Spatiotemporal Tiling of the Kuramoto-Sivashinsky equation

Matthew Gudorf

Center for Nonlinear Science School of Physics Georgia Institute of Technology

Adviser: Predrag Cvitanović

Motivation

- High dimensional fluid flows are hard. Most results in "minimal flow units" ¹
- Conventional computational tools are providing diminishing returns
- Spatiotemporal methods are scalable²

¹J. Jiménez and P. Moin, J. Fluid Mech. **225**, 213–240 (1991). ²Q. Wang et al., Phys. Fluids **25**, 110818 (2013).

Doubly Periodic Kuramoto-Sivashinsky equation

$$u_t(x,t) = -\underline{u_{xx}(x,t)} - \underline{u_{xxxx}(x,t)} - \underline{u(x,t)u_x(x,t)}$$

Diffusion (wrong sign) "Hyper"-diffusion Advection

Boundary conditions

$$u(x,t) = u(x,t+T_p) = u(x+L,t) = u(x+L,t+T_p)$$

January 25th, 2019

Large spatiotemporal simulation

Shadowing

January 25th, 2019

Fourier-Fourier Basis

Substituting

$$u(x,t) = \sum_{m,n} \tilde{u}_{m,n} e^{i\omega_n t + iq_m x}, \qquad (1)$$

into the Kuramoto-Sivashinsky equation gives,

$$\mathbf{F}(\mathbf{x}) = \left(i\frac{2\pi n}{T} + \left(\frac{2\pi m}{L}\right)^2 - \left(\frac{2\pi m}{L}\right)^4\right)\tilde{u}_{m,n} + \frac{1}{2}\frac{2\pi m}{L}\mathcal{F}((\mathcal{F}^{-1}(\tilde{u}_{m,n}))^2)$$
(2)

Solve nonlinear algebraic equations for $\mathbf{x}=(\tilde{\mathbf{u}},T,L)$. Similar to formulation of Lopez³. We use real-valued Fourier basis in computations.

³V. López, Numerical continuation of invariant solutions of the complex rechnology.

Ginzburg-Landau equation, 2015.

Disadvantages of spatiotemporal methods

- High dimensionality
- Numerically challenging
- Ossible to find isolated solutions that are unimportant
- Find different members of same continuous families (redundancy)

Advantages of spatiotemporal methods

- Can use variational methods
- Pourier-Fourier basis
- Topological constraint (boundary conditions) provides access to potent methods
- Stability does not play a role in finding solutions.
- 6 Can exploit spatiotemporal symmetries

Spatiotemporal Symmetries

Reflection invariance

$$u(x,t) = \sigma_x u(x,t)$$

Spatiotemporal Symmetries

Shift-Reflection Invariance

$$u(x,t) = \sigma_x \tau_{1/2} u(x,t)$$

Spatiotemporal Symmetries

Spatial Translation Symmetry

$$u(x,t) = g(\theta(t)) \circ u(x,t+T_p)$$

Initial conditions

Adjoint Descent Method

$$\mathbf{F}(\mathbf{x}) = \left(i\frac{2\pi n}{T} + \left(\frac{2\pi m}{L}\right)^2 - \left(\frac{2\pi m}{L}\right)^4\right)\tilde{u}_{m,n} + \frac{1}{2}\frac{2\pi m}{L}\mathcal{F}((\mathcal{F}^{-1}(\tilde{u}_{m,n}))^2)$$
(3)

$$I = \frac{1}{2} \mathbf{F}^{\top} \mathbf{F} \,. \tag{4}$$

Adjoint Descent Method

introduce fictitious time (τ) flow by differentiation of cost function,

$$\partial_{\tau} I = (J^{\top} \mathbf{F})^{\top} (\partial_{\tau} \mathbf{x}) \tag{5}$$

"adjoint descent" method is defined by choice4

$$\partial_{\tau} \mathbf{x} = -(J^{\top} \mathbf{F}) \tag{6}$$

Damped Gauss-Newton Method

Solve $\mathbf{F}(\mathbf{x}^*) = 0$ via linearized system

$$\mathbf{F}(\mathbf{x}^*) = \mathbf{F}(\mathbf{x}) + J\delta\mathbf{x} \tag{7}$$

$$J = \begin{bmatrix} \frac{\partial \mathbf{F}}{\partial \mathbf{x}} & \frac{\partial \mathbf{F}}{\partial T} & \frac{\partial \mathbf{F}}{\partial L} \end{bmatrix}$$
 (8)

$$J\delta\mathbf{x} = -\mathbf{F}(\mathbf{x})\tag{9}$$

Shift-reflect symmetry

A couple thousand new invariant 2-torus solutions, examples:

Spatial translation symmetry

Reflection symmetry

Qualitative guesses for tiles

Sift through collection to find frequently occurring spatiotemporal patterns

Qualitative tiling of actual solution

Finding tiles by converging subdomains

Converged tiles

Continuous families and numerical continuation

January 25th, 2019

How do we use tiles?

Spatiotemporal symbolic dynamics

Spatiotemporal symbolic dynamics

Spatiotemporal symbolic dynamics

Quantitative tiling of actual solution

Gluing (larger) solutions, pre-periodic orbit time example

Gluing (larger) solutions, relative periodic orbit time example

Gluing (larger) solutions, pre-periodic orbit space example

Future Work

- Investigate Lagrangian formulation and application of Hill's formula^{5,6}
- Complete spatiotemporal symbolic dynamics
- Continuing improvement of numerical methods
- Application of theory to PDEs with more continuous spatial dimensions such as quasi 2-D Kolmogorov flow^{7,8}.

 8 G. J. Chandler and R. R. Kerswell, J. Fluid Mech. 722, $\pm 554 - 595$ ($2\overline{0}13$) $\pm 10^{-1}$

⁵N. H. Ibragimov and T. Kolsrud, Nonlin. Dyn. 36, 29-40 (2004).

⁶S. V. Bolotin and D. V. Treschev, Russ. Math. Surv. **65**, 191 (2010)

⁷B. Suri et al., Phys. Rev. E **98**, 023105 (2018).

Conclusion

- Developed spatiotemporal methods for finding invariant 2-tori of the Kuramoto-Sivashinsky equation
- Beginning to develop symbolic dynamics for the spatiotemporal Kuramoto-Sivashinsky equation
- Developed new method for finding larger (domain) solutions by combining smaller (domain) solutions

