GYRORESONANT ACCELERATION OF ELECTRONS BY AN AXISYMMETRIC TRANSVERSE ELECTRIC FIELD

Oswaldo Otero Olarte Eduardo A. Orozco Ospino

Universidad Industrial de Santander fitek@uis.edu.co

May 16, 2021

Electron Dynamics

Classical Cyclotron Motion

$$rac{dec{v}}{dt} = -rac{e}{m_e}\,ec{v} imesec{B} \quad \Rightarrow \quad \Omega_{c0} = rac{e\,B_0}{m_e}$$

Resonant Interaction

$$rac{d}{dt}\left(\gamma\,ec{v}
ight) = -rac{e}{m_e}\Big[\,ec{E}\,+\,ec{v} imesec{B}\Big] \;\Rightarrow\; \Omega_c = rac{e\,B_0}{m_e\,\gamma}$$

ECR Condition: $\Omega_c = \omega \ \Rightarrow \ \text{Acceleration Band:} \ \frac{\pi}{2} \leq \varphi \leq \frac{3\pi}{2}$

Temporal Autoresonance

$$\omega = \Omega_c = rac{e\,B(t)}{\gamma m_e}$$

$$\vec{B} = B_z \hat{k}$$
 and $\vec{E} = E_0 \cos(\omega t) \hat{j}$

Gyroresonant Acceleration (Gyrac)

Gyrac Model

Considering:

$$ec{E} = E_0 \left[\sin \left(arphi
ight) \hat{\mathbf{r}} + \cos \left(arphi
ight) \hat{\mathbf{\theta}} \right]$$
 and $ec{B} = B_0 \left[1 + b \left(t
ight) \right] \hat{\mathbf{k}}$

Energy and phase-shift evolution:

$$\begin{split} \dot{\gamma} &= -\,g_0\,\left(1\,-\,\frac{1}{\gamma^2}\right)^{\frac{1}{2}}\,\cos\left(\varphi\right) \\ \dot{\varphi} &= \left[b\left(\tau\right)-\left(\gamma\,-\,1\right)\right]\frac{1}{\gamma} + g_0\,\left(\gamma^2\,-\,1\right)^{-\frac{1}{2}}\,\sin\left(\varphi\right) \end{split}$$

Gyrac Regyme:
$$b(\tau) = \alpha \tau \ \Rightarrow \ \alpha \leq 1.19 \, g_0^{\frac{4}{3}} \ \text{where} \ g_0 = -\frac{E_0}{B_0 \, c} \ \text{and} \ B_0 = \frac{\omega m_e}{e}$$

Cylindrical Mode TE₀₁₁

$$\vec{E}^{\,\,\mathrm{hf}}\left(\vec{r},t\right) = \frac{E_0}{J_1(\rho_{01})}J_1\left(\frac{q_{01}}{R}r\right)\sin\left(\frac{\pi}{L}z\right)\cos\left(\omega t\right)\hat{\theta} \\ \vec{B}^{\,\,\mathrm{hf}}\left(\vec{r},t\right) = \frac{E_0}{J_1(\rho_{01})}\left[\frac{\pi}{L}\omega J_1\left(\frac{q_{01}}{R}r\right)\cos\left(\frac{\pi}{L}z\right)\sin\left(\omega t\right)\hat{r} - \frac{q_{01}}{R}\omega J_0\left(\frac{q_{01}}{R}r\right)\sin\left(\frac{\pi}{L}z\right)\sin\left(\omega t\right)\hat{k}\right]$$

where $q_{01}=3,83171,\ p_{01}=1,84118,\ R=7,84$ cm, L=20 cm, $E_0=1$ kV/cm and f=2,45 GHz.

Physical Scheme and Simulation Model

Physical scheme: (1) Electron injection point, (2)

Cylindrical Cavity and (3) Cross section z = L/2.

Electromagnetic Field

Cylindrical Mode TE₀₁₁

$$ec{E} = ec{E}^{\, ext{hf}} \; ext{y} \; ec{B} = ec{B}^{\, ext{hf}} + ec{B}^{ ext{ext}}$$

Simulation Model

- Gyrac Model: Runge-Kutta Fourth Order Method.
- 2D Relativistic Newton-Lorentz equation: Boris integrator.

Numerical experiments

- 1. An electron is released from rest at point 1 using a set of α parameters. $\alpha = \left\{1.0\times10^{-4}, 1.5\times10^{-4}, 2.0\times10^{-4}, 2.5\times10^{-4}, 2.75\times10^{-4}, 3.0\times10^{-4}\right\}$
- 2. Particle System: Ring-like electron injection from rest using said set of α parameters.

Results

Fig 1: Evolution of γ and φ . 11.0 > 7.0 5.0 3.0 4.0 1.0 2.0 3.0

.υ t [μs] Fig 3: Evolution of γ for different α parameters. Fig 4: Evolution of R_I for different α parameters.

4.0

Fig 5: Guide center trayectory.

Results

Evolution of the particle systems after 4.65 $\mu {\rm s}~$ for different α parameters.

- It was showed by numerical experiments that it is possible to accelerate electrons under electron cyclotron resonance conditions in time-varying magnetic fields using the TE₀₁₁ cylindrical mode.
- A set of values for α parameter that allow to maintain the resonance condition over time was determined.
- It was found that there is a region ring-like (3R/8 < r < 9R/16) where the electrons are captured in the autoresonance regyme.

Future Works

We will study the 3D dynamic of an electrons cloud in magnetic fields varying in time using the cylindrical mode TE_{011} .

References

Cyclotron autoresonance—50 years since its discovery. *Physics-Uspekhi*, 56(8):823, 2013.

K. S. Golovanivsky.

The gyrac: A proposed gyro-resonant accelerator of electrons. *IEEE Transactions on Plasma Science*, 10(2):120–129, June 1982.

J.M.M. Pantoja.

Ingeniería de microondas: técnicas experimentales.

Prentice práctica. Pearson Educación, 2002.

C.K. Birdsall and A.B. Langdon.

Plasma Physics via Computer Simulation.

Series in Plasma Physics and Fluid Dynamics, Taylor & Francis, 2004.