Simplicité de A_n pour $n \ge 5$

On montre que A_n est simple pour $n \ge 5$ en montrant dans un premier temps le cas n = 5, puis en s'y ramenant.

Lemme 1. Les 3-cycles sont conjugués dans A_n pour $n \ge 5$.

[**PER**] p. 15

Démonstration. Soient $\alpha = \begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix}$ et $\beta = \begin{pmatrix} b_1 & b_2 & b_3 \end{pmatrix}$ deux 3-cycles. Soit $\sigma \in S_n$ telle que $\forall i \in [\![1,3]\!], \ \sigma(a_i) = b_i$

On a deux possibilités pour σ :

- σ est paire. Alors $\sigma \in A_n$, et le résultat est démontré pour α et β .
- σ est impaire. Comme $n \ge 5$, il existe c_1, c_2 tels que $c_1, c_2 \notin \{b_1, b_2, b_3\}$. On pose alors $\tau = \begin{pmatrix} c_1 & c_2 \end{pmatrix}$, et on a

$$(\tau\sigma) \begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix} (\tau\sigma)^{-1} = \begin{pmatrix} b_1 & b_2 & b_3 \end{pmatrix}$$

avec $\tau \sigma$ paire. Le résultat est encore démontré pour α et β .

Lemme 2. A_n est engendré par les 3-cycles pour $n \ge 3$.

[ROM21] p. 49

Démonstration. Montrons tout d'abord qu'un produit de deux transpositions est un produit de 3-cycles. Soient $\alpha = \begin{pmatrix} a_1 & a_2 \end{pmatrix}$ et $\beta = \begin{pmatrix} b_1 & b_2 \end{pmatrix}$ deux transpositions. Si $\alpha = \beta$, alors $\alpha\beta = \mathrm{id} = \sigma^3$ où σ désigne n'importe quel 3-cycle.

Si $\alpha \neq \beta$, on a deux possibilités :

- Leur support comporte un élément commun : $a_1 = b_1 = c$. Donc $\alpha = \begin{pmatrix} c & a_2 \end{pmatrix}$ et $\beta = \begin{pmatrix} c & b_2 \end{pmatrix}$ avec c, a_2 , b_2 distincts. Donc $\alpha\beta = \begin{pmatrix} a_2, c, b_2 \end{pmatrix}$.
- Leur support n'a pas d'élément commun. Dans ce cas a_1, a_2, a_1, b_2 sont distincts et $\alpha \beta = \begin{pmatrix} a_1 & a_2 & b_1 \end{pmatrix} \begin{pmatrix} a_2 & b_1 & b_2 \end{pmatrix}$.

Soit maintenant $\sigma \in A_n$. Comme σ est paire, on peut la décomposer en un produit d'un nombre pair n de transpositions :

$$\sigma = \prod_{i=1}^{n-1} \tau_i \tau_{i+1}$$

qui est bien un produit de 3-cycles.

p. 66

Lemme 3. Les doubles transpositions sont conjuguées dans A_n pour $n \ge 5$.

Démonstration. Soient $\alpha = \begin{pmatrix} a_1 & b_1 \end{pmatrix} \begin{pmatrix} c_1 & d_1 \end{pmatrix} \begin{pmatrix} e_1 \end{pmatrix}$ et $\beta = \begin{pmatrix} a_2 & b_2 \end{pmatrix} \begin{pmatrix} c_2 & d_2 \end{pmatrix} \begin{pmatrix} e_2 \end{pmatrix}$ deux doubles transpositions. Il suffit de prendre $\sigma \in A_5$ telle que $\sigma(a_1) = a_2$, $\sigma(b_1) = b_2$ et $\sigma(e_1) = e_2$ pour avoir $\sigma \alpha \sigma^{-1} = \beta$.

Lemme 4. A_5 est simple.

Démonstration. Commençons par décrire les types possibles des permutations de A_5 (le "type" d'une permutation désigne les cardinaux des supports des cycles apparaissant dans sa décomposition en cycles disjoints).

Type de permutation	Nombre de permutations
[1]	1
[3]	$\frac{5\times4\times3}{3} = 20$
[5]	$\frac{5 \times 4 \times 3 \times 2 \times 1}{5} = 24$
[2,2]	$\frac{1}{2} \frac{5 \times 4 \times 3 \times 2}{4} = 15$

Soit $H \triangleleft A_5$ tel que $H \neq \{id\}$. Montrons que $H = A_5$.

- Si *H* contient une permutation de type [2,2], alors par le Lemme 3, il contient toutes les permutations de type [3].
- Si *H* contient une permutation de type [3], alors par le Lemme 1, il les contient toutes.
- Si H contient une permutation de type [5], $\sigma = \begin{pmatrix} a & b & c & d & e \end{pmatrix}$, il contient alors le commutateur

$$(a \quad b \quad c)\sigma(a \quad b \quad c)^{-1}\sigma^{-1} = (a \quad b \quad c)\sigma(c \quad b \quad a)\sigma^{-1}$$

$$= (a \quad b \quad c)(\sigma(c) \quad \sigma(b) \quad \sigma(a))$$

$$= (a \quad b \quad c)(d \quad c \quad b)$$

$$= (b \quad d \quad a)$$

qui est un 3-cycle. Par le Lemme 1, il les contient tous.

Or, H ne peut pas vérifier qu'un seul des points précédents en vertu du théorème de Lagrange, car ni 16 = 15 + 1, ni 21 = 20 + 1 ne divisent $|A_5| = 60$. Donc H vérifie au moins deux des points précédents, et ainsi $|H| \ge 1 + 15 + 20 = 36$. Donc |H| = 60 et $H = A_5$.

Si les théorèmes de Sylow sont mentionnés dans le plan, il est préférable de mentionner l'argument suivant.

[PER] p. 28

Remarque 5. Dans le raisonnement précédent, si H contient une permutation de type [5] (qui est donc d'ordre 5), alors H contient le 5-Sylow engendré par cet élément. Or, on sait par les théorèmes de Sylow que les sous-groupes de Sylow sont conjugués entre eux. Donc H contient tous les 5-Sylow et donc contient tous les éléments d'ordre 5.

Théorème 6. A_n est simple pour $n \ge 5$.

Démonstration. Soit $N \triangleleft A_n$ tel que $N \neq \{id\}$. L'idée générale de la démonstration et de se ramener au cas n = 5 à l'aide d'une permutation bien spécifique.

Soit $\sigma \in N \setminus \{id\}$, il existe donc $a \in [1, n]$ tel que $\sigma(a) = b \neq a$. Soit $c \in [1, n]$ différent de a, b et $\sigma(b)$. On pose $\tau = \begin{pmatrix} a & c & b \end{pmatrix} \in A_n$ (on a $\tau^{-1} = \begin{pmatrix} a & b & c \end{pmatrix}$). Soit $\rho = \tau \sigma \tau^{-1} \sigma^{-1}$. Par calcul:

$$\rho = \begin{pmatrix} a & c & b \end{pmatrix} \sigma \begin{pmatrix} a & b & c \end{pmatrix} \sigma^{-1} = \begin{pmatrix} a & c & b \end{pmatrix} \begin{pmatrix} \sigma(a) & \sigma(b) & \sigma(c) \end{pmatrix}$$

Notons bien que $\rho \neq id$ (en tant que produit de 3-cycles, car $\sigma(b) \neq c$, donc $\rho(b) \neq b$ par calcul). Or, $\tau \sigma \tau^{-1} \in N$ car N est distingué et σ^{-1} aussi car N est un groupe, donc $\rho \in N$.

Notons $\mathscr{F} = \{a, b, c, \sigma(a), \sigma(b), \sigma(c)\}$. Comme $\sigma(a) = b, |\mathscr{F}| \le 5$. Quitte à rajouter, au besoin, des éléments à \mathscr{F} , on peut supposer que $|\mathscr{F}| = 5$. On pose

$$A(\mathcal{F}) = \{ \alpha \in A_n \mid \forall i \in [1, n] \setminus \mathcal{F}, \alpha(i) = i \}$$

le sous-groupe de A_n contenant les éléments qui laissent fixes $[1, n] \setminus \mathcal{F}$. Si on pose $\mathcal{F} = \{a_1, a_2, a_3, a_4, a_5\}$, on a une bijection entre \mathcal{F} et [1, 5]:

$$\mathscr{F} \to [1,5]$$
$$a_i \mapsto i$$

Donc $A(\mathcal{F})$ et A_5 sont deux groupes isomorphes (en effet, une permutation n'agissant que sur \mathcal{F} peut s'identifier à une permutation n'agissant que sur [1,5]). De plus, par le Lemme 4, comme A_5 est simple, $A(\mathcal{F})$ l'est aussi.

Soit $N_0 = N \cap A(\mathcal{F})$. $N_0 \triangleleft A(\mathcal{F})$, en effet, soient $\alpha \in N_0$ et $\beta \in A(\mathcal{F})$:

- βαβ⁻¹ ∈ $A(\mathcal{F})$ car $A(\mathcal{F})$ est un groupe.
- $-\beta\alpha\beta^{-1}\in N\operatorname{car} N\triangleleft A_5.$

En particulier, N_0 est distingué dans $A(\mathcal{F})$ qui est simple. De plus, $\rho \in N_0$ (car Supp $(\rho) \subseteq \mathcal{F}$ et $\varepsilon(\rho) = (-1)^6 = 1$ donc $\rho \in A(\mathcal{F})$, et on avait déjà $\rho \in N$). Donc $N_0 \neq \{id\}$, et ainsi $N_0 = A(\mathcal{F})$. On en déduit :

$$A(\mathscr{F}) = N \cap A(\mathscr{F}) \tag{*}$$

Finalement, τ est un 3-cycle qui n'agit que sur \mathscr{F} , donc $\tau \in A(\mathscr{F})$ et par (*), $\tau \in N$. Or, τ est un 3-cycle et les 3-cycles sont conjugués dans A_n (par le Lemme 1) donc N contient tous les 3-cycles. Et comme ceux-ci engendrent A_n (par le Lemme 2), on a $N = A_n$.

Bibliographie

Cours d'algèbre [PER]

Daniel Perrin. Cours d'algèbre. pour l'agrégation. Ellipses, 15 fév. 1996.

 $\verb|https://www.editions-ellipses.fr/accueil/7778-18110-cours-d-algebre-agregation-9782729855529. \\ \verb|html.||$

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie.* 2^e éd. De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.