e3_FWingModelCtrl 固定翼控制实验

本文件夹中的所有实验均为本讲中进阶功能性实验,如:固定翼飞机模型 DLL 生成及 SIL/HIL 实验(含碰撞检测)、固定翼航点、姿态控制等实验

序号	实验名称	简介	文件地址	版本
1	固定翼飞机模型 DLL 生成及	在 Matlab 将 Simulink 文件编译生成固定翼的 DLL	1.FixWingModelCtrlColl\Readme.pdf	个人集合版
	SIL/HIL 实验(含碰撞检测)	模型文件; 并对生成的固定翼模型进行软硬件在环		
		仿真测试,通过本例程熟悉平台固定翼模型的使		
		用。		
2	固定翼航点控制	该例程通过平台固定翼控制接口, 在软硬件在环仿	2.FWPosCtrlAPI\Readme.pdf	个人集合版
		真过程中让固定翼往期望航点飞行。		
3	固定翼以固定俯仰角飞行	该例程通过平台固定翼控制接口控制固定翼俯仰	3.FWAttCtrlAPI\Readme.pdf	个人集合版
	实验	角,让固定翼以固定 10°的俯仰角前飞。		
4	固定翼速度/高度/偏航接口	该例程以 Python 的形式,通过平台固定翼接口,	4.VelAltYawCtrlAPI_Py\Readme.pdf	个人集合版
	验证实验(Python)	实现在软硬件在环仿真过程中固定翼按期望指令		
		飞行。		
5	固定翼速度/高度/偏航接口	该例程以 MATLAB/Simulink 的形式,通过平台固	5.VelAltYawCtrlAPI_Mat\Readme.pdf	个人集合版
	验证实验(Simulink)	定翼接口,实现、软硬件在环仿真过程中固定翼按		
		期望指令飞行。		
6	固定翼飞机模型 DLL 生成及	在 Matlab 将 Simulink 文件编译生成固定翼的 DLL	1.FixWingModelCtrlColl\Readme.pdf	个人集合版
	SIL/HIL 实验(含碰撞检测)	模型文件; 并对生成的固定翼模型进行软硬件在环		
		仿真测试,通过本例程熟悉平台固定翼模型的使		
		用。		

7	固定翼航点控制	该例程通过平台固定翼控制接口, 在软硬件在环仿	2.FWPosCtrlAPI\Readme.pdf	个人集合版
		真过程中让固定翼往期望航点飞行。		
8	固定翼以固定俯仰角飞行	该例程通过平台固定翼控制接口控制固定翼俯仰	3.FWAttCtrlAPI\Readme.pdf	个人集合版
	实验	角,让固定翼以固定 10°的俯仰角前飞。		
9	固定翼速度/高度/偏航接口	该例程以 Python 的形式,通过平台固定翼接口,	4.VeIAltYawCtrIAPI_Py\Readme.pdf	个人集合版
	验证实验(Python)	实现在软硬件在环仿真过程中固定翼按期望指令		
		飞行。		
10	固定翼速度/高度/偏航接口	该例程以 MATLAB/Simulink 的形式,通过平台固	5.VeIAltYawCtrIAPI_Mat\Readme.pdf	个人集合版
	验证实验(Simulink)	定翼接口,实现、软硬件在环仿真过程中固定翼按		
		期望指令飞行。		

所有文件列表

序号	实验名称	简介	文件地址	版本
1	固定翼控制实验	本文件夹中的所有实验均为本讲中进阶功能性实	readme.pdf	集合版
		验,如:固定翼飞机模型 DLL 生成及 SIL/HIL 实验		
		(含碰撞检测)、固定翼航点、姿态控制等实验		
2	固定翼飞机模型 DLL 生成	在 Matlab 将 Simulink 文件编译生成固定翼的 DLL	1.FixWingModelCtrlColl\Readme.pdf	个人集合版
	及 SIL/HIL 实验(含碰撞检	模型文件;并对生成的固定翼模型进行软硬件在		
	测)	环仿真测试,通过本例程熟悉平台固定翼模型的		
		使用。		
3	固定翼航点控制	该例程通过平台固定翼控制接口,在软硬件在环	2.FWPosCtrlAPI\Readme.pdf	个人集合版
		仿真过程中让固定翼往期望航点飞行。		
4	固定翼以固定俯仰角飞行	该例程通过平台固定翼控制接口控制固定翼俯仰	3.FWAttCtrlAPI\Readme.pdf	个人集合版
	实验	角,让固定翼以固定 10°的俯仰角前飞。		
5	固定翼速度/高度/偏航接	该例程以 Python 的形式,通过平台固定翼接口,	4.VeIAltYawCtrIAPI_Py\Readme.pdf	个人集合版
	口验证实验(Python)	实现在软硬件在环仿真过程中固定翼按期望指令		
		飞行。		
6	固定翼速度/高度/偏航接	该例程以 MATLAB/Simulink 的形式,通过平台固	5.VeIAltYawCtrIAPI_Mat\Readme.pdf	个人集合版
	口验证实验(Simulink)	定翼接口,实现、软硬件在环仿真过程中固定翼		
		按期望指令飞行。		
7	固定翼飞机模型 DLL 生成	在 Matlab 将 Simulink 文件编译生成固定翼的 DLL	1.FixWingModelCtrlColl\Readme.pdf	个人集合版
	及 SIL/HIL 实验(含碰撞检	模型文件;并对生成的固定翼模型进行软硬件在		
	测)	环仿真测试,通过本例程熟悉平台固定翼模型的		
		使用。		

8	固定翼航点控制	该例程通过平台固定翼控制接口,在软硬件在环	2.FWPosCtrlAPI\Readme.pdf	个人集合版
		仿真过程中让固定翼往期望航点飞行。		
9	固定翼以固定俯仰角飞行	该例程通过平台固定翼控制接口控制固定翼俯仰	3.FWAttCtrlAPI\Readme.pdf	个人集合版
	实验	角,让固定翼以固定 10°的俯仰角前飞。		
10	固定翼速度/高度/偏航接	该例程以 Python 的形式,通过平台固定翼接口,	4.VeIAltYawCtrIAPI_Py\Readme.pdf	个人集合版
	口验证实验(Python)	实现在软硬件在环仿真过程中固定翼按期望指令		
		飞行。		
11	固定翼速度/高度/偏航接	该例程以 MATLAB/Simulink 的形式,通过平台固	5.VeIAltYawCtrIAPI_Mat\Readme.pdf	个人集合版
	口验证实验(Simulink)	定翼接口,实现、软硬件在环仿真过程中固定翼		
		按期望指令飞行。		

备注

注 1: 各版本区别说明详见: http://rflysim.com/doc/RflySimVersions.xlsx。更高版本获取请见: https://rflysim.com/download.html, 或咨询service@rflysim.com。