Dalla parte degli item

Georg Rasch e i modelli dell'Item Response Theory

Ottavia M. Epifania

Dalla base

$$1.1 + 2$$

$$2.\frac{2}{3}+\frac{3}{5}$$

3.
$$2x^2 + 3x + 4 = 0$$

$\frac{A_{soggetto}}{D_{item}}$

$$\cdot \ A_{soggetto} > D_{item}
ightarrow > 1$$

$$\cdot A_{soggetto} < D_{item} \rightarrow < 1$$

Georg Rasch

Qualche trasformazione dopo...

$$P(x_{si}=1| heta_s,b_i) = rac{exp(heta_s-b_i)}{1+exp(heta_s-b_i)}$$

Generalized Linear Model

$$logit = \ln\!\left(rac{P(x=1)}{1-P(x=1)}
ight)$$

$$P(x=1) = rac{\exp(\eta)}{1 + exp(\eta)}$$

where

3/23

$$\eta = \alpha + \beta X$$

4/3

θ_s , b_i e il tratto latente

Rasch in pillole

- · I marginali di riga (colonna) sono statistiche sufficienti
- · Sono i dati che si adattano al modello
- · La triade:
- 1. Indipendenze locale
- 2. Oggettività specifica
- 3. Invarianza di misurazione

5/23

Così simili e così diversi

- · I parametri degli item
- · Il modello si adatta ai dati
- · I marginali di riga (colonna) non sono più statistiche sufficienti

Item Response Theory

1PI

- · Confuso con il modello di Rasch
- · Il parametro a che c'è e non c'è (dipende a chi chiedi)
- · 1 parametro e mezzo

e.g. De Mars (2010)

$$P(x=1| heta,b,a)=rac{exp[a(heta_s-b_i)]}{1+exp[a(heta_s-b_i)]}$$

Da altre parti

$$P(x=1| heta,b)=rac{exp(heta_s-b_i)}{1+exp(heta_s-b_i)}$$

2PL (cambia la pendenza)

a (discrimination):

$$P(x=1| heta,b,a) = rac{exp[a_i(heta_p-b_i)]}{1+exp[a_i(heta_p-b_i)]}$$

9/23 10/23

Spostando gli asintoti

3PL (alza in basso)

c (lucky guess):

$$P(x=1| heta,b,a,c)=c_i+(1-c_i)+rac{exp[a(heta_s-b_i)]}{1+exp[a(heta_s-b_i)]}$$

Spostando gli asintoti

4PL (abbassa in alto)

e (careless error):

$$P(x=1| heta,b,a,c,e) = c_i + (e_i-c_i) + rac{exp[a(heta_s-b_i)]}{1+exp[a(heta_s-b_i)]}$$

11/23 12/23

Tutti quanti

Differential Item Functioning

"Il cat calling è una molestia":

- · Si
- · No

Uniforme

Non Uniforme

13/23

Item Information Function - Rasch

$$I_i(heta) = P_i(heta)(1-P_i(heta))$$
 item_a item_b item_c difficulty -3 0 3 discrimination 1 1 1 1

Item Information Function - 2PL

$$I_i(heta)=a^2P_i(heta)(1-P_i(heta))$$
 item_a item_b item_c difficulty -3.0 $heta$ 3.0 $heta$ 3.0 discretization 0.5 $heta$ 1.18

15/23

Test Information Function (TIF)

$$I(heta) = \sum_{i=1}^n I_i(heta)$$

Oltre il dicotomico

17/23

19/23

Polytomous Rasch Model

$$P(X=x,x>0| heta_s, au_{ic})=rac{exp(\sum_{c=1}^m heta_s- au_{ic})}{1+exp(\sum_{c=1}^m heta_s- au_{ic})}$$

Item Response Category Characteristic Curve Item Response Category Characteristic Curve Item: V1 Item: V2

Item Response Category Characteristic Curve Item Response Category Characteristic Curve Item: V3 Item: V4

Partial credit model

$$P(X=x,x>0| heta_s, au_{ic},a)=rac{exp[\sum_{c=1}^m a(heta_s- au_{ic})]}{1+exp[\sum_{c=1}^m a(heta_s- au_{ic})]}$$

Item Response Category Characteristic Curve Item Response Category Characteristic Curve Item: V1 Item: V2

Item Response Category Characteristic Curve Item Response Category Characteristic Curve

20/23

Graded Response Model

$P(X=x,x>0| heta_s, au_{ic},a_i)=rac{exp[\sum_{c=1}^m a_i(heta_s- au_{ic})]}{1+exp[\sum_{c=1}^m a_i(heta_s- au_{ic})]}$

Item Response Category Characteristic Curve Item Response Category Characteristic Curve Item: V1 Item: V2

Item Response Category Characteristic Curve Item Response Category Characteristic Curve Item: V3

PRM, PCM, GRM: TIF

21/23 22/23

Ackoejkl nkjgnkg

- · Caterina Primi
- · Francesca Chiesi
- · Egidio Robusto