Tool Resource Prediction for Genomic Datasets

Masterproject: Öner Aydogan

Motivation

- Galaxy: web-based, open-source scientific analysis platform
- Over **5500 tools** for bioinformatics applications

fixed amount of memory for each tool

Underallocation \rightarrow failure of tools

Motivation

Example with RNA-Star:

- Uses in one job **30 GB**, in a different job **10 GB**
- Suppose **20 GB** are allocated
- **Insufficient memory** or **too much** would be assigned
- → Usage of **machine learning** methods to predict memory usage
- Automatically learn patterns and decision rules from data

Galaxy job run dataset & Preprocessing

- Collected from 31.12.2019 to 23.05.2022 on Galaxy Europe
- **38 millions** entries (10 GB) \rightarrow after preprocessing **26 million** (2.8 GB)
- Filter **invalid combinations** for *Filesize & Number of files*

job_id tool_id state | filesize | num_files | runtime_seconds | slots | memory_bytes | create_time | 35222449 | toolshed.g2.bx.psu.edu/repos/devteam/concat/gops_concat_1/1.0.1 | ok | 225 | 2 | 6.0000000 | 1.0000000 | 150790784.0000000 | 2021-11-28 02:28:42.941101 | 35223981 | toolshed.g2.bx.psu.edu/repos/devteam/subtract/gops_subtract_1/1.0.0 | ok | 1029 | 2 | 6.0000000 | 1.0000000 | 151023616.0000000 | 2021-11-28 02:31:37.448641 | 35224560 | toolshed.g2.bx.psu.edu/repos/iuc/lofreq_filter/lofreq_filter/2.1.5+galaxy0 | ok | 33056 | 1 | 5.0000000 | 1.0000000 | 130167552.0000000 | 2021-11-28 02:32:51.30508 | 35222790 | toolshed.g2.bx.psu.edu/repos/iuc/ivar_trim/ivar_trim/1.3.1+galaxy0 | ok | 94167318 | 3 | 139.0000000 | 1.0000000 | 131245568.0000000 | 2021-11-28 02:29:23.773031 | 35228785 | CONVERTER_gz_to_uncompressed | ok | 2138539188 | 1 | 189.0000000 | 1.0000000 | 4296945664.0000000 | 2021-11-28 02:41:30.823983 | 35227471 | toolshed.g2.bx.psu.edu/repos/devteam/column_maker/Add_a_column1/1.6 | ok | 135 | 1 | 7.0000000 | 1.0000000 | 149745664.0000000 | 2021-11-28 02:34:00.328274

Machine Learning methods

- Random Forest
- Linear Regression

- Baseline:
 - LR & SVR: using **default parameters**
 - RF & XGB: n_estimators = 200

- XGB (Extreme Gradient Boosting)
- SVR (Support Vector Regression)

Training & evaluation

- Input features: *Filesize, Number of files & Slots*
- Target: *Memory bytes*

Example:

- fastqc/0.72 \rightarrow train & test set (80%|20%) \rightarrow 5-fold CV \rightarrow evaluation on test set

- scoring method:
$$R^2 = 1 - \frac{\sum (y_i - \hat{y})^2}{\sum (y_i - \bar{y})^2}$$

Removing faulty data

- Initial assigned memory:
 - Given by tool destinations file
 - **Default value** of 1 GB
- max_memory = initial_assigned_memory * 2³ = initial_assgined_memory * 8
- Filter entries **exceeding** *max_memory or 1 TB*
- **Validity** of the dataset **is put in question**

Results: Removing faulty data

Dataset	Random Forest	XGB	Linear Regression	SVR
fastqc/0.72	-0.13 → 0.85	-0.17 → 0.86	0.00 o 0.82	-0.01 → 0.89
ivar_trim/1.2.2	-0.93 → <mark>0.86</mark>	-1.50 → 0.87	$0.00 \to 0.77$	-0.02 → 0.84
ivar_removereads/1.2.2	-0.51 → 0.64	-0.64 → <mark>0.68</mark>	$0.00 \to 0.74$	-0.03 → 0.70
cutadapt/1.16.5	$-0.82 \rightarrow 0.89$	-1.64 → 0.89	$0.05 \to 0.13$	$0.05 \to 0.90$
mimodd_reheader/0.1.8_1	-0.37 → - <mark>0.12</mark>	-0.47 → - <mark>0.51</mark>	$0.00 \rightarrow 0.37$	-0.02 → 0.16

Correlation analysis

- Pearson correlation coefficient: $Filesize \leftrightarrow Memory\ bytes$
- about 300 of total 4800 tools moderate to strong **negative correlation**

Version	Pearson correlation Filesize \longleftrightarrow Memory bytes	nr_samples
0.4	0.99	5
2.3.4.1	0.74	130
2.3.2.2	0.53	37
2.4.2	0.31	48286
2.4.5	0.30	6031
2.3.4.3	0.25	97465
2.2.6.2	0.24	161
2.3.4.2	0.21	355
0.2	0.01	16
0.3	-0.16	3

Pearson correlation for different versions of bowtie2

Moderate-high correlation

Dataset	Pearson correlation coefficient		
lofreq_indelqual/2.1.4	0.95		
bamleftalign/1.3.1	0.74		
fastqc/0.73	0.66		
umi_tools_extract/0.5.5.1	0.55		
bedtools_intersectbed/2.30.0	0.35		

Results: Moderate-high correlation

- For datasets with very high correlation
 → all models perform well
- Lower correlation→ performance decreases

Results: Moderate-high correlation

- Clear tendency:
 - the greater the correlation, the
 better all models perform

Low-moderate correlation:

Dataset	Pearson correlation coefficient
fastp/0.20.1	0.45
vcf2tsv/1.0.0_rc3	0.31
rna_star/2.7.2b	0.16
bg_diamond/2.0.8.0	0.07
samtools_idxstats/2.0.3	0.01

Results: Low-moderate correlation:

- For datasets with low correlation
 →R2 score varies greatly for all models
- General performance not good
- XGB performs especially bad
 → hyperparameters need to be optimized

Results: Low-moderate correlation:

- For increasing correlation
 → clear upward trend in performance
- Performance for bg_diamond/2.0.8.0 stands out

Results: Low-moderate correlation:

- Models **rely** mostly on *Filesize* feature
- Low correlation → models
 perform bad
- *Slot* is **redundant** most of the time
- **Problematic** because 50% of the tools show correlation < 0.5

Feature importance			
Dataset	Filesize	Number of files	Slots
fastp/0.20.1	0.97	0.03	0.00
vcf2tsv/1.0.0_rc3	1.00	0.00	0.00
rna_star/2.7.2b	0.97	0.03	0.00
bg_diamond/2.0.8.0	0.55	0.45	0.00
samtools_idxstats/2.0.3	1.00	0.00	0.00

Performance on other datasets

Dataset	Pearson correlation	Number samples
hisat2 (Galaxy main)	0.66	2797
bowtie2 (Galaxy main)	0.62	3963

Results: Performance on other datasets

- Linear Regressor performed worst

- Models performed worse for hisat2 than for bowtie2
- Possible reasons:
 - **Fewer** samples (-30%)
 - Data points with **great variance**

Hyperparameter Optimization

- Comparison to Galaxy's current method of memory assignment
- Models need to be **optimized** → HalvingGridSearchCV

Random Forest	XGB	SVR
n_estimators = [50, 100, 200, 500]	learning_rate = 8 samples from log_space [0.003 to 0.3]	kernel = ["rbf", "sigmoid", "poly"]
max_depth = [None, 4, 16, 32]	n_estimators = [50, 100, 200, 500]	C = [0.01, 0.1, 0.5, 1, 2, 4]
min_samples_split = [2, 4, 8]	max_depth = [2, 6, 16, 32, 64]	gamma = ["scale", 0.001, 0.01, 0.1, 1]
min_samples_leaf = [2, 4, 8]		

Results: Hyperparameter Optimization

Group	Tool	Pearson Correlation	Average Memory [GB]	
High Correlation	lofreq_indelqual/2.1.4	0.95	0.21	
rigii Coneiation	bamleftalign/1.3.1	0.74	0.34	
Low Correlation	vcf2tsv/1.0.0_rc3	0.28	0.14	
LOW Contraction	rna_star/2.7.2b	0.20	56.72	
High Memory	rna_star/2.7.5b	0.24	60.35	
High Memory	kraken2/2.1.1	0.10	36.82	
Low Memory	fasta2tab/1.1.1	0.29	0.20	
LOW METHOLY	gmx_sim/2020.4	0.21	0.50	
		-		

Dataset	Random Forest	XGB	Linear Regression	SVR
lofreq_indelqual/2.1.4	$0.96 \to 0.98$	$\textbf{0.99} \rightarrow \textbf{0.96}$	0.99	$0.74 \to 0.86$
bamleftalign/1.3.1	$0.76 \to 0.79$	$0.72 \to 0.78$	0.59	$0.77 \to 0.77$
vcf2tsv/1.0.0_rc3	$0.09 \to 0.15$	-0.12 → 0.07	0.14	-0.01 → -0.04
rna_star/2.7.2b	$-0.18 \rightarrow 0.04$	$-0.22 \rightarrow 0.04$	0.01	-0.01 → 0.01
rna_star/2.7.5b	$-0.33 \rightarrow 0.09$	$-0.35 \to 0.09$	0.05	0.07 ightarrow 0.07
kraken2/2.1.1	-0.09 → 0.18	-0.02 → 0.17	0.08	-0.01 → -0.04
fasta2tab/1.1.1	$0.69 \to 0.80$	$0.72 \to 0.80$	0.25	$0.81 \rightarrow 0.78$
gmx_sim/2020.4	-0.01 → 0.10	$0.01 \to 0.07$	0.07	$0.05 \to 0.06$

Results: Hyperparameter Optimization

- Beside a few outliers
 - → clear pattern visible

Analysis on resource consumption

- Using the best model: how much memory can be saved?
- Decrease of 65%/50% memory overallocation for rna_star/kraken2
- **Increase** in percentage of **failed jobs**

		Average overallocation		Failed jobs	
Tool	Assigned by Galaxy	Galaxy	RF Model	Galaxy	RF Model
rna_star/2.7.5b	90 GB	42.52 GB	14.59 GB	12.25%	23.10%
kraken2/2.1.1	64 GB	41.38 GB	20.90 GB	25.25%	44.95%

Accuracy-Failure trade-off

- Idea: give algorithms **success probability** of a job
- Prediction interval: prediction is **expected to be** with particular probability
 - → Take **maximum** of interval as prediction
 - → In theory: job is **less likely to fail**

	Average overallocation Failed jobs		Failed jobs	
Tool	Galaxy	RF Model	Galaxy	RF Model
rna_star/2.7.5b	42.52 GB	14.59 GB → 28.33 GB	12.25%	23.10% → 13.55%
kraken2/2.1.1	41.38 GB	20.90 GB → 28.68 GB	25.25%	44.95% → 35.3%

Discussion and Conclusion

- Existence of **invalid entries** and other characteristics
 - **Validity** of dataset?
- All models benefit from **filtering faulty data**
- For **strong correlation** \rightarrow accurate and robust prediction
 - Models **rely** mostly on one *Filesize* → too **few features**
- Overallocation of memory **reduced by 50% to 65%**

Sources