华南理工大学 2008-2009 学年第一学期"解析几何"期末考试 B 参考解析

- 一、简答题(共32分)
- (1) 求通过点 M(2,-3,-5) 且与平面 6x-3y-5z+2=0 垂直的直线方程.

解: 由条件, 所求为:
$$\frac{x-2}{6} = \frac{y+3}{-3} = \frac{z+5}{-5}$$
.

- (2) 若直线 $\frac{x-1}{4} = \frac{y+2}{3} = \frac{z}{1}$ 与平面 kx + 3y 5z + 1 = 0 平行,求 k 的值. 解: 有 4k + 9 5 = 0 , k = -1 .
- (3) 求二次曲线 $x^2 xy + y^2 1 = 0$ 通过点 (0,2) 的切线方程.

解: 设切线为
$$y = kx + 2$$
,与曲线联立,有: $(1-k+k^2)x^2 + (4k-2)x + 3 = 0$

由相切知:
$$(4k-2)^2-12(1-k+k^2)=0$$
,解得 $k=-1,2$.

故所求为
$$y = -x + 2$$
, $y = 2x + 2$.

(4) 若向量 α , β , γ 两两相互垂直, 且长度均为 2, 求 α + β + γ 的长度.

解:
$$|\alpha + \beta + \gamma| = \sqrt{|\alpha + \beta + \gamma|^2} = 2\sqrt{3}$$
.

(5) 已知旧坐标系中有相互垂直的三条直线

$$l_1: x = y = z$$
, $l_2: x = \frac{y}{-2} = z$, $l_3: x = -z$, $y = 0$,

求以这三条直线为新坐标轴的右手直角坐标变换公式.

解:三直线相交于点(0,0,0). 取三直线的方向向量,要求构成右手系并将它们单位化,这样

便得到新坐标系的三个坐标向量. 其坐标变换公式为: $\begin{cases} x = \frac{1}{\sqrt{3}} x' + \frac{1}{\sqrt{6}} y' + \frac{1}{\sqrt{2}} z' \\ y = \frac{1}{\sqrt{3}} x' - \frac{2}{\sqrt{6}} y' \\ z = \frac{1}{\sqrt{3}} x' + \frac{1}{\sqrt{6}} y' - \frac{1}{\sqrt{2}} z' \end{cases}$

(6) 求通过点
$$M(1,0,-2)$$
 且与两直线 $\frac{x-1}{1} = \frac{y}{1} = \frac{z+1}{-1}$ 和 $\frac{x}{1} = \frac{y-1}{-1} = \frac{z+1}{0}$ 垂直的直线.

解: 由于
$$(1,1,-1)\times(1,-1,0)=(1,1,2)$$
, 故所求为: $\frac{x-1}{1}=\frac{y}{1}=\frac{z+2}{2}$.

(7) 求二次曲线 $x^2 - 2xy + y^2 - 4x = 0$ 的主方向与对称轴.

解:设
$$u=(m,n)$$
为其主方向,则有 $u / \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} u^T$,得: $m(m+n)=n(n+m)$.

解之得: $u_1 = (1,1)$ 与 $u_2 = (1,-1)$.而由 $I_2 = 0$, $I_3 = -4 \neq 0$ 知原曲线为抛物线.

考虑其开口朝向:由于 $I_1(a_{12}b_1-a_{11}b_2)=4>0$,故 $u_1=(1,1)$ 为其渐进方向.故对称轴方程为:x-y-1=0.

(8) 求母线
$$\Gamma$$
:
$$\begin{cases} x^2 + \frac{y^2}{4} = 1 \\ z = 0 \end{cases}$$
 绕 y 轴旋转所得旋转曲面的方程.

解: 为
$$x^2 + \frac{y^2}{4} + z^2 = 1$$
.

二、(共 10 分) 证明直线 $l: \frac{x}{-1} = \frac{y-1}{1} = \frac{z-1}{2}$ 与平面 $\pi: 2x + y - z - 3 = 0$ 相交,并求它们的交点和交角。

解: 因 $2\times(-1)+1\times1-1\times2=-3\neq0$, 故直线与平面相交.

直线的坐标式参数方程为: $\begin{cases} x=-t\\ y=1+t \text{ 。 设交点处对应的参数为 } t_0\text{ , 则有:}\\ z=1+2t \end{cases}$

 $2(-t_0)+(1+t_0)-(1+2t_0)-3=0$,解得 $t_0=-1$,故所求为 (1,0,-1).

又设直线 l 与平面 π 的交角为 θ ,则: $\sin \theta = \frac{|2 \times (-1) + 1 \times 1 - 1 \times 2|}{\sqrt{6} \times \sqrt{6}} = \frac{1}{2}$, $\theta = \frac{\pi}{6}$.

三、(共 10 分) 用矢量法证明: P 是 $\triangle ABC$ 重心的充要条件是 $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \vec{0}$.

证明: 若 P 为 $\triangle ABC$ 的重心,则 $\overrightarrow{CP} = 2\overrightarrow{PE} = \overrightarrow{PA} + \overrightarrow{PB}$,从而 $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 0$.

若 $\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=0$,则 $\overrightarrow{PA}+\overrightarrow{PB}=\overrightarrow{CP}$.取 E,F,G分别为 AB,BC,CA之中点,则有 $\overrightarrow{PE}=\frac{1}{2}(\overrightarrow{PA}+\overrightarrow{PB})$.

从而 $\overrightarrow{PE} = \frac{1}{2}\overrightarrow{CP}$.同理可证: $\overrightarrow{PE} = \frac{1}{2}\overrightarrow{CP}$. 成 P 为 $\triangle ABC$ 的重心.

四、(共 10 分) 已知两直线 l_1 : $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$; l: $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$, 证明这两直线为异面直线,并求它们之间的距离.

解:由
$$\begin{vmatrix} 3+3 & 8+7 & 3-6 \\ 3 & -1 & 1 \\ -3 & 2 & 4 \end{vmatrix} = -270 \neq 0$$
知其不共面.

其距离为:
$$d = \frac{|-270|}{|(3,-1,1)\times(-3,2,4)|} = 3\sqrt{30}$$
.

五、(共 14 分) 按参数 λ 的值讨论曲线 $\lambda x^2 - 2xy + \lambda y^2 - 2x + 2y + 5 = 0$ 的类型.

解: 其不变量
$$I_1 = 2\lambda$$
, $I_2 = \lambda^2 - 1$, $I_3 = (5\lambda + 3)(\lambda - 1)$, $K_1 = 10\lambda - 2$.

(1) $-1 < \lambda < 1$ 时,其为双曲型曲线.

①若
$$\lambda = -\frac{3}{5}$$
,则其为一对相交直线;

②若
$$\lambda \neq -\frac{3}{5}$$
,则其为双曲线.

- (2) $-1 > \lambda$ 或 $\lambda > 1$ 时,其为椭圆型曲线.
- ① 若 λ > 1, 其为空集 (虚椭圆);
- ②若 $-1>\lambda$, 其为椭圆.
- (3) $\lambda = \pm 1$ 时,其为抛物型曲线.
- ①若 $\lambda=1$, 其为空集(虚平行直线);
- ②若 $\lambda = -1$, 其为抛物线.

六、(共 14 分) 求单叶双曲面 $\frac{x^2}{9} + \frac{y^2}{4} - \frac{z^2}{16} = 1$ 上经过点 M(0,2,0) 的两条直母线方程.

解: 其两族直母线的方程为:
$$\begin{cases} s(\frac{x}{3} + \frac{z}{4}) = t(1 - \frac{y}{2}) \\ t(\frac{x}{3} - \frac{z}{4}) = s(1 + \frac{y}{2}) \end{cases}$$

$$\begin{cases} s(\frac{x}{3} + \frac{z}{4}) = t(1 + \frac{y}{2}) \\ t(\frac{x}{3} - \frac{z}{4}) = s(1 - \frac{y}{2}) \end{cases}$$

代入点 M(0,2,0) 后可求得满足要求的两条直母线的方程为 $\begin{cases} 4x+3z=0 \\ y=2 \end{cases}$, $\begin{cases} 4x-3z=0 \\ y=2 \end{cases}$.

七、(共 10 分) 求过三条平行直线 x = y = z, x + 1 = y = z - 1和 x - 1 = y + 1 = z - 2的圆柱面方程

解: 一条准线方程为:
$$\begin{cases} (x + \frac{2}{15})^2 + (y + \frac{11}{15})^2 + (z - \frac{13}{15})^2 = \frac{98}{75}. \text{ (取截面求圆)} \\ x + y + z = 0 \end{cases}$$

所求方程为 $5(x^2 + y^2 + z^2 - xy - yz - zx) + 2x + 11y - 13z = 0$.