Artificial Intelligence

Chapter 1 Introduction

Updates and Additions: Dr. Siamak Sarmady

By: Dan Klein and Pieter Abbeel University of California, Berkeley

Textbook

Russell & Norvig, AI: A Modern Approach, 3rd Ed.

Warning: Presentations do not necessarily follow the book.

Today

- What is artificial intelligence?
- What can AI do?
- What is this course?

Sci-Fi AI?

Starwars: R2D2, C3PO

Matrix

Glados

What is AI?

The multidisciplinary science of making machines that:

Think like people

cognitive science, neuroscience

Act like people

dating back to Alan Turing... general talk ... imitations ... it wasn't really leading us to build intelligence

Think rationally

long tradition, Aristotle...
very difficult, how you end
up acting is more
important

Act rationally

This is what we most need

Maximize Your Expected Utility

Rational Decisions

We'll use the term **rational** in a very specific, technical way:

- Rational: maximally achieving pre-defined goals (Students: learn as much as possible)
- Rationality: only concerns what decisions are made (not the thought process behind them) (e.g. the robot which examines random directions, but eventually goes toward the target)
- Utility: result...a real number assigned to each outcome
- Goals are expressed in terms of the utility of outcomes
- Being rational means maximizing your expected utility (<u>Students:</u> maximum marks)

A better title for this course would be:

Computational Rationality

What About the Brain?

Should we make AI exactly like Brain?

- Brains (human minds) are very good at making rational decisions, but not perfect
- Brains aren't as modular as software, so hard to reverse engineer!
- "Brains are to intelligence as wings are to flight"... note that we don't need to have bird wings to fly...
- Lessons learned from the brain: memory and simulation are key to decision making

A (Short) History of Al

Demo: HISTORY - MT1950.wmv

A (Short) History of Al

- 1940-1950: Early days
 - 1943: McCulloch & Pitts: Boolean circuit model of brain
 - 1950: Turing's "Computing Machinery and Intelligence"
- 1950—70: Excitement: Look, Ma, no hands!
 - 1950s: Early Al programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
 - 1956: Dartmouth meeting: "Artificial Intelligence" adopted
 - 1965: Robinson's complete algorithm for logical reasoning
- 1970—90: Knowledge-based approaches
 - 1969—79: Early development of knowledge-based systems
 - 1980—88: Expert systems industry booms
 - 1988—93: Expert systems industry busts: "Al Winter"
- 1990—: Statistical approaches
 - Resurgence of probability, focus on uncertainty
 - General increase in technical depth
 - Agents and learning systems... "AI Spring"?
- 2000—: Where are we now?

What Can Al Do?

Quiz: Which of the following can be done at present?

- ✓ Play a decent game of table tennis?
- ✓ Play a decent game of Jeopardy?
- ✓ Drive safely along a curving mountain road?
- Prive safely along Telegraph Avenue?
- ✓ Buy a week's worth of groceries on the web?
- X Buy a week's worth of groceries at Berkeley Bowl?
- P Discover and prove a new mathematical theorem?
- X Converse successfully with another person for an hour?
- **Perform** a surgical operation?
- ✓ Put away the dishes and fold the laundry?
- ✓ Translate spoken Chinese into spoken English in real time?
- **X** Write an intentionally funny story?

Unintentionally Funny Stories

- One day Joe Bear was hun Irving Bird where some ho there was a beehive in the the oak tree. He ate the b
- Henry Squirrel was thirsty. river bank where his good Henry slipped and fell in the The End.
- Once upon a time there w crow was sitting in his tree that he was holding the pi the cheese. The fox walke

a vain crow. One day the ese in his mouth. He noticed me hungry, and swallowed e End.

[Shank, Tale-Spin System, 1984]

Natural Language

- Speech technologies (e.g. Cortana, Siri)
 - Automatic speech recognition (ASR)
 - Text-to-speech synthesis (TTS)
 - Dialog systems
- Language processing technologies
 - Question answering
 - Machine translation

- Web search
- Text classification, spam filtering, etc...

Natural Language

Facts The Dalai Lama denounces the "hell" imposed since he fled Tibet in

- Speech technologies (e.g. Cortana, Siri)
 - Automatic speech recognition (ASR)
 - Text-to-speech synthesis (TTS)
 - Dialog systems

Vision (Perception)

- Object and face recognition
- Scene segmentation
- Image classification

Demo1: VISION – lec_1_t2_video.flv

Demo2: VISION – lec_1_obj_rec_0.mpg

Robotics

Demo 1: ROBOTICS – soccer.avi

Demo 4: ROBOTICS – laundry.avi

Demo 2: ROBOTICS – soccer2.avi

Demo 5: ROBOTICS – petman.avi

Demo 3: ROBOTICS – gcar.avi

Robotics

- Part mech. eng.
- Part Al
- Reality much harder than simulations!
- Technologies
 - Vehicles
 - Rescue
 - Soccer!
 - Lots of automation...
- In this class:
 - We ignore mechanical aspects
 - Methods for planning
 - Methods for control

Images from UC Berkeley, Boston Dynamics, RoboCup, Google

Logic

- Logical systems
 - Theorem provers
 - NASA fault diagnosis
 - Question answering
- Methods:
 - Deduction systems
 - Constraint satisfaction
 - Satisfiability solvers (huge advances!)

Image from Bart Selman

Game Playing

- Classic Moment: May, '97: Deep Blue vs. Kasparov
 - First match won against world champion
 - "Intelligent creative" play
 - 200 million board positions per second
 - Humans understood 99.9 of Deep Blue's moves
 - Can do about the same now with a PC cluster
- Open question:
 - How does human cognition deal with the search space explosion of chess?
 - Or: how can humans compete with computers at all??
- 1996: Kasparov Beats Deep Blue
 "I could feel --- I could smell --- a new kind of intelligence across the table."
- 1997: Deep Blue Beats Kasparov
 "Deep Blue hasn't proven anything."
- Huge game-playing advances recently, e.g. in Go!

Text from Bart Selman, image from IBM's Deep Blue pages

Decision Making

- Applied AI involves many kinds of automation
 - Scheduling, e.g. airline routing, military
 - Route planning, e.g. Google maps
 - Medical diagnosis
 - Web search engines
 - Spam classifiers
 - Automated help desks
 - Fraud detection
 - Product recommendations
 - ... Lots more!

Aims

- This course is about:
 - General AI techniques for a variety of problem types
 - Learning to recognize when and how a new problem can be solved with an existing technique

