- Problema da Mochila
 - O item i não cabe na mochila
 - A capacidade disponível w é menor que o peso w_i adicionado pelo novo item
 - O valor total atingido pelo último item é repetido
 - O item i cabe na mochila
 - A capacidade disponível w é maior ou igual ao peso w_i do novo item inserido na mochila
 - Para o valor do item adicionado ser considerado, é incrementado o valor total contido na mochila

$$V(i, w) = \begin{cases} V(i-1, w) & w-w_i < 0 \\ max(V(i-1, w), V(i-1, w-w_i) + v_i) & w-w_i \ge 0 \end{cases}$$

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø					
2	Ø					
3	Ø					
4	Ø					

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø					
2	Ø					
3	Ø					
4	Ø					

O item 1 não cabe na mochila $w = 1 < w_1$ V(1, 1) = V(0, 1)

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø				
2	Ø					
3	Ø					
4	Ø					

O item 1 cabe na mochila $w = 2 \ge w_1$ V(1, 2) = max(V(0, 2), V(0, 0) + 12)

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12			
2	Ø					
3	Ø					
4	Ø					

O item 1 cabe na mochila $w = 3 \ge w_1$ V(1, 3) = max(V(0, 3), V(0, 1) + 12)

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12		
2	Ø					
3	Ø					
4	Ø					

O item 1 cabe na mochila $w = 4 \ge w_1$ V(1, 4) = max(V(0, 4), V(0, 2) + 12)

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	
2	Ø					
3	Ø					
4	Ø					

O item 1 cabe na mochila $w = 5 \ge w_1$ V(1, 5) = max(V(0, 5), V(0, 3) + 12)

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø					
3	Ø					
4	Ø					

► Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø					
3	Ø					
4	Ø					

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø					
3	Ø					
4	Ø					

Somente o item 2 cabe na mochila
$$w = 1 \ge w_2$$

 $V(2, 1) = max(V(1, 1), V(1, 0) + 10)$

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10				
3	Ø					
4	Ø					

Somente o item 1 cabe na mochila $w = 2 \ge w_2$ V(2, 2) = max(V(1, 2), V(1, 1) + 10)

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12			
3	Ø					
4	Ø					

Os itens 1 e 2 cabem na mochila $w = 3 \ge w_2$ V(2,3) = max(V(1,3), V(1,2) + 10)

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22		
3	Ø					
4	Ø					

Os itens 1 e 2 cabem na mochila $w = 4 \ge w_2$ V(2, 4) = max(V(1, 4), V(1, 3) + 10)

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22	22	
3	Ø					
4	Ø					

Os itens 1 e 2 cabem na mochila $w = 5 \ge w_2$ V(2,5) = max(V(1,5), V(1,4) + 10)

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22	22	22
3	Ø					
4	Ø					

► Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	1Ø	12	22	22	22
3	Ø					
4	Ø					

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

٧(١,٧)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22	22	22
3	Ø					
4	Ø					

Somente o item 2 cabe na mochila $w = 1 < w_3$ V(3, 1) = V(2, 1)

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22	22	22
3	Ø	1Ø				
4	Ø					

Somente o item 1 cabe na mochila $w = 1 < w_3$ V(3, 2) = V(2, 2)

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
w_{l}	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22	22	22
3	Ø	10	12			
4	Ø					

Os itens 1 e 2 cabem na mochila $w = 3 \ge w_3$ V(3,3) = max(V(2,3), V(2,0) + 20)

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22	22	22
3	Ø	10	12	22		
4	Ø					

Os itens 2 e 3 cabem na mochila $w = 4 \ge w_3$ V(3, 4) = max(V(2, 4), V(2, 1) + 20)

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
w_{l}	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22	22	22
3	Ø	10	12	22	3Ø	
4	Ø					

Os itens 1 e 3 cabem na mochila $w = 5 \ge w_3$ V(3,5) = max(V(2,5), V(2,2) + 20)

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
W _I	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22	22	22
3	Ø	10	12	22	3Ø	32
4	Ø					

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22	22	22
3	Ø	1Ø	12	22	3Ø	32
4	Ø					

Problema da Mochila

1	1	2	3	4
VI	12	10	20	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22	22	22
3	Ø	10	12	22	3Ø	32
4	Ø					

Somente o item 2 cabe na mochila $w = 1 < w_4$ V(4, 1) = V(3, 1)

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

٧(١,٧)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22	22	22
3	Ø	10	12	22	3Ø	32
4	Ø	10				

Somente o item 4 cabe na mochila $w = 3 \ge w_4$ V(4, 2) = max(V(3, 2), V(3, 0) + 15)

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22	22	22
3	Ø	10	12	22	3Ø	32
4	Ø	10	15			

Os itens 1 e 4 cabem na mochila $w = 3 \ge w_3$ V(4,3) = max(V(3,3), V(3,1) + 15)

Problema da Mochila

1	1	2	3	4
v _l	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22	22	22
3	Ø	10	12	22	3Ø	32
4	Ø	10	15	25		

Os itens 2 e 3 cabem na mochila $w = 4 \ge w_3$ V(4, 4) = max(V(3, 4), V(3, 2) + 15)

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22	22	22
3	Ø	10	12	22	3Ø	32
4	Ø	1Ø	15	25	3Ø	

Os itens 1, 2 e 4 cabem na mochila
$$w = 5 \ge w_3$$

 $V(4,5) = max(V(3,5), V(3,3) + 15)$

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22	22	22
3	Ø	1Ø	12	22	3Ø	32
4	Ø	10	15	25	3Ø	37

Como determinar algoritmicamente quais são os itens que maximizam o valor armazenado pela mochila?

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22	22	22
3	Ø	10	12	22	3Ø	32
4	Ø	10	15	25	3Ø	37

Como $V(i,j) \neq V(i-1,j)$, então o item i=4 faz parte da solução e $i=i-1, j=j-w_i$

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22	22	22
3	Ø	10	12	22	3Ø	32
4	Ø	10	15	25	3Ø	37

Como V(i,j) = V(i-1,j), o item i = 3não faz parte da solução e i = i-1

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22	22	22
3	Ø	10	12	22	3Ø	32
4	Ø	10	15	25	3Ø	37

Como $V(i,j) \neq V(i-1,j)$, então o item i=2 faz parte da solução e $i=i-1, j=j-w_i$

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22	22	22
3	Ø	10	12	22	3Ø	32
4	Ø	10	15	25	3Ø	37

Como $V(i,j) \neq V(i-1,j)$, então o item i=1 faz parte da solução e i=i-1, $j=j-w_i$

Problema da Mochila

1	1	2	3	4
VI	12	10	2Ø	15
Wı	2	1	3	2

V(1,w)	Ø	1	2	3	4	5
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	Ø	Ø	12	12	12	12
2	Ø	10	12	22	22	22
3	Ø	10	12	22	3Ø	32
4	Ø	10	15	25	3Ø	37

A solução ótima possui valor 37, sendo composta pelos itens 1, 2 e 4

- Análise de complexidade
 - ▶ Pseudo-polinomial $O(n \times W)$
 - ▶ É polinomial para o tamanho da entrada *n* que é o número de itens que podem ser colocados na mochila

- Análise de complexidade
 - ▶ Pseudo-polinomial $O(n \times W)$
 - ▶ É polinomial para o tamanho da entrada *n* que é o número de itens que podem ser colocados na mochila
 - A capacidade máxima da mochila W possui um crescimento exponencial para o valor numérico (largura em bits)

$$\log_2 W = m$$

$$W = 2^m$$