Bài toán 1. Với mỗi số nguyên dương n, đặt $x_n = \binom{2n}{n}$.

- a) Chứng minh rằng nếu $\frac{2017^k}{2} < n < 2017^k$ với một số nguyên dương k, thì 2017 chia hết x_n .
- b) Tìm tất cả các số nguyên dương h > 1 sao cho tồn tại các số nguyên dương N, T sao cho dãy $(x_n)_{n>N}$ là tuần hoàn modulo h với chu kỳ T.

 $D\hat{\rho}$ khó: 4 (Vietnam TST 2017/2)

 $\pmb{L\eth i}$ giải. Chú ý rằng với mọi $x \in \mathbb{R}$ thì $[2x] \ge 2[x]$. Thật vây, bằng cách xét trường hợp thì ta chứng minh được [2x] = 2[x] nếu phần lẻ của x nhỏ hơn $\frac{1}{2}$ và [2x] = 2[x] + 1 nếu ngược lại.

a) Chú ý rằng 2017 là một số nguyên tố. Ta sẽ chứng minh kết quả tổng quát hơn với p nguyên tố lẻ.

Thật vậy, ta có

$$v_p(C_{2n}^n) = \sum_{i=1}^k \left[\frac{2n}{p^i} \right] - 2 \sum_{j=1}^{k-1} \left[\frac{n}{p^j} \right]$$

Dùng kết quả trên và việc $[\frac{n}{p^k}]>0$ ta sẽ thu được điều phải chứng minh.

b) Đáp số duy nhất là n=2, giả sử h là một số thoả mãn, ta sẽ chứng minh $v_2(h) \le 1$ và h không có ước nguyên tố lẻ.

Thật vậy, ta có $v_2(x_n) = s_2(n)$ theo công thực Legendre. Nếu $4 \mid h$ thì chọn n sao cho $2^n > N$, lúc này ta có $v_2(x_{2^n}) = 1$. Vậy thì $v_2(x_{2^n+t}) = 1$. Điều này đúng với mọi $n > \lceil \log_2(N) \rceil + 1$. Vậy nên chọn k sao cho $2^k > t$ ta sẽ thu được điều vô lý.

Giờ, nếu tồn tại ước nguyên tố p lẻ của h thì chọn $n=p^k$, khi đó $v_p(x_n)=\frac{2s_p(n)-s_p(2n)}{p-1}=\frac{2s_p(n)-s_p(2n)}{p-1}$

0. Vậy $v_p(x_{n+mt}) = 0$ với mọi $m \in \mathbb{Z}^+$. Nhưng chọn s sao cho $\frac{p^s}{2} > t$ thì theo tính liên tục của rời rạc, tồn tại r sao cho: $\frac{p^s}{2} < p^k + rt < p^s$.

Áp dụng ý a thì điều này là mâu thuẫn. Vậy $t \leq 2$, lại chú ý rằng với mọi $n \geq 2$ thì $2 \mid x_n$ nên 2 thoả mãn đề bài. Ta kết thúc chứng minh.