Data Mining

Tamás Budavári - budavari@jhu.edu Class 3

- · Sampling from distributions
- Density estimation

Samples, PDFs in 1- and 2-D

Descriptive Statistics

• Characterization of location, dispersion, etc.

	Sample Estimates (notations)	Probabilisty Density Functions
Average	$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i = \left\langle x_i \right\rangle_{i=1}^{N}$	$\mu = \mathbb{E}[X] = \int x p(x) dx$
Variance	$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2}$	$Var[X] = \int (x-\mu)^2 p(x) dx$

· Useful connection to sampling

Sampling from distributions

• Uniform between *a* and *b*: scale and shift

$$U_{ab} = a + (b - a) U_{01}$$

• Inverse transform sampling in ${\mathbb R}$

$$X = \mathrm{CDF}^{-1}(U_{01})$$

Unhomework: prove it!

• Rejection sampling - also works in \mathbb{R}^N

Numerical Methods

If the $\{x_i\}$ set is sampled from the probability density function $p(\cdot)$, the following will be true:

Average

$$\mathbb{E}[X] = \int x \, p(x) \, dx \, \approx \, \frac{1}{N} \, \sum_{i} x_{i}$$

Variance

$$\mathbb{E}[(X-\mu)^{2}] = \int (x-\mu)^{2} p(x) dx \approx \frac{1}{N} \sum_{i} (x_{i} - \mu)^{2}$$

compare to

$$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2}$$

Bessel correction: N-1 independent $(x_i - \bar{x})$ differences

$$\sum_{i=1}^{N} (x_i - \bar{x}) = ??? \dots 0 \dots$$

In [1]: %pylab inline
from scipy.stats import norm as gaussian

Populating the interactive namespace from numpy and matplotlib

```
In [2]: # generate sample with size N
    mu, sigma, N = 0, 1, 10
    x = gaussian.rvs(mu, sigma, N)

avg = np.mean(x)
    # variance estimates
    s2 = np.sum( (x-avg)**2 ) /(N-1)  # correct
    s2n = np.sum( (x-avg)**2 ) / N  # biased
    s2k = np.sum( (x- mu)**2 ) / N  # known mean
    # standard deviation estimates
    sqrt(s2), sqrt(s2n), sqrt(s2k)
```

Out[2]: (1.0277817857798131, 0.97503941420983975, 0.99793347576774416)

```
In [3]: # generate M runs with N samples each
mu, sigma, N, M = 0, 1, 10, 10000
X = gaussian.rvs(loc=mu, scale=sigma, size=(N,M))
avg = np.mean(X, axis=0)
print (X.shape, avg.shape)

# variance estimates - check out broadcasting in X-avg
s2 = np.sum( (X-avg)**2, axis=0) / (N-1) # correct
s2n = np.sum( (X-avg)**2, axis=0) / N # biased
s2k = np.sum( (X- mu)**2, axis=0) / N # known mean

print (s2.shape)

# standard deviation estimates
s, sn, sk = np.sqrt(s2), np.sqrt(s2n), np.sqrt(s2k)
print (mean(s), mean(sn), mean(sk))

hist(s , 41, range=[0,2], color='r', alpha=0.5);
hist(sn, 41, range=[0,2], color='b', alpha=0.5);
```


Density Estimation

- Histograms
 - Width of bins, h
 - Start of bin boundary, x_0

$$Hist(x) = \frac{1}{N} \sum_{i} \mathbf{1}_{bin(x_i; x_0, h)}(x)$$

- Kernel Density Estimation (KDE)
 - Bandwidth *h*

$$KDE(x) = \frac{1}{N} \sum_{i} K_h(x - x_i) = \frac{1}{Nh} \sum_{i} K\left(\frac{x - x_i}{h}\right)$$

- Can use different $K(\cdot)$ kernel functions
 - E.g., Uniform, Triangular, Gauss, Epanechnikov

See animations at http://www.mglerner.com/blog/?p=28 (http://www.mglerner.com/blog/?p=28 (http://www.mglerner.com/blog/?p=28)

Kernel Function

- Finite vs Infinite support
- Numerical evaluations
- Frequently used kernels

Learn more about KDE https://jakevdp.github.io/blog/2012/09/12/dynamic-programming-in-python/) and also check out Bayesian Blocks https://jakevdp.github.io/blog/2012/09/12/dynamic-programming-in-python/)

- tutorials by Jake Vanderplas

Detour: Dirac delta

• In the limit of $h \to 0$, the kernel will become strange:

 $\operatorname{\bf Dirac's} \delta$ "function" is 0 everywhere except at 0 such that

$$\int \delta(x) \, dx = 1$$

• Interesting properties, e.g.,

$$\int f(x)\,\delta(x-a)\,dx = f(a)$$

• See distribution theory and functionals for more background

An interesting result

• Bad density estimation but if...

$$p(x) = \frac{1}{N} \sum_{i=1}^{N} \delta(x - x_i)$$

• The expectation value

$$\mathbb{E}[X] = \int x \frac{1}{N} \sum_{i=1}^{N} \delta(x - x_i) dx$$

$$\mathbb{E}[X] = \frac{1}{N} \sum_{i=1}^{N} \int x \, \delta(x - x_i) \, dx$$

$$\mathbb{E}[X] = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Unhomework

- 1. Sample from a mixture of two Gaussians using uniform random numbers in the [0,1) interval. Try different (μ_1, σ_1) and (μ_2, σ_2) values!
- 2. Build different density estimators and compare to the original PDF. Try histogramming and KDE with different parameters.