JEE MAINS

1

EE1030 MARCH 17 - SHIFT - 2

Homa Harshitha Vuddanti (EE24BTECH11062)

QUESTIONS- 16 TO 30 SECTION A

a) 360

a) 0

a) 1124

expansion is equal to

1)	If the sides	AB, BC,	and CA	of a tri	iangle AB	C have,	3, 5	and 6	interior j	points
	respectively,	then the	total nur	mber of	triangles	that can	be co	onstructe	ed using	these
	points as vertices is equal to:									

2) The value of $\lim_{r\to\infty} [r] + [2r] + \dots [nr] / [n^2]$, where r is a non-zero number and

[r] denotes the greatest integer less than or equal to r, is equal to :

c) 333

c) r/2

c) 1324

d) 364

d) 2r

d) 1024

b) 240

b) *r*

b) 924

3) The value of $\sum_{r=0}^{6} {\binom{6}{r}} {\binom{6}{r}} {\binom{6}{6}} {\binom{6}{6}} {\binom{6}{6}}$ is equal to :

4)	Two tangents are drawn from a point P to the circle $x^2 + y^2 - 2x - 4y + 4 = 0$, such that the angle between these tangents is $\tan^{-1}(12/5)$, where $\tan^{-1}(12/5) \in (0, \pi)$. If the centre of the circle is denoted by C and these tangents touch the circle at points A and B , then the ratio of the areas of $\triangle PAB$ and $\triangle CAB$ is:									
	a) 11:4	b) 9:4	c) 2:1	d) 3:1						
5)	The number of solutions of the equation $\sin^{-1} \left[x^2 + (1/3) \right] + \cos^{-1} \left[x^2 - (2/3) \right] = x^2$ for $x \in [-1, 1]$, and $[x]$ denotes the greatest integer less than or equal to x , is:									
	a) 0	b) 2	c) 4	d) infinite						
	SECTION B									

6) Let the coefficients of third, fourth and fifth terms in the expansion of $\left[x + \left(a/x^2\right)\right]^n$, $x \neq 0$ be in the ratio 12:8:3. Then the term independent of x in the

- 7) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $B = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ such that AB = B and a + d = 2021, then the value of ad bc is equal to
- 8) Let $f: [-1,1] \mapsto R$ be defined as $f(x) = ax^2 + bx + c$ for all $x \in [-1,1]$, where $a,b,c \in R$ such that f(-1) = 2, f'(-1) = 1 and for $x \in [-1,1]$ the maximum value of f''(x) is 1/2. If $f(x) \le \alpha, x \in [-1,1]$, then least value of α is equal to
- 9) Let $I_n = \int_1^e x^{19} (\log |x|)^n dx$, where $n \in \mathbb{N}$. If $20(I_{10}) = \alpha I_9 + \beta I_8$, for natural numbers α and β , then $\alpha \beta$ is equal to
- 10) Let $f: [-3, 1] \mapsto R$ be given as $f(x) = \begin{cases} min[(x+6, x^2)], -3 \le x \le 0 \\ max[\sqrt{x}, x^2], 0 \le x \le 1 \end{cases}$ If the area bounded by y = f(x) and x-axis is A, then the value of 6A is equal to
- 11) Let **x** be a vector in the plane containing vectors a = 2i j + k and b = i + 2j k. If the vector **x** is perpendicular to (3i + 2j k) and its projection on a is $17\sqrt{6}/2$, then the value of x^2 is equal to
- 12) Consider a set of 3n numbers having variance 4. In this set, the mean of the first 2n numbers is 6 and the mean of the remaining n numbers is 3. A new set is constructed by adding 1 into each of the first 2n numbers and subtracting 1 from each of the remaining n numbers. If the variance of the new set is k, then 9k is equal to
- 13) If 1, $log_{10}(4^x 2)$ and $log_{10}(4^x + (18/5))$ are in arithmetic progression for a real number x, then the value of the determinant $\begin{bmatrix} 2[x (1/2)] & x 1 & x^2 \\ 1 & 0 & x \\ x & 1 & 0 \end{bmatrix}$ is equal to
- 14) Let **P** be an arbitary point having the sum of squares of the distances from the planes x + y + z = 0, lx nz = 0 and x 2y + z = 0, equal to 9. If the locus of the point **P** is $x^2 + y^2 + z^2 = 9$ then the value of l n is equal to
- 15) Let $\tan \alpha$, $\tan \beta$ and $\tan \gamma$; $\alpha, \beta, \gamma \neq [2n-1]\pi/2, n \in N$ be the slopes of three-line segment OA, OB and OC, respectively, where **O** is origin. If the circumcentre of triangle ABC coincides with the origin and its orthocentre lies on y-axis, then the value of $[(\cos 3\alpha + \cos 3\beta + \cos 3\gamma)/(\cos \alpha * \cos \beta * \cos \gamma)]^2$ is equal to