MATHEMATICS FOR PROGRAMMING

RECAP

- GCD and LCM
- Euclidean algorithm for GCD (and LCM too)
- Factorials and a combinatorial problem
- Matrices and an application of them
- Power and roots
- Sets and set operations

BASIC GEOMETRY

- Points and lines
- Coordinate System
- Angles
- Some geometric shapes

POINT

- Just a dot
- Location only
- No length, width, shape, size

LINE

- Two different points
- Connect them
- Take the straight path
 - Also the shortest
- This is called line **segment**
 - Finite length
- *Line*: extended in both ends
 - Infinite length
- Ray: extended in one end
 - Infinite length

ANGLE

- Between two rays extending from the same point
- Circular arc to annotate
- Full rotation = 360 degrees

ANGLE

COORDINATE SYSTEM

- How do you navigate in real life?
 - Reference point, directions, distance etc
- How to identify a point in space?
 - Coordinate System!
 - Remember number line? One-dimensional coordinate system.

COORDINATE SYSTEM

- 2D coordinate system
- Take two perpendicular lines
 - Right angle / 90 degrees
 - Horizontal: X axis
 - Vertical: Y axis
- Intersecting point: Origin (0,0)
- Any point can be identified as a pair of numbers
 - -(x,y)
 - Where is (-2, 5)?

COORDINATE SYSTEM

- How about 3D coordinate system?
 - -(x,y,z)
 - Hard to visualize on paper
 - But easier in real life

TRIANGLE

- 3 points and 3 line segments
- Sum of three angles = 180°
- Area = $\frac{1}{2} * base * height$

TRIANGLE

- Based on equality between sides
 - Equilateral
 - Isosceles
 - Scalene

SQUARE

- 4 points and 4 line segments
- All sides are equal
- Each angle is 90°
- Sum of four angles is 360°
- Area: (side_length)²
- Length of **diagonal**: $\sqrt{2} \times (side_length)$

PYTHAGOREAN THEOREM

Pythagorean theorem

$$-c^2 = a^2 + b^2$$

- Right-angle triangle and square
- Example:

•
$$5^2 = 3^2 + 4^2$$

•
$$13^2 = 5^2 + 12^2$$

DISTANCE BETWEEN TWO POINTS

- Can you apply Pythagorean Theorem to get distance between A and B?
- $d_{AB} = \sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$

RECTANGLE

- 4 points and 4 line segments
- Opposite sides are equal
- Each angle is 90°
- Sum of four angles is 360°
- Area: $length \times height$

CIRCLE

- Center
- Radius
- Diameter
- Area = $\pi \times (radius)^2$

SERIES

- Sequence: List of numbers with some order or pattern
 - 1,3,5,7,9
 - 1,1,2,3,5,8,13, ...
- Series: Sum of elements in a sequence

$$S_1 = 1 + 3 + 5 + 7 + 9$$

 $S_2 = 1 + 1 + 2 + 3 + 5 + 8 + 13 + \cdots$

- Finite vs Infinite series
- Arithmetic vs Geometric Series

$$1+6+11+16+21+\cdots$$

 $2+6+18+54+\cdots$

1+2+3+...+N=2

•
$$1+2+3+4+5=?$$

• Let,

$$S = 1 + 2 + 3 + 4 + 5$$

 $S = 5 + 4 + 3 + 2 + 1$

$$(+), 2S = 6 + 6 + 6 + 6 + 6$$

 $2S = 5 \times 6$
 $S = 15$

1+2+3+...+N=2

•
$$1 + 2 + 3 + \cdots + N = ?$$

• Let,

$$S = 1 + 2 + 3 + \dots + N$$

$$S = N + (N - 1) + (N - 2) + \dots + 1$$

(+),
$$2S = (N + 1) + (N + 1) + (N + 1) + \dots + (N + 1)$$

$$2S = N \times (N + 1)$$

$$S = \frac{N \times (N+1)}{2}$$

SERIES (FINITE SUM)

Arithmetic series

$$S = 2 + 5 + 8 + \cdots$$

Find the 100^{th} number in this series.

Find the sum of first 100 numbers.

SERIES (FINITE SUM)

• n^{th} term in arithmetic series: $a + (n-1) \times d$

$$\rightarrow 100^{th} \text{ number} = 2 + 99 \times 3 = 299$$

• Sum of first n terms: $\frac{n}{2} \{2a + (n-1) \times d\}$

$$\rightarrow$$
 sum of first 100 numbers = $\frac{100}{2}$ {2×2 + (100 - 1)×3} = 15050

SUMMARY

- Basic Geometry
 - Points Lines
 - Rectangle Square
 - Circle
- Coordinate system
 - 2D and 3D– Distance between points
- Sequence and Series
- Finding sum of series

PRACTICE DAY

- Find the straight line (shortest) distance between two points in a 3-dimensional space.
 - Points: A(-10,23,5) & B(31,-11,76)
- Find the area of the green region if the side length of the square is 10
- Find the sum of first n odd numbers. Calculate for n=10,100,1000

