

Curso Técnico em Desenvolvimento de Sistema Desenvolvimento de Aplicações Desktop **Prof. José Alberto Matioli**

Prova Diagnóstica Prática de Lógica de Programação

Objetivo desta prova:

Esta disciplina tem como pré-requisito o conhecimento de lógica de programação, conteúdo de outra disciplina da grade curricular dos cursos de técnico em desenvolvimento de sistemas.

Esta avaliação tem como objetivo verificar se o aluno possui o pré-requisito necessário para o bom desenvolvimento desta disciplina de Desenvolvimento de Aplicações Desktop.

Esta avaliação não contará como nota, simplesmente permitirá o encaminhamento do aluno para, se necessário, complementar os requisitos necessários, como por exemplo o encaminhamento ao serviço de monitoria do colégio.

Conteúdo da prova:

- Estrutura sequencial (variáveis, entrada, processamento, saída)
- Estrutura condicional (if-else)
- Estruturas repetitivas (while, for)

Instruções:

- ❖ Tente fazer os exercícios desta prova na linguagem em que você já aprendeu Lógica de Programação (Pascal, C, C++).
- Se você conseguir resolver os exercícios sem maiores problemas, então você não precisa fazer um curso de Lógica de Programação ou procurar o serviço de monitoria.
- Se tiver alguma dificuldade, sugiro fazer um curso de Lógica de Programação e Algoritmos ou mesmo agendar monitorias no colégio.
- ❖ É possível encontrar muitos cursos de Lógica de Programação gratuitos na internet. Uma sugestão é a plataforma Udemy (https://www.udemy.com). Basta acessar a plataforma e procurar por "Lógica de Programação" e no menu Preço escolher Gratuito. Em pesquisa feita em 18/01/2022 foram listados 582, isso mesmo, quinhentos e oitenta e dois, cursos gratuitos de Lógica de Programação.

Curso Técnico em Desenvolvimento de Sistema Desenvolvimento de Aplicações Desktop **Prof. José Alberto Matioli**

PARTE 1: ESTRUTURA SEQUENCIAL

Exercício 1.1:

Fazer um programa para ler o código de uma peça 1, o número de peças 1, o valor unitário de cada peça 1, o código de uma peça 2, o número de peças 2 e o valor unitário de cada peça 2. Calcular e mostrar o valor a ser pago.

Exemplos:

Entrada:	Saída:
12 1 5.30	VALOR A PAGAR: R\$ 15.50
16 2 5.10	

Entrada:	Saída:
13 2 15.30	VALOR A PAGAR: R\$ 51.40
161 4 5.20	

Entrada:	Saída:
1 1 15.10	VALOR A PAGAR: R\$ 30.20
2 1 15.10	

Exercício 1.2:

Faça um programa para ler o valor do raio de um círculo e depois mostrar o valor da área deste círculo, com quatro casas decimais de precisão, conforme exemplo abaixo.

Fórmula: $area = \pi . raio^2$ Considere o valor de $\pi = 3.14159$

Exemplos:

Entrada:	Saída:
2.00	A=12.5664

Entrada:	Saída:
100.64	A=31819.3103

Entrada:	Saída:
150.00	A=70685.7750

Curso Técnico em Desenvolvimento de Sistema Desenvolvimento de Aplicações Desktop **Prof. José Alberto Matioli**

PARTE 2: ESTRUTURA CONDICIONAL

Exercício 2.1:

Com base na tabela de preços ao lado, faça um programa que leia o código de um item e a quantidade deste item. A seguir, calcule e exiba o valor da conta a pagar.

Código	Produto	Preço
1	Cachorro quente	R\$ 16,00
2	Frangão	R\$ 25,00
3	X Bacon	R\$ 20,00
4	Coca cola - lata	R\$ 6,50
5	Suco de laranja - 300 ml	R\$ 8,00

Exemplos:

Entrada:	Saída:
2 2	Total: R\$ 50.00

Entrada:	Saída:
4 2	Total: R\$ 13.00

Exercício 2.2:

Ler os valores dos três coeficientes "a", "b" e "c" de uma equação do segundo grau (ax2 + bx + c = 0). Em seguida mostrar os valores das raízes da equação, conforme exemplo, usando a fórmula de Bhaskara (veja abaixo). Se a equação não possuir raízes (o valor de "a" pode ser zero e o valor de "delta" não pode ser negativo), mostra uma mensagem "Impossível calcular!"

$$x = \frac{-b \pm \sqrt{b^2 - 4.a.c}}{2.a}$$

Exemplos 2.2:

Entrada:	Saída:
10.0 20.1 5.1	X1 = -0.29788
	X2 = -1.71212

Entrada:	Saída:
0.0 20.0 5.0	Impossível calcular!

Entrada:	Saída:
10.3 203.0 5.0	X1 = -0.02466
	X2 = -19.68408

Curso Técnico em Desenvolvimento de Sistema Desenvolvimento de Aplicações Desktop **Prof. José Alberto Matioli**

Entrada:	Saída:
10.0 3.0 5.0	Impossível calcular!

Curso Técnico em Desenvolvimento de Sistema Desenvolvimento de Aplicações Desktop **Prof. José Alberto Matioli**

PARTE 3: ESTRUTURAS REPETITIVAS

Exercício 3.1:

Escreva um programa que repita a leitura de uma senha até que ela seja válida. Para cada leitura de senha incorreta, escreva a mensagem "Senha inválida!". Quando a senha estiver correta deverá ser impresso na tela a mensagem "Acesso permitido!" e o algoritmo encerrado. Considere que a senha correta é "cotil", sem as aspas.

Exemplos:

Entrada:	Saída:
curtil	Senha inválida!
codil	Senha inválida!
comil	Senha inválida!
cotil	Acesso permitido!

Entrada:	Saída:
canil	Senha inválida!
fukfuk	Senha inválida!
cotil	Acesso permitido!

Exercício 3.2:

Fazer um programa que leia um valor inteiro N. Este valor será a quantidade de valores X que serão lidos em seguida. Após ler o N valores X, mostrar na tela quantos dos valores X lidos estão dentro do intervalo [10,10] e quantos estão fora do intervalo. A informações deverão ser mostradas conforme exemplos abaixo, isto é: usar a palavra "in" para dizer que está dentro do intervalo e "out" para dizer que está fora do intervalo.

Exemplos:

Entrada:	Saída:	
5	2 in	
14	3 out	
123		
10		
-25		
14 123 10 -25 32		

Entrada:	Saída:
4	1 in
86 35 20	3 out
35	
20	
7	