MMC-Univ. Minho 2022/2023

Lógica da Programação

Teste 18.01.23

(Duração: 3h)

Nota: Justifique adequadamente todas as suas respostas.

- **1**. **a)** Construa uma demonstração em DNP_i da fórmula: $(\neg p_0 \lor p_1) \to (p_0 \to (p_0 \land p_1))$.
 - b) Seja L um tipo de linguagem com símbolos de relação unários P e Q. Construa uma derivação em $DN_c^{\Rightarrow_w}$ do sequente

$$\forall x_0(\neg P(x_0) \rightarrow \neg Q(x_0)) \Rightarrow \forall x_0(Q(x_0) \rightarrow P(x_0))$$

e conclua que: $\forall x_0(\neg P(x_0) \rightarrow \neg Q(x_0)) \vdash_c \forall x_0(Q(x_0) \rightarrow P(x_0))$. Em alternativa, com penalização de 0,25 valores, pode construir diretamente uma derivação em DN_c que mostre esta relação de derivabilidade.

- 2. Considerando apenas o fragmento proposicional com os conetivos \wedge , \neg , \bot , mostre por indução em derivações que, para quaisquer fórmula φ e conjunto finito de fórmulas Γ , se φ é derivável a partir de Γ em DNP_c , então $\Gamma \Rightarrow \varphi$ é derivável em $\mathsf{DNP}_c^{\Rightarrow_w}$.
- **3**. Considere o combinador $F = \lambda ywz$. w((yw)z) e o 1º numeral de Church $\mathbf{c}_1 = \lambda fx$. fx.
 - a) Determine $\{N \in \Lambda : \mathsf{F} \mathbf{c}_1 \to_{\beta}^* N\}$ e justifique se i) $\mathsf{F} \mathbf{c}_1$ admite forma β -normal e se ii) $\mathsf{F} \mathbf{c}_1 =_{\beta} \mathbf{c}_1$.
 - **b)** Seja σ um tipo simples e considere que Nat_{σ} é o tipo simples dado por $(\sigma \to \sigma) \to (\sigma \to \sigma)$.
 - i) Mostre que $\vdash \mathbf{c}_1 : Nat_{\sigma}$ e que $\vdash \mathsf{F} : Nat_{\sigma} \to Nat_{\sigma}$ (considerando tipificação à la Curry).
 - ii) Dê exemplo de um habitante de Nat_{σ} que não seja uma forma β -normal e diga se qualquer habitante de Nat_{σ} admite forma β -normal.
 - c) Prove que, para todo $n \in \mathbb{N}_0$, $\mathbf{F} \mathbf{c}_n =_{\beta} \mathbf{c}_{n+1}$.
 - d) Considere que $g: \mathbb{N}_0 \longrightarrow \mathbb{N}_0$ é uma função numérica λ -definida por um combinador G. Mostre que a função numérica $h: \mathbb{N}_0 \longrightarrow \mathbb{N}_0$ tal que h(n) = 0, caso n = 0, e h(n) = g(n+1), caso contrário, é λ -definível.
- **4.** Mostre por indução que, para todo $M, N, \Gamma, x, \sigma, \tau$ tais que $x \notin dom(\Gamma)$, se $\Gamma \vdash M : \sigma$ e $\Gamma, x : \sigma \vdash N : \tau$, então $\Gamma \vdash N[M/x] : \tau$.
- **5**. Considere as fórmulas $\varphi_1 = ((p_0 \to p_1) \to p_2)$ e $\varphi_2 = ((p_1 \to p_0) \to (p_1 \to p_2))$.
 - a) Indique uma derivação \mathcal{D} do sequente $\Rightarrow \varphi_1 \to \varphi_2$, em $\text{DNP}_i^{\Rightarrow_w}$ com classes de hipóteses, e determine o λ -termo à la Church $t(\mathcal{D})$ associado a \mathcal{D} .
 - **b)** Diga se o tipo $t(\varphi_1 \to \varphi_2)$ é habitado.
 - c) Mostre que $\varphi_2 \to \varphi_1$ não é teorema de DNP_c e diga se para algum λ -termo à la Church N e para alguma variável x é possível ter-se a seguinte relação de tipificação: $x: t(\varphi_2) \vdash N: t(\varphi_1)$.