Problem 0

All the required data are downloaded from CSMAR.

Derive P/B Ratio

- 1. Unnecessary columns like "ShorName_EN" and "Typrep" are deleted using drop() function, with parent statement omitted first.
- Transform the trade date and record date to month period using to_period() function.
 Then adjust the record month period to its next month, starting from which the NAPS data can be used.
- 3. Merge two dataframes by aligning stock code and month. Forward fulfill missing NAPS data. Calculate P/B using closing price and NAPS.
- 4. Extreme P/B data that is less than 5th percentile or greater than 95th percentile are removed as required.

Problem 1

P/B ratio at Dec.2010, ROE-TTM at 2010Q4 and Stock Volatility at 2010/12/31 are extracted and merged into one dataframe. Then we use OLS regression, results shown as below:

OLS Regression Results							
Dep. Variable:		pb_ratio		R-squared:			0.133
Model:		OLS		Adj. R-squared:			0.131
Method:		Least Squares		F-st	F-statistic:		104.9
Date:		Fri, 14 Mar 2025		Prob	Prob (F-statistic):		4.14e-43
Time:		20:12:10		Log-Likelihood:			-2808.0
No. Observations:			1374	AIC:			5622.
Df Residuals:			1371	BIC:			5638.
Df Model:			2				
Covariance Type:		nonro	bust				
					P> t	-	-
					0.461		
roe	0.7093	0.327		2.167	0.030	0.067	1.351
volatility	8.6747	0.611	1	4.204	0.000	7.477	9.873
Omnibus:		107.494		Durb	Durbin-Watson:		1.800
Prob(Omnibus):		0.000		Jarq	Jarque-Bera (JB):		149.290
Skew:		0.637			Prob(JB):		3.82e-33
Kurtosis:		3	3.992	Cond	. No.		14.6
=========				=====			

Figure 1: OLS Regression Result

In this regression, P/B is dependent variable, ROE and Stock Volatility are independent variables. The regression is implemented at a single time point. The subscript i indicates different listed companies. And we get the regression result:

$$P/B_i = 0.2057 + 0.7093 \, \text{ROE}_i + 8.6747 \, \text{Stock Volatility}_i + \epsilon_i$$

Interpretation of Regression Table

- 1. **F-statistics**. The F-statistic tests the overall significance of the model. Its low p-value (4.14e-43) indicates that the model is statistically significant, i.e, at least one of the predictors has a great correlation with P/B.
- 2. Intercept and Coefficients. The intercept is 0.2057 with p-value = 0.461 > 0.05. This means that when ROE and Stock Volatility are zero, the P/B is not significantly different from zero; The coefficient for ROE is 0.7093 with p-value = 0.03 < 0.05, indicating that ROE is statistically significant at 5% level. This suggests that ROE has a meaningful impact on the P/B ratio; The coefficient for Stock Volatility is 8.6747 with p-value = 0.0 < 0.05. Therefore Stock Volatility has a strong impact on P/B ratio.
- 3. **R-squared**. R-squared = 0.133. This implies that 13.3% of the fluctuation in P/B can be explain by the model. While the model has some explanatory power, a significant portion of the variance remains unexplained.
- 4. **Diagnostics Tests**. Omnibus test and Jarque-Bera test check the normality of the residuals. Since both of them have low p-value, we opine that the residuals are not normally distributed. And positive skewness further confirms that the residuals are skewed to the right.

Further Discussion

- 1. **ROE**. Companies with higher ROE tend to have higher P/B ratios. This aligns with the intuition that more profitable companies, i.e, companies with higher ROE, are valued highly by investors.
- 2. Stock Volatility. Generally, higher volatility is associated with higher risk, leading to lower valuations. Yet in this case, higher volatility is associated with higher P/B ratios. This might indicate that investors are willing to pay a premium for stocks with higher volatility. It could be due to expectations of higher returns.

3. Model. The low R-squared suggests that while ROE and Stock Volatility are significant predictors, there are other great factors ignored by the model. The non-normal distribution of residuals indicates there might be ommitted variable bias, non-linear relationships, etc.

Problem 2

Companies are divided into ten groups based on their P/B ratio from the previous month, monthly updated. Thus we formulate ten up-to-date portfolios. Calculate the average return of each portfolio in every month. Then calculate the cross-time average return of each portfolio. The graph illustration is shown as below:

Figure 2: Average Monthly Return by Portfolio

Discussion of Findings

- 1. General Trend. According to the chart, portfolios with lower P/B tend to outperform those with higher P/B over the period from Jan 2010 to Dec 2024. Specifically, Portfolio 1 has the highest average return of 0.017900, while Portfolio 10 has the lowest average return of -0.014539. The result can be interpreted by that undervalued stocks, i.e, those have low P/B provide higher returns compared to overvalued stocks, i.e, those have high P/B.
- Negative Return of Portfolio 10. This further confirm that stocks with very high P/B could underperform significantly. This is because overvaluation drags down the return.
 Market corrections affect growth stocks more severely.