MAE 5776

ANÁLISE MULTIVARIADA

Júlia M Pavan Soler

pavan@ime.usp.br

MAE 5776 – Análise Multivariada

- 1. Introdução: estrutura de dados, medidas resumo multivariadas, propriedades em espaços duais, elipses de concentração de dados, *outliers* multivariados.
- 2. Distribuição Normal Multivariada: propriedades, estimação, distribuições amostrais, testes de hipóteses para vetores de médias e matrizes de covariância. Regiões (elipsoides) de confiança para vetores de Médias.
- 3. Técnicas (clássicas) de redução da dimensionalidade (n>p e observações independentes). Teoria de Fatoração de Matrizes na redução de dimensionalidade e integração de bancos de dados.
- 4. Técnicas de redução da dimensionalidade em espaços mais gerais (n<<p, n muito grande, observações não independentes): soluções em espaços duais, soluções regularizadas e penalizadas, reamostragem.
- 5. Temas adicionais: Modelos de Equações Estruturais; Teoria de Grafos Probabilísticos; Análise de Dados heterogêneos.

Distribuição Normal Caso Univariado → Multivariado


```
li<-qnorm(0.25)-1.5*(qnorm(0.75)-qnorm(0.25)) #-2.697959
ls<-qnorm(0.75)+1.5*(qnorm(0.75)-qnorm(0.25)) # 2.697959
pli<-pnorm(li) # 0.003488302
pls<-1-pnorm(ls) # 0.003488302
```

Critério de outlier sob N(0,1)

Comparações de Médias Caso Univariado

$$\begin{cases} H_0: \mu_{son} = \mu_{father} \\ H_1: \mu_{son} \neq \mu_{father} \end{cases}$$

$$\Leftrightarrow \begin{cases} H_0: \mu_{dif} = 0 \\ H_1: \mu_{dif} \neq 0 \end{cases}$$

```
Teste t: amostras pareadas variável: dif t = -11.789, df = 1077, p-value < 2.2e-16 alternative hypothesis: true mean is not equal to 0 95 percent confidence interval: -1.1629160 -0.8310296 sample estimates: mean of x -0.9969728 Conclusão: Há diferença significante entre as médias da altura dos filhos e pais \mu_{son} > \mu_{father}
```

Comparação de Populações Comparação de Vetores de Médias Caso Multivariado - Motivação

Indiv.	Açucar	Sódio	Potássio
1	3,7	48,5	9,3
2	5,7	65,1	8
3	3,8	47,2	10,9
4	3,2	53,2	12
5	3,1	55,5	9,7
6	4,6	36,1	7,9
7	2,4	24,8	14
8	7,2	33,1	7,6
9	6,7	47,4	8,5
10	5,4	54,1	11,3
11	3,9	36,9	12,7
12	4,5	58,8	12,3
13	3,5	27,8	9,8
14	4,5	40,2	8,4
15	1,5	13,5	10,1
16	8,5	56,4	7,1
17	4,5	71,6	8,2
18	6,5	52,8	10,9
19	4,1	44,1	11,2
20	5,5	40,9	9,4
Média	4,64	45,4	9,97
S	2,879		
	10,002	199,798	
	-1,81	-5,627	3,628

Taxas de açucar, sódio e potássio sanguíneas em 20 mulheres adultas

$$Y_{i\,3\times1} \sim (\mu_{3\times1}; \Sigma_{3\times3}), \quad i = 1,...,20$$

$$\mu_0 = (4, 50, 10)'$$

$$\begin{cases} H_0: \mu = \mu_0 = (4, 50, 10)' \\ H_1: \mu \neq \mu_0 \end{cases}$$

Obter uma região de 95% de confiança para µ!

Comparação de Populações Comparação de Vetores de Médias Caso Multivariado - Motivação

Morfometria cefálica para os dois primeiros filhos de 25 famílias (Everitt, 2007)

	1° F	ilho	2° Fil	ho
Família	Comprimento	Perímetro	Comprimento	Perímetro
1	191	155	179	145
2	195	149	201	152
3	181	148	185	149
4	183	153	188	149
5	176	144	171	142
6	208	157	192	152
7	189	150	190	149
8	197	159	189	152
9	188	152	197	159
10	192	150	187	151
11	179	158	186	148
12	183	147	174	147
13	174	150	185	152
14	190	159	195	157
15	188	151	187	158
16	163	137	161	130
17	195	155	183	158
18	186	153	173	148
19	181	145	182	146
20	175	140	165	137
21	192	154	185	152
22	174	143	178	147
23	176	139	176	143
24	197	167	200	158
25	190	163	187	150

$$Y_{i\,4\times 1} \sim (\mu_{4\times 1}; \Sigma_{4\times 4}), i = 1, ..., 25;$$

$$Y_{iF1\,2\times 1} \sim (\mu_{F1\,2\times 1}; \Sigma_{F1\,2\times 2}),$$

$$Y_{iF2\,2\times 1} \sim (\mu_{F2\,2\times 1}; \Sigma_{F2\,2\times 2})$$

$$\begin{cases} H_0: \mu_{F1} = \mu_{F2} \\ H_1: \mu_{F1} \neq \mu_{F2} \end{cases}$$

Amostras pareadas!

$$\Leftrightarrow \begin{cases} H_0: \mu_{\mathit{Dif}} = 0_{2\times 1} \\ H_1: \mu_{\mathit{Dif}} \neq 0_{2\times 1} \end{cases}$$

Obter uma região de 95% de confiança para $\mu_{\text{Dif}}!$

Comparação de Populações Comparação de Vetores de Médias Caso Multivariado - Motivação

Medidas biométricas (mm) de Pardais fêmea (Manly, 2005).

Pardal	Sobrev.	X1	X2	Х3	X4	X5
1	S	156	245	31.6	18.5	20.5
21	S	159	236	31.5	18.0	21.5
22	N	155	240	31.4	18.0	20.7
49	N	164	248	32.3	18.8	20.9

$$Y_{iS \ 5\times 1} \sim (\mu_{S \ 5\times 1}; \Sigma_{S \ 5\times 5}), \ i = 1,...,21; \qquad Y_{iN \ 5\times 1} \sim (\mu_{N \ 5\times 1}; \Sigma_{N \ 5\times 5}); \ i = 1,...,28$$

$$\begin{cases} H_0: \mu_S = \mu_N \\ H_1: \mu_S \neq \mu_N \end{cases}$$

Amostras independentes!

Resultados Inferenciais

Qual é a Distribuição Amostral das estatísticas multivariadas:

$$\overline{\overline{Y}}_{p \times 1}, \quad S_{p \times p}, \quad d_M^2$$

- Regiões de Confiança e Teste de Hipóteses para o(s) Centróide(s):
- ⇒ Caso de uma única População ⊆

$$\boldsymbol{H}_0:\boldsymbol{\mu}_{\boldsymbol{p}\times 1}=\boldsymbol{\mu}_0$$

⇒ Caso de Duas Populações (Pareadas e Independentes)

$$H_0: \mu_{1p \times 1} = \mu_{2p \times 1}$$

 \Rightarrow Caso de Duas ou Mais Populações $\subset H_0: \mu_{1\,p imes 1} = \mu_{2\,p imes 1} = ... = \mu_{G\,p imes 1}$

$$H_0: \mu_{1p\times 1} = \mu_{2p\times 1} = \dots = \mu_{Gp\times 1}$$

Distribuição Amostral de Estimadores

$$Y_{n \times p} = \begin{pmatrix} Y_{1.} \\ Y_{2.} \\ \dots \\ Y_{n} \end{pmatrix} \quad \text{\'e AASn da } N_{p}(\mu; \Sigma)$$

Faça um paralelo destes resultados para o caso unvariado, N₁

$$Y \sim N_{n,p} \left(1_n \mu'; I_n \otimes \Sigma \right); \quad vec(Y)_{np \times 1} \sim N_{np} \left(1_n \otimes \mu; I_n \otimes \Sigma \right)$$

$$\Rightarrow \left[\overline{Y} \sim N_p \left(\mu_{p \times 1} ; \frac{1}{n} \Sigma \right) \right] N_1 \left(\mu; \frac{\sigma^2}{n} \right)$$
Capha am procio se

Ganho em precisão

 \overline{Y} e S são independentes

$$\Rightarrow nS = \sum_{i=1}^{n} (Y_i - \overline{Y}) (Y_i - \overline{Y})' \sim W_p (n-1; \Sigma)$$

$$(n-1)S_u \sim W_p (n-1; \Sigma)$$

$$(n-1)s_u^2 \sim W_1(n-1;\sigma^2) = \chi_{n-1}^2$$

Definição: Seja $\delta_{n\times 1} \sim N_n(0;\Sigma)$, $M_{n\times n} \sim W_n(n;\Sigma)$, com δ e M variáveis independentes.

Então:
$$n\delta'\,M^{-1}\delta$$

Então: $n\delta' M^{-1}\delta \sim T^2(p;n)$ Distribuição T² de Hotelling (é univariada!)

Lembre que (p=1):

$$t_o = \frac{\overline{Y} - \mu}{s / \sqrt{n}} \sim t_{(n-1)}$$

$$Y_{i p \times 1} \sim N_p(\mu; \Sigma)$$

$$\overline{Y} \sim N_p(\mu; \Sigma/n); \quad \sqrt{n}(\overline{Y} - \mu) \sim N_p(0; \Sigma) \quad d_M^2 = (n-1)(\overline{Y} - \mu)' S^{-1}(\overline{Y} - \mu) \sim T^2(p; n-1)$$

$$nS \sim W_p(n-1;\Sigma)$$

$$(n-1)S_u \sim W_p(n-1;\Sigma)$$

$$d_M^2 = (n-1)(\bar{Y} - \mu)' S^{-1}(\bar{Y} - \mu) \sim T^2(p; n-1)$$

$$d_M^2 = n\left(\overline{Y} - \mu\right)' S_u^{-1}\left(\overline{Y} - \mu\right) \sim T^2\left(p; n-1\right)$$

Teorema 3.5.2 (Mardia et al., 2003)

Simulação de Dados

Exercício de fixação de resultados!

Seja $Y_{n \times p} = (Y_1, ..., Y_n)^T$, $Y_i \in \Re^p$, i = 1, 2, ..., n, uma amostra aleatória simples de tamanho n da distribuição $N_p(\mu; \Sigma)$, $\Sigma = V\Lambda V'$. Usando simulação, adote valores para n, μ, Σ e mostre (por meio de gráficos de probabilidades) que:

a)
$$\overline{Y} \in \mathfrak{R}^p \sim N_p(\mu; \Sigma/n)$$

b)
$$nS \sim W_p(n-1;\Sigma); \quad S = n^{-1}Y'HY, \quad H = I_p - n^{-1}1_p1_p'$$

c)
$$d_{Mi}^2 = (Y_i - \mu)' \Sigma^{-1} (Y_i - \mu) \sim \chi_p^2$$
 \Rightarrow Região de Concentração de observações (diagnóstico de outliers)

d)
$$\hat{d}_{M}^{2} = n(\overline{Y} - \mu)' S_{u}^{-1}(\overline{Y} - \mu) \sim T_{(p;n)}^{2} = \frac{(n-1)p}{n-p} F_{(p;n-p)}$$
 \Rightarrow Região de Confiança para o parâmetro μ

e)
$$a'(nS)a/a'\Sigma a \sim \chi^2_{(n-1)}$$
, $a \in \Re^p$.

Regiões de Confiança para $\mu \in \Re^p$

Inferências sobre o Vetor de Médias μ

$$Y_{i p \times 1} \stackrel{iid}{\sim} AAS_n N_p(\mu; \Sigma); |\Sigma| > 0$$

Matriz de dados é uma Amostra Aleatória da Distribuição Normal Multivariada

Uma Região de Confiança $R(\mu|Y)$ para o vetor de médias da $N_p(\mu;\Sigma)$ é uma região de valores prováveis de $\mu \in \Re^p$, com base na amostra, tal que:

$$R(\mu \mid Y) = \left\{ n(\overline{Y} - \mu)' S_u^{-1}(\overline{Y} - \mu) \le c^2 \right\}$$
Região (elipsoide) de confiança para inferências sobre μ combase na evidência amostral (\overline{Y})

Região (elipsoide) de confiança

Para um nível de significância α fixado, c é obtido da distribuição F

$$\Rightarrow d_{M}^{2} = n(\overline{Y} - \mu)' S_{u}^{-1}(\overline{Y} - \mu) \sim T^{2}(p; n-1) = \frac{(n-1)p}{n-p} F_{(p; n-p)}$$

Logo, obtém-se:
$$P(\mu \in R(\mu | Y)) = 1 - \alpha$$

Regiões de Confiança para $\mu \in \Re^p$

Inferências sobre o vetor μ

$$R(\mu | Y) = \left\{ \mu \in \Re^{p}; \ n(\overline{Y} - \mu)' S_{u}^{-1}(\overline{Y} - \mu) \le c^{2} = \frac{(n-1)p}{(n-p)} F_{p,(n-p)}(\alpha) \right\}$$

 \Rightarrow Para determinar se algum ponto μ_0 cai na região R(μ |Y) basta calcular a distância generalizada ao quadrado e compará-la com o valor crítico dado em função da distribuição F e do nível de significância α , isto é,

$$n\left(\overline{Y}-\mu_0\right)'S_u^{-1}\left(\overline{Y}-\mu_0\right) \leq c^2 = \frac{(n-1)p}{(n-p)}F_{p,(n-p)}\left(\alpha\right)$$

⇒ Regiões de Confiança correspondem a Regiões de Aceitação em testes de hipóteses sobre o vetor μ.

Inferência sobre um Vetor de Médias

Casos Uni (Estatística t e t²) e Multivariado (Estatística T² de Hotteling)

$$t_{j}^{2} = \frac{\left(\overline{Y}_{j} - \mu_{j}\right)^{2}}{s_{j}^{2}/n} = n\left(\overline{Y}_{j} - \mu_{j}\right)\left(s_{j}^{2}\right)^{-1}\left(\overline{Y}_{j} - \mu_{j}\right) \sim t_{(n-1)}^{2} = F_{1,(n-1)}$$

$$\Rightarrow t_{j}^{2} = \frac{\left(\overline{Y}_{j} - \mu_{j0}\right)^{2}}{s_{j}^{2}/n} \leq t_{(n-1)}^{2} = F_{1,(n-1)}(\alpha)$$

Pode ser calculada para cada variável Yj (j=1,...,p).
Mas, qual é o nível de significância coletivo?

Procedimento conjunto para as p variáveis

$$T^{2} = n\left(\overline{Y} - \mu\right)' S_{u}^{-1}\left(\overline{Y} - \mu\right) \sim \frac{(n-1)p}{(n-p)} F_{p,(n-p)}$$

$$T^{2} = n\left(\overline{Y} - \mu_{0}\right)' S^{-1}\left(\overline{Y} - \mu_{0}\right) \leq \frac{(n-1)p}{(n-p)} F_{p,(n-p)}\left(\alpha\right)$$

Pesquise Intervalos de Confiança Simultâneos para Componentes do Vetor de Médias Populacional!!

Inferência sobre um Vetor de Médias

Uma Única População - Caso Multivariado

$$Y_{i p \times 1} = (Y_{1i}, Y_{2i}, ..., Y_{pi})' \sim N_p(\mu; \Sigma)$$
 $i = 1, 2, ..., n$

Corrigindo para os múltiplos "testes":

$$H_0: \mu_{p \times 1} = \mu_0 \qquad \Rightarrow \qquad T^2 = n \left(\overline{Y} - \mu_0 \right)' S^{-1} \left(\overline{Y} - \mu_0 \right) \quad \sim \quad \frac{(n-1)p}{(n-p)} F_{p,n-p}$$

$$\Rightarrow ICS\left(\mu_{j}\right) \text{ a } 100(1-\alpha)\% = \overline{Y}_{j} \pm \sqrt{\frac{(n-1)\,p}{(n-p)}\,F_{p,(n-p)}\left(\alpha\right)}\sqrt{\frac{s_{jj}}{n}} \qquad \begin{array}{c} \text{Intervalo de Confiança} \\ \text{Simultâneo} \end{array}$$

$$\Rightarrow ICB(\mu_j)$$
 a $100(1-\alpha)\% = \overline{Y}_j \pm t_{n-1} (\alpha/2m) \sqrt{\frac{s_{jj}}{n}}$

Intervalo de Confiança com correção de Bonferroni (para m intervalos)

$$\Rightarrow IC(\mu_j) \text{ a } 100(1-\alpha)\% = \overline{Y}_j \pm t_{n-1} (\alpha/2) \sqrt{\frac{s_{jj}}{n}}$$

IC formulado via a estatística t (não há correção para os múltiplos testes)

Regiões de Confiança e Testes de Hipóteses

Taxas de açucar, sódio e potássio sanguíneas em 20 mulheres adultas

Vamos construir a	Região de	Confiança:
-------------------	-----------	------------

Indiv.	Açucar	Sódio	Potássio	- ;
1	3,7	48,5	9,3	
2	5,7	65,1	8	
3	3,8	47,2	10,9	
4	3,2	53,2	12	
5	3,1	55,5	9,7	
6	4,6	36,1	7,9	
7	2,4	24,8	14	/
8	7,2	33,1	7,6	(
9	6,7	47,4	8,5	(
10	5,4	54,1	11,3	
11	3,9	36,9	12,7	
12	4,5	58,8	12,3	
13	3,5	27,8	9,8	
14	4,5	40,2	8,4	
15	1,5	13,5	10,1	
16	8,5	56,4	7,1	
17	4,5	71,6	8,2	
18	6,5	52,8	10,9	
19	4,1	44,1	11,2	
20	5,5	40,9	9,4	_
Média	4,64	45,4	9,97	_
S	2,879			
	10,002	199,798		
	-1,81	-5,627	3,628	_

$$R(\mu|Y) = \left\{ \mu; n(\overline{Y} - \mu)' S_u^{-1}(\overline{Y} - \mu) \le c^2 = \frac{(20 - 1)3}{(20 - 3)} F_{3,17}(\alpha) \right\}$$

 $\alpha = 0.05 \Longrightarrow 10.72$

 $\alpha = 0.10 \Rightarrow 8.18$

Suponha o interesse na seguinte hipótese:

$$\begin{cases} H_0: \mu = \mu_0 = (4, 50, 10)' \\ T^2 = n \left(\overline{Y} - \mu_0\right)' S^{-1} \left(\overline{Y} - \mu_0\right) = 9,74 \end{cases}$$

Conclusão: $\alpha = 0.10 \Rightarrow T^2 \notin R(\mu \mid Y)$; $rej H_0$ $\alpha = 0.05 \Rightarrow T^2 \in R(\mu \mid Y)$; $n\~ao rej H_0$

Regiões de Confiança para o Vetor µ Uma Única População

Morfometria cefálica para os dois primeiros filhos de 25 famílias (Everitt, 2007)

	1° Filho		2° Fil	ho
Família	Comprimento	Perímetro	Comprimento	Perímetro
1	191	155	179	145
2	195	149	201	152
3	181	148	185	149
4	183	153	188	149
5	176	144	171	142
6	208	157	192	152
7	189	150	190	149
8	197	159	189	152
9	188	152	197	159
10	192	150	187	151
11	179	158	186	148
12	183	147	174	147
13	174	150	185	152
14	190	159	195	157
15	188	151	187	158
16	163	137	161	130
17	195	155	183	158
18	186	153	173	148
19	181	145	182	146
20	175	140	165	137
21	192	154	185	152
22	174	143	178	147
23	176	139	176	143
24	197	167	200	158
25	190	163	187	150

$$Y_{25\times 4} = (Y_1, ..., Y_{25})'; Y_{i_{4\times 1}} \sim N_4(\mu; \Sigma)$$

Estatísticas Descritivas:

$$\overline{Y} = (185,72) 151,12 (183,84) 149,24)'$$

$$S_{u} = \begin{pmatrix} 91,481 & 50,753 & 66,875 & 44,267 \\ & 52,186 & 49,259 & 33,651 \\ & & 96,775 & 54,278 \\ & & & 43,222 \end{pmatrix}$$

Regiões de Confiança para o Vetor µ Uma Única População

Morfometria cefálica para os dois primeiros filhos de 25 famílias (Everitt, 2007)

					, iid
	1	° Filho	2° F	ilho	$Y_{25\times4} = (Y_1,, Y_{25})'; Y_{i+1} \stackrel{iid}{\sim} N_4(\mu; \Sigma)$
Família	Comprimento	Perímetro	Comprimento	Perímeti	
1	191	155	179	145	Distribute 2 a manufuel mans a
2	195	149	201	152	Distribuição marginal para a
3	181	148	185	149	variável Comprimento (\mathfrak{R}^2):
2 3 4 5	183	153	188	149	
5	176	144	171	142	iid ((u) (a a))
6 7	208	157	192	152 149	$Y_{25\times2}; Y_{i_{2\times1}} = (Y_{i1}, Y_{i3})^{iid} \sim N_2 \left(\mu = \begin{pmatrix} \mu_1 \\ \mu_3 \end{pmatrix}; \Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{13} \\ \sigma_{13} & \sigma_{33} \end{pmatrix} \right)$
7	189	150	190	149	$I_{25\times2}$, $I_{i_{2\times1}}$ $I_{i_{1}}$ $I_{i_{3}}$ $I_{i_{2}}$
8	197	159	189	152	
9	188	152	197	159	
10	192	150	187	151	(25 1)2
11	179	158	186	148	$R(\mu Y) = \left\langle \mu \in \Re^2 \cdot T^2 < \frac{(2\beta - 1)2}{\Gamma} F(\alpha) \right\rangle$
12	183	147	174	147	$R(\mu Y) = \left\{ \mu \in \Re^2; T^2 \le \frac{(25-1)2}{(25-2)} F_{2;23}(\alpha) \right\}$
13	174	150	185	152	
14	190	159	195	157	$\alpha = 0.10 \Rightarrow 5.3196$
15	188	151	187	158	$\alpha = 0.10 \Rightarrow 3.3190$
16	163	137	161	130	
17	195	155	183	158	Suponha o interesse na seguinte hipótese:
18	186	153	173	148	
19	181	145	182	146	(182)
20	175	140	165	137	$H_{1} \cdot \mu = \begin{bmatrix} 102 \\ 102 \end{bmatrix}$ $T^{2} = 4.186$
21	192	154	185	152	10° 182
22	174	143	178	147	$\begin{cases} H_0: \mu = \begin{pmatrix} 182 \\ 182 \end{pmatrix} \qquad T^2 = 4,186 \end{cases}$
23	176	139	176	143	
24	197	167	200	158	Conclusão?
25	190	163	187	150	

Intervalos de Confiança - Regiões de Confiança

(Everitt, 2007)

Caso univariado

$$IC(\mu_j)$$
 a $100(1-\alpha)\%$

$$= \left(\overline{Y}_j \mp t_{n-1} \left(\alpha / 2\right) \sqrt{\frac{s_{jj}}{n}}\right)$$

$$t^{2} = \frac{\left(\overline{Y}_{j} - \mu_{j}\right)^{2}}{s_{jj}/n}$$

$$= n \left(\overline{Y}_{j} - \mu_{j} \right) \left(s_{jj} \right)^{-1} \left(\overline{Y}_{j} - \mu_{j} \right)$$

$$t_{(n-1)}^2 = F_{1,(n-1)}$$

Caso multivariado

$$R(\mu | Y) = \left\{ \mu \in \Re^{p}; \ n(\overline{Y} - \mu)' S_{u}^{-1}(\overline{Y} - \mu) \leq c^{2} = \frac{(n-1)p}{(n-p)} F_{p,(n-p)}(\alpha) \right\}$$

- \Rightarrow Com base na evidência amostral em R(μ |Y), valores de $\mu_0 \in \Re^2$ iguais a Q (P) estão na região de aceitação (rejeição) de possíveis valores do parâmetro μ .
- ⇒ Os Intervalos de Confiança univariados podem dar decisões diferentes da região de confiança.
- ⇒ Como representar no gráfico a elipse de concentração de pontos amostrais?

Revise:

$$\begin{split} Y_{i\,p\times 1} \overset{\textit{iid}}{\sim} N_{p}\left(\mu\,;\Sigma\right); \quad & \sqrt{n}\left(\overline{Y}-\mu\right) \sim N_{p}\left(0\,;\Sigma\right); \quad (n-1)S_{u} \sim W_{p}\left(n-1\,;\Sigma\right) \\ & n\left(\overline{Y}-\mu\right)'S_{u}^{-1}\left(\overline{Y}-\mu\right) \sim T^{2}\left(p;n-1\right) \quad \underset{\textit{generalizada}}{\textit{Dist}} \mathring{a} \overset{\textit{iid}}{\text{ncia}} \\ & \text{generalizada} \end{split}$$
 Teorema 3.5.2 (Mardia et al., 2003):
$$T^{2}\left(p;n-1\right) = \frac{\left(n-1\right)p}{n-p}F_{(p;n-p)}$$

Resultado: (Johnson and Whichern, 2008)

$$Y_{ip\times 1}\in\Re^p,\,i=1,2,...,n$$
 é AASn tal que, $E\left(Y_i\right)=\mu,\quad Cov\left(Y_i\right)=\Sigma,\,\,\left|\Sigma\right|>0.$

Então, para (n-p) suficientemente grande,

$$n(\overline{Y} - \mu)' S_u^{-1}(\overline{Y} - \mu) \sim \chi_p^2$$

Confiança para H Elipsóide de Confiança

$$T^{2}(p; n-1) = \frac{(n-1)p}{n-p} F_{(p;n-p)} = \chi_{p}^{2}$$

Revise:

$$Y_{i p \times 1} \stackrel{iid}{\sim} N_{p} (\mu; \Sigma)$$

$$\left(Y_{i} - \mu \right) \sim N_{p} (0; \Sigma)$$

$$\left(Y_{i} - \mu \right)' \Sigma^{-1} (Y_{i} - \mu) \sim \chi_{p}^{2}$$

$$P \left(Y_{i} \in \mathbb{R}^{p}; \ d_{M}^{2} (Y_{i}; \mu) = \left(Y_{i} - \mu \right)' \Sigma^{-1} \left(Y_{i} - \mu \right) \leq c^{2} \right) = 1 - \alpha$$

$$c^{2} = \chi_{p}^{2} (\alpha)$$

Resultado: (Johnson and Wichern, 2008). Sob Normalidade dos dados, para (n-p) suficientemente grande,

- $(Y_i \overline{Y})' S_u^{-1} (Y_i \overline{Y}) \sim \chi_p^2$
- Critério de diagnóstico de observações atípicas (multivariado)
- Critério útil para averiguar a hipótese de Normalidade dos dados via o Gráfico Chi-Quadrado (Q-Q Plot das Observações).

Já vimos!

```
library(MASS)
mu<-c(0,0)
sigma<-matrix(c(2,1,1,2),ncol=2)
n<-500
y<-mvrnorm(n,mu,sigma)
mi<-colMeans(y)
s<-cov(y)
par(mfrow=c(1,2))
bivbox(y, method ="O")
# Copy Everitt's bivbox function
d2m<-mahalanobis(y,mi,s)
quantis <- qchisq(ppoints(length(y)),df=2)
qqplot(quantis, d2m)
abline(0,1)</pre>
```

Recordando! Caso Univariado (→ Generalizar os resultados para o Multivariado)

$$H_0: \mu_1 = \mu_2 \iff H_0: \mu_D = 0$$

$$\begin{array}{lll} \underline{Observa\tilde{coes Pareadas:}} & \left(Y_{1i} \; ; Y_{2i}\right) & i=1,2,...,n \\ & \Rightarrow D_i = Y_{1i} - Y_{2i} & \sim & N\left(\mu_D = \mu_1 - \mu_2; \sigma_D^2\right), & i=1,2,...,n \\ & \Rightarrow IC(\mu_D) \; a \; (1-\alpha)100\% = \left[\overline{D} - e; \overline{D} + e\right]; & e = t_{(n-1)}(1-\alpha/2) \frac{s_D}{\sqrt{n}} \\ & \Rightarrow H_0: \mu_D = 0 & \Rightarrow & t = \frac{\overline{D}}{s_D/\sqrt{n}} \sim & t_{n-1}; & \Rightarrow & t^2 = n\overline{D} \; (s_D^2)^{-1} \overline{D} \sim t_{n-1}^2 = F_{1,n-1} \\ \end{array}$$

Observações Independentes:
$$Y_{11}, Y_{12}, ..., Y_{1n_1} \sim N_1 \left(\mu_1; \sigma_1^2\right); \quad Y_{21}, Y_{22}, ..., Y_{2n_2} \sim N_1 \left(\mu_2; \sigma_2^2\right)$$

$$\Rightarrow \overline{D} \left(\overline{Y_1}\right) \left(\overline{Y_2}\right) \sim N \left(\mu_D = \mu_1 - \mu_2; \sigma_D^2 = \sigma^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)\right); \quad \sigma_1^2 = \sigma_2^2 = \sigma^2 \quad \begin{array}{c} \text{Sob} \\ \text{homocedas} \\ \text{ticidade!} \end{array}$$

$$\Rightarrow IC(\mu_D) \ a \ (1-\alpha)100\% = \left[\overline{D} - e; \overline{D} + e\right]; \quad e = t_{(n_1 + n_1 - 2)} (1 - \alpha/2) s_c \left(\frac{1}{n_1} + \frac{1}{n_2}\right); \quad s_c^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

$$\Rightarrow H_0: \mu_D = 0, sob \ \sigma_1^2 = \sigma_2^2 \quad \Rightarrow t = \frac{\left(\overline{Y_1} - \overline{Y_2}\right)}{s_c \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}; \quad t^2 = \left(\frac{1}{n_1} + \frac{1}{n_2}\right)^{-1} \left(\overline{Y_1} - \overline{Y_2}\right) \left(s_c^2\right)^{-1} \left(\overline{Y_1} - \overline{Y_2}\right) \sim F_{1;(n_1 + n_2 - 2)}$$

Recordando!

Caso Univariado:

Observações Pareadas: Dados dos Filhos, Variável Comprimento (n=25 observações)

Dados das Diferenças: Média de Dif= 1,88; Desvio padrão de Dif=7,53

```
IC95% para Mu-Dif. = [-1.230307; 4.990307]
Teste t: H0: Mu.Dif = 0 \Rightarrow t = 1.2475, df = 24, p-value = 0.2242
```

Conclusão: Não há evidência para diferençs entre as médias dos dois grupos

Observações Independentes:

G1: n1=21 Mu1= 157.38 $s1^2=$ 11,05 G2: n2=28 Mu2= 158.43 $s2^2=$ 15.07 mud=-0.75 $s_c^2=17,83$

Dados dos Pardais (X1)

IC95% para a diferença entre os grupos= [-3.170113 ; 1.074874]

Teste "t": H0: μ 1= μ 2 (sob homocedasticidade)

t = -0.99295, df = 47, p-value = 0.3258

Conclusão: Não há evidência para diferençs entre as médias dos grupos de Pardais para a variável X1 (Sobreviventes e Não Sobreviventes)

Caso Multivariado

Amostra Pareada ⇒ respostas multivariadas são avaliadas na mesma unidade amostral em "duas" condições diferentes (Ex.: Antes e Depois de uma intervenção)

Duas Populações

$$\mathbf{Y}_{1_{n\times p}}; \mathbf{Y}_{1_{i_{p\times 1}}} = (Y_{1i1}, Y_{1i2}, ..., Y_{1ip})$$

$$\mathbf{Y}_{1_{n\times p}}; \mathbf{Y}_{1_{i\,p\times 1}} = (Y_{1i1}, Y_{1i2}, ..., Y_{1ip})'$$
 $\mathbf{Y}_{2_{n\times p}}; \mathbf{Y}_{2_{i\,p\times 1}} = (Y_{2i1}, Y_{2i2}, ..., Y_{2ip})'$ $i = 1, 2, ..., n$

$$Y_{1i p \times 1} \stackrel{iid}{\sim} N_p(\mu_1; \Sigma_1)$$

$$\mathbf{Y}_{1i p \times 1} \stackrel{iid}{\sim} N_p(\mu_1; \Sigma_1)$$
 $\mathbf{Y}_{2i p \times 1} \stackrel{iid}{\sim} N_p(\mu_2; \Sigma_2)$

Uma Única População de Diferenças

$$D_{ij} = Y_{1ij} - Y_{2ij}$$
 $j = 1, 2, ..., p$, $i = 1, 2, ..., n$

$$D_{i_{p\times 1}} = (D_{i1}, D_{i2}, ..., D_{ip})' \sim N_p (\delta = \mu_1 - \mu_2; \Sigma_D) \quad i = 1, 2, ..., n$$

Elipsoide de Confiança:
$$R(Y_1, Y_2) = \left\{ \delta = \mu_1 - \mu_2 \in \Re^p; \ n(\overline{D} - \delta)' S_D^{-1}(\overline{D} - \delta) \leq c_\alpha^2 \right\}$$

Caso Multivariado – Amostra Pareada

$$Y_{1i p \times 1} \stackrel{iid}{\sim} N_{p}(\mu_{1}; \Sigma_{1}) \qquad Y_{2i p \times 1} \stackrel{iid}{\sim} N_{p}(\mu_{2}; \Sigma_{2})$$

$$D_{ij} = Y_{1ij} - Y_{2ij} \qquad \Rightarrow \qquad D_{i p \times 1} = (D_{i1}, D_{i2}, ..., D_{ip}) \stackrel{iid}{\sim} N_{p}(\delta = \mu_{1} - \mu_{2}; \Sigma_{D}) \quad i = 1, 2, ..., n$$

$$H_0: \delta = \delta_0 \qquad \Rightarrow \qquad T^2 = n \left(\overline{D} - \delta_0 \right)' S_D^{-1} \left(\overline{D} - \delta_0 \right) \quad \sim \quad \frac{(n-1)p}{(n-p)} F_{p,n-p}$$

$$\Rightarrow ICS\left(\delta_{j}\right) \ \text{a} \ 100(1-\alpha)\% = \bar{D}_{j} \pm \sqrt{\frac{(n-1)p}{(n-p)}F_{p,(n-p)}\left(\alpha\right)}\sqrt{\frac{S_{D_{jj}}}{n}} \quad \text{Intervalo de Confiança Simultâneo}$$

$$\Rightarrow ICB(\delta_j) \text{ a } 100(1-\alpha)\% = \overline{D}_j \pm t_{n-1} (\alpha / 2m) \sqrt{\frac{S_{D_{jj}}}{n}}$$

Intervalo de Confiança com correção de Bonferroni (para m "testes")

Inferência para Vetores de Médias Duas Populações Pareadas

Morfometria cefálica para os dois primeiros filhos de 25 famílias (Everitt, 2007)

		<u> </u>	<u> </u>		
	1° F	ilho	2° Fill	ho	
Família	Comprimento	Perímetro	Comprimento	Perímetro	
1	191	155	179	145	
2	195	149	201	152	
3	181	148	185	149	
4	183	153	188	149	
5	176	144	171	142	
6	208	157	192	152	
7	189	150	190	149	n
8	197	159	189	152	n
9	188	152	197	159	
10	192	150	187	151	
11	179	158	186	148	
12	183	147	174	147	
13	174	150	185	152	
14	190	159	195	157	
15	188	151	187	158	
16	163	137	161	130	
17	195	155	183	158	
18	186	153	173	148	
19	181	145	182	146	
20	175	140	165	137	
21	192	154	185	152	
22	174	143	178	147	
23	176	139	176	143	
24	197	167	200	158	
25	190	163	187	150	

s de 25 famílias (Everitt, 2007)
$$Y_{ig_{2\times 1}} \stackrel{iid}{\sim} N_2(\mu_g; \Sigma_g); g = 1, 2$$

$$P_{ig_{2\times 1}} \stackrel{iid}{\sim} N_2(\mu_g; \Sigma_g); g = 1, 2$$

$$Q_{ig_2/1} \stackrel{estrutur_a}{\sim} Q_{os} \qquad Q_$$

7.14

$$H_0: \mu_D = 0 \Rightarrow T^2 = 3,61 \sim \frac{24*2}{23} F_{2,23} = 5\% \Rightarrow 3.42$$

Conclusão: Não há evidência de diferença significante entre as médias das medidas cefálicas dos dois grupos (1° e 2° Filhos)

⇒ Obtenha os ICS e ICB!

Caso Multivariado - Amostras Independentes - Homocedasticidade

$$Y_{1n_{1}\times p} = (Y_{11}, Y_{12}, \dots, Y_{1n_{1}})'; \quad Y_{1i} \stackrel{iid}{\sim} N_{p}(\mu_{1}; \Sigma_{1}); \quad Y_{2n_{2}\times p} = (Y_{11}, Y_{12}, \dots, Y_{1n_{2}})'; \quad Y_{2i} \stackrel{iid}{\sim} N_{p}(\mu_{2}; \Sigma_{2})$$

$$\overline{Y}_{1}, \quad S_{1} = \frac{1}{n_{1}-1} \sum_{i=1}^{n_{1}} (Y_{1i} - \overline{Y}_{1})' \qquad \overline{Y}_{2}, \quad S_{2} = \frac{1}{n_{2}-1} \sum_{i=1}^{n_{2}} (Y_{2i} - \overline{Y}_{2})' Y_{2i} - \overline{Y}_{2}$$

$$M_{D} = \delta = \mu_{1} - \mu_{2}$$

$$\overline{D}_{p\times 1} = \overline{Y}_1 - \overline{Y}_2 \sim N_p \left(\mu_D; \Sigma_{\overline{D}} = \frac{\Sigma_1}{n_1} + \frac{\Sigma_2}{n_2}\right)$$

$$H_0: \mu_D = 0; \qquad \times \qquad H_1: \mu_D \neq 0; \qquad \Sigma_1 = \Sigma_2 = \Sigma$$

Hipótese condicionada à suposição de homocedasticidade

$$\Rightarrow \overline{D}_{p \times 1} \sim N_p \left(\mu_D; \Sigma_{\overline{D}} = \Sigma \left(\frac{1}{n_1} + \frac{1}{n_2} \right) \right)$$

Caso Multivariado - Amostras Independentes - Homocedasticidade

$$Y_{1n_1 \times p} = (Y_{11}, Y_{12}, ..., Y_{1n_1})'; \quad Y_{1i} \sim N_p(\mu_1; \Sigma_1); \quad Y_{2n_2 \times p} = (Y_{11}, Y_{12}, ..., Y_{1n_2})'; \quad Y_{2i} \sim N_p(\mu_2; \Sigma_2)$$

$$Y_1 \perp Y_2; \quad \mu_D = \mu_1 - \mu_2$$

$$H_0: \mu_D = 0; \quad \times \quad H_1: \mu_D \neq 0; \quad \Sigma_1 = \Sigma_2 = \Sigma$$

$$H_1: \mu_D \neq 0$$

$$\Sigma_1 = \Sigma_2 = \Sigma$$

Hipótese condicional sob Homocedasticidade

$$\Rightarrow \overline{D}_{p \times 1} \sim N_{p} \left(\mu_{D}; \Sigma \left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) \right)$$

$$\hat{\Sigma} = S_{c}$$

$$\Rightarrow S_{cp \times p} = \frac{\sum_{i=1}^{n_1} \left(Y_{1i} - \overline{Y_1} \right) \left(Y_{1i} - \overline{Y_1} \right)' + \sum_{i=1}^{n_2} \left(Y_{2i} - \overline{Y_2} \right) \left(Y_{2i} - \overline{Y_2} \right)'}{n_1 + n_2 - 2} = \frac{(n_1 - 1) S_{u1} + (n_2 - 1) S_{u2}}{n_1 + n_2 - 2}$$

Caso Multivariado - Amostras Independentes - Homocedasticidade:

$$Y_{1n_{1}\times p}; Y_{1i} \stackrel{iid}{\sim} N_{p}\left(\mu_{1}; \Sigma_{1}\right); \quad Y_{2n_{2}\times p}; Y_{2i} \stackrel{iid}{\sim} N_{p}\left(\mu_{2}; \Sigma_{2}\right); \quad \Sigma_{1} = \Sigma_{2} = \Sigma$$

$$\Rightarrow \overline{D}_{p\times 1} \sim N_{p}\left(\mu_{D}; \Sigma\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)\right)$$

$$S_{c} = \frac{\sum_{i=1}^{n_{1}} \left(Y_{1i} - \overline{Y_{1}}\right) \left(Y_{1i} - \overline{Y_{1}}\right)' + \sum_{i=1}^{n_{2}} \left(Y_{2i} - \overline{Y_{2}}\right) \left(Y_{2i} - \overline{Y_{2}}\right)'}{n_{1} + n_{2} - 2} = \frac{(n_{1} - 1)S_{u1} + (n_{2} - 1)S_{u2}}{n_{1} + n_{2} - 2};$$
 Matriz de covariâncias comum aos grupos

Estatística de Hotteling:

$$T^{2} = \left(\overline{D} - \delta_{0}\right)' \left[\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) S_{c} \right]^{-1} \left(\overline{D} - \delta_{0}\right) \sim \frac{(n_{1} + n_{2} - 2)p}{(n_{1} + n_{2} - p - 1)} F_{(p,(n_{1} + n_{2} - p - 1))}$$

Elipsóide de Confiança:
$$R(Y_1, Y_2) = \left\{ \delta = \mu_1 - \mu_2 \in \Re^2; \left(\overline{D} - \delta\right)' \left[\left(\frac{1}{n_1} + \frac{1}{n_2}\right) S_c \right]^{-1} \left(\overline{D} - \delta\right) \le c_{\alpha}^2 \right\}$$

Amostras Independentes:

$$Y_{1} = (Y_{11}, Y_{12}, ..., Y_{1n_{1}})'; \quad Y_{1i} \sim N_{p}(\mu_{1}; \Sigma_{1}) \qquad Y_{2} = (Y_{21}, Y_{22}, ..., Y_{2n_{2}})'; \quad Y_{2i} \sim N_{p}(\mu_{2}; \Sigma_{2})$$

$$\overline{Y}_{1} \quad S_{1} \qquad \overline{Y}_{2} \quad S_{2} \qquad S_{c}$$

Intervalos de Confiança Simultâneos (para combinações lineares das p variáveis)

$$l'(\overline{Y_1} - \overline{Y_2}) \pm \sqrt{\frac{(n_1 + n_2 - 2)p}{(n_1 + n_2 - p - 1)}} F_{(p,(n_1 + n_2 - p - 1))} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} l' S_c l$$

Intervalos de Confiança de Bonferroni (correção para múltiplos testes)

$$(\overline{Y}_{1j} - \overline{Y}_{2j}) \pm t_{(n_1 + n_2 - 2)} (\alpha / 2m) \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) S_{jj}}$$

Inferência sobre Vetores de Médias de Duas Populações Independentes

Dados dos Pardais

bird	grup	x1 x2 x3 x4 x5
1	0	156 245 31.6 18.5 20.5
2	0	154 240 30.4 17.9 19.6
3	0	153 240 31.0 18.4 20.6
19	0	155 236 30.3 18.5 20.1
20	0	163 246 32.5 18.6 21.9
21	0	159 236 31.5 18.0 21.5
22	1	155 240 31.4 18.0 20.7
23	1	156 240 31.5 18.2 20.6
24	1	160 242 32.6 18.8 21.7
40	1	163 249 33.4 19.5 22.8
41	1	163 242 31.0 18.1 20.7
42	1	156 237 31.7 18.2 20.3

$$T^2 = 2.82$$

$$T^{2} = 2.82 \Rightarrow \frac{(21+28-2)5}{(21+28-5-1)} F_{(5,(21+28-5-1))}^{\alpha=5\%} = 13.23$$

Que inferência está sendo feita? Qual é a hipótese de interesse? Quais são as suposições adotadas? Conclusão? Obtenha ICS e ICB!

Inferência sobre Vetores de Médias veremos: de "Muitas" Populações

Comparações de Duas Populações ⇒ Comparações de Muitas Populações

MANOVA

$$N_p(\mathbf{\mu}_1; \Sigma_1)$$

População 2

$$N_p(\mu_2;\Sigma_2)$$

População g

$$N_p(\mu_g;\Sigma_g)$$

Amostra

$$\overline{\mathbf{Y}}_1$$
 S

$$\mathbf{Y}_{21}, \mathbf{Y}_{22}, ..., \mathbf{Y}_{2n}$$

$$\overline{\mathbf{Y}}_2$$
 S

$$\mathbf{Y}_{g1}, \mathbf{Y}_{g2}, ..., \mathbf{Y}_{gn_1}$$

$$\overline{\mathbf{Y}}_{g}$$
 S_{g}

$$\Rightarrow H_0: \mu_1 = \mu_2 = \dots = \mu_g = \mu$$
 ; $\Sigma_1 = \Sigma_2 = \dots = \Sigma_g = \Sigma$

$$;\Sigma_1 = \Sigma_2 = ... = \Sigma_{\sigma} = \Sigma$$