California State University Sacramento - Math 101 $\mathbf{Quiz} \ \#\mathbf{2}$

Name:	
-------	--

1) How many pairs of distinct integers $\{a,b\}$ with $a,b\in\{1,2,\ldots,10\}$ satisfy |a-b|=3? Let us list all such pairs: $\{1,4\}, \{2,5\}, \{3,6\}, \{4,7\}, \{5,8\}, \{6,9\}, \{7,10\}.$ There are 7 such pairs.

2) How many pairs of distinct integers $\{a,b\}$ with $a,b\in\{1,2,\ldots,10\}$ satisfy $|a-b|\leq 3$? Let us assume that a is smaller than b. We can do this because $\{a,b\}$ is a set and so we do not count $\{a,b\}$ as being different from $\{b,a\}$.

There are 7.3 + 2+1 = 24 such pairs.

3) Find the number of positive divisor of $1800 = 2^3 \cdot 3^2 \cdot 5^2$ which are multiples of 3.

4) Find the number of positive divisors of $1800 = 2^3 \cdot 3^2 \cdot 5^2$ that are multiples of 6.

5) Let $A_1 = \{1, 2, 3\}$, $A_2 = \{2, 3\}$, and $A_3 = \{1, 2, 3, 4\}$. Find the number of 3-tuples (a_1, a_2, a_3) where $a_1 \in A_1$, $a_2 \in A_2$, and $a_3 \in A_3$.