Learning Objectives

- Examine very different approaches to forecasting technological change
- Achieve understanding of amount of technological change forecasting that is done
- Achieve understanding of importance of use perspective (and time horizon of interest) on method chosen for technological change forecasting
- Appreciate the multi-dimensional nature of practical technological change forecasting
- Examine technological determinism, construction (social determinism), economic determinism and other approaches

Technological Forecasting Outputs

- Prediction of amount of *future use of a particular embodiment* of technology or abstraction of class of embodiments
- Prediction of *future* industry *revenues* associated with a particular technology
- Prediction of *substitution* timing or what is disappearing
- Prediction of a *technical performance metric* at a future time
- Prediction of social, economic and human change in the future due to technological change

Technological Forecasting Methods

- Quantitative, mathematical projection methods
 - Extrapolation of fits of past data
 - Models from evolutionary algorithms and "Science of Invention" studies (Altshuller et. al.)
- Qualitative methods such as story telling or scenario building
- Market forecasts (future profit value is "predicted" by investment, IPO and patent values at present time)
- Cooperative consensus projections
 - Delphi studies (blind)
 - Convened committees plus review (OTA, NRC, etc.)
- Organizational Hierarchy (and consensus) decision processes

Classes of people interested (at least implicitly) in technological forecasting (?)

- People *deciding about investing* in product development, manufacturing, marketing, hiring, etc. (Business)
- People deciding about investments in infrastructure (Finance)
- People *deciding about buying* a product or service (Consumers)
- People *deciding about societal allocation* (Government)
- People designing cities and infrastructures (planners)
- People *deciding among educational alternatives*, course selection -and teaching alternatives including department startups and course offerings, etc. (students and educators)
- People *deciding about war-fighting strategies* (defense)
- Lots and lots of other *people (everyone* in the technologically developed world?) How might method choice differ?

Technological Forecasting Outputs II

- Prediction of amount of *future use of a particular embodiment* of technology or abstraction of class of embodiments
- Prediction of *future* industry *revenues* associated with a particular technology
- Prediction of *substitution* timing
- Prediction of a *technical performance metric* at a future time
- Prediction of *social, economic and human change* in the future due to technological change

• Issue: Uncertainty and belief in unpredictability of technology

Technological Forecasting Methods II

- Quantitative Trends are more reliable when:
 - data covered are Long term vs. short term

Consecutive maximum cruising speed of U.S. commercial aircraft.

Graph removed for copyright reasons.

Source: Figure 2-2 in Girifalco, L. A. Dynamics of Technological Change. New York, NY:

Chapman & Hall, 1991, p. 58. ISBN: 0442005636.

Successive maximum tractor fuel efficiencies.

Graph removed for copyright reasons.

Source: Figure 2-7 in Girifalco, L. A. Dynamics of Technological Change. New York, NY:

Chapman & Hall, 1991, p. 70. ISBN: 0442005636.

Passenger miles per hour of commercial aircraft (consecutive maximum values).

Graph removed for copyright reasons.

Source: Figure 2-3 in Girifalco, L. A. Dynamics of Technological Change. New York, NY:

Chapman & Hall, 1991, p. 59. ISBN: 0442005636.

Technological Forecasting Methods Ila

- Quantitative Trends are more reliable when:
 - data covered are Long term vs. short term
 - Focus is on General Function vs specific embodiment
- Long-term functional trends are more regular (continuing rise vs. "S" curve usually thought about)
- Variability is real but less significant in long-term trends.

Functional Classification Matrix

Process/Operand	Matter(M)	Energy(E)	Information (I)	Value(V)
Transform or Process	GE	Pilgrim Nuclear	Intel Pentium V	N/A
(1)	Polycarbonate	Power Plant		
	Manufacturing			
	Plant			
Transport or	FedEx Package	US Power Grid	AT&T	Intl Banking
Distribute (2)	Delivery	System	Telecommunicati	System
			on Network	
Store or	Three Gorge	Three Gorge	Boston Public	Banking
House (3)	Dam	Dam	Library (T)	Systems
Exchange or Trade (4)	eBay Trading	Energy Markets	Reuters News	NASDAQ
	System (T)		Agency (T)	Trading
				System (T)
Control or Regulate	Health Care	Atomic Energy	International	US Federal
(5)	System of	Commission	Standards	Reserve (T)
	France		Organization	

Page 11

Information Storage Storage of Information

F.O.M: Mbits/cc

Massachusetts Institute of Technology

Professor C. Magee, 2005 Page 12

Information Transport

Energy Storage

Decision about whether to pursue electricalmechanical hybrids; Ford Motor Company ~1993/5

- When did Ford (and Toyota) *first produce* a modern computer controlled electrical-mechanical hybrid *for sale*?
- 2004 (1998)
- When did research on automotive electrical-mechanical hybrids start?
- 1915 first production versions
- When did Ford (and Toyota) *first have a* modern (computer controlled) working electric –mechanical hybrid *prototype*?
- 1984 (1988)
- What are factors in the x2 difference in speed?
- What role did for forecasting play?

Electrical-mechanical hybrids; ~1993/5, Forecasting (technological and social); for each area discuss Ford and Toyota

- As implemented (Future) Benefit of Hybrid Technology
- Future (at time of implementation) Cost of Fuel
- Future Cost of Hybrid System (variable and investments)
- Future Desirability of Tradeoff to U.S. Consumers
- Probable Profit/Loss from Program
- Value of "Technological Capital" (Know-how) from program
- Alternative (Pure EV) Technical path value
 - Technical Capital
 - Political and Social Capital

Energy Storage

Storage of Energy

FOM: Specific Energy (Wh/kg)

Modified Lead-Acid

NiMH

Li-ion

Li-Polymer Daniell Cell

Weston FlyWheel

- Overall

Technological and other Determinisms

- What does the case suggest about the often derogatory accusations about some that construction or economics or technology or genetics is the overall determinant of social change?
- What does the case suggest about relative care in looking at future social, economic and technological trends or scenarios?
- What might make sense in general for making long-term choices?

Learning Objectives

- Examine very different approaches to forecasting technological change
- Achieve understanding of amount of technological change forecasting that is done
- Achieve understanding of importance of use perspective (and time horizon of interest) on method chosen for technological change forecasting
- Appreciate the multi-dimensional nature of practical technological change forecasting
- Examine technological determinism, construction (social determinism), economic determinism and other approaches

Horsepower to engine weight ratio of reciprocating aircraft engines.

Graph removed for copyright reasons.

Source: Figure 2-1 in Girifalco, L. A. *Dynamics of Technological Change*. New York, NY:

Chapman & Hall, 1991, p. 56. ISBN: 0442005636.

Mechanical efficiency of tractors.

Graph removed for copyright reasons.

Source: Figure 2-8 in Girifalco, L. A. Dynamics of Technological Change. New York, NY:

Chapman & Hall, 1991, p. 71. ISBN: 0442005636.

