

Document #: 13-52-12 **Title:** QMA7981 Datasheet

Abstract
Single-Chip 3-Axis Accelerometer
QMA7981

Advanced Information

Rev: D

The QMA7981 is a single chip three-axis accelerometer. This surface-mount, small sized chip has integrated acceleration transducer with signal conditioning ASIC, sensing tilt, motion, shock and vibration, targeted for applications such as screen rotation, step counting, sleep quality, gaming and personal navigation in mobile and wearable smart devices.

The QMA7981 is based on our state-of-the-art, high resolution single crystal silicon MEMS technology. Along with custom-designed 14-bit ADC ASIC, it offers the advantages of low noise, high accuracy, low power consumption, and offset trimming. The device supports digital interface IIC and SPI.

The QMA7981 is in a 2x2x0.95mm3 surface mount 12-pin land grid array (LGA) package.

FEATURES

▶ 3-Axis Accelerometer in a 2x2x0.95 mm³ Land Grid Array Package (LGA), guaranteed to operate over a temperature range of -40 °C to +85 °C.

- 14-Bit ADC with low noise accelerometer sensor
- ► I²C Interface with Standard and Fast modes. Support SPI digital interface
- Built-In Self-Test
- Wide range operation voltage (1.71V To 3.6V) and low power consumption (2-50uA low power conversion current)
- ▶ RoHS compliant , halogen-free
- Built-in motion algorithm

BENEFIT

- Small size for highly integrated products. Signals have been digitized and factory trimmed.
- High resolution allows for motion and tilt sensing
- High-Speed Interfaces for fast data communications.
- Enables low-cost functionality test after assembly in production
- Automatically maintains sensor's sensitivity under wide operation voltage range and compatible with battery powered applications
- Environmental protection and wide applications
- Low power and easy applications including step counting, sleep quality, gaming and personal navigation

Title: QMA7981 Datasheet

Rev: D

CONTENTS

CO	NTENTS		2
1		NAL SCHEMATIC DIAGRAM	
	1.1	Internal Schematic Diagram	3
2	SPECII	FICATIONS AND I/O CHARACTERISTICS	
	2.1	Product Specifications	4
	2.2	Absolute Maximum Ratings	5
	2.3	I/O Characteristics	5
3	PACK A	AGE PIN CONFIGURATIONS	6
	3.1	Package 3-D View	6
	3.2	Package Outlines	7
4	EXTER	RNAL CONNECTION	9
	4.1	I2C Dual Supply Connection	9
	4.2	I2C Single Supply connection	9
	4.3	SPI Dual Supply Connection	10
	4.4	SPI Single Supply connection	10
5	BASIC	DEVICE OPERATION	11
	5.1	Acceleration sensor	11
	5.2	Power Management	11
	5.3	Power On/Off Time	
	5.4	Communication Bus Interface I ² C and Its Addresses	12
6	MODE	S OF OPERATION	13
	6.1	Modes Transition	13
	6.2	Description of Modes	13
7	Function	ons and interrupts	14
	7.1	STEP_ INT	14
	7.2	DRDY_INT	15
	7.3	ANY_MOT_INT	
	7.4	SIG_MOT_INT	
	7.5	NO_MOT_INT	16
	7.6	RAISE_INT	16
	7.7	Interrupt configuration	
8	I ² C CO	MMUNICATION PROTOCOL	18
	8.1	I ² C Timings	
	8.2	I ² C R/W Operation	
9	REGIS	TERS	
	9.1	Register Map	20
	9.2	Register Definition	2.1

Title: QMA7981 Datasheet

Rev: D

1 INTERNAL SCHEMATIC DIAGRAM

1.1 Internal Schematic Diagram

Figure 1. Block Diagram

Table 1. Block Function

Block	Function	
Transducer	3-axis acceleration sensor	
CVA	Charge-to-Voltage amplifier for sensor signals	
Interrupt	Digital interrupt engine, to generate interrupt signal on data conversion, and motion function	
FSM	Finite state machine, to control device in different mode	
I ² C/SPI	Interface logic data I/O	
OSC Internal oscillator for internal operation		
Power Power block, including LDO		

Title: QMA7981 Datasheet

2 SPECIFICATIONS AND I/O CHARACTERISTICS

2.1 Product Specifications

Table 2. Specifications (* Tested and specified at 25°C and 3.0V VDD except stated otherwise.)

Parameter	Conditions	Min	Тур	Max	Unit	
Supply voltage VDD	VDD, for internal blocks	1.71	3.3	3.6	V	
I/O voltage VDDIO	VDDIO, for IO only	1.71	3.3	VDD	V	
Standby current	VDD and VDDIO on		1		μΑ	
	ODR=268 Hz		50			
	ODR=134 Hz		25.3			
Low power current	ODR=67 Hz		12.9		μΑ	
•	ODR=33.6 Hz		6.7			
	ODR=13.4 Hz		2.9			
	ODR=6.7 Hz		1.7			
	ODR=32.5 Hz		100			
Low noise current	ODR=21.6 Hz		83.3		μΑ	
	ODR=13 Hz		50			
	ODR=6.5 Hz		25			
BW	Programmable bandwidth		0.16~168		Hz	
Data output rate	2*BW		0.32~336		Samples	
(ODR)					/sec	
<u>.</u>	From the time when VDD reaches to					
Startup time	90% of final value to the time when		2		ms	
	device is ready for conversion					
	From the time device enters into					
Wakeup time	active mode to the time device is		1		ms	
	ready for conversion					
Operating					°C	
temperature		-40		85	$^{\circ}$ C	
Acceleration Full			±2/±4/±8/		_	
Range			±16/±32		g	
_	FS=±2g		4096			
6	FS=±4g		2048		160/	
Sensitivity	FS=±8g		1024		LSB/g	
	FS=±16g		512			
	FS=±32g		256			
Sensitivity			10.03		0/100	
Temperature Drift	FS=±2g, Normal VDD Supplies		±0.02		%/℃	
Sensitivity tolerance	Gain accuracy		±4		%	
Zero-g offset	FS=±2g, Normal VDD Supplies		±80		mg	
Zero-g offset	FC 13- Newsel VDD Counties		12		100	
Temperature Drift	FS=±2g, Normal VDD Supplies		±2		mg/℃	
Noise density	FS=±2g, run state		200		μg/ √ Hz	
Nonlinearity	FS=±2g, Best fit straight line,		±0.5		%FS	
Cross Axis Sensitivity			1		%	

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-12 **T**

Title: QMA7981 Datasheet

2.2 Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings (Tested at 25°C except stated otherwise.)

Parameters	Condition	Min	Max	Units
VDD		-0.3	5.4	V
VDDIO		-0.3	5.4	V
ESD	НВМ		2	kV
Shock Immunity	Duration < 200μS		10000	g
Storage temperature		-50	150	$^{\circ}$

2.3 I/O Characteristics

Table 4. I/O Characteristics

Parameter	Symbol	Pin	Condition	Min.	TYP.	Max.	Unit
Voltage Input	V _{IH} 1	SDA, SCL		0.7*VDDI		VDDIO+0	V
High Level 1				0		.3	
Voltage Input	V _{IL} 1	SDA, SCL		-0.3		0.3*VDDI	٧
Low Level 1						О	
Voltage Output	Vон	INT1, INT2	Output Current	0.8*VDDI			V
High Level			≥-100μA	0			
Voltage Output	V _{OL}	INT1, INT2,	Output Current			0.2*VDDI	V
Low Level		SDA	≤100μA(INT)			О	
			Output Current				
			≤1mA (SDA)				

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

5 / 29

Title: QMA7981 Datasheet

Rev: D

3 PACKAGE PIN CONFIGURATIONS

3.1 Package 3-D View

Arrow indicates direction of g field that generates a positive output reading in normal measurement configuration.

Figure 2. Package View

Table 5. Pin Configurations

PIN No.	PIN NAME	I/O	Power	TYPE	Function
1	AD0	I	VDDIO	CMOS	LSB of I ² C address, or SDO of 4W SPI
2	SDX	Ю	VDDIO	CMOS	Serial data for I ² C, or SDI of 4W SPI, or SDIO of 3W SPI
3	VDDIO	Р	VDDIO	Power	Power supply to digital interface
4	RESV1	I	VDDIO	CMOS	Reserved. Float or connect to GND
5	INT1	0	VDDIO	CMOS	Interrupt 1
6	INT2	0	VDDIO	CMOS	Interrupt 2
7	VDD	Р	VDD	Power	Power supply to internal block
8	GNDIO	G	GND	Power	Ground to digital interface
9	GND	G	GND	Power	Ground to internal block
10	SENB	IO	VDDIO	CMOS	Protocol selection
11	RESV2	Ю	VDDIO	CMOS	Reserved. Float, or connect to GND
12	SCL	I	VDDIO	CMOS	Serial clock for I ² C, or Serial clock for SPI

Title: QMA7981 Datasheet

Rev: D

3.2 Package Outlines

3.2.1 Package Type

LGA (Land Grid Array)

3.2.2 Package Outline Drawing:

2.0mm (Length)*2.0mm (Width)*0.95mm (Height)

MAX. **SYMBOL** MIN. NOM. 0.90 0.95 1.00 A A1 0.75 0.16 0.20 0.24 D 1.95 2.00 2.05 D1 1.80 BSC 1.95 2.00 2.05 Ε 1.80 BSC E1 0.50 BSC e 0.20 0.25 0.30 b 0.225 0.275 0.325 0.10 REF 0.10 REF x1 y1

NOTE:

1. CONTROLLING DIMENSION: MILLIMETER.

Figure 3. Package Outline Drawing

Document #: 13-52-12 **Title:** QMA7981 Datasheet

Rev: D

3.2.3 Marking:

Figure 4. Marking Format

Marking Text	Description	Comments
Line 1	CCCC: lot code	Lot code: 4 alphanumeric digits, variable to generate mass production trace-code
Line 2	S: Sub-con ID P: Part number 7: Fixed number	S: 1 alphanumeric digit, variable identify sub-con P: 1 alphanumeric digit, variable to identify part number 7: "7" stand for product name QMA7981
•	Pin 1 identifier	

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMA7981 Datasheet

Rev: D

4 EXTERNAL CONNECTION

4.1 I2C Dual Supply Connection

Figure 5. I2C Dual Supply Connection

4.2 I2C Single Supply connection

Figure 6. I2C Single Supply Connection

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMA7981 Datasheet

Rev: D

4.3 SPI Dual Supply Connection

Figure 7. SPI Dual Supply Connection

4.4 SPI Single Supply connection

Figure 8. SPI Single Supply Connection

Title: QMA7981 Datasheet

5 BASIC DEVICE OPERATION

5.1 Acceleration sensor

The QMA7981 acceleration sensor circuit consists of tri-axial sensors and application specific support circuits to measure the acceleration of device. When a DC power supply is applied to the sensor, the sensor converts any accelerating incident in the sensitive axis directions to charge output.

5.2 Power Management

Device has two power supply pins. VDD is the main power supply for all of the internal blocks, including analog and digital. VDDIO is a separate power supply, for digital interface only.

The device contains a power-on-reset generator. It generates reset pulse as power on, which can load the register's default value, for the device to function properly.

To make sure the POR block functions well, we should have such constrains on the timing of VDD and VDDIO.

The device should turn-on both power pins in order to operate properly. When the device is powered on, all registers are reset by POR, then the device transits to the standby mode and waits for further commends.

Table 6 provides references for four power states.

Table 6. Power States

Power State	VDD	VDDIO	Power State description
1	0V	0V	Device Off, No Power Consumption
2	0V	1.71v~3.6v	Not allowed. User need to make sure that VDDIO is less than VDD. Otherwise, there will be leakage from VDDIO to VDD through internal ESD devices
3	1.71v~3.6v	0V	Device Off, Same Current as Standby Mode
4	1.71v~3.6v	1.71v~VDD	Device On, Normal Operation Mode, Enters Standby Mode after POR

5.3 Power On/Off Time

Device has two power supply pins and two ground pins. VDD is the main power supply for all of the internal blocks, including analog and digital. VDDIO is a separate power supply, for digital interface only. GND is 0V supply for all of internal blocks, and GNDIO for digital interface.

There is no limitation on the voltage levels of VDD and VDDIO relative to each other, as long as they are within operating range.

The information contained herein is the exclusive property of QST, and shall not be distributed,	
reproduced, or disclosed in whole or in part without prior written permission of QST.	

Document #: 13-52-12 **Title:** QMA7981 Datasheet

The device contains a power-on-reset generator. It generates reset pulse as power on, which can load the register's default value, for the device to function properly.

To make sure the POR block functions well, we should have such constrains on the timing of VDD. The power on/off time related to the device is in Table 7

Table 7. Time Required for Power On/Off

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
POR Completion	PORT	Time Period After VDD and			250	μs
Time		VDDIO at Operating Voltage to				
		Ready for I ² C Commend and				
		Analogy Measurement.				
Power off Voltage SDV V		Voltage that Device Considers to			0.2	V
		be Power Down.				
Power on Interval PINT		Time Period Required for Voltage	100			μs
		Lower Than SDV to Enable Next				
		POR				
Power on Time	PSUP	Time Period Required for Voltage			50	ms
		from SDV to 90% of final value				

Power On/Off Timing

Figure 9. Power On/Off Timing

5.4 Communication Bus Interface I²C and Its Addresses

This device will be connected to a serial interface bus as a slave device under the control of a master device, such as the processor. Control of this device is carried out via I²C.

This device is compliant with I²C -Bus Specification, document number: 9398 393 40011. As an I²C compatible device, this device has a 7-bit serial address and supports I²C protocols. This device supports standard and fast speed modes, 100 kHz and 400 kHz, respectively. External pull-up resistors are required to support all these modes.

There are two I^2C addresses selected by connecting pin 1 (AD0) to GND or VDDIO. The first six MSB are hardware configured to "001001" and the LSB can be configured by AD0.

The information contained herein is the exclusive property of QST, and shall not be distributed,	
reproduced, or disclosed in whole or in part without prior written permission of QST.	

₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	Document #:	13-52-12	Title:	QMA7981 Datasheet	Rev: D
炒省					

Table 8. I²C Address Options

AD0 (pin 1)	I ² C Slave Address(HEX)	I ² C Slave Address(BIN)
Connect to GND	12	0010010
Connect to VDDIO	13	0010011

6 MODES OF OPERATION

6.1 Modes Transition

QMA7981 has two different operational modes, controlled by register (0x11), MODE_BIT. The main purpose of these modes is for power management. The modes can be transited from one to another, as shown below, through I^2C commands. The default mode after power-on is standby mode.

Figure 10. Basic operation flow after power-on

Figure 11. The work mode transferring

The default mode after power on is standby mode. Through I²C instruction, device can switch between standby mode and active mode. With SOFTRESET by writing 0xB6 into register 0x36, all of the registers will get default values. SOFTRESET can be done both in active mode and in standby mode. Also, by writing 1 in NVM_LOAD (0x33<3>) when device is in active mode, the NVM related image registers will get default value from NVM, however, other registers will keep the values of their own.

6.2 Description of Modes

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMA7981 Datasheet Rev: D

6.2.1 **Active Mode**

In active mode, the ADC digitizes the charge signals from transducer, and digital signal processor conditions these signals in digital domain, processes the interrupts, and send data to Data registers (0x01~0x06).

6.2.2 Standby Mode

In standby mode, most of the blocks are off, while device is ready for access through 12C. Standby mode is the default mode after power on or soft reset. Device can enter into this mode by set the soft reset register (0x36) to 0xB6 or set the MODE BIT (0x11<7>) to logic 0.

Besides the above two modes, the device also contains NVM loading state. This state is used to reset the value of the NVM related image registers. There are two bits related to this state. When NVM LOAD (0x33<3>) is set to 1, NVM loading starts. When the device is in NVM loading state, NVM RDY (0x33<2>) is set to logic 0 by device. After NVM loading is finished, NVM RDY (0x33<2>) is set back to logic 1 by device, and NVM LOAD is reset to 0 by device automatically. NVM loading can only happen when NVM_LOAD is set to 1 in active mode. If the user sets this NVM_LOAD bit to 1 in standby mode, the device will not take the action until it enters into active state by setting MODE BIT (0x11<7>) to logic 1.

After loading NVM, the device will enter into standby mode directly.

The loading time for NVM is about 100uS.

Functions and interrupts 7

ASIC support interrupts, such as STEP_INT, DRDY_INT, ANY_MOT_INT, SIG_MOT_INT, NO_MOT_INT, RAISE_INT, etc.

7.1 STEP_INT

The STEP/STEP QUIT detect that the user is entering/exiting step mode. When the user enter into step mode, at least one axis sensor data will vary periodically, by numbering the variation periods the step counter can be calculated.

Figure 10. STEP/STEP_QUIT

Median data (max+min) /2 is called dynamic threshold, the max and min data can be updated by certainly samples, the sample number can be set by register STEP SAMPLE CNT (0x12<6:0>). When the sensor data decreasing (or increasing) through the dynamic threshold, a user run step is detected.

Register STEP_PRECISION (0x13<6:0>) is used as threshold when updating the new collected sensor data. Sensor data below the threshold will be discarded, this helps removing unstable variations causing failed detection.

The run step event happened at certain interval timing. All of the events outside the timing window will not be regarded as a run step and the step counter will not counted. The timing window can be set by register STEP_TIME_UP(0x15) and

Title: QMA7981 Datasheet

STEP TIME LOW *ODR to 8*

Rev: D

STEP TIME LOW(0x14), the conversion ODR numbers ranged from STEP TIME UP*ODR.

STEP COUNT PEAK<2:0> is used to set a fixed peak value for step detection, 0.05G~0.4G can be set. STEP COUNT P2P<2:0> is used to set a peak to peak threshold for step detection, 0.3G~1G can be set.

To remove unstable variation which will cause false STEP event detection, the step counter considers steps as valid step events only after some continuous steps detected; the start threshold can be set by 0x1F<7:5>. Also, the step counter register STEP CNT<23:0> ({0x0E,0x08,0x07}) will be updated immediately by the setting number, and interrupt STEP is also generated.

The related interrupt status bit is STEP_INT (0x0A<3>) and SIG_STEP (0x0A<6>). When the interrupt is generated, the value of STEP_INT will be set to logic 1, which will be cleared after the interrupt status register is read by user. STEP IEN/SIG STEP IEN (0x16<3>/0x16<6>) is the enable bit for the STEP INT/SIG STEP INT. Also, to get this interrupt on PIN INT1 and/or PIN INT2, we need to set INT1 STEP (0x19<3>)/INT1 SIG STEP (0x19<6>) or INT2 STEP (0x1B<3>) /INT2_SIG_STEP (0x1B<6>) to logic 1, to map the internal interrupt to the interrupt PINs.

7.2 DRDY INT

The width of the acceleration data is 14 bits, in two's complement representation. The data of each axis is split into 2 parts, the MSB part (one byte contains bit 13 to bit 6) and the LSB part (one byte contains bit 5 to bit 0). Reading data should start with LSB part. When user is reading the LSB byte of data, to ensure the integrity of the acceleration data, the content of MSB can be locked, by setting SHADOW DIS (0x21<6>) to logic 0. This lock function can be disabled by setting SHADOW DIS to logic 1. Without lock, the MSB and LSB content will be updated by new value immediately. The bit NEW_DATA in the LSB byte is the flag of the new data. If new data is updated, this NEW DATA flag will be 1, and will be cleared when corresponding MSB or LSB is read by user.

Also, the user should note that even with SHADOW_DIS=0, the data of 3 axes are not guaranteed from the same time point.

The device supports four different acceleration measurement ranges. The range is setting through RANGE (0x0F<3:0>), and the details as following:

RANGE	Acceleration range	Resolution
0001	2g	244ug/LSB
0010	4g	488ug/LSB
0100	8g	977ug/LSB
1000	16g	1.95mg/LSB
1111	32g	3.91mg/LSB
Others	2g	244ug/LSB

The interrupt for the new data serves for the synchronous data reading for the host. It is generated after storing a new value of z-axis acceleration data into data register. This interrupt will be cleared automatically when the next data conversion cycle starts, and the interrupt will be effective about 64*MCLK, and automatically cleared. The interrupt mode for the new data is fixed to be non-latched.

7.3 ANY_MOT_INT

Any motion Any motion detection uses slope between two successive data to detect the changes in motion. It generates interrupt when a preset threshold ANY MOT TH (0x2E) is exceeded.

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMA7981 Datasheet

Rev: D

The time difference between two successive data depends on the output data rate (ODR).

Slope(t1) = (acc(t1) - acc(t0)) * ODR

The any motion detection criteria are fulfilled and interrupt is generated if any of enabled channels exceeds ANY_MOT_TH for ANY_MOT_DUR (0x2C<1:0>) consecutive times.

As long as all the enabled channels data fall or stay below ANY_MOT_TH for ANY_MOT_DUR consecutive times, the interrupt will be reset unless the interrupt signal is latched.

The any motion detection engine will send out the signals of axis which triggered the interrupt (ANY_MOT_FIRST_X (0x09<0>), ANY_MOT_FIRST_Y (0x09<1>), ANY_MOT_FIRST_Z (0x09<2>)) and the sign of the motion (ANY_MOT_SIGN (0x09<3>))

7.4 SIG_MOT_INT

A significant motion is a motion due to a change in user location.

The algorithm is as following:

- 1) Look for movement, same setting as any motion detection
- 2) If movement detected, sleep for T Skip (0x2F<3:2>)
- 3) Look for movement
 - a) If no movement detected within T_Proof (0x2F<5:4>), go back to 1
 - b) If movement detected, report a significant movement, and generate the interrupt

The significant motion detection and any motion detection are exclusive, user can select either one through SIG_MOT_SEL (0x2F<0>).

If significant motion is detected, the engine will set SIG MOT INT (0x0A<0>).

7.5 NO MOT INT

No-motion interrupt is generated if the slope (absolute value of acceleration difference) on all selected axes is smaller than the programmable threshold for a programmable time. Figure shows the timing for the no-motion interrupt. Register (0x2C) NO_MOT_DUR defines the delay times before the no-motion interrupt is generated. Table lists the delay times adjustable with register (0x2C) NO_MOT_DUR.

The no-motion interrupt is enabled per axis by writing logic 1 to bits (0x18) NO_MOTION_EN_X, (0x18) NO_MOTION_EN_Y, and (0x18) NO_MOTION_EN_Z, respectively. The no-motion threshold is set through the (0x2D) NO_MOT_TH register. The meaning of an LSB of (0x2D) NO_MOT_TH depends on the selected g-range: it corresponds to 3.91mg in 2g-range (7.81mg in 4g-range, 15.6mg in 8g-range, 31.25mg in 16g-range, 62.5mg in 32g-range). Therefore the maximum value is 996mg in 2g-range (2g in 4g-range, 4g in 8g-range, 8g in 16g-range, and 16g in 32g-range). The time difference between the successive acceleration samples depends on the selected ODR and equates to 1/ODR.

7.6 RAISE INT

Raise wake algorithm is used to detect the action of raise hand (or hand down). The interrupt is enabled by writing logic 1 to bits (0X16[1]) RAISE_EN, (0X16[2]) HD_EN. User can adjust the sensitivity through the registers. The register RAISE_WAKE_SUM_TH(0X2A[5:0]) defines the strength of hand action (raise and down). The register RAISE_DIFF_TH(0X2A[7:6],0X2B[1:0]) defines the differential values of twice actions, when the hand behavior almost done the differential value will be smaller and we can use this register to set the threshold. RAISE_WAKE_PERIOD and RAISE_WAKE_TIMEOUT_TH define the duration of the total hand action.

7.7 Interrupt configuration

Title: QMA7981 Datasheet

Rev: D

The device has the above 3 interrupt engines. Each of the interrupts can be enabled and configured independently. If the trigger condition of the enabled interrupt fulfilled, the corresponding interrupt status bit will be set to logic 1, and the mapped interrupt pin will be activated. The device has two interrupt PINs, INT1 and INT2. Each of the interrupts can be mapped to either PIN or both PINs.

The interrupt status registers INT_ST(0x09~0x0d) will update when a new data word is written into the data registers. If an interrupt is disabled, the related active interrupt status bit is disabled immediately.

When interrupt condition is fulfilled, related bit of interrupt will be set, until the associated interrupt condition is no more valid. Read operation to related register will also clear the register.

Device supports 2 interrupt modes, non-latched, and latched mode. The interrupt modes are set through LATCH_INT (0x21<0>).

In non-latched mode, the mapped interrupt pin will be set and/or cleared same as associated interrupt register bit. Also, the mapped interrupt pin can be cleared with read operation to any of the INT ST(0x09~0x0d).

Exception to this is the new data interrupt and step interrupt, which are automatically reset after a fixed time (T_Pulse = 64/MCLK), no matter LATCH INT (0x21<0>) is set to 0 or 1.

In latched mode, the clearings of mapped pins are determined by INT_RD_CLR (0x21<7>). If the condition for trigging the interrupt still holds, the interrupt status will be set again with the next change of the data registers.

Mapping the interrupt pins can be set by INT MAP (0x19~0x1B).

The electrical interrupt pins can be set INT_PIN_CONF (0x20<3:0>). The active logic level can be set to 1 or 0, and the interrupt pin can be set to open-drain or push-pull.

Title: QMA7981 Datasheet

Rev: D

8 I²C COMMUNICATION PROTOCOL

8.1 I²C Timings

Table 9 and Figure 11 describe the I²C communication protocol times

Table 9. I²C Timings

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
SCL Clock	f_{scl}		0		400	kHz
SCL Low Period	t_{low}		1			μs
SCL High Period	t_{high}		1			μs
SDA Setup Time	t _{sudat}		0.1			μs
SDA Hold Time	t _{hddat}		0		0.9	μs
Start Hold Time	t _{hdsta}		0.6			μs
Start Setup Time	t _{susta}		0.6			μs
Stop Setup Time	t _{susto}		0.6			μs
New Transmission	t _{buf}		1.3			us
Time						μs
Rise Time	t _r					μs
Fall Time	t _f					μs

Figure 11. I²C Timing Diagram

8.2 I²C R/W Operation

8.2.1 Abbreviation

Table 10. Abbreviation

The information contained herein is the exclusive property of QST, and shall not be distributed	ed,
reproduced, or disclosed in whole or in part without prior written permission of QST.	

Document #: 13-52-12 | **Title:** QMA7981 Datasheet

SACK	Acknowledged by slave
MACK	Acknowledged by master
NACK	Not acknowledged by master
RW	Read/Write

8.2.2 Start/Stop/Ack

START: Data transmission begins with a high to transition on SDA while SCL is held high. Once I²C transmission starts, the bus is considered busy.

STOP: STOP condition is a low to high transition on SDA line while SCL is held high.

ACK: Each byte of data transferred must be acknowledged. The transmitter must release the SDA line during the acknowledge pulse while the receiver mush then pull the SDA line low so that it remains stable low during the high period of the acknowledge clock cycle.

NACK: If the receiver doesn't pull down the SDA line during the high period of the acknowledge clock cycle, it's recognized as NACK by the transmitter.

8.2.3 I²C Write

I²C write sequence begins with start condition generated by master followed by 7 bits slave address and a write bit (R/W=0). The slave sends an acknowledge bit (ACK=0) and releases the bus. The master sends the one byte register address. The slave again acknowledges the transmission and waits for 8 bits data which shall be written to the specified register address. After the slave acknowledges the data byte, the master generates a stop signal and terminates the writing protocol.

Table 11. I²C Write

S-		S	lave	e Ac	ldre	SS		R W	S		R	egis	ter (0x		dres	SS		S				Da (0x	ita 80)				S	S	
TART	0	0	1	0	0	1	0	0	ACK	0	0	0	1	0	0	0	1	ACK	1	0	0	0	0	0	0	0	ACK	ТОР	

8.2.4 I²C Read

 I^2C write sequence consists of a one-byte I^2C write phase followed by the I^2C read phase. A start condition must be generated between two phase. The I^2C write phase addresses the slave and sends the register address to be read. After slave acknowledges the transmission, the master generates again a start condition and sends the slave address together with a read bit (R/W=1). Then master releases the bus and waits for the data bytes to be read out from slave. After each data byte the master has to generate an acknowledge bit (ACK = 0) to enable further data transfer. A NACK from the master stops the data being transferred from the slave. The slave releases the bus so that the master can generate a STOP condition and terminate the transmission.

The register address is automatically incremented and more than one byte can be sequentially read out. Once a new data read transmission starts, the start address will be set to the register address specified in the current I²C write command.

Table 12. I²C Read

ST		S	lave	e Ad	ldre	SS		R W	SA		Register Address (0x00)															
TART	0	0	1	0	0	1	0	0	CK	0							ACK									
ST	Slave Address								S,				Da (0x	ta 00)				M				Da (0x				
START	0	0	1	0	0	1	0	1	SACK	0	0 0 0 0 0 0 1 0						IACK	0	0	0	0	0	0	0	0	

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMA7981 Datasheet

Data ≤ (0x02)					١			7	 7				Da (0x	ata 07)				7	S
1ACK	0 0	0	0	0	0	1	0	1ACK	 1ACK	0	0	0	0	0	0	0	0	JACK	ТОР

9 REGISTERS

9.1 Register Map

The table below provides a list of the 8-bit registers embedded in the device and their respective function and addresses

Table 13. Register Map

	I									- /				
	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W	DEF			
0x3F			RAISE	E_WAKE_PERIOD[:			RAISE_WAKE_TII	MEOUT_TH[11:8]		R₩	02			
	RAISE_CFG				RAISE_WAKE_TI					R₩	00			
	S_RESET					T: 0xB6				R₩	00			
0x35			5		RAISE_WAKE_	PERIOD[7:0]				R₩	81			
0x34			YZ_TH_SEL[2:0]				Y_TH[4:0]			R₩	9D			
	ST	SELFTEST_BIT					SELFTEST_SIGN	BP_AXIS_S	STEP<1:0>	R₩	00			
0x31							T		I	R₩	00			
	RST_MOT	MO_BP_CO	STEP_BP_CO		LOW_RST_N	HIGH_RST_N		SIG_MOT_RST_N		R₩	1F			
0x2F				SIG_MOT_TE			SKIP<1:0>		SIG_MOT_SEL	R₩	00			
0x2E		ANY_MOT_TH<7:0> RW												
0x2D					NO_MOT_	TH<7:0>				R₩	00			
	MOT_CFG			NO_MOT_I)UK<5:0>			ANY_MOT_		R₩	00			
0x2B		DITOD WIND	HD_Z_TH[2:0]			HD_X_TH[2:0]		RAISE_WAKE_I	DIFF_TH[3:2]	R₩	7C			
	RAISE_CFG	RAISE_WAKE_I	DIFF_TH[1:0]		0.0.011.01		SUM_TH[5:0]			R₩	D8			
0x29	· •	OS_CUST_Z<7:0>												
0x28	00 000	OS_CUST_Y<7:0> RW OS_CUST_X<7:0> RW												
	OS_CUST	THE DD OLD	SHADOW DIS	DTG TGG	1	X<7:02		TAMOU THE COURT	I ATCH THE	RW RW	00 1C			
	INT_CFG	INT_RD_CLR		DIS_I2C		-	1	LATCH_INT_STEP	LATCH_INT		05			
0x20 0x1F	INT_PIN_CFG	DIS_PU_SENB	DIS_IE_ADO P START CNT<2	EN_SPI3W	STEP_COUNT_PEAK<2>	INT2_OD PEAK<1:0>	INT2_LVL	INT1_OD P COUNT P2P<2	INT1_LVL	RW RW	A9			
Ox1E		511	Z_TH		SIEF_COUNT	_FEAK\1:U/	X_TH		:0/	RW	66			
0x1D	STEP_CFG		<u></u>		EP_INTERVAL<6:	^\	A_III	[9:0]	EN RESET DC	R₩	00			
0x1C	SIEF_CFG	INT2 NO MOT	1	1	INT2 DATA	INT2 LOW	INT2 HIGH	1	INT2 ANY MOT	RW	62			
0x1E		1 1	INT2 SIG STEP	1	1 INIZ_DATA	INT2_LOW INT2_STEP	INT2_HIGH INT2 HD	INT2 RAISE	INT2 SIG MOT		B0			
Ox1A		INT1 NO MOT	1	1	INT1 DATA	INT1 LOW	INT1 HIGH	1	INT1 ANY MOT		62			
	INT MAP	1	INT1 SIG STEP	1	1	INT1 STEP	INT1 HD	INT1 RAISE	INT1_RNT_MOT	RW	B0			
0x18	IIII_MHI	NO_MOT_EN_Z	NO MOT EN Y	NO MOT EN X	1	1	ANY_MOT_EN_Z		ANY_MOT_EN_X		18			
0x17		1	1	1	INT DATA EN	LOW EN	HIGH EN Z	HIGH_EN_Y	HIGH EN X	RW	EO			
	INT_EN	1	SIG_STEP_IEN	1			HD_EN	RAISE_EN	1		B1			
	1111_211	-	1 010_0101_101	-		STEP_IEN	1 12 211		-	RW KW				
0x14						_LOW<7:0>				R₩	19			
0x13		STEP_CLR				P_PRECISION<6				R₩	7F			
0x12	STEP_CFG	STEP_EN				P_SAMPLE_CNT<		/>		R₩	14			
	PM	MODE_BIT	1	T_RSTB_SIN	C_SEL<1:0>		MCLK_SI	£L<3:0>		R₩	40			
	B₩	1	1	1			BW<4:0>	· (0, 0)		R₩	E0			
	FSR	1	1	1	1	L Γ<23:16>	RANGE	.<3:0>		RW	F0 00			
0x0E	STEPCNT				SIEF_UN	1\23:16/	1			D N	00			
0x0D 0x0C					HIGH INT	HIGH SIGN	UTCU DIDOT 7	HIGH FIRST Y	שופש הוספי ע	D D	00			
0x0C 0x0B					DATA INT	LOW INT	nigu_tivol_Z	uicu_tivol_i	nigu_tikol_X	D D	00			
0x0A			SIG STEP		DWIW_IMI	STEP INT	HD_INT	RAISE_INT	SIG MOT INT	D D	00			
	INT_ST	NO_MOT	210_31EF	1			ANY MOT FIRST Z			P G	00			
0x08	IN1_51	NO_MOI			CTEP CM	T<15:8>	ANI_MOI_FIRSI_L	MIT_HOT_LIV21_T	MIT MOI FINSI A	P	00			
0x08 0x07	STEPCNT					NT<7:0>				P.	00			
0x06	SIBIONI				ACC Z					R	00			
0x05				ACC Z		(10.0/			NEWDATA Z	R	00			
0x04				HOU_2		(13:6)		I	MENDRIA_L	R	00			
0x03				ACC Y					NEWDATA Y	R	00			
0x02				1100_1	ACC X	(13:6)		l	_ MUNDHIN_I	R	00			
	DATA			ACC X		.20.0/			NEWDATA X	R	00			
	CHIP ID													
74.00		CHIP ID to indicate the product version R												

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

20 / 29

Document #: 13-:

13-52-12

Title: QMA7981 Datasheet

Rev: D

9.2 Register Definition

Register 0x00 (CHIP ID)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
CHIP_ID<7:0>	>							RW	0xEX

This register is used to identify the device

Register 0x01 ~ 0x02 (DXL, DXM)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
DX<5:0>							NEWDATA	R	0x00
							_X		
DX<13:6>								R	0x00

DX: NEWDATA_X: 14bits acceleration data of x-channel. This data is in two's complement. 1, acceleration data of x-channel has been updated since last reading 0, acceleration data of x-channel has not been updated since last reading

Register 0x03 ~ 0x04 (DYL, DYM)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
DY<5:0>							NEWDATA	R	0x00
							_Y		
DY<13:6>							R	0x00	

NEWDATA_Y:

14bits acceleration data of y-channel. This data is in two's complement. 1, acceleration data of y-channel has been updated since last reading 0, acceleration data of y-channel has not been updated since last reading

Register 0x05 ~ 0x06 (DZL, DZM)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
DZ<5:0>							NEWDATA	R	0x00
							_Z		
DZ<13:6>								R	0x00

DZ: NEWDATA_Z: 14bits acceleration data of z-channel. This data is in two's complement. 1, acceleration data of z-channel has been updated since last reading 0, acceleration data of z-channel has not been updated since last reading

Register 0x07 ~ 0x08 (STEP_CNT)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_CNT<7:0>							R	0x00	
STEP_CNT<15:8>							R	0x00	

STEP_CNT<15:0>:

16 bits of step counter, out of total 24bits data. The MSB data are in 0x0e

Register 0x09 (INT_ST0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
NO_MOT	SIG_STEP			ANY_MOT	ANY_MOT	ANY_MOT	ANY_MOT	R	0x00
				_SIGN	_FIRST_Z	_FIRST_Y	_FIRST_X		

NO_MOT:

1, no_motion interrupt active 0, no motion interrupt inactive

ANY_MOT_SIGN:

1, sign of any_motion triggering signal is negative 0, sign of any_motion triggering signal is positive

ANY_MOT_FIRST_Z:

1, any_motion interrupt is triggered by Z axis 0, any_motion interrupt is not triggered by Z axis

ANY_MOT_FIRST_Y:

1, any_motion interrupt is triggered by Y axis 0, any_motion interrupt is not triggered by Y axis

ANY_MOT_FIRST_X:

1, any_motion interrupt is triggered by X axis 0, any_motion interrupt is not triggered by X axis

Register 0x0a (INT_ST1)

_	negister oxog (ner_syll)									
Ī	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMA7981 Datasheet

Rev: D

SIG_STEP		STEP_INT	HD_INT	RAISE_INT	SIG_MOT_I	R	0x00
					NT		

SIG_STEP: 1, significant step is active

0, significant step is inactive

STEP_INT: 1, step valid interrupt is active

0, step quit interrupt is inactive

HD_INT: 1, hand down interrupt is active

0, hand down interrupt is inactive

1, raise hand interrupt is active

0, raise hand interrupt is inactive

SIG_MOT_INT: 1, significant interrupt is active 0, significant interrupt is inactive

Register 0x0b (INT_ST2)

 Bit7
 Bit6
 Bit5
 Bit4
 Bit3
 Bit2
 Bit1
 Bit0
 R/W
 Default

 DATA_INT
 R
 0x00

DATA_INT:

RAISE_INT:

1, data ready interrupt active 0, data ready interrupt inactive

Register 0x0e (STEP_CNT)

 Bit 7
 Bit 6
 Bit 5
 Bit 4
 Bit 3
 Bit 2
 Bit 1
 Bit 0
 R/W
 Default

 STEP_CNT<23:16>
 R
 0x00

STEP_CNT<23:16>:

8bit MSB data of step counter, out of total 24bits data. The LSB data are in 0x07 and 0x08

Register 0x0f (FSR)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
1	1	1		RANGE<3:0>				RW	0xF0

RANGE<3:0>: set the full scale of the accelerometer. Setting as following

RANGE<3:0>	Acceleration range	Resolution
0001	2g	244ug/LSB
0010	4g	488g/LSB
0100	8g	977ug/LSB
1000	16g	1.95mg/LSB
1111	32g	3.91mg/LSB
Others	2g	244ug/LSB

Register 0x10 (BW)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
1	1	1	BW<4:0>					RW	0xE0

BW<4:0>: bandwidth setting, as following

BW<4:0>	ODR
xx000	MCLK/7695
xx001	MCLK/3855
xx010	MCLK/1935
xx011	MCLK/975
xx100	
xx101	MCLK/15375
xx110	MCLK/30735
xx111	MCLK/61455
Others	MCLK/7695

Register 0x11 (PM)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
MODE BIT	1	T RSTB SINC	SEL<1:0>	MCLK SEL<3	:0>			RW	0x40

MODE_BIT: 1, set device into active mode

0, set device into standby mode

T_RSTB_SINC_SEL<1:0>: Reset clock setting. The preset time is reserved for CIC filter in digital

11, T_RSTB_SINC=8*MCLK 10, T_RSTB_SINC=6*MCLK 01, T_RSTB_SINC=4*MCLK 00, T_RSTB_SINC=3*MCLK

MCLK_SEL<3:0>: set the master clock to digital

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMA7981 Datasheet

Rev: D

MCLK_SEL<3:0>	Freq of MCLK
0000	500KHz
0001	333KHz
0010	200KHz
0011	100KHz
0100	50KHz
0101	25KHz
0110	12.5KHz
0111	5KHz
1xxx	Reserved

Register 0x12 (STEP_CONF0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_EN	STEP_SAMPL	E_CNT<6:0>						RW	0x14

STEP_EN:

enable step counter, this bit should be set when using step counter

STEP_SAMPLE_CNT:

sample count setting for dynamic threshold calculation. The actual value is STEP_SAMPLE_CNT<6:0>*8, default is 0xC, 96 sample count

Register 0x13 (STEP_CONF1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP CLR	STEP PRECIS	ION<6:0>						RW	0x7F

STEP_CLR:

clear step count in register 0x07, 0x08 and 0x0E

STEP_PRECISION<6:0>:

 $threshold\ for\ acceleration\ change\ of\ two\ successive\ sample\ which\ is\ used\ to\ update\ sample_new\ register\ in\ step\ counter,\ the\ actual\ g$

value is STEP PRECISION<6:0>*LSB*16 when STEP PRECISION<6:0>!=0000000 & !=1111111

When STEP_PRECISION<6:0>=0000000, always use P2P/8 When STEP_PRECISION<6:0>=1111111, always use P2P/16

When STEP_PRECISION<6:0>=?, always use P2P/4

Register 0x14 (STEP CONF2)

-0		,							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP TIME I	LOW<7:0>							RW	0x19

STEP_TIME_LOW<7:0>:

the short time window for a valid step, the actual time is STEP_TIME_LOW<7:0>*(1/ODR)

Register 0x15 (STEP_CONF3)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_TIME_I	UP<7:0>							RW	0x00

STEP_TIME_UP<7:0>:

time window for quitting step counter, the actual time is STEP_TIME_UP<7:0>*8*(1/ODR)

Register 0x16 (INT_EN0)

	- (
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
1	SIG_STEP_I	1	1	STEP_IEN	HD_EN	RAISE_EN	1	RW	0xB1

SIG_STEP_IEN:

1, enable significant step interrupt0, disable significant step interrupt

STEP_IEN:

1, enable step valid interrupt
0, disable step valid interrupt

HD_EN:

1, enable hand-down interrupt
0, disable hand-down interrupt

RAISE_EN:

1, enable raise-hand interrupt 0, disable raise-hand interrupt

Register 0x17 (INT_EN1)

- Register ox	<u> </u>								
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
1	1	1	INT_DATA					RW	0xE0
			EN						

INT_DATA_EN:

1, enable data ready interrupt 0, disable data ready interrupt

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMA7981 Datasheet

Rev: D

Register 0x18 (INT_EN2)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
NO_MOT_	NO_MOT_	NO_MOT_	1	1	ANY_MOT	ANY_MOT	ANY_MOT	RW	0x18
EN_Z	EN_Y	EN_X			_EN_Z	_EN_Y	_EN_X		

NO_MOT_EN_Z: 1, enable no_motion interrupt on Z axis

0, disable no motion interrupt on Z axis NO_MOT_EN_Y: 1, enable no motion interrupt on Y axis

0, disable no_motion interrupt on Y axis NO_MOT_EN_X: 1, enable no_motion interrupt on X axis 0, disable no motion interrupt on X axis

ANY_MOT_EN_Z: 1, enable any_motion interrupt on Z axis 0, disable any_motion interrupt on Z axis ANY_MOT_EN_Y: 1, enable any motion interrupt on Y axis

0, disable any_motion interrupt on Y axis ANY_MOT_EN_X: 1, enable any_motion interrupt on X axis 0, disable any_motion interrupt on X axis

Register 0x19 (INT_MAP0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
1	INT1_SIG_	1	1	INT1_STEP	INT1_HD	INT1_RAIS	INT1_SIG_	RW	0xB0
	STEP					E	MOT		

INT1_SIG_STEP:

1, map significant step interrupt to INT1 pin

0, not map significant step interrupt to INT1 pin

INT1_STEP:

1, map step valid interrupt to INT1 pin

0, not map step valid interrupt to INT1 pin

INT1_HD:

1, map hand down interrupt to INT1 pin

0, not map hand down interrupt to INT1 pin

INT1_RAISE:

1, map raise hand interrupt to INT1 pin

0, not map raise hand interrupt to INT1 pin

INT1_SIG_MOT:

1, map significant interrupt to INT1 pin 0, not map significant interrupt to INT1 pin

Register 0x1a (INT_MAP1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
INT1_NO_	1	1	INT1_DAT			1	INT1_ANY_	RW	0x62
MOT			Α				MOT		

INT1_NO_MOT: 1, map no_motion interrupt to INT1 pin

> 0, not map no_motion interrupt to INT1 pin 1, map data ready interrupt to INT1 pin

INT1_DATA: 0, not map data ready interrupt to INT1 pin

1, map any motion interrupt to INT1 pin

INT1_ANY_MOT: 0, not map any motion interrupt to INT1 pin

Register 0x1b (INT_MAP2)

INT2_HD:

INT2 RAISE:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
1	INT2_SIG_S	1	1	INT2_STEP	INT2_HD	INT2_RAISE	INT2_SI	RW	0xB0
	TFP						G MOT		

INT2_SIG_STEP: 1, map significant step interrupt to INT2 pin

0, not map significant step interrupt to INT2 pin

INT2_STEP: 1, map step valid interrupt to INT2 pin 0, not map step valid interrupt to INT2 pin

1, map hand down interrupt to INT2 pin

0, not map hand down interrupt to INT2 pin

1, map raise hand interrupt to INT2 pin

0, not map raise hand interrupt to INT2 pin

INT2_SIG_MOT: 1, map significant interrupt to INT2 pin

> The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMA7981 Datasheet

Rev: D

0, not map significant interrupt to INT2 pin

Register 0x1c (INT_MAP3)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
INT2_NO_	1	1	INT2_DAT			1	INT2_ANY_	RW	0x62
MOT			Α				MOT		

INT2_NO_MOT: 1, map no motion interrupt to INT2 pin

0, not map no motion interrupt to INT2 pin 1, map register data ready interrupt to INT2 pin

0, not map register data ready interrupt to INT2 pin

INT2 ANY MOT: 1, map any motion interrupt to INT2 pin

0, not map any motion interrupt to INT2 pin

Register 0x1d (SIG_STEP_TH)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP_INTERVAL	L<7:0>							RW	0x00

STEP_INTERVAL <7:0>: threshold of significant step. When MOD(STEP_CNT, STEP_INTERVAL)=0, SIG_STEP_INT will be generated.

Register 0x1e (raise hand: X_TH Z_TH)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
Z TH<3:0>				X TH<3:0>				RW	0x66

X_TH<3:0>: 0~7.5, LSB 0.5 (unit: m/s2) Z_TH<3:0>: -8~7, LSB 1 (unit: m/s2)

Register 0x1f

INT2_DATA:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
STEP START	CNT<2:0>		STEP COUNT	PEAK<1:0>	STEP COUNT	P2P<2:0>		RW	0xA9

STEP_START_CNT<2:0>: th_step_pattern = 0/4/8/12/16/24/32/40

STEP_COUNT_PEAK<2:0>: $FIXED_PEAK = 0.05g + 0.05g * STEP_COUNT_PEAK < 2:0 >.$

This FIXED_PEAK is used in algorithm of STEP COUNTER. STEP_COUNT_PEAK<2> is in register 0x20<4> and $STEP_COUNT_PEAK[2:0] = \{0x20[4], 0x1F[4:3]\}$ FIXED_P2P = 0.3g + 0.1g * STEP_COUNT_P2P<2:0>.

STEP_COUNT_P2P<2:0>: $STEP_COUNT_P2P[3:0] = {0x1F[2:0]}$

Register 0x20 (INTPIN_CONF)

Bit7		Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
DIS_F	PU_SE	DIS_IE_AD	EN_SPI3W	STEP_COU	INT2_OD	INT2_LVL	INT1_OD	INT1_LVL	RW	0x05
NB		0		NT_PEAK<						
				2>						

DIS_PU_SENB: 1, disable pull-up resistor of PIN_SENB

0, enable pull-up resistor of PIN_SENB 1, disable input of AD0

DIS_IE_AD0: 0, not disable input of AD0

1, enable 3W SPI

EN_SPI3W: 0, 4W SPI

STEP_COUNT_PEAK<2>:

Definition in 0x1F<4:3> INT2_OD: 1, open-drain for INT2 pin

0, push-pull for INT2 pin

1, logic high as active level for INT2 pin INT2_LVL:

0, logic low as active level for INT2 pin

INT1_OD: 1, open-drain for INT1 pin

0, push-pull for INT1 pin

1, logic high as active level for INT1 pin INT1_LVL:

0, logic low as active level for INT1 pin

Register 0x21 (INT CFG)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
INT_RD_CL	SHADOW_	DIS_I2C	1	1	1	LATCH_INT	LATCH_INT	RW	0x1C
R	DIS					_STEP			

INT_RD_CLR: 1, clear all the interrupts in latched-mode, when any read operation to any of registers from 0x09 to 0x0D

0, clear the related interrupts, only when read the register INT_ST (0x09 to 0x0D),

no matter the interrupts in latched-mode, or in non-latched-mode.

Reading 0x09 will clear the register 0x09 only and the others keep the status

SHADOW_DIS: 1, disable the shadowing function for the acceleration data

> The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMA7981 Datasheet

Rev: D

0, enable the shadowing function for the acceleration data.

when shadowing is enabled, the MSB of the acceleration data is locked,

when corresponding LSB of the data is reading.

This can ensure the integrity of the acceleration data during the reading.

The MSB will be unlocked when the MSB is read.

DIS_I2C: 1: disable I2C. Setting this bit to 1 in SPI mode is recommended

0: enable I2C

LATCH_INT_STEP: 1, step related interrupt is in latch mode

0, step related interrupt is in non-latch mode

LATCH_INT: 1, interrupt is in latch mode

0, interrupt is in non-latch mode

Register 0x27 (OS CUST X)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
OS CUST X<	7:0>							RW	0x00

OS_CUST_X<7:0>:

offset calibration of X axis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range,

7.8mg in 4g range, 15.6mg in 8g range, 31.2mg in 16g, and 62.5mg in 32g

Register 0x28 (OS_CUST_Y)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
OS_CUST_Y<	7:0>							RW	0x00

OS_CUST_Y<7:0>:

offset calibration of Y axis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range,

7.8mg in 4g range, 15.6mg in 8g range, 31.2mg in 16g, and 62.5mg in 32g

Register 0x29 (OS CUST Z)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
OS CUST Z<	7:0>							RW	0x00

OS_CUST_Z<7:0>:

offset calibration of Z axis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range, 7.8mg in 4g range, 15.6mg in 8g range, 31.2mg in 16g, and 62.5mg in 32g

Register 0x2a (RAISE_WAKE_SUM_TH RAISE_WAKE_DIFF_TH)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
							RW	0xD8	
0>									

RAISE_WAKE_SUM_TH <5:0>: 0 ~ 31.5 (LSB 0.5 m/s2)

RAISE_WAKE_DIFF_TH<3:0>	UNIT (m/s²)
0	0.2
1	0.3
2	0.4
3	0.5
4	0.6
5	0.7
6	0.8
7	0.9
8	1.0
9	1.1
10	1.2
default	0.2

Register 0x2b (RAISE_WAKE_DIFF_TH HD_X_TH HD_Z_TH)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
HD_Z_TF	Z_TH<2:0> HD_X_TH<2:0>		RAISE_WAKE_DIFF_TH<3:		RW	0x7C			
						2>			

 $\begin{array}{ll} \mbox{HD_X_TH<2:0>:} & \mbox{hand down x threshold, } 0^{\sim}7 \mbox{ (m/s2)} \\ \mbox{HD_Z_TH<2:0>:} & \mbox{hand down z threshold, } 0^{\sim}7 \mbox{ (m/s2)} \\ \end{array}$

Register 0x2c (MOT_CONF0)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
NO_MOT_DU	JR<5:0>					ANY_MOT_D	UR<1:0>	RW	0x00

NO_MOT_DUR<5:0>:

no motion interrupt will be triggered when slope < NO_MOT_TH for the times which defined by NO_MOT_DUR<5:0> Duration = (NO_MOT_DUR<3:0> + 1) * 1s, if NO_MOT_DUR<5:4> =b00

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMA7981 Datasheet

Rev: D

Duration = (NO_MOT_DUR<3:0> + 4) * 5s, if NO_MOT_DUR<5:4> =b01 Duration = (NO_MOT_DUR<3:0> + 10) * 10s, if NO_MOT_DUR<5:4> =b1x

ANY_MOT_DUR<1:0>: any motion interrupt will be triggered when slope > ANY_MOT_TH for (ANY_MOT_DUR<1:0> + 1) samples

Register 0x2d (MOT_CONF1)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
NO MOT TH	l<7:0>							RW	0x00

NO MOT TH<7:0>:

Threshold of no-motion interrupt. The threshold definition is as following

TH= NO_MOT_TH<7:0> * 16 * LSB

Register 0x2e (MOT CONF2)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
ANY MOT T	H<7:0>							RW	0x00

ANY MOT TH<7:0>:

Threshold of any motion interrupt. The threshold definition is as following

TH= ANY_MOT_TH<7:0> * 16 * LSB

Register 0x2f (MOT_CONF3)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
		SIG_MOT_TP	PROOF<1:0>	SIG_MOT_TS	KIP<1:0>		SIG_MOT_	RW	0x00
							SFI		

SIG_MOT_TPROOF<1:0>:

00, T_PROOF=0.25s 01, T_PROOF=0.5s 10, T_PROOF=1s 11, T_PROOF=2s 00, T_SKIP=1.5s

 $SIG_MOT_TSKIP \!\!<\!\! 1:0 \!\!>:$

00, T_SKIP=1.5s 01, T_SKIP=3s 10, T_SKIP=6s 11, T_SKIP=12s

SIG_MOT_SEL:

1, select significant motion interrupt

0, select any motion interrupt

Register 0x30

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
MO_BP_C	STEP_BP_C				NO_MOT_	SIG_MOT_	ANY_MOT	RW	0x1F
0	0				RST N	RST N	RST N		

MO_BP_CO: STEP_BP_CO: 1, motion detector will use data without OS_CUST
0, motion detector will use data with OS_CUST
1, pedometer will use data without OS_CUST
0, pedometer will use data with OS_CUST

NO_MOT_RST_N:

0, Reset no motion detector. After reset, user should write 1 back.

SIG_MOT_RST_N:

0, Reset significant motion detector. After reset, user should write 1 back.

ANY_MOT_RST_N:

0, Reset any motion detector. After reset, user should write 1 back.

Register 0x32 (ST)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
SELFTEST_					SELFTEST_	BP_AXIS_STE	P<1:0>	RW	0x00
BIT					SIGN				

SELFTEST_BIT:

1, self-test enabled. When self-test enabled, a delay of 3ms is necessary for the value settling.

0, normal

SELFTEST_SIGN:

1, set self-test excitation positive 0, set self-test excitation negative

BP_AXIS_STEP<1:0>:

11, bypass Z axis, use only X and Y axes data for step counter algorithm 10, bypass Y axis, use only X and Z axes data for step counter algorithm 01, bypass X axis, use only Y and Z axes data for step counter algorithm

00, use all of 3 axes data for step counter algorithm

Register 0x34 (Y_TH YZ_TH_SEL)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
YZ_TH_SEL<2:0> Y_TH<4:0>							RW	0x9D	

Y TH: -16 ~ 15 (m/s2)

YZ TH	SEL<2:0>	UNIT (m/s2)	

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMA7981 Datasheet

Rev: D

0	7.0
1	7.5
2	8.0
3	8.5
4	9.0
5	9.5
6	10.0
7	10.5

Register 0x35 (RAISE_WAKE_PERIOD)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
RAISE_WAKE_PERIOD<7:0>						RW	0x81		

RAISE_WAKE_PERIOD<10:0>: * ODR period = wake count (EX. ODR = 1ms, 0X35 = 100 → wake count = 0.1 sec)

Register 0x36 (SR)

-0	- (- /								
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
SOFT RESET								RW	0x00

SOFT_RESET: 0xB6, soft reset all of the registers. After soft-reset, user should write 0x00 back

Register 0x3e (RAISE_WAKE_TIMEOUT_TH)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
RAISE WAKE TIMEOUT TH<7:0>					RW	0x00			

Register 0x3f (RAISE_WAKE_TIMEOUT_TH RAISE_WAKE_PERIOD RAISE_WAKE_EN)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	Default
	RAISE_WAKE_PERIOD<10:8>		RAISE_WAKE	_TIMEOUT_TH	RW	0x02			

RAISE_WAKE_TIMEOUT_TH<11:0> * ODR period = timeout count (EX. ODR = 1ms, 0X3e = 100 → timeout count = 0.1 sec)

ORDERING INFORMATION

Ordering Number	Temperature Range	Package	Packaging		
QMA7981-TR	-40°C~85°C	LGA-12	Tape and Reel: 5k pieces/reel		

Caution

This part is sensitive to damage by electrostatic discharge. Use ESD precautionary procedures when touching, removing or inserting.

CAUTION: ESDS CAT. 1B

FIND OUT MORE

For more information on QST's Accelerometer Sensors contact us at 86-21-50497300.

The application circuits herein constitute typical usage and interface of QST product. QST does not provide warranty or assume liability of customer-designed circuits derived from this description or depiction.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMA7981 Datasheet

Rev: D

QST reserves the right to make changes to improve reliability, function or design. QST does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

ISO9001: 2015

China Patents 201510000399.8, 201510000425.7, 201310426346.3, 201310426677.7, 201310426729.0, 201210585811.3 and 201210553014.7 apply to the technology described.