习题解答

第3章第7题

1000℃时在硅片中进行磷的预淀积扩撒,直到磷的固溶度 限。扩散时间20分钟。预淀积后,硅片表面被密封并在 000℃下做推进扩散。为获得4.0um的结深,推进时间应为多 ?假设衬底浓度1017cm-3。推进后表面浓度为多少?

查图 2.4,1000°C下磷在硅中的固溶度,即预淀积后的表面 度为

$$C_{\rm S1} = 10^{21} \rm cm^{-3}$$

g.re 24 Solid solubility of common silicon impurities (all rights reserved, reprinted with permission, © 1960 AT

求预淀积的扩散系数 D_1 (参考例3.1和表3.2)

$$D_1 = D^0 + \frac{n}{n_i} D^- + \left(\frac{n}{n_i}\right)^2 D^{2-}$$

AT = 1000°C = 1273 K 时,kT = 0.110 eV,

$$D^{0} = D_{0} \exp\left(-\frac{E_{a}}{kT}\right) = 3.9 \exp\left(-\frac{3.66}{0.11}\right) = 1.383 \times 10^{-14} \text{ cm}^{2} \text{ s}^{-1}$$

查图 3.4, 1000°C下硅的 $n_i = 10^{19} \text{cm}^{-3}$ 。

Figure 3.4 Intrinsic carrier concentration of silicon and GaAs as a function of temperature.

当
$$n_{\rm i} = 10^{19} {\rm cm}^{-3}$$
、 $N_{\rm D} = 10^{21} {\rm cm}^{-3}$ 时,

$$n = \frac{N_{\rm D}}{2} + \sqrt{\left(\frac{N_{\rm D}}{2}\right)^2 + n_{\rm i}^2} \approx N_{\rm D} = 10^{21} {\rm cm}^{-3}$$

$$\frac{n}{n_i}D^{-} = \frac{10^{21}}{10^{19}} \times 4.4 \exp\left(-\frac{4.0}{0.11}\right) = 7.095 \times 10^{-14} \,\mathrm{cm}^2 \,\mathrm{s}^{-1}$$

$$\left(\frac{n}{n_i}\right)^2 D^{2-} = \left(\frac{10^{21}}{10^{19}}\right)^2 \times 44 \exp\left(-\frac{4.37}{0.11}\right) = 2.455 \times 10^{-12} \text{ cm}^2 \text{ s}^{-1}$$

所以
$$D_1 = D^0 + \frac{n}{n_i} D^- + \left(\frac{n}{n_i}\right)^2 D^{2-}$$

$$\approx \left(\frac{n}{n_{\rm i}}\right)^2 D^{2-} = 2.455 \times 10^{-12} \,{\rm cm}^2 {\rm s}^{-1}$$

求推进扩散的扩散系数
$$D_2$$

当
$$T = 1100$$
°C = 1373 K 时, $kT = 0.119$ eV,

查图 3.4,1100°C下硅的 $n_i = 2 \times 10^{19} \text{cm}^{-3}$,

$$D_2 \approx \left(\frac{n}{n_i}\right)^2 D^{2-} = \left(\frac{10^{21}}{2 \times 10^{19}}\right) \times 44 \exp\left(-\frac{4.37}{0.119}\right) = 1.239 \times 10^{-11} \text{ cm}^2 \text{ s}$$

推进扩散后的结深为

$$x_{j} = 2\sqrt{D_{2}t_{2}} \left[\ln \left(\frac{2C_{S1}}{\pi C_{B}} \sqrt{\frac{D_{1}t_{1}}{D_{2}t_{2}}} \right) \right]^{\frac{1}{2}} = A\sqrt{D_{2}t_{2}}$$

式中 $A = 2 \left[\ln \left(\frac{2C_{S1}}{\pi C_{R}} \sqrt{\frac{D_1 t_1}{D_2 t_2}} \right) \right]^{\frac{1}{2}}$

设
$$A^{(0)} = 5.5$$

$$t_2^{(0)} = \left(\frac{x_j}{A^{(0)}}\right)^2 / D_2 = 427 \text{s}$$

$$A^{(1)} = 2 \left[\ln \left(\frac{2C_{S1}}{\pi C_B} \sqrt{\frac{D_1 t_1}{D_2 t_2^{(0)}}} \right) \right]^{\frac{1}{2}} = 5.82$$

$$t_2^{(1)} = \left(\frac{x_j}{A^{(1)}} \right)^2 / D_2 = 381 \text{s}$$

$$A^{(2)} = 2 \left[\ln \left(\frac{2C_{S1}}{\pi C_B} \sqrt{\frac{D_1 t_1}{D_2 t_2^{(1)}}} \right) \right]^{\frac{1}{2}} = 5.84$$

$$t_2^{(2)} = \left(\frac{x_j}{A^{(2)}} \right)^2 / D_2 = 379 \text{s}$$

推进扩散后的表面浓度为

$$C_{82} = \frac{2C_{81}}{\pi} \sqrt{\frac{D_1 t_1}{D_2 t_2}} = 5.04 \times 10^{16} \,\mathrm{cm}^{-3}$$

第 3章 补充题

- (1)推导出余误差分布和高斯分布的浓度梯度表达式;假设衬底杂质浓度为 C_B,试推导出余误差分布和高斯分布的结深表达式。
- (2) 假设扩散系数 $D = 10^{-15}$ cm²/s,余误差分布的表面浓度 $C_S = 10^{19}$ cm⁻³,高斯分布的杂质总量 $Q_T = 10^{13}$ cm⁻²,分别计算出经 10、30、60 分钟几种扩散时间后余误差分布的杂质总量 Q_T 和高斯分布的表面浓度 C_S 。

(1) 余误差分布

$$C(x,t) = C_{\rm S} \left(1 - \frac{2}{\sqrt{\pi}} \int_0^{\frac{x}{2\sqrt{Dt}}} e^{-\lambda^2} d\lambda \right) = C_{\rm S} \operatorname{erfc} \left(\frac{x}{2\sqrt{Dt}} \right)$$
$$\frac{\partial C(x,t)}{\partial x} = -\frac{C_{\rm S}}{\sqrt{\pi Dt}} e^{-\frac{x^2}{4Dt}}$$
$$x_{\rm j} = 2\sqrt{Dt} \cdot \operatorname{erfc}^{-1} \left(\frac{C_{\rm B}}{C_{\rm S}} \right) = A\sqrt{Dt}$$

高斯分布

$$C(x,t) = \frac{Q}{\sqrt{\pi Dt}} e^{-\frac{x^2}{4Dt}} = C_8 e^{-\frac{x^2}{4Dt}}$$
$$\frac{\partial C(x,t)}{\partial x} = -\frac{x}{2Dt} C(x,t)$$
$$x_j = 2\sqrt{Dt} \left[\ln \left(\frac{C_8}{C_B} \right) \right]^{\frac{1}{2}} \equiv A\sqrt{Dt}$$

(2) 假设扩散系数 $D=10^{-15}\,\mathrm{cm}^2/\mathrm{s}$,余误差分布的表面浓度 $C_\mathrm{S}=10^{19}\mathrm{cm}^{-3}$,高斯分布的杂质总量 $Q_\mathrm{T}=10^{13}\mathrm{cm}^{-2}$,分别计算是 经 10、30、60 分钟几种扩散时间后余误差分布的杂质总量 Q_T 和高斯分布的表面浓度 C_S 。

余误差分布的杂质总量 Q_T

$$\begin{split} Q_{\mathrm{T}}(t) &= \int_{0}^{\infty} C(x,t) \mathrm{d}x = 2C_{\mathrm{S}} \sqrt{\frac{D \, t}{\pi}} \\ Q_{\mathrm{T}}(t_{1}) &= 8.74 \times 10^{12} \, \mathrm{cm}^{-2} \\ Q_{\mathrm{T}}(t_{2}) &= 1.51 \times 10^{13} \, \mathrm{cm}^{-2} \\ Q_{\mathrm{T}}(t_{3}) &= 2.14 \times 10^{13} \, \mathrm{cm}^{-2} \end{split}$$

(2) 假设扩散系数 $D=10^{-15}\,\mathrm{cm}^2/\mathrm{s}$,余误差分布的表面浓度 $C_\mathrm{S}=10^{19}\mathrm{cm}^{-3}$,高斯分布的杂质总量 $Q_\mathrm{T}=10^{13}\mathrm{cm}^{-2}$,分别计算出 经 10、 30 、 60 分钟几种扩散时间后余误差分布的杂质总量 Q_T 和高斯分布的表面浓度 C_S 。

高斯分布的表面浓度 C_s

$$C_{\rm S}(t) = C(0,t) = \frac{Q_{\rm T}}{\sqrt{\pi D t}}$$

$$C_{\rm S}(t_1) = 7.28 \times 10^{18} \, \rm cm^{-3}$$

$$C_s(t_2) = 4.21 \times 10^{18} \,\mathrm{cm}^{-3}$$

$$C_{\rm S}(t_3) = 2.97 \times 10^{18} \, {\rm cm}^{-3}$$

第 4 章第 3 题:

某工艺需要生长1000A的栅氧化层。首先生长500A氧化层, 然后被再氧化到1000A的总厚度。如果氧化在1000℃, 计算每次 氧化的时间。

第 4 章第 4 题:

在某双极工艺中,为了隔离晶体管,需生长1um厚的场氧化层。由于考虑杂质扩散和堆踩层错的形成,氧化需要在1050 °下进行。如果工艺是在1个大气压下的湿氧中进行,计算氧化所需时间。假定抛物线速率系数与氧化气压成正比,分别计算在个和20个大气压下,氧化所需时间。

4章3题 ---解:

$$t_{\rm ox}^2 + At_{\rm ox} = B(t+\tau)$$

查图 4.2, 对于 1000°C下的干 O_2 , $B = 10^{-2} \mu m^2/h$

查图 4.3, 对于 1000°C下的干 O_2 , $B/A = 8.5 \times 10^{-2} \mu m/h$

$$A = (B/A)^{-1} B = 0.1176 \,\mu\text{m}$$

第 1次氧化所需时间为 $t_1 = (t_{ox1}^2 + At_{ox1})/B = 0.838 \text{ h}$

总的氧化时间为 $t = (t_{ox}^2 + At_{ox})/B = 2.176 \text{ h}$

第 2次氧化所需时间为 $t_2 = t - t_1 = 1.338 \, \text{h}$

Figure 4.2 Arrhenius plot of the B oxidation coefficient. The wet parameters depend on the H₂O concentration and therefore on the gas flows and pyrolysis conditions (after Deal and Grove).

Figure 4.3 Arrhenius plot of the ratio (B/A) of the oxidation parameters (after Deal and Grove).

4章4题 ____解:

对于 $1\mu m$ 厚的氧化层,可认为处于抛物线生长阶段,

$$t_{\text{ox}} = \sqrt{Bt}$$
$$t = t_{\text{ox}}^2 / B$$

查图 4.2, 对于 1050°C 下的湿 O_2 , $B_1 = 0.4 \,\mu\text{m}^2/\text{h}$

在 1个大气压下, t=2.5h

在 5 个大气压下, $B_5 = 2 \mu \text{m}^2 / \text{h}$, t = 0.5 h

在 20 个大气压下, $B_{20} = 8 \,\mu\text{m}^2/\text{h}$, $t = 0.125 \,\text{h}$

第 4章 补充题

在平整的硅片表面用热氧化形成一层 1 μm 厚的SiO₂后 , 光刻出一个窗口。再次进行热氧化,使窗口内又形成 1 μm 厚 的 SiO₂, 这时 SiO₂表面和硅表面的台阶高度分别是多少?

SiO₂表面的台阶高度 $h_1 = 1 + 0.56 \left(\sqrt{2} - 1\right) - 0.56 = 0.672 \,\mu\text{m}$ 硅表面的台阶高度 $h_2 = 0.44 - 0.44 \left(\sqrt{2} - 1\right) = 0.258 \,\mu\text{m}$

第 5 章第 4 题 (参考例 5.1)

在注入机中,用本章所述的质量分析器来引出所需的元素。假设引出电压20keV,分析器曲率半径30cm,计算引出硅 (质量28)所需磁场?解释为什么当离子源室有极小的真空漏 气时注入分布中有N₂存在?

$$r = \sqrt{\frac{2mV_a}{qB^2}}$$

$$B = \frac{1}{r}\sqrt{\frac{2mV_a}{q}}$$

式中 r = 0.3m, $m = 28 \times 1.67 \times 10^{-27}$ kg, $V_a = 2 \times 10^4$ V, $q = 1.6 \times 10^{-19}$ C

第5章第1题

30keV、10¹²cm⁻²的B¹¹注入到硅中, (a)注入分布峰值 的深度是多少? (b)峰值浓度是多少? (c)3000A深度处浓 度是多少? (d)尽管分布与(a)和(b)的答案相符,但发 现测量浓度比(c)预计的大一个量级,请给出解释?

解: 当E = 30 keV 时,对于硅中注硼,

(a) 查图 5.9(B), 得: $R_p = 110$ nm, $\Delta R_p = 36$ nm

(b)
$$N_{\text{max}} = \frac{Q}{\sqrt{2\pi}\Delta R_{\text{p}}} = 0.4 \frac{Q}{\Delta R_{\text{p}}} = 1.11 \times 10^{17} \text{ cm}^{-3}$$

(c)
$$N(x_1) = N_{\text{max}} \exp \left[-\frac{1}{2} \left(\frac{x_1 - R_p}{\Delta R_p} \right)^2 \right] = 9.92 \times 10^{10} \,\text{cm}^{-3}$$

(d) 沟道效应

第5章第2题

一个特殊器件需要注入硼,峰值在0.3um深处,峰值浓度为10¹⁷cm⁻³,求此工艺需要使用的注入能量与剂量。如果衬底材料为N型,衬底浓度10¹⁵cm⁻³,求注入后的结深?

解:对于硅中注硼,查图 5.9(B),当 $R_{\rm p}=0.3\,\mu{\rm m}$ 时,所需注入能量为 $E=90\,{\rm keV}$,这时 $\Delta R_{\rm p}=0.069\,\mu{\rm m}$ 。

$$N_{\text{max}} = \frac{0.4Q}{\Delta R_{\text{p}}}$$

$$Q = \frac{N_{\text{max}} \Delta R_{\text{p}}}{0.4} = 1.725 \times 10^{12} \,\text{cm}^{-2}$$

$$X_{\text{j}} = R_{\text{p}} + \Delta R_{\text{p}} \sqrt{2 \ln \left(\frac{N_{\text{max}}}{N_{\text{B}}}\right)} = 0.51 \,\mu\text{m}$$

代入**B**中, 得: B = 0.36 T = 3.6 kGs

第5章第6题

一个典型的强束流注入机工作束流为2mA,在一个150 mm 直径的圆片上注入0⁺,剂量为1×10¹⁸cm⁻²,注入要多长时间?

$$Q = \frac{It}{AqZ}$$

$$t = \frac{AqZQ}{I} = \frac{\pi (D/2)^2 qQ}{I} = 14137s$$

第7章第4题

为制造一台便宜能生产很小特征尺寸的对准机,某工程师要用一个ArF激光代替简单接触式光刻机光源。

- (a) 假设器件成品率不重要,列出该工程师用这种类型对准 机制造简单分离器件时可能遇到的两问题?
- (b) 设此工艺光刻胶常数是0.8,采用硬接触模式,其间隙等于光刻胶厚度。如光刻胶厚度为1um,可达到的最小特征尺寸为3少?
- (c) 为达到0.1um的分辨率,光刻胶厚度要多薄?如果曝光成功,用此图象去刻蚀,会产生甚么问题?

(a) ArF 的波长为 λ = 193nm = 0.193 μm透镜与掩模版对光能的吸收会很强;

为得到足够的分辨率,光刻胶必须很薄,影响耐腐蚀性。

(b)
$$W_{\min} = \sqrt{k \lambda g} = 0.393 \, \mu \text{m}$$

(c)
$$g = \frac{W_{\min}^2}{k \lambda} = 0.065 \,\mu\text{m}$$

这么薄的光刻胶,没有足够的耐腐蚀性。

第7章第8题

一种特殊的光刻胶工艺可以分辨MTF≥0.3的图形。用图 7.18计算NA=0.4, S=0.5的i线对准机最小尺寸?

解

(参考例 7.1) 查图 7.18, 当调制传输函数MTF = 0.3, 空间相干系数 S = 0.5 时,空间频率为 $0.59v_0$ 。

Figure 7.18 Modulation transfer function as a function of the normalized spatial frequency for a projection lithography system with spatial coherence as a parameter.

根据式 (7.22),

$$v_0 = \frac{NA}{0.61\lambda} = 1.797 \,\mu\text{m}^{-1}$$

空间频率 = $0.59v_0 = 1.06 \,\mu\text{m}^{-1}$
最小线宽 $W_{\text{min}} = \frac{1}{2 \times 20 \,\mu\text{m}} = 0.47 \,\mu\text{m}$

第7章 补充题

在投影式曝光技术中,分辨率与焦深之间存在什么矛盾? 如何协调这个矛盾?分步重复曝光有什么优点?

分辨率:
$$W_{\min} = k_1 \frac{\lambda}{NA} \approx 0.75 \frac{\lambda}{NA}$$

焦深: $\sigma = \frac{\lambda}{NA^2}$

分辨率与焦深对波长和数值孔径有相互矛盾的要求,需要 折中考虑。增加 NA 线性地提高分辨率 ,但平方地减小焦深, 所以一般选取较小的 NA。为了提高分辨率,可以缩短波长。

采用分步重复缩小投影曝光方式时,由于每个小曝光区的 面积比整个大晶片小得多,其不平整度也很小,因此可采用较 小的焦深,从而可获得较高的分辨率。

第8章第2题

(c) 若胶厚度去掉一半, D_{100} 减至 $70mJ/cm^2$, D_0 不变。若不改变胶的工艺,可能获得的最大对比度?

(a)
$$\gamma_1 = \left(\lg \frac{D_{100}}{D_0} \right)^{-1} = \left(\lg \frac{85}{40} \right)^{-1} = 3.05$$

(b)
$$CMTF = \frac{D_{100} - D_0}{D_{100} + D_0} = 0.36$$

(c)
$$\gamma_2 = \left(\lg \frac{70}{40}\right)^{-1} = 4.11$$

第8章第4题

推导公式8.6。

$$\frac{10^{\frac{1}{\gamma}}-1}{10^{\frac{1}{\gamma}}+1} = \frac{10^{\frac{\log \frac{D_{100}}{D_0}}-1}}{10^{\frac{D_{100}}{D_0}}+1} = \frac{\frac{D_{100}}{D_0}-1}{\frac{D_{100}}{D_0}+1} = \frac{D_{100}-D_0}{D_{100}+D_0}$$

第9章第1题

建一个g线、i线、ArF激光、10A X射线和10keV电子的波长 和能量的表格。如果接近间隙是10um, k=1, 用式7.17对每种 原预测接近式印刷受衍射限制的最小特征尺寸。

g线:
$$\lambda = 0.436 \,\mu\text{m}$$
, $W_{\text{min}} = \sqrt{k \lambda g} = 2.09 \,\mu\text{m}$

i 线:
$$\lambda = 0.365 \, \mu \text{m}$$
, $W_{\text{min}} = 1.91 \, \mu \text{m}$

ArF:
$$\lambda = 0.193 \,\mu\text{m}$$
, $W_{\min} = 1.39 \,\mu\text{m}$

X射线:
$$\lambda = 0.001 \mu m$$
, $W_{min} = 0.1 \mu m$

电子:
$$\lambda = \frac{1.225}{\sqrt{V_*}} = 0.012 \text{nm}, W_{\text{min}} = 11 \text{nm}$$

针对图9.10上半部分中指出的束流扩展, 估算式 (9.10)中 的参数。利用图下半部分的横向刻度(I。是任意的)。

第8章 补充题

设某电子束光刻胶的灵敏度 $S = 0.3 \,\mu\text{C/cm}^2$, 这意味着在 (0.01 μm)² 的面积上只需多少个电子照射? 在 (Wmin)² 的 面积上又需多少个电子照射? 这个结果对提高光刻胶的灵敏度 和曝光效率有什么指导意义?

$$N_1 = SA/q = (0.3 \times 10^{-6}) \times (0.01 \times 10^{-4})^2 / (1.6 \times 10^{-19})$$

= 1.875 (\gamma\)

$$N_2 = S(W_{\min})^2 / q = S(10\sqrt{q/S})^2 / q = 100 \ (\uparrow)$$

这说明,在通过提高灵敏度来提高曝光效率时,必须兼顾 分辨率。

$$I = I_0 \left[\exp\left(-\frac{r^2}{2\alpha^2}\right) + \eta_E \exp\left(-\frac{r^2}{2\beta^2}\right) \right] \quad \overrightarrow{R} \quad (9.10)$$

$$\exp\left(-\frac{r^2}{2\alpha^2}\right) = \frac{1}{2}$$

$$\frac{2\alpha^2}{r^2} = \frac{1}{\ln 2}$$

对前散射,下降一半时,r=0.5 µm, $\alpha=0.425$ µm 对背散射,下降一半时,r=1.5μm,β=1.274μm

$$\eta_{\rm E} = \frac{f_{\rm b}(0)}{f_{\rm f}(0)} = 0.28$$

Figure 9.10 Monte Carlo simulation of electron trajectories during an EBL exposure. The upper curve indicates the forward and backscattered components of the beam (after Hohn, reprinted by permission, SPIE).

第9章 补充题

对 100×100 mm² 的正方形硅片用圆形电子束或离子束进行 逐点扫描曝光。设片子上的图形面积占片子总面积的 50%。如 果束斑直径为 0.3 μm ,则共需曝光多少次?如果电子束每点的 曝光时间为 1 μs , 离子束为 0.01 μs , 分别计算电子束和离子 東完成曝光所需的时间。如果扫描场的范围是 5×5 mm2,则工 件台需分步重复移动多少次?如果工件台每移动一次需 10 秒 钟 ,则曝光时用在工件台移动上的时间是多少?

- (1) 需曝光 $(100 \times 100 \times 0.5)/(0.3 \times 10^{-3})^2 \approx 5.56 \times 10^{10}$ 次
- (2) 电子束需花费 $5.56 \times 10^{10} \times 10^{-6} = 5.56 \times 10^{4} \text{ s} \approx 15.44 \text{ h}$
- (3) 离子束需花费 $5.56 \times 10^{10} \times 10^{-8} = 5.56 \times 10^{2} \text{ s} = 9.27 \text{ min}$
- (4) 工件台需移动 (100×100)/(5×5) = 400 次
- (5) 移动工件台需花费 400×10 = 4000 s ≈ 1.11 h

第12章第1题

在例12.2中,对铝原子到达率与水蒸汽分子流做了比较。 对于同一台蒸发台,需要多高的坩锅温度,可使铝原子流等 此例子中的水蒸气流?铝膜的淀积速率是多少?

$$R = \sqrt{\frac{m}{2\pi k \rho^2}} \cdot \frac{p_e}{\sqrt{T}} \cdot \frac{A_s}{4\pi r^2}$$
$$J_{Al} = R \frac{\rho}{m}$$

在例12.2中, $J_{\text{H}_2\text{O}}=2.76J_{\text{Al}}$,所以要使 $J_{\text{H}_2\text{O}}=J_{\text{Al}}$,应使R 及 $\frac{P_{\bullet}}{JT}$ 提高到2.76倍。查图12.2,坩锅温度应为1180°C。

在此坩锅温度下, AI 膜的淀积速率也提高到 2.76 倍。

第 11 章 第 3 题 ???????????? 第 11 章 补充题

用化学湿法刻蚀硅上的 SiO_2 薄膜, 试画出在 (a) 刻蚀刚好完成; (b) 100% 过刻蚀; (c) 200% 过刻蚀时的刻蚀图形的边缘剖面图。

第13章第5题

一定工艺在700℃下受反应速率限制,激活能为2eV,在此温度下淀积速率为1000A/min,猜想在800℃下将是怎样?如果在800℃淀积速率测量值远低于预测的,有什么结论?证实?

当 CVD 的淀积速率受化学反应速率限制时,淀积速率正比于化学反应速率常数 k_s ,而 k_s 与温度的关系是

$$k_{\rm s} \propto {\rm e}^{-\frac{E_{\rm s}}{kT}}$$
 $k_{\rm s2}/k_{\rm s1} = {\rm e}^{-\frac{E_{\rm s}}{kT_2}}/{\rm e}^{-\frac{E_{\rm s}}{kT_1}} = {\rm e}^{\frac{(T_2-T_1)E_{\rm s}}{kT_1T_2}}$ 在本题中, $E_{\rm a} = 2{\rm eV}$, $k = \frac{0.026{\rm eV}}{300{\rm K}} = 8.67 \times 10^{-5}{\rm eVK}^{-1}$, $T_1 = 973{\rm K}$, $T_2 = 1073{\rm K}$,代入上式,得 $k_{\rm s2}/k_{\rm s1} = 9.11$

如果淀积速率远低于预期,则说明在 800° C下受 h_{e} 限制。

第 13 章 补充题

LPCVD 较 APCVD 有什么特点? 为什么?

当气压由 **750 Torr** 降到 **0.75 Torr**, h_g 将增大 **100~300**倍, 使得 $h_g >> k_s$,于是淀积速率将由 k_s 控制,变得与温度关系密切而与气流关系不大。这使 **LPCVD** 有如下优点:

- (1) 晶片可以以很小的间隔垂直放置, 生产效率高;
- (2) 晶片垂直放置后,可避免管壁上的掉渣对晶片的影响;
- (3) 于是可采用热壁方式,设备简单,温度均匀性好;
- - (5) 台阶覆盖性好。

第14章 第2题

从公式 (14.1) 出发推导式 (14.2)。

$$F = h_{\rm g} \left(C_{\rm g} - C_{\rm s} \right) = k_{\rm s} C_{\rm s} \qquad \text{a.s.} \quad (14.1)$$

由上式的第二个等式解出 $C_s = F/k_s$,代入第一个等式,得

$$F = h_{g} \left(C_{g} - \frac{F}{k_{s}} \right)$$

$$F \left(1 + \frac{h_{g}}{k_{s}} \right) = h_{g} C_{g}$$

$$F = \frac{k_{s} h_{g}}{k_{s} + h_{g}} \cdot C_{g}$$

将上式除以硅的原子密度N,即得生长速率

$$R = \frac{k_{s}h_{g}}{k_{s} + h_{g}} \cdot \frac{C_{g}}{N} \qquad \triangle \stackrel{\checkmark}{\propto} (14.2)$$

反应控制的分界温度。

Figure 148 Arrhenius behavior of a variety of silicon-containing growth species (offer Eversteyn reprieted by permission, Philips).

当T < 900°C时,

$$R = \frac{k_{\rm s} h_{\rm g}}{k_{\rm s} + h_{\rm g}} \cdot \frac{C_{\rm g}}{N} = \frac{k_{\rm s} C_{\rm g}}{N} = \frac{k_{\rm o} C_{\rm g}}{N} \exp\left(-\frac{E_{\rm a}}{kT}\right)$$

$$\frac{R_1}{R_2} = \exp\left[\frac{E_a}{k} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right], \quad E_a = \left(k \ln \frac{R_1}{R_2}\right) / \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

$$\stackrel{\triangle}{=} \mathbb{R} \begin{bmatrix} 14.8, \quad R_1 = 0.5, R_2 = 0.01, \frac{1}{T_1} = 0.86 \times 10^{-3}, \frac{1}{T_2} = 1.1 \times 10^{-3} \end{bmatrix}$$

 R_2N (E_1) R_2N (E_2)

代入 E_a , 得: $E_a = 2.25 \times 10^{-19} \text{ J}$

公式(14.0万以14.0万式,以其一个形态的,领人人约在公温度时,生长成为质量传输控制的?如果 $k_s=k_0e^{-E_a/k_T}$ hg与温度无关,对所有气体在所有温度下,Cg为 10^{15} cm $^{-3}$,找出hg和k0。

当T>900°C时,由图14.8,

$$R = \frac{k_{s}h_{g}}{k_{s} + h_{g}} \cdot \frac{C_{g}}{N} = \frac{h_{g}C_{g}}{N} = 0.9 \mu \text{m / min} = 1.5 \times 10^{-6} \text{ cm/s}$$

$$h_{g} = \frac{RN}{C_{g}}$$
将 $C_{g} = 10^{15} \text{ cm}^{-3}, N = 5 \times 10^{22} \text{ cm}^{-3}, 及 R 代入,得:$

 $h_{\rm g} = 75 \, \rm cm/s$

第 14 章 补充题

分子束外延技术的工艺特点是什么?

- 1、可实现多种物质的边生长边分析边控制;
- 、在超高真空中进行,可获得超纯薄膜;
- 3、村底温度低,热扩散效应小,便于精确控制特定掺杂分布;