Algebraic Foundations for Effect-Dependent **Optimisations**

Ohad Kammar Gordon Plotkin

39th Symposium on Principles of Programming Languages Philadelphia January 26, 2012

Gifford-style types and effects

Effect systems

$$\ell_1 := 1;$$
 $\ell_2 := deref(\ell_3)$

Gifford-style types and effects

Effect systems

$$\vdash \ell_1 := 1;$$
 $\ell_2 := \mathsf{deref}(\ell_3) : () \,! \, \underbrace{\{\mathsf{lookup}, \mathsf{update}\}}_{arepsilon}$ $\Gamma \vdash M : A \,! \, arepsilon$

Effect-dependent optimisations [Benton et al.]

Swap:
$$\begin{array}{c} \vdash M_i : () ! \, \varepsilon_i, \\ \varepsilon_i \subseteq \{ \text{lookup} \} \end{array} \Longrightarrow \begin{array}{c} M_1; \, M_2; \, N \\ = \\ M_2; \, M_1; \, N \end{array}$$

A language a paper

- ▶ N. Benton and A. Kennedy. *Monads, effects and transformations,* 1999.
- N. Benton, A. Kennedy, L. Beringer, M. Hofmann. Reading, writing and relations, 2006.
- N. Benton and P. Buchlovsky. Semantics of an effect analysis for exceptions, 2007.
- N. Benton, A. Kennedy, L. Beringer, M. Hofmann. Relational semantics for effect-based program transformations with dynamic allocation, 2007.
- N. Benton, A. Kennedy, L. Beringer, M. Hofmann. Relational semantics for effect-based program transformations: higher-order store, 2009.
- ▶ J. Thamsborg, L. Birkedal. A kripke logical relation for effect-based program transformations, 2011.

Contribution

Craft

case by case treatment

Science

general semantic account of Gifford-style effect type systems

Engineering

- results: validate optimisations that occur in practice
- tools: to assist validation and instrumentation, e.g. optimisation tables
- methods: for overcoming difficulties, e.g. equational reasoning for modular validation

Marriage of effects and monads [Wadler and Thiemann]

Observation [Wadler]

Change notation:

$$\Gamma \vdash M : A ! \varepsilon \implies \Gamma \vdash M : T_{\varepsilon}A$$

an indexed family $T_{\varepsilon}A$ of monadic types.

Suggested monads for global state

Algebraic theory of effects [Plotkin and Power]

An interface to effects:

Algebraic theory of effects [Plotkin and Power]

```
An interface to effects:
```

Effect operations Σ e.g.: lookup : 2, update : $1\langle 2 \rangle$

Effect equations *E* e.g.:

Each theory $\langle \Sigma, E \rangle$ generates a monad T (free model).

Algebraic view

Key observation

 ε as an algebraic **signature**.

Global state

```
For \Sigma \coloneqq \{ \texttt{lookup} : 2, \texttt{update} : 1 \langle 2 \rangle \}, \varepsilon = \emptyset, \{ \texttt{lookup} \}, \{ \texttt{update} \}, \{ \texttt{lookup}, \texttt{update} \}
```

A novel banality.

Global state

E :=

Global state

$$E_{\varepsilon} = \{s = t \in E | s, t \text{ are } \varepsilon\text{-terms}\}$$

$$\begin{array}{ccc} E_{\{\mathrm{lookup},\mathrm{update}\}} & E_{\{\mathrm{lookup},\mathrm{update}\}} = \\ & \swarrow & \swarrow \\ E_{\{\mathrm{lookup}\}} & E_{\{\mathrm{update}\}} \\ & \swarrow & \swarrow \\ & E_{\emptyset} & \end{array}$$

$$E_{\{ exttt{lookup}, exttt{update}\}} =$$

$$\text{Theory} \left\{ \begin{array}{cccc} & \text{update}_{b'} & = & \text{update}_{b'} \\ & \text{update}_{b'} & = & \text{update}_{b'} \\ & \text{x} & \text{x} \\ & \text{lookup} \\ & \text{update}_{0} & \text{update}_{1} & = \text{x}, \\ & \text{x} & \text{x} \\ & \text{update}_{b} & \text{update}_{b} \\ & \text{lookup} & = & \Big| \\ & \text{lookup} & = & \Big| \\ & \text{x}_{0} & \text{x}_{1} & \text{x}_{b} \end{array} \right.$$

Global state

$$E_{\varepsilon} = \{s = t \in E | s, \ t \ \text{are } \varepsilon\text{-terms}\}$$

$$E_{\{\text{lookup}, \text{update}\}} \qquad E_{\{\text{lookup}\}} = \\ & \swarrow \qquad \\ E_{\{\text{lookup}\}} \qquad E_{\{\text{update}\}} \\ & \swarrow \qquad \\ E_{\emptyset} \qquad \qquad \text{Theory} \left\{ \begin{array}{cccc} \text{lookup} & \text{lookup} \\ \text{lookup} & \text{lookup} \\ \text{x}_{00} & \text{x}_{01} & \text{x}_{10} & \text{x}_{11} \\ \text{x}_{00} & \text{x}_{01} & \text{x}_{10} & \text{x}_{11} \\ \end{array} \right.,$$

Global state

$$E_{\varepsilon} = \{s = t \in E | s, t \text{ are } \varepsilon\text{-terms}\}$$

$$E_{\{lookup,update\}} \qquad E_{\{lookup\}} = \\ E_{\{lookup\}} \qquad E_{\{update\}} \qquad \\ E_{\emptyset} \qquad \qquad Theory \left\{ \begin{array}{cccc} lookup & lookup \\ lookup & lookup \\ \hline \\ x_{00} & x_{01} & x_{10} & x_{11} & x_{00} & x_{11} \\ \hline \\ lookup & \\ \hline \\ x_{00} & x_{01} & x_{10} & x_{11} & x_{00} & x_{11} \\ \hline \\ lookup & \\ \hline \\ x_{0} & x_{0} & x_{11} & x_{01} & x_{11} \\ \hline \\ lookup & \\ \hline \\ x_{0} & x_{01} & x_{10} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \hline \\ x_{0} & x_{11} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \hline \\ x_{0} & x_{11} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \hline \\ x_{01} & x_{11} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \hline \\ x_{01} & x_{11} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \hline \\ x_{01} & x_{11} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \hline \\ x_{01} & x_{11} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \hline \\ x_{01} & x_{11} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \hline \\ x_{01} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \hline \\ x_{01} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \hline \\ x_{01} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \hline \\ x_{01} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \hline \\ x_{01} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{01} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{01} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{01} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{01} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{01} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{01} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{01} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{01} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{01} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{01} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{01} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{01} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{01} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{01} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{11} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{11} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{11} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{11} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{11} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{11} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{11} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{11} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{11} & x_{11} & x_{11} \\ \hline \\ lookup & \\ \\ x_{11} & x_$$

Reminder:

$$\operatorname{Theory} \left\{ \begin{array}{ccccc} \operatorname{update}_b & \operatorname{lookup} & \operatorname{update}_b & \operatorname{update}_b \\ \operatorname{update}_{b'} & \operatorname{update}_{b'} & \operatorname{update}_0 & \operatorname{update}_1 & \operatorname{x}, & \operatorname{lookup} & = \\ \operatorname{x} & \operatorname{x} & \operatorname{x} & \operatorname{x} & \operatorname{x} & \operatorname{x_0} & \operatorname{x_1} & \operatorname{x_b} \end{array} \right\}$$

Global state

$$E_{\varepsilon} = \{s = t \in E | s, t \text{ are } \varepsilon\text{-terms}\}$$

$$E_{\{\text{lookup}, \text{update}\}} \qquad E_{\{\text{update}\}} = \underbrace{E_{\{\text{lookup}\}} \qquad E_{\{\text{update}\}}}_{\text{update}_{b'}} = \underbrace{E_{\{\text{update}\}}}_{\text{update}_{b'}} = \underbrace{E_{\{\text{update}\}}}_{\text{update}_$$

Global state

Derived monads

Optimisations

Structural properties

Valid for all T_{ε}

e.g.

- \triangleright β , η rules
- sequencing

$$(M; N); P = M; (N; P)$$

Practically

Bread and butter of optimisation, e.g.

- constant propagation
- common subexpression elimination
- loop unrolling

etc..

Local algebraic properties

Single equations in E_{ε} , e.g.:

$$\begin{array}{ccc} \operatorname{update}_b & \operatorname{update}_b \\ \operatorname{lookup} & = & \bigg| \\ \operatorname{x}_0 & \operatorname{x}_1 & \operatorname{x}_b \end{array}$$

become optimisations, e.g.:

$$\ell := V;$$
 $\mathbf{x} := V;$ $\mathbf{y} \leftarrow \mathtt{deref}(\mathbf{x});$ $=$ $N[V/\mathbf{y}]$

note quantification over variables only (local property).

Global algebraic properties

Algebraic characterisation

For all $t(x_1, \ldots, x_n)$:

$$x \xrightarrow{t} = x$$

note quantification over terms too (global property).

Discard

$$M$$
; return () = return ()

Knowledge unification

Distilla	$_{\varepsilon}A \Gamma \vdash_{\varepsilon'} N : \underline{B}$	BF	$\Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon} A$	
$(\mathbf{coerce}M)\mathbf{to}x:A.N=N \qquad \qquad M\mathbf{to}x:A.\mathbf{return}_\varepsilon\star=\mathbf{return}_\varepsilon\star$	to $x:A.N=N$	BF	M to $x: A$. return _{ε} $\star =$ return _{ε} \star	ľ

$\mathcal{T}_{arepsilon}$ affine: $\mathbf{f} \qquad \eta_{\mathbb{1}}^{arepsilon}: \mathbb{1} ightarrow F_{arepsilon}\mathbb{1} $ has a continuous inverse	For all $arepsilon$ -terms t : $t(\mathbf{x},\dots,\mathbf{x})=\mathbf{x}$

Knowledge unification

	name	utilitarian form	pristing form	abstract side condition	algebraic equivalent	example basic theories
Figure 7. Abstract Optimisations	Discard	$\Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon}A \Gamma \vdash_{\varepsilon'} N : \underline{B}$ $(\mathbf{coerce}M) \text{ to } x : A. N = N$	$\Gamma \vdash_{\varepsilon} M : \mathbb{F}_{\varepsilon} A$ $M \text{ to } x : A. \text{ return}_{\varepsilon} * = \text{ return}_{\varepsilon} *$	$\mathcal{T}_{\varepsilon}$ affine: $\mathbf{y} = \eta_{\pm}^{\varepsilon} : 1 \to F_{\varepsilon}1 $ has a continuous inverse	For all ε -terms t : $t(\mathbf{x}, \dots, \mathbf{x}) = \mathbf{x}$	read-only state, convex, upper and lower semilartices
	Сору	$\begin{tabular}{ll} $\Gamma \vdash_{\epsilon} M : \mathbf{F}_{\epsilon}A$ \\ $\Gamma, x : A, y : A \vdash_{\epsilon'} N : \underline{B}$ \\ \hline $\operatorname{coerce} M \ \text{to} \ x : A. \\ $\operatorname{coerce} M \ \text{to} \ y : A. \ N = \\ $\operatorname{coerce} M \ \text{to} \ x : A. \ N \ [x/y]$ \\ \end{tabular}$	$\Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon}A$ $M \text{ to } x : A . M \text{ to } \underline{y} : A . \text{return}_{\varepsilon}(x, y)$ $M \text{ to } x : A . \text{return}_{\varepsilon}(x, x)$	$\mathcal{T}_{\varepsilon}$ relevant: $\psi_{\varepsilon} \circ \delta = L^{\varepsilon} \delta$	For all ε -terms t : $t(t(\mathbf{x}_{11}, \dots, \mathbf{x}_{1n}), \dots, t(\mathbf{x}_{n1}, \dots, \mathbf{x}_{nn}))$ $= t(\mathbf{x}_{11}, \dots, \mathbf{x}_{nn})$	exceptions, lifting, read-only state, write-only state
	Weak Copy	$\begin{array}{c} \Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\cdot}A \\ \Gamma, y : A \vdash_{\varepsilon'} N : \underline{B} \end{array}$ $\begin{array}{c} \text{coerceM to } x : A. \\ \text{coerceM to } y : A. N = \\ \text{coerceM to } y : A. N \end{array}$	$\frac{\Gamma \vdash_{\mathcal{C}} M : \mathbf{F}_{\mathcal{C}} A}{M \text{ to } x : A . M = M}$	$\mu^{\epsilon} \circ L^{\epsilon} \pi_1 \circ \operatorname{str}^{\epsilon} \circ \delta = \operatorname{id}$	For all ε -terms t : $t(t(\mathbf{x}_1, \dots, \mathbf{x}_n), \dots, t(\mathbf{x}_1, \dots, \mathbf{x}_n))$ $= t(\mathbf{x}_1, \dots, \mathbf{x}_n)$	any affine or relevant theory: lifting, exceptions, read-only and write-only state, all three semilattice theories
	Swap	$\begin{array}{c} \Gamma \vdash_{e_1} M_1 : \mathbb{F}_{e_1} A_1 \Gamma \vdash_{e_2} M_2 : \mathbb{F}_{e_2} A_2 \\ \hline \Gamma, x_1 : A_1, x_2 : A_2 \vdash_{e_1} N \\ \hline \text{occree} M_1 \text{ to } x_1 : A_1 \\ \text{coerce} M_2 \text{ to } x_2 : A_2 , N \\ \hline \text{coerce} M_2 \text{ to } x_2 : A_2 \\ \hline \text{coerce} M_1 \text{ to } x_2 : A_2 . N \\ \hline \text{coerce} M_1 \text{ to } x_1 : A_1 . N \\ \end{array}$	$ \begin{array}{c} \Gamma \vdash_{\varepsilon_1} M_1 : \mathbb{F}_{\varepsilon_1} A_1 \Gamma \vdash_{\varepsilon_2} M_2 : \mathbb{F}_{\varepsilon_2} A_2 \\ \hline \text{correc} M_1 \text{ to } x_1 : A_1 \\ \hline \text{correc} M_2 \text{ to } x_2 : A_2 \text{ return}_{\varepsilon} (x_1, x_2) = \\ \hline \text{coerce} M_2 \text{ to } x_2 : A_2 \\ \hline \text{coerce} M_1 \text{ to } x_1 : A_1 \text{ return}_{\varepsilon} (x_1, x_2) \end{array} $	$ \begin{array}{ll} \mathfrak{T}_{\varepsilon_1\subseteq\varepsilon}, \mathfrak{T}_{\varepsilon_2\subseteq\varepsilon} \text{ commute:} \\ \psi_\varepsilon\circ (m^{\varepsilon_1\subseteq\varepsilon}\times m^{\varepsilon_2\subseteq\varepsilon}) \\ \mathfrak{r} & = \\ \tilde{\psi}_\varepsilon\circ (m^{\varepsilon_1\subseteq\varepsilon}\times m^{\varepsilon_2\subseteq\varepsilon}) \end{array} $	$\mathfrak{T}_{e_1\subseteq \varepsilon} \text{ translations commute} \\ \text{with } \mathfrak{T}_{e_2\subseteq \varepsilon} \text{ translations (see tensor equations)}$	$\mathcal{T}_1 \rightarrow \mathcal{T}_1 \otimes \mathcal{T}_2 \leftarrow \mathcal{T}_2$, e.g., distinct global memory cells
	Weak Swap	$\frac{\Gamma \vdash_{e_1} M_1 : \mathbf{F}_{e_1} A_1}{\Gamma, x_1 : A_1 \vdash_{e_2} M_2 : \mathbf{F}_{e_2} A_2}}_{\text{(same as Swap)}}$	$\begin{array}{c} \Gamma \vdash_{\mathcal{E}_1} M_1 : \mathbb{F}_{e_1} A_1 \Gamma \vdash_{\mathcal{E}_2} M_2 : \mathbb{F}_{e_2} A_2 \\ \hline \text{coerce} M_1 \text{ to } x_1 : A_1. \\ \text{coerce} M_2 \text{ to } x_2 : A_2 \cdot \text{return}_e x_1 = \\ \text{coerce} M_1 \text{ to } x_1 : A_1, \text{ return}_e x_1 \\ \hline \end{array}$	$\psi_{\varepsilon} \circ (m^{\varepsilon_1} \times m^{\varepsilon_2})$ $\circ (\operatorname{id} \times \eta_{\varepsilon}^{\varepsilon_2}) =$ $\hat{\psi}_{\varepsilon} \circ (m^{\varepsilon_1} \times m^{\varepsilon_2})$ $\circ (\operatorname{id} \times \eta_{\varepsilon}^{\varepsilon_2})$	For all ε -terms $t = \mathfrak{T}_1(t')$, $s = \mathfrak{T}_2(s')$: $t(s(\mathbf{x}_1, \dots, \mathbf{x}_1), \dots, s(\mathbf{x}_n, \dots, \mathbf{x}_n)) = s(t(\mathbf{x}_1, \dots, \mathbf{x}_n), \dots, t(\mathbf{x}_1, \dots, \mathbf{x}_n))$	when \mathcal{T}_{e_2} is affine, e.g read-only state and convex, upper and lower semilattices.
	Isolated Swap	$\frac{\Gamma \vdash_{\varepsilon_1} M_1 : \mathbf{F}_{\varepsilon_1} A_1 \Gamma \vdash_{\varepsilon_2} M_2 : \mathbf{F}_{\varepsilon_2} A_2}{(same as Swap)}$	$\begin{array}{ll} \Gamma \vdash_{e_1} M_1 : \mathbf{F}_{e_1} A_1 & \Gamma \vdash_{e_2} M_2 : \mathbf{F}_{e_2} A_2 \\ \hline \text{coerce} M_1 \text{ to } x_1 : A_1 \\ \text{coerce} M_2 \text{ to } x_2 : A_2 : \text{return}_e * = \\ \text{coerce} M_2 \text{ to } x_2 : A_2 : \text{return}_e * \\ \hline \text{coerce} M_1 \text{ to } x_1 : A_1 : \text{eturn}_e * \end{array}$	$\psi_{\varepsilon} \circ (m^{\varepsilon_1} \times m^{\varepsilon_2})$ $\circ (\eta_t^{\varepsilon_1} \times \eta_t^{\varepsilon_2}) =$ $\tilde{\psi}_{\varepsilon} \circ (m^{\varepsilon_1} \times m^{\varepsilon_2})$ $\circ (\eta_t^{\varepsilon_1} \times \eta_t^{\varepsilon_2})$	For all ε -terms $t = \mathfrak{T}_1(t')$, $s = \mathfrak{T}_2(s')$: $t(s(\mathbf{x}, \dots, \mathbf{x}), \dots, s(\mathbf{x}, \dots, \mathbf{x})) = s(t(\mathbf{x}, \dots, \mathbf{x}), \dots, t(\mathbf{x}, \dots, \mathbf{x}))$	when $T\varepsilon_1$ is affine: read-only state and convex, upper and lower semilattices.
	Unique	$\frac{\Gamma \vdash_{\varepsilon} M_i : \mathbf{F}_{\varepsilon} 0, i = 1, 2}{M_1 = M_2}$	(same as utilitarian form)	$F_c 0 = 0, 1$	$\mathcal{T}_{\varepsilon}$ equates all ε -constants	all three state theories, all three semilattice theories, a single unparameterised exception, lifting
	Pure Hoist	$ \begin{array}{c c} \Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon}A & \Gamma, x : A \vdash_{\varepsilon}r & N : \underline{B} \\ \hline \mathbf{return}_{\varepsilon} \text{ thunk } (\mathbf{coerce}M \text{ to } x : A, N) \\ \hline = M \text{ to } x : A. \text{ return}_{\varepsilon} \text{ thunk } N \end{array} $	$\Gamma \vdash_{\varepsilon} M : \mathbb{F}_{\varepsilon} A$ $return_{\varepsilon} \text{ thunk } M = M \text{ to } x : A. \text{ return}_{\varepsilon} \text{ thunk return}_{\varepsilon} x$	$L^{\varepsilon} \eta_W^{\varepsilon} = \eta_{ F_{\varepsilon}W }^{\varepsilon}$	all ε -terms are equal to variables in $\mathcal{T}_{\varepsilon}$	the empty theory, inconsistent theories
	Hoist	$ \begin{array}{c} \Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon}A \Gamma, x : A \vdash_{\varepsilon'} N : \underline{B} \\ \hline \text{nr} M \text{ to } x : A. \\ \text{return}_{\varepsilon} \text{ thunk (coerceM to } x : A. N) \\ = M \text{ to } x : A. \text{ return}_{\varepsilon} \text{ thunk } N \end{array} $	$\Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon} A$ $M \text{ to } x : A.$ $\text{thunk return}_{\varepsilon} (x, \text{ thunk } M) =$ $M \text{ to } x : A.$ $\text{thunk return}_{\varepsilon} (x, \text{ thunk return}_{\varepsilon} x)$	$_{\mathbf{F}}$ $L^{\varepsilon}\langle \eta^{\varepsilon}, id \rangle = \operatorname{str}^{\varepsilon} \circ \delta$	all ε -terms are either a variable or independent of their variables via $\mathcal{T}_{\varepsilon}$	all theories containing only constants: lifting and exceptions

cucros

Global algebraic properties

Algebraic characterisation

For all ε_1 -term $t(\mathbf{x}_1,\ldots,\mathbf{x}_n)$, and ε_2 -term $s(\mathbf{x}_1,\ldots,\mathbf{x}_m)$:

Swap

$$x \leftarrow M_1; y \leftarrow M_2; return \langle x, y \rangle$$

$$= y \leftarrow M_2; x \leftarrow M_1; return \langle x, y \rangle$$

Global algebraic properties

Algebraic characterisation

For all ε_1 -term $t(\mathbf{x}_1,\ldots,\mathbf{x}_n)$, and ε_2 -term $s(\mathbf{x}_1,\ldots,\mathbf{x}_m)$:

Isolated swap

$$M: N = N: M$$

Applicable for more effects.

Additional contributions

Details in the paper, and:

An extended example:

```
\begin{split} \mathsf{Exceptions} + & (\mathsf{Read} \ \mathsf{Only} \otimes \mathsf{Write} \ \mathsf{Only} \otimes \mathsf{Read}\text{-}\mathsf{Write} \ \otimes \\ & (\mathsf{Rollback} \ \mathsf{Exceptions} + \mathsf{Input} + \mathsf{Output} + \\ & (\mathsf{Non-determinism} \otimes \mathsf{Lifting}))) \end{split}
```

$$(2^9 = 512 \text{ effect sets}).$$

- Modular validation of optimisations.
- Guaranteeing optimisation soundness.
- Optimisation tables.

Caveats

- No effect inference.
- Not a rich logic (equational only).
- Only algebraic effects.
- Did not cover all optimisations.

Summary

- ▶ N. Benton and A. Kennedy. *Monads, effects and transformations,* 1999.
- N. Benton, A. Kennedy, L. Beringer, M. Hofmann. Reading, writing and relations, 2006.
- ▶ N. Benton and P. Buchlovsky. Semantics of an effect analysis for exceptions, 2007.
- N. Benton, A. Kennedy, L. Beringer, M. Hofmann. Relational semantics for effect-based program transformations with dynamic allocation, 2007.
- ▶ N. Benton, A. Kennedy, L. Beringer, M. Hofmann. *Relational semantics for effect-based program transformations:*higher-order store, 2009.
- ▶ J. Thamsborg, L. Birkedal. A kripke logical relation for effect-based program transformations, 2011.

Summary

- Category theory was crucial to this formulation.
- ► The categorical characterisations connected to Führmann, Jacobs, Kock and Wraith.

Contribution

Craft

case by case treatment

Science

general semantic account of Gifford-style effect type systems

Engineering

- results: validate optimisations that occur in practice
- tools: to assist validation and instrumentation, e.g. optimisation tables
- methods: for overcoming difficulties, e.g. equational reasoning for modular validation

Appendices

- ► High-level view
- ► IR syntax
 - Signature
 - Types and terms
 - Type system
- ▶ IR semantics
- Optimisation soundness
- Atkey
- Further work

Appendix I: Bird's Eye

```
monadic source language

↓

multi-monadic intermediate language

↓

semantics

↓

optimisations (logic)
```

IR syntax

```
Signature
```

 $\Sigma = \{op : a\langle p \rangle\}$ parametrises the language.

Global state

State: lookup: 2 (lookup: $2\langle 1 \rangle$), update: $1\langle 2 \rangle$

Exceptions: DivideByZero: 0

Input: input: 128, output: $1\langle 128 \rangle$

Already $2^5 = 32$ different languages!

IR syntax

Types and terms

$$A,B,\ldots ::= \mathbf{n} \mid A \to B \mid T_{\varepsilon}A$$

$$M,N,\ldots ::= x \mid i \mid \lambda x.M \mid MN \mid \mathsf{return}_{\varepsilon} M \mid x \leftarrow M; N \mid \mathsf{op}_{M} N \mid M$$

where $\varepsilon, \varepsilon' \subseteq \Sigma$

IR syntax

Type system

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x . M} \qquad \frac{\Gamma \vdash M : A \to B \qquad \Gamma \vdash N : A}{\Gamma \vdash M N : B}$$

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash \text{return}_{\varepsilon} M : T_{\varepsilon} A} \qquad \frac{\Gamma \vdash M : T_{\varepsilon} A \qquad \Gamma, x : A \vdash N : T_{\varepsilon} B}{\Gamma \vdash x \leftarrow M; N : T_{\varepsilon} B}$$

$$\frac{\Gamma \vdash M : \mathbf{p} \qquad \Gamma \vdash N : \mathbf{a} \to T_{\varepsilon} B}{\Gamma \vdash \text{op}_{M} N : T_{\varepsilon} B} \text{ op } : \mathbf{a} \langle \mathbf{p} \rangle, \text{ op } \in \varepsilon$$

Semantics

Models

A functorial family of theories: $\mathcal{T}_{\varepsilon} = \langle \varepsilon, E_{\varepsilon} \rangle$ with $E_{\varepsilon_1} \subseteq E_{\varepsilon_2}$ whenever $\varepsilon_1 \subseteq \varepsilon_2$.

Derived monads

Effect-dependent optimisation

Source: $x \leftarrow M$; return 0 : T1

Effect-dependent optimisation

Source:
$$x \leftarrow M$$
; return 0 = return 0 : $T1$

$$x \leftarrow M$$
;

$$\begin{array}{lll} \textbf{IR:} & \text{return}_{\{\texttt{lookup}\}}\,\mathbf{0} & = & \text{return}_{\{\texttt{lookup}\}}\,\mathbf{0} & : \mathcal{T}_{\{\texttt{lookup}\}}\,\mathbf{1} \\ \end{array}$$

crucial step holds $\forall N : T_{\{lookup\}}A$, not $\forall N : TA$

Effect-dependent optimisation

Source:
$$x \leftarrow M$$
; return 0 = return 0 : $T1$

$$x \leftarrow M$$
;

$$\begin{array}{lll} \textbf{IR:} & \text{return}_{\{\texttt{lookup}\}} \, \textbf{0} & = & \text{return}_{\{\texttt{lookup}\}} \, \textbf{0} & : \, \mathcal{T}_{\{\texttt{lookup}\}} \, \textbf{1} \\ \end{array}$$

 $return_{\emptyset} 0$: $T_{\emptyset} \mathbf{1}$

Formalising soundness

Erasure

 $\mathrm{Erase}:\mathsf{IR}\;\mathsf{terms}\to\mathsf{source}\;\mathsf{terms}$

Erase(M): remove ε 's and coercions from M

$$(x \leftarrow M; \mathtt{return}_{\emptyset} \, 0)$$
 $\xrightarrow{\mathrm{Erase}}$
 $x \leftarrow \mathrm{Erase}(M); \mathtt{return} \, 0$

Validity

 ${\mathcal M}$ a model (source or IR):

$$\mathcal{M} \models M = N \iff \llbracket M \rrbracket = \llbracket N \rrbracket \text{ in } \mathcal{M}$$

Formal soundness

Soundness

For a **source** model \mathcal{T} and IRs $\vdash M, N : T_{\varepsilon} \mathbf{n}$, suffices to find an IR model \mathcal{T}^{\sharp} such that:

$$\mathcal{T}^{\sharp} \models M = N \implies \mathcal{T} \models \operatorname{Erase}(M) = \operatorname{Erase}(N)$$

Source:
$$Erase(M)$$
 $Erase(N)$: Tn

IR:
$$M = M' = M'' = \ldots = M''' = N$$
 : T_{ε} **n**

Constructing IR Models

Conservative Restriction Model

Given $\mathcal{T} = \langle \Sigma, E \rangle$, define the IR model $\mathcal{T}^{\operatorname{Cns}}$ by:

$$E|_{\varepsilon} \coloneqq E \cap (\varepsilon\text{-terms} \times \varepsilon\text{-terms})$$

i.e., all derivable E equations between ε -terms.

Theorem

For all $\vdash M, N : T_{\varepsilon} \mathbf{n}$:

$$\mathcal{T}^{\operatorname{Cns}} \models M = N \iff \mathcal{T} \models \operatorname{Erase}(M) = \operatorname{Erase}(N)$$

Modularity theorem

Idea

Restrictions of $\mathcal{T}=\mathcal{T}^1 \odot \mathcal{T}^2$ in terms of component restrictions.

Theorem

For consistent theories:

$$(\mathcal{T}^1+\mathcal{T}^2)\big|_{\varepsilon_1+\varepsilon_2}=\left.\mathcal{T}^1\right|_{\varepsilon_1}+\left.\mathcal{T}^2\right|_{\varepsilon_2}$$

Axiomatic restriction

Axiomatic Restriction Model

Given $\mathcal{T} = \langle \Sigma, \operatorname{TheoryAx} \rangle$, define the IR model $\mathcal{T}^{\operatorname{Ax}}$ by:

$$\mathrm{Theory}|_{\varepsilon}\,\mathrm{Ax}\coloneqq\mathrm{Theory}\big(\mathrm{Ax}\cap\big(\varepsilon\text{-terms}\times\varepsilon\text{-terms}\big)\big)$$

By fiat,

$$\begin{array}{ll} \operatorname{Theory}|_{\varepsilon_{1}+\varepsilon_{2}} \ (\operatorname{Ax}^{1}+\operatorname{Ax}^{2}) &= \operatorname{Theory}|_{\varepsilon_{1}} \operatorname{Ax}^{1} + \operatorname{Theory}|_{\varepsilon_{2}} \operatorname{Ax}^{1} \\ \operatorname{Theory}|_{\varepsilon_{1}+\varepsilon_{2}} \left((\operatorname{Ax}^{1}+\operatorname{Ax}^{2}) \cup E_{\Sigma_{1}\otimes\Sigma_{2}} \right) &= \operatorname{Theory}|_{\varepsilon_{1}} \operatorname{Ax}^{1} \otimes \operatorname{Theory}|_{\varepsilon_{2}} \operatorname{Ax}^{2} \end{array}$$

Theorem

For all $\vdash M, N : T_{\varepsilon} \mathbf{n}$:

$$\mathcal{T}^{\mathrm{Ax}} \models M = N \implies \mathcal{T} \models \mathrm{Erase}(M) = \mathrm{Erase}(N)$$

Abstract optimisations

(contd.) Discard: $x \leftarrow M$; $return_{\varepsilon} 0 = return_{\varepsilon} 0$

Discard: Pristine Form

$$\frac{\Gamma \vdash M : T_{\varepsilon}A}{\mathtt{x} \leftarrow M; \mathtt{return}_{\varepsilon} \, 0 = \mathtt{return}_{\varepsilon} \, 0}$$

(cont.)

Categorical Characterisation

$$T_{\varepsilon}1 \cong 1$$

Due to Kock, Jacobs, Führmann

Further work

- Effect reconstruction
- Handlers
- Automation
- More effects
- Locality

- Concurrency
- DSL reasoning.
- Richer program logics (Hoare, modal, etc.).

Isolated swap applicability

For example, if $\varepsilon_1 = \{\text{input}\}, \varepsilon_2 = \{\text{lookup}, \text{update}\}.$

Atkey

Precise relationship of semantics is further work.

Similarities:

- Soundness of optimisations.
- ▶ Validation of the Benton et. al global state optimisations.
- Constructing a semantics out of an equational theory.

Differences:

- Our work included a general treatment of optimisations.
- Our work is tightly coupled to the algebraic semantics.
- Out work treats modular combinations of optimisations.

Perhaps our work can be generalised to the parametrised setting.

