REGRESSION

MACHINE LEARNING

Task

Performance

Experience

Algorithms that improve their performance at some task with experience

-Tom Mitchell (1998)

REGRESSION

Machine Learning

- > Supervised Learning
 - > Regression
- **Task.** Find function $f: \mathbb{R}^d \to \mathbb{R}$ such that $y \approx f(x; \theta)$
- **Experience.** Training data $(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)})$
- **Performance.** Prediction error $y f(x; \theta)$ on test data

TRAINING DATA VS TEST DATA

Partition data into:

- Training data set S_n
- Test data set S_*

LEARNING AND PREDICTION

Assumption. Test data and training data are identically distributed.

GENERALIZATION

The goal of machine learning is to find a predictor $\hat{f} \in \mathcal{H}$ that generalizes well, i.e. that predicts well on test data \mathcal{S}_* .

Given a training set $\{x^{(i)}\}_{i=1}^m$, where $x^{(i)} \in \mathbb{R}^n = (x_1^{(i)}, \dots, x_n^{(i)})$ we define the design matrix as

$$X = \begin{bmatrix} x_1^{(1)} & \cdots & x_n^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(m)} & \cdots & x_n^{(m)} \end{bmatrix},$$

and denote the parameters $\theta \in \mathbb{R}^n$ and target values $y \in \mathbb{R}^m$ as

$$\theta = \begin{bmatrix} heta^{(1)} \\ \vdots \\ heta^{(n)} \end{bmatrix}, \qquad y = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix}.$$

Then the least squares error

$$\mathcal{J}(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(\left\langle \theta, x^{(i)} \right\rangle - y^{(i)} \right)^{2}$$

can be written as $\frac{1}{2} \|X\theta - y\|^2 = \frac{1}{2} \langle X\theta - y, X\theta - y \rangle$, or alternatively as

$$\frac{1}{2}\left(X\theta-y\right)^{T}\left(X\theta-y\right).$$

Exact formula

- Recall from Systems World that finding the value of θ that minimizes the distance between $X\theta$ and y is the same as finding the projection of y onto the column space of X.
- This is the same as finding θ such that $X\theta y$ is perpendicular to every column of X, i.e.

$$X^{T}(X\theta - y) = 0 \implies X^{T}X\theta = X^{T}y,$$

which gives $\theta = (X^T X)^{-1} X^T y$.

Gradient descent

- If the matrix X is large, inverting X^TX will be computationally costly.
- Instead we can find the least squares error using gradient descent.
 First we compute the gradient of the loss function:

$$\frac{\partial \mathcal{J}(\theta)}{\partial \theta_{j}} = \sum_{i=1}^{m} \left(\left\langle \theta, x^{(i)} \right\rangle - y^{(i)} \right) \frac{\partial \left\langle \theta, x^{(i)} \right\rangle}{\partial \theta_{j}}
= \sum_{i=1}^{m} \left(\left\langle \theta, x^{(i)} \right\rangle - y^{(i)} \right) \frac{\partial}{\partial \theta_{j}} \sum_{k=1}^{n} x_{k}^{(i)} \theta_{k}
= \sum_{i=1}^{m} \left(\left\langle \theta, x^{(i)} \right\rangle - y^{(i)} \right) x_{j}^{(i)}$$

Gradient descent cont.

We then use it to perform the update rule

$$\theta_j(t+1) = \theta_j(t) - \alpha \sum_{i=1}^m \left(\left\langle \theta(t), x^{(i)} \right\rangle - y^{(i)} \right) x_j^{(i)}, \quad j = 1, \dots, n$$

until the change in the loss function is below a certain preset tolerance.

In matrix notation the update rule can be written as

$$\theta(t+1) = \theta(t) - \alpha \left(X^T X \theta(t) - X^T y \right)$$

- This is also known as batch gradient descent, where all m training points are used at every step.
- For linear regression, the loss function is convex and has only one global minimum, so convergence is guaranteed unless the learning rate α is too large.

GRADIENT DESCENT

- 1. Initialize θ randomly.
- 2. Update $\theta \leftarrow \theta \eta_k \nabla \mathcal{L}_n(\theta)$, η_k learning rate, k iteration number.
- 3. Repeat (2) until convergence. (e.g. when improvement in $\mathcal{L}_n(\theta)$ is small enough)

LOCAL MINIMA

- Gradient descent leads us to a local minimum, which is not necessarily the global minimum. Different starting points may lead to different local minima.
- Typically, we perform gradient descent from several starting points, and run through all the local minima to find the parameter that has the smallest training loss.

STOCHASTIC GRADIENT DESCENT

training gradient = average of point gradients

$$\nabla \mathcal{L}_n(\theta; \mathcal{S}_n) = \frac{1}{n} \sum_{(x,y) \in \mathcal{S}_n} \nabla \mathcal{L}_1(\theta; x, y)$$

This average can take a long time to compute for large data sets.

Trick

Estimate the gradient by averaging over a smaller *minibatch* (subset of the training data).

$$\nabla \mathcal{L}_n(\theta; \mathcal{S}_n) \approx \nabla \mathcal{L}_m(\theta; \mathcal{B}_m)$$
$$= \frac{1}{m} \sum_{(x,y) \in \mathcal{B}_m} \nabla \mathcal{L}_1(\theta; x, y)$$

Probabilistic interpretation

Assume for each *i* that

$$y^{(i)} = \left\langle \theta, x^{(i)} \right\rangle + \epsilon^{(i)},$$

where $\epsilon^{(i)} \sim \mathcal{N}(0, \sigma^2)$ and are independent from one another. This implies that $y^{(i)} \mid x^{(i)} \sim \mathcal{N}\left(\left\langle \theta, x^{(i)} \right\rangle, \sigma^2\right)$, i.e.

$$p_{\theta}\left(y^{(i)} \,\middle|\, x^{(i)}\right) = \frac{1}{\sigma\sqrt{2\pi}} \exp\frac{-\left(y^{(i)} - \left\langle\theta, x^{(i)}\right\rangle\right)^2}{2\sigma^2}.$$

Given this setup, we want to find the optimal value of θ which maximizes the likelihood function

$$\mathcal{L}(\theta) = \prod_{i=1}^{m} p_{\theta} \left(y^{(i)} \, \Big| \, x^{(i)} \right),$$

or equivalently the log-likelihood function (since log is a monotonic function)

$$\ell(\theta) = \log \prod_{i=1}^{m} p_{\theta} \left(y^{(i)} \, \middle| \, x^{(i)} \right)$$

$$= \sum_{i=1}^{m} \log p_{\theta} \left(y^{(i)} \, \middle| \, x^{(i)} \right)$$

$$= m \log \frac{1}{\sigma \sqrt{2\pi}} - \frac{1}{2\sigma^{2}} \sum_{i=1}^{m} \left(y^{(i)} - \left\langle \theta, x^{(i)} \right\rangle \right)^{2}.$$

Since m, π and σ are constants, we find that maximizing the likelihood is the same as minimizing the least squares error

$$\sum_{i=1}^{m} \left(y^{(i)} - \left\langle \theta, x^{(i)} \right\rangle \right)^{2},$$

and that the choice of σ was inconsequential.

Bias-Variance tradeoff

• In general, assume that the targets are given by

$$y^{(i)} = f(x^{(i)}) + \epsilon^{(i)},$$

for some unknown function f of the inputs which represents the true model.

• We assume that the $\epsilon^{(i)}$'s have mean 0 and variance σ^2 , and are independent from one another.

Given a fixed dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$, and denoting $\hat{f}_{\mathcal{D}}$ as the learnt hypothesis function (which depends on \mathcal{D}), the mean-squared error is given by

$$\frac{1}{n}\sum_{\mathbf{x}^{(i)}\in\mathcal{D}}\int_{\mathbb{R}}\left(\hat{f}_{\mathcal{D}}(\mathbf{x}^{(i)})-\mathbf{y}^{(i)}\right)^{2}p(\epsilon^{(i)})\,\mathrm{d}\epsilon^{(i)}.$$

This expression can be simplified by noting that

$$\int_{\mathbb{R}} \left(\hat{f}_{\mathcal{D}}(x^{(i)}) - y^{(i)} \right)^{2} p(\epsilon^{(i)}) d\epsilon^{(i)}$$

$$= \int_{\mathbb{R}} \left(\hat{f}_{\mathcal{D}}(x^{(i)}) - f(x^{(i)}) - \epsilon^{(i)} \right)^{2} p(\epsilon^{(i)}) d\epsilon^{(i)}$$

$$= \left(\hat{f}_{\mathcal{D}}(x^{(i)}) - f(x^{(i)}) \right)^{2} + \left(\hat{f}_{\mathcal{D}}(x^{(i)}) - f(x^{(i)}) \right) \int_{\mathbb{R}} \epsilon_{i} p(\epsilon^{(i)}) d\epsilon^{(i)}$$

$$+ \int_{\mathbb{R}} \epsilon_{i}^{2} p(\epsilon^{(i)}) d\epsilon^{(i)}$$

$$= \left(\hat{f}_{\mathcal{D}}(x^{(i)}) - f(x^{(i)}) \right)^{2} + \sigma^{2},$$

and hence

$$\frac{1}{n} \sum_{x^{(i)} \in \mathcal{D}} \int_{\mathbb{R}} \left(\hat{f}_{\mathcal{D}}(x^{(i)}) - y^{(i)} \right)^2 p(\epsilon^{(i)}) d\epsilon^{(i)} = \sigma^2 + \frac{1}{n} \sum_{x^{(i)} \in \mathcal{D}} \left(\hat{f}_{\mathcal{D}}(x^{(i)}) - f(x^{(i)}) \right)^2$$

We would like to average this over all possible datasets to measure the performance of our learning algorithm. To model this, we can treat \mathcal{D} as a random variable drawn from some distribution $p(\mathcal{D})$, and denote the expected error as

$$\int \sigma^{2} + \frac{1}{n} \sum_{x^{(i)} \in \mathcal{D}} \left(\hat{f}_{\mathcal{D}}(x^{(i)}) - f(x^{(i)}) \right)^{2} p(\mathcal{D}) d\mathcal{D}$$

$$= \sigma^{2} + \frac{1}{n} \sum_{x^{(i)} \in \mathcal{D}} \mathbb{E}_{\mathcal{D}} \left[\left(\hat{f}_{\mathcal{D}}(x^{(i)}) - f(x^{(i)}) \right)^{2} \right].$$

(we can bring the summation outside and sum over all $x^{(i)}$ by extending $\hat{f}_{\mathcal{D}}$ and f to be 0 if $x^{(i)}$ is not in \mathcal{D})

The expectation in the preceding line can be further decomposed as

$$\mathbb{E}_{\mathcal{D}}\left[\left(\hat{f}_{\mathcal{D}}(x^{(i)}) - f(x^{(i)})\right)^{2}\right]$$

$$= \mathbb{E}_{\mathcal{D}}\left[\left(\hat{f}_{\mathcal{D}}(x^{(i)}) - \mathbb{E}_{\mathcal{D}}\left[\hat{f}_{\mathcal{D}}(x^{(i)})\right] + \mathbb{E}_{\mathcal{D}}\left[\hat{f}(x^{(i)})\right] - f(x^{(i)})\right)^{2}\right]$$

$$= \mathbb{E}_{\mathcal{D}}\left[\left(\hat{f}_{\mathcal{D}}(x^{(i)}) - \mathbb{E}_{\mathcal{D}}\left[\hat{f}_{\mathcal{D}}(x^{(i)})\right]\right)^{2}\right]$$

$$+ 2\left(\mathbb{E}_{\mathcal{D}}\left[\hat{f}_{\mathcal{D}}(x^{(i)})\right] - f(x^{(i)})\right)\mathbb{E}_{\mathcal{D}}\left[\hat{f}_{\mathcal{D}}(x^{(i)}) - \mathbb{E}_{\mathcal{D}}\left[\hat{f}_{\mathcal{D}}(x^{(i)})\right]\right]$$

$$+ \mathbb{E}_{\mathcal{D}}\left[\left(\mathbb{E}_{\mathcal{D}}\left[\hat{f}_{\mathcal{D}}(x^{(i)})\right] - f(x^{(i)})\right)^{2}\right]$$

$$= \mathbb{E}_{\mathcal{D}}\left[\left(\hat{f}_{\mathcal{D}}(x^{(i)}) - \mathbb{E}_{\mathcal{D}}\left[\hat{f}_{\mathcal{D}}(x^{(i)})\right]\right)^{2} + \left(\mathbb{E}_{\mathcal{D}}\left[\hat{f}_{\mathcal{D}}(x^{(i)})\right] - f(x^{(i)})\right)^{2}.$$

In conclusion, after summing over the $x^{(i)}$'s, the expected error can be written as

$$\underbrace{\left(\mathbb{E}\left[\hat{f}\right] - f\right)^{2}}_{\text{squared bias}} + \underbrace{\operatorname{Var}(\hat{f})}_{\text{variance}} + \underbrace{\sigma^{2}}_{\text{irreducible error}}.$$

5 min break

MODEL SELECTION

Overfitting. If model $\mathcal H$ is too big, then $\hat f \in \mathcal H$ performs

well on training data, but poorly on test data.

Underfitting. If model $\mathcal H$ is too small, then $\hat f \in \mathcal H$ performs

poorly on training data, and poorly on test data.

Finding a model with the right size is called model selection.

Model selection

Overfitting vs underfitting

Overfitting:

- Model fits the training data too well as it captures noise in addition to the underlying structure
- Low bias, high variance
- Training error low, testing error high

Underfitting:

- Model is too simple to capture the underlying structure of the data
- High bias, low variance
- Training error high, testing error high

Both lead to poor prediction performance on new input.

How to deal with underfitting or overfitting

Underfitting:

- Increase model complexity
 - Adjust regularization

Overfitting:

- Increase data size
- Early stopping
- Decrease model complexity
 - Adjust regularization

Overfitting: Increase data size

Overfitting: Early stopping

RIDGE REGRESSION

(Unfortunately, to include the parameter θ_0 , we cannot simply apply the constant feature trick. Why?)

TRAINING ALGORITHMS

Gradient

$$\nabla \mathcal{L}_{n,\lambda}(\theta) = \lambda \theta + \frac{1}{n} (X^{\mathsf{T}} X) \theta - \frac{1}{n} X^{\mathsf{T}} Y$$

Exact Solution

$$\nabla \mathcal{L}_{n,\lambda}(\hat{\theta}) = 0 \quad \Leftrightarrow \quad \lambda \hat{\theta} + \frac{1}{n} (X^{\mathsf{T}} X) \, \hat{\theta} = \frac{1}{n} X^{\mathsf{T}} Y$$
$$\Leftrightarrow \quad \hat{\theta} = (n\lambda I + X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}} Y$$

This matrix is always invertible when $\lambda > 0$.

TRAINING ALGORITHMS

Gradient

$$\nabla \mathcal{L}_{n,\lambda}(\theta) = \lambda \theta + \frac{1}{n} (X^{\mathsf{T}} X) \theta - \frac{1}{n} X^{\mathsf{T}} Y$$

Gradient Descent

$$\theta \leftarrow (1 - \eta_k \lambda) \theta - \eta_k \left[\frac{1}{n} (X^\mathsf{T} X) \theta - \frac{1}{n} X^\mathsf{T} Y \right]$$

Without regularization, i.e. $\lambda = 0$, this shrinkage factor equals 1.

TRAINING LOSS VS TEST LOSS

Training Loss

$$\mathcal{L}_{n,\lambda}(\theta) = \frac{1}{n} \sum_{\text{trg data } (x,y)} \frac{1}{2} (y - \theta^{\mathsf{T}} x)^2 + \frac{\lambda}{2} \|\theta\|^2$$

Test Loss

$$\mathcal{R}(\theta) = \frac{1}{n} \sum_{\text{test data } (x,y)} \frac{1}{2} (y - \theta^{\mathsf{T}} x)^2$$

EFFECT OF REGULARIZATION

Ridge regression vs LASSO

- LASSO (Least absolute shrinkage and selection operator) is similar to ridge regression, in that we have regression analysis performed with regularization.
- The difference is that the L_1 norm (hence the name L_1 regularization) is used to constrain the weights:

$$\arg\min_{\theta} \sum_{i=1}^{n} \left(\left\langle \theta, x^{(i)} \right\rangle - y^{(i)} \right)^{2} + \lambda \sum_{j} |\theta_{j}|;$$

in contrast to the L_2 norm we have been seeing with ridge regression.

• With LASSO, the constraint on the weights typically sets some components of θ to 0, which can lead to sparser solutions, feature selection and better interpretability of the model.

We can explain this by reformulating the problems in an alternative but equivalent form:

Ridge regression:

$$\underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^{n} \left(\left\langle \theta, x^{(i)} \right\rangle - y^{(i)} \right)^{2}$$

subject to
$$\sum_{i} \theta_{j}^{2} \leq t$$

LASSO:

$$\underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^{n} \left(\left\langle \theta, x^{(i)} \right\rangle - y^{(i)} \right)^{2}$$

subject to
$$\sum_{i} |\theta_{i}| \leq t$$

