Terminologie

- Funkce f má v bodě c limitu A.
- $\bullet \lim_{x\to c} f(x) = A.$
- Limita (z) f(x) pro x jdoucí k c je A.

Počítání s limitami

Mějme dvě funkce f, g, které mají v bodě $c \in \mathbb{R}$ limity:

$$\lim_{x\to c} f(x) = A, \qquad \lim_{x\to c} g(x) = B.$$

Potom:

- Limita funkce f + g v bodě c existuje a je rovna A + B.
- Limita funkce $f \cdot g$ v bodě c existuje a je rovna $A \cdot B$.
- Je-li $B \neq 0$, pak limita funkce $\frac{f}{g}$ v bodě c existuje a je rovna $\frac{A}{B}$.

Symbolicky:

$$\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x),$$

$$\lim_{x \to c} (f(x) \cdot g(x)) = (\lim_{x \to c} f(x)) \cdot (\lim_{x \to c} g(x)),$$

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$$

Důsledky

Pozorování

Je-li f funkce, k reálné číslo a platí $\lim_{x\to c} f(x) = A$, pak $\lim_{x\to c} kf(x) = kA$.

Např. $\lim_{x\to 0} \frac{10\sin x}{x} = 10 \cdot \lim_{x\to 0} \frac{\sin x}{x} = 10 \cdot 1 = 10.$

Spojité funkce

Definice

Řekneme, že funkce f je *spojitá* v bodě $c \in D_f$, pokud $f(c) = \lim_{x \to c} f(x)$.

Z pravidel pro limity pak pro dvě funkce f a g, které jsou spojité v bodě $c \in D_f \cap D_g$, plyne:

- funkce f + g je spojitá v c,
- funkce $f \cdot g$ je spojitá v c,
- pokud $g(c) \neq 0$, tak funkce $\frac{f}{g}$ je spojitá v c.

Příklady

Následující funkce jsou spojité ve všech bodech svých definičních oborů:

- polynomiální funkce
- exponenciální a logaritmické funkce
- goniometrické funkce

Jak počítat " $\frac{0}{0}$ "

Pokud $\lim_{x \to c} f(x) = 0$ a stejně tak $\lim_{x \to c} g(x) = 0$, jak může dopadnout

$$\lim_{x\to c}\frac{f(x)}{g(x)}?$$

Vcelku *libovolně*. Při praktických výpočtech nám pomůže zejména následující

Pozorování

Shodují-li se funkce f a g na nějakém prstencovém okolí bodu $c \in \mathbb{R}$, pak mají v c tutéž limitu (pokud existuje).