Рекурсия

Трифон Трифонов

Увод в програмирането, спец. Компютърни науки, 1 поток, спец. Софтуерно инженерство, 2016/17 г.

21 декември 2016 г. – 11 януари 2017 г.

N. Wirth, Algorithms and Data Structures, Fig 3.1

• Повторение чрез позоваване на себе си

2 / 16

- Повторение чрез позоваване на себе си
- "приятелите на моите приятели са и мои приятели"

- Повторение чрез позоваване на себе си
- "приятелите на моите приятели са и мои приятели"
- директориите съдържат файлове и директории

- Повторение чрез позоваване на себе си
- "приятелите на моите приятели са и мои приятели"
- директориите съдържат файлове и директории
- PHP = PHP Hypertext preprocessor

- Повторение чрез позоваване на себе си
- "приятелите на моите приятели са и мои приятели"
- директориите съдържат файлове и директории
- PHP = PHP Hypertext preprocessor
- за да строшите камък:

- Повторение чрез позоваване на себе си
- "приятелите на моите приятели са и мои приятели"
- директориите съдържат файлове и директории
- PHP = PHP Hypertext preprocessor
- за да строшите камък:
 - ударете с чука, за да натрошите камъка на части

- Повторение чрез позоваване на себе си
- "приятелите на моите приятели са и мои приятели"
- директориите съдържат файлове и директории
- PHP = PHP Hypertext preprocessor
- за да строшите камък:
 - ударете с чука, за да натрошите камъка на части
 - строшете получените по-малки камъни

- Повторение чрез позоваване на себе си
- "приятелите на моите приятели са и мои приятели"
- директориите съдържат файлове и директории
- PHP = PHP Hypertext preprocessor
- за да строшите камък:
 - ударете с чука, за да натрошите камъка на части
 - строшете получените по-малки камъни
- за да разберете какво е рекурсия, трябва да разберете какво е рекурсия

$$n! = \begin{cases} 1, & n = 0, \\ n(n-1)!, & n > 0. \end{cases}$$

$$n! = \begin{cases} 1, & n = 0, \\ n(n-1)!, & n > 0. \end{cases}$$
$$x^{n} = \begin{cases} 1, & n = 0, \\ x.x^{n-1}, & n > 0, \\ \frac{1}{x^{-n}}, & n < 0. \end{cases}$$

$$n! = \begin{cases} 1, & n = 0, \\ n(n-1)!, & n > 0. \end{cases}$$

$$x^{n} = \begin{cases} 1, & n = 0, \\ x.x^{n-1}, & n > 0, \\ \frac{1}{x^{-n}}, & n < 0. \end{cases}$$

$$gcd(a,b) = \begin{cases} a, & a = b, \\ gcd(a-b,b), & a > b, \\ gcd(a,b-a), & a < b. \end{cases}$$

$$n! = \begin{cases} 1, & n = 0, \\ n(n-1)!, & n > 0. \end{cases}$$

$$x^{n} = \begin{cases} 1, & n = 0, \\ x.x^{n-1}, & n > 0, \\ \frac{1}{x^{-n}}, & n < 0. \end{cases}$$

$$gcd(a,b) = \begin{cases} a, & a = b, \\ gcd(a-b,b), & a > b, \\ gcd(a,b-a), & a < b. \end{cases}$$

$$f(x) = \begin{cases} 0, & x = 0, \\ f(x+1) - 1, & x > 0. \end{cases}$$

 Декомпозиция — свеждане на дадена задача към множество от по-прости задачи

- Декомпозиция свеждане на дадена задача към множество от по-прости задачи
- Рекурсията е вид декомпозиция, при който свеждаме задача към множество от по-прости задачи подобни на първоначалната

- Декомпозиция свеждане на дадена задача към множество от по-прости задачи
- Рекурсията е вид декомпозиция, при който свеждаме задача към множество от по-прости задачи подобни на първоначалната
- Как работи:

- Декомпозиция свеждане на дадена задача към множество от по-прости задачи
- Рекурсията е вид декомпозиция, при който свеждаме задача към множество от по-прости задачи подобни на първоначалната
- Как работи:
 - Показваме решението на най-простите задачи (база, дъно)

- Декомпозиция свеждане на дадена задача към множество от по-прости задачи
- Рекурсията е вид декомпозиция, при който свеждаме задача към множество от по-прости задачи подобни на първоначалната
- Как работи:
 - Показваме решението на най-простите задачи (база, дъно)
 - Показваме как по-сложна задача се свежда към една или няколко по-прости (стъпка)

Дефиниция

Математическата индукция е метод за доказателство, използващ като предпоставка свойството, което се доказва.

Дефиниция

Математическата индукция е метод за доказателство, използващ като предпоставка свойството, което се доказва.

Пример: Да се докаже, че 2 + 4 + ... + 2n = n(n+1).

Дефиниция

Математическата индукция е метод за доказателство, използващ като предпоставка свойството, което се доказва.

Пример: Да се докаже, че 2 + 4 + ... + 2n = n(n+1).

Доказателство:

• за n=0: трябва да проверим, че 0=0.1 \checkmark

Дефиниция

Математическата индукция е метод за доказателство, използващ като предпоставка свойството, което се доказва.

Пример: Да се докаже, че 2 + 4 + ... + 2n = n(n+1).

- ullet за n=0: трябва да проверим, че 0=0.1 \checkmark
- нека допуснем, че сме доказали свойството за дадено п

Дефиниция

Математическата индукция е метод за доказателство, използващ като предпоставка свойството, което се доказва.

Пример: Да се докаже, че 2 + 4 + ... + 2n = n(n+1).

- ullet за n=0: трябва да проверим, че 0=0.1 \checkmark
- нека допуснем, че сме доказали свойството за дадено п
- ullet ще го докажем за n+1:

Дефиниция

Математическата индукция е метод за доказателство, използващ като предпоставка свойството, което се доказва.

Пример: Да се докаже, че 2 + 4 + ... + 2n = n(n + 1).

- ullet за n=0: трябва да проверим, че 0=0.1 \checkmark
- нека допуснем, че сме доказали свойството за дадено п
- ullet ще го докажем за n+1:
- (2+4+...+2n)+2(n+1)=n(n+1)+2(n+1)=(n+1)(n+2) \checkmark

Дефиниция

Математическата индукция е метод за доказателство, използващ като предпоставка свойството, което се доказва.

Пример: Да се докаже, че 2 + 4 + ... + 2n = n(n + 1).

- ullet за n=0: трябва да проверим, че 0=0.1 \checkmark
- нека допуснем, че сме доказали свойството за дадено п
- ullet ще го докажем за n+1:
- (2+4+...+2n)+2(n+1)=n(n+1)+2(n+1)=(n+1)(n+2) \checkmark
- Следователно: доказахме свойството за произволно n.

Дефиниция

Математическата индукция е метод за доказателство, използващ като предпоставка свойството, което се доказва.

Пример: Да се докаже, че 2 + 4 + ... + 2n = n(n + 1).

Доказателство:

- за n=0: трябва да проверим, че 0=0.1 \checkmark
- нека допуснем, че сме доказали свойството за дадено п
- ullet ще го докажем за n+1:
- (2+4+...+2n)+2(n+1)=n(n+1)+2(n+1)=(n+1)(n+2)
- Следователно: доказахме свойството за произволно n.

Математическата индукция е рекурсивен метод за доказателство.

Рекурсията в програмирането

Дефиниция

Рекурсивна функция наричаме функция, която извиква себе си пряко или косвено.

Рекурсията в програмирането

Дефиниция

Рекурсивна функция наричаме функция, която извиква себе си пряко или косвено.

Рекурсивни функции се поддържат от почти всички съвременни езици за програмиране.

Рекурсията в програмирането

Дефиниция

Рекурсивна функция наричаме функция, която извиква себе си пряко или косвено.

Рекурсивни функции се поддържат от почти всички съвременни езици за програмиране.

Теорема

Всяка програма с цикли може да се напише с рекурсия и обратно.

Примери за рекурсивни функции

Да се напише функция, която пресмята рекурсивно:

● n!

Стекови рамки на рекурсивни функции

main n 4 cout << fact(4);

◆□▶ ◆圖▶ ◆불▶ ◆불▶ ○월 ○ જ)

Стекови рамки на рекурсивни функции

fact		адрес на връщане	
	n	4	
main	n	4	

return 4 * fact(3);
cout << fact(4);</pre>

Стекови рамки на рекурсивни функции

				_	
	fact		адрес на връщане	return 3 *	
_		n	3		
	fact		адрес на връщане	return 4 *	
_		n	4		
	main	n	4	cout << 1	£

fact(2); fact(3); act(4);

fact		адрес на връщане	1
	n	2	
fact		адрес на връщане] 1
	n	3	
fact		адрес на връщане] 1
	n	4	
main	n	4	
			•

```
return 2 * fact(1);
return 3 * fact(2);
return 4 * fact(3);
    cout << fact(4);</pre>
```

			_
fact		адрес на връщане	<pre>return 1 * fact(0);</pre>
	n	1	
fact		адрес на връщане	<pre>return 2 * fact(1);</pre>
	n	2	
fact		адрес на връщане	<pre>return 3 * fact(2);</pre>
	n	3	
fact		адрес на връщане	<pre>return 4 * fact(3);</pre>
	n	4	
main	n	4	<pre>cout << fact(4);</pre>
		<u> </u>	

			_	
fact		адрес на връщане	return 1;	
	n	0		
fact		адрес на връщане	<pre>return 1 * fact(0);</pre>	
	n	1		
fact		адрес на връщане	<pre>return 2 * fact(1);</pre>	
	n	2		
fact		адрес на връщане	<pre>return 3 * fact(2);</pre>	
	n	3		
fact		адрес на връщане	<pre>return 4 * fact(3);</pre>	
	n	4		
main	n	4	<pre>cout << fact(4);</pre>	

fact		адрес на връщане	
	n	1	
fact		адрес на връщане	re
	n	2	
fact		адрес на връщане	re
	n	3	
fact		адрес на връщане	re
	n	4	
main	n	4	·
			-

```
return 1 * 1;
return 2 * fact(1);
return 3 * fact(2);
return 4 * fact(3);
cout << fact(4);</pre>
```

fact		адрес на връщане
	n	2
fact		адрес на връщане
	n	3
fact		адрес на връщане
	n	4
main	n	4

```
return 1 * 2;
return 3 * fact(2);
return 4 * fact(3);
cout << fact(4);</pre>
```

fact		адрес на връщане
	n	3
fact		адрес на връщане
	n	4
main	n	4

return 3 * 2;
return 4 * fact(3);
cout << fact(4);</pre>

			_
fact		адрес на връщане	
	n	4	
main	n	4	c

return 4 * 6;

cout << fact(4);</pre>

main n 4 cout << 24;

- 0 n!
- НОД

- n!
- НОД
- \circ x^n

- **●** n!
- НОД
- \circ x^n
- числата на Фибоначи

- **●** n!
- НОД
- \circ x^n
- числата на Фибоначи
- числата на Фибоначи, но по-бързо.

- **●** n!
- НОД
- 4 числата на Фибоначи
- числата на Фибоначи, но по-бързо.
- <uspas> със скоби, където
 - <израз> ::= <цифра> | (<израз><операция><израз>)
 - <цифра> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
 - <oперация> ::= + | | * | /

Да се напише функция, която чрез рекурсия

намира сума на елементите на масив

- намира сума на елементите на масив
- 2 проверява дали елемент съществува в масив

- намира сума на елементите на масив
- проверява дали елемент съществува в масив
- 🗿 проверява дали елементите на масив са подредени в растящ ред

- намира сума на елементите на масив
- проверява дали елемент съществува в масив
- 🧿 проверява дали елементите на масив са подредени в растящ ред
- проверява дали елементите на масив са различни

- намира сума на елементите на масив
- проверява дали елемент съществува в масив
- 🧿 проверява дали елементите на масив са подредени в растящ ред
- 💿 проверява дали елементите на масив са различни
- сортира масив с алгоритъма за "бързо сортиране"

Избираме елемент от масива ("oc")

- Избираме елемент от масива ("oc")
- Разделяме масива на две части:

- Избираме елемент от масива ("oc")
- Разделяме масива на две части:
 - елементи по-малки от оста

- Избираме елемент от масива ("oc")
- 2 Разделяме масива на две части:
 - елементи по-малки от оста
 - елементи по-големи или равни на оста

- Избираме елемент от масива ("oc")
- 2 Разделяме масива на две части:
 - елементи по-малки от оста
 - елементи по-големи или равни на оста
- 🗿 поставяме оста между двете части на масива

- Избираме елемент от масива ("oc")
- 2 Разделяме масива на две части:
 - елементи по-малки от оста
 - елементи по-големи или равни на оста
- поставяме оста между двете части на масива
- рекурсивно сортираме поотделно двете части на масива

- Избираме елемент от масива ("oc")
- 2 Разделяме масива на две части:
 - елементи по-малки от оста
 - елементи по-големи или равни на оста
- поставяме оста между двете части на масива
- рекурсивно сортираме поотделно двете части на масива

Този подход за решение се нарича "разделяй и владей".

Видове задачи за търсене:

• директно изброяване на кандидатите за решение

- директно изброяване на кандидатите за решение
 - имаме предварително зададена последователност за обработка на всички случаи

- директно изброяване на кандидатите за решение
 - имаме предварително зададена последователност за обработка на всички случаи
 - Примери: търсене на елемент в масив, търсене на число с дадено свойство

- директно изброяване на кандидатите за решение
 - имаме предварително зададена последователност за обработка на всички случаи
 - Примери: търсене на елемент в масив, търсене на число с дадено свойство
- построяване на частични кандидати за решение

- директно изброяване на кандидатите за решение
 - имаме предварително зададена последователност за обработка на всички случаи
 - Примери: търсене на елемент в масив, търсене на число с дадено свойство
- построяване на частични кандидати за решение
 - нямаме ясна последователност за обработка на случаите

- директно изброяване на кандидатите за решение
 - имаме предварително зададена последователност за обработка на всички случаи
 - Примери: търсене на елемент в масив, търсене на число с дадено свойство
- построяване на частични кандидати за решение
 - нямаме ясна последователност за обработка на случаите
 - **Примери:** търсене на път в лабиринт, решаване на Судоку, игра на шах

Търсене с проба и грешка:

• започваме от началната позиция

- започваме от началната позиция
- кои са вариантите да продължим напред?

- започваме от началната позиция
- кои са вариантите да продължим напред?
 - няколко са, правим избор на един от тях (проба, стъпка напред)

- започваме от началната позиция
- кои са вариантите да продължим напред?
 - няколко са, правим избор на един от тях (проба, стъпка напред)
 - няма такива, отказваме се от текущия вариант и се връщаме да коригираме последния направен избор (грешка, стъпка назад)

- започваме от началната позиция
- кои са вариантите да продължим напред?
 - няколко са, правим избор на един от тях (проба, стъпка напред)
 - няма такива, отказваме се от текущия вариант и се връщаме да коригираме последния направен избор (грешка, стъпка назад)
- ако намерим търсеното решение: успех!

Търсене с връщане назад (backtracking)

Търсене с проба и грешка:

- започваме от началната позиция
- кои са вариантите да продължим напред?
 - няколко са, правим избор на един от тях (проба, стъпка напред)
 - няма такива, отказваме се от текущия вариант и се връщаме да коригираме последния направен избор (грешка, стъпка назад)
- ако намерим търсеното решение: успех!
- ако изчерпим всички варианти: провал!

Задача. Матрица от символи представя правоъгълен лабиринт:

- □ празна клетка
- * стена
- \$ съкровище

Можем ли да стигнем до съкровището?

Задача. Матрица от символи представя правоъгълен лабиринт:

- □ празна клетка
- * стена
- \$ съкровище

Можем ли да стигнем до съкровището?

Решение:

• започваме от началната позиция

Задача. Матрица от символи представя правоъгълен лабиринт:

- □ празна клетка
- * стена
- \$ съкровище

Можем ли да стигнем до съкровището?

- започваме от началната позиция
- оглеждаме се на север, изток, юг и запад

Задача. Матрица от символи представя правоъгълен лабиринт:

- □ празна клетка
- * стена
- \$ съкровище

Можем ли да стигнем до съкровището?

- започваме от началната позиция
- оглеждаме се на север, изток, юг и запад
 - избираме една от посоките и стъпваме там, ако можем (проба)

Задача. Матрица от символи представя правоъгълен лабиринт:

- □ празна клетка
- * стена
- \$ съкровище

Можем ли да стигнем до съкровището?

- започваме от началната позиция
- оглеждаме се на север, изток, юг и запад
 - избираме една от посоките и стъпваме там, ако можем (проба)
 - като изчерпим всички посоки се **връщаме** на предишното кръстовище да изберем нова посока (грешка)

Задача. Матрица от символи представя правоъгълен лабиринт:

- □ празна клетка
- * стена
- \$ съкровище

Можем ли да стигнем до съкровището?

- започваме от началната позиция
- оглеждаме се на север, изток, юг и запад
 - избираме една от посоките и стъпваме там, ако можем (проба)
 - като изчерпим всички посоки се **връщаме** на предишното кръстовище да изберем нова посока (грешка)
- ако стигнем до съкровището: успех!

Задача. Матрица от символи представя правоъгълен лабиринт:

- □ празна клетка
- * стена
- \$ съкровище

Можем ли да стигнем до съкровището?

Решение:

- започваме от началната позиция
- оглеждаме се на север, изток, юг и запад
 - избираме една от посоките и стъпваме там, ако можем (проба)
 - като изчерпим всички посоки се връщаме на предишното кръстовище да изберем нова посока (грешка)
- ако стигнем до съкровището: успех!
- ако се върнем обратно в началото: провал!

14 / 16

Предимства:

√ силна изразителност

- ✓ силна изразителност
- √ хубави математически свойства

- √ силна изразителност
- √ хубави математически свойства
- ✓ удобна за задачи с рекурсивна постановка

- √ силна изразителност
- √ хубави математически свойства
- √ удобна за задачи с рекурсивна постановка
- ✓ удобна за търсене с връщане назад (backtracking)

- ✓ силна изразителност
- √ хубави математически свойства
- ✓ удобна за задачи с рекурсивна постановка
- ✓ удобна за търсене с връщане назад (backtracking)
- ✓ удобна за алгоритми от тип "разделяй и владей"

Предимства:

- √ силна изразителност
- √ хубави математически свойства
- √ удобна за задачи с рекурсивна постановка
- ✓ удобна за търсене с връщане назад (backtracking)
- ✓ удобна за алгоритми от тип "разделяй и владей"

Предимства:

- √ силна изразителност
- √ хубави математически свойства
- ✓ удобна за задачи с рекурсивна постановка
- ✓ удобна за търсене с връщане назад (backtracking)
- ✓ удобна за алгоритми от тип "разделяй и владей"

Недостатъци:

🗴 изглежда объркваща и сложна за неопитни програмисти

Предимства:

- √ силна изразителност
- √ хубави математически свойства
- √ удобна за задачи с рекурсивна постановка
- ✓ удобна за търсене с връщане назад (backtracking)
- ✓ удобна за алгоритми от тип "разделяй и владей"

- 🗴 изглежда объркваща и сложна за неопитни програмисти
- х скрито използване на памет за стекови рамки

Предимства:

- √ силна изразителност
- √ хубави математически свойства
- √ удобна за задачи с рекурсивна постановка
- ✓ удобна за търсене с връщане назад (backtracking)
- ✓ удобна за алгоритми от тип "разделяй и владей"

- 🗴 изглежда объркваща и сложна за неопитни програмисти
- х скрито използване на памет за стекови рамки
- 🗴 може да е неефективна при неправилно използване

Предимства:

- √ силна изразителност
- √ хубави математически свойства
- ✓ удобна за задачи с рекурсивна постановка
- ✓ удобна за търсене с връщане назад (backtracking)
- ✓ удобна за алгоритми от тип "разделяй и владей"

- 🗴 изглежда объркваща и сложна за неопитни програмисти
- х скрито използване на памет за стекови рамки
- imes може да е неефективна при неправилно използване
- imes понякога има нужда да пишем помощни функции