UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2023/2 Prova da área IIB

1 - 4	5	6	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- $\bullet\,$ Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$.

1.	Linearidade	$\mathcal{F}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{F}\left\{f(t)\right\} + \beta \mathcal{F}\left\{g(t)\right\}$	
2.	Transformada da derivada	Se $\lim_{t \to \pm \infty} f(t) = 0$, então $\mathcal{F} \{f'(t)\} = iw\mathcal{F} \{f(t)\}$	
		Se $\lim_{t \to \pm \infty} f(t) = \lim_{t \to \pm \infty} f'(t) = 0$, então $\mathcal{F}\left\{f''(t)\right\} = -w^2 \mathcal{F}\left\{f(t)\right\}$	
3.	Deslocamento no eixo \boldsymbol{w}	$\mathcal{F}\left\{e^{at}f(t)\right\} = F(w+ia)$	
4.	Deslocamento no eixo \boldsymbol{t}	$\mathcal{F}\left\{f(t-a)\right\} = e^{-iaw}F(w)$	
5.	Transformada da integral	Se $F(0) = 0$, então $\mathcal{F}\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{F(w)}{iw}$	
6.	Teorema da modulação	$\mathcal{F}\{f(t)\cos(w_0t)\} = \frac{1}{2}F(w - w_0) + \frac{1}{2}F(w + w_0)$	
7.	Teorema da Convolução	$\mathcal{F}\left\{(f*g)(t)\right\} = F(w)G(w), \text{ onde } (f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$	
		$(F*G)(w) = 2\pi \mathcal{F}\{f(t)g(t)\}$	
8.	Conjugação	$\overline{F(w)} = F(-w)$	
9.	Inversão temporal	$\mathcal{F}\{f(-t)\} = F(-w)$	
10.	Simetria ou dualidade	$f(-w) = \frac{1}{2\pi} \mathcal{F}\left\{F(t)\right\}$	
11.	Mudança de escala	$\mathcal{F}\left\{f(at)\right\} = \frac{1}{ a } F\left(\frac{w}{a}\right), \qquad a \neq 0$	
12.	Teorema da Parseval	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) ^2 dw$	
13.	Teorema da Parseval para Série de Fourier	$\frac{1}{T} \int_0^T f(t) ^2 dt = \sum_{n = -\infty}^{\infty} C_n ^2$	

Séries e transformadas	de Fourier:	
	Forma trigonométrica	Forma exponencial
Série de Fourier	$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos(w_n t) + b_n \sin(w_n t) \right]$	$f(t) = \sum_{n = -\infty}^{\infty} C_n e^{iw_n t},$
	onde $w_n = \frac{2\pi n}{T}$, T é o período de $f(t)$	onde $C_n = \frac{a_n - ib_n}{2}$
	$a_0 = \frac{2}{T} \int_0^T f(t)dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t)dt,$	
	$a_n = \frac{2}{T} \int_0^T f(t) \cos(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(w_n t) dt,$	
	$b_n = \frac{2}{T} \int_0^T f(t) \sin(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(w_n t) dt$	
Transformada de Fourier	$f(t) = \frac{1}{\pi} \int_0^\infty \left(A(w) \cos(wt) + B(w) \sin(wt) \right) dw, \text{ para } f(t) \text{ real},$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w)e^{iwt}dw,$
de l'ourier	onde $A(w) = \int_{-\infty}^{\infty} f(t) \cos(wt) dt$ e $B(w) = \int_{-\infty}^{\infty} f(t) \sin(wt) dt$	onde $F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt}dt$

Tabela de integrais definidas:

Tabela de integrais definidas:	
1. $\int_0^\infty e^{-ax} \cos(mx) dx = \frac{a}{a^2 + m^2} \qquad (a > 0)$	2. $\int_0^\infty e^{-ax} \sin(mx) dx = \frac{m}{a^2 + m^2} \qquad (a > 0)$
3. $\int_0^\infty \frac{\cos(mx)}{a^2 + x^2} dx = \frac{\pi}{2a} e^{-ma} \qquad (a > 0, \ m \ge 0)$	4. $\int_0^\infty \frac{x \sin(mx)}{a^2 + x^2} dx = \frac{\pi}{2} e^{-ma} \qquad (a \ge 0, \ m > 0)$
5. $ \int_0^\infty \frac{\sin(mx)\cos(nx)}{x} dx = \begin{cases} \frac{\pi}{2}, & n < m \\ \frac{\pi}{4}, & n = m, & (m > 0, \\ 0, & n > m \end{cases} $	6. $ \int_0^\infty \frac{\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{2}, & m > 0\\ 0, & m = 0\\ -\frac{\pi}{2}, & m < 0 \end{cases} $
7. $\int_0^\infty e^{-r^2 x^2} dx = \frac{\sqrt{\pi}}{2r} \qquad (r > 0)$	8. $\int_0^\infty e^{-a^2 x^2} \cos(mx) dx = \frac{\sqrt{\pi}}{2a} e^{-\frac{m^2}{4a^2}} \qquad (a > 0)$
9. $\int_0^\infty x e^{-ax} \sin(mx) dx = \frac{2am}{(a^2 + m^2)^2} \qquad (a > 0)$	10. $\int_0^\infty e^{-ax} \sin(mx) \cos(nx) dx =$
	$=\frac{m(a^2+m^2-n^2)}{(a^2+(m-n)^2)(a^2+(m+n)^2)} (a>0)$
11. $\int_0^\infty x e^{-ax} \cos(mx) dx = \frac{a^2 - m^2}{(a^2 + m^2)^2} \qquad (a > 0)$	12. $\int_0^\infty \frac{\cos(mx)}{x^4 + 4a^4} dx = \frac{\pi}{8a^3} e^{-ma} (\sin(ma) + \cos(ma))$
13. $\int_0^\infty \frac{\sin^2(mx)}{x^2} dx = m \frac{\pi}{2}$	14. $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$
15. $ \int_0^\infty \frac{\sin^2(ax)\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{4}, & (0 < m < 2a) \\ \frac{\pi}{8}, & (0 < 2a = m) \\ 0, & (0 < 2a < m) \end{cases} $	16. $ \int_0^\infty \frac{\sin(mx)\sin(nx)}{x^2} dx = \begin{cases} \frac{\pi m}{2}, & (0 < m \le n) \\ \frac{\pi n}{2}, & (0 < n \le m) \end{cases} $
17. $\int_0^\infty x^2 e^{-ax} \operatorname{sen}(mx) dx = \frac{2m(3a^2 - m^2)}{(a^2 + m^2)^3} \qquad (a > 0)$	18. $\int_0^\infty x^2 e^{-ax} \cos(mx) dx = \frac{2a(a^2 - 3m^2)}{(a^2 + m^2)^3} (a > 0)$
19. $\int_0^\infty \frac{\cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a^3} (1 + ma)e^{-ma} (a > 0, m \ge 0)$	20. $\int_0^\infty \frac{x \sin(mx)}{(a^2 + x^2)^2} dx = \frac{\pi m}{4a} e^{-ma} (a > 0, \ m > 0)$
21. $\int_0^\infty \frac{x^2 \cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a} (1 - ma) e^{-ma} (a > 0, m \ge 0)$	22. $\int_0^\infty xe^{-a^2x^2}\sin(mx)dx = \frac{m\sqrt{\pi}}{4a^3}e^{-\frac{m^2}{4a^2}} (a>0)$

Frequências das notas musicais em hertz:

Nota \ Escala	2	3	4	5	6	7
Dó	65,41	130,8	261,6	523,3	1047	2093
Dó ‡	69,30	138,6	277,2	554,4	1109	2217
Ré	73,42	146,8	293,7	587,3	1175	2349
Ré #	77,78	155,6	311,1	622,3	1245	2489
Mi	82,41	164,8	329,6	659,3	1319	2637
Fá	87,31	174,6	349,2	698,5	1397	2794
Fá ‡	92,50	185,0	370,0	740,0	1480	2960
Sol	98,00	196,0	392,0	784,0	1568	3136
Sol #	103,8	207,7	415,3	830,6	1661	3322
Lá	110,0	220,0	440,0	880,0	1760	3520
Lá ‡	116,5	233,1	466,2	932,3	1865	3729
Si	123,5	246,9	493,9	987,8	1976	3951

Identidades Trigonométricas:

$$\cos(x)\cos(y) = \frac{\cos(x+y) + \cos(x-y)}{2}$$
$$\sin(x)\sin(y) = \frac{\cos(x-y) - \cos(x+y)}{2}$$
$$\sin(x)\cos(y) = \frac{\sin(x+y) + \sin(x-y)}{2}$$

Integrais:

$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

Questão 1.(0.8pt) Sobre os coeficientes da Série de Fourier $f = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(w_n t) + b_n \sin(w_n t)$ onde f representada ao lado, tem menor período T = 2

onde f, representada ao lado, tem menor período T=2, é correto:

()
$$a_0 = \frac{a+b}{2}$$
, $b_n = 0$ para todo $n \ge 1$

()
$$a_0 = \frac{a-b}{2}$$
, $a_n = 0$ para todo $n \ge 1$

()
$$a_0 = a + b$$
, $b_n = 0$ para todo $n \ge 1$

()
$$a_0 = a - b$$
, $b_n = 0$ para todo $n \ge 1$

()
$$a_0 = 0, a_n = 0$$
 para todo $n \ge 1$

Questão 2.(3.2pt) Considere $f(t) = -2\cos^2(t) + \sin(2t) + \sin(4t)$ e sua expansão em Série de Fourier (forma exponencial) $f = \sum_{n=-\infty}^{\infty} C_n e^{iw_n t}$ em que w_1 é a frequência fundamental, $i^2 = -1$, é correto:

Frequência fundamental

$$() w_1 = 1/2$$

$$(\)\ w_1=1$$

$$() w_1 = 2$$

$$(\)\ w_1 = 3$$

$$() w_1 = 4$$

Módulo de C_2

$$(\)\ |C_2| = \frac{\sqrt{3}}{2}$$

$$(\) |C_2| = 1/2$$

$$(\)\ |C_2|=1$$

$$(\)\ |C_2| = \sqrt{2}$$

$$(\)\ |C_2|=2$$

() nenhuma das anteriores está correta

Potência média $\frac{1}{T} \int_0^T |f(t)|^2 dt$

Fase (argumento) de
$$C_2$$

()
$$\phi_2 = 3\pi/4$$

()
$$\phi_2 = \pi/2$$

()
$$\phi_2 = \pi/4$$

()
$$\phi_2 = -3\pi/4$$

()
$$\phi_2 = -\pi/2$$

$$(\) \bar{P}_f = 1$$

$$(\)\ \bar{P}_f = 1/2$$

$$(\)\ \bar{P}_f = 3/2$$

$$(\)\ \bar{P}_f = 5/2$$

()
$$\bar{P}_f = 2$$

Questão 3. (0.8pt) Considere $f(t) = te^{-|t|}$. Sobre a transformada de Fourier F(w) de f(t), é correto:

$$(\) F(w) = \frac{-4iw}{1+w^2}$$

$$(\)\ F(w) = \frac{-2iw}{1+w^2}$$

()
$$F(w) = \frac{-2w}{(1+w^2)^2}$$

()
$$F(w) = \frac{1 - w^2}{(1 + w^2)^2}$$

() nenhuma das alternativas anteriores

Questão 4. (1.2pt) Considere a função $f(t) = \cos(4\pi t) + 2\sin^2(\pi t)$. Sobre o diagrama de espectro de módulo (primeira coluna) e diagrama de espectro de fase, estão corretos:

() nenhuma das alternativas anteriores

() nenhuma das alternativas anteriores

${f Quest ilde{a}o}$	5	Considere	o	problema
----------------------	---	-----------	---	----------

$$\begin{cases} u_{tt} - 4u_{xx} = 0, \text{ para todos } x \in \mathbb{R}, t > 0 \\ u(x,0) = f(x), x \in \mathbb{R} \\ u_t(x,0) = 0, x \in \mathbb{R} \end{cases}$$

$\mathbf{B}.(0.6\mathrm{pt})$ Obtenha e resolva equação diferencial ordinária em t satisfeita pela transformada de	5A. (0.8pt) Obtenha a transformada de Fourier $F(\cdot)$ de $f(x) = \frac{1}{4+x^2}, x \in \mathbb{R}$
	$4 + x^2$ $\mathbf{5B.}(0.6\text{pt})$ Obtenha e resolva equação diferencial ordinária em t satisfeita pela transformada de Fourier $U(\cdot,t)$ da solução $u(x,t)$, juntamente com sua condição inicial em $t=0$ para qualquer f . $\mathbf{5C.}(0.6\text{pt})$ Obtenha a solução $u(x,t)$ do problema do enunciado para $f(x)$ conforme definida em $\mathbf{5A.}$

Questão 6 Considere o problema
$\begin{cases} u_t - u_{xx} = -u, \text{ para todos } x \in \mathbb{R}, t > 0 \\ u(x, 0) = f(x), x \in \mathbb{R} \end{cases}$
6A. (0.4pt) Obtenha a transformada de Fourier $F(\cdot)$ de $f(x) = 3\delta(x-2), x \in \mathbb{R}$, onde $\delta(\cdot)$ é a Delta de Dirac.
6B. (0.6pt) Obtenha a transformada de Fourier $G(\cdot)$ de $g(x) = e^{-\frac{x^2}{4t}}$, $x \in \mathbb{R}$, $t > 0$ usando (e indicando) as propriedades da tabela de transformadas de Fourier no verso da primeira folha.
6C. (0.6pt) Obtenha e resolva a equação diferencial ordinária satisfeita pela transformada de Fourier $U(\cdot,t)$ da solução $u(x,t)$, juntamente com sua condição inicial em $t=0$, para qualquer f .
6D. (0.4pt) Obtenha a solução $u(x,t)$ do problema do enunciado para $f(x)$ conforme definida em 6A

Bom Trabalho.