

REPORT SUMMARY

PATIENT AND SAMPLE INFO	ORMATION	2
VARIANT(S) WITH CLINICAL	RELEVANCE	2
THERAPEUTIC IMPLICATION	NS	3
REPORT DETAILS		
VARIANT INTERPRETATION	<u>U</u>	5
US FDA-APPROVED DRUG(S)	14
ONGOING CLINICAL TRIALS		20
DETAILED TEST RESULTS		21
HOTSPOT GENOTYPES		23
TEST DETAILS		25
ACTOnco®+ GENE LIST		29
DISCLAIMER		30
APPENDIX		
SIGNALING PATHWAYS AN	D MOLECULAR-TARGETED AGENTS	32

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

PATIENT AND SAMPLE INFORMATION

PATIENT SPECIMEN ORDERING PHYSICIAN

Name: 葉哲豪 Type: FFPE tissue Name: 賴峻毅醫師 Gender: Male Date received: Jan 04, 2022 Facility: 臺北榮總 Date of Birth: Mar 26, 1953 Tel: 886-228712121 Collection site: Vertebra

Patient ID: 19342906 Specimen ID: S11024511A Address: 臺北市北投區石牌路二段 201 號 Diagnosis: Metastatic Lab ID: AA-22-00047

neuroendocrine carcinoma D/ID: NA

VARIANT(S) WITH CLINICAL RELEVANCE

Only variant(s) with clinical significance are listed. See the "DETAILED TEST RESULTS" section for full details.

SINGLE NUCLEOT	SINGLE NUCLEOTIDE AND SMALL INDEL VARIANTS			
Gene	Amino Acid Change	Coverage	Allele Frequency	COSMIC ID
CDH1	T340A	99	85.9%	COSM19821
RB1	A74fs	87	63.2%	COSM432450

COPY NUMBER VARIANTS (CNVS)

Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 55% tumor purity.

Amplification (Copy number ≥ 8)

Chr	Gene	Copy Number
ND	ND	ND

Homozygous deletion (Copy number=0)

Chr	Gene	
chr2	BARD1, LRP1B	
Heterozygous deletion (Copy number=1)		

Chr	Gene
chr1	CDKN2C
chr9	TSC1
chr11	ATM, CHEK1, MRE11
chr13	BRCA2, RB1
chr16	CDH1
chr22	CHEK2, NF2

ND, Not Detected

MICROSATELLITE INSTABILITY (MSI) TUMOR MUTATIONAL BURDEN (TMB)

2.5 muts/Mb

Microsatellite stable (MSS)

Muts/Mb, mutations per megabase

TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

Variant Analysis:

醫檢師陳韻仔 博士 Yun-Yu Chen Ph.D. 檢字第 015647 號

Yun Yu Chen

Sign Off

醫檢師陳韻伃 博士 Yun-Yu Chen Ph.D. 檢字第 015647 號

Yun Yu Chen

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: service@actgenomics.com T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 2 of 45

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

THERAPEUTIC IMPLICATIONS

ACTOnco® + Report

THERAL EGITE INIT ELECTIONS		
TARGETED THERAPIES		
Genomic Alterations	Therapies	Effect
Level 3B		
BARD1 Homozygous deletion	Niraparib, Olaparib	sensitive
ATM Heterozygous deletion	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
CHEK1 Heterozygous deletion	Olaparib, Rucaparib	sensitive
CHEK2 Heterozygous deletion	Niraparib, Rucaparib	sensitive
CDKN2C Heterozygous deletion	Abemaciclib, Ribociclib	sensitive
Level 4		
CDKN2C Heterozygous deletion	Palbociclib	sensitive
BRCA2 Heterozygous deletion	Olaparib, Rucaparib	sensitive
CHEK2 Heterozygous deletion	Olaparib	sensitive
MRE11 Heterozygous deletion	Olaparib, Talazoparib	sensitive
NF2 Heterozygous deletion	Everolimus	sensitive
TSC1 Heterozygous deletion	Everolimus, Temsirolimus	sensitive
RB1 A74fs	Abemaciclib, Palbociclib, Ribociclib	resistant
RB1 Heterozygous deletion	Abemaciclib, Palbociclib, Ribociclib	resistant

[‡] Refer to "ONGOING CLINICAL TRIALS" section for detailed trial information.

Note: Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence.

Lev	/el	Description		
1	L	FDA-recognized biomarker predictive of response to an FDA approved drug in this indication		
2	2	Standard care biomarker (recommended as standard care by the NCCN or other expert panels) predictive of response to an FDA approved drug in this indication		
3	Α	Biomarkers that predict response or resistance to therapies approved by the FDA or professional societies for a different type of tumor		
	В	B Biomarkers that serve as inclusion criteria for clinical trials		
4	4 Biomarkers that show plausible therapeutic significance based on small studies, few case reports or preclinical studies			

AG4-QP4001-02(05)

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

IMMUNE CHECKPOINT INHIBITORS (ICI) THERAPIES

Genomic markers and alterations that are associated with response to ICI therapies

Positive Biomarker	Negative Biomarker
TMB-H: ND	EGFR aberration: ND
MSI-H: ND	MDM2/MDM4 amplification: ND
MMR biallelic inactivation: ND	STK11 biallelic inactivation: ND
PBRM1 biallelic inactivation: ND	PTEN biallelic inactivation: ND
SERPINB3/SERPINB4 mutation: ND	B2M biallelic inactivation: ND
L	JAK1/2 biallelic inactivation: ND

MMR, mismatch repair; ND, not detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES				
Therapies	Genomic Alterations	Effect	Gene / Variant Level Evidence	Cancer Type
Cisplatin	RB1 A74fs Heterozygous deletion	sensitive	Clinical	Bladder carcinoma
FAC T/FAC taxane/doxorubicin	RB1 A74fs Heterozygous deletion	sensitive	Clinical	Breast cancer

HORMONAL THERAPIES				
Therapies	Genomic Alterations	Effect	Gene / Variant Level Evidence	Cancer Type
Tamoxifen	RB1 A74fs Heterozygous deletion	resistant	Clinical	Breast cancer

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

5

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 4 of 45

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

VARIANT INTERPRETATION

CDH1 T340A, Heterozygous deletion

Biological Impact

The CDH1 gene encodes the epithelial cadherin (E-cadherin) protein, a single-pass transmembrane glycoprotein that is mainly expressed in epithelial cells. Loss of E-cadherin function is hypothesized to promote cancer progression through lack of adhesion-mediated growth inhibition^{[1][2][3][4][5]}. CDH1 germline mutations are associated with increased risk of developing diffuse gastric cancer and breast cancer, with lobular breast cancer being the most characteristic^[6]. Impaired E-cadherin function has also been implicated in a variety of sporadic cancer types including gastric cancer^[7], pancreatic cancer^[8], hepatocellular carcinoma^[9], colorectal cancer^[10] and esophageal cancer^[11].

CDH1 T340A is a missense mutation at codon 340, resulting in a change of amino acid from a threonine to an alanine. This variant has been previously identified in hereditary diffuse gastric cancer (HDGC) and colorectal cancers^{[12][13][14]} and has been demonstrated as a loss-of-function mutation that confers increased EGFR, p38 MAPK signaling and cell motility in vitro^[15]. Loss of the second wild-type allele resulted in the biallelic inactivation of the gene.

Therapeutic and prognostic relevance

Several studies showed that partial or total loss of E-cadherin expression correlates with loss of differentiation characteristics, acquisition of invasiveness, increased tumor grade, metastatic behavior and poor prognosis in patients with breast cancer^{[16][17][18][19]}.

CDH1 mutation was found to be associated with shortened survival in diffuse-type gastric cancer^[20].

RB1 A74fs, Heterozygous deletion

Biological Impact

The Retinoblastoma (RB1) gene encodes a tumor suppressor that negatively regulates the cell cycle, cell division, and DNA replication^[21]. Loss-of-function RB1 could lead to unregulated cell division and growth, abrogation of multiple mechanisms that safeguard against cellular transformation, and tumorigenesis^[22]. RB1 has also been implicated as a haploinsufficient tumor suppressor with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^{[23][24][25]}. Deletion or inactivating mutation of RB1 is found in a number of tumors, including lung, prostate, bladder, breast cancers and sarcomas. RB1 mutations are found in approximately half of all retinoblastoma cases^[26].

A74fs mutation results in a change in the amino acid sequence beginning at 74, likely to cause premature truncation of the functional RB1 protein (UniProtKB). This mutation is predicted to lead to a loss of RB1 protein function, despite not being characterized in the literature. Loss of the second wild-type allele resulted in the biallelic inactivation of the gene.

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

Therapeutic and prognostic relevance

A deleterious mutation in one or more of the three DNA repair genes ATM, RB1, and FANCC predicted pathologic response and better overall survival to cisplatin-based chemotherapy for muscle-invasive bladder cancer patients^[27]. High RB loss was found to be associated with improved pathologic clinical response in breast cancer patients treated with 5-fluorouracil/adriamycin/cytoxan (FAC), T/FAC, and Taxane/Adriamycin neoadjuvant therapy^[28].

Clinical and experimental data suggested that a non-functional retinoblastoma pathway is associated with resistance to tamoxifen in breast cancer^{[29][30]}.

Acquired RB1 mutations were found in hormone receptor positive breast cancer patients who developed resistance to palbociclib or ribociclib treatment^[31]. Preclinical data also showed that knockdown of RB1 would impair antitumor activity of CDK4/6 inhibitor, abemaciclib^[32].

Two large-scale genome-sequencing projects have identified a high prevalence of mutations in TP53 and RB1 in small cell lung cancer (SCLC)^{[33][34]}. Analyses of repeat biopsy samples from patients with EGFR-mutant adenocarcinoma that had transformed to the SCLC subtype have revealed that 100% of these patients have loss of RB1 and may be the alteration that induces this non-small-cell to small-cell transformation^{[30][35]}.

ATM Heterozygous deletion

Biological Impact

The ataxia-telangiectasia mutated protein kinase (ATM) gene encodes a PI3K-related serine/threonine protein kinase involved in genomic integrity maintenance and plays central roles in DNA double-strand break (DSB) repair, which can be induced by ionizing radiation, chemotherapy drugs, or oxidative stress^[36]. ATM is a well-characterized tumor suppressor gene, hereditary mutations and haploinsufficiency of ATM result in markedly increased susceptibility to a variety of cancer types^{[37][38][39][40][41]}. Results from a case-cohort study of colorectal cancer and cancer-free control individuals suggested that germline pathogenic mutations in ATM and PALB2 should be added to established CRC risk genes as part of standard tumor genetic testing panels^[42]. ATM is among the most commonly aberrant genes in sporadic cancers. Somatic ATM aberrations are frequently observed in hematologic malignancies^{[43][44][45][46]} and a board range of tumors such as prostate cancer^[47], head and neck squamous cell carcinoma (HNSCC)^[48], pancreatic cancer^[49], lung adenocarcinoma^[50], breast cancer^[51], and ovarian cancer^[38].

Therapeutic and prognostic relevance

In May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate^[52].

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

In addition, ATM has been determined as an inclusion criterion for the trials evaluating rucaparib efficacy in ovarian cancer^[53]or prostate cancer^[54], niraparib efficacy in pancreatic cancer (NCT03553004), prostate cancer (NCT02854436), and any malignancy, except prostate (NCT03207347), and talazoparib efficacy in advanced or metastatic cancer (NCT02286687), HER2-negative breast cancer (NCT02401347), prostate cancer (NCT03148795), and lung cancer (NCT03377556), respectively.

Besides, another randomized, double-blind Phase II trial in patients with metastatic gastric cancer has shown that addition of olaparib to paclitaxel significantly increased the overall survival in both the overall population and patients with low or undetectable ATM protein expression^[55]. Also, a prospective study in muscle-invasive bladder cancer patients suggested that genomic alternations in the DNA repair genes ATMs, RB1 and FANCC could be recognized as biomarkers predictive of response to cisplatin-based neoadjuvant chemotherapy^[27]. However, loss-of-function of the ATM-CHEK2-TP53 cascade is associated with resistance to anthracycline/mitomycin-containing chemotherapy in patients with breast cancer^[56].

A retrospective study of VICTOR trial demonstrated that ATM loss was associated with worse prognosis in colorectal cancer^[57].

BARD1 Homozygous deletion

Biological Impact

BARD1 (BRCA1 associated RING domain 1) interacts with BRCA1 to maintain the genomic stability^{[58][59]}. BARD1 mutations have been observed in patients with breast cancer, ovarian cancer and uterine cancer^{[60][61]}.

Therapeutic and prognostic relevance

In May 2020, the US FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate^[52].

In addition, BARD1 has been determined as an inclusion criterion for the trials evaluating olaparib efficacy in breast cancer (NCT04053322), rucaparib efficacy in ovarian cancer^[53] or prostate cancer^[54], niraparib efficacy in metastatic esophageal/gastroesophageal junction (GEJ)/proximal gastric adenocarcinoma (NCT03840967), pancreatic cancer (NCT03553004), and any malignancy, except prostate(NCT03207347), and talazoparib efficacy in HER2-negative breast cancer (NCT02401347), and lung cancer (NCT03377556), respectively.

Project ID: C22-M001-00020 Report No.: AA-22-00047 ONC Date Reported: Jan 17, 2022

BRCA2 Heterozygous deletion

Biological Impact

The BRCA2 gene encodes a tumor suppressor involved in the homologous recombination pathway for doublestrand DNA repair^[62]. BRCA2 has been implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^[63]. BRCA2 germline mutations confer an increased lifetime risk of developing breast, ovarian, prostate and pancreatic cancer, limited reports of related gastric cancer, and Fanconi anemia subtype D1-associated risk of brain cancer, medulloblastoma, pharyngeal cancer, chronic lymphocytic leukemia and acute myeloid leukemia^[64]. Somatic mutations in BRCA2 are highest in colorectal, non-small cell lung cancer (NSCLC), and ovarian cancers^[65].

Therapeutic and prognostic relevance

The U.S. FDA has approved olaparib in advanced ovarian cancer under several settings including (1) first-line maintenance treatment for patients with deleterious or suspected deleterious germline or somatic BRCA mutation who are in complete or partial response to first-line platinum-based chemotherapy^[66]; (2) in combination with bevacizumab as first-line maintenance treatment for patients with homologous recombination deficiency (HRD)positive status^[67]; (3) maintenance treatment for patients with germline BRCA-mutated recurrent ovarian cancer who are in complete or partial response to platinum-based chemotherapy^{[68][69]}; (4) treatment for patients with germline BRCA-mutated advanced ovarian cancer who have been treated with three or more prior lines of chemotherapy^[70]. In addition, olaparib has also been approved in patients with deleterious or suspected deleterious germline BRCA-mutated, HER2-negative metastatic breast cancer who have been treated with chemotherapy in either neoadjuvant, adjuvant, or metastatic setting^[71]and germline BRCA-mutated metastatic pancreatic cancer^[72]. Of note, in May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate^[52].

Rucaparib has been approved for the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in a complete or partial response to platinum-based chemotherapy and patients with BRCA-mutated epithelial ovarian, fallopian tube, or primary peritoneal cancer, who have been treated with two or more chemotherapies^{[53][73]}. In May 2020, the U.S. FDA also approved rucaparib to treat adult patients with a deleterious BRCA mutation-associated metastatic castration-resistant prostate cancer (mCRPC) who have been treated with androgen receptor-directed therapy and a taxane-based chemotherapy (TRITON2, NCT02952534). The U.S. FDA also approved niraparib for the maintenance treatment of patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in response to platinum-based chemotherapy and patients who have been treated with three or more prior lines of chemotherapy and associated with HRD positive status^{[74][75][76]}. In addition, talazoparib for patients with deleterious or suspected deleterious germline BRCA-mutated, HER2 negative locally advanced or metastatic breast cancer^[77].

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

Page 9 of 45

CDKN2C Heterozygous deletion

Biological Impact

CDKN2C gene encodes for cyclin-dependent kinase inhibitor 2C (CDKN2C) or p18 or INK4C, a member of the INK4 family of cyclin-dependent kinase inhibitors. CDKN2C binds to CDK4 or CDK6 and inhibits the activation of cyclin-dependent kinases (CDK) to prevent cell cycle progression at the G1 phase^[78]. CDKN2C has been implicated as a haploinsufficient tumor suppressor gene^[79] with one copy loss may promote cell cycle progression and induce proliferation in a variety of cancers^{[80][81][82]}. Loss of CDKN2C by gene deletion or inactivating mutation has been reported in multiple cancer types, including myeloma, lymphoma, glioblastoma, meningioma, testicular cancers, melanoma, hepatocellular carcinomas, thyroid, and parathyroid cancer^{[83][84][85][86][87][88][89][90][91]}.

Therapeutic and prognostic relevance

CDKN2C loss has been determined as an inclusion criterion for the trial evaluating abemaciclib and ribociclib efficacies in patients with glioblastoma and myeloma (NCT02981940, NCT04118036, NCT03834740, NCT02933736).

An in vitro study demonstrated that loss of CDKN2C activates cyclin-dependent kinases (CDK) and improves the sensitivity to palbociclib in glioblastoma multiforme (GBM) tumor cell^[92]. Deletion of CDKN2C was associated with poorer prognosis in myeloma, acute lymphoblastic leukemia, hepatocellular carcinomas, and diffuse large B cell lymphoma (DLBCL)^{[93][94][90][95]}.

CHEK1 Heterozygous deletion

Biological Impact

The checkpoint kinase 1 (CHEK1 or CHK1) gene encodes a protein kinase involved in transducing DNA damage signals and is required for both the intra-S phase and G2/M checkpoints^[96]. CHEK1 heterozygosity has been shown to cause haploinsufficient phenotypes that can contribute to tumorigenesis through inappropriate S phase entry, accumulation of DNA damage during replication, and failure to restrain mitotic entry^{[97][98]}. Despite acting as a tumor suppressor, homozygous loss-of-function mutations in CHEK1 have not been identified in tumors^[99], and CHEK1 mutations are extremely rare^[96]. Overexpression of CHEK1 has been observed in a variety of tumors, including liver cancer^[100], breast cancer^[101], colorectal cancer^[102], non-small cell lung (NSCLC) cancer^[103], and nasopharyngeal cancer^[104].

Therapeutic and prognostic relevance

In May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate^[52].

In addition, CHEK1 has been determined as an inclusion criterion for the trials evaluating olaparib efficacy in advanced solid tumors (NCT03297606; CAPTUR trial), rucaparib efficacy in ovarian cancer^[53], prostate cancer

Project ID: C22-M001-00020 Report No.: AA-22-00047 ONC

Date Reported: Jan 17, 2022

(NCT03533946), niraparib efficacy in pancreatic cancer (NCT03553004), and any malignancy, except prostate (NCT03207347), and talazoparib efficacy in lung cancer (NCT03377556), respectively.

Selective inhibitors for CHEK1 and CHEK2 alone or in combination with other agents are currently being investigated in clinical trials[105]

CHEK2 Heterozygous deletion

Biological Impact

The checkpoint kinase 2 (CHEK2 or CHK2) gene encodes a serine/threonine protein kinase involved in transducing DNA damage signals that are required for both the intra-S phase and G2/M checkpoints^[106]. CHEK2 heterozygosity has been shown to cause haploinsufficient phenotypes that can contribute to tumorigenesis through inappropriate S phase entry, accumulation of DNA damage during replication, and failure to restrain mitotic entry^{[97][98]}. CHEK2 aberrations are associated with glioblastoma, breast, ovarian, prostate, colorectal, gastric, thyroid, and lung cancers^{[107][108][109][110][111]}

Therapeutic and prognostic relevance

In May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castrationresistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate^[52].

In addition, CHEK2 has been determined as an inclusion criterion for the trials evaluating rucaparib efficacy in ovarian cancer or prostate cancer(NCT03533946)^{[53][54]}, niraparib efficacy in melanoma (NCT03925350), pancreatic cancer (NCT03553004), prostate cancer (NCT02854436), and any malignancy, except prostate (NCT03207347), and talazoparib efficacy in HER2-negative breast cancer (NCT02401347), prostate cancer (NCT03148795), and lung cancer (NCT03377556), respectively.

In a phase 2 trial, two prostate cancer patients harboring CHEK2 homozygous deletion was enrolled. One of the two patients had a response to olaparib[112].

LRP1B Homozygous deletion

Biological Impact

Low-density lipoprotein receptor protein 1B (LRP1B) is a surface protein involved in the receptor-mediated endocytosis and signal transduction (UniProtKB). LRP1B is known as a tumor suppressor and was reported among the top 10 most significantly deleted genes across 3312 human cancer specimens^[113]. Besides deletions, mutations and epigenetic silencing of LRP1B have been previously reported in lung adenocarcinoma^[50], hepatocellular carcinoma^[114], renal cell carcinoma^[115], thyroid cancer^[116], gastric cancer^[117], esophageal squamous cell carcinoma^[118], and colon cancer^[119].

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

Therapeutic and prognostic relevance

The prevalence of genetic alterations (mostly loss-of-function mutations) in the LRP1B gene was significantly higher in patients who responded to PD-1 blockade than that of the non-responders (11 vs. 1 mutations, 34% vs. 3%, respectively, P = 0.008). Moreover, an analysis of TCGA dataset showed that melanomas patients with LRP1B mutations had significantly higher tumor mutational load when compared with those without LRP1B mutations[120][121], as well as prolonged survival in response to immunotherapy. Moreover, a retrospective study has shown that pathogenic and likely pathogenic alternations of LRP1B gene are associated with higher ORR, improved **PFS** and OS in ICI treated advanced or metastatic malignancies (DOI: 10.1200/JCO.2020.38.15 suppl.3007)[122]. However, there were several limitations in this study, including limited sample size and unmeasured confounders. Therefore, further clinical validations are still needed.

A retrospective study has demonstrated that deletion or downregulation of LRP1B showed significant correlation with acquired chemotherapy resistance in patients with high-grade serous ovarian cancer (HGSC). Functional studies also showed that reducing LRP1B expression was sufficient to reduce the sensitivity of HGSC cell lines to liposomal doxorubicin but not to doxorubicin^[123]. Furthermore, deletion of LRP1B has been reported to be significantly associated with poor progression-free survival (6.4 m vs. 10.1 m) and overall survival (13.4 m vs. 17.8 m) in patients with glioblastoma^[124].

MRE11 Heterozygous deletion

Biological Impact

The MRE11 gene encodes a protein that forms the MRE11-RAD50-NBS (MRN) complex involved in sensing and repairing DNA double-strand breaks via homologous recombination and non-homologous end joining^{[125][126]}. MRE11 has been implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological function^[125]. The carrier of MRE11 mutation may confer elevated risks for numerous types of cancers including breast cancer, ovarian cancer, endometrial cancer, colorectal cancer, and lymphoid cancer^{[125][126][127][128][129][130][131]}.

Therapeutic and prognostic relevance

In a Phase II clinical trial (n=50), one castration-resistant prostate cancer patient harboring an MRE11 inactivating mutation responded to olaparib^[112]. Preclinically, loss of MRE11 also predicted sensitivity to PARP inhibitor talazoparib and ABT-888 in endometrial cancer^[132] and microsatellite unstable colorectal cancer (CRC) cell lines^[133].

CRC patients with tumor deficient of MRE11 showed initially reduced disease-free survival (DFS) and overall survival (OS) but improved long-term DFS and OS compared with patients with an intact MRE11^[134].

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

NF2 Heterozygous deletion

Biological Impact

The neurofibromin (NF2) gene encodes the protein Merlin, a tumor suppressor that functions as a negative regulator of the PI3K/AKT/mTOR pathway^{[135][136][137]}. NF2 is a haploinsufficient tumor suppressor gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^[138]. Inactivation germline mutations in the NF2 are associated with the hereditary neurofibromatosis type 2, a disorder characterized by the growth of noncancerous tumors in the nervous system^{[135][139]}. Somatic mutations or deletion of NF2 are frequently observed in human cancers, including 20-50% of pleural mesotheliomas^[140], 6% papillary renal cell carcinoma, 5% pancreas cancer, and 4% melanoma (cbioPortal; June 2015), and less frequently in other cancers^[141].

Therapeutic and prognostic relevance

Genomic alterations with activating effects on the mTOR signaling pathway have been identified to confer sensitivity to everolimus across multiple cancer types^{[142][143][144][145]}. There are at least two case studies indicating the clinical efficacy of everolimus in bladder cancer and urothelial carcinoma^{[146][147]}, both harboring NF2 truncating mutations. Preclinical evidence has shown the efficacy of MEK1/2 inhibitor selumetinib in KRAS-mutant thyroid cancer model with NF2 loss^[148].

Analysis of afatinib-plus-cetuximab-resistant biopsy specimens revealed a loss-of-function alteration in genes that modulate mTOR signaling pathway, including NF2 and TSC1^[149].

TSC1 Heterozygous deletion

Biological Impact

The tuberous sclerosis complex 1 (TSC1) gene encodes a tumor suppressor, hamartin, a key negative regulator of the mammalian target of rapamycin (mTOR) pathway^{[150][151]}. Mutations in TSC1/TSC2 tumor suppressor genes that result in inactivation of the complex are commonly found in patients with tuberous sclerosis^{[152][153][154]}, while LOH in TSC1/TSC2 has been identified in head and neck squamous cell carcinoma (HNSCC)^[155] and endometrial cancer^[156]. Loss of single TSC1 allele (haploinsufficiency) may provide a growth advantage to bladder epithelial cells, contributing to bladder cancer development^[157]. Both TSC1 and TSC2 mutations cause the autosomal dominant genetic disorder tuberous sclerosis complex (TSC), in which individuals develop a variety of benign but often progressive neoplasms^[158].

Therapeutic and prognostic relevance

Genomic alterations with activating effects of the mTOR signaling pathway (including deletion/inactivation of TSC1/TSC2) have been shown to confer sensitivity to everolimus across multiple neoplasms, such as bladder tumors^[146], gastric, sarcoma, thyroid cancer, and HNSCC^[145]. There were case reports demonstrated the efficacy of sirolimus in malignant uterine perivascular epithelioid cell tumors (PEComa) patients harboring mutations/deletions in TSC1 and TSC2 genes, and temsirolimus in PEComa patients with hyperactivated mTOR

AG4-QP4001-02(05) Page 12 of 45

葉哲豪

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

pathway. Genomic profiling analysis of GOG248, a Phase II study of temsirolimus or temsirolimus and alternating megestrol acetate and tamoxifen for advanced endometrial cancer showed that mutations in AKT1, TSC1 and TSC2 may predict clinical benefit from temsirolimus^[159]. Recent studies indicate that there are mTORC1-independent signaling pathways downstream of hamartin-tuberin, which may represent new therapeutic targets^[160].

葉哲豪

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

US FDA-APPROVED DRUG(S)

Abemaciclib (VERZENIO)

Abemaciclib is a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor. Abemaciclib is developed and marketed by Eli Lilly under the trade name VERZENIO.

FDA Approval Summary of Abemaciclib (VERZENIO)

	Breast cancer (Approved on 2021/10/12)	
monarchE	HR-positive, HER2-negative	
NCT03155997	Abemaciclib + tamoxifen/aromatase inhibitor vs. Tamoxifen/aromatase inhibitor	
	[IDFS at 36 months(%): 86.1 vs. 79.0]	
	Breast cancer (Approved on 2018/02/26)	
MONARCH 3 ^[161]	HR-positive, HER2-negative	
NCT00246621	Abemaciclib + anastrozole/letrozole vs. Placebo + anastrozole/letrozole	
	[PFS(M): 28.2 vs. 14.8]	
	Breast cancer (Approved on 2017/09/28)	
MONARCH 1 ^[162]	HR-positive, HER2-negative	
NCT02102490	Abemaciclib	
	[ORR(%): 19.7 vs. 17.4]	
	Breast cancer (Approved on 2017/09/28)	
MONARCH 2 ^[163]	HR-positive, HER2-negative	
NCT02107703	Abemaciclib + fulvestrant vs. Placebo + fulvestrant	
	[PFS(M): 16.4 vs. 9.3]	

Everolimus (AFINITOR)

Everolimus, a derivative of sirolimus, works as an inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and blocks mTORC1-mediated downstream signals for cell growth, proliferation, and survival. Everolimus is developed and marketed by Novartis under the trade name AFINITOR.

FDA Approval Summary of Everolimus (AFINITOR)

	Lung or gastrointestinal neuroendocrine tumor (Approved on 2016/02/26)
RADIANT-4 ^[164]	-
NCT01524783	Everolimus vs. Placebo
	[PFS(M): 11 vs. 3.9]
	Breast cancer (Approved on 2012/07/20)
BOLERO-2 ^[165]	ER+/HER2-
NCT00863655	Everolimus + exemestane vs. Placebo + exemestane
	[PFS(M): 7.8 vs. 3.2]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

ACTOnco® + Report

	Pancreatic neuroendocrine tumor (Approved on 2011/05/05)
RADIANT-3 ^[166]	-
NCT00510068	Everolimus vs. Placebo
	[PFS(M): 11 vs. 4.6]
	Subependymal giant cell astrocytoma (Approved on 2010/10/29)
EXIST-1 ^[167]	-
NCT00789828	Everolimus vs. Placebo
	[ORR(%): 35.0]
	Renal cell carcinoma (Approved on 2009/05/30)
RECORD-1 ^[168]	-
NCT00410124	Everolimus vs. Placebo
	[PFS(M): 4.9 vs. 1.9]

Niraparib (ZEJULA)

Niraparib is an oral, small molecule inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1 and -2 (PARP-1, -2). Niraparib is developed and marketed by Tesaro under the trade name ZEJULA.

FDA Approval Summary of Niraparib (ZEJULA)

	Ovarian cancer (Approved on 2019/10/23)
QUADRA ^[76] NCT02354586	HRD-positive (defined by either a deleterious or suspected deleterious BRCA mutation, and/or genomic instability)
	Niraparib [ORR(%): 24.0, DOR(M): 8.3]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on
2101/2[75]	2017/03/27)
NOVA ^[75]	gBRCA+ CR/PR to platinum-based chemotherapy
NCT01847274	Niraparib vs. Placebo
	[PFS(M): 21 vs. 5.5]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on
NOVA ^[75]	2017/03/27)
NOVA	gBRCA- CR/PR to platinum-based chemotherapy
14010104/2/4	Niraparib vs. Placebo
	[PFS(M): 9.3 vs. 3.9]

葉哲豪

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

FDA Approval Summary of Olaparib (LYNPARZA)

DA Approvai Saminary o	t Olaparib (LYNPARZA)
	Prostate cancer (Approved on 2020/05/19)
PROfound ^[52] NCT02987543	ATMm, BRCA1m, BRCA2m, BARD1m, BRIP1m, CDK12m, CHEK1m, CHEK2m,
	FANCLm, PALB2m, RAD51Bm, RAD51Cm, RAD51Dm, RAD54Lm
NC102967545	Olaparib vs. Enzalutamide or abiraterone acetate
	[PFS(M): 5.8 vs. 3.5]
	Ovarian cancer (Approved on 2020/05/08)
PAOLA-1 ^[67]	HRD-positive (defined by either a deleterious or suspected deleterious BRCA
NCT02477644	mutation, and/or genomic instability)
NC102477644	Olaparib + bevacizumab vs. Placebo + bevacizumab
	[PFS(M): 37.2 vs. 17.7]
	Pancreatic adenocarcinoma (Approved on 2019/12/27)
POLO ^[72]	Germline BRCA mutation (deleterious/suspected deleterious)
NCT02184195	Olaparib vs. Placebo
	[ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on
SOLO-1 ^[66]	2018/12/19)
NCT01844986	Germline or somatic BRCA-mutated (gBRCAm or sBRCAm)
NC101044300	Olaparib vs. Placebo
	[PFS(M): NR vs. 13.8]
	Breast cancer (Approved on 2018/02/06)
OlympiAD ^[71]	Germline BRCA mutation (deleterious/suspected deleterious) HER2-negative
NCT02000622	Olaparib vs. Chemotherapy
	[PFS(M): 7 vs. 4.2]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on
SOLO-2/ENGOT-Ov21 ^[169]	2017/08/17)
NCT01874353	gBRCA+
	Olaparib vs. Placebo
	[PFS(M): 19.1 vs. 5.5]

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

ACTOnco®+ Report

Study19^[170] NCT00753545	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)
	Olaparib vs. Placebo
	[PFS(M): 8.4 vs. 4.8]
	Ovarian cancer (Approved on 2014/12/19)
Study 42 ^[171]	Germline BRCA mutation (deleterious/suspected deleterious)
NCT01078662	Olaparib
	[ORR(%): 34.0, DOR(M): 7.9]

Palbociclib (IBRANCE)

Palbociclib is an oral, cyclin-dependent kinase (CDK) inhibitor specifically targeting CDK4 and CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Palbociclib is developed and marketed by Pfizer under the trade name IBRANCE.

FDA Approval Summary of Palbociclib (IBRANCE)

• • • • • • • • • • • • • • • • • • • •	
	Breast cancer (Approved on 2017/03/31)
PALOMA-2 ^[172]	ER+, HER2-
NCT01740427	Palbociclib + letrozole vs. Placebo + letrozole
	[PFS(M): 24.8 vs. 14.5]
	Breast cancer (Approved on 2016/02/19)
PALOMA-3 ^[173]	ER+, HER2-
NCT01942135	Palbociclib + fulvestrant vs. Placebo + fulvestrant
	[PFS(M): 9.5 vs. 4.6]

Ribociclib (KISQALI)

Ribociclib is a cyclin-dependent kinase (CDK) inhibitor specifically targeting cyclin D1/CDK4 and cyclin D3/CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Ribociclib is developed by Novartis and Astex Pharmaceuticals and marketed by Novartis under the trade name KISQALI.

FDA Approval Summary of Ribociclib (KISQALI)

	Breast cancer (Approved on 2017/03/13)	
MONALEESA-2 ^[174]	HR+, HER2-	, ,
NCT01958021	Ribociclib vs. Letrozole	
	[PFS(M): NR vs. 14.7]	

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 17 of 45

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

Rucaparib (RUBRACA)

Rucaparib is an inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1, -2 and -3 (PARP-1, -2, -3). Rucaparib is developed and marketed by Clovis Oncology under the trade name RUBRACA.

FDA Approval Summary of Rucaparib (RUBRACA)

Prostate cancer (Approved on 2020/05/15)	
TRITON2	gBRCA+, sBRCA
NCT02952534	Rucaparib
	[ORR(%): 44.0, DOR(M): NE]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on
ARIEL3 ^[53]	2018/04/06)
NCT01968213	All[HRD]tBRCA
NC101908213	Rucaparib vs. Placebo
	[PFS (All)(M): 10.8 vs. 5.4, PFS (HRD)(M): 13.6 vs. 5.4, PFS (tBRCA)(M): 16.6 vs. 5.4]
	Ovarian cancer (Approved on 2016/12/19)
ARIEL2 ^[175] Germline and/or somatic BRCA mutation	
NCT01482715, NCT01891344	Rucaparib
	[ORR(%): 54.0]

Talazoparib (TALZENNA)

Talazoparib is an inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1 and PARP2. Talazoparib is developed and marketed by Pfizer under the trade name TALZENNA.

FDA Approval Summary of Talazoparib (TALZENNA)

	Breast cancer (Approved on 2018/10/16)		
EMBRACA ^[77]	Germline BRCA mutation (deleterious/suspected deleterious) HER2-negative		
NCT01945775	Talazoparib vs. Chemotherapy		
	[PFS(M): 8.6 vs. 5.6]		

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

Temsirolimus (TORISEL)

Temsirolimus is a soluble ester of sirolimus (rapamycin, brand-name drug Rapamune) and functions as an inhibitor of mammalian target of rapamycin complex (mTORC). The inhibitory molecular mechanism is similar to Everolimus. Temsirolimus is developed by Wyeth Pharmaceuticals and marketed by Pfizer under the trade name TORISEL.

FDA Approval Summary of Temsirolimus (TORISEL)

Renal cell carcinoma (Approved on 2007/05/30)

[176]

NCT00065468

Temsirolimus vs. Ifn- α

[OS(M): 10.9 vs. 7.3]

d=day; w=week; m=month

AG4-QP4001-02(05)

Page 19 of 45

葉哲豪

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

ONGOING CLINICAL TRIALS

Clinical trials shown below were selected by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

葉哲豪

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

DETAILED TEST RESULTS

SINGLE NUCLEOTIDE AND SMALL INDEL VARIANTS

Gene	Chr	Exon	Accession Number	cDNA Change	Amino Acid Change	Coverage	Allele Frequency	COSMIC ID
ALK	2	9	NM_004304	c.1648C>T	L550F	2077	35.0%	-
BIRC2	11	2	NM_001166	c.185T>G	V62G	2203	53.7%	-
BRCA2	13	11	NM_000059	c.6322C>T	R2108C	278	10.4%	-
CDH1	16	8	NM_004360	c.1018A>G	T340A	99	85.9%	COSM19821
CYP2C8	10	8	NM_000770	c.1189G>A	D397N	76	57.9%	COSM5714566
FBXW7	4	-	NM_033632	c.1644+6A>C	Splice region	1269	44.4%	-
KAT6A	8	15	NM_006766	c.2986A>G	S996G	615	86.0%	-
KIT	4	16	NM_000222	c.2263G>A	A755T	880	54.3%	COSM7335355
MUC16	19	3	NM_024690	c.20635G>A	A6879T	1731	57.8%	-
MUC16	19	3	NM_024690	c.23778C>A	S7926R	1042	39.1%	-
NOTCH4	6	30	NM_004557	c.5635G>C	A1879P	293	82.6%	-
NOTCH4	6	21	NM_004557	c.3670T>G	F1224V	513	62.8%	-
PMS2	7	11	NM_000535	c.1928A>G	Q643R	1316	49.8%	-
RB1	13	2	NM_000321	c.219_220dup	A74fs	87	63.2%	COSM432450
RET	10	6	NM_020975	c.1084C>A	L362I	1057	34.9%	-

Mutations with clinical relevance are highlighted in red.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

ACTOnco®+ Report

COPY NUMBER VARIANTS (CNVS)

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

HOTSPOT GENOTYPES

Listed variants are biomarkers or hotspots that are recommended as standard care by the NCCN or other expert panels and not necessarily FDA-recognized for a particular indication. The genotypes have been manually checked to ensure sufficient coverage for each hotspot of the target gene.

Gene	Variant	Genotype Detected
BRAF	V600X	Not detected
EGFR	A763_Y764insFQEA, E709K, E709_T710delinsD, Exon 19 deletion, Exon 19 insertion, Exon 20 insertion, G719A/C/D/S, L747P, L833V, L858R, L861Q/R, S768I, T790M	Not detected
IDH2	R140Q, R172G/K/M/S	Not detected
KIT	A502_Y503dup, D419del, D579del, D816F/V/Y, D820A/E/G/Y, E554_I571del, E554_K558del, E554_V559del, Exon 11 mutation, F522C, H697Y, I563_L576del, I653T, K550_W557del, K558N, K558_E562del, K558_V559del, K558delinsNP, K642E, M552_W557del, N505I, N564_Y578del, N822H/I/K/Y, P551_M552del, P573_D579del, P577_D579del, P577_W582delinsPYD, P838L, Q556_K558del, T417_D419delinsI, T417_D419delinsRG, T574_Q575insTQLPYD, V530I, V555_L576del, V555_V559del, V559A/C/D/G, V559_V560del, V559del, V560D/G, V560del, V569_L576del, V654A, W557G/R, W557_K558del, Y553N, Y553_K558del, Y570H, Y578C	Not detected
KRAS	A146T/V/P, G12X, G13X, Q61X	Not detected
MET	D1028H/N/Y	Not detected
NRAS	G12X, G13X, Q61X	Not detected
PDGFRA	A633T, C450_K451insMIEWMI, C456_N468del, C456_R481del, D568N, D842I/V, D842_H845del, D842_M844del, D846Y, E311_K312del, G853D, H650Q, H845Y, H845_N848delinsP, I843del, N659K/R/S, N848K, P577S, Q579R, R560_V561insER, R748G, R841K, S566_E571delinsR, S584L, V469A, V536E, V544_L545insAVLVLLVIVIISLI, V561A/D, V561_I562insER, V658A, W559_R560del, Y375_K455del, Y555C, Y849C/S	Not detected
PIK3CA	C420R, E542K/V, E545A/D/G/K, H1047X, Q546E/R	Not detected

V600X= any mutation in the valine (V) at amino acid 600 being replaced by a different amino acid. G12X = any mutation in the glycine (G) at amino acid 12 being replaced by a different amino acid. G13X= any mutation in the glycine (G) at amino acid 13 being replaced by a different amino acid. Q61X = any mutation in the glutamine (Q) at amino acid 61 being replaced by a different amino acid. H1047X = any mutation in the histidine (H) at amino acid 1047 being replaced by a different amino acid.

Gene	Copy Number Detected
CDK4	2
EGFR	2
ERBB2	2
MET	2

Copy number ≥ 8 is considered amplification

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

P 葉哲豪

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

ACTOnco® + Report

Other known alterations that are associated with sensitivity, resistance, and toxicity to therapies.

Gene	Variant	Genotype Detected
AKT1	E17K	Not detected
ALK	C1156Y, D1203N, G1202R, L1152R, S1206Y, T1151_L1152insT	Not detected
BRAF	K601E, L597V/Q/R/S	Not detected
DPYD	D949V, I560S, splice-site mutation	Not detected
EGFR	A750P, C797S/Y, S492R	Not detected
ERBB2	V659E	Not detected
ESR1	D538G, E380Q, L469V, L536H/P/Q/R, S432L, S463P, V422del, V534E, Y537C/N/S	Not detected
FGFR3	G370C, G380R, K650E/N/R/M/T/Q, R248C, S249C, S371C, Y373C	Not detected
IDH1	R132C/G/H/L/Q/S	Not detected
MAP2K1	D67N, E203K, F53L, K57E/N, P124S, Q56P, Q56_V60del, R47Q, R49L, S222D	Not detected
PTEN	R130*/fs/G/L/P/Q	Not detected
TPMT	A154T, Y240C	Not detected

Gene	Copy Number Detected 1 2					
FGFR1		1				
MDM2		2				
MDM4		3				

Copy number ≥ 8 is considered amplification

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

TEST DETAILS

ABOUT ACTOnco®+

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (INDELs) (≤ 15 nucleotides) and large-scale genomic alterations like copy number variations (CNVs).

See ACTOnco®+ Gene List' Section for details of gene sequenced.

DATABASE USED

- Reference genome: human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210208)
- ACT Genomics in-house database

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted genomic DNA was amplified using four pools of primer pairs targeting coding exons of analyzed genes. Amplicons were ligated with barcoded adaptors. Quality and quantity of amplified library were determined using the fragment analyzer (AATI) and Qubit (Invitrogen). Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system (Thermo Fisher Scientific) according to the Ion PI Hi-Q Chef Kit protocol (Thermo Fisher Scientific). Sequencing was performed on the Ion Proton or Ion S5 sequencer (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite (version 5.10). Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (INDELs) were identified using the Torrent Variant Caller plug-in (version 5.10). The coverage was down-sampled to 4000. VEP (Variant Effect Predictor) (version 100) was used to annotate every variant using databases from Clinvar (version 20210208), COSMIC v.92 and Genome Aggregation database r2.1.1. Variants with coverage \geq 25, allele frequency \geq 5% and actionable variants with allele frequency \geq 2% were retained.

This test provides uniform coverage of the targeted regions, enabling target base coverage at $100x \ge 85\%$ with a mean coverage $\ge 500x$.

Variants reported in Genome Aggregation database r2.1.1 with > 1% minor allele frequency (MAF) were

Project ID: C22-M001-00020 Report No.: AA-22-00047 ONC

Date Reported: Jan 17, 2022

considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number variations (CNVs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations from samples in ACT Genomics in-house database.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

STANDARD OPERATING PROCEDURES (SOPS)

Standard operating procedures (SOPs) are shown below:

- AG2-QP-15 Specimen Management Procedure
- AG3-QP16-03 SOP of Cancer Cell DNA and RNA Extraction
- AG3-QP16-07 SOP of Nucleic Acid Extraction with QIAsymphony SP
- AG3-QP16-08 SOP of FFPE Nucleic Acid Extraction
- AG3-QP16-10 SOP of HE Staining
- AG3-QP16-13 SOP of Library Construction and Preparation
- AG3-QP16-17 SOP of DNA Quantification with Qubit Fluorometer
- AG3-QP16-20 SOP of CE-Fragment Analysis
- AG3-QP16-22 SOP of Variant Calling
- AG3-QP16-24 SOP of Ion Torrent System Sequencing Reaction
- AG3-QP16-26 SOP of Ion Chef Preparation

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

- AG3-QP16-35 SOP of Variant Annotation
- AG3-QP16-96 SOP of Manual Inspection for SNVIndel Variant
- AG3-QP16-95 SOP of Manual Inspection for Copy Number Variant
- AG3-QP40-08 (02) Standard protocol for variant interpretation, curation and classification
- AG3-QP16-41 SOP of The user manual for clinical report system (CRS)

LIMITATIONS

This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.

NOTES

We do not exclude the possibility that pathogenic variants may not be reported by one or more of the tools and the parameters used.

PATHOLOGY EVALUATION

H&E-stained section No.: <u>S11024511A</u>

• Collection site: Vertebra

• Examined by: Dr. Pei-Yi Chu

• Estimated neoplastic nuclei (whole sample): The percentage of viable tumor cells in total cells in the whole slide (%): 85%

The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 85%

The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%

The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%

Additional comment: NA

Manual macrodissection: <u>Not performed</u>

The outline highlights the area of malignant neoplasm annotated by a pathologist.

葉哲豪

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

SPECIMEN PHOTO(S)

AA-22 00047	S110-24511A AA-22 00047	S110-24511A AA-22 00047	S110-24511A AA-22 00047	S110-24511A AA-22 00047	AA-22 00047	S110-24511A AA-22 00047	S110-245114 AA-22 00047
2023-01-04 VOHTPE	2022-01-04 VOHTPE	2022-01-04 VOHTPE	2022-01-04 VOHTPE	2022-01-04 VGHTPE	2022-01-04 VOHTPE	2022-01-04 VOHTPE	2022-01-04 VOHTPE
A LA	Con Line	10000					
5475		THE R	12/201	Philip III			
			THE REST			CONT.	
- 1 1							
					140 Marie		
			F 12 1 19				

Collection date: Aug 2021

Facility retrieved: 臺北榮總

RUN QC

Panel: ACTOnco®+ Mean Depth: 999x

Target Base Coverage at 100x: 91%

AG4-QP4001-02(05)

葉哲豪

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

ACTOnco®+ GENE LIST

ABCB1*	AURKB	CBL	CDKN2B	E2F3	FAT1	GRIN2A	JAK2	MED12	NOTCH4	PMS1	RAD51D	SLCO1B3*	TNFRSF1
ABCC2*	AXIN1	CCNA1	CDKN2C	EGFR	FBXW7	GSK3B	JAK3	MEF2B	NPM1	PMS2	RAD52	SMAD2	TNFSF11
ABCG2*	AXIN2	CCNA2	CEBPA*	EP300	FCGR2B	GSTP1*	JUN*	MEN1	NQ01*	POLB	RAD54L	SMAD3	TOP1
ABL1	AXL	CCNB1	CHEK1	EPCAM	FGF1*	GSTT1*	KAT6A	MET	NRAS	POLD1	RAF1	SMAD4	TP53
ABL2	B2M	CCNB2	СНЕК2	ЕРНА2	FGF10	HGF	KDM5A	MITF	NSD1	POLE	RARA	SMARCA4	TPMT*
ADAMTS1	BAP1	ССМВЗ	CIC	ЕРНА3	FGF14	HIF1A	КDM5C	MLH1	NTRK1	PPARG	RB1	SMARCB1	TSC1
ADAMTS13	BARD1	CCND1	CREBBP	ЕРНА5	FGF19*	HIST1H1C*	KDM6A	MPL	NTRK2	PPP2R1A	RBM10	SMO	TSC2
ADAMTS15	BCL10	CCND2	CRKL	ЕРНА7	FGF23	HIST1H1E*	KDR	MRE11	NTRK3	PRDM1	RECQL4	SOCS1*	TSHR
ADAMTS16	BCL2*	CCND3	CRLF2	ЕРНВ1	FGF3	HNF1A	KEAP1	MSH2	РАКЗ	PRKAR1A	REL	SOX2*	TYMS
ADAMTS18	BCL2L1	CCNE1	CSF1R	ERBB2	FGF4*	HR	КІТ	MSH6	PALB2	PRKCA	RET	SOX9	U2AF1
ADAMTS6	BCL2L2*	CCNE2	CTCF	ERBB3	FGF6	HRAS*	КМТ2А	MTHFR*	PARP1	PRKCB	RHOA	SPEN	UBE2A
ADAMTS9	BCL6	CCNH	CTLA4	ERBB4	FGFR1	HSP90AA1	кмт2С	MTOR	PAX5	PRKCG	RICTOR	SPOP	UBE2K
ADAMTSL1	BCL9	CD19	CTNNA1	ERCC1	FGFR2	HSP90AB1	KMT2D	MUC16	PAX8	PRKCI	RNF43	SRC	UBR5
ADGRA2	BCOR	CD274	CTNNB1	ERCC2	FGFR3	HSPA4	KRAS	MUC4	PBRM1	PRKCQ	ROS1	STAG2	UGT1A1
ADH1C*	BIRC2	CD58	CUL3	ERCC3	FGFR4	HSPA5	LCK	мис6	PDCD1	PRKDC	RPPH1	STAT3	USH2A
AKT1	BIRC3	CD70*	CYLD	ERCC4	FH	IDH1	LIG1	митүн	PDCD1LG2	PRKN	RPTOR	STK11	VDR*
AKT2	BLM	CD79A	CYP1A1*	ERCC5	FLCN	IDH2	LIG3	МҮС	PDGFRA	PSMB8	RUNX1	SUFU	VEGFA
АКТЗ	BMPR1A	CD79B	CYP2B6*	ERG	FLT1	IFNL3*	LMO1	MYCL	PDGFRB	PSMB9	RUNX1T1	SYK	VEGFB
ALDH1A1*	BRAF	CDC73	CYP2C19*	ESR1	FLT3	IGF1	LRP1B	MYCN	PDIA3	PSME1	RXRA	SYNE1	VHL
ALK	BRCA1	CDH1	CYP2C8*	ESR2	FLT4	IGF1R	LYN	MYD88	PGF	PSME2	SDHA	TAF1	WT1
AMER1	BRCA2	CDK1	CYP2D6	ETV1	FOXL2*	IGF2	MALT1	NAT2*	PHOX2B*	PSME3	SDHB	TAP1	XIAP
APC	BRD4	CDK12	CYP2E1*	ETV4	FOXP1	IKBKB	MAP2K1	NBN	PIK3C2B	РТСН1	SDHC	TAP2	XPO1
AR	BRIP1	CDK2	CYP3A4*	EZH2	FRG1	IKBKE	МАР2К2	NEFH	PIK3C2G	PTEN	SDHD	ТАРВР	XRCC2
ARAF	BTG1*	CDK4	CYP3A5*	FAM46C	FUBP1	IKZF1	МАР2К4	NF1	РІКЗСЗ	PTGS2	SERPINB3	ТВХЗ	ZNF217
ARID1A	BTG2*	CDK5	DAXX	FANCA	GATA1	IL6	МАРЗК1	NF2	PIK3CA	PTPN11	SERPINB4	TEK	
ARID1B	ВТК	CDK6	DCUN1D1	FANCC	GATA2	IL7R	МАРЗК7	NFE2L2	РІКЗСВ	PTPRD	SETD2	TERT	
ARID2	BUB1B	CDK7	DDR2	FANCD2	GATA3	INPP4B	МАРК1	NFKB1	PIK3CD	PTPRT	SF3B1	TET1	
ASXL1	CALR	CDK8	DICER1	FANCE	GNA11	INSR	МАРК3	NFKBIA	РІКЗСG	RAC1	SGK1	TET2	
ATM	CANX	CDK9	DNMT3A	FANCF	GNA13	IRF4	MAX	NKX2-1*	PIK3R1	RAD50	SH2D1A*	TGFBR2	
ATR	CARD11	CDKN1A	DOT1L	FANCG	GNAQ	IRS1	MCL1	NOTCH1	PIK3R2	RAD51	SLC19A1*	TMSB4X*	
ATRX	CASP8	CDKN1B	DPYD	FANCL	GNAS	IRS2*	MDM2	NOTCH2	PIK3R3	RAD51B	SLC22A2*	TNF	
AURKA	CBFB	CDKN2A	DTX1	FAS	GREM1	JAK1	MDM4	NOTCH3	PIM1	RAD51C	SLCO1B1*	TNFAIP3	

^{*}Analysis of copy number alteration not available.

Email: service@actgenomics.com T: +886-2-2795-3660 | F: +886-2-2795-5016

Project ID: C22-M001-00020 Report No.: AA-22-00047 ONC Date Reported: Jan 17, 2022

DISCLAIMER

Legal Statement

This test was developed by ACT Genomics and its performing characteristics were determined by ACT Genomics. This test result is to be used for clinical consultative purposes only and is not intended as a substitute for a clinical guidance of your doctor or another qualified medical practitioner. It should not be regarded as investigational or used for research.

The detection of genomic alterations does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; the detection of no genomic alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Treatment Decisions are the Responsibility of the Physician

Decisions on clinical care and treatment should be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, including physical examinations, information from other diagnostics tests and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this test, or the information contained in this report.

In terms of consulting a different treating physician, the patient must file an application and fulfill the listed criteria for ACT Genomics to provide the patient's report to the assigned physician. The report may not be copied or reproduced except in its totality.

Genetic Alterations and Drugs Not Presented in Ranked Order

In this report, neither any biomarker alteration nor any drug associated with a potential clinical benefit (or potential lack of clinical benefit), are ranked in order of potential or predicted efficacy.

Level of Evidence Provided

Drugs with a potential clinical benefit (or potential lack of clinical benefit) are evaluated for level of published evidence with at least one clinical efficacy case report or preclinical study. We endeavor to keep the information in the report up to date. However, customers must be aware that scientific understanding and technologies change over time, and we make no warranty as to the accuracy, suitability or currency of information provided in this report at any time.

No Guarantee of Clinical Benefit

This report makes no promises or guarantees about the effectiveness of a particular drug or any treatment procedure in any disease or in any patient. This report also makes no promises or guarantees that a drug without an association of reportable genomic alteration will, in fact, provide no clinical benefit.

Liability

ACT Genomics is not affiliated with any medical facility or medical practitioner. We provide information for informational purposes only, therefore, ACT Genomics and their employees cannot be held responsible for any direct, indirect, special, incidental or consequential damages that may arise from the use of information provided in the report.

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

免責聲明

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。 本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關 專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因, 行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依 照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: service@actgenomics.com T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05)

Page 31 of 45

葉哲豪

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

葉哲豪

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

1: Olaparib, Niraparib, Rucaparib, Talazoparib

AG4-QP4001-02(05)

葉哲豪

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

ACTOnco®+ Report

REFERENCES

- PMID: 17522512; 2007, Ann Surg;245(6):873-9
 CDH1 truncating mutations in the E-cadherin gene: an indication for total gastrectomy to treat hereditary diffuse gastric cancer.
- 2. PMID: 8033105; 1994, Cancer Res;54(14):3845-52 E-cadherin gene mutations provide clues to diffuse type gastric carcinomas.
- 3. PMID: 7748170; 1995, Bioessays;17(2):97-9 E-cadherin as a tumor (invasion) suppressor gene.
- PMID: 10439038; 1999, Oncogene;18(30):4301-12
 Tumour-associated E-cadherin mutations alter cellular morphology, decrease cellular adhesion and increase cellular motility.
- 5. PMID: 2257621; 1990, Cell;63(5):1033-8
 Single amino acid substitutions in one Ca2+ binding site of uvomorulin abolish the adhesive function.
- PMID: 11729114; 2001, Gastroenterology;121(6):1348-53
 Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families.
- 7. PMID: 11313896; 2001, Oncogene;20(12):1525-8
 E-cadherin gene (CDH1) promoter methylation as the second hit in sporadic diffuse gastric carcinoma.
- 8. PMID: 21552209; 2011, Mod Pathol;24(9):1237-47
 Loss of E-cadherin expression and outcome among patients with resectable pancreatic adenocarcinomas.
- PMID: 18837082; 2008, World J Gastroenterol;14(37):5665-73
 Reduced expression of E-cadherin/catenin complex in hepatocellular carcinomas.
- PMID: 22716209; 2012, APMIS;120(7):539-48
 Loss of E-cadherin expression predicts disease recurrence and shorter survival in colorectal carcinoma.
- PMID: 21373750; 2011, Int J Mol Med;27(5):625-35
 Hypermethylation-modulated down-regulation of CDH1 expression contributes to the progression of esophageal cancer.
- 12. PMID: 25187893; 2014, Ann Lab Med;34(5):386-9
 Presymptomatic identification of CDH1 germline mutation in a healthy korean individual with family history of gastric cancer.
- 13. PMID: 11968083; 2002, Hum Mutat;19(5):510-7
 Screening E-cadherin in gastric cancer families reveals germline mutations only in hereditary diffuse gastric cancer kindred.
- 14. PMID: 10896919; 2000, Gut;47(2):262-7
 The E-cadherin gene (CDH1) variants T340A and L599V in gastric and colorectal cancer patients in Korea.
- 15. PMID: 19268661; 2009, Exp Cell Res;315(8):1393-402E-cadherin mutations and cell motility: a genotype-phenotype correlation.
- 16. PMID: 10667580; 2000, Cancer Res;60(2):298-304
 Separating favorable from unfavorable prognostic markers in breast cancer: the role of E-cadherin.

Project ID: C22-M001-00020 Report No.: AA-22-00047 ONC Date Reported: Jan 17, 2022

ACTOnco® + Report

- 17. PMID: 9134039; 1997, Virchows Arch;430(4):285-9 Loss of E-cadherin expression associated with lymph node metastases in small breast carcinomas.
- PMID: 26425077; 2015, Drug Des Devel Ther;9():5277-85 Clinicopathological significance and potential drug target of CDH1 in breast cancer: a meta-analysis and literature review.
- 19. PMID: 8604681; 1996, Am J Clin Pathol;105(4):394-402 Reduced E-cadherin expression is associated with invasiveness and unfavorable prognosis in breast cancer.
- 20. PMID: 26857262; 2016, Cancer Res;76(7):1724-32 Distinct Subtypes of Gastric Cancer Defined by Molecular Characterization Include Novel Mutational Signatures with Prognostic Capability.
- 21. PMID: 22293180; 2012, J Clin Invest;122(2):425-34 Understanding pRb: toward the necessary development of targeted treatments for retinoblastoma.
- 22. PMID: 6320372; 1984, Science; 223(4640):1028-33 Retinoblastoma: clues to human oncogenesis.
- 23. PMID: 27308386; 2015, Mol Cell Oncol;2(1):e968069 Conditional haploinsufficiency of the retinoblastoma tumor suppressor gene.
- 24. PMID: 23687339; 2013, Cancer Res;73(14):4247-55 Rb1 haploinsufficiency promotes telomere attrition and radiation-induced genomic instability.
- 25. PMID: 28169375; 2017, Sci Rep;7():42056 The Rb1 tumour suppressor gene modifies telomeric chromatin architecture by regulating TERRA expression.
- 26. PMID: 15884040; 2005, Hum Mutat; 25(6): 566-74 Sensitive multistep clinical molecular screening of 180 unrelated individuals with retinoblastoma detects 36 novel mutations in the RB1 gene.
- 27. PMID: 26238431; 2015, Eur Urol;68(6):959-67 Defects in DNA Repair Genes Predict Response to Neoadjuvant Cisplatin-based Chemotherapy in Muscle-invasive Bladder Cancer.
- 28. PMID: 22811582; 2012, Clin Cancer Res;18(18):5110-22 RB-pathway disruption is associated with improved response to neoadjuvant chemotherapy in breast cancer.
- 29. PMID: 21358261; 2011, Cell Cycle;10(6):956-62 A non-functional retinoblastoma tumor suppressor (RB) pathway in premenopausal breast cancer is associated with resistance to tamoxifen.
- 30. PMID: 17160137; 2007, J Clin Invest;117(1):218-28 The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer.
- PMID: 29236940; 2018, Ann Oncol;29(3):640-645 31. Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer.
- 32. PMID: 29483214; 2018, Mol Cancer Ther;17(5):897-907 Preclinical Activity of Abemaciclib Alone or in Combination with Antimitotic and Targeted Therapies in Breast Cancer.
- PMID: 22941188; 2012, Nat Genet; 44(10):1104-10 Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer.

AG4-QP4001-02(05) Page 36 of 45

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

ACTOnco®+ Report

- 34. PMID: 22941189; 2012, Nat Genet;44(10):1111-6
 Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer.
- 35. PMID: 25846096; 2015, Lancet Oncol;16(4):e165-72

 Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin.
- 36. PMID: 22079189; 2012, Trends Biochem Sci;37(1):15-22
 The ATM protein kinase and cellular redox signaling: beyond the DNA damage response.
- 37. PMID: 1548942; 1992, Leukemia; 6 Suppl 1():8-13 Cancer susceptibility in ataxia-telangiectasia.
- 38. PMID: 12810666; 2003, Cancer Res;63(12):3325-33
 Contributions of ATM mutations to familial breast and ovarian cancer.
- 39. PMID: 1961222; 1991, N Engl J Med;325(26):1831-6 Incidence of cancer in 161 families affected by ataxia-telangiectasia.
- 40. PMID: 28779002; 2017, J Med Genet;54(11):732-741

 Rare, protein-truncating variants in ATM, CHEK2 and PALB2, but not XRCC2, are associated with increased breast cancer risks.
- 41. PMID: 16400190; 2006, Carcinogenesis;27(4):848-55
 Atm-haploinsufficiency enhances susceptibility to carcinogen-induced mammary tumors.
- 42. PMID: 29478780; 2018, Am J Hum Genet;102(3):401-414 Inherited DNA-Repair Defects in Colorectal Cancer.
- 43. PMID: 9488043; 1998, Oncogene;16(6):789-96
 ATM is usually rearranged in T-cell prolymphocytic leukaemia.
- 44. PMID: 11429421; 2001, J Clin Pathol;54(7):512-6 Ataxia telangiectasia gene mutations in leukaemia and lymphoma.
- 45. PMID: 11756177; 2002, Blood;99(1):238-44

 ATM gene inactivation in mantle cell lymphoma mainly occurs by truncating mutations and missense mutations involving the phosphatidylinositol-3 kinase domain and is associated with increasing numbers of chromosomal imbalances.
- 46. PMID: 21993670; 2012, Haematologica;97(1):47-55

 ATM gene alterations in chronic lymphocytic leukemia patients induce a distinct gene expression profile and predict disease progression.
- 47. PMID: 22981675; 2013, Eur Urol;63(5):920-6 Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity.
- 48. PMID: 22410096; 2012, Oral Oncol;48(8):698-702 Correlation of Ataxia-Telangiectasia-Mutated (ATM) gene loss with outcome in head and neck squamous cell carcinoma.
- 49. PMID: 23103869; 2012, Nature;491(7424):399-405
 Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.
- 50. PMID: 18948947; 2008, Nature; 455(7216):1069-75 Somatic mutations affect key pathways in lung adenocarcinoma.

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 37 of 45

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

ACTOnco® + Report

- 51. PMID: 30537493; 2019, Hum Pathol;86():85-92 Molecular characterization of metaplastic breast carcinoma via next-generation sequencing.
- 52. PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102 Olaparib for Metastatic Castration-Resistant Prostate Cancer.
- 53. PMID: 28916367; 2017, Lancet;390(10106):1949-1961
 Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.
- 54. PMID: 32086346; 2020, Clin Cancer Res;26(11):2487-2496

 Non-BRCA DNA Damage Repair Gene Alterations and Response to the PARP Inhibitor Rucaparib in Metastatic Castration-Resistant Prostate Cancer: Analysis From the Phase II TRITON2 Study.
- 55. PMID: 26282658; 2015, J Clin Oncol;33(33):3858-65
 Randomized, Double-Blind Phase II Trial With Prospective Classification by ATM Protein Level to Evaluate the Efficacy and Tolerability of Olaparib Plus Paclitaxel in Patients With Recurrent or Metastatic Gastric Cancer.
- 56. PMID: 22420423; 2012, Breast Cancer Res;14(2):R47
 Low expression levels of ATM may substitute for CHEK2 /TP53 mutations predicting resistance towards anthracycline and mitomycin chemotherapy in breast cancer.
- 57. PMID: 23154512; 2012, Oncotarget;3(11):1348-55
 Loss of expression of the double strand break repair protein ATM is associated with worse prognosis in colorectal cancer and loss of Ku70 expression is associated with CIN.
- 58. PMID: 10026184; 1999, J Biol Chem;274(9):5659-65

 Mapping the functional domains of BRCA1. Interaction of the ring finger domains of BRCA1 and BARD1.
- 59. PMID: 20029420; 2010, Nat Rev Mol Cell Biol;11(2):138-48
 BRCA1 and its toolbox for the maintenance of genome integrity.
- 60. PMID: 9425226; 1998, Hum Mol Genet;7(2):195-202

 Mutations in the BRCA1-associated RING domain (BARD1) gene in primary breast, ovarian and uterine cancers.
- 61. PMID: 17848578; 2007, J Biol Chem;282(47):34325-33
 Structural requirements for the BARD1 tumor suppressor in chromosomal stability and homology-directed DNA repair.
- 62. PMID: 11239455; 2001, Mol Cell;7(2):263-72 BRCA2 is required for homology-directed repair of chromosomal breaks.
- 63. PMID: 17597348; 2007, Ann Surg Oncol;14(9):2510-8
 Heterogenic loss of the wild-type BRCA allele in human breast tumorigenesis.
- 64. PMID: 22193408; 2011, Nat Rev Cancer;12(1):68-78
 BRCA1 and BRCA2: different roles in a common pathway of genome protection.
- 65. PMID: 27283171; 2016, J Natl Compr Canc Netw;14(6):795-806

 The Relevance of Hereditary Cancer Risks to Precision Oncology: What Should Providers Consider When Conducting Tumor Genomic Profiling?
- 66. PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505

 Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- 67. PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428
 Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

ACTOnco® + Report

- 68. PMID: 28884698; 2017, Lancet Oncol;18(9):e510 Correction to Lancet Oncol 2017; 18: 1274-84.
- 69. PMID: 22452356; 2012, N Engl J Med;366(15):1382-92
 Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer.
- 70. PMID: 26187614; 2015, Clin Cancer Res;21(19):4257-61
 FDA Approval Summary: Olaparib Monotherapy in Patients with Deleterious Germline BRCA-Mutated Advanced
 Ovarian Cancer Treated with Three or More Lines of Chemotherapy.
- 71. PMID: 28578601; 2017, N Engl J Med;377(6):523-533

 Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.
- 72. PMID: 31157963; 2019, N Engl J Med;381(4):317-327
 Maintenance Olaparib for Germline <i>BRCA</i>-Mutated Metastatic Pancreatic Cancer.
- 73. PMID: 28882436; 2017, Gynecol Oncol;147(2):267-275

 Antitumor activity and safety of the PARP inhibitor rucaparib in patients with high-grade ovarian carcinoma and a germline or somatic BRCA1 or BRCA2 mutation: Integrated analysis of data from Study 10 and ARIEL2.
- 74. PMID: 31562799; 2019, N Engl J Med;381(25):2391-2402
 Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- 75. PMID: 27717299; 2016, N Engl J Med;375(22):2154-2164
 Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer.
- 76. PMID: 30948273; 2019, Lancet Oncol;20(5):636-648

 Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial.
- 77. PMID: 30110579; 2018, N Engl J Med;379(8):753-763
 Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.
- 78. PMID: 11124804; 2000, Genes Dev;14(24):3115-25 Structural basis of inhibition of CDK-cyclin complexes by INK4 inhibitors.
- 79. PMID: 12556487; 2003, Mol Cell Biol;23(4):1269-77
 Haploinsufficiency of p18(INK4c) sensitizes mice to carcinogen-induced tumorigenesis.
- 80. PMID: 22997239; 2012, J Natl Cancer Inst;104(21):1673-9

 Dual suppression of the cyclin-dependent kinase inhibitors CDKN2C and CDKN1A in human melanoma.
- 81. PMID: 19411068; 2009, Cancer Cell;15(5):389-401

 CDK inhibitor p18(INK4c) is a downstream target of GATA3 and restrains mammary luminal progenitor cell proliferation and tumorigenesis.
- 82. PMID: 17409423; 2007, Cancer Res;67(7):3162-70 p18Ink4c collaborates with Men1 to constrain lung stem cell expansion and suppress non-small-cell lung cancers.
- 83. PMID: 25576899; 2015, Hum Mol Genet;24(8):2318-29
 Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing.
- 84. PMID: 16960149; 2007, Blood;109(1):271-80
 Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas.

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 39 of 45

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

ACTOnco® + Report

- 85. PMID: 23616356; 2013, J Pathol;230(3):249-60 Complete genomic landscape of a recurring sporadic parathyroid carcinoma.
- 86. PMID: 22133722; 2011, Sci Transl Med;3(111):111ra121
 Personalized oncology through integrative high-throughput sequencing: a pilot study.
- 87. PMID: 18829482; 2008, Clin Cancer Res;14(19):6033-41
 Deletions of CDKN2C in multiple myeloma: biological and clinical implications.
- 88. PMID: 18381405; 2008, Cancer Res;68(8):2564-9
 Identification of p18 INK4c as a tumor suppressor gene in glioblastoma multiforme.
- 89. PMID: 11485924; 2001, Am J Pathol;159(2):661-9
 Alterations of the tumor suppressor genes CDKN2A (p16(INK4a)), p14(ARF), CDKN2B (p15(INK4b)), and CDKN2C (p18(INK4c)) in atypical and anaplastic meningiomas.
- 90. PMID: 15349907; 2004, Hepatology;40(3):677-86
 Reduced expression of cell cycle regulator p18(INK4C) in human hepatocellular carcinoma.
- 91. PMID: 10652429; 2000, Int J Cancer;85(3):370-5
 Cell cycle regulators in testicular cancer: loss of p18INK4C marks progression from carcinoma in situ to invasive germ cell tumours.
- 92. PMID: 22711607; 2012, Neuro Oncol;14(7):870-81 p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells.
- 93. PMID: 21994415; 2011, Clin Cancer Res;17(24):7776-84

 Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival.
- 94. PMID: 20303590; 2010, Leuk Res;34(11):1476-82
 Prognostic classification of patients with acute lymphoblastic leukemia by using gene copy number profiles identified from array-based comparative genomic hybridization data.
- 95. PMID: 19455257; 2007, Cancer Inform;3():399-420
 Germinal center B cell-like (GCB) and activated B cell-like (ABC) type of diffuse large B cell lymphoma (DLBCL): analysis of molecular predictors, signatures, cell cycle state and patient survival.
- 96. PMID: 12781359; 2003, Cancer Cell;3(5):421-9 Chk1 and Chk2 kinases in checkpoint control and cancer.
- 97. PMID: 15261141; 2004, Cancer Cell;6(1):45-59
 Chk1 is haploinsufficient for multiple functions critical to tumor suppression.
- 98. PMID: 15539958; 2005, Cell Cycle;4(1):131-9
 Chk1 is essential for tumor cell viability following activation of the replication checkpoint.
- 99. PMID: 15459660; 2004, Nat Rev Mol Cell Biol;5(10):792-804 Checking on DNA damage in S phase.
- 100. PMID: 22585575; 2012, J Clin Invest;122(6):2165-75 CHK1 targets spleen tyrosine kinase (L) for proteolysis in hepatocellular carcinoma.
- 101. PMID: 17638866; 2007, Cancer Res;67(14):6574-81

 The E2F-regulated gene Chk1 is highly expressed in triple-negative estrogen receptor /progesterone receptor /HER-2 breast carcinomas.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

AG4-QP4001-02(05) Page 40 of 45

Project ID: C22-M001-00020 Report No.: AA-22-00047 ONC Date Reported: Jan 17, 2022

ACTOnco® + Report

- 102. PMID: 17848589; 2007, Mol Cell Proteomics;6(12):2150-64 A proteomics analysis of cell signaling alterations in colorectal cancer.
- 103. PMID: 24418519; 2014, J Surg Res;187(1):6-13 Checkpoint kinase 1 protein expression indicates sensitization to therapy by checkpoint kinase 1 inhibition in nonsmall cell lung cancer.
- 104. PMID: 15297395; 2004, Clin Cancer Res;10(15):4944-58 Global gene expression profile of nasopharyngeal carcinoma by laser capture microdissection and complementary DNA microarrays.
- 105. PMID: 21458083; 2011, Trends Pharmacol Sci;32(5):308-16 Anticancer therapy with checkpoint inhibitors: what, where and when?
- 106. PMID: 21088254; 2011, Clin Cancer Res;17(3):401-5 Tumor suppressor CHK2: regulator of DNA damage response and mediator of chromosomal stability.
- 107. PMID: 23296741; 2013, Fam Cancer; 12(3): 473-8 The risk of gastric cancer in carriers of CHEK2 mutations.
- 108. PMID: 24713400; 2014, Hered Cancer Clin Pract;12(1):10 A risk of breast cancer in women - carriers of constitutional CHEK2 gene mutations, originating from the North - Central Poland.
- 109. PMID: 25583358; 2015, Int J Cancer; 137(3):548-52 CHEK2 mutations and the risk of papillary thyroid cancer.
- 110. PMID: 12052256; 2002, Breast Cancer Res;4(3):R4 Mutation analysis of the CHK2 gene in breast carcinoma and other cancers.
- 111. PMID: 15125777; 2004, Mol Cancer;3():14 CHK2 kinase expression is down-regulated due to promoter methylation in non-small cell lung cancer.
- 112. PMID: 26510020; 2015, N Engl J Med;373(18):1697-708 DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer.
- 113. PMID: 20164920; 2010, Nature; 463(7283): 899-905 The landscape of somatic copy-number alteration across human cancers.
- 114. PMID: 23788652; 2013, Genome Res; 23(9):1422-33 Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma.
- 115. PMID: 23521319; 2013, Cancer Sci;104(7):817-25 Down expression of LRP1B promotes cell migration via RhoA/Cdc42 pathway and actin cytoskeleton remodeling in renal cell cancer.
- 116. PMID: 21057533; 2011, Oncogene; 30(11):1302-17 Chromosomal, epigenetic and microRNA-mediated inactivation of LRP1B, a modulator of the extracellular environment of thyroid cancer cells.
- 117. PMID: 20095042; 2010, Genes Chromosomes Cancer; 49(5):412-24 Aberrant methylation impairs low density lipoprotein receptor-related protein 1B tumor suppressor function in gastric cancer.
- 118. PMID: 15172977; 2004, Cancer Res;64(11):3741-7 Frequent silencing of low density lipoprotein receptor-related protein 1B (LRP1B) expression by genetic and epigenetic

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: service@actgenomics.com T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 41 of 45

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

ACTOnco® + Report

mechanisms in esophageal squamous cell carcinoma.

- 119. PMID: 28408316; 2017, Exp Cell Res;357(1):1-8

 Down-regulation of LRP1B in colon cancer promoted the growth and migration of cancer cells.
- 120. PMID: 27671167; 2016, Cancer Immunol Res;4(11):959-967
 Targeted Next Generation Sequencing Identifies Markers of Response to PD-1 Blockade.
- 121. PMID: 31164891; 2019, Front Immunol;10():1113

 Association of <i>LRP1B</i> Mutation With Tumor Mutation Burden and Outcomes in Melanoma and Non-small Cell Lung Cancer Patients Treated With Immune Check-Point Blockades.
- 122. PMID: 33653800; 2021, J Immunother Cancer;9(3): <i>LRP1B</i> mutations are associated with favorable outcomes to immune checkpoint inhibitors across multiple cancer types.
- 123. PMID: 22896685; 2012, Cancer Res;72(16):4060-73

 LRP1B deletion in high-grade serous ovarian cancers is associated with acquired chemotherapy resistance to liposomal doxorubicin.
- 124. PMID: 26428308; 2015, J Neurol Sci;358(1-2):440-3 LRP1B deletion is associated with poor outcome for glioblastoma patients.
- 125. PMID: 19910469; 2010, J Biol Chem;285(2):1097-104
 MRE11-RAD50-NBS1 complex dictates DNA repair independent of H2AX.
- 126. PMID: 20655309; 2010, FEBS Lett;584(17):3682-95
 The MRN complex in double-strand break repair and telomere maintenance.
- 127. PMID: 24894818; 2014, Breast Cancer Res;16(3):R58

 Rare key functional domain missense substitutions in MRE11A, RAD50, and NBN contribute to breast cancer susceptibility: results from a Breast Cancer Family Registry case-control mutation-screening study.
- 128. PMID: 23755103; 2014, PLoS One;8(6):e63313
 Sequencing of candidate chromosome instability genes in endometrial cancers reveals somatic mutations in ESCO1, CHTF18, and MRE11A.
- 129. PMID: 11196167; 2001, Cancer Res;61(1):23-6
 Alterations of the double-strand break repair gene MRE11 in cancer.
- 130. PMID: 11850399; 2002, EMBO Rep;3(3):248-54
 Human MRE11 is inactivated in mismatch repair-deficient cancers.
- 131. PMID: 16959974; 2006, Science;314(5797):268-74
 The consensus coding sequences of human breast and colorectal cancers.
- 132. PMID: 24927325; 2014, PLoS One;9(6):e100041

 Effect of MRE11 loss on PARP-inhibitor sensitivity in endometrial cancer in vitro.
- 133. PMID: 21300766; 2011, Cancer Res;71(7):2632-42 MRE11 deficiency increases sensitivity to poly(ADP-ribose) polymerase inhibition in microsatellite unstable colorectal cancers.
- 134. PMID: 25310185; 2014, PLoS One;9(10):e108483

 MRE11-deficiency associated with improved long-term disease free survival and overall survival in a subset of stage III colon cancer patients in randomized CALGB 89803 trial.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

AG4-QP4001-02(05) Page 42 of 45

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

ACTOnco®+ Report

- 135. PMID: 25893302; 2016, Oncogene; 35(5):537-48 Role of Merlin/NF2 inactivation in tumor biology.
- 136. PMID: 19451229; 2009, Mol Cell Biol;29(15):4235-49

 Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling.
- 137. PMID: 19451225; 2009, Mol Cell Biol;29(15):4250-61 NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth.
- 138. PMID: 17655741; 2007, Brain Pathol;17(4):371-6
 Role of NF2 haploinsufficiency in NF2-associated polyneuropathy.
- 139. PMID: 19545378; 2009, Orphanet J Rare Dis;4():16
 Neurofibromatosis type 2 (NF2): a clinical and molecular review.
- 140. PMID: 21642991; 2011, Nat Genet;43(7):668-72
 The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma.
- 141. PMID: 24393766; 2014, Oncotarget;5(1):67-77 NF2/merlin in hereditary neurofibromatosis 2 versus cancer: biologic mechanisms and clinical associations.
- 142. PMID: 27091708; 2016, J Clin Oncol;34(18):2115-24

 Molecular Alterations and Everolimus Efficacy in Human Epidermal Growth Factor Receptor 2-Overexpressing Metastatic Breast Cancers: Combined Exploratory Biomarker Analysis From BOLERO-1 and BOLERO-3.
- 143. PMID: 26503204; 2016, J Clin Oncol;34(5):419-26
 Correlative Analysis of Genetic Alterations and Everolimus Benefit in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: Results From BOLERO-2.
- 144. PMID: 24833916; 2014, Breast Cancer (Dove Med Press);6():43-57

 Use of mTOR inhibitors in the treatment of breast cancer: an evaluation of factors that influence patient outcomes.
- 145. PMID: 26859683; 2016, Oncotarget;7(9):10547-56

 Next-generation sequencing reveals somatic mutations that confer exceptional response to everolimus.
- 146. PMID: 22923433; 2012, Science;338(6104):221
 Genome sequencing identifies a basis for everolimus sensitivity.
- 147. PMID: 25630452; 2015, Eur Urol;67(6):1195-1196 Exceptional Response on Addition of Everolimus to Taxane in Urothelial Carcinoma Bearing an NF2 Mutation.
- 148. PMID: 26359368; 2015, Cancer Discov;5(11):1178-93
 NF2 Loss Promotes Oncogenic RAS-Induced Thyroid Cancers via YAP-Dependent Transactivation of RAS Proteins and Sensitizes Them to MEK Inhibition.
- 149. PMID: 24813888; 2014, Cell Rep;7(4):999-1008

 Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with activation of mTORC1.
- 150. PMID: 21157483; 2011, Nat Rev Mol Cell Biol;12(1):21-35 mTOR: from growth signal integration to cancer, diabetes and ageing.
- 151. PMID: 12271141; 2002, Proc Natl Acad Sci U S A;99(21):13571-6

 Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

ACTOnco®+ Report

(mTOR)-mediated downstream signaling.

- 152. PMID: 9242607; 1997, Science; 277(5327): 805-8 Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34.
- 153. PMID: 8269512; 1993, Cell;75(7):1305-15 Identification and characterization of the tuberous sclerosis gene on chromosome 16.
- 154. PMID: 1303246; 1992, Nat Genet;2(1):37-41
 Linkage of an important gene locus for tuberous sclerosis to a chromosome 16 marker for polycystic kidney disease.
- 155. PMID: 18538015; 2008, BMC Cancer;8():163
 Involvement of TSC genes and differential expression of other members of the mTOR signaling pathway in oral squamous cell carcinoma.
- 156. PMID: 28339086; 2017, Int J Oncol;50(5):1778-1784 Identification of novel mutations in endometrial cancer patients by whole-exome sequencing.
- 157. PMID: 20610279; 2010, Urol Oncol;28(4):409-28
 Bladder cancer or bladder cancers? Genetically distinct malignant conditions of the urothelium.
- 158. PMID: 17005952; 2006, N Engl J Med;355(13):1345-56 The tuberous sclerosis complex.
- 159. PMID: 27016228; 2016, Gynecol Oncol;141(1):43-8

 Tumor mutational analysis of GOG248, a phase II study of temsirolimus or temsirolimus and alternating megestrol acetate and tamoxifen for advanced endometrial cancer (EC): An NRG Oncology/Gynecologic Oncology Group study.
- 160. PMID: 26412398; 2015, Sci Rep;5():14534
 PAK2 is an effector of TSC1/2 signaling independent of mTOR and a potential therapeutic target for Tuberous Sclerosis Complex.
- 161. PMID: 28968163; 2017, J Clin Oncol;35(32):3638-3646
 MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer.
- 162. PMID: 28533223; 2017, Clin Cancer Res;23(17):5218-5224

 MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR+/HER2- Metastatic Breast Cancer.
- 163. PMID: 28580882; 2017, J Clin Oncol;35(25):2875-2884

 MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy.
- 164. PMID: 26703889; 2016, Lancet;387(10022):968-977

 Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study.
- 165. PMID: 22149876; 2012, N Engl J Med;366(6):520-9 Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer.
- 166. PMID: 21306238; 2011, N Engl J Med;364(6):514-23 Everolimus for advanced pancreatic neuroendocrine tumors.
- 167. PMID: 23158522; 2013, Lancet;381(9861):125-32

 Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial.

AG4-QP4001-02(05) Page 44 of 45

Project ID: C22-M001-00020 Report No.: AA-22-00047_ONC Date Reported: Jan 17, 2022

ACTOnco® + Report

- 168. PMID: 18653228; 2008, Lancet; 372(9637): 449-56
 Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial.
- 169. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284

 Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.
- 170. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589

 Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.
- 171. PMID: 25366685; 2015, J Clin Oncol;33(3):244-50

 Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation.
- 172. PMID: 27959613; 2016, N Engl J Med;375(20):1925-1936 Palbociclib and Letrozole in Advanced Breast Cancer.
- 173. PMID: 26030518; 2015, N Engl J Med;373(3):209-19
 Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer.
- 174. PMID: 27717303; 2016, N Engl J Med;375(18):1738-1748
 Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer.
- 175. PMID: 27908594; 2017, Lancet Oncol;18(1):75-87 Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial.
- 176. PMID: 17538086; 2007, N Engl J Med;356(22):2271-81 Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma.

AG4-QP4001-02(05)

Project ID: C22-M001-00020 Report No.: AA-22-00047_FUSION Date Reported: Jan 17, 2022

ACTFusion[™] Report

ATIENT								
Name: 葉哲豪	Patient ID: 19342906							
Date of Birth: Mar 26, 1953	Gender: Male							
Diagnosis: Metastatic neuroendocrine carcinoma								
ORDERING PHYSICIAN								
Name: 賴峻毅醫師	Tel: 886-228712121							
Facility: 臺北榮總								
Address: 臺北市北投區石牌路二段 201 號								
SPECIMEN								
Specimen ID: S11024511A Collection site: Vertebra	Date received: Jan 04, 2022							
Lab ID: AA-22-00047 Type: FFPE tissue	D/ID: NA							

ABOUT ACTFusion™

The test is a next-generation sequencing (NGS) based in vitro diagnostic assay to detect fusion transcripts of 13 genes, including ALK, BRAF, EGFR, FGFR1, FGFR2, FGFR3, MET, NRG1, NTRK1, NTRK2, NTRK3, RET, and ROS1.

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page 1 of 7

Project ID: C22-M001-00020 Report No.: AA-22-00047_FUSION Date Reported: Jan 17, 2022

ACTFusion[™] Report

THERAPEUTIC IMPLICATION

Not Applicable.

VARIANT INTERPRETATION

Not Applicable.

US FDA-APPROVED DRUG(S)

Not Applicable.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page **2** of **7**

Project ID: C22-M001-00020 Report No.: AA-22-00047_FUSION Date Reported: Jan 17, 2022

ACTFusion[™] Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page 3 of 7

Project ID: C22-M001-00020 Report No.: AA-22-00047_FUSION Date Reported: Jan 17, 2022

ACTFusion[™] Report

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

- Collection date: Aug 2021
- Facility retrieved: 臺北榮總
- H&E-stained section No.: S11024511A
- Collection site: Vertebra
- Examined by: Dr. Pei-Yi Chu
 - 1. The percentage of viable tumor cells in total cells in the whole slide (%): 85%
 - 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 85%
 - 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
 - 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
 - 5. Additional comment: NA
- Manual macrodissection: Not performed
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

- Panel: ACTFusion™
- Total reads: 502870
- Average unique RNA Start Sites per control GSP2: 137

LIMITATIONS

This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-501

AG4-QP4006-04(02) page 4 of 7

Project ID: C22-M001-00020 Report No.: AA-22-00047_FUSION Date Reported: Jan 17, 2022

ACTFusion[™] Report

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX.

STANDARD OPERATING PROCEDURES (SOPs)

- AG2-QP-15 Specimen Management Procedure
- AG3-QP16-08 SOP of FFPE Nucleic Acid Extraction
- AG3-QP16-10 SOP of HE Staining
- AG3-QP16-17 SOP of DNA Quantification with Qubit Fluorometer
- AG3-QP16-20 SOP of CE-Fragment Analysis
- AG3-QP16-24 SOP of Ion Torrent System Sequencing Reaction
- AG3-QP16-26 SOP of Ion Chef Preparation
- AG3-QP40-08 (02) Standard protocol for variant interpretation, curation and classification
- AG3-QP16-94 (01) SOP of ACTFusion v3 Library Construction and Preparation
- AG3-QP16-36(02) SOP of Fusion Gene Detection
- AG3-QP16-41 SOP of The user manual for clinical report system (CRS)

DATABAES USED

- Quiver Gene Fusion Database version 5.1.18

GENE LIST

ALK	BRAF	EGFR	FGFR1	FGFR2	FGFR3	MET	NRG1
NTRK1	NTRK2	NTRK3	RFT	ROS1)		

Variant Analysis:

醫檢師陳韻伃 博士 Yun-Yu Chen Ph.D. 檢字第 015647 號 Yun Yu Chen

Sign Off

醫檢師陳韻仔 博士 Yun-Yu Chen Ph.D. 檢字第 015647 號

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page 5 of 7

Project ID: C22-M001-00020 Report No.: AA-22-00047_FUSION Date Reported: Jan 17, 2022

ACTFusion[™] Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告 移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page 6 of 7

葉哲豪 Project ID: C22-M001-00020 Report No.: AA-22-00047_FUSION Date Reported: Jan 17, 2022

ACTFusion[™] Report

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page **7** of **7**