Unit-3 Group Theory

- Algebraic systems Examples and general properties
- Semi groups
- Monoids
- Groups
- Sub groups
- Lagrange Thm
- Permutation group

Algebraic systems

■ N = $\{1,2,3,4,....\infty\}$ = Set of all natural numbers.

$$Z = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \dots, \infty\} = \text{Set of all integers.}$$

Q = Set of all rational numbers.

R = Set of all real numbers.

■ **Binary Operation:** The binary operator * is said to be a binary operation (closed operation) on a non empty set A, if

 $a * b \in A$ for all $a, b \in A$ (Closure property).

Ex: The set N is closed with respect to addition and multiplication but not w.r.t subtraction and division.

■ **Algebraic System:** A set 'A' with one or more binary(closed) operations defined on it is called an algebraic system.

Ex: (N, +), (Z, +, -), $(R, +, \cdot, -)$ are algebraic systems.

Properties

- Commutative: Let * be a binary operation on a set A.
 - The operation * is said to be commutative in A if
 - a * b= b * a for all a, b in A
- **Associativity:** Let * be a binary operation on a set A.
 - The operation * is said to be associative in A if
 - (a * b) * c = a * (b * c) for all a, b, c in A
- Identity: For an algebraic system (A, *), an element 'e' in A is said to be an identity element of A if
 - a * e = e * a = a for all $a \in A$.
- Note: For an algebraic system (A, *), the identity element, if exists, is unique.
- Inverse: Let (A, *) be an algebraic system with identity 'e'. Let a be an element in A. An element b is said to be inverse of A if

$$a * b = b * a = e$$

Semi group

- **Semi Group:** An algebraic system (A, *) is said to be a semi group if
 - 1. * is closed operation on A.
 - 2. * is an associative operation, for all a, b, c in A.
- \blacksquare Ex. (N, +) is a semi group.
- \blacksquare Ex. (N, .) is a semi group.
- \blacksquare Ex. (N,) is not a semi group.
- Monoid: An algebraic system (A, *) is said to be a monoid if the following conditions are satisfied.
 - 1) * is a closed operation in A.
 - 2) * is an associative operation in A.
 - 3) There is an identity in A.

Monoid

- Ex. Show that the set 'N' is a monoid with respect to multiplication.
- <u>Solution</u>: Here, N = {1,2,3,4,.....}
 - 1. <u>Closure property</u>: We know that product of two natural numbers is again a natural number.
 - i.e., a.b = b.a for all a,b \in N
 - ... Multiplication is a closed operation.
 - 2. <u>Associativity</u>: Multiplication of natural numbers is associative.

i.e., (a.b).c = a.(b.c) for all a,b,c
$$\in$$
 N

3. Identity: We have, $1 \in N$ such that

$$a.1 = 1.a = a$$
 for all $a \in N$.

... Identity element exists, and 1 is the identity element.

Hence, N is a monoid with respect to multiplication.

Group

- **Group:** An algebraic system (G, *) is said to be a **group** if the following conditions are satisfied.
 - 1) * is a closed operation.
 - 2) * is an associative operation.
 - 3) There is an identity in G.
 - 4) Every element in G has inverse in G.
- Abelian group (Commutative group): A group (G, *) is said to be *abelian* (or *commutative*) if a * b = b * a ②a, b ② G.

Algebraic systems

Theorem

- In a Group (G, *) the following properties hold good
- 1. Identity element is unique.
- 2. Inverse of an element is unique.
- 3. Cancellation laws hold good

```
a * b = a * c \Rightarrow b = c (left cancellation law)

a * c = b * c \Rightarrow a = b (Right cancellation law)
```

- 4. $(a * b)^{-1} = b^{-1} * a^{-1}$
- In a group, the identity element is its own inverse.
- Order of a group: The number of elements in a group is called order of the group.
- Finite group: If the order of a group G is finite, then G is called a finite group.

- Ex. Show that, the set of all integers is a group with respect to addition.
- Solution: Let Z = set of all integers.
 Let a, b, c are any three elements of Z.
- 1. Closure property: We know that, Sum of two integers is again an integer. i.e., $a + b \in Z$ for all $a,b \in Z$
- 2. <u>Associativity</u>: We know that addition of integers is associative. i.e., (a+b)+c = a+(b+c) for all $a,b,c \in Z$.
- 3. <u>Identity</u>: We have 0 ∈ Z and a + 0 = a for all a ∈ Z.
 ∴ Identity element exists, and '0' is the identity element.
- 4. Inverse: To each $a \in Z$, we have $-a \in Z$ such that a + (-a) = 0

Each element in Z has an inverse.

Contd.,

■ 5. Commutativity: We know that addition of integers is commutative.

i.e., a + b = b + a for all $a,b \in Z$.

Hence, (Z, +) is an abelian group.

Ex. Show that set of all non zero real numbers is a group with respect to multiplication.

- Solution: Let R* = set of all non zero real numbers.
 Let a, b, c are any three elements of R*.
- 1. <u>Closure property</u>: We know that, product of two nonzero real numbers is again a nonzero real number.
 - i.e., $a.b \in R^*$ for all $a,b \in R^*$.
- 2. <u>Associativity</u>: We know that multiplication of real numbers is associative.
 - i.e., (a.b).c = a.(b.c) for all a,b,c $\in R^*$.
- 3. <u>Identity</u>: We have $1 \in R^*$ and a .1 = a for all $a \in R^*$.
 - .: Identity element exists, and '1' is the identity element.
- 4. Inverse: To each $a \in R^*$, we have $1/a \in R^*$ such that $a \cdot (1/a) = 1$ i.e., Each element in R^* has an inverse.

Contd.,

5.<u>Commutativity</u>: We know that multiplication of real numbers is commutative.

```
i.e., a.b = b.a for all a,b \in R^*.
Hence, (R^*, .) is an abelian group.
```

- Ex: Show that set of all real numbers 'R' is not a group with respect to multiplication.
- Solution: We have $0 \in R$.

The multiplicative inverse of 0 does not exist.

Hence. R is not a group.

Example

- Ex. Let (Z, *) be an algebraic structure, where Z is the set of integers and the operation * is defined by n * m = maximum of (n, m).
 Show that (Z, *) is a semi group.
 Is (Z, *) a monoid ?. Justify your answer.
- Solution: Let a, b and c are any three integers.

Closure property: Now, a * b = maximum of (a, b) \in Z for all a,b \in Z

Associativity: $(a * b) * c = maximum of {a,b,c} = a * (b * c)$ \therefore (Z, *) is a semi group.

<u>Identity</u>: There is no integer x such that $a * x = maximum of (a, x) = a \quad for all a \in Z$

∴ Identity element does not exist. Hence, (Z, *) is not a monoid.

Ex. Show that the set of all positive rational numbers forms an abelian group under the composition * defined by a * b = (ab)/2.

- Solution: Let A = set of all positive rational numbers.
 Let a,b,c be any three elements of A.
- 1. <u>Closure property:</u> We know that, Product of two positive rational numbers is again a rational number.

i.e., $a * b \in A$ for all $a,b \in A$.

- 2. Associativity: (a*b)*c = (ab/2)*c = (abc)/4a*(b*c) = a*(bc/2) = (abc)/4
- 3. <u>Identity</u>: Let e be the identity element.

We have a*e = (a e)/2 ...(1), By the definition of * again, a*e = a(2), Since e is the identity.

From (1) and (2), (a e)/2 = a \Rightarrow e = 2 and 2 \in A.

∴ Identity element exists, and '2' is the identity element in A.

Contd.,

```
4. <u>Inverse</u>: Let a ∈ A
    let us suppose b is inverse of a.
    Now, a * b = (a b)/2 ....(1) (By definition of inverse.)
    Again, a * b = e = 2 .....(2) (By definition of inverse)
    From (1) and (2), it follows that
        (a b)/2 = 2
    ⇒ b = (4 / a) ∈ A
    ∴ (A,*) is a group.
Commutativity: a * b = (ab/2) = (ba/2) = b * a
```

Hence, (A,*) is an abelian group.

Theorem

- Ex. In a group (G, *), Prove that
 (a * b)⁻¹ = b⁻¹ * a⁻¹ for all a,b ∈G.
- Proof :
- Consider,
- \bullet (a * b) * (b⁻¹ * a⁻¹)
- = $(a * (b * b^{-1}) * a^{-1})$ (By associative property).
- $= (a * e * a^{-1})$ (By inverse property)
- $= (a * a^{-1}) (Since, e is identity)$
- = e (By inverse property)
- Similarly, we can show that
- \bullet (b⁻¹ * a⁻¹) * (a * b) = e
- Hence, $(a * b)^{-1} = b^{-1} * a^{-1}$.

Finite groups

- \blacksquare Ex. Show that $G = \{1, -1\}$ is an abelian group under multiplication.
- Solution: The composition table of G is

- 1. <u>Closure property:</u> Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
- 2. <u>Associativity</u>: The elements of G are real numbers, and we know that multiplication of real numbers is associative.
- 3. <u>Identity</u>: Here, 1 is the identity element and $1 \in G$.
- 4. Inverse: From the composition table, we see that the inverse elements of 1 and -1 are 1 and -1 respectively.

Contd.,

Hence, G is a group w.r.t multiplication.

5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative.

Hence, G is an abelian group w.r.t. multiplication..

Ex. Show that $G = \{1, \omega, \omega^2\}$ is an abelian group under multiplication. Where 1, ω , ω^2 are cube roots of unity.

Solution: The composition table of G is

•		1	ω	ω^2
•	1	$\frac{1}{\omega}$ ω^2	ω	ω^2
	ω	ω	ω^2	1
	ω^2	ω^2	1	ω

- 1. <u>Closure property:</u> Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
- 2. <u>Associativity</u>: The elements of G are complex numbers, and we know that multiplication of complex numbers is associative.
- 3. <u>Identity</u>: Here, 1 is the identity element and $1 \in G$.
- 4. <u>Inverse</u>: From the composition table, we see that the inverse elements of 1ω , ω^2 are 1, ω^2 , ω respectively.

Contd.,

- Hence, G is a group w.r.t multiplication.
- 5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative.
- Hence, G is an abelian group w.r.t. multiplication.

Ex. Show that $G = \{1, -1, i, -i\}$ is an abelian group under multiplication.

Solution: The composition table of G is

•	•	1	-1	i	-i
•	1				
•	-1	-1	1	-i	i
•	i	i	-i	-1	1
•	-i	-i	i	1	-1

- 1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
- 2. <u>Associativity</u>: The elements of G are complex numbers, and we know that multiplication of complex numbers is associative.
- 3. <u>Identity</u>: Here, 1 is the identity element and $1 \in G$.

Contd.,

- 4. <u>Inverse</u>: From the composition table, we see that the inverse elements of
 - 1 1, i, -i are 1, -1, -i, i respectively.
- 5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative. Hence, (G, .) is an abelian group.

Modulo systems.

- Addition modulo m (+_m)
- let m is a positive integer. For any two positive integers a and b
- \blacksquare a +_m b = r if a + b \ge m where r is the remainder obtained
- by dividing (a+b) with m.
- \blacksquare Multiplication modulo p (\times_p)
- let p is a positive integer. For any two positive integers a and b
- = a \times_{p} b = r if a b \ge p where r is the remainder obtained
- by dividing (ab) with p.
- Ex. $3 \times_5 4 = 2$, $5 \times_5 4 = 0$, $2 \times_5 2 = 4$

Ex.The set $G = \{0,1,2,3,4,5\}$ is a group with respect to addition modulo 6.

Solution: The composition table of G is

■ 1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under $+_6$.

Contd.,

2. <u>Associativity</u>: The binary operation +₆ is associative in G.

for ex.
$$(2 +_6 3) +_6 4 = 5 +_6 4 = 3$$
 and $2 +_6 (3 +_6 4) = 2 +_6 1 = 3$

- 3. <u>Identity</u>: Here, The first row of the table coincides with the top row. The element heading that row, i.e., 0 is the identity element.
- 4. . <u>Inverse</u>: From the composition table, we see that the inverse elements of 0, 1, 2, 3, 4. 5 are 0, 5, 4, 3, 2, 1 respectively.
- 5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation $+_6$ is commutative.
- \blacksquare Hence, (G, $+_6$) is an abelian group.

Ex.The set $G = \{1,2,3,4,5,6\}$ is a group with respect to multiplication modulo 7.

Solution: The composition table of G is

•	\times_7	1	2	3	4	5	6
•	1	1	2	3	4	5	6
•	2	2	4	6	1	3	5
•	3	3	6	2	5	1	4
•	4	4	1	5	2	6	3
•	5	5	3	1	6	4	2
•	6	6	5	4	3	2	1

■ 1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under \times_7 .

Contd.,

2. Associativity: The binary operation \times_7 is associative in G.

for ex.
$$(2 \times_7 3) \times_7 4 = 6 \times_7 4 = 3$$
 and $2 \times_7 (3 \times_7 4) = 2 \times_7 5 = 3$

- 3. <u>Identity</u>: Here, The first row of the table coincides with the top row. The element heading that row, i.e., 1 is the identity element.
- 4. . <u>Inverse</u>: From the composition table, we see that the inverse elements of 1, 2, 3, 4. 5, 6 are 1, 4, 5, 2, 5, 6 respectively.
- 5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation \times_7 is commutative.
- Hence, (G, \times_7) is an abelian group.

- Order of an element of a group:
- Let (G, *) be a group. Let 'a' be an element of G. The smallest integer n such that aⁿ = e is called order of 'a'. If no such number exists then the order is infinite.

Examples

- Ex. $G = \{1, -1, i, -i\}$ is a group w.r.t multiplication.
- The order 1 is

■ The order -1 is

■ The order i is

■ The order -i is

Sub groups

- **Def.** A non empty sub set H of a group (G, *) is a sub group of G,
- if (H, *) is a group.

Note: For any group {G, *}, {e, *} are trivial sub groups.

Ex. $G = \{1, -1, i, -i\}$ is a group w.r.t multiplication.

$$H_1 = \{1, -1\}$$
 is a subgroup of G.

$$H_2 = \{1\}$$
 is a trivial subgroup of G.

- \blacksquare Ex. (Z, +) and (Q, +) are sub groups of the group (R +).
- Theorem: A non empty sub set H of a group (G, *) is a sub group of G iff
- \bullet i) $a * b \in H \forall a, b \in H$
- ii) $a^{-1} \in H \quad \forall a \in H$

Cosets

- If H is a sub group of (G, *) and $a \in G$ then the set Ha = { h * a | h \in H}is called a right coset of H in G. Similarly $aH = \{a * h \mid h \in H\}$ is called a left coset of H is G.
- *Note:* 1) Any two left (right) cosets of H in G are either identical or disjoint.
- 2) Let H be a sub group of G. Then the right cosets of H form a partition of G. i.e., the union of all right cosets of a sub group H is equal to G.
 - 3) <u>Lagrange's theorem</u>: The order of each sub group of a finite group is a divisor of the order of the group.

Lagrange's Theorem

■ <u>Lagrange's theorem</u>: The order of each sub group H of a finite group G is a divisor of the order of the group.

Permutation Group

Definition:-

Let S be a finite set having n distinct elements. A one-one mapping S to S itself is called a permutation of degree n on set S.

Symbol of permutation:

Let
$$S = \{a_1, a_2, a_3, \dots, a_n\}$$
 be a finite set with n distinct elements.let $f: S \to S$ be a $1-1$ mapping of S on to itself.

$$f(a_1) = b_1, f(a_2) = b_2, \dots, f(a_n) = b_n$$
, then written as follows

$$f = \begin{pmatrix} a_1 & a_2 & a_3 & a_4 \dots a_n \\ b_1 & b_2 & b_3 & b_4 \dots b_n \end{pmatrix}$$

Degree of permutation Group

The number of elements in a finite set S is called as degree on permutation. If n is a degree of permutation mean having n! permutations

Example: Let S=(1,2,3,4,5)and f is a permutation on set S itself.

5! = 120 permutations

Identity permutation

If I is a permutation of degree n such that I replaces each element by itself then I is called identity permutation of degree n.

Inverse of permutation

Example 1-: Find the inverse of permutation
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}$$

$$A^{-1}$$
 : Required inverse is $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix}$

Example 2-: Calculate
$$A^{-1}$$
 if $A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$

Equality of Permutations

Two permutations f and g with degree n are said to be equal if f(a)=g(a).

g =
$$\begin{bmatrix} 4 & 3 & 2 & 1 \\ 2 & 4 & 1 & 3 \end{bmatrix}$$

$$\therefore$$
 f(a)=g(a)

Product of Permutations

The product or composition of two permutation f and g with degree n denoted by f. g, obtained by first carrying out operation defined by f and then g.

i.e.
$$f \cdot g(x) = f(g(x))$$

Problem: If
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 2 \end{pmatrix}$

Find the product of permutation A.B and B.A

Solution:
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 2 \end{pmatrix}$

$$A.B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 2 \end{pmatrix}$$

$$A.B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix}$$

Similarly,

$$B.A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{pmatrix}$$

Example 3-: If
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 3 & 2 & 4 \end{pmatrix}$$
 and $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$

then compute $f^{-1}o g^{-1}$.

Solution -:

$$f^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix}$$

$$\mathbf{g}^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}$$

$$f^{-1} \circ g^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}$$

$$f^{-1}o g^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 4 & 1 \end{pmatrix}$$

Example 4-: If P1=
$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$
, P2= $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$, P3= $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$

Find (P1 o P2)-1 and (P2 o P3)-1.

Solution-: P1 o P2=
$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$
 o $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ = $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$

Also, we know that if P^{-1} be the inverse of permutation P, then P^{-1} o P = I.

$$\therefore (P1 \ o \ P2)^{-1} = inverse \ of \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$\therefore (P2 \circ P3)^{-1} = inverse \ of \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$