Chapter 5 Heaps

Fei Tan

Chaifetz School of Business Saint Louis University

Computer Science Fundamentals (Source: brilliant.org)

December 6, 2018

The Road Ahead...

- Heaps find what we need most, without imposing any expensive requirements
- What we'll accomplish
 - how to operate priority queue
 - combine heaps & trees into treaps to balance data

Data Structure: Priority Queues

- Priority queue in linked list representation
- Basic operations:
 - ▶ insert (i, p): add element i with priority p (integer)
 - ▶ pop (): remove & return item with highest priority
 - peek (): look at value of highest priority element

Data Structure: Binary Heaps

- Priority queue in binary heap representation
 - complete binary tree
 - ▶ max-heap: parent key ≥ children keys (black)
 - ▶ node n: left child 2n, right child 2n + 1 (red)

Algorithm: Heapsort

B 1 2 3 4 5 6 7 8 9 10 16 14 10 8 7 9 3 2 4 1

- ► Repeat following steps until empty heap
 - form binary heap by swapping children > parents
 - switch root with node furthest down
 - remove root & store as smallest of sorted numbers

Data Structure: Treaps

- ► Treap = tree + heap
 - ▶ (priority, key) pair for each node
 - highly likely to produce well-balanced trees