Chapitre: L'amplificateur opérationnel

I Présentation

A) Entrées et sortie

(1) E^+ : entrée non inverseuse. Potentiel v_+ , intensité i_+

(2) E^- : entrée inverseuse. Potentiel v_- , intensité i_- .

 $\varepsilon = v_{+} - v_{-}$: tension différentielle d'entrée.

(3) S: sortie. Potentiel v_s , intensité i_s .

B) Alimentation

II Fonctionnement en régime statique

$$v_+ = \text{cte}$$
, $v_- = \text{cte}$, $v_s = \text{cte}$.

A) Caractéristique

1) Régime linéaire

C'est lorsque $-\varepsilon_m < \varepsilon < \varepsilon_m$; on a alors $-V_{\rm sat} < v_s < V_{\rm sat}$ et $v_s = \mu_0 \varepsilon$ $(\mu_0 \sim 10^5)$

2) Régime de saturation

Lorsque $\varepsilon > \varepsilon_m$, $v_s = +V_{\rm sat}$ et lorsque $\varepsilon < -\varepsilon_m$, $v_s = -V_{\rm sat}$.

B) Amplificateur opérationnel parfait

1) AO idéal

C'est un amplificateur opérationnel tel que :

- Les impédances d'entrée sont infinies : $i_+ = i_- = 0$
- L'impédance de sortie est nulle : v_s est indépendant de la charge.

Modélisation:

- D'un AO réel:

On a
$$v_+ = R_e^+ i_+$$
, $v_- = R_e^- i_-$, $v_s = f(\varepsilon) + R_s i_s$

- D'un AO idéal :

On a ici
$$R_e^- = +\infty$$
, $R_e^+ = +\infty$, $R_s = 0$.

2) AO parfait

- C'est un AO idéal pour lequel μ_0 est infini.
- Fonctionnement:

En régime linéaire, $\varepsilon = 0$, et $v_s \in]-V_{\text{sat}}, +V_{\text{sat}}[$.

En régime saturé, si $\varepsilon > 0$, $v_s = +V_{\rm sat}$ et si $\varepsilon < 0$, $v_s = -V_{\rm sat}$.

III Fonctionnement dynamique, stabilité

A) Relation entrée-sortie

 $\varepsilon(t) \to v_s(t)$. A-t-on $v_s(t) = \mu_0 \varepsilon(t)$? Pas très réaliste...

1) Modélisation

$$\tau \frac{dv_s}{dt} + v_s = \mu_0 \varepsilon$$
 tant que $-V_{\text{sat}} < v_s < +V_{\text{sat}}$.

2) Analyse

Pour $\varepsilon = \varepsilon_0 H(t)$, on a ainsi $v_s = \mu_0 \varepsilon_0 (1 - e^{-t/\tau}) H(t)$:

B) Stabilité du régime linéaire

1) Exemple 1 : amplificateur non inverseur

• AO parfait, régime statique :

$$v_e = v^+, \ v_- = \frac{R_1}{R_1 + R_2} v_s = \frac{1}{k} v_s \ (k > 1)$$

En régime linéaire :

$$\varepsilon = 0$$
, donc $v_s = kv_e$

En régime de saturation :

$$v_s = \pm V_{\text{sat}}$$
, donc $v_- = \pm V_{\text{sat}}$.

Si
$$v_e < \frac{-V_{\text{sat}}}{k}$$
, $v_s = -V_{\text{sat}}$; si $v_e > \frac{V_{\text{sat}}}{k}$, $v_s = +V_{\text{sat}}$

• AO idéal, régime variable :

$$v_{e}(t)$$
, $v_{s}(t)$

$$v_{+} = v_{e}, \ v_{-} = \frac{v_{s}}{k} \ (k = \frac{R_{1} + R_{2}}{R_{1}})$$

Régime linéaire :

$$\tau \frac{dv_s}{dt} + v_s = \mu_0 (v_e - \frac{v_s}{k})$$

Soit
$$\tau \frac{dv_s}{dt} + v_s \left(\underbrace{1}_{<<\frac{\mu_0}{k}} + \frac{\mu_0}{k} \right) = \mu_0 v_e$$
.

• Solution homogène associée : $v_s = Ae^{-\frac{t}{\tau}\frac{\mu_0}{k}}$

Solution particulière : dépend de $v_e(t)$.

- (1) Si $v_e = v_0 h(t)$, une solution particulière est $kv_0 h(t)$
- (2) Si $v_e = v_0 \cos(\omega t)$:

Solution particulière :

$$(\tau i\omega + \frac{\mu_0}{k})\underline{v}_s = \mu_0 v_0 \text{ Donc } \underline{v}_s = \frac{\mu_0 v_0}{\frac{\mu_0}{k} + \tau i\omega} = \frac{k v_0}{1 + i\omega \tau \frac{k}{\mu_0}} (\frac{k}{\mu_0} << 1)$$

Et
$$v_s = \frac{kv_0}{\sqrt{1 + \omega \tau \frac{k}{\mu_0}}} \cos(\omega t + \varphi) \approx kv_0 \cos(\omega t)$$

On a toujours $|v_s| < V_{\text{sat}}$:

(3) Petite perturbation:

Conclusion:

Tant que $|v_s| < V_{\text{sat}}$, le régime linéaire est possible et stable.

Le régime ne sera saturé que si v_e est trop grand.

2) Exemple 2 : comparateur à hystérésis

(Même montage que précédemment en échangeant + et -)

• AO parfait, régime statique :

En régime statique, $v_s = kv_e$; en réalité, cette solution n'est pas valable (voir après)

AO idéal, régime variable :

On a
$$v_+ = \frac{v_s}{k}$$
, $v_- = v_e$. Donc $\varepsilon = \frac{v_s}{k} - v_e$

L'équation différentielle s'écrit :

$$\tau \frac{dv_s}{dt} + v_s = \frac{\mu_0}{k} v_s - \mu_0 v_e$$

Soit
$$\tau \frac{dv_s}{dt} + v_s (1 - \frac{\mu_0}{k}) = -\mu_0 v_e$$

Solution homogène :
$$v_s = Ae^{t/(k\tau/\mu_0)}$$
, et $\frac{k\tau}{\mu_0} = \tau' << \tau$

On a donc une croissance exponentielle (au') encore plus rapide que la réaction de l'AO (au)

Solution particulière:

(1) Pour $v_e = v_0 h(t)$:

(2) Pour une petite perturbation :

• Retour sur le régime statique :

Le régime linéaire n'est pas possible (la moindre perturbation entraı̂ne le régime saturé) ; on a toujours $v_s = \pm V_{\rm sat}$.

Ainsi,
$$v_+ = \pm \frac{V_{\text{sat}}}{k}$$

Et
$$v_{-} = v_{a}$$

Donc
$$\varepsilon = -v_e \pm \frac{V_{\text{sat}}}{k}$$

- Pour avoir $\varepsilon > 0$, il suffit (mais non nécessaire) que $v_e < -\frac{V_{\rm sat}}{k}$.

Pour
$$v_e < -\frac{V_{\text{sat}}}{k}$$
, on a $v_s = +V_{\text{sat}}$, et donc $v_+ = +\frac{V_{\text{sat}}}{k}$:

Ceci tant que ε reste positif, c'est-à-dire tant que $v_e < \frac{V_{\rm sat}}{k}$:

$$\begin{array}{c|c}
+V_{\text{sat}} & v_s \\
\hline
V_{\text{sat}} & v_e \\
\hline
k
\end{array}$$

- Pour avoir $\varepsilon < 0$, il suffit que $v_e > \frac{V_{\text{sat}}}{k}$, et on a alors $v_s = -V_{\text{sat}}$.

Si maintenant v_e diminue:

$$v_{_+} = -\frac{V_{\rm sat}}{k} \ \ {\rm et} \ v_{_-} = v_{_e} \ \ {\rm tant} \ {\rm que} \ \ {\varepsilon} < 0 \ , \ {\rm c'est-\`a-dire} \ \ v_{_e} < -\frac{V_{\rm sat}}{k} \ \ :$$

3) Généralisation

• Premier cas : l'AO n'a pas de rétroaction sur la borne – La moindre perturbation fait diverger v_s

La saturation sera haute ou basse selon les bornes d'entrées.

Deuxième cas : l'AO a une rétroaction sur la borne –
 Le régime linéaire peut être stable, selon les composants extérieurs à l'AO.
 Même si le régime linéaire est stable, l'AO peut saturer si v_e est trop grand.