# Limites e continuidade

## Distância



distância entre 
$$x$$
 e  $y$  = distância entre  $x - x$  e  $y - x$   
= distância entre  $0$  e  $y - x$   
=  $|y - x| = |x - y|$ 

# Pontos de acumulação

Um número real a diz-se ponto de acumulação de um conjunto  $D \subset \mathbb{R}$  se para todo o  $\delta > 0$  existe um elemento  $x \in D$  tal que  $0 < |x-a| < \delta$ .

# Exemplos

(i)



Os pontos de acumulação de um intervalo aberto ]c,d[ são os elementos do intervalo fechado [c,d].

(ii)



0 não é ponto de acumulação do conjunto  $\{0\} \cup [1,2].$ 

# Limite de uma função num ponto de acumulação

# Considerações intuitivas



f tende para L quando x tende para  $a, \lim_{x \to a} f(x) = L$ 

# Limite de uma função num ponto de acumulação

# Considerações intuitivas



A distância entre f(x) e L fica tão pequena quanto se queira desde que x é suficientemente perto de a

# Limite de uma função num ponto de acumulação

#### Nota

Se f estiver definido em a, o valor f(a) não é considerado no cálculo do limite.



$$\lim_{x \to a} f(x) = L \neq f(a)$$

# Limite de uma função num ponto de acumulação



## Definição

Sejam  $f\colon D\to E$  uma função,  $a\in\mathbb{R}$  um ponto de acumulação de D e L um número real. Dizemos que f tende para L quando x tende para a se

$$\forall \varepsilon > 0 \ \exists \ \delta > 0 \ \forall \ x \in D \setminus \{a\} : |x - a| < \delta \Rightarrow |f(x) - L| < \varepsilon.$$

O número L diz-se limite de f quando x tende para a e escrevemos

$$\lim_{x \to a} f(x) = L.$$

# Exemplos

(i) Consideremos a função  $f\colon \mathbb{R} \to \mathbb{R}$  definida por f(x)=3x+1. Tem-se

$$\lim_{x \to 1} (3x + 1) = 4.$$

(ii) A função  $f:\mathbb{R} \to \mathbb{R}$  definida por

$$f(x) = \begin{cases} 1 & x > 0, \\ 2 & x \le 0 \end{cases}$$

não admite limite em 0.



(iii) Para a função  $f:[0,+\infty[ \to \mathbb{R}$  definida como em (ii),

$$\lim_{x \to 0} f(x) = 1.$$

# Propriedades do limite

## Proposição

Sejam  $f:D\to E$  uma função e  $a\in\mathbb{R}$  um ponto de acumulação de D. Se o limite de f quando x tende para a existir, então é único.

# Proposição

Sejam  $f:D\to\mathbb{R}$  e  $g:D\to\mathbb{R}$  duas funções e  $a\in\mathbb{R}$  um ponto de acumulação de D. Suponhamos que  $\lim_{x\to a}f(x)=L$  e  $\lim_{x\to a}g(x)=M$ . Então

- (a)  $\lim_{x \to a} (f(x) + g(x)) = L + M;$
- (b)  $\forall c \in \mathbb{R} : \lim_{x \to a} cf(x) = cL;$
- (c)  $\lim_{x \to a} f(x)g(x) = LM$ ;
- (d) se  $M \neq 0$  e  $\forall x \in D : g(x) \neq 0$ , então  $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}$ .

# Teorema do confronto



#### Teorema

Sejam  $f,g,h:D\to\mathbb{R}$  três funções e  $a\in\mathbb{R}$  um ponto de acumulação de D. Suponhamos que existe r>0 tal que

$$\forall x \in D \setminus \{a\} : |x - a| < r \Rightarrow f(x) \le g(x) \le h(x).$$

Nestas condições, se  $\lim_{x \to a} f(x) = L = \lim_{x \to a} h(x)$ , então  $\lim_{x \to a} g(x) = L$ .

# Exemplos

- $\lim_{x \to a} x = a$ , pela definição (com  $\delta = \varepsilon$ )

- $\lim_{x\to a} x^n = a^n$ , por (c) successivamente
- $\lim_{x \to a} 3x^4 = 3a^4$ , por (b)
- $\lim_{x \to a} 3x^4 + 2x^5 = 3a^4 + 2a^5$ , por (a)
- lacksquare se p é um polinómio,  $\lim_{x \to a} p(x) = p(a)$
- $\lim_{x \to 2} \frac{3x^2}{x^2+1} = \frac{12}{5}$ , por (d)
- $\lim_{x\to 1} \frac{x^2-1}{x-1}$  é uma indeterminação  $\frac{0}{0}$ ! Levantar a indeterminação: Para  $x\neq 1$ ,

$$\frac{x^2-1}{x-1} = \frac{(x+1)(x-1)}{x-1} = x+1.$$

Logo 
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} x + 1 = 2.$$

#### <u> 10</u>

### Teorema do confronto

#### Corolário

Sejam  $f,g:D\to\mathbb{R}$  duas funções e  $a\in\mathbb{R}$  um ponto de acumulação de D. Se f for limitada e  $\lim_{x\to a}g(x)=0$ , então  $\lim_{x\to a}f(x)g(x)=0$ .

#### Exemplo

Tem-se  $\lim_{x\to 0}x\mathrm{sen}\left(\frac{1}{x}\right)=0$  pois  $|\mathrm{sen}\left(\frac{1}{x}\right)|\leq 1$  e  $\lim_{x\to 0}x=0$ . Nota-se que  $\lim_{x\to 0}\mathrm{sen}\left(\frac{1}{x}\right)$  não existe.



#### Continuidade



# Definição

Sejam  $f:D\to E$  uma função e  $a\in D$ . Dizemos que f é contínua em a se

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D \quad |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon.$$

A função f diz-se contínua se f for contínua em todo o ponto do seu domínio.

# Exemplos de funções contínuas

- 1. Toda a função polinomial é contínua.
- 2. Toda a função racional é contínua.
- 3. Para todo o número natural n > 0, a função  $[0, +\infty[ \to \mathbb{R}$  definida por  $x \mapsto \sqrt[n]{x}$  é contínua.
- 4. Para todo o  $r \in \mathbb{R}$ , a função  $f: ]0, +\infty[ \to \mathbb{R}$  definida por  $f(x) = x^r$  é contínua.
- 5. A função módulo  $|\cdot|: \mathbb{R} \to \mathbb{R}$  é contínua.
- 6. As funções trigonométricas sen, cos, tg e cotg são contínuas.
- 7. Para qualquer número real a>0, a função exponencial  $\mathbb{R}\to\mathbb{R}, x\mapsto a^x$  é contínua.
- 8. Para qualquer número real a>1, a função logarítmica  $]0,+\infty[\to\mathbb{R},x\mapsto\log_a x$  é contínua.

#### Continuidade

#### Exemplo

Para cada conjunto  $D \subset \mathbb{R}$ , a função  $f:D \to \mathbb{R}$  definida por f(x)=x é contínua.

#### Proposição

Sejam  $f:D\to E$  uma função e  $a\in D$  um ponto de acumulação de D. Então f é contínua em a se e só se  $\lim_{x\to a}f(x)=f(a)$ .

### Proposição

Sejam  $f: D \to \mathbb{R}$  e  $g: D \to \mathbb{R}$  duas funções contínuas em  $a \in D$  e  $c \in \mathbb{R}$  uma constante. Então as funções f+g, cf e fg são contínuas em a. Se  $g(x) \neq 0$  para todo o  $x \in D$ , então a função  $\frac{f}{g}$  é contínua em a.

# Funções compostas

#### Proposição

Sejam  $f: D \to E$  e  $g: E \to F$  duas funções. Sejam  $a \in \mathbb{R}$  um ponto de acumulação de D e  $L \in E$  tais que  $\lim_{x \to a} f(x) = L$ . Se g for contínua em L, então  $\lim_{x \to a} g(f(x)) = g(L)$ .

#### Corolário

Sejam  $f: D \to E$  e  $g: E \to F$  duas funções contínuas (em  $a \in D$ ). Então a função composta  $g \circ f: D \to F$  é contínua (em  $a \in D$ ).

# Exemplo

 $\lim_{x \to 0} \cos\left(x \operatorname{sen} \frac{1}{x}\right) = ?$ 

Temos  $\cos(x \operatorname{sen} \frac{1}{x}) = g(f(x)) \operatorname{com}$ 

$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, \qquad f(x) = x \operatorname{sen} \frac{1}{x}$$
  
 $g: \mathbb{R} \to \mathbb{R}, \qquad g(y) = \cos y$ 

Vimos que  $\lim_{x\to 0} f(x) = 0$  (Teorema do confronto). Como g é contínua em 0,

$$\lim_{x \to 0} \cos\left(x \operatorname{sen} \frac{1}{x}\right) = \cos 0 = 1.$$

#### Nota

A função  $h(x)=\cos{(x{\rm sen}\,\frac{1}{x})}$  não está definida em 0. Como  $\lim_{x\to 0}h(x)$  existe, podemos  $prolongar\ h\ por\ continuidade\ em\ 0$ , definindo  $h(0)=\lim_{x\to 0}h(x)=1$ . O prolongamento de h definido desta forma é automaticamente contínua em 0.

### Limites laterais

Seja  $f:D\to E$  uma função.

# Definição

Seja  $a \in \mathbb{R}$  um ponto de acumulação do conjunto

$$A = D \cap ]a, +\infty[= \{x \in D \mid x > a\}.$$

O limite  $\lim_{x\to a} f|_A(x)$ , quando existe, denomina-se *limite lateral à direita de f em a* e é denotado por  $\lim_{x\to a^+} f(x)$ .

Seja  $b \in \mathbb{R}$  um ponto de acumulação do conjunto

$$B = D \cap ]-\infty, b[= \{x \in D \mid x < b\}.$$

O limite  $\lim_{x\to b} f|_B(x)$ , quando existe, denomina-se limite lateral à esquerda de f em b e é denotado por  $\lim_{x\to b^-} f(x)$ .

#### Limites laterais

# Exemplo introdutivo

Consideremos a função  $f:\mathbb{R} \to \mathbb{R}$  definida por

$$f(x) = \begin{cases} 1 & x > 0, \\ 2 & x \le 0. \end{cases}$$



 $\lim_{x\to 0} f(x)$  não existe, mas existem os limites laterais à esquerda e à direita de f em 0.

1 Q

### Limites laterais

### Proposição

Seja  $a \in \mathbb{R}$  ao mesmo tempo um ponto de acumulação do conjunto  $D \cap ]a, +\infty[$  e do conjunto  $D \cap ]-\infty, a[$ . Então f tende para o número real L quando x tende para a se e só se os limites laterais  $\lim_{x \to a^+} f(x)$  e  $\lim_{x \to a^-} f(x)$  existem e são iguais a L.

#### Corolário

Seja  $a \in D$  ao mesmo tempo um ponto de acumulação do conjunto  $D\cap ]a,+\infty[$  e do conjunto  $D\cap ]-\infty,a[$ . Então f é contínua em a se e só se os limites laterais  $\lim_{x\to a^+}f(x)$  e  $\lim_{x\to a^-}f(x)$  existem e são iguais a f(a).

20

19

# Limites laterais



f é contínua em a. Os limites laterais existem em a e são iguais a f(a).

21

# Limites laterais



f não é contínua em a. Os limites laterais existem em a e são iguais, mas não são iguais a f(a).

# Limites laterais



f não é contínua em a. Os limites laterais existem em a mas não são iguais.

2.2

# Teorema do valor intermédio

## Teorema

Seja  $f:[a,b]\to\mathbb{R}$  uma função contínua e c um real compreendido entre f(a) e f(b). Então existe pelo menos um  $x\in[a,b]$  tal que f(x)=c.



24

# Teorema do valor intermédio

#### Corolário 1: Teorema de Bolzano

Seja  $f:[a,b] \to \mathbb{R}$  uma função contínua tal que  $f(a)f(b) \le 0$ . Então existe pelo menos um  $x \in [a, b]$  tal que f(x) = 0.



# Exemplo

A função  $f : [-1,0] \to \mathbb{R}$ ,  $f(x) = x^7 + x + 1$  admite um zero. Com efeito, f(-1) = -1 e f(0) = 1. Como f é contínua e f(-1) e f(0)têm sinais opostos, pelo Teorema de Bolzano, existe  $x \in [-1,0]$  tal que f(x) = 0.

# Teorema de Weierstrass

#### Teorema

Seja  $f:[a,b]\to\mathbb{R}$  uma função contínua. Então existem  $x_0,x_1\in[a,b]$ tais que, para todo o  $x \in [a, b]$ ,  $f(x_0) \le f(x) \le f(x_1)$ .



# Teorema do valor intermédio

# Corolário 2: Teorema do ponto fixo

Seja  $f:[a,b] \rightarrow [a,b]$  uma função contínua. Então existe pelo menos  $um \ x \in [a, b] \ tal \ que \ f(x) = x.$ 

