Gabarito Prova Análise Real - verão 2025

Prof. Lucas Nacif lucas.nacif@ime.usp.br

- 1. Verdadeiro ou Falso? Prove ou dê um contraexemplo quando necessário.
 - (a) O conjunto $\mathcal{F}(\mathbb{N}, \mathbb{N})$ das funções de \mathbb{N} em \mathbb{N} é enumerável; Solução: FALSO. Dado qualquer subconjunto enumerável $X = \{f_1, f_2, ..., f_n, ...\} \subset \mathcal{F}(\mathbb{N}, \mathbb{N})$ podemos construir uma função $g \in \mathcal{F}(\mathbb{N}, \mathbb{N}) \setminus X$ pondo $g(n) = f_n(n) + 1, \ \forall n \in \mathbb{N}.$
 - (b) A sequência (a_n) tal que $a_n=\frac{n}{n+1}$ diverge; Solução: FALSO. Basta ver que $a_n=\frac{1}{1+1/n}$ e como $\lim(1+1/n)=1$ segue das propriedades aritméticas do limite que $\lim a_n=1$.
 - (c) A função $f:(a,b)\to\mathbb{R}$ dada por

$$f(x) = \frac{1}{a-x} + \frac{1}{b-x}$$

é contínua;

Solução: VERDADEIRO. No domínio de f as funções $\frac{1}{a-x}$ e $\frac{1}{b-x}$ são ambas contínuas. Como f é soma de funções contínuas é também contínua.

(d) A sequência (x_k) definida recursivamente por

$$x_1 = n, \quad x_{k+1} = n + \frac{1}{x_k}$$

converge, qualquer que seja $n \in \mathbb{N}$;

Solução: VERDADEIRO. Vamos usar aproximações sucessivas: Uma sequência (x_k) que satisfaz

$$|x_{k+2} - x_{k+1}| \le \lambda |x_{k+1} - x_k|$$

para todo $k \in \mathbb{N}$ e algum $0 < \lambda < 1$ é uma sequência de Cauchy e portanto convergente. Primeiramente, note que (x_k) é uma seqûencia de números positivos.

i

Então

$$|x_{k+1}x_k| = \left| \left(n + \frac{1}{x_k} \right) x_k \right| = |nx_k + 1| > 1/2, \ \forall k \in \mathbb{N}.$$

Assim,

$$|x_{k+2} - x_{k+1}| = \left| \left(n + \frac{1}{x_{k+1}} \right) - \left(n + \frac{1}{x_k} \right) \right| = \left| \frac{x_k - x_{k+1}}{x_{k+1} x_k} \right| < \frac{1}{2} |x_{k+1} - x_k|, \ \forall k \in \mathbb{N}.$$

Observação: A sequência não é monótona.

(e) A função $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = \begin{cases} 1/q, & \text{se } x = p/q,, \, \text{mdc}(p,q) = 1, \, q > 0, \\ 0, & \text{se } x \notin \mathbb{Q} \end{cases}$$

é contínua em Q;

Solução: FALSO, considere a sequência (a_n) de números irracionais definida por $a_n = \frac{1}{q} + \frac{\sqrt{2}}{n}$. Note que $\lim a_n = 1/q$ enquanto $\lim f(a_n) = \lim 0 = 0 \neq f(1/q) = 1/q$. Segue do "teorema da continuidade sequencial" que f é descontínua em 1/q e portanto não pode ser contínua em \mathbb{Q} .

- (f) (ANULADA) Se a série $\sum a_n$, converge então $\sum 2^{-n}a_n$ converge;
- (g) Seja $f: \mathbb{R} \to \mathbb{R}$ tal que

$$\forall X \subset \mathbb{R}, \overline{X} = X \implies \overline{f^{-1}(X)} = f^{-1}(X),$$

Então f é contínua;

Solução: VERDADEIRO. Seja $Y\subset \mathbb{R}$ e $X=\mathbb{R}-Y$. Vejamos que $f^{-1}(Y)=\mathbb{R}-f^{-1}(X)$. De fato,

$$y \in f^{-1}(Y) \iff f(y) \in Y$$

$$\iff f(y) \in \mathbb{R} - X$$

$$\iff f(y) \notin X$$

$$\iff y \in \mathbb{R} - f^{-1}(X).$$

Seja Y um conjunto aberto. Então $X = \mathbb{R} - Y$ é fechado e por hipótese, $f^{-1}(X)$ é fechado. Segue que $f^{-1}(Y) = \mathbb{R} - f^{-1}(X)$ é aberto. Como Y é arbitrário, segue que f é contínua.

(h) Todo polinômio de grau ímpar possui pelo menos uma raíz real.

Solução: VERDADEIRO. Sabemos que toda função polinomial é contínua. Considere $f(x) = a_n x^n + p(x)$ com n ímpar e p(x) um polinômio de grau no máximo

n-1. Então, $\lim_{x\to\pm\infty} p(x)/x^n=0$, o que implica que o sinal de f é determindado por $h(x)=a_nx^n$. Mais ainda, h(1)=-h(-1), logo, h alterna de sinal em [-1,1]. Segue do TVI que existe $c\in(-1,1)$ tal que f(c)=0.

2. Mostre que existe apenas uma solução real para a equação $x^2 = e^x$.

Solução: Seja $f(x) = x^2 - e^x$. Como e^x e x^2 são funções de classe C^{∞} , f também o é. Ainda, f(1) = 1 - e < 0 e f(-1) = 1 - 1/e > 0 e segue do TVI que existe $c \in (-1,1)$ tal que f(c) = 0. Suponha que exista um $d \neq c$ tal que f(d) = 0. Pelo teorema de Rolle deve existir α entre c e d tal que $f'(\alpha) = 0$. Note que $f''(x) = 2 - e^x$ e então $f''(x) = 0 \iff x = \ln 2$, isto é, f' possui apenas um ponto crítico em $x = \ln 2$. Mais ainda, $f'''(\ln 2) = -2$ e pelo teste da segunda derivada, $\ln 2$ é ponto de máximo (global) de f'. Mas $f'(\ln 2) = 2 \ln 2 - 2 < 2 \ln e - 2 = 0$ e então f' < 0, uma contradição. Portanto, existe único c tal que f(c) = 0.

3. Seja $f:[0,1]\to\mathbb{R}$ integrável. Mostre que

$$\lim_{n \to \infty} \int_0^1 f(x) x^n dx = 0.$$

Dica: Para cada $\epsilon > 0$ escolha um $\gamma > 0$ adequado e use o fato que para n suficientemente grande $(1 - \gamma)^n < \gamma$. (Por que isto vale?). Separe a integral.

Solução: Por hipótese, f é integrável em [0,1] e portanto limitada. Além disso, fx^n é integrável pois é produto de funções integráveis. Para cada $\varepsilon > 0$, podemos tomar um limitante M para f grande o suficiente de modo que $\varepsilon/M < 1$. Tome $\gamma_{\varepsilon} = \varepsilon/2M$. Segue das propriedades de integrabilidade que

$$\int_0^1 f(x)x^n = \int_0^{1-\gamma_{\varepsilon}} f(x)x^n + \int_{1-\gamma_{\varepsilon}}^1 f(x)x^n$$

Note que a sequência de funções (x^n) converge (uniformemente) para 0 em $[0, 1 - \gamma_{\varepsilon}]$ de modo que existe N grande o suficiente tal que $n \ge N \implies |x^n| < \gamma_{\varepsilon}$. Logo,

$$\left| \int_0^{1-\gamma_{\varepsilon}} f(x) x^n \right| \le \int_0^{1-\gamma_{\varepsilon}} |f(x) x^n| \le M \gamma_{\varepsilon} (1-\gamma_{\varepsilon}) = \varepsilon/2 - \varepsilon^2/2M < \varepsilon/2$$

Por outro lado, $|x^n| \le 1$ em $[1 - \gamma_{\varepsilon}, 1]$, logo,

$$\left| \int_{1-\gamma_{\varepsilon}}^{1} f(x)x^{n} \right| \leq \int_{1-\gamma_{\varepsilon}}^{1} |f(x)x^{n}| \leq M(1-(1-\gamma_{\varepsilon})) = M\gamma_{\varepsilon} = \varepsilon/2.$$

Segue que

$$\left| \int_0^1 f(x) x^n \right| < \varepsilon.$$

Logo, $\lim_{n\to\infty} \int_0^1 f(x)x^n = 0$.

4. Seja $f:[a,b]\to\mathbb{R}$ limitada. Defina

$$\omega(f;x) = \inf_{\delta > 0} \{ \omega(f; V_{\delta}(x) \cap [a,b]) \}.$$

(a) Mostre que f é contínua em $c \in [a, b]$ se e somente se $\omega(f; c) = 0$; Solução: Vamos usar a definição equivalente de ocilação:

$$\omega(f, X) = \sup\{|f(x) - f(y)|, x, y \in X\}.$$

Suponha que f é contínua em um ponto $c \in [a, b]$. Então para cada $\varepsilon > 0$ existe $\delta > 0$ tal que $x \in V_{\delta}(c) \implies f(x) \in V_{\varepsilon/2}(f(c))$. Em particular, $\omega(f; V_{\delta}(c) \cap [a, b]) \le \varepsilon/2 < \varepsilon$ e então

$$\omega(f;c) \le \omega(f;V_{\delta}(c) \cap [a,b]) < \varepsilon$$

Concluímos que $\omega(f;c)=0$. Por outro lado, se $\omega(f;c)=0$ então para qualquer $\varepsilon>0$ deve existir $\delta>0$ tal que $\omega(f;V_{\delta}(c)\cap[a,b])\leq \varepsilon/2<\varepsilon$, de modo que

$$x \in V_{\delta}(c) \cap [a, b] \implies |f(x) - f(c)| \le \omega(f; V_{\delta}(c) \cap [a, b]) < \varepsilon.$$

Log, f é contínua em c.

(b) Seja $f:[a,b]\to\mathbb{R}$ integrável. Mostre que existe partição P de [a,b] tal que $\omega_i(f;P)<1$. Dica: $\varepsilon=b-a$;

Solução: Vamos utilizar o seguinte resultado:

$$f$$
 integrável em $[a,b] \iff \forall \varepsilon > 0 \ \exists P \in \Omega_{[a,b]}; \ \sum \omega_i(f;P)(t_i-t_{i-1}) < \varepsilon.$

Por hipótese f é integrável em [a,b] então deve existir partição $P = \{t_0,...,t_n\}$ de [a,b] tal que $\omega_i(f;P)(t_i-t_{i-1}) < b-a$. Se $\omega_i(f;P) \ge 1$ para todo i=1,...,n, o somatório ultrapassaria b-a, uma contradição. Então deve existir pelo menos um $i \in \{0,...,n\}$ tal que $\omega_i(f;P) < 1$.

(c) Seja $f:[a,b] \to \mathbb{R}$ integrável. Use os itens anteriores para mostrar que existe pelo menos um ponto $c \in (a,b)$ onde f é contínua. Dica: Use a partição do item anterior e encontre intervalos encaixados tais que $\omega(f;I_k)<\frac{1}{k}$. Solução: Considere a partição P do item anterior e defina $I_1=[t_{i-1},t_i]$ onde I é o índice tal que $\omega_i(f;P)=\omega(f;I_1)<1$. Como a função é integrável em [a,b], é também integrável em I_1 . Pelo mesmo argumento do item anterior, deve existir

partição $P_1 = \{r_0, ..., r_k\}$ de I_1 tal que

$$\sum \omega_j(f; P_1)(r_j - r_{j-1}) < (t_i - t_{i-1})/2$$

e um índice $j \in \{0, ..., k\}$ tal que $\omega_j(f; P_1) < 1/2$. Definimos $I_2 = [r_{j-1}, r_j]$. Recursivamente, obtemos intervalos encaixados

$$I_1 \supset I_2 \supset \cdots \supset I_n \supset \cdots$$
,

tais que $\omega(f; I_n) < 1/n$, $\forall n \in \mathbb{N}$. Pelo Teorema dos Intervalos Encaixados, deve existir pelo menos um ponto $c \in \bigcap_{n=1}^{\infty} I_n$.

$$\omega(f;c) = \inf_{\delta > 0} \{ \omega(f; V_{\delta}(x) \cap [a,b]) \} \le \omega(f; I_n) < 1/n, \ \forall n \in \mathbb{N}.$$

Segue do Princípio Arquimediano que para todo $\varepsilon > 0$ deve existir $n \in \mathbb{N}$ tal que $\omega(f;c) < 1/n < \varepsilon$ e portanto $\omega(f;c) = 0$. Segue do item (a) que f é contínua em c.