Semantics in Data Science

What does it all mean?

Riley Moher

04.02.2021
Data-Driven Decision Making Lab
University of Toronto

Data Semantics: Catastrophic Consequences

- Data science lacks a consistent semantics
 - Columns improperly labelled
 - Heterogeneous datasets not properly combined

In Academia, this is research funding down the drain in wasted effort

- In healthcare domain, lack of semantics means:
 - Poor interoperability
 - Missing, incomplete patient data
 - Loss of life

1. Why ignoring data semantics causes problems

2. How current solutions give an incomplete answer

3. How we could address data semantics

- 1. Why Ignoring data semantics causes problems
 - I. Lack of context in columns
 - II. Machine learning

2. How current solutions give an incomplete answer

3. How we could address data semantics

Lack of Context in Columns

You have been given two datasets with some data dictionaries

CompanyA

Quarter	Profit	Operating Costs
Q1-2014	158 000 000	35 000 000
Q2-2014	200 000 000	38 000 000

CompanyB

Quarter	Profit	Operating Costs
Q1-2014	160 000 000	26 000 000
Q2-2014	300 000 000	33 000 000

Data Dictionary A

- Which company is better to invest in?
 - B: lower costs, higher profit

Lack of Context in Columns

You have been given two datasets with some data dictionaries

Company A	٩
-----------	---

Quarter	Profit (Net)	Operating Costs
Q1-2014	158 000 000	35 000 000
Q2-2014	200 000 000	38 000 000

CompanyB

Quarter	Profit (Gross)	Operating Costs
Q1-2014	160 000 000	26 000 000
Q2-2014	300 000 000	33 000 000

Data Dictionary A

Data Dictionary B

The columns were labelled the same, but represented different concepts

Lack of Context in Columns

- Mislabelled columns arise in many domains and cause lots of issues
 - Toronto 1985 vs Toronto 2021 neighbourhood definitions
 - Admissions to Sunnybrook hospital vs admissions to hospitals in Ontario
 - Price to earnings ratio: earnings for entire year, or just last quarter?

Semantic Heterogeneity can be spatial, temporal, aggregational, etc.

Semantic Heterogeneity is not limited only to columns.

Semantics in Machine Learning

- You wish to train a CHF classification model on ECG data
- The data has some pre-processing applied to it by a colleague.

Time	Signal	CHF	
0.25	6.27	0	
0.50	4.99	0	
0.25	6.35	1	
0.5	5.12	1	

You get a train accuracy of 99.3%, and a test accuracy of 97.8%.

Semantics in Machine Learning

- You wish to train a CHF classification model on ECG data
- The data has some pre-processing applied to it by a colleague

Time	Signal	CHF	
0.25	6.27	0	
0.50	4.99	0	
0.25	6.35	1	
0.5	5.12	1	

Downsampled

You tried to merge data that had different processes applied

Semantics in Machine Learning

- Semantic Heterogeneity is especially troublesome in machine learning
 - Classes having distinct operations applied to them.
 - Training and testing on heterogenous data
 - Test data filled with observations later than training samples

- Data operations themselves have implicit assumptions and semantics
 - Summation implies non-overlapping samples (don't double count)

Current solutions do not solve the complete problem

- 1. Ignoring data semantics causes problems
- 2. How current solutions give an incomplete answer
 - I. Improving Documentation
 - II. Data Provenance
 - **III.** Type Theory
 - IV. Ontologies
- 3. How we could address data semantics

- 1. Ignoring data semantics causes problems
- 2. Current solutions get some things right, but don't work
 - I. Improving Documentation
 - II. Data Provenance
 - III. Type Theory
 - IV. Ontologies
- 3. How we could address data semantics

Developing Decent Dictionaries

- To better understand data, we can create better documentation standards
 - A meaningful list of questions to be answered about a given dataset

Motivation	Composition	Collection Process	Maintenance
?	?	?	?

- We have a more complete picture of the dataset, however:
 - Description is still in natural language
 - Description is static
 - Description is not machine readable

- 1. Ignoring data semantics causes problems
- 2. How current solutions give an incomplete answer
 - I. Improving Documentation
 - **II.** Data Provenance
 - III. Type Theory
 - IV. Ontologies
- 3. How we could address data semantics

Prospering with Provenance?

To avoid confusion about semantics, keep track of how our data changes

- Provenance is mainly discussed in two forms:
 - Lineage: What is the data's history of operations?
 - Where-provenance: What data sources were combined to arrive here?

- Provenance can give us additional info, however:
 - Provenance information won't warn us of potential errors
 - Provenance information doesn't ensure initial understanding

- 1. Ignoring data semantics causes problems
- 2. How current solutions give an incomplete answer
 - Improving Documentation
 - II. Data Provenance
 - **III.** Type Theory
 - IV. Ontologies
- 3. How we could address data semantics

Turning to Types

Common programming languages have primitive type safety

```
A = 6 + "hello"
> Error: Cannot add int and String

String one = 1;
> Error: 1 is not of type String
```

- Can we make types smarter?
 - Semantic Datatypes > Primitive Datatypes

Turning to Types

- Leverage the curry-howard correspondence
 - Correspondence between proofs and programs

```
Program

Data Point = Point Int Int

makePoint :: Int -> Int -> Point

makePoint x y = Point x y

Logic

x: Int y: Int

makePoint x y : Point
```

We can construct programs based on type logic and vice versa

How many data scientists have you heard say "I use Haskell all the time!"?

- 1. Ignoring data semantics causes problems
- 2. Current solutions get some things right, but don't work
 - I. Improving Documentation
 - II. Data Provenance
 - III. Type Theory
 - IV. Ontologies
- 3. How we could address data semantics

Opportunity for Ontologies?

- Use an ontology as an interlingua for interoperability
 - Allows us to define one ontology and map others to it
 - Requires knowledge modeling experts to maintain

- Ontology Oriented Programming
 - Ontologies integrated into programming languages
 - These tools are not very mature and unstable

Actual integration varies widely between disciplines & software tools

1. Ignoring data semantics causes problems

2. How current solutions give an incomplete answer

3. How we could address data semantics

Forward-Looking Thoughts

- How can we create a framework that features:
 - Semantic Datatypes
 - Provenance-integrated types
 - Data science tool support
 - Semantics of data operations

• Ultimately, data semantics are part of a decision support system.

- We cannot use data semantics to take the science out of data science
 - But we can prevent serious issues

... and maybe save a few lives