DIAGRAMA DE VORONOI

Diagrama de Voronoi

Voronoi (1907) Tesselagens de Dirichlet (1850) Descarte (1644) Brown (1954): Area Potentially available to a tree

Mead (1966): plant polygons

- Sítios P = $\{p_1, p_2, ..., p_n\}$
- Métrica: dist(p,q) = $sqrt((p_x-q_x)^2 + (p_y-q_y)^2)$
- Voronoi(P) subdivisao do plano em n celulas V(pi), uma para cada sitio em P, tal que a ponto q pertence a celula de um sitio pi se e

somente se dist(q, pi) < dist(q, pj) (all pj, j!=i)

Teorema

Um ponto q e' um vertice de Vor(P) se e somente se o seu maior circulo vazio Cp(q) contem 3 ou mais sitios na sua fronteira

Teorema

O bissetor entre os sitios pi e pj define uma aresta de Vor (P) se e somente se existe um ponto q tal que Cp(q) contem ambos pi e pj na sua fronteira, e mais nenhum sitio

Diagrama de Voronoi - Construcao

Construir o bissetor entre um sítio e todos os outros

Uma célula de Voronoi é a interseção de todos semiespaços definidos pelos bissetores.

Complexidade: O(nlogn) para cada célula.

Corolário: Cada célula em um diagrama de Voronoi é um polígono convexo, possivelmente não fechado

Computar diagrama de Voronoi

Usar observação que as celulas são interseções de semi-espaços

Calculo de Intersecoes de semi-espaco:

O(nlogn) para cada célula

Calculo de Voronoi (n²logn)

Pode-se fazer melhor ?
Sim, Algoritmo de Fortune (nlogn)

Sweep de Plano

- Reduz um problema n dimensional para um (n-1) dinamico
- Varrer um espaco nD por um hiperplano (n-1)D
- Manter as intersecoes do hiperplano com um subconjunto de elementos (conjunto ativo)
- Intersecoes atualizam-se continuamente com tempo, com execao de quando um evento discreto acontece, novos elementos tornam-se ativos ou deixam de ser
- Estrutura de dados:
 - Priority queue: fila de eventos futuros
 - Representacao do conjunto ativo

Algoritmo de Fortune

OBS:

- A intersecao de dois cones (referentes ao sitios p e q) e' uma curva (uma hipérbola) contida num plano vertical
- Se projetada no plano que contem p e q, e' igual ao bissetor de p e q

Curvatura de B_j maior que a curvatura de B_i

Bj := y = 1 /
$$[2(p_j,y-l_y)] * (x^2 - 2p_{j,x}x + p_{j,x}^2 + p_{j,y}^2 - l_y^2)$$

duas raízes se $p_i, p_i > l_v$

Prova Lema 3

O arco a esquerda e a direita daquele que desaparece nao pode ser o mesmo arco

Estrutura de Dados Algoritmo de Fortune

- Armazenar diagrama de Voronoi:
 - Lista de aresta duplamente encadeada
 - Usar uma "bounding box" para limitar regioes
- Armazenar frente parabolica:
 - Arvore binaria balanceada T (arcos sao folhas, pontos de parada sao nodos)
- Armazenar eventos:
 - Priority queue (eventos de sitio, circulo)

Armazenar frente parabolica

 Arvore binaria balanceada T (arcos sao folhas, pontos de parada sao nodos)

Armazenar Eventos

Priority queue:

- eventos de sitio (classificar pontos em y)
- eventos de circulo

Como definir Eventos de Circulo?

- Sejam tres arcos a,b,c consecutivos na frente parabolica
 - Definir um evento de circulo(a,b,c) se o circulo intersecta a sweep line e nao possui nenhum outro ponto dentro dele

Eventos de Sitio

HandelSiteEvent(pi)

1. Buscar em T o arco a verticalmente acima de pi, e deletar todos eventos de circulo associados a ele (ponteiros para a priority queue)

Eventos de Sitio

HandleSiteEvent(pi)

- 1. Buscar em T o arco p verticalmente acima de pi, e deletar todos eventos de circulo associados a ele (ponteiros para a priority queue)
- 2. Trocar a folha pj que representa p em T representando a por tres folhas. A folha do meio contem o sitio pi, e as outras duas contem pj. Atualizar os nodos com <pj,pi> e <pi,pj>.Rebalancear!

Eventos de Sitio

HandelSiteEvent(pi)

- 1. Buscar em T o arco p verticalmente acima de pi, e deletar todos eventos de circulo associados a ele (ponteiros para a priority queue)
- 2. Trocar a folha pj que representa p em T representando a por tres folhas. A folha do meio contem o sitio pi, e as outras duas contem pj. Atualizar os nodos com <pj,pi> e <pi,pj>.Rebalancear!
- 3. Criar registros na estrutura que contem o diagrama de voronoi para as duas semi-arestas que serao tracadas pelos 2 novos pontos de parada
- 4. Checar as triplas de arcos consecutivos involvendo um dos tres novos arcos. Inserir o evento de circulo correspondente se o circulo intersecta a linha de sweep e nao contem nenhum ponto

Eventos de Circulo

HandelCircleEvent(pl)

- 1. Buscar em T o arco p verticalmente acima de pl que esta prestes a disaparecer, e deletar todos eventos de circulo associados a ele (ponteiros para a priority queue)
- 2. Deletar a folha que representa p em T. Atualizar as tuplas representando os nodos internos. Rebalancear!
- Adicionar o centro do circulo causando o evento como um vertice de Voronoi, e criar duas semi-arestas correspondentes a este ponto de parada. Atualizar os ponteiros.
- 4. Checar as triplas de arcos consecutivos involvendo o desaparecimento de do arco. Inserir o evento de circulo correspondente se o circulo intersecta a linha de sweep e nao contem nenhum ponto

Algoritmo

Algoritmo VORONOIDIAGRAM(P)

ENTRADA: Um conjunto de pontos P {p1, p2, ..., pn} no plano

SAIDA: O diagrama de Voronoi VOR(P) dentro de uma bounding box numa lista de arestas duplamente encadeadas

- 1. Inicializar a lista de eventos Q com todos eventos de sitio
- 2. WHILE Q nao e' vazia
- 3. DO Considere o evento com maior coordenada y
- 4. IF evento e um evento de sitio, ocorrendo em pi
- 5. HandleSiteEvent(pi)
- 6. ELSE HandleCircleEvent(pl), one pl e' o ponto mais baixo do circulo causando o evento
- 7. Calcular uma bounding box que contem todos os vertices do diagrama de voronoi, e fechar as semi-arestas que estao abertas
- 8. Percorrer a lista de semi-arestas para adicionar os registros de adjacencia de/para por celula

Complexidade

LEMA: O algoritmo roda em O(nlogn) e usa O(n) de memoria

- Classificacao em Y: O(nlogn)
- Estrutura de dados
 - Operacoes em T: O(logn)
 - Operacoes na lista de aresta: constante
 - Operacoes na fila de eventos: O(logn)
 - Operacoes em eventos: constante
- Custo de um evento: O(logn)
- n eventos de sitio
- numero de eventos de circulo: 2n-5 no maximo

Eixo Medial

Diagrama de Voronoi: Conjunto de pontos que o sitio mais proximo nao e' unico (2 ou mais)

Eixo Medial de um poligono P: Conjunto de pontos que e' equidistante a mais de um ponto na fronteira de P (centros dos circulos maximais)

Aplicações

Planejamento de Movimento

Planejamento de movimento

Buffer de distancia usado como campo de atracao

