Selecting the "best" model

Readings for today

• Chapter 6: Linear model selection and regularization. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: with applications in R (Vol. 6). New York: Springer

Topics

1. How to compare models

2. Full subset selection

3. Stepwise selection

How to compare models

Curse of dimensionality

Dimensions of a model

n: number of observations (i.e., rows)

p: number of features/independent variables (i.e., columns)

Dimensionality of a model: n x p

As n →p, dimensionality increases & model variance increases

$$\begin{pmatrix} x_{1,1} \\ \cdots \\ x_{n,1} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,15} \\ \cdots & & & \\ x_{n,1} & x_{n,2} & \cdots & x_{n,15} \end{pmatrix} \rightarrow \uparrow \text{ model flexibility}$$

Problems from high dimensionality

- 1. Prediction accuracy: ↑ variance = ↓ test accuracy
 - p > n= no <u>unique</u> solution

- **2. Model interpretability:** \uparrow variance $=\downarrow$ ability to interpret specific $X\to Y$ relationships
 - Feature selection: determine which predictor variables matter

Comparing models

Problem: How do you find the most parsimonious model?

Solutions

1. Validation: Use test error to guide choice of predictors

Comparing models

Problem: How do you find the most parsimonious model?

Solutions

1. Validation: Use test error to guide choice of predictors

2. Bias adjustment: Adjust the *training* error estimate to account for differences in p (i.e., dimensionality)

Bias adjusted criteria

1. Mallow's Cp

$$C_p = \frac{1}{n}(RSS + 2p\sigma_y^2)$$

2. Akaike Information Criterion (AIC)

$$AIC = \frac{1}{n\sigma_y^2} (RSS + 2p\sigma_y^2)$$
$$= 2p - 2\log(L)$$
$$L = P(Y|X, \beta, \sigma)$$

3. Bayesian Information Criterion (BIC)

$$BIC = \frac{1}{n}(RSS + \log(n)p\sigma_y^2)$$
$$= p\log(n) - 2\log(L)$$

4. Adjusted r^2

$$adj \ r^2 = 1 - \frac{\frac{1}{n-p-1}RSS}{\frac{1}{n-1}TSS}$$

Full subset selection

What factors are relevant?

Problem: How do you find the most parsimonious model?

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \epsilon$$

What is the best combination of variables that provides the best explanation for your data after accounting for model complexity?

Full subset selection

Goal: Try all possible permutations of your model

eg:
$$Y = \beta_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3$$

Model variants: 2^p

$$Y = \beta_0 \qquad Y = \beta_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2$$

$$Y = \beta_0 + \hat{\beta}_1 X_1 \qquad Y = \beta_0 + \hat{\beta}_1 X_1 + \hat{\beta}_3 X_3$$

$$Y = \beta_0 + \hat{\beta}_2 X_2 \qquad Y = \beta_0 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3$$

$$Y = \beta_0 + \hat{\beta}_3 X_3 \qquad Y = \beta_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3$$

Stepwise selection

Forward stepwise selection

Goal: Build up from the simplest model. Evaluate in stages of same p.

eg:
$$Y = \beta_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3$$

Model variants:
$$1 + \frac{p(p+1)}{2}$$

1.
$$Y = \beta_0$$

2.
$$Y = \beta_0 + \hat{\beta}_1 X_1$$

$$Y = \beta_0 + \hat{\beta}_2 X_2$$

$$Y = \beta_0 + \hat{\beta}_3 X_3$$

1.
$$Y = \beta_0$$

2. $Y = \beta_0 + \hat{\beta}_1 X_1$
3. $Y = \beta_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2$
 $Y = \beta_0 + \hat{\beta}_1 X_1 + \hat{\beta}_3 X_3$

$$Y = \beta_0 + \hat{\beta}_1 X_1 + \hat{\beta}_3 X_3$$

4.
$$Y = \beta_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3$$

Backwards stepwise selection

Goal: Build down from most complex model. Evaluate in stages of same p.

eg:
$$Y = \beta_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3$$

Model variants:
$$1 + \frac{p(p+1)}{2}$$

1.
$$Y = \beta_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3$$

2.
$$Y = \beta_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2$$

$$Y = \beta_0 + \hat{\beta}_1 X_1 + \hat{\beta}_3 X_3$$

$$Y = \beta_0 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3$$

3.
$$Y = \beta_0 + \hat{\beta}_1 X_1$$
 $Y = \beta_0 + \hat{\beta}_3 X_3$

4.
$$Y = \beta_0$$

Inference via model selection

Q: Is risk aversion associated with childhood trauma, parental income, psychiatric risk, and/or social network size?

$$Y_{risk} = \hat{\beta}_0 + \hat{\beta}_1 X_{CT} + \hat{\beta}_2 X_{income} + \hat{\beta}_3 X_{psych} + \hat{\beta}_4 X_{social}$$

Conclusion: Only childhood trauma & psychiatric risk are relevant for understanding variation in risk aversion.

Speed vs. completeness

Full subset:
$$2^p$$
Stepwise: $1 + \frac{p(p+1)}{2}$

Stepwise methods improve speed dramatically with more complex models.

p

	5	10	15	20
Full Subset	32	1,024	32,768	1,048,576
Stepwise	16	56	121	211

}models compared

Take home message

 Model selection approaches allow for you to find the most parsimonious at explaining variance of your response variable, Y, while accounting for model complexity.