Sensor humedad temperatura DHT11

En este tutorial vamos a aprender cómo usar un sensor de humedad y temperatura **DHT11**. El sensor digital de temperatura y humedad **DHT11** es un sensor que nos proporciona información de de la temperatura y la humedad.

Parámetros del sensor

Cualquier magnitud que queramos leer tendrá unas características de precisión, según el sensor o instrumento que lo mide.

Humedad relativa

• Resolución: 16 bits

• Repetibilidad: ±1% H.R.

• Precisión: 25 ° C ±5% hr

• Intercambiabilidad: intercambiables

• Tiempo de respuesta: 1 / e (63%) de 25° c 6s

• 1m / s de aire 6s

• Histéresis: < ± 0.3% RH

• Estabilidad a largo plazo: < ± 0.5% hr / año en

Temperatura

Magnitud	Valor
Resolución:	16 bits
Repetibilidad:	±0.2°C
Rango:	25 ° C ±2° c
Tiempo de respuesta:	1 / e (63%) 10S

Características eléctricas

Para funcionar, el sensor necesita corriente eléctrica.

Magnitud	Valor
Fuente de alimentación:	DC 3.5 ~ 5.5V
Corriente:	medición 0.3mA (60μA en espera
Periodo de muestreo:	más de 2 segundos

Descripción de pines

El sensor dispone de 3 pines para recibir corriente eléctrica y comunicarse con la placa arduino. Estos pines son:

Descripción de pines

VDD	Lo conectaremos a 5 V
DATA	Lo conectaremos a un pin de datos. En este caso D2
GND	Lo conectaremos a tierra

Esquema

Diagrama

Montaje

Código

El siguiente código va a utilizar el sensor que hemos conectado para leer la temperatura y la humedad que está midiendo el sensor.

```
#include <dht_nonblocking.h>
#define DHT_SENSOR_TYPE DHT_TYPE_11

static const int DHT_SENSOR_PIN = 2;
DHT_nonblocking dht_sensor( DHT_SENSOR_PIN, DHT_SENSOR_TYPE );

void setup()
{
    Serial.begin( 9600);
}

static bool medir ( float *temperature, float *humidity )
{
    static unsigned long measurement_timestamp = millis();

/* Measure once every four seconds. */
    if( millis() - measurement_timestamp > 3000ul )
    {
        if( dht_sensor.measure( temperature, humidity ) == true )
        {
            measurement_timestamp = millis();
        }
}
```

```
return( true );
}
}

return( false );
}

void loop( )
{
  float temperature;
  float humidity;

if( medir( &temperature, &humidity ) == true )
{
    Serial.print( "T = " );
    Serial.print( temperatura, 1 );
    Serial.print( " deg. C, H = " );
    Serial.print( humedad, 1 );
    Serial.println( "%" );
}
```

Salida en el monitor

- Los valores medidos se mostrarán por pantalla en el monitor serie.
- El monitor serie lo tenemos que abrir desde el IDE de arduino.

Salida de datos

A continuación se nos abrirá una pantalla en la que podremos ver los datos que nuestro programa está escribiendo.

