Email address: Rahulapatel.dataanalyst@gamil.com

Course name: Business analyst

Assignment Title: SQL Assignment Submission

Questions:

Q1) Create a table "STATION" to store in formation about weather observation stations.

ID	Number	Primary key
CITY	CHAR(20)	
STATE	CHAR(2)	
LAT_N	Number	
LONG_W	Number	

SQL Query Screenshot:

Email address: Rahulapatel.dataanalyst@gamil.com

Course name: Business analyst

Assignment Title: SQL Assignment Submission

Q2) Insert the following records into the table:

ID	CITY	STATE	LAT_N	LONG_W
13	PHOENIX	AZ	33	112
44	DENVER	со	40	105
66	CARIBOU	ME	47	68

SQL Query Screenshot:

```
SQLFile 3* ×

Insert into station values(13, "PHOENIX", "AZ", 33, 112);

Insert into station values(44, "DENVER", "CO", 40, 105);

Insert into station values(66, "CARIBOU", "ME", 47, 68);

4
```


Email address: Rahulapatel.dataanalyst@gamil.com

Course name: Business analyst

Assignment Title: SQL Assignment Submission

Q3) Execute a query to look at table STATION in undefined order.

SQL Query Screenshot:

Query Output Screenshot:

Q4) Execute a query to select Northern stations (Northern latitude > 39.7).

Email address: Rahulapatel.dataanalyst@gamil.com

Course name: Business analyst

Assignment Title: SQL Assignment Submission

Query Output Screenshot:

Q5) Create another table, 'STATS', to store normalized temperature and precipitation data.

Column	Data type	Remark
ID	Number	ID must match with some ID from the STATION table(so name & location will be known).
MONTH	Number	The range of months is between (1 and 12)
TEMP_F	Number	Temperature is in Fahrenheit degrees, Ranging between (-80 and 150)
RAIN_I	Number	Rain is in inches, Ranging between (0 and 100)

There will be no Duplicate ID and MONTH combination.

```
🛅 🔡 | 🗲 📝 👰 🔘 | 🚱 | 💿 🔞 🔞 | Limit to 1000 rows 🔻 | 🚖 | 🥩 🔍 👖 🖃
2
         ID INT,
3
         MONTH INT CHECK (MONTH BETWEEN 1 AND 12),
         TEMP_F DECIMAL(5, 2) CHECK (TEMP_F BETWEEN -80 AND 150),
4
         RAIN_I DECIMAL(5, 2) CHECK (RAIN_I BETWEEN 0 AND 100),
5
         PRIMARY KEY (ID, MONTH),
6
7
         FOREIGN KEY (ID) REFERENCES STATION(ID)
8
     );
9
```

Email address: Rahulapatel.dataanalyst@gamil.com

Course name: Business analyst

Assignment Title: SQL Assignment Submission

Query Output Screenshot:

Q6) Populate the table STATS with some statistics for January and July.

ID	монтн	TEMP_F	RAIN_I
13	1	57.4	.31
13	7	91.7	5.15
44	1	27.3	.18
44	7	74.8	2.11
66	1	6.7	2.1
66	7	65.8	4.52

Email address: Rahulapatel.dataanalyst@gamil.com

Course name: Business analyst

Assignment Title: SQL Assignment Submission

Query Output Screenshot:

Q7) Execute a query to display temperature stats (from the STATS table)

for each city (from the STATION table).

```
🗀 🖫 | 🗲 f 👰 🔘 | 🚱 | 🔘 🔞 📕 Limit to 1000 rows 🔻 | 🌟 | 🥩 🔍 🗻
     select s.city
2
     , min(st.temp_f) as min_temperature,max(st.temp_f) as max_temperature
3
     ,avg(st.temp_f) as avg_temperature
     from stats st
4
5
     inner join
6
     station s
7
     on
     st.id= s.id
8
9
     group by s.city;
10
```

Email address: Rahulapatel.dataanalyst@gamil.com

Course name: Business analyst

Assignment Title: SQL Assignment Submission

Query Output Screenshot:

Q8) Execute a query to look at the table STATS, ordered by month and greatest rain fall, with columns rearranged. It should also show the corresponding cities. SQL Query Screenshot:

```
Query 1 ×

1 • select s.city, st.month, st.RAIN_I from stats st

2 join

3 station s

4 on

5 st.id= s.id

6 order by st.month, st.RAIN_I desc;

7
```

1			
	city	month	Rain_i
•	CARIBOU	1	2.10
	PHOENIX	1	0.31
	DENVER	1	0.18
	PHOENIX	7	5.15
	CARIBOU	7	4.52
	DENVER	7	2.11

Email address: Rahulapatel.dataanalyst@gamil.com

Course name: Business analyst

Assignment Title: SQL Assignment Submission

Q9) Execute a query to look at temperatures for July from table STATS, lowest temperatures first, picking up city name and latitude.

SQL Query Screenshot:

```
limit to 1000 rows

1 • select s.city, st.TEMP_F, s.LAT_N

2  from stats st

3  join

4  station s

5  on

6  st.id= s.id

7  where st.month=7

8  order by TEMP_F;
```


Email address: Rahulapatel.dataanalyst@gamil.com

Course name: Business analyst

Assignment Title: SQL Assignment Submission

Q10) Execute a query to show MAX and MIN temperatures as well as average rainfall for each city.

SQL Query Screenshot:

```
Query 1 ×
                            Elimit to 1000 rows
                                            - | 🛵 | 🥩 🔍 🗻 🖘
 1 • select
      st.city,
 2
      max(s.temp f) as Max_temperatures,
 3
      min(s.TEMP F) as Min temperatures,
 4
      avg(s.RAIN_I) as Average_Rainfall
 5
      from stats s
 6
      join station st
 7
      on s.id=st.id
 8
      group by city;
 9
10
```


Email address: Rahulapatel.dataanalyst@gamil.com

Course name: Business analyst

Assignment Title: SQL Assignment Submission

Q11) Execute a query to display each city's monthly temperature in Celsius and rain fall in Centimeter.

SQL Query Screenshot:

```
Query 1 ×

SELECT

SELECT

ROUND((s.TEMP_F - 32) * 5/9, 2) AS temperature_celsius,

ROUND(s.RAIN_I * 2.54, 2) AS rainfall_cm

FROM STATS s

JOIN STATION st ON s.ID = st.id;
```

Query Output Screenshot:

Q12) Update all rows of table STATS to compensate for faulty rain gauges known to read 0.01 inches low.

Email address: Rahulapatel.dataanalyst@gamil.com

Course name: Business analyst

Assignment Title: SQL Assignment Submission

```
Query 1 ×

1 • update stats set rain_i = rain_i + 0.01

where id in (13,44,66);

3

4
```

Query Output Screenshot:

Q13) Update Denver's July temperature reading as 74.9

SQL Query Screenshot:

```
1 • update stats
2 set temp_f=74.9 where
3 id= (select id from station where city = 'denver') and month=7
```

