Karatzas-Shreve solutions

2018年6月6日

目次

第1章		1
1.1	Stochastic Processes and σ -Fields	1
1.2	Stopping Times	7
1.3	Continuous Time Martingales	14
第 2 章		19
2.1	The Consistency Theorem	22
2.2	The Kolmogorov-Čentsov Theorem	25
2.3	The Space $C[0, \infty)$, Weak Convergence, and the Wiener Measure	27
2.4	Weak Convergence	29
参考文献		32

1.1 Stochastic Processes and σ -Fields

Problem 1.5 -

Let Y be a modification of X, and suppose that every sample path of both processes are right-continuous sample paths. Then X and Y are indistinguishable.

証明. Karatzas-Shreve の問題文には "suppose that both processes have a.s. right-continuous sample paths" と書いてあるがこれは誤植である. 実際,或る零集合 $0 \neq N \in \mathscr{F}$ が存在し, $\omega \in \Omega \backslash N$ に対する X,Y のパスが右連続であるとする. このとき

$$\begin{split} \{X_t = Y_t, \ \forall t \geq 0\} &= \{X_t = Y_t, \ \forall t \geq 0\} \cap N + \{X_t = Y_t, \ \forall t \geq 0\} \cap N^c \\ &= \{X_t = Y_t, \ \forall t \geq 0\} \cap N + \bigcap_{r \in \mathbb{Q} \cap [0, \infty)} \{X_r = Y_r\} \cap N^c \end{split}$$

が成り立つが、右辺第一項は (Ω, \mathcal{F}, P) が完備である場合でないと可測集合であるという保証がない。従って全てのサンプルパスが右連続であると仮定し直す必要がある。この場合

$$\{X_t = Y_t, \ \forall t \geq 0\} = \bigcap_{r \in \mathbb{Q} \cap [0, \infty)} \{X_r = Y_r\}$$

が成立するから、 $P(X_r = Y_r) = 1 (\forall r \ge 0)$ より

$$P(X_t = Y_t, \ \forall t \ge 0) = P\left(\bigcap_{r \in \mathbb{Q} \cap [0, \infty)} \{X_r = Y_r\}\right) = 1$$

が従う.

- Problem 1.7 -

Let *X* be a process with every sample path RCLL. Let *A* be the event that *X* is continuous on $[0, t_0)$. Show that $A \in \mathscr{F}_{t_0}^X$.

証明 (参照元:[2]). $[0,t_0)$ に属する有理数の全体を $\mathbb{Q}^* := \mathbb{Q} \cap [0,t_0)$ と表すとき,

$$A = \bigcap_{m \geq 1} \bigcup_{\substack{n \geq 1 \\ |p-q| < 1/n}} \left\{ \omega \in \Omega \ ; \quad \left| X_p(\omega) - X_q(\omega) \right| < \frac{1}{m} \right\}$$

が成立することを示せばよい. これが示されれば, $\omega \longmapsto \left(X_p(\omega),X_q(\omega)\right)$ の $\mathscr{F}^X_{t_0}/\mathscr{B}(\mathbb{R}^2)$ -可測性と

$$\Phi: \mathbb{R} \times \mathbb{R} \ni (x, y) \longmapsto |x - y| \in \mathbb{R}$$

の $\mathcal{B}(\mathbb{R}^2)/\mathcal{B}(\mathbb{R})$ -可測性より

$$\left\{ \left. \omega \in \Omega \right. ; \quad \left| X_p(\omega) - X_q(\omega) \right| < \frac{1}{m} \right. \right\} = \left\{ \left. \omega \in \Omega \right. ; \quad \left(X_p(\omega), X_q(\omega) \right) \in \Phi^{-1} \left(B_{1/m}(0) \right) \right\} \in \mathcal{F}^X_{t_0}$$

が得られ $A\in \mathscr{F}^X_{t_0}$ が従う. $\left(B_{1/m}(0)=\{\,x\in\mathbb{R}\,\,;\,\,\,|x|<1/m\,\}\,.\right)$

第一段 $\omega \in A^c$ を任意にとる. このとき或る $s \in (0,t_0)$ が存在して, $t \mapsto X_t(\omega)$ は t = s において左側不連続である. 従って或る $m \ge 1$ については, 任意の $n \ge 1$ に対し 0 < s - u < 1/3n を満たす u が存在して

$$|X_u(\omega) - X_s(\omega)| \ge \frac{1}{m}$$

を満たす. 一方でパスの右連続性より $0 を満たす <math>p,q \in \mathbb{Q}^*$ が存在して

$$\left|X_p(\omega) - X_s(\omega)\right| < \frac{1}{4m}, \quad \left|X_q(\omega) - X_u(\omega)\right| < \frac{1}{4m}$$

が成立する. このとき 0 < |p-q| < 1/n かつ

$$\left|X_p(\omega) - X_q(\omega)\right| \ge \left|X_p(\omega) - X_s(\omega)\right| - \left|X_s(\omega) - X_u(\omega)\right| - \left|X_q(\omega) - X_u(\omega)\right| \ge \frac{1}{2m}$$

が従い

$$\omega \in \bigcup_{m \geq 1} \bigcap_{n \geq 1} \bigcup_{\substack{p,q \in \mathbb{Q}^* \\ |p-q| < 1/n}} \left\{ \omega \in \Omega \; ; \quad \left| X_p(\omega) - X_q(\omega) \right| \geq \frac{1}{m} \right\}$$

を得る.

第二段 任意に $\omega \in A$ を取る. 各点で有限な左極限が存在するという仮定から,

$$X_{t_0}(\omega) \coloneqq \lim_{t \uparrow t_0} X_t(\omega)$$

と定めることにより *1 $t \mapsto X_t(\omega)$ は $[0,t_0]$ 上で一様連続となる. 従って

$$\omega \in \bigcap_{m \ge 1} \bigcup_{\substack{n \ge 1 \\ |n-q| < 1/n}} \bigcap_{\substack{p,q \in \mathbb{Q}^* \\ |n-q| < 1/n}} \left\{ \omega \in \Omega ; \quad \left| X_p(\omega) - X_q(\omega) \right| < \frac{1}{m} \right\}$$

を得る.

 $^{^{*1}}$ 実際 $X_{t_0}(\omega)$ は所与のものであるが、いまは $[0,t_0]$ 上での連続性を考えればよいから便宜上値を取り替える.

定義 1.1.1 (積 σ -加法族). Λ を空でない任意濃度の添字集合とする. $(S_{\lambda}, \mathcal{M}_{\lambda})$, $\lambda \in \Lambda$ を可測空間の族とし, $S \coloneqq \prod_{\lambda \in \Lambda} S_{\lambda}$ とおく. λ 射影を $p_{\lambda} : S \longrightarrow S_{\lambda}$, $\lambda \in \Lambda$ と書くとき,

$$\left\{ p_{\lambda}^{-1}(A_{\lambda}) ; A_{\lambda} \in \mathcal{M}_{\lambda}, \lambda \in \Lambda \right\}$$

が生成する σ -加法族を $(\mathcal{M}_{\lambda})_{\lambda \in \Lambda}$ の積 σ -加法族と呼び, $\bigotimes_{\lambda \in \Lambda} \mathcal{M}_{\lambda}$ で表す. $\Lambda = \{1, 2, \cdots\}$ の場合,

$$\bigotimes_{\lambda \in \Lambda} \mathcal{M}_{\lambda} = \mathcal{M}_1 \otimes \mathcal{M}_2 \otimes \cdots$$

とも表記する.

- Lemma1 for Exercise 1.8

 Λ を空でない高々可算集合とする. $(S_{\lambda})_{\lambda \in \Lambda}$ を第二可算公理を満たす位相空間の族とし $S := \prod_{\lambda \in \Lambda} S_{\lambda}$ とおくとき,

$$\mathscr{B}(S) = \bigotimes_{\lambda \in \Lambda} \mathscr{B}(S_{\lambda}) \tag{1.1}$$

が成立する. (S には直積位相を導入する. この場合, S もまた第二可算公理を満たす.)

証明. 各 S_λ の開集合系及び可算基を O_λ , \mathcal{B}_λ , S の開集合系を \mathcal{O} とし,また λ 射影を $p_\lambda:S\longrightarrow S_\lambda$ と書く.先ず,任意の $O_\lambda\in\mathcal{O}_\lambda$ に対して $p_\lambda^{-1}(O_\lambda)\in\mathcal{O}$ が満たされるから

$$\mathcal{O}_{\lambda} \subset \left\{ A_{\lambda} \in \mathcal{B}(S_{\lambda}) ; p_{\lambda}^{-1}(A_{\lambda}) \in \mathcal{B}(S) \right\}$$

が従い、右辺が σ -加法族であるから

$$\bigotimes_{\lambda \in \Lambda} \mathcal{B}(S_{\lambda}) = \sigma \left[\left\{ \; p_{\lambda}^{-1}(A_{\lambda}) \; \; ; \quad A_{\lambda} \in \mathcal{B}(S_{\lambda}), \; \lambda \in \Lambda \; \right\} \right] \subset \mathcal{B}(S)$$

を得る. 一方で

$$\mathscr{B} \coloneqq \left\{ \bigcap_{\lambda \in \Lambda'} p_{\lambda}^{-1}(B_{\lambda}) \; ; \quad B_{\lambda} \in \mathscr{B}_{\lambda}, \; \Lambda' \subset \Lambda : finite \; subset \right\}$$

は $\mathscr O$ の基底の一つである.実際,任意に $O \in \mathscr O$ を取れば,任意の $x \in O$ に対し或る有限集合 $\Lambda' \subset \Lambda$ が存在して

$$x \in \bigcap_{\lambda \in \Lambda'} p_{\lambda}^{-1}(O_{\lambda}) \subset O$$

が成立するが、更に S_{λ} の第二可算性より或る $\mathcal{B}'_{\lambda} \subset \mathcal{B}_{\lambda}$ ($\lambda \in \Lambda'$) が存在して

$$x \in \bigcap_{\lambda \in \Lambda'} p_{\lambda}^{-1}(O_{\lambda}) = \bigcap_{\lambda \in \Lambda'} \bigcup_{B_{\lambda} \in \mathscr{B}'_{\lambda}} p_{\lambda}^{-1}(B_{\lambda})$$

が満たされる. すなわち, 任意の $O \in \mathcal{O}$ は

$$O = \bigcup_{E \in \mathcal{B}'} E, \quad (\exists \mathcal{B}' \subset \mathcal{B})$$

と表される. \mathscr{B} は高々可算の濃度を持ち *2 , $\mathscr{B} \subset \prod_{\lambda \in \Lambda} \mathscr{B}(S_{\lambda})$ が満たされるから

$$\mathcal{O}\subset \bigotimes_{\lambda\in\Lambda}\mathcal{B}(S_\lambda)$$

が従い (1.1) を得る.

Lemma2 for Exercise 1.8 -

 $T=\{1,2,3,\cdots\}$ を高々可算集合とし、 S_i を第二可算公理を満たす位相空間、 X_i を確率空間 (Ω,\mathcal{F},P) 上の S_i -値確率変数とする $(i\in T)$. このとき、任意の並び替え $\pi:T\longrightarrow T$ に対して $S:=\prod_{i\in T}S_{\pi(i)}$ とおけば次が成立する:

$$\sigma(X_i; i \in T) = \{ \{ (X_{\pi(1)}, X_{\pi(2)}, \dots) \in A \} ; A \in \mathcal{B}(S) \}.$$
 (1.2)

証明.

第一段 射影 $S \longrightarrow S_{\pi(n)}$ を p_n で表す.任意に $t_i \in T$ を取り $n \coloneqq \pi^{-1}(i)$ とおけば,任意の $B \in \mathcal{B}(S_n)$ に対して

$$X_i^{-1}(B) = \left\{ (\cdots, X_{\pi(n)}, \cdots) \in p_n^{-1}(B) \right\} \in \left\{ \left\{ (X_{\pi(1)}, X_{\pi(2)}, \cdots) \in A \right\} ; A \in \mathcal{B}(S) \right\}$$

が成り立つから $\sigma(X_i; i \in T) \subset \{\{(X_{\pi(1)}, X_{\pi(2)}, \cdots) \in A\}; A \in \mathcal{B}(S)\}$ が従う.

第二段 任意の有限部分集合 $j \in T$ と $B_j \in \mathcal{B}(S_{\pi(j)})$ に対し

$$\{(X_{\pi(1)}, X_{\pi(2)}, \dots) \in p_i^{-1}(B_j)\} = X_{\pi(j)}^{-1}(B_j) \in \sigma(X_i; i \in T)$$

が成立するから

$$\left\{ p_i^{-1}(B_i) \; ; \quad B_i \in \mathcal{B}(S_{\pi(i)}), \; i \in T \right\} \subset \left\{ A \in \mathcal{B}(S) \; ; \quad \left\{ (X_{\pi(1)}, X_{\pi(2)}, \cdots) \in A \right\} \in \sigma(X_i; \; i \in T) \right\}$$

が従う. 右辺は σ -加法族であり、前補題より左辺は $\mathcal{B}(S)$ を生成するから前段と併せて(1.2)を得る.

Lemma3 for Exercise 1.8 -

 $X = \{X_t; 0 \le t < \infty\}$ を確率空間 (Ω, \mathcal{F}, P) 上の \mathbb{R}^d -値確率過程とする. 任意の空でない $S \subset [0, \infty)$ に対し

$$\mathcal{F}_{s}^{X} := \sigma(X_{s}; s \in S)$$

とおくとき, 任意の空でない $T \subset [0,\infty)$ に対して次が成立する:

$$\mathcal{F}_T^X := \bigcup_{S \subset T: at \ most \ countable} \mathcal{F}_S^X. \tag{1.3}$$

証明. 便宜上

$$\mathcal{F} \coloneqq \bigcup_{S \subset T: at \ most \ countable} \mathcal{F}_S^X$$

^{*&}lt;sup>2</sup> $L_0 \coloneqq \{\Lambda'; \quad \Lambda' \subset \Lambda : \textit{finite subset}\}$ は高々可算集合である。実際, $\Lambda_n \coloneqq \Lambda \times \cdots \times \Lambda$ (n copies of Λ) として $L \coloneqq \bigcup_{n=1}^{\#\Lambda} \Lambda_n$ とおき, $(x_1, \cdots, x_n) \in L$ に対し $\{x_1, \cdots, x_n\} \in L_0$ を対応させる $f: L \longrightarrow L_0$ を考えれば全射であるから card $L \subseteq \aleph_0$ が従う.

とおく. まず、任意の $S \subset T$ に対し $\mathcal{F}_S^X \subset \mathcal{F}_T^X$ が成り立つから

$$\mathcal{F}\subset\mathcal{F}_T^X$$

が従う. また $\sigma(X_t) = \mathcal{F}_{\{t\}}^X$, $(\forall t \in T)$ より

$$\bigcup_{t\in T}\sigma(X_t)\subset\mathcal{F}$$

が成り立つから、あとは $\mathcal F$ が σ -加法族であることを示せばよい. 実際、 $\mathcal F$ は σ -加法族の合併であるから Ω を含みかつ補演算で閉じる.また $B_n\in\mathcal F$ 、 $n=1,2,\cdots$ に対しては、 $B_n\in\mathcal F_{S_n}^X$ を満たす高々可算集合 $S_n\subset T$ が対応して

$$\bigcup_{n=1}^{\infty} \mathcal{F}_{S_n}^X = \bigcup_{n=1}^{\infty} \sigma(X_s; \ s \in S_n) \subset \sigma(X_s; \ s \in \bigcup_{n=1}^{\infty} S_n)$$

が成り立つから,

$$\bigcup_{n=1}^{\infty} B_n \in \sigma(X_s; \ s \in \bigcup_{n=1}^{\infty} S_n) \subset \mathcal{F}$$

が従う. ゆえに \mathcal{F} は σ -加法族であり (1.3) を得る.

-Exercise 1.8 -

Let X be a process whose sample paths are RCLL almost surely, and let A be the event that X is continuous on $[0, t_0)$. Show that A can fail to be in $\mathscr{F}^X_{t_0}$, but if $\{\mathscr{F}_t : t \ge 0\}$ is a fitration satisfying $\mathscr{F}^X_t \subset \mathscr{F}_t$, $t \ge 0$, and $\mathscr{F}^X_{t_0}$ contains all P-null sets of \mathscr{F} , then $A \in \mathscr{F}_{t_0}$.

証明.

第一段 高々可算な集合 $S=\{t_1,t_2,\cdots\}\subset [0,t_0]$ に対し、昇順に並び替えたものを $t_{\pi(1)}< t_{\pi(2)}<\cdots$ と表し

$$\mathcal{F}_S^X := \left\{ \left\{ (X_{t_{\pi(1)}}, X_{t_{\pi(2)}}, \cdots) \in B \right\} \; ; \quad B \in \mathscr{B}((\mathbb{R}^d)^{\#S}) \; \right\}$$

とおく. ただしS が可算無限の場合は $(\mathbb{R}^d)^{\#S} = \mathbb{R}^\infty$ である. このとき(1.2) より

$$\sigma(X_s; s \in S) = \mathcal{F}_S^X$$

が成り立ち, (1.3) より

$$\mathscr{F}_{t_0}^X = \sigma(X_t; \ 0 \le t \le t_0) = \bigcup_{S \subset [0,t_0]: at \ most \ countable} \mathscr{F}_S^X$$

が満たされる. すなわち、 $\mathscr{F}_{t_0}^X$ の任意の元は $\{(X_{t_1},X_{t_2},\cdots)\in B\}$, $(t_1< t_2<\cdots)$ の形で表される.

第二段

- Problem 1.10 unsolved -

Let *X* be a process with every sample path LCRL, and let *A* be the event that *X* is continuous on $[0, x_0]$. Let *X* be adapted to a right-continuous filtration $(\mathscr{F}_t)_{t \ge 0}$. Show that $A \in \mathscr{F}_{t_0}$.

証明.

第一段 $\mathbb{Q}^* := \mathbb{Q} \cap [0, t_0]$ とおく. いま, 任意の $n \ge 1$ と $r \in \mathbb{Q}^*$ に対し

$$B_n(r) := \bigcup_{m > 1} \bigcap_{k < m} \left\{ \omega \in \Omega ; \quad \left| X_r(\omega) - X_{r + \frac{1}{k}}(\omega) \right| \le \frac{1}{n} \right\}$$

と定めるとき、

$$A = \bigcap_{r \in \mathbb{Q}^*} \bigcap_{n \ge 1} B_n(r)$$

が成立することを示す. これが示されれば,

$$\left\{ \omega \in \Omega \; ; \quad \left| X_r(\omega) - X_{r+\frac{1}{k}}(\omega) \right| \le \frac{1}{n} \right\} \in \mathscr{F}_{r+\frac{1}{k}}, \quad (\forall r \in \mathbb{Q}^*, \ k \ge 1)$$

とフィルトレーションの右連続性から

$$B_n(r)\in\bigcap_{k\geq m}\mathcal{F}_{r+\frac{1}{k}}=\mathcal{F}_{r+}=\mathcal{F}_r$$

が従い $A \in \mathcal{F}_{t_0}$ が出る.

第二段

- Problem 1 16

If the process X is measurable and the random time T is finite, then the function X_T is a random variable.

証明.

$$\tau: \Omega \ni \omega \longmapsto (T(\omega), \omega) \in [0, \infty) \times \Omega$$

とおけば、任意の $A \in \mathcal{B}([0,\infty))$ 、 $B \in \mathcal{F}$ に対して

$$\tau^{-1}(A \times B) = \{ \omega \in \Omega : (T(\omega), \omega) \in A \times B \} = T^{-1}(A) \cap B \in \mathscr{F}$$

が満たされる

$$\left\{\,A\times B\,\,;\quad A\in\mathcal{B}([0,\infty)),\;B\in\mathcal{F}\,\right\}\subset\left\{\,E\in\mathcal{B}([0,\infty))\otimes\mathcal{F}\,\,;\quad\tau^{-1}(E)\in\mathcal{F}\,\right\}$$

が従い τ の $\mathscr{F}/\mathscr{B}([0,\infty))\otimes\mathscr{F}$ -可測性が出る. $X_T=X\circ \tau$ より X_T は可測 $\mathscr{F}/\mathscr{B}(\mathbb{R}^d)$ である.

- Problem 1.17 -

Let *X* be a measurable process and *T* a random time. Show that the collection of all sets of the form $\{X_T \in A\}$ and $\{X_T \in A\} \cup \{T = \infty\}; A \in \mathcal{B}(\mathbb{R})$, forms a sub- σ -field of \mathscr{F} .

証明. X_T の定義域は $\{T < \infty\}$ であるから,

$$\mathscr{G} := \{ \{ T < \infty \} \cap E ; E \in \mathscr{F} \}$$

とおけば、前問の結果より X_T は可測 $\mathscr{G}/\mathscr{B}(\mathbb{R})$ である. $\mathscr{G} \subset \mathscr{F}$ より

$$\mathcal{H}:=\{\,\{X_T\in A\},\,\,\{X_T\in A\}\cup\{T=\infty\}\,\,;\quad A\in\mathcal{B}(\mathbb{R})\,\}$$

に対して $\mathcal{H} \subset \mathcal{F}$ が成立する. あとは \mathcal{H} が σ -加法族であることを示せばよい. 実際, $A = \mathbb{R}$ のとき

$$\{X_T \in A\} \cup \{T = \infty\} = \{T < \infty\} \cup \{T = \infty\} = \Omega$$

となり $\Omega \in \mathcal{H}$ が従い、また

$$\{X_T \in A\}^c = \{X_T \in A^c\} \cup \{T = \infty\},\$$
$$(\{X_T \in A\} \cup \{T = \infty\})^c = \{X_T \in A^c\} \cap \{T < \infty\} = \{X_T \in A^c\}$$

より \mathcal{H} は補演算で閉じる. 更に $B_n \in \mathcal{H}$ $(n = 1, 2, \cdots)$ を取れば,

$$\bigcup_{n=1}^{\infty} B_n = \left\{ X_T \in \bigcup_{n=1}^{\infty} A_n \right\}$$

或は

$$\bigcup_{n=1}^{\infty} B_n = \left\{ X_T \in \bigcup_{n=1}^{\infty} A_n \right\}$$

$$\bigcup_{n=1}^{\infty} B_n = \left\{ X_T \in \bigcup_{n=1}^{\infty} A_n \right\} \cup \{T = \infty\}$$

が成立し $\bigcup_{n=1}^{\infty} B_n \in \mathcal{H}$ を得る.

Stopping Times 1.2

-[0,∞]の位相 -

 $[0,\infty]$ の位相は拡張実数 $[-\infty,\infty]$ の相対位相である. $O\subset [-\infty,\infty]$ が開集合であるとは, 任意の $x\in O$ に対し,

- (O1) $x \in \mathbb{R}$ なら或る $\epsilon > 0$ が存在して $B_{\epsilon}(x) \subset O$ が満たされる,
- (O2) $x = \infty$ なら或る $a \in \mathbb{R}$ が存在して $(a, \infty] \subset O$ が満たされる,
- (O3) $x = -\infty$ なら或る $a \in \mathbb{R}$ が存在して $[-\infty, a) \subset O$ が満たされる,

で定義される. この性質を満たす O の全体に \emptyset を加えたものが $[-\infty,\infty]$ の位相であり,

$$[-\infty, r), \quad (r, r'), \quad (r, \infty], \quad (r, r' \in \mathbb{Q})$$

の全体が可算開基となる. 従って [0,∞] の位相の可算開基は

$$[0, r), (r, r'), (r, \infty), (r, r' \in \mathbb{Q} \cap [0, \infty])$$

の全体であり、写像 $\tau:\Omega\longrightarrow [0,\infty]$ が $\mathscr{F}/\mathscr{B}([0,\infty])$ -可測性を持つかどうかを調べるには

$$\{\tau < a\} = \tau^{-1}([0, a)) \in \mathscr{F}, \quad (\forall a \in (0, \infty))$$

が満たされているかどうかを確認すれば十分である.

Problem 2.2 -

Let X be a stochastic process and T a stopping time of $\{\mathscr{F}_t^X\}$. Suppose that for some pair $\omega, \omega' \in \Omega$, we have $X_t(\omega) = X_t(\omega')$ for all $t \in [0, T(\omega)] \cap [0, \infty)$. Show that $T(\omega) = T(\omega')$.

証明 (参照元:[3]). ω,ω' を分離しない集合族 $\mathscr H$ を

$$\mathcal{H} := \{ A \subset \Omega ; \{\omega, \omega'\} \subset A, or \{\omega, \omega'\} \subset \Omega \setminus A \}$$

により定めれば、 $\mathcal H$ は σ -加法族である. このとき、 $\{T=T(\omega)\}\in \mathcal H$ を示せばよい.

case1 $T(\omega) = \infty$ の場合, 任意の $A \in \mathcal{B}(\mathbb{R}^d)$ 及び $0 \le t < \infty$ に対して, 仮定より

$$\omega \in X_t^{-1}(A) \quad \Leftrightarrow \quad \omega' \in X_t^{-1}(A)$$

が成り立ち

$$\sigma(X_t;\ 0\leq t<\infty)\subset\mathcal{H}$$

となる. 任意の $t \geq 0$ に対し $\{T \leq t\} \in \mathcal{F}_t^X \subset \sigma(X_t; \ 0 \leq t < \infty)$ が満たされるから

$$\{T = \infty\} = \bigcap_{n=1}^{\infty} \{T \le n\}^c \in \sigma(X_t; \ 0 \le t < \infty) \subset \mathcal{H}$$

が成立し、 $\omega \in \{T = \infty\}$ より $\omega' \in \{T = \infty\}$ が従い $T(\omega) = T(\omega')$ を得る.

 ${\sf case2}$ $T(\omega) < \infty$ の場合、 ${\sf case1}$ と同様に任意の $0 \le t \le T(\omega)$ に対し $\sigma(X_t) \subset \mathcal{H}$ が満たされるから

$$\mathscr{F}_{T(\omega)}^X \subset \mathscr{H}$$

が成り立つ. $\{T=T(\omega)\}\in \mathscr{F}^X_{T(\omega)}$ より $\omega'\in \{T=T(\omega)\}$ が従い $T(\omega)=T(\omega')$ を得る.

Lemma for Proposition 2.3 —

 $(\mathscr{F}_t)_{t\geq 0}$ を可測空間 (Ω,\mathscr{F}) のフィルトレーションとするとき, 任意の $t\geq 0$ 及び任意の点列 $s_1>s_2>\cdots>t, (s_n\downarrow t)$ に対して次が成立する:

$$\bigcap_{s>t} \mathscr{F}_s = \bigcap_{n=1}^{\infty} \mathscr{F}_{s_n}.$$

証明. 先ず任意の $n \ge 1$ に対して

$$\bigcap_{s>t}\mathscr{F}_s\subset\mathscr{F}_{s_i}$$

が成り立つから

$$\bigcap_{s>t} \mathscr{F}_s \subset \bigcap_{n=1}^{\infty} \mathscr{F}_{s_n}$$

を得る. 一方で、任意の s > t に対し $s \ge s_n$ を満たす n が存在するから、

$$\mathscr{F}_s\supset\mathscr{F}_{s_n}\supset\bigcap_{n=1}^\infty\mathscr{F}_{s_n}$$

が成立し

$$\bigcap_{s>t} \mathscr{F}_s \supset \bigcap_{n=1}^{\infty} \mathscr{F}_{s_n}$$

が従う.

 $(\mathcal{F}_{t+})_{t\geq 0}$ は右連続である.実際,任意の $t\geq 0$ で

$$\bigcap_{s>t} \mathcal{F}_{s+} = \bigcap_{s>t} \bigcap_{u>s} \mathcal{F}_u = \bigcap_{s>t} \mathcal{F}_s = \mathcal{F}_{t+}$$

が成立する.

- Corollary 2.4*3 -

T is an optional time of the filtration $\{\mathscr{F}_t\}$ if and only if it is a stopping time of the (right-continuous!) filtration $\{\mathscr{F}_{t+}\}$.

言い換えれば、確率時刻 T に対し

$$\{T < t\} \in \mathcal{F}_t, \ \forall t \ge 0 \quad \Leftrightarrow \quad \{T \le t\} \in \mathcal{F}_{t+}, \ \forall t \ge 0$$

が成り立つことを主張している.

証明. T が (\mathscr{F}_{t+}) -停止時刻であるとき,任意の $n \geq 1$ に対して $\{T \leq t-1/n\} \in \mathscr{F}_{(t-1/n)+} \subset \mathscr{F}_t$ が満たされるから

$${T < t} = \bigcup_{n=1}^{\infty} \left\{ T \le t - \frac{1}{n} \right\} \in \mathscr{F}_t$$

が従う. 逆に T が (\mathcal{F}_t) -弱停止時刻のとき, 任意の $m \ge 1$ に対し

$$\{T \le t\} = \bigcap_{n=m}^{\infty} \left\{ T < t + \frac{1}{n} \right\} \in \mathscr{F}_{t+1/m}$$

が成立するから

$$\{T \le t\} \in \bigcap_{n=1}^{\infty} \mathscr{F}_{t+1/n} = \mathscr{F}_{t+1}$$

を得る.

Problem 2.6

If the set Γ in Example 2.5 is open, show that H_{Γ} is an optional time.

^{*3} optional time の訳語がわからないので弱停止時刻と呼ぶ.

第 1 章 10

証明. $\{H_{\Gamma} < 0\} = \emptyset$ であるから、以下 t > 0 とする. $H_{\Gamma}(\omega) < t \Leftrightarrow \exists s < t, X_s(\omega) \in \Gamma$ より

$$\{H_{\Gamma} < t\} = \bigcup_{0 \le s \le t} \{X_s \in \Gamma\}$$

となる. また全てのパスが右連続であることと Γ が開集合であることにより

$$\bigcup_{0 \leq s < t} \{X_s \in \Gamma\} = \bigcup_{\substack{0 \leq r < t \\ r \in \mathbb{O}}} \{X_r \in \Gamma\}$$

が成り立ち $\{H_{\Gamma} < t\} \in \mathcal{F}_t$ が従う.

Problem 2.7 –

If the set Γ in Example 2.5 is closed and the sample paths of the process X are continuous, then H_{Γ} is a stopping time.

証明.

第一段 \mathbb{R}^d 上の Euclid 距離を ρ で表し,

$$\rho(x,\Gamma) := \inf_{y \in \Gamma} \rho(x,y), \quad \Gamma_n := \left\{ x \in \mathbb{R}^d \; ; \quad \rho(x,\Gamma) < \frac{1}{n} \right\}, \quad (x \in \mathbb{R}^d, \; n = 1, 2, \cdots)$$

とおく. $\mathbb{R}^d \ni x \mapsto \rho(x,\Gamma)$ の連続性より Γ_n は開集合であるから、Problem 2.6 の結果より $T_n \coloneqq H_{\Gamma_n}$ で定める T_n 、 $n=1,2,\cdots$ は (\mathscr{F}_t) -弱停止時刻であり、また $H\coloneqq H_\Gamma$ とおけば次の (1) と (2) が成立する:

(1)
$$\{H=0\} = \{X_0 \in \Gamma\},\$$

(2)
$$H(\omega) \le t \iff T_n(\omega) < t, \forall n = 1, 2, \dots, (\forall \omega \in \{H > 0\}, \forall t > 0).$$

(1) と (2) 及び T_n , $n = 1, 2, \cdots$ が (\mathcal{F}_t)-弱停止時刻であることにより

$$\{H \le t\} = \{H \le t\} \cap \{H > 0\} + \{H = 0\} = \left\{\bigcap_{n=1}^{\infty} \{T_n < t\}\right\} \cap \{H > 0\} + \{H = 0\} \in \mathcal{F}_t, \quad (\forall t \ge 0) \in \mathcal{F}_t$$

が成立するから H は (\mathcal{F}_t) -停止時刻である.

第二段 (1) を示す. 実際, $X_0(\omega) \in \Gamma$ なら $H(\omega) = 0$ であり, $X_0(\omega) \notin \Gamma$ なら, Γ が閉であることとパスの連続性より

$$X_t(\omega) \notin \Gamma$$
, $(0 \le t \le h)$

を満たす h > 0 が存在して $H(\omega) \ge h > 0$ となる.

第三段 $\omega \in \{H > 0\}, t > 0$ として (2) を示す. まずパスの連続性より

$$T_n(\omega) < t \iff \exists s \le t, X_s(\omega) \in \Gamma_n$$

が成り立つ. $H(\omega) \le t$ の場合, $\beta := H(\omega)$ とおけば, Γ が閉であることとパスの連続性より

$$X_{\beta}(\omega) \in \Gamma \subset \Gamma_n$$
, $(\forall n = 1, 2, \cdots)$

が満たされ $T_n(\omega) < t \ (\forall n \ge 1)$ が従う. 逆に、 $H(\omega) > t$ のとき

$$X_s(\omega) \notin \Gamma$$
, $(\forall s \in [0, t])$

が満たされ、パスの連続性と ρ の連続性より $[0,t] \ni s \mapsto \rho(X_s(\omega),\Gamma)$ は連続であるから、

$$d \coloneqq \min_{s \in [0,t]} \rho(X_s(\omega), \Gamma) > 0$$

が定まる. このとき 1/n < d/2 を満たす $n \ge 1$ を一つ取れば

$$X_s(\omega) \notin \Gamma_n$$
, $(\forall s \in [0, t])$

が成立する. 実際, 任意の $s \in [0,t]$, $x \in \Gamma_n$ に対し

$$\rho(X_s(\omega), x) \ge \rho(X_s(\omega), \Gamma) - \rho(x, \Gamma) \ge d - \frac{d}{2} = \frac{d}{2} > \frac{1}{n}$$

が満たされる. 従って $T_n(\omega) \ge t$ となる.

·Lemma 2.9 の式変形について -

第一の式変形は

$$\begin{split} \{T+S>t\} &= \{T=0,\ T+S>t\} + \{0 < T < t,\ T+S>t\} + \{T \ge t,\ T+S>t\} \\ &= \{T=0,\ T+S>t\} + \{0 < T < t,\ T+S>t\} + \{T \ge t,\ T+S>t,\ S=0\} \\ &+ \{T \ge t,\ T+S>t,\ S>0\} \\ &= \{T=0,\ S>t\} + \{0 < T < t,\ T+S>t\} + \{T>t,\ S=0\} + \{T\ge t,\ S>0\} \end{split}$$

である.

Problem 2.10

Let T, S be optional times; then T + S is optional. It is a stopping time, if one of the following conditions holds:

- (i) T > 0, S > 0;
- (ii) T > 0, T is a stopping time.

証明. T,S が (\mathcal{F}_t) -弱停止時刻であるとすれば, 任意の t>0 に対し

$$\begin{split} \{T+S < t\} &= \{T=0, \ T+S < t\} + \{0 < T < t, \ T+S < t\} \\ &= \{T=0, \ S < t\} + \bigcup_{\substack{0 < r < t \\ r \in \mathbb{Q}}} \{0 < T < r, \ S < t-r\} \\ &\in \mathcal{F}_t \end{split}$$

が成り立つから T+S も (\mathcal{F}_t)-弱停止時刻である.

(i) この場合 $\{T + S \le 0\} = \emptyset$ である. また t > 0 なら

$$\{T+S>t\} = \{0 < T < t, \ T+S>t\} + \{T \geq t, \ T+S>t\} = \bigcup_{\substack{0 < r < t \\ r \in \mathbb{Q}}} \{r < T < t, \ S>t-r\} + \{T \geq t\} \in \mathcal{F}_t$$

が成立する.

第 1 章 12

(ii) この場合も $\{T+S \le 0\} = \emptyset$ であり、また t > 0 のとき

$$\begin{split} \{T+S>t\} &= \{0 < T < t, \ T+S>t\} + \{T \geq t, \ T+S>t\} \\ &= \{0 < T < t, \ T+S>t\} + \{T \geq t, \ T+S>t, \ S=0\} + \{T \geq t, \ T+S>t, \ S>0\} \\ &= \{0 < T < t, \ T+S>t\} + \{T>t, \ S=0\} + \{T \geq t, \ S>0\} \\ &\in \mathcal{F}_t \end{split}$$

が成立する.

Problem 2.13

Verify that \mathscr{F}_T is actually a σ -field and T is \mathscr{F}_T -measurable. Show that if $T(\omega) = t$ for some constant $t \ge 0$ and every $\omega \in \Omega$, then $\mathscr{F}_T = \mathscr{F}_t$.

証明.

第一段 \mathscr{T}_T が σ -加法族であることを示す.実際, $\Omega \cap \{T \leq t\} = \{T \leq t\} \in \mathscr{T}_t, \ (\forall t \geq 0) \$ より $\Omega \in \mathscr{T}_T$ が従い,また

$$A^{c} \cap \{T \leq t\} = \{T \leq t\} - A \cap \{T \leq t\}, \quad \left\{\bigcup_{n=1}^{\infty} A_{n}\right\} \cap \{T \leq t\} = \bigcup_{n=1}^{\infty} (A_{n} \cap \{T \leq t\})$$

より \mathcal{F}_T は補演算と可算和で閉じる.

第二段 任意の $\alpha \ge 0$ に対し

$$\{T \leq \alpha\} \cap \{T \leq t\} = \{T \leq \alpha \land t\} \in \mathscr{F}_{\alpha \land t} \subset \mathscr{F}_t$$

が成立しTの $\mathscr{F}_T/\mathscr{B}([0,\infty])$ -可測性が出る.

第三段 $A \in \mathcal{F}_T$ なら $A = A \cap \{T \le t\} \in \mathcal{F}_t$ となり、 $A \in \mathcal{F}_t$ については、任意の $s \ge 0$ に対し $s \ge t$ なら

$$A \cap \{T \leq s\} = A \in \mathscr{F} \subset \mathscr{F}_s$$

s < t なら

$$A \cap \{T \leq s\} = \emptyset \in \mathscr{F}_s$$

が成り立ち $A \in \mathcal{F}_T$ が従う.

Exercise 2.14

Let T be a stopping time and S a random time such that $S \ge T$ on Ω . If S is \mathscr{F}_T -measurable, then it is also a stopping time.

証明. 任意の $t \ge 0$ に対し

$${S \le t} = {S \le t} \cap {T \le t} \in \mathscr{F}_t$$

が成立する.

- Problem 2.17 修正 -

Let T, S be stopping times and Z an $\mathscr{F}/\mathscr{B}(\mathbb{R})$ -measurable, integrable random variable. We have

- (i) $\mathbb{1}_{\{T \le S\}} \operatorname{E}[Z \mid \mathscr{F}_T] = \mathbb{1}_{\{T \le S\}} \operatorname{E}[Z \mid \mathscr{F}_{S \wedge T}], P-a.s.$
- (ii) $\mathbb{1}_{\{T < S\}} \mathbb{E}[Z \mid \mathscr{F}_T] = \mathbb{1}_{\{T < S\}} \mathbb{E}[Z \mid \mathscr{F}_{S \wedge T}], P-a.s.$
- (iii) $\mathrm{E}\left[\mathrm{E}\left[Z\mid\mathscr{F}_{T}\right]\mid\mathscr{F}_{S}\right]=\mathrm{E}\left[Z\mid\mathscr{F}_{S\wedge T}\right],\ P\text{-a.s.}$

証明.

第一段 任意の $A \in \mathscr{F}_T$ に対し $A \cap \{T \leq S\} \in \mathscr{F}_{S \wedge T}$ が成り立つ. 実際,

$$A \cap \{T \leq S\} \cap \{S \wedge T \leq t\} = \left[A \cap \{T \leq t\}\right] \cap \{T \leq S\} \cap \{S \wedge T \leq t\} \in \mathscr{F}_t, \quad (\forall t \geq 0)$$

が成立する. 同様に $A \cap \{T < S\} \in \mathcal{F}_{S \wedge T}$ も得られる.

第二段 任意の $A \in \mathcal{F}_T$ に対し、前段の結果より

$$\int_{A} 1\!\!1_{\{T \leq S\}} \operatorname{E}\left[Z \mid \mathscr{F}_{T}\right] \ dP = \int_{A \cap \{T \leq S\}} Z \ dP = \int_{A \cap \{T \leq S\}} \operatorname{E}\left[Z \mid \mathscr{F}_{S \wedge T}\right] \ dP = \int_{A} 1\!\!1_{\{T \leq S\}} \operatorname{E}\left[Z \mid \mathscr{F}_{S \wedge T}\right] \ dP$$

が従う. $\mathbb{1}_{|T\leq S|} \mathbb{E}[Z\mid \mathscr{F}_{S\wedge T}]$ も $\mathscr{F}_T/\mathscr{B}(\mathbb{R})$ -可測であるから (i) が得られ、同様に (ii) も出る.

第三段 任意の $B \in \mathcal{F}_S$ に対し、第一段と第二段の結果により

$$\begin{split} \int_{B} \mathbf{E}\left[\mathbf{E}\left[Z\mid\mathcal{F}_{T}\right]\mid\mathcal{F}_{S}\right] \; dP &= \int_{B} \mathbf{E}\left[Z\mid\mathcal{F}_{T}\right] \; dP = \int_{B} \mathbb{1}_{\{S < T\}} \mathbf{E}\left[Z\mid\mathcal{F}_{T}\right] \; dP + \int_{B} \mathbb{1}_{\{T \leq S\}} \mathbf{E}\left[Z\mid\mathcal{F}_{T}\right] \; dP \\ &= \int_{B \cap \{S < T\}} Z \; dP + \int_{B} \mathbb{1}_{\{T \leq S\}} \mathbf{E}\left[Z\mid\mathcal{F}_{S \wedge T}\right] \; dP \\ &= \int_{B \cap \{S < T\}} \mathbf{E}\left[Z\mid\mathcal{F}_{S \wedge T}\right] \; dP + \int_{B} \mathbb{1}_{\{T \leq S\}} \mathbf{E}\left[Z\mid\mathcal{F}_{S \wedge T}\right] \; dP \\ &= \int_{B} \mathbf{E}\left[Z\mid\mathcal{F}_{S \wedge T}\right] \; dP \end{split}$$

が成り立つ. $E[Z \mid \mathscr{F}_{S \wedge T}]$ も $\mathscr{F}_{S}/\mathscr{B}(\mathbb{R})$ -可測であるから (iii) を得る.

Proposition 2.18 —

Let $X = \{X_t, \mathscr{F}_t : 0 \le t < \infty\}$ be a progressively measurable process, and let T be a stopping time of the filtration $\{\mathscr{F}_t\}$. Then the random variable X_T of Definition 1.15, defined on the set $\{T < \infty\} \in \mathscr{F}_T$, is \mathscr{F}_T -measurable, and the "stopped process" $\{X_{T \wedge t}, \mathscr{F}_t : 0 \le t < \infty\}$ is progressively measurable.

証明.

第一段 停止過程の発展的可測性を示す. $t\geq 0$ を固定する.このとき,全ての $\omega\in\Omega$ に対して $[0,t]\ni s\longmapsto T(\omega)\land s$ は連続であり,かつ全ての $s\in[0,t]$ に対し $\Omega\ni\omega\longmapsto T(\omega)\land s$ は $\mathscr{F}_s/\mathscr{B}([0,t])$ -可測であるから, $[0,t]\times\Omega\ni(s,\omega)\longmapsto T(\omega)\land s$ は $\mathscr{B}([0,t])\otimes\mathscr{F}_s/\mathscr{B}([0,t])$ -可測である.従って,任意の $A\in\mathscr{B}([0,t])$ と $B\in\mathscr{F}_t$ に対し

$$\{ (s,\omega) \in [0,t] \times \Omega \ ; \quad (T(\omega) \wedge s,\omega) \in A \times B \} = \{ (s,\omega) \in [0,t] \times \Omega \ ; \quad T(\omega) \wedge s \in A \} \cap ([0,t] \times B) \\ \in \mathcal{B}([0,t]) \otimes \mathcal{F}_t$$

第 1 章 **14**

が成り立つから、任意の $E \in \mathcal{B}([0,t]) \otimes \mathcal{F}_t$ に対して

$$\{(s,\omega)\in[0,t]\times\Omega\;\;;\;\;\;(T(\omega)\wedge s,\omega)\in E\;\}\in\mathscr{B}([0,t])\otimes\mathscr{F}_t$$

が満たされ $(s,\omega) \mapsto (T(\omega) \land s,\omega)$ の $\mathcal{B}([0,t]) \otimes \mathcal{F}_s/\mathcal{B}([0,t]) \otimes \mathcal{F}_s$ -可測性を得る.

$$X(s,\omega) = X|_{[0,t]\times\Omega}(s,\omega), \quad (\forall (s,\omega)\in[0,t]\times\Omega)$$

かつ $X|_{[0,t]\times\Omega}$ は $\mathcal{B}([0,t])\otimes\mathcal{F}_s/\mathcal{B}(\mathbb{R}^d)$ -可測であるから, $[0,t]\times\Omega\ni(s,\omega)\longmapsto X(T(\omega)\wedge s,\omega)=X|_{[0,t]\times\Omega}(T(\omega)\wedge s,\omega)$ の $\mathcal{B}([0,t])\otimes\mathcal{F}_t/\mathcal{B}(\mathbb{R}^d)$ -可測性が出る.

第二段 Fubini の定理より $\omega \longmapsto X(T(\omega) \wedge t, \omega)$ は $\mathscr{F}_t/\mathscr{B}(\mathbb{R}^d)$ であるから,任意の $B \in \mathscr{B}(\mathbb{R}^d)$ に対し

$${X_T \in B} \cap {T \le t} = {X_{T \land t} \in B} \cap {T \le t} \in \mathscr{F}_t, \quad (\forall t \ge 0)$$

が成立し $X_T \mathbb{1}_{\{T<\infty\}}$ の $\mathscr{F}_T/\mathscr{B}(\mathbb{R}^d)$ -可測性を得る.

Problem 2.19 -

Under the same assumption as in Proposition 2.18, and with f(t, x); $[0, \infty) \times \mathbb{R}^d \longrightarrow \mathbb{R}$ a bounded, $\mathscr{B}([0, \infty)) \otimes \mathscr{B}(\mathbb{R}^d)$ measurable function, show that the process $Y_t = \int_0^t f(s, X_s) ds$; $t \ge 0$ is progressively measurable with respect to $\{\mathscr{F}_t\}$, and Y_T is an \mathscr{F}_T -measurable random variable.

証明. $[0,t] \times \Omega \ni (s,\omega) \mapsto f(s,X_s(\omega))$ が $\mathcal{B}([0,t]) \otimes \mathcal{F}_t/\mathcal{B}(\mathbb{R})$ -可測であれば、Fuini の定理より $\{Y_t,\mathcal{F}_t; 0 \leq t < \infty\}$ は適合過程となり、可積分性より $t \longmapsto Y_t(\omega)$ 、($\forall \omega \in \Omega$) が連続であるから Y の発展的可測性が従う.実際、

$$[0,t] \times \Omega \ni (s,\omega) \longmapsto (s,X_s(\omega)) = (s,X|_{[0,t] \times \Omega}(s,\omega))$$

による $A \times B$, $(A \in \mathcal{B}([0,\infty)), B \in \mathcal{B}(\mathbb{R}^d))$ の引き戻しは

$$\{([0,t]\cap A)\times\Omega\}\cap X|_{[0,t]\times\Omega}^{-1}(B)\in\mathscr{B}([0,t])\otimes\mathscr{F}_t$$

となるから、 $[0,t] \times \Omega \ni (s,\omega) \mapsto f(s,X_s(\omega))$ は $\mathcal{B}([0,t]) \otimes \mathcal{F}_t/\mathcal{B}(\mathbb{R})$ -可測である.

1.3 Continuous Time Martingales

1.3.1 Fundamental Inequalities

- Lemma: 凸関数の片側微係数の存在 -

任意の凸関数 $\varphi: \mathbb{R} \longrightarrow \mathbb{R}$ は各点で左右の微係数が存在する. 特に、凸関数は連続である.

証明. 凸性より任意の x < y < z に対して

$$\frac{\varphi(y) - \varphi(x)}{y - x} \le \frac{\varphi(z) - \varphi(x)}{z - x} \le \frac{\varphi(z) - \varphi(y)}{z - y}$$

が満たされる. 従って,xを固定すれば,xに単調減少に近づく任意の点列 $(x_n)_{n=1}^\infty$ に対し

$$\left(\frac{f(x_n) - f(x)}{x_n - x}\right)_{n=1}^{\infty}$$

は下に有界な単調減少列となり下限が存在する.xに単調減少に近づく別の点列 $(y_k)_{k=1}^{\infty}$ を取れば

$$\inf_{k \in \mathbb{N}} \frac{f(y_k) - f(x)}{y_k - x} \le \frac{f(x_n) - f(x)}{x_n - x} \quad (n = 1, 2, \dots)$$

より

$$\inf_{k \in \mathbb{N}} \frac{f(y_k) - f(x)}{y_k - x} \le \inf_{n \in \mathbb{N}} \frac{f(x_n) - f(x)}{x_n - x}$$

が成立し、 (x_n) 、 (y_k) の立場を変えれば逆向きの不等号も得られる。すなわち極限は点列に依らず確定し、 φ は x で右側 微係数を持つ。同様に左側微係数も存在し、特に φ の連続性及び Borel 可測性が従う.

Lemma: Jensen の不等式 -

 (Ω, \mathscr{F}, P) を確率空間, $X: \Omega \longrightarrow \mathbb{R}$ を可測 $\mathscr{F}/\mathscr{B}(\mathbb{R})$ とする. このとき, 任意の部分 σ -加法族 $\mathscr{G} \subset \mathscr{F}$ 及び凸関数 $\varphi: \mathbb{R} \longrightarrow \mathbb{R}$ に対し, $X, \varphi(X)$ が $\Omega \perp P$ に関して可積分であるなら次が成立する:

$$\varphi(E[X | \mathcal{G}]) \le E[\varphi(X) | \mathcal{G}], \quad P\text{-a.s.}$$

証明. φ は各点 $x \in \mathbb{R}$ で右側接線を持つから、それを $t \mapsto a_x t + b_x$ と表せば、

$$\varphi(t) = \sup_{x \in \mathbb{R}} \{a_x t + b_x\} \quad (\forall t \in \mathbb{R})$$
(1.4)

が成立する. よって任意の $x \in \mathbb{R}$ に対して

$$\varphi(X(\omega)) \ge a_x X(\omega) + b_x$$

が満たされるから

$$E[\varphi(X) | \mathcal{G}] \ge a_x E[X | \mathcal{G}] + b_x \quad (\forall x \in \mathbb{R}), \quad P\text{-a.s.}$$

が従い、 $x \in \mathbb{R}$ の任意性と (1.4) より

$$E[\varphi(X) | \mathcal{G}] \ge \varphi(E[X | \mathcal{G}]), \quad P\text{-a.s.}$$

- Proposition 3.6 -

Let $\{X_t, \mathscr{F}_t ; 0 \le t < \infty\}$ be a martingale (respectively, submartingale), and $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$ a convex (respectively, convex nondecreasing) function, such that $E[\varphi(X_t)] < \infty$ holds for every $t \ge 0$. Then $\{\varphi(X_t), \mathscr{F}_t ; 0 \le t < \infty\}$ is a submartingale.

第 1 章 16

証明. $(X_t)_{t\geq 0}$ がマルチンゲールであり φ が凸であるとき、Jensen の不等式より P-a.s. の $\omega \in \Omega$ に対し

$$\varphi(X_s(\omega)) = \varphi(E[X_t \mid \mathscr{F}_s](\omega)) \le E[\varphi(X_t) \mid \mathscr{F}_s](\omega)$$

が成り立つ. $(X_t)_{t\geq 0}$ が劣マルチンゲールであり φ が凸かつ単調増大であるとき, P-a.s. の $\omega \in \Omega$ に対し

$$\varphi(X_s(\omega)) \le \varphi(\mathbb{E}[X_t \mid \mathscr{F}_s](\omega)) \le \mathbb{E}[\varphi(X_t) \mid \mathscr{F}_s](\omega)$$

が成り立つ.

離散時間の任意抽出定理 -

Theorem 3.8 (i)

Let $\{X_t, \mathscr{F}_t : 0 \le t < \infty\}$ be a submartingale whose every path is right-continuous, let $[\sigma, \tau]$ be a subinterval of $[0, \infty)$, and let $\alpha < \beta$, $\lambda > 0$ be real numbers. We have the following results:

(i) First submartingale inequality:

$$\lambda \cdot P \left[\sup_{\sigma < t < \tau} X_t \ge \lambda \right] \le E(X_{\tau}^+).$$

証明. $n \ge 1$ に対し $[\sigma, \tau]$ を 2^n 等分に分割し

$$\begin{split} E_n &\coloneqq \left\{ \max_{k=0,1,\cdots,2^n} X_{\sigma + \frac{k}{2^n}(\tau - \sigma)} > \lambda \right\}, \\ E_n^0 &\coloneqq \left\{ X_\sigma > \lambda \right\}, \quad E_n^m \coloneqq \left\{ \max_{k=0,1,\cdots,m-1} X_{\sigma + \frac{k}{2^n}(\tau - \sigma)} \leq \lambda, \ X_{\sigma + \frac{m}{2^n}(\tau - \sigma)} > \lambda \right\}, \quad (1 \leq m \leq 2^n) \end{split}$$

とおけば,

$$E_n^m \in \mathscr{F}_{\sigma + \frac{m}{2^n}(\tau - \sigma)} \subset \mathscr{F}_{\tau}, \quad E_n = \sum_{m=0}^{2^n} E_n^m, \quad (n = 1, 2, \cdots)$$

かつ, $E_1 \subset E_2 \subset E_3 \subset \cdots$ と X のパスの右連続性より

$$\left\{\sup_{\sigma \le t \le \tau} X_t > \lambda\right\} = \bigcup_{n=1}^{\infty} \left\{\max_{k=0,1,\cdots,2^n} X_{\sigma + \frac{k}{2^n}(\tau - \sigma)} > \lambda\right\} = \lim_{n \to \infty} E_n$$

が満たされる. いま、任意の $n \ge 1$ について Chebyshev の不等式と劣マルチンゲール性より

$$P(E_n) = \sum_{m=0}^{2^n} P(E_n^m) \le \frac{1}{\lambda} \sum_{m=0}^{2^n} \int_{E_n^m} X_{\sigma + \frac{m}{2^n}(\tau - \sigma)} \ dP \le \frac{1}{\lambda} \sum_{m=0}^{2^n} \int_{E_n^m} X_\tau \ dP = \frac{1}{\lambda} \int_{E_n} X_\tau \ dP \le \frac{1}{\lambda} E(X_\tau^+)$$

となるから, $n \longrightarrow \infty$ として

$$P\left[\sup_{\sigma \le t \le \tau} X_t > \lambda\right] \le \frac{1}{\lambda} E(X_{\tau}^+)$$

を得る. 特に、任意の $m \in \mathbb{N}$ に対して

$$P\left[\sup_{\sigma \le t \le \tau} X_t > \lambda - \frac{1}{m}\right] \le \frac{1}{\lambda - 1/m} E(X_{\tau}^+)$$

が成り立ち, $m \longrightarrow \infty$ として

$$P\left[\sup_{\sigma \le t \le \tau} X_t \ge \lambda\right] \le \frac{1}{\lambda} E(X_{\tau}^+)$$

が従う.

- Theorem 3.8 (ii) -

Second submartingale inequality:

$$\lambda \cdot P \left[\sup_{\sigma \le t \le \tau} X_t \le -\lambda \right] \le E(X_{\tau}^+) - E(X_{\sigma}).$$

証明. $n \ge 1$ に対し $[\sigma, \tau]$ を 2^n 等分に分割し

$$\begin{split} E_n &:= \left\{ \min_{k=0,1,\cdots,2^n} X_{\sigma + \frac{k}{2^n}(\tau - \sigma)} < -\lambda \right\}, \\ E_n^0 &:= \left\{ X_{\sigma} < -\lambda \right\}, \quad E_n^m := \left\{ \min_{k=0,1,\cdots,m-1} X_{\sigma + \frac{k}{2^n}(\tau - \sigma)} \ge -\lambda, \ X_{\sigma + \frac{m}{2^n}(\tau - \sigma)} < -\lambda \right\}, \quad (1 \le m \le 2^n) \end{split}$$

として, また

$$T(\omega) := \begin{cases} \sigma + \frac{m}{2^n} (\tau - \sigma), & (\omega \in E_n^m, \ m = 0, 1, \cdots, 2^n), \\ \tau, & (\omega \in \Omega \setminus E_n), \end{cases} (\forall \omega \in \Omega)$$

により (チナ)-停止時刻を定めれば、任意抽出定理より

$$E(X_{\sigma}) \leq E(X_{T}) = \sum_{m=0}^{2^{n}} \int_{E_{n}^{m}} X_{\sigma + \frac{m}{2^{n}}(\tau - \sigma)} dP + \int_{\Omega \setminus E_{n}} X_{\tau} dP \leq \sum_{m=0}^{2^{n}} (-\lambda) P(E_{n}^{m}) + E(X_{\tau}^{+})$$

$$= -\lambda P(E_{n}) + E(X_{\tau}^{+})$$

が成立する. 移項して $n \longrightarrow \infty$ とすれば

$$P\left[\inf_{\sigma < t < \tau} X_t < -\lambda\right] \le \frac{1}{\lambda} \left\{ E(X_{\tau}^+) - E(X_{\sigma}) \right\}$$

が得られ, (i) の証明と同様にして

$$P\left[\inf_{\sigma \leq t \leq \tau} X_t \leq -\lambda\right] \leq \frac{1}{\lambda} \left\{ E(X_\tau^+) - E(X_\sigma) \right\}$$

が従う.

- Lemma: Theorem 3.8 (iii) —

確率過程 $X = \{X_t; 0 \le t < \infty\}$ のすべてのパスが右連続であるとき, $[\sigma, \tau]$ の 2^n 等分点を

$$F_n := \left\{ \tau_i^n ; \quad \tau_i^n = \sigma + \frac{i}{2^n} (\tau - \sigma), \ i = 0, 1, \cdots, 2^n \right\}, \quad n = 1, 2, \cdots$$

とおけば次が成立する:

$$U_{[\sigma,\tau]}(\alpha,\beta;X) = \sup_{n \in \mathbb{N}} U_{F_n}(\alpha,\beta;X), \quad D_{[\sigma,\tau]}(\alpha,\beta;X) = \sup_{n \in \mathbb{N}} D_{F_n}(\alpha,\beta;X).$$

Karatzas-Shreve 本文中では

$$\tau_1(\omega) = \min\{t \in F : X_t(\omega) \le \alpha\}$$

と定めているが,

$$\tau_1(\omega) = \min\{t \in F : X_t(\omega) < \alpha\}$$

と定める方がよい. 実際, こうでないと今の補題が従わない.

証明. $U_{[\sigma,\tau]}(\alpha,\beta;X) \leq \sup_{n\in\mathbb{N}} U_{F_n}(\alpha,\beta;X)$ が成立すれば主張を得る. いま,任意に有限部分集合 $F\subset [\sigma,\tau]$ を取り

$$\tau_1(\omega) := \min\{t \in F ; X_t(\omega) < \alpha\}, \quad \sigma_1(\omega) := \min\{t \in F ; t \ge \tau_1(\omega), X_t(\omega) > \beta\}, \dots$$

を定め、 $\omega \in \Omega$ を任意に取り $U_F(\alpha, \beta; X(\omega)) = j \ge 1$ と仮定する. このとき

$$X_{\tau_i(\omega)}(\omega) < \alpha, \quad X_{\sigma_i(\omega)}(\omega) > \beta, \quad (i = 1, \dots, j)$$

が満たされ、 $t \longrightarrow X_t(\omega)$ の右連続性より十分大きい $n \in \mathbb{N}$ に対して、或る $t_i, s_i \in F_n$ 、 $(1 \le i \le j)$ が

$$\tau_1(\omega) \le t_1 < \sigma_1(\omega) \le s_1 < \dots < \tau_j(\omega) \le t_j < \sigma_j(\omega) \le s_j$$

かつ

$$X_{t_i}(\omega) < \alpha, \quad X_{s_i}(\omega) > \beta, \quad (\forall i = 1, \dots, j)$$

を満たす. これにより

$$U_F(\alpha, \beta; X(\omega)) = j \leq U_{F_{\alpha}}(\alpha, \beta; X(\omega))$$

が従い、 ω の任意性より $U_F(\alpha,\beta;X(\omega)) \leq \sup_{n \in \mathbb{N}} U_{F_n}(\alpha,\beta;X)$ が出る.

Theorem 3.8 (iii) —

Upcrossing and downcrossing inequalities:

$$EU_{[\sigma,\tau]}(\alpha,\beta;X) \leq \frac{E(X_\tau^+) + |\alpha|}{\beta - \alpha}, \quad ED_{[\sigma,\tau]}(\alpha,\beta;X) \leq \frac{E(X_\tau - \alpha)^+}{\beta - \alpha}.$$

証明.

第一段 任意の有限部分集合 $F \subset [\sigma, \tau]$ に対し

$$EU_F(\alpha, \beta; X) \le \frac{E(X_\tau^+) + |\alpha|}{\beta - \alpha}$$

が成立することを示せば、補題の $(F_n)_{n=1}^{\infty}$ に対し

$$EU_{F_n}(\alpha,\beta;X) \leq EU_{F_{n+1}}(\alpha,\beta;X), \quad (n=1,2,\cdots)$$

より単調収束定理から

$$EU_{[\sigma,\tau]}(\alpha,\beta;X) = E\left(\sup_{n\in\mathbb{N}} U_{F_n}(\alpha,\beta;X)\right) \leq \frac{E(X_{\tau}^+) + |\alpha|}{\beta - \alpha}$$

が従う.

第2章

- Lemma for Dynkin system theorem -

集合 Ω の部分集合族 $\mathcal D$ が教科書本文中の Dynkin 族の定義 (i) と (ii) を満たしているとする. このとき, Dynkin 族の定義 (iii) は, $\mathcal D$ が可算直和で閉じていることと同値である.

証明. \mathscr{D} が可算直和について閉じているとする. このとき単調増大列 $A_1 \subset A_2 \subset \cdots$ を取り

$$B_1 := A_1, \quad B_n := A_n \setminus A_{n-1}, \quad (n \ge 2)$$

とおけば、Dynkin 族の定義 (ii) より $B_n \in \mathcal{D}$ ($n \ge 1$) が満たされ

$$\bigcup_{n=1}^{\infty} A_n = \sum_{n=1}^{\infty} B_n \in \mathscr{D}$$

が成立する. 逆に \mathcal{D} が (iii) を満たしているとして、互いに素な集合列 $(B_n)_{n=1}^{\infty} \subset \mathcal{D}$ を取る. $A^c = \Omega \setminus A$ と Dynkin 族の定義 (i)(ii) より、 $A, B \in \mathcal{D}$ が $A \cap B = \emptyset$ を満たしていれば $A^c \cap B^c = A^c - B \in \mathcal{D}$ が成り立ち

$$B_1^c \cap B_2^c \cap \dots \cap B_n^c = \left(\dots \left(\left(B_1^c \cap B_2^c \right) \cap B_3^c \right) \cap \dots \cap B_{n-1}^c \right) \cap B_n^c \in \mathcal{D}, \quad (n = 1, 2, \dots)$$

が得られる. よって

$$D_n := \bigcup_{i=1}^n B_i = \Omega \setminus \left(\bigcap_{i=1}^n B_i^c\right), \quad (n = 1, 2, \cdots)$$

により定める単調増大列 $(D_n)_{n=1}^{\infty}$ は \mathscr{D} に含まれ

$$\sum_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} D_n \in \mathscr{D}$$

が成立する.

Dynkin system theorem

Let $\mathscr C$ be a collection of subsets of Ω which is closed under pairwise intersection. If $\mathscr D$ is a Dynkin system containing $\mathscr C$, then $\mathscr D$ also contains the σ -field $\sigma(\mathscr C)$ generated by $\mathscr C$.

証明. $\mathscr C$ を含む最小の Dynkin 族を $\delta(\mathscr C)$ と書き, $\delta(\mathscr C) = \sigma(\mathscr C)$ が成り立つことを示す.

第一段 $\delta(\mathscr{C})$ が交演算について閉であれば $\delta(\mathscr{C})$ は σ -加法族である. 実際,

$$A^c = \Omega \backslash A$$

より $\delta(\mathscr{C})$ は補演算で閉じるから、交演算で閉じていれば、 $A_n \in \delta(\mathscr{C})$ $(n=1,2,\cdots)$ に対し

$$\bigcup_{n=1}^{\infty} A_n = \sum_{n=1}^{\infty} A_1^c \cap A_2^c \cap \dots \cap A_{n-1}^c \cap A_n \in \delta(\mathscr{C})$$

が従い $\sigma(\mathscr{C}) \subset \delta(\mathscr{C}) \subset \mathscr{D}$ が得られる*1.

第二段 $\delta(\mathscr{C})$ が交演算について閉じていることを示す. いま,

$$\mathcal{D}_1 := \{ B \in \delta(\mathscr{C}) ; A \cap B \in \delta(\mathscr{C}), \forall A \in \mathscr{C} \}$$

により定める \mathcal{D}_1 は Dynkin 族であり \mathscr{C} を含むから

$$\delta(\mathscr{C}) \subset \mathscr{D}_1$$

が成立する. 従って

$$\mathcal{D}_2 := \{ B \in \delta(\mathscr{C}) ; A \cap B \in \delta(\mathscr{C}), \forall A \in \delta(\mathscr{C}) \}$$

により Dynkin 族 \mathcal{D}_2 を定めれば、 $\mathcal{C} \subset \mathcal{D}_2$ が満たされ

$$\delta(\mathscr{C}) \subset \mathscr{D}_2$$

が得られる. よって $\delta(\mathscr{C})$ は交演算について閉じている.

Problem 1.4 -

Let $X = \{X_t : 0 \le t < \infty\}$ be a stochastic process for which $X_0, X_{t_1} - X_{t_0}, \dots, X_{t_n} - X_{t_{n-1}}$ are independent random variables, for every integer $n \ge 1$ and indices $0 = t_0 < t_1 < \dots < t_n < \infty$. Then for any fixed $0 \le s < t < \infty$, the increment $X_t - X_s$ is independent of \mathscr{F}_s^X .

この主張の逆も成立する:

証明. 先ず任意の $s \le t \le r$ に対し $\sigma(X_t - X_s) \subset \mathscr{F}_r^X$ が成り立つ. 実際,

$$\Phi: \mathbb{R}^d \times \mathbb{R}^d \ni (x, y) \longmapsto x - y$$

の連続性と $\mathcal{B}(\mathbb{R}^d \times \mathbb{R}^d) = \mathcal{B}(\mathbb{R}^d) \otimes \mathcal{B}(\mathbb{R}^d)$ より、任意の $E \in \mathcal{B}(\mathbb{R}^d)$ に対して

$$(X_t - X_s)^{-1}(E) = \{ (X_t, X_s) \in \Phi^{-1}(E) \} \in \sigma(X_s, X_t) \subset \mathscr{F}_r^X$$
 (2.1)

が満たされる. よって任意に $A_0\in\sigma(X_0),\ A_i\in\sigma(X_{t_i}-X_{t_{i-1}})$ を取れば、 $X_{t_n}-X_{t_{n-1}}$ が $\mathscr{F}^X_{t_{n-1}}$ と独立であるから

$$P(A_0 \cap A_1 \cap \cdots \cap A_n) = P(A_0 \cap A_1 \cap \cdots \cap A_{n-1}) P(A_n)$$

が成立する. 帰納的に

$$P(A_0 \cap A_1 \cap \cdots \cap A_n) = P(A_0) P(A_1) \cdots P(A_n)$$

が従い
$$X_0, X_{t_1} - X_{t_0}, \cdots, X_{t_n} - X_{t_{n-1}}$$
 の独立性を得る.

^{*1} σ -加法族は Dynkin 族であるから, $\delta(\mathscr{C}) \subset \sigma(\mathscr{C})$ が成り立ち $\sigma(\mathscr{C}) = \delta(\mathscr{C})$ となる.

第 2 章 21

証明 (Problem 1.4).

第一段 Dynkin 族を次で定める:

$$\mathscr{D} := \{ A \in \mathscr{F} : P(A \cap B) = P(A) P(B), \forall B \in \sigma(X_t - X_s) \}.$$

いま、任意に $0 = s_0 < \cdots < s_n = s$ を取り固定し

$$\mathscr{A}_{s_0,\cdots,s_n} := \left\{ \bigcap_{i=0}^n A_i \; ; \quad A_0 \in \sigma(X_0), \; A_i \in \sigma(X_{s_i} - X_{s_j}), \; i = 1, \cdots, n \right\}$$

により乗法族を定めれば、仮定より $\sigma(X_{s_i}-X_{s_{i-1}})$ と $\sigma(X_t-X_s)$ が独立であるから

$$\mathscr{A}_{s_0,\cdots,s_n}\subset\mathscr{D}$$

が成立し、Dynkin 族定理により

$$\sigma(X_{s_0}, X_{s_1} - X_{s_0}, \cdots, X_{s_n} - X_{s_{n-1}}) = \sigma\left[\mathscr{A}_{s_0, \cdots, s_n}\right] \subset \mathscr{D}$$

$$(2.2)$$

が従う.

第二段 $\sigma(X_{s_0},X_{s_1}-X_{s_0},\cdots,X_{s_n}-X_{s_{n-1}})$ の全体が \mathscr{F}^X_s を生成することを示す。 先ず,(2.1) より

$$\bigcup_{\substack{n \ge 1 \\ s_0 < \dots < s_n}} \sigma(X_{s_0}, X_{s_1} - X_{s_0}, \dots, X_{s_n} - X_{s_{n-1}}) \subset \mathscr{F}_s^X$$
(2.3)

が成立する. 一方で、任意の $X_r^{-1}(E)$ ($\forall E \in \mathcal{B}(\mathbb{R}^d)$, $0 < r \le s$) について、

$$\Psi: \mathbb{R}^d \times \mathbb{R}^d \ni (x, y) \longmapsto x + y$$

で定める連続写像を用いれば

$$X_r^{-1}(E) = (X_r - X_0 + X_0)^{-1}(E) = \{(X_r - X_0, X_0) \in \Psi^{-1}(E)\}$$

となり、 $X_r^{-1}(E) \in \sigma(X_0, X_r - X_0)$ が満たされ

$$\sigma(X_r) \subset \sigma(X_0, X_r - X_0) \subset \sigma(X_0, X_r - X_0, X_s - X_r) \tag{2.4}$$

が出る. $\sigma(X_0) \subset \sigma(X_0, X_s - X_0)$ も成り立ち

$$\bigcup_{0 \le r \le s} \sigma(X_r) \subset \bigcup_{\substack{n \ge 1 \\ s_0 < \dots < s_n}} \sigma(X_{s_0}, X_{s_1} - X_{s_0}, \dots, X_{s_n} - X_{s_{n-1}})$$

が従うから、(2.3) と併せて

$$\mathscr{F}_{s}^{X} = \sigma \left[\bigcup_{\substack{n \ge 1 \\ s_{0} \le \dots \le s_{n}}} \sigma(X_{s_{0}}, X_{s_{1}} - X_{s_{0}}, \dots, X_{s_{n}} - X_{s_{n-1}}) \right]$$
(2.5)

が得られる.

第三段 任意の $0 = s_0 < s_1 < \cdots < s_n = s$ に対し、(2.1) と (2.4) より

$$\sigma(X_{s_0}, X_{s_1} - X_{s_0}, \cdots, X_{s_n} - X_{s_{n-1}}) = \sigma(X_{s_0}, X_{s_1}, \cdots, X_{s_n})$$
(2.6)

が成り立つ.

第四段 二つの節点 $0=s_0<\dots< s_n=s$ と $0=r_0<\dots< r_m=s$ の合併を $0=u_0<\dots< u_k=s$ と書けば

$$\sigma(X_{s_0},\cdots,X_{s_n})\cup\sigma(X_{r_0},\cdots,X_{r_m})\subset\sigma(X_{u_0},\cdots,X_{u_k})$$

が成り立つから

$$\bigcup_{\substack{n\geq 1\\s_0\leqslant \cdots\leqslant s}}\sigma(X_{s_0},X_{s_1},\cdots,X_{s_n})$$

は交演算で閉じている. 従って (2.2), (2.5), (2.6) 及び Dynkin 族定理により

$$\mathscr{F}_s^X = \sigma \left[\bigcup_{\substack{n \geq 1 \\ s_0 < \dots < s_n}} \sigma(X_{s_0}, X_{s_1} - X_{s_0}, \dots, X_{s_n} - X_{s_{n-1}}) \right] = \sigma \left[\bigcup_{\substack{n \geq 1 \\ s_0 < \dots < s_n}} \sigma(X_{s_0}, X_{s_1}, \dots, X_{s_n}) \right] \subset \mathscr{D}$$

が従い定理の主張を得る.

2.1 The Consistency Theorem

Karatzas-Shreve より Bogachev の Measure Theory に載っている Kolmogorov の拡張定理の方が洗練された簡潔な証明になっているので頭に入りやすい.

定義 2.1.1 (K-正則). S を位相空間とし,P を (S, $\mathcal{B}(S$)) 上の確率測度とする. $A \in \mathcal{B}(S)$ が P に関して K-正則であるとは,任意の $\epsilon > 0$ に対し或るコンパクト集合 $K \subset A$ が存在して

$$P(A-K)<\epsilon$$

が満たされることをいう. 任意の $A \in \mathcal{B}(S)$ が P に関して K-正則であるとき, P は K-正則であるという.

- Lemma: 完備可分距離空間上の Borel 確率測度の正則性 -

(S,d) を完備可分距離空間とするとき、 $(S,\mathcal{B}(S))$ 上の任意の Borel 確率測度 P は次の意味で正則である:

 $P(A) = \inf \{ P(G) ; A \subset G, G$ は開集合 $\} = \sup \{ P(K) ; K \subset A, K$ はコンパクト $\}, (\forall A \in \mathcal{B}(S)).$

証明.

第一段 S が P に関して K-正則であることを示す. S の可分性により稠密な部分集合 $\{x_n\}_{n=1}^\infty$ が存在する.

$$B_n^k := \left\{ x \in S ; \quad d(x, x_n) \le \frac{1}{k} \right\}, \quad (n, k = 1, 2, \cdots)$$

とおけば、任意のkに対して

$$P\left(S - \bigcup_{n=1}^{N} B_n^k\right) \longrightarrow 0, \quad (N \longrightarrow \infty)$$

が満たされる. いま、任意に $\epsilon > 0$ を取れば各 k に対し或る $N_k \in \mathbb{N}$ が存在して

$$P\left(S - \bigcup_{n=1}^{N_k} B_n^k\right) < \frac{\epsilon}{2^{k+1}}$$

が成立し,

$$K := \bigcap_{k=1}^{\infty} \left[\bigcup_{n=1}^{N_k} B_n^k \right]$$

により K を定めれば、K は閉集合の積であるから閉、すなわち完備である。また

$$K \subset \bigcup_{n=1}^{N_k} B_n^k, \quad (\forall k = 1, 2, \cdots)$$

より K は全有界部分集合である. K は相対距離に関して完備かつ全有界であるから相対位相に関してコンパクトであり、従って S のコンパクト部分集合である. そして次が成立する:

$$P(S-K) = P\left(\bigcup_{k=1}^{\infty} \left[S - \bigcup_{n=1}^{N_k} B_n^k \right] \right) \le \sum_{k=1}^{\infty} P\left(S - \bigcup_{n=1}^{N_k} B_n^k \right) < \epsilon.$$

第二段 任意の $A \in \mathcal{B}(S)$ と $\epsilon > 0$ に対して、或る閉集合 F 及び開集合 G が存在して

$$F \subset A \subset G$$
, $P(G - F) < \epsilon$

を満たすことを示す.

 $\mathscr{B} := \{ A \in \mathscr{B}(S) ;$ 任意の ϵ に対し上式を満たす開集合と閉集合が存在する. $\}$

とおけば、 \mathscr{B} は $\mathscr{O}(S)$ を含む σ -加法族である。実際、任意の開集合 $G \neq \emptyset$ に対し

$$F_n := \left\{ x \in S \; ; \quad d(x, G^c) \ge \frac{1}{n} \right\}, \quad (n = 1, 2, \dots)$$

により閉集合系 $(F_n)_{n=1}^{\infty}$ を定めれば $\bigcup_{n=1}^{\infty} F_n = G$ が成り立つから

$$\mathcal{O}(S) \subset \mathcal{B}$$

が従う. また前段の結果より $S \in \mathcal{B}$ となり、かつ

$$F \subset A \subset G \implies G^c \subset A^c \subset F^c$$

より $\mathcal B$ は補演算で閉じている。 更に $A_n\in\mathcal B$, $(n=1,2,\cdots)$ を取れば、任意の $\epsilon>0$ に対して

$$F_n \subset A_n \subset G_n$$
, $P(G_n - F_n) < \frac{\epsilon}{2^{n+1}}$

を満たす閉集合 F_n と開集合 G_n が存在し,

$$P\left(\bigcup_{n=1}^{\infty} G_n - \bigcup_{n=1}^{\infty} F_n\right) \le P\left(\bigcup_{n=1}^{\infty} (G_n - F_n)\right) < \epsilon$$

が成り立つから十分大きな $N \in \mathbb{N}$ に対して

$$P\left(\bigcup_{n=1}^{\infty}G_n-\bigcup_{n=1}^{N}F_n\right)<\epsilon$$

となる. $\bigcup_{n=1}^N F_n$ は閉集合であり $\bigcup_{n=1}^\infty G_n$ は開集合であるから $\bigcup_{n=1}^\infty A_n \in \mathcal{B}$ が従う.

第三段 任意の $A \in \mathcal{B}(S)$ と $\epsilon > 0$ に対し、或る閉集合 F と開集合 G 及びコンパクト集合 K が存在して

$$F\subset A\subset G,\quad P(G-F)<\frac{\epsilon}{2},\quad P(S-K)<\frac{\epsilon}{2}$$

を満たす. 特に $F \cap K$ はコンパクトであり、このとき $F \cap K \subset A \subset G$ かつ

$$P(G-F\cap K) \le P(G-F) + P(G-K) \le P(G-F) + P(S-K) < \epsilon$$

が成立する.

T を空でない集合とし、任意の $t \in T$ に対して可測空間 $(\Omega_t, \mathcal{B}_t)$ が定まっているする.このとき任意の空でない有限 部分集合 $\Lambda \subset T$ に対して

$$\Omega_{\Lambda} \coloneqq \prod_{t \in \Lambda} \Omega_t, \quad \mathcal{B}_{\Lambda} \coloneqq \bigotimes_{t \in \Lambda} \mathcal{B}_t$$

により可測空間 $(\Omega_{\Lambda}, \mathscr{B}_{\Lambda})$ を定める。 ただし $\Lambda = \{t\}$ の場合は $\Omega_{\{t\}} = \Omega_t, \mathscr{B}_{\{t\}} = \mathscr{B}_t$ とする。 また

$$\Omega \coloneqq \prod_{t \in T} \Omega_t, \quad \mathscr{B}_{\Lambda} \coloneqq \bigotimes_{t \in T} \mathscr{B}_t$$

とおく. 任意の部分集合 $\Lambda \subset \Lambda'$ に対し, $\Omega_{\Lambda'}$ から Ω_{Λ} への射影を $\pi_{\Lambda',\Lambda}$ と書き,特に $\pi_{T,\Lambda}$ を π_{Λ} と書く.

Kolmogorov の拡張定理 -

任意の有限部分集合 $\Lambda \subset T$ について、 $(\Omega_{\Lambda}, \mathcal{B}_{\Lambda})$ 上に確率測度 P_{Λ} が定まっていて、確率測度の族 $(P_{\Lambda})_{\Lambda \subset T: finite}$ が次の整合性条件を満たしていると仮定する:

$$P_{\Lambda'} \circ \pi_{\Lambda',\Lambda}^{-1} = P_{\Lambda}, \quad (\Lambda \subset \Lambda').$$

このとき、任意の $t \in T$ に対し近似的コンパクトクラス $\mathcal{K}_t \subset \mathcal{B}_t$ が存在するなら、 (Ω, \mathcal{B}) 上に次を満たす確率測度 P がただ一つ存在する:

$$P \circ \pi_{\Lambda}^{-1} = P_{\Lambda}$$
, $(\forall \Lambda : 有限)$.

証明.

第一段 36 を生成する加法族を

$$\mathscr{R} \coloneqq \left\{ \pi_{\Lambda}^{-1}(B) \; ; \quad B \in \mathscr{B}_{\Lambda}, \; \Lambda \subset T : \text{有限集合} \right\}$$

とおき,
ℛ上の有限加法的測度 μ を

$$\mu\left(\pi_{\Lambda}^{-1}(B)\right) := P_{\Lambda}(B), \quad (\forall \pi_{\Lambda}^{-1}(B) \in \mathcal{R})$$

により定める. 実際この μ は well-defined であり加法性を持つ.

第二段 μ が well-defined であることを示す.

$$\pi_{\Lambda}^{-1}(B)=\pi_{\Lambda'}^{-1}(B')$$

であるとき, $\Lambda'' := \Lambda \cup \Lambda'$ とおけば

$$\pi_{\Lambda''}^{-1}\left(\pi_{\Lambda'',\Lambda}^{-1}(B)\right) = \pi_{\Lambda}^{-1}(B) = \pi_{\Lambda'}^{-1}(B') = \pi_{\Lambda''}^{-1}\left(\pi_{\Lambda'',\Lambda'}^{-1}(B')\right)$$

第 2 章 **25**

が成り立つから $\pi_{\Lambda'',\Lambda}^{-1}(B) = \pi_{\Lambda'',\Lambda'}^{-1}(B')$ が従い (全射の性質), 整合性条件より

$$P_{\Lambda}(B) = P_{\Lambda''} \circ \pi_{\Lambda'',\Lambda}^{-1}(B) = P_{\Lambda''} \circ \pi_{\Lambda'',\Lambda'}^{-1}(B') = P_{\Lambda'}(B')$$

が満たされ $\mu(\pi_{\Lambda}^{-1}(B))$ の一意性を得る.

第三段 μ の加法性を示す.

$$\pi_{\Lambda_1}^{-1}(B_1) \cap \pi_{\Lambda_2}^{-1}(B_2) = \emptyset$$

であるとき, $\Lambda_3 := \Lambda_1 \cup \Lambda_2$ とおけば

$$\emptyset = \pi_{\Lambda_3}^{-1} \left(\pi_{\Lambda_3,\Lambda_1}^{-1}(B_1) \right) \cap \pi_{\Lambda_3} \left(\pi_{\Lambda_3,\Lambda_2}^{-1}(B_2) \right) = \pi_{\Lambda_3}^{-1} \left(\pi_{\Lambda_3,\Lambda_1}^{-1}(B_1) \cap \pi_{\Lambda_3,\Lambda_2}^{-1}(B_2) \right)$$

となるから $\pi_{\Lambda_3,\Lambda_1}^{-1}(B_1) \cap \pi_{\Lambda_3,\Lambda_2}^{-1}(B_2) = \emptyset$ が従い (全射の性質),

$$\begin{split} \mu\Big(\pi_{\Lambda_{1}}^{-1}(B_{1}) \cup \pi_{\Lambda_{2}}^{-1}(B_{2})\Big) &= \mu\Big[\pi_{\Lambda_{3}}^{-1}\Big(\pi_{\Lambda_{3},\Lambda_{1}}^{-1}(B_{1})\Big) \cup \pi_{\Lambda_{3}}\Big(\pi_{\Lambda_{3},\Lambda_{2}}^{-1}(B_{2})\Big)\Big] \\ &= \mu\Big[\pi_{\Lambda_{3}}^{-1}\Big(\pi_{\Lambda_{3},\Lambda_{1}}^{-1}(B_{1}) \cup \pi_{\Lambda_{3},\Lambda_{2}}^{-1}(B_{2})\Big)\Big] \\ &= P_{\Lambda_{3}}\Big(\pi_{\Lambda_{3},\Lambda_{1}}^{-1}(B_{1}) \cup \pi_{\Lambda_{3},\Lambda_{2}}^{-1}(B_{2})\Big) \\ &= P_{\Lambda_{3}}\Big(\pi_{\Lambda_{3},\Lambda_{1}}^{-1}(B_{1})\Big) + P_{\Lambda_{3}}\Big(\pi_{\Lambda_{3},\Lambda_{2}}^{-1}(B_{2})\Big) \\ &= \mu\Big(\pi_{\Lambda_{3}}^{-1}(B_{1})\Big) + \mu\Big(\pi_{\Lambda_{2}}^{-1}(B_{2})\Big) \end{split}$$

が成立する.

2.2 The Kolmogorov-Čentsov Theorem

-Exercise 2.7

The only $\mathscr{B}((\mathbb{R}^d)^{[0,\infty)})$ -measurable set contained in $C[0,\infty)^d$ is the empty set.

証明.

第一段 $\mathscr{B}((\mathbb{R}^d)^{[0,\infty)}) = \sigma(B_t; 0 \le t < \infty)$ が成り立つことを示す。先ず、任意の $C \in \mathscr{C}$ は

$$C = \left\{ \omega \in (\mathbb{R}^d)^{[0,\infty)} ; (\omega(t_1), \cdots, \omega(t_n)) \in A \right\}$$

= $\left\{ \omega \in (\mathbb{R}^d)^{[0,\infty)} ; (B_{t_1}(\omega), \cdots, B_{t_n}(\omega)) \in A \right\}, (A \in \mathcal{B}((\mathbb{R}^d)^n))$

の形で表されるから $\mathscr{C} \subset \sigma(B_t; 0 \le t < \infty)$ が従い $\mathscr{B}((\mathbb{R}^d)^{[0,\infty)}) \subset \sigma(B_t; 0 \le t < \infty)$ を得る. 逆に

$$\sigma(B_t) \subset \mathscr{C}, \quad (\forall t \geq 0)$$

より $\mathscr{B}((\mathbb{R}^d)^{[0,\infty)})$ $\supset \sigma(B_t;\ 0 \le t < \infty)$ も成立し $\mathscr{B}((\mathbb{R}^d)^{[0,\infty)}) = \sigma(B_t;\ 0 \le t < \infty)$ が出る. 第二段 高々可算集合 $S = \{t_1,t_2,\cdots\} \subset [0,\infty)$ に対して

$$\mathcal{E}_S := \left\{ \left\{ \, \omega \in (\mathbb{R}^d)^{[0,\infty)} \, \; ; \quad (\omega(t_1),\omega(t_2),\cdots) \in A \, \right\} \; \; ; \quad A \in \mathcal{B}((\mathbb{R}^d)^{\#S}) \, \right\}$$

とおけば *2 , 座標過程 B は $(\omega(t_1),\omega(t_2),\cdots)=(B_{t_1}(\omega),B_{t_2}(\omega),\cdots)$ を満たすから

$$\mathcal{E}_{S} = \left\{ \left\{ (B_{t_{1}}, B_{t_{2}}, \cdots) \in A \right\} ; \quad A \in \mathcal{B}((\mathbb{R}^{d})^{\#S}) \right\} =: \mathcal{F}_{S}^{B}$$

が成立する. 従って第一章の Lemma3 for Exercise 1.8 と前段の結果より

$$\begin{split} \mathscr{B}((\mathbb{R}^d)^{[0,\infty)}) &= \sigma(B_t; \ 0 \leq t < \infty) = \mathcal{F}^B_{[0,\infty)} = \bigcup_{S \subset [0,\infty): at \ most \ countable} \mathcal{F}^B_S \\ &= \bigcup_{S \subset [0,\infty): at \ most \ countable} \mathcal{E}_S \end{split}$$

を得る。すなわち, $\mathcal{B}((\mathbb{R}^d)^{[0,\infty)})$ の任意の元は $\left\{\omega\in(\mathbb{R}^d)^{[0,\infty)}\;;\;\;(\omega(t_1),\omega(t_2),\cdots)\in A\right\}$ の形で表現され, $A\neq\emptyset$ ならば $\left\{\omega\in(\mathbb{R}^d)^{[0,\infty)}\;;\;\;(\omega(t_1),\omega(t_2),\cdots)\in A\right\}$ $\not\subset C[0,\infty)^d$ となり主張が従う.

- Theorem 2.8 の主張は次のように変更するべきである: -

Suppose that a process $X = \{X_t : 0 \le t \le T\}$ on a probability space (Ω, \mathcal{F}, P) satisfies the condition

$$E|X_t - X_s|^{\alpha} \le C|t - s|^{1+\beta}, \quad 0 \le s, t \le T,$$

for some positive constants α, β , and C. Then there exists a continuous modification $\tilde{X} = \{\tilde{X}_t ; 0 \le t \le T\}$ of X, which is locally Hölder-continuous with exponent γ for every $\gamma \in (0, \beta/\alpha)$. More precisely, for every $\gamma \in (0, \beta/\alpha)$,

$$\sup_{\substack{0 < |t-s| < h(\omega) \\ s, t \in [0,T]}} \frac{\left| \tilde{X}_t(\omega) - \tilde{X}_s(\omega) \right|}{|t-s|^{\gamma}} \le \frac{2}{1-2^{-\gamma}}, \quad \forall \omega \in \Omega^*,$$

for some $\Omega^* \in \mathscr{F}$ with $P(\Omega^*) = 1$ and positive random variable h, where Ω^* and h depend on γ .

なぜならば、式 (2.8) において P の中身が Ω^* に一致するかどうかわからないためである。可測集合でなければ P で 測ることはできない。ただし今の場合は (Ω, \mathcal{F}, P) が完備確率空間ならば式 (2.8) の表記で問題ない。

Theorem 2.8 memo

証明中の式 (2.10) 直後の "where $n^*(\omega)$ is a positive, integer-valued random variable" について.

証明. $\mathbb{N}\coloneqq\{1,2,\cdots\}$ とおき, \mathbb{N} の冪集合を $2^{\mathbb{N}}$ で表せば, $(\mathbb{N},2^{\mathbb{N}})$ は可測空間となる.示せばよいのは n^* の $\mathscr{F}/2^{\mathbb{N}}$ -可測性である.ただし, n^* は証明文中において well-defined でないため,明確な意味を持たせる必要がある.

$$A_0 \coloneqq \Omega, \quad A_n \coloneqq \left\{ \left. \omega \in \Omega \right. ; \quad \max_{1 \le k \le 2^n} \left| X_{k/2^n}(\omega) - X_{(k-1)/2^n}(\omega) \right| \ge 2^{-\gamma n} \right\}, \quad (n = 1, 2, \cdots)$$

とおくとき, Ω^* は

$$\Omega^* := \bigcup_{\ell=1}^{\infty} \bigcap_{n=\ell}^{\infty} A_n^c$$

により定まる集合である. 任意の $\omega \in \Omega^*$ に対して或る $\ell \ge 1$ が存在し,

$$\max_{1 \le k \le 2^n} |X_{k/2^n}(\omega) - X_{(k-1)/2^n}(\omega)| < 2^{-\gamma n}, \quad (\forall n \ge \ell)$$

^{*} 2 S が可算無限なら $(\mathbb{R}^d)^{\#S} = \mathbb{R}^{\infty}$.

第 2 章 27

を満たす.このような ℓ のうち最小なものを $n^*(\omega)$ と定めれば

$$n^{*-1}(\ell) = \left\{ \bigcap_{n=\ell}^{\infty} A_n^c \right\} \cap \left\{ \bigcap_{n=\ell-1}^{\infty} A_n^c \right\}^c, \quad (\ell = 1, 2, \cdots)$$

が成立し n^* の $\mathcal{F}/2^{\mathbb{N}}$ -可測性が従う.

確率変数hについて、厳密には

$$h(\omega) := \begin{cases} 2^{-n^*(\omega)}, & (\omega \in \Omega^*), \\ 0, & (\omega \in \Omega \setminus \Omega^*) \end{cases}$$

とおけばよい.

Theorem 2.8 memo

2.3 The Space $C[0, \infty)$, Weak Convergence, and the Wiener Measure

- Problem 4.1 —

Show that ρ defined by (4.1) is a metric on $C[0,\infty)^d$ and, under ρ , $C[0,\infty)^d$ is a complete, separable metric space.

以下, $C[0,\infty)^d$ には ρ により広義一様収束位相を導入する.

- 連続関数の空間の Borel 集合族 -

 $n = 1, 2, \dots, B \in \mathcal{B}((\mathbb{R}^d)^n), 0 \le t_1 < \dots < t_n \bowtie \emptyset$

$$C = \left\{ w \in C[0, \infty)^d ; \quad (w(t_1), \cdots, w(t_n)) \in B \right\}$$

と表される $C[0,\infty)^d$ の部分集合 C の全体を C とおく. このとき, $\mathcal{B}(C[0,\infty)^d) = \sigma[\mathcal{C}]$ が成り立つ.

証明.

第一段 $w_0 \in C[0,\infty)^d$ とする. 任意に $w \in C[0,\infty)^d$ を取れば、w の連続性により $d(w_0,w)$ の各項について

$$\sup_{t \le n} |w_0(t) - w(t)| = \sup_{r \in [0, n] \cap \mathbb{Q}} |w_0(r) - w(r)| \quad (n = 1, 2, \dots)$$

と表現できる. いま, 任意に実数 $\alpha \in \mathbb{R}$ を取れば

$$\left\{w\in C[0,\infty)^d\; ; \quad \sup_{r\in[0,n]\cap\mathbb{Q}}|w_0(r)-w(r)|\leq\alpha\right\}=\bigcap_{r\in[0,n]\cap\mathbb{Q}}\left\{w\in C[0,\infty)^d\; ; \quad |w_0(r)-w(r)|\leq\alpha\right\}$$

が成立し、右辺の各集合は $\mathscr C$ に属するから 左辺 $\in \sigma[\mathscr C]$ となる. 従って

$$\psi_n: C[0,\infty)^d\ni w\longmapsto \sup_{r\in[0,n]\cap\mathbb{Q}}|w_0(r)-w(r)|\in\mathbb{R},\quad (n=1,2,\cdots)$$

で定める ψ_n は可測 $\sigma[\mathscr{C}]/\mathscr{B}(\mathbb{R})$ である. $x \mapsto x \wedge 1$ の連続性より $\psi_n \wedge 1$ も $\sigma[\mathscr{C}]/\mathscr{B}(\mathbb{R})$ -可測性を持ち,

$$d(w_0, w) = \sum_{n=1}^{\infty} \frac{1}{2^n} \left(\psi_n(w) \wedge 1 \right)$$

により $C[0,\infty)^d \ni w \mapsto d(w_0,w) \in \mathbb{R}$ の $\sigma[\mathscr{C}]/\mathscr{B}(\mathbb{R})$ -可測性が出るから,任意の $\epsilon > 0$ に対する球について

$$\left\{ w \in C[0,\infty)^d ; d(w_0,w) < \epsilon \right\} \in \sigma[\mathscr{C}]$$

が成り立つ. $C[0,\infty)^d$ は第二可算公理を満たし,可算基底は上式の形の球で構成されるから, $\mathcal{O}(C[0,\infty)^d) \subset \sigma[\mathscr{C}]$ が従い $\mathcal{B}(C[0,\infty)^d) \subset \sigma[\mathscr{C}]$ を得る. 次に逆の包含関係を示す. いま,任意に $n \in \mathbb{Z}_+$ と $t_1 < \cdots < t_n$ を選んで

$$\phi: C[0,\infty)^d \ni w \longmapsto (w(t_1),\cdots,w(t_n)) \in (\mathbb{R}^d)^n$$

により定める写像は連続である.実際, w_0 での連続性を考えると,任意の $\epsilon>0$ に対して $t_n\leq N$ を満たす $N\in\mathbb{N}$ を取れば, $d(w_0,w)<\epsilon/(n2^N)$ ならば $\sum_{i=1}^n|w_0(t_i)-w(t_i)|<\epsilon$ が成り立つ.よって ϕ は w_0 で連続であり (各点連続)

$$\mathcal{B}((\mathbb{R}^d)^n) \subset \left\{ A \in \mathcal{B}((\mathbb{R}^d)^n) \ ; \quad \phi^{-1}(A) \in \mathcal{B}(C[0,\infty)^d) \right\}$$

が出る. 任意の $C \in \mathscr{C}$ は, $n \in \mathbb{N}$ と時点 $t_1 < \dots < t_n$ によって決まる写像 ϕ によって $C = \phi^{-1}(B)$ ($\exists B \in \mathscr{B}((\mathbb{R}^d)^n)$) と表現できるから, $\mathscr{C} \subset \mathscr{B}(C[0,\infty)^d)$ が成り立ち $\sigma[\mathscr{C}] \subset \mathscr{B}(C[0,\infty)^d)$ が得られる.

第二段 $t \ge 0$ とする. $C[0,\infty)^d$ の位相を $\mathcal{O}(C[0,\infty)^d)$ と書けば

$$\varphi_t^{-1}\left(\mathcal{B}(C[0,\infty)^d)\right) = \sigma\left[\left\{\,\varphi_t^{-1}(O)\,\,;\quad O\in\mathcal{O}(C[0,\infty)^d)\,\right\}\right]$$

が成り立つ. 任意の $\alpha \in \mathbb{R}$ と $r \ge 0$ に対して

$$\begin{cases} w \in C[0, \infty)^d ; & |w_0(r) - (\varphi_t w)(r)| \le \alpha \end{cases}$$

$$= \begin{cases} w \in C[0, \infty)^d ; & |w_0(r) - (\varphi_t w)(r)| \le \alpha \end{cases}, \quad (r \le t),$$

$$\begin{cases} w \in C[0, \infty)^d ; & |w_0(r) - (\varphi_t w)(t)| \le \alpha \end{cases}, \quad (r > t),$$

となるから

$$\psi_n^t: C[0,\infty)^d\ni w\longmapsto \sup_{r\in[0,n]\cap\mathbb{Q}}|w_0(r)-(\varphi_tw)(r)|\in\mathbb{R}, \quad (n=1,2,\cdots)$$

で定める ψ_n^t は可測 $\sigma[\mathscr{C}_t]/\mathscr{B}(\mathbb{R})$ である. $x \mapsto x \wedge 1$ の連続性より $\psi_n^t \wedge 1$ も $\sigma[\mathscr{C}_t]/\mathscr{B}(\mathbb{R})$ -可測性を持ち,

$$d(w_0, \varphi_t w) = \sum_{n=1}^{\infty} \frac{1}{2^n} \left(\psi_n^t(w) \wedge 1 \right)$$

により $C[0,\infty)^d \ni w \mapsto d(w_0,\varphi_t w) \in \mathbb{R}$ の $\sigma[\mathscr{C}_t]/\mathscr{B}(\mathbb{R})$ -可測性が出るから、任意の $\epsilon > 0$ に対する球について

$$\left\{ w \in C[0,\infty)^d ; d(w_0,\varphi_t w) < \epsilon \right\} \in \sigma[\mathcal{C}_t]$$

が成り立つ. 特に

$$\varphi_t^{-1}\left(\left\{\,w\in C[0,\infty)^d\ ;\quad d(w_0,w)<\epsilon\,\right\}\right)=\left\{\,w\in C[0,\infty)^d\ ;\quad d(w_0,\varphi_t w)<\epsilon\,\right\}$$

が満たされ、 $C[0,\infty)^d$ の第二可算性より

$$\varphi_t^{-1}(O) \in \sigma\left[\mathscr{C}_t\right], \quad (\forall O \in \mathscr{O}(C[0,\infty)^d))$$

が従う. ゆえに $\varphi_t^{-1}\left(\mathcal{B}(C[0,\infty)^d)\right)\subset\sigma\left[\mathscr{C}_t\right]$ となる.

- 連続関数の空間に値を取る確率変数 ―

 $\omega \in \Omega$ に \mathbb{R}^d 値連続確率過程 X のパスを対応させる写像

$$X_{\bullet}: \Omega \ni \omega \longmapsto (t \longmapsto X_t(\omega)), \quad (t \ge 0)$$

は可測 $\mathcal{F}/\mathcal{B}(C[0,\infty)^d)$ である.

証明. 任意に $C \in \mathcal{C}$ を取れば $C = \{ w \in C[0,\infty)^d ; (w(t_1),\cdots,w(t_n)) \in B \}, (B \in \mathcal{B}((\mathbb{R}^d)^n))$ と表されるから

$$\{\omega \in \Omega : X_{\bullet}(\omega) \in C\} = \{\omega \in \Omega : (X_{t_1}(\omega), \cdots, X_{t_n}(\omega)) \in B\}$$

が成り立つ. 右辺は \mathcal{F} に属するから

$$\mathscr{C} \subset \left\{ C \in \sigma[\mathscr{C}] : (X_{\bullet})^{-1}(C) \in \mathscr{F} \right\}$$

が従い,右辺は σ 加法族であるから X_{\bullet} の $\mathcal{F}/\sigma[\mathscr{C}]$ -可測性,つまり $\mathcal{F}/\mathscr{B}(C[0,\infty)^d)$ -可測性が出る.

2.4 Weak Convergence

なぜ弱収束と呼ぶか、いま、X を局所コンパクト Hausdorff 空間として

$$C_0(X) \coloneqq \left\{ f: X \longrightarrow \mathbb{C} ; \quad 連続かつ、任意の \epsilon > 0 に対し \overline{\{x \in X ; \quad |f(x)| \geq \epsilon\}} がコンパクト \right\}$$

とおく.この $C_0(X)$ はノルム $\|f\|_{C_0(X)}\coloneqq\sup_{x\in X}|f(x)|$ により複素 Banach 空間となる.また $(X,\mathcal{B}(X))$ 上の複素測度 μ について,その総変動 $|\mu|$ が正則測度であるとき μ は正則であるという.X 上の正則複素測度の全体を RM(X) と書き,総変動ノルム $\|\mu\|_{RM(X)}\coloneqq|\mu|(X)$ によりノルム位相を導入する.任意の複素測度 μ に対し

$$\Phi_{\mu}(f) := \int_{Y} f(x) \, \mu(dx)$$

により $C_0(X)$ 上の有界線型汎関数 Φ_{μ} が定まる.

定理 2.4.1 (Riesz の表現定理). X を局所コンパクト Hausdorff 空間とする. $C_0(X)$ に $\|\cdot\|_{C_0(X)}$ で位相を入れるとき,共役空間 $C_0(X)^*$ と書く.このとき $C_0(X)^*$ と RM(X) は

$$\Phi:RM(X)\ni\mu\longrightarrow\Phi_{\mu}\in C_0(X)$$

で定める対応関係 Φ により Banach 空間として等長同型となる.

 $C_0(X)^*$ に汎弱位相を入れるとき、汎関数列 $\left(\Phi_{\mu_n}
ight)_{n=1}^\infty$ が Φ_{μ} に汎弱収束することと

$$\Phi_{\mu_n}(f) \longrightarrow \Phi_{\mu}(f) \ (n \longrightarrow \infty), \quad (\forall f \in C_0(X))$$

は同値になる. $C_0(X)^*$ の汎弱位相の Φ による逆像位相を RM(X) の弱位相と定めれば, Φ は弱位相に関して位相同型となる. このとき, $(\mu_n)_{n=1}^\infty$ が μ に弱収束することは $\left(\Phi_{\mu_n}\right)_{n=1}^\infty$ が Φ_μ に汎弱収束することと同値になり,すなわち

$$\int_X f(x)\,\mu_n(dx) \longrightarrow \int_X f(x)\,\mu(dx)\,(n\longrightarrow \infty),\quad (\forall f\in C_0(X))$$

と同値になる. X 上の正則な確率測度の全体を $\mathcal{P}(X)$ と書けば $\mathcal{P}(X) \subset RM(X)$ となり、正則確率測度の列 $(P_n)_{n=1}^\infty$ が $P \in \mathcal{P}(X)$ に弱収束することは

$$\int_{X} f(x) P_{n}(dx) \longrightarrow \int_{X} f(x) P(dx) (n \longrightarrow \infty), \quad (\forall f \in C_{0}(X))$$

と同値になる.

- Definition 4.3 -

It follows, in particular, that the weak limit P is a probability measure, and that it is unique.

証明. $f \equiv 1$ として

$$P(S) = \lim_{n \to \infty} P_n(S) = 1$$

が従うから P は確率測度である. また任意の有界連続関数 $f:S \longrightarrow \mathbb{R}$ に対し

$$\int_{S} f \, dP = \int_{S} f \, dQ$$

が成り立つとき、任意の閉集合 $A \subset S$ に対して

$$f_k(s) \coloneqq \frac{1}{1 + kd(s, A)}, \quad (k = 1, 2, \cdots)$$

と定めれば $\lim_{k\to\infty} f_k = \mathbb{1}_A$ (各点収束) が満たされるから、Lebesgue の収束定理より

$$P(A) = \lim_{k \to \infty} \int_{S} f_k dP = \lim_{k \to \infty} \int_{S} f_k dQ = Q(A)$$

となり、測度の一致の定理より P = Q が得られる. すなわち弱極限は一意である.

lemma: change of variables for expectation

 (Ω,\mathscr{F},P) を確率空間, (S,\mathscr{S}) を可測空間とする.このとき任意の有界 $\mathscr{S}/\mathscr{B}(\mathbb{R})$ -可測関数 f と \mathscr{F}/\mathscr{S} -可測写像 X に対して

$$\int_{\Omega} f(X) dP = \int_{S} f dP X^{-1}$$

が成立する.

証明. 任意の $A \in \mathcal{S}$ に対して

$$\int_{S} \mathbb{1}_{A} dP X^{-1} = P(X^{-1}(A)) = \int_{\Omega} \mathbb{1}_{X^{-1}(A)} dP = \int_{\Omega} \mathbb{1}_{A}(X) dP$$

が成り立つから、任意の $\mathscr{S}/\mathscr{B}(\mathbb{R})$ -可測単関数 g に対し

$$\int_{\Omega} g(X) dP = \int_{S} g dP X^{-1}$$

第 2 章 31

となる。f が有界なら一様有界な単関数で近似できるので,Lebesgue の収束定理より

$$\int_{\Omega} f(X) dP = \int_{S} f dP X^{-1}$$

が出る.

Definition 4.4 —

Equivalently, $X_n \stackrel{\mathscr{D}}{\longrightarrow} X$ if and only if

$$\lim_{n\to\infty} E_n f(X_n) = E f(X)$$

for every bounded, continuous real-valued function f on S, where E_n and E denote expectations with respect to P_n and P, respectively.

証明. 任意の有界実連続関数 $f:S\longrightarrow \mathbb{R}$ に対し

$$\int_{\Omega} f(X_n) \ dP_n = \int_{S} f \ dP_n X_n^{-1}, \quad \int_{\Omega} f(X) \ dP = \int_{S} f \ dP X^{-1},$$

が成り立つから, $P_nX_n^{-1}$ が PX^{-1} に弱収束することと $\lim_{n\to\infty} E_nf(X_n) = Ef(X)$ は同値である.

Problem 4.5 —

Suppose $\{X_n\}_{n=1}^{\infty}$ is a sequence of random variables taking values in a metric space (S_1, ρ_1) and converging in distribution to X. Suppose (S_2, ρ_2) is another metric space, and $\varphi : S_1 \longrightarrow S_2$ is continuous. Show that $Y_n := \varphi(X_n)$ converges in distribution to $Y := \varphi(X)$.

証明. 任意の有界実連続関数 $f:S_2 \longrightarrow \mathbb{R}$ に対し $f\circ \varphi$ は S_1 上の有界実連続関数であるから

$$\int_{S_2} f \, dP Y_n^{-1} = \int_{\Omega} f(Y_n) \, dP = \int_{\Omega} f(\varphi(X_n)) \, dP = \int_{S_1} f \circ \varphi \, dP X_n^{-1}$$

$$\longrightarrow \int_{S_1} f \circ \varphi \, dP X^{-1} = \int_{S_2} f \, dP Y^{-1} \quad (n \longrightarrow \infty)$$

が成立する.

参考文献

- [1] I. Karatzas and S. Shreve, Brownian motion and stochastic calculus second edition, 1998.
- [2] C. Chen, Study Notes in Matheamtics, available from http://www.stat.purdue.edu/~chen418/study_research/StochasticCalculus-note2.pdf, 2018/05/20.
- [3] Mathematics Stack Exchange, about stochastic A question processes and stopping times, available from https://math.stackexchange.com/questions/84271/ $\verb|a-question-about-stochastic-processes-and-stopping-times|, 2018/05/20.$