For example, if $\varphi(\overline{1} \otimes \overline{s}) = 0$, because $\varphi(\overline{1} \otimes \overline{s}) = s \pmod{\mathfrak{a}_1 + \mathfrak{a}_2}$, we have $s \in \mathfrak{a}_1 + \mathfrak{a}_2$, so we can write s = a + b with $a \in \mathfrak{a}_1$ and $b \in \mathfrak{a}_2$. Then

$$\overline{1} \otimes \overline{s} = \overline{1} \otimes \overline{a+b}$$

$$= \overline{1} \otimes (\overline{a} + \overline{b})$$

$$= \overline{1} \otimes \overline{a} + \overline{1} \otimes \overline{b}$$

$$= \overline{a} \otimes \overline{1} + \overline{1} \otimes \overline{b}$$

$$= 0 + 0 = 0,$$

since $a \in \mathfrak{a}_1$ and $b \in \mathfrak{a}_2$, which proves injectivity.

Recall that the exterior algebra of an A-module M is defined by

$$\bigwedge M = \bigoplus_{k>0} \bigwedge^k (M).$$

Proposition 35.27. If A is a commutative ring, then for any n modules M_i , there is an isomorphism

$$\bigwedge(\bigoplus_{i=1}^n M_i) \approx \bigotimes_{i=1}^n \bigwedge M_i.$$

A proof can be found in Bourbaki [25] (Chapter III, Section 7, No 7, Proposition 10).

Proposition 35.28. Let A be a commutative ring and let $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ be n ideals of A. If the module M is the direct sum of n cyclic modules

$$M = A/\mathfrak{a}_1 \oplus \cdots \oplus A/\mathfrak{a}_n$$

then for every p > 0, the exterior power $\bigwedge^p M$ is isomorphic to the direct sum of the modules A/\mathfrak{a}_H , where H ranges over all subsets $H \subseteq \{1, \ldots, n\}$ with p elements, and with

$$\mathfrak{a}_H = \sum_{h \in H} \mathfrak{a}_h.$$

Proof. If u_i is the image of 1 in A/\mathfrak{a}_i , then A/\mathfrak{a}_i is equal to Au_i . By Proposition 35.27, we have

$$\bigwedge M \approx \bigotimes_{i=1}^n \bigwedge (Au_i).$$

We also have

$$\bigwedge(Au_i) = \bigoplus_{k \ge 0} \bigwedge^k (Au_i) \approx A \oplus Au_i,$$