Dataset: Movie Industry

Dataset description

Attribute name	Description		
Budget	the budget of a movie. Some movies don't have this, so it appears as 0		
company	the production company		
country	country of origin		
director	the director		
genre	main genre of the movie.		
gross	revenue of the movie		
name	name of the movie		
rating	rating of the movie (R, PG, etc.)		
released	release date (YYYY-MM-DD)		
runtime	duration of the movie		
score	IMDb user rating		
votes	number of user votes		
star	main actor/actress		
writer	writer of the movie		
year	year of release		

Data Preprocessing

DataFrame:

Columns

```
[ ] data.columns

Index(['name', 'rating', 'genre', 'year', 'released', 'score', 'votes',
    'director', 'writer', 'star', 'country', 'budget', 'gross', 'company',
    'runtine'],
    dtype='object')
```

Null values

Filling numerical missing values with mean

Filling Categorical data with "Unknown"

Standard Scaling to Normalise the data

Adding Success label as class attribute

EDA

Plots Explaining the data

Comparision

Models Comparisions								
Problem Statement	Independent Attributes	Dependent Attributes	ML model	Accuracy				
To determine Success of a movie based on various attributes	year', 'score', 'votes', 'budget', 'gross', 'runtime'	Success	KNN	99%				
To determine Success of a movie based on various attributes	year', 'score', 'votes', 'budget', 'gross', 'runtime'	Success	Naïve Bayes	80%				
To form clusters using K Means Clustering	Votes and Budget	6 clusters	K Means Clustering	Measure accuracy through visualisation (scatter plot) for different values of K. Determine the best value of K using elbow plot.				
To form clusters using Heirarchal clustering	Votes and Budget	4 clusters	Heirarchical Clustering	Measure accuracy through visualisation (scatter plot). Determine the optimal no of				

				clusters using dendogram.
Decision tree is plotted considering score, votes, budget, year,gross,runtime	score, votes, budget, year,gross,runtime	Success	Decision Tree	98%
To determine Success of a movie based on various attributes	Votes and Budget	Success	Logistical Regression	90%
Synthetic dataset is manufactured with the help of make_blobs	Synthetic dataset with 2 clusters	2 clusters	Support Vector Machine	100%
To determine Success of a movie based on various attributes	Votes and Budget	Success	Support Vector Regression	43%
To determine the Success using MLP	Votes and Budget	Success	Multi Layer Precepton	72.00%
To determine the Success using BLP	Votes and Budget	Success	Back Propogation Neural Network	0.00%

Accuracy Comparision

Accuracy vs. ML model

ML model

Colab Link:

https://colab.research.google.com/drive/1bFqUE5ynvHVVw87Acn-SSA0snrQTUbCD?usp=sharing

Github Link:

https://github.com/Vaishnavikm/Machine-Learning-Movie-Industry-Analysis