1

Homework 7

- 1. Show that for any three objects A, B, C in a cartesian closed category, there are isomorphisms:
 - (a) $(A \times B)^C \cong A^C \times B^C$
 - (b) $(A^B)^C \cong A^{B \times C}$
- 2. (a) Show that for any objects A, B in a cartesian closed category, there is a bijective correspondence between points of the exponential $1 \to B^A$ and arrows $A \to B$.
 - (b) Is the category of monoids cartesian closed?
- 3. Consider the category of sets equipped with a distinguished subset, $(A, P \subseteq A)$, with maps $f: (A, P) \to (B, Q)$ being those functions $f: A \to B$ such that $a \in P$ iff $f(a) \in Q$. Show this category is cartesian closed by describing it as a category of pairs of sets.
- 4. (a) Show that in any cartesian closed poset with joins $p \lor q$, the following "distributive" law of intuitionistic propositional calculus holds:

$$((p \vee q) \Rightarrow r) \Rightarrow ((p \Rightarrow r) \wedge (q \Rightarrow r))$$

- (b) Generalize the forgoing problem to an arbitrary category (not necessarily a poset), by showing that there is always an arrow of the corresponding form.
- 5. * Prove that in a CCC C, exponentiation with a fixed base object C is a contravariant functor $C^{(-)}: \mathbb{C}^{op} \to \mathbb{C}$, where $C^{(-)}(A) = C^A$.