Quantum II HW2

Vincent Baker

April 23, 2015

Problem 1 1

Electronic configurations of

- a. $He(Z=2) 1s^2$
- b. Ne(Z=10) $1s^2 2s^2 2p^6$
- c. Ar(Z=18) $1s^22s^22p^63s^23p^6$
- d. O (Z=8) $1s^2 2s^2 2p^4$
- e. Fe (Z=26) $1s^22s^22p^63s^23p^64s^23d^6$

2 Problem 2

- Nuclear configuration of: a) $_2^4He$: Protons(2): $1s_{1/2}^{(2)}$ Neutrons(2): $1s_{1/2}^{(2)}$ b) $_8^{16}O$: Protons(8): $1s_{1/2}^{(2)}$ $1p_{3/2}^{(4)}$ $1p_{1/2}^{(2)}$ Neutrons(8): $1s_{1/2}^{(2)}$ $1p_{3/2}^{(4)}$ $1p_{1/2}^{(2)}$ c) $_{20}^{40}Ca$ Protons (20): $1s_{1/2}^{(2)}$ $1p_{3/2}^{(4)}$ $1p_{1/2}^{(2)}$ $1d_{5/2}^{(6)}$ $2s_{1/2}^{(2)}$ $1d_{3/2}^{(4)}$ Neutrons (20): $1s_{1/2}^{(2)}$ $1p_{3/2}^{(4)}$ $1p_{1/2}^{(2)}$ $1d_{5/2}^{(6)}$ $2s_{1/2}^{(2)}$ $1d_{3/2}^{(4)}$ d) $_{26}^{56}Fe$ Protons (26): $1s_{1/2}^{(2)}$ $1p_{3/2}^{(4)}$ $1p_{1/2}^{(2)}$ $1d_{5/2}^{(6)}$ $2s_{1/2}^{(2)}$ $1d_{3/2}^{(4)}$ $1f_{7/2}^{(6)}$ Neutrons (30): $1s_{1/2}^{(2)}$ $1p_{3/2}^{(4)}$ $1p_{1/2}^{(2)}$ $1d_{5/2}^{(6)}$ $2s_{1/2}^{(2)}$ $1d_{3/2}^{(4)}$ $1f_{7/2}^{(6)}$ $2p_{3/2}^{(2)}$ e) $_{13}^{13}Ca$ Protons (6): $1s_{1/2}^{(2)}$ $1p_{3/2}^{(4)}$ Neutrons (7): $1s_{1/2}^{(2)}$ $1p_{3/2}^{(4)}$ $1p_{1/2}^{(1)}$

3 Problem 3

The ground state configurations for the three atoms are:

a) $_{26}^{57}Fe$: Protons (26) valence $1f_{7/2}^{(6)}$ Neutrons (31): valence $2p_{3/2}^{(3)}$

- b) ${}^{57}_{27}Co$ Protons (27) valence $1f^{(7)}_{7/2}$ Neutrons (30): valence $2p^{(2)}_{3/2}$ c) ${}^{57}_{28}Ni$ Protons (28) "valence" $1f^{(8)}_{7/2}$ (full) Neutrons (29): valence $2p^{(1)}_{3/2}$

So $_{26}^{57}Fe$ has a nuclear spin of $\frac{3}{2}$ and a parity of $(-1)^{\ell}=-1$ determined by the highest odd nucleon (the last neutron).

 $^{57}_{27}Co$ has a nuclear spin of $\frac{7}{2}$ and a parity of $(-1)^{\ell}=-1$ determined by the highest odd nucleaon (the last proton).

 $\frac{57}{28}Ni$ has a nuclear spin of $\frac{3}{2}$ and a parity of $(-1)^{\ell}=-1$, determined entirely by the single valence neutron.

Problem 4 $\mathbf{4}$

a. A "sensible" plot of the energy levels of the lightest nine particles:

b. Since the observed particles split into three groups with an average energy difference of 150 between them, I would guess the energy of the 10th particle to be 1685.

c. We look for a 3D harmonic oscillator model with N=3 and approximately the right energy levels. We break the symmetry of the 3D harmonic oscillator by $\omega_1 = \alpha$, $\omega_2 = \omega_3 = \beta$. Setting $\alpha - \beta = 150$ will create the desired separation between the energy levels. To find the value of β we calculate the lowest energy level (003) as $\frac{\beta+150}{2} + \frac{1}{2}\beta + \frac{7}{2}\beta = 1233$ so $\beta = 257.33$.

d. The Hamiltonian for the 3D harmonic oscillator can be written using

annihilation and creation operators:

$$H = (a_1^{\dagger} a_1 + \frac{1}{2})\hbar\omega_1 + (a_2^{\dagger} a_2 + a_3^{\dagger} a_3 + 1)\hbar\omega_{23}$$
 (4.1)

- e. We find the best fit energies by varying our basic parameters and minimizing the mean-squared error (see p4.m). With one million trials we find the best fit (in an MMSE sense) to be $\omega_1 = 408.07$, $\omega_2 = 258.78$, $\omega_3 = 256.27$. With these parameters our prediction for the 10th particle is 1686.
- f. We test the quality of the MMSE fit with a chi-squared test, incorporating the variance from the measurements. We find a chi-squared value of 0.178 with 9 degrees of freedom, so we can reject the null hypothesis with confidence greater than 99.5