

(4)	2 (4)	4 (007.50)	5 (2)	6 (1)	7 (2)	Q (A)
(4) 2. (1) 10. (2) athongo	3. (4) ///. mathongo	4. (997.50) //. mathongo	5. (2) ///. mathongo	6. (1) ///. mathongo	7. (2) /// mathongo	8. (4) /// mathongo ///
(5)						
(4) $f(x+y) = f(x) + f(y)$ $f(1) = 7 \Rightarrow f(1+1) = f(1) + f(1)$	///. mathongo					
f(n)=in						
$\sum_{\gamma=1}^{n} f(\gamma) = f(1) + f(2) + \dots 7n$ $= 7 + 14 + \dots 7n$ $= 7(1 + 2 + \dots n)$						
$=7\frac{n(n+1)}{2}$						
$\frac{1}{\sqrt{1}}$ (1)athongo $\frac{1}{\sqrt{2}}$ mathongo						
We have, $f(x) = \frac{a^x + a^{-x}}{2}$, $(a > 2)$, $\Rightarrow f(x) = \frac{a^{2x} + 1}{2ax}$	where $x \in R$ is the	domain of the funct	ion.			
$ \begin{array}{l} \therefore f(x+y) + f(x-y) = \frac{a^x a^y + \frac{1}{a^x a^y}}{2} \\ = \frac{(a^x a^y)^2 + 1 + (a^x)^2 + (a^y)^2}{2a^x a^y} \end{array} $	$+\frac{\frac{a^x}{a^y}+\frac{a^y}{a^x}}{2}$ thongo					
$egin{align*} &= rac{\left(a^{2x}+1 ight)\left(a^{2y}+1 ight)}{2a^{x}a^{y}} \ &= 2\cdotrac{a^{2x}+1}{2a^{x}}\cdotrac{a^{2y}+1}{2a^{y}} \end{aligned}$						
=2f(x)f(y)						
(4) thongo $mathongo$ Given that, f is a real valued funct						
Now put here, $x = 1 \& y = 99$ f(100) = f(1) + f(99)						
f(100) = f(1) + f(1) + f(98) $f(100) = 2f(1) + f(1) + f(97)$						
f(100) = 3f(1) + f(1) + f(96) :: :: ::						
f(100) = 100 f(1) Hence, $f(100) = 500$; $f(1) = 5$						
(997.50)						
We have, $f(x) = \frac{9^x}{9^x + 3}$ among $f(x) = f(x) + f(1 - x) = 1$ $f(x) + f(1 - \frac{1}{1996}) = 1$	(;)					
$f\left(\frac{2}{1996}\right) + f\left(1 - \frac{2}{1996}\right) = 1 \dots (ii)$	mathongo					
and so on $f(\frac{1995}{1996}) + f(1 - \frac{1995}{1996}) =$	=1(iii)					
Adding all the equation we get,						
$2\left(f\left(\frac{1}{1996}\right)+f\left(\frac{2}{1996}\right)+\ldots+f\left(\frac{2}{1996}\right)\right)$	$\left(\frac{1995}{1996}\right) = 1995$					
$\Rightarrow f\left(\frac{1}{1996}\right) + f\left(\frac{2}{1996}\right) + \ldots + f\left(\frac{2}{1996}\right)$	$\left(\frac{1395}{1996}\right) = 997.5$					

Answer Keys and Solutions

Answer Keys and Solutions

Ans	ver Keys and Solutions				JEE Main Crash Course
9.	(3) Rewriting the given function, $f(x)$ is surjective on R	40	-15-2a		
10.	$\Rightarrow 15-2a = 2 \Rightarrow 2a = 13 \Rightarrow a = 2$ (2) Given, $f(x)=(x-1)(x-2)$ Clearly $f(1)=f(2)=f(3)=0$	7// magthanga ///			
	$\Rightarrow f(x)$ is not one-one. We know that an odd degree poly	nomial function ranges fro	mathongo m		
	$-\infty$ to ∞ . Therefore, f is onto.				