

a
cond

3 taking a plurality of different crystallization samples in an enclosed microvolume,
4 the plurality of crystallization samples comprising a material to be crystallized and crystallization
5 conditions which vary among the plurality of crystallization samples;
6 allowing crystals of the material to form in the plurality of crystallization samples;
7 and
8 identifying which of the plurality of crystallization samples comprise a precipitate
9 or a crystal of the material.

a
2

1 6. (Amended) A method according to claim 1 wherein the enclosed microvolume is
2 at least partially defined by a face of a card shaped substrate.

a
3

1 9. (Amended) A method according to claim 1, the method further comprising
2 performing a spectroscopic analysis on a precipitate or crystal formed within the microvolume.

a
4

1 10. (Amended) A method according to claim 9, wherein the spectroscopic analysis
2 is selected from the group consisting of Raman, UV/VIS, IR, and x-ray spectroscopy.

11

1 11. (Amended) A method according to claim 10, wherein x-ray spectroscopy is
2 performed such that a portion of the microvolume that the x-ray beam traverses contains at least
3 as many electrons as is contained in a material defining the portion of the microvolume that the
4 x-ray beam traverses.

12

1 12. (Amended) A method according to claim 11, wherein x-ray spectroscopy is
2 performed such that a portion of the microvolume that the x-ray beam traverses contains at least
3 three times as many electrons as is contained in a material defining the portion of the
4 microvolume that the x-ray beam traverses.

13

1 13. (Amended) A method according to claim 12, wherein x-ray spectroscopy is
2 performed such that a portion of the microvolume that the x-ray beam traverses contains at least

A₃ cont'd

3 five times as many electrons as is contained in a material defining the portion of the
4 microvolume that the x-ray beam traverses.

1 *15* 20. (Amended) A method according to claim *16*, wherein x-ray spectroscopy is
2 performed such that a portion of the microvolume that the x-ray beam traverses contains at least
3 ten times as many electrons as is contained in a material defining the portion of the microvolume
4 that the x-ray beam traverses.

1 *16* 21. (Amended) A method according to claim 1, wherein material defining the
2 microvolume defines a groove that reduces a number of electrons that an x-ray beam used to
3 perform x-ray spectroscopy of a crystal within the microvolume traverses in the process of
4 performing x-ray spectroscopy on the sample within the microvolume.

A₅

1 *19* 24. (Amended) A method according to claim 1, wherein one or more dividers are
2 positioned within the enclosed microvolume to separate adjacent crystallization samples within
3 the enclosed microvolume.

A₅ Sub 2

1 25. (Amended) A method according to claim 25, wherein the
2 one or more dividers are formed of an impermeable material.

A₄ Sub 3

1 28. (Amended) A method according to claim 25, wherein the
2 one or more dividers are formed of a permeable material.

1 29. (Amended) A method according to claim 25, wherein the
2 one or more dividers are formed of a semipermeable material.

A₇

1 *16* 33. (Amended) A method according to claim 25, wherein at least one of the one or
2 more dividers form an interface selected from the group consisting of liquid/liquid, liquid/ gas
3 interface, liquid/ solid and liquid/ sol-gel interface.

b7c
1 34. (Amended) A method according to claim 25, wherein the one or more dividers
2 are selected from the group consisting of a membrane, gel, frit, and matrix.

1 35. (Amended) A method according to claim 25, wherein the one or more dividers
2 function to modulate diffusion characteristics between adjacent crystallization samples.

1 36. (Amended) A method according to claim 25, wherein at least one of the one or
2 more dividers is formed of a semipermeable material which allows diffusion between adjacent
3 crystallization samples.

1 37. (Amended) A method for determining crystallization conditions for a material,
2 the method comprising:

3 taking a plurality of different crystallization samples in a plurality of enclosed
4 microvolumes, each microvolume comprising one or more crystallization samples, the
5 crystallization samples comprising a material to be crystallized and crystallization conditions
6 which vary among the plurality of crystallization samples;

7 allowing crystals of the material to form in the plurality of crystallization samples;
8 and

9 identifying which of the plurality of crystallization samples comprise a precipitate
10 or a crystal of the material.

Please add the following new claims 38-45.

b8 1 38. A method according to claim 16, wherein the x-ray spectroscopy is x-ray
2 diffraction.

1 39. A method according to claim 16, wherein x-ray spectroscopy is performed such
2 that a portion of the crystal or precipitate that the x-ray beam traverses contains at least as many
3 electrons as is otherwise traversed by the x-ray beam when traversing a device comprising the
4 microvolume.

34

1 40. A method according to claim 16, wherein x-ray spectroscopy is performed such
2 that a portion of the crystal or precipitate that the x-ray beam traverses contains at least three
3 times as many electrons as is otherwise traversed by the x-ray beam when traversing a device
4 comprising the microvolume.

35

1 41. A method according to claim 16, wherein x-ray spectroscopy is performed such
2 that a portion of the crystal or precipitate that the x-ray beam traverses contains at least five times
3 as many electrons as is otherwise traversed by the x-ray beam when traversing a device
4 comprising the microvolume.

36

1 42. A method according to claim 16, wherein x-ray spectroscopy is performed such
2 that a portion of the crystal or precipitate that the x-ray beam traverses contains at least ten times
3 as many electrons as is otherwise traversed by the x-ray beam when traversing a device
4 comprising the microvolume.

37

1 43. A method according to claim 37, wherein each microvolume comprising a
2 plurality of crystallization samples.

38

1 44. A method according to claim 16, wherein x-ray spectroscopy is performed such
2 that a portion of the microvolume that the x-ray beam traverses contains at least half as many
3 electrons as is contained in a material defining the portion of the microvolume that the x-ray
4 beam traverses.

39

1 45. The method according to claim 1 wherein the material to be crystallized contains
2 at least two or more materials selected from the group consisting of viruses, proteins, peptides,
3 nucleosides, nucleotides, ribonucleic acids, deoxyribonucleic acids, small molecules, drugs,
4 putative drugs, inorganic compounds, metal salts, organometallic compounds and elements.