11 Suppose that Cauchy's estimate is an equality. Let's create a disk around the origin of radius r > 0. We know that the maximum is either on a boundary or at a zero. Using Cauchy's estimate we get

$$|f^{(0)}(0)| = |f(0)| = M(0!)/r^0 = M$$

This means that the origin is a maximum and thus a zero. So the maximum of the entire function must be 0. Thus f(z) = 0

12 For the domain D we have a fixed center z_0 and a radius r. ∂D can be written as the path $\partial D(t) = z_0 + re^{it}$ with $t \in [0, 2\pi]$. If we integrate $f(\partial D(t))$ we get the sum of all f(z) along the path so to get the average we can divide by the length of the path giving us:

$$\frac{1}{2\pi} \int_{0}^{2\pi} f(\partial D(t)) dt = \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + re^{it}) dt$$

We can then do a substitution with $z = z_0 + re^{it}$ and $dz = ire^{it}dt$.

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{f(z)}{ire^{it}} dt = \frac{1}{2i\pi} \int_0^{2\pi} \frac{f(z)}{re^{it}} dz$$
$$= \frac{1}{2i\pi} \int_{\partial D} \frac{f(z)}{z - z_0} dz$$

by Cauchy's integral formula we can see

$$\frac{1}{2i\pi} \int_{\partial D} \frac{f(z)}{z - z_0} dz = f(z_0)$$

13 Suppose we have a domain D with radius r > 0. The maximum would be $|f(z)| \le Kr^c$. Then using Cauchy's estimate for n = c:

$$|f^{(c)}(z)| \le \frac{Kr^c(c)!}{r^c} = Kc!$$

This means that $f^{(c)}(z) = w$ and w is constant. Let's find the antiderivative of $f^{(c)}(z)$, c times:

$$f^{(c-1)}(z) = wz + l_0(1 \text{ is a constant of integer})$$

$$f^{(c-2)}(z_0) = \frac{wz^2}{2!} + l_0z + l_1$$

$$f^{(c-(c-1))}(z_0) = \frac{wz^{c-1}}{(c-1)!} + l_0\frac{z^{c-2}}{(c-2)!} + l_1\frac{z^{c-3}}{(c-3)!} + \dots$$

$$f(z_0) = \frac{wz^c}{(c)!} + l_0\frac{z^{c-1}}{(c-1)!} + l_1\frac{z^{c-2}}{(c-2)!} + \dots$$

This gives us a polynomial of degree $\leq c$

14 Let's consider the taylor expansion of f,g centered at 0

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)z^n}{n!}$$

$$g(z) = \sum_{n=0}^{\infty} \frac{g^{(n)}(0)z^n}{n!}$$

We also know that

$$f^{(n)}(0) = \frac{n!}{2i\pi} \left| \int_{C_r} \frac{f(z)}{(z - z_0)^{n+1}} dz \right|$$

if we choose a small enough r that would mean

$$\frac{n!}{2i\pi} \left| \int_{C_r} \frac{f(z)}{(z - z_0)^{n+1}} dz \right| = \frac{n!}{2i\pi} \left| \int_{C_r} \frac{g(z)}{(z - z_0)^{n+1}} dz \right|$$

Thus:

$$f^{(n)}(0) = g^{(n)}(0)$$

$$\implies f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)z^n}{n!}$$

$$= \sum_{n=0}^{\infty} \frac{g^{(n)}(0)z^n}{n!}$$

$$= g(z)$$

15