Example 2.7. For a system operator \mathcal{H} , function x', and real number t, the expression $\mathcal{H}x'(t)$ denotes result of taking the function y produced as the output of the system \mathcal{H} when the input is the function x' and then evaluating y at t.

H is a system. input H autput

 $\mathcal{H}_{X'}$ is the output of the system \mathcal{H} when the input is X'.

function X' $\mathcal{H}_{X'}$

Since $\mathcal{H}x'$ is a function, we can evaluate it at a point such as +.

number

H X 1 (t)

function point of

which

function is

evaluated

Unit:

CT Signals and Systems

3.3 Suppose that we have two functions x and y related as

$$y(t) = x(at - b),$$

where a and b are real constants and $a \neq 0$.

- (a) Show that y can be formed by first time shifting x by b and then time scaling the result by a.
- (b) Show that y can also be formed by first time scaling x by a and then time shifting the result by $\frac{b}{a}$

Answer (a). (shift then scale)

Let f denote the result of time shifting x by b. So, by definition, we have

$$f(t) = x(t-b)$$
.

Let g denote the result of time scaling f by a. So, by definition, we have

$$g(t) = f(at).$$

Substituting the above formula for f into the equation for g, we obtain

$$g(t) = f(at)$$
 substituting 0
= $x(at - b)$ = $y(t)$.

Therefore, y can be formed in the manner specified in the problem statement.

Answer (b). (scale then Shift)

Let f denote the result of time scaling x by a. So, by definition, we have

$$f(t) = x(at)$$
.

Let g denote the result of time shifting f by $\frac{b}{a}$. So, by definition, we have

$$g(t) = f\left(t - \frac{b}{a}\right)$$
.

Substituting the above formula for f into the equation for g, we obtain

$$g(t) = f\left(t - \frac{b}{a}\right)$$
 substituting (1)
$$= x\left(a\left[t - \frac{b}{a}\right]\right)$$

$$= x(at - b)$$

$$= y(t).$$

Therefore, y can be formed in the manner specified in the problem statement.

Theorem 3.1 (Decomposition of function into even and odd parts). *Any arbitrary function x can be uniquely represented as the sum of the form*

$$x(t) = x_{e}(t) + x_{o}(t),$$
 (3.7)

where x_e and x_o are even and odd, respectively, and given by

$$x_{e}(t) = \frac{1}{2}[x(t) + x(-t)]$$
 and (3.8)

$$x_{o}(t) = \frac{1}{2} [x(t) - x(-t)].$$
 (3.9)

As a matter of terminology, x_e is called the **even part** of x and is denoted Even $\{x\}$, and x_o is called the **odd part** of x and is denoted Odd $\{x\}$.

Partial Proof. From (3.8) and (3.9), we can easily confirm that $x_e + x_o = x$ as follows: $x_e(t) + x_o(t) = \frac{1}{2}[x(t) + x(-t)] + \frac{1}{2}[x(t) - x(-t)]$ of $x_e(t) + x_o(t) = \frac{1}{2}[x(t) + x(-t)] + \frac{1}{2}[x(t) - x(-t)]$ of $x_e(t) + x_o(t) = \frac{1}{2}[x(t) + x(-t)] + \frac{1}{2}[x(t) - x(-t)]$ of $x_e(t) + x_o(t) = \frac{1}{2}[x(t) + x(-t)] + \frac{1}{2}[x(t) - x(-t)$

Furthermore, we can easily verify that x_e is even and x_o is odd. From the definition of x_e in (3.8), we have

$$x_{\rm e}(-t) = \frac{1}{2}[x(-t) + x(-[-t])]$$
 substitute -t for t
$$= \frac{1}{2}[x(t) + x(-t)]$$
 in definition of Xe
$$= x_{\rm e}(t).$$

Thus, x_e is even. From the definition of x_o in (3.9), we have

of
$$x_0$$
 in (3.9), we have
$$x_0(-t) = \frac{1}{2}[x(-t) - x(-[-t])]$$

$$= \frac{1}{2}[-x(t) + x(-t)]$$

$$= -x_0(t).$$
and the definition of x_0 .

Thus, x_0 is odd.