

Instituto Tecnológico y de Estudios Superiores de Monterrey

TE3002B.502

Implementación de robótica Inteligente (Gpo 502)

Semestre: febrero - junio 2023

Actividad:

Evaluacion 7.1 Trayectorias en Lazo cerrado

Alumno:

José Angel Ramírez Ramírez A01735529

Profesor: Dr. Alfredo Garcia Suarez.

Fecha de entrega: 16 de Mayo del 2023

Obtencion de puntos con

	Ge	oGebra Suite Calculadora	. Gráfica 🔻	
	0	J ₁₂ = (4.7441978150684, 4.1299811597471)		S.TU.V.V.T.P.C.D
		$K_{12} = (4.7571469790541, 4.028977680659)$:	
		L ₁₂ = (4.7856351398225, 3.9253843687737)	:	
		$M_{12} = (4.8, 3.8)$:	
		$N_{12} = (4.8529707925479, 3.5861162723495)$	i i i i i i i i i i i i i i i i i i i	
		$O_{12} = (4.8840487861135, 3.4566246324929)$		
		$P_{12} = (4.9798725996074, 3.4462653013044)$:	2 2 2 12
		Q ₁₂ = (5.0860557442898, 3.4488551341015)		N ₁₂ N ₁₂ VDEFGHAN
		R ₁₂ = (5.189649056175, 3.4799331276671)	:	
		S ₁₂ = (5.3061915320459, 3.4799331276671)	:	JK M N O F
		$T_{12} = (5.446042503091, 3.5058314556384)$:	N O o
		$U_{12} = (5.5703544773534, 3.5058314556384)$:	
		$V_{12} = (5.6, 3.6)$:	
eogebra		W (F 300 40 F0 F0 00 34 0 C 4 F C00 40 C C00 F)		

Trayectoria Realizada

Justificacion

Opté por usar la técnica de Pure Pursuit, ya que desde mi punto de vista, al trabajar con muchos puntos, el control que tiene esta técnica se adecua para tener una mayor precisión, debido a que el mismo control va haciendo el ajuste para poder llegar de la mejor manera a cada punto. Por el contrario, si se hubiera realizado con un control de lazo abierto, llevaría mucho tiempo calcular los ángulos que tendría que hacer el robot entre cada punto y después aplicarlo en el vector de velocidades angulares.