

La probabilité $\mathbb{P}(a \leq x \leq b)$ est donnée
par la différence entre les valeurs de la
fonction de répartition $F(b)$ et $F(a)$:
$\mathbb{P}(a \leq x \leq b) = F(b) - F(a)$

Une fonction f(x) doit être positive (f(x) > 0) pour tout x et son intégrale sur \mathbb{R} doit être égale à 1: $\int_{-\infty}^{\infty} f(x) \, dx = 1$

La fonction de répartition F(x) est l'intégrale de la densité f(x) jusqu'à x: $F(x) = \int_{-\infty}^{x} f(t) dt$

Remarque : la deuxième propriété est très utile en exercice!

R

La linéarité de l'espérance permet de calculer $\mathbb{E}[aX + b]$ en utilisant la formule $\mathbb{E}[aX + b] = a \cdot \mathbb{E}[X] + b$

La variance $\mathbb{V}(X)$ d'une variable continue X est définie comme l'espérance de la différence entre X et son espérance $\mathbb{E}[X]$ au carré: $\mathbb{V}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$

L'espérance $\mathbb{E}[X]$ d'une variable continue X est définie comme l'intégrale de x pondéré par la densité f(x) sur tout \mathbb{R} : $\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f(x) \, dx$

R R

Une variable aléatoire continue X suit une loi uniforme sur l'intervalle [a, b] si sa densité est constante sur cet intervalle:

$$f(x) = \frac{1}{b-a}$$
 pour $a \le x \le b$
= 0 partout ailleurs

La variance de aX + b est a^2 fois la variance de X: $\mathbb{V}(aX + b) = a^2 \cdot \mathbb{V}(X)$

Le théorème de transfert permet de calculer l'espérance d'une transformation g(X) d'une variable aléatoire continue X en intégrant q(x)pondéré par la densité f(x) de X: $\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f(x) \, dx$

R

R

R

R

R

R

Une variable aléatoire continue X suit une loi exponentielle de paramètre λ si sa densité est

$$f(x) = \lambda e^{-\lambda x}$$
 pour $x \ge 0$
= 0 partout ailleurs

La variance $\mathbb{V}(X)$ d'une variable suivant une loi uniforme continue sur [a,b] est $\frac{(b-a)^2}{12}$

L'espérance $\mathbb{E}[X]$ d'une variable suivant une loi uniforme continue sur [a,b] est la moyenne des bornes a et b: $\mathbb{E}[X] = \frac{a+b}{2}$

R

R

R

Une variable aléatoire continue X suit une loi normale de moyenne m et de variance σ^2 si sa densité est donnée pour tout $x \in \mathbb{R}$ par la formule

$$f(x)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-m)^2}{2\sigma^2}}$$

La variance $\mathbb{V}(X)$ d'une variable suivant une loi exponentielle de paramètre λ est $\frac{1}{\lambda^2}$

L'espérance $\mathbb{E}[X]$ d'une variable suivant une loi exponentielle de paramètre λ est $\frac{1}{\lambda}$

R

R

R

La loi normale centrée réduite est une loi normale $\mathcal{N}(0,1)$ avec une moyenne m=0 et une variance $\sigma^2=1$

La variance $\mathbb{V}(X)$ d'une variable suivant une loi normale $\mathcal{N}(m,\sigma^2)$ est σ^2

L'espérance $\mathbb{E}[X]$ d'une variable suivant une loi normale $\mathcal{N}(m, \sigma^2)$ est m

Comment centrez et réduisez-vous une variable aléatoire X suivant $\mathcal{N}(m, \sigma^2)$ en Z suivant $\mathcal{N}(0, 1)$?

Pour centrer-réduire X en Z, il faut calculer $Z=\frac{X-m}{\sigma}$