Notes on Category Theory

Stanley Li

July 7, 2023

Contents

1	Foundations	1
2	Limits and colimits	1
	2.1 Limits in algebraic objects	1

Abstract

This will be a collection of random category theory junk that I find useful.

1 Foundations

Informally, view a category as a transitively closed directed graph.

Definition 1 (Universal arrow). Let $\mathcal{F}: C \to D$ be a functor, and d be an object of D. A universal arrow from d to \mathcal{F} is a pair (r, u) where

- 1. r is an object in C;
- 2. $u: d \to \mathcal{F}r$ is an arrow in D; and
- 3. For any pair (c, f) with c an object in C and $f: d \to \mathcal{F}c$ an arrow of D, there is a unique arrow $f': r \to c$ of C with $\mathcal{F}f' \circ u = f$.

2 Limits and colimits

2.1 Limits in algebraic objects

We assume for the following definitions (until otherwise stated) that we are considering some collection of algebraic objects.

Definition 2 (Direct system). A direct system is a pair $\langle A_i, f_{ij} \rangle$ where $\{A_i\}_{i \in I}$ be a family of objects indexed by a poset $\langle I, \leq \rangle$ be a poset, and $f_{ij}: A_i \to A_j$ are homomorphisms for $i \leq j$ with

- 1. $f_{ii} = 1_{A_i}$; and
- 2. $f_{ik} = f_{jk} \circ f_{ij}$ whenever $i \leq j \leq k$.

Definition 3. Let $\langle A_i, f_{ij} \rangle$ be a directed system. Define an equivalence relation \sim on $\bigsqcup A_i$ by $x_i \sim x_j$ iff there is $i, j \leq k$ with $f_{ik}(x_i) = f_{jk}(x_j)$. The direct limit or colimit $\varinjlim A_i$ is then

$$\varinjlim A_i := \bigsqcup A_i / \sim$$

We can think of points in the direct limit as the result of following the arrows f_{ij} "to infinity".