

1-SAMPLE WILCOXON TEST

HYPOTHESIS TESTING

........

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Levene's Test

1-Sample Wilcoxon Test

LEVENE'S TEST

LEVENE'S TEST

<u>Levene's Test</u> is a statistical test used to assess whether <u>multiple groups</u> have equal variances.

Hypothesis

$$H_0$$
: $\sigma_1 = \sigma_1 = \sigma_3 = \cdots \sigma_n$

 H_a : at least one \neq (p-value $\leq \alpha$)

Assumptions

- Continuous data
- Non-normal data

<u>syntax</u>

```
from scipy import stats
w_stat, p_value = stats.levene(
    sample_1 data,
    sample_2 data,
    sample_3 data,...sample_n)
```


1-SAMPLE WILCOXON TEST

1-SAMPLE WILCOXON TEST

One-sample Wilcoxon test is a non-parametric statistical test used to determine whether the median of a sample is significantly different from a hypothesized value.

Hypothesis

$$H_o: M_1 = M_o$$

$$H_a: M_1 \neq M_o \text{ (p-value } \leq \alpha)$$

Assumptions

- Continuous or Ordinal data
- Non-normal data
- Symmetric distribution

<u>syntax</u>

```
from scipy import stats

stat, p_value = stats.wilcoxon(
    sample_data - M0)
```


LABORATORY

