Data Visualization

Agenda

1. Matplotlib Scripting Layer Examples

- 2. Histogram
- 3. Bar Chart
- 4. Questions

Matplotlib Scripting Layer Examples

NumPy Example

NumPy: Numerical Python library for Scientific Computing

https://github.dev/numpy/numpy/blob/main/numpy/random/_init_.pu

Scripting Layer Example 1

- import pyplot
 - from the matplotlib library

Scripting Layer Example 2

- all methods
 - creating/manipulating
 - histogram
 - other Artist objects
 - are part of pyplot

Scripting Layer Complete Example

```
import matplotlib.pyplot as plt
import numpy as np

x = np.random.randn(10000)
plt.hist(x, 100)
plt.title('Figure 3')
plt.savefig('hist3.png')
plt.show()
```

In [4]:

- represents the frequency distribution of a numeric dataset
- is a way to represent the frequency distribution of a variable
- The way it works is:
 - o partitions the spread of the numeric data into bins
 - assigns each datapoint in the dataset to a bin
 - o counts the number of datapoints that have been assigned to each bin

Vertical axis

is actually the frequency or the number of datapoints in each bin

- If you have a quantitative variable,
 - then your univariable plot of choice will probably be the histogram
- When creating a histogram,
 - Play around with different bin sizes
 - to better understanding the plotted variable
- https://www.youtube.com/watch?v=RLez9L0htGQ&t=84s

```
In [1]: import pandas as pd

df = pd.read_csv('canada-mig-dataset.csv')

df.head()
```

Out[1]:

7.7	Туре	Coverage	OdName	AREA	AreaName	REG	RegName	DEV	DevName	1980	•••	2004	2005	2006	2007	2008	2009	2010	2011	2012
0	Immigrants	Foreigners	Afghanistan	935	Asia	5501	Southern Asia	902	Developing regions	16		2978	3436	3009	2652	2111	1746	1758	2203	2635
1	Immigrants	Foreigners	Albania	908	Europe	925	Southern Europe	901	Developed regions	1		1450	1223	856	702	560	716	561	539	620
2	Immigrants	Foreigners	Algeria	903	Africa	912	Northern Africa	902	Developing regions	80		3616	3626	4807	3623	4005	5393	4752	4325	3774
3	Immigrants	Foreigners	American Samoa	909	Oceania	957	Polynesia	902	Developing regions	0		0	0	1	0	0	0	0	0	0
4	Immigrants	Foreigners	Andorra	908	Europe	925	Southern Europe	901	Developed regions	0		0	0	1	1	0	0	0	0	1

5 rows × 43 columns

```
In [2]: df1 = df.set_index('OdName')
    df1.head()
```

Out[2]:

		Туре	Coverage	AREA	AreaName	REG	RegName	DEV	DevName	1980	1981	 2004	2005	2006	2007	2008	2009	2010	2011	2
	OdName																			
Ŋ	Afghanistan	Immigrants	Foreigners	935	Asia	5501	Southern Asia	902	Developing regions	16	39	 2978	3436	3009	2652	2111	1746	1758	2203	2
	Albania	Immigrants	Foreigners	908	Europe	925	Southern Europe	901	Developed regions	1	0	 1450	1223	856	702	560	716	561	539	
	Algeria	Immigrants	Foreigners	903	Africa	912	Northern Africa	902	Developing regions	80	67	 3616	3626	4807	3623	4005	5393	4752	4325	3
	American Samoa	Immigrants	Foreigners	909	Oceania	957	Polynesia	902	Developing regions	0	1	 0	0	1	0	0	0	0	0	
	Andorra	Immigrants	Foreigners	908	Europe	925	Southern Europe	901	Developed regions	0	0	 0	0	1	1	0	0	0	0	

5 rows × 42 columns

```
In [3]: df1['2013'].plot(kind='hist', bins = 5)
Out[3]: <AxesSubplot:ylabel='Frequency'>
```



```
In [4]: import numpy as np
    count, bin_edges = np.histogram(df1['2013'], bins=5)
    df1['2013'].plot(kind='hist', bins = 5, xticks = bin_edges)

Out[4]: <AxesSubplot:ylabel='Frequency'>
```


- Numpy histogram function
 - o partitions the spread of the column data into bins of equal width
 - o computes the number of data points that fall in each bin
 - returns the frequency of each bin (count) & bin edges (bin_edges)
- We then pass these **bin edges** as an additional parameter in our plot function to generate the histogram

Histogram - Complete Example

```
In [1]: import pandas as pd
import numpy as np

df0 = pd.read_csv('canada-mig-dataset.csv')
df1 = df0.set_index('OdName')
count, bin_edges = np.histogram(df1['2013'], bins=5)
df1['2013'].plot(kind='hist', bins = 5, xticks = bin_edges)
```

Out[1]: <AxesSubplot:ylabel='Frequency'>

Histogram - Complete Example

- Add Title
- Add X Label
- Add Y Label

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df0 = pd.read_csv('canada-mig-dataset.csv')
df1 = df0.set_index('OdName')
count, bin_edges = np.histogram(df1['2013'], bins=5)
df1['2013'].plot(kind='hist', bins = 5, xticks = bin_edges)

plt.title('Histogram of Immigration from 195 Countries in 2013')
plt.xlabel('Number of Immigrant')
plt.ylabel('Number of Countries')
plt.show()
```


Bar Chart

Bar Chart (Bar Graph)

- is a very popular visualization tool
 - o the length of each bar is proportional to the value of the item that it represents

- commonly used:
 - o to compare the values of a variable at a given point in time
- Example:
 - visualizing in discrete fashion how immigration from Iceland to Canada evolved
- bar height represents total immigration from Iceland to Canada in a specific year.

Bar Chart Example - Cell 1

```
In [1]: import pandas as pd

df = pd.read_csv('canada-mig-dataset.csv')

df.head()
```

Out[1]:

7.7	Туре	Coverage	OdName	AREA	AreaName	REG	RegName	DEV	DevName	1980	•••	2004	2005	2006	2007	2008	2009	2010	2011	2012
0	Immigrants	Foreigners	Afghanistan	935	Asia	5501	Southern Asia	902	Developing regions	16		2978	3436	3009	2652	2111	1746	1758	2203	2635
1	Immigrants	Foreigners	Albania	908	Europe	925	Southern Europe	901	Developed regions	1		1450	1223	856	702	560	716	561	539	620
2	Immigrants	Foreigners	Algeria	903	Africa	912	Northern Africa	902	Developing regions	80		3616	3626	4807	3623	4005	5393	4752	4325	3774
3	Immigrants	Foreigners	American Samoa	909	Oceania	957	Polynesia	902	Developing regions	0		0	0	1	0	0	0	0	0	0
4	Immigrants	Foreigners	Andorra	908	Europe	925	Southern Europe	901	Developed regions	0		0	0	1	1	0	0	0	0	1

5 rows × 43 columns

Bar Chart Example - Cell 2

```
In [2]: df1 = df.set_index('OdName')
df1.head()
```

Out[2]:

	Туре	Coverage	AREA	AreaName	REG	RegName	DEV	DevName	1980	1981	 2004	2005	2006	2007	2008	2009	2010	2011	2
OdName																			
Afghanistan	Immigrants	Foreigners	935	Asia	5501	Southern Asia	902	Developing regions	16	39	 2978	3436	3009	2652	2111	1746	1758	2203	2
Albania	Immigrants	Foreigners	908	Europe	925	Southern Europe	901	Developed regions	1	0	 1450	1223	856	702	560	716	561	539	
Algeria	Immigrants	Foreigners	903	Africa	912	Northern Africa	902	Developing regions	80	67	 3616	3626	4807	3623	4005	5393	4752	4325	53
American Samoa	Immigrants	Foreigners	909	Oceania	957	Polynesia	902	Developing regions	0	1	 0	0	1	0	0	0	0	0	
Andorra	Immigrants	Foreigners	908	Europe	925	Southern Europe	901	Developed regions	0	0	 0	0	1	1	0	0	0	0	

5 rows × 42 columns

Explain: list(map(str, range(1,5)))

```
range(1,5)
list(range(1,5))
[1, 2, 3, 4]
range(1,5)
map(str, range(1,5))
list(map(str, range(1,5)))
['1', '2', '3', '4']
```

Bar Chart Example - Cell 3

```
In [3]: df2 = df1.loc[ "Iceland", list(map(str, range(1980,2014))) ]
    df2.plot(kind='bar')
Out[3]: <AxesSubplot:>
```


Bar Chart Example - Cell 4

```
In [4]: import numpy as np
import matplotlib.pyplot as plt
df2.plot(kind='bar')
plt.title("Immigration from Iceland")
plt.ylabel("Number of Immigrant")
plt.xlabel("Year")
plt.show()
```


Bar Chart - Complete Example

```
In [1]: import pandas as pd
import matplotlib.pyplot as plt

df0 = pd.read_csv('canada-mig-dataset.csv')
df1 = df0.set_index('OdName')
df2 = df1.loc[ "Iceland", list(map(str, range(1980,2014))) ]
df2.plot(kind='bar')

plt.title("Immigration from Iceland")
plt.ylabel("Number of Immigrant")
plt.xlabel("Year")
plt.show()
```


When to use Histogram even with discrete numeric

- If having large number of unique values over large enough range,
 - o it may be better to stick with the standard histogram

https://github.com/matplotlib/matplotlib/blob/main/lib/matplotlib/pyplot.py

Questions

Links

https://github.com/fcai-b/dv

References

1. https://www.coursera.org/learn/python-for-data-visualization