Fraudulent Claim Detection

Submitted By-

Yoshita Dhanwaria

Introduction

Fraudulent insurance claims pose a significant challenge for insurers, resulting in considerable financial losses and reduced operational efficiency. As claim volumes continue to grow, traditional manual methods of fraud detection have become inadequate. Adopting data-driven approaches enables insurers to detect and prevent fraud more accurately and efficiently

Problem Statement & Business Objective

Problem Statement

Global Insure processes thousands of claims annually, many of which are fraudulent. Manual fraud detection is slow and often too late, resulting in financial loss. The company needs an efficient way to detect fraud earlier in the process.

Business Objective

Develop a predictive model that uses historical claim and customer data to classify claims as fraudulent or legitimate, enabling faster and more accurate fraud detection.

Data Overview

Source: insurance_claims.csv, containing policy details, incident information, customer demographics, claim amounts, and a binary target fraud_reported (Y/N).

Training-Validation Split:

• Training set: $699 \times 0.75 \approx 525$ samples

Validation set: 699 × 0.25 ≈174 samples

Class Balance:

Fraudulent: ~25%

Non-fraudulent: ~75%

Imbalance ratio ≈3:1 (majority: minority

Data preparation

Missing Value imputation

- Identified and dropped columns with excessive missingness
- Imputed or removed rows for remaining nulls as appropriate.

Redundant & Illogical Entries

- Removed duplicate records.
- Dropped features with constant or near-constant values.
- Ensured numeric fields (e.g., policy durations, claim amounts) were non-negative

Data Types

- Converted date fields to datetime objects.
- Cast categorical columns to category dtype.

EDA - Univariate Analysis

Observations from histogram plots:

months_as_customer:

- Mean: 202.57, Median: 199.00

- Skewness: 0.37

- Distribution appears approximately symmetric

age:

- Mean: 38.85, Median: 38.00

- Skewness: 0.51

- Distribution is positively skewed (right-tailed)

policy_deductable:

- Mean: 1150.21, Median: 1000.00

- Skewness: 0.45

- Distribution appears approximately symmetric umbrella_limit:

- Mean: 1077253.22, Median: 0.00

- Skewness: 1.79

- Distribution is positively skewed (right-tailed)

capital-gains:

- Mean: 25506.01, Median: 0.00

- Skewness: 0.45

- Distribution appears approximately symmetric

capital-loss:

- Mean: -26458.37, Median: -20800.00

- Skewness: -0.41

- Distribution appears approximately symmetric

number_of_vehicles_involved:

- Mean: 1.83, Median: 1.00

- Skewness: 0.49

- Distribution appears approximately symmetric

bodily_injuries:

- Mean: 0.97, Median: 1.00

- Skewness: 0.06

- Distribution appears approximately symmetric

witnesses:

- Mean: 1.46, Median: 1.00

- Skewness: 0.06

- Distribution appears approximately symmetric

total_claim_amount:

- Mean: 52923.61, Median: 58300.00

- Skewness: -0.57

- Distribution is negatively skewed (left-tailed)

injury_claim:

- Mean: 7508.73, Median: 6780.00

- Skewness: 0.27

- Distribution appears approximately symmetric

property_claim:

- Mean: 7399.20, Median: 6780.00

- Skewness: 0.33

- Distribution appears approximately symmetric

EDA - Univariate Analysis

Observations from boxplot plots:

months_as_customer:

- Number of outliers: 0
- Outlier range: (-120.25, 509.75)

age:

- Number of outliers: 4
- Outlier range: (14.00, 62.00)

policy_deductable:

- Number of outliers: 0
- Outlier range: (-1750.00, 4250.00)

umbrella_limit:

- Number of outliers: 140
- Outlier range: (0.00, 0.00)

capital-gains:

- Number of outliers: 0
- Outlier range: (-76650.00, 127750.00)

capital-loss:

- Number of outliers: 0
- Outlier range: (-128125.00, 76875.00)

Correlation Matrix

Highly correlated feature pairs (|correlation| > 0.7):

age & months_as_customer: 0.920 injury_claim & total_claim_amount: 0.818 property_claim & total_claim_amount: 0.815

vehicle_claim & total_claim_amount: 0.984 vehicle_claim & injury_claim: 0.743 vehicle_claim & property_claim: 0.742

Class Imbalance analysis

Class imbalance analysis:

Majority class (N): 526 samples (75.25%)

Minority class (Y): 173 samples (24.75%)

Imbalance ratio (majority:minority): 3.04:1

The dataset shows significant class imbalance. This may affect model performance.

Consider using techniques such as:

- 1. Resampling methods (oversampling minority class or undersampling majority class)
- 2. Using class weights during model training
- 3. Using algorithms that handle imbalanced data well
- 4. Using evaluation metrics appropriate for imbalanced datasets (e.g., precision, recall, F1-score, AUC-ROC)

Bivariate Analysis

Feature importance based on variance in fraud rates:

incident_severity: 655.5417 insured_hobbies: 437.9118 auto_model: 138.9059 I ncident_type: 127.9124 collision_type: 97.4883 incident_state: 73.1274 property_damage: 39.8805 insured_occupation: 39.3522

auto_make: 27.8186

insured_relationship: 24.6759 authorities_contacted: 23.6709

incident_city: 14.4581

policy_csl: 6.0253

insured_education_level: 5.3411 police_report_available:

2.1569

policy_state: 0.2506 insured sex: 0.0773

Categorical features with low variance may not contribute much to explaining fraud.

Statistical comparison of numerical features between fraud and non-fraud cases: months_as_customer age \	Feature importance based on effect size (Cohen's d)
mean median std mean median	vehicle_claim 0.408390
fraud_reported N	total_claim_amount 0.402311
Y 206.479769 199.0 119.634112 39.046243 38.0	property_claim 0.354408
policy_decuctable umbrella_limit \	injury_claim 0.252318
std mean median std mean fraud_reported	umbrella_limit 0.163139
N 8.832824 1144.486692 1000.0 603.196267 9.866920e+05	number_of_vehicles_involved 0.132975
Y 9.605482 1167.630058 1000.0 634.010529	witnesses 0.132495
1.352601e+06	auto_year 0.099639
injury_cla m property_claim \	bodily_injuries 0.092743
std mean median std fraud_reported	incident_hour_of_the_day 0.066322
N 4973.403517 6981.083650 6665.0 4765.613193 Y 4663.304029 8670.462428 7420.0 4770.279941	months_as_customer 0.045774
4003.304029 8070.402428 7420.0 4770.279941	policy_deductable 0.037881
vehicle_claim auto_year \ mean median std mean median	capital-loss 0.033652
fraud_reported	age 0.029334
N 36109.448669 41305.0 19952.511542 2005.108365 2005.0 Y 43811.502890 45360.0 15040.163982 2004.514451 2004.0	capital-gains 0.028634
43011.302030 43300.0 13040.103302 2004.314431 2004.0	dtype: float64
std	
fraud_reported	
N 5.994414	

Model Selection

Models

- Logistic Regression
- Random Forest Classifier

Logistic Regression + RFECV

Logistic Regression + RFECV:

• Recursive elimination with cross validation selected the top ~52 predictors.

Number of selected features: 52

Selected features:

['policy_csl_250/500', 'insured_education_level_JD', 'insured_education_level_MD', 'insured_education_level_PhD', 'insured_occupation_exec-managerial', 'insured_occupation_farming-fishing', 'insured_occupation_handlers-cleaners', 'insured_occupation_other-service', 'insured_occupation_priv-house-serv', 'insured_hobbies_camping', 'insured_hobbies_chess', 'insured_hobbies_cross-fit', 'insured_hobbies_dancing', 'insured_hobbies_golf', 'insured_hobbies_movies', 'insured_hobbies_sleeping', 'insured_hobbies_wideo-games', 'insured_relationship_not-in-family', 'insured_relationship_own-child', 'insured_relationship_unmarried', 'incident_type_Vehicle Theft', 'collision_type_Side Collision', 'collision_type_Unknown', 'incident_severity_Minor Damage', 'incident_severity_Total Loss', 'incident_severity_Trivial Damage', 'incident_state_NY', 'incident_state_OH', 'incident_state_PA', 'incident_state_WV', 'incident_city_Northbrook', 'property_damage_Unknown', 'property_damage_YES', 'auto_make_Audi', 'auto_make_BMW', 'auto_make_Chevrolet', 'auto_make_Nissan', 'auto_model_A5', 'auto_model_Camry', 'auto_model_Civic', 'auto_model_F150', 'auto_model_Fusion', 'auto_model_Grand Cherokee', 'auto_model_Legacy', 'auto_model_MDX', 'auto_model_Other', 'auto_model_Pathfinder', 'auto_model_Silverado', 'auto_model_Ultima', 'auto_model_Wrangler', 'auto_model_X5', 'age_group_Young']

Logistic Regression

Optimization terminated successfully.								
Current function value: 0.271020								
Iterations 8								
Logit Regression Results								
Dep. Variable:	fraud_reported	No. Obser	No. Observations: 1052					
Model:	Logit	Df Residuals:		1001				
Method:	MLE	Df Model:		50				
Date:	Sun, 20 Apr 2025	Pseudo R-squ.:		0.6090				
Time:	23:21:11	Log-Likelihood:		-285.11				
converged:	True	LL-Null:		-729.19				
Covariance Type:	nonrobust	LLR p-value:		8.129e-154				
		coef	std err	z	P> z	[0.025	0.975]	
const		1.7584	0.399	4.404	0.000	0.975	2.541	
policy_csl 250/500		0.7091	0.247	2.877	0.004	0.226	1.192	
insured education	level JD	0.8224	0.333	2.469	0.014	0.169	1.475	
insured education		1.2107	0.344	3.516	0.000	0.536	1.886	
insured education level PhD		0.9629	0.358	2.693	0.007	0.262	1.664	
insured occupation	_	0.5531	0.427	1.295	0.195	-0.284	1.390	
insured occupation farming-fishing		-1.2992	0.614	-2.118	0.034	-2.502	-0.097	
insured occupation handlers-cleaners		-2.2441	0.606	-3.704	0.000	-3.431	-1.057	
insured occupation other-service		-1.3984	0.509	-2.747	0.006	-2.396	-0.401	
insured occupation priv-house-serv		-1.2727	0.498	-2.558	0.011	-2.248	-0.298	
insured hobbies can	mping	-0.9862	0.578	-1.707	0.088	-2.119	0.146	
insured hobbies chess		7.1086	0.720	9.875	0.000	5.698	8.519	
insured hobbies cross-fit		4.5713	0.639	7.154	0.000	3.319	5.824	
insured_hobbies_dar	ncing	-1.9412	0.782	-2.481	0.013	-3.474	-0.408	
insured_hobbies_mov	vies	-0.9414	0.637	-1.477	0.140	-2.190	0.307	
insured_hobbies_sleeping		-1.8309	0.542	-3.379	0.001	-2.893	-0.769	
insured_hobbies_vio	deo-games	1.9561	0.450	4.347	0.000	1.074	2.838	
insured_relationsh	ip_not-in-family	1.1784	0.330	3.568	0.000	0.531	1.826	
insured_relationsh:	ip_own-child	-0.4121	0.342	-1.205	0.228	-1.082	0.258	
insured_relationship_unmarried		0.6007	0.343	1.752	0.080	-0.071	1.273	
incident_type_Vehicle Theft		-0.4407	0.734	-0.601	0.548	-1.879	0.997	
collision type_Side Collision		-1.0742	0.279	-3.852	0.000	-1.621	-0.528	
collision_type_Unk	nown	0.4950	0.628	0.788	0.430	-0.735	1.725	
incident_severity_		-5.4665	0.448	-12.202	0.000	-6.345	-4.588	
incident_severity_		-4.3908	0.356	-12.321	0.000	-5.089	-3.692	
incident_severity_	-5.8259	0.859	-5.781	0.000	-7.510	-4.142		
incident state MV9 6572								

VIF values for the refitted model:						
	Feature VIF					
0	const	13.007234				
22	collision_type_Unknown	3.122945				
36	auto_make_Nissan	2.877511				
25	incident_severity_Trivial Damage	2.284443				
34	auto_make_BMW	2.277934				
49	auto_model_X5	2.046408				
47	auto_model_Ultima	1.905181				
35	auto_make_Chevrolet	1.881893				
45	auto_model_Pathfinder	1.868680				
20	incident_type_Vehicle Theft	1.859962				
46	auto_model_Silverado	1.772034				
23	incident_severity_Minor Damage	1.680774				
44	auto_model_Other	1.640283				
31	property_damage_Unknown	1.555763				
32	property_damage_YES	1.531561				
24	incident_severity_Total Loss	1.377009				
29	incident_state_WV	1.296598				
11	insured_hobbies_chess	1.288843				
39	auto_model_F150	1.275981				
26	incident_state_NY	1.258974				
28	incident_state_PA	1.252816				
33	auto_make_Audi	1.244682				
17	insured_relationship_not-in-family	1.234295				
37	auto_model_Camry	1.227096				
19	insured_relationship_unmarried	1.222783				
27	incident_state_OH	1.216750				
2	insured_education_level_JD	1.212843				
18	insured_relationship_own-child	1.180312				
3	insured_education_level_MD	1.179291				
4	insured_education_level_PhD	1.162443				
21	collision_type_Side Collision	1.153005				
5	insured_occupation_exec-managerial	1.139606				
12	insured_hobbies_cross-fit	1.136269				
42	auto_model_Legacy	1.131412				
40	auto_model_Fusion	1.129742				
43	auto_model_MDX	1.129205				
16	insured_hobbies_video-games	1.127188				
38	auto_model_Civic	1.117150				

Logistic Regression – ROC Curve

Optimal threshold based on Youden's index:

0.5282 At this threshold -

Sensitivity: 0.9278, Specificity: 0.8878

Optimal cutoff value: 0.5282

Logistic Regression – Optimal Cutoff

Optimal cutoff where sensitivity and specificity are closest: 0.5500 At this cutoff - Sensitivity: 0.9068, Specificity: 0.8935

Accuracy at this cutoff: 0.9002

Confusion Matrix

Confusion Matrix using optimal cutoff: [[467 59]

[38 488]]

Model performance metrics using optimal

cutoff (0.5282):

Accuracy: 0.9078

Sensitivity (True Positive Rate): 0.9278

Specificity (True Negative Rate): 0.8878

Precision: 0.8921

Recall: 0.9278

F1 Score: 0.9096

Precision Recall Curve

Random Forest

- Feature importance thresholding (0.01) retained 28 variables; top features included.
- Number of selected features based on importance threshold (0.01): 28
- Selected features based on importance threshold:

```
['total_claim_amount', 'insured_hobbies_chess', 'incident_severity_Trivial Damage', 'capital-gains', 'incident_state_WV', 'witnesses', 'incident_type_Vehicle Theft', 'property_claim', 'vehicle_age', 'property_claim_ratio', 'injuries_vehicles_interaction', 'insured_hobbies_dancing', 'incident_state_OH', 'authorities_contacted_Unknown', 'incident_state_NY', 'auto_model_F150', 'collision_type_Unknown', 'property_damage_Unknown', 'auto_model_Silverado', 'umbrella_limit', 'capital-loss', 'insured_hobbies_board-games', 'auto_model_95', 'incident_city_Riverwood', 'policy_deductable', 'insured_hobbies_movies', 'incident_day_of_week', 'insured_hobbies_bungie-jumping']
```

Random Forest – Feature Importance

Random Forest– Decision Tree based on feature selection

Random Forest - Hyperparameter Tuning

Random Forest – Confusion Matrix

Confusion Matrix:

[[514 12] [18 508]]

Random Forest Model with Best Parameters:

Accuracy: 0.9715

Sensitivity (True Positive Rate): 0.9658 Specificity (True Negative Rate): 0.9772

Precision: 0.9769

Recall: 0.9658

F1 Score: 0.9713

Prediction & Model evaluation

Model	Validation Accuracy	Sensitivity (TPR)	Specificity (TNR)	Precision	Recall	F1-Score
Logistic Regression Optimized cutoff (0.5282)	0.8000	0.6757	0.8407	0.5814	0.6757	0.6250
Random Forest (Hyperparameter Tuning)	0.7233	0.3378	0.8496	0.4237	0.3378	0.3759

Logistic Regression (Optimized cutoff at 0.5282)

- Achieves 80.00% validation accuracy
- Shows good sensitivity/recall at 67.57% (effectively captures true positives)
- Maintains high specificity at 84.07% (effectively identifies true negatives)
- Delivers precision of 58.14% (moderate confidence in positive predictions)
- Results in F1-Score of 62.50% (balanced performance between precision and recall)

Random Forest

- Reaches 72.33% validation accuracy
- Demonstrates poor sensitivity at only 33.78% (misses many positive cases)
- Maintains high specificity at 84.96% (slightly better than Logistic Regression)
- Shows lower precision at 42.37% (less confidence in positive predictions)
- Results in a substantially lower F1-Score of 37.59%

Prediction and Model Evaluation: Conclusion

The **Logistic Regression** model with a tuned probability threshold outperforms Random Forest in detecting fraudulent claims. While both models demonstrate comparable **specificity** (accurately identifying non-fraudulent claims), Logistic Regression excels in **sensitivity**, capturing more true fraud cases. It also achieves a better trade-off between **precision and recall**, as reflected in a higher **F1-Score**. This makes it a more effective choice for fraud detection, where spotting fraudulent activity is critical.

1. How can we analyze historical claim data to detect patterns that indicate fraudulent claims?

Analyzing Historical Claim Data

1. Exploratory Data Analysis (EDA):

Uncover relationships between features and fraudulent behavior

2. Feature Engineering:

Create derived variables (e.g., claim-to-policy ratio) to enhance signal detection

3. Statistical Analysis:

Detect anomalies and outliers that may indicate potential fraud

4. Predictive Modeling:

Use machine learning models like **Logistic Regression** and **Random Forest** to capture hidden fraud patterns

5.ROC Curve Analysis:

Identify optimal probability cutoffs to balance fraud detection and false positives

6. Model Evaluation:

Measure effectiveness using metrics such as sensitivity (recall) and specificity

2. Which features are most predictive of fraudulent behaviour?

Key Predictive Features Identified

1.Total Claim Amount

• Higher claim values are more frequently associated with fraud

2. Hobbies (e.g., Chess, Dancing)

Certain hobbies reflect demographic trends linked to fraudulent behavior

3.Incident Severity

Minor or trivial damage claims show a stronger association with fraud

4. Capital Gains/Losses

• Serve as indicators of the claimant's financial standing

5.Geographic Location

States like WV, NY, and OH exhibit higher fraud incidence

6. Vehicle Type

• Specific models (e.g., **F150**, **Silverado**) are linked with higher fraud rates

7.Incident Characteristics

• Claims involving vehicle theft or ambiguous collision types raise fraud likelihood

8. Property Damage Reporting

Inconsistent or suspicious property damage reports are red flags

3. Can we predict the likelihood of fraud for an incoming claim, based on past data?

Predicting Fraud for New Claims

- 1. The **Logistic Regression** model achieved **80.00% validation accuracy** with strong **sensitivity** at **67.57**%
- 2.An **optimal probability threshold (~0.55)** was identified to balance false positives and false negatives
- 3. The model generates **probability scores** indicating the likelihood of fraud for each claim
- 4. The **Random Forest** model offers an alternative, though with **lower sensitivity** (33.78%)
- 5. These models can be **deployed in production** to score and flag incoming claims for potential fraud

4. What insights can be drawn from the model that can help in improving the fraud detection process?

Key Insights for Enhancing Fraud Detection

- 1. Cutoff Optimization is Key
 - The default 0.5 threshold is suboptimal for imbalanced datasets; fine-tuning improves detection

2. Claim Characteristics Matter

Flags should be raised for trivial damage and certain vehicle models with high fraud incidence

3. Geographic Risk Patterns

Claims originating from specific states warrant closer inspection

4. Balancing Detection and Experience

Adjusting the threshold helps manage the trade-off between catching fraud and avoiding false alarms

5. Tiered Review Strategy

Implement a multi-level review process based on fraud probability scores

6.Model Choice Matters

• Logistic Regression with a tuned cutoff outperforms more complex models like Random Forest in this use case

7. Use Demographics Responsibly

Features like hobbies and occupation reveal patterns but must be used with care to avoid bias