본 강의에서 수업자료로 이용되는 저작물은

저작권법 제25조 수업목적 저작물 이용 보상금제도에 의거,

한국복제전송저작권협회와 약정을 체결하고 적법하게 이용하고 있습니다.

약정범위를 초과하는 사용은 저작권법에 저촉될 수 있으므로

수업자료의 재 복제, 대중 공개·공유 및 수업 목적 외의 사용을 금지합니다.

2021. . .

부천대학교·한국복제전송저작권협회

교육 과정 계획

• 교육 과정 계획

- 01 4차 산업혁명의 개요
- 02 빅데이터 개요
- 03 인공지능 개요
- 04 사물인터넷 개요
- 05 자율주행차 개요
- 06 가상·증강·혼합·확장현실 개요
- 07 드론 개요
- 08 중간고사
- 09 3D프린팅과 헬스케어 개요
- 10 블록체인 개요
- 11 클라우드 컴퓨팅 개요
- 12 신재생에너지와 산업 변화 (또는 산업체직무전문가 특강)
- 13 플랫폼 비즈니스 개요 (또는 산업체직무전문가 특강)
- 14 스마트 생태계 개요
- 15 기말고사

정보처리산업기사 실기 신기술 토픽들

학습 목표

- 학습 목표
 - 3D 프린팅 개념 이해하기
 - 디지털 헬스케어 개념 이해하기
 - 신기술 용어 이해하기

- 목차
 - 01 3D 프린팅 개요
 - 02 디지털 헬스케어 개요
 - 03 신기술 용어

- 3D 프린팅의 이해
 - 3D 프린터: 3차원의 입체물을 만들어 내는 프린터, 컴퓨터로 작업한 3차원
 모델링 데이터를 입체적으로 인쇄하여 실제 사물로 생산해 주는 기계
 - 3D 프린팅: 3D 프린터를 활용하여 입체적인 결과물을 인쇄하여 제작하는
 모든 과정을 포함함, 3D 입체물을 제작하기 위해 진행되는 디자인, 설계,
 3D 모델링 작업, 인쇄 등의 프로세스 전체를 지칭함

Ⅰ3D프린터 제품 제작 과정Ⅰ

- 3D 프린팅의 이해
 - 3D 프린팅 장점: 제작 가능한 제품의 범위(일반제품, 인공 뼈 등)가 넓음, 제품 제작 공정 과정이 축소될 수 있음
 - 최초의 3D 프린팅 기술 : RP(Rapid Prototype,1980년대 일본 나고야 공업 연구소)
 - 3D 프린팅 특허 : SLA(광경화성 수지 적층 조형) 기계를 만든 찰스 헐 (Charles W. Hull), 시제품 제작을 단축하기 위한 방법으로 고안
 - Mock-up(실물 크기 모형) 제작 단계의 혁신 -> 획기적 시간 단축
 - 다품종 소량 및 맞춤형 제품 생산이 가능한 차세대 생산기술로 주목받음
 - 미국 오바마 대통령은 '3D 프린팅은 지금까지 생산 방식을 바꿀만한 잠재력을 가지고 있다' 고 2013년 국정연설에서 발표

3D 프린팅 종류

3D 프린팅 방식FDM, SLS, SLA 방식

- 용융 적층 모델링(FDM)
- 선택적 레이저 소결(SLS)
- 광경화 조형(SLA)

- ① FDM (Fused Deposition Modeling)
- 필라멘트를 헤드를 통하여 분출시켜서 적층시키는 방식으로 헤드는 X, Y축으로 이동하고, 플레이트는 Z축으로 내려가면서 제품이 적층
- 미국 Stratasys사에서 개발되었고, 현재 개인용 3D프린터에 가장 많이 사용되는 방식으로 가장 보편적인 기술임

*출처: 스트라타시스 홈페이지

2 PolyJet

 광경화성 액상 재료를 헤드를 통하여 분출하고, UV램프로 분사된 재료를 경화시켜서 제작하는 방식으로, 주로 사용하는 액상 재료는 아크릴 계열의 재료이며, 가장 다양한 소재를 만들어 낼 수 있음

*출처: 프로토텍 홈페이지

③ SLA (Stereo Lithography Apparatus)

- 액상 수지의 재료를 레이저를 사용하여 경화시키는 방식으로, 최초의 3D프린팅 기술로 가장 많이 사용되었던 방식
- 별도의 보조 재료를 사용하지 않고 미세형상의 기둥이 보조역할을 하며, Sharp Edge의 형상 구현이 매우 좋으나, 고가의 장비와 레이저 유지 보수비용으로 최근에는 보급되지 않음

*출처: PSD21 COMPANY

SLS (Selective Laser Sintering)

- 분말 재료를 사용하고, CO2 Laser를 주시하여 제품을 제작하는 방식으로 녹지 않는 분말재료가 지지대 역할
- 나일론을 주 소재로 사용하기에 강성이 강하거나 온도가 높음, 최근에는 특히 금속분말을 이용하는 사례 증가 추세
- 제작 속도가 빠르고, 대량 생산이 가능하기에 다품종 소량 생산에 직접 적용이 가능

*출처: https://formlabs.com

⑤ DLP(Digital Light Processing) 방식

- 빔 프로젝터에서 출력물 이미지를 직접 투사해 출력하여 정밀도가 우수 하나 사용 가능한 재료 및 출력 크기가 제한적임
- 빔 프로젝터를 재료에 직접적으로 투사하면서 뛰어난 정밀도와 세밀함을 갖춘 출력물을 기대 할 수 있어 대량생산이 가능한 것이 최고의 장점

- 3D 프린팅 진행 과정
 - 3D 모델링 ->3D 프린팅 -> 후처리(후가공)

(1) 3D 모델링

3D 모델링 데이터를 슬라이싱(slicing, 절편화) 작업을 위한 STL(3차원 데이터 표현 형식)로 변환

| 3D프린팅 모델링 단계 |

- 3D 프린팅 진행 과정
 - 3D 모델링 ->3D <u>프린팅</u> -> 후처리(후가공)
 - (2) 3D 프린팅
 - 변형 방지 등을 위해 서포트(support, 출력 보조물)를 세움
 - 프린터의 헤드가 지나다닐 경로인 G-code라는 파일로 저장
 - G-code를 전송하면 3D 프린팅이 시작됨

13D프린팅 적층 단계 I

- 3D 프린팅 진행 과정
 - 3D 모델링 ->3D 프린팅 -> 후처리(후가공)
 - (3) 3D 프린팅 후가공
 - 서포트 제거, 표면 처리, 색체 삽입 및 코팅 등 제품의 완성도를 높임
 - 소재별로 후가공 방식의 차이가 존재함

- 3D 프린팅 기술의 특징
 - 특징이자 장점: 적층제조, 간결제작, 디지털공정

13D프린팅의 본질적 특징 I

- 3D 프린팅 산업 특성
 - 기존 제조 방식에 비해 다품종 소량 생산 가능

Ⅰ제조업과 3D프린팅 제조업의 비교 예시 I

구분	투자	생산	판매	재무관리
	〈금형/가공 등〉	〈재고관리〉	〈최소주문〉	〈투자결정〉
	- 비용, 디자인 자유도	- 원소재, 부품, 제품의	- 소량주문 고객에 대한	-높은 초기 투자비용
	측면에서 제품 개발	적정재고 운영 필요	판매 불가(투자/생산	발생으로 투자의사 결정
	단계의 가장 큰	- 재고 회전율 유지,	비용 타당성 부족)	및 투자비 회수관리의
	부담감으로 작용	주문비용과 기회비용의		어려움
	- 수천만원에서 수억원에	복잡한 계산 필요	〈고객만족〉	
전통 제조	달하는 금형 제작		- 맞춤형 제품 혹은	〈재고자산 문제〉
방식의 한계	비용 및 생산설비	〈원재료/부품수급〉	임가공 요청 제품의	- 높은 초기투자 비용과
	구축 비용 발생	- 다수의 부품을 제작,	높은 가격 부담 발생	고객결정의 오랜 시간은
	- 기존 제조방식으로	수급하고 조립 등의	- 제조 공정 한계로	현금 유동성 문제 야기
	구현 가능한 방식으로	추가 공정이 요구되어	고객의 의사결정까지	- 중소기업의 경우 흑자
	타협 필요	높은 관리 비용 발생	오랜 시간 소요	도산이 원인으로
	- 수개월에 이르는 제작			발생하기도 함
	기간 소요			
	-급형, 가공 투자의 고정	- 주문제작으로 재고 관리	- 최소 주문 수량 감소	- 투자실패 위협감소
3D프린팅이	비용 감소와 소량 생산	용이	- 빠른 디자인 변경과	- 회수 불확실 자산
바꾸는	가능	- 부품 통합 등 조립 등	제작 형태 자유로 빠른	감소
제조업	- 디자인 한계 극복	추가공정 절감 가능	고객 의사결정 가능	

• 3D 프린팅 기술의 응용 분야 - 의료분야

<그림 1> 3D프린팅 기술을 활용한 다양한 맞춤형 보형물

사두증 교정기 (미국, Orthomerica社)

의족 (미국, Bespoke Innovations)

치아 교정기 (미국, Align Technology)

<그림 2> 3D프린팅 기술을 활용한 다양한 맞춤형 보형물

치과용 임플란트 상부구조물

치과 수술용 가이드

항균 치아 임플란트

• 3D 프린팅 기술의 응용 분야 - 자동차분야

<그림 16> 현대자동차에서 제작한 시제품 : 왼쪽부터 내장부품, 램프, 지그

• 3D 프린팅 기술의 응용 분야 – 항공우주분야

<그림 18> GE가 855개의 개별 부품을 단 12개로 제작한 엔진(좌)과 LEAP 엔진의 연료노즐(우)

<그림 19> NASA가 개발한 로켓엔진 연료 분사장치(좌)와 러더퍼드 엔진(우)

• 3D 프린팅 기술의 응용 분야 - 기타분야

<그림 21> 서울교통공사, 캐리마, 메탈쓰리디, 유창정공이 제작하는 철도차량 부품

<그림 22> 국내 1호 3D프린팅 전문 안경점 브리즘

• 금속 3D 프린팅 시장 성장 추이 및 개인용 3D 프린터 판매량

Ⅰ금속 3D프린터 시장 연도별 성장추이(판매량) Ⅰ

출처: Wohlers Associate(2016)

- 헬스케어의 이해
 - 헬스케어란? 넓은 의미로는 질병의 치료와 예방, 건강 관리 과정 전반을 포함 것을 의미, 좁은 의미로는 원격 진료나 건강 상담을 의미함

[보건의료 산업에서의 의료기기 및 디지털 헬스케어의 범위]

- * 출처 : 바이오경제 실현을 위한 바이오헬스산업 이슈 진단(한국과학기술기획평가원, 2017.12)
- * 출처 : 디지털헬스케어의 정의와 범위(비트컴퓨터 전진옥) * (주)윕스 재구성

[디지털 헬스케어 유형 분류]

유형	특징
모바일 헬스	• 건강 그리고/또는 웰빙에 관련된 모바일 애플리케이션을 비롯하여 웨어러블 기기와 연결된 모바일 애플리케이션을 일컬음
보건의료 분석학	• 소프트웨어 솔루션 및 빅데이터를 이해하는 데 필요한 분석적 역량
디지털 보건의료시스템	• 디지털 건강 정보 저장 및 디지털화된 환자 의료 기록 교환
원격의료	• 환자와 의사 간 임상적 데이터를 원격으로 교환하고, ICT를 이용하여 먼 거리에서도 의료서비스 제공을 지원하거나 보조함
. Ball Dalaitta	

* 출처: Deloitte

- 의료용 인공지능
 - 가장 대표적인 사례는IBM 왓슨 포 온톨로지(세계 최초 암 치료 인공지능)

의료 인공지능의 3가지 유형

- 복잡한 의료 데이터의 분석 및 insight 도출
- 영상 의료/병리 데이터의 분석과 판독
- 연속 데이터의 모니터링 및 예방과 예측

[표 1] 국내 주요 병원들의 의료 인공지능 개발/제휴 동향

병원	인공지능 개발/제휴 동향	제휴 기관
심성서울병원	- 한국마이크로소프트의 인공지능 기반 클라우드 플랫폼 애저(Azure)로 유전 체 데이터, 영상 데이터, 수면 데이터 기반 한국형 인공지능 정밀의료시스 템 구축을 추진하는 전략적 업무협약을 체결	한국마이크로소프트
서울이산병면	- 산업통상자원부 지원 「폐/간/심장질환 영상판독 지원을 위한 인공지능 원 천기술개발 및 PACS 연계 상용화」 책임 연구기관으로 선정되어, 이를 추 진하기 위한 「인공지능 의료영상 사업단」 발족 - 서울대학교병원과 손잡고 「한국형 의료 빅데이터」 공동 분석/활용을 위 한 공동연구협약 체결	서울대학교병원
(Seu) 서울박학교경임	- 대구경북과학기술원(DGIST)과 의료용 인공지능 플랫폼 개발을 위한 업무 협약 체결 - 건강보험심사평가원과 「인공지능 기반 의료영상 진단모형 개발」 시작 - 식품의약품안전처로부터 확증임상 승인을 받은 벤처기업 루닛의 폐질환 진단 인공지능 소프트웨어의 임상시험 시작	대구경북과학기술원 건강보험심사평가원 루닛
(B)	- 셀바스AI의 인공지능 기반 질병 예측 서비스 「셀비 체크업」을 세브란스 병원 홈페이지를 통해 서비스 제공 - 한국마이크로소프트, 디에스이트레이드, 아임클라우드, 센서웨이, 베이스코 리아C, 핑거앤, 셀바스AI, 마젤원, 제이어스, 디엔에이링크 등 국내외 IT 기 업 10개 사와 한국형 디지털 헬스케어 공동연구 협약 체결 - 유전체 빅데이터 분석 전문기업 신테카바이오와 유전질환 치료제 개발 연 구를 위한 업무협약 체결	셀바스AI 한국마이크로소프트 아임클라우드 디엔에이링크 신테카바이오
기를 하다 기를 하는 기를 하는 것이 되었다. 기를	- 미국 스탠포드대학교와 인공지능 암 치료기술 상용화를 위한 연구 협약 체결	美 스탠포드대학교
Desire de la constante de la c	- SK텔레콤과 지능형 병원 구축을 위한 양해각서 체결 - 뷰노와 공동으로 뼈 나이 판독 인공지능 프로그램 임상시험 진행 - 유전체 빅데이터 분석 전문기업 신테카바이오와 정밀의료 병원정보시스템 개발 사업 공동 추진을 위한 양해각서 체결	SK텔레콤 뷰노 신테카바이오
	- 인실리코 메디슨과 인공지능 공동 연구/협력을 위한 업무협약 체결 - 왓슨 온콜로지와 유사한 한국형 임상의사 결정지원 프로그램 개발 중	美 인실리코 메디슨
교육 메디플리스 세종병원	- 뷰노와 공동으로 24시간 전에 심정지 발생을 예측하는 인공지능 솔루션 「이지스」 개발	뷰노
365m=188	- 한국마이크로소프트와 함께 지방흡입 인공지능 기술 「MAIL」 시스템을 공개	한국마이크로소프트
1 HSTANDARTHER STATE 베스타안명원	- 치료 후 남을 흉터를 예측하는 인공지능 기술 개발 중	-
(공만국생원	- 머신러닝 기술로 녹내장을 진단하는 자체 연구를 수행하여 100%에 가까	_

• 디지털 헬스케어 기술 트렌드

[디지털 헬스케어 기술 트렌드]

구분	내용
사물인터넷	 IoT는 인류와 장치 간의 소통으로서 현실과 가상세계의 통합을 의미하며,
(loT)	헬스케어에서는 다음과 같은 분야에 사용되는 기술임 원격진료, 웨어러블 기기, 하드웨어 모니터링
인공지능	 정밀 의료 및 비용 절감에 대한 필요성으로 인해 AI의 역할이 급속이 증대 AI는 업무 프로세스 관리 및 진단에서부터 자동화, 생산성 증대 및 진단 정확성
(AI)	개선에 이르기까지 헬스케어 산업의 전 영역을 혁신할 수 있음
로봇공항	 의료 생산성 향상과 일상적인 실수 감소의 필요성으로 인해 의료 보조 및 자동
(Robotics)	로봇에 대한 수요가 증가 수술용 로봇, 환자 돌보미 로봇, 연구용 로봇환자, 운송업무 등의 지원로봇
블록체인	 분산 컴퓨팅 기술 기반의 데이터 위변조 방지 기술로서 환자와 의사 또는
(Blockchain)	의료기관간 개인 데이터를 안전하게 교환 할 수 있음 시간과 비용을 절약하고 각 환자에 대한 데이터의 민주화를 제공할 수 있음

^{*} 출처 Poutintsev F. Technical trends to implement in healthcare in 2019. Hackernoon.

• 데이터 기반 개인 건강관리 시스템 분야 핵심기술

[데이터 기반 개인 건강관리 시스템 분야 핵심기술]

분류	핵심기술	개요
측정기기	개인용/가정용 건강정보 측정기기 기술	• 심전도, 혈압, 혈당, 체온 등 건강 정보를 개인이 스스로 측정할 수 있는 개인용/가정용 측정기기 기술
서비스	개인 맞춤형 건강관리 서비스 기술	• 운동, 식이, 수면, 스트레스, 비만, 체력, 체형 등 개인의 건강관리를 데이터를 분석하여 맞춤형으로 제공하는 서비스 기술
	개인 맞춤형 만성질환 관리 서비스 기술	 고혈압, 당뇨병 등 만성질환을 개인의 진료기록, 검진기록, 복약정보, 라이프로그 등 건강정보를 분석하여 맞춤형으로 제공하는 서비스 기술
술루션	건강 데이터 익명화 기술	• 건강 빅데이터 구축, 인공지능 학습 데이터 구축, 개인정보보호를 위해 개인의 건강 데이터를 효과적으로 익명화하는 기술
	인공지능 기반 건강정보 분석 솔루션 기술	• 인공지능 기술을 기반으로 운동, 식이, 수면 등 일상생활 건강정보를 분석하여 건강증진 및 질병 예방을 가능하게 하는 솔루션 기술
	인공지능 기반 의료/병리영상 분석 솔루션 기술	• 인공지능 기술을 기반으로 엑스선 영상, CT, MRI, 초음파 영상 등의 료영상과 병리영상을 분석하여 질병과 관련된 정보를 추출하는 영상 판독 솔루션 기술
	인공지능 기반 임상 의사결정지원 시스템 기술	• 인공지능 기술을 기반으로 진료기록을 분석하여 의료진의 임상의사 결정을 지원하는 솔루션 기술

• ICT기반 지능형 영상진단 시스템 분야 핵심기술

[ICT기반 지능형 영상진단 시스템 분야 핵심기술]

분류	핵심기술	개요	
방사선 영상진단 기기	4D CT를 위한 4차원 영상화 기술	• 호흡이나 심장박동 등의 움직임에 따른 3차원 해부학적 영상의 시간적 변화를 획득하는 의료영상 기술	
	고해상도 CBCT 영상화 기술	• C-Arm 등을 이용한 CBCT(Cone Beam CT) 영상화 기술	
의료영상 인공지능 솔루션	인공지능 학습을 위한 의료영상 학습 빅데이터 구축 기술	• 인공지능 학습을 위해 요구되는 의료영상 레이블링 등 의료영상 학습 빅데이터를 구축하기 위한 기술	
	인공지능 기반 의료영상 분석 솔루션 기술	• 인공지능 기술을 기반으로 엑스선 영상, CT, MRI, 초음파 영상 등 의료영상을 분석하여 질병과 관련된 정보를 추출하는 영상 판독 솔루션 기술	
	인공지능 기반 병리영상 분석 솔루션 기술	• 인공지능 기술을 기반으로 다양한 병리영상을 분석하여 질병과 관련된 정보를 추출하는 영상 판독 솔루션 기술	

- 생명공학과 의료
 - 생명공학(BT)
 - 생물 유전자인 DNA를 인위적으로 재조합하여 형질 전환 혹은 생체기능 모방을 통해 다양한 분야에 응용하는 기술, 생물 기능 그 자체나 생명 현상을 인위적으로 조작하는 것
 - 생물체가 가지는 유전/번식/성장/물질대사/자기제어 등의 정보와 기능을 이용하여 인간 에게 필요한 물질 및 서비스를 생산하고 가공하는 기술
 - 생명공학 구분
 - 전통생명공학 : 종래의 생명공학
 - 신생명공학: 생물의 기능을 이용하기 위한 수단으로 유전자조작기술(유전자공학), 세포융합기술(세포공학), 세포대량배양기술(세포배양공학), 바이오리액터기술(효소공학) 등의 핵심기술을 이용함
 - 생명공학의 발전은 기초적, 학문적 분야뿐만 아니라 의료, 건강, 식품, 에너지, 환경 등의 폭넓은 생물산업 분야에 대해 변화를 가져오고 있음

- 생명공학을 활용한 의료 보건의료 분야
 - 유전자 치료
 - 유전자의 이상으로 발생하는 암, 당뇨병, 심장병 등에 유전자를 투입하는 방법
 - 줄기세포 연구를 통해 노인성 질환 치료에 활용하려고 하고 있음
 - 장기이식
 - 손상된 심장, 간, 폐, 췌장, 신장, 연골, 각막 등 교체할 수 있을 것으로 예상
 - 맞춤의약
 - 환자의 유전자 검사를 이용해 본인의 유전형에 정확하게 일치하는 약품을 처방
 - 예측의약
 - 개개인의 유전자 분석을 통해 유전적, 환경적 검사와 함께 주요 만성질환이나 치명적인 질병에 걸릴 확률을 추정함으로써 질병을 사전에 예방하는 것이 가능

- 생명공학을 활용한 의료 게놈 정보 분야
 - 사람의 유전자는 1개당 35Mb의 DNA 서열 데이터를 가지고 있고, 사람에게 약 4만개의 유전자가 있으므로 인간게놈의 정보량은
 1,400,000Mb 정도임
 - 게놈(Genome)이란 유전체를 말하며, 하나의 개체 유전자의 총 염기서열이
 자 하나의 생물종의 거의 완전한 유전 정보의 통합을 뜻함
 - 게놈 정보는 DNA에 저장되어 있으며, 인간의 게놈은 한 명의 인간 개체를 만들기 위해 필요한 모든 유전자들과 유전자 바깥 부분을 포함하는 약 30 억 쌍 정도의 모든 DNA 염기서열을 통틀어 말함
 - 인간의 게놈은 22쌍의 총 44개의 상염색체와 2개의 성염색체(X,Y), 미토콘 드리아 DNA에 나뉘어 유전됨
 - 생물정보학은 생물학적 데이터를 수집, 관리, 저장, 분석하는 기술 분야임

- 생명공학을 활용한 의료 전자 및 기계분야
 - 바이오칩(biochip)
 - 생물학적 활성을 갖고 있는 생체분자를 고체 상태의 소형박막에 고밀도로 부착하여 반도 체 칩 형태로 제작한 것
 - 랩온어칩(lab-on-a-chip, 반도체기술과 나노기술, 생명공학기술 등을 소형 칩에 집적하여 칩에서 실험이 가능하도록 만든 장치), 단백질칩(protein chip), DNA칩, 신경세포칩 (neuron chip) 등
 - 바이오센서(biosensor)
 - 일반적으로 목표 분자들을 생체 인식 시스템을 이용하여 분석하는 장치로, 생체 인식을 감지 가능한 출력 신호로 변환시켜주는 물리화학 변환기와 결합되어 사용됨
 - 과학 연구, 의료 서비스, 환경측정, 식품안전, 군사응용, 생화학무기 감지용 등
 - 바이오멤스(MEMS)
 - 생명공학기술과 초소형 전자기계시스템이 접목된 것으로 생체 내에서 일어나는 미세한 신호를 정밀하게 분석할 수 있는 장치
 - DNA, 단백질, 세포 등에 대한 대량의 고속 진단 및 분석이 가능해져서 인체 구석구석을 돌며 각종 장기나 혈관의 상태를 진단하고 치료하는 의료용 로봇이 가능해짐

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - Ubiquitous(유비쿼터스)
 - 시간과 장소에 구애받지 않고 언제나 네트워크에 접속할 수 있는 통신 환경. 라틴어의 유 비쿼터스는 '언제나 어디에나 존재한다'는 뜻을 가지고 있으며, 정보 통신 분야에서는 시간, 장소를 초월한 통신 환경을 목표로 함
 - Haptic Technology(촉각 기술)
 - 진동의 장단과 고저를 이용하여 다양한 종류의 진동 기호를 만드는 기술
 - WCDMA(Wide-band CDMA, 광대역 부호 분할 다중 접속)
 - 국제 전기 통신 연합(ITU)이 표준화를 추진하고 있는 국제 이동 통신-2000(IMT-2000)을 위해 부호 분할 다중 접속(CDMA) 방식을 광대역화하는 기술
 - 광대역 부호 분할 다중 접속(W-CDMA) 방식에는 CDMA 방식의 디지털 셀룰러 시스템 표준화 단체인 CDG(CDMA Development Group)가 제안하고 있는 광대역 부호 분할 다중 접속-일(wideband cdma One), 일본의 NTT나 KDD 등이 독자적으로 제안하고 있는 방식 등이 있음

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - WiBro(Wireless Broadband, 와이브로)
 - 핸드셋, 노트북, 개인 휴대 정보 단말기(PDA), 스마트 폰 등 다양한 휴대 인터넷 단말을 이 용하여 정지 및 이동 중에서도 언제, 어디서나 고속으로 무선 인터넷 접속이 가능한 서비
 - OFDMA/TDD(Orthogonal Frequency Division Multiple Access/Time Division Duplex) 방 식의 광대역 무선 전송 기술을 사용하여 상하향 비대칭 전송 특성을 갖는 IP 기반 무선 데 이터 시스템이며 2.3GHz 주파수 대역의 고속 휴대용 인터넷 서비스 제공
 - USB(Universal Serial Bus, 유에스비)
 - 컴퓨터와 주변 기기를 연결하는 입출력 통신 인터페이스. 인텔, 마이크로소프트, 컴팩, DEC, IBM, 캐나다 노텔, NEC 등 7개사가 공동으로 제안한 새로운 주변 기기 접속 인터페이스 규 격으로, 키보드, 마우스, 프린터, 모뎀, 스피커 등을 비롯한 주변 기기 등을 개인용 컴퓨터 (PC)에 접속하기 위한 인터페이스의 공동화를 목적으로 함
 - C형 유에스비(Universal Serial Bus Type-C, USB Type-C, USB-C)
 - 기기 간 데이터 전송을 위한 유에스비(USB) 케이블 단자의 위아래가 동일한 24핀의 유에 스비(USB)
 - USB 규격을 제정하는 USB-IF(USB Implementers Forum)에 의해 2014년 USB Type-C 규격 (1.0 버전)이 발표되었으며 C형 USB(USB Type-C)는 단자 위아래 구분 없이 어느 쪽으로든 연결할 수 있어 편리하고 특징은 초당 최대 10 기가비트(Gbps) 빠른 속도를 제공하고, 최 대 100 W의 전력을 공급함 [2] 한기준, 김기윤 등, "2020 시나공 정보처리산업기사 실기", 길벗, 2020 [3] TTA 한국정보통신기술협회 정보통신용어사전 https://terms.tta.or.kr/main.do

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - WPAN(Wireless Personal Area Network, 단거리 무선망)
 - 사용자 주변의 수 미터(m) 이내의 거리에서 휴대용 정보 단말기 등을 이용하여 필요한 정보를 처리할 수 있도록 구성한 통신망
 - IEEE 802.15에서 표준을 제정한 지그비(Zigbee), 블루투스(Bluetooth), 저전력 단거리 무선 망 IPv6(6LoWPAN), 고속 단거리 무선망(HR-WPAN) 등이 있음
 - MCC(Mobile Cloud Computing, 모바일 클라우드 컴퓨팅)
 - 클라우드 서비스 소비자와 파트너의 모바일 기기에 클라우드 서비스를 제공하고, 모바일 기기들로 클라우드 컴퓨팅 인프라를 구성하여 기기 간 정보와 자원을 공유하는 클라우드 컴퓨팅. 모바일 기기의 기종이나 운영 체제(OS)에 상관없이 기기 간 정보를 공유하고, 모바일 앱, 스토리지 등의 클라우드 ICT 자원을 제약 없이 이용할 수 있음
 - NR(New Radio)
 - 5세대(5G) 이동 통신에서 단말과 기지국 사이의 무선 접속(Radio Access 또는 무선 인터페이스) 기술로 이동 통신 국제 표준화 단체 3GPP에서 만든 공식 명칭임
 - 3GPP는 IMT-2020 핵심 기술의 성능 요구 사항과 세 가지 사용 시나리오인 초광대역 이동 통신(eMBB: enhanced Mobile Broadband), 종단 간 데이터 전송에 대한 초신뢰 및 저지연 통신(URLLC: Ultra Reliable and Low Latency Communications), 대규모 사물 통신(mMTC: massive Machine Type Communications)을 하나로 통합하여 무선 접속 기술을 제공하는 것을 목표로 하여NR 표준을 제정하고 있음

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - GCSE(Group, Communication System Enablers)
 - LTE 기반의 동시 멀티미디어 전송 기술(eMBMS: enhanced Multimedia Broadcast Multicast Service) 등을 이용하여 특정 지역 내 다수의 사람들에게 그룹 통신을 제공하는 기술
 - 하나의 공용 방송 채널을 통해 대규모 그룹 통신이 가능하여, 대형 재난 지역에 밀집된 수백 명의 구조 요원들이 재난 현장 상황을 실시간으로 공유할 수 있음
 - AllJoyn(올조인)
 - 사물 인터넷(IoT: Internet of Thing) 연합 단체인 올신얼라이언스(AllSeen Alliance)에서 표준화한 오픈 소스 기반의 IoT 플랫폼
 - 올조인은 로컬 영역에서 올조인 기기 간 피투피(P2P: Peer-to- Peer) 통신을 지원하는 IoT 플랫폼
 - MEMS(Micro Electro Mechanical System)
 - 센서, 액추에이터(actuator) 등 소형 기계 구조물에 반도체, 기계, 광 등 초정밀 반도체 제조 기술을 융합하고 미세 가공하여 전자기계적 동작할 수 있도록 한 마이크로 단위의 작은 부 품 및 시스템, 또는 이를 설계, 제작하고 응용하는 기술
 - 멤스는 정보기기의 센서나 잉크젯 프린터 헤드, HDD 자기 헤드, 프로젝터 등 초소형이면 서 고도의 복잡한 동작을 필요로 하는 기기에 사용됨

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - EDGE(Enhanced Data rates for Global Evolution)
 - GSM 통신망에 적응 변조 및 코딩(AMC) 등 패킷 전용 기술을 적용하여 최고 384kbps의 패킷 데이터 속도를 제공하는 전송표준
 - 2세대 무선통신 GSM과 3세대 범용이동통신시스템(UMTS)의 중간에 해당되기 때문에 2.5 세대라고도 부름
 - HDMI(High-Definition Multimedia Interface, 고화질 멀티미디어 인터페이
 스)
 - 압축되지 않은 디지털 오디오와 비디오 신호를 통합 전송할 수 있는 초고속 멀티미디어 인 터페이스
 - HDMI 케이블 하나로 고품질의 비디오와 오디오를 같이 전송할 수 있어 TV, PC, 게임기 등 대부분의 영상 기기에서 사용됨
 - 2017년에 발표된 HDMI 2.1은 최대 48Gbps 대역폭, 4K UHD 120 fps, 8K UHD 60fps, 돌비 애트모스(Dolby Atmos) 입체 음향 등을 지원함
 - Companion Screen(컴패니언 스크린)
 - 이종 단말기에서 동일한 콘텐츠를 자유롭게 이용할 수 있는 엔스크린(N screen)의 한 종류로 스마트폰, 태블릿PC, PC가 대표적인 컴패니언 스크린 기기임
 - TV와 IP망으로 연결하여 TV로 시청하는 방송을 컴패니언 스크린 기기와 공유하여 이용할수 있음, 세컨드 스크린(second screen) 위로 두기함등, "2020 시나공 정보처리산업기사 실기", 길벗, 2020

[3] TTA 한국정보통신기술협회 정보통신용어사전 https://terms.tta.or.kr/main.do

참고 및 자료 출처

- [1] 윤경배 등, "4차 산업혁명의 이해 [2판]", 일진사, 2021
- [2] 한기준, 김기윤 등, "2020 시나공 정보처리산업기사 실기", 길벗, 2020
- [3] TTA 한국정보통신기술협회 정보통신용어사전 https://terms.tta.or.kr/main.do