Математическая модель задачи

поиска расхода топлива

Описание задачи

Необходимо найти минимальный расход топлива для автомобиля, который проезжает между двумя точками на карте города Шуи. Для этого используется алгоритм Флойда-Уоршелла, который позволяет найти кратчайшие пути между всеми парами вершин в графе.

Логика создания модели

- 1. **Граф**: Город Шуя представлен в виде графа (G = (V, E)), где (V) множество вершин (точек на карте), а (E) множество рёбер (дорог между точками).
- 2. **Матрица смежности**: Пусть (A) матрица смежности графа (G), где (A[i][j]) длина дороги между точками (i) и (j). Если дороги нет, то (A[i][j] = \infty).
- ^{3.} Алгоритм Флойда-Уоршелла:
 - [•] Инициализируем матрицу кратчайших путей (D) как копию матрицы (A).
 - [•] Для каждой вершины (k) от 1 до (n):
 - [•] Для каждой пары вершин ((i, j)):
 - $^{\bullet}$ Если (D[i][j] > D[i][k] + D[k][j]), то обновляем (D[i][j] = D[i][k] + D[k][j]).
- ^{4.} Расход топлива: Пусть (C) расход топлива в литрах на 100 км. Тогда расход топлива для пути между точками (i) и (j) равен (\text{fuel_consumption} = \frac{D[i][j] \times C}{100}).

Формализованное математическое описание

- **°Граф**: (G = (V, E))
- **Матрица смежности**: (A[i][j])
- * Алгоритм Флойда-Уоршелла: [D[i][j] = \min(D[i][j], D[i][k] + D[k][j])]
- Pacxoд топлива: [\text{fuel_consumption} = \frac{D[i][j] \times C}{100}]

Пример использования

- 1. Пользователь вводит имя файла с данными о расходе топлива.
- 2. Программа считывает данные о сети дорог из файла.
- 3. Выполняется алгоритм Флойда-Уоршелла для нахождения кратчайших путей.
- ^{4.} Пользователь вводит две точки.
- 5. Программа вычисляет и выводит расход топлива для кратчайшего пути между указанными точками.