Physics Shit Cheat Sheet

Shahar Perets

 $March\ 23,\ 2025$

(1) MECHANICS	(3) ENERGY	$a_R = \frac{v^2}{r} = \omega^2 r$ $P = 2\pi r$
$v = \frac{\mathrm{d}x}{\mathrm{d}t}$	$W = \int \vec{F}(s) \mathrm{d}s$	$F = 2\pi r$ Critical Velocity at max.:
$a = \frac{\mathrm{d}v}{\mathrm{d}t}$	$(\exists c \forall x \colon F(x) = c)$ $\implies W = F_x \cdot \Delta x = F \cos \theta \Delta s$	$N = 0 \iff v = \sqrt{gr}$ $a_T = -g\sin\alpha$
$ar{v} = rac{\Delta x}{\Delta t}$ for V to be a vector space. Then	$E_k = \frac{1}{2}mv^2$	$\vec{a} = \vec{a}_T + \vec{a}_r$ $ a = \sqrt{a_T^2 + a_R^2}$
let V to be a vector space. Then: $a \in V \implies v = v_0 + at$	$U_g = mgh$ $U_{sp} = \frac{1}{2}k(\Delta\ell)^2$	$ an heta=rac{ a_T }{ a_R }$
$a \in V \implies x = x_0 + v_0 t + \frac{1}{2} a t^2$ $a \in V \implies x = x_0 + \frac{v_0 + v}{2} t$	$E_{k_1} + U_{g_1} = E_{k_2} + U_{g_2}$ $W_F = \Delta E = E_{\text{final}} - E_{\text{begining}}$	(5) GRAVITY
$a \in V \implies v = \sqrt{v_0^2 + 2a(x - x_0)}$	(4)	For a given gravitational system:
(2)	ROTATIONAL MOVEMENT	$\exists c \forall i \colon \frac{T_i^2}{r_i^3} = c$
FORCES $F = mg$	$f=rac{1}{T}$ $L=r\psi_{ m rad}$	$\left(rac{ar{r}_1}{ar{r}_2} ight)^3 = \left(rac{T_1}{T_2} ight)^2$
$\sum ec{F} = m ec{a}$	$\omega = 2\pi f = \frac{2\pi}{T}$	$F_g = G \frac{m_1 m_2}{r^2}$
$F = k \Delta \ell$	$v = \frac{2\pi r}{T}$	$U_G = -rac{GMm}{r}$ $GMm \qquad U_G$
$f_s \le \mu_s N$ $f_k = \mu_k N$	$ar{\omega} = rac{\Delta heta}{\Delta t} \ v = \omega r$	$E_k = \frac{GMm}{2r} = -\frac{U_G}{2}$ $\rho = \frac{m}{2}$
J K F~K+.	c 	, a,

.....