A Machine Learning Approach to Nutritional Analysis

Michal Strzelecki R00081371 SDH4

Project Background: From OCR to Barcode Scanning

- OCR (Optical Character Recognition)
 - Time Constraints
 - Practicality and Accuracy
- Strategic Pivot
 - Viable Solution
 - Assure Deliverables
 - \rightarrow Transition \leftarrow
- New Direction
 - Barcode Scanning Application
 - Clustering

Goals and Objectives of the Barcode Scanning Application

- Simplify Access to Nutritional Information
 - Utilise barcode scanning to instantly retrieve detailed product information from Open Food Facts
- Deliver Dietary Recommendations
 - Implement a clustering model to analyse nutritional data and categorise products to aid user in making healthier food choices
- Enhance User Experience
 - User friendly mobile application that operates efficiently across multiple devices

Project Requirements and Deliverables

• Mobile Application Development

- Developed using Flutter for a cross-platform experience.
- Ensures compatibility with both Android and iOS devices.

• Barcode Scanning Feature

- Integration with a high-performance barcode scanning library.
- Quick retrieval of product data via Open Food Facts API.

Clustering Model

- Built using Python for initial development and data analysis.
- Converted to PyTorch for on-device execution in the mobile app.

User Interface

- Intuitive design focused on ease of use.
- Features include product history, dietary suggestions, and manual entry options.

Project Design

- Initial Architecture
 - Based on OCR technology aimed at extracting text directly from images of food labels.
- Revised Architecture
 - Shifted to a barcode-based system for more reliable and quick data access.
- Data Flow:
 - Barcode scan triggers API call to Open Food Facts
 - Retrieved data is fed into the clustering model.
 - Output is categorized nutritional information and dietary recommendations.
- Clustering Model Integration:
 - Developed in Python for data analysis and modeling.
 - Converted to PyTorch for mobile deployment, ensuring efficiency and speed.

Development of the Clustering Model

- Data Preparation and Preprocessing:
 - Selection of relevant nutritional data from the Open Food Facts dataset.
 - Cleaning and normalisation of data to ensure quality and consistency.
- Principal Component Analysis (PCA):
 - Reduction of dimensionality to simplify datasets while preserving variance.
 - Enhanced focus on the most influential nutritional factors.
- Clustering Algorithm Selection:
 - Use of K-Means clustering to categorise food products based on nutritional content.
 - Determination of optimal cluster size using the Elbow method.

Analysis and Insights from the Clustering Model

- Heatmap of PCA Loadings:
 - Demonstrates how various nutrients contribute to the principal components, crucial for cluster differentiation.
 - Assists in understanding the impact of each nutritional feature on the clustering process.
- Word Clouds for Cluster Description:
 - Provides a qualitative insight into the most prevalent terms within each cluster.
 - Helps identify dominant food characteristics, aiding in intuitive cluster naming.
- Summary Statistics Bar Graph of Nutritional Values:
 - Displays mean values of key nutritional features for each cluster, offering a clear comparison of dietary profiles.
 - Supports practical dietary recommendations by clearly categorizing food groups based on their predominant nutritional content.

custer 2

türkeyyogurtiight
olives appple
juice appple
tomato cheese
organic beef
salad Sorange frilet
fruit mil kvanilla
protein cream
chiese style ken
coconut beans natural

custer 3

Future Enhancements

- Advanced Machine Learning Techniques:
 - Explore the integration of more sophisticated machine learning models for even better accuracy and predictive capabilities.
- Personalisation Features:
 - Develop user-profile systems that allow personalized dietary recommendations based on individual health goals, dietary restrictions, and preferences.
- Real-Time Feedback System:
 - Implement a feedback mechanism that allows users to rate and provide suggestions on their dietary recommendations, facilitating continuous improvement of the app.

Project Conclusion

- Project Evolution:
 - o Began with a focus on optimizing OCR technology.
 - Pivoted to a mobile application using a clustering model for nutritional categorisation
- Clustering Model Success:
 - Successfully grouped food items into meaningful categories based on nutritional profiles.
 - Utilized PCA for dimensionality reduction and K-Means for clear, distinct clustering, enhancing decision-making for healthier eating.
- Mobile Application Impact:
 - Provided a user-friendly platform for immediate scanning and nutritional insights.
 - Made nutritional data both accessible and actionable, promoting healthier food choices through immediate feedback.
- Skills Development and Application:
 - Enhanced skills in data analysis, machine learning, and mobile app development.
 - Applied these skills to create a functional tool

