

DATA SHEET

SURFACE MOUNT MULTILAYER CERAMIC CAPACITORS

General purpose & High capacitance Class 2, X5R

100~pF to $220~\mu F$ RoHS compliant & Halogen free

YAGEO Phícomp

SCOPE

This specification describes X5R series chip capacitors with leadfree terminations.

APPLICATIONS

PCs, Hard disk, Game PCs Power supplies **DVD** players Mobile phones Data processing

FEATURES

Supplied in tape on reel Nickel-barrier end termination RoHS compliant Halogen free compliant

ORDERING INFORMATION-GLOBAL PART NUMBER, PHYCOMP CTC & 12NC

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

CC xxxx x x X5R x BB xxx (1) (2) (3) (4)

(I) SIZE – INCH BASED (METRIC)

0201 (0603) 0402 (1005)

0603 (1608) 0805 (2012)

1206 (3216)

1210 (3225)

(2) TOLERANCE

 $K = \pm 10\%$ $M = \pm 20\%$

(3) PACKING STYLE

R = Paper/PE taping reel; Reel 7 inch

K = Blister taping reel; Reel 7 inch

P = Paper/PE taping reel; Reel 13 inch

F = Blister taping reel; Reel 13 inch

C = Bulk case

(4) RATED VOLTAGE

 $4 = 4 \ \lor$

5 = 6.3 V

6 = 10 V

7 = 16 V

8 = 25 V

9 = 50 V

(5) CAPACITANCE VALUE

2 significant digits+number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example: $103 = 10 \times 10^3 = 10,000 \text{ pF} = 10 \text{ nF}$

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). The terminations are lead-free. A cross section of the structure is shown in Fig. I.

DIMENSION

Table I For outlines see fig. 2				L ₂ / L ₃	(mm)	L ₄	DIMENSION
TYPE	L _I (mm)	W (mm)	T (MM)	min.	max.	(mm) min.	CODE
	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1	0.2	0.2	BA
0201	0.6 ±0.05	0.3 ±0.05	0.3 ±0.05	0.1	0.2	0.2	BB
0201	0.6 ±0.09	0.3 ±0.09	0.3 ±0.09	0.1	0.25	0.2	ВС
	0.6 ±0.15	0.3 ±0.15	0.3 ±0.15	0.1	0.25	0.2	BD
	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15	0.35	0.4	CA
0402	1.0 ±0.10	0.5 ±0.10	0.5 ±0.10	0.15	0.35	0.4	СВ
0402	1.0 ± 0.15	0.5 ±0.15	0.5 ±0.15	0.15	0.35	0.4	CC
	1.0 ±0.20	0.5 ±0.20	0.5 ±0.20	0.15	0.35	0.4	CD
	1.6 ±0.10	0.8 ±0.10	0.8 ±0.10	0.2	0.6	0.4	DA
0603	1.6 ±0.15	0.8 ±0.15	0.8 ± 0.15	0.2	0.6	0.4	DB
	1.6 ±0.20	0.8 ±0.20	0.8 ±0.20	0.2	0.6	0.4	DC
0805	2.0 ± 0.20	1.25 ±0.20	0.85 ± 0.10	0.25	0.75	0.7	EA
0003	2.0 ±0.20	1.25 ±0.20	1.25 ±0.20	0.25	0.75	0.7	EB
	3.2 ± 0.15	1.6 ±0.15	1.15 ± 0.10	0.25	0.75	1.4	FA
1206	3.2 ± 0.30	1.6 ±0.20	1.25 ± 0.20	0.25	0.75	1.4	FB
1200	3.2 ± 0.30	1.6 ±0.30	1.60 ± 0.20	0.25	0.80	1.4	FC
	3.2 ±0.30	1.6 ±0.30	1.60 ±0.30	0.30	0.90	1.4	FD
	3.2 ± 0.40	2.5 ±0.30	1.25 ± 0.20	0.25	0.75	1.4	GA
1210	3.2 ± 0.40	2.5 ± 0.30	1.90 ± 0.20	0.25	0.75	1.4	GB
	3.2 ± 0.40	2.5 ±0.30	2.5 ± 0.20	0.25	0.75	1.0	GC
-	3.2 ±0.40	2.5 ±0.30	2.5 ±0.30	0.25	0.75	1.0	GD

OUTLINES

CAPACITANCE RANGE & THICKNESS FOR X5R

Table 2 Sizes from 0201 to 0402

CAP.	0201						0402					
	4 V	6.3 V	10 V	16 V	25 V	50 V	4 V	6.3 V	10 V	16 V	25 V	50 V
100 pF		ВА	ВА	ВА	ВА	ВА						
150 pF		ВА	ВА	ВА	ВА	ВА						
220 pF		ВА	ВА	ВА	ВА	ВА						
330 pF		ВА	ВА	ВА	ВА	ВА						
470 pF		ВА	ВА	ВА	ВА	ВА						
680 pF		ВА	ВА	BA	ВА	ВА						
I.O nF		ВА	ВА	BA	ВА	ВА						
1.5 nF		ВА	ВА	BA	ВА							
2.2 nF		ВА	ВА	ВА	ВА							
3.3 nF		ВА	ВА	BA	ВА							
4.7 nF		ВА	ВА	ВА	ВА							
6.8 nF		ВА	ВА	ВА	ВА							
IO nF		ВА	ВА	BA	ВА							
15 nF		ВА	ВА	BA								
22 nF		ВА	ВА	ВА	ВА			CA	CA	CA	CA	CA
33 nF		ВА	ВА	ВА				CA	CA	CA	CA	CA
47 nF		ВА	ВА	ВА				CA	CA	CA	CA	CA
68 nF		ВА	ВА	ВА				CA	CA	CA	CA	CA
100 nF		ВА	ВА	ВА	ВВ			CA	CA	CA	CA	CA
150 nF								CA	CA	CA	CA	CA
220 nF	ВА	ВА	ВА					CA	CA	CA	CA	CA
330 nF								CA	CA			
470 nF	ВА	ВА						CA	CA	СВ	СВ	СВ
680 nF								CA	CA			
Ι.0 μF	ВВ	ВВ	ВВ					CA	CA	CA	CA	
2.2 µF	ВС	ВС	ВС					CA	CA	CC	CD	
4.7 µF	BD						CC	CC	CC	CC		
10 μF							CD	CD	CD			
22 µF							CD	CD				

NOTE

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is available on request

CAPACITANCE RANGE & THICKNESS FOR X5R

Table 3 Sizes from 0603 to 0805

CAP.	0603						0805					
	4V	6.3 V	10 V	16 V	25 V	50V	4V	6.3 V	10 V	16 V	25 V	50V
10 nF												
15 nF												
22 nF												
33 nF												
47nF												
68 nF												
100 nF												
150 nF												
220 nF		DA	DA	DA	DA	DA						
330 nF		DA	DA	DA	DA	DA						
470 nF		DA	DA	DA	DA	DA		EA EB	EA EB	EA EB	EB	EB
680 nF		DA	DA	DA	DA	DA		EA EB	EA EB	EA EB	EB	EB
Ι.Ο μF		DA	DA	DA	DA	DA		EA EB	EA EB	EA EB	EB	EB
2.2 µF		DA	DA	DA	DB	DC		EA EB	EA EB	EA EB	EA EB	EB
4.7 µF		DA	DA	DB	DB			EA EB	EA EB	EB	EB	EB
10 μF		DB	DC	DC	DC			EA EB	EA EB	EA EB	EB	
22 µF		DC	DC					EB	EB	EB	EB	
47 µF	DC	DC						EB	EB			
100 μF												

NOTE

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is available on request

CAP.	1206	10.)/	17.17	25.1/	F0\/	1210 6.3 V	10.\/	17.17	25.1/	50V
10 - 5	6.3 V	10 V	16 V	25 V	50V	6.3 V	10 V	16 V	25 V	307
10 nF										
15 nF										
22 nF										
33 nF										
47nF										
68 nF										
100 nF										
150 nF										
220 nF										
330 nF										
470 nF										
680 nF										
Ι.0 μF	FA	FA	FA	FA	FC	GA	GA	GA	GA	GA
2.2 µF	FA	FA	FA	FA	FC	GB	GB	GB	GB	GB
4.7 µF	FC	FC	FC	FC	FC	GB	GB	GB	GB	GC
10 μF	FC	FC	FC	FC	FD	GB	GB	GB	GB	GD
22 µF	FC	FC	FC	FD		GC	GC	GC	GD	
47 µF	FC	FC	FD			GC	GC	GC		
100 µF	FD					GD	GD	GD		
220 µF						GD				

NOTE

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is available on request

THICKNESS CLASSES AND PACKING QUANTITY

Table 5	;						
SIZE CODE	THICKNESS CLASSIFICATION	TAPE WIDTH QUANTITY PER REEL	Ø180 MM Paper	I / 7 INCH Blister	Ø330 MM Paper	/ 13 INCH Blister	QUANTITY PER BULK CASE
0201	0.3 ±0.03 mm	8 mm	15,000		50,000		
0402	0.5 ±0.05 / 0.1 mm	8 mm	10,000		50,000		50,000
0102	0.5 ±0.15 / 0.2 mm	8 mm	10,000		40,000		
0603	0.8 ±0.1 mm	8 mm	4,000		15,000		15,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		10,000
0805	0.85 ±0.1 mm	8 mm	4,000		15,000		8,000
	1.25 ±0.2 mm	8 mm		3,000		10,000	5,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		
	0.85 ±0.1 mm	8 mm	4,000		15,000		
1206	1.00 / 1.15 ±0.1 mm	8 mm		3,000		10,000	
. 200	1.25 ±0.2 mm	8 mm		3,000		10,000	
	1.6 ±0.15 mm	8 mm		2,500		10,000	
	1.6 ±0.2 mm	8 mm		2,000		8,000	
	0.6 / 0.7 ±0.1 mm	8 mm		4,000		15,000	
	0.85 ±0.1 mm	8 mm		4,000		10,000	
	1.15 ±0.1 mm	8 mm		3,000		10,000	
	1.15 ±0.15 mm	8 mm		3,000		10,000	
	1.25 ±0.2 mm	8 mm		3,000			
1210	1.5 ±0.1 mm	8 mm		2,000			
	1.6 / 1.9 ±0.2 mm	8 mm		2,000			
	2.0 ±0.2 mm	8 mm		2,000 1,000			
	2.5 ±0.2 mm	8 mm		1,000 500			

ELECTRICAL CHARACTERISTICS

X5R DIELECTRIC CAPACITORS; NISN TERMINATIONS

Unless otherwise specified, all tests and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

- Temperature: 15 °C to 35 °C - Relative humidity: 25% to 75% - Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

Capacitano	e range					100 pF	to 220 µF
Capacitano	e tolerance					'	and ±20%
Dissipation	factor (D.F.)						
X5R	0201	0402	0603	0805	1206	1210	D.F
≤ 6.3V	100pF to 10nF	22nF to 100nF	220nF to TuF	470nF to 680nF	luF to 10uF	luF to 10uF	≤ 5%
		I 20nF to 220nF				22uF	≤ 7%
	12nF to 1uF	330nF to 10uF	2.2uF to 47uF	luF to 100uF	22uF to 47uF	47uF to 220uF	≤ 10%
	2.2uF				100uF, 220uF		≤ 15%
	4.7uF	22uF					≤ 20%
10V	100pF to 10nF	22nF to 100nF	220nF to 470nF	470nF to 680nF	IuF to 4.7uF	luF to 4.7uF	≤ 5%
		120nF to 220nF	680nF	IuF			≤ 7%
	12nF to 220nF, 1uF	330nF to 10uF	I uF to 22uF	2.2uF to 47uF	10uF to 47uF	10uF to 100uF	≤ 10%
	470nF						≤ 15%
	2.2uF						≤ 20%
16V	100pF to 10nF	22nF to 100nF	220nF to 470nF	470nF to 680nF	IuF to 4.7uF	IuF to 4.7uF	≤ 5%
		120nF to 220nF	680nF to TuF	I uF to 2.2uF			≤ 7%
	I2nF to 220nF	470nF to 4.7uF	2.2uF to 10uF	4.7uF to 22uF	10uF to 47uF	10uF to 100uF	≤ 10%
	470nF						≤ 20%
25V	100pF to 470pF	22nF		470nF to TuF	IuF to 2.2uF	IuF to 4.7uF	≤ 3.5%
	560pF to 10nF	27nF to 100nF	220nF to 470nF	2.2uF	4.7uF	I OuF	≤ 5%
		120nF to 220nF	680nF to TuF				≤ 7%
	22nF, 100nF	470nF to 2.2uF	2.2uF to 10uF	4.7uF to 22uF	10uF to 22uF	22uF	≤ 10%
50V	100pF to InF	22nF					≤ 3.5%
		27nF to 120nF					≤ 5%
		150nF to 220nF					≤ 7%
		470nF	220nF to 2.2uF	470nF to 10uF	luF to 10uF	luF to 10uF	≤ 10%
Insulation	resistance after 1 min	ute at Ur (DC)	Ri	ns≥ 10 GΩ or Rir	ns × Cr ≥ 50/100/5	500* seconds which	ever is less
Maximum	capacitance change as a	function of tempe	rature				

NOTE

* Rins \geq 10 G Ω or Rins \times Cr \geq 500 Ω .F:

0201 : I00pF to 47nF 0402 : 22nF to 470nF 0603 : 220nF to TuF

0805:470 nF to 2.2 uF, 4.7 uF/6.3 V to 10 V1206 : IuF to 2.2uF, 4.7uF/6.3V to IOV 1210 : IuF to 2.2uF, 4.7uF/6.3V to 16V

* Rins × Cr \geq 50 Ω .F:

0201 : luF 0402 : IOuF

0603 : IOuF to 22uF

0805 : I0uF/50V, 47uF to I00uF

1206: 100uF, 220uF

* Rins × Cr \geq 100 Ω .F:

0201: 100nF to 470nF 0402 : IuF to 4.7uF 0603: 2.2uF to 4.7uF

0805:4.7uF/16V to 50V, 10uF to 22uF/4V to 25V

1206: 4.7uF/16V to 50V, 10uF to 47uF 1210: 4.7uF/25V to 50V, 10uF to 220uF

* Rins × Cr \geq 20 Ω ,F:

0201: 2.2uF to 4.7uF

0402 : 22uF 0603:47uF

SOLDERING RECOMMENDATION

Table 7						
SOLDERING METHOD	SIZE 0201	0402	0603	0805	1206	≥ 1210
METHOD	0201	0402	0603	0003	1206	≥ 1210
Reflow	Reflow only	> 100 nF	> IµF	> 2.2 µF	$>$ 2.2 μF	Reflow only
Reflow/Wave		≤ 100 nF	≤IµF	≤ 2.2 µF	≤ 2.2 µF	

TESTS AND REQUIREMENTS

Table 8 Test procedures and requirements

TEST	TEST MET	HOD	PROCEDURE	REQUIREMENTS		
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage		
Visual Inspection and Dimension Check		4.4	Any applicable method using × 10 magnification	In accordance with specification		
Capacitance (I)		4.5.1	Class 2:	Within specified tolerance		
Dissipation Factor (D.F.) ⁽¹⁾		4.5.2	At 20 °C, 24 hrs after annealing Cap \leq I μ F, f = I KHz, measuring at voltage I Vrms at 20 °C Cap > IuF, f = I KHz for C \leq I0 μ F, rated voltage > 6.3 V, measuring at voltage I Vrms at 20 °C f = I KHz, for C \leq I0 μ F, rated voltage \leq 6.3 V, measuring at voltage 0.5 Vrms at 20 °C f = I20 Hz for C > I0 μ F, measuring at voltage 0.5 Vrms at 20 °C			
Insulation Resistance		4.5.3	At U _r (DC) for I minute	In accordance with specification		

NOTE

 $I.\ The\ figure\ indicates\ typical\ inspection.\ Please\ refer\ to\ individual\ specifications.$

REQUIREMENTS <General purpose series>

 Δ C/C: ± 30 ppm

X7R: Δ C/C: ±15% Y5V: Δ C/C: 22~-82%

<High Capacitance series>

 \times 7R/ \times 5R: Δ C/C: \pm 15% Y5V: Δ C/C: 22~-82%

Class I:

Class2:

Class2:

TEST TEST METHOD PROCEDURE

Temperature Characteristic

Capacitance shall be measured by the steps shown in the following table.

> The capacitance change should be measured after 5 min at each specified temperature stage.

Step	Temperature(°C)
a	25±2
Ь	Lower temperature±3℃
С	25±2
d	Upper Temperature±2°C
е	25±2

(I) Class I

Temperature Coefficient shall be calculated from the formula as below

Temp, Coefficient =
$$\frac{C2 - C1}{C1 \times \Delta T} \times 10^6$$
 [ppm/°C]

C1: Capacitance at step c

C2: Capacitance at 125°C

 ΔT : 100°C(=125°C-25°C)

(2) Class II

Capacitance Change shall be calculated from the formula

$$\Delta C = \frac{C2 - C1}{C1} \times 100\%$$

CI: Capacitance at step c

C2: Capacitance at step b or d

Adhesion

4.7 A force applied for 10 seconds to the line joining the terminations and in a plane parallel to the substrate

Force

size ≥ 0603: 5N size = 0402: 2.5N size = 0201: 1N

Bending Strength

IEC 60384-21/22

4.8

Mounting in accordance with IEC 60384-22 paragraph 4.3

No visible damage

Conditions: bending I mm at a rate of I mm/s, radius jig 5 mm

Test Substrate:

Unit: mm

 Δ C/C Class2:

<General purpose series>

X5R: ±10%

<High Capacitance series>

X5R: ±12.5%

	Dimensio	Dimension(mm)					
Туре	а	b	С				
0201	0.3	0.9	0.3				
0402	0.4	1.5	0.5				
0603	1.0	3.0	1.2				
0805	1.2	4.0	1.65				
1206	2.2	5.0	1.65				
1210	2.2	5.0	2.0				

TEST	TEST METH	IOD	PROCEDURE	REQUIREMENTS
Resistance to Soldering Heat	4.9		Precondition: 150 +0/ $-$ 10 °C for I hour, then keep for 24 \pm 1 hours at room temperature Preheating: for size \leq 1206: 120 °C to 150 °C for I	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned
			minute Preheating: for size > 1206: 100 °C to 120 °C for I minute and 170 °C to 200 °C for I minute Solder bath temperature: 260 ±5 °C Dipping time: 10 ±0.5 seconds	<general purpose="" series=""> ΔC/C Class2: ×5R: ±10% <high capacitance="" series=""></high></general>
			Recovery time: 24 ±2 hours	ΔC/C Class2: X5R: ±10%
			·	D.F. within initial specified value R _{ins} within initial specified value
Solderability		4.10	Preheated the temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds.	The solder should cover over 95% of the critical area of each termination
			I. Temperature: 235±5°C / Dipping time: 2 ±0.5 s	
			2. Temperature: $245\pm5^{\circ}\text{C}$ / Dipping time: $3\pm0.5\text{ s}$ (lead free)	
			Depth of immersion: 10mm	
Rapid Change of	IEC 60384- 21/22	4.11	Preconditioning; 150 +0/-10 °C for 1 hour, then keep for 24 \pm 1 hours at $_{\cdot}$	No visual damage
Temperature			room temperature	<general purpose="" series=""> ΔC/C</general>
			5 cycles with following detail: 30 minutes at lower category temperature 30 minutes at upper category temperature	Class2: X5R: ±15%
			Recovery time 24 ±2 hours	<pre><high capacitance="" series=""> $\Delta C/C$</high></pre>
				Class2: X5R: ±15%
			-	D.F. meet initial specified value R _{ins} meet initial specified value

4 V to 50 V

TEST **TEST METHOD PROCEDURE REQUIREMENTS** Damp Heat 1. Preconditioning, class 2 only: No visual damage after recovery with U_r Load 150 + 0/-10 °C /I hour, then keep for 24 \pm I hour <General purpose series> at room temp $\Delta C/C$ 2. Initial measure: Class2: Spec: refer to initial spec C, D, IR X5R: ±15% 3. Damp heat test: D.F. 500 \pm 12 hours at 40 \pm 2 °C; Class2: 90 to 95% R.H. I.O U_r applied X5R: 4. Recovery: ≤ 16V: ≤ 7% or 2 x initial value whichever Class 2: 24 ±2 hours is greater 5. Final measure: C, D, IR \geq 25V: \leq 5% or 2 x initial value whichever is greater P.S. If the capacitance value is less than the minimum $R_{\text{ins}} \\$ value permitted, then after the other measurements Class2: have been made the capacitor shall be preconditioned $X5R: \ge 500 \ M\Omega \ or \ R_{ins} \times C_r \ge 25s$ according to "IEC 60384 4.1" and then the whichever is less requirements shall be met. <High Capacitance series> * General product: Δ C/C 0201 < 100 nF0402 < IuFClass2: 0603 < 2.2uF X5R: ±20% 0805, 1206, 1210 < 4.7uF D.F. Class2: * High cap product: X5R: 2 x initial value max 0201 ≥ 100nF R_{ins} 0402 ≥ IuF Class2: 0603 ≥ 2.2uF 0805, 1206, 1210 ≥ 4.7uF Rins x Cr ≥ 5s whichever is less

EC 60384	
Commemp Co	
2. Initial measure:	>
Spec: refer to initial spec C, D, IR 3. Endurance test: Temperature: XSR: 85 °C Specified stress voltage applied for 1,000 hours: Applied 1.0 x Ur for general product*. Applied 1.0 x Ur for general product*. Applied 1.0 x Ur for high cap, product*. Applied 1.0 x Ur for high cap, product*. Applied 1.0 x Ur for high cap, product*. 4. Recovery time: 24 ±2 hours 5. Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirements shall be met P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirements shall be met P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements the value is greater Note: P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements was preaded. P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements was preaded. Note: P.S. If the capacitance value is less than the minimum value permitted. Value: P.S. If the capacitance value is less than the minimum value permitted. Value: P.S. If the capacitance value is less than the minimum value permitted. Value: P.S. If the capacitance value is less than the minimum value permitted. Value: P.S. If the capacitance value is less than the minimum value preaded. Value: P.S. If the capacitance value is greater Value: Value: P.S. If the capacitance value is greater Value: ACCC Class 2: Value: Value: AC/C Class 2: AC/C Class 2:	
3. Endurance test Temperature: XSR: 85 °C Specified stress voltage applied for 1,000 hours: Applied 2.0 x Ur for general product*. Applied 1.0 x Ur for high cap. product*. 4. Recovery time: 24 ±2 hours 5. Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirements shall be me! * General product (Applied 2.0 x Ur): O201 < 100nF O402 < 1 uF O603 < 2.2 uF O805, 1206, 1210 < 4.7 uF O805, 1206, 1210 ≤ 4.7 uF * High cap product (Applied 1.5 x Ur): O201 ≥ 100nF O603 ≥ 2.2 uF O805, 1206, 1210 ≥ 4.7 uF * High cap product (Applied 1.0 x Ur): O201 ≥ 100nF O603 ≥ 2.2 uF O805, 1206, 1210 ≥ 4.7 uF * High cap product (Applied 1.0 x Ur): O201 ≥ 100nF O603 ≥ 2.2 uF O805, 1206, 1210 ≥ 4.7 uF * High cap product (Applied 1.0 x Ur): O201: 100nF/25V, 2.2 uF to 4.7 uF O805: 10uF/25V, 50V, 2.2 uF to 10uF 1206: 10uF/25V, 50V, 2.2 uF to 10uF 1206: 10uF/50V Voltage 4.6 Specified stress voltage applied for 1~5 seconds Voltage Proof Voltage Voltag	
Temperature: X5R: 85 °C Specified stress voltage applied for 1,000 hours: Applied 2.0 × Ur for general product*, Applied 1.5 × Ur for high cap, product*, Applied 1.0 × Ur for high cap, product is greater Prod 1.5 × Ur for high cap, product*, Applied 1.0 × Ur): Applied 1.0 × Ur for high cap, product with the mainimum is greater Applied 1.5 × Ur for high cap, product with the mainimum is greater Applied 1.0 × Ur for high cap, product with the mainimum is greater Applied 1.0 × Ur for high cap, product with the mainimum is greater Applied 1.0 × Ur for high cap, product with the mainimum is greater Applied 1.0 × Ur for high cap, product with the mainimum is greater Applied 1.0 × Ur for high cap, product with the mainimum is greater Applied 1.0 × Ur): ACICC Class 2: ACICC Cl	
Specified stress voltage applied for 1,000 hours: Applied 1.5 × Ur for general product*, Applied 1.5 × Ur for high cap, product*, Applied 1.0 × Ur for product*, Applied 1.0 × Ur): Applied 1.0 × Ur for high cap, product*, Applied 1.0 × Ur for product*, AC/C Class 2: ASR: ±20% AC	
Applied 2.0 x Ur for general product*. Applied 1.5 x Ur for high cap, product*. Applied 1.0 x Ur for high cap, product*. 4. Recovery time: 24 ±2 hours 5. Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirements shall be met. * General product (Applied 2.0 x Ur): 0201 < 100nF 0402 < 1 uF 0603 < 2.2 uF 0805, 1206, 1210 < 4.7 uF 0402 ≥ 1 uF 0603 ≥ 2.2 uF 0805, 1206, 1210 ≥ 4.7 uF * High cap product (Applied 1.5 x Ur): 0201 ≥ 100nF 0402 ≥ 1 uF 0603 ≥ 2.2 uF 0805, 1206, 1210 ≥ 4.7 uF * High cap product (Applied 1.0 x Ur): 0201 ≥ 100nF/25V, 2.2 uF to 4.7 uF 0402: 4.7 uF to 22 uF 0603: 4.7 uF/25V, 10uF/10V to 25V, 22 uF to 47 uF 0805: 10uF/25V, 22 uF to 100uF 1206: 10uF/50V Voltage 4.6 Specified stress voltage applied for 1~5 seconds Ur≤ 10uV series applied Voltage Proof 4.6 Specified stress voltage applied for 1~5 seconds Ur≤ 200 V series applied	
Applied 1.5 × Ur for high cap, product*. Applied 1.0 × Ur for high cap, product*. 4. Recovery time: 24 ±2 hours 5. Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirements shall be met. * General product (Applied 2.0 × Ur): 0201 < 100nF 0402 < 1 uF 0603 < 2.2 uF 0805, 1206, 1210 < 4.7 uF 0402 ≥ 1 uF 0403 ≥ 2.uF 0805, 1206, 1210 ≥ 4.7 uF * High cap product (Applied 1.5 × Ur): 0201 ≥ 100nF/25V, 2.2 uF to 4.7 uF 0402: 4.7 uF to 22uF 0402: 4.7 uF to 22uF 0405: 10uF/25V, 10uF/10V to 25V, 22uF to 47 uF 0406: 4.7 uF/25V, 10uF/10V to 25V, 22uF to 47 uF 0405: 10uF/50V Voltage 4.6 Specified stress voltage applied for 1 ~ 5 seconds Ur ≤ 100 V; series applied 4.6 Specified stress voltage applied for 1 ~ 5 seconds Ur ≤ 100 V; series applied 4.6 Specified stress voltage applied for 1 ~ 5 seconds Ur ≤ 100 V; series applied	
Applied 1.0 x Ur for high cap. product [±] . 4. Recovery time: 24 ±2 hours 5. Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirements shall be met * General product (Applied 2.0 x Ur): 0201 < 100nF 0402 < 1 uF 0603 < 2.2 uF 0805, 1206, 1210 < 4.7 uF * High cap product (Applied 1.5 x Ur): 0201 ≥ 100nF 0402 ≥ 1 uF 0402 ≥ 1 uF 0402 ≥ 1 uF 0403 ≥ 2.2 uF 04003 ≥ 2.2 uF 0402 ≥ 1 uF 0603 ≥ 2.2 uF 0805, 1206, 1210 ≥ 4.7 uF * High cap product (Applied 1.0 x Ur): 0201 : 100nF/25V, 2.2 uF to 4.7 uF 0402 : 4.7 uF to 22 uF 0603 : 4.7 uF/25V, 10uF/10V to 25V, 22 uF to 47 uF 0805: 10uF/25V, 50V, 22 uF to 100uF 1206: 10uF/50V Voltage 4.6 Specified stress voltage applied for 1 −5 seconds Vol tage Proof Voltage 4.6 Specified stress voltage applied for 1 −5 seconds Vol series applied	al value whichever
4. Recovery time: 24 ±2 hours 5. Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "EC 60384 4.1" and then the requirements shall be met * General product (Applied 2.0 × Ur): 0201 < 100nF 0402 < 1 uF 0603 < 2.2 uF 0805, 1206, 1210 < 4.7 uF * High cap product (Applied 1.5 × Ur): 0201 ≥ 100nF 0402 ≥ 1 uF 0603 ≥ 2.2 uF 0603 ≥ 2.2 uF 0805, 1206, 1210 ≥ 4.7 uF * High cap product (Applied 1.0 × Ur): 0201 ≥ 100nF/25V, 2.2 uF to 4.7 uF * High cap product (Applied 1.0 × Ur): 0201 : 100nF/25V, 2.2 uF to 100uF 1206: 10uF/25V, 2.2 uF to 100uF 1206: 10uF/25V, 2.2 uF to 100uF 1206: 10uF/25V, 2.0 uF to 100uF 1206: 10uF/50V Voltage 4.6 Specified stress voltage applied for 1~5 seconds Vol series applied No breakdown or flashover	ar value virtieriever
S. Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirements shall be met. * General product (Applied 2.0 × Ur): 0201 < 100nF 0402 < 1uF 0603 < 2.2uF 0805, 1206, 1210 < 4.7uF * High cap product (Applied 1.5 × Ur): 0201 ≥ 100nF 0402 ≥ 1uF 0603 ≥ 2.2uF 0402 ≥ 1uF 0603 ≥ 2.2uF 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 × Ur): 0201 ≥ 100nF 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 × Ur): 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 × Ur): 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 × Ur): 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 × Ur): 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 × Ur): 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 × Ur): 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 × Ur): 0805, 1206, 1210 ≥ 4.7uF Nobertakdown or flashover Voltage * 4.6 Specified stress voltage applied for 1~5 seconds Ur ≤ 100 V: series applied 2.5 Ur 100 V < Ur ≤ 200 V series applied	al value whichever
P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to " $IEC 60384 \cdot 4.1$ " and then the requirements shall be met. * General product (Applied $2.0 \times Ur$): 0201 < 100nF 0402 < 1uF 0603 < 2.2uF 0805, 1206, 1210 < 4.7uF * High cap product (Applied $1.5 \times Ur$): 0201 $\geq 100nF$ 0202 $\geq 100nF$ 0303 $\geq 2.2uF$ 0402 $\geq 1uF$ 0603 $\leq 2.2uF$ 070402 $\geq 1uF$ 070402 $\geq 1uF$ 070402 $\geq 1uF$ 0705, 1210 $\geq 4.7uF$ * High cap product (Applied $1.5 \times Ur$): 0201 $\geq 100nF$ 0705 $\geq 100nF$ 0706, 1210 $\geq 4.7uF$ * High cap product (Applied $1.0 \times Ur$): 0706, 1210 $\geq 4.7uF$ * High cap product (Applied $1.0 \times Ur$): 0709: 100nF/25V, 2.2uF to 4.7uF 0709: 100F/25V, 2.2uF to 4.7uF 0709: 100F/25V, 2.2uF to 100uF 1206: 10uF/50V * Voltage 4.6 Specified stress voltage applied for $1 \sim 5$ seconds $1 \times 100 \times 100$	ai vaide Willelievei
P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirements shall be met * General product (Applied 2.0 × Ur): 0201 < 100nF 0402 < 1uF 0603 < 2.2uF 0805, 1206, 1210 < 4.7uF * High cap product (Applied 1.5 × Ur): 0201 ≥ 100nF 0402 ≥ 1uF 0603 ≥ 2.2uF 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 × Ur): 0201 ≥ 100nF 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 × Ur): 0201: 100nF/25V, 2.2uF to 4.7uF * High cap product (Applied 1.0 × Ur): 0201: 100nF/25V, 2.2uF to 100uF 1206: 10uF/ 50V * Voltage 4.6 Specified stress voltage applied for 1~5 seconds Proof Ur ≤ 100 V: series applied	
value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirements shall be met. * General product (Applied 2.0 × Ur): 0201 < 100nF 0402 < 1uF 0603 < 2.2uF 0805, 1206, 1210 < 4.7uF * High cap product (Applied 1.5 × Ur): 0201 ≥ 100nF 0402 ≥ 1uF 0603 ≥ 2.2uF 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 × Ur): 0201 ≥ 00nF 0603 ≥ 2.2uF 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 × Ur): 0201: 100nF/25V, 2.2uF to 4.7uF 0402: 4.7uF * High cap product (Applied 1.0 × Ur): 0201: 100nF/25V, 2.2uF to 1.0uF 0403: 4.7uF 0505: 10uF/25V, 2.2uF to 100uF 1206: 10uF/50V * Voltage * 4.6 Specified stress voltage applied for 1~5 seconds Voltage Proof * Proof * No breakdown or flashover	
* High cap product (Applied 1.5 x Ur): 0201 ≥ 100nF 0402 ≥ 1uF 0603 ≥ 2.2uF 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.5 x Ur): 0805, 1206, 1210 ≥ 4.7uF 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 x Ur): 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 x Ur): 0805, 1206, 1210 ≥ 4.7uF 0805, 120F to 4.7uF 0805, 10uF/10V to 25V, 22uF to 4.7uF 0805; 10uF/25V, 50V, 22uF to 100uF 1206: 10uF/50V * Voltage * 4.6 Specified stress voltage applied for 1~5 seconds Voltage * Proof * Specified stress voltage applied for 1~5 seconds Voltage * No breakdown or flashover	∨ C > 50c
* General product (Applied 2.0 x Ur):	ns A Cr = 303
* General product (Applied 2.0 × Ur): 0201 < 100nF 0202 < 1uF 0402 < 1uF 0603 < 2.2uF 0805, 1206, 1210 < 4.7uF * High cap product (Applied 1.5 × Ur): 0201 ≥ 100nF 0202 ≥ 1uF 0402 ≥ 1uF 0402 ≥ 1uF 0402 ≥ 1uF 0402 ≥ 1uF 0603 ≥ 2.2uF 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.5 × Ur): 0603 ≥ 2.2uF 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 × Ur): 0201: 100nF/25V, 2.2uF to 4.7uF 0402: 4.7uF to 22uF 0402: 4.7uF to 22uF 0403: 4.7uF/25V, 10uF/10V to 25V, 22uF to 47uF 0805: 10uF/ 25V, 50V, 22uF to 100uF 1206: 10uF/ 50V Voltage Proof 4.6 Specified stress voltage applied for 1~5 seconds Ur ≤ 100 V: series applied No breakdown or flashover No breakdown or flashover	
* General product (Applied 2.0 × Ur): 0201 < 100nF 0402 < 1uF 0603 < 2.2uF 0603 < 2.2uF 0805, 1206, 1210 < 4.7uF * High cap product (Applied 1.5 × Ur): 0201 ≥ 100nF 0603 ≥ 2.2uF 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.5 × Ur): 0402 ≥ 1uF 0603 ≥ 2.2uF 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 × Ur): 0201: 100nF/25V, 2.2uF to 4.7uF * High cap product (Applied 1.0 × Ur): 0201: 100nF/25V, 2.2uF to 4.7uF 0402: 4.7uF 0402: 4.7uF to 22uF 0603: 4.7uF/25V, 10uF/10V to 25V, 22uF to 47uF 0805: 10uF/25V, 50V, 22uF to 100uF 1206: 10uF/50V * Specified stress voltage applied for 1~5 seconds Ur ≤ 100 V: series applied 2.5 Ur 100 V < Ur ≤ 200 V series applied	;>
* General product (Applied 2.0 x Or): 0201 < 100nF 0402 < 1 uF 0603 < 2.2uF 0805, 1206, 1210 < 4.7uF * High cap product (Applied 1.5 x Ur): 0201 ≥ 100nF 0402 ≥ 1 uF 0402 ≥ 1 uF 0603 ≥ 2.2uF 0402 ≥ 1 uF 0603 ≥ 2.2uF 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.5 x Ur): 0201 ≥ 100nF 0603 ≥ 2.2uF 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 x Ur): 0201: 100nF/25V, 2.2uF to 4.7uF 0402: 4.7uF to 22uF 0603: 4.7uF/25V, 10uF/10V to 25V, 22uF to 47uF 0805: 10uF/ 25V, 50V, 22uF to 100uF 1206: 10uF/ 50V Voltage 4.6 Specified stress voltage applied for 1~5 seconds Voltage Proof 4.6 Specified stress voltage applied for 1~5 seconds Ur ≤ 100 V: series applied No breakdown or flashover	
0402 < 1uF 0402 < 1uF 0603 < 2.2uF 0805, 1206, 1210 < 4.7uF ** High cap product (Applied 1.5 × Ur): 0201 ≥ 100nF 0402 ≥ 1uF 0402 ≥ 1uF 0805, 1206, 1210 ≥ 4.7uF ** High cap product (Applied 1.0 × Ur): 0603 ≥ 2.2uF 0805, 1206, 1210 ≥ 4.7uF ** High cap product (Applied 1.0 × Ur): 0201: 100nF/25V, 2.2uF to 4.7uF ** High cap product (Applied 1.0 × Ur): 0201: 100nF/25V, 10uF/10V to 25V, 22uF to 47uF 0402: 4.7uF to 22uF 0603: 4.7uF/25V, 10uF/10V to 25V, 22uF to 47uF 0805: 10uF/ 25V, 50V, 22uF to 100uF 1206: 10uF/ 50V **Voltage** 4.6 Specified stress voltage applied for 1~5 seconds Ur ≤ 100 V: series applied 2.5 Ur 100 V < Ur ≤ 200 V series applied	
0603 < 2.2uF 0805, 1206, 1210 < 4.7uF Class 2: X5R: 2 × initial value max * High cap product (Applied 1.5 × Ur): 0201 ≥ 100nF 0202 ≥ 1uF 0603 ≥ 2.2uF 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 × Ur): 0201: 100nF/25V, 2.2uF to 4.7uF 0402: 4.7uF to 22uF 0603: 4.7uF/25V, 10uF/10V to 25V, 22uF to 47uF 0805: 10uF/25V, 50V, 22uF to 100uF 1206: 10uF/50V Voltage Proof D.F. Class 2: X5R: 2 × initial value max Rins × Cr ≥ 10s whichever is less Whichever is less No breakdown or flashover Ur ≤ 100 V: series applied for 1~5 seconds Ur ≤ 100 V: series applied No breakdown or flashover	
0805, 1206, 1210 < 4.7uF Class 2: X5R: 2 x initial value max * High cap product (Applied 1.5 x Ur): 0201 ≥ 100nF 0201 ≥ 100nF Class 2: 0402 ≥ 1uF 0603 ≥ 2.2uF 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 x Ur): 0201: 100nF/25V, 2.2uF to 4.7uF 0402: 4.7uF to 22uF 0603: 4.7uF/25V, 10uF/10V to 25V, 22uF to 47uF 0805: 10uF/25V, 50V, 22uF to 100uF 1206: 10uF/50V Voltage Proof 4.6 Specified stress voltage applied for 1~5 seconds Ur ≤ 100 V: series applied 2.5 Ur 100 V < Ur ≤ 200 V series applied	
* High cap product (Applied I.5 × Ur): R_{ins} $0201 \ge 100nF$ $0402 \ge 1uF$ $0603 \ge 2.2uF$ $0805, 1206, 1210 \ge 4.7uF$ * High cap product (Applied I.0 × Ur): $0201: 100nF/25V, 2.2uF \text{ to } 4.7uF$ * High cap product (Applied I.0 × Ur): $0201: 100nF/25V, 2.2uF \text{ to } 4.7uF$ $0402: 4.7uF \text{ to } 22uF$ $0603: 4.7uF/25V, 10uF/10V \text{ to } 25V, 22uF \text{ to } 47uF$ $0805: 10uF/25V, 50V, 22uF \text{ to } 100uF$ $1206: 10uF/50V$ Voltage 4.6 Specified stress voltage applied for $1 \sim 5$ seconds $Ur \le 100 \text{ V} : \text{ series applied } 2.5 \text{ Ur}$ $100 \text{ V} < \text{Ur } \le 200 \text{ V series applied}$ No breakdown or flashover	
* High cap product (Applied 1.5 x Ur): 0201 ≥ 100nF 0402 ≥ 1uF 0603 ≥ 2.2uF 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 x Ur): 0201: 100nF/25V, 2.2uF to 4.7uF 0402: 4.7uF to 22uF 0603: 4.7uF/25V, 10uF/10V to 25V, 22uF to 47uF 0805: 10uF/ 25V, 50V, 22uF to 100uF 1206: 10uF/ 50V Voltage Proof 4.6 Specified stress voltage applied for 1~5 seconds Ur ≤ 100 V: series applied 2.5 Ur 100 V < Ur ≤ 200 V series applied	274
0201 ≥ 100nF 0402 ≥ 1uF 0603 ≥ 2.2uF 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 × Ur): 0201: 100nF/25V, 2.2uF to 4.7uF 0402: 4.7uF to 22uF 0603: 4.7uF/25V, 10uF/10V to 25V, 22uF to 47uF 0805: 10uF/ 25V, 50V, 22uF to 100uF 1206: 10uF/ 50V Voltage Proof 4.6 Specified stress voltage applied for 1~5 seconds Ur ≤ 100 V: series applied 2.5 Ur 100 V < Ur ≤ 200 V series applied	iX
0402 ≥ 1uF 0603 ≥ 2.2uF 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 × Ur): 0201: 100nF/25V, 2.2uF to 4.7uF 0402: 4.7uF to 22uF 0603: 4.7uF/25V, 10uF/10V to 25V, 22uF to 47uF 0805: 10uF/ 25V, 50V, 22uF to 100uF 1206: 10uF/ 50V Voltage Proof 4.6 Specified stress voltage applied for 1~5 seconds Ur ≤ 100 V: series applied 2.5 Ur 100 V < Ur ≤ 200 V series applied	
0603 ≥ 2.2uF 0805, 1206, 1210 ≥ 4.7uF * High cap product (Applied 1.0 x Ur): 0201: 100nF/25V, 2.2uF to 4.7uF 0402: 4.7uF to 22uF 0603: 4.7uF/25V, 10uF/10V to 25V, 22uF to 47uF 0805: 10uF/ 25V, 50V, 22uF to 100uF 1206: 10uF/ 50V Voltage 4.6 Specified stress voltage applied for 1~5 seconds Ur ≤ 100 V: series applied 2.5 Ur 100 V < Ur ≤ 200 V series applied	
* High cap product (Applied I.0 x Ur): 0201: I00nF/25V, 2.2uF to 4.7uF 0402: 4.7uF to 22uF 0603: 4.7uF/25V, 10uF/10V to 25V, 22uF to 47uF 0805: I0uF/ 25V, 50V, 22uF to 100uF 1206: I0uF/ 50V Voltage 4.6 Specified stress voltage applied for I~5 seconds Ur ≤ I00 V: series applied 2.5 Ur 100 V < Ur ≤ 200 V series applied	
0201: 100nF/25V, 2.2uF to 4.7uF 0402: 4.7uF to 22uF 0603: 4.7uF/25V, 10uF/10V to 25V, 22uF to 47uF 0805: 10uF/ 25V, 50V, 22uF to 100uF 1206: 10uF/ 50V Voltage 4.6 Specified stress voltage applied for 1~5 seconds Ur ≤ 100 V: series applied 2.5 Ur 100 V < Ur ≤ 200 V series applied	
0402: 4.7uF to 22uF 0603: 4.7uF/25V, 10uF/10V to 25V, 22uF to 47uF 0805: 10uF/ 25V, 50V, 22uF to 100uF 1206: 10uF/ 50V Voltage 4.6 Specified stress voltage applied for 1~5 seconds Ur ≤ 100 V: series applied 2.5 Ur 100 V < Ur ≤ 200 V series applied	
0603: 4.7uF/25V, 10uF/10V to 25V, 22uF to 47uF 0805: 10uF/ 25V, 50V, 22uF to 100uF 1206: 10uF/ 50V Voltage 4.6 Specified stress voltage applied for 1~5 seconds Ur ≤ 100 V: series applied 2.5 Ur 100 V < Ur ≤ 200 V series applied	
Voltage 4.6 Specified stress voltage applied for $1 \sim 5$ seconds No breakdown or flashover Proof Ur $\leq 100 \text{ V}$: series applied 2.5 Ur $100 \text{ V} \leq 200 \text{ V}$ series applied	
Voltage 4.6 Specified stress voltage applied for $1 \sim 5$ seconds No breakdown or flashover Proof Ur $\leq 100 \text{ V}$: series applied 2.5 Ur $100 \text{ V} < \text{Ur} \leq 200 \text{ V}$ series applied	
Proof Ur \leq 100 V: series applied 2.5 Ur 100 V < Ur \leq 200 V series applied	
100 V < Ur ≤ 200 V series applied	over
(1.5 Ur + 100)	
200 V < Ur ≤ 500 V series applied	
(1.3 Ur + 100)	
Ur > 500 V: 1.3 Ur	
Ur ≥ 1000 V: 1.2 Ur	
Charge/Discharge current is less than 50 mA	

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION	
Version 26	Mar. 26, 2020	-	- Capacitance range updated for 0201/0805/1206, 0201 D.F spec update, 1210 dimension update	
Version 25	Jun. 2, 2017	=	- I.R spec updated	
Version 24	Mar. 6, 2017	-	- 0805 L4 spec updated	
Version 23	Nov. 15, 2016	-	- Dimension updated	
Version 22	Oct. 3, 2016	-	- Dimension and Soldering recommendation updated	
Version 21	Jan. 28, 2016	-	- Tests and requirements updated	
Version 20	Dec. 04, 2015	-	- Size updated	
Version 19	Apr. 09, 2015	-	- Voltage updated	
Version 18	Jul. 07, 2014	-	- Voltage updated	
Version 17	Mar. 31, 2014	-	- Test condition updated	
Version 16	Nov. 29, 2012	-	- Test condition updated	
Version 15	Sep. 03, 2012	-	- Test condition updated	
Version 14	May 16, 2012	-	- Product range updated	
Version 13	May 02, 2012	-	- Product range updated	
Version 12	Feb 10, 2012	-	- Product range updated	
Version I I	Oct 21, 2011	-	- Product range updated	
Version 10	Jun 21, 2011	-	- Product range updated	
Version 9	Mar 23, 2011	-	- Product range updated	
Version 8	Jan 25, 2011	-	- Rated voltage of 0201 extend to 50V	
Version 7	Jan 05, 2011	-	- Product range updated	
Version 6	Jul 27, 2010	-	- Dimension on 0603 and 1206 case size updated	
Version 5	Apr 21, 2010	-	- The statement of "Halogen free" on the cover added	
			- Dimension updated	
Version 4	Jan 13, 2010	-	- Thickness updated	
Version 3	Aug 17, 2009	-	- Dimension updated	
Version 2	Jun 09, 2009	-	- Ordering code updated	
Version I	May 15, 2009	-	- Product range updated	
Version 0	Apr 15, 2009	-	- New datasheet for general purpose and high capacitance X5R series with RoHS compliant	
			- Replace the "6.3V to 50V" part of pdf files: UP-X5R_X7R_HighCaps_6.3-to-25V_II, UY-X5R_X7R_HighCaps_6.3-to-25V_II	
			 Combine 0201 from pdf files: UP-NP0X5RX7RY5V_0201_6.3-to-50V_2 and UY-NPOX5RX7RY5V_0201_6.3-to-50V_2 	
			- Define global part number	
			- Description of "Halogen free compliant" added	

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Yageo:

CC0402KRX5R6BB104	4 CC0402KRX5R5BB224	CC0603KRX5R8BB474	CC0603KRX5R8BB334
CC0603KRX5R7BB474	CC0603KRX5R6BB474	CC0603KRX5R6BB334	CC0805KKX5R6BB106
CC1210KKX5R6BB226	CC0805KKX5R6BB475	CC0805KKX5R6BB225	CC0603KRX5R5BB105
CC0603KRX5R7BB105	CC0805MKX5R5BB226	CC0603KRX5R5BB106	CC0201KRX5R5BB104
CC0201KRX5R6BB103	CC0603KRX5R6BB224	CC0402KRX5R7BB224	CC0402MRX5R5BB225
CC0805KFX5R5BB106	CC1206KKX5R6BB106	CC1210KKX5R8BB106	CC0201KRX5R5BB223
CC0201KRX5R5BB224	CC0201KRX5R5BB333	CC0201KRX5R5BB473	CC0201MRX5R5BB224
CC0201KRX5R7BB103	CC0201MRX5R5BB105	CC0402KRX5R5BB154	CC0402KRX5R5BB225
CC0402KRX5R5BB334	CC0402KRX5R6BB154	CC0402KRX5R6BB474	CC0402KRX5R7BB105
CC0402KRX5R7BB683	CC0402MRX5R5BB104	CC0402MRX5R5BB224	CC0402MRX5R6BB104
CC0402MRX5R6BB105	CC0402MRX5R6BB224	CC0603KRX5R5BB224	CC0603KRX5R5BB684
CC0603KRX5R6BB684	CC0603KRX5R7BB224	CC0603KRX5R7BB334	CC0603KRX5R7BB475
CC0603KRX5R8BB224	CC0603MRX5R5BB105	CC0603MRX5R6BB105	CC0603MRX5R6BB106
CC0603MRX5R6BB225	CC0603MRX5R6BB474	CC0603MRX5R6BB475	CC0603MRX5R7BB105
CC0603MRX5R8BB224	CC0402KRX5R5BB104	CC0603KRX5R6BB225	CC0603KRX5R8BB105
CC0805KKX5R5BB106	CC0402KRX5R6BB683	CC0402KRX5R5BB474	CC0603KRX5R5BB474
CC0402KRX5R6BB473	CC0805KKX5R5BB475	CC1206KKX5R7BB106	CC0402MRX5R5BB475
CC1210KKX5R8BB475	CC1206KKX5R8BB106	CC0402MRX5R5BB105	CC0805MKX5R5BB106
CC0603MRX5R5BB475	CC0402KRX5R7BB473	CC0402KRX5R8BB104	CC1206KKX5R5BB226
CC0201KRX5R6BB104	CC0805KKX5R8BB105	CC0805KKX5R8BB106	CC0805KRX5R6BB106
CC0805MFX5R5BB106	CC0805MFX5R5BB226	CC1206KFX5R8BB106	CC1206MKX5R5BB476
CC1206MKX5R8BB106	CC1210KKX5R7BB226	CC0603KRX5R6BB106	CC0603KRX5R9BB105
CC0402MRX5R5BB106	CC0603MRX5R5BB226	CC0402KRX5R6BB334	CC0603KRX5R8BB225
CC0805KFX5R6BB106	CC0402KRX5R6BB225	CC0603KPX5R5BB475	CC0402KRX5R8BB105
CC0402MRX5R6BB225	CC0201MRX5R5BB474	CC0402KRX5R7BB225	CC0603MRX5R6BB226