

WPISUJE ZDAJĄCY

——— KOD ZDAJĄCEGO ———		
symbol klasy	symbol zdającego	

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

MATEMATYKA – POZIOM ROZSZERZONY

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera **22** strony (zadania **1–16**). Ewentualny brak stron zgłoś nauczycielowi nadzorującemu egzamin.
- 2. Rozwiązania zadań i odpowiedzi zapisz w miejscu na to przeznaczonym.
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadań otwartych może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Podczas egzaminu możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 8. Na tej stronie wpisz swój kod.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla osoby sprawdzającej.

Powodzenia!

dysleksja

STYCZEŃ 2022

Czas pracy: 180 minut

Liczba punktów do uzyskania: 50 W zadaniach 1.-4. wybierz i zaznacz poprawną odpowiedź.

Zadanie 1. (0-1)

Rozwiązaniem równania $\sqrt{\log x} = \log \sqrt{x}$

- A. jest tylko liczba 1.
- B. jest między innymi liczba 10 000.
- C. nie może być żadna liczba większa od 1.
- D. nie może być żadna liczba wymierna.

Zadanie 2. (0-1)

Jedynymi miejscami zerowymi funkcji f, określonej dla każdej liczby rzeczywistej x, są liczby 0 oraz 2022. Miejscami zerowymi funkcji $g(x) = f(2022 \cdot x)$ są liczby

- **A.** $0 \text{ i } 2022^2$.
- **B.** 0 i 1.
- C. $2022 i 2022^2$.
- D. 1 i 2022.

Zadanie 3. (0-1)

Funkcja f jest określona wzorem f(x) = (x+1)(x-2)(x-3)+4 dla każdej liczby rzeczywistej x. Współczynnik kierunkowy a stycznej do wykresu tej funkcji w punkcie A=(2,4) spełnia warunek

- **A.** a < 0.
- **B.** $0 \le a \le 1$.
 - **C.** a = 1.
- **D.** a > 1.

Zadanie 4. (0-1)

Liczba 4 cos 75° · cos 15° jest równa

A. $\frac{1}{2}$.

- $\mathbf{B.} \frac{\sqrt{2}}{2}.$
- C. $\frac{\sqrt{3}}{2}$.
- **D.** 1.

$BRUDNOPIS\ (nie\ podlega\ ocenie)$

	Nr zadania	1	2	3	4
Wypełnia sprawdzający	Maks. liczba pkt	1	1	1	1
- ,,,,	Uzyskana liczba pkt				

Zadanie 5. (0-2)

Rozwiąż równanie $1 + \frac{1}{x-1} + \left(\frac{1}{x-1}\right)^2 + \left(\frac{1}{x-1}\right)^3 + \dots = \frac{9}{2}$, którego lewa strona jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego.

W kratki poniżej wpisz kolejno – od lewej do prawej – cyfrę jedności oraz pierwszą i drugą cyfrę po przecinku nieskończonego rozwinięcia dziesiętnego otrzymanego wyniku.

Zadanie 6. (0-2)

Oblicz
$$\lim_{n \to +\infty} \left(\frac{6n^2 + 1}{3n - 1} - \frac{4n^2 - 3}{2n + 1} \right)$$
.

	Nr zadania	5	6
Wypełnia sprawdzający	Maks. liczba pkt	2	2
1	Uzyskana liczba pkt		

Zadanie 7. (0-2)

Funkcja f jest określona wzorem $f(x) = \frac{1}{x-1} + 3$ dla każdej liczby rzeczywistej $x \ne 1$. Wyznacz wszystkie punkty leżące na wykresie funkcji f, których obie współrzędne są liczbami całkowitymi.

Zadanie 8. (0-3)

Wykaż, że dla każdej dodatniej liczby rzeczywistej xi każdej liczby rzeczywistej y > 1 prawdziwa jest nierówność

$$x^2 + y^2 > x(y+1)$$
.

	Nr zadania	7	8
Wypełnia sprawdzający	Maks. liczba pkt	2	3
1	Uzyskana liczba pkt		

Zadanie 9. (0-3)

Rozwiąż równanie $8 \sin^3 x + 4 \cos^2 x = 1 + 6 \sin x$.

Zadanie 10. (0-4)

Spośród zaznaczonych 16 punktów sieci kwadratowej (zobacz rysunek) wybrano losowo trzy różne punkty. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że wylosowane punkty są wierzchołkami trójkąta. Wynik podaj w postaci ułamka nieskracalnego.

	Nr zadania	9	10
Wypełnia sprawdzający	Maks. liczba pkt	3	4
1	Uzyskana liczba pkt		

Zadanie 11. (0-3)

Na przeciwprostokątnej AB trójkąta prostokątnego ABC o przyprostokątnych długości |BC|=a i |AC|=b zbudowano, na zewnątrz tego trójkąta, kwadrat ABDE. Odcinki CD i CE przecinają przeciwprostokątną AB odpowiednio w punktach P i Q (zobacz rysunek).

Wykaż, że stosunek pola trapezu EDPQ do pola trójkąta QPC jest równy $\left(\frac{1}{a} + \frac{1}{b}\right)^2 (a^2 + b^2)$.

_	Nr zadania	11
Wypełnia sprawdzający	Maks. liczba pkt	3
	Uzyskana liczba pkt	

Zadanie 12. (0-4)

Kąt przy wierzchołku A czworokąta ABCD jest prosty, a przekątna BD tego czworokąta jest prostopadła do boku BC. W trójkąt ABD wpisano okrąg o środku O_1 i promieniu 1, a w trójkąt BCD – okrąg o środku O_2 i promieniu 2. Odcinek O_1O_2 ma długość 3 (zobacz rysunek).

Oblicz obwód czworokąta ABCD.

	Nr zadania	12
Wypełnia sprawdzający	Maks. liczba pkt	4
1	Uzyskana liczba pkt	

Zadanie 13. (0-4)

Dany jest wielomian $W(x) = -2x^3 + x + a^2$. Liczba a jest pierwiastkiem tego wielomianu, a reszta z dzielenia tego wielomianu przez dwumian 2x + a jest większa od a. Oblicz a.

	Nr zadania	13
Wypełnia sprawdzający	Maks. liczba pkt	4
1	Uzyskana liczba pkt	

Zadanie 14. (0-6)

Wyznacz wszystkie wartości parametru m, dla których przedział (2, 3) jest zawarty w zbiorze rozwiązań nierówności $(m+1)x^2+mx+1<0$.

	Nr zadania	14
Wypełnia sprawdzający	Maks. liczba pkt	6
1	Uzyskana liczba pkt	

Zadanie 15. (0-6)

Punkt A=(-4,2) jest wierzchołkiem trójkąta równoramiennego ABC. Punkt K=(2,0) leży na podstawie AB tego trójkąta, |AK|: |KB|=2: 1. Punkt L=(0,6) leży na ramieniu AC tego trójkąta. Wyznacz współrzędne wierzchołków B i C oraz pole trójkąta ABC.

	Nr zadania	15
Wypełnia sprawdzający	Maks. liczba pkt	6
1	Uzyskana liczba pkt	

Zadanie 16. (0-7)

Rozważmy wszystkie ostrosłupy prawidłowe trójkątne ABCS, których suma długości wszystkich krawędzi jest równa 6. Podstawą ostrosłupa jest trójkąt ABC.

- a) Wykaż, że objętość V ostrosłupa, jako funkcja zmiennej x długości krawędzi podstawy ostrosłupa, wyraża się wzorem $V(x) = \frac{\sqrt{2}}{12} \cdot \sqrt{x^6 6x^5 + 6x^4}$. Dla jakich liczb rzeczywistych x liczba V(x) jest objętością tego ostrosłupa?
- b) Wyznacz taką wartość x, dla której funkcja V osiąga wartość największą. Oblicz tę największą wartość.

	Nr zadania	16
Wypełnia sprawdzający	Maks. liczba pkt	7
	Uzyskana liczba pkt	

$BRUDNOPIS\ (nie\ podlega\ ocenie)$

