CSC352 HW6

Alex Zhang

Feb 2023

Question 1

Given that $\tilde{x} = x(1 + \varepsilon_x)$, and $\tilde{y} = y(1 + \varepsilon_y)$, we can simplify the inequality,

$$\left| \frac{xy - \tilde{x}\tilde{y}}{xy} \right| \le (2 + \varepsilon)\varepsilon$$

$$\left| \frac{xy - (xy + xy\varepsilon_x + xy\varepsilon_y + xy\varepsilon_x\varepsilon_y)}{xy} \right| \le (2 + \varepsilon)\varepsilon$$

$$\left| \frac{-xy\varepsilon_x - xy\varepsilon_y - xy\varepsilon_x\varepsilon_y}{xy} \right| \le (2 + \varepsilon)\varepsilon$$

$$\left| -\varepsilon_x - \varepsilon_y - \varepsilon_x\varepsilon_y \right| \le (2 + \varepsilon)\varepsilon$$

$$\left| \varepsilon_x + \varepsilon_y + \varepsilon_x\varepsilon_y \right| \le \varepsilon + \varepsilon + \varepsilon^2$$

Csae 1: $\varepsilon = \left|\frac{x-\tilde{x}}{x}\right|$ Since $\tilde{x} = x(1+\varepsilon_x)$, $\varepsilon_x = \left|\frac{\tilde{x}-x}{x}\right| = \left|\frac{x-\tilde{x}}{x}\right|$. Indicate $\varepsilon = \varepsilon_x$. Because $\varepsilon_x \ge \varepsilon_y$, $\varepsilon_x^2 \ge \varepsilon_x \varepsilon_y$, we can get that, $\varepsilon_x + \varepsilon_x + \varepsilon_x^2 \ge |\varepsilon_x + \varepsilon_y + \varepsilon_x \varepsilon_y|$

which is the same as the simplified inequality.

Case 2: $\varepsilon = \left| \frac{y - \tilde{y}}{y} \right|$ Without loss of generality, we can apply the same proof on ε_y using ε_x 's and it will have the same result.

Question 2

Question 3