

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/587,195	04/30/2007	Euan Smith	29610/CDT337	8447
4743	7590	04/22/2009	EXAMINER	
MARSHALL, GERSTEIN & BORUN LLP			BOWMAN, MARY ELLEN	
233 SOUTH WACKER DRIVE				
6300 SEARS TOWER			ART UNIT	PAPER NUMBER
CHICAGO, IL 60606-6357			2879	
			MAIL DATE	DELIVERY MODE
			04/22/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No.	Applicant(s)	
	10/587,195	SMITH ET AL.	
	Examiner	Art Unit	
	MARY ELLEN BOWMAN	2879	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 09 February 2009.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-16 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-16 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|--|---|
| 1) <input type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ . |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08) | 5) <input type="checkbox"/> Notice of Informal Patent Application |
| Paper No(s)/Mail Date _____ . | 6) <input type="checkbox"/> Other: _____ . |

DETAILED ACTION

Response to Arguments

Applicant's arguments filed February 9, 2009 have been fully considered but they are not persuasive. Applicant's argument that Bechtel fails to teach a "cathode incorporates an optical interference structure" is not persuasive, because the definition of incorporate is to "include as a part." Bechtel teaches an optical interference structure directly contacting and above a light transmissive cathode, therefore, said interference structure is therefore "incorporated" into the cathode. The rejection as set forth below is therefore maintained.

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

Claims 1, 2, 6, 10, and 12 are rejected under 35 U.S.C. 102(b) as being anticipated by Bechtel, et al., WO 2004/004421 A2, published 08 January 2004 (hereinafter referred to as "Bechtel").

Regarding claim 1, Bechtel teaches an organic light emitting diode (OLED) (e.g., p. 1, lines 6-7; "organic light-emitting diodes") comprising a substrate bearing a light emitting layer between an electrically conducting anode and an electrically conducting cathode (e.g., p. 1, lines 9-13; "a typical structure comprises...the transparent electrode (anode), a conductive polymer layer, and electroluminescent layer, i.e. a layer of light-emissive material...and an electrode of metal...(cathode). Such a structure is usually provided on a substrate"), the diode

being configured for light emission through said cathode (e.g., p. 1, lines 23-24; “light leaves the electroluminescent device through a transparent cathode”), **the cathode being transmissive at a light emission wavelength of the diode** (e.g., p. 2, lines 2-3; “cathode exhibiting a high transmission of the light emitted by the electroluminescent layer”), **and wherein said cathode incorporates an optical interference structure configured to enhance light transmission through said cathode at said emission wavelength** (e.g., p. 2, lines 15-17; “dielectric layer bordering on the second electrode (i.e., the cathode) has a high refractive index n...and more light passes through the second electrode”).

Regarding claim 2, Bechtel teaches the invention as explained above regarding claim 1, and further teaches **said cathode comprises an optical interference layer lying between first and third layers of different refractive indices such that reflections from front and back surfaces of said optical interference layer interfere to enhance light transmission through said cathode at said emission wavelength** (e.g., p. 2, lines 11-14; “a second electrode (i.e. a cathode) and $2n+1$ transparent dielectric layers (i.e., 3 of them), where $n=0, 1, 2, 3\dots\alpha$, the transparent dielectric layers alternately have a high refractive index...and a low refractive index”).

Regarding claim 6, Bechtel teaches the invention as explained above regarding claim 1, and further teaches **said emission wavelength is substantially equal to a peak or center emission wavelength of said light emitting layer** (e.g., p. 6, lines 1-3; “the transmission curve is adapted to the emission spectrum of the light generated, such that the transmission maximum (i.e., the peak) of the electrode lies in the range of the emission maximum of PPV”).

Regarding claim 10, Bechtel teaches the invention as explained above regarding claim 2, and further teaches **said optical interference layer comprises a dielectric material** (e.g., p. 7, lines 12-13; “three transparent, dielectric layers 5 (i.e., optical interference layers) were deposited on the second electrode 4 (i.e., the cathode)”).

Regarding claim 12, Bechtel teaches **a display device** (e.g., p. 1, lines 4-7; “electronically driven display systems...[with] OLEDs, as the light source”) including the invention as explained above regarding claim 1.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

Claims 3, 7-9, 11, 15, and 16 are rejected under 35 U.S.C. 103(a) as being unpatentable over Bechtel in view of Aziz et al., USP App. Pub. No. 2003/0234609 A1, published 25 December 2003 (hereinafter referred to as “Aziz”).

Bechtel teaches the invention as explained above regarding claim 2, but fails to teach the particular details of the first through third layers of the cathode.

Regarding claim 3, Aziz teaches **said first layer comprises an electron injecting layer for injecting electrons into said light emitting layer** (e.g., [0225]; “capping region (2056) (i.e., third layer)/MOML2 (2054B)/MOML1 (2054A) (i.e., optical interference layer)/charge injection region (2052) (i.e., electron injection region”)), **and wherein said third layer comprises an**

electrically conducting layer (e.g., [0211]; “a capping region can be composed of...metal compounds such as...ITO, ZnO (i.e., an electrically conducting layer”)).

Regarding claim 7, Aziz teaches **said third layer comprises a metal layer** (e.g., [0211]; “a capping region can be composed of...metal compounds such as...ITO, ZnO (i.e., an electrically conducting layer”)).

Regarding claim 8, Aziz teaches **said optical interference layer comprises a wide bandgap semiconductor** (e.g., [0242]; “the inorganic metal compounds for the MOML (i.e., the optical interference layer) may be a ...metal nitride...the metal nitride can be, but is not limited to...GaN (i.e., a wide bandgap semiconductor”)).

Regarding claim 9, Aziz teaches **said optical interference layer comprises a transparent conductor** (e.g., [0242]; “the inorganic metal compounds for the MOML (i.e., the optical interference layer) may be a...metal oxide...the metal oxides can be, but are not limited to...ZnO, ITO (i.e., a transparent conductor”)).

Regarding claim 11, Aziz teaches **said electron injecting layer includes a layer of a metal** (e.g., [0149]; “the metal-organic mixed layer in embodiments can function as the electron injection contact”).

Regarding claim 15, Aziz teaches the invention as explained above regarding claim 8, and further teaches **said wide bandgap semiconductor comprises zinc selenide or gallium nitride** (e.g., [0242]; “the inorganic metal compounds for the MOML (i.e., the optical interference layer) may be a ...metal nitride...the metal nitride can be, but is not limited to...GaN (i.e., a wide bandgap semiconductor”)).

Regarding claim 16, Aziz teaches the invention as explained above regarding claim 9, and further teaches **said transparent conductor comprises indium tin oxide or indium zinc oxide** (e.g., [0242]; “the inorganic metal compounds for the MOML (i.e., the optical interference layer) may be a...metal oxide...the metal oxides can be, but are not limited to...ZnO, ITO (i.e., a transparent conductor)”).

Regarding claims 3, 7-9, 11, 15, and 16, it would have been obvious to one of ordinary skill in the art at the time the invention was made to utilize three layers including an electron injecting layer, an optical interference layer, and a cathode layer as taught by Aziz, in an OLED device as taught by Bechtel, because the three layer design provides the benefit of reducing light reflection and thereby improving picture quality (Aziz, [0006]).

Claims 4 and 5 are rejected under 35 U.S.C. 103(a) as being unpatentable over Bechtel in view of Hofstra et al., USP App. Pub. No. 2003/0127971 A1, published 10 July 2003 (hereinafter referred to as “Hofstra”).

Bechtel teaches the invention as explained above regarding claim 2, but fails to teach the thickness of the optical interference layer.

Regarding claim 4, Hofstra teaches **said optical interference layer has an optical thickness of between a third of said emission wavelength and a fifth of said emission wavelength** (e.g., [0065]; “optical interference member 16’...having a thickness of about seven-hundred-and-forty-five angstroms...so that it behaves as a quarter-wave-stack at a light wavelength of five-hundred-and-fifty nanometers (550 nm)”).

Regarding claim 5, Hofstra teaches **said optical interference layer has an optical thickness of substantially a quarter of said emission wavelength** (e.g., [0065]; “optical

interference member 16'...having a thickness of about seven-hundred-and-forty-five angstroms...so that it behaves as a quarter-wave-stack at a light wavelength of five-hundred-and-fifty nanometers (550 nm)").

It would have been obvious to one of ordinary skill in the art at the time the invention was made to create an optical interference layer having a thickness of a quarter wavelength of the emitted light from the display to create interference resulting in increased light emission from the display and decreased ambient light reflection, which improves display quality (Hofstra, abstract).

Claims 13 and 14 are rejected under 35 U.S.C. 103(a) as being unpatentable over Bechtel in view of Aziz and further in view of Hofstra.

Regarding claim 13, Bechtel teaches **an organic light emitting diode (OLED)-based display device including one or more OLEDs** (e.g., p. 1, lines 4-7; "electronically driven display systems...organic light-emitting diodes, so-termed OLEDs, as the light source") **each comprising a layer of OLED material sandwiched between anode and cathode electrode layers** (e.g., p. 1, lines 9-13; "a typical structure comprises...[an] (anode), a conductive polymer layer, an electroluminescent layer, i.e., a layer of a light-emissive material...[and a] (cathode")**, said OLED material electroluminescing when a current is passed between said anode and cathode electrode layers** (e.g., pp. 4-5, lines 33-34 and 1; "by applying a suitable voltage...to the electrodes...positive and negative charge carriers are injected...where they recombine, thereby generating light"), **a first of said electrode layers being at least partially transmissive at a peak wavelength of said electroluminescence and being closer to a display surface of said device than the second of said electrode layers whereby the device is configured for**

electroluminescent display through said first electrode layer (e.g., p. 1, lines 23-24; “light leaves the electroluminescent device through a transparent cathode”; Note: The side through which light leaves is the “display side”, and therefore the cathode is closest to the display side. Further, the light leaving the through the cathode is the light (including the peak wavelength of light) produced by the electroluminescent layer.).

Bechtel fails to teach a spacer between the OLED material and the electrode.

Aziz teaches **said first electrode layer comprises a spacer layer sandwiched between a coupling layer for connecting to said OLED material and a third, substantially electrically conductive layer** (e.g., [0225]; “capping region (2056) (i.e., third, substantially electrically conductive layer)/MOML2 (2054B)/MOML1 (2054A) (i.e., spacer layer)/charge injection region (2052) (i.e., coupling layer)”).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to utilize three layers including an electron injecting layer, an optical interference layer, and a cathode layer as taught by Aziz, in an OLED device as taught by Bechtel, because the three layer design provides the benefit of reducing light reflection and thereby improving picture quality (Aziz, [0006]).

Bechtel and Aziz fail to teach the width of the spacer layer.

Hofstra teaches **said spacer layer has a thickness of approximately an odd integral number of quarter wavelengths at said peak electroluminescence wavelength** (e.g., [0065]; “optical interference member 16’...having a thickness of about seven-hundred-and-forty-five angstroms...so that it behaves as a quarter-wave-stack at a light wavelength of five-hundred-and-fifty nanometers (550 nm)”; Note: One quarter wavelength is an odd integral number of quarter

wavelengths) **such that transmission through said first electrode layer at said peak electroluminescence wavelength is substantially maximized** (e.g., [0065]; “chosen so that the transmission through [the transparent electrode] is greater than about eighty percent, and preferably at least about ninety percent”).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to create an optical interference layer having a thickness of a quarter wavelength of the emitted light from the display to create interference resulting in increased light emission from the display and decreased ambient light reflection, which improves display quality (Hofstra, abstract).

Regarding claim 14, Bechtel, Aziz, and Hofstra teach the invention as explained above regarding claim 13, and Bechtel further teaches **said first electrode layer is said cathode electrode layer** (e.g., p. 1, lines 23-24; “light leaves the electroluminescent device through a transparent cathode”).

Conclusion

THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event,

however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to MARY ELLEN BOWMAN whose telephone number is (571) 270-5383. The examiner can normally be reached on Monday-Thursday, 7:30 a.m.-6:00 p.m. EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Nimesh Patel can be reached on (571) 272-2457. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/M. B./
Examiner, Art Unit 2879

/NIMESHKUMAR D. PATEL/
Supervisory Patent Examiner, Art Unit 2879