Wanneer is een getal priem?

Inhoud

- Definitie
- Methodes
 - Naieve methodes
 - Probabilistische tests
 - Deterministische methodes
- Besluit

Definitie priemgetal

Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf.

Methodes

- 3 soorten
 - Naieve methodes
 - Probabilistische methodes
 - Deterministische methodes

Naieve methodes

- Principe: kleinere getallen aflopen opzoek naar een deler
- Eenvoudig (+)
- 100% zekerheid correcte oplossing (+)
- Veel werk (-)

Naive methodes

- N | M met 2<M<N-1
 - Alle getallen aflopen
 - Zeer veel werk
 - Nodig?
- N | M met 2<M<sqrt(N)
 - Verbetering : getallen aflopen, stoppen bij wortel
 - Immers als deler > wortel => quotiënt < wortel
 - Quotiënt ook een deler => reeds gepasseerd.

Naive methodes

- N | M met 2<M<sqrt(N)
 M ook priem
 - Sneller
 - Alle kleinere priemgetallen moeten gekend zijn
- Zeef van Eratosthenes
 - Alles aflopen
 - Priemveelvouden' schrappen

Probabilistische tests

- "Waarschijnlijk" priem
- Samengesteld getal
 - Positief geheel getal deelbaar door minstens 2 priemgetallen
 - Bv 15 = 3 x 5
- Snel (+)
- Foute oplossing mogelijk (-)

Structuur Probabilistisch testen

- Aantal waarden a
- Voor elke waarde/getuige een gelijkheid testen
- Gelijkheid afhankelijk van algoritme
- Gelijkheid klopt niet => getal is zeker niet priem
- Herhalen -> zekerheid verbetere
 - -> gelijkheid klopt niet

Probabilistische test

- Priemtest van Fermat (vb RSA encryptie)
- Miller-Rabin

Priemtest van Fermat

- Gebaseerd op de kleine stelling van fermat.
- Reeks getallen a, deze zijn de 'getuigen'
- Kleine stelling van fermat: als een getal priem is dan geldt:

$$a^p \equiv a \pmod{p} \iff a^(p-1) \equiv 1 \pmod{p}$$

Als priem dan geldt vgl, niet omgekeerd

Aantonen stelling van Fermat

- Getal a => positief, niet deelbaar door p
- Beschouw de reeks : a,2a,3a,...,(p-1)a
- Rest na gehele deling = permutatie van 1,2,3,..,(p-1)
 Dit kan aangetoond worden met het dilemma van Euclides
- Hierdoor geldt :
 a*2a*3a*...(p-1)a = 1*2*3*...(p-1) (mod p)

Aantonen stelling van Fermat

• Uitwerken geeft:

```
a^2a^3a^3\dots(p-1)a \equiv 1^2a^3\dots(p-1) \pmod{p}
a^p=1 (p-1)! \pmod{p}
```

• (p-1)! Wegdelen, dit mag want:

```
ux \equiv uy \pmod{p} \iff u(x-y) \equiv 0 \pmod{p}

p \mid u(x-y) \implies p \mid (x-y) \pmod{p}

OF p \mid u \implies na deling : u \equiv 0 \pmod{p}
```

• Zo krijgen we a^(p-1) \equiv 1 (mod p)

Voorbeeld bewijs

- vb a=3, p=7
- eerste reeks veelvouden:

rest na deling door 7

Dat is dus een permutatie van

Voorbeeld bewijs

Als we deze getallen vermenigvuldigen krijgen we:

```
3*6*9*12*15*18 \equiv 3*6*2*5*1*4 \equiv 1*2*3*4*5*6 \pmod{7}
```

Vereenvoudigen geeft

```
3^6 * (1^2*3^4*5^6) \equiv (1^2*3^4*5^6) \pmod{7}
3^6 \equiv 1 \pmod{7}
```

Voorbeeld stelling

- Is p = 221 priem?
- Stel a = 38 (gekozen)
- Test gelijkheid
 - $a^{(p-1)} \equiv 1 \pmod{p} => 38^2 \equiv 1 \pmod{221}$
 - Priem?
- 2e test a=26
 - $-26^220 \equiv 169! \equiv 1 \pmod{221}$
 - P is niet priem! => 13*17 = 221

Deterministische methodes

- Trager dan probabilistisch (-)
- Zeker van oplossing (+)

Priemtest van fermat

- Is gebaseerd op de kleine stelling van fermat (fermat's little theorem)
- Kleine stelling van fermat => als een getal priem is dan geldt X

Deterministische methodes

- Miller-test
 - Riemann-hypothese (onbewezen)
- AKS test
 - Origineel
 - Verbeteringen

Besluit

- Niet zo eenvoudig
- Afweging eenvoud, tijd en juistheid oplossing