Assignment Math45-Module-15-Exercises due 11/16/2020 at 11:59pm PST

1. (1 point) Mark all of the following which are Cauchy-Euler equations.

• A.
$$\pi^7 x^4 y^{(4)} + 4xy' + 5y = 0$$

• B.
$$x^5y^{(5)} + 4x^3y''' + 7y = 0$$

• C.
$$4x^2y'' + 7xy' + 5y = e^x$$

• D.
$$4x^2y'' + 7xy' + 5y = 0$$

• E.
$$x^3y^{(5)} + 4x^3y''' + 7y = 0$$

• F.
$$5x^3 \frac{d^3}{dx^3} + 7x^5 y'' - 4y = 0$$

• G.
$$\pi^7 x^4 y^{(4)} + 4xe^x y' + 5y = 0$$

• H.
$$5x^3 \frac{d^3}{dx^3} + 7x^2y'' - 4y = 0$$

• I. None of the above

Following the method performed in the videos, to solve the differential equation $8x^2y'' + 9xy' + 7y = 0$ we would first plug in which of the following functions?

• A.
$$y = \sin(mx)$$

• B.
$$y = 8x^2 + 9x + 7$$

• C.
$$y = x^m$$

• D.
$$y = e^{mx}$$

• E. $y = \cos(mx)$

Following the method performed in the videos to solve $8x^2y'' + 8xy' + 3y = 0$, we seek find the *m* satisfying which of the following expressions?

• A.
$$8m^2 + 8m + 3 = 0$$

• B.
$$m = 8$$

• C.
$$8m^2 + 8m + 3 = 0$$

• D.
$$8m^2 + 0m + 3 = 0$$

• E.
$$(m-8)(m-8) = 0$$

- **4.** (1 point) Mark all of the possibilities that can arise when solving a quadratic equation as in the method of solving order 2 Cauchy-Euler equations.
 - A. Two distinct real roots.
 - B. Two complex roots.
 - C. One complex root.
 - D. One repeated real root.
 - E. One real root and one complex root.
 - F. No roots.
 - G. None of the above

Consider the differential equation $x^2y'' + 4xy' + 29y = 0$. Note that the methods described in the videos give rise to the two values $m_1 = 2 + i5$ and $m_2 = 2 - i5$. Which of the following is the general solution to the differential equation?

• A.
$$y = cx^2 (\cos(5 \ln |x|) + \sin(5 \ln |x|))$$

• B.
$$y = c_1 x^2 \cos(5 \ln |x|) + c_2 x^2 \sin(5 \ln |x|)$$

• C.
$$y = c_1 e^{(2+i5)x} + c_2 x e^{(2+i5)x}$$

• D.
$$y = c_1 e^{2x} + c_2 e^{5x}$$

6. (1 point) The general solution to the second-order differential equation $49x^2y'' + 77xy' + 4y = 0$ is in the form $y(x) = c_1x^r + c_2x^r \ln|x|$. Find the value of r.

Answer: $r = \underline{\hspace{1cm}}$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America