# Implementation of LMS FIR based Adaptive Filter for System Identification

Under the guidance of :
Prof. Dr.-Ing. Christof Jonietz
SRH Hochschule Heidelberg

Anjali Pankan

Matriculation Number: 11016821



#### Task 01 LMS Algorithm



Plot x[k], y[k] and d[k] for different step size







#### M -> Larger the step size causes a faster convergence but also a larger excess error

EXCESS ERROR: Wiener solution is approximated and not guaranteed

The convergence speed of LMS algorithm depends on the conditioning X (R) of the input and the step size  $\mu$ . The LMS algorithm is therefore considered a rather 'slow' algorithm

#### Task 02 LEARNING CURVE



Compare the Behavior of learning curve for N = 1 and N = 2





J = Jmin + Jex

If N increases, Jmin decreases (accuracy) and Jex (inaccuracy) increases



The number of weights N should therefore be kept as small as possible but large enough to meet the requirements of the applications.

#### Task 02 :LEARNING CURVE



Compare the learning curves with and without noise. **Do the** coefficients converge?

### YES!



For LMS an excess error Jex[k] > 0 remains for  $k \rightarrow \infty$  (gradient noise)



For the LMS algorithm, which is an approximation of the gradient method, we can at most expect to get close to Jmin (gradient noise).





#### Task 02 Learning Curve

- Filter Vector Coefficients
- w\_1 = 0.26
- $w_2 = 0.24$







Determine the optimal length N

N should therefore be kept as small as possible but large enough to meet the requirements of the applications.

#### Task 03 System Identification



## Task 03 System Identification



Determine the optimal step size



Task 3
System Identification



```
1.9974
1.9974
          1.9970
                            1.9967
                                      1.9975
                                               1.9977
                                                        1.9978
1.0016
                   1.0013
                            1.0019
                                      1.0027
                                               1.0029
                                                        1.0025
          1.0009
                   2.9989
                            2.9995
                                      2.9987
                                               2.9990
                                                        2.9986
2.9978
         2.9982
                                                       -0.0020
-0.0018
         -0.0014
                  -0.0019
                           -0.0007
                                     -0.0014
                                              -0.0016
```



Show the filter coefficients wi, i=1..N,

Round(w) ->

Task 03
System Identification

 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1



## DEMO