Incentivizing Electric Vehicles to Provide Regulation While Recharging

SHUAI Wenjing Patrick Maillé Alexander Pelov

Telecom Bretagne

November 5, 2015

Outline

Model description

System sketch

Regulation mechanism—power modulation

Regulation mechanism—incentive composition

User preferences

Analysis

Maximizing aggregator revenue—Problem&Solution

Revenue maximizing prices

Application in a real world market

System sketch

System sketch

Three options for EV owners:

- S-charging: simple charging, battery is recharged at the maximum rate
- R-charging: recharge power subject to the regulation signal sent by TSO
- no_charging: do not recharge at all

Figure: A sketch of the charging management scenario

- Model description
 - Regulation mechanism—power modulation

Regulation mechanism—power modulation

A comparison between recharging at full power P_d and recharging while reacting to regulation requests, in terms of the recharging power and energy transferred to the EV battery. We denote by C_B the total energy requested by the EV, and by ρ_u (ρ_d) the probability of occurrence of regulation up (down), assumed independent at each regulation period in this paper.

- Model description
 - Regulation mechanism—incentive composition

Regulation mechanism—incentive composition

$$E_r = \Delta t (\rho_u r_u P_n - \rho_d (1 - r_d) (P_d - P_n) - P_n)$$
 (1)

- t: unit price of energy at which the aggregator buys electricity;
- r_u: remuneration ratio for regulation up;
- r_d : discount ratio for regulation down;
- ρ_u (resp. ρ_d): probability of an "up" (resp. "down") signal, $\rho_n=1-\rho_d-\rho_u$ gives the probability that no regulation is needed at this slot:

User preferences

Figure: User utility for the three charging options ($C_B = 50$, $P_d = 20$, $P_A = 8$, $T_s = 0.15$, $T_r = 0.04$): the best choice depends on the user sensitivity θ

$$U = \theta(\bar{P} - \gamma \delta(P)) - TC_B \tag{2}$$

- "S-charging" over "no_charging" if $\theta > \frac{T_s}{P_s}C_B$
- "R-charging" over "no_charging" if $\theta > \frac{T_r}{P_A}C_B$
- "S-charging" over "R-charging" if $\theta > \frac{T_s T_r}{P_d P_\Delta} C_B$.

Analysis

Maximizing aggregator revenue—Problem&Solution

Maximizing aggregator revenue—Problem&Solution

$$x:=rac{P_{B}}{P_{d}}$$
 i.e. $x\in\{0,1\}$

$$R(T_r, T_s, x) = \begin{cases} \alpha_r (T_r + \frac{E_r}{P\Delta}) C_B + \alpha_s (T_s - t) C_B & \text{if } \frac{T_r}{PA} < \frac{T_s}{P_d} \\ \alpha_{s0} (T_s - t) C_B & \text{otherwise,} \end{cases}$$

$$(3)$$

$$\alpha_r = \exp(-\frac{T_r}{P_A \bar{\theta}} C_B) - \exp(-\frac{T_s - T_r}{(P_d - P_A) \bar{\theta}} C_B)$$
 (4)

$$\alpha_s = \exp\left(-\frac{T_s - T_r}{(P_d - P_A)\bar{\theta}}C_B\right) \tag{5}$$

$$\alpha_{s0} = \exp(-\frac{T_s}{P_d\bar{\theta}}C_B) \tag{6}$$

Gives:

$$T_c^* = t + \frac{P_d \bar{\theta}}{C_B}$$

$$T_r^* = \frac{P_A \bar{\theta}}{C_D} - \frac{E_r}{\bar{P}\Delta}$$
(8)

$$T_r^* = \frac{P_A \bar{\theta}}{C} - \frac{E_r}{\bar{\rho}_A} \tag{8}$$

(9)

Revenue maximizing prices T_r and T_c

Figure: Revenue as a function of T_s and T_r , $P_n/P_d = 0.8$, $\bar{\theta} = 0.3$, $\gamma = 0.05$, $C_B = 50$, $\rho_u = \rho_d = 0.48$, $\Delta = 0.1$, t = 0.03, $r_u = 2.0$, $r_d = 0.6$

_ Analysis

Application in a real world market

Aggregator benefit

Figure: Aggregator Revenue with multiple combinations of r_d and r_u

Analysis

Application in a real world market

$$r_u^{\min} = 2 - \rho_u + \gamma \rho_u^{-0.5} (1 - \rho_u)^{1.5}$$

$$r_d^{\min} = 1 - \rho_d + \gamma \sqrt{\rho_d - \rho_d^2}.$$
(13)

Figure: Observed regulation prices, and thresholds for R-charging to be beneficial for the aggregator