Algebra. Corso di Laurea in Informatica. Canale 1. Prof. P. Piazza. a.a. 2023-24.

Semigruppi, gruppi, anelli, campi.

Definizione 1. Un semigruppo (S, \star) è un insieme dotato di un'operazione 1 \star verificante le seguenti proprietà:

- (1) l'operazione è associativa: $\forall s_1, s_2, s_3 \in S$, si ha $(s_1 \star s_2) \star s_3 = s_1 \star (s_2 \star s_3)$
- (2) esiste un elemento $e \in G$ tale che $s \star e = s = e \star s \ \forall s \in S$

Se accade che

(4) $s_1 \star s_2 = s_2 \star s_1 \ \forall s_1, s_2 \in S$, il semigruppo è detto commutativo o anche abeliano.

Osservazione. Abbiamo verificato in classe che l'elemento e di cui in (2) è unico. Tale elemento è detto elemento neutro.

Esempi.

- 1. $(\mathbb{N}, +)$ con elemento neutro 0 è un semigruppo commutativo.
- **2.** Sia X un insieme, e sia $S = \{f : X \to X, f \text{ applicazione}\}$. Sia id_X l'applicazione che associa a $x \in X$ l'elemento $x : \mathrm{id}_X(x) = x$. Dotiamo S di un'operazione ponendo 2

$$f \star g := f \circ g$$

dove \circ denota la composizione di applicazioni. La coppia (S,\star) è un semigruppo; l'associatività è una nota proprietà della composizione; l'elemento neutro è l'applicazione Id_X . Questo semigruppo non è, in generale, commutativo.

Definizione 2. Un gruppo (G, \star) è un insieme dotato di un'operazione \star verificante le seguenti proprietà:

- (1) l'operazione è associativa: $\forall g_1, g_2, g_3 \in G$, si ha $(g_1 \star g_2) \star g_3 = g_1 \star (g_2 \star g_3)$
- (2) esiste un elemento $e \in G$ tale che $g \star e = g = e \star g \ \forall g \in G$
- (3) $\forall g \in G \ \exists g' \in G \ \text{tale che} \ g \star g' = e = g' \star g.$

Se accade che

(4) $g_1 \star g_2 = g_2 \star g_1 \ \forall g_1, g_2 \in G$, il gruppo è detto commutativo o anche abeliano.

Esercizio 1. Verificare che dato $g \in G$, l'elemento g' di cui in (3) è unico. Esso è detto *inverso di g* ed è denotato g^{-1} .

Suggerimento: assumete che ce ne siano due e dimostrate che devono essere uguali.

Esercizio 2. Verificare che $(g \star h)^{-1} = h^{-1} \star g^{-1} \ \forall g, h \in G.$

Suggerimento: utilizzate l'unicità dell'inverso.

Notazioni semplificate. L'elemento neutro e viene spesso denotato con il simbolo 1 (con abuso di notazione; qui 1 è un elemento del gruppo G e **non** il numero 1). Inoltre l'operazione è spesso denotata semplicemente con \cdot (di nuovo, questa **non** è l'usuale operazione di moltiplicazione fra numeri ma un'applicazione $\cdot: G \times G \to G$). In un gruppo commutativo, si utilizza usualmente la notazione + per denotare l'operazione; inoltre l'elemento neutro è spesso denotato con il simbolo 0 mentre

 $^{^1}$ Un'operazione è una legge che associa ad ogni coppia ordinata di elementi di S,siano essi $s_1,\ s_2,$ uno ed un solo elemento di S, denotato $s_1\star s_2.$ Un'operazione è quindi un'applicazione $\star:G\times G\to G$

²il simbolo := viene utilizzato per definire un oggetto matematico con ciò che compare a destra di questo simbolo; si legge "uguale per definizione a"

l'inverso è denotato con il simbolo -a ed è chiamato *opposto*. Ancora una volta, questi sono tutti abusi di notazione³ ma sono largamente utilizzati nei testi. Li utilizzeremo anche noi in quanto segue.

Esempio 3. L'insieme dei numeri interi $\mathbb{Z} = \mathbb{N} \times \mathbb{N}/\rho$ con l'operazione di somma vista a lezione è un gruppo commutativo, con elemento neutro il numero 0 = [(0,0)] e opposto di $k \equiv [(k,0)] \in \mathbb{N} \equiv \mathbb{Z}^+ \subset \mathbb{Z}$ uguale a $-k \equiv [(0,k)]$ e opposto di $-\ell = [0,\ell] \in \mathbb{Z}^-, \ \ell \in \mathbb{N}$, uguale a $\ell = [(\ell,0)]$.

Esempio 4. Sia X un qualsiasi insieme e sia $G = \{f : X \to X, f \text{ biunivoca }\}$. Come nell esempio 2 dotiamo G di un'operazione ponendo $f \cdot g := f \circ g$. La coppia (G, \cdot) è un gruppo con l'inverso di f uguale all'applicazione inversa f^{-1} . Qui sto utilizzando una nota proprietà della funzione inversa di f (applicazione biunivoca di X in X) e cioè che

$$f \circ f^{-1} = \operatorname{Id}_X \quad f^{-1} \circ f = \operatorname{Id}_X .$$

Questo gruppo non è, in generale, commutativo.

Definizione 3. Un anello $(A, +, \cdot)$ è un insieme dotato di due operazioni, denotate $+ e \cdot$, con le seguenti proprietà:

- (1) (A, +) è un gruppo commutativo, con elemento neutro rispetto a + denotato 0.
- (2) l'operazione · gode della proprietà associativa.
- (3) valgono le proprietà distributive:

$$(a+a') \cdot b = a \cdot b + a' \cdot b$$
, $a \cdot (b+b') = a \cdot b + a \cdot b'$. $\forall a, a', b, b' \in A$

Notare che stiamo seguendo le notazioni semplificate.

Se vale la proprietà commutativa per l'operazione \cdot allora $(A,+,\cdot)$ è detto un anello commutativo.

Se esiste un elemento neutro rispetto all'operazione \cdot , denotato usualmente con il simbolo 1, allora A è un anello unitario.

Se $(A,+,\cdot)$ è un anello commutativo unitario allora esso è detto un dominio di integrità se

$$a \cdot b = 0 \Rightarrow a = 0$$
 oppure $b = 0$.

Un elemento $a \neq 0$ è detto un divisore dello zero se esiste $b \neq 0$ tale che $a \cdot b = 0$. Quindi un dominio di integrità è un anello commutativo unitario privo di divisori dello zero.

Esempio 5. $(\mathbb{Z}, +, \cdot)$, l'insieme dei numeri interi con le usuali operazioni di somma e prodotto, è un anello commutativo unitario. Esso è anche un dominio di integrità. Vedremo altri esempi durante il corso.

Definizione 3. Un campo $(\mathbb{K}, +, \cdot)$ è un anello commutativo unitario verificante la seguente ulteriore proprietà:

$$\forall \kappa \in \mathbb{K}, \kappa \neq 0, \exists \kappa' \in \mathbb{K} \mid \kappa \cdot \kappa' = 1.$$

dove i simboli 0 ed 1 denotano rispettivamente l'elemento neutro rispetto all'operazione + e l'elemento neutro rispetto all'operazione \cdot .

 $^{^3}$ ad esempio, 0 è un elemento del gruppo e non il numero 0; similmente, la notazione + denota l'operazione nel gruppo commutativo G e non, in generale, la somma fra numeri