

SF1624 Algebra och geometri Tentamen med lösningsförslag Fredag, 22 april 2022

1. Låt $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$.

(a) Bestäm en
$$2 \times 2$$
-matris P sådan att $P^{-1}AP$ är en diagonalmatris. (4 p)

(b) Bestäm
$$A^{10} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
. (2 p)

Lösningsförslag.

(a) Det karakteristiska polynomet till A ges av $\det(A-\lambda I)=\lambda^2-6\lambda+8=(\lambda-4)\cdot(\lambda-2)$, och således ges egenvärdena till A av $\lambda_1=2$ och $\lambda_2=4$. För att hitta de motsvarande egenvektorerna löser vi de augmenterade systemen

$$\left[\begin{array}{cc|c} 3-2 & 1 & 0 \\ 1 & 3-2 & 0 \end{array}\right] = \left[\begin{array}{cc|c} 1 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right] \sim \left[\begin{array}{cc|c} 1 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right]$$

samt

$$\left[\begin{array}{cc|c} 3-4 & 1 & 0 \\ 1 & 3-4 & 0 \end{array}\right] = \left[\begin{array}{cc|c} -1 & 1 & 0 \\ 1 & -1 & 0 \end{array}\right] \sim \left[\begin{array}{cc|c} -1 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right]$$

som har lösningar $\vec{x} = t \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ respektive $\vec{x} = t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, där t är en reell parameter. För att basbytesmatrisen P ska ge en diagonalmatris ska kolonnerna vara egenvektorer. Alltså kan vi välja

$$P = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$$

och få att $P^{-1}AP = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$.

(b) Eftersom $\begin{bmatrix} -1\\1 \end{bmatrix}$ är en egenvektor med egenvärde 2 får vi $A^{10}\begin{bmatrix} -1\\1 \end{bmatrix} = 2^{10}\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} -2^{10}\\2^{10} \end{bmatrix} = \begin{bmatrix} -1024\\1024 \end{bmatrix}$.

2. Låt

$$\vec{u} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad \text{och} \quad \vec{v} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.$$

(a) Bestäm vinkeln mellan \vec{u} och \vec{v} .

(3p)

(b) Bestäm skärningspunkten mellan linjen (x, y, z) = (-1 + t, 2 + 2t, 2t) och planet genom origo som spänns upp av vektorerna \vec{u} och \vec{v} . (3 p)

Lösningsförslag.

(a) Låt α vara den sökta vinkeln mellan \vec{u} och \vec{v} . Vi har att

$$1 = \vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \alpha.$$

Eftersom $\|\vec{u}\| = \|\vec{v}\| = \sqrt{2}$ får vi $\cos \alpha = 1/2$ och alltså $\alpha = \pi/3$.

(b) Planet som spänns upp av \vec{u} och \vec{v} har normalvektor som ges av kryssprodukten $\vec{u} \times \vec{v}$. Vi får

$$\vec{u} \times \vec{v} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 - 0 \\ 0 - 1 \\ 1 - 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

Alltså ges ekvationen för planet av x-y+z=0 och vi kan hitta skärningspunkten genom att sätta in parameterformen av linjen.

$$(-1+t) - (2+2t) + 2t = 0 \iff t = 3.$$

Skärningspunkten är därmed $(-1 + 3, 2 + 2 \cdot 3, 2 \cdot 3) = (2, 8, 6)$.

- 3. Låt Π vara planet som ges av ekvationen 2x + 3y 6z = 0.
 - (a) Bestäm den ortogonala projektionen av vektorn $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ på planet Π . (3 **p**)
 - (b) Bestäm standardmatrisen A för den linjära avbildning $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ som svarar mot den ortogonala projektionen på planet Π . (2 **p**)
 - (c) Avgör om matrisen A är inverterbar. (1 p)

Lösningsförslag.

(a) Projektionen ges av

$$\operatorname{Proj}_{\Pi} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \frac{\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T \cdot \begin{bmatrix} 2 & 3 & -6 \end{bmatrix}^T}{\begin{bmatrix} 2 & 3 & -6 \end{bmatrix}^T \cdot \begin{bmatrix} 2 & 3 & -6 \end{bmatrix}^T} \begin{bmatrix} 2 \\ 3 \\ -6 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \frac{2}{49} \begin{bmatrix} 2 \\ 3 \\ -6 \end{bmatrix} = \frac{1}{49} \begin{bmatrix} 45 \\ -6 \\ 12 \end{bmatrix}$$

(b) För att beräkna matrisen för projektionen behöver vi beräkna bilderna av de två andra

standardbasvektorerna,
$$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 och $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

$$\operatorname{Proj}_{\Pi} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - \frac{\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^{T} \cdot \begin{bmatrix} 2 & 3 & -6 \end{bmatrix}^{T}}{\begin{bmatrix} 2 & 3 & -6 \end{bmatrix}^{T} \cdot \begin{bmatrix} 2 & 3 & -6 \end{bmatrix}^{T}} \begin{bmatrix} 2 \\ 3 \\ -6 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - \frac{3}{49} \begin{bmatrix} 2 \\ 3 \\ -6 \end{bmatrix} = \frac{1}{49} \begin{bmatrix} -6 \\ 40 \\ 18 \end{bmatrix}$$

$$\operatorname{Proj}_{\Pi} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - \frac{\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{T} \cdot \begin{bmatrix} 2 & 3 & -6 \end{bmatrix}^{T}}{\begin{bmatrix} 2 & 3 & -6 \end{bmatrix}^{T} \cdot \begin{bmatrix} 2 & 3 & -6 \end{bmatrix}^{T}} \begin{bmatrix} 2 \\ 3 \\ -6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - \frac{-6}{49} \begin{bmatrix} 2 \\ 3 \\ -6 \end{bmatrix} = \frac{1}{49} \begin{bmatrix} 12 \\ 18 \\ 13 \end{bmatrix}$$

Matrisen har bilderna av standardbasvektorerna som kolonner och ges därmed av

$$A = \frac{1}{49} \begin{bmatrix} 45 & -6 & 12 \\ -6 & 40 & 18 \\ 12 & 18 & 13 \end{bmatrix}$$

(c) Matrisen A är inte inverterbar eftersom normalvektorn till planet avbildas på noll.

4. Låt $P = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}$ vara basbytesmatrisen från basen $\mathcal B$ till basen $\mathcal C$ där $\mathcal B$ och $\mathcal C$ båda är baser för samma delrum V i $\mathbb R^3$.

- (a) Bestäm dimensionen av delrummet V. (1 p)
- (b) Bestäm basbytesmatrisen från basen C till basen B. (2 p)
- (c) Ge ett exempel på ett delrum V och baser \mathcal{B} och \mathcal{C} sådana att P är basbytesmatrisen från basen \mathcal{B} till basen \mathcal{C} . (3 p)

Lösningsförslag.

- (a) Eftersom basbytesmatrisen är 2×2 måste delrummet ha dimension 2.
- (b) Det omvända basbytet ges av inversen $P^{-1} = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$
- (c) Om vi väljer delrummet som ges av z = 0 och

$$\mathcal{C} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$$

får vi reda på basen $\mathcal B$ genom att basbytesmatrisen från $\mathcal B$ till basen $\mathcal C$ ska ges av koordinaterna för basvektorerna i $\mathcal B$ med avseende på basen $\mathcal C$. Därmed är

$$\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ -3 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} \right\}$$

5. Låt V vara ett k-dimensionellt delrum av \mathbb{R}^n , låt M_{nm} beteckna mängden av $n \times m$ -matriser och låt W vara mängden av $n \times m$ -matriser A som uppfyller att $\operatorname{Range}(A)$ är ett delrum av V.

(a) Visa att
$$W$$
 är ett delrum av M_{nm} . (3 p)

(b) Bestäm dimensionen av
$$W$$
. (3 p)

Lösningsförslag.

- (a) Om B är en matris vars radrum är V^{\perp} har vi att en matris A ligger i W precis om BA=0. Alltså ges W av lösningsmängden till ett homogent linjärt ekvationssystem, vilket visar att det är ett delrum av M_{nm} .
- (b) För varje kolonn i A ges lösningsmängden av k parametrar eftersom B har rang n-k. Sammanlagt behövs därmed $k\cdot m$ parametrar och dimensionen för W är km.
- **6.** En $n \times n$ -matris A sägs vara expansiv om $||A\vec{x}|| > ||\vec{x}||$ för alla nollskilda \vec{x} i \mathbb{R}^n . Vi säger att $\vec{x_0}$ i \mathbb{R}^n är en fixpunkt till en avbildning $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ om $f(\vec{x_0}) = \vec{x_0}$.
 - (a) Visa att om A är en $n \times n$ -matris vars egenvärden alla har absolutbelopp som är större än 1 så är matrisen $A I_n$ inverterbar. (2 p)
 - (b) Visa att om A är en expansiv $n \times n$ -matris så är matrisen $A I_n$ är inverterbar. (2 p)
 - (c) Om \vec{b} är en vektor i \mathbb{R}^n och A är en $n \times n$ -matris definierar vi en avbildning $f : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ genom

$$f(\vec{x}) = A\vec{x} + \vec{b},$$
 för alla \vec{x} i \mathbb{R}^n .

Visa att om A är expansiv så måste f ha en unik fixpunkt. (2 p)

Lösningsförslag.

- (a) Matrisen $A I_n$ är inverterbar om och endast om 1 inte är ett egenvärde till A. Om alla egenvärden till A har absolutbelopp som är större än 1 kan inte 1 vara ett egenvärde och $A I_n$ är inverterbar.
- (b) Om 1 skulle vara ett egenvärde till A finns en vektor $\vec{x_o}$ med $A\vec{x_0} = \vec{x_0}$ och därmed $||A\vec{x_0}|| = ||\vec{x_0}||$ vilket inte kan hända om A är expansiv.
- (c) Vi har att

$$f(\vec{x}) = \vec{x} \iff A\vec{x} + \vec{b} = \vec{x} \iff (A - I_n)\vec{x} = -\vec{b}.$$

Eftersom A är expansiv är matrisen $A-I_n$ inverterbar enligt del (b) och därmed finns en unik lösning till $(A-I_n)\vec{x}=-\vec{b}$, vilket ger en unik fixpunkt till f.