PSE605A (Photonics Lab Techniques)

Lab Report: Experiment 2

Diode Laser

Submitted by
Md Sk Sahidulla
Roll Number: 231160005
M.Tech,2023

Submitted to
Dr. Pratik Sen
Mr. Beyant Singh Chandrakar
(TA)

Center for Lasers and Photonics IIT KANPUR Academic Year 2023-2024 Date: 12/02/2024

Contents

1	Objectives	3			
2	Apparatus				
3	Plot	3			
	3.1 V-I Characteristics by slope extension method	3			
	3.2 V-I Characteristics by slope intersection method	4			
	3.3 V-I characteristics by 1st derivative method	5			
	3.4 V-I characteristics by 2nd derivative method	6			
	3.5 L-I Characteristics by slope extension method	6			
	3.6 L-I Characteristics by slope intersection method	7			
	3.7 L-I characteristics by 1st derivative method	8			
	3.8 L-I characteristics by 2nd derivative method	9			
	3.9 Far field pattern at 26 cm (horizontal)	10			
	3.10 Far field pattern at 26 cm (vertical)	10			
	3.11 Far field pattern at 28.5 cm (horizontal)	11			
		11			
	3.13 Intensity plot	12			
	•				
4		13			
	4.1 Sample calculation	13			
	4.2 Threshold Voltage	13			
	4.3 Threshold Current	13			
	4.4 Differential efficiency (Watt/Amp)	13			
	4.5 The threshold power conversion efficiency	13			
	4.6 To find Horizontal beam spot size	14			
	4.7 To find Vertical beam spot size	14			
5	Error calculation	15			
•	5.1 Threshold voltage	15			
	5.2 Threshold current	15			
6		15			
	0.1	15			
	6.2 From L-I graph	15			
	6.3 Threshold Power conversion efficiency	15			
	6.4 Differential efficiency of laser	15			
	6.5 far field pattern	16			
7	Discussion & Conclusions	16			
8	Appendix	16			
_	8.1 Source of Error	16			
	8.2 Frequency Chopper	17			
	8.3 Locking Amplifier	17			
	200mm8 1mmpmor	٠,			

9	Obs	servation Table		18
	9.1	V-I characterstics	 	 18
	9.2	L-I characteristics	 	 19
	9.3	Beam parameter	 	 20
	9.4	References	 	 23
Li	st (of Tables V-I characteristics	 	 18
	2	L-I characterstics	 	 19
	3	Far field at 26 cm (horizontal)	 	 20
	4	Far field at 26 cm (vertical)	 	 21
	5	Far field at 28.5 cm (horizontal)	 	 21
	6	Far field at 28.5 cm (vertical)	 	 22

Diode Laser Characterstics

1 Objectives

Measuring:

- a) V-I and L-I characteristics of the diode laser
- b) Far-field pattern of the laser diode by recording the angular variance/dependence of the radiation; and its variation with distance and power level. This is to be done in two cases, a plane perpendicular and parallel to the junction plane.
- c) Spectrum of the diode laser.

2 Apparatus

Diode laser (632 nm), Diode laser power supply, Lock in amplifier, Chopper, Chopper regulator, Si photodiode detector, Biasing circuit, Spectrum Analyzer (with spectrograph software), Multimeter, Fiber optic cable, Connecting cables etc., Rotational stage(position controller software), Desktop computer.

3 Plot

3.1 V-I Characteristics by slope extension method

Figure 1: V-I Characteristics by slope extension method

From figure, it is found that the slope is intersecting at a point x=1.9874. Hence, The threshold voltage by slope extension method is 1.9874 volt.

3.2 V-I Characteristics by slope intersection method

Figure 2: V-I Characteristics by slope intersection method

From figure, it is found that the slope is intersecting at a point x=1.95937. Hence, The threshold voltage by slope intersection method is 1.95937 volt.

3.3 V-I characteristics by 1st derivative method

Figure 3: V-I Characteristics by 1st derivative method

In this method, we take the 1st derivative of the V-I curve. Here the maximum is at Y=90.

So, the 50% is at Y=45 and the corresponding X value is 2.09951. Hence the threshold voltage by the first derivative method is 2.09951 V.

3.4 V-I characteristics by 2nd derivative method

Figure 4: V-I Characteristics by 2nd derivative method

From the plot, we obtain maximum point at Y=3750. Hence, the Threshold voltage by 2nd derivative approach is 2.32 V.

3.5 L-I Characteristics by slope extension method

Figure 5: L-I Characteristics by slope extension method

From figure, it is found that the slope is intersecting at a point x=20.573. Hence, The threshold current by slope extension method is 20.573 mA.

3.6 L-I Characteristics by slope intersection method

Figure 6: L-I Characteristics by slope intersection method

From figure, it is found that the slope is intersecting at a point x=20.0166. Hence, The threshold voltage by slope intersection method is 20.0166 mA.

3.7 L-I characteristics by 1st derivative method

Figure 7: L-I Characteristics by 1st derivative method

We obtain maxima at a point Y=340.476.

So, approximately 50% occur at Y= 168.263 and the corresponding value of x = 22.2769.

Hence, the threshold current is 22.2769 mA.

3.8 L-I characteristics by 2nd derivative method

Figure 8: V-I Characteristics by 2nd derivative method

Here the maximum value of y occurs at x=22.1999. Hence the threshold current is 22.1999 mA.

3.9 Far field pattern at 26 cm (horizontal)

Figure 9: Far field pattern at $26~\mathrm{cm}$ (horizontal)

The value of C1 = 24.7675 (from curve fit).

3.10 Far field pattern at 26 cm (vertical)

Figure 10: Far field pattern at 26 cm (vertical)

The value of C1 = 5.7714 (from curve fit).

3.11 Far field pattern at 28.5 cm (horizontal)

Figure 11: Far field pattern at $28.5~\mathrm{cm}$ (horizontal)

The value of C1 = 21.8334 (from curve fit).

3.12 Far field pattern at 28.5 cm (vertical)

Figure 12: Far field pattern at 28.5 cm (vertical)

The value of C1 = 5.7528 (from curve fit).

3.13 Intensity plot

Figure 13: Intensity plot

Maximum intensity 37000 at wavelength of 635.58 nm.

4 Calculations

4.1 Sample calculation

Laser output voltage = 8mV Resistance(R)=1k Ω $I_p = \frac{8 \text{ mv}}{10^3} = 8 \mu A$ $Power(P) = \frac{I_p}{Responsivity} = \frac{8*10^{-6}}{0.42} = 19.047 \mu W$

4.2 Threshold Voltage

To get the threshold voltage of the diode laser, We calculate the average of all four threshold voltage

$$V_{th} = \frac{1.9874 + 1.95937 + 2.09951 + 2.32}{4} = 2.09157 \ V$$

4.3 Threshold Current

To get the threshold current of the diode laser, We calculate the average of all the four threshold current

$$I_{th} = \frac{20.573 + 20.0166 + 22.2769 + 22.1999}{4} = 21.2666 \ mA$$

4.4 Differential efficiency (Watt/Amp)

From L-I char curve, we can find out the differential power efficiency which is equal to the slope of the curve since it is define by $\frac{dP}{dI}$.

We get 2 coordinate (21.5,70) and (22,100).

Therefore,

$$\frac{dP}{dI} = \frac{100-70}{22-21.5} = 60~\mu W/mA$$

4.5 The threshold power conversion efficiency

Threshold current =21.2666 mA

Corresponding threshold voltage =2.09157V

The output power at the threshold current = $60 \mu W$

Threshold Power conversion efficiency:

$$\frac{P_{out}}{V_{th}I_{th}} = \frac{60 \ \mu W}{2.09157 \ V * 21.2666 \ mA} = 1.358 * 10^{-3}$$

4.6 To find Horizontal beam spot size

• At distance 26cm

from figure 9 we get, C1 = 24.7675Angular beam width(θ):

$$\theta = \sqrt{2} * C_1 = 35.026^0$$

Beam spot $size(W_0)$:

$$W_0 = \frac{2\pi L}{360}\theta = 15.89 \ cm$$

• At distance 28.5cm

from figure 11 we get, C1 = 21.8334Angular beam width(θ):

$$\theta = \sqrt{2} * C_1 = 30.8771^0$$

Beam spot $size(W_0)$:

$$W_0 = \frac{2\pi L}{360}\theta = 15.3588 \ cm$$

4.7 To find Vertical beam spot size

At distance 26cm

from figure 10 we get, C1 = 5.7714Angular beam width(θ):

$$\theta = \sqrt{2} * C_1 = 8.1620^0$$

Beam spot $size(W_0)$:

$$W_0 = \frac{2\pi L}{360}\theta = 3.7038 \ cm$$

At distance 28.5cm

from figure 12 we get, C1 = 5.7528 Angular beam width(θ):

$$\theta = \sqrt{2} * C_1 = 8.1357^0$$

Beam spot size(W_0):

$$W_0 = \frac{2\pi L}{360}\theta = 4.0468 \ cm$$

5 Error calculation

5.1 Threshold voltage

Obtained value from the experiment= 2.09157 VActual value from the data sheet = 2.2 V

$$Percentileerror = \left| \frac{2.2 - 2.09157}{2.2} * 100\% \right| = 4.93~\%$$

5.2 Threshold current

Obtained value from the experiment= 21.2666 mA Actual value from the data sheet = 20 mA

$$Percentileerror = \left| \frac{20 - 21.2666}{20} * 100\% \right| = 6.33 \%$$

6 Results

6.1 From V-I graph

- 1) The threshold voltage obtained by slope extension method =1.9874 V
- 2) The threshold voltage obtained by slope intersection method = 1.95937 V
- 3) The threshold voltage obtained by first derivative approach = 2.09951 V
- 4) The threshold voltage obtained by the second derivative approach = 2.32 V The threshold voltage of the diode laser Vth = 2.09157 V

6.2 From L-I graph

- 1) The threshold current obtained by slope extension method =20.573 mA
- 2) The threshold current obtained by the slope intersection method = 20.0166 mA
- 3) The threshold current obtained by the first derivative approach = 22.2769 mA
- 4) The threshold current obtained by the second derivative approach = 22.1999 $_{\rm mA}$

The threshold current of the diode laser Vth = 21.2666 mA

6.3 Threshold Power conversion efficiency

Threshold Power conversion efficiency = $1.358 * 10^{-3}$

6.4 Differential efficiency of laser

Differential efficiency of laser $0.06 \ mW/mA$

6.5 far field pattern

Horizontal beam spot size at 26 cm = 15.89 cmHorizontal beam spot size at 28.5 cm = 15.3588 cmVertical beam spot size at 26 cm = 3.7038 cmVertical beam spot size at 28.5 cm = 4.0468 cm

7 Discussion & Conclusions

- We can see from the V-I characteristics, that there is a voltage after that the current starts increasing which is called threshold voltage. Here we got 2.09157 V experimentally.
- \bullet In measuring threshold voltage the error is 4.93 %. The error is not so much.
- From the L-I characteristics, measured threshold current is 21.2666 mA. The percentile error is 6.33 %. It is also moderate error.
- The diode must only be handled with grounded tweezers to avoid reverse bias breakdown from static electric charges.
- Sudden electrical spikes have the potential to damage the laser. Therefore, one should always exercise caution when increasing or decreasing power to the diode. Additionally, cables should never be connected or disconnected without proper grounding.

8 Appendix

8.1 Source of Error

- Diode laser output is temperature dependent. So, temperature of diode laser leads to error.
- Vibration of optical bench.
- Least count of voltmeter.
- Least count of photodetector.
- Saturation of output (intensity) on photodetector

8.2 Frequency Chopper

- Frequency chopper switches frequency of the input signal from high to low frequency and vice-versa, fixed chopping frequency.
- Common applications are in control systems, where it is necessary to periodically change the frequency of a signal to eliminate unwanted components or to improve measurement accuracy.
- This can be implemented using a switch, such as a transistor, that is controlled by a square wave signal at the chopping frequency.
- The output of the frequency chopper is a signal that has been modulated by the chopping frequency, and it can be demodulated to recover the original input signal using a synchronous detector.
- There are several types: 1. Amplitude choppers, These choppers change the amplitude of the input signal, 2. Phase choppers, They change the phase of the input signal.

8.3 Locking Amplifier

A locking amplifier is a type of electronic circuit that is used to lock the frequency of an 20 oscillator to a reference frequency. It is commonly used in applications such as frequency synthesis and frequency stabilization of lasers Operation:

- It compares the frequency of the oscillator to the reference frequency and generate an error signal.
- This error signal is then used to adjust the frequency of the oscillator until it is locked to the reference frequency.

There are several types:

- Phase-locked loops (PLLs): They use the phase difference between the oscillator and reference frequency to generate the error signal.
- Frequency-locked loops (FLLs): They use the frequency difference between the oscillator and reference frequency to generate the error signal.

9 Observation Table

9.1 V-I characteritics

Table	1:	V-I	characterstics
-------	----	-----	----------------

Table 1: V-I characteristics				
input voltage (V)	output current (mA)			
0.000000	0.000000			
1.800000	0.000000			
1.820000	0.100000			
1.840000	0.100000			
1.860000	0.200000			
1.880000	0.300000			
1.900000	0.500000			
1.920000	0.700000			
1.940000	1.000000			
1.960000	1.500000			
1.980000	1.900000			
2.000000	2.400000			
2.020000	3.100000			
2.040000	3.700000			
2.060000	4.300000			
2.080000	5.000000			
2.100000	5.900000			
2.120000	6.800000			
2.140000	7.600000			
2.160000	8.400000			
2.180000	9.300000			
2.200000	10.600000			
2.220000	11.500000			
2.240000	11.600000			
2.260000	13.200000			
2.280000	14.400000			
2.300000	15.200000			
2.320000	16.900000			
2.340000	16.800000			
2.360000	18.200000			
2.380000	20.000000			
2.400000	20.600000			
2.420000	21.000000			
2.440000	21.900000			
2.460000	21.900000			
2.480000	21.900000			

9.2 L-I characteritics

Table 2: L-I characteristics

Table 2: L-1 characteristics					
$input_voltage(V)$	input current (mA)	output current (μA)	output voltage (V)	output power (μW)	
2.500000	22.200000	57.100000	57.100000	135.952381	
2.480000	22.200000	56.500000	56.500000	134.523809	
2.460000	22.300000	42.200000	42.200000	100.476191	
2.440000	21.600000	29.200000	29.200000	69.523810	
2.420000	20.800000	10.000000	10.000000	23.809524	
2.400000	19.900000	8.400000	8.400000	20.000000	
2.380000	19.800000	7.900000	7.900000	18.809524	
2.360000	19.700000	7.800000	7.800000	18.571429	
2.340000	18.500000	5.800000	5.800000	13.809524	
2.320000	17.400000	4.800000	4.800000	11.428571	
2.300000	16.400000	3.900000	3.900000	9.285714	
2.280000	15.400000	3.300000	3.300000	7.857143	
2.260000	14.100000	2.700000	2.700000	6.428571	
2.240000	12.900000	2.300000	2.300000	5.476190	
2.220000	12.400000	2.100000	2.100000	5.000000	
2.200000	9.400000	1.600000	1.600000	3.809524	
2.180000	8.900000	1.200000	1.200000	2.857143	
2.160000	8.600000	1.100000	1.100000	2.619048	
2.140000	7.800000	1.000000	1.000000	2.380952	
2.120000	7.500000	0.900000	0.900000	2.142857	
2.100000	6.200000	0.700000	0.700000	1.666667	
2.080000	5.000000	0.500000	0.500000	1.190476	
2.060000	4.900000	0.500000	0.500000	1.190476	
2.040000	4.200000	0.400000	0.400000	0.952381	
2.020000	3.500000	0.300000	0.300000	0.714286	
2.000000	2.800000	0.200000	0.200000	0.476190	
1.980000	2.200000	0.200000	0.200000	0.476190	
1.960000	1.700000	0.100000	0.100000	0.238095	
1.940000	1.200000	0.000000	0.000000	0.000000	

9.3 Beam parameter

Table 3: Far field at 26 cm (horizontal)

Table 5: Far field at 20 cm (fibrizontar)				
	ckwise	Anti-clockwise		
angle (deg)	voltage (mV)	angle (deg)	voltage (mV)	
0.000000	2.750000	0.000000	2.810000	
1.046000	2.530000	-1.590000	2.660000	
3.198100	2.470000	-2.905600	2.810000	
4.375600	2.380000	-5.138100	2.470000	
5.635600	2.320000	-7.271300	2.320000	
6.970000	2.200000	-9.418800	2.320000	
8.515000	1.890000	-11.828100	2.010000	
10.784400	2.080000	-14.527500	1.830000	
12.665000	2.140000	-17.341200	1.460000	
14.156900	1.830000	-19.740000	1.400000	
15.971900	1.590000	-21.867500	1.160000	
17.868800	1.590000	-24.403100	1.010000	
19.331900	1.370000	-27.241300	0.760000	
21.232500	1.130000	-29.393100	0.670000	
23.125600	0.920000	-31.521300	0.550000	
25.275000	0.920000	-33.863100	0.460000	
27.266200	0.670000	-35.909400	0.430000	
29.326900	0.580000	-38.660000	0.000000	
31.046300	0.610000			
32.955000	0.460000			
34.978100	0.400000			
36.468800	0.400000			
38.198800	0.310000			
40.160000	0.240000			
42.188100	0.240000			
44.151900	0.090000			
45.721200	0.030000			
47.199400	0.000000			

Table 4: Far field at $26~\mathrm{cm}$ (vertical)

Clo	ckwise	Anti-clockwise		
angle (deg)	voltage (mV)	angle (deg)	voltage (mV)	
0.000000	2.720000	0.000000	2.660000	
2.184400	2.470000	-2.423100	2.380000	
4.722500	1.650000	-4.438100	1.340000	
6.958100	0.850000	-6.684400	0.460000	
8.338100	0.430000	-9.384400	0.120000	
9.879400	0.150000	-13.180600	0.090000	
11.242500	0.120000	-16.436900	0.090000	
13.351300	0.090000	-20.153700	0.060000	
15.625600	0.060000	-23.510000	0.030000	
18.383100	0.060000	-27.197500	0.030000	
21.071200	0.060000	-30.819400	0.030000	
23.973700	0.030000	-34.293800	0.030000	
27.593800	0.030000	-38.689400	0.030000	
31.471900	0.030000	-42.365600	0.000000	
34.860600	0.030000			
39.120600	0.030000			
42.412500	0.000000			

Table 5: Far field at 28.5 cm (horizontal)

Clo	ckwise	Anti-clockwise		
angle (deg)	voltage (mV)	angle (deg)	voltage (mV)	
0.000000	2.260000	0.000000	2.290000	
1.923800	2.110000	-2.113100	2.170000	
4.588800	2.110000	-5.464400	2.290000	
6.876100	1.920000	-9.299400	1.950000	
9.471200	1.590000	-12.645600	2.040000	
12.496300	1.310000	-16.416300	1.400000	
15.392500	1.130000	-20.962500	0.950000	
18.508700	0.920000	-25.165600	0.730000	
20.772500	0.700000	-28.842500	0.550000	
23.506300	0.580000	-33.219500	0.340000	
26.503100	0.430000	-37.103700	0.180000	
29.486300	0.310000	-40.589400	0.120000	
32.300000	0.240000	-44.576900	0.060000	
34.921300	0.210000	-48.445600	0.000000	
37.933100	0.120000			
41.015600	0.090000			
43.815600	0.090000			
47.278800	0.000000			

Table 6: Far field at 28.5 cm (vertical)

Cloc	ckwise	Anti-clockwise		
angle (deg) voltage (mV)		angle (deg)	eg) voltage (mV)	
0.000000	2.260000	-0.090000	2.290000	
1.146900	2.010000	-0.868100	2.110000	
1.712200	2.260000	-1.742500	2.040000	
2.309000	2.010000	-2.620600	1.860000	
2.660000	2.110000	-3.125000	1.370000	
3.300000	1.860000	-3.676800	1.130000	
4.215000	1.860000	-4.316400	1.190000	
4.948800	1.460000	-4.790000	0.820000	
5.758800	1.160000	-5.485600	0.640000	
6.238800	0.920000	-6.261900	0.370000	
7.030600	0.730000	-6.916200	0.240000	
7.699000	0.580000	-7.670000	0.150000	
8.393800	0.400000	-8.409400	0.090000	
9.135600	0.240000	-9.090000	0.090000	
9.566000	0.240000	-9.729000	0.060000	
10.121900	0.150000	-10.240000	0.090000	
10.930000	0.090000	-10.890000	0.060000	
11.672500	0.060000	-11.570000	0.090000	
12.303800	0.090000	-12.491900	0.060000	
12.860000	0.090000	-13.450600	0.030000	
13.690000	0.060000	-14.195000	0.060000	
14.599000	0.060000	-14.910000	0.030000	
15.782500	0.060000	-15.880000	0.030000	
17.063100	0.030000	-16.670000	0.030000	
17.950000	0.030000	-17.530000	0.030000	
18.990000	0.030000	-18.660000	0.030000	
19.910000	0.030000	-20.470000	0.030000	
20.759400	0.030000	-21.544000	0.030000	
21.573800	0.030000	-22.970000	0.030000	
22.380000	0.030000	-24.780000	0.000000	
23.326800	0.030000	-25.980000	0.000000	
23.930000	0.030000			
24.780000	0.000000			
25.478000	0.000000			
26.220000	0.000000			
27.022000	0.030000			
28.080000	0.000000			

9.4 References

- "Fundamentals of Photonics", by B. E. A. Saleh and M. C. Teich, John Wiley & Sons, Inc., 2nd Ed. (2007)
- "Semiconductor Optoelectronic Devices", P. Bhattacharya, Prentice Hall of India (1997).
- $\bullet\,$ "Quantum Electronics" by A Yariv, Wiley publication, 3rd Edition (1989)