

Introduction to fluorescent probes

Cranfill et al. Quantitative assessment of fluorescent proteins. Nat. Methods, 2016

Martin Lehmann, PhD
Cellular Imaging Facility
FMP Berlin

Why is fluorescence microscopy so popular?

- high contrast and sensitivity
- Spatial resolution from few mm down to nm
- alot of colors
- Small and versatile labels (
- Works in intact and living cells

What is a fluorophor?

Alexa Fluor 488 (Rhodamine dye)

- Exc. 495nm, Em 519nm Stokes shift = 24 nm
- Absorption Coefficient: $\varepsilon = 73000 \text{ L·mol}^{-1} \cdot \text{cm}^{-1} 7 \text{(Beer Lambert law)}$
- Quantum yield: $\Phi = 0.92$
- Brightness ($\Phi * \epsilon/1000 = 67$)
- Photostability
- pKa

larger conjugated system have the lower the abs energy

Cy2 489/506nm QY = 0.15 Cy3 550/570nm Cy5 550/570nm

Rigid conjugated system have high Qunatum yields

Alexa 488 495/519nm QY = 0.8

Organic fluorophors

HO. A. D. A. OH O. A. C. A. OH	0 - RNS - 20 NR2	руе	
		Blue-absorbing * Atto 488	
	СООН	* Alexa Fluor 488 Atto 520 Fluorescein FITC	
Fluorescein Type	Rhodamine Type	Cy2	
Coumarin Type	Cyanine Type	Yellow-absorbing Cy3B Alexa Fluor 568 TAMRA Cy3 Cy3.5 * Atto 565	•
Pyrene Type		Red-absorbing	
O II	0	* Alexa Fluor 647 Cy5 Atto 647 * Atto 647N Dyomics 654 Atto 655	
R	R	Atto 680 Cy5.5	
	Y >=0	NIR-absorbing	
	~\^\°	DyLight 750 Cy7	

Dye	Excitation maximum (nm) ^a	Emission maximum (nm)ª	Extinction (M ⁻¹ cm ⁻¹) ^b	Quantum yield ^c	Brigthness
Blue-absorbing					
* Atto 488	501	523	90,000	0.8	72
* Alexa Fluor 488	495	519	71,000	0.92	65
Atto 520	516	538	110,000	0.9	
Fluorescein	494	518	70,000	0.79	
FITC	494	518	70,000	0.8	
Cy2	489	506	150,000	0.12	
Yellow-absorbing					
Cy3B	559	570	130,000	0.67	
Alexa Fluor 568	578	603	91,300	0.69	
TAMRA	546	575	90,430	0.2	
СуЗ	550	570	150,000	0.15	
Cy3.5	581	596	150,000	0.15	
* Atto 565	563	592	120,000	0.9	108
Red-absorbing					
* Alexa Fluor 647	650	665	239,000	0.33	78
Cy5	649	670	250,000	0.28	
Atto 647	645	669	120,000	0.2	
* Atto 647N	644	669	150,000	0.65	97
Dyomics 654	654	675	220,000	-	
Atto 655	663	684	125,000	0.3	
Atto 680	680	700	125,000	0.3	
Cy5.5	675	694	250,000	0.28	
NIR-absorbing					
DyLight 750	752	778	220,000	_	
Cy7	747	776	200,000	0.28	
Alexa Fluor 750	749	775	240,000	0.12	
Atto 740	740	764	120,000	0.1	
Alexa Fluor 790	785	810	260,000	-	
IRDye 800 CW	778	794	240,000	-	

- Isolated & Cloned from bioluminiscent organisms
- 25kDa
- 11 beta-barels and 1 helix

Chromophore Structural Motifs of Green Fluorescent Protein Variants

larger conjugated system have the lower the abs energy

Fluorescent proteins

- Absorbance and Emission Spectra/Maxima
- Excitation coefficient (∈ in 10³ Mol⁻¹ cm⁻¹)
- Quantum yield (QY)
- Brightness (10⁻³ QY * ϵ), e.g. 38 for eGFP and 67 for AF488
- pKa
- Lifetime (ns)
- Photostability
- Maturation half life, e.g. sfGFP and mVenus
- oligomerisation state
- Photochromic effects, e.g photoswitching of mEos

Table 1 | Characteristics of the mScarlet variants and reference RFPs

	Spectroscopic characteristics						Brightne	Photostability			Maturation		
	Abs max ^a (nm)	Em max ^b (nm)	ε ^c (10 ³ M ⁻¹ cm ⁻¹)	QY ^d (-)	̄ ^e (ns)	р <i>К</i> а ^f (-)	εQY ^g (10 ³ M ⁻¹ cm ⁻¹)	In cellsh (%)	WF $t_{1/2}^{i}$ (s)	$\operatorname{Csd} t_{1/2}^{\mathbf{j}}$ (s)	Ph ^k (%)	Accum in cells ^l (%)	$\frac{\Delta t_{mat}^{m}}{(h)}$
mScarlet	569	594	100	0.70	3.9	5.3	71	313	277	161	<1	89	2.9
mScarlet-I	569	593	104	0.54	3.1	5.4	57	363	225	190	3	129	0.6
mScarlet-H	551	592	74	0.20	1.3	4.8	15	75	574	368	<1	99	4.4
mRuby3	-	-	-	-	_	_	-	155	*	*	42	54	9.3
mRuby2	559	594	125	0.45	2.5	_	57	14	*	*	19	5	8.9
mKate2	587	631	63	0.39	2.5	_	25	69	390	169	<1	56	1.2
TagRFP-T	556	585	110	0.48	2.3	_	53	19	*	*	16	7	2.5
mApple	568	593	82	0.47	2.9	_	38	245	*	*	48	129	0.7
mCherry	586	610	88	0.23	1.5	_	20	100	376	300	<1	100	0.7
dTomato	555	582	90	0.69	3.4	-	62	254	494	337	<1	82	2.0

^aAbsorbance maximum. ^bEmission maximum. ^cExtinction coefficient at maximum absorbance. ^dQuantum yield relative to dTomato⁷. ^eAverage fluorescence lifetime weighed by amplitude. ^fApparent pK_a value. ^gCalculated brightness, product of extinction coefficient and quantum yield. ^hBrightness in mammalian cells normalized to mCherry. ^{i,j}Time in seconds to reduce emission rate from 1,000 to 500 photons s⁻¹ molecule⁻¹ under widefieldⁱ and confocal spinning disk^j conditions in mammalian cells. ^kPhotochromic amplitude. ^lAccumulation in cells normalized to mCherry. ^mApparent delay time of maturation relative to mTurquoise2 in mammalian cells. *, not applicable due to photochromic behavior. -, not determined. For calculation of mRuby3 accumulation in cells^l the published calculated brightness¹² was used; all other values were obtained in this study.

pH sensitivity

A pH sensitivities of super ecliptic pHluorin carrying different mutations

B pH sensitivities of eGFP carrying different mutations

Quantitative assessment of fluorescent proteins

Paula J Cranfill^{1,2,5}, Brittney R Sell^{1,5}, Michelle A Baird^{1,5}, John R Allen^{1,5}, Zeno Lavagnino^{2,3}, H Martijn de Gruiter⁴, Gert-Jan Kremers⁴, Michael W Davidson^{1,6}, Alessandro Ustione^{2,3} & David W Piston^{2,3}

- Purification of HIS-tagged fluorescent proteins
- Protein conc. against BSA standard
- Measure spectra, Abs, Exc, QY,
- Embed fluorescent proteins in polyacryl gel to measure photobleaching in confocal and widefield microscopy
- OSER test for protein aggregation

Absorbance and Emission Spectra

Bleaching rates for fluorescent proteins are supra-linear

$$\log(F) = -\alpha \log(P) + c,$$

$$k_{\text{bleach}} = bI^{\alpha},$$

• α = 1.07 : 2.4 x more bleaching with confocal

• α = 1.07 : 10 x more bleaching with confocal

• α = 1.35 : 100 x more bleaching with confocal

FP	in vitro	in cells (60 vs 140uW)
mCerulean	1.12	1.09
mEGFP	1.29	1.19
mVenus	1.13	1.14
mCherry	1.38	1.41

- Bleaching depends on environment
- Less bleaching with Spinning Disk Confocal, TIRF, light sheet or SIM

OSER assay shows oligomerisation of fluorescent proteins

Figure 3 | Wide-field fluorescence images of FP-CytERM fusion proteins expressed in live cells. (a-l) CytERM-fused mEGFP (A206K) (a), mCherry (b), mCitrine (A206K) (c), mOrange2 (d), mNeonGreen (e), mKate2 (f), EGFP (A206) (g), mK02 (h), mTagBFP2 (i), mTagRFP-T (j), Citrine (A206) (k) and DsRed2 (l) expressed in HeLa cells. Scale bars, 10 μm. All images are representative of at least 7,000 cells analyzed for each FP.

Table 1 | Percentage of cells scored without visible OSER whorls as a function of FP-CytERM fusion protein, ranked from most monomeric (100%) to most strongly oligomeric (0%)

FP	Normal cells (%)	s.d. (%)
mEGFP (L221K)	98.8	1.2
mEGFP (A206K)	98.1	1.6
mEmerald (A206K)	96.6	1.1
mRFP1	95.8	1.1
mT-Sapphire (A206K)	95.5	0.6
mApple	95.3	1.7
mPapaya	95.1	1.1
mCherry	95.0	8.0
CyPet	94.0	2.4
mKate2.5	93.9	1.7
mCitrine (A206K)	93.8	2.6
mTurquoise2 (A206K)	93.8	1.0
mTurquoise (A206K)	93.3	1.2
mRuby	93.1	2.1
- 1 /		

Quantitative assessment of fluorescent proteins

Paula J Cranfill^{1,2,5}, Brittney R Sell^{1,5}, Michelle A Baird^{1,5}, John R Allen^{1,5}, Zeno Lavagnino^{2,3}, H Martijn de Gruiter⁴, Gert-Jan Kremers⁴, Michael W Davidson^{1,6}, Alessandro Ustione^{2,3} & David W Piston^{2,3}

					Fluorescent Pr	otein P	roperties				
	Class	Protein	Excitation (nm)	Emission (nm)	Fluorescence Quantu	m Yield	Extinction C	oefficient (M ⁻¹ cm ⁻¹)	Brightness (x 10 ⁻³ M ⁻¹ cm	pK _s	Reference
			Literature Our Data	Literature Our Data	Literature Our Data	s.d.	Literature	Our Data s.d.	Literature Our Dat	Literature Our Data s.d.	
BFP2	Blue	EBFP2 mTagBFP2	383 386 399 400	448 448 454 454	0.56 0.53 0.64 0.48	0.01 0.01	32,000 50,600	39,000 725 76,000 4,000	17.92 20.67 32.38 36.48	5.3 4.4 0.07 2.7 2.4 0.02	
mTrq2	Cyan	mTurquoise mTurquoise2 mCerulean mCerulean3 mTFP1	434 434 434 434 434 434 433 433 462 467	474 474 474 473 475 475 475 475 492 492	0.84 0.84 0.93 0.92 0.49 0.51 0.80 0.80 0.85 0.85	0.02 0.03 0.02 0.01 0.02	34,000 30,000 33,000 40,000 64,000	31,000 400 31,000 300 28,000 1,100 29,000 730 53,000 1,000	28.56 26.04 27.90 28.52 16.17 14.28 32.00 23.20 54.40 45.05	4.5 3.5 0.02 3.1 3.6 0.01 4.5 3.9 0.12 3.2 3.4 0.01 4.3 4.3 0.12	. 46 . 47 . 48
	UV-Excitable Green	mT-Sapphire	399 396	511 509	0.60 0.59	0.00	44,000	34,000 1,100	26.40 20.06	4.9 4.8 0.05	50
eGFP	Green	EGFP mEGFP Emerald mEmerald sfGFP	488 488 NA 489 484 483 NA 483 485 487	507 508 NA 508 509 509 NA 510 507 509	0.60 0.67 NA 0.74 0.68 0.75 NA 0.79 0.65 0.72	0.02 0.01 0.01 0.01 0.01	56,000 NA 57,500 NA 83,300	56,000 1,300 62,000 1,550 62,000 1,150 62,000 1,500 53,000 1,750	33.60 37.52 0.001 45.88 39.10 46.50 0.001 48.98 54.15 38.16	6.0 6.1 0.25 6.0 5.8 0.14 6.0 4.6 0.02 6.0 4.7 0.16 5.5 5.8 0.09	17 51 17
mVenus	Yellow-Green	mPapaya YPet Citrine mCitrine Venus mVenus Topaz mTopaz Clover mClover mNeonGreen	NA 528 517 517 516 515 NA 515 515 515 514 515 NA 515 NA 515 NA 515 NA 505 506 504	NA 540 530 527 529 526 NA 528 527 526 527 528 527 527 NA 527 NA 527 NA 516 517 517	NA 0.74 0.77 0.76 0.76 0.70 NA 0.74 0.63 0.65 0.64 0.67 0.57 0.71 NA 0.68 0.76 0.88 NA 0.84 0.80 0.80	0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02	NA 104,000 77,000 NA 110,000 105,000 94,500 NA 111,000 NA 116,000	62,000 1,600 132,000 1,950 117,000 2,000 120,000 2,000 126,000 2,000 127,000 3,750 113,000 4,000 108,000 1,900 105,000 2,500 105,000 1,800 113,000 1,900	0.00 45.88 80.08 100.32 58.52 81.90 0.001 88.80 69.30 81.90 67.20 85.09 53.87 80.23 0.001 73.44 84.36 92.40 0.001 88.20 92.80 90.40	NA 6.6 0.02 5.6 5.5 0.01 5.7 5.4 0.08 5.7 5.6 0.13 6.0 5.6 0.05 6.0 5.4 0.08 NA 6.3 0.12 NA 5.9 0.16 6.2 5.9 0.08 NA 5.9 0.06 5.7 5.4 0.01	52 15 17 36 36 51 17 53 53
mKO	Orange	mOrange mOrange2 mKO mKO2	548 548 549 550 548 547 551 551	562 563 565 564 559 560 565 565	0.69 0.64 0.60 0.56 0.60 0.77 0.57 0.71	0.02 0.02 0.02 0.02	71,000 58,000 51,600 63,800	112,000 7,750 73,000 800 134,000 4,700 105,000 3,100	48.99 71.68 34.80 40.88 30.96 103.18 36.37 74.55	6.5 6.3 0.10 6.5 6.5 0.14 5.0 4.9 0.15 5.5 5.5 0.13	18 55
	Orange-Red	tdTomato TagRFP TagRFP-T DsRed2	554 555 555 556 555 557 563 561	581 581 584 581 584 583 582 583	0.69 0.55 0.48 0.33 0.41 0.32 0.55 0.53	0.02 0.02 0.01 0.02	138,000 100,000 81,000 43,800	92,000 7,400 130,000 4,100 106,000 6,000 77,000 690	95.22 50.60 48.00 42.90 33.21 33.92 24.09 40.81	4.7 4.5 0.05 3.1 3.0 0.15 4.6 4.3 0.12 NA 4.2 0.12	57 18
mApple mCherry	Red	mRuby2 mRuby2 mApple mRFP1 mCherry FusionRed	558 558 559 559 568 569 584 586 587 586 580 577	605 587 600 590 592 591 607 609 610 610 608 604	0.35 0.38 0.38 0.37 0.49 0.46 0.25 0.35 0.22 0.30 0.19 0.30	0.01 0.01 0.02 0.01 0.01 0.01	112,000 113,000 75,000 50,000 72,000 83,000	109,000 1,800 107,000 2,800 75,000 1,000 55,000 1,500 85,000 2,000 85,000 1,800	39.20 41.42 42.94 39.59 36.75 34.50 12.50 19.25 15.84 25.50 15.77 25.50	4.4 4.4 0.05 5.3 4.4 0.05 6.5 6.5 0.09 4.5 3.8 0.20 < 4.5 3.8 0.11 4.6 4.2 0.01	53 18 60 6
mCardial	Far-Red	mKate2 mNeptune mCardinal mPlum	588 587 600 599 604 603 590 588	633 623 650 640 659 651 649 645	0.40 0.42 0.20 0.23 0.19 0.18 0.10 0.13	0.02 0.01 0.00 0.01	62,500 57,500 87,000 41,000	57,500 600 55,000 1,300 79,000 1,550 80,000 1,100	25.00 24.15 11.50 12.65 16.53 14.22 4.10 10.40	5.4 5.5 0.05 5.4 5.3 0.04 NA 5.3 0.12 < 4.5 4.6 0.05	63 64

						Photostability (α = slope of				lope o	f			
,						logBle				ogt1/2)			
	Class	Protein	Filter Set (WF)	Laser (Confocal)	LED (WF)	Confocal		Widefi Netal H		Widefie	ld LED	t(1/2) 80 uW	t(1/2) 200 uW	Addgene Plasmid #
						α s.c	d.	α	s.d.		s.d.			
BFP2	Blue	EBFP2 mTagBFP2	DAPI DAPI	405 405	380 380	1.73 0.0 0.77 0.0			0.06 0.02	1.68 0.83	0.05	15.31±0.26 6.21±0.07	2.99±0.08 3.1±0.02	54542 54572
		mTurquoise	CFP	458	455	1.89 0.0	1 1	1.53	0.01	1.42	0.00	391.51±6.36	73.52±0.85	55584**
m Tra 2		mTurquoise2	CFP	458	455	1.92 0.0		1.68	0.01	1.60	0.01	71.71±1.28	14.01±0.39	54844
mTrq2	Cyan	mCerulean	CFP	458	455	1.12 0.0	01 1	1.25	0.01	1.28	0.02	74.63±2.31	32.54±0.53	54666
		mCerulean3	CFP	458	455	1.56 0.0		1.31	0.01	1.13	0.00	76.83±1.38	18.43±0.23	54730**
		mTFP1	CFP	458	455	1.36 0.0	01 1	1.47	0.01	1.28	0.01	72.34±1.41	14.03±0.50	54553
	UV-Excitable Green	mT-Sapphire	Sapphire	405	380	1.16 0.0	01 1	1.71	0.01	1.61	0.02	5.99±0.07	1.88±0.05	54571
		EGFP	GFP	488	470	1.23 0.0	01 1	1.07	0.01	1.15	0.01	179.21±2.09	50.69±0.56	54762
eGFP		mEGFP	GFP	488	470	1.29 0.0	01 (0.89	0.03	1.04	0.01	159.66±3.88	52.47±0.68	54622
	Green	Emerald	GFP	488	470	1.03 0.0		0.98	0.03	0.86	0.02	79.36±0.69	37.74±0.48	54776
		mEmerald	GFP	488	470	1.02 0.0		0.98	0.01	0.92	0.02	80.75±0.65	32.02±0.34	54220
		sfGFP	GFP	488	470	1.12 0.0	01 1	1.02	0.01	0.99	0.00	208.26±5.28	67.63±0.51	54519
		mPapaya	YFP	514	505	1.01 0.0	02 0	0.97	0.01	0.73	0.02			54838
		YPet	YFP	514	505	1.07 0.0	00 1	1.24	0.01	1.15	0.00	30.83±0.41	11.15±0.10	54860
		Citrine	YFP	514	505	1.03 0.0		1.04	0.01	1.14	0.01			54772
		mCitrine	YFP	514	505	0.93 0.0		1.02	0.01	1.07	0.00	15.67±0.09	6.46±0.03	54723
mVenus	Yellow-Green	Venus	YFP	514	505	1.15 0.0		1.18	0.01	1.21	0.01	20.40.044	0.07.0.05	54859
	rellow-dreen	mVenus	YFP YFP	514 514	505 505	1.13 0.0 1.04 0.0		1.17 1.07	0.01	1.27 1.16	0.00	26.46±0.11 27.53±0.21	9.37±0.05 10.70±0.08	54845 54623
		Topaz mTopaz	YFP	514	505	1.04 0.0		1.05	0.01	1.18	0.00	28.08±0.17	9.89±0.10	54841
		Clover	YFP	514	505	1.07 0.0		1.00	0.01	1.11	0.00	61.83±0.18	23.71±0.13	54575
		mClover	YFP	514	505	1.12 0.0	00 0	0.96	0.01	1.15	0.00	53.22±0.20	19.20±0.05	54805
		mNeonGreen	YFP	514	505	1.34 0.0	00 0	0.98	0.01	1.12	0.01	197.22±2.80	32.88±0.67	Allele Biotechnology
		mOrange	TRITC	561	530	1.01 0.0	00 1	1.14	0.03	1.00	0.01	13.69±0.28	5.60±0.01	54751
mKO	0	mOrange2	TRITC	561	530	1.36 0.0	-		0.01	1.10	0.01	353.61±5.94	83.63±0.74	54531
	Orange	mKO	TRITC	561	530	1.67 0.0	01 1	1.52	0.01	1.22	0.01	531.84±11.11	108.86±1.03	54735
		mKO2	TRITC	561	530	1.53 0.0	00 1	1.10	0.01	0.96	0.01	51.22±0.28	11.38±0.12	54555
		tdTomato	TRITC	561	530	1.77 0.0	01 1	1.73	0.01	1.60	0.01	31.81±0.30	6.08±0.04	54856
	Orange-Red	TagRFP	TRITC/mCherry*	561	530	0.96 0.0			0.01	0.82	0.03	29.02±1.42	13.53±0.10	Evrogen
	Orange-Red	TagRFP-T	TRITC	561	530	1.33 0.0	01 1	1.04	0.03	1.20	0.01	84.74±1.97	27.10±0.73	42635**
		DsRed2	TRITC	561	530	0.65 0.0	00 1	1.44	0.03	1.54	0.01	2.70±0.01	1.55±0.00	54608
mApple		mRuby	TRITC	561	590	1.17 0.0	01 1	1.04	0.01	1.07	0.01	40.69±0.47	14.38±0.16	54763
		mRuby2	TRITC	561	590	1.23 0.0			0.01	0.94	0.02	44.19±0.57	13.69±0.04	54771
mCherry	Red	mApple	TRITC	561	590	1.14 0.0	00 1	1.00	0.01	0.95	0.01	75.92±1.12	28.33±0.12	54536
	Red	mRFP1	mCherry	594	590	1.08 0.0		1.10	0.02	1.11	0.01	26.30±0.16	9.44±0.08	54667
		mCherry	mCherry	594	590	1.38 0.0			0.01	1.09	0.01	318.94±7.64	87.97±0.86	54630
		FusionRed	mCherry	594	590	1.06 0.0	10 1	1.08	0.02	1.08	0.01	7.54±0.03	2.88±0.01	54677
m Cardial		mKate2	mCherry/Cy5*	594	590	0.98 0.0	00 1	1.21	0.01	1.17	0.00	51.61±0.57	20.88±0.16	Evrogen
mCardial	Far-Red	mNeptune	Cy5	594	590	1.22 0.0		1.04	0.01	0.96	0.02	150.81±2.78	42.93±0.87	54714
	Pairned	mCardinal	Cy5	633	590	1.39 0.0		1.00	0.01	0.96	0.02	539.36±14.24	153.48±2.11	54800
		mPlum	Cy5	594	590	1.55 0.0	01 1	1.07	0.02	1.03	0.01	388.63±9.79	95.90±2.58	54564
														-

Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging

Siyuan Wang^a, Jeffrey R. Moffitt^a, Graham T. Dempsey^a, X. Sunney Xie^a, and Xiaowei Zhuang^{a,b,c,1}

Departments of ^aChemistry and Chemical Biology and ^bPhysics, Harvard University, ^cHoward Hughes Medical Institute, Cambridge, MA 02138

Table 1. Properties of PAFPs

PAFP	Preactivation/postactivation emission wavelength, nm*	Photon no.	On–off switching rate ratio	ClpP clustering [†]	No. of localizations per cell [‡]	Maturation time, min [§]
Dendra2	507/573	686	4.2×10^{-6}	_	1,810	38
mEos2	519/584	745	2.9×10^{-6}	+	1,290	340
mEos3.2	516/580	809	2.6×10^{-6}	_	1,950	330
tdEos	516/581	774	3.2×10^{-6}	_	1,800	330
mKikGR	515/591	599	4.1×10^{-6}	+	3,800	31
PAmCherry	— /595	706	7.8×10^{-6}	+	4,200	61
PAtagRFP	<u>—/595</u>	906	5.7×10^{-6}	_	760	200
mMaple	505/583	798	1.9×10^{-6}	+	24,000	48
mMaple2	506/582	783	1.0×10^{-6}	+	21,000	62
mMaple3	506/583	675	6.2×10^{-7}	_	12,300	49
PAGFP	<i>—</i> /517	313	1.3×10^{-3}	_		<10
PSCFP2	468/511	223	8.1×10^{-6}	+		
Dronpa	<i>—</i> /517	262	5.8×10^{-4}	_		25
mGeosM	/ 514	248	4.9×10^{-4}	+		<10

A 405-nm laser was used for photoactivation. The photon number and on-off switching rate ratio were measured in live BS-C-1 cells. The ClpP clustering, number of localizations per cell, and maturation time were measured in live *E. coli* cells.

^{*}The mMaple2 and mMaple3 emission wavelengths were measured in this work with purified proteins. The other wavelengths are cited from refs. 4 and 16.

†The "+" indicates that ClpP-PAFP exhibits clustered distributions in at least a subset of cells, whereas "-" indicates that ClpP-PAFP does not exhibit clustered distributions in any cells. The results on Dendra2, Dronpa, and mEos2 are consistent with a previous report (26).

[‡]The number of HU-PAFP localizations per *E. coli* cell.

Maturation time is defined as the half-life of the immature state.

Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging

Graham T Dempsey^{1,6}, Joshua C Vaughan^{2,3,6}, Kok Hao Chen^{3,6}, Mark Bates⁴ & Xiaowei Zhuang^{2,3,5}

Table 1 | Summary of switching properties of the 26 dyes tested in this study

					Detected photons per switching event		Equilibriu duty (400-	cycle	Survival after illu for 4	mination		nber o tching (mea
Dye	Excitation maximum (nm) ^a	Emission maximum (nm) ^a	Extinction (M ⁻¹ cm ⁻¹) ^b	Quantum yield ^c	MEA	βМЕ	MEA	βМЕ	MEA	βМЕ	MEA	βМІ
Blue-absorbing												
Atto 488	501	523	90,000	0.8	1,341	1,110	0.00065	0.0022	0.98	0.99	11	49
Alexa Fluor 488	495	519	71,000	0.92	1,193	427	0.00055	0.0017	0.94	1	16	139
Atto 520	516	538	110,000	0.9	1,231	868	0.0015	0.00061	0.92	0.86	9	17
Fluorescein	494	518	70,000	0.79	1,493	776	0.00032	0.00034	0.51	0.83	4	15
FITC	494	518	70,000	0.8	639	1,086	0.00041	0.00031	0.75	0.9	17	16
Cy2	489	506	150,000	0.12	6,241	4,583	0.00012	0.00045	0.12	0.19	0.4	0.7
Yellow-absorbing												
СуЗВ	559	570	130,000	0.67	1,365	2,057	0.0003	0.0004	1	0.89	8	5
Alexa Fluor 568	578	603	91,300	0.69	2,826	1,686	0.00058	0.0027	0.58	0.99	7	52
TAMRA	546	575	90,430	0.2	4,884	2,025	0.0017	0.0049	0.85	0.99	10	59
Cy3	550	570	150,000	0.15	11,022	8,158	0.0001	0.0003	0.17	0.55	0.5	1.6
Cy3.5	581	596	150,000	0.15	4,968	8,028	0.0017	0.0005	0.89	0.61	5.7	3.3
Atto 565	563	592	120,000	0.9	19,714	13,294	0.00058	0.00037	0.17	0.26	4	5
Red-absorbing												
Alexa Fluor 647	650	665	239,000	0.33	3,823	5,202	0.0005	0.0012	0.83	0.73	14	26
Cy5	649	670	250,000	0.28	4,254	5,873	0.0004	0.0007	0.75	0.83	10	17
Atto 647	645	669	120,000	0.2	1,526	944	0.0021	0.0016	0.46	0.84	10	24
Atto 647N	644	669	150,000	0.65	3,254	4,433	0.0012	0.0035	0.24	0.65	9	39
Dyomics 654	654	675	220,000	_	3,653	3,014	0.0011	0.0018	0.79	0.64	20	19
Atto 655	663	684	125,000	0.3	1,105	657	0.0006	0.0011	0.65	0.78	17	22
Atto 680	680	700	125,000	0.3	1,656	987	0.0019	0.0024	0.65	0.91	8	27
Cy5.5	675	694	250,000	0.28	5,831	6,337	0.0069	0.0073	0.87	0.85	16	25
NIR-absorbing												
DyLight 750	752	778	220,000	_	712	749	0.0006	0.0002	0.55	0.58	5	6
Cv7	747	776	200,000	0.28	852	997	0.0003	0.0004	0.48	0.49	5	2.6
Alexa Fluor 750	749	775	240,000	0.12	437	703	0.00006	0.0001	0.36	0.68	1.5	6
Atto 740	740	764	120,000	0.1	779	463	0.00047	0.0014	0.31	0.96	3	14
Alexa Fluor 790	785	810	260,000	-	591	740	0.00049	0.0014	0.54	0.62	5	2.7
IRDve 800 CW	778	794	240,000	_	2,753	2,540	0.0018	0.038	0.6	1	3	127

Excitation wavelength, dichroic mirrors and emission filters used for characterization and imaging for each spectral range were 488 nm, T495LP (Chroma) and ET535/50m (Chroma) for blue-absorbing dyes; 561 nm, Di01-R561 (Semrock) and FF01-617/73-25 (Semrock) for yellow-absorbing dyes; 647 nm, Z660DCXRU (Chroma) and ET700/75m (Chroma) for red-absorbing dyes; 752 nm, Q770DCXR (Chroma) and H0800/60m (Chroma) for NIR-absorbing dyes, respectively. Dye-switching properties are reported in the presence of GLOX and 10 mM MEA as well as GLOX and 140 mM ßME.

**Excitation and emission peak wavelengths from dye spectra. **Dextriction coefficients from the dye manufacturers. **Quantum yields from science data tables. - Quantum yield values not available from dye manufacturer or McNamara data tables.

What is fluorescence?

Fluorophors enable specific staining of cellular structures

Rhodamine-labeled phalloidin
(fluorochrome-conjugated
drug that binds actin filaments, red)

Microtubule

Actin filament

Primary antibodies (rabbit, black) that recognize microtubules and fluorochrome-conjugated secondary antibodies (goat–anti-rabbit, green)

Fluorophors can be genetically encoded or organic dyes

Alexa 488

Cy2

Cy3

Cy5

What else do we need for Imaging?

What else do we need for Imaging?

http://searchlight.semrock.com/

Pulse-Chase Microscopy with mEos2

Wrap-up

- 1. Carefully choose right label & Microscope
- 2. What size do the structures have that I need to visualize?
- 3. What other cellular structures needs to be labelled for reference?
- 4. How thick are my samples?
- 5. Are the structures observed in living and fixed cells?
- 6. Are overexpressed proteins still functional and able to report a true picture?
- 7. Are my living cells still happy after imaging?
- 8. Do I need 3D or temporal information or both?
- 9. Should I automate image aquisition and analysis?

What is the resolution of a 60 x 1.5 NA Objective at 600nm ? Which Emission Filter would you choose for eGFP? 520/40, 605/70 or 440/40 How can one remove out of focus light?

What Super-resolution Microscope has the highest resolution?

Martin Lehmann FMP Berlin mlehmann@fmp-berlin.de

Andre Lampe

Gregor Lichtner

Georgi Tadeus

FUTURE PROJECTS:

- Correlative Light and Electron Microscopy
- 3D and live-cell imaging of cellular structures
- Set-up Single particle tracking
- Optimize STORM and STED microscopy
- Quantitative Imaging and automated Image Analysis

If Interested in Lab rotation, master or PhD? Please contact Volker Haucke, Tanja Maritzen Michael Krauss or Martin Lehmann