular, we can extend the action of \mathbb{Z}_n on $\mathbb{k}Q_0$ to an inner faithful action of T_n on $\mathbb{k}Q_0$ if and only if m = n.

Delaney Aydel

Background

Reculto

Example

The End

Proposition (Kinser, Walton 2016)

Suppose we have an action of T_n on kQ, and let $a \in Q_1$ with s(a) = i and t(a) = j. Then there exist scalars $\alpha, \beta, \lambda \in k$ such that

$$\mathbf{x} \cdot \mathbf{a} = \alpha \mathbf{a} + \beta (\mathbf{g} \cdot \mathbf{a}) + \lambda \sigma(\mathbf{a}).$$

Moreover, the scalars can be determined in special cases depending on the relative configuration of a and $g \cdot a$.

Delaney Aydel

Background

B 1

Example

i ne Er

Definition

A quiver Q is \mathbb{Z}_n -minimal if it is a \mathbb{Z}_n -stable subquiver of K_m or $K_{m,m'}$ where m,m' divide n. A \mathbb{Z}_n -component is a \mathbb{Z}_n -minimal subquiver of Q which is maximal under inclusion.

Theorem (Kinser, Walton 2016)

Let Q be a quiver with a \mathbb{Z}_n -action. The T_n -actions on the path algebra of Q extending the given \mathbb{Z}_n -action are in bijection with the compatible collections of T_n -actions on path algebras of the \mathbb{Z}_n -components of Q.

Delaney Aydel

Background

Results

Example

The En

Definition

Let G be a group that acts on a nontrivial quiver Q and let $g \in G$. The quiver Q is said to be g-minimal if it consists of exactly one arrow orbit under the action of g.

Delaney Aydel

Background

Results Exampl

The En

Definition

Let G be a group that acts on a nontrivial quiver Q and let $g \in G$. The quiver Q is said to be g-minimal if it consists of exactly one arrow orbit under the action of g.

Definition

Let G be a group that acts on a nontrivial quiver Q and let $g \in G$. A g-component of Q is a g-minimal subquiver.

Backgroun

Results

Example

- **1** Elements g_1, g_2 generate $\mathbb{Z}_2 \times \mathbb{Z}_2$
- 2 Elements x_1, x_2 extend this to Taft action
- **3** Subject to relations

$$0 = g_1g_2 - g_2g_1 = x_1x_2 - x_2x_1$$

= $g_1x_2 - x_2g_1 = g_2x_1 - x_1g_2$.

Delaney Aydel

Background

Results

The End

Theorem

There are three distinct nontrivial $\mathbb{Z}_2 \times \mathbb{Z}_2$ actions on a four-vertex quiver, and twenty-nine possibilities for a nontrivial quiver.

Delaney Aydel

Backgroun

Results

Example

The End

Proof Sketch

Delaney Aydel

Backgroun Results

E.....

Delaney Aydel

Backgroun

Results

Delaney Aydel

Backgroun Results

Example

Delaney Aydel

Backgroun Results

Example

Final Project

Delaney Aydel

Types of Actions

Backgroun Results

Delaney Aydel

Background

Results

Example

The En

Arrow Orbits of Type 1

Delaney Aydel

Backgroun Results

Example

The End

Arrow Orbits of Types 2 and 3

1.....2

1_•-----2

Type 2

Type 3

Delaney Aydel

Backgroun

Results

Example

The End

Example Quiver

Delaney Aydel

Background

Example

The End!

If the action of g_i on a particular vertex is trivial, then the corresponding x_i takes that vertex to 0. For example,

$$x_1(e_3)=\gamma_3^1e_3,$$

and since

$$0 = (x_1g_1 + g_1x_1)(e_3) = x_1(e_3) + g_1(\gamma_3^1e_3) = 2\gamma_3^1e_3,$$

this forces $\gamma_3^1 = 0$.

Delaney Aydel

Background

Example

$g_1(e_1) = e_2$	$x_1(e_1) = \gamma_1^1 e_1 + \gamma_1^2 e_2$	$g_2(e_1) = e_1$	$x_2(e_1)=0$
$g_1(e_2) = e_1$	$x_1(e_2) = \gamma_2^1 e_1 + \gamma_2^2 e_2$	$g_2(e_2) = e_2$	$x_2(e_2) = 0$
$g_1(e_3)=e_3$	$x_1(e_3)=0$	$g_2(e_3)=e_4$	$x_2(e_3) = \delta_3^1 e_1 + \delta_3^2 e_3$
$g_1(e_4)=e_4$	$x_1(e_4)=0$	$g_2(e_4)=e_3$	$x_2(e_4) = \delta_4^1 e_2 + \delta_4^2 e_4$

Delaney Aydel

Backgrou

Example

The Er

Because each x_i is $(g_i,1)$ -skew, we can simplify some of the results on the arrows. For example, by writing an arrow as an arrow composed with a vertex, then substituting in our previous results, we can get things like

$$\begin{split} x_2(a_1^2) &= \sigma_5^1 a_1^2 + \sigma_5^2 a_2^1 \\ &= x_2(e_1 a_1^2) = g_2(e_1) x_2(a_1^2) + x_2(e_1) a_1^2 \\ &= x_2(a_1^2 e_2) = g_2(a_1^2) x_2(e_2) + x_2(a_1^2) e_2 \\ &= \sigma_5^1 a_1^2. \end{split}$$

Delaney Aydel

Background

Example

$g_1(a_1^2) = \mu_1^2 a_2^1$	$x_1(a_1^2) = \beta_1^1 a_1^2 + \beta_1^2 a_2^1$	$g_2(a_1^2) = \eta_1^2 a_1^2$	$x_2(a_1^2) = \sigma_1^1 a_1^2$
$g_1(a_2^1) = \mu_2^1 a_1^2$	$x_1(a_2^1) = \beta_2^1 a_1^2 + \beta_2^2 a_2^1$	$g_2(a_2^1) = \eta_2^1 a_2^1$	$x_2(a_2^1) = \sigma_2^1 a_2^1$
$g_1(a_1^3) = \mu_1^3 a_2^3$	$x_1(a_1^3) = \beta_3^1 a_1^3 + \beta_3^2 a_2^3$	$g_2(a_1^3) = \eta_1^3 a_1^4$	$x_2(a_1^3) = \sigma_3^1 a_1^3 + \sigma_3^2 a_1^4$
$g_1(a_1^4) = \mu_1^4 a_2^4$	$x_1(a_1^4) = \beta_4^1 a_1^4 + \beta_4^2 a_2^4$	$g_2(a_1^4) = \eta_1^4 a_1^3$	$x_2(a_1^4) = \sigma_4^1 a_1^3 + \sigma_4^2 a_1^4$
$g_1(a_2^3) = \mu_2^3 a_1^4$	$x_1(a_2^3) = \beta_5^1 a_1^3 + \beta_5^2 a_2^3$	$g_2(a_2^3) = \eta_2^3 a_2^4$	$x_2(a_2^3) = \sigma_5^1 a_2^3 + \sigma_5^2 a_2^4$
$g_1(a_2^4) = \mu_2^4 a_1^4$	$x_1(a_2^4) = \beta_6^1 a_1^4 + \beta_6^2 a_2^4$	$g_2(a_2^4) = \eta_2^4 a_2^3$	$x_2(a_2^4) = \sigma_6^1 a_2^3 + \sigma_6^2 a_2^4$

Delaney Aydel

Background

Example

$$\begin{split} (x_1g_1+g_1x_1)(e_1) &= (\gamma_2^1+\gamma_1^2)e_1 + (\gamma_1^1+\gamma_2^2)e_2 \\ (x_1g_1+g_1x_1)(e_2) &= (\gamma_1^1+\gamma_2^2)e_1 + (\gamma_1^2+\gamma_2^1)e_2 \\ (x_1g_1+g_1x_1)(e_3) &= 2\gamma_3^1e_3 \\ (x_1g_1+g_1x_1)(e_4) &= 2\gamma_4^1e_4 \\ (x_2g_2+g_2x_2)(e_1) &= 2\delta_1^1e_1 \\ (x_2g_2+g_2x_2)(e_2) &= 2\delta_2^1e_2 \\ (x_2g_2+g_2x_2)(e_3) &= (\delta_4^1+\delta_3^2)e_3 + (\delta_4^2+\delta_3^1)e_4 \\ (x_2g_2+g_2x_2)(e_4) &= (\delta_3^1+\delta_4^2)e_3 + (\delta_3^2+\delta_4^1)e_4 \end{split}$$

Delaney Aydel

Background

Example

$$0 = (x_2g_2 + g_2x_2)(a_1^3) = x_2(g_2(a_1^3)) + g_2(x_2(a_1^3))$$

$$= x_2(\eta_1^3 a_1^4) + g_2(\sigma_1^1 a_1^3 + \sigma_1^2 a_1^4)$$

$$= (\eta_1^3 \sigma_2^1 + \eta_1^4 \sigma_1^2) a_1^3 + (\sigma_1^1 + \sigma_2^2) \eta_1^3 a_1^4$$

Delaney Aydel

Backgroun

Example

Delaney Aydel

Background

Example

$0 = \gamma_3^1 = \gamma_4^1$	$\eta_2^4 \delta_4^1 = \sigma_4^3$	$0 = \delta_1^1 = \delta_2^1$	$\beta_3^3 = \beta_4^4 = \gamma_2^2$
$\beta_1^1 = \beta_2^2 = \gamma_1^1$	$0=\beta_1^4=\beta_4^1$	$0 = \beta_2^3 = \beta_3^2$	$0 = \sigma_1^3 = \sigma_2^4$
$\sigma_1^2 = \eta_1^3 \delta_3^2$	$\sigma_2^1 = \eta_1^4 \delta_4^1$	$0 = \sigma_3^1 = \sigma_4^2$	$\sigma_3^4 = \eta_2^3 \delta_3^2$
$\gamma_1^1 = -\gamma_2^2$	$\mu_1^3 \beta_3^1 = -\mu_2^3 \beta_1^3$	$\mu_1^4 \beta_4^2 = -\mu_2^4 \beta_2^4$	$\mu_2^3 \beta_1^3 = -\mu_1^3 \beta_3^1$
$\mu_2^4 \beta_2^4 = -\mu_1^4 \beta_4^2$	$\sigma_2^2 = -\sigma_1^1$	$\eta_1^3 \sigma_2^1 = -\eta_1^4 \sigma_1^2$	$\eta_1^4 \sigma_1^2 = -\eta_1^3 \sigma_2^1$
$\sigma_3^3 = -\sigma_4^4$	$\eta_2^3 \sigma_4^3 = -\eta_2^4 \sigma_3^4$	$\eta_2^4 \sigma_3^4 = -\eta_2^3 \sigma_4^3$	$0 = \eta_1^2 \sigma_5^1 = \eta_2^1 \sigma_6^2$
$\mu_1^2 \mu_2^1 \gamma_2^2 = -\mu_1^2 \gamma_1^1$	$\mu_1^2 \gamma_2^2 = -\mu_2^1 \beta_5^2$	$\mu_2^1 \beta_5^1 = -\mu_2^1 \beta_6^2$	$\mu_2^1 \mu_1^2 \gamma_2^1 = -\mu_2^1 \mu_1^2 \gamma_2^2$

Background

Example

- **1** Classify $T_n \otimes T_n$ actions for arbitrary n
 - Increase number of vertices
 - 2 Increase n
- 2 Classify actions of arbitrary bosonizations
- **3** Determine relationship to \mathbb{Z}_n actions
- 4 Investigate inner faithfulness

Delaney Aydel

Backgroun

Басквтоип

- 1

The End!

Thank You for Hearing Meowt!

