

MICROCOPY RESOLUTION TEST CHART

AD-A171 541

DOT/FAA/PM-84/16,I

Program Engineering and Maintenance Service Washington, D.C. 20591

Resilient Modulus of Freeze-Thaw Affected Granular Solls for Pavement Design and Evaluation

Part 1. Laboratory Tests on Soils from Winchendon, Massachusetts, Test Sections

- D. Cole
- D. Bentley
- G. Durell
- T. Johnson

U.S. Army Cold Regions Research and Engineering Laboratory Hanover, New Hampshire 03755-1290

July 1986

This document is available to the public through the National Technical information Service, Springfield, Virginia 22161

THE FILE COPY

Approved for public released
Distribution Unlimited

Technical Report Documentation Page

			1 4611	mice: Nepoli D	ocomeniation i a
1. Report No.	2. Government Ac	cession No.	3. Reci	pient's Catalog N	lo.
DOT/FAA/PM-84/16, I	ADA 171.	541			
4. Title and Subtitle RESILIENT MODULUS O	E EDEE7E-TUAN	AFFECTED	5 Repo	1986	
GRANULAR SOILS FOR				orming Organization	
ATION. Part 1: Laborat				orming Organizati	on Code
Massachusetts, Test Sect	•			orming Organizatio	on Report No
author s					
D. Cole, D. Bentley, G. D.	urell and T. Johnse	on	CRE	REL Report	86-4
P. Performing Organization Name and			10 wor	LUNIT NO TRAI	Si
U.S. Army Cold Regions !	Research and Engi	neering			
Laboratory			1	tract or Grant No	
Hanover, New Hampshire	03755-1290			/A 8-3-0187 • of Report and P	
2. Sponsoring Agency Name and Addr	•55		'` ' ' "	e or Report and P	eriod Covered
U.S. Department of Transp					
Federal Aviation Administ					
Program Engineering and I	Maintenance Servi	ce	14. Spor	nsaring Agency C	ode
Washington, DC 20591	ashington, DC 20591				
5. Supplementary Notes					
Co-sponsored by: Federa					
Office	of the Chief of En	igineers, U.S. Arm	y, Wash	ington, DC	
done on frozen and thawe throughout the seasons. I modulus to applied stress thawed soils) and density that allowed simulation in the field after thawing, at least two orders of macreasing confining stress, creased with increasing nof approximately two as a This recovery process is a sensitivity did not appear includes tabulations of allowed.	Linear regression y unfrozen water of Equipment and to the laboratory of The resilient modu gnitude upon thaw generally decreas noisture tension lethe materials recovell modeled as a to be a function of	yielded empirical content (for frozer est procedures (gif the gradual recoili were strongly dring. For all soils sed with increasing vels. The resilient vered from the effunction of soil moof the soil moisture.	equation soils), ven in de very of epender the moder the moder the moder the tects of oisture to tensione tensione soils to tensione soils to tensione soils to the tensione soils to the tensione soils to the soils	ns relating to moisture tendetail) were stiffness that it on soil standalli increase bal stress rationic increased to a freeze-thatension level	he resilient nsion (for developed at occurs in ate, dropping ad with in- tio, and in- by a factor naw cycle. l. The stress
Freezing-thawing Roa Laboratory tests Soil Repeated-load- Sub	rilient moduli ads tests grade soils	This docume the National Springfield,	nt is ava Technic	cal Informat	e public throug tion Service,
triaxial tests 19. Security Classif. (of this report)	20 Security C	lassif, (of this page)	1 2	1. No. of Pages	22. Price
er. Secontry Classif, for mis report	120. 30001119 C	-and-in the time hade:	-		
Unch seif" d	Un	classified	1	75	1

Form DOT (1700.7 (8-72)

Reproduction of completed page authorized

PREFACE

This report was prepared by David M. Cole, Research Civil Engineer, Applied Research Branch, Experimental Engineering Division; Diane L. Bentley, Research Civil Engineer, Civil Engineering Research Branch, Experimental Engineering Division; Glenn D. Durell, Mechanical Engineering Technician, Engineering and Measurement Services Branch, Technical Services Division, and Thaddeus C. Johnson, Civil Engineer and Chief of the Civil Engineering Research Branch, Experimental Engineering Division, U.S. Army Cold Regions Research and Engineering Laboratory.

This report covers certain aspects of a project partially funded by the Federal Highway Administration and the Federal Aviation Administration, and the Office of the Chief of Engineers through DA Project 4A762730AT42, Design, Construction and Operations Technology for Cold Regions; Task A2, Soils and Foundations Technology/Cold Regions; Work Unit 004, Seasonal Change in Strength and Stiffness of Soils and Base Courses.

The work was done at CRREL and a number of people contributed to the successful conclusion of this area of the project. The authors acknowledge in particular the assistance of E. Chamberlain who was closely involved in equipment development, D. Carbee, for his help in specimen preparation, D. Keller who assisted in field coring and sample preparation, L. Irwin for helpful discussions of the test results, J. Ingersoll who was responsible for generating the moisture characteristic curves and who assisted in the development of the tensiometer systems, and A. Tice who generated the unfrozen water content data for the test soils.

This report was technically reviewed by E.J. Chamberlain and J.A. Richter-Menge of CRREL.

The contents of this report are not to be used for advertising or promotional purposes. Citation of brand names does not constitute an official endorsement or approval of the use of such commercial products.

Accesion Fo	<u> </u>
NTIS CRANDTIC TAB U announce Justification	Su SU □
By Dut ibution	l .
Availat	onity Codes
	ii and for special
A-1	

CONTENTS

	Pag
Abstract	i
Preface	iii
Nomenclature	vi
Introduction	1
Background	2
Modeling the resilient modulus	2
Test sections and materials	3
Field specimen retrieval and preparation	5
Laboratory preparation of specimens	5
Soil	5
Asphalt concrete	6
Equipment and procedures for triaxial testing	7
Triaxial cells	7
Waveform of applied stress	9
Testing sequence	10
Data reduction and analysis	11
Results and discussion	13
General	13
Resilient modulus	13
Poisson's ratio.	15
Asphalt concrete	16
Natural subgrade	16
K ₁ values for thawed soils.	17
K ₂ values for all soils	18
Comparison of stress functions	19
Summary	20
Conclusions	21
Literature cited	21
Appendix A: Detailed testing procedures	23
Appendix B: Moisture retention curves for the six Winchendon test soils	35
Appendix C: Repeated load triaxial test results for all test soils	39
ILLUSTRATIONS	
Figure	
1. Gradation curves	4
2. Cross section of the Winchendon test site.	•
3. Mounting technique for 152-mm-diameter specimens	
4. Specimens fully mounted for testing	-
5. Detail of the multi-VIT mounting	8
6. Cross section of small triaxial cell base.	9
7. Moisture retention curve for Ikalanian sand	
	,
8. Waveforms of the Repeated Plate Bearing apparatus and Falling Weight	•
Deflectometer	10
9. Resilient modulus versus temperature for all test soils	1.
10. Resilient modulus versus temperature for the asphalt concrete	16

Figure 11. Resilient modulus versus stress function for the natural subgrade							
TABLES							
Table							
1. Physical properties of test soils	3						
2. Applied stress levels	10						
3. Expressions for unfrozen water content	12						
4. Results of regression analysis	14						
5. Average values of Poisson's ratio	16						
6. Stress function exponents from regression analysis	19						

י אָני.

NOMENCLATURE

a, b

σ,

 σ_d

 σ_1/σ_3

regression constants

principal stress ratio

soil moisture tension reference stress

cyclic axial stress or deviator stress

 $\frac{1}{3}[(\sigma_1-\sigma_2)^2 + (\sigma_2-\sigma_3)^2 + (\sigma_1-\sigma_3)^2]^{\frac{1}{2}}$

regression constant A_i regression constant C, ffrequency [(101.36- ψ)/ ψ _o], moisture tension function $f(\psi)$ $f(\sigma)$ normalized stress parameter $\sigma_1 + \sigma_2 + \sigma_3$, first stress invariant J_1 $\sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_1 \sigma_3$, second stress invariant J_2 coefficient of stress term in nonlinear expression for M_r ; can be a function of ψ K_1 or γ_d , or both constant, exponent of stress term in nonlinear expression for M, K_2 M, resilient modulus T normalized temperature total water content unfrozen water content dry density of soil Yd unit density temperature reference temperature θ_{o} resilient Poisson's ratio reference stress first principal stress = $\sigma_1 + \sigma_d$ (in these tests) σ_1

third principal stress, confining pressure = σ_2 (in these tests)

Resilient Modulus of Freeze-Thaw Affected Granular Soils for Pavement Design and Evaluation

Part 1. Laboratory Tests on Soils from Winchendon, Massachusetts, Test Sections

D. COLE, D. BENTLEY, G. DURELL AND T. JOHNSON

INTRODUCTION

Over the past few years, CRREL has been developing a method for the design of road and airfield subgrades subjected to seasonal frost. The method addresses both the frost heave characteristics and the resilient properties of the pavement systems. In order to investigate these areas of pavement system performance, an approach of laboratory testing and field verification was adopted. For the case of the resilient properties, repeated-load triaxial tests provided laboratory data and these were verified in the field through plate loading tests.

This report discusses the methods used to generate and analyze the laboratory data from repeated-load triaxial tests. This includes retrieval and preparation of frozen and thawed cores, laboratory preparation of material that could not be cored, equipment and procedures for triaxial testing, and data reduction and analysis. The equipment and testing procedure sections detail certain unique developments in triaxial testing hardware and the use of soil moisture tension in the testing program.

The data presented in this report are for soils used in six of the pavement test sections at a Massachusetts Department of Public Works research site in Winchendon, Massachusetts. Data from several of these soils have been published elsewhere (Cole et al. 1981) but are included here for completeness. Also, since refinements have been made on previously published triaxial testing methods (Johnson et al. 1978), the most recent procedures are given in their entirety.

To make necessary distinctions among certain soil conditions peculiar to the study of frost effects, we have developed the following terminology. "Frozen" refers to material in which the soil moisture is at least partially frozen. "Thawed" indicates material that has been frozen either in nature or in the laboratory and subsequently thawed in the triaxial device, with no remolding. The thawed condition includes the post thaw period in which the resilient modulus gradually increases. "Recovered" refers to the soil state after all transient effects of a freeze-thaw cycle have abated. Soil cores taken in the fall, prior to any frost action, are thus classified as recovered.

The testing requirements call for characterizing the resilient properties of the soils under conditions representative of a full year's cycle of freeze, thaw and recovery. Wherever possible, this was done using field cores. In some cases however, most notably for the coarsest of the six soils (Dense Graded Stone), it was necessary to mold and freeze specimens in the laboratory.

For the frozen soil, we determined the resilient properties for various levels of applied stress at temperatures between about -10° to -0.5°C. For thawed and recovered soils, we varied the soil moisture tension level and the resilient properties were again determined at various levels of applied stress. The use of moisture tension as the pertinent soil characteristic stems from its importance in governing the strength-recovery phase. The use of moisture tension is convenient since it can be monitored continuously in both the field and the laboratory (see Ingersoll 1981).

Finally, we used linear regression techniques to generate empirical equations that give the resilient modulus in terms of applied stresses and either moisture tension or temperature, depending upon soil state.

BACKGROUND

A great deal of effort has been spent at CRREL in understanding the effects of freezing and thawing on the strength of soil. Work has focused on laboratory testing techniques, primarily the repeated-load triaxial test, and full-scale testing of pavement systems using surface deflection methods. As mentioned above, the field tests are used to verify the laboratory findings. A computer program for layered elastic analysis links the laboratory and field results—details of the computer program are given elsewhere (Irwin and Johnson 1981).

The use of a layered analysis program for the design or evaluation of pavements requires a model for the resilient modulus of each layer in the system (see Cole et al. 1981), and also values for Poisson's ratio, density and layer thickness. Using this input, the program calculates stresses, strains and surface deflections under a given load. A modified version of the program back-calculates layer properties given system geometry and surface deflection characteristics. The laboratory work generates models for the resilient modulus of each layer in the system. These laboratory-generated models must be valid through the complete cycle of freeze, thaw and recovery. To this end, the models must incorporate the effect of varying temperature for the frozen state, and soil moisture, stress and density for the unfrozen states.

The results of field observations provide us with information on the temperatures and moisture tension profiles of the test sections. Analysis of the frozen and recovered cores taken from the test sections provides an indication of the likely changes in density through an annual cycle. The layered elastic analysis program calculates the stress distribution throughout the soil mass under a suitable surface load and thus provides an indication of the range in stress that the laboratory test must address.

An advantage of this approach, in which moisture tension is used as a link between laboratory and field results, is that it gives us a relatively convenient means of monitoring the rate of recovery of the soil after thawing. Moisture tension is monitored in the field during recovery and the observed trends are reproduced in the laboratory specimens. Triaxial tests are conducted during this simulated recovery, and the resilient properties can thus be determined at several points during the recovery period. Tensiometers have been developed that are capable of operating in the field en-

vironment (Ingersoll 1981) and similar devices have been incorporated into our triaxial cells (Cole et al., in press).

Our method of repeated-load triaxial testing—cycling axial stress while holding the confining stress constant—has been widely used. It allows us to find the resilient modulus in a number of stress states, but does not allow for a completely accurate simulation of the actual stress path experienced by the soil in the test section (see Brown and Pappin 1981).

MODELING THE RESILIENT MODULUS

A true triaxial repeated-load test would allow independent control of the three principal stresses and would provide the most realistic simulation of the actual stress states experienced by the soil. This type of test, however, is fraught with difficulties and thus not frequently attempted. Cycling of both the axial and confining pressures in a standard repeated-load triaxial test, on the other hand, more closely approximates the in situ stress conditions we are attempting to model. Pappin and Brown (1980) have demonstrated the effect on the resilient modulus of cyclic confining pressure and have used that capability to investigate the effect of the stress path on crushed rock specimens. The result is a more generalized, and more complicated, model for the resilient response, which is suitable for numerical analyses.

In the present work, given our inability to test for resilient response under generalized conditions, we model the resilient modulus M, in the more simple nonlinear form given in eq 1.

$$M_r = K_1[f(\sigma)]^{K_1} \tag{1}$$

where K_1 and K_2 are constants for a given soil state and $f(\sigma)$ is a stress parameter normalized to a reference stress σ_0 of 1.0 kPa.

We do, however, elaborate somewhat on the basic model by making the coefficient K_1 a function of moisture tension and, in some cases, dry density. We also take some liberty in the form of the stress function $f(\sigma)$, developing models based not only on the bulk stress (the first stress invariant) but also on a ratio of the second stress invariant to the octahedral shear stress.

The significance of moisture tension in modeling resilient response is now generally recognized (Bergen and Monismith 1973, Fredlund et al. 1975, Brown and Pappin 1981, Cole et al. 1981,

Rada and Witczak 1981). Fredlund et al. (1975) stressed the fundamental importance of including the pore air and pore water stress states as well as the applied stress in the development of a resilient modulus model. Since in a field situation the pore air pressure will tend to equal atmospheric pressure (Fredlund et al. 1975), it can be considered essentially as a constant. This leaves us to consider, apart from the externally applied stresses, only the effect of pore water pressure. Generally, negative pore water pressure is considered and referred to as moisture tension.

Examination of our data showed that the stress function exponent K_2 is statistically independent of the moisture tension (Cole et al. 1981). Furthermore, we found that the effect of moisture tension on the resilient modulus could be adequately represented by making K_1 a function of moisture tension. In the regression expressions employing the moisture tension, we use the term $f(\psi)^{A_1}$ where A_1 is a regression constant and

$$f(\psi) = \frac{101.36-\psi}{\psi_0} .$$

The value 101.36 represents atmospheric pressure in kPa, ψ is moisture tension in kPa (expressed as a positive number) and ψ_0 is a reference stress of 1.0 kPa.

Given appropriate conditions, the more frostsusceptible soils will undergo more heave. The moisture uptake associated with frost heaving generally results in a decrease in the soil density along with an increase in moisture content, possibly to the point of complete saturation. This occurred to varying degrees in the test soils, depending on their level of frost susceptibility (see Chamberlain 1983). Upon thawing, the moisture tension is generally near zero, while during subsequent recovery we find a continuing increase in ψ (decrease in the moisture content) and an increase in dry density. Densification takes place not only upon thaw as the soil consolidates and any pore water pressure dissipates, but also under the action of the cyclic loads imposed during testing. For certain soils (Ikalanian and Hart Brothers sand) it was necessary to address the effect of this density change on the resilient modulus. When this was necessary, a factor consisting of dry density raised to a power was introduced in the regression equation. We interpret this factor, when present, as a component of K_1 along with the moisture tension term.

The use of dry density in the regression equation complicates matters somewhat since it requires knowledge of the state of the subgrade that is not conveniently obtained. In the case of moisture tension, field gauges can provide year-round information and thus sensible values can be readily obtained. Such is not the case with subgrade density, however, since accurate values can only be obtained by actually sampling the soil, a task which would be unduely expensive and time consuming. As an alternative, we have used the density of the laboratory-tested soil samples to estimate the density changes expected during recovery. We will see below that it was not necessary to include the density term in many analyses since it did not change significantly for most soils tested.

TEST SECTIONS AND MATERIALS

The test soils come from experimental pavement sections at a site in Winchendon, Massachusetts, which was constructed in 1978 by the Massachusetts Department of Public Works. There are 24 test sections; each measures 2.4 m square. Table 1 gives some physical characteristics of the six soils chosen for the present study. Each section consist-

Table 1. Physical properties of test soils.

	Coeffi	cients*		rberg nits	Specific .	
Soil	Си	Cc	LL	PI	gravity	
Dense Graded Stone	32.8	7.1	23	3	2.81	
Graves sand	39.1	1.6	0	0	2.70	
Hart Brothers sand	8.0	0.92	0	0	2.76	
Hyannis sand	4.7	1.2	0	0	2.67	
Ikalanian sand	4.5	0.96	0	0	2.70	
Sibley till	235	4.1	19	4	2.74	

Cu—coefficient of uniformity, Cc—coefficient of curvature.

a. Natural subgrade.

b. Six test soils.

Figure 1. Gradation curves.

TYPICAL TRANSVERSE SECTION

Figure 2. Cross section of the Winchendon test site.

ed of 50-90 mm of asphalt concrete and 1.5 m of the test soil overlying the natural subgrade, which was a clean, gravelly sand. Figure 1 shows gradation curves for these materials.

Figure 2 shows a cross section of the test site. Note that the construction of the test sections results in two different depths to the water table. All the sections considered in this work were from the sections having the higher elevation. For these sections, the water table is at a depth of 1.4 m below the pavement surface.

Frost penetrated the test soils to depths ranging between 0.5 and 0.8 m. Although freezing rates varied considerably, the overall average was in the range of 7.0 to 8.0 mm per day.

FIELD SPECIMEN RETRIEVAL AND PREPARATION

Most test sections were sampled in both the frozen and recovered states. Frozen cores were obtained using a double flighted auger designed at CRREL. A 150-mm-diameter core was first taken from the asphalt concrete layer. We used compressed air rather than water to clear debris from the drilling. The soil sampler fit easily through the hole thus prepared and a 50-mm-diameter frozen core of the test soil was then obtained. The core segments were generally 150-300 mm in length. They were wrapped in several layers of polyethylene film with a generous amount of snow and ice to prevent sublimation and to help maintain temperature during shipment back to the laboratory.

Cores representative of the recovered state were taken in the fall using a split tube sampler. The material was left in the 150-mm-long segments of the split aluminum sleeves and kept tightly wrapped in polyethylene film until just before trimming and testing.

Shovel samples of the natural subgrade and the Dense Graded Stone were obtained and specimens of these very coarse-grained materials were prepared in the laboratory.

LABORATORY PREPARATION OF SPECIMENS

Soil

The field cores were tested at the diameter of 50 mm resulting from the coring operation. The cores were cut approximately to length on a band saw and the ends were machined flat and parallel using a lathe. This aspect of specimen preparation is absolutely critical to the acquisition of reliable modulus values for the frozen state. Rough or unparallel specimen ends result in a nonuniform stress distribution in the material and can cause a slight rocking of the specimen when the load is applied. This rocking is detrimental to the precision of the deformation measurements.

The coarse material, which was frozen in the laboratory, required a considerable amount of preparation. The soil was molded in a 150-mm-diameter, ²81-mm-high steel mold in five layers with sufficient compactive effort to achieve the estimated in situ density. A sleeve of 22-gauge aluminum, placed in the mold before compaction, provided sufficient confinement to support the specimen once the mold was removed.

For the case of the natural subgrade, which was to be tested only in the unfrozen state (this material never froze in the field test sections), the molded specimen was placed on the base of the triaxial cell. The aluminum sleeve was carefully removed and a latex membrane installed along with the top cap and O-rings. The specimen was then ready for instrumentation and testing.

Figure 3. Mounting technique for 152-mm-diameter specimens to be subjected to unidirectional, open system freezing.

The Dense Graded Stone, which was tested in the frozen state, required further attention (Fig. 3). The molded specimen was placed on a special lucite base equipped with a porous stone and a water supply inlet. The sleeve was removed and polyethylene film was wrapped around the specimen several times. Then, specially prepared aluminum belts were placed about the circumference of the specimen and secured by rubber bands. The belts were coated on the inside with an adhesivebacked Teflon film and on the outside with standard duct tape. The polyethelene film prevented evaporation of s. I moisture and the rings provided sufficient lateral confinement to prevent specimen degradation during subsequent handling and freezing. The coatings on the approximately 40-mm-wide belt segments were designed to prevent both side wall friction if there was any heaving and to inhibit unwanted advancement of the freezing front along the sides of the specimen during freezing.

The specimens were frozen unidirectionally at about 25 mm/day in insulated cabinets (see Chamberlain and Carbee 1981) using open-system freezing, i.e., a constant head water supply to the base of the specimen. Once completely frozen, the specimen was removed to a coldroom and the ends

were prepared for testing in the following manner. We made a slurry from a portion of the material from which the large aggregates had been removed. The ends of the frozen specimen were then capped employing the same equipment used to cap concrete specimens with a molten sulfur compound. The slurry was placed in the base of the capping jig and allowed to freeze to the soil specimen. This method resulted in smooth, flat specimen ends.

Once the frozen tests were completed, the specimen was thawed in the triaxial device and then retested according to the method given in the *Testing Sequence* section.

Asphalt concrete

In the initial laboratory investigations for this phase of the work, the resilient modulus of the asphalt concrete was measured in indirect tension. Cores 102 mm in diameter were tested in repeated indirect tension at two load durations and at a range in temperature from approximately -10° to 32 °C.

To perform cyclic load tests under uniaxial compression, a suitable length-to-diameter ratio was required. We accomplished this by forming a composite cylindrical specimen from three of the 102-mm-diameter, 50- to 90-mm-long cores, yielding a test specimen 200 to 250 mm long. Each core was machined on the top and bottom on a precision grinder so that the ends were smooth and parallel. The ends were then cemented together with a thin layer of asphalt emulsion. Once the composite specimen was assembled, it was bonded and excess emulsion was extruded by applying an axial compressive stress. Five specimens were thus constructed.

These specimens were then tested in unconfined compression at temperatures of -10°, 5°, 25° and 39°C and cyclic axial stresses of 69.0, 103.4, 137.9, 172.4 and 241.3 kPa. Two hundred cycles were applied at each stress level. Three loading wave forms were used: a 1-second pulse applied every 3 seconds, which simulates the load pulse of the repeated plate bearing device; a continuous haversine wave form at 1, 4 and 16 Hz according to ASTM standards (D3497-76T) for testing (ASTM 1981); and a 28-ms haversine pulse every 2 seconds, which simulates the load pulse of the falling weight deflectometer. Tests were performed on the same closed-loop, electro-hydraulic testing machine used for the soil tests. Load was monitored by a load cell mounted on the testing machine piston. Deformation was monitored by two

Linear Variable Differential Transformers (LVDTs) mounted on circumferential clamps at third points along the specimen length. Load and deformation were recorded simultaneously on a strip chart recorder.

EQUIPMENT AND PROCEDURES FOR TRIAXIAL TESTING

Triaxial cells

Special triaxial cells were constructed to accommodate the instrumentation used to monitor load and deformation (see Cole et al., in press). Cells for both the 50- and 150-mm-diameter specimens are shown in Figure 4. In both cells, the top and bottom plates and the cylinder may be removed from the cell base. This facilitates the testing sequence, which calls for several tests on any given

specimen. With this arrangement, a specimen need not be disturbed by removing it from its base between tests. Each specimen can remain on its base, with end caps and membranes in place, while the cell and all instrumentation are removed and installed on the next specimen and base. In this way, up to six 50-mm-diameter specimens could be mounted and tested in a rotating sequence without requiring any remounting or handling of the specimen. As will be explained in more detail later, we did several tests on each specimen in order to obtain its resilient properties at several levels of soil moisture tension.

A miniature, high-precision load cell mounted in the triaxial cell on the loading piston monitors the load applied to the specimen and also acts as a feedback source for the testing machine used in this program.

a. 152-mm-diameter specimen in the large triaxial cell.

b. 50.8-mm-diameter specimen in the small triaxial cell.

Figure 4. Specimens fully mounted for testing.

Figure 5. Detail of the multi-VIT mounting. Variable Impedance Transducer is positioned with micrometer.

The axial strain is monitored using four LVDTs mounted on hinged arms. The LVDT cores are mounted on two spring-loaded circumferential rings on the specimen. This system has been described in detail elsewhere and remains unchanged in this work (see Johnson et al. 1978). Some improvements have been made, however, in the system of noncontacting displacement transducers used to measure radial deformation (presented by Cole 1978). As seen in Figure 5, the multi-VITs (Variable Impedance Transducers) are no longer mounted directly on the micrometers located on the cell wall, but are now mounted on standards that bolt to the floor of the triaxial cell. The location of each transducer is still adjusted by a micrometer, which now reacts against the springloaded rod to which the transducer is affixed. These devices and the testing and calibration procedures are fully documented in Appendix A.

As mentioned earlier, moisture tension is monitored in these tests as a means of linking laboratory and field results. To facilitate the laboratory triaxial tests across the range of moisture tensions encountered in the field, we developed a special base for the triaxial cell.

Soil moisture is sensed through an element of porous ceramic protruding from the center of the pedestal on which the specimen is mounted (see Fig. 6). These porous tips typically have an air entry value of 100 kPa. A very small diameter duct through the base connects the porous tip to a larger tube on which a vacuum gauge is mounted. The tip and duct system, which has an associated branch that permits flushing to remove air bubbles, is in effect a tensiometer. Once the tip is in contact with the pore water of an unsaturated soil, the stress state of that pore water is transferred to the tensiometer system and registers on the vacuum gauge. In this manner, we continuously monitor the stress state of the soil moisture. This stress increases as water content decreases according to a relationship of the type shown in Figure 7. Moisture retention curves for all test soils appear in Appendix B. Field work indicates that as a soil recovers from a freeze-thaw cycle, it drains and consolidates, and the moisture tension level rises accordingly. This tensiometer system allows us to simulate a controlled recovery period in the triaxial cell by merely draining the specimen until a desired moisture tension level is reached. At that point, the specimen is tested to determine the resilient properties associated with the prevailing moisture tension value; the process is repeated several times, until the highest moisture tension level experienced in the field has been reached. Note that at no time during this testing sequence is it neces-

Figure 6. Cross section of small triaxial cell base. Vacuum gauge continuously monitors moisture tension level. System may be flushed to expell gas bubbles.

Figure 7. Moisture retention curve for Ikalanian sand.

sary to remove the specimen from its base since all cell components may be removed from the base without disturbing the mounted specimen. Additional details on the performance of this system are given in Appendix A along with testing and calibration procedures.

Waveform of applied stress

CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR

Two waveforms were used in the laboratory testing that simulate the loading conditions associ-

ated with field testing devices (Fig. 8). The pulse designated as RPB simulates the load pulse generated by the Repeated Plate Bearing apparatus. The pulse is approximately 1 second on and 2 seconds off. The waveform designated FWD simulates the pluse generated by a Falling Weight Deflectometer. This waveform is a 28-ms haversine pulse repeated every 2 seconds.

Figure 8. Waveforms of the Repeated Plate Bearing (RPB) apparatus and Falling Weight Deflectometer (FWD).

Testing sequence

Once mounted and instrumented, the specimen is tested in repeated-load triaxial compression using a closed-loop, electro-hydraulic testing machine according to the sequence of stresses given in Table 2.

Upon thawing, specimens were generally highly saturated, corresponding to the most severely thaw-weakened state in the field. Low moisture tension levels (or possibly pore water pressure) and low modulus values characterize this state. Often the complete schedule of stresses given in Table 2b could not be applied without causing excessive damage to the specimen, a circumstance to be avoided since each specimen was retested several times. Thus, it was necessary for the operator to exercise judgment in proceeding with the stress levels, avoiding those that could render the specimen unusable for subsequent testing.

As mentioned previously, the thawed testing sequence called for a series of tests at successively higher levels of moisture tension. Field tensiometer data provided the limits of moisture tension values in these tests. A set of tensiometers at varying depths in each field test section provided a continuous record of the stress state of the soil moisture. These values gave the necessary link between field and laboratory data in the following way.

Surface deflection measurements, made at various times throughout the year, generated data on the test section's performance. We recorded both temperature and moisture tension profiles in the section when doing these tests. We tested the validity of the laboratory results by using them in a

Table 2. Applied stress levels.

Static axial	Static confining	Cyclic axial*	
stress, o	stress, on	stress, od	
(kPa)	(kPa)	(kPa)	σ_1/σ_3
	- F		
	a. Frozen spec	imens	
_	69	60	-
_	69	138	_
	69	207	_ _ _ _
_	69	276	_
	69	345	_
_	69	482	-
	69	620	
– 69		827	_
b. '	Thawed and recover	red specimens	
_	6.9	3.4	1.5
_	13.8	6.9	1.5
_	27.6	13.8	1.5
_	48.3	24.1	1.5
_ _ _	69.0	34.5	1.5
_	6.9	6.9	2.0
_	13.8	13.8	2.0
	27.6	27.6	2.0
_	48.3	48.3	2.0
_	69.0	69.0	2.0
_	6.9	10.3	2.5
_	13.8	20.7	2.5
_	27.6	41.4	2.5
_ _ _	48.3	72.4	2.5
_	69.0	103.4	2.5
	c. Natural subgrade	e material	
13.8	5.5	3.4	_
27.6	11.0	6.9	_
55.2	22.1	13.8	_

Deviator stress.

layered elastic analysis of the test sections. Laboratory-determined moduli and Poisson's ratio characterize the resilient properties for each layer of the analysis. Since the moduli are moisture-tension dependent (or temperature dependent if frozen), appropriate values of these variables must be used in the regression equations to generate realistic moduli for comparison with the field results. The field data taken at the time of the surface deflection test provided us with these appropriate values of moisture tension and temperature.

As might be expected, the specimens densified to varying degrees during this testing sequence. We applied approximately 200 cycles at each load level, so a given specimen was subjected to thousands of load cycles by the end of its use. This situation caused an undesired bias in the results by generating a covariance between density and moisture tension. That is, the results contained data sets that always showed moisture tension and density increasing together, and the subsequent statistical analysis was incapable of separating the effects of the two variables. To avoid this circumstance, we resaturated the test specimens after the highest moisture tension level had been reached. This gave additional data points with low moisture tension but high density values. The covariance inherent in the first part of the sequence was thus eliminated and the effects of the two variables were more easily separated.

In most of these tests, we applied a vacuum to the specimen through the drainage system of the cell equal to the moisture tension level at the start of testing. This assured the maintenance of a constant level of tension in the specimen as testing proceeded.

As can be seen in the stress table (Table 2), the tests began at low levels of confining and deviator stress and proceeded to high stress levels. Thawed soil tests generally began producing measurable results at stress levels near 3.5- to 7.0-kPa deviator stress and 7.0-kPa confining stress, since their moduli are very low and the deformation is correspondingly high and easy to measure. The frozen tests, however, presented difficultes in this respect. Since the moduli are up to two orders of magnitude greater, the strains can be about two orders of magnitude smaller than the thawed case for a given stress. These small strains became very difficult to measure and, consequently, we applied significantly greater stresses in the frozen tests in order to produce deformations that could be accurately measured. Hence the rather large deviator stress levels given in Table 2a. The modulus of the frozen material becomes a strong function of temperature for temperatures approaching the melting point. At high temperatures, then, it was generally possible to obtain valid results for a range of stresses that overlapped that of the thawed tests, thus providing some continuity in stress level over the transition between the frozen and thawed states.

DATA REDUCTION AND ANALYSIS

For each set of applied deviator and confining stresses, we recorded the resilient and permanent axial and radial strains and can thus calculate a resilient modulus and a resilient Poisson's ratio. The resilient modulus is defined as the applied deviator stress divided by the strain recovered upon unloading for a representative loading cycle, and the resilient Poisson's ratio is defined as the recoverable radial strain divided by the recoverable axial strain. The recoverable strains generally stabilized within 10-20 cycles and the permanent strains, for all but the highest stress levels, became virtually imperceptible within the first 50 cycles. Thus, our measurements taken near the 200-cycle mark represent an approximately steady state condition for the prevailing stress levels.

After several specimens from a given test section had been tested, the data were tabulated and entered into a computer. Entries consisted of confining stress, deviator stress, resilient axial strain, resilient radial strain, density and moisture tension or temperature. The tables in Appendix C contain these data along with the calculated results, as discussed below.

We performed linear regression analyses on these data with various forms of stress, density and moisture tension used as independent variables and either resilient modulus or Poisson's ratio as the dependent variable. The frozen material was analyzed in terms of either unfrozen water content or temperature.

Stress functions used either the first stress invariant $J_1(=\sigma_1+\sigma_2+\sigma_3)$ or a ratio of the second stress invariant to the octahedral shear stress J_2/τ_{oct} to help characterize the stress dependence of the material. The use of J_1 is traditional in such analyses. The use of J_2/τ_{oct} , while somewhat unorthodox, has proven valuable in some cases since it reflects the tendency of the modulus to increase with confining stress but to decrease with increasing principal stress ratio. Details on this stress function may be found elsewhere (Cole et al.

1981). It may be calculated from the confining stress σ_0 and the deviator stress σ_d by the following formula:

$$J_2/\tau_{oct} = \frac{9\sigma_1^2 + 6\sigma_1\sigma_d}{\sqrt{2}\sigma_d}.$$
 (2)

As noted earlier, the nonlinear form given in eq 1 was used to represent the modulus in this analysis.

The coefficient K_1 is often a function of other test parameters such as moisture tension or density and has the units of stress. Moisture tension ψ is incorporated through the term $[(101.36 - \psi)/\psi_0]$ where ψ is expressed in kPa and ψ_0 is a reference stress of 1 kPa. The expression $(101.36-\psi)$ then represents the deviation from atmospheric pressure of the soil moisture stress state; A_1 is determined in the regression analysis.

In analyzing the results of frozen tests, the modulus can be expressed either directly in terms of temperature or in terms of the unfrozen water content. Initially, a second order expression using temperature appeared sufficient in most cases. During the course of this work, however, experimental data on the unfrozen water content of the Winchendon soils became available,* which provided an alternative means of accounting for temperature effects (see Cole 1984). The expressions for unfrozen water content are of the form

$$W_u \%_0 = a(-\theta)^{-b} \tag{3}$$

where θ is temperature (°C) and a and b are constants.

The constants were determined for a range of initial water contents that could be expected in the field. Although there is a hysteresis effect between the warming and cooling temperature paths, the values of a and b did not change significantly for the range of conditions considered here, and were thus assumed constant. Dimensional considerations prompted some changes in the form of these equations. The temperature is normalized to a unit value $\theta_0 = 1.0$ °C and the constant a is divided by 100.0 to yield values of W_{μ} in decimal form rather than as a percent. The resulting expressions used for each soil are given in Table 3. It was necessary to assume values for a and b in the case of the Dense Graded Stone since the large aggregate size prevented testing in the nuclear magnetic resonance apparatus used to determine unfrozen water content.

The expressions for the resilient modulus in terms of unfrozen water content tend to be simpler than those in terms of temperature or temperature and water content. However, an additional calculation is required in order to obtain the unfrozen water content prior to evaluation of the modulus.

The data sets upon which the frozen state equations are based include several points from the thawed data. These points have very low moisture tension values and are thus representative of the condition of the soil upon thaw. The inclusion of

Table 3. Expressions for unfrozen water content ($\theta_o = 1$ °C, W_u expressed as a decimal).*

Material	Equation	Equation number
Ikalanian sand	$W_{u} = 1.43 \times 10^{-2} (-\theta/\theta_{o})^{-0.214}$	1
Graves sand	$W_{u} = 3.06 \times 10^{-2} (-\theta/\theta_{o})^{-0.309}$	2
Hart Brothers sand	$W_{\mu} = 1.81 \times 10^{-2} (-\theta/\theta_o)^{-0.340}$	3
Hyannis sand	$W_{\nu} = 2.23 \times 10^{-1} (-\theta/\theta_{o})^{-0.415}$	4
Dense Graded Stone	$W_{\rm H} = 2.00 \times 10^{-2} (-\theta/\theta_{\rm o})^{-0.400} \dagger$	5
Sibley till	$W_{\rm u} = 4.29 \times 10^{-2} \; (-\theta/\theta_{\rm o})^{-0.305}$	6

^{*} Based on unpublished equations from A. Tice (CRREL).

[†] Assumed since test data were not available.

Personal communication with A. Tice, CRREL, 1983.

these points extends the range of validity of the frozen state equations to the completely thawed condition and thus helps maintain continuity between the frozen and thawed state results.

The regression equations are used in the computer analysis to predict deflection basins in the pavement system (see Johnson et al., in prep.). It is noted here that for the Ikalanian and Graves sands, equations in the form of eq 3 were not developed at the time the deflection basins were being computed. Instead, equations based only on frozen-soil data points and employing a second order expression in terms of temperature were used in the computer analysis. Equations based on unfrozen water content and including thawed-soil data points were eventually developed but we did not rerun the computer analysis with the updated modulus expressions since the equations based on temperature led to satisfactory results.

RESULTS AND DISCUSSION

General

The results of the laboratory tests for all soils are tabulated in Appendix C. The tables in Appendix C give values for all the relevant parameters at each data point. We tested the specimens according to the stress sequences shown in the first two columns. The strain values were calculated using the deformation measurements described earlier divided by the instantaneous gauge length of the measurement in question. Dry densities were generally back-calculated after testing, using specimen weights and permanent deformation records. Moisture content and density were determined at the end of testing for a given sample, and moisture contents corresponding to each level of moisture tension employed during testing were found from the moisture retention characteristic curves for each soil.

Resilient modulus

Table 4 shows the results of the regression analysis performed on these test data. The results of tests on the asphalt concrete are also given here for completeness: these equations give moduli values for several different load pulse wave forms. The asphalt equation for the FWD pulse was derived from the haversine pulse equation with an appropriate value substituted for frequency f.

The number n in Table 4 refers to the number of points evaluated in the analysis. A given sample is subjected to a series of confining and deviator

stresses for each moisture tension level. Each stress combination at a given level of moisture tension results in one data point; thus, a single specimen gives rise to many data points. Generally, the regression equations presented are based on from four to six specimens. Tests in the recovered state have the fewest data points since they were tested at only one level of moisture tension.

The coefficients of determination (R^2) for these analyses are, for the most part, very good. The standard error given in Table 4 applies to the natural logarithm of the modulus because each equation was linearized by taking the log of each side. Thus, regression coefficients were found for equations of the form

$$\ln M_r = A_0 + A_1 \ln[f(\psi)] + A_2 \ln[f(\sigma)]. \tag{4}$$

The regression program established a standard deviation for eq 4, so care must be taken in applying this to the exponentiated form of the equations given in Table 4.

The significance of an independent variable was established on the basis of F- and t-tests made during the regression analysis. In order to examine the influence of all variables, the F-level for acceptance into the analysis was set at an extremely low value. An insignificant variable was subsequently rejected on the basis of the t-test. Additionally, in the interest of keeping the equations as simple as possible, marginally acceptable variables were ignored if they failed to increase the R^2 value by more than 0.02.

In some cases, the regression analysis did not reveal any strong trends in the data when certain independent variables were used. For example, use of the stress function J_2/τ_{oc} , resulted in at least marginally acceptable values of the correlation coefficients (0.65) for the thawed Hyannis sand. However, an unacceptable correlation coefficient ($R^2 < 0.5$) resulted when J_1 was used as the stress parameter. Such equations were not deemed useful and are thus not given in Table 4.

Figure 9 shows modulus versus temperature for all six frozen soils using regression equations developed from tests in which the RPB waveform was used. As seen in the equations given in Table 4, the modulus is primarily a function of unfrozen water content. Deviator stress level is relatively insignificant and consequently was rejected by the regression analysis and thus does not appear in several of the equations plotted in Figure 9.

Stress and density terms were occasionally accepted into the regression equations for the frozen

Table 4. Results of regression analysis.

Material	Load pulse	Regression equation	n	R ²	Std. error	Eq.
Asphalt concre	te					
	RPB	$M_r(MPa) = \exp{9.204 - 5.552 \times 10^{-2} T - 9.744 \times 10^{-4} T^2}$	85	0.97	0.287	1
	Haversine	$M_r(MPa) = \exp{9.183-7.47 \times 10^{-1} T} f^{0.1777}$	158	0.81	0.469	2
	FWD	$M_r(MPa) = \exp[9.429-7.47 \times 10^{-2}T]$	-	-	_	3
Natural subgra	de					
l	RPB and FWD	$M_{\rm r}({\rm MPa}) = 8.829 f_1(\sigma)^{0.700}$	65	0.67	0.235	4
ı	RPB and FWD	$M_{\rm r}({\rm MPa}) = 20.74 f_1(\sigma)^{0.352}$	65	0.76	0.201	5
Graves sand						
Frozen	RPB	$M_{\rm r}({\rm MPa}) = \exp(9.677 - 1.0314 T - 0.0708 T^2)(\tau_{\rm oct}/\sigma_{\rm o})^{-0.682}$	56	0.88	0.332	7
	RPB	$M_{\rm r}({\rm MPa}) = 39.1(w_{\rm u}/w_{\rm t})^{-1.79}$	95	0.91	0.502	8
	FWD	$M_{\rm r}({\rm MPa}) = 32.14(w_{\rm u}/w_{\rm t})^{-1.96}$	73	0.95	0.446	9
Thawed	RPB	$M_r(\text{MPa}) = 2.139 \times 10^6 f(\psi)^{-2.7925} f_i(\sigma)^{0.462}$	186	0.76	0.209	10
	FWD	$M_r(MPa) = 9.27 \times 10^5 f(\psi)^{-2.60} f_r(\sigma)^{0.477}$	222	0.71	0.224	11
	RPB	$M_r(\text{MPa}) = 6.68 \times 10^4 f(\psi)^{-2.2948} f_2(\sigma)^{0.414}$	186	0.89	0.144	12
	FWD	$M_r(\text{MPa}) = 1.47 \times 10^6 f(\psi)^{-2.75} f_i(\sigma)^{0.413}$	222	0.86	0.157	13
Recovered	RPB	$M_{\rm r}({\rm MPa}) = 6.89 f_1(\sigma)^{0.418}$	36	0.76	0.247	14
	RPB	$M_{\rm r}({\rm MPa}) = 4.80 f_1(\sigma)^{0.4046}$	36	0.87	0.185	15
Ikalenien sand						
Frozen	RPB	$M_{\rm r}({\rm GPa}) = \exp[13.74 - (0.820)T - (0.0538)T^2 - (0.8378)w + (0.04416)w^3](\tau_{\rm oct}/\sigma_0)^{-0.342}$	62	0.90	0.308	16
	RPB	$M_{\rm r}({\rm MPa}) = 86.4(w_{\rm u}/w_{\rm t})^{-1.32}$	87	0.92	0.749	17
Thawed	RPB	$M_r(\text{MPa}) = 8.129 \times 10^4 f(\psi)^{-3.324} f(\gamma)^{11.578} f_1(\sigma)^{0.490}$	119	0.84	0.323	18
	RPB	$M_{\rm r}({\rm MPa}) = 3.021 \times 10^4 f(\psi)^{-3.266} f(\gamma)^{11.634} f_1(\sigma)^{0.442}$	119	0.89	0.276	19
Recovered	RPB	$M_r(MPa) = 5.69 \times 10^6 f(\psi)^{-3.118} f_1(\sigma)^{0.537}$	38	0.88	0.205	20
	RPB	$M_{\rm r}({\rm MPa}) = 2.405 \times 10^4 f(\psi)^{-2.918} f_1(\sigma)^{0.442}$	38	0.84	0.238	21
Hart Brothers	sand					
Frozen	FWD	$M_{\rm r}({\rm MPa}) = 38.28(w_{\rm u}/w_{\rm t})^{-1.782}$	88	0.95	0.53	22
	RPB	$M_{\rm r}({\rm MPa}) = 4.085 \times 10^{1} (w_{\rm u}/w_{\rm t})^{-1.59}$	99	0.92	0.623	22
	FWD	$M_{\rm r}({\rm MPa}) = 8.05 \times 10^{-2} f(\gamma_{\rm d})^{7.64} f_{1}(\sigma)^{0.365} (w_{\rm u}/w_{\rm t})^{-1.97}$	88	0.97	0.445	23
	FWD	$M_{\rm r}({\rm MPa}) = 4.689 \times 10^{-1} f_1(\sigma)^{0.444} (w_u/w_t)^{-1.38}$	88	0.96	0.464	25
Thawed	RPB	$M_r(\text{MPa}) = 2.97 \times 10^5 f(\psi)^{-3.063} f(\gamma)^{5.996} f_2(\sigma)^{0.453}$	174	0.71	0.280	25
	RPB	$M_{\rm f}({\rm MPa}) = 1.269 \times 10^{3} f(\psi)^{-3.009} f(\gamma)^{7.023} f_{1}(\sigma)^{0.453}$	174	0.87	0.185	27
	FWD	$M_{\rm r}({\rm MPa}) = 3.93 \times 10^4 f(\psi)^{-2.67} f(\gamma)^{6.18} f_1(\sigma)^{0.457}$	164	0.67	0.292	28
	FWD	$M_{\rm r}({\rm MPa}) = 3.81 \times 10^4 f(\psi)^{-2.817} f(\gamma)^{7.43} f_2(\sigma)^{0.375}$	164	0.67	0.292	29
Hyannis sand						
Frozen	RPB	$M_{\rm r}({\rm MPa}) = 0.68 f(\gamma)^{11.0} (w_{\rm u}/w_{\rm t})^{-2.12}$	69	0.96	0.536	30
	RPB	$M_{\rm r}({\rm MPa}) = 33.45(w_{\rm u}/w_{\rm t})^{-2.03}$	69	0.95	0.617	31
Thawed	FWD	$M_{\rm r}(\text{MPa}) = 7.147 \times 10^4 f(\psi)^{-1.782} f_1(\sigma)^{0.264}$	128	0.71	0.129	32
	FWD	$M_{\rm r}({\rm MPa}) = 3.57 \times 10^{\circ} f(\psi)^{-3.276} f_{\rm i}(\sigma)^{0.3628}$	61	0.74	0.194	33
Dense Graded	Stone					
Frozen	RPB	$M_{\rm r}({\rm MPa}) = 82.27(w_{\rm u}/w_{\rm t})^{-2.03}$	32	0.97	0.413	34
Thawed	RPB	$M_{\rm r}({\rm MPa}) = 1.56 \times 10^4 f(\psi)^{-1.76} f_1(\sigma)^{0.136}$	64	0.65	0.202	35
	RPB	$M_{\rm r}({\rm MPa}) = 7.17 \times 10^4 f(\psi)^{-1.589} f_2(\sigma)^{0.1725}$	64	0.65	0.203	36
Sibley till						
Frozen	RPB	$M_{\rm r}({\rm MPa}) = 1.01 \times 10^2 (w_{\rm u}/w_{\rm t})^{-3.446}$	108	0.87	0.71	37
Thawed	RPB	$M_{\rm r}({\rm MPa}) = 7.47 \times 10^6 f(\psi)^{2.829} f_1(\sigma)^{0.192}$	118	0.63	0.283	38
	RPB	$M_{\rm r}({\rm MPa}) = 1.29 \times 10^7 f(\psi)^{-2.84}$	118	0.54	0.313	39

NOTES: NOTES: $f_1(\sigma) = (J_1/\sigma_0)$ $f_2(\sigma)$ $f_3(\sigma) = (J_1/\sigma_0)$ $f_4(\sigma) = ($ $f(\psi) = [(101.38-\psi)/\psi_o]$ $\sigma_o = 1 \text{ kPa}$ $\theta_o = 1 \text{ °C}$ $f_1(\sigma) = [(J_1/\tau_{ocl})/\sigma_o]$ $f(\gamma) = \gamma/\gamma_o$ $T = \theta/\theta_o$ $w_t = \text{total water content}$ n = number of points

 M_r = resilient modulus

Figure 9. Resilient modulus versus temperature for all test soils.

state. The incorporation of dry density γ_d in the expression for frozen Hyannis sand gives a slight improvement in accuracy. However, the simpler expression (eq 31, Table 4) is sufficient and requires only one variable for the modulus determination.

In examining the regression results, several other points require mention. We were not always successful in sampling material in the recovered state; in fact, only specimens from the Ikalanian sand and Graves sand sections proved useful for this characterization. For all other soils, we used the thawed state equations, evaluated at suitably high moisture tension levels, to represent the recovered state.

The "recovered" cores taken from the Ikalanian sand section possessed a sufficient range in moisture tension to allow that variable into the regression equation. This was not the case for the Graves sand, where the moisture tension in the cores varied little, and it was thus rejected as a significant variable in the regression analysis.

Additionally, in examining Table 4, the use of the two load pulse waveforms does not appear to be completely systematic. This happened because many of these tests were performed in a period when we were changing from the Repeated Plate Bearing (RPB) device to the Falling Weight Deflectometer (FWD) in the field verification work.

The Ikalanian sand, under all conditions, and the recovered Graves sand were subjected only to the RPB pulse. In the other tests, we applied both waveforms. If there was a significant difference between the results from the two waveforms, analyses from both are given. For the thawed Sibley till, the two waveforms resulted in virtually identical moduli values, as determined by several comparisons made early in the load cycling. Only the RPB pulse was applied in subsequent testing. The results given are assumed valid for the FWD pulse as well. The stiffness of Hyannis sand, Dense Graded Stone and frozen Sibley till resulted in excessive vibrations when the fast FWD pulse was applied. Since this made the deformation measurement very difficult, we decided to use only the RPB pulse in these cases. Finally, the thawed Hyannis sand data from the RPB pulse did not respond acceptably to the regression analysis and thus an equation is not presented. We believe that data scatter, coupled with a relatively low sensitivity to stress, brought this about.

Interestingly, in the Hart Brothers sand analysis, unfrozen water content was the only significant variable for results obtained with the RPB waveform, whereas unfrozen water content, density and stress were all found to be significant for the same soil tested under the FWD waveform.

Poisson's ratio

The measurement system described earlier allowed us to calculate Poisson's ratio directly in all tests. We performed regression analyses similar to those done with the resilient modulus data on the results in an effort to correlate values with the pertinent variables. Unfortunately, these analyses proved unsuccessful. Correlation coefficients did not exceed 0.42 and in most cases were very near zero. Consequently, no stress- or moisture-tension-dependent model of Poisson's ratio emerged from these analyses. Table 5 gives the average values obtained for each soil under various conditions.

No values are presented for the frozen case since the radial deformations encountered in those tests were too small to be measured reliably.

Table 5. Average values of Poisson's ratio.

Material		Load pulse waveform*	μ
Dense Graded Stone	Thawed	RPB	0.31
Graves sand	Recovered	RPB	0.23
	Thawed	RPB	0.25
Hart Brothers sand	Recovered	RPB	0.30
		FWD	0.29
	Thawed	RPB	0.37
Hyannis sand	Recovered	RPB	0.15
•	(Remolded)	RPB	0.35
		FWD	0.33
	Thawed	FWD	0.25
Ikalanian sand	Recovered	RPB	0.25
	Thawed	RPB	0.26
Sibley till	Thawed	RPB	0.42

Control of the second of the s

RPB—Repeated Plate Bearing apparatus waveform.
 FWD—Falling Weight Deflectometer waveform.

Figure 10. Resilient modulus versus temperature for the asphalt concrete (RPB—Repeated Plate Bearing apparatus; FWD—Falling Weight Deflectometer).

Asphalt concrete

Equations 1-3 in Table 4 give the results of regression analyses of the cyclic loading tests on the asphalt concrete. This material was found to be insensitive to the level of deviator stresses applied for each waveform. For the slower RPB waveform (1 second on, 2 seconds off), the resilient modulus M, was a function of temperature only, as seen in eq 1 of Table 4. For the haversine loading according to ASTM standards, M, was a function of both temperature and frequency (see eq 2 of Table 4). Here, a given load was applied at three frequencies: 1, 4 and 16 Hz. The modulus increases with increasing frequency of loading. Representative results are plotted in Figure 10, where the lines are generated by the regression equations.

We carried out a second set of tests in repeated uniaxial compression on the same composite specimens mentioned above in order to characterize in the laboratory the asphalt concrete under the FWD load waveform. These tests included the same RPB and haversine load waveforms as well as the FWD waveforms. The M, results were internally very consistent for these data, but were noticeably low relative to the M, values obtained using previously untested specimens. We believe that the previous repeated load testing of these specimens resulted in fatigue damage, which lowered the resilient modulus.

It was noted in this second data set, for the damaged samples, that the values of M, resulting from the FWD waveform differed by an almost constant factor of 1.5 from the 4-Hz-haversine waveform results over the full range in temperatures. Based on this observation, the same factor of 1.5 was applied to the 4-Hz-haversine results from the original tests on undamaged samples to obtain an estimate of the FWD results on the specimens in their original condition.

Natural subgrade

Regression equations 4 and 5 in Table 4 are for the natural subgrade material. The use of the stress function J_2/τ_{ect} instead of J_1 results in a significant increase in the correlation coefficient. The results for both the FWD and RPB waveforms were merged when we found that there was no statistically significant difference between the two data sets. Plots of the regression equations are given in Figure 11.

Figure 11. Resilient modulus versus stress function J_2/τ_{oct} for the natural subgrade.

K, values for thawed soils

Figure 12 shows how the coefficient K_1 changes over the expected range of moisture tension ψ . The current interpretation sets K_1 equal to the product of all terms before the stress function in the regression equations. Thus, for a given moisture tension value (and γ_d value where applicable) the equations reduce to the form

$$M_r = K_1[f(\sigma)]^{K_t}$$

where

$$K_1 = C_0[f(\psi)]^{C_1}$$

or

$$K_1 = C_0[f(\psi)]^{C_1}(\gamma_d/\gamma_0)^{C_2}.$$

and C_0 , C_1 and C_2 are the constants from the regression equation and γ_0 is unit density.

The values of K_1 are given over the range of ψ used in the laboratory tests and this range brackets the moisture tension values determined by the field measurements. So, for a given stress state, these curves show the relative stiffness of the soils as well as the sensitivity of K_1 , and thus the resil-

ient modulus, to changes in moisture tension. In the cases where γ_d occurs in the expression for K_1 , typical values (1.6 Mg/m³ for Ikalanian Sand, 1.8 Mg/m³ for Hart Brothers sand) are used.

The curves in Figure 12 also give an indication of the increase in stiffness of the soils as recovery proceeds. Values along the y-axis, where $\psi = 0$, indicate K_1 values upon thaw. Recovery may be viewed as a steady progression to higher ψ levels as the soil drains, and K_1 steadily increases as a result.

The power to which the moisture tension function is raised gives an indication of how strongly the resilient modulus depends on moisture tension. Values of this exponent range from -1.57 for the Dense Graded Stone to -3.324 for the Ikalanian sand. For a given soil, there is only a small change in the moisture tension exponent when the modulus is expressed in terms of J_1 rather than J_2/τ_{occ} .

The slope of the K_1 versus ψ curves would be steeper if, for equations possessing a γ_d term, an increase in dry density were considered along with an increase in moisture tension. K_1 would then reflect the stiffening effect of both factors, and the resulting rate of strength recovery after thawing would be correspondingly greater.

a. J_2/τ_{oct} model.

Figure 12. K, versus moisture for all test soils.

K_2 values for all soils

Table 6 shows the values of K_2 , the exponent of the stress function, for all soils. Hyannis sand, Dense Graded Stone and Sibley till show the lowest values, indicating the least stress-sensitivity. The other soils are in the range of 0.418 to 0.53 / when J_1 is used and from 0.365 to 0.453 when J_2/τ_{oct} is used. For a given soil, K_2 generally tends to be somewhat lower when the stress is expressed in terms of J_2/τ_{oct} .

It is interesting that in the case of frozen Hart Brothers sand, where stress was found to be a significant factor, the exponent K_2 was close to the value found for the thawed state.

The frequency of loading, which varied significantly between the two load pulses, apparently has little effect on the value of K_2 when J_1 is considered for the stress function. The Hart Brothers sand data show a decrease in K_2 from 0.453 to 0.375 with an increase in the frequency of loading when $J_2/\tau_{\rm col}$ is considered.

Table 6. Stress function exponents (K_2) from regression analyses.

		Stress function		
		T _{OC1}	J,	J ₂ /T _{oct}
lkalanian sand	Frozen Thawed Recovered	-0.382	† 0.490 0.537	† 0.442 0.442
Graves sand	Frozen Thawed Recovered	-0.682	† 0.462 0.418	† 0.414 0.4046
Hart Brothers sand	Frozen Thawed Thawed	† *	0.484* 0.453 0.457*	0.365* 0.453 0.375*
Hyannis sand	Thawed		0.3628	0.264*
Dense Graded Stone	Thawed		0.1725	0.136
Sibley till	Thawed	†	0.192	

Falling weight deflectometer (all others repeated plate bearing apparatus).

Earlier work (Cole et al. 1981) demonstrated that K_2 does not change appreciably with increasing values of K_1 (i.e., for a given soil, increasing moisture tension and density, where applicable, does not influence the value of K_2 significantly).

It is possible that this would not always be the case, and that the stress function exponent could change with, say, increasing levels of moisture tension. Thus, data sets should be examined closely, and if need be, K_2 should be expressed as a function of the appropriate independent variable.

Comparison of stress functions

The stress function J_2/τ_{oct} proved more effective than J_1 in some cases and equally effective in others. Three soils showed the most dramatic increases: natural subgrade (where R^2 increased from 0.67 to 0.76), thawed Graves sand (R^2 increased from 0.76 to 0.89) and thawed Hart Brothers sand (R^2 increased from 0.71 to 0.87). J_2/τ_{oct} produced marginally acceptable results for thawed Hyannis sand and thawed Sibley till where the use of J_1 did not result in acceptable correlation coefficients.

In the cases where J_2/τ_{cc} , proved successful, the soil showed a marked trend toward a decrease in resilient modulus with an increase in principal stress ratio σ_1/σ_2 , as well as the typical trend for an increase in modulus with bulk stress at a constant principal stress ratio.

Figure 13 demonstrates the response of the test data to the two stress functions. Figure 13a shows modulus as a function of J_1 for data from thawed Hart Brothers sand with $\psi = 5$ kPa. The applied stresses result in principal stress ratios of 1.5, 2, 2.5 and 3. Each cluster of points on the graph represents data obtained in tests where the confining pressure was held constant and the cyclic deviator stress σ_d was changed incrementally to achieve these four stress ratios. In this case as σ_d increases, σ_1/σ_3 and the bulk stress J_1 also increase, but, as seen in Figure 13, the modulus generally decreases. If, on the other hand, σ_d remains constant while σ_3 increases, σ_1/σ_3 decreases, J_1 increases and the modulus increases.

Given this behavior, we see that an adequate model of resilient modulus in terms of applied stresses must reflect the effect of stress ratio as well as bulk stress. The function J_2/τ_{oct} addresses this pattern in behavior as seen in Figure 13b. This figure shows the data from Figure 13a replotted in terms of J_2/τ_{oct} . It is evident that this stress function all but eliminates the systematic trends observed when J_1 is employed. Again, the utility of the function J_2/τ_{oct} stems from its sensitivity to the principal stress ratio as well as the bulk stress. Although we do not suggest that this stress function is of extremely wide applicability, it adequately represents soils exhibiting the observed behavior trends.

[†] Stress function not accepted into analysis.

Figure 13. Resilient modulus versus the two stress functions for Hart Brothers sand, specimen HB-4-2, $\gamma = 5$ kPa.

Data from soils that either do not exhibit the above mentioned trends or have sufficient scatter to obscure these trends, respond equally as well to both J_1 and J_2/τ_{oct} for the most part. One case, recovered Ikalanian sand, showed a slight drop (0.88 to 0.84) in correlation coefficient with the use of J_2/τ_{oct} .

SUMMARY

This paper presents methodology developed to evaluate the resilient characteristics of soils intended for use as road or airfield subgrades. Results from repeated-load triaxial tests in the laboratory lead to empirical relationships between the resilient modulus and the imposed stress state. These relationships also account for the effects of soil moisture as well as density and temperature where applicable.

Appropriate laboratory testing techniques allow for modeling the changes in resilient behavior that occur during the freeze-thaw-recovery cycle common to cold regions. This work details the equipment, testing methods and analytical techniques employed in all phases of this modeling process.

Appendices include a complete description of the repeated load triaxial testing procedure as well as the results from six soils from the road test sections of the Department of Public Works at Winchendon, Massachusetts. Laboratory characterization of the asphalt concrete and natural subgrade materials is also included.

A method used to characterize the strength recovery period by testing each specimen at successively higher levels of moisture tension is also given. Of particular importance to laboratory work are the triaxial cells developed for this work. The cells feature detachable bases that allow for retesting without remounting the specimen. The cells are also equipped to monitor the moisture tension level in the soil. This work uses moisture tension as the primary variable affecting a given soil's response to stress in the thawed state. Since moisture tension can be monitored in the field as well, it provides a convenient link between in situ observations and laboratory results.

CONCLUSIONS

The laboratory testing methods detailed in this report allow the determination of the resilient response of granular soils throughout a freeze, thaw and recovery cycle. Soil moisture tension proved to be a suitable quantity with which to monitor this recovery phase. The resilient modulus in the frozen state is a strong function of unfrozen water content, and applied stress becomes significant at temperatures close to the melting point. Most of the soils tested exhibited a significant loss of strength upon thaw, but strength was gradually regained as moisture drained from the soil during the recovery period.

The resilient response can be modeled by equations of the form

$$M_r = K_1[f(\sigma)]^{K_2}$$

using linear regression techniques to determine K_1 and K_2 . The coefficient K_1 is often found to be a function of soil moisture and occasionally dry density while K_2 is considered constant for a given soil. The analyses use either J_1 or $J_2/\tau_{oc.}$ as the stress function $f(\sigma)$. In general, higher correlation coefficients resulted with the use of $J_2/\tau_{oc.}$ because of its sensitivity to the influence of the principal stress ratio.

LITERATURE CITED

Bergan, A.T. and C.L. Monismith (1973) Characterization of subgrade soils in cold regions for pavement design purposes. Transportation Research Board Record 431, pp. 25-37.

Brown, S.F. and J.W. Pappin (1981) Analysis of pavements with granular bases. Transportation Research Board Record 810, pp. 17-22.

Chamberlain, E.J. (1983) Frost susceptibility of Soil. Review of index tests. USA Cold Regions Research and Engineering Laboratory, Monograph 81-2.

Chamberlain, E.J. and D.L. Carbee (1981) The CRREL frost heave test. *Frost i Jord*, NR22, pp. 55-62.

Cole, D.M. (1978) A technique for measuring radial deformation during repeated load triaxial testing. Canadian Geotechnical Journal, 15: 426-429.

Cole, D.M., L.H. Irwin and T.C. Johnson (1981) Effect of freezing and thawing on resilient modulus of a granular soil exhibiting nonlinear behavior. Transportation Research Board Record 809, pp. 19-26.

Cole, D.M. (1984) Modeling the resilient behavior of frozen soil using unfrozen water content. Presented at the Third International Cold Regions Engineering Specialty Conference, April 4-6, Edmonton, Alberta. American Society of Civil Engineers (unpublished).

Cole, D.M., G. Durell and E.J. Chamberlain (In press) Repeated load triaxial testing of frozen and thawed soils. *Geotechnical Testing Journal*.

Fredlund, D.G., A.T. Bergan and E.K. Sauer (1975) Deformation characterization of subgrade soils for highways and runways in northern environments. Canadian Geotechnical Journal, 12(2): 213-223.

Ingersoll, J. (1981) Laboratory and field use of soil tensiometers above and below 0°C. USA Cold Regions Research and Engineering Laboratory, Special Report 81-7.

Irwin, L.H. and T.C. Johnson (1981) Frost-affected resilient moduli evaluated with the aid of nondestructively measured pavement surface deflections. Presented at the Transportation Research Board Task Force Meeting on Nondestructive Evaluation of Airfield Pavements (unpublished).

Johnson, T.C., D.M. Cole and E.J. Chamberlain (1978) Influence of freezing and thawing on the resilient properties of a silt soil beneath an asphalt concrete pavement. USA Cold Regions Research and Engineering Laboratory, CRREL Report 78-23.

Johnson, T.C., D. Bentley and D. Cole (In prep.) Resilient modulus of freeze-thaw affected granular soils for pavement design and evaluation. Part 2. Field validation tests at Winchendon test sections. USA Cold Regions Research and Engineering Laboratory, CRREL Report.

Pappin, J.W. and S.F. Brown (1980) Resilient stress-strain behavior of a crushed rock. In Proceedings of the International Symposium on Soils Under Cyclic and Transient Loading, 7-11 January, Swansea, Wales, pp. 169-178.

Rada, G. and M.W. Witczak (1981) Comprehensive evaluation of laboratory resilient moduli for granular material. Transportation Research Board Record 810.

APPENDIX A: DETAILED TESTING PROCEDURES

This Appendix provides details of the testing equipment, calibration procedures, test operation and data reduction. A basic understanding of the principles of operation of a closed-loop, electrohydraulic test machine is required for a thorough understanding of some of the following methods. However, the bulk of the material deals with the triaxial cell set-up and specimen instrumentation. Specifications appear in English units since virtually all of the electronic devices and the testing machine itself are calibrated in that system. An English-SI conversion chart appears at the end of this appendix for the reader's convenience.

System overview

Figure 1 in the main text shows the two triaxial cells that were built for the repeated load tests. The large cell (Fig. 1a) provides for testing 6-in.-diameter, 15-in.-high specimens, while the small cell (Fig. 1b) is used for 2-in.-diameter, 5-in.-high specimens. The radial and axial deformation measuring systems, as well as the miniature load cells, are interchangeable. The load cells are of 200-, 500- or 10,000-lb capacity. The size and state (frozen or thawed) of the soil specimen determines the appropriate capacity load cell.

A system of four Linear Variable Differential Transformers (LVDTs) measures axial deformation. The cores of the LVDTs are mounted on miniature universal joints, which are in turn affixed to spring-loaded circumferential clamps. There are two clamps placed at the third points along the specimen length and two LVDTs measure the excursion of each clamp during load cycling. The outputs of each pair of LVDTs are averaged electrically and the resulting averages are combined to give a single output for the differential clamp movement. Resilient axial strain is then calculated by dividing this deformation by the distance between the two clamps. The sensitivity of this system may be adjusted in order to accommodate a range of material stiffnesses.

A system of three noncontacting displacement transducers (multi-VITs [Variable Impedance Transducers]) measures radial deformation at points about the center of the specimen. The three transducer outputs are added and recorded along with the axial deformation. This information allows the calculation of radial strain and hence Poisson's ratio.

The cell bases are equipped with a system for measuring soil moisture tension, as mentioned earlier in the text. This system provides a continuous monitor of the moisture tension. It must be kept free of entrapped air bubbles in order to perform properly, and the porous ceramic tip must remain saturated at all times.

A pressurized air system provides the confining pressure. It is regulated by a bleeding-type pressure regulator (accurate to 0.01 lb/in.²) and monitored by a dial type pressure gauge (accurate to 0.1% full-scale).

Testing is done on an MTS machine in LOAD control. The miniature load cell mounted in the triaxial cell serves as the machine's feed-back source. The machine receives a command signal from either the electro-mechanical device (Data Trak) or a digital function generator. The former device supplies the RPB (Repeated Plate Bearing device) waveform and the latter provides the FWD (Falling Weight Deflectometer) and haversine waveforms.

The axial and radial deformations and the axial load are all recorded on a multi-channel strip chart recorder. Representative loads and deformations are then taken for each set of test conditions from the strip chart recording. Stress and resilient strain levels are calculated from this information and these results are then tabulated, entered in a computer and analyzed by linear regression.

Calibration

Load cells

The miniature load cells should be calibrated periodically using a standard calibration load cell. Care should be taken to properly match the range of the calibration load cell with the cell to be calibrated. The sensitivities of the three cells are shown in Table A1.

Table A1. Load cell sensitivity.

Cell capacity (lb)	MTS range	Load range (lb)	Factor (mV/lb)
200	ı	0-200	50
500	I	0-500	20
10,000	111	0-2000	5

Note that range III for the 10,000-lb cell gives 20% of the cell's capacity as full-scale, whereas range I gives 100%.

Before the calibration load cell and the test load cell are fastened securely to the MTS piston, make sure that the correct range card is in the load dc conditioner. Each load cell has a range card associated with it to ensure the proper gain for each load cell. Follow the calibration procedure for the MTS model 440.21 dc conditioner located in the appropriate MTS manual.

LVDTs

The LVDTs that measure axial displacement are calibrated individually. Each pair shares a Shaevitz carrier amplifier, but each individual LVDT has a separate gain pot located in the averager circuit chassis. A calibration jig with a large micrometer head, accurate to 0.0001 in., is used to calibrate the LVDTs (Fig. Ala).

Place one LVDT from the upper pair in the calibration jig. Connect the pair to the cable marked no. 1. On the adder circuit box, move the no. 1 (upper) switch to "on" and the no. 2 (lower) and zero switches to "off." This isolates the output of the LVDTs to be calibrated. Connect the output from the adder to a digital voltmeter. Slide the

core into the barrel of the LVDT in the jig and adjust for 0 V output. Adjust the core with the micrometer until the desired full-scale displacement is obtained. Adjust the pot on the averager circuit that corresponds to the LVDT to obtain 2.5 V. If there is not enough adjustment in this pot, the gain adjust on the Shaevitz carrier amplifier must be adjusted. In this case, use the carrier amplifier gain for a coarse adjustment and the averager circuit pot for fine adjustment. Check several increments during calibration, such as 0.125 in., 0.075 in., 0.925 in., 0.005 in., to determine if the system is linear and adjust the averager pot to compensate for any discrepancies. Recheck full-scale displacement again. Repeat the operation for the second LVDT in the pair but do not adjust the carrier amplifier gain again since it will change the calibration of the first LVDT. Adjust only the pot on the averager circuit. Note that for the pair of LVDTs being calibrated, the core must be removed completely from the LVDT not mounted in the calibration jig.

The lower pair is calibrated exactly as was the upper pair. Hook the lower pair connector to the no. 2 output cable and turn the no. 2 switch on the adder circuit to "on," and the no. 1 and zero switches to "off." It is necessary to adjust all

a. LVDTs.

Figure A1. Calibration jigs.

b. Multi-VITs.

Figure A1 (cont'd). Calibration jigs.

LVDTs to exactly the same calibration factor. Each LVDT has its own core and they must not be interchanged or the sensitivity will change. The LVDTs must be calibrated frequently since they have a tendency to shift. It is good practice to calibrate them before each day's testing.

Multi-VITs

The radial displacement measuring devices maintain their calibration very well. They should be checked monthly, however, using the same calibration jigs that were used for the LVDTs. Since the target must be of the same shape and of the same material as that used during testing, use a plexiglass target with aluminum foil glued to it (Fig. A1b). Targets with either a 1- or 3-in. radius of curvature are used, depending on whether the 2- or 6-in. diameter samples are being tested. Adjust each multi-VIT to 1×10^{-4} in./mV using the calibration procedure given in the Kaman Sciences instruction manual.

Mounting specimen and installing instruments

The tests of both frozen and thawed soils employ essentially the same equipment, except that a cell base without a built-in porous ceramic tip is used for the frozen samples. This second type of

base has a thermocouple in place of the porous tip for directly monitoring the specimen temperature.

Before mounting, carefully measure and weigh the specimens. Drill a ¼-in. hole, approximately ½ in. deep, in the center of the bottom surface of the specimen to receive the porous tip. Carefully place the sample on the pedestal. Place a top cap on the sample. Next, install a latex membrane on the entire sample by first stretching the membrane on the inside of a 3-in. by 6-in. plexiglass cylinder and applying a vacuum to draw the membrane onto the walls of the cylinder; then slide the cylinder membrane over the sample. Releasing the vacuum will cause the membrane to fit tightly against the sample.

Remove the cylinder and secure the membrane to the top cap and the pedestal with O-rings. Set the triaxial cell base on the pedestal and set the Multi-VITs with mounts in their proper mounting bases. Place three 1-×2-in. aluminum foil targets on the sample so that the multi-VITs are centered on the targets. Applying silicone grease to the back of the target material sticks the targets to the membrane. Remove the multi-VITs and the cell base. Place another membrane on the sample in the same manner as the first, being careful not to disturb the multi-VIT targets. Place two more O-rings to secure the second membrane to the ped-

Figure A2. Specimen mounted on pedestal with membrane and multi-VIT targets in place.

estal and top cap. The sample is now ready for instrumenting (Fig. A2).

As noted above, the frozen 2-in. samples are to be mounted on solid aluminum pedestals that have thermocouples through their centers to monitor temperature. Drill a small hole in the center of the sample base and place the sample on the pedestal, aligning the thermocouple and the hole in the bottom of the sample. With a squirt bottle, apply a small quantity of water around the base of the sample to bond the frozen sample to the pedestal. Avoid saturating the sample. Place the top cap on the sample and then apply water along the top cap/soil interface. Allow the water to freeze for a few minutes and then place the membranes, O-rings and multi-VIT targets as on the thawed sample.

Keeping the pedestal clean helps to avoid any air leaks when the confining pressure is applied.

Cell assembly and instrumentation

Place an O-ring in the O-ring groove of the pedestal and install the base plate of the cell on the pedestal, aligning the three bolt holes. Secure with three allen-head bolts, tightening equally.

Screw the LVDT cores onto their respective stems on the LVDT clamps. These stems are connected to miniature universal joints which accommodate tilting of the circumferential clamps and thus prevent binding between the LVDT core and barrel. Place the two LVDT mounting rods into the mounting holes on the cell base. Place the two clamps around the sample, keeping each clamp at least 1 in. from the specimen end.

Placement of the clamps is critical (Fig. A3). It is important to leave enough space between them to get a gauge length of about 2 in. but also to keep them far enough away from the top cap and the pedestal to avoid end effects. A good rule of

Figure A3. Installation of cell base and LVDT core clamps.

thumb is to keep a 3-in. gauge length on a 5- to 6-in.-long, 2-in.-diameter sample, and a 9- to 12-in. gauge length on a 16- to 18-in.-long, 6-in.-diameter sample.

The clamps are held onto the sample with springs. Choose the stiffest spring that will not damage the sample. Use a vernier caliper to make fine adjustments to the clamp to achieve a uniform gauge length. Record this gauge length along with the sample measurements (see Fig. A4). Stagger the LVDT cores close to the LVDT mounting rods so that the double-hinged barrel mounts can easily reach the cores. The double hinged barrel mounts employ miniature ball bearings and precision-ground steel shafts. They allow complete freedom of movement in the horizontal plane but do not move vertically. Thus, as the specimen deforms and the LVDT cores move laterally, the barrels move laterally as well. Thus, alignment is maintained and binding between the core and barrel is avoided.

Install the bottom LVDT barrels onto the mounting rods, matching the serial number of the core to that of the barrel. Slide the barrel over the core using caution not to disturb the circumferential clamps. There is a mark on the stem that the core is screwed into which is approximately the LVDTs' electrical zero. Slide the barrel to this point and tighten the set screw on the barrel mount, ensuring that the two hinges of the barrel mounts are able to rotate freely. Attach the LVDT connector to the corresponding connector on the cell base. Repeat the procedure for the upper LVDTs (Fig. A5).

Install the multi-VIT mounting rods in the numbered holes in the cell base that corresponds to the multi-VIT number. Adjust the multi-VITs so that they are perpendicular to the targets on the sample and tighten the set screw at the base of the multi-VIT mounting rod. Install the twin BNC connector for each multi-VIT in the cell base. The sample is now fully instrumented (Fig. A6). Be-

LVDT FACTOR: 5×10^{-5} in./mV

SAPLE #: TWB Subgreacle LA

 $L_0 = 3.150 \text{ in}$

DATE: 28 June 83

 $D_0 = 1.969 \text{ in.}$

TEMPERATURE: Room

 $A_0 = 3.043 \text{ in.}^2$

MOISTURE TENSION: 5 cban

Nominal	Recommand <u>defo</u>		Gauge length		Resilient deformation Resilient		
stress (lb/in. ²)	chart reading	(x10 ⁻⁴ in.)	L _g (in.)	chart reading	(x10 ⁻¹ , in.)	strain (x10 ⁻⁴)	
σ ₃ = 1	3 may	2	D = 1.969	0.5 mgV	0.333	$\varepsilon_{\mathbf{r}} = 0.169$	μ = 0.237
o _d = 0.5	2 mV	1	L _o = 3.150	4.5 m√V	2.250	$\epsilon_{A} = 0.714$	$M_r = 7.36 \times 10^3 \text{ lb/in.}^2$
							M = 50.75 MPa

$$(P = 1.16 \text{ lb}, A_0 = 3.043 \text{ in.}^2, \sigma_d = 0.526 \text{ lb/in.}^2, \sigma_d = 3.625 \text{ kPa})$$

Figure A4. Repeated load triaxial test data sheet.

Figure A5. Installation of LVDT barrels.

Figure A6. Installation of multi-VITs.

fore placing the cell cylinder over the sample, check that the LVDT wires do not restrict the motion of the LVDTs in any way.

Final cell assembly

Retract the three micrometers in the wall of the plexiglass cylinder. Install an O-ring in the groove of the cell base and place the cylinder over the sample and onto the base. Align the micrometers to the butt end of the multi-VIT mounts. Screw the three long-threaded rods into the outside rim of the cell base.

A miniature load cell that is capable of measuring the maximum load expected for the test is now bolted onto the loading piston of the top plate. Install a load button on the load cell and connect the load cell output to the bulkhead connector in the top plate. Place an O-ring in the O-ring groove of the top plate and place the top plate on the plexiglass cylinder, aligning the three holes with the

threaded rods. Carefully seat the top plate on the cylinder and uniformly tighten three nuts on the threaded rods (see Fig. A7).

Adjust the micrometer in the cylinder wall to bring the multi-VITs toward the target on the sample. The multi-VITs are calibrated for a range of 0.10 in. but they are most linear over the first 0.05 in. Turn the micrometer to place each multi-VIT approximately 0.05 in. from the target.

This completes the specimen mounting and cell assembly procedure. It is essentially the same for the frozen and thawed cases, with the exception of the type of pedestal used. For the frozen specimens, all hardware should be brought to the test temperature before the specimen is mounted.

Allow 12 to 24 hours for temperature equilibration between frozen tests, depending upon the magnitude of the temperature change. Generally, begin testing at the lowest temperature indicated in the field test results.

Figure A7. Fully assembled cell.

Moisture tension regulation

Thawed specimens are tested at up to four levels of moisture tension. The range of values is determined from field tensiometer data. A vacuum is applied to the cell drainage system and the specimen is drained until the desired level of moisture tension is achieved. Begin at the lowest level of moisture tension (generally upon thaw) and do tests at increasing tension levels. Keep the vacuum applied during load cycling to maintain a constant moisture tension level.

Currently, a manometer calibrated in cm of Hg is used to regulate the vacuum supply. (Note 1 kPa = 0.75 cm of Hg). The 2-in.-diameter, coarsegrained specimens equilibrate within 2-3 hours, while the 6-in. diameter specimens require up to 24 hours.

Test operation

The MTS machine is a very complex system and the operator should become familiar with its operation before installing any samples in the load frame. Prior to placing the triaxial cell in the MTS load frame, the hydraulic fluid must be warmed up. Turn on the MTS console, select "stroke" control, and place the hydraulic supply on high pressure. Adjust the material test generator for a 1-Hz sine wave. Adjust "Span I" for a 1-V cyclic wave and let the piston cycle for 20 minutes to bring the system to operating temperature.

A shearing device is installed on the piston for testing 2-in. samples to protect the load cell. Screw this device on the end of the MTS piston. Position the crosshead (with the piston fully extended) so that the triaxial cell is out of range of the piston, and the only possible contact is with the cell piston. This will prevent any damage to the triaxial cell in the event of error.

With the hydraulic supply off, install the triaxial cell in the load frame so that the MTS piston and the cell piston are offset. Connect the confining pressure supply to the top plate of the triaxial cell by means of the quick-connect coupling. Supply air to the confining pressure regulator and adjust the regulator for the desired pressure by monitoring the pressure gauge. Connect the load cell cable that goes to the MTS console to the connector on the top plate of the triaxial cell. Select load control and adjust the zero pot on the load dc conditioner for 0.00-V output. Place the hydraulic supply on high pressure and adjust the set point to retract the piston. Slide the triaxial cell to align the two pistons. Lower the MTS piston slowly with the "set point" control so that the two pistons come in contact. Adjust the "set point" so that a slight dead load of ½ lb is applied to the sample. Connect the LVDT and multi-VIT cables to their respective mating connectors on the cell base.

Before testing, make a table of all stress levels desired. This is done by converting the deviator stress to a millivolt output.

$$V_{\rm out} = \sigma_{\rm d} A_{\rm o} x K$$

where σ_d = deviator stress (lb/in.²)

 A_{\bullet} = sample area (in.2)

K = load cell sensitivity (mV/lb)

 V_{out} = output from load cell (mV).

The table should also include the confining stress σ_3 , the strip chart recorder range, and the number of divisions on the strip chart for the desired σ_d (see Table A2). The choice of stress values depends on the type of test and sample to be run. Refer to the stress tables given in the text.

A thawed test on a 2-in. sample will be used as an example. Place the cell in the MTS with $\sigma_1 = 1$ lb/in.² and a ½-lb dead load on the sample. Start the strip chart recorder with a chart speed of 0.05 mm/s. From the stress level table, set the recorder range on channel 1 to 250 mV full-scale. Use channel 2 to record the axial deformation (LVDTs). Turn on the no. 1 and no. 2 switches from the adder circuit and turn off the zero-adjust switch. Ad-

just the position and zero suppression controls for channel 2 on the recorder to bring the signal into range on the chart. If this procedure fails to bring the signal into range, turn the zero-adjust switch on the adder circuit to "on" and adjust the zero pot on the adder circuit. Place the channel 2 range control to 50 mV full-scale, which will give you 1 mV/division on the chart. Have the radial deformation (multi-VITs) on channel 3 on the recorder. Turn on all four switches on the multi-VIT averager circuit. Adjust the zero pot on the averager circuit to bring the signal on scale. Use the channel 3 position and zero suppression controls to zero the signal on the chart. Place channel 3 range switch to 50 mV full-scale. Position all zero signals at the left edge of their corresponding channels on the chart. Label the chart prior to testing, including all pertinent information (Table A3). The RPB and FWD load pulse waveforms are applied to the specimen as follows.

With Span II at zero, and the counter on the MTS at zero, start the Data Trak. Gradually turn the Span II control up to obtain the desired stress: $\sigma_d = 0.5$ kPa (see Table A2). For close scrutiny of each load cycle on the chart, press the divide by $100 \ (\div 100)$ switch and switch on the recorder; this

Table A2. Load for 2-in.-diameter samples using 200-lb load cell (50 mV/lb).

O3 Confining stress (lb/in.²)	od Deviator stress (lb/in.1)	Load for 2-in. samples (lb)	Load cell output (mV)	Recorder range (mV full-scale)	Number of divisions
1	0.5	1.57	78.5	250	15.7
	1	3.14	157.0	500	15.7
	1.5	4.71	235.5	500	23.5
	2	6.28	314.0	1,000	15.7
	2.5	7.85	392.5	1,000	19.6
2	1	3.14	157.0	500	15.7
	2	6.28	314.0	1,000	15.7
	3	9.42	471.0	1,000	23.5
	4	12.57	628.3	2,500	12.5
	5	15.71	785.4	2,500	15.7
4	2	6.28	314.0	1,000	15.7
	4	12.57	628.3	2,500	12.5
	6	18.85	942.5	2,500	18.8
	8	25.13	1256.6	2,500	25.1
	10	31.42	1570.8	5,000	15.7
10	5	15.71	785.4	2,500	15.7
	10	31.42	1570.8	5,000	15.7
	15	42.12	2356.2	5,000	23.6
	20	62.83	3141.6	10,000	15.7
	25	78.54	3927.0	10,000	19.6

Table A3. Strip chart label information.

		2	3
Device	Load cell, 200-lb capacity	LVDTs 0.25-in. range	Multi-VITs
Factor	50 mV/lb	5×10 ⁻⁵ in./mV	6.67 × 10 ⁻⁵ in./mV
Chart sensitivity	5 mV/division	1 mV/division	1 mV/division
$\sigma_3 = 1.0 \text{ lb/in.}^2$		DATE	
$\sigma_{\rm d} = 0.5 \rm lb/in.^2$		TEST NO.	
$\psi = 1 \text{ cbar}$	·	SPECIMEN NO.	

increases the chart speed to 5 mm/s. Allow three or four cycles to pass and press the ÷100 switch again to slow down the chart. (Note: the counter registers 1 count for each 3 cycles of an RPB cycle). Check the chart to see that the signals are all going to the right. Continue the test for 60 counts on the counter, speeding up the chart at 30 and 60 counts to monitor the signals. Stop the Data Trak at zero load.

Carried State Contract

Program the material test generator as follows to obtain the FWD pulse:

340 module 28 ms	inv trig ~
341 module	2 s off
342 module	2 s cont (press start to run test and off to stop)

Start the program and increase the Span I control to obtain $\sigma_d = 0.5$ kPa. Run the chart at 1 mm/s and periodically press the $\div 100$ switch to expand the chart tracings to review the FWD signals. Run the test for 20 pulses, expanding the time scale at the beginning and end of the test, then stop the signal generator. There are filters on the strip chart recorder that must be set on at least 50 Hz during the FWD pulses so that the signals are not attenuated. These filters can be set on 5 Hz for the slower Data Trak pulses to eliminate any noise; noise is common on the LVDT channel.

Data reduction

Data reduction is done during testing. After each axial stress level is applied, reduce the data using the following formulas (1-19) and record the data on the data sheet (Fig. A4). Once some experience is obtained, the next deviator stress can be running while data are being reduced for the preceding test. This saves a considerable amount of time.

The baselines of the LVDT and multi-VIT data correspond to the residual deformations (see Fig. A8), while the pulses' height corresponds to the resilient deformations of the sample.

The circled numbers indicate the numbers on the chart (Fig. A8).

Fill in the top portion of the chart with all pertinent information: L_o , the gauge length between the circumferential clamps; sample diameter d; A_o = sample area $(D_o/2)^2\pi$; LVDT factor = LVDT sensitivity 0.250 in./2500 mV = 0.5 × 10⁻⁴ in./mV. σ_d in the left column denotes the nominal deviator stress, whereas items 15 and 16 in chart 2 give the actual deviator stress in lb/in.² and kPa.

- 1. Divisions of multi-VIT baseline from zero at end of the test times the channel sensitivity: 3 div \times 1 mV/div = 3 mV.
- 2. Multi-VIT sensitivity times baseline voltage: $(0.667 \times 10^{-4} \text{ in./mV}) \times 3 \text{ mV} = 2 \times 10^{-4} \text{ in. This}$ number denotes residual radial deformation.
- 3. D_o plus residual radial deformation: 1.969 in. $+ 2 \times 10^{-4}$ in. = 1.969 in.
- 4. Divisions of multi-VIT pulse at end of test times the channel sensitivity: 1 div \times 0.5 mV/div = 0.5 mV.

Figure A8. Typical strip chart recording.

- 5. Multi-VIT sensitivity times pulse voltage: $(0.667 \times 10^{-4} \text{ in./mV}) \times 0.5 \text{ mV} = 0.333 \times 10^{-4} \text{ in.}$ This number denotes resilient radial deformation or Δd .
- 6. $\Delta d/D_{\bullet} = 0.667 \times 10^{-4}/1.969$ in. = 0.169 × 10^{-4} ; this denotes resilient radial strain or ϵ_r .
- 7. Divisions of LVDT baseline from zero at end of test times the channel sensitivity: $2 \text{ div } \times 1 \text{ mV/div} = 2 \text{ mV}$.
- 8. LVDT sensitivity times baseline voltage: 0.5×10^{-4} in./mV \times 2 mV = 1.0×10^{-4} in. This denotes residual axial deformation.
- 9. L. minus residual axial deformation: 3.150 in. -1.0×10^{-4} in. =3.150 in.
- 10. Divisions of LVDT pulse at end of test times the channel sensitivity: $4.5 \text{ div} \times 1 \text{ mV/div} = 4.5 \text{ mV}$.
- 11. LVDT sensitivity times pulse voltage $(0.5 \times 10^{-4} \text{ in./mV}) \times 4.5 \text{ mV} = 2.250 \times 10^{-4} \text{ in.}$ This denotes resilient axial deformation ΔL .
- 12. $\Delta L/L_o = 2.250 \times 10^{-4}$ in./3.150 in. = 0.714×10^{-4} . This denotes resilient axial strain, ϵ_A .

- 13. Load pulse height in divisions times channel sensitivity divided by the load cell sensitivity gives the axial load P: 16 div \times 5 mV/div + 50 mV/lb = 1.6 lb = P.
- 14. A_o . Note: If D_o increases during the test, calculate a new A_o .
- 15. $\sigma_d = P + A_0$; 1.6 lb + 3.043 in.² = 0.526 lb/in.² This number is the actual σ_d in lb/in.²
- 16. $\sigma_{d(kPa)} = \sigma_{d(lb/in.^{\circ})} \times 6.895$: 0.526 lb/in.² × 6.896 kPa/lb in.⁻² = 3.625 kPa. This is the actual σ_d in kPa.
- 17. $\mu_r = \epsilon_r / \epsilon_A$. 0.169 × 10⁻⁴ ÷ 0.714 × 10⁻⁴ = 0.237. μ_r is the resilient Poisson's ratio.
- 18. $M_{r(lb/in.^4)} = \sigma_d/\epsilon_A$. 0.526/0.714×10⁻⁴ = 7.36×10³ lb/in.² $M_{r(lb/in.^4)}$ denotes the resilient modulus in lb/in.²
- 19. $M_{r(\text{kPa})} = M_{r(\text{lb/in.}^{1})} \times 6.895$. 7.36 lb/in.² × 6.895 kPa/lb in.⁻² = 50.75 MPa. $M_{r(\text{MPa})}$ denotes the resilient modulus in MPa.

This data reduction must be done for each set of applied stresses and the same procedure is followed regardless of the load waveform.

CONVERSION FACTORS: U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

These conversion factors include all the significant digits given in the conversion tables in the ASTM *Metric Practice Guide* (E 380), which has been approved for use by the Department of Defense. Converted values should be rounded to have the same precision as the original (see E 380).

Multiply	Ву	To obtain
inches	25.4	millimetres
square inches	0.00064516	square metres
pounds (mass)	0.4535924	kilograms
pounds (force) per square inch	0.006894757	megapascals

APPENDIX B: MOISTURE RETENTION CURVES FOR THE SIX WINCHENDON TEST SOILS

(1 cm water = 98.0638 Pa)

Figure B1. Graves sand (specific gravity = 2.73, dry density = 1.584 g/cm^3).

Figure B2. Dense Graded Stone (specific gravity = 2.80, dry density = 1.941 g/cm^3).

Figure B3. Hart Brothers sand (specific gravity = 2.78, dry density = 1.76 g/cm^3).

ASSESSED CONTRACT CONTRACTOR TOURISM SERVICES SERVICES TOURISM CARACOC TOURISM BY SERVICES

Figure B4. Ikalanian silt (specific gravity = 2.67, dry density = 1.611 g/cm³).

Figure B5. Hyannis sand (specific gravity = 2.67, dry density = 1.652 g/cm^3).

Figure B6. Sibley till (specific gravity = 2.75, dry density = 1.971 g/cm³).

APPENDIX C: REPEATED LOAD TRIAXIAL TEST RESULTS FOR ALL TEST SOILS

Sibley till

Thawed, RPB waveform

Confining pressure (kPa)	Deviator atreas (kPa)	Radial strain x10	Axial atrain x10	Resilient Poisson's ratio	Resilient modulus (MPa)	Dry density (Mg/m ³)	Moisture content (%)	Moisture tension (kPa)
6.9	3.3 7.1 9.5	0.220 0.659 1.698	0.698 1.814 2.617	0.315 0.363 0.420	47.8 39.4 36.4	1.926	12.80	5.0
15.ผ	14.3 7.1 14.3 20.0	2.196 0.549 1.647 3.293	4.538 1.396 3.317 5.416	0.484 0.393 0.497 0.668	31.5 51.1 43.1 36.9			
27.6	14.3 27.3	0.549 3.d40	2.447 5.952	0.224	58.3 45.9			
6.9	3.6 6.7 10.0	0.220 0.440 0.879	0.591 1.391 2.261	0.645 0.372 0.316 0.389	60.5 48.0	1.930	12.00	8.0
13.H	6.7 14.3 13.8	0.330	1.044 2.784 2.088	0.389 0.316 0.395	44.3 63.9 51.4 66.2			
27.6	26.2	0.550 2.746	5.581	0.263 0.492	96.9	1 000		
6.9	3.6 6.8 10.4	0.115 0.230 0.459 0.918	0.333 0.767 1.400 2.168 0.734	0.345 0.360 0.328 0.423	109.3 88.1 74.3	1.920	11.00	16.0
13.8	13.5 6.8 13.5 20.8	0.344 0.689 1.377	0.734 1.668 3.003	0.469 0.413 0.459	62.3 92.1 81.0 69.2			
27.0	13.5	0.574	1.168	N. A91	115.7			
ń•9	3.4 7.0 10.4	0.115 0.230 0.344 0.574	0.200 0.535 1.002	0.472 0.575 0.430 0.343	168.8 131.1 103.7 101.1	1.957	10.40	29.0
13.8	13.5 7.0 14.0 20.8 27.3	0.230 0.459 0.803 1.377	1.336 0.568 1.236 2.004	0.405 0.371 0.401	123.5 113.5 103.7			
27.6	27.3 14.0 27.3 41.5	0.344 0.918	3.007 1.002 2.340 4.191	0.458 0.343 0.392	90.7 140.0 116.6			
6.5	3.4 3.3	2.294 0.664 0.220	0.416 0.276 0.346	0.547 1.596 0.797	99.1 81.3 121.3	1.696	11.80 10.50	9.0 25.0
13.8	13.4	0.220 0.770	1.453	0.636 0.530	193.0 91.9			
27.6	13.4 27.4 3.6	0.550 2.748 0.795	1.456 3.825 1.020	0.378 0.718 0.779	91.8 71.7 34.9	1.789	12.70	6.0
6.9 13.8 6.9	6.6 3.6	1.133	1.678	0.675 0.378	39.6 59.5	1.910	11.30	13.0
13.8	7.0 7.0 13.4	0.682	1.503 1.172 2.685	0.454 0.582 0.592	46.6 59.8 49.8			1000
27.6 6.9	14.0	1.590 1.135 0.795 1.022	2.019	0.562 0.530 0.392	69.3 69.9 53.6	1.939	10.80	18.0
15.8 27.6	14.0	1.813	2.609 3.344	0.593	60.8			
	14.0 26.6	0.454 1.928	1.171	0.388 0.522	119.3	1 040	10 70	29.0
6.9	3.4 7.0 10.5	0.113 0.227 0.340	0.269 0.738 1.118	0.420 0.308 0.304 0.270 0.353	127.4 94.6 93.6	1.948	10.30	27.0
	13.6 17.8 17.8	0.454 0.800 0.681	1.679 2.267 2.267	0.353	81.3 78.4 78.4			
13.8	7.0 6.9 14.0	0.227	0.638 8.638	0.356 0.356	109.4 108.0 88.5			
	14.0 20.9	0.454 0.340 0.681	1.578 1.578 2.586	0.288 0.215 0.263	88.5			
27.6	27.9 13.6	1.361	3.868 1.245	0.263 0.352 0.182	81.0 72.2 109.6			
6.9	27.9 3.4 7.0	1.020 0.113 0.453	2.881 0.668 1.413	0.354 0.169 0.321	96.9 51.2 49.2	1.951	12.80	5.0
	10.8 3.4 7.0	1.020 0.227 0.680	2.907 0.733 1.900	0.351 0.310 0.358	37.0 46.7 36.7	1.950	14.00	2.0

Confining pressure (kPa)	Deviator stress (kPa)	Radial strain x10	Axial atrain x10	Resilient Poisson's ratio	Resilient modulus (MPa)	Dry density (Mg/m)	Moisture content (%)	Moisture tension (kPs)
13.8	13.5 7.0 13.6	1.474 0.453 1.587 3.853 0.567	3.168 1.567 3.669	0.445 0.289 0.433	33.0 44.5 37.2		<u></u>	
27.6	20.5 13.9	0.567	1.036	0.563	30.0 75.9			
6.9	27.9	1.813	1.000	0.388	59.6 35.2	1.579	12.70	6.0
13.8	6.9	2.813 1.688	3.174 2.073 4.702	0.886 0.814	21.6 33.1			
27.6 6.9	13.0	4.480	0.267	0.953	27.6 130.6	1.595	11.50	11.0
15.8	10.3		2.169		68.4 47.3	*		
27.6	13.7 13.4		0.834 2.837 1.571	*****	82.1 48.3			
6.9	26.1 3.5		6.033		85.2 43.3			
4.7	6 · 8 10 • 6	0.225	0.67	0.337 0.337	174.3 102.7 79.3	1.845	11.00	17.0
13.8	13.7	0.674	2.168	0.311 0.198	63.2			
	13.7 19.9	0.112 0.337 1.011	1.668	0.202 0.337	120.8 82.1 66.3			
27.0	19.9	0.899 0.225	3.003 3.337 1.335	0.269	59.7 102.5			
6.9	26 • 8 6 • 8	1.011	3.341 0.601	0.303	80.1 113.9	1.890	10.30	30.0
	10.0 13.7	0.337	1.169	0.288 0.244	85.2 74.5			3000
	17.4 17.4	0.786 0.674	2.841 3.175	0.277	61.3 54.9			
13.8	6 · B 13 • 6	0.112 0.449	0.468 1.571	0.239	146.3 86.8			
27.6	20.5 27.4 13.7	0.899 1.572	2.508	0.309 0.336	70.6 58.5			
6.9	27.4	0.225 0.786	2.844	0.269 0.276	163.8 96.2			
□ • 9	6 · 8 1 0 · 3	0.337 1.011 1.909	0.837 2.175 3.515	0.403 0.465 0.543	40.1 31.5 29.2	1.922	14.00	2.0
13.8	6.8	0.449 3.815	1.339	0.335 0.599	51.1 31.2			•
27.6	13.7 27.3	0.786 2.917	2.010	0.391 0.463	68.0 45.3			

Frozen, RPB waveform

Confining pressure (kPa)	Deviator stress (kPs)	Axial atrain x10	Resilient modulus (GPa)	Dry density (Mg/m ²)	Moisture content (%)	(°C)
27.6	27.3 40.4 54.7	0.029 0.059 0.118	7.43 6.85 4.63	1.827	12.52	-0.5
48.3	68.9 23.8 47.5 71.3 95.1	0.177 0.029 0.103 0.206	3.90 8.20 4.62 3.46			
68.9	95 • 1 66 • 6 133 • 1 199 • 7 66 • 4	0.294 0.177 0.530 0.685 0.103	3.23 3.76 2.51 2.26 6.64	1 007	10.50	
48.3	136.8 202.2 47.5	0.324 0.588 0.074 0.118	4.22 3.44 6.43 6.04	1.827	12.52	-1.0
27.6	71.3 95.0 27.3 40.4 54.7	0.192 0.015 0.044 0.088	4.95 18.23 9.19 6.21			
68.9	68.4 101.1 136.8 208.1 273.5	0.029 0.059 0.074 0.132	23.58 17.14 18.49 15.77	1.827	12.52	-5.2
	344.9 475.7 624.3	0.147 0.191 0.324 0.515	18.61 18.06 14.68 12.12			
	68.4 101.1 136.8 208.1 273.5	0.029 0.029 0.059 0.088	45.59 34.86 23.19 23.65	1.827	12.52	-10.0
	273.5 333.0 475.7 624.3	0.147 0.191 0.294 0.441	18.61 17.43 16.18 14.16			

Confining pressure (kPs)	Deviator atress (kPa)	Axiel etra <u>is</u> x10	Resilient modulus (GPa)	Dry density (Hg/m ²)	Moisture content (%)	(°C)
27.6	27.7 41.0 53.0	0.059 0.177 0.295	4.70 2.32 1.80	1.886	11.96	-0.4
13.8	67.5 13.5 20.7 27.7 37.4	0.472 0.022 0.044 0.088 0.148	1.43 6.14 4.71 3.15 2.53			
46.3	24.1 48.2 72.3	0.177 0.044 0.251 0.531	2.32 5.48 1.92 1.36			
68.9	96.4 33.8 67.5 139.8 103.7	0.797 0.181 0.434 1.330 0.916	1.21 1.86 1.56 1.05 1.13 7.54			
	103.7 64.3 135.7 205.1 277.4 337.8 482.5	0.088 0.235 0.412 0.736 0.942 1.916	5.77	1.886	11.96	-1.0
48.3	602.7 48.2 72.3 96.4 120.5	2.715 0.044 0.088 0.118 0.148	3.77 3.77 3.52 2.52 10.96 6.27 8.14			
27.6	120.5 144.7 27.7 41.0	0.207 0.029 0.087	6.99 9.56 4.71			
68.9	55.4 135.1 202.7 265.4 337.8 482.5	0.118 0.059 0.088 0.118 0.176 0.324	4.70 22.90 23.03 22.49 19.19	1.886	11.96	-5.0
	603.1 69.3 105.5 138.6 207.2 349.6 482.2	0.441 0.636 0.059 0.674 0.118 0.146 0.207 6.310	13.68 23.16 17.88 17.36 17.36 18.73 15.85	1.686	11.96	-9.5
	349.6 482.2 602.7		18.73 16.89 15.55 16.16			

Graves sand

Thawed, RPB waveform

COMPANY TO SECOND TO SELECT TO SELEC

pressure (kPa)	stress (kPa)	str <u>ai</u> n x10	strain x10	Resilient Poisson's ratio	Resilient modulus (MPa)	Dry density (Mg/m ³)	Moisture content (%)	
6.9	3.55 3.60 103 17.9 113 103 103 103 113 113 113 113 113 113	0.331 0.828	1.430 0.828 1.641 3.503	0.1H0 0.236 0.256 0.255 0.111	24.2 41.8 37.6 29.6	1.457	23.50 21.50	3.0 6.0
13.# 27.6	17.3 6.9 21.6 28.0	1.653 0.165 1.323 2.148	6.479 1.481 5.930 8.371	0.255 0.111 0.223 0.237	26.8 26.6 46.6 36.4 33.5			
6.9	3.5 10.4 13.9	0.166 0.664 0.997 1.495	0.740 2.960 4.255 5.366	0.111 0.227 0.2231 0.2234 0.2234 0.2237 0.22054	54.9 47.1 35.3 32.7 32.5	1.547	18.50	10.0
13.8	17.4 13.9 21.8 28.3 34.8	1.163	3.238 5.183 6.484 8.343	0.205 0.224 0.282	43.0 42.0 43.6			
27.6	43.5	2.325 0.332 0.997 1.827 2.823 0.499	2.039 4.449 7.421	0 • 224 0 • 279 0 • 163 0 • 246	41.7 68.3 63.6 58.7			
69.0 6.9	56.6 54.8 3.5 6.9	0.499 0.166 0.332 0.663	3.354 0.552 1.379	0.292 6.149 0.120 0.134 0.180	58.5 103.8 62.9 50.4 42.0	1.550	16.00	15.0
13.8	13.9 17.4 13.9 21.7 28.2	0.829 0.332	2.760	0.180 0.180 0.120 0.225	37.8 37.8 50.3 49.1			
27.6	34.7 13.9 28.2	1.658 0.166 0.829	6.980 7.372 1.843 4.055	0.125 0.225 0.225 0.225 0.290	46.4 47.1 75.4 69.6			
6•9	43.4 56.4 3.4 19.1	1.327	6.822 9.232 1.607 4.663	0.195 0.234	63.6 61.1 20.9 21.7	1.448	25.00	2.0
13.8 27.6	13.4 20.9 13.4	3.258	6.305 4.326 7.260 2.179	0.517	31.D 28.8 61.5			
6.9	3.4 6.8 10.2	0.164 0.820 1.640	1.060 2.829 4.423	0 · 155 0 · 290 0 · 371	44.0 32.1 24.0 23.1	1.499	22.50	5.0
13.8	7634 103	2.622 0.328 1.147 2.294	7.451 1.952 3.726 7.105	0.155 0.290 0.371 0.376 0.352 0.168	24.0 22.7 34.7 36.4			
27.6	27.5 13.5 42.3	3.276 0.655	8.903 2.493 9.303 3.584	0.368 0.263 0.352	30.9 54.4 45.4			
69.0 6.9	10.3 13.7	0.655 0.494 0.658 1.316	1.819 2.812 3.811	0.308 0.368 0.3663 0.2553 0.1872 0.234 0.2345	94.4 37.7 36.5 35.9 32.4	1.524	19.50	9.0
13.8	17.1 6.8 13.7 21.3	0.329 0.822 1.480	5.265 1.634 3.268 5.085 6.907	0.201 0.252	41.8 41.8 42.0			
6•9	27.8 34.1 3.4 6.9	2.631	8.552 1.495 2.991	0.381	40.2 39.9 23.1 23.1	1.457	26.00	1.0
13.8	10.3 13.8 13.8 21.6	*****	4.225 5.814 3.704 6.351 8.304		24.5 23.7 37.3 33.9			
27.6	28.0 13.8 28.0		8.304 2.590 4.958		33.8 57.7 56.5			

Confining pressure (kPa)	Deviator stress (kPs)	Radial strain x10	Axial strain x10	Resilient Poisson's ratio	Resilient modulus (MPa)	Dry density (Mg/m ³)	Holeture content (X) 22.50 19.50 26.00 26.00	Moisture tension (kPa)
	43.1		7.975		54.1			
6.9	3.5		0.976		35.4	1.517	22.50	5.0
	10.4		3.196		32.4			
13.8	34.6		8.357		32.7			
27.6	28.1		4.267		65.8			
	56 • 2 69 • 1		11.600		59.6			
69.0	34.6		3.034		113.9			
6.9	69 • 1 5 • 5		6.429 0.787		107.5	1.546	19.50	9.0
	7.0		1.671		42.0	100.0	.,,,,	
	10.5		2.557		41.2			
13.8	35.1		7.098		49.4			
27.6	14.0		1.873		75.0			
	70.2		7.893 9.882		71.0			
69.0	35.1		2.768		126.8			
4 0	79.2		5.934		118.3	1.521	14.50	20 0
8.7	5.5	0.165	1.188	0.139	58.1	1.323	14.50	20.0
	10.4	0.330	1.979	0.167	52.3			
	13.8	0.496	3-563	0.179	48.4			
13.8	6.9	0.165	0.990	0:167	69.7			
	13.8	0.331	2.276	0.145	60.6			
	28.0	0.992	5.146	0.193	54.5			
	39.5	1.322	6.334	0.209	54.5			
27.6	13.8	0.661	1.386	0.196	99.6			
	43.1	1.157	5.542	0.209	77.8			
	69.0	2.148	8.914	0.241	. ? ? • •			
69.0	39.5 69.0	0.992	5.155	0.228 0.192	133.9			
6.9	ĭó.i	1.307	3.678	0.355	27.5	1.455	26.00	1.0
	13.5	2.123	6.140	0.346	22.0			
13.8	21.0	2.284	6.178	0.370	34.0			
27.	27.3	3.588	8.276	0.434	33.0			
6.9	3.3	0.163	1.104	0.3/3	30.3	1.470	22.50	5.0
	10.0	0.977	3.403	0.287	29.5			
13.0	16.7	1.790	6.039	0.296	27.7			
13.0	20.9	1.628	5.236	0.311	40.0			
	33.4	4.227	10.530	0.401	31.7			
21.6	27.1	1.300	4-455	0.291	60.9			
	41.7	2.600	7.094	0.367	58.8			
69.0	66.7	1.784	6.522	0.274	102.3	1 501	20.00	0.0
0.7	10.1	0.489	2.980	0.164	33.8	1.501	20.00	0.0
	13.4	0.652	4.046	0.161	33.1			
13.8	16.8	0-163	1.492	0.223 0.109	32.8			
1300	13.4	0.489	2.984	0.164	44.9			
	21.0	1.303	4.904	0.266	42.7			
	33.5	2.607	8.971	0.291	37.4			
27.6	27.2	0.978	4.487	0.218	60.7			
	91.9 54.5	2.933	9-632	0.269 0.305	57.7			
	41.9 54.5 67.0	1.955 2.933 4.559	7.268 9.632 12.240 3.006	0.269 0.305 0.372 0.163 0.177	56.6 54.7 111.4 36.4			
0700	33.5	0.489	3.006	0.163	111.4			
6.9	4.0	0.489 0.164 0.491	2.263		30.7 29.9	1.507	26.00	1.0
	10.1	0.981 1.636	3.707	0.265	27.4			
	15.5	1.636	7.013	0 • 305 0 • 350	25.2 24.1			
13.8	6.8	2.453 0.327	1.547	0.211	29.9 27.4 25.2 24.1 43.7			
	10.1 13.5 16.9 6.8 13.5 21.1	0.818 1.799	0.92637 0.72637 5.359 7.013 1.547 3.300	0.265 0.305 0.350 0.211 0.248 0.291	41.0			
	£ 1 • 1	** 177	0 . 1 7 1	0.271	34.1			

Confining pressure (kPa)	Deviator stress (kPa)	Radial strain x10	Axial strain x10	Resilient Poisson's ratio	Resilient modulus (MPa)	Dry density (Mg/m ³)	Moisture content (%)	Hoisture tension (kPs)
27.6	27.4 13.5 27.4 42.2 54.9	2.617 0.491 1.308 2.289 3.924	8.261 2.069 4.553 7.453 10.360	0.317 0.237 0.287 0.307 0.379	33.2 £5.3 60.3 56.6 53.0			
69.0 13.8	67.4 33.7 12.9 20.2	5.228 0.654 0.640 1.280	13.510 2.496 3.400 5.690	0.387 0.262 0.188 0.225	49.9 135.0 38.1 35.5			
27.6 6.9	26.3 3.3 6.6 9.8	0.960 0.322 0.644	4.373 0.670 1.819 3.046	0.220 0.177 0.211	60.1 48.9 36.0 32.3	1.487	20.50	7.0
13.8	13.1 16.4 6.6 13.1 20.5 26.6	0.806 1.128 0.322 0.484 0.967 1.611	4.023 5.176 1.342 2.876 4.990 6.728	0.200 0.218 0.240 0.168 0.194 0.239	32.6 31.7 48.9 45.6 41.1 39.6			
27.6	32.7 13.1 26.6 40.9	1.932 0.322 0.805	8.671 1.734 4.241 7.722	0.223 0.186 0.190 0.208	37.7 75.5 62.7 53.0			
69.0	53.2 32.7	2.736	11.640 3.108 7.201	0.235 0.207 0.224	45.7 105.3 90.9			
6.9	65.4 3.3 6.5 13.1	1.610 0.161 0.483	0.498 1.595 3.291	0.101	65.7 41.0 39.8	1.501	16.50	13.0
13.8	16.4 6.5 13.1 26.6	0.644 0.162 0.322 1.127	4.589 1.297 2.694 5.591 7.391	0.140 0.125 0.120 0.202	35.7 50.4 48.6 47.5			
27.6	32.7 13.1 26.6 40.9 53.2	1.771 0.322 0.805 1.449 2.253 3.218	1.798 3.995 6.795 9.000	0.240 0.179 0.202 0.213 0.250	44.3 72.8 66.5 60.2 59.1			
6.9	65.4 6.6 9.9 13.1	0.484 0.968 1.613	12.020 1.656 3.130 5.158	0.268 0.292 0.309 0.313	54.4 39.7 31.5 25.5	1.501	25.00	2.0
13.8	16.4 6.6 13.1 20.5	2.259 0.323 0.968 1.613	6.453 0.830 2.581 5.166	0.350 0.389 0.375 0.312	25.5 79.2 50.9 39.7			
27.6	26.7 13.1 26.7 41.1	2.419 0.484 1.290 2.258	7.388 1.386 4.067 7.029	0.327 0.349 0.317 0.321	36.1 94.8 65.6 58.4			,

Thawed, FWD waveform

Confining pressure (kPs)	Deviator stress (kPa)	Radial strain x10	Axial etrain x10	Resilient Poisson's ratio	Resilient modulus (MPa)	Dry density (Mg/m ³)	Hoisture content (%)	Moisture tension (kPa)
6.9	3.5 6.9	0.062	1.430 3.050	0.217	24.2	1.457	23.50	3.0
	3.5 6.9 10.4 13.8 17.3	0.497 0.828 1.324	0.520 2.209 4.056 5.539 7.405	0.225 0.204 0.239 0.268	27.6 37.6 31.6 25.6 25.3 45.3	1.496	21.50	6.0
13.8	6.7 13.8 21.6 28.0 13.8	0.165 0.661 1.653 2.479	1.481 3.517 6.672	0.111 0.188 0.248	32.3			
27.6	13.8 13.8 43.1	0.331 1.157 1.983	9.304 2.647 5.585	0.266 0.162 0.207	30.1 67.4 24.7			
6.9	3.5 10.4 13.9 17.4	0.166 0.664 0.997 1.495	7.857 0.740 2.960 4.440 5.551	0.207 0.252 0.224 0.224 0.225 0.269	54.9 47.1 35.3 31.4	1.547	18.50	10.0
13.6	7.0 13.9 21.8 28.3 34.8	0.166 0.664 1.163 1.827 2.325	1.480 3.146 5.183 6.854 8.343	0.112 0.211 0.224 0.267 0.279	31.4 47.1 44.3 42.0 41.3			
27.6	15.9 28.3 45.5	0.332 0.997 1.827	2.039 4.635 7.421	0.163 0.215 0.246	68.3			
69.0	34.8	0.499	2.982	0.167	58.7 116.8			

Confining pressure (kPa)		Radial strain x10	Axial strain x10	Resilient Poisson's ratio	Resilient modulus (MPa)	Dry density (Mg/m ³)	Moisture content (%)	Moisture tension (kPs)
6.9	6.9 10.4 13.9	0.166 0.332 0.663	1.471 2.758 3.863	0 · 113 6 · 120 0 · 172	47.2 37.8 36.0	1.550	16.00	15.0
13.8	17.4 6.9 13.9	0.995 0.166 0.498	4.785 1.472 2.944	0.208 0.113 0.169 0.208 0.206	36.3 47.2 47.2 45.4			
27.6	727924447144942482698625538483718738149383843836037650373603756037650375603765037560376503765	1.824 0.166 0.829 1.327	6.448 8.109 1.843 4.423 7.375	0.225 0.090 0.187	43.8 42.8 75.4 63.8 58.9			
• 6.9	56.4 3.4 6.7 10.1	2.322	10.160 1.607 3.577 4.663	0.180 0.229	55.6 20.9 18.8 21.7	1.448	25.00	2.0
13.8	13.4 13.4 20.9		7.205 4.506 8.530		18 • 6 29 • 8 24 • 5			
27.6	13.4		2.723		49.2			
6.9	3.4 6.8 10.2	0.328 0.820 1.640	1.060 2.829 4.600	0.309 0.290 0.357 0.358	40.4 32.1 24.0 22.2	1.499	22.50	5.0
13.8	16.9 6.8 13.6	2.622 0.328 1.147	7.984 1.952 3.903	0.328 0.368 0.294 0.353 0.363 0.365 0.365 0.281	22.6 21.2 34.7 34.7			
27.6	27.5 13.5	3.440 0.655	9.793	0.351 0.263	29.8 28.1 54.4			
69.0	33.8	0.982	3.402	0.289	42.9 99.4			
6.9	3.4 6.8 10.3 13.7	0.164 0.329 0.658 1.316	0.907 1.814 2.721 4.174			1.524	19.50	9 • 0
13.8	6.8 13.7 21.3	0.329 0.622 1.644	1.452 3.268 5.449	0.181 0.2415 0.3327 0.2272 0.2522 0.3337 0.394	31.4 47.1 41.8 39.2			
6.9	34.1	3.945	10.010	0.337	35.5 34.1 24.5	1.457	26.00	1.0
0.7	10.3		2.991		23.1 23.5 22.4 23.3	1.457	26,00	1.0
	17.3		7.407		23.3			
13.8	13.8		3.704 6.528		37.3 33.0			
	28.0		8.304		33.8			
27.6	13.8		2.302		32.5 59.9			
	28.0 43.1		5.135 7.975		54.6 54.1			
6.9	56.1 3.5		11.550		48.5 35.4	1.517	22.50	5.0
	6.9 10.4		2.130 3.196		35.4 32.5 32.4	• • • • • • • • • • • • • • • • • • • •		
	13.8		4.263		32.4			
13.8	6.9 13.8 34.6		1.777 3.554 8.890		38 • 9 38 • 9 38 • 9			
27.6	34.6 28.1		8.890 4.623		38.9 60.8			
	28.1 43.2 56.2		4.623 7.115 9.793		50.7 50.7 57.4 55.4 113.9			
	56.2 69.1		12.490 3.034		55.4			
69.0	34.6 69.1		6.607		104.6			
6.9	69.1 3.5 7.0		0.787 1.573		44.6	1.546	19.50	9.0
	10.5 14.0		2.754 3.542		38.2			
13.8	7.0		1.378		50.9			
	21.9 35.1 14.0		4.726 7.492 1.873		46.4 46.8			
27.6	14.0		1.873		46.8 75.0 63.5			
	43.9 57.0 70.2		8.287 11.860		68 · 8 59 · 2			

Confining pressure (kPs)	Deviator atrese (kPa)	etr <u>ej</u> a	Axial strain x10	Resilient Poisson's ratio	Resilient modulus (MPa)		Maisture content (%)	Hoisture tension (kPs)
69.0	35.1 70.2	0.195	2.966	0.066	118.3 114.5			
6.9	3.5	0.165	0.594 1.188	0.139 0.167	58.1 58.1 52.3	1.523	14.50	20.0
	10.4 13.8	0.330	1.979 2.969 3.959	0.167	52.3 46.5 43.6			
13.8	17.3 6.9 13.8	0.661 0.165 0.496	1.188	0.167 0.139 0.209	58.1 58.1			
	21.6	0.661	4.157	0.209 0.159 0.193	51.9 54.5			
27.6	34.5 13.8 28.0	1.322	6.334 1.584 3.365	0.209	54.5 87.1			
	28.0 43.1	1.157 1.653	3.365 5.983 7.921	0.196 0.193 0.209 0.231	83.3 72.1 70.8			
69.0	56.1 69.0 34.5	2.148	0.311	0.231 0.228	74.1			
6.9	69.0	0.992	5.353	0 · 228 0 · 185 0 · 320 0 · 349	128.9 24.7 20.6	1.455	26.00	1.0
	13.5	3.426	6.549 8.217 3.701	0.349 0.417 0.309				
13.8	13.4 21.0 27.3 27.3	1.142 2.447 3.916	3.701 6.590 9.309	0.371	36.3 31.9			
27.6	27.3 42.0	2.447 3.916 1.632 3.263 9.489 0.977	4.764	0.343 0.314	29.3 57.3 40.4			
6.9	42.0 3.3 6.7	0.163 9.489	1.205	0.122	27.8	1.470	22.50	5.0
	10.0	0.977	3.403 5.026	0.203 6.287 0.292 0.323 0.253	29.5 26.6 27.7			
13.8	16.7	0.614	3.221	0.253	41.6			
27.6	33.4 13.3 27.1	0.488	2.228	0.219 0.279	58.2			
69.0	27.1 41.7 66.7	2.763 1.946	8.107	0.2923 0.2923 0.4119 0.2349 0.2349 0.289	51.4			
6.9	3.4	0.163	1.915	0-1010101010101010101010101010101010101	39.4 35.0 31.5	1.201	20.00	8.0
	15.4	6.₹15	3 · 133 5 · 115	0.213	35.0 32.8			
13.0	6.7 13.4	0.163	1.400 2.444	0.109 0.104	44.9 44.9			
	21.0	1.140	5.117 7.656	0.223 0.269	41.0 37.5			
27.L	27.2	2.776	8.971 4.731	0.218 0.218	37.4 57.9 54.5			
	54.5	3.421	10.060	0.340	54.2 48.0			
6° • 0 6 • <i>i</i>	33.5	0.489 C.164	2.791	0.175 0.166	120.0 32.8	1.507	26.00	1.0
	10.1 10.1	0.654	2.675 3.513	0.244 0.251	25.3 25.9 25.2			
15.8	16.9	2.617	7.632	0.343	22.1 41.0			
1301	13.5 21.1	0.981	3.507 6.191	0.28° 0.291	38.6 34.1			
	27.4 33.8	2.944 4.250	6.261 11.380	0.356 0.373	33.2 29.7			
27.6	13.5 27.4 42.2	0.027	4.760	0.150	53.0			
		1.616 4.2536 6.2536 0.6480 1.9180	8.272 11.400 15.590 3.120	0.516 0.373 0.419 0.210	5-0-1-20 			
69.0 6.0	33.7	G.640	2.6000	0.210	108.0 24.6			
15-8	673-69-12-23-68-11-11-11-11-11-11-11-11-11-11-11-11-11	1.280	4.151 7.018	0.300	23.4 28.8			
6.9	20.3 3.3		4.563 0.670 1.914	0.281	9/•9 48•9 34•3	1.487	20.50	7.0
	4 - 4 4	0.522 6.644 0.657	3.255	0.168 0.198 0.219	34.3 30.2 29.8 29.5			
	16.4	0.067	5.560	0.219	29.5			

Confining pressure (kPa)	Devistor stress (kPs)	Radial strain x10	Arial etrain x10	Resilient Poisson's ratio	Resilient modulus (MPa)	Dry density (Mg/m ²)	Hoisture content (%)	Hoisture tension (kPs)
13.ii	6.6 13.1 20.5 26.6	0.322 0.644 1.289 1.933	1.342 3.067 5.374 7.689	0 • 240 0 • 210 0 • 240 0 • 251	48.9 42.7 38.1 34.6			
27.£	52.7 26.6 40.9	2.577 0.966 1.932 3.219	10.600 5.204 8.108	0.243 0.186 0.238	30.5 51.1 50.5			
59• 0	53.2 32.7	0.644	11.650	0.276 0.195 0.236	45.6 99.1 96.1			
6.9	65.4 3.5 6.5 9.8	1.610 0.161 0.483	6.812 0.598 1.396 2.793	0.236 0.115 0.173	96.1 54.7 46.9 35.1	1.501	16.50	13.0
13.4	13.1 16.3 6.5	0.644 0.805 0.161	3.591 4.589 1.198	0.179 0.175 0.134	36.4 35.6 54.6			
	13.1	0.483 0.966 1.288	2.794 5.193 6.190	0.173 0.186 0.208	46.4 39.4 42.9			
27.6	26.6 32.7 13.1 26.6	1.931 0.322 0.966	7.990 1.798 4.396	0.242 0.179 0.220	41.0 72.8 60.5			
	40.9 55.2	1.610	6.994	0.230 0.241	58.5 53.2			
6.9	65.4 3.3 6.6	3.539 0.162 0.c45	13.020 0.736 2.024	0.272 0.220 0.319	50.2 44.7 32.5	1.501	25.00	2.0
	9.9 13.1	1.129	3.866 5.711	0.292 0.311	25.5			
13.4	16.4 6.6 13.1	2.582 0.323 0.568	7.375 1.291 3.319	0.350 0.250 0.252	22.3 50.9 39.6			
	20.5 26.7	1.935 2.983	6.273 8.312	0.368 0.349	32.7 32.1			
27.L	15.1	0.324 1.290	1.848 4.506	0.175 0.268	71.1 55.5			
49.5	41-1	2.580	8.324	0.310	49.3			

Recovered

Confining pressure (kPs)	Deviator stress (kPa)	Radial strain x10	Axial strain x10	Remilient Poisson's ratio	Resilient modulus (MPa)	Dry density (Mg/m ³)	Moisture content (%)	Moisture tension (kPa)
27 - 0 103 - 4 27 - 0 103 - 4 27 - 0 103 - 4 69 - 0	3.5 13.7 34.2 51.6 27.2 70.2 106.4 13.3	3.:76 0.517	1.155 3.467 5.533 5.535 8.338 12.773 14.732	3 • 14 4 6 0 0 • 14 4 6 0 0 • 14 6 0 0 0 • 12 0 0 0 6 2 0 0 0 • 18 2 0 0 0 • 18 2 0 0 0 • 18 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	336857 445 57435 5705 5705	1.420	17.45	12.0
27.6 69.9 103.4 59.0 27.6 69.0 103.4	135 135 135 1556 1556 1705 1051 1117	G.762 J.7514 D.7514 D.762 J.712 J.716 J.71	18.3296 59.290 59.290 59.290 59.290 59.290 59.290 51.29	0.312 0.122 0.267 0.127 0.177 0.450 0.261 0.217 0.450	5235240 52352440 12352440 123644 123644	1.430	16.79	12.8
69.0 27.6 69.0 103.4 27.6 69.6 103.4	100.7 13.7 34.0 52.2 6.8 27.9 71.3	3.444 1 0.543 0.706 1.657 0.664 1.660 2.414 1 3.720 1	2.121 2.907 4.264 2.013 6.272 0.328	0.256 0.312 0.251 0.251 0.250 0.265	36.7 70.6 117.0 1124.2 33.8 44.5 88.1	1.430	21.46	8 • 5
6.9 L).3 2.9 2.9 67.6 67.0 103.4 69.0	10.6 104.7 6.9 28.7 70.9 161.9	3.374 1 0.607 1.365 2.124 1 2.124 1	4.511 5.632 2.169 6.082 0.470 2.714 6.837	0.281 0.216 0.260 0.224 0.203 0.167 0.225	23.5 67.0 31.8 47.2 67.1 62.1	1.490	18.17	11.3

Frozen, RPB waveform

Confining pressure	Deviator stress	Axial stra <u>i</u> g	Rewilient modulus	Bry density	Moisture content	Temperature
(kPa)	(kPa)	x10_4	(GPa)	(Mg/m ³)	(%)	(°C)
·· 69.0	69.0 137.9 208.9 355.1 480.7	0.210 0.526 0.978 2.189	3.2H 2.62 2.14 1.62	1.290	31.00	-1.2
	344.9 480.7	1.470 2.313 0.262	2.35 2.08 5.39	1.298	31.00	-1.5
	141.1 209.0 344.9 627.0 480.7 809.9 209.0	2278677774690 25978677774499117460312432712000 2597867777449911773677100 2597777449911746037100 2597716224450 2597716224450 2597716224450 2597716224450	7.29 4.26 5.08 4.05	1.290	31.00	-2.8
	344.9 480.7 627.0	0.315 0.473 0.736	10.95 10.16 8.52	1.290	31.00	-5.0
	344.9 480.7 627.0 836.0	0.211 0.316 0.474 0.737	16.35 15.21 13.23	1.290	31.00	-9.2
	208.2 343.0	0.506 1.419 2.638 5.090 7.374	1.34 0.95 0.79 0.67	1.304	33.35	-0.5
	344.1 208.6 140.8	1.512 0.605 0.202 2.729	2.28 3.45 6.97 1.76	1.304	33.35	-1.5
	208.2 354.0	0.101	20.59	1.304	33.35	-3.1
	479.0 624.7	1.234 2.226	3.88 2.81	1.304	33.35	-2.7
	223468347945 68347945 68347945 68347945 68347945 68347945 68347775	0.253 0.606 1.011 1.922	13.58 7.90 6.18	1.309	31.99	-4.E
	135.7 199.7 347.1 457.5	1.921 12.921 12.496 12.547 12.	0.92 0.80 0.76 0.73	1.309	31,99	-0.5
	347.1 457.5 4504.6 470.8 47329.0 4715.0 4715.0 4715.4 4714.5	0.567 1.473 2.952 0.284	3.61 2.22 1.59	1.309	31.99	~1.5
	472.0 615.4 768.2	0.253 0.902 0.677 2.375	13.82 5.23 9.09 3.23	1.309	31.99	-3.5
	471.1 614.5 793.8	2.375 0.283 0.565 0.961	8.34 6.39 5.01	1.309	31.99	-5.1
13.8	28.7	1.584 0.086 0.172 0.086	3.34	1.306	29.70	-0.5
27.6	793.8 28.7 34.7 27.5 41.9 55.0	0.086 0.216 0.345 0.388	3.20 1.94 1.59			
69.0	102 · 8 102 · 8 138 · 7 172 · 2 205 · 7 2275 · 0 27 · 5	0.21458 0.3458 0.321476 0.77217 1.46128 0.1259 0.1259 0.2385 0.2385 0.2385 0.2385	82427589296855562551344597585769381280832063129823930491420493179402796832211225374549000023612988845913987762568202333030295721754321000000000000000000000000000000000000			
13.8	20.6 27.5 34.6	0.173 0.259 0.389	1.19	1.306	29.70	-0.2
27.6	34.6 27.5	0.259	0.89 1.06			

Confining pressure (kPa)	Deviator stress (kPa)	Axial atra <u>iq</u> x10	Resilient modulus (GPa)	Dry density (Mg/m ²)	Moisture content (2)	Temperature (°C)
69.0	41.8 55.0 69.3 34.6 69.3 102.7 138.6 172.0 205.5	0.518 0.777 1.166 0.345 0.950 1.583 1.902 2.685	0.81 0.71 0.59 1.00 0.73 0.74 0.73			

Frozen, FWD waveform

Confining pressure (kPa)	Deviator stress (kPa)	Axial strain x10	Resilient modulus (GPa)	Dry density (Mg/m ³)	Moisture content (Z)	Temperature
1,66	157.9 201.3 355.1 486.7	0.10 0.421 1.63	1 + 5 f 4 + 5 f 2 + 5 f	1.196	31.00	-1.8
	486.7	1.789 0.(30	. 65 . 65 . 47	1.290	31.00	-1.5
	627.6	1.052	4.57	1.240	31.05	-2.4
	627.9	1.578 5.531	5 • 3 C	1.290	31.00	-5.0
	127.5	0.526	11.52	1.250	31.00	-9.2
	344-97-0-0-9 344-9-6-0-9 34-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9	1.7.25573116.25905 1.7.25573116.25905 1.0.25573116.25905 1.0.25573116.25905 1.0.25573116.25905 1.0.25573116.25905	5.992771355356 11.992771355356 11.99571355356	1.304	33.35	-0.5
	344.1 255.6	12-5-5-7 0-4-25-7 12-5-5-7 0-4-25-7 0-4-20-5-7 0-4-20-5-7	1.33 3.75 5.16	1.364	33.35	-1.5
	474.00 5774.07 62374.07 62374.07 62374.07 62374.07 1147		5.16 5.39 17.50 5.92 4.12 6.78	1.304 1.304	33.35 33.35	-3·1
	833.0 479.0 624.7 635.3	1.416 2.624 0.707 0.710	0.66	1.304	33.35	-4.6
	125.7 199.7 347.1 467.7	1.416 1.132 1.359 1.32	5.88 1.20 1.47 1.50	1.309	31.99	-0.5
	327.6	2.554 0.566 1.362 0.564	5.79	1.309	31.99	-1.5
	327.6 470.0 472.0 615.4 819.4	U . b / /	3.37 9.04 4.85	1.309	31.99	-3.5
	819.4 614.5 617.4	0.248	7.25	1.309	31.99	-5.1
21.0 6.0	214.9 41.9 457.0 1038.7 175.2 203	0.216 0.059 0.345	155 00 4777 1010 1010 1010 1010 1010 1010 1	1.306	25.70	-0.5
., ••	138.7 172.2 205.7 235.2 275.0	10.25457 00.3417 00.35457 00.35963 10.277 10.17	20.658179759775977.			
15.0	235.2 275.0 20.6 27.5	0.173 0.216 0.302	1.19 1.27 1.15	1.306	29.76	+0.5
27.4	27.5 41.8 55.9 67.3	0.216 0.502 0.173 0.589 0.516	1.59 1.07 1.07 0.59			
6.1.6	34.6 69.3 102.7 132.6 172.9 205.5	0.302 0.561 5.864 1.211 1.158 1.733	1.07 0.55 1.12 1.14 1.14 1.10			

Hart Brothers sand

Thawed, RPB waveform

Confining pressure (kPs)	Deviator stress (kPs)		Axial strain x10	Resilient Poisson's ratio	Resilient sodulus (MPa)	Dry density (Mg/m ³)	Moisture content (%)	Moisture tension (kPa)
6.9	3.4 6.7		1.120		30 · C 23 · 9	1.651	17.50	2.0
13.8	10.1	0.979	4.697 1.692	0.208	21.4 39.7			
27.6	13.0 13.4	1.456	7.964 2.655	0.246	30.6 26.3 50.5			
	27.5	1.304 3.259	5.893 10.540	0.221 0.309	46.3 39.8			
6.9	3.5 6.9 10.4	0.994	0.954 2.299 3.840	0.432	36.3 30.2 27.0 23.9	1.723	10.00	5.0
13.8	13.8	2.646 0.331	5.78G 1.541	0.458 0.215	23.9 14.8			
	21.6 28.0	2.996 3.963	3.471 6.769 8.165	0.286 0.443 0.485	39.8 31.9 34.3			
27.6	14.2	0.660 1.981	2.139 4.671	0.309 0.424	66.4 59.9			
69.0	55.7 34.3	3.301 4.942 0.659	9.815 2.946	0.434 0.504 0.224	56.5 56.7 116.3			
6.9	72.8 102.7	2.307 3.952 1	6 • 4 8 3 1 0 • 8 6 0	0.335 0.364	105.8			
C • 7	13.9 17.3	1.325	4.724 5.908	0.281 0.280 0.224	30.6 29.4 29.4	1.788	8.20	8.0
13.8	6.9 21.7	1.657	1.575	0.350	44.0 45.9 42.4			
27.€	34.7 13.9	3.313	9.268 1.774	0.357	37.4 78.2 67.5			
	29.3 43.3 56.4	1.325 2.651 3.976	4.338 6.901 9.275	0.305 0.384 0.429	67.5 62.8 60.8			
69•Ú	69.3	5.299 1	2.963	0.447	58.4 120.5			
6.7	108.2	1.325 1	10.290 0.766	0.129	113.0 105.2 44.9	1.778	7.10	13.0
	6.9 10.3 13.6	0.660	1.642	0.251	44.9 41.9 39.2 36.9		*****	
13.8	17.2	1.650	1.206	0.342	35.6 57.0			
	21.5 34.4	1.650	2.959 4.605 8.121	0.335 0.358 0.366	46.5 46.7 42.3			
6.9	3.4 6.8	0.327	1.097	0.298	30.8	1.793	20.00	1.0
4 = -	13.5 16.4	1.635	5.596 6.601	0.292 0.347	25.4 24.1 24.8			
13.8	13.5 21.1	0.327 1.144 1.634	1.900 3.800 5.402		35.5 35.5 39.0			
27.6	27.4 35.7	2.288 3.593	5.402 7.010 9.023 2.205	0.326 0.398	39.1 37.3			
2110	27.4 42.1	1.470	4.411 6.822	0.353	61.1 62.0 61.7			
69•G	67.3	4.570 1	9.043 1.090 2.823	0.433 0.412 0.347	60.7			
6.9	33.6 67.3 3.4	1.959	5.647 0.503	0.347	119.2 119.2 67.5	1.820	8.80	6.0
	6.8 10.2 13.6	0.328 0.656 0.984	1.610 2.716 3.622	0.204 0.242 0.272	42.2 37.5 37.5			-
15.H	17.0 6.8 13.6		3.622 4.829 0.805	0.272	35.1 84.3			
	21.2	0.984	2.213 4.225	0.233	50.2			

pressure	Deviator stress	Radial strain	Axial strain	Resilient Poisson's	Resilient modulus (MPa)	Dry density	content	Moisture tension (kPa)
(kPa)	(kPa)	×10	X10	Tatlo	(Mra)	(Mg/M)	(%)	(KPA)
	27.6	1.640	3.535	0 0 6 7 1	7007			
27.6	33.9 13.6	2.295	6.847 1.309	0.333	49.6 103.7			
2.00	27.6	1.148	3.426	0.335	80.5			
	42.4 55.2	1.968	5.844	0.337	72.6			
	67.9	2.951 3.935	7.460 9.076	0.396 0.434	73.9 74.8			
69.0	33.9 70.0	0.628 1.476	2.219	0.370	153.0			
6.9		1.476	4.843 0.389	0.305	144.6	1 020	7.60	10 0
0.0	3 • 4 6 • 8		1.264		53.8	1.028	7.60	10.0
	10.2	0.328 0.985 0.821	2.042	0.161	50.0			
	13.6 17.0	0.945	2.724 3.113	0.316	50.0 54.6			
13.8	21.3	0.821	2.918	0.316 0.281	72.9			
	27.6	1.149	3.893	0.295	71.0			
27.6	34.0 27.7	1.149 1.477 0.821 1.313 2.298 2.953	5.062 2.434	0.292	67.2 113.9			
	42.5	1.313	3.496	0.337	109.1			
	55.3 68.0	2.228	6.238	0.368 0.378	88.6 87.1			
69.0	34.0	0.492	7.806 1.171	0.420	290.3			
	4 D . N	1.412	3.125	0.420	217.5	4 445		
6.9	3.5	0.165	0.217 0.870	0.190	159.3 79.5	1.865	7.00	14.0
	16.4	0.331	1.304	0.254	79.5			
	13.8	0.497	1.739	0.286	79.5			
13.8	17,3 6.9	0.165 0.331 0.497 0.662 	0.652	0.254 0.286 0.305	79.5 106.0			
	13.8	0.497	1.522	0.327	90.9			
	21.6 28.1	0.993 1.323	2.392	0.415 0.406	90.3 86.1			
	34.6	1.820	2.392 3.262 4.350	0.418	79.5			
27.6	13.8	0.331	1.087	0.305	127.2			
	28 · 1 43 · 2	0.993 1.654	2.392	0.415 0.475	117.4 124.2			
		2.647	3.481 5.660 6.972	0.468	99.3			
	69 • 1 34 • 5	2.647 3.473 0.661 1.323 0.327 0.654 1.144	6.972 0.872 2.833	0.498 0.758	.99.1			
69.0	34.3 69.1	1.323	2.833	0.467	396.1 243.8			
6.9	3.4	=====	0.507		66.5	1.794	10.00	5.0
	6.7 10.1	0.327	1.319	0.248	51.2			
	13.5	1.144	2.436 3.249 4.470 0.914	0.268 0.352 0.293 0.358	41.5 41.5			
	16.9	1.144 1.308	4.470	0.293	41.5 37.7			
15.8	13.5	0.327 0.654	2,438	0.358 0.268	73.8 55.3			
	21.1	1.308	3.862	0.339	54.6			
	~~ .		3.862 5.693	0.402 0.379	48.1			
27.6	33.7 27.4	2.289 2.779 1.308 1.962 2.943 4.250	7.324 3.666	0.379	46.1 74.8			
2	42.2	1.962	5.704	0.344	73.9			
	54.8	2.943	8.155	0.361	67.2			
6.9			10.610	0.401	63.6 85.4	1.794	7.60	10.0
	10.1	0.490 0.816	2.069	0.237	48.8			
	13.5	0.816 0.979	2.758 3.547	0.296 0.276	48.8 47.4			
13.8	13.5	0.490	2.266	0.216	59.4			
	21.0	0.979	3.743	0.262 0.287	56.2			
	33.6	1.469	5.123	0.321	53.4 55.1			
27.6	13.5	0.327	1.380	0.237	97.5			
		0.979 1.463	3.155	0.310 0.285 0.322 0.368 0.221 0.254	~ ~ ~			
	54.7	2.285	5.126 7.101	0.285	77.0			
	27.5 42.1 54.7 67.3 63.6 6.8 10.2 117.0	2.285 3.265 0.653 1.306	8.879	0.368	821 778 7758 11317 7707			
69.0	23.6	0.653	2.960 5.132	0.221	113.7			
6.9	3.4		0.289		117:5	1.815	6.80	16.0
	6.8	0.328	0.289	0.378	78.5			
	13.6	0.657 0.985	1.445	0.455	70.7 64.2			
	17.0	0.985	2.304	0.393	0117			
13.8	6.8		0.867		78.5			

Deviator stress (kPa)	Radial strain x10	Axiel strein x10	Resilient Poisson's ratio	Resilient modulus (MPa)	Dry density (Mg/m ³)	Hoisture content (%)	Moisture tension (kPa)
13.65 217.66 227.66 2127.65 24.57.65 50.55	0.657 1.313 1.641 298 2.657 1.313 2.258	1.753 3.643 4.441 5.266 1.356 2.700 4.242 6.175	0.426 0.587 0.441 0.441 0.310 0.372	10000 10000 10000			
3.4 6.8 10.1 15.5	0.491 C.982 1.473	0.723 1.860 3.102 4.758	0.264 9.317	46.4 36.4 32.7 21.5	1.780	17.50	2.0
6.8 13.5 21.1 27.5	6.327 0.819 1.601 2.620	1.449 5.106 5.316 6.635	0.226 0.264 0.334 0.395	46.7 43.6 39.3 41.5 40.8			
13.5 24.5 55.0 67.6 53.8	0.491 0.962 2.456 3.928 5.888 0.654	4.568 7.066 8.742 11.890 1.774	0.263 0.215 0.348 0.449 0.495 0.365	62.5 59.9 62.9 56.8 190.4			
	(Pa)	(kPa) x10 13 - b - 1 - 13 13 1 21 - 5 - 1 - 13 13 2 21 - 5 - 1 - 13 13 2 22 - 6 - 1 - 13 13 2 23 - 6 - 1 - 13 13 2 24 - 5 - 5 - 1 - 13 13 2 27 - 5 - 5 - 6 - 1 - 13 13 2 27 - 5 - 5 - 6 - 1 - 13 13 2 27 - 5 - 5 - 6 - 1 - 13 13 2 27 - 5 - 5 - 5 - 1 - 13 13 2 27 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	atrees atrein x10 13.6 1.013 3.703 13.6 1.013 3.703 21.5 1.013 4.245 22.98 1.0313 4.245 23.98 1.0313 4.247 24.09 2.098 6.175 25.298 6.171 6.173 25.298 6.171 6.173 25.298 6.171 6.172 25.298 6.171 6.172 25.298 6.171 7.260 25.298 6.171 7.260 25.298 6.171 7.260 25.298 6.172 7.260 25.298 6.171 7.260 25.498 6.172 7.260 26.111 7.860 7.260 27.250 6.172 7.260 27.250 6.172 7.260 27.250 7.250 7.260 27.250 7.250 7.260 27.250 7.250 7.260 <	etress strain strain poisson's 13.6 0.057 1.753 0.379 21.3 1.313 3.05 0.426 27.6 1.441 4.241 0.367 24.9 2.98 5.266 0.441 27.6 1.441 0.441 0.447 27.6 1.513 4.242 0.310 27.6 1.313 4.242 0.310 37.6 1.313 4.242 0.310 37.6 2.298 6.175 0.372 3.42 0.312 0.372 0.340 3.42 0.312 0.372 0.312 3.42 0.312 0.312 0.312 3.42 0.312 0.312 0.312 42 1.473 3.162 0.315 16.9 1.473 3.162 0.315 16.9 1.473 3.106 0.326 13.5 0.527 1.449 0.326 21.1 1.401	stress strain strain poisson's modulus (kPa) x10 x10 ratio QPa) 13.b 0.057 1.753 0.379 78.5 21.5 1.315 2.03 0.426 69.6 27.6 1.541 4.241 0.387 65.2 24.9 2.98 5.266 0.441 0.33 13.6 0.657 1.350 0.447 1111 27.6 2.700 102.4 42.5 1.313 4.242 0.310 1100.2 42.5 1.313 4.242 0.310 100.2 42.5 1.313 4.242 0.310 100.2 55.0 2.268 6.175 0.372 4.30 66.0 2.278 6.175 0.372 4.30 67.0 2.288 6.175 0.310 2.40 13.4 1.473 4.758 0.310 2.455 14.5 1.473 <td>stress strain strain ratio modulus density 13.6 0.057 1.753 0.379 78.5 21.3 1.313 3.63 0.426 69.0 27.6 1.541 4.241 0.867 65.2 24.9 2.98 5.266 0.441 0.53 13.6 0.657 1.350 0.467 1.01 12.6 0.657 1.350 0.467 1.02 42.5 1.313 4.242 0.310 10.02 42.5 1.313 4.242 0.310 10.02 42.5 1.313 4.242 0.310 10.02 42.5 1.313 4.242 0.310 10.02 42.5 1.3473 4.242 0.310 10.02 42.5 1.313 4.242 0.310 10.02 42.5 1.352 6.175 0.3572 49.6 42.5 1.3473 4.242 0.310 10.02 42.</td> <td>stress strain strain Poisson's modulus density content (kPa) x10 x10 ratio (MPa) (Mg/a) (X) 13.b 0.057 1.753 0.379 78.5 2.2 2.2 21.5 1.013 2.65 0.426 69.2 2.2 2.2 27.6 1.041 4.241 0.57 65.2 2.2 <td< td=""></td<></td>	stress strain strain ratio modulus density 13.6 0.057 1.753 0.379 78.5 21.3 1.313 3.63 0.426 69.0 27.6 1.541 4.241 0.867 65.2 24.9 2.98 5.266 0.441 0.53 13.6 0.657 1.350 0.467 1.01 12.6 0.657 1.350 0.467 1.02 42.5 1.313 4.242 0.310 10.02 42.5 1.313 4.242 0.310 10.02 42.5 1.313 4.242 0.310 10.02 42.5 1.313 4.242 0.310 10.02 42.5 1.3473 4.242 0.310 10.02 42.5 1.313 4.242 0.310 10.02 42.5 1.352 6.175 0.3572 49.6 42.5 1.3473 4.242 0.310 10.02 42.	stress strain strain Poisson's modulus density content (kPa) x10 x10 ratio (MPa) (Mg/a) (X) 13.b 0.057 1.753 0.379 78.5 2.2 2.2 21.5 1.013 2.65 0.426 69.2 2.2 2.2 27.6 1.041 4.241 0.57 65.2 2.2 <td< td=""></td<>

Thawed, FWD waveform

Confining pressure (kPa)	Deviator atress (kPa)	Radial strain x10	Axial strain x10	Poisson's	Resilient modulus (MPa)	density	Moisture content (%)	
6.9	3.4 6.8 10.1 13.5	0.490 0.981 1.471	2.793 4.393 5.596	0.175 0.223 0.263	24.2 23.1 24.1	1.793	20.00	1.0
13.8	16.4 6.7 13.5 21.1 27.4 33.7	1.961 0.327 0.817 1.307 1.961	7.000 2.000 3.800 5.802 7.409	0.280 0.163 0.215 0.225 0.265	23.4 33.7 35.5 36.3 37.0			
27.6	13.9 27.4 42.1 54.7	2.613 1.143 1.960 2.940	9.423 2.205 4.611 7.424 10.050	0.277 0.248 0.264 0.293	35.8 63.0 59.4 56.7 54.5			
69.0 27.6 6.9	67.3 33.6 67.5 6.8 10.2 13.6	0.653	2.823 5.849 1.811 2.817	0.287 0.231 	53.8 119.2 115.0 37.5 36.1 35.5	1.820	6.80	6.0
15.8	13.6 13.6 21.2 27.6	0.656 0.984 0.492 0.984 1.312	3.823 4.829 1.006 2.616 4.225	0.188	35.5 35.5 57.5 51.9 50.2 47.3			
27.6	27.6 27.6 42.4 55.2 67.9	0.984 1.968 2.295	5.837 7.249 3.628 6.046	0.225 0.226 0.271 0.326 0.271	46.8 76.0 70.2 65.1			
69•0 6•9	33.9 70.0 3.4 6.8	0.656	10.008 2.219 5.650 0.389 1.361 2.139	0.296 0.203	67.8 153.0 123.9 87.5 50.0	1.828	7.60	10.0
13.6	10.2 13.6 17.0 13.6 21.3	0.328 0.493 0.656	2.918 3.696 1.946 3.307	0.153 0.169 0.177	47.7 46.6 46.0 69.9 64.3			
27.6	27.6 34.0 27.7 42.5 55.3	0.985 1.149 0.493 1.149 1.641	4.671 5.841 2.921 4.869 6.823	0.211 0.197 0.169 0.236 0.241	59.2 58.2 94.9 87.3 81.0			
69•0 6•9	68.0 34.0 68.0 6.9 10.4	2.297 0.820 0.165 0.331 0.497	8.782 1.952 4.297 0.890 1.304	0.262 0.191 0.185 0.254	77.4 174.1 158.2 77.7 79.5	1.865	7.00	14.0
	17.3	0.827	2.174	0.286 0.386	79.5 79.5			

Confining pressure (kPa)	Deviator atress (kPa)	Radial strain x10	Axial strain x10	Resilient Poisson's ratio	Resilient modulus (MPa)	Dry density (Mg/m ³)	Moisture content (%)	
13.8	6.9 13.8 21.6 28.1	0.331 0.827 1.323	0.652 1.739 2.610 3.697	0.190 0.317 0.358	106.0 79.5 82.8 76.0			
27.6	34.6 13.8 28.1	1.820 0.331 0.993	5.002 1.305 2.827	0.364 0.254 0.351	69.1 106.0 99.4			
6.9	56.2 3.3 6.7 10.1	2.647	7.836 1.307 3.370 5.637	0.338	71.7 25.6 19.9 17.9	1.651	17.50	2.0
13.8	6.7 13.8 21.0	1.956	2.068 9.416 8.532	0.229	32.5 14.7 24.6			
27.6	13.4 27.3 41.9	1.304	2.655 6.654 10.540	0.196 0.278	50.5 41.0 39.8			
6.9	3.5 7.4 10.4	0.663	0.954 2.299 3.840	0.288 0.431	36.3 32.0 27.0	1.723	10.00	5.0
13.8	13.8 6.9 13.8	0.993	6.744 1.541 3.471 6.769	0.294	20.5 44.8 39.8			
27.6	21.6 28.0 13.8 28.0	2.315 3.302 1.651		0.342 0.361 0.303	31.9 30.6 59.0 51.3			
69.0	43.0 55.7 34.3	2.640 3.955 0.659	8.782 11.780 2.946	0.301 0.336	49.0 47.3			
6.9	72.8 102.7 6.9 13.9	2.964	7.275 11.260 2.165 4.724	0.224 0.227 0.263 	100.1 91.2 32.0 29.4	1.788	8.20	8.0
13.8	17.3 13.9 21.7	1.325	5.900 3.152 5.516	0.225	29.4 44.0 39.3			
27.6	29.3 34.7 13.9		7.292 9.858 1.972	0.273 0.269	40.1 35.2 70.3			
	29.3 43.3 56.4 69.3	1.988 3.313	4.929 6.901 9.866 13.240	0.269 0.288 0.336	59.4 62.8 57.1 52.3			
69.0 6.9	108.2 3.4 6.9		10.890 0.875 1.642		99.4 39.2 41.9	1.778	7.10	13.0
•••	10.3 13.8 17.2	0.660 0.990 0.991	2.628 3.725 5.261	0.251 0.266 0.188	39.2 36.9 32.7			
13.8 27.6	6.4 13.8 21.5 68.8	0.660 1.320 2.640	1.096 2.850 4.825 12.080	0.232 0.274 0.219	58.8 48.2 44.5 56.9			
69.0	103.1 6.7 10.1		9.886 1.319 2.639	0.248 0.186	104.3 51.2	1.794	10.00	5.0
13.8	13.5 16.9 6.7	1.144	3.656 5.079 1.016 2.641	0.268 0.225 0.186	36.9 33.2 66.4 51.1			
	21.1 27.4 33.7	0.981 1.471 2.289	4.675 6.100 7.526 1.425	0.210 0.241 0.304	45.1 44.9 44.8			
27.6	1223337.04 1223337.04 124547.66		1.425 3.666 6.520	0.268 0.251 0.267 0.308				
6.9	67.5 6.7 10.1	3.276 0.327	3.666 6.520 8.561 10.610 1.182 2.167		77 • 8 74 • 7 64 • 0 63 • 6 56 • 9	1.794	7.60	10.0
13.8	10 · 1 13 · 5 16 · 8 13 · 5 21 · 0 27 · 3	0.327 0.653 0.653 0.772 0.653	2.955 3.743 2.364 3.743 5.715	0.151 0.221 0.174 0.327 0.174	455092835632 44554535632			
27.6	27.3 33.6	1.306	1.380	0.207	47.8 53.3 97.5			
	33.6 13.5 42.1 54.7	0.979	5.718 7.890	0.171 0.207 0.232	73.6 69.3			

Confining pressure (kPa)	Deviator stress (kPa)	Redial etrain x10	Axial strain x10	Resilient Poisson's ratio	Resilient modulus (MPa)	Dry deneity (Mg/m ²)	Moisture content (%)	Moisture tension (kPa)
69.0	33.6 67.3	0.816	3.157 5.922	0.138	106.6 113.7			
6.9	6.8 10.2 13.6	0.657	0.867 1.733 2.311	0.379	78.5 58.9	1.815	6.80	16.0
13.8	17.0 6.8 13.6 21.3	0.657 0.985 0.657 1.313	2.696 0.867 1.733 3.468	0.284 0.365 0.379 0.379	58.9 63.1 78.5 78.5 61.3 59.7			
27.6	27.6 34.0 27.6 42.5 55.3 68.0	1.641 2.298 1.313 1.969 2.954	4.626 5.978 2.892 5.206 7.140 9.656	0.355 0.384 0.252 0.276 0.306	56.9 95.6 81.7 77.5 70.5			
6.9	5.4 6.6	0.027	0.826	G . 1 ' R	41.0 32.7	1.780	17.50	2.0
13.7	16.1 14.0 16.9	1.146	3.3.9 4.758 6.711 1.656	0.150 0.241 0.264	30.7 25.3 27.2 40.9 40.9			
	13.5 21.1 27.5	J.471 1.473 1.465	3.313 5.552 7.255	0 • 14 à 0 • 26 3 0 • 27 1	37.6 37.9			
27.6	55.A 13.5 27.5 42.3	2.623	9.336 2.075 5.191	0.281	36.2 65.3 53.0			
દ∀∙Û	67.6 33.9 67.6	1.801 2.618 4.253	7.481 9.784 12.520 2.296 5.848	0.241 0.258 0.340 	56.5 56.2 54.0 147.1 115.5			

Remolded, RPB waveform

Confining pressure (kPa)	Deviator atress (kPa)	Radial etrain x10	Axial strain x10	Resilient Poisson's ratio	Resilient modulum (MPa)	Dry density (Mg/m ³)	Moisture content (%)	Moisture tension (kPa)
6.9	7.0 10.9	0.500	1.237	0.464 6.404	56.6	1.768	17.50	2.9
15.H	14.0 7.0 14.0 20.8 27.4	1.332 0.333 0.833 1.232	3.1h2 0.884 2.122 3.175	0.419 0.377 0.393 0.420	44.0 79.3 66.0 65.5			
27.6	14.0 27.4 41.6 54.7	1.556 1.556 0.333 1.163	4.956 1.416 3.363 5.491	0 • 4 (3 0 • 235 0 • 346 0 • 364	55.2 98.9 61.4 75.8 73.5 52.5			
6.9	3.5 7.0 10.4 13.9	2.958 0.166 0.499 0.997 1.495	7.444 0.664 1.329 2.327 3.327	0.403 0.250 0.375 0.428	52.4 44.9	1.744	15.00	3.0
15.8	7.0 13.9 20.7 27.2	0.332 0.830 1.495 2.491	1.081 2.496 3.997 5.670	0.449 0.307 0.333 0.374	41.9 64.8 55.8 54.8 92.8 85.8			
27.6	13.9 27.2 41.4 54.4	0.499 1.163 2.325	1.502 3.171 6.014 7.871	0.439 0.332 0.367 0.387	98.0 92.8 85.8 68.8			
6.9	7.0 10.5 14.0 17.5	3.322 0.333 0.665 0.998 1.497	1.062 1.635 2.372 2.945	0.422 0.314 0.407 0.421 0.508	65.8 64.1 58.9	1.762	8.50	7.0
13.6	14.0 20.7 27.3 33.8	0.665 1.331 1.996 2.661	1.882 2.946 4.746 5.894	0.353 0.452 0.421 6.451	59.3 74.2 70.4 57.5 57.4			

Confining pressure (kPa)	Deviator stress (kPa)	Rediel strain x10	Axial strain x10		Resilient modulus (MPs)	Dry density (Mg/m ²)	Moisture content (I)	Moisture tension (kPa)
27.6	27.3 41.5 54.6	1.164 1.830 2.994	3.112 4.915 6.885	0.374 0.372 0.435	87.7 84.4 79.3			• • • •
6.9	3.5 7.0	0.166	0.434	0.159	80•4 66•9	1.764	7.30	12.0
13.8	7.0 13.9 20.9	0.166 0.499 0.997 1.496	0.695 1.739 2.687 3.795	0.239 0.287 0.371 0.394	100.4 80.2 77.7 72.4			
27.6	27.5 35.2 14.1 27.5 41.8	1.828 0.332 0.831 1.495	4.745 1.107 2.532 4.114	0.385 0.300 0.328 0.363	74.1 127.1 108.5 101.5 99.2 35.8			
6.9	55.0 3.4 7.0 10.4	2.326 0.338 0.507	5.541 0.944 1.888 2.738	0.420 0.179 0.185	35.8 37.0 37.9 37.0	1.744	28.00	1.0
13.8	14.0 7.0 14.0 20.3	0.507 0.676 0.169 0.338 0.845	2.738 3.778 1.325 2.745 4.167	0.185 0.179 0.128 0.123 0.203 0.246	37.0 52.7 50.9 48.7 49.2			
27.6	27.0 14.0 27.0 41.7	1.352 0.169 0.676 1.183	5.499 1.991 3.794 6.074	0.085 0.178 0.195	70.2 71.3 68.7			
6.9	3.6 7.3 10.5	0.170 0.509 0.848	0.878 1.756 2.460 3.342	0.194 0.290 0.345 0.304	41.4 41.4 44.3 43.4	1.737	17.50	2.0
13.8	14.5 7.3 14.5 20.4	1.017 0.339 0.678 1.356	1.231 2.551 3.873	0.275 0.266 0.350	59.0 56.9 52.7			
27.6	27.2 14.0 27.2	2.034 0.339 1.017 2.034	5.464 1.763 4.233 6.182	0.372 0.192 0.240 0.329	49.8 79.7 64.3 67.8			
6.9	41.9 3.6 7.3 10.5 14.1	0.340 0.510 0.680	0.604 1.209 1.813 2.620	0.281	60.4 60.3 57.8 53.9	1.753	8.20	A • 0
13.8	17.3 6.8 13.7 20.5	1.019 0.340 0.340 0.850 1.359	3.226 0.907 2.016 3.427 4.639 5.652	0.260 0.316 0.375 0.169 0.248	53.7 75.4 67.9 59.8 59.0			
27.6	27.3 34.2 13.7 27.3 41.0	1.869 0.340 0.850 1.529 2.209	1.312 2.826 4.847	0.243 0.331 0.259 0.301 0.315	60.5 104.3 96.8 84.7 79.6			
6.9	54.7 3.4 10.9 14.0	0.339	6.874 0.536 1.966 2.324	0.321 0.172 0.219	63.3 55.3 60.4	1.761	7.30	12.0
13.8	14.0 17.0 14.0 20.4 27.2	0.678 0.170 0.339 0.678 1.016	3.218 0.983 2.145 3.219	0.211 0.173 0.158 0.211 0.247	53.4 71.4 65.4 63.3 66.0			
27.6	35.1 14.0 27.2 41.9	1.355 0.170 0.678 1.016 1.525	5.367 1.699 3.309 5.190	0.252 0.100 0.205 0.196 0.224	65.4 82.6 82.1 80.7			
6+9	27.29 24.93 5 37.4 14.0	0.169 0.339 0.677	3.309 5.1803 6.556 1.111 2.130	0.152 0.159 0.244	61.0 63.1 48.9	1.757	8.20	8.0
13•R	7.0	0.846 0.170 0.339 0.677	3.520 1.112 2.408	0.240 0.153 0.141 0.192 0.211	179019591394 209138085876645465555			
27.6	20.4 27.1 33.9 41.9 54.3	2.031 1.354	4.818 5.933 5.380 6.734	0.342 0.252	57.2 77.8 80.7			
6.9	54.3 3.5 7.0 10.6 14.1 17.6	2.031 1.354 1.524 0.167 0.502 0.502 1.170	6.734 0.660 1.321 2.559 3.470 4.300	0-11212263 0-11212263 01212263 01212228 032228 03332 0342	80.7 53.4 53.4 41.3 40.6	1.743	17.50	2.0

Confining pressure (kPa)	Deviator atress (kPa)	Radial strain x10	Axial etrain x10	Resilient Poisson's ratio	Resilient modulus (MPa)	Dry density (Mg/m ²)	Moisture content (X)	Moisture tension (kPa)
13.8	7.0 14.1 20.9	0.334 0.668 1.337	1.158 2.482 4.138	0.288 0.269 0.323	60.9 56.8 50.6			
27.6	20.9 27.5 13.7 27.5	1.838 0.334 1.003	5.302 1.740 3.646	0.347 0.192 0.275	51.9 78.5 75.5			
6.9	3.5 7.0	1.838 0.167 0.334	5.974 0.472 1.100	0.308 0.354 0.304	70.1 74.5 64.0 53.7	1.754	8.20	8.0
13.8	10.5 14.1 17.6 7.0 14.1 22.0	0.668 1.002 1.168 0.334 0.668 1.168	1.965 2.358 3.146 0.786 2.045 3.304	0.340 0.425 0.371 0.425 0.327 0.354	59.7 55.9 89.5 68.8 66.6			
27.6	27.5 34.1 14.1 27.5 41.8	1.503 2.003 0.334 0.835 1.502 2.337	4.092 5.039 1.102 2.836 4.727	0.367 0.397 0.303 0.294 0.318	67.2 67.6 127.7 96.9 88.4			
6.9	41.8 55.0 3.5 7.1 10.6	9.168 9.502	6.314 0.564 1.289	0.370 0.298 0.389 0.319	87.1 62.7 54.9 50.6	1.774	17.50	2.0
13.8	14.1 7.1 14.1	0.669 1.339 0.335 0.669 1.339	2.095 3.386 0.887 2.419 3.871	0.395 0.378 0.277 0.346	41.8 79.8 58.5			
27.6	21.0 27.6 14.1 27.6	1.841 0.335 1.004	5.163 1.614 3.551	0.357 0.208 0.283	54.2 53.5 87.7 77.8			
6.9	42.0 55.3 3.5 7.1	1.841 2.677 0.167	5.652 8.083 0.259 0.865	0.326 0.331 0.193	74.3 68.4 136.3 81.7	1.767	7.40	11.0

Remolded, FWD waveform

Confining pressure (kPa)	Deviator stress (kPa)	Radial etrain x10	Axial strain xl0	Resilient Poisson's ratio	Resilient modulus (MPs)	Dry density (Mg/m ³)	Maieture content (%)	Moisture tension (kPs)
6.9	7.0	0.500	1.237	0.404	56.6 44.3	1.768	17.50	2.0
13.8	14.6 7.0 14.0 20.8	0.999 1.332 0.333 0.666 1.532	3.536 1.061 2.299 3.892	0.377 0.314 0.290 0.342	39.6 66.0 60.9 53.4			
27.6	27.4 14.0 27.4	1.598 0.333 1.163	5.487 1.593 3.717	0.364	49.9 87.9 73.6			
6.9	41.6 54.7 3.5 7.0	1.998 2.998 0.166 0.499	6.199 7.976 0.664 1.495	0.313 0.322 0.376 0.250 0.334	67.1 68.6 52.5 46.6	1.744	15.00	3.0
13.8	10.4 13.9 7.0 13.9	0.830 1.329 0.332 0.830 1.329	2.327 3.493 1.164 2.662	0.357 0.380 0.285 0.312 0.332	44.9 39.9 59.9 52.4 51.8			
27.6	20.7 27.2 13.9 27.2	2.325 0.499	3.997 6.006 1.668 3.171	0.332 0.387 0.299 0.367	51.8 45.3 83.6 85.8			
6.9	41.4 54.4 3.5 7.0 10.5	2.325 3.322 0.167 0.333 0.665	6.348 8.375 0.490 1.144 1.799	0.366 0.397 0.341 0.291 0.370	65.2 65.0 71.3 61.1 58.3	1.762	8.50	7.0
13.8	14.0 17.5 7.0 14.0	0.998 1.497 0.333 0.832	2.453 3.109 0.818 1.963	0.407 0.482 0.407 0.424	57.0 56.2 85.4 71.2			
27.6	20.7 27.3 33.8 14.0 27.3	1.331 1.996 2.661 0.499 0.998 1.830	3.437 4.746 6.058 1.473 3.603 5.242	0.387 0.421 0.439 0.339 0.277	60.3 57.5 55.9 94.8 75.7			
6.9	54.6 3.5 7.0	2.828 0.166	7.377 0.434 1.042	0.383 0.159	74.0 80.4 66.9	1.764	7.30	12.0

Confining pressure (kPs)	Deviator atress (kPa)	Radial strain x10	Axial strain x10	Resilient Poisson's ratio	Resilient modulus (HPa)	Dry density (Mg/m)	Hoisture content (%)	Moisture tension (kPa)
13.8	13.9 20.9 27.5 35.2	0.499 0.997 1.529 1.828	1.739 2.845 3.953 4.904	0.287 0.350 0.336 0.373	80.2 73.4 69.5			
27.6	14.1 27.5 41.8	0.332 0.831 1.495	1.265 2.690 4.430	0.262 0.309 0.337	71.7 111.2 102.2 94.3			
6.9	55.0 3.4 7.0 10.4	2.326 0.338 0.507	5.858 0.940 1.888 2.832	0.397 0.179 0.179	93.8 36.0 37.0 36.6	1.744	28.00	1.0
13.8	14.0 7.0 14.0 20.3	0.676 0.169 0.338 0.845	3.778 1.325 2.745 4.167	0.179 0.179 0.126 0.123 0.203	37.0 52.7 50.9 48.7			
27.6	27.0 14.0 27.0 41.7	0.169	5.499 1.991 3.794 6.454	0.246	49.2 70.2 71.3			
6.9	3.6 7.3	0.170 0.509 0.648	0.878 1.756 2.636	0.194 0.290 0.322	64.6 41.4 41.4	1.737	17.50	2.0
13.8	14.5 7.3 14.5 20.4	0.576 1.187 0.509 0.848 1.187 0.378 1.356 2.034	3.517 1.231 2.639 3.873	0.185 0.187 0.199 0.232 0.338 0.255 0.255 0.355	41.3 59.0 55.0 52.7			
27.6	27.2 14.0 27.2 42.0 3.6	2.034 0.339 1.017 2.034	5.818 1.763 4.409 6.360	0.350 0.192 0.231 0.320	46.8 79.7 61.7 66.0			
6.9	3.6 7.3 10.5 14.1	0.510 0.680	0.604 1.209 1.813 2.620	0.281 0.281	60.4 60.3 57.8 53.9	1.753	8.20	8.0
13.8	6 • 8 13 • 7 20 • 5	0.340 0.510 0.850 1.359	0.907 2.218 3.427 4.639	0.375 0.230 0.248	75.4 61.7 59.8 59.0			
27.6	27.3 34.2 13.7 27.3 41.0	1.869 0.340 0.856 3.002	5.854 1.413 3.230 5.452	0.319 0.241 0.263 0.551 0.288	58 • 4 96 • 8 8 • • 7 75 • 3			
6.9	54.7 3.4 10.9	0.339	7.683 0.536 1.966 2.503 3.218	0.172	71.2 63.3 55.3 56.1	1.761	7.30	12.0
13.8	14.0 17.2 7.0 14.0 20.4 27.2 35.1	0.508 0.678 0.170 0.339 0.678 1.016	3.218 0.983 2.145 3.219 4.292 5.367	0.203 0.211 0.173 0.158 0.211 0.237	53.4 71.4 65.4 63.3 63.3			
27.6	14.0 27.2 41.9	1.355 0.170 0.678 1.016	1.699 3.399 5.190 7.161	0.252 0.100 0.199 0.196	82.6 79.9 80.7			
6.9	54.3 3.4 7.0 10.4 14.0	1.525 0.169 0.339 0.677	0.556 1.111 2.130 2.778	0.213 0.152 0.159 0.244	75.9 61.0 63.1 48.9 50.5	1.757	8.20	8.0
13.8	17.2 7.0 14.0	0.646	3.520 1.112	0.240	48.9 63.1			
27.6	33.9 41.9	1.185	5.566	0.213	57.2 75.2			
6.9	22345 77.06160195 111774.095	0.5397 0.6616 1.035 1.6937 0.16937 0.835 1.170	7528 75218 75218 75218 7536 7536 7536 7536 7536 7536 7536 7536	0.18112 0.2112 0.32132 0.6258 0.6258 0.3317 0.3374	75-64 75-67-0-8 75-67-0-8 718-3-0-6 718-3-0-6 718-3-0-6	1.743	17.50	2.0
13.8	7.0 14.1 20.9 27.5	0.334 0.668 1.337 1.838	1.158 2.482 4.138 5.799	0.288 0.269 0.323 0.317	39.4 60.9 56.8 50.6 47.5			

Confining pressure (kPa)	Deviator stress (kPa)	Rediel etrain x10	Axial etrain x10	Resilient Poisson's ratio	Resilient modulus (MPs)	Dry density (Mg/m ³)	Moisture content (%)	Moisture tension (kPa)
27.6	13.7 27.5	0.344	1.740	0.198 0.263	78.5 72.2			
6.9	41.8 3.5 7.0 10.5 14.1	1.003 1.838 0.169 0.334	3.812 6.472 0.472 1.100	0.284 0.358 0.304	64.7	1.754	8.20	8.0
13.8	10.5 14.1 17.6 7.0 12.0 27.5	0.668 0.835 1.168 0.334	1.100 2.043 2.358 3.303 0.786 2.045 3.461	0.327 0.354 0.354 0.425 0.327 0.290	619.35 559.85 688.65			
27.6	27.5 34.1 14.1 27.5 41.8 55.0 3.5	1.002 1.335 1.335 0.835 1.335 2.00	4.407 4.885 1.417 2.993 4.885 6.629	0.303 0.273 0.236 0.279 0.273	54-83 669985 99150 85295			
6.9	3.5 7.1 10.6	2.003 0.168 0.502	0.564 1.289 2.257	0.302 0.298 0.389	83.0 62.7 54.9	1.774	17.50	2.0
13.8	14.1 7.1 14.1 21.0	0.168 0.502 0.837 1.339 0.335 0.669 1.171	3.547 0.967 2.580 3.871 5.163	0.371 0.378 0.346 0.259 0.303	47.0 39.9 73.2 54.2 53.5			
27.6	27.6 14.1 27.6 42.0	1.841 0.335 1.004 1.841	5.163 1.614 3.551 6.137	0.357 0.208 0.283 0.300	53.5 87.7 77.8 68.4			
6.9	55.3 3.5	2.677	8.083 0.346	0.331	68.4 102.1	1.767	7.40	11.0

Frozen, RPB waveform

Confining 'pressure (kPa)	Deviator stress (kPa)	Axial strain x10	Resilient modulus (GPa)	Dry density (Mg/m ³)	Moisture content (%)	Temperature (°C)
69.0	69.2 138.5	1.851	0.37	1.554	19.10	-0.4
	204.9 86.6 138.3 204.8 346.2	6.516 0.093 0.372 0.745 1.864	00.31 00.31 90.75 10.75	1.554	19.10	-1.€
	471.0 613.1 348.9 472.0 615.6 365.3	2.986 4.210 0.599 1.291 2.125	1.58 1.46 5.82 3.66	1.554	18448	-2.8
	496.6	0.369 0.639	2.90 9.89 7.78	1.554	18460	-5.5
	615.6 820.8 347.4 490.5	1.016 1.830 0.281	6.06 4.49 12.36 11.65	1.554 1.554	18460 18468	-4.3 -10.0
	613.1 740.8	0.421	9.36	1.554	18466	-9.A
	69.6 139.1	0.795 3.426 7.074	9.32 0.20 0.20	1.586	15.66	-0.5
	208.1 139.4 204.2 348.4 487.1	12.210 0.449 1.099 2.704	0.17 3.10 1.86 1.29	1.586	15.98	-1.7
	139.2 203.8	4.222 0.251 0.604	1.29 1.15 5.53 3.38	1.586	16.10	-3.0
	344.0 481.1 621.3	1.650 2.817	2.08 1.71	1.586	16.07	-2.6
	621.3 139.2 208.8 347.9 487.1 621.3	4.026 0.151 0.302 0.704 1.206	1.54 9.22 6.91 4.94 4.04	1.586	16.19	-5.4
	621.3 720.7 65.7 136.5 202.2	1.911 2.314 1.742 3.818	3.25 3.11 0.38 0.36	1.612	17.90	-0.5
	202.2 136.6 202.4 344.1 485.8 606.6	8.210 0.378 0.540 2.162 3.359 5.226	0.25 3.61 3.75 1.59 1.45	1.612	17.19	-1.8

Confining	Deviator	Axial	Resilient	Dry	Moisture	Temperature	
pressure (kPa)	stress (kPa)	atrain x10	modulus (GPa)	density (Mg/m)	, content (I)	(°c)	
	345.2 203.0 487.3 608.4	1.288 0.537 1.934 2.260	2.68 3.78 2.52 2.69	1.612	17.30	-3.0	
	809.7 202.4 344.1 465.6 607.3 809.7	3.024 0.324 0.486 1.080 1.674 2.593	2.68 6.25 7.08 4.31 3.63 3.12	1.612	17.38	-4.9	

Frozen, FWD waveform

Confining pressure (kPa)	Deviator stress (kPa)	Axial strain x10	Resilient modulus (GPa)	Dry density (Mg/m ³)	Moisture content (2)	Temperature
69.1	138.5	1.856 2.606	9.75 6.77	1.554	15.10	-0.4
	204.6 345.2 471.0 613.1	1.120	4.35 4.67 4.21	1.554	17.10	-1.6
	613.1 340.9 472.0 615.6	1.:84 0.553 0.830	5.64 6.31 5.69	1.554	10.13	-7.P
	365.3 496.6 641.3	0.369 0.369 0.554 0.739	6.66 1.89 5.96 8.68	1.554	19.10	-5.5
	846.5 498.5	1.201	7.05 26.66	1.554	19.10	-10.0
	613.1 715.2	0.374	16.35 19.12	1.554	19.10	-9.4
	69.6	2.217 5.558	0.31 0.25	1.586	16.70	-0.5
	252.1 254.2 348.4	8 • 14 0 0 • 600 1 • 402	0.26 3.40 2.49 2.42	1.586	16.70	-1.7
	487.1 139.2 208.8 344.0	2.910 0.261 0.402	6.52 5.19 4.27	1.586	16.70	-3.0
	481.1 621.3	0.805 1.207 2.013	3.99 3.09	1.586	16.70	-2.6
	347.5 487.1 621.5 770.4	0.503 0.905 1.207	6.92 5.38 5.15	1.586	16.70	-5.4
	136.5	1.610	9.79 0.78	1.612	17.90	-0.5
	136.5 202.2 202.4 344.1 465.8	3.940 0.540 1.169 1.734	0.51 3.75 2.85	1.612	17.96	-1.8
	606.6 345.2 203.0 487.3	2.504 0.644 0.322 1.374	3502 3502 3502 3502 3502 3502 3502 3502	1.612	17.9G	-3.0
	608.4 804.7 344.1 465.6 607.3 609.7	1.184 1.836 0.540 0.756 1.080	5.14 4.41 6.10 5.65	1.612	17.90	-4.9

Ikalanian silt

Thawed

Confining pressure (kPs)	Deviator stress (kPa)	Radial atrain x10	Axial strain x10	Resilient Poisson's ratio	Resilient modulus (MPa)	Dry density (Mg/m³)	Moisture content (%)	Moisture tension (kPs)
27.6 69.0 103.4 69.0 27.6 69.0	64.3	0.603 3.651 1.606 0.663 1.927 5.109 9.898	26.634	0.270 0.370 0.206 0.123 0.336 0.372 0.174	16.7 44.2 68.0 11.5 12.7 25.6	1.504	25.80	0.0
27.6 69.0 103.4 69.0 27.6 103.4 6.9	13.6 34.5 69.0 6.9 26.3 66.9 106.2	0.313 0.313 0.474 1.104 0.948 1.264 1.583	1.836 3.269 4.712 7.608 3.620 7.870 9.191 11.146	0.204 0.171 0.196 0.191 0.145 0.131 0.138 0.142 0.142 0.203	8.3 18.6 18.6 23.7 19.1 13.6 13.6 17.7 17.7	1.609	25.00	4.0
103.4 6.9 27.6	51.2 7.1 27.6	0.158	2.973 4.044 1.427 5.471	0.029	36.5 85.4 1126.6 50.8 50.8 704.2		14.00	11.5
27.6 6.9 27.6 69.0 103.4	13.8 6.9 27.6 69.6 104.1	1.119 1.918 3.733 5.733 4.587 1.5.526	3.906 8.386 8.051 14.210 13.415 13.998 11.760 18.577	0.286 0.229 0.495 0.495 0.275 0.328 0.487	9.5 16.5 8.6 19.4 51.9 74.4	1.532		0.0
103 4	103.0	4.098 1 5.152 1	2.980	0.513 0.089 0.351 0.240 0.350 0.350 0.355 0.353 0.438	106.9 22.3 50.9 78.0 78.6	1.640	21.50	7.0
6.9 27.6 69.0 103.4 69.0 103.4 27.6	70.3 101.4 40.7	0.157 0.471 0.628 0.251 1.099 0.943	0.614 1.481 2.582 2.705 1.699	0.106 0.182 0.232 0.148 0.178 0.159 0.385	40.6 114.0 146.6 68.6		10.00	
48.3 6 6.9 13.8 27.6 48.0 27.6	13.2 23.7 34.8 137.9 48.6 68.2	1.228 1.843 0.614 0.615 1.228 1.843 2.457	2.632 2.822 1.693 2.445 3.954 5.283 6.240	0.385 0.4653 0.3653 0.252 0.311 0.349	82.7 90.0 120.8 40.2 56.0		23.50	
48.3 69.0 103.5 13.8 27.6 48.0 103.5	13.6 24.8 34.1 513.6 27.9 490.2 103.3		1.629 2.875 3.634 4.988		154.8 192.3 83.5 97.0	1.638	20.45	7.8
13.8 27.6 48.3	3.4 6.7 13.9 24.6	0.620 0.620	0.981 1.417 2.508	0.247 0.189	192.1 34.7 47.3 55.4 75.2	'•616	21.40	0.0

Confining pressure (kPs)	Deviator stress (kPa)	Radial strain x10	Axial strain x10	TWELTO	Resilient modulus (MPa)	Dry density (Mg/m ³)	Moisture content (%)	Moisture tension (kPa)
13.8 27.6 6.9 13.8 27.6 48.3	13.5 27.4 3.6 6.9 13.9 25.3	1.240 1.240 1.661 	3.167 4.591 6.351 0.325 0.651 1.518 2.386	0.392 0.270 0.293 0.408 0.260 0.220	21.2 29.4 43.1 110.8 106.0 91.6 106.0	1.690	21.00	5.0
69.0 6.9 13.8 27.6 48.3 69.5 103.5	35.7 16.9 127.0 14.0 24.1 252.6	0.620 0.620 0.605 0.605 0.605	2.821 1.302 2.387 1.0139 2.735 1.621	0.179 0.285 0.221 0.373	53.0 56.6 78.9 138.2 158.7 160.4 190.9	1.690	18.24	9.0
27.6 48.3 69.0 103.5 138.9 13.8 27.6	28.1 48.1 70.2 102.3 140.4 21.1	0.605 1.210 1.215 1.015 1.815 0.605 1.210	2.938 4.054 5.273 6.093 8.135 2.237 3.863 5.287	0.206 0.298 0.229 0.167 0.223 0.270 0.313	95.6 118.6 133.1 167.9 172.6 46.5 54.6			
27.6 6.9 27.6 69.0 103.4	104.3 140.1 25.5 3.6 15.2 35.9 51.7 6.9	2.420 5.441 11.865 0.317 0.601 0.781 1.012	8.147 13.320 20.891 0.759 2.533 4.310 4.569 2.082	0.297 0.408 0.568 0.418 0.237 0.231 0.221	128.0 105.2 12.2 47.4 60.3 113.2	1.541 1.656	25.80 24.50	0.0 4.5
27.6 69.0 105.4 27.6 69.0 27.6	29.6 69.0 102.7 10.3 40.7 98.5 13.8	1.898 1.581 1.898 2.056 4.105 3.000 0.065	5.587 6.212 7.245 4.703 9.240 15.472 0.656	0.340 0.255 0.262 0.437 0.444 0.194 0.197	53.0 111.1 141.8 21.9 44.0 63.7 107.2	1.656	7.20	21.0
69.0 103.4 6.9 27.6 69.0 103.4	35.2 52.4 6.9 27.6 71.0 104.1	0.316 0.379 0.158 0.316 0.758 0.947	1.248 2.234 0.921 1.776 3.818 4.476	0.253 0.170 0.172 0.178 0.199 0.212	282.1 234.6 74.9 155.4 186.0 232.6			

Recovered

Confining pressure (kPa)	Deviator stress (kPa)	Radial strain x10	Axial strain x10	Resilient Poisson's ratio	Resilient modulus (MPa)	Dry density (Mg/m ³)	Moisture content (%)	Moisture tension (kPa)
27-5 69-5 103-4 27-5 103-4 27-5 27-5	13.65 134.55 14.55 152.55 162.64 142.68	0.159 0.158	0.410 20.410 5.410 4.730 4.730 5.730 6.061	G.173 0.173 0.172 0.144 0.224 0.316 0.361 0.374 0.358	65.7 57.5 101.5 125.4 146.9 179.3 27.3 127.5	1.60à	8.27	17.5
6.9 27.6 69.0 103.4 27.6 69.0 103.4	14.6 56.7 51.5.5 51.6 28.7 68.7 103.3	1.759 9.7532 0.4596 0.2926 0.8226 1.327 0.648	5.010 7.610 2.610 2.610 4.106 4.52 4.52 5.164 8.195 9.66	G.3512 G.3761 G.153 G.163 G.1381 G.1381 G.1592 G.191	27.1 712.5 100.4 100.5 100.5 100.5 100.5 1122.6	1.491	12.52	4 . 0
27.09.69 27.6.69 27.6.69 267.6.69 267.6.69 103.97.6	102.6 102.6 102.6 102.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10	1.515 3.177 1.534 1.547 0.555 0.5740 0.565 1.651	8.756 11.944 11.660 11.6745 11.6745 4.142 25.489	0.218 0.2663 0.2725 0.1239 0.1239 0.1239 0.1242	990112330 8507833 8507833 12582425	1.508	12.77	11.0

Confining	Deviator	Rediel	Azial	Resilient	Resilient	Dry	Maisture	Moisture
pressure	stress	strain	atrain	Poisson's	modulus	density	content	tension
(kPa)	(kPa)	x10	x10	ratio	(MPs)	(Mg/m ³)	(%)	(kPa)
69.0 27.6 69.0 69.0 69.0	69.7 103.6 10.3 42.8 103.4 15.6 105.1	2.070 1.774 0.591 1.774 3.544 1.181 3.246	7.896 7.940 2.570 6.317 10.838 8.674 9.734	0.230 0.230 0.2287 0.325 0.330 0.330 0.330	88.3 130.5 40.1 67.8 95.4 34.4 66.5			

Frozen

PROPERTY CONTRACTOR STANDARD CONTRACTOR

Confining pressure (kPs)	Deviator stress (kPa)	Axial strain x10	Resilient modulus (GPa)	Dry density (Mg/m ³)	Moisture content (%)	Temperature (°C)
69.0	212.7 35) 478.5	0.746 1.267 3.181	2.85 1.68 1.56	1.483	22.78	-0.E
	658.0 207.1 350.5 468.6	7.167	1.23 5.74 5.74 5.47 4.99	1.483	22.70	-3.0
	610.7 849.5 950.5 9610.7 825.0 625.0 623.0 2356.0	2.[71 0.166 0.289 0.329	4.10 10.64 16.54 18.56	1.483	22.70	-5.0
	823.0 637.0	0.564 0.282	14.55 22.55	1.483	22.70	-16.0
		719313994263457 11682563782457 1168278278278278278278278278278278278278278	21.89 7.53 7.92 9.05	1.347	32.46	-6 • B
	627.0 214.0 341.0 487.0	C.110 C.220	8.35 19.45 15.50 5.82	1,347	32.46	-5.6
		0.7161 0.1165 0.1301 1.1361 1.1361	111122 111122	1.347	32.46	-3.0
	619.0 845.0 207.0 342.0 477.0	1.351 1.689 0.227 0.454	4.56 4.99 22.75 15.07 16.51	1.470	24.70	-10.0
	622.0 829.0 207.0 342.0 477.0	0.227 0.257 0.4527 0.799 0.1363 0.036	8.30 15.22 7.50	1.470	24.70	-5.0
	622.0 H29.0 207.0 342.0 477.0	0010000122441	5324560253366265 8557777505598777	1.476	24.70	-3.0
	622.0 523.0 207.7 343.0	1.263 2.092 2.533 4.527	4.56 3.96 0.82 0.76	1.470	24.70	-0.5
	621.7 207.0 342.0 477.0	0.429	0.6875687568756875687568756875687568756875	1.475	29.05	-4.5
	477.0 227.0 242.0 342.0 627.0 207.0 3477.0	0.762 0.571 1.143	8 • 1 6 5 • 6 3 2 • 9 9 3 • 3 4	1.475	29.05	-3.0
	622.0 207.0 342.0 477.3	1.512 1.509 3.245 5.264	3.93 1.08 1.02 3.91	1.475	29.05	- C • 5

Hyannis sand

Remolded, FWD waveform

10.4 1.6	Confining pressure (kPa)	Deviator stress (kPa)	Radial strain x10	Axiel strain x10	Resilient Poisson's ratio	Resilient modulus (MPs)		Hoisture content (%)	Hoisture tension (kPs)
13.8 1.1 1.1 1.1 1.2	3.4	3.6		0.648		54.9	1 629	22 20	1 0
27.6	6.9	7.1	0.336	1.294	0.560	55.0	1 102 7	22070	1.0
27.6			1.007	2.759	0.332 0.365	52.8 51.6			
27.6	13.A	7.1	0.336	0.974	0.345	73.1			
27.6		20.5	0.671	2.272	0.295				
28.9		27.8	1.678	4.884	0.344				
28.9	27.6	14.2	0.336	1.465	0.229	97.1			
28.9		41.1	1.509	5.215	0.286				
28.9		55.5	2.684	7.685	0.349	72.3			
28.9	0.7	16.7	0.505	0.938 1.720	0.357	75.7	1.647	13.00	8.0
28.9		14.2	0.671	2.345	0.286	60.6			
28.9	13.8	17.8	0.838	2 • 8 1 5	0.298	63.1			
28.9		19.2	0.335	1.720	0.195	82.6			
13.8		21.1	0.671	2.815	0.238	74.9			
13.8		34.4	1.509	4.853	0.313	76+9 70-9			
13.8	27.6	13.8	0.168	1.096	0.153	125.5			
13.8		41.1	1.174	2.548	0.286	118.2			
13.8		55.5	1.844	5.954	0.310	93.2			
13.8	6.9	10.7	0.168	0.665	0.253	106.9	1.649	7.75	12.0
13.8		14.2	0.504	1.661	0.303	91+/ 85-6			
13.8	13.4	17.8	0.671	2.159	0.311	82.3			
13.8	1310	14.2	0.335		0.202	85.5 85.6			
13.8		21.1	0.671	2.526	0.288	90.7			
13.8		34.4	1.007	3.156	0.319				
13.8	27.6	41.1	1.007	3.656	0.275	112.4			
13.8		55.5	1.510	5.153	0.293	107.7			
13.8	6.9	i ō . 7	6.673	1.472	0.457	72.9	1.659	22 20	
13.8		14.3	1.010	2.127	0.475	67.3	14037	22.020	1.0
27.6	13.8	7.2	0.169	0.655	0 • 457 0 • 258	59.1 100.2			
27.6		14.5	0.505	1.637	0.308	87.4			
27.6		27.5	1.444	2.620	0.385	81.0			
27.6 27.9 0.841 2.954 0.285 94.4 4.760 0.318 86.7 55.8 2.523 6.899 0.318 86.7 14.0 0.344 1.229 0.280 114.2 1.713 7.75 12.0 14.0 0.344 1.229 0.280 114.2 1.713 7.75 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0		34.6	2.018	4.921	0.410	70.3			
13.8	27.6	14.5	0.336	1.477	0.227	96.8			
13.8		41.3	1.514	4.760	0.285 0.318	94.4			
14.1 0.334 1.957 0.171 72.0 1.675 13.00 8.0 41.8 1.336 4.984 0.268 83.9 55.0 1.837 6.413 0.286 85.8 70.5 2.672 8.030 0.333 87.8 6.9 7.0 0.344 1.329 0.259 52.8 10.3 0.684 1.329 0.259 52.8 14.0 1.033 2.993 0.345 46.9 17.3 1.377 3.327 0.414 52.0 17.3 1.377 3.327 0.414 52.0 14.0 0.689 1.994 0.345 46.9 14.0 0.689 1.995 0.345 70.3 14.0 0.689 1.995 0.345 70.3 28.1 1.550 4.329 0.358 68.7 28.1 1.550 4.329 0.358 68.7 28.1 1.550 4.329 0.358 70.2 28.1 1.550 4.329 0.358 70.2 28.1 1.550 4.329 0.358 70.2 28.1 1.550 4.329 0.358 70.2 29.1 0.861 2.836 0.304 99.0		55.8	2.523	6.899	0.366	. 80.9			
14.1 0.334 1.957 0.171 72.0 1.675 13.00 8.0 41.8 1.336 4.984 0.268 85.9 55.0 1.837 6.413 0.286 85.8 70.5 2.672 8.030 0.333 87.8 7.0 0.344 1.329 0.259 52.8 10.5 0.684 1.329 0.259 52.8 11.0 0.344 1.329 0.259 52.8 14.0 1.033 2.993 0.345 46.9 17.3 1.377 3.327 0.414 52.0 14.0 0.689 1.994 0.345 70.3 14.0 0.689 1.996 0.345 70.3 20.6 1.033 2.995 0.345 68.7 28.1 1.550 4.329 0.345 68.7 28.1 1.550 4.329 0.345 68.7 28.1 1.550 4.329 0.345 70.3 28.1 1.550 4.329 0.345 70.3 28.1 1.550 4.329 0.345 70.3 28.1 1.550 4.329 0.345 70.3 28.1 1.550 4.329 0.345 70.3 28.1 1.550 4.329 0.345 70.3 28.1 1.550 4.339 0.358 70.2 29.1 0.861 2.836 0.304 99.0		28.1	II a B B B B	2.621	0.280	114.2	1.713	7.75	12.0
14.1 0.334 1.957 0.171 72.0 1.675 13.00 8.0 41.8 1.336 4.984 0.268 85.9 55.0 1.837 6.413 0.286 85.8 70.5 2.672 8.030 0.333 87.8 7.0 0.344 1.329 0.259 52.8 10.5 0.684 1.329 0.259 52.8 11.0 0.344 1.329 0.259 52.8 14.0 1.033 2.993 0.345 46.9 17.3 1.377 3.327 0.414 52.0 14.0 0.689 1.994 0.345 70.3 14.0 0.689 1.996 0.345 70.3 20.6 1.033 2.995 0.345 68.7 28.1 1.550 4.329 0.345 68.7 28.1 1.550 4.329 0.345 68.7 28.1 1.550 4.329 0.345 70.3 28.1 1.550 4.329 0.345 70.3 28.1 1.550 4.329 0.345 70.3 28.1 1.550 4.329 0.345 70.3 28.1 1.550 4.329 0.345 70.3 28.1 1.550 4.329 0.345 70.3 28.1 1.550 4.339 0.358 70.2 29.1 0.861 2.836 0.304 99.0		42.1	1.033	4.096	0.252	102.8			
14.1 0.334 1.957 0.171 72.0 1.675 13.00 8.0 41.8 1.336 4.984 0.268 85.9 55.0 1.837 6.413 0.286 85.8 70.5 2.672 8.030 0.333 87.8 7.0 0.344 1.329 0.259 52.8 10.5 0.684 1.329 0.259 52.8 11.0 0.344 1.329 0.259 52.8 14.0 1.033 2.993 0.345 46.9 17.3 1.377 3.327 0.414 52.0 14.0 0.689 1.994 0.345 70.3 14.0 0.689 1.996 0.345 70.3 20.6 1.033 2.995 0.345 68.7 28.1 1.550 4.329 0.345 68.7 28.1 1.550 4.329 0.345 68.7 28.1 1.550 4.329 0.345 70.3 28.1 1.550 4.329 0.345 70.3 28.1 1.550 4.329 0.345 70.3 28.1 1.550 4.329 0.345 70.3 28.1 1.550 4.329 0.345 70.3 28.1 1.550 4.329 0.345 70.3 28.1 1.550 4.339 0.358 70.2 29.1 0.861 2.836 0.304 99.0		78:1	2.409	5.572	0.309	100.7			
13.8 7.0 0.172 0.832 0.207 84.4 14.0 0.683 1.996 0.345 70.3 20.6 1.033 2.995 0.345 68.7 28.1 1.550 4.329 0.358 64.9 35.1 2.066 5.002 0.413 70.2 27.6 14.0 0.346 5.002 0.413 70.2 28.1 0.861 2.836 0.304 99.0		14.1	0.334	1.957	0.171	72.0	1.675	13-00	P. N
13.8 7.0 0.172 0.832 0.207 84.4 14.0 0.683 1.596 0.345 70.3 20.6 1.033 2.995 0.345 68.7 28.1 1.550 4.329 0.358 68.9 28.1 2.066 5.002 0.413 70.2 27.6 14.0 0.346 5.002 0.413 70.2 27.6 14.0 0.346 5.002 0.413 70.2		28 · 6	0 • 66B	3.203	0.209	89.4		2000	0.0
13.8 7.0 0.172 0.832 0.207 84.4 14.0 0.683 1.596 0.345 70.3 20.6 1.033 2.995 0.345 68.7 28.1 1.550 4.329 0.358 68.9 28.1 2.066 5.002 0.413 70.2 27.6 14.0 0.346 5.002 0.413 70.2 27.6 14.0 0.346 5.002 0.413 70.2		55.0	1.837	6.413	0.286	85.8			
13.8 7.0 0.172 0.832 0.207 84.4 14.0 0.683 1.596 0.345 70.3 20.6 1.033 2.995 0.345 68.7 28.1 1.550 4.329 0.358 68.9 28.1 2.066 5.002 0.413 70.2 27.6 14.0 0.346 5.002 0.413 70.2 27.6 14.0 0.346 5.002 0.413 70.2	6.9	70.5	2.672	8.030	0.333	87.8			
13.8 7.0 0.172 0.832 0.207 84.4 14.0 0.683 1.596 0.345 70.3 20.6 1.033 2.995 0.345 68.7 28.1 1.550 4.329 0.358 68.9 28.1 2.066 5.002 0.413 70.2 27.6 14.0 0.346 5.002 0.413 70.2 27.6 14.0 0.346 5.002 0.413 70.2	00,	7.0	0.344	1.329	0.259	56.4 52.8	1.712	22.20	1.0
13.8 7.0 0.172 0.832 0.207 84.4 14.0 0.683 1.596 0.345 70.3 20.6 1.033 2.995 0.345 68.7 28.1 1.550 4.329 0.358 68.9 28.1 2.066 5.002 0.413 70.2 27.6 14.0 0.346 5.002 0.413 70.2 27.6 14.0 0.346 5.002 0.413 70.2		10.5	V•689	1.994	0.346	51.6			
13.8 7.0 0.172 0.832 0.207 84.4 14.0 0.663 1.596 0.345 70.3 20.6 1.033 2.995 0.345 68.7 28.1 1.550 4.329 0.358 64.9 35.1 2.066 5.002 0.413 70.2 27.6 14.0 0.344 1.335 0.258 105.2 28.1 0.861 2.836 0.304 99.0		17:3	1.377	2.993 3.327	0.414	46.9			
20.6 1.033 2.995 0.345 70.3 20.6 1.033 2.995 0.345 68.7 28.1 1.550 4.329 0.358 64.9 35.1 2.066 5.002 0.413 70.2 27.6 14.0 0.344 1.335 0.258 105.2 28.1 0.861 2.836 0.304 99.0	13.8	7.0	0.172	0.832	0.207	84.4			
27.6 14.0 0.344 1.335 0.258 105.2 28.1 0.861 2.836 0.304 99.0		20.6	0.489	1.996	0.345	70.3			
40°4 V•801 2•836 Q•304 99.N		28.1	1.550	4.329	0.35B	64.9			
40°4 V•801 2•836 Q•304 99.N	27-6	35 • I	2.066	5.002	0.413	70.2			
42·1 1.377 A.330 Ď žíž ÁŠ*X	- · • •	28.1	0.861	2.836	0.304	105.2			
56.1 2.238 6.515 0.344 86.2		42.I	1.377	4.339	0.317	97.Ď			

Confining pressure (kPs)	Deviator stress (kPa)	Radial strain x10	Axial strain x10	Resilient Poisson's ratio	Resilient modulus (MPa)	Dry density (Mg/m ³)	Moisture content (%)	tension (kPa)
6.9	70.2 3.5 6.9 10.4	2.753 0.354 0.708	7.867 0.713 1.070 1.783	0.350 0.331 0.397	89.2 48.6 64.8 58.3	1.686	13.00	8.0
13.8	14.3 17.3 6.9 13.9 20.8	0.886 1.240 0.177 0.532 0.886	2.496 3.031 0.892 1.872 2.853	0.355 0.409 0.198 0.284 0.311	57.5 57.1 77.7 74.0 72.9			
27.6 13.8	27 • 2 34 • 6 13 • 9 6 • 9 13 • 8 20 • 7	1.418 1.949 0.354 0.177 0.530 0.883	3.924 4.996 1.606 0.839 1.677 2.516	0.361 0.390 0.220 0.211 0.316 0.351	69.4 69.4 86.3 82.2 82.2	1.624	7.75	12.0
27.6	27.1 34.5 13.8 27.1 41.9	1.236 1.766 0.353 0.707 1.242	3.355 4.362 1.174 2.685	0.368 0.405 0.301 0.263 0.308	80.8 79.1 117.5 100.9 104.0			
6.9	54.2 68.9 3.5 6.9	1.943 2.826 0.177 0.531 0.884 1.237 1.766	4.027 5.373 6.720 0.673 1.346 2.020	0.362 0.421 0.263 0.395 0.438	100.9 102.6 51.3 51.3	1.695	22.00	2.0
13.8	13.8 17.2 6.9 13.8 20.6	0.353 0.707 1.236	2.695 3.543 0.844 2.024 3.036	0.459 0.498 0.418 0.349	51.2 48.7 81.7 68.1 68.0			
27.6	28.3 34.4 13.8 27.1 41.0 54.1	1.766 2.472 0.353 0.883 1.765 2.471	4.220 5.747 1.352 2.872 4.395 6.095	0.418 0.430 0.261 0.307 0.402	67.1 59.9 101.9 94.3 95.2 88.8			
6.9	10.3 13.8	0.882 1.235	1.881	0.469	54.9 52.5	1.637	21.00	4.0
13.8	17.6 6.9 13.7 20.6	1.762 0.353 0.705 1.234	3.284 0.821 1.970 2.792	0.537 0.430 0.358 0.442	53.7 83.6 69.7 73.7			
27.6	27.0 27.0 41.7	1.234 2.115 1.058 2.115	4.278 2.962 4.447	0.494 0.357 0.476	63.0 91.0 93.7			
13.8	53.9 7.2 13.5 20.3 26.5	3.171 0.174 0.699 1.049	6.612 0.742 1.856 2.971 4.086	0.480 0.235 0.377 0.353 0.428	81.5 97.5 72.8 68.2 64.9	1.686	21.80	2.0
27.6	35.0 13.5 27.7 41.0 55.5	2.447 0.350 1.224 1.748 2.971	5.203 1.301 2.601 4.461 6.138	0.470 0.269 0.471 0.392 0.484	67.2 103.8 106.6 91.9 90.4			

Remolded, RPB waveform

Confining pressure (kPs)	Deviator atress (kPa)	Radial strain x10	Axial strain x10	Resilient Poisson's ratio	Resilient modulus (HPa)	Dry density (Mg/m ³)	Hoisture content (%)	Moisture tension (kPs)
3.4 6.9	3 · 6 7 · 1 10 · 7	0.336 0.672	0.648 1.213 2.024	0.277	54.9 58.7 52.8	1.625	22.20	1.0
13.8	14.2 7.1 14.2 20.5	0.339 0.336 0.671 1.007	2.433 0.893 2.110 3.248	0.345 0.376 0.318 0.310	56.5 79.7 67.4 63.0			
27.6	27.6 14.2 27.8 41.1 55.5	1.678 0.336 0.839 1.509	4.231 1.140 2.768 4.562	0.397 0.295 0.303 0.331	65.7 124.7 100.4 90.1			
6.9	14.2 17.8	2.684 0.504 0.671	6.211 1.661 2.076	0.432 0.303 0.323	89.4 85.6 85.5	1.649	7.75	12.0
27.6	13.8 27.8 41.1 55.5 71.1	0.168 0.671 1.007 1.510 2.013	0.914 2.077 3.157 4.488 6.323	0.184 0.323 0.319 0.336 0.318	150.7 133.7 130.1 123.7 112.4			
6.9	3.3 7.0 10.6 13.6 16.7	0.334 0.501 0.668 0.855	0.621 1.420 1.953 2.575 3.197	0.235 0.257 0.259 0.261	53.2 49.6 54.1 53.0 52.4	1.675	13.00	8.0

Confining pressure (kPa)	Deviator stress (kPs)	Radial strain x10	Axial strain x10	Resilient Poisson's ratio	Resilient modulus (MPs)	Dry density (Mg/m ²)	Moisture content (%)	Moisture tension (kPa)
13.8	7.0 14.1 21.1 27.5	0.167 0.501 0.835	1.243 2.220 3.197 4.266	0 • 13 • 0 • 22 6 0 • 26 1 0 • 27 4	56.7 63.5 66.1 64.5			
27.6	35.2 14.1	1.169 1.670 0.334 0.668 1.336	4.266 5.338 1.779 3.203 4.806 6.057	0.274 0.313 0.188 0.209 0.278 0.303 0.312	66.0 79.2 89.4 87.1			
6.9	55.0 70.5 3.3 6.5 10.3 13.1	2.505	8.030	0.312 0.191 0.234 0.263	87.8	1.713	7.75	12.0
13.6	13.1 16.8 13.1 20.6 28.1 32.7	0.688 0.172 0.344 0.688 1.033	2.456 0.737 1.555 2.538 3.603	0.280 0.233 0.221 0.271 0.287	68.5 88.8 84.2 81.1 77.9			
27.6	32.7 14.0 28.1 42.1 56.1	1.205 0.344 0.688 1.205 1.721	4.260 1.229 2.457 3.932 5.572	0.191 0.263 0.2263 0.2283 0.2221 0.2283 0.2287 0.2288 0.2288 0.2388 0.3341	76.8 114.2 114.2 107.0 100.7			
6.9	70 • 1 3 • 5 6 • 9 10 • 4 14 • 3	0.708 0.886	0.624 0.713 1.783 2.406	0.341 0.397 0.368 0.409 0.198	106.9 55.5 97.2 58.3 59.6 57.1	1.686	13.00	8.0
13.8	17.5 6.9 13.9 20.8 27.2	0.177 0.532 0.886 1.418	0.892 1.872 2.853 3.924	0.198 0.284 0.311 0.361	77.7 74.0 72.9			
27.6 6.9	13.9 69.3 3.4 6.9	0.354 3.365 0.353	1.606 7.518 0.503 0.839	0.382 0.220 0.448	86.3 92.2 68.6 82.2 76.0	1.624	7.75	12.0
13.8	0516170111159433998269349882987158192959882863	0.530 0.707 0.883 0.177 0.530 0.883 1.660	1.426 2.013 2.432 0.755 1.510 2.348 3.187	0 • 421 0 • 372 0 • 351 0 • 363 0 • 351 0 • 351 0 • 373 0 • 421	76.0 68.5 70.9 91.4 91.3 88.1			
27.6	34.5 13.8 27.1 41.9 54.2	1.766 0.353 0.707 1.419 1.945	4.195 1.174 2.517 3.691 5.037	0.421 0.301 0.281 0.384 0.386	62 2			
6.9	68.9 3.5 6.9 10.8 13.8	2.826 0.177 0.531 0.884 1.237	6.384 0.673 1.178 2.020 2.695	0.3846 0.4463 0.4463 0.4453 0.4459 0.4599 0.4599	108.0 51.3 58.6 53.7 51.2 48.7	1.695	22.00	2.0
13.8		1.766 0.707 1.236 1.766		0.499 0.399 0.473 0.475	77.9 78.9 76.3			
27.6	13.8 241.8 54.1 10.3 13.8	0.353 0.883 1.765 2.471	1.352 2.872 4.226 5.078	0.523 0.5261 0.307 0.418 0.487	72.8 101.9 94.3 99.0 106.5			
6.9 13.8	10.3 13.8 17.6 6.9	20.4753 0.4753 0.4763 1.7755 1.7755 1.7755	1.881 2.457 3.119 0.903 1.888	0.565 0.391	54.9 56.0 56.6 76.0	1.637	21.00	4.0
27.6	15.7 20.6 27.0 27.0 41.7 56.3	2.115	2.628 3.949	0.470 0.536 0.402	78.3 68.3 102.4 101.2			
6.9	56.3 6.8 10.6 13.5 17.4	2.115 3.171 0.350 0.525 0.700 1.049	4.117 5.947 0.557 0.926 1.668 2.227	0.514 9.533 0.628 0.567 0.420 0.471	54.9 56.6 776.7 728.3 1094.3 124.7 124.7 878.0	1.686	21.80	2.0

Confining pressure (kPs)	Deviator atress (kPa)	Radial strain x10	Axial strain x10	Resilient Poisson's ratio	Resilient modulus (MPs)	Dry density (Mg/m³)	Hoisture content (%)	Moisture tension (kPs)
13.A	7.2 13.5 20.3	0.174 0.525 1.049	0.557 1.392 2.599	0.312 0.377 0.404	129.9 97.1 78.0			
27.6	26.5 35.0 13.5 27.7 41.0 55.5	1.398 2.097 0.350 1.049 1.748 2.797	3.715 4.831 0.923 2.415 3.717 5.208	0.376 0.434 0.379 0.434 0.470 0.537	71.4 72.4 146.4 114.8 110.3			

Thawed, RPB waveform

Confining pressure (kPa)	Deviator stress (kPa)	Radial strain x10	Axial strain x10	Resilient Poisson's ratio	Resilient modulus (MPa)	Dry density (Mg/m ³)	Moisture content (%)	Moisture tension (kPs)
13.8 27.6	6 • R 13 • 9	0.968 2.95	1.571 5.051 2.296	0.616 0.569	43.2	1.389	22.30	-1.0
51.7 13.1	6.9 23.2 6.6 13.3	1.500 5.431 0.458 2.554	7.559 1.780 4.141	0.697 0.718 0.484 0.617	29.9 30.6 33.6 32.1	1.389	22.30	1.0
27.1 6.9 13.P 27.6	26.9 3.7 6.8 13.6	8 • 427 8 • 323 9 • 646	10.200 0.792 1.584 2.776	0.826 0.408 0.498 0.465	26.4 46.9 42.9 48.8	1.511	22.30	0.0
27.6 51.7 6.5	6 • 8 14 • 0 24 • 6 6 • 9	1.597 0.645 0.645 0.966	2.014 1.866 2.489 2.137	0.793 0.346 0.259 0.452	34.0 74.9 98.8 32.5	1.511	21.80	2.0
13.8 27.6 .6.9	13.9 26.6 13.7 7.1	1.931 0.320 2.320	3.564 4.458 1.628 1.267	0.452 0.433 0.197 0.253	39.0 59.6 84.3 55.8	1.577	13.28	8.0
13.8 27.6 51.7 69.8	13 • 7 28 • 3 50 • 5 68 • 7	0.460 0.800 1.280 1.600	2.172 3.801 5.435 6.709	0.221 0.210 0.236 0.238	74.4 92.9 102.4			
13.6 27.6 51.7	9.6 21.2 41.3 72.5	0.320 1.278 1.917	1.994 3.629 5.816 6.736	0.160 0.352 0.330	48.3 58.3 71.0 107.6			
69.0 6.9	104.7 13.7 3.4 6.8	3.194 1.278 0.491	9.124 3.468 0.211 1.713	0.350 0.369 0.287	114.8 39.5 41.7 39.5	1.408	22.00	2.0
13.3	10.1 13.5 16.9 .6.8	0.482 1.145 1.800 0.327	2.888 3.615 4.889 1.629 3.077	0.340 0.317 0.368 0.201	35.1 37.4 34.6 41.5			
	13.5 21.1 27.5 33.8	0.655 1.636 2.455 3.599 0.491	5.072 6.353 7.647	0.213 0.323 0.386 0.471	43.9 41.7 43.2 44.2			
27.6 13.8 27.6	13.5 27.5 27.1 56.1	1.508 2.733 3.824	2.004 4.373 5.481 8.6ú3	0.245 0.299 0.407 0.444	67.5 62.8 49.5 65.2	1.577	13.30	8.0
48.3 6.3 13.4 27.6	96.0 21.0 41.1 77.4	3.221 1.911	11.010 6.424 10.570 14.240	0.347 0.297 0.596 0.434	87.2 32.7 38.9 54.4			
6°•°	42.3 54.9 33.8	2.290 3.597 0.654	6.565 8.596 3.111	0.349 0.418 0.210	64.4 63.8 108.5	1.408	20.50	3.0
6•9	67.5 3.4 6.8 10.2	1.798 0.492 0.983	6.408 0.635 1.632 2.540	0.301 0.387	105.4 53.4 41.5 40.0	1.434	18.50	5.0
13+8	13.6 16.9 6.8 13.6 21.2 27.5	1.310 1.638 0.328 0.655 1.474	3.448 4.720 1.271 2.814 4.359 5.814	0.347 0.258 0.258 0.233 0.338	3558.6 487.4			
27.6	33.9 13.6 27.5 42.4 55.1 67.7	2.948 0.492 1.147 2.129 3.440	6.727 1.818 3.818 6.366 8.194 10.410	0.438 0.271 0.300 0.334 0.420 0.440	50.4 74.6 72.1 66.6 67.2 65.0			

Confining pressure (kPa)	Deviator atress (kPa)	Radial strain x10	Axial atrain x10	Resilient Poisson's ratio	Resilient modulus (HPa)	Dry density (Mg/m ³)	Moisture content (%)	Hoisture tension (kPa)
69.0	33.g	0.655	2.925	0.224	115.7			
6•9	6.8 10.3 13.7	1.636 0.329 0.658	6.035 1.294 2.219 2.259	0.271 0.254 0.297 0.278	112.1 52.8 46.2 46.2	1.451	11.50	9.0
13.8	17.1 6.8 13.7	0.23 1.152 0.329 0.658	3.885 1.017 1.942	0.297 0.324 0.339	44.0 67.2 70.4			
	21.4 27.8 34.2	1.316 1.645 2.139	3.515 4.811 5.926	0.374 0.342 0.361	60.8 57.7 57.7			
27.6	13.7 27.8 42.7	0.529 0.987 1.810	1.481 3.426 5.372	0.222 0.288 0.337	92•3 81•1 79•5			
69.0	55.5 68.3 34.1	2.632 3.618 0.658	7.416 8.912 2.506	0.355 0.406 0.263	74.9 76.6 136.3			
6.9	68.3 6.9 13.7 17.1 13.7	1.480 0.659 0.989	2.506 5.015 0.773 1.740 2.224	0.295 0.379 0.445	136.2 88.8 78.9 77.1	1.453	8.50	14.0
13.8	13.7 21.4 27.9	0.495 0.989 1.318	1.160 2.321 3.483	0.427 0.426 0.378	118.3 92.4 80.0			
27.6	34.3 13.7 27.9	1.648	4.839	0.341 0.262 0.206	70.9 109.1 87.3			
	42.9 55.7 68.6	0.659 1.483 2.307 3.295	3.194 5.035 6.977 8.728	0.295 0.331 0.378	85.2 79.9 78.6			
69.0 48.3	34.3 68.6 24.7	0.659 1.483 0.474	2.424 5.043 5.543	0.272 0.294 0.086	141.5 136.0 44.5	1.374	21.00	4.0
13.8 27.6	13.8 27.6 13.8	0.316 0.632 0.316	3.464 6.487 2.906	0.091 0.097 0.109	39.9 42.5 47.5	1.385	18.00	6.0
42.3 69.0 6.9	24 . 6. 34 . 4 6 . 9	0.632	4.926 5.848 0.675 2.137	0.128 0.135	50.0 58.8 102.0			
13.8 27.6 48.3	13.8 27.5 48.9	0.316 0.632 1.890	2.137 4.950 9.132	0.148 0.128 0.207	64.4 55.7 53.6			

Thawed, FWD waveform

	Confining pressure (kPa)	Deviator stress (kPa)	Radial strain x10	Axial etr <u>ai</u> n x10	Resilient Poisson's ratio	Resilient modulus (MPa)	Dry density (Mg/m ³)	Moisture content (%)	Moisture tension (kPa)
•	6.9	3.4 6.8 10.1 13.5	0.491 0.655 0.491	0.901 1.803 2.868 3.977	0.272 0.227	37.5 37.5 35.1 34.0	1.408	22.00	2.0
	13.8	16.9 6.8 13.5 21.1 27.5	1.473 0.655 1.309	5.250 1.629 3.077 5.616	0.123 0.281 0.213 0.233	32.2 41.5 43.9			
	27.6	35.8 13.5 27.5 42.3	1.464 3.108 0.327 0.818 1.472	7.262 9.475 2.004 4.555 7.294	0.276 C.328 0.163 0.180 0.202	37.8 35.7 67.5 60.3 57.9	1.408	20.50	3.0
	69.0	54.9 33.8 67.5	2.943 0.491 1.308	0.070 3.294 6.957	0.292 0.149 0.188	54.5 102.5 97.1		20030	3,0
	6.9	3.4 10.2 13.6	0.655	0.725 2.358 3.267	0.278 0.301	46.7 43.1 41.5	1.434	18.50	5.0

Confining pressure (kPa)	Deviator atress (kPa)	Radial strain x10	Aziel strain x10	Resilient Poisson's ratio	Resilient modulus (HPs)	Dry density (Mg/m³)	Hoisture content (%)	Moisture tension (kPa)
13.8	6 • 8 13 • 6 21 • 2 27 • 5	0.655 0.983 1.474	1.452 2.905 4.541 6.177	0.225 0.216 0.239	46.7 46.7 46.6 44.6	1.434	22.00 18.50	2.0 5.0
27.6	33.9 13.6 27.5 55.1 67.7	2.129 0.328 0.819 2.457 3.271	7.636 2.182 4.727 9.468 11.880	0.279 0.150 0.173 0.260 0.275	44.4 62.1 58.3 58.2 57.0			
69.0	33.8 67.7	0.491 1.145	3.108 6.218 0.740	0.158 0.184	108.8 108.8			
6.9	3.4 6.8 10.3 13.7	0.329 0.658 0.823	0.740 1.479 2.219 3.143 4.070	0.272 0.297 0.262 0.243	46.2 46.2 46.2 43.5 42.0	1.451	11.50	9.0
13.8	17.1 13.7 21.4	0.987 0.658 1.316	2.405	0.274	56 • 8 52 • 5			
27.6	27.8 13.7 27.8 42.7 55.5	1.642 0.329 0.987 1.810 2.632	5.366 1.481 3.519 6.113 8.343	0.306 0.222 0.280 0.296 0.315 0.354	51.8 92.3 78.9 69.9 66.6			
69.0	68.3 34.1 68.3	3.618 0.658 1.480	10.210 2.599 5.386	0.253 0.275	66.9 131.4 126.8			
6.9	6.9 10.3 13.7 17.1	0.495 0.659 1.153	0.773 1.547 2.320 3.894	0.320 0.284 0.296	88 • 8 66 • 5 59 • 1 44 • 0	1.453	8.50	14.0
13.8	15.7 21.4 27.9 34.3	0.495 0.989 1.318	0.773 1.740 3.288	0.284 0.301 0.284	88.8 78.9 65.2 60.0			
27.6	34.3 13.7 27.9 42.9 55.7	1.648 0.329 0.989 1.648 2.636	6.194 1.549 3.678 5.809 7.946	0.266 0.212 0.269 0.284 0.332	55.4 88.6 75.8 73.8 70.1			
69•0	68 • 6 34 • 3 68 • 6	3.295 0.659 1.318	9:697 2:521 5:431	0.340 0.261 0.243	70.8 136.1 126.3			

Recovered

Confining pressure (kPs)	Deviator stress (kPa)	Radial atrain x10	Axial strain x10	Resilient Poisson's ratio	Resilient modulus (MPa)	Dry density (Mg/m ³)	Moisture content (%)	Moisture tension (kPs)
27.6 69.0 103.5 6.9 27.6 69.0 103.5 6.9 27.6	13.6 51.9 27.2 103.9 110.9 138.5 138.5 120.7	0.591	1.529 2.594 3.193 0.798 5.195 5.495 2.670 5.879 11.680 4.899	0.093 0.117 0.092 0.222 0.101 0.157 0.121	104.2 144.6 162.6 86.7 136.8 142.3 146.5 146.6 146.6	1.585	18.00	6.0
27.6 69.5 103.5 27.6 103.5 104.6 27.6 103.5	82.5 34.9 537.0 27.8 113.3 14.3 155.0 140.8	1.771 0.301 0.603 0.603 0.904 0.602 1.499 1.492	922204133309555 9222046825555	0.184 0.112 0.144 0.097 0.246 0.268 0.253	85.7 144.0 1204.2 1147.4 1158.2 1158.2 2458.5	1.546	19.29	5.5
27.60 27.60 103.5 69.5 69.5 103.9 65.5 103.5	3.4 13.8 34.5 53.5 70.7 103.5 14.1 136.3	0.296 0.591 0.591 1.183 0.591 1.469	0.859 3.007 4.303 2.438 5.760 4.638 15.000	0.069 0.137 0.103 0.186 0.127 0.098 0.113	122.6 122.6 122.6 122.6 122.6 108.1	1.608	17.59	6.0

Frozen, RPB waveform

Confining pressure (kPa)	Deviator stress (kPa)	Axial atra <u>is</u> xl0	Resilient modulus (GPa)	Dry density (Mg/m ³)	Moisture content (%)	Temperature (°C)
69.0	137.1 211.0 348.1 485.3	0.966 1.127 2.095 5.224	1.42 1.87 1.66	1.366	28.80	-0.5
	633.0 211.0 348.1 485.3 633.0	3.634 0.161 0.282 0.403 0.644	1.51 1.74 13.10 12.34 12.64 9.85	1.366	28.80	-3.0
	843.9 474.7 606.6	1.207 0.121 0.242	6.99 39.23 25.07	1.366	28.80	-5.0
	843.9 485.3 633.0	0.563 0.040 0.121	14.99 121.52 52.31	1.366	28.80	-10.0
	843.9 346.5 483.1 630.1	0.201 0.506 0.928	41.99 6.85 5.21 4.39	1.441	29.10	-0.5
	846.1 483.0 630.1	1.434 2.027 0.253 0.422	4.14 19.09 14.93	1.441	29.10	-3.0
	840.1 483.1 630.1	0.549 0.085 0.169	15.30 56.84 37.28	1.441	29.10	-5.0
	840.1 483.1 630.1 840.1	0.253 0.085 0.127 0.169	33.21 56.84 49.61 49.71	1.441	29.10	-10.0
	210.0 347.0 483.5 630.6 841.0	1.197 2.210 3.316 4.425	1.75 1.57 1.46 1.43	1.374	29.40	-0.5
	210.2 346.5 483.5 630.6	6.462 0.092 0.276 0.552 0.920	1.30 22.85 12.55 8.76 6.85	1.374	29.40	-3.0
	840.9 210.2 346.9 483.5 630.6	1.656 0.138 0.230 0.368 0.552	5.08 15.23 15.08 13.14 11.42	1.374	29.40	-5.0
	841.0 210.2 346.9 483.5 630.6 840.9	0.920 0.046 0.092 0.184 0.276 0.368	9.14 45.70 37.71 26.28 22.85 22.85	1.374	29.40	-10.0

Dense Graded Stone

Thawed, RPB waveform

Confining pressure (kPs)	Deviator stress (kPs)	Radial strain x10	Axial strain x10	Resilient Poisson's ratio	Resilient modulus (MPa)	Dry density (Mg/m ³)	Moisture content (%)	Moisture tension (kPa)
13.8	10.3	0.853	1.896	0.450	54.4	1.970	6.25	3.0
27.6	13.5 13.5	0.960 0.640	2.168 1.491	0.443 0.429	62.1 90.3		0025	3.0
6.9	6.7		0.433	0.429	155.5	1.970	5.50	31.0
	10.3	0.213 0.320	0.731	0.291	141.2	,,,	3.30	31.0
	16.8	0.320	1.218	0.338 0.263	138.2			
13.8	.6.7	0.107 0.213	0.379	A 242	177.6			
	13.5 20.2 26.9	0.213	0.866	0.246 0.237 0.240 0.152 0.278	155.4			
	26.9	0.320	1.353	0.243	149.2 153.0			
27.6	33.7	0.533	2.220	0.240	151.6 191.2			
2700	13.5	0.320	0.704 1.489	0 • 152 0 • 215	191.2 180.8			
40.1	41.5	0.640	2.302	0.278	180.3			
48.3	48.2 70.1	0.640 0.853	2.168 3.255	0.295	222.5 215.4			
6.9	7.0	0.747	0.946	0.295 0.262 0.790 0.945	215.4 73.6	2.112	1. 00	
	10.3	1.279	1.353	0.945	76.5	20112	16.00	0.0

Confising pressure (kPa)	Deviator stress (kPa)	Redial strain x10	Axial strain x10	Resilient Poisson's ratio	Resilient modulus (MPa)	Dry density (Ng/m²)	Hoisture content (%)	Moisture tension (kPa)
13.8	.6.7	0.639	0.596 2.171	1.072	112.8 61.5			
6.9	13.3	2.127	0.243		137.2	2.112	6.00	10.0
	6.7	0.106	0.514 0.838	0.126	129.8			
	10.2 13.3	0.212	1.216	0.174	109.7			
13.8	16.7	0.319	1.406	0.227	118.6 129.8			
1300	13.3	0.212	1.054	0.201	126.6			
	20.0 26.7	0.265	1.487	0.178 0.253	134.6 140.9			
27.6	13.3	0.106	0.784	0.135	170.2			
	26 • 7 41 • 1	0.319	1.758 2.569	0.181 0.289	151.8 160.1			
6.9	41.1 3.3 6.7	0.106	0.514	0.206	64.8	2.170	8.50	2.0
	10.2	0.212	1.081	0.196 0.190	61.6 60.9			
13.8	10.2	0.212	0.757 1.758	0.280 0.241	88.0 75.8			
27.6	13.3 13.3 6.7	0.424	1.272	0.250	104.7			
6.9	6.7	0.106	0.460	0.230	144.8 130.1	2.170	6.00	16.0
	10.2	0.318	1.137	0.280	117.2			
13.8	16.6 6.7	0.424	1.489	0.285	111.8 175.7			
13.0	13.3	0.318	0.948	0.559	140.5			
	20.5 26.6	0.424 0.530	1.408 2.085	0.301 0.254	145.8 127.8			
27.6	13.3	0.318	0.731	0.435	182.2			
	26.6 41.1	0.530	1.680 2.710	0.315	158.6 151.5			
6.9	10.2	0.212	0.596	0.356	171.3	2.170	5.50	29.0
	13.3 16.6	0.318	0.949	0.335 0.250	140.4 130.7			
13.8	6.7	0.106	0.407	0.260 0.223	163.6			
	13.3 20.5	0.212	0.949	0.235	140.4 151.4			
	26.6	0.424	1.898	0.223	140.4			
27.6	34.4 13.3	0.212	0.759	0.279	175.5			
	26.6 41.1	0.318	1.681	0.189 0.247	158.5 159.4			
	55.5	0.742	3.310	0.224	167.6			
69.0	66.6 133.2	0.849	2.986 7.070	0.284	223.0 188.4			

Frozen, RPB waveform

Confining pressure (kPa)	Deviator stress (kPa)	Axial strain x10	Resilient modulus (GPa)	Dry density (Mg/m ³)	Moisture content (Z)	Temperature (°C)
69.0	280.6 348.0 483.0 617.4	0.077 0.129 0.231 0.463	36.44 26.98 20.91 13.33	1.788	21.78	-4.1
	841.9 70.4 140.9 202.9	0.514 0.038 0.180 0.333	16.38 18.54 7.83 6.09	1.788	21.78	-0.5
27.6	281.6 70.3 40.5 56.2	0.411 0.437 0.437 0.308	6.85 1.61 0.93 1.83	1.788	21.78	-0.1
48.3	67.4 47.2 73.0 95.5 123.5	0.411 0.218 0.463 0.720 0.951	2.17 1.58 1.33 1.30			
69.0	344.0 477.2 610.4 832.4	0.061 0.122 0.195 0.293	56.39 39.11 31.30 28.41	1.831	16.09	-8.2

A facsimile catalog card in Library of Congress MARC format is reproduced below.

Cole, D.

Resilient modulus of freeze-thaw affected granular soils for pavement design and evaluation. Part 1: Laboratory tests on soil from Winchendon, Massachusetts, test sections / by D. Cole, D. Bentley, G. Durell and T. Johnson. Hanover, N.H.: Cold Regions Research and Engineering Laboratory; Springfield, Va.: available from National Technical Information Service, 1986.

vi, 78 p., illus.; 28 cm. (CRRBL Report 86-4.)
Prepared for Office of the Chief of Engineers by Corps
of Engineers, U.S. Army Cold Regions Research and Engineering Laboratory under DA Project 4A762730AT42.
Bibliography: p. 21.

(continued on Card 2)

(CARD 2)

(1986)

Cole, D.

Resilient modulus of freeze-thaw....

1. Airfields. 2. Freezing-thawing. 3. Laboratory tests. 4. Repeated-load triaxial tests. 5. Resilient moduli. 6. Roads. 7. Soil tests. 8. Subgrade soils. I. Bentley, D. II. Durell, G. III. Johnson, T. IV. United States. Army. Corps of Engineers. V. Cold Regions Research and Engineering Laboratory, Hanover, N.H. VI. Series: CRREL Report 86-4/.

Ì