Stat Learning 1: Information Theory

Overview of the summer

- https://github.com/JJBannister/StatisticalLearningGroup
- Bi-weekly meetings (mostly)
- Friday 12-1
- Presentations by grad students and postdocs
- No textbook, lots of presenter freedom
- High level exploration of different topics in Statistics and Machine Learning

Lecure (David Mumford - Pattern Theory Chapter 1)

- Entropy
- Conditional Entropy
- Mutual Information
- Relative Entropy
- Differential Entropy
- eg. English Text

Thanks to the GSA Quality Money Fund, BMEG, MTC, and especially the presenters!!

Entropy

- Physics: Disorder (Boltzman 1877)
 - Statistical mechanics (entropy+energy), thermodynamics, quantum computing, black holes!
- Communication Systems: Information Capacity (Shannon 1948)
 - Channel capacity, coding, compression...
- Statistics: Uncertainty (Kullback 1959)
 - Model training, model comparisson, hypothesis testing, experimental design...

The Fair Coin

The Loaded Coin

The Loaded Coin

The 3-sided Die

What is the entropy of english text?

- English text {a,b,c,d,...}
- Morse Code {*, -, ' '}
- DNA {G,A,T,C}
- Anything digital! {1,0}

Example

Mutual Information

How much information does one letter tell us about the next letter?

How much information did our model learn?

 What is the expected difference in information between the informed model, and the naive model? KL Divergence

Not symmetric, not a distance metric.

The Fair Coin

Incremental Learning

Aplications

- Model Fitting (MLE, VAE, ICA, InfoGAN...)
- Model validation (cross validated KL Divergence)
- Model comparisson
 - AIC, WAIC, GIC, TIC, Bayes Factor
 - Goodness of fit + complexity penalty
 - Entropy + energy

What about Continuous Variables?

- Differential Entropy is not exactly entropy...
 - The true entropy of a continuous function is infinity
 - Differential entropy must be relative to a reference measure and so:
 - Units matter (mm vs m)
 - Can be negative