Формула Тейлора

Пусть f(x) имеет непрерывные производные до порядка n включительно. Требуется изучить свойства этой функции в окрестности точки x_0 .

Основная идея – подобрать функцию, которая более проста для исследования, чем f(x) , но обладает теми же основными свойствами. В качестве такой функции выберем многочлен. Из алгебры известно, что всякий многочлен степени не выше n можно представить в виде

$$T_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n \tag{1}$$

Требуется, чтобы этот многочлен был в каком-то смысле «близок» к f(x). Понятие "близости" может иметь разный смысл.

Например, критерием близости двух векторов $ar{a}$, $ar{b}$ является $|ar{a}-ar{b}|$. Аналогично, для функций ту же роль играет

$$\max_{a \le x \le h} |u(x) - v(x)|$$
.

Здесь мы рассмотрим другой критерий близости данной функции и многочлена.

Определение.

Многочлен $T_n(x)$ степени не выше n, удовлетворяющий условию

$$T_n^{(i)}(x_0) = f^{(i)}(x_0), \quad i = 0,1,2,...,n$$
 (2)

называется многочленом Тейлора порядка n функции f(x) в точке x_0 .

Условие (2) означает, что в точке $x_0\,$ совпадают значения функции и многочлена Тейлора, а также их производных до порядка n включительно. Естественно ожидать, что некоторые свойства функции и ее многочлена Тейлора совпадают и поэтому многочлен Тейлора можно использовать вместо самой функции.

Выразим коэффициенты многочлена Тейлора через функцию f(x) и ее производные. Имеем

$$\begin{split} T_n^{(0)}(x_0) &= a_0; \\ T_n^{(1)}(x) &= a_1 + 2a_2(x - x_0) + \dots + na_n(x - x_0)^{n-1}; \quad T_n^{(1)}(x_0) &= a_1; \\ T_n^{(2)}(x) &= 2a_2 + 3 \cdot 2 \cdot a_3(x - x_0) + \dots + n(n-1)a_n(x - x_0)^{n-2}; \quad T_n^{(2)}(x_0) &= 2a_2; \end{split}$$

$$T_n^{(i)}(x_0) = i(i-1)(i-2)\cdots 2\cdot 1\cdot a_i = i! a_i$$

......

$$T_n^{(n)}(x_0) = n(n-1)(n-2)\cdots 2\cdot 1\cdot a_i = n! a_n$$

Из формулы (2) следует

$$i! a_i = f^{(i)}(x_0) \Rightarrow a_i = f^{(i)}(x_0)/i!, i = 0,1,2,...,n.$$
 (3)

Итак, коэффициенты многочлена Тейлора удовлетворяют формулам (3).

Верно и обратное утверждение:

любой многочлен степени не выше n, коэффициенты которого удовлетворяют условию (3), является многочленом Тейлора порядка $m{n}$ для функции $m{f}(m{x}).$

<u>Пример</u>. Пусть некоторая функция f(x) имеет в окрестности точки $x_0 = 1$ вторую производную, причем

$$f(1)=4,\ f'(1)=2$$
 и $f''(1)=6.$ Тогда многочлен Тейлора 2-го порядка в точке 1 равен $T_2(x)=4+2(x-1)+3(x-1)^2$

Такие свойства функции f(x), как возрастание, убывание, экстремум, выпуклость, зависят только от значений первой и второй производных. Многочлен $T_2(x)$ имеет те же значения производных, значит, и те же свойства. Графиком $T_2(x)$ является парабола.

Графики f(x) и $T_2(x)$ имеют одинаковую кривизну в точке $x_0 = 1$.

Перейдем теперь к самой формуле Тейлора. Предположим дополнительно, что $f^{(n+1)}(x)$ непрерывна в окрестности x_0 .

Обозначим $g(x) = f(x) - T_n(x)$. Очевидно, $g(x) \to 0$ при $x \to x_0$, т.е. g(x) бесконечно малая при $x \to x_0$. Сравним ее с бесконечно малой $(x - x_0)^{n+1}$.

В силу (1) имеем

$$g^{(i)}(x_0) = 0, i = 0,1,...,n.$$
 (4)

Поэтому верно равенство $g^{(i)}(x) = g^{(i)}(x) - g^{(i)}(x_0)$.

Кроме того, при любом x и i>n

$$g^{(i)}(x) = f^{(i)}(x)$$
 (5) (novemy?)

Рассмотрим теперь отношение двух бесконечно малых при $x \to x_0$.

$$\frac{g(x)}{(x-x_0)^{n+1}} = \frac{g(x) - g(x_0)}{(x-x_0)^{n+1}}$$

По теореме Коши найдется такая точка $x_0 < c_1 < x$, что

$$\frac{g(x) - g(x_0)}{(x - x_0)^{n+1}} = \frac{g'(c_1)}{(n+1)(c_1 - x_0)^n}$$

Учитывая (4), имеем

$$\frac{g(x) - g(x_0)}{(x - x_0)^{n+1}} = \frac{g'(c_1) - g'(x_0)}{(n+1)(c_1 - x_0)^n}$$

Применив снова теорему Коши, получим

$$\frac{g(x) - g(x_0)}{(x - x_0)^{n+1}} = \frac{g''(c_2)}{(n+1)n(c_2 - x_0)^{n-1}}$$

Повторяя эти действия n раз, приходим к формуле

$$\frac{g(x) - g(x_0)}{(x - x_0)^{n+1}} = \frac{g^{(n)}(c_n)}{(n+1)n \cdots 2(c_n - x_0)^1}, \qquad x_0 < c_n < c_{n-1}$$

$$\begin{split} \frac{g(x) - g(x_0)}{(x - x_0)^{n+1}} &= \frac{g''(c_2)}{(n+1)n(c_2 - x_0)^{n-1}} \\ \frac{g(x)}{(x - x_0)^{n+1}} &= \frac{g^{(n)}(c_n) - g^{(n)}(x_0)}{(n+1)! (c_n - x_0)}, \qquad c_{n-1} < c_n < x_0 \end{split}$$

Применим теорему Коши в (n+1) – й раз

$$\frac{g(x)}{(x-x_0)^{n+1}} = \frac{g^{(n+1)}(c_{n+1})}{(n+1)!}, \quad x_0 < c_{n+1} < c_n$$

Учитывая, что $T_n^{(n+1)}(x)\equiv 0$, (см. (5)) получаем

$$\frac{g^{(n+1)}(c_{n+1})}{(n+1)!} = \frac{(f-T_n)^{(n+1)}(c_{n+1})}{(n+1)!} = \frac{f^{(n+1)}(c_{n+1})}{(n+1)!} \Longrightarrow \frac{f(x) - T_n(x)}{(x-x_0)^{n+1}} = \frac{f^{(n+1)}(c_{n+1})}{(n+1)!}$$

Отсюда

$$f(x) - T_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

Обозначим $r_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$ и получим формулу Тейлора порядка n $f(x) = T_n(x) + r_n(x), \tag{6}$

где $T_n(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{1}{2!}f''(x_0)(x-x_0)^2+\cdots+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n$ — многочлен Тейлора, а $T_n(x)$ — остаточный член.

Заметим, что $f^{(i)}(x_0)(x-x_0)^i=d^if(x_0)$. Тогда формула (4) примет вид $f(x)=f(x_0)+df(x_0)+\frac{1}{2!}d^2f(x_0)+\frac{1}{3!}d^3f(x_0)+\cdots+\frac{1}{n!}d^nf(x_0)+r_n(x)$ (7)

В (6) и (7) все слагаемые, кроме $f(x_0)$, являются бесконечно малыми при $x \to x_0$. При этом каждое следующее слагаемое имеет более высокий порядок по сравнению с предыдущим (конечно, если $f^{(i)}(x_0) \neq 0$). Поэтому в малой окрестности точки x_0 многочлен Тейлора можно использовать как приближение к функции f(x). Ошибка такого приближения равна $r_n(x)$.

Пример.

Пусть $f(x) = e^x$, $x_0 = 0$. Выпишем первые три многочлена Тейлора.

 $T_1(x)=1+x; \quad T_2(x)=1+x+rac{1}{2}x^2; \quad T_3(x)=1+x+rac{1}{2}x^2+rac{1}{6}x^3$. Их на рис. 1 изображены их графики :

синий -f(x) , фиолетовый - $T_3(x)$, красный - $T_2(x)$, коричневый - $T_1(x)$.

Из рис.1 видно, что вблизи нуля графики почти сливаются, а по мере удаления от нуля — расходятся. Например,

$$e^{0,5}=1,6487, \quad T_3(0,5)=1,6458.$$
 Ошибка равна 0,0029. $e^1=2,7183, \quad T_3(1)=2,6667.$ Ошибка равна 0,0516.

Кроме того, график $T_3(x)$ заметно ближе к графику e^x , чем графики многочленов $T_1(x)$, $T_2(x)$.

Применение формулы Тейлора

1) Разложение основных элементарных функций

Применим формулу (5) функциям
$$e^x$$
, $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^\mu$ при $x_0=0$. $e^x=1+x+x^2/2!+x^3/3!+\cdots+x^n/n!+r_n(x)$, $r_n(x)=e^cx^{n+1}/(n+1)!$ $\sin x=x-x^3/3!+x^5/5!-\cdots+(-1)^nx^{2n+1}/(2n+1)!+r_n(x)$ $\cos x=1-x^2/2!+x^4/4!-\cdots+(-1)^nx^{2n}/2n!+r_n(x)$ $\ln(1+x)=x-x^2/2+x^3/3-\cdots+(-1)^nx^n/n+r_n(x)$ $(1+x)^\mu$ $=1+\mu x+\mu(\mu-1)x^2/2!+\mu(\mu-1)x^2/2!+\cdots+\mu(\mu-1)(\mu-2)\cdots(\mu-n+1)x^n/n!+r_n(x)$

2) Неявные функции

Во многих задачах используются функции, которые невозможно выразить через элементарные функции. Поэтому бывает трудно исследовать такую функцию. Если нас интересуют значения функции не во всей ее области определения, а только в некоторой окрестности точки x_0 , то формула Тейлора позволяет приближенно решить эту задачу. Рассмотрим уравнение

$$f(x,y) = 0. ag{8}$$

Зададим x, тогда (8) превращается в уравнение с одним неизвестным y. Предположим, что для всех x из некоторой окрестности точки x_0 это уравнение имеет единственное решение. Тем самым в этой окрестности определена функция y(x).

Такой способ задания функции называется неявным.

Рассмотрим пример.

<u>Пример</u>. $e^{xy} + x + y - 2 = 0$. Ищем функцию y(x) в окрестности точки 0. Подставим в уравнение x = 0.

$$e^{0.y(0)} + 0 + y(0) - 2 = 0 \Rightarrow y(0) = 1$$

Продифференцируем исходное уравнение и подставим x = 0, y = 1

$$e^{xy}(y + xy') + 1 + y' = 0 \Rightarrow 1 + 1 + y'(0) = 0 \Rightarrow y'(0) = -2$$

Продифференцируем еще раз и подставим x = 0, y = 1, y' = -2

$$e^{xy}(y+xy')^2 + e^{xy}(y'+y'+xy'') + y'' = 0 \Longrightarrow 1 - 2 - 2 + y''(0) =$$

$$0 \Rightarrow y''(0) = 3$$

Повторяя эти действия, можно найти производные любого порядка при x=0. Имеем в малой окрестности 0

$$y(x) \cong 1 - 2x + 1.5x^2$$

Здесь остался открытым вопрос о точности этого приближения.

Вопросы для самоконтроля

1) Функция f(x) имеет производные до 4-го порядка. Пусть $f'(x_0) = f''(x_0) = 0$. Может x_0 быть точкой экстремума для f(x)?

- 2) Тот же вопрос при $f'(x_0) = f''(x_0) = 0$, $f'''(x_0) \neq 0$.
- 3) Вычислите $\ln(1,5)$ с помощью формулы Тейлора с точностью до 0,01.
- 4) Вычислите cos 27° с помощью формулы Тейлора с точностью до 0,001.
- 5) Вычислите $\ln(1+tg10^o)$ с помощью формулы Тейлора с точностью до 0,01.