Ćwiczenie 8: Układy asynchroniczne

Zadanie:

Zbudować synchroniczny przerzutnik typu D zatrzask.

Dla C=1 dana D przechodzi na wyjście Y, a dla C=0 wyjście Y nie zmienia się (zatrzask).

D C						
0	00	01	11	10	Y	
A	A	C	ı	D	0	
В	В	С	-	Е	1	
C	A	С	F	ı	0	
D	A	ı	F	D	0	
E	В	-	F	Е	1	
F	-	С	F	Е	1	

D	C	Y stan Q
0	0	0 = A
0	0	1 = B
0	1	0 = C
0	1	1 niemożliwe
1	0	0 = D
1	0	1 = E
1	1	0 niemożliwe
1	1	1 = F

Minimalizacja liczby stanów:

Pary stanów zgodnych: (AC, AE, AG, BF, CG, DF, DH, FH)

Rodzina minimalna (skreślenia nie zachodzą): { ACD, BEF }.

Graf minimalny Moore'a: ($\alpha = ACD$, $\beta = BEF$), $\alpha = 0$, $\beta = 1$.

	q'=D	$C + q \cdot \overline{C}$	$ + q \cdot D$,	Y = q
	DC	0 0	0 1	1 1	1 0
_	q				
	0	0	0	(1)	0
_	1	Ì	0	(1)	

sterowa	nie S R o	ila q : S	=D+C	, R =	D
DC	0 0	0 1	1 1	1 0	

	DC	0 0	0 1	1 1	1 0	
_	q					
-	0	1 x	1/x	0\1	1 x	
-	1	x 1	1(0)	x/1	x 1	

Q	Q'	\overline{S}	$\overline{\mathbf{R}}$	
0	0	1	×	
0	1	0	1	
1	0	1	0	
1	1	×	1	

Rozwiązanie 1: Sieć sprzężeniowa NAND (bramka oznaczona kolorem czerwonym usuwa hazard).

Rozwiązanie 2: Sieć z przerzutnikiem S R.

(UWAGA! W SPRAWOZDANIU KAŻDY SCHEMAT MUSI BYĆ NARYSOWANY RĘCZNIE)