HASHTABLES - TABELAS DE DISPERSÃO

```
Tabelas e funções de dispersão.
Factor de carga, colisões e tipos de dispersão:
    encadeamento separado (cadeias explícitas)
    endereçamento aberto:
    -acesso linear, quadrático e com duplo hash
Rehashing
```

HASH TABLES - "TABELAS DE DISPERSÃO"

- · Do inglês "Hash"
 - · Pode ser traduzido por "picado/mastigado"
 - · eventualmente outros significados...
 - · Endereçamento por cálculo
- · Ideia /GOAL:
 - Fazer pesquisa, inserção e remoção em T=O(1)

HASH TABLES

- · Usa-se um array, com os elementos indexados por uma função da chave
 - · Idealmente, a chave seria o índice
 - · No entanto, não vai ser tão simples, porque:
 - · o domínio das chaves é potencialmente infinito
 - · o tamanho do vector será sempre limitado

HASH TABLES: EXEMPLO

• Função f?

HASH TABLES: EXEMPLO

Função hash?

UTILIZAÇÃO

FORMULAÇÃO DO PROBLEMA

- · É preciso
 - · Definir a função de hash, usada para gerar índices a partir de chaves
 - · Garantir que esta é adequada às caracteristicas
 - · Do domínio (e distribuição) das chaves
 - · Do tamanho do vector
 - Saber o que fazer quando duas chaves dão o mesmo índice (colisão)

ESCOLHA DA FUNÇÃO DE HASH

- Escolha determinante(para o quê!?)
- · Se domínio das chaves são inteiros
 - · Pode-se usar simplesmente:
 - hash(key) = Key % TableSize
 - · Problema:

- Index HashInt(int Key, int TableSize) {
 return Key % TableSize;
 }
- · Tabela de tamanho 10 e o dígito das unidades das chaves é o mesmo;
 - · Solução: assegurar que o tamanho da tabela é um número primo

ESCOLHA FUNÇÃO DE HASH

- · Se domínio das chaves são strings..
 - Procurar funções que produzam uma boa distribuição em termos do tamanho da tabela
- · Se quero converter uma String num inteiro, uma primeira ideia será?
 - Uma opção será somar o ASCII dos caracteres da String

```
Index HashSt1( const char *Key, int TableSize ) {
    unsigned int HashVal = 0;

while( *Key != '\0' )
    HashVal += *Key++;

return HashVal % TableSize;
}
```

FUNÇÕES DE HASH(STRINGS)

hash("Ana",10007) = ASCII('A')+ASCII('n')
+ASCI('a')=65+110+97=272%10007=272

Problema:

- Como ASCII(c)≤127, se as strings tiverem no máximo 8 caracteres o hash(s)≤127*8=1016.
- Usando uma tabela com um tamanho muito superior a este valor não obtemos uma boa distribuição.
- Porquê?????

FUNÇÕES DE HASH(STRINGS)

- · O tamanho da tabela dependerá da quantidade de informação que pretendemos armazenar, e não da função de hash usada para os acessos
- · Solução?
 - · Atribuir um peso a cada caracter da String :

$$hash(Key) = \sum_{i} p^{i} Key[i]$$

· Por exemplo usando peso=27 (letras do alfabeto) e tomando só os três primeiros caracteres

```
Index HashSt2( const char *Key, int TableSize ) {
   return ( Key[0] + 27 * Key[1] + 729 * Key[2] )% TableSize;
}
```

HASHCODE NO JAVA

- Existem $26^3=17576$ possíveis palavras com 3 letras, mas num dicionário Inglês só 2851 correspondem a palavras num dicionário em Inglês. Mesmo que não existissem colisões, só uma pequena % da tabela seria acedida($2851/10007 \simeq 28\,\%$) e portanto para valores muito maiores que 2851, esta função não serve....
- Uma função que envolva todos os caracteres da String, e um peso apropriado(fácil de calcular) e alguma matemática resolvem o assunto:

$$hashcode(Key) = Key[0].32^{N-1} + Key[1].32^{N-2} + ... + Key[N-1]$$

• E usando a regra de Horner que diz que outra forma de calcular $h_k = k_1 + 27k_2 + 27^2k_3$ pode ser calculado por $h_k = (k_3 * 27 + k2) * 27 + k_1$

FUNÇÃO DE HASH PARA STRINGS

· Como multiplicar por 32, é equivalente a shiftar 5 bits para a esquerda, usamos o 32 e não o 27...

```
Index HashSt3( const char *Key, int TableSize ) {
    unsigned int HashVal = 0;
    while( *Key != '\0')
        HashVal = ( HashVal << 5 ) + *Key++;

    return HashVal % TableSize;
}</pre>
```

COLISÕES

- · Definição: duas chaves distintas resultam no mesmo índice
- Várias abordagens são possíveis, sendo que as mais básicas são:
 - Hashing Aberto("Cadeias separadas")
 - Hashing fechado("Endereçamento aberto")

HASHING ABERTO (CADEIAS SEPARADAS)

- · A pesquisa/inserção/remoção fazem-se:
 - · Aplicando a função de hash às chaves
 - A operação a realizar (pesquisa/inserção/remoção) é feita numa cadeia externa: lista, árvore, array, tabela de hash, etc.
 - · Convém que as cadeias sejam curtas

EXEMPLO HASHING ABERTO

- Queremos inserir numa tabela de hash, os 10 primeiros quadrados perfeitos
 - 0,1,4,9,16,25,36,49,64,81
 , numa tabela de tamanho
 10, usando como função de hash, hash(x)=x % 10
 - Usem-se listas ligadas para as cadeias externas, e insira-se à cabeça nas listas, porque...

HASH ABERTO

- · Define-se factor de carga λ como sendo
 - $\lambda = N/M$, para
 - $N = n^{\circ}$ de chaves inseridas
 - M = tamanho do vector (deve ser primo)

EXEMPLO: ENCADEAMENTO

PESQUISA/INSERÇÃO/REMOÇÃO

· O tamanho (médio) das listas é λ ; Uma Pesquisa/Inserção/Remoção requer: Cálculo do hashing da chave (0(1)); · Pesquisar/Inserir/Remover na correspondente lista o objecto pretendido: • Pesquisa: $O(\lambda)$; • Inserção: cabeça O(1), cauda $O(\lambda)$ • Remoção: $O(\lambda)$

HASHING ABERTO

- · Resumindo:
 - · Importante é o factor de carga, não o tamanho da tabela, assumindo uma "boa" distribuição pela função de hash!
 - Se $\lambda < 1$, as operações são O(1)
- · Desvantagens do hashing aberto:
 - · Existência de uma estrutura extra para resolver as colisões, com consequências no espaço ocupado;

HASHING FECHADO (ENDEREÇAMENTO ABERTO)

- · Inserem-se na própria tabela, não em cadeias externas
- Como dispor chaves com mesmo valor de hash? Isto é:
 Como se resolvem as colisões?
 - Tentam-se os índices: $h_0(Key)$, $h_1(Key)$, $h_2(Key)$... até que algum destes índices esteja livre
 - $h_i(Key) = hash(Key) + f(i)$, com f(0) = 0
 - para garantir que a 1ª tentativa só depende da função de hash

HASHING FECHADO

- No endereçamento aberto os acessos são calculados (endereçamento por cálculo) através da fórmula $h_i(Key) = hash(Key) + f(i)$
- \cdot 0 acesso diz-se <u>linear</u> se f é linear
 - Usualmente f(i) = i
- Acesso quadrático se f é quadrática
 - Usualmente $f(i) = i^2$
- \cdot Duplo hashing, f é uma função de hash
 - Usualmente $f(i) = hash_2(i)$

EXEMPLO

- Inserir
 66;47;87;90;126;140;145;153;177;285;393;395;467;566
 ; 620;735; numa tabela de hash com 20 posições,
 usando:
 - · Como função de hash:
 - $h(x) = x \mod 20$
 - · como resolvedor de colisões:
 - o acesso linear e f(i) = i

$$h0(285) = hash(285) = 285 \% 20 = 5$$
 $h1(285) = 5 + 1 = 6$
 $h6(285) = 5 + 6 = 11$
 $h0(393) = hash(393) = 393 \% 20 = 13$
 $h1(393) = 13 + 1 = 14$
 $h0(395) = hash(395) = 395 \% 20 = 15$
 $h0(467) = hash(467) = 467 \% 20 = 7$

...

 $h5(467) = 7 + 5 = 12$
 $h0(566) = hash(566) = 467 \% 20 = 6$
 $h10(566) = 6 + 10 = 16$
 $h0(620) = hash(620) = 620 \% 20 = 0$
 $h1(620) = 0 + 1 = 1$
 $h0(735) = hash(735) = 675 \% 20 = 15$
 $h3(735) = 15 + 3 = 18$

ACESSO LINEAR

- · À medida que a carga aumenta, vão-se formando "blocos" de células ocupadas: "Primary Clustering";
- · É sempre possível (desde que exista espaço) encontrar local para inserir um elemento mas os acessos/tentativas necessárias vão aumentando.
 - · A nova entrada vai por sua vez, aumentar o tamanho do cluster;
- Quando $\lambda >$ 0.6 os acessos crescem muito, perde-se T=0(1)

ACESSO LINEAR

- · Como pesquisar um elemento na tabela?
 - · Calcular o hash(chave) e tentar as iteradas h_0, h_1, \ldots até encontrar a chave ou a entrada estar vaga.
 - Exemplo:
 - procurar chave 130 na tabela do exemplo anterior
 - hash(130)=130 % 20=10

0	140
1	620
2	
3	
4	
5	145
6	66
7	47
8	87
9	126
10	90
11	285
12	467
13	153
14	393
15	395
16	566
17	177
18	735
19	27

ACESSO LINEAR

- Como remover?
 - · Hipótese: procurar elemento e removê-lo directamente
 - Contra-Exemplo:
 - remover 467 (hash(467)=7)
 - procurar 566 (hash(566)=6)
- Solução:
 - "lazy deletion"

140

· Inserir 65;76;47;87;77 numa tabela de hash com 11 posições, usando o acesso quadrático como resolvedor de colisões.

h0(87) = hash(87) = 1035 h1(87) = hash(87) + f(1) = 10 + 1 = 1135 11 % 11 = 0 $h2(87) = hash(87) + 2^2 = 10 + 4 =$ 14 % 11 = 3 35 h3(87) = 10 + 32 = 19 % 11 = 8h0(77) = hash(77) = 11 % 11 = 076 h1(77) = hash(77) + f(1) = 11 + 12 =12 % 11 = 1

$\lambda = 5/11$

- Que garantias podem ser dadas, de que existindo entradas livres, este tipo de acesso encontra uma? (Diferente do linear!)
 - Se mais de metade da tabela estiver livre, e o tamanho da tabela for um número primo, é possível demonstrar que o acesso quadrático "encontra" uma célula livre para inserir;
- Exemplo: Numa tabela tamanho 16 (não é primo!), as alternativas estão às distâncias 1, 4 e 9. Estando preenchidas, as iteradas hi(chave) não produzem outras alternativas!

```
1^2 = 1,2^2 = 4,3^2 = 9,4^2 = 16,5^2 = 25,6^2 = 36,7^2 = 49,8^2 = 64, \dots
```


 Apesar de eliminar o primary clustering, o acesso quadrático gera outro tipo de clustering: "secondary clustering": Todos os elementos que "hasham" no mesmo sítio, acessam as mesmas alternativas.

- Usa-se uma segunda função de hash para os acessos.
 Geralmente
 - $f(i) = i . hash_2(x)$
 - · Os acessos ficam agora às distâncias:
 - $hash_2(x)$, 2. $hash_2(x)$, 3. $hash_2(x)$,
- · Resolve o secondary clustering...
- Usual tomar $hash_2(x) = R (x \mod R)$ para R primo menor que o tamanho da tabela

• Numa tabela de tamanho 10, inserir 89,18, 49, 58, 69, 60, 23, sendo o acesso de duplo hashing (hash2(x)= 7 - (x mod 7)) e usando como 1ª função de hash, hash(x)= x mod 10.

h0(60) =	hash(60) = 0	76
h1(60)=	hash(60) + 1.hash2(60)	
h1(60)=	0+1.(7-(60 % 7))=0 + 1.(3)=3	7.6
h2(60)=	hash(60) + 2.hash2(60)	
h2(60)=	0 + 2.(3) = 6	75
h3(60)=	hash(60) + 3.hash2(60)	
h3(60)=	0 + 3.(3) = 9	76
h4(60)=	hash(60) + 4.hash2(60)	
h4(60)=	0 + 4.(3) = 12 = 2	

Estou a repetir!

REHASHING

- · Como os casos anteriores, só que:
 - se λ ultrapassar um determinado valor (por exemplo 0,5), "duplica-se" o tamanho da tabela
 - · Procurar manter tamanho da tabela primo
 - Inserção tem T=O(1) amortizado
 - · Ocasionalmente será O(N)
 - · Mantém λ baixo, portanto poucos acessos

REHASING: EXEMPLO

- Acesso quadrático inseriu-se $65;76;47;87;77; \lambda=5/11=0.45$
- queremos ainda inserir 88, $\lambda=6/11>0.5$
- · Então faça-se rehash
 - Menor primo >2*11=23, será o tamanho da próxima tabela
 - Temos que calcular os novos endereços de todos os elementos da tabela antiga na nova tabela, já que não serão iguais

REHASHING: EXEMPLO

h0(76)=	hash(76)=	76	0/0	23	=	7	
h0(77)=	hash(77)=	77	0/0	23	=	8	
h0(47) =	hash(47)=	47	0/0	23	=	1	
h0(87)=	hash(87)=	87	0/0	23	=	18	
h0(65)=	hash(65)=	65	0/0	23	=	19	
h0(88)=	hash(88)=	88	0/0	23	=	19	7.5
h1 (88) =	19 + 1 ² =	20					

0	
1	47
2	
3	
4	
5	
6	
7	76
8	77
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	87
19	65
20	88
21	
22	

EXERCÍCIO

- Desenhe numa tabela de tamanho (N=11), os resultados de inserir as chaves do array abaixo, usado para função de hash, hash1(x)=(d₀+d_n)%N, para do e dn os dígitos menos e mais significativos de x, respectivamente, e assumindo que as colisões são resolvidas usando:
 - A. Hashing fechado de acesso quadrático
 - B. Hashing fechado com duplo hashing usando como segunda função de hash, hash2(x)=3-(x%3)

5	1	18	30	19	7	39	0	8	2	3