

深度學習: 影像分割、物件偵測

黄志勝 義隆電子 人工智慧研發部 國立陽明交通大學 AI學院 合聘助理教授 台北科技大學 業師

Deep Learning: Feature Extractor

· Feature map可以做什麼?

What is image segmentation?

- This is the process of dividing an image into multiple segments.
- Every pixel in the image is associated with an object type.

Semantic Segmentation

pixel-by-pixel 藍色Mask是狗 紅色Mask是貓 橘色Mask是沙發 綠色是Background

Instance Segmentation

Object detection後的框框 內那些pixel是實際的物 件。

What is image segmentation?

Image Segmentation

輸入圖片

人眼看到的

電腦看到的

0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	0	1	1	0	0	0
0	0	0	1	1	0	0	0
0	0	0	0	0	0	0	0

Image segmentation architectures

可原圖大小去訓練和inference:

缺點:計算資源需求大,內存要很夠。

優點:結果較為準確。

可原圖大小(或resize到固定大小)去訓練,但結果只從1/8大小的結果輸出:

缺點:結果較差。

優點: 快速。

Image segmentation architectures

Deep Learning: Feature Extractor

• Feature map可以做什麼?

物件偵測

物件偵測

最小化 {MSE (Regression)+Cross Entropy (Classification)}

上述的架構會有問題

- 物件數超過1????

預測框增加到B個

物件偵測

最後輸出預測6個物件框

Boundary Box輸出的特徵圖大小為 batch * (6*4)= batch * 24

Class Confidence輸出的特徵圖大小為 batch * (6*(n_class+1)) = batch * (6*5) = batch * 30

最後輸出預測6個物件框

GAP

Boundary Box輸出的特徵圖大小為 batch * (6*4)= batch * 24

Fully

Connection

Fully

Connection

Class

Confidence

Boundary

Box

(x,y,w,h)

Class Confidence輸出的特徵圖大小 為

batch * (6*(n_class+1)) = batch * (6*5) = batch * 30

問題

學習的時候, $Predicted\ box_i, i = 1,2,...,B$ 該預測哪一個物件框。 造成混亂學習,所以會學不起來。

One stage object detection

 1^{obj}

0	0	0	0	0	0	0
0	1	1	4	0	0	0
0	0	1	3	1	0	0
0	0	1	1	0	0	0
0	0	1	1	0	0	0
0	0	1	1	1	0	0
0	10	1	1	1	0	0

0	0	0	0	0	0	0
0	1	1	1	0	0	0
0	0	1	1	1	0	0
0	0	1	1	0	0	0
0	0	1	1	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	0	0

每個grid都去預測物件

預測的時候需要估計物件的

中心位置:X,Y

長寬: H,W

信心度:是否有物件

類別

One stage object detection

YOLOv1的detector怎麼處理

件的Bounding box

5: 每個Boundary box (x, y, w, h, confidence)

7×7 grid cells ➤ Bounding box Grid cell

這個物件落在粉紅色框的grid cell 座標為這個grid cell內紅色框這個 Bounding box的中心(x,y),高寬為h,w。

20:屬於20個類別的機率。

黃色:「單車」的機率最大

粉紅:「汽車」的機率最大

橘色:「地板」的機率最大

One stage object detection

會有一堆候選框

One stage object detection

Non-Maximum Suppression (NMS)

Confidence score > threshold

Non-Maximum Suppression (NMS)

SSD vs YOLO

在最後預測的S*S 的每個grid cell都預設幾個anchors

•••

不同的物件大小用不同anchors去Fit,所以我們在預測的時候只要去調整Anchor的大小來Fit物件就好。

紅色的Anchor比較適合狗

黄色的Anchor比較適合貓

不同的物件大小用不同anchors去Fit,所以我們在預測的時候只要去調整Anchor的大小來Fit物件就好。

紅色的Anchor比較適合狗

神經網路學習 調整紅色的Anchor去fit狗

紅色anchor高縮小一點,往左下移動一點

不同的物件大小用不同anchors去Fit,所以我們在預測的時候只要去調整Anchor的大小來Fit物件就好。

黄色的Anchor比較適合貓

神經網路學習 調整黃色的Anchor去fit貓

黄色anchor長寬放大一點,中心稍移動

YOLO如何推算物件座標和大小

- · 學習調整 Anchor (放大縮小和中心位移)
- YOLOv2个: (Confidence, tx, ty, tw, th)

YOLO模型輸出 (t_x, t_y, t_w, t_h)

模型輸出要轉換成為實際的物件中心座標 (b_x, b_y) 和 寬高 (b_w, b_h)

中心座標轉換:

$$b_{x} = \sigma(t_{x}) + C_{x}$$
$$b_{y} = \sigma(t_{y}) + C_{y}$$

寬高轉換由Anchor去進行縮放:

$$b_w = P_w e^{t_w}$$
$$b_h = P_h e^{t_h}$$

 (P_w, P_h) : 我們設定的Anchor寬高。

YOLOv3後引入Multi-scale Detection

在最後預測的S*S的每個grid cell都預設幾個Anchors。

YOLOv3後引入Multi-scale Detection

在最後預測的S*S的每個grid cell都預設幾個Anchors。

3*3的特徵圖

7*7的特徵圖

在小解析的特徵圖(3*3)適合 最大物件偵測。

在大解析的特徵圖(7*7)適合 最大物件偵測。

3*3特徵圖藍色的Anchor只需 要微調就能fit彭彭

7*7特徵圖黃色的Anchor只需 要微調就能fit丁滿

YOLOv3後引入Multi-scale Detection

人臉偵測

3*3的特徵圖

14*14的特徵圖

在3*3特徵圖設定的 Anchor 要縮小 10倍,這樣的學習太難了

Model Inference Example

https://github.com/TommyHuang821/NTUT_EdgeAlCourse/blob/main/main_onnx_segmentation_voc.ipynb

https://github.com/TommyHuang821/NTUT_EdgeAlCourse/blob/main/main_pytorch_objectdetection_onnx.ipynb

https://github.com/TommyHuang821/NTUT_EdgeAlCourse/blob/main/main_pytorch_imageclassification_onnx.ipynb

