	In dilama la mandarità in
	Conditions for regularity:
<i>(i)</i>	n is compact
(Ū)	K (.) A CONTINUOUN
(iii)	R() connerges to R() uniformly in probability R() attains as unique global minimum at do
100	P o' o' o' o' o' o
Margaran to	$ f(x)-f(y) \leq L x-y $
my brunts.	>f leibstite Continous =>
	· discretize the sample space
	For each pt, $R(\theta^*) \xrightarrow{P} R(\theta^*)$
\rangle	$\left(\max_{k=1,k} \hat{k}(\theta_k) - k(\theta_k) \ge \varepsilon\right) \le \frac{\varepsilon}{k=1} P\left(\hat{k}(\theta_k) - k(\theta_k) \ge \varepsilon\right)$
	In the context of MLO, we don't need to go into this length to cotablish uniform continuity.
	morend
	E [$\sup_{\theta \in \Theta} \log f(Y, \theta)] < \infty$ (we can replace cond 3 with

Example:
$$f(y, \theta) = \begin{cases} e^{-(y-\theta)}, & y \ge \theta \\ 0, & y < \theta \end{cases}$$

log likelihood:
log
$$f(y,\theta) = \begin{cases} \theta - y, & y \ge \theta \\ -\infty, & y < \theta \end{cases}$$

$$\hat{l}(\theta) = \underbrace{1}_{n} \underbrace{\xi}_{i=1} \log f(y_i, \theta) = \underbrace{-\infty}_{n}, \quad \hat{f}(\theta > y_i^{(n)})$$

$$\underbrace{\frac{1}{n}}_{i=1} \underbrace{\xi}_{i=1} (\theta - y_i), \quad f(\theta < y_i^{(n)})$$

1st order statistic (when arrounded decending order) & man.

	Properties of MIE =-
	(of anomer for approaches the properties of MU, that's nery useful too!)
*	
1x2 K	Score of the MC: Gradient of the log likelihood f^n $S(\theta, y) = V_0 \log f(y, \theta) (\log of your dist^n density)$
	Suppose that θ_0 is the unique global maximum of $L(\theta)$
Whot day	$(\theta) \qquad \theta \Rightarrow f(y,\theta) \Rightarrow \iota_{\theta}(\tilde{\theta}) = \iota_{\theta}[\log f(Y,\tilde{\theta})]$
	8 so the parameter that induces the district of 8
>	$\nabla_{\vec{\theta}} L_{\theta}(\vec{\theta}) \Big _{\vec{\theta}=\theta} = 0$
	Assuming we can swap deffeutables with Megsels? repuns last class):-
	$\nabla_{\widetilde{\theta}} L_{\theta}(\widetilde{\theta}) \Big _{\widetilde{\theta}=\theta} = 0 = \mathbb{E}_{\theta} \Big[\nabla_{\widetilde{\theta}} \log f(Y, \widetilde{\theta}) \Big] \Big _{\widetilde{\theta}=\theta}$
	$= \mathbb{E}_{\Theta}[s(\theta, \gamma)]$
random	$E_{\theta}[c(\theta, \gamma)] = 0$ \longrightarrow System of equations
	$\mathbb{E}[s(\theta, Y) s(\theta, Y)'] = I_{\theta}$ Lovariance Matrix. (Since $E_{\theta}[s(\theta, Y)] = 0$, we don't
matrix.	rubion (since & Es(O, y)) =0 we don't new to recenter like in the nutre.
Inform	about coses.

 $F_{\theta}[S(\theta, Y)] = 0$ $H \theta \in \mathbb{R}$ Now this can be treated as a curve of devivatives can be taken anywhere so me For dimension K: Eo[sk(θ , χ)] = 0 = $\int_{-\infty}^{\infty} s^{k}(\theta, y) f(y, \theta) dy$ dy $\int_{-\infty}^{\infty} d^{k}(\theta, y) f(y, \theta) dy$ depending on the dimension of y. $S^{k}(\theta,y) = \partial \log f(y,\theta)$ > 0 = S Vo c (0, y) f (y, 0). dy + Jsk (0,y) Vo fly, 0).dy $s(\theta,y) = \nabla_{\theta} \log f(y,\theta) = 1 \nabla_{\theta} f(y,\theta)$ $0 = \int_{-\infty}^{+\infty} \nabla_{\theta} c^{k}(\theta, y) f(y, \theta) dy + \int_{-\infty}^{+\infty} c^{k}(\theta, y) \nabla_{\theta} f(y, \theta) \frac{1}{f(y, \theta)} \cdot f(y, \theta) dy.$ $0 = \int_{-\infty}^{\infty} \nabla_{\theta} c^{k}(\theta, y) f(y, \theta) dy + \int_{-\infty}^{\infty} c^{k}(\theta, y) c(\theta, y) f(y, \theta) dy$ + F[[& k (0, y) & (0, Y)]

Now

$\nabla_{\theta} S^{k}(\theta, y) = \begin{cases} \partial^{2} \log f(y, \theta) \\ \partial \theta^{1} \partial \theta^{k} \end{cases}$ $\frac{\partial^{2} \log f(y, \theta)}{\partial \theta^{n} \partial \theta^{k}}$
$L(\theta) = E \left[\log f(Y, \theta) \right]$
Create similar rector for each dimension
$ \frac{\partial^{2} L(\theta)}{\partial \theta^{1} \partial \theta^{2}} $ $ \frac{\partial^{2} L(\theta)}{\partial \theta^{1} \partial \theta^{2}} $ $ 0 = \left(\frac{\partial^{2} L(\theta)}{\partial \theta^{1} \partial \theta^{2}}\right) $ $ + E[c^{K}(\theta, \chi)^{2}(\theta, \chi)] $
2° 10° 20° 20° 20° 20° 20° 20° 20° 20° 20° 2
Since Its true for any D, transposing It! Transpose
$0 = \left(\frac{\partial^2 l(\theta)}{\partial \theta^i \partial \theta^k} - \frac{\partial^2 l(\theta)}{\partial \theta^i \partial \theta^k}\right) + \left[\int_{0}^{\infty} c^k(\theta, y) c(\theta, y)\right]$ $k = 1,d$
stacking it nighther

$$0 = \begin{pmatrix} \frac{\partial^{2} l(\theta)}{\partial \theta^{2} \partial \theta^{2}} & \frac{\partial^{2} l(\theta)}{\partial \theta^{2} \partial \theta^{2}} \end{pmatrix} + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\frac{\partial^{2} l(\theta)}{\partial \theta^{2} \partial \theta^{2}} - \frac{\partial^{2} l(\theta)}{\partial \theta^{2} \partial \theta^{2}} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\frac{\partial^{2} l(\theta)}{\partial \theta^{2} \partial \theta^{2}} - \frac{\partial^{2} l(\theta)}{\partial \theta^{2} \partial \theta^{2}} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\frac{\partial^{2} l(\theta)}{\partial \theta^{2} \partial \theta^{2}} - \frac{\partial^{2} l(\theta)}{\partial \theta^{2} \partial \theta^{2}} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right] + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right) + \mathcal{E} \left[\mathcal{E}^{2}(\theta, Y) \leq (\theta, Y)^{2} \right]$$

$$\left(\mathcal{E}^{$$

Now 18, 2023
$H(0) = -T_0$
singular => Not invertible
score: $\hat{I}_{0} = \int_{0}^{\infty} \hat{S}(\theta, y_{i}) S(\theta, y_{i})'$
By denign, possitive servi definite matrix.
√n (ô-0) d N(0, 4 (0) ≥ H(0) 1)
covariance of goodicet of the Objective fr.
In case of $M(E : Z = I_0)$
$H(\theta_0) = -I_{\theta_0} \rightarrow how ? Jon$ $H(\theta_0)^{-1} \leq H(\theta_0)^{-1} = I_0^{-1}$
Some Strff on investability Rele of I is engular, how do we have his?
angreat, to the time this

		Weller welgoning
Theorem	: suppose but	nor lineigng to 00.
	: suppose that varianous webrix	to ∞. 00
(Rao-Crayes	lim $Var\left(\sqrt{\ln (\theta-\theta_0)}\right) = C$, $0 < C < +\infty$	
	$\lim_{n\to\infty} \operatorname{Var} \left(\int_{n} \left(0 - \theta_{0} \right) \right) = C 0 < C < +\infty$	
	then $Var\left(\overline{\ln \left(\theta-\theta_0\right)}\right)-\overline{L_0}$ is positive of	mi lds its
	then the total of	magnet.
	In very continuous will have granismed small as MID estimator.	
Z.	7 W. Cure 3011 3 20	
67.		
No. of the second	Any regular estimator will have grassiana	e at most as
<u>\$</u>	small as MIO estimator.	