Recitation 1: Logic & Basic Proofs

1 Truth tables and equivalences

Decide if the following statements are equivalent. You can use truth tables or logical basic identities.

- a) $p \to q$ vs. $\neg p \lor q$.
- b) $p \wedge (q \vee r)$ vs. $(p \wedge q) \vee (p \wedge r)$.
- c) $p \leftrightarrow q$ vs. $(p \land q) \lor (\neg p \land \neg q)$.
- d) $\neg (p \land q)$ vs. $\neg p \lor \neg q$.
- e) $(p \to r) \land (q \to r)$ vs. $(p \lor q) \to r$.

Solution. All pairs are equivalent. Sketches: (a) Truth table; (b) Truth table or rule of distribution; (c)

$$\begin{aligned} p &\leftrightarrow q \equiv (p \to q) \land (q \to p) \\ &\equiv (\neg p \lor q) \land (\neg q \lor p) \\ &\equiv (\neg p \land (\neg q \lor p)) \lor (q \land (\neg q \lor p)) \\ &\equiv ((\neg p \land \neg q) \lor (\neg p \land p)) \lor ((q \land \neg q) \lor (q \land p)) \\ &\equiv ((\neg p \land \neg q) \lor F) \lor (F \lor (q \land p)) \\ &\equiv (\neg p \land \neg q) \lor (q \land p). \end{aligned}$$

- (d) truth table or De Morgan; (e) $(\neg p \lor r) \land (\neg q \lor r) \equiv (\neg p \land \neg q) \lor r \equiv \neg (p \lor q) \lor r \equiv (p \lor q) \rightarrow r$. Decide whether each is a tautology / contradiction / contingent:
 - f) $(p \to q) \lor (q \to p)$
 - g) $(p \land (p \rightarrow q)) \rightarrow q$
 - h) $(p \leftrightarrow q) \leftrightarrow (\neg p \leftrightarrow \neg q)$

Solution. (a) tautology; (b) tautology (captures modus ponens); (c) tautology (negating both sides preserves biconditional).

Prove using equivalence laws (no truth tables):

- i) $p \to (q \to r) \equiv (p \land q) \to r$.
- i) $(p \to q) \land (p \to r) \equiv p \to (q \land r)$.

Solution. (a) $p \to (q \to r) \equiv \neg p \lor (\neg q \lor r) \equiv (\neg p \lor \neg q) \lor r \equiv \neg (p \land q) \lor r \equiv (p \land q) \to r$.

(b) LHS
$$\equiv (\neg p \lor q) \land (\neg p \lor r) \equiv \neg p \lor (q \land r) \equiv p \rightarrow (q \land r).$$

2 From English to Logic

Convert the following sentences to propositional logic.

- a) "Alice will meet Bob unless Bob is seeing Claire."
- b) "You cannot access the dataset if you lack credentials unless the PI has approved you."
- c) "The server restarts iff the watchdog fails or the temperature exceeds the threshold, but not both."
- d) "If the model overfits, then either the dataset is too small or the regularizer is disabled."

Solution. (a) Let A = "Alice will meet Bob" and B = Bob is seeing Claire. Then a solution is: $\neg B \to A$.

- (b) Let C = "have credentials", A = "PI approved", D = "can access dataset". Then a solution is: $\neg A \rightarrow (\neg C \rightarrow \neg D)$.
- (c) Let R = "server restarts", W = "watchdog fails", T = "temperature exceeds threshold". Then: $R \leftrightarrow ((W \lor T) \land \neg (W \land T))$.
- (d) Let O = "model overfits", S = "dataset too small", Reg = "regularizer enabled". Then: $O \to (S \vee \neg \text{Reg})$.

3 Inference rules & short derivations

- a) From $A \vee B$, $\neg A \to C$, $\neg B \to C$, is C entailed?
- b) Show: from $p \to (q \lor r)$ and $\neg q$ infer $p \to r$.

Solution. (a) Not entailed. Countermodel: take A = T, B = T, C = F. Then $A \vee B$ true; both $\neg A$ and $\neg B$ are false so $\neg A \to C$ and $\neg B \to C$ are vacuously true; yet C is false.

(b) Assume p. From $p \to (q \lor r)$ get $q \lor r$. Since $\neg q$ we obtain r.

4 Basic Proofs

Here $a \mod b = c$ is the same as $a \equiv c \mod b$.

- 1. Show: If $a \mid b$ and $a \mid c$ then $a \mid (mb + nc)$ for any $m, n \in \mathbb{Z}$. Solution. b = au, $c = av \Rightarrow mb + nc = a(mu + nv)$.
- 2. Show that $a^2 \mod 4 = 0$ or $a^2 \mod 4 = 1$ for all $a \in \mathbb{Z}$. Solution. If a even: $a = 2k \Rightarrow a^2 = 4k^2 \equiv 0 \pmod{4}$. If a odd: $a = 2k + 1 \Rightarrow a^2 = 4k^2 + 4k + 1 \equiv 1 \pmod{4}$.
- 3. Show: For all $x, y \in \mathbb{Z}$, if $x \equiv y \pmod{m}$ then $x^2 \equiv y^2 \mod{m}$. Solution. Suppose x - y = km for some $k \in \mathbb{Z}$. Then x + y = km + 2y, so

$$x^{2} - y^{2} = (x - y)(x + y) = (km)(km + 2y) = k^{2}m^{2} + 2kmy = m(mk^{2} + 2ky),$$

which is a multiple of m.

4. Prove the triangle inequality. That is, show that for all $x, y \in \mathbb{R}$, $|x + y| \le |x| + |y|$.

Solution. Since both |x| + |y| and |x + y| are nonnegative by definition, it suffices to prove that $(|x + y|)^2 \le (|x| + |y|)^2$. To see this, write

$$(|x| + |y|)^2 = x^2 + 2|x||y| + y^2 \ge x^2 + 2xy + y^2 = |x + y|^2.$$