Heraeus

Quartz Glass for Optics Data and Properties

Technical Properties

Internal transmission (%)

Values of pure transmissions of a 10 mm thick sample for selected UV-Wavelengths.

Wavelength nm	Suprasil® ArF/ KrF - specified -	Suprasil®- family - typical -	Homosil® 101 Herasil® 102
193,4	≥ 99,30	98,50	92,00
248,4	≥ 99,80	99,50	98,00
266	99,90	99,90	99,50

Relative temperature coefficients of the refractive index in 10-6 K-1

Wave- length	Suprasil®-family, Spectrosil®		Homosil® / Infrasil®	'Herasil® / ® / HOQ®
nm	020°C 2040°C		020°C	2040°C
237,8	14,6	14,9	15,2	15,3
365	11	11,2	11,5	11,6
546,1	9,9	10,1	10,6	10,7
587,6	9,8	10,0	10,5	10,6
643,8	9,6	9,8	10,4	10,5

Abbe constant

$$v_{\rm d} = \frac{n_{\rm d} - 1}{n_{\rm F} - n_{\rm c}}$$
 67,8 ± 0,5

Birefringence constant @ 633 nm

nm cm · bar	3,54 ± 0,05	3,61 ± 0,05
----------------	-------------	-------------

Refraction index dispersion

Dispersion constants (Sellmeier)

	Suprasil®-family, Spectrosil®	Homosil® / Herasil® / Infrasil® / HOQ®
B1	4,73115591 · 10 ⁻¹	4,76523070 · 10 ⁻¹
B2	6,31038719·10 ⁻¹	6,27786368 · 10 ⁻¹
В3	9,06404498 · 10-1	8,72274404 · 10 ⁻¹
C1	1,29957170 · 10-2	2,84888095 · 10-3
C2	4,12809220 · 10-3	1,18369052 · 10-2
C3	9,87685322 · 10 ¹	9,56856012 · 10 ¹

Sellmeier Equation:

$$\begin{split} &n^2 - 1 = B_1 \lambda^2 \, / (\lambda^2 - C_1) + B_2 \lambda^2 \, / (\lambda^2 - C_2) + B_3 \lambda^2 \, / (\lambda^2 - C_3) \end{split}$$
 Wavelength λ in μm at 20°C

Typical trace impurities in quartz glass

Impurities	Suprasil®- family, Spectrosil® ppm	Herasil® 102 /Homosil® 101 ppm	Infrasil® / HOQ® ppm
Al = aluminium	≤ 0,010	10	20
Ca = calcium	≤ 0,015	1	1
Cr = chrome	≤ 0,001	0,1	0,1
Cu = copper	≤ 0,003	0,1	0,1
Fe = iron	≤ 0,005	0,2	0,8
K = potassium	≤ 0,010	0,1	0,8
Li = lithium	≤ 0,001	1	1
Mg= magnesium	≤ 0,005	0,1	0,1
Na = sodium	≤ 0,010	1	1
Ti = titanium	≤ 0,005	0,1	1

Mechanical data		Suprasil®-family, Spectrosil® Homosil®/Herasil®/Infrasil®/HOQ®
Density	g/cm ³	2,20
Mohs-hardness		5,56,5
Micro-hardness	N/mm ²	86009800
Knoop-hardness	N/mm ²	58006200
Modulus of elasticity (at 20°C)	N/mm²	7,0 · 104
Modulus of torsion	N/mm ²	3.104
Poisson's ratio		0,17
Compressive strength	N/mm ²	1150
Tensile strength	N/mm ²	50
Bending strength	N/mm ²	67
Torsional strength	N/mm ²	30
Sound velocity	m/s	5720

Electrical data				
Resistivity in Ω ·m				
20°C		1016		
400°C		108		
800°C		6,3 · 104		
1200°C		1,3·10³		
Dielectric strength i	n kV/mm			
(Layer thickness ≥ 5	mm)			
20°C		4050		
500°C		45		
Dielectric loss angle	(tg δ)			
1kHz		0,0005		
11000MHz		< 0,001		
3 · 104MHz		0,0004		
Dielectric constant (ε)			
20°C	01 MHz	3,7		
23°C	01000 MHz	3,80		
23°C	3 · 10 ⁴ MHz	3,81		

Thermal data		Suprasil®- Family, Spectrosil®	Homosil®/ Herasil®/ Infrasil®/	
			HOQ®	
Softening temperature	°C	1600	1730	
Annealing temperature	°C	1120	1180	
strain temperature	°C	1025	1075	
Max. working temperature	°C			
continuous	°C	950	1150	
short-term	°C	1200	1300	
Mean specific heat J/kg·K				
	0100°C	77	72	
	0500°C	96	64	
	0900°C	1052		
Heat conductivity W/m·K				
20°C	1,	38		
100°C		1,-	1,46	
200°C		1,55		
300°C		1,	67	
400°C		1,	84	
950°C		2,	68	
Mean termal expansion coef	ficient K ⁻¹			
-1600°C		()	
-500°C		2,7 · 10 ⁻⁷		
0100°C	5,1	10-7		
0200°C		5,8	10-7	
0300°C		5,9 · 10 ⁻⁷		
0600°C	5,4·10 ⁻⁷			
0900°C		4,8	10-7	

Quartz Glass for Optics Data and Properties

= 3D material, optically isotropic.

In quartz glass, the homogeneity is typically specified in one direction only. Heraeus manufactures quartz glass grades, which are controlled and specified in all 3 directions regarding striae, homogeneity and stress induced birefringence, for the most demanding applications. These materials are identified by the 3D symbol.

• For raw formed ingots the bubble specification is valid for the area defined by the minimum diameter tolerance. For machined parts it is defined as 100 % of the material.

- Bubbles or inclusions ≤ 0.08 mm diameter are not counted. For Suprasil® 311/312 and Suprasil® 3001/3002 a specification for bubbles and inclusions of ≤ 10µm is possible on request.
- For non-spherical bubbles the diameter is averaged.
- The Δn value is the maximum permissible lateral variation in refractive index (measured by interferometer at 632.8 nm after subtraction of tilt and offset) over 90% of the diameter or edge length of a fine ground piece, or 80% of a raw formed ingot.

Grade		Bubbles and Inclus	⊕ ⊘ ions		Homogeneity
		ubble grade is given for glass from Heraeus is fr		Δ n-value $^{oldsymbol{\Phi}}$	
	DIN 58927	DIN ISO 10110 [©]	Total cross- sections (in mm²) of all bubbles (TBCS value)	Striae class as per DIN ISO 10110 (per 30 mm thickness)	PV value (Peak-to-Valley)
Suprasil® 311 🗞	0	1/1*0.08	≤ 0.015	2 / -;5	≤ 3·10 ⁻⁶
Suprasil® 312	0	1/1*0.08	≤ 0.015	2 / -;5	≤ 4 · 10 ⁻⁶
Suprasil® 3001 👴	0	1/1*0.08	≤ 0.015	2 / -;5	≤ 4 · 10 ⁻⁶
Suprasil® 3002	0	1/1*0.08	≤ 0.015	2 / -;5	≤ 10 · 10 ⁻⁶
Suprasil® 300	0	1/1*0.08	≤ 0.015	acc. MIL	n. sp.
Suprasil® 1	0	1/1*0.08	≤ 0.015	2 / -;5	≤ 5 · 10 ⁻⁶
Suprasil® 2 Grade A	0	1/1*0.08	≤ 0.015	2 / -;5	≤ 5 · 10 ⁻⁶
Suprasil® 2 Grade B	0	1/1*0.08	≤ 0.015	2 / -;5	≤ 10 · 10 ⁻⁶
Suprasil® CG	0	1/1*0.08	≤ 0.015	acc. MIL	≤ 30 · 10 ⁻⁶
Suprasil® 1 ArF / KrF 🍪	0	1/1*0.08	≤ 0.015	2 / -;5	≤ 5 · 10 ⁻⁶
Suprasil® 2 ArF / KrF	0	1/1*0.08	≤ 0.015	2 / -;5	≤ 5 · 10 ⁻⁶
Spectrosil® 2000	0	1/1*0.08	≤ 0.015	2 / -;5	$\leq 10 \cdot 10^{-6}$
Homosil® 101	0	1/2*0.10	≤ 0.03	2 / -;5	≤ 3 · 10 ⁻⁶
Herasil® 102	0	1/1*0.20	≤ 0.1	2/-;5	≤ 4 · 10 ⁻⁶
Infrasil® 301	0	1/1*0.16	≤ 0.03	2/-;5	≤ 5 · 10 ⁻⁶
Infrasil® 302	01	1/1*0.35	≤ 0.1	2/-;5	≤ 6 · 10 ⁻⁶
HOQ® 310	23	$1/1*0.63 \le 6 \text{ kg}$ 1/2*1.0 > 6 kg	0.5	n. sp.	n. sp.

The maximum test diameter is 430 mm. Larger pieces are measured using overlapping interferograms.

- Does not apply to drawn rods.
- 6 Lower values available on request.
- The residual strain values refer to the measured phase difference per cm light path. The edge zone is defined as the outer 10% (for raw formed ingots and rods, the edge zone is defined as the outer 15%) of diameter or side-length.

n. sp. = not specified

	Residual Strain		Fluorescence	OH-Content
PV values by special request	in the center nm/cm	at the edges nm/cm	Excitation by Hg-Lamp@ $\lambda = 254 \text{ nm and}$ UG 5-filter; Lamp-power: 8W, Detection : adapted eye	ppm (µg/g)
$\leq 1 \cdot 10^{-6}$	≤ 5	515	free	ca. 200
$\leq 1 \cdot 10^{-6}$	≤ 5	515	free	ca. 200
$\leq 1 \cdot 10^{-6}$	≤ 6	515	slight blue	≤ 1
$\leq 1 \cdot 10^{-6}$	≤ 6	515	slight blue	≤ 1
-	≤ 5	515	slight blue	≤ 1
$\leq 1 \cdot 10^{-6}$	≤ 5	515	free	4001200
$\leq 1 \cdot 10^{-6}$	≤ 5	515	free	≤ 1000
-	≤ 5	515	free	≤ 1000
-	≤ 20	n. sp.	free	4001200
$\leq 1 \cdot 10^{-6}$	≤ 5	515	free	4001200
$\leq 1 \cdot 10^{-6}$	≤ 5	515	free	4001200
$\leq 3 \cdot 10^{-6}$	≤ 5	515	free	≤ 1200
$\leq 1 \cdot 10^{-6}$	≤ 5	515	blue-violet	ca. 150
$\leq 1 \cdot 10^{-6}$	≤ 5	515	blue-violet	ca. 150
≤ 2·10 ⁻⁶	≤ 5	515	blue-violet	≤ 8 6
$\leq 3 \cdot 10^{-6}$	≤ 5	515	blue-violet	≤ 8 6
-	≤ 10	1020	blue-violet	ca. 30

Refractive index

at 20°C and 1 bar The given values are interpolated from measured values having an accuracy of \pm 3 \cdot 10⁻⁵.

In contrast to other optical glasses, quartz glass shows very little difference in refractive index from melt to melt.

*without Suprasil® 3001, 3002, 300

	Wavel		Suprasil- family	Homosil / Herasil / Infrasil / HOQ
ArF		190 193,4 200 202,54 220	1,56572 1,56013 1,55051 - 1,52845	- - 1,54729 1,5287
KrF	Nd:YAG	232,94 240 248,4 260 266 274,87	1,51334 1,50833 1,50239 1,49968 1,49607	1,51834 1,51359 - 1,50264 1,49993 1,49634
Xe0 He0 N2		280 300 308 320 325 337	1,49416 1,48779 1,48564 1,48274 1,48164 1,47921	1,49439 1,48800 1,48583 1,48292 1,48182 1,47938
(ni)		340 360 365,48 380 400 404,65	1,47865 1,47529 1,47447 1,47248 1,47012 1,46962	1,47881 1,47544 1,47462 1,47262 1,47025 1,46975
(ng He(Kr (nF Ar) Cd	435,83 441,6 447,1 486,13 488	1,46669 1,46622 1,46578 1,46313 1,46301	1,46681 1,46634 1,46591 1,46324 1,46313
Ar 2 x (ne (nd Hei) Ne	514,5 532 546,07 587,56 632,8 656,27	1,46156 1,46071 1,46008 1,45846 1,45702 1,45637	1,46166 1,46081 1,46018 1,45856 1,45711 1,45646
Rul Kr	by	694,3 752,5 800 850 900	1,45542 1,45419 1,45332 1,45250 1,45175	1,45552 1,45428 1,45341 1,45259 1,45185
Hel	YAG	905 1000 1064 1153 1200 1319	1,45168 1,45042 1,44963 1,44859 1,44805 1,44670	1,45177 1,45051 1,44972 1,44868 1,44815 1,44680
		1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400	1,44578 1,44342 1,44087 1,43809 1,43501 1,43163 1,42789 1,42377 1,41925 1,41427 1,40881	1,44589 1,44353 1,44099 1,43821 1,43515 1,43177 1,42804 1,42393 1,41941 1,41444 1,40897

Optical Homogeneity

The false colour interferogram below shows the typical two-dimensional refraction-index distribution. The interferogram belongs to a circular blank.

The sectional view along the diameter shows the refraction-index distribution across the blank. One can clearly see the very low value in the center of the plate and the rise close to the edge.

Measured transmission including Fresnel reflection losses (1-R)²

Suprasil® 311, 312 Suprasil® 3001, 3002, 300

Suprasil® 1, 1 ArF / KrF Suprasil® 2 Grade A, 2 ArF / KrF Suprasil® 2 Grade B, Suprasil® CG Spectrosil® 2000

Homosil® 101 Herasil® 102 HOQ® 310 Infrasil® 301, 302

The uppermost curves in the transmission graphs indicate the calculated Fresnel reflection losses for two uncoated surfaces.

Germany

Heraeus Quarzglas GmbH & Co. KG

Optics Quarzstr. 8, 63450 Hanau Phone +49 (6181) 35-62 85 Fax +49 (6181) 35-62 70 sales.hqs.optics.de@ heraeus.com

USA

Heraeus Quartz America, LLC.

Optics
100 Heraeus Blvd.
30518 Buford, Georgia
Phone +1 (678) 714-4350
Fax +1 (678) 714-4355
sales.hqs.optics.us@
heraeus.com

Suprasil® is a registered international trademark of Heraeus and is also a trademark of Heraeus in BR, CN, DE, ES, GB, JP and US.

Infrasil® is a registered international trademark of Heraeus and is also a trademark of Heraeus in CN, DE, GB, JP, SE and US.

Herasil® is a registered international trademark of Heraeus and is also a trademark of Heraeus in BR, CN, DE, ES, GB and JP.

HOQ® is a registered trademark of Heraeus in the European Union (EU) and in the US. Homosil® is a registered international trademark of Heraeus and is also a trademark of Heraeus in BR, CN, DE, GB, JP and SE.

Spectrosil® is a registered trademark of Heraeus in the European Union (EU). In the above context, "Heraeus" means Heraeus Holding GmbH or any affiliate of Heraeus Holding GmbH, e.g Heraeus Quarzglas GmbH & Co KG.

China

Heraeus ShinEtsu Quartz (China) Inc.

QianJiang Tower, 20th Floor, Room A, No. 971 Dongfang Road 200122 Shanghai Phone +86 (21) 68672266-809 Fax +86 (21) 68751434 sales.hqs.optics.cn@heraeus.com

UK

Heraeus Quarzglas UK

4 Tannery House
Tannery Lane
Send, Woking
Surrey GU23 7EF
Phone +44 (1483) 213323
Fax +44 (1483) 213329
sales.hqs.optics.uk@heraeus.com

Korea

YOUNG SHIN QUARTZ CO., Ltd.

149, Hoechuk-ri Mansung-myon, Chinchon-kun Chungbuk Province, 365-830 Phone +82-43-535-2338 Fax +82-43-535-2337 ykkim@ysq.co.kr

www.optics.heraeus-quarzglas.com