DNA 5545F

UNDERWATER SHOCK ANALYSIS OF NONLINEAR STRUCTURES, A REFERENCE MANUAL FOR THE USA-STAGS CODE (VERSION 3)

J. A. DeRuntz

F. A. Brogan

Lockheed Missiles and Space Co., Inc.

3251 Hanover Street

Palo Alto, California 94304

9 December 1980

Final Report for Period 1 March 1978-9 December 1980

CONTRACT No. DNA 001-78-C-0029

OTIC FILE COPY

AD A 108

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE X344078469 Q68QAXSF50101 H2590D.

Prepared for

Director

DEFENSE NUCLEAR AGENCY

Washington, D. C. 20305

Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: STTI, WASHINGTON, D.C. 20305, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH TO BE DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.

SECURITY CLASSIFICATION OF THIS PAGE (When Date		READ INSTRUCTIONS
REPORT DOCUMENTATION		BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. PECONT'S CATALOG NUMBER
DNA 5545F	AD-A208	721
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
UNDERWATER SHOCK ANALYSIS OF NONLINEAR STRUCTURES A REFERENCE MANUAL FOR THE USA-STAGS CODE (VERSION 3)		Final Report for Period
		1 Mar 789 Dec 80
		6. PERFORMING ORG. REPORT NUMBER
		LMSC- D779760
		5. CONTRACT OR GRANT NUMBER(4)
J. A. DeRuntz		DNA 001-78-C-0029
F. A. Brogan	!	DNA 001-78-C-0025
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10 FROCYAN SLEMENT, PROJECT, TASK
Lockheed Missiles & Space Company, Inc.		1
3251 Hanover Street		Subtask Q68QAXSF501-01
Palo Alto, California 94304	•	
11. CONTROLLING OFFICE NAME AND ACURESS		12. REPORT DATE
Director	ļ	9 December 1980
Defense Nuclear Agency	†	13. NUMBER OF PAGES
Washington, D.C. 20305		212
14. MONITORING AGENCY NAME & ADDRESS(II different	t from Controlling Office)	15. SECURITY CLASS. (of this report)
	,	UNCLASSIFIED
		154. DECLASSIFICATION DOWNGRADING
	!	SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		N/A
Approved for public release; distr	ribution unlimite	ed.
		-
1		
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different from	m Report)
i		
1		
18. SUPPLEMENTARY NOTES		
This work sponsored by the Defense l	Nuclear Agency un	nder RDT&E RMSS Code
¥344078460 06804VEEE0101 1125000		

Q68QAXSF50101 H2590D.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Fluid Structure Interaction

Underwater Shock

Free Surface Bulk Cavitation

Doubly Asymptotic Approximation Discrete Analysis Computer Code

Structural Geometric and Material Nonlinearity

Staggered Solution Procedure

20. ABSTRACT (Continue on reverse side if necessary and identity by block number)

This report is a reference manual for the third version of the USA-STACS Code that calculates the nonlinear transient response of a totally or partially submerged structure to a spherical shock wave of arbitrary pressure profile and source location. USA-STAGS is the result of interfacing USA (Underwater Shock Analysis) and STAGS (Stress Analysis of General Shells). The fluid is assumed to be an infinite acoustic medium whose response to motions of the structure is described by either of the Doubly Asymptotic Approximations, DAA1 or DAA2.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE. (When Date Entered)

219116

SUMMARY

This report is a reference manual for the third version of the USA-STAGS Code that calculates the nonlinear transient response of a totally or partially submerged structure to a spherical shock wave of arbitrary pressure profile and source location. USA-STAGS is the result of interfacing USA (Underwater Shock Analysis) and STAGS (Stress Analysis of General Shells). The fluid is assumed to be an infinite acoustic medium whose response to motions of the structure is described by either of the Doubly Asymptotic Approximations, DAA₁ or DAA₂.

Accession For

NTIS CRIME
DITO TO THE Unarmount of the Control of

PREFACE

The authors express their appreciation to B.O. Almroth and Dr. T. L. Geers for sowing the seeds which eventually led to the realization of the USA-STAGS Code and to Dr. C. A. Felippa who has provided both time and software to this effort.

TABLE OF CONTENTS

Section .		Page
	SUMMARY	1
	PREFACE	2
	LIST OF ILLUSTRATIONS	4
ı	INTRODUCTION	1-1
	1.1 Staggered Solution Procedure	1-2 1-2 1-4 1-5 1-6
II	FLUID-STRUCTURE INTERACTION PROBLEM FORMULATION AND SOLUTION PROCEDURE	2-1
	2.1 Structural Response Equation	2-1 2-1 2-2 2-3 2-4 2-7 2-9
III	ORGANIZATION OF USA-STAGS CODE	3-1
	3.1 STAGS Preprocessing	3-1 3-3 3-4 3-5 3-7 3-7 3-8
IV	EXAMPLE PROBLEMS	4-1
	4.1 Submerged Infinite Cylindrical Shell	4-1
	REFERENCES	R-1
Appendix		
A	CONTROL CARDS FOR CDC FILE MANIPULATION AND PROGRAM EXECUTION	A-1
В	SAMPLE PROBLEM FOR STAGS1 PREPROCESSING	B-1
С	INPUT DATA FOR FLUID MASS PREPROCESSOR FLUMAS	C-1
D	INPUT DATA FOR AUGMENTED MATRIX PREPROCESSOR AUGMAT	D-1
E	INPUT DATA FOR TIME INTEGRATOR TIMINT	E-1
F	INDIT DATA FOR USA POSTPROCESSOR POSTPR	F-1

LIST OF ILLUSTRATIONS

Figure		Page
2-1	Image technique for free surface	2-5
2-2	Free field ray diagram	2-5
2-3	Free-field pressure as a result of free-surface reflection	2-8
2-4	Geometry of primary and image waves	2-8
3-2	Organization of the USA-STAGS code	3-2

SECTION I

INTRODUCTION

This report is a reference manual for the third version of the USA-STAGS Code that calculates the nonlinear transient response of a totally or partially submerged structure to a spherical shock wave of arbitrary pressure profile and source location. This constitutes a revision of [1], the original manual that describes the interfacing of USA (Underwater Shock Analysis) [2], and STAGS (STress Analysis of General Shells) [3].

The NSA Code computes the transient response of a totally or partially submerged, shock-wave-excited elastic structure using a linear (or linearized) stiffness matrix that has been constructed by a finite-element or finite-difference structural analyzer of choice. STAGS is a general-purpose nonlinear finite-element, structural code that is very efficient for the analysis of inelastic collapse of stiffened shell structures. USA-STAGS employs the staggered solution strategy upon which USA itself is constructed. In this procedure the structural response equations and the fluid response equations are solved separately, step-by-step, through extrapolation of terms which couple the two systems thus preserving the modularity of each code. This technique has been shown to be unconditionally stable with respect to time step size in the linear response problem [4].

The fluid equations treated by USA-STAGS apply to an infinite or semi-infinite acoustic medium and either the Doubly Asymptotic Approximation (DAA₁) or the Improved Doubly Asymptotic Approximation (DAA₂) [5, 6] is used to determine the fluid pressure on the "wet" surface of the structure.

The following additions, changes and enhancements have been incorporated in the USA-STAGS Code since [1] was issued:

- 1) STAGS C-1 has become the standard version for underwater shock analysis.
- 2) An imaging formulation that allows the analysis of problems involving partially submerged structures and structures totally submerged near the free surface has been implemented.
- 3) A technique has been developed to include the effects of bulk cavitation in the incident wave excitation that provides a complete description of fluid particle velocity consistent with the occurrence of surface cutoff.
- 4) Surface-of-revolution fluid elements can now treat both beam-like and bar-like response.
- 5) The Improved Doubly Asymptotic Approximation (DAA,) is now operational.

- 6) The fluid equation system is processed in an out-of-core mode to allow substantial increases in the allowable number of fluid elements.
- 7) A capability to do linear analysis has been built into the USA-STAGS Code.
- 8) An improvement has been added to the integration time step control to allow STAGS to change the step size if required for convergence.
- 9) A hydrostatic prestress analysis of the structure can be made to provide non-zero initial values for nonlinear underwater shock analysis.
- 10) A capability to conduct a collapse analysis of the structure upon completion of the transient analysis has been added.
- 11) USA-STAGS is now operational on the VAX 11/780 virtual memory system macrine.

1.1 STAGGERED SOLUTION PROCEDURE

USA-STAGS is constructed around the staggered solution procedure which avoids the simultaneous solution of the structural response equations and the fluid response equations. Such a simultaneous solution would be costly from two viewpoints. First, a special-purpose version of STAGS would have been required. Second, the computation time would have been substantially increased over that required for the transient analysis of a dry structure due to the widespread coupling induced by the fluid.

On the other hand, the staggered solution procedure involves a response extrapolation at each time step, which usually leads to numerical instability for time increments exceeding a critical value. Because this critical value may be unacceptably small for some computations, the fluid equations used in USA have been modified in such a way that unconditional stability has been achieved for the linear elastic structural response problem [4].

At this time an investigation of time step stability of the coupled USA-STAGS system has not been performed. Stability will depend not only upon the specific types of nonlinearity inherent in the STAGS equations but also upon which of the family of STAGS integration algorithms is used in any particular case. It is likely, however, that unconditional stability will exist for some range of mildly nonlinear behavior.

1.2 DOUBLY ASYMPTOTIC APPROXIMATIONS

The DAA_l is embodied in a linear first order matrix ordinary differential equation that defines the fluid pressure due to the scattered wave at the fluid-structure boundary. The principal advantage of the DAA_l then is that it models the infinite acoustic medium surrounding the structure as a membrane covering the wet surface of the struc-

ture. Hence fluid motion is described merely in terms of wet-surface response variables, which are then linked by compatibility relations to the structural response variables.

The principal disadvantage of the DAA₁ is that it constitutes an approximation to the "exact" boundary-element representation of the surrounding medium [7,8]. The DAA₁ does approach exactness for both high-frequency (early-time) and low-frequency (late-time) structural motions, however, and effects a smooth transition between the two asymptotes. In addition, it has exhibited satisfactory accuracy in a variety of check calculations [6,7,9].

The DAA₂ is an improved approximation that is based upon the DAA₁; however, it can describe the intermediate frequency range better than the DAA₁ because it is a second order matrix differential equation. Computationally it has been used to study the response of the infinite cylindrical shell under a plane wave step loading in which significant improvements in accuracy have been noted [2]. Analytical studies of spherical shell response [6] also show such marked improvement.

Although the DAA₁ and DAA₂ have been shown to be suitable for engineering analysis of underwater shock problems, the physics of such problems still include features of great complexity not currently treated. For example, local fluid cavitation at the fluid-structure interface may substantially alter structural response for incident shock waves of short duration. Effective means of including hull cavitation phenomena in the numerical solution of underwater shock problems are still being sought.

1.3 USA FEATURES

A number of special features are incorporated in the USA code. First, a capability has been provided to handle a fluid mesh on the wer surface that is not coincident with the surface mesh for the structural model. This permits, for example, the use of a refined structural mesh in a region of high stress gradients, even though a relatively coarse mesh is retained for the fluid.

Second, options for variable-increment time integration and computation restart are furnished. The former allows the use of small time increments during periods where the response is expected to be varying rapidly in time, and the use of large time increments too periods characterized by a slowly varying response. The latter permits the division of a response computation into segments, so that the analyst may examine the results at selected points along the way. Such examination is facilitated by the use of the "printer-plot" routine that augments the usual printout data with response plots "drawn" by the printer.

Third, the code incorporates fluid boundary elements for both general and body-of-revolution wet-surface geometries [10]. This feature is especially useful for compartment-by-compartment analysis of a submarine. Such an analysis utilizes a general-structure discrete-element model of a particular compartment of interest, with the remainder of the submarine modeled as a bar/beam. Hence a detailed analysis of an entire submarine may be performed with several discrete-element models of moderate size, avoiding the use of a single gigantic model.

Fourth, the analyst can use either the DAA₁ or DAA₂ through input of a single scalar parameter to take advantage of the enhanced accuracy demonstrated by the latter in computations for idealized geometries.

Fifth, out-of-core processing for both the structural <u>and</u> fluid equation systems frees the user from concern over core limitations on the number of structural and fluid elements in his model.

Sixth, free-field shock wave input to the structure is associated with a spherical wave for both submerged and partially submerged structures and can be input for use with linear interpolation or cubic spline fitting routines. Pressure hisories for exponentially decaying incident waves can be automatically generated. Fluid pressure and particle velocity histories corresponding to the input shock are displayed for the user with the "printer-plot" software mentioned above.

Seventh, the effects of bulk cavitation on the free field pressure history are approximately treated.

1.4 STAGS FEATURES

STAGS is primarily intended for the nonlinear analysis of shell structures; therefore, great emphasis has been placed on computational efficiency. The capabilities of STAGS include the following processors: 1) linear stress analysis; 2) geometrically nonlinear elastic stress analysis; 3) inelastic stress analysis, geometrically linear or nonlinear; 4) bifurcation buckling analysis with linear or geometrically nonlinear prestress (elastic); 5) small vibration analysis with prestress based on linear or geometrically nonlinear analysis (elastic); and 6) transient response analysis, linear or geometrically nonlinear, elastic or inelastic. In a STAGS analysis, the structure can be defined as composed of a number of shell branches. Linear springs (axial or torsional) and nonlinear general beam elements also can be included. If the beams are defined as stiffeners attached to the shell along a line on its surface, appropriate displacement constraints will be enforced automatically. Loading is either mechanical (forces or forced displacements) or thermal. Any boundary conditions or other displacement constraints are permitted as long as they are linear. Displacementdependent hydrostatic loads may be used. For transient problems, velocity-dependent damping may be included in specified regions. General damping proportional to mass or linear stiffness may also be selected.

A number of quadrilateral and triangular finite-elements are available as options for discretization of the shell branches. The discretization procedures available include a flat element in which lateral displacements are bicubic and in-plane displacements at least quadratic. At each corner node, there are six or seven degrees of freedom: three displacement components, three rotation components, and optionally the shear strain. In addition, displacements along the element boundaries may be included as degrees of freedom at midpoint nodes, thus the maximum number of degrees of freedom per element is 32. Refined quadrilateral elements constructed from sub-triangles may also be used. These quadrilaterals need not be flat.

Bifurcation buckling and small vibration analyses lead to linear eigenvalue problems. In STAGS, these are solved through the generation of invariant subspaces by simultaneous power iteration [11]. Nonlinear static analysis results in nonlinear algebraic equations. For solution of such equations, the STAGS user has the options of using either the modified or the regular Newton method [12]. For transient analysis numerical integration the following options are available: 1) the central difference scheme; 2) trapezoidal rule; 3) Gear's two- and three-order methods; or 4) Park's method. A discussion of these methods is available in Ref. [13].

1.5 SPECIAL NON-FEATURES

Some features of modest complexity have yet to be incorporated into the USA-STAGS Code. First, an option for automatic time-step integration would free the analyst from having to select integration time increments in accordance with his expectations regarding response behavior. Second, the ability to handle very large problems would be useful in those cases where structural segmentation is not possible. Third, a capability to treat banded structural mass and damping matrices would be helpful, in order to accommodate structural elements that produce such matrices. Fourth, a means to handle the matrices produced by acoustic elements based on a pressure formulation [14,15] is desirable, in that such elements permit highly efficient modeling of internal fluid volumes.

An important feature of greater complexity has yet to be introduced into the code. This is a treatment of hull cavitation, which may substantially affect structural response for incident shock waves of short duration. The introduction of this feature requires the accurate treatment of highly nonlinear phenomena, and presents a challenging task for future work.

SECTION II

FLUID-STRUCTURE INTERACTION PROBLEM FORMULATION AND SOLUTION PROCEDURE

This section describes the theoretical foundation of the USA-STAGS Code; and is constructed as an overview, with coverage of details left to referenced papers and reports.

2.1 STRUCTURAL RESPONSE EQUATION

The discretized differential equation system for the dynamic response of a nonlinear structure can be expressed in the form

$$\underline{M}_{S} \, \underline{\ddot{x}} + \underline{C}_{S} \, \underline{\dot{x}} + \underline{K}_{S} \, \underline{x} = \underline{f} \tag{2.1}$$

where \underline{x} is the structural displacement vector, \underline{M}_8 , \underline{C}_8 and \underline{K}_8 are the nonlinear structural mass, damping and stiffness operators, respectively, \underline{f} is the external force vector, and a dot denotes a temporal derivative. Generally, \underline{M}_8 , \underline{C}_8 and \underline{K}_8 are highly banded, symmetric operators of large order; at present the USA-STAGS Code considers \underline{M}_8 to be diagonal and \underline{C}_8 to be a linear combination of \underline{M}_8 and the linear portion of \underline{K}_8 .

For excitation of a submerged structure by an acoustic wave, \underline{f} is given by

$$\underline{f} = -\underline{G} \underset{\sim}{\mathbb{A}}_{f} (\underline{p}_{I} + \underline{p}_{S}) + \underline{f}_{D}$$
 (2.2)

where $p_{\rm I}$ and $p_{\rm S}$ are nodal pressure vectors for the wet-surface fluid mesh pertaining to the (known) incident wave and the (unknown) scattered wave, respectively, $\underline{f}_{\rm D}$ is the dry-structure applied force vector, $\underline{A}_{\rm f}$ is the diagonal area matrix associated with elements in the fluid mesh, and \underline{G} is the transformation matrix that relates the structural and fluid nodal surface forces. More will be said about \underline{G} in the next subsection.

2.2 DAA, EQUATION

The Doubly Asymptotic Approximation may be written [5,6]

$$\underline{M}_{f} \dot{\underline{p}}_{S} + \rho c \underbrace{A}_{f} \underline{p}_{S} = \rho c \underbrace{M}_{f} \dot{\underline{u}}_{S}$$
 (2.3)

where \underline{u}_S is the vector of scattered-wave fluid-particle velocities normal to the structure's wet surface, ρ and c are the density and sound velocity of the fluid, respectively, and \underline{M}_f is the symmetric fluid mass matrix for the wet-surface fluid mesh. This matrix is produced by a boundary-element treatment of Laplace's equation for the irrotational flow generated in an infinite, inviscid, incompressible fluid

by motions of the structure's wet surface; it is fully populated with non-zero matrix elements. When transformed into structural coordinates, the fluid mass matrix yields the added mass matrix, which, when combined with the structural mass matrix, yields the virtual mass matrix for motions of a structure submerged in an incompressible fluid [16].

As mentioned in Section I, the approximate relation (2.3) is called "doubly asymptotic" because it approaches exactness in both the high-frequency (early-time) and low-frequency (late-time) limits. For high-frequency motions, $|\dot{p}_S| >> |p_S|$, so that (2.3) approaches the relation $p_S = \rho c u_S$, which is the correct limit for short acoustic wavelengths. For low-frequency motions, $|\dot{p}_S| << |p_S|$, so that (2.3) approaches the incompressible-flow relation $A_f p_S = M_f \dot{u}_S$, which is the correct limit for long acoustic wavelengths.

For excitation by an incident acoustic wave, $\frac{u}{S}$ is related to structural response by the kinematic compatibility relation

$$\underline{G}^{T}\underline{\dot{x}} = \underline{u}_{T} + \underline{u}_{S} \tag{2.4}$$

where the superscript "T" denotes matrix transposition. Equation Q.4 expresses the constraint that normal fluid-particle velocity match normal structural velocity on the wet surface of the structure. The fact that the transformation matrix relating those velocities is \underline{G}^T follows from the invariance of virtual work with respect to either of the wet surface coordinate systems. Generally, \underline{G} is a rectangular matrix whose height greatly exceeds its width, inasmuch as the number of structural DOF usually exceeds considerably the number of fluid DOF.

2.3 INTERACTION EQUATIONS

The introduction of (2.2) into (2.1) and (2.4) into (2.3) yields the interaction equations

These equations may be solved simultaneously at each time step by the transfer of $-G \underset{f}{A} p_S$ and $\rho \in \underset{f}{M} G^T \overset{?}{X}$ to the left sides of their respective equations. Such a procedure is exceedingly expensive, however, because of the large connectivity of the coefficient matrix involved. As mentioned in Section I, efficient computation is possible through the application of a staggered solution procedure that is unconditionally stable with respect to the choice of time increment, at least in the linear case.

The simplest implementation of the staggered solution procedure recommended in [4] may be effected as follows. M_s is taken to be diagonal and, to allow for the possibility that M_s may have zero entries for rotational DOF, G is constructed such that only the translations.

tional DOF for the structure couple with the fluid DOF [see (2.4)]; then the first of (2.5) may be partitioned to obtain $\underline{G^T \ddot{x}}$, which may then be introduced into the second of (2.5). Premultiplication of the resulting equation by $\frac{1}{\text{pc}} \bigwedge_{f} \frac{M_f}{M_f}^{-1}$ then yields

$$\frac{1}{\rho c} \underbrace{A_f \dot{p}_S}_{f} + (\underbrace{D_{f1}}_{f1} + \underbrace{D_g}_{g}) \underbrace{p_S}_{S} = -\underbrace{A_f G^T \underbrace{M_S^{-1}}_{g} (\underbrace{C_S \dot{x}}_{f} + \underbrace{K_S \dot{x}}_{g})}_{-(\underbrace{D_S \dot{p}_T}_{f} + \underbrace{A_f \dot{u}_T}_{f})}$$
(2.6)

where $\mathbb{D}_{f1} = \mathbb{A}_f \, \mathbb{M}_f^{-1} \, \mathbb{A}_f$ and $\mathbb{D}_S = \mathbb{A}_f \, \mathbb{G}^T \, \mathbb{M}_S^{-1} \, \mathbb{G} \, \mathbb{A}_f$ are symmetric, and where \mathbb{M}_S^{-1} is a diagonal matrix with each nonzero element given as the reciprocal of the corresponding nonzero element of \mathbb{M}_S and each zero element mirroring the corresponding zero element of \mathbb{M}_S . The first of (2.5) and (2.6) are herein termed "the augmented interaction equations".

2.4 SPHERICAL INCIDENT WAVE

Each element of the vectors \underline{p}_T and $\underline{\hat{u}}_T$ for a spherical incident wave are given by

$$p_{Ii}(t) = \frac{S}{R_i} p_I \left(t - \frac{R_i - S}{c} \right)$$

$$\dot{u}_{Ii}(t) = \left[\frac{1}{\rho c} \dot{p}_{Ii}(t) + \frac{1}{\rho R_i} p_{Ii}(t) \right] \gamma_i$$
(2.7)

where S is the "charge standoff", i.e., the distance between the origin of the incident spherical wave and the nearest point on the structure's wet surface, R_{i} is the distance from the origin of the incident spherical wave to the ith fluid node on the wet surface, γ_{i} is the cosine of the angle between the vector corresponding to R_{i} and the wet-surface normal at the ith fluid node, and $p_{i}(t)$ is the incident-wave pressure-profile defined at $R_{i} = S$. For a shock wave, $p_{i}(t)$ is discontinuous at t = 0 and the $\hat{u}_{i}(t)$ contain singularities.

In order to remove shock-wave singularities from $\dot{\underline{u}}_{I}$ in (2.6), a modified pressure vector is defined as

$$\underline{P}_{M} = \underline{\Gamma} \underline{P}_{I} + \underline{P}_{S} \tag{2.8}$$

where Γ is a diagonal matrix with direction-cosine elements γ_i . The introduction of (2.8) into (2.6) and the first of (2.5), followed by utilization of the second of (2.7) then yields the modified, augmented, interaction equations

in which I is the identity matrix, and

$$\underline{H} = \underline{D}_{s} - (\underline{D}_{s} + \underline{D}_{fl} - \frac{1}{\rho} \underline{A}_{f} \underline{R}^{-1}) \underline{\Gamma}$$
 (2.10)

where R is the diagonal matrix formed by the distances R_1 . Equations (2.9) are the equations solved by the USA-STAGS to determine the structural responses \underline{x} and $\underline{\dot{x}}$, and the wet-surface pressures $\underline{p} = (\underline{I} - \underline{\Gamma}) \ \underline{p}_{\underline{I}} + \underline{p}_{\underline{M}}$.

2.5 FREE SURFACE EFFECTS

When a structure is partially submerged, or when a totally submerged structure lies near the free surface of a semi-infinite fluid, imaging techniques may be utilized to ensure that the total pressure vanishes at the free surface. (This implies that the effects of gravity are negligible in this class of problems, which they generally are.) In this case, the interactive system consists of an infinite fluid domain, the structure S₊, and its image S₋ (see Figure 2-1). The incident wave now consists of a (positive) primary wave plus a (negative) image wave, the latter emanating from the image of the primary wave's origin. Zero pressure at the free surface is therefore maintained if the motions of S₋ are constrained to be opposite to those of S₊.

The kinetic energy T_s , the Rayleigh dissipation function D_s , the potential energy V_s , and the work potential Π_s , for the structural system $S_+ + S_-$ are given by

$$T_{s} = \frac{1}{2} \left(\dot{\underline{x}}_{+}^{T} \underline{M}_{s} \, \dot{\underline{x}}_{+} + \dot{\underline{x}}_{-}^{T} \underline{M}_{s} \, \dot{\underline{x}}_{-} \right)$$

$$D_{s} = \frac{1}{2} \left(\dot{\underline{x}}_{+}^{T} \underline{C}_{s} \, \dot{\underline{x}}_{+} + \dot{\underline{x}}_{-}^{T} \underline{C}_{s} \, \dot{\underline{x}}_{-} \right)$$

$$V_{s} = \frac{1}{2} \left(\dot{\underline{x}}_{+}^{T} \underline{K}_{s} \, \underline{x}_{+} + \dot{\underline{x}}_{-}^{T} \underline{K}_{s} \, \underline{x}_{-} \right)$$

$$\Pi_{s} = -\dot{\underline{x}}_{+}^{T} \, \underline{f}_{+} - \, \dot{\underline{x}}_{-}^{T} \, \underline{f}_{-}$$

$$(2.11)$$

The appropriate constraints are $\underline{x}_{-} = -\underline{x}_{+}$ and $\underline{f}_{-} = -\underline{f}_{+}$, so that (2.11) become

$$T_{s} = \dot{x}_{+}^{T} \underset{\sim}{\mathbb{M}}_{s} \dot{x}_{+}$$

$$D_{s} = \dot{x}_{+}^{T} \underset{\sim}{\mathbb{C}}_{s} \dot{x}_{+}$$

$$V_{s} = x_{+}^{T} \underset{\sim}{\mathbb{K}}_{s} x_{+}$$

$$\Pi_{s} = -2 x_{+}^{T} f_{+}$$

$$(2.12)$$

FREE SURFACE

Figure 2-1 Image Technique for Free Surface

Figure 2-2 Free Field Ray Diagram

The DAA kinetic energy T_{f} and work potential Π_{f} for the fluid system may be written

$$T_{f} = \frac{1}{2} \underline{u}_{S}^{T} \underline{M}_{f} \underline{u}_{S}$$

$$\Pi_{f} = -\underline{u}_{S}^{T} \underline{A}_{f} \underline{P}_{S} - \frac{1}{\alpha c} \underline{u}_{S}^{T} \underline{M}_{f} \underline{P}_{S}$$
(2.13)

where

$$\underline{M}_{f} = \begin{bmatrix} \underline{M} & \underline{M}' \\ \underline{M}' & \underline{M} \end{bmatrix}, \quad \underline{A}_{f} = \begin{bmatrix} \underline{A} & \underline{O} \\ \underline{O} & \underline{A} \end{bmatrix}$$
(2.14)

and an asterisk denotes temporal integration. The submatrix M accounts for added mass coupling between wet-surface elements on S_+ and, similarly, between elements on S_- ; M^* accounts for added mass coupling between elements on S_+ and elements on S_- . The constraints for the fluid system are

$$\underline{u}_{S} = \begin{bmatrix} \underline{I} \\ -\underline{I} \end{bmatrix} \underline{u}_{S+}, \quad \underline{P}_{S} = \begin{bmatrix} \underline{I} \\ -\underline{I} \end{bmatrix} \underline{P}_{S+}$$
 (2.15)

so that (2.13) becomes

$$T_{f} = \underline{u}_{S+}^{T} (\underline{M} - \underline{M}') \underline{u}_{S+}$$

$$\Pi_{f} = -2 \underline{u}_{S+}^{*T} [\underline{A} P_{S+} + \frac{1}{\rho c} (\underline{M} - \underline{M}') \dot{P}_{S+}]$$
(2.16)

The application of Lagrange's equation [17] to (2.12) and (2.16) now yields

$$\underbrace{\mathbb{M}_{s} \overset{\mathbf{x}_{+}}{\mathbf{x}_{+}} + \mathbb{C}_{s} \overset{\mathbf{x}_{+}}{\mathbf{x}_{+}} + \mathbb{K}_{s} \overset{\mathbf{x}_{+}}{\mathbf{x}_{+}} = \underbrace{f_{+}}}_{(2.17)}$$

$$\underbrace{\frac{1}{\rho_{c}} \left(\overset{\mathbf{M}}{\mathbf{M}} - \overset{\mathbf{M}'}{\mathbf{M}'} \right) \overset{\mathbf{\dot{p}}_{S+}}{\mathbf{\dot{p}}_{S+}} + \overset{\mathbf{A}}{\mathbf{A}} \overset{\mathbf{p}_{S+}}{\mathbf{p}_{S+}} = \left(\overset{\mathbf{M}}{\mathbf{M}} - \overset{\mathbf{M}'}{\mathbf{M}'} \right) \overset{\mathbf{\dot{u}}_{S+}}{\mathbf{\dot{u}}_{S+}}$$

Also, (2.2) and (2.4) must be modified to include the effects of both the incident primary and image waves. This gives

$$\frac{f}{f_{+}} = -G \wedge (p_{I+}^{+} + p_{I+}^{-} + p_{S+}^{-})$$

$$g^{T} \dot{x}_{+} = u_{I+}^{+} + u_{I+}^{-} + u_{S+}^{-}$$
(2.18)

where, e.g., p_{I+} denotes incident-wave pressure on S_+ associated with the image wave. The introduction of (2.18) into (2.17) then yields the doubly asymptotic interaction equations for problems involving a free surface

A comparison of (2.19) with (2.5) reveals that the effects of the free surface are embodied in the image-wave pressure and fluid-particle-velocity vectors, and in the modified added-mass matrix.

Finally, augmentation of (2.19) to secure unconditional stability, followed by introduction of the modified pressure [cf. (2.8)]

$$\underline{P}_{M} = \underline{\Gamma}_{+}^{+} \underline{P}_{1+}^{+} + \underline{\Gamma}_{-}^{-} \underline{P}_{1+}^{-} + \underline{P}_{S+}$$
 (2.20)

to remove shock-wave singularities, proceeds as described in Subsections 2.3 and 2.4. The modified, augmented interaction equations corresponding to (2.9) for the infinite fluid medium are then readily obtained.

It is important to mention at this point that the DAA formulation just described does not account for high-frequency scattered waves from S_ that impinge upon S_. For most floating structures, such waves are not generated, as the wet surfaces of S_ and S_ usually intersect to form a convex surface; they are generated, however, for a totally submerged structure lying near the free surface. Even so, it has been shown that, as far as structural response is concerned, the effects of the scattered wave are generally negligible [18]. In other words, the response is basically driven by the incident primary and image waves.

2.6 BULK CAVITATION

In the absence of bulk cavitation, the imaging method serves as a useful device to model the reflection of free-field waves from the fluid's free surface. The occurrence of bulk cavitation near the surface, however, changes that simple acoustic reflection problem into a complex reflection-refraction problem, as indicated in Figure 2-2. If refraction distortions produced by a relatively thin cavitated region are not too severe, however, bulk cavitation effects will still appear to the structure as emanating from an image source.

Experimental records of free-field pressure histories for compact charges exhibit the behavior shown in Figure 2-3 [19]. The dashed line denotes the history produced by a negative-image model, while the horizontal line indicates that the effect of bulk cavitation is to "cut off" the pressure at a cavitation threshold. The approximate treatment introduced here involves pre-examination of the image-based free-field pressure at the

Figure 2-3 Free-Field Pressure as a Result of Free-Surface Reflection

Figure 2-4 Geometry of Primary and Image Waves

standoff point, i.e., the point on the submerged structure closest to the charge. Whenever that pressure becomes negative to the extent that its magnitude exceeds the absolute ambient pressure at that depth, a positive contribution is incorporated into the negative-image source so that the free-field pressure at the standoff point never dips below the cavitation threshold. When the structure's overall dimensions are small relative to the distance from the structure to the cavitated region, the effects of the positive contribution will not vary appreciably in the vicinity of the structure.

The preceding discussion leads to the following development. The two-source model of Figure 2-4 yields as the free-field pressure at any point \underline{P}

$$p_{\underline{P}}(t) = \frac{S}{R_{+}} p_{+} (t - \frac{R_{+} - S}{c}) + \frac{S}{R_{-}} p_{-} (t - \frac{R_{-} - S}{c})$$
 (2.21)

where $p_{+}(t) = p_{-}(t) = 0$ for t < 0. At the standoff point, (2.21) becomes

$$p_{Q}(t) = p_{+}(t) + \frac{s}{s_{-}} p_{-}(t - \frac{s_{-} - s}{c})$$
 (2.22)

Now $p_{(t)} = -p_{(t)}$ as long as the resulting $p_{(t)}$ exceeds the cavitation threshold so that "cutoff" does not occur; otherwise, $p_{(t)}$ remains at the threshold value $-(p_{(t)} + \gamma z)$ where $p_{(t)}$ is atmospheric pressure and γ is the fluid's weight density. Hence, during the "cutoff period",

$$p_{-}(t) = -\frac{S_{-}}{S}[p_{+}(t + \frac{S_{-} - S}{C}) + p_{A} + \gamma z]$$
 (2.23)

The model just described fits a prescribed free-field pressure history at the stand-off point in such a way that surface cutoff effects appear to the structure as emanating from an image source. Because the model is complete, it also provides the free-field fluid-particle-velocity information required for DAA calculations. The usefulness of the model has been demonstrated from the results of free-field tests specifically designed to produce both pressure and fluid-particle-velocity data [20].

2.7 USA-DAA, IMPLEMENTATION

The Improved Doubly Asymptotic Approximation [DAA,] can be written as [6]

$$\stackrel{\text{M}}{\text{f}} \stackrel{\ddot{\text{P}}}{\text{S}} + \rho c \stackrel{\text{M}}{\text{f}} \stackrel{\dot{\text{P}}}{\text{S}} + \rho c \stackrel{\Omega}{\text{f}} \stackrel{\text{A}}{\text{f}} \stackrel{\text{P}}{\text{S}} =$$

$$\rho c \left[\stackrel{\text{M}}{\text{f}} \left(\stackrel{\text{G}^T}{\overset{\text{M}}{\text{S}}} - \overset{\ddot{\text{U}}}{\text{U}} \right) \stackrel{\Omega}{\text{f}} \stackrel{\text{M}}{\text{f}} \left(\stackrel{\text{G}^T}{\overset{\text{M}}{\text{S}}} - \overset{\dot{\text{U}}}{\text{U}} \right) \right]$$
(2.24)

where

All vector and matrix quantities in the above are related to the same finite element wet-surface fluid mesh as that used for the lowest order DAA (DAA₁) described in Section 2.2.

Note that DAA_2 is a second-order equation, whereas DAA_1 is a first-order equation. In addition, DAA_2 includes a new scalar parameter η that appears in (2.25). It can be established from physical considerations [4] that η must be bounded as

$$0 \le \eta \le 1 \tag{2.26}$$

A precise choice of η is apparently not predicated by any fundamental principle. Hence it must be regarded at this time as a factor which may be adjusted to achieve optimum accuracy for a particular problem. In [6], it is observed that $\eta = 1$ leads to the best accuracy for a spherical shell.

In order to implement DAA₂ (2.24) is first integrated once in time and multiplied through by $A_f \stackrel{M}{=} 1$. Equation (2.25) is then substituted into the result and a new variable, the scattered pressure integral q_S , is defined by

$$g_S = p_S \tag{2.27}$$

where an asterisk denotes temporal integration. The result is

where

$$D_{f2} = A_f M_f^{-1} A_f M_f^{-1} A_f$$
 (2.29)

It is noted that (2.28) is symmetric and that \underline{D}_{fl} has already been defined following (2.6).

To avoid shock-wave singularities in $\underline{\hat{u}}_{I}$, the relation for a spherical shock is used as

$$\rho c \underline{u}_{T} = \underline{\Gamma} (\underline{p}_{T} + c \underline{R}^{-1} \underline{p}_{T}) \qquad (2.30)$$

while the modified pressure-integral vector is defined as

$$q_{M} = q_{S} + \Gamma \stackrel{*}{p}_{I} \tag{2.31}$$

Substitution of (2.30, (2.31) into (2.28) then gives

where the identity

$$\underline{\mathbf{R}}^{-1} \ \underline{\Gamma} = \underline{\Gamma} \ \underline{\mathbf{R}}^{-1} \tag{2.33}$$

has been used in (2.32), as both matrices are diagonal. Associated with (2.32) is the structural equation of motion

$$M_{g} \overset{.}{x} + C_{g} \overset{.}{x} + K_{g} \overset{.}{x} = -G A_{f} [\dot{q}_{M} + (I - \Gamma) p_{I}]$$
 (2.34)

Equations (2.32) and (2.34) define the DAA₂-modified interaction equations that are solved according to the staggered solution strategy; hence an examination of stability must be conducted. It has been shown that the step-by-step integration of (2.32) and (2.34) is conditionally stable; however, no systematic study of stability has yet been undertaken. In view of the fact that unconditional stability was achieved for USA-DAA₁ by augmentation, and that (2.24) is essentially the DAA₁ with a correction term, augmentation of (2.32) was carried out in the same manner as that used for DAA₁.

Accordingly, (2.34) is first solved for $\frac{\pi}{2}$ and substituted into (2.32) to give

$$\begin{array}{l} \underbrace{\mathring{A}_{f} \, \ddot{\mathbf{G}}_{M} + \, \rho \, c \, (\underline{D}_{f1} + \, \underline{D}_{e}) \, \dot{\underline{d}}_{M} + \, \eta \, \rho^{2} \, c^{2} \, \underline{D}_{f2} \, \underline{q}_{m} = } \\ \\ - \, \rho \, c \, \underbrace{\mathring{A}_{f} \, \overset{-1}{G} \, \overset{-1}{M}_{s}^{-1} (\underline{C}_{e} \, \dot{\underline{x}} + \, \underline{K}_{e} \, \underline{x}) \, + \, \eta \, \rho^{2} \, c^{2} \, \underline{D}_{f1} \, \underline{G}^{T} \, \dot{\underline{x}} \\ \\ - \, \rho \, c \, \underbrace{\mathring{D}_{e} - \, [\underline{D}_{e} + (1 - \eta) \, \underline{D}_{f1} \, - \, \frac{1}{\rho} \, \underline{A}_{f} \, \, \underline{R}^{-1}] \, \, \underline{\Gamma} \, \underline{P}_{I} \\ \\ + \, \eta \, \, \rho^{2} \, \, c^{2} \, (\underline{D}_{f2} - \, \frac{1}{\rho} \, \underline{D}_{f1} \, \underline{R}^{-1}) \, \, \underline{\Gamma} \, \overset{*}{\underline{P}}_{I} \end{array}$$

where D_{a} has already been defined following (2.6).

Equations (2.34) and (2.35) are the DAA $_2$ -modified, augmented interaction equations that have been implemented in the USA Code.

SECTION III

ORGANIZATION OF USA-STAGS CODE

Organization of the USA-STAGS system is shown in Figure 3-1. STAGS operates on two levels within this structure; first as a preprocessor, and second as a driven utility during the time integration phase of the analysis. In the preprocessing mode STAGS generates two types of information. The first is data that are required later by the STAGS time integrator, and the second is data that are needed for fluid preprocessing. Both sets of information are placed in mass storage where the latter data are retrieved by the fluid mass matrix processor FLUMAS and then by the processor AUGMAT. AUGMAT produces the final form of the fluid matrix equations to be integrated. Data transfer within USA is carried out with the data manager DMGASP, while out-of-core processing in FLUMAS is accomplished by the virtual memory simulator VMSYST. Out-of-core processing of the fluid equation system during time integration is carried out by the SKYPUL processor which is not shown in 3-1.

The time integration processor is TIMINT which drives both the USA integrator for the fluid and the STAGS integrator for the structure. TIMINT places the structural displacements and velocities and the total fluid pressures into mass storage at each time step. User selected response data are then displayed in tabular and graphic form at the conclusion of the run. The processor POSTPR has the same display capability as TIMINT, but is used for more detailed examination of the results at a later time.

In the following these separate functional components are discussed individually. Detailed information for utilization of the code is contained in the Appendices.

3.1 STAGS PREPROCESSING

Execution of a purely structural analysis, linear or nonlinear, is carried out by two independent programs STAGS1 and STAGS2. The STAGS1 program is basically a preprocessor which reads input data defining a structural model with loads and boundary conditions and prepares an output file, TAPE2, for use by STAGS2. STAGS2 performs the actual analysis and reads no input. The STAGS1 preprocessor program has been slightly modified for use with the USA Code. Input data for STAGS1, as described in the STAGS Users Manual [3], remains unchanged except for one logical record, B-1. An additional data word, IFLUA, is added to this record. A value of -1 for this item signifies the USA-STAGS combination will be executed. The user must also ensure that the local co-ordinate systems associated with each wet surface of the structure must be consistent

Figure 3-1 Organization of the USA-STAGS Code

with normal displacements that are positive into the fluid. The STAGS1 processor then outputs two additional files, TAPE18 and TAPE19. TAPE18 contains a list of global co-ordinates of the structural nodes. TAPE19 contains diagonal mass components for each structural degree of freedom and also a vector which identifies the degree of freedom numbers with displacement components at the nodes. Both files are sequential and may be saved on tapes (by system copy utility routines) or as permanent disc files; however, for immediate access by USA processors, disc files are preferable. These data are retrieved by the fluid processors FLUMAS and AUGMAT whose functions are described below. The STAGS1 preprocessor also prepares a sequential "model definition file" on TAPE21. This file may be used as input with the STAGS plot program (STAPL) to obtain plots of the structural model.

3.2 THE FLUID MASS PREPROCESSOR FLUMAS

This code constructs the fluid mass matrix for a structure submerged in an infinite, inviscid, incompressible fluid by the boundary element technique [16]. In addition, FLUMAS can form the mass matrix for a body in the vicinity of a fluid free surface through the use of imaging techniques. Out-of-core processing is facilitated by use of the virtual memory system VMSYST so that core size is not a limitation on the number of fluid DOF. The code also generates fluid mesh data and a set of transformation coefficients relating the structural and fluid DOF. The computation of these coefficients is based upon the use of centroidal nodes for the fluid elements and the assumption of a bilinear variation of displacement over the surface of each structural element. This assures that the description of the fluid pressure forces in the two mesh systems is statically equivalent without inducing moments at the structural nodes. Finally, the code generates the symmetric matrices $D_{\rm fl}$ and $D_{\rm f2}$ that appear in the computational form of the DAA1 and DAA2 equations which involve the inverse of the fluid mass matrix.

FLUMAS contains a refined formulation for the fluid mass matrix that includes the primary effects of element curvature. In addition, it has the capability to treat structures containing both general geometry and arbitrary axis, multi-branch, multi-harmonic surface-of-revolution components, as described in [10]. The code can also efficiently construct the fluid mass matrix for a body with one or two planes of symmetry by using a mesh which covers 1/2 or 1/4 of the surface. Symmetric or antisymmetric fluid motions can then be imposed on the portions of the surface not covered by the mesh. Two-dimensional "plane-strain" behavior of long cylinders can also be simulated. The code contains an automatic mesh generator for cylindrical surfaces and an improved error exit control that facilitates fluid mesh debugging. Finally, a useful diagnostic tool in the code is the capability to solve the fluid-boundary-mode problem $M_f = \lambda A_f u$ [16].

Typical input data for this processor includes

- o Mesh geometry

 Fluid wet-surface mesh

 Structure wet-surface mesh
- o Element definitions

 General curved surface

 Surface of revolution
- o Material property
 Mass density
 Speed of sound
 DAA₂ parameter
- O Constraints
 Location of free surface
 Half model
 Quarter model
 Long cylinder
 Node reassignment in fluid-structure transformation

A detailed description of the required input data is given in Appendix C.

3.3 THE AUGMENTED MATRIX PREPROCESSOR AUGMAT

This processor uses data from both STAGS1 and FLUMAS to construct the specific matrices required for solution of the augmented Eqs. (2.9) or (2.34)/(2.35). The output of this code includes not only the required matrices in skyline form, but also a condensation of the output from both STAGS1 and FLUMAS. This has been done so that only one permanent file need by referenced as input to the time integrator; this results in improved data handling and core usage. In contrast to earlier versions of USA-STAGS, AUGMAT does not form the fluid matrices $D_{\rm f1}$ and $D_{\rm f2}$ but rather puts them in the skyline format required by SKYPUL [21,22]. $D_{\rm f1}$ and $D_{\rm f2}$ are now formed only in FLUMAS. Input to this code involves the following information

o Mass matrices

Fluid

Structure

- o Structural DOF correspondence table
 External and internal node descriptions
 Factorization order
 DOF reduction due to constraints
- o Fluid mesh geometry
 Global coordinates of fluid nodes
 Direction cosines for nodal surface normals
 Areas of fluid element
- o Fluid/structure DOF transformation coefficients
- o Fluid material properties
 DAA₂ parameter
- o Constraints
 Half model
 Quarter model

Although this constitutes a substantial amount of information, almost all of it is retrieved from permanent data files. A detailed discussion of the required input data is contained in Appendix D.

3.4 THE TIME INTEGRATION PROCESSOR TIMINT

This main processor constitutes an implementation of the unconditionally stable staggered solution technique developed in [4] for DAA_I. The primary output is a set of permanent data files that contain nodal values for structural displacement, structural velocity and wet-surface pressure at every time step. In addition, parallel files are created that retain restart information at time intervals dictated by the user. The code has a variable time step capability and can treat a spherical incident wave of arbitrary pressure profile and source location. Exponentially decaying waves can also be treated by providing magnitude and decay information. In addition, incident wave pressure and particle velocity are tabulated and displayed with a "printer-plot" package. If the body is in the vicinity of a free surface, unloading due to reflection of the incident wave from the surface is included and the effects of bulk cavitation on the free field pressure history are approximately treated. Finally, selected response

histories can be listed and then displayed for immediate examination using the "printerplot" graphics package embedded both in TIMINT and in POSTPR (see Sec. 3.5).

The computational strategy for the staggered solution procedure is embodied in the following eight steps, assuming the solution is known at time t:

- (1) Estimate the unknown structural restoring force vector at $t + \Delta t$ from the extrapolation of current and past values
- (2) Transform this extrapolation into fluid node values and form the right-hand side of the fluid equation, which also involves the known incident pressure at $t+\Delta t$
- (3) Solve the fluid equation and obtain a preliminary estimate of the total pressure vector at $t + \Delta t$
- (4) Transform fluid pressures into structural nodal forces
- (5) Solve the structural equation for the displacement and velocity vectors at $t + \Delta t$
- (6) Transform the computed structural restoring forces at $t + \Delta t$ into fluid node values and reform the right hand side of the fluid equation
- (7) Re-solve the fluid equation and obtain refined values for the total pressures at $t+\Delta t$
- (8) Save system responses

Steps 1, 3, and 5 constitute the basic staggered solution technique, while Steps 2 and 4 are required because of the difference between the fluid and structural surface meshes. The iteration on the fluid solution reflected in Steps 6 and 7 has been added to enhance accuracy. Inasmuch as the computation time is overwhelmed by the structural solution, this requires only a small increase in total run time. The use of a three-point extrapolation method in Step 1 also improves accuracy, as discussed in [4]. The 3-step implicit Park [23] integration method is used for the fluid solution, while the integration algorithms embedded in STAGS have been described earlier.

Typical input to this processor includes

o Incident wave characteristics
Location of source
Location of standoff
Pressure profile
Linear interpolation
Cubic spline fit
Exponentially decaying wave

- o Time step information

 Start and finish times

 Time increment values
- o Restart data
- o Display directives
 Displacements
 Velocities
 Pressures

Detailed user information concerening TIMINT is given in Appendix E.

3.5 THE RESPONSE POSTPROCESSOR POSTPR

This utility is responsible for the listing and "printer-plot" as well as "vector-plot" graphic display of selected system responses and pseudo-velocity shock spectra. Output files containing the structural displacement field at user-specified instants in time may also be created from the response history files to provide "snapshots" of the deformed structure. Some of the same capabilities are also embedded in the TIMINT processor for immediate selective scanning of the output. POSTPR, however, is used for more detailed examination of the results at a later time. As a complete display of all structural and fluid DOF histories for even a moderate size problem could run into thousands of pages of output, care must be exercised in the selection of data to be displayed. Usage of this code is discussed in Appendix F.

3.6 THE DATA MANAGER DMGASP

DMGASP is a self-contained utility module that functions as a manager of auxiliary storage and as the focal point for all block input/output activities [24]. Constituting the lowest level of the NOSTRA Data Management System [25], it carries out the direct transfer of data blocks between core and peripheral storage. (The terminology "direct transfer" is used here to denote unformatted and unbuffered data transmission.) The basic auxiliary storage management operations embodied in DMGASP are

- o Activate storage device
- o Position device
- o Read data block from device
- o Write data block on device
- o Deactivate device

In the USA Code, DMGASP is operated as a stand-along I/O package that receives directives directly from the master processors. Assembly language versions of DMGASP currently exist for UNIVAC 1100 EXEC-8, CDC SCOPE 3.4 (NOS/BE), and CDC NOS operating systems.

The UNIVAC version of DMGASP has been operational since 1974 and embodies a wide spectrum of extensively tested functions, including magnetic tape handling. On the other hand, the CDC SCOPE version has been operational since mid-1977 and has been tested only on a subset of functions dealing with mass storage I/O. The CDC NOS is a variant of the CDC SCOPE version and has been used since late 1977.

Finally, a FORTRAN 77 version of DMGASP was produced in 1980 for the VAX 11/780.

THE VIRTUAL MEMORY SIMULATOR VMSYST

VMSYST is a virtual storage simulator for computers that are not built around a situal memory system [26]. All data in the virtual system is partitioned into pages, ich are blocks of consecutive data words of a fixed page size. Pages residing in core the page buffer are called active pages. Inactive pages are resident in auxiliary storage only. In this utility the page and page buffer sizes can be conveniently adjust i to suit the application. Input and output to auxiliary storage is handled by DMGASP; otherwise VMSYST is written in transportable FORTRAN.

The primary advantage of a virtual memory system is the efficient processing of many small records such as columns or rows of large full matrices that can be treated as vectors. In essence VMSYST keep track of whether a desired block of data is resident in core in the page buffer, or, has been moved to an external storage device by DMGASP. If it is not currently resident in the page buffer, VMSYST retrieves it and makes it available to the application progrm. This double movement of data is the major price paid for the benefits of the virtual system.

In USA-STAGS, VMSYST is used for the out-of-core generation of the fluid mass matrix described in Section 3.2.

3.8 THE SKYPUL PROCESSOR

SKYPUL (SKYmatrix Processing Utility Library) is a system of computer codes designed to process large-order sparse symmetric matrices stored in the so-called skyline, profile, envelope or variable-band arrangement [22]. Although the fluid equation system produce by the family of doubly asymptotic approximations is full, SKYPUL can process this system in a multi-block out-of-core mode so that there is no essential restriction on the number of fluid degrees of freedom that can be used.

The main virtues of SKYPUL are the generality of the representation and the simplicity of storage resource management. The latter advantage is reflected in the clean implementation of the basic skymatrix processing operations such as factorization and equation solving. The resulting codes are relatively easier to understand and maintain than those based on more sophisticated sparse matrix storage schemes.

A distinguishing feature of SKYPUL is that all of the constituent programs comply with the organizational, internal documentation, and array self-description standards set forth in the General Description Manual of the Engineering Analysis System (EASY) [21].

SECTION IV

EXAMPLE PROBLEMS

This section is eventually intended to contain a collection of sample problems for USA-STAGS that covers the general range of application to linear and non-linear analysis of structures with simple geometric shapes, i.e., cylinders and spheres. At this time only one sample problem is included, that of the infinite circular cylindrical shell excited by a transverse, plane, step wave. The case considered here is for linear elastic behavior only and, although this does not fully demonstrate the computational power of USA-STAGS, it does lend itself to direct comparison of the same problem treated by USA in its stand alone configuration [2].

4.1 SUBMERGED INFINITE CYLINDRICAL SHELL

For this problem, a 72-node, 36-element model with a uniform circumferential mesh was constructed. The length of the cylindrical shell equalled the circumferential dimension of the square plate elements used for the model; hence the shell was one element long. Kinematic constraints of zero axial displacement and no end rotation were enforced through appropriate input to STAGS1. The fluid model consists of 36 equally-spaced elements around the circumference; the two-dimensional nature of the infinite shell geometry was simulated by exercising an option in the fluid preprocessor FLUMAS that adds fictitious elements in the axial direction.

The transverse, plane step-wave is of unit incident pressure and material properties are used that correspond to a stee! shell immersed in water. The input data are normalized so that the density and speed of sound for the fluid both equal unity; hence, the density, Young's modulus, and Poisson's ratio for the structural material are taken as 7.85, 98.125, and 0.3, respectively. The radius and wall thickness of the cylinder are 1 and 0.01, respectively.

Computational results are shown in detail in Appendices B through F and it is noted that there is little discernable difference between the USA-STAGS and USA-SPAR analyses (See [2]).

REFERENCES

- [1] J.A. DeRuntz and F.A. Brogan, "Underwater Shock Analysis of Nonlinear Structures, A Reference Manual for the USA-STAGS Code", LMSC-D624355, Lockheed Palo Alto Research Laboratory, Palo Alto, California, February 1978.
- [2] J.A. DeRuntz, T.L. Geers, and C.A. Felippa, "The Underwater Shock Analysis Code (USA-VERSION 3), A Reference Manual", LMSC-D777843, Lockheed Palo Alto Research Laboratory, Palo Alto, California, September, 1980.
- [3] B.O. Almroth, F.A. Brogan, and G.M. Stanley, "Structural Analysis of General Shells, Volume II, User Instructions for STAGSC", LMSC-D633873, Lockheed Palo Alto Research Laboratory, Palo Alto, California, January 1980.
- [4] K.C. Park, C.A. Felippa, and J.A. DeRuntz, "Stabilization of Staggered Solution Procedures for Fluid-Structure Interaction Analysis", pp. 95-124 of Computational Methods for Fluid-Structure Interaction Problems, AMD-Vol. 26, ASME, New York, 1977.
- [5] T.L. Geers, "Residual Potential and Approximate Methods for Three-Dimensional Fluid-Structure Interaction Problems", J. Acoust. Soc. Am., Vol. 49, No. 5 (Part 2), May 1971, pp. 1505-1510.
- [6] T.L. Geers, "Doubly Asymptotic Approximations for Transient Motions of Submerged Structures", <u>J. Acoust. Soc. Am.</u>, Vol. 64, No. 5, Nov. 1978, pp. 1500-1508.
- [7] T.L. Geers, "Transient Response Analysis of Submerged Structures", pp. 59-84 of Finite Element Analysis of Transient Nonlinear Structural Behavior, AMD-Vol. 14, ASME, New York, 1975.
- [8] H. Huzng, G.C. Everstine, and Y.R. Wang, "Retarded Potential Techniques for the Analysis of Submerged Structures Impinged by Weak Shock Waves", pp. 83-93 of Computational Methods for Fluid-Structure Interaction Problems, AMD-Vol. 26, ASME, New York, 1977.
- [9] T.L. Geers, "Shock Response Analysis of Submerged Structures", Shock and Vibration Bulletin, Vol. 44, Supp. 3, August 1974, pp. 17-32.
- [10] J.A. DeRuntz, "Added Mass Computation for Submerged Bodies with Hybrid Surface Geometries", pp. 23-33 of Computational Methods for Offshore Structures, AMD-Vol. 37, ASME, New York, 1980.
- [11] H. Rutishauer, "Computational Aspects of F.I. Bauer's Simultaneous Iteration Method", Numerische Mathematik, Vol. 13, Jan. 1969, pp. 4-13.
- [12] B.O. Almroth and C.A. Felippa, "Structural Stability", Proceedings of the International Symposium on Structural Mechanics Software, Univ. of Maryland, College Park, Maryland, 1974, pp. 499-540.
- [13] K.C. Park, "Practical Aspects of Numerical Time Integration", Computers and Structures, Vol. 7, June 1977, pp. 343-353.
- [14] O.C. Zienkiewicz and R.E. Newton, "Coupled Vibrations of a Structure Immersed in a Compressible Fluid", Proc. Symp. Finite Element Techniques, Institut fur Static and Dynamik der Luft-und Baum-fahrt-konstruktionen, University of Stuttgart, Germany, 1969.

- [15] H.C. Nielson, G.C. Everstine, and Y.F. Wang, "Transient Response of a Submerged Fluid-Coupled Double-Walled Shell Structure to a Pressure Pulse", ASME Paper No. 80-C2/PVP-136, presented at Pressure Vessels and Piping Technology Conference, San Francisco, California, August 1980.
- [16] J.A. DeRuntz and T.L. Geers, "Added Mass Computation by the Boundary Integral Method", Int. J. Num. Meth. Eng., Vol. 12, 1978, pp. 531-550.
- [17] R.M. Rosenberg, Analytical Dynamics of Discrete Systems, Plenum Press, New York, 1977.
- [18] H. Huang, "Interaction of Acoustic Shock Waves with a Cylindrical Elastic Shell Near a Free Surface", presented at ASCE Convention and Exposition, Portland, Oregon, April 1980, submitted to Journal of Wave Motion.
- [19] R.H. Cole, <u>Underwater Explosions</u>, <u>Princeton University Press</u>, <u>Princeton</u>, New Jersey, 1948.
- [20] C.L. Yen, T.L. Geers, and J.A. DeRuntz, "Evaluation of the Surface Cutoff Model in the USA Code", LMSC-D777844, Lockheed Palo Alto Research Laboratory, Palo Alto, California, 15 September 1980.
- [21] P.S. Jensen, "EASY An Engineering Analysis System of Utility Programs", LMSC-D556249, Lockheed Palo Alto Research Laboratory, Palo Alto, California, September 1977.
- [22] C.A. Felippa, "Skymatrix Processing Utility Library (SKYPUL) Users Manual", LMSC-D623146, Lockheed Palo Alto Research Laboratory, Palo Alto, California, January 1978.
- [23] K.C. Park, "An Improved Stiffly Stable Method for Direct Integration of Nonlinear Structural Dynamics", J. Appl. Mech., Vol. 42, 1975, pp. 464-470.
- [24] C.A. Felippa, "The Input-Output Manager DMGASP and the Direct Access Library Manager EZ-DAL of the NOSTRA Data Management System, Univac 1100 Series Version Reference Manual", LMSC-D626839, Lockheed Palo Alto Research Laboratory, Palo Alto, California, July 1978.
- [25] C.A. Felippa, "The Resource Pool Manager of the NOSTRA Data Management System", LMSC-D556245, Lockheed Palo Alto Research Laboratory, Palo Alto, California, September 1977.
- [26] P.S. Jensen, "A FORTRAN Virtual Storage Simulator for Non-Virtual Computers", LMSC-D676222, Lockheed Palo Alto Research Laboratory, Palo Alto, California, September 1980.

APPENDIX A

CONTROL CARDS FOR CDC FILE MANIPULATION AND PROGRAM EXECUTION

	FILE DESCRIPTION	
* * *	• • • •	
NAME	FUNCTION	(PROGRAP)
* * *		
FLUMAS	FLUID MASS PROCESSOR	(FLUMAS)
AUGMAT	ALGMENTED MATRIX PROCESSOR	(AUGMAT)
POSTPR	RESPONSE DISPLAY PROGRAM	(POSTPR)
STAGSI	STAGS PREPROCESSOR	(STAGS1)
STAGS2	STAGS EXECUTION PROGRAM	(SZDATZ)
 STAPL	STAGS FLCT PROCESSER	(STAPL)
USAS	USA-STAGS PROGRAP	(USAS)
FLUSYM	FLUID MASS SCURCE	(FLUPAS)
AUGSYM	AUGMENTED MATRIX SCURCE	(ALGMAT)
 bC22Ak	FESPENSE DISPLAY SCURCE	TPCSTPRI
ICHZAM	CATA MANAGER SOURCE	(FLUMAS/AUGMAT/USAS/POSTPR)
104619	CATA MANAGER LIBRARY	(FLUMAS/AUGMAT/USAS/PGSTPR)
VIRSYM	VIRTUAL MEMORY SCURCE	(FLUMAS)
VIRLIB	VIRTUAL MEMORY LIBRARY	(FLUMAS)
INISYM	FLUID INTEGRATION SCURCE	(USAS)
 1KTL18	FLUID INTECRATION LIBRARY	(USAS)
SKUSYM	SKYLINE PROCESSOR SCURCE	(USAS)
SKULIS	SKYLINE PROCESSOR LIERARY	(USAS)
MCOSYM	INTSYM MCDIFICATION SOURCE	(USAS)
♥CCLI 8	INTLIP MCCIFICATION LIERAK	Y (USAS)
MYZAZU	USAS CVERLAY SCURCE	(USAS)
 USAREL	USAS EVERLAY RELECATABLE	(USXS)
SCVI	STAGS1 CVERLAY SCLACE	(STAGS1)
RCV1	STAGSI CVERLAY RELCCATABLE	(STAGS1)
SDAS	STAGS2 EVERLAY SCURCE	(STACSZ)
ROV2	STAGS2 CVERLAY RELCCATABLE	(STAGS2)
SYMI	STAGS1 SCURCE	(STAGS1)
 LIEL	STACSI LIBRARY	TSTACSII
SYM2	STAGS2 SCURCE	(USAS/STAGS2)
L182	STAGS2 LIERAKY	(USAS/STAGS2)
SYMU	STAGS LTILITY SOURCE	(STAGSI/STAGS2/STAPL/USAS)
LIBU	STAGS LTILITY LIBRARY	(STAGS1/STAGS2/STAPL/USAS)
STAPL	STAPL SCURCE	(STAPL)
 RELPL	STAPL RELCCATABLE	(STAFL)
USTSYM	LSA-STAGS INTERFACE SGURCE	(USAS)
USTLIB	USA-STAGS INTERFACE LIERAR	Y (USAS)

RELOCATABLE/LIFRARY FILE GENERATION

water black

CONTROL CARC

UPDATE(P=10FSYF,1=22,F)
FTN(L=C,1=CCMPILE,8=1GFKEL,S=CPCTEXT/FFNTEXT)
LIBGEN(F=10FREL,P=1CFLIB)

```
UPDATE(P=FLUSYM, I=ZZ,F)
FINIL = 0 - I = CUMPILE - B = FLUMAS )
 UPDATE(P=VIRSYM,I=ZZ,F)
"FINTERC, I # COMPILE, 8 = VIRREL)
 LIBGEN(F=VIRREL,P=VIRLIB)
UPDATE(P=AUGSYP,1=ZZ,F)
 FTN(L=0.I=COMPILE.E=AUGMAT)
UPDATE(P=INTSYM, I=ZZ, F)
 FTN(I=COMPILE,L=0,B=INTREL)
 LIBGEN(F=INTREL,P=INTLIB)
 UPDATE(P=SKUSYM,I=ZZ,F)
 FTN(I=CCMPILE,L=0,B=SKUREL)
 LIBGENTF=SKUREL,P=SKULIB)
 UPDATE(P=MODSYM.I=ZZ.F)
FINII=CUPPILE | E = U | B = PUCREL )
 LIBGEN(F * MODREL , P = MCCLIB)
UPDATE(P=POSSYM,I=ZZ,F)
 FTN(L=0.I=COMPILE.B=PGSTPR)
UPDATE(P=USASYF-1=22-F)
 FTN(L=0,I=CCMPILE,B=USAREL,PL=400COC)
UPDATETP=50V1, I=ZZ;F)
 FINIL=0,I=COMPILE,8=RCV1,PL=1C0000)
UPDATE (P=SOV2,1=22,F)
 FTN(L=0, I=COMPILE, B=RCV2, PL=400000)
UPDATE(P#SYM1,1=22,F) NO INPUT RECORD FOR UPDATE
 FTN(L=C,I=COMPILE,CPT=2,B=REL1)
 LIBGEN(F=REL1,P=LIB1)
 UPDATE (P=SYM2, I=ZZ,F)
 FIN(L=C,I=COMPILE,GPT=2,B=REL2)
 LIBGEN(F=RELZ,P=LIP2)
 UPDATE (P=SYMU, I=ZZ,F)
FINIL=U-I=COMPILE-OPT=2-E=RELU-S=CPCTEXT)
 LIBGEN(F=RELU.P=LIEU)
 UPDATE(P=USTSYM,I=ZZ;F)
 FTN(I=COMPILE,L=O,B=USTREL)
 LIBGEN(F=USTREL,P=USTLIB)
                               ABSOLUTE PROGRAF GENERATION
 CONTROL CARD
```

DEFINE.STAGS1. LDSET(PRESET=ZERO,LTE=LT81/LTEU) LOAD(ROV1) NOGO(STAGS1) DEFINE USAS. LDSET(PRESET=ZERG,LIQ=USTLIQ/LIB2/LIB1/PGCLIQ/INTLIB/ICPLIB/SKULIQ) LUAC (USAREL) NOGC (USAS) DEFINE STAGSZ. LCSET(PRESET=ZERC,LIE=L182/LIEU) LOAC(RCV2) NUGCISTACSE STAGSI EXECUTION TPREPARATORY TO FLUID PASS AND AUGMENTED MATRIX PREPROCESSING) CONTROL CARD ATTACH . STAGS1. DEFINE(TAPE18=GLOCCR.ID=USER) DEFINETTAPE19=STRMAS.IC=USERT (CPTIONAL) CATA FOR STAPL PLOT OF MODEL DEFINE . TAPE21 = PCD1. READ STAGS1 INPUT. FLUMAS EXECUTION LIBRARY(IOMLIB, VIRLIE) FLUPAS. ----- READ FLUMAS INPUT WITH GRENAP * USER*GLOCOR AUGMAT EXECUTION LIBRARY (IUMLIE) AUGMAT. READ AUGMAT INPUT WITH STRAAM = LSER+STRMAS STAGS1-USAS EXECUTION (INITIAL RUN) ATTACH.STAGS1.USAS. DEFINE, TAPEZZ=RUN1. SAVE DATA FOR RESTART CR STAPL PLCTS. RFL (120CGO) REDUCE (-) STAGS1. READ STAGS1 INPUT. RFL 12000001 REDUCE (-) READ USAS INPUT USAS.

STAGS1-USAS EXECUTION (RESTART) CONTROL CARD * * * * * * * RFL (120000) REDUCE(-) STACSI.,X. REAC STAGS1 INPUT, "SUPPRESS STAGS1 CUTPUT" ATTACH, RUN1. DEFINE TAPEZZ = RUNZ. CUPTHFARUNI, TAPEZZ. RFL (200000) REDUCE(-) USAS. READ USAS INPUT. POSTPR EXECUTION LIBRARY(IOMLIZ, INTLIE) POSTPR. READ POSTPR INPUT. STAGS1-STAGS2 EXECUTION ATTACH + STAGS 1 + STAGS 2 . RFL(120000) STAGS1 FIELD LENGTH SHOULD BE LESS THAN STAGS2 FIELD LENGTH REDUCET-1 READ STAGS1 INPUT. STAGS1. RFL(160C00) REDUCE (-) STAGS2. CCMPLTE PROBLEM SCLUTION.

44-14-43

APPENDIX B SAMPLE PROBLEM FOR STAGS1 PREPROCESSING

This appendix contains a sample input deck and subsequent output for the infinite cylindrical shell problem presented in Section 4. See STAGS user manual [3] for detailed instructions for deck setup.

STAGS-C1 JUN88 YAX 11/788

18 = FORB18 OPEN, ‡

, Acc DIRECT , Stat = SCRATCH

CARD NUMBER

STAGS1 DATA FOR FULL CYLINDER 6 0 0 0 1 -1 \$ 8-1 1 0 0 1 \$ 8-2 1 0 1 \$ 8-3

1. 9 1898 9 2 \$ D-1 9 1898. .85 .1 6 1 18 1 2 \$ G-1 CLOSED SHELL CONDITION 1 4 1 2 \$ G-1 CLOSED SHELL CONDITION 1 8 \$ 1-1 98.125 .3 8. 7.85 \$ 1-2 1 1 1 \$ K-1 1 .01 5 4 8. .1758 8. 368. 1. 8. 99. 0. 1 8 .0 8. 1 99. 0. 1 99. 0. 1 99. 0. 1 99. 0.

STAGS-C1 / PHASE 1

STAGS1 DATA FOR FULL CYLINDER CASE TITLE

COMPUTATIONAL STRATEGY

GRAV* 8.10000E+01 - TRANSIENT RESPONSE ANALYSIS - - -

COMBINED STRUCTURAL-FLUID ANALYSIS

MAXIMUM LOAD 8.8888888E+88 STEP LOAD B.0000000E+80 STARTING LOAD FACTOR 8.8888888E+88 LOAD FACTOR A

IXFAC B EXST B

B-3

ICUT INELT ISTRAT 1SEC 1888 ISTART 8

9.000000E+00 0.100000E-02 UNDERRELAXATION = ERROR TOLERANCE *

-- 5.00000E-02 TIME INCREMENT ----

---- 0.98888E+88 1.88888E+83 START AND STOP TIMES ---

MAX. EXPECTED DISPLACEMENT - 1.00000E-01

0.38888E+88 ALPHA

B. BBBBBE+BB BETA

B.800000E+80 STARTING TIME FOR AUTOMATIC TIME STEP INCREASE

IMPLICIT ORDINARY DIFFERENTIAL EQUATION SOLVER TRAPEZOIDAL FORMULA

MODEL COMPOSITION

The state of the s

And the second of the second o

QUANTITY	- 0	
1	UNITS UNITS	UNITS
ITEM	SHELL ELEMENT	тотяс

SHELL UNIT SUMMARY

UNIT ROWS COLS

NUMBER OF INTERSECTIONS INVOLVING SHELL UNIT BOUNDARIES (NINTS) = PUNTS = 1 MUNIT = 1 MBOUND = 2

BLANK COMMON BUFFER DIMENSION (NSPACE)

DECIMAL HEX 16000 3E80 VIRTUAL MEMORY SPECIFICATIONS NO. OF PAGES PAGE SIZE 7 1279 FM DATA SPACE = 5696, BLOCK SIZE = 5003

RESOURCE DATA TABLES

NO. OF ENTRIES	-	. €) ~·	- ¢
TABLE	 MATERIAL	BEAM SECTION	WALL CONSTRUCTION	USER PARAMETERS

	E 2	1 0.98125E+02 0.30000E+00 0.37740E+02 0.78500E+01 0.00000E+00 0.98125E+02	
	Ð.	0.00000E+88	
	RHO	8.78500E+01	
	ம	0.37740E+02	-
щí	012	0.30000E+80	IALS (NTAM) *
MRTERIAL PROPERTY TABLE	E1	0.98125E+82	NO. OF TABULATED MATERIALS (NTAM) *
MATERIA	ITAM	 1	NO. OF 1

A2 8.80088E+08

	057	6 0
	NLAY = 1, NLIP = 8 TL ZETL	o record a gangae +88
SHELL WALL PROPERTY TABLE	ITAW = 1, GENERAL LAYERED SHELL, NLAY = 1, NLIP = 8 ILAY MATL TL ZETL I A MARAGE A COLUMN	

O. OF TABULATED WALLS (NTAL) ≠ 1

DESCRIPTION UNIT 1 (SHELL)

SURFACE GEOMETRY

CYL INDER.

8. 1888E+81 8.8888E+88 8.8888E+88 8.8888E+88 PROP (5) * PROP (6) * PROP (7) * PROP (8) * 0.0000E+00 0.1750E+00 0.0000E+00

GLOBAL ORIENTATION

GLOBAL ORIENTATION VIA TRANSLATION OF UNIT ORIGIN PLUS EULERIAN ANGLES ı 1GL08E = 4

0.0000E+00 ¥ 9Z 8.8888E+88. **1** 9.0000E+80. 吳

ROTATION OF UNIT ABOUT

X-AXIS

\(\frac{\pi}{4} \) 8.888888E+88 \)

\(\frac{\pi}{4} \) 8.888888E+88 \)

WALL CONSTRUCTION

ORIENTATION 8.0000E+80 DEG. ECCENTRICITY 8.88886+88 TABULATED ENTRY

DISCRETIZATION

37 GRIDPOINTS ROUS 2

X-SPACING UNIFORM

118	ORM
PAG	H N
Ĭ	_

SHELL ELEMENTS

000 H SUR COL	COORD INATES SURFACE X	COORDINATES GLOBAL CARTI XG	IATES Cartesian Yg	52
	9.0088		9,9999	9.8688
2 0.8888	10.8888		0.1736	8.6668
3 0.6888	20.000		0.3420	0.0000
4 0.8888	30.000		9.5000	8.8868
5 0.8888	49.0000		0.6428	0.0000
•	50.000		0.7660	0.8866
7 0.8888	60.000		8.8668	6.9669
8 0.0808	70.000		0.9397	0.0000
9 8.8888	80.0009		0.9848	0.0090
9 8.8388	90.0009		1.8888	8.0000
	100.0000		8.9848	0.0000
12 0.8888	110.000		0.9397	0.0000
3 0.8888	126.0000		0.8660	0.0000
	130.000		9.7669	9.000
15 0.0000	140.0000		0.6428	0.0000
	150.0000		0.5609	0.0000
	160.0000		0.3420	8.8668
	170.0000		0.1736	0.0000
9.	180.6668	-1.0000	0.0000	0.0000
ø.	138.8888	-9.9848	-0.1736	9.0668
	200.0000	-0.9397	-0.3420	9.9699
	210.9888	-0.8660	-8.5888	8.8888
	220.0809	-0.7668	-6.5428	8.8888
24 8.8888	230.0000	-0.6428	-0.7660	0.0000
	240.0000	-0.5988	-9.8668	9.8888
	258.8888	-0.3428	-0.9397	6.0000
Э.	260.000	-8.1736	-0.9348	0.0000
	270.0000	8988	-1.0000	0.0000
29 8.8888	280.8888	9.1735	-0.9848	0.0000
	290.0800	6.3428	-0.9397	0.0000
	380.8888	0.5000	-9. 8668	6.8888
2 8.8888	310.0000	9.6428	-0.7660	9.9996
33 0.0000	320.0000	0.766	-0.6428	0.8888
	330.000	9.8669	-0.5090	6.6666
35 8.8888	340.0000		-6.3420	0.0000
	358.0000	9.9848	-0.1736	0.000

9.8888	2G 8.8888 -8.1758	26 -6.1758
9.8888	CARTESIAN YG 8.0000	CARTES IAN YG 9. 9898 9. 1736 9. 3428 9. 5888 9. 5688 9. 9397 9. 9848 9. 9868 9. 1736
1.0000	GLOBAL CAR XG 1.0000 1.0000	GLOBAL CARX X5 0.9849 0.9337 0.9337 0.1736 0.1736 0.1736 0.1736 0.1736 0.1736 0.1736 0.1736 0.1736 0.1736 0.9397 0.9397 0.9688 0.1736 0.9688 0.1736 0.9688 0.1736 0.9688 0.9688 0.9688 0.9688 0.9688 0.9688
360.000	Y 360.8888 369.8888	Y 6 . 00000 10 . 00000 10 . 00000 330 . 00000 340 . 00000 340 . 00000 340 . 00000 330 . 00000 00000 00000 00000 00000 00000 0000
9.8888	SURFACE X 0.0000 0.1750	SURFACE X X X X X X X X X X X X X X X X X X X
1 37	PESH ROW COL 1 37 2 37	A S S S S S S S S S S S S S S S S S S S
	BOUNDARY L INE 2 2 2	LINE DA SE

26 8.8888 -0.1758
CARTESIAN YG 8.8080 8.8080
GLOBAL С! XG 1.0000
Y 8.8888 8.8888
SURFACE X 8.8080 0.1750
resh Row Col. 1 1 2 1
BDUNDARY LINE 4 4

BOUNDARY CONDITIONS

BOUNDARY CONDITION AT LINE 1 IS SYMPETRIC BOUNDARY CONDITION AT LINE 2 IS JUNCTURE BOUNDARY CONDITION AT LINE 3 IS SYMPETRIC BOUNDARY CONDITION AT LINE 4 IS UNRESTRAINED

SHELL UNIT LIPLE PROPERTIES (UNIT 1)

ZE	0.0000			യ യ യ യ യ യ വ
150	6 0			(MXY) 8.808080E+88 6.808080E+88 9.908080E+88 9.908080E+88 9.314583E-85
NLAY NLIP ISL ISS ISD	6 0			(17XY) 8.8884 9.8886 9.8886 9.8886 9.3986
151	6 0			
AL 1P	60	6		6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7
MLAY	_	LSO		(MY) 0.000000E+00 0.00000E+00 0.00000E+00 0.269574E-05 0.898581E-05
TYPE	GENERAL LAYERED	ZETL 8.88888E+88		
	GENERA	THICKNESS 0.10000E-01	513	(PK) 8.000000E+00 8.000000E+00 9.000000E+00
		MATL 1	MATRIX, (98+
		LAYER MATL	CONSTITUTIVE MATRIX, CIJ	(NXY) 0. BBBBBBE+BB 0. BBBBBBE+BB 0. 377484E+BB
				(NY) 0.323489E+00 0.107830E+01
>-	0.3567E-01 0.2038E+01			а. 187838 с 1 81
×	0.3567E-01 E			(EX) (EX) (EX) (EX) (EX)

UNIT 1 PRE-PROCESSING SUMPRRY

0.8621E-01	
NEW GROSS LEIGHT 	
LEIGHT INCREMENT	PRESTRESS NPRST 0
CONSTITUTIVE RELS	ATTACHED MASSES NAMAS 0
GEOMETRIC RELS	Y INITIAL CONDITIONS NICS 0
ELEMENTS SHLL	UNIT 1 LOAD, SUMMRRY LOAD SYSTEMS NSYS

OUTPUT CONTROL PARAMATERS

REACTIONS	IPRF	Ø
PLAS STR	IPRP	0
STRESSES		8
STRAINS	IPRE	Ø
 STRS RESUL	IPRR	62
DISPL	IPRD	60

IPRSDP IPRSTR 8 0 B-11 COMPUTATIONAL DOF ASSIGNMENTS

MID3																				
MID2																				
MIDI																				
RU	60	20	Ø	60	Ø	Ø	60	Ø	Ø	6 20	Ø	0	0	69	60	Ø	Ø	0	Ø	Ø
₽	60	60	0	0	Ø	60	8	Ø	6 7	69	0	0	0	Ø	0	0	60	60	8	0
æ	M	9	6	12	15	18	21	24	22	38	33	36	39	45	45	84	51	54	25	99
3	7	Ŋ	00	11	14	17	28	23	56	53	35	32	38	41	4	47	20	23	26	59
>		4	~	10	13	16	19	25	52	88	31	34	37	4	5	8	49	25	52	58
5	0	60	Ø	0	0	80	Ø	Ø	60	60	0	60	Ø	60	Ø	60	Ø	60	0	60
_																			10	
ROW		7	1	7	-	2	-	8		7	-	7	-	7	-	7	-	7	-	2
TIND	-	-	-	-	-		-	-	-	-	-	-		-		-		-	-	-

```
NO. OF D.O.F. (ACTIVE)
                                                                                                                                                 Acc = SEQUENT, Stat = NEW
                                                                                                                                                                         Acc = SEQUENT, Stat = NEW
909
200
                                                                                                                                                                                                                                             -0.430473E-07
-0.410753E-07
                                                                                                                                                                                                                                                                                                                                         0.191069E-14
                                                                                                                                                                                                                                                                                                                                                   0.759040E-08
                                                                                                                                                                                                                                                                                                                                                                                                           .378552E-07
                                                                                                                                                                                                                                  -0.437114E-07
                                                                                                                                                                                                                                                                   -0.378552E-07
                                                                                                                                                                                                                                                                               -0.334849E-07
                                                                                                                                                                                                                                                                                            -0.280971E-07
                                                                                                                                                                                                                                                                                                     -0.218557E-07
                                                                                                                                                                                                                                                                                                                 -0.149502E-07
                                                                                                                                                                                                                                                                                                                             -0.759041E-08
                                                                                                                                                                                                                                                                                                                                                               0.149582E-07
                                                                                                                                                                                                                                                                                                                                                                          0.218557E-07
                                                                                                                                                                                                                                                                                                                                                                                      0.280971E-07
                                                                                                                                                                                                                                                                                                                                                                                                 0.334849E-07
                                                                                                                                                                                                                                                                                                                                                                                                                        9.410753E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                  438473E-87
                                                                                                                                                                                                                                                                                                                                                                                                                                                          0.430473E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     .410753E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.149502E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                             .437114E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                .378552E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.334849E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       .280971E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0.218557E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -0.2185575-07
216
3
6
215
2
2
5
                                                                               NO. OF D.O.F. (TOTAL)
                                                                                                                           PRE-PROCESSING .
                                                                                                                                                                                                           72 NODES
                                                                                                                                                                                                                                  0.000000E+00
                                                                                                                                                                                                                                                                                .642788E+00
                                                                                                                                                                                                                                                                                           0.765844E+88
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -0.866825E+00
                                                                                                                                                                                                                                              0.173648E+00
                                                                                                                                                                                                                                                         0.342020E+00
                                                                                                                                                                                                                                                                    0.500000E+00
                                                                                                                                                                                                                                                                                                      0.866025E+00
                                                                                                                                                                                                                                                                                                                 0.939693E+00
                                                                                                                                                                                                                                                                                                                             0.984808E+00
                                                                                                                                                                                                                                                                                                                                                   0.984808E+00
                                                                                                                                                                                                                                                                                                                                                               0.939693E+00
                                                                                                                                                                                                                                                                                                                                                                          0.866025E+00
                                                                                                                                                                                                                                                                                                                                                                                      0.766044E+00
                                                                                                                                                                                                                                                                                                                                                                                                 0.642788E+00
                                                                                                                                                                                                                                                                                                                                                                                                            0.500000E+00
                                                                                                                                                                                                                                                                                                                                                                                                                        0.342020E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                   0.173648E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                             -0.874228E-07
                                                                                                                                                                                                                                                                                                                                                                                                                                                          -0.173648E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -0.342020E+60
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -0.50000E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           -0.642788E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -0.766045E+90
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -0.866025E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             -0.933693E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -0.100000E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -0.984308E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           -0.939693E+00
214
                                                                                                                                                                                                                                                                                                                                         0.100000E+01
a a a
                                                                                                                                                              Form = UNFORMATTED
                                                                                                                                                   3 = FOR883
                                                                                                                                                                         4 = F0R004
                                                                                                                                                                                     Form = UNFORMATTED
                                                         PREPROCESSING SUMMARY
                                                                                                                                                                                                           STRUCTURAL NODE LIST,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    8.500000E+00
                                                                                                                                                                                                                                              0.984808E+00
                                                                                                                                                                                                                                                         0.939693E+00
                                                                                                                                                                                                                                                                    0.866025E+00
                                                                                                                                                                                                                                                                                .766844E+88
                                                                                                                                                                                                                                                                                            .642738E+00
                                                                                                                                                                                                                                                                                                      .500000E+00
                                                                                                                                                                                                                                                                                                                 .342028E+80
                                                                                                                                                                                                                                                                                                                             0.173648E+00
                                                                                                                                                                                                                                                                                                                                        437114E-07
                                                                                                                                                                                                                                                                                                                                                   .173648E+00
                                                                                                                                                                                                                                                                                                                                                               -8.342020E+00
                                                                                                                                                                                                                                                                                                                                                                          -0.500000E+00
                                                                                                                                                                                                                                                                                                                                                                                     -0.642788E+80
                                                                                                                                                                                                                                                                                                                                                                                                -0.766844E+88
                                                                                                                                                                                                                                                                                                                                                                                                            -0.866025E+00
                                                                                                                                                                                                                                                                                                                                                                                                                        -0.939693E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                   -0.984363E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                          -0.984808E+98
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -0.939693E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -0.866825E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           -0.766844E+88
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -0.642738E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -0.50000E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             -0.342020E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         -0.173648E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     8.119249E-87
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0.173648E+00
                                                                                                                                                                                                                                  9.100000E+01
                                                                                                                           STAGS
                                                                                                                                                                                                                                                                                                                                                                                                                                             -8.188888E+81
36 37 37 37
                                                                              NO. OF UNITS
                                                                                                                                                  OPEN,
                                                                                                                                                                         OPEN,
                                                                                                                              ł
                                                                                                                            S
                                                                                                                                                                                                                                                                                                                                                              224597
                                                                                                                                                                                                                                                                                                                                                                                                                                  13
13
28
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               22
23
23
25
25
26
26
27
28
29
33
33
31
                                                                                                                                                                                                                        ‡
                                                                                                                                                                           +++
                                                                                                                                                                                      +++
                                                                                                                            \supset
                                                                                                                                                                                                                                                                                              B - 13
```

```
.578406E-06
                                                                                                                                                                                                                                                                                                                                                                                                                                            .578406E-06
                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.578406E-06
                                                                                                                                                                                                                                                                                                                                                                                                        578407E-06
                                                                                                                                                                                                                                                                                                                                                                                                               0.578406E-06
                                                                                                                                                                                                                                                                                                                                                                                                                          0.578406E-06
0.578406E-06
                                                                                                                                                                                                                                                                                                                                                                                                         œ,
                                                                                                                                                                                                                                                                                                                                                                                                                                            22
                                                                                                                                                                                                                                                                                                                                                                                                                                                               Ø
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0
                                                                                                                                                                                                                                                                                                                                                                                                               0.582905E-06
0.582905E-06
0.582905E-06
0.582905E-06
0.582905E-06
                                                                                                                                                                                                                                                                                                                                                                                                         8.582905E-06
                                                                                                                                        75888E+88
                                                                                                                                                                             75000E+00
                                                                                                                                                                                       75888E+68
                                                                                                                                                                                                        75000E+00
                                                                                                                                                                                                                                                                                                                               175888E+88
                                                      175000E+00
                                                                        .175000E+00
                                                                                 175000E+00
                                                                                                    75888E+88
                                                                                                                      75030E+00
                                                                                                                                                                                                                  175800E+00
                                                                                                                                                                                                                            75000E+00
                                                                                                                                                                                                                                             5090E+00
                                                                                                                                                                                                                                                      5000E+00
                                                                                                                                                                                                                                                                175000E+00
                                                                                                                                                                                                                                                                        75888E+88
                                                                                                                                                                                                                                                                                  .5000E +00
                                                                                                                                                                                                                                                                                           175000E+00
                                                                                                                                                                                                                                                                                                              175000E+80
                                                                                                                                                                                                                                                                                                                                         .175000E+00
                                                                                                                                                                                                                                                                                                                                                                    .175888E+68
         -0.334849E-07
                   378552E-07
                           410753E-07
                                     430473E-07
                                             .175000E+00
                                                               175888E+89
                                                                                           75000E+00
                                                                                                              75000E+00
                                                                                                                                75000E+00
                                                                                                                                                 175000E+00
                                                                                                                                                            75000E+00
                                                                                                                                                                    5900E+00
                                                                                                                                                                                                75000E+00
                                                                                                                                                                                                                                    2630E+90
                                                                                                                                                                                                                                                                                                    175888E+88
                                                                                                                                                                                                                                                                                                                      .175000E+00
                                                                                                                                                                                                                                                                                                                                                  .175000E+00
                                                                                                                                                                                                                                                                                                                                                          .175000E+00
                                                                                                                                                                                                                                                                                                                                                                             .175000E+00
                                                                                                                                                                                                                                                                                                                                                                                               MATRIX (GLOBAL)
                                                                                                                                                                                                                                                                                                                                                                                                               0.119738E-02
                                                                                                                                                                                                                                                                                                                                                                                                                          0.119730E-02
0.119730E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                            0.119730E-02
0.119730E-02
                                                                                                                                                                                                                                                                                                                                                                                                       0.119738E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.119730E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.119730E-02
                                              ġ
                                                                                  9
                                                                                                                       Ö
                                                                                                                                9
                                                                                                                                         9
                                                                                                                                                 8
                                                                                                                                                            9
                                                                                                                                                                                       Ŕ
                                                                                                                                                                                                                  8
                                                                                                                                                                                                                            ģ
                                                                                                                                                                                                                                                       Ö
                                                                      0.500090E+00
0.642788E+00
                                     -0.173648E+00
                                             0.000000E+00
                                                       9.173648E+00
                                                              8.342828E+88
                                                                                           8.766844E+88
8.866825E+88
                                                                                                             8.939693E+88
                                                                                                                      0.984808E+00
                                                                                                                                       8.984808E+80
                                                                                                                                                           0.866025E+00
                                                                                                                                                                   8.766844E+88
                                                                                                                                                                             P.642788E+08
                                                                                                                                                                                       8.588888E+88
                                                                                                                                                                                               8.342828E+88
                                                                                                                                                                                                        8.17364BE+08
                                                                                                                                                                                                                                   -0.342020E+00
                                                                                                                                                                                                                                             -0.50000E+00
                                                                                                                                                                                                                                                      -0.642783E+00
                                                                                                                                                                                                                                                                -0.766045E+00
                                                                                                                                                                                                                                                                        -0.866025E+00
                                                                                                                                                                                                                                                                                  -0.939693E+00
                                                                                                                                                                                                                                                                                                             -0.934808E+00
                                                                                                                                                                                                                                                                                                                      -0.939693E+69
                                                                                                                                                                                                                                                                                                                                -0.866825E+80
                                                                                                                                                                                                                                                                                                                                         -0.766844F+88
                                                                                                                                                                                                                                                                                                                                                  -0.642788E+00
                                                                                                                                                                                                                                                                                                                                                          -6.58888E+98
                                                                                                                                                                                                                                                                                                                                                                    -8.342020E+00
                                                                                                                                                                                                                                                                                                                                                                             -0.173648E+00
         -0.642788E+00
                   -0.500000E+00
                           -0.342828E+88
                                                                                                                                                 0.939693E+00
                                                                                                                                                                                                                          -9.173648E+90
                                                                                                                                                                                                                                                                                           -0.984808E+00
                                                                                                                               9.188888E+81
                                                                                                                                                                                                                  -0.874238E-07
                                                                                                                                                                                                                                                                                                    -0.100000E+01
                                                                                                                                                                                                                                                                                                                                                                                               DIAGONAL MASS
                                                                                                                                                                                                                                                                                                                                                                                                       0.119730E-02
0.119730E-02
0.119730E-02
0.119730E-02
0.119730E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                             8.119738E-82
8.119738E-82
                                                                                                                                                                                                                                                                                                                                                                            984808E+00
    .766044E+80
                           939693E+08
                                                                                                                                                                                                                                                                .642788E+88
                                                                                                                                                                                                                                                                       -0.500000E+00
-0.342020E+00
                                                                                                                                                                                                                                                                                           -8.173648E+08
                                                                                                                                                                                                                                                                                                   427539E-08
                                                                                                                                                                                                                                                                                                                      8.342020E+00
                                                                                                                                                                                                                                                                                                                               . 588888E+88
                                                                                                                                                                                                                                                                                                                                         642788E+88
                                                                                                                                                                                                                                                                                                                                                  .766844E+00
                                                                                                                                                                                                                                                                                                                                                          .866825E+88
                                                                                                                                                                                                                                                                                                                                                                    .939693E+06
                                     . 984808E+00
                                                       .984808E+00
                                                              .939693E+00
                                                                                 .765844E+88
                                                                                                   SOBBBBE+88
                                                                                                                                                                    642788E+00
                                                                                                                                                                                       .865025E+80
                                                                                                                                                                                                                            .984803E+00
                                                                                                                                                                                                                                   939693E+00
                                                                                                                                                                                                                                             866825E+88
                                                                                                                                                                                                                                                      -0.766844€+88
                                                                                                                                                                                                                                                                                                             .173648E+00
                  866025E +80
                                                                         866025E+80
                                                                                           642788E+00
                                                                                                             .342828E+88
                                                                                                                      .173648E+80
                                                                                                                               513609E-07
                                                                                                                                         .173648E+80
                                                                                                                                                 -0.342920E+00
                                                                                                                                                            . 500000E+00
                                                                                                                                                                             -8.766844E+00
                                                                                                                                                                                               939633E+83
                                                                                                                                                                                                         .984808E+00
                                             . 100000E+01
                                                                                                                                                                                                                  -0.100000E+01
                                                                                                                                                                                                                                                                                                                                                                                               432
.6427
                                                                                                                                                                                                                                                                                                                                                                                                                        9.119738E-82

8.119738E-82

9.119738E-82

9.119738E-82

6.119738E-82
                                                                                                                                                                                                                                                                                                                                                                                                                0.119738E-02
                                                                                                                                                                                                                                                                                                                                                                                                        8.119738E-02
                                                                                 œ,
                                                                                                                                                                                       ġ.
                                                                         ø
                                                                                           Ø
                                                                                                   8
                                                                                                                                                            ø
                                                                                                                                                                                               8
                                                                                                                                                                                                         ġ
                                                                                                                                                                                                                           Ģ
                                                                                                                                                                                                                                   9
                                                                                                                                                                                                                                             ۳
                                                                                                                                                                                                                                                                9
                                                                                                                                                                                                                                                                                                                                                          60
                                                                                                                                                                                                                                                                                                                                                                                               NDOF =
B-14
```

280971E-07

-8.766044E+88

والمساملة والسيسية والمساوية والجاوية والأوادية

8.285337E-86 8.285337E-86 9.285337E-86 9.285337E-86 9.285337E-86 9.285337E-86

0.285337E-96 .285337E-06 .285337E-06 .285337E-06 .285337E-06 285337E-86 285337E-06 285337E-06 .285337E-06 285337E-06 285337E-86 285337E-85 .285337E-86 3.578405E-06 3.578406E-06 3.578406E-06 3.578406E-06 3.578406E-06 3.578406E-06 3.578406E-06 3.578405E-06 .578406E-06 .578406E-06 .578406E-06 .578406E-06 .578406E-06 .578406E-06 .578406E-06 .578496E-96 .578406E-06 ..578407E-06 ..578407E-06 ..578406E-06 1,578406E-0. .578406E-06 .578406E-06 .578406E-06 .578406E-06 .578406E-06 573406E-06 0.582995E-96
0.582995E-96 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 197366-02 197306-02 197306-02 197306-02 197306-02 197306-02 197306-02 197306-02 197306-02 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19738E-82 19738E-82 19730E-02 19730E-02 .119730E-02 .119730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 9738E-82 9738E-02 9738E-82 19730E-02 30E-02 9738E-82 9730E-02 19730E-02 97 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 9.119730E-02 9.119730E-02 8.119730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19738E-82 19738E-82 19738E-82 19738E-82 19738E-82 19738E-82 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19738E-82 19738E-82 19730E-02 19730E-02 19730E-02 19730E-02 19738E-82 19738E-82 19738E-82 19738E-82 9730E-82 9730E-82 9730E-02 9738E-82 9738E-82 9738E-82 .9730E-02 S738E-92 roj 9 80.00 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 119730E-02 119730E-02 119730E-02 119730E-02 119730E-02 19730E-02 19738E-82 19738E-82 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19730E-02 19738E-82 19738E-82 19738E-82 19730E-02 19730E-02 19730E-02 19730E-02 9730E-02

0.285337E-06	0.285337E-06	0.285337E-06	0.285337E-06	0.285337E-06	0.578406E-06 0.285337E-06	0.578406E-06 0.285337E-06	0.578406E-06 0.285337E-06	0.285337E-06	0.285337E-06	0.285337E-06	0.578406E-06 0.285337E-06	0.578407E-06 0.285337E-06
0.582905E-06 0.578406E-06 0.285337E-06	0.582905E-06 0.578405E-06 0.285337E-06	0.578406E-06 0.285337E-06	0.578406E-06 0.285337E-06	0.578405E-06	0.578406E-06	0.578406E-06	0.578406E-06	0.578405E-06 0.285337E-06	0.578405E-06 0.285337E-06	0.578406E-06 0.285337E-06	0.578406E-06	0.578407E-06
0.582905E-06	0.582905E-06	0.582905E-06	0.582905E-06	0.582905E-06	0.582905E-06	0.582905E-06	0.582905E-06	0.582905E-06	0.582905E-06	0.582905E-06	0.582905E-06	0.582905E-06
0.119730E-02	8.119738E-82	0.119730E-02	0.119730E-02	0.119730E-02	0.119730E-02	0.119730E-02	0.119730E-02	0.119738E-02	0.119730E-02	0.119730E-02	0.119730E-02	0.119730E-02
0.119730E-02	8.119738E-82 8.119738E-82 8.119738E-82	R. 1.9738E-82 8.119738E-82	A. 119738E-82 8.119738E-82 8.119738E-82	A.119738E-82 8.119738E-82 8.119738E-32	0.119730E-02 0.119730E-02 0.119730E-02	8,119738E-82 8,119738E-82 8,119738E-82	A.119738E-82 8.119738E-82	A 11973AF-A2 A 11973AE-B2	A.119738E-82 8.119738E-82	A. 119730E-02 B. 119730E-02	A 119730E-02	0.119730E-02 0.119730E-02
0.119730E-02	8.119738E-82	P. 1.9738E-02	A. 119738E-02	A.119738E-82	0.119730E-02	B.119738E-82	0.119730E-02	9.119730F-02	R. 119738E-82	A. 119730F-02	N. 119730E-02	0.119730E-02

NDOF = 432 DOF IDENTIFICATION VECTOR

54	42	26	74	8	106	124	142	126	174	192	206	224	242	526	274	292	306	324	342	326	374	392	406	454	442	426	474	492	206	524	542	226	574
23	4	22	73	91	105	123	141	155	173	191	202	223	241	255	273	291	305	323	341	355	373	391	402	423	441	455	473	491	502	523	541	522	573
22	36	24	72	98	104	122	136	154	172	186	204	222	236	254	272	586	304	322	336	354	372	386	484	422	436	454	472	486	504	522	236	554	572
21	32	23	71	83	193	121	135	153	171	185	203	221	235	253	271	282	303	321	332	353	371	382	493	421	435	453	471	482	503	521	532	553	571
16	34	25	99	84	102	116	134	152	166	184	202	216	234	252	566	284	302	316	334	352	366	384	482	416	434	452	466	484	205	516	534	225	266
15	33	21	65	83	101	115	133	151	165	183	201	215	233	251	265	283	301	315	333	351	365	383	401	415	433	451	465	483	501	515	533	551	265
14	32	4	64	85	96	114	132	1 46	164	182	196	214	232	246	264	282	296	314	332	346	364	382	396	414	432	446	464	482	496	514	532	546	564
13	31	5	63	81	92	113	131	145	163	181	195	213	231	245	263	281	295	513	331	345	363	361	395	413	431	445	463	481	495	513	531	545	563
12	92	4	62	92	94	112	126	4	162	176	194	212	226	244	262	276	294	312	326	344	362	376	394	412	426	44 44	462	476	494	512	226	544	562
11	22	43	19	22	93	111	125	143		-175		211	225	243	261	275	293	311	325	343	361	375	393	411	425	443	461	475	493	511	525	543	561

592 668 654 655 786 724	
591 6623 641 655 673 691 705	ORDER)
586 636 636 672 686 728 722 722	
585 603 621 635 653 671 703 721	58 38 44 42 44 44 45 46 48 48 48 48 48 48 48 48 48 48
584 616 634 652 684 782 716	CCOUNTERCLOCKWISE 33 33 34 35 39 39 39 39 40 41 41 42 42 43 44 45 49 49 49 49 49 49 49 49 49 49 49 49 49
583 601 615 633 651 665 683 701 715	NODES 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
582 596 614 632 682 682 696 714	HIND
581 595 613 645 663 681 695 713	TYPE 418 418 418 418 418 418 418 418 418 418
576 534 612 626 644 662 676 694 712 726	
575 593 611 625 643 661 675 711 725	R-17 EFF FFF FFF FFF FFF FFF FFF FFF FFF FF

ļ

A SELECTION OF SEL

CALCULATION OF ELEMENT INTERPOLATION AND CONSTITUTIVE MATRICES COMPLETE. Read Uritten 50226 56448 56448 LIORDS STORED 30528 186674 Words XFD TABLE LIDRIDS TRANSFERRED 186674 Next Limit 478 100000 0.848223 SECONDS. FLOATING POINT OPERATION COUNT NFLOPS NONZEROS 26748 36 STORAGE 1 Active devices (0 full) VARIATION DATA CONFIGURATION DOF ASSIGNMENT GLOBAL VECTORS FILE FUNCTION uso USD MASSES RESOURCES 32 Cd1oc 333 COADS 22 +LDI Ext-filnam Unit EC Opt PRU + 8 FOR010 10 17 64 SAVED ON UNIT 170 REQUESTS 15 22 Urites, STAGS1 MASS STORAGE STATISTICS AUXILIARY 38 ESTIMATED FACTORIZATION TIME 585 713 585 32 32 20012 FILE LENGTH AVERAGE SEMI-BANDUIDTH = NODAL COORDINATES MASS/DOF VECTORS 55 ELAPSED TIME 5.171894E+81 Ø To ops, 410 +++ CLOSE, 10 FMDATA FILE NAME FMDATA NEO 216 CLOSE, CLOSE, 32 ‡‡ B-18

APPENDIX C USER INFORMATION FOR THE FLUID PREPROCESSOR FLUMAS

This appendix includes a copy of the users manual, and a sample input deck and subsequent output for the infinite cylindrical shell problem presented in Section 4.

LUMAS

THIS FUNCTIONAL COMPONENT OF THE UNDERWATER SHOCK ANALYSIS CODE CONSTRUCTS THE FLUID MASS MATRIX FOR A STRUCTURE SUBMERGED IN AN INFINITE, INVISCID, INCOMPRESSIBLE FLUID BY THE BOUNDARY ELEMENT TECHNIQUE. IT ALSO GENERATES FLUID MESH DATA AND A SET OF TRANSFORMATION COEFFICIENTS THAT RELATE THE STRUCTURAL AND FLUID DEGREES OF FREEDOM ON THE WET SURFACE. THE CODE HAS THE CAPABILITY TO TREAT STRUCTURES CONTAINING BOTH SURFACE-OF-REVOLUTION (SOR) AND GENERAL-GEOMETRY (GEN) COMPONENTS. THE CODE CAN CONSTRUCT THE FLUID MASS MATRIX FOR BOTH QUARTER AND HALF MODELS WITH ARBITRARILY ASSIGNED SYMMETRY OR ANTISYMMETRY CONDITIONS, AND CAN SIMULATE THE TWO-DIMENSIONAL PLANE STRAIN BEHAVIOR OF LONG CYLINDERS. THE PRESENCE OF A FREE SURFACE IN THE VICINITY OF THE SUBMERGED STRUCTURE CAN ALSO BE ACCOUNTED FOR. A VERY USEFUL DIAGNOSTIC TOOL CONTAINED WITHIN THE CODE IS THE ABILITY TO SOLVE THE FLUID BOUNDARY MODE EIGENVALUE PROBLEM

THIS PROGRAM WAS DEVELOPED AND CODED BY JOHN A. DERUNTZ, JR. OF LOCKHEED MISSILES AND SPACE CO. RESEARCH LABS IN PALO ALTO CALIFORNIA. PLEASE CONSULT WITH AUTHOR BEFORE MAKING CHANGES AND ALSO REPORT ANY MALFUNCTIONS OR PROBLEMS. WRITE IN CARE OF LOCKHEED PALO ALTO RESEARCH LABORATORY, BLDG 205, DEPT 52-33, 3251 HANOVER ST., PALO ALTO, CALIF., 94304 OR CALL 415-493-4411 EXTS. 45069 OR 45133.

AXIMUM VALUES

MAXIMUM	NUMBER	90	MAXIMUM NUMBER OF STRUCTURAL GRID POINTS	777	GRID	N10d	2					•				-	0	1000	0		
MAXIMUM	NUMBER	96	MAXIMUM NUMBER OF GENERAL SURFACE ELEMENTS	SUE	PFACE	ELEM	ENT	S			•	•	٠				4	4 0 0	0		
MAXIMUM	NUMBER	96	MAXIMUM NUMBER OF SURFACE OF REVOLUTION SEGMENTS	96	REVO	LUTIO		EGM	ENT	S	•	•					2	2 0 0	0		
MAXIMUM	NUMBER	0F	MAXIMUM NUMBER OF SURFACE OF REVOLUTION BRANCHES	9.F	REVO	ורטדזס	<u>5</u>	Ϋ́Υ	CHE	Ŋ	•	•							g		
	•	•	•	•	•	*	•	٠	•	٠	•	•	•	•	٠	٠	•	•	•	٠	

WARNING FROM THE PROGRAMMER GENER

*

THIS CODE CONTAINS THE SPECIAL INGREDIENT DMGASP NOT FOUND IN OTHER BRANDS. DMGASP IS A DATA MANAGEMENT UTILITY MODULE THAT WILL ACTIVATE AND DEACTIVATE ALL AUXILIARY STORAGE DATA FILES REFERENCED BY THE CODE. HENCE THE NAMES OF SUCH FILES SHOULD NOT APPEAR ON ANY CONTROL CARDS IN THE RUN STREAM WHICH MIGHT NORMALLY ACTIVATE AND DEACTIVATE THE FILES. THE USER IS ALSO CAUTIONED THAT

PREVICUSLY CREATED FILES MUST ALREADY BE RESIDENT IN THE SYSTEM BEFORE THE RUN IS INITIATED. IF A FILE HAS BEEN ROLLED-OUT TO TAPE DMGASP WILL ATTEMPT TO HAVE THE FILE ROLLED-IN EVERY 15 SECONDS FOR UP TO 6 MINUTES ON THE UNIVOC 1100-EXEC B OPERATING SYSTEM. IF AN EXISTING DATA FILE HAS NOT BEEN REFRENCED FOR SOME TIME IT IS THEREFORE GOOD POLICY TO SIMPLY ACTIVATE AND DEACTIVATE THE FILE BEFORE EXECUTION OF THIS CODE. IF THE USER ATTEMPTS TO CREATE A NEW DATA FILE WITH A NAME WHICH IS ALREADY ASSIGNED TO AN OF THE FILE GENERATED BY THIS CODE. IF THE USER ATTEMPTS TO CREATE BY THE FILE GENERATED BY THIS RUN TO AVOINFLICT. FILE NAME DUPLICATION WILL CAUSE NO PROBLEM ON THE COC SCOPE OPERATING SYSTEM AS SCOPE WILL SIMPLY CATALOG A NEW CYCLE OF THE SAME FILE. ON THE OTHER HAND THE CDC NOS SYSTEM IS SIMILAR TO UNIVAC IN THIS REGARD AND THE RUN WILL ABORT SINCE THE NAME-CHANGING FEATURE OF MON'CDC SCOPE, THE QUALIFIER IS INTERPRETED AS THE USERS TO, WHICH IN MOST INSTALLATIONS CAN BE SELECTED ALMOST ARBITRARILY. ON CDC NOS, THE OUALIFIER IS INTERPRETED AS THE USERS TO, WHICH IS USUALLY PRESCRIBED BY THE INSTALLATION. A CYCLE NUMBER CAN ALSO BE APPENDED TO GIVE THE FORM OUALIFIER*FILENAME(CYCLE) ON CDC SCOPE.

PROGRAM SIZE

ALL ARRAYS REFERRENCED IN THIS CODE THAT ARE PROBLEM DEPENDENT RESIDE IN BLANK COMMON IS DETERMINED BY A PARAMETER STATEMENT IN THE MAIN PROGRAM FOR THE UNIVAC 1100-05 VERSION, HENCE A RECOMPILATION IS NECESSARY TO INCREASE OR DECREASE CORE ALLOCATION. IN THE CDC 6600 VERSION RECOMPILATION IS UNNECESSARY AS THE LENGTH OF BLANK COMMON IS SET BY A FIELD LENCTH REQUEST IN THE CONTROL CARD DECK

DEFINITION OF INPUT PARAMETE

INPUT VARIABLE NAMES GIVEN BELOW ARE GENERALLY THOSE WHICH ARE ALSO USED IN THE CODING AND THE VARIABLE TYPES CORRESPOND TO STANDARD FORTRAN USAGE:

A - ALPHANUMERIC
E - FLOATING POINT
F - FIXED POINT
I - INTEGER
L - LOGICAL

VARIABLE TYPE DESCRIPTION

NUMBER OF STRUCTURAL NODE OR GRID POINTS

NSTRC

C-3

WHOSE GLOBAL COORDINATES ARE TO BE READ AS INPUT DATA FROM CARDS. AT THE VERY LEAST THE SUM OF NSTRC AND NSTRF (SE BELOW) MUST INCLUDE ALL THE WET NODES, IE., THOSE LYING ON THE FLUID-STRUCTURE CONTACT BOUNDARY. IF THE ULTIMATE PURPOSE OF THIS RUN IS TO CONDUCT AN UNDERWATER SHOCK ANALYSIS WITH: THE USA CODE FOR THE STRUCTURE IN QUESTION THEN IT IS ADVISABLE TO INCLUDE IN THE INPUT TO THIS PROCESSOR ALL OF THE INTERNAL OR DRY STRUCTURAL NODE POINTS AS WELL IN ORDER TO FACILITATE POST PROCESSING OF THE TRANSIENT RESPONSE ANALYSIS FOR THE DRY STRUCTURE. THIS NUMBER MAY ALSO INCLUDE ADDITIONAL NODE POINTS THAT ARE NOT PART OF THE STRUCTURAL MODEL BUT WHICH ARE NECESSARY TO DEFINE THE FLUID MESH. HOWEVER SUCH ADDITIONAL NODES SHOULD APPEAR LAST AS THEY ARE NOT REQUIRED BY ANY OTHER USA PROCESSOR AND ARE THEREFORE ULTIMATELY DELETED	NUMBER OF STRUCTURAL NODE OR GRID POINTS WHOSE GLOBAL COORDINATES ARE TO BE READ FROM A PERMANENT FILE (SEE GRONAM). ADDITIONAL NODE POINTS THAT ARE NOT PART OF THE STRUCTURAL MODEL ARE NOT PERMITTED IN THIS DATA SET IF ACTUAL STRUCTURAL NODE POINT DATA IS ALSO INPUT FROM CARDS. THIS IS DUE TO THE FACT THAT THE FILE DATA IS READ AN ADDITIONAL NON-STRUCTURAL NODE POINTS MU ADDITIONAL NON-STRUCTURAL NODE POINTS THIS FILE MUST ALWAYS BE REFERENCED WHEN INTERFACING WITH STAGS	NUMBER OF GENERAL FLUID DEGREES OF FREEDOM WHOSE ASSOCIATED ELEMENTS CANNOT BE FORMED BY AN AUTOMATIC MESH GENERATION PROCEDURE NUMBER OF DISTINCT SURFACE OF REVOLUTION AXES OR BRANCHES	NUMBER OF GENERAL FLUID CONTROL POINTS WHICH LIE ON A RIGHT CIRCULAR CYLINDRICAL SURFACE WHOSE ASSOCIATED RECTANGULAR ELEMENTS COVER THE ENTIRE LATERAL SURFACE. SUCH ELEMENTS CAN BE FORMED BY AN AUTOMATIC, MESH GENERATION SCHEME WHICH IS EMBEDDED IN THE CODE. STRUCTURAL GRID POINT COORDINATES NEED NOT BE INPUT IN THIS CASE UNLESS DICTATED BY OTHER	STARTING CIRCUMFERENTIAL HARMONIC FOR SURFACE OF REVOLUTION ELEMENTS	FINAL CIRCUMFERENTIAL HARMONIC FOR
	.		-	-	-
	NSTRF	NGEN NBRA	NCYL	NHA F	TATA
111 111 122 123 123 123 124 123 135 135 135 136 137	139 140 141 142 143 146 146 147 149 150 150	153 155 156 156 158	162 161 162 163 165 167 169	171 172 173	*

一年 できるとう

SURFACE OF REVOLUTION ELEMENTS	INCREMENT TO BE APPLIED IN ASSIGNING CIRCUMFERENTIAL HARMONICS IN THE RANGE FROM NHAS TO WHAF	NUMBER OF TRIGONOMETRIC FUNCTIONS THAT WILL BE USED IN ASSIGNING SURFACE OF REVOLUTION FLUID DEGREES OF FREEDOM. PERMISSIBLE VALUES ARE:	1 - EITHER SINE OR COSINE WILL BE USED ACCORDING TO VALUE OF ITRG DESCRIBED BELOW 2 - BOTH SINE AND COSINE FUNCTIONS WILL BE USED	IF NFUN = 1 ITRG DESIGNATES THE PARTICULAR TRIGONOMETRIC FUNCTION TO BE USED FOR SURFACE OF REVOLUTION FLUID DEGREES OF FREEDOM. ALLOWABLE VALUES ARE:	1 - COSINE FUNCTION IS USED 2 - SINE FUNCTION IS USED	NUMBER OF SURFACE OF REVOLUTION SEGMENTS ALONG ANY PARTICULAR AXIS OR BRANCH	NUMBER OF SUB-ELEMENTS ARGUND THE CIRCUMFERENCE OF A SURFACE OF REVOLUTION BRANCH. UNDER NORMAL CONDITIONS USE A VALUE OF ZERO AND THE CODE WILL CHOOSE AN APPROPRIATE VALUE BASED UPON THE ASPECT TWELVE (12) IS ALLOWED AND NCIR IS AND VALUE OF FOUR (4). USE A NON-ZERO VALUE ONLY UNDER SPECIAL CIRCUMSTANCES AND ADHERE TO THESE GUIDELINES	FLUID MASS DENSITY	FLUID SPEED OF SOUND	A PARAMETER BOUNDED BY ZERO AND UNITY THAT GOVERNS THE USE OF THE IMPROVED DOUBLY ASYMPTOTIC APPROXIMATION. A VALUE OF ZERO REDUCES THE FLUID SOLUTION TO THE STANDARI DOUBLY ASYMPTOTIC APPROXIMATION, HOWEVER YELSOLUEN BY ANY FUNDAMENTAL PRINCIPLE. IT HAS BEEN OBSERVED THAT A VALUE OF 1.0 LEADS THE BEST ACCURACY FOR A SPHERICAL SHELL WHILE A VALUE OF 0.5 SEEMS TO BE BEST FOR THE INFINITE CYLINDRICAL SHELL. IT CAN BE SHOWN THAT THIS SCALAR PARAMETER DOES HAVE A RELATIONSHIP WITH THE DIAGONAL LOCAL CURVATURE MATRIX FOR THE FLUID ELEMENTS. IF DAAZ RUNS ARE CONTEMPLATED AS WELL AS
	H			-				н.	n.	m.
	NHAI	NFUN		ITRG	•	NSEG	NCIR	RHO	CEE	DAA2
175	176 177 178 179	180 181 183 184	185 187 188 189	191 192 194 195	196 197 198	200 201	202 203 204 205 207 208 210 211	213	215 216	217 219 220 221 222 224 225 226 230 231

The state of the state of

AND ORIENTATION OF THE SYMMETRY PLANE. THIS OPTION CANNOT BE USED SIMULTANEOUSLY WITH FRESUR = .TRUE.	TRUE IF THE FLUID MESH INPUT GEOMETRY CORRESPONDS TO A QUARTER MODEL, OTHERWISE FALSE. THE XZ AND YZ PLANES ARE CONSIDERED TO BE THE PLANES OF SYMMETRY OF THE MODEL BY DEFAULT. IF NECESSARY A COORDINATE ROTATION CAN BE APPLIED TO SATISFY THIS REQUIREMENT (SEE ROTQUA BELOW). IF NCYL IS NOT EQUAL TO ZERO SUCH A ROTATION MUST BE USED IN CONJUNCTION WITH THE QUARTER MODEL. THIS ROTATION WILL NOT AFFECT THE ORIENTATION OF THE FLUID MESH REFERENCE AXES IN SUBSEQUENT USA PROCESSING	TRUE IF THE DIAGONAL GENERALIZED AREA MATRIX IS TO BE PUNCHED OUT ON CARDS FOR INPUT TO NASTRAN, OTHERWISE FALSE	TRUE IF THE FLUID MASS MATRIX OR ITS MANIPULATED FORM WHICH APPEARS IN THE DAA EQUATION IS TO BE PUT IN THE PERMANENT FILE DESIGNATED BY FLUNAM IN A FORMAT WHICH CAN BE READ BY NASTRAN, OTHERWISE FALSE	TRUE IF THE FLUID MASS MATRIX ITSELF IS TO BE PUT IN PERMANENT STORAGE, OTHERWISE FALSE, IN CONTRAST TO EARLIER VERSIONS OF THIS CODE THIS PARAMETER CAN BE SET TO FALSE FOR NORMAL OPERATION OF THE USA CODE	TRUE IF THE MANIPULATED FORM OF THE FLUID MASS MATRIX WHICH APPEARS IN THE DAA EQUATION IS TO BE PUT IN PERMANENT STORAGE, OTHERWISE FALSE. THIS MATRIX CONSISTS OF THE INVERTED FLUID MASS MATRIX THAT HAS BEEN PRE- AND POST-MULTIPLIED BY THE DIAGONAL FLUID ELEMENT AREA MATRIX AND THEN MULTIPLIED BY BOTH THE FLUID. IN CONTRAST WITH EARLIER VERSIONS OF THIS CONTRAST WITH EARLIER VERSIONS OF THIS FORE OF SOUND OF THE FLUID.	TRUE IF THE PERMANENT FILE CONTAINING THE FLUID MASS MATRIX OR ITS MANIPULATED FORM IS TO BE CREATED BY BUFFERED, UNFORMATTED FORTRAN WRITE STATEMENTS, OTHERWISE FALSE AND DMGASP WILL CREATE THE FILE	TRUE IF THE PERMANENT FILE CONTAINING THE FLUID MESH GEOMETRY IS TO BE CREATED BY BUFFERED, UNFORMATTED FORTRAN WRITE STATEMENTS, OTHERWISE FALSE AND DMGASP WILL CREATE THE FILE
	ب	٦	٦	L	J	J	٦
	QUAMGD	PCHCDS	NASTAM	STOMAS	STOINV	FRWTFL	FRWTGE
291 292 293	295 296 299 300 300 303 303 305 306	308 308 310	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	319 320 321 323 323	325 326 327 328 329 333 331 333 336 336	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	344 345 346 347

TRUE IF THE PERMANENT FILE CONTAINING STRUCTURAL GRID POINT COORDINATES HAS BEEN CREATED BY BUFFERED, UNFORMATTED FORTRAN WRITE STATEMENTS, OTHERWISE FALSE IN WHICH CASE IT IS ASSUMED THAT DMGASP WAS USED TO CREATE THE FILE. CONSULT A LISTING OF THE SUBROUTINE READST FOR THE FILE STRUCTURE THAT IS EXPECTED WHICH DIFFERS FOR THE TWO POSSIBLE CASES. THIS FILE MUST EXIST FOR INTERFACING WITH STAGS	TRUE IF FREE SURFACE EFFECTS ARE TO BE INCLUDED IN THE FLUID MASS MATRIX, OTHERWISE FALSE. THE VARIABLES DEPTH, CXFS, CYFS, AND CZFS ARE USED TO DEFINE THE LOCATION AND GRIENTATION OF THE FREE SURFACE. THIS OPTION CANNOT BE USED SIMULTANEOUSLY WITH HAFMOD = .TRUE.	TRUE IF SOME RENUMBERING OF THE STRUCTURAL NODE NUMBERS MUST BE CARRIED OUT AFTER THE FLUID-STRUCTURE TRANSFORMATION DATA HAS BEEN GENERATED, OTHERWISE FALSE. THIS OPTION IS IMPORTANT IF THE USE OF A PARTICULAR STRUCTURAL NODE NUMBER IS CONVENIENT TO DEFINE THE FLUID MESH BUT, INSTEAD, A NEARBY STRUCTURAL NODE SHOULD BE USED FUR FORCE APPLICATION DURING THE UNDERWATER SHOCK ANALYSIS TIME INTEGRATION RUN. THIS CASE IS PARTICULARLY IMPORTANT IF THE TWO POINTS IN QUESTION ARE OOINED BY A RIGID LINK AND THE STUCTURAL POINT ORIGINALLY USED TO DEFINE THE FLUID MESH IS ELIMINATED FROM THE STIFFNESS MATRIX BY A CONSTRAINT EQUATION. WITHOUT THE USE OF THIS OPTION THE APPROPRIATE FORCE WOULD	TRUE IF THE FLUID MESH GEOMETRY AND FLUID-STRUCTURE TRANSFORMATION DATA IS TO PUT IN PERMANENT STORAGE, OTHERWISE FALSE	TRUE IF THE FLUID MESH GEOMETRY IS TO BE REFERRED TO A SET OF GLOBAL COORDINATE AXES WHICH IS DIFFERENT FROM THAT OF THE BASIC INPUT DATA FOR ALL SUBSEQUENT USA PROCESSING (SEE GEOANG), OTHERWISE FALSE	REFERRED TO A SET OF GLOBAL COORDINATE AXES WHICH IS DIFFERENT FROM THAT OF THE BASIC INPUT DATA ONLY FOR COMPUTATION OF THE FLUID MASS MATRIX (SEE QUAANG). OTHERWISE FALSE. THIS OPTION IS TO BE USED IF A QUARTER MODEL IS REQUIRED AND THE INPUT DATA REFERENCE AXES DO NOT COINCIDE WITH THE DEFAULT SYMMETRY AXES. THIS
٦	٦	J.	٦	ب	ı
FRWTGR	FRESUR	RENUMB	STOGMT	ROTGEO	ROTQUA
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	360 361 361 365 366	3 4 6 8 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	388 389 390	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3398 3398 400 400 403 405 605

44444444444444444444444444444444444444	FLUNAM GEONAM GRDNAM DAANAM	ब ब ब ब	FEATURE CAN ALSO BE USED IN CONJUNCTION WITH THE TWO DIMENSIONAL PLANE STRAIN MODEL AS WELL (SEE TWODIM) NAME OF PERMANENT MASS STORAGE FILE WHICH WILL CONTAIN THE FLUID MASS MATRIX NAME OF PERMANENT MASS STORAGE FILE WHICH WILL CONTAIN THE FLUID MESH GEOMETRY AND FLUID-STRUCTURE TRANSFORMATION DATA NAME OF PERMANENT MASS STORAGE FILE WHICH CONTAINS THE GLOBAL COORDINATES OF THE STRUCTURAL GRID POINTS NAME OF PERMANENT MASS STORAGE FILE WHICH WILL CONTAIN THE MANIPULATED DAA FORM OF THE FILLD MASS MATRIX
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NVEC	.	NUMBER OF FLUID BOUNDARY MODE EIGENVECTORS DESTRED. THESE ARE ORDERED STARTING WITH THE LOWEST ORDER ORDES, ITS IT ALL THE MODES ARE DESTRED THE USER CAN JUST SET NVCC TO 1000 AND THE CODE WILL AUTOMATICALLY REDUCE THIS NUMBER TO THE AUTOMATICALLY REDUCE THIS NUMBER TO THE AUTOMATICALLY REDUCE THIS NUMBER TO THE CONVENIENT WHEN THE MODEL CONTAINS SOR ELEMENTS FOR SEVERAL HARMONICS AND/OR BRANCHES AND THE USER DOES NOT WANT TO SPEND TIME COUNTING UP THE TOTAL. THIS IS RECOMMENDED ONLY FOR SMALL OR INTERMEDIATE SIZE PROBLEMS. FOR LARGE PROBLEMS PRINTING OF ONLY THE FIRST TO EIGENVECTORS IS RECOMMENDED. AS IT IS ONLY THE FIRST FEW ARE GENERALLY USEFUL TO VERIFY SYMMETRIES ON OTHER FEATURES OF THE MODEL. THE FIRST THE FLUID WODEL CONSISTS SOLELY OF BEAM TYPE SOR ELEMENTS.
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NUMZ ZLEN	- ü	NUMBER OF FICTITIOUS ELEMENTS TO BE ADDED IN AXIAL DIRECTION WHICH INCREASE THE HALF LENGTH OF THE SURFACE FOR THE SIMULATION OF A TWO DIMENSIONAL PLANE STRAIN FLUID MASS MATRIX. THESE ELEMENTS DD NOT INTRODUCE NEW DEGREES OF FREEDOW LENGTH OF FICTITIOUS AXIAL ELEMENTS USED IN THE SIMULATION OF A TWO DIMENSIONAL PLANE STRAIN FLUID MASS MATRIX
4577 4458 460 462 463	00	ŭ.	USED FOR FLUID MESH MODELS WITH PLANES OF SYMMETRY. CQ TAKES ON THE VALUE OF EITHER PLUS OR MINUS ONE TO DENOTE SYMMETRIC OR ANTISYMMETRIC FLOW CONDITIONS IN EACH FLUID REGION INCLUDING THOSE THAT ARE NOT EXPLICITLY CONTAINED IN THE MODEL. FOR A QUARTER MODEL 4 VALUES ARE REQUIRED. ONE

465 466			FOR EACH QUADRANT, ONLY 2 VALUES ARE NECESSARY FOR A HALF MODEL
468 470	ЈЕРТН	E. F	MAGN/TUDE OF PERPENDICULAR DISTANCE FROM THE ORIGIN OF COORDINATES TO THE PLANE OF A FREE SURFACE OF THE PLANE OF SYMMETRY
471			HALF MODEL
473	CXFS, CYFS.	E.F	OF A
474 475	CZFS		TO THE PLANE OF A FREE SURFACE OR THE PLANE OF SYMMETRY FOR A HALF MODEL AND
476			
478			EXPLICITY CONTAINED THE MODEL. THEY MUST BE RELATIVE TO THE GLOBAL CAPTESIAN
479			
481			FLUID MESH GEOWETRY (SLE ROTGED AND
482			ROTOUA) THESE QUANTITIES WILL ALSO BE TOANSEDOWED
484			
485	PATM	E.F	AMBIENT ATMOSPHERIC PRESSURE THAT IS USED
485			ULIIMMIELY 10 1EST FOR BULK CAVITATION IN THE UNDERWATER SHOCK ANALYSTS
468			
489	GRAVAC	E,F	ACCELERATION DUE TO GRAVITY
490	CEDANO	u	CH EDIAN ANCIES OF DETATION WEED TO
492	GEORING		DESCRIBE A PERMANENT CORDINATE
493			TRANSFORMATION FOR THE FLUID MESH
494			GEOMETRY, THREE VALUES EXPRESSED IN
495			DEGREES ARE REQUIRED. THE FIRST IS THE
496 497			RUTATION ABOUT THE ORIGINAL X AXIS, THE SECOND IS THE ROTATION ABOUT THE LINE
498			COINCIDENT WITH THE CURRENT ORIENTATION
499			OF THE ORIGINAL Y AXIS AFTER THE FIRST
200			ROTATION, AND FINALLY THE THIRD IS THE
501			ROTATION ABOUT THE LINE COINCIDENT WITH THE CUBBENT ADJENTATION OF THE ODIGINAL 7
503			
504			ALTHOUGH THIS METHOD MAY BE SOMEWHAT
505			SPATIAL
50.4 50.4			INTEREST WILL DEAL ONLY WITH VALUES OF PRACTICAL
508			
509			
510	OUAANG	E.F	EULERIAN ANGLES OF ROTATION USED TO
			DESCRIBE A TEMPORARY COORDINATE
512			TRANSFORMATION FOR THE FLUID MESH
5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			GEOMETRY (SEE GEORNG ABOVE FOR PRECISE OFFINITION) IF A CUARTER MODEL IS
515			REQUIRED AND THE MESH HAS BEEN GENERATED
516			AUTOMATICALLY FOR A CYLINDRICAL SURFACE
517			BOUNDED BY O AND 180 DEGREES THEN THE
50 TE			APPROPRIATE ANGLES TO USE MEKE WOULD BE 90, 90, AND 0
520			
521 522	NSHIFI		A PARAMFIER FHAT IS ADDED TO THE VALUE OF NLAST (SEE BELOW) IN THE NUMBERING OF

FLUID ELEMENTS AUTOMATICALLY GENERATED FOR CYLINDRICAL SURFACES. THIS OPTION IS USEFUL IF A FLUID MESH HAS BEEN CONSTRUCTED WITH BOTH GEN ELEMENTS AND CYLINDRICAL SURFACE ELEMENTS AND THEN GENERANDELING EFFORT. SINCE GEN ELEMENTS APPEAR FIRST IN THE ELEMENT LIST THE USE OF THIS PARAMETER ELIMINATES ANY NEED TO CHANGE THE NUMBERING SCHEME ON DATA CARDS FOR CYLINDRICAL SURFACE ELEMENTS. NSHIFT MAY BE POSITIVE, NEGATIVE, OR ZERO	STRUCTURAL GRID POINT NUMBER	INDICATOR TO DENOTE TYPE OF COORDINATE SYSTEM GRID POINT DATA IS REFERRED TO. ALLOWABLE VALUES ARE:	O - GLOBAL CARTESIAN 1 - POLAR CYLINDRICAL, AX7S IN GLOBAL X DIRECTION 2 - POLAR CYLINDRICAL, AX1S IN GLOBAL Y DIRECTION 3 - POLAR CYLINDRICAL, AXIS IN GLOBAL Z OTRECTION	CARTESIAN COORDINATES OF STRUCTURAL GRID POINT IF NS = 0. IF NS = 1, 2, OR 3 THESE ARE THE RADIAL, CIRCUMFERENTIAL, AND AXIAL COORDINATES RESPECTIVELY IN A POLAR CYLINDRICAL SYSTEM. THE CIRCUMFERENTIAL ANGLE MUST BE EXPRESSED IN DEGREES AND BE MESSURED FROM THE Y, Z, OR X AXIS RESPECTIVELY ACCORDING TO WHETHER NS IS EQUAL TO 1, 2, OR 3. IF THE POINT IN OUESTION IS INTERIOR TO THE WET SURFACE OR IS NOT USED IN THE DEFINITION OF THE FLUID MESH THE COORDINATES THEMSELVES ARE NOT REQUIRED	GENERAL FLUID ELEMENT INDEX WHICH RUNS FROM 1 TO NGEN IN SEQUENTIAL ORDER	NUMBER OF CORNER POINTS OF GENERAL FLUID ELEMENT, CURRENTLY RESTRICTED TO THE VALUES 3 OR 4. SEE FLUID ELEMENT LIBRARY. THE CORNER POINTS WILL USUALLY PARTICIPATE IN THE FLUID-STRUCTURE TRANSFORMATION	PUMBER OF ADDITIONAL STRUCTURAL POINTS ASSOCIATIO WITH A PARTICULAR GENERAL FLUID ELEMENT, CURRENTLY HAVING PERMISSIBLE VALUES JF O, 1, 2, 3, AND 5 IF KTRN = 0 (SEE BELOW AND FLUID ELEMENT LIBRARY). IF KTRN IS NOT EQUAL TO ZERO THEN IT MAY HAVE ANY VALUE UP TO 12 FOR RECTANGLES AND 13 FOR TRIANGLES. IHESE ADDITIONAL POINTS
	-	м		u.	H	₩	
	NSEQ	S X		XC.YC.2C	NEL	O Z	Z
55 55 55 55 55 55 55 55 55 55 55 55 55	536	553 533 540 540	սնսնը 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ប្រជា ១១ ម ១១ ១ ១១ ១១ ១១ ១១ ១១ ១១ ១១ ១១ ១១ ១១ ១១ ១	566 568 569 570 571	573 574 575 576 577 578 578

ALWAYS PARTICIPATE IN THE FLUID-STRUCTURE TRANSFORMATION. IT IS EXTREMELY IMPORTANT TO THE UNDERWATER SHOCK ANALYSIS THAT ALL WETTED STRUCTURAL NODFS LOCATED WITHIN AND ON THE BORDERS OF THE FLUID ELEMENT BE INCLUDED IN NN EVEN IF THE CASE KTRN NOT EQUAL TO ZERO MUST BE INVOKED FLUID ELEMENT CURVATURE FLAG. ACCEPTABLE VALUES ARE:	O - FLAT ELEMENT 1 - CURVED ELEMENT, CODE WILL DETERMINE AVERAGE CURVATURE OF ELEMENT FROM NEIGHBOR POINT !OCATIONS. DO NOT USE THIS OPTION IF NN = O 2 - CURVED ELEMENT, USER MUST INPUT PRINCIPLE RADIUS IS SET TO 10000 OR GREATER THEN ITS ASSOCIATED CURVATURE WILL BE SET TO ZERO	SHOULD HAVE THE VALUE OF ZERO UNDER NORMAL CIRCUMSTANCES WHEN THE FLUID-STRUCTURE TRANSFORMATION COEFFICIENTS ARE COMPUTED BY THE CODE. IF KTRN IS NONZERO THEN THESE COEFFICIENTS ARE DETERMINED BY HAND FOR THE ELEMENT IN QUESTION AND MUST BE READ AS INDUI DATA. THIS MUST BE DONE IF THE ELEMENT DOES NOT FIT ANY OF THE STANDARD PATTERNS IN THE FLUID ELEMENT LIBRARY. A DISCUSSION OF HOW TO DO THIS IN AN APPROXIMATE FASHION IS GIVEN BELOW (SEE TRAN)	NODE POINT NUMBERS OF FLUID ELEMENT CORNER POINTS TAKEN IN COUNTER CLOCKWISE DIRECTION. IN GENERAL THE SIDE DEFINED BY THE FIRST TWO CORNER POINTS SHOULD BE ROUGHLY ORIENTED IN THE DIRECTION OF ONE OF THE ELEMENT SO AS TO KEEP THE PRODUCT OF INERTIA OF THE ELEMENT SO AS TO KEEP THE PRODUCT OF INERTIA OF THE ELEMENT SO THE PROLUGUED IN THE PRINCIPAL MOMENTS OF INERTIA IF THIS RULE IS NOT FOLLOWED IT IS POSSIBLE THAT THE FLUID STRUCTURE TRANSFORMATION ARRAY FOR THE ELEMENT WILL BE ILL CONDITIONED. ASSIGN A NEGATIVE VALUE TO ANY NODE NUMBER THAT IS NOT PART OF THE STRUCTURAL FINITE ELEMENT MODEL SO THEY WILL NOT PARTICIPATE IN THE FLUID - STRUCTURE TRANSFORMATION. AT PRESENT SUCH POINTS CAN ONLY BE USED IN CONJUNCTION WITH 6 - NODE QUADRILATERALS.	NODE POINT NUMBERS OF FLUID ELEMENT NEIGHBOR POINTS AGAIN TAKEN IN COUNTER CLOCKWISE ORDER STARTING FROM FIRST CORNER
1		F	-	-
KURV		NATA	NODE	ITEM
5582 5882 5883 5885 5886 5999 590	5591 5592 5593 5595 5596 600 600	603 603 605 605 606 603 611 613	615 616 618 620 621 621 624 626 628 629 630 631	635 637 638

POINT. ANY INTERIOR POINTS MUST APPEAR LAST. SEE FLUID ELEMENT LIBRARY RADIUS OF CURVATURE OF FLUID ELEMENT IN DIRECTION FROM FIRST CORNER POINT TO SECOND CORMER POINT	RADIUS OF CURVATURE OF FLUID ELEMENT IN DIRECTION PERPENDICULAR TO SIDE JOINING FIRST CORNER POINT AND SECOND CORNER POINT	PROVIDES A MEANS OF SHIFTING THE FLUID CONTROL POINT OUT OF THE PLANE OF THE STRUCTURAL NODE POINTS TO ALLOW FOR A FINITE PLATE OR SHELL THICKNESS. GENERALLY USED TO DEFINE SEPARATE FIUID ELEMENTS ON OPPOSITE SIDES OF A SURFACE A POSITIVE VALUE INDICATES AN ECCENTRICITY IN THE DIRECTION OF THE OUTWARD UNIT NORMAL VECTOR. THIS OPTION MAY BE USED ONLY WITH KURY EQUAL TO 2 AT THIS TIME. WHEN DEFINING TWO FLUID ELEMENTS ON OPPOSITE SIDES OF A SURFACE THE FIRST AND SECOND NODE NUMBERS INPUT FOR ONE ELEMENT (SEE NUMBERS INPUT FOR ONE ELEMENT (SEE NUMBERS RESPECTIVELY FOR THE OTHER SYSTEM FOR EACH ELEMENT IS REFERRED TO THE SAME BASELINE THUS PRESERVING A DESIRED	HAND DETERMINED COEFFICIENTS OF THE FLUID-STRUCTURE TRANSFOMATION ARRAY THAT MUST CONVENIENT WAY OF GENERATING THESE CONVENIENT WAY OF GENERATING THESE CONVENIENT WAY OF GENERATING THESE COEFFICIENTS IS TO FIRST BREAK THE ELEMENT INTO SUB-ELEMENTS SUCH AS TRIANGLES ON RECTANGLES SUCH THAT EVERY STRUCTURAL NODE IS A CORNER POINT FOR ONE OR MORE SUB-ELEMENTS. THE WEIGHTING COEFFICIENTS FOR TRIANGLES AND RECTANGLES ARE ONE-THIRD AND ONE-FOURTH RESPECTIVELY AND REPRESENT THE PERCENTAGE OF FLUID PRESSURE FORCE ON THE SUB-ELEMENT THAT IS TRANSMITTED TO ANY PARTICULAR CRNER POINT. THE FLUID-STRUCTURE TRANSFORMATION COEFFICIENT FOR ANY PARTICULAR STRUCTURAL NODE IS THEN EXPRESSED AS A SUM OVER THE SUB-ELEMENTS THAT COUPLE WITH THE NODE IN OUESTION. THE CONTRIBUTION TO THIS SUM FROM EACH SUB-ELEMENT IS JUST THE WEIGHTING COEFFICIENT OF THE SUB-ELEMENT MOSE THAT THE SUM OF THE FLUID-STRUCTURE TRANSFORMATION COEFFICIENT OF THE FLUID-STRUCTURAL POINT AS A CORNER FOLLOW
п	u u	u. u	u.
RAD1	RAD2	ECCE.	TRAN
639 640 641 642 643 643	646 647 648	649 6453 6524 6534 653 665 666 667 666 668	673 672 673 674 675 675 676 681 682 683 683 683 683 683 683 685 685 685 689 689 689 689 689

597 598			ANYWAY
599 700 701 704 705 705			QUESTION TO THAT FOR ITS NEAREST STRUCTURAL NODE. IF NECESSARY THE CONTRIBUTION COULD EVEN BE DIVIDED BETWEEN TWO OR MORE NODE POINTS. ONCE COMPUTED, THE ORDER OF INPUT TO THE CODE MUST AGREE WITH THE ORDER TAKEN FIRST BY THE CORNER POINT NODE NUMBERS (SEE NODE) AND THEN BY THE NEIGHBOR POINT NODE NUMBERS (SEE ITEM)
709 709 717 713 713 713	NTCY	u	NUMBER OF STRUCTURAL NODE POINTS THAT COUPLE WITH A CURVED RECTANGULAR FLUID ELEMENT WHICH IS TO BE AUTOMATICALLY FORMED FOR AN AXIAL SEGMENT OF A RIGHT CIRCULAR CYLINDRICAL SURFACE. AVAILABLE OPTIONS ARE:
7 (5 7 (6 7 1 1 8 7 1 1 8 7 2 1 2 2 2 2 2 4 4 2 2 3 2 3 2 3 2 3 2 3 2 3			2 - STRUCTURAL NODES WILL BE ON MIDPOINT OF CURVED SIDES 4 - STRUCTURAL NODES WILL BE AT CORNERS 6 - FLUID ELEMENT WILL OVERLAP TWO (2) STRUCTURAL ELEMENTS. VARIABLE KFUN BELOW ALSO REQUIRED IN THIS CASE 9 - FLUID ELEMENT WILL OVERLAP FOUR (4) STRUCTURAL ELEMENTS, TWO IN THE ATLAL DIRECTION AND TWO IN THE CIRCUMFERENTIAL DIRECTION
726 727 728 730	KFUN	w	DESCRIBES MANNER IN WHICH A SIX NODE RECTANGULAR FLUID ELEMENT OVERLAYS TWO RECTANGULAR STRUCTURAL ELEMENTS. PERMISSIBLE VALUES ARE:
731 732 733 734 735 735			1 - CONFIGURATION CONSISTS OF TWO STRUCTURAL ELEMENTS IN AXIAL DIRECTION 2 - CONFIGURATION CONSISTS OF TWO STRUCTURAL ELEMENTS IN CIRCUMFERENTIAL DIRECTION
738 739 741 742 743	KROT	-	IF KROT = 0 THE Z DIRECTION WILL BE TAKEN AS THE AXIS FOR AUTOMATICALLY GENERATED ELEMENTS OVER A CYLINDRICAL SURFACE. IF KROT IS NOT EQUAL TO ZERO A ROTATION OF AXES WILL BE PERFORMED (SEE CYLANG)
444 444 644 644 60 60 60 60 60 60 60 60 60 60 60 60 60	KARC	ĭ	A VALUE OF ZERO USED UNDER NORMAL CONDITIONS INDICATES THAT THE AREA ASSOCIATED WITH AUTOMATICALLY GENERATED CYLINDRICAL SURFACE ELEMENTS IS TO BE CALCULATED USING THE CHORD WHICH AGREES WITH WHAT MOST STRUCTURAL FINITE ELEMENT CODES ASSUME. A VALUE OTHER THAN ZERO WILL SMETCH THAN ZERO WILL SMETCH STATES THAT THE ARC LENGTH IS TO BE USED AND THAT AND ASSOCIATION THAT THE ARC LENGTH IS TO BE USED
754			CASES IS GENERALLY VERY SMALL FOR ANY

REASONABLE CIRCUMFERENTIAL SPACING OF THE ELEMENTS. THE LATTER CAN GENERATE A SLIGHTLY MORE ACCURATE FLUID MASS MATRIX HOWEVER THE FORMER CAN GIVE A SLIGHTLY BETTER STRUCTURAL RESPONSE CALCULATION	NUMBER OF CIRCUMFERENTIAL GENERAL ELEMENTS TO BE FORMED AUTOMATICALLY FOR AN AXIAL SEGMENT OF A RIGHT CIRCULAR CYLINDRICAL SURFACE	NUMBER OF LAST FLUID ELEMENT IN SURFACE MESH WHICH PRECEEDES THE INPUT FOR THIS AXIAL SEGMENT. NLAST CAN HAVE THE VALUE OF ZERO IF REQUIRED	NUMBER OF STRUCTURAL GRID OR NODE POINT AT BOTTOM LEFT HAND CORNER OF THE FIRST OF THIS SET OF CIRCUMFERENTIAL GENERAL FLUID ELEMENTS. IF NIC/ = 2 THIS IS THE NODE AT THE MIDPOINT OF THE LEFT HAND SIDE	INCREMENT TO BE APPLIED TO NSTART IN DESIGNATING THE NUMBER OF THE CORRESPONDING STRUCTURAL NODE AT THE FIRST ROW OF CIRCUMFERENTIAL STRUCTURAL NODES TO THE RIGHT OF NSTART IN THE AXIAL DIRECTION	INCREMENT TO BE APPLIED TO NSTART IN DESIGNATING THE NUMBER OF THE CORRESPONDING STRUCTURAL NODE AT THE FIRST RUW OF AXIAL STRUCTURAL NODES ABOVE NSTART IN THE CIRCUMFERENTIAL DIRECTION. FOR THE CASE NTCY = 6 WITH KFUN = 2, OR NTCY = 9 IT IS ASSUMED THAT NDCR IS THE SAME FOR EACH CIRCUMFERENTIAL INCREMENT	INCREMENT TO BE APPLIED TO NSTART + NDAX1 IN DESIGNATING THE NUMBER OF THE CORRESPONDING STRUCTURAL NODE AT THE SECOND ROW OF CIRCUMFERENTIAL STRUCTURAL NODES TO THE RIGHT OF NSTART IN THE AXIAL DIRECTION. THIS CASE IS CHARACTERIZED BY NTCY = 6 WITH KFUN = 1, OR NTCY = 9. OTHERWISE NDAX2 CAN BE SET TO ZERO	RADIUS OF CIRCULAR CYLINDRICAL SURFACE	AXIAL COORDINATE OF THE FIRST ROW OF STRUCTURAL NODES IN THE CIRCUMFERENTIAL DIRECTION THAT COUPLE WITH A PARTICULAR SET OF CYLINDRICAL SURFACE GENERAL ELEMENTS. THIS ROW WILL FORM THE LEFT AXIAL BOUNDARY OF THE SET OF FLUID ELEMENTS.	AXIAL COORDINATE OF THE SECOND ROW OF STRUCTURAL NODES IN THE CIRCUMFERENTIAL
	H	-	-	1	Ħ	Ħ	я.	m m	я г.
	NCRC	NLAST	NSTART	NDAX1	NDCR	NDAX2	RAD	AXL1	AXL2
755 756 757 758 759	760 763 763 763	765 766 768 768	0 + 0 & 4 W 0	7.7.7 7.7.7 8.0.0 6.0.0	7 88 3 3 3 4 4 4 8 8 3 3 3 4 4 4 8 8 4 4 8 9 8 9 9 9 9 9 9 9 9 9 9	791 792 793 795 796 798	800 100 100	8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 11 8 12

E 4 25 0 C			DIRECTION THAT COUPLE WITH A PARTICULAR SET OF CYLINDRICAL SURFACE GENERAL ELEMENTS. THIS ROW WILL FORM THE RIGHT AXIAL BOUNDARY OF THE SET OF FLUID ELEMENTS IF NTCY = 4, OR NTCY = 6 WITH KFUN = 2. IF NTCY = 6 WITH KFUN = 1, OR NTCY = 9 THIS ROW WILL LIE WITHIN THE INTERIOR OF THE FLUID ELEMENT
232			AND THE STRUCTURAL NODES AT THIS LOCATION WILL BE CONSIDERED AS NEIGHBOR POINTS IN THE FLUID STRUCTURE TRANSFORMATION ARRAY
24 25 26 22 22 30 31	THETS	u. u	ANGLE IN DEGREES THAT SPECIFIES THE STARTING BOUNDARY FOR A SET OF GENERAL ELEMENTS AROUND THE PARTIAL CIRCUMFERENCE OF A RIGHT CIRCULAR CYLINDRICAL SUBFACE. THE X AXIS IS DEFINED AS ZERO AND THETS CAN BE NEGATIVE IF DESIRED. THIS OPTION IS IMPORTANT AS A DISCONTINUITY OF 360 DEGREES IN THE ANGULAR FUNCTION AT THE X AXIS IS NOT PERMITTED
334 336 338 339 440	THE TF	u.	ANGLE IN DEGREES THAT SPECIFIC: THE FINISHING BOUNDARY FOR A SET GF GENERAL ELEMENTS AROUND THE PARTIAL CIRCUMFERENCE OF A RIGHT CIRCULAR CYLINDRICAL SURFACE. THE X AXIS IS DEFINED AS ZERO AND THETF MUST BE POSITIVE. HOWEVER IT CAN BE EITHER LARGER OR SMALLER THAN THE MAGNITUDE OF THETS
143 145 146 147 148 150 151 152	AXL3	u.	AXIAL COORDINATE OF THE THIRD ROW OF STRUCTURAL NODES IN THE CIRCUMFERENTIAL DIRECTION THAT COUPLE WITH A PARTICULAR SET OF CYLINDRICAL SURFACE GENERAL ELEMENTS. IF AXL3 IS NON-ZERO THEN IT MUST BE ALGEBRAICALLY GREATER THAN AXL2 AND THIS ROW WILL THEN FORM THE RIGHT AXIAL BOUNDARY OF THE SET OF FLUID ELEMENTS. THIS CASE IS CHARACTERIZED BY NTCY = 6 WITH KFUN = 1, OR NTCY = 9
354 355 357 359 350 360	CYLANG	u. u	EULERIAN ANGLES OF ROTATION USED TO ORIENT THE AXIS OF CYLINDRICAL SURFACE GENERAL ELEMENTS (SEE GEOANG FOR GENERAL DEFINITION). IN THE FOLLOWING SPECIAL CASES OF IMPORTANCE THE DESIRED AXIS IS SHOWN IN THE LEFT HAND COLUMN WHILE THE APPROPRIATE ANGLES ARE GIVEN TO THE RIGHT:
362 363 364 365			X - 90, 180, 90 OR 0, +/-90, 0 Y - 0, 90, 90 OR +/-90, 0. 0 Z - NO INPUT, SET KROT = 0
366 367 468 869 870			THIS OPTION IS NECESSARY WHEN USING STAGS AS THE STRUCTURAL PROCESSOR IN ITS DEFAULT MODE IN WHICH CASE IT USES THE X DIRECTION AS THE CYLINDER AXIS

877	Ž	-	THE THE POLICE OF STRUCK INDICATED
873	:	•	
874			REVOLUTION BRANCH OR SEGMENT
8/5		•	
877	2	7	GRID POINT NUMBER OF STRUCTURAL NUDE THAT DEFINES THE END OF A SURFACE OF REVOLUTION
878			BRANCH DR SEGMENT
880	7.	E, F	RADIUS TO WET SURFACE FROM AXIS OF SURFACE
881		•	ELEMENT
882			NT DEFINING THE START
883			OR SEGMENT
885	82	u	RADIUS TO WET SURFACE FROM AXIS OF SUBFACE
886	•		ELEMENT AT STRUCTURAL
887			POINT DEFINING THE END OF A SOR BRANCH OR
888			SEGMENT
883		•	
068	NSEI	-	NUMBER OF DATA CARDS REQUIRED TO DEFINE
100			, בנינ המינו
700			ACTO AT MITTER A TAKE TO THE TOTAL TOTAL
500			DUVATOR CONTINUESTON OF THE COS CORNICE
900			THE AT DESCRIPTED BEFORE THE SUR BRANCH
000			15 AS DESCRIBED BELOW UNDER ISEG
708	Z	-	COTO DOTAL MINABER OF STRUCTURAL MODE THAT
86	?	•	DEFINES THE AVIS OF THE CIDEACE OF
668			PEVOLUTION BRANCH IN CONCUSSION WITH NA
006			IF N2 = N1. THIS CASE CORRESPONDS TO A
901			DISC
305			
903	1SEG	H	NUMBER OF SURFACE OF REVOLUTION ELEMENTS
904 101			THAT CAN BE DEFINED BETWEEN TWO AXIAL
20 g			STATIONS SUCH THAT THE RADIUS OF THE
20.6			
S C			AND THAT CVERT PAIR OF INTERMEDIATE
606			INCREMENTAL VALUE. THIS
910			AL AXIAL SPACING OF THE
911			THE STRUCTURAL NODES MAN
912			NECESSARILY BE EQUALLY SPACED ALONG THE
5 5 6			AXIS
0 0 1 4	NEWCHO	-	NIMBED OF STREET, SALES STATES THAT MIST
916		•	ELLITO-STRUCTURE
917			INSFORMATION DATA
918			
919	NODOLD		
920			CHANGED TO NODNEW IN THE FLUID-STRUCTURE
924			TRANSFORMATION DATA
922		•	
923	NOONEW		TO STANCTURAL GRID POINT NUMBER ASSIGNED
925			PLACE OF NODGED THIS GOTS POINT MIST
926			ALREADY BE PART OF THE STRUCTURAL NODE
927			COCRDINATE DATA INPUT FROM
928			

NOTE THAT THERE IS A DESCRIPTIVE ENTRY IN THE FIRST FIELD OF SOME INPUT CARDS AND THAT THE DATA FOR THAT CARD ACTUALLY BEGINS IN THE SECOND FIELD. THIS OCCURS IN SUBROUTINES READST, GENELK, CYLGED AND SORINP IN WHICH THE DESCRIPTOR IS GRID, GEN, CYL, AND SOR RESPECTIVELY. THIS PRACTICE IS A RESULT OF CHOOSING THE 'GRID' CARDS TO BE IDENTICAL TO THE INPUT TO NASTRAN FOR CONVENIENCE IN INTERFACING WITH THAT CODE. THE 'GEN', 'CYL' AND 'SOR' CARDS HAVE NOTHING TO DO WITH NASTRAN AND THE USAGE OF SUCH LABELS HERE IS DAANAM IN EIGHT (8) COLUMN FIELDS WHICH CAN OCCUPY THE ENTIRE CARD.
ALPHANUMERIC DATA MUST BE LEFT UNSTIFIED IN TWENTY (20) COLUMN
FIELDS. FILE NAME PLUS QUALIFIER IS CURRENTLY RESTRICTED TO
EIGHTEEN (18) CHARACTERS FOR UNIVAC OPERATION WHILE NINETEEN (19)
CHARACTERS MAY BE USED FOR CDC OPERATION ALL INPUT DATA EXCEPT ALPHANUMERIC DATA MUST BE RIGHT JUSTIFIED C) IF HAFMOD = TRUE, INCLUDE THE FOLLOWING TWO CARDS INCLUDE THE FOLLOWING TWO CARDS ٥ IF NBRA NOT = 0 INCLUDE THE FOLLOWING THREE CARDS GENERAL PROBLEM DEFINITION (SUBROUTINE AMINPT): GRONAM IF QUAMOD = TRUE, INCLUDE THE FOLLOWING CARD TRUE, INCLUDE THE FOLLOWING CARD ~ ٩ PRTCOE NCYL DATA CALCAM QUAMOD STOINV FRESUR ROTOUA NFUN 72 COLUMN ALPHANUMERIC TITLE NSTRC NSTRF NGEN NBRA GEONAM FOR IDENTIFICATION ONLY PRTAMF HAFMOD STOMAS FRWTGR ROTGEO DAA2 NHA I ⊢ ⊃ TRUE. NSEG(I), I=1.NBRA NCIR(I), I=1.NBRA σ CEE PRITRN TWODIM NASTAM STOGMI FRWTGE NSTRF NHAF CQ(1), I=1.4 u IF EIGMAF IF TWODIM PRTGMT PCHCDS E I GMAF FRWTFL RENUMB FLUNAM NSTRC ZLEN NVEC NUMZ NHAS 띪 980 981 940 929 930 931 932 934 935 936 937 938

```
TOTAL NUMBER OF
                                                                                                                                                                                                                   TOTAL = NSTRC
                                                                                                                                                                                                                                                                                                                                                                                                       IF NCYL NOT = 0 READ THE FOLLOWING CARDS FOR EACH AXIAL SEGMENT
                                                                                                                                                                                                                                                                                                                                SETS = NGEN
                                                                                                                                                                                                                                                                                                                                                                               CYLINDRICAL SURFACE GENERAL ELEMENTS (SUBROUTINE CYLGED):
                             IF FRESUR = . TRUE. INCLUDE THE FOLLOWING TWO CARDS
                                                                                                                                                                  STRUCTURAL NODE COORDINATES (SUBROUTINE READST):
                                                                                                                                                                                                                                          GENERAL FLEMENT DEFINITION (SUBROUTINE GENELM):
                                                                                                                                                                                                                                                                                                                                                                                                                              NDCR
THE TF
                                                                     IF ROTGEO = .TRUE. INCLUDE THE FOLLOWING CARD
                                                                                                     IF ROTOUM = .TRUE. INCLUDE THE FOLLOWING CARD
                                                                                                                                                                                          IF NSTRC NOT = 0 INCLUDE THE FOLLOWING CARDS
                                                                                                                                                                                                                                                                                  KTRN
                                                                                                                                                                                                                                                                IF NGEN NOT = 0 READ THE FOLLOWING CARDS
                                                                                                                                                                                                                                                                                                                                               IF KTRN NOT = 0 READ THE FOLLOWING CARD
                                                                                                                                    IF NCYL NOT = 0 READ THE FOLLOWING CARD
                                                                                                                                                                                                                                                                                                                                                                                                                                                      IF KROT NOT = O READ THE FOLLOWING CARD
                                                                                                                                                                                                                                                                                                                                                                                                                       KARC
NDAX1
THETS
                                                                                                                                                                                                                                                                                                                = 2 READ THE FOLLOWING CARD
                                                                                                                                                                                                                                                                                                                                                                                                                              NSTART
AXL2
                                                                                                                                                                                                                                                                                                                                ECCEN
               CZFS
                                              CZFS
                                                                                                                                                                                                           Š
                                                                                                                                                                                                                                                                                                                                                                TRAN(I), I=1, NC+NN
                                                                                                                                                                                                                                                                                 NEL NC NC NG NG NG NG NG ITEM(I), I=1.NC
                                                                                                                                                                                                                                                                                                                                                                                                                      KFUN
NLAST
AXL 1
                                              CYFS
                CYFS
                                                                                                                                                                                                                                                                                                                                RAD2
                                                                                                                                                                                                           ည
ပ
                                                                                     GEDANG(I), I=4.3
                                                                                                                     QUAANG(I), I=1,3
                                             CXFS
GRAVAC
                                                                                                                                                                                                           NSEO
       CQ(1), I=1,2
DEPTH CXFS
                                                                                                                                                                                                                                                                                                                                RAD 1
                                                                                                                                                                                                                                                                                                                                                                                                                      NTCY
NCRC
RAD
                                                                                                                                                                                                                                                                                                                IF KURV
                                              DEPTH
                                                                                                                                                                                                          GRID
                                                     PATM
                                                                                                                                                                                                                                                                                 GEN
                                                                                                                                                                                                                                                                                                                                                                                                                       CYL
```

CYLANG(1). 1=1.3

SURFACE-OF-REVOLUTION ELEMENT DEFINITION (SUBROUTINE SORINP):

IF NBRA NOT = O READ THE FOLLOWING CARDS FOR EACH SOR BRANCH

SOR N1 N2 R1 R2 NSET

IF N1 = N2 READ THE FOLLOWING CARD

N3

IF NSET = 1 OMIT THE FOLLOWING CARD

N1 N2 R1 R2 ISEG)

TOTAL = NSET

STRUCTURAL NODE RENUMBERING (SUBROUTINE AMG-COM):

IF RENUMB = TRUE. READ THE FOLLOWING CARDS

NUMCHG

NODOLD NODNEW)

TOTAL = NUMCHG

ASSUMED TO LIE IN THE SAME PLANE AND THE DIRECTION OF THE UNITASSUMED TO LIE IN THE SAME PLANE AND THE DIRECTION OF THE UNITAND NORMAL VECTOR IS TAKEN TO BE POSITIVE AS COMING UP FROM THE PAGE SAME RELATIVE POSITION AS A SCUBA DIVER RELATIVE POSITION AS A SCUBA DIVER GAZING AT THE SIDE OF A THE COUNTERCLOCKWISE DIRECTION AS SHOWN BECAVER THE SIDE OF A RULE IS USED IN THE CODE TO DETERMINE THE POSITIVE OUTWARD POINTS WHICH MAY BE INVOLVED IN THE FIGHT HAND POINTS WHICH MAY BE INVOLVED IN THE FLUID-STRUCTURE TRANSFORMATION FIGURES MORE LEGIBLE IF YOU WISH YOUR PENCIL TO MAKE THE LIBRARY QUADRILATERAL QUADRILATERAL GENERAL OUADRILATERAL GENERAL GENERAL 0 'n 9-NODE 6 -NODE BASIC FLUID ELEMENT CONFIGURATIONS: Σ BASIC FLUID ELEMENT CONFIGURATIONS WITH ADDITIONAL TRANSFORMATION 0 I N QUADRILATERAL TRIANGLE 6-NODE 1103 1104 1105 1107 1108 1109 132 133 134 135 1142 1142 1144 1145 1146 1147 1150 1151 1152 1153 1156 1156

4-400¢
1914461¢
4 5-1400¢
5

The following discussion is provided as an aid to user understanding of the sample output that is included here.

The first item needing explanation is the block subdivision table. During construction of the mass matrix the code must determine whether a particular fluid DOF pertains to a GEN (includes both GEN and CYL elements) or SOR element. In the latter case, it must also store the branch or axis of the element, its harmonic, and also whether that DOF corresponds to a cosine or sine function. DOF with similar characteristics are naturally kept together in the same block. When the mass matrix is automatically processed in an out of core mode GEN elements are also partitioned into blocks for computational convenience.

The parameters appearing in the block subdivision table are:

ISUB - block number

ITYP - GEN or SOR

IBEG - first row of block

IROW - number of rows in block

IBRA - SOR branch or exis

IHAP - harmonic number

IFUN - COS or SIN

Next, the terms appearing under "Fluid Mesh Geometric Arrays" are defined as:

NCOR - number of corner points for a particular fluid element

X,Y,Z - global cartesian coordinates of the fluid element centroidal control point

NX,NY,NZ - components of the outward unit normal vector for the fluid element

NTRA - number of structural node points that are coupled to a particular fluid element for the purpose of force application

A00,A20,A11,A02 - area and moments and product of inertia of fluid element.

Used internally for construction of the fluid mass matrix and of the fluid-structure transformation coefficients for general elements. For SOR elements, these values are for the sub-elements.

BII,CII - diagonal terms of B and C matrices used for the construction of fluid mass matrix (see [16])

When SOR elements are included in the fluid mesh the following new terms will appear in the output:

NSOR - number of SOR element

NFLU - DOF in fluid mass matrix

RAD - radius of fluid element control point from axis of revolution

NCIR - number of integration points or sub-elements used in circumferential direction

Local Fluid-Structure Transformation Coefficients appear next. This is a summary that indicates which structural nodes couple with a particular fluid control point and the weighting factor for each. The weighting factors must always sum to unity for any fluid control point.

The generalized areas that follow are simply A00 for GEN elements. For SOR elements with IHAR = 0 they are A00*NCIR; for all other SOR elements they become .5*A00*NCIR.

The eigenvalues and eigenvectors that follow the listing of the added mass matrix correspond to the "Fluid Boundary Mode" problem [16]. For the infinite cylindrical shell problem presented here, the exact eigenvalues should behave as 1/n with corresponding modes cos $n\theta$ and $\sin n\theta$. The first eigenvalue listed, 0.11831+04, is an approximation to ∞ for n=0 and it can be seen that the subsequent eigenvalues are relatively well behaved.

If a table labeled "SUMMARY OF I-O ACTIVITY" appears in the output, this indicates that automatic out-of-core processing has taken place. In such a case the "Fluid Boundary Mode" problem is not solved and its diagnostic characteristics are unavailable to the user. If there are any serious errors in the fluid mesh geometry that have remained undetected through the generation of the mass matrix these may show up in the construction of the matrix D_{fl} [see Eq. (2.6)], i.e., the occurrence of factorization errors for the elements in question.

The following input and output for the infinite circular cylindrical shell problem contain some minor differences due to the fact that the input is appropriate to the standard CDC or UNIVAC USA-STAGS version 3 whereas the output is from the VAX virtual memory machine. The basic reason for this is that the VAX version does not explicitly process the fluid equation system in a multi-block, out-of-core mode in contrast to the CDC and UNIVAC versions. In addition, permanent file naming conventions differ slightly; however it is anticipated that these differences should not prove to be a difficulty for the user.

DATE 121580																
TIME: 23:03:45									CYL • DAAM							
) A F A	AUL ATION	36		LL.					STG·CYLCOR					0	36 1	-5, 355,
FILE: USA*DAFA	FOR INFINITE CYLINDER SIMULATION	0		-	u.	-	u.	L	MO					0	-	.0875
u	FINITE CY	0	ı,	-	LL	u.	_	u.	CYL * GEOM					0	0	0875
	FOR IN	72	<u>-</u>	 	 	ı.	LL.	-						8	36	.
)AT ••	FLUMAS RUN	0	-	-	_	L	L	L		36	200	. 175	0	כאר		
** CYLFLUDAT **	-	2	e	4	ιΩ	9	7	80	6	9	-	12	13	4	15	16

And the state of the selling. It is the standard this think the standard of

Ξ

PAGE

FLUMS RUN FOR INFINITE CYLINDER SIMULATION

SCRATC: ALLOCATION - 58808 MAXIMUM FLUID NODES =

FLUID MASS MATRIX BLOCK SUBDIVISION PARAMETERS:

HAR IBRA IROU 36 IBEG <u>3</u> K W 15UB

8.10000000E+81 FLUID SOUND SPEED .

8.10000000E+01

FLUID MASS DENSITY .

USER OPTIONS FOR THIS RUN:

. Ace SEQUENT, State OLD PRTCOE F ROTOUA F CALCAM T STD INV FRESUR DUATOD F HAFMOD F STOPPS T FRUTGR T NASTAM F PRTTRN TOOUT T FRUTGE F PCHCDS PRTGHT FRUTEL EICHRE

į,

PUXILIARY

Read Uritton + 8 8 + Next Limit 10000 100000 -.[DI Evt-filmom Unit EC Opt PRU Caloc + 1 DIRTY:CML.US 1 1 AX 64 8

1 Active devices (8 full)

+ 8 To ocs, 8 Lhites, 3 Reads 6 Lords XFD +

*** CLOSE. 1

GLOBAL COORDINATES OF STRUCTURAL NODE POINTS:

~	8- 89+	100 -0.4364(313E	+88 -8.41875271E-	99	58E+00 -0.33484870E-07	44E+08 -0.28897139E-07	6- 60 +	8- 88+	+88 -8.7	+01 00.	9 BO+	+69 8.	8 80+	44E+00 0.28097142E-07	+08 0.33484078E	+88 8.37855177E	+63 B	HOB 8,43847315E	-07 0.43711392E	8 00+	+68 8.41875271E	+0 0	+90 9.334848706	+80 0.28497137E	+80 0.21855692E	+68 0.14958173E	+88 8.75904812E-8	+81 -0.52125312E	+00 -0.75904821E	+00 -8.149581	o	-0.28037137E	+08 -8.3346.4863E	18E+88 -0.37855173E-87	36E+00 -0.41875271E-07	0- OO+	30E+00 -0,1750000-1E+00	+00 -0.	+08 -9.17	100 -0.1	+00 -0.17500003E	40. 11.000000 0 00.00
×	+81 8.	CSETOG G. I	+96 8.	86602539E+08 0.50003098E	7663444E+88 8.64278758E	64278758E+88 0.76604444E	8 90+	32015E+00 A.93969262E	+09 9.	-07 0.	€ 60 +	9 90+	50000008E+00 0.86602539E	64278764E+80 8.76684444E	7668444E+88 8.64278764E	+00 B	+00	+08 0.1	+81 -8.874227	+00 -6.173648	0- 00 -	+08 -8.499999	+88 -0.642787	E+98 -8	E+98 -8.	- P	90	-02 -0.	6.8-80+	+00 -0·	ø	±69 -9.	-6- -6-	+68 -0.	93369256E+00 -0.34202036E	98-#80773E +00 -0.1736-43-45E	10000000E+01 0.00000000E	39480773E+00 0.17354818E	3969762E+00 4.34792812E	+00 0.5	÷8 9.	THE PROPERTY OF THE PROPERTY O
N GRID	•	•	•	4 8.8650	5 9.7663	9	9	8 9.3	9, 173	1d -9.		12 -0.	13 13 -8.5008	14 -0.6427	15 - 8.	16 -9.	17 -8.	19 -0.	19 -0.	9 8	21 -0.	22 -0.	ø.	24 -0.	7. . .	6- 9: 	27 -0.1	73 8°.	.	ゔ Ŗ	31 S.	6	33 eg.	٠ ٦	K K	35	37 8.	38 6.	35 6.9336	6	41 4.7660	CC 7 CT CT CT

-0.17500001E+00 -0.17500001E+00 -0.17500001E+00 -0.17500000E+00	തതതത	. 17.499995E+8 . 17.499995E+8 . 17.499995E+8	.17499995E .17499995E .17499995E	0.17499997E 0.17499998E 0.17499998E 0.17580000E	-0.17500001E+00 -0.17500001E+00 -0.17500001E+00 -0.1750003E+00 -0.17500004E+00 -0.17500004E+00
0.86602545E+80 0.93969262E+80 0.98480773E+80 0.10000000E+81 0.98480773E+80	369262E+88 582539E+88 58444E+88	50000006E+00 3420:021E+00 17364330E+00 87422784E-07	.17364022E+00 .34202015E+00 .4999997E+00	0.75604456E+88 0.86602545E+98 0.93369262E+88 0.58488779E+88	-0.98480773E+88 -0.93969262E+88 -0.86602545E+89 -0.76604450E+89 -0.56000018E+88 -0.34202636E+89
0.4999997E+00 0.34202015E+00 0.17364821E+00 -0.51360895E-07	.3420201; .5000000 .6427876	6602539E 3969262E 8480773E 8000000	.98480773E .93969262E .86602539E	0.64278752E 0.49999991E 0.34202006E 0.17364815E	0.17364813E+00 0.3420209E+00 0.49999991E+00 0.64278752E+00 0.76604432E+00 0.86602533E+00 0.93969256E+00
43 44 45 45 46 46 47 47	48 49 49 50 50 51	ាស់ស់ស់ស	56 57 58 58 58 58		

FLUID MESH GEOMETRIC ARRAYS:

ZV	9.88888888E+88	O. BOBBBBBBBBE+BB	9.88888888E+88	9.88888888E+88	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	9.8888888E+88	6.000000000E+00	0.00000000E+00	9.000000000E+00	9.00000000E+00	0.00000000000000	9.8888888E+88
¥	8.88888888E+88	0.17364818E+00	0.34202012E+00	0.50000000E+00	0.64278758E+00	0.76604444E+00	0.86602545E+00	0.93969262E+00	0.98480773E+00	0.10000000E+01	0.98480773E+00	0.93969262E+00	0.86602539E+00	0.7660444E+00	0.64278764E+00	0.50000006E+00
×	0.10000000E+01	0.98480773E+00	0.93969262E+00	0.86602539E+00	0.76604444E+00	0.64278758E+00	0.43999997E+80	0.34202015E+00	9.17364822E+00	8,75669959E-07	-0.17364819E+00	-0.34202012E+90	-0.50000006E+00	-0.64278764E+00	0.30000000E+00 -0.7660444E+00	0.00000000E+00 -0.86602539E+00
2	0.00000000E+00	0.000000000E+00	0.00000000E+00	0.00000000E+00	0.00000000E+00	9.000000000E+90	6.0000000E+68	0.000000000E+00	ତ. ଉପଷପରସମୟ +ପଷ	0.00000000E+00	0.00000000E+00	0.00000000E+00	8.00000000E+00	9.00000000E+00	0.0000000E+00	0.00000000E+00
>-	8.8888888E+88	0.17364818E+80	0.34202012E+60	0.50000000E+00	0.64278758E+00	0.76604444E+80	0.86602545E+00	0.93969262E+00	0.98480773E+00	9.1838888E+81	0.98480773E+00	0.93969262E+00	0.86602539E+99	0.76684444E+88	0.64278764E+90	0.50000006E+00
×	0.10000000E+01	8.98480773E+00	0.93969262E+00	0.86682539E+68	0.76604444E+00	3.64278758E+00	0.49999997E+00	0.34202015E+00	0.17364822E+00	0.75669959E-07	-8.17364819E+00	-0.34202012E+00	-8.50000006E+00	-0.64278764E+00	-0.76604444E+00	4 -0.86602539E+00
NCOR	4	寸	4	4	4	4	4	4	4	4	ব	4	4	4	4	4
z		2	۳	4	ហ	9	~	8	σ	91		12	13	4	15	91

8. 80808080E +08 8. 908080808E +08 9. 908080808E +08	C11	8.64371219E+01 8.64371219E+01
9.34292921E+99 9.17364839E+99 9.15837426E-96 -0.17364890E+99 -0.47999397E+69 -0.4278758E+69 -0.5684426E+99 -0.93969562E+99 -0.98480779E+99 -0.98480779E+99 -0.19696608E+91 -0.98480779E+99 -0.19696608E+91 -0.3429262E+99 -0.34278F+99 -0.5684459E+99 -0.568459E+99 -0.568459E+99 -0.568459E+99 -0.568459E+99 -0.568459E+99 -0.568459E+99	811	0.61574530E+08 0.61574530E+08 0.61574530E+08 0.61574530E+08 0.61574530E+08 0.61574530E+08 0.61574530E+08 0.61574530E+08 0.61574530E+08 0.61574530E+08 0.61574530E+09 0.61574530E+09 0.61574530E+09 0.61574530E+09 0.61574530E+09 0.61574530E+09 0.61574530E+09 0.61574530E+09 0.61574530E+09 0.61574530E+09 0.61574530E+09 0.61574530E+09 0.61574530E+09 0.61574530E+09
-0.93969262E+90 -0.98486773E+90 -0.98486773E+90 -0.98486779E+90 -0.85692539E+90 -0.6427378E+90 -0.4999931E+90 -0.17364813E+90 -0.17364815E+90 -0.17364815E+90 -0.17364815E+90 -0.17364815E+90 -0.17364815E+90 -0.17364815E+90 -0.17364815E+90 -0.34202095E+90 -0.34202095E+90 -0.34202095E+90 -0.49999991E+90 -0.5684432E+90 -0.5684432E+90 -0.5684432E+90 -0.5684432E+90	A82	8.77850054E-04
9.0000000E+00 9.00000000E+00 9.00000000E+00 9.00000000E+00 9.00000000E+00 9.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00	HII	9.13506312E-12 9.13506312E-12
8.34282821E+88 9.17364838E+88 9.15887426E-86 1.364308E+88 1.364308E+88 1.364308E+88 1.364326E+88 1.3643426E+88 1.3643426E+88 1.364458E+88 1.364458E+88 1.364458E+88 1.364445E+88 1.364445E+88 1.364445E+88 1.364445E+88 1.364445E+88 1.364445E+88	A28	8.77238677E-04 8.77238677E-04 9.77238677E-04 9.77238677E-04 9.77238677E-04 9.77238677E-04 9.77238677E-04 9.77238677E-04 9.77238677E-04 9.77238677E-04 9.77238677E-04 9.77238677E-04 9.77238677E-04 9.77238677E-04 9.77238677E-04 9.77238677E-04 9.77238677E-04 9.77238677E-04 9.77238677E-04 9.77238677E-04
-0.93969262E+00 -0.98480773E+60 -0.98480773E+60 -0.98480779E+00 -0.93692532E+00 -0.662787E+00 -0.662787E+00 -0.4399991E+00 -0.17364813E+00 -0.17364813E+00 -0.17364813E+00 -0.17364813E+00 -0.17364813E+00 -0.17364813E+00 -0.17364813E+00 -0.17364813E+00 -0.17364813E+00 -0.17364813E+00 -0.17364813E+00 -0.17364813E+00 -0.17364813E+00 -0.17364813E+00 -0.17364813E+00 -0.17364813E+00 -0.17364813E+00 -0.17364813E+00 -0.17364815E+00 -0.17364815E+00 -0.17364815E+00 -0.17364815E+00 -0.17364815E+00 -0.17364815E+00 -0.17364815E+00 -0.173648175E+00 -0.173648175E+00	999	9.39594598E-91 9.30594598E-91 9.30594598E-91 9.30594598E-91 9.39594598E-91
444444444444444	NTRA	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7 8 9 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	Z	

0.64371219E+81 0.64371219E+81 0.64371219E+81 0.64371219E+81 0.64371219E+81 0.64371219E+81 0.64371219E+81																					
8.61574590E+00 0 8.61574590E+00 0 8.61574590E+00 0 8.61574590E+00 0 8.61574590E+00 0 8.61574590E+00 0 8.61574590E+00 0 8.61574590E+00 0																					
0.77858854E-84 0.77858854E-84 0.77858854E-84 0.77858854E-84 0.77858854E-84 0.77858854E-84 0.77858854E-84																					
0.77238677E-84 -0.13508312E-12 0.7723857E-84 -0.13508312E-12 0.77238677E-84 -0.13508312E-12 0.77238677E-84 -0.13508312E-12 0.77238677E-84 -0.13508312E-12 0.77238677E-04 -0.13508312E-12 0.77238677E-84 -0.13508312E-12 0.77238677E-84 -0.13508312E-12	TRANSFORMATION COEFFICIENTS:		ପ୍ରତ	85 84	-98	99-	88-	98-	- ଅଧ	98	-98	-88	- ବଷ	86-	පද	89	0	-68	-88	q	o o
2 0.30504508E-01 2 0.30504508E-01 2 0.30504508E-01 6.30504508E-01 2 0.30504508E-01 2 0.30504508E-01 2 0.30504508E-01 2 0.30504508E-01 2 0.30504508E-01	CTURE	NSTR	.58888E+88 8.588	8.50000E+00 0.50000E+00 3 39 8 50000E+00 0.50000E+00	.50000E+00 0.500	0.588	6 0.50000E+00 0.50000E+00	0.500	E+00 0.500	E+00 3.500	E+00 0.500	E+00 0.5⊍0	E+00 0.500	13 0.50000E+00 6.50000E+00	14 8.58888E+88 8.58888E+88	15 5000000000 0 500	. Jeecol 16	0.50000E+00 0.50000E+00	E÷00 0.500	19 84 84 GOOGGE G GOOGGETTOO	.Jeeebered 0.300 19
28 33 32 33 34 34 36	LOCAL FL	NFLU	2 2	ю	4	ហ	9	~	œ	თ	10	-	12	13	<u>.</u>	15	15	į	`. .	18	19

```
, Stat = NEW
                                                                                                                                                                                                                                                                                                                                                                                             Acc= DIRECT
                                                                                                                                                                                                                                                                                                                                                                                                                                ORAGE
                                                                                                                                                                                                                                                                                                                                                                                                                                 S
S
                                                                     8.58888E+88 8.58888E+88
                                                                                                                                         0.50000E+00 0.50000E+00
                                                                                                                                                                                                               0.50000E+60 0.50000E+00
                                                                                                                                                                                                                                     0.50000E+00 0.30000E+00
                                                                                                                                                                                                                                                             0.50000E+00 0.50000E+00
                                                                                                                                                                                                                                                                                    0.50000E+00 0.50000E+09
                                                                                                                                                                                                                                                                                                            0.50000E+60 0.50000E+60
                                                                                                                                                                                                                                                                                                                                   0.50000E+00 0.50000E+00
                                                                                                                                                                                                                                                                                                                                                          0.50000E+00 0.50000E+00
                                                                                                                                                                                                                                                                                                                                                                                 0.50000E+00 0.50000E+00
0.50000E+00 0.50000E+00
                       0.50000E+00 0.50000E+00
                                            0.50000E+00 0.50000E+00
23
                                                                                          0.50000E+00 0.50000E+00
                                                                                                                   0.50000E+00 0.50000E+00
                                                                                                                                                       27
8.50000E+00 0.50000E+06
                                                                                                                                                                                         0.50000E+00 0.50000E+00
29 65
                                                                                                                                                                              64
                                                                                                                                                                                                                                                                                                  69
                                                                                                         61
                                                                                                                                                                                                                                                                                                                                                                                             2 = DIRTY:CYL.GEO
                                                                                                                                                                                                                                                                                                                                                                                                                                AUXILIARY
                                                                                                                                                                                                                                                                                                                                                                                             OPEN,
                                                                                 24
                                                                                                        25
                                                                                                                                                                             23
                                                                                                                                                                                                    29
                                                                                                                                                                                                                                                                                                                                                                       36
           21
                                   22
                                                                                                                                                       27
                                                                                                                                                                                                                             30
                                                                                                                                                                                                                                                                                                                                                                                                ‡
                                                                                                                                                                                                                                                                            C - 31
```

0.50000E+00 0.50000E+00

Read Unitten 0 763 Next Limit 19 100000 Cd1oc 19 Ext-filnam Unit EC Opt PRU DIRTY:CYL.GE 2 1 UPR 64 +101

1 Active devices (0 full) 8 Tp ops, 13 Writes, 8 Reads 763 Words XFD

+++ CLOSE, 2

GENERALIZED FLUID AREAS:

_	E-81	E-01	E-01	
18	8.38585 28	3.30505 30	3.38585	
0	685E-01 19	85E-81 29	85E-01	
	9.38	Ø.305	9.30	
80	0.30505E-01	0.30505E-01 28	Ø.38585E-0]	
٨	0.30505E-01 17	0.30505E-01 27	0.30505E-01	
9	.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 20	.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01	.30585E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 3.30505E-01 3.30505E-01 3.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01	0.30505E-01
ហ	0.38585E-01 15	0.30505E-01 25	0.30505E-01 35	.36505E-01 0.30505E-01 0.30505E-01
4	0.30505E-01 14	0.30505E-01 24	0.50585E-01 34	0.365056-01
м	0.30505E-01 13	0.30505E-01 23	0.30505E-01 33	0.30505E-01
61	0.30505E-01 0.30505E-01 0.30505E-01 0.	0.385855-01 0.385856-01 0.385856-01 0. 21	0.30505E-01 0.30505E-01 0.30505E-01 0. 31	0.30505E-01 0.30505E-01 0.30505E-01 0.
	0.30505E-01 11	0.30505E-01 21	0.30505E-01 31	0.30505E-01

ADDED MASS MATRIX IN FLUID COORDINATES:

	18 18819E+81 19808E+81	18822E+81	. 18825E+81 . 18828E+81	.10031E+01	. 18836E+81	. 10043E+01 10055E+01	. 18883E+81	. 18855E+01	. 10043E+01	. 188366 +81 1882 16 +81	169015101 16828E+91	. 18825E+81	188225+81	18628E+81	.10019E+01	. 19918E+91	10016E+01	.18815E+81	.100155+51	188140+61 188140+61	100140+01 100130+01	18813E+81	M M	. 10013E+01	. 18813E+81	188145+81	1881481481 188181	. 188156+81 188166+81	. 10013E+01 . 10016E+01	. 10018E+01	20
,	9 .10020E+91	.10022E+01	0.10028E+01 6.0.10031E+01 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	.1003SE+01	188435481	0.10055E+01 0.0005E+01 0.0003E+01	. 18055E+01	.100436+81	.10036E+01	∹ -	8.18825F+81 8.	.10022E+01		.18019E+01	166185+81	.10016E+91	.18815E+01	.10015E+0; 0	.18814E+21	0.10014E+01 0.0017E+01		16013E+01	.10613E+01	. 10813E+01	. 10014£ .01	100146+61	.18815E+81	10010E:	7 Z 7 Z 7 +	.19019E+01	19
	8 .10022E	.10025E	0.10031E+01 0.10036E+01	.10043E	10055E	. Ø.1ØØ83E+Ø1 Ø.1ØØ8EF14	:	۳.	. 16631E	. 18829E	8 18822F+81	. 10020E	.10019E		.19016E	~;	. 10015E	. 10014E	. 19814F		ο W Π Π	.18813E	٠	.10014E	. 18014E	. 18915F	.10015E	102.001. 101.001	Z 12212F+21	. 10020E	18
	7 .10025E		0.10936E+01 0.19943E+01		9.19883E+61	. 8.188552+81 8.188426+81	0.18836E+81	1	Ξ.		0.120777F+01 0.12072F+01		Ξ.	Τ.	Τ.		Ξ.	∹.	-: '	Ξ.	8.188135+81 8.188135+81	•	8.18814E+81	8.16814E+81	Ξ.	•	∹.	Ξ.	. 8 188198198 8 188288181		17
	6 .10828E	.10031E .10036E	0.10043E+01 0.10055E+01	. 19983E	٠.	7.	- 8.16831E+81	٦,	.13025E	.13022E	2 12814F+81	. 18019E	.18816E	B. 18915E+81	.13015E	. 6.18014E+01	Ξ.	•	. 18813E	0.10013E+01	8.10013E+51	. 1881.	.13814年	•1	.:0015E	. 8016E	. :0019E	7	0.180788+81 8.60008+81	: -:	16
	~; '	. 15036E . 13043E	6.18855E+91 8.18883E+91	Ξ.		~ .	8.18828E+81		٠,	Ξ,	2 122 10H+21	• -		~:	Ξ.	Ξ.	0.10013E+01	. 199	. 1861	1881	8.188158+81 8.188128+81	. 18814E	0.18815E+81	Ξ.	. 163	.10018E+	. 10019	<u> </u>	0.18082E+01	.10028E+	15
	4 .18836E		0.188335+61 8.188555+81	. 10043E	$\vec{\cdot}$.10031E	0.10025E+81	. 18822E	.10020E	∹:	8 1881881+81 8 1881881+81	A. 18815E	9.10015E	8.19814E+81	.1001	0.10013E+01	. 1661	.10013E	. 1601	··· `	8.188145+81 8.188145+81	. 188	. 1881	9.10016E+81	.18018E	.10019E	.18020E	. 1802ZE	8.168255E+51	. 10331E	
	3 .19043E+	.10055E+ .10083E+	8,18855E+81 8,18843E+81	.10036E+	.10331	.10028E	0.18825E+81		_	Ø.10018E+Ø1	<u> </u>		18	<u>z</u>	. 198	.10013	6013	.18813	186	. 198	6.10014E+01	188	.18816E	3018	.19613	. 10020E	. 10022	.10025E	0.18028E+81	1603	13
	2 .10655E	.10083E .10055E	0.18843E+81 8.18836E+81	. 19831E	.1002BE	.10025E	0.18872E+81	.10019E	18818E	띮	0.10010E+01 0.1001EF+01	υц.	.16014E	. 1881	.1301	0.19313E+01	.10013E	.10013E	. 10314E	. 18814年	0.19015E+01	. 10015E	:0018E	. 1881	. 1002	.10022E	. 18025E	.10023E	0.18831E+81	.10043E	12
	1 .10083E	13 H	8.18836E+81 8.18831E+81	.10028E	.10025E	.10022E	N. 18019F+81	. 10018E	.10016	Ξ.		188		1881	. 10013	0.18013E+01	. 10013	. 18914E	.10014E	16615			. 10013E	. 10029	. 1092	.10325	.10028E	.10031E		. 10055E	11
	-	N W	4 m	o o	~	5 0 (ν Έ	1 :	12	13	4 u	n 4	12	18	19	20	21	22	23	24	20 10 10 10	22	28	29	30	31	32	33	34 7	36)

0.10028E+01 0.10031E+01 8.18855E+8 8.18814E+8 8.18815E+8 9.18815E+8 0.10016E+0 0.10018E+0 0.10020E+9 8.18825E+8 8.18836E+8 8.18843E+0 9.12036E+0 9.18831E+8 0.18825E+8 0.10019E+0 8.18822E+8 9.10083E+0 0.10055E+0 8.18843E+B 0.10028E+0 8.18816E+81 8.18818E+81 0.10083E+01 0.10022E+01 0.10036E+01 0.10022E+01 8.18815E+8 0.10020E+01 8.18825E+81 0.18028E+01 0.18031E+01 9.10036E+01 0.16043E+01 8.18855E+81 0.10055E+01 0.18843E+61 0.18631E+91 0.10025E+01 0.10028E+0 8.18815E+8 8.18819E+6 0.10015E+01 0.10025E+01 0.10055E+01 0.10036E+01 8.18819E+8 0.10020E+01 0.10022E+01 0.10036E+3 8.18843E+81 0.10083E+0 0.10043E+01 0.10031E+01 0.10028E+0 0.10631E+0 0.19055E+0 0.10025E+0 0.10022E+0 9.10020E+0 0.10016E+0 8.18818E+8 0.18828E+8 0.10015E+0 0.10020E+01 9.18825E+31 0.10028E+0; 0.10043E+01 0.10043E+01 0.10036E+01 0.10031E+01 9.18822E+8 0.10031E+0 0.10055E+0 0.10928E+81 0.10022E+01 10019E+0 0.10018E+0 Ø.16619€+6 9855E+8 0.166835.+6 0.10036E+0 0.18875E+8 0.1092NE+0 0.10016E+9 0 0.10036E+01 8.18822E+81 0.10055E+01 0.10328E+01 0.10031E+01 0.18843E+01 0.10028E+01 0.10019E+0 0.10020E+0 0.10025E+8 P. 10036E+0 Ø.18843€+8 0.10083E+8 9.10031E+8 0.13825E+8 0.10020E+0 9.18919E+8 0.10018E+0 0.10055E+0 0.16822E+8 3.10018E+0 18655E+6 10043E+0 9.10036E+0 9.16031E+0 . 19828E+8 9.10025E+0 0.10022E+0 10020E+0 0.18918E+8 8.18916E+0 . 18814E+8 0.10013E+0 18813E+8 0.10013E+0 8.18814E+8 0.18028E+8 0.10019E+0 . 18815E+8 0.10915E+6 9.18014E+B 0.10013E+0 . 10013E+0 0.10014E+0 0.10015E+0 9.18815E+8 .18816E+8 .10018E+0 0.10036E+01 0.10025E+01 0.10031E+61 0.10022E+01 0.10055E+01 0.10083E+01 0.10028E+01 0.10025E+01 0.10022E+01 0.19019E+01 0.10043E+01 9.10015E+01 0.10014E+31 19913E+01 0.10013E+01 .19013E+61 0.10014E+01 .10015E+01 9.18816E+81 6.10022E+01 6.10019E+8 0.10020E+0 0.10028E+0 0.10031E+0 0.18343E+B 9.10055E+8 9.10843E+8 0.10036E+0 0.10020E+0 0.10018E+2 0.10016E+0 9.10028E+0 . 10625E - 10 .10022E+0 0.10020E+0 . 10019E+0 9.10016E+81 8.18815E+8 0,18014E+01 19013E+B .10013E+0 .18036E+8 0.18031E+0 .10018E+0 .10015E+0 .10018E+0 P. 18814E+F \Box Ø 8.18819E+01 0.10036E+01 0.10031E+01 0.10025E+01 0.10015E+01 0.10015E+01 0.10015E+01 8.10013E+01 .10013E+01 0.10013E+01 .10013E+01 0.10025E+01 0.10022E+0 8.10025E+0 0.10028E+0 0.10031E+0 0.10036E+B 0.10043E+0 0.12955E+8 0.16083E+01 0.10055E+0 0.10043E+0 0.10036E+01 0.10828E+91 0.18022E+0 0.10020E+01 0.10019E+0 0.10018E+01 8.18816E+81 . 16031E+0 0.13028E+01 0.10025E+01 .10022E+01 .10020€+0 0.18019E+01 .10018E+31 .10016E+0 .10014E+0 0.19014E+03 . 10013E+01 .10014E+01 B. 18814E+81 0.10015E+01 . 10016E+0 .10019E+0 .10015E+0 .18020E+8 02) ø ø Ø Ø Ø **©** 9 \mathbf{z} Ø 8.10015E+01 0.10015E+01 0.10031E+01 9.18A28E+8! 0.10071E+01 0.10055E+01 0.10028E+01 0.18019E+01 0.10016E+01 0.10028E+01 0.16328E+01 3.10043E+01 0.18943E+01 0.16331E+01 . 18825E+61 .19322E+01 3.19026E+01 . 10016E+01 10014E+91 .16915E+91 . 100 18E+01 .1J019E+81 0.10025E+8 0.10036E+01 .18883E+01 0.10055E+01 .10014E+01 . 10013E+01 .19813E+91 10013E+31 0.10035E+0 .18015E+0 GN 14E+0 0.18022E +0 . 10(18E+0 .10028E+0 .10025E+0 0.10022E+0 .10026E+0 188198+8 .10018E+0 . 10015E+8 .100;4E+0 13813E+8 10013E+0 0+39 10020E+0 . 18015E+B .10322E+0 20 ø Ø Ø Ø Ø Ø ø ø Ø ø Š Ø Ø 0.10028E+01 8.18855E+81 0.10025E+01 .16083E+01 .10036E+01 0.10031E+01 .10020E+01 0.10⊌14€+01 100145+01 U.19813E+B1 0.10014E+01 9.10014E+01 0.10016E+01 0.10019E+01 8.18828E+81 B. 18831E+81 . 10013E+01 18013E+01 B. 19913E+31 .13816E+8 . 19813E+8 0.19025E+01 18825E+8 0.10028E+8 .18836E+9 .10043E+0 .10055E+0 .10043E+0 0.10031E+0 0.10028E+0 .18822E+8 0.10019E+0 0.10015E+0 0.100:5E+0 .10025E+0 . 19822E+8 0.19020E+0 .18819E+0 .19913E+9 Ø.10016E+0 . 19915E+8 .18015E+8 0.16014E+0 100135+0 0.10013E+0 Ø.10Ø15E+Ø 8.18815E+8 0.10022E+0 0.10028E+8 Ø, ø, ø. Ø Ø Ø Ø Ø ø. ø. Ġ Ö ζ, ø. 10025E+01 0.18831E+81 0.18836E+81 .10055E+01 .10014E+01 0.10013E+01 0.10013E+01 0.16314E+01 0.16013E+01 0.18822E+01 10025E+8 .10055E+0 0.10018E+01 0.19031E+0 0.10036E+0 0.18283E+8 10028E+0 18828E+8 .10016E+0 .10015E+0 .10014E+0 6.10013E+0 9.10014E+0 9.10915E+0 13828E+8 .10043E+0 .10043E+0 18836E+8 .10031E+0 0.10025E+0 0.10022E+8 .10019E+0 0.10013E+0 8.10015E+0 10022E+0 . 18828E+8 .10019E+0 10018E+6 .10916E+B 0.10015E+0 10015E+0 10014E+0 0.10013E+0 0.10014E+0 10015E+0 8.18916E+8 0.10019E+0 0.10026E+0 8.18825E+8 0.10023E+0 ... 8 . B ø Ø Ø Ø Ø ø \Box Ø Ø Ø

```
0.12926E+01-0.34747E+00-0.42988E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.10686E+01 0.40545E+00-0.12904E+01 0.74076E+00-0.11044E+01 0.70372E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.12238E+01-0.64535E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.29220E+00 0.13150E+01-0.10819E+01 0.77303E+00 0.84137E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.98618E+00-0.31021E+00 0.13025E+01-0.26721E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                             8.19591E+88
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          9.87885E-81 0.87793E-81 0.81142E-81 9.81134E-81 0.75892E-81 0.75868E-81 0.71864E-81 0.71843E-81 0.68892E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.12871E+01 0.39429E+00 0.60653E+00 0.12237E+01-0.11853E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.87440E+00-0.12655E+01-0.17968E+00-0.12871E+01-0.39433E+00-0.13473E+01-0.11920E+00-0.33744E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.96238E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.18396E+01-6.13495E+0: 0.28866E+00-0.91133E+00-0.98679E+00-0.98239E+00-0.95556E+00 0.10118E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.13032E+01-0.13228E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.13173E+01-0.30374E+00 0.12395E+01 0.57173E+00-0.12563E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.13347E+0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.68263E+00-0.18289E+01-0.62630E+00-0.13173E+01 0.30380E+00-0.10820E+01 0.77308E+00-0.10552E+0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.10688E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.72207E+00-0.29261E+00-0.13150E+01-0.15759E+00-0.13450E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                              8.24643E+88
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                8.92833E+88-8.31819E+88
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.12505E+91 0.60677E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                              0.99737E+00 0.99736E+00 0.49753E÷00 0.49753E+00 0.33038E+00 0.33037E+00 0.24644E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               8.13827E+00 0.12052E+00 0.12051E+00 0.10690E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0.99469E+00-0.92029E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.24324E+08-0.22690E+00-0.12483E+01-0.40547E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.47005E+80-3.66821E+80-0.99747E+80-0.99473E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0.9125EE+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0.66801E-01 0.66785E-01 0.65605E-01 9.65589F-01 0.65225E-01
       0.10025E+01
                     0.10928E+01
                                     0.18931E+81
                                                       0.18836E+8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      16
                                                                                                                                                                                                                                                                                                                     Acc= DIRECT, Stat= SCRATCH
                                                                                                                                                                                                                       Read Written
                                                                                                                                                                                                                                     1296
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0.62627E+80
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Ø.12861E+Ø1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0.99724E+80
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.13434E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.12482E+01
                                                                                       9.19983E+91
                                                                                                      0.18055E+81
                                                                       0.10055E+01
       0.10028E+01
                        9.18031E+01
                                       0.10036E+01
                                                        0.10043E+01
                                                                                                                      Stat = NEL
                                                                                                                                                                                                                                                                                                       2059 Words XFD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ũ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    8.13386E+81-9.68125E+88
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.16224E+00 0.16223E+09 0.13830E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.12713E+01-0.10386E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.11732E+01-0.12708E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0.18288E+81
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.66617E+98
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   9.13495E+01-0.24186E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     9.22684E+00
                                                                                         8.18855E+81
                                                                                                       0.10043E+01
                                                                                                                       Acc = DIRECT
                                                        0.10055E+01
                                                                      0.10083E+01
        0.18831E+81
                                          0.10043E+01
                        0.10036E+01
                                                                                                                                                                                                                                     21 100000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         24
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      34
                                                                                                                                                                        A G E
                                                                                                                                                                                                                                                                                      1 Active devices ( 0 full)
                                                                                                                                                                                                                          Next
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.11642E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        9.12648E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Ø.13274€+01
                                                                                          0.10843E+01
                                                                                                         0.10336E+01
                                                         Ø.10083E+01
                                                                          0.19055E+01
                            8,18843E+81
                                            9.18955E+01
           0.10036E+01
                                                                                                                                                                                                                                                                                                          8 Reads
                                                                                                                                                                       STOR
                                                                                                                                                                                                                         Cd10c
21
                                                                                                                                                                                                                          PRU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -8,95426E+88-8,67723E+88
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0.13285E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -0.95426E+00-0.46437E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -0.95426E+00-0.23719E+60
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -8.9-426E+88-8.28747E-82
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      9.23151E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       9.45387E+80
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0.67230E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.86526E+80
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.10320E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      8.11673E+81
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       9.12672E+01
                                                                                                         0.10031E+01
                                                                                            0.10036E+01
                                                                                                                            3 = DIRTY:CAL.FLU
                                                          0.18955E+01
                                                                            0.10043E+01
                            0.18055E+01
                                            0.190832+61
                                                                                                                                                                          A U X I L I A R Y
           0.10043E+01
                                                                                                                                                                                                                                                                                                        14 Writes,
                                                                                                                                                                                                                           000
                                                                                                                                                                                                                                        1 UPR
                                                                                                                                                                                                                           U
E
                                                                                                                                                                                                                                                                                                                                                                          4 = F0R884
                                                                                                                                                                                                                           +LDI Ext-filnam Unit
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         -0.95426E+60
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -0.95426E+80
                                                           0.18343E+01
                                                                                           0.18031E+01
0.10028E+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -0.95426E+89
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -6.95426E+88
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         -0.95425E+98
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -0.95426E+60
                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.11831E+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -0.95426E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          9.19590E+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           8.96223E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          8.68883E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         -0.95426E+00
                            0.18883E+01
                                            0.18055E+01
              0.10055E+01
                                                                                                                                                                                                                                            DIRTY: CYL. FL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          E IGENVECTORS:
                                                                                                                                                                                                                                                                                                                                                                                                        EIGENVALUES:
                                                                                                                                                                                                                                                                                                               ogo.
                                                                                                                                                                                                                                                                                                                                                            CLOSE,
                                                                                                                                                                                                                                                                                                             Ø To
                                                                                                                                                                                                                                                                                                                                                                            OPEN.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           +++
23
33
33
35
35
35
35
36
36
                                                                                                                                                                                                                                                                                                                                                                                                            C-35
```

-0.13375E+01-0.76921E+00-0.11044E+01-0.13494E+01 0.12318E-01 0.37572E+00 0.13181E+01 0.13438E+01 0.92662E-01 0.36175E+00 -0.99482E+80-0.13458E+81 0.11365E+80-0.47426E+80-0.12636E+81-0.12118E+81 0.51888E+88-0.18278E+88 0.13457E+81 0.12191E+81 0.58343E+88 0.58365E+88 0.1229E+81 0.12191E .62372E+00 0.57569E+00-0.12237E+01-0.13269E+01 0.24659E+00-0.54558E+00 0.11974E+01-0.10174E+00 0.13457E+01 0.56153E+00 -**0**.95426E+00-0.12691E+01 0.45305E+00 0.10387E+01-0.106835E+01-0.12872E+01-0.39425E+00 0.74365E+00-0.11046E+01-0.11515E+01 -0.95426E+00-0.11701E+01 0.66692E+00 0.12707E+01-0.72206E+00-0.13175E+01 0.30490E+00-0.15782E+00-0.13443E+01-0.20119E+00 0.13495E+01-0.28857E+00-0.99483E+00 0.32081E+00-0.98219E+00-0.95495E+00 0.89282E+00 .12866E+01-0.13444E+01 0.11943E+00-0.85631E+00 0.10413E+01 0.91381E-01-0.13394E+01-0.10158E+00 0.13472E+01-0.10701E+00 **0.11386E+01-0.57562E+00** 0.12240E+01-0.12721E+01-0.41942E+00 0.13438E+01-0.59806E-01-0.13466E+01-0.93246E-01 0.13427E+01 **0.17765E+00** 0.76800E+00 0.11049E+01-0.13859E-01-0.13478E+01 0.37471E+00 0.13178E+01 0.10256E+00-0.13466E+01-0.35986E+00 -0.13483E+01 0.57633E+00-0.12242E+01 0.87780E+00 0.10250E+01-0.79672E+00-0.11383E+01-0.10137E+00 0.13468E+01 0.78086E+00 0.13448E+01 0.92941E-01-0.55956E+00 .40585E+00 0.13460E+01-0.11986E+00 0.10428E+01 0.85673E+00 0.91311E-01-0.13386E+01-0.13460E+01-0.93340E-01 0.10760E+00 .10696E+01 0.76988E+00 0.11041E+01 0.11755E+01 0.66369E+00 0.93493E+00-0.91291E+00 0.10154E+00-0.13457E+01-0.94680E+00 **-0.12865E+01-0.13452E+01 0.11936E+00 0.85726E+00-5.10417E+01 0.90581E-01-0.13378E+01 0.10124E+00-0.13460E+01-0.10862E+00** 0.13463E+01-0.35811E+90 0.13175E+01-0.30376E+00-0.15778E+00-0.13448E+01 0.20111E+00 0.99454E+00-0.92069E÷00-0.98251E+00-0.95587E+00-0.89267E+00 0.10290E+01 0.62640E+00-0.29233E+00-0.13148E+01-0.10818E+01 0.77336E+00-0.84168E+00 .13034E+01 0.26745E+00 -0.95426E+00-0.45887E+00-0.12712E+01-0.10387E+01 0.10685E+01-0.40541E+00 0.12907E+01 0.74068E+00-0.11045E+01-0.70379E+00 0.64538E+00 .95426E+00-0.13495E+01-0.90647E-02 0.24184E+00-0.13434E+01-0.29247E+00-0.13150E+01 0.12395E+01 0.57125E+00-0.49299E+00 .10708E+01 0.76846E+00 0.11043E+01-0.11760E+31-0.66746E+00 0.93333E+00-0.91007E+00-0.97751E-01 0.13462E+01-0.95054E+00 **-0.62404E**+00 **0.5**7553**E+0**0-0.12239E+01 0.13259E+01-0.24733E+00-0.54662E+00 0.11992E+01 0.10096E+00-0.13478E+01 0.56182E+00 0.34609E+00 0.13468E+01 0.93282E-01 0.11105E+01 95426E+80-0.67228E+00-0.11732E+01-0.12707E+01 0.72205E+00 0.23249E+00 0.13149E+01-0.15770E+00-0.13444E+01-0.13345E+01 **-0.**95426E+00-0.86965E+00 0.10280E+01 0.12655E+01 0.17969E+80-0.40556E+00 0.12988E+01-0.13472E+01-0.11873E+00 0.13490E+01 0.13455E+01-0.11947E+00 0.22209E+60-0.13284E+01 0.11235E+01 0.82055E+00-0.13482E+01-0.92658E-01 0.11121E+01 0.11968E+01-0.57657E+00 0.12244E+01-0.24794E+00-0.13258E+01-0.54610E+00 0.11987E+01 0.13448E+01 0.92941E-01-0.55956E+00 0.12470E+01 0.7687iE+00 0.11046E+01 0.13462E+01 0.13056E+01 0.13405E+01-0.61528E-01 0.10425E+0C-0.13453E+01-0.13463E+01 0.13413E+01-0.59625E-01 0.13461E+01 0.93307E-01 0.13433E+01 .91127E+00 0.13447E+01-0.11917E+00-0.12639E+01 0.47270E+00-0.12106E+01 0.51675E+00-0.13460E+01-0.93324E-01-0.12191E+01 0.40534E+00-0.12907E+01-0.13473E+01-0.11935E+00-0.13491E+01 0.11853E+01 0.12563E+0 0.98682E+00-0.98222E+00-0.95513E+09-0.10119E+01 0.33725E-0 9.18553E+81 0.13227E+01 0.68134E+00-0.12860E⊹01-0.91197E+00-0.98676E+00 0.12926E+01-0.34802E+00-0.12790E+01 0.74365E+00-0.11046E+01-0.11515E+01 .51582E+00-0.76929E+00-0.11044E+01 0.68551E+00 0.11621E+01-0.13125E+01-0.40609E+00 0.13472E+01 0.93532E-01-0.13065E+01 0.13447E+01 0.92667E-01-0.12162E+01 .29132E+00-0.13451E+01 0.11957E+00-0.13310E+01-0.22180E+00 0.11212E+01 0.82064E+00 0.10201E+00-0.13464E+01-0.11107E+01 **-0.51561E+00-0.**76936**E+00-0.1104**2E+01-0.63638E+00-0.11636E+01-0.13088E+01-0.40359E+00-0.13470E+01-0.93321E-01-0.13049E+0 0.12871E+01 0.39424E+00-0.13473E+01-0.11910E+00 0.13174E+01-0.30392E+00-0.10819E+01 0.77285E+00 0.29250E+00 0.13148E+01 0.12396E+01 0.57185E+00 -0.82272E+00-0.76805E+00-0.11048E+01-0.66268E+00 0.11736E+01 0.93594E+00-0.91331E+00-0.13453E+01-0.92959E-01 0.12871E+01 0.39432E+00 0.74058E+00-0.11049E+01 95426E+00 0.28867E-02-0.13495E+01-0.24186E+00 0.13483E+01-0.13174E+01 0.30387E+00 0.12396E+01 0.57158E+00 0.12924E+01-0.34887E+00 .12234E+61 0.98701E+00 0.12926E+01-0.34733E+00 0.99480E+00-0.92071E+00-0.31031E+00 0.13031E+01 0.12237E+01 2 -0.95426E+00-0.13285E+01-0.24325E+00-0.22580E+00-0.12482E+01 0.40350E+00-0.12908E+01 0.60661E+00 0.13505E+01 0.37476E+00 0.13164E+01-0.10025E+00 0.66815E+00 0.99741E+00-0.91203E+00-0.98685E+00-0.31015E+00 -0.95426E+00 0.23718E+00-0.13275E+01 0.22679E+00 0.12481E+01-0.12872E+01-0.39432E+00 0.60668E+00 .95426E+80-0.23151E+80-0.13306E+01-0.63143E+80 0.12859E+01-0.99479E+80 0.92060E+80 0.10387E+01-0.10685E+01-0.12872E+01-0.39425E+00 0.13447E+01-0.11968E+00 0.12631E+01-0.47339E+00-0.12122E+01 0.51839E+06 0.13451E+01-0.11953E+00-0.22121E+00 0.13317E+01 0.11192E+01 0.81960E+00 0.91205E+00 0.91223E+00 0.24181E+00-0.13484E+01 -0.95426E+00-0.86526E+00-0.10396E+01-0.13495E+01 0.28859E+00 -0.95426E+88-8.18328E+81-8.87448E+88-8.12655E+81-8.17978E+88 -0.95426E+80-0.12672E+81-8.47885E+80-8.66511E+88-8.99737E+89 -0.72403E+00 0.57585E+00-0.12240E+01-0.44905E+00 0.12727E+01 0.12655E+01 0.17970E+00 95426E+00-0.11673E+01-0.68258E+00-0.10289E+01-0.62630E+00 0.45031E+00 0.68144E+00-0.12858E+01 0.12708E+01-0.72206E+00 0.13495E+01-0.28865E+00 0.12732E+01 -0.17695E+00 0.76931E+00 0.11041E+01 0.13441E-01 0.13295E+81-0.22534E+80 0.22543E+00 0.86051E+00 0.12691E+01-0.45304E+00 0.10356E+01-0.86649E+00 0.86966E+00-0.10280E+01 0.67722E+80-0.11641E+01 -0.95426E+00 0.46425E+00-0.12650E+01 0.12236E+01 0.11701E-01-0.66686E+00 95426E+88-8.13295E+81 .95426E+88-8.18356E+81 -0.11388E+01-0.57527E+00 -0.95426E+00 . 95426E+80 .13173E+01 -0.91184E+00 .95426E+80 .95426E+00 .13172E+01 ģ ģ ġ ġ ģ ø Ø 123456~ 112

0.94202E-01-0.88197E+30-0.10161E+01 9.34711E+00-0.13183E+01-0.10830E+01 0.80269E+00-0.35887E+00-0.12986E+01 0.65572E+00 0.13105E+01-0.65681E+00 0.11786E+01 0.95589E+00 0.13165E+01 0.31434E+00-0.56099E+00 0.12357E+01 0.55744E-01 0.555020E+00 0.13321E+01 0.21056E+00-0.13010E+01 0.40208E+00-0.60957E+00-0.12075E+01 0.12184E+01-0.59382E+00-0.72207E+00 0.1188E+01-0.25477E+00-0.13234E+01 0.34287E+00-0.13172E+01-0.53213E+00 0.12390E+01-0.32691E+00 0.11919E+01 0.13420E+01 0.49280E+09 0.12605E+01-6.12968E+01 0.40237E+00-0.13508E+01-0.79655E-01-0.11108E+01-0.75096E+00 0.72125E+00-0.95155E-01 0.10191E+01-0.88593E+00 0.33637E+00-0.13166E+01 0.81073E+00 0.10851E+01 0.35921E+00 0.12944E+01-0.11950E+01-0.13096E+01-0.11786E+01-0.65366E+00 0.96264E+00 0.91457E+00 0.30787E+00-0.13159E+01 0.56063E+06-0.12319E+01 0.13499E+01 0.40236E+00 0.13400E+01 0.79914E-01-0.11108E⊹01-0.75512E+00-0.71767E+00 **-0.12139E+01 0.44102E+10-0.12758E+01 0.33990E+00-0.13165E+01 0.16141E+00 0.13423E+01-0.94692E+00 0.97387E+00-0.62460E+00** 0.94836E+00 0.13282E+01-0.54523E+00 0.11960E+01-0.13457F+01-0.93616E-01-0.56323E+00 0.11084E+00 0.35592E+00 8.12287E+81 **.0.58780E-01-0.57599E+80 0.12237E+81-0.10250E+01 0.87533E+80-0.79670E+80-0.11384E+01 0.13456E+01 0.93360E-01-0.77994E+80** -0.12126E+01-0.43848E+00 0.12747E+01 0.34040E+00-0.13178E+01-0.16406E+00-0.13357E+01-0.94698E+00 0.96656E+00 0.62781E+00 **-0.95624E-01**-0.10161E+01 0.68465E+00 0.34311E+80-0.13178E+**0**1-0.80886E+00-0.10810E+01 0.35815E+00 0.12984E+01 0.11936E+01 0.33033E+60-0.61760E+60 -0.79185E+30 0.84654E+30-0.10498E+01-0.13846E+01 0.40363E+00 0.73447E+80-0.11242E+01-0.10823E+00 0.13542E+01 0.73691E+00 0.37046E+80 0.24531E-81 0.13438E+81 0.96117E+80 8.91415E+80 0.98154E+80 0.92587E+80-0.13438E+81 0.14820E+80 0.13577E+81 -0.13421E+81 0.12582E+81-8.48481E+83-0.13858E+81 0.48338E+80 0.76291E-81-8.13455E+81 0.11112E+81 0.75275E+89-8.11429E+81 0.95784E+60 0.91424E+00 0.92590E+00-0.98178E+00 0.13425E+01-0.14505E+00-0.55617E-01 0.63050E+00 -0.93868E+00-0.69293E+00-0.11560E+01 0.96319E+80 0.91310E+00-0.38574E+00-0.12943E+01-6.78230E+00-0.10874E+01 0.50609E-01 **-0.7**9186E+00-0.85115E+89 0.18489E+01-3.12987E+01 0.40218E+00-0.74431E+00 0.11286E+01-0.10787E+00 0.13455E+01-0.71775E+00 .95852E-01 0.83399E+00 0.10192E+01 0.33589E+U0-0.13157E+01 0.10858E+01-0.80919E+00-0.35988E+00-0.12918E+01-0.62452E+00 •.55888E+88-0.13338E+81-0.21139E+80-0.12984E+81 0.48218E+80 0.59998E+80 0.12074E+81 0.12182E+81-0.60294E+80 0.7233BE+88 8.13465E+01-8.11102E+01 0.72507E+00 0.57555E+00-0.12238E+01 0.448B3E+00-0.12725E+01 0.13412E+01-0.57761E-01-0.99027E-01 0.13462E+01-0.13441E+01 0.13384E+01-0.76861E+00-0.11043E+01 0.13495E+01-0.96759E-02 0.37584E+00 0.13169E+01-0.13453E+01-0.93731E-01 0.35592E+00 0.96142E+00 0.91496E+00-0.38280E+00 0.13892E+01 0.56265E+00-0.12338E+01-0.13473E+01 **0.93892E+88-6.**11587E+81 0.69425E+80 0.95788E+80 0.91512E+80 0.12938E+81-0.38551E+80 0.78192E+80 0.18945E+81-0.13428E+81 **0.**79185E+80 0.18489E+81 0.84972E+80-0.12985E+81 0.48:82E+80-0.11325E+81-0.74416E+80 0.18772E+80-0.13491E+81 0.11360E+81 0.12134E+0; 0.12755E+0; 0.43870E+00 0.33594E+00-0.13154E+01 0.13427E+01-0.15668E+00 0.94809E+00-0.97472E+00 0.11926E+01 0.96363E+88 8.91354E+88-0.13124E+81-8.38972E+88-0.56847E+88 8.12354E+81-8.57342E-81 •0.11175E+01 0.25383E+00 0.13256E+01 0.33403E+00-0.13156E+01 0.54123E+00-0.12425E+01-0.12053E+01-0.30965E+00-0.11947E+01 0.13052E+01 93780E+00 0.11609E+01-0.69536E+00 0.96436E+00 0.91355E+00-0.12950E+01 0.38999E+00 0.78115E+00 0.10777E+01 0.13455E+01 0.58561E-01 -0.93878E+80 0.69616E+80 0.11573E+01 0.95954E+80 0.91407E+80 0.39335E+80 0.12909E+01-0.78200E+00-0.10974E+01-0.67783E-01 0.34288E+80-0,13175E+01-0.13355E+0! 0.15490E+00 0.94769E+00-0.98075E+00-0.12100E+0 8.95788E+00 0.91512E+00 0.12938E+01-0.38551E+00 0.78192E+00 0.10945E+01-0.13428E+01 0.55002E+80-0.21317E+60 0.13331E+01-0.12990E+01 0.40131E+00-0.12057E+01 0.60646E+00-0.12163E+01 0.59412E+60-0.11433E+01 0.53577E+01 0.53530E+00 0.53550E+01 0.53550E+00 0.13055E+01 0.32156E+00 0.63050E+00 0.100 **0.370255+00-**0.20436E-01-0.13491E+01 0.95291E+00 0.91325E+00-0.98096E+00-0.92789E+00-0.13447E+01 0.14920E+00-0.13467E+01 **0.13419E+01-0.1**2623E+01 0.48339E+00-0.12990E+01 0.40224E+00-0.81995E-01 0.13505E+01 0.11123E+01 0.74542E+00 0.11387E+01 .79216E+00-0.10506E+01-0.84941E+00-0.13018E+01 0.40285E+00 0.11281E+01 0.73898E+00 0.10827E+00-0.13393E+01-0.11377E+0 **0.13**487E+01 3.57544E+00-0.12235E+01-0.87808E+00-0.10269E+01-0.79576E+00-0.11375E+01 0.10021E+00-0.13463E+01 **-0.3**7137E+00 0.13493E+01-0.21786E-01 0.96084E+00 0.91557E+00-0.91391E+00 0.97719E+00 0.13431E+01-0.13882E+00 0.40318E+00 0.12069E+01-0.60134E+00-0.12203E+01 0.59029E+00 .82231E+00-0.76920E+00-0.11044E+01 0.66327E+00-0.11751E+01 0.93439E+00-0.91116E+00 0.13458E+01 0.93414E-01 0.13447E+01-0.11944E+00-0.10426E+01-0.86047E+00 0.90365E-01-0.13371E+01 0.13451E+01 0.94034E-01 0.12658E+01-0.12104E+01 0.51501E+00 0.98461E-01-0.13460E+01 0.11043E+01-0.11621E+01 0.68442E+00-0.13102E+01-0.40635E+00 0.99706E-01-0.13466E+01 **0.55116E+00 0.20633E+00-0.13344E+01-0.13072E+01 0.40318E+00 0.12009E+01-0.60134E+00-0.12203E+01 0.11173E+01-0.13213E+01 0.25829E+00 0.34704E+00-0.13177E+01-0.12409E+01-0.53620E+00 0.13068E+01** 0.13316E+01 0.22374E+00 0.11205E+01 0.82131E+00-0.10013E+00 .66413E+00-0.12708E+00-0.13428E+01 0.10125E+01 0.93694E+00-0.91383E+00 **-0.14069E-01-0.34031E+00 0.13110E+01-0.33659E+00-0.11319E+01 0.92000E+00 0**.11633E+01 0.57870E+00 0.12075E+01-0.11597E+01-0.80667E+00 0.91583E+00 0.47455E+00 .13422E+01-0.48543E+00-0.12604E+01-0.13028E+01 -0.11971E+01-0.57563E+00 0.12236E+01 0.24769E+00 -8.29158E+88-8.13446E+81 8.11935E+88 0.11961E+00 -0.13892E+01 0.11812E+31 0.65567E+89 .12141E+01-0.12756E+01-0.43935E+00 -0.36991E+00-6.13503E+01 0.22733E-01 8.65795E+6U-8.11808E+91 -0.12473E+01 0.76878E+00 0.99546E+88-8.13445E+01 -0.48638E+00 .13884E+01 e, ø, ø. Ø

-0.11686E+81-0.12928E+88-8.13281E+81-0.94409E+00 0.94318E+00 0.93293E+00 -0.116095+01 0.585575+00 0.12118E+01 0.11031E+01 0.77323E+00 0.98717E+00 -0.11645E+01-0.13464E+01-0.93258E-01 0.45604E-01-0.13396E+01 0.95695E+00 8.68635E+00-0.13422E+01-0.71128E-01 0.13742E+01 0.13882E+00-0.92083E+00 0.13942E-01 0.12977E+01-0.39483E+00-0.13640E+01 0.10016E+00 0.92137E+00 .10965E+01 0.80976E+00 0.13151E+01-0.33330E+00-0.92366E+00 0.13442E+01-0.33732E+00 0.13059E+01 0.11015E+01-0.76143E+00-0.92941E+00 0.67932E+00 0.58070E+00 0.11902E+01 0.75830E+00-0.10958E+01-0.93783E+00 -0.92420E-02-0.96198E+00-0.91169E+00-0.54743E+00 0.12173E+01 0.93992E+00 -0.66328E+90 0.12271E+01 0.52319E+00 0.32079E+00-0.13017E+01-0.94364E+00 0.11598E+01-0.13442E+01-0.68028E-01-0.88093E-01 0.13439E+01 0.95034E+00 -0.13467E+01 0.12990E+01-0.39717E+00-0.14504E+00-0.13440E+0:-0.95834E+00 0.11737E+01-0.10967E+01 0.81619E+00 0.37193E+00 0.13022E+01 0.96710E+00 -8.68728E+00 0.76172E+00-0.11391E+01-0.58574E+00-0.12192E+01-0.97587E+00 0.16216E-01-0.33424E+00 0.13249E+01 0.78229E+00 0.10997E+01 0.98217E+00 0.66065E+00-0.13380E+00-0.13492E+01-0.95713E+00-0.94990E+00-0.98541E+00 0.13499E+01-0.96662E+00-0.93028E+00-0.12148E+01-0.57369E+00-0.98781E+00 -8.11770E+01 0.12314E+01 0.53721E+00 0.12889E+01 0.35647E+00 0.98708E+00 0.68773E+88-0.13478E+01-0.81135E-01-0.13220E+01-0.12668E+00-0.98651E+00 -0.13230E-01 0.13014E+01-0.38379E+00 0.13139E+01-0.10739E+00 0.98672E+00 -0.66483E+00-0.10980E+01 0.R0310E+00-0.12656E+01 0.33773E+00-0.98637E+00 0.11648E+01 0.76253E+00-0.11253E+01 0.11776E+01-0.55784E+00 0.98504E+00 -0.13530E+01-0.33542E+00 0.13120E+01-0.10528E+01 0.76088E+00-0.98299E+00 0.11788E+01-0.13231E+00-0.13418E+01 0.89515E+00-0.94070E+00 0.97989E+00 -0.68864E+00 0.58418E+00 0.12118E+01-0.70977E+00 0.10914E+01-0.97517E+00 0.14013E-01-0.96520E+00-0.93623E+00 0.50223E+00-0.12090E+01 0.96940E+00 0.66426E+0C 0.12296E+01 0.54779E+00-0.27870E+00 0.12933E+01-0.96327E+00 0.13528E+01 0.13022E+01-0.37295E+00 0.18997E+00 0.13467E+01-0.94962E+00 -0.11785E+01-0.11016E+01 0.79456E+00-0.42032E+00-0.13138E+01 0.94067E+00 8.68856E+00 8.76773E+00-0.11200E+01 8.63812E+00 0.12411E+01-0.93066E+00 .0.13505E+81-0.95997E+00-0.92530E+00 0.12722E+01 0.60042E+00-0.91974E+00 0.12251E+01 0.53087E+00-0.13443E+01-3.37580E+00 0.92111E+00 -0.11580E+01 0.76280E+00-0.11256E+01-0.12268E+01 0.55567E+00 0.92645E+00 0.66078E+00-0 4552 12 C = 38

A STATE OF THE STA

, Acc DIRECT , Stat = NEW 3 = DIRTY:CYL.DAR OPEN, ‡‡

MATRIX APPEARING IN DAA EQUATIONS:

,27090E+00-0.10410E+00-0.97853E-02-0.63421E-02-0.35930E-02-0.23378E-02-0.16694E-02-0.12965E-02-0.10238E-02-0.84159E-03 -0.10410E+00 0.27039E+00-0.10410E+00-0.97804E-02-0.6344E-02-0.35922E-02-0.23378E-02-0.16689E-02-0.12937E-02-0.10252E-02 -0.97853E-02-0.10410E+00 0.27090E+00-0.10410E+00-0.97815E-02-0.63429E-02-0.35911E-02-0.23372E-02-0.16727E-02-0.12941E-02 .63421E-02-0.97804E-02-0.13410E+00 0.27090E+00-0.10410E+00-0.97840E-02-0.63429E-02-0.35942E-02-0.23338E-02-0.16719E-02 35930E-02-0.6344/E-02-0.97815E-02-0.10410E+00 0.27050E+00-0.10410E+00-0.97839E-02-0.63429E-02-0.35949E-02-0.23348E-02 -0.23378E-02-0.35922E-02-0.63429E-02-0.97840E-02-0.10410E+00 0.27090E+00-0.10410E+00-0.97807E-02-0.63405E-02-0.35958E-02 -0.16694E-62-0.23378E-02-0.35911E-02-0.63429E-02-0.97839E-02-0.10410E+00 0.27090E+00-0.10410E+00-0.97861E-02-0.63397E-02 -8.12965E-02-6.16689E-02-0.23372E-02-0.35942E-02-0.63429E-02-0.97807E-02-0.10410E+00 0.27090E+00-0.10410E+00-0.97829E-02 -0.10238E-02-0.12957E-02-0.16727E-02-0.23338E-02-0.35949E-02-0.63405E-02-0.97861E-02-0.10410E+00 0.27090E+00-0.10410E+00 .84159E-03-0.10252E-02-0.12941E-02-0.16719E-02-0.23348E-02-0.35958E-02-0.63397E-02-0.97829E-02-0.10410E+00 0.27090E+00 -0.72965E-03-0.84167E-03-0.10249E-02-0.12960E-02-0.16698E-02-0.23363E-02-0.35959E-02-0.63405E-02-0.97820E-02-0.10410E+00 -0.62715E-03-0.72974E-03-0.84345E-03-0.10239E-02-0.12957E-02-0.16707E-02-0.23336E-02-0.35965E-02-0.63423E-02-0.97821E-02 9 9 ø 1284397843112

-0.62714E-03-0.57049E-03-P.50847E-03-0.48517E-03-0.45309E-03-0.43520E-03-0.42430E-03-0.42818E-03-0.42710E-03-0.43338E-03 -0.84157E-03-0.73060E-03-0.62586E-03-0.57066E-03-0.50711E-03-0.48689E-03-0.45122E-03-0.43417E-03-0.42859E-03-0.42647E-03 -0.18238E-82-0.84305E-83-0.73866E-83-0.62540E-83-0.57895E-83-3.58689E-83-0.48671E-83-0.45377E-83-0.43356E-83-0.42660E-83 -0.16694E-62-9.12977E-02-0.10209E-02-0.84432E-03-9.72860E-03-0.62959E-03-0.56888E-03-0.50674E-03-0.48522E-03-0.43459E-03 -0.23378E-02-0.16694E-02-0.12969E-02-0.10234E-02-0.84306E-03-0.72966E-03-0.62618E-03-0.57198E-03-0.50714E-03-0.48299E-03 -0.97853E-02-0.63420E-02-0.35931E-02-0.23375E-02-0.16692E-02-0.12963E-02-0.10245E-02-0.84344E-03-0.72802E-03-0.62707E-03 -0,72965E-03-0,62715E-03-0,57183E-03-0,50721E-03-0,48505E-03-0,45271E-03-0,43767E-03-0,42590E-03-0,42270E-03-0 -0.84167E-03-0.72974E-03-0.62780E-03-0.56815E-03-0.51023E-03-0.48327E-03-0.45248E-03-0.43612E-03-0.42825E-03-0.42613E-03 -0.12960E-02-0.10239E-02-0.84285E-03-0.72772E-03-0.63146E-03-0.55698E-03-0.50889E-03-0.48355E-03-0.45428E-03-0.43421E-03 -0.35959E-02-0.20736E-02-0.16717E-02-0.12944E-02-0.10237E-02-0.84446E-03-0.72820E-03-0.62927E-03-0.56673E-03-0.50998E-03 -0.63405E-02-0.35965E-02-0.23363E-02-0.16712E-02-0.12954E-02-0.10230E-02-0.84378E-03-0.72841E-03-0.62782E-03-0.56920E-03 8.27090E+00-0.10410E+00-0.97856E-02-0.63414E-02-0.35932E-02-0.23363E-02-0.16700E-02-0.12967E-02-0.10226E-02-0.84410E-03 -0.50721E-03-0.56815E-03-0.63017E-03-0.72772E-03-0.84418E-03-0.10237E-02-0.12944E-02-0.16712E-02-0.23366E-02-0.35942E-02 -8.43767E-03-0.45248E-03-0.48447E-03-0.50889E-03-0.56996E-03-0.62712E-03-0.72820E-03-0.84378E-03-0.10230E-02-0.12964E-02 -0.42270E-03-0.42825E-03-0.43478E-03-0.45428E-03-0.48497E-03-0.51118E-03-0.56673E-03-0.62782E-03-0.72814E-03-0 -0.42591E-93-0.42613E-03-0.42621E-03-0.43421E-03-0.45397E-03-0.48289E-03-0.50998E-03-0.56920E-03-0.62878E-03-0.72833E-03 -0.43767E-03-0.42579E-03-0.42515E-03-0.42723E-03-0.43571E-03-0.45282E-03-0.48400E-03-0.50879E-03-0.56920E-03-0.62811E-03 -9.45270E-03-0.43394E-03-0.43067E-03-0.42273E-03-0.42575E-03-0.43587E-03-0.45452E-03-0.48420E-03-0.51021E-03-0.56800E-03-0.48506E-03-0.45525E-03-0.43092E-03-0.43048E-03-0.42370E-03-0.42782E-03-0.43561E-03-0.45278E-03-0.48277E-03-0.51044E-03 -0.50719E-03-5.48323E-03-0.45587E-03-0.43424E-03-0.42754E-03-0.42560E-03-0.42507E-03-0.43581E-03-0.45392E-03-0.48536E-03 -0.57185E-03-0.50849E-03-0.48273E-03-0.45286E-03-0.43692E-03-0.42547F-03-0.42626E-03-0.42695E-03-0.43423E-03-0.45297E-03 -0.72367E-03-0.62601E-03-0.57106E-03-0.50836E-03-0.48364E-03-0.45372E-93-0.43761E-03-0.42538E-03-0.42322E-03-0.42866E-03 -0.12965E-02-0.102;5E-02-0.84455E-03-0.72949E-03-0.62869E-03-0.56625E-03-0.51059E-03-0.48394E-03-0.45552E-03-0.43244E-03 -0.35930E-02-0.23386E-02-0.16683E-02-0.12966E-02-0.10220E-02-0.84498E-03-0.72772E-03-0.62645E-03-0.57020E-03-0.51034E-03 -0.63421E-02-0.35899E-02-0.23398E-02-0.16695E-02-0.12992E-02-0.10197E-02-0.84420E-03-0.72973E-03-0.62901E-03-0.56920E-03 -0.10410E+00-9.97871E-02-0.63404E-02-0.35919E-02-0.23355E-02-0.16734E-02-0.12951E-02-0.10224E-02-0.84245E-03-0.72920E-03 -0.10249E-02-0.84345E-03-0.72690E-03-0.63017E-03-0.56517E-03-0.51233E-03-0.48447E-03-0.45290E-03-0.43478E-03-0.42621E-03 -0.15698E-02-0.12957E-02-0.10250E-02-0.84418E-03-0.72721E-03-0.62673E-03-0.56996E-03-0.50894E-03-0.48487E-03-0.45397E-03 -0.23363E-02-0.16707E-02-0.12948E-02-0.10237E-02-0.8447E-03-0.72934E-03-0.62712E-03-0.56780E-03-0.51118E-03-0.48289E-03 -0,97820E-02-0,63423E-02-0,35924E-02-0,23366E-02-0,16689E-02-0,12978E-02-0,10230E-02-0,84446E-03-0,72814E-03-0,62878E-03 -0.10410E+00-0.97821E-02-0.63415E-02-0.35942E-02-0.23381E-02-0.16692E-02-0.12964E-02-0.10229E-02-0.84370E-03-0.72833E-03 -0.10410E+00 0.27090E+00-0.10410E+00-0.97818E-02-0.63437E-02-0.35928E-02-0.23367E-02-0.16705E-02-0.12965E-02-0.10232E-02 -0.97856-02-0.10410E+00 0.27089E+00-0.10410E+00-0.97833E-02-0.63405E-02-0.35935E-02-0.23370E-02-0.16702E-02-0.1 -0.63414E-02-0.97818E-02-0.10410E+00 0.27090E+00-0.10410E+00-0.97879E-02-0.63404E-02-0.35931E-02-0.23363E-02-0.16703E-02 -3.35932E-02-0.63437E-02-0.97833E-02-0.10410E+00 0.27090E+00-0.10410E+00-0.97831E-02-0.63441E-02-0.35933E-02-0.23382E-02 -0.23363E-02-0.35928E-02-0.63405E-02-0.97879E-02-0.10410E+00 0.27090E+00-0.10410E+00-0.97830E-02-0.63401E-02-0.35925E-02 -0.16700E-02-0.23367E-02-0.35935E-02-0.63404E-02-0.97831E-02-0.10410E+00 0.27090E+00-0.10410E+00-0.97877E-02-0.63405E-02 -0.12967E-02-0.16705E-02-0.23370E-02-0.35931E-02-0.63441E-02-0.97830E-02-0.10410E+00 0.27090E+00-0.10410E+00-0.97846E-02 .10226E-02-0.12965E-02-0.16702E-02-0.23363E-02-0.35933E-02-0.63401E-02-0.97877E-02-0.10410E+00 0.27089E+00-0.10410E+00 -0.84410E-03-0.10232E-02-0.12969E-02-0.16703E-02-0.23382E-02-0.35925E-02-0.63405E-02-0.97846E-02-0.10410E+00 0.27030E+00 -8.72811E-03-0.84395E-03-0.10234E-02-0.12544E-02-0.16699E-02-0.23381E-02-0.35930E-02-0.63432E-02-0.97835E-02-0.10410E+00 -0.62790E-03-0.72801E-03-0.84192E-03-0.10272E-02-0.12946E-02-0.16702E-02-0.23364E-02-0.35930E-02-0.63424E-02-0.97834E-02 -0.50782E-03-0.36729E-03-0.62982E-03-0.72807E-03-0.84434E-03-0.10232E-02-0.12965E-02-0.16704E-02-0.23366E-02-0.35932E-02 -0.43613E-03-0.50711E-03-0.57135E-03-0.62734E-03-0.72813E-03-0.84420E-03-0.10225E-02-0.12967E-02-0.16700E-02-0.23369E-02 **-0.**45288E-03-0.48613E-03-0.58677E-03-0.57012E-03-0.62853E-03-0.72938E-03-0.84298E-03-0.10243E-02-0.12949E-02-0.16715E-02 -0.57183E-03-0.62780E-03-0.72590E-03-0.84285E-03-0.10250E-02-0.12948E-02-0.16717E-02-0.23363E-02-0.35924E-02-0.63415E-02 -0.48505E-03-0.51023E-03-0.56517E-03-0.63146E-03-0.72721E-03-0.84447E-03-0.10237E-02-0.12954E-02-0.16689E-02-0.23381E-02 -0.45271E-03-0.48327E-03-0.51233E-03-0.56698E-03-0.62673E-03-0.72934E-03-0.84446E-03-0.10230E-02-0.12978E-02-0.16692E-02 -0.42590E-03-0.43612E-03-0.45290E-03-0.48355E-03-0.50894E-03-0.56780E-03-0.62927E-03-0.72841E-03-0.84448E-03-0.10229E-02 -0,56928E-03-0,62948E-03-0,72800E-03-0,84179E-03-0,10232E-02-0,12969E-02-0,16699E-02-0,23369E-02-0,35928E-02-0,63427E-02 4 _ 0 x 4 r o r a e bi 15 17 17

-0.16699E-02-0.12946E-02-0.10232E-02-0.84404E-03-0.72013E-03-0.62853E-03-0.56873E-03-0.50875E-03-0.48294E-03-0.45611E-03-0.23381E-02-0.16792E-52-0.12969E-02-0.10232E-02-0.84420E-03-0.72938E-03-0.62730E-03-0.56856E-03-0.50845E-03-0.43317E-03 -0.63432E-02-9.35930E-02-0.23369E-02-0.16704E-02-0.12967E-02-0.10243E-02-0.83984E-03-0.73003E-03-9.62831E-03-0.56893E-03-0.97835E-62-0.10267E-02-0.35984E-02-0.35988E-03-0.72785E-03-0.62807E-03-0.97835E-62-0.10267E-02-0.10267E-03-0.72785E-03-0.62807E-03 .12944E-02-0.10272E-02-0.84179E-03-0.72807E-03-0.62734E-03-0.57012E-03-0.50902E-03-0.43447E-03-0.45522E-03-0.43372E-03 0.27090E+00-0.10410E+00-0.97833E-02-0.63424E-02-0.35925E-02-0.23349E-02-0.16733E-02-0.12962E-02-0.10228E-02-0.84415E-03 0.10410E+00 0.27090E+00-0.10410E+00-0.97839E-02-0.63428E-02-0.35940E-02-0.23357E-02-0.16698E-02-0.12960E-02-0.10219E-02 -0.10228E-02-0.12960E-02-0.16691E-02-0.23379E-02-0.35927E-02-0.63459E-02-0.97814E-02-0.10410E+00 0.27090E+00-0.10410E+08 -0.84415E-03-0.10219E-02-0.12987E-02-0.16693E-02-0.23376E-02-0.35899E-02-0.63455E-02-0.97811E-02-0.10410E+00 0.27090E+00 -8.43487E-03-0.45559E-03-0.48254E-03-0.50902E-03-0.56873E-03-0.62730E-03-0.73139E-03-0.83984E-03-0.10267E-02-0.12925E-02 -8,42692E-03-8,43292E-03-8,45451E-03-8,48447E-03-8,50875E-03-8,56856E-03-8,62795E-03-8,73003E-03-8,84261E-03-8,10246E-02 -0.42271E-03-0.43053E-03-0.43452E-03-0.45522E-03-0.48294E-03-0.50845E-03-0.56896E-03-0.62831E-03-0.72785E-03-0.84402E-03 .43027E-03-0.42158E-03-0.42837E-03-0.43372E-03-0.45611E-03-0.48317E-03-0.50917E-03-0.56893E-03-0.62807E-03-0.72813E-03 -8.43332E-03-0.42822E-03-0.42612E-03-0.42660E-03-0.43184E-03-0.45593E-03-0.48536E-03-0.50827E-03-0.56854E-03-0.62756E-03 -9.45637E-03-0.43461E-03-0.42584E-03-0.42265E-03-0.43137E-03-0.43275E-03-0.45247E-03-0.48551E-03-0.50902E-03-0.57048E-03 .48324E-03-0,45375E-03-0,43391E-03-0,43089E-03-0,42276E-03-0,42715E-03-0,43336E-03-0,45609E-03-0,48250E-03-0,51106E-03 -8.50842E-03-0.48206E-03-0.45571E-03-0.43418E-03-0.42616E-03-0.42750E-03-0.42817E-03-0.43064E-03-0.45732E-03-0.47994E-03 -0.56711E-03-0.51320E-03-0.48140E-03-0.45457E-03-0.43370E-03-0.42736E-63-0.42426E-03-0.43025E-03-0.43141E-03-0.45698E-03 -0.63116E-03-0.56578E-03-0.51115E-03-0.48152E-03-0.45764E-03-0.43200E-03-0.42856E-03-0.42328E-03-0.42974E-03-0.43324E-03 .43767E-03-0,45270E-03-0,48506E-03-0,50719E-03-0,57185E-03-0,62714E-03-0,72967E-03-0,84157E-03-0,10238E-02-0,12365E-02 -0.42515E-03-0.43067E-03-0.43092E-03-0.45587E-03-0.43273E-03-0.50847E-03-0.57105E-03-0.62586E-03-0.73066E-03-0.84455E-03 -8.42723E-03-0.42273E-03-5.43049E-03-0.43424E-03-0.45286E-03-0.48517E-03-0.50836E-03-0.57066E-03-0.62540E-03-0.72949E-03 .43571E-03-0.42575E-03-0.42370E-03-0.42754E-03-0.43692E-03-0.45309E-03-0.48364E-03-0.50711E-03-0.57095E-03-0.62859E-03 .45282E-@J-@.43587E-@3-@.42782E-@3-@.42560E-@3-@.42547E-@3-@.43520E-@3-@.45372E-@3-@.48689E-@3-@.50689E-@3-@.56625E-@3 -0,48400E-03-0,45452E-03-0,43561E-03-0,42507E-03-0,42626E-03-0,42430E-03-0,43761E-03-0,45122E-03-0,48671E-03-0,51059E-03 .50879E-03-0.48420E-03-0.45278E-03-0.43581E-03-0.42695E-03-0.42818E-03-0.42538E-03-0.43417E-03-0.45377E-03-0.48394E-03 -0.56920E-03-0.51021E-03-0.48277E-03-0.45392E-03-0.43423E-03-0.42710E-03-0.42322E-03-0.42859E-03-0.43356E-03-0.45552E-03 .62811E-03-0.56800E-03-0.51044E-03-0.48536E-03-0.45297E-63-0.43338E-03-0.42366E-03-0.42647E-03-0.42660E-03-0.43244E-03 -0.35930E-02-0.23364E-02-0.16699E-02-0.12965E-02-0.10225E-02-0.84208E-03-0.73139E-03-0.62795E-03-0.56896E-03-0.50917E-03 .10410E+00-6.97834E-02-0.63427E-02-0.35932E-02-0.23369E-02-0.16715E-02-0.12925E-02-0.10246E-02-0.84402E-03-0.72813E-03 -0.97833E-02-0.10410E+00 0.27090E+00-0.10410E+00-0.97833E-02-0.63428E-02-0.35926E-02-0.23365E-02-0.16691E-02-0.12987E-02 -0.63424E-02-9.97839E-02-0.10410E+00 0.27099E+00-0.10410E+00-0.97845E-02-0.63427E-02-0.35932E-02-0.23379E-02-0.16693E-02 -0.35925E-02-0.63428E-02-0.97833E-02-0.10410E+00 0.27089E+00-0.10410E+00-0.97819E-02-0.63432E-02-0.35927E-02-0.23376E-02 -0.23349E-02-0,35940E-02-0,63428E-02-0,97845E-02-0,10410E+00 0.27089E+00-0.10410E+00-0,97815E-02-0,63459E-02-0,35899E-02 **-0.16733E-02-0.23357E-02-0.35926E-02-0.63427E-02-0.97819E-02-0.10410E+00 0.27090E+00-0.10410E+00-0.97814E-02-0.63455E-02** -0,12962E-02-0,16698E-02-0,23365E-02-6,35932E-02-0,63432E-02-0,97815E-02-0,10410E+00 0,27090E+00-0,10410E+00-0,97811E-02 -0.72954E-03-0.84593E-03-0.10199E-02-0.12958E-02-0.16717E-02-0.23374E-02-0.35917E-02-0.63431E-02-0.97846E-02-0.10410E+00 -0.62680E-03-0.72622E-03-0.84802E-03-0.10207E-02-0.12951E-02-0.16701E-02-0.23390E-02-0.35919E-02-0.63407E-02-0.37864E-02 -8.56754E-03-0.62818E-03-0.72629E-03-0.84748E-03-0.10220E-02-0.12963E-02-0.16694E-02-0.23380E-02-0.35941E-02-0.63408E-02 -03-0.57176E-03-0.62711E-03-0.72770E-03-0.84564E-03-0.10208E-02-0.12950E-02-0.16704E-02-0.23374E-02-0.35944E-02 .0,48360E-03-0,50899E-02-0,56797E-03-0,62886E-03-0,72558E-03-0,84816E-03-0,10209E-02-0,12954E-02-0,16700E-02-0,23361E-02 45526E-03-0.48134E-03-0.51261E-03-0.56646E-03-0.63044E-03-0.72506E-03-0.84681E-03-0.10238E-02-0.12951E-02-0.16698E-02 .42579E-03-0.43394E-03-0.45525E-03-0.48323E-03-0.50349E-03-0.57049E-03-0.62601E-03-0.73060E-03-0.84305E-03-0.10215E-02 -0.12977E-02-0.16694E-02-0.23386E-02-0.35899E-02-0.63420E-02-0.97871E-02 -0.16694E-02-0.23378E-02-0.35930E-02-0.63421E-02-0.97853E-02-0.10410E+00 -0.10209E-82-0.12969E-82-0.16683E-02-0.23398E-02-0.35931E-02-0.63404E-02 ġ. Ġ. ġ þ ø Ġ ø 9 þ 228 238 332 35 35 35 35 35

4	-0.84432E-03-0.10 234E-02-0.12966E-02-0.16695E-02-0.23375E-02-0.35919E-02
ស	-0.72860E-03-6.84306E-03-0.10220E-02-0.12992E-02-0.16692E-02-0.23355E-02
9	.62959E
~	-0.56888E-03-C.62618E-03-0.72772E-03-0.84420E-03-0.10245E-02-0.12951E-02
6	-0.50674E-03-0.37198E-03-0.62645E-03-0.72973E-03-0.84344E-03-9.10224E-02
9	-0.48522E-03-0.50714E-03-0.57020E-03-0.62901E-03-0.72802E-03-0.84245E-03
10	-0.45459E-03-0.48299E-03-0.51034E-03-0.56920E-03-0.62707E-03-0.72920E-03
1	
12	-0.42822E-03-0.43461E-03-0.45375E-03-0.48206E-03-0.51320E-03-0.56578E-03
13	.42612E-03-0.42524E-03-0.43391E-03-0
7	.42660E-03-0.42265E-03-0.43089E-03-0
13	•
16	
12	.48536E-03-0.
8	-0.50827E-03-0.48551E-03-0.45609E-03-0.43064E-03-0.43025E-03-0.42328E-03
19	
30	62756E-03-0.57048E-03-0.51106E-03-0.
21	-0.72954E-03-0.62680E-03-0.56754E-03-0.50987E-03-0.48350E-03-0.45526E-03
25	•
23	Ξ.
24	
52	
56	-8.23374E-02-0.15701E-02-0.12963E-02-0.10208E-02-0.84916E-03-0.72506E-03
22	
, 28 28	53431E-02-0.35319E-02-0.23380E-02-0.16704E-02-0.
53	37846E-02-0.63407E-02-0.35941E-02-0.
30	-9.10410E+00-0.97864E-02-0.63408E-02-0.35944E-02-0.23361E-02-0.16698E-02
31	27898E+88-
35	10410E+00 0.27030E+00-
33	
34	.63428E-02-0.97804E-02-0.10410E+00 0.27030E+00-
32	-0.35948E-02-0.63422E-02-0.97826E-02-0.10410E+30 0.27090E+00-0.10410E+00
36	-0.23351E-02-0.35962E-02-0.63413E-02-0.97825E-02-0.10410E+00 0.27089E+00

r		צ - ח	ב	α Ξ	יי
++++++++++++	++++++++++	++++++++++	T+++++	+++++++++	+++++++++++++++++++++++++++++++++++++
					•
+LDI Ext-filnam Unit EC Upt PRU Cdloc Next Limit	Unit EC Upt P	RU Cd10c	Next	Limit	Read Written +
+ 3 DIRTY: CYL. DA 3 1 UPR 64	A 3 1 UPR	64 21	21 1	21 168688	0 1296 +
Œ					•
					•
	1 Active	1 Active devices (8 full)	full)		•
8 To ops,	16 Writes,	16 Writes, 1 Reads	ın	5947 War	5947 Words XFD 4

+++ CLOSE,

APPENDIX D USER INFORMATION FOR THE AUGMENTED MATRIX PREPROCESSOR AUGMAT

This appendix includes a copy of the users manual, and a sample input deck and subsequent output for the infinite cylindrical shell problem presented in Section 4.

U G M A T

THIS FUNCTIONAL COMPONENT OF THE UNDERWATER SHOCK ANALYSIS CODE ACCEPTS DATA FROM THE FLUID MASS MATRIX PROCESSOR AND THE STRUCTURAL ANALYZER TO CONSTRUCT THE SPECIFIC CONSTANTS AND ARRAYS THAT ARE USED IN THE STAGGERED SOLUTION PROCEDURE FOR THE TRANSIENT RESPONSE ANALYSIS OF SUBMERGED STRUCTURES

THIS PROGRAM WAS DEVELOPED AND CODED BY JOHN A. DERUNIZ, JR. OF LOCKHEED MISSILES AND SPACE CO. RESEARCH LABS IN PALO ALTO CALIFORNIA. PLEASE CONSULT WITH AUTHOR BEFORE MAKING CHANGES AND ALSO REPORT ANY MALLEUNCTIONS OR PROBLEMS. WRITE IN CARE OF LOCKHEED PALO ALTO RESEARCH LABORATORY, BLDG 205, DEPI 52-33, 3251 HANDVER ST., PALO ALTO, CALIF., 943C4 OR CALL 415-493-4411 EXTS. 45069 OR 45*33.

WARNING FROM THE PROGRAMMER GENERAL

THIS CODE CONTAINS THE SPECIAL INGREDIENT DMGASP NOT FOUND INDITIES BRANDS. DMGASP IS & DATA MANAGEMENT UTILITY MODULE THAT WILL ACTIVATE AND DEACTIVATE ALL AUXILIARY STORAGE DATA FILES REFRENCED BY THE CODE. HENCE THE NAMES OF SUCH FILES SHOULD NOT APPEAR ON ANY CONTROL CARDS IN THE RUN STREAM WHICH MIGHT NORMALLY ACTIVATE AND DEACTIVATE THE FILES. THE USER IS ALSO CAUTIONED THAT PREVIOUSLY CREATED FILES MUST ALREADY BE RESIDENT IN THE SYSTEM BEFORE HE RUN IS INITIATED. IF A FILE HAS BEEN ROLLED-OUT TO TAPE DMGASP WILL ATTEMPT TO HAVE THE FILE ROLLED-IN EVERY 15 SECONDS FOR UP TO 6 MINUTES ON THE UNIVAC 1100-EXEC 8 OPERATING SYSTEM. IF AN EXISTING DATA FILE HAS NOT BEEN REFERENCED FOR SOME TIME IT IS THEREFORE GOOD POLICY TO SIMPLY ACTIVATE AND DEACTIVATE THE FILE BEFORE EXECUTION OF THIS SODE. IF THE USER STEMPTS TO CREATE A NEW DATA FILE WITH A NAME WHICH IS ALREADY ASSIGNED TO AN EXISTING FILE, THE UNIVAC VERSION OF DNGASP WILL MODIFY THE NAME DUFFICATION WILL CAUSE NO PROBLEM ON THE COS COPE OPERATING SYSTEM IS SIMILAR TO UNIVAC IN THIS REGARD AND THE RUN WILL ABORT SINCE THE NAME-CHANGING FEATURE OF DMGASP HAS NOT BEEN IMPLEMENTED FOR NUS. OUALIFIER*FILENAME IS THE REQUIRED INPUT DATA FORMAT FOR NOS. OUALIFIER*FILENAME IS THE NAME. IN MOST INSTALLATIONS CAN BE SELECTED ALMOST ARBITRARILY. ON COCONDE.

AND ALSO SCOPE, THE OUALIFIER IS INTERPRETED AS THE USERS CATALOG NUMBER.

WHICH IS USUALLY PRESCRIBED BY THE INSTALLATION. A CYCLE NUMBER.

CAN ALSO BE APPENDED TO GIVE THE FORM OUALIFIER*FILENAME (CYCLE)

MAN ALSO BE APPENDED TO GIVE THE FORM OUALIFIER*FILENAME (CYCLE)

*

ROGRAM

۵

The state of the s

* * * * * *

. . . .

ALL ARRAYS REFERENCED IN THIS CODE THAT ARE PROBLEM DEPENDENT
RESIDE IN BLANK COMMON. THE SIZE OF BLANK COMMON IS DETERMINED BY
A PARAMETER STATEMENT IN THE MAIN PROGRAM FOR THE UNIVAC 11GO-OS
VERSION, HENCE A RECOMPILATION IS NECESSARY TO INCREASE OR
DECREASE CORE ALLOCATION. IN THE CDC 6600 VERSION RECOMPILATION IS
UNNECESSARY AS THE LENGTH OF BLANK COMMON IS SET BY A FIELD LENGTH
REQUEST IN THE CONTROL CAFD DECK

œ PARAMETE INPUT u 0 z EFINITIO ٥

INPUT VARIABLE NAMES GIVEN BELOW ARE GFNERALLY *HOSE WHICH ARE ALST USED IN THE CODING AND THE VARIABLE TYPES CORRESPOND TO STANDARD FORTRAN USAGE: * * * * * * * * * *

ALPHANUMERIC FLOATING POINT FIXED POINT INTEGER LOGICAL	DESCRIPTION	NAME OF PERMANENT MASS STORAGE FILE WHICH CONTAINS THE STRUCTURAL MASS AND STIFFNESS MATRICES AS WELL 4S BOOKEEPING INFORMATION RELATING THE INTERNAL AND EXTERNAL DEGREES OF FREEDOM. WHEN INTERFACING WITH THE MONLINEAR STRUCTURAL ANALYZER STAGS THE STIFFNESS MATRIX IS NOT PRESENT	NAME OF PERMANENT MASS STORAGE FILE WHICH CONTAINS THE MANIPULATED DAA FORM OF THE FLUID MASS MATRIX	NAME OF PEKMANENT MASS STORAGE FILE WHICH CONTAINS THE FLUID MESH GEOMETRY AND FLUID-STRUCTURE TRANSFORMATION DATA	NAME OF PERMANENT MASS STORAGE FILE CREATED BY THIS PROCESSOR WHICH CONTAINS ALL THE INFORMATION REQUIRED TO CONDUCT THE UNDERWATER SHOCK ANALYSIS OF THE STRUCTURE IN QUESTION EXCEPT FOR THE EXCITATION AND INTEGRATION DATA
∢⊞ π⊶⊐	1 V P E	⋖	⋖	⋖	⋖
	VARIABLE	STRNAM	FLUNAM	GEONAM	PRENAM

TRUE IF THE PERMANENT FILE CONTAINING THE STRUCTURAL MASS AND STIFFNESS MATRICES

FRWTST

WAS CREATED BY BUFFERED FORTRAN WRITE STATEMENTS, OTHERWISE FALSE	TRUE IF TRANSLATIONAL CONSTRAINTS MUST BE APPLIED TO STRUCTURAL NODES DUE TO SYMMETRY CONDITIONS IF HALF OR QUARTER MODELS ARE BEING USED, OTHERWISE FALSE. CONSTRAINTS ON ROTATIONAL STRUCTURAL FREEDOMS DO NOT ENTER THE AUGMENTED MARRICES. CONSTRAINTS MUST BE APPLIED ONLY IF NDICOS = 0 (SEE BELOW)	TRUE IF AUGMENTED FORM OF MATRICES APPEARING IN THE FLUID EQUATIONS ARE TO BE PRINTED IN FULL OTHERWISE FALSE IN WHICH CASE ONLY THE MATRIX MASTER RECORD AND THE DIAGOMAL TERMS ARE PRINTED. THE FIRST MATRIX SHOWN IS THE INVERSE FORM OF THE STRUCTURAL MASS AND IT IS THE ONLY SPARSE MATRIX IN THE FLUID EQUATIONS, HENCE A MAP OF ITS CONNECTIVITY IS ALWAYS SHOWN. THE NEXT MATRIX IS A COMBINATION OF BOTH THE FLUID AND STRUCTURE INVERSE MASS MATRICES. FLUID AND STRUCTURE INVERSE MASS MATRICES. TORNESSE. THE FIRST COMES DIRECTLY FROM THE DAA! EQUATION WHILE THE SECOND IS ITS ITERATED FORM THAT APPEARS IN THE DAA? EQUATION. IT IS RECOMMENDED THAT A VALUE OF FALSE BE USED UNDER NORMAL CONDITIONS	ī.	TRUE IF FLUID-STRUCTURE TRANSFORMATION DATA IS TO BE LISTED, OTHERWISE FALSE	TRUE IF SKYLINED STRUC'IRAL STIFFNESS MATRIX IS TO BE DISPLA, D. OTHERWISE FALSE, WHEN INTERFACING WITH STAGS THIS VARIABLE MUST ALWAYS BE TAKEN AS FALSE SINCE THE GLOBAL STIFFNESS OPERATOR DOES NOT EXIST IN THE SAME FORM AS THAT FOR USA IN THE STAND ALONE CONFIGURATION	A PARAMETER BOUNDED BY ZERO AND UNITY THAT GOVERNS THE USE OF THE IMPROVED DOUBLY ASYMPTOTIC APPROXIMATION. A VALUE OF ZERO REDUCES THE FLUID SOLUTION TO THE STANDARD DOUBLY, ASYMPTOTIC APPROXIMATION, HOMEVER A PRECISE CHOICE FOR THIS PARAMETER IS NOT GIVEN BY ANY FUNDAMENTAL PRINCIPLE. IT HAS BEEN OBSERVED THAT A VALUE OF 1.0 LEADS TO HHE BEST ACCURACY FOR A SPHERICAL SHELL WHILE A VALUE OF 0.5 SEEMS TO BE BEST FOR THE INFINITE CYLINDRICAL SHELL. IT CAN BE SHOWN THAT THIS SCALAR PARAMETER DOES HAVE A RELATIONSHIP WITH THE DIAGONAL LOCAL
	J	٦	٦	ب	J.	u.
	SYMCON	PRTAUG	PRIGMT	PRTTRN	PRISTF	DAA2
117	19 22 23 25 25 27	228 330 331 332 334 344 445 445 465 465	47 48 150	151 152	2 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	161 162 165 166 166 170 171 172 173

CURVATURE MATRIX FCR THE FLUID ELEMENTS. IF A VALUE OF ZERO WAS USED IN THE FLUID MASS RUN AND A DAAZ RUN IS DESIRED THEN THE FLUID MASS PROCESSOR MUST BE RERUN WITH A NONZERO VALUE BEFORE FURTHER COMPUTATION CAN TAKE PLACE	NUMBER OF NODE POINTS IN STRUCTURAL MODEL	NUMBER OF STRUCTURAL DEGREES OF FREEDOM. WHEN INTERFACING WITH STAGS THIS WILL BE SIX (6) TIMES THE VALUE OF NSTR	THE LARGEST DEGREE OF FREEDOM INDEX AT ANY STRUCTURAL NODE WHICH IS REFERENCED IN THE ANALYSIS. FREEDOMS 1, 2, AND 3 ARE ASSUMED TO BE TRANSLATIONAL WHILE 4, 5, AND 6 ARE RESERVED FOR ROTATIONS. ALWAYS USE SIX (6) WHEN INTERFACING WITH STAGS	THE LARGEST TRANSLATIONAL DEGREE OF FREEDOM INDEX AT ANY NODE WHICH IS REFERENCED IN THE ANALYSIS. ALWAYS USE THREE (3) WHEN INTERFACING WITH STAGS	NUMBER OF WORDS PER BLOCK TO BE USED FOR PARTITIONED SKYLINED FLUID MATRICES. GENERALLY USE SOME MULTIPLE OF 448 TO ACCOMODATE EITHER THE 28 WORD SECTOR ON UNIVAC OR THE 64 WORD PRU ON CDC SO THAT FILE SIZE IS MINIMIZED	NUMBER OF BLOCKS OR MATRIX VALUE RECORDS INTO WHICH THE SKYLINED STRUCTURAL STIFFNESS MATRIX HAS BEEN PARTITIONED	MAXIMUM BLOCK SIZE FOR SKYLINED STRUCTURAL STIFFNESS MATRIX	NUMBER OF DATA SETS NEEDED TO DEFINE THE TYPE OF STRUCTURAL COORDINATE SYSTEM WITH WHICH ANY PARTICULAR GENERAL FLUID ELEMENT MUST INTERFACE, THIS DATA IS NOT REQUIRED FOR SURFACE OF REVOLUTION FLUID ELEMENTS BUT INCLUDES ANY FLUID ELEMENTS THAT WERE CENERATED AUTOMATICALLY IN FLUMAS FOR A CYLINDRICAL SURFACE	DESIGNATES THE TYPE OF COORDINATE SYSTEM USED IN THE STRUCTURAL SOLUTION. ACCEPTABLE VALUES ARE: O - GLOBAL COORDINATES 1 - IOCAL COORDINATES WITH THE FIRST OF RECOOM NORMAL TO THE FLUID-STRUCTURE CONTACT BOUNDARY 2 - LOCAL COORDINATES WITH THE SECOND DEGREE OF FREEDOM NORMAL TO THE FLUID-STRUCTURE CONTACT BOUNDARY 2 - LOCAL COORDINATES WITH THE SECOND DEGREE OF FREEDOM NORMAL TO THE
	1	I	L	.	-			н	F
	NSTR	NSFR	NFRE	NFTR	MXWD	NUMBLK	NWDBLK	NSETLC	MDICOS
175 177 178 179	182	2 4 60 60 2 4 60 60 2 4 60 60	187 188 190 151 192 193	194 195 196 198	200 200 200 200 200 200 200 200 200 200	205 208 208	212	220 220 220 220 220	222 222 225 222 230 231

the state of the second st

AT THIS TIME OPTIONS 1, 2, OR 3 MAY BE USED ONLY FOR RIGHT CIRCULAR CYLINDERS OR SPHERES. MORE LATITUDE IN THESE CHOICES IS ULTIMATELY PLANNED. FOR USAGE WITH STAGS A VALUE OF O MUST ALWAYS BE USED AS STAGS CARRIES OUT ITS OWN GLOBAL TO LOCAL NUMBER OF DATA SETS REQUIRED TO DEFINE THE CONSTRAINTS TO BE APPLIED TO TRANSLATIONAL STRUCTURAL DEGREES OF FREEDOM DUE TO SYMMETRY CONDITIONS. THESE CONSTRAINTS NEED BE APPLIED ONLY TO STRUCTURAL NODES ONE OR MORE FLUID ELEMENTS HAVING WILL HAVE THE VALUE 1, 2, OR 3 DEPENDING UPON WHETHER THE TRANSLATIONAL CONSTRAINT IS TO BE APPLIED IN THE X, Y, OR Z GLOBAL COORDINATE DIRECTION ONLY ONE CONSTRAINT IS ALLOWABLE AT A STRUCTURAL NODE AT THIS TIME HOWEVER THIS LIMITATION IS NOT PARTICULARLY RESTRICTIVE. CONSTRAINTS TO LAST OF ONE OR MORE FLUID ELEMENTS HAVING THE SAME VALUE OF NOICOS TRANSFORMATION, GLOBAL COORDINATES ARE AUTOMATICALLY SET IN THIS PROCESSOR FOR ALL SURFACE OF REVOLUTION FLUID ELEMENTS THE AUGHENTED MATRICES ARE REQUIRED ONLY IF A FLUID ELEMENT ASSOCIATED WITH A PARTICULAR STRUCTURAL NODE IS ORIENTED SUCH THAT THE UNIT DUTWARD NORMAL VECTOR INCREMENT TO BE APPLIED IN ASSIGNING THE VALUE OF NDICOS TO FLUID ELEMENTS IN THE RANGE FROM JSTART TO JSTOP INCREMENT TO BE APPLIED IN ASSIGNING THE VALUE OF ICON TO STRUCTURAL NODES IN THE RANGE FROM NSTART TO NSTOP DE THE FLUID ELEMENT HAS A COMPONENT PERPENDICULAR TO THE SYMMETRY PLANE. FOR EXAMPLE, A QUARTER CYLINDER MODEL WOULD REQUIRE A CIRCUMFERENTIAL CONSTRAINT BUT NOT AN AXIAL ONE FIRST OF ONE OR MORE STRUCTURAL NODES AST OF ONE OR MORE STRUCTURAL NODES HAVING THE SAME VALUE OF ICON HAVING THE SAME VALUE OF ICON THE SAME VALUE OF NDICOS IN THE WET SURFACE FIRST OF JSTART **MCMCON** VSTART JSTOP NSTOP JINC ICON NINC The second secon

A VALUE OF CNE (1) WILL PRODUCE A DISPLAY OF THE DIAGONAL LOCATION POINTERS OF THE SKYLINED STRUCTURAL STIFFNESS MATRIX, OTHERWISE SET TO ZERO UNDER NORMAL CONDITIONS	A VALUE OF ONE (1) WILL PRODUCE A DISPLAY OF THE SKYLINED STIFFNESS MATRIX. DTHERWISE SET TO ZERO AND ONLY THE DIAGONAL TERMS WILL BE PRINTED BY DEFAULT. USE A NON-ZERO VALUE ONLY FOR DIAGNOSTIC REASONS OR FOR VERY SMALL PRETLEMS AS THE AMOUNT OF OUTPUT CAN BE ENORMOUS	OF ONE (1) WILL PRODUCE A MAP-TYPE OF MATRIX VALUES TO SHOW THE IVITY ALONE, OTHERWISE SET TO ZERO DRMAL CONDITIONS	INDEX OF FIRST MATRIX VALUE RECORD TO BE DISPLAYED. UNDER NORMAL CONDITIONS USE A VALUE OF ZERO AND THE CODE WILL START THE DISPLAY AT THE BEGINNING OF THE MATRIX. USE A NON-ZERO VALUE ONLY WHEN A SPECIFIC SET OF BLOCKS IS TO BE PRINTED FOR SOME DIAGNOSTIC REASON	INDEX OF LAST MATRIX VALUE RECORD TO BE DISPLAYED. UNDER NORMAL CONDITIONS USE A VALUE OF ZERO AND THE CODE WILL DISPLAY TO THE END OF THE MATRIX. USE A NON-ZERO VALUE ONLY WHEN A SPECIFIC SET OF BLOCKS IS TO BE PRINTED FOR SOME DIAGNOSTIC	* * * * * * * * * * * * * * * * * * * *	to DECK	* * * * * * * * * *	IST BE RIGHT JUSTIFIED OF THE ENTIRE CARD	N TWENTY (20) COLUMN	JILY RESTRICTED TO TON WHILE NINETEEN (19)		REPROC):		MANGE		
A VALUE OF CNE (1) WILL PRODUCE A OF THE DIAGONAL LOCATION POINTERS SKYLINED STRUCTURAL STIFFNESS MATR OTHERWISE SET TO ZERO UNDER NORMAL CONDITIONS	A VALUE OF ONE (1) WILL PRODUCE A OF THE SKYLINED STIFFNESS MATRIX, OTHERWISE SET TO ZERO AND ONLY TH DIAGONAL TERMS WILL BE PRINTED BY USE A NON-ZERO VALUE ONLY FOR DIA REASONS OR FOR VERY SMALL PRE%LEM AMOUNT OF OUTPUT CAN BE ENORMOUS	A VALUE OF ONE (1) WILL PRODUCE A DISPLAY OF MATRIX VALUES TO SHOW CONNECTIVITY ALONE, OTHERWISE SET UNDER NORMAL CONDITIONS	INDEX OF FIRST MATRIX VALUE REC DISPLAYED. UNDER NORMAL CONDITI VALUE OF ZERO AND THE CODE WILL DISPLAY AT THE BEGINNING OF THE USE A NON-ZERO VALUE ONLY WHEN SET OF BLOCKS IS TO BE PRINTED DIAGNOSTIC REASON	INDEX OF LAST MATRIX VALUE DISPLAYED. UNDER NORMAL COD VALUE OF ZERO AND THE CODE THE END OF THE MATRIX. USE VALUE ONLY WHEN A SPECIFIC IS TO BE PRINTED FOR SOME (REASON	* * * * * * * * * *	T DATA CAR	* * * * * * * * * * *	ALL INPUT DATA EXCEPT ALPHANUMERIC DATA MUST BE RIGHT JUSTILIN FIGHT (8) COLUMN FIFLDS WHICH CAN DECUPY THE ENTIRE CARD	DATA MUST BE LEFT JUSTIFIED IN TWENTY (20)	FIELDS. FILE NAME PLUS QUALIFIER IS CURRENTLY RESTRICTED TO EIGHTEEN (18) CHARACTERS FOR UNIVAC OPERATION WHILE NINETEEI	CHARACTERS MAY BE USED FOR CDC OPERATION	PROBLEM DEFINITION (MAIN PROGRAM PREPROC.)		TITLE	E	PRISTE
H	H	I	M	H	*	JANI	* * *	JT DATA EXC	MERIC DATA	FILE NAME N (18) CHAR	ERS MAY BE		10 14 10 14 14 14 14 14 14 14 14 14 14 14 14 14	COLUMN ALPHANUMERIC		PRTTEN PR
TNGT	PRTVAL	MAPVAL	#VR1	MVR2	* * * * * * * * * * * * * * * * * * * *		* * * * * * * * * * * * * * * * * * * *	ALL INPL	ALPHANUMERIC	FIELDS, FILE EIGHTEEN (18)	CHARACT	GENERAL	43 60	72 COLUN	FRETST	PRIGMI

```
IF THE FLUID MODEL CONSISTS OF ONLY SURFACE OF REVOLUTION ELEMENTS SKIP THE FOLLOWING SET OF CARDS
                                                                                                                                                                                      DISPLAY SKYLINED STRUCTURAL STIFFNESS MATRIX (SUBROUTINE STFMAT);
                                                                                   TOTAL = NSETLC
                                                                                                                                                                TOTAL = NUMCON
                                                                                                                                IF SYMCON = . TRUE. INCLUDE THE FOLLOWING CARDS
                                                                                                                                                                                                             IF PRISTE = TRUE INCLUDE THE FOLLOWING CARDS
             IF PRISTF = . TRUE. INCLUDE THE FOLLOWING CARD
                                                                                                          SET SYMMETRY CONSTRAINTS (SUBROUTINE CONSTR):
                                                                           JAK
                                                                                                                                                        NINC
                                                                           USTART USTOP
                                                                                                                                                        NSTART NSTOP
                                                                                                                                                                                                                             PRTVAL MAPVAL
MVR2
                              NUMBLK NWDBLK
                                                                   NSETLC
NDICOS
                                                                                                                                                                                                                            PRTPNT
MVR1
                                                                                                                                               NUMCON
MXWD
```

The following discussion is provided as an aid to user understanding of the sample output that is included here.

After a summary of the fluid mesh geometry arrays (see Appendix C) the first item needing explanation is that entitled "Fluid Element Wetted Freedom Indicator". This is simply a listing of the input variable NDICOS (see user manual) for each fluid element.

The section "Structural Grid Point Numbers Associated With Internal Sequence Numbers" contains a correspondence table that relates the internal sequence numbers assigned by the fluid mass processor with the external structural node number assigned by the user.

The next item entitled "Grid Point and Freedom Number for Each Row of Stiffness Matrix" identifies an integer vector that is constructed during the STAGS1 preprocessing. For each structural equation the entry in the vector consists of ten times the structural node number plus the local degree of freedom number.

This is an integer matrix of 6 rows and as many columns as there are structural node points. Any particular row corresponds to a local degree of freedom number while a column corresponds to the <u>internal</u> sequence number for a particular external node number. The matrix entry for any particular set of row and column is the structural equation number for that pair.

Depending upon user input the various fluid matrices may then be displayed. The matrix called TMIT corresponds to \underline{D}_s [see Eq. (2.6)], while DFDS denotes the sum of \underline{D}_s and \underline{D}_{f1} [see Eq. (2.6)]. In DAA₂ runs \underline{D}_{f1} is labeled DAA1 while \underline{D}_{f2} is labeled DAA2.

The following input and output for the infinite circular cylindrical shell problem contain some minor differences due to the fact that the input is appropriate to the standard CDC or UNIVAC USA-STAGS version 3 whereas the output is from the VAX virtual memory machine. The basic reason for this is that the VAX version does not explicitly process the fluid equation system in a multi-block, out-of-core mode in contrast to the CDC and UNIVAC versions. In addition, permanent file naming conventions differ slightly; however it is anticipated that these differences should not prove to be a difficulty for the user.

L*PREP

AUGMAT RUN FOR INFINITE CYLINDER SIMULATION
STG+CYLMAS

T F F
O. 72 432 6 3

- NO 4 10 10 F 00 0

AUGNAT RUN FOR TIFINITE CYLINDER SIMULATION

USER OPTIONS FOR THIS RUN:

													I	Z W	8.88889988E+88 8
														¥	0.00000000E+00 0.17364818E+00
				e.				713	#*#*	+ + + + + + + + + + + + + + + + + + +	+ + ‡			¥	0.10000000E+01 0.98480773E+00
				IRECT , Stat = OLD				Acc= DIRECT , Stat= NEW	T A B L E	Limit Read Uritten 188888 753 8 188888 8	763 Words XFD			2	8.000000000000000000000000000000000000
۔ د	<u>-</u>	ĮL.		, Acc= DIRECT	0.10000000E+01	0.1000000E+01	RED FOR THIS RUN	Acc= 1	STORAGE TA	Cdioc Next L 19 18888 188 4 8 181	evices (0 full) 13 Reads			>	0.000000000E+00 0.17364818E+00
FRUTST FRUTFL T F		PRITRN PRTSTF T F	RUN	CYL.GEO		Ħ	2628 WORDS OF STORAGE REQUIRED	CM.PRE	AUXILIARY	Juit EC Opt PRU 14 1 AX 64 16 1 UPR 64	2 Active d 0 Unites,		FLUID MESH GEOMETRIC ARRAYS:	×	0.10000000E+01 0.98480773E+00
	F F	PRTGMT PR T	THIS IS A DARI RUN	+++ OPEN, 14 = CYL.GEO	FLUID MASS DENSITY =	FLUID SOUND SPEED	2628 WORDS G	+++ OPEN, 16 = CYL.PRE	+ BUXILIARY	+ + 12 CYL.GEO 14 1 AX 64 + 12 CYL.GEO 14 1 AX 64 + 14 CYL.PRE 16 1 UPR 64	+ + 0 To obs,	+++ CLOSE, 14	FLUID MESH GE	N NTRA	1 2 2 2
				+		D-	11	•	* * T T			٠			

8,38584588E-81 8,38584588E-81

9.30594508E-01 9.30504508E-01	0.30504508E-01 0.30504568E-01 0.30504508E-01 d.30504508E-01
	0.00000000E+00 0.00000000E+00 0.00000000E+00 0.0000000E+00
8.34282812E+88 8.548888E+88 8.6582444E+88 8.76684444E+88 8.8668252E+88 8.9369262E+88 8.9369262E+88 8.9369262E+88 8.3369262E+88 8.568444E+88 8.568444E+88 8.568444E+88 8.568444E+88 8.568444E+88 8.568444E+88 8.568446E+88 9.7668444E+88 8.568446E+88 9.7668446E+88 9.76684426E+88 9.7668426E+88 9.7668426E+88 9.93969262E+88 9.93969262E+88 9.93969262E+88 9.93969262E+88 9.93969262E+88 9.93969262E+88 9.93969262E+88 9.93969262E+88 9.9369262E+88 9.9369262E+88 9.9369262E+88 9.9369262E+88 9.9369262E+88 9.9369262E+88 9.9369262E+88 9.9369262E+88 9.9369262E+88 9.9369262E+88 9.9369262E+88 9.9369262E+88	-0.64278775E+00 -0.50000018E+00 -0.34202036E+00 -0.17364845E+00
8.93969262E+88 8.6662539E+88 8.76684444E+88 8.4278758E+88 8.34282815E+88 8.17364819E+88 8.75669959E-87 8.17364819E+88 8.75669959E-87 8.17364819E+88 8.98489773E+88 8.98489773E+88 8.98489773E+88 8.98489773E+88 8.98489773E+88 8.98489773E+88 8.98489773E+88 8.98489773E+88 8.98489773E+88 8.98489773E+88 8.98489773E+88 8.984896E+88 8.984896E+88 8.984896E+88 8.98489773E+88 8.984896E+88 8.984896E+88 8.984896E+88 8.984896E+88 8.984896E+88 8.984896E+88 8.984896E+88 8.984896E+88 8.984899991E+88 8.48999991E+88 8.48999991E+88 8.48999991E+88	0.76604432E+00 0.86602533E+00 0.93969256E+00 0.98480773E+00
0.000000000000000000000000000000000000	0.000000000E+50 0.09000009E+03 0.00000000E+00 0.00000000E
0.34202012E+00 9.50000000E+00 0.64278758E+00 0.76604444E+00 0.86602545E+00 0.93969262E+00 0.98480773E+00 0.98480773E+00 0.98480773E+00 0.76604444E+00 0.76604444E+00 0.7660444E+00 0.7660444E+00 0.7660444E+00 0.7660444E+00 0.7660444E+00 0.7660444E+00 0.7660444E+00 0.7660444E+00 0.9396999E+00 0.9396996E+00 0.9396996E+00 0.9396996E+00 0.9396996E+00 0.93969696E+00 0.9396969E+00 0.9396965E+00 0.9396965E+00 0.9396965E+00 0.9396965E+00 0.9396965E+00 0.9396965E+00 0.9396965E+00 0.9396965E+00 0.9396965E+00 0.9396965E+00 0.9396965E+00 0.9396965E+00 0.9396965E+00 0.9396965E+00 0.9396965E+00	-0.64278775E+00 -0.50000018E+00 -0.34202036E+00 -0.17364845E+00
0.93969262E+90 0.7669444E+90 0.7669444E+90 0.49278758E+90 0.4929997E+90 0.7569959E-97 0.7569959E-97 0.7569444E+90 0.7569444E+90 0.7569444E+90 0.7569444E+90 0.7569444E+90 0.7569444E+90 0.7569444E+90 0.75694469E+90 0.1924890E+91 0.9396959E+90 0.1924890E+90 0.17364813E+90 0.17364813E+90 0.17364813E+90 0.17364813E+90 0.17364813E+90 0.17364813E+90 0.17364813E+90 0.17364813E+90 0.17364813E+90 0.17364813E+90 0.17364813E+90 0.17364813E+90 0.17364813E+90 0.17364813E+90 0.17364813E+90 0.49999991E+90	0.76604432E+00 - 0.86602533E+00 - 0.9396925GE+00 - 0.98480773E+00
25 25 25 25 25 25 25 25 25 25 25 25 25 2	33 2 2 35 36 36 36 36 2 2 36 2 2 36 36 36 36 36 36 36 36 36 36 36 36 36

Control of the Contro

LOCAL FLUID-STRUCTURE TRANSFORMATION COEFFICIENTS:

NFLU NSTR

1 0.50000E+00 0.50000E+00
2 2 38
2 38
3 3 3 33
4 4 4 0.50000E+00 0.50000E+00
5 5 0.50000E+00 0.50000E+00
5 6 0.50000E+00 0.50000E+00
6 0.50000E+00 0.50000E+00

8.58888E+88 8.58888E+88	69	0.50000E+00	20	0.58888E+88	7.	0.58888E+88	22	8.50000E+00
8.58888E+88	33	0.58888E+88 0.58888E+88	34	8.58888E+88 8.58888E+88	32	8.58888E+88 8.58888E+88	36	0.50000E+00 0.50000E+00
	33		34		35		36	

FLUID ELEMENT LETTED FREEDOM INDICATUR:

10	60	20	8	38	60	
6 0	6 0	19	60	62	6	
80	60	18	60	28	6	
~	60	17	Ø	27	6	
9	6 0	16	60	5 6	6 0	36 8
ស	Ø	15	60	25	©	35
4	Ø	7	60	24	60	ж 8
m	Ø	13	©	23	8	33
2	Ø	12	Ø	22	6	32
-	6 0	11	6 0	21	©	31 8

GENERALIZED FLUID AREAS:

10	15E01	28	15E-97	36	15E-01				
_	9.3050	~	6.3858	1 0	0.3050				
97	.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01	19	8.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01	23	.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01				
60	8.38585E-81	18	8.30505E-01	28	0.30505E-01				
•	8.38585E-81	21	8.38585E-81	22	8.38585E-81				
9	8.38585E-81	16	0.38585E-81	56	0.30585E-01	36	8.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-01 0.30505E-0		
ហ	0.38585E-01	15	0.38585E-81	52	0.38585E-01	32	0.30585E-01	cc = SEQUENT, Stat = OLD	
4	0.30505E-01	14	0.39585E-01	24	0.30505E-01	34	0.30585E-01	Acc = SEQUEN	
m	0.38585E-01 0.38585E-01 0.38585E-01 0.	13	0.30505E-01	23	0.30505E-01 0.30505E-01 0.30505E-01 0.	33	0.38585E-01	•	
2	8.38585E~81	12	0.38585E-01	22	0.38585E-01	32	9.38585E-81	M.USD	ATTED
	0.30505E-01	=	8.38585E-01	21	0.38585E-01	31	8.38585E-01	OPEN, 2 - CYL.USD	+++ Farm = UNFORMATTED
14								‡	‡

DIAGONAL STRUCTURAL MASS MATRIX:

3.28534E-86 78	.58291E-06	88	1.11973E-82 98	1.28534E-06	188	11M	1.11573E-02	128	1.28534E-06	138	140	1.11973E-02	158	1.28354E-86	158	178	1.11973E-02	183	1.28534E-06	198	1.58291E-86 299	200 11973F-92	218	.28534E-86	220	1.58291E-86	230	1, 1157.3E-02 248	1,28534E-06	258	1.58291E-06	250 11973F-82	278	.28534E-0E	288	. 58291c-06	29-3E-013-	386	. 28534E-06	310	. 3623 15-00
9.57841E-06 6 65	3,11973E-02 8	62	1.11973E-02 E 89	3.57841E-86 E	99	189	3.11973E-02 0	119	3.57841E-06 @	129	139	1.11973E-02 @	149	1.5/841E-06 B	139 11973E-00	169	1.11973E-82 @	179	3.57841E-06 P	189	9.11973E-02 E	195 0 CB-35-B2 0	269	3.57841E-06 P	219	3.11973E-02 0	229	7.11573E-02 0 239	3.57841E-06 0	249	3.11973E-02 @	653 1.11973F-02 0	269	3.57841E-06 0	279	1.11973E-02 0 200	253 0.11973E-02 0	299).57841E-05 0	389	J. 1137.3E-02. u
8.58291E-86 (0.11973E-62 (78	8.28534E-86 6	0.58291E-06	98	188	0.28534E-06 (118	8.58291E-96 (128	138	8.28534E-86	148	8.58291E-86. t	158 8 11977F-82 6	168	9.28534E-06 (178	0.58291E-06 8	188	8.11973E-02 (138 8 28534F-06 6	258	0.58291E-06	218	8.11 <u>, 73E-62</u> (2. 8 2001 47 97 4	0,26364E-05 0	8.58291E-86	248	8.11973E-82 8	238 7. 28534F-96 6	268	8.58291E-06	278	8.11973E-82 E	8.28534E-06 6	298	0.58291E-06 6	308	8.1137.3E-02.c
8.11973E-02 67	0.11973E-02	77	0.57841E-86 87	8.11973E-82	97	187	0.57841E-86	117	6.11973E-02	127	0.11513E-02 137	8.57841E-86	147	N.11973E-02	15/ 0 1:977F-02	167	8.57841E-05	177	8.11973E-82	187	8.11973E-82	15/ 0 57841F-96	287	8.11973E-62	217	0.11973E-82	227	0.37841E-06	0.11973E-92	247	0.11973E-02	757841F-A6	267	0.11973E-02	277	8.11973E-82 207	8.57841E-06 (297	0.11973E-02	387	0, i 137 3E-02 1
0.11973E-02 66	0.28534E-86	76	U.58291E−06 86	0.11973E-02	96	196	9.58291E-06	116	8.11973E-02	126 a 205245-aC	136	0.58291E-86	146	N. 11973E-82	156 0.28534F06	166	0.58291E-86	176	0.11973E-02	186	0.28534E-06	136 8 58251E-86	286	9.11973E-02	216	9.28534E-06	226	0.35231E-06 236	0.11973E-02	246	0.28534E-06	235 0.58291F-86	266	0.11973E-02	276	0.28534E-06	8.58291E-86	296	0.11973E-02	386	d. 28334E-80
8.11973E-62 65	9.57841E-06	75	85 85	0.11973E-02	95	185	9.11973E-02	115	0.11373E-02	125 a 570415ac	135	0.11973E-82	145	6.11973E-02	251 0.57841F-06	165	9.11973E-02	175	0.11973E-02	185	0.57841E-05 105	193 0 11973F-02	285	0.1197 JE-02	215	0.57841E-06	225	235	9.11973E-02	245	0.57841E-06	CC2 0.11973F-02	265	0.11973E-02	275	0.5/841E-06 205	0.11973E-02	295	0.11973E-02	385	00-3160 JC 0
8.28534E-06 64	0.58291E-06	74	6.11973E-62 84	0.28534E-86	94	0.30231E-00 194	0.11973E-02	114	8.28534E-86	124 a 503015-ac	134	0.11973E-82	144	8.28334c-8b	134 0.58291F-06	164	0.11973E-82	174	0.28534E·06	184	0.58291E-06	134 0 11973F-02	284	0.28534E-06	214	0.53291E-06	224	0.11373E-82 234	8.28534E-06	244	0.58291E-06	6.11973F-82	264	0.28534E-06	274	0.58291E-06 284	0.11973E-02	234	0.23534E-06	384	ח. שמבאוב־כם
8.57841E-86 63	0.11973E-02	73	83 83	0.57841E-06	93	183 - 25 - 65	9.11973E-02	113	0.57841E-86	123 a 110725-a2	133	0.11973E-82	143	0.37841E-06	133 0.11973F-02	163	0.11973E-02	173	0.57841E-06	•	0.11973E-02	193 R. 11973E-82	283	8.57841E-86	213	0.11973E-02	223	0.11373E-02 233	6.57841E-06	243	0.11973E-02	233 8.11973F-02	263	0.57841E-06	273	M.11973E-02 283	0.11973E-62	293	0.57841E-06	383	0.112735-02
0.58291E-06 62	0.11973E-02	72	0.28334E-85 82	0.58291E-06	92 a 11972E-a3	197 35-02	E-06	112	0.58291E-86 0.57841E-86	122 123 0 119725-02 0 119725-02	132	0.28534E-06		9 - 1	2C1 0.11973F-02	162	0.28534E-06		E-96	182	M.11973E-82	251 P. 28534F-AK	282	0.58291E-06	212	0.11973E-02	222	0.20334E-96 232	8.58291E-86	242	0.11973E-32	-98 	262	-96	272	0.11973E-02	96-3	292	9.58291E-96	382	
0.11973E-02 61	0.11973E-02	71	81 81 81	0.11973E-82	91 A 110725_A3	. 1131 3L 02	E-06	111	8.11973E-82	121 0 119735-02	131	9.57841E-06	141	113735-02	151 8.11973E-82	161	E-06	171	E-02	181	0.11973E-02 191	131 8.57841F-86	201	0.11973E-02	211	0.11973E-02	221 a 520415-ac		8.11973E-02	241	8.11973E-82	8.57841E-86	261	0.11973E-02	271	0.1197.3E-02 281	0.57841E-86	291	E-02	301	

311 312 313 314 315 316 317 318 319 329 329 329 329 329 329 321 322 322 324 329 329 329 329 329 329 329 329 329 329	341 342 343 344 345 346 347 348 349 350 350 9.57841E-06 0.28534E-06 0.11973E-02 0.11973E-02 0.11973E-02 0.57841E-06 0.28534E-06 0.11973E-02 0.11973E-02 350 350 351 352 354 355 356 357 358 359 360 351 351 352 350 350 351 352 350 350 351 352 350 350 351 352 360 351 352 360 351 361 362 363 363 360 361 361 362 363 364 365 360 361 361 362 363 360 360 361 373 360 370 373 373 374 375 375 376 377 378 377 378 377 378 378 377 378 378	9.11973E-02 0.58291E-06 0.5784¹E-06 0.28534E-06 0.11973E-02 0.11973E-02 0.11973E-02 0.58291E-06 0.5784¹E-06 0.28534E-06 0.393 394 400 395 396 397 398 399 400 391 392 394 399 400 391 392 394 399 399 400 391 392 394 399 400 391 392 394 394 399 399 400 391 392 399 399 400 391 392 399 399 400 391 392 399 399 400 391 391 392 399 399 399 400 391 391 392 391 391 391 391 391 391 391 391 391 391
319 8.11973E-82 329 8.57841E-86 339 8.11973E-82	349 9.11973E-82 359 8.57841E-86 369 9.11973E-82 379 8.11973E-82	6.57841E-06 399 6.11973E-02 409 6.11973E-06 419 6.57841E-06 729 9.57841E-06
318 0.28534E-06 328 0.58291E-06 338 0.11973E-02	348 0.28534E-96 358 0.58291E-96 368 0.11973E-92 378 0.28534E-96	0.58291E-06 398 0.11973E-02 408 0.28534E-06 418 0.58291E-06 428 0.11973E-02
317 8.57841E-86 327 8.11973E-82 337 9.11973E-82	347 0.57841E-06 357 0.11973E-02 367 0.11973E-02 377 377 387	0.11973E-02 397 0.11973E-02 407 0.57841E-06 417 3.11973E-02 427 9.11973E-02
316 0.58291E-06 326 0.11973E-02 336 0.28334E-06	346 0.58291E-86 356 0.1373E-82 366 8.28534E-86 376 0.58291E-86	0.11973E-02 396 0.28534E-05 406 0.58291E-06 416 0.11973E-02 426 0.28534E-06
315 8.11973E-02 325 8.11973E-32 335 8.57841E-06	345 8.11973E-92 355 8.11973E-02 365 8.57841E-06 375 8.11973E-82	P.11973E-02 395 0.57441E-06 475 3.11573E-02 9.11973E-02 425 9.57841E-06
314 8.11973E-02 324 8.28534E-06 334 8.58291E-06	344 0.11973E-02 354 0.28534E-06 364 0.5829.E-06 374 0.11973E-02	8.28574E-06 39.56291E-06 3.11973E-02 4.24 8.28534E-06 9.58291E-06
313 0.11973E-02 323 0.57841E-06 333 0.11973E-02	343 0.11973E-02 353 0.57841E-06 363 0.11973E-02 373 0.11973E-02	0.5784'5-96 3.13735-92 4.13735-92 4.19735-92 4.578415-96 423 0.119735-60
312 8.28534E-86 322 8.58291E-86 332 8.11973E-82	342 9.28534E-06 352 9.56291E-06 362 9.11973E-02 372 372 372 372	0.58291E-06 392 0.1;973E-02 402 6.28534E-06 9.58291E-06 0.1;973E-02 422 0.1;973E-02
311 8.57841E-86 321 6.11973E-82 331 8.11973E-82	341 8.57841E-86 351 8.11973E-82 361 8.11973E-82 371 8.57841E-86	0.11973E-02 0.58291E-06 391 0.11373E-02 0.1373E-02 401 401 401 401 411 0.11973E-02 0.159291E-06 421 421 421 431 6.57841E-06 0.28534E-06

לי מיזיסיים מיביסיים לי מיביסיים לי מיזיסים מיביסים לי מיזיסים מיביסים לי מיזיסים לי מיזיסים מיזיסים מיזיסים ל STRUCTURAL GRID POINT NUMBERS ASSOCIATED WITH INTERNAL SEQUENCE NUMBERS:

9 9	28 28 28	38	8 8	50 00	69 69	78	
6 1 60	61 61	ጲ ጲ	33	4 49	59 29	69 69	
œ œ	18 18	58 58	38	& &	28 28	89	
~ ~	17	27 27	37	4 4	57 57	<i>29</i>	
uυ	16 16	26 26	36 36	8 8	26 56	99 99	
ហហ	15	25	322	45 45	52 52	£5	
44	4 4	24 24	3.4 3.4	4 4	54 54	64 64	
ભ ભ	13	23	33	43	53.	63	
8 8	12	22	32 32	42	52 52	62 62	22
	11	21 21	31 31	4 4	51	61 61	7.1

18 24	82 84	38 56	84 Y 4 A	28	68 186	7 8 124	88 142	98 156	166	116 192	128 286	130 224	148 242	15 8 256	168
23	19 41	29 55	39 73	49 91	59 185	69 123	79 141	89 155	99 173	189 191	119 205	129 223	1 39 241	149 255	159
8 25	18 36	28	38	8 %	58 184	68 123	70 136	88 154	98	188 186	118 204	128	138 236	148 254	138
21	17 35	27 53	37 17	82 83	57 183	67 121	77 135	87 153	97 171	187 185	117 203	127 221	137 235	147 253	157
6 16	16 34	26 52	36 66	84 84 84	56 182	66 116	76 134	86 152	96 166	186 184	116 202	126 216	136 234	1 46 252	156
2 51	33 55	25 51	32	45 83	55 101	65 115	75 133	85 151	95 165	185 183	115 201	125 215	135 233	145 251	155
4 4	14 32	24 46	34	82 44	54 96	64 114	74 132	84 146	94 164	184 182	114 196	124 214	134 232	144 246	154
3	13 31	23 45	33	43 81	95 53	63 113	73 131	83 145	93 163	103 181	113 195	123 213	133 231	143 245	153
2 21	12 26	25 44	32	45 76	94.2	62 112	72 126	85 144	92 162	182 176	112 194	122 212	132 226	142 244	152
-=	11	21 43	31	41 75	51 93	61 111	71 125	81 143	31 161	101 175	111 193	121 211	131 225	141 243	151

GRID POINT AND FREEDOM NUMBER FOR EACH ROW OF STIFFNESS MATRIX:

22

274	17 8 292	188 386	198 324	200 342	21 8 356	22 8 374	2 38 392	248 406	258 474	26 0 442	278 456	280	29 6 492	388 386	316 524	328 542	330
273	169 291	179 385	189 323	199 341	289 355	219	229 391	239 405	249 423	259 441	269 455	279 473	289 491	299 585	3 89 523	319 541	329
272	168 286	178 3 64	188 322	198 336	208 354	21 8 372	228 386	238 4 84	248 422	258 436	268 454	278 472	288 486	298 504	3 8 6 522	318 536	328
27.1	167 285	177 383	187 321	197 335	207 353	217 371	227 385	237 483	247 421	25? 435	267 453	277 471	287 485	297 583	387 521	317 535	327
266	166 284	176 382	185 316	196 334	2 9 6 352	216 366	226 384	236 402	246 416	256 434	266 452	276 466	286 484	296 502	386 516	316 534	326
265	165 283	175 301	185 315	195 333	2 65 351	215 365	225 383	235 401	245 415	255 433	265 451	275 465	285 483	295 501	385 515	315 533	325
264	164 282	174 296	184 314	194 332	284 346	214 364	224 382	234 396	244 414	254 432	264 446	274 464	284 482	294 496	384 514	314 532	324
263	163 281	173 295	183 313	193 331	203 345	213 363	223 381	233 395	243 413	253 431	263 445	273 463	283 481	293 495	303 513	313 531	323
262	162 276	172 294	182 312	192 326	202 344	212 362	222 376	232 394	242 4.2	252 426	262 444	272 462	282 476	292 494	382 512	312 526	322
261	161 275	171 293	181 311	191 325	201 343	211 361	221 375	231 39 3	241 411	251 425	261 443	271 461	281 475	291 493	381 511	311 525	321

256	34 8 574	35 8 592	36 8 686	37 0 624	386	39 8 656	488 674	41 0 692	428 786	43 0 724		118 55 58 59 68	20 115 116 117 117
555	339 573	349 591	359 605	369 623	379 641	389 655	399 673	4 09 691	419 705	429 723		52 53 53 54 54 54	19 109 110 111
554	338 572	348 586	358 6 04	3 68 622	378 636	388 654	398 672	488 686	418 704	428 722		e £ 4 £ 4 4 8	18 103 104 105 106
553	337 571	347 585	357 683	367 621	377 635	387 653	397 671	487 685	417 783	427 721		7 5 3 8 8 8 4 4 4 4 5 4 1 5 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	17 97 98 99 100
552	336 566	346 584	356 682	366 616	376 634	386 652	396 968	486 684	416 702	426 716		33.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	16 91 92 93
551	335 565	345 583	355 601	365 615	375 633	385 651	395 665	485 683	415 701	425 715		25 26 27 28 29 38	15 85 86 87 88
546	334 564	344 582	354 596	3 64 614	374 632	384 646	394 664	484 682	414 696	424 714		28 29 22 23 24	14 79 80 81 82
545	333 563	343 581	353 595	363 613	373 631	383 645	393 663	483 681	413 695	423 713	ENCE TABLE:		13 74 75 76
5 4 4	332 562	342 576	352 594	362 612	372 626	382 644	392 662	4 0 2 676	412 694	422 712	432. 726 4 Correspond	2 7 8 11 12	12 67 69 78
543	331 561	341 575	351 593	361 611	371 625	381 643	391 661	48 1 675	411 693	4 21 711	431 432 725 726 FREEDOM/FOLIGITION CORRESPONDENCE	~ ~ ∪ w 4 w 0	11 62 63 64
											i i		01 10 10

119	30 175 176 177 178 179	40 235 236 237 238 239 240	58 295 297 298 299 388	60 355 357 358 358 359	78 415 416 417 418 419	
113	29 169 178 171 172 173	39 229 230 231 232 233 234	49 289 296 291 293 293	59 349 358 351 352 353	69 489 411 411 412 413	
1 0 7 163	28 163 164 165 166 167	38 223 224 225 226 227 228	283 284 285 286 287 288	38 343 344 347 347	68 483 485 486 486 488	
1 0 1 102	27 157 158 159 160 161	37 217 218 229 221 222	47 277 278 279 280 281 281	57 337 338 348 341 341	67 397 398 399 400 401	
95 96	26 151 152 153 154 155	36 211 212 213 214 215	46 271 272 273 273 274 275	56 331 332 333 334 335 335	66 391 392 394 395 395	
88 86 86	25 145 146 148 148 150	35 285 286 287 288 289	45 265 266 267 268 269 278	55 325 326 327 328 328 338	65 385 386 388 388 399	
83 84	24 139 141 142 143	34 199 200 200 203 203	259 268 261 261 263 263	328 328 321 322 323	64 379 380 382 382 383	
77 87	23 133 134 135 135 136 137	33 193 194 195 196 197 198	253 254 255 255 256 257 258	53 313 315 315 316 318	63 373 374 375 376 378	
71	22 127 128 129 130 131	32 187 188 139 190 191 191	42 243 249 249 250 251	52 387 388 389 318 311	62 367 363 369 378 371 372	72 427 429 430 431 431
99	21 121 122 123 123 124 125	31 181 182 183 194 195	4 4 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4	3881 3882 3883 3883 3885 688	61 361 362 363 364 364 365	71 421 422 423 424 425 425
மம	~ 0 W 4 N 0	0 w 4 w o	~ 0 w 4 m o	-0 w 4 w 0	~ 0 W 4 W 0	- 0 w 4 m a

Acc= DIRECT , Stat= OLD	T A B L E +++++++++++++++++++++++++++++++++	Limit Read Uritten + 100000 73 2469 + +	+ 4601 Words XFD + +++++++++++++++++++++++++++++++++++		1	- R. B. C.	253	548	36	432	432	37	36	37	999
, Acc	S T O R A G E	Cdloc Next L 4 42 18	Active devices (Ø full) Urites, 16 Reads 4601 Words ++++++++++++++++++++++++++++++++++++		PERMANENT FILL	SECTOR DECORATION OF THE PROPERTY OF THE PROPE	Ø	4	13	14	21	58	53	30	31
+++ CLOSE, 2 +++ OPEN, 12 = CYL.FLU +++ CLOSE, 12	+ A U X I L I A R Y	+ H.DI Ext-filnam Unit EC Opt PRU + 14 CYL.PRE 16 1 UPR 64	+ 1 0 To ops, 9 Urites,	+++ CLOSE, 16	SUMMARY OF DATA STORED ************************************	RECORD RECORD DESCRIP	P 1 FILE LIBRARY DATA	2 FLUID GEOMETRY AND TRANSFORMATION DATA	3 GENERALIZED FLUID AREAS	4 FREEDON/EQUATION CORRESPONDENCE TABLE	5 DIAGONAL STRUCTURAL	6 DIAGONAL POINTERS FOR DAA STRUCTURAL MASS INV	7 SKYLINE ENTRIES FOR DAM STRUCTURAL MASS INV	B DIAGONAL POINTERS FOR DAA VIRTUAL MASS INV	9 SKYLINE ENTRIES FOR DAA VIRTUAL MASS INV

APPENDIX E

USER INFORMATION FOR THE TIME INTEGRATION PROCESSOR TIMINT

This appendix includes a copy of the users manual, and a sample input deck and subsequent output for the infinite cylindrical shell problem presented in Section 4.

THIS FUNCTIONAL COMPONENT OF THE UNDERWATER SHOCK ANALYSIS CODE CONDUCTS A STEP-BY-STEP DIRECT NUMERICAL TIME INTEGRATION OF THE GOVERNING EQUATIONS OF SUBMERGED STRUCTURES EXPOSED TO SPHERICAL SHOCK WAVES OF ARBITRARY PRESCREE PROFILE AND SOURCE LOCATION. THE APPROXIMATIONS UTILIZE THE WELL-KNOWN DOUBLY ASYMPTOTIC APPROXIMATION (DAA) WHILE THE STRUCTURE ITSELF MAY BE TREATED BY A SPATIAL ANALYSIS AT EACH TIME STEP. THE CODE USES THE STAGGRED THE FLUTON RACCEDURE WHEREIN THE STRUCTURAL RESPONSE EQUATIONS AND STEP THROUGH EXTRAPOLATIONS ARE SOLVED SEPARATELY AT FACH TIME SYSTEMS

THIS PROGRAM WAS DEVELOPED AND CODED BY JOHN A. DERUNTZ, JR. OF LOCKHEED MISSILES AND SPACE CO. RESEARCH LABS IN PALO ALTO CALIFORNIA. PLEASE CONSULT WITH AUTHOR BEFORE MAKING CHANGES LOCKHEED PALO ALTO RESEARCH LABORATORY, BLDG 205, DEPT 52-33, 2251 HANDVER ST., PALO ALTO, CALIF., 94304 OR CALL 415-493-4411 EXTS. 45069 OR 45133.

w VALU **X** ¥

OF INPUT PRESSURE DATA POINTS CUBIC SPLINE TIME POINTS: FREE SURFACE PROBLEM INFINITE FLUID 9 MAXIMUM NUMBER NUMBER MAXIMUM

0

0

~ 0 σ 0 ស TRANSIENT RESPONSE DISPLAYS OF DIFFERENT TIME STEP SIZES PREVIOUS RESPONSE FILES FREE SURFACE PROBLEM Ö PF MAXIMUM NUMBER NUMBER NUMBER MAXIMUM MAXIMUM

INFINITE FLUID

2 \supset

0

0

E-2

CIRRE GLOCK TIME. EXECUTIVE REQUESTS, TILE CHORGES. TO FOLLOW IS TO ESTIMATE CAPITATE AND THE INCREASE TO FOLLOW IS TO ESTIMATE CAPITATE. FOR SMALL A TAN APPROXIMATE SYSTEM CHARGE ESTIMATE. FOR SMALL TO FOLLOW IS TO ESTIMATE CAPITATE. TO FOLLOW IS TO STANDARD CHARGE ESTIMATE. SYSTEM CHARGE SCAN EASILY DOWNARTE AND A LARGE FACIT TO BE APPLIED TO THE RUN TIME COMPUTED BELOW. FOR FACIT TO BE APPLIED TO THE RUN THE COMPUTED BELOW. THE STANDARD NOT APPLY TO THE USA-STAGS SYSTEM. PLISTAGS MANUAL DEFINITION OF VARIABLES REQUIRED FOR RUN TIME COMPUTING NUMBER OF DEGREES OF FREEDOM FOR WHICH RESPONSE HISTORIES ARE TO BE DISPLAYED OF RUN MUMBER OF DEGREES OF FREEDOM OF FLUID BAVE AVERAGE HALF BAND WIDTH OF STRUCTURAL MATRIX BRMS ROOT MEAN SOUARE HALF BAND WIDTH OF STRUCTURAL MATRIX BRMS ROOT MEAN SOUARE HALF BAND WIDTH OF ST STIFFNESS MATRIX, USE AVERAGE HALF BAND THIS QUANTITY IS NOT READLLY AVAILABLE TOPU TOTAL CENTRAL PROCESSING UNIT TIME REC LISTED ITEMS BELOW TOPU TOTAL CENTRAL PROCESSING BEFOR TOPU TIME SPENT ON OMERCES THE COUNTING COMMENCES THES CS-NSFR-BRMS+*2/2. TAS TIME REQUIRED TO FACTOR STRUCTURAL EQUATION THS TIME REQUIRED TO FACTOR FLUID EQUATION THS TIME REQUIRED TO FACTOR FLUID EQUATION THE TIME REQUIRED TO FACTOR FLUID EQUATION	65 60 60	THE FOLLOWIN	
AT AN APPROXIMATE SYSTEM CHARGE ESTIMATE. FOR SMALL PROBLEMS THAS JULY AND	62	CORE-BLOCK 1	EXECUTIVE REQUESTS, FILE CHARGES, THE
10 BE APPLIED TO THE RNN 110M COMPUTED BELOW. 10 BE APPLIED TO THE RNN 110M COMPUTED BELOW. 10 BE APPLIED TO THE RNN 110M COMPUTED BELOW. 10 BE APPLIED TO THE RNN 110M COMPUTED BELOW. 10 BE APPLIED TO THE RNN 110M COMPUTED BELOW. 11 BE STIT ARTES FOR STRUCTURAL FACTORIZATION AND ADVANCEMENT TIMES STAGS MANUAL DEFINITION OF VARIABLES REQUIRED FOR RUN TIME COMPUTATION: NUMBER OF DIFFERENT TIME STEPS NUMBER OF DIFFERENT TIME STEP INCREMENTS NUMBER OF DEGREES OF FREEDOM FOR WHICH TRANSIENT RESPONSE HISTORIES ARE TO BE DISPLAYED AT CONCLUSING FRUN MABBER OF DEGREES OF FREEDOM OF STRUCTURAL SYSTEM OF RUN NELU NUMBER OF DEGREES OF FREEDOM OF STRUCTURAL SYSTEM OF RUN NELU NUMBER OF DEGREES OF FREEDOM OF STRUCTURAL SYSTEM ANTRIX. BRAS ROOT MAN SQUARE HALF BAND WIDTH OF STRUCTURAL SYSTEM ANTRIX. STIFFNESS MARRIX. TOPU TOTAL CENTRAL PROCESSING UNIT TIME REQUIRED FOR LISTED TERES BATRIX. USE AVERAGE HALF BAND WIDTH IF STRUCTURAL SYSTEM TO THE STRUCTURAL FOUNTHING THE STRUCTURAL EQUATION SYSTEM TERE = 10000.*CS*(NSF*NEU) TFS TIME REQUIRED TO FACTOR STRUCTURAL EQUATION SYSTEM TAS = 3.*CS*NSF*BANE**2/?. TAS THE ELOXO.*CS*NSF*BANE**1/?. TFF TIME REQUIRED TO FACTOR STRUCTURAL EQUATION SYSTEM TAS = 1.4CS*NSF*BANE**2/?.	63 64	TO FOLLOW IS AT AN APPROX	PU TIME AND THEN INCREASE THIS TO THARGE ESTIMATE. FOR SMALL PROBLEMS
THE EST! AATES FOR STRUCTURAL FACTORIZATION AND ADVANCEMENT TIMES GIVEN BY.LOW DO NOT APPLY TO THE USA-STAGS SYSTEM. PIEASE CONSULT STAGS MANUAL DEFINITION OF VARIABLES REJUIRED FOR RUN TIME COMPUTATION: NSTEP NUMBER OF DIFFERENT TIME STEP INCREMENTS NTINC NUMBER OF DEGREES OF FREEDOM FOR WHICH TRANSIENT RESPONSE HISTORIES ARE TO BE DISPLAYED AT CONCLUSIOF RUN NSFR NUMBER OF DEGREES OF FREEDOM OF FLUID SYSTEM BAVE AVERAGE HALF BAND WIDTH OF STRUCTURAL SYSTEM BAVE AVERAGE HALF BAND WIDTH OF STRUCTURAL STIFFNESS MATRIX. USE AVERAGE HALF BAND WIDTH OF STRUCTURAL STIFFNESS MATRIX. BRNS STRUCTURAL SOUARE HALF BAND WIDTH OF STRUCTURAL STIFFNESS MATRIX. BRNS TISTORISS MATRIX. USE AVERAGE HALF BAND WIDTH IF THIS GUANTITY IS NOT READLLY AVAILABLE TOPU TOTAL CENTRAL PROCESSING UNIT TIME REQUIRED FOR INTEGRATION COMMENCES TERE OCD TIME SPENT ON PRE-PROCESSING BEFORE TIME INTEGRATION COMMENCES THE SCHOOL TIME SPENT ON PRE-PROCESSING BEFORE TIME ITS STRUCTURAL SYSTEM 1AS STRUCTURAL SYSTEM 1AS STRUCTURAL SYSTEM 1AS STRUCTURED TO FACTOR FLUID EQUATION SYSTEM 1FF THM REQUIRED TO FACTOR FLUID EQUATION SYSTEM 17FF = CS+NSFR-BRNS+2/2-3.	65 67 68	STSTEM CHARGE TO BE APPLIE PROBLEMS (25 UNIVAC 0'ERA	IME COMPUTED ACTOR DROPS [
NUMBER OF TIME STEPS NUMBER OF TIME STEPS NUMBER OF TIME STEPS NUMBER OF TIME STEPS NUMBER OF DIFFERENT TIME STEP INCREMENTS NUMBER OF DIFFERENT TIME STEP INCREMENTS NUMBER OF DEGREES OF FREEDOM FOR WHICH TRANSIENT OF RUN NSFR NUMBER OF DEGREES OF FREEDOM FOR WHICH TRANSIENT OF RUN NSFR NUMBER OF DEGREES OF FREEDOM OF STRUCTURAL SYSTEM NALU NUMBER OF DEGREES OF FREEDOM OF STRUCTURAL SYSTEM BAVE AVERAGE HALF BAND WIDTH OF STRUCTURAL STIFFNESS MATRIX BRMS ROOT MEAN SOLARE HALF BAND WIDTH OF STRUCTURAL STIFFNESS MATRIX. USE AVERACE HALF BAND WIDTH IF THIS OLANTITY IS NOT READIL! AVAILABLE TCPU ITAL CENTRAL PROCESSING UNIT TIME REQUIRED FOR LISTED ITEMS BELOW TCPU TIME SPENT ON PRE-PROCESSING BEFORE TIME INTEGRATION COMMENCES TFRE 10000.*CS.*(NSFR*NFLU) TFS TIME REQUIRED TO FACTOR STRUCTURAL EQUATION SYSTEM TAS STRUCTURAL SYSTEM 1AS 3.*CS.*NSFR*BANE TFF ITME REQUIRED TO FACTOR FLUID EQUATION SYSTEM TFF ITME REQUIRED TO FACTOR FLUID EQUATION SYSTEM TFF ITME REQUIRED TO FACTOR FLUID EQUATION SYSTEM	69 70 71	THE EST! AATE GIVEN BELOW STAGS MANUAL	STRUCTURAL FACTORIZATION AND ADVANCEMENT TIMES APPLY TO THE USA-STAGS SYSTEM, PLEASE CONSULT
NUMBER OF TIME STEPS NTINC NUMBER OF DIFFERENT TIME STEP INCREMENTS NTINC NUMBER OF DEGREES OF FREEDOM FOR WHICH TRANSIENT RESPONSE HISTORIES ARE TO BE DISPLAYED AT CONCLUSI OF RUN NSFR NUMBER OF DEGREES OF FREEDOM OF STRUCTURAL SYSTEM BAVE AVERAGE HALF BAND WIDTH OF STRUCTURAL SYSTEM BRANS RROT MEAN SQUARE HALF BAND WIDTH OF STRUCTURAL STIFFNESS MATRIX. BRANS RROT MEAN SQUARE HALF BAND WIDTH OF STRUCTURAL STIFFNESS MATRIX, USE AVERAGE HALF BAND WIDTH IF THIS QUANTITY IS NOT READILY AVAILABLE TOPU TOTAL CENTRAL PROCESSING UNIT TIME REQUIRED FOR LISTED ITEMS BELOW TOPU = TPRE + NTINC*(TFS+TFF) + NSTEP*(TAS+TAF) + TPRE CPU TIME SPENT ON PRE-PROCESSING BEFORE TIME INTEGRATION COMMENCES TFRE = 1000.*CS*(NSFR*NFLU) TFS = CS*NSFR*BRMS**2/? TAS = 3.*CS*NSFR*BANS* TFF = CS*NSFR*BANS* TFF = CS*NSFR*BANE*	73	DEFINITION C	VARIABLES REQUIRED FOR RUN TIME
NDISP NUMBER OF DEGREES OF FREEDOM FOR WHICH TRANSIENT RESPONSE HISTORIES ARE TO BE DISPLAYED AT CONCLUSI OF RUN NSFR NUMBER OF DEGREES OF FREEDOM OF STRUCTURAL SYSTEM NFLU NUMBER OF DEGREES OF FREEDOM OF FLUID SYSTEM BAVE AVERAGE HALF BAND WIDTH OF STRUCTURAL STIFFNESS MATRIX BRMS ROOT MEAN SOLUARE HALF BAND WIDTH OF STRUCTURAL STIFFNESS MATRIX. USE AVERAGE HALF BAND WIDTH IF THIS OUANTITY IS NOT READILY AVAILABLE TCPU TOTAL CENTRAL PROCESSING UNIT TIME REQUIRED FOR LISTED ITEMS BELOW TCPU = TPRE + NIINC*(TFS+TFF) + NSTEP*(TAS+TAF) + TPRE CPU TIME SPENT ON PRE-PROCESSING BEFORE TIME INTEGRATION COMMENCES TFRE = 1000.*CS*(NSFR*NFLU) TFS = CS*NSFR*BRMS**2/2. TAS = 3.*CS*NSFR*BRMS**2/2. TAS = 3.*CS*NSFR*BANE TFF = TIME REQUIRED FOR ADVANCEMENT OF ONE TIME STEP FOR STRUCTURAL SYSTEM TFF = TIME REQUIRED TO FACTOR FLUID EQUATION SYSTEM TFF = TIME REQUIRED TO FACTOR FLUID EQUATION SYSTEM	75 76	NSTEP	OF TIME
NDISP NUMBER OF DEGREES OF FREEDOM FOR WHICH TRANSIENT RESPONSE HISTORIES ARE TO BE DISPLAYED AT CONCLUSI OF RUN NSFR NUMBER OF DEGREES OF FREEDOM OF STRUCTURAL SYSTEM NFLU NUMBER OF DEGREES OF FREEDOM OF FLUID SYSTEM BATRIX BRMS ROOT MEAN SOUARE HALF BAND WIDTH OF STRUCTURAL STIFFNESS MATRIX. USE AVERACE HALF BAND WIDTH IF THIS QUANTITY IS NOT READILY AVAILABLE TCPU TOTAL CENTRAL PROCESSING UNIT TIME REQUIRED FOR LISTED ITEMS BELOW TCPU TIME SPENT ON PRE-PROCESSING BEFORE TIME INTEGRATION COMMENCES TFRE = 1000. *CS*(NSFR*NFLU) TFS TIME REQUIRED TO FACTOR STRUCTURAL EQUATION SYSTEM TFS = CS*NSFR*BRMS**2/2. TAS = 3.*CS*NSFR*BANS TFF = CS*NSFR*BANS TFF = CS*NSFR*BANS TFF = CS*NSFR*BANS	7.8	NTINC	OF DIFFERENT TIME STEP INCREMENT
NFLU NUMBER OF DEGREES OF FREEDOM OF FLUID SYSTEM BAVE AVERAGE HALF BAND WIDTH OF STRUCTURAL SYSTEM BAVE AVERAGE HALF BAND WIDTH OF STRUCTURAL STIFFNESS MATRIX BRMS ROOT MEAN SQUARE HALF BAND WIDTH OF STRUCTURAL STIFFNESS MATRIX. USE AVERAGE HALF BAND WIDTH IF THIS QUANTITY IS NOT READILY AVAILABLE TCPU TOTAL CENTRAL PROCESSING UNIT TIME REQUIRED FOR LISTED ITEMS BELOW TCPU TIME SPENT ON PRE-PROCESSING BEFORE TIME INTEGRATION COMMENCES TFRE = 1000.*CS*(NSFR*HFLU) TFS = CS*NSFR*BRMS**2/2. TAS TIME REQUIRED FOR ADVANCEMENT OF ONE TIME STEP FOR STRUCTURAL SYSTEM TAS = 3.*CS*NSFR*BAVE TFF = TIME REQUIRED TO FACTOR FLUID EQUATION SYSTEM TFF = CS*NFLU**3/6.	79 80 82 82	NDISP	DEGREES OF FREEDOM FOR WHICH TRA HISTURIES ARE TO BE DISPLAYED AT
BAVE BAVEAGE HALF BAND WIDTH OF STRUCTURAL STIFFNESS MATRIX BRMS ROOT MEAN SQUARE HALF BAND WIDTH OF STRUCTURAL STIFFNESS MATRIX, USE AVERAGE HALF BAND WIDTH IF THIS QUANTITY IS NOT READILY AVAILABLE TCPU TOTAL CENTRAL PROCESSING UNIT TIME REQUIRED FOR LISTED ITEMS BELOW TCPU = TDRE + NIINC+(IFS+IFF) + NSTEP*(TAS+TAF) + TCPU = TDRE + NIINC+(IFS+IFF) + NSTEP*(TAS+TAF) + TCPU = TDRE + NIINC+(IFS+IFF) + NSTEP*(TAS+TAF) + TFRE = 1000.+CS*(NSFR+NFLU) TFS = TIME REQUIRED TO FACTOR STRUCTURAL EQUATION SYSTEM TAS = 3.*CS*NSFR*BANS TAS = 3.*CS*NSFR*BAVE TFF = CS*NSFR*BAVE	83	NSFR	OF DEGREES OF FREEDOM OF STRUCTURAL
BAVE AVERAGE HALF BAND WIDTH OF STRUCTURAL STIFFNESS MATRIX BRMS ROOT MEAN SQUARE HALF BAND WIDTH OF STRUCTURAL STIFFNESS MATRIX, USE AVERAGE HALF BAND WIDTH IF THIS QUANTITY IS NOT READILY AVAILABLE TOTAL CENTRAL PROCESSING UNIT TIME REQUIRED FOR LISTED ITEMS BELOW TOPU = TPRE + NTINC*(TFS+TFF) + NSTEP*(TAS+TAF) + TPRE CPU TIME SPENT ON PRE-PROCESSING BEFORE TIME INTEGRATION COMMENCES TFRE = 1000.*CS*(NSFR+NFLU) TFS = CS*NSFR*BRMS**2/2. TAS = 1000.*CS*(NSFR*NFLU) TFS = CS*NSFR*BRMS**2/2. TAS = 3.*CS*NSFR*BAVE TFF = TIME REQUIRED TO FACTOR FLUID EQUATION SYSTEM TFF = TIME REQUIRED TO FACTOR FLUID EQUATION SYSTEM TFF = CS*NSFR*BAVE	8 8 9 2	NFLU	OF DEGREES OF FREEDOM OF FLUID
BRMS STIFFNESS MATRIX, USE AVERAGE HALF BAND WIDTH IF THIS QUANTITY IS NOT READILY AVAILABLE TOTAL CENTRAL PROCESSING UNIT TIME REQUIRED FOR LISTED ITEMS BELOW TCPU = TPRE + NTINC*(TFS+TFF) + NSTEP*(TAS+TAF) + TCPU = TPRE + NTINC*(TFS+TFF) + NSTEP*(TAS+TAF) + TPRE = TOOO.*CS*(NSFR+NFLU) TFRE = 1000.*CS*(NSFR+NFLU) TFS = CS*NSFR*BRMS**2/7. TAS TIME REQUIRED TO FACTOR STRUCTURAL EQUATION SYSTEM TAS = 3.*CS*NSFR*BAVE TFF = TIME REQUIRED TO FACTOR FLUID EQUATION SYSTEM TFF = TIME REQUIRED TO FACTOR FLUID EQUATION SYSTEM TFF = TIME REQUIRED TO FACTOR FLUID EQUATION SYSTEM TFF = TIME REQUIRED TO FACTOR FLUID EQUATION SYSTEM TFF = CS*NFLU**3/6.	87 89	BAVE	HALF BAND WIDTH OF STRUCTURAL STIFFNES
TCPU TOTAL CENTRAL PROCESSING UNIT TIME REQUIRED FOR LISTED ITEMS BELOW TCPU = TPRE + NTINC+(TFS+TFF) + NSTEP+(TAS+TAF) + TPRE CPU TIME SPENT ON PRE-PROCESSING BEFORE TIME INTEGRATION COMMENCES TPRE = 1000.*CS*(NSFR+NFLU) TFS TIME REQUIRED TO FACTOR STRUCTURAL EQUATION SYSTEM TFS = CS*NSFR*BRMS**2/7. TAS TIME REQUIRED FOR ADVANCEMENT OF ONE TIME STEP FOR STRUCTURAL SYSTEM TAS = 3.*CS*NSFR*BAVE TFF TIME REQUIRED TO FACTOR FLUID EQUATION SYSTEM TFF TIME REQUIRED TO FACTOR FLUID EQUATION SYSTEM TFF CS*NFLU**3/6.	90 93 93	BRMS	MEAN SQUARE HALF BAND WIDTH OF STRUCTURAL NESS MATRIX, USE AVERAGE HALF BAND WIDTH QUANTITY IS NOT READILY AVAILABLE
TPRE CDU TIME SPENT ON PRE-PROCESSING BEFORE TIME INTEGRATION COMMENCES TPRE = 1000. +CS+(NSFR+NFLU) TFS TIME REQUIRED TO FACTOR STRUCTURAL EQUATION SYSTEM TFS = CS+NSFR+BRMS+*2/2. TAS TIME REQUIRED FOR ADVANCEMENT OF ONE TIME STEP FOR STRUCTURAL SYSTEM TAS = 3. +CS+NSFR+BAVE TFF TIME REQUIRED TO FACTOR FLUID EQUATION SYSTEM TFF CS+NFLU+*3/6.	9 9 9 4 9 6 5 7 8	TCPU	CENTRAL PROCESSING UNIT TIME REQUIRED ITEMS BELOW
TPRE CPU TIME SPENT ON PRE-PROCESSING BEFORE TIME INTEGRATION COMMENCES TPRE = 1000. +CS+(NSFR+NFLU) TFS TIME REQUIRED TO FACTOR STRUCTURAL EQUATION SYS TFS = CS+NSFR+BRMS++2/7. TAS TIME REQUIRED FOR ADVANCEMENT OF ONE TIME STEP STRUCTURAL SYSTEM TAS = 3.+CS+NSFR+BAVE TFF TIME REQUIRED TO FACTOR FLUID EQUATION SYSTEM TFF = CS+NFLU++3/6.	97 98		= IPRE + NTINC*(TFS+TFF) + NSTEP*(TAS+TAF) +
TFRE = 1000.+CS*(NSFR+NFLU) TFS TIME REQUIRED TO FACTOR STRUCTURAL EQUATION SYS TFS = CS*NSFR*BRMS**2/2. TAS TIME REQUIRED FOR ADVANCEMENT OF ONE TIME STEP STRUCTURAL SYSTEM TAS = 3.*CS*NSFR*BAVE TFF TIME REQUIRED TO FACTOR FLUID EQUATION SYSTEM TFF = CS*NFLU**3/6.	8 0 10 5 10 5	TPRE	TIME SPENT ON PRE-PROCESSING BEFORE GRATION COMMENCES
TFS = CS*NSFR*BRMS**2/2. TAS TIME REQUIRED FOR ADVANCEMENT OF ONE TIME STEP STRUCTURAL SYSTEM TAS = 3.*CS*NSFR*BAVE TFF TIME REQUIRED TO FACTOR FLUID EQUATION SYSTEM TFF = CS*NFLU**3/6.	102 103		u
TAS TIME REQUIRED FOR ADVANCEMENT OF ONE TIME STEP STRUCTURAL SYSTEM TAS = 3.*CS*NSFR*BAVE TFF TIME REQUIRED TO FACTOR FLUID EQUATION SYSTEM TFF = CS*NFLU**3/6.	104 105	TFS	REQUIRED TO FACTOR STRUCTURAL EQUATION
TAS TIME REQUIRED FOR ADVANCEMENT OF ONE TIME STEP STRUCTURAL SYSTEM TAS = 3.*CS*NSFR*BAVE TFF TIME REQUIRED TO FACTOR FLUID EQUATION SYSTEM TFF = CS*NFLU**3/6.	104		44
TAS = 3.*CS*NSFR*BAVE TFF TIME REQUIRED TO FACTOR FLUID EQUATION TFF = CS*NFLU**3/6.	109	TAS	REQUIRED FOR ADVANCEMENT OF ONE TIME STEP STURAL SYSTEM
TFF TIME REQUIRED TO FACTOR FLUID EQUATION TFF = CS*NFLU**3/6.	112		11 CO
7FF ::	2 4 :	TFF	REQUIRED TO FACTOR FLUID EQUATION
	115 116		13

117					ļ
118	TAF	TIME REQUIRED	FOR ADVANC	EMENT OF ONE TIME STEP FO	¥.
119		FLUID SYSTEM		FLUID SYSTEM	
120					
121		TAF = CS+NFLU++2	÷2		
122					
123	TDISP	CPU TIME SPENT	ON DISPLA	CPU TIME SPENT ON DISPLAY OF RESPONSE HISTORIES	
124					
125		TDISP = 500.*CS*NSTEP*NDISP	S*NSTEP *ND	ISP	
126					
127	SS	UNIT OPERATION	CONSTANT	UNIT OPERATION CONSTANT IN SECONDS, CONSISTING OF A	4
128		FLOATING ADDIT	ION, A FLO	FLOATING ADDITION, A FLOATING MULTIPLY, AND INDEXING	501
129					
130		VALUES	n T	CONSTANT	
131		1 1 1 1	; ;	1 1 1 1 1 1 1 1 1 1	
132				1	
133			0 P E R	ATING SYSTEN	Σ
134					:
135		PREC1SION	UNIVAC	UNIVAC	Sac
136			1108	1110 6600	00
137					
138		SINGLE	5.5×10-6	3.2X10-6 1.5X	1.5X10-6
139				,	
140		DOUBLE	9.0x10-6	4.5X12-6	ı
141				;	
142		¥	THE CODE OP	THE CODE OPERATES ONLY IN SINGLE	
143		PRECISION			
144			:		

The second of th

PRECISION
IN ADDITION TO BILLABLE CHARGES DUE TO EXECUTION OF THIS CODE
THERE WILL PROBABLY BE A DAILY CHARGE FOR PERMANENT FILE STORAGE.
RESPONSE AND RESTART FILES CREATED BY THIS CODE CAN BE EXTREMELY
LENGTHY HENCE SUCH OUTPUT FROM LARGE RUNS SHOULD BE TRANSFERRED TO
TAPE AT THE EARLIEST OPPORTUNITY TO MINIMIZE THESE CHARGES

⋖ Z ш * * * * * * * * * * * * G α æ Œ Z V ت 0 œ ۵ + ш ĭ * * * * * * * * * * Σ 0 α u SNING ۷ 3

THIS CODE CONTAINS THE SPECIAL INGREDIENT DMGASP NOT FOUND IN OTHER BRANDS. DMGASP IS A DATA MANAGEMENT UTILITY MODULE THAT WILL ACTIVATE AND DEACTIVATE ALL AUXILIARY STORAGE GATA FILES REFERENCED BY THE CODE. HENCE THE NAMES OF SUCH FILES SHOULD NOT APPEAR ON ANY CONTROL CARDS IN THE RUN STREAM WHICH MIGHT NORMALLY ACTIVATE AND DEACTIVATE THE FILES. THE USER IS ALSO CAUTIONED THAT PREVIOUSLY CREATED FILES MUST ALREADY BE RESIDENT IN THE SYSTEM BEFORE THE RUN IS INITIATED. IF A FILE HAS BEEN ROLLED-OUT TO TAPE DMGASP WILL ATTEMPT TO HAVE THE FILE ROLLED-IN EVERY 15 SECONDS FOR UP TO 6 MINUTES ON THE UNIVVAC 1100-EXEC 8 OPERATING SYSTEM. IF AN EXISTING DATA FILE HAS NOT BEEN REFERENCED FOR SOME TIME IT IS THEREFORE GOOD POLICY TO SIMPLY ACTIVATE AND DEACTIVATE THE FILE BEFORE EXECUTION OF THIS CODE. IF THE USER ATTEMPTS TO CREATE OF THE FILE GENERATED BY THIS RUN TO ANOID ANY CONFLICT. FILE NAME OF THE FILE GENERATED BY THIS RUN TO AVOID ANY CONFLICT. FILE NAME OF THE FILE GENERATED BY THIS RUN TO AVOID ANY CONFLICT. FILE NAME SYSTEM AS SCOPE WILL SIMPLY CATALOG A NEW CYCLE OF THE SAME FILE.

The second consideration

E-4

LEAVE BLANK FOR NORMAL USAGE, OTHERWISE THIS IS THE NAME OF A DIFFERENT STRUCTURAL STIFFNESS MATRIX FILE THAT IS TO BE USED IN THE TIME INTEGRATION RUN RATHER THAN ALL ARRAYS REFERRENCED IN THIS CODE THAT ARE PROBLEM DEPENDENT RESIDE IN BLANK COMMON THE SIZE OF BLANK COMMON IS DETERMINED BY A PARAMETER STATEMENT IN THE MAIN PROGRAM FOR THE UNIVAC 1100-DS VERSION, HENCE A RECOMPILATION IS NECESSARY TO INCREASE OR DECREASE CORE ALLOCATION. IN THE CDC 6600 VERSION RECOMPILATION IS UNNECESSARY AS THE LENGTH OF BLANK COMMON IS SET BY A FIELD LENGTH REQUEST IN THE CONTROL CARD DECK DO THE OTHER HAND THE CDC NOS SYSTEM IS SIMILAR TO UNIVAC IN THIS REGARD AND THE RUN WILL ABORT SINCE THE NAME-CHANGING FEATURE OF DMGASP HAS NOT BEEN IMPLEMENTED FOR NOS. QUALIFIER*FILENAME IS THE REQUIRED INPUT DATA FORMAT FOR ALL UNIVAC PERMANENT FILE NAMES. ON CDC SCOPE, THE QUALIFIER IS INTERPRETED AS THE USERS ID, WHICH IN MOST INSTALLATIONS CAN BE SELECTED ALMOST ARBITRARILY. ON CDC NOS, THE QUALIFIER IS INTERPRETED AS THE USERS CATALOG NUMBER. WHICH IS USUALLY PRESCRIBED BY THE INSTALLATION. A CYCLE NUMBER CAN ALSO BE APPENDED TO GIVE THE FORM QUALIFIER*FILENAME(CYCLE) CONTAINING ALL FLUID AND STRUCTURE DATA THAT DOES NOT DEPEND UPON THE SHOCK INPUT * * * * * * * * * * * * * * * * OF PRE-PROCESSED MASS STORAGE FILE STORAGE FILE AVAILABLE FOR GENERALLY THOSE WHICH ARE POST-PROCESSING WHICH CONTAINS SYSTEM INPUT VARIABLE NAMES GIVEN BELOW ARE GENERALLY THOSE WHICH AF ALSO USED IN THE CODING AND THE VARIABLE TYPES CORRESPOND TO STANDARD FORTRAN USAGE: INTEGRATION PARAMETERS ************ DESCRIPTION S 1 Z **⊢** ⊃ FLOATING POINT ۵ NAME OF MASS ALPHANUMERIC FIXED POINT INTEGER LOGICAL * * * * ¥ RESPONSES AND TIME œ Ç 0 0 α EFINITION TYPE ⋖ ON CDC SCOPE VARIABLE PRENAM DSNAM STRNEW 221 222 223 224 224 226 227 228 228 229 230 231 212 213 214 215 215 217 218 220 210 75 176 177 178 179 8

THE ONE USED IN THE AUGMAT PROCESSOR. THE ONLY CONDITIONS UNDER WHICH THIS ABNORMAL CASE CAN BE USED ARE WHEN THE STRUCTURE ITS ELASTIC CONSTANTS ARE DIFFERENT AS OFTEN OCCURS IN PARAMETER STUDIES. IN SUCH CASES AUGMAT NEED NOT BE RERUN NAME OF MASS STORAGE FILE THAT CONTAINS INFORMATION FOR RESTARTING THE TRANSIENT	NESPONSE ANALYSIS NAME OF MASS STORAGE FILE UPON WHICH RESTART DATA IS TO BE WRITTEN. IF LEFT BLANK THEN RESTART DATA WILL BE WPITEN ON THE FILE DENOTED BY RESNAM	CARTESIAN COORDINATES OF THE LOCATION OF SPHERICAL CHARGE IN FLUID MESH SYSTEM	CARTESIAN COORDINATES OF THE CHARGE STANDOFF POINT IN THE FLUID MESH SYSTEM. THIS IS THE POINT ON THE STRUCTURE THAT IS CLOSEST TO THE CHARGE. THE INTEGRATION PROCESS STARTS AT TIME EQUAL TO ZERO WITH THE SPHERICAL WAVE JUST TOUCHING THE STRUCTURE AT THIS POINT ASSOCIATED WITH THE MINIMUM DISTANCE TO THE CHARGE	TRUE IF THE INCIDENT PRESSURE PULSE IS EXPRESSED IN THE FORM OF AM EXPONENTIALLY DECAYING FUNCTION, OTHERWISE FALSE	TRUE IF THE INCIDENT PRESSURE PULSE IS DESCRIBED BY A CUBIC SPLINE FUNCTION. CARE SHOULD ALWAYS BE TAKEN WITH THE CHOICE OF INPUT DATA POINTS SINCE THIS ALGORITH WILL PRODUCE A CONTINUOUS FUNCTION THAT CAN OSCILLATE WILDLY AROUND AREAS OF RAPID CHANGE. IN SUCH CASES IT IS IMPORTANT TO CLUSTER DATA POINTS IN THESE AREAS	NUMBER OF INCIDENT PRESSURE HISTORY DATA POINTS. SEE ABOVE FOR MAXIMUM NUMBER ALLOWED BY CORE ALLOCATION	TIME INTERVAL ASSOCIATED WITH ANY TWO SUCCESSIVE INCIDENT PRESSURE HISTORY DATA POINTS	CONSTANT MULTIPLICATIVE FACTOR TO BE APPLIED TO THE INPUT PRESSURE HISTORY DATA POINTS	VALUE DF HYDROSTATIC PRESSURE ACTING ON SUBMERGFO STRUCTURE BEFORE SHOCK WAVE EXCITATION. THIS VARIABLE IS READ FOR USA-STAGS RUNS ONLY. IN THIS CASE A
⋖	⋖	п.	m m	ىد	ب	-	m,	я. Я.	m m
RESNAM	WRTNAM	XC, YC, ZC	SX. SY, SZ	EXPWAV	SPL INE	JPHIST	отніѕт	PNORM	HYDPRE
233 234 235 236 237 240 241	243 245 248	250 251	252 253 254 255 256 259 259	262 263 264	265 266 267 268 269 270 272	275 275 277	278 279 280 281	282 283 285	286 288 289 290

STATIC ANALYSIS MUST FIPST BF ERFORMED WITH STAGS TO CREATE A RESTONTE THE CONTAINING THE DEFORMEC STRESS STAN THE NOTE OF ANALOSTS IS CARRIEL BT 2" RESTARTING STAGS (REFORMED STAGS MANUAL OF RESTART DETAILS)	INCIDENT PRESSURE HISTORY DATA POINTS. THE VALUES USED IN THE TIME INTEGRATION PROCESS ARE THE PRODUCT OF PHIST AND PNORM TO ALLOW FOR THE POSSIBILITY THAT THE INDUIT DATA MAY HAVE BEEN EXPERIMENTALLY DISTAINED AT A POINT WHICH IS NOT EQUAL TO SC ABOVE. PNORM WUST THEREFORE REFLECT THE 1/R SCALING DIFFERENCE BETWEEN SC AND THE PULSE CHARACTERIZATION EXPERIMENT. IF THE POLISE CHARACTERIZATION EXPERIMENT. IF THE POLISE CHARACTERIZATION EXPERIMENT. IF THE POLISE CHARACTERIZATION EXPERIMENT. IF THE POLINY BE PROVIDED FOR THAT TIME SPAN AND THE CODE WILL AUTOMATICALLY ENSURE THAT THE SPAN AND THE INCIDENT PRESSURE REMAINS ZERO THEREFOR THE TRANSIENT ANALYSIS THE REQUIRED INCIDENT PRESSURE DATA IS IDENTICAL TO THAT USED IN THE INITIAL RUN. IF SPLINE IS FALSE THEN THE SPLINE IS IDENTICAL TO THAT USED IN THE INITIAL RUN. IF SPLINE IS FALSE THEN THE SPLINE IS TORY DATA MUST BE EQUALLY SPACED ACCORDING TO DATA PROVIDED IN TIMES (SEE BELOW). WHEN USING THE SPRUMS THE LAST THE CODE CAPABILITY GENERALE ZERO PRESSURES BEYOND THAT POINT OTHERWISE AND OUT-DF-RANGE ERROR EXIT WILL BE TAKEN	PEAK VALUE OF PRESSUKE FOR EXPONENTIALLY DECAYING INCIDENT PULSE	DECAY TIME FOR EXPONENTIALLY DECAYING INCIDENT PRESSURE PULSE. THIS IS THE TIME IT TAKES FOR THE PRESSURE TO DROP TO 1/E (ABOUT .36788) OF ITS PEAK VALUE	TIME VALUES ASSOCIATED WITH UNEQUALLY SPACED INCIDENT PRESSURE HISTORY VALUES	NUMBER OF TIME STEP SIZES TO BE USED IN THE INTEGRATION PROCESS. SEE ABOVE FOR MAXIMUM NUMBER ALLOWED BY CORE ALLOCATION	THE STARTING TIME AT WHICH ANY PARTICULAR STEP SIZE IS TO BE USED UNTIL IT IS EITHER SUPERCEEDED BY ANOTHER STEP SIZE OR, THE ENTIRE TRANSIENT ANALYSIS HAS BEEN COMPLETED
	m.	m r	u. ui	ш u	u	ш ш
	PHI ST	PZERO	DECAY	TIMES	TN1 TN	STRIIM
291 292 293 295 296	2997 2998 3001 3002 3003 3004 3004 3013 311 311 311 312 313 313 313 313 313 3	327 328 329	330 332 333 334	336 337	338 339 341	9442 9443 944 9447 947

TIME STEP SIZE ASSUCIATED WITH STRTIM ABOVE	TIME AT WHICH THE PRESENT ANALYSIS IS TO BE TERMINATED	FREQUENCY OF SAVING SYSTEM RESPONSES ON FERMANENT FILE POSNAM. NSAVER EXPRESSED IN NUMBER OF TIME STEPS	FREQUENCY OF SAVING RESTART INFORMATION ON PERMANENT FILE RESNAM OR WRINAM, NRESET IS EXPRESSED IN NUMBER OF TIME STEPS	LOCATION IN POSNAM FILE WHERE RESPONSES FROM CURRENT RUN ARE TO BE PLACED. THIS LOCATION IS MEASURED EITHER IN SECTORS (28 WORDS) ON UNIVAC SYSTEMS OR PHYSICAL RECORD UNITS (PRU OF 64 WORDS) ON CDC HARDWARE. A ZERO VALUE IS THE DESIGNATION OF THE BECINNING OF THE FILE FOR EITHER SYSTEM IN THIS CODE. IF LOCAGES = 0, A NEW PERMANENT FILE IS ASSIGNED FOR THE RUN WITH THE NAME DENOTED BY POSNAM, OTHERWISE POSNAM IS TAKEN TO BE AN EXISTING FILE. UNDER RESTART CONDITIONS THE APPROPRIATE VALUE OF LOCAGES IS ASCERTAINED FROM	LOCATION IN PERMANENT FILE RESNAM WHERE RESTART DATA IS TO BE FOUND. SEE LOCBEG FOR DEFINITION OF LOCATION. SET EQUAL TO ZERO IF CURRENT RUN IS NOT A RESTART, OTHERWISE APPROPRIATE VALUE OF LOCRES IS ASCERTAINED FROM OUTPUT GENERATED GURING PRECEEDING RUNS	UDCATION IN PERMANENT FILE RESNAM OR WRINAM WHERE NEW RESTART DATA GENERATED IN THE CURRENT RUN IS TO BE WRITTEN. SEE LOCBEG FOR DEFINITION OF LOCATION. IF WRINAM HAS BEEN LEFT BLANK (SEE ABOVE) THE RESTART DATA IS WRITTEN ON THE SAME FILE AS THAT CONTAINING THE DATA USED TO RESTART THE CURRENT RUN. IN SUCH A CASE IT IS IMPORTANT THAT LOCWRT BE CARFULLY CHOSEN SO THAT PREVIOUS DATA IS NOT INADVERTENTLY OVERWRITTEN. AN APPROPRIATE VALUE CAN BE FOUND FROM OUTPUT GENERATED FROM PRECEEDING RUNS. IF LOCWRT = ZERO, A NEW PERMANENT FILE IS ASSIGNED FOR THE RUNWITH THE NAME DENOTED BY WRTNAM, OTHERWISE WRTNAM IS TAKEN TO BE AN EXISTING FILE	TRUE IF PERMANENT FILE DENOTED BY POSNAM IS TO BE CREATEL USING UNFORMATTED FORTRAN WRITE. OTHERWISE FILE WILL BE CREATED BY DIRECT TRANSFER USING THE DATA MANAGEMENT
я я.	н,	ı	ı	H	-	-	L.
DELTIM	FINTIM	NSAVER	NRESET	LOCBEG	LOCRES	LOCWRT	FORWRI
349 350	352 353 263	335 355 375 875 875	359 360 361 361	362 363 365 365 365 370 371 372 373	3.78 3.78 3.80 3.80 3.80 3.80 4.80 4.80 4.80 4.80 4.80 4.80 4.80 4	385 389 389 399 399 399 399 399 400	2 4 4 4 4 603 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

SYSTEM DMGASP	TRUE IF SELECTED TRANSIENT RESPONSE HISTORIES ARE TO BE DISPLAYED, OTHERWISE FALSE	NUMBER OF TIME STEPS PREVIOUSLY COMPUTED WITH RESPONSES SAVED IN PERMANENT FILE DENOTED BY POSNAM. NPREVT WILL BE NONZERO ONLY FOR RESTART RUNS BUT IT CAN BE ZERO UNDER RESTART CONDITIONS IF POSNAM DENOTES A NEW RESPONSE FILE. THE USE OF NPREVT ENSURES THAT ANY TRANSIENT RESPONSE DISPLAY MADE IN COMJUNICTION WITH THE TIME INTEGRATION ROWN WILL INCLUDE THE ENTIRE HISTORY AVAILABLE FROM THAT FILE AND NATURE THISTORY AVAILABLE FROM THAT FILE AND NATURE TOWN THE PORTION COMPUTED DURING THE CURRENT RUN. IF PUSNAM CONTAINS THE COMPLETE TRANSIENT SOLUTION BACK TO TIME ZERO THEN NAPREVT MUST BE THE NUMBER OF TIME STEPS PLUS ONE TO ACCOUNT FOR THE FACT THAT THE INITIAL CONDITIONS APPEAK IN THE FIRST RECORD. IF THIS RUN IS THE VERY FIRST OF A PARTICULAR SHOCK ANALYSIS THEN NPREVT WILL BE ZERO	NUMBER OF RESPONSE FILES FROM PREVIOUS RUNS THAT MAKE UP THE DESIRED TRANSIENT AMALYSIS DISPLAY. DO NOT ADD IN THE CURRENT RUN AS THIS IS DONE BY THE CODE. NPREVF PRESENTLY CANNOT EXCEED NINE (9)	THE NUMBER OF RESPONSE RECORDS THAT ARE STORED IN ANY PARTICULAR RESPONSE FILE. THESE MUST BE ORDERED CHRONOLOGICALLY FOR INPUT. NTIMES WILL GENERALLY BE THE NUMBER OF TIME STEPS MADE DURING THE TIME THE FILE WAS CREATED EXCEPT IF THE FILE GOES BACK TO TIME EQUAL TO ZERO. IN THIS CASE NTIMES IS EQUAL TO THE NUMBER OF TIME STEPS PLUS ONE TO ACCOUNT FOR THE FIRST RECORD THAT CONTAINS THE INITIAL	NAMES OF PREVIOUS RESPONSE FILES THAT MAKE UP A CONTINUOUS SET OF TRANSIEN? DATA. ORDERED CHRONOLOGICALLY. DO NOT INCLUDE POSNAM IN THIS LIST	TRUE IF TRANSIENT RESPONSE HISTORIES ARE TO BE LISTED IN TABULAR FORM, OTHERWISE FALSE	TRUE IF PRINTER PLOTS ARF TO BE GENERATED FOR TRANSIENT RESPONSE HISTORIES, OTHERWISE FALSE
	ų		_	H	⋖	J	ų
	D1SPI.A	NPREVT	NPREVF	NTIMES	XVPNAM	LÍSTRE	PRTPLT
407	4 4 4 4 4 4 4 4 4 4 1 0 4 1 2	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	458 459 460	461 462 463

NUMBER OF STRUCTURAL HISTORIES (EITHER DISPLACEMENTS OR VELOCITIES) TO BE DISPLAYED FOR WHICH THE APPROPRIATE STRUCTURAL FREEDOMS CAN BE IDENTIFIED INTERNALLY THROUGH THE FREEDOM/EQUATION CORRESPONDENCE TABLE. ALL STRUCTURAL NODES WHICH PARTICIPATE IN THE FLUID-STRUCTURE TRANSFORMATION WILL FALL INTO THIS CATEGORY AS WELL AS ANY OTHERS WHOSE GRID POINT COORDIATES WERE ENTERED AS DATA FOR THE FLUID MASS PROCESSOR	NUMBER OF STRUCTURAL HISTORIES (EITHER DISPLAYED FOR WHICH THE APPROPRIATE OF STRUCTURE NODE CORRESPONDENCE TABLE. GRY STRUCTURE NODE POINTS CAN TALL INTO THIS CATEGORY IF THE USER DID NOT INCLUDE THEM IN THE DATA STREAM FOR THE FLUID MASS PROCESSOR. IN THIS CASE ONE MUST IDENTIFY THE INTERNAL SEQUENCE NUMBER APPROPRIATE TO THE DESIRED DEGREE OF FREEDOM BY A MYSTICAL PROCESS WHICH INVOLVES THE INTIRATE KNOWLEDGE OF THE LIMINATION ORDER AND ANY REDUCTION OF THE NUMBER OF ACTIVE FREEDOMS DUE TO THE STORY - RUN ALL STRUCTURAL GRID POINTS THROUGH THE FLUID MASS PROCESSOR EVEN IF	NUMBER OF DATA SETS USED TO DEFINE RESPONSE DISPLAYS FOR SEVERAL DEGREES OF FREEDOM THAT DIFFER BY A CONSTANT INCREMENT. THIS FEATURE CAN BE USED TO SIMPLIFY INPUT DATA TO SHOW A NUMBER OF TRANSIENT RESULTS AT DIFFERENT PLACES ALONG A GENERATOR OF A CYLINDER OR, AROUND THE CIRCUMFERENCE AT ANY AXIAL STATION	EXTERNAL INDENTIFICATION NUMBER OF STRUCTURAL NODE FOR WHICH A TIME HISTORY DISPLAY IS DESIRED	STRUCTURAL DEGREE OF FREEDOM NUMBER FOR WHICH A TIME HISTORY DISPLAY IS DESIRED	m	FIRST OF SEVERAL EQUALLY INCREMENTED NODE NUMBERS AT WHICH QUIPUT IS DESIRED
-	~	Sec	.	-	-	-
NWETHS	NDRYHS	NUMSET	NODOUT	NFROUT	NEOHST	NODF1R
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 9 9 8 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	508 508 509 510	511 512 513	សលសសស ភ្លៃក្ខភ	520 521 522

NODLAS I LAST OF SEVERAL EQUALLY INCREMENTED NODE NUMBERS AT WHICH OUTPUT IS DESIRED	NODINC I INCREMENT TO BE APPLIED IN ASSIGNING NODE NUMBERS FOR OUTPUT	NPREHS I NUMBER OF FLUID PRESSURE HISTORIES TO BE DISPLAYED	NEOHPR I FLUID CONTROL POINT NUMBER FOR WHICH A TIME HISTORY DISPLAY IS DESIRED FOR THE TOTAL PRESSURE	SCALEF L TRUE IF MULTIPLICATIVE CONSTANT FACTORS ARE TO BE APPLIED TO THE DISPLAYED VALUES OF THE STRUCTURAL DISPLACEMENTS AND VELOCITIES, TOTAL FLUID PRESSURES AND/OR TIME, OTHERWISE FALSE. SUCH FACTORS ARE NOT APPLIED TO THE PERMANENT FILES CONTAINING THE RESPONSE HISTORIES	RESFAC E.F MULTIPLICATIVE LENGTH CONVERSION FACTOR TO BE APPLIED TO THE DISPLAYED VALUES OF THE STRUCTURAL DISPLACEMENT AND VELOCITY HISTORIES	PREFAC E.F MULTIPLICATIVE PRESSURE CONVERSION FACTOR 10 BE APPLIED TO THE CISPLAYED VALUES OF THE TOTAL PRESSURE HISTORIES	TIMFAC E,F MULTIPLICATIVE TIME CONVERSION FACTOR TO BE APPLIED TO THE DISPLAYED VALUES OF THE TIME AXIS FOR ALL THE TRANSIENT RESPONSE HISTORIES		INPUT DATA CARD DECK	************	A EXCEPT ALPHANUMERIC DATA MUST BE RIGHT U	IN EIGHT (8) CULUMN FIELDS WHICH CAN UCCUPY THE ENTIRE CARD. ALPHAN MERIC DATA MUST BE LEFT JUSTIFIED IN TWENTY (23) COLUMN	CURRENTLY	EIGHTEEN (18) CHARACTERS FOR UNIVAC OPERATION WHILE NINETEEN (19) CHADACTEDS MAY BE HIGH FOR ONE ODERATION	CINTROLLES MINI DE COED TON COC OPERALION	GENERAL PROBLEM DEFINITION (SUBROUTINE INPOAT):		72 COLUMN ALPHNUMERIC TITLE	PRENAM POSNAM STRNEW	SNAM	7. 7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	PWAV SPLINE
523 524 525	526 527 528 529	530 531 532	80 80 80 80 80 80 80 80 80 80 80 80 80 8	533 538 538 542 542 542 544	. 44 20 20 20 20 20 20 20 20 20 20 20 20 20	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ស្រួល ស្រួល ស្រួល ស្រួល ស្រួល	559 560	561 562	563 564	565	567	568	569	57.1	572	574	575	576	577	578 570	580

```
CUBIC SPLINE INCIDENT PRESSURE HISTORY DATA (SUBROUTINE CSPRES):
                                                                                                                                                                                                                                                                                                                   IF DISPLA = .FALSE. THIS TERMINATES THE INPUT DATA DECK
                                                                                                                                                                                GENERAL PROBLEM DEFINITION (SUBPOUTINE INPOAT):
                                                     IF EXPWAV = FALSE, READ THE FOLLOWING CARDS
                      IF SPLINE = FALSE, READ THE FOLLOWING CARD
                                                                                                                                         IF SPLINE = TRUE, READ THE FOLLOWING CARDS
                                                                                    IF EXPWAY = TRUE, READ THE FOLLOWING CARD
                                                                                                                                                                                                                                                                                                                                                 IF NPREVF NOT = 0 READ THE FOLLOWING CARDS
                                                                                                                                                                                                                        TOTAL = NTINT
                                                                                                                                                                                                                                                                             POST PROCESSING (SUBROUTINE POSTRE);
                                                                                                                                                                                                                                                                                                                                                                                        POST PROCESSING (SUBROUTINE RESDSP):
                                                                                                                                                                                                                                                                                                                                                                                                                               POST PROCESSING (SUBROUTINE STRDSP);
                                                                                                                                                                                                                                              NRESET
LOCRES LOCWRI
                                                                                                                                                                                                                                                                                                                                                                                                                                                     NWETHS NDRYHS NUMSET
                                                                     PHIST(1), I=1, JPHIST
                                                                                                                                                                                                                                                                                                                                                                 NTIMES(I), I=1,NPREVF
XVFNAM(I), I=1,NPREVF
                                                                                                                                                         TIMES(I), I-1, JPHIST PHIST(I), I=1, JPHIST
        HYDPRE
                                                                                                                                                                                                        NTINT
STRTIM DELTIM
                                                                                                                                                                                                                                                                                                                                   NPREVT NPREVF
                                                                                                                                                                                                                                                                                                                                                                                                                LISTRE PRIPLT
                                                                                                     DECAY
                                                                                                                                                                                                                                      FINTM
NSAVER
LOCBEG
FORWRT
                                                                                                    PZERO
                                       DTHIST
                                                                                                                                                                                                                                                                                                   DISPLA
```

The second secon

639 640 644	NODOU	NFROUT) TOTAL = NWETHS	~~
642	NODOUT	NFROUT	NEGIST) THIS SET FOR
643 644	;		•) TOTAL = NDRYHS	
645				_) DISPLACEMENTS
646	IF NUMSET	11	O OMI LIHE	FOLLOWING CARD	
647			1		
648	NFROUT	MODFIR	NODLAS	NODINC	
94 10		:			
650 654	NOCOCIT	ALE DOUT	NUMSET		~ -
652					_
653) TOTAL - NWEINS	
654	NODOUT	NFROUT	NECHST		THIS SET END
655			, ,	TOTAL = NORVHS	
56	•		•		VELOCITIES
657					()
658	IF NUMSET	н	O DMIT THE	FOLLOWING CARD	
629					. –
099	NFROUT	NOOFIR	NOULAS	NODINC	
661					
662		PROCESSING	(SUBROUTINE	TINE RESUSP):	
663	1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
664	;				
665	NPREHS	NUMSET			
999	NECHPR			•	
667) TOTAL = NPREHS	
668				•	
699					
670	IF NUMSET		= 0 OMIT THE	FOLLOWING CARD	
671					
672	NODFIR	NGDLAS	NODING		
673					
674	POST PR	OCESSING	(SUBROU	POST PROCESSING (SUBBOUTINE ETIRIE).	
675	1 1 1				
676					
677	SCALEF				
678					
679	IF SCALEF	h	JE. READ	TRUE, READ THE FOLLOWING CARD	
680					
681	RESFAC	PREFAC	TIMFAC		

The following discussion is provided as an aid to user understanding of the sample output that is included here.

First, the amount of storage required for the run given in the output refers solely to the blank common that is set in the main program, USAS. An error exit is taken if insufficient storage is available and the user must see that more is provided either by a recompilation on UNIVAC 1100-OS or by a field length request on CDC.

Sector address information for the response and restart files that is listed at various places in the output is extremely important for subsequent restart runs.

The next item needing discussion is the transient response tabular listings. The desired responses are displayed in matrix form so that each row contains the entire history of a particular degree of freedom except for the first row which is time. Each column therefore contains the instantaneous values of the complete set of response variables desired at a particular time. Each row is identified by the structural or fluid node and its degree of freedom. The letters D, V, and P stand for displacement, velocity and pressure, respectively.

Although printer plots of the transient response results can be displayed as part of the run such output has been deferred to the post-processing phase in Appendix F for this sample problem.

The following input and output for the infinite circular cylindrical shell problem contain some minor differences due to the fact that the input is appropriate to the standard CDC or UNIVAC USA-STAGS version 3 whereas the output is from the VAX virtual memory machine. The basic reason for this is that the VAX version does not explicitly process the fluid equation system in a multi-block, out-of-core mode in contrast to the CDC and UNIVAC versions. In addition, permanent file naming conventions differ slightly; however it is anticipated that these differences should not prove to be a difficulty for the user.

<> CLOCK INITIALIZED ...

CASE TITLE READ FROM STAGS1 FILE

STAGS1 DATA FOR FULL CYLINDER

14 RECORDS READ FROM FTOZ BLANK COMMON BUFFER DIMENSION (NSPACE)

DECIMAL HEX GOODS EAG

WORKING SPACE STURAGE ASSIGNMENTS NEO VMBUFR PAGESZ NPAGE FMBUFR NUMOD NUMTX NSTIFF NASSEM 216 11520 1280 9 48235 5003 9534 3 B

E-17

USAS RUN FOR INFINITE CYLINDER SIMULATION

Mark 1

大大のないのではなるのではいるというないというというというというというというないのではないのでは、これのでは、からなるのではないできましているのである。

- DIRTY:CYL.PRE 16 OPEN, ŧ

Acc= DIRECT, Stat= OLD

N. A DAP1 THIS IS

CHARGE LOCATION DATA:

8.18888888E+85 II 욧

9.8888888E+88 H ሃ

0.09000000E+00

H

22

0.9399000E+04 II S

9.5888888E+82 DTHIST PRESSURE HISTORY DATA:

0.18888E+81 0.10000E+01

STEP DATA: 117

z

F

0.00000E+00

0.25000E-01 0.50000E-01 9.10000E+01 9.20000E+01 10.50000E+01 20

0.10000E+00

VELOC!TY: PRESSURE AND PARTICLE INCIDENT

0.37500E+01 9.10000E+01 0.10084E+01 8.18888E+81 8.1888E+81 0.12083E+02 0.75000E+01 0.79167E+01 0.10000E+01 0.10008E+01 0.25000E+01 0.29167E+01 0.33333E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10002E+01 0.10003E+01 0.10003E+01 9.11667E+92 0.19898E+81 8.19887E+81 8.11258E+82 0.70833E+61 18 8 0.66667E+01 8.10000E+01 0.10007E+01 8.10833E+02 0.10000E+01 0.10002E+01 0.208335+01 0.62500E+01 9.10E88E+81 0.10006E+01 9.18417E+82 ω 16 26 9.15657E+91 (9.19898E+91 (9.19892E+91 (0.58333E+01 0.10000E+01 0.10006E+01 0.10000E+02 ហ 15 0.12500E+01 6 0.10000E+01 0 0.10001E+01 0 0.10000E+01 00.10005E+01 00.100005E+01 00.10000E+01 00.1000E+01 8.10000E+01 0.10000E+01 0.10009E+01 0.10010E+01 0.95833E+01 7 24 0.10000E+01 0.10005E+01 0.83333E+00 0.50000E+01 0.10000E+01 0.10001E+01 0.91667E+01 13 0.87500E+01 0.10000E+01 0.10009E+01 0. 0.41667E+00 0.10000E+01 0.45833E+01 8.18888E+81 0.10005E+01 8.18888E+91 12 . 0.00000E+01 (8.41667E+01 8.10000E+01 0.10000E+01 0.10004E+01 0.83333E+01 د ۵ \vdash ح ہ ۵.>

0.10000E+01 0.10012E+01

0.10000E+01 0.10012E+01

9.18888E+81 8.18811E+81

0.10000E+01 0

9.10000E+01 9.10010E+01

0.10800E+01 8.18818E+81

0.10908E+0!

0.10000E+01 0.10000E+01 0.10016E+01 0.32917E+02 0.37883E+02 8.49583E+82 8.16258E+82 0.28417E+82 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10019E+01 8.18888E+81 0.10000E+01 0.10029E+01 9.10000E+01 9.10037E+01 0.41250E+02 0.45417E+82 0.10000E+01 0.10033E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10040E+01 0.10000E+01 9.18888E+81 0.10025E+01 0.10050E+01 0.10000E+01 6 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10024E+01 0.10024E+01 0.15833E+02 0.28333E+02 9.10000E+01 9.10028E+01 0.32500E+02 0.10000E+01 0.10033E+01 0.40000E+02 0.40417E+02 0.40833E+02 6.44583E+02 0.45000E+02 0.49167E+02 48 49 0.19583E+02 0.20000E+02 0.36667E+82 0.10000E+01 0.10000E+01 0.10045E+01 0.10045E+01 8.24167E+82 0.10000E+01 8.18849E+81 0.10000E+01 (0.10000E+01 0.10000E+01 0.10015E+01 0.10015E+01 9.15417E+82 0.10000E+01 0.10028E+01 8.32883E+82 0.10000E+01 0.10049E+01 0.23758E+82 0.27917E+02 3.10000E+01 0.10032E+01 0.36250E+02 0.48750E+02 118 88 0.35833E+02 0.15000£+02 0.19167E+02 0.23333E+02 0.27500E+02 0.10000E+01 0.10028E+01 9.18888E+81 8.18832E+81 0.10000E+01 0.10035E+01 0.10000E+01 0.10040E+01 0.44167E+82 0.10000E+01 0.10044E+01 0.48333E+02 9.18848E+81 0.31667E+02 0.10000E+01 87 107 36 2 0.14583E+02 (0.10000E+01 (0.18750E+02 8.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10018E+01 0.10018E+01 0.10019E+01 8.21250E+02 8.21667E+02 8.228083E+02 8.22500E+02 8.22917E+02 0.10000E+01 0.19827E+01 0.10031E+01 0.35417E+02 0.10000E+01 0.10035E+01 0.10048E+01 0.43333E+02 0.43750E+02 0.10000E+01 0.10015E+01 0.27083E+02 0.31250E+02 0.10000E+01 0.39583E+02 0.10000E+01 0.10044E+01 8.47917E+82 0.16848E+01 0.10000E+01 9.18888E+01 8 186 0.10027E+01 3.47500E+82 0.35000E+82 0.38750E+02 0.39167E+02 0.10000E+01 0.10039E+01 0.10048E+01 8.14167E+82 0.10000E+01 8.17500E+02 8.17917E+02 8.18333E+02 0.26667E+02 0.10000E+01 0.19898E+81 0.16831E+81 0.10000E+01 0.10035E+01 0.10043E+01 9.16914E+91 0.16000E+01 0.30833E+02 0.10000E+01 0.10000E+01 **4** 185 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10025E+01 0.10025E+01 0.10026E+01 0.47883E+02 0.26250E+02 0.16000E+01 0.10000E+01 0.10000E+01 0.10030E+01 0.10000E+01 0.10000E+01 0.10039E+01 0.42917E+02 0.10000E+01 0.10043E+01 0.10000E+01 0.10047E+01 0.38417E+82 0.34583E+02 0.18835E+81 0.10000E+01 0.10000E+01 0.13750E+02 0.10014E+01 114 7 4 0.25833E+02 0.38333E+02 8.10000E+01 8.10043E+01 0.10000E+01 0.10013E+01 0.30000E+02 0.10000E+01 0.10034E+01 8.10000E+01 8.10038E+01 8.42083E+02 0.42500E+02 8.46667E+02 8.18888E+81 8.18847E+81 0.13333E+02 0.34167E+02 8 0.25417E+02 8.10000E+01 0.10000E+01 0.10038E+01 0.10000E+61 0.10042E+01 0.10000E+01 Ø.12917E+82 0.18813E+81 8.18888E+81 0.29583E+02 0.33750E+02 0.18834E+81 0.37917E+02 0.46250E+02 0.10046E+01 0.17083E+02 9.18817E+81 0.10000E+01 4 P 0.10000E+01 V 0.10037F±01 0.10000E+01 0.10029E+01 0.37500E+02 0.10013E+01 0.10000E+01 0.10017E+01 8.20833E+02 P 0.10000E+01 V 0.10021E+01 0.25000E+02 0.10000E+01 0.10038E+01 0.41667E+82 0.10000E+01 0.10042E+01 8.45833E+82 8.18888E+81 8.12500E+82 0.10000E+01 0.16667E+02 0.29167E+82 0.33333E+02 4 ⊢ ← > ۵ **⊢ ⊾** > د ۵ **-⊢ □** > a. > ح ہ

4.

T 0.50300E+02 P 0.10000E+01 V 0.10050E+01

58. **4** 33. 25. INCIDENT PRESSURE PULSE: 8.88E+88 88.8 E-20

58. 33. 33. 17. 25. , Acc= DIRECT , Stat= SCRATCH 8.3 INCIDENT PARTICLE VELOCITY: 8.8 % which control control control 8.3 % which control contro 9.80E+88 +++ OPEN, 1 = FOR881 1.81 E-21

					8.5829E-86 8.1197E-82 8.5829E-86 8.1197E-82 8.5829E-86 8.1197E-82 8.1197E-82 8.1197E-82 8.1197E-82 8.1197E-82 8.1197E-82 8.1197E-82 8.1197E-82 8.1197E-82 8.1197E-82 8.1197E-82 8.1197E-82 8.1197E-82	
				XX 0	0.1197E-02 0.5829E-06 0.1197E-02 0.1197E-02 0.1197E-02 0.1197E-02 0.1197E-02 0.1197E-02 0.1197E-02 0.1197E-02 0.1197E-02 0.1197E-02 0.1197E-02 0.1197E-02	
				KSP IN	0.1197E-02 0.1197E-02 0.5829E-06 0.1197E-02 0.5829E-06 0.1197E-02 0.1197E-02 0.1197E-02 0.1197E-02 0.1197E-02 0.1197E-02 0.1197E-02 0.1197E-02 0.1197E-02 0.1197E-02 0.1197E-02	STORED 90380
* NEW				XOR 1	.5829E-06 .1197E-02 .1197E-02 .1197E-02 .1197E-02 .1197E-02 .1197E-02 .1197E-02 .1197E-02 .1197E-02 .1197E-02 .1197E-02 .1197E-02 .1197E-02	MGRDS
DIRECT, Stat= DIRECT, Stat=				KET M	1197E-02 5829E-06 1197E-02 1197E-02 1197E-02 1197E-02 1197E-02 1197E-02 1197E-02 1197E-02 1197E-02 1197E-02 1197E-02 1197E-02 1197E-02	1 (SHELL) LORDS TRANSFERRED 179670
Acc D	IR THIS RUN				97E-02 29E-06 97E-02 29E-06 97E-02 29E-06 97E-02 97E-02 97E-02 97E-02 97E-02 97E-02 97E-02 97E-02 97E-02 97E-02	
POS RST	REGUIRED FOR	41 ICOMT 3267	41 ICOMT 7 3267	DTC 0.125000E-01	0.5829E-06 0.11 0.1197E-02 0.11	COMPUTED FOR UNIT 1/0 REQUESTS 39
DIRTY:CYL.POSDIRTY:CYL.RST	OF STORAGE	ICOMJ IN1 363 3267	1COMJ IN1 363 3267	DT 0.250000E-01	4. 11976-92 0. 58296-96 0. 11976-92 0. 0. 11976-92 0. 0. 0. 11976-92 0. 0. 0. 11976-92 0. 0. 0. 11976-92 0. 0. 0. 11976-92 0. 0. 0. 11976-92 0. 0. 0. 11976-92 0. 0. 0. 11976-92 0. 0. 0. 11976-92 0. 0. 0. 11976-92 0. 0. 0. 11976-92 0. 0. 0. 11976-92 0. 0. 0. 11976-92 0. 0. 0. 11976-92 0. 0. 0. 11976-92 0. 0. 0. 11976-92 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	STIFFNESS MATRICES TIME ELAPSED TIME 190 0,712826E+00
OPEN, 12 OPEN, 14	4500 WORDS	1COMF 1DFL 223 223	1COMF 1DFL 223 223	T 0.25000E-01	FH VECTOR 0.1197E-02 0.0.1197E-02 0.0.1197E	STIFF TIME .190
‡‡		100	1CC 22	8.25	E-22	ELEMENT CP 28.

0.1197E-02 0.1197E-02

ASSEMBLY OF TOTAL STIFFNESS MATRIX COMPLETED.

	Ø												
LORDS STORED	NUMBER OF NEGATIVE ROOTS =	LORDS STORED 90880	LUORDS STORED 90888		LORDS STORED 90830		WORDS STORED 90880		WORDS STORED 90880		WORDS STORED 90880		LORDS STORED
LORDS TRANSFERRED	8.1167315E+87*18.** 68. WIDTH = 15	LIORDS TRANSFERRED 179678	LORDS TRANSFERRED 179570		WORDS TRANSFERRED 297188		WORDS TRANSFERRED 414530		LORDS TRANSFERRED 531960		WORDS TRANSFERRED 649390		LIDRDS TRANSFERRED
1/0 REQUESTS	£	1/0 REQUESTS 39	1/0 REQUESTS 39	1COMT 3267	1/0 REQUESTS	1COMT 3267	1/0 REQUESTS 47	1C0MT 3267	1/0 REQUESTS 51	1COMT 3267	1/0 REQUESTS 55	1COMT 3267	1/0 REQUESTS
CP TIME ELAPSED TIME 28.460 0.717643E+00	OF STIFFNE DUATIONS. DMPOSITION	CP TIME ELAPSED TIME 29.150 0.734831E+00	CP TIME ELAPSED TIME 30.280 0.756836E+80	1COMF 1DFL 1COMJ 1N1 223 223 363 3267	CP TIME ELAPSED TIME 32.450 0.825130E+00	H ICOMF IDFL ICOMJ INI	CP TIME ELAPSED TIME 35.300 0.930143E+00	ICOMF IDFL ICOMJ IN1 223 223 363 3267	CP TIME ELAPSED TIME 37.850 0.100547E+01	ICOMF IDFL ICOMJ IN1 223 223 363 3267	CP TIME ELAPSED TIME 40.070 0.109928E+01	ICOMF IDFL ICOMJ IN1 223 223 363 3267	CP TIME ELAPSED TIME

98886	LORDS STORED 90688	LIGRDS STORED 90880	LORDS STORED 90880	LICRDS STORED 90880	LIDRDS STORED 90880	LIORDS STORED 90880	JORDS STORED 90880
766820	WORDS TRANSFERRED 884258	LORDS TRANSFERRED 1081638	LORDS TRANSFERRED	LORDS TRANSFERRED 1236540	WORDS TRANSFERRED 1353970	MORDS TRANSFERRED 1471408	WORDS TRANSFERRED 1588838
29	1COMT 3267 170 REQUESTS 63	100MT 3267 1.0 Requests 67	100MT 3267 170 REQUESTS	100MT 3267 1/0 Requests	1COMT 3267 1/0 REQUESTS	1COMT 3267 1/0 REQUESTS 83	100MT 3267 1/0 REQUESTS 87
42.290 0.116849E+01	COMF 10FL 1COMJ 1N1 223 223 363 3267 CP TIME ELAPSED TIME 44.550 0.124882E+01	ICOMF IDFL ICOMJ IN1 223 223 363 3267 CP TIME ELAPSED TIME 46.840 0.131712E+81	100MF 1DFL 1COMJ 1N1 223 223 363 3267 CP TIME ELAPSED TIME 49.130 0.148066E+01	1COMF 1DFL 1COMJ 1N1 223 223 363 3267 CP TIME ELAPSED TIME 51.488 8.193301E+81	1COMF 1DFL 1COM3 1N3 223 223 363 3267 CP TIME ELAPSED TIME 53.720 0.209883E+01	ICOMF IDFL ICOMJ IN1 223 223 363 3267 CP TIME ELAPSED TIME 56.848 8.236263E+81	1COMF 1DFL 1COMJ 1N1 223 25:3 363 3267 CP TIME ELAPSED TIME 58.570 0.262363E+01

	JORDS STORED 90880		WORDS STORED 90880		WORDS STORED 90880		WORDS STORED 90880		WORDS STORED 90880		LORDS STORED 90880		LORDS STORED 90880
	WORDS TRANSFERRED 1706260		LORDS TRANSFERRED 1823698		WORDS TRANSFERRED 1941120		WORDS TRANSFERRED 2059550		WORDS TRANSFERRED 2175980		LORDS TRANSFERRED 2293410		LORDS TRANSFERRED 2410840
	LORDS		LORDS		WORDS		MORDS		LORDS		LORDS 1		LIGRDS T
1COMT 3267	1/0 REQUESTS 91	1COMT 3267	170 REQUESTS 95	ICOMT 3267	170 REQUESTS 99	1COMT 3267	170 REQUESTS 183	1COMT 3267	170 REQUESTS 187	ICOMT 3267	170 REQUESTS 111	ICOMT 3267	I/O REQUESTS 115
1N1 3267	AE 0.1	IN1 3267	91 91	IN1 3267	₹ 31	IN1 3267		IN1 3267		IN1 3267		IN1 3267	
. ICOMJ 363	ELAPSED TIME 0.285547E+01	100MJ 363	ELAPSED TIME 0.296563E+01	1COMJ 363	ELAPSED TIME 0.304701E+01	100MJ 363	ELAPSED TIME 0.312617E+01	1COMJ 363 3	ELAPSED TIME 0.321081E+01	1COMJ 363 3	ELAPSED TIME 0.351595E+01	ICOMJ 363 3;	ELAPSED TIME 0.378951E+81
1DFL 223		10FL 223		1DFL 223		1DFL 223		1DFL 223		IDFL 223		1DFL 223	
100MF 223	CP TIME 60.890	100MF 223	CP TIME 63.170	100MF 223	CP TIME 65.410	100MF 223	CP TIME 67.738	ICOMF 223	CP TIME 78.898	ICOMF 223	CP TIME 72,400	ICOMF: 223	CP TIME 74.748
							F- 25						

INI

ICOMI

IDFL

	WORDS STORED 90880		LJRDS STORED 98880		LORDS STORED 90880		LORDS STORED 90880		LORDS STORED 90880		WORDS STORED 90880		WORDS STORED 90880	
	WORDS TRANSFERRED 2528270		WORDS TRANSFERRED 2645780		WORDS TRANSFERRED 2763130		WORDS TRANSFERRED 2880560		LORDS TRANSFERRED 2997990		LORDS TRANSFERRED 3115420		WORDS TRANSFERRED 3232850	
3267	1/0 REQUESTS 119	ICOMT 3267	170 REQUESTS 123	ICOMT 3267	1/0 REQUESTS 127	ICOMT 3267	1/0 REQUESTS 131	1COMT 3267	170 REQUESTS 135	ICOMT 3267	170 REQUESTS 139	ICOMT 3267	170 REQUESTS 143	1COMT 3267
223 353 3267	CP TIME ELAPSED TIME 77.110 0.389596E+01	1COMF 1DFL 1COMJ 1N1 223 223 363 3267	CP TIME ELAPSED TIME 79.488 8.489948E+01	ICOMF IDFL ICOMJ IN1 223 223 363 3267	CP TIME ELAPSED TIME 81.730 0.420228E+01	ICOMF IDFL ICOMJ IN1 223 223 363 3267	CP TIME ELAPSED TIME 84.070 0.430599E+01	ICOMF IDFL ICOMJ IN1 223 223 363 3267	CP TIME ELAPSED TIME 86.430 0.441582E+01	ICOMF IDFL ICOMJ IN1 223 223 363 3267	CP TIME ELAPSED TIME 88.670 0.452031E+01	ICOMF IDFL ICOMJ IN1 223 223 363 3267	CP TIME ELAPSED TIME 91.060 0.463464E+01	ICOMF IDFL ICOMJ IN1 223 223 363 3267
								E-26						

WORDS STORED 90890		LORDS STORED 90880		WORDS STORED 90880	0 ON PERMANENT FILE DIRTY*CYL.RST			LORDS STORED 90880		LORDS STORED 90880		JORDS STORED 90880		WORDS STORED 90880
WORDS TRANSFERRED 3350280		WORDS TRANSFERRED 3467710		WORDS TRANSFERRED 3585140		s 465		WORDS TRANSFERRED 3702570		WORDS TRANSFERRED 7828088		WORDS TRANSFERRED 3937430		WORDS TRANSFERRED 4054860
CP TIME ELAPSED TIME 1/0 REQUESTS 93.530 0.473965E+01 147	IDFL ICOMJ INI ICOMT 223 363 3267 3267	CP TIME ELAPSED TIME 1/0 REQUESTS 95.950 0.482682E+01 151	IDFL ICOMJ IN1 ICOMT 223 363 3267 3267	P TIME ELAPSED TIME 1/0 REQUESTS 98.150 0.493249E+01 155	RESTART DATA FOR T = 8,750000 URITTEN AT LOCATION	POST PROCESSING RESPONSE FILE LOCATION IS	IDFL ICOMJ INI ICOMT 223 363 3267 3267	ME ELAPSED TIME 1/0 RECUESTS 160 0.505150E+01 159	1DFL ICOMJ 1N1 ICOMT 223 363 3267 3267	ME ELAPSED TIME 1/0 REQUESTS 00 0.515462E+01 163	IDFL ICOMJ INI ICOMT 223 363 3267 3267	'E ELAPSED TIME I/O REQUESTS 30 0.528581E+91 167	IDFL ICOMJ IN1 ICOMT 223 363 3267 3267	C ELAPSED TIME I/O REGUESTS 8 8.541754E+81 171
6P 93	ICOMF 223	. 43 95.	100MF 223	CP TIME 98.150	RESTA	POST	100MF 223	27 CP TIME	ICOMF 223	CP TIME 103.100	100MF 223	CP TIME 105.580	ICOMF 223	CP TIME 187.878

10 mg 10 mg

القطاليسا

							8.1137E-82 8.5829E-86 8.1197E-82 8.5829E-86 8.1197E-82 8.1197E-82 8.1197E-82 8.1197E-82 8.5829E-86
STORED	STORED 90880	STORED 90880	STORED 90880	STORED 90880		SP INX	8.1197E-02 8.115 8.1197E-02 8.582 8.5829E-06 8.115
RED WORDS	ED WORDS	LORDS	MORDS	LORDS		NOR KSP	0.5829E-06 0.1197E-02 0.1197E-02
WGRDS TRANSFERRED	WORDS TRANSFERRED 4289728	WORDS TRANSFERRED 4407158	WORDS TRANSFERRED 4524580	WORDS TRANSFERRED 4642010	E-91	KET 1	8.1197E-82 8.5829E-86 8.1197E-82
1COMT 3267 170 REQUESTS	1COMT 3267 170 REQUESTS 179	1CDMT 3267 170 REQUESTS (ICOMT 3267 170 REQUESTS 1	1COMT 3267 170 REQUESTS L	ICOMT 3267 D TO 0.588888E-8 1	DTC 8.250808E-01 100E+08 -0.1000E+01	F-86 0.1197E-02 F-82 0.1197E-02 E-82 0.5829E-06
COMF IDFL ICOMJ IN1 223 223 363 3267 CP TIME ELAPSED TIME 110.160 0.551882E+01	ICOMF IDFL ICOMJ IN1 223 223 363 3267 CP TIME ELAPSED TIME I 112.410 0.559531E+01	ICOMF IDFL ICOMJ IN1 223 223 363 3267 CP TIME ELAPSED TIME I 114.660 0.570866E+01	1COMF IDFL ICOMJ INI 223 223 363 3267 3 CP TIME ELAPSED TIME I 116.888 0.578698E+01	1COM 1DFL 1COMJ 1N1 223 223 363 3267 CP TIME ELAPSED TIME 119.260 8.586328E+01	ICOMF IDFL ICOMJ IN1 ICO 223 223 363 3267 3267 TIME INCREMENT HAS BEEN CHANGED TO	T 8.185888E+81 8.588388E-81 8.2588E 8.4888E+82 -8.4888E+82 8.8888E+88	FM VECTOR 4 0.1197E-02 0.1197E-02 0.5829E-06 0.1197E-02 0.5829E-06 0.1197E-02 0.5829E-06 0.1197E-02

	WORDS STORED 90880		LORDS STORED 90880		LORDS STORED 90880		JORDS STORED 90880		WORDS STORED 90880		LORDS STORED 90880		LORDS STORED 90880	
	WORDS TRANSFERRED 5014316		WORDS TRANSFERRED 5131746		WORDS TRANSFERRED 5249176		WORDS TRANSFERRED 5366606		LORDS TRANSFERRED 5484036		WORDS TRANSFERRED 5601466		LORDS TRANSFERRED 5718896	
ICOMT 3267	170 REQUESTS 207	ICOMT 3267	I/O REQUESTS	ICOMT 3267	170 REQUESTS 215	ICOMT 3267	170 REQUESTS 219	1COMT 3267	170 REQUESTS 223	1COMT 3267	1.0 REQUESTS 227	1COMT 3267	170 REQUESTS 231	ICOMT 3267
1COMF 1DFL 1COMJ 1N1 223 223 363 3267	CP TIME ELAPSED TIME 143.710 0.647767E+01	ICOMF IDFL ICOMJ INI 223 223 363 3267	CP TIME ELAPSED TIME 145.970 0.658633E+01	1COMF 1DFL 1COMJ 1N1 223 223 363 3267	CP TIME ELAPSED TIME 148.320 0.670195E+01	ICOMF IDFL ICOMJ INI 223 223 363 3267	CP TIME ELAPSED TIME 150.830 0.682845E+01	ICOMF IDFL ICOMJ IN1 223 223 363 3267	CP TIME ELAPSED TIME 153.220 0.694850E+01	ICOMF IDFL ICOMJ IN1 223 223 363 3267	CP TIME ELAPSED TIME I 155.490 0.702917E+01	1COMF 1DFL 1COMJ 1N1 223 223 363 3267	CP TIME ELAPSED TIME I 157.770 0.710898E+01	ICOMF IDFL ICOMJ 1N1 223 223 363 3267
							E-	-30						

LORDS STORED 90880		WORDS STORED 90880		JORDS STORED 90880		MORDS STORED 90888		WORDS STORED 90880		LORDS STORED 90880		LORDS STORED 90880		LORDS STORED
WORDS TRANSFERRED 5836326		WORDS TRANSFERRED 5953756		LORDS TRANSFERRED 6071186		WORDS TRANSFERRED 6188616		WORDS TRANSFERRED 6386846		WORDS TRANSFERRED 6423476		LORDS TRANSFERRED 6540906		JORDS TRANSFERRED
1/0 REQUESTS	1COMT	1/n Requests	1COMT	I/O REQUESTS	ICOMT	1.0 REQUESTS	1COMT	1/0 REQUESTS	1CDMT	I/O REQUESTS	ICOMT	170 REQUESTS	ICOMT	1.70 REQUESTS
235	3267	239	3267	243	3267	247	3267	251	3267	255	3267	259	3267	
CP TIME ELAPSED TIME	7	CP TIME ELAPSED TIME	1COMF IDFL ICOMJ IN1	CP TIME ELAPSED TIME	ICOMF IDFL ICOMJ INI	CP TIME ELAFSED TIME	구 ICOMF IDFL ICOMJ IN1	CP TIME ELAPSED TIME	ICOMF IDFL ICOMJ IN1	CP TIME ELAPSED TIME	ICOMF IDFL ICOMJ IN1	CP TIME ELAPSED TIME	ICOMF IDFL ICOMJ IN1	CP TIME ELAPSED TIME
160.130 0.718900E+01	23	162.420 0.731497E+01	223 223 363 3267	164.930 0.745182E+61	223 223 363 3267	167.210 0.756550E+01	는 223 223 363 3267	169.540 0.763932E+01	223 223 363 3267	171.790 0.771048E+01	223 223 363 3267	174.130 0.778750E+01	223 223 363 3267	

The state of the s

										8.1197E-82 8.5829E-86 8.1197E-82 8.5829E-86 8.1197E-82 8.1157E-82 8.1197E-82 8.1197E-82 8.5829E-86 8.1197E-82 8.5829E-86 8.1197E-82 8.5829E-86 8.1197E-82 8.5829E-86 8.1197E-82 8.5829E-86 8.1197E-82 8.5829E-86 8.1197E-82 8.5829E-86 8.1197E-82 8.1197E-82 8.1197E-82 8.5829E-86 8.1197E-82 8.5829E-86 8.5829E-86 8.1197E-82 8.5829E-86 8.1197E-82 8.1197E-82 8.5829E-86 8.1197E-82 8.5829E-86 8.1197E-82 8.5829E-86 8.1197E-82 8.5829E-86 8.5829E-86 8.1197E-82 8.5829E-86
									XX Ø	
98888		STORED 90880		STORED SØBBØ		STORED 30880			KSP 1	0.11976-02 0.11976-02 0.58296-06 0.11976-02 0.11976-02 0.11976-02 0.11976-02 0.11976-02 0.11976-02 0.11976-02 0.58296-06 0.11976-02
		WORDS		WORDS		WORDS			¥	8.58296-86 9.11976-82 9.11976-82 9.11976-82 9.11976-82 9.58296-86 9.11976-82 9.11976-82 9.58296-86 9.11976-82 9.11976-82
6658336		SFERRED 6775766		SFERRED 6893196		SFERRED 7010626			NOR 1	
999		TRAN		TRAN		WORDS TRANSFERRED 7010626		38	KET 1	0.1197E-02 0.5829E-05 0.1197E-02 0.5829E-06 0.1197E-02 0.1197E-02 0.5829E-06 0.1197E-02 0.5829E-06 0.1197E-02 0.5829E-06
		LORDS		WORDS		MOR		8.188889E+89	E+81	
263	۲	QUESTS 267	⊢	DUESTS 271	J -	275	L _	9.198	DTC 30E-01 -0.1068E+8	6.11976-02 9.1976-02 9.58296-06 0.11976-02 0.1976-02 0.58296-06 0.11976-02 0.58296-06 0.11976-02 0.58296-06 0.11976-02 0.58296-06
	ICOMT 3267	I-O REDU	100MT 3267	1/0 REDU	109MT 3267	I/O REQUESTS 275	ICOMT 3267	ED 10	DT -80 0.588888 8.8888E+88 -6	6.58295-06 6.11976-02 8.11976-02 6.58295-06 6.11976-02 6.58296-06 6.11976-02 6.58296-06 6.11976-02 6.58296-06 6.11976-02 6.58296-06 6.11976-02
164:	IN1 3267	1ME +81	1N1 3257	TIME 2E+01	IN1 3267	1ME +9.1	IN1 3267	CHANG	낖	
0.786178E+01	£9£	ELAPSED TIME 0.793763E+01	1COMJ 363	ELAPSED TIME 0.802832E+01	100MJ 363	ELAPSED TIME 0.811615E+81	1COMJ 363	HAS BEEN	7 1 8.188888E+88 -8.2888E+82 8.6	4 9.1197E-02 9.5829E-06 9.1197E-02 9.5829E-06 9.1197E-02 9.5829E-06 9.1197E-02 9.5829E-06 9.1197E-02 9.5829E-06
	1DFL 223		1DFL 223		1DFL 223		10FL 223	MENT !	, ගේ	
176.448	100MF 223	CP TIME 178.700	ICOMF 223	CP TIME 180.958	ICOMF 223	CP TIME 183,300	E-32	TIME INCREMENT HAS BEEN CHANGED TO	7 8.2000E+01 8.2000E+02	FM VECTOR 8.1197E-02 8.1197E-02 8.5829E-06 8.1197E-02 8.1197E-02 8.1197E-02 8.5829E-06 9.5829E-06 9.5829E-06 9.5829E-06 9.5829E-06 9.5829E-06

0.1197E-02 0.1197E-02 0.5829E-06 0.1197E-02 0.1197E-02 0.5829E-06											
8.5829E-86 8.1197E-82 8.1197E-82 8.5829E-86 8.1197E-82 8.1197E-82											
8,11976-82 8,58296-86 8,11976-82 8,1876-82 8,58296-86 8,11976-82	DIRTY*CYL.RST						S = 0				
8.1197E-82 8.1197E-82 8.1197E-82 8.1197E-82 8.5829E-86 8.6889E-86 8.98888	FILE			STORED 90880		STORED 90880	NEGATIVE ROOTS	STURED 90880	STORED 90880		STORED 90880
0.5829E-86 0.1197E-02 0.1197E-02 0.5829E-06 0.1197E-02 0.5829E-06	ON PERMANENT			MORDS		WORDS S	NUMBER OF	WORDS ST	WORDS ST		LUORDS ST
.1197E-02 .5829E-06 .1197E-02 .5829E-06 .1197E-02 .1197E-02	TION 54		(SHELL)	TRANSFERRED 7265582		TRANSFERRED 7265502	3.** -80. 15	TAANSFERRED 7265502	TRANSFERRED 7265502		TRANSFERRED 7382932
8.1197E-82 8 8.1197E-82 8 8.5329E-86 8 8.1197E-82 8 8.5829E-86 8.5829E-86 8.1197E-82 8.1197E-82 8.279	N AT IS		UNIT	S WORDS 7	ETED.	, WORDS	7339E+00×10	MORDS	WORDS		WORDS
a.5829E-86 3.1197E-82 3.5829E-86 3.1197E-82 3.1197E-82 3.1197E-82 3.1197E-82	.888888 URI File Locat	IN1 ICOMT 67 3267		I∕0 REQUESTS 287	TOTAL STIFFNESS MATRIX COMPLETED	I∕O REQUESTS 287	8.201 UD WIDTH	1/0 REQUESTS 287	I/O REQUESTS 287	ICOMT 3267	I/O REQUESTS 291
0.1197E-82 0.5829E-86 0.1197E-82 0.1197E-82 0.1197E-86 0.1197E-82 ELAPSED TIME	RESTART DATA FOR T = 2 POST PROCESSING RESPONSE	FL ICOMJ IN 3 363 3267	STIFFNESS MATRICES COMPUTED FOR	ELAPSED TIME 0.857448E+01	TOTAL STIFFNES	ELAPSED TIME 0.858047E+01	DETERMINAN; OF STIFFNESS MATRIX= 216 EQUATIONS. AVERAGE BAI MATRIX DECOMPOSITION COMPLETED.	ELAPSED TIME 0.859681E+01	ELAPSED TIME 0.860762E+01	ICOMJ IN1 363 3267	ELAPSED TIME 0.869798E+01
8.1197E-82 8.187E-82 8.5829E-86 9.1197E-82 9.5829E-86 8.1197E-92 CP TIME	RESTART DATA FOR POST PROCESSING R	100MF 1DFL 223 223	⊢	CP TIME 203,218	屸	CP TIME 203.490	DETERMINANT OF 216 EQUA MATRIX DECOME	CP TIME E 204.220 0	CP TIME EI 284.658 0	ICOMF IDFL 223 223	CP TIME EL 206.970 0.

LICRDS				LIORDS		WORDS		WORDS STORED 90880		LORDS STORED 90880		WORDS STORED 90880
WORDS TRANSFERRED 7500362		WORDS TRANSFERRED 7617792		WORDS TRANSFERRED 7735222		JORDS TRANSFERRED 7852652		WORDS TRANSFERRED 7970082		WORDS TRANSFERRED 8087512		LORDS TRANSFERRED 8284942
1COMT 3267 170 REQUESTS 295	ICOMT 3267	1/0 REQUESTS 299	ICOMT 3267	1/0 REQUESTS 303	1COMT 3267	1/0 REQUESTS 307	ICOMT 3267	I/O KEGUESTS 311	ICOMT 3267	170 REQUESTS 315	1COMT 3267	I/O REQUESTS 319
ICOMF IDFL ICOMJ IN1 223 223 363 3267 CP TIME ELAPSED TIME 209.350 0.877663E+01	ICOMF IDFL ICOMJ IN1 223 223 363 3267	CP TIME ELAPSED TIME 211.630 0.885716E+01	1COMF 1DFL 1COMJ 1N1 223 223 363 3267	CP TIME ELAPSED TIME 213.930 0.892845E+01	ICOMF IDFL ICOMJ IN1 223 223 363 3267	국 CP TIME ELAPSED TIME 낮 216.240 0.899980E+01	ICOMF IDFL ICOMJ IN1 223 223 363 3267	CP TIME ELAPSED TIME 218.420 0.907266E+01	ICOMF IDFL ICOMJ INI 223 223 363 3267	CP TIME ELAPSED TIME 220.780 0.915417E+01	ICOMF IDFL ICOMJ IN1 223 223 363 3267	CP TIME ELAPSED TIME 1 223.080 0.924147E+01

IN1 ICOMT

ICOMF INFL ICOMY

	JORDS STORED 90880		WORDS STORED 90880		LORDS STORED 90880		WORDS STORED 90880		LORDS STORED 90880		WORDS STORED 90880		WORDS STORED 90880	
	LORDS TRANSFERRED 8322372		LIDRDS TRANSFERRED 8439802		WORDS TRANSFERRED 8557232		WORDS TRANSFERRED 3674662		WORDS TRANSFERRED 8792092		WORDS TRANSFERRED 8989522		WORDS TRANSFERRED 9026952	
3267	170 REQUESTS	1COMT	1/0 REQUESTS	ICOMT	1/0 REQUESTS	ICOMT	176 REQUESTS	1COMT	1/0 REQUESTS	1COMT	170 REQUESTS	ICOMT	1/0 REQUESTS	1COMT
	323	3267	327	3267	331	3267	335	3267	339	3267	343	3267	347	3267
223 363 3267	ME ELAPSED TIME	IDFL ICOMJ IN1	ME ELAPSED TIME	IDFL ICOMJ IN1	ME ELAPSED TIME	IDFL ICOMJ IN1	ME ELAPSED TIME	IDFL ICOMJ IN1	ME ELAPSED TIME	IDFL ICOMJ IN;	ME ELAPSED TIME	1DFL 1COMJ 1N1	ME ELAPSED TIME	1DFL 1COMJ 1N1
	30 0.931894E+01	223 363 3267	10 0.941667E+01	223 363 3267	10 0.950195E+01	223 363 3267	20 0.958678E+01	223 363 3267	70 0.966113E+01	223 363 3267	90 0.978346E+01	223 363 3267	80 0.987767E+01	223 363 3267
223	CP TIME	ICOMF	CP TIME	ICOMF	CP TIME	ICOMF	CP TIME	ICOMF	CP TIME	ICOMF	CP TIME	100MF	CP TIME	ICOMF
	225.330	223	227.410	223	229.710	223	232.120	223	234.478	223	236.790	223	239.180	223

WORDS TRANSFERRED 9144382	WORDS TRANSFERRED 9261812		5 6				LORDS		WORDS		LORDS		WORDS STORED 90880
WORDS TR	WORDS TRA		WORDS TRANSFERRED 9379242		WORDS TRANSFERRED 9496672		WORDS TRANSFERRED 9614102		WORDS TRANSFERRED 9731532		WORDS TRANSFERRED 9848962		WORDS TRANSFERRED 9966392
I/O REQUESTS 351 11 ICOMT 3267	1/0 REQUESTS	1 ICOMT	170 REQUESTS	I ICOMT	1/0 REQUESTS	ICOMT	I/O REQUESTS	1COMT	I/O REQUESTS	ICOMT	1/0 REQUESTS	ICOMT	I/O REQUESTS
	355	3267	359	3267	363	3267	367	3267	371	326 7	375	3267	379
CP TIME ELAPSED TIME 241.700 0.996445E+01 ICOMF IDFL ICOMJ IN1 223 223 363 3267	CP TIME ELAPSED TIME	ICOMF IDFL ICOMJ INI	CP TIME ELAPSED TIME	ICOMF IDFL ICOMJ INI	CP TIME ELAPSED TIME	ICOMF IDFL ICOMJ IN1	CP TIME ELAPSED TIME	ICOMF IDFL ICOMJ IN1	CP TIME ELAPSED TIME	ICOMF IDFL ICOMJ IN1	CP TIME ELAPSED TIME	ICOMF IDFL ICOMJ IN1	CP TIME ELAPSED TIME I
	244.050 0.100493E+02	223 223 363 3267	246.440 0.101296E+02	223 223 363 3267	246.540 0.102105E+02	223 223 363 3267	251.310 0.102848E+02	223 223 363 3267	253.540 0.103596E+02	223 223 363 3267	255.920 0.104507E+02	223 223 363 3267	258.400 0.105355E+02

.,

The state of the state of

	WORDS STORED 90880		WORDS STORED 90880		WORDS STORED 90880		LORDS STORED 90880		LIORDS STORED 90880		LIORDS STORED 90880
	LORDS TRANSFERRED 10083822		LORDS TRANSFERRED 10201252		WORDS TRANSFERRED 10318682		WORDS TRANSFERRED 10436112		WORDS TRANSFERRED 10553542		WORDS TRANSFERRED 10670972
ICOMT	1/0 REQUESTS	ICOMT	170 REQUESTS	ICOMT	1/0 REQUESTS	1COMT	1/0 REQUESTS	1COMT	1/0 REQUESTS	ICOMT	1/0 REQUESTS
3267	383	3267	387	3267	391	3267	395	3267	399	3267	403
1COMF 1DFL 1COMJ 1N1	CP TIME ELAPSED TIME	ICOMF IDFL ICOMJ IN1	CP TIME ELAPSED TIME	ICOMF IDFL ICOMJ IN1	CP TIME ELAPSED TIME	ICOMF IDFL ICOMJ IN1	CP TIME ELAPSED TIME	ICOMF IDFL ICOMJ IN1	CP TIME ELAPSED TIME	100MF 10FL 100MJ 1N1	CP TIME ELAPSED TIME
223 223 363 3267	260.800 0.106170E+02	223 223 363 3267	263,200 0.106955E+02	223 223 363 3267	265,490 0.107757E+02	223 223 363 3267	267.960 0.108583E+02	223 223 363 3267	270.320 0.109418E+02	223 223 363 3267	272.760 0.110248E+02

POST PROCESSING RESPONSE FILE LOCATION IS 1365

RESTART DATA FOR T =

5.000000 URITTEN AT LOCATION 108 ON PERMANENT FILE DIRTY*CYL.RST

w	
ú	
~	
_	
"	
2	
1	
_	
EX.	
^	
111	
_	
Б	
_	
u.	

							Т
Ext-filnam Unit EC	: 0pt	PRU	Cdloc	Next	Next Limit	Read	Read Uritten 1
+ 1 FOR981 1 1 T 64 33	-	64	33	33	20000	247068 120477	120477 +
DIRTY:CYL.PO 12 1 S	g.	64	1365	1365	20000	60	82173 +
· 12 DIRTY:CYL.RS 14 1 UP	g G	49	162	162	20000	8	9939 +
14 DIRTY:CYL.PR 16 1 AX	Æ	49	58	28 20000 20000	20000	152178	5

CLOSE, 12 CLOSE, 14 OPEN, 12 = DIRTY:CYL.POS CLOSE, 12 **‡**‡‡‡

, Acc DIRECT , Stat = OLD

10 0.22500E+00 0.17111E-03 0.22358E-04 0.17971E+01 0.88132E-03 0.51388E-03 0.48350E-03 0.31600E+00 3.42472E-02
9 0.20006E+09 0.1775E-03- 0.12312E-04 0.17468E+01- 0.35029E-03 0.28983E-03 0.11950E-03 0.34005E+00 0.29331E-02-0
8 0.17500E+00 0.65662E-05 0.16793E+01- 0.11517E-02- 0.1594E-03 0.52096E-03- 0.37910E+00 0.36613E-02-
4 5 6 7 8 9 10 8.75000E-01 0.10000E+00 0.12500E+00 0.15000E+00 0.17500E+00 0.22500E+00 8.23222E-04-0.50250E-04-0.86229E-04-0.12524E-03-0.1750E-03-0.17775E-03-0.1711E-03 8.14705E-06 0.51685E-06 0.14126E-05 0.32386E-05 0.65662E-05 0.12312E-04 0.22350E-04 80.10586E+01-0.12946E+01-0.14646E+01-0.1583E+01-0.16793E+01-0.17468E+01-0.17971E+01 80.85804E-03-0.13042E-02-0.15740E-02-0.15469E-02-0.11517E-02-0.35029E-03 0.8132E-03 80.76435E-05 0.21940E-04 0.49719E-04 0.96365E-04 0.16984E-03 0.28983E-03 0.51388E-03 80.41794E-03-0.63015E-03-0.75254E-03-0.72692E-03-0.11950E-03 0.48358E-03 80.89905E+00 0.67930E+00 0.5346E+00 0.44023E+00 0.37910E+00 0.34005E+00 0.31600E+00 80.7642E-03 0.60985E-03 0.23282E-03-0.28114E-03-0.86254E-03-0.14824E-02-0.21231E-02
6 0.12500E+00 0.86229E-04- 0.14126E-05 0.14546E+01- 0.15740E-02- 0.49719E-04- 0.75254E-03- 0.53466E+00 0.53282E-03-
5 0.10000E+00 0.50250E-04- 0.51685E-06 0.13042E-02- 0.21940E-04 0.63015E-03- 0.67930E+00 0.12989E-02
4 6.75006E-01 -0.23222E-04- 0.14705E-06 -0.10586E+01- -0.85804E-03- 0.76435E-05 -0.41794E-03- 0.89905E+00 0.15903E-02
3 6.50006E-01 -0.74684E-05- 0.28548E-07- -0.4227E-03- 0.18367E-05- 0.12203E+01 0.13112E-03- 0.63956E-03
2 0.25000E-01 0.12200E-05- 0.27946E-08 0.27630E-04- 0.22357E-06 0.48206E-04- 0.16339E+01 0.16339E+01
T 0.00000E+00 0.25000E-01 0.75000E-01 0.10000E+00 0.12500E+00 0.15000E+00 0.17500E+00 0.25500E+00 0.25500E+00 0.25500E+00 0.25500E+00 0.25500E+00 0.25500E+00 0.12500E-01 0.7775E-03-0.1711E-03 0.000000E+00-0.12200E-05-0.74684E-05-0.23222E-04-0.50250E-04-0.12524E-03-0.15897E-03-0.17775E-03-0.1711E-03 10.00000E+00-0.12200E-05-0.74684E-05-0.23222E-04-0.50250E-04-0.12524E-03-0.15897E-03-0.17775E-03-0.1711E-03 10.2 0.00000E+00-0.12200E-05-0.74684E-07-0.14705E-06 0.14126E-05 0.14126E-05 0.3236E-05 0.55662E-05 0.12312E-04 0.2358E-04 1.7775E-03-0.177775E-03-0.17777E-03-0.17777E-03-0.17777E-03-0.17777E-03-0.17777E-03-0.17777E-03-0.17777E-03-0.17777E-03-0.17777E-03-0.177777E-03-0.17777E-03-0.17777E-03-0.17777E-03-0.17777E-03-0.17777E-03-0.17777E-03-0.17777E-03-0.17777E-03-0.17777E-03-0.17777E-03-0.17777E-03-0.17777E-03-0.17777E-03-0.17777E-03-0.17777E-03-0.177777E-03-0.177777E-03-0.177777E-03-0.177777E-03-03-0307777E-03-037777E-03-037777E-03-037777E-03-037777E-03-037777E-03-0377777E-03-037777777777
18/3 D 18/3 D 18/3 V 18/3 V 19/3 V 19/3 V 19/3 P

20 0.47500E+00 0.50269E-02 0.15873E-01 0.67569E-01 0.27632E+00 0.14043E-01 0.34399E-01 0.24399E-01
14 15 16 17 18 19 28 28 8 3550E+00 0.4500E+00 0.4550E+00 0.4550E+00 0.4550E+00 0.4550E+00 0.3550E+00 0.4550E+00 0.4550E+00 0.4550E+00 0.4550E+00 0.4550E+00 0.4550E+00 0.3556E-02 0.5556E-02 0.5556E-01 0.5566E-01 0.5656E-01 0.5754E-01 0.5754E-01 0.5755E-01 0.5566E-02 0.55666E-02 0.5566E-02 0.55665E-02 0.5566E-02 0.5566E
18 0.42500E+00 0.24671E-02 0.55406E-02 -0.19391E+01 0.36961E-01 0.12773E+00 0.32892E+00
0.40000E+00 0.16658E-02 0.2997E-02 0.2714E-01 0.75548E-01 0.91321E-02 0.31984E+00
16 0.37500E+00 0.10353E-02 -0.19550E+01 0.19931E-01 0.41603E-01 0.3114E+00 0.3114E+00 -0.59570E-02
15 9.35000E+00 8.6451E-03 8.7483E-03 1-0.19150E+01 1 0.14574E-01 1 0.21351E-01 2 0.60701E-02 2 0.75270E-102
14 0.32500E+00 0.33286E-03 0.35305E-03 -0.19020E+01 0.10487E-01 0.10273E-01 0.46717E-02 0.29994+00 0.29394+00 0.29394-00
13 1 8.38888E+88 1 8.11895E-83 1 8.16579E-83 -8.72661E-82 8.72681E-82 9.33958E-82 9.29687E+88 -8.74857E-82
12 3-9.38131E-94 1 0.80347E-94 1-9.18633E+91 0.46603E-02 1 0.21267E-92 0.22581E-92 0.23545E-02
T 0.25000E+00 0.27500E+00 0.32500E+00 0.35500E+00 0.40000E+00 0.42500E+00 0.42500E+00 0.42500E+00 0.45500E+00 0.45550E-02 0.55567E-02 0.55567E-01 0.19576E+01-0.19
18/3 18/3 18/3 18/3 19/3 19/8

24 25 26 27 28 29 29 38 29 25 26 27 28 29 29 25 29 29 29 29 25 20 20 20 25500E+00 0.55000E+00 0.55000E+00 0.75500E+00 0.75500E
9.725 9.537 9.215 9.376 9.285 9.284
24 25 26 27 28 28 29 29 38 29 38 39 39 39 39 39 39 39 39 39 39 39 39 39
11 9 .79 11 9 .79 11 9 .49 11 9 .34 11 9 .34 11 9 .25 10 6 .19
28 1470E-6 5033E+6 5033E+6 3630E+6 3415E+6 5680E-9 7792E+9
00 0.66 00 0.16 00 0.16 00 0.3 00 0.3 00 0.45
27 (5000E+ (4063E- (3500E+ (9019E+ (7990E+ (1267E+ (11267E+ (11567E+
460 8.6 460 8.1 461 - 6.1 460 8.2 460 8.4 460 8.4
26 27485E- 11113E- 19686E- 24637E- 92430E- 23179E- 48422E- 14387C-
+60 0. +61 0. +61 0. +61 0. +60 0. +60 0. +80 0. -62 0.
25 .60000E .21752E .88939E .19594E .21224E .85070E .39535E .12358E
E+88 8 E+
24 1.57589 1.16871 1.68813 1.19581 1.17827 1.75938 1.28399 1.38611 1.18284
3 2E:00 2E-01 3E-01 5E+01-0 5E+00 6E+00 8E+00 8E-01 7E-01 9E-01
23 0.55000 0.128220 0.51189 0.14565 0.65059 0.18866 0.37657
22 150E-80 150E-81 127E-81 145E-81 140E-80 110E-81 138E-81
24 25 26 27 28 29 38 39 18 18 18 18 18 18 18 18 18 18 18 18 18
21 00E+00 13E-02 87E-01 97E-01 25E-01 77E+00 89E-01 27E+00
8.588 8.699 9.246 9.246 9.894 9.488 9.357 9.357
18/3 I 18/3 I 18/3 I 18/3 V 19/3 V 19/3 V 19/3 P

\$

₹

0.51992E+88 8.63636E+88 0.12049E+00 0.18327E-02-0.84766E-01-0.14512E+00-0.18562E+00-0.20684E+00-0.21445E+00 0.78542E+00 9.56553E+88 9.17060E+01 8.23464E+88 V-0.20006E+01-0.20130E+01-0.20254E+01-0.20366E+01-0.20478E+01-0.20591E+01-0.20593E+01-0.20775E+01-0.20844E+01-0.20914E+01 8.18856E+81 8.11875E+81 8.12886E+81 8.13871E+81 8.14811E+81 8.14834E+81 8.51511E+88 0.20055E+01 0.19337E+01 0.18271E+01 8.74231E+80 8.61318E+88 8.54739E+66 0.24517E+88 9.14900E+01 0.69533E+80 0.58977E+88 9.59729E+98 0.52419E+66 9.13500E+91 0.25439E+00 8.58589E+88 0.46611E+00 0.49614E+00 8.59183E+60 0.64463E+80 0.26328E+00 0.12888E+81 0.12588E+81 0.13883E+81 0.59306E+00 0.50157E+00 0.20351E+01 0.20395E+01 0.59809E+00 0.26905E+00 0.54121E+88 0.61768E+00 0.25785E+00 0.26807E+00 0.27113E+30 0.43842E+00 0.43491E+00 0.62226E+00 0.71268E+00 0.80700E+00 0.90491E+00 0.49474E+00 0.65764E+00 8.34637E+00 6.39752E+00 0.19923E+01 0.48412E+09 3.28815E+00 0.41575E+00 0.49086E+00 8.73815E+68 9.11000E+01 0.19242E+01 0.63492E+00 0.32514E+60 0.48779E+00 8.27863E+00 0.45669E+00 0.21246E+00 0.23923E+00 0.10500E+01 0.18487E+01 8.51410E+08 8.48514E+00 0.67733E+88 0.19980E+00 Ø.17681E+01 0.22787E+00 19/3 1/8 16/6 10/3 18/2 19/10 10/2

0.62842E+00 0.63143E+00 0.63069E+00 0.62469E+00 0.60854E+00 V-0.21413E+00-0.21237E+00-0.21479E;00-0.22303E+00-0.23416E+00-0.24361E+00-0.24897E+00-0.25100E+00-0.25162E+00-0.25159E+00 3.76096E+80 0.74481E+00 9.12475E+81 9.11831E+00 0.22587E+91 V-0.20995E+01-0.21080E+01-0.21159E+01-0.21215E+01-0.21225E+01-0.21155E+01-0.20970E+01-0.20652E+01-0.20255E+01-0.19752E+01 0.19500E+01 0.70865E+60 0.73921E+00 0.14993E+01 6.14582E+01 0.14520E+01 0.11855E+01 0.16500E+01 0.17000F+01 0.17500E+01 0.18000E+01 0.19500E+01 0.19000E+01 0.13089E+00 0.18065E+01 0.18849E+01 0.19628E+01 0.20390E+01 0.21129E+31 0.21857E+01 8.65652E+88 0.73162E+00 0.14345E+88 0.11328E+01 0.61181E+00 0.72310E+00 0.15595E+00 0.10842E+01 0.15707E+01 0.15477E+01 0.57819E+00 0.71599E+00 0.16827E+00 0.10386E+01 0.99617E+60 0.55547E+00 0.71154E+00 8.60895E+00 0.61803E+00 0.52406E+00 8.20259E+80 8.19164E+00 0.18021E+00 0.54122E+00 0.70775E+80 0.15633E+01 0.95553E+00 0.53266E+00 0.63397E+00 0.16862E+01 0.15538E+01 0.15474E+01 8.91413E+88 .15000E+01 0.15500E+01 0.15000E+01 9.87858E+00 8.52741E+88 0.59585E+00 .22393E+00 0.21327E+00 0.68437E+88 0.66173E+80 8.58895E+88 V 0.82766E+00 P 0.52368E+60 S 10/0 19.78 1973 1/3 10/2 173 10/3 10/2

22

26

8.95946E+00 8.16143E+81 0.88583E+00 0.89536E+86 V-0.24972E+00-0.22971E+00-0.1944E+00-0.15727E+00-0.12094E+00-0.93940E-01-0.86908E-01-0.89557E-01-0 81608E-01-0.65885E-01 0.48520E-03-0.80781E-02-0.15453E-01 0.23324E+01 0.24801E+01 0.26325E+01 0.27985E+01 0.29804E+01 0.31721E+01 0.33658E+01 0.35546E+01 0.37383E+01 0.39237E+01 V-0.19310E+01-0.18648E+01-0.18414E+01-0.18273E+01-0.18033E+01-0.18077E+01-0.18306E+01-0.18344E+01-0.18222E+01-0 0.24000E+01 0.25000E+01 0.26000E+01 0.27000E+01 0.28000E+01 0.29000E+01 8.87976E+88 8.99678E+88 0.15585E+01 8.88521E+88 8.87268E+88 0.15033E+01 0.88216E+30 0.85252E+08 0.08380E+00 0.15705E+01 0.17511E+01 0.18867E+01 0.19461E+01 0.19284E+01 8.87826E+00 9.81098E+PB 9.14617E+81 0.93135E-02 0.87296E+00 0.78563E+00 0.89062E+80 Ø.18356E-01 0.14370E+01 99 0.88971E+00 0.34698E+98 0.77327E+09 8.43010E-01 0.29100E-01 0.14282E+01 0.81402E+00 0.87730E+80 9.76429E+00 0.14242E+01 0.2000UE+01 0.21360E+01 0.22000E+01 0.23000E+01 0.14146E+01 0.86783E+03 0.78324E+80 8.74853E+00 D 0.10577E+00 0.81803E-01 0.60596E-01 63 0.14773E+01 0.14767E+01 0.75995E+00 0.13857E+01 0.85211E+00 0.71377E+00 0.13892E+01 0.80474E+00 0.74787E+00 0.63766E+00 10/0 19/3 10/2 10/3

0.93967E+00 8.95158E+80 D-0.21583E-01-0.26946F-01-0.31417E-01-0.34489E-01-0.36088E-01-0.37087E-01-0.38725E-01-0.41200E-01-0.43730E-01-0.45945E-01 D 0.41112E+01 0.42918E+01 0.44609E+01 0.46221E+01 0.47789E+01 0.49338E+01 0.50911E+01 0.52547E+01 0.54231E+01 0.55910E+01 8.16443E+81 9.18268E+81 V-0.18230E+01-0.18147E+01-0.18142E+01-0.18282E+01-0.18309E+01-0.18129E+01-0.17834E+01-0.17413E+01-0.16981E+01-0.16857E+01 V-0.56714E-01-0.50549E-01-0.38866E-61-0.22572E-01-0.94;19E-02-0.10496E-01-0.22347E-01-0.27149E-01-0.23453E-01-0.20843E-01 0.39000E+01 0.37000E+01 0.38000E+01 .18682E+01 0.17446E+01 0.16366E+01 0.15864E+01 0.15515E+01 0.15461E+01 0.15995E+01 0.16725E+01 0.16947E+01 9.19171E+91 0.94651E+00 0.93482E+00 0.91067E+80 0.94286E+00 0.98239E+00 0.95347E+00 0.96032E+00 0.95564E+00 0.94186E+00 ø.94559€+00 0.95158E+00 0.30000E+01 0.31000E+01 0.32000E+01 0.33000E+01 0.3400E+01 0.35000E+01 0.36000E+01 0.16391E+01 0.16501E+01 0.16433E+01 0.95825E+00 0.83068E+90 0.95359E+00 0.88641E+09 0.93802E+00 8.96595E+80 0.95147E+30 9.16284E+01 0.16260E+01 0.889668+80 0.92237E+00 91228E+08 0.98637E+00 0.16423E+61 0.88844E+00 Ø 0.88551E+00 0.90497E+00 0.98903E+30 8.16447E+81 Ø > 1/9 19/0 1/3 10/0 19/3 10/2 10/3 10/2

T 0.40000E+01 0.41000E+01 0.42000E+01 0.43000E+01 0.44000E+01 0.45000E+01 0.46000E+01 0.47000E+01 0.43000E+01 0.49000E+01 D-0.47842E-01-0.49326E-01-0.50615E-01-0.51914E-01-0.52936E-01-0.53782E-01-0.55296E-01-0.57776E-01-0.60327E-01-0 D 0.57581E+01 0.55311E+01 0.51134E+01 0.62996E+01 0.54833E+01 0.66630E+01 0.68384E+01 0.70110E+01 0.71833E+01 0.73543E+01 10/3 18/2

V-0.17036E+01-0.17360E+01-0.17560E+01-0.17641E+01-0.17474E+01-0.17263E+01-0.17285E+01-0.17455E+01-0.17516E+01-0.17576E+01-0.17516E+01-0.17597E-01-0.22423E-01-0.1259FE-01-0.1259E-01-0.1259E-01-0.1259E-01-0.1259E-01-0.1259E-01-0.1259FE-01-0.1259E-01-0.125 18/3 19/3 19/3 19/8 19/8 19/8

T 8.58888E+81 10/3 D-8.63325E-81 10/2 D 8.75225E+81 1/3 V-8.17631E+81 10/3 V-8.11638E-81 10/3 V 8.16685E+81 19/3 V 8.17358E+81 1/8 P 8.95482E+88 10/8 P 8.9548E+88

APPENDIX F USER INFORMATION FOR THE PUSTPROCESSOR POSTPR

This appendix includes a copy of the users manual, and a sample input deck and subsequent output for the infinte cylindrical shell problem presented in Section 4.

ROSTPR

THIS FUNCTIONAL COMPONENT OF THE UNDERWATER SHOCK ANALYSIS CODE
IS RESPONSIBLE FOR THE TABULATION AND PRINTER-PLOT GRAPHIC DISPLAY
OF SELECTEU TRANSIENT RESPONSES AND PSEUDO-VELOCITY SHOCK SPECTRA
UPON COMPLETION OF AN UNDERWATER SHOCK ANALYSIS OF A SUBMERGED
STRUCTURE. IT CAN ALSO CREATE A PERMANENT FILE CONTAINING A SERIES
OF SNAPSHOTS OF THE DEFORMED STRUCTURE AT USER SPECIFIED TIMES

THIS PROGRAM WAS DEVELOPED AND CODED BY JOHN A. DERUNIZ, JR. OF LOCKHEED MISSILES AND SPACE CO. RESEARCH LABS IN PALO ALTO CALIFORNIA. PLEASE CONSULT WITH AUTHOR BEFORE MAKING CHANGES AND ALSO PREPORT ANY MALETUNCTIONS OR PROBLEMS. WRITE IN CARE OF LOCKHEED PALO ALTO RESEARCH LABORATORY, BLDG 205, DEPT 52-33, 3251 HANOVER ST., PALO ALTO, CALIF., 94304 OR CALL 415-493-44111 EXTS. 45069 OR 45133.

⋖ z ш G E E RAR G α ۵ ¥ 0 œ G Z Z X 4 3

.

.

THIS CODE CONTAINS THE SPECIAL INGREDIENT DMGASP NOT FOUND IN OTHER BRANDS. DMGASP IS A DATA MANAGEMENT UTILITY MODULE THAT WILL ACTIVATE AND DEACTIVATE ALL AUXILIARY STORAGE DATA FILES REFERENCED BY THE CODE. HENCE THE NAMES OF SUCH FILES SHOULD NOT APPEAR ON ANY CONTROL CARDS IN THE RUN STREAM WHICH MIGHT NORMALLY ACTIVATE AND DEACTIVATE THE FILES. THE USER IS ALSO CAUTIONED THAT PREVIDUSLY CREATED FILES MUST ALREADY BE RESIDENT IN THE SYSTEM BEFORE THE RUN IS INTITATED. IF A FILE "AS BEEN ROLLED-OUT TO TAPE DMGASP WILL ATTEMPT TO HAVE THE FILE ROLLED-IN EVERY 15 SECONDS FOR UP TO 6 MINUTES ON THE UNIVAC 1400-EKE B OBERATING SYSTEM. IS THEREFORE GOOD POLICY TO SIMPLY ACTIVATE AND DEACTIVATE HE IT ELE BEFORE EXECUTION OF THIS CODE. IF THE USER ATTEMPTS TO CREATE A NEW DATA FILE, WITH A NAME WHICH IS ALREADY ASSIGNED TO AN EXISTING FILE, THE UNIVAC VERSION OF DMGASP WILL MODIFY THE NAME OUT THE COLOR ON PROBLEM ON THE COC SCOPE OPERATING SYSTEM AS SCOPE WILL SIMPLY ACTIVATE OF THE SAME FILE. ON THE OTHER HAND THE COC NOS SYSTEM IS SIMILAR TO UNIVAC IN THIS REGARD AND THE MAN WILL SIMPLY ACTIVATE OF THE FILE NAME. ON THE OTHER HAND THE COC NOS SYSTEM IS SIMILAR TO UNIVAC IN THIS REGARD AND THE MUN WILL SIMPLY PREFIED AS THE USERS TO, WHICH IN MOST INSTALLATIONS CAN BE SELECTED ALMOST ARBITRARILY. ON COC NOS, THE OUALIFIER IS INTERPRETED AS THE USERS TO, WHICH IN MOST INSTALLATIONS CAN BE SELECTED ALMOST AS THE USERS. ON COC NOWS, THE OUALIFIER IS INTERPRETED AS THE USERS. WHICH IS SUBALLION A CYCLE NUMBER.

WHICH IS USUALLY PRESCRIBED BY THE INSTALLATION. A CYCLE NUMBER.

WHICH IS USUALLY PRESCRIBED BY THE INSTALLATION.

F- 2

PROGRAM SIZE	ALL ARRAYS REFERRENCED IN THIS CODE THAT ARE PROBLEM DEPENDENT RESIDE IN BLANK COMMON. THE SIZE OF BLANK COMMON IS DETERMINED BY A PARAMETER STATEMENT IN THE MAIN PROGRAM FOR THE UNIVAC 1100-0S VERSION, HENCE A RECOMPILATION IS NECESSARY TO INCREASE OR DECREASE CORE ALLOCATION. IN THE CDC 6600 VERSION RECOMPILATION IS UNNECESSARY AS THE LENGTH OF BLANK COMMON IS SET BY A FIELD LENGTH REQUEST IN THE CONTROL CARD DECK		OF INPUT PARAMETERS	INPUT VARIABLE NAMES GIVEN BELOW ARE GENERALLY THOSE WHICH ARE ALSO USED IN THE CODING AND THE VARIABLE TYPES CORRESPOND TO STANDARD FORTRAN USAGE.	ALPHANUMERIC FLOATING POINT		DESCRIPTION	NUMBER OF RESPONSE FILES THAT MAKE UP THE OESIRED TRANSIENT ANALYSIS DISPLAY. NFILES PRESENTLY CANNOT EXCEED TEN (10)	THE NUMBER OF RESPONSE RECORDS THAT ARE STORED IN ANY PARTICULAR RESPONSE FILE. THESE MUST BE ORDERED CHRONOLOGICALLY FOR INPUT. NTIMES WILL GENERALLY BE THE NUMBER OF TIME STEPS MADE DURING THE TIME THE FILE WAS CREATED EXCEPT IF THE FILE GOES BACK TO TIME FOULAL. TO ZERO IN THIS CASE NTIME SIS FOULAL TO THE NUMBER OF TIME STEPS PLUS ONE TO ACCOUNT FOR THE FIRST RECORD THAT CONTAINS THE INITIAL	NAME OF PRE-PROCESSED MASS STORAGE FILE CONTAINING ALL FLUID AND STRUCIURE 'ATA	NAMES OF RESPONSE FILES THAT MAKE UP A CONTINUOUS SET OF TRANSIENT DATA, ORDERED CHRONOLOGICALLY	TRUE IF PERMANENT FILES DENOTED BY XVPNAM
•	S REFERENCE A BLANK COMMIER STATEMEN HENCE A RECORE ALLOCA RY AS THE IN THE CONTR	•	0 -	BLE NAMES N THE COUR	∢ i ii i	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	TYPE	ı	-	⋖	ব	_
•	ALL ARRAYS REFER RESIDE IN BLANK A PARAMETER STAT VERSION, HENCE A DECREASE CORE AL UNNECESSARY AS T	•	F	INPUT VARIABLE NAMES GIALS OF ALSO USED IN THE CODING STANDARD FORTRAN USAGE		1 1 1	VARIABLE	NFILES	NT IMES	PRENAM	XVPNAM	FORWRT
•		•		•								

WERE CREATED USING UNFORMATTED FORTRAN WRITE, OTHERWISE FI!FS WERE CREATED BY DIRECT TRANSFER USING THE DATA MANAGEMENT SYSTEM DMGASP	TRUE IF SELECTED TRANSIENT RESPONSE HISTORIES ARE TO BE DISPLAYED, OTHERWISE FALSE. THIS VARIABLE MUST BE TRUE EVEN JF PSEUDO-VELOCITY SHOCK SPECTRA ARE THE ONLY ONLY OUTPUT DESIRED SINCE STRUCTURAL VELOCITY HISTORIES MUST BE USED FOR THIS COMPUTATION	TRUE IF A PERMANENT FILE IS TO BE CREATED THAT CONTAINS A CHRONOLOGICAL SUCCESSION OF RECORDS EACH OF WHICH CONSISTS OF THE COMPLETE DISPLACEMENT FIELD AT SPECIFIC TIMES WITHOUT ANY EXTRANEOUS TIME OR BOOKKEEPING DATA. SUCH A FILE CAN BE IMAGINED AS A SERIES OF SNAPSHOTS OF THE DEFORMED STRUCTURE THROUGHOUT THE SHOCK ANALYSIS. THIS CAPABILITY CANNOT BE USED IF FORWRT IS TRUE	TRUE IF TRANSIENT RESPONSE HISTORIES ARE TO BE LISTED IN TABULAR FORM, OTHERWISE FALSE	TRUE IF PRINTER PLOTS ARE TO BE GENERATED FOR TRANSIENT RESPONSE HISTORIES, OTHERWISE FALSE	TRUE IF PLOTS ARE TO BE GENERATED FOR TRANSIENT RESPONSE HISTORIES, OTHERWISE FALSE. A PLOT FACKAGE IS NOT PROVIDED WITH THE USA CODE AND IT IS THE USERS RESPONSIBILITY TO COMPLETE THIS FEATURE IN A CALL FROM SUBROUTINE RESSHK IF DESIRED. THE EXISTING CALL USES 'DISPLA' SOFTWARE	NUMBER OF STRUCTURAL HISTORIES (EITHER DISPLACEMENTS OR VELOCITIES) TO BE DISPLAVED FOR WHICH THE APPROPRIATE STRUCTURAL FREEDOMS CAN BE IDENTIFIED INTERNALLY THROUGH THE FREEDOM/EQUATION CORRESPONDENCE TABLE. ALL STRUCTURAL NODES WHICH PARTICIPATE IN THE FLUID-STRUCTURE TRANSFORMATION WILL FALL INTO THIS CATEGORY AS WELL AS ANY OTHERS WHOSE GRID POINT COORDIATES WERE ENTERED AS DATA FOR THE FLUID MASS PROCESSOR	NUMBER OF STRUCTURAL HISTORIES (EITHER DISPLACEMENTS CR VELOCITIES) TO BE DISPLAYED FOR WHICH THE APPROPRIATE STRUCTURAL FREEDOMS CANNOT BE IDENTIFIED INTERNALLY THROUGH THE FREEDMY/FQUATION CORRESPONDENCE TABLE. DRY STRUCTURE NODE
	٦	J	٦	٦	٦		_
	DISPLA	DEFORM	LISTRE	PRTPLT	VECPLT	NWETHS	NDRYHS
117 118 119	122 124 125 126 127	251 251 251 251 251 251 251 251 251 251	141 142 143	144 145 147	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	159 159 160 163 163 165 165	168 170 171 173 173

POINTS CAN FALL INTO THIS CATEGORY IF THE USER DID NOT INCLUDE THEM IN THE DATA STREAM FOR THE FLUID MASS PROCESSOR. IN THIS CASE ONE MUST IDENTIFY THE INTERNAL SEQUENCE NUMBER APPROPRIATE TO THE DESIRED DEGREE OF FREEDOM BY A MYSTICAL PROCESS WHICH INVOLVES THE INTIMATE KNOWLEDGE OF THE LIMINATION ORDER AND ANY REDUCTION OF THE AUMBER OF ACTIVE FREEDOMS DUE TO THE APPLICATION OF CONSTRAINTS. MORAL OF THE STORY - RUN ALL STRUCTURAL GRID POINTS THROUGH THE FLUID MASS PROCESSOR EVEN IF	NUMBER OF DATA SETS USED TO DEFINE RESPONSE DISPLAYS FOR SEVERAL DEGREES OF FREEDOM THAT DIFFER BY A CONSTANT INCREMENT. THIS FEATURE CAN BE USED TO SIMPLIFY INPUT DATA TO SHOW A NUMBER OF TRANSIENT RESULTS AT DIFFERENT PLACES ALONG A GENERATOR OF A CYLINDER OR, AROUND THE CIRCUMFERENCE AT ANY AXIAL STATION	EXTERNAL INDENTIFICATION NUMBER OF STRUCTURAL NODE FOR WHICH A TIME HISTORY DISPLAY IS DESIRED	STRUCTURAL DEGREE OF FREEDOM NUMBER FOR WHICH A TIME HISTORY DISPLAY IS DESIRED	INTERNAL SEQUENCE NUMBER DETERMINED BY HAND FOR STRUCTURAL DEGREES OF FREEDOM WHICH ARE TO BE DISPLAYED AND ARE NOT INCLUDED IN THE FREEDOM/FQUATION CORRESPONDENCE TABLE FOR REASONS KNOWN ONLY TO THE USER	FIRST OF SEVERAL EQUALLY INCREMENTED NODE NUMBERS AT WHICH OUTPUT IS DESIRED	LAST OF SEVERAL EQUALLY INCREMENTED NODE NUMBERS AT WHICH OUTPUT IS DESIRED	INCREMENT TO BE APPLIED IN ASSIGNING NODE NUMBERS FOR OUTPUT	NUMBER OF FLUID PRESSURE HISTORIES TO BE DISPLAYED	FLUID CONTROL POINT NUMBER FOR WHICH A TIME HISTORY DISPLAY IS DESIRED FOR THE TOTAL PRESSURE	TRUE IF MULTIPLICATIVE CONSTANT FACTORS ARE TO BE APPLIED TO THE DISPLAYED VALUES OF THE STRUCTURAL DISPLACEMENTS AND VELOCITIES, TOTAL FLUID PRESSURES AND/OR TIME, OTHERWISE FALSE. SUCH FACTORS ARE
		-	_	<u>.</u>			ı		H	ب
	NUMSET	NODOUT	NFRGUT	NEOHST	NOOFIR	NODLAS	NODINC	NPREHS	NEOHPR	SCALEF
175 176 177 178 179 180 181 182 185 185	188 190 191 192 193 196 196 196	198 199 200	202	204 205 207 208 209	212	2 15 2 15 3 16	218 219	220 221 222	224 225 225	227 228 230 231

with the state of

NOT APPLIED TO THE PERMANENT FILES CONTAINING THE RESPONSE HISTORIES	MULTIPLICATIVE LENGTH CONVERSION FACTOR TO BE APPLIED TO THE DISPLAYED VALUES OF THE STRUCTURAL DISPLACEMENT AND VELOCITY HISTORIES	MULTIPLICATIVE PRESSURE CONVERSION FACTOR TO BE APPLIED TO THE DISPLAYED VALUES OF THE TOTAL PRESSURE HISTORIES	MULTIPLICATIVE TIME CONVERSION FACTOR TO BE APPLIED TO THE DISPLAYED VALUES OF THE TIME AXIS FOR ALL THE TRANSIENT RESPONSE HISTORIES	TRUE IF PSEUDO-VELOCITY SHOCK SPECTRA ARE ALSO DESIRED FOR STRUCTURAL FREEDOMS WHOSE VELOCITY RESPONSE IS TO BE DISPLAYED. OTHERWISE FALSE	TRUE IF PSEUDO-VFLOCITY SHOCK SPECTRA ARE TO BE LISTED IN TABULAR FORM, OTHERWISE FALSE	TRUE IF FRINTER PLOTS ARE TO BE GENERATED FOR PSEUDO-VELOCITY SHOCK SPECTRA, OTHERWISE FALSE	TRUE IF VECTOR PLOTS ARE TO BE GENERATED FOR PSEUDO-VELOCITY SHOCK SPECTRA, OTHERWISE FALSE (SEE VECPLT)	LOWER LIMIT OF FREQUENCY RANGE TO BE SCANNED FOR PSEUDO-VELOCITY SHOCK SPECTRA	UPPER LIMIT OF FREQUENCY RANGE TO BE SCANNED FUR PSEUDO-VELOCITY SHOCK SPECTRA	FREQUENCY INCREMENT TO BE USED IN GENERATING PSEUDO-VELOCITY SHOCK SPECTRA	NAME OF PERMANENT FILE TO BE CREATED CONTAINING STRUCTURAL SNAPSHOT DATA	NUMBER OF TIMES FOR WHICH THE DISPLACEMENT FIELD IS TO BE WRITTEN ON THE PERMANENT FILE DENGTED BY SNPNAM	TRUE IF STRUCTURAL DISPLACEMENT FIELD IS TO BE PRINTED FOR EACH SNAPSHOT, OTHERWISE FALSE	TIME AT WHICH SNAPSHOT IS DESIRED, MUST BE ORDERED CHRONOLOGICALLY	* * * * * * * * * * * * * * * * * * * *
	m r	н. Н	я. г.	ų	ب	ı.	٦	E. F	ш. Н	н, Н	⋖	н	ر	н я	•
	RESFAC	PREFAC	TIMFAC	SHSPEC	SHLIST	SHPRPL	SHVCPL	FREGLW	FREQUP	DFREQ	SNPNAM	NSNAP	PRTDIS	TIME	* * * * * * * * *
233	238 238 239	240 241 243	244 245 247 247	249 250 251 252 253	254 255 256 257	258 259 260 261	262 263 265 265	266 267 268	269 270 271	272 273 274	275 276 277	278 279 280 281	282 283 285	286 288 288	289

291	
292	INPUT DATA CARD DECK
294 • •	* * * * * * * * * * * * * * * * * * * *
295	
296 207	ALL INPUT DATA EXCEPT ALPHANUMERIC DATA MUST BE RIGHT JUSTIFIED
208	PERGIN (0) CORONIN ILEBO WILLOW CON COCCUI THE ENTIRE PHONIMEDIC DATA MISSE AT A PET ALSTITUTED IN TARKITY (00)
299	NAME PLUS QUALIFIER IS CURRENTLY RESTR
300	EIGHTEEN (18) CHARACTERS FOR UNIVAC OPERATION WHILE NINETEEN (19)
301	CHARACTERS MAY BE USED FOR CDC OPERATION
302	
303	TASK DEFINITION (MAIN PROGRAM POSTPR):
304	
305	
306	12 COLUMN ALPHNOMERIC 11/15, UNLY THE FIRST AB WILL AMPEAK ON PLUIS
308	ATTEN AND THE NET OF T
500	
200	7
2.50	V TOOL V
	CASTLA
312	TDANGTENT DECEMBER DICEL AV (CUBBRUTINE BECCHA).
2 4 5	RESPONSE DISTINGUES COORDOLLING
, u	
0.00	Treatment of Addit wood winds the cation and the cations
316	IF DISPLA * . FALSE. SKIP ALL INFU! FRUM HERE TO SUBRUCTINE SNAPPY
317	1
3,00	LISTRE PRIPLI VECPLI
n	(goodto hittioggis) at least towards
320	(KARISTEN) RESPONSE DISPLAY (SUBKUOLINE SIKUSP):
32.	
344	
923	
324	1
325	
0 0 0	The second seconds
321	NOUGOI NEGOTO DE TOTAL - ANDROLE) 1915 SET FOR
970	1
925	O RUSE CONTROL OF CONT
33.0	TE MINEST - O PAIT THE ENITORITY CARDO
333	
333	NEROUT NODE IR NODLAS NODING
334	
335	NVETUS NDRYHS NUMSET
336	NFROUT
337	
338	
339	NODOUT NEROUT NEOHST) THIS SET FOR
340	
341) VELOCITIES
342	
343	IF NUMSET = 0 DMIT THE FOLLOWING CARD
3,44	MEDILIT NODETD MODIAS MODIAS
346	1 1 100 H
347	TRANSIENT RESPONSE DISPLAY (SUBROUTINE RESSHK):

```
IF DEFORM = .FALSE. THIS TERMINATES THE INPUT DATA DECK
                                                                                                                      PSEUDG-VELOCITY SHGCK SPECTRA (SUBROUTINE RESSHK):
                                                               TRANSIENT RESPONSE DISPLAY (SUBROUTINE FILEUF):
                                                                                                                                                            IF SHSPEC = TRUE, READ THE FOLLOWING CARDS
                     TOTAL = NPREHS
                                                                                                                                                                                           SNAPSHOT FILE CREATION (SUBROUTINE SNAPPY):
                                                                                                IF SCALEF = .TRUE. READ THE FOLLOWIN: CARD
                                      IF NUMSET = 0 OMIT THE FOLLOWING CARD
                                                                                                                                                                                                                                                         TOTAL = NSNAP
                                                   NODFIR NODLAS NODINC
                                                                                                             RESFAC PREFAC TIMFAC
                                                                                                                                                                          SHPRPL SHVCPL
FREQUP DFREQ
       VUMSET
       NPREHS
NEQHPR
                                                                                                                                                                         SHL1ST
FREOLW
                                                                                                                                                                                                                            SNPNAM
NSNAP
PRTDIS
TIME
                                                                                     SCALEF
                                                                                                                                               SHSPEC
```

#1. it - 10

The following discussion is provided as an aid to user understanding of the sample output that is included here.

The input deck shown on the next page requests vector plots for both the transient response histories and pseudo-velocity shock spectra. This is appropriate if the DISSPLA plot package is available at the users installation. Otherwise appropriate modifications must either be made to use a different plot package or the input deck should be modified. In any case the printer plot package is resident in USA -STAGS.

The format used for listing the pseudo-velocity shock spectra is similar to that used for the display of the transient response histories shown in Appendix E except that the first row is now frequency rather than time.

The following input and output for the infinite circular cylindrical shell problem contain some minor differences due to the fact that the input is appropriate to the standard CDC or UNIVAC USA-STAGS version 3 whereas the output is from the VAX virtual memory machine. The basic reason for this is that the VAX version does not explicitly process the fluid equation system in a multi-block, out-of-core mode in contrast to the CDC and UNIVAC versions. In addition, permanent file naming conventions differ slightly; however it is anticipated that these differences should not prove to be a difficulty for the user.

ΩΩVE																							
STEP																							
PLANE					LJ.	۳	8			Ø												۲	. N25
CYLINDER, PLANE STEP LAWE					۲	۰	80	M	2	00	χ.	m	N	m	හ					Ø		۲	14,
INF INI TE	- 6	1010	ことしまでたが	CYL*P0ST	L	-	2	91	10	4	~	19	18	19	33		18	19	ī		-	⊢	2
⊶ (7 r	η,	4	ഹ	9	~	œ	מ	16	11	12	13	14	15	91	17	81	61	28	21	25	23	24

INFINITE CYLINDER, PLANE STEP LAVE

, Acc = DIRECT , Stat = OLD		, Acc= DIRECT , Stat= OLD	
+++ OPEN, 16 = DIRTY:CYL.PRE	16	12 = DIRTY:CYL.POS	12
OPEN,	CLOSE,	OPEN,	CLOSE,
‡	‡	‡	‡

-

9 18 .17500E+00 0.20000E+00 0.22500E+00 .15897E-03-0.17775E-03-0.17111E-03 .65662E-05 0.12312E-04 0.22358E-04 .16793E+01-0.17468E+01-0.17971E+01 .11517E-02-0.35029E-03 0.88132E-03 .16984E-03 0.28983E-03 0.51388E-03 .52096E-03-0.11950E-03 0.48358E-03 .37910E+00 0.34005E+00 0.31600E+00 .16613E-02-0.29301E-02-0.42472E-02	20 0.47500E+00 0.50289E-02 0.15873E-01 -0.1948E+01 0.6569E-01 0.29632E+00 0.14043E-01 0.34771E+00 0.24399E-01	30 0.72500E+00 0.58710E-01 0.21537E+00 -0.19648E+01 0.37695E+00 0.11625E+01 0.2859E-01 0.43675E+00 0.28595E+00 0.28595E+00	40 6.97500E+00 6.19640E+00 6.57863E+00 -0.19949E+01 6.67053E+00 0.17223E+00 0.18557E+00 0.48342E+00 0.48342E+00	58
8 9 9 9 17500E+00 0.20000E+00 0.15897E-03-0.1775E-03-0.15795E-04 0.15795E-04 0.15795E-04 0.15795E-04 0.15795E-03 0.1579E-03 0.2096E-03 0.34005E-03 0.34005E-03 0.16613E-02-0.29301E-02-03 0.16613E-03-0.14824E-02-0	19 6.45000E+00 6.35567E-02 0.96532E-02 -0.19442E+01 0.20128E+00 0.12389E-01 0.33826E+00 0.12037E-01	29 0.78806£+88 0.49688E-01 1.18789E+80 0.19648E+01 0.34482E+80 0.18996E+81 0.26982E+81 0.42693E+80 0.19187E+80	39 0.95060E+00 0.17943E+00 0.53522E+00 0.19898E+01- 0.68711E+00 0.16708E+01 0.14783E+00 0.48104E+00 0.41465E+00	49
8 9 1 0 17500E+00 0 20000E+00 1 0 15897E-03-0 17775E-03- 2 0 15897E-03-0 17775E-03- 2 0 1573E+01-0 12312E-04 1 0 11517E-02-0 35029E-03 2 0 16984E-03 0 28983E-03 1 0 37910E+00 0 34005E+00 1 0 16613E-02-0 29301E-02-03 16613E-03-0 14824E-03	18 0.42500E+00 0.24671E-02 0.55406E-02 0.36961E-01 0.12773E+00 0.32892E+00 0.32892E+00 0.31738E-02	28 0.67500E+00 6 0.1673E+00 6 0.1673E+00 6 0.31264E+00 6 0.31264E+00 6 0.25686E-01 6 0.42089E+00 6 0.17792E+00 6	38 0.92500E+00 0.16241E+00 0.49514E+00 0.6753E+01-0 0.6759E+00 0.11581E+00 0.1781E+00 0.27925E+00 0.27925E+00 0.27925E+00 0.27925E+00	48
5 6 7 .75000E-01 3.10000E+00 0.12500E+00 0.15000E+00 0 .23222E-04-0.50250E-04-0.86229E-04-0.12524E-03-0 .14705E-06 0.51685E-06 0.14126E-05 0.32386E-05 0 .14705E-06 0.51685E-06 0.14126E-05 0.32386E-05 0 .163804E-03-0.12946E+01-0.14646E+01-0.15883E+01-0 .76435E-05 0.21940E-04 0.49719E-04 0.96365E-04 0 .41794E-03-0.6330E+00 0.5254E-03-0.723E-03-0 .90905E+00 0.67930E+00 0.53466E+00 0.44023E+00 0 .15903E-02 0.12989E-03 0.53282E-03-0.28114E-03-0	17 1658E-02 29497E-02 1942E-01 1942E-01 75548E-01 91321E-02 31984E+00 26023E-02	27 9.55000E+60 9.34663E-01 9.13500E+00 9.27990E+00 0.27990E+00 0.27990E+00 0.36528E+00 0.3449E-01 0.41267E+00 0.16195E+00	37 0.98888E+88 0.14683E+88 0.45544E+88 0.19913E+81- 0.63547E+88 0.15599E+81 0.89948E-81 0.47447E+88 0.23414E+88	47
5 6 7 3.10000E+00 0.12500E+00 0.15000E+00 0.50250E-04-0.86229E-04-0.12524E-03 0.51685E-06 0.14126E-05 0.32386E-05 0.12946E+01-0.14446E+01-0.15883E+01 0.13042E-02-0.15740E-02-0.15469E-02 0.21940E-04 0.49719E-04 0.96365E-04 0.63015E-03-0.75254E-03-0.72692E-03 0.67930E+00 0.55402E-03-0.47723E-03 0.60985E-03 0.23282E-03-0.28114E-03	16 37509E+00 10774E-02 15353E-02 1933E-01 41603E-01 75668E-02 31144E+00 59578E-02	26 0.62500E+00 0.27485E-01 0.19606E+01- 0.24637E+00 0.2430E+00 0.23179E-01 0.40422E+00 0.14387E+00	36 8.87598E+88 8.13869E+88 9.41711E+89 8.59196E+89 9.59196E+89 9.78657E+81 9.7859E+89 9.23734E+89 9.23734E+89	46
5 6 75000E-01 3.10000E+00 0.12500E+00 23222E-04-0.50250E-04-0.86229E-04 14705E-06 0.51685E-06 0.14126E-05 14705E-06 0.51946E+01-0.1540E-02 15740E-02 76435E-05 0.21940E-04 0.49719E-04 0.41794E-03-0.67930E+00 0.55402E-03 0.60985E-03 0.23282E-03	15 0.55000E+00 0. 0.64611E-03 0. 0.74836E-02 0. 0.14574E-01 0. 0.14574E-01 0. 0.21351E-01 0. 0.36425E+00 0. 0.55270E-02-0.	25 0.60000E+00 0.21752E-01 0.89339E-01 0.19594E+01- 0.21224E+00 0.85070E+00 0.21535E+00 0.2358E+00	35 0.85000E+00 0.11640E+00 0.38008E+00 0.19741E+01 0.55151E+00 0.14562E+01 0.53399E-01 0.46644E+00 0.23805E+00	45
4 6.75080E-01 6.23222E-04- 6.14705E-06 6.10586E+01- 6.85804E-03- 6.76435E-05 6.76435E-05 6.76435E-05 76435E-05 76432E-03	14 .32500E+00 .33286E-03 .35305E-03 .19020E+01- .10273E-01 .46717E-02 .29894E+00 .78132E-02-	24 0.16871E-01 0.68813E-01 0.17951E+01- 0.17827E+00 0.75938E+00 0.20399E-01 0.38611E+00	34 9.82500E+80 0.10308E+80 0.34430E+80 -0.19711E+81- 0.14058E+91 0.45111E-01 0.45190E+80 0.23594E+80	4
3 50000E-01 74684E-05- 28548E-07 72955E+00- 40227E-03- 19367E-05 112203E+01 13112E-03-	13 .30000E+00 .11095E-03 .16579E-03 .18852E+01- .72661E-02 .33950E-02 .29607E+00 .74057E-02-	23 .55000E+00 .12822E-01 .51189E-01 .19565E+01 .14565E+00 .55059E+00 .18886E-01 .37657E+00	33 0.80005E+83 0.90699E-81 0.30983E+89 0.47738E+89 0.13521E+81 0.33156E-81 0.45677E+89 0.23182E+89 0.4348E-82	43
1 2 90000E+88 8.25000E-01 8 00000E+88-0.12200E-05-0 9 00000E+88 8 0.27346E-88 8 00000E+88-0.27830E+89-0 97600E-94-0 90000E+88-0.48230E-94-0 90000E+88-0.11765E+88 9.16339E+91 9 0.00000E+88 9.16339E+91 9 0.00000E+88 9.3335E-93 9	12 .27588E+88 .38131E-84 .88347E-84 .18633E+81- .45683E-82 .21267E-82 .22581E-82 .29674E+88 .65645E-82-	22 0.52500E+00 0 0.95550E-02 0 0.25427E-01 0 0.19545E+01-0 0.11567E+00 0 0.53040E+00 0 0.7310E-01 0 0.59138E-01 0	32 0.77500E+00 0.79196E-01 0.27677E+00 1.44287E+00 0.12927E+01 0.33565E-01 0.45086E+00 0.2246E+00	42
2 8.00000E+00 0.25000E-01 8.00000E+00 0.12200E-05 9.00000E+00 0.27346E-08 9.00000E+00 0.2735E+00 9.00000E+00 0.2335E-04 9.11765E+00 0.16339E+01 9.00000E+00 0.30375E-03	11 .25000E+00 .12824E-03- .41273E-04 .18348E+01- .25434E-02 .39926E-03 .12814E-02 .30265E+00 .54631E-02-	21 6.5903015E-62 6.5913E-62 6.24687E-01 6.915519E+01-6 6.39425E-01 6.35727E+00 6.35727E+00 6.35727E+00	31 0.75080E+00 0.68541E-01 0.24525E+00 0.19656E+01-0 0.40951E+00 0.12283E+01 0.38558E-01 0.44414E+00 0.47841E-02-0	41
180	18/3 18/3 18/3 18/3 18/3 18/3 18/3 18/3	18	18/2 D	

0.18327E-02-0.84766E-01-0.14512E+00-0.18562E+00-0.20684E+00-0.21445E+00 V-0.21413E+88-8.21237E+88-8.21479E+88-8.22383E+88-8.23416E+88-8.24361E+88-8.24897E+88-8.25188E+88-8.25162E+88-8.25159E+88 8.74481E+68 0.78542E+00 0.51992E+00 0.63636E+00 0.56553E+00 0.11831E+60 V-6.20995E+01-0.21080E+01-0.21159E+01-0.21215E+01-0.21225E+01-0.21155E+01-0.20970E+01-0.20652E+01-0.20225E+01-0.19752E+01 8.76096E+00 V-0.13310E+01-0.18648E+01-0.18414E+01-0.18273E+01-0.18039E+01-0.18077E+01-0.18300E+01-0.18344E+01-0.18222E+01-0.18206E+01 0.88503E+00 0.89536E+80 V-0.55714E-01-0.50549E-01-0.38866E-01-0.22572E-01-0.94119E-02-0.10496E-01-0.22347E-01-0.27149E-01-0.23453E-01-0.20843E-01 0.95158E+80 0.93967E+09 8.48888E+81 8.41888E+81 8.42888E+81 8.43888E+81 8.44888E+81 8.45888E+81 8.46888E+81 8.47888E+81 8.48888E+81 3.49888E+81 8.47842E-01-0.43326E-01.0.50615E-01-0.51914E-01-0.52936E-01-0.53782E-01-0.55296E-01-0.57776E-01-0.60327E-01-0.62096E-01 0.57581E+01 0.59311E+01 0.61134E+01 0.62996E+01 0.64833E+01 0.66630E+01 0.68384E+01 0.70110E+01 0.71833E+01 0.73543E+01 8.14894E+81 V-0.20006E+01-0.20130E+01-0.20254E+01-0.20366E+01-0.20478E+01-0.20591E+01-0.20693E+01-0.2075E+01-0.20844E+01-0.20914E+01 0.22587E+01 9.14697E+01 0.12475E+01 0.25006E+01 0.26009E+01 0.27000E+01 0.28000E+01 0.29006E+01 D 0.23324E+01 0.24801E+01 0.26325E+01 0.27985E+01 0.29804E+01 0.31721E+01 0.33658E+01 0.35546E+01 0.37383E+01 0.39237E+01 V-0.249725+88-8.22971E+88-8.19444E+88-8.15727E+88-8.12894E+88-8.93348E-81-8.86983E-81-8.89657E-81-8.81688E-81-8.65886E-81 D 0.41112E+01 0.42918E+01 0.44609E+01 0.46221E+01 0.47789E+01 0.49338E+01 0.50911E+01 0.52547E+01 0.54231E+01 0.55910E+01 0.16642E+01 8.16443E+81 0.17868E+01 0.19588E+81 0.48520E-03-0.80781E-02-0.15453E-91 0.18829E+01 B.16143E+01 0.3000E+01 0.31000E+01 0.32000E+01 0.3300E+01 0.34000E+01 0.35000E+01 0.36000E+01 0.37000E+01 0.38000E+01 0.39000E+0 D-0.21583E-01-0.26946E-01-0.31417E-01-0.34489E-01-0.36088E-01-0.37083E-01-0.38725E-01-0.41200E-01-0.43730E-01-0.43945E-01 V-9.18230E+91-9.18147E+91-9.18142E+91-9.18282E+91-9.18389E+91-9.18129E+91-9.17834E+91-9.17413E+91-9.16981E+91-9.16857E+918.18268E+8 0.18580E+01 0.19880E+01 0.16947E+01 8.12086E+01 0.13071E+01 0.14011E+01 0.20351E+01 0.20395E+01 0.20055E+01 0.19337E+01 0.18271E+01 8.74231E+00 8.51511E+09 0.61318E+88 0.49614E+80 0.52419E+80 0.54739E+80 0.13089E+00 0.14993E+01 0.14582E+01 0.14520E+01 9.73921E+00 0.62469E+00 0.18251E+01 0.87976E+00 8.98678E+88 8.94651E+88 8.93482E+00 9.24517E+88 0.70865E+00 0.15585E+01 8.88521E+88 0.15512E+31 0.17288E+01 0.18065E+01 0.18849E+01 0.19628E+01 0.20390E+01 0.21129E+01 0.21837E+01 0.11955E+01 0.16312E+01 0.10171E+01 8.14773E+81 8.14767E+81 8.15785E+81 8.17511E+81 8.18867E+81 8.19461E+81 8.19284E+81 8.18478E+81 0.17445E+01 0.16366E+01 0.15864E+01 0.15515E+01 0.15461E+01 0.15995E+01 0.16725E+01 0.25499E+00 8.69533E+00 8.59729E+88 0.11328E+01 8.73162E+88 8.13588E+81 0.50977E+00 0.14345E+00 8.65652E+88 0.63069E+00 8.15833E+81 0.87268E+00 8.88216E+88 0.85252E+00 0.98239E+00 0.94559E+00 0.94186E+88 8.16381E+81 0.26328E+00 0.50589E+00 B.18000E+01 B.64463E+88 8.59183E+88 8.18842E+81 9.61181E+88 0.72318E+98 9.81038E+00 0.95564E+00 0.15595E+00 0.63143E+00 0.93135E-02 0.88300E+00 0.94286E+00 0.13000E+01 0.14617E+01 0.87826E+00 8.16433E+81 0.95153E+00 0.15538E+01 0.15474E+01 0.15633E+01 0.15707E+01 0.15477E+01 0.26905E+00 0.49842E+00 0.50157E+00 0.61760E+00 0.59885E+00 8.43491E+88 8.45611E+88 0.15588E+81 8.16888E+81 8.16588E+81 8.17888E+81 8.17588E+81 0.16827E+00 0.57813E+00 0.62842E+00 0.78563E+00 0.1250BE+01 9.11075E+01 0.54121E+88 0.59386E+88 0.10386E+01 0.71599E+86 9.18356F-01 0.14378E+01 8.89062E+60 8.87296E+08 0.16581E+81 8.91057E+00 8.95825E+68 0.96832E+00 86 0.27113E+00 0.23889E+81 0.24888E+81 0.12000E+b1 0.10056E+01 0.18921E+00 8.99617E+98 9.53266E+60 0.54122E+00 0.55547E+00 8.71154E+88 0.62406E+00 0.29100E-01 0.14282E+01 0.88971E+60 0.34698E+38 0.77327E+00 0.89068E+00 0.95347E+00 8.16391E+81 .95359E+00 0.26807E+00 0.12049E+00 0.95553E+80 0.43010E-01 0.88641E+00 0.11588E+81 0.98491E+88 0.19923E+01 8.48412E+88 8.49474E+88 8.65764E+88 0.39752E+88 0.19164E+00 0.78775E+80 0.61803E+00 8.14242E+81 0.87730E+00 0.81482E+88 0.76429E+00 0.93882E+00 0.16260E+01 0.95147E+00 8.11888E+91 0.25785E+00 0.71268E+80 0.80798E+80 8.45669E+88 8.28816E+88 0.41575E+00 0.49086E+00 0.34637E+88 0.20259E+00 8.91413E+88 0.69997E+60 0.60895E+00 9.21888E+81 8.22888E+81 0.81803E-01 0.60596E-01 8.78324E+00 0.74853E+00 0.16284E+01 0.88844E+60 0.88956E+00 8.73815E+88 0.14146E+01 0.86783E+00 8.92237E+08 0.96535E+00 0.19242E+01 8.18588E+81 0.63492E+00 0.27369E+00 0.87038E+00 8.68437E+88 0.53585E+00 9.75995E+08 0.71377E+00 8.23923E+00 3.18487E+91 0.32514E+88 0.48776E+00 8.52741E+88 0.85211E+00 0.91228E+60 0.21327E+00 8.13857E+01 0.16423E+01 0.98637E+08 D 0.62226E+00 0.61418E+38 15000E+91 D 0.15722E+01 V 0.16862E+91 .65173E+88 8.18682E+01 0.22787E+88 0.48514E+88 0.67733E+30 0.19380E+00 .22393E+00 0.82766E+90 0.52368E+00 0.59055£+00 . 28888E+61 9.10577E+00 0.80474E+80 .63766E+99 0.21246E+00 6.17631E+01 0.13892E+01 0.74787E+89 0.16447E+01 0.88551E+00 0.98497E+98 N. 93903E+00 > > <u>_</u> 1/8 1978 19/0 18/3 1973 1/8 1878 73 18/3 1872 1973 10/2 1973 2/01 10/3 1973 10/2 1/3 1872 18/2 10/3 18/8 2 1872 20/20 9/8

1-0.17641E+61-0.17474E+61-0.17263E+91-0.17285E+91-0.17465E+61-0.17576E+91-0.17511E+91
1-0.12773E-01-0.76764E-02-0.92522E-02-0.21027E-01-0.28581E-01-0.22423E-01-0.12957E-01
1 0.18575E+91 0.18169E+91 0.17769E+ 0.17315E+91 0.17293E+91 0.17257E+91 0.16947E+91
1 0.16776E+91 0.16942E+41 0.17769E+ 0.17235E+91 0.17491E+91 0.17569E+91 0.17479E+91
2 0.95354E+91 0.16942E+41 0.98644E+90 0.98473E+91 0.56610E+01 0.9993E+91 0.94682E+91
0 0.97555E+91 0.9896E+91 0.98968E+91 0.9755E+91 0.9787E+91 0.9787E+91 3 V-0.17076E+01-0.17360E+01-0.17580E+01-0.3 V-0.17097E-01-0.12589E-01-0.13194E-01-0.2 V-0.1780E+01 0.1780BE+01 0.18652E+01 0.3 V-0.16511E+01 0.16479E+01 0.16553E+01 0.3 V-0.16511E+01 0.16479E+01 0.16553E+01 0.0 P-0.10076E+00 0.95690E+00 0.9569E+00 0.9569E+00 0.94567E+00 0.94587E+00 16.78 19.73 19.73 19.78 19.78 19.78

91 T 0.56000E+01 S D-0.63325E-01 E D 0.75225E+01 V-0.17631E+01 V-0.11638E-01 V 0.16685E+01 V 0.17530E+01 F 0.95402E+00

5

THE REAL PROPERTY.

3.8 3.8 2.5 2.0 1.5 PRESSURE RESPONSE OF FLUID NODE 19: 0.20 0.50 0.00E+00 1.82 **6** F-31

SPECTRA:	
SHOCK	
PSEUDO-VELOCITY	

10 0.22500E+00 0.2209BE+01 0.49739E+00 0.17254E+01	20 0.47500E+00 0.18963E+01 0.10744E+01 0.19911E+01 0.72635E+00	30 0.72500E+00 0.21322E+01 0.11465E+01 0.20701E+01 0.53895E+00	40 0.97500E+00 0.17879E+01 0.11206E+01 0.10429E+01 0.44032E+00	50 0.12250E+01 0.17733E+01 0.10692E+01 0.89483E+00 0.49973E+00	60 0.14750E+01 0.16355E+01 0.84635E+00 0.78967E+00	78 0.17250E+01 0.15246E+01 0.6490EE+00 0.14793E+01 0.28802E+00
9 0.22183E+81 0.33981E+80 0.16359E+81 0.12553E+81	19 0.45000E+00 0.19628E+01 C.10359E+01 0.19320E+01 0.75531E+00	29 0.70000E+00 0.20958E+01 0.11497E+01 0.23012E+01 0.55162E+00	39 0.18323E+80 0.11286E+81 0.11286E+81 0.18628E+81	49 0.12000E+01 0.17199E+01 0.10521E+01 0.90550E+00	59 0.14500E+01 0.16514E+01 0.86929E+00 0.79834E+00	69 0.17000E+01 0.15341E+01 0.65397E+00 0.17143E+01 0.29615E+00
8.17500E+00 0.22159E+01 9.32501E+00 0.16545E+01	18 0.42500E+86 0.19086E+01 0.99818E+00 0.18899E+01	28 0.67500E+00 0.19934E+01 0.11621E+01 0.25395E+01 0.56700E+00	38 0.92500E+86 0.18349E+01 0.11351E+01 0.10805E+01	48 0.11750E+01 0.16865E+01 0.10631E+01 0.92067E+00	58 0.14250E+01 0.16845E+01 0.86135E+00 0.80637E+00	68 0.16750E+01 0.15427E+01 0.67928E+00 0.16452E+01 0.29462E+00
7 0.15000E+90 0.21763E+01 0.25815E+00 0.16147E+01	17 6.48886E+88 6.19149E+81 8.96184E+88 6.18844E+81 8.82726E+88	27 0.65000E+00 0.18481E+01 6.11589E+01 0.26816E+01 0.58061E+00	37 0.90000E+00 0.19034E+01 0.11437E+01 0.1160E+01 0.46400E+00	47 0.11500E+01 0.16558E+01 0.18676E+01 0.93467E+00	57 0.14000E+81 0.17082E+91 0.88445E+90 0.81596E+90	67 .16500E+01 .15502E+01 .69491E+00 .17001E+01
6 0.12500E+00 (0.20363E+01 (0.20363E+00 (0.16898E+01 (0.14717E+01 (16 0.37500E+00 0.19286E+01 0.91530E+00 0.17595E+01 0.87506E+00	26 0.62500E+00 0.18543E+01 0.11757E+01 0.27058E+01 0.59821E+00	36 0.87500E+00 0.20132E+01 0.11436E+01 0.11957E+01 0.47208E+00	46 0.11250E+01 0 0.17058E+01 0 0.10484E+01 0 0.94739E+00 0	56 0.13750E+01 0.18068E+01 0.93672E+00 0.82755E+00	66 0.16250E+01 0 0.15567E+01 0 0.71079E+00 0 0.16643E+01 0
5 0.18888E+88 0.19723E+81 0.15338E+81 0.17338E+81	15 0.35000E+90 0.20151E+91 0.86301E+90 0.17764E+91 0.93036E+90	25 0.50000E+00 0.18616E+01 0.11606E+01 0.27395E+01 0.61445E+00	35 0.28235E+91 0.11416E+91 0.12832E+91 0.48324E+99	45 0.11888E+01 0.17877E+01 0.18614E+01 0.96282E+00 0.49572E+00	55 0.13500E+01 0.18143E+01 0.95411E+00 0.83845E+00	65 0.16000E+01 0 0.15622E+01 0 0.74120E+00 0 0.14185E+01 0
4 0.75000E-01 0.19129E+01 0.12574E+00 0.16959E+01 0.16061E+01	14 8.2530E+00 8.20349E+01 8.79727E+00 9.17905E+01 9.98543E+00	24 0.57599E+90 0 0.18655E+91 0 0.26692E+91 0 0.63444E+99 0	34 8.2580E+80 8 9.28941E+81 8 9.11479E+81 8 9.13581E+81 8	44 6.18750E+01 0 6.17328E+01 0 6.18695E+01 0 8.97872E+00 0	54 0.132505+01 0 0.18517E+01 0 0.97172E+00 0 0.84851E+00 0	64 0.15750E+01 0.1567E+01 0.75650E+00 0.13489E+01 0.31623E+00
3 0.50000E-01 6 0.18310E+01 6 0.84574E-01 6 0.16855E+01 6	13 0.3000E+00 t 0.21434E+01 6 0.72682E+00 6 0.17912E+01 6	23 0.55300E+00 0 9.18764E+01 0 0.11571E+01 0 0.24653E+01 0	33 9.80808E+98 8 9.21276E+91 8 6.11438E+91 8 0.14811E+91 8	43 8.10588E+01 8.17288E+01 8.10862E+01 9.9337E+00 9.45842E+30	53 0.13000E+01 0.19824E+01 0.99714E+00 9.85773E+00 0.42375E+00	63 0.15500E+01 0.15701E+91 0.75886E+00 0.10957E+01 0.32166E+00
25883E-81 .12997E+81 .42513E-81 .18986E+81	12 .27580E+80 .21915E+81 .65643E+80 .17786E+91	22 .52500E+00 .18830E+01 .11299E+01 .22644E+01	32 0.77500E+00 6 0.21564E+01 6 0.11362E+01 6 0.16563E+01 0	42 6.10259E+01 6 9.17573E+01 6 9.11091E+91 6 0.10192E+01 0	52 0.12750E+01 0 0.20119E+01 0 0.99032E+00 0 0.97039E+00 0	62 0.15250E+01 0.15771E+01 0.77458E+00 0.89620E+00 6.32680E+00
1 .00309E +99 .00000E +00 .00000E +00 .00000E +00	11 .25930E+00 .22133E+01 .58027E+00 .17551E+01	21 0.50000E+00 0 0.11002E+01 0 0.11002E+01 0	31 0.758306+90 e 0.219826+01 e 0.113466+91 e 0.193976+01 e	41 0.10000E+91 0 0.1767 E+91 0 0.1136E+91 0 0.10274E+91 0	51 0.12500E+01 0 0.19317E+01 0 0.104605+91 0 0.88312E+00 0	61 6.15883E+81 8 6.79541E+88 8 6.78380E+88 8
1/3 5 8 18/3 5 8 18/3 5 8 19/2 5 3	1/3 S 8 18/3 S 8 18/2 S 8 19/2 S 8	1/3 5 6 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/3 S 10/3 S 10/2 S 19/3 S	1/3 S 60 18/3 S 60 18/2 S 6	1/3 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,23 × 2,00 × 2,
			F-33			

88	98	100	118	128
8,19758E+81	0.22250E+01	0.24750E+01	0.27250E+01	0.29758E+81
8,14622E+81	0.14025E+01	0.13301E+01	0.13102E+01	0.12343E+81
8,58361E+88	0.54876E+00	0.51914E+00	0.52571E+00	0.48378E+88
8,65859E+88	0.56903E+00	0.67083E+00	0.60086E+00	0.92582E+88
79	89	99	189	119
0.19500E+01	6.22000E+01	0.24500E+01	8.27868E+81	0.29500E+01
0.14925E+01	6.14071E+01	0.13394E+01	8.12976E+81	0.12923E+01
0.58823E+00	6.55196E+00	0.51690E+00	8.52687E+80	0.49046E+00
0.69040E+00	6.57538E+00	0.60200E+00	9.59586E+80	0.24550E+00
78	88	98	108	118
0.19250E+01	0.21750E+01	0.24250E+01	0.26750E+01	0.29250E+01
0.15746E+01	0.14112E+01	0.14686E+01	6.13015E+01	0.14273E+01
0.59319E+00	0.5510E+00	0.51513E+00	0.52755E+00	0.49665E+00
0.81355E+00	0.58158E+00	0.51892E+00	0.61955E+00	0.94861E+00
77	87	97	107	117
0.190005+01	0.21500E+01	0.24000E+01	0.26500E+01	0.29000E+01
0.15784E+01	0.14147E+01	0.15097E+01	0.13051E+01	0.15559E+01
0.59851E+00	0.55822E+00	0.52053E+00	0.52776E+00	0.50229E+00
0.91779E+00	0.58762E+00	0.52341E+00	0.62622E+00	0.91253E+00
76	86	96	106	116
0.18750E+01	6.21250E+01	0.23750E+01	0.26250E+01	0.28750E+01
0.16412E+01	0.14178E+01	0.15437E+01	0.13084E+01	0.16200E+01
0.60419E+00	0.56138E+00	0.52551E+00	0.52755E+00	0.50735E+00
0.99370E+00	0.59349E+00	0.52828E+00	0.61589E+00	0.92184E+00
75	85	95	105	115
0.10500E+01	8.21000E+81	0.23500E+01	0.26000E+01	0.28500E+01
0.16882E+01	8.14204E+01	0.15623E+01	0.13114E+01	0.16862E+01
0.61024E+00	0.56462E+00	0.53010E+00	0.52693E+00	0.51183E+00
0.10336E+01	9.59919E+00	0.53535E+00	0.58935E+00	0.86409E+00
74	84	94	194	114
0.18250E+01	0.26750E+01	0.23250L+01	0.25759E+01	0.28250£+01
0.16541E+01	0.14241E+01	3.15224E+01	0.13140E+01	0.16553£+01
0.61665E+00	0.56799E+09	0.53435E+00	0.52595E+00	0.51573£+00
0.11896E+01	0.60471E+09	0.54232E+00	0.38267E+00	0.88372£+00
73	83	93	103	0.27758E+01 0.28008E+01
0.18000E+01	0.20500E+01	0,23000E+01	0.25500E+01	0.15695E+01 0.16241E+01
0.17015E+01	0.14347E+01	0,14752E+01	0.13163E+01	0.52182E+00 0.51905E+00
0.62340E+00	0.57153E+00	0,53829E+00	0.52464E+08	0.65417E+00 0.77253E+00
0.13133E+01	0.61004E+00	0,5491E+00	0.61601E+00	0.26259E+00 0.26151E+00
72 0.17750E+01 0.16685E+01 0.63847E+90 0.13379E+01 0.28056E+00	82 0.26250E+01 0.14445E+01 0.57529E+00 0.61517E+00	92 0.22750E+01 0.13962E+01 0.55137E+00 0.22132E+00	102 0.25250E+01 0.13303E+01 6.52305E+00 0.54535E+00	
71 F 0.17500E+01 S 0.16876E+01 S 0.63780E+08 S 0.14237E+01 S 0.28438E+09	81 5 0.20800E+01 5 0.14537E+01 5 0.57931E+08 5 0.62323E+08 5 0.2313E+08	91 S 0.13974E+81 S 0.54545E+88 S 0.54545E+88 S 0.56254E+88	181 S 0.13203E+01 S 0.13203E+08 S 0.52120E+08 S 0.6200E+08 S 0.33367E+03	111 S 0.27588E+81 S 0.14735E+81 S 0.52483E+88 S 0.61883E+88 S 0.26033E+88
186.3 196.2 197.3 197.3	10.2 19.2 19.2 19.2 19.2 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3	1873 1873 1973 1973	1673 1873 1972 1973	1673 9 1697 9 1973 9 1973 9 1973
			F- 34	

121 F 0.30900E+01 1/3 S 0.12268E+01 10/3 S 0.47642E+00 10/2 S 0.96612E+00

3.8 3.0 2.5 2.5 2.8 2.8 18, FREEDOM NUMBER 2: PSEUDO-VELOCITY SHOCK SPECTRUM FOR STRUCTURAL NODE 1.0 0.50 8.58 8.80E+88 8.80E+88 8.08 F-37

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE DEPARTMENT OF THE ARMY (Continued) Chief of Engineers Assistant to the Secretary of Defense Department of the Army ATTN: DAEN-MCE-D ATTN: DAEN-RDL Atomic Energy ATTN: Executive Assistant Defense Intelligence Agency ATTN: DB-4C3 ATTN: DB-4C Construction Engineering Rsch Lab Department of the Army ATTN: CERL-SOI-L ATTN: DB-4C1 ATTN: DB-4C2, C. Wiehle Deputy Chief of Staff for Ops & Plans Department of the Army ATTN: DAMO-NC ATTN: RDS-3A ATTN: DT-2 ATTN: DB-4C2 ATTN: DT-1C Deputy Chief of Staff for Rsch Dev & Acq Department of the Army ATTN: DAMA Defense Nuclear Agency ATTN: STSP, D. Sobota ATTN: STSP 2 cy ATTN: SPAS 2 cy ATTN: SPSS 4 cy ATTN: TITL Engineer Studies Center Department of the Army ATTN: DAEN-FES, LTC Hatch Harry Diamond Laboratories Department of the Army ATTN: DELHD-I-TL ATIN: DELHD-N-P Defense Technical Information Center 12 cy ATTN: PD Field Command Defense Nuclear Agency ATTN: FCT ATTN: FCP ATTN: FCTMOF U.S. Army Concepts Analysis Agency ATTN: CSSA-ADL U.S. Army Engineer Center Field Command ATTN: ATZA Defense Nuclear Agency U.S. Army Engineer School ATTN: ATZA-CDC ATTN: ATZA-DTE-ADM Livermore Branch ATTN: FCPRL Field Command Test Directorate U.S. Army Engr Waterways Exper Station ATTN: F. Brown Test Construction Division Defense Nuclear Agency ATTN: J. Zelasko ATTN: WESSD, J. Jackson ATTN: J. Strange ATTN: WESS, J. Ballard ATTN: FCTC Interservice Nuclear Weapons School ATTN: TTV ATTN: WESSE, L. Ingram ATTN: Library ATTN: Library ATTN: WESS/, W. Flathau ATTN: J. Hirt ATTN: C. Whalin ATTN: R. Whalin Joint Strat Tgt Planning Staff ATTN: XPFS ATTN: JLTW, Carpenter ATTN: JLA ATTN: JLTW-2 ATTN: NRI STINFO, Library ATTN: Houston, James R. ATTN: DOXT U.S. Army Foreign Science & Tech Ctr NATO School (SHAPE) ATTN: U.S. Documents Officer ATTN: DRXST-SD U.S. Army Mat Cmd Proj Mngr for Nuc Munitions Under Secretary of Defense for Rsch & Engr ATTN: Strategic & Space Systems (OS) ATTN: DRCPM-NUC U.S. Army Material & Mechanics Rsch Ctr ATTN: DRXMR, J. Mescall ATTN: DRXMR-TE, R. Shea DEPARTMENT OF THE ARMY ATTN: Technical Library BMD Advanced Technology Center Department of the Army ATTN: ICRDABH-X ATTN: ATC-T U.S. Army Materiel Dev & Readiness Cmd ATTN: DRCDE-D, L. Flynn ATTN: DRXAM-TL

DEPARTMENT OF THE ARMY (Continued) DEPARTMENT OF THE NAVY (Continued) U.S. Army Missile Command Naval Research Laboratory ATTN: DRDMI-XS ATTN: RSIC ATTN: Code 8404, H. Pusey ATTN: Code 2627 ATTN: Code 8100 ATTN: Code 8440, G. O'Hara U.S. Army Nuclear & Chemical Agency ATTN: Library ATTN: Code 8406 U.S. Army War College ATTN: Library ATTN: Code 8445 ATTN: Code 8403, R. Belsham ATTN: Code 6330 ATTN: Code 8301 ATTN: Code 8406 U.S. Military Academy ATTN: Document Library Naval Sea Systems Command ATTN: SEA-08 ATTN: SEA-9931G DEPARTMENT OF THE NAVY David Taylor Naval Ship R & D Ctr ATTN: Code 1844 ATTN: Code 11 ATTN: SEA-0351 ATTN: SEA-323 ATTN: SEA-033 ATTN: Code 172 ATTN: SEA-3221 ATTN: SEA-09G53 ATTN: Code L42-3 ATTN: Code 1740,4 ATTN: SEA-06J, R. Lane ATTN: Code 1700, W. Murray ATTN: Code 174 Naval Surface Weapons Center ATTN: Code 2740 ATTN: Code F31 ATTN: Code R10 ATTN: Code 173 ATTN: Code 1740, R. Short ATTN: Code 1740.1 ATTN: Code R15 ATTN: Code 177, E. Palmer ATTN: Code 1740.6 ATTN: Code 1740.5 ATTN: Code R14 ATTN: Code R13 ATTN: Code U401, M. Kleinerman ATTN: Code F34 ATTN: Code 1770.1 ATTN: Code R14 Marine Corps Naval Surface Weapons Center Department of the Navy ATTN: POM ATTN: Tech Library & Info Svcs Br ATTN: W. Wishard Marine Corp Dev & Education Command ATTN: D091, J. Hartneady Naval War College ATTN: Code E-11 (Tech Service) Naval Civil Engineering Laboratory ATTN: Code L51, J. Crawford Naval Weapons Center ATTN: Code 233 ATTN: Code 3263, J. Bowen ATTN: Code 266, C. Austin Naval Coastal Systems Laboratory ATTN: Code 741 Naval Weapons Evaluation Facility ATTN: G. Binns ATTN: Code 210 ATTN: Code 10 ATTN: R. Hughes Naval Electronic Systems Command ATTN: PME 117-21 Naval Electronics Systems Command ATTN: Commander Naval Weapons Support Center Naval Explosive Ord Disposal Fac ATTN: Code 70553, D. Moore ATTN: Code 504, J. Petrousky New London Laboratory Naval Facilities Engineering Command Naval Underwater Systems Center ATTN: Code 401, J. Kalinowski ATTN: Code 401, J. Patel ATTN: Code 048 Naval Material Command ATTN: MAT 08T-22 Newport Laboratory Naval Underwater Systems Center ATTN: Code 363, P. Paranzino ATTN: Code EM Naval Ocean Systems Center ATTN: Code 013: E. Cooper ATTN: Code 4471 Office of Naval Research Naval Postgraduate School

ATTN: Code 69NE ATTN: Code 1424, Library ATTN: Code 474, N. Perrone

DEPARTMENT OF THE NAVY (Continued)

Office of the Chief of Naval Operations ATTN: OP 37 ATTN: OP 098T8

OP 223 ATTN:

OP 654C3, R. Piacesi OP 982E, M. Lenzini ATTN:

ATTN:

ATTN: OP 032G

ATTN: OP 982

ATTN: OP 981N1

ATTN: OP 981

ATTN: OP 65

ATTN: OP 957E

ATTN: OP 987

ATTN: OP 605D5

ATTN: OP 225

ATTN: OP 21

ATTN: OP 951

ATTN: OP 953

Strategic Systems Project Office Department of the Navy

ATTN: NSP-43

ATTN: NSP-273

ATTN: NSP-272

DEPARTMENT OF THE AIR FORCE

Air Force Institute of Technology

ATTN: Commander ATTN: Library

Air Force Office of Scientific Rsch ATTN: NA, B. Wolfson

Air Force Systems Command

ATTN: DLW ATTN: R. Cross

Air Force Weapons Laboratory

Air Force Systems Command

ATTN: NTED ATTN: SUL

ATTN: NTE, M. Plamondon

ATTN: NTES-C, R. Henny ATTN: NTES-G, S. Melzer

Assistant Chief of Staff

Intelligence

Department of the Air Force

ATTN: IN

Ballistic Missile Office

Air Force Systems Command

ATTN: DEB

Deputy Chief of Staff

Research, Development, & Acq

Department of the Air Force ATTN: R. Steere ATTN: AFRDQI

Deputy Chief of Staff Logistics & Engineering Department of the Air Force

ATTN: LEEE

DEPARTMENT OF THE AIR FORCE (Continued)

Foreign Technology Division

Air Force Systems Command

ATTN: SDBG

ATTN: SDBF, S. Spring

TQTD

ATTN: NIIS, Library

Rome Air Development Center

Air Force Systems Command
ATTN: RBES, R. Mair
ATTN: TSLD
ATTN: Commander

Strategic Air Command Department of the Air Force ATTN: NRI STINFO, Library

Director of Conferences (CSEC) United States Air Force Academy ATTN: DFCEM, W. Fluhr

DEPARTMENT OF ENERGY

Department of Energy

Albuquerque Operations Office
ATTN: CTID

Department of Energy

ATTN: OMA/RD&T

Department of Energy Nevada Operations Office

ATTN: Mail & Records for Technical Library

OTHER GOVERNMENT AGENCIES

Central Intelligence Agency

ATTN: OSWR/NED ATTN: OSR/SE/F

Department of the Interior

U.S. Geological Survey ATTN: D. Roddy

Federal Emergency Management Agency National Sec Ofc Mitigation & Rsch ATTN: Mitigation & Rsch Div

NASA

ATTN: F. Nichols ATTN: R. Jackson

U.S. Nuclear Regulatory Commission

ATTN: R. Whipp for Div Sec L. Shao

DEPARTMENT OF ENERGY CONTRACTORS

Lawrence Livermore National Lab

ATTN: S. Erickson

Oak Ridge National Laboratory

ATTN: Civil Def Res Proj ATTN: Central Rsch Library

Kaman Sciences Corp ATTN: Library ATTN: F. Shelton Los Alamos National Laboratory ATTN: A. Davis ATTN: G. Spillman ATTN: M/S634, T. Dowler ATTN: D. Sachs ATTN: J. Kodis ATTN: MS 364 ATTN: MS 670, J. Hopkins ATTN: R. Whitaker Kaman Tempo ATTN: J. Moulton ATTN: R. Sandford ATTN: M. Sandford Karagozian and Case ATTN: J. Karagozian Lockheed Missiles & Space Co, Inc ATTN: Technical Information Center ATTN: B. Almroth 4 cy ATTN: J. Deruntz 4 cy ATTN: F. Brogan 26 cy ATTN: T. Geers Sandia Laboratories Livermore Laboratory ATTN: Library & Security Classification Div Sandia National Lab ATTN: L. Vortman ATTN: 3141 Lockheed Missiles & Space Co, Inc DEPARTMENT OF DEFENSE CONTRACTORS ATTN: TIC-Library M & T Company ATTN: D. McNaight BDM Corp ATTN: T. Neighbors ATTN: A. Lavagnino ATTN: Corporate Library Management Science Associates ATTN: K. Kaplan Bell Telephone Labs McDonnell Douglas Corp ATTN: R. Halprin ATTN: J. White California Institute of Technology University of Miami ATTN: S. Wang ATTN: F. Tappert A:TN: B. Lemehaute ATTN: T. Ahrens California Research & Technology, Inc ATTN: K. Kreyenhagen ATTN: Library ATTN: M. Rosenblatt NKF Engineering Associates, Inc ATTN: S. Schuster ATTN: R. Belsheim University of California at San Diego ATTN: W. Van Dorn Pacific-Sierra Research Corp ATTN: H. Brode Pacifica Technology Columbia University ATTN: F. Dimaggio ATTN: H. Bleich ATTN: G. Kent ATTN: R. Bjork University of Denver ATTN: J. Wisotski Physics Applications, Inc ATTN: C. Vincent Electric Power Rosearch Institute ATTN: G. Sliter Physics International Co ATTN: J. Thomsen ATTN: Technical Library General Dynamics Corp ATTN: J. Mador ATTN: J. Miller ATTN: M. Pakstys ATTN: E. Moore ATTN: L. Behrmann ATTN: F. Sauer General Electric Co University of Pittsburgh ATTN: M. Bortner ATTN: M. Willims, Jr Science Applications, Inc ATTN: Technical Library ATTN: H. Wilson ATTN: M. McKay Hydro-Conduit Corp ATIN: J. Duncan Kaman Avidyne ATTN: G. Zartarian ATTN: Library ATTN: R. Ruetenik Southwest Research Institute ATTN: W. Baker ATTN: A. Wenzel ATTN: N. Hobbs

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

DEPARTMENT OF ENERGY CONTRACTORS (Continued)

Kaman Tempo AITN: DASIAC R & D Associates ATTN: P. Haas

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

SRI International

ATTN: G. Abrahamson ATTN: A. Florence ATTN: W. Wilkinson

Systems, Science & Software, Inc.

ms, Science & Softwar
ATTN: D. Grine
ATTN: T. McKinley
ATTN: R. Sedgewick
ATTN: Library
A*TN: K. Pyatt
ATTN: T. kiney
ATTN: T. Cherry

Teledyne Brown Engineering ATTN: J. Ravenscraft

Tetra Tech, Inc ATTN: L. Hwang

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

TRW Defense & Space Sys Group ATTN: A. Feldman ATTN: P. Bhutta

ATTN: P. BRUTTA
ATTN: B. Sussholtz
ATTN: C. Jortner
ATTN: A. Narevsky
ATTN: W. Lipner
ATTN: Technical Information Senter

TRW Defense & Space Sys Group ATTN: E. Wong ATTN: F. Pieper ATTN: P. Dai ATTN: G. Hulcher

Weidlinger Assoc, Consulting Engrg ATTN: J. McCormick ATTN: M. Baron

weidlinger Assoc, Consulting Engrg ATTN: J. Isenberg