Lab2

April 18, 2020

```
[16]: # Import packages.
    import pandas as pd
    import numpy as np
    from sklearn.cluster import KMeans
    from IPython.display import display
    from sklearn.cluster import AffinityPropagation
    import matplotlib.pyplot as plt
    from itertools import cycle

# Import and preview data with complete views
    filename = 'Lab2data.csv'
    data = pd.read_csv(filename)
    pd.set_option("max_rows", None)
    pd.set_option("max_columns", None)
    display(data)
```

\

	Community Area	Community Area Name	Birth Rate
0	1	Rogers Park	16.4
1	2	West Ridge	17.3
2	3	Uptown	13.1
3	4	Lincoln Square	17.1
4	5	North Center	22.4
5	6	Lake View	13.5
6	7	Lincoln Park	13.2
7	8	Near North Side	10.7
8	9	Edison Park	11.3
9	10	Norwood Park	10.4
10	11	Jefferson Park	13.8
11	12	Forest Glen	10.0
12	13	North Park	10.9
13	14	Albany Park	18.3
14	15	Portage Park	14.2
15	16	Irving Park	15.8
16	17	Dunning	12.5
17	18	Montclaire	17.1
18	19	Belmont Cragin	20.0
19	20	Hermosa	20.3

20	21	Avondale	18.5
21	22	Logan Square	18.2
22	23	Humboldt Park	19.2
23	24	West Town	18.8
24	25	Austin	18.0
25	26	West Garfield Park	20.1
26	27	East Garfield Park	19.4
27	28	Near West Side	18.2
28	29	North Lawndale	20.6
29	30	South Lawndale	19.5
30	31	Lower West Side	16.5
31	32	Loop	9.4
32	33	Near South Side	21.4
33	34	Armour Square	11.5
34	35	Douglas	10.3
35	36	Oakland	17.5
36	37	Fuller Park	11.9
37	38	Grand Boulevard	14.3
38	39	Kenwood	12.2
39	40	Washington Park	19.3
40	41	Hyde Park	9.7
41	42	Woodlawn	15.1
42	43	South Shore	15.7
43	44	Chatham	14.4
44	45	Avalon Park	13.3
45	46	South Chicago	18.1
46	47	Burnside	12.9
47	48	Calumet Heights	10.0
48	49	Roseland	14.3
49	50	Pullman	14.3
50	51	South Deering	15.8
51	52	East Side	17.7
52	53	West Pullman	15.3
53	54	Riverdale	12.5
54	55	Hegewisch	13.7
55	56	Garfield Ridge	13.4
56	57	Archer Heights	18.1
57	58	Brighton Park	20.6
58	59	McKinley Park	16.7
59	60	Bridgeport	11.7
60	61	New City	21.4
61	62	West Elsdon	20.8
62	63	Gage Park	21.8
63	64	Clearing	14.6
64	65	West Lawn	18.8
65	66	Chicago Lawn	20.1
66	67	West Englewood	20.3
67	68	Englewood	20.0
		9	

68 69 70 71 72 73 74 75 76	69 Greater Grand Crossing 70 Ashburn 71 Auburn Gresham 72 Beverly 73 Washington Heights 74 Mount Greenwood 75 Morgan Park 76 O'Hare 77 Edgewater		18.2 14.7 15.1 11.0 12.0 12.5 13.2 15.8 12.1
	General Fertility Rate Low Birth Weight	\	
0	62.0 11.0		
1	83.3 8.1		
2	50.5 8.3		
3	61.0 8.1		
4	76.2 9.1		
5	38.7 6.3		
6	38.7 6.6		
7	35.9 8.6		
8	59.5 7.9		
9	59.6 4.9		
10	67.8 6.6		
11	60.6 7.6		
12	54.2 9.7		
13	76.5 8.5		
14	66.1 6.9		
15	67.1 7.7		
16	64.7 6.8		
17	83.5 8.3		
18	88.6 6.9		
19	86.7 6.7		
20	77.7 7.3		
21	63.5 7.2		
22	80.7 12.3		
23	60.4 9.1		
24 25	80.1 15.4 88.4 17.0		
26	80.8 17.5		
27	55.6 9.0		
28	86.3 15.3		
29	94.9 7.6		
30	68.2 4.5		
31	27.7 5.3		
32	72.9 8.8		
33	57.1 12.4		
34	42.2 11.7		
35	63.9 13.5		
36	60.4 17.1		

37	58.2	12.7		
38	51.1	11.4		
39	72.1	17.7		
40	33.9	5.9		
41	60.1	17.4		
42	67.9	13.8		
43	71.3	15.4		
44	69.6	19.7		
45	82.2	13.0		
46	64.0	7.9		
47	57.4	9.3		
48	68.8	12.2		
49	66.5	11.2		
50	76.7	14.9		
51	85.8	6.4		
52	71.2	14.9		
53	46.1	15.3		
54	73.2	7.7		
55	69.0	8.0		
56	80.0	8.7		
57	90.6	7.2		
58	73.9	7.3		
59	51.7	8.0		
60	93.4	11.8		
61	92.3	4.6		
62	93.2	6.8		
63	68.3	7.4		
64	83.3	7.6		
65	85.3	9.4		
66	93.3	16.1		
67	85.8	14.5		
68	82.4	12.9		
69	69.0	9.0		
70	70.5	11.6		
71	60.7	4.9		
72	61.0	19.6		
73	59.0	8.4		
74	67.5	10.6		
75	70.0	3.5		
76	48.1	7.5		
	December 1 Company 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. Тайшаг	Decate and Division	,
0	Prenatal Care Beginning in First			\
0		73.0	11.2	
1		71.1	8.3	
2		77.7	10.3	
3		80.5	9.7	
4		80.4	9.8	
5		79.1	8.1	

6	75.7	7.8
7	69.7	9.6
8	86.6	12.6
9	89.4	8.3
10	82.9	7.7
11	79.3	10.3
12	79.1	10.2
13	73.3	8.3
14	79.8	8.7
15	79.9	10.2
16	82.7	9.9
17	77.6	8.8
18	74.1	7.6
19	77.5	8.8
20	74.4	7.5
21	78.2	9.4
22	70.9	11.7
23	75.5	10.8
24	72.9	14.3
25	71.4	17.5
26	73.2	16.3
27	77.6	10.5
28		
	75.8	15.2
29	85.1	9.6
30	80.8	8.8
31	78.2	6.9
32	78.1	10.9
33	79.1	11.8
34	76.0	10.2
35	75.0	11.5
36	71.4	14.3
37	74.2	13.7
38	77.6	11.9
39	74.9	16.9
40	80.3	5.5
41	73.3	16.3
42	71.9	13.4
43	72.5	15.6
44	74.5	14.6
45	75.3	15.1
46	68.4	13.2
47	75.0	16.4
48	69.0	12.8
49	81.3	12.1
50	76.9	15.7
51	73.3	11.0
52	71.3	14.4
53	74.1	16.5

54			66.9	13.1
55 56			81.7	9.5
56			74.3	10.0
57 50			82.7	8.3
58			80.5	9.9
59			80.3	11.4
60 61			75.9	12.2
61			81.2	7.5
62 63			80.4 85.8	6.8
64			83.5	8.0
65			78.4	8.3 10.8
66			63.6	13.8
67			69.7	13.1
68			72.3	15.1
69			82.4	11.3
70			71.8	13.9
71			84.8	9.9
72			75.4	16.2
73			94.5	15.1
74			74.5	12.3
75			82.0	5.0
76			76.1	7.4
. 0				,,,
	Teen Birth Rate	Assault (Homicide)	Breast	cancer in females \
0	40.8	7.7	Breast	23.3
1	40.8 29.9	7.7 5.8	Breast	23.3 20.2
1 2	40.8 29.9 35.1	7.7 5.8 5.4	Breast	23.3 20.2 21.3
1 2 3	40.8 29.9 35.1 38.4	7.7 5.8 5.4 5.0	Breast	23.3 20.2 21.3 21.7
1 2 3 4	40.8 29.9 35.1 38.4 8.4	7.7 5.8 5.4 5.0 1.0	Breast	23.3 20.2 21.3 21.7 16.6
1 2 3 4 5	40.8 29.9 35.1 38.4 8.4 15.8	7.7 5.8 5.4 5.0 1.0	Breast	23.3 20.2 21.3 21.7 16.6 20.1
1 2 3 4 5	40.8 29.9 35.1 38.4 8.4 15.8 2.1	7.7 5.8 5.4 5.0 1.0 1.4 0.7	Breast	23.3 20.2 21.3 21.7 16.6 20.1 23.7
1 2 3 4 5 6 7	40.8 29.9 35.1 38.4 8.4 15.8 2.1 34.0	7.7 5.8 5.4 5.0 1.0 1.4 0.7 3.7	Breast	23.3 20.2 21.3 21.7 16.6 20.1 23.7 24.0
1 2 3 4 5 6 7 8	40.8 29.9 35.1 38.4 8.4 15.8 2.1 34.0 3.9	7.7 5.8 5.4 5.0 1.0 1.4 0.7 3.7	Breast	23.3 20.2 21.3 21.7 16.6 20.1 23.7 24.0 13.8
1 2 3 4 5 6 7 8	40.8 29.9 35.1 38.4 8.4 15.8 2.1 34.0 3.9 3.4	7.7 5.8 5.4 5.0 1.0 1.4 0.7 3.7 0.0 4.7	Breast	23.3 20.2 21.3 21.7 16.6 20.1 23.7 24.0 13.8 20.7
1 2 3 4 5 6 7 8 9 10	40.8 29.9 35.1 38.4 8.4 15.8 2.1 34.0 3.9 3.4 28.6	7.7 5.8 5.4 5.0 1.0 1.4 0.7 3.7 0.0 4.7 4.8	Breast	23.3 20.2 21.3 21.7 16.6 20.1 23.7 24.0 13.8 20.7 18.4
1 2 3 4 5 6 7 8 9 10	40.8 29.9 35.1 38.4 8.4 15.8 2.1 34.0 3.9 3.4 28.6 6.3	7.7 5.8 5.4 5.0 1.0 1.4 0.7 3.7 0.0 4.7 4.8 3.3	Breast	23.3 20.2 21.3 21.7 16.6 20.1 23.7 24.0 13.8 20.7 18.4 25.0
1 2 3 4 5 6 7 8 9 10 11 12	40.8 29.9 35.1 38.4 8.4 15.8 2.1 34.0 3.9 3.4 28.6 6.3 10.5	7.7 5.8 5.4 5.0 1.0 1.4 0.7 3.7 0.0 4.7 4.8 3.3 3.0	Breast	23.3 20.2 21.3 21.7 16.6 20.1 23.7 24.0 13.8 20.7 18.4 25.0 20.4
1 2 3 4 5 6 7 8 9 10 11 12 13	40.8 29.9 35.1 38.4 8.4 15.8 2.1 34.0 3.9 3.4 28.6 6.3 10.5 44.5	7.7 5.8 5.4 5.0 1.0 1.4 0.7 3.7 0.0 4.7 4.8 3.3 3.0 4.7	Breast	23.3 20.2 21.3 21.7 16.6 20.1 23.7 24.0 13.8 20.7 18.4 25.0 20.4 22.9
1 2 3 4 5 6 7 8 9 10 11 12 13 14	40.8 29.9 35.1 38.4 8.4 15.8 2.1 34.0 3.9 3.4 28.6 6.3 10.5 44.5	7.7 5.8 5.4 5.0 1.0 1.4 0.7 3.7 0.0 4.7 4.8 3.3 3.0 4.7	Breast	23.3 20.2 21.3 21.7 16.6 20.1 23.7 24.0 13.8 20.7 18.4 25.0 20.4 22.9 23.3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	40.8 29.9 35.1 38.4 8.4 15.8 2.1 34.0 3.9 3.4 28.6 6.3 10.5 44.5 41.7	7.7 5.8 5.4 5.0 1.0 1.4 0.7 3.7 0.0 4.7 4.8 3.3 3.0 4.7 3.3	Breast	23.3 20.2 21.3 21.7 16.6 20.1 23.7 24.0 13.8 20.7 18.4 25.0 20.4 22.9 23.3 29.9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	40.8 29.9 35.1 38.4 8.4 15.8 2.1 34.0 3.9 3.4 28.6 6.3 10.5 44.5 41.7 37.0 19.9	7.7 5.8 5.4 5.0 1.0 1.4 0.7 3.7 0.0 4.7 4.8 3.3 3.0 4.7 3.3	Breast	23.3 20.2 21.3 21.7 16.6 20.1 23.7 24.0 13.8 20.7 18.4 25.0 20.4 22.9 23.3 29.9 23.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	40.8 29.9 35.1 38.4 8.4 15.8 2.1 34.0 3.9 3.4 28.6 6.3 10.5 44.5 41.7 37.0 19.9 61.5	7.7 5.8 5.4 5.0 1.0 1.4 0.7 3.7 0.0 4.7 4.8 3.3 3.0 4.7 3.3 4.1	Breast	23.3 20.2 21.3 21.7 16.6 20.1 23.7 24.0 13.8 20.7 18.4 25.0 20.4 22.9 23.3 29.9 23.7 29.9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	40.8 29.9 35.1 38.4 8.4 15.8 2.1 34.0 3.9 3.4 28.6 6.3 10.5 44.5 41.7 37.0 19.9 61.5 68.2	7.7 5.8 5.4 5.0 1.0 1.4 0.7 3.7 0.0 4.7 4.8 3.3 3.0 4.7 3.3 4.1 3.7 8.6 7.0	Breast	23.3 20.2 21.3 21.7 16.6 20.1 23.7 24.0 13.8 20.7 18.4 25.0 20.4 22.9 23.3 29.9 23.7 29.9 14.4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	40.8 29.9 35.1 38.4 8.4 15.8 2.1 34.0 3.9 3.4 28.6 6.3 10.5 44.5 41.7 37.0 19.9 61.5 68.2 69.7	7.7 5.8 5.4 5.0 1.0 1.4 0.7 3.7 0.0 4.7 4.8 3.3 3.0 4.7 3.3 4.1 3.7 8.6 7.0	Breast	23.3 20.2 21.3 21.7 16.6 20.1 23.7 24.0 13.8 20.7 18.4 25.0 20.4 22.9 23.3 29.9 23.7 29.9 14.4 18.4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	40.8 29.9 35.1 38.4 8.4 15.8 2.1 34.0 3.9 3.4 28.6 6.3 10.5 44.5 41.7 37.0 19.9 61.5 68.2 69.7 63.4	7.7 5.8 5.4 5.0 1.0 1.4 0.7 3.7 0.0 4.7 4.8 3.3 3.0 4.7 3.3 4.1 3.7 8.6 7.0 12.7 4.7	Breast	23.3 20.2 21.3 21.7 16.6 20.1 23.7 24.0 13.8 20.7 18.4 25.0 20.4 22.9 23.3 29.9 23.7 29.9 14.4 18.4 16.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	40.8 29.9 35.1 38.4 8.4 15.8 2.1 34.0 3.9 3.4 28.6 6.3 10.5 44.5 41.7 37.0 19.9 61.5 68.2 69.7	7.7 5.8 5.4 5.0 1.0 1.4 0.7 3.7 0.0 4.7 4.8 3.3 3.0 4.7 3.3 4.1 3.7 8.6 7.0	Breast	23.3 20.2 21.3 21.7 16.6 20.1 23.7 24.0 13.8 20.7 18.4 25.0 20.4 22.9 23.3 29.9 23.7 29.9 14.4 18.4

23	49.2	8.5	14.5
24	81.8	34.4	33.7
25	114.9	40.0	54.7
26	93.2	38.4	21.7
27	36.7	12.7	33.4
28	108.9	46.7	45.8
29	77.5	11.1	13.2
30	49.0	11.7	27.2
31	1.3	0.7	20.2
32	50.9	4.8	31.9
33	16.2	1.8	10.7
34	34.2	13.6	34.3
35	54.5	18.9	20.6
36	69.2	49.6	8.5
37	54.8	32.1	22.6
38	25.7	15.2	30.9
39	82.6	44.6	26.0
40	7.6	5.8	33.6
41	51.1	31.1	32.9
42	65.9	33.4	32.4
43	68.2	45.2	41.9
44	63.9	22.1	33.8
45	76.8	36.9	31.9
46	68.7	70.3	7.6
47	39.3	19.5	33.5
48	79.7	40.9	43.5
49	67.9	32.2	34.6
50	65.3	41.3	25.3
51	53.0	10.7	15.3
52	67.8	43.9	20.3
53	64.5	33.0	25.0
54	47.1	6.9	20.0
55	33.7	9.9	31.0
56	50.3	16.6	25.2
57	58.1	11.1	26.8
58	47.9	5.1	32.7
59	28.4	4.9	16.5
60	94.3	26.6	23.6
61	45.5	5.9	12.1
62	61.4	10.8	23.4
63	38.7	9.4	23.6
64	44.6	10.7	16.9
65	67.4	22.4	25.0
66	116.9	47.2	39.2
67	105.3	45.1	32.9
68	84.3	49.7	29.1
69	38.3	12.4	37.2
70	83.1	37.6	41.9

71	11.9	3.5		42.0	
72	65.0	38.0		47.9	
73	7.7	2.2		34.6	
74	46.7	19.9		32.4	
75	15.9	5.6		20.5	
76	15.1	5.8		18.5	
70	10.1	5.0		10.5	
	Cancer (All Sites)	Colorectal Cancer	Diabetes-related	Firearm-related	\
0	176.9	25.3	77.1	5.2	
1	155.9	17.3	60.5	3.7	
2	183.3	20.5	80.0	4.6	
3	153.2	8.6	55.4	6.1	
4	152.1	26.1	49.8	1.0	
5	126.9	13.0	38.5	1.8	
6	152.9	16.7	50.1	2.3	
7	142.7	15.1	27.0	3.2	
8	189.7	15.1	53.0	7.1	
9	180.8	18.9	47.3	8.7	
10	208.2	23.2	49.2	4.2	
11	138.7	14.3	37.2	6.2	
12	143.7	21.9	58.9	3.1	
13	158.1	16.8	72.1	5.3	
14	168.7	15.9	48.2	4.7	
15	169.4	19.2	60.2	5.7	
16	191.5	25.9	42.5	5.2	
17	151.0	15.4	89.6	6.5	
18	152.6	17.7	58.6	5.5	
19	135.2	15.6	63.6	11.8	
20	133.9	13.4	52.7	4.6	
21	148.7	13.7	75.7	10.2	
22	211.1	26.6	94.1	22.7	
23	139.6	12.4	107.0	6.6	
24	261.9	29.8	113.9	28.5	
25	291.5	31.4	118.2	36.0	
26	236.8	24.8	97.3	37.1	
27	202.0	19.2	62.3	9.3	
28	261.5	34.8	99.2	37.6	
29	127.4	9.2	65.0	8.6	
30	141.3	11.9	61.9	11.7	
31	120.1	10.8	26.8	4.0	
32	169.0	19.2	61.5	6.6	
33	162.9	23.1	42.5	1.8	
34	269.9	33.2	119.1	9.1	
35	159.7	14.5	88.7	12.6	
36	258.9	21.1	111.7	22.6	
37	218.3	27.7	82.6	25.8	
38	196.4	34.2	45.5	17.4	
39	258.0	31.9	88.2	39.5	

40	144.0	11.7	34.0	5.0
41	241.3	23.9	82.1	25.0
42	246.0	25.1	95.4	30.0
43	213.5	24.1	73.2	37.9
44	239.6	27.7	83.9	18.5
45	227.3	21.1	86.9	33.7
46	191.2	32.8	86.1	70.3
47	216.6	36.0	81.4	24.5
48	258.5	32.0	95.5	37.7
49	262.5	28.1	78.5	32.1
50	224.0	32.5	80.6	35.1
51	182.9	12.9	73.9	10.1
52	263.6	32.6	83.4	46.5
53	258.3	39.4	115.9	32.8
54	210.0	16.7	80.0	13.4
55	231.9	24.6	80.3	9.2
56	166.3	9.0	67.7	15.4
57	139.1	12.8	69.7	10.6
58	148.4	14.2	61.4	6.5
59	168.9	16.1	49.8	4.5
60	235.2	29.2	83.7	24.6
61	180.6	11.5	68.5	7.7
62	171.0	13.6	65.0	11.1
63	189.4	22.5	72.0	12.7
64	145.1	15.7	61.5	8.8
65	179.3	26.1	73.0	19.4
66	247.6	24.4	88.2	39.3
67	252.2	30.2	101.8	44.9
68	274.4	31.5	92.3	44.6
69	229.3	22.8	80.1	11.6
70	243.0	24.5	83.6	32.6
71	197.6	24.8	59.6	3.5
72	260.6	29.7	79.5	35.6
73	201.1	24.8	66.5	7.4
74	218.2	27.1	75.4	15.8
75	138.5	8.7	47.3	11.8
76	162.0	16.2	48.8	3.9
	Infant Mortality Rate	Lung Cancer Prostat	e Cancer in Males	\
0	6.4	36.7	21.7	
1	5.1	36.0	14.2	
2	6.5	50.5	25.2	
3	3.8	43.1	27.6	
4	2.7	42.4	15.1	
5	2.2	32.5	17.0	
6	2.4	40.0	27.3	
7	6.5	33.6	15.1	
8	4.6	45.2	28.0	

9	4.4	44.5	26.4
10	8.3	55.7	32.1
11	3.8	27.0	20.3
12	5.4	34.7	14.6
13	4.9	36.9	13.1
14	4.7	44.9	14.8
15	5.3	41.3	17.9
16	4.9	53.9	24.4
17	4.6	33.4	21.9
18	5.6	37.8	27.3
19	9.3	27.7	25.6
20	5.7	32.5	37.7
21	4.3	37.7	17.5
22	9.8	48.0	52.5
23	5.1	27.4	16.6
24	13.3	74.6	69.8
25	19.0	65.3	75.0
26	11.0	56.3	78.1
27	9.1	66.2	33.6
28	14.1	61.7	54.0
29	5.9	15.9	32.7
30	5.4	27.8	14.3
31	5.7	29.2	17.2
32	4.8	46.2	51.4
33	1.5	54.3	17.2
34	13.4	74.5	85.5
35	8.2	54.5	54.2
36	22.6	89.6	70.5
37	12.1	63.8	39.0
38	8.9	49.1	46.2
39	19.3	79.8	67.0
40	10.4	34.9	24.1
41	11.5	69.8	58.0
42	11.4	70.0	54.8
43	10.9	51.5	47.9
44	11.4	57.9	45.1
45	17.7	50.9	56.3
46	13.0	69.5	44.0
47	13.9	48.0	40.4
48	9.6	70.3	57.6
49	13.6	83.8	92.9
50	11.8	59.2	48.7
51	3.7	45.9	26.2
52	11.9	78.6	62.9
53	8.7	86.1	42.5
54	8.4	57.9	28.6
55	4.5	59.2	30.9
56	5.2	49.6	20.5

57	5.9	27.7	15.1
58	7.3	38.3	0.0
59	8.0	54.4	15.8
60	7.9	69.4	40.7
61	8.1	57.8	44.7
62	5.4	34.1	41.1
63	6.7	58.6	18.7
64	8.4	36.7	19.7
65	11.1	42.9	22.1
66	13.3	66.3	75.0
67	13.4	76.8	57.7
68	14.2	77.5	70.3
69	10.2	62.8	44.5
70	15.6	65.1	43.5
71	10.0	47.9	44.7
72			
	11.2	70.0	56.2
73	3.3	55.0	16.9
74	13.1	50.0	39.8
75	2.0	37.4	2.8
76	6.9	40.1	23.7
	Stroke (Cerebrovascular	Disease) Childl	hood Blood Lead Level Screening \
0		33.7	364.7
1		34.7	331.4
Τ.		J T . 1	331.4
1 2			
2		41.7	353.7
2 3		41.7 36.9	353.7 273.3
2 3 4		41.7 36.9 41.6	353.7 273.3 178.1
2 3 4 5		41.7 36.9 41.6 24.4	353.7 273.3 178.1 179.2
2 3 4 5 6		41.7 36.9 41.6 24.4 35.3	353.7 273.3 178.1 179.2 173.3
2 3 4 5 6 7		41.7 36.9 41.6 24.4 35.3 22.0	353.7 273.3 178.1 179.2 173.3 311.2
2 3 4 5 6 7 8		41.7 36.9 41.6 24.4 35.3 22.0 38.9	353.7 273.3 178.1 179.2 173.3 311.2 134.7
2 3 4 5 6 7 8 9		41.7 36.9 41.6 24.4 35.3 22.0 38.9 45.2	353.7 273.3 178.1 179.2 173.3 311.2 134.7 163.1
2 3 4 5 6 7 8		41.7 36.9 41.6 24.4 35.3 22.0 38.9	353.7 273.3 178.1 179.2 173.3 311.2 134.7
2 3 4 5 6 7 8 9		41.7 36.9 41.6 24.4 35.3 22.0 38.9 45.2	353.7 273.3 178.1 179.2 173.3 311.2 134.7 163.1
2 3 4 5 6 7 8 9 10		41.7 36.9 41.6 24.4 35.3 22.0 38.9 45.2 41.9	353.7 273.3 178.1 179.2 173.3 311.2 134.7 163.1 236.8
2 3 4 5 6 7 8 9 10		41.7 36.9 41.6 24.4 35.3 22.0 38.9 45.2 41.9 31.0	353.7 273.3 178.1 179.2 173.3 311.2 134.7 163.1 236.8 160.8
2 3 4 5 6 7 8 9 10 11 12 13		41.7 36.9 41.6 24.4 35.3 22.0 38.9 45.2 41.9 31.0 26.7 39.1	353.7 273.3 178.1 179.2 173.3 311.2 134.7 163.1 236.8 160.8 317.3 374.1
2 3 4 5 6 7 8 9 10 11 12 13 14		41.7 36.9 41.6 24.4 35.3 22.0 38.9 45.2 41.9 31.0 26.7 39.1	353.7 273.3 178.1 179.2 173.3 311.2 134.7 163.1 236.8 160.8 317.3 374.1 287.3
2 3 4 5 6 7 8 9 10 11 12 13 14 15		41.7 36.9 41.6 24.4 35.3 22.0 38.9 45.2 41.9 31.0 26.7 39.1 37.9 42.0	353.7 273.3 178.1 179.2 173.3 311.2 134.7 163.1 236.8 160.8 317.3 374.1 287.3 333.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16		41.7 36.9 41.6 24.4 35.3 22.0 38.9 45.2 41.9 31.0 26.7 39.1 37.9 42.0 32.0	353.7 273.3 178.1 179.2 173.3 311.2 134.7 163.1 236.8 160.8 317.3 374.1 287.3 333.5 233.9
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17		41.7 36.9 41.6 24.4 35.3 22.0 38.9 45.2 41.9 31.0 26.7 39.1 37.9 42.0 32.0 40.3	353.7 273.3 178.1 179.2 173.3 311.2 134.7 163.1 236.8 160.8 317.3 374.1 287.3 333.5 233.9 315.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18		41.7 36.9 41.6 24.4 35.3 22.0 38.9 45.2 41.9 31.0 26.7 39.1 37.9 42.0 32.0 40.3 38.2	353.7 273.3 178.1 179.2 173.3 311.2 134.7 163.1 236.8 160.8 317.3 374.1 287.3 333.5 233.9 315.5 421.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18		41.7 36.9 41.6 24.4 35.3 22.0 38.9 45.2 41.9 31.0 26.7 39.1 37.9 42.0 32.0 40.3 38.2 27.6	353.7 273.3 178.1 179.2 173.3 311.2 134.7 163.1 236.8 160.8 317.3 374.1 287.3 333.5 233.9 315.5 421.5 394.7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		41.7 36.9 41.6 24.4 35.3 22.0 38.9 45.2 41.9 31.0 26.7 39.1 37.9 42.0 32.0 40.3 38.2 27.6 36.0	353.7 273.3 178.1 179.2 173.3 311.2 134.7 163.1 236.8 160.8 317.3 374.1 287.3 333.5 233.9 315.5 421.5 394.7 373.3
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21		41.7 36.9 41.6 24.4 35.3 22.0 38.9 45.2 41.9 31.0 26.7 39.1 37.9 42.0 32.0 40.3 38.2 27.6 36.0 31.9	353.7 273.3 178.1 179.2 173.3 311.2 134.7 163.1 236.8 160.8 317.3 374.1 287.3 333.5 233.9 315.5 421.5 394.7 373.3 364.4
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22		41.7 36.9 41.6 24.4 35.3 22.0 38.9 45.2 41.9 31.0 26.7 39.1 37.9 42.0 32.0 40.3 38.2 27.6 36.0 31.9 53.5	353.7 273.3 178.1 179.2 173.3 311.2 134.7 163.1 236.8 160.8 317.3 374.1 287.3 333.5 233.9 315.5 421.5 394.7 373.3 364.4 447.7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21		41.7 36.9 41.6 24.4 35.3 22.0 38.9 45.2 41.9 31.0 26.7 39.1 37.9 42.0 32.0 40.3 38.2 27.6 36.0 31.9	353.7 273.3 178.1 179.2 173.3 311.2 134.7 163.1 236.8 160.8 317.3 374.1 287.3 333.5 233.9 315.5 421.5 394.7 373.3 364.4
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22		41.7 36.9 41.6 24.4 35.3 22.0 38.9 45.2 41.9 31.0 26.7 39.1 37.9 42.0 32.0 40.3 38.2 27.6 36.0 31.9 53.5	353.7 273.3 178.1 179.2 173.3 311.2 134.7 163.1 236.8 160.8 317.3 374.1 287.3 333.5 233.9 315.5 421.5 394.7 373.3 364.4 447.7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23		41.7 36.9 41.6 24.4 35.3 22.0 38.9 45.2 41.9 31.0 26.7 39.1 37.9 42.0 32.0 40.3 38.2 27.6 36.0 31.9 53.5 33.3	353.7 273.3 178.1 179.2 173.3 311.2 134.7 163.1 236.8 160.8 317.3 374.1 287.3 333.5 233.9 315.5 421.5 394.7 373.3 364.4 447.7 316.6

26	47.5	503.7
27	43.5	396.7
28	70.2	565.7
29	37.3	605.9
30	39.2	589.0
31	39.0	297.3
32	52.4	301.3
33	38.7	490.3
34	62.1	482.2
35	43.7	435.4
36	82.4	489.9
37	46.7	590.4
38	31.5	397.9
39	43.3	502.4
40	26.0	369.0
41	60.0	444.3
42	53.2	470.3
43	50.3	418.3
44	44.5	434.8
45	50.6	493.4
46	99.1	375.0
47	39.2	383.2
48	55.6	369.5
49	65.3	398.5
50	54.9	427.1
51	33.3	398.5
52	63.9	397.2
53	80.6	NaN
54	47.1	298.8
55	42.2	354.9
56	41.8	543.5
57	38.3	580.4
58	51.7	529.6
59	40.1	384.9
60	50.2	555.0
61	42.6	492.6
62	51.2	590.3
63	53.5	302.0
64	43.1	508.3
65	61.7	524.6
66	64.6	450.6
67	71.6	401.0
68	58.2	453.7
69	47.4	368.3
70	63.7	393.8
71	57.2	179.1
72	57.6	371.4
73	26.7	133.6

Childhood Lead Poisoning Gonorrhea in Females Gonorrhea in Males \ 0 0.5 322.5 423.3 1 1.0 141.0 205.7 2 0.5 170.8 468.7 3 0.4 98.8 195.5 4 0.9 85.4 188.6 5 0.4 81.8 357.6 6 0.6 50.3 93.1 7 0.1 244.4 235.8 8 0.0 NaN . 10 0.2 NaN . 11 0.0 NaN . 12 0.4 NaN . 12 0.4 NaN . 12 0.4 NaN . 13 1.2 72.9 101.8 14 0.5 87.7 84.9 15 0.6 159.6 74.5 16 0.1 NaN 70.1 17 0.9	74 75		47.9 40.4	298.8 182.9
0 0.5 322.5 423.3 1 1.0 141.0 205.7 2 0.5 170.8 488.7 3 0.4 98.8 195.5 4 0.9 85.4 188.6 5 0.4 81.8 357.6 6 0.6 50.3 93.1 7 0.1 244.4 235.8 8 0.0 Nan . 9 0.0 NaN . 10 0.2 NaN . 10 0.2 NaN . 11 0.0 NaN . 12 0.4 NaN . 12 0.4 NaN . 13 1.2 72.9 101.8 14 0.5 87.7 84.9 15 0.6 159.6 74.5 16 0.1 NaN 70.1 17 0.9 NaN .	76		31.5	308.6
1 1.0 141.0 205.7 2 0.5 170.8 468.7 3 0.4 98.8 195.5 4 0.9 85.4 188.6 5 0.4 81.8 357.6 6 0.6 50.3 93.1 7 0.1 244.4 235.8 8 0.0 NaN . 9 0.0 NaN . 10 0.2 NaN . 11 0.0 NaN . 12 0.4 NaN . 12 0.4 NaN . 13 1.2 72.9 101.8 14 0.5 87.7 84.9 15 0.6 159.6 74.5 16 0.1 NaN . 17 0.9 NaN . 18 0.8 95.9 140.9 19 0.7 154.5 114.3 20 0.7 85.3 92.2 21 0.9	0	9		
2 0.5 170.8 468.7 3 0.4 98.8 195.5 4 0.9 85.4 188.6 5 0.4 81.8 357.6 6 0.6 50.3 93.1 7 0.1 244.4 235.8 8 0.0 NaN . 9 0.0 NaN . 10 0.2 NaN . 11 0.0 NaN . 12 0.4 NaN . 13 1.2 72.9 101.8 14 0.5 87.7 84.9 15 0.6 159.6 74.5 16 0.1 NaN . 17 0.9 NaN . 18 0.8 95.9 140.9 19 0.7 154.5 114.3 20 0.7 85.3 92.2 21 0.9 209.0 159.3 22 1.3 1234.7 937.5 23				
3 0.4 98.8 195.5 4 0.9 85.4 188.6 5 0.4 81.8 357.6 6 0.6 50.3 93.1 7 0.1 244.4 235.8 8 0.0 NaN . 9 0.0 NaN . 10 0.2 NaN . 11 0.0 NaN . 12 0.4 NaN . 13 1.2 72.9 101.8 14 0.5 87.7 84.9 15 0.6 159.6 74.5 16 0.1 NaN . 17 0.9 NaN . 18 0.8 95.9 140.9 19 0.7 154.5 114.3 20 0.7 85.3 92.2 21 0.9 209.0 159.3 22 1.3 1234.7 937.5 23 0.5 177.5 182.8 24 <td< td=""><td></td><td></td><td></td><td></td></td<>				
4 0.9 85.4 188.6 5 0.4 81.8 357.6 6 0.6 50.3 93.1 7 0.1 244.4 235.8 8 0.0 NaN . 9 0.0 NaN . 10 0.2 NaN . 11 0.0 NaN . 12 0.4 NaN . 13 1.2 72.9 101.8 14 0.5 87.7 84.9 15 0.6 159.6 74.5 16 0.1 NaN 70.1 17 0.9 NaN . 18 0.8 95.9 140.9 19 0.7 154.5 114.3 20 0.7 85.3 92.2 21 0.9 209.0 159.3 22 1.3 1234.7 937.5 23 0.5 177.5 182.8 24 2.0 1741.1 1678.9 25				
5 0.4 81.8 357.6 6 0.6 50.3 93.1 7 0.1 244.4 235.8 8 0.0 NaN . 9 0.0 NaN . 10 0.2 NaN . 11 0.0 NaN . 12 0.4 NaN . 13 1.2 72.9 101.8 14 0.5 87.7 84.9 15 0.6 159.6 74.5 16 0.1 NaN 70.1 17 0.9 NaN . 18 0.8 95.9 140.9 19 0.7 154.5 114.3 20 0.7 85.3 92.2 21 0.9 209.0 159.3 22 1.3 1234.7 937.5 23 0.5 177.5 182.8 24 2.0 1741.1 <				
6 0.6 50.3 93.1 7 0.1 244.4 235.8 8 0.0 NaN . 9 0.0 NaN . 10 0.2 NaN . 11 0.0 NaN . 12 0.4 NaN . 13 1.2 72.9 101.8 14 0.5 87.7 84.9 15 0.6 159.6 74.5 16 0.1 NaN . 17 0.9 NaN . 18 0.8 95.9 140.9 19 0.7 154.5 114.3 20 0.7 85.3 92.2 21 0.9 209.0 159.3 22 1.3 1234.7 937.5 23 0.5 177.5 182.8 24 2.0 1741.1 1678.9 25 1.4 3193.3				
7 0.1 244.4 235.8 8 0.0 NaN . 9 0.0 NaN . 10 0.2 NaN . 11 0.0 NaN . 12 0.4 NaN . 13 1.2 72.9 101.8 14 0.5 87.7 84.9 15 0.6 159.6 74.5 16 0.1 NaN . 17 0.9 NaN . 18 0.8 95.9 140.9 19 0.7 154.5 114.3 20 0.7 35.3 92.2 21 0.9 209.0 159.3 22 1.3 1234.7 937.5 23 0.5 177.5 182.8 24 2.0 1741.1 1678.9 25 1.4 3193.3 2336.7 26 0.9 2325.1				
8 0.0 NaN . 9 0.0 NaN . 10 0.2 NaN . 11 0.0 NaN . 12 0.4 NaN . 13 1.2 72.9 101.8 14 0.5 87.7 84.9 15 0.6 159.6 74.5 16 0.1 NaN 70.1 17 0.9 NaN . 18 0.8 95.9 140.9 19 0.7 154.5 114.3 20 0.7 85.3 92.2 21 0.9 209.0 159.3 22 1.3 1234.7 937.5 23 0.5 177.5 182.8 24 2.0 1741.1 1678.9 25 1.4 3193.3 2336.7 26 0.9 2325.1 1730.2 27 0.5 629.2 466.5 28 1.4 2529.9 2236.3				
9 0.0 NaN . 10 0.2 NaN . 11 0.0 NaN . 12 0.4 NaN . 13 1.2 72.9 101.8 14 0.5 87.7 84.9 15 0.6 159.6 74.5 16 0.1 NaN . 17 0.9 NaN . 18 0.8 95.9 140.9 19 0.7 154.5 114.3 20 0.7 85.3 92.2 21 0.9 209.0 159.3 22 1.3 1234.7 937.5 23 0.5 177.5 182.8 24 2.0 1741.1 1678.9 25 1.4 3193.3 2336.7 26 0.9 2325.1 1730.2 27 0.5 629.2 466.5 28 1.4 2529.9 2236.3 29 0.8 289.5 106.8 30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 1818.6				235.8
10 0.2 NaN . 11 0.0 NaN . 12 0.4 NaN . 13 1.2 72.9 101.8 14 0.5 87.7 84.9 15 0.6 159.6 74.5 16 0.1 NaN . 18 0.8 95.9 140.9 19 0.7 154.5 114.3 20 0.7 85.3 92.2 21 0.9 209.0 159.3 22 1.3 1234.7 937.5 23 0.5 177.5 182.8 24 2.0 1741.1 1678.9 25 1.4 3193.3 2336.7 26 0.9 2325.1 1730.2 27 0.5 629.2 466.5 28 1.4 2529.9 236.3 29 0.8 289.5 106.8 30 0.8				•
11 0.0 NaN . 12 0.4 NaN . 13 1.2 72.9 101.8 14 0.5 87.7 84.9 15 0.6 159.6 74.5 16 0.1 NaN 70.1 17 0.9 NaN . 18 0.8 95.9 140.9 19 0.7 154.5 114.3 20 0.7 85.3 92.2 21 0.9 209.0 159.3 22 1.3 1234.7 937.5 23 0.5 177.5 182.8 24 2.0 1741.1 1678.9 25 1.4 3193.3 2336.7 26 0.9 2325.1 1730.2 27 0.5 629.2 466.5 28 1.4 2529.9 2236.3 29 0.8 289.5 106.8 30 0.8 92.3 78.7 31 0.3 129.9 200.5 <td></td> <td></td> <td></td> <td>•</td>				•
12 0.4 NaN . 13 1.2 72.9 101.8 14 0.5 87.7 84.9 15 0.6 159.6 74.5 16 0.1 NaN 70.1 17 0.9 NaN . 18 0.8 95.9 140.9 19 0.7 154.5 114.3 20 0.7 85.3 92.2 21 0.9 209.0 159.3 22 1.3 1234.7 937.5 23 0.5 177.5 182.8 24 2.0 1741.1 1678.9 25 1.4 3193.3 2336.7 26 0.9 2325.1 1730.2 27 0.5 629.2 466.5 28 1.4 2529.9 2236.3 29 0.8 289.5 106.8 30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7				•
13 1.2 72.9 101.8 14 0.5 87.7 84.9 15 0.6 159.6 74.5 16 0.1 NaN 70.1 17 0.9 NaN . 18 0.8 95.9 140.9 19 0.7 154.5 114.3 20 0.7 85.3 92.2 21 0.9 209.0 159.3 22 1.3 1234.7 937.5 23 0.5 177.5 182.8 24 2.0 1741.1 1678.9 25 1.4 3193.3 2336.7 26 0.9 2325.1 1730.2 27 0.5 629.2 466.5 28 1.4 2529.9 2236.3 29 0.8 289.5 106.8 30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 <td></td> <td></td> <td></td> <td>•</td>				•
14 0.5 87.7 84.9 15 0.6 159.6 74.5 16 0.1 NaN 70.1 17 0.9 NaN . 18 0.8 95.9 140.9 19 0.7 154.5 114.3 20 0.7 85.3 92.2 21 0.9 209.0 159.3 22 1.3 1234.7 937.5 23 0.5 177.5 182.8 24 2.0 1741.1 1678.9 25 1.4 3193.3 2336.7 26 0.9 2325.1 1730.2 27 0.5 629.2 466.5 28 1.4 2529.9 2236.3 29 0.8 289.5 106.8 30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4<				•
15 0.6 159.6 74.5 16 0.1 NaN 70.1 17 0.9 NaN . 18 0.8 95.9 140.9 19 0.7 154.5 114.3 20 0.7 85.3 92.2 21 0.9 209.0 159.3 22 1.3 1234.7 937.5 23 0.5 177.5 182.8 24 2.0 1741.1 1678.9 25 1.4 3193.3 2336.7 26 0.9 2325.1 1730.2 27 0.5 629.2 466.5 28 1.4 2529.9 2236.3 29 0.8 289.5 106.5 30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 162				
16 0.1 NaN 70.1 17 0.9 NaN . 18 0.8 95.9 140.9 19 0.7 154.5 114.3 20 0.7 85.3 92.2 21 0.9 209.0 159.3 22 1.3 1234.7 937.5 23 0.5 177.5 182.8 24 2.0 1741.1 1678.9 25 1.4 3193.3 2336.7 26 0.9 2325.1 1730.2 27 0.5 629.2 466.5 28 1.4 2529.9 2236.3 29 0.8 289.5 106.8 30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 2.5 1061.9				
17 0.9 NaN . 18 0.8 95.9 140.9 19 0.7 154.5 114.3 20 0.7 85.3 92.2 21 0.9 209.0 159.3 22 1.3 1234.7 937.5 23 0.5 177.5 182.8 24 2.0 1741.1 1678.9 25 1.4 3193.3 2336.7 26 0.9 2325.1 1730.2 27 0.5 629.2 466.5 28 1.4 2529.9 2236.3 29 0.8 289.5 106.8 30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 2.5 1061.9 1556.4 37 1.0 1454.6		0.6	159.6	
18 0.8 95.9 140.9 19 0.7 154.5 114.3 20 0.7 85.3 92.2 21 0.9 209.0 159.3 22 1.3 1234.7 937.5 23 0.5 177.5 182.8 24 2.0 1741.1 1678.9 25 1.4 3193.3 2336.7 26 0.9 2325.1 1730.2 27 0.5 629.2 466.5 28 1.4 2529.9 236.3 29 0.8 289.5 106.8 30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 2.5 1061.9 1556.4 37 1.0 1454.6 1680 38 0.4 610.2	16	0.1	NaN	70.1
19 0.7 154.5 114.3 20 0.7 85.3 92.2 21 0.9 209.0 159.3 22 1.3 1234.7 937.5 23 0.5 177.5 182.8 24 2.0 1741.1 1678.9 25 1.4 3193.3 2336.7 26 0.9 2325.1 1730.2 27 0.5 629.2 466.5 28 1.4 2529.9 2236.3 29 0.8 289.5 106.8 30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 2.5 1061.9 1556.4 37 1.0 1454.6 1680 38 0.4 610.2 549.1 39 0.4 2145.8 <td>17</td> <td>0.9</td> <td>NaN</td> <td>•</td>	17	0.9	NaN	•
20 0.7 85.3 92.2 21 0.9 209.0 159.3 22 1.3 1234.7 937.5 23 0.5 177.5 182.8 24 2.0 1741.1 1678.9 25 1.4 3193.3 2336.7 26 0.9 2325.1 1730.2 27 0.5 629.2 466.5 28 1.4 2529.9 2236.3 29 0.8 289.5 106.8 30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 2.5 1061.9 1556.4 37 1.0 1454.6 1680 38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6	18	0.8	95.9	140.9
21 0.9 209.0 159.3 22 1.3 1234.7 937.5 23 0.5 177.5 182.8 24 2.0 1741.1 1678.9 25 1.4 3193.3 2336.7 26 0.9 2325.1 1730.2 27 0.5 629.2 466.5 28 1.4 2529.9 2236.3 29 0.8 289.5 106.8 30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 2.5 1061.9 1556.4 37 1.0 1454.6 1680 38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 </td <td>19</td> <td>0.7</td> <td>154.5</td> <td>114.3</td>	19	0.7	154.5	114.3
22 1.3 1234.7 937.5 23 0.5 177.5 182.8 24 2.0 1741.1 1678.9 25 1.4 3193.3 2336.7 26 0.9 2325.1 1730.2 27 0.5 629.2 466.5 28 1.4 2529.9 2236.3 29 0.8 289.5 106.8 30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 2.5 1061.9 1556.4 37 1.0 1454.6 1680 38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 1818.6	20	0.7	85.3	92.2
23 0.5 177.5 182.8 24 2.0 1741.1 1678.9 25 1.4 3193.3 2336.7 26 0.9 2325.1 1730.2 27 0.5 629.2 466.5 28 1.4 2529.9 2236.3 29 0.8 289.5 106.8 30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 2.5 1061.9 1556.4 37 1.0 1454.6 1680 38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 1818.6	21	0.9	209.0	159.3
24 2.0 1741.1 1678.9 25 1.4 3193.3 2336.7 26 0.9 2325.1 1730.2 27 0.5 629.2 466.5 28 1.4 2529.9 2236.3 29 0.8 289.5 106.8 30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 2.5 1061.9 1556.4 37 1.0 1454.6 1680 38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 1818.6	22	1.3	1234.7	937.5
25 1.4 3193.3 2336.7 26 0.9 2325.1 1730.2 27 0.5 629.2 466.5 28 1.4 2529.9 2236.3 29 0.8 289.5 106.8 30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 2.5 1061.9 1556.4 37 1.0 1454.6 1680 38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 1818.6	23	0.5	177.5	182.8
26 0.9 2325.1 1730.2 27 0.5 629.2 466.5 28 1.4 2529.9 2236.3 29 0.8 289.5 106.8 30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 2.5 1061.9 1556.4 37 1.0 1454.6 1680 38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 1818.6	24	2.0	1741.1	1678.9
27 0.5 629.2 466.5 28 1.4 2529.9 2236.3 29 0.8 289.5 106.8 30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 2.5 1061.9 1556.4 37 1.0 1454.6 1680 38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 1818.6	25	1.4	3193.3	2336.7
28 1.4 2529.9 2236.3 29 0.8 289.5 106.8 30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 2.5 1061.9 1556.4 37 1.0 1454.6 1680 38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 1818.6	26	0.9	2325.1	1730.2
28 1.4 2529.9 2236.3 29 0.8 289.5 106.8 30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 2.5 1061.9 1556.4 37 1.0 1454.6 1680 38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 1818.6	27	0.5	629.2	466.5
29 0.8 289.5 106.8 30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 2.5 1061.9 1556.4 37 1.0 1454.6 1680 38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 1818.6	28	1.4	2529.9	2236.3
30 0.8 92.3 78.7 31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 2.5 1061.9 1556.4 37 1.0 1454.6 1680 38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 1818.6				
31 0.3 129.9 200.5 32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 2.5 1061.9 1556.4 37 1.0 1454.6 1680 38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 1818.6				
32 0.2 300.6 318.7 33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 2.5 1061.9 1556.4 37 1.0 1454.6 1680 38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 1818.6				
33 0.2 222.6 218 34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 2.5 1061.9 1556.4 37 1.0 1454.6 1680 38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 1818.6				
34 0.0 1063.3 727.4 35 0.3 1655.4 1629.3 36 2.5 1061.9 1556.4 37 1.0 1454.6 1680 38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 1818.6				
35 0.3 1655.4 1629.3 36 2.5 1061.9 1556.4 37 1.0 1454.6 1680 38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 1818.6				
36 2.5 1061.9 1556.4 37 1.0 1454.6 1680 38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 1818.6				
37 1.0 1454.6 1680 38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 1818.6				
38 0.4 610.2 549.1 39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 1818.6				
39 0.4 2145.8 2058 40 0.0 216.6 168.4 41 1.6 1382.0 1818.6				
40 0.0 216.6 168.4 41 1.6 1382.0 1818.6				
1.6 1382.0 1818.6				

43		0.5	1896.3	1855.8
44		0.6	1139.9	2059.9
45		1.6	1774.7	893.5
46		3.6	3108.8	1574.8
47		0.3	1188.0	1106.5
48		1.9	1512.0	1725.3
49		3.7	829.1	1480.4
50		0.3	907.0	1018.2
51		0.9	191.2	98.6
52		1.1	1656.9	1673.4
53		NaN	1699.7	1397.9
54		1.1	NaN	
55		0.1	180.0	101.8
56		0.5	NaN	101.0
57		0.9	97.2	52.7
58		0.8	141.4	0211
59		0.7	110.8	65
60		0.8	1052.6	579.7
61		0.2	122.0	115.9
62		0.8	171.6	149.2
63		0.3	NaN	143.2
64		0.2	93.1	87.2
65		1.2	1189.5	1159.9
66		2.6	2762.2	2545.7
67		2.8	2594.9	2323.5
68		1.9	2500.3	2034.2
69		0.2	529.0	602.9
70		1.5	2032.2	1986.7
71		1.3		469.5
			195.5 1298.2	
72 73		1.5 0.0		1274.2
74		1.3	NaN 800.5	741.1
				741.1
75 76		0.5	NaN	407 5
76		0.9	120.1	427.5
	Tuberculosis	Below Poverty Leve	l Crowded Housin	g Dependency \
0	11.4	22.		
1	8.9	15.		
2	13.6	22.		
3	8.5	9.		
4	1.9	7.		
5	3.2	10.		
6	1.2	11.		
7	5.5	13.		
8	1.8	5.		
9	1.6	5.		
10	7.1	6.		
11	2.2	6.		
	2.2	0.		10.0

12	8.9	12.4	3.8	39.7
13	16.8	17.1	11.2	32.1
14	4.0	12.3	4.4	34.6
15	9.3	10.8	5.6	31.6
16	2.4	8.3	4.8	34.9
17	3.0	12.8	5.8	35.0
18	9.4	18.6	10.0	36.9
19	15.8	19.1	8.4	36.3
20	10.1	14.6	5.8	30.4
21	8.4	17.2	3.2	26.7
22	9.7	32.6	11.2	38.3
23	3.6	15.7	2.0	22.9
24	5.8	27.0	5.7	39.0
25	6.5	40.3	8.9	42.5
26	13.6	39.7	7.5	43.2
27	14.1	21.6	3.8	22.9
28	9.3	38.6	7.2	40.9
29	7.9	28.1	17.6	33.1
30	11.4	27.2	10.4	35.2
31	6.5	11.1	2.0	15.5
32	5.0	11.1	1.4	
				21.0
33	22.7	35.8	5.9	37.9
34	4.2	26.1	1.6	31.0
35	6.7	38.1	3.5	40.5
36	0.0	55.5	4.5	38.2
37	13.2	28.3	2.7	41.7
38	0.0	23.1	2.3	34.2
39	5.0	39.1	4.9	40.9
40	5.3	18.2	2.5	26.7
41	17.4	28.3	1.8	37.6
42	11.7	31.5	2.9	37.6
43	8.2	25.3	2.2	40.0
44	1.9	16.7	0.6	41.9
45	6.9	28.0	5.9	43.1
46	6.8	22.5	5.5	40.4
47	2.8	12.0	1.8	42.3
48	7.9	19.5	3.1	40.9
49	2.7	20.1	1.4	42.0
50	2.6	24.5	6.0	41.4
51	5.2	18.7	8.3	42.5
52	9.2	24.3	3.3	42.2
53	5.8	61.4	5.1	50.2
54	2.1	12.1	4.4	41.6
55	3.5	9.0	2.6	39.5
56	1.5	13.0	8.5	40.5
57	11.5	23.0	13.2	39.8
58	11.5	16.1	6.9	33.7
59	9.9	17.3	4.8	32.3
55	5.3	11.5	4.0	02.0

60	9.3	30.6	12.2	42.0
61	4.5	9.8	8.7	38.7
62	7.0	20.8	17.4	40.4
63	0.9	5.9	3.4	36.4
64	4.3	15.3	6.8	41.9
65	5.3	22.2	6.5	40.0
66	10.9	32.3	6.9	40.9
67	11.3	42.2	4.8	43.4
68	4.8	25.6	4.2	42.9
69	4.4	9.5	4.2	36.7
70	7.3	24.5	4.1	42.1
71	0.0	5.2	0.7	38.7
72	3.0	15.7	1.1	42.4
73	0.0	3.1	1.1	37.0
74	2.6	13.7	0.8	39.4
75	6.3	9.5	1.9	26.5
76	10.5	16.6	3.9	23.4
	No Wigh School Diploma	Por Capita Incomo	IInomployment	

	No High School 1	_	Per Capita		
0		18.1		23714	7.5
1		19.6		21375	7.9
2		13.6		32355	7.7
3		12.5		35503	6.8
4		5.4		51615	4.5
5		2.9		58227	4.7
6		4.3		71403	4.5
7		3.4		87163	5.2
8		8.5		38337	7.4
9		13.5		31659	7.3
10		13.5		27280	9.0
11		6.3		41509	5.5
12		18.2		24941	7.5
13		34.9		20355	9.0
14		18.7		23617	10.6
15		22.0		26713	10.3
16		18.0		26347	8.6
17		28.4		21257	10.8
18		37.0		15246	11.5
19		41.9		15411	12.9
20		25.7		20489	9.3
21		18.5		29026	7.5
22		36.8		13391	12.3
23		13.4		39596	6.0
24		25.0		15920	21.0
25		26.2		10951	25.2
26		26.2		13596	16.4
27		11.2		41488	10.7
28		30.4		12548	18.5

29	58.7	10697	11.5
30	44.3	15467	13.0
31	3.4	67699	4.2
32	7.1	60593	5.7
33	37.5	16942	11.6
34	16.9	23098	16.7
35	17.6	19312	26.6
36	33.7	9016	40.0
37	19.4	22056	20.6
38	10.8	37519	11.0
39	28.3	13087	23.2
40	5.3	39243	6.9
41	17.9	18928	17.3
42	14.9	18366	17.7
43	13.7	20320	19.0
44	13.3	23495	16.6
45	28.2	15393	17.7
46	18.6	13756	23.4
47	11.2	28977	17.2
48	17.4	17974	17.8
49	15.6	19007	21.0
50	21.9	15506	11.8
51	35.5	15347	14.5
52	22.6	16228	17.0
53	24.6	8535	26.4
54	17.9	22561	9.6
55	19.4	24684	8.1
56	36.4	16145	14.2
57	48.2	13138	11.2
58	31.8	17577	11.9
59	25.6	24969	11.2
60	42.4	12524	17.4
61	39.6	16938	13.5
62	54.1	12014	14.0
63	18.5	23920	9.6
64	33.4	15898	7.8
65	31.6	14405	11.9
66	30.3	10559	34.7
67	29.4	11993	21.3
68	17.9	17213	18.9
69	18.3	22078	8.8
70	19.5	16022	24.2
71	5.1	40107	7.8
72	15.6	19709	18.3
73	4.5	34221	6.9
74	10.9	26185	14.9
75	11.0	29402	4.7
76	9.0	33364	9.0

```
[95]: #Filter out and compare teen birth rate and per capita income
babyMoney = data[['Per Capita Income', 'Teen Birth Rate']]
#Display data for two columns
display(babyMoney)
#Calculate descriptive statistics and display
babyMoney.describe()
```

	Per	Capita	Income	Teen	Birth	Rate
0		1	23714			40.8
1			21375			29.9
2			32355			35.1
3			35503			38.4
4			51615			8.4
5			58227			15.8
6			71403			2.1
7			87163			34.0
8			38337			3.9
9			31659			3.4
10			27280			28.6
11			41509			6.3
12			24941			10.5
13			20355			44.5
14			23617			41.7
15			26713			37.0
16			26347			19.9
17			21257			61.5
18			15246			68.2
19			15411			69.7
20			20489			63.4
21			29026			66.1
22			13391			77.9
23			39596			49.2
24			15920			81.8
25			10951		:	114.9
26			13596			93.2
27			41488			36.7
28			12548		:	108.9
29			10697			77.5
30			15467			49.0
31			67699			1.3
32			60593			50.9
33			16942			16.2
34			23098			34.2
35			19312			54.5
36			9016			69.2
37			22056			54.8

38	37519	25.7
39	13087	82.6
40	39243	7.6
41	18928	51.1
42	18366	65.9
43	20320	68.2
44	23495	63.9
45	15393	76.8
46	13756	68.7
47	28977	39.3
48	17974	79.7
49	19007	67.9
50	15506	65.3
51	15347	53.0
52	16228	67.8
53	8535	64.5
54	22561	47.1
55	24684	33.7
56	16145	50.3
57	13138	58.1
58	17577	47.9
59	24969	28.4
60	12524	94.3
61	16938	45.5
62	12014	61.4
63	23920	38.7
64	15898	44.6
65	14405	67.4
66	10559	116.9
67	11993	105.3
68	17213	84.3
69	22078	38.3
70	16022	83.1
71	40107	11.9
72	19709	65.0
73	34221	7.7
74	26185	46.7
75	29402	15.9
76	33364	15.1
:	Per Capita Income	Teen Birth Ra
count	77.000000	77.0000
	05400 540000	E0 001

[95]:		Per Capita Income	Teen Birth Rate
	count	77.000000	77.000000
	mean	25106.740260	50.064935
	std	14952.672297	28.097817
	min	8535.000000	1.300000
	25%	15467.000000	33.700000
	50%	20489.000000	49.200000

```
87163.000000
                                     116.900000
      max
[96]: #Normalize teen birth rate and per capita income
      tbr = np.asarray(data['Teen Birth Rate'])
      pci = np.asarray(data['Per Capita Income'])
      tbrNorm = (tbr - tbr.min())/(np.ptp(tbr))
      pciNorm = (pci - pci.min())/(np.ptp(pci))
      #Create numpy array with normalized data
      bmData = np.asarray(babyMoney)
      for i in range(77):
          array = np.array([pciNorm[i], tbrNorm[i]])
          bmData[i] = array
      print(tbrNorm)
      print(pciNorm)
      print("New Data Vector:")
      print(bmData)
```

67.900000

75%

29026.000000

```
[0.3416955 0.24740484 0.29238754 0.32093426 0.06141869 0.12543253
0.00692042 0.28287197 0.02249135 0.01816609 0.23615917 0.0432526
0.07958478 0.37370242 0.34948097 0.30882353 0.16089965 0.52076125
0.57871972 0.5916955 0.53719723 0.56055363 0.66262976 0.41435986
0.69636678 0.98269896 0.7949827 0.30622837 0.93079585 0.65916955
0.41262976 0.
                     0.42906574 0.12889273 0.28460208 0.46020761
0.58737024 0.46280277 0.21107266 0.7032872 0.05449827 0.43079585
0.55882353 0.57871972 0.54152249 0.65311419 0.58304498 0.32871972
0.67820069 0.57612457 0.55363322 0.44723183 0.57525952 0.5467128
0.39619377 0.28027682 0.42387543 0.49134948 0.40311419 0.23442907
0.80449827 0.38235294 0.51989619 0.32352941 0.37456747 0.57179931
           0.89965398 0.71799308 0.3200692 0.70761246 0.0916955
1
0.55103806 0.05536332 0.39273356 0.12629758 0.11937716]
[0.19304828 0.16330061 0.30294552 0.34298214 0.54789642 0.6319886
0.7995625 1.
                     0.37902528 0.29409371 0.23840108 0.41936715
0.20865341 0.15032813 0.19181462 0.23118991 0.22653508 0.16179987
0.08535127 0.08744976 0.15203235 0.26060691 0.06175917 0.39503739
0.09392328 0.03072697 0.06436638 0.41910007 0.0510378 0.02749657
0.08816198 0.7524546 0.66207967 0.1069212 0.18521392 0.13706313
0.00611741 0.17196164 0.36862186 0.05789286 0.3905479 0.13217938
0.12004629 0.13318411 0.08865798 0.0866358 0.09784046 0.
0.17838429 0.20538485 0.09678486 0.05854149 0.1149972 0.20900951
0.05073256 0.10687033 0.04424632 0.19566821 0.09364349 0.07465534
0.02574147 0.04397924 0.11036781 0.17224144 0.09522053 0.40153635
```

0.14211222 0.32667752 0.22447474 0.26538892 0.31577809]

New Data Vector:

- [[0.19304828 0.3416955]
- [0.16330061 0.24740484]
- [0.30294552 0.29238754]
- [0.34298214 0.32093426]
- [0.54789642 0.06141869]
- [0.6319886 0.12543253]
- [0.7995625 0.00692042]
- [1. 0.28287197]
- [0.37902528 0.02249135]
- [0.29409371 0.01816609]
- [0.23840108 0.23615917]
- [0.41936715 0.0432526]
- [0.20865341 0.07958478]
- [0.15032813 0.37370242]
- [0.19181462 0.34948097]
- [0.23118991 0.30882353]
- [0.22653508 0.16089965]
- [0.16179987 0.52076125]
- -
- [0.08535127 0.57871972]
- [0.08744976 0.5916955]
- [0.15203235 0.53719723]
- [0.26060691 0.56055363]
- [0.06175917 0.66262976]
- [0.39503739 0.41435986]
- [0.09392328 0.69636678]
- [0.03072697 0.98269896]
- [0.06436638 0.7949827]
- [0.41910007 0.30622837]
- [0.0510378 0.93079585]
- [0.02749657 0.65916955]
- [0.08816198 0.41262976]
- [0.7524546 0.
- [0.66207967 0.42906574]
- [0.1069212 0.12889273]
- [0.18521392 0.28460208]
- [0.13706313 0.46020761]
- $[0.00611741 \ 0.58737024]$
- [0.17196164 0.46280277]
- [0.36862186 0.21107266]
- [0.05789286 0.7032872]
- [0.3905479 0.05449827]
- [0.13217938 0.43079585]
- [0.1250318 0.55882353]
- [0.14988299 0.57871972]
- [0.19026301 0.54152249]
- [0.08722084 0.65311419]

```
[0.06640128 0.58304498]
      [0.25998372 0.32871972]
      [0.12004629 0.67820069]
      [0.13318411 0.57612457]
      [0.08865798 0.55363322]
      [0.0866358 0.44723183]
      [0.09784046 0.57525952]
                   0.5467128 ]
      ГО.
      [0.17838429 0.39619377]
      [0.20538485 0.28027682]
      [0.09678486 0.42387543]
      [0.05854149 0.49134948]
      [0.1149972 0.40311419]
      [0.20900951 0.23442907]
      [0.05073256 0.80449827]
      [0.10687033 0.38235294]
      [0.04424632 0.51989619]
      [0.19566821 0.32352941]
      [0.09364349 0.37456747]
      [0.07465534 0.57179931]
      [0.02574147 1.
      [0.04397924 0.89965398]
      [0.11036781 0.71799308]
      [0.17224144 0.3200692 ]
      [0.09522053 0.70761246]
      [0.40153635 0.0916955]
      [0.14211222 0.55103806]
      [0.32667752 0.05536332]
      [0.22447474 0.39273356]
      [0.26538892 0.12629758]
      [0.31577809 0.11937716]]
[97]: #Plot the data
      plt.ion()
      plt.scatter(bmData[:, 0], bmData[:, 1], label='Community Area')
      plt.xlabel('Per Capita Income')
      plt.ylabel('Teen Birth Rate')
      plt.title('Teen Birth Rate based on Per Capita Income')
      plt.legend()
      plt.show()
```



```
[137]: # Use kmeans to cluster vector into 4 groups
       kmeans = KMeans(n_clusters = 4, random_state = 0).fit(bmData)
       labels = kmeans.labels_
       groupReps = kmeans.cluster_centers_
       jClust = kmeans.inertia_
       #Print number of iterations
       print("Number of iterations: ")
       print(kmeans.n_iter_)
       print()
       print("Labels: ")
       print(labels)
       print()
       print("Cluster Means: ")
       print(groupReps)
       print()
       print("Jclust: ")
       print(jClust)
       print()
       #Plot clusters
```

```
plt.scatter(bmData[:, 0], bmData[:, 1], c = kmeans.predict(bmData), s = 50, u
 ⇔cmap = 'viridis')
#plt.scatter()
plt.title("ScatterPlot of 4 Clusters")
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5,
 →label='Clusters');
plt.xlabel('Per Capita Income')
plt.ylabel('Teen Birth Rate')
plt.legend()
plt.show()
# Find neighborhoods in each cluster
nH = np.asarray(data['Community Area Name'])
print("Group 1:")
for i in range(len(labels)):
    if (labels[i] == 3):
        print(nH[i])
print()
print("Group 2:")
for i in range(len(labels)):
    if (labels[i] == 2):
        print(nH[i])
print()
print("Group 3:")
for i in range(len(labels)):
    if (labels[i] == 0):
        print(nH[i])
print()
print("Group 4:")
for i in range(len(labels)):
    if (labels[i] == 1):
        print(nH[i])
Number of iterations:
Labels:
[2\; 2\; 2\; 2\; 1\; 1\; 1\; 1\; 1\; 2\; 2\; 2\; 2\; 2\; 0\; 2\; 2\; 2\; 0\; 0\; 0\; 0\; 0\; 0\; 3\; 2\; 3\; 3\; 3\; 2\; 3\; 3\; 0\; 1\; 1\; 2\; 2\; 0\; 0
0 2 2]
Cluster Means:
[[0.11685532 0.49948097]
 [0.7323303 0.15095156]
 [0.27438769 0.21113674]
 [0.06575084 0.77792882]]
```

Jclust: 1.3430157168960097

Group 1:
Humboldt Park
Austin
West Garfield Park
East Garfield Park
North Lawndale
South Lawndale
Washington Park
South Chicago
Roseland
New City
West Englewood
Englewood
Greater Grand Crossing
Auburn Gresham

Group 2: Rogers Park West Ridge Uptown

Lincoln Square

Edison Park

Norwood Park

Jefferson Park

Forest Glen

North Park

Portage Park

Irving Park

Dunning

West Town

Near West Side

Armour Square

Douglas

 ${\tt Kenwood}$

Hyde Park

Calumet Heights

Garfield Ridge

Bridgeport

Clearing

Ashburn

Beverly

Mount Greenwood

0'Hare

Edgewater

Group 3:

Albany Park

Montclaire

Belmont Cragin

Hermosa

Avondale

Logan Square

Lower West Side

Oakland

Fuller Park

Grand Boulevard

Woodlawn

South Shore

Chatham

Avalon Park

Burnside

Pullman

South Deering

East Side

West Pullman

Riverdale

Hegewisch

Archer Heights
Brighton Park
McKinley Park
West Elsdon
Gage Park
West Lawn
Chicago Lawn
Washington Heights
Morgan Park

Group 4:
North Center
Lake View
Lincoln Park
Near North Side
Loop
Near South Side

The dataset was cleaned to include 'Teen birth rates' and 'per capita income' levels. They were normalized and convered to numpy arrays. Trying a few different cluster quantities, I settled on 4 because the other options did not show much better results, and the Jclust number wasn't getting any better. The kmeans algorithm ran 4 times to achieve the clusters.

The normalized data shows that communities with higher per capita income have a lower teen birth rate and vice versa, the communities with lowest per capita income show the highest teen birth rates. Each community is grouped into one of four clusters, listed beneath the graph. Then comparing the cluster means to the graph, we can list the specific groups from left to right, which are listed underneath the graph. From this data, we can see directly which communities not only have the highest per capita income, but also the lowest teen birth rates. These areas, such as Lakeview, Lincoln Park, and the Loop are probably considered the nicer areas in the city. Whereas the poorest communities, such as Englewood, South Chicago, and Garfield Park have very low income levels and high teen birth rates.

Perhaps one conclusion from this dataset would be that areas with high per capita income have less teen births.

```
[128]: #Filter out and compare percentage of people without high school diplomas
#and number of assaults(homicides)
dumbKill = data[['No High School Diploma', 'Assault (Homicide)']]
#Display data for two columns
display(dumbKill)
#Calculate descriptive statistics and display
dumbKill.describe()
```

	No High	School Diploma	Assault	(Homicide)
0		18.1		7.7
1		19.6		5.8
2		13.6		5.4
3		12.5		5.0

4	5.4	1.0
5	2.9	1.4
6	4.3	0.7
7	3.4	3.7
8	8.5	0.0
9	13.5	4.7
10	13.5	4.8
11	6.3	
		3.3
12	18.2	3.0
13	34.9	4.7
14	18.7	3.3
15	22.0	4.1
16	18.0	3.7
17	28.4	8.6
18	37.0	7.0
19	41.9	12.7
20	25.7	4.7
21	18.5	8.6
22	36.8	29.0
23	13.4	8.5
24	25.0	34.4
25	26.2	40.0
26		
	26.2	38.4
27	11.2	12.7
28	30.4	46.7
29	58.7	11.1
30	44.3	11.7
31	3.4	0.7
32	7.1	4.8
33	37.5	1.8
34	16.9	13.6
35	17.6	18.9
36	33.7	49.6
37	19.4	32.1
38	10.8	15.2
39	28.3	44.6
40	5.3	5.8
41	17.9	31.1
42	14.9	33.4
43	13.7	45.2
44	13.3	22.1
45	28.2	36.9
46	18.6	70.3
47	11.2	19.5
48	17.4	40.9
49	15.6	32.2
50	21.9	41.3
51	35.5	10.7

```
53
                              24.6
                                                   33.0
      54
                              17.9
                                                    6.9
      55
                             19.4
                                                    9.9
                              36.4
                                                   16.6
      56
      57
                             48.2
                                                   11.1
                                                    5.1
      58
                              31.8
                              25.6
                                                    4.9
      59
      60
                             42.4
                                                   26.6
      61
                              39.6
                                                    5.9
                              54.1
      62
                                                   10.8
      63
                              18.5
                                                   9.4
                              33.4
      64
                                                   10.7
      65
                              31.6
                                                   22.4
      66
                              30.3
                                                   47.2
                              29.4
      67
                                                   45.1
      68
                              17.9
                                                   49.7
      69
                             18.3
                                                   12.4
      70
                             19.5
                                                   37.6
      71
                              5.1
                                                    3.5
      72
                              15.6
                                                   38.0
      73
                              4.5
                                                    2.2
      74
                              10.9
                                                   19.9
      75
                              11.0
                                                    5.6
      76
                              9.0
                                                    5.8
[128]:
              No High School Diploma
                                       Assault (Homicide)
                            77.000000
                                                 77.000000
       count
                            21.596104
       mean
                                                 18.068831
       std
                            12.354995
                                                 16.561077
       min
                             2.900000
                                                  0.000000
       25%
                            13.400000
                                                  4.900000
       50%
                            18.500000
                                                 10.800000
       75%
                            29.400000
                                                 32.200000
                            58.700000
                                                 70.300000
       max
[129]: #Normalize teen birth rate and per capita income
       hsd = np.asarray(data['No High School Diploma'])
       ah = np.asarray(data['Assault (Homicide)'])
       hsdNorm = (hsd - hsd.min())/(np.ptp(hsd))
       ahNorm = (ah - ah.min())/(np.ptp(ah))
       #Create numpy array with normalized data
       dkData = np.asarray(dumbKill)
       for i in range(77):
           array = np.array([hsdNorm[i], ahNorm[i]])
```

43.9

52

22.6

```
dkData[i] = array
print(hsdNorm)
print(ahNorm)
print("New Data Vector:")
print(dkData)
[0.27240143 0.29928315 0.19175627 0.17204301 0.04480287 0.
0.02508961 0.00896057 0.10035842 0.18996416 0.18996416 0.0609319
0.27419355 0.5734767 0.28315412 0.34229391 0.27060932 0.45698925
0.61111111 0.69892473 0.40860215 0.27956989 0.60752688 0.18817204
0.39605735 0.41756272 0.41756272 0.14874552 0.49283154 1.
0.74193548 0.00896057 0.07526882 0.62007168 0.25089606 0.26344086
0.55197133 0.29569892 0.14157706 0.45519713 0.04301075 0.2688172
0.21505376 0.19354839 0.18637993 0.45340502 0.28136201 0.14874552
0.25985663 0.22759857 0.34050179 0.58422939 0.35304659 0.38888889
0.49103943 0.47491039 0.2688172 0.27598566 0.29749104 0.03942652
0.22759857 0.02867384 0.14336918 0.14516129 0.109319 ]
[0.10953058 0.08250356 0.07681366 0.07112376 0.01422475 0.01991465
0.00995733 0.05263158 0.
                                0.06685633 0.06827881 0.04694168
0.04267425 0.06685633 0.04694168 0.05832148 0.05263158 0.12233286
0.09957326 0.18065434 0.06685633 0.12233286 0.41251778 0.12091038
0.48933144 0.56899004 0.54623044 0.18065434 0.66429587 0.15789474
0.16642959 0.00995733 0.06827881 0.02560455 0.19345661 0.2688478
0.70554765 0.45661451 0.21621622 0.6344239 0.08250356 0.44238976
0.47510669 0.64295875 0.314367
                                0.52489331 1.
                                                     0.27738265
0.58179232 0.45803698 0.58748222 0.15220484 0.62446657 0.46941679
0.09815078 0.14082504 0.23613087 0.15789474 0.07254623 0.06970128
0.37837838 0.08392603 0.15362731 0.13371266 0.15220484 0.31863442
0.67140825 0.64153627 0.70697013 0.17638691 0.53485064 0.04978663
0.54054054 0.03129445 0.28307255 0.07965861 0.08250356]
New Data Vector:
[[0.27240143 0.10953058]
 [0.29928315 0.08250356]
 [0.19175627 0.07681366]
 [0.17204301 0.07112376]
 [0.04480287 0.01422475]
 ΓΟ.
            0.01991465]
 [0.02508961 0.00995733]
 [0.00896057 0.05263158]
 Γ0.10035842 0.
 [0.18996416 0.06685633]
 [0.18996416 0.06827881]
 [0.0609319 0.04694168]
```

- [0.27419355 0.04267425]
- [0.5734767 0.06685633]
- [0.28315412 0.04694168]
- [0.34229391 0.05832148]
- [0.27060932 0.05263158]
- [0.45698925 0.12233286]
- [0.61111111 0.09957326]
- [0.69892473 0.18065434]
- [0.40860215 0.06685633]
- [0.27956989 0.12233286]
- -
- [0.60752688 0.41251778] [0.18817204 0.12091038]
- [0.39605735 0.48933144]
- [0.41756272 0.56899004]
- [0.41756272 0.54623044]
- [0.14874552 0.18065434]
- [0.49283154 0.66429587]
- [1. 0.15789474]
- 0.10/034/4]
- [0.74193548 0.16642959] [0.00896057 0.00995733]
- [0.07526882 0.06827881]
- [0.62007168 0.02560455]
- [0.25089606 0.19345661]
- [0.26344086 0.2688478]
- [0.55197133 0.70554765]
- [0.29569892 0.45661451]
- [0.14157706 0.21621622]
- [0.45519713 0.6344239]
- [0.04301075 0.08250356]
- [0.2688172 0.44238976]
- [0.21505376 0.47510669]
- [0.19354839 0.64295875]
- [0.18637993 0.314367]
- [0.45340502 0.52489331]
- [0.28136201 1.
- [0.14874552 0.27738265]
- [0.25985663 0.58179232]
- [0.22759857 0.45803698]
- [0.34050179 0.58748222]
- [0.58422939 0.15220484]
- [0.35304659 0.62446657]
- [0.38888889 0.46941679]
- [0.2688172 0.09815078]
- $[0.29569892 \ 0.14082504]$
- [0.60035842 0.23613087]
- [0.81182796 0.15789474]
- [0.51792115 0.07254623]
- [0.40681004 0.06970128]

```
[0.7078853 0.37837838]
       [0.65770609 0.08392603]
       [0.91756272 0.15362731]
       [0.27956989 0.13371266]
       [0.54659498 0.15220484]
       [0.51433692 0.31863442]
       [0.49103943 0.67140825]
       [0.47491039 0.64153627]
       [0.2688172 0.70697013]
       [0.27598566 0.17638691]
       [0.29749104 0.53485064]
       [0.03942652 0.04978663]
       [0.22759857 0.54054054]
       [0.02867384 0.03129445]
       [0.14336918 0.28307255]
       [0.14516129 0.07965861]
       [0.109319
                   0.08250356]]
[130]: #Plot the data
       plt.ion()
       plt.scatter(dkData[:, 0], dkData[:, 1], label='Community Area')
       plt.xlabel('No High School Diploma')
       plt.ylabel('Assault (Homicide)')
       plt.title('Assault (Homicide) based on Percentage of People with no High School
```

Assault (Homicide) based on Percentage of People with no High School Diplomas

→Diplomas')
plt.legend()
plt.show()

This graphs shows the amount of homicides per community based on the percentage of people without high school diplomas. Looking at the data, it doesn't appear that much pattern can be discerned. One thing that looks evident is that areas where almost everyone has a high school diploma has very little homicide. While the rest of chicagoland seems to have quite a bit of homicide. More accurately, areas above the 0.15 threshhold all seem to have more cases of assault. However, it is a bit odd that the communities with the least high school diplomas do not have as much homicide. Mostly the middle percentage areas.

```
[170]: # Use kmeans to cluster vector into 5 groups
       kmeans2 = KMeans(n_clusters = 5, random_state = 0).fit(dkData)
       labels = kmeans2.labels
       groupReps = kmeans2.cluster_centers_
       jClust = kmeans2.inertia_
       #Print number of iterations
       print("Number of iterations: ")
       print(kmeans.n_iter_)
       print()
       print("Labels: ")
       print(labels)
       print()
       print("Cluster Means: ")
       print(groupReps)
       print()
       print("Jclust: ")
       print(jClust)
       print()
       #Plot clusters
       plt.scatter(dkData[:, 0], dkData[:, 1], c = kmeans2.predict(dkData), s = 50,__
       ⇔cmap = 'viridis')
       #plt.scatter()
       plt.title("ScatterPlot of 5 Clusters")
       centers = kmeans2.cluster_centers_
       plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5,
       →label='Clusters');
       plt.xlabel('No High School Diploma')
       plt.ylabel('Assault (Homicide)')
       plt.legend()
       plt.show()
       # Find neighborhoods in each cluster
       nH = np.asarray(data['Community Area Name'])
       print("Group 1:")
       for i in range(len(labels)):
```

```
if (labels[i] == 3):
         print(nH[i])
print()
print("Group 2:")
for i in range(len(labels)):
     if (labels[i] == 0):
         print(nH[i])
print()
print("Group 3:")
for i in range(len(labels)):
     if (labels[i] == 4):
         print(nH[i])
print()
print("Group 4:")
for i in range(len(labels)):
     if (labels[i] == 2):
         print(nH[i])
print()
print("Group 5:")
for i in range(len(labels)):
     if (labels[i] == 1):
         print(nH[i])
Number of iterations:
4
Labels:
[0\ 0\ 0\ 0\ 3\ 3\ 3\ 3\ 0\ 0\ 3\ 0\ 2\ 0\ 0\ 0\ 2\ 2\ 1\ 2\ 0\ 2\ 0\ 4\ 4\ 4\ 0\ 4\ 1\ 1\ 3\ 3\ 2\ 0\ 0\ 4
4 0 4 3 4 4 4 0 4 4 0 4 4 2 4 4 0 0 2 1 2 2 1 2 1 0 2 2 4 4 4 0 4 3 4 3
0 3 3]
Cluster Means:
[[0.23289699 0.13921702]
 [0.8130227 0.19914651]
 [0.54659498 0.14454536]
 [0.05307417 0.04212715]
```

Jclust:

1.1754203082836758

[0.35312805 0.58942196]]

Group 1:
North Center
Lake View
Lincoln Park
Near North Side
Edison Park
Forest Glen
Loop
Near South Side
Hyde Park
Beverly
Mount Greenwood
O'Hare
Edgewater

Group 2:
Rogers Park
West Ridge
Uptown
Lincoln Square
Norwood Park
Jefferson Park
North Park
Portage Park

Irving Park
Dunning
Logan Square
West Town
Near West Side
Douglas
Oakland
Kenwood

Avalon Park

Calumet Heights

Hegewisch

Garfield Ridge

Clearing

Ashburn

Morgan Park

Group 3:

Austin

West Garfield Park

East Garfield Park

North Lawndale

Fuller Park

Grand Boulevard

Washington Park

Woodlawn

South Shore

Chatham

South Chicago

Burnside

Roseland

Pullman

South Deering

West Pullman

Riverdale

West Englewood

Englewood

Greater Grand Crossing

Auburn Gresham

Washington Heights

Group 4:

Albany Park

Montclaire

Belmont Cragin

Avondale

Humboldt Park

Armour Square

East Side

Archer Heights
McKinley Park
Bridgeport
West Elsdon
West Lawn
Chicago Lawn

Group 5:
Hermosa
South Lawndale
Lower West Side
Brighton Park
New City
Gage Park

In the analysis of the amount of assault (homicides) compared to the percentage of people without high school diplomas, 5 groupings were made using the kmeans algorithm, using 4 iterations to achieve the best clusters. Once again, using the cluster means array, we can see which groups are which in the graph.

The green dots represent the area with the most high school graduates, which also has the lowest amount of homicides. This area includes nicer areas such as Lincoln Park and Lakeview. The purple and light blue dots represent areas with less high school graduates but slightly higher homicide rates. The darker blue dots represent the areas with the least amount of high shool graduates, which also have a similar homicide count as the purple and light blue areas. The outlying group is the yellow group, which has the highest number of assaults, but an average amount of high school diplomas compared to the other areas.

Looking at the communities in group 3, which has the highest number of assaults, it can be seen that these are all actually areas that are closer to each other and on the South Side of Chicago where crime is bad. These areas include Englewood, Garfield Park, and South Chicago.

Based on these findings we can see that group 1 are intellectual areas with low homicide rates. Groups 2, 4, and 5 have lower high school diploma rates, and higher assault rates. However the highest percentage of assaults happen in the areas of Group 3. While this group does not have the highest or lowest amount of high school graduates, it is clear that the area itself is very dangerous.

```
#Filter out and compare the amount of people below poverty level in an area and cases of cancer

poorCancer = data[['Below Poverty Level', 'Cancer (All Sites)']]

#Display data for two columns

display(poorCancer)

#Calculate descriptive statistics and display

poorCancer.describe()

#Normalize teen birth rate and per capita income

bpl = np.asarray(data['Below Poverty Level'])

cas = np.asarray(data['Cancer (All Sites)'])

bplNorm = (bpl - bpl.min())/(np.ptp(bpl))
```

```
casNorm = (cas - cas.min())/(np.ptp(cas))

#Create numpy array with normalized data
pcData = np.asarray(poorCancer)
for i in range(77):
    array = np.array([bplNorm[i], casNorm[i]])
    pcData[i] = array

print("New Data Vector:")
print(pcData)
```

	Below	Poverty	Level	Cancer	(All	Sites)
0			22.7			176.9
1			15.1			155.9
2			22.7			183.3
3			9.5			153.2
4			7.1			152.1
5			10.5			126.9
6			11.8			152.9
7			13.4			142.7
8			5.1			189.7
9			5.9			180.8
10			6.4			208.2
11			6.1			138.7
12			12.4			143.7
13			17.1			158.1
14			12.3			168.7
15			10.8			169.4
16			8.3			191.5
17			12.8			151.0
18			18.6			152.6
19			19.1			135.2
20			14.6			133.9
21			17.2			148.7
22			32.6			211.1
23			15.7			139.6
24			27.0			261.9
25			40.3			291.5
26			39.7			236.8
27			21.6			202.0
28			38.6			261.5
29			28.1			127.4
30			27.2			141.3
31			11.1			120.1
32			11.1			169.0
33			35.8			162.9

34	26.1	269.9
35	38.1	159.7
36	55.5	258.9
37	28.3	218.3
38	23.1	196.4
39	39.1	258.0
40	18.2	144.0
41	28.3	241.3
42	31.5	
43		246.0
	25.3	213.5
44	16.7	239.6
45	28.0	227.3
46	22.5	191.2
47	12.0	216.6
48	19.5	258.5
49	20.1	262.5
50	24.5	224.0
51	18.7	182.9
52	24.3	263.6
53	61.4	258.3
54	12.1	210.0
55	9.0	231.9
56	13.0	166.3
57	23.0	139.1
58	16.1	148.4
59	17.3	168.9
60	30.6	235.2
61	9.8	180.6
62	20.8	171.0
63	5.9	189.4
64	15.3	145.1
65	22.2	179.3
66	32.3	247.6
67	42.2	252.2
68	25.6	274.4
69	9.5	229.3
70	24.5	243.0
71	5.2	197.6
72	15.7	260.6
73	3.1	200.0
74	13.7	218.2
75 75	9.5	138.5
76	16.6	162.0

New Data Vector:

[[0.33619211 0.33138856] [0.2058319 0.20886814]

- [0.33619211 0.36872812]
- [0.10977702 0.19311552]
- [0.06861063 0.18669778]
- [0.12692967 0.03967328]
- [0.14922813 0.19136523]
- [0.17667238 0.13185531]
- [0.03430532 0.40606768]
- [0.04802744 0.35414236]
- [0.05660377 0.51400233]
- [0.05145798 0.10851809]
- [0.15951973 0.13768961]
- [0.24013722 0.22170362]
- [0.15780446 0.28354726]
- [0.13207547 0.28763127]
- [0.08919383 0.41656943]
- [0.16638079 0.18028005]
- [0.26586621 0.18961494]
- [0.27444254 0.08809802]
- [0.19725557 0.08051342]
- [0.24185249 0.16686114]
- [0.50600343 0.53092182]
- [0.2161235 0.11376896]
- [0.40994854 0.82730455]
- [0.40994654 0.62750455]
- [0.6380789 1.
- [0.62778731 0.68086348]
- $[0.31732419 \ 0.47782964]$
- [0.60891938 0.82497083]
- [0.42881647 0.04259043]
- [0.41337907 0.12368728]
- [0.13722127 0.
- [0.13722127 0.28529755]
- [0.56089194 0.24970828]
- [0.39451115 0.873979]
- [0.60034305 0.23103851]
- [0.89879931 0.80980163]
- [0.432247 0.57292882]
- [0.34305317 0.44515753]
- [0.61749571 0.80455076]
- [0.25900515 0.13943991]
- [0.432247 0.70711785]
- $[0.48713551 \ 0.73453909]$
- [0.38078902 0.54492415]
- [0.23327616 0.69719953]
- [0.4271012 0.62543757]
- [0.33276158 0.41481914]
- [0.15265866 0.5630105]
- [0.2813036 0.80746791]
- [0.2915952 0.83080513]

```
[0.3670669 0.60618436]
       [0.26758148 0.3663944 ]
       [0.36363636 0.83722287]
       Г1.
                   0.80630105]
       [0.15437393 0.52450408]
       [0.10120069 0.65227538]
       [0.16981132 0.26954492]
       [0.34133791 0.11085181]
       [0.22298456 0.16511085]
       [0.24356775 0.28471412]
       [0.47169811 0.67152859]
       [0.11492281 0.3529755 ]
       [0.30360206 0.29696616]
       [0.04802744 0.40431739]
       [0.20926244 0.14585764]
       [0.32761578 0.3453909 ]
       [0.50085763 0.74387398]
       [0.67066895 0.77071179]
       [0.38593482 0.90023337]
       [0.10977702 0.63710618]
       [0.3670669 0.71703617]
       [0.03602058 0.45215869]
       [0.2161235 0.81971995]
       ГО.
                   0.47257876]
       [0.18181818 0.57234539]
       [0.10977702 0.10735123]
       [0.23156089 0.24445741]]
[162]: #Plot the data
       plt.ion()
       plt.scatter(pcData[:, 0], pcData[:, 1], label='Community Area')
       plt.xlabel('Percentage of People Below Poverty Level')
       plt.ylabel('Cancer (All Sites)')
       plt.title('Cancer (All Sites) based on Percentage of People Below Poverty
        →Level')
       plt.legend()
       plt.show()
```


This is a scatterplot of community areas and the amount of cancer cases based on the the percentage of people below the poverty level. There is a general upward movement of the dots, which shows that there is a slight pattern of places with less people below poverty level having less cases of cancer than the areas with the most people below poverty levels. A linear trendline would have a positive slope in this case.

```
[167]: #Use affinity propagation to get number of clusters
    af = AffinityPropagation().fit(pcData)

    clusterCenterIndices = af.cluster_centers_indices_
    numClusters = len(clusterCenterIndices)
    labels = af.labels_

    print(clusterCenterIndices)
    print(numClusters)
    print(labels)

plt.close('all')
    plt.figure(1)
    plt.clf()

colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
    for k, col in zip(range(numClusters), colors):
```

```
[ 2 9 30 36 39 45 47 52 58 75]
10
[0 8 0 9 9 9 8 8 1 1 6 9 9 8 1 1 1 8 8 8 8 8 5 8 7 4 4 0 4 2 2 9 1 2 7 2 3
5 0 4 8 5 5 5 6 5 0 6 7 7 5 0 7 3 6 6 8 2 8 8 5 1 0 1 8 0 4 4 7 6 5 1 7 1
6 9 8]
```


Affinity propagation results in 10 clusters. We can try to see if we can lower the number of clusters. Perhaps normalizing the data skews the algorithm a bit.

```
[171]: #Use affinity propagation to get number of clusters with set preference
#Set preference near minimal negative squared distance in dataset
af = AffinityPropagation(preference= -.5).fit(pcData)

clusterCenterIndices = af.cluster_centers_indices_
```

```
numClusters = len(clusterCenterIndices)
labels = af.labels
print(clusterCenterIndices)
print(numClusters)
print(labels)
plt.close('all')
plt.figure(1)
plt.clf()
colors = cycle('bgrcmykbgrcmykbgrcmyk')
for k, col in zip(range(numClusters), colors):
    class_members = labels == k
    cluster_center = pcData[clusterCenterIndices[k]]
    plt.plot(pcData[class_members, 0], pcData[class_members, 1], col + '.')
    plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,__
 →markeredgecolor='k', markersize=14)
    for x in pcData[class_members]:
        plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col)
plt.title('Estimated number of clusters: %d' % numClusters)
plt.show()
[10 62 64 67 70]
[1\ 2\ 1\ 2\ 2\ 2\ 2\ 2\ 0\ 0\ 0\ 2\ 2\ 2\ 1\ 2\ 0\ 2\ 2\ 2\ 2\ 2\ 4\ 2\ 4\ 3\ 3\ 1\ 3\ 2\ 1\ 2\ 2\ 1\ 4\ 1\ 3
4 1 3 2 4 4 4 4 4 1 0 4 4 4 1 4 3 0 0 2 2 2 1 4 0 1 0 2 1 4 3 4 0 4 0 4 0
```

0 2 1]

Setting the preference to -.5 leads to 5 clusters which looks much better.

```
[173]: # Use kmeans to cluster vector into 5 groups after affinity propagation
       kmeans2 = KMeans(n_clusters = 5, random_state = 0).fit(pcData)
       labels = kmeans2.labels_
       groupReps = kmeans2.cluster_centers_
       jClust = kmeans2.inertia_
       #Print number of iterations
       print("Number of iterations: ")
       print(kmeans.n_iter_)
       print()
       print("Labels: ")
       print(labels)
       print()
       print("Cluster Means: ")
       print(groupReps)
       print()
       print("Jclust: ")
       print(jClust)
       print()
       #Plot clusters
```

```
plt.scatter(pcData[:, 0], pcData[:, 1], c = kmeans2.predict(pcData), s = 50, u
 ⇔cmap = 'viridis')
#plt.scatter()
plt.title("ScatterPlot of 4 Clusters")
centers = kmeans2.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5,
 →label='Clusters');
plt.xlabel('Percentage of People Below Poverty Level')
plt.ylabel('Cancer (All Sites)')
plt.legend()
plt.show()
# Find neighborhoods in each cluster
nH = np.asarray(data['Community Area Name'])
print("Group 1:")
for i in range(len(labels)):
    if (labels[i] == 2):
        print(nH[i])
print()
print("Group 2:")
for i in range(len(labels)):
    if (labels[i] == 1):
        print(nH[i])
print()
print("Group 3:")
for i in range(len(labels)):
    if (labels[i] == 4):
        print(nH[i])
print()
print("Group 4:")
for i in range(len(labels)):
    if (labels[i] == 0):
        print(nH[i])
print()
print("Group 5:")
for i in range(len(labels)):
    if (labels[i] == 3):
        print(nH[i])
Number of iterations:
Labels:
```

 $\begin{smallmatrix} 0 & 0 & 3 & 1 & 4 & 4 & 0 & 4 & 4 & 0 & 2 & 4 & 4 & 4 & 0 & 4 & 3 & 2 & 2 & 1 & 1 & 1 & 1 & 4 & 2 & 0 & 2 & 1 & 0 & 4 & 3 & 4 & 2$

2 1 1]

Cluster Means:

[[0.38804592 0.39816893]

[0.20151417 0.16305879]

[0.0866869 0.48631182]

[0.72310708 0.81388565]

[0.37530017 0.75997666]]

Jclust:

1.2522390306736588

Group 1:
Edison Park
Norwood Park
Jefferson Park
Dunning
Calumet Heights
Hegewisch
Garfield Ridge
West Elsdon
Clearing
Ashburn
Beverly
Mount Greenwood

Morgan Park

Group 2: West Ridge Lincoln Square North Center Lake View Lincoln Park Near North Side Forest Glen North Park Albany Park Portage Park Irving Park Montclaire Belmont Cragin Hermosa Avondale Logan Square West Town South Lawndale Lower West Side Loop Near South Side Hyde Park Archer Heights Brighton Park McKinley Park Bridgeport West Lawn 0'Hare ${\tt Edgewater}$

Group 3:
Austin
Douglas
Woodlawn
South Shore
Avalon Park
South Chicago
Roseland
Pullman
South Deering
West Pullman
New City

West Englewood Greater Grand Crossing

Auburn Gresham

Washington Heights

Group 4:
Rogers Park
Uptown
Humboldt Park
Near West Side
Armour Square
Oakland
Grand Boulevard
Kenwood
Chatham
Burnside
East Side
Gage Park
Chicago Lawn

Group 5:
West Garfield Park
East Garfield Park
North Lawndale
Fuller Park
Washington Park

Riverdale

Englewood

Once again, comparing the cluster means to the graph, we can see which dots represent which group and the communities within those groups. It seems apparent that the green dots, represent the worst area, with not only the highest percentage of people belwo the poverty level, but the highest number of cancer cases as well. These communities in group five are definitely some of the lowest income areas in Chicagoland, like Englewood, Fuller Park, and Garfield Park. It can also be seen that groups 1 and 3 also have higher rates of cancer, despite having less people below poverty rates. Looking at the communities in these groups, it looks like many of these communities are on the South Side, or on the edge of chicago's city limits. The South Side seems to have a lot of cancer cases, and there might be a lot of people without insurance as well. Groups 2 and 4 represent the communities with the lowest amount of cancer cases. These areas are closer to the center of chicago and are generally regarded as nicer areas.

Overall, with these three charts of Chicagoland data, I think it can be seen that there are definitely nicer areas and lower class areas in chicago. The disparage can be noticed by geographical area if all the communities are mapped out. Richer areas near the loop, north side and west side seem to be wealthier, smarter, safer, and healthier; whereas areas like the south side, south west, and far west sides are the opposite.