Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística

Disciplina: Álgebra Linear

Professora: Rosiane Soares Cesar

4ª Lista de Exercícios - Álgebra Linear

(1) Verifique se as aplicações abaixo são transformações lineares:

- (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ definido por T(x, y) = (xy, x).
- (b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ definido por T(x, y) = (x + y, x).
- (c) $T: \mathbb{R}^3 \to \mathbb{R}^2$ definido por T(x,y) = (x+y+z, 2x-3y+4z).
- (d) $T: \mathbb{R}^2 \to \mathbb{R}^3$ definido por T(x,y) = (x+3,2y,x+y).
- (e) $T: M_{2\times 2}(\mathbb{R}) \to \mathbb{R}$ definida por $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a + d$
- (f) $T: P_2(\mathbb{R}) \to \mathbb{R}^3$ definida por $T(ax^2 + bx + c) = (a+b, -a, c+1)$
- (g) $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ definida por $T(ax^2 + bx + c) = bx^2 + (a+c)x$.

(2) Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear tal que T(1,2) = (2,3) e F(0,1) = (1,4) (note que $\{(1,2),(0,1)\}$ é uma base de \mathbb{R}^2). Determine:

- (a) Calcule T(-1,1).
- (b) Determine uma fórmula para T, isto é, T(x, y).

(3) Seja $T:\mathbb{R}^4 \to \mathbb{R}^3$ a transformação linear definida por

$$T(x, y, z, t) = (x - y + z + t, x + 2z - t, x + y + 3z - 3t).$$

Encontre uma base e a dimensão de:

- (a) $\operatorname{Im} F$.
- (b) $\operatorname{Nuc} F$.

(4) Seja $T:\mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear definida por

$$T(x, y, z, t) = (x + 2y - z, y + z, x + y - 2z).$$

1

Encontre uma base e a dimensão de:

- (a) $\operatorname{Im} F$.
- (b) $\operatorname{Nuc} F$.

(5) Seja T a transformação linear associada a matriz $\begin{bmatrix} 1 & 0 & 2 \\ 3 & 0 & -1 \\ 2 & 0 & 0 \end{bmatrix}$

- (a) Determine $\dim \operatorname{Nuc} T$
- (b) Determine $\dim \operatorname{Im} T$
- (c) T é injetora? E sobrejetora?

- (6) Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear dada por T(x, y, z) = (x + 2y, y, x + z). Mostre que T é um isomorfismo e indique sua inversa.
- (7) Sejam $\{(3,1),(1,1)\}$ base de \mathbb{R}^2 e $T:\mathbb{R}^2\to\mathbb{R}^2$ a transformação linear tal que T(3,1)=(2,-4) e T(1,1)=(0,2).
 - (a) Determine uma fórmula para T
 - (b) Encontre T(7,4).
- (8) Mostre que a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por

$$T(x, y, z) = (x + y - 2z, x + 2y + z, 2x + 2y - 3z)$$

é um isomorfismo linear e determine T^{-1} .

- (9) Considere as transformações lineares $F: \mathbb{R}^3 \to \mathbb{R}^2$, $G: \mathbb{R}^3 \to \mathbb{R}^2$, $H: \mathbb{R}^2 \to \mathbb{R}^2$ definidas por F(x, y, z) = (y, x + z), G(x, y, z) = (2z, x y), H(x, y) = (y, 2x). Determine:
 - (a) $H \circ F$.
 - (b) $H \circ G$.
 - (c) $H^2 = H \circ H$.
- (10) Seja a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(x, y, z) = (2x y + 3z, 4x + 2y + 3z)
 - (a) Considerando α e β as bases canônicas do \mathbb{R}^3 e do \mathbb{R}^2 , respectivamente, determine $[T]^{\alpha}_{\beta}$.
 - (b) Considerando $\alpha = \{(1, 1, 0), (0, 1, 1), (1, 0, 1)\}$ uma base de \mathbb{R}^3 e $\beta = \{(1, 1), (1, -1)\}$ uma base de \mathbb{R}^2 , determine $[T]^{\alpha}_{\beta}$
- (11) Seja a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ dada por T(x,y) = (2x+y,y,x+y). Encontre
 - (a) A matriz de T com respeito as bases canônicas de \mathbb{R}^3 e \mathbb{R}^2 .
 - (b) A matriz de T com relação as bases $\alpha = \left\{ \left(1,-2\right),\left(0,1\right)\right\}$ e $\beta = \left\{ \left(1,0,0\right),\left(0,2,1\right),\left(0,0,3\right).\right\}$
- (12) Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$, dada por T(x,y,z) = (x+y,x+z). Determine
 - (a) $[T]^{\alpha}_{\beta}$, onde $\alpha = \{(1,0,0), (0,-1,0), (0,0,2)\}$ e $\beta = \{(1,2), (3,5)\}$.
 - (b) $T(v)]_{\beta}$, onde v = (1, 1, 0)
- (13) Seja $T: \mathbb{R}^2 \to \mathbb{R}^3$ a transformação linear tal que $[T]^{\alpha}_{\beta} = \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ 0 & 2 \end{bmatrix}$, com $\alpha = \{(1,0),(-1,1)\}$ e $\beta = \{(1,2,3),(0,-1,1),(0,0,2)\}$. Determine $T(v)]_{\beta}$ sabendo que as coordenadas de v em relação a base canônica do \mathbb{R}^2 são (-1,2).

- (14) Assinale verdadeiro (V) ou falso (F), justificando suas afirmações.
 - () Se a transformação linear $T: \mathbb{R}^m \to \mathbb{R}^n$ é sobrejetiva então dim Nuc T=m-n.
 - () Se Nuc T é gerado por três vetores, então a imagem do operador $T: \mathbb{R}^5 \to \mathbb{R}^5$ tem dimensão 2.
 - () Não existe transformação linear injetora de \mathbb{R}^4 em $\mathbb{R}^2.$
 - () O núcleo de toda transformação linear $T:\mathbb{R}^5\to\mathbb{R}^3$ tem dimensão maior ou igual a 3

RESPOSTAS

- (1) (a) T não é linear
 - (b) T é linear
 - (c) T é linear
 - (d) T não é linear
 - (e) T é linear
 - (f) T não é linear
 - (g) T é linear
- (2) (a) T(-1,1) = (1,9)
 - (b) T(x,y) = (y, -5x + 4y)
- (3) (a) dim Im F = 2.
 - (b) $\dim \operatorname{Nuc} F = 2$.
- (4) (a) dim Im F = 2.
 - (b) $\dim \operatorname{Nuc} F = 1$.
- (5) (a) dim Nuc T = 1
 - (b) $\dim \operatorname{Im} T = 2$
 - (c) Nem injetora nem sobrejetora.
- (6) $T^{-1}: \mathbb{R}^3 \to \mathbb{R}^3, T^{-1}(x, y, z) = (x 2y, y, -x + 2y + z)$
- (7) (a) T(x,y) = (x-y,5y-3x)
 - (b) T(7,4) = (3,-1)
- (8) $T^{-1}: \mathbb{R}^3 \to \mathbb{R}^3$, $T^{-1}(x, y, z) = (-8x y + 5z, 5x + y 3z, -2x + z)$
- (9) (a) $H \circ F : \mathbb{R}^3 \to \mathbb{R}^2$, $(H \circ F)(x, y, z) = (x + z, 2y)$
 - (b) $H \circ G : \mathbb{R}^3 \to \mathbb{R}^2$, $H \circ G(x, y, z) = (x y, 4z)$
 - (c) $H^2: \mathbb{R}^2 \to \mathbb{R}^2$, $h^2(x, y) = (2x, 2y)$
- (10) (a) $[T]^{\alpha}_{\beta} = \begin{bmatrix} 2 & -1 & 3 \\ 4 & 2 & 3 \end{bmatrix}$
 - (b) $[T]^{\alpha}_{\beta} = \begin{bmatrix} \frac{7}{2} & \frac{7}{2} & 6\\ -\frac{5}{2} & -\frac{3}{2} & -1 \end{bmatrix}$

(11) (a)
$$[T]^{\alpha}_{\beta} = \begin{bmatrix} 2 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

(b)
$$[T]^{\alpha}_{\beta} = \begin{bmatrix} 0 & 1 \\ -1 & \frac{1}{2} \\ 0 & \frac{1}{6} \end{bmatrix}$$

(12) (a)
$$[T]^{\alpha}_{\beta} = \begin{bmatrix} -2 & 5 & 6 \\ 1 & -2 & -2 \end{bmatrix}$$

(b)
$$T(v)]_{\beta} = (-7, 3)$$

$$(13) \ T(v)]_{\beta} = (0, 1, 4)$$