Лекция 4.

Квадратичная вариационная задача

Fominyh A. V. 2023

Квадратичная задача вариационного исчисления

Постановка задачи

Зафиксируем функции p, q и f из класса $C^1[a,b]$.

Рассмотрим на $C^{1}[a,b]$ интегральный квадратичный функционал в следующей форме:

$$Q(x) = \int_a^b p(t)(x'(t))^2 + q(t)(x(t))^2 - 2f(t)x(t) dt.$$

Рассмотрим следующую задачу

$$Q(x) \longrightarrow \min_{x \in G}$$

где

$$G = \{x \in C^1[a, b] \mid x(a) = x_1, \ x(b) = x_2\}.$$

Множество вариаций

Запишем множество

$$G_0 = \{x \in C^1[a,b] \mid x(a) = 0, \ x(b) = 0\}.$$

Очевидно, что из условий $x\in {\it G}$, $h\in {\it G}_0$ следует, что

$$x + \alpha h \in G \quad \forall \ \alpha \in \mathbb{R}.$$

Разложение функционала Q(x)

Запишем разложение

$$Q(x + \alpha h) =$$
= $Q(x) + 2\alpha \int_{a}^{b} \{p \, x'h' + (qx - f) \, h\} \, dt + \alpha^{2} \int_{a}^{b} \{p \, (h')^{2} + q \, h^{2}\} \, dt.$

Обозначим

$$\ell(x,h) = \int_{a}^{b} \{p \ x'h' + (qx - f) \ h\} \ dt,$$
$$D(h) = \int_{a}^{b} \{p \ (h')^{2} + q \ h^{2}\} \ dt.$$

Тогда

$$Q(x + \alpha h) = Q(x) + 2\alpha \ell(x, h) + \alpha^2 D(h).$$

Условие неотрицательности на D(h)

Лемма 1

Если существует допустимая вариация h_0 , для которой $D(h_0) < 0$, то

$$\inf_{x\in G}Q(x)=-\infty.$$

Следствие

Рассматриваемая квадратичная вариационная задача содержательна только при условии

$$D(h) \geqslant 0 \quad \forall h \in G_0.$$

Критерий оптимальности в терминах вариации

Лемма 2

Пусть $D(h)\geqslant 0\ \forall\ h\in G_0$. Для того чтобы точка $x_*\in G$ доставляла минимум функционалу Q(x) на множестве G необходимо и достаточно, чтобы "первая вариация"

$$\ell(x_*,h)=0 \quad \forall h \in G_0.$$

Уравнение Эйлера-Лагранжа

Теорема (уравнение Эйлера-Лагранжа)

Пусть $D(h)\geqslant 0$ \forall $h\in G_0$. Пусть функция $x^*\in G$ является дважды непрерывно дифференцируемой. Для того чтобы точка $x^*\in G$ доставляла минимум функционалу Q(x) на множестве G, необходимо и достаточно, чтобы

$$\frac{d}{dt}\left(p(t)\;(x^*)'(t)\right)-q(t)\;x^*(t)+f(t)=0\quad\forall t\in[a,b].$$

Задача Штурма-Лиувилля

Таким образом, решение задачи сводится к решению краевой задачи

$$\mathcal{L}(x,t) := -\frac{d}{dt} \left(p \frac{dx}{dt} \right) + qx = f,$$

$$x(a) = x_1, \qquad x(b) = x_2.$$

Оператор Штурма-Лиувилля

Дифференциальный оператор $\mathcal{L}(x,t)$ называется **оператором** Штурма-Лиувилля.

Неравенство Лежандра

Напомним, что в рассматриваемой задаче существенно предположение следующего условия:

$$\int_a^b \left\{ p \ (h')^2 + q \ h^2 \right\} \ dt \geqslant 0 \quad \forall \ h \in G_0.$$

Замечание 1

Это неравенство очевидно выполняется, если функции p(t) и q(t) неотрицательны на [a,b].

Теорема (неравенство Лежандра)

Если $D(h)\geqslant 0$ на G_0 , то необходимо

$$p(t) \geqslant 0$$
 на $[a, b]$.

Усиленное неравенство Лежандра

Замечание 2

Даже усиленного условия Лежандра

$$p(t) > 0$$
 на $[a, b]$

не достаточно для неотрицательности D(h) на ${\it G}_{0}$.

Рассмотрим пример

$$D_{\lambda}(h)=\int_0^{\pi}\left\{(h')^2-\lambda h^2\right\}dt, \qquad h\in G_0,$$

с вариацией $h_0(t)=\sin(t)$ и числом $\lambda>1$.

Критерий неотрицательности D(h)

Рассмотрим интегральную квадратичную форму

$$D(h) = \int_a^b \{ p (h')^2 + q h^2 \} dt, \qquad h \in G_0,$$

при следующих предположениях

$$p,q \in C^1[a,b], \qquad p(t) > 0 \text{ на } [a,b].$$
 (1)

Уравнение Якоби

Рассмотрим на [a,b] дифференциальное уравнение

$$(ph')' - qh = 0$$

или подробнее

$$h'' + \frac{p'}{p}h' - \frac{q}{p}h = 0.$$

Это дифференциально уравнение называется *уравнением Якоби*.

Лекция 4.

$$h''+\frac{p'}{p}h'-\frac{q}{p}h=0.$$

Определение

Назовем *главным решением уравнения Якоби* его решение $h_0(t)$ с начальными условиями

$$h_0(a) = 0, \qquad h'_0(a) = 1.$$

Теорема Якоби

Для того чтобы квадратичная форма

$$D(h) = \int_{a}^{b} \{ p (h')^{2} + q h^{2} \} dt$$

была **неотрицательной** на G_0 , необходимо и достаточно, чтобы главное решение уравнения Якоби $h_0(t)$ было положительным на интервале (a,b).

Об условиях Лежандра-Клебша и Якоби

Замечание 3

Теоремы, аналогичные условиям Лежандра и Якоби имеют место и в общей (нелинейной) простейшей задаче вариационного исчисления. В общем случае они носят названия условий Лежандра-Клебша и Якоби соответственно.

Литература

- Малоземов В. Н. Квадратичные вариационные задачи // Вестник молодых ученых. Прикладная матем. и мех. 2000. N 3. С. 12–22.
- Эльсгольц Л. Э. Дифференциальные уравнения и вариационное исчисление. 1969. Москва: Наука. 425 с.