Introduction to Statistic for Data Science Group Mini-Project Presentation: Happiness Ladder

ISDS Group 10

Christopher Barrow, Zehao Qian, Mengyuan Zhu, Hithein Augustine

Department of Natural Sciences Durham University, England, UK

December 3, 2023

- Introduction
 - Intro to Data Set and its Context
- Statistical Modeling
 - Model Explanation
 - Model Construction
- Conclusions and Analysis
 - Results and Analysis
 - Conclusions
- Future Work

- Introduction
 - Intro to Data Set and its Context
- Statistical Modeling
 - Model Explanation
 - Model Construction
- Conclusions and Analysis
 - Results and Analysis
 - Conclusions
- Future Work

What is Happiness?

"Happiness Ladder"

The higher a country is on the happiness ladder, the happier, on average, its people tend to be.

Affecting factors?

Data Set and its Context

"Happiness Ladder" — Data collected from 137 countries

4 D > 4 A > 4 B > 4 B > B = 90

- Introduction
 - Intro to Data Set and its Context
- Statistical Modeling
 - Model Explanation
 - Model Construction
- Conclusions and Analysis
 - Results and Analysis
 - Conclusions
- Future Work

Multiple Linear Regression Model

- Model Target: Some socio-economic indexes are used to predict Ladder Score to assist government decision-making.
- Independent Variables: LGDP, Support, HLE, Freedom, Corruption, Continent
- Dependent Variables: Ladder Score
- Model Function:

```
input(LGDP, Support, ...) \Rightarrow output(Ladder Score)

LadderScore = \beta_0 + \beta_1 * LGDP + \beta_2 * Support + ... + \epsilon
```

 Optimization Target: Making the model with the best subset and higher Adjusted R-squared.

```
Select the independent variables Update \beta and \epsilon to minimize the residual sum of squared
```

Why we choose Multiple Linear Regression Model

Aspect	Simple Linear Regression	Multiple Linear Regression		
Model	$Y=\beta_0+\beta_1X+\varepsilon$	$Y=eta_0+eta_1X_1+eta_2X_2+\ldots+eta_kX_k+arepsilon$		
Advantages	Simple and easy interpretation	Captures complex relationships with multiple predictors		
	Suitable for examining two-variable relationships	Considers multiple factors, offering a comprehensive view		
	Less prone to overfitting with fewer predictors	Analyzes independent effects of each predictor		
Disadvantages	Limited to two-variable relationships	More complex, challenging interpretation		
	Assumes a linear relationship	Susceptible to multicollinearity with correlated predictors		
	May not capture real-world complexity	More assumptions (linearity, independence, normality)		
		Risk of overfitting, especially with many predictors		

- Introduction
 - Intro to Data Set and its Context
- Statistical Modeling
 - Model Explanation
 - Model Construction
- 3 Conclusions and Analysis
 - Results and Analysis
 - Conclusions
- Future Work

Constructing the Model – Data Processing

Constructing the Model – Dataset Inspectation

Dataset Name	Country_name	LGDP	Support	HLE	Freedom	Corruption	Continent	Numeric Continent	Ladder_score
Happy_origin	4	V	1	with NA	4	4	V		4
Happy_complete	4	√	1	4	1	4	1		4
Happy_general _continent		4	V	4	4	4	V	√	4
Happy_general		√	1	4	4	4	V		V
Africa		V	V	V	1	٧	Africa		4
Asia		√	1	4	4	4	Asia		4
Europe		√	1	4	1	4	Europe		4
North_America		4	V	4	1	4	North_America		√
Oceania		√	V	4	1	٧	Oceania		V
South_America		V	V	4	4	٧	South_America		٧

Constructing the Model – Bring dataset to MLR model

Step 1: Correlationship

	LCDP	Support	HLE	Freedom	Corruption	Ladder_score
LCDF	1.000000000	0.52707883	0.54785932	0.009904757	0.07777044	0.4917032
Support	0.527078831	1.00000000	0.23504723	0.074828973	0.26647977	0.4057194
HLE	0.547859322	0.23504723	1.00000000	-0.191237780	-0.09175306	0.2603294
Freedom	0.009904757	0.07482897	-0.19123778	1.000000000	-0.14779236	0.1954914
Corruption	0.077770437	0.26647977	-0.09175306	-0.147792362	1.00000000	0.0662834
Ladder_score	0.491703192	0.40571942	0.26032940	0.195491435	0.06628340	1.0000000
	LGDP :	Support :	HLE :	Freedom :	Corruption :	Ladder_score
LGDF	1.0000000	0.5578129	0.77461875	0.14362014	-0.4831974	0.6519755
Support	0.5578129	1.0000000	0.52751967	0.44975919	-0.2252249	0.8556977

Step 2: Scatterplot

Step 3: Finding the best subset

					V		
c	1)	LGDP	Support	HLE	Freedom	Corruptio
Ċ	1)	"2"				11 g 11
(1)	"÷"	" é "			" e "
(1)	" 2 "	" 2 "		" 2 "	"2"
(1)				" . "	

Step 4: Compared with Single Linear Regression

Step 5: Regression Analytics

Model Evaluation

Adjust R squared

Variance Inflation Factor Check
Autocorrelation -- Residuals

Future Analytics

Interaction between variables

non-linear transformation of predictors

- Introduction
 - Intro to Data Set and its Context
- 2 Statistical Modeling
 - Model Explanation
 - Model Construction
- 3 Conclusions and Analysis
 - Results and Analysis
 - Conclusions
- Future Work

Model Results and Analysis

- Introduction
 - Intro to Data Set and its Context
- Statistical Modeling
 - Model Explanation
 - Model Construction
- Conclusions and Analysis
 - Results and Analysis
 - Conclusions
- Future Work

Conclusions and Insights

Next Steps