

Crop Module 2 AquaCrop input requirements

Jorge Alvar-Beltrán (13-14 December, 2022)

Content

Day 1 (introduction to AquaCrop)

- ➤ How do crop models work?
- > AquaCrop interface
- > AquaCrop: climate and crop modules (first two modules)

Day 2 (Introduction to AquaCrop)

- AquaCrop: management and soil modules (last three modules)
- > Run simulations and interpret outputs

Days 2-3 (Running your own simulation-standard mode)

- ➤ Input requirements (details)
- Create/import climatic files on AquaCrop

AquaCrop input requirements: climatic information

Input variables	Yes/No	Frequency	
Precipitation	Yes	Daily, dekadal, monthly	
Temperature (max/min)	Yes	Daily, dekadal, monthly	
Reference evapotranspiration	Yes/pre-computed Daily, del		
Relative humidity	+	Daily, dekadal, monthly	
Solar radiation	+	Daily, dekadal, monthly	
Wind speed	+	Daily, dekadal, monthly	
CO ₂ concentrations (RCPs 4.5, 8.5 etc.)	Available	Daily, dekadal, monthly	

AquaCrop input requirements: crop information

Input variables	Yes/No	Frequency	
Planting date	Yes	Once	
Plant density	Yes	Once	
Planting method	Yes	Once	
Maximum canopy cover	Yes	Once	
Time to emergence	gence Yes		
Time to & duration flowering	Yes	Once	
Start of canopy senescence	Yes	Once	
Crop coefficient	Yes	Once	

AquaCrop input requirements: crop information

Input variables	Yes/No	Frequency	
Time to maturity	Yes	Once	
Length building up harvest index	+	Once	
Crop water productivity	+	Once	
Harvest index	Yes	Once	
Root depth	+	Once	
Time for maximum root depth	+	Once	

AquaCrop input requirements: soil information

Input variables	Yes/No	Frequency	
Soil texture	Yes/Available	Once	
Soil water content (SAT, FC, PWP)	Available	Once	
Effective soil depth	+	Once	
Soil coarse material	+	Once	
Drainage	+	Once Once	
Electrical conductivity	+		
Groundwater table (depth)	+	Once	
Groundwater table (salinity)	+	Once	

AquaCrop input requirements: management info.

Input variables	Yes/No	Frequency
Soil fertility	+	Once
Cover & type of soil mulches	+	Once
Height of soil bunds	+	Once
Surface runoff	+	Once
Irrigation method	Yes (if irrigated)	Once
Application depth	Yes (if irrigated)	At each event
Time of irrigation	Yes (if irrigated)	At each event
Salinity of the irrigation	+	Once

Crop Module 2 Creating Climate files

Jorge Alvar-Beltrán (14 December 2022)

Data used in this session

Climate module: create our own climatic files (daily values) for Cahul from 01-01-1981 until 31-12-2099.

- ➤ W5E5 reanalysis dataset for the 1981-2019 period.
- > 3 GCMs and 1 RCM for the 2017-2099 period.
- ➤ Climatic variables: maximum temperature (Tmax), minimum temperature (Tmin), precipitation (pr), relative humidity (hurs), incoming solar radiation (rsds), and wind.

Preparing the CSV climatic files

Step 1: select column A

Step 2: click the **Data tab** in the upper toolbar and, afterwards, click in **Text to Columns**

Step 3: click on **Delimited** and then **Next**

Preparing the CSV climatic files

Step 1: use the **comma** delimiter and click **next**

Step 2: click on Finish

Preparing the CSV climatic files

	А	В	С	D	Е	F	G
1	date	pr	tasmax	tasmin	hurs	rsds	wind
2	01/01/1981	0.270277	4.269403	-2.28593	85.64541	69.28078	3.559344
3	02/01/1981	0.232689	4.60235	-2.4968	69.63737	52.84223	2.467908
4	03/01/1981	0	2.215692	-4.69871	72.74857	62.67333	5.008201
5	04/01/1981	0.054097	8.265314	0.134424	69.73475	43.36867	5.121006
6	05/01/1981	10.63212	3.869409	-2.11362	95.49066	6.969299	4.043364
7	06/01/1981	0.70871	-1.21284	-8.17057	71.7302	51.26839	4.866427
8	07/01/1981	0	-3.5734	-9.91904	69.36516	63.95563	2.197811
9	08/01/1981	0.133138	-7.78684	-12.3257	70.61763	50.92559	7.635903
10	09/01/1981	5.583599	-7.86521	-11.791	69.8418	21.04847	8.05459
11	10/01/1981	1.17964	-5.21836	-9.3939	81.0966	36.72312	6.155998
12	11/01/1981	0.268852	-1.79011	-6.25468	84.75831	46.02105	3.911297
13	12/01/1981	0	-0.09626	-9.94337	75.75529	78.40405	2.457665
14	13/01/1981	0	3.345514	-7.92545	80.71899	78.12139	2.955726
15	14/01/1981	1.668465	4.676874	-3.12586	95.45256	35.86298	2.70344
16	15/01/1981	0.11373	0.611292	-1.86671	91.05134	37.75271	3.599279
17	16/01/1981	3.312861	1.723077	-2.87607	86.69245	50.41782	3.633309
18	17/01/1981	3.561419	-0.21335	-2.71229	80.27169	31.47913	5.007537
19	18/01/1981	6.018313	-0.91318	-4.31336	89.34341	43.91905	2.304129
20	19/01/1981	2.748434	-1.40449	-5.48173	94.21231	37.47017	2.712278
21	20/01/1981	16.59441	0.065851	-3.08768	98.52326	15.13902	3.951653
22	21/01/1981	0.206969	0.161829	-2.27997	94.21584	34.36092	2.758116
23	22/01/1981	0.597494	-0.6735	-2.57889	92.31093	30.59136	4.915166
24	23/01/1981	0	0.034174	-2.35416	93.94133	40.33419	5.871572

Step 1: delete the first row and column (AquaCrop struggles to read text)

Remember that the new columns correspond to:

- A) pr: precipitation (mm/day)
- B) Tasmax: maximum temperatures (°C)
- C) Tasmin: minimum temperatures (°C)
- D) Hurs: mean relative humidity (%)
- E) Rsds: incoming solar radiation (w/m²)
- F) Wind: average wind speed (m/s)

Saving the climatic files in the right format

Step 1: save the CSV file as type "Text (Tab delimited)"

Create/import climatic files

		SR	WS	RH	Prec.	Tmin	Tmax	Date	Year
Daily va		129.5	1.6	81.45	0	1.25	19.1	1	2006
Daily va		148.5	1.8	62.9	0	4.3	23.5	2	2006
		178.1	1.9	53.45	0	2.25	23.5	3	2006
		177.9	2	64.35	0	3	20	4	2006
		174.8	2	52.7	0	5.3	22.5	5	2006
Tl	1	182	1.8	46.2	0	2.85	21.6	6	2006
The mo		180.1	2.1	49.2	0	3.35	22.6	7	2006
estimati		175.3	2.2	57.45	0	2.2	21	8	2006
estimati		184.1	2.1	63.1	0	1.85	21	9	2006
		186.2	2.2	65.55	0	2.3	17.2	10	2006
		185.6	2.1	64.85	0	4.9	20.2	11	2006
		155.6	1.9	75.25	0	4.65	16.1	12	2006
	_	141.2	1.8	89	0	4.9	14.7	13	2006
and re		175.8	2.1	89.65	0	4.55	14.6	14	2006
£		192.3	2.3	86.35	0	5.1	13.5	15	2006
from cro		167.1	2.4	80.5	0	5.85	16.9	16	2006
		194.1	2	63.75	0	5.75	20.1	17	2006
		195.2	1.8	61.1	0	4.85	18.2	18	2006
		195.7	1.9	54.2	0	7.55	21.1	19	2006
		182.2	2.2	49.55	0	5.7	21	20	2006
AquaCro		174.2	2.3	55.9	0	4.4	19.1	21	2006
-1		179.4	1.9	59.95	0	6.2	19.6	22	2006
		142.7	1.9	69.75	0	3.9	16	23	2006
		200.9	2.2	76.8	0	2.35	13.5	24	2006
		185.2	2.1	81.2	0	3.35	13.5	25	2006
AquaCro		166.9	2.3	80.6	0	5.1	13.6	26	2006
Aquacit		146.5	1.9	80.25	0	5.45	14.9	27	2006
		204.5	1.8	75	0	6.3	15.1	28	2006
		195.3	1.7	78.7	0	6.8	15.8	29	2006
		204.5	1.9	75.85	0	8.2	16.4	30	2006
		190.6	2	79.4	0	8.35	17.8	31	2006
		215.6	1.8	78.35	0	7.75	18.8	32	2006
		199.8	1.9	83.65	0	7.95	16.9	33	2006
		203.1	1.8	80.1	0	9.65	17.4	34	2006

- Daily values are introduced in AquaCrop as txt. format
- The more climatic variables you have the better it is, as ETo estimations will be closer to reality...
- ...and remember: AquaCrop calculates biomass production from crop transpiration.
- AquaCrop does neither read blank cells nor text
- AquaCrop has default CO₂ files from 1900 until 2100

Open txt. file on AquaCrop

Step 1: copy paste the txt file into AquaCrop folder **IMPORT**

,

Step 2: open AquaCrop and click on Start

Step 3: open the **climate** module and click on **Select/Create Climate file**

Step 1: click on **Import/Create** climatic file

Step 2: select Cahul_MOHC-HadGEM 2.6 and click on Import/Create

Step 1: double click on the file named Cahul MOHCHadGEM-ES rcp26

Double check that no errors appear in red (e.g., AquaCrop cannot read text, rows missing, blank cells etc.)

Step 1: click on **Time range** and specify the frequency of climate observations/projections. In our case **Daily**.

Step 2: select the starting (01/01/1981) and end period (29/12/2099) of daily climatic information

Remember that the new columns correspond to:

- A) pr: precipitation (mm/day)
- B) Tasmax: maximum temperatures (°C)
- C) Tasmin: minimum temperatures (°C)
- D) Hurs: mean relative humidity (%)
- E) Rsds: incoming solar radiation (w/m²)
- F) Wind: average wind speed (m/s)

Create a climatic file (rain & Tmax)

Step 1: click on the first column (**blank cell**), then select the **rain tab** and **rain (mm)**. Finally, click on **close**

Step 2: click on the second column (blank cell), then select the temperature tab and Tmax (°C). Finally, click on close

Create a climatic file (Tmin & RH)

Step 3: click on the third column (blank cell), then select the temperature tab and Tmin (°C). Finally, click on close

Step 4: click on the fourth column (**blank cell**), then select the **Humidity tab** and **RH mean (%)**. Finally, click on **close**

Create a climatic file (solar radiation & wind)

Step 5: click on the fifth column (blank cell), then select the sunshine/radiation tab and solar or shortwave radiation (w/m²). Finally, click on close

Step 6: click on the sixth column (blank cell), then select the wind tab and wind speed (m/s). Finally, click on close

Update data ranges exceeding limits

Now you can visualize all the imported parameters as well as the data ranges for each of these variables

Steps 1-2: change the lower limit of Tmin to -30°C and the upper limit of wind speed to 11m/s. Finally, click on save and close

Introduce coordinates

As you can see, all the imported parameters have been succesfully introduced!

Step 1: since we are preparing the climatic file for **Cahul**, change the **altitude** to **37** masl and the **latitude** to **45** degrees and **53** minutes.

Import climatic data into AquaCrop

Select the rain file

Step 1. Name the climatic file as Cahul_MOHC-HadGEM2-ES_rcp26
Step 2. Click on Rain and Select File from Rain Database

Step 3. Select the correct rain file named: Cahul_MOHC-HadGEM2-ES_rcp26: daily rainfall

Select the ETo and Temp files

Step 1. Click on **Eto**, select file from **ETo Database** and **accept selection**

Remember that the file is named: Cahul_MOHC-HadGEM2-ES_rcp26: daily ETo data

Step 2. Click on **Temp**, select file from **Temp Database** and **accept selection**

Remember that the file is named: Cahul_MOHC-HadGEM2-ES_rcp26: daily temperature data

Select the CO₂ file and create climate file

Step 1. Click on CO₂ and select RCP 2.6-CO₂ from database

Step 2. Click on Create climate file

Visualize the climatic results for Cahul

Step 1. Click on the climate module and select Cahul_MOHC-HadGEM2-ES_rcp26

Step 1. In **description** verify that the climate files are the right ones

Step 2. Click on the rainfall tab and on yearly totals

Step 3. Visualize the rainfall data → then close

Visualize the climatic results for Cahul

Step 4. Click on the **ETo** tab and visualize the ETo data → then **close**

Step 5. Click on the **Temperature** tab and visualize the temperature data → then **close**

Climatic data

Step 5. Click on the CO_2 tab and visualize the CO_2 data for RCP 2.6 \rightarrow then click on Main Menu

Take away messages

- Creating climatic files in AquaCrop its a long, but straightforward process.
- > If the user wants to produce daily simulations, daily weather values are required.
- > To compute ETo, the user needs at least three input climatic parameters (precipitation, Tmax and Tmin).
- > The maximum number of climatic parameters is six.
- AquaCrop automatically computes missing parameters (e.g., wind speed or relative humidity) necessary for running the Penman Monteith equation.
- > It is important to use the right naming when saving the climatic files.
- \triangleright AquaCrop automatically produces visuals for precipitation, ETo, temperature and CO₂.

Thank you!

Contact details: jorge.alvarbeltran@fao.org riccardo.soldan@fao.org