Modelación y Simulación Departamento de Ingeniería en Informática Tarea 2

1. (2.5) Considere un sistema de producción compuesto de dos máquinas M_1 y M_2 que trabajan en serie, como se muestra en la figura. La máquina M_1 sólo acepta productos cuando está desocupada; de otra forma los rechaza pues no hay espacio para almacenar productos en espera. Cuando M_1 finaliza, el producto pasa a la máquina M_2 , pero sólo si M_2 está desocupada. Si M_2 está ocupada, entonces M_1 se bloquea y retiene al producto hasta que M_2 se desocupe. Mientras M_1 está bloqueda, rechaza cualquier arribo de nuevos productos.

- (a) Describa este sistema mediante un autómata (E, X, Γ, f, x_0) , es decir especifique cada uno de los componentes. Dibuje el grafo para especificar f Asuma que inicialmente ambas máquinas comienzan desocupadas.
- 2. (2.0) Considere un sistema de nacimiento-muerte de un servidor y con cola con capacidad infinita. Asuma que $\lambda_j = \lambda/(j+1)$, para todo $j=0,1,\ldots,$ y $\mu_j = \mu$ para todo $j=1,2,\ldots$
 - (a) Dibuje el diagrama de estados
 - (b) Muestre que

$$\pi_j = \frac{(\lambda \tau)^j}{j!} e^{-\lambda \tau}$$

donde $\tau = \mu^{-1}$

- 3. (1.5) En un centro de vacunación la enfermera demora en promedio 2 minutos en vacunar a una persona. Las personas llegan al centro con una tasa de 20 clientes por hora. Si el sistema es M/M/1, determine:
 - (a) El porcentaje de tiempo que la efermera esté desocupada
 - (b) El tiempo promedio de permanencia de una persona en el centro.
 - (c) ¿Cuál es la probabilidad que cuando un persona llega al centro encuentre dos clientes en la fila?

Fecha de Entrega:

22 de agosto, a más tardar a las 23:59 hrs.

Envíe por correo a fernando.rannou@usach.cl.