Eksploracja danych

Zastosowanie algorytmów Gradient Boosted Decision Trees do prognozowania szeregów czasowych

Sprawozdanie z projektu - 18.01.2019

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

Bartłomiej Bukowski Ryszard Sikora

Na ile dni do przodu mogę przewidzieć kurs euro

- Jak dużo danych historycznych potrzebuję, żeby przewidzieć przyszłe wartości?
- Na ile dni do przodu mogę przewidywać przyszłe wartości?
- Z jaką dokładnością jestem w stanie przewidzieć kurs za X dni mając Y dni danych historycznych?
- Jak częstotliwość danych wpływa na te przewidywania?

Gradient Boosted Decision Trees

Gradient Boosting to technika uczenia zespołowego, w której klasyfikatory uczone są sekwencyjnie - kolejny klasyfikator uczy się na błędach poprzednich klasyfikatorów

- Zmniejsza stronniczość (bias) i wariancję
- Może przeuczać (overfitting)
- Najczęściej używany z drzewami decyzyjnymi

XGBoost - eXtreme Gradient Boosting

Kurs EURO do USD 2010-2017

XGBoost - wykorzystanie

- Algorytm XGBoost parametryzować można dwoma zmiennymi:
 - długością wektorów uczących (w seriach czasowych rozumianych jako ilość próbek z puntów czasowych wstecz)
 - o ilością wektorów uczących (dla każdego punktu czasowego w serii, konstruujemy wektor złożony z n-1 wartości próbek czasowych wstecz + wartości danego punktu czasowego)
- Z zaprezentowanej serii czasowej wybrano podserię z zakresu dat: 2016.10.01 2016.11.30
 - o granularność próbek to 15 minut (96 próbek na dzień)
- Długość wektorów uczących była zmienna
- Przewidywano różne okresy czasowe wprzód

Kurs EURO do USD 2016.10.01 - 2016.11.30 (wybrana podseria czasowa)

Opis wykresów

Każdy wykres jest opatrzony dwoma parametrami:

długość wektorów uczących → przewidywany okres

Przewidywany okres jest wizualizowany na wykresie w postaci:

- faktycznych wartości dla danego czasu
- przewidywanych wartości
- dodatkowo górnej i dolnej granicy błędu

Każdy wykres wizualizuje uczenie na podstawie wcześniej wskazanej subserii." 6 godzin → 6 godzin

$6 \text{ godzin} \rightarrow 6 \text{ godzin}$

$6 \text{ godzin} \rightarrow 12 \text{ godzin}$

6 godzin → 1 dzień

6 godzin \rightarrow 2 dni

1 dzień \rightarrow 6 godzin

Przewidywanie 1 dzień → 1 dzień

1 dzień → 7 dni

1 dzień → 12 dni

$7 dni \rightarrow 6 godzin$

7 dni → 1 dzień

$7 dni \rightarrow 7 dni$

7 dni → 12 dni

12 dni → 6 godzin

12 dni → 1 dzień

12 dni \rightarrow 7 dni

12 dni → 12 dni

heatmapa

Mapowanie wartości na osiach:

 $0 \rightarrow 6$ godzin

 $1 \rightarrow 12 \text{ godzin}$

 $2 \rightarrow 1$ dzień

 $3 \rightarrow 2 dni$

 $4 \rightarrow 3 dni$

 $5 \rightarrow 4 dni$

 $6 \rightarrow 5 dni$

 $7 \rightarrow 6 dni$

heatmapa - wytłumaczenie

- Wartości heatmapy to błąd średniokwadratowy między przewidywanymi próbkami wprzód a faktycznymi wartościami
- Widzimy, że przewidywanie od 6h do 1 dnia wprzód daje najlepsze wyniki, lecz nie jest to zbyt zaskakujące
- Uczenie na podstawie długich wektorów uczących daje lepsze wyniki oraz przewidywanie małego okresu wprzód
- Świadczy to o braku wykrywalnego trendu, a bardziej lokalnych charakterystyk serii czasowej

Szacunkowe zapotrzebowanie na energię elektryczną DOM - 2005-2018

DOM - 2017-2018

heatmapa

Mapowanie wartości na osiach:

0 → 1 dzień : :

 $12 \rightarrow 13 dni$

Tutaj widzimy, że ta seria czasowa ma trend, który objawia się, gdy wektory uczące są dłuższe. Pomijając przewidywanie najbliższych 1-3 dni jest najlepsze (wyjąwszy przewidywanie jednego dnia na podstawie wektorów jednodniowych)

Bibliografia

- 1. https://nbviewer.jupyter_english/topic09_time_series/topic9_part1_time_series_python.ipynb
- 2. https://www.kaggle.com/thebrownviking20/everything-you-can-do-with-a-time-series
- 3. https://xqboost.readthedocs.io/en/latest/
- 4. https://github.com/rychuhardy/eksploracja-danych-timeseries/tree/master/final

Zastosowanie algorytmów Gradient Boosted Decision Trees do prognozowania szeregów czasowych

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

Bartłomiej Bukowski Ryszard Sikora

