The group G is isomorphic to the group labelled by [9,1] in the Small Groups library. Ordinary character table of $G \cong C9$:

 $\overline{3a}$

9b

			- ·						- /		
χ_1	1	1	1	1	1	1	1	1	1		
χ_2	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^2$		
χ_3	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)		
χ_4	1	$-E(9)^4 - E(9)^7$	$E(9)^{2}$	E(3)	$E(9)^{4}$	$E(9)^{5}$	$E(3)^{2}$	$E(9)^{7}$	$-E(9)^2 - E(9)^5$		
χ_5	1	$E(9)^{4}$	$-E(9)^2 - E(9)^5$	E(3)	$E(9)^{7}$	$E(9)^{2}$	$E(3)^{2}$	$-E(9)^4 - E(9)^7$	$E(9)^{5}$		
χ_6	1	$E(9)^{7}$	$E(9)^{5}$	E(3)	$-E(9)^4 - E(9)^7$	$-E(9)^2 - E(9)^5$	$E(3)^{2}$	$E(9)^{4}$	$E(9)^2$		
χ_7	1	$E(9)^{2}$	$E(9)^4$	$E(3)^{2}$	$-E(9)^2 - E(9)^5$	$-E(9)^4 - E(9)^7$	E(3)	$E(9)^{5}$	$E(9)^{7}$		
χ_8	1		$-E(9)^4 - E(9)^7$	$E(3)^{2}$	$E(9)^{2}$	$E(9)^{7}$	E(3)	$-E(9)^2 - E(9)^5$	$E(9)^4$		
χ_9	1	$-E(9)^2 - E(9)^5$	$E(9)^{7}$	$E(3)^{2}$	$E(9)^{5}$	$E(9)^{4}$	E(3)	$E(9)^{2}$	$-E(9)^4 - E(9)^7$		
Trivial source character table of $G \cong C9$ at $p = 3$:											

9d

 $\overline{3b}$

9e

9 f

9c

9a

1a

Normalisers N_i	N_1	N_2	N_3
p-subgroups of G up to conjugacy in G	P_1	P_2	P_3
Representatives $n_j \in N_i$	1 <i>a</i>	1a	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	9	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	3	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1

$$\begin{array}{l} P_1 = Group([()]) \cong 1 \\ P_2 = Group([(1,4,7)(2,5,8)(3,6,9)]) \cong \mathrm{C3} \\ P_3 = Group([(1,2,3,4,5,6,7,8,9),(1,4,7)(2,5,8)(3,6,9)]) \cong \mathrm{C9} \end{array}$$

$$N_1 = Group([(1, 2, 3, 4, 5, 6, 7, 8, 9)]) \cong C9$$

 $N_2 = Group([(1, 4, 7)(2, 5, 8)(3, 6, 9), (1, 2, 3, 4, 5, 6, 7, 8, 9)]) \cong C9$
 $N_3 = Group([(1, 2, 3, 4, 5, 6, 7, 8, 9), (1, 4, 7)(2, 5, 8)(3, 6, 9)]) \cong C9$