Лекции по алгебре (читает Роткевич А. С.)

Данный документ неидеальный, прошу сообщать о найденных недочетах в вк

Содержание

1.	Функции от нескольких переменных				
	1.1.	02.09.2019	2		
	1.2.	5.09.2019	4		
	1.3.	9.09.2019	5		

1. Функции от нескольких переменных

1.1. 02.09.2019.

Опр. $\rho:X*X\to\mathbb{R}$ - метрика, если

1)
$$\rho(x,y) \geqslant 0$$
, $\rho(x,y) = 0 \Leftrightarrow x = y$

2)
$$\rho(x,y) = \rho(y,x)$$

3)
$$\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$$
 (X,ρ) - метрическое пространство

Примеры.

1)
$$\mathbb{R} \rho(x,y) = |x-y|$$

2)
$$x \neq \emptyset$$
 $\rho(x,y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$

3)
$$\mathbb{R}^n$$
, $n \geqslant 1$ $\rho(x,y) = \sqrt{(x_1-y_1)^2 + ... + (x_n-y_n)^2}$, где $x = (x_1,...,x_n)$ $y = (y_1,...,y_n)$

<u>Опр.</u> $\rho_1, \rho_2: X*X \to \mathbb{R}$ - метрики, тогда ρ_1, ρ_2 - эквивалентны, если (они задают одну топологию) $_1\rho_1(x,y)\leqslant \rho_2(x,y)\leqslant c_2\rho_1(x,y)$ для $c_1,c_2>0$ - const

Пример.
$$\mathbb{R}^2 \ \rho_1(x,y) = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2} \leqslant \sqrt{2\rho_2^2(x,y)}$$
 $\rho_2(x,y) = \max(|x_1-y_1|,|x_2-y_2|) \ (\text{упр.})$ $\frac{1}{\sqrt{2}}\rho_1(x,y) \leqslant \rho_2(x,y) \leqslant \rho_1(x,y)$ Пусть $\rho_3(x,y) = (|x_1-y_1|^p + ... |x-n-y_n|^p)^{\frac{1}{p}}, \ p \geqslant 1$ Если $p \to \infty \ \rho_3 \to \rho_2$ $l_n^p = (\mathbb{R}^n, \rho_3)$ - пространство Лебега конечномерное (упр.) Д-ть, что все метрики эквивалентны (ρ_1, ρ_2, ρ_3)

Опр. $\rho:X*X\to\mathbb{R}$ - метрика,

Открытым шаром в X относительно метрики ρ называется мн-во $B_r(x) = B(x,r) = \{y \in X : \rho(x,y) < r\}$

Замкнутым шаром называется $\overline{B}_r(x) = \{y \in X : \rho(y,x) \leqslant r\}$

Сферой называется $S_r(x) = \{ y \in X : \rho(x, y) = r \}$

Упр. Замкнутый шар - не всегда замыкание шара (см. дискретную метрику)

Пример.
$$l^p = \{\{x_n\}_{n=1}^{\infty} : \sum_{n=1}^{\infty} |x_n|^p < \infty\} \ 1 \leqslant p < \infty$$
 $\rho(\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}) = (\sum_{n=1}^{\infty} (x_n - y_n)^p)^{\frac{1}{p}}$ l^p - пр-во Лебега (последовательностей)

Пример. C[0,1] - пр-во непр. функций

 $\overline{\rho(f,g)} = \max_{[0,1]} |f-g|$ - полна (любая фундаментальная последовательность

сходится)

$$ho_p(f,g)=(\int\limits_0^1|f-g|^pdx)^{rac{1}{p}}$$
 - не полная

Опр. (X,ρ) - метр. пр-во, $\{x_k\}_{k=1}^\infty\subset X,\ a\in X\ x_k\to a$ в пр-ве X по метрике ρ , если $\rho(x_n,a)\underset{k\to\infty}{\to}0$

Примеры. \mathbb{R}^2 $M_k = (x_k, y_k)$ P = (a, b) $M_k \to P$ в евкл. метрике, т.е. $\rho(M_k, P) = \sqrt{(x_k - a)^2 + (y_k - b)^2} \underset{k \to \infty}{\to} 0 \Leftrightarrow x_k \to a, \ y_k \to b$

<u>Замечание.</u> Есть $ho_1,
ho_2$ - экв. метрики, то $ho_1(x_k,a) o 0 \Leftrightarrow
ho_2(x_k,a) o 0$

$$\underline{\mathbf{ynp.}} \ x_k \to a, \ x_k \to b \Rightarrow a = b
(\rho(a,b) \leqslant \rho(a,x_k) + \rho(x_k,b) \to 0 \Rightarrow \rho(a,b) \to 0 \Rightarrow a = b)$$

Опр. $E\subset X,\,(X,\rho)$ - метр. пр-во, $a\in X$ - т. сгущ. Е, если $\forall \mathcal{E}\ \exists x\in E: \rho(a,x)<\mathcal{E}$

Опр. $f: E \to Y \ (X, \rho), \ (Y, d)$ - метр. пр-ва $(E \subset X),$ а - т. сгущ. Е, $A \in Y$, тогда A - предел отображения A в т. а, если A при A при A0 нри A2 нри A3 нри A4 нри A5 нри A6 нри A6 нри A6 нри A6 нри A6 нри A7 нри A8 нри A8 нри A9 нри A9

<u>Замечание.</u> $A = \lim_{x \to a} f(x) \Leftrightarrow \forall \mathcal{E} > 0 \; \exists \delta > 0 : f(B_{\delta}(a) \setminus \{a\}) \subset B_{\mathcal{E}}(A)$

1.2. 05.09.2019. Будем в
$$\mathbb{R}^2$$
, $\rho((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

Опр. $f: E \to \mathbb{R}, E \subset \mathbb{R}^2, a \in \mathbb{R}^2$ - точка сгущения, $\lim_{x \to a} f(x) = F$, если $\forall \mathcal{E} > 0 \quad \exists \delta > 0: 0 < \rho(x,a) < \delta, x \in E \Rightarrow |f(x) - A| < \mathcal{E}$

Работают: арифм. действия, теор. о двух миллиционерах, критерий Коши:

 $\underline{\mathbf{Onp.}}\ f: E \to \mathbb{R},$ частный случай $\exists \lim_{x \to a} f \Leftrightarrow \forall \mathcal{E} > 0 \quad \exists \delta > 0: |f(x) - f(y)| < \mathcal{E} 0 < \rho(x,a), \rho(y,a) < \delta \ (\text{упр})$

$$\mathbf{\underline{Vnp.}} \ \exists \lim_{x \to a} f \Leftrightarrow \forall \{x_n\} : x_n \neq a \quad x_n \to a \ (\rho(x_n, a) \to 0) \ \exists \lim_{n \to \infty} f(x_n)$$

Обозначение:
$$\lim_{\substack{x\to x_0\\y\to y_0}} f(x,y) = \lim_{(x,y)\to (x_0,y_0)} f(x,y)$$
 - предел функции в т. (x_0,y_0)

Пример.
$$f(x,y) = (x+y)\sin\frac{1}{x}\sin\frac{1}{y}, \lim_{\substack{x\to 0\\y\to 0}}f(x,y) = 0, \text{ т.к.} |f(x,y)| \leqslant |x|+|y| \underset{\substack{x\to 0\\y\to 0}\\y\to 0}{\to} 0,$$

Пример.

$$\frac{1}{f(x,y)} = \frac{x^2y^2}{x^2y^2 + (x-y)^2}$$
 - не существует, так как $\lim f(x,x) = 1, \ f(x,2x) = 0$

Пример. Построить
$$f(x,y)$$
 т.ч. $\forall a,b \ \exists \lim_{t \to 0} f(at,bt) = A$, но $\underset{y \to 0}{\not\exists \lim} f(x,y)$

$$f=\frac{y^2}{x}=\frac{b^2}{a}t\to 0,$$
но при $x=\frac{1}{n^2},\,y=\frac{1}{n}$ предел - единица

Замечание. Если
$$\gamma(t)_{t \to t_0}^{} \in \mathbb{R}^2$$
 и $\exists \lim_{x \to a} f(x) = A$, то $\exists \lim_{t \to t_0} f(\gamma(t))$

Замечание. Если
$$\forall \gamma: \gamma(t) \to a \in \mathbb{R}^2$$
 и $\exists \lim_{t \to a} f(\gamma(t))$, то $\exists \lim_{t \to a} f(\gamma(t))$

<u>Замечание.</u> $\lim_{x \to x_0} \lim_{y \to y_0} f(x,y)$ - не предел по кривой (из-за необязательного равенства предела и значения в пределе). Более формально: пусть = $\lim_{x \to x_0} \overline{f}(x)$

$$\overline{f}(x) = \lim_{y o y_0} f(x,y) \neq$$
 (не обязательно) $\neq f(x,y_0)$

Опр.

$$\frac{1}{\sum\limits_{\substack{x\to +\infty\\y\to +\infty}}} f(x,y) = A, \text{ если } \forall \mathcal{E}>0 \ \exists M>0: \forall x,y: \max(x,y)>M \ |f(x,y)-A|<\mathcal{E}$$

Пример.

$$\overline{f = \frac{y}{x}tg(\frac{x}{x+y})}$$
 - не имеет предела, $f(x,x) = tg(\frac{1}{2}), \ f(x,x^2) = xtg(\frac{1}{1+x}) \to 0$

1.3. 09.09.2019.

Опр.

1)
$$A=\lim_{\substack{x\to+\infty\\y\to+\infty}}f(x,y),$$
 если $\forall \mathcal{E}>0$ $\exists M>0: x>M$ $y>M\Rightarrow |f(x,y)-A|<\mathcal{E}$

2)
$$A=\lim_{\substack{x\to +\infty\\y\to +\infty}}f(x,y),$$
 если $\forall \mathcal{E}>0$ $\exists M>0: |x|>M$ $|y|>M\Rightarrow |f(x,y)-A|<\mathcal{E}$

3)
$$A=\lim_{P\to\infty}f(P)$$
 $P\in\mathbb{R}^2,$ если $\forall \mathcal{E}>0$ $\exists M>0: \rho(0,P)>M\Rightarrow |f(x,y)-A|<\mathcal{E}$

Замечание. Демидович по первым двум определениям

Опр. Для конечного предела:
$$A = \lim_{x \to a} f(x,y)$$
, если $\forall \mathcal{E} > 0 \quad \exists M > 0 \quad \delta > 0$: $y > M \quad |x - a| < \delta \Rightarrow |f(x,y) - A| < \mathcal{E}$

$$\frac{\textbf{Пример.}}{\displaystyle \lim_{\substack{x \to +\infty \\ y \to +\infty}} (\frac{xy}{x^2+y^2})^{x^2}}$$

Решение.

$$\frac{xy}{x^2+y^2}\leqslant \frac{1}{2}\Rightarrow 2xy\leqslant x^2+y^2\Rightarrow 0\leqslant (x-y)^2$$
 для $x\neq y$ Значит дробь стремится к 0

$$\frac{\mathbf{\Pi}\mathbf{ример.}}{\underset{y\to 0}{\overset{x\to 0}{\prod}}}\lim_{x\to 0}(\frac{xy}{x^2+y^2})^{x^2}$$

Решение. При x = y предел $\frac{1}{2}$ При $x = y^2$ предел 0

$$\frac{\textbf{Пример.}}{\text{Найти}} \underbrace{ \lim_{\substack{x \to +\infty \\ y \to +\infty}} f, \lim_{\substack{x \to \infty \\ y \to +\infty}} \lim_{\substack{y \to \infty}} f, \lim_{\substack{y \to \infty \\ y \to \infty}} \lim_{\substack{x \to \infty \\ y \to \infty}} f}_{f, \lim_{\substack{x \to \infty \\ y \to \infty}} \lim_{\substack{x \to \infty \\ y \to \infty}} f$$

Решение. Первый не имеет предела $(x=y,\,x=\sqrt{y})$. Второй $\frac{\sqrt{3}}{2}$. Третий 0

$$\frac{\mathbf{\Pi}\mathbf{pимер.}}{\underset{y\to+\infty}{\lim}} \lim_{\substack{x\to+\infty\\y\to+\infty}} \frac{\sin(y-x^2)}{y-x^2}$$

Решение.
$$z=y-x^2,\,z\to0\Rightarrow x,y\to0$$
 $|z|\leqslant|x|+|y|\leqslant2\sqrt{x^2+y^2}$

$$\underline{\bf \Pi pимер.} \ f = \frac{1-\sqrt[3]{sin^4x + cos^4y}}{\sqrt{x^2+y^2}},$$
 найти $\lim_{\substack{x\to 0\\y\to 0}} f$

Решение.
$$1 - \sqrt[3]{t} \lim_{t \to 1} \frac{1-t}{3}$$
 (т.к. $1 - \sqrt[3]{t} = \frac{1-t}{1+\sqrt[5]{t}+\sqrt[3]{t^2}}$)

Значит
$$\lim_{\substack{x\to 0\\y\to 0}} f = \lim_{\substack{x\to 0\\y\to 0}} \frac{1}{3} \frac{1-(\sin^4x+\cos^4y)}{\sqrt{x^2+y^2}} = \lim_{\substack{x\to 0\\y\to 0}} \frac{2\sin^2y-\sin^4y-\sin^4x}{3\sqrt{x^2+y^2}}$$
 Заменим по Тейлору:
$$= \lim_{\substack{x\to 0\\y\to 0}} \frac{2y^2+\overline{o}(y^3)-x^4+\overline{o}(x^6)}{3\sqrt{x^2+y^2}}$$

Заменим по Тейлору:
$$= \lim_{\substack{x \to 0 \\ y \to 0}} \frac{2y^2 + \overline{o}(y^3) - x^4 + \overline{o}(x^6)}{3\sqrt{x^2 + y^2}}$$

Попробуем оценить по модулю $\left|\frac{2y^2-x^4}{\sqrt{x^2+y^2}}\right|$, заметим что $y^2\leqslant x^2+y^2,\ x^4\leqslant$ $2(x^2+y^2)\leqslant x^2+y^2$ (для $x^2+y^2<1$), чтобы избавиться от \overline{o} оценим так: $\overline{o}+y^2\leqslant 2(x^2+y^2), \, \overline{o}+x^4\leqslant 2(x^2+y^2)\leqslant x^2+y^2$ Тогда $|\frac{2y^2-x^4}{\sqrt{x^2+y^2}}|\leqslant 2\frac{3(x^2+y^2)}{\sqrt{x^2+y^2}}\leqslant 6\sqrt{x^2+y^2}\to 0$

Тогда
$$\left|\frac{2y^2-x^4}{\sqrt{x^2+y^2}}\right| \leqslant 2\frac{3(x^2+y^2)}{\sqrt{x^2+y^2}} \leqslant 6\sqrt{x^2+y^2} \to 0$$