Лабораторная работа № 2 «Градиентные методы поиска экстремума»

Задания практической части:

- 1. Найти минимум функции из индивидуального задания методом градиентного спуска с постоянным шагом.
- 2. Построить график функции из индивидуального задания, отметить на графике найденный минимум.
- 3. Построить блок-схему алгоритма поиска экстремума по методу градиентного спуска с постоянным шагом.
- 4*. Разработать программный модуль решения задачи индивидуального задания методом градиентного спуска с постоянным шагом.
- 5*. Найти минимум функции из индивидуального задания методом наискорейшего градиентного спуска.
- 6*. Построить блок-схему алгоритма поиска экстремума по методу наискорейшего градиентного спуска.
- 7*. Разработать программный модуль решения задачи индивидуального задания методом наискорейшего градиентного спуска.
 - 8. Оформить отчет.

Комментарии к выполнению заданий:

При решении любых заданий практической части рекомендуется пользоваться доступным программным обеспечением.

В первом и пятом заданиях помимо полного решения должны быть предоставлены ответы, содержащие искомый x^* , значение функции $f\left(x^*\right)$ и количество итераций, за которое достигнут результат.

Для построения графика функции во втором задании можно использовать онлайн сервисы построения трёхмерных графиков, подходящих для графической иллюстрации решения.

Программа (задания №4 и №7) может разрабатываться на любом языке программирования, для сдачи программы необходимо продемонстрировать результат её выполнения и код, ответить на вопросы преподавателя, изменить код для дополнительного тестирования. Результат должен содержать ответ на поставленную задачу (искомый x^* , значение функции $f\left(x^*\right)$ и количество итераций k) со всеми обозначениями. Вывод в результатах работы программы промежуточных значений приветствуется, но не является обязательным.

* – задания практической части на оценку выше «удовлетворительно».

Содержание отчёта:

- 1. Титульный лист.
- 2. Выполненные задания 1-3 практической части с постановкой задания, основными используемыми формулами, промежуточными вычислениями и необходимыми графическими иллюстрациями решения. Данный раздел отчёта может быть представлен

как в печатном, так и в рукописном виде на листах А4 без помарок и исправлений по тексту.

- 3. Листинг программы и результаты выполнения задания 4 практической части (при условии выполнения задания 4).
- 4. Выполненные задания 5-6 практической части с постановкой задания, основными используемыми формулами, промежуточными вычислениями и необходимыми графическими иллюстрациями решения (при условии выполнения заданий 5-6).
- 3. Листинг программы и результаты выполнения задания 7 практической части (при условии выполнения задания 7).

Основные теоретические сведения

Постановка задачи

Пусть дана функция f(x), ограниченная снизу на множестве R^n и имеющая непрерывные частные производные во всех его точках.

Требуется найти локальный минимум функции f(x) на множестве допустимых решений $X=R^n$, то есть найти такую точку $x^*\in R^n$, что

$$f\left(x^{*}\right) = \min_{x \in R^{n}} f\left(x\right)$$

Метод градиентного спуска с постоянным шагом

Стратегия решения задачи состоит в построении последовательности точек $\left\{ x^{k}\right\}$, k=0,1,.... Точки последовательности $\left\{ x^{k}\right\}$ вычисляются по правилу

$$x^{k+1} = x^k - t_k \nabla f(x^k), \ k = 0, 1, \dots,$$
 (1)

где точка x^0 задаётся пользователем; $\nabla f\left(x^k\right)$ – градиент функции $f\left(x\right)$, вычисленный в точке x^k ; величина шага t_k задаётся пользователем и остается постоянной до тех пор, пока функция убывает в точках последовательности, что контролируется путем проверки выполнения условия $f\left(x^{k+1}\right) - f\left(x^k\right) < 0$ или $f\left(x^{k+1}\right) - f\left(x^k\right) < -\varepsilon \left\|\nabla f\left(x^k\right)\right\|^2$, $0 < \varepsilon < 1$. Построение последовательности $\left\{x^k\right\}$ заканчивается в точке x^k , для которой $\left\|\nabla f\left(x^k\right)\right\| < \varepsilon_1$, где ε_1 — заданное малое положительное число, или $k \ge M$, где M — предельное число интеграций, или при двукратном одновременном выполнении двух неравенств $\left\|x^{k+1} - x^k\right\| < \varepsilon_2$, $\left|f\left(x^{k+1}\right) - f\left(x^k\right)\right| < \varepsilon_2$, где ε_2 — малое положительное число. Вопрос о том, может ли точка x^k рассматриваться как найденное приближение

искомой точки минимума, решается путем проведения дополнительного исследования, которое описано ниже.

Определение. Нормой $\|x\|$ вектора $(x_1, x_2, ..., x_n)$ в евклидовом пространстве называется корень квадратный из его скалярного квадрата

$$||x|| = \sqrt{(x, x)} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Алгоритм:

Шаг 1. Задать x^0 , $0 < \varepsilon < 1$, $\varepsilon_1 > 0$, $\varepsilon_2 > 0$, M — предельное число итераций. Найти

градиент функции в произвольной точке
$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, ..., \frac{\partial f(x)}{\partial x_n}\right)^T$$
.

Шаг 2. Положить k = 0.

Шаг 3. Вычислить $\nabla f(x^k)$.

Шаг 4. Проверить выполнение критерия окончания $\left\|\nabla f\left(x^{k}\right)\right\| < \varepsilon_{1}$:

- а) если критерий выполнен, расчёт закончен, $x^* = x^k$;
- б) если критерий не выполнен, то перейти к шагу 5.

Шаг 5. Проверить выполнение неравенства $k \ge M$:

- а) если неравенство выполнено, то расчёт окончен: $x^* = x^k$;
- б) если нет, то перейти к шагу б.

Шаг 6. Задать величину шага t_k .

Шаг 7. Вычислить $x^{k+1} = x^k - t_k \nabla f(x^k)$.

Шаг 8. Проверить выполнение условия

$$f\left(x^{k+1}\right) - f\left(x^{k}\right) < 0$$
 (или $f\left(x^{k+1}\right) - f\left(x^{k}\right) < -\varepsilon \left\|\nabla f\left(x^{k}\right)\right\|^{2}$):

- а) если условие выполнено, то перейти к шагу 9;
- б) если условие не выполнено, положить $t_k = \frac{t_k}{2}$ и перейти к шагу 7.

Шаг 9. Проверить выполнение условий

$$||x^{k+1} - x^k|| < \varepsilon_2, \qquad |f(x^{k+1}) - f(x^k)| < \varepsilon_2:$$

- а) если оба условия выполнены при текущем значении k и k=k-1, то расчёт окончен, $x^*=x^{k+1}$:
- б) если хотя бы одно из условий не выполнено, положить k = k + 1 и перейти к шагу 3 .

Геометрическая интерпретация метода для n = 2 приведена на рисунке 1.

Рисунок 1 — Геометрическая интерпретация метода градиентного спуска с постоянным шагом.

Утверждение 1. Пусть функция f(x) дифференцируема и ограничена снизу на R^n , а её градиент удовлетворяет условию Липшица $\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|$, $\forall x,y \in R^n$, где L>0. Тогда при произвольной начальной точке $x^0 \in R^n$ для метода градиентного спуска с постоянным шагом имеем

$$\lim_{k \to \infty} \left\| \nabla f \left(x^k \right) \right\| = 0 \tag{2}$$

Скорость сходимости. Оценки скорости сходимости получены только для сильно выпуклых функций, когда последовательность $\left\{x^k\right\}$ сходится к точке минимума $f\left(x\right)$ со скоростью геометрической прогрессии:

$$f(x^k) - f(x^*) \le q^k \left(f(x^0) - f(x^*) \right), \qquad \left\| x^k - x^* \right\| \le C\left(\sqrt{q}\right)^k,$$

где $q \in (0,1)$, C > 0 – константы.

Процедура решения задачи

- 1. Используя алгоритм градиентного спуска с постоянным шагом, найти точку x^k , в которой выполнен, по крайней мере, один из критериев окончания расчётов.
- 2. Провести анализ точки x^k с целью установить, является ли точка x^k найденным приближением решения задачи. Процедура анализа определяется наличием у функции f(x) непрерывных вторых производных. Если $f(x) \in C^2$, то следует провести проверку выполнения достаточных условий минимума: $H(x^*) > 0$. Если $H(x^*) > 0$, то точка x^k есть найденное приближение искомой точки x^* . Если $f(x) \in C^1$, то следует

провести проверку функции f(x) на выпуклость в Q -окрестности точки x^k , используя критерий выпуклости для функций $f(x) \in C^1$: функция f(x) выпукла (строго выпукла) в том и только в том случае, если $f(x+y) \ge f(x) + (\nabla f(x), y), \ \forall x, y \in Q$; $(f(x+y) > f(x) + (\nabla f(x), y)).$

Если функция f(x) выпукла (строго выпукла), то x^k есть найденное приближение точки x^* .

Замечание 1. Если требуется найти глобальный минимум функции f(x), то для строго выпуклой f(x) решение этой задачи аналогично поиску локального минимума функции. В случае, когда f(x) имеет несколько локальных минимумов, поиск глобального минимума осуществляется в результате перебора всех локальных минимумов.

Пример решения задачи

Найти локальный минимум функции $f(x) = 2x_1^2 + x_1x_2 + x_2^2$.

- I. Определение точки x^k , в которой выполнен по крайней мере один из критериев окончания расчетов.
- 1. Зададим x^0 , ε_1 , ε_2 , M: $x^0 = \begin{pmatrix} 0.5;1 \end{pmatrix}^T$; $\varepsilon_1 = 0.1$; $\varepsilon_2 = 0.15$; M = 10. Найдем градиент функции в произвольной точке $\nabla f(x) = \begin{pmatrix} 4x_1 + x_2; x_1 + 2x_2 \end{pmatrix}^T$.
- 2. Положим k = 0.
- 3^{0} . Вычислим $\nabla f(x^{0})$: $\nabla f(x^{0}) = (3,2,5)^{T}$.
- 4° . Вычислим $\|\nabla f(x^{\circ})\|$: $\|\nabla f(x^{\circ})\| = 3,9 > 0,1$. Переходим к шагу 5.
- 5^{0} . Проверим условие $k \geq M$: k = 0 < 10 = M . Переходим к шагу 6 .
- 6° . Зададим $t_0 = 0,5$.
- 7°. Вычислим x^1 : $x^1 = (0,5;1)^T 0,5(3;2,5)^T = (-1;-0,25)^T$; $f(x^1) = 2,31$.
- 8^{0} . Сравним $f\left(x^{1}\right)$ с $f\left(x^{0}\right)=2$. Имеем $f\left(x^{1}\right)>f\left(x^{0}\right)$. Вывод: условие $f\left(x^{k+1}\right)< f\left(x^{k}\right)$ для k=0 не выполняется. Зададим $t^{0}=0,25$, переходим к повторению шагов 7,8.
- 7^{01} . Вычислим x^1 : $x^1 = (0,5;1)^T 0,25(3;2,5)^T = (-0,25;0,375)^T$; $f(x^1) = 0,171$.
- 8^{01} . Сравним $f(x^1)$ с $f(x^0)$. Вывод: $f(x^1) < f(x^0)$. Переходим к шагу 9.
- 9^{01} . Вычислим $||x^1 x^0||$ и $|f(x^1) f(x^0)|$:

$$||x^{1}-x^{0}|| = 0,976 > 0,15;$$
 $|f(x^{1})-f(x^{0})| = 1,829 > 0,15.$

Вывод: полагаем k = 1 и переходим к шагу 3.

3¹. Вычислим
$$\nabla f(x^1)$$
: $\nabla f(x^1) = (-0.625; 0.51)^T$.

4¹. Вычислим
$$\|\nabla f(x^1)\|$$
: $\|\nabla f(x^1)\| = 0.81$. Переходим к шагу 5.

$$5^1$$
. Проверим условие $k \ge M$: $k = 1 < 10 = M$. Переходим к шагу 6 .

$$6^1$$
. Зададим $t_1 = 0,25$.

7¹. Вычислим
$$x^2$$
: $x^2 = (-0.25; 0.375)^T - 0.25(-0.625; 0.5)^T = (-0.094; 0.25)^T$; $f(x^2) = 0.056$.

$$8^1$$
. Сравним $f(x^2)$ с $f(x^1)$. Вывод: $f(x^2) < f(x^1)$. Переходим к шагу 9 .

9¹. Вычислим
$$||x^2 - x^1||$$
 и $|f(x^2) - f(x^1)|$:

$$||x^2 - x^1|| = 0, 2 > 0, 15;$$
 $|f(x^2) - f(x^1)| = 0, 115 < 0, 15.$

Вывод: полагаем k=2 и переходим к шагу 3.

3². Вычислим
$$\nabla f(x^2)$$
: $\nabla f(x^2) = (-0.126; 0.406)^T$.

4². Вычислим
$$\left\|\nabla f\left(x^{2}\right)\right\|$$
: $\left\|\nabla f\left(x^{2}\right)\right\|=0,425>0,1.$ Переходим к шагу 5.

$$5^2$$
. Проверим условие $k \ge M$: $k = 2 < 10 = M$. Переходим к шагу 6 .

$$6^2$$
. Зададим $t_2 = 0,25$.

7². Вычислим
$$x^3$$
: $x^3 = (-0.094; 0.25)^T - 0.25(-0.126; 0.406)^T = (-0.063; 0.15)^T$; $f(x^3) = 0.021$.

$$8^2$$
. Сравним $f(x^3)$ с $f(x^2)$. Вывод: $f(x^3) < f(x^2)$. Переходим к шагу 9 .

9². Вычислим
$$||x^3 - x^2||$$
 и $|f(x^3) - f(x^2)|$:

$$||x^3 - x^2|| = 0.105 < 0.15;$$
 $|f(x^3) - f(x^2)| = 0.035 < 0.15.$

Вывод: полагаем k = 3 и переходим к шагу 3.

3³. Вычислим
$$\nabla f(x^3)$$
: $\nabla f(x^3) = (-0.102; 0.237)^T$.

4³. Вычислим
$$\|\nabla f(x^3)\|$$
: $\|\nabla f(x^3)\| = 0,257 > 0,1$. Переходим к шагу 5.

$$5^3$$
. Проверим условие $k \ge M$: $k = 3 < 10 = M$. Переходим к шагу 6 .

$$6^3$$
. Зададим $t_3 = 0,25$.

7³. Вычислим
$$x^4$$
: $x^4 = (-0.063; 0.15)^T - 0.25(-0.102; 0.237)^T = (-0.038; 0.091)^T$; $f(x^4) = 0.0076$.

 8^3 . Сравним $f(x^4)$ с $f(x^3)$. Вывод: $f(x^4) < f(x^3)$.

9³. Вычислим $||x^4 - x^3||$ и $|f(x^4) - f(x^3)|$:

$$||x^4 - x^3|| = 0.064 < 0.15;$$
 $|f(x^4) - f(x^3)| = 0.015 < 0.15.$

Условия $\|x^{k+1} - x^k\| < \varepsilon_2$, $|f(x^{k+1}) - f(x^k)| < \varepsilon_2$ выполнены при k = 2 и k = 3. Расчет окончен. Найдена точка $x^4 = (-0.038; 0.091)^T$; $f(x^4) = 0.0076$.

На рисунке 2 полученные точки соединены пунктирной линией.

Рисунок 2 – результат процедуры решения задачи.

II. Анализ точки x^4

Функция $f\left(x\right)=2x_1^2+x_1x_2+x_2^2$ является дважды дифференцируемой, поэтому проведем проверку достаточных условий минимума в точке x^4 . Для этого проанализируем матрицу Гессе $H=\begin{pmatrix}4&1\\1&2\end{pmatrix}$. Матрица постоянна и является положительно определённой (то есть H>0), так как оба её угловых минора $\Delta_1=4$ и $\Delta_2=7$ положительны. Следовательно, точка $x^4=\begin{pmatrix}-0,038;0,091\end{pmatrix}^T$ есть найденное приближение точки локального минимума $x^*=\begin{pmatrix}0,0\}^T$, а значение $f\left(x^4\right)=0,0076$ есть найденное приближение значения $f\left(x^*\right)=0$. Заметим, что условие H>0, есть одновременно условие строгой выпуклости функции $f\left(x\right)=2x_1^2+x_1x_2+x_2^2$ на R^2 .

Следовательно, $x^4 = (-0.038; 0.091)^T$, $f(x^4) = 0.0076$ есть найденные приближения точки глобального минимума f(x) и её наименьшего значения на R^2 .

Метод наискорейшего градиентного спуска

Стратегия решения задачи в построении последовательности точек $\left\{ x^{k}\right\} ,$ k=0,1,.... Точки последовательности $\left\{ x^{k}\right\}$ вычисляются по правилу

$$x^{k+1} = x^k - t_k \nabla f(x^k), \tag{3}$$

где точка x^0 задаётся пользователем; величина шага t_k определяется для каждого значения k из условия

$$\varphi(t_k) = f\left(x^k - t_k \nabla f\left(x^k\right)\right) \to \min_{t_k}.$$
 (4)

Решение задачи (4) может осуществляться с использованием необходимого условия минимума $\frac{d\varphi}{dt_k}=0$ с последующей проверкой достаточного условия минимума $\frac{d^2\varphi}{dt_k^2}>0$. Такой путь может быть использован либо при достаточно простой минимизируем функции $\varphi(t_k)$, либо при предварительной аппроксимации достаточно сложной функции $\varphi(t_k)=f\left(x^k-t_k\nabla f\left(x^k\right)\right)$ полином $P(t_k)$ (как правило, второй или третьей степени), и тогда условия $\frac{d\varphi}{dt_k}=0$ замещается условием $\frac{dP}{dt_k}=0$, а условие $\frac{d^2\varphi}{dt_k^2}>0$ – условием $\frac{d^2P}{dt_k^2}>0$.

Другой путь решения задачи (4) связан с использованием численных методов, когда ищется $\min_{t_k \in [a,b]} \varphi(t_k) = \min_{t_k \in [a,b]} f\left(x^k - t_k \nabla f\left(x^k\right)\right)$. Границы интервала $\begin{bmatrix} a,b \end{bmatrix}$ задаются пользователем. При этом степень близости найденного значения t_k к оптимальному значению t_k^* , удовлетворяющему условиям $\frac{d\varphi}{dt_k} = 0$, $\frac{d^2\varphi}{dt_k^2} > 0$, зависит от задания интервала $\begin{bmatrix} a,b \end{bmatrix}$ и точности методов одномерной минимизации.

Построение последовательности $\left\{x^k\right\}$, k=0,1,..., заканчивается в точке x^k , для которой $\left\|\nabla f\left(x^k\right)\right\|<\varepsilon_1$, где ε_1 – заданное число, или, если $k\geq M$, M – предельное

число итераций, или при двукратном одновременном выполнении неравенств $\|x^{k+1}-x^k\|<\varepsilon_2, |f(x^{k+1})-f(x^k)|<\varepsilon_2$, где ε_2 – малое положительное число. Вопрос о том, может ли точка x^k рассматриваться как найденное приближение искомой точки локального минимума x^* , решается путём дополнительного исследование.

Алгоритм:

Шаг 1. Задать x^0 , $\varepsilon_1 > 0$, $\varepsilon_2 > 0$, предельное число итерация M. Найти градиент функции в произвольной точке $\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, ..., \frac{\partial f(x)}{\partial x_n}\right)^T$.

Шаг 2. Положить k = 0.

Шаг 3. Вычислить $\nabla f(x^k)$.

Шаг 4. Проверить выполнение критерия окончания $\|\nabla f(x^k)\| < \varepsilon_1$:

- а) если критерий выполнен, то $x^* = x^k$;
- б) если критерий не выполнен, то перейти к шагу 5.

Шаг 5. Проверить выполнение неравенства $k \ge M$:

- а) если неравенство выполнено, то $x^* = x^k$;
- б) если нет, то перейти к шагу б.

Шаг 6. Вычислить величину шага t_k^* из условия

$$\varphi(t_k) = f(x^k - t_k \nabla f(x^k)) \rightarrow \min_{t_k}$$

Шаг 7. Вычислить $x^{k+1} = x^k - t_k^* \nabla f(x^k)$.

Шаг 8. Проверить выполнение условий

$$||x^{k+1} - x^k|| < \varepsilon_2, |f(x^{k+1}) - f(x^k)| < \varepsilon_2$$
:

- а) если оба условия выполнены при текущем значении k и k=k-1, то расчёт окончен, $x^*=x^{k+1}$;
- б) если хотя бы одно из условий не выполнено, то положить k = k + 1 и перейти к шагу 3.

Геометрическая интерпретация метода для n = 2 приведена на рисунке 3.

Рисунок 3 – Геометрическая интерпретация метода наискорейшего градиентного спуска.

Утверждение 2. Пусть функция f(x) удовлетворяет условиям утверждения 1. Тогда при произвольной начальной точке $x^0 \in \mathbb{R}^n$ для метода наискорейшего градиентного спуска имеем $\|\nabla f(x^k)\| \to 0$ при $k \to \infty$.

Замечание 2.

- 1. Утверждение гарантирует сходимость последовательности $\{x^k\}$ к стационарной точке x^* , где $\nabla f(x^*) = 0$. Следовательно, найденная в результате применения метода точка x^* нуждается в дополнительном исследовании с целью ее классификации.
- 2. Метод наискорейшего спуска гарантирует сходимость последовательности $\{x^k\}$ к точке минимума для сильно выпуклых функций.

Скорость сходимости. Оценки скорости сходимости получены только для сильно выпуклых функций, когда последовательность $\left\{x^k\right\}$ сходится к точке минимума функции $f\left(x\right)$ со скоростью геометрической прогрессии (геометрическая сходимость): $\left\|x^{k+1}-x^k\right\| \leq \frac{M-m}{M+m} \left\|x^k-x^*\right\|, \text{ где } M \text{ и } m \text{ - оценки наибольшего и наименьшего собственных значений матрицы } H\left(x\right) \text{ функции } f\left(x\right).$

Индив<u>идуальные задания:</u>

Вариант 1.
$$f(x) = 5x_1^2 + 0.5x_1x_2 + 3x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 2.
$$f(x) = 6x_1^2 + 0.6x_1x_2 + x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 3.
$$f(x) = 3x_1^2 + 0.4x_1x_2 + 5x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 4.
$$f(x) = 3x_1^2 + 0.6x_1x_2 + 3x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 5.
$$f(x) = 4x_1^2 + 0.2x_1x_2 + 6x_2^2$$
; $x^0 = (0, 0, 5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 6.
$$f(x) = 3x_1^2 + 0.1x_1x_2 + 6x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 7.
$$f(x) = 6x_1^2 + 0.4x_1x_2 + 5x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 8.
$$f(x) = 2x_1^2 + 0.1x_1x_2 + 2x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 9.
$$f(x) = 2x_1^2 + 0, 2x_1x_2 + 6x_2^2$$
; $x^0 = (0, 0, 5), \varepsilon_1 = 0, 15, \varepsilon_2 = 0, 2, M = 10$.

Вариант 10.
$$f(x) = 4x_1^2 + 0.6x_1x_2 + 4x_2^2$$
; $x^0 = (0, 0, 5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 11.
$$f(x) = 5x_1^2 + 0.6x_1x_2 + 2x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 12.
$$f(x) = x_1^2 + 0.6x_1x_2 + 2x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 13.
$$f(x) = 4x_1^2 + 0.5x_1x_2 + 2x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 14.
$$f(x) = 6x_1^2 + 0.6x_1x_2 + 3x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 15.
$$f(x) = x_1^2 + 0.6x_1x_2 + 6x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 16.
$$f(x) = 4x_1^2 + 0.5x_1x_2 + 6x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 17.
$$f(x) = 6x_1^2 + 0.3x_1x_2 + 4x_2^2$$
; $x^0 = (0, 0, 5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 18.
$$f(x) = 2x_1^2 + 0.5x_1x_2 + 2x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 19.
$$f(x) = x_1^2 + 0.5x_1x_2 + 5x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 20.
$$f(x) = x_1^2 + 0.6x_1x_2 + x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 21.
$$f(x) = 3x_1^2 + 0.3x_1x_2 + 5x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 22.
$$f(x) = 6x_1^2 + 0.5x_1x_2 + 2x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 23.
$$f(x) = 6x_1^2 + 0, 6x_1x_2 + 2x_2^2$$
; $x^0 = (0, 0, 5), \varepsilon_1 = 0, 15, \varepsilon_2 = 0, 2, M = 10$.

Вариант 24.
$$f(x) = 3x_1^2 + 0.2x_1x_2 + 3x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 25.
$$f(x) = 4x_1^2 + 0.1x_1x_2 + 3x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 26.
$$f(x) = 3x_1^2 + 0.3x_1x_2 + 4x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 27.
$$f(x) = 5x_1^2 + 3x_1x_2 + 5x_2^2$$
; $x^0 = (0, 0, 5)$, $\varepsilon_1 = 0, 15$, $\varepsilon_2 = 0, 2$, $M = 10$.

Вариант 28.
$$f(x) = 3x_1^2 + 0.4x_1x_2 + 4x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 29.
$$f(x) = x_1^2 + 0.4x_1x_2 + x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.

Вариант 30.
$$f(x) = 2x_1^2 + 0.5x_1x_2 + 6x_2^2$$
; $x^0 = (0, 0.5)$, $\varepsilon_1 = 0.15$, $\varepsilon_2 = 0.2$, $M = 10$.