

Robobrole: TD frottement

Dans ce TD, nous allons nous exercer à aborder le frottement sous différents aspects.

Pour réussir :

- Bien identifier les grandeurs en jeu F_N ; F_f ; μ ; ...
- Se demander si des paramètres extérieurs agissent
- Manipuler l'outil mathématique consciencieusement.

I. <u>Étude d'un véhicule de course.</u>

1. Nous nous intéressons à une voiture.

1.	Calculer le coefficient de frottement μ en conditions de sol sec. (Revoyez le cours si besoin)
2.	Par temps de pluie, nous relevons un coefficient de frottement μ = 0.23 Calculer l'effort F _f si F _N reste le même.
3.	Comment pourrions nous améliorer le coefficient de frottement, relevé ci-dessus, par temps de pluie ?
4.	Calculer l'angle φ à la limite du glissement par temps sec.

Robobrole: TD frottement

II. <u>Convoyeur de gâteaux :</u>

Un industriel constate régulièrement des pannes avec son convoyeur, les bandes de blocage semblent être en cause et il faudrait les retirer. Cela pourrait impliquer de mettre à profit le frottement. Données : masse 1 boîte de gâteau = 200g; pente : $alpha = 60^{\circ}$

Tracer $\overrightarrow{F_f}$ et identifier α dans le cadre ci-dessous.

Vous vous aiderez de l'image précédente. Les 2 droites verticales sont parallèles à $ec{p}$

Données : \vec{p} = 2N

Robobrole: TD frottement

- 1. Calculer $\overrightarrow{F_f}$ connaissant \overrightarrow{p} et $\overrightarrow{F_N} = \overrightarrow{p} \cos(30)$; $\overrightarrow{F_f} = \overrightarrow{p}$? (30) pensez aux unités 2. Calculer le coefficient de frottement μ
- 3. Choisissez un des matériaux suivants en considérant les coefficients de frottement. Notez oui ou non dans la case vide.

Plastique 1 /carton	0.26	
Plastique 2 /carton	0.58	
Plastique 3 /carton	0.14	

Étude du frottement d'un palet avec le sol

Le cône de frottement à un angle φ = 27° et F_N = 1.8 N.

1.	Calculez F _f pour que le palet glisse sur le sol, vous expliquerez vos choix.			

