```
In [16]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
```

Exploratory Data Analysis

```
In [17]: data=pd.read_csv("/home/placement/Downloads/Advertising.csv")
```

In [18]: data.describe()

Out[18]:

	Unnamed: 0	TV	radio	newspaper	sales
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	147.042500	23.264000	30.554000	14.022500
std	57.879185	85.854236	14.846809	21.778621	5.217457
min	1.000000	0.700000	0.000000	0.300000	1.600000
25%	50.750000	74.375000	9.975000	12.750000	10.375000
50%	100.500000	149.750000	22.900000	25.750000	12.900000
75%	150.250000	218.825000	36.525000	45.100000	17.400000
max	200.000000	296.400000	49.600000	114.000000	27.000000

```
In [19]: data.head()
```

Out[19]:

	Unnamed: 0	TV	radio	newspaper	sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9

Out[20]:

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	177.0	9.3	6.4	12.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

200 rows × 4 columns

```
In [21]: y=data1['sales']
    x=data1.drop('sales',axis=1)
```

```
In [22]: y
Out[22]: 0
                 22.1
                 10.4
          1
                  9.3
          2
          3
                 18.5
          4
                 12.9
                 . . .
          195
                  7.6
          196
                  9.7
          197
                 12.8
         198
                 25.5
         199
                 13.4
         Name: sales, Length: 200, dtype: float64
In [23]: from sklearn.model selection import train test split
         x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
In [24]: from sklearn.linear model import Lasso
         from sklearn.model selection import GridSearchCV
         lasso=Lasso()
         parameters = {'alpha':[1e-15,1e-10,1e-8,1e-4,1e-3,1e-2,1,5,10,20]}
         lasso regressor = GridSearchCV(lasso,parameters)
         lasso regressor.fit(x train,y train)
Out[24]: GridSearchCV(estimator=Lasso(),
                       param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                               5, 10, 201})
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
In [25]: lasso regressor.best params
Out[25]: {'alpha': 1}
```

```
In [26]: lasso=Lasso(alpha=1)
    lasso.fit(x_train,y_train)
    y_pred_lasso=lasso.predict(x_test)

In [28]: from sklearn.metrics import r2_score
    r2_score(y_test,y_pred_lasso)

Out[28]: 0.8589079527148957

In [29]: from sklearn.metrics import mean_squared_error
    lasso_Error=mean_squared_error(y_pred_lasso,y_test)
    lasso_Error
Out[29]: 3.641439660278575
```

```
In [30]: Results=pd.DataFrame(columns=['price', 'predicted'])
    Results['price']=y_test
    Results['predicted']=y_pred_lasso
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results.head(15)
```

Out[30]:

	index	price	predicted	ID
0	95	16.9	16.523920	0
1	15	22.4	21.058219	1
2	30	21.4	21.624966	2
3	158	7.3	10.745724	3
4	128	24.7	22.188269	4
5	115	12.6	13.243102	5
6	69	22.3	21.161155	6
7	170	8.4	7.454875	7
8	174	11.5	13.541765	8
9	45	14.9	15.197360	9
10	66	9.5	9.058959	10
11	182	8.7	6.647262	11
12	165	11.9	14.415342	12
13	78	5.3	8.949245	13
14	186	10.3	9.655571	14

```
In [31]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='price',data=Results.head(50))
sns.lineplot(x='ID',y='predicted',data=Results.head(50))
plt.plot()
```

Out[31]: []

In []:	