CHAPTER 9: NUMERICAL METHODS

9.1 LU-Decompositions

Step 1. Rewrite the system as $\begin{bmatrix} 3 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 1.

Step 2. Define y_1 and y_2 by $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and solve $\begin{bmatrix} 3 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ by forward

substitution to obtain $y_1 = 0$, $y_2 = 1$.

Step 3. Solve $\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ by back substitution to find $x_1 = 2$, $x_2 = 1$.

Step 1. Rewrite the system as $\begin{bmatrix} 3 & 0 & 0 \\ 2 & 4 & 0 \\ -4 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -2 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -5 \\ -22 \\ 3 \end{bmatrix}$ 2.

Step 2. Define y_1 , y_2 , and y_3 by $\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 & -2 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and solve $\begin{bmatrix} 3 & 0 & 0 \\ 2 & 4 & 0 \\ -4 & -1 & 2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} -3 \\ -22 \\ 3 \end{bmatrix}$ by

forward substitution to obtain $y_1 = -1$, $y_2 = -5$, $y_3 = -3$.

Step 3. Solve $\begin{bmatrix} 1 & -2 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -5 \\ -3 \end{bmatrix}$ by back substitution to find $x_1 = -2$, $x_2 = 1$, $x_3 = -3$.

3. $A = \begin{bmatrix} 2 & 8 \\ -1 & -1 \end{bmatrix}$ $\begin{vmatrix} \bullet & 0 \\ \bullet & \bullet \end{vmatrix}$ (we follow the procedure of Example 3)

 $\begin{bmatrix} 1 & 4 \\ -1 & -1 \end{bmatrix} \leftarrow \text{multiplier} = \frac{1}{2}$

 $\begin{bmatrix} 2 & 0 \\ -1 & \bullet \end{bmatrix}$ $L = \begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix}$ $\begin{bmatrix} 1 & 4 \\ \hline (0) & 3 \end{bmatrix} \leftarrow \text{multiplier} = 1$

 $U = \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \leftarrow \text{multiplier} = \frac{1}{3}$

Step 1. Rewrite the system as
$$\begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$

Step 2. Define
$$y_1$$
 and y_2 by $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and solve $\begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$ by forward substitution to

obtain $y_1 = -1$, $y_2 = -1$.

Step 3. Solve
$$\begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$
 by back substitution to find $x_1 = 3$, $x_2 = -1$.

4.
$$A = \begin{bmatrix} -5 & -10 \\ 6 & 5 \end{bmatrix}$$
 (we follow the procedure of Example 3)

$$\begin{bmatrix} 1 & 2 \\ 6 & 5 \end{bmatrix} \leftarrow \text{multiplier} = -\frac{1}{5}$$

$$\begin{bmatrix} -5 & 0 \\ \bullet & \bullet \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ \hline 0 & -7 \end{bmatrix} \leftarrow \text{multiplier} = -6 \qquad \begin{bmatrix} -5 & 0 \\ 6 & \bullet \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \leftarrow \text{multiplier} = -\frac{1}{7}$$

$$L = \begin{bmatrix} -5 & 0 \\ 6 & -7 \end{bmatrix}$$

Step 1. Rewrite the system as
$$\begin{bmatrix} -5 & 0 \\ 6 & -7 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -10 \\ 19 \end{bmatrix}$$

Step 2. Define
$$y_1$$
 and y_2 by $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and solve $\begin{bmatrix} -5 & 0 \\ 6 & -7 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} -10 \\ 19 \end{bmatrix}$ by forward

substitution to obtain $y_1 = 2$, $y_2 = -1$.

Step 3. Solve
$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
 by back substitution to find $x_1 = 4$, $x_2 = -1$.

5.
$$A = \begin{bmatrix} 2 & -2 & -2 \\ 0 & -2 & 2 \\ -1 & 5 & 2 \end{bmatrix}$$

$$\begin{bmatrix} \bullet & 0 & 0 \\ \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & -1 \\ 0 & -2 & 2 \\ -1 & 5 & 2 \end{bmatrix} \leftarrow \text{multiplier} = \frac{1}{2}$$

$$\begin{bmatrix} 1 & -1 & -1 \\ 0 & -2 & 2 \\ 0 & 4 & 1 \end{bmatrix} \leftarrow \text{multiplier} = 0$$

$$\begin{bmatrix} 1 & -1 & -1 \\ 0 & -2 & 2 \\ 0 & 4 & 1 \end{bmatrix} \leftarrow \text{multiplier} = 1$$

$$\begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 4 & 1 \end{bmatrix} \leftarrow \text{multiplier} = -\frac{1}{2}$$

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & \cdot & 0 \\ -1 & \cdot & \cdot \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ -1 & \cdot & \cdot \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 5 \end{bmatrix} \leftarrow \text{multiplier} = -4$$

$$U = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \leftarrow \text{multiplier} = \frac{1}{5}$$

$$L = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ -1 & 4 & 5 \end{bmatrix}$$

Step 1. Rewrite the system as
$$\underbrace{ \begin{bmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ -1 & 4 & 5 \end{bmatrix} }_{L} \underbrace{ \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} }_{V} \underbrace{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} }_{\mathbf{x}} = \underbrace{ \begin{bmatrix} -4 \\ -2 \\ 6 \end{bmatrix} }_{\mathbf{b}}$$

Step 2. Define
$$y_1$$
, y_2 , and y_3 by $\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and solve $\begin{bmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ -1 & 4 & 5 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} -4 \\ -2 \\ 6 \end{bmatrix}$ by

forward substitution to obtain $y_1 = -2$, $y_2 = 1$, $y_3 = 0$

Step 3. Solve
$$\begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$$
 by back substitution to find $x_1 = -1$, $x_2 = 1$, $x_3 = 0$.

6.
$$A = \begin{bmatrix} -3 & 12 & -6 \\ 1 & -2 & 2 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -4 & 2 \\ 1 & -2 & 2 \\ 0 & 1 & 1 \end{bmatrix} \leftarrow \text{multiplier} = -\frac{1}{3}$$

$$\begin{bmatrix} -3 & 0 & 0 \\ \cdot & \cdot & 0 \\ \cdot & \cdot & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -4 & 2 \\ \hline 0 & 2 & 0 \\ \hline 0 & 1 & 1 \end{bmatrix} \leftarrow \text{multiplier} = -1 \qquad \qquad \begin{bmatrix} -3 & 0 & 0 \\ 1 & \cdot & 0 \\ 0 & \cdot & \cdot \end{bmatrix}$$

$$\begin{bmatrix} 1 & -4 & 2 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \leftarrow \text{multiplier} = \frac{1}{2} \qquad \qquad \begin{bmatrix} -3 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & \cdot & \cdot \end{bmatrix}$$

$$\begin{bmatrix} 1 & -4 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \leftarrow \text{multiplier} = -1 \qquad \qquad \begin{bmatrix} -3 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & \cdot \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & -4 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \leftarrow \text{multiplier} = 1$$

$$L = \begin{bmatrix} -3 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Step 1. Rewrite the system as
$$\begin{bmatrix} -3 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -4 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -33 \\ 7 \\ -1 \end{bmatrix}$$

Step 2. Define
$$y_1$$
, y_2 , and y_3 by $\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 & -4 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and solve $\begin{bmatrix} -3 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} -33 \\ 7 \\ -1 \end{bmatrix}$ by forward

substitution to obtain $y_1 = 11$, $y_2 = -2$, $y_3 = 1$.

Step 3. Solve
$$\begin{bmatrix} 1 & -4 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -2 \\ 1 \end{bmatrix}$$
 by back substitution to find $x_1 = 1$, $x_2 = -2$, $x_3 = 1$.

7. **(a)**
$$L^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
; $U^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{8} & -\frac{7}{48} \\ 0 & \frac{1}{4} & \frac{5}{24} \\ 0 & 0 & \frac{1}{6} \end{bmatrix}$

(b)
$$A^{-1} = U^{-1}L^{-1} = \begin{bmatrix} \frac{5}{48} & -\frac{1}{48} & -\frac{7}{48} \\ -\frac{7}{24} & \frac{11}{24} & \frac{5}{24} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{bmatrix}$$

8. (a)
$$L^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ \frac{3}{2} & 1 & 0 \\ \frac{5}{14} & \frac{3}{7} & \frac{1}{7} \end{bmatrix}$$
; $U^{-1} = \begin{bmatrix} 1 & -3 & 8 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix}$

(b)
$$A^{-1} = U^{-1}L^{-1} = \begin{bmatrix} -\frac{8}{7} & \frac{3}{7} & \frac{8}{7} \\ \frac{3}{7} & -\frac{2}{7} & -\frac{3}{7} \\ \frac{5}{14} & \frac{3}{7} & \frac{1}{7} \end{bmatrix}$$

9. (a) Reduce A to upper triangular form.

$$\begin{bmatrix} 2 & 1 & -1 \\ -2 & -1 & 2 \\ 2 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{1}{2} & -\frac{1}{2} \\ -2 & -1 & 2 \\ 2 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} = U$$

The multipliers used were $\frac{1}{2}$, 2, and -2, which leads to $L = \begin{bmatrix} 2 & 0 & 0 \\ -2 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$ where the 1's on the

diagonal reflect that no multiplication was required on the 2nd and 3rd diagonal entries.

(b) To change the 2 on the diagonal of L to a 1, the first column of L is divided by 2 and the diagonal matrix has a 2 as the 1, 1 entry.

$$A = L_1 D U_1 = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 is the *LDU*-decomposition of *A*.

- (c) Let $U_2 = DU$, and $L_2 = L_1$, then $A = L_2U_2 = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.
- **10.** (a) Setting $\begin{bmatrix} a & 0 \\ b & c \end{bmatrix} \begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ yields $\begin{bmatrix} a & ad \\ b & bd + c \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Equating entries in the first row leads to a contradiction, since we cannot simultaneously have a = 0 and ad = 1. We conclude that the

to a contradiction, since we cannot simultaneously have a = 0 and ad = 1. We conclude that the matrix has no LU -decomposition. (This matrix cannot be reduced to a row echelon form without interchanging rows.)

- **(b)** By inspection, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- **11.** $P^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $P^{-1}\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$, so the system $P^{-1}A\mathbf{x} = P^{-1}\mathbf{b}$ is

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 0 & 1 & 4 \\ 0 & 0 & 17 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -5 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$$
 is

$$y_1 = 1 y_2 = 2 3y_1 - 5y_2 + y_3 = 5$$

which has the solution $y_1 = 1$, $y_2 = 2$, $y_3 = 12$.

$$\begin{bmatrix} 1 & 2 & 2 \\ 0 & 1 & 4 \\ 0 & 0 & 17 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 12 \end{bmatrix}$$
 is

$$x_1 + 2x_2 + 2x_3 = 1$$

 $x_2 + 4x_3 = 2$
 $17x_3 = 12$

which gives the solution of the original system: $x_1 = \frac{21}{17}$, $x_2 = -\frac{14}{17}$, $x_3 = \frac{12}{17}$.

12. The inverse of
$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 is $P^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ thus $P^{-1}\mathbf{b} = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$.

We rewrite $A\mathbf{x} = \mathbf{b}$ as $P^{-1}(PLU)\mathbf{x} = P^{-1}\mathbf{b}$, i.e., $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 1 & 2 \\ 0 & -1 & 4 \\ 0 & 0 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}.$

Solving
$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$$
 by forward substitution yields $y_1 = 3$, $y_2 = 0$, $y_3 = 0$.

Solving $\begin{bmatrix} 4 & 1 & 2 \\ 0 & -1 & 4 \\ 0 & 0 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$ by back substitution yields $x_1 = \frac{3}{4}$, $x_2 = 0$, $x_3 = 0$.

$$\mathbf{13.} \quad A = \begin{bmatrix} 2 & 2 \\ 4 & 1 \end{bmatrix} \qquad \begin{bmatrix} \bullet & 0 \\ \bullet & \bullet \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \leftarrow \text{multiplier} = \frac{1}{2}$$

$$\begin{bmatrix} 2 & 0 \\ \bullet & \bullet \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & -3 \end{bmatrix} \leftarrow \text{multiplier} = -4 \qquad \begin{bmatrix} 2 & 0 \\ 4 & \bullet \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \leftarrow \text{multiplier} = -\frac{1}{3}$$

$$\begin{bmatrix} 2 & 0 \\ 4 & -3 \end{bmatrix}$$

A general 2×2 lower triangular matrix with nonzero main diagonal entries can be factored as

$$\begin{bmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ a_{21} / a_{11} & 1 \end{bmatrix} \begin{bmatrix} a_{11} & 0 \\ 0 & a_{22} \end{bmatrix} \text{ therefore } \begin{bmatrix} 2 & 0 \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}. \text{ We conclude that an}$$

$$LDU \text{ -decomposition of } A \text{ is } A = \begin{bmatrix} 2 & 2 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = LDU.$$

14. Reduce *A* to upper triangular form:

$$\begin{bmatrix} 3 & -12 & 6 \\ 0 & 2 & 0 \\ 6 & -28 & 13 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -4 & 2 \\ 0 & 2 & 0 \\ 6 & -28 & 13 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -4 & 2 \\ 0 & 2 & 0 \\ 0 & -4 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -4 & 2 \\ 0 & 1 & 0 \\ 0 & -4 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -4 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = U$$

The multipliers used were $\frac{1}{3}$, -6, $\frac{1}{2}$, and 4, which leads to $L_1 = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 6 & -4 & 1 \end{bmatrix}$.

Since
$$L_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, we conclude that $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -4 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is the

LDU-decomposition of *A*.

15. If rows 2 and 3 of A are interchanged, then the resulting matrix has an LU-decomposition.

For
$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, $PA = \begin{bmatrix} 3 & -1 & 0 \\ 0 & 2 & 1 \\ 3 & -1 & 1 \end{bmatrix}$. Reduce PA to upper triangular form:

$$\begin{bmatrix} 3 & -1 & 0 \\ 0 & 2 & 1 \\ 3 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 2 & 1 \\ 3 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix} = U$$

The multipliers used were $\frac{1}{3}$, -3, and $\frac{1}{2}$, so $L = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & 1 \end{bmatrix}$. Since $P = P^{-1}$, we have

$$A = PLU = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}.$$

Since
$$P\mathbf{b} = \begin{bmatrix} -2\\4\\1 \end{bmatrix}$$
, the system to solve is $\begin{bmatrix} 3 & 0 & 0\\0 & 2 & 0\\3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{3} & 0\\0 & 1 & \frac{1}{2}\\x_2\\x_3 \end{bmatrix} = \begin{bmatrix} -2\\4\\1 \end{bmatrix}$.

$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} -2 \\ 4 \\ 1 \end{bmatrix}$$
 is

$$3y_1 = -2$$

$$2y_2 = 4$$

$$3y_1 + y_3 = 1$$

which has the solution $y_1 = -\frac{2}{3}$, $y_2 = 2$, $y_3 = 3$.

$$\begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} \\ 2 \\ 3 \end{bmatrix}$$
 is

$$x_1 - \frac{1}{3}x_2 = -\frac{2}{3}$$
$$x_2 + \frac{1}{2}x_3 = 2$$
$$x_3 = 3$$

which gives the solution to the original system: $x_1 = -\frac{1}{2}$, $x_2 = \frac{1}{2}$, $x_3 = 3$.

16. As discussed in the last subsection of Section 9.1, we introduce a permutation matrix $Q = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Multiplying QA results in interchanging the first two rows of A, so that an LU-decomposition can be found.

$$QA = \begin{bmatrix} 1 & 1 & 4 \\ 0 & 3 & -2 \\ 2 & 2 & 5 \end{bmatrix} \leftarrow \text{multiplier} = 1$$

$$\begin{bmatrix} 1 & 0 & 0 \\ \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 4 \\ \hline 0 & 3 & -2 \\ \hline 0 & 0 & -3 \end{bmatrix} \leftarrow \text{multiplier} = 0 \qquad \begin{bmatrix} 1 & 0 & 0 \\ \hline 0 & \bullet & 0 \\ \hline 2 & \bullet & \bullet \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & -3 \end{bmatrix} \leftarrow \text{multiplier} = \frac{1}{3} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 2 & \bullet & \bullet \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & -3 \end{bmatrix} \leftarrow \text{multiplier} = 0$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 2 & 0 & \bullet \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 1 \end{bmatrix} \leftarrow \text{multiplier} = -\frac{1}{3}$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 2 & 0 & -3 \end{bmatrix}$$

Since
$$P = Q^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, we obtain a PLU -decomposition of A :

$$A = \begin{bmatrix} 0 & 3 & -2 \\ 1 & 1 & 4 \\ 2 & 2 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 2 & 0 & -3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 1 \end{bmatrix} = PLU.$$

Using
$$P^{-1}\mathbf{b} = \begin{bmatrix} 5 \\ 7 \\ -2 \end{bmatrix}$$
, we rewrite $A\mathbf{x} = \mathbf{b}$ as $P^{-1}A\mathbf{x} = P^{-1}\mathbf{b}$, i.e., $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 2 & 0 & -3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ -2 \end{bmatrix}$.

Solving
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 2 & 0 & -3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ -2 \end{bmatrix}$$
 by forward substitution yields $y_1 = 5$, $y_2 = \frac{7}{3}$, $y_3 = 4$.

Solving
$$\begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ \frac{7}{3} \\ 4 \end{bmatrix}$$
 by back substitution yields $x_1 = -16$, $x_2 = 5$, $x_3 = 4$.

- 17. Approximately $\frac{2}{3}n^3$ additions and multiplications are required see Section 9.3.
- **18.** (a) If A has such an LU-decomposition, it can be written as

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ w & 1 \end{bmatrix} \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} = \begin{bmatrix} x & y \\ wx & wy + z \end{bmatrix}$$
 which leads to the equations

$$x = a$$

$$y = b$$

$$wx = c$$

$$wy + z = d$$

Since $a \ne 0$, the system has the unique solution x = a, y = b, $w = \frac{c}{a}$, and $z = d - \frac{bc}{a} = \frac{ad - bc}{a}$. Because the solution is unique, the *LU*-decomposition is also unique.

(b) From part (a) the *LU*-decomposition is
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{c}{a} & 1 \end{bmatrix} \begin{bmatrix} a & b \\ 0 & \frac{ad-bc}{a} \end{bmatrix}$$
.

True-False Exercises

(a) False. If the matrix cannot be reduced to row echelon form without interchanging rows, then it does not have an *LU*-decomposition.

- (b) False. If the row equivalence of A and U requires interchanging rows of A, then A does not have an LU-decomposition.
- (c) True. This follows from part (b) of Theorem 1.7.1.
- (d) True. (Refer to the subsection "LDU-Decompositions" for the relevant result.)
- (e) True. The procedure for obtaining a *PLU*-decomposition of a matrix *A* has been described in the subsection "*PLU*-Decompositions".

9.2 The Power Method

- 1. (a) $\lambda_3 = -8$ is the dominant eigenvalue since $|\lambda_3| = 8$ is greater than the absolute values of all remaining eigenvalues
 - **(b)** $|\lambda_1| = |\lambda_4| = 5$; no dominant eigenvalue
- 2. (a) $\lambda_3 = -3$ is the dominant eigenvalue since $|\lambda_3| = 3$ is greater than the absolute values of all remaining eigenvalues
 - **(b)** $|\lambda_1| = |\lambda_4| = 3$; no dominant eigenvalue

3.
$$A\mathbf{x}_0 = \begin{bmatrix} 5 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$$

$$A\mathbf{x}_1 \approx \begin{bmatrix} 5 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 0.98058 \\ -0.19612 \end{bmatrix} \approx \begin{bmatrix} 5.09902 \\ -0.78446 \end{bmatrix}$$

$$A\mathbf{x}_{2} \approx \begin{bmatrix} 5 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 0.98837 \\ -0.15206 \end{bmatrix} \approx \begin{bmatrix} 5.09391 \\ -0.83631 \end{bmatrix}$$

$$A\mathbf{x}_3 \approx \begin{bmatrix} 5 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 0.98679 \\ -0.16201 \end{bmatrix} \approx \begin{bmatrix} 5.09596 \\ -0.82478 \end{bmatrix}$$

$$\mathbf{x}_{1} = \frac{A\mathbf{x}_{0}}{\|A\mathbf{x}_{0}\|} = \frac{1}{\sqrt{26}} \begin{bmatrix} 5\\ -1 \end{bmatrix} \approx \begin{bmatrix} 0.98058\\ -0.19612 \end{bmatrix}$$

$$\mathbf{x}_2 = \frac{A\mathbf{x}_1}{\|A\mathbf{x}_1\|} \approx \begin{bmatrix} 0.98837 \\ -0.15206 \end{bmatrix}$$

$$\mathbf{x}_3 = \frac{A\mathbf{x}_2}{\|A\mathbf{x}_2\|} \approx \begin{bmatrix} 0.98679 \\ -0.16201 \end{bmatrix}$$

$$\mathbf{x}_4 = \frac{A\mathbf{x}_3}{\|A\mathbf{x}_3\|} \approx \begin{bmatrix} 0.98715 \\ -0.15977 \end{bmatrix}$$

$$\lambda^{(1)} = A\mathbf{x}_1 \cdot \mathbf{x}_1 = (A\mathbf{x}_1)^T \mathbf{x}_1 \approx 5.15385$$

$$\lambda^{(2)} = A\mathbf{x}_2 \cdot \mathbf{x}_2 = (A\mathbf{x}_2)^T \mathbf{x}_2 \approx 5.16185$$

$$\lambda^{(3)} = A\mathbf{x}_3 \cdot \mathbf{x}_3 = \left(A\mathbf{x}_3\right)^T \mathbf{x}_3 \approx 5.16226$$

$$\lambda^{(4)} = A\mathbf{x}_4 \cdot \mathbf{x}_4 = \left(A\mathbf{x}_4\right)^T \mathbf{x}_4 \approx 5.16228$$

$$\det(\lambda I - A) = \begin{vmatrix} \lambda - 5 & 1 \\ 1 & \lambda + 1 \end{vmatrix} = \lambda^2 - 4\lambda - 6 = (\lambda - 2 - \sqrt{10})(\lambda - 2 + \sqrt{10}); \text{ the dominant eigenvalue is }$$

$$2 + \sqrt{10} \approx 5.16228.$$

The reduced row echelon form of $(2+\sqrt{10})I-A$ is $\begin{bmatrix} 1 & 3+\sqrt{10} \\ 0 & 0 \end{bmatrix}$ so that the eigenspace corresponding to $\lambda=2+\sqrt{10}$ contains vectors (x_1,x_2) where $x_1=-\left(3+\sqrt{10}\right)t$, $x_2=t$,. A vector $\left(-3-\sqrt{10},1\right)$ forms a basis for this eigenspace. We see that \mathbf{x}_4 approximates a unit eigenvector $\frac{1}{\sqrt{20+6\sqrt{10}}}\left(3\sqrt{10},-1\right)\approx\left(0.98709,-0.16018\right)$ and $\lambda^{(4)}$ approximates the dominant eigenvalue $2+\sqrt{10}\approx5.16228$.

4.
$$A\mathbf{x}_{0} = \begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 7 \\ -2 \\ 0 \end{bmatrix}$$

$$\mathbf{x}_{1} = \frac{A\mathbf{x}_{0}}{\|A\mathbf{x}_{0}\|} = \frac{1}{\sqrt{53}} \begin{bmatrix} 7 \\ -2 \\ 0 \end{bmatrix} \approx \begin{bmatrix} 0.96152 \\ -0.27472 \\ 0.00000 \end{bmatrix}$$

$$A\mathbf{x}_{1} \approx \begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix} \begin{bmatrix} 0.96152 \\ -0.27472 \\ 0.00000 \end{bmatrix} \approx \begin{bmatrix} 7.28011 \\ -3.57137 \\ 0.54944 \end{bmatrix}$$

$$\mathbf{x}_{2} = \frac{A\mathbf{x}_{1}}{\|A\mathbf{x}_{1}\|} \approx \frac{1}{8.12752} \begin{bmatrix} 7.28011 \\ -3.57137 \\ 0.54944 \end{bmatrix} \approx \begin{bmatrix} 0.89574 \\ -0.43942 \\ 0.06760 \end{bmatrix}$$

$$A\mathbf{x}_{2} \approx \begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix} \begin{bmatrix} 0.89574 \\ -0.43942 \\ 0.06760 \end{bmatrix} \approx \begin{bmatrix} 7.14898 \\ -4.56318 \\ 1.21685 \end{bmatrix}$$

$$\mathbf{x}_{3} = \frac{A\mathbf{x}_{2}}{\|A\mathbf{x}_{2}\|} \approx \frac{1}{8.56804} \begin{bmatrix} 7.14898 \\ -4.56318 \\ 1.21685 \end{bmatrix} \approx \begin{bmatrix} 0.83438 \\ -0.53258 \\ 0.14202 \end{bmatrix}$$

$$A\mathbf{x}_{3} \approx \begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix} \begin{bmatrix} 0.83438 \\ -0.53258 \\ 0.14202 \end{bmatrix} \approx \begin{bmatrix} 6.90581 \\ -5.14829 \\ 0.20186 \end{bmatrix}$$

$$\mathbf{x}_{4} = \frac{A\mathbf{x}_{3}}{\|A\mathbf{x}_{3}\|} \approx \frac{1}{8.7947} \begin{bmatrix} 6.90581 \\ -5.14829 \\ 1.77527 \end{bmatrix} \approx \begin{bmatrix} 0.78522 \\ -0.58539 \\ 0.20186 \end{bmatrix}$$

$$\lambda^{(1)} = A\mathbf{x}_{1} \cdot \mathbf{x}_{1} = (A\mathbf{x}_{1})^{T} \mathbf{x}_{1} \approx \begin{bmatrix} 7.28011 & -3.57137 & 0.54944 \end{bmatrix} \begin{bmatrix} 0.96152 \\ -0.27472 \\ 0.00000 \end{bmatrix} \approx 7.98113$$

$$\lambda^{(2)} = A\mathbf{x}_{2} \cdot \mathbf{x}_{2} = (A\mathbf{x}_{2})^{T} \mathbf{x}_{2} \approx \begin{bmatrix} 7.14898 & -4.56318 & 1.21685 \end{bmatrix} \begin{bmatrix} 0.89574 \\ -0.43942 \\ 0.06760 \end{bmatrix} \approx 8.49100$$

$$\lambda^{(3)} = A\mathbf{x}_{3} \cdot \mathbf{x}_{3} = (A\mathbf{x}_{3})^{T} \mathbf{x}_{3} \approx \begin{bmatrix} 6.90581 & -5.14829 & 1.77527 \end{bmatrix} \begin{bmatrix} 0.83438 \\ -0.53258 \\ 0.14202 \end{bmatrix} \approx 8.75607$$

$$\lambda^{(4)} = A\mathbf{x}_{4} \cdot \mathbf{x}_{4} = (A\mathbf{x}_{4})^{T} \mathbf{x}_{4} \approx \begin{bmatrix} 6.66734 & -5.48648 & 2.18006 \end{bmatrix} \begin{bmatrix} 0.78522 \\ -0.58539 \\ 0.20186 \end{bmatrix} \approx 8.88712$$

$$\det(\lambda I - A) = \begin{vmatrix} \lambda - 7 & 2 & 0 \\ 2 & \lambda - 6 & 2 \\ 0 & 2 & \lambda - 5 \end{vmatrix} = (\lambda - 3)(\lambda - 6)(\lambda - 9); \text{ the dominant eigenvalue is } 9.$$

The reduced row echelon form of 9I - A is $\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$ so that the eigenspace corresponding to

 $\lambda = 9$ contains vectors (x_1, x_2, x_3) where $x_1 = 2t$, $x_2 = -2t$, $x_3 = t$. A vector (2, -2, 1) forms a basis for this eigenspace. We see that \mathbf{x}_4 approximates the unit eigenvector

 $\left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right) \approx \left(0.66667, -0.66667, 0.33333\right)$ and $\lambda^{(4)}$ approximates the dominant eigenvalue 9.

5.
$$A\mathbf{x}_0 = \begin{bmatrix} 1 & -3 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$$

$$A\mathbf{x}_1 \approx \begin{bmatrix} 1 & -3 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -4 \\ 8 \end{bmatrix}$$

$$A\mathbf{x}_2 \approx \begin{bmatrix} 1 & -3 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} -0.5 \\ 1 \end{bmatrix} \approx \begin{bmatrix} -3.5 \\ 6.5 \end{bmatrix}$$

$$A\mathbf{x}_{3} \approx \begin{bmatrix} 1 & -3 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} -0.53846 \\ 1 \end{bmatrix} \approx \begin{bmatrix} -3.53846 \\ 6.61538 \end{bmatrix}$$
 $\mathbf{x}_{4} = \frac{A\mathbf{x}_{3}}{\max(A\mathbf{x}_{3})} \approx \begin{bmatrix} -0.53488 \\ 1 \end{bmatrix}$

$$\mathbf{x}_1 = \frac{A\mathbf{x}_0}{\max(A\mathbf{x}_0)} = \begin{bmatrix} -1\\1 \end{bmatrix}$$

$$\mathbf{x}_2 = \frac{A\mathbf{x}_1}{\max(A\mathbf{x}_1)} = \begin{bmatrix} -0.5\\1 \end{bmatrix}$$

$$\mathbf{x}_3 = \frac{A\mathbf{x}_2}{\max(A\mathbf{x}_2)} \approx \begin{bmatrix} -0.53846 \\ 1 \end{bmatrix}$$

$$\mathbf{x}_4 = \frac{A\mathbf{x}_3}{\max(A\mathbf{x}_3)} \approx \begin{bmatrix} -0.53488 \\ 1 \end{bmatrix}$$

$$\lambda^{(1)} = \frac{A\mathbf{x}_1 \cdot \mathbf{x}_1}{\mathbf{x}_1 \cdot \mathbf{x}_1} = 6$$

$$\lambda^{(2)} = \frac{A\mathbf{x}_2 \cdot \mathbf{x}_2}{\mathbf{x}_2 \cdot \mathbf{x}_2} = 6.6$$

$$\lambda^{(3)} = \frac{A\mathbf{x}_3 \cdot \mathbf{x}_3}{\mathbf{x}_3 \cdot \mathbf{x}_3} \approx 6.60550$$

$$\lambda^{(4)} = \frac{A\mathbf{x}_4 \cdot \mathbf{x}_4}{\mathbf{x}_4 \cdot \mathbf{x}_4} \approx 6.60555$$

 $\det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & 3 \\ 3 & \lambda - 5 \end{vmatrix} = \lambda^2 - 6\lambda - 4$, so the eigenvalues of A are $\lambda = 3 \pm \sqrt{13}$. The dominant

eigenvalue is $3 + \sqrt{13} \approx 6.60555$ with corresponding scaled eigenvector $\begin{vmatrix} \frac{2-\sqrt{13}}{3} \\ 1 \end{vmatrix} \approx \begin{bmatrix} -0.53518 \\ 1 \end{bmatrix}$.

6.
$$A\mathbf{x}_0 = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ 6 \end{bmatrix}$$

$$\mathbf{x}_{1} = \frac{A\mathbf{x}_{0}}{\max(A\mathbf{x}_{0})} = \frac{1}{7} \begin{bmatrix} 7\\4\\6 \end{bmatrix} \approx \begin{bmatrix} 1.00000\\0.57143\\0.85714 \end{bmatrix}$$

$$A\mathbf{x}_{1} \approx \begin{bmatrix} 3 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1.00000 \\ 0.57143 \\ 0.85714 \end{bmatrix} \approx \begin{bmatrix} 5.85714 \\ 3.14286 \\ 5.42857 \end{bmatrix} \qquad \mathbf{x}_{2} = \frac{A\mathbf{x}_{1}}{\max(A\mathbf{x}_{1})} \approx \frac{1}{5.85714} \begin{bmatrix} 5.85714 \\ 3.14286 \\ 5.42857 \end{bmatrix} \approx \begin{bmatrix} 1.00000 \\ 0.53659 \\ 0.92683 \end{bmatrix}$$

$$A\mathbf{x}_{2} \approx \begin{bmatrix} 3 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1.00000 \\ 0.53659 \\ 0.92683 \end{bmatrix} \approx \begin{bmatrix} 5.92683 \\ 3.07317 \\ 5.70732 \end{bmatrix} \qquad \mathbf{x}_{3} = \frac{A\mathbf{x}_{2}}{\max(A\mathbf{x}_{2})} \approx \frac{1}{5.92683} \begin{bmatrix} 5.92683 \\ 3.07317 \\ 5.70732 \end{bmatrix} \approx \begin{bmatrix} 1.00000 \\ 0.51852 \\ 0.96296 \end{bmatrix}$$

$$A\mathbf{x}_{3} \approx \begin{bmatrix} 3 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 2 & 0 \\ 2 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1.00000 \\ 0.51852 \\ 0.96296 \end{bmatrix} \approx \begin{bmatrix} 5.96296 \\ 3.03704 \\ 5.85185 \end{bmatrix} \approx \begin{bmatrix} 5.96296 \\ 3.03704 \\ 5.85185 \end{bmatrix} \approx \begin{bmatrix} 1.00000 \\ 0.50932 \\ 0.98137 \end{bmatrix}$$

$$\lambda^{(1)} = \frac{A\mathbf{x}_1 \cdot \mathbf{x}_1}{\mathbf{x}_1 \cdot \mathbf{x}_1} = \frac{\left(A\mathbf{x}_1\right)^T \mathbf{x}_1}{\mathbf{x}_1^T \mathbf{x}_1} \approx \frac{12.30612}{2.06122} \approx 5.97030$$

$$\lambda^{(2)} = \frac{A\mathbf{x}_2 \cdot \mathbf{x}_2}{\mathbf{x}_2 \cdot \mathbf{x}_2} = \frac{\left(A\mathbf{x}_2\right)^T \mathbf{x}_2}{\mathbf{x}_2^T \mathbf{x}_2} \approx \frac{12.86556}{2.14694} \approx 5.99252$$

$$\lambda^{(3)} = \frac{A\mathbf{x}_3 \cdot \mathbf{x}_3}{\mathbf{x}_3 \cdot \mathbf{x}_3} = \frac{\left(A\mathbf{x}_3\right)^T \mathbf{x}_3}{\mathbf{x}_3^T \mathbf{x}_3} \approx \frac{13.17284}{2.19616} \approx 5.99813$$

$$\lambda^{(4)} = \frac{A\mathbf{x}_4 \cdot \mathbf{x}_4}{\mathbf{x}_4 \cdot \mathbf{x}_4} = \frac{\left(A\mathbf{x}_4\right)^T \mathbf{x}_4}{\mathbf{x}_4^T \mathbf{x}_4} \approx \frac{13.33386}{2.22248} \approx 5.99953$$

$$\det(\lambda I - A) = \begin{vmatrix} \lambda - 3 & -2 & -2 \\ -2 & \lambda - 2 & 0 \\ -2 & 0 & \lambda - 4 \end{vmatrix} = \lambda(\lambda - 3)(\lambda - 6); \text{ the dominant eigenvalue is 6.}$$

The reduced row echelon form of 6I - A is $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{bmatrix}$ so that the eigenspace corresponding to

 $\lambda = 6$ contains vectors (x_1, x_2, x_3) where $x_1 = t$, $x_2 = \frac{1}{2}t$, $x_3 = t$. A vector $(1, \frac{1}{2}, 1)$ forms a basis for this eigenspace. We see that \mathbf{x}_4 approximates the eigenvector $(1, \frac{1}{2}, 1)$ and $\lambda^{(4)}$ approximates the dominant eigenvalue 6.

7. (a)
$$A\mathbf{x}_0 = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
 $\mathbf{x}_1 = \frac{A\mathbf{x}_0}{\max(A\mathbf{x}_0)} = \begin{bmatrix} 1 \\ -0.5 \end{bmatrix}$

$$A\mathbf{x}_1 = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -0.5 \end{bmatrix} = \begin{bmatrix} 2.5 \\ 2 \end{bmatrix}$$
 $\mathbf{x}_2 = \frac{A\mathbf{x}_1}{\max(A\mathbf{x}_1)} = \begin{bmatrix} 1 \\ -0.8 \end{bmatrix}$

$$A\mathbf{x}_{2} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -0.8 \end{bmatrix} = \begin{bmatrix} 2.8 \\ -2.6 \end{bmatrix} \qquad \mathbf{x}_{3} = \frac{A\mathbf{x}_{2}}{\max(A\mathbf{x}_{2})} \approx \begin{bmatrix} 1 \\ -0.929 \end{bmatrix}$$

(b)
$$\lambda^{(1)} = \frac{A\mathbf{x}_1 \cdot \mathbf{x}_1}{\mathbf{x}_1 \cdot \mathbf{x}_1} = 2.8$$
; $\lambda^{(2)} = \frac{A\mathbf{x}_2 \cdot \mathbf{x}_2}{\mathbf{x}_2 \cdot \mathbf{x}_2} \approx 2.976$; $\lambda^{(3)} = \frac{A\mathbf{x}_3 \cdot \mathbf{x}_3}{\mathbf{x}_3 \cdot \mathbf{x}_3} \approx 2.997$

(c)
$$\det(\lambda I - A) = \begin{vmatrix} \lambda - 2 & 1 \\ 1 & \lambda - 2 \end{vmatrix} = (\lambda - 3)(\lambda - 1)$$
; the dominant eigenvalue is 3.

The reduced row echelon form of 3I - A is $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ so that the eigenspace corresponding to $\lambda = 3$ contains vectors (x_1, x_2) where $x_1 = -t$, $x_2 = t$. A vector (-1,1) forms a basis for this eigenspace. We see that \mathbf{x}_3 approximates the eigenvector (1,-1) and $\lambda^{(3)}$ approximates the dominant eigenvalue 3.

(d) The percentage error is $\left|\frac{\lambda-\lambda^{(3)}}{\lambda}\right| \approx \left|\frac{3-2.997}{3}\right| = 0.001 = 0.1\%$.

8. **(a)**
$$A\mathbf{x}_0 = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 10 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 10 \end{bmatrix}$$
 $\mathbf{x}_1 = \frac{A\mathbf{x}_0}{\max(A\mathbf{x}_0)} = \frac{1}{10} \begin{bmatrix} 3 \\ 3 \\ 10 \end{bmatrix} = \begin{bmatrix} 0.3 \\ 0.3 \\ 1.0 \end{bmatrix}$

$$A\mathbf{x}_{1} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 10 \end{bmatrix} \begin{bmatrix} 0.3 \\ 0.3 \\ 1.0 \end{bmatrix} = \begin{bmatrix} 0.9 \\ 0.9 \\ 10.0 \end{bmatrix}$$

$$\mathbf{x}_{2} = \frac{A\mathbf{x}_{1}}{\max(A\mathbf{x}_{1})} = \frac{1}{10} \begin{bmatrix} 0.9 \\ 0.9 \\ 10.0 \end{bmatrix} = \begin{bmatrix} 0.09 \\ 0.09 \\ 1.00 \end{bmatrix}$$

$$A\mathbf{x}_{2} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 10 \end{bmatrix} \begin{bmatrix} 0.09 \\ 0.09 \\ 1.00 \end{bmatrix} = \begin{bmatrix} 0.27 \\ 0.27 \\ 10.00 \end{bmatrix} \qquad \mathbf{x}_{3} = \frac{A\mathbf{x}_{2}}{\max(A\mathbf{x}_{2})} = \frac{1}{10} \begin{bmatrix} 0.27 \\ 0.27 \\ 10.00 \end{bmatrix} = \begin{bmatrix} 0.027 \\ 0.027 \\ 1.000 \end{bmatrix}$$

(b)
$$\lambda^{(1)} = \frac{A\mathbf{x}_1 \cdot \mathbf{x}_1}{\mathbf{x}_1 \cdot \mathbf{x}_1} = \frac{(A\mathbf{x}_1)^T \mathbf{x}_1}{\mathbf{x}_1^T \mathbf{x}_1} \approx \frac{10.54}{1.18} \approx 8.932$$

$$\lambda^{(2)} = \frac{A\mathbf{x}_2 \cdot \mathbf{x}_2}{\mathbf{x}_2 \cdot \mathbf{x}_2} = \frac{(A\mathbf{x}_2)^T \mathbf{x}_2}{\mathbf{x}_2^T \mathbf{x}_2} \approx \frac{10.049}{1.016} \approx 9.889$$

$$\lambda^{(3)} = \frac{A\mathbf{x}_3 \cdot \mathbf{x}_3}{\mathbf{x}_3 \cdot \mathbf{x}_3} = \frac{(A\mathbf{x}_3)^T \mathbf{x}_3}{\mathbf{x}_3^T \mathbf{x}_3} \approx \frac{10.004}{1.001} \approx 9.990$$

(c)
$$\det(\lambda I - A) = \begin{vmatrix} \lambda - 2 & -1 & 0 \\ -1 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 10 \end{vmatrix} = (\lambda - 1)(\lambda - 3)(\lambda - 10); \text{ the dominant eigenvalue is } 10.$$

The reduced row echelon form of 10I - A is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ so that the eigenspace corresponding to

 $\lambda = 10$ contains vectors (x_1, x_2, x_3) where $x_1 = 0$, $x_2 = 0$, $x_3 = t$. A vector (0,0,1) forms a basis for this eigenspace. We see that \mathbf{x}_3 approximates the eigenvector (0,0,1) and $\lambda^{(3)}$ approximates the dominant eigenvalue 10.

- (d) The percentage error in the approximation $\lambda^{(3)} \approx 9.99$ of the dominant eigenvalue $\lambda = 10$ is $\left|\frac{\lambda \lambda^{(3)}}{\lambda}\right| = \left|\frac{10 9.99}{10}\right| = 0.001 = 0.1\%$
- **9.** By Formula (10), $\mathbf{x}_5 = \frac{A^5 \mathbf{x}_0}{\max(A^5 \mathbf{x}_0)} \approx \begin{bmatrix} 0.99180 \\ 1 \end{bmatrix}$. Thus $\lambda^{(5)} = \frac{A \mathbf{x}_5 \cdot \mathbf{x}_5}{\mathbf{x}_5 \cdot \mathbf{x}_5} \approx 2.99993$.
- **10.** By Formula (10), $\mathbf{x}_5 = \frac{A^5 \mathbf{x}_0}{\max(A^5 \mathbf{x}_0)} \approx \begin{bmatrix} 1 \\ 0.99180 \end{bmatrix}$. Thus $\lambda^{(5)} = \frac{A \mathbf{x}_5 \cdot \mathbf{x}_5}{\mathbf{x}_5 \cdot \mathbf{x}_5} \approx 2.99993$.
- 11. By inspection, A is symmetric and has a dominant eigenvalue -1. Assuming $a \ne 0$, the power sequence is

$$A\mathbf{x}_{0} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -a \\ 0 \end{bmatrix}$$

$$\mathbf{x}_{1} = \frac{A\mathbf{x}_{0}}{\|A\mathbf{x}_{0}\|} = \frac{1}{|a|} \begin{bmatrix} -a \\ 0 \end{bmatrix} = \begin{bmatrix} -a/|a| \\ 0 \end{bmatrix}$$

$$A\mathbf{x}_{1} \approx \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -a/|a| \\ 0 \end{bmatrix} = \begin{bmatrix} a/|a| \\ 0 \end{bmatrix}$$

$$\mathbf{x}_{2} = \frac{A\mathbf{x}_{1}}{\|A\mathbf{x}_{1}\|} = \frac{1}{1} \begin{bmatrix} a/|a| \\ 0 \end{bmatrix} = \begin{bmatrix} a/|a| \\ 0 \end{bmatrix}$$

$$A\mathbf{x}_{2} \approx \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a/|a| \\ 0 \end{bmatrix} = \begin{bmatrix} -a/|a| \\ 0 \end{bmatrix}$$

$$\mathbf{x}_{3} = \frac{A\mathbf{x}_{2}}{\|A\mathbf{x}_{2}\|} = \frac{1}{1} \begin{bmatrix} -a/|a| \\ 0 \end{bmatrix} = \begin{bmatrix} -a/|a| \\ 0 \end{bmatrix}$$

$$A\mathbf{x}_{3} \approx \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -a/|a| \\ 0 \end{bmatrix} \approx \begin{bmatrix} a/|a| \\ 0 \end{bmatrix}$$

$$\mathbf{x}_{4} = \frac{A\mathbf{x}_{3}}{\|A\mathbf{x}_{3}\|} = \frac{1}{1} \begin{bmatrix} a/|a| \\ 0 \end{bmatrix} = \begin{bmatrix} a/|a| \\ 0 \end{bmatrix}$$

$$\vdots$$

The quantity a/|a| is equal to 1 if a > 0 and -1 if a < 0. Since the power sequence continues to oscillate between $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, it does not converge.

12. (a) E.g., choose
$$\mathbf{x}_0 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
.

$$\mathbf{x}_{1} = \frac{A\mathbf{x}_{0}}{\|A\mathbf{x}_{0}\|} \approx \begin{bmatrix} 0.28604\\ -0.09535\\ 0.95346 \end{bmatrix} \qquad \lambda^{(1)} = A\mathbf{x}_{1} \cdot \mathbf{x}_{1} \approx 10.86364$$

$$\mathbf{x}_{1} = \frac{A\mathbf{x}_{0}}{\|A\mathbf{x}_{0}\|} \approx \begin{bmatrix} 0.28604 \\ -0.09535 \\ 0.95346 \end{bmatrix} \qquad \lambda^{(1)} = A\mathbf{x}_{1} \cdot \mathbf{x}_{1} \approx 10.86364$$

$$\mathbf{x}_{2} = \frac{A\mathbf{x}_{1}}{\|A\mathbf{x}_{1}\|} \approx \begin{bmatrix} 0.26286 \\ -0.04381 \\ 0.96384 \end{bmatrix} \qquad \lambda^{(2)} = A\mathbf{x}_{2} \cdot \mathbf{x}_{2} \approx 10.90211 \qquad \left| \frac{\lambda^{(2)} - \lambda^{(1)}}{\lambda^{(2)}} \right| \approx 0.00353 = 0.353\%$$

$$\mathbf{x}_{3} = \frac{A\mathbf{x}_{2}}{\|A\mathbf{x}_{2}\|} \approx \begin{bmatrix} 0.27723 \\ -0.03214 \\ 0.96027 \end{bmatrix} \qquad \lambda^{(3)} = A\mathbf{x}_{3} \cdot \mathbf{x}_{3} \approx 10.90765 \qquad \left| \frac{\lambda^{(3)} - \lambda^{(2)}}{\lambda^{(3)}} \right| \approx 0.00051 = 0.051\%$$

(b) E.g., choose
$$\mathbf{x}_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
.

$$\mathbf{x}_{1} = \frac{A\mathbf{x}_{0}}{\|A\mathbf{x}_{0}\|} \approx \begin{vmatrix} 0.12217\\0.12217\\0.12217\\0.97736 \end{vmatrix} \qquad \lambda^{(1)} = A\mathbf{x}_{1} \cdot \mathbf{x}_{1} \approx 8.46269$$

$$\mathbf{x}_{2} = \frac{A\mathbf{x}_{1}}{\|A\mathbf{x}_{1}\|} \approx \begin{bmatrix} 0.14413\\ 0.12971\\ 0.17295\\ 0.96565 \end{bmatrix} \qquad \qquad \lambda^{(2)} = A\mathbf{x}_{2} \cdot \mathbf{x}_{2} \approx 8.50187 \qquad \qquad \left| \frac{\lambda^{(2)} - \lambda^{(1)}}{\lambda^{(2)}} \right| \approx 0.05467 = 5.467\%$$

$$\mathbf{x}_{3} = \frac{A\mathbf{x}_{2}}{\|A\mathbf{x}_{2}\|} \approx \begin{bmatrix} 0.15083\\ 0.12371\\ 0.19658\\ 0.96089 \end{bmatrix} \qquad \lambda^{(3)} = A\mathbf{x}_{3} \cdot \mathbf{x}_{3} \approx 8.51040 \qquad \left| \frac{\lambda^{(3)} - \lambda^{(2)}}{\lambda^{(3)}} \right| \approx 0.00461 = 0.461\%$$

$$\mathbf{x}_{4} = \frac{A\mathbf{x}_{3}}{\|A\mathbf{x}_{3}\|} \approx \begin{vmatrix} 0.15372\\0.11887\\0.20847\\0.95853 \end{vmatrix} \qquad \lambda^{(4)} = A\mathbf{x}_{4} \cdot \mathbf{x}_{4} \approx 8.51272 \qquad \left| \frac{\lambda^{(4)} - \lambda^{(3)}}{\lambda^{(4)}} \right| \approx 0.00027 = 0.027\%$$

13. (a) Starting with $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, it takes 8 iterations.

$$\mathbf{x}_{1} \approx \begin{bmatrix} 0.229\\ 0.668\\ 0.668 \end{bmatrix}, \ \lambda^{(1)} \approx 7.632$$

$$\mathbf{x}_{2} \approx \begin{bmatrix} 0.507 \\ 0.320 \\ 0.800 \end{bmatrix}, \ \lambda^{(2)} \approx 9.968$$

$$\mathbf{x}_{3} \approx \begin{bmatrix} 0.380 \\ 0.197 \\ 0.904 \end{bmatrix}, \ \lambda^{(3)} \approx 10.622$$

$$\mathbf{x}_4 \approx \begin{bmatrix} 0.344 \\ 0.096 \\ 0.934 \end{bmatrix}, \quad \lambda^{(4)} \approx 10.827$$

$$\mathbf{x}_{5} \approx \begin{bmatrix} 0.317 \\ 0.044 \\ 0.948 \end{bmatrix}, \ \lambda^{(5)} \approx 10.886$$

$$\mathbf{x}_6 \approx \begin{bmatrix} 0.302\\ 0.016\\ 0.953 \end{bmatrix}, \quad \lambda^{(6)} \approx 10.903$$

$$\mathbf{x}_7 \approx \begin{bmatrix} 0.294 \\ 0.002 \\ 0.956 \end{bmatrix}, \quad \lambda^{(7)} \approx 10.908$$

$$\mathbf{x}_8 \approx \begin{bmatrix} 0.290 \\ -0.006 \\ 0.957 \end{bmatrix}, \quad \lambda^{(8)} \approx 10.909$$

(b) Starting with $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, it takes 8 iterations.

$$\mathbf{x}_{1} \approx \begin{bmatrix} 0.577 \\ 0 \\ 0.577 \\ 0.577 \end{bmatrix}, \ \lambda^{(1)} \approx 6.333$$

$$\mathbf{x}_{2} \approx \begin{bmatrix} 0.249\\0\\0.498\\0.830 \end{bmatrix}, \ \lambda^{(2)} \approx 8.062$$

$$\mathbf{x}_3 = \begin{bmatrix} 0.193\\ 0.041\\ 0.376\\ 0.905 \end{bmatrix}, \quad \lambda^{(3)} \approx 8.382$$

$$\mathbf{x}_4 \approx \begin{bmatrix} 0.175\\ 0.073\\ 0.305\\ 0.933 \end{bmatrix}, \ \lambda^{(4)} \approx 8.476$$

$$\mathbf{x}_{5} \approx \begin{bmatrix} 0.167\\ 0.091\\ 0.266\\ 0.945 \end{bmatrix}, \ \lambda^{(5)} \approx 8.503$$

$$\mathbf{x}_6 \approx \begin{bmatrix} 0.162\\ 0.101\\ 0.245\\ 0.951 \end{bmatrix}, \ \lambda^{(6)} \approx 8.511$$

$$\mathbf{x}_7 \approx \begin{bmatrix} 0.159\\ 0.107\\ 0.234\\ 0.953 \end{bmatrix}, \ \lambda^{(7)} \approx 8.513$$

$$\mathbf{x}_8 \approx \begin{bmatrix} 0.158\\ 0.110\\ 0.228\\ 0.954 \end{bmatrix}, \ \lambda^{(8)} \approx 8.513$$

14. (a) E.g., choose
$$\mathbf{x}_0 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
.

$$\mathbf{x}_{1} = \frac{A\mathbf{x}_{0}}{\max(A\mathbf{x}_{0})} \approx \begin{bmatrix} 0.3\\ -0.1\\ 1.0 \end{bmatrix}$$

$$\lambda^{(1)} = \frac{A\mathbf{x}_{1} \cdot \mathbf{x}_{1}}{\mathbf{x}_{1} \cdot \mathbf{x}_{1}} \approx 10.86364$$

$$\mathbf{x}_{2} = \frac{A\mathbf{x}_{1}}{\max(A\mathbf{x}_{1})} \approx \begin{bmatrix} 0.27273 \\ -0.04545 \\ 1.00000 \end{bmatrix} \qquad \lambda^{(2)} = \frac{A\mathbf{x}_{2} \cdot \mathbf{x}_{2}}{\mathbf{x}_{2} \cdot \mathbf{x}_{2}} \approx 10.90211 \qquad \left| \frac{\lambda^{(2)} - \lambda^{(1)}}{\lambda^{(2)}} \right| \approx 0.00353 = 0.353\%$$

$$\mathbf{x}_{3} = \frac{A\mathbf{x}_{2}}{\max(A\mathbf{x}_{2})} \approx \begin{bmatrix} 0.28870 \\ -0.03347 \\ 1.00000 \end{bmatrix} \qquad \qquad \lambda^{(3)} = \frac{A\mathbf{x}_{3} \cdot \mathbf{x}_{3}}{\mathbf{x}_{3} \cdot \mathbf{x}_{3}} \approx 10.90765 \qquad \qquad \left| \frac{\lambda^{(3)} - \lambda^{(2)}}{\lambda^{(3)}} \right| \approx 0.00051 = 0.051\%$$

(b) E.g., choose
$$\mathbf{x}_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
.

$$\mathbf{x}_{1} = \frac{A\mathbf{x}_{0}}{\max(A\mathbf{x}_{0})} = \begin{vmatrix} 0.125 \\ 0.125 \\ 0.125 \\ 1.000 \end{vmatrix} \qquad \lambda^{(1)} = \frac{A\mathbf{x}_{1} \cdot \mathbf{x}_{1}}{\mathbf{x}_{1} \cdot \mathbf{x}_{1}} \approx 8.46269$$

$$\mathbf{x}_{2} = \frac{A\mathbf{x}_{1}}{\max(A\mathbf{x}_{1})} \approx \begin{bmatrix} 0.14925\\ 0.13433\\ 0.17910\\ 1.00000 \end{bmatrix} \qquad \lambda^{(2)} = \frac{A\mathbf{x}_{2} \cdot \mathbf{x}_{2}}{\mathbf{x}_{2} \cdot \mathbf{x}_{2}} \approx 8.50187 \qquad \left| \frac{\lambda^{(2)} - \lambda^{(1)}}{\lambda^{(2)}} \right| \approx 0.05467 = 5.467\%$$

$$\mathbf{x}_{3} = \frac{A\mathbf{x}_{2}}{\max(A\mathbf{x}_{2})} \approx \begin{bmatrix} 0.15697\\0.12875\\0.20459\\1.00000 \end{bmatrix} \qquad \lambda^{(3)} = \frac{A\mathbf{x}_{3} \cdot \mathbf{x}_{3}}{\mathbf{x}_{3} \cdot \mathbf{x}_{3}} \approx 8.51040 \qquad \left| \frac{\lambda^{(3)} - \lambda^{(2)}}{\lambda^{(3)}} \right| \approx 0.00461 = 0.461\%$$

$$\mathbf{x}_{4} = \frac{A\mathbf{x}_{3}}{\max(A\mathbf{x}_{3})} \approx \begin{vmatrix} 0.16037\\0.12401\\0.21749\\1.00000 \end{vmatrix} \qquad \lambda^{(4)} = \frac{A\mathbf{x}_{4} \cdot \mathbf{x}_{4}}{\mathbf{x}_{4} \cdot \mathbf{x}_{4}} \approx 8.51272 \qquad \left| \frac{\lambda^{(4)} - \lambda^{(3)}}{\lambda^{(4)}} \right| \approx 0.00027 = 0.027\%$$

9.3 Comparison of Procedures for Solving Linear Systems

- 1. (a) For $n = 1000 = 10^3$, the flops for both phases is $\frac{2}{3}(10^3)^3 + \frac{3}{2}(10^3)^2 \frac{7}{6}(10^3) = 668,165,500$, which is 0.6681655 gigaflops, so it will take $0.6681655 \times 10^{-1} \approx 0.067$ second.
 - **(b)** $n = 10,000 = 10^4$: $\frac{2}{3}(10^4)^3 + \frac{3}{2}(10^4)^2 \frac{7}{6}(10^4) = 666,816,655,000$ flops or 666.816655 gigaflops. The time is about 66.68 seconds.
 - (c) $n = 100,000 = 10^5$; $\frac{2}{3}(10^5)^3 + \frac{3}{2}(10^5)^2 \frac{7}{6}(10^5) \approx 666,682 \times 10^9$ flops or 666,682 gigaflops. The time is about 66,668 seconds which is about 18.5 hours.
- 2. (a) The number of gigaflops required is $\left(\frac{2}{3}n^3 + \frac{3}{2}n^2 \frac{7}{6}n\right)10^{-9} \approx 666.817$. At 100 gigaflops per second, the time required to solve the system is approximately 6.66817 seconds.
 - (b) The number of gigaflops required is $(\frac{2}{3}n^3 + \frac{3}{2}n^2 \frac{7}{6}n)10^{-9} \approx 666,681.667$. At 100 gigaflops per second, the time required to solve the system is approximately 6666.817 seconds (i.e., 1 hour, 51 minutes, and 6.817 seconds).
 - (c) The number of gigaflops required is $(\frac{2}{3}n^3 + \frac{3}{2}n^2 \frac{7}{6}n)10^{-9} \approx 6.666682 \times 10^8$. At 100 gigaflops per second, the time required to solve the system is approximately 6,666,682 seconds (i.e., 77 days, 3 hours, 51 minutes, and 22 seconds).
- 3. $n = 10,000 = 10^4$
 - (a) $\frac{2}{3}n^3 \approx \frac{2}{3}(10^{12}) \approx 666.67 \times 10^9$; 666.67 gigaflops are required, which will take $\frac{666.67}{70} \approx 9.52$ seconds.
 - **(b)** $n^2 \approx 10^8 = 0.1 \times 10^9$; 0.1 gigaflop is required, which will take about 0.0014 second.
 - (c) This is the same as part (a); about 9.52 seconds.
 - (d) $2n^3 \approx 2 \times 10^{12} = 2000 \times 10^9$; 2000 gigaflops are required, which will take about 28.57 seconds.
- **4.** (a) The number of petaflops required is approximately $\frac{2}{3}n^310^{-15} \approx 0.66667$, therefore the time required for the forward phase of Gauss-Jordan elimination is approximately 0.041667 seconds.
 - (b) The number of petaflops required is approximately $n^2 10^{-15} \approx 0.00001$, therefore the time required for the backward phase of Gauss-Jordan elimination is approximately 0.000000625 seconds.
 - (c) The number of petaflops required is approximately $\frac{2}{3}n^310^{-15} \approx 0.66667$, therefore the time required for the *LU* -decomposition is approximately 0.041667 seconds.

- (d) The number of petaflops required is approximately $2n^310^{-15} \approx 2$, therefore the time required for the computation of A^{-1} by reducing $[A \mid I]$ to $[I \mid A^{-1}]$ is approximately 0.125 seconds.
- **5.** (a) $n = 100,000 = 10^5$; $\frac{2}{3}n^3 \approx \frac{2}{3} \times 10^{15} \approx 0.667 \times 10^{15} = 6.67 \times 10^5 \times 10^9$;

Thus, the forward phase would require about 6.67×10^5 seconds. $n^2 = 10^{10} = 10 \times 10^9$; The backward phase would require about 10 seconds.

- **(b)** $n = 10,000 = 10^4$; $\frac{2}{3}n^3 \approx \frac{2}{3} \times 10^{12} \approx 0.667 \times 10^{12} \approx 6.67 \times 10^2 \times 10^9$; About 667 gigaflops are required, so the computer would have to execute 2(667) = 1334 gigaflops per second.
- 6. The number of teraflops required is approximately $2n^310^{-12} \approx 2000$. A computer must be able to execute more than 4000 teraflops per second to be able to find A^{-1} in less than 0.5 seconds.
- 7. Multiplying each of the n^2 entries of A by c requires n^2 flops.
- 8. n^2 flops are required to compute A + B.
- 9. Let $C = [c_{ij}] = AB$. Computing c_{ij} requires first multiplying each of the n entries a_{ik} by the corresponding entry b_{kj} , which requires n flops. Then the n terms $a_{ik}b_{kj}$ must be summed, which requires n-1 flops. Thus, each of the n^2 entries in AB requires 2n-1 flops, for a total of $n^2(2n-1)=2n^3-n^2$ flops. Note that adding two numbers requires 1 flop, adding three numbers requires 2 flops, and in general, n-1 flops are required to add n numbers.
- **10.** Each diagonal entry can be obtained using k-1 multiplications, so the computation of A^k would involve n(k-1) flops overall. (Note that the number of flops can be reduced to $n \log_2 k$.)

9.4 Singular Value Decomposition

- 1. The characteristic polynomial of $A^{T}A = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is $\lambda^{2}(\lambda 5)$; thus the eigenvalues of $A^{T}A$ are $\lambda_{1} = 5$ and $\lambda_{2} = 0$, and $\alpha_{1} = \sqrt{5}$ and $\alpha_{2} = 0$ are singular values of A.
- 2. $A^{T}A = \begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 9 & 0 \\ 0 & 16 \end{bmatrix}$; $\det(\lambda I A^{T}A) = \begin{vmatrix} \lambda 9 & 0 \\ 0 & \lambda 16 \end{vmatrix} = (\lambda 9)(\lambda 16)$; the eigenvalues of $A^{T}A$ are $\lambda_{1} = 16$ and $\lambda_{2} = 9$ therefore the singular values of A are $\sigma_{1} = \sqrt{\lambda_{1}} = 4$ and $\sigma_{2} = \sqrt{\lambda_{2}} = 3$.

- 3. The eigenvalues of $A^T A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$ are $\lambda_1 = 5$ and $\lambda_2 = 5$ (i.e., $\lambda = 5$ is an eigenvalue of multiplicity 2); thus the singular value of A is $\sigma_1 = \sqrt{5}$.
- **4.** $A^{T}A = \begin{bmatrix} \sqrt{2} & 1 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 1 & \sqrt{2} \end{bmatrix} = \begin{bmatrix} 3 & \sqrt{2} \\ \sqrt{2} & 2 \end{bmatrix}; \det(\lambda I A^{T}A) = \begin{vmatrix} \lambda 3 & -\sqrt{2} \\ -\sqrt{2} & \lambda 2 \end{vmatrix} = (\lambda 1)(\lambda 4);$ the eigenvalues of $A^{T}A$ are $\lambda_{1} = 4$ and $\lambda_{2} = 1$ therefore the singular values of A are

 $\sigma_1 = \sqrt{\lambda_1} = 2$ and $\sigma_2 = \sqrt{\lambda_2} = 1$.

5. The only eigenvalue of $A^T A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ is $\lambda = 2$ (multiplicity 2), and the vectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ form an orthonormal basis for the eigenspace (which is all of R^2).

The singular values of A are $\sigma_1 = \sqrt{2}$ and $\sigma_2 = \sqrt{2}$. We have $\mathbf{u}_1 = \frac{1}{\sigma_1} A \mathbf{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$, and

$$\mathbf{u}_2 = \frac{1}{\sigma_2} A \mathbf{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}.$$

This results in the following singular value decomposition of *A*:

$$A = U\Sigma V^{T} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

6. $A^{T}A = \begin{bmatrix} -3 & 0 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} -3 & 0 \\ 0 & -4 \end{bmatrix} = \begin{bmatrix} 9 & 0 \\ 0 & 16 \end{bmatrix}$; $\det(\lambda I - A^{T}A) = \begin{vmatrix} \lambda - 9 & 0 \\ 0 & \lambda - 16 \end{vmatrix} = (\lambda - 9)(\lambda - 16)$;

the eigenvalues of A^TA are $\lambda_1 = 16$ and $\lambda_2 = 9$ therefore the singular values of A are $\sigma_1 = \sqrt{\lambda_1} = 4$ and $\sigma_2 = \sqrt{\lambda_2} = 3$.

The reduced row echelon form of $16I - A^T A$ is $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ so that the eigenspace corresponding to

 $\lambda_1 = 16$ consists of vectors $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ where $x_1 = 0$, $x_2 = t$. A vector $\mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ forms an orthonormal basis for this eigenspace.

The reduced row echelon form of $9I - A^T A$ is $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ so that the eigenspace corresponding to $\lambda_2 = 9$

consists of vectors $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ where $x_1 = t$, $x_2 = 0$. A vector $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ forms an orthonormal basis for this eigenspace.

The matrix $V = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ orthogonally diagonalizes $A^T A : V^T (A^T A) V = \begin{bmatrix} 16 & 0 \\ 0 & 9 \end{bmatrix}$.

From part (d) of Theorem 9.4.4

$$\mathbf{u}_1 = \frac{1}{\sigma_1} A \mathbf{v}_1 = \frac{1}{4} \begin{bmatrix} -3 & 0 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \text{ and } \mathbf{u}_2 = \frac{1}{\sigma_2} A \mathbf{v}_2 = \frac{1}{3} \begin{bmatrix} -3 & 0 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}.$$

A singular value decomposition of A is

$$\begin{bmatrix}
-3 & 0 \\
0 & -4
\end{bmatrix} = \begin{bmatrix}
0 & -1 \\
-1 & 0
\end{bmatrix} \begin{bmatrix}
4 & 0 \\
0 & 3
\end{bmatrix} \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}$$

7. The eigenvalues of $A^T A = \begin{bmatrix} 4 & 0 \\ 6 & 4 \end{bmatrix} \begin{bmatrix} 4 & 6 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 16 & 24 \\ 24 & 52 \end{bmatrix}$ are $\lambda_1 = 64$ and $\lambda_2 = 4$, with corresponding unit eigenvectors $\mathbf{v}_1 = \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} -\frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix}$ respectively. The singular values of A are $\sigma_1 = 8$ and $\sigma_2 = 2$. We have $\mathbf{u}_1 = \frac{1}{\sigma_1} A \mathbf{v}_1 = \frac{1}{8} \begin{bmatrix} 4 & 6 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix}$, and $\mathbf{u}_2 = \frac{1}{\sigma_2} A \mathbf{v}_2 = \frac{1}{2} \begin{bmatrix} 4 & 6 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} -\frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix}$.

This results in the following singular value decomposition:

$$A = U\Sigma V^{T} = \begin{bmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} 8 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$$

8. $A^{T}A = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 18 & 18 \\ 18 & 18 \end{bmatrix}; \det(\lambda I - A^{T}A) = \begin{vmatrix} \lambda - 18 & -18 \\ -18 & \lambda - 18 \end{vmatrix} = (\lambda - 36)\lambda;$

the eigenvalues of A^TA are $\lambda_1 = 36$ and $\lambda_2 = 0$ therefore the singular values of A are $\sigma_1 = \sqrt{\lambda_1} = 6$ and $\sigma_2 = \sqrt{\lambda_2} = 0$.

The reduced row echelon form of $36I - A^T A$ is $\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$ so that the eigenspace corresponding to

 $\lambda_1 = 36$ consists of vectors $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ where $x_1 = t$, $x_2 = t$. A vector $\mathbf{v}_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ forms an orthonormal basis for this eigenspace.

The reduced row echelon form of $0I - A^T A$ is $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ so that the eigenspace corresponding to $\lambda_2 = 0$

consists of vectors $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ where $x_1 = -t$, $x_2 = t$. A vector $\mathbf{v}_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ forms an orthonormal basis for this eigenspace.

The matrix $V = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ orthogonally diagonalizes $A^T A : V^T (A^T A) V = \begin{bmatrix} 36 & 0 \\ 0 & 0 \end{bmatrix}$.

From part (d) of Theorem 9.4.4,

$$\mathbf{u}_1 = \frac{1}{\sigma_1} A \mathbf{v}_1 = \frac{1}{6} \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}.$$

To obtain \mathbf{u}_2 , we extend the set $\{\mathbf{u}_1\}$ to an orthonormal basis for R^2 . To simplify the computations, we consider $\sqrt{2}\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. A vector \mathbf{u}_2 orthogonal to this vector must be a solution of $\begin{bmatrix} 1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$.

An orthonormal basis for the solution space is formed by $\mathbf{u}_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$.

A singular value decomposition of A is

$$\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 6 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

9. The eigenvalues of $A^{T}A = \begin{bmatrix} -2 & -1 & 2 \\ 2 & 1 & -2 \end{bmatrix} \begin{bmatrix} -2 & 2 \\ -1 & 1 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} 9 & -9 \\ -9 & 9 \end{bmatrix}$ are $\lambda_{1} = 18$ and $\lambda_{2} = 0$, with

corresponding unit eigenvectors $\mathbf{v}_1 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ respectively. The only nonzero singular value

of *A* is $\sigma_1 = \sqrt{18} = 3\sqrt{2}$, and we have $\mathbf{u}_1 = \frac{1}{\sigma_1} A \mathbf{v}_1 = \frac{1}{3\sqrt{2}} \begin{bmatrix} -2 & 2 \\ -1 & 1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \\ -\frac{2}{3} \end{bmatrix}$. We must choose the

vectors \mathbf{u}_2 and \mathbf{u}_3 so that $\{\mathbf{u}_1, \ \mathbf{u}_2, \ \mathbf{u}_3\}$ is an orthonormal basis R^3 .

A possible choice is $\mathbf{u}_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ and $\mathbf{u}_3 = \begin{bmatrix} \frac{\sqrt{2}}{6} \\ -\frac{2\sqrt{2}}{3} \\ -\frac{\sqrt{2}}{6} \end{bmatrix}$. This results in the following singular value

decomposition: $A = U\Sigma V^T = \begin{bmatrix} \frac{2}{3} & \frac{1}{\sqrt{2}} & \frac{\sqrt{2}}{6} \\ \frac{1}{3} & 0 & -\frac{2\sqrt{2}}{3} \\ -\frac{2}{3} & \frac{1}{\sqrt{2}} & -\frac{\sqrt{2}}{6} \end{bmatrix} \begin{bmatrix} 3\sqrt{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}.$

Note: The singular value decomposition is not unique. It depends on the choice of the (extended) orthonormal basis for R^3 . This is just one possibility.

10.
$$A^T A = \begin{bmatrix} -2 & 2 \\ -1 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} -2 & -1 & 2 \\ 2 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 8 & 4 & -8 \\ 4 & 2 & -4 \\ -8 & -4 & 8 \end{bmatrix};$$

$$\det(\lambda I - A^T A) = \begin{vmatrix} \lambda - 8 & -4 & 8 \\ -4 & \lambda - 2 & 4 \\ 8 & 4 & \lambda - 8 \end{vmatrix} = (\lambda - 18)\lambda^2; \text{ the eigenvalues of } A^T A \text{ are } \lambda_1 = 18 \text{ and}$$

$$\lambda_2=\lambda_3=0$$
 therefore the singular values of A are $\sigma_1=\sqrt{\lambda_1}=3\sqrt{2}$, $\sigma_2=\sqrt{\lambda_2}=0$, and $\sigma_3=\sqrt{\lambda_3}=0$.

The reduced row echelon form of $18I - A^T A$ is $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \end{bmatrix}$ so that the eigenspace corresponding to $\lambda = 18$

contains vectors
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 where $x_1 = -t$, $x_2 = -\frac{1}{2}t$, $x_3 = t$. A vector $\mathbf{v}_1 = \begin{bmatrix} -\frac{2}{3} \\ -\frac{1}{3} \\ \frac{2}{3} \end{bmatrix}$ forms an orthonormal basis

for this eigenspace.

The reduced row echelon form of $0I - A^T A$ is $\begin{bmatrix} 1 & \frac{1}{2} & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ so that the eigenspace corresponding to $\lambda = 0$

contains vectors
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 where $x_1 = -\frac{1}{2}s + t$, $x_2 = s$, $x_3 = t$. Vectors $\mathbf{p}_1 = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$ and $\mathbf{p}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ form a basis for

this eigenspace. We apply the Gram-Schmidt process to find an orthogonal basis for this eigenspace:

$$\mathbf{q}_{1} = \mathbf{p}_{1} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} \text{ and } \mathbf{q}_{2} = \mathbf{p}_{2} - \frac{\langle \mathbf{p}_{2}, \mathbf{q}_{1} \rangle}{\|\mathbf{q}_{1}\|^{2}} \mathbf{q}_{1} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} - \frac{-1}{5} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{4}{5} \\ \frac{2}{5} \\ 1 \end{bmatrix}, \text{ then proceed to normalize the two vectors to } \mathbf{q}_{1} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 5 \end{bmatrix}$$

yield an orthonormal basis:
$$\mathbf{v}_2 = \frac{\mathbf{q}_1}{\|\mathbf{q}_1\|} = \begin{bmatrix} -\frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \\ 0 \end{bmatrix}$$
 and $\mathbf{v}_3 = \frac{\mathbf{q}_2}{\|\mathbf{q}_2\|} = \begin{bmatrix} \frac{4}{3\sqrt{5}} \\ \frac{2}{3\sqrt{5}} \\ \frac{5}{3\sqrt{5}} \end{bmatrix}$.

The matrix $V = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & -\frac{1}{\sqrt{5}} & \frac{4}{3\sqrt{5}} \\ -\frac{1}{3} & \frac{2}{\sqrt{5}} & \frac{2}{3\sqrt{5}} \\ \frac{2}{3} & 0 & \frac{5}{3\sqrt{5}} \end{bmatrix}$ orthogonally diagonalizes A^TA :

$$V^{T} (A^{T} A) V = \begin{bmatrix} 18 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

From part (d) of Theorem 9.4.4,

26

$$\mathbf{u}_{1} = \frac{1}{\sigma_{1}} A \mathbf{v}_{1} = \frac{1}{3\sqrt{2}} \begin{bmatrix} -2 & -1 & 2 \\ 2 & 1 & -2 \end{bmatrix} \begin{bmatrix} -\frac{2}{3} \\ -\frac{1}{3} \\ \frac{2}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$$

To obtain \mathbf{u}_2 , we extend the set $\{\mathbf{u}_1\}$ to an orthonormal basis for R^2 . To simplify the computations, we consider $\sqrt{2}\mathbf{u}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. A vector \mathbf{u}_2 orthogonal to this vector must be a solution of $\begin{bmatrix} 1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$.

An orthonormal basis for the solution space is formed by $\mathbf{u}_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$.

A singular value decomposition of A is

$$\begin{bmatrix} -2 & -1 & 2 \\ 2 & 1 & -2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 3\sqrt{2} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} & 0 \\ \frac{4}{3\sqrt{5}} & \frac{2}{3\sqrt{5}} & \frac{5}{3\sqrt{5}} \end{bmatrix}$$

11. The eigenvalues of $A^T A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$ are $\lambda_1 = 3$ and $\lambda_2 = 2$, with corresponding unit eigenvectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ respectively. The singular values of A are $\sigma_1 = \sqrt{3}$ and

$$\sigma_2 = \sqrt{2}. \text{ We have } \mathbf{u}_1 = \frac{1}{\sigma_1} A \mathbf{v}_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \end{bmatrix} \text{ and } \mathbf{u}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}. \text{ We choose } \mathbf{v}_1 = \frac{1}{\sigma_1} A \mathbf{v}_1 = \frac{1}{\sigma_1$$

 $\mathbf{u}_{3} = \begin{bmatrix} \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}$ so that $\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\}$ is an orthonormal basis for R^{3} . This results in the following singular

value decomposition: $A = U\Sigma V^T = \begin{bmatrix} \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$

12.
$$A^{T}A = \begin{bmatrix} 6 & 0 & 4 \\ 4 & 0 & 0 \end{bmatrix} \begin{bmatrix} 6 & 4 \\ 0 & 0 \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} 52 & 24 \\ 24 & 16 \end{bmatrix}$$
; $\det(\lambda I - A^{T}A) = \begin{vmatrix} \lambda - 52 & -24 \\ -24 & \lambda - 16 \end{vmatrix} = (\lambda - 64)(\lambda - 4)$

the eigenvalues of A^TA are $\lambda_1 = 64$ and $\lambda_2 = 4$ therefore the singular values of A are $\sigma_1 = \sqrt{\lambda_1} = 8$ and $\sigma_2 = \sqrt{\lambda_2} = 2$.

The reduced row echelon form of $64I - A^T A$ is $\begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$ so that the eigenspace corresponding to

 $\lambda_1 = 64$ consists of vectors $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ where $x_1 = 2t$, $x_2 = t$. A vector $\mathbf{v}_1 = \begin{bmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix}$ forms an orthonormal basis for this eigenspace.

The reduced row echelon form of $4I - A^T A$ is $\begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 0 \end{bmatrix}$ so that the eigenspace corresponding to $\lambda_2 = 4$

consists of vectors $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ where $x_1 = -\frac{1}{2}t$, $x_2 = t$. A vector $\mathbf{v}_2 = \begin{bmatrix} -\frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix}$ forms an orthonormal basis for this eigenspace.

The matrix $V = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}$ orthogonally diagonalizes $A^T A : V^T (A^T A) V = \begin{bmatrix} 64 & 0 \\ 0 & 4 \end{bmatrix}$.

From part (d) of Theorem 9.4.4,

$$\mathbf{u}_{1} = \frac{1}{\sigma_{1}} A \mathbf{v}_{1} = \frac{1}{8} \begin{bmatrix} 6 & 4 \\ 0 & 0 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{5}} \\ 0 \\ \frac{1}{\sqrt{5}} \end{bmatrix} \text{ and } \mathbf{u}_{2} = \frac{1}{\sigma_{2}} A \mathbf{v}_{2} = \frac{1}{2} \begin{bmatrix} 6 & 4 \\ 0 & 0 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}} \\ 0 \\ -\frac{2}{\sqrt{5}} \end{bmatrix}.$$

To obtain \mathbf{u}_3 , we extend the set $\{\mathbf{u}_1,\mathbf{u}_2\}$ to an orthonormal basis for R^2 . To simplify the computations, we

consider $\sqrt{5}\mathbf{u}_1 = \begin{bmatrix} 2\\0\\1 \end{bmatrix}$ and $\sqrt{5}\mathbf{u}_2 = \begin{bmatrix} 1\\0\\-2 \end{bmatrix}$. A vector \mathbf{u}_3 orthogonal to both of these vectors must be a solution

of the homogeneous linear system $\begin{bmatrix} 2 & 0 & 1 \\ 1 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

The augmented matrix of this system has the reduced row echelon form $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ therefore an

orthonormal basis for the solution space is formed by $\mathbf{u}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

A singular value decomposition of A is

$$\begin{bmatrix} 6 & 4 \\ 0 & 0 \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \\ 0 & 0 & 1 \\ \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} & 0 \end{bmatrix} \begin{bmatrix} 8 & 0 \\ 0 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}$$

19. (b) In the solution of Exercise 5, we obtained a singular value decomposition

$$A = U\Sigma V^{T} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

A polar decomposition of A is

$$A = (U\Sigma U^{T})(UV^{T})$$

$$= \left[\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \right] \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

True-False Exercises

- (a) False. If A is an $m \times n$ matrix, then A^T is an $n \times m$ matrix, and $A^T A$ is an $n \times n$ matrix.
- **(b)** True. $(A^T A)^T = A^T (A^T)^T = A^T A$.
- (c) False. $A^T A$ may have eigenvalues that are 0.
- (d) False. A would have to be symmetric to be orthogonally diagonalizable.
- (e) True. This follows since $A^T A$ is a symmetric $n \times n$ matrix.
- (f) False. The eigenvalues of $A^T A$ are the squares of the singular values of A.
- (g) True. This follows from Theorem 9.4.3.

9.5 Data Compression Using Singular Value Decomposition

1. From Exercise 9 in Section 9.4, A has the singular value decomposition

$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{\sqrt{2}} & \frac{\sqrt{2}}{6} \\ \frac{1}{3} & 0 & -\frac{2\sqrt{2}}{3} \\ -\frac{2}{3} & \frac{1}{\sqrt{2}} & -\frac{\sqrt{2}}{6} \end{bmatrix} \begin{bmatrix} 3\sqrt{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}.$$

Thus the reduced singular value decomposition of A is $A = U_1 \Sigma_1 V_1^T = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \\ -\frac{2}{3} \end{bmatrix} \begin{bmatrix} 3\sqrt{2} \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$.

2.
$$\begin{bmatrix} -2 & -1 & 2 \\ 2 & 1 & -2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 3\sqrt{2} \end{bmatrix} \begin{bmatrix} -\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}$$

3. From Exercise 11 in Section 9.4, A has the singular value decomposition

$$A = U\Sigma V^{T} = \begin{bmatrix} \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Thus the reduced singular value decomposition of A is $A = U_1 \Sigma_1 V_1^T = \begin{bmatrix} \frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

4.
$$\begin{bmatrix} 6 & 4 \\ 0 & 0 \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ 0 & 0 \\ \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} 8 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}$$

- 5. The reduced singular value expansion of A is $3\sqrt{2}\begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \\ -\frac{2}{3} \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$.
- **6.** $\begin{bmatrix} -2 & -1 & 2 \\ 2 & 1 & -2 \end{bmatrix} = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T = 3\sqrt{2} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} -\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}$
- 7. The reduced singular value decomposition of A is $\sqrt{3}\begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} + \sqrt{2} \begin{bmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix}$.

8.
$$\begin{bmatrix} 6 & 4 \\ 0 & 0 \\ 4 & 0 \end{bmatrix} = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T = 8 \begin{bmatrix} \frac{2}{\sqrt{5}} \\ 0 \\ \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix} + 2 \begin{bmatrix} \frac{1}{\sqrt{5}} \\ 0 \\ -\frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}$$

9. A rank 100 approximation of A requires storage space for $100(200 + 500 + 1) = 70{,}100$ numbers, while A has $200(500) = 100{,}000$ entries.

True-False Exercises

- (a) True. This follows from the definition of a reduced singular value decomposition.
- **(b)** True. This follows from the definition of a reduced singular value decomposition.
- (c) False. V_1 has size $n \times k$ so that V_1^T has size $k \times n$.

Chapter 9 Supplementary Exercises

1. Reduce *A* to upper triangular form:

$$\begin{bmatrix} -6 & 2 \\ 6 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -3 & 1 \\ 6 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -3 & 1 \\ 0 & 2 \end{bmatrix} = U$$

The multipliers used were $\frac{1}{2}$ and 2, so $L = \begin{bmatrix} 2 & 0 \\ -2 & 1 \end{bmatrix}$ and $A = \begin{bmatrix} 2 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} -3 & 1 \\ 0 & 2 \end{bmatrix}$.

- $\mathbf{2.} \qquad A = \begin{bmatrix} -6 & 2 \\ 6 & 0 \end{bmatrix} \qquad \begin{bmatrix} \bullet & 0 \\ \bullet & \bullet \end{bmatrix}$
 - $\begin{bmatrix} \boxed{1} & -\frac{1}{3} \\ 6 & 0 \end{bmatrix} \leftarrow \text{multiplier} = -\frac{1}{6}$ $\begin{bmatrix} -6 & 0 \\ \bullet & \bullet \end{bmatrix}$
 - $\begin{bmatrix} 1 & -\frac{1}{3} \\ \hline 0 & 2 \end{bmatrix} \leftarrow \text{multiplier} = -6$ $\begin{bmatrix} -6 & 0 \\ 6 & \bullet \end{bmatrix}$
 - $U = \begin{bmatrix} 1 & -\frac{1}{3} \\ 0 & 1 \end{bmatrix} \leftarrow \text{multiplier} = \frac{1}{2}$ $\begin{bmatrix} -6 & 0 \\ 6 & 2 \end{bmatrix}$

A general 2×2 lower triangular matrix with nonzero main diagonal entries can be factored as

$$\begin{bmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ a_{21} / a_{11} & 1 \end{bmatrix} \begin{bmatrix} a_{11} & 0 \\ 0 & a_{22} \end{bmatrix}$$
 therefore
$$\begin{bmatrix} -6 & 0 \\ 6 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -6 & 0 \\ 0 & 2 \end{bmatrix}.$$
 We conclude that an LDU -

decomposition of A is $A = \begin{bmatrix} -6 & 2 \\ 6 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -6 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{3} \\ 0 & 1 \end{bmatrix} = LDU$.

3. Reduce *A* to upper triangular form.

$$\begin{bmatrix} 2 & 4 & 6 \\ 1 & 4 & 7 \\ 1 & 3 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 7 \\ 1 & 3 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 1 & 3 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = U$$

The multipliers used were $\frac{1}{2}$, -1, -1, $\frac{1}{2}$, -1, and $\frac{1}{2}$ so $L = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and $A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$.

4. It was shown in the solution of Exercise 3 that $A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$.

A general 3×3 lower triangular matrix with nonzero main diagonal entries can be factored as

$$\begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ a_{21} / a_{11} & 1 & 0 \\ a_{31} / a_{11} & a_{32} / a_{22} & 1 \end{bmatrix} \begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{bmatrix}$$

therefore $\begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$. We conclude that an *LDU* -decomposition of *A* is

$$A = \begin{bmatrix} 2 & 4 & 6 \\ 1 & 4 & 7 \\ 1 & 3 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = LDU.$$

5. (a) The characteristic equation of A is $\lambda^2 - 4\lambda + 3 = (\lambda - 3)(\lambda - 1) = 0$ so the dominant eigenvalue of A is $\lambda_1 = 3$, with corresponding positive unit eigenvector

$$\mathbf{v} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \approx \begin{bmatrix} 0.7071 \\ 0.7071 \end{bmatrix}.$$

(b)
$$A\mathbf{x}_0 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\mathbf{x}_{1} = \frac{A\mathbf{x}_{0}}{\|A\mathbf{x}_{0}\|} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\1 \end{bmatrix} \approx \begin{bmatrix} 0.8944\\0.4472 \end{bmatrix}$$

$$\mathbf{x}_{2} = \frac{A\mathbf{x}_{1}}{\|A\mathbf{x}_{1}\|} \approx \begin{bmatrix} 0.7809\\0.6247 \end{bmatrix}$$

$$\mathbf{x}_{3} = \frac{A\mathbf{x}_{2}}{\|A\mathbf{x}_{2}\|} \approx \begin{bmatrix} 0.7328\\0.6805 \end{bmatrix}$$

$$\mathbf{x}_{4} = \frac{A\mathbf{x}_{3}}{\|A\mathbf{x}_{3}\|} \approx \begin{bmatrix} 0.7158\\0.6983 \end{bmatrix}$$

$$\mathbf{x}_{5} = \frac{A\mathbf{x}_{4}}{\|A\mathbf{x}_{4}\|} \approx \begin{bmatrix} 0.7100\\0.7042 \end{bmatrix}$$

$$\mathbf{x}_5 \approx \begin{bmatrix} 0.7100 \\ 0.7042 \end{bmatrix}$$
 as compared to $\mathbf{v} \approx \begin{bmatrix} 0.7071 \\ 0.7071 \end{bmatrix}$.

$$\mathbf{(c)} \qquad A\mathbf{x}_0 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\mathbf{x}_{1} = \frac{A\mathbf{x}_{0}}{\max(A\mathbf{x}_{0})} = \begin{bmatrix} 1\\0.5 \end{bmatrix}$$

$$\mathbf{x}_{2} = \frac{A\mathbf{x}_{1}}{\max(A\mathbf{x}_{1})} = \begin{bmatrix} 1\\0.8 \end{bmatrix}$$

$$\mathbf{x}_{3} = \frac{A\mathbf{x}_{2}}{\max(A\mathbf{x}_{2})} \approx \begin{bmatrix} 1\\0.9286 \end{bmatrix}$$

$$\mathbf{x}_{4} = \frac{A\mathbf{x}_{3}}{\max(A\mathbf{x}_{3})} \approx \begin{bmatrix} 1\\0.9756 \end{bmatrix}$$

$$\mathbf{x}_{5} = \frac{A\mathbf{x}_{4}}{\max(A\mathbf{x}_{4})} \approx \begin{bmatrix} 1\\0.9918 \end{bmatrix}$$

$$\mathbf{x}_5 \approx \begin{bmatrix} 1 \\ 0.9918 \end{bmatrix}$$
 as compared to the exact eigenvector $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

- 7. The Rayleigh quotients will converge to the dominant eigenvalue $\lambda_4 = -8.1$. However, since the ratio $\frac{|\lambda_4|}{|\lambda_1|} = \frac{8.1}{8} = 1.0125$ is very close to 1, the rate of convergence is likely to be quite slow.
- **8.** $A^{T}A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}; \det(\lambda I A^{T}A) = \begin{vmatrix} \lambda 2 & -2 \\ -2 & \lambda 2 \end{vmatrix} = (\lambda 4)\lambda;$

the eigenvalues of A^TA are $\lambda_1 = 4$ and $\lambda_2 = 0$ therefore the singular values of A are $\sigma_1 = \sqrt{\lambda_1} = 2$ and $\sigma_2 = \sqrt{\lambda_2} = 0$.

The reduced row echelon form of $4I - A^T A$ is $\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$ so that the eigenspace corresponding to $\lambda_1 = 4$

consists of vectors $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ where $x_1 = t$, $x_2 = t$. A vector $\mathbf{v}_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ forms an orthonormal basis for this eigenspace.

The reduced row echelon form of $0I - A^T A$ is $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ so that the eigenspace corresponding to $\lambda_2 = 0$

consists of vectors $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ where $x_1 = -t$, $x_2 = t$. A vector $\mathbf{v}_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ forms an orthonormal basis for this eigenspace.

The matrix $V = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ orthogonally diagonalizes $A^TA : V^T (A^TA)V = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix}$.

From part (d) of Theorem 9.4.4, $\mathbf{u}_1 = \frac{1}{\sigma_1} A \mathbf{v}_1 = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$.

To obtain \mathbf{u}_2 , we extend the set $\{\mathbf{u}_1\}$ to an orthonormal basis for R^2 . To simplify the computations, we consider $\sqrt{2}\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. A vector \mathbf{u}_2 orthogonal to this vector must be a solution of $\begin{bmatrix} 1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$.

An orthonormal basis for the solution space is formed by $\mathbf{u}_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$.

A singular value decomposition of A is

$$\begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{bmatrix} \begin{bmatrix}
2 & 0 \\
0 & 0
\end{bmatrix} \begin{bmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{bmatrix}$$

9. The eigenvalues of $A^T A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$ are $\lambda_1 = 4$ and $\lambda_2 = 0$ with corresponding unit eigenvectors

 $\mathbf{v}_1 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$, respectively. The only nonzero singular value A is $\sigma_1 = \sqrt{4} = 2$, and we have

$$\mathbf{u}_{1} = \frac{1}{\sigma_{1}} A \mathbf{v}_{1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}} \end{bmatrix}.$$

We must choose the vectors \mathbf{u}_2 and \mathbf{u}_3 so that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthonormal basis for \mathbb{R}^3 . A possible choice is $\mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{u}_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{2} \end{bmatrix}$. This results in the following singular value decomposition:

$$A = U\Sigma V^T = \begin{bmatrix} -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}.$$

10.
$$A^{T}A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}; \det(\lambda I - A^{T}A) = \begin{vmatrix} \lambda - 2 & -2 \\ -2 & \lambda - 2 \end{vmatrix} = (\lambda - 4)\lambda;$$

the eigenvalues of A^TA are $\lambda_1 = 4$ and $\lambda_2 = 0$ therefore the singular values of A are $\sigma_1 = \sqrt{\lambda_1} = 2$ and $\sigma_2 = \sqrt{\lambda_2} = 0$.

The reduced row echelon form of $4I - A^T A$ is $\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$ so that the eigenspace corresponding to $\lambda_1 = 4$

consists of vectors $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ where $x_1 = t$, $x_2 = t$. A vector $\mathbf{v}_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ forms an orthonormal basis for this eigenspace.

From part (d) of Theorem 9.4.4, $\mathbf{u}_1 = \frac{1}{\sigma_1} A \mathbf{v}_1 = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$.

A reduced singular value decomposition of A is $\begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$.

A reduced singular value expansion is $\begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix} = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T = 2 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}.$

11. A has rank 2, thus $U_1 = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix}$ and $V_1^T = \begin{bmatrix} \mathbf{v}_1^T \\ \mathbf{v}_2^T \end{bmatrix}$ and the reduced singular value decomposition of A is

$$A = U_1 \Sigma_1 V_1^T = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 24 & 0 \\ 0 & 12 \end{bmatrix} \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \end{bmatrix}.$$

14. Since *A* has rank 1 it can be written as $A = \mathbf{u}\mathbf{v}^T$. Thus, $A^2 = (\mathbf{u}\mathbf{v}^T)(\mathbf{u}\mathbf{v}^T) = \mathbf{u}(\mathbf{v}^T\mathbf{u})\mathbf{v}^T$. But $\mathbf{v}^T\mathbf{u}$ is a scalar, say *k*. Thus, $A^2 = \mathbf{u}(\mathbf{v}^T\mathbf{u})\mathbf{v}^T = k\mathbf{u}\mathbf{v}^T = kA$.