

Visualizing Linear Models: An R Bag of Tricks Session 1: Getting Started

Michael Friendly SCS Short Course Oct. 22, 29, Nov. 5, 2020 https://friendly.github.io/VisMLM-course/

Today's topics

- What you need for this course
- Why plot your data?
- Data plots
- Model (effect) plots
- Diagnostic plots

What you need

- R, version >= 3.6
 - Download from https://cran.r-project.org/
- RStudio IDE, highly recommended
 - https://www.rstudio.com/products/rstudio/
- R packages: see course web page
 - car

effects heplots

candisc

Why plot your data?

Getting information from a table is like extracting sunlight from a cucumber. --- Farguhar & Farguhar, 1891

Information that is imperfectly acquired, is generally as imperfectly retained; and a man who has carefully investigated a printed table, finds, when done, that he has only a very faint and partial idea of what he has read; and that like a figure imprinted on sand, is soon totally erased and defaced.

--- William Playfair, The Commercial and Political Atlas (p. 3), 1786

Cucumbers

Table 7 Stevens et al. 2006, table 2: Determinants of authoritarian aggression

of authoritarian aggressi	
	Coefficient
Variable	(Standard Error
Constant	.41 (.93)
Countries	
Argentina	1.31 (.33)**B,M .93 (.32)**B,M 1.46 (.32)**B,M
Chile	.93 (.32)**B,M
Colombia	1.46 (.32)**B,M
Mexico	
Venezuela	.96 (.37)**B,M
Threat	
Retrospective egocentric economic perceptions	.20 (.13)
Prospective egocentric	.22 (.12)#
economic perceptions	(
Retrospective sociotropic	21 (.12)*
economic perceptions	,
Prospective sociotropic	32 (.12)*
economic perceptions	
Ideological distance from president	27 (.07)**
Ideology	
Ideology	.23 (.07)**
Individual Differences	
Age	.00 (.01)
Female	03 (.21)
Education	.13 (.14)
Academic Sector	.15 (.29)
Business Sector	.31 (.25)
Government Sector	10 (.27)
R^2	.15
Adjusted R ²	.12
N	500

Results of a one model for authoritarian aggression

The information is overwhelmed by footnotes & significance **stars**

**p < .01, *p < .05, #p < .10 (twotailed)
A Coefficient is significantly different from Argentina's at $p < .05$;
^B Coefficient is significantly different from Brazil's at p < .05;
$^{\text{CH}}$ Coefficient is significantly different from Chile's at p < .05;
$^{\rm CO}\text{Coefficient}$ is significantly different from Colombia's at p < .05;
MCoefficient is significantly different from Mexico's at p < .05

VCoefficient is significantly different from Venezuela's at

What's wrong with this picture?

5

Sunlight

coefplot(model)

Why didn't they say this in the first place?

NB: This is a presentation graph equivalent of the table

Shows coefficient with 95% CI

Run, don't walk toward the sunlight

Graphs can give enlightenment

The greatest value of a picture is when it forces us to notice what we never expected to see.

-- John W. Tukey

Dangers of numbers-only output

Student: You said to run descriptives and compute the correlation. What next?

Consultant: Did you plot your data?

X Mean: 54.26 Y Mean: 47.83 X SD : 16.76 Y SD : 26.93 Corr. : -0.06

With exactly the same stats, the data could be *any* of these plots

See how this in done in R: https://cran.r-project.org/web/packages/datasauRus/

0

Sometimes, don't need numbers at all

COVID transmission risk ~ Occupancy * Ventilation * Activity * Mask? * Contact.time

A complex 5-way table, whose message is clearly shown w/o numbers

There are 1+ unusual cells here. Can you see them?

From: N.R. Jones et-al (2020). Two metres or one: what is the evidence for physical distancing in covid-19? *BMJ* 2020;370:m3223, *doi:* https://doi.org/10.1136/bmj.m3223

If you do need tables – make them pretty

Several R packages make it easier to construct informative & pretty semi-graphic tables

Flipper lengths (mm) of the famous penguins of Palmer Station, Antarctica.

		F	emale	Male		
Species	Distribution	Avg.	Std. Dev.	Avg.	Std. Dev.	
ASTUH	-	188	5.6	192	6.6	
CONGLETON -	-	192	5.8	200	6.0	
GENTOO	-	213	3.9	222	5.7	

Artwork by @allison_horst

Linear models

Model:

$$\mathbf{y}_{i} = \beta_{0} + \beta_{1} \mathbf{X}_{i1} + \beta_{2} \mathbf{X}_{i2} + \dots + \beta_{p} \mathbf{X}_{ip} + \varepsilon_{i}$$

- Xs: quantitative predictors, factors, interactions, ...
- Assumptions:
 - Linearity: Predictors (possibly transformed) are linearly related to the outcome, y. [This just means linear in the parameters.]
 - Specification: No important predictors have been omitted; only important ones included. [This is often key & overlooked.]
 - The "holy trinity":
 - Independence: the errors are uncorrelated
 - Homogeneity of variance: $Var(\epsilon_i) = \sigma^2 = constant$
 - Normality: ε, have a normal distribution

 $\varepsilon_i \sim_{iid} \mathcal{N}(0,\sigma^2)$

15

Plots for linear models

- Data plots:
 - plot response (y) vs. predictors, with smooth summaries
 - scatterplot matrix --- all pairs
- Model (effect) plots
 - plot predicted response (\hat{y}) vs. predictors, controlling for variables not shown.
- Diagnostic plots

14

Occupational Prestige data

- Data on prestige of 102 occupations and
 - average education (years)
 - average income (\$)
 - % women
 - type (Blue Collar, Professional, White Collar)

<pre>> head(Prestige)</pre>							
	education	income	women	prestige	census	type	
gov.administrators	13.11	12351	11.16	68.8	1113	prof	
general.managers	12.26	25879	4.02	69.1	1130	prof	
accountants	12.77	9271	15.70	63.4	1171	prof	
purchasing.officers	11.42	8865	9.11	56.8	1175	prof	
chemists	14.62	8403	11.68	73.5	2111	prof	
physicists	15.64	11030	5.13	77.6	2113	prof	

Informative scatterplots

Scatterplots are most useful when enhanced with annotations & statistical summaries

Boxplots show marginal distributions

Data ellipse and regression line show the linear model, prestige ~ income

Point labels show possible outliers

Smoothed (loess) curve and CI show the trend

Informative scatterplots

car::scatterplot() provides all of these enhancements

Skewed distribution of income & nonlinear relation suggest need for a transformation

Arrow rule: move on the scale of powers in direction of the bulge

Try log(income)

```
scatterplot(prestige ~ income, data=Prestige,
    log = "x",
    pch = 16,
    regLine = list(col = "red", lwd=3),
    ...)
```

Income now ~ symmetric

Relation closer to linear

Stratify by type?

```
scatterplot(prestige ~ income | type, data=Prestige,
    col = c("blue", "red", "darkgreen"),
    pch = 15:17,
    legend = list(coords="bottomright"),
    smooth=list(smoother=loessLine, var=FALSE, span=1, lwd=4))
```

Formula: | type → "given type"

Different slopes: interaction of income * type

Provides another explanation of the non-linear relation

This is a new finding!

Scatterplot matrix

Fit a model

```
> mod1 <- lm(prestige ~ education + poly(women, 2) +</pre>
                       log(income)*type, data=Prestige)
> summary(mod1)
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
                      -137.500
                                                   8.2e-08 ***
(Intercept)
                                   23.522
                                            -5.85
education
                        2.959
                                    0.582
polv(women, 2)1
                       28.339
                                   10.190
                                                    0.0066
                       12.566
poly(women, 2)2
                                    7.095
                                                    0.0800
log(income)
                       17.514
                                    2.916
                                             6.01
                                                   4.1e-08
typeprof
                       74.276
                                   30.736
                                             2.42
                                                    0.0177
                        0.969
                                   39.495
                                             0.02
                                                    0.9805
log(income):typeprof
                       -7.698
                                   3.451
                                            -2.23
                                                    0.0282
log(income):typewc
                       -0.466
                                    4.620
                                            -0.10
                                                    0.9199
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
Multiple R-squared: (0.879)
                              Adjusted R-squared: 0.868
F-statistic: 81.1 on 8 and 89 DF, p-value: <2e-16
```

- allow women² term
- interaction of log(income) and type

Fits very well!

Model (effect) plots

- We'd like to see plots of the predicted value (\hat{y}) of the response against predictors
 - But must control for other predictors not shown in a given plot
 - Variables not shown in a given plot are averaged over.
 - Slopes of lines reflect the partial coefficient in the model
 - Partial residuals can be shown also

For details, see vignette("predictor-effects-gallery", package="effects)

Model (effect) plots: education

```
library("effects")
mod1.e1 <- predictorEffect("education", mod1)</pre>
plot(mod1.e1)
```

This graph shows the partial slope for education.

For each ↑ year in education, fitted prestige ↑2.96 points, (other predictors held fixed)

Model (effect) plots

```
mod1.e1a <- predictorEffect("education", mod1, residuals=TRUE)</pre>
plot(mod1.ela.
     residuals.pch=16, id=list(n=4, col="black"))
```

for other predictors

undue influence

education

Model (effect) plots: women

Surprise!
Prestige of occupations ↑
with % women (controlling
for other variables

Diagnostic plots

- The linear model, $y=X\beta+\epsilon$ assumes:
 - Residuals, ε_i are normally distributed, $\varepsilon_i \sim N(0,\sigma^2)$
 - (Normality not required for Xs)
 - Constant variance, $Var(\varepsilon_i) = \sigma^2$
 - Observations y_i are statistically independent
- Violations → inferences may not be valid
- A variety of plots can diagnose all these problems
- Other methods (boxCox, boxTidwell) diagnose the need for transformations of **y** or **X**s.

Model (effect) plots: income

plot(predictorEffect("income", mod1),
 lines=list(multiline=TRUE, lwd=3),
 key.args = list(x=.7, y=.35))

Income interacts with type in the model

The plot is curved because log(income) is in the model

The "regression quartet"

In R, plotting a 1m model object → the "regression quartet" of plots

plot(mod1, lwd=2, cex.lab=1.4)

1 Residuals: should be flat vs. fitted values

2 Q-Q plot: should follow the 45° line

3 Scale-location: should be flat if constant variance

4 Resids vs. leverage: can show influential observations

Unusual data: Leverage & Influence

- "Unusual" observations can have dramatic effects on least-squares estimates in linear models
- Three archetypal cases:
 - Typical X (low leverage), bad fit -- Not much harm
 - Unusual X (high leverage), good fit -- Not much harm
 - Unusual X (high leverage), bad fit -- BAD, BAD, BAD
- Influential observations: unusual in both X & Y
- Heuristic formula:

Influence = X leverage x Y residual

Influence plots

Influence (Cook's D) measures impact of individual obs. on coefficients, fitted values

Spread-level plots

- To diagnose non-constant variance, plot:
 - log |Std. residual| vs. log (x)
 - log (IQR) vs log (median) [for grouped data]
- If \approx linear w/ slope b, transform y \rightarrow y (1-b)

Artificial data, generated so σ ~ x

- $b \approx 1 \rightarrow power = 0$
- → analyze log(y)

Spread-level plot: baseball data

Data on salary and batter performance from 1987 season

Summary

- Tables are for look-up; graphs can give insight
- Data plots are more effective when enhanced
 - data ellipses → strength & precision of correlation
 - regression lines and smoothed curves
 - point identification → noteworthy observations
- Effect plots show informative views of models
- Diagnostic plots can reveal influential observations and need for transformations.

