- 1. Introduction
 - 1.1 Research Questions
 - 1.2 Dataset Overview
- 2. Data Loading and Initial Exploration
- 3. Data Cleaning and Preprocessing
- 4. Exploratory Data Analysis
- 5. Feature Engineering
- 6. Modeling Preparation
- 7. Logistic Regression Model
- 8. Random Forest Model
- 9. Model Comparison
- 10. Feature Effects Analysis
- 11. Churn Risk Profiling
- 12. Conclusion and Recommendations

Telecom Customer Churn Prediction Analysis

Code **▼**

Ashish Yakub Beary

2025-04-20

1. Introduction

This report presents an analysis of customer churn for a telecommunications company. Customer churn, or the rate at which customers stop doing business with a company, is a critical metric in the telecom industry due to the high cost of acquiring new customers compared to retaining existing ones.

1.1 Research Questions

The primary research question addressed in this analysis is:

What factors most significantly predict customer churn in the telecom industry?

Secondary questions include:

- How do service usage patterns and demographics correlate with churn probability?
- Which specific services or contract features have the strongest protective effect against churn?

• Can we identify high-risk customers early to implement targeted retention strategies?

1.2 Dataset Overview

The analysis is based on the following datasets:

- **telecom_customer_churn.csv**: Primary dataset containing customer information (7,043 customers with 38 variables)
- **telecom_zipcode_population.csv**: Supplementary dataset with population information by zip code
- **telecom_data_dictionary.csv**: Metadata describing each variable

Hide

```
# Load necessary packages
library(tidyverse) # For data manipulation and visualization
library(caret)
                   # For machine learning workflow
library(randomForest) # For random forest model
library(pROC)
                  # For ROC curve analysis
library(corrplot) # For correlation visualization
library(janitor) # For cleaning column names
                 # For nice scales on plots
library(scales)
library(knitr)
                  # For tables
library(kableExtra) # For enhanced tables
                  # For nice color palettes
library(viridis)
library(gridExtra) # For combining plots
library(pdp)
                   # For partial dependence plots
library(broom)
# Set seed for reproducibility
set.seed(123)
```

2. Data Loading and Initial Exploration

2.1 Data Structure

Let's examine the structure of our main dataset:

Hide

Display the structure of the first few columns
str(telecom_churn[,])

```
## 'data.frame': 7043 obs. of 38 variables:
## $ customer id
                                     : Factor w/ 7043 levels "0002-ORFB
0","0003-MKNFE",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ gender
                                    : Factor w/ 2 levels "Female", "Male":
1 2 2 2 1 1 1 2 1 1 ...
                                    : int 37 46 50 78 75 23 67 52 68 43
## $ age
## $ married
                                   : Factor w/ 2 levels "No", "Yes": 2 1 1
2 2 1 2 2 1 2 ...
## $ number_of_dependents
                                    : int 0000030001 ...
## $ city
                                    : Factor w/ 1106 levels "Acampo", "Acto
n",..: 347 369 223 588 140 609 547 654 925 916 ...
## $ zip code
                                    : int 93225 91206 92627 94553 93010 9
5345 93437 94558 93063 95681 ...
## $ latitude
                                     : num 34.8 34.2 33.6 38 34.2 ...
## $ longitude
                                    : num -119 -118 -118 -122 -119 ...
## $ number_of_referrals
                                    : int 2001301803...
## $ tenure in months
                                    : int 9 9 4 13 3 9 71 63 7 65 ...
## $ offer
                                    : Factor w/ 6 levels "None", "Offer
A",..: 1 1 6 5 1 6 2 3 6 1 ...
## $ phone service
                                  : Factor w/ 2 levels "No", "Yes": 2 2 2
2 2 2 2 2 2 2 ...
## $ avg_monthly_long_distance_charges: num 42.39 10.69 33.65 27.82 7.38
                              : Factor w/ 3 levels "","No","Yes": 2
## $ multiple lines
3 2 2 2 2 2 3 2 3 ...
## $ internet_service
                                    : Factor w/ 2 levels "No", "Yes": 2 2 2
2 2 2 2 2 2 2 ...
                                    : Factor w/ 4 levels "", "Cable", "DS
## $ internet type
L",..: 2 2 4 4 4 2 4 4 3 2 ...
                              : int 16 10 30 4 11 73 14 7 21 14 ...
## $ avg_monthly_gb_download
                                    : Factor w/ 3 levels "","No","Yes": 2
## $ online security
2 2 2 2 2 3 3 3 3 ...
## $ online_backup
                                    : Factor w/ 3 levels "", "No", "Yes": 3
2 2 3 2 2 3 2 2 3 ...
## $ device_protection_plan : Factor w/ 3 levels "","No","Yes": 2
2 3 3 2 2 3 2 2 3 ...
                                    : Factor w/ 3 levels "", "No", "Yes": 3
## $ premium_tech_support
2 2 2 3 3 3 3 2 3 ...
                                    : Factor w/ 3 levels "", "No", "Yes": 3
## $ streaming tv
2 2 3 3 3 3 2 2 3 ...
                                    : Factor w/ 3 levels "","No","Yes": 2
## $ streaming_movies
3 2 3 2 3 3 2 2 3 ...
## $ streaming_music
                                : Factor w/ 3 levels "","No","Yes": 2
3 2 2 2 3 3 2 2 3 ...
## $ unlimited data
                                    : Factor w/ 3 levels "","No","Yes": 3
2 3 3 3 3 3 2 3 3 ...
                                     : Factor w/ 3 levels "Month-to-Mont
## $ contract
```

```
h",...: 2 1 1 1 1 1 3 3 3 3 ...
## $ paperless billing
                                      : Factor w/ 2 levels "No", "Yes": 2 1 2
2 2 2 2 2 2 2 ...
## $ payment method
                                       : Factor w/ 3 levels "Bank Withdrawa
l",...: 2 2 1 1 2 2 1 2 1 2 ...
## $ monthly_charge
                                       : num 65.6 -4 73.9 98 83.9 ...
## $ total charges
                                       : num 593 542 281 1238 267 ...
## $ total refunds
                                       : num 0 38.3 0 0 0 ...
## $ total extra data charges
                                      : int 0 10 0 0 0 0 0 20 0 0 ...
## $ total_long_distance_charges
                                      : num 381.5 96.2 134.6 361.7 22.1 ...
                                       : num 975 610 415 1600 290 ...
## $ total revenue
                                       : Factor w/ 3 levels "Churned", "Joine
## $ customer status
d",...: 3 3 1 1 1 3 3 3 3 3 ...
## $ churn_category
                                       : Factor w/ 6 levels "", "Attitude",..:
1 1 3 4 4 1 1 1 1 1 ...
                                       : Factor w/ 21 levels "", "Attitude of
## $ churn reason
service provider",..: 1 1 4 20 16 1 1 1 1 1 ...
```

Hide

```
# Get a summary of the dataset dimensions
cat("Number of customers:", nrow(telecom_churn), "\n")
```

```
## Number of customers: 7043
```

Hide

```
cat("Number of variables:", ncol(telecom_churn), "\n")
```

```
## Number of variables: 38
```

2.2 Create Binary Churn Variable

For our analysis, we'll create a binary churn variable that indicates whether a customer has churned or not.

```
##
## No Yes
## 5174 1869
```

2.3 Basic Summary Statistics

Hide

```
##
         age
                     tenure_in_months number_of_dependents avg_monthly_gb_down
load
##
    Min.
                     Min.
                             : 1.00
                                                                      : 2.00
            :19.00
                                        Min.
                                               :0.0000
                                                              Min.
    1st 0u.:32.00
                     1st Ou.: 9.00
                                        1st Ou.:0.0000
                                                              1st Ou.:13.00
    Median :46.00
                     Median :29.00
                                        Median :0.0000
                                                              Median :21.00
##
            :46.51
                             :32.39
                                               :0.4687
                                                                      :26.19
##
    Mean
                     Mean
                                        Mean
                                                              Mean
    3rd Ou.:60.00
                     3rd Ou.:55.00
                                        3rd Ou.:0.0000
                                                              3rd Ou.:30.00
##
##
    Max.
            :80.00
                     Max.
                             :72.00
                                        Max.
                                               :9.0000
                                                              Max.
                                                                      :85.00
                                                              NA's
                                                                      :1526
##
                      total charges
##
    monthly charge
           :-10.00
                      Min.
##
    Min.
    1st Ou.: 30.40
                      1st Ou.: 400.1
##
    Median : 70.05
                      Median :1394.5
##
           : 63.60
                      Mean
                              :2280.4
    Mean
##
    3rd Ou.: 89.75
                      3rd Ou.: 3786.6
           :118.75
                              :8684.8
##
    Max.
                      Max.
##
```

3. Data Cleaning and Preprocessing

3.1 Missing Values

```
# Check for missing values
missing_values <- colSums(is.na(telecom_churn))
missing_values[missing_values > 0]
```

```
## avg_monthly_long_distance_charges avg_monthly_gb_download
## 682 1526
```

Hide

3.2 Handling Categorical Variables

Some categorical variables have empty values because they are conditionally relevant. For example, internet-related services are only applicable to customers with internet service.

```
# Convert empty strings to NA for certain categorical columns
service_cols <- c("multiple_lines", "internet_type", "online_security",</pre>
                 "online backup", "device protection plan", "premium tech sup
        port",
                  "streaming_tv", "streaming_movies", "streaming_music", "unli
        mited data")
for(col in service cols) {
  telecom churn[[col]] <- as.character(telecom churn[[col]])</pre>
  telecom churn[[col]][telecom churn[[col]] == ""] <- NA</pre>
  telecom churn[[col]] <- as.factor(telecom churn[[col]])</pre>
}
# Some customers don't have internet service, which is why they have NA for i
        nternet-related services
# We'll recode these NAs as "No Internet Service"
internet_related <- c("internet_type", "online_security", "online_backup",</pre>
                       "device_protection_plan", "premium_tech_support",
                       "streaming tv", "streaming movies", "streaming music",
                       "unlimited data")
for(col in internet related) {
  levels(telecom_churn[[col]]) <- c(levels(telecom_churn[[col]]), "No Interne</pre>
        t Service")
  telecom_churn[[col]][is.na(telecom_churn[[col]]) & telecom_churn$internet_s
        ervice == "No"] <- "No Internet Service"</pre>
}
# Similarly for phone-related services
phone related <- c("multiple lines")</pre>
for(col in phone related) {
  levels(telecom churn[[col]]) <- c(levels(telecom churn[[col]]), "No Phone S</pre>
        ervice")
  telecom_churn[[col]][is.na(telecom_churn[[col]]) & telecom_churn$phone_serv
        ice == "No"] <- "No Phone Service"</pre>
}
```

4. Exploratory Data Analysis

4.1 Overall Churn Rate

```
# Calculate overall churn rate
churn_rate <- mean(telecom_churn$customer_status == "Churned") * 100
cat("Overall churn rate:", round(churn_rate, 2), "%\n")</pre>
```

Overall churn rate: 26.54 %

4.2 Numeric Variables and Churn

Let's examine the relationship between key numerical variables and churn:

```
# Age distribution by churn status
p1 <- ggplot(telecom_churn, aes(x = churned, y = age, fill = churned)) +
  geom boxplot() +
  labs(title = "Age Distribution by Churn Status",
       x = "Churned",
       y = "Age") +
  scale fill manual(values = c("#2e6083", "#52664b")) +
  theme_minimal()
# Tenure distribution by churn status
p2 <- ggplot(telecom_churn, aes(x = churned, y = tenure_in_months, fill = chu
        rned)) +
  geom boxplot() +
  labs(title = "Customer Tenure by Churn Status",
       x = "Churned",
       y = "Tenure (months)") +
  scale_fill_manual(values = c("#2e6083", "#52664b")) +
  theme_minimal()
# Monthly charge distribution by churn status
p3 <- ggplot(telecom_churn, aes(x = churned, y = monthly_charge, fill = churn
        ed)) +
  geom boxplot() +
  labs(title = "Monthly Charge by Churn Status",
       x = "Churned",
       y = "Monthly Charge ($)") +
  scale_fill_manual(values = c("#2e6083", "#52664b")) +
  theme minimal()
# Display plots side by side
grid.arrange(p1, p2, p3, ncol = 3)
```



```
# Calculate mean statistics by churn status
telecom_churn %>%
  group_by(churned) %>%
  summarize(
   avg_age = mean(age, na.rm = TRUE),
   avg_tenure = mean(tenure_in_months, na.rm = TRUE),
   avg_monthly_charge = mean(monthly_charge, na.rm = TRUE),
   avg_total_charges = mean(total_charges, na.rm = TRUE),
   avg_monthly_download = mean(avg_monthly_gb_download, na.rm = TRUE)
) %>%
  kable(caption = "Key Metrics by Churn Status", digits = 2) %>%
  kable_styling(bootstrap_options = c("striped", "hover"))
```

Key Metrics by Churn Status

churned	avg_age	avg_tenure	avg_monthly_charge	avg_total_charges	avg_monthly_download
No	45.34	37.59	60.07	2550.79	25.65
Yes	49.74	17.98	73.35	1531.80	23.45

Observations:

- 1. **Age**: Churned customers tend to be slightly older on average.
- 2. **Tenure**: There's a substantial difference in tenure between churned and retained customers. Customers who churn have much shorter tenure on average.
- 3. **Monthly Charge**: Churned customers have higher monthly charges on average.

4.3 Categorical Variables and Churn

Let's analyze how categorical variables relate to churn:

```
# Create a function to plot churn rate by category
plot_churn_by_category <- function(data, variable) {</pre>
  # Calculate percentages
  churn by cat <- data %>%
    group by(!!sym(variable)) %>%
    summarize(
      total = n().
      churned = sum(customer status == "Churned"),
      churn rate = churned / total * 100
    ) %>%
    arrange(desc(churn_rate))
  # Create plot
  ggplot(churn_by_cat, aes(x = reorder(!!sym(variable), -churn_rate), y = chu
        rn rate)) +
    geom bar(stat = "identity", fill = "steelblue") +
    geom_text(aes(label = paste0(round(churn_rate, 1), "%")), vjust = -0.5) +
    labs(title = paste("Churn Rate by", variable),
         x = variable,
         v = "Churn Rate (%)") +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))
}
# Plot for contract type
plot_churn_by_category(telecom_churn, "contract")
```


Plot for internet type
plot_churn_by_category(telecom_churn, "internet_type")

Plot for payment method
plot_churn_by_category(telecom_churn, "payment_method")

Observations:

- 1. **Contract Type**: Month-to-month contracts have a significantly higher churn rate (45.8%) compared to one-year (10.7%) and two-year contracts (2.5%).
- 2. **Internet Type**: Fiber optic internet customers have the highest churn rate, while DSL customers and customers opting out of internet service have a lower churn rate.
- 3. **Payment Method**: Customers using electronic checks as their payment method have a higher churn rate compared to other payment methods.

4.4 Service Adoption Impact on Churn

Let's analyze how various services impact churn:

```
# Create a function to calculate service impact on churn
service_impact <- function(data, service_var) {</pre>
  # Calculate churn rates
  service churn <- data %>%
    group_by(!!sym(service_var)) %>%
    summarize(
      total = n(),
      churned = sum(customer_status == "Churned"),
      churn_rate = churned / total * 100
    )
  return(service_churn)
}
# Example for online security
online_security_impact <- service_impact(telecom_churn, "online_security")</pre>
kable(online_security_impact, caption = "Churn Rate by Online Security Statu
        s") %>%
  kable_styling(bootstrap_options = c("striped", "hover"))
```

Churn Rate by Online Security Status

online_security	total	churned	churn_rate
No	3498	1461	41.76672
Yes	2019	295	14.61119
No Internet Service	1526	113	7.40498

Let's analyze multiple services together:

```
# Selected services to analyze
selected_services <- c("online_security", "premium_tech_support", "contract")</pre>
# Create an empty data frame with the right structure
services_plot_data <- data.frame(</pre>
  service = character(),
  service value = character(),
  total = numeric(),
  churned = numeric(),
  churn rate = numeric(),
  stringsAsFactors = FALSE
)
# Loop through each service
for (service name in selected services) {
  # Get the churn data for this service
  service data <- service impact(telecom churn, service name)</pre>
  # Extract the service value column (which has a dynamic name)
  service_values <- service_data[[1]] # The first column contains the service
        values
  # Create a new data frame with consistent column names
  temp df <- data.frame(</pre>
    service = service name,
    service value = as.character(service values),
    total = service data$total,
    churned = service data$churned,
    churn_rate = service_data$churn_rate,
    stringsAsFactors = FALSE
  )
 # Add to the main data frame
  services plot data <- rbind(services plot data, temp df)</pre>
}
# Plot with the data
ggplot(services_plot_data, aes(x = reorder(paste(service, service_value), -ch
        urn_rate), y = churn_rate)) +
  geom_bar(stat = "identity", fill = "steelblue") +
  geom_text(aes(label = paste0(round(churn_rate, 1), "%")), vjust = -0.5) +
  labs(title = "Churn Rate by Selected Services",
       x = "Service and Status",
       y = "Churn Rate (%)") +
  theme minimal() +
  theme(axis.text.x = element text(angle = 45, hjust = 1))
```


Observations:

- 1. Customers without online security have a much higher churn rate (41.8%) than those with online security (14.6%).
- 2. Similar patterns are observed for premium tech support.
- 3. This suggests that additional services may create "stickiness" and reduce churn.

4.5 Correlation Analysis

Let's examine the correlations between numerical variables:

```
# Select numerical columns for correlation analysis
numeric cols <- telecom churn %>%
  select(age, tenure_in_months, number_of_dependents, avg_monthly_long_distan
        ce_charges,
         avg_monthly_gb_download, monthly_charge, total_charges, total_refund
         total_extra_data_charges, total_long_distance_charges, total_revenu
        e) %>%
  names()
# Calculate correlation matrix
correlation_matrix <- cor(telecom_churn[numeric_cols], use = "pairwise.comple")</pre>
        te.obs")
# Create a correlation plot
corrplot(correlation_matrix, method = "circle", type = "upper",
         tl.col = "black", tl.srt = 45, tl.cex = 0.7,
         title = "Correlation Matrix of Numerical Variables",
         mar = c(0, 0, 1, 0))
```

Correlation Matrix of Numerical Variables

Key Correlations:

- 1. Tenure is positively correlated with total charges, as expected.
- 2. Monthly charge is positively correlated with average monthly GB download.
- 3. Total revenue is strongly correlated with total charges, monthly charge, and tenure. Moderately with long distance charges.

5. Feature Engineering

5.1 Create Derived Features

Let's create some additional features that might help improve our predictive models:

```
# Customer lifetime value (CLV)
telecom churn$customer lifetime value <- telecom churn$total revenue / teleco</pre>
        m_churn$tenure_in_months
# Average monthly revenue
telecom_churn$avg_monthly_revenue <- telecom_churn$total_revenue / telecom_ch</pre>
        urn$tenure_in_months
# Service count (number of additional services subscribed)
telecom_churn$service_count <- rowSums(telecom_churn[, c("online_security",</pre>
                                                         "online backup",
                                                         "device protection pla
        n",
                                                         "premium_tech_suppor
        t",
                                                         "streaming tv",
                                                         "streaming_movies",
                                                         "streaming music")] ==
        "Yes", na.rm = TRUE)
# Visualize service count distribution by churn status
ggplot(telecom_churn, aes(x = service_count, fill = churned)) +
  geom_histogram(position = "dodge", binwidth = 1) +
  labs(title = "Service Count Distribution by Churn Status",
       x = "Number of Services",
       y = "Count") +
  scale_fill_manual(values = c( "#2e6083", "#52664b")) +
  theme minimal()
```


5.2 Add Population Data

Let's join the zipcode population data to potentially identify demographic patterns:

```
# Join zipcode population data
telecom_churn <- left_join(telecom_churn, zipcode_population, by = "zip_cod
        e")

# Calculate population density quartiles
telecom_churn$population_quartile <- ntile(telecom_churn$population, 4)

# Analyze churn by population quartile
telecom_churn %>%
    group_by(population_quartile) %>%
    summarize(
        churn_rate = mean(churned == "Yes") * 100,
        customer_count = n()
) %>%
    kable(caption = "Churn Rate by Population Quartile", digits = 2) %>%
    kable_styling(bootstrap_options = c("striped", "hover"))
```

Churn Rate by Population Quartile

customer_count	churn_rate	population_quartile
1761	24.65	1
1761	24.30	2
1761	27.14	3
1760	30.06	4

6. Modeling Preparation

6.1 Encoding Categorical Variables

For our models, we need to encode categorical variables:

```
Hide
```

```
# Combine with original data
telecom_churn_encoded <- cbind(telecom_churn, as.data.frame(dummy_data))

# Use the correct column names when checking the data
# For example, if the proper names are:
head(telecom_churn_encoded[, grep("contract", colnames(telecom_churn_encode d), value = TRUE)])</pre>
```

```
contract contractOne Year contractTwo Year
##
## 1
           One Year
                                     1
## 2 Month-to-Month
                                     0
                                                       0
## 3 Month-to-Month
                                     0
                                                       0
## 4 Month-to-Month
                                                       0
                                     0
## 5 Month-to-Month
                                     0
                                                       0
## 6 Month-to-Month
```

6.2 Feature Selection

Let's select relevant features for our models:

```
##
## No Yes
## 5174 1869
```

6.3 Data Splitting

Let's split our data into training and testing sets:

```
Hide
```

```
# Split the data into training and testing sets (70/30)
train_index <- createDataPartition(model_data$churned, p = 0.7, list = FALSE)
train_data <- model_data[train_index, ]
test_data <- model_data[-train_index, ]

# Check dimensions
cat("Training set dimensions:", dim(train_data), "\n")</pre>
```

```
## Training set dimensions: 4931 48
```

Hide

```
cat("Testing set dimensions:", dim(test_data), "\n")
```

```
## Testing set dimensions: 2112 48
```

```
# Check class balance in training set
table(train_data$churned)
```

```
##
## No Yes
## 3622 1309
```

7. Logistic Regression Model

7.1 Model Building

Let's build a logistic regression model using key variables from our EDA:

```
##
## Call:
## glm(formula = logistic formula, family = binomial(link = "logit"),
       data = train data)
##
## Coefficients: (2 not defined because of singularities)
                                            Estimate Std. Error z value Pr(>
##
|z|)
                                          -0.3137451 0.2145160 -1.463 0.14
## (Intercept)
3585
## tenure in months
                                          -0.0259894 0.0025595 -10.154 < 2
e-16
## contractOne Year
                                          -1.1716349 0.1237280 -9.469 < 2
e - 16
## contractTwo Year
                                          -2.3476807 0.1944431 -12.074 < 2
e-16
## monthly_charge
                                           0.0113124 0.0037202 3.041 0.00
2359
## internet_typeDSL
                                          -0.4513211 0.1414717 -3.190 0.00
1422
## internet typeFiber Optic
                                         0.0868914 0.1637040 0.531 0.59
5569
## internet_typeNo Internet Service
                                         -1.1764044 0.1970953 -5.969 2.39
## online securityYes
                                          -0.6103785 0.1067801 -5.716 1.09
e-08
## online_securityNo Internet Service
                                                  NA
                                                            NA
                                                                    NA
NA
## premium tech supportYes
                                        -0.5384246 0.1102700 -4.883 1.05
e-06
## premium_tech_supportNo Internet Service
                                                  NA
                                                            NA
                                                                    NA
NA
## payment methodCredit Card
                                          -0.4846154 0.0920324 -5.266 1.40
e-07
## payment methodMailed Check
                                           0.6103819 0.1706563 3.577 0.00
0348
## paperless billingYes
                                           0.3915585 0.0904218 4.330 1.49
e-05
## service count
                                           0.0527388 0.0370910 1.422 0.15
                                                                 0.047 0.96
## customer_lifetime_value
                                           0.0001035 0.0021870
2272
##
## (Intercept)
## tenure in months
                                          ***
## contractOne Year
                                          ***
## contractTwo Year
                                          ***
## monthly charge
                                          **
```

```
## internet typeDSL
                                           **
## internet typeFiber Optic
## internet_typeNo Internet Service
                                           ***
## online securityYes
                                           ***
## online securityNo Internet Service
## premium_tech_supportYes
                                           ***
## premium_tech_supportNo Internet Service
## payment methodCredit Card
                                           ***
## payment methodMailed Check
                                           ***
## paperless_billingYes
                                           ***
## service count
## customer lifetime value
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 5707.1 on 4930 degrees of freedom
## Residual deviance: 3935.4 on 4916 degrees of freedom
## AIC: 3965.4
## Number of Fisher Scoring iterations: 6
```

7.2 Odds Ratios

Let's examine the odds ratios to interpret the model coefficients:

Hide

Odds Ratios for Logistic Regression Model

Variable

OddsRatio LowerCI UpperCI

	Variable	OddsRatio	LowerCl	UpperCl
(Intercept)	(Intercept)	0.731	0.478	1.110
tenure_in_months	tenure_in_months	0.974	0.969	0.979
contractOne Year	contractOne Year	0.310	0.242	0.394
contractTwo Year	contractTwo Year	0.096	0.064	0.138
monthly_charge	monthly_charge	1.011	1.004	1.019
internet_typeDSL	internet_typeDSL	0.637	0.483	0.841
internet_typeFiber Optic	internet_typeFiber Optic	1.091	0.790	1.502
internet_typeNo Internet Service	internet_typeNo Internet Service	0.308	0.209	0.453
online_securityYes	online_securityYes	0.543	0.440	0.669
online_securityNo Internet Service	online_securityNo Internet Service	NA	NA	NA
premium_tech_supportYes	premium_tech_supportYes	0.584	0.470	0.724
premium_tech_supportNo Internet Service	premium_tech_supportNo Internet Service	NA	NA	NA
payment_methodCredit Card	payment_methodCredit Card	0.616	0.514	0.737
payment_methodMailed Check	payment_methodMailed Check	1.841	1.317	2.573
paperless_billingYes	paperless_billingYes	1.479	1.239	1.767
service_count	service_count	1.054	0.980	1.133
customer_lifetime_value	customer_lifetime_value	1.000	0.996	1.004

Interpretation:

- **Tenure**: For each additional month of tenure, the odds of churning decrease by approximately 2.6%.
- **Contract**: Compared to month-to-month contracts, one-year contracts reduce churn odds by approximately 70%, while two-year contracts reduce churn odds by approximately 90%.
- Monthly Charge: Higher monthly charges slightly increase churn odds (~1.1% per dollar).
- **Services**: Customers with online security or premium tech support are significantly less likely to churn, suggesting these services enhance customer retention.
- Online Security (Yes): OR = 0.543 → ~46% reduction in churn odds
- Premium Tech Support (Yes): OR = 0.584 → ~42% reduction

7.3 Model Evaluation

Let's evaluate the logistic regression model on the test data:

Hide

```
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction
                No
                   Yes
          No 1389
##
                   226
              163
                   334
##
          Yes
##
##
                  Accuracy : 0.8158
                    95% CI: (0.7986, 0.8321)
##
       No Information Rate: 0.7348
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 0.5097
##
    Mcnemar's Test P-Value: 0.001669
##
##
               Sensitivity: 0.5964
##
               Specificity: 0.8950
##
##
            Pos Pred Value: 0.6720
            Neg Pred Value: 0.8601
##
                Prevalence: 0.2652
##
##
            Detection Rate: 0.1581
      Detection Prevalence: 0.2353
##
         Balanced Accuracy: 0.7457
##
##
          'Positive' Class: Yes
##
##
```


8. Random Forest Model

8.1 Model Building

Now let's build a random forest model:

```
# Prepare data for random forest (handle factors appropriately)
rf_data_train <- train_data</pre>
rf_data_test <- test_data
# Make sure the response is a factor
rf data train$churned <- as.factor(rf data train$churned)</pre>
rf_data_test$churned <- as.factor(rf_data_test$churned)</pre>
# Train random forest model
set.seed(123)
rf_model <- randomForest(</pre>
  churned ~ tenure_in_months + contract + monthly_charge + internet_type +
    online_security + premium_tech_support + payment_method +
    paperless_billing + service_count + avg_monthly_gb_download +
    age + number_of_dependents,
  data = rf_data_train,
  ntree = 300,
  mtry = 5,
  importance = TRUE
)
# Model summary
print(rf_model)
```

```
##
## Call:
    randomForest(formula = churned ~ tenure in months + contract +
                                                                         month
ly charge + internet type + online security + premium tech support +
                                                                           pay
ment_method + paperless_billing + service_count + avg_monthly_gb_download +
age + number of dependents, data = rf data train, ntree = 300,
importance = TRUE)
                  Type of random forest: classification
                        Number of trees: 300
##
## No. of variables tried at each split: 5
##
           00B estimate of error rate: 19.16%
##
## Confusion matrix:
         No Yes class error
##
## No 3249 373
                  0.1029818
## Yes 572 737
                  0.4369748
```

8.2 Variable Importance

Let's examine which variables are most important in the random forest model:

Top 10 Most Important Variables in Random Forest Model

	Variable	MeanDecreaseGini
monthly_charge	monthly_charge	316.84
tenure_in_months	tenure_in_months	316.10
contract	contract	289.19

	Variable	MeanDecreaseGini
age	age	286.81
avg_monthly_gb_download	avg_monthly_gb_download	196.24
online_security	online_security	93.74
service_count	service_count	83.80
premium_tech_support	premium_tech_support	76.34
number_of_dependents	number_of_dependents	75.09
internet_type	internet_type	66.63

```
Hide
```


8.3 Model Evaluation

Let's evaluate the random forest model on the test data:

```
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction
                No
                   Yes
##
          No 1407
                    224
          Yes 145
                   336
##
##
##
                  Accuracy : 0.8253
##
                    95% CI: (0.8084, 0.8413)
##
       No Information Rate: 0.7348
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 0.5305
##
    Mcnemar's Test P-Value: 4.896e-05
##
##
##
               Sensitivity: 0.6000
               Specificity: 0.9066
##
##
            Pos Pred Value: 0.6985
##
            Neg Pred Value: 0.8627
                Prevalence: 0.2652
##
##
            Detection Rate: 0.1591
##
      Detection Prevalence: 0.2277
##
         Balanced Accuracy: 0.7533
##
##
          'Positive' Class: Yes
##
```


9. Model Comparison

Let's compare the performance of our logistic regression and random forest models:

Hide

Model Performance Comparison

Model	Accuracy	Sensitivity	Specificity	F1_Score	AUC
Logistic Regression	0.816	0.596	0.895	0.632	0.858
Random Forest	0.825	0.600	0.907	0.646	0.873

10. Feature Effects Analysis

10.1 Logistic Regression Effects

Let's visualize the effects of significant predictors in our logistic regression model:

```
# Extract coefficients
coef_summary <- summary(logistic_model)$coefficients</pre>
significant_vars <- rownames(coef_summary)[coef_summary[, "Pr(>|z|)"] < 0.05]</pre>
# Format odds ratios for significant variables
sig_odds_ratios <- odds_ratios_df[odds_ratios_df$Variable %in% significant_va</pre>
        rs, ]
sig_odds_ratios <- sig_odds_ratios[order(sig_odds_ratios$0ddsRatio), ]</pre>
# Plot odds ratios for significant variables (excluding intercept)
ggplot(sig_odds_ratios[sig_odds_ratios$Variable != "(Intercept)", ],
                   aes(x = reorder(Variable, OddsRatio), y = OddsRatio)) +
  geom_point(size = 3) +
  geom_errorbar(aes(ymin = LowerCI, ymax = UpperCI), width = 0.2) +
  geom hline(yintercept = 1, linetype = "dashed", color = "red") +
  coord flip() +
  labs(title = "Odds Ratios for Significant Predictors",
       x = "Variable",
       y = "Odds Ratio (log scale)") +
  scale_y_log10() +
  theme minimal()
```


10.2 Random Forest Partial Dependence Plots

Let's examine the partial dependence plots for key variables in our random forest model:

11. Churn Risk Profiling

11.1 Predicting Churn Probability

Let's use our random forest model (which had better performance) to predict churn probability for all customers:

```
##
## Low Risk Medium Risk High Risk
## 4070 542 1624
```


11.2 High Risk Customer Profile

Let's analyze the characteristics of high-risk customers:

```
# Analyze high risk customer profiles
high_risk_profile <- model_data %>%
  filter(risk_segment == "High Risk") %>%
  summarize(
    count = n(),
    avg_tenure = mean(tenure_in_months),
    avg monthly charge = mean(monthly charge),
    pct_month_to_month = mean(contract == "Month-to-Month") * 100,
    pct_fiber = mean(internet_type == "Fiber Optic") * 100,
    pct_no_online_security = mean(online_security == "No") * 100,
    pct_no_tech_support = mean(premium_tech_support == "No") * 100,
    avg_service_count = mean(service_count)
  )
# Display high risk profile
high_risk_profile %>%
 t() %>%
  as.data.frame() %>%
  rownames to column("Metric") %>%
  setNames(c("Metric", "Value")) %>%
  kable(caption = "High Risk Customer Profile", digits = 2) %>%
  kable styling(bootstrap options = c("striped", "hover"))
```

High Risk Customer Profile

Metric	Value
count	1624.00
avg_tenure	16.54
avg_monthly_charge	74.34
pct_month_to_month	91.19
pct_fiber	69.40
pct_no_online_security	83.00
pct_no_tech_support	81.83
avg_service_count	2.06

12. Conclusion and Recommendations

12.1 Key Findings

Based on our comprehensive analysis, we've identified several key factors that significantly predict customer churn:

- 1. **Tenure**: Shorter customer tenure is strongly associated with higher churn probability.
- 2. **Contract Type**: Month-to-month contracts have a significantly higher churn rate (45.8%) compared to one-year (10.7%) and two-year contracts (2.5%).
- 3. **Internet Type**: Fiber optic internet customers have the highest churn rate.
- 4. **Service Adoption**: Customers without online security and tech support are more likely to churn.
- 5. Monthly Charges: Higher monthly charges are associated with increased churn risk.

12.2 Model Performance

Our random forest model achieved strong predictive performance:

- Accuracy: 0.825
- AUC: 0.873
- Sensitivity (True Positive Rate): 0.6
- Specificity (True Negative Rate): 0.907

12.3 Business Recommendations

Based on our findings, we recommend the following retention strategies:

- 1. **Target Month-to-Month Customers**: Implement targeted campaigns to convert month-to-month customers to longer-term contracts.
- 2. **Early Tenure Focus**: Develop specialized retention programs for customers in their first 12 months of service.
- 3. **Service Bundle Incentives**: Encourage adoption of online security and tech support services, which are associated with lower churn rates.
- 4. **Fiber Optic Customer Support**: Address potential service quality issues for fiber optic internet customers.
- 5. **High-Value Customer Retention**: Create specialized retention programs for customers with high monthly charges but low service adoption.

12.4 Implementation Plan

- 1. Risk Segmentation: Use the model to score all customers and implement tiered retention strategies.
- 2. **Proactive Outreach**: Contact high-risk customers before they churn with personalized offers.
- 3. **Service Quality Improvement**: Address potential service issues for high-churn segments.
- 4. **Contract Conversion Campaigns**: Offer incentives for month-to-month customers to upgrade to longer contracts.
- 5. **Service Bundle Promotions**: Create attractive bundles including the protective services identified in our analysis.

```
# Save the high risk customer list for targeted interventions
# First check if customer id exists in the original dataset
if ("customer id" %in% colnames(telecom churn)) {
  # Option 1: Join back the customer id column to the high-risk customers
  high risk customers <- model data %>%
    filter(risk segment == "High Risk") %>%
    # Create a row number to join with
    mutate(row_id = row_number()) %>%
    # Add the customer_id from the original data
    left join(
      telecom churn %>%
        select(customer id) %>%
        mutate(row_id = row_number()),
      by = "row id"
    ) %>%
    # Remove the temporary row id
    select(-row id) %>%
    # Now select the desired columns
    select(customer_id, churn_probability, tenure_in_months, monthly_charge,
           contract, internet_type, online_security, premium_tech_support)
} else {
  # Option 2: If there's no customer id at all, create a sequential ID
  high_risk_customers <- model_data %>%
    filter(risk segment == "High Risk") %>%
    # Create a sequential ID
    mutate(customer id = paste0("HR ", row number())) %>%
    select(customer_id, churn_probability, tenure_in_months, monthly_charge,
           contract, internet_type, online_security, premium_tech_support)
}
# Check the result
head(high risk customers)
```

##	customer_id	churn_probability	tenure_in_months	monthly_charge	cont
## 1	0002-0RFB0	0.9500000	4	73.9	Month-to-M
## 2 onth	0003-MKNFE	0.9766667	13	98.0	Month-to-M
## 3 onth	0004-TLHLJ	0.9666667	3	83.9	Month-to-M
## 4	0011-IGKFF	0.9833333	1	25.1	Month-to-M
## 5 onth	0013-EXCHZ	0.7766667	13	94.1	Month-to-M
## 6 onth	0013-MHZWF	0.7566667	1	30.5	Month-to-M
##	internet typ	e online_security	premium tech supp	oort	
## 1	Fiber Opti		. – –	No	
## 2	Fiber Opti	c No		No	
## 3	Fiber Opti	c No		Yes	
## 4	Cabl	e No		No	
## 5	Fiber Opti	c No		No	
## 6	DS	L Yes		No	

Write the high risk customers to a CSV file
write.csv(high_risk_customers, "high_risk_customers.csv", row.names = FALSE)