MATH 601 HOMEWORK (DUE 9/4)

HIDENORI SHINOHARA

Exercise. (2.1) Show that the function $g: \mathbb{R} \to S^1$, $g(r) = \exp(2\pi i r)$, where $i^2 = -1$, satisfies the property that g(r) = g(r') if and only if $r \sim r'$. Use this to explicitly construct a bijective map from the orbit space of the action to S^1 , $g: \mathbb{R}/\sim = \mathbb{Z}\backslash\mathbb{R} \to S^1$.

Proof.

• Let $r, r' \in \mathbb{R}$ such that $r \sim r'$. Let $k \in \mathbb{Z}$ such that k * r' = r. Therefore, k + r' = r.

$$g(r) = \exp(2\pi i r)$$

$$= \exp(2\pi i (k + r'))$$

$$= \exp(2\pi i k + 2\pi i r')$$

$$= \exp(2\pi i k) \exp(2\pi i r')$$

$$= \exp(2\pi i r')$$

$$= g(r').$$

• Let $r, r' \in \mathbb{R}$ such that g(r) = g(r').

$$\exp(2\pi i r) = \exp(2\pi i r') \implies \exp(2\pi i (r - r')) = 1$$

$$\implies \cos(2\pi (r - r')) + i \sin(2\pi (r - r')) = 1$$

$$\implies \sin(2\pi (r - r')) = 0$$

$$\implies r - r' \in \mathbb{Z}$$

$$\implies \exists k \in \mathbb{Z}, r = k * r'$$

$$\implies r \sim r'.$$

Let $g: \mathbb{Z} \setminus \mathbb{R} \to S^1$ be defined such that g([r]) = g(r) for each $[r] \in \mathbb{Z} \setminus \mathbb{R}$.

- Well-defined? Let $[r] = [r'] \in \mathbb{Z} \setminus \mathbb{R}$. Then $r \sim r'$. We showed that g(r) = g(r') if $r \sim r'$ earlier. Therefore, g is indeed well-defined.
- Injective? Let $[r], [r'] \in \mathbb{Z} \setminus \mathbb{R}$. Suppose g([r]) = g([r']). Then g(r) = g(r'). We showed earlier that this implies $r \sim r'$. In other words, [r] = [r']. Therefore, g is injective.

• Surjective? Let $z \in S^1$. Express z as $re^{i\theta}$ where $r, \theta \in \mathbb{R}$. Since |z| = 1, we can assume that r = 1 without loss of generality. (If r = -1, then $e^{i\pi} = -1$, so θ can be redefined as $\theta + \pi$.)

Then $[\theta/2\pi]$ is an element in $\mathbb{Z}\backslash\mathbb{R}$, and $g([\theta/2\pi]) = g(\theta/2\pi) = \exp(2\pi i \cdot \theta/2\pi) = \exp(i\theta) = z$. Therefore, g is indeed surjective.

Exercise. (2.2) Let $*: G \times S \to S$ be a left action of G. Show that $s \star g = g^{-1} * s$ defines a right action of G on S.

Proof. Let $s \in S, g, h \in G$ be given.

$$(s \star g) \star h = h^{-1} * (s \star g)$$

$$= h^{-1} * (g^{-1} * s)$$

$$= (h^{-1}g^{-1}) * s$$

$$= (gh)^{-1} * s$$

$$= s \star (gh).$$

Let $e \in G$ denote the identity element and let $s \in S$ be given.

$$s \star e = e^{-1} * s$$
$$= e * s$$
$$= s.$$

Therefore, \star is indeed a right action of G on S.

Exercise. (2.3)

- (1) Let $h, h' \in G$ lie in the same conjugacy class. Show that h and h' have the same order.
- (2) Give an example of a group and two elements of the same order which do not line in the same conjugacy class.
- Proof. (1) Since h and h' lie in the same conjugacy class, there must exist an element $g \in G$ such that h = g * h'. In other words, $h = g \cdot h' \cdot g^{-1}$. We will show that $h^n = g \cdot (h')^n \cdot g^{-1}$ for all $n \in \mathbb{N}$ using mathematical induction.
 - When n=1, the statement is true.

• Suppose $h^n = g \cdot (h')^n \cdot g^{-1}$ for some $n \in \mathbb{N}$.

$$\begin{split} h^{n+1} &= h^n \cdot h \\ &= (g \cdot (h')^n \cdot g^{-1}) \cdot (g \cdot h' \cdot g^{-1}) \\ &= g \cdot (h')^n \cdot (g^{-1} \cdot g) \cdot h' \cdot g^{-1} \\ &= g \cdot (h')^n \cdot h' \cdot g^{-1} \\ &= g \cdot (h')^{n+1} \cdot g^{-1}. \end{split}$$

Therefore, $h^n = g \cdot (h')^n \cdot g^{-1}$ for all $n \in \mathbb{N}$.

For any $n \in \mathbb{N}$, if $h^n = e$, then $g \cdot (h')^n \cdot g^{-1} = e$, so $(h')^n = g^{-1}g = e$. For any $n \in \mathbb{N}$, If $(h')^n = e$, then $h^n = geg^{-1} = e$. Therefore, $\forall n \in \mathbb{N}$, $h^n = e \iff (h')^n = e$.

This implies that if the order of one of h or h' is infinite, the other has to be infinite as well. On the other hand, if the order of one of h or h' is finite, the other has to be finite as well. Suppose that the orders of h and h' are finite and let n denote the order of h. Then $h^n = e$ and $h^m \neq e$ for each natural number m < n. Then $(h')^n = e$ and $(h')^m \neq e$ for each natural number m < n. Therefore, the order of h' is n as well.

We showed that, regardless of whether the order is finite, h and h' have the same order.

(2) We will consider the Klein 4-group K = e, a, b, c. Since $a^2 = b^2 = e$, a and b have the order 2. Suppose that a and b lie in the same conjugacy class. Then there must exist a $g \in K$ such that $a = gbg^{-1}$. Since K is abelian, $a = gbg^{-1} = gg^{-1}b = eb = b$. This is a contradiction, so there a and b do not lie in the same conjugacy class. Thus we found two elements of the same order which do not lie in the same conjugacy class.

Exercise. (2.4) Construct a bijection between \mathbb{P}^n_k and the set of all one-dimensional subspaces of the vector space, k^{n+1} .

Proof. Let F be the mapping from \mathbb{P}_k^n to the set of all one-dimensional subspaces of k^{n+1} defined by $F(x_0 : \cdots : x_n) = \{(tx_0, \cdots, tx_n) \mid t \in k\}$. We claim that this is a bijection.

• Well-defined? Let $(x_0 : \cdots : x_n) = (y_0 : \cdots : y_n) \in \mathbb{P}_k^n$ be given. Then there must exist a $t \in k^{\times}$ such that $(x_0, \cdots, x_n) = (ty_0, \cdots, ty_n)$.

- For any
$$(sx_0, \dots, sx_n) \in F(x_0 : \dots : x_n), (sx_0, \dots, sx_n) = (sty_0, \dots, sty_n) \in F(y_0 : \dots : y_n).$$

- For any $(sy_0, \dots, sy_n) \in F(y_0 : \dots : y_n), (sy_0, \dots, sy_n) = ((s/t)ty_0, \dots, (s/t)ty_n) = ((s/t)x_0, \dots, (s/t)x_n) \in F(x_0 : \dots : x_n).$
- Therefore, $F(x_0 : \cdots : x_n) = F(y_0 : \cdots : y_n)$.
- Injective? Let $(x_0 : \cdots : x_n), (y_0 : \cdots : y_n) \in \mathbb{P}^n_k$ be given. Then $(x_0, \cdots, x_n) \neq (0, \cdots, 0)$ and $(y_0, \cdots, y_n) \neq (0, \cdots, 0)$. Suppose that $F(x_0 : \cdots : x_n) = F(y_0 : \cdots : y_n)$. Since $(x_0, \cdots, x_n) = (1x_0, \cdots, 1x_n) \in F(x_0 : \cdots : x_n) = F(y_0 : \cdots : y_n)$, there must exist a $t \in k$ such that $(x_0, \cdots, x_n) = (ty_0, \cdots, ty_n)$. Since $(x_0, \cdots, x_n) \neq (0, \cdots, 0), t \neq 0$. Then $t \in k^{\times}$. Therefore, $(x_0, \cdots, x_n) = t * (y_0, \cdots, y_n)$, so $(x_0 : \cdots : x_n) = (y_0 : \cdots : y_n)$.
- Surjective? Let V be a one-dimensional subspace of k^{n+1} . Let $\{(a_0, \dots, a_n)\}$ be a basis of V. Then $V = \{(ta_0, \dots, ta_n) \mid t \in k\}$. Since (a_0, \dots, a_n) is a basis element, it is nonzero. Therefore, $(a_0 : \dots : a_n) \in \mathbb{P}^n_k$. Then $F(a_0 : \dots : a_n) = V$.

F is indeed a bijection between \mathbb{P}^n_k and the set of all one-dimensional subspaces of k^{n+1} .

Exercise. (2.5) The set ± 1 is a group with group law given by multiplication. This group acts on the unit sphere, $S^n := \{(x_0, \dots, x_n) \in \mathbb{R}^{n+1} : x_0^2 + \dots + x_n^2 = 1\}$ by scalar multiplication $\pm 1 * (x_0, \dots, x_n) = \pm 1 \cdot (x_0, \dots, x_n)$. Let \sim denote the corresponding equivalence relation on S^n . Construct a natural bijective map, $S^n / \sim \to \mathbb{P}^n_{\mathbb{R}}$.

Proof. Let $f: S^n/\sim \to \mathbb{P}^n_{\mathbb{R}}$ be defined such that $f([(x_0, \cdots, x_n)]) = (x_0: \cdots: x_n)$. We claim that f is a bijection.

- Well-defined? Let $(x_0, \dots, x_n) \sim (y_0, \dots, y_n) \in S^n$ be given. Since $(x_0, \dots, x_n) \sim (y_0, \dots, y_n)$, there exists a $t \in \{-1, 1\}$ such that $(x_0, \dots, x_n) = t \cdot (y_0, \dots, y_n) = (ty_0, \dots, ty_n)$. Since $t \in \mathbb{R}^*$, $(x_0 : \dots : x_n) = (y_0 : \dots : y_n)$. This implies that $f([(x_0, \dots, x_n)]) = f([(y_0, \dots, y_n)])$.
- Injective? Let $(x_0, \dots, x_n), (y_0, \dots, y_n) \in S^n$ be given. Suppose $f([(x_0, \dots, x_n)]) = f([(y_0, \dots, y_n)])$. Then $(x_0 : \dots : x_n) = (y_0 : \dots : y_n)$. Therefore, there must exist a $t \in \mathbb{R}^*$ such that $(x_0, \dots, x_n) = (ty_0, \dots, ty_n)$.

$$(ty_0)^2 + \dots + (ty_n)^2 = t^2(y_0^2 + \dots + y_n^2)$$

= $t^2 \cdot 1$
= t^2 .

On the other hand, $x_0^2 + \cdots + x_n^2 = 1$, so $t^2 = 1$. This implies that $t \in \{-1, 1\}$. Since $(x_0, \dots, x_n) = t(y_0, \dots, y_n)$ for some $t \in \{\pm 1\}$, $[(x_0, \dots, x_n)] = [(y_0, \dots, y_n)]$ in S^n / \sim .

• Surjective? Let $(x_0: \cdots: x_n) \in \mathbb{P}^n_{\mathbb{R}}$. Then $(x_0, \cdots, x_n) \neq 0$, so $x_0^2 + \cdots + x_n^2 \neq 0$. Let $c = x_0^2 + \cdots + x_n^2$. Let $y_i = x_i/\sqrt{c}$ for each i. This makes sense because c is a positive real number, so $1/\sqrt{c}$ exists. Then $y_0^2 + \cdots + y_n^2 = 1$, so $(y_0, \cdots, y_n) \in S^1$. Since $\sqrt{c}(y_0, \cdots, y_n) = (x_0, \cdots, x_n), (y_0: \cdots: y_n) = (x_0: \cdots: x_n)$. Therefore, $f(y_0, \cdots, y_n) = (x_0: \cdots: x_n)$, and thus f is indeed surjective.

Exercise.

• Determine the number of elements in the group $GL_2(R)$ when R is the ring $\mathbb{Z}/p\mathbb{Z}$, with p a prime number.

• $GL_2(\mathbb{Z}/p)$ acts on $(\mathbb{Z}/p)^2$ by multiplying column vectors on the left by matrices. Determine the distinct orbits of this action.

Proof.

- From linear algebra, we know that a matrix has a nonzero determinant if and only if the set of the column vectors is linearly independent. Since we are working with 2×2 matrices here, it is equivalent to checking whether each vector is a scalar multiple of the other.
 - There are $p^2 1$ columns that can be in an invertible matrix. This is because the only column vector that no invertible matrix has is the zero vector.
 - Suppose we pick one of the p^2-1 columns as the left column vector. Then there are exactly $(p^2-1)-(p-1)$ column vectors that we can pick as the right column vector to create an invertible matrix. This is because any nonzero scalar multiple of p^2-1 cannot be the right column vector, and if the right column vector is not a scalar multiple of the left vector, the matrix will be invertible.

Therefore, there are exactly $(p^2 - 1)((p^2 - 1) - (p - 1)) = p^4 - p^3 - p^2 + p$ matrices in $GL_2(R)$.

• We claim that there are two distinct orbits. Let $v = \begin{bmatrix} a \\ b \end{bmatrix} \in (\mathbb{Z}/p)^2$.

- If v = 0, then the orbit is $\{v\}$.

- If $v \neq 0$, then we claim that the orbit is the collection of all the nonzero vectors. First, we claim that the column vector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is in the orbit of v.

* If
$$a \neq 0$$
 and $b \neq 0$, then $\begin{bmatrix} a^{-1} & 0 \\ 0 & b^{-1} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
* If $a \neq 0$ and $b = 0$, then $\begin{bmatrix} a^{-1} & 0 \\ a^{-1} & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
* If $a = 0$ and $b \neq 0$, then $\begin{bmatrix} 1 & b^{-1} \\ 0 & b^{-1} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Since this argument can be applied to any nonzero column vector, it implies that the orbit of any nonzero column vector contains $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Since the orbits are equivalence classes, they are either disjoint or identical. In other words, this implies that every nonzero column vector has the same orbit

Moreover, for any $w \in (\mathbb{Z}/p)^2$, Iw = w where I denote the identity matrix. Thus the orbit of a nonzero vector contains any nonzero vector.

Therefore, the orbit of any nonzero vector is the set of all the nonzero vectors.