Differential Equation: - An equation Containing derivation of one or more independent variables w.r. to one or more independent variables is called differential Equation.

[D.E.]

Example'- 1)
$$y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = 0$$
, (3). $y \frac{\partial^2 z}{\partial x^2} + e^Z = 0$ (ODES) PDES

then
$$\beta = \frac{\partial z}{\partial x}, \quad Q = \frac{\partial z}{\partial y}, \quad r = \frac{\partial^2 Z}{\partial x^2},$$

$$S = \frac{\partial^2 Z}{\partial x^2 y}, \quad t = \frac{\partial^2 Z}{\partial y^2}$$

- 3 Order of Partial D.E. = Order of PDE is the order of coefficient of the highest docivations resent in PDE's
- Degree of PBE: Degree of a portial differential equation is the taig power of highest ordered derivative present in the equation when it has made free from radial and fractional power.
- Solution of PDEs: The general solution of PDE Contains arbitrary constant, or arbitrary funtions or both. consequently, we can say that PDE can be formed by arbitrary fonst. or arbitrary funtion.

Arbitarary

Consider f(x, d, z, a,b) = 0 -0

a,b -> constant

X, y - undependent naviable.

Z-dependent variable on x.4.4.

Parlial diff. 1) w.r. to x (j-ez=q(n,y))

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial x} = 0$$

$$\frac{\partial f}{\partial x} + p \frac{\partial f}{\partial z} = 0 \qquad \boxed{2}$$

Parlial diff 1 wire to y

$$\frac{\partial f}{\partial y} + 9 \frac{\partial f}{\partial z} = 0 - 2$$

Bing O, 2 & 3 Eliminating a 4b

then
$$[f(x,y,z,p,a)=0]$$

at is called PDE.

Example! - form PPE from the following equations by eliminating the webitrary constt.

- ci). z=ax+by+ab.
- (ii) Z= (x+a)(y+b)
- (111) az+b= a2x+7

Arbitarry furtion

Consider & (U, v) = 0 -0

where u & v are furtion of x, y & Z and, Z is fution of interns of x 69.

and of is called orbitrary fention.

Diff 1 w.r. to 2 then Using chair Rule

$$\frac{\partial \phi}{\partial x} \left(\frac{\partial x}{\partial x} + \frac{\partial z}{\partial z} \cdot \frac{\partial x}{\partial z} \right)$$

$$+\frac{3d}{\partial V}\left(\frac{\partial V}{\partial x}+\frac{\partial V}{\partial z}\cdot\frac{\partial z}{\partial x}\right)=0$$

$$\frac{\partial \phi / \partial u}{\partial \phi / \partial v} = - \left(\frac{\partial v}{\partial x} + p \frac{\partial v}{\partial z} \right) - 2$$

Similary (Riff w.r. to 7)

$$\frac{\partial \phi/\partial u}{\partial \phi/\partial u} = -\left(\frac{\partial u}{\partial y} + q \frac{\partial u}{\partial z}\right) + q \frac{\partial u}{\partial z}$$

from 2 & 3.

which is called PDE of First degree in p and a.

Example:
$$z = f(x^2 - y^2)$$

$$z = \phi(x) \cdot \psi(x)$$

Complete Solution: The solution f(x, y, z, a, b) = 0 of a Ist 3 and general solution i order PDE, which two occlinowy Constit -15 called a Camplete solution. $b = \phi(a)$ then. f(Y) J, Z, Q, \$ (a)) = 0, we get a solution involving an ovelet range Const justion This is called general solution facticular solution: A solution obtained from the complete solution by giving particular values to the arbitrary Homogeneous! - A linear PDE with constant Types of PDE:- A coefficient in which all the Portial doaration are L. P. D. E. Non LPPE Seni LPDE quasi LPDE Some order 1. APPE is said to LPDE it faited of first degree in the dependent variable and its downations and they are not Multiplied together 1 24 + 24 = 1, 8 22 + 7 27 = 24 Seni-LPDE An equation of the form P(x,y)p + Q(x,y)q = R(x,y,z)is called seni-LPDE Ex. $xyp + yx^2q = xz^2$

(A) - quasi - linear PPE: An equation of the form p(x,y,z) p + Q(x,y,z) q = R(x,y,z) is collect quasi linear PDE $\chi^2 z p + y z q = xy \text{ line}$

Equation Solverbles by Direct integration: - { Containing only one partial Deviation}

Example: Solve $t = \sin xy$.

From the solverbles by Direct integration: - { Containing only one partial Deviation}

The partial Deviation $\frac{\partial^2 z}{\partial y^2} = \sin(xy)$ Integrating $u \cdot r \cdot to y \cdot then \frac{\partial z}{\partial y} = -\frac{1}{x} \cos(xy) + f(x)$ Again. $z = -\frac{1}{x^2} \sin(xy) + f(x) + \phi(x)$

```
quasi-tinear PDE]
It Lagrangey Equation:
               Comider Pp+99=R where tion &. -

Jentions of x, y and z.
                                         where P. Q. & R are
    Lagrange's Auxiliary Equation
   Then the solution of PDE PP+Q2=R as \phi(u,v)=0 [Here]
                                                   and or V= f(u) | G=u)
 Working Rule ! -
                                                       or u=f(v).
              find P, Q and R. {Using P++ Qq=R} fution of ulxy, 2)
     Step II form the Auxiliary Equation the dit = dz
     Step III Salu Auxiliary Equation by graping method
    step)\underline{v}: then \phi(u,v)=0 or v=f(u) or u=f(v)
      is general solution of the equation Pp+Qq=R.
Example! Solve y2p-xyg=x(z-2y)
 solution! The given equation y^2p - xyq = \chi(z-2y).
       then p = y^2, Q = -xy and R = x(z-2y).
     Associliary Equation
                 \frac{dx}{y^2} = \frac{dy}{-yy} = \frac{dz}{x(z-2y)}
                                                         genoral solution
                                                           り(ス2+ソナリン)=0
    Taking I & II fraction
                  \frac{dx}{y} = \frac{dy}{-x} = \frac{1}{2}
                                     \frac{\chi^2}{2} + \frac{y^2}{2} = \frac{9}{2}
                                        \chi^2 + y^2 = q
   Taking I & II fraction
```

Q2 Solve
$$\chi^2 p + y^2 q = (\chi + y)z$$
, — (1)
Combare $P_b + Q_a = p$ Here

Compare
$$Pp + Qq = R$$
 then $P = x^2$, $Q = y^2 + R = (x+y)z$

$$\frac{da}{n^2} = \frac{da}{y^2} = \frac{dz}{(1+y)z}$$

$$(II) \qquad (III)$$

$$\frac{dx}{x^2} = \frac{dy}{y^2} \quad \Rightarrow \quad -\frac{1}{x} = -\frac{1}{y} - c_1 \quad \Rightarrow \quad \frac{1}{x} - \frac{1}{y} = q.$$
From Q.

$$\frac{dx-dy}{x^2-y^2} = \frac{dz}{(x+y)z} = \frac{dx-dy}{(x+y)(x-y)} = \frac{dz}{(x+y)z}$$

Henre the general solution

$$\phi\left(\frac{1}{x},\frac{1}{z},\frac{x-y}{z}\right)=0$$

A.E.
$$\frac{dx}{1} = \frac{dy}{3} = \frac{dz}{5z + \tan(y-3x)}$$

$$y-3x=c_1$$
 and $y=\frac{dx}{1}=\frac{dz}{5z+tancy}$

$$y=\frac{1}{5}\log(5z+tancy)-\frac{c_2}{5}$$

Henre general solution

$$(y^2+z^2)p_1-xyq=-2x$$

9

9. Salue lagrenges A.E

$$\frac{dn}{y^2 + z^2} = \frac{dy}{-xy} = \frac{dz}{-zx}$$

From I & II fractions.

$$\frac{dy}{y} = \frac{dz}{z}$$

$$\frac{dz}{z} = q$$

$$x dx + y dy + z dz = 0$$

 $\frac{x^{2}}{2} + \frac{y^{2}}{2} + \frac{z^{2}}{2} = \frac{C_{2}}{2}$
 $\phi(\frac{y}{z}, x^{2} + y^{2} + z^{2}) = 0$

```
Non-linear PDE of First order! - A partial DE which @
partial docination p and q with degree higher than one and the product of p and q is called a non-linear PDE. of the first order.
 case I Equation of the form f(P,q)=0.
          In this case, let p=a. (constant)
                                   and solve equation for a. (find a).
                  Put in dz = pote + q dy and solve it.
   Example 1. Shur pq = p+q
     Solo. The given equation pq=p+q — (1)
                           let p=a then. Equation solver for a
                                               aq = a+q \Rightarrow q = \frac{a}{a-1}
           Now dz = a dx + \left(\frac{a}{a-1}\right) dy
         Integration
z = ax + (a)y + C
  Example: 2. Salue x^2 p^2 + y^2 q^2 = z^2
       Som: The given equation x^2 p^2 + y^2 q^2 = z^2
                                                      \left(\frac{\chi}{z}\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial}{z}\frac{\partial z}{\partial y}\right)^2 = 1
         Let \frac{\partial x}{\partial x} = \partial x, \frac{\partial y}{\partial z} = \partial y, \frac{\partial z}{z} = \partial z
          than x=logx, y=logy, z=logz
                                                                                  where p= 32
           New, \frac{\partial z}{\partial x} = \frac{\chi}{z} \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} = \frac{\chi}{z} \frac{\partial z}{\partial y}
      Equation 1. \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = 1 \Rightarrow p^2 + q^2 = 1
It is at the form f(P_1 Q) = 0
```

```
the
                                Q= VI-a2
     thus.
                   dz = Pdx + QdY
                  12= ax + 11-a2y+C
               logz = a logx + \(\int_{1-a^2}\logy + c\)
Case II. Equation of the form f(z, p, q) = 0.
         (Note: Equation not containing 2 andy).
       Let p=aq.
Q.1. Solve z^2(p^2+q^2+1)=a^2, the equation in form
                                                                     f(z,p,q)=0
         Put p=aq. then.
                         z^{2}(\alpha^{2}q^{2}+q^{2}+1)=\alpha^{2}
                              q^{2}(a^{2}+1)+1 = \frac{a^{2}}{-2}
                                           q = \pm \left(\frac{1}{a^2 + 1}\right) \left(\frac{a^2 - z^2}{z^2}\right)
    Thus,
                 dz=poh+ ady
                 dz = aq dx + \left(\frac{1}{a^2+1}\right) \left(\frac{a^2-z^2}{z^2}\right) dy
            dz = \frac{da}{a^2+1} \left(\frac{a^2-z^2}{z^2}\right) dx + \left(\frac{1}{a^2+1}\right) \left(\frac{a^2-z^2}{z^2}\right) dy
             \frac{1}{2}\sqrt{a^2+1} \frac{z}{\sqrt{a^2-z^2}} dz = an + y + c
               ± \1+62\a2-z2 = an+ y+c
                     (1+a2) (a2-z2) = (ax+y+c)2
```

Case III Equations of the form $f_1(x, p) = f_2(y, q)$ i.e.; equation in which z is absent and the terms involving x and p can be separated from those involving y and q.

Example: solure p2-q2 = x-y

Now it is form f(x,h) = f(y, q).

 $p^2 = \chi + \alpha$, $q^2 = y + \alpha$ $p = \sqrt{\chi + \alpha}$, $q = \sqrt{y + \alpha}$

Rutting p and q in dz = pdx+ ady.

 $dz = (\sqrt{3+a})dx + (\sqrt{3+a})dy$ $z = 2(x+a)^{3/2} + 2(y+a)^{3/2} + c$

CaseII dairant Equation

Equation in form. z=px+ay+f(p,a)

The Complete solution is Z=ax+by+f(a,b)

obtained by writing a forp & b for a.

Examplet - Solve z=px+qy+ J1+p2+q2

z=ax+ by+ [1+a2+b2]

Example: - Solve fryz = pq + 2px2y + 2qxy2.

Let $x^2 = X$ & $y^2 = Y$, $p = 2\pi \frac{\partial z}{\partial x}$, $q = 2y \frac{\partial z}{\partial y}$

Anyz = Any 22 . 22 + Any 22 2x + Anys 2z

Z= x2 32 + y2 32 + 32 . 32

Thus. Complete solution is z=ax+by+ab=ax2+by2+ab.

Example! Solve $z^2(p^2x^2+q^2)=1$.

1

Charkit's Method ?-This is a general method for finding the complete solution of non-linear PDE of first order. Standard form f(x, y, z, p, a) = 0 Charpit's Auxiliary Equation $\frac{dP}{\frac{\partial f}{\partial x} + P \frac{\partial f}{\partial z}} = \frac{da}{\frac{\partial f}{\partial y} + Q \frac{\partial f}{\partial z}} = \frac{dz}{-p \frac{\partial f}{\partial p} - Q \frac{\partial f}{\partial q}} = \frac{dx}{\frac{\partial f}{\partial p}} = \frac{dy}{\frac{\partial f}{\partial q}} = \frac{dy}{\frac{\partial f}{\partial q}}$ loing these two member Example1- Solve 22x-px2-2pxy+pq=0 -D 8010:- we have $f = 22x - px^2 - 29xy + pq = 0$ $\frac{\partial f}{\partial x} = 2z - 2px - 2qx$, $\frac{\partial f}{\partial y} = -2qx$, $\frac{\partial f}{\partial z} = 2x$ $\frac{\partial f}{\partial p} = -\chi^2 + Q$, $\frac{\partial f}{\partial Q} = -2\chi Q + P$ Charpets Auxiliary Equation $\frac{dP}{dz-2ay} = \frac{da'}{0} = \frac{dz}{+px^2pa+2qxy} = \frac{dx}{x^2-a} = \frac{dy}{2xy-p} = \frac{dz}{0}$ Now dq=0 = a=a Ruffing q=a mts O then 22x-ax2-20xy+ap=0 $\Phi = \frac{2x(z-ay)}{x^2-a}$ Ruting pe and a into dz=pda+ ady $dz = \frac{2\pi(z-ay)}{\pi^2-a} dn + ady$ $\frac{d(z-ay)}{z-ay} = \frac{2\pi}{x^2-a} dx \rightarrow log(z-ay) = log(x^2-a)$ \Rightarrow Z = b($a^2 - a$) + ay. + logb

O. Solve $(p^2+q^2)y=q^2$, $\Rightarrow f=(p^2+q^2)y-q^2$ \bigcirc (1)

Solve: $f_X=0$ $f_y=p^2+q^2$, $f_z=-q$, $f_p=2py$, $f_q=2qy$ Charpit's auxiliary equation $\frac{dP}{-pq}=\frac{dq}{p^2}=\frac{dz}{-qz}=\frac{dx}{-2py}=\frac{dy}{-2qy+z}=\frac{dF}{0}$ Taking I & II fraction $\frac{dP}{-pq}=\frac{dv}{p^2}\Rightarrow p^2+q^2=a^2$ from (2) $p=\frac{a}{z}\sqrt{z^2-a^2y^2}$ putting P and Q into dz=pdx+qdy dz=Q $dz=\frac{q}{z}\sqrt{z^2-a^2y}dx+\frac{a^2y}{z}dy$

From 2 $p = \frac{a}{z} \sqrt{z^2 - a^2y^2}$ putting the and a mode dz = pdx + qdy $dz = \frac{a}{z} \sqrt{z^2 - a^2y} dx + \frac{a^2y}{z} dy.$ $\frac{dz - \frac{a^2y}{z} dy}{z} = adx$ $\frac{dz - a^2y}{z^2 - a^2y} = adx$ $zdz - a^2ydy = adx$ $\sqrt{z^2 - a^2y} = ax + b$ $z^2 = (ax + b)^2 + a^2y^2$

```
(14)
#. Cauchys Method of characteristics 5-
            Standard form
                              a\frac{\partial u}{\partial x} + b\frac{\partial u}{\partial y} = f(x,y) + ku; u(x,y) = h(y).
     Let Wx, y) be the solution of 1
                    du= on ont ou dy. -
     from O &D then
                             \frac{dn}{dt} = \frac{dy}{dt} = \frac{du}{f(u,y) + ku}
  Note: first Constant C & Second Constant g(c)
Example using chucky's method of characteristic to solve
    the PDE
                                                and U(x_10)=0.
                 \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = x + y
             the given PDE
                            \frac{\partial u}{\partial x} + \frac{\partial y}{\partial y} = x + y
    A.E
                   \frac{dn}{l} = \frac{dy}{l} = \frac{dy}{dty}
                               ( III)
  Taking (I) &(II) fraction
                   on-dy=0 = x-y= ac = x= (+).
  Taking II & III
                       \frac{dn}{1} = \frac{dz}{axtc.} \Rightarrow u = y^2 + (y + g(s))
    Put C= X-y
                     u= y2 + (x-7) y+ g(x-7)
   U(N10) = 0
                       9(n)=0 = 9(n-y)=0
       Heriah required solution.
```

```
C. P. D. E with
                                      Const affermen.
    An equation in the form.
            (a_0 D^n + a_1 D^{n-1} \cdot D' + a_2 D^{n-2} D'^2 + \cdots + a_n D'^n) z = F(x, y) - 0
  whom a's are Constant, order of each terms are must be some (orderin)
     & D=3 & D'=3y.
      from 1 or
                       $ (D,0) z = F(7)
                     Complete solution or general solution
                                                Particular integral (P.I)
       Complementary furtion (C.f) +
    which is the complete solution
                                                A solution obtained
    of the equation \phi(D,D')z=0
                                               by complete solution/ grand
                                               by giving particular
    it must contain n arbitrary
    futions, where n is the order
                                                 values to the orbitary
                                                Constants.
         i.e. solution of equation () requestion (D-m2) (D-m2) (D-m2) | Z = C.F + P.E | [(D-m1)] (D-m2) | Z = 0
# Finding C.F. ?- Peutling, & D=m & p = 1 into 1 then
                aom+ amn-1+ az mn-2+ - - - + an = 0
  Case I, Distinct Koots, M, m2, --- us n are not equal
     then complementary furtion is 0

C. F = f, (y+m, x) +f2 (y+m2x)+..+fn(y+m2x)
  Case II Repeated roots.
                           M1=m+=m3, nay, --- Mn-3
               C.f = f1 (y+m1x) + xf2 (y+mx) + x2f3 (y+m1x)
                          +--. + f (y+ mn-32).
```

Homogeneous L. P.D.E with court Conferencent: An equation in the form. $(a_0 D^n + a_1 D^{n-1} \cdot D' + a_2 D^{n-2} D'^2 + \cdots + a_n O'^n) z = F(x, y) - 0$ whom a's are Constant, order of each terms are must be some (ordern) & D=3x & D'=3y. from 1 or \$ (DD) z = Fait) Complete solution or general solution Particular integral (P.I) Complementary furtion (C.f) + A solution obtained which is the complete solution by complete solution/genel of the equation $\phi(D,D')z=0$ by giving particular it must contain n orbitrary futious, where n is the order values to the orbitary of DE Constants. i.e. solution of equation 1 pequation Describer as. Z= C.F+P.E [0-mp] (D-m2d) +-- (0-mn) Z=0 It finding CF:- Peutling + D=m & p'=1 into 1 then aomn+ aymn-1+ az mn-2+ - - - + an = 0 Case I. Distinct Roots, M, m2, --- us are not equal then complementary furtion of 0

C. F = f, (y+m, 2) +f2 (y+m2x)+..+f3n(y+m2x) Case II Repeated roots. m1=m2=m3, nay, --- mn-3 C.F = f1 (y+m1x) + xf2 (y+mx)+ x2f3 (y+m1x) +--. + f (y+ mn-3x).

 $9. \text{ Solut } \frac{34z}{3x^4} + \frac{34z}{3x^2} = 8$

```
Finding P.I.
       (onsider \phi(0,0')z = f(n,y), \rho \cdot L = \frac{1}{\phi(0p)}f(n,y)
   Bolet, where f(n,y) = g(ant by).
        cose I when \phi(0,b^o) \neq 0. then
                         \frac{1}{\phi(D,P')}\phi(a,x+b,y) = \frac{1}{\phi(a,b)} \iint f(x) dx dx dx
         multiple integral = order of PDE.
 COSEI when f(a,b)=0 then
                    (bo-do')n g(antby) = nn! g(ax+by),
 Q. Bolin the LPDE 222 + 222 = 801 mn coony +30 (2x+y)
solo the given equation (D+D'2) z = coomx coony +30(2x+y)
    Auxiliary Equation
                      m2+1=0 ) m=ti C.F=f1(y+ix)+f2(y-ix)
     P. I = 1 (mn-ny) { 2 (mn+ny) + (mn-ny)]
                     +\frac{1}{(D^2+D'^2)}30(2x+y)
           = -\frac{1}{2((m^2+n^2))} \cos(mn + ny) - \frac{1}{(m^2+n^2)} \cos(mn + ny) + \frac{1}{30}
                   +\frac{30}{9^2+12}\left(\frac{1}{6}(2x+4)^3\right)
           =\frac{1}{2(m^{2}+n^{2})}\left[\cos(mn+ny)+\cos(mn-ny)\right]+(2x+y)^{3}
```

Q. Solve the LPDE $\frac{\partial^3 y}{\partial x^3} - 3 \frac{\partial^3 y}{\partial x^2 \partial y} + 4 \frac{\partial^3 u}{\partial y^3} = e^{x+2y}$ @ Solo! - The given equation is $(D^3 - 3D^2D' + 4D'^3)u = e^{\chi+2y}$ where D=2x Auxiliary Equation is D言录 $m^3 - 3m^2 + 4 = 0$ m=2,2,-1 C.F = f, (y-n)+ f2(y+2x) + n f3(y+2x) 8. $P. E = \frac{1}{(D^2 - 3D^2D' + 4D'^3)} e^{\pi t^2 y}$ $=\frac{1}{1-3\times2+4\times2^{8}}$ [[] e^{4} du = 1 ex+24 Hence the general solution is U= f(7-1)+f2 (4+2x)+xf3(4+2x)+1=x+24 Q.2. Solute the LPDE $\frac{\partial^2 Z}{\partial n^2} - 2 \frac{\partial^2 Z}{\partial n \partial y} + \frac{\partial^2 Z}{\partial y^2} = Bin(2x+3y)$ the given equation is $(D^2-2DD'+D'^2)z=8in(2x+3y)$ The auxiliary Equation is $m^2 - 2mt1 = 0$ m = 1,1.c.f.= f, (y+n) +nf2(y+n) P. I. = 1 D2-2DD'+D'2 Sin(2x+3y) = $\frac{1}{(2-3)^2}$ | $\frac{1}{3}$ | $\frac{1}{3}$ Z= f(y+x) + f2(y+x) - sin(2x+8y).

Q. Some
$$4y - 4s + t = 16 \log_{1}(x+2y)$$

 $fol_{2}^{(0)} = C \cdot F = f_{1}(y + \frac{1}{2}x) + f_{2}(y + \frac{1}{2}x)$
 $p \cdot I = \frac{1}{(2p-p')^{2}} = \frac{16 \log_{1}(x+2y)}{(2p-p')^{2}}$
 $= \frac{x^{2}}{2^{x} \times 2^{x}} = \frac{16 \log_{1}(x+2y)}{(x+2y)}$
 $= 2x^{2} \log_{1}(x+2y)$
 $= 2x^{2} \log_{1}(x+2y)$
Q. Sohu $x^{2} + 2x + 2 (y - x) + 8 \sin_{1}(x-y)$
 $c \cdot F = \frac{1}{(p+p')^{2}} = \frac$

$$\begin{array}{ll}
\varphi. & \text{Solut.} & \text{1+23+1 to 20} \\
c. & f = f(f-x) + x/2 (y-x) \\
f. & \Gamma = \frac{1}{(p+p')^2} \left(y-x\right) + \frac{1}{8} in(x-y) \\
& = \frac{x^2}{9} \times 2(y-x) + \frac{1}{8} in(x-y) \\
& = \frac{x^2}{9} (y-x) + \frac{x^2}{8} sin(x-y) \\
& = \frac{x^2}{9} (y-x) + \frac{x^2}{8} sin(x-y)
\end{array}$$

$$Q_{1} = \frac{\partial^{2}z}{\partial x^{2}} - 2\frac{\partial^{2}z}{\partial x^{2}y} = \sin x \cos 2y$$

$$A = \cot x \cos y = \sin x \cos 2y$$

$$C = \int_{1}^{1} (3 + \sqrt{2}x) + \int_{2}^{1} (3 - \sqrt{2}x).$$

$$P = \frac{1}{D^{2} - 2DD'E} \sin(x + 2y) + \sin(x - 2y)$$

$$= \frac{1}{6} \sin(x + 2y) - \frac{1}{10} \sin(x - 2y).$$

Rulest when if(x,y) is of the form xmym Remarks: D if m < m, $\frac{1}{f(D,D')}$ should be expanded in Romen of D' @ if n>m, 10.00 Should be expanded in power Note Binomial (n+y)n = ng xnyo+ ng xn+y'+ ng xn-2y2+--. $\frac{\partial^3 z}{\partial x^3} - \frac{\partial^3 z}{\partial y^3} = x^3 y^3$ $n_{\zeta r} = \frac{n!}{r!(n-r)!}$ a3-b3=(a-b)(a2+ab+b2) W=-1±√3 = 7+10 $p.I = \frac{1}{D^3 - D^{3}} x^3 y^3$ $= \frac{1}{D^3} \left(1 - \frac{D^{13}}{D^3} \right)^{-1} (\chi^3 \gamma^3)$ $=\frac{1}{n^3}\left(1+\frac{D'^3}{h^3}\cdot\frac{1}{3}\chi^3y^3\right)$ $=\frac{1}{h^3}\left(\chi^3 y^3 + \frac{1}{h^3} 6\chi^3\right)$ $= \frac{1}{120} (x^3 y^3) + \frac{1}{120} 6x^3 = \frac{x^6 x^3}{120} + \frac{x^9}{4.5.6.7.8.9}$ $=\frac{\chi^{6.y^3}}{120}+\frac{\chi^9}{100.9}$ 0,2. Solve $(D^2-6DD'+9D'^2)Z=|2x^2+36xy$

$$P.I = \frac{1}{p(p,p')} f(x,y) = \frac{1}{(p-m_1p')(p-m_2p') - \cdots (p-m_np')} f(x,y)$$
or $\frac{1}{(p-m_p)'} f(x,y) = \int \phi(x, c-m_1p) dx$.

Example! -. 8 due
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = y \cos x$$

AE.

$$m^2 + m - 6 = 0$$

 $m = 2, 3$

$$P \cdot I = \frac{1}{(D-2D')(D+3D')} y \cos x$$

$$=\frac{1}{(D-2D')}\int (\mathbb{C}+3\pi) \cosh dx$$

=
$$\frac{1}{(D-2D')} \left[(C+3L) \sin L + 3 \cos L \right]$$

Ex. 4. Polu r-s-2t = (2n2+ny-y2) sin (ny) - w my @ C.f = f1(y-x) + f2(y+2x) $P \cdot I = \frac{1}{(D+D')(D-2D')} [(2n-y)(n+y) 8 inny-cosny]$ $= \frac{1}{(D+p')} \int \left(2x - (+2x)(c-x) \sin(cx-2x^2)\right) - caa(cx-2x^2)$ - cos (cx-222) dx = 1 [(-x) (4x-c) sin(cx-2x2)-cos (cx-2x2)/4x $=\frac{1}{(D+D')}(c-x)\omega_0(cx-2x^2)+\int_{-\infty}^{\infty}(cx-2x^2)dx$ = $\int_{D+D'} (y+y) (y) dy$ where c=y+2x= (6+2n) (00 (bn+n2)ch = sin (brtry = sinry Henre general solution is \$ Z= f(y-n) + t2(y+2x) + sinning. police PDE. Y-t = tan3xtany - tanx tan3y

```
Non- Homogenous Linear PDE with constant coefficients-
     (onsider \phi(D,D')z = f(x,y) — ①
   of the pelynomial \phi(D,D) is D,D' is not homogenery
    then is called a non homogeneous. LPDE.
  Hene general solution is Z= = CF+P.I
 # Finding C.F.
           · Writing \phi(D,D') into linear factors of
             the form (D-m,D'-a) (D-m2D'-a2)
                                 --- (6-m_n 0'-a_n)z=0
     - therefore C \cdot F = e^{\alpha_1 x} f_1(y+m_1 x) + e^{\alpha_2 x} f_2(y+m_2 x)
                         + ---+ eanh th (7+ mnx).
 # In the case of Repeated Factors 19. (D-mp'-a)^2z=0
              Z = ear fi(y+min) + xear fz (y+min) + x2e fz (y+min)
                 + - - +x = e x fr ( y+mx).
Example L. Solue the LPDE (D+D'-1)(D+2D'-2)z=0
                       C.F = exf, (y-x) +e2x f2 (y-2x).
            DD'(D+2D'+1) = =0
 Example 2
          (D-00'-0) (0D+D'-0) (D+2D'+1) z=0
       C.F = & f, (y) + f2(x) + e-x f3 (y-2x).
 Boxample 8:- (02-00-202+20+20) Z=0
           [(D+0')(D-2D')+2(D+D')]z=0
            (D+D')(D-2D'+2) = 0
        (+= f, (y-n) + ex f2 (y+2n).
```

```
124 P.I. of non-homogeneous LPDE with constant coefficients
    Comsider & (D,D)z = f(x,q)
           case I when foxis) = eax+by & & & (a,b) &0
                    P \cdot I = \frac{1}{\phi(D,D')} e^{\alpha x + by}
= \frac{1}{\phi(a,b)} e^{\alpha x + by}
                                                         { Replacing D by 2.
D' by b
              Solve S+ap+bq+abz=e^{mz+ny}

The given equation (DD'+aD+bD'+ab)z=e^{mz+ny}
Examples.
                                    (D(D'ta) + b(D'ta)) z = emoctny
                          (D'+a)(D+b) z = e^{mx+ny}
C \cdot F \cdot z = e^{-bx} f_1(a) + e^{-and} f_2(x)
           Thus,
                                = \frac{e^{mx+ny}}{(m+b)(n+a)}
           Henre the required solution
                         Z = e^{-bx} f_1(y) + e^{-ay} f_2(x) + \frac{e^{mx + ny}}{(m+b)(n+a)}
  d. Solu D(0-20-3)z = ex+2y
           P \cdot I = \frac{e^{\chi - 2\gamma}}{\frac{1}{4}(1 - 2\chi_2 - 3)} = -\frac{1}{6}e^{\chi + 2\gamma}
```

[apell when
$$f(x,y) = \sin(ax + by)$$
 or $\cos(ax + by)$
 $p \cdot 1 = \frac{1}{\phi(0,0')} = \sin(ax + by)$ or $\cos(ax + by)$
 $= \frac{1}{\phi(0^2, DD^1, D^2)} = \sin(ax + by)$ or $\cos(ax + by)$
 $= \frac{1}{\phi(a^2 - ab, -b^2)} = \sin(ax + by)$ or $\cos(ax + by)$
 $= \frac{1}{\phi(a^2 - ab, -b^2)} = \sin(ax + by)$ or $\cos(ax + by)$
 $= \frac{1}{\phi(a^2 - ab, -b^2)} = \sin(ax + by)$ or $\cos(ax + by)$
 $= \frac{1}{\phi(a^2 - ab, -b^2)} = \sin(ax + by)$ or $\cos(ax + by)$
 $= \frac{1}{\phi(a^2 - ab, -b^2)} = \sin(ax + by)$ or $\cos(ax + by)$
 $= \frac{1}{\phi(a^2 - ab, -b^2)} = \sin(ax + by)$
 $= \frac{1}{\phi(a^2 - ab, -b^2)} = \sin(ax + by)$
 $= \frac{1}{\phi(a^2 - ab, -b^2)} = \sin(ax + by)$
 $= \sin(ax + by)$ or $\cos(ax + by)$
 $= \sin(ax + by)$
 $= \sin(ax +$

 $=\frac{1}{10}(3D-3D'+1)\sin(2x+3y)$ = 10 (6cos(2x+3y)-9 os (2x+3y) + 8in(2x+3y)] = $\frac{1}{10}$ [Sin(2x+3y) -3cos (2x+3y)] The required solution Z= exf((y+x) + e2x f2(y+x) + 1 [8in(2x+3y) -3 cos (2x+3y)] 2. Solve $(D^2-DD'+D'-1)z = 8in(x+2y)$ 8010!- The given equal $(D^2-DD'+D'-1)z = 8in(x+2y)$ (D-1) (D-0'+1) z = 8in (x+24) c.f. = ex f(1) + e-x f2(y+x) $f \cdot f = \frac{1}{(D^2 - Dp' + D' - 1)}$ Sin $(\alpha + 2y)$ = $\frac{1}{-1+2+0'-1}$ $\sin(x+2y)$ $= -\frac{(x+2y)}{x}$

 $z = e^{\chi} f_1(y) + e^{-\chi} f_2(y+\chi) - \frac{(\chi + 2y)}{2}$

(asettt when f(x,y)=xmyn $P \cdot I = \frac{1}{\Phi(D, n')} x^m y^n$ 60. When m > n, expanding powers of $\frac{D'}{D}$. When n < nn, expanding powers of $\frac{D}{D'}$. AQ.1. Solve LPDE (D-D'-1) (D-D'-2) z = e3x-y+x c. F = enf (y+x) + e2x +2 (y+2x) $P \cdot I = \frac{1}{(D - D' - 1)(D - D' - 2)} (e^{3x - y} + x)$ $= \frac{1}{(3+1-1)(3+1-2)} e^{3x-y} + \frac{1}{(1-p+p')(2-p+p')}$ $\frac{1}{6} e^{3x-y} + \frac{1}{2} \left[1 - (D-D') \right]^{-1} \left[\frac{1}{2} - (D-D') \right]^{-1} \chi$ = $\frac{e^{3x-3}}{6} + \frac{1}{2}[(1+D+D')(2+D-D')]\chi$ $= \frac{e^{3x-y}}{2} + \frac{1}{2} \left[x + 1 + \frac{1}{2} + 0 \right]$ $=\frac{e^{31-4}}{2}+\frac{1}{2}\left(x+\frac{3}{2}\right)$ Hence required solution $z = e^{\chi} f_1(y+\chi) + e^{2\chi} f_2(y+\chi) + \frac{1}{6} e^{3\chi-y} + \frac{1}{2} (\chi+\frac{3}{2}).$

9.2. Solu
$$(x^2)^2 + 2ny \cdot 0y' + y^2 \cdot y^2) = x^m y^n$$

Solu: The gluon equation $(x^2)^2 + 2ny \cdot 0y' + y^2 \cdot 0'^2) = x^m y^n$

Putting $xD = D_1$, $x^2D^2 = D_1(D_1 - 1)$, $yD = D_1'$, $y^2D^2 = D_1'(D_1' - 1)$ who 0 .

 $\{D(D_1 - 1) + a D_1D_1' + D_1'(D_1' - 1) \}_2 = e^{mx + ny}$
 $[(D_1 + D_1')^2 - (D_1 + D_1')]_2 = e^{mx + ny}$
 $[(D_1 + D_1')^2 - (D_1 + D_1')]_2 = e^{mx + ny}$
 $(D_1 + D_1') (D + D_1' - 1) z = e^{mx + ny}$
 $(D_1 + D_1') (D + D_1' - 1) z = e^{mx + ny}$
 $(D_1 + D_1') (D + D_1' - 1) z = e^{mx + ny}$
 $= g_1(\frac{y}{x}) + x g_2(\frac{y}{x})$

Now

 $p \cdot I = \frac{1}{(p + D_1')(D_1 + D_1' - 1)} = \frac{e^{mx + ny}}{(n + n)(m + n - 1)}$

Him general solution is

Hence general solution is
$$Z = g_1(\frac{y}{x}) + g_2(\frac{y}{x}) + \frac{x^m y^n}{(m+n+1)}$$

Q. Solve S+P-9= z+ry iaser when f(a,y)= eax+by.v where is the function of. $P.T = \frac{1}{\Phi(0;0')} e^{\alpha \chi + b y}, V = e^{\alpha \chi + b y} \frac{1}{\Phi(0+a, 0'+b)} V$ $e^{\alpha \chi + b y} \frac{1}{\Phi(0+a, 0'+b)} = e^{\alpha \chi + b y} \frac{1}{\Phi(0+a, 0'+b)} V$ V. can be either. (ii) Sincartby) or (os(axtby) (iii) xmyn (iv) Constant (say 1., 2, -) \mathfrak{D}^{-1} . Solve $(D-3D'-2)^3z = 6e^{2x}$ sin 3x 8 db: Cf = ex (f, (y+3x) trf2 (+ 43x) + n2 f3 (y+3x) } $P.I = \frac{1}{(D-3D'-2)^3}$ $6e^{2x}$ gin (3x+y) $6e^{2x}$ [$(0-30)^3$ 8in(3x+7)= $6e^{2x} - x^{-3} = 8in(3x+y)$ = $8e^{2x}$ n^3 8in(3x+y)

 $2 = e^{2x} \left\{ f_1(y+3x) + x f_2(y+3x) + \chi^2 f_3(y+3x) \right\}$ $+ e^{2x} \chi^3 \sin(3x+y).$

9. Solve
$$y - 4s + 4t - 10 - 29 = e^{\chi - 1}$$

C.F $(0^2 - 400^1 + 40^1 + 0 - 20^1)^2 = e^{\chi + 1}$

$$[(D-2D')^{2}+(D-2D)]z=e^{x+y}$$

$$P \cdot I = \frac{1}{(D-2D'+1)(D-2D')} e^{\chi-y}$$

$$=\frac{1}{D-2D'+1}$$
 = 4 du

$$=-1$$
 $e^{\chi+y}$ $0-2p'+1$

$$=\frac{2^{x+y}(-1)}{(D+1)-2(D-1)+1}$$
 (1)

$$= -\frac{e^{\chi+y}}{D\left(1-\frac{2D'}{D}\right)}$$

$$= -e^{\chi+y}$$
 (1+ $\frac{2p!}{p}$) 1

IF Equation Redwible to PDE with Constant Coefficient 29
Consider Euler - cauchy type equation
$(\alpha_0 \times D + \alpha_1 \times g D \times D + \alpha_2 \times g = 1)$
State of the state
$x = \log x$ $y = \log y$
$x = \log x$ $y = \log y$
Step2: un have $D = \frac{3}{2x} & D' = \frac{3}{2y}$, Also let $D_1 = \frac{3}{2x}$, $D_1' = \frac{3}{2y}$
$D_1 = \frac{\partial}{\partial x}, D_1 = \frac{\partial}{\partial y}$
Step B: $\chi D = D$, $\chi^2 D^2 = D_1 (D_1 - 1)$, $\chi^3 D^3 = D_1 (D_1 + 10_1 - 2)$. $\chi^2 D^2 = D_1' (D_1' - 1)$, $\chi^3 D^3 = D_1' (D_1' + 1) (D_1' - 2)$.
$f(D_p = D_1)$, $f(D_1 - 1)$, $f(D_1 - 1)$ and some
Step4! - Alono (1) becomes a Homogeneous LIDE as;
$(b_0 p_1^{n} + b_1 p_1^{n} + b_2 p_1^{n} + b_2 p_1^{n} + b_2 p_1^{n} + \cdots + b_n p_n^{n}) = f(x, y)$
Equation (2) Homogeneous LPDE or Non-Homogeneous LPDE.
<u>steps:</u> Voing X = log x & Y = log y.
Examples. Soluce the linear partial DE
$\frac{\chi^2 \partial^2 z}{\partial \chi^2} + 4 \chi y \frac{\partial^2 z}{\partial \chi^2} + 4 y^2 \frac{\partial^2 z}{\partial \chi^2} + 6 y \frac{\partial z}{\partial \chi} = \chi^3 y^4.$
Solo: Has all as counting
Let $x=e^{x}$ by $y=e^{y}$. $(x^{2}D^{2}+4xyDD'+4y^{2}D'^{2}+6yD)z=x^{3}y^{4}$ $(x^{2}D^{2}+4xyDD'+4y^{2}D'^{2}+6yD)z=x^{3}y^{4}$ $(x^{2}D^{2}+4xyDD'+4y^{2}D'^{2}+6yD)z=x^{3}y^{4}$ $(x^{2}D^{2}+4xyDD'+4y^{2}D'^{2}+6yD)z=x^{3}y^{4}$
Let x=ex & y=ex.
X=logie & x=logy,
Setting Pulling
$\chi D = D_1$, $\chi^2 D^2 = D_1(D_1 - 1)$
$y p' = p'_1, y^2 p'^2 = p'_1 (p'_1 - 1)$
$\left(D_{1}(D_{1}-1)-4D_{1}D_{1}'+4D_{1}'(D_{1}'-1)+6D_{1}'\right)z=e^{3x}+\frac{4y}{3}$

$$[D_1^2 - D_1 - 4D_1 D_1^2 + 4D_1^2 + 4D_1^2 + 6D_1^2] Z = e^{3x+4y}$$

$$[D_1^2 - 4P_1 D_1^2 + 4P_1^2] - (D_1 - 2D_1^2)] Z = e^{3x+4y}$$

$$[D_1 - 2D_1^2] - (D_1 - 2D_1^2)] Z = e^{3x+4y}$$

$$(D_1 - 2D_1^2) (D_1 - 2D_1^2) Z = e^{3x+4y}$$

$$So, \quad C \cdot f = f_1(Y + 2X) + e^{x} f_1(Y + 2X)$$

$$= f_1(D_1 + 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1(D_1 - 2D_1^2) - f_1(D_1 - 2D_1^2) + e^{2x+4y}$$

$$= f_1$$

z = g, (yn2) + x g2 (ny2) + 1 n3y3