צ פתרון שאלון

שאלה 1 (20 נקודות) אין קשר בין סעיפים א' וב'

א. (10 נקי) הוכיחו את הנוסחה הבאה

$$\sum_{k=0}^{n} \frac{(-1)^k}{k!(n-k)!} = 0$$

הדרכה: יש להשתמש בתכונות של המקדמים הבינומיים.

אין להשתמש באינדוקציה מתמטית.

arepsilon>0 ב. (10) הגדרת גבול של פונקציה x_0 בנקודה x_0 היא בנקודה x_0 היא בנקודה בנקו

$$|f(x)-L|, אז א $|x-x_0|<\delta$ קיים $\delta>0$, כך שלכל$$

. מבין הפסוקים הבאים בחרו את הפסוק שנסמנו lpha אשר מתאים להגדרה הנייל

על ידי שימוש בשקילויות רשמו את $\sim lpha$ ללא שימוש בקשר השלילה, כלומר את על ידי שימוש בשקילויות רשמו את

 x_0 אינו x_0 אינו גבול פונקציה x_0 בנקודה אינו גבול

$$\forall \varepsilon > 0 \Big[\exists \delta > 0 \Big(\forall x \Big(|x - x_0| < \delta \wedge |f(x) - L| < \varepsilon \Big) \Big) \Big]$$
 (1)

$$\forall \varepsilon > 0 \Big[\exists \delta > 0 \Big(\Big(\forall x \big| x - x_0 \big| < \delta \Big) \to \Big| f(x) - L \big| < \varepsilon \Big) \Big]$$
 (2)

$$\forall \varepsilon > 0 \Big[\exists \delta > 0 \Big(\forall x \Big(|x - x_0| < \delta \rightarrow |f(x) - L| < \varepsilon \Big) \Big) \Big] \quad \text{(3)}$$

$$\forall \varepsilon > 0 \Big\lceil \exists \delta > 0 \Big(|x - x_0| < \delta \rightarrow |f(x) - L| < \varepsilon \Big) \Big]$$
 (4)

פתרון שאלה 1

א

$$\sum_{i=0}^{n} \frac{(-1)^{i}}{i!(n-i)!} = \sum_{i=0}^{n} \frac{(-1)^{i} n!}{i!(n-i)! n!} = \frac{1}{n!} \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} = \frac{1}{n!} \sum_{i=0}^{n} (1)^{n-i} (-1)^{i} \binom{n}{i} = \frac{1}{n!} (1-1)^{n} = 0$$

- (1) השלמה למקדם בינומי (2) הוצאת קבוע מחוץ לסכום ושימוש בהגדרת מקדם בינומי
 - .(3) השלמה לביטוי הבינום כאשר a = 1, a = -1 השיב של הבינום.

הערה: אפשר גם להשתמש בתכונה שסכום המקדמים הזוגיים שווה לסכום המקדמים האי זוגיים ולכן התוצאה 0.

ב. הפסוק הנכון הינו פסוק (3) ושלילתו היא:

$$\sim \left(\forall \varepsilon > 0 \left[\exists \delta > 0 \left(\forall x \left(|x - x_0| < \delta \right) \rightarrow |f(x) - L| < \varepsilon \right) \right) \right] \right) \equiv$$

$$\equiv \exists \varepsilon > 0 \sim \left[\exists \delta > 0 \left(\forall x \left(|x - x_0| < \delta \right) \rightarrow |f(x) - L| < \varepsilon \right) \right) \right] \equiv$$

$$\equiv \exists \varepsilon > 0 \left[\forall \delta > 0 \sim \left(\forall x \left(|x - x_0| < \delta \right) \rightarrow |f(x) - L| < \varepsilon \right) \right) \right] \equiv$$

$$\equiv \exists \varepsilon > 0 \left[\forall \delta > 0 \left(\exists x \sim \left(\sim \left(|x - x_0| < \delta \right) \vee |f(x) - L| < \varepsilon \right) \right) \right] \equiv$$

$$\equiv \exists \varepsilon > 0 \left[\forall \delta > 0 \left(\exists x \left(\left(|x - x_0| < \delta \right) \wedge \sim \left(|f(x) - L| < \varepsilon \right) \right) \right) \right] \equiv$$

$$\equiv \exists \varepsilon > 0 \left[\forall \delta > 0 \left(\exists x \left(\left(|x - x_0| < \delta \right) \wedge |f(x) - L| < \varepsilon \right) \right) \right] =$$

$$\equiv \exists \varepsilon > 0 \left[\forall \delta > 0 \left(\exists x \left(\left(|x - x_0| < \delta \right) \wedge |f(x) - L| < \varepsilon \right) \right) \right) \right]$$

x מספר s>0 לא גבול של פונקציה בנקודה s>0, אם קיים s>0 קיים לא גבול של פונקציה בנקודה . $|f(x)-L| \geq \varepsilon$ וגם $|x-x_0| < \delta$

שאלה 2 (20 נקודות) אין קשר בין סעיפים א' וב'

- א. (10 נקי) סבא הקציב סכום של לכל היותר 30 \square לקנית מתנות לשלושת נכדיו. בחנות יש צעצועים במחיר \square עד 10 עד 10 (המחיר של כל צעצוע הוא מספר שלם). כמה אפשרויות יש לבחירת המתנות?
 - .I הציגו את הבעיה באמצעות פונקציות יוצרות.
 - .I פתרו את הבעיה באמצעות סעיף .II
 - \mathbb{Z} על ידי R על נגדיר יחס על קבוצת השלמים (נגדיר יחס מעל קבוצת ב.

 $x^2 - y^2$ אם ורק אם ורק אם $x^2 - y^2$ מתחלק ב $(x, y) \in R$

 $[-5]_R$ ורשמו במפורש את מחלקת השקילות מעל $\mathbb Z$ ורשמו במפורש את יחס שקילות מעל

פתרון שאלה 2

 $2 \le x_i \le 10, \quad i=1,2,3$ כאשר כאשר $x_1+x_2+x_3 \le 30:$ א. I א. וועלינו למצוא את מספר הפתרונות הטבעיים למשוואה: $x_1+x_2+x_3 \le 30:$ בעיה שקולה: מספר הפתרונות למשוואה: $x_1+x_2+x_3+x_4=30:$ בעיה שקולה: מספר הפתרונות למשוואה: $x_1+x_2+x_3+x_4=30:$

 $f(x) = (x^2 + \dots + x^{10})^3 (1 + x + \dots)$: הפונקציה היוצרת

$$f(x) = \left(x^2 \left(1 + \dots + x^8\right)\right)^3 \left(1 + x + \dots\right) = x^6 \cdot \left(\frac{1 - x^9}{1 - x}\right)^3 \cdot \frac{1}{1 - x} = x^6 \cdot \left(1 - x^9\right)^3 \cdot \left(\frac{1}{1 - x}\right)^4 : \text{ II}$$

 $f(x) = x^6 \cdot \left(1 - 3x^9 + 3x^{18} - x^{27}\right) \sum_{k=0}^{\infty} D(4,k) x^k$ בפונקציה: x^{30} של של המקדם של

 $\left(1-3x^9+3x^{18}-x^{27}\right)\sum_{k=0}^{\infty}D(4,k)x^k$: במכפלה x^{24} שהוא המקדם של

 $D(4,24) - 3D(4,15) + 3D(4,6) = {24 \choose 3} - 3{15 \choose 3} + 3{6 \choose 3} = 719$ מספר האפשרויות לכן: $24 + 3D(4,15) + 3D(4,6) = {24 \choose 3} = 719$

. ב. לכל $(x,x)\in R$ מתקיים $(x,x)\in R$ לכן היחס מתחלק ב- 10. לכן היחס הינו רפלקסיבי. ב.

יהי $(y,x)\in R$ מתחלק ב $(y,x)\in R$ גם מתחלק ב $(y,x)\in R$ מתחלק ב $(y,x)\in R$ מתחלק ב $(y,x)\in R$ מוכיח כי היחס הינו סימטרי.

נניח כעת כי y^2-z^2-1 מתחלקים ב y^2-z^2-1 ו x^2-y^2 , כלומר כלומר $(y,z)\in R-1$ מתחלקים ב $(x,y)\in R$ מתחלק ב $(x,z)\in R$ מתחלק ב $(x,z)\in R$ מתחלק ב $(x,z)\in R$ והיחס טרנזיטיבי.

. הראינו כי R סימטרי, רפלקסיבי וטרנזיטיבי. זה מוכיח כי R יחס שקילות.

$$[-5]_R = \{x \in \mathbb{Z} \mid (x, -5) \in R\} = \{x \in \mathbb{Z} \mid x^2 - 25 = 10k, k \in \mathbb{Z}\} = \{x \in \mathbb{Z} \mid x^2 = 10k + 25, k \in \mathbb{Z}\} = \{x \in \mathbb{Z} \mid x^2 = 10k + 5, k \in \mathbb{Z}\} = \{\pm 5, \pm 15, \pm 25, \pm 35, ...\}$$

אין קשר בין סעיפים א' וב' שאלה 3 (20 נקודות)

א. (12 נקי) קנגורו יכול לעשות צעד אחד של מטר או לדלג למרחק 2 מטר.

. מטרים ח ${\bf n}$ את עייי של הדרכים את מספר את מספר מסמן עייי מסמן את מספר מספר מספר מסמן עייי

- . $a_{\scriptscriptstyle n}$ רשמו תנאי התחלה וסדרה רקורסיבית עבור .I
 - . a_n רשמו סדרה מפורשת עבור .II

. בתשובה הסופית השאירו ביטויים אי רציונלים מסוג $a\sqrt{b}$ ללא חישוב ערך עשרוני

. ב. (8 נקי) מחלקים $\, 9 \,$ ילדים בעלי שמות שונים לקבוצות, כך שבכל קבוצה יש לפחות $\, 6 \,$ ילדים. כמה אפשרויות חלוקה כאלה קיימות!

פתרון שאלה 3

 $a_{\scriptscriptstyle \rm I}=1$: אחד צעד עייי עייי ניתן ניתן מטר אחד .I א.

 $a_2=2$ מרחק של שני מטרים אפשר לעבור עייי שני צעדים או עייי דילוג אחד

או עייי הוספת דילוג למסלול של n-1 או עייי הוספת צעד אחד למסלול של מכרחק של n

$$a_n = a_{n-1} + a_{n-2}$$
 : הסדרה הרקורסיבית. n-2

 $a_0 = 1 \Longleftarrow 2 = 1 + a_0 \Longleftarrow a_2 = a_1 + a_0$ נמצא את לפי הסדרה ותנאי ההתחלה: a_0

$$r^2 - r - 1 = 0$$
: המשוואה האופיינית. II

$$a_n = A \cdot \left(rac{1-\sqrt{5}}{2}
ight)^n + B \cdot \left(rac{1+\sqrt{5}}{2}
ight)^n$$
 : השורשים $r = rac{1\pm\sqrt{5}}{2}$

$$1 = A + B$$
$$1 = A \cdot \left(\frac{1 - \sqrt{5}}{2}\right) + B \cdot \left(\frac{1 + \sqrt{5}}{2}\right)$$

$$A = \frac{\sqrt{5} - 1}{2\sqrt{5}}, \quad B = \frac{\sqrt{5} + 1}{2\sqrt{5}}$$
 : המקדמים

$$a_n = \left(\frac{\sqrt{5}-1}{2\sqrt{5}}\right) \cdot \left(\frac{1-\sqrt{5}}{2}\right)^n + \left(\frac{\sqrt{5}+1}{2\sqrt{5}}\right) \cdot \left(\frac{1+\sqrt{5}}{2}\right)^n$$
 : הסדרה

ב. מספר קבוצות הילדים לא יכול להיות גדול מ3-6, כי אחרת בהכרח תהיה קבוצה עם פחות משלשה ילדים.

נעבור על האפשרויות : לקבוצה אחת, שתי קבוצות ושלוש קבוצות. נעבור אם יש רק קבוצה אחת, אז יש רק אפשרות אחת לחלוקה כזאת. 1

- , אפשרויות בחירות או $\left(\frac{9}{3}\right)$ אפשרויות במקרה הראשון או $\left(\frac{9}{3}\right)$ אפשרויות בחירה. 2

$$\binom{9}{3} + \binom{9}{4} :$$
ובמקרה השני $\binom{9}{4}$ אפשרויות. סהייכ

3. אם יש שלוש קבוצות, אז בכל אחת מהן יש 3 ילדים ולכן מספר האפשרויות הוא:

$$\cdot \frac{1}{3!} \cdot \binom{9}{3} \cdot \binom{6}{3} \cdot \binom{3}{3} = \frac{9!}{(3!)^4}$$

 $.1 + {9 \choose 3} + {9 \choose 4} + \frac{9!}{(3!)^4}$: נסכם את 3 המקרים והתשובה הסופית:

שאלה 4 (20 נקודות) אין קשר בין סעיפים א' וב'

- א. (12 נקי) מטילים 10 קוביות זהות. מהו מספר האפשרויות שבהטלה יופיעו כל 6 פאות הקובייה? השתמשו בעקרון ההכלה וההדחה.
 - ב. (8 נקי) נתון הגרף הבא. הוסף לגרף מספר מינימלי של צלעות כך שבגרף יהיה מעגל אוילר.

4 פתרון שאלה

את קבוצת (k=1,2,...,6) $A_k=-$ את נסמן ב- את קבוצת (k=1,2,...,6) את קבוצת נסמן ב- את קבוצת (a=1,2,...,6) את (a=1,2,...,6) את קבוצת (a=1,2,...,6) את (a=1,2

$$|U| = 6^{10}$$

$$|A_{k}| = 5^{10} \qquad \times \binom{6}{1}$$

$$|A_{k} \cap A_{l}| = 4^{10} \qquad \times \binom{6}{2}$$

$$|A_{k} \cap A_{l} \cap A_{m}| = 3^{10} \qquad \times \binom{6}{3}$$

$$|A_{k} \cap A_{l} \cap A_{m} \cap A_{j}| = 2^{10} \qquad \times \binom{6}{4}$$

$$|A_{k} \cap A_{l} \cap A_{m} \cap A_{j} \cap A_{l}| = 1^{10} \qquad \times \binom{6}{5}$$

$$|A_{1} \cap A_{2} \cap A_{3} \cap A_{4} \cap A_{5} \cap A_{6}| = 0$$

מכאן

$$\left| \overline{A_1} \cap \overline{A_2} \cap \dots \cap \overline{A_6} \right| = 6^{10} - \binom{6}{1} 5^{10} + \binom{6}{2} 4^{10} - \binom{6}{3} 3^{10} + \binom{6}{4} 2^{10} - \binom{6}{5} = 6^{10} - 6 \cdot 5^{10} + 15 \cdot 4^{10} - 20 \cdot 3^{10} + 15 \cdot 2^{10} - 6 = 16435440$$

ב. בגרף הנתון לא קיים מעגל אויילר כי יש קדקודים שדרגתם אי זוגית 1 ו-9.

נחבר את 2 הקדקודים האלו על ידי צלע ונקבל גרף קשיר שבו כל דרגות הקדקודים זוגיות. לכן קיים בגרף מעגל אויילר.

שאלה **5 (20 נקודות)** א. (10 נקי) אין קשר בין סעיפים א' וב'

:הוכיחו עבור קבוצות A,B סופיות או אינסופיות ש

$$A \subseteq B \implies |A| \le |B|$$

נגדיר קבוצות באופן הבא: II.

$$A_i = \{x \in \mathbb{R} \mid i - 1 < x < i\}, \quad i = 1, 2, 3,$$

$$\bigcup_{i=1}^{\infty} A_i$$
 : חשבו את עוצמת

ב. (10 נקי) מבין המספרים הטבעיים החיוביים שקטנים מ-50, בוחרים 14 מספרים אי זוגיים שונים. הראו כי מבין המספרים שנבחרו יש לפחות זוג אחד של מספרים כך שסכומם 48.

פתרון שאלה 5

I(x) = x $I: A \rightarrow B$ קיימת הפונקציה $A \subset B$: א. I. כיוון ש

 $|A| \leq |B|$ נקבל \leq נקבל מהגדרת או היא חחייע ולכן מהגדרת פונקציה זו היא

X-ה אינם של החלק פתוחים פתוחים הינם הינם איר החלק ו $A_i = \left\{x \in \mathbb{R} \mid i-1 < x < i\right\}, \quad i = 1, 2, 3,$

$$A_1 = (0,1), A_2 = (1,2), ..., A_n = (n-1,n), ...$$

. א כל קטע פתוח על הישר הממשי עוצמתו

 $A_i \cap A_i = \phi, \quad i \neq j$. כל הקטעים זרים זה לזה

מספר הקטעים הוא בן מניה.

$$(0,1)\subseteq igcup_{i=1}^\infty$$
 $A_i\subseteq R$: מתקיים

$$\left|(0,1)\right| \leq \left|\bigcup_{i=1}^{\infty} A_{i}\right| \leq \left|R\right| : I$$
 לפי סעיף

$$\left|igcup_{i=1}^{\infty} A_i
ight| =$$
אבל: אבל אבל אכן ממשפט $\left| (0,1)
ight| = \left| R
ight| =$ אבל:

 $oldsymbol{\epsilon}$ ב. בוחרים 14 מספרים אי זוגיים שונים מבין המספרים $\{49,...,49\}$. נתבונן במחלקות הבנויות מהמספר הבודד $\{49\}, \{1,47\}, \{3,45\}, ..., \{23,25\}$: 48 והזוגות הבאים אשר סכומם הוא

מספר המחלקות הוא 13. למחלקות אלו נתייחס כתאים ו-14 המספרים שנבחרו הינם יונים.

אם נשייך את 14 המספרים (יונים) שנבחרו ל 13 התאים , נקבל מעקרון שובך היונים שיש לפחות תא אחד ובו 2 מספרים. כיוון שנבחרו מספרים שונים, לא ייתכן זוג בתא מייצג את המספר בודד 49. ולכן ,

.48 וסכומו {1,47}, {3,45}, ..., {23,25}

יש זוג מספרים באחד התאים:

אין קשר בין סעיפים א' וב' שאלה 6 (20 נקודות)

- $n! > 3^n$: מתקיים מתקיים מבעי, 10 נקי) הוכיחו כי לכל
- A,B,C מתקיים ($A \setminus B$) מתקיים ($A \setminus B$) מתקיים (10 נקי) הוכיחו כי לכל קבוצות

. נמקו ($A \setminus B$) = ($A \setminus C$) ($C \setminus B$) נמקו נמקו.

פתרון שאלה 6

n = 7: א. בסיס האינדוקציה: נראה כי הטענה נכונה עבור

$$7! = 5040, \quad 3^7 = 2187$$

ולכן הטענה נכונה במקרה זה.

:צעד האינדוקציה

 \cdot 7- מסוים הגדול מ מור מכונה עבור n מסוים הגדול מ

$$n! > 3^n$$

:נוכיח אותה עבור n+1. כלומר

$$(n+1)! > 3^{n+1}$$

$$(n+1)! = (n+1) \cdot n! > (n+1) \cdot 3^n > 3 \cdot 3^n = 3^{n+1}$$

- ! הגדרת (1)
- . n הנחת האינדוקציה עבור המספר
 - n > 7 (3)

 $n \ge 7$ טבעי, מסקנה: הטענה $n! > 3^n$ מתקיימת לכל

 $x \in A \land x \notin B$ יהי, $x \in A \setminus B$ יהי

 $x \in C \setminus B$ נקבל כי $x \in C \land x \notin B$, כלומר $x \in C$

 $x \in A \setminus C$ נקבל כי $x \in A \land x \notin C$ נקבל ני $x \notin C$ אם

 $x \in (A \setminus C) \cup (C \setminus B)$ קיבלנו כי בכל מקרה $x \in A \setminus C$ או $x \in A \setminus C$

השוויון לא מתקיים, כי למשל עבור הקבוצות $A = \{1,2\}$, $B = \{4\}$, $C = \{3\}$ מקבלים:

$$A \setminus B = \{1, 2\}$$
 $A \setminus C = \{1, 2\}$ $C \setminus B = \{3\}$

$$A \setminus B = \{1, 2\} \neq (A \setminus C) \cup (C \setminus B) = \{1, 2, 3\}$$