Diskretne strukture UNI Vaje 3

- 1. (a) Pokaži, da tromestni veznik $A(p,q,r) \equiv r \Rightarrow (\neg p \land \neg q)$ predstavlja poln nabor veznikov.
 - (b) Zaporedje izrazov A_n je definirano rekurzivno z

$$A_0 = \neg p$$

$$A_n = A(p, A_{n-1}, 1).$$

Izračunaj A_{2019} .

a)
$$A(0,0,0) = 0 \Rightarrow (70 \land 70) \sim 1$$

$$A(1,1,1) = 1 \Rightarrow (71 \land 71) \sim 1 \Rightarrow 71 \sim 1 \Rightarrow 0 \sim 0$$
We obnay a konstant. Mada je poln.
$$P = \{7, \Rightarrow\} \qquad N = \{A\}$$

Vezuire iz P iznarimo z veznihi iz d:

- · 7p ~ A(pipip)
- · p => 2 ~ p => 212 ~ p => 7(72) 17(72) ~ A(72,72,p) ~ A(12,2,2), A(2,2,2), P)

⇒ {A} je poln mabor.

$$A(p,q,r) \equiv r \Rightarrow (\neg p \land \neg q)$$

$$A_n = A(p,A_{n-1},1).$$

$$A_1 = A(p,A_0,1) = 1 \Rightarrow (\neg p \land \neg 1) \land 1 \Rightarrow (\neg p \land p) \land 1 \Rightarrow 0 \land 0$$

$$A_2 = A(p,A_1,1) = 1 \Rightarrow (\neg p \land \neg 1) \land 1 \Rightarrow \neg 1 \land 1 \Rightarrow \neg 1 \land 1 \Rightarrow \neg 1 \Rightarrow \neg 1 \land 1 \Rightarrow \neg 1 \Rightarrow \neg$$

$$A_{2019} = 0$$

- 2. Naj bo A veznik $A(p,q,r) \equiv (p \vee q) \Rightarrow r$.
 - (a) Kateri izmed naborov $\{A\}$, $\{A,1\}$, $\{A,0\}$, $\{A,\neg\}$ so polni?
 - (b) Zaporedje izrazov A_n je definirano rekurzivno z

$$A_0 = \neg p$$

$$A_1 = \neg q$$

$$A_n = A(p, q, A_{n-1} \land A_{n-2})$$

Izračunaj A_{2019} .

$$A(0,0,0) = 0 \lor 0 \Rightarrow 0 \sim 0 \Rightarrow 0 \sim 4$$

 $A(4,4,4) = 4 \lor 4 \Rightarrow 4 \sim 4 \Rightarrow 4 \sim 4$

 \Rightarrow A obnavja enice \Rightarrow $1A^{\frac{1}{4}}$ in $1A,1^{\frac{1}{4}}$ mista polna, les obnavjata enice.

Piznazimo z V:

•
$$\underline{1p} \sim p \Rightarrow 0 \sim p \vee p \Rightarrow 0 \sim \underline{A(p_1p_10)}$$

⇒ {A,0} je poln.

Piznazimo z V:

• <u>]</u> ~ <u>]</u> ~

•
$$\underline{p} \Rightarrow \underline{q}$$
 ~ $\underline{p} \vee p \Rightarrow \underline{q} \sim \underline{A(p_1p_1\underline{q})}$

$$\Rightarrow$$
 {A,7} je poln.

$$A(p,q,r) \equiv (p \lor q) \Rightarrow r.$$

$$A_0 = \neg p$$

$$A_1 = \neg q$$

$$A_n = A(p, q, A_{n-1} \wedge A_{n-2})$$

A0 = 7p

$$A_2 = A(p_1 q_1 A_1 A_0) = A(p_1 q_1 T_2 A_7 p) = p V_2 \Rightarrow T p A T_2 \sim p V_2 \Rightarrow T(p V_2) \sim T(p V_2) V T(p V_2) \sim T(p V_2) \sim T(p V_2) \sim Tp A T_2$$

$$A_3 = A(p_1 2, A_2 \wedge A_1) = A(p_1 2, Tp \wedge T2 \wedge T2) = A(p_1 2, Tp \wedge T2) = Tp \wedge T2$$

$$A_1 = A(p_1, q_1, A_3 \wedge A_2) = A(p_1, q_1, p_1, q_2 \wedge p_1, q_2) = A(p_1, q_1, p_1, q_2) = p_1, q_2$$
:

- 3. Veznik A je definiran s predpisom $A(p,q,r) \equiv (p \wedge q) \vee (\neg p \wedge \neg r)$.
 - (a) Samo z veznikom A zapiši izraze 1, $p \land q$ in $p \Rightarrow q$.
 - (b) Kateri izmed naborov $\{A\}$, $\{A,1\}$, $\{A,0\}$, $\{A,\Rightarrow\}$, $\{A,\veebar\}$ so polni?
 - (c) Zaporedje izrazov I_n je definirano rekurzivno s predpisi

$$\begin{array}{rcl} I_0 & = & \neg p \\ I_1 & = & p \\ I_n & = & A(I_{n-1}, I_{n-2}, I_{n-2}) \end{array}$$

Izračunaj I_{2019}

<u>A(ρ,ρ,ρ)</u> = (ρλρ) ν(ηρλη) ~ ρ νηρ ~ <u>1</u>

$$A(p,q,r) \equiv (\underbrace{p \wedge q}) \vee (\underbrace{\neg p \wedge \neg r}).$$

A(p,2,4)~ p12 V lp121 ~ p12 V0~ p12~ A(p,2, A(p)P,P))

$$A(p,q,r) \equiv (p \wedge q) \vee (\neg p \wedge \neg r) \sim \ \, \neg \text{(pvn)} \vee \ \, p \wedge \text{2} \sim \ \, \underbrace{\overset{\text{P}}{\text{p}} \overset{\text{P}}{\text{vn}}}_{\text{P}} \Rightarrow \overset{\text{p}}{\text{p}} \wedge \text{2}$$

 $A(p_1, q_1 p) \sim p \vee p \Rightarrow p \wedge q \sim p \Rightarrow p \wedge q \sim 1 p \vee (p \wedge q) \sim (1 p \vee p) \wedge (1 p \vee q) \sim 1 p \vee q \sim p \Rightarrow q$ $p \Rightarrow q \sim A(p_1, q_1 p)$

$$\mathcal{N} = \{A, 0\}$$
 $\mathcal{P} = \{7, \Rightarrow\}$

Priznazimo 2 N:

- · p => 9 ~ A (p,2,p)
- $\frac{7p}{p} \sim p \Rightarrow 0 \sim \frac{A(p, 0, p)}{A(p, 0, p)}$ {A, 0} je poln nabon

$$\mathcal{N} = \{A, \, \forall\} \quad \mathcal{P} = \{1, \Rightarrow\}$$

Priznazimo 2 d:

- · p => 9 ~ A (p, 2, p)
- · 7p~ p Vp

{A, ½} je poln mabor.

4. Kateri od naslednjih sklepov so pravilni?

(a)
$$p \lor q, \neg q \land r \Rightarrow \neg p \models q \lor r,$$

(b)
$$p \Rightarrow q, r \Rightarrow s, p \lor r \models q \land s$$
,

(c)
$$p \wedge r, q \wedge p \Rightarrow \neg r \models \neg q,$$

(d)
$$p \Rightarrow q, p \lor s, q \Rightarrow r, s \Rightarrow t, \neg r \models t,$$

(e)
$$p \Rightarrow q, p \land s, q \land r \Rightarrow t, s \Rightarrow r \models t$$
,

(f)
$$p \Leftrightarrow q, \neg p, \neg (q \Rightarrow r) \lor t, s \lor t \Rightarrow r \models r \land \neg p,$$

Pri p~ 1, 2~ n~ 0 sta predpostavzi pravilni, zaključek pa napačen. Sklep je napačen.

Pri $p \sim 2 \sim 0$, $n \sim s \sim 1$ so predpostavse pravilves zabljužel pa napačen. Stlep je napačen. (c) $p \wedge r$, $q \wedge p \Rightarrow \neg r \models \neg q$,

Ne najdemo protipimera. Sklep je pravilen. Dozaz:

Doroz:

1.
$$p \Rightarrow 2$$
2. $p \lor s$
3. $q \Rightarrow \pi$
4. $s \Rightarrow t$
5. $\exists \pi$

MODUS PONENS

(e)
$$p \Rightarrow q, p \land s, q \land r \Rightarrow t, s \Rightarrow r \models t$$
,

1.
$$p \Rightarrow 2$$
2. pAS
3. $2A\pi \Rightarrow t$
4. $S \Rightarrow \pi$

5. p
Po(2)
6. S
Po(2)
7. π
MP(4,6)
8. 2
MP(4,5)
9. $2A\pi$
Pd(7,8)

Ft

FDRUŽITEV
A, B = AAB

$$\text{(f)} \ p \Leftrightarrow q, \neg p, \neg (q \Rightarrow r) \lor t, s \lor t \Rightarrow r \models r \land \neg p.$$

MP(3,9)

10. t

1.
$$p \Leftrightarrow q^*$$

2. $\neg p$

3. $\neg (q \Rightarrow n) \lor t$

4. $s \lor t \Rightarrow n$

5. $(p \Rightarrow q) \land (q \Rightarrow p) \sim 1.$

6. $p \Rightarrow q$

Po(s)

7. $q \Rightarrow p$

8. $\neg (\neg q \lor n) \lor t$
 ~ 3 .

11. t DS(8,10)

12. sVt Pr(M,s)

13. 12 MP(4,42)

44. n 17p Zd(13,2)

HIPOTETIĞNI SILOGIZEM

 $A \Rightarrow B, B \Rightarrow C \models A \Rightarrow C$