10

제 2 장 흙의 기본적 특성¹

2.1 흙입자 2

(1) 흙입자의 크기에 따른 구분 3

세립분		조립분					석분		4
점토	실트		모래		자갈		바위		
		가는모래	중간모래	큰모래	가는자갈	중간자갈	큰자갈	옥석	전석
(입경) 0.005 0.075 0.25 0.85 2.0 4.75 19 75 300 (mm)									
토질재료 <:-> 암석재료									

가. 조립토 5

- 자갈(gravel)6
- 모래(sand)
- 나. 세립토
- 실트(silt)
- 점토(clay)

(2) 흙입자 분류 예 7

<u>нан</u> 1	입자 크기(mm) 0.01 0.001 0.0001					
분류법 1	.00 10 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.1 ШШ		0.001 0.0003	
통일분류법	옥석 자갈	모래	모래		와 점토)	
	75 4.	75	0.075			
AASHTO	옥석 자갈	모래	모래		점토	
	75	2	0.	0.0	02	
MIT	자갈	모래		실트	점토	
	Ż			0.06 0.002		
ASTM	자갈	모래		실트	점토	
	4.75		0.075	0.002		
USDA	옥석 자갈	모래	모래		점토	
		2	0.0	0.0	002	

그림 2-1 크기에 따른 흙입자의 분류 9

※ 통일분류법(USCS): Unified Soil Classification System

AASHTO: American Association of State Highway and Transportation Officials

MIT: Massachusetts Institute of Technology

ASTM: American Society for Testing and Materials 미국농무성(USDA): US Department of Agriculture

2.2 흙입자의 비중1

- 흙입자의 비중 (specific gravity): Gs 2

그림 2-2 흙입자의 비중 측정 4

- (1) 흙입자의 중량과 같은 부피의 15℃ 증류수의 중량과의 비
- (2) 흙입자의 단위중량 (ys) 와 15℃ 증류수의 단위중량 (yw) 과의 비
- (3) t[℃]에서 흙입자의 비중: Gt 6

$$G_t = \frac{\gamma_s}{\gamma_w} = \frac{W_s}{W_w} = \frac{W_s}{W_s + W_a - W_b}$$

Wa: 부피 50cm3 이상의 비중병 (pycnometer) 에 t[°]C 의 증류수를 가득 채웠을 때의 8 중량

Ws: 노건조한 흙시료의 중량 9

Wb: 비중병에 건조한 흙시료를 넣고 증류수로 채웠을 때의 중량 10

 W_{W} : 흙시료와 같은 부피의 물의 무게 $G_{s} = K \times G_{t}$ (K: 온도에 따른 비중 수정계수)

2.3 입도분석 12

2.3.1 개요 13

- (1) 흙속에 있는 입자들의 크기 정도 결정 14
- (2) 종류: 한국산업규격 KS F 2302 15
- 체분석(sieve analysis): 흙입자 직경 0.075 이상인 경우
- 비중계분석(hydrometer analysis): 흙입자 직경 0.075 이하인 경우

2.3.2 체분석(sieve analysis) 1

	체 번호	구멍 크기(mm)
A CONTRACTOR OF THE PARTY OF TH	4	4.750
公 [基型]	6	3.350
THE STATE OF THE S	8	2.360
THE STREET	10	2.000
The second second	18	1.000
	20	0.850
	30	0.600
	40	0.425
	50	0.300
	60	0.250
	80	0.180
The state of the s	100	0.150
EFL2 mk3	140	0.106
A Comment of the	170	0.088
	200	0.075

그림 2-3. 체진동기 및 표준체의 번호와 눈금의 크기 3

2.3.3 비중계분석 (hydrometer analysis) 4

- (1) 방법: 물속으로 가라앉는 흙입자의 침강워리 5
- (2) 대상 흙입자의 크기: 0.0005mm < 비중계분석 < 0.2mm 6
- (3) 각 흙입자 비중의 다양성, 침강중 흙입자간의 간섭 등으로 신뢰성이 낮음 7
- (4) Stokes 법칙: 흙입자를 구라고 가정한 흙입자의 침강속도 8

$$v = \frac{\gamma_s - \gamma_w}{18\eta} D^2$$

 γ_s : 흙입자의 단위중량 γ_w : 물의 단위중량 η : 물의 점성계수 D: 흙입자의 직경

2.3.4 입도분포곡선 (particle size distribution curve) 10

- (1) 체분석과 비중계분석 결과를 반대수용지(semi-log paper)에 표시한 것 11
- (2) 흙입자의 직경 (mm) vs 흙입자의 통과중량 백분율 (%) 12

지반지질공학 및 실습 강의노트

(3) 예: 흙 A의 통일분류법에 의한 분류 1

가. 자갈 (4.75mm 이상): 0%

나. 모래 (4.75 ~ 0.075mm): 38%

다. 실트와 점토 (0.075mm 이하): 62%

그림 2-4 입도분포곡선 3

(4) 여러 입자크기의 분포형태 4

그림 2-5 여러 가지 형태의 입도분포곡선 6

가. 곡선 I: 입도분포 불량한 흙 (poorly graded soil)

나. 곡선 II: 입도분포 양호한 흙 (well graded soil)

다. 곡선 III: 2개 이상 균등분포된 흙 (계단식 입도, gap graded)

2.3.5 유효입경, 균등계수 및 곡률계수 1

(1) 입도분포곡선 형상을 특징짓는 요소: 유효입경, 균등계수, 곡률계수 2

(2) 유효입경(effective size), D₁₀: 중량통과 백분율 10%에 해당하는 입자의 직경 3

(3) 균등계수(uniformity coefficient): 입도분포 특성을 나타내는 값인 곡선의 경사 4

$$C_u = \frac{D_{60}}{D_{10}}$$

D₆₀ : 중량통과 백분율 60%에 해당하는 입경

(4) 곡률계수 (coefficient of gradation) : 곡선의 단계적인 상태 6

$$C_c = \frac{D_{30}^2}{D_{60} \times D_{10}}$$

D₃₀ : 중량통과 백분율 30%에 해당하는 입경

입도분포가 좋은 흙	입도분포가 나쁜 흙	입도의 특징	8
	$C_u < 10$	균등입도	
$C_u \geq 10 \ 1 < C_c \leq \sqrt{U_c}$	$C_u \ge 10$ $C_c \le 1$	레디지하드	
	$C_u \ge 10$	계단식입도	
	$C_c > \sqrt{U_c}$		

(5) 흙시료의 입도분포 판정 (일본 토질공학회) 9

예제) 그림 2-4 에서 흙 B에 대하여 D_{10} = 0.096mm, D_{30} = 0.16mm, D_{60} = 0.24mm일 10 때, 균등계수와 곡률계수를 구하시오.

$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.24}{0.096} = 2.5$$

$$C_c = \frac{D_{30}^2}{D_{60} \times D_{10}} = \frac{0.16^2}{0.24 \times 0.096} = 1.11$$

2.4 흙의 구성 1

 (체적 V)
 (질량 m) (중량 W)
 2

 V: 흙 전체의 체적
 m, W: 흙 전체의 질량, 중량

그림 2-6 흙의 구성도 4

2.4.1 구성요소의 부피 5

(1) 흙의 전체부피 6

 $V = V_s + V_v = V_s + V_w + V_a \ , \ m = m_a + m_w + m_s = m_w + m_s$ $V_v = V_a + V_w = V - V_s \ , \qquad W = W_a + W_w + W_s = W_w + W_s$

Vs : 흙입자의 부피

Vv : 간극의 부피

Vw : 간극속의 물의 부피 Va : 간극속의 공기의 부피

ma, Wa : 간극 중 공기의 질량, 중량 (= 0)

mw, Ww : 간극 중 물의 질량, 중량 ms, Ws : 토립자 부분의 질량, 중량

(2) 흙의 상태에 대한 기본적인 생각 8

	상태	관계	값	9
	수분 포함 상태	질량과의 관계	함수비(<i>w</i>)	
흙의 상태	결합상태 (다짐상	체적에 대한	습윤밀도(ρ∄,	
	태)	질량의 관계	건조밀도(ρ _d)	
	틈의양(간극의양)	체적의 관계	간극비(<i>e</i>), 포화도(<i>S</i>)	

(3) 간극비(void ratio, e): 흙의 압축성 판단 1

(4) 간극률(porosity, n): 3

$$n = \frac{\frac{1}{2}}{\frac{1}{2}} \frac{1}{2} \frac{1}{2} \frac{1}{2} \times 100 = \frac{V_v}{V} \times 100 (\%)$$

(5) 간극비와 간극률 사이의 관계 5

$$e = \frac{V_v}{V_s} = \frac{V_v}{V - V_v} = \frac{\frac{V_v}{V}}{1 - \frac{V_v}{V}} = \frac{n}{1 - n}$$

$$n = \frac{V_v}{V} = \frac{V_v}{V_s + V_v} = \frac{\frac{V_v}{V_s}}{\frac{V_s}{V_s} + \frac{V_v}{V_s}} = \frac{e}{1 + e}$$

(6) 포화도(degree of saturation, S): 8

그림 2-7 포화상태 따른 흙의 분류 10

$$S = \frac{\text{간극에 차지하는 물의 체적}}{\text{흙의 간극의 체적}} \times 100 = \frac{V_w}{V_w} \times 100 \, (\%)$$

2.4.2 구성요소의 무게 12

(1) 함수비(moisture content, w): 훍의 간극에 함유된 물의 양의 비 13

$$w = \frac{\text{간극에 포함된 물의 질량(중량)}}{\text{토립자 부분의 질량(중량)}} \times 100 = \frac{m_w}{m_s} (또는, \frac{W_w}{W_s}) \times \frac{14}{100} (\%)$$

그림 2-8 함수비의 측정과 계산 2

- (2) 습윤밀도와 건조밀도: 흙의 결합과 다짐 등의 상태, 단위체적당 질량 3
- 가. 습윤밀도(moist density, pt): 습윤상태에서 흙의 단위체적당 질량 4

$$\rho_t = \frac{\dot{\mathbb{P}} \cap \mathbb{P} \cap \mathbb{P}}{\dot{\mathbb{P}} \cap \mathbb{P}} \cap \mathbb{P} \cap$$

나. 건조밀도(dry density, pd): 토립자만의 질량 6

$$\begin{split} \rho_d &= \frac{\frac{e}{s} 의 토립자 부분의 질량}{\frac{e}{s} 의 전체적} = \frac{m_s}{V} \left(g/cm^3 \right)^{\frac{1}{2}} \\ \rho_t &= \frac{m}{V} = \frac{m_s + m_w}{V} = \frac{m_s \left(1 + m_w/m_s \right)}{V} = \rho_d (1 + w)^{\frac{1}{2}} \\ \rho_d &= \frac{\rho_t}{\left(1 + w \right)} \left(g/cm^3 \right) \end{split}$$

- (3) 전체단위중량(= 습윤단위중량)과 건조단위중량: 중량으로 생각하는 경우의 밀도9
- 가. 전체단위중량(total unit weight, γ) 또는 습윤단위중량 (moist unit weight, γt):

$$\gamma = \gamma_t = \frac{W}{V} = \frac{mg}{V} = \rho_t g \left(N/m^3, kN/m^3 \right)^{10}$$

나. 건조단위중량(dry unit weight, γd): 11

$$\gamma_d = \frac{W_s}{V} = \frac{m_s g}{V} = \rho_d g \left(N/m^3, kN/m^3 \right)$$
g: 중력가속도(= 9.81m/sec2)

다. 전체단위중량, 건조단위중량, 함수비와의 관계 13

$$\gamma = \frac{W}{V} = \frac{W_s + W_w}{V} = \frac{W_s \left(1 + \frac{W_w}{W_s}\right)}{V} = \frac{W_s \left(1 + w\right)}{V}$$

$$\gamma_d = \frac{\gamma}{(1+w)}$$

2.4.3 포화도, 간극비, 함수비, 비중 사이의 관계 1

그림 2-9 흙입자의 부피가 1일 때 흙요소의 3가지 성분 3

(1) Vs= 1 일 때 흙입자와 물의 무게 4

가. 흙입자의 무게 5

$$W_s=\gamma_s\,V_s=\gamma_w\,G_s\,V_s\,(=1)=\gamma_w\,G_s$$
 6
$$G_s=\gamma_s/\gamma_w,\,\gamma_s=G_s\gamma_w$$

나. 물의 무게 7

$$W_w = \gamma_w \, V_w = \gamma_w \, V_v S = \gamma_w \, V_s \, (=1) e S = \gamma_w e S$$
 8 $S = V_w / V_v, \, V_w = S V_v$ Gs : 흙입자의 비중 v_w : 물의 단위중량

다. 전체단위중량 및 건조단위중량과의 관계 9

$$\gamma = \frac{W}{V} = \frac{W_s + W_w}{V_s + V_v} = \frac{(\gamma_w G_s) + (\gamma_w eS)}{1 + e} = \frac{G_s + (eS)}{1 + e} \gamma_w$$

$$\gamma_d = \frac{W_s}{V} = \frac{G_s \gamma_w}{V_s + V_v} = \frac{G_s}{1 + e} \gamma_w$$
11
11

라. 포화단위중량(saturated unit weight, γsat, S=100%): 간극이 완전히 물로 채워져 12 있는 경우

$$\gamma_{sat} = \frac{W}{V} = \frac{W_s + W_w}{V_s + V_v} = \frac{(\gamma_w G_s) + (\gamma_w e S(=1))}{1 + e} = \frac{G_s + e}{1 + e} \gamma_w \frac{\textbf{13}}{1 + e}$$

마. 수중단위중량(submerged unit weight, ysub): 흙이 지하수위 아래에 있을 경우 부 14

9

력에 의한 영향 1

$$\begin{split} \gamma' &= \gamma_{sat} - \gamma_w \\ &= \frac{W}{V} - \gamma_w = \frac{W_s + W_w}{V_s + V_v} - \gamma_w \\ &= \frac{(\gamma_w G_s) + (\gamma_w e S(=1))}{1 + e} - \gamma_w \\ &= \frac{G_s + e}{1 + e} \gamma_w - \gamma_w \\ &= \frac{G_s - 1}{1 + e} \gamma_w \end{split}$$

바. 포화도, 간극비, 함수비, 비중 사이의 관계 3

$$w = \frac{W_w}{W_s} = \frac{\gamma_w eS}{\gamma_w G_s} = \frac{eS}{G_s} \frac{4}{G_s}$$

$$Se = G_s \times w$$

2.4.4 상대밀도 5

(1)상대밀도(relative density, Dr): 사질토의 조밀하거나 느슨한 정도 6

$$D_r = \frac{e_{\text{max}} - e}{e_{\text{max}} - e_{\text{min}}}$$

e: 자연상태에서 흙의 간극비

emax: 가장 느슨한 상태에서 흙의 간극비 emin: 가장 조밀한 상태에서 흙의 간극비

(2) 건조단위중량을 이용한 상대밀도 계산 8

$$D_r = \frac{\gamma_d - \gamma_{dmin}}{\gamma_{dmax} - \gamma_{dmin}} \frac{\gamma_{dmax}}{\gamma_d}$$

γd: 자연상태에서 흙의 건조단위중량

γdmin: 가장 느슨한 상태에서의 흙의 최소건조단위중량 (ASTM D-2049) γdmax: 가장 조밀한 상태에서의 흙의 최대건조단위중량 (ASTM D-2049)