Name: _____ ID Number: _____

Time: 2 hours

1 H 1.008																	2 He 4.003
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg 24.31											Al	Si 28.09	P	S	Cl	Ar 39.95
19 K	20 C 2	21 S c	22 Ti	23 V	24 C r	25 Mn	26 E o	27 Co	28 Ni	29 C 11	30 7 n	31 C 2	32 C 2	33	34 Se	35 D =	36 Kr
	Ca 40.08	Sc 44.96	47.88	-	Cr 52.00		Fe 55.85	Co 58.93		Cu 63.55	Zn 65.38	Ga 69.72	Ge 72.59	As 74.92		Br 79.90	
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
			91.22			(98)			106.4						127.6		
55	56	57 • •	72	73	74	75 D	76	77	78	79	80	81	82 D1	83	84	85	86
Cs	Ba	La *	Hf	Ta	W	Re	Os	Ir	Pt 105.1	Au	Hg	Tl	Pb	Bi	Po	At	Rn
			178.5	180.9	183.9	180.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89															
Fr	Ra	\mathbf{Ac}^{\dagger}															
(223)	226	(227)															

QUESTION	SCORE	MAXIMUM MARKS
1		
2		
TOTAL		

QUESTION 1

(a) Complete the following statements:

(i) Amino acids are building blocks of _ by the	·	Amino acids differ
R group calledthe	Two amino ac	eids join together by
reaction calledwhich	to form a	bond
is also known ascalled a		
amino chain. In thi	is chain, each amino a	acid unit is called an
acid The elem	ments found in all 20 a	amino acids are
Since these elements are found in lar classified as	rge amounts in the hu	man body, they are
elements. There	is an additional eleme	ent found in cysteine
: its name is as		and it is classified
a element beca When two	ause of its amount in t	the human body.
cysteine molecules react together by offormed and	oxidation a	bond is
the name of the product (new substance example of a protein	ce) is	An
that contains this type of bond is		_•
The difference between isoleucine and	leucine is that	
On the other hand, the difference betw		

(ii) The elements that are	important for the strength of bon –	nes are
Iron is well known for itswhich	function in the protein called carries	
	to the body tissues	s where it is used to
glucose and produce heat protein is	energy, water and	This
found in	cells. Iron is a	element
because it occurs in very sin humans causes	small amounts in the human body	v. A deficiency of iron
to . Io	odine and are	essential to humans
prevent	and tooth decay, respectively.	
(iii) According to the Bohr	r model, electrons in atoms are fo	und in
	m	ıodel
has shown mathematically orbital is defined	y that electrons are found in atom	nic orbitals. An atomic
	which is one of	
	equation. In simple terms, w	
	tal cannot be described precisely	
of finding an electron outs hydrogen $1s$	side the nucleus never becomes z	ero. Therefore, for the
orbital a radius of the sph is used for	ere that captures 90-95% of the	

the size of the orbital. In the hydrogelectron from the	gen atom, the most prob	able distance of the
nucleus isany	Atomic orbitals in a	of
atom are described asenergy. The	because	they are identical in
p orbitals have two The	that lie directly on	the
number of atomic orbitals at any given maximum	ven energy level is	with a
number of electrons which is or diamagnetic.	A substance o	can be paramagnetic
Magnetically, copper(I) ion is		because
field.	d it is	by a magnetic
(iv) FeCl ₃ •6H ₂ O is hydrated whereas	s FeCl ₃ is	
(v) The two classes of pure substance	ces are	
(vi) The name of the simplest aldehynames of	yde is	whereas the
the simplest carboxylic acid and ket	tone are	and
, respec	ctively.	
(vii) Two properties of solutions are	:	
(b) Write the <u>name</u> of each of the f	ollowing substances:	
HNO ₂ (aq)		
PI ₃		
$CsClO_2$		

$FeHPO_4$	
Ni(SCN) ₂	
² H	
TiN	
Bi(NO ₃) ₃ •5H ₂ O	
Al(HSO ₃) ₃	
BrO	
(d) Write a formula for each of the following substances: Silver nitrate	
Manganese(II) carboxylate hydrate	
Ammonium dichromate	
Strontium peroxide	
Zinc hydrogen sulfide	
Phosphoric acid	
Cobalt(II) sulfate heptahydrate	
Mercury(I) iodide	
Calcium hydrogen carbonate	
Tin(IV) bromate	
QUESTION 2	
(a) Draw the Lewis dot symbol of the following:	
(i) Arsenic	
(ii) The hydride ion	

(b) Give all possible Lewis structures of the azide ion, \mathbf{N}_3 -.

and
and
) W

(ii)	$XeOF_4$
(d)	Give the chemical formula of each of the following substances:
	(i) an alkyne
	(ii) citric acid
	(iii) a cycloalkene
	(III) a cyclodikelle
(e)	Give a line drawing of the following substances:
(-)	
	(i) isopropylcyclohexane (chair conformation)
	(ii) a carboxylic acid anhydride

(ii) a nitrile with a quaternary carbon

(iv) an imine formed from a ketone

(f) (i) **Draw** all the possible isomers of C_4H_8 and **name** them.

(ii) Look carefully at the structures of the isomers you have drawn above. What types of isomers are represented these structures?

(g) Give the correct name for each of the following compounds:

$$\begin{array}{c|c}
 & NO_2 \\
 & | \\
 & C \\
 & CH_2 - C - C_2H_5 \\
 & CH_3 \\
 & H & H
\end{array}$$

(h) Draw the structure of each of the following compounds:

Lactic acid

1,4-dichloro-3-methyl-2-heptyne

(i) The following are structures of pain relievers that can be bought from a pharmacy. Study them

very carefully. Then **draw a circle** around each **functional group** and **name** it.

hat is the name of	the alkyl gro u	ıp in ibupro	fen?	