Reinforcement Learning

Lesson 4: Dynamic Programming

Overview

- Policy Evaluation (Prediction)
- Policy Improvement
- Policy Iteration
- Value Iteration
- Asynchronous Dynamic Programming
- Generalized Policy Iteration
- Efficiency of Dynamic Programming

Dynamic Programming

An introduction

- The term dynamic programming (DP) refers to a collection of algorithms that can be used to compute optimal policies given a perfect model of the environment as a Markov decision process (MDP)
- Classical DP algorithms are of limited utility in RL both because of their assumption and because of their great computational expense
- We assume that the environment is a finite MDP

Policy Evaluation (Prediction)

Policy Evaluation

Iterative solution methods

- We already know the Bellman Equation
- If the environment's dynamic are completely known and the Bellman Equation is a system of |S| simultaneous linear equation |S| in unknowns
- For our purposes, iterative solution methods are the suitable
 - Consider a sequence of approximate value functions v_0, v_1, v_2, \dots
 - The initial approximation v_0 is chosen arbitrarily
 - Each successive approximation is obtained by using the Bellman equation as an update rule:

$$v_{k+1}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s' r} p(s', r \mid s, a) \left[r + \gamma v_k(s') \right]$$
(4.5)

Iterative Policy Evaluation considerations

- $v_k = v_\pi$ is a fixed point for this update rule because the Bellman equation for v_π assures us of equality
- The sequence $\{v_k\}$ can be shown in general to converge to v_π as $k\to\infty$ under the same conditions that guarantee the existence of v_π
- To produce each successive approximation, v_{k+1} from v_k , iterative policy evaluation applies the same operation to each state s: It replaces
 - the old value of s with a new value obtained form the old values of the successor state of s
 - And, the expected immediate reward, along all the one-step transitions
 possible under the policy being evaluated (Expected Update)

Iterative Policy Evaluation

Input π , the policy to be evaluated

Pseudocode (estimating $V \approx v_{\pi}$)

```
Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation Initialize V(s) arbitrarily, for s \in \mathcal{S}, and V(terminal) to 0 Loop:  \Delta \leftarrow 0  Loop for each s \in \mathcal{S}:  v \leftarrow V(s)   V(s) \leftarrow \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big]   \Delta \leftarrow \max(\Delta,|v-V(s)|)  until \Delta < \theta
```

Policy Improvement

Policy Improvement Theorem

Part 1

Let's consider again the Bellman equation

$$q_{\pi}(s, a) \doteq \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a]$$

$$= \sum_{s', r} p(s', r \mid s, a) \Big[r + \gamma v_{\pi}(s') \Big]. \tag{4.6}$$

- The key criterion is whether this is greater than or less than $v_{\pi}(s)$. If it is greater:
 - that is, if it is better to select a once in s and thereafter follow π than it would be to follow π all the time
 - then one would expect it to be better still to select a every time s is encountered, and that the new policy would in fact be a better one overall

Policy Improvement Theorem

Part 2

- If that is true, we have a general result called policy improvement theorem
 - Let π and π' be any pair of deterministic policies such that, for all $s \in \mathcal{S}$

$$q_{\pi}(s, \pi'(s)) \ge \nu_{\pi}(s)$$
 (4.7)

- Then the policy π' must be as good as, or better than, π .
 - It must obtain greater or equal expected return from all states $s \in \mathcal{S}$

$$\nu_{\pi'}(s) \ge \nu_{\pi}(s) \tag{4.8}$$

• NOTE THAT: If there is a strict inequality of (4.7) at any state, then there must be strict inequality of (4.8) at that state

Greedy Policy

- So far we have seen how, given a policy and its value function, we can easily
 evaluate a change in the policy at a single state
- It is a natural extension to consider changes at *all* states, selecting at each state the action that appears best according to $q_{\pi}(s, a)$ (the greedy policy π')

$$\pi'(s) \stackrel{:}{=} \underset{a}{\operatorname{argmax}} q_{\pi}(s, a)$$

$$= \underset{a}{\operatorname{argmax}} \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a]$$

$$= \underset{a}{\operatorname{argmax}} \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right]$$

$$(4.9)$$

- By construction, it meets the conditions of the policy improvement theorem
 - so we know that it is as good as, or better than, the original policy

Policy Improvement

Definition

 The process of making a new policy that improves on an original policy, by making it greedy with respect to the value function of the original policy, is called policy improvement

Optimal Policy

- Suppose the new greedy policy, π' , is as good as, but not better than, the old policy π . Then $v_\pi = v_{\pi'}$
- From (4.9) it follows that for all $s \in \mathcal{S}$:

$$v_{\pi'}(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{\pi'}(S_{t+1}) \mid S_t = s, A_t = a]$$

=
$$\max_{a} \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi'}(s') \Big].$$

- Which is the same of the Bellman optimality equation. Therefore:
 - v'_{π} must be v_*
 - π and π' must be optimal policies

Policy Iteration

Policy Iteration

 Based on the previous results, a sequence of monotonically improving policies and value functions can be obtained:

- Because a finite MDP has only a finite number of deterministic policies, this
 process must converge to an optimal policy and the optimal value function in
 a finite number of iterations
- This way of finding an optimal policy is called policy iteration

Policy Iteration

Using iterative policy evaluation for estimating $\pi \approx \pi_*$

1. Initialization $V(s) \in \mathbb{R} \text{ and } \pi(s) \in \mathcal{A}(s) \text{ arbitrarily for all } s \in \mathcal{S}; V(terminal) \doteq 0$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:
 $v \leftarrow V(s)$
 $V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s))[r + \gamma V(s')]$

 $\Delta \leftarrow \max(\Delta, |v - V(s)|)$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy\text{-}stable \leftarrow true$$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Drawback

- Each iterations involves policy evaluation, which may itself be a protracted iterative computation requiring multiple sweeps through the state set
- If policy evaluation is done iteratively
 - Then convergence exactly to v_{π} occurs only in the limit
- Must we wait for exact convergence, or can we stop short of that?

Part 1

- The policy evaluation step can be truncated in several ways without losing the convergence guarantees of policy iteration
- One important special case is when policy evaluation is stopped after just one sweep (one update of each state)
 - This algorithm is called value iteration

Part 2

 This algorithm can be written as a simple update operation that combines the policy improvement and truncated policy evaluation steps:

$$v_{k+1}(s) \doteq \max_{a} \mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s, A_t = a]$$

$$= \max_{a} \sum_{s',r} p(s', r \mid s, a) \Big[r + \gamma v_k(s') \Big]$$
(4.10)

- For all $s \in \mathcal{S}$
- For arbitrary v_0 , the sequence $\{v_k\}$ can be shown to converge to v_* , under the same conditions that guarantee the existence of v_*

For estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

```
Loop:  | \Delta \leftarrow 0   | \text{Loop for each } s \in \mathcal{S}:   | v \leftarrow V(s)   | V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big]   | \Delta \leftarrow \max(\Delta,|v-V(s)|)   | \text{until } \Delta < \theta
```

Output a deterministic policy,
$$\pi \approx \pi_*$$
, such that $\pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

Final considerations

- Value iteration effectively combines, in each of its sweeps, one sweep of policy evaluation and one sweep of policy improvement
- Faster convergence is often achieved by interposing multiple policy evaluation sweeps between each policy improvement sweep

Asynchronous Dynamic Programming

Drawback of DP methods

- They involve operations over the entire state set of the MDP
 - They require sweeps of the state set
 - If the state set is very large, then even a single sweep can be prohibitively expensive

Asynchronous DP

- Asynchronous DP algorithms are in-place iterative DP algorithms that are not organized in terms of systematic sweeps of the state set
- These algorithms update the values of states in any order whatsoever, using values of there states happen to be available
- The value of some states may be updated several times before the values of others are updated once
- To converge correctly, it must continue to update the values of all the states
- Asynchronous DP algorithms allow great flexibility in selecting states to update

Avoiding sweeps

- Avoiding sweeps does not necessarily mean that we can get away with less computation
- It just means that an algorithm does not need to get locked into any hopeless long sweep before it can make progress improving a policy
- We can try to take advantage of this flexibility by selecting the states to which
 we apply updates so as to improve the algorithm's rate of progress
- We can try to order the updates to let value information propagate from state to state in an efficient way
 - Some states may not need their values updated as often as others
 - We might even try to skip updating states entirely if they are not relevant to optimal behavior

Intermix computation

- Asynchronous algorithms make it easier to intermix computation with realtime interaction
- To solve a given MDP, we can run an iterative DP algorithm at the same time that an agent is actually experiencing the MDP
 - The agent's experience can be used to determine the state to which the DP algorithm applies its updates
 - At the same time, the latest value and policy information from the DP algorithm can guide the agent's decision making

Generalized Policy Iteration

Generalized Policy Iteration

- We use the term generalized policy iteration (GPI) to refer to the general idea of letting policy-evolution and policy-improvement processes interact, independent of the granularity and other details of the two process
- Almost all RL methods are well described as GPI:
 - All have identifiable policies and value functions,
 - With the policy always being improved with respect to the value function
 - and the value function always being driven toward the value function for the policy

Competing and Cooperating

- The evaluation and improvement processes in GPI can be viewed as both competing and cooperating
- They compete in the sense that they pull in opposite directions
 - Making the policy greedy with respect to the value function typically makes the value function incorrect for the changed policy
 - Making the value function consistent with the policy typically causes that the policy no longer to be greedy
- In the long run, however, these two processes interact to find a single joint solution: the optimal value function and an optimal policy

Efficiency of Dynamic Programming

Some considerations

- DP may not be practical for very large problems, but compared with other methods for solving MDPs, DP methods are actually quite efficient
- If we ignore a few technical details, in the worst case, the time that DP methods take to find an optimal policy is *polynomial* in the number of states and actions
 - If they are started with good initial value functions or policies, they
 usually converge much faster than their theoretical worst-case run times
 - DP is comparatively better suited to handling large state spaces than competing methods such as direct search and linear programming
- In practice, DP methods can be used with today's computers to solve MDPs with millions of states
- Both policy interaction and value iteration are widely used, and it is not clear which, if either, is better in general

Problems with large spaces

- On problems with large state spaces, asynchronous DP methods are often preferred
 - To complete even one sweep of a synchronous method requires computation and memory for every state
 - For some problems, even this much memory and computation is impractical
 - Yet the problem is still potentially solvable because relatively few states occur along optimal solution trajectories

Bibliography:

Reinforcement Learning An Introduction (Second Edition), R. S. Sutton & A. G. Barto