Discovering Symmetry

Stephan Tornier

January 14, 2021

Symmetry

Beauty

Efficiency

Cost-effectiveness

	e	s_1	<i>s</i> ₂	<i>s</i> ₃	$r_{1/3}$	$r_{2/3}$
е						
s_1						
<i>s</i> ₂						
<i>s</i> ₃						
$r_{1/3}$						
$\frac{r_{1/3}}{r_{2/3}}$						

	e	<i>s</i> ₁	s ₂	<i>S</i> 3	$r_{1/3}$	$r_{2/3}$
е	e					
s_1						
<i>s</i> ₂						
<i>s</i> ₃						
$r_{1/3}$						
$\frac{r_{1/3}}{r_{2/3}}$						

	e	s_1	<i>s</i> ₂	s 3	$r_{1/3}$	$r_{2/3}$
е	e	<i>s</i> ₁				
<i>s</i> ₁						
<i>s</i> ₂						
<i>s</i> ₃						
$r_{1/3}$						
$r_{2/3}$						

	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
е	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	r _{2/3}
s_1						
<i>s</i> ₂						
<i>s</i> ₃						
$r_{1/3}$						
$r_{2/3}$						

	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
е	e	<i>s</i> ₁	<i>s</i> ₂	<i>5</i> 3	$r_{1/3}$	<i>r</i> _{2/3}
s_1	s_1					
<i>s</i> ₂	<i>s</i> ₂					
s 3	<i>s</i> ₃					
$r_{1/3}$	$r_{1/3}$					
$r_{2/3}$	$r_{2/3}$					

	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
е	e	<i>s</i> ₁	<i>s</i> ₂	s 3	$r_{1/3}$	<i>r</i> _{2/3}
s_1	s_1	e				
<i>s</i> ₂	<i>s</i> ₂					
s 3	<i>s</i> ₃					
$r_{1/3}$	$r_{1/3}$					
r _{2/3}	r _{2/3}					

	e	<i>s</i> ₁	s ₂	<i>s</i> ₃	$r_{1/3}$	$r_{2/3}$
е	e	<i>s</i> ₁	<i>s</i> ₂	<i>5</i> 3	$r_{1/3}$	$r_{2/3}$
s_1	s_1	e				
<i>s</i> ₂	<i>s</i> ₂		e			
s 3	5 3			e		
$r_{1/3}$	$r_{1/3}$					
$r_{2/3}$	r _{2/3}					

	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
e	e	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	$r_{1/3}$	<i>r</i> _{2/3}
s_1	s_1	e				
<i>s</i> ₂	<i>s</i> ₂		e			
<i>s</i> ₃	5 3			e		
$r_{1/3}$	$r_{1/3}$				$r_{2/3}$	
$r_{2/3}$	$r_{2/3}$					

	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
е	e	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	$r_{1/3}$	<i>r</i> _{2/3}
s_1	s ₁	e				
<i>s</i> ₂	s ₂		e			
s 3	5 3			e		
$r_{1/3}$	$r_{1/3}$				$r_{2/3}$	е
$r_{2/3}$	$r_{2/3}$				e	

	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
е	e	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	$r_{1/3}$	<i>r</i> _{2/3}
s_1	s ₁	e				
<i>s</i> ₂	s ₂		e			
s 3	5 3			e		
$r_{1/3}$	$r_{1/3}$				$r_{2/3}$	е
$r_{2/3}$	$r_{2/3}$				e	$r_{1/3}$

Consider the figure below. Find and give names to all its symmetries, and record their compositions in the table.

Complete the following table of addition of integers modulo 4.

+4	0	1	2	3
0				
1				
2				
3		0		

Consider the mathematical expression below.

$$a + b + c \times d$$

For every choice of a, b, c and d, it assumes a value. For example:

$$(-1,3,2,4) \ \mapsto \ -1+3+2\times 4=10,$$

$$(-1,4,2,3) \ \mapsto \ -1+4+2\times 3=9.$$

Find and give names to all rearrangements of the variables *a*, *b*, *c* and *d* that leave the value of the expression unchanged for *every* choice, and record their compositions in the table.

Note: By the above examples, swapping b and d is no such rearrangement.

Consider the image below. Find and give names to all its symmetries, and record their compositions in the table.

	0	1	2	3	
0	0	1	2	3	
1	1	2	3	0	
2	2	3	0	1	
3	3	0	1	2	

$$a + b + c \times d$$

$$s + b + c \times d$$

$$a + b + c \times c$$

	e	s	t	Ь
е	е	s	t	Ь
s	s	е	b	t
t	t	b	е	s
b	b	t	5	e

	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	n	1	2

$$a + b + c \times d$$

	e	s	t	b
е	e	5	t	Ь
s	s	е	b	t
t	t	b	е	s
b	b	t	s	e

	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	n	1	2

$$a + b + c \times d$$

	e	s	t	b
е	e	5	t	Ь
s	s	е	b	t
t	t	b	е	s
ь	b	t	s	e

	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

	e	r _{1/4}	r _{2/4}	r _{3/4}
е	е	r _{1/4}	r _{2/4}	r _{3/4}
r _{1/4}	$r_{1/4}$	r _{2/4}	r _{3/4}	e
$r_{2/4}$	$r_{2/4}$	r _{3/4}	e	$r_{1/4}$
r _{3/4}	r _{3/4}	e	r _{1/4}	r _{2/4}

More symmetry

More symmetry

Biology

Biology

Computer Science

Computer Science

And everywhere else

Music

Physics

Engineering

Information Technology

Evolution

