[4]

Q.S		Attempt any two:							
	i.	Difference between Traditional Algorithms and Genetic	4						
		Algorithm.							
	ii.	Explain the following types of binary crossover operators with	4						
		reference to genetic algorithm.							
		(a) Single point crossover							
		(b) Double point crossover							
	(c) Multi point crossover(d) Uniform crossover								
		(e) Matrix crossover							
	iii.	What is 'Roulette Wheel Selection'?	5						
Q.6		Attempt any two:							
	i.	What is a Genetic Algorithm based Backpropagation Network?	5						
		Explain and Draw its architecture.							
	ii.	What is hybrid intelligent control system? What are the	5						
		advantages and disadvantages of Fuzzy control system.							
	iii.	What are the different types of Neuro-Fuzzy system? Explain any	4						
		one architecture in detail with the help of diagram.							

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

Faculty of Engineering End Sem (Even) Examination May-2019 CS3EA03 Soft Computing

Programme: B.Tech. Branch/Specialisation: CSE

Duration: 3 Hrs. Maximum Marks: 60

	_	estions are compulsory. Internal choices, if any, are indicated. Answe should be written in full instead of only a, b, c or d.	ers (
Q.1	i.	A perceptron is:							
		(a) A single layer feed-forward neural network with pre-processing							
		(b) An auto-associative neural network							
		(c) A double layer auto-associative neural network							
		(d) A neural network that contains feedback							
	ii.	An auto-associative network is:	1						
		(a) A neural network that contains no loops							
		(b) A neural network that contains feedback							
		(c) A neural network that has only one loop							
		(d) A single layer feed-forward neural network with pre-processing							
	iii.	A 4-input neuron has weights 1, 2, 3 and 4. The transfer function	1						
		is linear with the constant of proportionality being equal to 2. The							
		inputs are 4, 10, 5 and 20 respectively. The output will be:							
		(a) 238 (b) 76 (c) 119 (d) 123							
	iv.	Which of the following is true?	1						
		I. On average, neural networks have higher computational rates							
		than conventional computers.							
		II. Neural networks learn by example.							
		III. Neural networks mimic the way the human brain works.							
		(a) All of these are true (b) II and III are true							
		(c) I and III are true (d) None of these							

P.T.O.

	v.	•	s on the size of the network.	1				
			be simulated on a conventional					
		computer.	atical in aparation to higherinal anac					
			ntical in operation to biological ones. (b) II is true					
			(d) None of these					
	vi.	What is back propagation?	(d) None of these	1				
	٧1,	(a) It is another name given to the curvy function in the						
		perceptron						
		• •	error back through the network to					
		adjust the inputs						
		v i	error back through the network to					
		allow weights to be adjusted so that the network can learn						
		(d) None of these						
	vii.	Fuzzy logic is a form of		1				
		(a) Two-valued logic	(b) Crisp set logic					
		(c) Many-valued logic	(d) Binary set logic					
	viii.	. Fuzzy logic is extension of Crisp set with an extension of handling						
		the concept of Partial Truth.						
		(a) True	(b) False					
	ix.	The room temperature is hot. Here the hot (use of linguistic						
		variable is used) can be repres	sented by					
			(b) Crisp Set					
			(d) None of these	1				
	х.	The values of the set membership are represented by						
		` '	(b) Degree of truth					
		(c) Probabilities	(d) Both (b) and (c)					
0.2		A 44 amount a may 4 area.						
Q.2	i.	Attempt any two:	nguich between out computing and	5				
	1.	Define soft computing? Distinguish between soft computing and hard computing.		3				
	ii.	1 0	ls to give solution in applications.	5				
	11.	Justify with some examples.	is to give solution in applications.	S				
	iii	Explain any five characteristics of soft computing.						
	111.	Explain any live characteristic	of soft computing.	5				

Q.3		Attempt any two:						
	i.	Compare the strength and weakness of human brain with respect 5						
		to a computer.						
	ii.	What	is fo	orwar	d pass	and b	backward pass in the training of back	5
			_			twork.		
	iii.	Explain the weight updation process in a back propagation neural network in both hidden and output layers using sigmoidal function.						
0.4		A 44 a		4				
Q.4	i.		-	ny two		fuzza	eat aparation with avample.	5
	1.	-			_	ruzzy zy sets	set operation with example:	3
					zy set	•		
					_	zzy set	8	
	ii.		_			_	ations defined here:	5
		R =				J		
				y1	y2	y 3		
			x1	0.0	0.2	0.8		
			x 2	0.3	0.6	1.0		
		S =						
			_	$\mathbf{z}1$	\mathbf{z}^{2}	z 3		
			y1	0.3	0.7	1.0		
			y2	0.5	1.0	0.6		
			y 3	1.0	0.2	0.0	_	
		Comp	pute 1	the res	sult of	RoS	u <mark>sing</mark>	
		(a) max -min composition						
	(b) max- product composition							
	iii.	What	do	you n	nean b	y_De-	fuzzification? Explain any TWO De-	5
	fuzzification techniques.							

P.T.O.

Marking Scheme CS3EA03 Soft Computing

) .1	i.	A perceptron is:	1			
		(a) A single layer feed-forward neural network with pre-processing				
	ii.	An auto-associative network is:	1			
		(b) A neural network that contains feedback	1			
	iii.	A 4-input neuron has weights 1, 2, 3 and 4. The transfer function is				
		linear with the constant of proportionality being equal to 2. The				
		inputs are 4, 10, 5 and 20 respectively. The output will be:				
	iv.	(a) 238 Which of the following is true?	1			
	IV.	Which of the following is true? a) All of these are true				
	v.	Which of the following is true for neural networks?	1			
	٧.	(c) I and II are true	1			
	vi.	What is back propagation?	1			
	, 1.	(c) It is the transmission of error back through the network to allow				
		weights to be adjusted so that the network can learn				
	vii.	Fuzzy logic is a form of				
		(c) Many-valued logic				
	viii.	Fuzzy logic is extension of Crisp set with an extension of handling	1			
		the concept of Partial Truth.				
		(a) True				
	ix.	The room temperature is hot. Here the hot (use of linguistic variable	1			
		is used) can be represented by				
		(a) Fuzzy Set				
	х.	The values of the set membership are represented by	1			
		(b) Degree of truth				
) .2	:	Attempt any two:	_			
	i.	Soft computing 2 marks Difference soft computing and hard computing. 3 marks	5			
	ii.	Difference soft computing and hard computing. 3 marks 'Conventional computing fails to give solution in applications.'	5			
	11.	Proportionate marking	J			
	iii.	Any five characteristics of soft computing.	5			
	1111	1 mark for each (1 mark * 5)	·			
		(1 mark 0)				
2.3		Attempt any two:				
	i.	Compare the strength and weakness of human brain				
		At least five point 1 mark for each (1 mark * 5)				

	ii. iii.	Forward pass and backward pass eight updation process in a back propagation neural network in both hidden and output layers using sigmoidal function.						
Q.4		Attempt any two:						
	i.	(a) Intersection of fuzzy sets	1.5 marks	5				
		(b) Union of fuzzy sets	1.5 marks					
		(c) Complement of fuzzy sets	1.5 marks					
		Example	0.5 mark					
	ii.	Compute the result of R o S using		5				
		(a) max -min composition	2.5 marks					
		(b) max- product composition	2.5 marks					
	iii.	De-fuzzification	1 mark	5				
		Any TWO De-fuzzification techniques						
		2 marks for each (2 marks * 2)	4 marks					
Q.5		Attempt any two:						
	i.	Difference b/w Traditional Algorithms and Genetic Algorithm. 5						
	ii.	(a) Single point crossover	1 mark	5				
		(b) Double point crossover	1 mark					
		(c) Multi point crossover	1 mark					
		(d) Uniform crossover	1 mark					
		(e) Matrix crossover	1 mark					
	iii.	Roulette Wheel Selection		5				
Q.6		Attempt any two:						
	i.	Genetic Algorithm based Backpropagation Network						
			2 marks					
		Its architecture.	3 marks					
	ii.	Hybrid intelligent control system	2 marks	5				
		Advantages and disadvantages of Fuzzy co	ontrol system.					
			3 marks					
	iii.	Types of Neuro-Fuzzy system	2 marks	5				
		Any one architecture with diagram.	3 marks					
