Class 14:

Hailey Heirigs (PID: A16962278)

Table of contents

Required packages	2
Data import	2
Remove zero count genes	3
Set up DESeq object for analysis	4
Run DESeq analysis	5
Extract the results	5
Add gene annotation	6
Save my results to a CSV file	7
Result visualization	7
Pathway analysis	9
Gene Ontology (GO)	13
Reactome Analysis	14

Here we will perform a complete RNASeq analysis from courts to pathways and biological interpretation.

The data for for hands-on session comes from GEO entry: GSE37704, which is associated with the following publication:

Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1):46-53. PMID:

23222703 The authors report on differential analysis of lung fibroblasts in response to loss of the developmental transcription factor HOXA1.

Required packages

```
library(DESeq2)
library(AnnotationDbi)
library(org.Hs.eg.db)
library(pathview)
library(gage)
library(gageData)
```

Data import

```
colData <- read.csv("GSE37704_metadata.csv", row.names = 1)
countData <- read.csv("GSE37704_featurecounts.csv", row.names = 1)</pre>
```

```
head(colData)
```

```
condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd
```

```
head(countData)
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212

	SRR493371
ENSG00000186092	0
ENSG00000279928	0
ENSG00000279457	46
ENSG00000278566	0
ENSG00000273547	0
ENSG00000187634	258

Check the correspondance of colData rows and countData columns.

rownames(colData)

```
[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"
```

Remove the troublesome first column so we match the metadata

```
counts <- countData[,-1]</pre>
```

head(counts)

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
all( rownames(colData) == colnames(counts) )
```

[1] TRUE

Remove zero count genes

We will have rows in **counts** for genes that we can not say anything about becuase they have zero expression in the particular tissue we are looking at.

head(counts)

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

If the rowSums() is zero, then give a gene (i.e. row) has no count data and we should exclude these genes from further consideration.

```
to.keep <- rowSums(counts) != 0
cleancounts <- counts[to.keep,]</pre>
```

Q. How many genes do we have left?

```
nrow(cleancounts)
```

[1] 15975

Set up DESeq object for analysis

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

Run DESeq analysis

```
dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing</pre>
```

Extract the results

```
res <- results(dds)
head(res)</pre>
```

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns

	baseMean	${\tt log2FoldChange}$	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43989e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215599	1.040744	2.97994e-01
	pac	dj			
	<numerio< td=""><td>c></td><td></td><td></td><td></td></numerio<>	c>			

ENSG00000279457 6.86555e-01 ENSG00000187634 5.15718e-03

```
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
```

Add gene annotation

```
columns(org.Hs.eg.db)
 [1] "ACCNUM"
                    "ALIAS"
                                   "ENSEMBL"
                                                  "ENSEMBLPROT"
                                                                "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                   "EVIDENCE"
                                                 "EVIDENCEALL"
                                                                "GENENAME"
[11] "GENETYPE"
                    "GO"
                                   "GOALL"
                                                 "IPI"
                                                                "MAP"
                    "ONTOLOGY"
                                  "ONTOLOGYALL" "PATH"
[16] "OMIM"
                                                                "PFAM"
                                  "REFSEQ"
[21] "PMID"
                    "PROSITE"
                                                "SYMBOL"
                                                                "UCSCKG"
[26] "UNIPROT"
res$symbol = mapIds(org.Hs.eg.db,
                   keys=rownames(res),
                    keytype="ENSEMBL",
                    column="SYMBOL",
                    multiVals="first")
'select()' returned 1:many mapping between keys and columns
res$name <- mapIds(x=org.Hs.eg.db,</pre>
                     keys=rownames(res),
                     keytype = "ENSEMBL",
                     column = "GENENAME")
'select()' returned 1:many mapping between keys and columns
res$entrez <- mapIds(x=org.Hs.eg.db,
                     keys=rownames(res),
                     keytype = "ENSEMBL",
                     column = "ENTREZID")
```

'select()' returned 1:many mapping between keys and columns

head(res)

```
log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 9 columns
```

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43989e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215599	1.040744	2.97994e-01
	pad	j symbol		name	entrez
	<numeric< td=""><td>> <character></character></td><td></td><td><character></character></td><td><pre><character></character></pre></td></numeric<>	> <character></character>		<character></character>	<pre><character></character></pre>
ENSG00000279457	6.86555e-0	1 NA		NA	NA NA
ENSG00000187634	5.15718e-0	3 SAMD11	sterile al	pha motif	148398
ENSG00000188976	1.76549e-3	5 NOC2L	NOC2 like	nucleolar	26155
ENSG00000187961	1.13413e-0	7 KLHL17	kelch like	family me	339451
ENSG00000187583	9.19031e-0	1 PLEKHN1	pleckstrin	homology	84069
ENSG00000187642	4.03379e-0	1 PERM1	PPARGC1 and	d ESRR ind	84808

Save my results to a CSV file

```
write.csv(res, file="my_id_results.csv")
```

Result visualization

```
mycols <- rep("grey", nrow(res))
mycols [ res$log2FoldChange <= -2 ] <- "blue"
mycols [ res$log2FoldChange >= +2 ] <- "blue"

mycols [ res$padj >= 0.05 ] <- "grey"
#mycols
plot(res$log2FoldChange, -log(res$padj), col=mycols)</pre>
```

```
abline(v=-2, col="red")
abline(v=+2, col="red")
abline(h=-log(0.005), col="red")
```


Warning: Removed 1237 rows containing missing values or values outside the scale range (`geom_point()`).

Pathway analysis

```
library(gage)
library(gageData)
library(pathview)
data(kegg.sets.hs)
data(sigmet.idx.hs)
# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
# Examine the first 3 pathways
head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
          "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
              "1066" "10720" "10941" "151531" "1548" "1549"
 [1] "10"
                                                                   "1551"
```

```
[9] "1553"
               "1576"
                                                                "221223" "2990"
                         "1577"
                                   "1806"
                                            "1807"
                                                      "1890"
[17] "3251"
               "3614"
                         "3615"
                                   "3704"
                                            "51733"
                                                      "54490"
                                                                "54575"
                                                                          "54576"
[25] "54577"
                                            "54657"
                                                                "54659"
               "54578"
                         "54579"
                                  "54600"
                                                      "54658"
                                                                          "54963"
[33] "574537" "64816"
                         "7083"
                                   "7084"
                                            "7172"
                                                      "7363"
                                                                "7364"
                                                                          "7365"
[41] "7366"
                                            "7378"
                                                      "7498"
                                                                "79799"
               "7367"
                         "7371"
                                  "7372"
                                                                          "83549"
[49] "8824"
               "8833"
                         "9"
                                   "978"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                          "10606"
                                    "10621"
                                             "10622"
                                                       "10623"
                                                                 "107"
                                                                           "10714"
  [9] "108"
                "10846"
                          "109"
                                    "111"
                                              "11128"
                                                                           "113"
                                                       "11164"
                                                                 "112"
 [17] "114"
                "115"
                          "122481" "122622" "124583" "132"
                                                                 "158"
                                                                           "159"
 [25] "1633"
                "171568" "1716"
                                    "196883" "203"
                                                       "204"
                                                                 "205"
                                                                           "221823"
                                                                           "270"
 [33] "2272"
                "22978"
                          "23649"
                                    "246721"
                                             "25885"
                                                       "2618"
                                                                 "26289"
                          "272"
                                                                           "2984"
 [41] "271"
                "27115"
                                    "2766"
                                             "2977"
                                                       "2982"
                                                                 "2983"
 [49] "2986"
                "2987"
                          "29922"
                                    "3000"
                                             "30833"
                                                       "30834"
                                                                 "318"
                                                                           "3251"
                                    "3704"
                                                                 "4830"
 [57] "353"
                "3614"
                          "3615"
                                             "377841"
                                                       "471"
                                                                           "4831"
 [65] "4832"
                "4833"
                          "4860"
                                    "4881"
                                              "4882"
                                                       "4907"
                                                                 "50484"
                                                                           "50940"
                                             "5137"
                                                                           "5140"
 [73] "51082"
                "51251"
                          "51292"
                                    "5136"
                                                       "5138"
                                                                 "5139"
 [81] "5141"
                "5142"
                          "5143"
                                    "5144"
                                             "5145"
                                                       "5146"
                                                                 "5147"
                                                                           "5148"
 [89] "5149"
                "5150"
                          "5151"
                                    "5152"
                                             "5153"
                                                       "5158"
                                                                 "5167"
                                                                           "5169"
                                                                 "54107"
                          "5236"
                                                                           "5422"
 [97] "51728"
                "5198"
                                    "5313"
                                             "5315"
                                                       "53343"
[105] "5424"
                "5425"
                          "5426"
                                    "5427"
                                             "5430"
                                                       "5431"
                                                                 "5432"
                                                                           "5433"
                "5435"
                                    "5437"
                                                       "5439"
[113] "5434"
                          "5436"
                                             "5438"
                                                                 "5440"
                                                                           "5441"
[121] "5471"
                "548644" "55276"
                                    "5557"
                                             "5558"
                                                       "55703"
                                                                 "55811"
                                                                           "55821"
[129] "5631"
                "5634"
                          "56655"
                                    "56953"
                                             "56985"
                                                       "57804"
                                                                 "58497"
                                                                           "6240"
[137] "6241"
                "64425"
                          "646625" "654364"
                                             "661"
                                                       "7498"
                                                                 "8382"
                                                                           "84172"
[145] "84265"
                "84284"
                          "84618"
                                    "8622"
                                                       "87178"
                                                                 "8833"
                                                                           "9060"
                                              "8654"
[153] "9061"
                "93034"
                          "953"
                                    "9533"
                                             "954"
                                                       "955"
                                                                 "956"
                                                                           "957"
[161] "9583"
                "9615"
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
```

```
<NA> 148398 26155 339451 84069 84808
0.17925708 0.42645712 -0.69272046 0.72975561 0.04057653 0.54281049
```

```
# Get the results
keggres = gage(foldchanges, gsets=kegg.sets.hs)
```

attributes(keggres)

```
$names
[1] "greater" "less"
                        "stats"
# Look at the first few down (less) pathways
head(keggres$less)
                                         p.geomean stat.mean
                                                                    p.val
                                      8.995727e-06 -4.378644 8.995727e-06
hsa04110 Cell cycle
hsa03030 DNA replication
                                      9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                      1.246882e-03 -3.059466 1.246882e-03
hsa03440 Homologous recombination
                                      3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                      3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                            q.val set.size
                                                                   exp1
                                      0.001448312
hsa04110 Cell cycle
                                                     121 8.995727e-06
hsa03030 DNA replication
                                      0.007586381
                                                       36 9.424076e-05
hsa03013 RNA transport
                                      0.066915974
                                                      144 1.246882e-03
hsa03440 Homologous recombination
                                                      28 3.066756e-03
                                      0.121861535
hsa04114 Oocyte meiosis
                                      0.121861535
                                                      102 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                       53 8.961413e-03
pathview(gene.data=foldchanges, pathway.id="hsa04110")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/haileyheirigs/Desktop/BIMM143.r-work/class14
Info: Writing image file hsa04110.pathview.png
# A different PDF based output of the same data
pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)
'select()' returned 1:1 mapping between keys and columns
```

Warning: reconcile groups sharing member nodes!

```
[,1] [,2]
[1,] "9" "300"
[2,] "9" "306"
Info: Working in directory /Users/haileyheirigs/Desktop/BIMM143.r-work/class14
Info: Writing image file hsa04110.pathview.pdf
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$greater)[1:5]</pre>
# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/haileyheirigs/Desktop/BIMM143.r-work/class14
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/haileyheirigs/Desktop/BIMM143.r-work/class14
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/haileyheirigs/Desktop/BIMM143.r-work/class14
Info: Writing image file hsa00140.pathview.png
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/haileyheirigs/Desktop/BIMM143.r-work/class14

Info: Writing image file hsa04142.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/haileyheirigs/Desktop/BIMM143.r-work/class14

Info: Writing image file hsa04330.pathview.png

Gene Ontology (GO)

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

```
p.geomean stat.mean
                                                                      p.val
GO:0007156 homophilic cell adhesion
                                        8.519724e-05 3.824205 8.519724e-05
GO:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
GO:0048729 tissue morphogenesis
                                         1.432451e-04 3.643242 1.432451e-04
GO:0007610 behavior
                                         1.925222e-04 3.565432 1.925222e-04
GO:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
GO:0035295 tube development
                                         5.953254e-04 3.253665 5.953254e-04
                                            q.val set.size
                                                                   exp1
GO:0007156 homophilic cell adhesion
                                         0.1951953 113 8.519724e-05
GO:0002009 morphogenesis of an epithelium 0.1951953
                                                       339 1.396681e-04
GO:0048729 tissue morphogenesis
                                        0.1951953
                                                       424 1.432451e-04
GO:0007610 behavior
                                         0.1967577
                                                       426 1.925222e-04
GO:0060562 epithelial tube morphogenesis 0.3565320
                                                       257 5.932837e-04
```

GO:0035295 tube development 0.3565320 391 5.953254e-04

\$less

		p.geomean	stat.mean	p.val
GO:0048285	organelle fission	1.536227e-15	-8.063910	1.536227e-15
GO:0000280	nuclear division	4.286961e-15	-7.939217	4.286961e-15
GO:0007067	mitosis	4.286961e-15	-7.939217	4.286961e-15
GD:0000087	M phase of mitotic cell cycle	1.169934e-14	-7.797496	1.169934e-14
GO:0007059	chromosome segregation	2.028624e-11	-6.878340	2.028624e-11
GD:0000236	mitotic prometaphase	1.729553e-10	-6.695966	1.729553e-10
		q.val	set.size	exp1
GO:0048285	organelle fission	q.val 5.841698e-12		-
	organelle fission nuclear division	-	376	-
	nuclear division	5.841698e-12	376 352	1.536227e-15
GD:0000280 GD:0007067	nuclear division	5.841698e-12 5.841698e-12 5.841698e-12	376 352 352	1.536227e-15 4.286961e-15
GD:0000280 GD:0007067 GD:0000087	nuclear division mitosis	5.841698e-12 5.841698e-12 5.841698e-12	376 352 352 362	1.536227e-15 4.286961e-15 4.286961e-15

\$stats

		stat.mean	exp1
GO:0007156	homophilic cell adhesion	3.824205	3.824205
GO:0002009	${\tt morphogenesis} \ {\tt of} \ {\tt an} \ {\tt epithelium}$	3.653886	3.653886
GO:0048729	tissue morphogenesis	3.643242	3.643242
GO:0007610	behavior	3.565432	3.565432
GO:0060562	epithelial tube morphogenesis	3.261376	3.261376
GO:0035295	tube development	3.253665	3.253665

Reactome Analysis

We need to make a little file of our significant genes that we can upload to the reactome webpage:

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quote
```

Then, to perform pathway analysis online go to the Reactome website (https://reactome.org/PathwayBrowser/#Select "choose file" to upload your significant gene list. Then, select the parameters "Project to Humans", then click "Analyze".

