运筹学期末考试题(2022年06月18日)

(B卷)

姓名:	_ 班级 :	学号:
<u>∕</u> <u> </u>	シェク人・	1 7 •

1. (15 分)写出如下问题的拉格朗日对偶问题(要求最终表达式不得含 x_i), 其中,c,d > 0, $a_i, b_i \ge 0$, $\forall i = 1, ..., n$:

$$\min_{x_1,\dots,x_n\in\mathbb{R}} cx_1 + dx_1^2$$
s. t.
$$\sum_{i=1}^n \left(a_i x_i^2 - b_i x_i\right) \le 0,$$

$$\sum_{i=1}^n x_i = s$$

2. (15分) 求出如下问题的 KT 解,并判断其是否是局部最优解。

$$\max_{x,y} \ln(x+1) + y$$

s.t. $2x + y \le 3$
 $x, y \ge 0$

3. (15分)已知无约束非线性规划问题:

$$\min_{\boldsymbol{x} \in \mathbb{R}^3} \ \frac{1}{2} x_1^2 + \frac{1}{2} x_2^2 + x_3^2 + x_2 x_3 + x_1 + x_2 + \frac{3}{2}$$

其中 $X = (x_1, x_2, x_3)^T$ 。如果采用共轭梯度法求解,从 $X^{(1)} = (0,0,0)^T$ 出发,先会在 $X^{(1)}$ 处得到方向 D_1 ,沿着 D_1 得到点 $X^{(2)}$,继而得到方向 D_2 和点 $X^{(3)}$ ········请求出 D_1 和 D_2 ,并验证它们是关于某矩阵的一对共轭方向。

4. (20 分) 某种物品有 3 家产地,记为 A_1 , A_2 , A_3 ; 有 4 家销地,记为 B_1 , B_2 , B_3 , B_4 。各产地的产量和各销地的销量,以及从各产地向各销地运输的单位物品运价如下表所示。

	B_1	B_2	B_3	B_4	产量
A_1	4	12	4	11	16
A_2	2	10	3	9	10
A_3	8	5	11	6	22
销量	8	14	12	14	48

- (1) 请给出一个调运方案, 使总费用最小。
- (2)最优调运方案是否唯一?如果是,请说明理由;如果不是,请给出另一个与(1)不同的最优调运方案。

5. (15分)从 A 地到 B 地的各条道路如图所示,现在需要在一些道路上建立收费站,使得每个从 A 地到 B 地的车辆至少经过一个收费站。收费站的建立费用根据各道路的情况有所不同,费用如图中各边(道路)的数字所示。请问收费站该建在哪些道路上,使得总建站费用最小?

6. (20分)用求解最小费用流问题的算法,求解如下线性规划问题:

$$\min_{x_1,\dots,x_8} 6x_1 + 2x_2 + 2x_3 + x_4 + x_5 + 2x_6 + 6x_7 + 7x_8$$

s. t.
$$x_1 + x_2 = 7$$

 $x_1 + x_4 = x_3$
 $x_5 + x_8 = x_2$
 $x_3 + x_8 = x_6$
 $x_4 + x_7 = x_5$
 $x_6 + x_7 = 7$
 $x_1 \le 3$
 $x_8 \le 4$
 $x_3, x_5 \le 5$
 $x_7 \le 6$
 $x_6 \le 7$
 $x_2 \le 8$
 $x_4 \le 9$

 $x_1, ..., x_8 \ge 0$