# Learning Invariant Representations with a Nonparametric Nadaraya-Watson (NW) Head

AQ Wang, MR Sabuncu et. al., Cornell University

NeurIPS 2023

# **Domain generalization and Robustness**



- Varying features: color, staining or markings
- Invariant features: structure or dots

# Literature on domain generalization

- Data augmentation or synthetically generation
  - LISA (mixup-style)
- Align features
  - layer: CORAL
  - distribution: distance metric or adversarial loss
  - gradients: FISH
- Invariant representations
  - employ causal perspective to define appropriate constraints
    - Invariant causal prediction (ICP)
    - Invariant Risk Minimization (IRM)

# **Causal DAG (Directed Acyclic Graph)**



- E: environment
- (X, Y): image and class label
- Zs: style latent representation (spurious)
- Zc: content latent representation (causal)

### d-separation of Causal DAG



• Invariance constraint by condition of Zc, such that Y is not influenced by E

$$Y \perp \!\!\! \perp E \mid Z_C \iff \underbrace{P_e(Y \mid Z_C) = P_{e'}(Y \mid Z_C)}_{\text{invariance constraint}} \quad \forall e, e' \in E$$

# **Learning Invariant Representation across Environments**

• Goal is to learn an estimator  $\hat{P}(Y \mid \varphi(X))$ 

$$\operatorname*{argmax}_{\varphi} \sum_{e} \hat{P}_{e}(Y \mid \varphi(X))$$

s.t. 
$$\hat{P}_e(Y \mid \varphi(X)) = \hat{P}_{e'}(Y \mid \varphi(X)) \ \forall e, e' \in E$$
.

Propose a novel estimator using Nadaraya-Watson head

# Nadaraya-Watson (NW) Head



• NW prediction: 
$$f(x,\mathcal{S}) = \sum_{i=1}^{N_s} w(x,x_i) \vec{y_i},$$
 
$$w(x,x_i) = \frac{\exp\left\{-\|\varphi(x)-\varphi(x_i)\|_2\right\}}{\sum_{j=1}^{N_s} \exp\left\{-\|(\varphi(x)-\varphi(x_j))\|_2\right\}}.$$

Soft version of NN classifier

#### **Method: NW Head for Invariant Prediction**

**Environment 3** 

- Support set can be manipulated during training
- Restrict the support set to from a single environment



#### **NW Head for Invariant Prediction**

Objective is to constrained maximum likelihood:

$$\operatorname*{argmax}_{\varphi} \sum_{e} \hat{P}_{e}(Y \mid \varphi(X))$$

s.t. 
$$\hat{P}_e(Y \mid \varphi(X)) = \hat{P}_{e'}(Y \mid \varphi(X)) \ \forall e, e' \in E.$$

Replace NW head with conditional support sets:

$$\operatorname*{argmin}_{\varphi} \sum_{i=1}^{N} L(f_{\varphi}(x_i, \mathcal{S}_{e_i}^B), y_i)$$

s.t. 
$$f_{\varphi}(x_i, \mathcal{S}_e^B) = f_{\varphi}(x_i, \mathcal{S}_{e'}^B), \ \forall i \in \{1, ..., N\}, \ \forall e, e' \in E,$$

#### **NW Head for Invariant Prediction**

1. Explicit via Lagrangian:

$$\underset{\varphi}{\operatorname{argmin}} \sum_{i=1}^{N} L(f_{\varphi}(x_{i}, \mathcal{S}_{e_{i}}^{B}), y_{i}) + \lambda \sum_{e, e' \in E} \sum_{i=1}^{N} \|f_{\varphi}(x_{i}, \mathcal{S}_{e}^{B}) - f_{\varphi}(x_{i}, \mathcal{S}_{e'}^{B})\|_{2}^{2}.$$

2. Implicit via sampling environment-specific support sets during training

$$\underset{\varphi}{\operatorname{argmin}} \sum_{e \in E} \sum_{i=1}^{N} L(f_{\varphi}(x_i, \mathcal{S}_e^B), y_i).$$

No invariance regularizer and hyperparameter to tune!!

#### **NW Head for Invariant Prediction**



# **Experimental settings**

#### Datasets

| Dataset     | # Classes | Env      | # Envs | Architecture | Metric                                  |
|-------------|-----------|----------|--------|--------------|-----------------------------------------|
| Camelyon-17 | 2         | Hospital | 3      | DenseNet-121 | Average acc. F1-score Worst-region acc. |
| ISIC        | 2         | Hospital | 3      | ResNet-50    |                                         |
| FMoW        | 62        | Region   | 5      | DenseNet-121 |                                         |

- Inference mode with different support sets
  - **Random:** sample randomly with each class represented k times
  - **Full:** entire balanced training set
  - **Ensemble:** based each environment
  - **Cluster:** k cluster centroids per class
  - o **Probe**: add linear classifier

# NW head generalizes to new distributions

| Algorithm                            | Camelyon-17                                             | ISIC                                           | FMoW                                             |
|--------------------------------------|---------------------------------------------------------|------------------------------------------------|--------------------------------------------------|
| ERM [52]                             | 70.3±6.4                                                | 58.2±2.9                                       | 32.6±1.6                                         |
| IRM [1]                              | $70.9{\scriptstyle\pm6.8}$                              | $57.9_{\pm 1.0}$                               | $31.3_{\pm 1.2}$                                 |
| CORAL [48]                           | $72.4{\scriptstyle\pm4.4}$                              | $59.1_{\pm 2.2}$                               | $31.7_{\pm 1.0}$                                 |
| Fish [46]                            | $74.7{\scriptstyle\pm7\text{e-}2}$                      | $64.4_{\pm 1.7}$                               | $34.6_{\pm 0.0}$                                 |
| LISA [64]                            | $77.1 \pm 6.5$                                          | $64.8 \pm 2.3$                                 | $35.5_{\pm 1.8}$                                 |
| CLOvE [54]                           | $79.9_{\pm 3.9}$                                        | $66.2{\scriptstyle\pm2.2}$                     | <b>40.1</b> $\pm$ 0.6                            |
| NW <sup>B</sup> , Random             | 71.7±5.3                                                | 56.7±1.4                                       | 31.1±0.8                                         |
| NW <sup>B</sup> , Full               | $72.0{\pm}6.7$                                          | $61.9 \pm 3.5$                                 | $31.6 \pm 0.9$                                   |
| NW <sup>B</sup> , Cluster            | $70.6{\scriptstyle\pm6.9}$                              | $61.4 \pm 2.3$                                 | $31.3 \pm 0.9$                                   |
| NW <sup>B</sup> , Ensemble           | $71.9{\scriptstyle\pm6.0}$                              | $63.9 \pm 3.8$                                 | $32.2 \pm 1.0$                                   |
| NW <sup>B</sup> , Probe              | $69.2{\scriptstyle\pm7.4}$                              | $59.7{\scriptstyle\pm2.5}$                     | $29.9{\scriptstyle\pm1.5}$                       |
| NW <sub>e</sub> , Random             | $74.8_{\pm 8.4}$ / $75.3_{\pm 3.2}$                     | 57.5±1.9 / 55.0±0.9                            | $31.2 \pm 0.7 / 30.9 \pm 0.5$                    |
| NW <sup>B</sup> <sub>e</sub> , Full  | <b>80.0</b> $\pm$ 2.7 / 79.7 $\pm$ 1.9                  | $69.6{\pm}2.3$ / $70.0{\pm}1.0$                | $35.0_{\pm 0.7}$ / $34.6_{\pm 0.4}$              |
| NW <sub>e</sub> , Cluster            | $78.6 \pm 2.5$ / $79.0 \pm 1.4$                         | <b>71.1</b> $\pm$ 1.7 / 71.0 $\pm$ 1.0         | $33.9 \pm 0.6 / 34.0 \pm 0.3$                    |
| NW <sub>e</sub> , Ensemble           | $79.5_{\pm 2.6}$ / $79.6_{\pm 1.9}$                     | $69.5_{\pm 2.2}$ / $\overline{69.8}_{\pm 0.8}$ | $37.8 \pm 0.9 / 38.2 \pm 0.4$                    |
| NW <sup>B</sup> <sub>e</sub> , Probe | $75.3{\scriptstyle\pm7.3}$ / $75.8{\scriptstyle\pm8.3}$ | $61.4 \pm 3.1 \text{ / } 63.4 \pm 2.8$         | $33.9{\pm}_{1.5}$ / $\overline{32.7}{\pm}_{1.4}$ |

w/o conditional support

w/ conditional support

# **Interpretability of NW Head**



# **Histogram of nearest neighbours**



Figure 9: Normalized histogram of the environments from which the top 20 nearest neighbors originate in the training dataset for Camelyon-17, averaged over all queries in the test set. We observe a more balanced proportion for NW<sub>e</sub><sup>B</sup>, indicating that the model relies more evenly across all 3 environments to make its prediction, and further suggesting that representations are more invariant than NW<sup>B</sup>.

#### **Conclusion**

- Motivated domain generalization from causal perspective
- Propose a nonparametric invariant representation
- NW head enables interpretability by nearest neighbors
- Need support sets for inference
- Computationally expensive
- Future works
  - Regression task
  - Adaption to test domain given additional information (edge  $E \rightarrow Y$ )

# Extra slides

#### **Dataset**



Hospital 2







(a) Camelyon-17

Hospital 1





(b) ISIC





Region 1







Region 5

(c) FMoW