Graph Theory; Second Set of assignment problems

Friday, 31 January, 2020

Sane

Assume that we are dealing with simple graphs.

Let G be a triangle-free simple graph. Let $f:V(G)\to [0,1]$ be defined such that $\sum_{v\in V} f(v)=1$. Over the set of all such functions, we wish to maximize the sum $S=\sum_{(xy)\in E(G)} f(x)f(y)$. Prove the following:

- (a) If x and y are not adjacent and if $\sum_{z \sim x} f(z) \ge \sum_{z \sim y} f(z)$, then any (small) change in f(x) (from f(x) to $f(x) + \epsilon$) and in f(y) (from f(y) to $f(y) \epsilon$) changes S to S' where $S' \ge S$.
- (b) Show that in the above argument we can actually take ϵ to be as large as f(y).
- (c) Show that through a sequence of steps described as above, we obtain largest value of S when, for only two adjacent vertices v and w, we have f(v) and f(w) both non-zero.
- (d) Show that by taking $f(v) = f(w) = \frac{1}{2}$, S is maximized with the value $\frac{1}{4}$.
- (e) Show that by letting $f(x) = \frac{1}{n}$, for all x, we get one value of S to be $\frac{e(G)}{n^2}$.
- (f) Use the last two parts to prove Turan's theorem: $e(G) \leq \frac{n^2}{4}$.