Домашнее задание 03.02.2025

1 Случайные величины X_1, \ldots, X_n — независимые $\mathrm{U}(0,a)$ (равномерное распределение на отрезке [0,a]). Обозначим

$$Y_n = \frac{1}{n} \sum_{i=1}^n X_i^3, \quad Z_n = \frac{1}{n} \sum_{i=1}^n X_i^4.$$

Найдите предел по распределению у последовательности:

$$\sqrt{n}\left(\frac{5Z_n}{4Y_n}-a\right).$$

2 Случайные величины $\{X_n, n \in \mathbb{N}\}$ — независимые случайные величины, имеющие распределение Лапласа с плотностью $p_{\theta}(x) = \frac{1}{2}e^{-|x-\theta|}$. Положим $\overline{X} = \frac{1}{n}\sum_{i=1}^n X_i$ и введем

$$Y_n = \begin{cases} \overline{X}, & \text{если } |\overline{X}| > n^{-1/4}; \\ \frac{1}{3}\overline{X}, & \text{если } |\overline{X}| \leqslant n^{-1/4}. \end{cases}$$

Для каждого $\theta \in \mathbb{R}$ найдите предел по распределению у последовательности

$$\sqrt{n}\left(Y_n-\theta\right)$$
.