ЛАБОРАТОРНАЯ РАБОТА 6.11.1

ОПРЕДЕЛЕНИЕ ШИРИНЫ ЗАПРЕЩЕННОЙ ЗОНЫ ПОЛУПРОВОДНИКА

ТЕОРИЯ

Функция Ферми для $(E-\mu)\gg k_{\rm B}T$

$$f(E) = \frac{1}{\exp\left(\frac{E-\mu}{k_{\rm B}T}\right) + 1} \simeq \exp\left(-\frac{E-\mu}{k_{\rm B}T}\right)$$

Схема уровней:

Число электронов в зоне проводимости с учетом эффективного (а не полного) числа уровней

$$n_n = Q_n \exp\left(-\frac{E_{\rm c} - \mu}{k_{\rm B}T}\right)$$

Число дырок и число носителей через ширину уровня есть

$$n_p = Q_p \left[1 - \frac{1}{\exp\left(\frac{E_{\rm v} - \mu}{k_{\rm B}T}\right) + 1} \right] \simeq Q_p \exp\left(-\frac{E_{\rm v} - \mu}{k_{\rm B}T}\right) \qquad \qquad n = C \exp\left(-\frac{\Delta}{2k_{\rm B}T}\right)$$

Найдем электропроводность. Средняя дрейфовая скорость электронов

$$v_{\rm cp} = \mu_n \mathscr{E}$$

Далее,

$$\sigma = j/\mathscr{E} = |e|(n_n \mu_n + n_p \mu_p)$$

$$\sigma = |e|C(\mu_n + \mu_p) \exp\left(-\frac{\Delta}{2k_B T}\right) = A \exp\left(-\frac{\Delta}{2k_B T}\right)$$

$$\ln \sigma = f(1/T)$$

ХОД РАБОТЫ

ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ $\sigma(T)$ С ПОМОЩЬЮ МОСТА ПЕРЕМЕННОГО ТОКА

Рис. 3. Схема установки для измерения зависимости $\sigma(T)$ с помощью моста переменного тока

$$\sigma_x = \frac{l}{S} \frac{R_1}{R_3} \frac{1}{R_2}$$

Voltage, mV ±0.005mV	R ₂ , Ohm ±0.005 Ohm	σ , $1/0hm \times m$	$\epsilon(\sigma)$, %	Temperature,°C	Temp.Error,°C	$\ln \sigma$	ln <i>σ error</i>	1/T , $1/K$	$\epsilon(1/T)$, %
0.11	400	0.00213	2.1	27	0.5	-6.15	0.02	0.003333	0.17
0.31	370	0.00230	2.1	32	0.5	-6.07	0.02	0.003279	0.17
0.54	326	0.00261	2.1	37	0.5	-5.95	0.02	0.003226	0.17
0.84	256	0.00333	2.1	45	0.5	-5.71	0.02	0.003145	0.16
1.24	189	0.00451	2.1	55	0.5	-5.40	0.02	0.003049	0.16
1.56	145	0.00587	2.1	63	0.5	-5.14	0.02	0.002976	0.15
1.84	115	0.00741	2.1	69	0.5	-4.91	0.02	0.002924	0.15
2.15	90	0.00946	2.1	77	0.5	-4.66	0.02	0.002857	0.15
2.51	68	0.01253	2.1	85	0.5	-4.38	0.02	0.002793	0.14
2.89	51	0.01670	2.1	94	0.5	-4.09	0.02	0.002725	0.14
3.13	43	0.01981	2.1	99	0.5	-3.92	0.02	0.002688	0.14
3.26	39	0.02184	2.1	102	0.5	-3.82	0.02	0.002667	0.14
3.42	35	0.02433	2.1	105	0.5	-3.72	0.02	0.002646	0.14
3.45	34	0.02505	2.1	106	0.5	-3.69	0.02	0.002639	0.14
3.55	32	0.02662	2.1	108	0.5	-3.63	0.02	0.002625	0.14

$$\Delta(T) = \sqrt{0.5^2 + \left(\Delta(V) \times \frac{\partial T}{\partial V}\right)^2} \approx 0.5 \,^{\circ}C$$

$$\epsilon(\sigma) = \sqrt{\epsilon(l)^2 + \epsilon(S)^2 + \epsilon(R_1)^2 + \epsilon(R_2)^2 + \epsilon(R_3)^2} \approx 2.1\%$$

$$\Delta(\ln \sigma) = \epsilon(\sigma)$$

$$\Delta = -2k_{\rm B} \times p_1 = 2 \times 8.617 \times 10^{-5} \times 4294 = 0.74 eV \pm 0.02 eV$$