

מבוא למערכות לומדות (236756)

סמסטר אביב תשפ"ב – 23 בספטמבר 2022

מרצה: ד"ר ניר רוזנפלד

<u>מבחן מסכם מועד ב'</u>

הנחיות הבחינה:

- **משך הבחינה:** 3 שעות. •
- **חומר עזר:** המבחן בחומר סגור (ללא ספרים, מחברות, דפי נוסחאות).
 - מחשבון: מותר.
 - כלי כתיבה: עט בלבד.
 - יש לכתוב את התשובות **על גבי שאלון זה**.
 - מותר לענות בעברית או באנגלית.
 - :קריאוּת
 - o תשובה בכתב יד לא קריא **לא תיבדק**.
- o בשאלות רב-ברירה הקיפו את התשובות <u>בבירור</u>. סימונים לא ברורים יביאו לפסילת התשובה.
 - . לא יתקבלו ערעורים בנושא. ס
- . במבחן 14 עמודים ממוספרים סה"כ, כולל עמוד שער זה שמספרו 1 ושלושה עמודי טיוטה בסוף הגיליון.
 - . נא לכתוב רק את המבוקש ולצרף הסברים קצרים עפ"י ההנחיות.
 - בתום המבחן יש להגיש את שאלון זה בלבד.

מבנה הבחינה:

- **חלק א' [76 נק']:** 3 שאלות פתוחות.
- **חלק ב' [24 נק']:** 4 שאלות סגורות (אמריקאיות) [כל אחת 6 נק'].

בהצלחה!

חלק א' – שאלות פתוחות [76 נק']

['נק'] Multi-Layer Perceptron (MLP) שאלה 1:

 (± 1) נתון דאטה דו-ממדי עם סיווגים בינאריים

ים אמוגדרת: $F:\mathbb{R}^2 o (0,1)$ עם שתי שכבות ליניאריות בתור פונקציה שתי שכבות ליניאריות נבנה רשת

$$_{0}F(x_{1},x_{2}) = \sigma(w_{5} \cdot \text{ReLU}(w_{1}x_{1} + w_{2}x_{2} + b_{1}) + w_{6} \cdot \text{ReLU}(w_{3}x_{1} + w_{4}x_{2} + b_{2}) + b_{3})$$

 $ext{ReLU}(z) = \left\{egin{array}{ll} 0, \ z \leq 0 \\ z, \ z > 0 \end{array}
ight.$ היא האקטיבציה היא $w_1, \dots, w_6, b_1, b_2, b_3 \in \mathbb{R}$ כאשר $\sigma(z) = rac{1}{1+\exp\{-z\}}$.

נכין את הרשת לאימון.

נשים לב שהרשת מחזירה הסתברות ובסעיפים הבאים נשתמש ב-Negative-log-likelihood-loss המוגדר בתור:

$$\ell(\underbrace{x}_{\in\{0,1\}^2},\underbrace{y}_{\in\{0,1\}}) = -y \ln(F(x_1,x_2)) - (1-y) \ln(1-F(x_1,x_2))$$

. $\frac{\partial \ell}{\partial F}$ א. [2 נקי] חשבו את הנגזרת החלקית

תשובה סופית (לרשותכם טיוטה בסוף הגיליון): $\frac{\partial \ell(x,y)}{\partial F} =$

ב. [2 נק'] כָּתְבוּ פונקציה שמהווה <u>subgradient</u> לפונקציית ה-ReLU.

תשובה סופית (לרשותכם טיוטה בסוף הגיליון): $\operatorname{ReLU}'(z) =$

לשם הפשטות, נגדיר שלושה סימוני עזר:

$$F(x_1, x_2) = \sigma(\underbrace{w_5 \cdot \text{ReLU}(w_1 x_1 + w_2 x_2 + b_1)}_{\triangleq a_3} + \underbrace{w_6 \cdot \text{ReLU}(w_3 x_1 + w_4 x_2 + b_2)}_{\triangleq a_3} + \underbrace{b_3}_{\triangleq a_3})$$

לשימושכם בהמשך, להלן כמה נגזרות חלקיות מהשכבה הראשונה:

$\frac{\partial a_3}{\partial w_1} = w_5 \cdot \text{ReLU}'(a_1) \cdot x_1$	$\frac{\partial a_3}{\partial w_2} = w_5 \cdot \text{ReLU}'(a_1) \cdot x_2$	$\frac{\partial a_3}{\partial w_3} = w_6 \cdot \text{ReLU}'(a_2) \cdot x_1$	$\frac{\partial a_3}{\partial w_4} = w_6 \cdot \text{ReLU}'(a_2) \cdot x_2$
$\frac{\partial a_3}{\partial b_1} = w_5 \cdot \text{ReLU}'(a_1)$	$\frac{\partial a_3}{\partial b_2} = w_6 \cdot \text{ReLU}'(a_2)$		

$\frac{\partial a_3}{\partial w_5} = \text{ReLU}(a_1)$	$\frac{\partial a_3}{\partial w_6} = \text{ReLU}(a_2)$	$\frac{\partial a_3}{\partial b_3} = 1$
--	--	---

ומהשכבה השנייה:

ג. $(\frac{\partial \ell(x,y)}{\partial F})$ את הנגזרת החלקית שימו לב שכבר חישבנו את (שימו לב ב $\frac{\partial \ell}{\partial a_3}$). $(\frac{d}{dz}\sigma(z)=\sigma(z)(1-\sigma(z))$ היא הסיגמואיד היא $(\frac{d}{dz}\sigma(z)=\sigma(z)(1-\sigma(z))$

	תשובה סופית:
$\frac{\partial \ell(x,y)}{\partial a_3} =$	

שני הסעיפים הבאים מדגימים **בעיה** שיכולה לקרות בזמן אימון עם ReLU.

.
$$w_1 = \cdots = w_6 = 0$$
, $b_1 = b_2 = b_3 = -1$ ביניח שהפרמטרים מאותחלים באופן הבא: $\eta = 1$ עם גודל צעד (x,y) עם גודל צעד פי דוגמה ביחיד לפי דוגמה ((x,y)) עם גודל צעד פרמטרים אחרי צעד gradient descent מלאו את התשובות הסופיות בטבלאות.

 a_1, a_2, a_3 - אבל לא ב(x, y)- אבל היות להיות להיות יכולות להיות יכולות להיות שימו לב

. מספר קבוע מפורש, מבלי לחשב את ערכם במחשבון $c\in\mathbb{R}$ מספר כאשר $\sigma(c)$ מותר להשאיר ביטויים כמו

First layer

Parameter	Value
w_1	
w_2	
w_3	
W_4	
b_1	
b_2	

Second layer

Parameter	Value
w_5	
<i>w</i> ₆	
b_3	

.(qualitative) ענו בקצרה ובאופן איכותי (לפי אותה דוגמה (x,y) ואותו $T \geq 2$ צעדי גרדיינט (לפי אותה דוגמה $T \geq 2$ צעדי גרדיינט (לפי אותה דוגמה לפי אותו $T \geq 2$

תשובה סופית (לרשותכם טיוטה בסוף הגיליון):

ו. [6] נק'] אילו מפונקציות האקטיבציה הבאות ימנעו את הבעיה שהדגמנו בסעיפים הקודמים (עבור אתחול זהה)? סמנו את $\underline{\dot{c}}$ ל האפשרויות המתאימות.

שאלה 2: מסווגים ליניאריים [20 נק']

 (± 1) בינאריים סיווגים עם אם $\{(\pmb{x}_i, y_i)\}_{i=1}^m$ נתון דאטה dנתון נתון

				קצר:	תשובה והסבר
			ומוגנית.	יד ליניארית ה	ון: הדאטה פו
ז <u>סופית</u> (משמע ∞ > ₂	עם נורמו $oldsymbol{w}^* \in \mathbb{R}^d$	<u>אופטימלי</u> כלשהו	רה קיים פיתרון <u>י</u>	ו: לבעיה שהוגז	כיחו / הפריכו
					תשובה:

- .argmin $\left\{ \frac{1}{m} \sum_{i=1}^m \ln \left(\frac{1}{1 + \exp\{-y_i w^\mathsf{T} x_i\}} \right) \right\}$ ב. (ללא רגולריזציה): Log. loss ונגדיר את הבעיה הקמורה (ללא רגולריזציה):
- . עבור דוגמה כלשהי (x_i, y_i), האם הפונקציה (בקצרה $\ln\left(\frac{1}{1+\exp\{-y_i w^{\mathsf{T}} x_i\}}\right)$ האם הפונקציה (נמקו בקצרה).

.ii. נתון: הדאטה פריד ליניארית הומוגנית.

 $\|oldsymbol{w}^\star\|_2 < \infty$ עם נורמה סופית (משמע שיים פיתרון אופטימלי כלשהו שהוגדרה קיים פיתרון אופטימלי עם נורמה $oldsymbol{w}^\star \in \mathbb{R}^d$

תשובה:

(נק'] 30] Kernel SVM שאלה 3

- $K: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ כלשהי Kernel עם סיווגים בינאריים (± 1). נתונה פונקציית $\{(x_i,y_i)\}_{i=1}^m$ א. צוות מחקר פתר שתי בעיות אופטימיזציה שלמדנו:
 - $\pmb{\alpha} \in \mathbb{R}^m_+$ נסמן את וקטור המשתנים הדואליים שנלמדו ניסמן. raw features- לפי ה-Dual Linear SVM (i)
 - $\pmb{\alpha}' \in \mathbb{R}^m_+$ לפי פונקציית הקרנל K. נסמן את וקטור המשתנים הדואליים שנלמדו בתור Dual Kernel SVM (ii)

support vectors נתון שבשני המקרים נמצאו פתרונות שמשתמשים בְּר $[\log m]$ וקטורים בתור משמעה פתרונות lpha,lpha' יש בדיוק $[\log m]$ כניסות שאינן lpha).

בזמן מבחן (לאחר האימון) כשמקבלים דוגמה חדשה לסיווג $x \in \mathbb{R}^d$, כללי ההחלטה של המודלים הינם:

Kernel SVM

Linear SVM

$$h_{\alpha'}(x) = \operatorname{sign}\left(\sum_{i=1}^{m} \alpha'_i y_i K(x_i, x)\right)$$
 $h_{\alpha}(x) = \operatorname{sign}\left(\sum_{i=1}^{m} \alpha_i y_i x_i^{\mathsf{T}} x\right)$

- (i) בזמן המבחן, מה סיבוכיות <u>המקום</u> המינימלית שנדרשת עבור כלל ההחלטה של Linear SVM? סמנו והסבירו בקצרה.
 - $\mathcal{O}(m^2)$.e

 $\mathcal{O}(\log(m) \cdot d)$.c

 $\mathcal{O}(d)$.a

 $\mathcal{O}(d^2)$.f

 $\mathcal{O}(m \cdot d)$.d

 $\mathcal{O}(m)$.b

		הסבר <u>תמציתי</u> :

- (ii) בזמן המבחן, מה סיבוכיות המקום המינימלית שנדרשת עבור כלל ההחלטה של Kernel SVM (ללא הנחות על הקרנל)?
 - $\mathcal{O}(m^2)$.e

 $\mathcal{O}(\log(m) \cdot d)$.c

 $\mathcal{O}(d)$.a

 $\mathcal{O}(d^2)$.f

 $\mathcal{O}(m \cdot d)$.d

 $\mathcal{O}(m)$.b

הטבו <u>ונמציוני</u> :

 $.\sigma^2
ightarrow \infty$ בגבול RBF-Kernel SVM בגבול ההחלטה של כלל ההתנהגות בגבול את ההתנהגות של בלל באבול באבול באבול

<u>ניתן להניח:</u>

- $\|oldsymbol{lpha}'\|_2 \leq c_1$ כך שמתקיים $\infty > c_1 > 0$ בשמע, קיים חסום. משמע, הדואליים חסום. מ $oldsymbol{lpha}' \in \mathbb{R}_+^m$ ווקטור המקדמים
 - $\|x\|_2 \leq c_2$ מתקיים $\forall x \in \mathcal{X}$ -שֶּׁ כך שֶּׁ- $\infty > c_2 > 0$ מתקיים. משמע, קיים •

. $\lim_{\sigma^2 o \infty} h_{lpha'}(\pmb{x}) = \lim_{\sigma^2 o \infty} \mathrm{sign}(\sum_{i=1}^m \alpha_i' y_i K(\pmb{x}_i, \pmb{x}))$ חשבו את הגבול

$$\lim_{\sigma^2 \to \infty} \mathrm{sign}(\sum_{i=1}^m \alpha_i' y_i K(\pmb{x}_i, \pmb{x})) = \mathrm{sign}\left(\lim_{\sigma^2 \to \infty} (\sum_{i=1}^m \alpha_i' y_i K(\pmb{x}_i, \pmb{x}))\right)$$
 רמז: כאן הגבול מקיים

תשובה:

ג. (± 1) נתונה התפלגות \mathcal{D} כלשהי על דוגמאות d-ממדיות חסומות (נניח $1 \leq 2$: $\|x\|_2 \leq 1$) וסיווגים בינאריים (t ג. t בינאריים t נתונה התפלגות מאוזנת כך שמתקיים t שמתקיים t בינאריים t מתאימים. וידוע שההתפלגות מאוזנת כך שמתקיים t שמתקיים t בינאריים t בינאר

דוגמים 200 דוגמאות אימון ומאמנים עליהן חמישה מודלים שונים. לפניכם טבלה עם תוצאות האימון וההכללה.

(ה)	(T)	(λ)	(ב)	(א)	דיוק / מודל
100%	100%	89%	92%	53%	אימון
84%	23%	50%	89%	50%	הכללה

 σ^2 עם ערכי σ^2 קיצוניים מאוד: RBF-Kernel SVM מבין חמשת המודלים שנלמדו, שניים הם מודלי

. אילו? (יצאה הבהרה בזמן הבחינה שלצורך השאלה, ערכי σ^2 המדוברים שואפים לאינסוף ולאפס)

 $\forall i: \ \alpha_i' \in [0.1, 10]$ שנלמד מקיים $\alpha' \in \mathbb{R}_+^m$ שנלמד מקיים המודלים האלה הווקטור הדואלי $\alpha_i' \in [0.1, 10]$ שניחו שבשני המודלים האלה הווקטור הדואלי $\alpha_i' \in [0.1, 10]$ שניחות שביר ולא במקרי קצה. מדובר בניתוח <u>אנליטי,</u> לכן הניחו שאין שגיאות נומריות.

- (ה) (ד) (ג) (ב) (א) איזו עמודה מתאימה למודל RBF עם $\sigma^2 = 10^6$ עם .i
- (ה) (ד) (ג) (ב) (א) איזו עמודה מתאימה למודל RBF עם $\sigma^2 = 10^{-6}$ עם .ii

הסעיף הבא בלתי תלוי בסעיפים הקודמים.

 $oldsymbol{w} \in \mathbb{R}^d$ נתונה נקודה

$$K(\pmb{u},\pmb{v}) = rac{1}{2}(\|\pmb{u}-\pmb{w}\|^2 + \|\pmb{v}-\pmb{w}\|^2 - \|\pmb{u}-\pmb{v}\|^2)$$
 בתור $K:\left(\mathbb{R}^d \times \mathbb{R}^d\right) \to \mathbb{R}$ נגדיר את הפונקציה

ד. $[7 \, \text{נק'}]$ הוכיחו שהפונקציה K מהווה קרנל חוקי.

 $K(\pmb{u},\pmb{v})=\langle \phi(\pmb{u}),\phi(\pmb{v})
angle$ שמתקיים $\phi\colon\mathbb{R}^d o\mathbb{R}^p$ עשו זאת ע"י הגדרה ברורה של פונקציית מיפוי p=d במז: מומלץ להגדיר מיפוי שמקיים

 p = a <u>נו</u> . נוונולץ לווגריו נויפוי שנוקיים.
ר תשובה (לרשותכם טיוטה בסוף הגיליון):

חלק ב' – שאלות רב-ברירה [24 נק']

בשאלות הבאות סמנו את התשובות המתאימות (לפי ההוראות). בחלק זה אין צורך לכתוב הסברים.

 \mathcal{X} אם לקת כלשהי \mathcal{H} מעל $\mathcal{X}\subseteq\mathbb{R}^d$ ומחלקת היפותזות כלשהי $\mathcal{X}\subseteq\mathbb{R}^d$ א.

 $\mathcal{X}' \subset \mathcal{X}$ בנוסף, נתונה תת-קבוצה

 $: \mathcal{X}'$ גגדיר את מחלקת ההיפותזות Q על ידי **צמצום תחום ההגדרה** של ההיפותזות ב- \mathcal{H} לתת-הקבוצה

$$.\,\mathcal{Q} = \{\,q_h \triangleq h|_{\mathcal{X}'} \mid h \in \mathcal{H}\,\}, \text{ where } q_h(x) = \left\{\begin{matrix} h(x), & x \in \mathcal{X}' \\ \text{undefined}, & x \notin \mathcal{X}' \end{matrix}\right.$$

סמנו את הטענה הנכונה.

- $VCdim(\mathcal{H}) > VCdim(\mathcal{Q})$ וייתכנו מקרים שבהם VCdim(\mathcal{H}) \geq VCdim(\mathcal{Q}) מתקיים בהכרח.
- $VCdim(\mathcal{H}) < VCdim(\mathcal{Q})$ וייתכנו מקרים שבהם VCdim(\mathcal{H}) $\leq VCdim(\mathcal{Q})$.b
 - $VCdim(\mathcal{H}) = VCdim(\mathcal{Q})$ מתקיים בהכרח.
 - d. כל הטענות הקודמות שגויות.

.**Feature selection**- ב. [6 נק'] סמנו את <u>כ</u>ל הטענות הנכונות ביחס ל

- .data imputation-יש להפעיל לפני שלב ה (Sequential feature selection למשל). Wrapper שיטות
- .data normalization (למשל Wrapper) יש להפעיל <u>לפני</u> שלב ה-Sequential feature selection).
- .c בבעיות סיווג: לפני האימון, ניתן להסיר כל פיצ'ר שיש קורלציה 0 בינו לבין ה-target variable, מבלי לפגוע .c בביצועים של אלגוריתמי למידה על סֶט האימון.
 - .d נתון עץ החלטה כלשהו בעומק L (מספר הקשתות המקסימלי מהשורש לעלה כלשהו).

כפי שלמדנו, כל צומת מִסַוָּג לשתי אפשרויות בעזרת threshold על פיצ'ר אחד.

. פיצ'רים (2L-1) אזי, העץ כולו משתמש לכל היותר ב-

.e מאמנים מסווג בסיס במשך T איטרציות. AdaBoost מאמנים מסווג בסיס במשך איטרציות. פרים. אזי, המסווג ה"חזק" שמתקבל משתמש לכל היותר ב-T פיצ'רים.

 \mathcal{C} חמוגדרות מעל מעל המוגדרות $f,g \colon \mathcal{C} \to \mathbb{R}$ המורות שתי פונקציות פונקציות המוגדרות ל

סמנו את <u>כֹּל</u> הטענות הנכונות בהכרח.

- .a הפונקציה h(z) = f(z) + g(z) הינה קמורה.
- הינה קמורה. $h(z) = \max\{f(z), g(z)\}$ הינה הפונקציה.
- הינה קמורה. $h(z) = \min\{f(z), g(z)\}$ הינה הפונקציה.
 - .d הינה קמורה. h(z) = f(g(z)) הינה הפונקציה.
- $a,b \in \mathbb{R}$ הינה קמורה לכל h(z) = af(z) + b .e

$$\underbrace{\operatorname{argmin}_{\boldsymbol{w} \in \mathbb{R}^d} \frac{1}{m} \sum_{i=1}^m \ell_{\operatorname{hinge}}(y_i \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i)}_{\triangleq P_{\operatorname{hinge}}} \quad , \quad \underbrace{\operatorname{argmin}_{\boldsymbol{w} \in \mathbb{R}^d} \frac{1}{m} \sum_{i=1}^m \ell_{\operatorname{ramp}}(y_i \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i)}_{\triangleq P_{\operatorname{ramp}}}$$

סמנו את $\underline{\dot{e}}$ ל הטענות הנכונות (השאלה עוסקת במקרה הסביר ולא במקרי קצה).

- P_{ramp} מאשר הבעיה outliers- צפויה להיות יותר אפויה להיות צפויה 2 צפויה מאשר בעיה .a
 - . אינה קמורה אילו הבעיה אינה קמורה P_{hinge} הבעיה b
- . עבור הבעיה $P_{
 m hinge}$, נקודה בה הנגזרת מוגדרת ומתאפסת היא מינימום גלובאלי. ${
 m c}$
- . עבור הבעיה P_{ramp} , נקודה בה הנגזרת מוגדרת ומתאפסת היא מינימום גלובאלי.
- .0 הוא P_{ramp} הוא המינימום הגלובאלי של אור המינימום הוא חוא P_{hinge} הוא פרב המינימום הגלובאלי של פרב .e

מסגרת נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):

מסגרת נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):

/	$\overline{}$
•	

מסגרת נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):