

WEBENCH® Design Report

VinMin = 7.0V VinMax = 17.0V Vout = 5.0V Iout = 12.0A Device = LM3150MH/NOPB Topology = Buck Created = 8/22/16 6:20:49 AM BOM Cost = \$6.39 BOM Count = 17 Total Pd = 2.95W

Design: 4493365/25 LM3150MH/NOPB LM3150MH/NOPB 7.0V-17.0V to 5.00V @ 12.0A

My Comments

No comments

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cbst	Taiyo Yuden	EMK212B7474KD-T Series= X7R	Cap= 470.0 nF VDC= 16.0 V IRMS= 0.0 A	1	\$0.02	0805 7 mm ²
2.	Cbyp	AVX	08053C104KAT2A Series= X7R	Cap= 100.0 nF ESR= 280.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
3.	Cff	Kemet	C0805C102K5RACTU Series= X7R	Cap= 1.0 nF ESR= 384.0 mOhm VDC= 50.0 V IRMS= 214.0 mA	1	\$0.01	0805 7 mm ²
4.	Cin	TDK	C3216X5R1E476M160AC Series= X5R	Cap= 47.0 uF ESR= 2.082 mOhm VDC= 25.0 V IRMS= 5.0279 A	3	\$0.35	1206 11 mm ²
5.	Cout	Panasonic	6SVPC330M Series= SVPC	Cap= 330.0 uF ESR= 17.0 mOhm VDC= 6.3 V IRMS= 3.39 A	1	\$0.32	SM_RADIAL_6.3AMM 80 mm ²
6.	Css	Yageo America	CC0805KRX7R9BB153 Series= X7R	Cap= 15.0 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
7.	Cvcc	Taiyo Yuden	EMK212B7105KG-T Series= X7R	Cap= 1.0 uF VDC= 16.0 V IRMS= 0.0 A	1	\$0.02	0805 7 mm ²

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
8. L1	Coilcraft	XAL1010-472MEB	L= 4.7 μH DCR= 5.2 mOhm	1	\$1.71	
						XAL1010 160 mm ²
9. M1	Texas Instruments	CSD16321Q5	VdsMax= 25.0 V IdsMax= 100.0 Amps	1	\$0.69	TRANS_NexFET_Q5 55 mm²
10. M2	Texas Instruments	CSD18509Q5B	VdsMax= 40.0 V IdsMax= 100.0 Amps	1	\$0.89	TRANS_NexFET_Q5B 58 mm²
11. Rfb1	Panasonic	ERJ-6ENF1002V Series= ERJ-6E	Res= 10.0 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
12. Rfb2	Panasonic	ERJ-6ENF7322V Series= ERJ-6E	Res= 73.2 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
13. Rilim	Vishay-Dale	CRCW0805464RFKEA Series= CRCWe3	Res= 464.0 Ohm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
14. Ron	Panasonic	ERJ-6ENF2373V Series= ERJ-6E	Res= 237.0 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
15. U1	Texas Instruments	LM3150MH/NOPB	Switcher	1	\$1.62	MXA14A 59 mm ²

Operating Values

#	Name	Value	Category	Description
1.	Cin IRMS	5.5 A	Current	Input capacitor RMS ripple current
2.	Cout IRMS	1.18 A	Current	Output capacitor RMS ripple current
3.	l lim	20.764 A	Current	Current limit threshold
4.	lin Avg	3.703 A	Current	Average input current
5.	L lpp	4.088 A	Current	Peak-to-peak inductor ripple current
6.	SW lpk	14.044 A	Current	Peak switch current
7.	BOM Count	17	General	Total Design BOM count
8.	FootPrint	505.0 mm ²	General	Total Foot Print Area of BOM components
9.	Frequency	187.44 kHz	General	Switching frequency
10.	IC Tolerance	12.0 mV	General	IC Feedback Tolerance
11.	Mode	CCM	General	Conduction Mode

#	Name	Value	Category	Description
12.	Pout	60.0 W	General	Total output power
13.	Total BOM	\$6.39	General	Total BOM Cost
14.	Vout Actual	4.992 V	Op_Point	Vout Actual calculated based on selected voltage divider resistors
15.	Duty Cycle	30.01 %	Op_point	Duty cycle
16.	Efficiency	95.307 %	Op_point	Steady state efficiency
17.	IC Tj	76.286 degC	Op_point	IC junction temperature
18.	IOUT_OP	12.0 A	Op_point	lout operating point
19.	M1 Tj	66.764 degC	Op_point	M1 MOSFET junction temperature
20.	M2 Tj	55.599 degC	Op_point	M2 MOSFET junction temperature
21.	VIN_OP	17.0 V	Op_point	Vin operating point
22.	Vout p-p	8.261 mV	Op_point	Peak-to-peak output ripple voltage
23.	Cin Pd	20.99 mW	Power	Input capacitor power dissipation
24.	Cout Pd	23.672 mW	Power	Output capacitor power dissipation
25.	IC Pd	712.099 mW	Power	IC power dissipation
26.	L Pd	936.0 mW	Power	Inductor power dissipation
27.	M1 Pd	755.32 mW	Power	M1 MOSFET total power dissipation
28.	M1 PdCond	152.286 mW	Power	M1 MOSFET conduction losses
29.	M1 PdSw	603.034 mW	Power	M1 MOSFET switching losses
30.	M2 Pd	506.094 mW	Power	M2 MOSFET total power dissipation
31.	M2 PdCond	199.851 mW	Power	M2 MOSFET conduction losses
32.	M2 PdSw	306.243 mW	Power	M2 MOSFET switching losses
33.	Total Pd	2.954 W	Power	Total Power Dissipation
34.	Vout Tolerance	3.813 %		Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable

Design Inputs

#	Name	Value	Description
1.	lout	12.0	Maximum Output Current
2.	VinMax	17.0	Maximum input voltage
3.	VinMin	7.0	Minimum input voltage
4.	Vout	5.0	Output Voltage
5.	base_pn	LM3150	Base Product Number
6.	source	DC	Input Source Type
7.	Та	30.0	Ambient temperature

Design Assistance

1. LM3150 Product Folder: http://www.ti.com/product/LM3150: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.