Planche n° 20. Normes matricielles. Suites et séries matricielles

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Exercice nº 1 (***)

$$\mathrm{D\acute{e}terminer}\ s = \mathrm{Sup}\left\{\frac{\|AB\|}{\|A\|\|B\|},\ (A,B) \in \left(\mathscr{M}_n(\mathbb{C}) \setminus \{0\}\right)^2\right\}\ \mathrm{quand}\ \|\ \|\ \mathrm{est}\ \mathbf{1}\right)\ \|\ \|_1,\ \mathbf{2}\right\}\ \|\ \|_2,\ \mathbf{3}\right)\ \|\ \|_\infty.$$

Exercice nº 2 (**)

Soit N une norme sur $\mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe k > 0 tel que $\forall (A, B) \in (\mathcal{M}_n(\mathbb{R}))^2$, $N(AB) \leq k(A)N(B)$.

Exercice nº 3 (*)

Existe-t-il une norme N sur $\mathscr{M}_n(\mathbb{R})$ $(n \geqslant 2)$ telle que $\forall (A,B) \in (\mathscr{M}_n(\mathbb{R}))^2$, N(AB) = N(A)N(B).

Exercice nº 4 (** I)

Déterminer
$$\lim_{n\to+\infty} \left(\begin{array}{cc} 1 & -\frac{\alpha}{n} \\ \frac{\alpha}{n} & 1 \end{array}\right)^n$$
 (a réel strictement positif donné).

Exercice no 5 (***)

Soit $A \in \mathcal{M}_p(\mathbb{C})$, $p \geqslant 1$. Montrer que les trois propositions suivantes sont équivalentes :

- (1) $\operatorname{Sp}(A) \subset B_o(0,1)$ (disque unité ouvert).
- $(2) \lim_{n \to +\infty} A^n = 0$
- (3) La série de terme général A^n , $n \in \mathbb{N}$, converge.

Pour $(1) \Rightarrow (3)$, on admettra que pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, il existe un unique couple de matrices (D, N) tel que : A = D + N, D est diagonalisable, N est nilpotente et ND = DN (décomposition de Dunford). De plus, Sp(D) = Sp(A).

Exercice nº 6 (**)

Soit
$$A = \begin{pmatrix} 4/3 & -5/6 \\ 5/3 & -7/6 \end{pmatrix}$$
. Convergence et somme de la série de terme général A^n , $n \in \mathbb{N}$.

Exercice nº 7 (** I)

On munit $\mathscr{M}_p(\mathbb{C})$ d'une norme sous-multiplicative notée $\| \|$. Soit A un élément de $\mathscr{M}_p(\mathbb{R})$ tel que $\|A\| < 1$. Montrer que la série de terme général A^n , $n \in \mathbb{N}$, converge puis que $\sum_{n=0}^{+\infty} A^n = (I-A)^{-1}$.

En déduire que
$$\|(I - A)^{-1} - (I + A)\| \le \frac{\|A\|^2}{1 - \|A\|}$$
.

Exercice nº 8 (** I)

 $\mathrm{Soit}\ A\in \mathscr{M}_n(\mathbb{C}).\ \mathrm{Montrer}\ \mathrm{qu'il}\ \mathrm{existe}\ p_0\in\mathbb{N}\ \mathrm{tel}\ \mathrm{que}\ \forall p\geqslant p_0,\ \sum_{k=0}^p\frac{A^k}{k!}\in GL_n(\mathbb{R}).$

Exercice nº 9 (** I)

Calculer
$$\exp(tA)$$
, $t \in \mathbb{R}$, si 1) $A = \begin{pmatrix} 3 & 2 & 2 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}$ 2) $A = \begin{pmatrix} 4 & 1 & 1 \\ 6 & 4 & 2 \\ -10 & -4 & -2 \end{pmatrix}$

Exercice nº 10 (**)

Soit
$$A = \begin{pmatrix} 0 & 1/2 & -2 \\ 1/2 & 0 & 0 \\ 0 & 0 & -1/2 \end{pmatrix}$$
. Calculer $\ln(I_3 + tA) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}t^n}{n} A^n$ en précisant les valeurs de t pour lesquelles la série converge.

Exercice nº 11 (***)

 $\mathrm{Pour}\ A\in \mathscr{M}_{\mathfrak{n}}(\mathbb{C}),\, \mathrm{calculer}\, \lim_{p\to +\infty} \left(I_{\mathfrak{n}}+\frac{A}{p}\right)^{p}.$

Exercice no 12 (**)

Montrer que $\forall A \in \mathscr{M}_n(\mathbb{R}), \, \exp(A)$ est un polynôme en A.