On-line Colouring of interval graphs

Introduction to research

Szymon Wojtulewicz Supervised by: Dr. Grzegorz Gutowski

January 23, 2025

Overview

- 1. Interval graph representation
- 2. Problem definition
- 3. Status of research
- 4. Using a computer
- 5. Our work

Interval Representation and Corresponding Graph

Corresponding Graph

Graph with two Interval Representations

Are these representations equivalent?

What if we introduce colours?

Max clicque size

Classes of interval representations

Problem definition

A game in rounds:

- The builder places an interval s.t. the max clicque size is not exceeded
- The colouring algorithm chooses a colour for that interval

 $R(\omega) :=$ what is the maximum number of colours the *builder* can force the *algorithm* to use without exceeding the max clicque size ω ?

Where we are at?

 $R(\omega) :=$ what is the maximum number of colours the *builder* can force the *algorithm* to use without exceeding the max clicque size ω ?

- $R(\omega) \leq 2\omega 1$ Chrobak and Ślusarek, 1981
- $R(\omega) \ge \lfloor 3\omega/2 \rfloor$ Epstein and Levy, 2005
- R(1) = 1, R(2) = 3
- $R(3) \in \{4,5\}$
 - R(3) = 5 Biró and Curbelo, 2022
- $R(4) \in \{6,7\}$
 - R(4) = 7 Curbelo and Malko, 2024 [1]
- $R(\omega)$ unsolved for $\omega \geq 5$

Minimax

Maximin value

$$v_p = \max_{a_p} \min_{a_o} v_p(a_p, a_o)$$

Where:

- *p* is the player of interest.
- *o* denotes the opponent.
- a_p is the action taken by player p.
- a_o is the action taken by opponent o.
- v_p is the value function of player p.

Confining the Space

Confining the Space

Confining the Space

State equivalence

Problem definition

A game in rounds:

- The builder places an interval s.t. the max clicque size is not exceeded
- The colouring algorithm chooses a colour for that interval
- The builder may restrict the domain

 $R(\omega) :=$ what is the maximum number of colours the *builder* can force the *algorithm* to use without exceeding the max clicque size ω ?

State

$$E = \{1, 2, ..., \omega, \exists\}$$

 $S = (e_1, e_2, ..., e_k), e_i \in E$

Our work

$$\lfloor 3\omega/2 \rfloor \leq R(\omega) \leq 2\omega - 1$$

- R(1) = 1
- R(2) = 3
- R(3) = 5
- R(4) = 7
- R(5) = ?
- R(6) = ?
- ...

Bibliography

Israel R. Curbelo, Hannah R. Malko, *On the on-line coloring of unit interval graphs with proper interval representation*, 2024