Instituto Superior Técnico - 1º Semestre 2006/2007

Cálculo Diferencial e Integral I

LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec

5^a Ficha de exercícios para as aulas práticas: 23 Outubro - 3 Novembro de 2006

1. Estude quanto à natureza (convergência absoluta, convergência simples, divergência) cada uma das seguintes séries.

(1)
$$\sum_{n=1}^{+\infty} \frac{\sqrt{n-1}}{n^2+2}$$
 (2) $\sum_{n=1}^{+\infty} \frac{\sqrt{n+1}+\sqrt{n}}{n+1}$ (3) $\sum_{n=1}^{+\infty} \frac{n^2}{n^3+3}$ (4) $\sum_{n=1}^{+\infty} \frac{n}{n^3+3}$ (5) $\sum_{n=1}^{+\infty} \frac{2(-1)^{n+1}}{1+\log n}$

(6)
$$\sum_{n=1}^{+\infty} \frac{\sqrt[3]{3n+2}}{\sqrt{(n^2+1)(n+1)}}$$
 (7) $\sum_{n=1}^{+\infty} (-1)^n \frac{5+2(-1)^{n+1}}{\sqrt{n}}$ (8) $\sum_{n=1}^{+\infty} \frac{-2+(-1)^n}{n^3}$ (9) $\sum_{n=1}^{+\infty} \frac{1+(-1)^n}{2n}$

(10)
$$\sum_{n=1}^{+\infty} (-1)^n \left(1 - \cos\frac{1}{n}\right)$$
 (11) $\sum_{n=1}^{+\infty} \frac{n+2^n}{n2^n}$ (12) $\sum_{n=1}^{+\infty} \sin\frac{n\pi}{2} \log\left(1 + \frac{1}{n}\right)^5$ (13) $\sum_{n=1}^{+\infty} \frac{\sqrt[3]{n}}{\sqrt{n}+1}$

(14)
$$\sum_{n=1}^{+\infty} \frac{\arctan(-1)^n}{n!}$$
 (15) $\sum_{n=1}^{+\infty} \frac{\arctan((-1)^n)}{\sqrt{n(n+1)}}$ (16) $\sum_{n=3}^{+\infty} \frac{\operatorname{tg}(\pi/n)}{n}$ (17) $\sum_{n=1}^{+\infty} \operatorname{tg} \frac{1}{n+1}$

(18)
$$\sum_{n=1}^{+\infty} \operatorname{sen} \frac{1}{\sqrt{n^3}}$$
 (19) $\sum_{n=2}^{+\infty} \frac{1}{(-1)^n \log n}$ (20) $\sum_{n=1}^{+\infty} \log \frac{1}{n}$ (21) $\sum_{n=2}^{+\infty} \frac{1 + \operatorname{sen}^2 n}{\log n}$ (22) $\sum_{n=2}^{+\infty} \frac{1}{\log^2 n}$

(23)
$$\sum_{n=1}^{+\infty} \frac{\log n}{n}$$
 (24) $\sum_{n=1}^{+\infty} \frac{\log n}{n^2}$ (26) $\sum_{n=1}^{+\infty} n^{-1-1/n}$ (27) $\sum_{n=1}^{+\infty} \log (1 + e^{-n})$

(28)
$$\sum_{n=1}^{+\infty} \sqrt{\frac{n+1}{n^3+\sqrt{n}}}$$
 (29) $\sum_{n=1}^{+\infty} (-1)^n \frac{n \log n}{2+\sqrt{n^5} \log n}$ (30) $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1} \sqrt[3]{n} + \cos n^3}{\sqrt{n^3} + 2}$

(31)
$$\sum_{n=1}^{+\infty} \frac{\sqrt[4]{n} + \sin n!}{\sqrt{n^3} + n}$$
 (32)
$$\sum_{n=1}^{+\infty} \frac{\sqrt[3]{n^2 + \log n}}{\sqrt{n^3} + 1}$$
 (33)
$$\sum_{n=1}^{+\infty} \frac{\sqrt{2n^2 - n} + \sqrt[3]{n^2 (2 + 3n)}}{\sqrt{n^3} + \sqrt[3]{(n^2 + 1) n^3}}$$

(34)
$$\sum_{n=0}^{+\infty} \frac{(-1)^n (2n^2 - 1) n}{(n^2 \sqrt{n} + 1)^2 + 4}$$
 (35) $\sum_{n=1}^{+\infty} \frac{(\sqrt{n} + 1)^2}{(5n + 1) \sqrt{n} + 2}$ (36) $\sum_{n=0}^{+\infty} (\sqrt{n} + 1) - \sqrt{n}$

(37)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n n}{(n^3+1) \operatorname{arctg} n}$$
 (38) $\sum_{n=1}^{+\infty} \left(\operatorname{sen} \frac{1}{n^2} \right) (\sqrt{n}+1)$ (39) $\sum_{n=1}^{+\infty} \frac{\operatorname{sen} (n\pi/2)}{1+2\sqrt{n^3}}$

(40)
$$\sum_{n=1}^{+\infty} \frac{1}{\left[(-1)^n + 10\right]^{2n}}$$
 (41) $\sum_{n=1}^{+\infty} \frac{n^3 + 1000}{\log 2^n + n^4}$ (42) $\sum_{n=2}^{+\infty} \frac{\sqrt{n^3 + 2n^2 + 3}}{\sqrt[3]{n-1}}$ (43) $\sum_{n=1}^{+\infty} (-1)^n \sin \frac{1}{n}$

(44)
$$\sum_{n=1}^{+\infty} \frac{\sqrt{n} - \sqrt{n-1}}{n}$$
 (45) $\sum_{n=1}^{+\infty} \frac{n^{n+1}}{(\sqrt{n}+1) n (-n)^n}$ (46) $\sum_{n=1}^{+\infty} \frac{2 \cos[(n-1) \pi]}{1 + 2\sqrt{n}}$

(47)
$$\sum_{n=1}^{+\infty} \frac{\cos^2 n + \sqrt{n}e^n}{\sqrt{n^5}e^n + (n+1)^3} \operatorname{sen} n$$
 (48) $\sum_{n=0}^{+\infty} (-1)^n \left(\sqrt{1+n^2} - n\right)$ (49) $\sum_{n=1}^{+\infty} \frac{1}{n} \frac{3^{-n}}{1-3^{-n}}$

(50)
$$\sum_{n=1}^{+\infty} \frac{1}{n} \frac{2^n}{1-2^n}$$
 (51) $\sum_{n=1}^{+\infty} \frac{2 + \arctan(n!)}{n^2 + \log^2 n + 2}$ (52) $\sum_{n=1}^{+\infty} (-1)^n \frac{n^n}{(n+1)^{n+1}}$ (53) $\sum_{n=1}^{+\infty} \frac{n^n}{(n+1)^{n+1}}$

(54)
$$\sum_{n=1}^{+\infty} \frac{(n+1)^n}{n^{n+1}}$$
 (55) $\sum_{n=2}^{+\infty} \frac{1}{\sqrt{n} \log n}$ (56) $\sum_{n=2}^{+\infty} \frac{1}{n^2 \log n}$ (57) $\sum_{n=1}^{+\infty} \frac{(-1)^n n}{n^2 + 1}$ (58) $\sum_{n=1}^{+\infty} e^{-\log n}$

(59)
$$\sum_{n=2}^{+\infty} (\log n)^{-p}$$
, $(p \in \mathbb{R})$ (60) $\sum_{n=1}^{+\infty} \frac{1}{n^2 \sin \frac{1}{n}}$ (61) $\sum_{n=1}^{+\infty} \frac{3^{n+3} + n!}{(n+2)! + n^{n+2} + 4^{n+1} + \log n}$

(62)
$$\sum_{n=1}^{+\infty} \frac{\sin^3(n!n) + e^{-n}}{2n!n^2 + (\sqrt[3]{n} + 1)\sqrt{n}}$$
 (63) $\sum_{n=1}^{+\infty} \frac{2^n + (-n)^n}{n^{n+2} + n!n}$ (64) $\sum_{n=1}^{+\infty} \frac{n - (-3)^n}{3^n(n+1)}$

(65)
$$\sum_{n=1}^{+\infty} \frac{1 + \sqrt{n} + (-1)^n n}{(n+1)\sqrt{n}}$$

2. Estude quanto à natureza (convergência absoluta, convergência simples, divergência) cada uma das seguintes séries.

(1)
$$\sum_{n=1}^{+\infty} \frac{n^{1000}}{(1,001)^n}$$
 (2) $\sum_{n=1}^{+\infty} \frac{1000^n}{n!}$ (3) $\sum_{n=1}^{+\infty} \frac{e^n n^3}{n! 2^n}$ (4) $\sum_{n=1}^{+\infty} \frac{n! (n+2)!}{(3.5.7.9.\cdots.(2n+1))^2}$

(5)
$$\sum_{n=1}^{+\infty} n^3 (-e)^{-n}$$
 (6) $\sum_{n=1}^{+\infty} \frac{(-\pi)^{-n}}{n}$ (7) $\sum_{n=1}^{+\infty} n^2 2^n e^{-n}$ (8) $\sum_{n=1}^{+\infty} n! e^{-n}$ (9) $\sum_{n=1}^{+\infty} \frac{n!}{n^n}$

(10)
$$\sum_{n=1}^{+\infty} \frac{2^n n!}{n^n}$$
 (11) $\sum_{n=1}^{+\infty} \frac{3^n n!}{n^n}$ (12) $\sum_{n=0}^{+\infty} \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n+1)}{3 \cdot 6 \cdot 9 \cdot \cdots \cdot (3n+3)}$ (13) $\sum_{n=1}^{+\infty} \frac{n!}{2^{n^2}}$

(14)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n (n!)^2}{2^n n^n}$$
 (15) $\sum_{n=1}^{+\infty} \frac{3^n + n!}{n! + n^n}$ (16) $\sum_{n=1}^{+\infty} (-1)^{n-1} \frac{1 - 2\sqrt{n}}{2^n + n^2}$ (17) $\sum_{n=1}^{+\infty} \frac{2^n n^n}{(7n+1)^n}$

$$(18) \sum_{n=1}^{+\infty} \frac{(4+(-1)^n)^n n}{6^n} (19) \sum_{n=1}^{+\infty} (-1)^n \frac{3^n + n^3}{n! + 1} (20) \sum_{n=3}^{+\infty} \frac{5 \cdot 7 \cdot 9 \dots (2n+3)}{5^n} (21) \sum_{n=0}^{+\infty} \frac{2^n}{1 + 3^{n+1}}$$

(22)
$$\sum_{n=1}^{+\infty} \frac{(2n)!}{(2n)^n}$$
 (23) $\sum_{n=0}^{+\infty} \frac{(5n)!}{(3n)!(2n)!}$ (24) $\sum_{n=1}^{+\infty} \frac{2^n (2n)!}{3^n (2n+1)!}$ (25) $\sum_{n=1}^{+\infty} e^{-n} \log n$

(26)
$$\sum_{n=0}^{+\infty} \frac{(n+1)^n}{n! (-3)^n}$$
 (27) $\sum_{n=1}^{+\infty} \frac{3^n \cos n}{n!}$ (28) $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1} n \operatorname{arctg}(n^3)}{(n+1)! + \sqrt{n}}$ (29) $\sum_{n=1}^{+\infty} \frac{2^n + n^3}{2^{n+1} (n+1)^3}$

(30)
$$\sum_{n=1}^{+\infty} \frac{e^n n!}{n^n}$$
 (31) $\sum_{n=1}^{+\infty} \frac{(-3)^n + n^5}{2^n + n! + \log^2(n!)}$ (32) $\sum_{n=1}^{+\infty} \sin \frac{n^3}{3^n}$ (33) $\sum_{n=1}^{+\infty} n^2 \sin \frac{\pi}{2^n}$

(34)
$$\sum_{n=1}^{+\infty} \frac{e^{\frac{n!}{n^n}} - 1}{\frac{3^n}{(n!)^2}}$$
 (35) $\sum_{n=2}^{+\infty} \frac{2^n}{n! - \sin n}$ (36) $\sum_{n=1}^{+\infty} \frac{n^2}{n! + \sqrt[3]{n^2}}$ (37) $\sum_{n=1}^{+\infty} \frac{n^2}{n! + \log n^2}$

(38)
$$\sum_{n=1}^{+\infty} \frac{1}{1+a^n}$$
, $(a \in \mathbb{R}^+)$ (39) $\sum_{n=1}^{+\infty} \frac{n}{(-2)^n + n^2}$

3. Estude quanto à natureza (convergência absoluta, convergência simples, divergência) cada uma das seguintes séries.

(1)
$$\sum_{n=1}^{+\infty} \left(1 - \frac{1}{n}\right)^{n^2}$$
 (2) $\sum_{n=1}^{+\infty} \left(1 + \frac{1}{n^2}\right)^{n^3}$ (3) $\sum_{n=1}^{+\infty} \left(1 + \frac{1}{n^3}\right)^{n^2}$ (4) $\sum_{n=1}^{+\infty} \left(\frac{n+3}{n+1}\right)^{n^2}$

(5)
$$\sum_{n=1}^{+\infty} e^{-n^2}$$
 (6) $\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n^3}} \left(1 + \frac{1}{n} \right)^n$ (7) $\sum_{n=2}^{+\infty} \frac{1}{n \left(\log n \right)^n}$ (8) $\sum_{n=1}^{+\infty} \left(n^{1/n} - 1 \right)^n$

(9)
$$\sum_{n=1}^{+\infty} \left(\operatorname{arctg} \frac{1}{n} \right)^n$$
 (10) $\sum_{n=1}^{+\infty} \left(\frac{2n-1}{3n+1} \right)^{2n}$ (11) $\sum_{n=0}^{+\infty} \left(\frac{n+5}{n^2+1} \right)^n$ (12) $\sum_{n=1}^{+\infty} \left(\frac{n}{n+1} \right)^{n^2}$

(13)
$$\sum_{n=1}^{+\infty} \left(\frac{1}{n} - e^{-n^2}\right)$$
 (14) $\sum_{n=1}^{+\infty} \frac{\sqrt[3]{n^n}}{\sqrt[3]{n^n}}$ (15) $\sum_{n=1}^{+\infty} \left(\frac{n^2}{2+n^2}\right)^{2^n}$ (16) $\sum_{n=1}^{+\infty} \left(\frac{n^2}{2-n^2}\right)^{2^n}$

(17)
$$\sum_{n=1}^{+\infty} \left(\frac{n! + n^4}{3^n + n!} \right)^{n!}$$
 (18) $\sum_{n=1}^{+\infty} (\log n)^{-n}$ (19) $\sum_{n=1}^{+\infty} \left(1 + \frac{1}{n} \right)^{-n^2}$

4. Determine o raio de convergência de cada uma das seguintes séries de potências de $x - \alpha$ (para um certo $\alpha \in \mathbb{R}$) e estude-as quanto à natureza (convergência absoluta, convergência simples, divergência).

$$(1) \sum_{n=0}^{+\infty} x^n (2) \sum_{n=1}^{+\infty} \left(\frac{1}{2^n} + \frac{1}{n+1} \right) x^n (3) \sum_{n=0}^{+\infty} \frac{2n+1}{n^2+1} (x+1)^{2n} (4) \sum_{n=0}^{+\infty} \left(\frac{3^n}{n!} + \frac{4^n}{(n+1)!} \right) (x-1)^n$$

(5)
$$\sum_{n=1}^{+\infty} \frac{\log n}{n^2} x^n$$
 (6) $\sum_{n=0}^{+\infty} \cos(n\pi) \frac{(x-1)^{2n+1}}{2^{n+1}\sqrt{2n+1}}$ (7) $\sum_{n=1}^{+\infty} n^{-\sqrt{n}} x^{2n}$ (8) $\sum_{n=1}^{+\infty} \frac{(x+1)^n}{n \arctan n}$

(9)
$$\sum_{n=0}^{+\infty} \frac{e^n + 1}{n!} x^n$$
 (10) $\sum_{n=0}^{+\infty} \frac{n! (x-1)^n}{n! + 4^n}$ (11) $\sum_{n=1}^{+\infty} \frac{(x+2)^n}{n^n}$ (12) $\sum_{n=1}^{+\infty} n^n (x+2)^n$

5. Estude quanto à natureza (convergência absoluta, convergência simples, divergência) cada uma das seguintes séries, onde x designa um parâmetro real.

(1)
$$\sum_{n=2}^{+\infty} \frac{n-\sqrt{n}}{2^n+1} (2-x)^n$$
 (2) $\sum_{n=1}^{+\infty} (-1)^n \frac{(2x-1)^n}{(2n-1)(2n+1)}$ (3) $\sum_{n=2}^{+\infty} \frac{(2x+3)^n}{2^n (n^2-n)}$

(4)
$$\sum_{n=1}^{+\infty} \frac{(-2)^n}{1+n} (1-2x)^{2n-1}$$
 (5) $\sum_{n=1}^{+\infty} \left(\frac{1}{1+|x|}\right)^{n-1}$ (6) $\sum_{n=0}^{+\infty} \frac{2^n (n!)^2}{(2n)!} (x^2-x)^n$

(7)
$$\sum_{n=0}^{+\infty} (1-|x|)^n$$
 (8) $\sum_{n=1}^{+\infty} \left(\frac{1}{1+|x|^n}\right)^{n-1}$ (9) $\sum_{n=0}^{+\infty} x$ (10) $\sum_{n=0}^{+\infty} \frac{(nx)^n}{(n+1)^n}$ (11) $\sum_{n=0}^{+\infty} \left(\frac{nx}{x+1}\right)^n$