

Introdução ao Affinity Propagation

≡ Ciclo	Ciclo 08: Outros algoritmos Clusterização
# Aula	63
Created	@June 26, 2023 7:11 PM
☑ Done	
☑ Ready	✓

Objetivo da Aula:

☐ O que é Affinity Propagation?
Os 5 passos do treinamento
Resumo
☐ Próxima aula

Conteúdo:

▼ 1. O que é Affinity Propagation?

Affinity Propagation é um algoritmo de clusterização que usa uma abordagem baseada em grafos para encontrar automaticamente um número de clusters ou agrupamentos em um conjunto de dados. O algoritmo não requer a especificação prévia do número de clusters desejados, o que pode ser uma vantagem em algumas situações.

O Affinity Propagation usa uma matriz de similaridade para modelar as relações entre os elementos do conjunto de dados. Essa matriz é usada para construir um grafo de similaridade, onde cada nó representa um elemento do conjunto de dados e as arestas representam a similaridade entre os elementos. O algoritmo usa esse grafo para identificar um conjunto de "exemplares", que são pontos que representam os agrupamentos.

▼ 1.1 As 4 matrizes do algoritmo Affinity Propagation

▼ 1.1.1 A matriz similaridade (S)

▼ Matriz similaridade (S):

Participantes	Alice	Bob	Cary	Doug	Edna
Alice	-16	-1	1	-6	-11
Bob	10	-15	-10	-10	-15
Cary	11	-11	-16	-12	-15
Doug	-9	-14	-15	-19	9
Edna	-14	-19	-18	14	-19

▼ Descrição:

A matriz de similaridade, também conhecida como matriz de afinidade, é uma matriz que descreve a relação de similaridade entre as amostras em um conjunto de dados.

Cada elemento da matriz de similaridade S[i, j] representa a medida de similaridade entre as amostras i e j. Essa medida pode ser calculada usando diferentes métricas, como distância euclidiana, coeficiente de correlação, distância de Manhattan, entre outras, dependendo do problema e das características dos dados.

A matriz de similaridade é usada como entrada no algoritmo Affinity Propagation para capturar a relação de proximidade entre as amostras. Ela fornece informações sobre quão semelhantes ou diferentes são as amostras em termos de atributos, características ou medidas relevantes.

Em resumo, a matriz de similaridade no algoritmo Affinity Propagation descreve a relação de similaridade entre as amostras do conjunto de dados. Ela é usada para calcular as responsabilidades e disponibilidades entre as amostras durante o processo iterativo do algoritmo, auxiliando na formação dos clusters.

▼ 1.1.2 A matriz responsabilidade (R)

▼ Matriz responsabilidade (R):

Participantes	Alice	Bob	Cary	Doug	Edna
Alice	-16	-1	1	-6	-11
Bob	10	-15	-10	-10	-15
Cary	11	-11	-16	-12	-15
Doug	-9	-14	-15	-19	9
Edna	-14	-19	-18	14	-19

▼ Descrição:

A matriz de responsabilidade (R) representa a "responsabilidade" que uma amostra atribui a outra amostra em se tornar um "exemplar".

A "responsabilidade", no contexto do algoritmo Affinity Propagation, é uma medida que indica o quanto uma amostra considera outra amostra como um " exemplar". Em outra palavras, é uma forma de "atribuir responsabilidade" a uma amostra em se tornar parte de um cluster.

Um "exemplar" refere-se a uma amostra que é selecionada para representar um cluster. De outro modo, é um ponto dos dado que é considerado altamente representativo e característico do grupo ao qual pertence e portanto, pertencente ao cluster.

Resumindo, a matriz de responsabilidade (R) representa a medida do quanto uma amostra considera outra amostra como representante de um cluster.

▼ 1.1.3 A matriz disponibilidade (D)

▼ Matriz disponibilidade (D):

Participantes	Alice	Bob	Cary	Doug	Edna
Alice	21	-15	-16	-5	-10
Bob	-5	0	-15	-5	-10
Cary	-6	-15	1	-5	-10
Doug	0	-15	-15	14	-19
Edna	0	-15	-15	-19	9

▼ Descrição:

No contexto do algoritmo Affinity Propagation, a "disponibilidade" refere-se à medida da adequação de uma amostra para ser escolhida como um exemplar. É uma estimativa da capacidade de uma amostra em representar um cluster de forma consistente.

▼ 1.1.4 A matriz critério (C)

▼ Matriz critério (C):

Participantes	Alice	Bob	Cary	Doug	Edna
Alice	5	-16	-15	-11	-21
Bob	5	-15	-25	-15	-25
Cary	5	-26	-15	-17	-25
Doug	-9	-29	-30	-5	-10
Edna	-14	-34	-33	-5	-10

▼ Descrição:

No contexto do algoritmo Affinity Propagation, o valor do critério é a soma da responsabilidade e disponibilidade de cada par de ponto. A coluna com o maior valor de critério para cada linha identifica o "exemplo exemplar" daquele ponto. Os pontos de cada linha que compartilham o mesmo "exemplo exemplar" estão no mesmo cluster.

▼ 2. Os 5 passos do treinamento

Os passos para encontrar os grupos (clusters) formados pelos dados, usando o algoritmo de Affinity Propagation são os seguintes:

- 1. Definição da métrica de similaridade
- 2. Calculo da similaridade entre todos os pontos do conjunto de dados, formando a matriz de similaridade (S)
- 3. Até o número n de repetições ser alcançada ou a variação dos valores das matrizes de responsabilidade de disponibilidade for menor do que um valor e, faça:
 - a. Cálculo da matriz de responsabilidade
 - b. Cálculo da matriz de disponibilidade
- Para cada ponto, some os valores da matriz de responsabilidade e disponibilidade, formando a matriz de critério
- 5. Atribua o mesmo cluster para os pontos que possuem o mesmo valor de critério.

▼ 3. Resumo

- 1. Affinity Propagation é um algoritmo de clusterização que usa uma abordagem baseada em grafos para encontrar automaticamente um número de clusters ou agrupamentos em um conjunto de dados.
- O Affinity Propagation utiliza quatro matrizes: matriz de similaridade, matriz de responsabilidade, matriz de disponibilidade e matriz de critério. Cada uma delas tem uma função específica no algoritmo.
- 3. Os passos para encontrar os grupos (clusters) formados pelos dados, usando o algoritmo de Affinity Propagation são:
 - a. Definição da métrica de similaridade
 - b. Calculo da similaridade entre todos os pontos do conjunto de dados, formando a matriz de similaridade
 (S)
 - c. Processo iterativo para cálculo das matrizes de responsabilidade e disponibilidade
 - d. Cálculo da matriz de critério
 - e. Atribuição do mesmo cluster para os pontos que possuem o mesmo valor de critério.

▼ 4. Próxima aula

Definição dos clusters