AUA CS 108, Statistics, Fall 2019 Lecture 44 (The Last One)

Michael Poghosyan
YSU, AUA
michael@ysu.am, mpoghosyan@aua.am

06 Dec 2019

Contents

- Linear Regression
- ightharpoonup Pearson's χ^2 Test
- ► Goodbye, My Stat, Goodbye!!!

Last Lecture ReCap

► We will skip this, sorry!

Let us recall that we have defined the **Regression Function** by:

$$RegFun(\mathbf{x}) = \mathbb{E}(Y|\mathbf{X} = \mathbf{x}).$$

Let us recall that we have defined the **Regression Function** by:

$$RegFun(\mathbf{x}) = \mathbb{E}(Y|\mathbf{X} = \mathbf{x}).$$

and we model the dependency of Y on X by

$$Y = RegFun(\mathbf{X}) + \varepsilon.$$

Let us recall that we have defined the **Regression Function** by:

$$RegFun(\mathbf{x}) = \mathbb{E}(Y|\mathbf{X} = \mathbf{x}).$$

and we model the dependency of Y on X by

$$Y = RegFun(\mathbf{X}) + \varepsilon.$$

Here $\mathbb{E}(\varepsilon) = 0$, for any **x**.

Let us recall that we have defined the **Regression Function** by:

$$RegFun(\mathbf{x}) = \mathbb{E}(Y|\mathbf{X} = \mathbf{x}).$$

and we model the dependency of Y on X by

$$Y = RegFun(\mathbf{X}) + \varepsilon.$$

Here $\mathbb{E}(\varepsilon) = 0$, for any **x**.

Now, unfortunately, we cannot calculate $\mathbb{E}(Y|\mathbf{X}=\mathbf{x})$, since we do not have the Distribution of $Y|\mathbf{X}=\mathbf{x}$. We just have Data.

Let us recall that we have defined the **Regression Function** by:

$$RegFun(\mathbf{x}) = \mathbb{E}(Y|\mathbf{X} = \mathbf{x}).$$

and we model the dependency of Y on X by

$$Y = RegFun(\mathbf{X}) + \varepsilon.$$

Here $\mathbb{E}(\varepsilon) = 0$, for any **x**.

Now, unfortunately, we cannot calculate $\mathbb{E}(Y|\mathbf{X}=\mathbf{x})$, since we do not have the Distribution of $Y|\mathbf{X}=\mathbf{x}$. We just have Data.

And also we will consider the simplest case, when we seek the Regression Function among the Linear Functions.

The simplest Regression Model is the Linear Model: we will assume that

$$RegFun(\mathbf{x}) = \mathbb{E}(Y|\mathbf{X} = \mathbf{x}) = \beta_0 + \beta^T \cdot \mathbf{x}.$$

The simplest Regression Model is the Linear Model: we will assume that

$$RegFun(\mathbf{x}) = \mathbb{E}(Y|\mathbf{X} = \mathbf{x}) = \beta_0 + \beta^T \cdot \mathbf{x}.$$

Hence, in the Linear Regression Problem, we assume

$$Y = \beta_0 + \beta^T \cdot \mathbf{X} + \varepsilon,$$

where ε is a r.v., for each value of **X**, with $\mathbb{E}(\varepsilon) = 0$.

Note: For each value of X, ε can be a different r.v.!

The simplest Regression Model is the Linear Model: we will assume that

$$RegFun(\mathbf{x}) = \mathbb{E}(Y|\mathbf{X} = \mathbf{x}) = \beta_0 + \beta^T \cdot \mathbf{x}.$$

Hence, in the Linear Regression Problem, we assume

$$Y = \beta_0 + \beta^T \cdot \mathbf{X} + \varepsilon,$$

where ε is a r.v., for each value of **X**, with $\mathbb{E}(\varepsilon) = 0$.

Note: For each value of X, ε can be a different r.v.!

Here, if $\mathbf{X} = (X^1, ..., X^d)$ is d-Dim, then

$$\beta = \left| \begin{array}{c} \beta_1 \\ \vdots \\ \beta_d \end{array} \right|,$$

The simplest Regression Model is the Linear Model: we will assume that

$$RegFun(\mathbf{x}) = \mathbb{E}(Y|\mathbf{X} = \mathbf{x}) = \beta_0 + \beta^T \cdot \mathbf{x}.$$

Hence, in the Linear Regression Problem, we assume

$$Y = \beta_0 + \beta^T \cdot \mathbf{X} + \varepsilon$$

where ε is a r.v., for each value of **X**, with $\mathbb{E}(\varepsilon) = 0$.

Note: For each value of X, ε can be a different r.v.!

Here, if $\mathbf{X} = (X^1, ..., X^d)$ is d-Dim, then

$$\beta = \left[\begin{array}{c} \beta_1 \\ \vdots \\ \beta_d \end{array} \right],$$

so our Model, in the expanded way, is

$$Y = \beta_0 + \beta_1 \cdot X^1 + \beta_2 \cdot X^2 + \dots + \beta_d \cdot X^d + \varepsilon.$$

Now we simplify further the story: we consider the 1D Explanatory Variable case, i.e., $\mathbf{X} = X$ is 1D.

Now we simplify further the story: we consider the 1D Explanatory Variable case, i.e., $\mathbf{X} = X$ is 1D. In that case, we will have our LR Model:

$$Y = \beta_0 + \beta_1 \cdot X + \varepsilon, \qquad \mathbb{E}(\varepsilon) = 0.$$

Now we simplify further the story: we consider the 1D Explanatory Variable case, i.e., $\mathbf{X} = X$ is 1D. In that case, we will have our LR Model:

$$Y = \beta_0 + \beta_1 \cdot X + \varepsilon, \qquad \mathbb{E}(\varepsilon) = 0.$$

This is called the **Simple Linear Regression Model**.

Example Example:

Example

Example: (of Prob type, not of a Stat type, a Generative Model)

Example

Example: (of Prob type, not of a Stat type, a Generative Model) Assume we have the actual Relationship between X and Y:

$$Y = -1 + 3 \cdot X + \varepsilon$$

where $X \in [0,2]$ and for each value of X, $\varepsilon \sim \mathcal{N}(0,1)$, and for different values of X, ε -s are Independent.

Example

Example: (of Prob type, not of a Stat type, a Generative Model) Assume we have the actual Relationship between X and Y:

$$Y = -1 + 3 \cdot X + \varepsilon$$

where $X \in [0,2]$ and for each value of X, $\varepsilon \sim \mathcal{N}(0,1)$, and for different values of X, ε -s are Independent.

Again, let us assume we have a Simple Linear Regression Model:

$$Y = \beta_0 + \beta_1 \cdot X + \varepsilon, \qquad \mathbb{E}(\varepsilon) = 0.$$

Again, let us assume we have a Simple Linear Regression Model:

$$Y = \beta_0 + \beta_1 \cdot X + \varepsilon, \qquad \mathbb{E}(\varepsilon) = 0.$$

The Problem is the Following: we have a Dataset of pairs:

$$(x_1, y_1), ..., (x_n, y_n),$$

and we want to Estimate β_0 and β_1 .

Again, let us assume we have a Simple Linear Regression Model:

$$Y = \beta_0 + \beta_1 \cdot X + \varepsilon, \qquad \mathbb{E}(\varepsilon) = 0.$$

The Problem is the Following: we have a Dataset of pairs:

$$(x_1, y_1), ..., (x_n, y_n),$$

and we want to Estimate β_0 and β_1 .

Of course, as we have done it many-many times, to generalize, we Model this by a Random Sample (Y_k -s are Random, but not X_k -s)

$$(X_1, Y_1), ..., (X_n, Y_n),$$

coming from a Model

$$Y_k = \beta_0 + \beta_1 \cdot X_k + \varepsilon_k, \qquad \mathbb{E}(\varepsilon_k) = 0$$

Again, let us assume we have a Simple Linear Regression Model:

$$Y = \beta_0 + \beta_1 \cdot X + \varepsilon, \qquad \mathbb{E}(\varepsilon) = 0.$$

The Problem is the Following: we have a Dataset of pairs:

$$(x_1, y_1), ..., (x_n, y_n),$$

and we want to Estimate β_0 and β_1 .

Of course, as we have done it many-many times, to generalize, we Model this by a Random Sample (Y_k -s are Random, but not X_k -s)

$$(X_1, Y_1), ..., (X_n, Y_n),$$

coming from a Model

$$Y_k = \beta_0 + \beta_1 \cdot X_k + \varepsilon_k, \quad \mathbb{E}(\varepsilon_k) = 0$$

where ε_k -s are Independent, and our aim is to find good Estimators for β_0 and β_1 .

Now, the idea of the Ordinary Least Squares Method for Estimating the Parameters β_0,β_1 is the following: Find

$$(\hat{\beta}_0, \hat{\beta}_1) = \underset{(\beta_0, \beta_1) \in \mathbb{R}^2}{\operatorname{argmin}} \sum_{k=1}^n \left(Y_k - \beta_0 - \beta_1 \cdot X_k \right)^2.$$

Now, the idea of the Ordinary Least Squares Method for Estimating the Parameters β_0, β_1 is the following: Find

$$(\hat{\beta}_0, \hat{\beta}_1) = \underset{(\beta_0, \beta_1) \in \mathbb{R}^2}{\operatorname{argmin}} \sum_{k=1}^n \left(Y_k - \beta_0 - \beta_1 \cdot X_k \right)^2.$$

Here, the solution $(\hat{\beta}_0, \hat{\beta}_1)$ will be a pair of r.v.s, since Y_k -s are r.v.s. So we will obtain *Estimators* for β_0 and β_1 .

Now, the idea of the Ordinary Least Squares Method for Estimating the Parameters β_0, β_1 is the following: Find

$$(\hat{\beta}_0, \hat{\beta}_1) = \operatorname*{argmin}_{(\beta_0, \beta_1) \in \mathbb{R}^2} \sum_{k=1}^n \left(Y_k - \beta_0 - \beta_1 \cdot X_k \right)^2.$$

Here, the solution $(\hat{\beta}_0, \hat{\beta}_1)$ will be a pair of r.v.s, since Y_k -s are r.v.s. So we will obtain *Estimators* for β_0 and β_1 . If we will have an Observation (y_k, x_k) , k = 1, ..., n, then we will solve

$$(\hat{\beta}_0, \hat{\beta}_1) = \underset{(\beta_0, \beta_1) \in \mathbb{R}^2}{\operatorname{argmin}} \sum_{k=1}^n (y_k - \beta_0 - \beta_1 \cdot x_k)^2,$$

and we will find *Estimates* for β_0 and β_1 .

Calculation of the best fit line is easy: we just define

$$\varphi(\beta_0,\beta_1) = \sum_{k=1}^n \left(Y_k - \beta_0 - \beta_1 \cdot X_k \right)^2, \qquad (\beta_0,\beta_1) \in \mathbb{R}^2,$$

and using our Calc 3 knowledge, find the Minimum Point of φ by solving the System

$$\left\{ \begin{array}{l} \displaystyle \frac{\partial \varphi}{\partial \beta_0} = 0 \\[0.2cm] \displaystyle \frac{\partial \varphi}{\partial \beta_1} = 0 \end{array} \right.$$

Calculation of the best fit line is easy: we just define

$$\varphi(\beta_0,\beta_1) = \sum_{k=1}^n \left(Y_k - \beta_0 - \beta_1 \cdot X_k \right)^2, \qquad (\beta_0,\beta_1) \in \mathbb{R}^2,$$

and using our Calc 3 knowledge, find the Minimum Point of φ by solving the System

$$\left\{ \begin{array}{l} \frac{\partial \varphi}{\partial \beta_0} = 0 \\ \frac{\partial \varphi}{\partial \beta_1} = 0 \end{array} \right.$$

The Solution is:

$$\hat{\beta}_1 = \frac{\sum_{k=1}^n (X_k - \overline{X})(Y_k - \overline{Y})}{\sum_{k=1}^n (X_k - \overline{X})^2}$$

Calculation of the best fit line is easy: we just define

$$\varphi(\beta_0,\beta_1) = \sum_{k=1}^n \left(Y_k - \beta_0 - \beta_1 \cdot X_k \right)^2, \qquad (\beta_0,\beta_1) \in \mathbb{R}^2,$$

and using our Calc 3 knowledge, find the Minimum Point of φ by solving the System

$$\left\{ \begin{array}{l} \displaystyle \frac{\partial \varphi}{\partial \beta_0} = 0 \\[0.2cm] \displaystyle \frac{\partial \varphi}{\partial \beta_1} = 0 \end{array} \right.$$

The Solution is:

$$\hat{\beta}_1 = \frac{\sum_{k=1}^n (X_k - \overline{X})(Y_k - \overline{Y})}{\sum_{k=1}^n (X_k - \overline{X})^2} = cor(X, Y) \cdot \frac{sd(Y)}{sd(X)} = \rho_{XY} \cdot \frac{S_Y}{S_X}$$

Calculation of the best fit line is easy: we just define

$$\varphi(\beta_0,\beta_1) = \sum_{k=1}^n \left(Y_k - \beta_0 - \beta_1 \cdot X_k \right)^2, \qquad (\beta_0,\beta_1) \in \mathbb{R}^2,$$

and using our Calc 3 knowledge, find the Minimum Point of φ by solving the System

$$\left\{ \begin{array}{l} \displaystyle \frac{\partial \varphi}{\partial \beta_0} = 0 \\[0.2cm] \displaystyle \frac{\partial \varphi}{\partial \beta_1} = 0 \end{array} \right.$$

The Solution is:

$$\hat{\beta}_1 = \frac{\sum_{k=1}^n (X_k - \overline{X})(Y_k - \overline{Y})}{\sum_{k=1}^n (X_k - \overline{X})^2} = cor(X, Y) \cdot \frac{sd(Y)}{sd(X)} = \rho_{XY} \cdot \frac{S_Y}{S_X}$$

and

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \cdot \overline{X}.$$

The obtained Line

$$y = \hat{\beta}_0 + \hat{\beta}_1 \cdot x$$

is called the Regression Line.

Simple Linear Regression

The obtained Line

$$y = \hat{\beta}_0 + \hat{\beta}_1 \cdot x$$

is called the Regression Line.

Note: So the cor(X, Y) is not the Slope of the Regression Line, but

$$cor(X, Y) \cdot \frac{sd(Y)}{sd(X)}$$

is. Recall our Descriptive Statistics part!

Example: We will use the mtcars Dataset from **R**:

```
plot(mpg ~ disp, data = mtcars, pch = 19)
```


Example, Cont'd

```
plot(mpg ~ wt, data = mtcars, pch = 19)
```


Example, Cont'd

```
plot(mpg ~ wt, data = mtcars, pch = 19)
model <- lm(mpg ~ wt, data = mtcars)
abline(model, col = "red", lwd = 2)</pre>
```



```
Example, Cont'd
   model <- lm(mpg ~ wt, data = mtcars)</pre>
   summary(model)
   ##
   ## Call:
   ## lm(formula = mpg ~ wt, data = mtcars)
   ##
   ## Residuals:
                10 Median 30
   ##
          Min
                                         Max
   ## -4.5432 -2.3647 -0.1252 1.4096 6.8727
   ##
```

(Intercept) 37.2851 1.8776 19.858 < 2e-16 ***

Estimate Std. Error t value Pr(>|t|)

-5.3445 0.5591 -9.559 1.29e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '

Residual standard error: 3.046 on 30 degrees of freedom
Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10

Coefficients:

##

##

wt.

Example, Cont'd

Now, we predict the value of mpg for a new values of a wt Variable:

```
pred <- predict(model, data.frame(wt=4.7))
pred</pre>
```

```
## 1
## 12.16611
```

Example, Cont'd

Now, we predict the value of mpg for a new values of a wt Variable:

```
pred <- predict(model, data.frame(wt=4.7))
pred</pre>
```

```
## 1
## 12.16611
```



```
y <- runif(100, 2, 10)
z <- 2.7 - 1.7*x + 13.5*y + rnorm(100)
head(x)

## [1] 0.5271618 -2.0473435 0.4363159 -0.1708086 -0.7298618 -1
head(y)

## [1] 3.977900 9.480366 2.867116 6.922705 7.797675 7.675757
head(z)

## [1] 55.39792 133.41440 42.64337 95.71013 109.41316 108.627
```

 $x \leftarrow rnorm(100, mean = -1, sd = 1)$

Call:

##

```
mod1 \leftarrow lm(z \sim x); summary(mod1)
```

$lm(formula = z \sim x)$

```
## Residuals:
      Min 1Q Median 3Q
##
                                  Max
## -58.755 -27.454 2.906 28.465 50.215
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 84.135 4.202 20.022 <2e-16 ***
              -3.130 2.917 -1.073 0.286
## x
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '
##
## Residual standard error: 31.23 on 98 degrees of freedom
## Multiple R-squared: 0.01161, Adjusted R-squared: 0.00152
```

F-statistic: 1.152 on 1 and 98 DF, p-value: 0.2859

Example, Cont'd

Residuals:

Call:

##

 $mod2 \leftarrow lm(z \sim x + y); summary(mod2)$

$lm(formula = z \sim x + y)$

```
10 Median
                           30
##
      Min
                                    Max
## -2.25835 -0.69422 -0.04329 0.72539 2.12851
##
## Coefficients:
##
            Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.92180 0.29018 10.07 <2e-16 ***
## x -1.50675 0.09194 -16.39 <2e-16 ***
          ## v
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '
##
## Residual standard error: 0.9827 on 97 degrees of freedom
## Multiple R-squared: 0.999, Adjusted R-squared: 0.999
## F-statistic: 5.001e+04 on 2 and 97 DF, p-value: < 2.2e-16
```

Properties of the Estimators: \hat{eta}_0 and \hat{eta}_1

Here we assume that $\varepsilon \sim \mathcal{N}(0, \sigma^2)$.

Properties of the Estimators: $\hat{\beta}_0$ and $\hat{\beta}_1$

Here we assume that $\varepsilon \sim \mathcal{N}(0, \sigma^2)$.

Fact 1: Estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ are UnBiased:

$$\mathbb{E}(\hat{\beta}_0) = \beta_0, \qquad Var(\hat{\beta}_0) = \frac{\sigma^2}{n} \cdot \frac{\sum_{k=1}^n X_k^2}{\sum_{k=1}^n (X_k - \overline{X})^2}$$

$$\mathbb{E}(\hat{\beta}_1) = \beta_1, \qquad Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{k=1}^n (X_k - \overline{X})^2}$$

Properties of the Estimators: $\widehat{\sigma^2}$

Fact 2: Assume σ^2 is unknown.

Properties of the Estimators: σ^2

Fact 2: Assume σ^2 is unknown. Then

$$s^2 = \frac{1}{n-2} \cdot \sum_{k=1}^{n} (\hat{\varepsilon}_k)^2$$

is an UnBiased Estimator for σ^2 , and

$$\widehat{\sigma^2} = \frac{1}{n} \cdot \sum_{k=1}^{n} (\hat{\varepsilon}_k)^2$$

is the MLE for σ^2 .

Properties of the Estimators: $\hat{\sigma}^2$

Fact 2: Assume σ^2 is unknown. Then

$$s^2 = \frac{1}{n-2} \cdot \sum_{k=1}^{n} (\hat{\varepsilon}_k)^2$$

is an UnBiased Estimator for σ^2 , and

$$\widehat{\sigma^2} = \frac{1}{n} \cdot \sum_{k=1}^{n} (\hat{\varepsilon}_k)^2$$

is the MLE for σ^2 . Here

$$\hat{\varepsilon}_k = Y_k - \hat{\beta}_0 - \hat{\beta}_1 \cdot X_k$$

is the k-th **residual**.

Goodness-of-Fit Tests

Intro to GoF Tests

Here, we have a DataSet $x_1, x_2, ..., x_n$, and a Statistical Model, and we want to see how good our Model is fitting the Data.

Intro to GoF Tests

Here, we have a DataSet $x_1, x_2, ..., x_n$, and a Statistical Model, and we want to see how good our Model is fitting the Data.

First we consider Pearson's χ^2 -Test: a famous GoF Test for the Multinomial Distribution.

Model: Here we assume that the result of an Experiment can be one of the $A_1, ..., A_m$ (different classes), with Probabilities

$$p_1 = \mathbb{P}(A_1), ..., p_m = \mathbb{P}(A_m).$$

Model: Here we assume that the result of an Experiment can be one of the $A_1, ..., A_m$ (different classes), with Probabilities

$$p_1 = \mathbb{P}(A_1), ..., p_m = \mathbb{P}(A_m).$$

Data: We have the results of a repetition of the previous Experiment: The results are: the number of A_1 shown is X_1 , the number of A_2 shown is X_2 , ..., the number of A_m shown is X_m ;

Model: Here we assume that the result of an Experiment can be one of the $A_1, ..., A_m$ (different classes), with Probabilities

$$p_1 = \mathbb{P}(A_1), ..., p_m = \mathbb{P}(A_m).$$

Data: We have the results of a repetition of the previous Experiment: The results are: the number of A_1 shown is X_1 , the number of A_2 shown is X_2 , ..., the number of A_m shown is X_m ;

Null Hypothesis:

 \mathcal{H}_0 : The Actual Probabilities are $p_1, p_2, ..., p_m$.

VS

 \mathcal{H}_1 : \mathcal{H}_0 is not correct.

Model: Here we assume that the result of an Experiment can be one of the $A_1, ..., A_m$ (different classes), with Probabilities

$$p_1 = \mathbb{P}(A_1), ..., p_m = \mathbb{P}(A_m).$$

Data: We have the results of a repetition of the previous Experiment: The results are: the number of A_1 shown is X_1 , the number of A_2 shown is X_2 , ..., the number of A_m shown is X_m ;

Null Hypothesis:

$$\mathcal{H}_0$$
: The Actual Probabilities are $p_1, p_2, ..., p_m$.

VS

$$\mathcal{H}_1$$
: \mathcal{H}_0 is not correct.

Significance Level: $\alpha \in (0,1)$;

Test Statistics:

Test Statistics:
$$\chi^2 = \sum_{k=1}^m \frac{(X_k - n \cdot p_k)^2}{n \cdot p_k}$$

Test Statistics:
$$\chi^2 = \sum_{k=1}^m \frac{(X_k - n \cdot p_k)^2}{n \cdot p_k} = \sum_{k=1}^m \frac{(O_k - E_k)^2}{E_k}$$

Test Statistics:
$$\chi^2 = \sum_{k=1}^{m} \frac{(X_k - n \cdot p_k)^2}{n \cdot p_k} = \sum_{k=1}^{m} \frac{(O_k - E_k)^2}{E_k}$$

Here usually one constructs the following χ^2 -Table:

	A_1	A_2	 A_m
Observed Freq., O _k	X_1	X_2	 X _m
Expected Freq., E_k	$n \cdot p_1$	$n \cdot p_2$	 $n \cdot p_m$

Test Statistics:
$$\chi^2 = \sum_{k=1}^{m} \frac{(X_k - n \cdot p_k)^2}{n \cdot p_k} = \sum_{k=1}^{m} \frac{(O_k - E_k)^2}{E_k}$$

Here usually one constructs the following χ^2 -Table:

	A_1	A_2	 A_m
Observed Freq., O _k	X_1	X_2	 X _m
Expected Freq., E_k	$n \cdot p_1$	$n \cdot p_2$	 $n \cdot p_m$

Assumption: We assume that $n \cdot p_k \ge 5$ for any k;

Test Statistics:
$$\chi^2 = \sum_{k=1}^{m} \frac{(X_k - n \cdot p_k)^2}{n \cdot p_k} = \sum_{k=1}^{m} \frac{(O_k - E_k)^2}{E_k}$$

Here usually one constructs the following χ^2 -Table:

	A_1	A_2	 A_m
Observed Freq., O _k	X_1	X_2	 X _m
Expected Freq., E_k	$n \cdot p_1$	$n \cdot p_2$	 $n \cdot p_m$

Assumption: We assume that $n \cdot p_k \ge 5$ for any k;

Distrib of the Test-Statistics Under \mathcal{H}_0 : $\chi^2 \approx \chi^2(m-1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^{m} \frac{(X_k - n \cdot p_k)^2}{n \cdot p_k} = \sum_{k=1}^{m} \frac{(O_k - E_k)^2}{E_k}$$

Here usually one constructs the following χ^2 -Table:

	A_1	A_2	 A_m
Observed Freq., O _k	X_1	X_2	 X _m
Expected Freq., E_k	$n \cdot p_1$	$n \cdot p_2$	 $n \cdot p_m$

Assumption: We assume that $n \cdot p_k \ge 5$ for any k;

Distrib of the Test-Statistics Under \mathcal{H}_0 : $\chi^2 \approx \chi^2(m-1)$;

Rejection Region: $\chi^2 > \chi^2_{m-1,1-\alpha}$

Example: I am claiming that, for my Stat courses, the percentage of A-grade students is 15%, of B-grade students is 25%, of C-grades are 20%, for D I have 15%, and all others are F ailing the course.

Example: I am claiming that, for my Stat courses, the percentage of A-grade students is 15%, of B-grade students is 25%, of C-grades are 20%, for D I have 15%, and all others are F ailing the course. Now, one of my courses finished with the following result:

$$\#A = 27, \ \#B = 22, \ \#C = 10, \ \#D = 10, \ \#F = 12.$$

Is this Data supporting my claim?

Solution:

Example: I am claiming that, for my Stat courses, the percentage of A-grade students is 15%, of B-grade students is 25%, of C-grades are 20%, for D I have 15%, and all others are F-ailing the course. Now, one of my courses finished with the following result:

$$\#A = 27, \ \#B = 22, \ \#C = 10, \ \#D = 10, \ \#F = 12.$$

Is this Data supporting my claim?

Solution: We have n = 27 + 22 + 10 + 10 + 12 = 81. Next, we make the Table:

	A	В	C	D	E
Obs. Frq., O_k		22	10	10	12
Exp. Frq., E_k	81 · 0.15	81 · 0.25	81 · 0.2	81 · 0.15	81 · 0.25

Example: I am claiming that, for my Stat courses, the percentage of A-grade students is 15%, of B-grade students is 25%, of C-grades are 20%, for D I have 15%, and all others are F ailing the course. Now, one of my courses finished with the following result:

$$\#A = 27$$
, $\#B = 22$, $\#C = 10$, $\#D = 10$, $\#F = 12$.

Is this Data supporting my claim?

Solution: We have n = 27 + 22 + 10 + 10 + 12 = 81. Next, we make the Table:

	A	В	C	D	E
Obs. Frq., O_k	27	22	10	10	12
Exp. Frq., E_k	81 · 0.15	81 · 0.25	81 · 0.2	81 · 0.15	81 · 0.25

Now, we can calculate the TS:

$$\chi^2 = \sum_{k=1}^{5} \frac{(O_k - E_k)^2}{E_k} = \frac{(27 - 81 \cdot 0.15)^2}{81 \cdot 0.15} + \dots + \frac{(12 - 81 \cdot 0.15)^2}{81 \cdot 0.15}$$

Example, Cont'd

```
The rest is in \mathbf{R}.
obsd \leftarrow c(27, 22, 10, 10, 12)
expd \leftarrow 81* c(0.15, 0.25, 0.2, 0.15, 0.25)
xi2 <- sum((obsd-expd)^2/expd)
xi2
## [1] 24.41564
q \leftarrow qchisq(1-0.05, df = length(obsd)-1)
q
## [1] 9.487729
xi2 > q
## [1] TRUE
```

Example, Cont'd

```
obsd <- c(27, 22, 10, 10, 12)

p <- c(0.15, 0.25, 0.2, 0.15, 0.25)

chisq.test(obsd, p = p)
```

```
##
## Chi-squared test for given probabilities
##
## data: obsd
## X-squared = 24.416, df = 4, p-value = 6.592e-05
```

Kolmogorov-Smirnov Test x <- rnorm(50, mean = 3, sd = 1)</pre>

```
##
## One-sample Kolmogorov-Smirnov test
##
## data: x
## D = 0.87385, p-value = 8.882e-16
```

alternative hypothesis: two-sided

Kolmogorov-Smirnov Test

data: x

data: x

##

```
x <- rnorm(50, mean = 3, sd = 1)
ks.test(x, y = "pnorm", mean = 0, sd = 1)

##
## One-sample Kolmogorov-Smirnov test
##</pre>
```

D = 0.87385, p-value = 8.882e-16
alternative hypothesis: two-sided

```
x <- rexp(50, rate = 3.1)
ks.test(x, y = "pnorm", mean = 0, sd = 1)</pre>
```

```
## One-sample Kolmogorov-Smirnov test
##
```

D = 0.50157, p-value = 3.672e-12
alternative hypothesis: two-sided

```
x <- runif(40)
y <- rexp(30)
ks.test(x,y)

##

## Two-sample Kolmogorov-Smirnov test
##

## data: x and y
## D = 0.54167, p-value = 4.101e-05</pre>
```

alternative hypothesis: two-sided

Shapiro-Wilk test

```
x <- rnorm(25, mean = -2, sd = 10)
shapiro.test(x)

##
## Shapiro-Wilk normality test
##
## data: x</pre>
```

W = 0.94969, p-value = 0.2467

Fitting a Distribution Family, **R**

4.8935081 ## (0.7294811)

```
library(MASS)
x <- rexp(45, rate = 3.4254)
fitdistr(x, densfun = "exponential")
## rate</pre>
```

