CSIT 495/595 - Introduction to Cryptography Message Authentication Codes

Bharath K. Samanthula
Department of Computer Science
Montclair State University

Outline

- MAC: Motivation and Definition
- Encrypted CBC-MAC
- Authenticated encryption and its types
- Secure communication sessions

Message Integrity

- Data Confidentiality: use encryption to prevent an adversary from learning anything about the content of the messages transmitted over an open communication channel
- Message Integrity (or Message Authentication): how a party receiving a message can be sure that it was sent by the claimed sender and was not modified in transit
- Example: suppose a user X sends a request to its bank over Internet to transfer \$ 1000 to one of his friends
 - Is the request authentic?
 - Are the transaction details modified by an adversary?
- Can we use standard error-correction codes to verify message integrity?

Data Confidentiality vs. Message Integrity

- Do applications always need both confidentiality and integrity? NO
 - protecting OS related files on hard disk
 - protecting banner ads on web pages
- Key observation: encryption schemes that ensure data confidentiality are not necessarily designed to guarantee message integrity
- Never assume that encryption by default solves the problem of message authentication
- Example 1 Encryption using Stream Ciphers: Suppose c = k ⊕ m. A single bit flip in c can yield an entirely different message (≠ m) upon decryption
- Example 2 Encryption using Block Ciphers: changing a single bit affects one or more blocks

Message Authentication Code (MAC)

- In general, encryption does not solve the message integrity problem
- Message Authentication Code (MAC) enables the receiver to verify authenticity of the source and the integrity of the received message
- Key question: can we have a single encryption scheme that simultaneously achieves confidentiality and integrity?
 - YES!!... Authenticated encryption (more details on this later)

MAC: Basic Idea

Def: **MAC** I = (S,V) defined over (K,M,T) is a pair of algs:

- S(k,m) outputs t in T
- V(k,m,t) outputs 'yes' or 'no'

where S, V: MAC signing and verification algorithms (K,M,T): key space, message space, and tag space

MAC requires Private Key

Can we use avoid private keys and use error-correcting codes such as CRC to ensure message integrity?

- Attacker can easily modify message m and recompute CRC
- For example, attacker can send (m', t') to Bob

MAC Security (1)

Attacker's power: chosen message attack

for m₁,m₂,...,m_q attacker is given t_i ← S(k,m_i)

Attacker's goal: existential forgery

produce some <u>new</u> valid message/tag pair (m,t).

$$(\mathsf{m,t}) \notin \big\{ \left(\mathsf{m_1,t_1}\right), \ldots, \left(\mathsf{m_q,t_q}\right) \big\}$$

- ⇒ attacker cannot produce a valid tag for a new message
- \Rightarrow given (m,t) attacker cannot even produce (m,t') for t' \neq t

MAC Security (2)

For a MAC I=(S,V) and adv. A define a MAC game as:

Def: I=(S,V) is a **secure MAC** if for all "efficient" A:

$$Adv_{MAC}[A,I] = Pr[Chal. outputs 1]$$
 is "negligible."

MAC - Sample Question

Let I = (S,V) be a MAC.

Suppose S(k,m) is always 5 bits long

Can this MAC be secure?

- No, an attacker can simply guess the tag for messages
 - It depends on the details of the MAC
 - Yes, the attacker cannot generate a valid tag for any message

MAC Example: Protecting System Files

Suppose at install time the system computes:

Later a virus infects system and modifies system files

User reboots into clean OS and supplies his password

Then: secure MAC ⇒ all modified files will be detected

Secure PRF → Secure MAC

For a PRF $\mathbf{F}: \mathbf{K} \times \mathbf{X} \longrightarrow \mathbf{Y}$ define a MAC $I_F = (S,V)$ as:

- S(k,m) := F(k,m)
- V(k,m,t): output 'yes' if t = F(k,m) and 'no' otherwise.

Secure PRF → Secure MAC: A Bad Example

Suppose F: $K \times X \rightarrow Y$ is a secure PRF with $Y = \{0,1\}^{10}$

Is the derived MAC I_F a secure MAC system?

- Yes, the MAC is secure because the PRF is secure
- No tags are too short: anyone can guess the tag for any msg
- O It depends on the function F

Two Well-known MACs

- Encrypted CBC-MAC
- HMAC (will be discussed in the next lecture)

CBC-MAC

- Similar to CBC-mode encryption, except with the following two differences.
 - IV is a random vector in CBC-mode encryption whereas there is no IV in CBC-MAC
 - In CBC-mode encryption, multiple ciphertexts (one for each block) are output whereas in CBC-MAC there is only one output from the final block

Encrypted CBC-MAC (ECBC-MAC)

Encrypted CBC-MAC (ECBC-MAC)

- Key Questions:
 - Is the ECBC-MAC secure without the last encryption?
 - What happens if the message is not a multiple of block size?

Authenticated Encryption

- Goal: Can we ensure confidentiality and integrity simultaneously by default in the encryption scheme?
- A lack of integrity can sometimes lead to a breach in secrecy and vice versa
- There is no yet standard definition for authenticated encryption
- We will look at some generic approaches

Authenticated Encryption Constructions

- Let k_E and k_M denote encryption and message authentication keys
- Three natural Constructions:
 - Encrypt-and-authenticate
 - Authenticate-then-encrypt
 - Encrypt-then-authenticate

Encrypt-and-authenticate

 Given a message m, the sender transmits (c, t) to the receiver where

$$c \leftarrow Enc_{k_F}(m)$$
 and $t \leftarrow S(k_M, m)$

- The receiver decrypts c, and verifies the tag t
- Limitations:
 - tag $S(k_M, m)$ can leak information to eavesdropper
 - Example: For a MAC where the first bit of the tag is always equal to the first of the message
 - If a deterministic MAC like CBC-MAC is used, then the tag remains the same for a given message and key k_{M}

Authenticate-then-encrypt

 Given a message m, the sender computes the ciphertext c as follows

$$t \leftarrow S(k_M, m)$$
 and $c \leftarrow Enc_{k_E}(m||t)$

- The receiver decrypts c to obtain m||t and verifies the tag t
- Limitations:
 - Two error messages possible: "bad padding" and "authentication failure"
 - If the attacker can distinguish between the two errors, he/she can recover the whole plaintext from a given ciphertext
 - A real-world attack: in configurations of IPsec

Encrypt-then-authenticate

Given a message m, the sender computes (c, t) as follows

$$c \leftarrow Enc_{k_F}(m)$$
 and $t \leftarrow S(k_M, c)$

- Receiver first verifies t. If successful, then he decrypts c
- Observations:
 - This approach is sound, as long as the MAC is strongly secure
 - MAC is verified before decryption takes place, so MAC verification process cannot leak anything about the plaintext

Secure Communication Session (1)

- Often parties wish to communicate securely (that is achieving both secrecy and integrity) over the course of a communication session
- A naive way of encrypting the message using authenticated encryption may not work
- Potential Attacks
 - Re-ordering Attack: The attacker can swap the order of messages
 - Replay Attack: The attacker can send (replay) a valid ciphertext to Bob which was previously sent by Alice
 - Reflection Attack: An attacker can take a ciphertext c, which was earlier sent from Alice to Bob, and send it back to Alice

Secure Communication Session (2)

The above attacks can be easily prevented using counters and a directionality bit as follows

- Each party maintains two counter ctr_{A,B} and ctr_{B,A}, both initialized to 0, to keep track of the number of messages sent from Alice to Bob and vice versa
- Directionality bits: $b_{A,B} = 0$ (message is from Alice to Bob) and $b_{B,A} = 1$ (message is from Bob to Alice)
- Alice sends c ← Enc_k(b_{A,B}||ctr_{A,B}||m) to Bob and increments ctr_{A,B}
- Bob decrypts and parses b||ctr||m
- If $b = b_{A,B}$ and $ctr = ctr_{A,B}$, then Bob outputs m and increments $ctr_{A,B}$

else

Bob rejects the message

Summary

- MAC: Motivation and Definition
- Encrypted CBC-MAC
- Authenticated encryption and its types
- Secure communication sessions

Useful References

- Chapter 4, Introduction to Modern Cryptography by Jonathan Katz and Yehuda Lindell, 2nd Edition, CRC Press, 2015.
- https:
 //cseweb.ucsd.edu/~mihir/cse207/w-mac.pdf