1 Strategies for Generating Simulated Noise in Directed Network Data

1.1 Assorted Strategies

1.1.1 Out-Degree Preserving Perturbation

Overview: For $p \in [0,1]$, randomly select 100p% of observed edges in the network. For each selected edge pair, re-assign the "receiver" node to some other random node provided that:

- the new receiver node is not already an existing receiver of an edge from the origin node.
- the new receiver node is not the origin node.

Properties:

- Probability of switching an a given directed edge to a non-edge: p
- Probability of switching a non-connected edge to a directed one:

$$(1 - (1-p)^{O_i})\frac{1}{N - O_i}$$

where:

- For each non-existing edge pair, (i, j), i is the sender, j is the receiver.
- Assume the sender has an outdegree of O_i .
 - * Probability that i was among the selected edges to be switched is $(1 (1 p)^{O_i})$.
- Probability of $E_{ij} = 1$ in the perturbed graph where
 - j was not among the O_i original receivers.j was selected by chance $\frac{1}{N-O_i}$.

.