Computability and Complexity COSC 4200

DFA Minimization

When can we simply a DFA?

 q_1 and q_2 are equivalent.

The two states are equivalent because starting from q_1 or q_2 , exactly the same strings are accepted.

When can we simply a DFA?

 q_1 and q_2 are equivalent.

The two states are equivalent because starting from q_1 or q_2 , exactly the same strings are accepted.

 q_1 and q_2 are equivalent. We may collapse these states.

We will develop an algorithm for:

- 1 Determining which states are equivalent.
- 2 Building the collapsed automaton.

 q_1 is equivalent to q_2 and q_3 is equivalent to q_4 . These two pairs may be collapsed:

Each state is equivalent with the opposite state in the diagram: q_0 with q_3 , q_1 with q_4 , q_2 with q_5 . Collapsing yields:

Each state is equivalent with the opposite state in the diagram: q_0 with q_3 , q_1 with q_4 , q_2 with q_5 . Collapsing yields:

Equivalent States

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

Intuitively, two states are equivalent if they "remember" the same information. We can say that two states p and q are equivalent if for every $x \in \Sigma^*$,

$$\delta^*(p,x) \in F \Leftrightarrow \delta^*(q,x) \in F.$$

In other words, p and q are equivalent if exactly the same strings are accepted when we start in p or q. We write $p \approx q$ to denote that p is equivalent to q.

Observe that \approx is an equivalence relation:

• reflexive: $p \approx p$ for all p

• symmetric: $p \approx q$ implies $q \approx p$

• transitive: if $p \approx q$ and $q \approx r$, then $p \approx r$

Observe that \approx is an equivalence relation:

- reflexive: $p \approx p$ for all p
- symmetric: $p \approx q$ implies $q \approx p$
- transitive: if $p \approx q$ and $q \approx r$, then $p \approx r$

For each $p \in Q$, let

$$[p] = \{ q \in Q \mid q \approx p \}$$

be the equivalence class of p under \approx .

Observe that \approx is an equivalence relation:

- reflexive: $p \approx p$ for all p
- symmetric: $p \approx q$ implies $q \approx p$
- transitive: if $p \approx q$ and $q \approx r$, then $p \approx r$

For each $p \in Q$, let

$$[p] = \{ q \in Q \mid q \approx p \}$$

be the equivalence class of p under \approx .

These equivalence classes partition Q (so each state belongs to exactly one class), and we have

$$p \approx q \Leftrightarrow [p] = [q].$$

We use \approx to define the *quotient automaton*

$$M/\approx = (Q', \Sigma, \delta', q'_0, F')$$

•
$$Q' = \{[p] \mid p \in Q\}$$

We use pprox to define the *quotient automaton*

$$M/\approx = (Q', \Sigma, \delta', q'_0, F')$$

- $Q' = \{ [p] \mid p \in Q \}$
- $\delta'([p], a) = [\delta(p, a)]$ for all $[p] \in Q'$, $a \in \Sigma$

We use \approx to define the *quotient automaton*

$$M/\approx = (Q', \Sigma, \delta', q'_0, F')$$

- $Q' = \{ [p] \mid p \in Q \}$
- $\delta'([p], a) = [\delta(p, a)]$ for all $[p] \in Q'$, $a \in \Sigma$
- $q_0' = [q_0]$

We use \approx to define the *quotient automaton*

$$M/\approx = (Q', \Sigma, \delta', q'_0, F')$$

- $Q' = \{ [p] \mid p \in Q \}$
- $\delta'([p],a)=[\delta(p,a)]$ for all $[p]\in Q'$, $a\in \Sigma$
- $q_0' = [q_0]$
- $F' = \{ [p] \mid p \in F \}$

We use \approx to define the *quotient automaton*

$$M/\approx = (Q', \Sigma, \delta', q'_0, F')$$

where

- $Q' = \{ [p] \mid p \in Q \}$
- $\delta'([p], a) = [\delta(p, a)]$ for all $[p] \in Q'$, $a \in \Sigma$
- $q_0' = [q_0]$
- $F' = \{ [p] \mid p \in F \}$

We claim that M/\approx is equivalent to M, that is $L(M/\approx) = L(M)$. First, we need to check that the transition function δ' is well-defined.

The transition function δ' is defined by

$$\delta'([p],a)=[\delta(p,a)]$$

for all $[p] \in Q'$, $a \in \Sigma$.

For δ' to be well-defined, it shouldn't matter which equivalence class representative of [p] we use to apply δ . The following lemma says this is the case.

Lemma

If $p \approx q$, then $\delta(p, a) \approx \delta(q, a)$. Equivalently, if [p] = [q], then $[\delta(p, a)] = [\delta(q, a)]$.

If $p \approx q$, then $\delta(p,a) \approx \delta(q,a)$ for all $a \in \Sigma$. Equivalently, if [p] = [q], then $[\delta(p,a)] = [\delta(q,a)]$ for all $a \in \Sigma$.

Proof. Suppose $p \approx q$. Then for all $x \in \Sigma^*$,

$$\delta^*(p,x) \in F \iff \delta^*(q,x) \in F.$$

If $p \approx q$, then $\delta(p, a) \approx \delta(q, a)$ for all $a \in \Sigma$. Equivalently, if [p] = [q], then $[\delta(p, a)] = [\delta(q, a)]$ for all $a \in \Sigma$.

Proof. Suppose $p \approx q$. Then for all $x \in \Sigma^*$,

$$\delta^*(p,x) \in F \iff \delta^*(q,x) \in F.$$

Let $a \in \Sigma$. For all $y \in \Sigma^*$,

$$\delta^*(\delta(p, a), y) \in F \iff \delta^*(p, ay) \in F$$
 property of δ^*

If $p \approx q$, then $\delta(p, a) \approx \delta(q, a)$ for all $a \in \Sigma$. Equivalently, if [p] = [q], then $[\delta(p, a)] = [\delta(q, a)]$ for all $a \in \Sigma$.

Proof. Suppose $p \approx q$. Then for all $x \in \Sigma^*$,

$$\delta^*(p,x) \in F \iff \delta^*(q,x) \in F.$$

Let $a \in \Sigma$. For all $y \in \Sigma^*$,

$$\delta^*(\delta(p, a), y) \in F \iff \delta^*(p, ay) \in F$$
 property of δ^* $\Leftrightarrow \delta^*(q, ay) \in F$ since $p \approx q$

If $p \approx q$, then $\delta(p, a) \approx \delta(q, a)$ for all $a \in \Sigma$. Equivalently, if [p] = [q], then $[\delta(p, a)] = [\delta(q, a)]$ for all $a \in \Sigma$.

Proof. Suppose $p \approx q$. Then for all $x \in \Sigma^*$,

$$\delta^*(p,x) \in F \iff \delta^*(q,x) \in F.$$

Let $a \in \Sigma$. For all $y \in \Sigma^*$,

$$\begin{array}{cccc} \delta^*(\delta(p,a),y) \in F & \iff & \delta^*(p,ay) \in F & \text{property of } \delta^* \\ & \iff & \delta^*(q,ay) \in F & \text{since } p \approx q \\ & \iff & \delta^*(\delta(q,a),y) \in F & \text{property of } \delta^*. \end{array}$$

If $p \approx q$, then $\delta(p, a) \approx \delta(q, a)$ for all $a \in \Sigma$. Equivalently, if [p] = [q], then $[\delta(p, a)] = [\delta(q, a)]$ for all $a \in \Sigma$.

Proof. Suppose $p \approx q$. Then for all $x \in \Sigma^*$,

$$\delta^*(p,x) \in F \iff \delta^*(q,x) \in F.$$

Let $a \in \Sigma$. For all $y \in \Sigma^*$,

$$\begin{array}{cccc} \delta^*(\delta(p,a),y) \in F & \iff & \delta^*(p,ay) \in F & \text{property of } \delta^* \\ & \iff & \delta^*(q,ay) \in F & \text{since } p \approx q \\ & \iff & \delta^*(\delta(q,a),y) \in F & \text{property of } \delta^*. \end{array}$$

Therefore $\delta(p, a) \approx \delta(q, a)$.

The quotient automaton M/\approx has the same language as the original automaton M.

Theorem

$$L(M/\approx) = L(M)$$
.

The quotient automaton M/\approx has the same language as the original automaton M.

Theorem

$$L(M/\approx) = L(M)$$
.

The proof follows from these two lemmas:

Lemma A

$$p \in F \Leftrightarrow [p] \in F'$$
.

Lemma B

For all
$$x \in \Sigma^*$$
, ${\delta'}^*([p], x) = [\delta^*(p, x)]$.

$$p \in F \iff [p] \in F'$$
.

Proof. The \Rightarrow direction is immediate from the definition of F'.

$$p \in F \iff [p] \in F'$$
.

Proof. The \Rightarrow direction is immediate from the definition of F'.

For the \Leftarrow direction, we need to show that if $p \approx q$ and $p \in F$, then $q \in F$.

$$p \in F \iff [p] \in F'$$
.

Proof. The \Rightarrow direction is immediate from the definition of F'.

For the \Leftarrow direction, we need to show that if $p \approx q$ and $p \in F$, then $q \in F$. Using $x = \epsilon$ in the definition of $p \approx q$, we have

$$p \in F \iff \delta^*(p, \epsilon) \in F \text{ definition of } \delta^*$$

$$p \in F \iff [p] \in F'$$
.

Proof. The \Rightarrow direction is immediate from the definition of F'.

For the \Leftarrow direction, we need to show that if $p \approx q$ and $p \in F$, then $q \in F$. Using $x = \epsilon$ in the definition of $p \approx q$, we have

$$\begin{array}{ccc} p \in F & \iff & \delta^*(p,\epsilon) \in F & \text{definition of } \delta^* \\ & \iff & \delta^*(q,\epsilon) \in F & \text{since } p \approx q \end{array}$$

$$p \in F \iff [p] \in F'$$
.

Proof. The \Rightarrow direction is immediate from the definition of F'.

For the \Leftarrow direction, we need to show that if $p \approx q$ and $p \in F$, then $q \in F$. Using $x = \epsilon$ in the definition of $p \approx q$, we have

$$p \in F \iff \delta^*(p, \epsilon) \in F \text{ definition of } \delta^* \\ \iff \delta^*(q, \epsilon) \in F \text{ since } p \approx q \\ \iff q \in F \text{ definition of } \delta^*.$$

For all $x \in \Sigma^*$, ${\delta'}^*([p], x) = [\delta^*(p, x)]$.

Proof. The proof is by induction on strings.

For all $x \in \Sigma^*$, ${\delta'}^*([p], x) = [\delta^*(p, x)]$.

Proof. The proof is by induction on strings. In the base case, we have

$$x = \epsilon$$
:
 $\delta'^*([p], \epsilon) = [p]$ definition of δ'^*
 $= [\delta^*(p, \epsilon)]$ definition of δ^* .

For all $x \in \Sigma^*$, ${\delta'}^*([p], x) = [\delta^*(p, x)]$.

Proof. The proof is by induction on strings. In the base case, we have $x = \epsilon$:

$$\delta'^*([p], \epsilon) = [p]$$
 definition of δ'^*
= $[\delta^*(p, \epsilon)]$ definition of δ^* .

Assume as our inductive hypothesis the claim

$${\delta'}^*([p],x) = [\delta^*(p,x)]$$

holds for some $x \in \Sigma^*$. Let $a \in \Sigma$. For the inductive step, we must show that

$$\delta'^*([p],xa)=[\delta^*(p,xa)].$$

For all $x \in \Sigma^*$, ${\delta'}^*([p], x) = [\delta^*(p, x)]$.

Proof. The proof is by induction on strings. In the base case, we have $x = \epsilon$:

$$\delta'^*([p], \epsilon) = [p]$$
 definition of δ'^*
= $[\delta^*(p, \epsilon)]$ definition of δ^* .

Assume as our inductive hypothesis the claim

$${\delta'}^*([p],x) = [\delta^*(p,x)]$$

holds for some $x \in \Sigma^*$. Let $a \in \Sigma$. For the inductive step, we must show that

$$\delta'^*([p],xa)=[\delta^*(p,xa)].$$

$$\delta'^*([p], xa) = \delta'(\delta'^*([p], x), a)$$
 definition of δ'^*

For all $x \in \Sigma^*$, ${\delta'}^*([p], x) = [\delta^*(p, x)]$.

Proof. The proof is by induction on strings. In the base case, we have $x = \epsilon$:

$$\delta'^*([p], \epsilon) = [p]$$
 definition of δ'^*
= $[\delta^*(p, \epsilon)]$ definition of δ^* .

Assume as our inductive hypothesis the claim

$${\delta'}^*([p],x) = [\delta^*(p,x)]$$

holds for some $x \in \Sigma^*$. Let $a \in \Sigma$. For the inductive step, we must show that

$$\delta'^*([p],xa)=[\delta^*(p,xa)].$$

$$\delta'^*([p], xa) = \delta'(\delta'^*([p], x), a)$$
 definition of δ'^*
= $\delta'([\delta^*(p, x)], a)$ inductive hypothesis

For all $x \in \Sigma^*$, ${\delta'}^*([p], x) = [\delta^*(p, x)]$.

Proof. The proof is by induction on strings. In the base case, we have $x = \epsilon$:

$$\delta'^*([p], \epsilon) = [p]$$
 definition of δ'^*
= $[\delta^*(p, \epsilon)]$ definition of δ^* .

Assume as our inductive hypothesis the claim

$$\delta'^*([p],x) = [\delta^*(p,x)]$$

holds for some $x \in \Sigma^*$. Let $a \in \Sigma$. For the inductive step, we must show that

$$\delta'^*([p],xa)=[\delta^*(p,xa)].$$

$$\delta'^*([p], xa) = \delta'(\delta'^*([p], x), a)$$
 definition of δ'^*
= $\delta'([\delta^*(p, x)], a)$ inductive hypothesis
= $[\delta(\delta^*(p, x), a))]$ definition of δ'

For all $x \in \Sigma^*$, ${\delta'}^*([p], x) = [\delta^*(p, x)]$.

Proof. The proof is by induction on strings. In the base case, we have $x = \epsilon$:

$$\delta'^*([p], \epsilon) = [p]$$
 definition of δ'^*
= $[\delta^*(p, \epsilon)]$ definition of δ^* .

Assume as our inductive hypothesis the claim

$$\delta'^*([p],x) = [\delta^*(p,x)]$$

holds for some $x \in \Sigma^*$. Let $a \in \Sigma$. For the inductive step, we must show that

$$\delta'^*([p],xa)=[\delta^*(p,xa)].$$

$$\delta'^*([p], xa) = \delta'(\delta'^*([p], x), a) \text{ definition of } \delta'^*$$

$$= \delta'([\delta^*(p, x)], a) \text{ inductive hypothesis}$$

$$= [\delta(\delta^*(p, x), a))] \text{ definition of } \delta'$$

$$= [\delta^*(p, xa)] \text{ definition of } \delta^*. \square$$

Theorem

$$L(M/\approx) = L(M)$$
.

$$x \in L(M/\approx) \iff \delta'^*(q'_0, x) \in F'$$
 definition of acceptance

Theorem

$$L(M/\approx) = L(M)$$
.

$$x \in L(M/\approx) \iff \delta'^*(q_0',x) \in F' \text{ definition of acceptance} \iff \delta'^*([q_0],x) \in F' \text{ definition of } q_0'$$

Theorem

$$L(M/\approx) = L(M)$$
.

$$x \in L(M/\approx) \iff \delta'^*(q_0',x) \in F' \text{ definition of acceptance} \Leftrightarrow \delta'^*([q_0],x) \in F' \text{ definition of } q_0' \Leftrightarrow [\delta^*(q_0,x)] \in F' \text{ Lemma B}$$

Theorem

$$L(M/\approx) = L(M)$$
.

$$x \in L(M/\approx) \iff \delta'^*(q_0',x) \in F' \text{ definition of acceptance} \\ \iff \delta'^*([q_0],x) \in F' \text{ definition of } q_0' \\ \iff [\delta^*(q_0,x)] \in F' \text{ Lemma B} \\ \iff \delta^*(q_0,x) \in F \text{ Lemma A}$$

Theorem

$$L(M/\approx) = L(M)$$
.

$$\begin{array}{lll} x \in L(M/\approx) & \iff & {\delta'}^*(q_0',x) \in F' & \text{ definition of acceptance} \\ & \iff & {\delta'}^*([q_0],x) \in F' & \text{ definition of } q_0' \\ & \iff & [\delta^*(q_0,x)] \in F' & \text{ Lemma B} \\ & \iff & \delta^*(q_0,x) \in F & \text{ Lemma A} \\ & \iff & x \in L(M) & \text{ definition of acceptance.} \end{array}$$

Theorem

$$L(M/\approx) = L(M)$$
.

It turns out that M/\approx cannot be collapsed any further. If we apply the quotient construction a second time, the DFA will not change.

Minimization Algorithm

• Make a table of all pairs $\{p, q\}$, initially unmarked.

- Make a table of all pairs $\{p, q\}$, initially unmarked.
- ② Mark $\{p,q\}$ if $(p \in F \text{ and } q \notin F)$ or $(p \notin F \text{ and } q \in F)$.

- Make a table of all pairs $\{p, q\}$, initially unmarked.
- ② Mark $\{p,q\}$ if $(p \in F \text{ and } q \notin F)$ or $(p \notin F \text{ and } q \in F)$.
- **3** Repeat the following until there are no more changes: for each unmarked $\{p,q\}$ if $\{\delta(p,a),\delta(q,a)\}$ is marked for some $a\in\Sigma$, then

- Make a table of all pairs $\{p, q\}$, initially unmarked.
- ② Mark $\{p,q\}$ if $(p \in F \text{ and } q \notin F)$ or $(p \notin F \text{ and } q \in F)$.
- **3** Repeat the following until there are no more changes: for each unmarked $\{p,q\}$ if $\{\delta(p,a),\delta(q,a)\}$ is marked for some $a\in\Sigma$, then mark $\{p,q\}$.

- **1** Make a table of all pairs $\{p, q\}$, initially unmarked.
- ② Mark $\{p,q\}$ if $(p \in F \text{ and } q \notin F)$ or $(p \notin F \text{ and } q \in F)$.
- **3** Repeat the following until there are no more changes: for each unmarked $\{p,q\}$ if $\{\delta(p,a),\delta(q,a)\}$ is marked for some $a\in\Sigma$, then mark $\{p,q\}$.
- Now $p \approx q$ if and only if $\{p, q\}$ is not marked.

Example

Initialization

Initialization:

Mark $\{p, q\}$ if $(p \in F \text{ and } q \notin F)$ or $(p \notin F \text{ and } q \in F)$.

First Pass

First pass:

- Mark $\{1,5\}$ because $\{1,5\} \stackrel{a}{\rightarrow} \{3,5\}$ is marked
- Mark $\{2,5\}$ because $\{2,5\} \xrightarrow{a} \{4,5\}$ is marked

Second Pass

Second pass:

- Mark $\{0,3\}$ because $\{0,3\} \stackrel{a}{\rightarrow} \{1,5\}$ is marked
- Mark $\{0,4\}$ because $\{0,4\} \xrightarrow{b} \{2,5\}$ is marked

Third Pass

Third pass: no changes Output of algorithm:

• $1 \approx 2$, $3 \approx 4$

 $[5] = \{5\}$

• [0] = {0}, [1] = {1,2} = [2], [3] = {3,4} = [4],

0					
√	1				
√		2			
√	>	√	3		
✓	\	\checkmark		4	
√	√	√	√	√	5

Original DFA:

$$[0] = \{0\}, \ [1] = \{1,2\} = [2], \ [3] = \{3,4\} = [4], \ [5] = \{5\}$$

Original DFA:

$$[0] = \{0\}, \ [1] = \{1,2\} = [2], \ [3] = \{3,4\} = [4], \ [5] = \{5\}$$

Original DFA:

$$[0] = \{0\}, \ [1] = \{1,2\} = [2], \ [3] = \{3,4\} = [4], \ [5] = \{5\}$$

$$\rightarrow \boxed{[0]} \xrightarrow{a,b} \boxed{[1]} \xrightarrow{a,b} \boxed{[3]} \xrightarrow{a,b} \boxed{[5]} \xrightarrow{a,b} a,b$$

•
$$\delta'([0], a) = [\delta(0, a)] = [1]$$

Original DFA:

$$[0] = \{0\}, \ [1] = \{1,2\} = [2], \ [3] = \{3,4\} = [4], \ [5] = \{5\}$$

$$\longrightarrow \boxed{[0]} \xrightarrow{a,b} \boxed{[1]} \xrightarrow{a,b} \boxed{[3]} \xrightarrow{a,b} \boxed{[5]} \bigcirc a,b$$

- $\delta'([0], a) = [\delta(0, a)] = [1]$
- $\delta'([0], b) = [\delta(0, b)] = [2] = [1]$

Original DFA:

$$[0] = \{0\}, \ [1] = \{1,2\} = [2], \ [3] = \{3,4\} = [4], \ [5] = \{5\}$$

$$\longrightarrow \boxed{[0]} \xrightarrow{a,b} \boxed{[1]} \xrightarrow{a,b} \boxed{[3]} \xrightarrow{a,b} \boxed{[5]} \xrightarrow{a,b}$$

- $\delta'([0], a) = [\delta(0, a)] = [1]$
- $\delta'([0], b) = [\delta(0, b)] = [2] = [1]$
- $\delta'([1], b) = [\delta(1, b)] = [4] = [3]$

Example

Initialization

Initialization:

Mark $\{p, q\}$ if $(p \in F \text{ and } q \notin F)$ or $(p \notin F \text{ and } q \in F)$.

First Pass

First pass:

- Mark {0,1} because $\{0,1\} \stackrel{a}{\rightarrow} \{1,2\}$ is marked
- Mark {0,4} because $\{0,4\} \xrightarrow{a} \{1,5\}$ is marked
- Mark {1,3} because $\{1,3\} \xrightarrow{a} \{2,4\}$ is marked
- Mark {3,4} because $\{3,4\} \stackrel{a}{\rightarrow} \{4,5\}$ is marked

0					
√	1				
√	√	2			
	√	√	3		
√		√	√	4	
\checkmark	√		√	√	5

Second Pass

Second pass:

No changes.

Output of algorithm:

- $0 \approx 3$, $1 \approx 4$, $2 \approx 5$
- $[0] = \{0,3\} = [3],$ $[1] = \{1,4\} = [4],$

$$[2] = \{2, 5\} = [5]$$

0					
√	1				
√	√	2			
	√	√	3		
\checkmark		√	√	4	
√	√		√	√	5

Original DFA:

$$[0] = \{0,3\} = [3]$$

 $[1] = \{1,4\} = [4]$
 $[2] = \{2,5\} = [5]$

Original DFA:

$$[0] = \{0, 3\} = [3]$$

$$[1] = \{1, 4\} = [4]$$

$$[2] = \{2, 5\} = [5]$$

$$\delta'([0], a) = [\delta(0, a)] = [1]$$

 $\delta'([1], a) = [\delta(1, a)] = [2]$
 $\delta'([2], a) = [\delta(2, a)] = [3] = [0]$