1-4-3.로그방정식과 로그부등식

수학 계산력 강화

(2)로그부등식

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2019-02-13

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

01 / 로그부등식의 풀이

(1) 로그부등식: 로그의 진수 또는 밑에 미지수가 있는

(2) 로그부등식의 풀이

① 밑을 같게 할 수 있는 경우

 $\log_a f(x) < \log_a g(x)$ 꼴로 변형한 후

• a > 1일 때, $\log_a f(x) < \log_a g(x) \Leftrightarrow 0 < f(x) < g(x)$

• 0 < a < 1일 때, $\log_a f(x) < \log_a g(x) \Leftrightarrow f(x) > g(x) > 0$

주의 로그부등식에서 밑을 같게 한 후 지수를 비교할 때에는 부등호의 방향에 주의해야 한다.

② $\log_a x$ 꼴이 반복되는 경우

 $\log_a x = t$ 로 치환 후 t에 대한 부등식을 푼다.

③ 지수에 로그가 있는 경우 : 양변에 로그를 취하여 로그부등식으로 변형한다.

이때 로그의 밑이 0<(밑)<1이면 부등호의 방향이

④ 진수에 로그가 있는 경우: 양변에 로그를 취하여 로그부등식으로 변형한다.

이때 로그의 밑이 0 < (밑) < 1이면 부등호의 방향이 바뀌고, (진수)>0 진수 조건도 포함하여 계산한다.

☑ 다음 부등식을 풀어라.

1. $\log_{\underline{1}}(x+2) > -2$

2. $\log_{\frac{1}{x}}(2x-1) < 2$

3. $\log_3 3x > 1$

4. $\log_{\frac{1}{2}} \left(x - \frac{1}{2} \right) \ge 2$

5. $\log_3(2x-1) < 2$

6. $\log_{\frac{1}{2}}(x-1) > 2$

7. $\log_2(x-1) < 1$

8. $\log_3(x-1) < \log_3 5$

9. $\log_2(x+4) < 3$

10. $\log_2 2x < \log_2 (x+2)$

11. $\log_{\frac{1}{2}}(x-1) > \log_{\frac{1}{2}}4$

12. $\log_{\underline{1}} (4x+1) > -2$

13. $\log x + \log (7 - x) < 1$

14.
$$\log_{\frac{1}{2}}(2x-1) \ge \log_{\frac{1}{2}}(3x+1)$$

15.
$$\log_2(x-1) < \log_4(3-x)$$

16.
$$\log(2x-4) < \log(5-x)$$

17.
$$\log_{\frac{1}{2}} 2x < \log_{\frac{1}{2}} (5x-1) + 1$$

18.
$$\log_2(x+2) < \log_4(x^2+6)$$

19.
$$\log_2(x+1) \ge 2 + \log_2(x-5)$$

20.
$$\log (3x-2) > \log (6-x)$$

21.
$$\log_{\frac{1}{4}}(2x-4)+1 \ge \log_{\frac{1}{4}}(5-x)$$

22.
$$\log_{\frac{1}{3}}(3x-1) \ge \log_{\frac{1}{3}}(x+3)$$

23.
$$\log_4(x-1) < \log_2(x-1)$$

24.
$$\log_2 x + \log_2 (x+2) \le 3$$

25.
$$\log_2(x+3) > \log_4(x^2+1)$$

26.
$$\log_{\frac{1}{3}}(x+6) > \log_{\frac{1}{3}}(2x+1)$$

27.
$$\log_{\sqrt{3}}(x+1) < \log_3(x+3)$$

28.
$$\log_3(2x+1) \ge \log_9(4x+5)$$

29.
$$\log_3(x-1)+1 < \log_3 x$$

30.
$$\log_{0.2}(x-1) < \log_{0.2}(5-2x)$$

31.
$$\log_5(x+3) > \log_5(2x-5)$$

32.
$$-\log_{\frac{1}{10}}(x+1) > \log_{10}(3x-1)$$

33.
$$\log_{\frac{1}{2}}(x+2) \ge \log_{\frac{1}{4}}(x+14)$$

34.
$$\log_{\frac{1}{2}}(x+1) + \log_{\frac{1}{2}}(x+5) > \log_{\frac{1}{2}}12$$

35.
$$\log_{0.25}(x^2+8x-9) > \log_{0.5}(x+3)$$

36.
$$\log_2(x^2-x-2) < 2$$

37.
$$\log_3(2-x) < \log_3(x+3)+1$$

38.
$$\log_3(x-1) - \log_3(3-x) - 1 > 0$$

39.
$$\log_{\frac{1}{9}}(2^{2x}+3\cdot 2^x-10) > \log_{\frac{1}{3}}(2^x+1)$$

☑ 다음 부등식을 풀어라.

40.
$$(\log_2 x)^2 + 2\log_2 x - 3 \ge 0$$

41.
$$(\log_2 x)^2 + \log_2 x - 2 < 0$$

42.
$$(\log_4 x^2)(\log_2 8x) \le 4$$

43.
$$(\log_{0.5} x)^2 + 3\log_{0.5} x + 2 > 0$$

44.
$$(\log_{\frac{1}{3}} 9x) \left(\log_{\frac{1}{3}} \frac{x}{27}\right) > 0$$

45.
$$(\log_3 27x) \left(\log_3 \frac{x}{3}\right) < 5$$

$$\textbf{46.} \quad \left(\log_{\frac{1}{2}} x\right) \left(\log_2 \frac{x}{4}\right) < 0$$

47.
$$(\log x)^2 - \log x^2 \ge 0$$

48.
$$(\log_{\frac{1}{2}} x)^2 > 6 - \log_{\frac{1}{2}} x$$

49.
$$(\log_3 x)^2 - \log_3 x - 2 < 0$$

☑ 다음 부등식을 풀어라.

50.
$$x^{\log_{\frac{1}{2}}x} \ge \frac{x^2}{8}$$

51.
$$x^{\log_{\frac{1}{3}}x} > 9x^3$$

52.
$$x^{\log_2 x} \ge \frac{x^6}{32}$$

53.
$$x^{\log_{\frac{1}{3}}x} > \frac{x^2}{27}$$

54.
$$x^{\log_2 x} \le 8x^2$$

55.
$$x^{\log_2 x} > 4x$$

56.
$$x^{\log_3 x} < 3$$

□ 다음 부등식을 풀어라.

57.
$$\log_{\frac{1}{4}}(\log_{\frac{1}{2}}x) \le -\frac{1}{2}$$

58.
$$\log_3(\log_2 x) \le 1$$

59.
$$\log_2(\log_{\frac{1}{2}}x) < 1$$

60.
$$\log_3(\log_{\frac{1}{2}}x) < 1$$

61.
$$\log_{0.5} (\log_3 x) > -2$$

- **62.** $\log_{\frac{1}{2}}(\log_4 x) \ge -1$
- **63.** $\log_3(\log_2 x) \le 1$

- ☑ 다음 물음에 답하여라.
- **64.** 부등식 $\log_2(5-x) + \log_2(5+x) > 4$ 를 만족시키 는 정수 x의 개수를 구하여라.
- **65.** 부등식 $\log_2 \sqrt{8(x+1)} < 2 \frac{1}{2} \log_2 (2x-1)$ 의 해가 $\alpha < x < \beta$ 일 때, $\alpha + \beta$ 의 값을 구하여라.
- 부등식 $2\log_a(x-3) \ge \log_a(x+3)$ 을 만족시키는 정 수 x의 개수를 구하여라.
- **67.** 함수 $f(x) = \log_3 x$ 에 대하여 부등식 f(f(x)) < 1을 만족시키는 정수 x의 개수를 구하여라.

02 / 로그부등식의 응용

 $\log_a x = t$ 로 치환한 후 모든 실수 t에 대하여 이차부등식이 성립하는 조건을 확인한다.

- 참고) 이차부등식이 성립하는 조건
- 이차방정식 $ax^2 + bx + c = 0$ 의 판별식을 D라 할 때 모든 실수 x에 대하여
- ① $ax^2+bx+c>0$ 이 항상 성립 \Rightarrow a>0, D<0
- ② $ax^2+bx+c \ge 0$ 이 항상 성립 $\Rightarrow a>0$, $D\le 0$
- ③ $ax^2 + bx + c < 0$ 이 항상 성립 $\Rightarrow a < 0$, D < 0
- ④ $ax^2 + bx + c \le 0$ 이 항상 성립 $\Rightarrow a < 0$, $D \le 0$
- ☑ 다음 물음에 답하여라.
- **68.** *x*에 대한 이차방정식

 $x^2-2(1+\log_2 a)x+1=0$ 이 실근을 갖도록 하는 실 수 a의 값의 범위를 구하여라.

69. 이차방정식 $x^2 - x \log_2 a + 2 \log_2 a + 5 = 0$ 이 실근 을 갖지 않도록 하는 상수 a의 값의 범위를 구하여 라.

70. 이차방정식 $x^2 - (\log a + 1)x + (\log a + 9) = 0$ 이 중 근을 갖도록 하는 상수 a의 값을 모두 구하여라.

71. x에 대한 이차방정식

 $x^2 + x \log a^2 + \log a^3 + 4 = 0$ 이 중근을 갖도록 하는 모든 상수 a의 값을 구하여라.

72. 양의 실수 x에 대하여 부등식

 $(\log x)^2 - k \log x^2 + 3 - 2k \ge 0$ 이 항상 성립하기 위한 실수 k의 최댓값을 구하여라.

73. 로그부등식 $(\log_3 x)^2 + \log_3 x^2 + k \ge 0$ 이 x의 값에 관계없이 항상 성립하도록 하는 실수 k의 값의 범위 를 구하여라.

74. 양수 x에 대하여 부등식 $x^{\log_3 x} > (27x)^k$ 이 항상 성립하도록 하는 실수 k의 값의 범위를 구하여라.

75. 양수 x에 대하여 부등식

 $(\log x)^2 - k \log x + 3 - k \ge 0$ 이 항상 성립하기 위한 실수 k의 최댓값을 구하여라.

76. x > 0인 모든 실수 x에 대하여, 부등식 $\left(\log_{\frac{1}{2}}x\right)^2+k(\log_{\sqrt{2}}x)+4\geq 0$ 이 만족하도록 하는 정 수 k의 개수를 구하여라.

03 / 로그부등식의 실생활의 활용

주어진 문장 속에서 알맞은 로그부등식을 세워 로그부등식의 여러 가지 풀이에 맞게 답을 구한다.

77. 일정한 온도를 유지하는 배양기에 어떤 박테리아 를 배양하면 20x분 후에는 박테리아의 수가 3^x 배가 된다. 배양기에 10마리의 세균을 배양할 때, 10000 마리 이상이 되는 것은 몇 분후부터인지 구하여라. (단, log 3 = 0.5로 계산한다.)

78. 현재 학생 수가 각각 a명으로 같은 두 학교 A, B가 있다. x년 후의 A학교의 학생 수는 $(a \times 1.1^x)$ 명, B학교의 학생 수는 $(a \times 1.02^x)$ 명이 된 다고 할 때, A학교의 학생 수가 B학교의 학생 수의 2배 이상이 되는 것은 몇 년 후부터인지 구하여라. (단, $\log 1.02 = 0.0086$, $\log 1.1 = 0.0414$, $\log 2 = 0.3010$ 으로 계산한다.)

79. A 하수처리장에서 정수 작업을 할 때 불순물의 양은 정수 작업을 한 번 할 때마다 일정 비율이 제 거되고, 정수 작업을 4번 한 후의 불순물의 양은 정 수하기 전의 불순물의 양의 $\frac{1}{4}$ 이 된다고 한다. 이와 같은 정수 작업을 계속할 때, 불순물의 양이 정수하 기 전의 처음 불순물의 양의 $\frac{1}{30}$ 이하가 되도록 하려 면 최소 몇 번의 정수 작업을 해야 하는지 구하여 라. (단, log2 = 0.3, log3 = 0.48로 계산한다.)

80. 원자력 발전소의 원자로에는 방사선 물질이 새어 나오지 못하도록 여러 겹의 방호벽을 설치한다. 어 떤 원자로의 방호벽 한 개가 방사선을 60% 차단할 때, 방사선을 99.5%이상 차단하기 위해 필요한 방호 벽의 최소 개수를 구하여라.(단, 각 방호벽이 방사선 을 차단하는 정도는 동일하고, log2=0.3으로 계산 한다.)

81. 2016년 우리나라에서 사용한 총 연구개발비는 50 조원이라고 한다. 매년 연구개발비를 10%씩 증가 시킨다고 할 때, 총 연구개발비가 처음으로 90조원 이상이 될 것으로 예상되는 해를 구하여라. (단, $\log 1.1 = 0.041$, $\log 2 = 0.301$, $\log 3 = 0.477$ 으로 계산 한다.)

82. 어떤 그릇에 물이 담겨 있다. 현재 이 그릇에 남아 있는 물의 양은 전날 같은 시각의 물의 양의 80%라 고 한다. 이와 같은 추세로 물의 양이 줄어든다고 할 때, 남아 있는 물의 양이 현재의 $\frac{1}{3}$ 이하가 되려 면 최소한 몇 일이 걸리는지 구하여라. (단, $\log 2 = 0.3010$, $\log 3 = 0.4771$)

정답 및 해설

- 1) -2 < x < 2
- 에서 밑이 1보다 작으므로 x+2 < 4 $\therefore x < 2$ 이때, 진수의 조건에서 x+2>0 $\therefore x>-2$
 - \bigcirc , 이에서 -2 < x < 2
- 2) $x > \frac{5}{8}$
- \Rightarrow 진수 조건에서 2x-1>0이므로

$$x > \frac{1}{2}$$

.....

$$\log_{\frac{1}{2}}\left(2x-1
ight)<\log_{\frac{1}{2}}\left(rac{1}{2}
ight)^2$$
에서

밑이 1보다 작은 양수이므로 $2x-1 > \frac{1}{4}$

$$\therefore x > \frac{5}{8}$$

- \bigcirc , ©의 공통 범위를 구하면 $x > \frac{5}{\circ}$
- 3) x > 1
- \Rightarrow 진수 조건에서 3x > 0이므로

 $\log_3 3x > \log_3 3$ 에서 밑이 1보다 크므로

3x > 3 $\therefore x > 1$

- \bigcirc , \bigcirc 의 공통 범위를 구하면 x>1
- 4) $\frac{1}{2} < x \le \frac{9}{16}$
- $\implies \log_{\frac{1}{4}}\left(x-\frac{1}{2}\right) \geq 2\,, \ \ \ \, \stackrel{\textstyle \nwarrow}{\lnot} \ \ \log_{\frac{1}{4}}\left(x-\frac{1}{2}\right) \geq \log_{\frac{1}{4}}\left(\frac{1}{4}\right)^2 \text{ on }$

서 밑이 1보다 작으므로

$$x - \frac{1}{2} \le \frac{1}{16}$$
 $\therefore x \le \frac{9}{16} \cdot \dots \bigcirc$

이때, 진수의 조건에서

$$x - \frac{1}{2} > 0$$
 $\therefore x > \frac{1}{2} \cdots \bigcirc$

- \bigcirc , 이에서 $\frac{1}{2} < x \le \frac{9}{16}$
- 5) $\frac{1}{2} < x < 5$
- $\Rightarrow \log_3(2x-1) < 2$, 즉 $\log_3(2x-1) < \log_3 3^2$ 에서 밑이 1보다 크므로

2x-1 < 9 $\therefore x < 5$ \cdots 이때, 진수의 조건에서

$$2x-1>0$$
 $\therefore x>\frac{1}{2}\cdots\cdots$

- \bigcirc , 이에서 $\frac{1}{2} < x < 5$
- 6) $1 < x < \frac{10}{9}$
- ⇒ 진수의 조건에서

$$x-1>0$$
 $\therefore x>1$ \cdots

$$\log_{\frac{1}{3}}\left(x-1\right)>2\,\mathrm{GHH}\ \log_{\frac{1}{3}}\left(x-1\right)>\log_{\frac{1}{3}}\left(\frac{1}{3}\right)^2$$

밑이 1보다 작으므로

①, ©에서 1 < x < 3

$$x-1 < \frac{1}{9}$$
 $\therefore x < \frac{10}{9}$ \cdots

- \bigcirc , \bigcirc 의 공통 범위를 구하면 $1 < x < \frac{10}{9}$
- 7) 1 < x < 3
- $\Rightarrow \log_2(x-1) < 1$, 즉 $\log_2(x-1) < \log_2 2$ 에서 밑이 1보다 크므로 x-1 < 2 $\therefore x < 3 \cdots \bigcirc$ 이때, 진수의 조건에서 x-1>0 $\therefore x>1$ ····· \bigcirc
- 8) 1 < x < 6
- □ log₃ (x-1) < log₃ 5에서 밑이 1보다 크므로 x-1 < 5 $\therefore x < 6$ 이때, 진수의 조건에서 x-1>0 $\therefore x>1$ \bigcirc , \bigcirc 에서 1 < x < 6
- 9) -4 < x < 4
- ⇨ 진수의 조건에서

$$x + 4 > 0$$

x+4>0 $\therefore x>-4$ \cdots

 $\log_2(x+4) < 3$ 에서 $\log_2(x+4) < \log_2 2^3$ 밑이 1보다 크므로

x+4 < 8 $\therefore x < 4 \cdots \bigcirc$

 \bigcirc , \bigcirc 의 공통 범위를 구하면 -4 < x < 4

- 10) 0 < x < 2
- ⇨ 진수의 조건에서

$$2m > 0$$
 $m + 2 > 0$

$$2x > 0, x+2 > 0$$
 $\therefore x > 0$ \cdots

 $\log_2 2x < \log_2 (x+2)$ 에서 밑이 1보다 크므로

2x < x+2 $\therefore x < 2$ \cdots

 \bigcirc , \bigcirc 의 공통 범위를 구하면 0 < x < 2

- 11) 1 < x < 5
- $\Leftrightarrow \, \log_{\frac{1}{2}} \left(x 1\right) > \log_{\frac{1}{2}} 4$ 에서 밑이 1보다 작으므로

x-1 < 4 $\therefore x < 5$

이때, 진수의 조건에서

x-1>0 $\therefore x>1$

····· (L)

①, ©에서 1 < x < 5

12)
$$-\frac{1}{4} < x < 2$$

$$\Rightarrow \log_{\frac{1}{3}}(4x+1) > -2,$$

즉
$$\log_{\frac{1}{3}}\left(4x+1\right)>\log_{\frac{1}{3}}\left(\frac{1}{3}\right)^{-2}$$
에서

$$4x+1 < 9$$
 $\therefore x < 2$

이때, 진수의 조건에서

$$4x+1>0 \qquad \therefore x>-\frac{1}{4}$$

$$\bigcirc, \ \bigcirc \circlearrowleft \ \land \ -\frac{1}{4} < x < 2$$

13) 0 < x < 2 또는 5 < x < 7

$$x > 0, 7 - x > 0$$

$$x > 0, 7-x > 0$$
 $\therefore 0 < x < 7$ \cdots

$$\log x + \log (7 - x) < 1$$
에서

$$\log x(7-x) < \log 10$$

밑이 1보다 크므로
$$x(7-x) < 10$$

$$x^2 - 7x + 10 > 0$$
, $(x-2)(x-5) > 0$

$$\therefore x < 2 \oplus x > 5$$

.....
$$(x+2)^2 < x^2$$

$$0 < x < 2$$
 또는 $5 < x < 7$

14)
$$x > \frac{1}{2}$$

⇨ 진수의 조건에서

$$2x-1>0, 3x+1>0$$
 $\therefore x>\frac{1}{2}$

$$\therefore x > \frac{1}{2} \quad \dots \quad \bigcirc$$

$$\log_{\frac{1}{2}}\left(2x-1
ight)\geq\log_{\frac{1}{2}}\left(3x+1
ight)$$
에서 밑이 1보다 작

으므로
$$2x-1 \le 3x+1$$
 $\therefore x \ge -2$ …… ©

$$\therefore r \ge -2 \cdots \bigcirc$$

\bigcirc , \bigcirc 의 공통 범위를 구하면 $x > \frac{1}{2}$

15) 1 < x < 2

$$\Rightarrow \log_2(x-1) < \log_4(3-x), =$$

$$\log_4 (x-1)^2 < \log_4 (3-x)$$
에서

밑이 1보다 크므로

$$(x-1)^2 < 3-x, x^2-x-2 < 0$$

$$(x+1)(x-2) < 0$$

$$(x+1)(x-2) < 0$$
 \therefore $-1 < x < 2$ \cdots \bigcirc

이때, 진수의 조건에서

$$x-1 > 0, 3-x > 0$$

$$x-1 > 0, 3-x > 0$$
 : $1 < x < 3$

①, ①에서 1 < x < 2

16) 2 < x < 3

$$\Rightarrow \log(2x-4) < \log(5-x)$$
에서 밑이 1보다 크므로 $2x-4 < 5-x$ $\therefore x < 3$ \cdots \bigcirc

$$2x-4 > 0, \ 5-x > 0$$

$$2x-4>0, \ 5-x>0 \qquad \ \ \, \therefore \ 2< x<5 \quad \cdots \cdots \ \, \bigcirc$$

$$\bigcirc$$
, 으에서 $2 < x < 3$

17)
$$\frac{1}{5} < x < 1$$

$$\Rightarrow \log_{\frac{1}{2}} 2x < \log_{\frac{1}{2}} (5x - 1) + 1,$$

즉
$$\log_{\frac{1}{2}} 2x < \log_{\frac{1}{2}} \frac{1}{2} (5x - 1)$$
에서

$$2x > \frac{5}{2}x - \frac{1}{2} \qquad \therefore x < 1$$

$$\therefore x < 1$$

$$2x > 0, 5x - 1 > 0$$
 ... $x > \frac{1}{5}$

$$\bigcirc$$
, ©에서 $\frac{1}{5} < x < 1$

18)
$$-2 < x < \frac{1}{2}$$

$$\Rightarrow \log_2(x+2) < \log_4(x^2+6),$$

즉
$$\log_4 (x+2)^2 < \log_4 (x^2+6)$$
에서

밑이 1보다 크므로

$$(x+2)^2 < x^2+6, \ 4x < 2$$
 $\therefore \ x < \frac{1}{2}$ \cdots

$$x+2>0, x^2+6>0$$
 : $x>-2$

①, ①에서
$$-2 < x < \frac{1}{2}$$

19) $5 < x \le 7$

$$\Rightarrow \log_2(x+1) \ge 2 + \log_2(x-5),$$

즉
$$\log_2(x+1) \ge \log_2 4(x-5)$$
에서

$$x+1 \ge 4x-20$$
 $\therefore x \le 7$ \cdots

$$+1 \ge 4x - 20$$
 .. $x \le t$

$$x+1>0, \ x-5>0 \qquad \therefore \ x>5 \qquad \qquad \cdots \cdots \ \bigcirc$$

$$\bigcirc$$
, ©에서 $5 < x \le 7$

20) 2 < x < 6

$$\Rightarrow$$
 진수 조건에서 $3x-2>0$ 이 $6-x>0$ 이므로

$$\frac{2}{2} < x < 6$$

$$\log (3x-2) > \log (6-x)$$
에서 밑이 1보다 크므로

$$3x-2>6-x$$
 $\therefore x>2$

$$\bigcirc$$
, \bigcirc 의 공통 범위를 구하면 $2 < x < 6$

21) $2 < x \le 4$

$$\Rightarrow \log_{\frac{1}{4}}(2x-4)+1 \ge \log_{\frac{1}{4}}(5-x),$$

즉
$$\log_{\frac{1}{4}} \frac{1}{4} (2x-4) \ge \log_{\frac{1}{4}} (5-x)$$
에서

$$\frac{1}{2}x - 1 \le 5 - x, \quad \frac{3}{2}x \le 6 \qquad \therefore \quad x \le 4 \qquad \cdots \cdots \quad \bigcirc$$

$$2x-4>0$$
, $5-x>0$ $\therefore 2 < x < 5$ \cdots

\bigcirc , 일에서 $2 < x \le 4$

22)
$$\frac{1}{3} < x \le 2$$

믿이 1보다 작으로

$$3x-1 \le x+3$$
 $\therefore x \le 2$ \cdots

이때, 진수의 조건에서

$$3x-1>0, x+3>0$$
 $\therefore x>\frac{1}{3}$

$$\bigcirc$$
, ©에서 $\frac{1}{3} < x \le 2$

23) x > 2

$$\Rightarrow \log_4(x-1) < \log_2(x-1), \Rightarrow$$

 $\log_4(x-1) < \log_4(x-1)^2$ 에서 밑이 1보다 크므로 $x-1 < (x-1)^2$, $x^2-3x+2 > 0$

$$(x-1)(x-2)=0$$

$$\therefore x < 1$$
 또는 $x > 2$ ····· \bigcirc

이때, 진수의 조건에서

$$x-1>0$$
 $\therefore x>1$ \cdots

$$\bigcirc$$
, ©에서 $x > 2$

24) $0 < x \le 2$

$$\Rightarrow \log_2 x + \log_2 (x+2) \leq 3$$
,

즉 $\log_2 x(x+2) \le \log_2 2^3$ 에서 밑이 1보다 크므로

$$x(x+2) \le 8, \ x^2 + 2x - 8 \le 0$$

$$(x+4)(x-2) \le 0$$
 $\therefore -4 \le x \le 2$ \dots

이때, 진수의 조건에서

$$x > 0, x + 2 > 0$$

$$\therefore x > 0 \qquad \cdots \quad \bigcirc$$

 \bigcirc , 일에서 $0 < x \le 2$

25) $x > -\frac{4}{2}$

$$\Rightarrow$$
 진수 조건에서 $x+3>0$ 이고 $x^2+1>0$ 이므로

 $\log_2\left(x+3
ight)>\log_{\scriptscriptstyle 9^2}\left(x^2+1
ight)$ 에서

양변의 밑을 2로 바꾸면

$$\log_2(x+3) > \frac{1}{2}\log_2(x^2+1)$$

$$2 \log_2(x+3) > \log_2(x^2+1)$$

$$\log_2(x+3)^2 > \log_2(x^2+1)$$

밑이 1보다 크므로 $(x+3)^2 > x^2+1$

 $x^2 + 6x + 9 > x^2 + 1$

$$6x > -8$$
 $\therefore x > -\frac{4}{3}$ \cdots \bigcirc

①, \bigcirc 의 공통 범위를 구하면 $x > -\frac{4}{2}$

26) x > 5

 \Rightarrow 진수 조건에서 x+6>0이고 2x+1>0이므로

$$x > -\frac{1}{2}$$

$$\log_{\frac{1}{3}}(x+6) > \log_{\frac{1}{3}}(2x+1)$$
에서

밑이 1보다 작은 양수이므로

$$x+6 < 2x+1$$
 $\therefore x > 5$ \cdots

$$\bigcirc$$
, \bigcirc 의 공통 범위를 구하면 $x>5$

27) -1 < x < 1

$$\Rightarrow$$
 진수 조건에서 $x+1>0$ 이고 $x+3>0$ 이므로

$$x > -1$$

$$\log_{\frac{1}{3^{\frac{1}{2}}}}(x+1) < \log_{3}(x+3)$$
에서

양변의 밑을 3로 바꾸면

$$2\log_3(x+1) < \log_3(x+3)$$

$$\log_3(x+1)^2 < \log_3(x+3)$$

밑이 1보다 크므로
$$(x+1)^2 < x+3$$

$$x^2 + 2x + 1 < x + 3$$

$$x^2 + x - 2 < 0$$

$$(x+2)(x-1) < 0$$

 $\therefore -2 < x < 1$

28) $x \ge 1$

$$\Rightarrow \log_3(2x+1) \ge \log_9(4x+5)$$

즉
$$\log_9 (2x+1)^2 \ge \log_9 (4x+5)$$
에서

밑이 1보다 크므로

$$(2x+1)^2 \ge 4x+5, 4x^2-4 \ge 0$$

$$(x+1)(x-1) \ge 0$$

$$\therefore x \le -1 \quad \text{$\underline{\Sigma}$} \quad x \ge 1 \qquad \qquad \cdots$$

이때, 진수의 조건에서

$$2x+1>0, \ 4x+5>0$$
 $\therefore \ x>-\frac{1}{2}$ \cdots

$$\bigcirc$$
, ©에서 $x \ge 1$

29)
$$1 < x < \frac{3}{2}$$

$$\Rightarrow \log_3(x-1)+1 < \log_3 x$$
, 즉 $\log_3 3(x-1) < \log_3 x$ 에서 밑이 1보다 크므로

$$3x-3 < x$$
 $\therefore x < \frac{3}{2}$ \cdots

$$x-1>0, x>0$$
 $\therefore x>1$ \cdots

①, ⓒ에서
$$1 < x < \frac{3}{2}$$

30)
$$2 < x < \frac{5}{2}$$

$$x-1>5-2x$$
 $\therefore x>2$ \cdots 이때, 진수의 조건에서

$$\therefore x > 2$$

$$x-1 > 0$$
 $5-2x > 0$

$$x-1 > 0, 5-2x > 0$$
 $\therefore 1 < x < \frac{5}{2} \cdots$ \bigcirc

- \bigcirc , \bigcirc 에서 $2 < x < \frac{5}{2}$
- 31) $\frac{5}{2} < x < 8$
- $\Rightarrow \log_5(x+3) > \log_5(2x-5)$ 에서 밑이 1보다 크므 로 x+3 > 2x-5 $\therefore x < 8$ 이때, 진수의 조건에서
 - $x+3>0, \ 2x-5>0$ $\therefore \ x>\frac{5}{2}$
 - \bigcirc , ©에서 $\frac{5}{2} < x < 8$
- 32) $\frac{1}{3} < x < 1$
- $\Rightarrow \ -\log_{\underline{1}} \ (x+1) > \log_{10} \left(3x-1\right), \ \ \overline{\Rightarrow}$

 $\log_{10}(x+1) > \log_{10}(3x-1)$ 에서

밑이 1보다 크므로

x+1 > 3x-1 $\therefore x < 1$ \cdots

이때, 진수의 조건에서

$$x+1>0, \ 3x-1>0$$
 $\therefore \ x>\frac{1}{3}$

- \bigcirc , 일에서 $\frac{1}{2} < x < 1$
- 33) $-2 < x \le 2$
- $\Rightarrow \log_{\frac{1}{2}}(x+2) \ge \log_{\frac{1}{4}}(x+14), \stackrel{\triangle}{\Rightarrow}$

 $\log_{\frac{1}{4}}(x+2)^2 \geq \log_{\frac{1}{4}}(x+14)$ 에서

믿이 1보다 작으므로

 $(x+2)^2 \le x+14, \ x^2+3x-10 \le 0$

$$(x+5)(x-2) \le 0$$
 \therefore $-5 \le x \le 2$ \cdots

이때, 진수의 조건에서

x+2 > 0, x+14 > 0 $\therefore x > -2 \qquad \cdots \bigcirc$

- \bigcirc , 일에서 $-2 < x \le 2$
- 34) -1 < x < 1
- \Rightarrow 진수 조건에서 x+1>0이고 x+5>0이므로

 $\log_{\frac{1}{2}}(x+1) + \log_{\frac{1}{2}}(x+5) > \log_{\frac{1}{2}}12 \text{ and } k \text{ for } k \text$

 $\log_{\frac{1}{2}}(x+1)(x+5) > \log_{\frac{1}{2}}12$

 $\log_{\frac{1}{2}}(x^2+6x+5) > \log_{\frac{1}{2}}12$

밑이 1보다 작은 양수이므로 $x^2 + 6x + 5 < 12$

 $x^2 + 6x - 7 < 0$, (x+7)(x-1) < 0

- \therefore -7 < x < 1
- ⑤, ⑥의 공통 범위를 구하면 -1<x<1</p>
- 35) 1 < x < 9
- \Rightarrow 진수 조건에서 $x^2 + 8x 9 = (x+9)(x-1) > 0$ 이고 x+3 > 0이므로 x > 1

 $\log_{0.5^2}(x^2+8x-9) > \log_{0.5}(x+3)$ 에서

양변의 밑을 0.5로 바꾸면

$$\frac{1}{2}\log_{0.5}(x^2+8x-9) > \log_{0.5}(x+3)$$

$$\log_{0.5}(x^2 + 8x - 9) > 2\log_{0.5}(x + 3)$$

$$\log_{0.5}(x^2+8x-9) > \log_{0.5}(x+3)^2$$

믿이 작은 1보다 양수이므로

$$x^2 + 8x - 9 < (x+3)^2$$

$$x^2 + 8x - 9 < x^2 + 6x + 9$$

$$2x < 18$$
 $\therefore x < 9$ \cdots

- ①, ①의 공통 범위를 구하면 1 < x < 9
- 36) -2 < x < -1 또는 2 < x < 3
- $\implies \log_2 \left(x^2 x 2 \right) < 2, \ \ \ \, \stackrel{\textstyle \sim}{\lnot} \ \ \log_2 \left(x^2 x 2 \right) < \log_2 2^2$ 에서 믿이 1보다 크므로

$$x^2 - x - 2 < 4$$
, $x^2 - x - 6 < 0$

$$(x+2)(x-3) < 0$$
 \therefore $-2 < x < 3$ \cdots

이때, 진수의 조건에서

$$x^2-x-2>0$$
, $(x+1)(x-2)>0$

- $\therefore x < -1$ 또는 x > 2 ····· ©
- \bigcirc , \bigcirc 에서 -2 < x < -1 또는 2 < x < 3
- 37) $-\frac{7}{4} < x < 2$
- \Rightarrow 진수 조건에서 2-x>0이고 x+3>0이므로

 $\log_3(2-x) < \log_3(x+3) + 1$ 에서

$$\log_3(2-x) < \log_3(x+3) + 1$$

 $\log_3(2-x) < \log_33(x+3)$

밑이 1보다 크므로

$$2-x < 3x+9$$
 $\therefore x > -\frac{7}{4}$ \cdots

- \bigcirc , ©의 공통 범위를 구하면 $-\frac{7}{4} < x < 2$
- 38) $\frac{5}{2} < x < 3$
- \Rightarrow 진수 조건에서 x-1>0이고 3-x>0이므로 1 < x < 3

$$\log_3(x-1) - \log_3(3-x) - 1 > 0$$
에서

$$\log_3(x-1) - \log_3(3-x) - 1 > 0$$

$$\log_3(x-1) > \log_3(3-x) + 1$$
$$\log_3(x-1) > \log_3(3-x)$$

밑이 1보다 크므로
$$x-1>9-3x$$

- $\therefore x > \frac{5}{2}$
- 🗅
- \bigcirc , \bigcirc 의 공통 범위를 구하면 $\frac{5}{2} < x < 3$
- 39) $1 < x < \log_2 11$
- $\Rightarrow t = 2^x$ 라 하면 t > 0이고 진수조건으로 (t+5)(t-2) > 0 $\therefore t > 2 \implies x > 1$
- - $\log_{\frac{1}{2}}\sqrt{2^{2x}+3\,ullet\,2^x-10}\,>\log_{\frac{1}{2}}\left(2^x+1
 ight)$ 에서

$$\log_{\frac{1}{3}} \sqrt{t^2 + 3t - 10} > \log_{\frac{1}{3}} (t+1)$$
 밑이 1보다 작으므로
$$t^2 + 3t - 10 < (t+1)^2$$

$$t^2 + 3t - 10 < t^2 + 2t + 1$$
 $\therefore \ t < 11 \implies 2^x < 11 \qquad \therefore \ x < \log_2 11$

따라서 만족하는 x값의 범위는 $1 < x < log_2 11$ 이 다

40)
$$0 < x \le \frac{1}{8}$$
 또는 $x \ge 2$
 \Rightarrow 진수 조건에서 $x > 0$ ($\log_2 x = t$ 로 치환하면 주어진 부등식은 $t^2 + 2t - 3 \ge 0$ 에서 $(t + 3)(t - 1) \ge 0$

$$\therefore$$
 $t \le -3$ 또는 $t \ge 1$ 즉, $\log_2 x \le \log_2 2^{-3}$ 또는 $\log_2 x \ge \log_2 2$

밑이 1보다 크므로
$$x \le \frac{1}{9}$$
 또는 $x \ge 2$

⊙, ⊙의 공통 범위를 구하면

$$0 < x \leq \frac{1}{8} \text{ } \underline{\text{FL}} \text{ } x \geq 2$$

41) $\frac{1}{4} < x < 2$

$$\Leftrightarrow (\log_2 x)^2 + \log_2 x - 2 < 0$$
에서 $\log_2 x = t$ 로 놓으면
$$t^2 + t - 2 < 0, \ (t+2)(t-1) < 0$$

$$\therefore -2 < t < 1$$

즉,
$$\log_2 2^{-2} < \log_2 x < \log_2 2^1$$
에서

밑이 1보다 크므로
$$\frac{1}{4} < x < 2$$
 ····· \bigcirc

이때, 진수의 조건에서
$$x>0$$
 ····· $\mathbb O$

$$\bigcirc$$
, ©에서 $\frac{1}{4} < x < 2$

42)
$$\frac{1}{16} \le x \le 2$$

$$\Rightarrow (\log_4 x^2)(\log_2 8x) \le 4$$
에서

$$\log_2 x(\log_2 8 + \log_2 x) \le 4$$
, $\log_2 x(3 + \log_2 x) \le 4$

$$(\log_2 x)^2 + 3\log_2 x - 4 \le 0$$

 $\log_2 x = t$ 로 놓으면

$$t^2 + 3t - 4 \le 0$$
, $(t+4)(t-1) \le 0$

$$\therefore -4 \le t \le 1$$

즉,
$$\log_2 2^{-4} \le \log_2 x \le \log_2 2$$
에서

밑이 1보다 크므로
$$\frac{1}{16} \le x \le 2$$
 \bigcirc

이때, 진수의 조건에서
$$x > 0$$
 ····· (

$$\bigcirc$$
, 이에서 $\frac{1}{16} \le x \le 2$

43) 0 < x < 2 또는 x > 4

$$\Rightarrow$$
 진수 조건에서 $x > 0$ ····· \bigcirc

 $\log_{0.5} x = t$ 로 치환하면 주어진 부등식은

$$t^2 + 3t + 2 > 0$$
에서 $(t+2)(t+1) > 0$

즉,
$$\log_{0.5} x < \log_{0.5} 0.5^{-2}$$
 또는

$$\log_{0.5} x > \log_{0.5} 0.5^{-1}$$

$$x > 0.5^{-2}$$
 또는 $x < 0.5^{-1}$

즉,
$$x > 4$$
 또는 $x < 2$

$$0 < x < 2$$
 또는 $x > 4$

44)
$$\frac{1}{9} < x < 27$$

$$\Rightarrow (\log_{\frac{1}{3}} 9x) \left(\log_{3} \frac{x}{27}\right) > 0 \text{ and }$$

$$-(\log_3 9 + \log_3 x)(\log_3 x - \log_3 27) > 0$$

$$(\log_3 x + 2)(\log_3 x - 3) < 0$$

$$\log_3 x = t$$
로 놓으면

$$(t+2)(t-3) < 0$$

$$\therefore -2 < t < 3$$

즉,
$$\log_3 3^{-2} < \log_3 x < \log_3 3^3$$
에서

밑이 1보다 크므로
$$\frac{1}{9} < x < 27$$
 ····· \bigcirc

이때, 진수의 조건에서
$$x>0$$
 ····· \bigcirc

$$\bigcirc$$
, 이에서 $\frac{1}{9} < x < 27$

45)
$$\frac{1}{81} < x < 9$$

$$\Rightarrow$$
 진수 조건에서 $x > 0$ ····· \bigcirc

$$(\log_3 27x) \left(\log_3 \frac{x}{3}\right) < 5$$
에서

$$(3 + \log_3 x)(-1 + \log_3 x) < 5$$

$$(\log_3 x)^2 + 2 \log_3 x - 8 < 0$$

$$\log_3 x = t$$
로 치환하면

$$t^2 + 2t - 8 < 0$$

$$(t+4)(t-2) < 0$$
 : $-4 < t < 2$

$$-\frac{1}{5}$$
, $\log_3 3^{-4} < \log_3 x < \log_3 3^2$

밑이 1보다 크므로
$$\frac{1}{81} < x < 9$$
 …… ©

$$\bigcirc$$
, \bigcirc 의 공통 범위를 구하면 $\frac{1}{81} < x < 9$

46) 0 < x < 1 또는 x > 4

$$\Rightarrow$$
 진수 조건에서 $x > 0$

$$\left(\log_{\frac{1}{2}}x\right)\!\!\left(\log_{2}\frac{x}{4}\right)\!\!<\!0\,\mathsf{MK}$$

$$-\log_2 x(\log_2 x - 2) < 0$$

$$\log_2 x (\log_2 x - 2) > 0$$

$$\log_2 x = t$$
로 치환하면

$$t(t-2) > 0$$

즉,
$$\log_2 x < \log_2 2^0$$
 또는 $\log_2 x > \log_2 2^2$

0 < x < 1 또는 x > 4

47)
$$0 < x \le 1$$
 또는 $x \ge 100$

$$(\log x)^2 - 2\log x \ge 0$$
에서 $\log x = t$ 로 놓으면

$$t^2 - 2t \ge 0, \ t(t-2) \ge 0$$

$$\therefore t \leq 0 \quad \text{£} \quad t \geq 2$$

즉,
$$\log x \le \log 1$$
 또는 $\log x \ge \log 10^2$ 에서

밑이 1보다 크므로
$$x \le 1$$
 또는 $x \ge 100$ ····· \bigcirc

이때, 진수의 조건에서
$$x > 0$$

①, ①에서
$$0 < x \le 1$$
 또는 $x \ge 100$

48)
$$0 < x < \frac{1}{4}$$
 또는 $x > 8$

$$\Rightarrow (\log_{\frac{1}{2}} x)^2 > 6 - \log_{\frac{1}{2}} x, \stackrel{\triangle}{\Rightarrow}$$

$$(\log_{\frac{1}{2}} x)^2 + \log_{\frac{1}{2}} x - 6 > 0$$
에서

$$\log_{\frac{1}{2}} x = t$$
로 놓으면

$$t^2 + t - 6 > 0$$
, $(t+3)(t-2) > 0$

즉,
$$\log_{\frac{1}{2}} x < \log_{\frac{1}{2}} \left(\frac{1}{2}\right)^{-3}$$
 또는

$$\log_{\frac{1}{2}} x > \log_{\frac{1}{2}} \left(\frac{1}{2}\right)^2 \circ | \overline{\jmath}|$$

밑이 1보다 작으므로
$$x>8$$
 또는 $x<\frac{1}{4}$ …… $extcolor{}$

이때, 진수의 조건에서
$$x > 0$$

$$\bigcirc$$
, ©에서 $0 < x < \frac{1}{4}$ 또는 $x > 8$

49)
$$\frac{1}{3} < x < 9$$

$$\Rightarrow$$
 진수 조건에서 $x > 0$ ····· \bigcirc

$$\log_3 x = t$$
로 치환하면 주어진 부등식은

$$t^2 - t - 2 < 0$$
 에서 $(t+1)(t-2) < 0$

$$\therefore -1 < t < 2$$

$$\frac{5}{3}$$
, $\log_3 3^{-1} < \log_3 x < \log_3 3^2$

밑이 1보다 크므로
$$\frac{1}{3} < x < 9$$

$$\bigcirc$$
, \bigcirc 의 공통 범위를 구하면 $\frac{1}{3} < x < 9$

50)
$$\frac{1}{8} \le x \le 2$$

$$\Rightarrow x^{\frac{\log_1 x}{2}} \geq \frac{x^2}{8}$$
의 양변에 밑이 $\frac{1}{2}$ 인 로그를 취하면

$$\log_{\frac{1}{2}} x^{\log_{\frac{1}{2}} x} \le \log_{\frac{1}{2}} \frac{x^2}{8}$$

$$(\log_{\frac{1}{2}} x)(\log_{\frac{1}{2}} x) \le \log_{\frac{1}{2}} x^2 - \log_{\frac{1}{2}} 8$$

$$\therefore (\log_{\frac{1}{2}} x)^2 - 2\log_{\frac{1}{2}} x - 3 \le 0$$

$$\log_{\frac{1}{2}} x = t$$
로 놓으면

$$t^2 - 2t - 3 \le 0, \ (t+1)(t-3) \le 0$$

$$\therefore -1 \le t \le 3$$

즉,
$$\log_{\frac{1}{2}} 2 \le \log_{\frac{1}{2}} x \le \log_{\frac{1}{2}} \frac{1}{8}$$
에서

밑이 1보다 작으므로
$$\frac{1}{8} \le x \le 2$$
 \bigcirc

이때, 진수의 조건에서
$$x>0$$
 ····· ©

$$\bigcirc$$
, 이에서 $\frac{1}{8} \le x \le 2$

51)
$$\frac{1}{9} < x < \frac{1}{3}$$

$$\Rightarrow x^{\log_1 x} > 9x^3$$
의 양변에 밑이 $\frac{1}{3}$ 인 로그를 취하면

$$\log_{\frac{1}{3}} x^{\log_{\frac{1}{3}} x} < \log_{\frac{1}{3}} 9x^3$$

$$(\log_{\frac{1}{3}} x)(\log_{\frac{1}{3}} x) < \log_{\frac{1}{3}} 9 + \log_{\frac{1}{3}} x^3$$

$$\therefore (\log_{\frac{1}{3}} x)^2 - 3\log_{\frac{1}{3}} x + 2 < 0$$

$$\log_{\frac{1}{3}} x = t$$
로 놓으면

$$t^2 - 3t + 2 < 0$$
, $(t-1)(t-2) < 0$

$$\therefore 1 < t < 2$$

즉,
$$\log_{\frac{1}{3}} \frac{1}{3} < \log_{\frac{1}{3}} x < \log_{\frac{1}{3}} \frac{1}{9}$$
에서

밑이 1보다 작으므로
$$\frac{1}{9} < x < \frac{1}{3}$$
 \bigcirc

이때, 진수의 조건에서
$$x>0$$

$$\bigcirc$$
, 으에서 $\frac{1}{9} < x < \frac{1}{3}$

52)
$$0 < x \le 2$$
 또는 $x \ge 32$

$$\Rightarrow x^{\log_2 x} \geq rac{x^6}{32}$$
의 영변에 밑이 2인 로그를 취하면

$$\log_2 x^{\log_2 x} \geq \log_2 \frac{x^6}{32},$$

$$(\log_2 x)(\log_2 x) \ge \log_2 x^6 - \log_2 32$$

$$\therefore (\log_2 x)^2 - 6\log_2 x + 5 \ge 0$$

$$\log_2 x = t$$
로 치환하면

$$t^2 - 6t + 5 \ge 0$$
, $(t-1)(t-5) \ge 0$

$$\therefore t \le 1$$
 또는 $t \ge 5$

즉,
$$\log_2 x \leq \log_2 2$$
 또는 $\log_2 x \geq \log_2 32$ 에서

밑이 1보다 크므로
$$x \le 2$$
 또는 $x \ge 32$ …… \bigcirc

이때, 진수의 조건에서
$$x>0$$

$$\bigcirc$$
, ©에서 $0 < x \le 2$ 또는 $x \ge 32$

53)
$$\frac{1}{27} < x < 3$$

$$\Rightarrow$$
 진수 조건에서 $x > 0$

 $x^{\frac{\log_1 x}{3}} > \frac{x^2}{27}$ 의 양변에 밑이 $\frac{1}{3}$ 인 로그를 취하면

$$\log_{\frac{1}{3}} x^{\log_{\frac{1}{3}} x} < \log_{\frac{1}{3}} \frac{x^2}{27} \text{ on } \mathcal{A}$$

$$\left(\log_{\frac{1}{3}} x\right)^2 < 2\log_{\frac{1}{3}} x + \log_{\frac{1}{3}} \left(\frac{1}{3}\right)^3$$

$$\log_{\frac{1}{3}} x = t$$
로 치환하면

$$t^2 - 2t - 3 = 0$$

$$(t+1)(t-3) < 0$$

$$\therefore -1 < t < 3$$

$$\stackrel{r}{\lnot},\ \log_{\frac{1}{3}}\left(\frac{1}{3}\right)^{-1}<\log_{\frac{1}{3}}x<\log_{\frac{1}{3}}\left(\frac{1}{3}\right)^3$$

밑이 1보다 작은 양수이므로
$$\frac{1}{27} < x < 3$$
 …… \bigcirc

$$\bigcirc$$
, ©의 공통 범위를 구하면 $\frac{1}{27} < x < 3$

54)
$$\frac{1}{2} \le x \le 8$$

⇨ 양변에 밑이 2인 로그를 취하면

$$\log_2 x^{\log_2 x} \le \log_2 8x^2$$

$$(\log_2 x)(\log_2 x) \le \log_2 8 + \log_2 x^2$$

$$(\log_2 x)^2 \le 3 + 2\log_2 x$$

$$(\log_2 x)^2 - 2\log_2 x - 3 \le 0$$

 $\log_2 x = t$ 로 놓으면

$$t^2 - 2t - 3 \le 0$$
, $(t+1)(t-3) \le 0$

$$\therefore -1 \le t \le 3$$

즉,
$$\log_2 \frac{1}{2} \le \log_2 x \le \log_2 8$$
에서

밑이 1보다 크므로
$$\frac{1}{2} \le x \le 8$$
 ····· (

진수의 조건에서
$$x > 0$$

$$\bigcirc$$
, 이에서 $\frac{1}{2} \le x \le 8$

55)
$$0 < x < \frac{1}{2}$$
 또는 $x > 4$

$$\Rightarrow$$
 진수 조건에서 $x > 0$

 $x^{\log_2 x} > 4x$ 의 양변에 밑이 2인 로그를 취하면

$$\log_2 x^{\log_2 x} > \log_2 4x \, \text{GeV}$$

$$(\log_2 x)^2 > \log_2 x + 2$$

$$\log_2 x = t$$
로 치환하면 $t^2 - t - 2 > 0$

$$(t+1)(t-2) > 0$$

$$(t+1)(t-2) > 0$$
 $\therefore t < -1 = t > 2$

즉,
$$\log_2 x < \log_2 2^{-1}$$
 또는 $\log_2 x > \log_2 2^2$

밑이 1보다 크므로

$$x < \frac{1}{2}$$
 또는 $x > 4$

$$0 < x < \frac{1}{2}$$
 또는 $x > 4$

56)
$$\frac{1}{3} < x < 3$$

 $\Rightarrow x^{\log_3 x} < 3$ 의 양변에 밑이 3인 로그를 취하면

$$\log_3 x^{\log_3 x} < \log_3 3$$
, $(\log_3 x)(\log_3 x) < 1$

$$(\log_3 x)^2 - 1 < 0$$

$$\log_3 x = t$$
로 놓으면

$$t^2 - 1 < 0, (t+1)(t-1) < 0$$

$$\therefore -1 < t < \frac{1}{2}$$

즉,
$$\log_3 \frac{1}{3} < \log_3 x < \log_3 3$$
에서

밑이 1보다 크므로
$$\frac{1}{3} < x < 3$$
 \bigcirc

이때, 진수의 조건에서
$$x>0$$
 ····· $\mathbb C$

$$\bigcirc$$
, ©에서 $\frac{1}{3} < x < 3$

57)
$$0 < x \le \frac{1}{4}$$

$$\Rightarrow \log_{\frac{1}{4}}(\log_{\frac{1}{2}}x) \leq -\frac{1}{2}, \stackrel{\triangle}{\Rightarrow}$$

$$\log_{\frac{1}{4}}\left(\log_{\frac{1}{2}}x\right) \leq \log_{\frac{1}{4}}2$$
에서 밑이 1보다 작으므로

$$\log_{\frac{1}{2}} x \ge 2$$

$$\log_{\frac{1}{2}} x \ge \log_{\frac{1}{2}} \frac{1}{4}$$
에서 밑이 1보다 작으므로

$$x \leq \frac{1}{4}$$

$$\log_{\frac{1}{2}} x > 0$$
, $x > 0$ 이므로 $0 < x < 1$ ······ ©

$$\bigcirc$$
, 이에서 $0 < x \le \frac{1}{4}$

58) $1 < x \le 8$

$$\Rightarrow$$
 진수 조건에서 $\log_2 x > 0$, $x > 0$ 이므로

$$\log_3\left(\log_2 x\right) \leq 1$$
에서 $\log_3\left(\log_2 x\right) \leq \log_3 3$

밑이
$$1$$
보다 크므로 $\log_2 x \le 3$ 에서

$$\log_2 x \le \log_2 2^3$$

밑이 1보다 크므로
$$x \leq 8$$

①, ①의 공통 범위를 구하면
$$1 < x \le 8$$

59)
$$\frac{1}{4} < x < 1$$

$$\Rightarrow \log_2(\log_{\frac{1}{2}}x) < 1, \Rightarrow$$

$$\log_2\left(\log_{\frac{1}{2}}x\right) < \log_22$$
에서 밑이 1보다 크므로

$$\log_{\frac{1}{2}} x < 2$$

 $\log_{\frac{1}{2}} x < \log_{\frac{1}{2}} \frac{1}{4}$ 에서 밑이 1보다 작으므로

$$x > \frac{1}{4}$$

이때, 진수의 조건에서

$$\log_{\frac{1}{2}} x > 0$$
, $x > 0$ 이므로 $0 < x < 1$ ····· ©

$$\bigcirc$$
, ©에서 $\frac{1}{4} < x < 1$

60)
$$\frac{1}{8} < x < 1$$

$$\log_3\left(\log_{\frac{1}{2}}x\right) < \log_33$$
에서 밑이 1보다 크므로

$$\log_{\frac{1}{2}} x < 3$$

$$\log_{\frac{1}{2}} x < \log_{\frac{1}{2}} \frac{1}{8}$$
에서 밑이 1보다 작으므로

$$x > \frac{1}{8}$$

이때, 진수의 조건에서

$$\log_{\frac{1}{2}} x > 0$$
, $x > 0$ 이므로 $0 < x < 1$ ····· ©

①, ©에서
$$\frac{1}{8} < x < 1$$

61) 1 < x < 81

 \Rightarrow 진수 조건에서 $\log_3 x > 0$, x > 0이므로

.....

$$\log_{0.5}(\log_3 x) > -2$$
에서

$$\log_{0.5} (\log_3 x) > \log_{0.5} 0.5^{-2}$$

밑이 1보다 작은 양수이므로 $\log_3 x < 4$ 에서

 $\log_3 x < \log_3 3^4$

밑이 1보다 크므로
$$x < 81$$
 ①

①, ①의 공통 범위를 구하면 1 < x < 81

62) $1 < x \le 16$

$$\Rightarrow \log_{\frac{1}{2}}(\log_4 x) \ge -1, \stackrel{\text{\tiny q}}{\Rightarrow}$$

 $\log_{\frac{1}{2}}\left(\log_4 x\right) \geq \log_{\frac{1}{2}}$ 2에서 밑이 1보다 작으므로

 $\log_4 x \leq 2$

 $\log_4 x \le \log_4 16$ 에서 밑이 1보다 크므로

 $x \le 16$

.....

이때, 진수의 조건에서

 $\log_4 x > 0$, x > 0이므로 x > 1 ······ ©

③, ②에서 1 < x ≤ 16</p>

63) $1 < x \le 8$

 \Rightarrow log₃ (log₂ x) ≤ 1, \Rightarrow

$$\log_3\left(\log_2x\right) \leq \log_33$$
에서 밑이 1보다 크므로
$$\log_2x \leq 3$$

 $\log_2 x \le \log_2 8$ 에서 밑이 1보다 크므로

이때, 진수의 조건에서

 $\log_2 x > 0, x > 0$ 이므로 x > 1

..... (

$$\bigcirc$$
, 입에서 $1 < x \le 8$

64) 5개

$$\log_2(5-x)(5+x) > \log_2 2^4$$
에서

밑이 1보다 크므로

$$(5-x)(5+x) > 16$$
, $x^2-9 < 0$

$$(x+3)(x-3) < 0$$
 \therefore $-3 < x < 3$ \cdots

이때, 진수의 조건에서

$$5-x > 0, 5+x > 0$$
 : $-5 < x < 5$

 \bigcirc , ©에서 -3 < x < 3

따라서 주어진 부등식을 만족시키는 정수 x는 -2, -1, 0, 1, 2의 5개이다.

65) $\frac{3}{2}$

 \Rightarrow 진수조건에 의하여 $x > \frac{1}{2}$ … \bigcirc

$$\frac{1}{2}\log_2(8(x+1)) + \frac{1}{2}\log_2(2x-1) < 2$$

$$\log_2(8(x+1)) + \log_2(2x-1) < 4$$

$$\log_2(x+1)+3+\log_2(2x-1)<4$$

$$\log_2(x+1) + \log_2(2x-1) < 1$$

$$\log_2((x+1)(2x-1)) < \log_2 2$$

$$(x+1)(2x-1) < 2$$

$$2x^2 + x - 1 < 2$$

$$2x^2 + x - 3 < 0$$

$$(2x+3)(x-1) < 0$$

$$\therefore -\frac{3}{2} < x < 1 \cdots \bigcirc$$

 \bigcirc , ①에 의해 $\frac{1}{2} < x < 1$

$$\therefore \alpha + \beta = \frac{1}{2} + 1 = \frac{3}{2}$$

66) 3

$$\log_a (x-3)^2 \ge \log_a (x+3)$$
 에서

0 < a < 1이므로

$$(x-3)^2 \le x+3, \ x^2-7x+6 \le 0$$

$$(x-1)(x-6) \le 0$$
 $\therefore 1 \le x \le 6$ \dots

이때, 진수의 조건에서

$$x-3>0$$
, $x+3>0$ $\therefore x>3$ \cdots

 \bigcirc , \bigcirc 에서 $3 < x \le 6$ 이므로 주어진 부등식을 만 족시키는 정수 x는 4, 5, 6의 3개이다.

67) 25개

$$\Rightarrow f(x) = \log_3 x$$
에서

$$f(f(x)) = f(\log_3 x) = \log_3 (\log_3 x)$$
이므로

$$f(f(x)) < 1$$
에서 $\log_3(\log_3 x) < 1$

즉,
$$\log_3(\log_3 x) < \log_3 3$$
에서 밑이 1 보다 크므로

$$\log_2 x < 3$$

$$\log_3 x < \log_3 27$$
에서 밑이 1보다 크므로

$$\log_3 x > 0, x > 0$$
이므로 $x > 1$

$$\bigcirc$$
, \bigcirc 에서 $1 < x < 27$ 이므로 주어진 부등식을 만
족시키는 정수 x 는 $2, 3, 4, \cdots, 26$ 의 25 개이다.

68)
$$0 < a \le \frac{1}{4}$$
 또는 $a \ge 1$

$$\ \ \, \ \ \,$$
 이차방정식 $x^2-2(1+\log_2 a)x+1=0$ 이 실근을 가 지려면 주어진 이차방정식의 판별식 $D\geq 0$ 이어야 한다.

즉,
$$\frac{D}{4} = (1 + \log_2 a)^2 - 1 \ge 0$$
에서

$$(\log_2 a)^2 + 2\log_2 a \ge 0$$
이므로

$$\log_2 a = t$$
로 놓으면

$$t^2 + 2t \ge 0, \ t(t+2) \ge 0$$

$$\therefore t \le -2 \ \text{Ξ} = t \ge 0$$

즉,
$$\log_2 a \leq \log_2 \frac{1}{4}$$
 또는 $\log_2 a \geq \log_2 1$ 에서

밑이 1보다 크므로
$$a \leq \frac{1}{4}$$
 또는 $a \geq 1$ …… \bigcirc

이때, 진수의 조건에서
$$a > 0$$
 ····· ①

①, ©에서
$$0 < a \le \frac{1}{4}$$
 또는 $a \ge 1$

69)
$$\frac{1}{4} < a < 1024$$

$$D = (\log_2 a)^2 - 4(2\log_2 a + 5) < 0$$

$$\log_2 a = t$$
로 치환하면

$$t^2 - 8t - 20 < 0$$

$$(t+2)(t-10) < 0$$

$$\therefore -2 < t < 10$$

$$\log_2 2^{-2} < \log_2 a < \log_2 2^{10}$$

밑이 1보다 크므로
$$\frac{1}{4} < a < 1024$$

70)
$$10^{-5}$$
 또는 10^{7}

$$\Rightarrow$$
 이차방정식 $x^2 - (\log a + 1)x + (\log a + 9) = 0$ 의 판 별식을 D라고 하면

$$D = (\log a + 1)^2 - 4(\log a + 9) = 0$$

$$(\log a)^2 - 2\log a - 35 = 0$$

$$\log a = t$$
로 치확하면

$$t^2 - 2t - 35 = 0$$

$$(t+5)(t-7)=0$$

$$\therefore t = -5 \quad \text{E} = 7$$

즉,
$$\log a = -5$$
 또는 $\log a = 7$

∴
$$a = 10^{-5}$$
 또는 10^7

71)
$$\frac{1}{10}$$
 또는 $a = 10000$

다 이차방정식
$$x^2 + x \log a^2 + \log a^3 + 4 = 0$$
, 즉 $x^2 + 2x \log a + 3 \log a + 4 = 0$ 이 중군을 가지려면 판별식 $D = 0$ 이어야 하므로

$$\frac{D}{A} = (\log a)^2 - (3\log a + 4) = 0$$

$$(\log a)^2 - (3\log a + 4) = 0$$

$$\therefore (\log a)^2 - 3\log a - 4 = 0$$

$$\log a = t$$
로 놓으면

$$t^2-3t-4=0$$
, $(t+1)(t-4)=0$

즉,
$$\log a = -1$$
 또는 $\log a = 4$ 이므로

$$a = 10^{-1} = \frac{1}{10}$$
 $\pm = 10^4 = 10000$

72) 1

$$\Rightarrow \log x = t$$
로 치환하자.

$$t^2 - 2kt + 3 - 2k \ge 0$$

부등식이 항상 성립하기 위하여

$$\frac{D}{4} = k^2 - 3 + 2k \le 0$$

$$(k+3)(k-1) \le 0$$

$$\therefore -3 \le k \le 1$$

따라서 k의 최댓값은 1이다.

73) $k \ge 1$

$$\Rightarrow (\log_3 x)^2 + 2\log_3 x + k \ge 0$$

이때 x의 값에 관계없이 항상 성립하려면 판별식 $1-k \le 0$ 을 만족해야 한다.

$$\therefore k \ge 1$$

74) -12 < k < 0

$$\Rightarrow x^{\log_3 x} > (27x)^k$$
의 양변에 밑이 3 인 로그를 취하면

$$\log_3 x^{\log_3 x} > \log_3 (27x)^k$$

$$(\log_3 x)^2 > k(3 + \log_3 x)$$

$$\log_3 x = t$$
로 치환하면 $t^2 - kt - 3k > 0$ ····· \bigcirc

양수 x에 대하여 t는 모든 실수이므로

모든 실수 t에 대하여 \bigcirc 이 성립해야 한다.

이차방정식 $t^2 - kt - 3k = 0$ 의 판별식을 D라고 하면 $D = k^2 - 4(-3k) = k(k+12) < 0$

$$\therefore -12 < k < 0$$

75) 2

$$\Rightarrow (\log x)^2 - k \log x + 3 - k \ge 0 \text{ on } k$$

$$\log x = t$$
로 치환하면

$$t^2 - kt + 3 - k \ge 0$$

..... 🗇

양수 x에 대하여 t는 모든 실수이므로 모든 실수 t에 대하여 \bigcirc 이 성립해야 한다.

이차방정식 $t^2 - kt + 3 - k = 0$ 의 판별식을 D라고 하면

$$D = k^2 - 4(3 - k) \le 0$$

$$k^2 + 4k - 12 \le 0$$

$$(k+6)(k-2) \le 0$$

$$\therefore -6 \le k \le 2$$

따라서 실수 k의 최댓값은 2이다.

76) 5

$$\Rightarrow (-\log_2 x)^2 + k(2\log_2 x) + 4 \ge 0$$

 $\log_2 x = t(t)$ 는 모든 실수)로 치환하자.

$$t^2 + 2kt + 4 \ge 0$$

모든 실수 t에 대하여 주어진 부등식이 성립하기

$$\frac{D}{4} = k^2 - 4 \le 0 \quad \therefore \quad -2 \le k \le 2$$

따라서 정수 k의 개수는 5개이다.

77) 120분 후

 \Rightarrow 20n분 후 박테리아의 수는 10×3^n 마리이므로

$$10 \times 3^n \ge 10000$$

$$3^n \ge 1000$$

○의 양변에 상용로그를 취하면

$$\log 3^n \ge \log 1000$$

$$n \log 3 \ge 3$$

$$n \ge \frac{3}{\log 3} = \frac{3}{0.5} = 6$$

따라서 박테리아의 수가 10000마리 이상이 되는 것은 20×6 분 후, 즉 120분 후부터이다.

78) 10년 후

▷ n년 후에 A학교의 학생 수가 B학교의 학생 수의 2배 이상이 되려면

$$a \times 1.1^n \ge 2 \times (a \times 1.02^n)$$

①의 양변을 a로 나누고 상용로그를 취하면

$$\log 1.1^n \ge \log \left(2 \times 1.02^n\right)$$

 $n\log 1.1 \ge \log 2 + n\log 1.02$

$$\therefore \ n \ge \frac{\log 2}{\log 1.1 - \log 1.02} = \frac{0.3010}{0.0414 - 0.0086} = 9.176 \cdots$$

따라서 A학교의 학생 수가 B학교의 학생 수의 2 배 이상이 되는 것은 10년 후부터이다.

79) 10번

 \Rightarrow 처음 불순물의 양을 a라 할 때,

$$k^4a = \frac{1}{4}a$$
이므로 $k^4 = \frac{1}{4}$

양변에 상용로그를 취하면 $4\log k = -\log 4$ 이므로

$$\log k = -\frac{1}{4}\log 4$$

이때
$$k^n a \leq \frac{1}{30}a$$
이려면 $k^n \leq \frac{1}{30}$

이므로 양변에 상용로그를 취하면

$$n\log k \le -\log 30 = -\log 3 - 1$$

$$n\left(-\frac{1}{4}\log 4\right) = -\frac{3}{20}n \le -1.48$$

$$n \ge \frac{20}{3} \times 1.48 = 9.866 \cdots$$

따라서 최소 10번의 정수작업을 해야 한다.

80) 6개

 \Rightarrow 차단 후 남은 물질이 0.05이하가 되는 개수를 n이

$$\left(\frac{4}{10}\right)^n \leq \left(\frac{1}{200}\right)$$
 양변에 상용로그를 취하면

$$n(\log 4 - 1) \le -2 - \log 2$$

$$-0.4n \le -2.3$$
 $\therefore n \ge 5.xxx$

따라서 필요한 방호벽의 최소개수는 6개이다.

81) 2023년

 \Rightarrow 90조 이상 되는 해를 n이라 하면

$$50\left(1+\frac{10}{100}\right)^n \ge 90, \ 5(1.1)^n \ge 9$$

양변에 상용로그를 취하면

 $\log 5 + n \log 1.1 \ge \log 9$

$$n \log 1.1 \ge 2 \log 3 - (1 - \log 2)$$

$$n \ge 6.xxxx$$
 $\therefore n = 7$

따라서 처음으로 90조원이상이 되는 해는 2016+7 = 2023(년)이다.

82) 5일

 \Rightarrow 현재의 양을 x라 하고 n일 후 남아있는 물의 양 은 $x \times \left(\frac{8}{10}\right)^n$ 이므로

$$\left(\frac{8}{10}\right)^n x \le \frac{1}{3}x, \ \left(\frac{8}{10}\right)^n \le \frac{1}{3}$$

양변에 상용로그를 취하면

$$n(\log 8 - 1) \le -\log 3$$

$$n(0.9030-1) \le -0.4771$$

$$n \ge \frac{0.4771}{0.0970} = 4.918 \times \times \times$$

따라서 물의 양은 최소 5일 후 현재의 $\frac{1}{3}$ 이하가 된다.