CIS501 – Lecture 8

Woon Wei Lee Fall 2013, 10:00pm – 11:15pm, Sundays and Wednesdays

For today:

- Administrative stuff
 - Scheduling arrangements (inc. re midterm quiz)
- Evaluating classifiers
 - Numerical performance indices √
 - Cross validation
 - ROC (and related) curves

Cross validation

- Numerical performance metrics good start, but...
 - Only test the performance of a particular classifier configuration vs. a particular data set
 - Encourages overfitting; i.e. reduces generalization capability.
- Key requirement: train and test on different data
 - In principle, we could just divide data into separate training and test data sets.
 - However, in practice, data is valuable → dividing into separate sets is a waste!
- The solution: Cross validation
 - Rotate between test and training data sets.
 - Allows independent tests without reducing the amount of data that is available.
 - Provide good estimate of the true accuracy of a classifier.

Cross Validation (3-Fold)

Cross Validation (5-fold)

(Cont'd)

- In general, the larger "n" is the better
 - Diminishing returns from larger n
 - The case where n is the size of the data set is known as "leave-one-out" cross validation, AKA "Jack-Knifing"
- But even when selecting a classifier as shown, there is still a bias:
 - The reported accuracy value would tend to be better than the "true" performance of the classifier
 - Proper evaluation of the classifiers requires a third set of data, known as the "validation" data.
 - Performance of selected classifier on the validation data would be the one that is reported.
- A further enhancement to the basic cross validation procedure is the use of "stratified sampling"

ROC curve

- In general, accuracy measures only describe the performance of a classifier at a particular threshold value.
- They do not give a very good representation of the overall "quality" of a classifier.
- See for example, the plot on the right
 - → each of the dotted lines correspond with one classifier
 - All "100%" accurate, but clearly there is a difference in the quality of the classification and generalizability
- ROC curves provide an alternative way of evaluating classifier "quality"

ROC curve (Cont'd)

- Stands for "Receiver Operator Characteristic" curve
- Origins in signal detection
- Presents the trade-off between Precision (affected by false positive rate) and Recall (affected by true positive rate)
- In general, we want:
 - High true positive rates (TPR)
 - Low false positive rates (FPR)
- Two are directly antagonistic:
 - Trivial to have 100% TPR by always returning "1"
 - Similarly for FPR
- Question: What is the diagonal line?

ROC curve (Cont'd)

- A simplified (but demonstrative) example:
- Two separate instances, (A) and (B)
 - In both cases, we have 3 misclassified cases
 - However, there is clearly a difference between cases (A) and (B)
- We can say that the classifier built for case (B) is somehow "better"

Case A

Case B

"Perfect" curve

Worse possible curve

Question: Can the curve dip below the diagonal line?

Cont'd

- Evaluation of ROC curve is often done in terms of the
 - "AUC" Area Under the Curve
 - The distance between the no-discrimination line and the intercept of the curve and the line perpendicular to the nodiscrimination line
- "Grading" can be done in a number of ways but a simple system would be along the lines of:

```
>90% excellent (A)
80%-90% good (B)
70%-80% fair (C)
60%-70% poor (D)
<60% fail (F)
```

 Statistically, the AUC is the probability that a randomly chosen positive point is scored higher than a randomly chosen negative one

Lift charts

- Alternative graph with identical information content
- Procedure is as follows:
 - For all examples in training set, tabulate the posterior distributions for (say) "Class 1" vs actual label of the example
 - 2. Sort the rows of the table with respect to $P(C_1|x)$
 - 3. Calculate the cumulative values for the actual label column.
 - 4. Plot cumulative value vs. instance #.

Predicted Prob. of Success	Actual Value of HICLASS
0.9734	1
0.0015	0
0.6002	0
0.0000	0
0.9893	1
0.2156	0
0.0000	0
0.2468	0
0.0130	0
0.0000	0
0.0000	0
0.0000	
0.0000	0
0.9884	1
0.9715	1
0.9744	1
0.0641	0
0.4900	0
0.0000	0
0.0000	
0.0000	1 0
0.9999	1 0
0.5218	0

Predicted Prob. of Success	Actua Value of HICLASS
0.9999	1
0.9893	1
0.9884	1
0.9744	1
0.9734	1
0.9715	1
0.8489	1
0.6002	0
0.5218	0
0.4900	0
0.2468	. 0
0.2156	
0.1281	1
0.0641	0
0.0130	0
0.0023	1
0.0015	0
0.0001	0
0.0000	0
0.0000	0
0.0000	2 0 0 0
0.0000	0
0.0000	0

Predicted Prob. of Success	Actual Value of HICLASS	cumulative Actual Value
0.9999	1	1
0.9893	1	2
0.9884	1	3
0.9744	1	4
0.9734	1	5
0.9715	1	6
0.8489	1	7
0.6002	0	7
0.5218	0	7
0.4900	0	7
0.2468	0	7
0.2156	0	7
0.1281	1	8
0.0641	0	8
0.0130	0	8
0.0023	1	9
0.0015	0	9
0.0001	0	9
0.0000	0	9
0.0000		3 9
0.0000	0	9 9
0.0000	0	9

