NATIONAL INSTITUTE OF TECHNOLOGY, AGARTALA

Department of Computer Science and Engineering

Name Kabir Prakash Pal

Date 07-08-2024 Semester. VII Roll No. 210C5114 Page No. 01

Assignment - I

Q.1 Prove that the following De Morgan Law $(AUB) = (\overline{A} \cap \overline{B})$ is true for fuzzy sets $\overline{A'} \& \overline{B'}$, when using the Zadeh's operators for union, intersection and complement.

 $\frac{Ans}{=}$ $\mathcal{L}_{Aug}^{(x)} = \max(\mathcal{L}_{A}^{(x)}, \mathcal{L}_{B}^{(x)}).$

MANG(x) = min(Ma(x), Mg(x)).

 $\mathcal{M}_{\bar{A}}(x) = 1 - \mathcal{M}_{A}(x)$

(AUB) = L.H.S.

ATTE = 1 - man ($U_{\underline{A}}(x)$, $U_{\underline{B}}(x)$)

A nB = R.H.S. = min (1- UA(x), 1- UB(x))

If we consider $\mathcal{U}_{A}(x) > \mathcal{U}_{B}(x)$, then mand $\max(\mathcal{U}_{A}(x), \mathcal{U}_{B}(x)) = \mathcal{U}_{A}(x)$ and $\min(1-\mathcal{U}_{A}(x), 1-\mathcal{U}_{B}(x)) = 1-\mathcal{U}_{A}(x)$.

. L.H.S. = R.H.S.

(AUB) = (A nB).

Q.2. If A and B are two fuzzy sets with membership functions $M_A(n) = \{0.2, 0.5, 0.6, 0.1, 0.9\}$ and $M_B(n) = \{0.1, 0.5, 0.2, 0.7, 0.8\}$, find the value of Mang and Mavs.

Ans. \Rightarrow $M_{A}(x) = \{0.2, 0.5, 0.6, 0.1, 0.9\}$. $M_{B}(x) = \{0.1, 0.5, 0.2, 0.7, 0.8\}$

NATIONAL INSTITUTE OF TECHNOLOGY, AGARTALA

Department of Computer Science and Engineering

Name Kabir Arakash Pol

Date 06-08-2024, Semester. VIII Roll No. 21. UC5.11.4 Page No. 02

 $M_{ANG} = \{0.1, 0.5, 0.2, 0.1, 0.8\}.$ $M_{AVB} = \{0.2, 0.5, 0.6, 0.7, 0.9\}.$

Q.3. Consider a fuzzy set A as defined below $A = \{(20,0), (30,0.2), (40,04), (50,0.6), (60,0.8), (70,1), (80,1)\}$ Find α -cut of A for $\alpha = 0.4$.

Ans. \Rightarrow $\mathcal{U}_{\alpha} = \{ x \in \times | u(x) \ge \alpha \}$. $\alpha = 0.4$.

· · · · · · · · (40,0.4), (50,0.6), (60,0.8), (70,1), (80,1)}