БЕЛОРУССКИЙ ОСУДАРСТВЕННЫЙ ИНИВЕРСИТЕТ	
1МК4 Лабораторные	
начало Мои курсы ВДМК4Л Суражев Кирилл 13	
<u>ıa 1</u>	
ките, что отрезки, соединяющие вершины тетраэдра с точками пересечения медиан противоположных граней, пересекаются в одной точке(центре тяжести тэтраэдра) и делятся в ней в отно я пополам отрезки, соединяющие середины противоположных ребер.	ошении 3:1(считая от вершин). Докажите также, что в этой же точке пересекаются и
Решение:	
Докажем, что любые две медианы тетраэдра пересекаются и делятся точкой пересечения в отношении $3:1$, считая от вершины. Отсюда будет слотношении $3:1$, считая от вершины, проходят остальные три медианы. Пусть M и N — точки пересечения медиан граней ABC и ABD тетраэточки D, K и C , содержит точки M и N , причём стороны CK и DK треугольника DKC делятся этими точками в одном и том же отношении:	одра $ABCD$, K — середина AB . Плоскость, проходящая через
CM:MK=DN:NK=2:1.	
Из подобия треугольников KCD и KMN следует, что	
CD:MN=KC:KM=3:1.	
Пусть отрезки DM и CN пересекаются в точке O . Так как $CM:MK=DN:NK$, то CD и MN параллельны. Из этого следует, что	
$\angle DCN = \angle CNM, \angle MDC = \angle DMN.$	
То есть, треугольники DOC и MON подобны. Из этого следует, что	
OD:OM=OC:ON=CD:MN=3:1.	
Что и требовалось доказать.	
Соединим середины ребер, лежащих в одной грани; получим, что каждый из отрезков будет средней линией соответствующего треугольника. За	иметим, что:
MN AB,PQ AB,	
поэтому	
MN PQ,MQ DC,NP DC,	
так что,	
MQ NP.	
Значит, 4-угольник $MNPQ$ — параллелограмм по определению, его диагонали QN и MP пересекаются в т. O и делятся ей пополам. Отрезки Q	QN и MP соединяют середины противоположных ребер тетраэдра.
Повторяя проведенные выше рассуждения с другими гранями, заключаем, что RS и QN тоже пересекаются в точке O и делятся ей пополам.	
Таким образом, все три отрезка: $RS, QN, \ MP$ — пересекаются в т. O и делятся в ней пополам.	
Утверждение доказано.	

Контакты

 \equiv

命

 \bigcirc

mmf.bsu.by

\(+375172095052 ☑ Klimchenya@bsu.by, Kuzma72@mail.ru

Последнее изменение: Четверг, 14 Октябрь 2021, 19:42

