Changement de bases

1. Soient $\mathcal{B}_e = (\vec{e_1}; \vec{e_2})$ la base canonique de \mathbb{R}^2 et :

$$\begin{cases} \vec{v_1} = 3\vec{e_1} + \vec{e_2} \\ \vec{v_2} = 2\vec{e_1} + \vec{e_2} \end{cases}$$

- a) Montrer que $\mathcal{B}_v = (\vec{v_1}; \vec{v_2})$ est une base de \mathbb{R}^2 .
- b) Chercher les composantes de $\vec{x} = 2\vec{e_1} + 2\vec{e_2}$ dans la base \mathcal{B}_v .
- **2.** Soit f une application linéaire de \mathbb{R}^2 dans \mathbb{R}^2 , de matrice $A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$ par rapport à la base canonique.

Déterminer A', matrice de f par rapport à la base $\mathcal{B}_v = (\vec{v_1}; \vec{v_2})$ avec :

$$\begin{cases} \vec{v_1} = \vec{e_1} + \vec{e_2} \\ \vec{v_2} = \vec{e_1} - \vec{e_2} \end{cases}$$

À l'aide de A', déterminer la nature de f.

3. Dans le plan, on considère deux vecteurs non-parallèles \vec{u} et \vec{v} et les applications linéaires suivantes :

f est une affinité d'axe (O, \vec{u}) , de direction \vec{v} et de rapport $\lambda = 3$,

- g est une affinité d'axe (O, \vec{v}) , de direction $\vec{w} = 3\vec{u} 4\vec{v}$ et de rapport $\mu = -2$.
- a) Déterminer le matrice de passage P de la base $\mathcal{B}_u = (\vec{u}; \vec{v})$ à la base $\mathcal{B}_v = (\vec{v}; \vec{w})$.
- b) Soit h l'endomorphisme du plan défini par $h = g \circ f$. Déterminer la matrice de h relativement à la base \mathcal{B}_u
- **4.** Soient $\mathcal{B}_e = (\vec{e_1}; \vec{e_2})$ la base canonique de \mathbb{R}^2 , $\mathcal{B}_v = (\vec{v_1}; \vec{v_2})$ avec :

$$\begin{cases} \vec{v_1} = \vec{e_1} + 3\vec{e_2} \\ \vec{v_2} = 2\vec{e_1} + 5\vec{e_2} \end{cases}$$

- a) Déterminer la matrice de passage P de la base \mathcal{B}_e à la base \mathcal{B}_v .
- b) Déterminer la matrice de passage R de la base \mathcal{B}_v à la base \mathcal{B}_e .
- c) Soit f l'application linéaire définie par : $f(\vec{x}) = (2y; 3x y)$. Déterminer :

A, matrice de f par rapport à la base $\mathcal{B}_e\,;$

 A_1 matrice de f par rapport à la base \mathcal{B}_v ;

 A_2 matrice de f par rapport aux bases \mathcal{B}_e et \mathcal{B}_v .

- d) Déterminer de plusieurs manières les composantes de l'image de $\vec{x} = \vec{e_1} + \vec{e_2}$ dans la base \mathcal{B}_v .
- dans la base \mathcal{B}_v .

 5. Soit $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 1 & 2 \end{pmatrix}$ la matrice de l'application linéaire f de \mathbb{R}^3 dans \mathbb{R}^2 par

rapport aux bases $\mathcal{B}_e = (\vec{e_1}; \vec{e_2}; \vec{e_3})$ de \mathbb{R}^3 et $\mathcal{B}_v = (\vec{v_1}; \vec{v_2})$ de \mathbb{R}^2 . Soient les bases $\mathcal{B}_f = (\vec{f_1}; \vec{f_2}; \vec{f_3})$ et $\mathcal{B}_w = (\vec{w_1}; \vec{w_2})$ définies par :

Solent les bases
$$\mathcal{B}_f = (f_1; f_2; f_3)$$
 et $\mathcal{B}_w = (w_1; w_1)$

$$\begin{cases}
\vec{f}_1 = \vec{e_1} + \vec{e_2} \\
\vec{f}_2 = \vec{e_1} - \vec{e_2} \\
\vec{f}_3 = \vec{e_3}
\end{cases}$$
et
$$\begin{cases}
\vec{w_1} = \vec{v_1} - \vec{v_2} \\
\vec{w_2} = 2\vec{v_1} + \vec{v_2}
\end{cases}$$

- a) Chercher les matrices de passage P de \mathcal{B}_e à \mathcal{B}_f et Q de \mathcal{B}_v à \mathcal{B}_w .
- b) Chercher la matrice A' de f par rapport aux bases :
 - i) \mathcal{B}_e et \mathcal{B}_w ,
 - ii) \mathcal{B}_f et \mathcal{B}_v ,
 - iii) \mathcal{B}_f et \mathcal{B}_w .
- c) Soit $\vec{a} = \vec{e_1} \vec{e_2} + 2\vec{e_3}$; calculer de différentes façons les composantes de $f(\vec{a})$ par rapport à la base \mathcal{B}_w .
- **6.** Soit W le sous-espace vectoriel de $\mathbb{R}[x]$ des polynômes de degré inférieur ou égal à 3.

On considère l'application linéaire f de W dans $\mathbb R$ qui associe au polynôme p son terme constant.

On note: \mathcal{B}_u la base canonique $(1; x; x^2; x^3)$ de W,

 \mathcal{B}_w la base (2; x + 1; x(x - 1); x^3),

 \mathcal{B}_e la base canonique (\vec{e}) de \mathbb{R} ,

 \mathcal{B}_v la base (\vec{v}) de \mathbb{R} telle que $\vec{v} = 3/2 \, \vec{e}$

- a) Chercher les matrices de passages Q de \mathcal{B}_e à \mathcal{B}_v et P de \mathcal{B}_u à \mathcal{B}_w .
- b) Déterminer la matrice de f par rapport aux bases \mathcal{B}_u et \mathcal{B}_e ; puis, à l'aide des matrices P et Q, par rapport à \mathcal{B}_w et \mathcal{B}_v .
- c) Soit le polynôme $p(x) = 5 + 2x x^3$. Donner ses composantes dans la base \mathcal{B}_u , puis dans la base \mathcal{B}_w . Chercher la composante de l'image de p(x) dans la base \mathcal{B}_v de différentes façons.
- 7. Soit l'application g de $\mathbb{M}(2; \mathbb{R})$ dans $\mathbb{M}(2; \mathbb{R})$ telle que :

$$g(X) = A(X + X^t)$$
 avec $A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$

a) Chercher la matrice de g par rapport à la base canonique \mathcal{B}_e de $\mathbb{M}(2; \mathbb{R})$. Puis à l'aide de la matrice de passage P, chercher la matrice de g dans la base $\mathcal{B}_v = (E_1'; E_2'; E_3'; E_4')$ définie par :

$$E_1' = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad E_2' = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad E_3' = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix} \qquad E_4' = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}$$

- b) Soit $C = 2E'_1 3E'_3$, donner ses composantes dans la base \mathcal{B}_e , puis dans \mathcal{B}_v . Chercher les composantes de l'image de C dans la base \mathcal{B}_v .
- 8. On munit $P_2[x]$, ensemble des polynômes de degré plus petit ou égal à 2, de la base canonique $\mathcal{B}_v = (x^2; x; 1)$ et de la base $\mathcal{B}_w = (x 1; 1; x^2)$.

On munit \mathbb{R}^2 de la base canonique $\mathcal{B}_e = (\vec{e_1}; \vec{e_2})$ et de la base $\mathcal{B}_u = (\vec{u_1}; \vec{u_2})$, définie par :

$$\begin{cases} \vec{u_1} = 3\vec{e_1} + 2\vec{e_2} \\ \vec{u_2} = 3\vec{e_1} + 4\vec{e_2} \end{cases}$$

On considère l'application linéaire h de $P_2[x]$ vers \mathbb{R}^2 dont la matrice associée est $A' = \begin{pmatrix} -1 & 0 & -2 \\ 1 & 0 & 1 \end{pmatrix}$ par rapport à \mathcal{B}_v et \mathcal{B}_u .

- a) Déterminer A'', matrice de h par rapport à \mathcal{B}_w et \mathcal{B}_e .
- b) Soit $\overrightarrow{OP'} = 9\overrightarrow{e_1} + 6\overrightarrow{e_2}$. Calculer, dans \mathcal{B}_w , les composantes des polynômes de $h^{-1}(\overrightarrow{OP'})$; puis expliciter ces polynômes.
- 9. Soit f une application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 définie par sa matrice $M_f \begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 1 \end{pmatrix}$ relativement aux bases $\mathcal{B}_e(\vec{e_1}; \vec{e_2}; \vec{e_3})$ de \mathbb{R}^3 et $\mathcal{B}_u(\vec{u_1}; \vec{u_2})$ de \mathbb{R}^2 . On introduit deux nouvelles bases $\mathcal{B}_f(\vec{f_1}; \vec{f_2}; \vec{f_3})$ de \mathbb{R}^3 et $\mathcal{B}_v(\vec{v_1}; \vec{v_2})$ de \mathbb{R}^2 définies par :

$$\begin{cases} \vec{f_1} = \vec{e_1} - \vec{e_2} - \vec{e_3} \\ \vec{f_2} = -2\vec{e_1} + \vec{e_2} - \vec{e_3} \\ \vec{f_3} = \vec{e_1} - 2\vec{e_2} - \vec{e_3} \end{cases}$$
 et
$$\begin{cases} \vec{v_1} = \vec{u_1} - 2\vec{u_2} \\ \vec{v_2} = 2\vec{u_1} - 3\vec{u_2} \end{cases}$$

Soient

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 8 \\ 1 \end{pmatrix}$$
les équations paramétriques d'une droite d exprimée dans la base \mathcal{B}_f .

Déterminer l'image de d par f relativement à la base \mathcal{B}_v de \mathbb{R}^2 .

10. On munit \mathbb{R}^3 de la base canonique $\mathcal{B}_e = (\vec{e_1}; \vec{e_2}; \vec{e_3})$ et de la base $\mathcal{B}_v = (\vec{v_1}; \vec{v_2}; \vec{v_3})$ définie par :

$$\begin{cases} \vec{v_1} = \vec{e_1} + \vec{e_2} \\ \vec{v_2} = \vec{e_1} - \vec{e_2} + 2\vec{e_3} \\ \vec{v_3} = -3\vec{e_1} - \vec{e_3} \end{cases}$$

On considère l'application linéaire identité (notée i) suivante :

$$i : \mathbb{R}^3, \mathcal{B}_v \longrightarrow \mathbb{R}^3, \mathcal{B}_e$$

 $\vec{x} \longmapsto i(\vec{x}) = \vec{x}$

Chercher la matrice notée I_e^v de cette application relativement aux bases \mathcal{B}_v et \mathcal{B}_e . Puis la matrice notée I_v^e de i relativement aux bases \mathcal{B}_e et \mathcal{B}_v .

En déduire une interprétation en terme d'application linéaire des matrices de passage de \mathcal{B}_v à \mathcal{B}_e et de \mathcal{B}_e à \mathcal{B}_v .

Refaire le diagramme de changement de bases en notant ces applications.

Réponses

1. b)
$$\vec{x} = -2\vec{v}_1 + 4\vec{v}_2$$

2.
$$A' = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$$

f est composée d'une homothétie de centre O et rapport 2 avec une affinité d'axe $(O, \vec{v_1})$, de direction $\vec{v_2}$ et rapport 2.

3. a)
$$P = \begin{pmatrix} 0 & 3 \\ 1 & -4 \end{pmatrix}$$

b)
$$M_h = \begin{pmatrix} -2 & 0 \\ 4 & 3 \end{pmatrix}$$

4. a)
$$P = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$$

b)
$$R = \begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix}$$

c)
$$A = \begin{pmatrix} 0 & 2 \\ 3 & -1 \end{pmatrix}$$

c)
$$A = \begin{pmatrix} 0 & 2 \\ 3 & -1 \end{pmatrix}$$
 $A_1 = \begin{pmatrix} -30 & -48 \\ 18 & 29 \end{pmatrix}$ $A_2 = \begin{pmatrix} 6 & -12 \\ -3 & 7 \end{pmatrix}$

$$A_2 = \left(\begin{array}{cc} 6 & -12 \\ -3 & 7 \end{array}\right)$$

d)
$$\vec{x} = -6\vec{v_1} + 4\vec{v_2}$$

5. a)
$$P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

b)
$$A_1 = \frac{1}{3} \begin{pmatrix} -7 & 0 & -1 \\ 5 & 3 & 5 \end{pmatrix}_{R}$$

$$Q = \left(\begin{array}{cc} 1 & 2 \\ -1 & 1 \end{array}\right)$$

$$A_2 = \left(\begin{array}{ccc} 3 & -1 & 3 \\ 5 & 3 & 2 \end{array}\right)_{\mathcal{B}_f \mathcal{B}_v}$$

$$A_3 = \frac{1}{3} \begin{pmatrix} -7 & -7 & -1 \\ 8 & 2 & 5 \end{pmatrix}_{\mathcal{B}_f \mathcal{B}_w}$$

c)
$$f(\vec{a}) = \begin{pmatrix} -3 \\ 4 \end{pmatrix}_{\mathcal{B}_u}$$

6. a)
$$P = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix}_{\mathcal{B}_{u}\mathcal{B}_{e}}$$

$$Q = (3/2)$$

$$A' = \left(\begin{array}{ccc} \frac{4}{3} & \frac{2}{3} & 0 & 0 \end{array}\right)_{\mathcal{B}_w \, \mathcal{B}_v}$$

c)
$$p(x) = \begin{pmatrix} 5 \\ 2 \\ 0 \\ -1 \end{pmatrix}_{\mathcal{B}_u}$$

$$p(x) = \begin{pmatrix} \frac{3}{2} \\ 2 \\ 0 \\ -1 \end{pmatrix}_{\mathcal{B}_{n}} \quad \text{et} \quad P^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

7. a)
$$M = \begin{pmatrix} 2 & 2 & 2 & 0 \\ 0 & 1 & 1 & 4 \\ 6 & 6 & 6 & 0 \\ 0 & 3 & 3 & 12 \end{pmatrix}$$

$$M' = \frac{1}{2} \begin{pmatrix} -2 & -2 & -6 & -2 \\ 0 & -1 & -2 & -9 \\ 6 & 6 & 18 & 6 \\ 0 & 3 & 6 & 27 \end{pmatrix}$$

b)
$$C = \begin{pmatrix} -1 \\ 0 \\ -6 \\ 0 \end{pmatrix}_{\mathcal{B}_e}$$
 et $C = \begin{pmatrix} 2 \\ 0 \\ -3 \\ 0 \end{pmatrix}_{\mathcal{B}_v}$

$$f(C) = \begin{pmatrix} 7\\3\\-21\\-9 \end{pmatrix}_{\mathcal{B}_{n}}$$

8. a)
$$A'' = \begin{pmatrix} 3 & -3 & 0 \\ 0 & 0 & 2 \end{pmatrix}_{\mathcal{B}_w \mathcal{B}_e}$$
b)
$$p(x) = \begin{pmatrix} a \\ a - 3 \\ 3 \end{pmatrix}_{\mathcal{B}_w} a \in \mathbb{R}$$

$$p(x) = 3x^2 + ax - 3$$

9.
$$f(d) = \begin{pmatrix} -17 - \lambda \\ 13 + \lambda \end{pmatrix}_{\mathcal{B}_v}$$