Práctica 4: ESPACIOS VECTORIALES CON PRODUCTO INTERNO. ORTOGONALIDAD.

1. a) Verificar que para $A = (a_{ij}), B = (b_{ij}) \in \mathcal{M}_{n \times n}(\mathbb{K}),$

$$\langle A, B \rangle = \sum_{i,j} a_{ij} \bar{b}_{ij},$$

es un producto interno (conocido como producto de Frobenius).

- b) Probar que para $B^* = \bar{B}^t$, se tiene que $\langle A, B \rangle = tr(AB^*) = tr(B^*A)$.
- c) Probar que $\langle AB, C \rangle = \langle B, A^*C \rangle$.
- 2. Verificar que $f \times g = \int_1^e \log(x) f(x) g(x) dx$ es un producto interno en $\mathcal{C}([1,e])$, espacio de las funciones continuas a valores reales en el intervalo [1,e].
- 3. Dados $u, v \in V$ espacio vectorial con producto interno, probar que u = v si y sólo si $\langle u, w \rangle = v \times w$ para todo $w \in V$.
- 4. Demostrar las siguientes proposiciones.
 - i) Un vector $v \in W^{\perp}$ si y solo si v es ortogonal a todo vector en un conjunto que genere a W.
 - ii) W^{\perp} es un subespacio vectorial de V.
- 5. Sea $W \subset V, V$ e.v. con producto interno. Probar que $(W^{\perp})^{\perp} = W$.
- 6. Sea $\mathbb{R}^{n \times n}$ con el producto interno definido en el ejercicio 1.
 - a) Hallar una base ortogonal para $\mathbb{R}^{n \times n}$ para dicho producto interno.

$$b) \ \ \text{Hallar} \ W^{\perp} \text{, si} \ W = gen \left\{ \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\} \subset \mathbb{R}^{2 \times 2}.$$

$$c) \ \text{ idem } b) \ \text{para } W = \left\{ \begin{bmatrix} a & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, a,b,c \in \mathbb{R} \right\}.$$

- 7. Sea $\mathcal{C}([1,e])$, con el producto interno definido en el ejercicio 2.
 - a) Calcular ||f|| para $f(x) = \sqrt{2}$.
 - b) Hallar un polinomio de grado uno que sea ortogonal a g(x) = 1.
- 8. Sea $v = \begin{pmatrix} a \\ b \end{pmatrix}$. Describir el conjunto H de vectores $\begin{pmatrix} x \\ y \end{pmatrix}$ que son ortogonales a v.
- 9. Sea $W = \langle \{v_1, \cdots, v_p\} \rangle$. Mostrar que si x es ortogonal a todo v_j , para $1 \le j \le p$, luego x es ortogonal a todo vector en W.
- 10. Mostrar que si $x \in W \cap W^{\perp}$, entonces x = 0.
- 11. En cada caso, mostrar que $\{u_1, u_2\}$ o $\{u_1, u_2, u_3\}$ es una base ortogonal para \mathbb{R}^2 o \mathbb{R}^3 respectivamente, y luego expresar a x como combinación lineal de la base correspondiente.

$$a) u_1 = \begin{pmatrix} 2 \\ -3 \end{pmatrix}, u_2 = \begin{pmatrix} 6 \\ 4 \end{pmatrix}, x = \begin{pmatrix} 9 \\ -7 \end{pmatrix}.$$

b)
$$u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix}$, $u_3 = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$, $x = \begin{pmatrix} 8 \\ -4 \\ -3 \end{pmatrix}$.

- 12. Suponer que W es un subespacio de \mathbb{R}^n generado por n vectores ortogonales distintos de cero. Explicar por qué $W = \mathbb{R}^n$.
- 13. Una matriz cuadrada $A n \times n$ sobre \mathbb{R} es una matriz ortogonal si $A^{-1} = A^t$. Demostrar.
 - a) Sean U, V matrices ortogonales. Luego UV es una matriz ortogonal.

- b) Tanto el conjunto de los vectores columna de una matriz ortogonal, como el conjunto de vectores filas son conjuntos ortonormales.
- c) El determinante de una matriz ortogonal es 1 o -1.
- d) Sea U una matriz ortogonal entonces para $x,y \in \mathbb{R}^n$ vale: $i) ||Ux|| = ||x||, ii) \langle Ux, Uy \rangle = \langle x,y \rangle$ (con el producto interno canónico).
- 14. Sea $\{u_1, u_2\}$ un conjunto ortogonal de vectores distintos de cero, y c_1, c_2 escalares no nulos. Mostrar que $\{c_1u_1, c_2u_2\}$ también es ortogonal.
- 15. Verificar la ley del paralelogramo para los vectores $u, v \in \mathbb{R}^n$:

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2).$$

16. Dado $0 \neq u \in \mathbb{R}^n$, sea $L = \langle \{u\} \rangle$. Para $y \in \mathbb{R}^n$, la reflexión de y en L se define como

$$refl_L y = 2proy_L y - y.$$

- a) Graficar en \mathbb{R}^2 para observar que la $refl_L y$ es la suma de $\hat{y} = proy_L y$ con $\hat{y} y$.
- b) Mostrar que la aplicación que $y\mapsto refl_L y$ es una transformación lineal.
- 17. Sean

$$u_1 = \begin{pmatrix} 0 \\ 1 \\ -4 \\ -1 \end{pmatrix}, u_2 = \begin{pmatrix} 3 \\ 5 \\ 1 \\ 1 \end{pmatrix}, u_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ -4 \end{pmatrix}, u_4 = \begin{pmatrix} 5 \\ -3 \\ -1 \\ 1 \end{pmatrix}, x = \begin{pmatrix} 10 \\ -8 \\ 2 \\ 0 \end{pmatrix}.$$

Escribir x como suma de dos vectores, uno en $\langle \{u_1, u_2, u_3\} \rangle$ y el otro en $\langle \{u_4\} \rangle$.

- 18. Sea W el subespacio generado por $v_1 = \begin{pmatrix} 3 \\ 1 \\ -1 \\ 1 \end{pmatrix}$, y $v_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$.
 - a) Si $y = (3, 1, 5, 1)^t$, escribirlo como la suma de un vector en W y uno en W^{\perp} .
 - b) Si $y = (3, -1, 1, 13)^t$, encontrar el punto más cercano a y en W.
 - c) Si $y = (2, 4, 0, 1)^t$, encontrar la mejor aproximación a y mediante vectores de la forma $c_1v_1 + c_2v_2$. Hallar la distancia de y a W.
- $\text{19. Sean } y = (4,8,1)^t, u_1 = \left(\frac{2}{3},\frac{1}{3},\frac{2}{3}\right)^t, u_2 = \left(-\frac{2}{3},\frac{2}{3},\frac{1}{3}\right)^t \text{ y } W = \langle \{u_1,u_2\}\rangle.$
 - a) Sea $U = [u_1 u_2]$. Calcular $U^t U$ y $U U^t$.
 - b) Calcular $proy_W y \in (UU^t)y$.
- 20. Sea A una matriz $m \times n$. Demostrar que todo vector $x \in \mathbb{R}^n$ puede escribirse en la forma x = p + u, donde p está en Fil(A) y $u \in nul(A)$. Mostrar que si la ecuación Ax = b es consistente, entonces hay una única p en Fil(A) tal que Ap = b.
- 21. Sea W un subespacio de \mathbb{R}^n con una base ortogonal $\{w_1, \dots, w_p\}$ y sea $\{v_1, \dots, v_q\}$ una base ortogonal de W^{\perp} .
 - a) Explicar por qué $\{w_1, \dots, w_p, v_1, \dots, v_q\}$ es un conjunto ortogonal.
 - b) Explicar por qué el conjunto definido en el ítem anterior genera \mathbb{R}^n .
 - c) Demostrar que dim $W + \dim W^{\perp} = n$.
- 22. Siendo $u=\begin{pmatrix}3\\0\\-1\end{pmatrix}$ y $v=\begin{pmatrix}8\\5\\-6\end{pmatrix}$, utilizar el proceso de Gram-Schimdt para producir una base ortogonal de $\langle\{u,v\}\rangle$.
- 23. Sea

$$A = \begin{bmatrix} 1 & 2 & 5 \\ -1 & 1 & 4 \\ -1 & 4 & -3 \\ 1 & -4 & 7 \\ 1 & 2 & 1 \end{bmatrix}.$$

Encontrar una base ortogonal para el espacio columna de A.