Fisica CdL in Viticoltura ed Enologia

Appello 06/02/2019

Problema 1: Un punto materiale P di massa $m=441\,\mathrm{g}$ cade da un piano inclinato di altezza $h=90\,\mathrm{cm}$ e angolo $\alpha=51\,^{\circ}$.

- i) Calcolare la velocità di P in fondo al piano inclinato se questo è liscio. (1 pt)
- ii) Se il piano inclinato è ruvido con coefficiente di attrito pari a μ =0.526, calcolare in quanto tempo P raggiunge la base del piano. (1.5 pt)
- iii) Nelle stesse condizioni del punto (ii), calcolare il lavoro (con segno) dissipato dalla forza di attrito. (2 pt)
- iv) Nelle stesse condizioni del punto (ii), calcolare l'enercia cinetica finale di P se questo è anche spinto da un motore che fa lungo il piano inclinato un lavoro complessivo pari a $L_{mot} = 2.29 J$. (1.5 pt)
- v) Rifare il quesito (iv) se il motore ha un'efficienza η =88%. (0.5 pt)

Soluzione:

- i) Si tratta di un moto uniformemente accelerato con accelerazione $a = g \sin \alpha$, quindi $v = \sqrt{2aD} = 4.2$ m/s, dove $D = h/\sin \alpha$ è la lunghezza del piano inclinato. Notare che viene uguale alla velocità di un punto materiale che cade da un'altezza h in caduta libera.
- ii) Si tratta di un moto uniformemente accelerato con accelerazione $a=g(\sin\alpha-\mu\cos\alpha)$, quindi $t=\sqrt{2D/a}=0.73$ s, dove $D=h/\sin\alpha$ è la lunghezza del piano inclinato e si è sfruttata la relazione cinematica $D=1/2at^2$.
- iii) Il lavoro della forza di attrito è $L_a = -F_a D = -1.66$ J, dove $F_a = \mu mg \cos \alpha$ e $D = h/\sin \alpha$ è la lunghezza del piano inclinato.
- iv) Usando il teorema dell'energia cinetica o delle forze vive, l'energia cinetica finale è pari a $E_{c,f} = mgh + L_{mot} + L_a = 4.52$ J.
- v) Come in iv) ma inserendo l'efficienza η =88% nell'espressione del lavoro motore, si ha $E_{c,f}=mgh+\eta L_{mot}+L_a=4.25$ J.

Problema 2: Una mole di gas perfetto compie il ciclo termodinamico reversibile mostrato nel diagramma PV a lato. Il volume del gas e la sua pressione nel punto A sono $V_1 = 40\,\mathrm{L}$ e $P_1 = 10\,\mathrm{kPa}$. Il volume massimo raggiunto dal gas nel ciclo è $V_2 = 4V_1$, mentre la pressione massima è $P_2 = 2P_1$.

- i) Calcolare le temperature massima e minima che il gas raggiunge durante il ciclo e i punti in cui queste sono raggiunte. (1.5 pt)
- ii) Calcolare il lavoro fatto <u>dal</u> gas durante un ciclo. (1.5 pt)
- iii) Il calore specifico per una mole di gas in una trasformazione a volume costante è $C_V = 3R/2$, mentre per un'espansione a pressione costante è $C_P = 5R/2$, dove R è la costante universale dei gas. Calcolare il calore assorbito dal gas durante un ciclo. (Si noti che il gas assorbe calore solo durante le trasformazioni in cui la sua temperatura <u>aumenta</u>.) (2 pt)
- iv) Calcolare l'efficienza del ciclo. (1 pt)
- v) Confrontare l'efficienza del ciclo con quella di una macchina di Carnot che operi tra due sorgenti di calore la cui temperatura sia pari a quella massima e minima raggiunte dal gas nel ciclo. (0.5 pt)

Soluzione:

i) Prima di tutto notiamo che la pressione e il volume del gas nei punti estremi del ciclo sono date da

$$P_A = P_D = P_1 = 10 \times 10^3 \,\mathrm{Pa}$$
, $P_B = P_C = P_2 = 2P_1 = 20 \times 10^3 \,\mathrm{Pa}$, $V_A = V_B = V_1 = 40 \times 10^{-3} \,\mathrm{m}^3$, $V_C = V_D = V_2 = 4V_1 = 160 \times 10^{-3} \,\mathrm{m}^3$.

Usando l'equazione di stato dei gas perfetti PV = nRT troviamo che le termperature nei punti A, B, C e D sono

$$T_A = \frac{P_A V_A}{nR} = \frac{(10 \times 10^{-3} \,\mathrm{m}^3)(40 \times 10^{-3} \,\mathrm{m}^3)}{(1 \,\mathrm{mol})(8.314 \,\mathrm{J/mol} \cdot \mathrm{K})} = 48.11 \,\mathrm{K}\,,$$

$$T_B = \frac{P_B V_B}{nR} = \frac{(20 \times 10^{-3} \,\mathrm{m}^3)(40 \times 10^{-3} \,\mathrm{m}^3)}{(1 \,\mathrm{mol})(8.314 \,\mathrm{J/mol} \cdot \mathrm{K})} = 96.22 \,\mathrm{K}\,,$$

$$T_C = \frac{P_C V_C}{nR} = \frac{(20 \times 10^{-3} \,\mathrm{m}^3)(160 \times 10^{-3} \,\mathrm{m}^3)}{(1 \,\mathrm{mol})(8.314 \,\mathrm{J/mol} \cdot \mathrm{K})} = 384.9 \,\mathrm{K}\,,$$

$$T_D = \frac{P_D V_D}{nR} = \frac{(10 \times 10^{-3} \,\mathrm{m}^3)(160 \times 10^{-3} \,\mathrm{m}^3)}{(1 \,\mathrm{mol})(8.314 \,\mathrm{J/mol} \cdot \mathrm{K})} = 192.4 \,\mathrm{K}\,.$$

La temperatura minima è quindi raggiunta nel punto A, mentre la massima è raggiunta nel punto C.

ii) Il gas compie un lavoro solamente durante le trasformazioni isobare $(B \to C \text{ e } D \to A)$, mentre non compie lavoro durante le isocore (essendo il volume costante). Abbiamo quindi

$$\begin{split} W_{AB} &= W_{CD} = 0 \, \mathrm{J} \,, \\ W_{BC} &= P_2(V_2 - V_1) = (20 \times 10^3 \, \mathrm{Pa})(160 \times 10^{-3} \, \mathrm{m}^3 - 40 \times 10^{-3} \, \mathrm{m}^3) = 2400 \, \mathrm{J} \,, \\ W_{DA} &= P_1(V_1 - V_2) = (10 \times 10^3 \, \mathrm{Pa})(40 \times 10^{-3} \, \mathrm{m}^3 - 160 \times 10^{-3} \, \mathrm{m}^3) = -1200 \, \mathrm{J} \,. \end{split}$$

Il lavoro totale compiuto dal gas in un ciclo è quindi

$$W = W_{AB} + W_{BC} + W_{CD} + W_{DA} = 0 J + 2400 J + 0 J - 1200 J = 1200 J.$$

Alternativamente si può determinare il lavoro calcolando l'area racchiusa nel ciclo:

$$W = (P_2 - P_1)(V_2 - V_1) = (20 \times 10^3 \,\text{Pa} - 10 \times 10^3 \,\text{Pa})(160 \times 10^{-3} \,\text{m}^3 - 40 \times 10^{-3} \,\text{m}^3) = 1200 \,\text{J}.$$

Poiché il ciclo è percorso in verso orario il lavoro fatto dal gas è positivo.

iii) Il gas assorbe calore durante le trasformazioni $A \to B$ (isocora) e $B \to C$ (isobara), mentre lo cede nelle trasformazioni $C \to D$ (isocora) e $D \to A$ (isobara). Il calore assorbito o ceduto è dato da

$$Q_{AB} = nC_V(T_B - T_A) = \frac{3}{2}(8.314 \, J/\mathrm{mol} \cdot \mathrm{K})(1 \, \mathrm{mol})(96.22 \, \mathrm{K} - 48.11 \, \mathrm{K}) = 600 \, \mathrm{J} \,,$$

$$Q_{BC} = nC_P(T_C - T_B) = \frac{5}{2}(8.314 \, J/\mathrm{mol} \cdot \mathrm{K})(1 \, \mathrm{mol})(384.9 \, \mathrm{K} - 96.22 \, \mathrm{K}) = 6000 \, \mathrm{J} \,,$$

$$Q_{CD} = nC_V(T_B - T_A) = \frac{3}{2}(8.314 \, J/\mathrm{mol} \cdot \mathrm{K})(1 \, \mathrm{mol})(192.4 \, \mathrm{K} - 384.9 \, \mathrm{K}) = -2400 \, \mathrm{J} \,,$$

$$Q_{DA} = nC_P(T_B - T_A) = \frac{5}{2}(8.314 \, J/\mathrm{mol} \cdot \mathrm{K})(1 \, \mathrm{mol})(48.11 \, \mathrm{K} - 192.4 \, \mathrm{K}) = -3000 \, \mathrm{J} \,.$$

Il calore assorbito in un ciclo è quindi

$$Q_{ass} = Q_{AB} + Q_{BC} = 600 \,\mathrm{J} + 6000 \,\mathrm{J} = 6600 \,\mathrm{J}.$$

Il calore ceduto è

$$Q_{ced} = Q_{CD} + Q_{DA} = -2400 \,\mathrm{J} - 3000 \,\mathrm{J} = -5400 \,\mathrm{J}$$
.

Si noti che $W = Q_{ass} - Q_{ced}$, in accordo con il primo principio della termodinamica.

In alternativa si può calcorare il calore scambiato nel modo seguente

$$\begin{split} Q_{AB} &= nC_V(T_B - T_A) = \frac{3}{2}Rn(T_B - T_A) = \frac{3}{2}(P_BV_B - P_AV_A) = \frac{3}{2}V_1(P_2 - P_1) \\ &= \frac{3}{2}(40 \times 10^{-3}\,\mathrm{m}^3)(20 \times 10^3\,\mathrm{Pa} - 10 \times 10^3\,\mathrm{Pa}) = 600\,\mathrm{J}\,, \\ Q_{BC} &= nC_P(T_C - T_B) = \frac{5}{2}Rn(T_B - T_A) = \frac{5}{2}(P_CV_C - P_BV_B) = \frac{5}{2}P_2(V_2 - V_1) \\ &= \frac{5}{2}(20 \times 10^3\,\mathrm{Pa})(160 \times 10^{-3}\,\mathrm{m}^3 - 40 \times 10^{-3}\,\mathrm{m}^3) = 6000\,\mathrm{J}\,, \end{split}$$

e analogamente per Q_{CD} e Q_{DA} .

iv) L'efficienza del ciclo è data da

$$e = \frac{W}{Q_{ass}} = \frac{1200\,\mathrm{J}}{6600\,\mathrm{J}} = 0.1818 = 18.18\%\,.$$

v) L'efficienza di una macchina di Carnot che operi tra le temperature T_C e T_A è data da

$$e_C = 1 - \frac{T_A}{T_C} = 1 - \frac{48.11 \text{ K}}{384.9 \text{ K}} = 0.875 = 87.5\%$$
 .

In alternativa si può usare il fatto che

 $T_A = \frac{P_A V_A}{nR}$ e $T_C = \frac{P_C V_C}{nR}$ (1)

per riscrivere

 $\frac{T_A}{T_C} = \frac{P_A V_A}{P_C V_C} = \frac{P_1}{P_2} \frac{V_1}{V_2} \,,$

da cui

$$e_C = 1 - \frac{P_1}{P_2} \frac{V_1}{V_2} = 1 - \frac{1}{2} \frac{1}{4} = 1 - \frac{1}{8} = 0.875$$
.

Da questi risultati si vede che $e_C > e$, cioè l'efficienza della macchina di Carnot è maggiore di quella del ciclo conciderato nell'esercizio.

Domande a risposta multipla (risposta corretta 1.5 pt, nessuna risposta 0 pt, risposta errata -0.5 pt)

- 1. Un'auto di massa $m=1777\,\mathrm{kg}$ si muove di moto rettilineo uniforme con velocità $v=42\,\mathrm{km/h}$. In quanto tempo (in secondi) percorre una distanza $s=714\,\mathrm{m}$?
 - a) 8330 s
- b) 61.2 s
- c) 17 s
- d) 29.04 s

Soluzione: La risposta corretta è la b), in quanto t=s/v=61.2 s.

- 2. Quale delle seguenti affermazioni collegate ai tre principi della dinamica non è corretta?
 - a) Un punto materiale non soggetto a forze si muove di moto rettilineo uniforme o resta in quiete.
 - b) Un punto materiale soggetto a forze acquisisce un'accelerazione inversamente proporzionale alla sua massa.
 - c) Le forze di azione e reazione tra due punti materiali sono uguali in modulo e direzione, ma hanno verso opposto e sono applicate sulla stessa retta di azione.
 - d) Un punto materiale soggetto a forze acquisisce un'accelerazione inversamente proporzionale alla forza applicata.

Soluzione: La risposta corretta è la d), in quanto l'accelerazione prodotta è direttamente proporzionale alla forza applicata.

- 3. Un'auto A si muove su una strada rettilinea a velocità v_A =80 km/h, mentre sull'altra carreggiata un auto B si muove in direzione opposta alla velocità v_B =79 km/h. Calcolare la velocità relativa di A rispetto a B (senza segno).
 - a) 79 km/h
- b) $1 \, \text{km/h}$
- c) 159 km/h
- d) 80 km/h

<u>Soluzione:</u> La risposta corretta è la c), in quanto la velocità relativa è data da $v_A + v_B$, cioè 159 km/h.

- 4. Un motore di un auto eroga una potenza massima pari a $P=87\,\mathrm{kW}$. Partendo da ferma, qual è il tempo minimo (in secondi) affinchè l'auto di massa $m=2038\,\mathrm{kg}$ raggiunga la velocità di $v=110\,\mathrm{km/h}$?
 - a) 0.09145 s
- b) 10.94 s
- c) 5.468 s
- d) 141.7 s

<u>Soluzione</u>: La risposta corretta è la b). Per il teorema dell'energia cinetica il lavoro necessario per raggiungere la velocità di v = 110 km/h, partendo l'auto da ferma, è dato da $L = 1/2mv^2$, quindi il tempo minimo richiesto è $t = L/P = (1/2mv^2)/P = 10.94$ s.

3

- 5. Una ruota di un escavatore, descrivibile come un disco omogeneo di massa $m=19\,\mathrm{kg}$ e raggio $r=65\,\mathrm{cm}$, ruota rispetto al suo asse facendo 295 giri al minuto. Se improvvisamente si dimezza il raggio della ruota mantenendo la stessa massa, qual è la nuova velocità angolare in rad/s?
 - a) $19.67 \, \text{rad/s}$
- b) 61.75 rad/s
- c) 7410 rad/s
- d) $123.5 \, \text{rad/s}$

<u>Soluzione</u>: La risposta corretta è la d). Per la conservazione del momento angolare la quantità $I\omega$ è costante, dove $I=1/2mr^2$ è il momento di inerzia di un disco omogeneo rispetto ad un asse perpendicolare passante per il suo centro, mentre ω è la velocità angolare. Quindi $\omega_f=I_i\omega_i/I_f=4\omega_i=123.5 \text{ rad/s}$, dato che $\omega_i=2\times295\pi/60=30.88 \text{ rad/s}$ e $I_f=I_i/4$.

- 6. Una carriola è schematizzabile come una leva di secondo genere con i due bracci pari rispettivamente a b1=60 cm e b2=120 cm. Se si vuole sollevare un carico di 72 kg (resistenza), qual è il valore minimo della forza da applicare (misurata nel S.I.)?
 - a) 36 kgf
- b) 0.002834 N
- c) 1411 N
- d) 352.8 N

<u>Soluzione</u>: La risposta corretta è la d). Per l'equilibrio di un leva di secondo genere si ha $F = Rb_r/b_f = 352.8$ N, dove F ed R sono rispettivamente la forza e la resistenza mentre b_f e b_r sono i relativi bracci. Notare che R = mg = 705.6 N, $b_f = b2$, $b_r = b1$. La risposta a) è sbagliata in quanto il risultato non è nelle unità del S.I.

- 7. Un corpo di massa $m=1.5\,\mathrm{kg}$ e densità $\rho=500\,\mathrm{kg/m^3}$ galleggia in un recipiente pieno di olio ($\rho_{olio}=920\,\mathrm{kg/m^3}$). Quale percentuale del volume del corpo emerge dal liquido?
 - a) 72.83%
- b) 45.65%
- c) 54.35%
- d) 50%

<u>Soluzione:</u> La risposta corretta è la b). Indichiamo con V il volume del corpo, con V_I il volume immerso nel liquido e con $V_E = V - V_I$ il volume emerso. In condizioni di galleggiamento, il peso del corpo $F_p = V \rho g$, è bilanciato dalla spinta di Archimede

$$F_A = V_I \rho_{olio} g$$
.

Quindi otteniamo

$$V \rho g = V_I \rho_{olio} g \qquad \Rightarrow \qquad \frac{V_I}{V} = \frac{\rho}{\rho_{olio}} \,.$$
 (2)

Da questa equazione ricaviamo

$$\frac{V_E}{V} = \frac{V - V_I}{V} = 1 - \frac{V_I}{V} = 1 - \frac{\rho}{\rho_{olio}} = 1 - \frac{500 \, \text{kg/m}^3}{920 \, \text{kg/m}^3} = 0.4565 = 45.65\% \, .$$

Come si può notare la conoscenza della massa del corpo non è necessaria per risolvere l'esercizio. Tuttavia essa può essere utilizzata per calcolare numericamente i passaggi intermedi della soluzione. Infatti possiamo utilizzare la formula $m = V\rho$ per determinare il volume del corpo V e successivamente ricavare il valore numerico di V_I utilizzando il risultato in eq. (2).

- 8. Un sistema consiste in $m=10\,\mathrm{g}$ di ghiaccio alla temperatura di $T_0=0\,^{\circ}\mathrm{C}$. Dopo un certo intervallo di tempo il ghiaccio si è completamente trasformato in acqua alla temperatura di $T_1=50\,^{\circ}\mathrm{C}$. Quanto calore è stato assorbito dal sistema in questa trasformazione? (Trascurare la variazione di volume tra ghiaccio ed acqua.)
 - a) 24690 J
- b) 3330 J
- c) 5423 J
- d) 2093 J

<u>Soluzione</u>: La risposta corretta è la c). La trasformazione termodinamica consiste in due stadi successivi. Il primo è la transizione di fase da ghiaccio ad acqua liquida, che avviene a temperatura costante $T_0 = 0$ °C e richiede un apporto di calore

$$Q_1 = mL_f = (10 \times 10^{-3} \text{ kg})(3.33 \times 10^5 \text{ J/kg}) = 3330 \text{ J}$$

dove $L_f = 3.33 \times 10^5 \,\mathrm{J/kg}$ è il calore latente di fusione del ghiaccio. Il secondo stadio è il riscaldamento dell'acqua liquida dalla temperatura T_0 alla temperatura T_1 . Questa trasformazione richiede una quantità di calore

$$Q_2 = mc(T_1 - T_0) = (10 \times 10^{-3} \text{ kg})(4186 \text{ J/kg}^{\circ}\text{C})(50^{\circ}\text{C} - 0^{\circ}\text{C}) = 2093 \text{ J},$$

dove $c=4186\,\mathrm{J/kg^\circ C}$ è il calore specifico dell'acqua. Il calore totale assorbito dal sistema è quindi

$$Q = Q_1 + Q_2 = 3330 J + 2093 J = 5423 J$$
.

- 9. Un recipiente contenente $V_{olio} = 2 \times 10^3 \,\mathrm{L}$ di olio è caricato su un carrello di massa $m_c = 500 \,\mathrm{kg}$. Se il carrello poggia su 4 ruote e la superficie di contatto di ogni ruota col terreno è $A=200\,\mathrm{cm}^2$ quale è la pressione esercitata sul suolo? (Si trascuri il peso del recipiente e si usi il valore $\rho_{olio} = 920 \,\mathrm{kg/m^3}$ per la densità dell'olio.)
 - a) 29250 Pa
- b) 286600 Pa
- c) 225400 Pa
- d) $1.147 \times 10^6 \, \text{Pa}$

Soluzione: La risposta corretta è la b). La pressione esercitata sul suolo è data da

$$P = \frac{m_{tot}g}{A_{tot}} \,,$$

dove m_{tot} è la massa totale (comprendente l'olio e il carrello) e A_{tot} è la superficie totale di contatto con il suolo. Usando il fatto che

$$m_{tot} = m_{olio} + m_c = V_{olio} \rho_{olio} + m_c \,,$$

e $A_{tot} = 4A$, otteniamo la pressione

$$P = \frac{V_{olio}\rho_{olio} + m_c}{4A} = \frac{(2 \,\mathrm{m}^3)(920 \,\mathrm{kg/m}^3) + 500 \,\mathrm{kg}}{4 \,(200 \times 10^{-4} \,\mathrm{m}^2)} = 286600 \,\mathrm{Pa}$$

- 10. Quale delle seguenti affermazioni collegate al secondo principio della termodinamica non è corretta?
 - a) Il coefficiente di prestazione (COP) di una pompa di calore è minore di 1.
 - b) Non può esistere una sorgente di calore a $T=0\,\mathrm{K}$.
 - c) Il rendimento di una macchina termica operante tra due sorgenti di calore è minore o uguale a quello di una macchina di Carnot che operi tra le stesse sorgenti.
 - d) Non è possibile convertire integralmente il calore in lavoro meccanico.

Soluzione: Le affermazioni b), c) e d) sono corrette e sono tutte equivalenti al secondo principio della termodinamica. L'affermazione a) è errata, infatti il coefficiente di prestazione di una pompa di calore è definito come

$$COP_P = \frac{Q_H}{W} = 1 + \frac{Q_C}{W} \,,$$

dove Q_H è il calore ceduto alla sorgente calda, Q_C il calore assorbito dalla sorgente fredda e W il lavoro utilizzato dalla pompa per ottenere il trasferimento di calore. Le due espressioni nella precedente equazione sono equivalenti come conseguenza del primo principio della termodinamica $Q_H = Q_C + W$. Poiché si ha sempre che $Q_C/W \ge 0$, segue che $COP_P \ge 1$.

- 11. Una macchina di Carnot che lavora tra le temperature $T_1 = -30^{\circ}$ C e $T_2 = 50^{\circ}$ C ha efficienza
- b) e = 1.6
- c) e = 0.2476
- d) e = 0.7524

Soluzione: La soluzione corretta è la c). L'efficienza di una macchina di Carnot che operi tra una sorgente calda a temperatura T_H e una sorgente fredda a temperatura T_C è data da

$$e = 1 - \frac{T_C}{T_H} \,.$$

Bisogna notare che le temperature nella formula precedente devono essere espresse in kelvin. Il risultato numerico dell'esercizio corrisponde quindi a

$$e = 1 - \frac{(-30 + 273.15)K}{(50 + 273.15)K} = 0.2476.$$

- 12. Tre resistori con resistenza $r_1=10\,\Omega,\,r_2=5\,\Omega$ e $r_3=15\,\Omega$ sono collegati in parallelo. Quanto vale la resistenza equivalente?
 - a) $2.727\,\Omega$
- b) 0.3667Ω
- c) 0.03333Ω
- d) 30Ω

Soluzione: La soluzione corretta è la a). La resistenza equivalente R di resistenze in parallelo si ottiene applicando la formula

$$\frac{1}{R} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$$
, ovvero $R = \frac{1}{\frac{1}{r_3}}$

$$\frac{1}{R} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} \,, \qquad \text{ovvero} \qquad \mathbf{R} = \frac{1}{\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}} = \frac{1}{\frac{1}{10\Omega} + \frac{1}{5\Omega} + \frac{1}{15\Omega}} = 2.727 \,\Omega \,.$$

α		0	. 1	
Costan	tı.	tic	101	10

Costanti fisiche			
densità			
acqua	$\rho = 1000 \mathrm{kg/m^3}$		
olio	$\rho = 920\mathrm{kg/m^3}$		
calori specifici			
acqua	4186 J/kg·°C		
ghiaccio	$2090\mathrm{J/kg}\cdot^{\circ}\mathrm{C}$		
vapore	$2010\mathrm{J/kg}\cdot^{\circ}\mathrm{C}$		
calori latenti			
fusione ghiaccio	$3.33 \times 10^5 \mathrm{J/kg}$		
vaporizzazione acqua	$2.26 \times 10^6 \mathrm{J/kg}$		
costanti termodinamiche			
costante universale dei gas	$R = 8.314 \mathrm{J/mol \cdot K}$		
costante di Boltzmann	$k_B = 1.38 \times 10^{-23} \mathrm{J/K}$		
numero di Avogadro	$N_A = 6.022 \times 10^{23} / \text{mol}$		
equiv. meccanico del calore	$1\mathrm{cal} = 4.186\mathrm{J}$		
zero assoluto	$-273.15^{\circ}{\rm C}$		
costanti elettromagnetiche			
costante di Coulomb	$k_e = 8.988 \times 10^9 \mathrm{N \cdot m^2/C^2}$		
carica del protone	$e = 1.602 \times 10^{-19} \mathrm{C}$		