Electric Vehicle (EE60082)

Lecture 7: Motor drive for EV (part 3)

DR. SHIMULK. DAM

ASSISTANT PROFESSOR,
DEPARTMENT OF ELECTRICAL ENGINEERING,
INDIAN INSTITUTE OF TECHNOLOGY (IIT), KHARAGPUR.

Traction motors for EV (recap)

Commonly used motors:

- Brushed DC motor
- Brushless DC motor (BLDC)
- Induction motor
- Permanent magnet synchronous motor (PMSM)
- Switched reluctance motor (SRM)

DC motor drive (recap)

Lower battery voltage

Higher battery voltage

DC motor drive – synchronous buck (recap)

> Synchronous buck

bidirectional power flow

> Two-quadrant chopper

➤ Class C chopper

> How to drive in reverse?

DC motor drive - 4 quadrant chopper (recap)

> Full bridge

bidirectional power flow

Four-quadrant chopper

➤ Class E chopper

- > Drive in reverse-
 - > 4 quadrant chopper vs. gear box

EE60082

DC machine drawbacks (recap)

- Wear and tear of brush and commutator
 - High maintenance
 - Limited life
 - limited speed range
- Sparking at the commutator
 - sparking at brush contacts, especially under heavy load and high speed
 - EMI noise due to sparking
 - Potential safety hazards
- Higher weight and volume
- Lower efficiency

EE60082

Coil arrangements in a BLDC (recap)

Multiple coils to increase torque

Strong magnet needed for rotor

No current flow in rotor

Only stator cooling required

- Two types of PM mounting
 - Surface and interior mounting

BLDC control loop (recap)

BLDC- advantages and limitations (recap)

- >Advantages:
 - > no brush, commutator
 - >Low maintenance
 - ➤ Higher efficiency
 - ease of cooling
 - >Low noise

- > Drawbacks:
 - Higher cost of magnets
 - Cost and availability of rear earth elements
 - Limited high speed capability
 - limitation of magnet assembly strength
 - large fault current in case of drive failure
 - ➤ Can causse wheel block

- - Limited constant power range
 - Lack of field strength control
 - Need for position sensors
 - > costly
 - can lead to reliability issues

AC Machines

Rotating magnetic field

$$n_s = \frac{60f}{p}$$

$$\omega_{s} = \frac{2\pi n_{s}}{60}$$

Synchronous speed

Assume the wheel radius is 0.25m. The final drive ratio is 1, i.e., gearless. f=50Hz is the rated frequency.

Pole pair	Synchronous speed (rpm)	Vehicle speed (kmph)
1	3000	282
2	1500	141
3	1000	94
4	750	70
5	600	56
6	500	47

Induction motor construction

Slip

$$S = \frac{\omega_s - \omega_m}{\omega_s} = \frac{n_s - n_m}{n_s}$$

$$\omega_m = (1-s)\omega_s$$

$$n_m = (1 - s)n_s$$

$$\omega_{\rm slip} = s\omega$$

Equivalent circuit

R₁ and X₁: stator leakage resistance and impedance;

R_c and X_m: core-loss resistance and mutual impedance;

R'₂ and X'₂: reflected rotor leakage resistance and impedance;

Equivalent circuit

When the load is heavy...

Torque equation

$$P_{o} = \frac{R_{2}^{'}V_{1}^{2}}{(R_{1} + R_{2}^{'}/s)^{2} + (X_{1} + X_{2}^{'})^{2}} \frac{1-s}{s}$$

$$T = \frac{P_{o}}{\omega_{m}} = \frac{P_{o}}{(1-s)\omega_{s}}$$

$$T = \frac{R_{2}^{'}V_{1}^{2}}{(R_{1} + R_{2}^{'}/s)^{2} + (X_{1} + X_{2}^{'})^{2}} \frac{1-s}{s} \frac{1}{(1-s)\omega_{s}}$$

$$T = \frac{R_{2}^{'}V_{1}^{2}}{s\{R_{1}^{2} + (X_{1} + X_{2}^{'})^{2}\} + \frac{R_{2}^{'}}{s}^{2} + 2R_{1}R_{2}^{'}} \frac{1}{\omega_{s}}$$

Torque-speed characteristics

- 1. Motor has the maximum torque T_{max} at the fixed frequency;
- 2. When slip ratio is negative, the torque is negative.

Voltage control

$$T = \frac{R_{2}^{'}V_{1}^{2}}{s\{R_{1}^{2} + (X_{1} + X_{2}^{'})^{2}\} + \frac{R_{2}^{'}}{s} + 2R_{1}R_{2}^{'}} \frac{1}{\omega_{s}}}$$

$$\downarrow Voltage increasing$$

$$\downarrow S > 1$$

$$\downarrow S > 1$$

$$\downarrow S > 1$$

V/F control

Ignore the stator loss.

$$V_1 = j\omega_s L_m I_0$$

$$V_1 = j2\pi f_s \psi_m$$

$$V_1 = j\omega_s L_m I_0 \qquad V_1 = j2\pi f_s \psi_m \qquad \frac{V_1}{f_s} = j2\pi \psi_m$$

To avoid potential saturation, VVVF control is used.

Frequency control

$$T = \frac{R_{2}^{'}V_{1}^{2}}{s\{R_{1}^{2} + (X_{1} + X_{2}^{'})^{2}\} + \frac{R_{2}^{'}}{s} + 2R_{1}R_{2}^{'}} \frac{1}{\omega_{s}}$$

Design for higher starting torque

$$R_1 > R_2 > R_3 > R_4$$

Induction motor- advantages and limitations

- >Advantages:
 - ➤ Simple construction
 - harsh environments with minimal maintenance
 - ➤ no permanent magnet
 - > Lower cost
 - ➤ No need for rear-earth elements

- ➤ Self-starting
 - No special arrangement needed for starting
- minimal noise and vibration
- can be designed for a wide range of power outputs

- > Drawbacks:
 - Losses in rotor
 - ➤ Relatively lower efficiency
 - ➤ Heating in rotor
 - Complicated torque and speed control
 - complex controller required
 - > High in-rush current
 - ➤ When DOL starter used
 - ➤ Lower starting torque

Exercise – part 1

A vehicle has following parameter values:

m=692kg,
$$C_D = 0.2$$
, $A_F = 2m^2$, $f_0 = 0.009$,
$$f_s = 1.75*10^{-6} \text{ s}^2/\text{m}^2$$
, $\rho = 1.18 \text{ kg/m}^3$, $g = 9.81 \text{ m/s}^2$ Wheel radius, $R_w = 0.25 \text{m}$, gear ratio=1

The vehicle is to be accelerated at 1 m/s on a slope of 5°. What is the starting torque requirement?

Exercise - part 2

A **three-phase** induction motor has $R_1=R'_2=0.01\Omega$, $L_1=L_2'=2mH$, $L_m=200mH$, R_c is infinite. $V_1=400VAC$, f=50Hz, J=2.5 kg.m²

Can this motor drive the car up the slope?

Torque required

Vehicle dynamic equation

> Required tractive power:

$$F_{TR} = m\frac{dV}{dt} + F_r + F_g + F_W$$

$$F_r = mg\cos\alpha (f_0 + f_s V^2)$$

$$F_g = mg\sin\alpha$$

$$F_W = \frac{1}{2}\rho A_f C_D (V - V_w)^2$$

 \triangleright Torque required, $T_L = F_{TR}R_W$

Motor dynamics

$$J\frac{d\omega}{dt} = T_{em} - T_L - B\omega$$

$$v = \omega R_{\rm w}$$

Tem, electromagnetic torque

TL, Load torque

B, shaft damping constant

J, inertia of motor

 ω , Angular speed(rad/s)

v, Vehicle speed (m/s)

Motor torque

$$T = \frac{R_{2}'V_{1}^{2}}{s\{R_{1}^{2} + (X_{1} + X_{2}')^{2}\} + \frac{R_{2}'^{2}}{s} + 2R_{1}R_{2}'} \frac{1}{\omega_{s}}$$

Thank you!