مستوى الجذع مشترك علمي وتكنولوجي

مذكرة وقع 8 : حرس: المعادلات و المتراجات و النظمات مع تمارين وأمثلة مطولة

الأهداف القدرات المنتظرة من الدرس:

توجيهات تربوية	القدرات المنتظرة	محتوى البرنامج
- إن تقنيات حل المعادلات والمتراجحات من الدرجة	- حل معادلات ومتراجحات تؤول في حلها	- المعادلات والمتراجحات من الدرجة الأولى
الأولى بمجهول واحد قد سبقت دراستها بالتعليم الثانوي	إلى معادلات ومتراجعات من الدرجة	بمجهول واحد؛
الإعدادي لذا فإنه ينبغي تدعيم هذه الممارسة بحل	الأولى أو الثانية بمجهول واحد.	- المعادلات والمتراجحات من الدرجة الثانية
ومناقشة أمثلة بسيطة توظف القيمة المطلقة أو معادلات	- حل نظمات من الدرجة الأولى بمجهولين	بمجهول واحد؛
بارامترية بسيطة وهادفة لتنمية قدرة التلاميذ على	باستعمال مختلف الطرائق (التأليفة الخطية،	. الشكل القانوني لثلاثية الحدود؛
الاستدلال بفصل الحالات.	التعويض، المحددة).	. المعادلة من الدرجة الثانية بمجهول
- ينبغي تعويد التلاميذ على حل بعض المعادلات من	- تربيض وضعيات تتضمن مقادير متغيرة	واحد؛
الدرجة الثانية دون اللجوء إلى المميز (جذور بديهية،	باستعمال تعابير أو معادلات أو متراجحات	- إشارة ثلاثية الحدود؟
استعمال إحدى تقنيات التعميل،).	أو متفاوتات أو نظمات.	- المتراجمات من الدرجة الثانية بمجهول
- تعتبر المعادلات والمتراجحات البارامترية من الدرجة	- التمثيل المبياني لحلول متراجحات أو	واحد؛
الثانية خارج المقرر.	نظمات متراجمات من الدرجة الأولى	واحد؛ ـ النظمات؛
- ينبغي إدراج مسائل مستقاة من الحياة المعاشة أو من	بمجهولين واستعماله في تجويه المستوى	. المعادلات من الدرجة الأولى بمجهولين؛
مواد دراسية أخرى بهدف تعويد التلاميذ على تربيض	وحل مسائل بسيطة حول البرمجة الخطية.	. نظمة معادلتين من الدرجة الأولى

I. المعادلات من الدرجة الأولى بمجهول واحد (تذكير)

تعریف:لیکن aو b عددین حقیقیین.

كل معادلة على الشكل ax + b = 0 تسمى معادلة من الدرجة الأولى بمجهول واحد, حيث x هو المجهول.

أُمثلة : حل في ۩ المعادلات التالية :

$$3(2x+5) = 6x-1$$
 (2 $-2x+22=0$ (1)

$$9x^2-16=0$$
 (4 $4(x-2)=6x-2(x+4)$ (3

$$\frac{(x-7)(x+3)}{x^2-9} = 0 \quad (5)$$

$$-2x + 22 - 22 = -22$$
 يعني $-2x + 22 = 0$ (1) $-2x = -22$ يعني $-2x = -22$ يعني $-2x \times \left(\frac{1}{-2}\right) = -22 \times \left(\frac{1}{-2}\right)$

يعني x=11 ومنه: $S=\{11\}$ وتسمى مجموعة حلول المعادلة

$$6x+15=6x-1$$
 يعني $3(2x+5)=6x-1$ (2

$$0 = -16$$
 يعني $6x - 6x = -1 - 15$ يعني $S = \emptyset$ وهذا غير ممكن ومنه : $S = \emptyset$

$$4x-8=6x-2x-8$$
 يعني $4(x-2)=6x-2(x+4)$ (3

$$0 = 0$$
 یعني $4x - 4x + 8 - 8 = 0$

 $S = \mathbb{R}$: ومنه :كل عدد حقيقي هو حل لهذه المعادلة وبالتالي \mathbb{R} : \mathbb{R})أمامنا معادلة من الدرجة الثانية

 $(3x)^2 - 4^2 = 0$ يعني $9x^2 - 16 = 0$ (التعميل) طريقة 1:

 $(3x)^{-4} = 9x^{-10} = 0$

$$3x-4=0$$
 يعني $3x+4=0$ يعني $(3x-4)(3x+4)=0$

$$x = \frac{4}{3}$$
 او $3x = 4$ یعنی $x = \frac{-4}{3}$ یعنی $3x = 4$ او $3x = -4$

$$S = \left\{ -\frac{4}{3}, \frac{4}{3} \right\}$$
: each

$$x^2 = \frac{16}{9}$$
 مطریقة $9x^2 = 16$ یعنی $9x^2 - 16 = 0$: طریقة

$$x = -\frac{4}{3}$$
 يعني $x = \sqrt{\frac{16}{9}}$ رو $x = \sqrt{\frac{16}{9}}$ يعني $x = \sqrt{\frac{16}{9}}$

هناك مرحلتين لحل مثل هذه المعادلات
$$\frac{(x-7)(x+3)}{x^2-9} = 0$$
 (5

المرحلة1: نحدد أو لا مجموعة تعريف المعادلة المعادلة لها معنى يعني $0 \neq 0$ يعني (x-3)(x+3) = 0 يعني $x^2 - 3^2 = 0$

x=3 يعني x=3 أو x=3 يعني x=3 أو x=3 أو x=3 ومنه: $D_E=\mathbb{R}-\{-3,3\}$

يعني $\frac{(x-7)(x+3)}{x^2-9} = 0$: يعني الحل الفعلي للمعادلة

x+3=0 x-7=0 x-7=0 x-7=0 x-7=0 x-7=0

 $S = \{7\} : x = -3 \notin D_E \quad \text{if } x = 7 \in D_E$

تمرین 1 : حل في \mathbb{R} المعادلات التالیة : 2(x+10)

$$\frac{x+1}{2} + 4 = \frac{2x-5}{10} + \frac{2(x+10)}{5}$$
 (1)

 $x^3 - 7x = 0 \quad (2$

$$(5x-7)^2 - (5x-7)(2x+3) = 0 (3)$$

$$\frac{(x-1)(x+2)}{(x-1)(x+2)} = 0 \quad (4)$$

$$\frac{1}{x^2-16} = 0$$

$$\frac{x+1}{x+2} = \frac{x-5}{x-2}$$
 (5

(نوحد المقامات) $\frac{x+1}{2}+4=\frac{2x-5}{10}+\frac{2(x+10)}{5}$ (نوحد المقامات

$$\frac{5x+5}{10} + \frac{40}{10} = \frac{2x-5}{10} + \frac{4x+40}{10}$$

$$\frac{5x+5+40}{10} = \frac{2x-5+4x+40}{10}$$

-x = -10 يعني 5x + 5 + 40 = 2x - 5 + 4x + 40 يعني

$$S = \{10\}$$
 يعني $x = 10$

(التعميل)
$$x(x^2-7)=0$$
 يعني $x^3-7x=0$

$$x^2=7$$
 يعني $x=0$ أو $x=0$ يعني $x=0$ يعني $x=0$ أو $x=0$ يعني $x=0$ أو $x=\sqrt{7}$ أو $x=\sqrt{7}$ أو $x=\sqrt{7}$ ومنه:

$$(5x-7)^2 - (5x-7)(2x+3) = 0$$
 (3)

$$(5x-7)[(5x-7)-(2x+3)]=0$$
 يعني

$$3x-10=0$$
 يعني $5x-7=0$ يعني $(5x-7)(3x-10)=0$

و بما أن: $0 \le 3x + 6 \ge 0$ و a > 0 فان جدول الإشارة هو كالتالى:

х		-2	+∞
3x+6	1	0	+
-			•

 $S = |-2; +\infty|$: و منه فان

تمرين 2 : حل في مجموعة الأعداد الحقيقية المتراجحات التالية:

$$5x-15 \le 0$$
 (2 $-2x+12 > 0$ (1

$$(1-x)(2x+4) > 0 (4$$
 $4x^2-9 \ge 0$ (3)

$$\frac{(2x+1)(5x-10)}{2x-6} \le 0 \quad (6 \qquad \frac{5x-2}{1+3x} \ge 0 \quad (5$$

-2x+12>0 (1: الأجوبة

x = 6 يكافئ -2x + 12 = 0

و بما أن: a = 0 و a < 0 فان جدول الإشارة هو كالتالي:

$$\begin{array}{c|cccc} x & -\infty & 6 & +\infty \\ \hline -2x+12 & + & 0 & - \end{array}$$

 $S =]-\infty; 6[$: و منه فان

$$5x - 15 \le 0$$
 (2)

$$x = 3$$
 یکافئ $5x - 15 = 0$

و بما أن: a = 5 و a > 0 فان جدول الإشارة هو كالتالى:

<u> </u>		- •	
X	8	3	+∞
5x - 15 = 0	1	0	+

 $S =]-\infty;3[$: 0

$$4x^2 - 9 \ge 0$$
 (3

$$(2x-3)(2x+3)=0$$
 يعني $(2x)^2-3^2=0$ يعني $4x^2-9=0$

$$x = \frac{3}{2}$$
 يعني $2x + 3 = 0$ أو $2x + 3 = 0$ يعني $2x + 3 = 0$

الطريقة :في جدول نعطي إشارة كل عامل على الشكل ax + b ثم

الجداء أو الخارج مع ترتيب تزايدي للقيم التي ينعدم فيها كل عامل.

х	8	$-\frac{3}{2}$	$\frac{3}{2}$	+∞
2x+3	ı	0	+	+
2x-3	_		- 0	+
(2x-3)(2x+3)	+	0	- 0	+

 $S = \left[-\infty; -\frac{3}{2} \right] \cup \left[\frac{3}{2}; +\infty \right]$: 0

(1-x)(2x+4) > 0 (4

يغني
$$1-x=0$$
 أو $1-x=0$ يغني $(1-x)(2x+4)=0$

x = 1 x = -2

χ	8	-2		1	+∞
2x + 4	-	0	+		+
1-x	+		+	0	_
(1-x)(2x+4)	_	0	+	0	_

S =]-2;1[: display="1" of the state of th

المرحلة نعدد أولا مجموعة تعريف المتراجحة المتراجحة
$$\frac{5x-2}{1+3x} \ge 0$$
 (5

 $x \neq -\frac{1}{2}$ المتراجحة لها معنى يعني $0 \neq 3x \neq 1$ يعني

 $D_I = \mathbb{R} - \left\{ -\frac{1}{3} \right\}$

المرحلة2: الحل الفعلى للمتراجحة

$$S = \left\{ \frac{7}{5}, \frac{10}{3} \right\}$$
 ومنه: $x = \frac{7}{5}$ ومنه:

$$\frac{(x-1)(x+2)}{x^2-16} = 0 \quad (4)$$

هناك مرحلتين لحل مثل هذه المعادلات

المرحلة 1: نحدد أو لا مجموعة تعريف المعادلة

 $x^2-16\neq 0$ المعادلة لها معنى يعنى

$$(x-4)(x+4) = 0$$
 يعني $x^2 - 4^2 = 0$ يعني $x^2 - 16 = 0$

$$x = 4$$
 يعني $x = 4$ أو $x = 4$ يعني $x = 4$ أو $x = 4$

 $D_{E} = \mathbb{R} - \{-4, 4\}$:

المرحلة2: الحل الفعلى للمعادلة

$$x-1=0$$
 يعني $(x-1)(x+2)=0$ يعني $(x-1)(x+2)=0$

$$S = \{-2,1\}$$
 : ومنه $x = -2 \in D_E$ ومنه $x = 1 \in D_E$ يعني

$$\frac{x+1}{x+2} = \frac{x-5}{x-2}$$
 (5)

هناك مر حلتين لحل مثل هذه المعادلات

المرحلة 1: نحدد أو لا مجموعة تعريف المعادلة

 $x+2\neq 0$ و $x-2\neq 0$ المعادلة لها معنى يعنى

 $x \neq -2$ يعني $2 \neq x$ و $x \neq 2$

$$D_{E} = \mathbb{R} - \{-2, 2\}$$
:

يعني
$$\frac{x+1}{x+2} = \frac{x-5}{x-2}$$
: الحل الفعلي للمعادلة :

$$(x+1)(x-2) = (x-5)(x+2)$$

$$x^2-2x+x-2=x^2-5x+2x-10$$
 يعني

 $x = -4 \in D_{F}$ يعني 2x = -8 يعني -x + 3x = -10 + 2 $S = \{-4\}$: each

[[المتراجعات من الدرجة الأولى بمجهول واحد (تذكير):

عدين حقيقين كل متراجحة على b عددين حقيقيين كل متراجحة على 1 $ax + b \le 0$ أو $ax + b \ge 0$ أو $ax + b \ge 0$ أو $ax + b \prec 0$ تسمى متراجحة من الدرجة الأولى بمجهول واحد حيث x هو المجهول.

ax + b إشارة الحداثية ax + b:

نلخص الجدولين في الجدول التالي:

х	-∞	_ <u>b</u> _	+∞
		a	
$ay \perp b$	ں اشار ۃ ہ	ر عکب	اشارة م

2x + 1 مثال 1: لنحدد إشارة

$$x = -\frac{1}{2}$$
يکافئ $2x + 1 = 0$

و بما أن a>0 و a>0 جدول إشارة a+1 هو كالتالى:

х	-∞	$-\frac{1}{2}$	+∞
2x + 1	_	0	+

-x + 2 مثال 2: لنحدد إشارة

x = 2 يكافئ -x + 2 = 0

و بما أن: a=-1 و $a \prec 0$ فان جدول إشارة x+2 هو كالتالى:

х	-∞	2	+∞
-x + 2	1	0	+

 $3x + 6 \ge 0$: مثال 3: حل في \mathbb{R} المتراجحة التالية

x = -2 يكافئ 3x + 6 = 0

$x = \frac{2}{5}$	يعني $5x - 2 = 0$
-	يعني $1+3x=0$

х		$\frac{1}{3}$		$\frac{2}{5}$	+∞
1 + 3x	_	0	+		+
5x-2	1		_	0	+
$\frac{5x-2}{1+3x}$	+		_	0	+

$$S = \left] -\infty; -\frac{1}{3} \left[-\frac{2}{5}; +\infty \right] : 0$$

$$\frac{(2x+1)(5x-10)}{2x-6} \le 0 \quad (6$$

المرحلة 1: نحدد أو لا مجموعة تعريف المتراجحة $x \neq 3$ يعني $x \neq 3$ يعني $x \neq 3$ يعني $x \neq 3$

 $D_{I}=\mathbb{R}-\{3\}$ ومنه:

المرحلة2: الحل الفعلي للمتراجحة

$$x = 2$$
 يعني يعني $5x - 10 = 0$

$$x = -\frac{1}{2}$$
 یعنی $2x + 1 = 0$

	2					
х		$\frac{1}{2}$	2	3	+∞	
2x + 1	_	0 +	+		+	
5x-10	1	0 -	- +		+	
2x-6	1	1	_	0	+	
$\frac{2x+1)(5x-10)}{2x-6}$	- 0	+ 0	_		+	

 $S = \left] -\infty; -\frac{1}{2} \right] \cup \left[2;3\right[: 0]$ و منه فان

III. المعادلات من الدرجة الثانية بمجهول واحد:

1. تعریف: المعادلة $ax^2+bx+c=0$ حیث x هو المجهول أعداد حقیقیة معلومة $(a \neq 0)$ تسمی معادلة من الدرجة الثانیة بمجهول واحد.

 $3x^2 + 5x + 2 = 0$ العدد 1- حل المعادلة 1: العدد 1

 $3(-1)^2 + 5(-1) + 2 = 0$ \dot{V}

 $x^{2} + (1 - \sqrt{3})x - \sqrt{3} = 0$ مثال 2: العدد $\sqrt{3}$ حل للمعادلة

 $(\sqrt{3})^2 + (1-\sqrt{3})\sqrt{3} - \sqrt{3} = 3 + \sqrt{3} - 3 - \sqrt{3} = 0$: $\sqrt[3]{3}$

 $ax^2 + bx + c = 0$ ملاحظة: كل عدد حقيقي x_0 يحقق المتساوية

هو حل للمعادلة $ax^2 + bx + c = 0$ و يسمى جذر

 $ax^2 + bx + c$ للحدودية

 $ax^2 + bx + c$ الشكل القانوني لثلاثية الحدود 2.

خاصیة: a و b و c ثلاثة أعداد حقیقیة و a غیر منعدم.

 $ax^{2} + bx + c = a\left(\left(x + \frac{b^{2}}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}\right)$ الكل x من x لدينا:

الكتابة $a\left(\left(x+\frac{b^2}{2a}\right)^2-\frac{b^2-4ac}{4a^2}\right)$ تسمى الشكل القانوني لثلاثية

 $ax^2 + bx + c$ حدود

. $P(x) = 2x^2 + 5x + 2$ مثال: نعتبر الحدودية

لدينا $2\left(\left(x+\frac{5}{4}\right)^2-\frac{9}{16}\right)$ و بالتالي $P(x)=2\left(\left(x+\frac{5}{4}\right)^2-\frac{9}{16}\right)$ هو الشكل

القانوني لثلاثية الحدود $2x^2 + 5x + 2$.

3) حل معادلة من الدرجة الثانية بمجهول واحد:

 $P(x) = ax^2 + bx + c$ عريف: لتكن ثلاثية الحدود

العدد الحقيقي b^2-4ac يسمى مميز ثلاثية الحدود أو مميز المعادلة

. Δ و نرمز له بالرمز $ax^2 + bx + c = 0$

(E) مثال: نعتبر المعادلة لنحسب مميز المعادلة

 $\Delta = b^2 - 4ac$: لدينا: 3 a = 5 و a = 7 و b = -5 و a = 3 الدينا: $\Delta = (-5)^2 - 4 \times 7 \times 3 = 25 - 84 = -59$

ملاحظة: الرمز ∆ يقرأ: دلتا delta.

تمرين 3: الشكل القانوني لثلاثية الحدود:

 $2x^2 + 6x + 15$: الشكل القانوني لثلاثية الحدود

 $2x^{2} + 6x + 15 = 2\left(\left(x + \frac{3}{2}\right)^{2} - \frac{-21}{4}\right)$ $= 2\left(\left(x + \frac{3}{2}\right)^{2} + \frac{21}{4}\right)$

خاصية: نعتبر المعادلة $a \neq 0$ مميزها. خاصية نعتبر المعادلة المعادلة المعادلة عبد خاصية المعادلة المع

 \mathbb{R} في المعادلة ليس لها حل في $\Delta \prec 0$

 $-\frac{b}{2a}$ فان المعادلة تقبل حلا وجيدا هو $\Delta=0$

✓إذا كان 0∠∆فان المعادلة تقبل حلين مختلفين هما

$$\frac{-b+\sqrt{\Delta}}{2a}$$
 5 $\frac{-b-\sqrt{\Delta}}{2a}$:

نرمز لمجموعة حلول المعادلة بالرمز ك.

 \mathbb{R} المعادلة 2 + x + 2 = 0 ليس لها حلا في S = 0 لأن S = 0 و بالتالي مجموعة حلولها يS = 0.

مثال 2: المعادلة $x^2 - 10x + 25 = 0$ لها حل وحيد $(\Delta = 10^2 - 4 \times 25 = 0)$ لأن $(\Delta = 10^2 - 4 \times 25 = 0)$.

 $S = \{5\}$ عنده المعادلة هو b = b و بالتالي مجموعة حلولها هي b = b

 $\Delta=9-4\times 2=1$ لدينا $x^2-3x+2=0$ مثال 3: نعتبر المعادلة نعبل عبد المعادلة تقبل حلين هما: $\Delta>0$ فان هذه المعادلة تقبل حلين هما:

 $S = \{1; 2\}$ و منه $x_2 = \frac{3+1}{2} = 2$ ع $x_1 = \frac{3-1}{2} = 1$

: حل في $\mathbb R$ المعادلات التالية

 $2x^2 - 2\sqrt{2}x + 1 = 0$ (2 $6x^2 - 7x - 5 = 0$ (1

 $4x^2 - 8x + 3 = 0$ (4 $3x^2 + x + 2 = 0$ (3

 $x^{2} + 5x + 7 = 0$ (6 $x^{2} - 4x + 2 = 0$ (5

 $x^2 - 4x - 21 = 0$ (8 $2x^2 - 4x + 6 = 0$ (7

 $3x^2 - 6x + 3 = 0$ (9

c = -5 و a = 6 و a = 6 و a = 6 و a = 6 و a = 6 و a = 6

 $\Delta = b^2 - 4ac = (-7)^2 - 4 \times 6 \times (-5) = 49 + 120 = 169 = (13)^2 > 0$ بما أن $\Delta > 0$ فان هذه المعادلة تقبل حلين هما:

 $x_{1} = \frac{-(-7) + \sqrt{169}}{2 \times 6} = \frac{7 + 13}{12} = \frac{20}{12} = \frac{5}{3} \text{ using } x_{2} = \frac{-b - \sqrt{\Delta}}{2a} \quad \mathbf{9} \quad x_{1} = \frac{-b + \sqrt{\Delta}}{2a}$ $S = \left\{ \frac{5}{3}, -\frac{1}{2} \right\} \quad \text{eaths} \quad x_{2} = \frac{7 - 13}{12} = \frac{6}{12} = -\frac{1}{2}$

(E) 20015 x^2 – 2016x +1 = 0 مثاك : نعتبر المعادلة بين أن العدد 1 حل للمعادلة (E)ثم حدد الحل الثاني. : فنجد الأجوبة: نعوض x ب أفي المعادلة (E) (E) ومنه 1 حل ل $2015 \times 1^2 - 2016 \times 1 + 1 = 2016 - 2016 = 0$ $x_1 = 1$ ولدينا يا عامية السابقة لدينا : حسب الخاصية السابقة لدينا $x_2 = \frac{1}{2015}$ اذن : $1 \times x_2 = \frac{1}{2015}$: (E): $-2x^2 + \sqrt{2}x + 2 = 0$: is it is it is it. بدون eta بدون lpha بدون أن المعادلة (E) تقبل حلين مختلفين lpha $\alpha^2 + \beta^2$ و $\frac{1}{\alpha} + \frac{1}{\beta}$ و $\alpha \times \beta$ و $\alpha + \beta$ و $\alpha + \beta$.2 $\alpha^3 + \beta^3$ g $\frac{\beta}{\alpha} + \frac{\alpha}{\beta}$ g a = -2 و a = -2 $\Delta = b^2 - 4ac = (\sqrt{2})^2 - 4 \times 2 \times (-2) = 2 + 16 = 18 > 0$ $oldsymbol{eta}$ بما أن $\Delta \succ 0$ فان هذه المعادلة تقبل حلين : Δ و $\alpha \times \beta = \frac{c}{a}$ عسب خاصية لدينا: 2 $\alpha \times \beta = \frac{2}{2} = -1$ $\alpha + \beta = -\frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}$: $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha \beta} = \frac{\frac{\sqrt{2}}{2}}{-1} = -\frac{\sqrt{2}}{2}$ و لدينا : $(\alpha + \beta)^2 = \alpha^2 + 2\alpha\beta + \beta^2$ يعني $(\alpha + \beta)^2 - 2\alpha\beta = \alpha^2 + \beta^2$ $\alpha^2 + \beta^2 = \frac{1}{2} + 2 = \frac{5}{2}$ يعني $\alpha^2 + \beta^2 = \left(\frac{\sqrt{2}}{2}\right)^2 - 2(-1)$ $\frac{\beta}{\alpha} + \frac{\alpha}{\beta} = \frac{\frac{1}{2}}{-1} = -\frac{5}{2}$ اذن $\frac{\beta}{\alpha} + \frac{\alpha}{\beta} = \frac{\beta^2 + \alpha^2}{\alpha\beta}$ ولدينا : $(\alpha + \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$: ونعلم أن $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha^2\beta - 3\alpha\beta^2$ يغني $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ يعني $\alpha^3 + \beta^3 = \left(\frac{\sqrt{2}}{2}\right)^3 - 3(-1)\left(\frac{\sqrt{2}}{2}\right)$: اذن $\alpha^3 + \beta^8 = \frac{\sqrt{2}^3}{2^3} + \frac{3\sqrt{2}}{2} = \frac{2\sqrt{2}}{8} + \frac{3\sqrt{2}}{2} = \frac{2\sqrt{2} + 12\sqrt{2}}{8} = \frac{14\sqrt{2}}{8} = \frac{7\sqrt{2}}{4}$ يعني IV. تعميل و إشارة ثلاثية الحدود ax 2 +bx +c. م تعميل ثلاثية الحدود ax 2 +bx +c. مميز ها. مميز Δ مميز ها مين Δ مميز ها. ين حلين $ax^2 + bx + c = 0$ قبل حلين $\Delta > 0$. إذا كان: $\Delta > 0$ $ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$ مختلفین x_{2} و لدینا: $ax^{2} + bx + c = a\left(x + \frac{b}{2a}\right)^{2}$.2 فان: $\Delta = 0$

c=1 $b=-2\sqrt{2}$ a=2 $2x^2-2\sqrt{2}x+1=0$ (2) $\Delta = b^2 - 4ac = (-2\sqrt{2})^2 - 4 \times 2 \times 1 = 8 - 8 = 0$ بما أن $\Delta=0$ فان هذه المعادلة تقبل حلا وجيدا هو: $S = \left\{ \frac{\sqrt{2}}{2} \right\}$: $constant = \frac{-b}{2a} = \frac{-(-2\sqrt{2})}{2 \times 2} = \frac{\sqrt{2}}{2}$ c = 2 b = 1 a = 3 $3x^2 + x + 2 = 0$ (3) $\Delta = b^2 - 4ac = (1)^2 - 4 \times 3 \times 2 = 1 - 24 = -23 < 0$ $S=\varnothing$ بما أن $\Delta \prec 0$ فان المعادلة ليس لها حل في \mathbb{R} ومنه: c=3 gb=-8 g a=4 $4x^2-8x+3=0$ $\Delta = b^2 - 4ac = (-8)^2 - 4 \times 3 \times (4) = 84 - 8 = 16 = (4)^2 > 0$ بما أن $0 \prec \Delta$ فان هذه المعادلة تقبل حلين هما: $x_2 = \frac{-(-8) - \sqrt{16}}{2 \times 4}$ **9** $x_1 = \frac{-(-8) + \sqrt{16}}{2 \times 4}$ $S = \left\{ \frac{3}{2}, \frac{1}{2} \right\}$: $2 = \frac{8-4}{8} = \frac{4}{8} = \frac{1}{2}$ **9** $x_1 = \frac{8+4}{8} = \frac{12}{8} = \frac{3}{2}$ c = 2 b = -4 a = 1 $x^2 - 4x + 2 = 0$ (5 $\Delta = b^2 - 4ac = (-4)^2 - 4 \times 2 \times (1) = 16 - 8 = 8 > 0$ بما أن $0 \prec \Delta$ فان هذه المعادلة تقبل حلين هما: $x_1 = \frac{4+2\sqrt{2}}{2} = \frac{2(2+\sqrt{2})}{2} = 2+\sqrt{2}$: $x_2 = \frac{-(-4)-\sqrt{8}}{2\times 1}$ **9** $x_1 = \frac{-(-4)+\sqrt{8}}{2\times 1}$ $S = \left\{2 - \sqrt{2}, 2 + \sqrt{2}\right\}$ $x_2 = \frac{4 - 2\sqrt{2}}{2} = \frac{2(2 - \sqrt{2})}{2} = 2 - \sqrt{2}$ c = 7 gb = 5 ga = 1 a = 1 a = 1 a = 1 (6) $\Delta = b^2 - 4ac = 5^2 - 4 \times 1 \times 7 = 25 - 28 = -3 < 0$ $S=\varnothing$ بما أن $\Delta \prec 0$ فان المعادلة ليس لها حل في \mathbb{R} ومنه: c = 6 g b = -4 g a = 2 $2x^2 - 4x + 6 = 0$ (7 $\Delta = b^2 - 4ac = (-4)^2 - 4 \times 2 \times 6 = 16 - 48 = -32 < 0$ $S=\varnothing$ بما أن $\Delta \prec 0$ فان المعادلة ليس لها حل في \mathbb{R} ومنه: c = -21 b = -4 a = 1 $x^2 - 4x - 21 = 0$ (8) $\Delta = b^2 - 4ac = (-4)^2 - 4 \times 1 \times (-21) = 16 + 84 = 100 = (10)^2 > 0$ بما أن $\Delta \succ 0$ فان هذه المعادلة تقبل حلين هما: $x_2 = \frac{-(-4) - \sqrt{100}}{2 \times 1}$ 9 $x_1 = \frac{-(-4) + \sqrt{100}}{2 \times 1}$ $S = \{-3,7\}$ equiv $x_2 = \frac{4-10}{2} = \frac{-6}{2} = -3$ o $x_1 = \frac{4+10}{2} = \frac{14}{2} = 7$ c = 3 $_{9}b = -6$ $_{9}a = 3$ $3x^{2} - 6x + 3 = 0$ (9) $\Delta = b^2 - 4ac = (-6)^2 - 4 \times 3 \times 3 = 36 - 36 = 0$ بما أن $\Delta=0$ فان هذه المعادلة تقبل حلا وحيدا مز دوجا هو: $S = \{1\}$. ومنه: $x = \frac{-(-6)}{2 \times 3} = \frac{6}{6} = 1$ يعني $x = \frac{-b}{2a}$ 4)مجموع و جذاء حلى معادلة من الدرجة الثانية: $\Delta > 0$ و $(a \neq 0)$ حيث $ax^2 + bx + c = 0$ و $a \neq 0$ $x_1 \times x_2 = \frac{c}{a}$ و $x_1 + x_2 = -\frac{b}{a}$ ان: معادلة بين أن: $x_2 = \frac{c}{a}$ حلان x_1 حلان المعادلة $(a \neq 0)ax^2 + bx + c = 0$ حلان $x_1 \times x_2 = \frac{c}{a}$ و $x_1 + x_2 = -\frac{b}{a}$ ويتين المتساويتين x_2

ونا كان: $\Delta \prec 0$ فان: bx + c لا يمكن تعميلها إلى $ax^2 + bx + c$ حدو ديتين من الدرجة الأولى. مميز $R(x) = 6x^2 - x - 1$ مميز الحدودية

$$x_2 = \frac{1-5}{12} = -\frac{1}{3}$$
 و $x_1 = \frac{1+5}{12} = \frac{1}{2}$ هما

$$R(x) = 6\left(x - \frac{1}{2}\right)\left(x + \frac{1}{3}\right)$$
 و بالنالي:

 $\Delta = 1 + 24 = 25$ هو R(x) الحدودية

تمرين 6 : عمل ثلاثيات الحدود التالية :

$$3x^2 + x + 2$$
 (3 $x^2 - 3x + 2$ (2 $x^2 - 10x + 25$ (1 $c = 25$ $a = -10$ $a = 1$: $x^2 - 10x + 25$ (1:

$$\Delta = b^2 - 4ac = (-10)^2 - 4 \times 1 \times (25) = 100 - 100 = 0$$

بما أن $\Delta=0$ فان هذه الحدودية لها جذر وحيد هو:

$$x_1 = \frac{-(-10)}{2 \times 1} = \frac{10}{2} = 5$$

 $x^2-10x+25=a(x-x_1)^2=1(x-5)^2$: ومنه التعميل

$$c = 2$$
 $_{9}b = -3$ $_{9}a = 1$ $x^{2} - 3x + 2$ (2)

$$\Delta = b^2 - 4ac = (-3)^2 - 4 \times 1 \times 2 = 9 - 8 = 1 = (1)^2 > 0$$

بما أن $0 \prec \Delta$ فان هذه الحدودية لها جذرين هما:

$$x_2 = 1$$
 و $x_1 = 2$ يعني $x_1 = \frac{3 - \sqrt{1}}{2 \times 1}$ و $x_1 = \frac{3 + \sqrt{1}}{2 \times 1}$ و منه التعميل :

$$x^{2}-3x-2=a(x-x_{1})(x-x_{2})=1(x-2)(x-1)$$

ادينا:
$$3x^2 + x + 2$$
 (3

$$\Delta = b^2 - 4ac = (1)^2 - 4 \times 3 \times 2 = 1 - 24 = -23 < 0$$

ومنه فان هذه الحدودية لا يمكن تعميلها تمرين 7: عمل ثلاثيات الحدود التالية:

$$3x^2-6x+3$$
 (3 $4x^2-8x+3$ (2 $2x^2-4x+6$ (1

$$c = 6$$
 و $a = 2$: $2x^2 - 4x + 6 = 0$ و $a = 2$: $2x^2 - 4x + 6 = 0$ و

$$\Delta = b^2 - 4ac = (-4)^2 - 4 \times 2 \times (6) = 16 - 48 = 32 < 0$$

ومنه فان هذه الحدودية لا يمكن تعميلها

$$c = 3$$
 $_{9}b = -8$ $_{9}a = 4$ $4x^{2} - 8x + 3 = 0$ (2)

$$\Delta = b^2 - 4ac = (-8)^2 - 4 \times 4 \times 3 = 64 - 48 = 16 = (4)^2 > 0$$

بما أن $0 \prec \Delta$ فان هذه الحدودية لها جذرين هما:

$$x_1 = \frac{4}{8} = \frac{1}{2}$$
 9 $x_1 = \frac{8+4}{2 \times 4} = \frac{12}{8} = \frac{3}{2}$

$$4x^2 - 8x + 3 = 4\left(x - \frac{1}{2}\right)\left(x - \frac{3}{2}\right) = (4x - 2)\left(x - \frac{3}{2}\right)$$
 ومنه التعميل :

بما أن
$$\Delta = 0$$
 فان هذه الحدودية لها جذر وحيد $\Delta = 0$ بما أن $\Delta = 0$

$$x_1 = \frac{-(-8)}{2 \times 4} = 1$$

$$3x^2 - 6x + 3 = a(x - x_1)^2 = 3(x - 1)^2$$
: ومنه التعميل

$$ax^2 + bx + c$$
 يأشارة ثلاثية الحدود.

الحالة 1: إذا كان $0 > \Delta > 0$ و x_2 و x_2 هما جذري ثلاثية الحدود فان:

X	8	\mathcal{X}_1	\mathcal{X}_2	+∞
$P(x) = ax^2 + bx + c$	اشار ةa	شارةa 0	0 عكس	اشارةa

الحالة2: إذا كان $\Delta=0$: و x_1 هو الجذر الوحيد المزدوج فان: $P(x) = ax^2 + bx + c$ الحالةa: إذا كان $\Delta \prec 0$ فان إشارة $P\left(x\right)$ هي إشارة العدد $\Delta \to 0$

	()	
X	-8	8+
$P(x) = ax^2 + bx + c$	اشارةa	

مثال1:

 $P(x) = 2x^2 - 3x + 1$ 1. 1. 1. 1. $2x^2 - 3x + 1 \ge 0$: مل في \mathbb{R} المتراجحة 2. a=2 $P(x)=2x^2-3x+1(1:1)$ $\Delta = b^2 - 4ac = (-3)^2 - 4 \times 2 \times 1 = 9 - 8 = 1 > 0$ بما أن $0 \prec \Delta$ فان للحدودية جذرين هما:

 $S = \left[-\infty, \frac{1}{2} \right] \cup [1, +\infty[$: (2)

مثال2: 1. أدرس إشارة الحدودية $P(x) = -2x^2 + 4x - 2$ $-2x^2 + 4x - 2 > 0$: المتراجحة \mathbb{R} المتراجحة .2 a = -2 $P(x) = -2x^2 + 4x - 2$ (1: أجوبة $\Delta = b^2 - 4ac = (4)^2 - 4 \times (-2) \times (-2) = 16 - 16 = 0$ بما أن $\Delta = 0$ فان هذه الحدودية لها جذر وحيد هو: $x_1 = \frac{-(4)}{2 \times (-2)} = 1$

				• •
	х	-∞	1	+∞
P(x) = -	$2x^2 + 4x - 2$	_	0	_

2)حل المتراجحة: $S = \mathbb{R}$

 $P(x) = 3x^2 + 6x + 5$ 1. $3x^2 + 6x + 5 < 0$: مل في \mathbb{R} المتراجحة . 2 a = 3 > 0 $P(x) = 3x^2 + 6x + 5$ (1: أجوبة

ومنه: $\Delta = b^2 - 4ac = (6)^2 - 4 \times 3 \times 5 = 36 - 60 = -24 < 0$

х	-∞	+∞
$P(x) = 3x^2 + 6x + 5$	+	

2)**حل** المتر اجحة: $S = \emptyset$

: حل في $\mathbb R$ المتراجحات التالية : $\mathbf z$

(3
$$4x^2 - 8x + 3 \le 0$$
 (2 $2x^2 - 4x + 6 \ge 0$ (1 $x^2 - 3x - 10 < 0$

$$a = 3 > 0$$
 $2x^2 - 4x + 6 \ge 0$ (1: أجوبة $\Delta = b^2 - 4ac = 16 - 48 = -32 < 0$

х		+∞
$P(x) = 3x^2 + 6x + 5$	+	

 $S=\mathbb{R}$:ومنه

: نعتبر الحدودية P(x) بحيث بعتبر $P(x) = x^3 - \sqrt{2}x^2 - x + \sqrt{2}$ P(x) بين أن 1- هو جدر للحدودية 1. $P(x) = (x+1)(x^2 - (\sqrt{2}+1)x + \sqrt{2})$: بين أن .2 $Q(x) = x^2 - (\sqrt{2} + 1)x + \sqrt{2}$: $\Delta = \left(\sqrt{2} - 1\right)^2$ نأكد أن Q(x) تأكد أن $\Delta = 0$.3 Q(x)=0 المعادلة \mathbb{R} على 4. $x - (\sqrt{2} + 1)\sqrt{x} + \sqrt{2} = 0$: Mask the state of the s P(x)=0 المعادلة \mathbb{R} حل في $P(x) \le 0$: المتراجحة \mathbb{R} المتراجحة $P(-1) = (-1)^3 - \sqrt{2}(-1)^2 - (-1) + \sqrt{2} (1 : \frac{1}{2} + \frac{1}{2})$ $P(-1) = -1 - \sqrt{2} + 1 + \sqrt{2} = 0$ P(x) اذن 1- هو جدر للحدودية $(x+1)\left(x^2 - \left(\sqrt{2} + 1\right)x + \sqrt{2}\right) = x^3 - \left(\sqrt{2} + 1\right)x^2 + \sqrt{2}x + x^2 - \left(\sqrt{2} + 1\right)x + \sqrt{2}(2)$ $=x^{3} - (\sqrt{2} + 1)x^{2} + \sqrt{2}x + x^{2} - (\sqrt{2} + 1)x + \sqrt{2}$ $=x^3-\sqrt{2}x^2-x^2+\sqrt{2}x+x^2-\sqrt{2}x-x+\sqrt{2}$ $=x^3-\sqrt{2}x^2-x+\sqrt{2}$ $\Delta = b^2 - 4ac = (\sqrt{2} + 1)^2 - 4 \times 1 \times \sqrt{2} (3)$ $\Delta = (\sqrt{2})^2 - 2\sqrt{2} \times 1 + (1)^2 = (\sqrt{2} - 1)^2$ $Q(x) = x^2 - (\sqrt{2} + 1)x + \sqrt{2}(4$ بما أن $0 \prec \Delta$ فان للحدودية جذرين هما: $x_1 = \frac{\sqrt{2} + 1 + \sqrt{2} - 1}{2 \times 1} = \frac{2\sqrt{2}}{2} = \sqrt{2}$ $x_1 = \frac{\sqrt{2} + 1 - \sqrt{2} + 1}{2 \times 1} = \frac{2}{2} = 1$ $S = \left\{ \sqrt{2}, 1 \right\}$ $x - (\sqrt{2} + 1)\sqrt{x} + \sqrt{2} = 0$ (5) $\left(\sqrt{x}\right)^2 - \left(\sqrt{2} + 1\right)\sqrt{x} + \sqrt{2} = 0$: يمكن كتابتها على الشكل نضع: $X = \sqrt{x}$ و المعادلة تصبح على الشكل $X_2=1$ أو $X_1=\sqrt{2}$: حسب السؤال السابق $X^2-\left(\sqrt{2}+1\right)X+\sqrt{2}=0$ $\sqrt{x_2} = 1$ أو $\sqrt{x_1} = \sqrt{2}$ يعني $\left(\sqrt{x_2}\right)^2 = \left(1\right)^2$ يعني $\left(\sqrt{x_1}\right)^2 = \left(\sqrt{2}\right)^2$ $S = \{2,1\}$ $x_2 = 1$ أو $x_1 = 2$ $x^2 - (\sqrt{2} + 1)x + \sqrt{2} = 0$ أو x + 1 = 0 يعني P(x) = 0 $S = \left\{-1,1,\sqrt{2}\right\}$ ومنه: $x_1 = \sqrt{2}$ ومنه: $x_1 = \sqrt{2}$ ومنه: $(x+1)(x^2-(\sqrt{2}+1)x+\sqrt{2}) \le 0$ يعني $P(x) \le 0$ (7 $x^2 - (\sqrt{2} + 1)x + \sqrt{2}$ x+1P(x) $S =]-\infty, -1] \cup [1, \sqrt{2}]$

	$a = 4 \qquad 4x^2 - 8x + 3 \le 0 (2)$
$\Delta = b$	$e^2 - 4ac = (-8)^2 - 4 \times 4 \times 3 = 64 - 48 = 16 > 0$
	بما أن $0 \prec \Delta$ فان للحدودية جذرين هما:
منه:	$y x_1 = \frac{8-4}{8} = \frac{1}{2} x_1 = \frac{8+4}{2\times 4} = \frac{12}{8} = \frac{3}{2}$
x	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$4x^2 - 8x + 3$	+ 0 - 0 +
	$S = \left[\frac{1}{2}, \frac{3}{2}\right]$
	$a = 4$ $x^2 - 3x - 10 < 0$ (3)
	$\Delta = b^2 - 4ac = 49 > 0$
	بما أن $0 \succ \Delta$ فان للحدودية جذرين هما: $x_1 = -2$ و منه:
х	
$4x^2 - 8x + 3$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	S =]-2,5[
ID.	V. معادلات من الدرجة الأولى بمجهولين:
	\mathbb{R}^2 هي مجموعة الأزواج (x,y) حيث \mathbb{R}^2
	مثال: نعتبر في المجموعة \mathbb{R}^2 المعادلة : 2
	= 2
2x+3	ن اعط ثلاث أزواج حلول للمعادلة: $y=2$
	$2x+3y=2$: المعادلة \mathbb{R}^2 حل في (3
حل للمعادل $\left(0,\frac{2}{3}\right)$	$(\frac{2}{3})$: اذن : $2 \times 0 + 3 \times \frac{2}{3} = 2$ اذن
	$y = -\frac{2}{3}$: يعني 2×2+3× y =2 : اذن $x = 2$ (2
$\left(-\frac{4}{3}\right) \in S$: اذن	$y = -\frac{4}{3}$: يعني 2×3+3× y =2 اذن $x = 3$
$-2) \in S$: اذن	y = -2: اذن $x = 4$ یعنی $x = 4$
$y = \frac{-2x + 2}{3}$	يعني $3y = -2x + 2$ يعني $2x + 3y = 2(3)$

تمرین و : حل في \mathbb{R}^2 المعادلات النالية : -3x + 12y - 2 = 0 (2 2x - 8y + 10 = 0 (1 7x - 14y + 1 = 0 (3 $y = \frac{8x - 10}{2}$ يعني 2y = 8x - 10 يعني 2x - 8y + 10 = 0 (1 $y = \frac{8x - 10}{2}$ يعني y = 4x - 5 يعني y = 4x - 5 يعني y = 4x - 5 يعني $y = \frac{3x + 2}{12}$ يعني y = 3x + 2 يعني y = 3x + 2 يعني $y = \frac{3x + 2}{12}$ يعني

 $S = \left\{ \left(x; \frac{-2}{3} x + \frac{2}{3} \right) / x \in \mathbb{R} \right\} : i : y = -\frac{2}{3} x + \frac{2}{3}$

y=-2 فنجد y=10-4x في المعادلة y=10-4x $S = \{(3,-2)\}$ 2. طريقة التأليفة الخطية 4x + y = 10: حل في $\mathbb{R} imes\mathbb{R}$ النظمة التالية -5x + 2y = -19الجواب : نضرب المعادلة الأولى في العدد (2-) فنحصل على : وبجمع المعادلتين طرف لطرف نجد: $\begin{cases} -8x - 2y = -20 \\ -5x + 2y = -19 \end{cases}$ x=3 يعني -8x-2y-5x+2y=-20-19y=-2 ونعوض x ب 3 في المعادلة 4x+y=10 فنجد $S = \{(3,-2)\}$ 3. طريقة المحددة: تعريف و خاصية: العدد الحقيقي ab'-a'b يسمى محددة النظمة $\Delta = \begin{vmatrix} a & b \\ a' & b' \end{vmatrix}$ و نكتب: (S) • إذا كان $0=\Delta$ فان النظمة (S) قد لا يكون لها أي حل, و قد يكون لها عدد لا منته من الحلول. • إذا كان $0 \pm \Delta$ فان النظمة (S) تسمى نظمة كرامر و تقبل حلا وحيدا هو الزوج (x,y)حيث: هذه الطريقة تسمى طريقة المحددة. مثال: طربقة المحددة: $(1)\begin{cases} x + 2y = 4 \\ -x + 4y = 2 \end{cases}$ النظمة: \mathbb{R}^2 حل في محددة النظمة (1) هي: $0 \neq 0 = \begin{vmatrix} 1 & 2 \\ -1 & 4 \end{vmatrix}$ محددة النظمة تقبل حلا $S = \{(2,1)\}$ وحيدا: هو $2 = \frac{\begin{vmatrix} 1 & 4 \\ -1 & 2 \end{vmatrix}}{\Delta} = \frac{6}{6} = 1$ و $2 = \frac{\begin{vmatrix} 4 & 2 \\ 2 & 4 \end{vmatrix}}{\Delta} = \frac{12}{6} = 2$ و منه: $\begin{cases} 3x - 4y = 2 \\ -x + \frac{4}{3}y = -\frac{1}{3} \end{cases} (2 \qquad \begin{cases} x - 2y = 1 \\ -2x + 4y = -2 \end{cases} (1 : \frac{12}{3})$ $\begin{cases} x + y = 11 \\ x^2 - y^2 = 44 \end{cases} \quad (4 \quad \begin{cases} (\sqrt{5} - \sqrt{3})x + (\sqrt{2} - 1)y = 0 \\ (\sqrt{2} + 1)x + (\sqrt{5} + \sqrt{3})y = 1 \end{cases}$ $\Delta = \begin{vmatrix} 1 & -2 \\ -2 & 4 \end{vmatrix} = 0$: $\Delta = \begin{vmatrix} 1 & -2 \\ -2 & 4 \end{vmatrix}$ $\begin{cases} x - 2y = 1 \\ -2x + 4y = -2 \end{cases} \Leftrightarrow \begin{cases} x - 2y = 1 \\ -2(x - 2y) = -2 \end{cases} \Leftrightarrow \begin{cases} x - 2y = 1 \\ x - 2y = 1 \end{cases}$ $y = -\frac{1}{2} + \frac{1}{2}x \Leftrightarrow -2y = 1 - x \Leftrightarrow x - 2y = 1 \Leftrightarrow$ ومنه النظمة (S) لها عدد V منته من الحلو V النظمة (V $S = \left\{ \left(x, \frac{1}{2} x - \frac{1}{2} \right) / x \in \mathbb{R} \right\}$

-3 بضرب المعادلة الثانية في 3x - 4y = 2 $\begin{cases} 3x - 4y = 2 \\ -x + \frac{4}{3}y = -\frac{1}{2} \end{cases}$ \Leftrightarrow $\begin{cases} 3x - 4y = 2 \\ 3x - 4y = 1 \end{cases}$

 $x^2 + (2\sqrt{3} - \sqrt{2})x - 2\sqrt{6} = 0$: نعتبر المعادلة : <u>11 تمرین 11</u> 1. نضع: $\Delta = 14 + 4\sqrt{6}$ فو مميز ثلاثية الحدود P(x) تأكد أن Δ $14+4\sqrt{6}=(...+...)^2$ املأ الفراغات التالية |: 2 P(x)=0 المعادلة \mathbb{R} على .3 P(x) > 0 : المتراجحة \mathbb{R} المتراجحة $x + (2\sqrt{3} - \sqrt{2})\sqrt{x} - 2\sqrt{6} = 0$: حلول المعادلة .5 $\Delta = b^2 - 4ac = (2\sqrt{3} + \sqrt{2})^2 - 4 \times 1 \times 2\sqrt{6}$ (1: أجوية $\Delta = 12 - 4\sqrt{6} + 2 + 8\sqrt{6} = 14 + 4\sqrt{6}$ ای $\Delta = (2\sqrt{3})^2 - 2\sqrt{3} \times \sqrt{2} + (\sqrt{2})^2 + 8\sqrt{6}$ $14 + 4\sqrt{6} = 14 + 2 \times 2\sqrt{3} \times \sqrt{2} = (2\sqrt{3})^{2} + 2 \times 2\sqrt{3} \times \sqrt{2} + (\sqrt{2})^{2} (2\sqrt{3})^{2} + (\sqrt{2})^{2} = (2\sqrt{3})^{2} = (2\sqrt{3})^{2} + (\sqrt{2})^{2} = (2\sqrt{3})^{2} = (2\sqrt{3})^{2} + (\sqrt{2})^{2} = (2\sqrt{3})^{2} = (2\sqrt{3})^{2$ $14+4\sqrt{6}=(2\sqrt{3}+\sqrt{2})^2$ $P(x) = x^2 - (\sqrt{2} + 1)x + \sqrt{2}$ بما أن $0 < 4\sqrt{6} > 0$ فان للمعادلة حلين هما: $x_1 = \frac{-2\sqrt{3} + \sqrt{2} + \sqrt{14 + 4\sqrt{6}}}{2 \times 1} = \frac{-2\sqrt{3} + \sqrt{2} + \left| 2\sqrt{3} + \sqrt{2} \right|}{2 \times 1}$ $x_1 = \frac{-2\sqrt{3} + \sqrt{2} + 2\sqrt{3} + \sqrt{2}}{2 \times 1} = \frac{2\sqrt{2}}{2} = \sqrt{2}$ $x_2 = \frac{-2\sqrt{3} + \sqrt{2} - 2\sqrt{3} - \sqrt{2}}{2 \times 1} = \frac{-4\sqrt{3}}{2} = -2\sqrt{3}$ $S = \left\{ \sqrt{2}, -2\sqrt{3} \right\}$ $\begin{array}{cccc}
-\infty & -2\sqrt{3} & \sqrt{2} \\
+ & 0 & -0
\end{array}$ $x^2 + (2\sqrt{3} - \sqrt{2})x - 2\sqrt{6}$ $S = \left] -\infty, -2\sqrt{3} \right[\cup \left] \sqrt{2}, +\infty \right[$ $x + (2\sqrt{3} - \sqrt{2})\sqrt{x} - 2\sqrt{6} = 0$ (5) $\left(\sqrt{x}\right)^2 + \left(2\sqrt{3} - \sqrt{2}\right)\sqrt{x} - 2\sqrt{6} = 0$: يمكن كتابتها على الشكل نضع: $X = \sqrt{x}$ والمعادلة تصبح على الشكل: $X^{2} + (2\sqrt{3} - \sqrt{2})X - 2\sqrt{6} = 0$ $X_2 = -2\sqrt{3}$ أو $X_1 = \sqrt{2}$: حسب السؤال السابق $\sqrt{x_2} = -2\sqrt{3}$ أو $\sqrt{x_1} = \sqrt{2}$ نلاحظ أن المعادلة : $\sqrt{x_2} = -2\sqrt{3}$ ليس لها حل لأن الجذر دائما موجب $S = \{2\}$ ومنه $x_1 = 2$ ومنه $\left(\sqrt{x_1}\right)^2 = \left(\sqrt{2}\right)^2$ VI. نظمة معادلتين من الدرجة الأولى بمجهولين: c' و a' و a'أعداد حقيقية هناك عدة طرق لحل نظمة سبق أن درست طريقتين هما طريقة التعويض و التأليفة الخطية طبعا هناك طريقة أخرى انتبه 1. طريقة التعويض: $\begin{cases} 4x+y=10 \\ -5x+2y=-19 \end{cases}$: النظمة التالية $\mathbb{R} \times \mathbb{R}$ النظمة التالية الجواب : نبحث عن ٧ في المعادلة الأولى مثلا y = 10 - 4x يعني 4x + y = 10ونعوض y بقيمتها في المعادلة الثانية -5x+2(10-4x)=-19 يعني -5x+2y=-19

x=3 يعني -5x-8x=-19-20 يعني -5x-8x=-19-20

 $\frac{1}{v-2} = \frac{13}{11}$ و منه : $\frac{1}{v-1} = \frac{1}{11}$ و منه $y = \frac{37}{13}$ و x = 12: يعني: $y - 2 = \frac{11}{13}$ و x - 1 = 11 $S = \left\{ \left(12, \frac{37}{13} \right) \right\}$ و بالتالي: : حل في $\mathbb{R} imes \mathbb{R}$ النظمة التالية : $Y = \sqrt{y}$ و $X = \sqrt{x}$ انجوبة: نضع: $X = \sqrt{y}$ و $X = \sqrt{x}$ انجوبة: نضع: $X = \sqrt{y}$ و $X = \sqrt{y}$ و $X = \sqrt{y}$ $\begin{cases} 2X + Y = 6 \\ -3X + 5Y = 17 \end{cases}$: فنحصل على النظمة التالية Y=4 ونقوم بحل هذه النظمة ونجد : X=1 $(\sqrt{y})^2 = 4^2$ و منه : 1 = $(\sqrt{x})^2 = (1)^2$ یعنی: $\sqrt{y} = 4$ و منه : 1 $S = \{(1,16)\}$ يعني: x = 1 و y = 16 يعني: x = 1: حل في $\mathbb{R} imes \mathbb{R}$ النظمة التالية $Y = y^2$ و $X = x^2$ انجوبة: نضع: $\begin{cases} 2x^2 - 5y^2 = 1 \\ 4x^2 + 3y^2 = 15 \end{cases}$ $\begin{cases} 2X - 5Y = 1 \\ 4X + 3Y = 15 \end{cases}$: فنحصل على النظمة التالية Y=1 ونقوم بحل هذه النظمة ونجد : X=3 $v^2 = 4$ **9** $x^2 = 3$: $v^2 = 3$ $y = -\sqrt{1}$ يعني: $x = -\sqrt{3}$ او $x = \sqrt{3}$ يعني: y = -1 او y = 1: و $x = -\sqrt{3}$ او $x = \sqrt{3}$ $S = \{(\sqrt{3},1), (\sqrt{3},-1), (-\sqrt{3},1), (-\sqrt{3},-1)\}$ و بالتالي: : حل في $\mathbb{R} imes\mathbb{R}$ النظمة التالية : $\left[\left(x^2 - 3x + 1 \right) + \left(y^2 - 5x + 4 \right) = -3 \right]$ $2(x^2-3x+1)-3(y^2-5x+4)=4$ $Y = y^2 - 5x + 4$ و $X = x^2 - 3x + 1$ أجوبة: $\begin{cases} X+Y=-3\\ 2X-3Y=4 \end{cases}$: فنحصل على النظمة التالية Y = -2 ونقوم بحل هذه النظمة ونجد : X = -1 $y^2 - 5x + 4 = -2$ $y^2 - 3x + 1 = -1$: $y^2 - 5x + 6 = 0$ و $x^2 - 3x + 2 = 0$: نحل المعادلة : $x^2 - 3x + 2 = 0$ باستعمال المميز فنجد $\Delta = b^2 - 4ac = (-3)^2 - 4 \times 1 \times (2) = 1 > 0$ بما أن $0 \prec \Delta$ فان هذه المعادلة تقبل حلين هما: $x_2 = \frac{-(-3) - \sqrt{1}}{2 \times 1} = \frac{3}{2}$ **9** $x_1 = \frac{-(-3) + \sqrt{1}}{2 \times 1} = 2$: نحل المعادلة : $y^2 - 5x + 6 = 0$ باستعمال المميز فنجد $\Delta = b^2 - 4ac = (-5)^2 - 4 \times 1 \times 6 = 1 > 0$ بما أن $0 \prec \Delta$ فان هذه المعادلة تقبل حلين هما: $y_2 = \frac{-(-5) - \sqrt{1}}{2 \times 1} = 2$ **9** $y_1 = \frac{-(-5) + \sqrt{1}}{2 \times 1} = 3$ $S = \{(1,3), (1,2), (2,3), (2,2)\}$

 $S = \emptyset$ وهذا غير ممكن ومنه $\left[\left(\sqrt{5} - \sqrt{3} \right) x + \left(\sqrt{2} - 1 \right) y = 0 \right]$ $(\sqrt{2}+1)x+(\sqrt{5}+\sqrt{3})y=1$ $\Delta = \begin{vmatrix} \sqrt{5} - \sqrt{3} & \sqrt{2} - 1 \\ \sqrt{2} + 1 & \sqrt{5} + \sqrt{3} \end{vmatrix} = (\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3}) - (\sqrt{2} + 1)(\sqrt{2} - 1)$ $\Delta = (5-3)-(2-1)=1 \neq 0$ $\Delta = \left[\left(\sqrt{5}\right)^2-\left(\sqrt{3}\right)^2\right]-\left[\left(\sqrt{2}\right)^2-(1)^2\right]$ $x = \frac{\begin{vmatrix} 0 & \sqrt{2} - 1 \\ 1 & \sqrt{5} + \sqrt{3} \end{vmatrix}}{\sqrt{5}} = \frac{-(\sqrt{2} - 1)}{1} = -\sqrt{2} + 1 = 1 - \sqrt{2}$ $y = \frac{\begin{vmatrix} \sqrt{5} - \sqrt{3} & 0 \\ \sqrt{2} + 1 & 1 \end{vmatrix}}{\sqrt{5}} = \frac{-(\sqrt{5} - \sqrt{3})}{1} = -\sqrt{5} + \sqrt{3} = \sqrt{3} - \sqrt{5} = \sqrt{3}$ $S = \{(1-\sqrt{2}, \sqrt{3}-\sqrt{5})\}$: 1) حل في $\mathbb{R} imes\mathbb{R}$ النظمة التالية 1: استنتج حلول النظمة التالية (2 $\begin{cases} -7x - 3y = 4 \\ 4x + 5y = -2 \end{cases}$ $\frac{-7}{x} - \frac{3}{y} = 4$ **أجوبة :** (1) هي: $\frac{4}{x} + \frac{5}{y} = -2$ $|\Delta = | -7 - 3| = -35 + 12 = -23 = 0$ النظمة تقبل حلا وحيدا: $S = \left\{ \left(-\frac{14}{23}, -\frac{2}{23} \right) \right\} : \underbrace{y = \begin{vmatrix} -7 & 4 \\ 4 & -2 \end{vmatrix}}_{\Lambda} = \underbrace{\frac{2}{2}}_{2} \underbrace{y} = \underbrace{x = \begin{vmatrix} 4 & -3 \\ -2 & 5 \end{vmatrix}}_{\Lambda} = \underbrace{\frac{14}{2}}_{\Lambda} = \underbrace{\frac{14}{$ $y \neq 0$ و $x \neq 0$ الكي تكون للنظمة معنى يجب أن يكون لدينا : (2 $Y = \frac{1}{y}$ 9 $X = \frac{1}{x}$: نضع: $\begin{cases} -7\frac{1}{x} - 3\frac{1}{y} = 4 \iff \begin{cases} \frac{-7}{x} - \frac{3}{y} = 4 \\ 4\frac{1}{x} + 5\frac{1}{y} = -2 \end{cases} \end{cases}$ $\begin{cases} -7X - 3Y = 4 \\ 4X + 5Y = -2 \end{cases}$: eized also like discontinuous between $y \neq 0$ and $x \neq 0$ $Y = -\frac{2}{23}$ و $X = -\frac{14}{23}$: وسبق أن قمنا بحل هذه النظمة $y = -\frac{23}{2}$ $gx = -\frac{23}{14}$ يعني: $\frac{1}{y} = -\frac{2}{23}$ $gx = -\frac{14}{23}$: $S = \left\{ \left(-\frac{23}{14}, -\frac{23}{2} \right) \right\}$ و بالتالي: : حل في $\mathbb{R} \times \mathbb{R}$ النظمة التالية : $Y = \frac{1}{y-2}$ 9 $X = \frac{1}{x-1}$: نضع: $\frac{5}{x-1} + \frac{3}{y-2} = 4$ $\begin{cases} 5X + 3Y = 4 \\ -2X + Y = 1 \end{cases}$: فنحصل على النظمة التالية $Y = \frac{13}{11}$ و $X = \frac{1}{11}$: ونقوم بحل هذه النظمة ونجد

تمرين 19: حل مبيانيا النظمة التالية:

$$(S) \begin{cases} 2x + y - 3 > 0 \\ -x + y + 5 < 0 \\ x < 4 \end{cases}$$

الجواب : نرسم أو لآ المستقيمات التالية : 2x+y-3=0; -x+y+5=0; x=4 وبعد ذالك يجب الحصول على الشكل التالي و هو الحل المبياني:

VII. المتراجعات و التجويه

در اسمة مثال : في الشكل أسفله نعتبر المستقيم (D) الذي

معادلته: 0 = 1 + x - y المستقيم (D) يحدد نصفي مستوى

حافتهما D أحدهما يحتوي على النقطة O (أصل المعلم) و نرمز له بالرمز P_1 و للأخر بالرمز P_2 .

$$(P_{2})$$
 النقطة $(1,1)$ تنتمي إلى (P_{2}) و تحقق:

$$\frac{1}{2} - 1 + 1 > 0$$
 $\dot{\psi} \frac{1}{2} x_A - y_A + 1 > 0$

: النقطة
$$(P_1)$$
 و تتمي إلى (P_1) و تحقق \leftrightarrow

$$\frac{1}{2} \times (-2) - 1 + 1 < 0 : \dot{0}^{\frac{1}{2}} \frac{1}{2} x_B - y_B + 1 < 0$$

 (P_2) اذا أخدنا نقطة أخرى M تنتمي إلى نصف المستوى

فان المتفاوتة $y_M - y_M + 1$ محققة (يمكنك التحقق من بعض النقط).

و إذا أخدنا نقطة أخرى Nتنتمي إلى نصف المستوى (P_1) .

فان المتفاوتة
$$0 + 1 + y_N - y_N + 1$$
محققة.

$$\cdot \frac{1}{2}x - y + 1 > 0$$
 قحق (P_2) من $M(x,y)$ نحقق کل نقطة

$$\cdot \frac{1}{2}x - y + 1 < 0$$
و كل نقطة $M(x,y)$ من $M(x,y)$

:ax +by +c

خاصية: نعتبر في المعلم $\left(o,ec{i},ec{j}
ight)$ المستقيم الذي معادلته

: يحدد نضفي مستوى مفتوحين ax + by + c = 0

- التي تحقق M(x,y) التي تحقق M(x,y)
 - ax + by + c > 0المتفاوتة
 - و الآخر هو مجموعة النقط M(x,y) التي M(x,y)

ax + by + c < 0تحقق

 $a \neq 0$ کل معادلة تکتب على الشکل ax + by + c = 0 کل معادلة تکتب على الشکل و $b \neq 0$ معادلة مستقيم.

تُمرين 18 : حل مبيانيا النظمة التالية:

$$(S_1) \begin{cases} x + y - 1 > 0 \\ -x + 2y + 2 < 0 \end{cases}$$

الجواب: نرسم أو لآ المستقيمات التالية:

$$x+y-1=0; -x+2y+2=0$$

وبعد ذالك يجب الحصول على الشكل التالي وهو الحل المبياني:

ترييض وضعيات : تمرين 20 : أحسب طول عرض مستطيل اذا علمت أن طوله يزيد عن عرضه ب

ليكن x وعرض مستطيل اذن طوله هو : x+2 ومنه مساحته هي :

$$S = x(x+2) = 15$$

ومنه نحصل عن معادلة من الدرجة الثانية:

$$b=2$$
 و $c=-15$ و $a=1$: $x^2+2x-15=0$ $\Delta=b^2-4$ a $c=(2)^2-4\times1\times(-15)=64>0$ بما أن $\Delta>0$ فان هذه المعادلة تقبل حلين هما:

بما ان
$$\Delta \succ 0$$
 فان هذه المعادلة نقبل خلير $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$ **9** $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$

$$x_2 = \frac{-2 - 8}{2 \times 1} = -5 < 0 \quad \mathbf{9} \quad x_1 = \frac{-2 + 8}{2 \times 1} = 3$$

ا ۱۸۲ ومنه:بما أن عرض مستطيل لا يمكن أن يكون سالبا:

x=3 نأخذ

وبالتالي طوله هو **:** وبالتالي طوله هو

« c'est en forgeant que l'on devient forgeron » dit un proverbe. c'est en s'entraînant régulièrement aux calculs et

exercices que l'on devient un mathématicien

