2.2.2 Prove each statement by exhaustion

a. For every integer n such that $0 \le n < 2$, $(n+1)^2 > n^3$

Proof. Let $n \in \mathbb{Z}$ such that $0 \le n < 2$,

$$n = 0$$
: $(0+1)^2 = 1 > 0 = 0^3 \checkmark$
 $n = 1$: $(1+1)^2 = 4 > 1 = 1^3 \checkmark$
 $n = 2$: $(2+1)^2 = 9 > 8 = 2^3 \checkmark$

 $\therefore \forall n \in \mathbb{Z} \text{ such that } 0 \le n \le 2, (n+1)^2 > n^3$

2.2.3 Find a counter example

b. If n is an integer and n^2 is divisible by 4, then n is divisible by 4.

Counter example: Consider n = 2. n^2 , 4 is divisible by 4, but 2 is not.

e. The multiplicative inverse of $x \in \mathbb{R}$ is a real number y such that xy = 1. Every real number has a multiplicative inverse.

Counter example: Consider x = 0. $\forall y \in \mathbb{R}, xy \neq 1$. 0 has no multiplicative inverse.

2.2.5 Proving existential statements

a. There are positive integers x and y such that $\frac{1}{x} + \frac{1}{y}$ is an integer.

Proof. Consider x = y = 1. $\frac{1}{x} = 1$ and $\frac{1}{y} = 1$ and $1 + 1 \in \mathbb{Z}$.

c. There are integers m and n such that $\sqrt{m+n} = \sqrt{m} + \sqrt{n}$.

Proof. Consider m = n = 0. $\sqrt{0+0} = \sqrt{0} + \sqrt{0}$.

h. $\forall x, y \in \mathbb{R}, \exists z \in \mathbb{R} \text{ such that } x - z = z - y.$

Proof. Consider $z = \frac{x+y}{2}$,

$$x - \frac{x+y}{2} = \frac{x+y}{2} - y$$

$$x+y = x+y$$

$$x+y = 0$$

$$x + y = 0$$

$$0 = 0$$

 $\therefore \forall x, y \in \mathbb{R}, \exists z \in \mathbb{R} \text{ such that } x - z = z - y$