APM 523 Mittleman Project 1 Matt Kinsinger, Hongjun Choi, Adarsh Akkshai Due 8-30-2017

The optimization problem we're solving is the traveling salesman problem. The problem in itself is \mathcal{NP} hard to solve by brute force and hence requires us to subject certain constraints to optimize the route of travel. Examples of traveling salesman could also include applications in inventory management of lifting crates by cranes, or the distance one needs to optimally place their fingers on a keyboard to reach all keys.

To demonstrate this we chose the smallest set of cities present in the TSPLIB. They are geographical location of the cities in Burma: a set of 14 cities. We now set up the TSP problem as follows.

Given a set of nodes i, j, and distances d_{ij} we need to minimize;

$$\min \sum_{i,j} d_{i,j} x_{i,j}$$
 subject to:
$$\sum_{i} x_{i,j} = 1$$
 subject to:
$$\sum_{j} x_{i,j} = 1$$

where the nodes $i, j \in \{1, ..., 14\}$, as the set of cities, $x_{i,j} \in \{0, 1\}$ denotes the weights of travel from one city to another. We also denote distance from $i \to j$ as forward distance d_{ij} and d_{ji} as backward distance from $i \leftarrow j$ (To avoid misconceptions we also define that the if the forward and backward distances are identical it is a symmetric TSP problem, else it is a asymmetric TSP problem).

Since the given data set is in geographical co-ordinates (latitude, longitude). We convert them as true distances in kms by:

First converting them into radians;

```
\begin{split} \pi &\approx 3.141592 \\ deg &= floor(x(i)) \\ min &= x(i) - deg \\ latitude(i) &= \pi \times (deg + 5.0*min/3.0)/180.0 \\ deg &= floor(y(i)) \\ min &= y(i) - deg \\ longitude(i) &= \pi * (deg + 5.0*min/3.0)/180.0 \end{split}
```

Once we have the co-ordinates in radians, we evaluate the distance

```
RRR = 6378.388 (\text{Radius of earth in kms})
q1 = \cos(longitude(i) - longitude(j))
q2 = \cos(latitude(i) - latitude(j))
q3 = \cos(latitude(i) + latitude(j))
d(i, j) = floor(RRR \times \cos(0.5 \times ((1.0 + q1) \times q2 - (1.0 - q1) \times q3)) + 1.0)
```

We evaluated the true distances between the cities after applying the transformation and found them to be the distance matrix \mathbf{D} :

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	inf	153	510	706	966	581	455	70	160	372	157	567	342	398
2		inf	422	664	997	598	507	197	311	479	310	581	417	376
3			inf	289	744	390	437	491	645	880	618	374	455	211
4			•	inf	491	265	410	664	804	1070	768	259	499	310
5					inf	400	514	902	990	1261	947	418	635	636
6			•	•	•	inf	168	522	634	910	593	19	284	239
7			•	•			\inf	389	482	757	439	163	124	232
8			•				•	\inf	154	406	133	508	273	355
9									inf	276	43	623	358	498
10			•	•			•		•	inf	318	898	633	761
11			•	•	•		•		•		inf	582	315	464
12				•	•		•		•			inf	275	221
13			•	•	•		•		•			•	inf	247
14			•				•							inf

Table 1: The distance matrix \mathbf{D}

where $d_{ji} = .$ denotes the symmetric distance d_{ij} .

A point to be noted: Here since we're under the underlying assumption that the distances are symmetric only the upper triangular matrix of \mathbf{D} has been evaluated, while the i=j distances scaled to ∞ . Now that we have the distances evaluated neatly in a matrix form, we proceed with the questions in the assignment.

The co-ordinate data has been saved in **burma14_TSP_data.txt**Matlab code to generate distance matrix: **distance_matrix.m**

a) The problem demands we choose the symmetric matrix, which means it is sufficient to use the upper triangular matrix of \mathbf{D} .

i) Part A

We then use this distance matrix as data in our submission to NEOS to solve the TSP problem. In the model of tsp.mod, we eliminate subtours by first building the set $SS = \{1, ..., 2^n - 2\}$ to be an index set for the set $POW = \mathbb{P}(S) - \{S, \emptyset\}$, where $\mathbb{P}(S)$ is the power set of S. Then POW is built using a clever combinatorical programming scheme that assigns to each element of SS a particular subset of S (excluding S and \emptyset). Using this we can eliminate the subtours $C \subseteq POW$ using a constraint:

$$\sum_{C} x_{i,j} \le |C| - 1, \ 3 \le |C| \le n - 1, \ C \subseteq POW$$

Where $x_{i,j} = 1$ if the leg $i \to j$ is included in our tour, and 0 otherwise. This constraint eliminates all subtours of our set S by

1. Selecting only the sets of cities in POW that have at least 3 cities and no more than cardinality |S| - 1 cities.

2. For each set C that is selected it forces the sum of the x_{ij} that corresponds to connections between the cities of C to be less than cardinality |S|-1. This guarantees that no proper subset $B \subset S$ with cardinality $|B|-1 \geq 2$ has all of its elements connected by a closed loop. Thus eliminating any subtours.

The optimal tour was

$$1 \rightarrow 2 \rightarrow 14 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 12 \rightarrow 7 \rightarrow 13 \rightarrow 8 \rightarrow 11 \rightarrow 9 \rightarrow 10.$$

The distance traveled on this tour is 3,323 miles, which is the most optimal route possible. We feed the data from burma.tsp into NEOS Concorde solver to solve the TSP problem and print out a picture of the optimal tour. apm523-5 Neos model:

tsp.mod

Neos data: burma14.dat

Neos commands: tsp_comm.txt

Neos tsp.mod results: burma14_ tsp_ neos_ results.txt Neos Concorde tour printout: burma14_ map.pdf

ii) We now use a different method to solve the symmetric TSP problem. In this method we submit our problem to NEOS without the constraints that eliminated all subtours in part i). We then see the resulting answer inevitably contains subtours and after viewing the results we place constraints into the model to eliminate those specific subtours. This process was repeated 6 times until we had eliminated all subtours that the algorithm

gave as solutions. Note that "elim1" would eliminate the specific subtour of cities $a \to h \to b \to a$. This code can be adjusted to handle subtours of any size. The iterations are shown below:

subj to elim1: $X['a','h'] + X['a','b'] + X['b','h'] \le 2$; subj to elim2: $X['c','d'] + X['d','e'] + X['e','f'] + X['f','l'] + X['g','l'] + X['g','m'] + X['m','n'] + X['c','n'] \le 7$; subj to elim3: $X['i','j'] + X['j','k'] + X['i','k'] \le 2$;

Second set of subtours that we need to eliminate

subj to elim4: X['a', b'] + X['b', j'] + X['i', j'] + X['i', k'] + X['h', k'] + X['a', h'] <= 5; subj to elim5: X['c', d'] + X['d', e'] + X['e', l'] + X['f', l'] + X['f', g'] + X['g', m'] + X['m', n'] + X['c', n'] <= 7;

Third set of subtours that we need to eliminate

subj to elim6: X['a','b'] + X['b','h'] + X['h','k'] + X['i','k'] + X['i','j'] + X['a','j'] <= 5; subj to elim7: X['c','d'] + X['d','e'] + X['e','f'] + X['f','l'] + X['l','m'] + X['g','m'] + X['g','n'] <= 7;

Fourth set of subtours that we need to eliminate

subj to elim8: X['a','b'] + X['b','j'] + X['j','k'] + X['i','k'] + X['h','i'] + X['a','h'] <= 5; subj to elim9: X['c','d'] + X['d','l'] + X['f','l'] + X['e','f'] + X['e','g'] + X['g','m'] + X['m','n'] + apm523 - 5X['c','n'] <= 7;

Fifth set of subtours that we need to eliminate

subj to elim10:

X['a','h'] + X['b','h'] + X['b','j'] + X['i','j'] + X['i','k'] + X['a','k'] <= 5; subj to elim11: X['c','d'] + X['d','e'] + X['e','l'] + X['f','l'] + X['f','m'] + X['g','m'] <= 7;

Sixth set of subtours that we need to eliminate

subj to elim12:

X['a','b'] + X['b','h'] + X['h','j'] + X['i','j'] + X['i','k'] + X['a','k'] <= 5; subj to elim13: X['c','d'] + X['d','f'] + X['f','l'] + X['e','l'] + X['e','g'] + X['g','m'] + X['m','n'] + X['c','n'] <= 7;

We have placed comments in tsp1.mod to show the sequence of iterations and which subtours we eliminated. We ended up with the same optimal tour and distance as in i). Another important conclusion we came towards is the time required for computations by specific subtour elimination was substantially lower since we didn't have to iterate over all the possible subtours. While this provides lower time, the process is laborious, especially when the size of the cities grows very large.

Neos model: **tsp1.mod** Neos data: **burma14.dat**

Neos final results: same as in part i)

b) Part B

There can be many examples where the TSP problem might lead to asymmetry, say for example when the salesman is moving from one city to another, he might encounter unexpected traffic which increases the distance along one leg of the journey. He could also have issues

with roads not leading both ways, meaning he has to take detours to reach the same city. Other examples might include minor asymmetry in phalanges to reach all keys of a keyboard.

We compute $\mathbf{D}'_{n\times n}$ as the asymmetric distance matrix where d'_{ij} and d'_{ji} are the new distances (old distance [Burma14 data] $\pm 10\%$) due to the westerly wind being blown (It is different from case i). The asymmetric distance is:

_														
•	169	561	777	870	639	410	63	144	335	141	623	308	438	
138	•	465	730	897	538	457	177	280	431	apm523 - 5279	523	375	338	
459	380		260	669	351	394	442	580	792	557	336	410	190	
635	598	317		442	238	369	598	724	963	691	233	449	279	
1063	1097	818	540	•	440	565	992	891	1135	852	460	699	700	
523	658	429	291	360		151	469	571	819	534	20	256	263	
501	558	481	451	463	185		428	433	681	395	179	112	256	
77	216	541	730	811	574	350		139	366	119	559	246	390	
176	343	709	885	1089	698	530	170		249	43	685	393	548	
409	527	968	1177	1387	1001	832	447	304		350	988	696	837	
173	341	680	845	1042	652	483	146	43	286		640	347	510	
510	640	411	285	376	17	147	457	560	808	523		248	244	
376	458	501	549	572	313	137	301	322	569	284	303		271	
358	413	232	341	573	215	209	319	448	685	417	199	222	.	
_													_	

apm523-5

i) We built the symmetric matrix $\overline{D'}$ from a symmetric $\mathbf{D}'_{n \times n},$ of the form

$$\overline{D'} = \begin{bmatrix} K & D'^T \\ D' & K \end{bmatrix}_{2n \times 2n}$$

where, $K_{n\times n}$ consists of very large values from \mathbf{D}' . according to the algorithm [1].

Matlab code for the transformation: burma14_ asym_ data.m

Assymetric distance matrix: INP.DAT

Double sized symmetric matrix: double_size_asym.txt

ii) We used the Fortran code to solve the ASTP

apm523-5 Fortan codes: main.f, newcdt.f

Input data (a 14x14 assymetric matrix): INP.DAT

Output of the fortran exectutable: TSP_asym_fortran_results.txt

iii) ATSP results for Burma14 with a 10% westerly wind

$$8 \rightarrow 14 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 12 \rightarrow 13 \rightarrow 2 \rightarrow 10 \rightarrow 1 \rightarrow 9 \rightarrow 7 \rightarrow 11 \rightarrow 3.$$

where the distance from city $i \to j$ corresponds to entry (i, j) in our asymmetric distance matrix. We wrote Matlab code to work through the vector representing the cities along

our tour and add up the "total distance" of the trip. The "total distance" of the windy asymmetric tour is 4,704 miles.

Matlab code: compute_ distance_ ATSP.m.

c) Part C

The length found in part b) is not the acutal distance because we had made adjustments for the wind direction because that is the distance the plane would have felt as though it had travelled. In order to determine that actual distance along the ground that was travelled we needed to use the original distance \mathbf{D} matrix before the 10% wind adjustments. If the leg we travelled was $i \to j$, then we will add the value of $\mathbf{D}(min(i,j), max(i,j))$.

For example: $8 \to 14$ has distance $\mathbf{D}'(14,8) = 319$ miles, while $\mathbf{D}(8,14) = 355$ miles. After adjusting each leg of the tour we have a total distance travelled of 4,817 miles.

Matlab code: compute_ distance_ actual.m

Fun Question

In the Odyssey the westerly winds were given to Odysseus in a bag by Aeolus. This allows Odysseus to control his sail back home. Just as the ship is almost home, Odysseus's shipmates, suspecting that the bag was actually full of treasure, opened the bag and released the winds. These winds took the ship away from home and back to Aeolia in the east. Hence they were not able to get home as easily as they could have if they had left the bag alone.

References

[1] Kumar, Ratnesh & Li, Haomin. (2000). 'On Asymmetric TSP: Transformation to Symmetric TSP and Performance Bound'.