Available online at www.sciencedirect.com

ScienceDirect

FUZZY sets and systems

Fuzzy Sets and Systems $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet \bullet$

www.elsevier.com/locate/fss

Fuzzy weighted C-ordered means clustering algorithm

Krzysztof Siminski

Institute of Informatics, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland Received 21 April 2016; received in revised form 11 November 2016; accepted 7 January 2017

Abstract

In real life data sets some attributes may have lower importance or even may be completely noninformative. The subspace clustering algorithms have been proposed to handle this. The soft subspace algorithms are vulnerable to noise and outliers. The paper presents a novel algorithm that handles both various importance of attributes and outliers. The proposed Fuzzy Weighted C-Ordered Mean (FWCOM) clustering algorithm elaborates clusters in soft subspaces. In each cluster each attribute is assigned a weight from interval [0, 1]. Each attribute has its individual weight (importance) in each cluster. The proposed algorithm applies the ordering technique to effectively reduce the influence of outliers and noise. The paper is accompanied by numerical experiments. © 2017 Elsevier B.V. All rights reserved.

Keywords: Fuzzy clustering; Subspace clustering; Ordered weighted averaging

1. Introduction

The real life data are far from being ideal. Data granules may be embedded in some subspaces of the task space. Some of dimensions may have lower importance or may even be totally noninformative and superfluous. The global reduction of task dimensionality by feature transformation (e.g. Principal Component Analysis or Singular Value Decomposition) may lead to problems with interpretation of elaborated results. The global approach may not be satisfactory because noninformative dimensions in one data granule may be of high importance in the other one. This leads to subspace clustering [7,10,14] for elaboration of data granules in subspaces of the original task space.

Many subspace algorithms can be classified as top-down or bottom-up techniques. The top-down algorithms start with all dimensions and try to throw away dimensions of lower importance (e.g. PROCLUS [1], ORCLUS [2], δ -Clusters [22]. The bottom-up approach splits the data with a grid, tests the density of regions, and extract relevant dimensions (e.g. CLIQUE [3], ENCLUS [4], MAFIA [11]). In algorithms mentioned above the weights of dimensions in clusters is either 0 or 1 (hard weights).

The crisp (hard) weights of attributes may not be satisfactory in some applications. Algorithms that elaborate fuzzy (soft, nonbinary) weights for attributes are an interesting direction of research. Some algorithm have been recently

E-mail address: Krzysztof.Siminski@polsl.pl.

http://dx.doi.org/10.1016/j.fss.2017.01.001 0165-0114/© 2017 Elsevier B.V. All rights reserved.

K. Siminski / Fuzzy Sets and Systems ••• (••••) •••-•••

Table 1
Symbols used in the paper.

Symbol	Meaning
\mathbb{C}	set of clusters
C	number of clusters, $C = \mathbb{C} $
\mathbb{X}	set of data items, $\mathbb{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_X\}$
X	number of data items, $X = X $
X	data item, $\mathbf{x} = [x_1, \dots, x_D]$
D	number of attributes
U	membership matrix $[C \times X]$
u_{cx}	membership of the x th item to the c th cluster
\mathbf{v}	matrix of cluster centres, $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_C]^T$
\mathbf{v}_{c}	centre of cth cluster, prototype, $\mathbf{v}_c = [v_{c1}, \dots, v_{cD}]$
Z	weight matrix $[C \times D]$
z_{cd}	weight of d th attribute in c th cluster
\hat{z}_{cd}	augmented weight of d th attribute in c th cluster, cf. Eq. (27)
β_{ck}	typicality of the kth data item with respect to cth cluster
f_k	global typicality of the k data item, cf. Eq. (29)
m	weighting exponent for memberships
ϕ	weighting exponent for weights
h	loss function, cf. Eq. (31)–(37)
e_{cdk}	residual of d th of k th datum from the centre of c th cluster
♦	s-norm, cf. Eq. (29)
\varkappa	data item's ordinal number, cf. Eq. (22)

proposed [10,8,17,19,9,20]. Subspace FCM (fuzzy weighted C-means) is an algorithm that assigns weights (from interval [0, 1]) to attributes [18]. The algorithm is based on minimisation of a criterion function and calculates both fuzzy membership of data item to clusters and fuzzy weights for attributes in clusters. Automatic feature grouping fuzzy k-means (AFGFKM) algorithm groups attributes and assigns weights to the groups [9]. The membership of an data item to the group is crisp. The attribute weights in groups are soft.

One of the problems of the soft weight clustering algorithms is their vulnerability to noise and outliers [9]. The papers [12,13] present an ordering technique in clustering. The fuzzy C-ordered means algorithm (FCOM) [13] does not assign weights to attributes, but calculates typicality of each data item. The data items are ordered and their typicality is updated in each iteration of the clustering procedure. The distant items from all prototype centres have lower weights. Outliers and noise data items are assigned low typicality and do not distort the clustering process. Both algorithms are robust to outliers and even their high ratio does not distort the clustering results severely [12,13].

In the paper we propose a new fuzzy weighted C-ordered-means clustering algorithm. The algorithm finds clusters in fuzzy subspaces of the original task space. The algorithm assigns weights to dimensions (attributes) in each cluster. The weights are numbers from unit interval [0, 1]. To make this algorithm more robust to outliers and noise it incorporates the ordering technique.

In the paper we follow the general rule for symbols: the blackboard bold uppercase characters (\mathbb{A}) are used to denote the sets, uppercase italics (A) – the cardinality of sets, uppercase bolds (\mathbf{A}) matrices, lowercase bolds (\mathbf{a}) vectors, lowercase italics (a) scalars and set elements. Table 1 lists symbols used in the paper.

The paper is organised as follows: The novel fuzzy weighed c-ordered clustering algorithm is described in Sec. 2. The numerical experiments are presented in Sec. 3. Finally Sec. 4 summaries the paper.

2. Fuzzy weighted C-ordered-means clustering algorithm

The clustering algorithm minimises a criterion function J defined as:

$$J(\mathbf{U}, \mathbf{V}, \mathbf{Z}) = \sum_{c=1}^{C} \sum_{i=1}^{X} \beta_{ci} (u_{ci})^m \sum_{d=1}^{D} (z_{cd})^{\phi} (x_{id} - v_{cd})^2,$$
(1)

where **U** is a $C \times X$ membership matrix (for C clusters and X data items) whose each element $u_{cx} \in [0, 1]$ denotes the membership grade of the xth item to the cth cluster (group); $\mathbf{V} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_C]^T \in \mathbb{R}^{C \times D}$ is a matrix of prototypes

K. Siminski / Fuzzy Sets and Systems ••• (••••) •••-••

v in which each row denotes centre (prototype) $\mathbf{v}_c = [v_{c1}, \dots, v_{cD}]$ of the *c*th cluster in a *D* dimensional space; $\mathbf{Z} \in [0, 1]^{C \times D}$ is a matrix of weights of attributes $d \in \{1, \dots, D\}$ in each cluster; $\beta_{ci} \in [0, 1]$ denotes typicality of the *i*th data item with respect to the *c*th cluster; $m \in (0, 1) \cup (1, \infty)$ is a weighting exponent for memberships (typical value is m = 2); $\phi \in (0, 1) \cup (1, \infty)$ is a weighting exponent for weights.

The value of the criterion function is subject to minimisation with constraints:

$$\forall_{c \in \mathbb{C}} \sum_{d=1}^{D} z_{cd} = 1 \tag{2}$$

and

$$\forall_{k \in \mathbb{X}} \sum_{c=1}^{C} \beta_{ck} u_{ck} = f_k, \tag{3}$$

where f_k is a global typicality of the kth data item (cf. formula (29)). To elaborate the formulae for membership and weight matrices we use Lagrange multipliers. The Lagrangian of (1) with constraints (2) and (3) is:

$$G(\mathbf{U}, \mathbf{Z}, \mathbf{V}) = \sum_{k=1}^{X} \left(\sum_{c=1}^{C} \beta_{ck} (u_{ck})^{m} \sum_{d=1}^{D} (z_{cd})^{\phi} (x_{kd} - v_{cd})^{2} + \right)$$

$$-\lambda_k \left[\sum_{c=1}^C \beta_{ck} u_{ck} - f_k \right] - \lambda_c \left[\sum_{d=1}^D z_{cd} - 1 \right] \right), \tag{4}$$

where λ_k and λ_c are Lagrange multipliers. Setting of the derivatives of the Lagrangian to zero results in:

$$\forall_{1 \leqslant k \leqslant X} \frac{\partial G(\mathbf{U}, \mathbf{Z}, \mathbf{V})}{\partial \lambda_k} = -\left[\sum_{c=1}^C \beta_{ck} u_{ck} - f_k\right] = 0 \tag{5}$$

$$\forall_{1 \leqslant k \leqslant X} \frac{\partial G(\mathbf{U}, \mathbf{Z}, \mathbf{V})}{\partial \lambda_c} = -\left[\sum_{d=1}^{D} z_{cd} - 1\right] = 0 \tag{6}$$

$$\forall_{\substack{1 \leqslant k \leqslant X \\ 1 \leqslant s \leqslant C}} \frac{\partial G(\mathbf{U}, \mathbf{Z}, \mathbf{V})}{\partial u_{sk}} = \beta_{sk} m u_{sk}^{m-1} \sum_{d=1}^{D} (z_{sd})^{\phi} (x_{kd} - v_{sd})^2 - \lambda_k \beta_{sk} = 0$$

$$(7)$$

$$\forall_{\substack{1 \leqslant s \leqslant C \\ 1 \leqslant a \leqslant D}} \frac{\partial G(\mathbf{U}, \mathbf{Z}, \mathbf{V})}{\partial z_{sa}} = \sum_{k=1}^{X} \beta_{sk} (u_{sk})^m \phi (z_{sa})^{\phi - 1} (x_{ka} - v_{sa})^2 - \lambda_c = 0$$
(8)

From (7) we get:

$$\beta_{sk} m u_{sk}^{m-1} \sum_{d=1}^{D} (z_{sd})^{\phi} (x_{kd} - v_{sd})^2 = \lambda_k \beta_{sk}$$
(9)

$$u_{sk}^{m-1} \sum_{d=1}^{D} (z_{sd})^{\phi} (x_{kd} - v_{sd})^2 = \frac{\lambda_k}{m}$$
(10)

$$u_{sk} = \left(\frac{\lambda_k}{m}\right)^{\frac{1}{m-1}} \left(\sum_{d=1}^{D} (z_{sd})^{\phi} (x_{kd} - v_{sd})^2\right)^{\frac{1}{1-m}}$$
(11)

Combining (5) and (11) yields:

$$\sum_{c=1}^{C} \beta_{ck} \left(\frac{\lambda_k}{m} \right)^{\frac{1}{m-1}} \left(\sum_{d=1}^{D} (z_{cd})^{\phi} (x_{kd} - v_{cd})^2 \right)^{\frac{1}{1-m}} = f_k$$
 (12)

Please cite this article in press as: K. Siminski, Fuzzy weighted C-ordered means clustering algorithm, Fuzzy Sets Syst. (2017), http://dx.doi.org/10.1016/j.fss.2017.01.001

K. Siminski / Fuzzy Sets and Systems ••• (•••) •••-••

 $\left(\frac{\lambda_k}{m}\right)^{\frac{1}{m-1}} \sum_{c=1}^{C} \beta_{ck} \left(\sum_{d=1}^{D} (z_{cd})^{\phi} (x_{kd} - v_{cd})^2\right)^{\frac{1}{1-m}} = f_k$ (13)

Division of (11) by (13) results in formula:

$$\frac{u_{sk}}{f_k} = \frac{\left(\frac{\lambda_k}{m}\right)^{\frac{1}{m-1}} \left(\sum_{d=1}^{D} (z_{sd})^{\phi} (x_{kd} - v_{sd})^2\right)^{\frac{1}{1-m}}}{\left(\frac{\lambda_k}{m}\right)^{\frac{1}{m-1}} \sum_{c=1}^{C} \beta_{ck} \left(\sum_{d=1}^{D} (z_{cd})^{\phi} (x_{kd} - v_{cd})^2\right)^{\frac{1}{1-m}}}$$
(14)

$$u_{sk} = \frac{f_k \left(\sum_{d=1}^{D} (z_{sd})^{\phi} (x_{kd} - v_{sd})^2\right)^{\frac{1}{1-m}}}{\sum_{c=1}^{C} \beta_{ck} \left(\sum_{d=1}^{D} (z_{cd})^{\phi} (x_{kd} - v_{cd})^2\right)^{\frac{1}{1-m}}}$$
(15)

Similarly for attribute weights we start with (8):

$$\sum_{k=1}^{X} \beta_{sk} u_{sk}^{m} \phi z_{sa}^{\phi-1} (x_{ka} - v_{sa})^{2} - \lambda_{c} = 0$$
(16)

$$\phi z_{sa}^{\phi-1} \sum_{k=1}^{X} \beta_{sk} u_{sk}^{m} (x_{ka} - v_{sa})^{2} = \lambda_{c}$$
(17)

For $\phi \neq 1$:

$$z_{sa} = \left(\frac{\lambda_c}{\phi}\right)^{\frac{1}{\phi - 1}} \left[\sum_{k=1}^{X} \beta_{sk} u_{sk}^m (x_{ka} - v_{sa})^2 \right]^{\frac{1}{1 - \phi}}$$
(18)

Combining (6) and (18) yields:

$$\sum_{d=1}^{D} \left(\frac{\lambda_c}{\phi}\right)^{\frac{1}{\phi-1}} \left[\sum_{k=1}^{X} \beta_{sk} u_{sk}^m (x_{kd} - v_{sd})^2 \right]^{\frac{1}{1-\phi}} = 1$$
 (19)

$$\left(\frac{\lambda_c}{\phi}\right)^{\frac{1}{\phi-1}} \sum_{d=1}^{D} \left[\sum_{k=1}^{X} \beta_{sk} u_{sk}^m (x_{kd} - v_{sd})^2 \right]^{\frac{1}{1-\phi}} = 1$$
 (20)

Finally by division of (18) by (20) we get:

$$z_{sa} = \frac{\left[\sum_{k=1}^{X} \beta_{sk} u_{sk}^{m} (x_{ka} - v_{sa})^{2}\right]^{\frac{1}{1-\phi}}}{\sum_{d=1}^{D} \left[\sum_{k=1}^{X} \beta_{sk} u_{sk}^{m} (x_{kd} - v_{sd})^{2}\right]^{\frac{1}{1-\phi}}}$$
(21)

Before we present the pseudocode of the FWCOM algorithm, the ordering of data items should be discussed. For each data item in each cluster the typicality is calculated for each attribute separately. In order to do this data items are ordered by their distances from the cluster centre. The closest data item with respect to the dth attribute is labelled with an ordinal number 1, the most distant with X (where X is a number of data items). The value β_{ckd} denotes typicality of the kth data item with respect to the kth cluster and kth attribute, and is calculated with function [13]

$$\beta_{ckd} = \max\left[\min\left(\frac{p_c X - \varkappa_{ckd}}{2p_l X} + \frac{1}{2}; 1\right); 0\right]$$
(22)

called piecewise linearly weighted ordered weighted averaging (PLOWA) or

Please cite this article in press as: K. Siminski, Fuzzy weighted C-ordered means clustering algorithm, Fuzzy Sets Syst. (2017), http://dx.doi.org/10.1016/j.fss.2017.01.001

 K. Siminski / Fuzzy Sets and Systems ••• (••••) •••-

Fig. 1. The PLOWA and SOWA weighting functions for X = 100 and $p_a = 0.2$, $p_c = 0.5$, and $p_l = 0.2$.

$$\beta_{ckd} = \frac{1}{1 + \exp\left[\frac{2.944}{p_a X} \left(\varkappa_{ckd} - p_c X\right)\right]}$$
(23)

called sigmoidally weighted ordered weighted averaging (SOWA). In both functions κ_{ckd} stands for the index of the kth data item after reordering by the distance from the cth cluster with respect to the dth attribute. Both functions are presented in Fig. 1 for X = 100 and $p_a = 0.2$, $p_c = 0.5$, and $p_l = 0.2$.

Typicality of ith data item with respect to cth cluster is defined as a t-norm (\star) of typicalities of all attributes. Because the dimensions (attributes) are weighted we use the weighted T-norm [15]:

$$\beta_{ck} = T\left(\beta_{ck1}, \beta_{ck2}, \dots, \beta_{ckD}; z_{c1}^{\phi}, z_{c2}^{\phi}, \dots, z_{cD}^{\phi}\right) =$$

$$= T\left(1 - z_{c1}^{\phi} \left[1 - \beta_{ck1}\right], 1 - z_{c2}^{\phi} \left[1 - \beta_{ck2}\right], \dots, 1 - z_{cD}^{\phi} \left[1 - \beta_{ckD}\right]\right)$$
(24)

In the algorithm we use product T-norm, thus:

$$\beta_{ck} = \prod_{d=1}^{D} \left(1 - z_{cd}^{\phi} \left[1 - \beta_{ckd} \right] \right) \tag{25}$$

If all attributes have the highest importance (equal 1), their weights should not interfere with the typicality of a data item. In such a situation the weights are $z = \frac{1}{D}$. Unfortunately the nonunit value of weights interferes the typicality. If all dimensions have equal importance and typicality of each attribute is β , the formula (24) becomes:

$$\beta_{ck}(\beta) = \left[1 - \frac{1 - \beta}{D^{\phi}}\right]^{D}.$$
 (26)

If all attributes have minimal typicality (zero) the total typicality of the whole data item tends to one (with increase in the number of attributes), so there is no difference if the attributes are typical or not. Fig. 2 presents this phenomenon. It can be easily avoided by augmenting of the weights of the attributes [19]. The attribute weights for one data item are divided by the maximal values of them. This maximal value is always greater than zero. In the procedure all weights in the rule are scaled and the maximum weights become one:

$$\hat{z}_{cd} \leftarrow \frac{z_{cd}}{\max_{i \in [1, \dots, D]} z_{ci}},\tag{27}$$

where \hat{z}_{cd} is an augmented weight of the dth attribute in the cth cluster. Thus instead of formula (24) we use the formula:

$$\beta_{ck} = T \left(1 - \hat{z}_{c1}^{\phi} \left[1 - \beta_{ck1} \right], 1 - \hat{z}_{c2}^{\phi} \left[1 - \beta_{ck2} \right], \dots, 1 - \hat{z}_{cD}^{\phi} \left[1 - \beta_{ckD} \right] \right)$$
(28)

data item is calculated with as a s-norm (\diamond) of typicalities of the data item in all clusters:

$$f_k = \beta_{1k} \diamond \beta_{2k} \diamond \dots \diamond \beta_{Ck}.$$
 (29)

(26)

 $\hat{z}_{cd} \leftarrow \frac{z_{cd}}{\max_{i \in [1, \dots, D]} z_{ci}},$

The importance of the data item influences the localisation of the centres of clusters. The global typicality f_k of kth

$$f_k = \beta_{1k} \diamond \beta_{2k} \diamond \dots \diamond \beta_{Ck}. \tag{29}$$

We use the maximum operator as an s-norm operator.

K. Siminski / Fuzzy Sets and Systems ••• (••••) •••-•••

Fig. 2. Typicality for a data item (Eq. (25)) when all attributes have the equal typicality β_{ck} in function of number of attributes (D) and attribute's weight exponent $\phi = 2$ without augmentation. If the weights of the attributes are not augmented the typicality of the data items tends to one independently whether the attributes have high or low typicality. The figure comprises eleven draws for values from $\beta = 0.0$ to 1.0 with 0.1 step. The lines are only to join the values for the same β 's. They have no physical meaning, because the number of attributes D has only discrete values.

The centre of the cth cluster for the dth attribute is calculated with formula:

$$v_{cd} = \frac{\sum_{k=1}^{X} \beta_{ck} u_{ik}^{m} h\left(e_{ckd}\right) x_{kd}}{\sum_{k=1}^{X} \beta_{ck} u_{ik}^{m} h\left(e_{ckd}\right)}$$
(30)

where $e_{cdk} = |x_{kd} - v_{cd}|$ is a residual of the dth of the kth datum from the centre of the cth cluster, and $h : \mathbb{R} \to \mathbb{R}$ is a loss function defined in various ways [13]:

• essential loss function

$$h(x) = \begin{cases} 0, & x = 0 \\ 1, & x \neq 0 \end{cases}$$
 (31)

• absolute (linear) loss function

$$h(x) = \begin{cases} 0, & x = 0\\ |x|^{-1}, & x \neq 0 \end{cases}$$
 (32)

• Huber (with parameter $\delta > 0$)

$$h(x) = \begin{cases} \delta^{-2}, & x = 0\\ (\delta |x|)^{-1}, & x \neq 0 \end{cases}$$
 (33)

• sigmoidal (with parameters α , $\beta > 0$)

$$h(x) = \begin{cases} 0, & x = 0\\ x^{-2} \left[1 + e^{(-\alpha(|x| - \beta))} \right]^{-1}, & x \neq 0 \end{cases}$$
 (34)

• sigmoidal-linear (with parameters α , $\beta > 0$)

$$h(x) = \begin{cases} 0, & x = 0\\ |x|^{-1} \left[1 + e^{-\alpha(|x| - \beta)} \right]^{-1}, & x \neq 0 \end{cases}$$
 (35)

• logarithmic

$$h(e) = \begin{cases} 0, & x = 0\\ \frac{\log(1+x^2)}{x^2}, & x \neq 0 \end{cases}$$
 (36)

K. Siminski / Fuzzy Sets and Systems ••• (•••) •••-••

• logarithmic-linear

$$h(e) = \begin{cases} 0, & x = 0\\ \frac{\log(1+x^2)}{|x|}, & x \neq 0 \end{cases}$$
 (37)

In experiments the following values of parameters are used [13]: $\alpha = 6.0$, $\beta = 1.0$, $\delta = 1.0$. Before the iterations the localisations of cluster centres are calculated with a formula

$$v_{cd} = \frac{\sum_{k=1}^{X} u_{ik}^{m} x_{kd}}{\sum_{k=1}^{X} u_{ik}^{m}},$$
(38)

because the residuals e in Eq. (30) are not known yet.

The pseudocode of the FWCOM (fuzzy weighted C-ordered mean) clustering algorithm is presented in Fig. 3.

3. Experiments

3.1. Datasets

3.1.1. Artificial data set with varying number of outliers: 'art-outliers'

The data set 'art-outliers' is a six attribute data set with data item in two clusters with 100 items each:

- **cluster 1** has its centre for 1st, 3rd, and 5th attributes at 3 (Gaussian distribution), other attributes are not valid (the values have uniform distribution);
- **cluster 2** has its centre for 2nd, 4th, and 5th attributes at 7 (Gaussian distribution), other attributes are not valid (the values have uniform distribution).

The 5th attribute is important for both clusters, the 6th attribute is not important in either cluster. The outliers at (0, 0, 0, 0, 0, 0) are added to the clusters described above. The number of outliers is 0 to 100 with step 5. The data items were generated 50 times for each number of outliers.

3.1.2. Artificial data set with background noise: 'art-noise'

In this data set the clusters are defined in the same way as in the data set 'art-outliers'. The only difference is that the data set 'art-noise' has not got the outliers as the 'art-outliers', but instead the uniform noise from interval [0, 10] is added to the data.

3.1.3. Methane concentration

The data set contains the real life measurements of air parameters in a coal mine in Upper Silesia (Poland). The parameters (measured in 10 second intervals) are: AN31 – the flow of air in the shaft, AN32 – the flow of air in the adjacent shaft, MM32 – concentration of methane (CH₄), production of coal. To the tuples the 10-minute sums of measurements of AN31, AN32, MM32 are added as dynamic attributes [16]. The task is to predict the concentration of the methane in 10 minutes. The data is divided into train set (499 tuples) and test set (523 tuples).

3.1.4. Death rate

The data represent the tuples containing information on various factors, the task is to estimate the death rate [21]. The first attribute (item index) is excluded from the dataset. The following attributes are: average annual precipitation, average January temperature, average July temperature, size of the population older than 65, number of members per household, years of schooling for persons over 22, households with fully equipped kitchens, population per square mile, size of the nonwhite population, number of office workers, families with an income < \$3000, hydrocarbon pollution index, nitric oxide pollution index, sulphur dioxide pollution index, degree of atmospheric moisture, death rate. The data set can be downloaded from public repository.

¹ http://orion.math.iastate.edu/burkardt/data/regression/x28.txt.

```
K. Siminski / Fuzzy Sets and Systems ••• (•••) •••-••
```

```
procedure FWCOM (\mathbf{X}, c, m, \phi, N)
   2 // X: matrix of data items
     // c : number of clusters
    4 // m: weighting exponent for memberships
   5 // \phi: weighting exponent for dimensions
   6 // N: number of iterations
6
           X := \text{number of data item in } X;
7
8
          initialise all \beta's with 1's;
9
          calculate typicality of data items with (29);
10
          initialise U with random numbers and normalise with constraint (3);
   12
11 13
          initialise Z with random numbers and normalise with constrain (2);
          calculate cluster prototypes V with (38);
12 14
   15
13
           for iter := 1 to N do
   16
14
               update U with (15) and normalise with (3);
15 <sub>18</sub>
               update attribute weights with (21) with constraint (2);
16 19
               // update centres of prototypes (clusters):
17 <sup>20</sup>
               for c := 1 to C do // for each cluster
18
                    for d := 1 to D do // for each attribute
19
                        for k := 1 to X do // for each data item
   23
20
                            e_{cdk} := |x_{kd} - v_{cd}|; // calculate residuals
21 25
                        end for:
                        sort the residuals:
22
   26
                        label each residual with an ordinal number \varkappa in sorted sequence;
23
                        for k := 1 to X do // for each residual
24
                            calculate typicality \beta_{ckd} with (22),(23), or uniform weighting
25
                        end for:
   30
                   end for; //for each attribute
26 31
                    for k := 1 to X do // for each data item
28
                        calculate typicality \beta_{ck} with (28);
29
                    end for:
30
                   update prototype with (30);
   36
               end for; //for each cluster
31 37
32
               for k := 1 to X do // for each data item
33
                   update typicality of data item with (29);
34
   41
               end for:
35
           end for;
   42
36 43
           return U, V, Z;
37
      end procedure;
38
```

Fig. 3. Pseudocode of the Fuzzy Weighted C-Ordered Means (FWCOM) clustering algorithm.

3.1.5. Concrete compressive strength

The 'Concrete' set is a real life data set describing the parameters of the concrete sample and its strength [23]. The attributes are: cement ratio, amount of blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate, age; the decision attribute is the concrete compressive strength. The original data set can be downloaded from public repository [6].

² http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength.

3.2. Numerical experiments

In the experiment we used clustering algorithms: FCM [5], fuzzy weighted c-means, FWCM (subspace FCM) [17], AGFKM [9], FCOM [13], and the proposed FWCOM algorithm.

The FWCOM algorithm has a weight parameter ϕ , that needs calibration. For this the artificial data sets 'art-outliers' and 'art-noise' were used. The cluster centres in the both data sets can be gathered in a form of a matrix V_d (matrix of desired values – subscript d)

$$\mathbf{V}_d = \begin{bmatrix} 3 & 0 & 3 & 0 & 3 & 0 \\ 0 & 7 & 0 & 7 & 7 & 0 \end{bmatrix},\tag{39}$$

where each row represents one cluster and each column one attribute. The desired values of weight in form of a matrix \mathbf{Z}_d :

$$\mathbf{Z}_d = \begin{bmatrix} \frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0\\ 0 & \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} & 0 \end{bmatrix} \tag{40}$$

with the same meaning of rows and columns as V_d . Each row of matrix Z_d fulfils the constraint (2).

In the same way matrices V_e and Z_e represent the cluster centres and attributes weights elaborated (subscript $_e$) by the FWCM or FWCOM algorithms. The index of clustering error E_v for cluster centres is calculated as a Frobenius norm $\|\cdot\|_F$ of difference of the Hadamard products of matrices of cluster centres and weights:

$$E_v = \|\mathbf{V}_d \circ \mathbf{Z}_d - \mathbf{V}_e \circ \mathbf{Z}_e\|_F, \tag{41}$$

where o denotes a Hadamard product of matrices defined as:

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \circ \begin{bmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \dots & b_{mn} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} & \dots & a_{1n}b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1}b_{m1} & \dots & a_{mn}b_{mn} \end{bmatrix}$$
(42)

and Frobenius norm of a matrix $\mathbf{A} = [a]^{m \times n}$ with m rows and n columns is defined as

$$\|\mathbf{A}\|_F = \sum_{i=1}^m \sum_{j=1}^n a_{ij}^2. \tag{43}$$

For values of weights of attributes we define the error index E_7 :

$$E_{\tau} = \|\mathbf{Z}_d - \mathbf{Z}_e\|_F \tag{44}$$

Lower values of measures E_v and E_z denote more precise match of centre localisation and weights.

The algorithm assigns typicalities to data items. We use a name *informative data items* for regular data items, and *noninformative data items* for outliers and noise in the data set. The outliers should have low typicalities, whereas informative data should have high typicalities. The accuracy of typicalities can be measured separately for informative ξ_i and noninformative data items (noise or outliers) ξ_o with a complement to one of root mean square error of typicalities defined as

$$\xi_i = 1 - \sqrt{\frac{1}{K_i} \sum_{k}^{K_i} (f_k - f_i)^2},\tag{45}$$

$$\xi_n = 1 - \sqrt{\frac{1}{K_n} \sum_{k}^{K_n} (f_k - f_n)^2},\tag{46}$$

where K_i (K_n) is a number of informative (noninformative) items, f_k stands for typicality of the kth item, and f_i , f_n are typicalities of the data classes: $f_i = 1$ for informative data items, $f_n = 0$ for outliers or noise. If typicalities of data items are elaborated perfectly (0 for outliers and 1 for data items) the value of accuracy is $\xi_i = \xi_n = 1$. When the typicalities are totally opposite, then $\xi_i = \xi_n = 0$.

Because the algorithm uses random values in initialisation of membership and weight matrices, the experiments were repeated 50 times.

K. Siminski / Fuzzy Sets and Systems ••• (•••) •••

Fig. 4. The box plot of error index for centre localisation (E_v) for the 'art-outliers' dataset elaborated by FWCM (narrow boxes) and FWCOM (grey wide boxes) with essential loss function.

3.2.1. Artificial dataset with varying number of outliers: 'art-outliers'

The experiments aim at testing the influence of parameter ϕ and loss function on the localisation of elaborated clusters and on the values of weights of attributes in clusters. The number of clusters is an input parameter of the FWCOM algorithm. For the 'art-outliers' data set number of clusters C = 2.

The influence of weighting parameter ϕ on the results of the clustering has been tested for the weight parameter $\phi \in \{0.1, 0.2, 0.5, 0.9, 1.1, 1.2, 1.5, 2.0, 3.0, 5.0, 10.0\}$. The influence of the weight parameter ϕ has been tested for all loss functions described in Sec. 2. To save the space of the article we provide the complete box plots only for the essential loss function. The results of experiments for other tested loss functions lead to similar conclusion. In experiments the SOWA (Eq. (23)) operator is used.

Figs. 4(a)–4(j) present the box plots of error index E_v for FWCM (narrow boxes) and FWCOM (wide grey boxes) for various values of the ϕ parameter for essential loss function. The rectangular of the box plot represents the in-

Fig. 5. The median of error index for centre localisation (E_v) for the 'art-outliers' dataset elaborated by FWCM algorithm.

Table 2 The median of error index for centre localisation (E_n) for the 'art-outliers' dataset elaborated by FWCM algorithm

Outliers	Weight para	$meter \phi$						
	0.1	0.2	0.5	1.5	2	3	5	10
0	28.004	27.728	26.839	7.579	14.851	20.002	22.815	24.410
5	27.762	27.400	26.390	6.995	13.856	18.606	21.087	22.495
10	28.038	27.773	26.533	6.252	12.520	16.827	19.147	20.462
15	27.984	27.764	26.556	5.775	11.458	15.483	17.627	18.830
20	26.130	26.929	27.144	5.307	10.393	13.873	15.952	17.111
25	23.859	24.614	27.209	5.457	9.953	13.072	14.724	15.675
30	20.649	21.254	24.339	5.746	9.716	12.263	13.575	14.286
35	19.315	19.949	22.605	6.673	10.044	12.027	13.166	13.794
40	17.883	18.366	20.723	7.724	10.449	12.037	12.950	13.492
45	17.491	17.956	20.087	8.553	10.855	12.277	13.001	13.501
50	17.029	17.372	19.267	9.270	11.218	12.399	13.068	13.458
55	17.178	17.603	19.535	9.354	11.385	12.592	13.335	13.708
60	16.963	17.341	19.237	9.668	11.623	12.780	13.416	13.815
65	17.012	17.409	19.129	10.229	12.108	13.109	13.655	14.006
70	16.892	17.224	19.018	10.398	11.995	13.123	13.685	14.042
75	16.889	17.267	19.174	10.394	12.150	13.167	13.711	14.011
80	17.219	17.513	19.116	10.587	12.222	13.299	13.862	14.199
85	17.110	17.401	19.061	10.921	12.553	13.303	13.881	14.209
90	16.631	16.925	18.530	10.782	12.302	13.278	13.794	14.091
95	16.751	17.018	18.653	11.118	12.609	13.534	14.000	14.282
100	16.914	17.227	18.805	11.144	12.604	13.472	13.924	14.189

terquartile range. The horizontal bar in the rectangular stands for the median. Upper and lower whiskers denote maximum and minimum respectively. For easier comparison the median values of the error index E_v for the FWCM algorithm are presented in Fig. 5 and Table 2, for the FWCOM algorithm—in Fig. 6 and Table 3. For $\phi < 1$ the results are significantly poorer than for higher values. The lowest values of E_v are elaborated with $\phi = 1.5$. The second lowest group of results are for $\phi = 2$. Although for $\phi = 1.5$ the median of the error index E_v for cluster centres has the lowest values, the results have higher dispersion than $\phi = 2$. The boxes in Fig. 4(f) for $\phi = 1.5$ show wider interquartile ranges than in Fig. 4(g) for $\phi = 2$. These conclusions are also valid for other loss function (although the results are not presented in the paper). The value $\phi = 1$ is illegal. Fig. 4(d) and 4(e) show the results elaborated for neighbour values $\phi = 0.9$ and $\phi = 1.1$ respectively. It can be easily seen that the results are severely distorted for both FWCM and FWCOM clustering algorithms.

Please cite this article in press as: K. Siminski, Fuzzy weighted C-ordered means clustering algorithm, Fuzzy Sets Syst. (2017), http://dx.doi.org/10.1016/j.fss.2017.01.001

K. Siminski / Fuzzy Sets and Systems ••• (••••) •••-•••

Fig. 6. The median of error index for centre localisation (E_v) for the 'art-outliers' dataset elaborated by FWCOM algorithm, loss function: essential.

Table 3 The median of error index for centre localisation (E_n) for the 'art-outliers' dataset elaborated by FWCOM algorithm, loss function: essential.

Outliers	Weight para	meter ϕ						
	0.1	0.2	0.5	1.5	2	3	5	10
0	32.332	22.951	9.962	0.035	1.124	6.496	13.929	19.885
5	28.828	23.361	12.796	0.038	1.171	6.616	13.955	19.769
10	30.409	26.295	14.323	0.039	1.203	6.676	14.076	19.985
15	28.062	21.618	15.758	0.041	1.249	6.781	14.201	20.089
20	28.978	25.190	16.674	0.041	1.236	6.798	14.072	19.822
25	30.835	23.822	13.033	0.043	1.274	6.864	14.085	19.812
30	28.629	23.647	13.189	0.044	1.309	7.030	14.499	20.231
35	27.480	23.341	13.743	0.045	1.336	7.035	14.417	20.083
40	28.038	19.626	13.868	0.047	1.334	7.047	14.290	19.905
45	28.108	23.122	14.223	0.055	1.441	7.203	14.541	20.144
50	27.060	20.894	13.650	0.051	1.398	7.134	14.271	19.767
55	24.961	21.646	12.895	0.054	1.431	7.188	14.324	19.535
60	22.789	18.262	14.313	0.059	1.531	7.647	13.977	15.823
65	23.203	17.719	13.464	0.066	1.541	7.677	14.321	19.315
70	19.467	16.407	12.839	0.075	1.829	11.30	14.091	19.678
75	17.553	16.467	14.026	0.170	8.489	11.56	14.112	15.301
80	16.537	16.234	13.681	1.997	7.846	11.46	13.854	15.184
85	17.203	16.107	13.170	3.034	8.895	12.00	14.042	14.922
90	15.022	14.740	13.763	2.499	8.107	11.49	14.051	18.705
95	14.125	13.592	13.297	3.676	8.679	11.86	13.866	14.745
100	14.512	14.624	13.247	3.242	8.697	12.05	13.932	14.558

Fig. 7 and Table 4 present the medians of error measure for attribute weights E_z for various values of the parameter ϕ for essential loss function. The lowest values of E_z are elaborated for $\phi = 2$. The interesting fact is a rapid increase of the error measure E_z for $\phi = 1.5$, for which the error measure for centre localisation E_v has the lowest values.

The influence of the loss function is presented in following figures and tables. Fig. 8 and Table 5 present the medians of the error index E_v for various loss functions. Fig. 9 and Table 6 present the error index E_z for various loss functions. The interesting fact is the moderate increase of error measure of centre localisation with the increase of number of outliers. This phenomenon can be observed for the linear, sigmoidal, and sigmoidal linear loss functions (cf. Table 5). It is worth noticing that the number of informative data items is 200 and for 95 outliers (almost one third of all data) the error measure is 1.663, whereas for the data set with no outliers it is 1.164. The other loss functions have significant increase in E_v and E_z for higher ratios of outliers.

K. Siminski / Fuzzy Sets and Systems ••• (••••) •••-•••

Fig. 7. Medians of error index for weights (E_z) for the 'art-outliers' dataset elaborated by the FWCOM algorithm with essential loss function.

Table 4 Medians of error index for weights (E_z) for the 'art-outliers' dataset elaborated by the FWCOM algorithm with essential loss function.

Outliers	Weight para	meter ϕ						
	0.1	0.2	0.5	1.5	2	3	5	10
0	0.2626	0.2616	0.1764	0.0415	0.0125	0.0179	0.0836	0.1711
5	0.2609	0.2642	0.1703	0.0226	0.0074	0.0280	0.0997	0.1821
10	0.2663	0.2700	0.1771	0.0195	0.0078	0.0347	0.1079	0.1873
15	0.2656	0.2790	0.1855	0.0238	0.0094	0.0413	0.1151	0.1919
20	0.3018	0.2940	0.1889	0.0334	0.0143	0.0476	0.1212	0.1960
25	0.3781	0.3355	0.2243	0.0369	0.0159	0.0531	0.1275	0.2004
30	0.3844	0.3557	0.2217	0.1185	0.0277	0.0584	0.1325	0.2047
35	0.4020	0.4184	0.3897	0.1354	0.0346	0.0636	0.1394	0.2092
40	0.3993	0.4286	0.5160	0.4535	0.0451	0.0700	0.1453	0.2138
45	0.3868	0.4143	0.5402	0.5019	0.0486	0.0748	0.1523	0.2199
50	0.3902	0.4159	0.5384	0.5517	0.0542	0.0792	0.1574	0.2245
55	0.3893	0.4143	0.5503	0.5574	0.0636	0.0866	0.1653	0.2300
60	0.3886	0.4134	0.5487	0.5702	0.0688	0.0916	0.1731	0.2405
65	0.3827	0.4074	0.5278	0.5571	0.0723	0.0953	0.1855	0.2571
70	0.3774	0.4033	0.5339	0.5483	0.0695	0.1020	0.2361	0.2611
75	0.3726	0.3983	0.5316	0.5410	0.0825	0.1091	0.2008	0.2598
80	0.3647	0.3903	0.5222	0.5365	0.0803	0.1133	0.2425	0.2624
85	0.3671	0.3939	0.5253	0.5558	0.0844	0.1190	0.2470	0.2631
90	0.3688	0.3892	0.5291	0.5617	0.1089	0.1233	0.2466	0.2618
95	0.3674	0.3935	0.5307	0.5462	0.0998	0.1333	0.2494	0.2634
100	0.3686	0.3940	0.5425	0.5403	0.1115	0.1444	0.2470	0.2631

The Figs. 10(a) and 10(b) present the box plots of values of weights for the first and second cluster for data set with 15 outliers. These figures are typical for all tested values of outliers, so we do not present plots for all tested values. The grey narrow boxes present the values elaborated by the FWCM algorithms, the black wide ones – by the FWCOM algorithms. The values elaborated by the latter algorithm show that this algorithm can elaborate the weights of the attributes more precisely.

The FWCOM algorithm elaborates the typicalities (f, Eq. (29)) of data items. Fig. 11 presents the histogram of typicalities for the 'art-outliers' data set with 100 outliers. All informative data items are assigned with high values

Please cite this article in press as: K. Siminski, Fuzzy weighted C-ordered means clustering algorithm, Fuzzy Sets Syst. (2017), http://dx.doi.org/10.1016/j.fss.2017.01.001

K. Siminski / Fuzzy Sets and Systems ••• (••••) •••-••

Fig. 8. Medians of error index for centre localisation (E_v) for the 'art-outliers' dataset for weight parameter $\phi = 2$.

Table 5 The median of error index for centre localisation (E_n) for the 'art-outliers' dataset elaborated by FWCOM algorithm, $\phi = 2$.

Outliers	Loss funct	ion					
	lin	ess	log	log-lin	sig	sig-lin	Huber
0	1.163	1.124	1.133	1.130	1.136	1.174	1.129
5	1.186	1.171	1.171	1.171	1.163	1.269	1.171
10	1.231	1.203	1.205	1.195	1.204	1.267	1.218
15	1.251	1.249	1.249	1.263	1.261	1.314	1.254
20	1.253	1.236	1.232	1.240	1.221	1.328	1.238
25	1.271	1.274	1.277	1.290	1.264	1.369	1.271
30	1.334	1.309	1.315	1.317	1.320	1.408	1.325
35	1.353	1.336	1.334	1.337	1.305	1.446	1.339
40	1.349	1.334	1.352	1.349	1.276	1.400	1.344
45	1.423	1.441	1.433	1.431	1.436	1.524	1.425
50	1.409	1.398	1.388	1.406	1.372	1.530	1.389
55	1.418	1.431	1.394	1.519	1.342	1.518	1.412
60	1.461	1.531	1.471	7.015	1.409	1.902	1.485
65	1.503	1.541	1.489	7.483	1.449	1.912	1.481
70	1.615	1.829	1.595	8.007	1.530	1.795	1.568
75	1.554	8.489	1.626	8.431	1.656	1.960	1.616
80	1.643	7.846	1.664	8.147	1.584	1.912	1.704
85	1.722	8.895	2.121	7.736	1.971	1.958	1.969
90	1.716	8.107	7.449	7.664	1.756	1.972	7.130
95	1.662	8.679	7.444	8.102	1.929	2.205	7.629

of typicality, whereas all outliers have very low typicalities. This proves that the algorithm can correctly distinguish informative items from outliers.

Fig. 11 presents the histogram of typicality of data item in 'art-outliers' data set. The values of typicality are elaborated with FWCOM algorithm with essential loss function. The data item on the left side of the histogram represent outliers, the item on the right side - the informative data items. The algorithm assigns typicalities from interval [0, 1] to data items, but does not determine a value of typicality that separates outliers from informative data items. In the 'art-outliers' data set the maximum typicality value of an outlier is 0.129021 and minimal typicality of an informative data item is 0.637216. In this case every value for the interval (0.129021, 0.637216) separates informative data from outliers. This can be explained by the fact that outliers lie far from cluster centres thus they have low typicalities. For data presented in Fig. 11 the accuracy (defined with formulae (45) and (46)) for informative data items is $\xi_i = 0.9052$, for outliers: $\xi_n = 0.9637$.

Fig. 9. Medians of error index for weights (E_z) for the 'art-outliers' dataset for weight parameter $\phi = 2$ elaborated with the FWCOM algorithm.

Table 6 Medians of error index for weights (E_z) for the 'art-outliers' dataset for weight parameter $\phi = 2$ elaborated with FWCOM algorithm.

Outliers	Loss funct	ion					
	lin	ess	log	log-lin	sig	sig-lin	Huber
0	0.056	0.058	0.055	0.057	0.053	0.076	0.058
5	0.052	0.053	0.053	0.051	0.044	0.069	0.052
10	0.038	0.037	0.037	0.037	0.034	0.057	0.037
15	0.032	0.031	0.031	0.031	0.030	0.048	0.031
20	0.031	0.030	0.030	0.030	0.029	0.050	0.030
25	0.027	0.026	0.027	0.026	0.026	0.041	0.026
30	0.023	0.023	0.023	0.023	0.021	0.039	0.023
35	0.019	0.019	0.019	0.019	0.019	0.034	0.019
40	0.015	0.014	0.014	0.014	0.014	0.028	0.014
45	0.015	0.015	0.015	0.015	0.014	0.024	0.015
50	0.013	0.012	0.012	0.013	0.012	0.025	0.012
55	0.014	0.014	0.014	0.019	0.014	0.028	0.014
60	0.013	0.015	0.014	0.231	0.014	0.040	0.014
65	0.012	0.015	0.012	0.231	0.012	0.036	0.012
70	0.012	0.018	0.011	0.230	0.013	0.030	0.011
75	0.010	0.197	0.011	0.187	0.011	0.041	0.011
80	0.012	0.179	0.013	0.207	0.012	0.036	0.014
85	0.008	0.235	0.037	0.213	0.012	0.021	0.014
90	0.010	0.228	0.221	0.229	0.011	0.025	0.138
95	0.011	0.232	0.275	0.214	0.014	0.031	0.245

The median of error index for centre localisation (E_v) for the 'art-noise' dataset elaborated by FWCOM algorithm, loss function: essential.

Outliers	Weight para	$meter \phi$						
	0.1	0.2	0.5	1.5	2	3	5	10
0	29.961	20.502	12.652	0.037	1.152	6.5895	14.043	19.984
25	28.056	22.309	12.583	0.084	2.287	9.2242	16.117	20.908
50	31.548	26.096	22.348	0.143	3.221	10.834	17.196	21.536
75	29.393	27.314	16.833	0.200	3.957	12.272	18.542	22.354
100	29.795	24.205	18.537	0.266	4.643	12.890	18.778	22.359
125	29.324	26.946	25.103	0.382	5.256	13.867	19.254	22.659
150	31.091	28.416	21.100	0.521	6.125	14.773	20.015	23.073
175	31.277	28.912	33.704	0.580	6.592	15.465	20.609	23.335
200	30.961	30.046	20.975	0.731	7.361	16.074	20.696	23.277

K. Siminski / Fuzzy Sets and Systems ••• (••••) •••-••

Fig. 10. The box plots for values of weights in the clusters of the 'art-outliers' dataset with 15 outliers elaborated by FWCM (narrow boxes) and FWCOM (grey wide boxes) algorithms for $\phi = 2$, loss function of FWCOM: essential.

Fig. 11. Histogram of typicality of data item from the 'art-outliers' data set with 100 outliers. The typicalities are elaborated with the FWCOM algorithm with essential loss function.

Fig. 12. Changes of elaborated values of cluster centre for the first attribute of the 'art-outliers' data set. Results of five clustering are shown. The first and second clusters are represented by solid and dashed lines. The membership matrix \mathbf{U} is initialised with random numbers.

Fig. 13. Changes of elaborated values of attribute weights for the first attribute of the 'art-outliers' data set. Results of five clustering are shown. The first and second clusters are represented by solid and dashed lines. The attribute weight matrix Z is initialised with random numbers.

Fig. 14. Changes of elaborated values of attribute weights for the first attribute of the 'art-outliers' data set. Results of five clustering are shown. The first and second clusters are represented by solid and dashed lines. The localisations V are initialised data items taken from the data set at random.

Medians of error index for weights (E_Z) for the 'art-noise' dataset elaborated by the FWCOM algorithm with essential loss function.

cOutliers	Weight parameter ϕ											
	0.1	0.2	0.5	1.5	2	3	5	10				
0	0.3552	0.3627	0.1574	0.5892	0.0590	0.0213	0.0753	0.1632				
25	0.3354	0.3364	0.1543	1.1398	0.3721	0.0770	0.1101	0.1835				
50	0.3388	0.3394	0.3667	1.2032	0.4332	0.1118	0.1276	0.1954				
75	0.3150	0.3312	0.2087	1.2191	0.5236	0.1398	0.1471	0.2070				
100	0.3424	0.3076	0.1787	1.2195	0.5211	0.1486	0.1574	0.2123				
125	0.3030	0.3156	0.9653	1.1987	0.5039	0.1551	0.1670	0.2173				
150	0.3094	0.3201	0.2724	1.1952	0.5009	0.1603	0.1741	0.2221				
175	0.3073	0.3252	0.8226	1.2026	0.4931	0.1681	0.1824	0.2257				
200	0.3053	0.2986	0.3942	1.1821	0.4446	0.1682	0.1853	0.2285				

Please cite this article in press as: K. Siminski, Fuzzy weighted C-ordered means clustering algorithm, Fuzzy Sets Syst. (2017), http://dx.doi.org/10.1016/j.fss.2017.01.001

K. Siminski / Fuzzy Sets and Systems ••• (••••) •••

Fig. 15. The box plot of error index for centre localisation (E_v) for the 'art-noise' dataset elaborated by FWCM (narrow boxes) and FWCOM (grey wide boxes) with essential loss function.

The proposed algorithm is an iterative algorithm applying the Picard iteration technique. Figs. 12 and 13 present the convergence of cluster centres and attributes weights in consecutive iterations of the algorithm. Every experiment was repeated 50 times, but only five repetitions are shown in the figures to keep them legible. The figures present values of the first attribute of both clusters (represented by solid and dashed lines) – localisations of the centres of the clusters and the weights of the first attribute in both clusters. The membership matrix **U** and weight matrix **Z** are initialised with random numbers. The centres of clusters are calculated with U matrix with Eq. (30). Fig. 14 presents slightly different situation – the cluster centre matrix V is initialised with random data items (prototypes) taken from the data set. In clustering procedure the localisations of clusters centres converge to their final values. It is important

Fig. 16. The median of error index for centre localisation (E_v) for the 'art-noise' dataset elaborated by FWCOM algorithm, loss function: essential.

Fig. 17. Medians of error index for weights (E_z) for the 'art-noise' dataset elaborated by the FWCOM algorithm with essential loss function.

Table 9 Medians of error index for centre localisation (E_v) for the 'art-noise' dataset for weight parameter $\phi = 2$ elaborated with FWCOM algorithm.

Outliers	Loss function										
	lin	ess	log	log-lin	sig	sig-lin	Huber				
0	1.161	1.152	1.155	1.156	1.177	1.209	1.154				
25	2.338	2.287	2.415	2.380	2.409	2.388	2.383				
50	3.094	3.221	3.313	3.293	3.501	3.432	3.537				
75	3.911	3.957	4.256	3.998	4.283	4.320	4.213				
100	4.408	4.643	5.176	4.467	5.240	5.027	5.200				
125	5.287	5.256	5.597	5.267	5.525	5.898	5.715				
150	6.077	6.125	6.550	6.260	6.474	6.483	6.596				
175	6.538	6.592	7.413	6.881	7.886	6.898	6.885				
200	7.318	7.361	7.758	7.382	7.586	7.680	7.683				

Please cite this article in press as: K. Siminski, Fuzzy weighted C-ordered means clustering algorithm, Fuzzy Sets Syst. (2017), http://dx.doi.org/10.1016/j.fss.2017.01.001

K. Siminski / Fuzzy Sets and Systems ••• (••••) •••-••

Fig. 18. Medians of error index for centre localisation (E_v) for the 'art-noise' dataset for weight parameter $\phi = 2$ elaborated with the FWCOM algorithm.

Fig. 19. The median of error index for centre localisation (E_v) for the 'art-noise' dataset elaborated by FWCOM algorithm, loss function: essential.

Table 10 The median of error index for centre localisation (E_v) for the 'art-noise' dataset elaborated by FWCOM algorithm, loss function: essential.

Outliers	Weight parameter ϕ											
	0.1	0.2	0.5	1.5	2	3	5	10				
0	29.961	20.502	12.652	0.037	1.152	6.589	14.043	19.984				
25	28.056	22.309	12.583	0.084	2.287	9.224	16.117	20.908				
50	31.548	26.096	22.348	0.143	3.221	10.834	17.196	21.536				
75	29.393	27.314	16.833	0.200	3.957	12.272	18.542	22.354				
100	29.795	24.205	18.537	0.266	4.643	12.890	18.778	22.359				
125	29.324	26.946	25.103	0.382	5.256	13.867	19.254	22.659				
150	31.091	28.416	21.100	0.521	6.125	14.773	20.015	23.073				
175	31.277	28.912	33.704	0.580	6.592	15.465	20.609	23.335				
200	30.961	30.046	20.975	0.731	7.361	16.074	20.696	23.277				

to mention that the membership matrix and attribute weight matrix cannot be initialised with only one value. In such a case the centres of all clusters are exactly in the same point and the distances of a data item to the centres of all clusters are the same and the memberships of data items to clusters will not be modified in the iterations of the algorithm.

K. Siminski / Fuzzy Sets and Systems ••• (••••) •••-••

Table 11 Medians of error index for weights (E_z) for the 'art-noise' dataset for weight parameter $\phi = 3$ elaborated with FWCOM algorithm.

Outliers	Loss function										
	lin	ess	log	log-lin	sig	sig-lin	Huber				
0	0.021	0.021	0.021	0.021	0.020	0.024	0.021				
25	0.083	0.077	0.078	0.080	0.074	0.076	0.079				
50	0.110	0.111	0.108	0.107	0.109	0.105	0.108				
75	0.143	0.139	0.132	0.136	0.126	0.129	0.134				
100	0.155	0.148	0.144	0.147	0.141	0.141	0.147				
125	0.158	0.155	0.151	0.152	0.148	0.149	0.157				
150	0.169	0.160	0.159	0.161	0.156	0.157	0.160				
175	0.174	0.168	0.167	0.169	0.165	0.162	0.171				
200	0.171	0.168	0.166	0.167	0.165	0.163	0.164				

Table 12 The median of error index for centre localisation (E_v) for the 'art-noise' dataset elaborated by FWCOM algorithm for weight parameter $\phi = 1.5$.

Outliers	Loss funct	ion					
	lin	ess	log	log-lin	sig	sig-lin	Huber
0	0.041	0.037	0.037	0.037	0.048	0.046	0.037
25	0.081	0.084	0.079	0.086	0.123	0.091	0.082
50	0.131	0.143	0.138	0.133	0.198	0.178	0.150
75	0.174	0.200	0.184	0.204	0.231	0.230	0.186
100	0.254	0.266	0.271	0.293	0.323	0.313	0.273
125	0.349	0.382	0.356	0.369	0.370	0.426	0.356
150	0.456	0.521	0.465	0.531	0.579	0.565	0.548
175	0.575	0.580	0.584	0.602	0.618	0.598	0.616
200	0.733	0.731	0.703	0.773	0.778	0.847	0.741

Table 13 Comparison of errors for centre (prototype) localisation for the 'art-outliers' data set. Abbreviation 'ess' stands for essential loss function, 'sig' - sigmoidal loss function.

Outliers	Method								
	FCM	AFGKM	FWCM			FWCOM, $\phi = 2$			
			$\phi = 1.5$	$\phi = 2$	$\phi = 3$	ess	sig		
0	8.3250	1.45305	7.5791	14.8517	20.0028	1.16396	1.1365		
5	0.6111	2.27126	6.9952	13.8560	18.6064	1.18659	1.1630		
10	11.6126	2.69218	6.2520	12.5202	16.8278	1.23180	1.2045		
15	0.5665	2.95046	5.7753	11.4588	15.4837	1.25131	1.2614		
20	15.8728	3.07225	5.3071	10.3935	13.8738	1.25307	1.2217		
25	0.9791	3.19034	5.4575	9.9533	13.0721	1.27104	1.2640		
30	2.0228	3.27474	5.7461	9.7164	12.2637	1.33404	1.3209		
35	13.4210	3.36086	6.6735	10.0442	12.0270	1.35385	1.3059		
40	13.2226	3.36420	7.7248	10.4495	12.0379	1.34919	1.2768		
45	12.8445	3.47436	8.5539	10.8552	12.2773	1.42303	1.4362		
50	12.9245	3.58228	9.2702	11.2183	12.3990	1.40922	1.3724		
55	12.8710	3.66130	9.3549	11.3853	12.5928	1.41832	1.3428		
60	5.7560	3.90247	9.6686	11.6232	12.7808	1.46199	1.4094		
65	13.2346	3.98796	10.2297	12.1086	13.1098	1.50398	1.4497		
70	6.4403	4.15924	10.3984	11.9950	13.1237	1.61520	1.5302		
75	6.5867	7.95980	10.3946	12.1506	13.1678	1.55499	1.6562		
80	12.9721	4.26247	10.5875	12.2221	13.2995	1.64367	1.5840		
85	6.7690	4.56014	10.9219	12.5535	13.3038	1.72217	1.9714		
90	7.1698	7.68608	10.7827	12.3024	13.2780	1.71603	1.7564		
95	7.2062	8.49444	11.1182	12.6093	13.5343	1.66295	1.9294		

Fig. 20. Medians of error index for weights (E_z) for the 'art-noise' dataset for weight parameter $\phi = 3$ elaborated with the FWCOM algorithm.

Fig. 21. Medians of error index for centre localisation (E_v) for the 'art-noise' dataset for weight parameter $\phi = 1.5$.

Fig. 22. Histogram of typicalities assigned to informative data items (upper plot) and 50 noise data items (lower plot) by the FWCOM algorithm with essential loss function and $\phi = 2$ ('art-noise' data set).

K. Siminski / Fuzzy Sets and Systems ••• (••••) •••

and 23 for the data set with 50 and 100 noise items respectively. For this data set the typicalities elaborated by the

Fig. 23. Histogram of typicalities assigned to informative data items (upper plot) and 100 noise data items (lower plot) by the FWCOM algorithm

outliers Fig. 24. Comparison of errors for centre (prototype) localisation for the 'art-outliers' data set. Abbreviation 'ess' stands for essential loss function,

'sig' - sigmoidal loss function.

3.2.2. Artificial dataset with background noise: 'art-noise' The data set 'art-noise' has the same clusters as the 'art-outliers' data set, but instead of outliers it has a background noise. In each cluster there are 100 data items. The number of noise data item is 0, 25, 50, 75, 100, 125, 150, 175, and 200. The values of ϕ are the same as in the experiments with the 'art-outliers' data set. The number of clusters C=2. Fig. 15 presents the box plots for the results elaborated with the FWCM and FWCOM algorithms for the 'art-noise' data set. The lowest values of error measure of centre localisation are elaborated with $\phi = 1.5$ (cf. Fig. 16 and Table 7), whereas the lowest values of error measure for attribute weights are elaborated with $\phi = 3$ (cf. Fig. 17 and Table 17). It can be also seen that for $\phi \in [1.5, 5]$ the results of the FWCOM algorithm have shorter interquartile ranges than those of FWCM. (See also Figs. 18, 19 and Tables 8–13.) Figs. 20 and 21 show that the influence of the loss function on the localisation error and weight error is not very significant. The typicalities assigned to data items have different pattern than for the 'art-outliers' data set. In the 'art-noise' data set some of the noise items are very close to the centres of informative prototypes and are not outliers. These data items have high typicality. This can be observed in Figs. 22

K. Siminski / Fuzzy Sets and Systems ••• (••••) •••−•••

Fig. 25. Comparison of errors for centre (prototype) localisation for the 'art-noise' data set. Abbreviation 'ess' stands for essential loss function, 'sig' – sigmoidal, 'log' – logarithmic loss function.

Table 14
Comparison of errors for centre (prototype) localisation for the 'art-noise' data set. Abbreviation 'ess' stands for essential, 'sig' – sigmoidal, 'hub' – Huber, 'lin' – linear, 'log' – logarithmic, 'lgl' – logarithmic linear, 'sig' – sigmoidal, and 'sgl' – sigmoidal linear loss function.

Method	Number of	of noise data	tems	Number of noise data items							
	0	25	50	75	100	125	150	175	200		
FCM	1.234	7.820	8.248	6.404	6.975	6.693	5.079	4.983	5.124		
AFGKM	1.477	5.439	8.508	10.394	12.191	13.944	14.075	15.040	28.476		
FWCM											
$\phi = 1.5$	8.280	12.078	14.713	17.466	19.851	20.754	24.237	25.268	25.902		
$\phi = 2$	15.728	18.073	20.125	21.633	23.158	23.698	26.011	26.416	26.968		
$\phi = 3$	20.761	21.892	23.024	24.033	24.850	25.307	26.848	26.932	27.574		
FWCOM											
$\phi = 2$, ess	1.152	2.287	3.221	3.957	4.643	5.256	6.125	6.592	7.361		
$\phi = 2$, sig	1.177	2.409	3.501	4.283	5.240	5.525	6.474	7.886	7.586		
FWCOM											
$\phi = 1.5$, hub	0.037	0.082	0.150	0.186	0.273	0.356	0.548	0.616	0.741		
$\phi = 1.5$, ess	0.037	0.084	0.143	0.200	0.266	0.382	0.521	0.580	0.731		
$\phi = 1.5$, lin	0.041	0.081	0.131	0.174	0.254	0.349	0.456	0.575	0.733		
$\phi = 1.5$, log	0.037	0.079	0.138	0.184	0.271	0.356	0.465	0.584	0.703		
$\phi = 1.5$, lgl	0.037	0.086	0.133	0.204	0.293	0.369	0.531	0.602	0.773		
$\phi = 1.5$, sig	0.048	0.123	0.198	0.231	0.323	0.370	0.579	0.618	0.778		
$\phi = 1.5$, sgl	0.046	0.091	0.178	0.230	0.313	0.426	0.565	0.598	0.847		

FWCOM algorithm differ in a significant way from typicalities elaborated for the 'art-outliers' dataset (cf. Sec. 3.2.1). It is impossible to name the divisive typicality with noise having lower and informative items higher typicalities. Most of informative items have very high typicalities (similarly to 'art-outliers' data set), but the noninformative items (noise) have almost all values of typicality. It is caused by the distribution of noise in the data set. Some noise items lie very close to the cluster centres thus they have high typicality and are treated by the clustering algorithm as typical values. The accuracies defined with Eq. (45) and (46) for data with 50 noise items (Fig. 22) are: for informative data items $\xi_i = 0.8325$ and for noise $\xi_n = 0.4898$. The accuracy for data with 100 noise items (Fig. 23) are: for informative

Table 15 Comparison of medians of clustering time (in [ms]) for the 'art-outliers' data set.

Outliers	Clusterin	g algorithm			
	FCM	FCOM	FWCM	FWCOM	AGFKM
0	14	915	43	117	15
5	14	938	43	162	15
10	15	982	46	131	16
15	15	1291	45	172	16
20	16	1357	63	176	17
25	16	1052	47	178	16
30	16	1422	48	181	17
35	16	1464	48	142	18
40	17	1298	52	189	18
45	18	1332	51	146	18
50	18	1629	55	146	20
55	19	1601	54	149	19
60	19	1593	57	150	20
65	20	1235	80	152	20
70	20	1755	58	157	20
75	20	1832	57	165	21
80	20	1514	59	166	21
85	21	1595	59	225	21
90	21	1894	60	222	21
95	29	1404	61	172	23
100	22	1488	65	180	22

Table 16 Comparison of medians of clustering time (in [ms]) for the 'art-noise' data set.

Outliers	Clustering algorithm							
	FCM	FCOM	FWCM	FWCOM	AGFKM			
0	28	289	43	124	15			
25	17	334	49	138	17			
50	18	393	53	157	18			
75	20	435	57	168	20			
100	21	507	63	253	22			
125	24	555	67	205	24			
150	25	828	72	213	25			
175	41	677	78	321	27			
200	28	1039	83	251	30			

The weights assigned to attributes in clusters for the 'Methane' data set with the sigmoidal linear loss function. The abbreviation 'attr' stands for 'attribute'.

attr	Clusters			
	I	II	III	IV
1	0.101	0.013	0.239	0.154
2	0.035	0.029	0.092	0.083
3	0.018	0.289	0.023	0.060
4	0.268	0.040	0.016	0.020
5	0.447	0.082	0.364	0.374
6	0.090	0.044	0.210	0.158
7	0.018	0.302	0.027	0.085
8	0.018	0.197	0.025	0.063

Please cite this article in press as: K. Siminski, Fuzzy weighted C-ordered means clustering algorithm, Fuzzy Sets Syst. (2017), http://dx.doi.org/10.1016/j.fss.2017.01.001

K. Siminski / Fuzzy Sets and Systems ••• (••••) •••-••

Fig. 26. Comparison of median of clustering time (in [ms]) for the 'art-outliers' data set.

Fig. 27. Comparison of median of clustering time (in [ms]) for the 'art-noise' data set.

Fig. 28. Histogram of typicalities elaborated by the FWCOM algorithm with sigmoidal loss function for the 'Methane' data set.

data items $\xi_i = 0.8357$ and for noise $\xi_n = 0.3458$. These values show that the ratio of noise has almost no influence on typicalities of informative data items. But the noise ratio has influence on typicalities for noninformative data items. The more noisy the data set is, the greater number of noise items is treated as regular informative data and have high typicalities. It can also observed in Figs. 22 and 23.

3.2.3. Comparison with other clustering methods

Figs. 24 and 25 present the comparison of the FWCOM algorithm with other clustering techniques: FCM [5], FWCM [19], and AFGKM [9]. For algorithms FWCM and AFGKM, that assign weights to attributes, the same error

Fig. 29. Histogram of typicalities elaborated by the FWCOM algorithm with linear loss function for the 'Methane' data set.

Fig. 30. Histogram of typicalities elaborated by the FWCOM algorithm with Huber loss function for the 'Methane' data set.

Fig. 31. Histogram of typicalities elaborated by the FWCOM algorithm with essential loss function for the 'Methane' data set.

Table 18 The weights assigned to attributes in clusters for the 'Methane' data set with the logarithmic linear loss function. The abbreviation 'attr' stands for 'attribute'.

attr	Clusters			
	Ī	II	III	IV
1	0.100	0.014	0.230	0.170
2	0.039	0.028	0.113	0.075
3	0.018	0.277	0.029	0.068
4	0.257	0.039	0.022	0.046
5	0.437	0.092	0.335	0.348
6	0.109	0.059	0.209	0.149
7	0.018	0.291	0.030	0.079
8	0.018	0.197	0.028	0.060

measure is used as for the FWCOM, i.e. E_v and E_z . For FCM the attributes that should have zero weights are not taken into account. This is why this measure slightly favours FCM and FCOM algorithms, which do not assign weights to attributes.

Fig. 24 presents the error of centre localisation for the 'art-outliers' data set for various clustering algorithms. The lowest errors are elaborated by the FCWOM algorithm. The FCM algorithm elaborated very unstable results. The results elaborated by the FCOM [13] algorithm are significantly higher and are not plotted because they would severely obfuscate other results in the figure.

Please cite this article in press as: K. Siminski, Fuzzy weighted C-ordered means clustering algorithm, Fuzzy Sets Syst. (2017), http://dx.doi.org/10.1016/j.fss.2017.01.001

K. Siminski / Fuzzy Sets and Systems ••• (••••) •••-••

Fig. 32. Weights assigned to attributes of four clusters for the 'Methane' data set by the FWCOM algorithm with two loss functions: sigmoidal linear (left) and linear (right).

Table 19
The weights assigned to attributes in clusters for the 'Methane' data set with the Huber loss function. The abbreviation 'attr' stands for 'attribute'.

attr	Clusters			
	Ī	II	III	IV
1	0.099	0.013	0.230	0.180
2	0.040	0.026	0.086	0.082
3	0.018	0.276	0.026	0.066
4	0.268	0.049	0.020	0.046
5	0.426	0.092	0.398	0.346
6	0.108	0.059	0.183	0.145
7	0.018	0.288	0.028	0.074
8	0.018	0.193	0.026	0.058

The results elaborated for the 'art-noise' data set are presented in Table 14. In Fig. 25 for FWCOM, $\phi = 1.5$ only the results for the logarithmic loss functions are plotted. The results elaborated by the FCWOM have the lowest error rates.

The clustering times for the 'art-outliers' and 'art-noise' are presented in Fig. 26 and Fig. 27 respectively. The number of operations in clustering is independent form both the value of ϕ and the applied loss function. In Figs. 26

Fig. 33. Weights assigned to attributes of the 'Death' data set by the FWCOM algorithm with two loss functions: sigmoidal linear (left) and logarithmic linear (right).

and 27 we used $\phi = 2$ and 'essential' loss function. Clustering time grows with a number of outliers (noise items) because both outliers and noise items are added to the original data set what results in an increase of the data set size. The fastest algorithms are AFGKM and FCM, the algorithm FWCOM proposed in this paper needs more time than others, but is faster than the FCOM algorithm. The clustering time is a linear function of the data set size, what can be better observed in Tables 15 and 16.

3.2.4. Real life datasets

There exist many measures for clustering quality, but it is very hard to find the proper measure to estimate the quality of clustering. In this section we use the real life data sets whose localisations are not known. It is impossible to calculate the quality of precision of localisation of clusters. This is why in this section we will focus on weights assigned to attributes and typicality of data items. In experiments with real life dataset, the parameter $\phi = 2$.

K. Siminski / Fuzzy Sets and Systems ••• (••••) •••-••

Fig. 34. Histogram of typicalities elaborated by the FWCOM algorithm with linear loss function for the 'Death' data set.

Fig. 35. Histogram of typicalities elaborated by the FWCOM algorithm with essential loss function for the 'Concrete' data set.

Figs. 28, 29, 30, and 31 show the typicalities of data item of the 'Methane' data set elaborated with sigmoidal, linear, Huber, and essential loss functions respectively. In all cases the algorithm elaborated high typicalities for the majority of data items. The lowest typicalities are elaborated with sigmoidal loss function.

Tables 17, 18, and 19 present the weights assigned to attributes in clusters for the 'Methane' data set. The values from Table 17 are plotted in Fig. 32(a). The results need some comment. In the second cluster the 3rd and 8th attributes have high weights. The 8th attributes is a moving sum of 3rd attribute (Sec. 3.1.3). The similar situation can be observed in cluster III. The 1st and 5th, 2nd and 6th attributes build pairs of attributes of similar weights. In cluster VI the attributes representing moving sums have higher weights than the summed attributes themselves. The weights elaborated with the linear loss function (Fig. 32(b)) in cluster II are similar to the weights in clusters III and IV for the sigmoidal linear loss function. Cluster I shows very high weight for the 5th attribute (moving sum of measurements of air flow in a coal mine shaft), cluster II has the highest weight for the 4th cluster (production of coal). This is similar to cluster I for the sigmoidal linear loss function in Fig. 32(a), but here both attributes have high weights in one cluster.

Fig. 33(a) presents the weights assigned to the attributes by the FWCOM algorithm with the sigmoidal linear loss function for the 'Death' data set. In clusters II, III, and V the most important attributes are 12 (hydrocarbon pollution index) and 13 (nitric oxide pollution). In cluster II their significance is similar, in cluster III attribute 13 is assigned higher weight, and in cluster V the most important of those two is attributes 12. In clusters I and IV the most important attribute is 9, but in cluster IV some other attributes are assigned with visible weights. The weights assigned by the FWCOM algorithm with the logarithmic linear loss function are presented in Fig. 33. The attributes with the highest weights are: 12th attribute (hydrocarbon pollution index) in cluster I, 10th (number of office workers) in cluster II, 13th (nitric oxide pollution index) in cluster III, 12th (hydrocarbon pollution index) in cluster IV, and 11th (income lower than \$3000) in cluster V. (See also Figs. 34–36.)

Figs. 37(a) and 37(b) present the weights assigned to attributes by the FWCOM algorithm with essential and linear loss functions for the 'Concrete' data set. For both loss functions the most important attributes are: 2 (amount of blast furnace slag), 3 (fly ash), and 8 (fine aggregate). In one cluster the intermediate for all attributes and higher for 7th attribute (coarse aggregate).

The medians of clustering time needed by the FWCOM algorithm are following: for the 'Methane' data set: 843 [ms], 'Death' – 93 [ms], and 'Concrete' – 1078 [ms].

Fig. 36. Histogram of typicalities elaborated by the FWCOM algorithm with linear loss function for the 'Concrete' data set.

Fig. 37. Weights assigned to attributes of the 'Concrete' data set by the FWCOM algorithm with two loss functions: essential (left) and linear (right).

K. Siminski / Fuzzy Sets and Systems ••• (••••) •••-••

4. Conclusions and future work

The attributes of data sets do not always have the same importance. The importance of attributes may be elaborated

with subspace clustering. One of the problems of the soft weight clustering algorithm is their vulnerability to noise and outliers. This paper presents a fuzzy weighted C-ordered means clustering algorithm that addresses both problems with ordering of data items and attribute weights. The first technique makes the proposed algorithm robust to outliers and noise, the second—elaborates the clusters in subspaces. Thus the paper combines the ordering technique, loss

functions, and weighting of attributes separatedly in each cluster. The proposed clustering algorithm is based on a minimalisation of the criterion function. The paper presents the conditions for elaboration of local minimum of the criterion function. The algorithm can handle large ratio of outliers and noise (even up to the cluster cardinality) without severe distortion of both localisations of clusters and weights of attributes. The numerical experiments show that the proposed algorithm can handle data sets with noise or outliers better than compared algorithms.

Clustering is one of the methods used in creation of rule base in neuro-fuzzy systems. The proposed clustering algorithm is robust to noise and outliers and its application in extracting rules from the presented data. This may effectively reduce the vulnerability of fuzzy models to noise and outliers and increase precision of neuro-fuzzy systems for noisy data. The proposed algorithm applies the Picard iterative technique and Lagrangian multipliers. This is a local optimisation approach and thus the algorithm can be unable to leave the local minimum. Some global or global-local techniques may be applied to address this problem.

Acknowledgements

The author is grateful to the anonymous referees for their constructive comments that have helped improve the

This research was supported by statutory funds (BK-219/RAU2/2016) of the Institute of Informatics, Silesian University of Technology (Gliwice, Poland).

References

- [1] Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu, Cecilia Procopiuc, Jong Soo Park, Fast algorithms for projected clustering, SIGMOD Rec. 28 (2) (1999) 61-72.
- [2] Charu C. Aggarwal, Philip S. Yu, Finding generalized projected clusters in high dimensional spaces, in: SIGMOD '00: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, ACM, New York, NY, USA, 2000, pp. 70–81.
- [3] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, Prabhakar Raghavan, Automatic subspace clustering of high dimensional data for data mining applications, SIGMOD Rec. 27 (2) (1998) 94–105.
- [4] Chun-Hung Cheng, Ada Waichee Fu, Yi Zhang, Entropy-based subspace clustering for mining numerical data, in: KDD '99: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, 1999, pp. 84–93.
- [5] J.C. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact, well separated clusters, J. Cybern. 3 (3) (1973) 32–57.
- [6] A. Frank, A. Asuncion, UCI machine learning repository, 2010.
- [7] J.H. Friedman, J.J. Meulman, Clustering objects on subsets of attributes, J. R. Stat. Soc. B 66 (2004) 815-849.
- [8] G. Gan, J. Wu, A convergence theorem for the fuzzy subspace clustering (FSC) algorithm, Pattern Recognit. 41 (6) (2008) 1939–1947.
- [9] Guojun Gan, Michael Kwok-Po Ng, Subspace clustering with automatic feature grouping, Pattern Recognit. (2015).
- [10] Guojun Gan, Jianhong Wu, Zijiang Yang, A fuzzy subspace algorithm for clustering high dimensional data, in: Advanced Data Mining and Applications, Second International Conference, ADMA 2006, Xi'an, China, August 14-16, 2006, Proceedings, in: Lecture Notes in Computer Science, vol. 4093, Springer, Berlin/Heidelberg, 2006, pp. 271–278.
- [11] Sanjay Goil, Sanjay Goil, Harsha Nagesh, Harsha Nagesh, Alok Choudhary, Alok Choudhary, Mafia: efficient and scalable subspace clustering for very large data sets, Technical report, 1999.
- [12] Jacek Leski, Marian Kotas, On robust fuzzy c-regression models, Fuzzy Sets Syst. 279 (2015) 112–129.
 - [13] Jacek M. Leski, Fuzzy *c*-ordered-means clustering, Fuzzy Sets Syst. (2014).
 - [14] Lance Parsons, Ehtesham Haque, Huan Liu, Subspace clustering for high dimensional data: a review, ACM SIGKDD Explor. Newsl. 6 (1)
 - [15] Leszek Rutkowski, Krzysztof Cpałka, Flexible neuro-fuzzy systems, IEEE Trans. Neural Netw. 14 (3) (May 2003) 554–574.
 - [16] Marek Sikora, Beata Sikora, Application of machine learning for prediction a methane concentration in a coal-mine, Arch. Min. Sci. 51 (4) (2006) 475-492.
 - [17] Krzysztof Siminski, Clustering in fuzzy subspaces, Theor. Appl. Informatics 24 (4) (2012) 313–326.
 - [18] Krzysztof Siminski, Clustering with missing values, Fundam. Inform. 123 (3) (2013) 331–350.
 - [19] Krzysztof Siminski, Neuro-fuzzy system with weighted attributes, Soft Comput. 18 (2) (2014) 285–297.

Please cite this article in press as: K. Siminski, Fuzzy weighted C-ordered means clustering algorithm, Fuzzy Sets Syst. (2017), http://dx.doi.org/10.1016/j.fss.2017.01.001

ARTICLE IN PRESS

K. Siminski / Fuzzy Sets and Systems ••• (••••) •••-•••

JID:FSS AID:7153 /FLA [m3SC+; v1.242; Prn:

[m3SC+; v1.242; Prn:16/01/2017; 15:00] P.33 (1-33)

[20] Krzysztof Siminski, Rough subspace neuro-fuzzy system, Fuzzy Sets Syst. 269 (2015) 30–46.

- [21] Helmuth Späth, Mathematical Algorithms for Linear Regression, Academic Press Professional, Inc., San Diego, CA, USA, 1992.
- [22] Jiong Yang, Wei Wang, Haixun Wang, P. Yu, δ -Clusters: capturing subspace correlation in a large data set, in: Proceedings. 18th International Conference on Data Engineering, 2002, pp. 517–528.
- [23] I. Cheng Yeh, Modeling of strength of high-performance concrete using artificial neural networks, Cem. Concr. Res. 28 (12) (1998) 1797–1808.