Моделирование №2

На основании модели Кронига-Пени промоделировать зонную структуру одномерного кристалла. Проанализировать изменение ширины запрещенных зон для двух крайних случаев, когда электрон совершенно свободен и когда электрон заперт внутри одной потенциальной ямы, т.е. стенки непроницаемы, а так же промежуточные случаи.

$$V(x) =$$
 $\begin{cases} 0, & nc < x < nc + a \\ U, & (nc + a) < x < (n + 1)c \end{cases}$, где a — ширина ямы, b — ширина барьера, c — постоянная кристаллической решетки, $n = 0, \pm 1, \pm 2...$

Одномерная модель Кронига-Пенни - это бесконечная цепочка потенциальных ям прямоугольной формы. Движение электронов в такой системе характеризуется качественно новым и принципиально важным свойством: спектр разрешенных значений энергий электрона состоит не из отдельных уровней, как в изолированных атомах и в модели Зоммерфельда, а из широких зон.

Обозначим ширину потенциальной ямы через a, а высоту и ширину барьера через U_0 и b. Такая цепочка потенциальных ям будет периодической с периодом c = a + b.

В модели Кронига-Пенни рассматривается одномерное движение электрона в периодическом потенциале простой формы: в одномерной потенциальной яме ширины L на одинаковом расстоянии a друг от друга располагаются потенциальные прямоугольные барьеры; высота каждого из них U_0 , а ширина b.

$$V\left(x
ight) = \left\{ egin{array}{ll} 0, & \emph{ecлu}\,nc \,< \,x \,< \,nc \,+ & a \ U, & \emph{ecлu}\,\left(nc \,+ \,a
ight) \,< \,x \,< & \left(n \,+ \,1
ight) c \end{array}
ight.$$

Уравнение описывающее движение электрона такой системе принимает вид

$$\nabla^2 \psi(x) - \lambda^2 \psi(x) = 0 \text{ при } -b \leqslant x \leqslant 0$$

$$\nabla^2 \psi(x) + \varkappa^2 \psi = 0 \text{ при } 0 \leqslant x \leqslant a',$$

Раскрыв его, приходим к уравнению

$$\frac{\lambda^2 - \varkappa^2}{2\varkappa\lambda} \sin \varkappa a \sinh \lambda b + \cos \varkappa a \cosh \lambda b = \cos\varphi,$$

В случае, когда ширина потенциального барьера b -> 0, а проницаемость барьера $V_0b=const$, наше уравнение значительно упрощается и мы получим так называемое уравнение Кронига-Пенни

$$Prac{sin(alpha)}{alpha}+cos(alpha)=cos(klpha)$$
, где $lpha=rac{1}{\hbar}\sqrt{2m_nE}$

а параметр Р прямо пропорционален площади потенциального барьера и характеризует степень его прозрачности. Промоделируем согласно модели Кронига-Пенни для разных Р

При стремлении прозрачности барьера к нулю Р -> 0 запрещенные зоны исчезают и наш электрон становится свободным. А если

стенки непроницаемы(P -> inf), то разрешенные зоны вырождаются в дискретные энергетические уровни, соответствующие $a\alpha = Pi * n$, где $n = \pm 1$, ± 2 ... Тем самым мы приходим к случаю электрона в изолированном атоме.

Для промежуточных же значений мы наблюдаем чередование разрешенных и запрещенных зон, при этом ширина разрешенных зон увеличивается по мере удаления от нуля. При уменьшении/увеличении параметра Р ширина запрещенных зон уменьшается/увеличивается соответственно.

https://scask.ru/e_book_tpi.php?id=11
http://solidstate.karelia.ru/p/tutorial/ftt/Part9/part9_3.htm
https://dic.academic.ru/dic.nsf/enc_physics/3649/%D0%9A%D0%A0%D
0%9E%D0%9D%D0%98%D0%93%D0%90