Week 3

Assignment Project Exam Help

Properties of Numbers III Udaya Parampalli

https://powcoder.com

University of Melbourne

Lectulates://powcoder.com
Properties of Numbers III

Add WeChat powcoder

Workshop 3: Workshops based on Lectures in Week 2

Quizz 3

- 2.1 Euler's and Related Theorems
- 2.2 https://pewcoder.com 2.3 Functions and Chinese Remainder Theorem

<u>R</u>ecap

Numbers, Divisibility, Mod Operation, GCD, Extended GCD

ssignment Project Exam Help

- $\phi(p) = p 1$, for any prime p.
- $p(p^a) = p^{a-1}(p+1)$, for any prime p and any integer $a \ge 1$. $p(p) = p^a + 1$ (pq.), for any prime p and any integer p(p) = 1 (pq.)
- In fact, $\phi(mn) = \phi(m)\phi(n)$, for any two numbers which are

let z had number chat powecoder...

$\mathsf{Theorem}$

If $a \in \mathbf{Z}_n^{\star}$, then $a^{\phi(n)} = 1 \pmod{n}$.

Using Extended GCD Algorithm

Assignment, Project Exam Help If g eq 1 then Return(x)

else Return("The Inverse Does not Exist"), end if;

https://powcoder.com

Using Eulers Phi Function Result

And Control of the Chat powcoder Return(inva);

end function:

The later function works only if a is relatively prime to n.

2.1 https://powcoder.com

Euler's Theorem

Definition

Remainders mod n: For $n \ge 1$, the set of remainders obtained by dividing integers by n, precisely these are elements of $\mathbf{KSlpnment\ Project\ Exam\ Heli}$

However, not all elements of \mathbf{Z}_n can be inverted. We define further the set of invertible numbers in \mathbf{Z}_n .

Definition Do.//DO

Reduced set of residues mod n: For $n \ge 1$, the reduced set of residues, R(n) is defined as set of residues modulo n which are relatively 6 in tower elatives R(n) to R(n) to

Sometimes, R(n) is also represented as $\mathbf{Z}^*(n)$. In fact $\phi(n) = \#R(n)$, the cardinality(size) of the set R(n). Example: $\phi(15) = 8$, because $\phi(15) = \phi(5 \times 3) = (4 \times 2) = 8$. $\phi(37) = 36$, as 37 is a prime number.

Euler's Theorem

Theorem

modulo n. Now consider the set $a R(n) = \{a r_1, a r_2, \dots, a r_{\phi(n)}\}.$ Since a is relatively prime to n, the set aR(n) is identically equal to R(n). Note that the process of multiplying a only rearranges the residues in R(n). Hence we can multiply all the elements in R(n)and equate with the multiplication of all the elements of a R(n).

Hence we can write: Add, We Chat powcoder

Note that r_i s are relatively prime to n and hence we can cancel r_i in the above equation by multiplying r_i^{-1} , $i = 1 \cdots \phi(n)$, to both the side of the equation. Then the above equation simplifies to

 $1 = a^{\phi(n)}$. Hence the result.

Euler's Theorem example when n = pq

Assignment Project (nExam Help

```
Theorem
```

```
If a \in \mathbf{Z}_{pq}^*, then a^{(p-1)(q-1)} = 1 \pmod{pq}.

The above result will be used in next week lectures.
```

Example: n = 35, $\phi(35) = 24$, because

 $2^{24} \mod 35 = 1$

Fermat's Theorem

$\mathsf{Theorem}$

Assignmenter Project Extan Help $a^{p-1} = 1 \pmod{p}.$

This state particular case of Euler's Theorem when or is arime.

Theorem

Let p A drifte We Chat powcoder $a^p = a \pmod{p}$, for any integer a.

When a is relatively prime, the theorem follows from the Fermatss theorem. When a is multiple of p, the result is trivially true.

Fermat's Theorem and Implications

Assignment number of the Expanse of the less than p are relatively prime and hence they are closed modulo p.

- Inct temords, a porce elements are invertible in \mathbf{Z}_p .
 They are closed under addition modulo p.
- Hence \mathbf{Z}_p is closed under addition and multipliaction mod p.
- In fact a is with its field nat fuctor extensively used in

2.2 Interior // powcoder.com

Recap of Group, Ring, and Field

Let us visit a few concepts that we have learnt already. A *Group* is a set G together with a binary operation \cdot on G such that the

Assignmenties Project Exam Help

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

- There is an identity element e in G such that for all $a \in G$, powcoder.com
- For each $a \in G$, there exists an *inverse* element $a^{(-1)} \in G$ such that

Add WeChat powcoder

If the group also satisfies
 For all a, b ∈ G,

$$a \cdot b = b \cdot a$$

then the group is called abelian (or commutative).

Assignment Project Exam Help denoted by + and ·, such that:

- https://proup.with.respect c for all $a,b,c \in R$.

- The set is closed under addition.
- Since p is prime number, any nonzero element in Z_p has an interpose External E
- you can verify that additions and multiplications are distributive.

In Z_p , Anlike in Integers. (times any element in the field. This leads to a concept called "characteristic" of a field.

We also denote \mathbf{Z}_p^{\star} as a set of non-zero elements of \mathbf{Z}_p .

Characteristic of F

Definition

Let F be a field with the multiplicative identity 1 and the additive identity 0. The character theory F comet in suscittants of the 1 with itself f is the smallest integer $n \geq 0$ such that addition of the 1 with itself f in times results in 0. i.e f i.e. f i

Note that for real and complex fields yet cannot find prositive integer n satisfying the above criteria. Hence, the characteristic of real and complex fields is 0.

In contrast for residue class rings \mathbf{Z}_n , the characteristic is n. When migringe, the consequences of the above property is that p=0 in the field for any α in the field.

 \mathbf{Z}_p is the main source of prime fields. Another class of finite fields are those whose size is a power of prime, we will consider this class later.

2.3 Inttps://powerder.com

Assignment Project Exam Help Definition: A function is defined by a triplet < X, Y, t >, where

X: a set called domain; Y: a set called range or codomain and f: a rule which assigns to each element in X precisely one element in Y. **DOWCOGET.COM**

It is denoted by $f: X \to Y$

Example: Let $X = Y = \mathbf{Z}_5$, Then $f: X \to Y$ given by

Assignmentin Projecta Exem / Help

Pre-image: If $y \in Y$, then a Pre-image of y in X is an element $x \in X$ such that f(x) = y. Image of a pre-image. We see a least one Pre-image.

Add We'Chat'powcoder (1)

One-to-one (injective) Function

A function is one-to-one (injective) if each element in the Schroling In the Internal point of the Internal p

$$f(x_1) = f(x_2)$$
 implies $x_1 = x_2$.

Example Clie x **We Called t**: **POWEOGET** f(x) = 3 * x is a one-to-one function. However $f(x) = x^2$ is a not

f(x) = 3 * x is a one-to-one function. However $f(x) = x^2$ is a not a one-to-one function.

Onto (surjective) Function

A function is Onto (surjective) if each element in the codomain Y is the image of at least Pelement in the Emian X Help We can say that, if f is onto then |Y| < |X|. **Example:** Let $X = Y = \mathbf{Z}_5$, Then $f: X \to Im(f)$ given by Bijection: A function which is both one-to-one and onto In this case, we have $|X| \le |Y|$ and $|Y| \le |X|$. This implies If f: Adde-Wheenhathpowieoder If $f: X \to Y$ is onto and X and Y are finite sets of the same size then f is a bijection.

Let m and n are relatively prime number, $X = \mathbf{Z}_{mn}$, $Y = \mathbf{Z}_m \times \mathbf{Z}_n$. Then the mapping

https://powcoder.com

is a bijection.

Example: $X := \mathbf{Z}_6$, $Y = \mathbf{Z}_2 \times \mathbf{Z}_3$. The function f given below is a bijection:

Chinese Remainder Theorem (CRT)

Assignment Project Exam Help simultaneous congruences

https://powcoder.com

 $x \equiv a_2 \pmod{n_2}$,

has a Aigut allu Weethat powcoder

Note that the mapping $f: \mathbf{Z}_{n_1, n_2} \to \mathbf{Z}_{n_1} \times \mathbf{Z}_{n_2}$ given by $f(x) \rightarrow x \mod n_1, x \mod n_2$ is a bijection. The proof has two points. First show that the function is

Assignification Project Exami Help

 $x \mod n_1 = y \mod n_1$

and https://powcoder.com

then x - y is divisible by both n_1 and n_2 . Since n_1 and n_2 are relatively prime, x-y is divisible by n_1 , $n_2 = n$. Hence x and y are identical equal months of this last the condition of the condition one-to-one. In the next slide, we give an explicit construction for the inverse function which proves that the map is onto. Hence the f is bijection.

In fact, Chinese Remainder theorem gives a construction method to obtain the inverse function. Let

Assignment Project Exam Help $M_1 = \frac{n}{n_1} = \frac{n_2}{n_2}, N_2 = \frac{n}{n_2} = \frac{n_1}{n_2} = \frac{n_1}{n_2}$ $M_1 = (N_1)^{-1} \pmod{n_1}$

and https://pow.coder.com

Then the solution to the simultaneous congruences is given by $X = a_1 (N_1 M_1) + a_2 (N_2 M_2) \pmod{n}$.

You can immediately verify that x determined as above satisfies the congruences (This is because $N_1 \mod n_2 = 0$ and $N_2 \mod n_1 = 0$)

Chinese Remainder Theorem (CRT)

If n_1, n_2, \ldots, n_k are pair-wise relatively prime integers, k being a SSI graph of stem of single dust on whether Help

 $x \equiv a_1 \pmod{n_1}$,

https://powcoder.com

Add WeChat powcoder

has a unique solution modulo $n = n_1 n_2 \dots n_k$.

Let

Assignment Project Exam Help

$$M_i = (N_i)^{-1} \pmod{n_i},$$
 for i https://powcoder.com
Then the solution is given by

Lectulates://powcoder.com
Properties of Numbers III

Add WeChat powcoder

Workshop 3: Workshops based on Lectures in Week 2

Quizz 3

