Лекция 4

Параллельные алгоритмы для вычисления определителя и арифметических операций

(Конспект: Е. Петренко)

4.1 Вычисление определителя

Пусть A — матрица размерами $n \times n$. Требуется вычислить определитель этой матрицы. Алгоритм будет использовать poly($\log n$) процессоров.

Алгоритм будет одновременно вычислять определитель и искать обратную матрицу. Заметим, что обратная матрица к матрице B выглядит следующим образом:

$$B^{-1} = \frac{1}{\det B} \left(\begin{array}{c|c} B^{11} & \cdots \\ \vdots & \ddots \end{array} \right).$$

Пусть $B^{(i)}$ — правый нижний $i \times i$ угол матрицы B. Тогда

$$(B^{-1})_{11} = \frac{\det B^{(n-1)}}{\det B^{(n)}},$$

а в общем случае

$$\left(B^{(i)^{-1}}\right)_{11} = \frac{\det B^{(i-1)}}{\det B^{(i)}}.$$

Положим $\det Z = 1$, где матрица Z — размерности 0×0 . Имеем

$$\det B = \det B^{(n)} = \frac{\det B^{(n-1)}}{\left(\left(B^{(n)} \right)^{-1} \right)_{11}} = \dots = \frac{1}{\prod_{i=1}^{n} \left(B^{(i)^{-1}} \right)_{11}}.$$

При помощи этого тождества будем искать определитель символьной матрицы E-xA (и из него извлечем $\det A$). Поскольку $\det \det (E-xA) \le n$, все вычисления можно проводить по $\det x^{n+1}$:

$$(E - xA^{(k)})^{-1} = \sum_{i=0}^{k-1} (xA)^i \pmod{x^{n+1}}$$

Возводить в степень и складывать матрицы можно при помощи двоичного дерева. Сложение многочленов производим поэлементно, умножение многочленов не используется: $(xA)^i = x^i A^i$.

Так мы вычислим $\prod_{i=0}^{n} (B^{(i)^{-1}})_{11}$. Для получения $\det(E-xA)$ остается обратить полученный многочлен p(x). Пусть

$$p(x) = \text{const} \cdot (1 - xq(x)).$$

Тогда имеет место равенство

$$(1 - xq(x))^{-1} = \sum_{i=0}^{n} (xq(x))^{i} \pmod{x^{n+1}}$$
(4.1)

Для проверки этого утверждения достаточно раскрыть сумму. (Если же p(x) не представим в таком виде, то $\exists k: p(x) = x^k \cdot \text{const}(1 - xq(x));$ тогда при помощи 4.1 мы можем обратить все, кроме x^k .)

Итак, мы нашли $\det(E - xA)$ (либо нечто, что при домножении на x^k дает $x^k \cdot \det(E - xA)$). Коэффициент при x^n этого многочлена и есть $\det A$:

$$\lim_{n \to +\infty} \frac{\det(E - xA)}{(-x)^n} = \lim_{n \to +\infty} \det\left(\frac{E}{(-x)^n} + A\right) = \det A;$$

(аналогично, если вычислили «с точностью до x^k »:

$$\lim_{x \to +\infty} \frac{\det(E - xA)x^k}{(-x)^n x^k} = \lim_{x \to +\infty} \det\left(\frac{E}{(-x)^n x^k} + A\right) = \det A.$$

Мы сделали это за логарифмическое время, если время измерять в арифметических операциях. Осталось научиться параллелизовать арифметические операции. (Заметим, кстати, что коэффициенты наших многочленов были порядка $O(b) \cdot 2^{O(n)}$, где b — количество битов в исходных коэффициентах.)

4.2 Вычисление суммы и произведения целых чисел

Лемма 4.1. Пусть \diamond — ассоциативная операция, тогда одновременное вычисление всех $(a_1 \diamond a_2 \cdots \diamond a_i)$ для $i = 1, 2, \dots, n$ можно произвести за логарифмическое время на $O(n/\log n)$ процессорах.

Доказательство.

ПРОБЕЛ В КОНСПЕКТЕ.

Disclaimer: все написанное ниже мне проверить не удалось, поскольку не удалось понять конспектирующего. Текст приводится «as is». Если появится альтернативный конспект, я готов поместить сюда его.

-9.4

4.2.1 Вычисление суммы

$$a_i + b_i + c_i \rightarrow d_i, c_{i+1}$$

Линейно, хотим сделать за log.

$$p_i = a_i \vee b_i / / g_i = a_i \wedge b_i / /$$

Операция сложения с переносом для двоичных чисел. g_i — перенос будет, p_i — перенос перейдет. По 4.2.1 получим

$$c_i = g_i \lor (p_i \land c_{i-1})$$

Определим операцию:

$$(x,y) \diamond (x',y') = (x' \vee (y' \wedge x), y' \wedge y)$$

Проверим ассоциативность.

$$(c_i, -) = (c_{i-1}, -) \diamond (g_i, p_i) // \Rightarrow //(\circ, \circ) \diamond (g_1, p_1) \diamond \cdots \diamond (g_i, p_i)$$

⋄ — ассоциативная операция. Следовательно, можно вычислить за log. Для вычисления суммы всего числа можно выполнить этот процесс в каждом разряде. Построили алгоритм сложения за log шагов.

4.2.2 Вычисление произведения

Умножение — это сложения и сдвиги. Алгоритм умножения «в столбик». Для каждого разряда вычисляем отдельно. Нужно вычислить сумму n чисел из 2n битов. Каждый бит $c_{ij}=a_i\wedge b_i$ или нуль.

Просто сложить все числа. Сложность будет \log^2 . Есть другое решение: рассмотрим троичное дерево

$$\oplus(a,b,c)=(e,f)$$

Высота дерева $\log_{\frac{3}{2}}$

$$x_i, y_i, z_i:$$
 $(x_i, y_i, z_i) \rightarrow (u_i, v_i)$
 $v_i = x_i + y_i + z_i \pmod{2}$
 $u_i = x_i + y_i + z_i \div 2$

 $a_i + b_i + c_i = \overline{e_i f_i}$ — просто побитовое сложение. Результат суммы трех двоичных чисел влезет в два двоичных числа. Когда остаются только 2 числа, применим обычное сложение.