Deel_Practical Machine Learning_Course Project

Jakob Deel November 11, 2018

Executive Summary

Using data from wearable workout technology, this project builds and tests a machine learning algorithm to predict the level of quality with which an exercise was conducted ("classe"). The optimal model was a boosted generalized linear model, with an estimated very low out of sample error.

```
#sets working directory and removes unnecessary objects
setwd("C:/Users/jdeel/Documents/Training/JHU - Coursera/Practical Machine Learning/Cou
rse Project")
rm(list = ls())
library(AppliedPredictiveModeling)
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(ElemStatLearn)
library(pgmm)
library(rpart)
library(gbm)
## Loaded gbm 2.1.4
library(lubridate)
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
       date
```

```
library(forecast)
library(e1071)
library(randomForest)

## randomForest 4.6-14

## Type rfNews() to see new features/changes/bug fixes.

##
## Attaching package: 'randomForest'

## The following object is masked from 'package:ggplot2':
##
## margin
```

Data Loading and Processing

The following data loads the provided training and test datasets and filters out the fields that are more than 75% missing data.

```
#Loads data
trainingraw = read.csv("pml-training.csv",na.strings=c("NA",""))
testingraw = read.csv("pml-testing.csv",na.strings=c("NA",""))
#filters out dimensions from training and test sets where most values are NA
trainNAs <- apply(trainingraw, 2, function(x) {</pre>
  sum(is.na(x))
})
mostNAstrain <- trainNAs>(0.75*dim(trainingraw[1]))
goodfieldstraining <- subset(names(mostNAstrain), mostNAstrain==FALSE)</pre>
training <- subset(trainingraw, select=goodfieldstraining)</pre>
testNAs <- apply(testingraw, 2, function(x) {</pre>
  sum(is.na(x))
})
mostNAstest <- testNAs>(0.75*dim(testingraw[1]))
goodfieldstest <- subset(names(mostNAstest), mostNAstest==FALSE)</pre>
testing <- testingraw[,goodfieldstest]</pre>
```

Model Building and Cross-Validation

The following data builds two models, a random forest and boosted model, and tests each using 3-fold cross validation to maximize accuracy. Though both models results in high accuracy, the boosted model is better and is therefore selected for use

```
## Random Forest
##
## 19622 samples
      59 predictor
##
       5 classes: 'A', 'B', 'C', 'D', 'E'
##
##
## No pre-processing
## Resampling: Cross-Validated (3 fold)
## Summary of sample sizes: 13081, 13082, 13081
## Resampling results across tuning parameters:
##
     mtry Accuracy
##
                     Kappa
##
     2
          0.9954643 0.9942628
          0.9998981 0.9998711
##
    41
          0.9997961 0.9997422
##
     81
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 41.
```

	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.4544
##	2	1.3252	nan	0.1000	0.3110
##	3	1.1324	nan	0.1000	0.2402
##	4	0.9841	nan	0.1000	0.1978
##	5	0.8625	nan	0.1000	0.1587
##	6	0.7635	nan	0.1000	0.1447
##	7	0.6750	nan	0.1000	0.1229
##	8	0.6001	nan	0.1000	0.1081
##	9	0.5345	nan	0.1000	0.0890
##	10	0.4788	nan	0.1000	0.0845
##	20	0.1648	nan	0.1000	0.0263
##	40	0.0236	nan	0.1000	0.0035
##	60	0.0039	nan	0.1000	0.0004
##	80	0.0009	nan	0.1000	0.0000
##	100	0.0003	nan	0.1000	0.0000
##	120	0.0001	nan	0.1000	0.0000
##	140	0.0000	nan	0.1000	0.0000
##	150	0.0000	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.7755
##	2	1.1448	nan	0.1000	0.4623
##	3	0.8699	nan	0.1000	0.3209
##	4	0.6790	nan	0.1000	0.2375
##	5	0.5377	nan	0.1000	0.1814
##	6	0.4296	nan	0.1000	0.1413
##	7	0.3454	nan	0.1000	0.1116
##	8	0.2789	nan	0.1000	0.0887
##	9	0.2258	nan	0.1000	0.0712
##	10	0.1833	nan	0.1000	0.0572
##	20	0.0241	nan	0.1000	0.0073
##	40	0.0007	nan	0.1000	0.0073
##	60	0.0000	nan	0.1000	0.0000
##	80	0.0000	nan	0.1000	0.0000
##	100	0.0000	nan	0.1000	0.0000
##	120	0.0000	nan	0.1000	0.0000
##	140	0.0000	nan	0.1000	0.0000
##	150	0.0000	nan	0.1000	0.0000
##	Tton	TnainDoviance	ValidDoviance	CtonCiao	Tmnnovo
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.7757
##	2	1.1447	nan	0.1000	0.4621
##	3	0.8700	nan	0.1000	0.3210
##	4	0.6790	nan	0.1000	0.2374
##	5	0.5377	nan	0.1000	0.1813
##	6	0.4297	nan	0.1000	0.1411
##	7	0.3455	nan	0.1000	0.1114

##	8	0.2789	nan	0.1000	0.0886
##	9	0.2259	nan	0.1000	0.0710
##	10	0.1835	nan	0.1000	0.0573
##	20	0.0242	nan	0.1000	0.0072
##	40	0.0005	nan	0.1000	0.0001
##	60	0.0000	nan	0.1000	0.0000
##	80	0.0000	nan	0.1000	0.0000
##	100	0.0000	nan	0.1000	0.0000
##	120	0.0000	nan	0.1000	0.0000
##	140	0.0000	nan	0.1000	0.0000
##	150	0.0000	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.4532
##	2	1.3255	nan	0.1000	0.3098
##	3	1.1323	nan	0.1000	0.2418
##	4	0.9835	nan	0.1000	0.1977
##	5	0.8618	nan	0.1000	0.1581
##	6	0.7630	nan	0.1000	0.1443
##	7	0.6748	nan	0.1000	0.1224
##	8	0.6004	nan	0.1000	0.1081
##	9	0.5345	nan	0.1000	0.0893
##	10	0.4793	nan	0.1000	0.0849
##	20	0.1649	nan	0.1000	0.0262
##	40	0.0235	nan	0.1000	0.0032
##	60	0.0039	nan	0.1000	0.0032
##	80	0.0009	nan	0.1000	0.0001
##	100	0.0003	nan	0.1000	0.0001
##	120	0.0001	nan	0.1000	0.0000
##	140	0.0001	nan	0.1000	0.0000
##	150	0.0000	nan	0.1000	0.0000
##	100	0.0000	Hall	0.1000	0.0000
	Tten	TrainDeviance	ValidDeviance	StanSiza	Tmnnovo
	Iter 1	1.6094		StepSize 0.1000	Improve
##	1		nan		0.7769
##	2	1.1447	nan	0.1000	0.4614
##	3	0.8700	nan	0.1000	0.3211
##	4	0.6790	nan	0.1000	0.2377
##	5	0.5377	nan	0.1000	0.1813
##	6	0.4297	nan	0.1000	0.1414
##	7	0.3454	nan	0.1000	0.1115
##	8	0.2788	nan	0.1000	0.0887
##	9	0.2258	nan	0.1000	0.0711
##	10	0.1833	nan	0.1000	0.0571
##	20	0.0241	nan	0.1000	0.0073
##	40	0.0006	nan	0.1000	0.0002
##	60	0.0001	nan	0.1000	0.0000
##	80	0.0000	nan	0.1000	-0.0000
##	100	0.0000	nan	0.1000	-0.0000
##	120	0.0000	nan	0.1000	-0.0000

##	140	0.0000	nan	0.1000	-0.0000
##	150	0.0000	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.7747
##	2	1.1447	nan	0.1000	0.4619
##	3	0.8699	nan	0.1000	0.3213
##	4	0.6789	nan	0.1000	0.2376
##	5	0.5377	nan	0.1000	0.1811
##	6	0.4297	nan	0.1000	0.1413
##	7	0.3454	nan	0.1000	0.1116
##	8	0.2789	nan	0.1000	0.0889
##	9	0.2258	nan	0.1000	0.0711
##	10	0.1833	nan	0.1000	0.0572
##	20	0.0241	nan	0.1000	0.0073
##	40	0.0005	nan	0.1000	0.0001
##	60	0.0000	nan	0.1000	0.0001
##	80	0.0000	nan	0.1000	-0.0000
##	100	0.0000	nan	0.1000	0.0000
##	120	0.0000	nan	0.1000	0.0000
##	140	0.0000		0.1000	-0.0000
##	150	0.0000	nan	0.1000	-0.0000
##	730	0.000	nan	9.1000	-0.0000
	Tton	TrainDeviance	ValidDeviance	StanSiza	Tmnnove
	Iter			StepSize	Improve
##	1	1.6094	nan	0.1000	0.4544
##	2	1.3253	nan	0.1000	0.3111
##	3	1.1319	nan	0.1000	0.2402
##	4	0.9832	nan	0.1000	0.1980
##	5	0.8615	nan	0.1000	0.1587
##	6	0.7629	nan	0.1000	0.1445
##	7	0.6746	nan	0.1000	0.1223
##	8	0.5998	nan	0.1000	0.1079
##	9	0.5340	nan	0.1000	0.0890
##	10	0.4787	nan	0.1000	0.0844
##	20	0.1658	nan	0.1000	0.0281
##	40	0.0236	nan	0.1000	0.0034
##	60	0.0039	nan	0.1000	0.0006
##	80	0.0008	nan	0.1000	0.0001
##	100	0.0002	nan	0.1000	0.0000
##	120	0.0000	nan	0.1000	0.0000
##	140	0.0000	nan	0.1000	0.0000
##	150	0.0000	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.7765
##	2	1.1446	nan	0.1000	0.4614
##	3	0.8698	nan	0.1000	0.3211
##	4	0.6789	nan	0.1000	0.2372
##	5	0.5376	nan	0.1000	0.1814

##	6	0.4295	nan	0.1000	0.1411
##	7	0.3452	nan	0.1000	0.1115
##	8	0.2787	nan	0.1000	0.0887
##	9	0.2257	nan	0.1000	0.0711
##	10	0.1832	nan	0.1000	0.0572
##	20	0.0240	nan	0.1000	0.0073
##	40	0.0004	nan	0.1000	0.0001
##	60	0.0000	nan	0.1000	0.0000
##	80	0.0000	nan	0.1000	-0.0000
##	100	0.0000	nan	0.1000	-0.0000
##	120	0.0000	nan	0.1000	-0.0000
##	140	0.0000	nan	0.1000	0.0000
##	150	0.0000	nan	0.1000	-0.0000
##	- .	.	V 11 15 1	cı c:	-
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.7765
##	2	1.1447	nan	0.1000	0.4603
##	3	0.8699	nan	0.1000	0.3212
##	4	0.6789	nan	0.1000	0.2372
##	5	0.5376	nan	0.1000	0.1809
##	6	0.4296	nan	0.1000	0.1413
##	7	0.3454	nan	0.1000	0.1113
##	8	0.2789	nan	0.1000	0.0887
##	9	0.2259	nan	0.1000	0.0710
##	10	0.1834	nan	0.1000	0.0573
##	20	0.0242	nan	0.1000	0.0072
##	40	0.0005	nan	0.1000	0.0001
##	60	0.0000	nan	0.1000	0.0000
##	80	0.0000	nan	0.1000	0.0000
##	100	0.0000	nan	0.1000	-0.0000
##	120	0.0000	nan	0.1000	-0.0000
##	140	0.0000	nan	0.1000	-0.0000
##	150	0.0000	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.7777
##	2	1.1447	nan	0.1000	0.4619
##	3	0.8699	nan	0.1000	0.3210
##	4	0.6789	nan	0.1000	0.2375
##	5	0.5376	nan	0.1000	0.1813
##	6	0.4296	nan	0.1000	0.1411
##	7	0.3453	nan	0.1000	0.1114
##	8	0.2788	nan	0.1000	0.0888
##	9	0.2258	nan	0.1000	0.0710
##	10	0.1833	nan	0.1000	0.0572
##	20	0.0241	nan	0.1000	0.0073
##	40	0.0005	nan	0.1000	0.0001
##	50	0.0001	nan	0.1000	0.0000

```
# Summarize the results print(boostedmodel)
```

```
## Stochastic Gradient Boosting
##
## 19622 samples
##
      59 predictor
       5 classes: 'A', 'B', 'C', 'D', 'E'
##
## No pre-processing
## Resampling: Cross-Validated (3 fold)
## Summary of sample sizes: 13080, 13082, 13082
  Resampling results across tuning parameters:
##
##
     interaction.depth n.trees Accuracy
                                             Kappa
##
                         50
                                 0.9997961 0.9997422
##
     1
                        100
                                 0.9997452 0.9996777
                                 0.9996942 0.9996132
##
     1
                        150
##
     2
                         50
                                 0.9997961 0.9997422
##
     2
                        100
                                 0.9997961 0.9997422
##
     2
                        150
                                 0.9997961 0.9997422
##
                         50
                                 0.9998981 0.9998711
     3
                        100
                                 0.9998471 0.9998066
##
     3
##
     3
                        150
                                 0.9997961 0.9997422
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were n.trees = 50, interaction.depth
   = 3, shrinkage = 0.1 and n.minobsinnode = 10.
```

```
\# boosted has better accuracy in CV (0.99999 in optimal model vs. 0.9999 in optimal forest model), so that's one is used
```

Out of Sample Error Estimation

The following code runs the model on a randomly-selected third of the training dataset and checks the accuracy to estimate out of sample error. Though not a perfect test, the fact that the accuracy is 100% means that we should expect very low out of sample error.

```
#runs boosted model on random third of training set to estimate out of sample error
oostrainsample <- training$classe %>%
    createDataPartition(p = 0.33, list = FALSE)

oostraining <- training[oostrainsample,]

oostraining$boostedpreds <- predict(boostedmodel,oostraining)
oostraining$boostedright <- oostraining$classe==oostraining$boostedpreds

#estimates out of sample error
mean(oostraining$boostedright)</pre>
```

[1] 1