Machine Learning and AIOps

Splunk4Ninjas | [CUSTOMER NAME]

Forwardlooking statements

This presentation may contain forward-looking statements that are subject to the safe harbors created under the Securities Act of 1933, as amended, and the Securities Exchange Act of 1934, as amended. All statements other than statements of historical facts are statements that could be deemed forward-looking statements. These statements are based on current expectations, estimates, forecasts, and projections about the industries in which we operate and the beliefs and assumptions of our management based on the information currently available to us. Words such as "expects," "anticipates," "targets," "goals," "projects," "intends," "plans," "believes," "momentum," "seeks," "estimates," "continues," "endeavors," "strives," "may," variations of such words, and similar expressions are intended to identify such forward-looking statements. In addition, any statements that refer to (1) our goals, commitments, and programs; (2) our business plans, initiatives, and objectives; and (3) our assumptions and expectations, including our expectations regarding our financial performance, products, technology, strategy, customers, markets, acquisitions and investments are forward-looking statements. These forward-looking statements are not guarantees of future performance and involve significant risks, uncertainties and other factors that may cause our actual results, performance or achievements to be materially different from results, performance or achievements expressed or implied by the forward-looking statements contained in this presentation. Readers are cautioned that these forward-looking statements are only predictions and are subject to risks, uncertainties, and assumptions that are difficult to predict, including those identified in the "Risk Factors" section of Cisco's most recent report on Form 10-Q filed on May 21, 2024 and its most recent report on Form 10-K filed on September 7, 2023. The forward-looking statements made in this presentation are made as of the time and date of this presentation. If reviewed after the initial presentation, even if made available by Cisco or Splunk, on Cisco or Splunk's website or otherwise, it may not contain current or accurate information. Cisco and Splunk undertake no obligation to revise or update any forward-looking statements for any reason, except as required by law.

In addition, any information about new products, features, functionality or our roadmap outlines our general product direction and is subject to change at any time without notice. It is for informational purposes only and shall not be incorporated into any contract or other commitment or be relied upon in making a purchasing decision. We undertake no commitment, promise or obligation either to develop the features or functionalities described, in beta or in preview (used interchangeably), or to include any such feature or functionality in a future release. The development, release, and timing of any features or functionality described for our products remains at our sole discretion.

Splunk and Splunk> are trademarks and registered trademarks of Splunk Inc. in the United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2024 Splunk Inc. All rights reserved.

Meet Your Presenters

Agenda

Current Challenges for Operations Teams

How Splunk Drives Machine Learning

Scenario Introduction

Deep Dive Modules

Wrap Up and Next Steps

Leading Initiatives Driving ML Adoption

200%

Increase in proactive detection of security and performance issues, significantly reducing downtime

2.1x

More likely to have automated processes for alerts, helping operationalize data at scale

\$365k/hour

On average saved from costly outages, helping organizations protect against revenue loss

Obstacles Blocking ML Adoption

1.8x

Increase in data and events to process every two years, creating challenges in handling data volume 1 in 2

Companies increase the number of data silos, leading to difficulties integrating ML in isolated systems

79%

Failure rate for companies which try to implement machine learning from scratch, due to lack of expertise

Sources:

Harvard Business Review - Artificial Intelligence for the Real World Digital Enterprise Journal Report: The Roadmap to Becoming a Top Performing Organization in Managing IT Operations

How Data Scientists Spend Their Time

- Data Engineering
- Machine Learning
- Other

How Data Scientists Spend Their Time

- Data Engineering
- Machine Learning
- Other

The Unified Security and Observability Platform

Artificial Intelligence

The broad study of teaching a computer to process data and make decisions

Artificial Intelligence

The broad study of teaching a computer to process data and make decisions

Machine Learning

Subset of AI. Predictions and insight with minimal human interference

Artificial Intelligence

The broad study of teaching a computer to process data and make decisions

Machine Learning

Subset of AI. Predictions and insight with minimal human interference

Deep Learning

Subset of ML. Predictions via neural networks

© 2024 SPLUNK INC.

Attribution: Freepik and Becris from flaticon.com

Artificial Intelligence

The broad study of teaching a computer to process data and make decisions

Machine Learning

Subset of AI. Predictions and insight with minimal human interference

Deep Learning

Subset of ML. Predictions via neural networks

© 2024 SPLUNK INC.

Attribution: Freepik and Becris from flaticon.com

Predictive Algorithms

Methods that help you get ahead of issues that may happen in the future

Includes:

- Numerical Regression
- Categorical Regression
- Time Series Forecasting

Categorization Algorithms

Uncover insights about your data to quickly respond in the present

Includes:

- Categorical Regression
- Clustering

Outlier Detection Algorithms

Identify and analyze abnormal behavior in your data

Includes:

- Clustering
- Outlier Detection

Easy to Operationalize

Model Longevity

NUMERICAL REGRESSION START

Use Case: Modeling System Behavior

"A method that lets
you model and predict how
a metric will behave based
on changes in the
environment"

"A method that lets
you model and predict how
a metric will behave based
on changes in the
environment"

Live Instance Demo

Log Into [INSTANCE URL]

Lab Guide Exercise #1
Time: 10 minutes

Summary

Top 4 most important things to remember about numerical prediction

1

2

3

4

Predicting numeric fields is done using a supervised learning method which uses labeled data

Models assumes a causative relationship exists among selected fields

Scaling data prior to training is almost always necessary

Choice of numeric prediction algorithm(s) may rely on a subject matter expert of the data

Predictive Analytics

NUMERICAL REGRESSION END

FORECASTING START

Use Case: Forecasting Key Metrics

Forecasting Time Series

"Using historical data to identify patterns, which are then used to forecast how your data might behave in the future"

Forecasting Time Series

"Using historical data to identify patterns, which are then used to forecast how your data might behave in the future"

Live Instance Demo

Log Into [INSTANCE URL]

Lab Guide Exercise #2
Time: 10 minutes

Summary

Top 4 most important things to remember about forecasting time series

1

2

3

4

Forecasting time series is done using a supervised learning method

Models assume historic data as a baseline, and will self-correct accordingly

Parameters have a large impact on performance. Tuning each model is highly recommended

Choice of forecasting algorithm may rely on a subject matter expert of the data

Resource Forecasting

FORECASTING END

CATEGORICAL PREDICTION START

Use Case: Filtering out False Positive Alerts

Categorical Prediction

"A method that lets you quickly, easily, and sustainably gain insight into your data by predicting its categorical features"

alert group	count	src	alert value	Predicate
T-Shirt Co.	15	checkoutsvc	107	False positive
BTCup Digital	17	btcup_checkout	375	True positive
BTCup Digital	3	payment_svc	89	True positive

alert group	count	src	alert value	Predicate
T-Shirt Co.	15	checkoutsvc	107	False positive
BTCup Digital	17	btcup_checkout	375	True positive
BTCup Digital	3	payment_svc	89	True positive

alert group	count	src	alert value	Predicate
T-Shirt Co.	15	checkoutsvc	107	False positive
BTCup Digital	17	btcup_checkout	375	True positive
BTCup Digital	3	payment_svc	89	True positive

alert group	count	src	alert value	Predicate
T-Shirt Co.	15	checkoutsvc	107	False positive
BTCup Digital	17	btcup_checkout	375	True positive
BTCup Digital	3	payment_svc	89	True positive

alert group	count	src	alert value	Predicate (predicted)
T-Shirt Co.	17	checkoutsvc	100	False positive
O11y Cloud	16	browsercheck	89	False positive

alert group	count	src	alert value	Predicate
T-Shirt Co.	15	checkoutsvc	107	False positive
BTCup Digital	17	btcup_checkout	375	True positive
BTCup Digital	3	payment_svc	89	True positive

alert group	count	src	alert value	Predicate (predicted)
T-Shirt Co.	17	checkoutsvc	100	False positive
O11y Cloud	16	browsercheck	89	True positive?

Training Data

Feature 1	 Feature n	Severity
[data]	 [data]	CRITICAL
[data]	 [data]	LOW
[data]	 [data]	CRITICAL
[data]	 [data]	LOW
[data]	 [data]	CRITICAL
[data]	 [data]	CRITICAL

Training Data

Feature 1	 Feature n	Severity
[data]	 [data]	CRITICAL
[data]	 [data]	LOW
[data]	 [data]	CRITICAL
[data]	 [data]	LOW
[data]	 [data]	CRITICAL
[data]	 [data]	CRITICAL

Feature 1		Feature n	Severity (predicted)
[data]	•••	[data]	CRITICAL
[data]		[data]	CRITICAL

Training Data

Feature 1	 Feature n	Severity
[data]	 [data]	CRITICAL
[data]	 [data]	LOW
[data]	 [data]	CRITICAL
[data]	 [data]	LOW
[data]	 [data]	CRITICAL
[data]	 [data]	CRITICAL

Feature 1	 Feature n	Severity (predicted)	Severity (actual)
[data]	 [data]	CRITICAL	MAJOR
[data]	 [data]	CRITICAL	LOW
[data]	 [data]	CRITICAL	MINOR
[data]	 [data]	CRITICAL	CRITICAL
[data]	 [data]	CRITICAL	LOW
[data]	 [data]	CRITICAL	MINOR
[data]	 [data]	CRITICAL	MAJOR
[data]	 [data]	CRITICAL	MAJOR
[data]	 [data]	CRITICAL	MINOR

Training Data

Feature 1	 Feature n	Severity
[data]	 [data]	CRITICAL
[data]	 [data]	LOW
[data]	 [data]	CRITICAL
[data]	 [data]	LOW
[data]	 [data]	CRITICAL
[data]	 [data]	CRITICAL

Feature 1	•••	Feature n	Severity (predicted)	Severity (actual)
[data]		[data]	CRITICAL	MAJOR
[data]		[data]	CRITICAL	LOW
[data]		[data]	CRITICAL	MINOR
[data]		[data]	CRITICAL	CRITICAL
[data]		[data]	CRITICAL	LOW
[data]		[data]	CRITICAL	MINOR
		[data]	CRITICAL	MAJOR
		[data]	CRITICAL	MAJOR
	•••	[data]	CRITICAL	MINOR

Training Data

Feature 1	 Feature n	Severity
[data]	 [data]	MAJOR
[data]	 [data]	LOW
[data]	 [data]	MINOR
[data]	 [data]	CRITICAL
[data]	 [data]	LOW
[data]	 [data]	MINOR
[data]	 [data]	MAJOR
[data]	 [data]	MAJOR
[data]	 [data]	MINOR

Training Data

Feature 1	•••	Feature n	Severity
[data]		[data]	MAJOR
[data]		[data]	LOW
[data]		[data]	MINOR
[data]		[data]	CRITICAL
[data]		[data]	LOW
[data]		[data]	MINOR
[data]		[data]	MAJOR
[data]		[data]	MAJOR
[data]		[data]	MINOR

Feature 1	•••	Feature n	Severity (predicted)
[data]		[data]	LOW
[data]		[data]	MAJOR
[data]		[data]	MAJOR
[data]		[data]	MINOR
[data]	•••	[data]	CRITICAL
[data]		[data]	CRITICAL
[data]		[data]	LOW
[data]	•••	[data]	MINOR
[data]		[data]	LOW

Training Data

Feature 1	 Feature n	Severity
[data]	 [data]	MAJOR
[data]	 [data]	LOW
[data]	 [data]	MINOR
[data]	 [data]	CRITICAL
[data]	 [data]	LOW
[data]	 [data]	MINOR
[data]	 [data]	MAJOR
[data]	 [data]	MAJOR
[data]	 [data]	MINOR

Categorical Prediction

"A method that lets you quickly, easily, and sustainably gain insight into your data by predicting its categorical features"

Live Instance Demo

Log Into [INSTANCE URL]

Lab Guide Exercise #5
Time: 10 minutes

Summary

Top 4 most important things to remember about categorical prediction

1

2

3

4

Predicting categorical fields is done using a supervised learning method which uses labeled data

Models assumes there exists a pattern determining existing categories

Scaling data prior to training is often necessary

Choice of categorical prediction algorithm(s) may rely on a subject matter expert of the data

CATEGORICAL PREDICTION END

OUTLIER DETECTION START

Use Case: Detecting Outliers in CPU Utilization

Outlier Detection Algorithms

Identify and analyze abnormal behavior in your data

Includes:

- Clustering
- Outlier Detection

Global

Data points different from expected pattern, range, or norm

Contextual

Are the results out of context?

Collective

Looks normal with isolation but stands out in a group

Numeric

Categorical

Included Algorithms

DensityFunction

LocalOutlierFactor

MultiVariateOutlierDetection

One-Class SVM

Categorical data to Numeric data?

device
server01
server02
server03

Categorical data to Numeric data?

device				
server01				
server02				
server03				

device	server01	server02	server03
server01	1	0	0
server02	0	1	0
server03	0	0	1

Outlier Detection Algorithms

Identify and analyze abnormal behavior in your data

Includes:

- Clustering
- Outlier Detection

Live Instance Demo

Log Into [INSTANCE URL]

Lab Guide Exercise #3
Time: 10 minutes

Summary

Top 4 most important things to remember about outlier detection

1

2

3

4

Outlier detection is a way of analyzing your data for historical baseline outliers

Models assume historic data input represents normal data

Encoding is necessaryfor categorical
outlier detection

Choice of outlier algorithm may rely on a subject matter expert of the data

Adaptive Thresholding

OUTLIER DETECTION END

CLUSTERING START

Use Case: Referencing Historically Similar Tickets

Clustering

"A method that organizes a set of numeric data points in a way that objects in the same cluster are more similar to each other than those in other clusters"

General intuition

Starting with one-dimensional data, unlabeled numeric values plotted on a line

Organizing Exercise: Using your human intuition, form 3 groups with the dataset above

General intuition

Most likely, these are the 3 groups (or clusters) you formed:

Now let's see how a machine can replicate this kind of grouping intuition!

General intuition

First, estimate the center of a cluster randomly, denoted by the star

So, our clusters look like this:

General intuition

Now the **mean** value of each cluster is calculated. This is the "mean" in "k-means"!

General intuition

The mean of each cluster now become the new centroids:

General intuition

Now the data points are reassigned to the nearest k-means cluster:

The k-means and clustering steps are repeated until the data points no longer change to different clusters

General intuition

These are our final 3 clusters, found by k-means clustering:

General intuition

k-means clustering applies to multidimensional data as well:

2 dimensional data

3 dimensional data

If you can see in more than 3 dimensions... give us a call

4+ dimensional data

Clustering

"A method that organizes a set of numeric data points in a way that objects in the same cluster are more similar to each other than those in other clusters"

Live Instance Demo

Log Into [INSTANCE URL]

Lab Guide Exercise #4
Time: 10 minutes

Summary

Top 4 most important things to remember about clustering algorithms

1

2

3

4

Clustering is an unsupervised learning method which uses unlabeled data

User must decide whether dimensionality reduction is necessary

User must decide whether to scale the data prior to clustering

Choice of clustering algorithm(s) may rely on a subject matter expert of the data

Alert Storm Detection

CLUSTERING END

And we're done!

Summary

Tools in Your ML Toolkit Now

Prediction

Get ahead of issues that may happen in the future

Categorization

Uncover insights about your data to quickly respond in the present

Outlier Detection

Identify and analyze abnormal behavior in your data

Additional Resources

Getting started

- View some of our webinars
- Check out our YouTube playlist
- Check out the blog on <u>MLTK</u>
 5.4 release
- Try out some of our starter blogs, such as <u>Cyclical</u> <u>Statistical Forecasts and</u> <u>Anomalies, part 1</u>
- Try our new MLTK Deep Dives

Increasing complexity

- Try <u>part 4</u> or <u>6</u> of the Cyclical Statistical Forecasts and Anomalies series
- Brush up on how MLTK works with our comprehensive documentation
- Get familiar with the Workshop Guide

More advanced

- The <u>Analytics and Data</u>
 <u>Science</u> course
- Try out the <u>Anomalies Are</u>
 <u>Like a Gallon of Neapolitan</u>

 <u>Ice Cream Part 1</u>
- Try out <u>part 5</u> of the cyclical statistical forecasts and anomalies series
- Try the ML-SPL API

Thank you:

