Math 109 HW 5

Ray Tsai

10/31/2022

1.

Proposition 1. If $A \subseteq B$ then $B^c \subseteq A^c$.

Proof. Suppose that $A \subseteq B$. We will prove by the contrapositive. If $B^c = \emptyset$, then $B^c \subseteq A^c$, as \emptyset is a subset of any set. Suppose that B is not empty. Let $x \notin B$. We will show that $x \notin A$.

Since $A \subseteq B$, we have $(\forall y \in U)[(y \in A) \to (y \in B)]$. The contrapositive of this statement is that $(\forall y \in U)[(y \notin B) \to (y \notin A)]$. Thus, since $x \notin B$, we have $x \notin A$.

Therefore $B^c \subseteq A^c$ by definition.

2.

Proposition 2. If A, B are disjoint and $C \subseteq B$, then A, C are disjoint.

Proof. Suppose that $(\forall y \in A)(y \notin B)$ and $C \subseteq B$. Let $x \in A$. We will show that $x \notin C$.

Since A, B are disjoint, $x \notin B$ because $x \in A$. Since $C \subseteq B$, we have $(\forall z \in C)(z \in B)$, which is equivalent to $(\forall z \notin B)(z \notin C)$. Thus, since $x \notin B$, we have $x \notin C$.

Therefore, A, C are disjoint by definition.

3. (a)

Proposition 3. If $A \subseteq B$ and $A \neq \emptyset$, then A, B are not disjoint.

Proof. Let $x \in A$. We will show that $x \in B$.

Since $A \subseteq B$, $x \in B$ because $x \in A$. Therefore, A, B are not disjoint by definition.

(b)

Proposition 4. If $A \subseteq B$, then A, B can be disjoint.

Proof. Consider $A = \emptyset$. Since an empty set is a subset of all sets, we have $A \subseteq B$. Since $A = \emptyset$, A, B are disjoint, as they do not share any common elements.

4.

Proposition 5. $A, B, C \subseteq U$ and are not empty. If $(A \cap B)^c \subseteq C$, then $A \subseteq B \cup C$.

Proof. Suppose that $(A \cap B)^c \subseteq C$. Let $x \in A$. We will show that $x \in B \cup C$.

We can separate the situation into two cases, $x \in B$ and $x \notin B$.

If $x \in B$, then $x \in B \cup C$.

If $x \notin B$, then $x \notin (A \cap B)$ because $x \notin A \lor x \notin B$, which means that $x \in (A \cap B)^c$. Since $(A \cap B)^c \subseteq C$, we have $x \in C$. Thus, $x \in B \cup C$.

Therefore, $x \in B \cup C$.

5. (a)

Proposition 6. *f is not injective.*

Proof. Consider f(1) and f(3), $1, 3 \in \mathbb{Z}$. f(1) = f(3) = 1, but $1 \neq 3$. Therefore, f is not injective by definition.

Proposition 7. *f is surjective.*

Proof. Let $b \in \{0,1\}$. We will prove that there exist $a \in \mathbb{Z}$ such that f(a) = b.

We can separate it into 2 cases, b = 0 and b = 1.

If b = 0, There exist a = 0 such that f(a) = f(0) = 0 = b.

If b = 1, There exist a = 1 such that f(a) = f(1) = 1 = b.

Therefore, we have exhausted all possibilities of b and shown that f is surjective by definition.

(b)

Proposition 8. *g is injective.*

Proof. We will prove by the contrapositive of the definition of an injective function. Let $a_1, a_2 \in \{0, 1\}$. We will show that if $a_1 \neq a_2$, then $g(a_1) \neq g(a_2)$.

Let $a_1 = 0, a_2 = 1$. $a_1 = 0 \neq 1 = a_2$ and $g(a_1) = 1 \neq -1 = g(a_2)$.

Therefore, since there are no elements other than 0,1 in $\{0,1\}$, we have exhausted all the possibilities and proved that g is injective. \square

Proposition 9. *g is surjective.*

Proof. Let $b \in \{1, -1\}$. We will prove that there exist $a \in \{0, 1\}$ such that g(a) = b.

We can separate it into 2 cases, b = 1 and b = -1.

If b = 1, There exist a = 0 such that f(a) = f(0) = 1 = b.

If b = -1, There exist a = 1 such that f(a) = f(1) = -1 = b.

Therefore, g is surjective by definition.

(c)

Proposition 10. h is injective.

Proof. Let $(a_1, b_1), (a_2, b_2) \in \mathbb{R}^2, a_1b_1 = a_2b_2 = 1$. We will show that if $h(a_1, b_1) = h(a_2, b_2)$, then $a_1 = a_2$ and $b_1 = b_2$.

For all $(x,y) \in \mathbb{R}^2$ and $xy=1, \ x,y \neq 0$ because if x=0 or y=0 then $xy=0 \neq 1$.

Suppose that $h(a_1,b_1)=h(a_2,b_2)$. Since $a_1b_1=a_2b_2=1$ and $a_1,a_2\neq 0$, we can assume that $b_1=\frac{1}{a_1},b_2=\frac{1}{a_2}$. Since $h(a_1,b_1)=h(a_2,b_2)$, we know that $a_1=a_2$. Since $a_1=a_2$, we have $b_1=\frac{1}{a_1}=\frac{1}{a_2}=b_2$.

Therefore, h is injective by definition.

Proposition 11. h is surjective.

Proof. Let $c \in \mathbb{R}$. We will prove that there exist $(a,b) \in \mathbb{R}^2$ such that h(a,b) = c.

Let c = a. Since h(a, b) = a, we know that h(a, b) = c

Therefore, h is surjective by definition.

(d)

Proposition 12. k is injective.

Proof. First, let a be some non-negative even number 2m, b be some non-negative odd number 2n + 1, $a, b, m, n \in \mathbb{Z}$, $a, b, m, n \geq 0$. We

will use contradiction to prove that if a, b are not both even or both odd, then $k(a) \neq k(b)$. Suppose for the sake of contradiction that k(a) = k(b) and

$$k(a) = \frac{2m}{2} = m \tag{1}$$

$$k(b) = -\frac{(2n+1)+1}{2} = -n-1 \tag{2}$$

(3)

Since k(a) = k(b), we know that

$$m = -n - 1 \tag{4}$$

$$m + n = -1 \tag{5}$$

This contradicts our original assumption that $m \ge 0, n \ge 0$. Therefore, if k(a) = k(b), then a, b are both even or both odd.

Let $a_1, a_2 \in \mathbb{Z}$, $a_1, a_2 \geq 0$. Now we will show that if $k(a_1) = k(a_2)$, then $a_1 = a_2$.

Suppose that $k(a_1) = k(a_2)$. We can separate it into 2 cases, a_1, a_2 are both even, a_1, a_2 are both odd.

If a_1, a_2 are both even, since $k(a_1) = k(a_2)$, we know

$$\frac{a_1}{2} = \frac{a_2}{2} \tag{6}$$

$$a_1 = a_2 \tag{7}$$

If a_1, a_2 are both odd, since $k(a_1) = k(a_2)$, we know

$$-\frac{a_1+1}{2} = -\frac{a_2+1}{2} \tag{8}$$

$$a_1 + 1 = a_2 + 1 \tag{9}$$

$$a_1 = a_2 \tag{10}$$

Therefore, k is injective by definition.

Proposition 13. *k* is surjective.

Proof. Let $b \in \mathbb{Z}$. We will prove that there exist some non-negative integer a such that k(a) = b. We can separate it into 2 cases, $b \ge 0$ and b < 0.

If $b \ge 0$, let $b = \frac{a}{2}$, then $k(a) = \frac{a}{2} = b$.

If b < 0, let $b = -\frac{a+1}{2}$, then $k(a) = -\frac{a+1}{2} = b$.

Therefore, k is surjective by definition.

6. (a)

Proposition 14. α is not a well defined function.

Proof. Let $x \in \mathbb{R}$. We will show that $\alpha(x) \notin \mathbb{Z}$. Consider the case $x = \frac{1}{2}$. $\alpha(x) = \frac{1}{2}$, which is not an integer. Therefore, α is not a well defined function.

(b)

Proposition 15. β is a not well defined function.

Proof. Let $x \in \mathbb{Z}$. We will show that there exists $y_1, y_2 \in \{-1, 0, 1\}$, such that $\beta(x) = y_1$, $\beta(x) = y_2$, and $y_1 \neq y_2$. Consider the case $x = 2, y_1 = 1, y_2 = -1$. $\beta(x) = 1 = y_1$, and $\beta(x) = -1 = y_2$. This shows that there exists $x \in \mathbb{Z}$ such that $\beta(x)$ has multiple possible values. Therefore, β is not a well defined function.

(c)

Proposition 16. |-| is a well defined function.

Proof. For existence: let $x \in \mathbb{R}$. We will show that there exists $y \in \mathbb{R}_{\geq 0}$ such that |x| = y. We can separate it into 2 cases, $x \geq 0$ and $x \leq 0$.

If $x \ge 0$, let y = x. Since $y = x \ge 0$, we have $y \in \mathbb{R}_{\ge 0}$. We then have |x| = x = y.

If $x \le 0$, let y = -x. Since $x \le 0$, we have $-x = y \ge 0$. Thus, $y \in \mathbb{R}_{>0}$. We then have |x| = -x = y.

Therefore, for each $x \in \mathbb{R}$, there exists $y \in \mathbb{R}_{\geq 0}$ such that |x| = y.

For uniqueness: let $a \in \mathbb{R}$, $b_1 = |a|$, $b_2 = |a|$, b_1 , $b_2 \in \mathbb{R}_{\geq 0}$. We will show that $b_1 = b_2$. We can separate it into 2 cases, $a \geq 0$ and $a \leq 0$.

If
$$a \ge 0$$
, $b_1 = |a| = a$ and $b_2 = |a| = a$. Thus, $y_1 = y_2$.
If $a \le 0$, $b_1 = |a| = -a$ and $b_2 = |a| = -a$. Thus, $b_1 = b_2$.

Therefore, for each $a \in \mathbb{R}$, |a| is unique.

Therefore, |-| is a well defined function.

(d)

Proposition 17. γ is a not well defined function.

Proof. Let $x \in \mathbb{R}$. Consider the case x = 0. We will show that $\gamma(x) \notin \mathbb{R}$. $\gamma(x) = \frac{0}{|0|} = \frac{0}{0}$, which is undefined. Therfore, γ is not a well defined function.

7. (a)

Proposition 18. If $g \circ f$ is injective, then f is injective.

Proof. We will prove by contradiction. Suppose for the sake of contradiction that $c = f(a) = f(b), a \neq b, a, b \in A, c \in B$.

g(f(a)) = g(f(b)) = g(c). Since $g \circ f$ is injective, we know that g(f(a)) = g(f(b)) implies a = b. However, it contradicts our original assumption that $a \neq b$.

Therefore, f is injective.

(b)

Proposition 19. If $g \circ f$ is injective, then g does not have to be injective.

Proof. Consider the case

$$f: \mathbb{R}_{\geq 0} \to \mathbb{R} \tag{11}$$

$$f(x) = x \tag{12}$$

$$g: \mathbb{R} \to \mathbb{R}_{\geq 0} \tag{13}$$

$$g(x) = x^2 \tag{14}$$

Combining f and g, we get

$$g \circ f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \tag{15}$$

$$g \circ f(x) = x^2 \tag{16}$$

We will first show that $g \circ f$ is injective.

Let a, b be some non-negative real numbers. Suppose that $g \circ f(a) = g \circ f(b)$. We will show that a = b.

Since $g \circ f(a) = a^2$, $g \circ f(b) = b^2$,

$$a, b \ge 0 \tag{17}$$

$$a^2 = b^2 \tag{18}$$

$$a = b \tag{19}$$

Therefore, $g \circ f(b)$ is injective. However, g is not injective, as both g(-1) and g(1) equals to 1, and $-1, 1 \in \mathbb{R}$.

Therefore, g does not have to be injective.

(c)

Proposition 20. If $g \circ f$ is surjective, then f does not have to be surjective.

Proof. Consider the case

$$f: \{0\} \to \mathbb{R} \tag{20}$$

$$f(x) = 0 (21)$$

$$g: \mathbb{R} \to \{0\} \tag{22}$$

$$g(x) = 0 (23)$$

Combining f and g, we get

$$g \circ f : \{0\} \to \{0\} \tag{24}$$

$$g \circ f(x) = 0 \tag{25}$$

 $g \circ f$ in surjective because $g \circ f(0) = 0$ and there are no elements other than 0 in $\{0\}$. However, f is not surjective, since there are no $a \in \{0\}$ such that f(a) = 1.

Therefore, f does not have to be surjective.

(d)

Proposition 21. If $g \circ f$ is surjective, then g is surjective.

Proof. We will prove by contradiction. Suppose for the sake of contradiction that there exists some $z \in C$ such that for all $k \in B$, $g(k) \neq z$.

Since $g \circ f$ is surjective, we know that there exist some $x \in A$ such that $g \circ f(x) = z$. Let $y = f(x), y \in B$. We then have

$$g \circ f(x) = g(f(x)) \tag{26}$$

$$= g(y) \tag{27}$$

$$= z \tag{28}$$

This shows that there exists some $y \in B$ such that g(y) = z. However, this contradicts our assumption that for all $k \in B$, $g(k) \neq z$.

Therefore, g is surjective.

8.

Proposition 22. For all $n \in \mathbb{Z}^+$, we have

$$1^{2} + 2^{2} + 3^{2} + \ldots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$
 (29)

Proof. We proceed by induction on n.

If n=1, then $1^2=1$, and $\frac{1(1+1)(2+1)}{6}=\frac{6}{6}=1$. Thus, the equation is correct when n=1.

If n = 2, then $1^2 + 2^2 = 5$, and $\frac{2(2+1)(2\cdot 2+1)}{6} = \frac{2(3)(5)}{6} = 5$. Thus, the equation is correct when n = 2.

Suppose $1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$ for some $n \in \mathbb{Z}^+$. We then have

$$\frac{(n+1)((n+1)+1)(2(n+1)+1)}{6} = \frac{(n+1)(n+2)(2n+3)}{6}$$
(30)
$$= \frac{n(n+1)(2n+3)}{6} + \frac{2(n+1)(2n+3)}{6}$$
(31)
$$= \frac{n(n+1)(2n+1)}{6} + \frac{2n(n+1)}{6} + \frac{2(n+1)(2n+3)}{6}$$
(32)
$$= \frac{n(n+1)(2n+1)}{6} + \frac{6n^2 + 12n + 6}{6}$$
(33)
$$= \frac{n(n+1)(2n+1)}{6} + n^2 + 2n + 1$$
(34)
$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^2$$
(35)
$$= 1^2 + 2^2 + 3^2 + \dots + n^2 + (n+1)^2$$
(36)

Thus, the equation also work for n+1 when n works. Therefore, for all $n \in \mathbb{Z}^+$,

$$1^{2} + 2^{2} + 3^{2} + \ldots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$
 (37)

9.

Proposition 23. Define a sequence $\{a_n\}$ by $a_1 = 1$, $a_2 = 3$, and $a_{n+2} = a_{n+1} + a_n$. For all $n \ge 1$, we have

$$a_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n \tag{38}$$

Proof. We proceed by induction on n.

If n = 1, then

$$1 = a_1 \tag{39}$$

$$= \left(\frac{1+\sqrt{5}}{2}\right) + \left(\frac{1-\sqrt{5}}{2}\right) \tag{40}$$

$$=\frac{1}{2}+\frac{1}{2}\tag{41}$$

$$=1. (42)$$

Thus, the equation is correct when n = 1. If n = 2, then

$$3 = a_2 \tag{43}$$

$$= \left(\frac{1+\sqrt{5}}{2}\right)^2 + \left(\frac{1-\sqrt{5}}{2}\right)^2 \tag{44}$$

$$= \left(\frac{6+2\sqrt{5}}{4}\right) + \left(\frac{6-2\sqrt{5}}{4}\right) \tag{45}$$

$$= \frac{6}{4} + \frac{6}{4} \tag{46}$$

$$=3. (47)$$

Thus, the equation is correct when n = 2. Suppose that for some $n \ge 1$, we have

$$a_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n \tag{48}$$

$$a_{n+1} = \left(\frac{1+\sqrt{5}}{2}\right)^{n+1} + \left(\frac{1-\sqrt{5}}{2}\right)^{n+1} \tag{49}$$

We then have

$$a_{n+2} = \left(\frac{1+\sqrt{5}}{2}\right)^{n+2} + \left(\frac{1-\sqrt{5}}{2}\right)^{n+2}$$

$$= \left(\frac{1+\sqrt{5}}{2}\right)^2 \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^2 \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$= \left(\frac{3+\sqrt{5}}{2}\right) \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{3-\sqrt{5}}{2}\right) \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$= \left(1+\frac{1+\sqrt{5}}{2}\right) \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(1+\frac{1-\sqrt{5}}{2}\right) \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$= \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n + \left(\frac{1+\sqrt{5}}{2}\right) \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$= \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n + \left(\frac{1+\sqrt{5}}{2}\right)^{n+1} + \left(\frac{1-\sqrt{5}}{2}\right)^{n+1}$$

$$= \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n + \left(\frac{1+\sqrt{5}}{2}\right)^{n+1} + \left(\frac{1-\sqrt{5}}{2}\right)^{n+1}$$

$$= a_n + a_{n+1}$$

$$(56)$$

Thus, the equation is correct for n+2 if the equation is correct for n+1 and n. Since the equation is correct when n=1 and n=2, the equation is correct for all $n \geq 1$.

Therefore, for all $n \geq 1$,

$$a_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n \tag{57}$$