	Zae Foteff
	HW #2
1.)	The class of attack one must use is a brute force attack. One
	must go through all 26 possible Shifts in the Caesas Cipher until
	a readable message is uncovered.
a)	
2.)	Bob and Alice would like to communicate securely in the face of an
	adversary, Eve. Despite all of Bob and Alice's efforts, Eve
	is still able to view their messages. In enerypting their messages
	however, Bob and Alice encounter on issue. Neither can outright
	send the key to decrypt future messages over normal channels, that
	would defeat the purpose of encryption because the pair broadcast
	that information to EVE. Therefore, the issue becomes about
	developing a secure way to encrypt their missage, while also
	Securely delivering the deceyption key to the intended party.
3.)	Bob and Alice immidiately become vanuable to a man in the middle
	attack. Eve could intescept Bob's public key, send a message to
	Alice posing as Bob, and use this chamel to interfere with the pair's
	Communications

The division algorithm: Given integers a,b, b>0, there exists

unique integers q, r such that: a = qb+r, 0 < r < b

Rows = $\left|\frac{\ln(c)}{\ker(k)}\right| = \left|\frac{21}{7}\right| = 3$

4.) C = AVFFDDD ADVAXGF FXVXVGX

K = Encrypt

```
6.) claim: The cube of any integer is of the form 9k, 9K+1, or 9K+8
          using the division algorithm.
    Lit a=9K+1, (E.Z., 05169, every int. of the form 39, 39+1, 39+2
    Suppose
              Case ao
                 ao = 39
    ao = 39,
                     a,3 = 2793
    a_1 = 30 + 1
                          = 9 (393) Let k = 323
    az = 39+2
                          = 9K
    Case a,
                         Case az
    a_1 = 39 + 1
                         a_2 = 39,+2
    a_1^3 = 27q^3 + 27q^2 + 9 + 1 a_2^3 = 27q^3 + 45q^2 + 36q + 8
    = 9(3q^3 + 3q^2 + 1) + 1 = 9(3q^3 + 5q^2 + 4q) + 8
    Let K = 323 + 322+1 Let K = 323 + 522+ 49
        = 9k + 8
    Therefore, the cube of any integer is of the form 32, 39+1, 39+2
7.) Claim: The square of any integer is of the form 3k or 3k+1 using the division
         algorithm
    Every int of the form 38, 32+1, 32+2
    Suppose
                 Case a0 = 39
                       a.2 = 392
    ao = 39,
                                = 922 Let K = 322
    a, = 32+1
    12 = 39+2
                          = 3(3q^2) = 3k
    Case = 39+1 (asc az = 30+2
     A_1^2 = 99^2 + 69 + 1 a_2^2 = 99^2 + 129 + 4
           = 3(3v^{2} + 2q) + 1 = 3(3v^{2} + 4q + 1) + 1
   Let k = 392+29 Let k = 392+48+1
          = 3K+1
                                = 3K+1
```

8.) Claim
$$3a^{2}-1$$
 is never a perfect square

Let $k = a^{2}$
 $Y = 3k-1$, we know this is impossible ble of public 7, were

I have proved that the square of any number is

of the form $3k$, or $3k+1$. Therefore, $3a^{2}-1$

is never a perfect square

9.) $gcd(482, 1180)$
 $1180 = 2(482) + 216$
 $482 = 2(76) + 80$
 $216 = 4(80) + 16$
 $80 = 3(16) + 2$
 $16 = 2(8) + 0$... $9cd(482, 1180) = 2$

10.) $482 + 1807 = 9cd(432, 1180)$, extended Enclid

 $482 + 1807 = 9cd(432, 1180)$, extended Enclid

 $482 + 1807 = 9cd(432, 1180)$, extended Enclid

 $482 + 1807 = 9cd(432, 1180)$, extended Enclid

 $482 + 1807 = 9cd(432, 1180)$
 $482 + 1807 = 9cd(432,$