EXPERIMENT

Objective:

To determine the hardness of given water sample by complexometric titration using EDTA as an intermediate and EBT as an indicator.

Apparatus and Chemical required:

Burette, Pipette, Conical flask, EDTA, water sample, EBT, Buffer solution (pH= 10).

Theory:

Water generally contains Ca²⁺ and Mg²⁺ salts which are responsible for the hardness of water. When we add EBT to the water sample, Ca²⁺ and Mg²⁺ salts react with EBT at pH 10 to form an unstable complex which is wine red in color.

$$Ca^{2+} + EBT \longrightarrow [Ca^{2+} - EBT]$$

$$Mg^{2+} + EBT \longrightarrow [Mg^{2+} - EBT]$$

Unstable wine- red complexes

Now, when we add EDTA solution to this, the unstable complex converted into stable complex and EBT is liberated which is sky- blue in color.

$$[Ca^{2+} - EBT] + EDTA \longrightarrow [Ca^{2+} - EDTA] + EBT$$

Stable Complex Sky blue color

- EDTA (Ethylene diamine tetra acetic acid)
- EBT (Erichrome Black-T)

Procedure:

Pipette out 10 ml of known water sample in a conical flask and 2 ml of buffer solution (pH 10) + 1 drop of EBT \rightarrow wine red color appears \rightarrow Titrate with EDTA solution until the color changes to sky-blue color. Perform the above procedure for 5times.

Repeat the same procedure 5 times again by taking unknown water sample (tab water)

Observation:

S.No.	Volume of known	Volume of EDTA	Volume of unknown	Volume of EDTA
	water sample (ml)	solution used (V ₁) ml	water sample (ml)	solution used (V ₂) ml
1.	10		10	
2.	10		10	
3.	10		10	
4.	10		10	
5.	10		10	

Calculation:

Hardness of known water sample is given = 800ppm

So, hardness of unknown water sample is = $800 \times V_2/V_1 \times 1000$ ppm

Precautions:

- (1) Burette should be vertical throughout the experiment.
- (2) The reaction mixture should continuously be shaken during titration.
- (3) Glass ware should be washed and dried before doing the experiment.

EXPERIMENT

Objective:

To determine the iron content of a given ferrous ammonium sulphate solution by titrating it against $N/50~K_2Cr_2O_7$ solution using N- phenylanthranilic acid as an internal indicator.

Apparatus and Chemical required:

Solution of ferrous ammonium sulphate (FAS) or Mohr's salt, K₂Cr₂O₇ solution, N-phenylanthranilic acid, distilled water, burette, Pipette, conical flask, diluted sulphuric acid.

Theory:

K₂Cr₂O₇ acts a strong oxidizing agent in presence of dil. H₂SO₄.

$$6Fe^{2+} + 14H^{+} + Cr_{2}O_{7}^{2-} \longrightarrow 6Fe^{3-} + 2Cr^{3-} + 7 H_{2}O$$

Procedure:

Pipette out 10 ml FAS + 2ml of dil. $H_2SO_4 + 1$ drop of N- phenylanthranilic acid \rightarrow Bluish green color \rightarrow titrate it against $K_2Cr_2O_7$ from burette until the purple color just appears \rightarrow this will be end point \rightarrow repeat the same for 5 times.

Observation:

S.No.	Volume of K ₂ Cr ₂ O ₇ used V(ml)
1.	
2.	
3.	
4.	
5.	

Calculation:

Volume of FAS taken = 10 ml.

Normality of potassium dichromate taken = 1/50 N

Volume of potassium dichromate used = V ml.

 $N_{FAS}\times 10 = N/50\times V$

Strength of FAS (S) = $N_{FAS} \times 392.16$ gm/lit.

Iron content = $S \times 56/392.16$ gm.

Result:

The strength of FAS is = gm/lit.

The iron content is = gm.

Precautions:

- (1) Burette should be vertical throughout the experiment.
- (2) The reaction mixture should continuously be shaken during titration.
- (3) Glass ware should be washed and dried before doing the experiment.