CS 6375 Assignment 3: K-Means clustering using Jaccard distance

Names of students in your group:

- 1. Mounika B (MXB210007)
- 2. Saketh Dasavathini(SXD190016)

Number of free late days used: 0

Theoretical part(Part 1): A separate pdf is attached consisting of steps of derivation for each of the problems given.

Programming part(Part 2):

Dataset used: "bbchealth.txt"-

(https://raw.githubusercontent.com/bmounikareddy98/Machine-learning-assignments/main/Assignment3/bbchealth.txt)

Note: For the purpose of code execution we have already hosted the dataset on github public repository, hence not required to download it.

Description:

The dataset used is about tweets related to bbc_health. It is a text file consisting of wide range of tweets about bbc health. We have applied k_means clustering on the dataset using Jaccard distance as a distance metric and clustered the tweets into different groups. Below explains in detail about each parts and the steps involved.

Artificial neural network

1. Data preprocessing is performed

- Step 1: The \n at the end of each tweet is removed.
- Step 2: The tweet-id and timestamp are removed.
- Step 3: The words that start with "@" are removed.
- Step 4: The hashtags are removed
- Step 5: The URLs are removed
- Step 6: The words in the tweet are converted to lowercase.

This ends the data pre-processing phase.

2. Performing K-Means clustering

A function to perform k-means is written. Initially random centroids are assigned. We have checked for the converge of k-means and the iterations are run accordingly. Functions to calculate Jaccard distance between two points(tweets) is written. Distance between the tweets and centroid is calculated and accordingly the points are assigned to each cluster. Later a function to update the centroids is written. The sum of squared errors is calculated for different values of k and number of tweets for different values of k is also outputted. **The SSE is minimum when the value of k is 6.**

Value of K	SSE	Size of each cluster
		Cluster_1: 1301 tweets
		Cluster_2: 1029 tweets
3	3401.05777	Cluster_3: 1599 tweets
		Cluster_1: 605 tweets
		Cluster_2: 1470 tweets
		Cluster_3: 835 tweets
4	3348.13454	Cluster_4: 1019 tweets
		Cluster_1: 1239 tweets
		Cluster_2: 564 tweets
		Cluster_3: 532 tweets
		Cluster_4: 682 tweets
5	3343.73812	Cluster_5: 912 tweets
		Cluster 1: 538 tweets
		Cluster 2: 399 tweets
		Cluster_3: 1173 tweets
		Cluster_4: 755 tweets
		Cluster_5: 617 tweets
6	3302.69309	Cluster_5: 447 tweets
		Cluster 1: 357 tweets
		Cluster 2: 1225 tweets
		Cluster_3: 518 tweets
		Cluster 4: 557 tweets
		Cluster_5: 388 tweets
		Cluster_5: 437 tweets
7	3355.06509	Cluster_6: 447 tweets