8.3 Untersuche die Reihe $\sum\limits_{n=1}^{\infty}a_n$ auf Konvergenz und absolute Konvergenz, wobei

(a)
$$a_n = (\frac{1+i}{2})^n$$
;

$$\sum_{n=1}^{\infty} \left(\frac{1+i}{2}\right)^n$$

$$= \sum_{n=0}^{\infty} \left(\frac{1+i}{2}\right)^n - 1$$

Geometrische Reihe mit $|\frac{1+i}{2}|=\frac{|1+i|}{|2|}=\frac{\sqrt{2}}{2}<1$: \Rightarrow konvergent.

Überprüfen absoluter Konvergenz:

$$\sum_{n=1}^{\infty} \left| \left(\frac{1+i}{2} \right)^n \right|$$

$$= \sum_{n=1}^{\infty} \left| \frac{1+i}{2} \right|^n$$

$$= \sum_{n=1}^{\infty} \left(\frac{\sqrt{2}}{2} \right)^n$$

$$= \sum_{n=0}^{\infty} \left(\frac{\sqrt{2}}{2} \right)^n - 1$$

Aus der geometrischen Reihe mit $\left|\frac{\sqrt{2}}{2}\right| < 1$ folgt $\sum_{n=1}^{\infty} \left|\left(\frac{1+i}{2}\right)^n\right|$ konvergiert. \Rightarrow absolut konvergent

(b) $a_n = \frac{(-1)^n}{\sqrt[3]{n}}$; Quotientenkriterium:

$$\left| \frac{(-1)^n \sqrt[3]{n+1}}{(-1)^n \sqrt[3]{n}} \right|$$

$$= \left| \frac{-1 \cdot \sqrt[3]{n+1}}{\sqrt[3]{n}} \right|$$

$$= \left| \frac{\sqrt[3]{n+1}}{\sqrt[3]{n}} \right|$$

Aus $\sqrt{a} > \sqrt{b}$ für a > b folgt $\left| \frac{\sqrt[3]{n+1}}{\sqrt[3]{n}} \right| > 1$. \Rightarrow divergent \Rightarrow nicht absolut konvergent.

(c) $a_n = (-1)^n \frac{n+2}{2n}$. Quotientenkriterium:

$$\left| (-1)^{n+1} \frac{n+3}{2(n+1)} \frac{1}{(-1)^n} \frac{2n}{n+2} \right|$$

$$= \left| (-1) \frac{(n+3)(2n)}{(2n+2)(n+2)} \right|$$

$$= \left| \frac{2n^2 + 6n}{2n^2 + 6n + 4} \right| < 1$$

 \Rightarrow konvergent.

Überprüfen absoluter Konvergenz:

$$\left| \frac{\left| (-1)^{n+1} \frac{n+3}{2(n+1)} \right|}{\left| (-1)^n \frac{n+2}{2n} \right|} \right|$$

$$= \left| \frac{(n+3)(2n)}{2(n+1)(n+2)} \right|$$

$$= \left| \frac{2n^2 + 6n}{2n^2 + 6n + 4} \right| < 1$$

 \Rightarrow absolut konvergent.

- 8.4 Sei $s_n := \sum_{k=0}^n \frac{1}{k!}$ und $e = \lim_{n \to \infty} s_n$ die Euler'sche Zahl.
 - (a) Zeige die Ungleichungen $0 < e s_n < \frac{1}{n*n!}$ für $n \in \mathbb{N}$, mit Hilfe einer geeigneten geometrischen Reihe.
 - (b) Bestimme mit Hilfe von (a) eine Zahl $n \in \mathbb{N}$, für die $|e s_N| \le 0.5 \cdot 10^{-4}$ gilt, und gib den Wert von s_N an.
 - (c) Zeige, dass die Euler'sche Zahl e irrational ist.
- 8.5 (a) Konvergiert die Reihe $\sum_{n=2}^{\infty} \left(\frac{1}{\sqrt{n}-1} + \frac{1}{\sqrt{n}+1} \right) ?$
 - (b) Berechne $\sum_{n=1}^{\infty} \frac{n-1}{n!}$.

- (c) Für welche $z \in \mathbb{C} \setminus \{-1\}$ konvergiert die Reihe $\sum_{n=1}^{\infty} \frac{z^{n-1}}{(1+z)^n}$? Bestimme den Grenzwert, falls er existiert.
- 8.6 Ermittle (durch Probieren) das kleinste $n \in \mathbb{N}$, für dass $\sum_{k=1}^{n} \frac{1}{k} > 3$ ist. benutze einen Computer, um herauszufinden, wie groß man n wählen muss, damit die Summe > 6 bzw. > 9 wird.