Faculté des Sc. Exactes et Sc. de la Nature et la Vie

Master 1: Modèle linéaire

Solution de la Série N°2 (à suivre)

Exercice 1 Soit la matrice

$$\mathbf{X} = \left(\begin{array}{ccc} -1 & 0 & 1 \\ 0 & -1 & 1 \end{array} \right).$$

1. Calculer le produit matriciel X^tX et s'assurer que c'est une matrice carré et symétrique. **Réponse**:

$$A := \mathbf{X}^{t} \mathbf{X} = \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}^{T} \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$$

Il est clair que c'est une matrice carré 3×3 . En outre elle est symétrique, car:

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ -1 & -1 & 2 \end{pmatrix}^t = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$$

Sa transposé égale à la matrice elle même.

2. Calculer les valeurs propres λ_i de $\mathbf{X}^t\mathbf{X}$ et ces vecteurs propres \mathbf{u}_i associés. Donner la matrice diagonale Λ semblable à $\mathbf{X}^t\mathbf{X}$ et la matrice de passage \mathbf{P} .

Réponse: Le polynôme caratéristique est

$$\det\begin{pmatrix} 1-\lambda & 0 & -1\\ 0 & 1-\lambda & -1\\ -1 & -1 & 2-\lambda \end{pmatrix} = \det\begin{pmatrix} 1-\lambda & 0 & -1\\ -(1-\lambda) & 1-\lambda & -1\\ 0 & -1 & 2-\lambda \end{pmatrix}$$
$$= (1-\lambda)\det\begin{pmatrix} 1 & 0 & -1\\ -1 & 1-\lambda & -1\\ 0 & -1 & 2-\lambda \end{pmatrix}$$
$$= (1-\lambda)(\lambda^2 - 3\lambda) = -(\lambda - 3)(\lambda - 1)\lambda.$$

Les valeurs propres sont $\lambda_1 = 3$, $\lambda_2 = 1$ et $\lambda_1 = 0$. Les vecteurs propres associés à $\lambda_1 = 3$ sont les vecteurs non-nuls $v = (x, y, z)^t \in \mathbb{R}^3$, vérifiant $Av = 3v \iff (A - 3I_3)v = 0 \iff v \in \ker(A - 3I_3)$. Nous avons

$$(A - 3I_3) v = \begin{pmatrix} 1 - 3 & 0 & -1 \\ 0 & 1 - 3 & -1 \\ -1 & -1 & 2 - 3 \end{pmatrix} (x, y, z)^t$$
$$= \begin{pmatrix} -2x - z \\ -2y - z \\ -x - y - z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Ce qui est equivalent à y = x et z = -2x. Donc

$$\ker(A - 3I_3) = vect\{v_1\}, \ (l'espace engendré par v_1)$$

où $v_1 = (1, 1, -2)^t$ est le vecteur propre associe à $\lambda_1 = 3$. Les vecteurs propres associés à $\lambda_2 = 1$, sont les vecteurs non-nuls $v = (x, y, z)^t \in \mathbb{R}^3$, vérifiant $(A - I_3) v = 0$. Donc

$$(A - I_3) v = \begin{pmatrix} 1 - 1 & 0 & -1 \\ 0 & 1 - 1 & -1 \\ -1 & -1 & 2 - 1 \end{pmatrix} (x, y, z)^t$$
$$= \begin{pmatrix} -z \\ -z \\ z - y - x \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Ce qui est equivalent à y = -x et z = 0. Donc

$$\ker (A - I_3) = vect \{v_2\}, \ (l'espace \ engendr\'e \ par \ v_2)$$

où $v_2 = (1, -1, 0)^t$ est le vecteur propre associe à $\lambda_2 = 1$. Les vecteurs propres associés à $\lambda_3 = 0$, sont les vecteurs non-nuls $v = (x, y, z)^t \in \mathbb{R}^3$, vérifiant $(A - 0I_3)v = 0$. Donc

$$(A - 0I_3) v = \begin{pmatrix} 1 - 0 & 0 & -1 \\ 0 & 1 - 0 & -1 \\ -1 & -1 & 2 - 0 \end{pmatrix} (x, y, z)^t$$
$$= \begin{pmatrix} x - z \\ y - z \\ 2z - y - x \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -0 \end{pmatrix}.$$

Ce qui est equivalent à y = z = x. Donc

$$\ker(A - I_3) = vect\{v_3\}, \ (l'espace\ engendr\'e\ par\ v_3)$$

où $v_3 = (1, 1, 1)^t$ est le vecteur propre associe à $\lambda_3 = 0$. En résumé:

$$\left\{ \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \right\} \leftrightarrow 3, \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\} \leftrightarrow 1, \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\} \leftrightarrow 0.$$

3. Vérifier que trace($\mathbf{X}^t \mathbf{X}$) = $\sum_i \lambda_i$.

Réponse: Nous avons trace($\mathbf{X}^t\mathbf{X}$) = 1+1+2 = 4. D'autre par $\lambda_1 + \lambda_2 + \lambda_3 = 3+1+0 = 4$. Donc effet trace($\mathbf{X}^t\mathbf{X}$) = $\sum_{i=1}^{3} \lambda_i$.

Exercice 2 Soit la matrice des données suivante

$$\mathbf{X}^* = \left(\begin{array}{cc} 4 & 5 \\ 6 & 7 \\ 8 & 0 \end{array}\right).$$

1. Centrer et réduit (normer) les deux vecteurs colonnes, X_1^* et X_2^* , de \mathbf{X}^* .

Réponse: Soit m_1 et m_2 les moyennes empiriques et s_1 et s_2 les écart-types associées aux vecteurs X_1^* et X_2^* . Les vecteurs centrés associés aux X_1^* et X_2^* sont respectivement:

$$X_{1;c}^* = \begin{pmatrix} 4 - m_1 \\ 6 - m_1 \\ 8 - m_1 \end{pmatrix}, \ X_{2;c}^* = \begin{pmatrix} 5 - m_2 \\ 7 - m_2 \\ 0 - m_2 \end{pmatrix}.$$

Le vecteurs centrés-réduits associés aux X_1^* et X_2^* sont respectivement

$$X_{1;c,r}^* = \begin{pmatrix} \frac{4-m_1}{s_1} \\ \frac{6-m_1}{s_1} \\ \frac{8-m_1}{s_1} \end{pmatrix}, \ X_{2;c,r}^* = \begin{pmatrix} \frac{5-m_2}{7-m_2} \\ \frac{7-m_2}{s_2} \\ \frac{0-m_2}{s_2} \end{pmatrix}.$$

Nous avons

$$m_1 = \frac{1}{3}(4+6+8) = 6, \ m_2 = \frac{1}{3}(5+7+0) = 4.$$

Donc

$$X_{1;c}^* = \begin{pmatrix} 4-6\\6-6\\8-6 \end{pmatrix} = \begin{pmatrix} -2\\0\\2 \end{pmatrix}, \ X_{2;c}^* = \begin{pmatrix} 5-4\\7-4\\0-4 \end{pmatrix} = \begin{pmatrix} 1\\3\\-4 \end{pmatrix}.$$

Les écart-types sont

$$s_1 = \sqrt{\frac{1}{3} \left((4-6)^2 + (6-6)^2 + (8-6)^2 \right)} = 1.6330$$

$$s_2 = \sqrt{\frac{1}{3} \left((5-4)^2 + (7-4)^2 + (0-4)^2 \right)} = 2.9439.$$

Donc

$$X_{1;c,r}^* = \begin{pmatrix} \frac{4-6}{1.6330} \\ \frac{6-6}{1.6330} \\ \frac{8-6}{1.6330} \end{pmatrix} = \begin{pmatrix} -1.2247 \\ 0 \\ 1.2247 \end{pmatrix}$$

et

$$X_{1;c,r}^* = \begin{pmatrix} \frac{5-4}{2.9439} \\ \frac{7-4}{2.9439} \\ \frac{0-4}{2.9439} \end{pmatrix} = \begin{pmatrix} 0.33969 \\ 1.0191 \\ -1.3587 \end{pmatrix}.$$

2. Déterminer la matrice de variances-covariances V et la matrice des corrélations R. Réponse: La matrice centrée associée à X* est

$$X := \left(\begin{array}{cc} -2 & 1\\ 0 & 3\\ 2 & -4 \end{array} \right).$$

La matrice centrée-réduite associée à X* est

$$Z := \left(\begin{array}{cc} -1.2247 & 0.33969 \\ 0 & 1.0191 \\ 1.2247 & -1.3587 \end{array} \right).$$

La matrice de variance-covariance est

$$\mathbf{V} = \frac{1}{3} X^{t} X$$

$$= \frac{1}{3} \begin{pmatrix} -2 & 1 \\ 0 & 3 \\ 2 & -4 \end{pmatrix}^{t} \begin{pmatrix} -2 & 1 \\ 0 & 3 \\ 2 & -4 \end{pmatrix} = \begin{pmatrix} 2.6667 & -3.3333 \\ -3.3333 & 8.6667 \end{pmatrix}.$$

La matrice de correlation est définie par

$$\mathbf{R} = \frac{1}{3} Z^t Z$$

$$= \frac{1}{3} \begin{pmatrix} -1.2247 & 0.33969 \\ 0 & 1.0191 \\ 1.2247 & -1.3587 \end{pmatrix}^t \begin{pmatrix} -1.2247 & 0.33969 \\ 0 & 1.0191 \\ 1.2247 & -1.3587 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -0.69334 \\ -0.69334 & 1 \end{pmatrix}.$$

3 et 4. Diagonaliser V. On note λ_i ses valeurs propres.

Réponce: les valeurs propre sont $\lambda_1 = 10.151$ et $\lambda_2 = 1.1822$ et les vecteurs propres associés sont

$$v_1 = \begin{pmatrix} 0.40684 \\ -0.9135 \end{pmatrix}, v_2 = \begin{pmatrix} 0.9135 \\ 0.40684 \end{pmatrix}.$$

 $Donc \mathbf{V}$ est diagonalisable et $\mathbf{V} = PDP^{-1}$, où

$$D = \begin{pmatrix} 10.151 & 0 \\ 0 & 1.1822 \end{pmatrix} et P = \begin{pmatrix} 0.40684 & 0.9135 \\ -0.9135 & 0.40684 \end{pmatrix}.$$

5. Dans le contexte de l'analyse en composantes principales, déterminer les axes principaux du nuage de points défini par la matrice X^* .

Réponce: Le premier axe prinipale E_1 associé a la plus grande valeur propre est:

$$E_1 = \ker (V - 10.151I_2) = vect(u_1),$$

oú $u_1 := \frac{v_1}{\|v_1\|}$. Nous avons $\|v_1\| = 1$, donc $u_1 = v_1$. Le deuxieme axe prinipale E_2 associé a deuxieme valeur propre est:

$$E_2 = \ker (V - 1.1822I_2) = vect(u_2),$$

oú $u_2 := \frac{v_2}{\|v_2\|}$. Nous avons $\|v_2\| = 1$, donc $u_2 = v_2$.