Quu ノート ー微分積分 I ー

責任者 Quu

最終更新 2023/12/01

概要

微分積分学入門についてのノート。

主に、一変数の極限、一変数の微分・積分、実数の無限級数について扱う。

<u>目次</u> 2

目次

第I部	前提知識	3
1	様々な '数' と数直線	4
1.1	数の種類	4
1.2	数直線	5
1.3	開区間・閉区間	6
2	関数の性質	8
2.1	偶関数・奇関数	8
2.2	べき関数	9
2.3	三角関数	10
2.4	指数・対数関数	11
2.5	逆三角関数	13
2.6	双曲線関数	14
2.7	初等関数	15
3	極限	17
3.1	数列の極限	17
3.2	関数の極限	19
3.3	極限の計算	22
3.4	関数の連続	23
第Ⅱ部	微分	27
第Ⅲ部	3 積分	28
第Ⅳ音	B 無限級数	29

第I部

前提知識

微分積分を学ぶうえで前提となる知識をまとめた。微分積分は主に関数の微分・積分について扱うわけだから、ある程度の関数の扱い方も知っておく必要がある。そのほか数の種類についてや閉区間・開区間、極限についてもまとめてある。極限は微分積分を学ぶ際にいたるところに出てきて、陰から支える縁の下の力持ち的な役割を持つ。極限は一見すると代入と同じように見えるが、実は違う。極限は代入だと都合が悪い時にありがたみが実感できる。極限に関連して、無限という概念も登場する。

1 様々な '数' と数直線

1 様々な'数'と数直線

1.1 数の種類

数学を勉強するうえで、様々な数が登場する。まず一番初めに思いつくのが 1,2,3... といった**自然数**である。次の自然数に 0 と負の符号をつけたものを加えた整数が考えられる。整数同士で足し算、引き算、掛け算を行ってもその値は整数である。このことを和、差、積について閉じているという。これは $a,b\in\mathbb{Z}$ となる任意の a,b について

$$a+b, a-b, a \times b \in \mathbb{Z} \tag{1}$$

4

が成り立つことを意味している。

一方割り算は整数の中に閉じていない。 *1 しかし、0.5, 3.14 などの**有理数**まで数を拡張すれば、その中に商は閉じている。つまり、 $a,b \in \mathbb{Q}$ となる任意の a,b について

$$\frac{a}{b} \in \mathbb{Q} \tag{2}$$

となる。よって、数を有理数まで拡張すれば四則について閉じていることがわかる。

さらに数の拡張を考えよう。たとえば $x^2-2=0$ を満たす x について考えてみるには、数を**無理数**まで拡張しなければならない。一般の二次方程式の解も

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{3}$$

と有理数だけでは表現できないことがわかる。無理数には π, e^{*2} などの**超越数**もふくむ。

私たちの生活の中では有理数と無理数をあわせた**実数**があれば十分事足りるが、数学の世界ではそうもいかない。先ほどの二次方程式についてより深く調べてみると、解を持たない条件 (根号の中身が負) があることがすぐに分かる。例えば、 $x^2+1=0$ は $x^2=-1$ と変形できるが、二乗して負になるような数は実数のうちには存在しない。よってこの方程式は解なしとなる。がしかし、ここで

$$i = \sqrt{-1} \tag{4}$$

となる '数' を定義してあげると、方程式は $x=\pm i$ となり、(実数) +i を含めた範囲に解をもつことがわかる。この数は、今までの実数とは異なる数であり、実数との和, 差は直接計算できない。一般に実数 a,b と i を用いて

$$z = a + bi (5)$$

として表した z を複素数といい、i を虚数単位という。さらに a を z の実部、b を z の虚部といい、それぞれ $a=\operatorname{Re} z, b=\operatorname{Im} z$ と表す。

先ほど、二次方程式の解を有理数だけでは表現できないといったが、実は無理数を含めてもできない。この 複素数を含めることで初めてすべて表現できるようになるのだ。 *3

^{*1} 例えば $1 \div 2$ など。

 $^{*^2}$ 自然対数の底またはネイピア数と呼ばれる。具体的な値は e=2.71...

^{*3} もちろんこれで数の拡張が終わるわけではない。しかし微分積分を学ぶうち間は複素数まで拡張すれば事足りる。

1.2 数直線 5

1.2 数直線

では、数の大小関係をわかりやすくするためにはどうすればよいだろうか。視覚的にわかりやすくするためには数直線を用いればよい。

図1:数直線

上の例では、整数、有理数、無理数の一部を記載している。当然書いてある数以外も数直線の中には含まれている。むしろ、数の点の集まりとして数直線を捉える方がイメージがわきやすいかもしれない。ここで注意しなければならないのは、この数直線上に複素数 $(\operatorname{Im} z \neq 0)$ は含まれないといけないということである。数直線は実数を表す直線なので、実数より(集合的に)大きい複素数のすべては含むことができないのである。

では実数も含めた複素数はどう表せばよいのか。答えは単純で実数の軸 *4 とは別の軸 *5 を加えればよい。つまり複素数は平 $^{'}$ 面 $^{'}$ 上で表せられるのである。 *6

^{*4} これを実軸と呼ぶ。

^{*5} 虚軸という。

^{*6} この平面を複素平面という。いつもの y-x グラフとは見た目は同じだが感覚が違うので注意。

1.3 開区間・閉区間 6

1.3 開区間・閉区間

実数が数直線上の一点で表せることはすでに前項で述べた。では点に続いて次は区間について考えてい こう。

区間は大きく二つある。それらはそれぞれ開区間、閉区間と呼ばれる。これらの違いは端点を含むかどうかで、逆に言えば端以外は同じである。例えば、 $1 < x < 2, 1 \le x \le 2$ について前者は端点 x = 1, 2 を含まず、後者は端点を含むのである。端点を含まない場合が開区間、端点を含む場合が閉区間である。

閉区間、開区間を数直線上で表すにはどうすればよいだろうか。これも数直線と同様に区間の端から端まで線を引けばよい。注意しないといけないのが端点で、区間が開区間か閉区間かによって端点を書き分けないといけない。開区間のときは ∘ 、閉区間のときは • と書けばよい。

図 2: 開区間と閉区間

例えば上図の例をみてみると、A,B,C の三つの区間がある。それぞれ $-4 \le x \le -1,0 < x < 3,-1 \le x < 1$ となる。今までは不等号を用いて区間を表現してきたが *7 、もっと簡潔に (), [] を用いて表現する方法もある。この表現方法を使えば、A,B,C はそれぞれ [-4,-1],(0,3),[-1,1] と表せる。() が等号を含まない、[] が等号を含む、というわけである。

では、値が無限に続く(例えば実数全体など)場合はどう表現すればよいのか。この場合は無限大の記号 ∞ を用いて $(-\infty,\infty)$ などと表せばよい。*8

^{*7} 厳密に言えば区間は集合なので、不等号を用いて区間を表現するという言い方は適切ではない。

^{*8} この方法を使えば、a 以上の実数などの場合でも $[a,\infty)$ と表せばよいことがわかる。

 Σ 基本問題 7

基本問題 1 以下問に答えよ。

- ■問1 以下の主張のうち正しいものには○を、間違っているものには×をつけよ。
 - $1.\sqrt{9}$ は無理数である。
 - 2. 有理数は全て分数の形で表せる。
 - 3. *i* は複素数である。
 - 4. 有理数の集合は $\mathbb Q$ として表し、無理数の集合は $\mathbb N$ で表す。
 - 5. 自然数全体の集合(区間)は $(0,\infty]$ である。
- ■問2 以下の区間について、数直線上に示せ。もし数直線上に記されていない数字が出てくる場合はそれも記載せよ。

図 3: 数直線

1. [2,3] 2. (3,5) 3. $[-5,\pi]$ 4. (-2,0.5] 5. [-1,0) 6. $(-\infty,0)$ 7. $[0,\infty)$

2 関数の性質 8

2 関数の性質

2.1 偶関数・奇関数

一般の関数 f(x) について、f(-x)=f(x) を満たすものを偶関数、f(-x)=-f(x) を満たすものを奇関数という。もちろん全ての関数が偶関数・奇関数のどちらかであるというわけではない。しかし、全ての関数は偶関数と奇関数の和で表せられることが知られている。

関数が偶関数・奇関数である場合のグラフはどうなるだろうか。まずは偶関数から考えてみると、定義より x>0 と x<0 の点において f は同じ値を取るわけであるから、グラフは y 軸に対して対象になるはずである。つぎに奇関数について考えてみよう。これも定義より x>0 と x<0 の点において、f は x 軸に対してそれぞれ対象に点を取るはずである。つまり、グラフは原点に対して点対象になるはずである。

偶関数の例となる関数は、 x^2 , $\cos x$, a(定数関数) などがあげられる。奇関数の例となる関数は、x, $\sin x$, $\tan x$ などがあげられる。各自でグラフソフトなどでグラフを見てみるとよい。

 2.2 べき関数

2.2 べき関数

関数のなかでもっともなじみやすいのが、 $f(x)=x^n$ であろう。例えば x は一次関数、 x^2 は二次関数と呼ばれる。別に n は自然数に限らなくてもよい。 $x^{\frac{1}{2}}=\sqrt{x}$ は指数が自然数ではないが、これもべき関数の一つである。n が自然数のうちは、関数の定義域について特別意識をする必要はない。しかし $n=\frac{1}{2}$ などのように指数が有理数であったり、n=-1 のように指数が負の値を取る場合には定義域に十分注意する必要がある。このように、一般に $f(x)=x^n$ で表される関数をべき関数という。

次に関数のグラフについて、グラフ描画ソフトを用いて数式を入力すると以下のようになる。

図 4: べき関数グラフ

図からも \sqrt{x} が x<0 で定義されないことがわかる。また、 x^2 と \sqrt{x} は y=x を軸にして線対象になっており、 x^2 と \sqrt{x} は互いに**逆関数**であることがわかる。

2.3 三角関数 **10**

三角関数 2.3

三角関数は三角比を一般角に拡張した関数である。定義からわかるように周期関数であり、周期は 2π であ る。三角比の定義自体を忘れた人はいないだろうが一応説明しておく。

図 5: 三角比

上図*9において

$$\sin \theta = \frac{a}{c} \tag{6}$$

$$\cos \theta = \frac{b}{c} \tag{7}$$

$$\cos \theta = \frac{b}{c} \tag{7}$$

$$\tan \theta = \frac{a}{b} \tag{8}$$

また、定義より $\tan \theta = \frac{\sin \theta}{\cos \theta}$ が成り立つ。

三角関数には様々な公式がある。 *10 しかしそれらは単位円を書けばすぐに導けるので、一部を除いて割愛す る。また、三角関数の角度の合成についても、全て加法定理より導けるのでここでは加法定理のみ紹介する。

$$\sin^2 x + \cos^2 x = 1 1 + \tan^2 x = \frac{1}{\cos^2 x} (9)$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x \qquad \qquad \cos\left(\frac{\pi}{2} - x\right) = \sin x \tag{10}$$

$$\tan\left(\frac{\pi}{2} - x\right) = \frac{1}{\tan x} \tag{11}$$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \tag{12}$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta \tag{13}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} \tag{14}$$

^{*9} a の辺のことを対辺、b の辺のことを隣辺、c の辺のことを斜辺という。

^{*10} 公式集を眺めるとやたらと二乗がついていることがわかる。つまり三角関数は二乗に強いのである。この性質は積分を解く際に重 要である。

2.4 指数・対数関数 11

2.4 指数·対数関数

'指数的に増加する' という言葉をよく耳にする。これは、なにか爆発的な増加の様子を示している表現である。このように、**指数関数**はxの値が少し変わるだけで値が大きく増加・減少する関数である。その具体的な表式は a^x と表される。指数の部分が変数になっているのである。

指数関数は、a の値によって性質が少し異なる。0 < a < 1 の場合には単調減少関数となり、1 < a の場合には単調増加関数になる。このとき a が負の値の場合は定義しない。 *11*12

以下、指数法則について述べる。a,b>0 $x,y\in\mathbb{R}$ とすると、

$$a^x \cdot a^y = a^{x+y} \tag{15}$$

$$\frac{a^x}{a^y} = a^{x-y} \tag{16}$$

$$(a^x)^y = a^{xy} (17)$$

$$(ab)^x = a^x \cdot b^x \tag{18}$$

指数関数のグラフは、以下のようになる。

図 6: 指数関数のグラフ

グラフから、a が 1 より大きくても小さくても x=0 で y=1 を取ることがわかる。 なお、底が e の場合の指数関数は $e^x=\exp x$ と書くこともある。

では次に、指数関数の逆関数を考えてみよう。指数関数の逆関数は与えられた値に対して、底を何回掛けたらその値になるかの回数を表す関数である。つまり、指数関数の底ごとに逆関数が存在する。文章で見てもわかりずらいので数式で以下示す。

$$f(x) = a^x \leftrightarrow x = f^{-1}(y) = \log_a y \tag{19}$$

指数関数の逆関数は底が何かを示さないといけないので、逆関数 \log に下付き文字で書く。しかし、底が e だった場合は省略して $\log y$ と書いてもよい。この関数を自然対数という。 *13 底が e じゃない場合は単に対数

 $^{^{*11}}$ 例として $(-2)^x$ のグラフを書いてその理由を考えてみるといい。

^{*12} 実際は定義することができるがその際には複素関数の知識が必要。なので今回は扱わない。

^{*13} 自然対数は $\ln x$ と書くこともある。natural logarithm のことである。

2.4 指数・対数関数 12

と呼ぶ。*14

以下、対数の性質を述べる。必要ない限り底は省略して記載する。指数法則と見比べると理解が深まる。

$$\log(xy) = \log x + \log y \tag{20}$$

$$\log\left(\frac{x}{y}\right) = \log x - \log y \tag{21}$$

$$\log(a^b) = b\log a \tag{22}$$

$$\frac{\log_c b}{\log_c a} = \log_a b \qquad (底の変換公式) \tag{23}$$

また、対数の定義より

$$\log 1 = 0 \quad \log_a a = 1 \tag{24}$$

が成り立つ。対数関数 $\log x$ の引数 x のことを真数と呼び、これは x>0 である。 *15 対数関数のグラフは以下のようになる。

図 7: 対数関数

グラフを見ればわかるように、底が1より大きいか小さいかで単調増加・減少かが変わる。

対数関数は爆発的に増加・減少する指数関数とは対照的に、値の変化が(x<1 を除いて)緩やかである。 そのため、値がとても大きい値でも対数を取ることで値のスケールを小さくすることができる。また、対数を 取ることで掛け算を足し算にできる。この性質は非常に重要である。

^{*14} 底が 10 の場合は常用対数という。

 $^{^{*15}}$ 真数が正であるという条件のことを真数条件という。

2.5 逆三角関数 13

2.5 逆三角関数

指数関数の逆関数である対数関数を考えたのと同じように、三角関数の逆関数も考えてみよう。三角関数は与えられた角度に対応するそれぞれの三角比を返す関数である。では三角関数の逆関数は与えられた三角比に対応する '角度' を返す関数であることがすぐに分かる。これらを次のように書くことにする。

$$\arcsin x = \sin^{-1} x \tag{25}$$

$$\arccos x = \cos^{-1} x \tag{26}$$

$$\arctan x = \tan^{-1} x \tag{27}$$

左辺にちなんで左からそれぞれ「アークサイン」、「アークコサイン」、「アークタンジェント」と読む。これらをまとめて**逆三角関数**という。表記に左辺を用いるか右辺を用いるかは個人の好みによる。 *16

三角関数が周期関数であるため、逆三角関数は多価関数であることは容易に想像できる。逆三角関数を一価関数にするため、値域をそれぞれ $[-\frac{\pi}{2},\frac{\pi}{2}],[0,\pi],[-\frac{\pi}{2},\frac{\pi}{2}]$ に制限して用いることがある。このことを主枝を取るという。またこの制限した値域を主枝という。主枝以外の値域を分枝と呼ぶ。

逆三角関数が主枝を取っていることを明示するために

$$Arcsin x = Sin^{-1} x \tag{28}$$

$$\operatorname{Arccos} x = \operatorname{Cos}^{-1} x \tag{29}$$

$$Arctan x = Tan^{-1} x (30)$$

のように、先頭を大文字で書くこともある。しかし今回はこの記法は採用しない。 逆三角関数のグラフは以下のようになる。

図 8: $\arcsin x$ のグラフ

図 9: $\arccos x$ のグラフ

図 10: $\arctan x$ のグラフ

もちろん主枝を取らない場合は、それぞれと同じグラフが上や下につながっていく。

三角関数の公式から、逆三角関数についても公式が導ける。例えば、

$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \tag{31}$$

ほかにも公式が導けるので、各自で考えてみるとよい。

 $^{^{*16}}$ だからといって、 $\frac{1}{\sin x}$ を $\sin^{-1}x$ と書くことはまずない。

2.6 双曲線関数 14

2.6 双曲線関数

いきなりだが、次のように関数を定義する。eはネイピア数である。

$$\sinh x = \frac{e^x - e^{-x}}{2} \tag{32}$$

$$\cosh x = \frac{e^x + e^{-x}}{2} \tag{33}$$

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
(34)

これらは双曲線関数と呼ばれる。読み方はそれぞれ「ハイパボリックサイン」、「ハイパボリックコサイン」、「ハイパボリックタンジェント」である。ただこれだと長ったらしいので「シンチ」、「コッシュ」、「タンチ」と呼ぶ場合もある。

見た目が三角関数と酷使しているが、実は性質も似たものを持つ。例えば、 $\cosh^2 x - \sinh^2 x = 1$ など。また、加法定理も符号は若干異なるがほとんど同じ形をしている。

さらに、オイラーの公式 $e^{ix} = \cos x + i \sin x^{*17}$ を用いれば、 $\sin ix = i \sinh x$, $\cos ix = \cosh x$ が導ける。 *18

双曲線関数のグラフは以下のようになる。

図 11: $\sinh x$ のグラフ

図 12: $\cosh x$ のグラフ

図 13: $\tanh x$ のグラフ

 $\cosh x$ のグラフはカテナリーと呼ばれる。電柱などの垂れた線はこれにあたる。

^{*17} この公式自体はだいぶ後になって解説する。

^{*18} むしろこの性質が成り立つように双曲線関数を定義するといったほうが正しいかもしれない。

2.7 初等関数 15

2.7 初等関数

前節まで述べたべき関数、三角関数、指数・対数関数、逆三角関数は**初等関数**という。また、それらの関数からなる多項式の関数や初等関数の合成関数は初等関数である。例えば、双曲線関数は e^x, e^{-x} の和でなっているが、これらは初等関数なので双曲線関数も初等関数である。

しかし初等関数の逆関数は必ずしも初等関数であるとは言えない。よく例に挙げられるのが $f(x)=xe^x$ の逆関数である。この関数はランベルトの W 関数とよばれ、 $f^{-1}(x)=W(x)$ と書かれる。

初等関数は性質がよく知られているので、微分・積分するうえで比較的扱いやすい。初等関数を微分したものも初等関数であるが、初等関数を積分したものが必ずしも初等関数である保証はない。とはいえ今は微分も積分も知らないわけだから、単に事実として受け入れるだけでよい。

初等関数に対して高等関数というものもある。これは初等関数以外の関数のことで、初等関数よりも数は多い。先ほど紹介したランベルトの W 関数以外には以下のようなものがある。

$$\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} dx \tag{ガンマ関数}$$

$$B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$$
 (ベータ関数)

$$\operatorname{Li}(x) = \int \frac{dx}{\log x} \tag{対数積分}$$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \tag{ゼータ関数}$$

もちろんこれ以外にも様々な関数がある。興味があったら調べてみるといい。

 Σ 基本問題 16

基本問題 2 以下の問いに答えよ。

■問1 次の関数が偶関数か奇関数かを判別せよ。

$$(1)x\sin x$$
 $(2)x^5$ $(3)\sinh x$ $(4)\log |x^2|$ $(5)x^3 + x + \sin x$ $(6)e^{-x}$ $(7)f(\cos x)$ $(8)\arctan x$

■問2 以下の等式を証明せよ。

 $(1)\sin 2x = 2\sin x\cos x/\cos 2x = \cos^2 x - \sin^2 x$ (倍角の公式)

(2)
$$\sin^2 \frac{x}{2} = \frac{1 - \cos x}{2} / \cos^2 \frac{x}{2} = \frac{1 + \cos x}{2}$$
 (半角の公式)

$$(3)\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y / \cosh(x+y) = \cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$$

■問3 以下の値を求めよ。

$$(1) \sin \pi + \cos \frac{3}{2}\pi + \tan(-\pi) \quad (2) \arcsin(\frac{1}{2}) \quad (3) \arccos(1) \quad (4) \log_2 8 \quad (5) \log_a(\tan(\frac{\pi}{4})) \quad (a > 1)$$

$$(6) \log_6 3 + \log_6 2 \quad (7) \arcsin(1 - \log \pi) - \sin(\log 2) \cos(\log 3) + \sin(\log 3 - \log 2) - \log e^{\arccos(\log \pi - 1)}$$

- ■問 4 対数を使えば桁数の多い数字同士の掛け算を足し算で計算することができる。簡単な例として 271×314 を対数を用いて計算せよ。ただし、常用対数 $\log_{10}2.71\simeq0.4346,\log_{10}3.14\simeq0.4969,10^{4.9315}\simeq85408$ は用いてよい。
- ■問 5 $t = \tan \frac{x}{2}$ とするとき、 $\sin x, \cos x, \tan x$ をそれぞれ t を用いた式で表せ。 *19

^{*19} ヒント:半角の公式を用いる。

3 極限 **17**

3 極限

3.1 数列の極限

数列とは、数字をある規則によって並べた列のことで、例えば $1,2,3,4,\cdots,100$ などがある。この数字に左 から順に番号付けすることを考える。そのときある数列 $\{a_n\}$ について、左から n 番目の数値を a_n と表し、第 n 項とよぶ。特に n=1 の一番初めの項 a_1 を初項という。数列には等差数列や階差数列があるがここでは 詳しく述べない。

項の数は有限でも無限でもよいので、項が無限にある数列 $\{a_n\}$ について考えてみることにする。n を限りなく大きくすると数列の値がある一定の値 a に近づくときがある。この時数列 $\{a_n\}$ は収束するといい、近づく値 a を極限値という。これを数式で表すと

$$\lim_{n \to \infty} a_n = a \tag{39}$$

新しく \lim という記号が出てきたが、これは n を限りなく大きくする(無限大に近づける)という操作を表す記号である。 $a_n \to a \ (n \to \infty)$ と書いてもよい。このとき $a_n = a$ となる n が存在する必要はない。

■例 $\{a_n\} = 1 - \frac{1}{n}$ について考える。n を限りなく大きくすると $\frac{1}{n}$ は限りなく小さくなる(0 に近づく)ので a_n は 1 - 0 = 1 に近づく。よって $\{a_n\}$ は収束し、極限値は 1。

始めのうちは値が近づく、と言われても何をどうすればよいかわからないであろうから、代入のような何かという風にとらえてもよい。実際極限のほとんどの操作は代入と結果的に等しくなる。気を付けないといけないは代入だと定義できない $\frac{1}{6}$ などの場合である。

極限の性質について以下にまとめる。 $\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b, c$ は定数 とする。

$$\lim_{n \to \infty} (a_n \pm b_n) = a \pm b \tag{40}$$

$$\lim (c \cdot a_n) = c \cdot a \tag{41}$$

$$\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b \tag{42}$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b} \quad (b_n \neq 0, b \neq 0) \tag{43}$$

収束するとはn を限りなく大きくしたときに数列が有限の値に近づくことだが、これはより厳密に言うことができる。

―― 数列の収束の定義 ―

数列 $\{a_n\}$ が a に収束する \Leftrightarrow 任意の $\varepsilon>0$ が与えられたとき、それに対応してある N が $\boxed{n>N}$ のとき $|a-a_n|<\varepsilon$ となるように定められる。

正直一目見ただけでは全然意味がわからないはず。少しずつ理解していこう。この定義は二つに分けると見やすい。まず、任意の ε 、つまりどんな $\varepsilon>0$ に対しても、(収束するなら)対応するNが必ず見つかるということを言っている。ただ、このままだとなにをどう対応するNなのかがはっきりしない。そこで四角で囲った条

3.1 数列の極限 18

件が必要になる。ざっくり言ってしまえば正数 ε がどんな値でも、四角で囲った条件を満たす N が見つかる ということになる。

次に四角で囲った条件について詳しく見ていこう。始めの条件 n>N は一旦無視して、 $|a-a_n|<\varepsilon$ に注目する。この不等式の左辺が何を表すかを考えてみよう。数直線上に a,a_n をプロットすると、 $|a-a_n|$ はそのプロットした点と点との距離を表す。つまり不等式は、「近づく(であろう)値と a_n との距離をどんなに小さくとっても *20 」という意味になる。ここで飛ばした n>N についてみてみると、これは n が ε によって決まる N より大きい、という意味であるから、四角の条件をまとめると「近づく(であろう)値と a_n との距離をどんなに小さくとっても、その小さくとった幅に対応して n を大きくとれる」ということになる。

とはいえ、これを文章で説明されても全然イメージがわかない。ということで実際に値をプロットして みた。

図 14: $\{a_n\} = 1 - \frac{1}{n}$ のグラフ

この数列で「 $\varepsilon=0.7$ を取るとき、 $|a-a_n|=\frac{1}{n}<0.7\to n>1=N$ となるように N を取れば、n>N となる全ての a_n は図中の黒線と青線の間に入っている」が成り立っている。次の「 $\varepsilon=0.3$ を取るとき、 $|a-a_n|=\frac{1}{n}<0.3\to n>3=N$ となるように N を取れば、n>N となる全ての a_n は図中の黒線と青線の間に入っている」も成り立っている。

このように「黒線との距離がどんなに小さな点線を考えても、ある番号 N 以上なら黒線とその小さい点線の間にプロットされる。そのような N が必ず見つかる。」というのが収束の定義の主張である。

この収束の定義はとても難しい話なので、理解するのに時間がかかるかもしれない。(丁寧に説明したつもりけど、逆に回りくどくなってわかりにくいかも) そんな時は一旦飛ばすというのも手である。もちろんここで立ち止まって考えてもいいが一旦放置してあとから見直すとわかる、なんてこともざらにある。

◇ 収束する数列はすべて有界*²¹である。*²²

^{*20} ε は任意の数なのでどんなに小さくとってもよい。反対に大きくとることもできるが、 $< \varepsilon$ なので大きくとることに言及する意味はない。

^{*21} 有界とは全ての n に対して $m \leq a_n \leq M$ である定数 m, M が存在すること。

^{*22} 詳しい話は無限級数を扱うときに述べる。

3.2 関数の極限 **19**

3.2 関数の極限

次の関数の極限について述べる。数列と違い、無限大以外に近づける場合も出てくる。ひとまず定義域 $x\in I=(a,b)$ である関数 f(x) と定数 $c\in I$ を考えよう。x の値を c に限りなく近づけたとき、f(x) の値が ある一定の値 C に近づくとする。このとき

$$\lim_{x \to c} f(x) = C \tag{44}$$

と表し、f(x) は収束するという。また、C を x を c に近づけたときの f(x) の極限値という。記号の使い方は数列と同じなので馴染みやすい。 もちろん $f(x) \to C$ $(x \to c)$ という書き方もできる。

■例 $\lim_{x\to 2} x^2 = 4$ x < 2 の点からでも x > 2 の点からでも 2 に近づければ f(x) = 4 に近づく。これはグラフを見ても直感的にわかる。

いま c は f(x) の定義域に含まれている状態で考えてみるが、実は含まれていなくてもよい。例えば、 $f(x) = \frac{x^2-1}{x-1}$ は x=1 で定義出来ないが、 $x \neq 1$ で f(x) = x+1 であるから $x \to 1$ の極限を取ると値は 2 に 近づく。このような例で極限と代入との違いがはっきりとわかる。

いま近づけている値は有限の値を想定しているが、数列のように無限大(小)に大きくする極限も考えることが考えることができる。

$$\lim_{x \to \infty} f(x) \quad \lim_{x \to -\infty} f(x) \tag{45}$$

のように書く。例えば、 $\lim_{x\to +\infty} \frac{1}{x} = 0$ 。

極限の性質の公式は、数列と同様であるためここでは述べない。

さて、数列の極限と同様、関数の極限でもより厳密な定義について考えてみよう。それは以下のようになる。

— 関数の極限の定義 -

f(x) が $x \to a$ で b に収束する \Leftrightarrow 任意の $\varepsilon > 0$ が与えられたとき、それに対応してある $\delta > 0$ が $|x-a| < \delta$ のとき $|f(x)-b| < \varepsilon$ となるように定められる。

これはいわゆる $\varepsilon - \delta$ 論法と呼ばれるもので、ぶっちゃけめっちゃ難しい。ただこれも落ち着いてみれば数列の極限の定義*23と似通っているところがあることに気づける。

数列の極限との違いは x の範囲の制限にある。数列の場合は x>N だったが、関数の場合は $|x-a|<\delta$ となっている。 N,δ の役割は同じなので今はただ記号を変えているだけと考えてよい。|x-a| は x と a との数直線上での差、つまり二つの点の距離を表しているので、 $|x-a|<\delta$ はその距離が δ より小さいときというのを表している。あとは数列の場合と大体同じで、どんなに f と極限値が近づいていても(ϵ を小さくしても)それに対応する δ の値が定められる(ϵ が ϵ に近づく)ということになる。

 $^{*23 \}varepsilon - N$ 論法という。

3.2 関数の極限 **20**

 $\varepsilon - \delta$ 論法を使って、実際に収束することを証明してみる。

■例 $\lim_{x \to 0} x^2 = 4$ を証明する。

 $|x-2| < \delta$ とするとき、 $|x^2-4| = |x-2| \cdot |x+2| = |x-2| \cdot |(x-2)+4| \le |x-2|^2 + 4|x-2| < \delta^2 + 4\delta$ であ るため、 $\varepsilon=\delta^2+4\delta\leftrightarrow\delta=-2+\sqrt{4+\varepsilon}$ となるように δ を取ればよい。 このとき $|x-2|<\delta\to|x^2-4|<\varepsilon$ を満たすので証明が終わる。□

試しに、 $\varepsilon=0.1$ を代入すると $\delta\approx0.02484$ であるため、x=2.02483 のとき $|x^2-4|<\varepsilon$ を満たすはずで ある。実際、 $|x^2-4|=0.0999770256<0.1=\varepsilon$ となっていて満たしている。今回は具体的に $\delta(\varepsilon)$ を求めた が、このやり方にとらわれなくても四角で囲った条件を満たすように δ が取れればよい。

ここまで関数の収束について述べたが、ある一定の値に近づかずそのまま値が無限大に増大する場合などに ついて考えてみる。例えば、 x^3 は $x \to \infty$ で $x^3 \to \infty$ である。このような場合無限大に発散するという。も ちろん負の無限大に発散する場合も考えられる。一方で、 $\sin x$ は $x \to \infty$ で値が無限大に増大するわけでは ないが、値が一つに定まることもない。このような場合は振動するという。*24

次に重要な極限の公式を述べる。

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \tag{46}$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \left(1 + \frac{1}{x}\right)^x = e$$
(46)

式 (47) はネイピア数の定義である。実際は左辺の極限が収束することを証明しないといけないが、ここでは 割愛する。

では式 (46) を証明する。

■証明 下図のような単位円を考える。

図 15: 単位円

このとき $\triangle OAC < OBC < \triangle OBD$ である。それぞれ $\frac{1}{2}OA \cdot AC$, $\frac{1}{2}OC^2x$, $\frac{1}{2}OB \cdot BD$ なので

 $^{*24 \}sin x$ のグラフを見れば「振動する」という言い方がぴったりだとわかる。

3.2 関数の極限 21

$$\frac{1}{2}OA \cdot AC < \frac{1}{2}OC^{2}x < \frac{1}{2}OB \cdot BD$$

$$\frac{1}{2}OC^{2}\sin x \cos x < \frac{1}{2}OC^{2}x < \frac{1}{2}OC^{2}\tan x$$

$$\sin x \cos x < x < \tan x$$

$$\cos x < \frac{x}{\sin x} < \frac{1}{\cos x}$$

$$\cos x < \frac{\sin x}{x} < \frac{1}{\cos x}$$
(48)

よって、 $x \to 0$ の極限を取れば $\cos x \to 1, \frac{1}{\cos x} \to 1$ より $\frac{\sin x}{x} \to 1$ となる。 \square

最後の不等式 (48) のような不等式のとき、両側の極限値が一致すれば、間に挟まれた極限値も等しくなる。 これを**はさみうちの原理**という。はさみうちの原理ではうまく挟み込める不等式をつくる必要があるので、慣れるまで時間がかかる。 3.3 極限の計算 22

3.3 極限の計算

この節では実際に極限の計算方法について学ぶ。単純な場合は代入と同様に計算してよいが $\frac{0}{0}$ などの形になる場合は式を変形する必要がある。

■例1 次の極限を求めよ。

$$\lim_{x \to \infty} \frac{x^3 + 5x^2 + x + 2}{x^3 + x + 10}$$

 $\frac{1}{x} \to 0 (x \to \infty)$ の結果を利用する。分子と分母に $\frac{1}{x^3}$ をかけて

$$\lim_{x \to \infty} \frac{1 + \frac{5}{x} + \frac{1}{x^2} + \frac{2}{x^3}}{1 + \frac{1}{x^2} + \frac{10}{x^3}} = \frac{1 + 0 + 0 + 0}{1 + 0 + 0} = 1$$

■例2 次の極限を求めよ。

$$\lim_{x\to 0} \frac{x}{1-\sqrt{x+1}}$$

 $(a-b)(a+b) = a^2 - b^2$ を用いる。分子と分母に $1 + \sqrt{x+1}$ をかけて

$$\lim_{x \to 0} \frac{x(1+\sqrt{x+1})}{(1-\sqrt{x+1})(1+\sqrt{x+1})} = \lim_{x \to 0} \frac{x(1+\sqrt{x+1})}{-x} = -(1+\sqrt{0+1}) = -2$$

■例3 次の極限を求めよ。

$$\lim_{x \to \infty} \frac{2^x + 1}{3^x}$$

x が十分大きいとき $2^x \ll 3^x$ であるため、直感的に極限値は 0 だとわかる。

$$\lim_{x \to \infty} \left(\left(\frac{2}{3} \right)^x + \frac{1}{3^x} \right) = \lim_{x \to \infty} \left(\frac{2}{3} \right)^x + \lim_{x \to \infty} \frac{1}{3^x} = 0 + 0 = 0$$

二項目は指数関数の性質 a^x (a < 1) の場合を用いた。三項目は $x \to \infty$ のとき $3^x \to \infty$ であることを用いた。

■例4 次の等式を証明せよ。

$$\lim_{x \to 0} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to \infty} \left(1 + x \right)^{\frac{1}{x}}$$

 $x = \frac{1}{t}$ と置くと、 $x \to 0$ で $t \to \infty$ だから

$$\lim_{x \to 0} \left(1 + \frac{1}{x} \right)^x = \lim_{t \to \infty} \left(1 + \frac{1}{\frac{1}{t}} \right)^{\frac{1}{t}} = \lim_{t \to \infty} (1 + t)^{\frac{1}{t}}$$

よって等式が成り立つ。

もちろんこれ以外にも極限の計算を行う際に用いるテクニックは存在するが、もう少し勉強を進めないと使うことができない。その時が来るまで楽しみにしていてほしい。なお、これらのテクニックのほとんどは数列の極限にも用いることができる。

3.4 関数の連続 23

3.4 関数の連続

次に、関数の連続について考えていく。ひとまず定義から述べる。関数 f(x) が x=a で連続であるとは、次の三つの条件を満たすことである。

- 1. f(a) が定義されている。
- 2. $\lim_{x \to a} f(x)$ が存在する。
- 3. $f(a) = \lim_{x \to a} f(x)$ である。

極限の場合はx = a で値が存在していなくてもよかったが、連続ではx = a での値も必要となる。

連続の条件 2 について、極限が存在するとはどういうことなのか考えてみよう。関数の極限 $x \to a$ では、x をどのように a に近づけても同じ極限値を取る。必要がある。どのように近づけても、と言われて困るかもしれないが、単に x > a の点と x < a の点から近づける場合を考えておけばよい。 $*^{25}$

このうち、x>a の点から近づける場合、すなわち数直線の右側から近づける場合を $\lim_{x\to a+0}f(x)$ と表し、右側極限値と呼ぶ。同様に x<a の点から近づける場合は $\lim_{x\to a-0}f(x)$ と表し、左側極限値と呼ぶ。この右側極限値と左側極限値が等しくなる時、極限は存在し、その値は

$$\lim_{x \to a} f(x) = \lim_{x \to a+0} f(x) = \lim_{x \to a-0} f(x) \tag{49}$$

となる。

関数 f(x) がある区間 I で連続であるとき、f(x) は I で連続関数であるという。例えば、 $f(x)=\sin x$ は区間 $(-\infty,\infty)$ で連続関数である。一般に、初等関数は値が定義される(無限大にならないなど)全ての x について連続である。

関数がある区間で連続であるといったが、そもそも区間の端での連続はどう定義すればよいだろうか。例えば、関数 $f(x)=\sqrt{x}$ は明らかに $x\geq 0$ のすべての x で定義されているが x=0 において連続の条件が適用できない。そこで、一般に関数が $x\geq a$ で定義されているとき

$$\lim_{x \to a+0} f(x) = f(a) \tag{50}$$

が成り立てば、x=a において連続であるとする。こう定義することで、 \sqrt{x} が区間 $x\geq 0$ で連続と定義できる。同様にして $x\leq b$ である場合の端でも連続が定義される。この場合

$$\lim_{x \to b-0} f(x) = f(b) \tag{51}$$

のように左極限を取ることに注意。

以下連続関数の性質について述べる。まず連続関数 f(x), g(x) について

$$f(x) \pm g(x)$$
 $f(x)g(x)$ $\frac{f(x)}{g(x)}$ (52)

は連続関数である。ただし、最後の式は $g(x) \neq 0$ であるとする。このことから、連続関数の多項式も連続関数であることがわかる。

^{*&}lt;sup>25</sup> 二変数関数になると少し事情は変わる。'xy 平面上のどの点から' 近づけても同じになる必要がある。

3.4 関数の連続 **24**

例えば、 $f(x) = x^n (n \in \mathbb{N})$ は区間 $(-\infty, \infty)$ で連続であるため、多項式

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
(53)

も区間 $(-\infty,\infty)$ で連続である。ほかにも、以下の有理関数

$$R(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0}$$
(54)

も分母が0にならない限り連続である。

また、次の合成関数 f(g(x)) を考えてみると、f(x),g(x) が連続関数であるかぎり f(g(x)) も連続関数である。例えば $\log(\sqrt{x}+1)$ は $x\geq 0$ のすべての x で連続である。

関数 f(x) が区間 [a,b] で連続関数である場合、次の二つが成り立つ。

 $f(a) \neq f(b)$ なら $f(a) \leq k \leq f(b)$ である任意の k について

$$f(x) = k$$

となる点 $c \in [a,b]$ が少なくとも一つ存在する。(中間値の定理)

f(x) は区間 [a,b] で必ず最大値 M と最小値 m を取る。つまり

$$m = f(x_m) \le f(x) \le f(x_M) = M$$

となる点 $x_m, x_M \in [a, b]$ が必ず存在する。

文字だけだとわかりずらいが、グラフを見ればむしろ当たり前のことのように感じる。

図 16: 連続関数

図 16 を見ると、区間 [1,3] において関数は連続であり、その端での値おおよそ -3 と 9 の間のすべて値に対して、対応する $x \in [-1,3]$ が存在していることがわかる。これが中間値の定理の主張である。また区間における最大値と最小値も存在している(それぞれ x=-1,3 の点)ことがわかる。ちなみに、点 A,B はそれぞれその周囲の点の間では最大・最小の値である。これらをそれぞれ極大値、極小値とよび、総称して極値という。

3.4 関数の連続 **25**

また、中間値の定理において f(a) と f(b) の符号が異なる場合、方程式 f(x)=0 は区間 [a,b] に実数解を少なくとも持つことがわかる。これは中間値の定理の応用である。

■例 方程式 $x^2 + x + 1 = 0$ は区間 [-1,1] に少なくとも一つの実数解を持つかどうか答えよ。

f(-1)=1-1+1=1>0, f(1)=1+1+1=3>0 より、f(-1) と f(1) の符号が同じであるため方程式は区間 [-1,1] で実数解を持たない。実際、判別式 $D=1^2-4\cdot1\cdot1=-3<0$ より、この二次方程式は解を持っていない。

いままでは連続関数の性質について述べたが、連続の条件が一つでも満たされていない場合についても考えてみよう。このとき関数 f(x) は x=a で不連続であるという。例えば $\frac{1}{x}$ は x=0 で不連続である。一方で関数 $g(x)=\frac{x^2-1}{x-1}$ も x=1 で不連続であるが、 $x\neq 1$ では g(x)=x+1 で連続である。そこで、

$$g(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & (x \neq 1) \\ x + 1 & (x = 1) \end{cases}$$
 (55)

のように改めて定義しなおすことで、この関数はx=1で連続にできる。各自確かめてみよ。

 Σ 基本問題 26

基本問題 3 以下の問いに答えよ。

第Ⅱ部

微分

第Ⅲ部

積分

第IV部

無限級数