Homework 2: Gaussian Annulus and Random Projection

MAS480 Advanced Mathematics for Data Science

20200130 Yujun Kim

Let $d = 10^4$, $n = 10^3$.

1-(c) Draw a histogram of $\left|\left|X_{i}\right|\right|^{2}$, $i=1,\cdots,n$ with at least 50 bins.

1-(d) What is the sample mean and sample standard deviation of $\left|\left|X_{i}\right|\right|^{2}$? Compare them with the exact expected values

```
> # 1-(d) Sample mean and Sample standard deviation
> mean(x_norm)
[1] 10001.02
> sd(x_norm)
[1] 139.5385
```

x_mean in above code is vector with $\left|\left|X_i\right|\right|^2$ as each element. The mean is $\mu=10001.02$ and the standard deviation is $\sigma=139.54$. Suppose $Z\sim N(0,1)$. Then the moment generating function is

$$M_{z}(t) = e^{\frac{1}{2}t^{2}}$$

$$E[Z^{2}] = M_{z}''(0) = 1$$

$$V[Z^{2}] = E[Z^{4}] - E[Z^{2}]^{2} = M_{z}^{(4)}(0) - 1^{2} = 3 - 1 = 2$$

Thus, $\left|\left|X_{i}\right|\right|^{2}$ as sum of n IID standard normal, the expected mean is 10000 and the expected standard deviation is $\sqrt{20000} = 141.42$. Hence, the experimental result is close enough to the expected value.

2-(d) Draw a histogram of r_i , $i = 1, \dots, n$ with at least 50 bins.

Figure 1 is the histogram of r_i with m=100, 300, 500 respectively. Note that x scale varies.

Figure 1 r_i with m=100, 300, 500 Respectively

2-(e) What is the ratio of r_i with $|r_i| \le 0.1$?

See the result of execution below. The ratio is 0.841, 0.986, 0.998 for m=100, 300, 500 respectively.

```
> # 2-(e) m=100
> sum(abs(R) <= 0.1)/n
[1] 0.841

> # 2-(e) m=300
> sum(abs(R) <= 0.1)/n
[1] 0.986

> # 2-(e)
> sum(abs(R) <= 0.1)/n
[1] 0.998</pre>
```

This matches with theorem 9 of the lecture slide as the probability of random X having absolute value of r greater than 0.1 decrease exponentially.