STATS 701 – Theory of Reinforcement Learning Optimism in MDPs (UCRL2)

Ambuj Tewari

Associate Professor, Department of Statistics, University of Michigan tewaria@umich.edu
https://ambujtewari.github.io/stats701-winter2021/

Winter 2021

Outline

Introduction

- UCRL2 Algorithm
- **3** UCRL2 Analysis
- 4 Discussion

Origins of RL

- Minsky first used the term "Reinforcement Learning" [Min61]
- Waltz and Fu independently used the term a few years later [WF65]
- Earliest ML research viewed as directly relevant now Samuel's checker playing program 1959
- Not much activity in 1970s
- Modern field of RL created in the late 1980s

Beginnings of Regret Analysis

- Progress continued into the 1990s
 - Sutton & Barto 1st edition 1998
 - Kaelbling, Littman, Moore 1996 survey [KLM96]
 "Unfortunately, results concerning the regret of algorithms are quite hard to obtain"
- Sample complexity concerns arose in the early 2000s
 - E³ [KS02] and R-MAX [BT02]
 - Sham Kakade's thesis 2003 [Kak03]
- UCRL2 paper [JOA10] kicks off regret analysis in MDPs (conference version in NIPS 2008)

Online Learning and Regret

- In online learning, an agent learns from sequential interaction with an environment (often an MDP)
 - Experience arrives bit by bit
 - No separation between learning phase and evaluation phase
- Explore-Exploit trade-off: learning vs earning, estimation vs control
- Regret measures the difference between:
 - some benchmark/competitor/yardstick (typically known only in hindsight), and
 - the agent's actual performance
- This lecture deals with the fixed MDP case
 - Previous lectures have considered OCO, Experts, and Bandits (adversarial and stochastic)
 - In a subsequent lecture, we will also look at adversarial MDPs

E^3 (Explicit Explore or Exploit) algorithm

- Makes a distinction between known and unknown based on visitation counts
- In unknown state: take least tried action
- Maintain a partial model: this will be good on the known states
- In a known state: perform two calculations
 - attempted exploitation: is there a high return policy based on the partial model?
 - attempted exploration: is there a policy with non-trivial probability of leaving the known states fast?
- Analysis hinges on two key lemmas
 - Simulation Lemma: Values of a policy in actual MDP restricted to the known states and in partial model are close
 - Explore or Exploit Lemma: At least one of the attempted calculations will succeed

R-MAX

- Retains the distinction between known and unknown states
- But simplifies the algorithm with implicit explore-exploit
- Uses OFU (Optimism in the Face of Uncertainty) principle
- Unknown states are given maximum reward (R-MAX!) with self-loops
- Analysis covers not just MDPs but also (2-player, fixed sum) stochastic games

OFU Principle

- Appears under "Ad-hoc techniques" in [KLM96]
- Sutton & Barto: "a simple trick that can be quite effective on stationary problems"
- Related ideas in adaptive control:
 - cost-biased estimation [CK98]
 - bet-on-the-best principle [BC06]
- The R-MAX paper provided theoretical justification for the OFU principle

E³, R-MAX and UCRL2

K/U = Known/Unknown state distinction E/E = Explore/Exploit distinction

	Explicit K/U	Explicit E/E	Explicit OFU
E^3	✓	✓	×
R-MAX	✓	×	✓
UCRL2	×	×	✓

High Level Description

- Runs in episodes these are used by the algorithm only
- Actual experience is one long trajectory

$$s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_T, a_T, r_T$$

generated during interaction with a tabular MDP with S states, A actions, reward function r(s, a) and transition function p(s'|s, a)

- In every episode:
 - Use collected statistics to create set of plausible MDPs
 - Pick most optimistic MDP from this set
 - Follow the optimal policy for this MDP until a stopping criterion is satisfied

Set of Plausible MDPs - I

- Let t_k be the start time for episode k
- Visitation count for (s, a) pairs and (s, a, s') triples

$$N_k(s, a) = |\{ \tau < t_k : s_{\tau} = s, a_{\tau} = a \}|$$
 $N_k(s, a, s') = |\{ \tau < t_k : s_{\tau} = s, a_{\tau} = a, s_{\tau+1} = s' \}|$

• Accumulated reward for (s, a) pairs

$$R_k(s,a) = \sum_{\tau < t_k} r_\tau \mathbf{1}_{(s_\tau = s, a_\tau = a)}$$

Reward and transition function estimates

$$\hat{r}_k(s,a) = rac{R_k(s,a)}{1 \lor N_k(s,a)} \quad \hat{
ho}_k(s'|s,a) = rac{N_k(s,a,s')}{1 \lor N_k(s,a)}$$

Set of Plausible MDPs - II

• \mathcal{M}_k consists of all MDPs with reward and transition functions close to our estimates

$$egin{aligned} orall s, a, & |r(s,a) - \hat{r}_k(s,a)| \leq \sqrt{rac{\log(SAt_k/\delta)}{1 \lor N_k(s,a)}} \ \ orall s, a, & \left\| p(s'|s,a) - \hat{p}_k(s'|s,a)
ight\|_1 \leq \sqrt{rac{S\log(At_k/\delta)}{1 \lor N_k(s,a)}} \end{aligned}$$

Optimism and Stopping Criterion

- $\rho^*(M)$: optimal long term average reward obtainable in MDP M
- Find optimistic MDP \tilde{M}_k such that

$$\tilde{M}_k := \underset{M \in \mathcal{M}_k, D(M) \leq D}{\operatorname{argmax}} \rho^*(M)$$

and let $\tilde{\pi}_k$ be an optimal policy for \tilde{M}_k

ullet Follow the policy $ilde{\pi}_k$ until you reach a state s_t such that

$$v_k(s_t, \tilde{\pi}_k(s_t)) \geq 1 \vee N_k(s_t, \tilde{\pi}_k(s_t))$$

• $v_k(s, a)$ is the visitation count within episode k (so $N_{k+1} = N_k + v_k$)

Average Reward Criterion

• The long term average reward

$$\rho(M,\pi,s) := \lim \sup_{T \to \infty} \frac{1}{T} \mathbb{E}^{M,\pi} \left[\sum_{t=1}^{T} r_t \middle| s_1 = s \right]$$

Assume MDP is communicating, i.e., has finite diameter

$$D(M) := \max_{s \neq s'} \min_{\pi} \mathbb{E}^{M,\pi} [T_{s'} | s_1 = s]$$

where $T_{s'} = \text{first time you visit } s' \text{ (under } \pi \text{ starting from } s)$

• Then optimal reward $\rho^*(M)$ is well defined and independent of start state

$$\forall s, \ \rho^*(M) = \rho^*(M, s) := \max_{\pi} \rho(M, \pi, s)$$

Bellman equation

• The optimal policy π^* with (state-independent) gain ρ^* satisfies

$$\forall s, \ \rho^{\star} + h^{\star}(s) = r(s, \pi^{\star}(s)) + \sum_{s'} p(s'|s, \pi^{\star}(s))h^{\star}(s')$$

- The bias vector h* is not unique (e.g., can shift it by a constant)
- Relationship with diameter

$$span(h^*) \leq D$$

where span $(h) = \max_s h(s) - \min_s h(s)$

Regret

• T-step regret of algorithm A in M starting from s:

$$\Delta(M, \mathcal{A}, s, T) := \underbrace{\rho^{\star}(M) \cdot T}_{\text{benchmark performance}} - \underbrace{\sum_{t=1}^{T} r_t}_{\mathcal{A}' \text{s performance}}$$

• With probability at least $1 - \delta$, for any s and any T > 1,

$$\Delta(M, \textit{UCRL2}, s, T) \leq 34 \cdot \textit{DS}\sqrt{\textit{AT}\log(T/\delta)}$$

in any MDP with S states, A actions, and diameter D.

Reduction to Per Episode Regret

- For simplicity assume deterministic reward r(s, a)
- Per episode regret

$$\Delta_k = \sum_{s,a} v_k(s,a) (\rho^* - r(s,a))$$

Decompose regret over episodes

$$\Delta = \sum_{k=1}^{m} \Delta_k$$

• Due to the stopping criterion for episodes, can show that $m = O(SA \log T)$

Failure of Confidence Regions

• The set are chosen so that standard concentration arguments give

$$\mathbb{P}\left(\textit{M}\notin\mathcal{M}(t)\right)\leq\frac{\delta}{15t^6}$$

This can be used to show that w.h.p.

$$\sum_{k=1}^m \Delta_k \mathbf{1}_{(M \notin \mathcal{M}_k)} \leq \sqrt{T}$$

Using Optimism

Suppose our confidence regions are correct

$$\Delta_k = \sum_{s,a} v_k(s,a)(\rho^* - r(s,a))$$

$$\leq \sum_{s,a} v_k(s,a)(\tilde{\rho}_k - r(s,a))$$

- Due to optimism, we know that $\tilde{\rho}_k \geq \rho^*$
- Bellman equation for $\tilde{\pi}_k$

$$\tilde{\rho}_k \mathbf{1} + \tilde{\mathbf{h}}_k = \tilde{\mathbf{r}}_k + \tilde{\mathbf{P}}_k \tilde{\mathbf{h}}_k$$

where

$$\tilde{\mathbf{r}}_k(s) = \tilde{r}_k(s, \tilde{\pi}_k(s))$$
 $\tilde{\mathbf{P}}_k(s, s') = \tilde{p}_k(s'|s, \tilde{\pi}_k(s))$

Isolating the Dominant Term

$$\Delta_k \leq \sum_{s,a} v_k(s,a) (\tilde{\rho}_k - r(s,a))$$

$$= \underbrace{\sum_{s,a} v_k(s,a) (\tilde{\rho}_k - \tilde{r}_k(s,a))}_{\text{dominant contribution to regret}} + \underbrace{\sum_{s,a} v_k(s,a) (\tilde{r}(s,a) - r(s,a))}_{\text{essentially}}$$

$$\underbrace{\sum_{s,a} v_k(s,a) (\tilde{\rho}_k - \tilde{r}_k(s,a))}_{\text{dominant contribution to regret}} + \underbrace{\sum_{s,a} v_k(s,a) (\tilde{r}(s,a) - r(s,a))}_{\text{essentially}}$$

Controlling the Dominant Term - I

$$\begin{split} &\sum_{s,a} v_k(s,a) (\tilde{\rho}_k - \tilde{r}_k(s,a)) \\ &= \sum_s v_k(s,\tilde{\pi}_k(s)) (\tilde{\rho}_k - \tilde{r}_k(s,\tilde{\pi}_k(s)) \\ &= \mathbf{v}_k^\top (\tilde{\rho}_k \mathbf{1} - \tilde{\mathbf{r}}_k) \\ &= \mathbf{v}_k^\top (\tilde{\mathbf{P}}_k - \mathbf{I}) \tilde{\mathbf{h}}_k \quad \text{recall Poisson equation below} \end{split}$$

Poisson equation:

$$\tilde{
ho}_k \mathbf{1} + \tilde{\mathbf{h}}_k = \tilde{\mathbf{r}}_k + \tilde{\mathbf{P}}_k \tilde{\mathbf{h}}_k$$

Controlling the Dominant Term - II

Transition kernel of $\tilde{\pi}_k$ in the true MDP:

$$\mathbf{P}_k(s,s') = p(s'|s,\tilde{\pi}_k(s))$$

$$\begin{split} \mathbf{v}_k^\top (\tilde{\mathbf{P}}_k - \mathbf{I}) \tilde{\mathbf{h}}_k \\ &= \mathbf{v}_k^\top (\tilde{\mathbf{P}}_k - \mathbf{P}_k) \tilde{\mathbf{h}}_k + \underbrace{\mathbf{v}_k (\mathbf{P}_k - \mathbf{I})}_{\text{would be zero for SD of } \tilde{\pi}_k} \tilde{\mathbf{h}}_k \\ &\leq \underbrace{\mathbf{v}_k^\top (\tilde{\mathbf{P}}_k - \mathbf{P}_k) \tilde{\mathbf{h}}_k}_{\tilde{\mathbf{P}}_k, \mathbf{P}_k \text{ are close}} + \underbrace{\mathbf{martingale diff. seq.} + D}_{\text{overall contribution } \tilde{O}(D\sqrt{T}) + mD} \end{split}$$

Controlling the Dominant Term - III

$$\begin{aligned} \mathbf{v}_{k}^{\top} (\tilde{\mathbf{P}}_{k} - \mathbf{P}_{k}) \tilde{\mathbf{h}}_{k} \\ &= \sum_{s} \sum_{s'} v_{k}(s, \tilde{\pi}_{k}(s)) \cdot (\tilde{p}_{k}(s'|s, \tilde{\pi}_{k}(s)) - p_{k}(s'|s, \tilde{\pi}_{k}(s)) \cdot \tilde{h}_{k}(s') \\ &= \sum_{s} v_{k}(s, \tilde{\pi}_{k}(s)) \sum_{s'} (\tilde{p}_{k}(s'|s, \tilde{\pi}_{k}(s)) - p_{k}(s'|s, \tilde{\pi}_{k}(s)) \cdot \tilde{h}_{k}(s') \\ &= \sum_{s} v_{k}(s, \tilde{\pi}_{k}(s)) \cdot ||\tilde{p}_{k}(\cdot|s, \tilde{\pi}_{k}(s)) - p_{k}(\cdot|s, \tilde{\pi}_{k}(s))||_{1} \cdot ||\tilde{\mathbf{h}}_{k}||_{\infty} \\ &\leq \sum_{s} v_{k}(s, \tilde{\pi}_{k}(s)) \cdot \sqrt{\frac{S \log(At_{k}/\delta)}{1 \vee N_{k}(s, \tilde{\pi}_{k}(s))}} \cdot D \\ &\leq D\sqrt{S \log(AT/\delta)} \sum_{s, a} \frac{v_{k}(s, a)}{\sqrt{1 \vee N_{k}(s, a)}} = O\left(DS\sqrt{AT \log(T/\delta)}\right) \\ &\text{overall contribution } \sqrt{SAT} \end{aligned}$$

Why \sqrt{SAT} ?

$$\sum_{k=1}^{m} \sum_{s,a} \frac{v_k(s,a)}{\sqrt{1 \vee N_k(s,a)}} = \sum_{s,a} \sum_{k=1}^{m} \frac{v_k(s,a)}{\sqrt{1 \vee N_k(s,a)}}$$

$$\leq \sum_{s,a} 3\sqrt{N(s,a)} \qquad \text{fact below \& } v_k \leq N_k$$

$$\leq 3\sqrt{SA} \sqrt{\sum_{s,a} N(s,a)} \qquad \text{concavity of square-root}$$

$$= 3\sqrt{SAT}$$

Fact: For $Z_k = 1 \vee \sum_{i=1}^{k-1} z_k$ and $0 \le z_k \le Z_k$, we have

$$\sum_{k=1}^{n} \frac{z_k}{\sqrt{Z_k}} \le 3\sqrt{Z_{n+1}}$$

Tightness of the Bound

- The UCRL2 paper [JOA10] also proved a lower bound
- For any algorithm \mathcal{A} , any $S, A \geq 10$, $D \geq 20 \log_A S$ and $T \geq DSA$, there is an MDP with S states, A actions, diameter D such that for any s

$$\mathbb{E}\left[\Delta(M, \mathcal{A}, s, T)\right] \geq 0.015 \cdot \sqrt{DSAT}$$

- Gap of roughly \sqrt{DS} between upper and lower bounds
- Recent work [ZJ19] has eliminated the gap up to log factors

Summary

- How well is an agent learning in an online setup?
- Finite-time regret analysis offers one theoretical approach among many
- UCRL2, like R-MAX, is based on the OFU principle
- Provided a detailed overview of its regret analysis

References I

- Sergio Bittanti and Marco C Campi, *Adaptive control of linear time invariant systems: the "bet on the best" principle*, Communications in Information & Systems **6** (2006), no. 4, 299–320.
- Ronen I Brafman and Moshe Tennenholtz, *R-max-a general polynomial time algorithm for near-optimal reinforcement learning*, Journal of Machine Learning Research **3** (2002), no. Oct, 213–231.
- Marco C Campi and PR Kumar, Adaptive linear quadratic gaussian control: the cost-biased approach revisited, SIAM Journal on Control and Optimization **36** (1998), no. 6, 1890–1907.
- Thomas Jaksch, Ronald Ortner, and Peter Auer, *Near-optimal regret bounds for reinforcement learning*, Journal of Machine Learning Research **11** (2010), 1563–1600.
- Sham M Kakade, *On the sample complexity of reinforcement learning*, Ph.D. thesis, University College London, 2003.

References II

- Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore, *Reinforcement learning: A survey*, Journal of artificial intelligence research **4** (1996), 237–285.
- Michael Kearns and Satinder Singh, *Near-optimal reinforcement learning in polynomial time*, Machine learning **49** (2002), no. 2-3, 209–232.
- Marvin Minsky, *Steps toward artificial intelligence*, Proceedings of the IRE **49** (1961), no. 1, 8–30.
- Yi Ouyang, Mukul Gagrani, Ashutosh Nayyar, and Rahul Jain, *Learning unknown markov decision processes: A Thompson sampling approach*, Advances in Neural Information Processing Systems, 2017, pp. 1333–1342.
- lan Osband and Benjamin Van Roy, Posterior sampling for reinforcement learning without episodes, 2016.

References III

- William R Thompson, On the likelihood that one unknown probability exceeds another in view of the evidence of two samples, Biometrika 25 (1933), no. 3/4, 285–294.
- M Waltz and K Fu, A heuristic approach to reinforcement learning control systems, IEEE Transactions on Automatic Control 10 (1965), no. 4, 390–398.
- Zihan Zhang and Xiangyang Ji, Regret minimization for reinforcement learning by evaluating the optimal bias function, Advances in Neural Information Processing Systems, vol. 32, 2019.