My Report

Bo Flachs & Wessel Kroon

Sunday 30th January, 2022

Abstract

Contents

1	Intr	roduction	2
2	Inq	uisitive Semantics	2
3	InqB in Haskell		
	3.1	Models	2
	3.2	Syntax	3
	3.3	Semantics	4
	3.4	Helper functions	5
	3.5	Model Checker	5
4	1 Simple Tests		6
5	5 Conclusion		
Bi	Bibliography		

1 Introduction

2 Inquisitive Semantics

3 InqB in Haskell

3.1 Models

In this subsection we discuss the implementation of models.

```
module InqBModels where
import HelperFunctions
import Test.QuickCheck
-- Type declarations of the models
type World = Int
type Universe
                 = [World]
type Individual = String
                 = [Individual]
type Domain
type UnRelation = [(World, [Individual])]
type BiRelation = [(World, [(Individual, Individual)])]
type TertRelation = [(World, [(Individual, Individual, Individual)])]
data Model = Mo { universe :: Universe
                , dom :: Domain
                , unRel :: [UnRelation]
                , biRel :: [BiRelation]
        , tertRel :: [TertRelation] }
deriving (Eq, Ord, Show)
-- Type declarations for Propositions
type Prop = [[World]]
type InfState = [World]
myWorlds :: [World]
myWorlds = [1..4]
myIndividuals :: [Individual]
myIndividuals = ["a", "b", "c", "d"]
instance Arbitrary Model where
 arbitrary = do
   u \leftarrow suchThat (sublistOf myWorlds) (not . null)
   d <- suchThat (sublistOf myIndividuals) (not . null)</pre>
   ur <- replicate 1 <> (zip u <> (sublistOf ((concat . replicate (length u
       ) . powerset) d) >>= shuffle ))
   br <- replicate 1 <$> (zip u <$> sublistOf ((concat . replicate (length u)
         . powerset)
                    [(x,y)| x<-d,y<-d])
    tr <- replicate 1 <$> (zip u <$> sublistOf ((concat . replicate (length u)
         . powerset)
            [(x,y,z)| x<-d, y<-d, z<-d])
    return (Mo u d ur br tr)
```

3.2 Syntax

In this subsection we discuss the implementation of the syntax of InqB in Haskell.

```
module InqBSyntax where
import HelperFunctions
import InqBModels
import Test.QuickCheck
- Type declarations for variables
           = String
type Var
type Vars
                 = [Var]
-- Call this terms
            = Indv Individual | Var Var
       deriving (Eq, Ord, Show)
- Type declarations for formulas
data Form = UnR UnRelation Term
          | BinR BiRelation Term Term
          | TertR TertRelation Term Term
          | Neg Form | Con Form Form | Dis Form Form
          | Impl Form Form
          | Forall Var Form | Exists Var Form
          deriving (Eq, Ord, Show)
nonInq :: Form -> Form
nonInq = Neg . Neg
nonInf :: Form -> Form
nonInf f = Dis f $ Neg f
newtype ModelWithForm = MWF (Model, Form) deriving Show
instance Arbitrary ModelWithForm where
    arbitrary = do
      u \leftarrow suchThat (sublistOf myWorlds) (not . null)
      d <- such That (sublist Of my Individuals) (not . null)
      ur <- replicate 1 <> (zip u <> (sublistOf ((concat . replicate (length
          u) . powerset) d) >>= shuffle ))
      br <- replicate 1 <>> (zip u <>> sublistOf ((concat . replicate (length
         u) . powerset)
                  [(x,y)| x<-d,y<-d]))
      tr <- replicate 1 <$> (zip u <$> sublistOf ((concat . replicate (length
          u) . powerset)
              [(x,y,z)| x<-d, y<-d, z<-d]))
      let model = Mo u d ur br tr
      form <- sized (randomForm model)</pre>
      return (MWF (model, form)) where
        randomForm :: Model -> Int -> Gen Form
        randomForm m 0 = UnR <$> elements (unRel m)
                       <*> elements (map Indv (dom m))
        randomForm m n = oneof
                   <$> elements (unRel m)
            [ UnR
                    <*> elements (map Indv (dom m))
            , BinR <$> elements (biRel m)
                     <*> elements (map Indv (dom m))
                    <*> elements (map Indv (dom m))
            , TertR <$> elements (tertRel m)
                    <*> elements (map Indv (dom m))
                    <*> elements (map Indv (dom m))
                    <*> elements (map Indv (dom m))
                    <$> randomForm m (n 'div' 4)
<$> randomForm m (n 'div' 4)
            , Neg
            , Con
                    <*> randomForm m (n 'div' 4)
```

3.3 Semantics

In this subsection we discuss the implementation of the semantics in Haskell.

```
module InqBSemantics where
import Data.List
import InqBModels
import InqBSyntax
import HelperFunctions
absPseudComp :: Model -> Prop -> Prop
absPseudComp m p = powerset $ universe m \\ (nub . concat) p
relPseudComp :: Model -> Prop -> Prop -> Prop
relPseudComp m p q = filter (all (\t -> t 'notElem' p || t 'elem' q) .
   powerset )
                                    $ powerset $ universe m
substitute :: Individual -> Var -> Form -> Form
substitute d x (UnR r i)
                       | Var x == i = UnR r (Indv d)
                      | otherwise = UnR r i
r i1 i2) = BinR r (head terms) (terms !! 1)
substitute d x (BinR r i1 i2)
                       where terms = map (i \rightarrow if Var x == i then Indv d else
                           i) [i1, i2]
substitute d x (TertR r i1 i2 i3)
                                      = TertR r (head terms) (terms !! 1) (terms
                       where terms = map (i \rightarrow if Var x == i then Indv d else
                          i) [i1, i2, i3]
substitute d x (Neg f)
                                     = Neg $ substitute d x f
                                      = Con (substitute d x f1) (substitute d x
substitute d x (Con f1 f2)
substitute d x (Dis f1 f2)
                                     = Dis (substitute d x f1) (substitute d x
   f2)
substitute d x (Impl f1 f2)
                                     = Impl (substitute d x f1) (substitute d x
    f2)
substitute d x (Forall y f)
                                      = Forall y f
                     | x == y
                     | otherwise
                                      = Forall y $ substitute d x f
substitute d x (Exists y f)
                     | x == y
                                      = Exists y f
                     | otherwise
                                     = Exists y $ substitute d x f
getString :: Term -> String
getString (Indv i) = i
getString (Var v) = v
toProp :: Model -> Form -> Prop
toProp _ (UnR r i ) = closeDownward [[x |(x, y) < -r, getString i 'elem' y]]
toProp _ (BinR r i1 i2)
                             = closeDownward [[x |(x, y) <- r, (getString i1,</pre>
    getString i2) 'elem' y]]
toProp _ (TertR r i1 i2 i3) = closeDownward [[x | (x, y) <- r, (getString i1,
  getString i2, getString i3) 'elem' y]]
toProp m (Neg f)
                             = absPseudComp m (toProp m f)
```

3.4 Helper functions

In this subsection we discuss some helper functions that we implemented

3.5 Model Checker

In this subsection we discuss the implementation of the syntax of model checker in Haskell.

```
module ModelChecker where
import InqBModels
import InqBSyntax
import InqBSemantics

-- Model checker
supportsProp :: InfState -> Prop -> Bool
supportsProp s p = s 'elem' p

supportsForm :: Model -> InfState -> Form -> Bool
supportsForm m s f = supportsProp s $ toProp m f

makesTrue :: Model -> World -> Form -> Bool
makesTrue m w f = [w] 'elem' toProp m f
```

4 Simple Tests

In this section we use QuickCheck to test some theorems from los bookos.

```
module Main where
import InqBModels
import InqBSyntax
import InqBSemantics
import HelperFunctions ( powerset )
import Data.List
import Test.QuickCheck
import Test.Hspec
main :: IO()
main = hspec $ do
   describe "Fact 4.12" $ do
        it "!phi equiv neg neg phi" $
            property (\((MWF (m, f)) -> isEquivalent m (nonInq f) (Neg (Neg f))
        it "?phi equiv phi or (neg phi)" $
           property (\((MWF (m, f))-> isEquivalent m (nonInf f) (Dis f $ Neg f
              ) )
    describe "Fact 4.13" $ do
        it "phi equiv (!phi and ?phi)" $
            property (\((MWF (m, f))-> is Equivalent m f (Con (nonInq f) (nonInf
                f)))
    describe "Fact 4" $ do
        it "2. (neg phi) is always non-inquisitive" $
            property (\((MWF (m, f)) -> (not . isInquisitive m) (Neg f) )
        it "3. !phi is always non-inquisitive" $
           property (\((MWF (m, f))-> (not . isInquisitive m) (nonInq f) )
    describe "Fact 4.18" $ do
        it "1. ?phi is always non-informative" $
            property (\((MWF (m, f)) -> (not . isInformative m) (nonInf f) )
isInquisitive :: Model -> Form -> Bool
isInquisitive m f = sort (toProp m f) /= (sort . powerset) (info m f)
isInformative :: Model -> Form -> Bool
isInformative m f = (sort . universe) m /= sort (info m f)
isTautology :: Model -> Form -> Bool
isTautology m f = (sort. powerset . universe) m == sort (toProp m f)
entails :: Model -> Form -> Form -> Bool
entails m f1 f2 = all ('elem' p2) p1 where
             p1 = toProp m f1
             p2 = toProp m f2
isEquivalent :: Model -> Form -> Form -> Bool
isEquivalent m f g = sort (toProp m f) == sort (toProp m g)
```

5 Conclusion

[Knu11]

References

[Knu11] Donald E. Knuth. The Art of Computer Programming. Combinatorial Algorithms, Part 1, volume 4A. Addison-Wesley Professional, 2011.