Group Equivariant GANs Dey et al. 2021

Presentation by Sacha Morin

Outline

- 1. Cohen, Taco, and Max Welling. "Group equivariant convolutional networks." International conference on machine learning. PMLR, 2016.
- 2. Dey, Neel, Antong Chen, and Soheil Ghafurian. "**Group equivariant generative adversarial networks.**" arXiv preprint arXiv:2005.01683 (2020).

Cohen, Taco, and Max Welling. "Group equivariant convolutional networks." International conference on machine learning. PMLR, 2016.

Group Equivariant CNNs: Motivation

- CNNs work great thanks to translation equivariance.
- CNNs are **not equivariant** to other simple image transforms, such as reflections and rotations.

Group Equivariant CNNs: Equivariance

Commute function (layer, model) with group action.

$$\Phi(T_g x) = T_g' \Phi(x)$$

Group Equivariant CNNs: G-CNN

Convolution/Correlation

$$[f \star \psi^{i}](x) = \sum_{y \in \mathbb{Z}^{2}} \sum_{k=1}^{K^{*}} f_{k}(y) \psi_{k}^{i}(y - x)$$

Group Convolution:

$$[f \star \psi](g) = \sum_{y \in \mathbb{Z}^2} \sum_k f_k(y) \psi_k(g^{-1}y)$$

Feature maps are functions of group elements.

Group Equivariant CNNs: Groups

p4:

- Translations
- 90° Rotations
 - 4 rotations

p4m:

- Translations
- 90° Rotations
- Reflections
 - o 8 "roto-flips"

Group Equivariant CNN: G-CNN Feature map

- **Input**: 28 x 28 image
- Augmented Filter Bank: Rotate/Flip K learnable filters
- Run standard CNN planar routine with augmented filter bank
- Output: K x 8 x 28 x 28 feature map
 - K filters
 - 8 roto-flips
 - 28 x 28 translations

Group Equivariant CNNs: Findings

- Competitive results on CIFAR-10 (at the time) with substantially fewer parameters.
- CIFAR-10 results are interesting because objects are typically upright
 - Unclear why it would benefit from rotations

Dey, Neel, Antong Chen, and Soheil Ghafurian. "Group equivariant generative adversarial networks." ICLR 2021.

Group Equivariant GANs: Motivation

Figure 1: Several image modalities have no preferred orientation for tasks such as classification. We improve their generative modeling by utilizing image symmetries within a GAN framework.

Group Equivariant GANs: Motivation

Why not simply use augmentations from the desired group?

Built-in equivariance outperforms augmentations.

- Veeling, Bastiaan S., et al. "Rotation equivariant CNNs for digital pathology." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2018.
- Lafarge, Maxime W., et al. "Roto-translation equivariant convolutional networks: Application to histopathology image analysis." Medical Image Analysis 68 (2021): 101849.

Group Equivariant GANs: Method

Add group convolutions in generator and/or discriminator!

Group Equivariant GANs: Method

- Focus on conditional image generation
 - Both generator and discriminator are conditioned on class
- Class conditional batch normalization :
 - Learn scale and shift features from class labels
 - Equivariance: Learn transformation features for each group-feature map instad of each spatial feature.

Group Equivariant GANs: Five Benchmarks

(a) RotMNIST

(b) ANHIR

Group Equivariant GANs : Fréchet Inception Distance

- 1. Extract Inception features from generated and ground truth images
- 2. Fit two Gaussians:
 - a. One for generated features
 - b. One for ground truth features
- 3. Compute Fréchet distance (closed form in the case of Gaussians)

$$d_F(\mathcal{N}(\mu,\Sigma),\mathcal{N}(\mu',\Sigma'))^2 = \|\mu-\mu'\|_2^2 + \mathrm{tr}\Bigg(\Sigma + \Sigma' - 2igg(\Sigma^{rac{1}{2}}\cdot\Sigma'\cdot\Sigma^{rac{1}{2}}igg)^{rac{1}{2}}\Bigg)$$

Quantitative Results

RotMNIST with different % of training data.

Ablation over using group convolutions in generator, discriminator or in both.

Equivariance is generally helpful.

Unclear if it should be used in the discriminator, generator or both.

Table 2: Min. & mean Fréchet distances (lower is better) of generated RotMNIST samples, evaluated at every 1K generator iterations. All evaluations are visualized in Appendix A Figure 6

			Min. & Mean Fréchet Distance Available Training Data					
Loss	Setting	Setting 10% 33% 66%			100%			
=:	Real data	0.6854	0.3208	0.1324	0.1296			
RAGAN	CNN in G & D CNN in G & G-CNN in D G-CNN in G & CNN in D G-CNN in G & D	(2.04, 11.40) (1.84, 4.26) (1.49, 9.75) (1.61, 4.25)	(1.42, 11.65) (0.88, 3.26) (1.08, 9.29) (0.76, 3.40)	(1.20, 11.10) (0.52, 2.85) (0.90, 8.70) (0.54, 2.92)	(1.36, 11.68) (0.53, 3.12) (0.95, 9.62) (0.53, 2.90)			
NSGAN	CNN in G & D CNN in G & G-CNN in D G-CNN in G & CNN in D G-CNN in G & D	(1.00, 7.02) (2.77, 5.48) (1.00, 7.00) (2.85, 5.67)	(0.74, 8.25) (1.02, 3.51) (0.96, 7.42) (1.04, 4.24)	(0.84, 8.07) (0.55, 2.85) (0.87, 6.83) (0.82, 3.27)	(0.97, 8.49) (0.54, 3.08) (0.94, 7.52) (0.64, 3.32)			
WGAN	CNN in G & D CNN in G & G-CNN in D G-CNN in G & CNN in D G-CNN in G & D	(3.42, 16.21) (2.87, 5.98) (2.67, 16.02) (2.51, 5.67)	(3.90, 18.32) (0.76, 4.11) (3.40, 17.03) (0.58 , 3.32)	(3.87, 17.81) (0.50 , 3.57) (3.77, 17.76) (0.56, 3.52)	(4.88, 19.40) (0.39 , 3.51) (3.74, 17.82) (0.54, 3.76)			

Quantitative Results

Real-world datasets. G-CNN appear to be particularly useful in the discriminator.

Table 3: FID evaluation (lower is better) of all real-world datasets across ablations and augmentation-based baseline comparisons. - indicates an inapplicable setting for the method.

	Setting	ANHIR	LYSTO	CIFAR-10	Food-101
	CNN in G & D	7.32	7.27	20.89	27.34
	G-CNN in G; CNN in D	6.93	6.68	21.20	24.16
	CNN in G; G-CNN in D	5.56	5.02	17.09	16.91
	G-CNN in G & D	5.54	3.90	17.49	17.73

Qualitative Results: Interpolations

Qualitative Results: Map translation

Pros

- Careful study of components to ensure equivariance throughout the architecture (e.g., batch normalization).
- Motivation for some datasets is clear (maps, LYSTO, ANHIR).
- Compelling qualitative results.

Cons

- Unclear if group convolutions are always helpful or should only be used in generator or discriminator.
- They claim sample efficiency, but only test the claim on RotMNIST.

Future work

- Current approach is restricted to discrete groups of a moderate size.
- Continuous equivariance (e.g., SE(2))?
- Potential diminishing returns of continuous equivariance.
 - Lafarge et al., 2020a.

Thank you!