

Discrete Data Graphs and Graph Neural Networks

October 26

Yale

A rare lull

- Assignment 3 out; due next Wednesday
- Assignment 4 posted next week

Graphs

- A natural language for describing various data
- Give information about relationships between variables
- Associated with each multivariate distribution

Undirected Graphs

A graph G = (V, E) has vertices V, edges E.

If $X = (X_1, \dots, X_p)$ is a random variable, we will study graphs where there are p vertices, one for each X_i .

The graph will encode conditional independence relations among the variables.

4

Undirected graphs

Simplest case:

Here
$$V = \{X, Y, Z\}$$
 and $E = \{(X, Y), (Y, Z)\}.$

This encodes the independence relation

$$X \perp \!\!\!\perp Z \mid Y$$

which means that *X* and *Z* are independent conditioned on *Y*.

Ę

Markov Property

A probability distribution *P* satisfies the *global Markov property* with respect to a graph *G* if:

for any disjoint vertex subsets A, B, and C such that C separates A and B,

$$X_A \perp \!\!\!\perp X_B \mid X_C$$
.

- X_A are the random variables X_j with $j \in A$.
- C separates A and B means that there is no path from A to B that does not pass through C.

6

Example

7

Example: 2-dimensional grid

The blue node is independent of the red nodes given the white nodes.

Example

$$C=\{3,7\}$$
 separates $A=\{1,2\}$ and $B=\{4,8\}$. Hence,
$$\{X_1,X_2\} \perp\!\!\!\perp \{X_4,X_8\} \quad \big| \quad \{X_3,X_7\}$$

6

Special case

If
$$(i,j) \notin E$$
 then

$$X_i \perp \!\!\! \perp X_j \mid \{X_k : k \neq i, j\}$$

Special case

If
$$(i,j) \notin E$$
 then

$$X_i \perp \!\!\!\perp X_j \mid \{X_k : k \neq i, j\}$$

Lack of an edge from i to j implies that X_i and X_j are independent given all of the other random variables.

Graph estimation

- A graph G represents the class of distributions, $\mathcal{P}(G)$, the distributions that are Markov with respect to G
- Graph estimation: Given *n* samples $X_1, \ldots, X_n \sim P$, estimate the graph *G*.

Factored form

Theorem (Hammersley, Clifford, Besag)

A positive distribution over random variables Z_1, \ldots, Z_p satisfies the Markov properties of graph G if and only if it can be represented as

$$p(Z) \propto \prod_{c \in \mathcal{C}} \psi_c(Z_c)$$

where C is the set of cliques in the graph G.

Gaussian case

Let $\Omega = \Sigma^{-1}$ be the precision matrix.

A zero in Ω indicates a *lack of the corresponding edge* in the graph

So, the adjacency matrix of the graph is

$$A = (\mathbb{1}(\Omega_{ij} \neq 0))$$

That is,

$$A_{ij} = egin{cases} 1 & ext{if } |\Omega_{ij}| > 0 \ 0 & ext{otherwise} \end{cases}$$

Gaussian case

$$\Omega \equiv \Sigma^{-1} = \begin{pmatrix} * & * & 0 \\ * & * & * \\ 0 & * & * \end{pmatrix}$$

Gaussian case

$$\Omega \equiv \Sigma^{-1} = egin{pmatrix} * & * & * & 0 \ * & * & 0 & * \ * & 0 & * & * \ 0 & * & * & * \end{pmatrix}$$

$$X_1 \perp \!\!\! \perp X_4 \mid X_2, X_3$$

Gaussian case: Algorithms

Two approaches:

- parallel lasso
- graphical lasso

Parallel Lasso:

- **1** For each j = 1, ..., p (in parallel): Regress X_j on all other variables using the lasso.
- 2 Put an edge between X_i and X_j if each appears in the regression of the other.

Graphical Lasso (glasso)

- Assume a multivariate Gaussian model
- Subtract out the sample mean
- Minimize the negative log-likelihood of the data, subject to a constraint on the sum of the absolute values of the inverse covariance

Graphical Lasso (glasso)

The glasso optimizes the parameters of $\Omega = \Sigma^{-1}$ by minimizing:

$$\operatorname{trace}(\Omega \mathcal{S}_n) - \log |\Omega| + \lambda \sum_{j \neq k} |\Omega_{jk}|$$

where $|\Omega|$ is the determinant and S_n is the sample covariance

$$S_n = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$$

There is a blockwise gradient descent algorithm to minimize this, using iterative lassos

Discrete Graphical Models

Challenges of handling discrete data:

- Models don't have closed from; can't compute normalizing constant
- Need to use Gibbs sampling, variational inference
- No analogue of the graphical lasso

Discrete Graphical Models

Positive distributions can be represented by an exponential family,

$$p(Z; \beta) \propto \exp\left(\sum_{c \in \mathcal{C}} \beta_c \phi_c(Z_c)\right)$$

Special case: Ising Model (discrete Gaussian)

$$p(Z; \beta) \propto \exp \left(\sum_{i \in V} \beta_i Z_i + \sum_{(i,j) \in E} \beta_{ij} Z_i Z_j \right).$$

20

Discrete Gaussian?

Note that we can write a multivariate Gaussian as follows:

$$p(z) \propto \exp\left(\sum_i eta_i z_i + \sum_{i,j} eta_{ij} z_i z_j\right)$$

From edges to cliques

Take $\beta_i \equiv 0$ for simplicity

If we have a triangle (i, j, k) in the graph then the potential function corresponds to

$$\psi_{(ijk)}(Z_i,Z_j,Z_k) = \mathbf{e}^{\beta_{ij}Z_iZ_j} \cdot \mathbf{e}^{\beta_{jk}Z_jZ_k} \cdot \mathbf{e}^{\beta_{ik}Z_iZ_k}$$

Recall

We have a graph with edges E and vertices V. Each node i has a random variable Z_i that can be "up" ($Z_i = 1$) or "down" ($Z_i = 0$)

$$\mathbb{P}_{\beta}(z_1,\ldots,z_n) \propto \exp\left(\sum_{s\in V} \beta_s z_s + \sum_{(s,t)\in E} \beta_{st} z_s z_t\right)$$

This is called an "Ising model" and is central to statistical physics.

Since $2Z_i - 1 \in \{-1, 1\}$ if $Z_i \in \{0, 1\}$, can re-parameterize in terms of sample space $Z_i = \pm 1$.

Recall

We have a graph with edges E and vertices V. Each node i has a random variable Z_i that can be "up" ($Z_i = 1$) or "down" ($Z_i = 0$)

$$\mathbb{P}_{\beta}(z_1,\ldots,z_n) \propto \exp\left(\sum_{s\in V} \beta_s z_s + \sum_{(s,t)\in E} \beta_{st} z_s z_t\right)$$

E are the set of edges, V are the vertices. Imagine the Z_i are votes of politicians, and the edges encode the social network of party affiliations

Since $2Z_i-1\in\{-1,1\}$ if $Z_i\in\{0,1\}$, can re-parameterize in terms of sample space $Z_i=\pm 1$.

Stochastic approximation

Gibbs sampler

Iterate until converged:

- **1** Choose vertex $s \in V$ at random
- 2 Sample z_s holding others fixed

$$egin{aligned} heta_{m{s}} &= \mathsf{sigmoid}\left(eta_{m{s}} + \sum_{t \in m{N(s)}} eta_{m{st}} z_t
ight) \ Z_{m{s}} \, | \, heta_{m{s}} \sim \mathsf{Bernoulli}(heta_{m{s}}) \end{aligned}$$

Deterministic approximation

Mean field variational algorithm

Iterate until converged:

- **1** Choose vertex $s \in V$ at random
- 2 Update mean μ_s holding others fixed

$$\mu_{s} = \operatorname{sigmoid}\left(\beta_{s} + \sum_{t \in N(s)} \beta_{st} \mu_{t}\right)$$

Graph Estimation

• Given n i.i.d. samples from an Ising distribution, $\{Z_i, i = 1, ..., n\}$, (each is a p-vector of $\{0, 1\}$ values) identify underlying graph

Multiple examples are observed:

Local Distributions

- Consider Ising model $p_{\beta}(Z) \propto \exp\left(\sum_{i \in V} \beta_i Z_i + \sum_{(i,j) \in E} \beta_{ij} Z_i Z_j\right)$.
- Conditioned on (z_2, \ldots, z_p) , variable $Z_1 \in \{0, 1\}$ has probability mass function given by a logistic function,

$$\mathbb{P}(Z_1 = 1 \mid z_2, \dots, z_p) = \text{sigmoid} \left(\beta_1 + \sum_{j \in \mathcal{N}(1)} \beta_{1j} z_j\right)$$

Parallel lasso (sparse logistic regressions)

Strategy

- Perform ℓ_1 regularized logistic regression of each node Z_i on $Z_{\setminus i} = \{Z_j, \ j \neq i\}$ to estimate neighbres $\widehat{\mathcal{N}}(i)$
- Two versions:
 - ▶ Create an edge (i,j) if $j \in \widehat{\mathcal{N}}(i)$ and $i \in \widehat{\mathcal{N}}(j)$
 - ▶ Create an edge (i,j) if $j \in \widehat{\mathcal{N}}(i)$ or $i \in \widehat{\mathcal{N}}(j)$

S&P 500: Ising Model (Price up or down?)

Voting Data

Voting records of US Senate, 2006-2008

Scaling behavior: Performance with data size

Maximum degree d of the p variables. Sample size n must satisfy

Ising model: $n \ge d^3 \log p$

Graphical lasso: $n \ge d^2 \log p$

Parallel lasso: $n \ge d \log p$

Lower bound: $n \ge d \log p$

- Each method makes different incoherence assumptions:
 - Correlations between unrelated variables not too large

Graph neural networks

Next, we'll discuss graph neural networks, following this article:

https://distill.pub/2021/understanding-gnns/

Equivariance problem

Equivariance problem

Graph Laplacian

Input Graph
$$G$$

Laplacian L of G

Polynomials of the Laplacian

$$p_w(L) = w_0 I_n + w_1 L + w_2 L^2 + \cdots + w_d L^d$$
If dist $(u, v) > i$ then the (u, v) entry of L^i is zero

- This is analogous to a CNN filter (kernel)
- The weights w_i play role of filter coefficients
- Degree d of polynomial plays role of the size of the kernel

The Laplacian is a Mercer kernel

- Symmetric $L_{uv} = L_{vu}$
- Positive-definite:

$$f^T L f = \sum_{(u,v) \in E} (f_u - f_v)^2 \ge 0$$

What is the Laplacian L?

What is the Laplacian L?

$$L = \begin{pmatrix} 2 & -1 & -1 & 0 \\ -1 & 2 & 0 & -1 \\ -1 & 0 & 2 & -1 \\ 0 & -1 & -1 & 2 \end{pmatrix}$$

What is L^2 ?

What is L^2 ?

$$L^2 = \begin{pmatrix} 6 & -4 & -4 & 2 \\ -4 & 6 & 2 & -4 \\ -4 & 2 & 6 & -4 \\ 2 & -4 & -4 & 6 \end{pmatrix}$$

If $x = (1, 2, 3, 4)^T$ what is h = ReLU(Lx)?

If
$$x = (1, 2, 3, 4)^T$$
 what is $h = \text{ReLU}(Lx)$?
 $\text{ReLU}(Lx) = \text{ReLU}((-3, -1, 1, 3)^T) = (0, 0, 1, 3)^T$

If $x = (1, 2, 3, 4)^T$ what is $x^T L x$?

If
$$x = (1, 2, 3, 4)^T$$
 what is $x^T L x$?

$$x^T L x = \sum_{(u,v) \in E} (x_u - x_v)^2 = 10$$

Whence equivariance

A transformation $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is equivariant if

$$f(Px) = Pf(x)$$

for any permuation matrix P, where $PP^T = I$.

The transformed data and Laplacian are

$$x \longrightarrow Px$$

$$L \longrightarrow PLP^{T}$$

$$L^{i} \longrightarrow PL^{i}P^{T}$$

Whence equivariance

A transformation $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is equivariant if

$$f(Px) = Pf(x)$$

for any permuation matrix P, where $PP^T = I$.

The transformed polynomial kernels are

$$f(Px) = \sum_{i=0}^{d} w_i (PL^i P^T) Px$$
$$= \sum_{i=0}^{d} w_i PL^i x$$
$$= P \sum_{i=0}^{d} w_i L^i x$$
$$= Pf(x)$$

Building layers

Let $h^{(k)}$ be the neurons at layer k.

We start with $h^{(0)} = x$, a value x_j at each node j

The next layer is

$$h^{(k+1)} = \varphi\left(p_w(L)h^{(k)}\right)$$

See tutorial for other ways of building layers

Building layers

Summary: Graph neural nets

- Certain data have natural graphical structure
- GNNs are analogues of CNNs for graphs
- Based on use of graph Laplacian
- Independent of ordering of nodes (equivariant)

Next topic: Reinforcement learning

Summary

- A positive distribution factors into product of potential functions on the cliques of the graph
- Graphs and independence relations are same for discrete data
- Ising models are discrete Gaussians
- No version of the graphical lasso holds for discrete data; instead, we use the parallel lasso
- Graph neural networks are defined using analogues of more familiar convolution and layers