ML teams and projects management: potential for cost optimization

Mikhail Rozhkov

ml-repa.ru

Outline

- 1. ML project workflow
- 2. The role of experiments in ML Workflow
- 3. ML Experiments issues
- 4. Story of one attempt

Common DS/ML issues

- Fragmented ML practices
- Difficult sharing & collaboration
- Inefficiency & Work duplication
- Updates are slow
- Pipelines not reliable or reproducible
- Scalability performance
- Data quality issues
- Model & features monitor and discoverability

Why?

- 1. Different from IT projects
- 2. Longer dev cycle
- 3. Experiments driven
- 4. Not easy to test and validate

ML project workflow is experiments driven

Experiment = code + dataset + outputs

ML project requires more factors to take into account

	Software	ML
Architecture design	tasks, UI/UX integrations	+ nature and quality of data
Quality measures	working code	+ model quality metrics + performance in production
Version control	code environment	+ pipelines+ datasets+ models & artifacts
Testing	code	 + data and features + model development methods + ML infrastructure + ML systems

7

Where is value?

- Goal get economic value
- Objectives:
 - increase sales
 - optimize costs
- The only way integrate into business process

Fast experimentation helps to Fail or Success faster

- Satisfy customer
- 2. Early fail
- 3. Fail safe
- 4. Team = Business + DS/ML
- 5. Constant changing requirements
- 6. Frequent team meetings/statuses
- 7. Frequent code updates
- 8. Measure of progress=working code
- 9. Technical excellence and good design
- 10. Reproducibility

Management & Organizational practices

Software Engineering practices

ML Experiments issues

Issues:

1. Difficult collaboration & Work duplication

Sources:

- all code in Jupyter Notebooks
- difficult to share / re-use
- copy-paste development
- no versioning
- no shared Storage
- no Task Tracking

Lack of software engineering best practices

Issues:

- 1. Difficult collaboration & Work duplication
- 2. Models and Artifacts versioning

Sources:

Lack of software engineering best practices

- Manual naming / versioning
- No special tools
- No shared storage for artifacts
- No model registry

No model & artifacts version control

Issues:

- 1. Difficult collaboration & Work duplication
- Models and Artifacts versioning
- 3. Pipelines reproducibility

Sources:

Lack of software engineering best practices

No model & artifacts version control

- Not automated pipelines
- No control of run params
- Environment dependencies control

Not reproducible pipelines

Issues:

- 1. Difficult collaboration & Work duplication
- 2. Models and Artifacts versioning
- 3. Pipelines reproducibility
- 4. Experiments benchmarking

Sources:

Lack of software engineering best practices

No model & artifacts version control

Not reproducible pipelines

- No experiment management tools
- No experimentation culture

No experiment management

Issues:

- 1. Difficult collaboration & Work duplication
- 2. Models and Artifacts versioning
- 3. Pipelines reproducibility
- 4. Experiments benchmarking
- 5. Updates are slow

Sources:

Lack of software engineering best practices

No model & artifacts version control

Not reproducible pipelines

No experiment management

Story of one attempt

not official point of view lasts 10 months in progress...

Start position (WAS IS)

- No a Department or Head responsible for ML development
- 2. Few autonomous teams (~30 DS in total)
- 3. Different engineering background and tasks
- 4. No cross-team projects
- 5. No common standards on how to do things
- 6. Almost all job is done in Jupyter Notebooks
- 7. Few models in production (manually)
- 8. Complicated enterprise IT infrastructure

Common problems:

- Work duplication
- No version control
- Difficult to reproduce pipelines
- No project documentation
- Updates are slow

Task: make it in right way

- 1. Try / select appropriate tools
- 2. Apply in your own project
- 3. Convince other DS to try / use
- 4. Share knowledge & help
- 5. Estimate economic value of changes
- 6. Plan / implement changes

X Confluence

Use case: Predict a new user propensity to apply for Credit Card on Landing Page

Documentation and tracking project statuses

Pipelines

- Jupyter Notebooks for prototyping & visualization only
- End-to-end or selected steps
- YAML configs for all params
- One-button run

Code versioning and git-flow approach

- Version control
- Re-usable .py modules
- Tests...

Source: https://www.bitbull.it/en/blog/how-git-flow-works/

Data and artifacts

- Version Control
- Shared remote storage
- Access

Experiments Management

- browse history
- compare results
- share results
- methodology and procedures

runs

					_params		<u>metrics</u>		
					Parameters		Metrics		
$\overline{}$	Date	User	Source	Version	alpha	I1_ratio	mae	r2	rmse
	2018-06-04 23:00:10	mlflow	train.py	05e956	1	1	0.649	0.04	0.862
	2018-06-04 23:00:10	mlflow	train.py	05e956	1	0.5	0.648	0.046	0.859
	2018-06-04 23:00:10	mlflow	train.py	05e956	1	0.2	0.628	0.125	0.823
	2018-06-04 23:00:09	mlflow	train.py	05e956	1	0	0.619	0.176	0.799
	2018-06-04 23:00:09	mlflow	train.py	05e956	0.5	1	0.648	0.046	0.859
┤	2018-06-04 23:00:09	mlflow	train.py	05e956	0.5	0.5	0.628	0.127	0.822
	2018-06-04 23:00:09	mlflow	train.py	05e956	0.5	0.2	0.621	0.171	0.801
	2018-06-04 23:00:09	mlflow	train.py	05e956	0.5	0	0.615	0.199	0.787
	2018-06-04 23:00:09	mlflow	train.py	05e956	0	1	0.578	0.288	0.742
	2018-06-04 23:00:09	mlflow	train.py	05e956	0	0.5	0.578	0.288	0.742
	2018-06-04 23:00:09	mlflow	train.py	05e956	0	0.2	0.578	0.288	0.742
	2018-06-04 23:00:08	mlflow	train.py	05e956	0	0	0.578	0.288	0.742
									97

Task: make it in right way

- 1. Try / select appropriate tools
- 2. Apply in your own project
- 3. Convince other DS to try / use
- 4. Share knowledge & help
- 5. Estimate economic value of changes
- 6. Plan / implement changes

Meetups with code demonstration and join projects work

Channels

- Internal meetups
- External meetups & conferences
- Real project code, statuses dashboard and documentation

More projects and people

- Predict an user behavior on Landing Page
- 2. Client LifeTime Value prediction
- 3. Virtual Assistant for a Call Center

Insights

- easy to convince people in your own team
- cross-teams collaboration show benefits of new approach

Task: make it in right way

- 1. Try / select appropriate tools
- 2. Apply in your own project
- 3. Convince other DS to try / use
- 4. Share knowledge & help
- 5. Estimate economic value of changes
- 6. Plan / implement changes

DS Brainstorm to estimate AS-IS and TO-BE practices

- 19 Data Scientists from different departments
- Estimate ~40 common tasks in ML projects
 - how much efforts spent (AS-IS), in man-days
 - what are opportunities and barriers
 - how to improve
 - estimated benefits (TO-BE), in man-days
- Group of tasks to estimate
 - Analyze & Plan
 - Get and prepare data
 - Train Model & Evaluate model
 - Productionize

Insights

- 90 % of problems are common for all teams
- Experimentation and Deployment stages have high potential for improvements
- ideas cover proposals for new tools,
 processes change, teams
 collaboration, education
 improvements

Tasks costs estimates are similar to Gartner's report

Estimated Value Potential

		Stakeholder					
Task (Proportion of Effort)	Subtasks	Business	Data IT/ Scientist Operation		ns Total (Gartner)		
	a) Determine Objective	x	X				
1. Problem Understanding	b) Define Success Criteria	x	х		5% to 10 %		
(3% to 10%)	c) Assess Constraints	х	Х	х			
	a) Assess Data Situation	x	X	x			
2. Data Understanding	a) Assess Data Situation b) Obtain Data (Access)		х	х			
(10% to 25%	c) Explore Data	x	х	x	200/ +0 65 9/		
42 1 (E-1871 - E-1871) (1.0.11 - 1.0.11)	a) Filter Data		х	х	30% to 65 %		
3. Data Preparation (20% to 40%)	b) Clean Data		х	х			
(20% to 40%)	c) Feature Engineering	х	Х				
4. Modeling	a) Select Model Approach		х		25% to 40 %		
	b) Build Models		х				
	a) Select Model		х				
5. Evaluation of Results (5% to 10%)	b) Validate Model		х	1			
(5% to 10%)	c) Explain Model	х	х		1		
	a) Deploy Model		х	х	5% to 15 %		
6. Deployment (5% to 15%)	b) Monitor and Maintain	x	х	x			
	c) Terminate	x	x	x			

~ 40 - 60 % FTE cost reduction

~ 2 times faster projects

~ up to 50 % of efforts can be allocated to Modeling & Evaluation

Source: Gartner (January 2017)

Work in progress to upgrade tools for ML projects

- Design ML Platform (set of tools)
 - Feature Store
 - Model Registry
 - Experiments Management
 - Metadata Management
 - Deployment Management
 - o etc.
- Cost-Benefits Analysis

Conclusions

- ML projects need different approach and tools
- 2. Data and experiments are crucial
- 3. Fast experimenting and reproducibility are important
- 4. Estimated benefits from ML automation are convincing enough