Lecture 5: Dynamic Programming on Trees

Yury Makarychev

TTIC and the University of Chicago

Dynamic Programming on Trees

DP Tables

1 dimensional: Puzzle, Job Scheduling, Typesetting, ...

<i>T</i> [1]	T[2]					T[n]
	-	-	_	-	_	

2 dimensional: Knapsack, ...

T[0,W]					T[n, W]
T[0,0]					T[n,0]

k dimensional

1 dimensional: Puzzle, Job Scheduling, Typesetting, ...

T[1]	T[2]							T[n]
------	------	--	--	--	--	--	--	------

2 dimensional: Knapsack, ...

T[0,W]					T[n, W]
T[0,0]					T[n,0]

k dimensional

 \succ We are given a graph G=(V,E) with vertex weights w_u

A subset $I \subseteq V$ is an independent set if for every edge $(u, v) \in E$, at most one of the vertices u and v is I.

There are no edges between points in the independent set.

 \succ We are given a graph G=(V,E) with vertex weights w_u

A subset $I \subseteq V$ is an independent set if for every edge $(u, v) \in E$, at most one of the vertices u and v is I.

This is not an independent set!

Given a graph G=(V,E) find an independent set I of maximum weight

$$w(I) = \sum_{u \in I} w_u$$

Independent set is a very important combinatorial problem.

E.g. has applications in compiler design

It is NP-hard. It's even very hard to get any reasonable approximate solution in the worst case.

We can solve it on trees!

 \succ We are given a tree T=(V,E) with vertex weights w_u

A subset $I \subseteq V$ is an independent set if for every edge $(u, v) \in E$, at most one of the vertices u and v is I.

There are no edges between points in the independent set.

Choose a root r (arbitrarily)

Choose a root r (arbitrarily)

For every vertex u, let T_u be the subtree rooted at u.

Choose a root r (arbitrarily)

For every vertex u, let T_u be the subtree rooted at u.

Define subproblems:

• let A[u] be the weight of a maximum weight independent set in T_u

• . . .

Choose a root r (arbitrarily)

For every vertex u, let T_u be the subtree rooted at u.

Define subproblems:

- let A[u] be the weight of a maximum weight independent set in T_u
- B[u] be the weight of a maximum weight independent set I in T_u s.t. $u \notin I$

DP: Quiz!

 $A[u] \le B[u]$ or $A[u] \ge B[u]$ or it depends ...

A[u] is the weight of a maximum weight independent set in T_u

B[u] is the weight of a maximum weight independent set I in T_u s.t. $u \notin I$

• Compute A[u] and B[u] for all leaves u

- Compute A[u] and B[u] for all leaves u
- Compute A[u] and B[u] for parents of the leaves.

- Compute A[u] and B[u] for all leaves u
- Compute A[u] and B[u] for parents of the leaves.
- ... their parents

- Compute A[u] and B[u] for all leaves u
- Compute A[u] and B[u] for parents of the leaves.
- ... their parents
- until we reach the root

output A[r]

The specific order in which we fill out the DP entries is not important, as long as we

compute the entries for u after we computed the entries for all children of u.

Options

- Based on the depth of T_u (as we saw)
- Use depth-first traversal. Compute vertices in the post-order (see the figure).
- Based on the distance to the root (i.e. depth)

Recursion with Memoization

```
function FillOutDP (vertex u)
       if A[u] and B[u] are assigned, return A[u], B[u]
       if u is a leaf,
              use initialization formulas to compute A[u], B[u]
       if u is not a leaf,
              recursively call FillOutDP(v) for all children v of u
              compute A[u] and B[u] using recurrence formulas
       return
Algorithm: FillOutDP(r)
```

DP: Initialization

Consider a leaf u.

$$A[u] = ?$$

$$B[u] = ?$$

Any suggestions?

DP: Initialization

Consider a leaf u.

$$A[u] = w_u$$
$$B[u] = 0$$

Consider non-leaf vertex u. Assume that all vertices in T_u other than u have been already processed.

Let I be an optimal solution for T_u .

There are two options:

- $u \notin I$. Each child of u may be in I or not in I
- $u \in I$. Then children of u are not in I.

• $u \notin I$. Each child of u may be in I or not in I

 \mathbb{Q} : What is the best way to construct I?

- $u \notin I$. Each child of u may be in I or not in I
- \mathbb{Q} : What is the best way to construct I?

A: Simply choose a maximum independent I_v in tree T_v for each child v of u.

$$I = \bigcup_{v \text{ is a child of } u} I_v$$

I is an independent set since

- there are no edges between subtrees T_{v} and T_{w} for distinct children v and w
- No problems with edges incident on u, since $u \notin I$

• $u \notin I$. Each child of u may be in I or not in I

 \mathbb{Q} : What is the best way to construct I?

A: Simply choose a maximum independent I_v in tree T_v for each child v of u.

$$I = \bigcup_{v \in C} I_v$$

$$B[u] = w(I) = \sum_{v \in C} A[v]$$

where C is the set of children of u

• $u \in I$. Children of u are not in I.

Q: What is the best way to construct I? Can we proceed the same way as before? A: No! If we do, both endpoints of an edge (u, v) may get into I.

• $u \in I$. Children of u are not in I.

 \mathbb{Q} : What is the best way to construct I?

Can we proceed the same way as before?

A: Find maximum independent set I_v in each tree I_v for $v \in C$ s.t. $v \notin I_v$. Let

$$I = \bigcup I_v$$

$$w(I) = \mathbf{w_u} + \sum B[v]$$

• $u \in I$. Children of u are not in I.

 \mathbb{Q} : What is the best way to construct I?

Can we proceed the same way as before?

A: Find maximum independent set I_v in each tree I_v for $v \in C$ s.t. $v \notin I_v$. Let

$$I = \bigcup I_v$$

$$w(I) = \mathbf{w_u} + \sum B[v]$$

We are done!

There is only one option for B[u] $(u \notin I)$

$$B[u] = \sum_{v \in C} A[v]$$

There are two options for A[u] $(u \notin I \text{ or } u \in I)$

$$A[u] = \max\left(\sum_{v \in C} A[v], w_u + \sum_{v \in C} B[v]\right)$$

Independent Set on Trees

Questions?

Running time?

Minimum Bisection Problem

We are given a graph G=(V,E) with non-negative edge costs/weights w_e

$$n = |V|$$
 is even and $m = |E|$

Partition V into two sets L and R of size n/2 each so as to minimize

the size / cost of the cut (L, R)

$$cost(L,R) = \sum_{\substack{(u,v) \in E \\ u \in L, v \in R}} w_{uv}$$

Minimum Bisection Problem

Minimum Bisection is an example of a large class of graph partitioning problem. They have numerous applications in practice.

The problem is NP-hard...

We can solve it on trees using DP (this class).

This DP yields an approximation algorithm for arbitrary graphs (TTIC 31100 and CMSC 39010-1).

Minimum Tree Bisection Problem

We are given a tree T=(V,E) with non-negative edge costs/weights w_e

Partition V into two sets L and R of size n/2 each so as to minimize the size / cost of the cut (L,R)

$$cost(L,R) = \sum_{\substack{(u,v) \in E \\ u \in L, v \in R}} w_{uv}$$

DP: Subproblems

Again: choose a root r and define subtrees T_u

Subproblem (u, Δ)

Partition T_u into L and R s.t.

- $u \in L$
- $|L| |R| = \Delta$
- the goal is to minimize the cost of cut edges in T_{ν}

 $M_L[u, \Delta]$ is the minimum cost for (u, Δ)

DP: Subproblems

What if we require that $u \in \mathbb{R}$, rather than $u \in \mathbb{L}$?

Another Subproblem (u, Δ)

Partition T_u into L and R s.t.

- $u \in R$
- $|L| |R| = \Delta$
- ullet the goal is to minimize the cost of cut edges in T_u

 $M_R[u, \Delta]$ is the minimum cost for (u, Δ)

DP: Subproblems

solution for subproblem (u, Δ)

 \bigcup

swap L and R

 $\downarrow \downarrow$

Another Subproblem $(u, -\Delta)$

$$M_{L}[u,\Delta] = M_{R}[u,-\Delta]$$

It's sufficient to compute and store only $M_L[u, \Delta]$.

DP: Initialization

$$M_L[u, \Delta] = ?$$

We don't have any choice:

- $L = \{u\}$
- $R = \emptyset$
- $\bullet |L| |R| = 1$

$$M_L[u, 1] = 0$$

 $M_L[u, \Delta] = +\infty \text{ for } \Delta \neq 1$

Assume that T is a binary tree

Warm Up: u has a single child v. Two options:

$$v \in L$$
 and $v \in R$

If $v \in L$:

• edge (u, v) is not cut

•
$$\Delta' = |L \cap T_v| - |R \cap T_v| = |L| - 1 - |R|$$

= $\Delta - 1$

• optimal solution has cost $M_L[v, \Delta-1]$

If $v \in R$:

- edge (u, v) is cut
- $\Delta' = |L \cap T_v| |R \cap T_v| = |L| 1 |R|$ = $\Delta - 1$
- optimal solution has cost

$$W_{(u,v)} + M_R[v, \Delta - 1]$$

If u has a single child v then

$$M_{L}[u, \Delta] = \min(M_{L}[v, \Delta - 1], w_{uv} + M_{R}[v, \Delta - 1])$$

$$\equiv \min(M_{L}[v, \Delta - 1], w_{uv} + M_{L}[v, 1 - \Delta])$$

Assume that u has two children v and w.

There are 4 cases:

	<i>w</i> ∈ <i>L</i>	w∈R
$v \in L$	1	II
$v \in R$	III	IV

Assume that u has two children $v \in L$ and $w \in R$.

Assume that

$$\Delta_v = |\underline{L} \cap T_v| - |R \cap T_v|$$

$$\Delta_w = |\underline{L} \cap T_w| - |R \cap T_w|$$

Subject to these assumptions:

The best partition for T_v has cost $M_L[v, \Delta_v]$ The best partition for T_w has cost $M_R[w, \Delta_w]$ Edge (u, v) is not cut, but (u, w) is cut.

$$M_{L}[v, \Delta_{v}] + M_{R}[w, \Delta_{w}] + w_{uw}$$

Analyze all 4 cases in the same way:

```
min(  M_{L}[v, \Delta_{v}] + M_{L}[w, \Delta_{w}],   M_{L}[v, \Delta_{v}] + M_{R}[w, \Delta_{w}] + w_{uw},   M_{R}[v, \Delta_{v}] + M_{L}[w, \Delta_{w}] + w_{uv},   M_{R}[v, \Delta_{v}] + M_{R}[w, \Delta_{w}] + w_{uv} + w_{uw}  )
```


...but we don't know Δ_v and Δ_w

$$\Delta_{v} = |\underline{L} \cap T_{v}| - |R \cap T_{v}|$$

$$\Delta_{w} = |\underline{L} \cap T_{w}| - |R \cap T_{w}|$$

To compute $M_L[u, \Delta]$, we need to compute the minimum of the formula we got over all possible Δ_v and Δ_w .

$$|L| = |L \cap T_v| + |L \cap T_w| + 1$$

$$|R| = |R \cap T_v| + |R \cap T_w|$$

$$\Delta = \Delta_v + \Delta_w + 1$$

Compute the minimum over Δ_v and $\Delta_w \equiv \Delta - \Delta_v - 1$ of

```
min(
M_{L}[v, \Delta_{v}] + M_{L}[w, \Delta_{w}],
M_{L}[v, \Delta_{v}] + M_{R}[w, \Delta_{w}] + w_{uw},
M_{R}[v, \Delta_{v}] + M_{L}[w, \Delta_{w}] + w_{uv},
M_{R}[v, \Delta_{v}] + M_{R}[w, \Delta_{w}] + w_{uv} + w_{uw}
```


Running time

We obtain an algorithm for binary trees.

Find running time.

- Table $M_L[u, \Delta]$ has $O(n \times n)$ entries, since $\Delta \in \{-n, ..., n\}$
- To compute $M_L[u, \Delta]$ we go over all values of Δ_v . Perform O(n) iterations.

Total running time: $O(n^3)$

Total memory: $O(n^2)$

Algorithm for Binary Trees

Questions?

Arbitrary Trees

Assume that u has k children: v_1, \ldots, v_k .

Consider all possible cases.

$$v_1 \in L, \dots, v_k \in L$$

$$\vdots$$

$$v_1 \in L, \dots, v_k \in R$$

$$\vdots$$

$$v_1 \in R, \dots, v_k \in R$$

Wait! Are we in trouble? We have 2^k cases instead of 4.

Transform our tree to a binary tree with Steiner vertices as follows:

Process each vertex of degree k > 2. Add k - 2 Steiner vertices: s_1, \dots, s_{k-2}

Transform our tree to a binary tree with Steiner vertices as follows:

Keep the original edges.

Transform our tree to a binary tree with Steiner vertices as follows:

Assign ∞ weight to edges (u, s_1) and between Steiner vertices.

Transform our tree to a binary tree with Steiner vertices as follows:

 s_1, \dots, s_{k-2} must be in the same set L or R as u: otherwise, the cost is infinite

Transform T to a binary tree T' with Steiner vertices as follows:

There is a one-to-one correspondence between partitions of T and T'

Transform T to a binary tree T' with Steiner vertices as follows:

The costs of cut edges are the same.

Transform T to a binary tree T' with Steiner vertices as follows:

Don't count Steiner vertices when we compute |L| - |R|.

We reduced the problem in arbitrary trees to a problem in Steiner trees where the balanceness requirement is:

$$|L \setminus S| - |R \setminus S| = \Delta$$

where S is the set of Steiner vertices.

DP: New Recurrence

Compute the minimum over Δ_{v} and

$$\Delta_w = \begin{cases} \Delta - \Delta_v - 1 & \text{if } u \notin S \\ \Delta - \Delta_v & \text{if } u \in S \end{cases}$$

of min(

$$M_{L}[v, \Delta_{v}] + M_{L}[w, \Delta_{w}],$$
 $M_{L}[v, \Delta_{v}] + M_{R}[w, \Delta_{w}] + w_{uw},$
 $M_{R}[v, \Delta_{v}] + M_{L}[w, \Delta_{w}] + w_{uv},$
 $M_{R}[v, \Delta_{v}] + M_{R}[w, \Delta_{w}] + w_{uv} + w_{uw}$

