ON GROUND STATES OF ROZIKOV MODEL ON THE CAYLEY TREE

G. I. BOTIROV

Abstract. In this paper we consider a model on a Cayley tree which has a finite radius of interactions, the model was first considered by Rozikov. We describe a set of periodic ground states of the model.

The Cayley tree.

The Cayley tree \Im^k of order $k \geq 1$ is an infinite tree, i.e., a graph without cycles, such that each vertex of which lies on k+1 edges. Let $\Im^k = (V, L, i)$, where V is the set of vertexes of \Im^k , L is the set of edges of \Im^k , and i is the incidence function associating to each edge $l \in L$ its endpoints $x, y \in V$. If $i(l) = \{x, y\}$, then x and y are called nearest neighboring vertexes, and we write $\langle x, y \rangle$. A collection of the pairs $\langle x_0, x_1 \rangle, \langle x_1, x_2 \rangle, \ldots, \langle x_{d-1}, y \rangle$ is called a path from x to y. The distance $d(x, y), x, y \in V$ is the length of the shortest path from x to y in V.

For the fixed $x^0 \in V$ we set $W_n = \{x \in V \mid d(x, x^0) = n\},\$

$$V_n = \{x \in V \mid d(x, x^0) \le n\}, L_n = \{l = \langle x, y \rangle \in L \mid x, y \in V_n\}.$$

It is known (see e.g. [2]) that there exists a one-to-one correspondence between the set V of vertices of the Cayley tree of oreder $k \geq 1$ and the group G_k , of the free products of k+1 cyclic groups $\{e, a_i\}$, $i=1,\ldots,k+1$ of the second order (i.e. $a_i^2=e, a_i^{-1}=a_i$) with generators $a_1, a_2, \ldots, a_{k+1}$.

Configuration Space and the model

We consider models where the spin takes values in the set $\Phi = \{1, 2, ..., q\}, q \geq 2$. For $A \subseteq V$ a spin configuration σ_A on A is defined as a function $x \in A \to \sigma_A(x) \in \Phi$; the set of all configurations coincides with $\Omega = \Phi^V$. We denote $\Omega = \Omega_V$ and $\sigma = \sigma_V$. Also we define a periodic configuration as a configuration $\sigma \in \Omega$ which is invariant under a subgroup of shifts $F_k \subset G_k$ of finite index.

More precisely, a configuration $\sigma \in V$ is called F_k - periodic if $\sigma(yx) = \sigma(x)$ for any $x \in G_k$ and $y \in F_k$.

For a given periodic configuration the index of the subgroup is called the period of the configuration. A configuration that is invariant with respect to all shifts is called *translational-invariant*.

For $A \subset V$ let us define a generalized Kronecker symbol (see [6]) as the function $U(\sigma_A)$: $\Omega_A \to \{|A|-1, |A|-2, \dots, |A|-\min\{|A|, |\Phi|\}\}$, by

$$U(\sigma_A) = |A| - |\sigma_A \cap \Phi|,\tag{1}$$

where as before $\Phi = \{1, 2, ..., q\}$ and $|\sigma_A \cap \Phi|$ is the number of different values of $\sigma_A(x), x \in A$. For instance if σ_A is a constant configuration then $|\sigma_A \cap \Phi| = 1$.

Note that if |A| = 2, say, $A = \{x, y\}$, then $U(\{\sigma(x), \sigma(y)\}) = \delta_{\sigma(x)\sigma(y)}$,

$$\delta_{\sigma(x)\sigma(y)} = \begin{cases} 1, & \sigma(x) = \sigma(y), \\ 0, & \sigma(x) \neq \sigma(y). \end{cases}$$

Fix $r \in N$ and put $r' = \left[\frac{r+1}{2}\right]$, where [a] is the integer part of a. Denote by M_r the set of all balls $b_r(x) = \{y \in V : d(x,y) \le r'\}$ with radius r', i.e. $M_r = \{b_r(x) : x \in V\}$.

We consider the energy of the configuration $\sigma \in \Omega$ is given by the formal Hamiltonian

$$H(\sigma) = -J \sum_{b \in M_r} U(\sigma_b), \tag{2}$$

where $J \in R$. This Hamiltonian was first considered by Rozikov [6].

Ground states

The ground states for the model defined on \mathbb{Z}^d can, for example, be found in [3], [7].

Definition 1. A configuration φ is called the ground states of relative Hamiltonian H, if

$$U(\varphi_b) = U^{min} = min\{U(\sigma_b) : \sigma_b \in \Omega_b\}$$
 for any $b \in M_r$.

In [1], [5] the ground states of Ising and Potts models with competing interactions of radius r = 2 on the Cayley tree were described.

Let GS(H) be the set of all ground states, and let $GS_p(H)$ be the set of all periodic ground states.

Theorem 1. a) If J > 0, then for all $r \ge 1$ and $k \ge 2$ the set GS(H) consists only configurations $\{\sigma^{(i)}, i = 1, 2, ..., s\}$, where $\sigma^{(i)} \equiv i, \forall x \in V$;

b) Let $r=2,\ J<0,\ q\geq 2^m$ and $k\in\{2^{m-1}-1,\ldots,q-2\},\ m=3,4,\ldots$ then there exists a normal subgroup F of index 2^m , such, that any F – periodic configuration σ is a ground state for Hamiltonian H i.e. $\sigma\in GS_p(H)$.

Proof a) Easily follows from (1), (2) and Definition 1.

b) Since J < 0 to construct a ground state it is necessary to consider configurations σ with a condition, that $U(\sigma_b) = 0$ for all $b \in M$, i.e. on any ball $b \in M$ the configuration σ is such that $\sigma(x) \neq \sigma(y)$ if $x \neq y$. Therefore we will construct a normal subgroup F of index 2^m such, that any element of the set $S_1(e) = \{e, a_1, \ldots, a_{k+1}\}$ is not equivalent (with respect to F) to each other element of the set. Since $k + 2 \leq q$ we get $k \leq q - 2$. Consider a normal subgroup F of index 2^m , such that $F = F_{A_1} \cap \cdots \cap F_{A_m}$ where $F_{A_i} = \{x \in G_k : \sum_{j \in A_i} \omega_j(x) - \text{even}\}$, and $\omega_x(a_i)$ is the number of letter a_i , in nondeductible word $x, A_i \subset \{1, \ldots, k+1\}, i = 1, \ldots, m$. Now we shall construct A_i , $i = 1, \ldots, m$, so that all elements of any ball $b \in M$ were from different classes of equivalency.

Let's consider all possible configurations $\alpha:\{1,2,\ldots,m\}\to\{e,o\}$ (where "e" designates "even" and "o" designates "odd"). Let's notice, that number of such configurations is equal to 2^m . From them choose half, i.e. 2^{m-1} configurations with following properties: or the number of letters "e" in a configuration is more than number of letters "o", or the number of letters "e" in a configuration is equal to number of letters "o" and among the last there are no configurations coinciding at replacement "e" on letters "o". Let's denote these 2^{m-1} configurations by

$$\alpha_{0} = \{e, e, e, \dots, e\} = (\alpha_{01}, \alpha_{02}, \dots, \alpha_{0m})$$

$$\alpha_{1} = \{o, e, e, \dots, e\} = (\alpha_{11}, \alpha_{12}, \dots, \alpha_{1m})$$

$$\alpha_{2} = \{e, o, e, \dots, e\} = (\alpha_{21}, \alpha_{22}, \dots, \alpha_{2m})$$

$$\alpha_{3} = \{e, e, o, \dots, e\} = (\alpha_{31}, \alpha_{32}, \dots, \alpha_{3m})$$

.

$$\alpha_{2^{m-1}} = \{ 0, e, e, \dots, o \} = (\alpha_{2^{m-1}1}, \alpha_{2^{m-1}2}, \dots, \alpha_{2^{m-1}m}).$$

We can define sets A_i , i = 1, 2, ..., m, as follows

$$A_i = \{j \in \{1, 2, \dots, k\} : \alpha_{ii} - \text{odd}\} \cup \{k+1\}, i = 1, 2, \dots, m.$$
 (3)

Let's notice, that A_i , $i=1,2,\ldots m$, make sense if $k+1\geq 2^{m-1}$ i.e. $k\geq 2^{m-1}-1$. Check, that $F=F_{A_1}\cap\cdots\cap F_{A_m}$, constructed by sets (3), satisfies conditions of the theorem. At first we shall prove, that $S_1(e)$ with respect to F divides into different non-equivalent elements: Denote $S_1(x)=\{y\in V:d(x,y)=1\}=\{x,xa_1,\ldots,xa_{k+1}\},\gamma_i(x)=|S_1(x)\cap F_i|$. It is enough to prove, that $\gamma_i(x)=0$ or 1 for any $x\in V$ and $i=1,\ldots,m$. By our construction one has $\gamma_i(e)\in\{0,1\}$ for any $i=1,\ldots,m$. Hence, elements of the set $S_1(e)$ are not equivalent to each others, also they are not equivalent to e. Then by Theorem 3 of [4] elements of the set $S_1(x)$ are not equivalent to each others. By Theorem 1 of [4] we get $x\sim xa_i$ (i.e. x and xa_i belong to one class) if and only if $e\sim a_i$. By our construction $e\sim a_i, \forall i=1,\ldots,k+1$ hence $x\sim xa_i$; therefore, $\gamma_i(x)=0$ or 1.

The theorem is proved.

Theorem 2. Let r=2. a) if J>0, then $|GS_p(H)|=q$;

b) If
$$J < 0$$
, then $|GS_p(H)| = C_q^{k+2}(k+2)!$

Proof. Case a) is trivial. In case b) for a given configuration φ_b , for which the energy $U(\varphi_b)$ is minimal, we can use Theorem 1 to construct the periodic configurations σ with period 2^m . In each case, the exact number of such ground states coincides with the number of different configurations σ_b , such that the energy $U(\sigma_b)$ is minimal for any $b \in M$. The theorem is proved.

Acknowledgements. A part of this work was done at the ICTP, Trieste, Italy and the author thanks ICTP for providing finicial support and all facilities (July 2008).

References

- 1. Botirov G.I., Rozikov U.A. Potts model with competing interactions on the Cayley tree: the contour method // Theor. Math. Phys., (2007), 153, No 1, p. 1423-1433.
- 2. Ganikhodjaev N.N. Dokl. Akad. Nauk Resp. Uzbekistan. (1994), 5, No 4, p. 3-5.
- Minlos R.A., Introduction to Mathematical Statistical Physics // Univ. Lecture Ser.,
 (2000) 19, AMS, Providece, RI, ISSN 1047-3998.
- 4. Rozikov U.A. Partition structures of the Cayley tree and applications for describing periodic Gibbs distributions // Theor. Math. Phys., (1997), 113, No 1, p. 929-933

- Rozikov U.A. Constructive description of ground states and Gibbs measures for Ising model with two-step interactions on Cayley tree // J. Stat. Phys., (2006), 122, No.2, p. 217-235.
- 6. Rozikov U.A. A contour method on Cayley tree // J. Stat. Phys., (2008), 130, p. 801-813.
- 7. Sinai Ya.G. Theory of phase transitions: Rigorous Results // Pergamon, Oxford, (1982)