- > Computationally reproducible research with R
 - >
- > R-user meeting, Wageningen UR
- > March 14th, 2018
- > Luc Steinbuch

Error: unexpected symbol in "Luc Steinbuch"

- > [1] Why, what and how reproducible research?
- > [2] Readable code
- > [3] Brief overview RMarkdown & application

Based on:

https://englianhu.files.wordpress.com/2016/01/reproducible-research-with-r-and-studio-2nd-edition.pdf

Based on:

What?

"A research project is **computationally reproducible** if a second investigator (including you in the future) can recreate the final reported results of the project, including key quantitative findings, tables, and figures, given only a set of files and written instructions."

https://royalsociety.org/

Source: https://commons.wikimedia.org

https://shiring.github.io/machine_learning/2017/03/16/rf_plot_ggraph

https://www.flickr.com/photos/scobleizer/4870003098

Source: doi 10.1098/rsos.170175

Where to store data and/or code

Depository	4TU.Centre for Research Data.	DANS Easy (KNAW)
Focus	Technical + β sciences	All sciences, including humanities, social sciences, archeology etc
Size	10 GB; contact for more	100 MB zipped; contact for more
Duration	At least 15 years	At least 10 years

https://www.wur.nl/en/Expertise-Services/Data-Management-Support-Hub/Browse-by-Subject/Publishing-your-dataset-in-a-repository.htm

Other options:

- With on github or Git@WUR
- Something domain-specific
- With an R-package on CRAN (advice: < 5 MB for code, documentation and data combined)
- At website scientific journal (€€€?);
- Mendeley: Max 10 GB per dataset, for free (yet) https://data.mendeley.com/faq
- With paper and R code at **Researchgate**; max 512MB for your whole profile (contact for more); citation and download overview for free https://explore.researchgate.net/display/support/Data

Focuspoints when storing data

Requirements

Data files: format

Meta-data (often fixed form with title, access restrictions etc.)

Documentation (extended textual description)

You can get a DOI, Digital object identifier

.txt, .csv etc.

But also (from researchgate):

- Nucleotide Sequences (.gb, .fas. .fasta)
- Alignments (.gb, .fas. .fasta)
- Protein Sequences (.gb, .fas. .fasta)
- Tables (.xls, .xlsx)
- Images (.png or .similar)
- Animations (.gif)

Focuspoints when storing code

- Access restrictions etc.
- Platform
- R, packages version
- Checked on errors
- Understandable, readable
- Explicit random seed

> sessionInfo()

R version 3.4.0 (2017-04-21)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows 7 x64 (build 7601) Service Pack 1

Matrix products: default

locale:

- [1] LC COLLATE=Dutch Netherlands.1252 LC CTYPE=Dutch Netherlands.1252
- [3] LC MONETARY=Dutch Netherlands.1252 LC NUMERIC=C
- [5] LC_TIME=Dutch_Netherlands.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

- [1] knitr_1.20 tictoc_1.0 DEoptim_2.2-3 raster_2.5-8 rgdal_1.1-10 [6] magrittr 1.5 reshape2 1.4.2 ggplot2 2.1.0 MCMCpack 1.4-0 coda 0.19-1
- [11] sp_1.2-5 MHadaptive_1.1-8 MASS_7.3-47

loaded via a namespace (and not attached):

[1] Rcpp_0.12.15 munsell_0.4.3 colorspace_1.3-2 lattice_0.20-35

Focuspoints when storing code

- Access restrictions etc.
- Platform
- R, packages version
- Checked on errors
- Understandable, readable
- Explicit random seed

(Kitzes et al., 2017); n = 31

1.7841321 -0.9912195 6.2078209 2.0045731 -0.7611575

- Access restrictions etc.
- Platform
- R, packages version
- Checked on errors
- Understandable, readable
- Explicit random seed

```
Help function:
```

```
> n <- 5
> mean <- 4
> var <- 3.5
> rnorm(n, mean, var)
[1] 1.7841321 -0.9912195 6.2078209 2.0045731 -0.7611575
```

Focuspoints when storing code

- Access restrictions etc.
- Platform
- R, packages version
- Checked on errors
- Understandable, readable
- Explicit random seed

```
> rnorm(n
            = number repetitions,
       mean = mean population,
       sd = sqrt(variance_population)
   5.895903 3.875858 3.022181 4.511389 3.301425
            = number repetitions,
> rnorm(n
       mean = mean population,
            = sqrt(variance population)
[11 2.518553 6.506036 5.512475 7.199004 2.932298
> set.seed(671)
> rnorm(n
            = number repetitions,
       mean = mean population,
            = sqrt(variance population)
       sd
    3.0133336 -0.2559971 5.8221417 3.0651584 3.5877066
> set.seed(671)
            = number repetitions,
> rnorm(n
       mean = mean population,
            = sqrt(variance_population)
    3.0133336 -0.2559971 5.8221417 3.0651584 3.5877066
[1]
```

Why aren't people sharing their data and code?

It takes **effort to clean up data and code** to put them in a format where you can share them.

- 1. **Privacy** issues (for example social sciences)
- 2. You do **not want to give away your data** too soon. Science is competitive!
- 3. Because others might go through it and find mistakes in your analysis
- 4. You're John Lott and **you lost all traces** of your data so nothing to share.
- 5. You're Diederik Stapel and you never did the study in the first place. You can't share your data because the data **never existed**.

And: plain ownership of the data

 $Inspired \ on: \ http://andrewgelman.com/2015/09/14/its-not-so-easy-to-share-data-and-code-and-there-are-lots-of-bureaucrats-who-spend-their-time-making-it-even-more-difficult \ one in the property of the$

More about readable code

```
1 #We suggest removing all objects in your environment fist
 2 \operatorname{rm}(\operatorname{list} = \operatorname{ls}())
  #read supplementary data
    prov.data <- read.csv("Supplementary materials Data.csv")</pre>
 6
   #install metap (for combining probabilities) if you haven't before
    if(!"metap" %in% installed.packages()[,"Package"]) install.packages("metap")
10
11
12 - #### TEST 1 ###############
13 - ##### Probability that only one bird is at the colony at any time by shuffling all 10 min segment:
14 #set number of iterations
15 \text{ reps} = 10000
16
17 #t1 == test1
    t1.pair.period <- parallel::mclapply(unique(prov.data$pair.obs.period), mc.cores = 3, function(i)
18
19 - {
20
      #subset for each nest.observation (nest+observation period)
21
      a <- prov.data[prov.data$pair.obs.period == i,]</pre>
22
      #put male and female data as independent columns (sex is a single column in p)
23
24
      d <- cbind(as.character(a$trip.type[a$sex == "m"]), as.character(a$trip.type[a$sex == "f"]))</pre>
25
26
      #convert NAs to at the colony (CO)
27
      # d <- apply(b, 2, function(x) {levels(x)<-c("ST","LT","CO")
      # x[is.na(x)]<-"CO"
28
29
      # return(x)})
30
```

More about readable code

Another example https://www.researchgate.net/publication/320272803 R script and data

```
# Methods S2: R script used to perform the statistical analyses
    rm(list=ls(all=TRUE))
    library(vegan)
                                                                           > print(bioenv.default)
    # bioenv function modified to take a distance matrix as input
                                                                           Error in print(bioenv.default) : obje
    # to see the original script: print(bioenv.default)
    bioenv DIST <- function (comm, env, method, index, upto, trace, partial)
11 -
12 -
      if (is.null(partial)) {
13 -
        corfun <- function(dx, dy, dz, method) {
14
          cor(dx, dy, method = method)
15
16
17 -
      else ·
18 -
        corfun <- function(dx, dy, dz, method) {
19
          rxy <- cor(dx, dy, method = method)</pre>
20
          rxz <- cor(dx, dz, method = method)</pre>
21
          ryz <- cor(dy, dz, method = method)
22
          (rxy - rxz * ryz)/sqrt(1 - rxz * rxz)/sqrt(1 - ryz * ryz)
23
24
25
      if (!is.null(partial))
26
        partpart <- deparse(substitute(partial))</pre>
27
      else partpart <- NULL
28
      if (!is.null(partial) && !inherits(partial, "dist"))
29
        partial <- dist(partial)</pre>
30
      if (!is.null(partial) && !pmatch(method, c("pearson", "spearman"),
31
                                        nomatch = FALSE))
32
        stop("method ", method, " invalid in partial bioenv")
```

More about readable code

```
154
155 vpd <- compo BIO[,11:14] # weather variables
156 t mean
              <- compo BIO[,15:18]
              <- compo BIO[,19:22]
157 t sd
158 dew <- compo BIO[,23:26]
159 aur fr <- compo BIO[,27:30] # climate variables
160 aur pp <- compo BIO[,31:34]
161 aur tm <- compo BIO[,35:38]
162
163
    # Geographical distance between elevation sites
164
165 geo
           <- vegdist(compo BIO[,c("x","y","z")], "euc", diag=F, upper=F, binary=F)</pre>
166
167 # # BIOENV selection of the best season for climate variables, and the best time span for weather variable
168
169 result \leftarrow array (NA, c(7,2))
170 dimnames (result) [[1]] <- c("vpd", "t mean", "t sd", "dew", "aur fr", "aur pp", "aur tm")
171 dimnames (result) [[2]] <- c("selected period", "mantel R")
```

Abbroviation

```
154
155
     vpd
                <- compo BIO[,11:14]
156
                <- compo BIO[,15:18]
     t mean
157
                <- compo BIO[,19:22]
     t sd
158
     dew
                <- compo BIO[,23:26]
159
     aur fr
                <- compo BIO[,27:30]
                <- compo BIO[,31:34]
160
     aur pp
                <- compo BIO[,35:38]
161
     aur tm
162
163
     # Geographical distance between
164
165
               <- vegdist(compo BIO
     geo
166
167
     # # BIOENV selection of the be
168
169
     result \leftarrow array (NA, c(7,2))
     dimnames(result)[[1]] <- c("v</pre>
170
     dimnames(result)[[2]] <- c("s</pre>
171
```

Table 2 List of climatic and weather variables calculated for each elevation site

Description

Abbreviation	Description
Climatic variables	
t_m_S	Mean temperature in season S
pp_S	Mean precipitation in season S
fr_S	Mean no. of days of frost in season S
Weather variables	
t_m_D	Mean temperature over the D days before sampling
t_sd_D	Temperature standard deviation over the <i>D</i> days before sampling
dew_point_D	Number of hours above dew point over the <i>D</i> days before sampling
VDP_10max_D	Mean of the ten highest vapor pressure deficit values over the <i>D</i> days before sampling

Dataset Code for alpha irradiated FNTD processing and microdosime

▶▶▶▶ Link/cite as https://doi.org/10.4

▼go to DATA section ▼ title	Code for alpha irradiated FNTD processing and microdosimetry
creator	orcid Kouwenberg, J.J.M. (Jasper)
contributor	TU Delft, Faculty of Applied Sciences, Department of Radiation Science & Techn
date accepted	2017-10-04
date created	2016 through 2017
date published	2017
description	Collection of R and Java scripts for the processing of alpha irradiated Fluorescent images and spheroid simulation. To be used together with the uuid:684161d8-fbc a modified version of a 2016 fork of the public https://github.com/FNTD/R-package
language	en en
publisher	Delft University of Technology
subject	Alpha microdosimetry ◊ Fluorescent Nuclear Track Detectors (FNTD) ◊ FNTD pro
▲ in collection	General collection of datasets
is software for	Am241 irradiated Fluorescent Nuclear Track Detectors
licence	General terms of use

DATA

<u>readme.txt - dataset documentation</u> (text/plain)

- ? Dataset files (91.6 MiB) >> download complete dataset (zip) | download separate files
 - + bag-info
 - + contents of this dataset, 317 files

```
FNTD processing, Fluorescent Nuclear Track Detectors, Alpha
microdosimetry, Spheroid simulation dataset
Code files
 /R-package
       (....)
 /R
      Collection of scripts for processing and analyzing FNTDs.
       Relies heavily on the accompanying R-package library. Also contains
       code for calculation and simulation of microdosimetric spectra in
       cells.
       /R/Add.Scan.To.DB.R
         Script for adding FNTD scans to the database. Requires surface
         plane equation and an ID.
       /R/CellHit/Cell.LET.distribution.R
         Calculates the LET distribution given a cell image and a
         collection of FNTD images. Only works for alpha particles.
       (this list continues for about two pages)
```

```
1 \operatorname{rm}(\operatorname{list} = \operatorname{ls}())
    cat("\014")
     library(rgl)
    load(file = 'Data/FNTD Refl Regression.rda')
 8 filename = ""
 9 #reflectance plane
10 	 vec = 0:98.41
11 x = c(0, 45, 90)
12 y = c(0,0,0)
13 z = c(1,1,1) * .49
14 img offset = (0)*.49
15
   fit <-lm(z \sim x + y)
16
17
18 x1<-sapply(vec, function (x) rep(x,length(vec)))
19 x1 < -as.vector(x1)
20 y1 = rep(vec, length(vec))
21 z1 = fit$coefficients[1] + fit$coefficients[2]*x1 + fit$coefficients[3]*y1
22 # plot3d(x1,y1,z1)
23
24 print(summary(fit))
```

The makefile principle

```
## Main script for "An analytical approach to Bayesian area-to-point kriging"
   ## Luc Steinbuch, Wageningen UR
 3
   ## Spring 2018
 5 #### Load packages and supporting functions ####
    source("packages and postParam functions.R")
    #file.edit("packages and postParam functions.R")
 9 * #### Prepare data ####
10
    source("prepare simulation data.R")
    #file.edit("prepare simulation data.R")
11
12
13 * #### Inspect & present data ####
14
    source("inspect simulation data.R")
15
   #file.edit("inspect simulation data.R")
16
17 * #### Estimating and adding linear models ####
18
    source("add lm simulation data.R")
    #file.edit("add lm simulation data.R")
19
20
21 * #### Analytical analysis and prediction ####
22
    source("analytical analysis simulation data.R")
23 # file odit/"analytical analyggig gimulation data D"\
```

• Run RMarkdown_example_1.Rmd (don't forget install.packages("rmarkdown"))

Note environment:
 Error: object 'd' not found

Note notebook in Rstudio (since 2016): run by chunk

```
12 ## Markdown with R code
13
14 * ```{r}
   d <- data.frame(participants=1:10, height=rnorm(10, sd=30, mean=170))</pre>
16
   summary(d)
17
                                                                        participants
                        height
     Min. : 1.00
                           :127.7
                    Min.
     1st Qu.: 3.25
                    1st Qu.:146.8
     Median: 5.50
                    Median :191.3
          : 5.50
                           :181.5
     Mean
                    Mean
     3rd Qu.: 7.75
                    3rd Qu.:209.0
     Max. :10.00
                    Max. :234.0
```

Powerful, versatile

https://rmarkdown.rstudio.com/gallery.html

Gallery

Check out the range of outputs and formats you can create using R Markdown.

Documents

With R Markdown, you write a single .Rmd file and then use it to render finished output in a variety of formats.

Interactive Documents

Combine R Markdown with htmlwidgets or the shiny package to make interactive documents.

HTML Widgets

Add interactive graphics with htmlwidgets, such

Add interactive analysis with shiny, which lets

https://rmarkdown.rstudio.com/gallery.html

Powerful, versatile

```
title: "Untitled"
output: pdf_document
bibliography: library.bib

*#Header 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit
[@author2000], sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

#References
*#References
```

Gallery

Check out the range of outputs and formats you can create using R Markdown.

Documents

Untitled

Header 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit (Author 2000), sed do eiusmod tempor incididunt labore et dolore magna aliqua.

References

Author, A. 2000. "Title of article." Journal of Tudududu 3 (2): 112-901.

https://rosannavanhespenresearch.wordpress.com/2016/02/17/writing-your-thesis-with-rmarkdown-2-making-a-chapter and the sum of the

+ Table of contents, external images, etc etc.

Interactive Documents

Combine R Markdown with htmlwidgets or the shiny package to make interactive documents

But note:

- More complicated options depend on export format
- For good integration with \LaTeX , better use *sweave*; for example to use table captions and automated table numbering

UNOCO Data Frepan

1.11 so piece
2.Bata Ozestaew

HTML Widgets
Embed htmlwidgets such as dygraphs a

Add interactive analysis with shiny, which let

Why use RMarkdown or Sweave?	But
Updating reports much easier and faster	
Convenient if you want to show code and results integrated	only needed for very specialized journals (<i>Journal</i> of Statistical Software etc)
Consistent output	
Easy to use	sometimes need for plain .R file, beside the .Rmd: Ending up with two code files doing the same thing!

"... sometimes need for plain .R file, beside the .Rmd"

Solution 1) Extract .R file from .Rmd

```
1 library(knitr)
2 purl('RMarkdown_example_1.Rmd')
3
```

2) Run .Rmd in global environment

```
1 library(knitr)
2 knit('RMarkdown_example_1.Rmd')
3
```

3) Create R file with the RMarkdown code behind special ('roxygen') comments, #' and #+

```
## Create report from .R document with RMarkdown code
   #' This was an **RMarkdown** docume 15
                                             ## behind 'roxygen' comments
                                             library(rmarkdown)
                                         16
    #' Now it is a **.R** document with
                                             render(input = "RMarkdown example 2.R",
13
                                                    output format = "html document", # other options: http
                                         18
14
    #' ## Markdown with R code
                                                    clean = TRUE # removes temporarily files
                                         19
15
   #+ chunk name1
                                         20
16
    d <- data.frame(participants=1:10,</pre>
                                             browseURL('RMarkdown example 2.html')
   summary(d)
                                         23
```

> Computationally reproducible research with R

>

- > R-user meeting, Wageningen UR
- > March 14th, 2018

Le Penseur, Auguste Rodin, picture by Tammy Lo, licensed under the terms of the cc-by-2.0

Anything additional to discuss?