МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе№3 по дисциплине «Организация ЭВМ и систем» Тема: Представление и обработка целых чисел. Организация ветвящихся процессов.

Студент гр. 1303	Бутыло Е.А.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2022

Цель работы.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров вычисляет значения функций.

Задание.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет:

- а) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i);
- b) значения результирующей функции res = f3(i1,i2,k), где вид функций f1 и f2 определяется из табл. 2, а функции f3 из табл.3 по цифрам шифра индивидуального задания (n1,n2,n3), приведенным в табл.4.

Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

3 | 1.4.3

$$f1 = < \frac{15-2*i}{3*i+4}$$
, $\pi pu \ a > b$
 $f4 = < \frac{-(6*i-4)}{3*(i+2)}$, $\pi pu \ a < b$
 $f3 = < \frac{|i1+i2|}{\min(i1,i2)}$, $\pi pu \ k = 0$

Выполнение работы

- 1. Из таблицы получен вариант набора функций, которые необходимо реализовать, приведенного в каталоге Задания.
- 2. Программа протранслирована с различными значениями переменных, результат выполнения набора функций зафиксирован в таблице;

Для выполнения данного задания были использованы такие команды общего назначения как:

Команды передачи данных.

1) Моу – присваивание

Двоичные арифметические команды.

- 1) Add сложение
- 2) Sub вычитание
- 3) Іпс инкремент
- 4) Стр сравнение
- 5) Neg смена знака

Команды побитового сдвига.

1) Sal - арифметический сдвиг влево

Команды передачи управления.

- 1) Јтр безусловный переход
- 2) Int вызов программного прерывания
- 3) Jge(jump greater equal) выполняет короткий переход, если первый операнд больше второго операнда или равен ему при выполнении операции сравнения с помощью команды стр
- 4) Jg(jump greater) выполняет короткий переход, если первый операнд больше второго операнда при выполнении операции сравнения с помощью команды стр.
- 5) Jne(jump negative equal) выполняет короткий переход, если первый операнд не равен второму операнду при выполнении операции сравнения с помощью команды стр.

Также были использованы метки (для примера B2), для перехода между некоторыми командами. Метка - это символьное имя, обозначающее ячейку памяти, которая содержит некоторую команду.

Трансляция программы

```
DOSBox 0.74-3, Cpu speed: 3000 cycles, Frameskip 0, Program: DOSBOX
                                                           <del>-</del>
                                                                                X
Microsoft (R) Overlay Linker Version 3.64
Copyright (C) Microsoft Corp 1983-1988. All rights reserved.
Run File [SOURCE.EXE]:
List File [NUL.MAP]:
Libraries [.LIB]:
D:\>afdpro source
AFD-Pro is done
D:\>masm source.asm
Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.
Object filename [source.OBJ]:
Source listing [NUL.LST]: source.lst
Cross-reference [NUL.CRF]:
 48044 + 459216 Bytes symbol space free
      0 Warning Errors
      O Severe Errors
D: \>
```

4. Программа выполнена в пошаговом режиме под управлением отладчика с фиксацией значений используемых переменных.

source.exe

№ теста	Тестируемый	Функции для	Данные					
	случай	данного случая	входные	выходные				
1	a > b	f1 = 15 - 2*i	a = 7, b = 3	f1 = 11 = 000B				
	k = 0	f2 = -(6*i - 4)	$\mathbf{k} = 0$	f2 = -8 = FFF8				
		f3 = abs(f1 + f2)	i = 2	f3 = 3 = 0003				
2	a > b	f1 = 15 - 2*i	a = 7, b = 3	f1 = 9 = 0009				
	k!=0	f2 = -(6*i - 4)	k = 1	f2 = -14 = FFF2				
		$f3 = \min(f1, f2)$	i = 3	f3 = -14 = FFF2				
3	a <= b	f1 = 3*i + 4	a = 5, b = 5	f1 = 10 = 000A				
	k = 0	f2 = 3*(i+2)	k = 0	f2 = 12 = 000C				
		f3 = abs(f1 + f2)	i = 2	f3 = 22 = 0016				
4	a <= b	f1 = 3*i + 4	a = 3, b = 5	f1 = 13 = 000D				
	k!=0	f2 = 3*(i+2)	k = 1	f2 = 15 = 000F				
		$f3 = \min(f1, f2)$	i = 3	f3 = 13 = 000D				

Выводы

В ходе выполнения лабораторной работы были получены навыки разработки программы с заданными целочисленными значениями на языке программирования Ассемблер.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: source.asm

ASSUME CS:CODE, SS:AStack, DS:DATA

AStack SEGMENT STACK

DW 32 DUP(0)

AStack ENDS

DATA SEGMENT

i DW ?

a DW 3

b DW ?

k DW ?

i1 DW ? ;f1

i2 DW ? ;f4

res DW ? ;f3

DATA ENDS

CODE SEGMENT

Main PROC FAR

mov AX, DATA

mov DS, AX

;Вычисление f1 и f2

том ах,а ;заносим значение а в ах

mov dx,b ;заносим значение b в dx

mov cx,i ;заносим i в cx

cmp ax, dx ; Сравнение значений а и b

jq A1 ;если a>b то на A1

mov ax,i ;если a<=b

sal cx,1; ymhoжehue i ha 2 cx = i*2

```
mov ax, 4 ; ax = 4
     add cx,ax ;cx = 3*i + 4
     mov i1, сх ; сохранение результата в f1
     mov cx,i
                ;восстанавливаем значени і в сх
                     ; cx = i + 1
     inc cx
                     ; cx = i + 2
     inc cx
     mov ax, cx ; ax = i + 2
     sal cx, 1; cx = 2*(i + 2)
     add cx,ax ;cx = 2*(i + 2) + (i + 2) = 3*(i + 2)
     mov i2,cx ;сохраняем рез-т в f2
     jmp A2
                      ;Пропускаем следующие шаги
A1:
                      ;если a>b
     то сх, і ; восстановление значения і в сх
     sal cx,1 ; cx = i*2
     mov ax, 15; ax = 15
     sub ax,cx; ax = ax - cx
     точ і1, ах ; сохраняем результат в і1
     mov ax,cx; ax = 2*i
     sal cx,1 ; cx := 2*i*2
     add cx, ax ; cx = 4*i + 2*i = 6*i
     mov ax, 4 ; ax = 4
     sub ax,cx ;ax = ax - cx = 4 - 6*i
     mov i2, ах ; сохраняем результат в f2
;Вычисление f3
A2:
     mov ax, k
     mov bx,0
     стр ах, bx ; сравниваем k и 0
     JNe B1
                      ;если к не равно 0 то перйти на В1
                      ;решение при к = 0
     mov dx, i1; dx = i1
     add dx, i2 ; dx = i1 + i2
```

add cx,ax ;cx = 2*i + i = 3*i

```
cmp dx,bx
             ;если i1+ i2 >= 0 то перейти на C1
     JGe C1
     neg dx
                 ;если i1 + i2 < 0 то меняем знак на
противоположный
     mov res, dx ; res = dx
     jmp B2
C1:
     mov res,dx
     jmp B2
B1:
                     ;если к не равно 0
     mov ax, i1
     mov bx,i2
     cmp ax,bx
     JGe C2
                    ;если i1 >= i2 то перейти на C2
     mov res,ax
     jmp B2
C2:
     mov res,bx ;если i1 >= i2
B2:
     int 20h
Main
        ENDP
CODE
         ENDS
         END Main
     Название файла: source.lst
```

Microsoft (R) Macro Assembler Version 5.10 10/16/22 15:13:3

Page

ASSUME CS:CODE, SS:AStack, DS:DATA

0000		AStack	SEGMENT S	ACK		
0000	0020[DW 32	2 DUP(0)		
000	0					
]					
0040		AStack	ENDS			
0000		DATA	SEGMENT			
0000	0000	i	DW ?			
0002	0000	a	DW ?			
0004	0000	b	DW ?			
0006	0000	k	DW ?			
8000	0000	i1	DW ?	;f1		
000A	0000	i2	DW ?	; f4		
000C	0000	res	DW ?	; f3		
000E		DATA	ENDS			
0000		CODE SEGM	ENT			
0000		Main	PROC FAR			
0000	B8 R	mov	AX, DATA			
0003	8E D8		mov DS,	AX		
	; Вычі	исление f1	и f2			
0005	A1 0002 R	mov	ах,а ;зан	носим знаэ		
	ение	е а в ах				
8000	8B 16 0004 R		mov dx,b	;заносим знаэ		
	ение	е b в dх				
	8B 0E 0000 R		mov cx,i	;заносим і в сх		
0010	3B C2		cmp ax, dx	;Сравнение зЍ		
	½aчei	ний а и b				
0012	7F 23		jg A1	;если a>b то на		
	A1					

```
0014 A1 0000 R mov ax,i ;если a<=b
     0017 D1 E1
                                sal cx,1 ;умножение і 
m \grave{N}
                 \frac{1}{2}a 2 cx = i*2
     0019 03 C8
                                add cx, ax ; cx = 2*i + i = 3*i
     001B B8 0004
                                mov ax, 4; ax = 4
     001E 03 C8
                                add cx,ax ;cx = 3*i + 4
     0020 89 0E 0008 R
                                mov i1,сх ;сохранение э
                  езультата в f1
     0024 8B 0E 0000 R
                                mov сх,і ;восстанавли
                 ваем значени і в сх
                                         ;cx = i + 1
                            inc cx
     0028 41
                           inc cx
     0029 41
                                         ; cx = i + 2
    Microsoft (R) Macro Assembler Version 5.10
10/16/22 15:13:3
                                                          Page
1-2
     002A 8B C1
                                mov ax,cx; ax = i + 2
     002C D1 E1
                                sal cx, 1 ; cx = 2*(i + 2)
     002E 03 C8
                                add cx, ax ; cx = 2*(i + 2) + (i
                  2) = 3*(i + 2)
     0030 89 0E 000A R
                               mov i2,сх ;сохраняем рЙ
               из-т в f2
     0034 EB 1D 90
                                jmp A2
                                              ;Пропускаем э
                  ледующие шаги
     0037
                      A1:
                                         ;если a>b
     0037 8B 0E 0000 R mov сх,і ;восстановле
                  ние значения і в сх
     003B D1 E1
                                sal cx,1 ; cx = i*2
     003D B8 000F
                                mov ax, 15; ax = 15
     0040 2B C1
                                sub ax,cx; ax = ax - cx
     0042 A3 0008 R mov i1, ax ; сохраняем рЙ
```

+

µзультат в i1

```
0045 8B C1
                                 mov ax,cx; ax = 2*i
     0047 D1 E1
                                  sal cx,1 ;cx:=2*i*2
     0049 03 C8
                                  add cx, ax ; cx = 4*i + 2*i = 6*i
                                  mov ax, 4 ; ax = 4
     004B B8 0004
     004E 2B C1
                                  sub ax,cx; ax = ax - cx = 4 -
6*i
     0050 A3 000A R mov i2, ax ; сохраняем рЙ
                   изультат в f2
                   ;Вычисление f3
     0053
                       A2:
     0053 A1 0006 R
                        mov ax,k
     0056 BB 0000
                                 mov bx,0
     0059 3B C3
                                 стр ах, bх ; сравниваем k
                   и 0
     005B 75 1C
                                 JNe B1 ;если k не рав
                  но 0 то перйти на В1
                                      ;решение
                   при к = 0
     005D 8B 16 0008 R
                                 mov dx, i1 ; dx = i1
     0061 03 16 000A R
                                 add dx, i2 ; dx = i1 + i2
     0065 3B D3
                                  cmp dx,bx
                                  JGe C1 ;если i1+ i2 >=
     0067 7D 09
€ 0
                    о перейти на C1
     0069 F7 DA
                                  neq dx ;если i1 + i2 <
е 0
                   о меняем знак на противоп
                   оложный
     006B 89 16 000C R
                                 mov res, dx ; res = dx
     006F EB 1D 90
                                 jmp B2
     0072
                       C1:
```

0072 89 16 000C R mov res,dx 0076 EB 16 90 jmp B2

Microsoft (R) Macro Assembler Version 5.10 10/16/22 15:13:3

Page

1-3

0079 B1:

;если k нЍ

µ равно 0

0079 A1 0008 R mov ax,i1

007C 8B 1E 000A R mov bx,i2

0080 3B C3 cmp ax,bx

TO

перейти на C2

0084 A3 000C R mov res,ax

0087 EB 05 90 jmp B2

008A C2:

008A 89 1E 000C R mov res,bx ;eсли i1 >= i2

008E B2:

008E CD 20 int 20h

0090 Main ENDP

0090 CODE ENDS

END Main

Microsoft (R) Macro Assembler Version 5.10 10/16/22 15:13:3

Symbols-1

Segments and Groups:

Q1	N a m e										Lengt	Length Alic		ŋn	Combine						
Class																					
	ASI	CAC	CK													•		0040	PARA	STACK	
	COI	ÞΕ																0090	PARA	NONE	
	DAT	ľΑ		•		•	•	•	•		•		•			•		000E	PARA	NONE	
	Syn	nbc	ols	S:																	
								N	N a m e								Type Value			Attr	
																	-11-				
	А																	L WOF	RD	0002	DATA
	A1																	L NEA	ΔR	0037	CODE
	A2	•																L NEA	ΔR	0053	CODE
	В	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		L WOF	RD	0004	DATA
	В1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		L NEA	AR	0079	CODE
	В2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		L NEA	AR	008E	CODE
	C1	•		•	•	•	•	•	•	•	•	•	•	•	•	•		L NEA		0072	
	C2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		L NEA	ΔR	A800	CODE
	I																	L WOF	ח	0000	DATA
	т Т1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		L WOF		0000	
	I2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		L WOF		0000	
	12	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		п wor	(D	OUUA	DATA
	K																	I, WOR	RD.	0006	DATA
		•	•	·		·	·	·	·			·	·		·	Ī			-		
	MAI	ΙN		•				•	•									F PRO)C	0000	CODE
	Ler																				
	RES	3																L WOF	RD	000C	DATA
	@CE	PU		•	•	•	•	•	•	•	•	•	•			•		TEXT	0101	h	
	@FI	LE	INA	AME	C				•				•	•				TEXT	sour	се	
	@VE	ERS	SIC	N				•	•				•	•				TEXT	510		

104 Source Lines

104 Total Lines

22 Symbols

48044 + 459216 Bytes symbol space free

- 0 Warning Errors
- O Severe Errors