Application of Information Theory, Lecture 12

Accessible Entropy and Statistically Hiding Commitments

Iftach Haitner

Tel Aviv University.

January 20, 2015

Section 1

Commitment Schemes

- Digital analogue of a safe
- Numerous applications (e.g., zero-knowledge, coin-flipping, secure computations,)

Definition 1 (Commitment scheme)

An efficient two-stage protocol (S, R).

- Commit stage: The sender S has private input $\sigma \in \{0,1\}^*$ and the common input is 1ⁿ. The commitment stage results in a **joint** output c, the commitment, and a **private** output d of S, the decommitment.
- Reveal stage: S sends the pair (d, σ) to R, and R either accepts or rejects.

Definition 1 (Commitment scheme)

An efficient two-stage protocol (S, R).

- Commit stage: The sender S has private input $\sigma \in \{0,1\}^*$ and the common input is 1ⁿ. The commitment stage results in a **joint** output c, the commitment, and a **private** output d of S, the decommitment.
- Reveal stage: S sends the pair (d, σ) to R, and R either accepts or rejects.

Completeness: R always accepts in an honest execution.

Definition 1 (Commitment scheme)

An efficient two-stage protocol (S, R).

- Commit stage: The sender S has private input $\sigma \in \{0,1\}^*$ and the common input is 1ⁿ. The commitment stage results in a **joint** output c, the commitment, and a **private** output d of S, the decommitment.
- Reveal stage: S sends the pair (d, σ) to R, and R either accepts or rejects.

Completeness: R always accepts in an honest execution.

Hiding:. In commit stage: for any R* and equal length $\sigma, \sigma' \in \{0, 1\}^*$, $\Delta^{R^*}((S(\sigma), R^*)(1^n), (S(\sigma'), R^*)(1^n)) = \text{neg}(n)$.

Definition 1 (Commitment scheme)

An efficient two-stage protocol (S, R).

- Commit stage: The sender S has private input $\sigma \in \{0,1\}^*$ and the common input is 1ⁿ. The commitment stage results in a **joint** output c, the commitment, and a **private** output d of S, the decommitment.
- ▶ Reveal stage: S sends the pair (d, σ) to R, and R either accepts or rejects.

Completeness: R always accepts in an honest execution.

Hiding: In commit stage: for any R* and equal length $\sigma, \sigma' \in \{0, 1\}^*$, $\Delta^{R^*}((S(\sigma), R^*)(1^n), (S(\sigma'), R^*)(1^n)) = \text{neg}(n)$.

Binding: The following happens with negligible prob. for any S*:

 $S^*(1^n)$ interacts with $R(1^n)$ in the commit stage resulting in a commitment c. Then S^* outputs two pairs (d, σ) and (d', σ') with $\sigma \neq \sigma'$ and $R(c, d, \sigma) = R(c, d', \sigma') = Accept$.

▶ Negligible function: μ : $\mathbb{N} \mapsto \mathbb{N}$ is negligible, if for any $p \in \text{poly } \exists n_p \in \mathbb{N}$ s.t. $\frac{1}{p(n)} < \mu(n)$ for all $n > n_p$.

- ▶ Negligible function: μ : $\mathbb{N} \mapsto \mathbb{N}$ is negligible, if for any $p \in \text{poly } \exists n_p \in \mathbb{N}$ s.t. $\frac{1}{p(n)} < \mu(n)$ for all $n > n_p$.
- Hiding: Perfect, statistical, computational.

- ▶ Negligible function: μ : $\mathbb{N} \mapsto \mathbb{N}$ is negligible, if for any $p \in \text{poly } \exists n_p \in \mathbb{N}$ s.t. $\frac{1}{p(n)} < \mu(n)$ for all $n > n_p$.
- Hiding: Perfect, statistical, computational.
- Binding: Perfect, statistical, computational.

- ▶ Negligible function: μ : $\mathbb{N} \mapsto \mathbb{N}$ is negligible, if for any $p \in \text{poly } \exists n_p \in \mathbb{N}$ s.t. $\frac{1}{p(n)} < \mu(n)$ for all $n > n_p$.
- Hiding: Perfect, statistical, computational.
- Binding: Perfect, statistical, computational.
- Impossible to have simultaneously both properties to be statistical.

- ▶ Negligible function: μ : $\mathbb{N} \mapsto \mathbb{N}$ is negligible, if for any $p \in \text{poly } \exists n_p \in \mathbb{N}$ s.t. $\frac{1}{p(n)} < \mu(n)$ for all $n > n_p$.
- Hiding: Perfect, statistical, computational.
- Binding: Perfect, statistical, computational.
- Impossible to have simultaneously both properties to be statistical.
- OWF is necessary assumption

- ▶ Negligible function: μ : $\mathbb{N} \mapsto \mathbb{N}$ is negligible, if for any $p \in \text{poly } \exists n_p \in \mathbb{N}$ s.t. $\frac{1}{p(n)} < \mu(n)$ for all $n > n_p$.
- Hiding: Perfect, statistical, computational.
- Binding: Perfect, statistical, computational.
- Impossible to have simultaneously both properties to be statistical.
- OWF is necessary assumption
- Suffices to construct "bit commitments"

- ▶ Negligible function: μ : $\mathbb{N} \mapsto \mathbb{N}$ is negligible, if for any $p \in \text{poly } \exists n_p \in \mathbb{N}$ s.t. $\frac{1}{p(n)} < \mu(n)$ for all $n > n_p$.
- Hiding: Perfect, statistical, computational.
- Binding: Perfect, statistical, computational.
- Impossible to have simultaneously both properties to be statistical.
- OWF is necessary assumption
- Suffices to construct "bit commitments"
- OWFs imply both statistically binding and computationally hiding commitments, and (more difficult) computationally binding and statistically hiding commitments.

- ▶ Negligible function: μ : $\mathbb{N} \mapsto \mathbb{N}$ is negligible, if for any $p \in \text{poly } \exists n_p \in \mathbb{N}$ s.t. $\frac{1}{p(n)} < \mu(n)$ for all $n > n_p$.
- Hiding: Perfect, statistical, computational.
- Binding: Perfect, statistical, computational.
- Impossible to have simultaneously both properties to be statistical.
- OWF is necessary assumption
- Suffices to construct "bit commitments"
- OWFs imply both statistically binding and computationally hiding commitments, and (more difficult) computationally binding and statistically hiding commitments.
- We focus on computationally binding, and statistically hiding commitments (SHC)

- ▶ Negligible function: μ : $\mathbb{N} \mapsto \mathbb{N}$ is negligible, if for any $p \in \text{poly } \exists n_p \in \mathbb{N}$ s.t. $\frac{1}{p(n)} < \mu(n)$ for all $n > n_p$.
- Hiding: Perfect, statistical, computational.
- Binding: Perfect, statistical, computational.
- Impossible to have simultaneously both properties to be statistical.
- OWF is necessary assumption
- Suffices to construct "bit commitments"
- OWFs imply both statistically binding and computationally hiding commitments, and (more difficult) computationally binding and statistically hiding commitments.
- We focus on computationally binding, and statistically hiding commitments (SHC)
- ► Canonical decommitment: *d* is S's coin and *c* is protocol's transcript of the commit stage, and decomitment verifies consistency.

- ▶ Negligible function: μ : $\mathbb{N} \mapsto \mathbb{N}$ is negligible, if for any $p \in \text{poly } \exists n_p \in \mathbb{N}$ s.t. $\frac{1}{p(n)} < \mu(n)$ for all $n > n_p$.
- Hiding: Perfect, statistical, computational.
- Binding: Perfect, statistical, computational.
- Impossible to have simultaneously both properties to be statistical.
- OWF is necessary assumption
- Suffices to construct "bit commitments"
- OWFs imply both statistically binding and computationally hiding commitments, and (more difficult) computationally binding and statistically hiding commitments.
- We focus on computationally binding, and statistically hiding commitments (SHC)
- Canonical decommitment: d is S's coin and c is protocol's transcript of the commit stage, and decomitment verifies consistency.
- We will focus on constructing the commit algorithm

Section 2

Inaccessible Entropy

Definition 2 (collision resistant hash family (CRH))

$$\Pr_{\stackrel{h \leftarrow \mathcal{H}_n}{(x,x') \leftarrow A(1^n,h)}} \left[x \neq x' \in \{0,1\}^* \land h(x) = h(x') \right] = \mathsf{neg}(n)$$

Definition 2 (collision resistant hash family (CRH))

A function family $\mathcal{H} = \{\mathcal{H}_n: \{0,1\}^n \mapsto \{0,1\}^{n/2}\}$ is collision resistant, if \forall PPT A

$$\Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow \mathsf{A}(1^n,h)}} \left[x \neq x' \in \{0,1\}^* \land h(x) = h(x') \right] = \mathsf{neg}(n)$$

Implies SHC. (?)

Definition 2 (collision resistant hash family (CRH))

A function family $\mathcal{H} = \{\mathcal{H}_n: \{0,1\}^n \mapsto \{0,1\}^{n/2}\}$ is collision resistant, if \forall PPT A

$$\Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow \mathsf{A}(1^n,h)}} \left[x \neq x' \in \{0,1\}^* \land h(x) = h(x') \right] = \mathsf{neg}(n)$$

Implies SHC. (?)

Definition 2 (collision resistant hash family (CRH))

A function family $\mathcal{H} = \{\mathcal{H}_n: \{0,1\}^n \mapsto \{0,1\}^{n/2}\}$ is collision resistant, if \forall PPT A

$$\Pr_{\stackrel{h \leftarrow \mathcal{H}_n}{(x,x') \leftarrow A(1^n,h)}} \left[x \neq x' \in \{0,1\}^* \land h(x) = h(x') \right] = \mathsf{neg}(n)$$

Implies SHC. (?) Believed not to be implied by OWFs.

Definition 2 (collision resistant hash family (CRH))

$$\Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow \mathsf{A}(1^n,h)}} \left[x \neq x' \in \{0,1\}^* \land h(x) = h(x') \right] = \mathsf{neg}(n)$$

- Implies SHC. (?) Believed not to be implied by OWFs.
- Assume for simplicity that $h \in \mathcal{H}_n$ is $2^{n/2}$ to 1 and that a PPT cannot find a collision in any $h \in \mathcal{H}_n$

Definition 2 (collision resistant hash family (CRH))

$$\Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow \mathsf{A}(1^n,h)}} \left[x \neq x' \in \{0,1\}^* \land h(x) = h(x') \right] = \mathsf{neg}(n)$$

- Implies SHC. (?) Believed not to be implied by OWFs.
- Assume for simplicity that $h \in \mathcal{H}_n$ is $2^{n/2}$ to 1 and that a PPT cannot find a collision in any $h \in \mathcal{H}_n$
- Given $h(U_n)$, the (min) entropy of U_n is n/2.

Definition 2 (collision resistant hash family (CRH))

$$\Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow \mathsf{A}(1^n,h)}} \left[x \neq x' \in \{0,1\}^* \land h(x) = h(x') \right] = \mathsf{neg}(n)$$

- ▶ Implies SHC. (?) Believed not to be implied by OWFs.
- Assume for simplicity that $h \in \mathcal{H}_n$ is $2^{n/2}$ to 1 and that a PPT cannot find a collision in any $h \in \mathcal{H}_n$
- Given $h(U_n)$, the (min) entropy of U_n is n/2.
- Consider PPT A that on input h first outputs h, y, and then outputs $x \in h^{-1}(y)$ (possibly using additional random coins)

Definition 2 (collision resistant hash family (CRH))

$$\Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow \mathsf{A}(1^n,h)}} \left[x \neq x' \in \{0,1\}^* \land h(x) = h(x') \right] = \mathsf{neg}(n)$$

- ▶ Implies SHC. (?) Believed not to be implied by OWFs.
- Assume for simplicity that $h \in \mathcal{H}_n$ is $2^{n/2}$ to 1 and that a PPT cannot find a collision in any $h \in \mathcal{H}_n$
- Given $h(U_n)$, the (min) entropy of U_n is n/2.
- Consider PPT A that on input h first outputs h, y, and then outputs $x \in h^{-1}(y)$ (possibly using additional random coins)
- What is the entropy of x given (h, y) and the coins A's used to sample y?

Definition 2 (collision resistant hash family (CRH))

$$\Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow \mathsf{A}(1^n,h)}} \left[x \neq x' \in \{0,1\}^* \land h(x) = h(x') \right] = \mathsf{neg}(n)$$

- ▶ Implies SHC. (?) Believed not to be implied by OWFs.
- Assume for simplicity that $h \in \mathcal{H}_n$ is $2^{n/2}$ to 1 and that a PPT cannot find a collision in any $h \in \mathcal{H}_n$
- Given $h(U_n)$, the (min) entropy of U_n is n/2.
- Consider PPT A that on input h first outputs h, y, and then outputs $x \in h^{-1}(y)$ (possibly using additional random coins)
- What is the entropy of x given (h, y) and the coins A's used to sample y?

Definition 2 (collision resistant hash family (CRH))

$$\Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow \mathsf{A}(1^n,h)}} \left[x \neq x' \in \{0,1\}^* \land h(x) = h(x') \right] = \mathsf{neg}(n)$$

- Implies SHC. (?) Believed not to be implied by OWFs.
- Assume for simplicity that $h \in \mathcal{H}_n$ is $2^{n/2}$ to 1 and that a PPT cannot find a collision in any $h \in \mathcal{H}_n$
- Given $h(U_n)$, the (min) entropy of U_n is n/2.
- Consider PPT A that on input h first outputs h, y, and then outputs $x \in h^{-1}(y)$ (possibly using additional random coins)
- What is the entropy of x given (h, y) and the coins A's used to sample y? (essentially) 0!

Definition 2 (collision resistant hash family (CRH))

$$\Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow \mathsf{A}(1^n,h)}} \left[x \neq x' \in \{0,1\}^* \land h(x) = h(x') \right] = \mathsf{neg}(n)$$

- ▶ Implies SHC. (?) Believed not to be implied by OWFs.
- Assume for simplicity that $h \in \mathcal{H}_n$ is $2^{n/2}$ to 1 and that a PPT cannot find a collision in any $h \in \mathcal{H}_n$
- Given $h(U_n)$, the (min) entropy of U_n is n/2.
- Consider PPT A that on input h first outputs h, y, and then outputs $x \in h^{-1}(y)$ (possibly using additional random coins)
- What is the entropy of x given (h, y) and the coins A's used to sample y? (essentially) 0!
- ► The generator G(h, x) = (h, h(x), x) has inaccessible entropy n/2

Definition 2 (collision resistant hash family (CRH))

$$\Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow \mathsf{A}(1^n,h)}} \left[x \neq x' \in \{0,1\}^* \land h(x) = h(x') \right] = \mathsf{neg}(n)$$

- ▶ Implies SHC. (?) Believed not to be implied by OWFs.
- Assume for simplicity that $h \in \mathcal{H}_n$ is $2^{n/2}$ to 1 and that a PPT cannot find a collision in any $h \in \mathcal{H}_n$
- Given $h(U_n)$, the (min) entropy of U_n is n/2.
- Consider PPT A that on input h first outputs h, y, and then outputs $x \in h^{-1}(y)$ (possibly using additional random coins)
- What is the entropy of x given (h, y) and the coins A's used to sample y? (essentially) 0!
- ► The generator G(h, x) = (h, h(x), x) has inaccessible entropy n/2
- Does inaccessible entropy generator implies SHC?

Definition 2 (collision resistant hash family (CRH))

$$\Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow \mathsf{A}(1^n,h)}} \left[x \neq x' \in \{0,1\}^* \land h(x) = h(x') \right] = \mathsf{neg}(n)$$

- ▶ Implies SHC. (?) Believed not to be implied by OWFs.
- Assume for simplicity that $h \in \mathcal{H}_n$ is $2^{n/2}$ to 1 and that a PPT cannot find a collision in any $h \in \mathcal{H}_n$
- Given $h(U_n)$, the (min) entropy of U_n is n/2.
- Consider PPT A that on input h first outputs h, y, and then outputs $x \in h^{-1}(y)$ (possibly using additional random coins)
- What is the entropy of x given (h, y) and the coins A's used to sample y? (essentially) 0!
- ► The generator G(h, x) = (h, h(x), x) has inaccessible entropy n/2
- Does inaccessible entropy generator implies SHC?
- Does OWF implies inaccessible entropy generator?

► Sample entropy: for rv X let $H_X(x) = -\log Pr_X[x]$.

- ► Sample entropy: for rv X let $H_X(x) = -\log Pr_X[x]$.
- $\vdash H(X) = \mathsf{E}_{X \leftarrow X} \big[H_X(X) \big]$

- ► Sample entropy: for rv X let $H_X(x) = -\log \Pr_X[x]$.
- $\vdash H(X) = \mathsf{E}_{X \leftarrow X} [H_X(X)]$
- Let $G: \{0,1\}^n \mapsto (\{0,1\}^\ell)^m$ be an m-block generator and let $(G_1,\ldots,G_m)=G(U_n)$

- ► Sample entropy: for rv X let $H_X(x) = -\log \Pr_X[x]$.
- $\vdash H(X) = \mathsf{E}_{X \leftarrow X} [H_X(X)]$
- ► Let $G: \{0,1\}^n \mapsto (\{0,1\}^\ell)^m$ be an m-block generator and let $(G_1,\ldots,G_m)=G(U_n)$
- ► For $\mathbf{g} = (g_1, ..., g_m) \in \text{Supp}(G_1, ..., G_m)$, let

$$\mathsf{RealH}_{G}(\mathbf{g}) = \sum_{i \in [m]} H_{G_{i}|G_{1},...,G_{i-1}}(g_{i}|g_{1},...,g_{i-1})$$

- ▶ Sample entropy: for rv X let $H_X(x) = -\log \Pr_X[x]$.
- $\vdash H(X) = \mathsf{E}_{X \leftarrow X} \left[H_X(X) \right]$
- ► Let $G: \{0,1\}^n \mapsto (\{0,1\}^\ell)^m$ be an *m*-block generator and let $(G_1,\ldots,G_m) = G(U_n)$
- ► For $\mathbf{g} = (g_1, ..., g_m) \in \text{Supp}(G_1, ..., G_m)$, let

RealH_G(
$$\mathbf{g}$$
) = $\sum_{i \in [m]} H_{G_i|G_1,...,G_{i-1}}(g_i|g_1,...,g_{i-1})$

► The real Shannon entropy of G is $E_{g \leftarrow G(U_n)}[RealH_G(g)]$

- ► Sample entropy: for rv X let $H_X(x) = -\log \Pr_X[x]$.
- $\vdash H(X) = \mathsf{E}_{x \leftarrow X} [H_X(x)]$
- ► Let $G: \{0,1\}^n \mapsto (\{0,1\}^\ell)^m$ be an *m*-block generator and let $(G_1,\ldots,G_m) = G(U_n)$
- ► For $\mathbf{g} = (g_1, ..., g_m) \in \text{Supp}(G_1, ..., G_m)$, let

RealH_G(
$$\mathbf{g}$$
) = $\sum_{i \in [m]} H_{G_i|G_1,...,G_{i-1}}(g_i|g_1,...,g_{i-1})$

- ▶ The real Shannon entropy of G is $E_{g \leftarrow G(U_n)}[RealH_G(g)]$
- $\blacktriangleright \mathsf{E}_{\mathbf{g} \leftarrow G(U_n)} \left[\mathsf{RealH}_G(\mathbf{g}) \right] = \sum_{i \in [m]} H(G_i | G_1, \dots, G_{i-1}) = H(G(U_n))$

- ▶ Sample entropy: for rv X let $H_X(x) = -\log \Pr_X[x]$.
- $\vdash H(X) = \mathsf{E}_{X \leftarrow X} [H_X(X)]$
- ► Let $G: \{0,1\}^n \mapsto (\{0,1\}^\ell)^m$ be an m-block generator and let $(G_1,\ldots,G_m)=G(U_n)$
- ► For $\mathbf{g} = (g_1, ..., g_m) \in \text{Supp}(G_1, ..., G_m)$, let

$$\mathsf{RealH}_G(\mathbf{g}) = \sum_{i \in [m]} H_{G_i|G_1,\dots,G_{i-1}}(g_i|g_1,\dots,g_{i-1})$$

- ▶ The real Shannon entropy of G is $E_{\mathbf{q} \leftarrow G(U_n)}[RealH_G(\mathbf{g})]$
- $\blacktriangleright \ \mathsf{E}_{\mathbf{g} \leftarrow G(U_n)} \left[\mathsf{RealH}_G(\mathbf{g}) \right] = \sum_{i \in [m]} H(G_i | G_1, \dots, G_{i-1}) = H(G(U_n))$
- In the actual construction, we sometimes measure the (real) entropy of some of the output blocks.

▶ Let G be an m block generator

- ▶ Let G be an m block generator
- Let \widetilde{G} be an m-block generator, that uses coins r_i before outputting its i'th block (w_i, g_i) .

- Let G be an m block generator
- Let \widetilde{G} be an *m*-block generator, that uses coins r_i before outputting its i'th block (w_i, g_i) .
- ► $t = (r_1, w_1, g_1, ..., r_m, w_m, g_m)$ is valid with respect to G, if $(g_1, ..., g_i) = G(w_i)_{1,...,i}$ for every $i \in [m]$.

- Let G be an m block generator
- Let G be an m-block generator, that uses coins r_i before outputting its i th block (w_i, g_i) .
- ► $t = (r_1, w_1, g_1, ..., r_m, w_m, g_m)$ is valid with respect to G, if $(g_1, ..., g_i) = G(w_i)_{1,...,i}$ for every $i \in [m]$.
- ▶ We will assume for simplicity that the string t in consideration is always valid, and omit the w's from the notation.

- ▶ Let G be an m block generator
- Let G be an m-block generator, that uses coins r_i before outputting its i th block (w_i, g_i) .
- ► $t = (r_1, w_1, g_1, ..., r_m, w_m, g_m)$ is valid with respect to G, if $(g_1, ..., g_i) = G(w_i)_{1,...,i}$ for every $i \in [m]$.
- We will assume for simplicity that the string t in consideration is always valid, and omit the w's from the notation.
- Let $\widetilde{T} = (\widetilde{R}_1, \widetilde{G}_1, \dots, \widetilde{R}_m, \widetilde{G}_m)$ be the rv's induced by random execution of \widetilde{G}

- ▶ Let G be an m block generator
- Let \widetilde{G} be an m-block generator, that uses coins r_i before outputting its i'th block (w_i, g_i) .
- ► $t = (r_1, w_1, g_1, ..., r_m, w_m, g_m)$ is valid with respect to G, if $(g_1, ..., g_i) = G(w_i)_{1,...,i}$ for every $i \in [m]$.
- We will assume for simplicity that the string t in consideration is always valid, and omit the w's from the notation.
- Let $\widetilde{T} = (\widetilde{R}_1, \widetilde{G}_1, \dots, \widetilde{R}_m, \widetilde{G}_m)$ be the rv's induced by random execution of \widetilde{G}

$$\begin{aligned} \mathsf{AccH}_{\mathsf{G},\widetilde{\mathsf{G}}}(\mathbf{t}) &= \sum_{i \in [m]} H_{\widetilde{\mathsf{G}}_{i} \mid \widetilde{\mathsf{H}}_{1},\widetilde{\mathsf{G}}_{1},\ldots,\widetilde{\mathsf{H}}_{i-1},\widetilde{\mathsf{G}}_{r-1}}(g_{i} \mid r_{1},g_{1},\ldots,r_{i-1},g_{i-1}) \\ &= \sum_{i \in [m]} H_{\widetilde{\mathsf{G}}_{i} \mid \widetilde{\mathsf{H}}_{1},\ldots,\widetilde{\mathsf{H}}_{i-1}}(g_{i} \mid r_{1},\ldots,r_{i-1}) \end{aligned}$$

- ▶ Let G be an m block generator
- Let \widetilde{G} be an m-block generator, that uses coins r_i before outputting its i'th block (w_i, g_i) .
- ▶ $t = (r_1, w_1, g_1, ..., r_m, w_m, g_m)$ is valid with respect to G, if $(g_1, ..., g_i) = G(w_i)_{1,...,i}$ for every $i \in [m]$.
- We will assume for simplicity that the string t in consideration is always valid, and omit the w's from the notation.
- Let $\widetilde{T} = (\widetilde{R}_1, \widetilde{G}_1, \dots, \widetilde{R}_m, \widetilde{G}_m)$ be the rv's induced by random execution of \widetilde{G}

$$\begin{aligned} \mathsf{AccH}_{G,\widetilde{G}}(\mathbf{t}) &= \sum_{i \in [m]} H_{\widetilde{G}_i | \widetilde{R}_1, \widetilde{G}_1, \dots, \widetilde{R}_{i-1}, \widetilde{G}_{r-1}}(g_i | r_1, g_1, \dots, r_{i-1}, g_{i-1}) \\ &= \sum_{i \in [m]} H_{\widetilde{G}_i | \widetilde{R}_1, \dots, \widetilde{R}_{i-1}}(g_i | r_1, \dots, r_{i-1}) \end{aligned}$$

► The accessible entropy of \widetilde{G} (with respect to G) is at most k, if $\Pr_{\mathbf{t} \leftarrow \widetilde{T}} \left[\mathsf{AccH}_{\mathsf{G},\widetilde{G}}(\mathbf{t}) > k \right] \leq \mathsf{neg}(n)$.

- ▶ Let G be an m block generator
- Let \widetilde{G} be an *m*-block generator, that uses coins r_i before outputting its i'th block (w_i, g_i) .
- ▶ $t = (r_1, w_1, g_1, ..., r_m, w_m, g_m)$ is valid with respect to G, if $(g_1, ..., g_i) = G(w_i)_{1,...,i}$ for every $i \in [m]$.
- We will assume for simplicity that the string t in consideration is always valid, and omit the w's from the notation.
- Let $\widetilde{T} = (\widetilde{R}_1, \widetilde{G}_1, \dots, \widetilde{R}_m, \widetilde{G}_m)$ be the rv's induced by random execution of \widetilde{G}

$$\begin{aligned} \mathsf{AccH}_{\mathsf{G},\widetilde{\mathsf{G}}}(\mathbf{t}) &= \sum_{i \in [m]} H_{\widetilde{\mathsf{G}}_i | \widetilde{\mathsf{F}}_1, \widetilde{\mathsf{G}}_1, \dots, \widetilde{\mathsf{F}}_{i-1}, \widetilde{\mathsf{G}}_{r-1}}(g_i | r_1, g_1, \dots, r_{i-1}, g_{i-1}) \\ &= \sum_{i \in [m]} H_{\widetilde{\mathsf{G}}_i | \widetilde{\mathsf{F}}_1, \dots, \widetilde{\mathsf{F}}_{i-1}}(g_i | r_1, \dots, r_{i-1}) \end{aligned}$$

► The accessible entropy of \widetilde{G} (with respect to G) is at most k, if $\Pr_{\mathbf{t} \leftarrow \widetilde{T}} \left[\mathsf{AccH}_{\mathsf{G},\widetilde{\mathsf{G}}}(\mathbf{t}) > k \right] \leq \mathsf{neg}(n)$.

- ▶ Let G be an m block generator
- Let \widetilde{G} be an m-block generator, that uses coins r_i before outputting its i'th block (w_i, g_i) .
- ► $t = (r_1, w_1, g_1, \dots, r_m, w_m, g_m)$ is valid with respect to G, if $(g_1, \dots, g_i) = G(w_i)_{1,\dots,i}$ for every $i \in [m]$.
- We will assume for simplicity that the string t in consideration is always valid, and omit the w's from the notation.
- ▶ Let $\widetilde{T} = (\widetilde{R}_1, \widetilde{G}_1, \dots, \widetilde{R}_m, \widetilde{G}_m)$ be the rv's induced by random execution of \widetilde{G}

$$\begin{aligned} \mathsf{AccH}_{G,\widetilde{G}}(\mathbf{t}) &= \sum_{i \in [m]} H_{\widetilde{G}_i \mid \widetilde{R}_1, \widetilde{G}_1, \dots, \widetilde{R}_{i-1}, \widetilde{G}_{r-1}}(g_i \mid r_1, g_1, \dots, r_{i-1}, g_{i-1}) \\ &= \sum_{i \in [m]} H_{\widetilde{G}_i \mid \widetilde{R}_1, \dots, \widetilde{R}_{i-1}}(g_i \mid r_1, \dots, r_{i-1}) \end{aligned}$$

► The accessible entropy of \widetilde{G} (with respect to G) is at most k, if $\Pr_{\mathbf{t} \leftarrow \widetilde{T}} \left[\mathsf{AccH}_{\mathsf{G},\widetilde{\mathsf{G}}}(\mathbf{t}) > k \right] \leq \mathsf{neg}(n)$. Why not $\mathsf{E}_{\mathbf{t} \leftarrow \widetilde{T}} \left[\mathsf{AccH}_{\mathsf{G},\widetilde{\mathsf{G}}}(\mathbf{t}) \right]$?

- Let G be an m block generator
- Let \widetilde{G} be an *m*-block generator, that uses coins r_i before outputting its i'th block (w_i, g_i) .
- ▶ $t = (r_1, w_1, g_1, ..., r_m, w_m, g_m)$ is valid with respect to G, if $(g_1, ..., g_i) = G(w_i)_{1,...,i}$ for every $i \in [m]$.
- We will assume for simplicity that the string t in consideration is always valid, and omit the w's from the notation.
- ▶ Let $\widetilde{T} = (\widetilde{R}_1, \widetilde{G}_1, \dots, \widetilde{R}_m, \widetilde{G}_m)$ be the rv's induced by random execution of \widetilde{G}

$$\begin{aligned} \mathsf{AccH}_{\mathsf{G},\widetilde{\mathsf{G}}}(\mathbf{t}) &= \sum_{i \in [m]} H_{\widetilde{\mathsf{G}}_{i} \mid \widetilde{\mathsf{R}}_{1}, \widetilde{\mathsf{G}}_{1}, \dots, \widetilde{\mathsf{R}}_{i-1}, \widetilde{\mathsf{G}}_{r-1}}(g_{i} | r_{1}, g_{1}, \dots, r_{i-1}, g_{i-1}) \\ &= \sum_{i \in [m]} H_{\widetilde{\mathsf{G}}_{i} \mid \widetilde{\mathsf{R}}_{1}, \dots, \widetilde{\mathsf{R}}_{i-1}}(g_{i} | r_{1}, \dots, r_{i-1}) \end{aligned}$$

- ► The accessible entropy of \widetilde{G} (with respect to G) is at most k, if $\Pr_{\mathbf{t} \leftarrow \widetilde{T}} \left[\mathsf{AccH}_{\mathsf{G},\widetilde{\mathsf{G}}}(\mathbf{t}) > k \right] \le \mathsf{neg}(n)$. Why not $\mathsf{E}_{\mathbf{t} \leftarrow \widetilde{T}} \left[\mathsf{AccH}_{\mathsf{G},\widetilde{\mathsf{G}}}(\mathbf{t}) \right]$?
- G has inaccessible entropy d, if the accessible entropy of any PPT \widetilde{G} is smaller be at least d than its real entropy

▶ Let $\mathcal{H} = \{\mathcal{H}_n : \{0,1\}^n \mapsto \{0,1\}^{n/2}\}$ be 2^n -to-1 collision resistant, and assume for simplicity that a PPT cannot find a collision for any $h \in \mathcal{H}_n$.

- ▶ Let $\mathcal{H} = \{\mathcal{H}_n: \{0,1\}^n \mapsto \{0,1\}^{n/2}\}$ be 2^n -to-1 collision resistant, and assume for simplicity that a PPT cannot find a collision for any $h \in \mathcal{H}_n$.
- Let G be the 3-block generator G(h, x) = (h, h(x), x)

- ▶ Let $\mathcal{H} = \{\mathcal{H}_n: \{0,1\}^n \mapsto \{0,1\}^{n/2}\}$ be 2^n -to-1 collision resistant, and assume for simplicity that a PPT cannot find a collision for any $h \in \mathcal{H}_n$.
- Let G be the 3-block generator G(h, x) = (h, h(x), x)
- ▶ Real entropy of *G* is $\log |\mathcal{H}_n| + n$

- ► Let $\mathcal{H} = \{\mathcal{H}_n: \{0,1\}^n \mapsto \{0,1\}^{n/2}\}$ be 2^n -to-1 collision resistant, and assume for simplicity that a PPT cannot find a collision for any $h \in \mathcal{H}_n$.
- Let G be the 3-block generator G(h, x) = (h, h(x), x)
- ▶ Real entropy of *G* is $\log |\mathcal{H}_n| + n$
- ► Accessible entropy of G is $\log |\mathcal{H}_n| + \frac{n}{2}$

Section 3

Manipulating Inaccessible Entropy

Let *G* be *m*-bit generator.

Let *G* be *m*-bit generator.

$$G^{\otimes \ell}(x_1,...,x_{\ell},i) = G(x_1)_i,...,G(x_1)_m,...,G(x_{\ell})_1,...,G(x_{\ell})_{i-1}$$

Let *G* be *m*-bit generator.

For $\ell \in \text{poly let } G^{\otimes \ell}$ be the following $\ell - 1 \cdot m$ -bit generator

$$G^{\otimes \ell}(x_1,...,x_{\ell},i) = G(x_1)_i,...,G(x_1)_m,...,G(x_{\ell})_1,...,G(x_{\ell})_{i-1}$$

Assume the accessible entropy of G is (at most) k_A , then $k_A^{\otimes \ell}$, the accessible entropy of $G^{\otimes \ell}$, is at most $k(\ell-2)+m$.

Let *G* be *m*-bit generator.

$$G^{\otimes \ell}(x_1,...,x_{\ell},i) = G(x_1)_i,...,G(x_1)_m,...,G(x_{\ell})_1,...,G(x_{\ell})_{i-1}$$

- Assume the accessible entropy of G is (at most) k_A , then $k_A^{\otimes \ell}$, the accessible entropy of $G^{\otimes \ell}$, is at most $k(\ell-2)+m$.
- Assume the real entropy of G is k_R , then

Let *G* be *m*-bit generator.

$$G^{\otimes \ell}(x_1,...,x_{\ell},i) = G(x_1)_i,...,G(x_1)_m,...,G(x_{\ell})_1,...,G(x_{\ell})_{i-1}$$

- Assume the accessible entropy of G is (at most) k_A , then $k_A^{\otimes \ell}$, the accessible entropy of $G^{\otimes \ell}$, is at most $k(\ell-2)+m$.
- Assume the real entropy of G is k_R , then
 - **1.** $k_R^{\otimes \ell}$, the real entropy of $G^{\otimes \ell}$, is at least $k_R^{\otimes \ell} = (\ell 1)K_R$

Let *G* be *m*-bit generator.

$$G^{\otimes \ell}(x_1,...,x_{\ell},i) = G(x_1)_i,...,G(x_1)_m,...,G(x_{\ell})_1,...,G(x_{\ell})_{i-1}$$

- Assume the accessible entropy of G is (at most) k_A , then $k_A^{\otimes \ell}$, the accessible entropy of $G^{\otimes \ell}$, is at most $k(\ell-2)+m$.
- Assume the real entropy of G is k_R , then
 - **1.** $k_R^{\otimes \ell}$, the real entropy of $G^{\otimes \ell}$, is at least $k_R^{\otimes \ell} = (\ell 1)K_R$
 - **2.** For any $i \in [(\ell-1) \cdot m]$ and $(g_1, \ldots, g_{i-1}) \in \text{Supp}(G_1^{\otimes \ell}, \ldots, G_{i-1}^{\otimes \ell})$:

$$H(G_i^{\otimes \ell}|G_1^{\otimes \ell},\ldots,G_{i-1}^{\otimes \ell})=k/\ell$$

Let *G* be *m*-bit generator.

For $\ell \in \text{poly let } G^{\otimes \ell}$ be the following $\ell - 1 \cdot m$ -bit generator

$$G^{\otimes \ell}(x_1,...,x_{\ell},i) = G(x_1)_i,...,G(x_1)_m,...,G(x_{\ell})_1,...,G(x_{\ell})_{i-1}$$

- Assume the accessible entropy of G is (at most) k_A , then $k_A^{\otimes \ell}$, the accessible entropy of $G^{\otimes \ell}$, is at most $k(\ell-2)+m$.
- Assume the real entropy of G is k_R , then
 - **1.** $k_R^{\otimes \ell}$, the real entropy of $G^{\otimes \ell}$, is at least $k_R^{\otimes \ell} = (\ell 1)K_R$
 - **2.** For any $i \in [(\ell-1) \cdot m]$ and $(g_1, \ldots, g_{i-1}) \in \text{Supp}(G_1^{\otimes \ell}, \ldots, G_{i-1}^{\otimes \ell})$:

$$H(G_i^{\otimes \ell}|G_1^{\otimes \ell},\ldots,G_{i-1}^{\otimes \ell})=k/\ell$$

► Assume $k_R \ge k_A + 1$, then for $\ell = m + 2$, it holds that $k_R^{\otimes \ell} \ge k_A^{\otimes \ell} + 1$

Let G be an m-block generator and for $\ell \in \text{poly}$, let G^{ℓ} be the ℓ -fold parallel repetition of G.

Let G be an m-block generator and for $\ell \in \text{poly}$, let G^{ℓ} be the ℓ -fold parallel repetition of G.

Assume accessible entropy of G is (at most) k_A , then the accessible entropy of G is at most $k_A^{\ell} = \ell \cdot k_A$.

Let G be an m-block generator and for $\ell \in \text{poly}$, let G^{ℓ} be the ℓ -fold parallel repetition of G.

- Assume accessible entropy of G is (at most) k_A , then the accessible entropy of G is at most $k_A^{\ell} = \ell \cdot k_A$.
- Assume $H(G_i|G_1,\ldots,G_{i-1})=k_R$ for any $i\in[m]$, then for any $i\in[m]$ and $(g_1^\ell,\ldots,g_{i-1}^\ell)\in \operatorname{Supp}(G_1^\ell,\ldots,G_{i-1}^\ell)$ it holds that

$$k_{min}^{\ell} = \mathsf{H}_{\infty}(G_{i}^{\ell}|G_{1}^{\ell},\ldots,G_{i-1}^{\ell}) \approx \ell k_{R}$$

Let G be an m-block generator and for $\ell \in \text{poly}$, let G^{ℓ} be the ℓ -fold parallel repetition of G.

- Assume accessible entropy of G is (at most) k_A , then the accessible entropy of G is at most $k_A^{\ell} = \ell \cdot k_A$.
- Assume $H(G_i|G_1,\ldots,G_{i-1})=k_R$ for any $i\in[m]$, then for any $i\in[m]$ and $(g_1^\ell,\ldots,g_{i-1}^\ell)\in \operatorname{Supp}(G_1^\ell,\ldots,G_{i-1}^\ell)$ it holds that

$$k_{min}^{\ell} = \mathsf{H}_{\infty}(G_i^{\ell}|G_1^{\ell},\ldots,G_{i-1}^{\ell}) \approx \ell k_R$$

▶ If $k_A \le k_R - 1$, then $\forall n \in \text{poly } \exists \ell \in \text{poly such that } \ell k_{min}^{\ell} > k_A^{\ell} + n$

Section 4

Inaccessible Entropy from OWF

The generator

Definition 3

Given a function $f: \{0,1\}^n \mapsto \{0,1\}^n$, let G be the (n+1)-block generator $f(x)_1, \ldots, f(x)_n, x$.

Definition 3

Given a function $f: \{0,1\}^n \mapsto \{0,1\}^n$, let G be the (n+1)-block generator $f(x)_1, \ldots, f(x)_n, x$.

Lemma 4

Definition 3

Given a function $f: \{0,1\}^n \mapsto \{0,1\}^n$, let G be the (n+1)-block generator $f(x)_1, \ldots, f(x)_n, x$.

Lemma 4

Assume that f is a OWF then G has accessible entropy at most $n - \log n$.

Recall f is OWF if

$$\Pr_{x \leftarrow \{0,1\}^n} \left[\mathsf{Inv}(f(x)) \in f^{-1}(f(x)) \right] = \mathsf{neg}(n) \text{ for any PPT Inv.}$$

Definition 3

Given a function $f: \{0,1\}^n \mapsto \{0,1\}^n$, let G be the (n+1)-block generator $f(x)_1, \ldots, f(x)_n, x$.

Lemma 4

- ► Recall f is OWF if $\Pr_{x \leftarrow \{0,1\}^n} \left[\mathsf{Inv}(f(x)) \in f^{-1}(f(x)) \right] = \mathsf{neg}(n)$ for any PPT Inv.
- The real entropy of G is n

Definition 3

Given a function $f: \{0,1\}^n \mapsto \{0,1\}^n$, let G be the (n+1)-block generator $f(x)_1, \ldots, f(x)_n, x$.

Lemma 4

- ► Recall f is OWF if $\Pr_{x \leftarrow \{0,1\}^n} \left[\mathsf{Inv}(f(x)) \in f^{-1}(f(x)) \right] = \mathsf{neg}(n)$ for any PPT Inv.
- ▶ The real entropy of G is n
- ▶ Hence, inaccessible entropy gap is log n

Definition 3

Given a function $f: \{0,1\}^n \mapsto \{0,1\}^n$, let G be the (n+1)-block generator $f(x)_1, \ldots, f(x)_n, x$.

Lemma 4

- ► Recall f is OWF if $\Pr_{x \leftarrow \{0,1\}^n} \left[\text{Inv}(f(x)) \in f^{-1}(f(x)) \right] = \text{neg}(n)$ for any PPT Inv.
- ▶ The real entropy of *G* is *n*
- ▶ Hence, inaccessible entropy gap is log n
- Proof idea

Let \widetilde{G} be a PPT, and assume $\Pr\left[\operatorname{AccH}_{G,\widetilde{G}}(\widetilde{T}) \geq n - \log n\right] \geq \varepsilon = \frac{1}{\operatorname{poly}(n)}$. (recall $\widetilde{T} = (\widetilde{R}_1, \widetilde{G}_1, \dots, \widetilde{R}_m, \widetilde{G}_m)$ is the coins and output blocks of \widetilde{G})

Let \widetilde{G} be a PPT, and assume $\Pr\left[\operatorname{AccH}_{G,\widetilde{G}}(\widetilde{T}) \geq n - \log n\right] \geq \varepsilon = \frac{1}{\operatorname{poly}(n)}$. (recall $\widetilde{T} = (\widetilde{R}_1, \widetilde{G}_1, \dots, \widetilde{R}_m, \widetilde{G}_m)$ is the coins and output blocks of \widetilde{G})

Algorithm 5 (lnv(z))

- **1.** For i = 1 to n, do the following for n^2/ε times:
 - **1.1** Sample r_i uniformly at random and let g_i be the i'th output block of $\widetilde{G}(r_1, \ldots, r_i)$.
 - **1.2** If $g_i = z_i$, move to next value of *i*.
 - 1.3 Abort, if the maximal number of attempts is reached.
- **2.** Finish the execution of $\widetilde{G}(r_1, \ldots, r_{n+1})$, and output its (n+1) output block.

Let \widetilde{G} be a PPT, and assume $\Pr\left[\operatorname{AccH}_{G,\widetilde{G}}(\widetilde{T}) \geq n - \log n\right] \geq \varepsilon = \frac{1}{\operatorname{poly}(n)}$. (recall $\widetilde{T} = (\widetilde{R}_1, \widetilde{G}_1, \dots, \widetilde{R}_m, \widetilde{G}_m)$ is the coins and output blocks of \widetilde{G})

Algorithm 5 (lnv(z))

- **1.** For i = 1 to n, do the following for n^2/ε times:
 - **1.1** Sample r_i uniformly at random and let g_i be the i'th output block of $\widetilde{G}(r_1, \ldots, r_i)$.
 - **1.2** If $g_i = z_i$, move to next value of *i*.
 - **1.3** Abort, if the maximal number of attempts is reached.
- **2.** Finish the execution of $\widetilde{G}(r_1, \ldots, r_{n+1})$, and output its (n+1) output block.

Let $\widehat{T} = (\widehat{R}_1, \widehat{G}_1, \dots, \widehat{R}_{n+1}, \widehat{G}_{n+1})$ be the (final) values of $(r_1, g_1, \dots, r_{n+1}, g_{n+1})$ in a random execution of $Inv(f(U_n))$.

Let \widetilde{G} be a PPT, and assume $\Pr\left[\operatorname{AccH}_{G,\widetilde{G}}(\widetilde{T}) \geq n - \log n\right] \geq \varepsilon = \frac{1}{\operatorname{poly}(n)}$. (recall $\widetilde{T} = (\widetilde{R}_1, \widetilde{G}_1, \dots, \widetilde{R}_m, \widetilde{G}_m)$ is the coins and output blocks of \widetilde{G})

Algorithm 5 (lnv(z))

- **1.** For i = 1 to n, do the following for n^2/ε times:
 - **1.1** Sample r_i uniformly at random and let g_i be the i'th output block of $\widetilde{G}(r_1, \ldots, r_i)$.
 - **1.2** If $g_i = z_i$, move to next value of *i*.
 - **1.3** Abort, if the maximal number of attempts is reached.
- **2.** Finish the execution of $\widetilde{G}(r_1, \ldots, r_{n+1})$, and output its (n+1) output block.

Let $\widehat{T} = (\widehat{R}_1, \widehat{G}_1, \dots, \widehat{R}_{n+1}, \widehat{G}_{n+1})$ be the (final) values of $(r_1, g_1, \dots, r_{n+1}, g_{n+1})$ in a random execution of $Inv(f(U_n))$.

We start by assuming that Inv is unbounded (i.e., the test on Line 1.3 is removed)

Fix $\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \text{Supp}(\widetilde{T})$

Fix
$$\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \text{Supp}(\widetilde{T})$$

Let
$$P(\mathbf{t}) = \prod_{i=1}^{n+1} \Pr\left[\widetilde{R}_i = r_i | (\widetilde{R}_{1,\dots,i-1}, \widetilde{G}_i) = (r_{1,\dots,i-1}, g_i)\right]$$

Fix
$$\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \text{Supp}(\widetilde{T})$$

Let
$$P(\mathbf{t}) = \prod_{i=1}^{n+1} \Pr\left[\widetilde{R}_i = r_i | (\widetilde{R}_{1,\dots,i-1}, \widetilde{G}_i) = (r_{1,\dots,i-1}, g_i)\right]$$

$$\Pr_{\widetilde{\mathcal{F}}}[t] = \Pr[\widetilde{G}_1 = g_1] \cdot \Pr[\widetilde{R}_1 = r_1 | \widetilde{G}_1 = g_1] \cdot \Pr[\widetilde{G}_2 = g_2 | \widetilde{R}_1 = r_1] \cdot \Pr[\widetilde{R}_2 = r_2 | \widetilde{G}_2 = g_2] \dots$$

Fix **t** =
$$(r_1, g_1, ..., r_{n+1}, g_{n+1}) \in \text{Supp}(\widetilde{T})$$

Let
$$P(\mathbf{t}) = \prod_{i=1}^{n+1} \Pr \left[\widetilde{R}_i = r_i | (\widetilde{R}_{1,...,i-1}, \widetilde{G}_i) = (r_{1,...,i-1}, g_i) \right]$$

$$\Pr_{\widetilde{\mathcal{F}}}[t] = \Pr[\widetilde{G}_1 = g_1] \cdot \Pr[\widetilde{R}_1 = r_1 | \widetilde{G}_1 = g_1] \cdot \Pr[\widetilde{G}_2 = g_2 | \widetilde{R}_1 = r_1] \cdot \Pr[\widetilde{R}_2 = r_2 | \widetilde{G}_2 = g_2] \dots$$

Fix **t** =
$$(r_1, g_1, ..., r_{n+1}, g_{n+1}) \in \text{Supp}(\widetilde{T})$$

Let
$$P(\mathbf{t}) = \prod_{i=1}^{n+1} \Pr \left[\widetilde{R}_i = r_i | (\widetilde{R}_{1,...,i-1}, \widetilde{G}_i) = (r_{1,...,i-1}, g_i) \right]$$

$$\Pr_{\widetilde{T}}[t] = \Pr[\widetilde{G}_1 = g_1] \cdot \Pr[\widetilde{R}_1 = r_1 | \widetilde{G}_1 = g_1] \cdot \Pr[\widetilde{G}_2 = g_2 | \widetilde{R}_1 = r_1] \cdot \Pr[\widetilde{R}_2 = r_2 | \widetilde{G}_2 = g_2] \dots$$

$$= 2^{-\sum_{i=1}^m H_{\widetilde{G}_i | \widetilde{R}_1, \dots, \widetilde{R}_{i-1}}(g_i | r_1, \dots, r_{i-1})} \cdot P(\mathbf{t})$$

Fix
$$\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \text{Supp}(\widetilde{T})$$

Let
$$P(\mathbf{t}) = \prod_{i=1}^{n+1} \Pr\left[\widetilde{R}_i = r_i | (\widetilde{R}_{1,\dots,i-1}, \widetilde{G}_i) = (r_{1,\dots,i-1}, g_i)\right]$$

$$\begin{split} \Pr[t] &= \Pr[\widetilde{G}_1 = g_1] \cdot \Pr[\widetilde{R}_1 = r_1 | \widetilde{G}_1 = g_1] \cdot \Pr[\widetilde{G}_2 = g_2 | \widetilde{R}_1 = r_1] \cdot \Pr[\widetilde{R}_2 = r_2 | \widetilde{G}_2 = g_2] \dots \\ &= 2^{-\sum_{i=1}^m H_{\widetilde{G}_i | \widetilde{R}_1, \dots, \widetilde{R}_{i-1}}(g_i | r_1, \dots, r_{i-1})} \cdot P(t) \\ &= 2^{-\operatorname{AccH}_{G, \widetilde{G}}(t)} \cdot P(t) \end{split}$$

Fix **t** =
$$(r_1, g_1, ..., r_{n+1}, g_{n+1}) \in \text{Supp}(\widetilde{T})$$

Let
$$P(\mathbf{t}) = \prod_{i=1}^{n+1} \Pr\left[\widetilde{R}_i = r_i | (\widetilde{R}_{1,\dots,i-1}, \widetilde{G}_i) = (r_{1,\dots,i-1}, g_i)\right]$$

$$\Pr\left[\mathbf{t}\right] = \Pr\left[\widetilde{G} = g_i\right] \Pr\left[\widetilde{R}_i = r_i | \widetilde{G} = g_i\right] \Pr\left[\widetilde{G} = g_i\right] \Pr\left[\widetilde{R}_i = r_i\right] \Pr$$

$$\Pr[t] = \Pr[\widetilde{G}_1 = g_1] \cdot \Pr[\widetilde{R}_1 = r_1 | \widetilde{G}_1 = g_1] \cdot \Pr[\widetilde{G}_2 = g_2 | \widetilde{R}_1 = r_1] \cdot \Pr[\widetilde{R}_2 = r_2 | \widetilde{G}_2 = g_2] \dots$$

$$= 2^{-\sum_{i=1}^m H_{\widetilde{G}_i | \widetilde{R}_1, \dots, \widetilde{R}_{i-1}}(g_i | r_1, \dots, r_{i-1})} \cdot P(\mathbf{t})$$

$$= 2^{-\operatorname{Acch}_{G, \widetilde{G}}(\mathbf{t})} \cdot P(\mathbf{t})$$

$$\qquad \qquad \mathsf{Pr}_{\widehat{T}}\left[\mathbf{t}\right] = \mathsf{Pr}\left[f(U_n) = (g_1, \dots, g_n)\right] \cdot \mathsf{Pr}\left[\widetilde{G}_{n+1} = g_{n+1}\right] \cdot P(\mathbf{t})$$

Fix **t** =
$$(r_1, g_1, ..., r_{n+1}, g_{n+1}) \in \text{Supp}(\widetilde{T})$$

Let
$$P(\mathbf{t}) = \prod_{i=1}^{n+1} \Pr \left[\widetilde{R}_i = r_i | (\widetilde{R}_{1,...,i-1}, \widetilde{G}_i) = (r_{1,...,i-1}, g_i) \right]$$

$$\begin{split} \Pr[t] &= \Pr[\widetilde{G}_1 = g_1] \cdot \Pr[\widetilde{R}_1 = r_1 | \widetilde{G}_1 = g_1] \cdot \Pr[\widetilde{G}_2 = g_2 | \widetilde{R}_1 = r_1] \cdot \Pr[\widetilde{R}_2 = r_2 | \widetilde{G}_2 = g_2] \dots \\ &= 2^{-\sum_{i=1}^m H_{\widetilde{G}_i | \widetilde{R}_1, \dots, \widetilde{R}_{i-1}}(g_i | r_1, \dots, r_{i-1})} \cdot P(t) \\ &= 2^{-\operatorname{AccH}_{G, \widetilde{G}}(t)} \cdot P(t) \end{split}$$

$$Pr_{\widehat{T}}[\mathbf{t}] = Pr[f(U_n) = (g_1, \dots, g_n)] \cdot Pr[\widetilde{G}_{n+1} = g_{n+1}] \cdot P(\mathbf{t})$$

Fix
$$\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \text{Supp}(\widetilde{T})$$

Let
$$P(\mathbf{t}) = \prod_{i=1}^{n+1} \Pr\left[\widetilde{R}_i = r_i | (\widetilde{R}_1, ..., i-1, \widetilde{G}_i) = (r_1, ..., i-1, g_i)\right]$$

$$\Pr\left[t\right] = \Pr\left[\widetilde{G}_1 = g_1\right] \cdot \Pr\left[\widetilde{R}_1 = r_1 | \widetilde{G}_1 = g_1\right] \cdot \Pr\left[\widetilde{G}_2 = g_2 | \widetilde{R}_1 = r_1\right] \cdot \Pr\left[\widetilde{R}_2 = r_2 | \widetilde{G}_2 = g_2\right] \dots$$

$$\begin{split} \Pr[t] &= \Pr[\widetilde{G}_1 = g_1] \cdot \Pr[\widetilde{R}_1 = r_1 | \widetilde{G}_1 = g_1] \cdot \Pr[\widetilde{G}_2 = g_2 | \widetilde{R}_1 = r_1] \cdot \Pr[\widetilde{R}_2 = r_2 | \widetilde{G}_2 = g_2] \dots \\ &= 2^{-\sum_{i=1}^m H_{\widetilde{G}_i | \widetilde{R}_1, \dots, \widetilde{R}_{i-1}}(g_i | r_1, \dots, r_{i-1})} \cdot P(t) \\ &= 2^{-\operatorname{AccH}}_{G, \widetilde{G}}(t) \cdot P(t) \end{split}$$

$$\qquad \qquad \mathsf{Pr}_{\widehat{\mathcal{T}}}\left[\mathbf{t}\right] = \mathsf{Pr}\left[f(U_n) = (g_1, \dots, g_n)\right] \cdot \mathsf{Pr}\left[\widetilde{G}_{n+1} = g_{n+1}\right] \cdot P(\mathbf{t}) \geq 2^{-n} \cdot P(\mathbf{t})$$

Fix
$$\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \text{Supp}(\widetilde{T})$$

Let
$$P(\mathbf{t}) = \prod_{i=1}^{n+1} \Pr\left[\widetilde{R}_i = r_i | (\widetilde{R}_1, ..., i-1, \widetilde{G}_i) = (r_1, ..., i-1, g_i)\right]$$

$$\Pr\left[t\right] = \Pr\left[\widetilde{G}_1 = g_1\right] \cdot \Pr\left[\widetilde{R}_2 = r_1\right] \cdot \Pr\left[\widetilde{G}_2 = g_2\right] \cdot \Pr\left[\widetilde{G}_2 = r_2\right] \cdot \Pr\left[\widetilde{R}_2 = r_2$$

$$\begin{split} \Pr[t] &= \Pr[\widetilde{G}_1 = g_1] \cdot \Pr[\widetilde{R}_1 = r_1 | \widetilde{G}_1 = g_1] \cdot \Pr[\widetilde{G}_2 = g_2 | \widetilde{R}_1 = r_1] \cdot \Pr[\widetilde{R}_2 = r_2 | \widetilde{G}_2 = g_2] \dots \\ &= 2^{-\sum_{i=1}^m H_{\widetilde{G}_i | \widetilde{R}_1, \dots, \widetilde{R}_{i-1}}(g_i | r_1, \dots, r_{i-1})} \cdot P(t) \\ &= 2^{-\operatorname{AccH}}_{G, \widetilde{G}}(t) \cdot P(t) \end{split}$$

$$\qquad \mathsf{Pr}_{\widehat{T}}\left[\mathbf{t}\right] = \mathsf{Pr}\left[f(U_n) = (g_1, \dots, g_n)\right] \cdot \mathsf{Pr}\left[\widetilde{G}_{n+1} = g_{n+1}\right] \cdot P(\mathbf{t}) \geq 2^{-n} \cdot P(\mathbf{t})$$

▶ In particular, for **t** with $AccH_{G,\widetilde{G}}(\mathbf{t}) \ge n - \log n$:

$$\Pr[t] \ge \Pr[t]/n \tag{1}$$

Let $S \subseteq \text{Supp}(\widetilde{T})$ denote the set of transcripts $\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1})$ with

- 1. $AccH_{G,\widetilde{G}}(\mathbf{t}) \ge n \log n$, and
- **2.** $H_{\widetilde{G}_i | \widetilde{G}_1, \dots, \widetilde{G}_{i-1}}(g_i \mid g_1, \dots, g_{i-1}) \le \log(\frac{2n}{\varepsilon})$ for all $i \in [n]$.

Let $S \subseteq \text{Supp}(\widetilde{T})$ denote the set of transcripts $\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1})$ with

- 1. $AccH_{G\widetilde{G}}(\mathbf{t}) \ge n \log n$, and
- **2.** $H_{\widetilde{G}_i | \widetilde{G}_1, \dots, \widetilde{G}_{i-1}}(g_i \mid g_1, \dots, g_{i-1}) \leq \log(\frac{2n}{\varepsilon})$ for all $i \in [n]$.

$$\begin{split} \Pr_{\widetilde{T}}\left[\mathcal{S}\right] &\geq \Pr\left[\mathsf{AccH}_{\widetilde{G},\widetilde{G}}(T) \geq n - \log n\right] \\ &- \Pr_{\left(g_{1},\ldots,g_{n+1}\right) \leftarrow \left(\widetilde{G}_{1},\ldots,\widetilde{G}_{n+1}\right)}\left[\exists i \in [n] : H_{\widetilde{G}_{i}\mid\widetilde{G}_{1},\ldots,\widetilde{G}_{i-1}}\left(g_{i}\mid g_{1},\ldots,g_{i-1}\right) > \log\left(\frac{2n}{\varepsilon}\right)\right] \end{split}$$

Let $S \subseteq \text{Supp}(\widetilde{T})$ denote the set of transcripts $\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1})$ with

- 1. $AccH_{G,\widetilde{G}}(\mathbf{t}) \ge n \log n$, and
- **2.** $H_{\widetilde{G}_i | \widetilde{G}_1, \dots, \widetilde{G}_{i-1}}(g_i \mid g_1, \dots, g_{i-1}) \leq \log(\frac{2n}{\varepsilon})$ for all $i \in [n]$.

$$\Pr_{\widetilde{I}}[S] \ge \Pr\left[\operatorname{AccH}_{G,\widetilde{G}}(T) \ge n - \log n\right] \\
- \Pr_{(g_1,\dots,g_{n+1}) \leftarrow (\widetilde{G}_1,\dots,\widetilde{G}_{n+1})} \left[\exists i \in [n] : H_{\widetilde{G}_i|\widetilde{G}_1,\dots,\widetilde{G}_{i-1}}(g_i \mid g_1,\dots,g_{i-1}) > \log(\frac{2n}{\varepsilon})\right] \\
\ge \varepsilon - n \cdot \frac{\varepsilon}{2n} = \varepsilon/2$$

Let $S \subseteq \text{Supp}(\widetilde{T})$ denote the set of transcripts $\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1})$ with

- 1. $AccH_{G,\widetilde{G}}(\mathbf{t}) \ge n \log n$, and
- **2.** $H_{\widetilde{G}_i | \widetilde{G}_1, \dots, \widetilde{G}_{i-1}}(g_i \mid g_1, \dots, g_{i-1}) \leq \log(\frac{2n}{\varepsilon})$ for all $i \in [n]$.

$$\begin{split} \Pr_{\widetilde{T}}\left[\mathcal{S}\right] &\geq \Pr\left[\mathsf{AccH}_{G,\widetilde{G}}(T) \geq n - \log n\right] \\ &- \Pr_{\left(g_{1},\ldots,g_{n+1}\right) \leftarrow \left(\widetilde{G}_{1},\ldots,\widetilde{G}_{n+1}\right)}\left[\exists i \in [n] : H_{\widetilde{G}_{i}\mid\widetilde{G}_{1},\ldots,\widetilde{G}_{i-1}}(g_{i}\mid g_{1},\ldots,g_{i-1}) > \log(\frac{2n}{\varepsilon})\right] \\ &\geq \varepsilon - n \cdot \frac{\varepsilon}{2n} = \varepsilon/2 \end{split}$$

It follows that $\Pr_{\widehat{T}}[S] \ge \varepsilon/2n$.

Let $S \subseteq \text{Supp}(\widetilde{T})$ denote the set of transcripts $\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1})$ with

- 1. $AccH_{G,\widetilde{G}}(\mathbf{t}) \ge n \log n$, and
- **2.** $H_{\widetilde{G}_i | \widetilde{G}_1, \dots, \widetilde{G}_{i-1}}(g_i \mid g_1, \dots, g_{i-1}) \leq \log(\frac{2n}{\varepsilon})$ for all $i \in [n]$.

$$\begin{split} \Pr_{\widetilde{T}}[\mathcal{S}] &\geq \Pr\Big[\mathsf{AccH}_{\widetilde{G},\widetilde{G}}(T) \geq n - \log n\Big] \\ &- \Pr_{(g_1,\dots,g_{n+1}) \leftarrow (\widetilde{G}_1,\dots,\widetilde{G}_{n+1})} \Big[\exists i \in [n] : H_{\widetilde{G}_i \mid \widetilde{G}_1,\dots,\widetilde{G}_{i-1}}(g_i \mid g_1,\dots,g_{i-1}) > \log(\frac{2n}{\varepsilon})\Big] \\ &\geq \varepsilon - n \cdot \frac{\varepsilon}{2n} = \varepsilon/2 \end{split}$$

It follows that $\Pr_{\widehat{T}}[S] \ge \varepsilon/2n$.

Back to the bounded version of Inv.

Let $S \subseteq \text{Supp}(\widetilde{T})$ denote the set of transcripts $\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1})$ with

- 1. $AccH_{G,\widetilde{G}}(\mathbf{t}) \ge n \log n$, and
- **2.** $H_{\widetilde{G}_i | \widetilde{G}_1, \dots, \widetilde{G}_{i-1}}(g_i \mid g_1, \dots, g_{i-1}) \le \log(\frac{2n}{\varepsilon})$ for all $i \in [n]$.

$$\begin{split} \Pr_{\widetilde{T}}[\mathcal{S}] &\geq \Pr \Big[\mathsf{AccH}_{\widetilde{G},\widetilde{G}}(T) \geq n - \log n \Big] \\ &- \Pr_{(g_1,\ldots,g_{n+1}) \leftarrow (\widetilde{G}_1,\ldots,\widetilde{G}_{n+1})} \Big[\exists i \in [n] : H_{\widetilde{G}_i \mid \widetilde{G}_1,\ldots,\widetilde{G}_{i-1}}(g_i \mid g_1,\ldots,g_{i-1}) > \log(\frac{2n}{\varepsilon}) \Big] \\ &\geq \varepsilon - n \cdot \frac{\varepsilon}{2n} = \varepsilon/2 \end{split}$$

It follows that $\Pr_{\widehat{T}}[S] \ge \varepsilon/2n$.

Back to the bounded version of Inv.

► For $z \in \{0, 1\}^n$ for which $\exists (r_1, z_1, ..., r_n, z_n, ...) \in \mathcal{S}$: Pr[Inv(z) aborts] $\leq n \cdot (1 - \frac{\varepsilon}{2n})^{n^2/\varepsilon} = O(n \cdot 2^{-n}) \leq \frac{1}{2}$

Let $S \subseteq \text{Supp}(\widetilde{T})$ denote the set of transcripts $\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1})$ with

- 1. $AccH_{G,\widetilde{G}}(\mathbf{t}) \ge n \log n$, and
- **2.** $H_{\widetilde{G}_i | \widetilde{G}_1, \dots, \widetilde{G}_{i-1}}(g_i \mid g_1, \dots, g_{i-1}) \le \log(\frac{2n}{\varepsilon})$ for all $i \in [n]$.

$$\begin{split} \Pr_{\widetilde{T}}[\mathcal{S}] &\geq \Pr \Big[\mathsf{AccH}_{\widetilde{G},\widetilde{G}}(T) \geq n - \log n \Big] \\ &- \Pr_{(g_1,\ldots,g_{n+1}) \leftarrow (\widetilde{G}_1,\ldots,\widetilde{G}_{n+1})} \Big[\exists i \in [n] : H_{\widetilde{G}_i \mid \widetilde{G}_1,\ldots,\widetilde{G}_{i-1}}(g_i \mid g_1,\ldots,g_{i-1}) > \log(\frac{2n}{\varepsilon}) \Big] \\ &\geq \varepsilon - n \cdot \frac{\varepsilon}{2n} = \varepsilon/2 \end{split}$$

It follows that $\Pr_{\widehat{T}}[S] \ge \varepsilon/2n$.

Back to the bounded version of Inv.

► For $z \in \{0, 1\}^n$ for which $\exists (r_1, z_1, ..., r_n, z_n, ...) \in \mathcal{S}$: Pr[Inv(z) aborts] $\leq n \cdot (1 - \frac{\varepsilon}{2n})^{n^2/\varepsilon} = O(n \cdot 2^{-n}) \leq \frac{1}{2}$

Let $S \subseteq \text{Supp}(\widetilde{T})$ denote the set of transcripts $\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1})$ with

- 1. $AccH_{G,\widetilde{G}}(\mathbf{t}) \ge n \log n$, and
- **2.** $H_{\widetilde{G}_i | \widetilde{G}_1, \dots, \widetilde{G}_{i-1}}(g_i \mid g_1, \dots, g_{i-1}) \le \log(\frac{2n}{\varepsilon})$ for all $i \in [n]$.

$$\begin{split} \Pr_{\widetilde{T}}[\mathcal{S}] &\geq \Pr \Big[\mathsf{AccH}_{\widetilde{G},\widetilde{G}}(T) \geq n - \log n \Big] \\ &- \Pr_{(g_1,\ldots,g_{n+1}) \leftarrow (\widetilde{G}_1,\ldots,\widetilde{G}_{n+1})} \Big[\exists i \in [n] : H_{\widetilde{G}_i \mid \widetilde{G}_1,\ldots,\widetilde{G}_{i-1}}(g_i \mid g_1,\ldots,g_{i-1}) > \log(\frac{2n}{\varepsilon}) \Big] \\ &\geq \varepsilon - n \cdot \frac{\varepsilon}{2n} = \varepsilon/2 \end{split}$$

It follows that $\Pr_{\widehat{T}}[S] \ge \varepsilon/2n$.

Back to the bounded version of Inv.

- ► For $z \in \{0, 1\}^n$ for which $\exists (r_1, z_1, ..., r_n, z_n, ...) \in \mathcal{S}$: Pr $[Inv(z) \text{ aborts }] \le n \cdot (1 - \frac{\varepsilon}{2n})^{n^2/\varepsilon} = O(n \cdot 2^{-n}) \le \frac{1}{2}$
- ► Hence, (in the bounded version of Inv) $Pr_{\widehat{\tau}}[S] \ge \varepsilon/4n$

Let $S \subseteq \text{Supp}(\widetilde{T})$ denote the set of transcripts $\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1})$ with

- 1. $AccH_{\widetilde{G}}(\mathbf{t}) \ge n \log n$, and
- **2.** $H_{\widetilde{G}_i | \widetilde{G}_1, \dots, \widetilde{G}_{i-1}}(g_i \mid g_1, \dots, g_{i-1}) \leq \log(\frac{2n}{\varepsilon})$ for all $i \in [n]$.

$$\begin{split} \Pr_{\widetilde{T}}[\mathcal{S}] &\geq \Pr\Big[\mathsf{AccH}_{G,\widetilde{G}}(T) \geq n - \log n\Big] \\ &- \Pr_{(g_1,\dots,g_{n+1}) \leftarrow (\widetilde{G}_1,\dots,\widetilde{G}_{n+1})} \Big[\exists i \in [n] : H_{\widetilde{G}_i \mid \widetilde{G}_1,\dots,\widetilde{G}_{i-1}}(g_i \mid g_1,\dots,g_{i-1}) > \log(\frac{2n}{\varepsilon})\Big] \\ &\geq \varepsilon - n \cdot \frac{\varepsilon}{2n} = \varepsilon/2 \end{split}$$

It follows that $\Pr_{\widehat{T}}[S] \ge \varepsilon/2n$.

Back to the bounded version of Inv.

- ► For $z \in \{0, 1\}^n$ for which $\exists (r_1, z_1, ..., r_n, z_n, ...) \in \mathcal{S}$: Pr $[Inv(z) \text{ aborts }] \le n \cdot (1 - \frac{\varepsilon}{2n})^{n^2/\varepsilon} = O(n \cdot 2^{-n}) \le \frac{1}{2}$
- ► Hence, (in the bounded version of Inv) $\Pr_{\widehat{T}}[S] \ge \varepsilon/4n$ $\implies \Pr_{x \leftarrow \{0,1\}^n}[\operatorname{Inv}(f(x)) \in f^{-1}(f(x))] \ge \varepsilon/4n$

Section 5

Statistically Hiding Commitment from Inaccessible Entropy Generator

High-level description

High-level description

► Entropy equalization + gap amplification to get generator that has the same min-entropy in each block and whose accessible entropy is *n*-bit smaller than the sum of the min entropies.

High-level description

- Entropy equalization + gap amplification to get generator that has the same min-entropy in each block and whose accessible entropy is n-bit smaller than the sum of the min entropies.
- Use universal hashing to get a "generator" with zero accessible entropy block

High-level description

- Entropy equalization + gap amplification to get generator that has the same min-entropy in each block and whose accessible entropy is n-bit smaller than the sum of the min entropies.
- Use universal hashing to get a "generator" with zero accessible entropy block
- Use target-collision-resistant hash family (a non-interactive cryptographic tool implied by OWF) to get weakly binding SHC

High-level description

- Entropy equalization + gap amplification to get generator that has the same min-entropy in each block and whose accessible entropy is n-bit smaller than the sum of the min entropies.
- Use universal hashing to get a "generator" with zero accessible entropy block
- Use target-collision-resistant hash family (a non-interactive cryptographic tool implied by OWF) to get weakly binding SHC
- Amplify the above into full-fledged SHC

Let $\mathcal{T} \subseteq \{0,1\}^{\ell}$ be 2^{k} -size set.

Let \mathcal{H}^1 be ℓ -wise independent family mapping ℓ -bit strings to k-bit strings Let \mathcal{H}^2 be 2-universal family mapping ℓ -length strings to n-bit strings

Let $\mathcal{T} \subseteq \{0,1\}^{\ell}$ be 2^{k} -size set.

Let \mathcal{H}^1 be ℓ -wise independent family mapping ℓ -bit strings to k-bit strings Let \mathcal{H}^2 be 2-universal family mapping ℓ -length strings to n-bit strings

Protocol 6 ((S,R))

- 1. S selects $x \in \mathcal{T}$
- **2.** R sends $h^1 \leftarrow \mathcal{H}^1$ to S
- **3.** S sends $y^1 = h^1(x)$ to R
- **4.** R sends $h^2 \leftarrow \mathcal{H}^2$ to S
- **5.** S sends $y^2 = h^2(x)$ to R

Let $\mathcal{T} \subseteq \{0,1\}^{\ell}$ be 2^k -size set.

Let \mathcal{H}^1 be ℓ -wise independent family mapping ℓ -bit strings to k-bit strings Let \mathcal{H}^2 be 2-universal family mapping ℓ -length strings to n-bit strings

Protocol 6 ((S,R))

- 1. S selects $x \in \mathcal{T}$
- **2.** R sends $h^1 \leftarrow \mathcal{H}^1$ to S
- **3.** S sends $y^1 = h^1(x)$ to R
- **4.** R sends $h^2 \leftarrow \mathcal{H}^2$ to S
- **5.** S sends $y^2 = h^2(x)$ to R

Let \widetilde{S} be an arbitrary algorithm and let Y^1 , Y^2 , H^1 , H^2 be value of y^1 , y^2 , h^1 , h^2 in a random execution of (\widetilde{S}, R) .

Let $\mathcal{T} \subseteq \{0,1\}^{\ell}$ be 2^{k} -size set.

Let \mathcal{H}^1 be ℓ -wise independent family mapping ℓ -bit strings to k-bit strings Let \mathcal{H}^2 be 2-universal family mapping ℓ -length strings to n-bit strings

Protocol 6 ((S,R))

- 1. S selects $x \in \mathcal{T}$
- **2.** R sends $h^1 \leftarrow \mathcal{H}^1$ to S
- 3. S sends $y^1 = h^1(x)$ to R
- **4.** R sends $h^2 \leftarrow \mathcal{H}^2$ to S
- **5.** S sends $y^2 = h^2(x)$ to R

Let \widetilde{S} be an arbitrary algorithm and let Y^1 , Y^2 , H^1 , H^2 be value of y^1 , y^2 , h^1 , h^2 in a random execution of $(\widetilde{S}, \mathbb{R})$.

Claim 7

$$\Pr\left[\exists x \neq x' \in \mathcal{T} \colon H^1(x) = H^1(x') = Y^1 \land H^2(x) = H^3(x') = Y^3\right] \in 2^{-\Omega(n)}.$$

Let $\mathcal{T} \subseteq \{0,1\}^{\ell}$ be 2^{k} -size set.

Let \mathcal{H}^1 be ℓ -wise independent family mapping ℓ -bit strings to k-bit strings Let \mathcal{H}^2 be 2-universal family mapping ℓ -length strings to n-bit strings

Protocol 6 ((S,R))

- 1. S selects $x \in \mathcal{T}$
- 2. R sends $h^1 \leftarrow \mathcal{H}^1$ to S
- **3.** S sends $y^1 = h^1(x)$ to R
- **4.** R sends $h^2 \leftarrow \mathcal{H}^2$ to S
- **5.** S sends $y^2 = h^2(x)$ to R

Let \widetilde{S} be an arbitrary algorithm and let Y^1 , Y^2 , H^1 , H^2 be value of y^1 , y^2 , h^1 , h^2 in a random execution of $(\widetilde{S}, \mathbb{R})$.

Claim 7

$$\Pr\left[\exists x \neq x' \in \mathcal{T} \colon H^1(x) = H^1(x') = Y^1 \land H^2(x) = H^3(x') = Y^3\right] \in 2^{-\Omega(n)}.$$

Proof: ?

Let $\mathcal{T} \subseteq \{0,1\}^{\ell}$ be 2^{k} -size set.

Let \mathcal{H}^1 be ℓ -wise independent family mapping ℓ -bit strings to k-bit strings Let \mathcal{H}^2 be 2-universal family mapping ℓ -length strings to n-bit strings

Protocol 6 ((S,R))

- 1. S selects $x \in \mathcal{T}$
- 2. R sends $h^1 \leftarrow \mathcal{H}^1$ to S
- 3. S sends $y^1 = h^1(x)$ to R
- **4.** R sends $h^2 \leftarrow \mathcal{H}^2$ to S
- **5.** S sends $y^2 = h^2(x)$ to R

Let \widetilde{S} be an arbitrary algorithm and let Y^1 , Y^2 , H^1 , H^2 be value of y^1 , y^2 , h^1 , h^2 in a random execution of (\widetilde{S}, R) .

Claim 7

$$\Pr\left[\exists x \neq x' \in \mathcal{T}: H^{1}(x) = H^{1}(x') = Y^{1} \wedge H^{2}(x) = H^{3}(x') = Y^{3}\right] \in 2^{-\Omega(n)}.$$

Proof: ? Can we do it in a single round?

Let G be m-block generator of block size ℓ and input length s. Let \mathcal{H}^1 be ℓ -wise function family mapping ℓ -bit strings of k-bit strings. Let \mathcal{H}^2 be 2-universal function family mapping ℓ -bit strings to n-bit strings.

Let G be m-block generator of block size ℓ and input length s. Let \mathcal{H}^1 be ℓ -wise function family mapping ℓ -bit strings of k-bit strings. Let \mathcal{H}^2 be 2-universal function family mapping ℓ -bit strings to n-bit strings.

Protocol 8 (G' = (S, R))

S sets $x \leftarrow \{0,1\}^s$

For i = 1 to m:

- 1. R sends $h_i^1 \leftarrow \mathcal{H}^1$ to S
- **2.** S sends $y_i^1 = h_i^1(G(x)_i)$ to R
- 3. R sends $h_i^2 \leftarrow \mathcal{H}^2$ to S
- **4.** S sends $y_i^2 = h_i^2(G(x)_i)$ to R
- **5.** S sends $g_i = G(x)_i$ to R

Let G be m-block generator of block size ℓ and input length s. Let \mathcal{H}^1 be ℓ -wise function family mapping ℓ -bit strings of k-bit strings. Let \mathcal{H}^2 be 2-universal function family mapping ℓ -bit strings to n-bit strings.

```
Protocol 8 (G' = (S, R))

S sets x \leftarrow \{0, 1\}^s

For i = 1 to m:

1. R sends h_i^1 \leftarrow \mathcal{H}^1 to S

2. S sends y_i^1 = h_i^1(G(x)_i) to R

3. R sends h_i^2 \leftarrow \mathcal{H}^2 to S

4. S sends y_i^2 = h_i^2(G(x)_i) to R

5. S sends g_i = G(x)_i to R
```

• We view G' as an m-block "interactive generator" (the blocks are g_1, \ldots, g_m).

Let G be m-block generator of block size ℓ and input length s. Let \mathcal{H}^1 be ℓ -wise function family mapping ℓ -bit strings of k-bit strings. Let \mathcal{H}^2 be 2-universal function family mapping ℓ -bit strings to n-bit strings.

```
S sets x \leftarrow \{0,1\}^s

For i = 1 to m:

1. R sends h_i^1 \leftarrow \mathcal{H}^1 to S

2. S sends y_i^1 = h_i^1(G(x)_i) to R

3. R sends h_i^2 \leftarrow \mathcal{H}^2 to S
```

4. S sends $y_i^2 = h_i^2(G(x)_i)$ to R **5.** S sends $g_i = G(x)_i$ to R

Protocol 8 (G' = (S, R))

- We view G' as an m-block "interactive generator" (the blocks are g_1, \ldots, g_m).
- Assume the blocks of G has real min-entropy (k + n + t), then the blocks of G' has real min-entropy roughly t

Let G be m-block generator of block size ℓ and input length s. Let \mathcal{H}^1 be ℓ -wise function family mapping ℓ -bit strings of k-bit strings. Let \mathcal{H}^2 be 2-universal function family mapping ℓ -bit strings to n-bit strings.

```
Protocol 8 (G' = (S, R))
S sets x \leftarrow \{0, 1\}^s
```

For i = 1 to m:

- 1. R sends $h_i^1 \leftarrow \mathcal{H}^1$ to S
- **2.** S sends $y_i^1 = h_i^1(G(x)_i)$ to R
- 3. R sends $h_i^2 \leftarrow \mathcal{H}^2$ to S
- **4.** S sends $y_i^2 = h_i^2(G(x)_i)$ to R
- **5.** S sends $g_i = G(x)_i$ to R
- We view G' as an m-block "interactive generator" (the blocks are g_1, \ldots, g_m).
- Assume the blocks of G has real min-entropy (k + n + t), then the blocks of G' has real min-entropy roughly t
- Assume G has accessible entropy mk, then w.p. 1 − negl(n) in an execution of G' exists block with accessible entropy 0:

Let G be m-block generator of block size ℓ and input length s. Let \mathcal{H}^1 be ℓ -wise function family mapping ℓ -bit strings of k-bit strings. Let \mathcal{H}^2 be 2-universal function family mapping ℓ -bit strings to n-bit strings.

```
Protocol 8 (G' = (S, R))
S sets x \leftarrow \{0, 1\}^s
```

For i = 1 to m:

- 1. R sends $h_i^1 \leftarrow \mathcal{H}^1$ to S
- **2.** S sends $y_i^1 = h_i^1(G(x)_i)$ to R
- 3. R sends $h_i^2 \leftarrow \mathcal{H}^2$ to S
- **4.** S sends $y_i^2 = h_i^2(G(x)_i)$ to R
- **5.** S sends $g_i = G(x)_i$ to R
- We view G' as an m-block "interactive generator" (the blocks are g_1, \ldots, g_m).
- Assume the blocks of G has real min-entropy (k + n + t), then the blocks of G' has real min-entropy roughly t
- Assume G has accessible entropy mk, then w.p. 1 − negl(n) in an execution of G' exists block with accessible entropy 0:

Let G be m-block generator of block size ℓ and input length s. Let \mathcal{H}^1 be ℓ -wise function family mapping ℓ -bit strings of k-bit strings. Let \mathcal{H}^2 be 2-universal function family mapping ℓ -bit strings to n-bit strings.

Protocol 8 (G' = (S, R))

```
S sets x \leftarrow \{0,1\}^s
```

For
$$i = 1$$
 to m :

- 1. R sends $h_i^1 \leftarrow \mathcal{H}^1$ to S
- **2.** S sends $y_i^1 = h_i^1(G(x)_i)$ to R
- 3. R sends $h_i^2 \leftarrow \mathcal{H}^2$ to S
- **4.** S sends $y_i^2 = h_i^2(G(x)_i)$ to R
- **5.** S sends $g_i = G(x)_i$ to R
- We view G' as an m-block "interactive generator" (the blocks are g_1, \ldots, g_m).
- Assume the blocks of G has real min-entropy (k + n + t), then the blocks of G' has real min-entropy roughly t
- Assume G has accessible entropy mk, then w.p. 1 − negl(n) in an execution of G' exists block with accessible entropy 0:

$$H_{\widetilde{G}_{i}|\widetilde{R}_{1},...,\widetilde{R}_{i-1},H_{1},...,H_{i},Y_{i}}(g_{i}|r_{1},...,r_{i-1},(h_{1}^{1},h_{1}^{2}),...,(h_{i}^{1},h_{i}^{2}),(y_{i}^{1},y_{i}^{2})) = 0$$
), where H_{i}/Y_{i} are the values of $(h_{i}^{1},h_{i}^{2})/(y_{i}^{1},y_{i}^{2})$ in random execution of \widetilde{G} .

Definition 9 (target collision-resistant functions (TCR))

A function family $\mathcal{H} = \{\mathcal{H}_n\}$ is target collision resistant, if

$$\Pr_{(x,a)\leftarrow \mathsf{A}_1(1^n);h\leftarrow \mathcal{H}_n;x'\leftarrow \mathsf{A}_2(a,h)}\left[x\neq x'\wedge h(x)=h(x')\right]=\mathsf{neg}(n)$$

for any pair of PPT's A_1 , A_2 .

Definition 9 (target collision-resistant functions (TCR))

A function family $\mathcal{H} = \{\mathcal{H}_n\}$ is target collision resistant, if

$$\Pr_{(x,a)\leftarrow\mathsf{A}_1(1^n);h\leftarrow\mathcal{H}_n;x'\leftarrow\mathsf{A}_2(a,h)}\left[x\neq x'\wedge h(x)=h(x')\right]=\mathsf{neg}(n)$$

for any pair of PPT's A_1 , A_2 .

Relaxed variant of collision resistant.

Definition 9 (target collision-resistant functions (TCR))

A function family $\mathcal{H} = \{\mathcal{H}_n\}$ is target collision resistant, if

$$\Pr_{(x,a)\leftarrow \mathsf{A}_1(1^n);h\leftarrow \mathcal{H}_n;x'\leftarrow \mathsf{A}_2(a,h)}\left[x\neq x'\wedge h(x)=h(x')\right]=\mathsf{neg}(n)$$

for any pair of PPT's A_1 , A_2 .

Relaxed variant of collision resistant.

Theorem 10

OWFs imply efficient compressing TCRs.

```
Protocol 11 (Com = (S(\sigma), R))

S sets x \leftarrow \{0,1\}^s and R sets i^* \leftarrow [m]

For i = 1 to m:

1. R sends h_i \leftarrow \mathcal{H} to S

2. S sends y_i = h_i(G(x)_i) to R

3. If i = i^*:

3.1 R sends g \leftarrow \mathcal{G} to S

3.2 S sends g(G(x)_i) \oplus \sigma to R

3.3 Parties stop the execution.
```

Let G be m-block generator of block size ℓ and input length s. Let \mathcal{H} be a TCR family mapping strings of length ℓ to string of length k. Let \mathcal{G} be 2-universal Boolean function family over strings of length ℓ .

```
Protocol 11 (Com = (S(\sigma), R))

S sets x \leftarrow \{0,1\}^s and R sets i^* \leftarrow [m]

For i = 1 to m:

1. R sends h_i \leftarrow \mathcal{H} to S

2. S sends y_i = h_i(G(x)_i) to R

3. If i = i^*:

3.1 R sends g \leftarrow \mathcal{G} to S

3.2 S sends g(G(x)_i) \oplus \sigma to R

3.3 Parties stop the execution.
```

Assume the blocks of G has real min entropy (k + n), then Com is statistically hiding

```
Protocol 11 (Com = (S(\sigma), R))

S sets x \leftarrow \{0,1\}^s and R sets i^* \leftarrow [m]

For i = 1 to m:

1. R sends h_i \leftarrow \mathcal{H} to S

2. S sends y_i = h_i(G(x)_i) to R

3. If i = i^*:

3.1 R sends g \leftarrow \mathcal{G} to S

3.2 S sends g(G(x)_i) \oplus \sigma to R

3.3 Parties stop the execution.
```

- Assume the blocks of G has real min entropy (k + n), then Com is statistically hiding
- ► Assume G has a zero entropy block, then Com is $\frac{1}{m}$ binding.

```
Protocol 11 (Com = (S(\sigma), R))

S sets x \leftarrow \{0,1\}^s and R sets i^* \leftarrow [m]

For i = 1 to m:

1. R sends h_i \leftarrow \mathcal{H} to S

2. S sends y_i = h_i(G(x)_i) to R

3. If i = i^*:

3.1 R sends g \leftarrow \mathcal{G} to S

3.2 S sends g(G(x)_i) \oplus \sigma to R

3.3 Parties stop the execution.
```

- Assume the blocks of G has real min entropy (k + n), then Com is statistically hiding
- ► Assume G has a zero entropy block, then Com is $\frac{1}{m}$ binding.

```
Protocol 11 (Com = (S(\sigma), R))

S sets x \leftarrow \{0,1\}^s and R sets i^* \leftarrow [m]

For i = 1 to m:

1. R sends h_i \leftarrow \mathcal{H} to S

2. S sends y_i = h_i(G(x)_i) to R

3. If i = i^*:

3.1 R sends g \leftarrow \mathcal{G} to S

3.2 S sends g(G(x)_i) \oplus \sigma to R

3.3 Parties stop the execution.
```

- Assume the blocks of G has real min entropy (k + n), then Com is statistically hiding
- Assume G has a zero entropy block, then Com is $\frac{1}{m}$ binding. Proof:

```
Protocol 11 (Com = (S(\sigma), R))

S sets x \leftarrow \{0,1\}^s and R sets i^* \leftarrow [m]

For i = 1 to m:

1. R sends h_i \leftarrow \mathcal{H} to S

2. S sends y_i = h_i(G(x)_i) to R

3. If i = i^*:

3.1 R sends g \leftarrow \mathcal{G} to S

3.2 S sends g(G(x)_i) \oplus \sigma to R

3.3 Parties stop the execution.
```

- Assume the blocks of G has real min entropy (k + n), then Com is statistically hiding
- Assume G has a zero entropy block, then Com is $\frac{1}{m}$ binding. Proof:
 - **1.** For some $i \in [m]$, cheating \widetilde{S} must send hash of zero-entropy block.

```
Protocol 11 (Com = (S(\sigma), R))

S sets x \leftarrow \{0,1\}^s and R sets i^* \leftarrow [m]

For i = 1 to m:

1. R sends h_i \leftarrow \mathcal{H} to S

2. S sends y_i = h_i(G(x)_i) to R

3. If i = i^*:

3.1 R sends g \leftarrow \mathcal{G} to S

3.2 S sends g(G(x)_i) \oplus \sigma to R

3.3 Parties stop the execution.
```

- Assume the blocks of G has real min entropy (k + n), then Com is statistically hiding
- Assume G has a zero entropy block, then Com is $\frac{1}{m}$ binding. Proof:
 - **1.** For some $i \in [m]$, cheating \widetilde{S} must send hash of zero-entropy block.
 - 2. If $i^* = i$, we have binding

▶ OWF over *n* bits implies $\Theta(n)$ -round SHC

- ▶ OWF over *n* bits implies $\Theta(n)$ -round SHC
- ► Can be pushed to $\Theta(n/\log n)$ rounds

- ▶ OWF over *n* bits implies $\Theta(n)$ -round SHC
- ► Can be pushed to $\Theta(n/\log n)$ rounds
- Tight (at least for certain type of reductions)