Коллоквиум №1 (20.11.2019)

GROUPS №19137,№19144

2019

- 1. Множество: способы задания, операции над множествами Не существует явного определения множества.
 - Пусть А некоторое мн-во, тогда существует 2 способа задания мн-ва
 - (a) $A = \{1,2,3,4,5\}$ явное задание эл-тов мн-ва
 - (b) Пусть $\Phi(x)$ некоторое условие, тогда $A = \{x \mid \Phi(x)\}$ - Задание множествами с помощью некоторого условия $\Phi(x)$

Пусть А, В- некоторые множества

Обозначение (Подмножетсво). А - подмножетсво B, если $A \subseteq B = \{x \mid x \in A \Rightarrow x \in B\}$

Обозначение (Собстевнное подмножетсво). А - собстевнное подмножетсво B, если $A \subset B$, если $A \subseteq B$ и $A \neq B$

Обозначение (Пустое множество). ∅ - множество, не содержащее элтов ("Пустое множество")

Обозначение (Множество всех подмножетсв множества A). $P(A) = \{ C \mid C \subseteq A \}$

Обозначение (Универсум). Универсум (условное множество все множеств) U

Операции над множествами:

- Объединение множеств: $A \cup B = \{x \mid x \in A \lor x \in B\}$
- Пересечение множеств: $A \cap B = \{x \mid x \in A \land x \in B\}$
- Разность множеств: $A \setminus B = \{x \mid x \in A \land x \notin B\}$
- Дополнение множества: $\neg A = \{ x \mid x \in U \land x \notin A \}$
- Симметрическая разность множеств: $A \Delta B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (B \cup A)$

Пусть S - семейство множеств:

- Объединение семейства множеств $\bigcup S = \{ x \mid \exists A_i \in S : x \in A_i \}$
- Пересечение семейства множеств $\bigcap S = \{ \ x \mid \forall A_i \in S : x \in A_i \ \}$
- 2. Упорядоченный набор (кортеж), предложение о равенстве п-ок, декартово произведение, декартова степень.

Определение (Упорядоченный набор (кортеж)). Упорядоченный набор (кортеж) длинны n определяется по индукции

Определение (пара). Набор < a, b > длинны 2 называют *парой*

Теорема (Предложение о равенстве n-ок). $Ecnu < a_1, ..., a_n > = < b_1, ..., b_n >$, $mo\ a_1 = b_1, ..., a_n = b_n$

 \square оказательство. ...

Определение (Декартово произведение). Пусть даны множества $A_1,...,A_n$, тогда их декартовым произведением называют

$$A_1 \times A_2 \times ... \times A_n = \{ \langle a_1, ..., a_n \rangle \mid \forall i \in \{1, ..., n\} \ a_i \in A_i \}$$

Определение (Декартова степень). В случае, если $A_1=A_2=...=A_n$, тогда $A_1\times A_2\times...\times A_n$ называют декартовой степенью и обозначают, как $A^n=A_1\times A_2\times...\times A_n$