Lab Nr. 7, Numerical Calculus

Lagrange Interpolation II

Newton Form; Aitken's Algorithm

- 1. Implement Lagrange interpolation, in Newton's divided differences form.
- 2. Implement Lagrange interpolation, using the Aitken-Neville algorithm.

Applications

- **1.** (This is a good problem to also do "by hand".) Consider the function $f(x) = \cos(\pi x)$ and the nodes $\{0, 1/3, 1/2, 1\}$.
 - a) Find the Lagrange polynomial L_3f using Newton's divided differences;
 - **b**) Find a bound for the error $R_3 f$;
 - c) Plot f and L_3f , on the same set of axes, for $x \in [0,1]$.
 - **d**) Use $L_3 f$ to approximate $\cos\left(\frac{\pi}{5}\right)$;
 - e) Find a bound for the error of this approximation.
- **2.** Approximate $\sqrt{2}$ using Aitken's algorithm to interpolate the function $f(x) = 2^x$ at 9 equidistant nodes on the interval [-4, 4].
- **3.** The following table contains values of $\lg x \ (= \log_{10} x)$ rounded to 7 decimals:

x	$\lg x$
1000	3.0000000
1010	3.0043214
1020	3.0086002
1030	3.0128372
1040	3.0170333
1050	3.0211893
	•

Use Lagrange interpolation with divided differences to approximate $\lg x$, for $x = 1001, 1002, \dots, 1009$.

Optional

4. The following table contains values of $\sin x$ at equally spaced nodes (given in degrees, not radians):

\boldsymbol{x}	$\lg x$
39°	0.6293204
41°	0.6560590
43°	0.6819984
45°	0.7071068
47°	0.7313597
49°	0.7547096
51°	0.7771460

Use Newton interpolation with forward differences to approximate $\sin 40^{\circ}$, $\sin 44^{\circ}$ and $\sin 50^{\circ}$.