Graphs

- 1. Non Linear Data Structure
- 2. Vertices V & Edges E

Types of Graph

a. Null Graph: No Edges in Graph

b Trivial Graph

3 Undirected Graph

4. Directed Graph

5. Connected Graph

7. Disconnected Graph

8. Complete Graph: Every Two node have an edge

9. Cyclic Graph

Directed cyclic Graph

Directed Acyclic Graph

10 Weighted Graph: Edges have some weights

11. Bipartite Graph- Vertex is divided into two sets, ie, vetrices in each sets does not contain any edge between them

Representation of Graph

- 1. Adjacency Matrix
- 2. Adjacency List

1. Adjacency Matrix

v ナノ	the -
------	-------

2. Adjacency List

Adjacency Matrix vs List

more no. of zeros

	O	1	٦	>	
0	O	0		O	
I	C	J	д	1	sparse matrix>
2		Ó	υ	1	
>	٦	-	1	6	

- Make Graph
 Searching in Graph
 Traversals Graph

Count Graphs

Maximum No. of Edge in N vertices = N * (N - 1) / 2 =
$$\times$$

$$x^{(0)} + x^{(1)} + x^{(2)} + x^{(2)}$$

Graph Representation (Adjacency Matrix)

Graph Representation (Adjacency list) Edge Class ArrayList<Edge>[] graph , Array of Arraylist of Edge

max num of edges