MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

OKTATÁSI HIVATAL

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas- hatóan** javítsa ki.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy **a hiba jelzése** mellett az egyes **részpontszámokat** is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányiel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha az útmutatóban egy **megjegyzés** zárójelben szerepel, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. **Mértékegység hiánya esetén** csak akkor jár pontlevonás, ha a hiányzó mértékegység válaszban vagy mértékegység-átváltásban szerepel (zárójel nélkül).
- 7. Egy feladatra adott többféle megoldási próbálkozás közül **a vizsgázó által megjelölt változat értékelhető**. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 8. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 9. Egy feladatra vagy részfeladatra adott összpontszám **nem lehet negatív**.
- 10. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 11. A gondolatmenet kifejtése során a zsebszámológép használata további matematikai indoklás nélkül – a következő műveletek elvégzésére fogadható el: összeadás,

kivonás, szorzás, osztás, hatványozás, gyökvonás, n!, $\binom{n}{k}$ kiszámítása, a függvénytáb-

lázatban fellelhető táblázatok helyettesítése (sin, cos, tg, log és ezek inverzei), a π és az e szám közelítő értékének megadása, nullára rendezett másodfokú egyenlet gyökeinek meghatározása. További matematikai indoklás nélkül használhatók a számológépek az átlag és a szórás kiszámítására abban az esetben, ha a feladat szövege kifejezetten nem követeli meg az ezzel kapcsolatos részletszámítások bemutatását is. **Egyéb esetekben a géppel elvégzett számítások indoklás nélküli lépéseknek számítanak, így azokért nem jár pont.**

- 12. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 13. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 14. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **észszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 15. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

I.

1. a)		
(A logaritmusfüggvény értelmezési tartománya miatt $x > -4$ és) $x > 2$.	1 pont	Ez a pont akkor is jár, ha a vizsgázó behelyettesí- téssel ellenőriz.
$3 = \log_2 8$	1 pont	
(A logaritmusok összegére vonatkozó azonosságot felhasználva) $\log_2(8x-16) = \log_2(2x+8)$.	1 pont	
(A logaritmusfüggvény kölcsönösen egyértelmű, ezért) $8x - 16 = 2x + 8$.	1 pont	
x = 4	1 pont	
Ellenőrzés behelyettesítéssel vagy (az értelmezési tartományon) ekvivalens átalakításokra hivatkozással.	1 pont	
Összesen:	6 pont	

1. b) első megoldás		
A megoldandó egyenlet: $2^{x-3} = 2^x - 7$.	1 pont	
$\frac{2^x}{8} = 2^x - 7$	1 pont	
$2^{x} = 8$	1 pont	
(Az exponenciális függvény kölcsönösen egyértelmű, ezért) a metszéspont első koordinátája $x = 3$,	1 pont	
második koordinátája $y = (f(3) = g(3) =) 1$. (Tehát a metszéspont az $M(3; 1)$ pont.)	1 pont	
Összesen:	5 pont	

1. b) második megoldás		
$\operatorname{Az} f$ függvény ábrázolása.	2 pont	$\begin{array}{c c} y & f \\ \hline 1 & M \\ \hline 1 & 3 \end{array}$
A <i>g</i> függvény ábrázolása ugyanabban a koordinátarendszerben.	1 pont	/g -6
A függvények grafikonjai az <i>M</i> (3; 1) pontban metszik egymást. (Más közös pont nincs.)	1 pont	
A leolvasott értékek ellenőrzése behelyettesítéssel.	1 pont	
Összesen:	5 pont	

1. c)		
A <i>h</i> függvény értelmezési tartománya {2; 3; 5; 7}.	1 pont	
(A <i>h</i> függvény kölcsönösen egyértelmű, ezért létezik inverzfüggvénye.) A <i>h</i> függvény értékkészlete megegyezik az inverzfüggvényének értelmezési tartományával.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A h függvény inverzének értelmezési tartománya: $\{0,5; 1; 4; 16\}$.	1 pont	
Összesen:	3 pont	

2. a)		
Egy olyan megfelelő szám van, amely nem tartalmaz 0 számjegyet (1111111).	1 pont	
Ha a szám egy 0 számjegyet tartalmaz, akkor az a legnagyobb helyiértéken kívül bárhol lehet, tehát 6 ilyen szám van.	1 pont	
Ha a szám két 0 számjegyet tartalmaz, akkor ezek a legnagyobb helyiértéken kívül bárhol lehetnek, így helyüket $\binom{6}{2}$ = 15-féleképpen választhatjuk ki.	1 pont	
Összesen tehát $(1+6+15=)$ 22 megfelelő szám van.	1 pont	
Összesen:	4 pont	

Megjegyzés: Teljes pontszámot kapjon a vizsgázó, ha rendezetten felsorolja a megfelelő számokat, és ez alapján helyesen válaszol.

2. b) első megoldás		
(A <i>H</i> -nak 9 eleme van.) $\binom{7}{3}$ = 35 olyan négyelemű részhalmaza van <i>H</i> -nak, amelynek az 1 eleme, de a 2 nem.	1 pont	$\binom{8}{3}$ = 56 olyan négy- elemű részhalmaza van H-nak, amelynek eleme az 1.
Ugyanennyi olyan négyelemű részhalmaza van <i>H</i> -nak, amelynek a 2 eleme, de az 1 nem.	1 pont	Ugyanennyi olyan négy- elemű részhalmaz van, amelynek eleme a 2.
$\binom{7}{2}$ = 21 olyan négyelemű részhalmaza van <i>H</i> -nak, amelynek az 1 és a 2 is eleme.	1 pont	
Összesen tehát (35 + 35 + 21 =) 91 megfelelő részhalmaz van.	1 pont	(Logikai szitát alkal- mazva kapjuk, hogy) a megfelelő részhalmazok száma (56 + 56 – 21 =) 91.
Összesen:	4 pont	

2. b) második megoldás		
(A <i>H</i> -nak 9 eleme van.)		
$\binom{8}{3}$ = 56 olyan négyelemű részhalmaza van <i>H</i> -nak,	1 pont	
amelynek eleme az 1.		
Ezeken kívül megfelelőek azok a négyelemű részhalmazok is, amelyeknek az 1 nem eleme, de a 2 igen. Ezeknek a száma $\binom{7}{3}$ = 35.	2 pont	
Összesen tehát (56 + 35 =) 91 megfelelő részhalmaz van.	1 pont	
Összesen:	4 pont	

2. b) harmadik megoldás		
Komplementer módszerrel határozzuk meg a megfelelő részhalmazok számát.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
(A <i>H</i> -nak 9 eleme van.) Összesen $\binom{9}{4}$ = 126 négyelemű részhalmaza van <i>H</i> -nak.	1 pont	
$\binom{7}{4}$ = 35 olyan négyelemű részhalmaza van <i>H</i> -nak, amelynek sem az 1, sem a 2 nem eleme.	1 pont	
Összesen tehát (126 – 35 =) 91 megfelelő részhalmaz van.	1 pont	
Összesen:	4 pont	

2. c)		
Az állítás megfordítása:	1 nont	
"Ha $A \cap B = \emptyset$, akkor $A = \overline{B}$."	1 pont	
A megfordítás hamis.	1 pont	
Például $A = \{1\}$ és $B = \{2\}$ esetén a két halmaz metszete üres, de $A \neq \overline{B}$.	1 pont	
Összesen:	3 pont	

3. a) első megoldás		
Az összes lehetséges (egyenlő valószínűségű) kimenetel száma 6 ⁵ (=7776).	1 pont	
A <i>Sor</i> számkombináció 2-féle lehet (1-2-3-4-5 vagy 2-3-4-5-6).	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Mindkettő 5! (= 120)-féleképpen lehetséges.	1 pont	
Így a kedvező kimenetelek száma 2·5! (= 240).	1 pont	
A kérdezett valószínűség tehát $\frac{240}{7776} \left(= \frac{5}{162} \right) \approx 0,031.$	1 pont	
Összesen:	5 pont	

3. a) második megoldás		
A <i>Sor</i> számkombináció 2-féle lehet (1-2-3-4-5 vagy 2-3-4-5-6).	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Feltehetjük, hogy az öt kockával egyesével dobunk. Ekkor annak a valószínűsége, hogy a játékos 1-2-3-4-5 számkombinációt dob valamilyen sorrendben $\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{6 \cdot 6 \cdot 6 \cdot 6} = \frac{120}{7776}.$ (Elsőre 5-félét, másodikra 4-félét dobhatunk, stb.)	2 pont	
Ugyanennyi annak a valószínűsége, hogy a játékos 2-3-4-5-6 számkombinációt dob valamilyen sorrendben.	1 pont	
A kérdezett valószínűség tehát $\frac{240}{7776} \left(= \frac{5}{162} \right) \approx 0,031.$	1 pont	
Összesen:	5 pont	

3. b) első megoldás		
A két kockával összesen 36-félét dobhatunk.	1 pont	
(Ha az újra felvett két kockával két egyforma számot dob a játékos, akkor két 3-as esetén <i>Royal</i> , különben <i>Full House</i> számkombinációt kap. Tehát) 6-féle kedvező dobás lehetséges.	1 pont	$P(Full\ House) = \frac{5}{36}$ $P(Royal) = \frac{1}{36}$
A kérdezett valószínűség tehát $\frac{6}{36} = \frac{1}{6}$.	1 pont	$\frac{5}{36} + \frac{1}{36} = \frac{1}{6}$
Összesen:	3 pont	

3. b) második megoldás		
Feltehetjük, hogy a két kockával egyesével dob a játékos. Bármit is dob az első kockával, a második kockával ugyanazt kell dobnia (3-as esetén <i>Royal</i> , más esetben <i>Full House</i> lesz az eredmény).	2 pont	
A kérdezett valószínűség tehát $\frac{1}{6}$.	1 pont	
Összesen:	3 pont	

3. c)		
A komplementer esemény (egyik dobás sem 6-os) valószínűsége $(1-p)^2$.	1 pont	Pontosan az egyik 6-os vagy mindkettő 6-os:
Így $(1-p)^2 = (1-0.64 = 0.36)$.	1 pont	$\binom{2}{1}p(1-p)+p^2=0,64.$
$1 - p = 0.6 \text{ (mert } p \le 1)$	1 pont	$p^2 - 2p + 0,64 = 0$
p = 0.4	1 pont	Ennek az 1-nél nem na- gyobb gyöke $p = 0,4$ (a másik 1,6).
Összesen:	4 pont	

4. a) első megoldás		
Az ABC háromszög területe a négyzet területének fele.	1 pont	
Az AFC háromszög területe fele az ABC háromszög		
területének (C-hez tartozó magasságuk közös, alap-	1 pont	
jaik aránya 1:2).	_	
Az AFQ háromszög területe háromnegyede az AFC		
háromszög területének (F-ből induló magasságuk kö-	1 pont	
zös, alapjaik aránya 9:12 = 3:4).	-	
Az AFQ háromszög területe így $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{4} = \frac{3}{16}$ része	1 pont	
az ABCD négyzet területének.		
Összesen:	4 pont	

4. a) második megoldás		
Az ABC háromszög területe a négyzet területének fele.	1 pont	
$\frac{AF}{AB} = \frac{1}{2}, \ \frac{AQ}{AC} = \frac{9}{12} = \frac{3}{4}$	1 pont	
$T_{AFQ\Delta} = \frac{AF \cdot AQ \cdot \sin 45^{\circ}}{2} = \frac{\frac{1}{2}AB \cdot \frac{3}{4}AC \cdot \sin 45^{\circ}}{2} = \frac{3}{8} \cdot \frac{AB \cdot AC \cdot \sin 45^{\circ}}{2} = \frac{3}{8} \cdot T_{ABC\Delta} = \frac{3}{8} \cdot \frac{T_{ABCD}}{2} = \frac{3}{16} \cdot T_{ABCD}$	2 pont	
Összesen:	4 pont	_

4. a) harmadik megoldás			
A négyzet oldalát jelölje x . Ekkor $AF = \frac{x}{2}$.	1 pont	Az általánosság megszorítása nélkül feltehetjük, hogy a négyzet oldala egységnyi, és így $AF = \frac{1}{2}$.	
Az AFQ háromszög AF oldalhoz tartozó magassága a Q -ból az AB -re bocsátott merőleges szakasz. Mivel Q az AC szakasz C -hez közelebbi negyedelőpontja, ezért ennek a magasságnak a hossza (a párhuzamos szelőszakaszok tétele miatt) $\frac{3}{4}x$.	1 pont	$m = \frac{3}{4}$	
$T_{AFQ\Delta} = \frac{\frac{x}{2} \cdot \frac{3}{4} x}{2} = \frac{3}{16} x^2$	1 pont	$T_{AFQ\Delta} = \frac{3}{16}$	
Mivel az $ABCD$ négyzet területe x^2 , ezért az AFQ háromszög területe annak $\frac{3}{16}$ része.	1 pont		
Összesen:	4 pont		

Megjegyzés: Ha a vizsgázó a négyzet oldalhosszának egy konkrét értékével dolgozik, de nem említi, hogy ez nem megy az általánosság rovására, akkor legfeljebb 3 pontot kaphat.

4. b) első megoldás		
$AF = 12, AC = 24\sqrt{2}, AP = 8\sqrt{2}, AQ = 18\sqrt{2}$ A PAF szög nagysága 45°.	2 pont	
A <i>PAF</i> háromszögben koszinusztétellel: $FP^2 = (8\sqrt{2})^2 + 12^2 - 2 \cdot 8\sqrt{2} \cdot 12 \cdot \cos 45^\circ = 80.$	1 pont	
Tehát $FP = \sqrt{80} = 4\sqrt{5}$ valóban.	1 pont	
Az AFQ háromszögben koszinusztétellel: $QF^2 = (18\sqrt{2})^2 + 12^2 - 2 \cdot 18\sqrt{2} \cdot 12 \cdot \cos 45^\circ = 360.$	1 pont	
Tehát $QF = \sqrt{360} = 6\sqrt{10}$ valóban.	1 pont	
Összesen:	6 pont	

Megjegyzés: Ha a vizsgázó megoldásában közelítő értékeket is felhasznál, akkor legfeljebb 4 pontot kaphat.

4. b) második megoldás		
Merőlegest bocsátunk P -ből és Q -ból AB -re, a talppontokat jelölje rendre T és U . APT , AQU és ACB egyenlőszárú derékszögű háromszögek hasonlóságából adódik, hogy $AT = TP = 8$,	2 pont	D C
valamint $AU = UQ = 18$.		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
PTF derékszögű háromszögben $TF = (12 - 8 =) 4$. Pitagorasz-tétellel: $FP = \sqrt{8^2 + 4^2} = \sqrt{80} = 4\sqrt{5}$ valóban.	2 pont	
QFU derékszögű háromszögben FU = (18 – 12 =) 6. Pitagorasz-tétellel: $QF = \sqrt{18^2 + 6^2} = \sqrt{360} = 6\sqrt{10} \text{ valóban.}$	2 pont	
Összesen:	6 pont	

4. c) első megoldás		
A két háromszög <i>Q</i> -nál levő szöge közös.	1 pont	
A szöget közrefogó oldalaik aránya:		
$\frac{AQ}{QF} = \frac{18\sqrt{2}}{6\sqrt{10}} = \frac{3}{\sqrt{5}}, \text{ illetve } \frac{QF}{PQ} = \frac{6\sqrt{10}}{10\sqrt{2}} = \frac{3\sqrt{5}}{5} = \frac{3}{\sqrt{5}}.$	2 pont	
Mivel a két háromszögben egy szög és a szöget közrefogó két oldal aránya megegyezik, ezért a két háromszög valóban hasonló.	1 pont	
Összesen:	4 pont	

4. c) második megoldás		
Az AFQ háromszög oldalainak aránya:	1 nont	
$AF : FQ : QA = 12 : 6\sqrt{10} : 18\sqrt{2} = 2 : \sqrt{10} : 3\sqrt{2}$.	1 pont	
Az FPQ háromszög oldalainak aránya:	2 nont	
$FP: PQ: QF = 4\sqrt{5}: 10\sqrt{2}: 6\sqrt{10} = 2: \sqrt{10}: 3\sqrt{2}$.	2 pont	
Mivel a két háromszögben a megfelelő oldalak ará-		
nya megegyezik, ezért a két háromszög valóban ha-	1 pont	
sonló.		
Összesen:	4 pont	

4. c) harmadik megoldás		
Koszinusztétellel meghatározzuk a PFQ szöget.		
$\cos PFQ \ll \frac{QF^2 + FP^2 - PQ^2}{2 \cdot QF \cdot FP} = \frac{360 + 80 - 200}{2 \cdot 6\sqrt{10} \cdot 4\sqrt{5}} = \frac{1}{\sqrt{2}}$	2 pont	
$\cos FFQ = \frac{1}{2 \cdot QF \cdot FP} = \frac{1}{2 \cdot 6\sqrt{10} \cdot 4\sqrt{5}} = \frac{1}{\sqrt{2}}$	_	
A <i>PFQ</i> szög ezért 45°-os.	1 pont	
Mivel a két háromszögben két szög megegyezik		
(Q-nál levő szögük közös, és van egy 45°-os szögük),	1 pont	
ezért a két háromszög valóban hasonló.		
Összesen:	4 pont	

II.

5. a) első megoldás		
$a_n = \frac{n+4}{n} = 1 + \frac{4}{n}$	1 pont	$\lim_{n \to \infty} \left(\frac{n+4}{n} \right) =$ $= \lim_{n \to \infty} \left(\frac{\frac{n+4}{n}}{\frac{n}{n}} \right) =$
$\lim_{n \to \infty} \left(1 + \frac{4}{n} \right) = \left(\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{4}{n} = \right) 1 + 0 = 1$	2 pont	$=\frac{1+0}{1}=1$
Össz	esen: 3 pont	

5. a) második megoldás		
Megmutatjuk, hogy $\lim_{n\to\infty} \frac{n+4}{n} = 1$.	1 pont	
Minden pozitív ε -ra $\left \frac{n+4}{n} - 1 \right < \varepsilon$ teljesül, ha $n > \frac{4}{\varepsilon}$, ami a határérték definíciója szerint azt jelenti, hogy az $\{a_n\}$ határértéke 1.	2 pont	
Összesen:	3 pont	

5. b) első megoldás		
$\left(a_n = \frac{n+4}{n} = 1 + \frac{4}{n}\right)$		
(Az $\{n\}$ szigorúan monoton nő, ezért) az $\left\{\frac{1}{n}\right\}$ szigo-	1 pont	
rúan monoton csökken,		
tehát a $\left\{\frac{4}{n}\right\}$ is szigorúan monoton csökken.	1 pont	
Vagyis az $\{a_n\}$ valóban szigorúan monoton csökken.	1 pont	
Összesen:	3 pont	

5. b) második megoldás		
$a_{n+1} - a_n = \left(1 + \frac{4}{n+1}\right) - \left(1 + \frac{4}{n}\right) = \frac{4}{n+1} - \frac{4}{n} =$	1 pont	$\frac{a_{n+1}}{a_n} = \frac{\frac{n+5}{n+1}}{\frac{n+4}{n}} =$
$= \frac{4n - 4(n+1)}{n(n+1)} = \frac{-4}{n(n+1)}$	1 pont	$=\frac{n^2 + 5n}{n^2 + 5n + 4}$
$(n > 0 \text{ miatt } n(n+1) > 0, \text{ tehát}) \frac{-4}{n(n+1)} < 0,$ vagyis a sorozat valóban szigorúan monoton csökken.	1 pont	(Mivel n > 0, ezért) a tört értéke kisebb 1-nél, tehát a sorozat valóban szigo- rúan monoton csökken.
Összesen:	3 pont	

5. c)		
A törtet egyszerűsítve:	1 nont	
(n+4)(n+3)(n+2)(n+1) = 24(n+1)(n+3).	1 pont	
(Mivel $n > 0$, ezért) oszthatjuk az egyenletet		
(n+1)(n+3)-mal:	1 pont	
(n+4)(n+2) = 24.		
$n^2 + 6n - 16 = 0$	1 pont	
Ennek a pozitív megoldása $n = 2$.	1 mant	
(Az egyenlet másik gyöke $n = -8$.)	1 pont	
Ellenőrzés behelyettesítéssel vagy ekvivalens átalakí-	1 nont	
tásokra hivatkozással.	1 pont	
Összesen:	5 pont	

5. d)		
$24(x+1)(x+3) = 24x^2 + 96x + 72$	1 pont	
Az f függvény (amelynek grafikonja egy felfelé nyíló parabola) zérushelyei –1 és –3. $\int_{-3}^{-1} (24x^2 + 96x + 72) dx =$	1 pont	

$= \left[8x^3 + 48x^2 + 72x \right]_{-3}^{-1} =$	1 pont	
=(-8+48-72)-(-216+432-216)=-32-0=	1 pont	
= -32 , és mivel a síkidom az <i>x</i> -tengely "alatt" van, ezért a területe 32 területegység.	1 pont	
Összesen:	5 pont	

6. a)		
Az egyes napokon végzett felülések száma egy olyan		Ez a pont akkor is jár, ha
$\{a_n\}$ számtani sorozat egymást követő tagjai, melynek	1 pont	ez a gondolat csak a meg-
differenciája 5, és az első 14 tagjának összege 1001.		oldásból derül ki.
$\frac{(2a_1 + (n-1)d) \cdot n}{2} = \frac{(2a_1 + 13 \cdot 5) \cdot 14}{2} = 1001$	1 pont	
$2a_1 + 13 \cdot 5 = 143$	1 pont	
$a_1 = 39$	1 pont	
$a_{14} = 39 + 13 \cdot 5 = 104$		
(Tehát az első napon 39, az utolsón pedig 104 felülést	1 pont	
végzett Domi, ami megfelel a feladat feltételeinek.)		
Összesen:	5 pont	

6. b) első megoldás		
Jelölje Dalma átlagsebességét (km/h-ban) az első		
körben v. Ekkor a második körben az átlagsebessége	1 pont	
v - 3.5.		
Dalma az első kört $\frac{5,25}{v}$ óra, a második kört $\frac{5,25}{v-3,5}$	1 pont	
óra alatt tette meg.		
Ha 12 km/h Dalma kétkörös átlagsebessége,		
akkor a két kört $\frac{10,5}{12}$ = 0,875 óra (= 52,5 perc) alatt	1 pont*	
tette meg.		
így megoldandó az $\frac{5,25}{v} + \frac{5,25}{v-3,5} = 0,875 \text{ egyenlet.}$	1 pont*	$\frac{1}{v} + \frac{1}{v - 3,5} = \frac{1}{6}$
Megszorozva a törtek nevezőivel: $5.25(v - 3.5) + 5.25v = 0.875v(v - 3.5)$.	1 pont*	6(v-3,5) + 6v = v(v-3,5)
A kijelölt műveleteket elvégezve és rendezve $0.875v^2 - 13.5625v + 18.375 = 0$ adódik.	1 pont*	$v^2 - 15, 5v + 21 = 0$
Ennek az egyenletnek a gyökei 14 és 1,5.	1 pont	
A $v = 1,5$ nem megoldás, mert ekkor a második kör átlagsebességére negatív érték adódna.	1 pont	
Dalma átlagsebessége az első körben tehát 14 km/h, a másodikban 10,5 km/h volt (amely megfelel a feladat feltételeinek).	1 pont	
Összesen:	9 pont	

Megjegyzés: A *-gal jelölt 4 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó.

Dalma a két kört $\frac{5,25}{v} + \frac{5,25}{v-3,5}$ óra alatt tette meg, átlagsebessége pedig 12 km/h volt,	1 pont	Ez a 3 pont akkor is jár, ha a vizsgázó tanult isme- retként hivatkozik arra, hogy ebben az esetben az
igy megoldandó a $\frac{10,5}{\frac{5,25}{v} + \frac{5,25}{v-3,5}} = 12$ egyenlet.	1 pont	átlagsebesség a két kör átlagsebességének a har- monikus közepe, és így a
Az egyenlet bal oldalát átalakítva: $\frac{10,5}{\frac{5,25(v-3,5)+5,25v}{v(v-3,5)}} = \frac{10,5v(v-3,5)}{10,5v-18,375}.$	1 pont	$\frac{2}{\frac{1}{v} + \frac{1}{v - 3,5}} = 12 \text{ egyen-}$ $letből indulva helyesen$ számol.
Az egyenlet mindkét oldalát megszorozva az átalakított bal oldal nevezőjével: $10,5v^2-36,75v=126v-220,5$, amelyből rendezés és egyszerűsítés után $v^2-15,5v+21=0$ adódik.	1 pont	

6 h) másadik magaldás		
6. b) második megoldás Ha 12 km/h Dalma kétkörös átlagsebessége, akkor a		
két kört $\frac{10.5}{12}$ = 0,875 óra (= 52,5 perc) alatt tette meg.	1 pont	
Az első kör megtételéhez szükséges időt (órában) jelölje t , ekkor a második kört $0.875 - t$ óra alatt tette meg.	1 pont	
Így Dalma átlagsebessége a két körben rendre $\frac{5,25}{t}$, illetve $\frac{5,25}{0,875-t}$ volt.	1 pont	
A két kör átlagsebessége közti összefüggés szerint $\frac{5,25}{t} - 3,5 = \frac{5,25}{0,875 - t} \text{ teljesül.}$	1 pont	
Beszorozva a törtek nevezőivel: $5,25(0,875-t) - 3,5t(0,875-t) = 5,25t$.	1 pont	
A kijelölt műveleteket elvégezve és rendezve $3.5t^2 - 13.5625t + 4.59375 = 0$ adódik.	1 pont	$112t^2 - 434t + 147 = 0$
Ennek az egyenletnek a gyökei 3,5 és $\left(\frac{3}{8}\right)$ 0,375.	1 pont	
A $t = 3,5$ nem megoldás, mert ekkor a második kör átlagsebességére negatív érték adódna.	1 pont	
Dalma átlagsebessége az első körben $\frac{5,25}{0,375} = 14$ km/h, a másodikban $\frac{5,25}{0,5} = 10,5$ km/h volt (amely megfelel	1 pont	Dalma az első kört 0,375 óra = 22,5 perc, a második kört pedig 0,5 óra = 30 perc alatt
a feladat feltételeinek).		tette meg.
Összesen:	9 pont	

6. c)		
Két különböző pozitív valós szám mértani közepe mindig nagyobb, mint a harmonikus közepe, de ki- sebb, mint a számtani közepe.	2 pont	l pont jár, ha csak az egyik reláció helyes.
Összesen:	2 pont	

7. a)		
Egy homokszem térfogata $\frac{4 \cdot 0, 1^3 \cdot \pi}{3} \approx 0,00419 \text{ mm}^3.$	1 pont	
A homok a pohár űrtartalmának 60%-át tölti ki. $0.6 \cdot 2 \text{ dl} = 1.2 \text{ dl} = 0.12 \text{ dm}^3 = 120 000 \text{ mm}^3$	2 pont	
A ,,tele" 2 dl-es pohárban kb. $\frac{120000}{0,00419} \approx 28639618$,	1 pont	
azaz kerekítve 29 millió homokszem található.	1 pont	Ez a pont nem jár, ha a vizsgázó nem kerekít, vagy rosszul kerekít.
Összesen:	5 pont	

7. b)		
A homokkupac alapkörének sugara 1,55 m,	1 pont	
magassága $\sqrt{1,8^2 - 1,55^2} \approx 0,915 \text{ m},$	1 pont	
térfogata $\frac{1,55^2 \cdot \pi \cdot 0,915}{3} \approx 2,3 \text{ m}^3.$	1 pont	
Összesen:	3 pont	

7. c) első megoldás		
Jelölje a kúp alapkörének sugarát r, magasságát m,	14	
ekkor $r^2 + m^2 = 1,8^2$, ahonnan $r^2 = 3,24 - m^2$.	1 pont	
A forgáskúp térfogata:		
$\frac{r^2\pi m}{3} = \frac{(3,24-m^2)\cdot \pi m}{3} = \frac{\pi}{3} \cdot (3,24m-m^3).$	1 pont	
A $V:]0; 1,8[\rightarrow \mathbf{R}; V(m) = \frac{\pi}{3} \cdot (3,24m - m^3) \text{ függ-}$	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg-
vénynek ott lehet maximuma, ahol a deriváltja nulla.		oldásból derül ki.
$V'(m) = \frac{\pi}{3} \cdot (3,24 - 3m^2) = 0$	1 pont	
Innen ($m > 0$ miatt) $m = \sqrt{1,08} \approx 1,04$ m.	1 pont	
Az $m = \sqrt{1,08}$ helyen a deriváltfüggvény pozitívból negatívba megy át, ezért itt V -nek (abszolút) maximuma van.	1 pont	$V''(m) = -2\pi m$ $V''(1,04) < 0$
Ekkor $r = \sqrt{3,24-1,08} = \sqrt{2,16} \approx 1,47 \text{ m},$	1 pont	
a maximális térfogat pedig kb. 2,35 m³.	1 pont	
Összesen:	8 pont	

7. c) második megoldás		
Jelölje az alkotók és az alaplap hajlásszögét (radián-	1 4	
ban) α. Ekkor a forgáskúp alapkörének sugara 1,8cos α, magassága 1,8sin α,	1 pont	
térfogata pedig $\frac{1,8^3 \cdot \pi \cdot \cos^2 \alpha \cdot \sin \alpha}{3}.$	1 pont	
A $V: \]0; \frac{\pi}{2} [\rightarrow \mathbf{R}; \ V(\alpha) = \frac{1,8^3 \cdot \pi \cdot \cos^2 \alpha \cdot \sin \alpha}{3} \text{ függ-}]$	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg-
vénynek ott lehet maximuma, ahol a deriváltja nulla.		oldásból derül ki.
$V'(\alpha) = \frac{1,8^3 \cdot \pi \cdot (\cos^3 \alpha - 2\sin^2 \alpha \cdot \cos \alpha)}{3} = 0$	1 pont	
Innen tg $\alpha = \frac{1}{\sqrt{2}}$, azaz $\alpha \approx 0.6155$ ($\approx 35.26^{\circ}$),	1 pont	
amelyből $m = 1.8\sin\alpha \approx 1.04 \text{ m}.$		
$V''(\alpha) = \frac{1,8^3 \cdot \pi \cdot \sin \alpha \cdot (-7\cos^2 \alpha + 2\sin^2 \alpha)}{3}$ $V''(0,6155) < 0, \text{ (gy ez valóban (abszolút) maxi-}$	1 pont	
mumhely.		
Ekkor $r = 1,8\cos\alpha \approx 1,47 \text{ m},$	1 pont	
a maximális térfogat pedig kb. 2,35 m ³ .	1 pont	
Összesen:	8 pont	

Megjegyzés: Ha a vizsgázó válaszait mértékegység nélkül adja meg, akkor a c) feladatban ezért összesen 1 pontot veszítsen.

8. a)		
A kör egyenletét átalakítva: $(x-2)^2 + (y-6)^2 = 53$.	1 pont	
A kör sugara $\sqrt{53}$,	1 pont	
a kör középpontja (2; 6).	1 pont	
Összesen:	3 pont	

8. b) első megoldás		
Az alapok hossza (például a két pont távolságára vo-	_	
natkozó képlettel) $AB = 9\sqrt{2}$ és $CD = 5\sqrt{2}$.	2 pont	
A szárak hossza $AD = BC = \sqrt{106}$.		
Merőlegest állítunk <i>D</i> -ből <i>AB</i> -re, a talppontot jelölje <i>T</i> . (Az így létrejött <i>ATD</i> derékszögű háromszög <i>TD</i> befogójának hossza a húrtrapéz <i>m</i> magassága, míg e befogóval szemközti α szöge a húrtrapéz alapon fekvő szöge.)	1 pont	D M
(A húrtrapéz tengelyes szimmetriája miatt:) $AT = \frac{1}{2} \cdot (AB - CD) = 2\sqrt{2}.$	1 pont	
2 (112 (22)		
$m = \sqrt{AD^2 - AT^2} = \sqrt{106 - 8} = \sqrt{98} = 7\sqrt{2} \ (\approx 9.90)$	1 pont	
$\cos \alpha = \left(\frac{AT}{AD}\right) = \frac{2\sqrt{2}}{\sqrt{106}} \ (\approx 0.2747),$	1 pont	$tg \alpha = \frac{DT}{AT} = \frac{7\sqrt{2}}{2\sqrt{2}} = 3,5$
amiből $\alpha \approx 74,05^{\circ}$.	1 pont	
Így a húrtrapéz hegyesszögei 74,05°-osak, tompaszögei pedig 180° – 74,05° = 105,95°-osak.	1 pont	
Összesen:	8 pont	

8. b) második megoldás		
(Az átlók <i>M</i> (4; 4) metszéspontja a rajta átmenő <i>m</i> magasságot két részre bontja.) Ezek az <i>AMB</i> és a <i>CMD</i> egyenlőszárú derékszögű háromszögek átfogóhoz tartozó magasságai.	l pont	
Az <i>AMB</i> és a <i>CMD</i> egyenlőszárú derékszögű háromszögekben az átfogóhoz tartozó magasság a befogók $\frac{\sqrt{2}}{2}$ -szerese, így hosszuk $\frac{9\sqrt{2}}{2}$ és $\frac{5\sqrt{2}}{2}$.	2 pont	
Tehát $m = 7\sqrt{2} \ (\approx 9,90)$.	1 pont	

A derékszögű BMC háromszögben az ábra jelölése alapján $tg \beta' = \left(\frac{CM}{BM} = \right) \frac{5}{9} ,$	1 pont	
amiből β ' $\approx 29,05^{\circ}$.	1 pont	
$\beta = \beta' + 45^{\circ} \approx 74,05^{\circ}.$	1 pont	
Így a húrtrapéz hegyesszögei 74,05°-osak, tompaszögei pedig 180° – 74,05° = 105,95°-osak.	1 pont	
Összesen:	8 pont	

8. b) harmadik megoldás		
(A húrtrapéz AC és BD átlói párhuzamosak a koordináta-rendszer tengelyeivel, így merőlegesek egymásra.) Emiatt a húrtrapéz területe az átlók szorzatának fele: $t = \frac{14^2}{2} = 98$.	1 pont	
Az alapok hossza (például a két pont távolságára vonatkozó képlettel) $AB = 9\sqrt{2}$ és $CD = 5\sqrt{2}$.	1 pont	
Így $t = \frac{(9\sqrt{2} + 5\sqrt{2}) \cdot m}{2} = 98$,	1 pont	
amiből $m = 7\sqrt{2} \ (\approx 9,90).$	1 pont	
A húrtrapéz szárának hossza $BC = \sqrt{106}$.	1 pont	
Az ABC háromszögben koszinusztétel a β szögre: $\cos \beta = \frac{(9\sqrt{2})^2 + (\sqrt{106})^2 - 14^2}{2 \cdot 9\sqrt{2} \cdot \sqrt{106}} = \frac{2}{\sqrt{53}} (\approx 0,2747),$	1 pont	
amiből $\beta \approx 74,05^{\circ}$.	1 pont	
Így a húrtrapéz szögei: $\alpha = \beta \approx 74,05^{\circ}$, $\gamma = \delta = 180^{\circ} - \beta \approx 105,95^{\circ}$.	1 pont	
Összesen:	8 pont	1. 11.

Megjegyzések: 1. A magasság kiszámításáért járó pontokat az alábbi gondolatmenet alkalmazása esetén is megkaphatja a vizsgázó:

- az AB egyenes egyenletének felírása: y = x + 9 (1 pont),
- a C pontra illeszkedő, az alapokra merőleges egyenes egyenletének felírása: y = -x + 3 (l pont),
- a két egyenesek metszéspontjának (a magasság talppontjának) kiszámítása: T(-3; 6) (1 pont), a magasság (a TC szakasz hosszának) kiszámítása: $m = 7\sqrt{2}$ (1 pont).
- 2. $A\cos\beta$ értéke a $\overrightarrow{BA}(9;9)$ és a $\overrightarrow{BC}(9;-5)$ skaláris szorzata segítségével is kiszámítható:

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = 9 \cdot 9 + 9 \cdot (-5) = 9\sqrt{2} \cdot \sqrt{106} \cdot \cos \beta$$
, ahonnan $\cos \beta = \frac{2}{\sqrt{53}}$ (2 pont).

8. c)		
(Az 53-at két négyzetszám összegére kell bontani.) 0+53=1+52=4+49=9+44=16+37=25+28, tehát ez a két négyzetszám csak a 4 és a 49 lehet, melyek (valamilyen sorrendben) a keresett pontok két koordinátájának négyzetei.	2 pont	49 + 4 = 36 + 17
Így a kör egyenletében szereplő x helyére 4 különböző értéket helyettesíthetünk $(2, -2, 7, -7)$.	1 pont	(2; 7), (2; -7), (-2; 7), (-2; -7),
Ezek mindegyikéhez két-két y érték tartozik.	1 pont	(7; 2), (7; -2), (-7; 2), (-7; -2),
Tehát összesen 8 ilyen pont van.	1 pont	
Összesen:	5 pont	

Megjegyzés: Ha a vizsgázó indoklás nélkül felsorolja mind a 8 megfelelő pontot, és ez alapján helyesen válaszol, akkor ezért 3 pontot kapjon. További 2 pont jár annak indoklásáért, hogy több ilyen pont nincs.

9. a)		
A k pontú teljes gráf éleinek száma $\frac{k(k-1)}{2}$. A $2k$ pontú gráf éleinek száma $\frac{2k(2k-1)}{2}$.	1 pont*	
$\frac{k(k-1)}{2} + \frac{2k(2k-1)}{2} = 697$	1 pont*	
$5k^2 - 3k - 1394 = 0$	1 pont	
k = -16,4 nem megoldás.	1 pont	
k = 17 megoldás (és ez megfelel a feladat feltételeinek).	1 pont	
Összesen:	5 pont	

Megjegyzés: A *-gal jelölt 2 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó.

A $3k$ pontú teljes gráf éleinek száma $\frac{3k(3k-1)}{2}$. Ezen pontok között $2k \cdot k$ pont nincs összekötve.	1 pont	
$\frac{3k(3k-1)}{2} - 2k^2 = 697$	1 pont	

9. b) első megoldás		
A bajnokságban összesen $\binom{6}{2}$ = 15 mérkőzést játsza-	1 pont	
nak le.		
Ezek közül 3-at $\binom{15}{3}$ = 455-féleképpen lehet kivá-	1 pont	
lasztani (összes eset).		
A mindhárom mérkőzésen szereplő csapat 6-féle lehet. Ennek a csapatnak az 5 mérkőzéséből 3-at $ \begin{pmatrix} 5 \\ 3 \end{pmatrix} = 10\text{-féleképpen lehet kiválasztani.} $	2 pont	
A kedvező esetek száma így $6 \cdot 10 = 60$.		
Tehát a keresett valószínűség $\frac{60}{455} = \frac{12}{91} \approx 0,132.$	1 pont	
Összesen:	5 pont	

9. b) második megoldás		
Tekinthetjük a csapatokat egy hatpontú gráf pontjainak, a mérkőzéseket pedig a gráf éleinek. Annak a valószínűségét keressük, hogy a hatpontú teljes gráf élei közül hármat véletlenszerűen kiválasztva a kiválasztott három élnek van közös végpontja.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A hatpontú teljes gráfnak $\binom{6}{2}$ = 15 éle van (a bajnokság mérkőzéseinek száma).	1 pont	
Ezek közül két egymáshoz csatlakozó élt $1 \cdot \frac{8}{14} = \frac{4}{7}$ valószínűséggel választhatunk ki, mivel az első él tetszőleges lehet, a második él pedig az elsőhöz csatlakozó 8 él valamelyike.	1 pont	
Ezután annak a valószínűsége, hogy a harmadik kiválasztott él is az első két él közös végpontjára illeszkedik $\frac{3}{13}$, mert a közös csúcsból kiinduló 5 élből 2-t már korábban kiválasztottunk.	1 pont	
Tehát a keresett valószínűség $\frac{4}{7} \cdot \frac{3}{13} \approx 0,132.$	1 pont	
Összesen:	5 pont	

9. c)		
(Tekinthetjük a hat embert egy hatpontú gráf pontjainak, a kézfogásokat pedig a gráf éleinek.) (Egy 6 pontú egyszerű gráfban nem lehet egyszerre 0 és 5 fokszámú pont, ezért) a gráfban az öt különböző fokszám 0; 1; 2; 3; 4, vagy 1; 2; 3; 4; 5 lehet csak.	2 pont	
(Ha a gráf öt pontjának fokszáma 0; 1; 2; 3; 4, akkor a 4 fokszámú pontot a 0 fokszámún kívül mindegyik ponttal össze kell kötni. A 3 fokszámú pontot pedig a 0 és az 1 fokszámún kívül mindegyik ponttal össze kell kötni.) Ekkor a hatodik pont fokszáma csak 2 lehet,	1 pont	1 2 3
tehát az élek (azaz a kézfogások) száma lehet $ \left(\frac{0+1+2+2+3+4}{2} \right) = 6. $	1 pont	
(Ha a gráf öt pontjának fokszáma 1; 2; 3; 4; 5, akkor az 5 fokszámú pontot mindegyik ponttal össze kell kötni. A 4 fokszámú pontot az 1 fokszámún kívül mindegyik ponttal össze kell kötni. A 3 fokszámú pontot pedig az 1 és a 2 fokszámún kívül mindegyik ponttal össze kell kötni.) Ekkor a hatodik pont fokszáma csak 3 lehet,	1 pont	2 3 3
tehát az élek (azaz a kézfogások) száma lehet $\left(\frac{1+2+3+3+4+5}{2}\right) = 9.$	1 pont	
Összesen:	6 pont	