LABORATORIO DI CALCOLO NUMERICO SIMULAZIONE ESAME SU PRIMA METÀ DEL PROGRAMMA

Consegna Compito: saranno visibili solo i files consegnati tramite moodle. Nota Bene: ogni file prodotto deve contenere i seguenti dati.

- Nome
- Cognome
- Matricola.

Non consegnare programmi che non girano.

1. Equazioni non lineari

Problema 1. Sia $f: \mathbb{R} \to \mathbb{R}$, $f(x) = xe^x - 1$. Si crei uno script che, utilizzando la function Newton fornita dal docente, calcoli la soluzione di f(x) = 0. Per scegliere opportunamente x_0 si plotti preventivamente un grafico di f. Si crei una figura che evidenzi la velocità di convergenza.

Problema 2. Si implementi l'algoritmo di punto fisso con test di arresto dello scarto in una function puntofisso.m.

Problema 3. Si riformuli il problema 1 come problema di punto fisso g(x) = x. Si trovi un intervallo in cui la convergenza dell'algoritmo di punto fisso è garantita dalla teoria e (all'interno dello script) si stampino gli estremi a schermo. Si calcoli un' approssimazione del punto fisso e si crei una figura che evidenzi la velocità di convergenza dell'algoritmo.

2. Interpolazione e approssimazione

Problema 4. Si crei uno script che interpoli a grado $n=1,2,\ldots,20$ la funzione $f(x):=\sin(x)$ su nodi equispaziati e di Chebyshev (o, in alternativa, Chebyshev-Lobatto) nell'intervallo $[0,\pi]$. Si crei una figura con funzione, valori interpolati, e due funzioni interpolanti (usando nodi di valutazione fitti per il plot) per ogni valore di n.

Si calcoli il massimo errore sulla griglia di valutazione e si crei una figura con gli errori delle due famiglie di interpolanti.

Problema 5. Sia $f_c(x) := c/(c+x.^2)$. Si interpoli f_c a grado 20 su nodi equispaziati per $c=1,2,\ldots,15$ e si calcoli il massimo errore dell'interpolante su una griglia equispaziata di 1000 punti. Si crei una figura che mostri l'andamento dell'errore rispetto a c.

Problema 6. Si ripeta l'esperimento precedente, usando i minimi quadrati di grado n = 11 costruiti su 101 punti equispaziati. Di che grado è l'approssimante? perchè? Stampare a video la risposta. Per rispondere correttamente creare un grafico semilogaritmico dei coefficienti dell'approssimante per ogni valore di c (usare pause(1)).