a < b, c < d とする。写像 $\phi : [a, b] \rightarrow [c, d]$ が次の条件を満たすとする。

- 1. ϕ は全単射
- $2. \phi$ は C^1 -級
- 3. 逆写像 ϕ^{-1} も C^1 -級
- 4. $\forall t \in [a,b]$ において $\phi'(t) > 0$

この時、 $\phi(a) = c$ かつ $\phi(b) = d$ であることを示せ。

......

 ϕ と ϕ^{-1} は C^1 -級である為、連続である。 $\phi'(t)>0$ より ϕ は単調増加である。 これにより $\alpha,\beta\in[a,b]$ において $\alpha<\beta\Rightarrow\phi(\alpha)<\phi(\beta)$ である。

 ϕ は全単射であるから $c,d \in [c,d]$ に対応する点が [a,b] にだた一つだけ存在する。 この為、 $\phi(a)=c,\,\phi(b)=d$ であることが分かる。

写像 C_1 , C_2 を次のように定める。

$$C_1:[1,4] \to \mathbb{R}^2 \quad t \mapsto (t,\sin t)$$
 (1)

$$C_2:[1,2] \to \mathbb{R}^2 \quad t \mapsto (t^2, \sin t^2)$$
 (2)

この時、 C_1 , C_2 は向きまで込めて C^1 -級同値となることを示せ。

.....

写像 $f:[1,2]\to[1,4]$ を $f(x)=x^2$ とすると、f は全単射であり、 C^∞ -級である。 C_2 は C_1 と f の合成関数である。つまり、 $C_2=C_1\circ f$ である。f は単調増加であるので C_1 、 C_2 の向きは同じとなる。

 $(t,\sin t)'=(1,\cos t)$ であるので、 C_1 は C^1 -級である。 $C_2=C_1\circ f$ であり、f は C^∞ -級であるので、 C_2 は C^1 -級である。

 $C:[a,b]\to\mathbb{R}^n$ を C^1 -級曲線とし、 $\check{C}:[-b,-a]\to\mathbb{R}^n$ を C の逆向きの曲線とする。この時、

$$\int_{(C,\check{C})} \mathbf{f} = 0 \tag{3}$$

となることを示せ。

.....

 \check{C} が C と逆向きであるので、 $\forall t \in [-b, -a]$ において、 $\check{C}(t) = C(-t)$ となる。こ

の為、

$$\int_{C} \mathbf{f} = -\int_{\check{C}} \mathbf{f} \tag{4}$$

となる。これにより次のように積分値が0となる。

$$\int_{(C,\check{C})} \mathbf{f} = \int_{C} \mathbf{f} + \int_{\check{C}} \mathbf{f} = -\int_{\check{C}} \mathbf{f} + \int_{\check{C}} \mathbf{f} = 0$$
 (5)