Twierdzenie

Dwie <u>skończone</u> algebry Boole'a są izomorficzne, gdy mają taką samą liczbę atomów.

Wniosek

Każda skończona algebra Boole'a jest izomorficzna z \mathbb{B}^n dla pewnej liczby naturalnej n.

Pamiętamy, że \mathbb{B}^n ma dokładnie n atomów.

Stwierdzenie

Dla każdej liczby naturalnej n zachodzi $|Bool(n)| = 2^{2^n}$.

Dowód.

Funkcja boolowska f każdemu argumentowi przypisuję jedną z dwóch wartości (0 lub 1). Zatem liczba różnych n-argumentowych funkcji boolowskich wynosi

 $2^{|D_f|}$, gdzie $|D_f|$ to liczba elementów dziedziny funkcji f .

Dziedzina składa się z n-elementowych ciągów binarnych, których jest 2^n . Zatem ostatecznie $|\mathsf{Bool}(n)| = 2^{2^n}$.

Niech B będzie nietrywialną algebrą Boole'a.

- Niezerowy element $a \in B$ nazywamy **atomem** B wtedy i tylko wtedy, gdy dla każdych $b, c \in B$ z równania $a = b \lor c$ wynika, że a = b lub a = c.
- Niejedynkowy element $a \in B$ nazywamy **co-atomem** B wtedy i tylko wtedy, gdy dla każdych $b, c \in B$ z równania $a = b \wedge c$ wynika, że a = b lub a = c.

Zauważmy, że co-atom to dopełnienie atomu.

Wniosek

- Niezerowy element $a \in B$ jest atomem algebry B wtedy i tylko wtedy, gdy nie istnieje $x \in B$ taki, że 0 < x < a.
- Niejedynkowy $a \in B$ jest co-atomem algebry B wtedy i tylko wtedy, gdy nie istnieje $x \in B$ taki, że a < x < 1.

Niech B_1 , B_2 będą algebrami Boole'a. Funkcję $f:B_1\to B_2$ nazywamy izomorfizmem B_1 i B_2 wtedy i tylko wtedy, gdy dla każdych $x,y\in B_1$ mamy

- f jest bijekcją,
- $f(x \wedge y) = f(x) \wedge f(y),$
- $f(x \vee y) = f(x) \vee f(y),$
- **5** f(0) = 0,
- f(1) = 1

Zatem izomorfizm to bijekcja, która zachowuje wszystkie działania.

Analogicznie:

Twierdzenie

Każdy co-atom Bool(n) jest generowany przez dokładnie jeden maxterm.

Wniosek

Każda funkcja boolowska jest generowana przez iloczyn maxtermów.

Reprezentacja wielomianu boolowskiego w postaci iloczynu maxtermów jest nazywana jego koniunkcyjną postacią normalną (CNF).

Uwaga!

Każda funkcja boolowska może być generowana przez nieskończenie wiele wielomianów boolowskich

Metody reprezentacji funkcji boolowskich

- Za pomocą wielomianów boolowskich.
- 2 Za pomocą wartości zazwyczaj w tabelce.
- ② Za pomocą indeksów atomów: **indeksem atomu** a nazywamy ten argument, dla którego funkcja przyjmuje wartość 1. Indeks atomu zwykle zapisywany jest nie w postaci ciągu zer i jedynek, ale jako liczba w systemie dziesiętnym, która ten ciąg reprezentuje. Takie przedstawienie funkcji zaczyna się od symbolu \sum , po którym wypisuje się indeksy odpowiednich atomów (w dowolnej kolejności).
- Za pomocą indeksów co-atomów: indeksem co-atomu c nazywamy ten argument, dla którego funkcja przyjmuje wartość 0. Takie przedstawienie f zaczyna się od symbolu \prod .

Określić Bool(1).

Wypiszmy wszystkie możliwe wartościowania funkcji boolowskiej na jednej binarnej zmiennej x:

Nietrudno zauważyć, że $f_1(x)=0,\, f_2(x)=x,\, f_3(x)=\neg x$ i $f_4(x)=1.$

Zatem Bool(1) = $\{0, 1, x, \neg x\}$.

Przykład

Podać trzy przykładowe elementy zbioru Bool(3).

$$f_1(x, y, z) = (x \wedge (\neg y)) \vee z,$$

$$f_2(x, y, z) = 1,$$

$$f_3(x, y, z) = x \wedge y \wedge z$$

Podstawowe przykłady algebry Boole'a

 $\mathbb{B}=\{0,1\}$ — zbiór wartości logicznych (boolowskich); działaniami są $\wedge,\vee,\neg.$

 $\mathbb{B}^n=\{0,1\}^n$ — produkt kartezjański nkopii zbioru \mathbb{B} z naturalnie określonymi działaniami (po współrzędnych).

Przykład

Wykonać działania \land,\lor,\lnot na elementach $(1,1,0,0,0),(0,1,1,0,1)\in\mathbb{B}^5.$

$$(1,1,0,0,0) \land (0,1,1,0,1) = (0,1,0,0,0)$$

$$(1,1,0,0,0) \lor (0,1,1,0,1) = (1,1,1,0,1)$$

$$\neg(1,1,0,0,0) = (0,0,1,1,1)$$

$$\neg (0, 1, 1, 0, 1) = (1, 0, 0, 1, 0)$$

Wyznaczyć atomy i co-atomy \mathbb{B}_3 i \mathbb{B}_n dla dowolnej liczby naturalnej n.

Atomami \mathbb{B}_3 są

natomiast co-atomy \mathbb{B}_3 to

(por. przykład z diagramem Hassego \mathbb{B}_3).

Analogicznie, atomy \mathbb{B}_n to elementy zawierające 1 na dokładnie jednej współrzędnej, a co-atomy to elementy zawierające 0 na dokładnie jednej współrzędnej.

Zauważmy, że liczba różnych (co-)atomów \mathbb{B}_n wynosi n.

Wygenerować funkcję $f \in \text{Bool}(3)$ daną wzorem

$$f(x, y, z) = \neg (x \land (\neg y \Leftrightarrow z)) \Rightarrow y$$

za pomocą wielomianu DNF.

Zapiszmy tabelę wartości funkcji f, aby sprawdzić, kiedy przyjmuje ona wartość 1:

x	y	z	f(x,y,z)		
0	0	0	0		
0	0	1	0		
0	1	0	1	\rightarrow	$\neg x \wedge y \wedge \neg z$
0	1	1	1	\rightarrow	$\neg x \wedge y \wedge z$
1	0	0	0		
1	0	1	1	\rightarrow	$x \wedge \neg y \wedge z$
1	1	0	1	\rightarrow	$x \wedge y \wedge \neg z$
1	1	1	1	\rightarrow	$x \wedge y \wedge z$

Zatem funkcja f w postaci wielomianu DNF to

$$(\neg x \land y \land \neg z) \lor (\neg x \land y \land z) \lor (x \land \neg y \land z) \lor (x \land y \land \neg z) \lor (x \land y \land z)$$

Dowód. (2/2)

W takim razie istnieje największa liczba całkowita i ($1 \le i < k$) taka, że $(v_i, v) \in E(T)$, co oznacza że $(v, v_{i+1}) \in E(T)$.

Zauważmy, że teraz w turnieju T istnieje ścieżka

$$(v_1, v_2, \ldots, v_{i-1}, v_i, v, v_{i+1}, \ldots, v_{k-1}, v_k),$$

która ma większą długość (k+1) niż ścieżka P — co daje nam sprzeczność z faktem, że P nie jest ścieżką Hamiltona.

14 sierpnia 2024

24 / 25

B. Pawlik Digrafy

Turniej T jest **przechodni**, jeżeli z tego, że (u,v) i (v,w) są łukami w T wynika, że (u,w) również jest łukiem w T.

Przykład 10

Które turnieje rzędu 4 (przykład 9) są przechodnie?

Jedynym przechodnim turniejem rzędu 4 jest $T_{4,4}$.

15 / 25

B. Pawlik Digrafy 14 sierpnia 2024

Jeżeli G jest grafem pierwotnym grafu zorientowanego D, to D nazywamy **orientacją** grafu G.

Przykład 8

 $\mathsf{Graf}\ (G)\ \mathsf{i}\ \mathsf{jedna}\ \mathsf{z}\ \mathsf{jego}\ \mathsf{orientacji}\ (D).$

13/25

Macierz incydencji digrafu D to macierz $B_D = [b_{ij}]$, w której

$$B_{ij} = \left\{ \begin{array}{ll} 1, & \text{gdy wierzchołek } v_i \text{ jest początkiem łuku } e_j \\ -1, & \text{gdy wierzchołek } v_i \text{ jest końcem łuku } e_j \\ 0, & \text{gdy wierzchołek } v_i \text{ nie jest incydentny z łukiem } e_j \end{array} \right..$$

Wniosek

- Suma elementów w i-tym wierszu macierzy incydencji digrafu D wynosi out $\deg v_i + \mathrm{indeg}\,v_i$.
- ullet Suma elementów w j-tej kolumnie macierzy incydencji digrafu D wynosi 0.

B. Pawlik Digrafy 14 sierpnia 2024

 D_1 - digraf hamiltonowski

 D_2 - digraf trasowalny

 D_3 - digraf nie hamiltonowski i nie trasowalny

Przykład 14

Które turnieje rzędu 4 (przykład 9) są hamiltonowskie, a które są trasowalne?

 $T_{4.1}$ — turniej hamiltonowski

 $T_{4,2}, T_{4,3}, T_{4,4}$ — turnieje trasowalne

- Jeżeli w digrafie D istnieje cykl h przechodzący przez każdy wierzchołek digrafu D dokładnie jeden raz, to h nazywamy **cyklem Hamiltona**, a D **digrafem hamiltonowskim**.
- Jeżeli digraf D nie jest digrafem hamiltonowskim i istnieje ścieżka h
 przechodząca przez każdy wierzchołek tego grafu dokładnie jeden raz, to h
 nazywamy ścieżką Hamiltona, a D digrafem trasowalnym
 (półhamiltonowskim).

B. Pawlik Digrafy

21 / 25

Stwierdzenie

ullet Digraf D jest eulerowski wtedy i tylko wtedy, gdy jest spójny oraz dla każdego wierzchołka $w\in V(D)$ zachodzi

outdeg
$$w = indeg w$$
.

ullet Digraf D jest jednobieżny wtedy i tylko wtedy, gdy jest spójny i zawiera dwa wierzchołki u i v takie. że

$$\operatorname{outdeg} u = \operatorname{indeg} u + 1$$
 oraz $\operatorname{indeg} v = \operatorname{outdeg} v + 1$

oraz

$$\operatorname{outdeg} w = \operatorname{indeg} w$$

dla wszystkich pozostałych łuków $w \in V(D)$. Co więcej, u jest początkiem, a v końcem każdej ścieżki Eulera w D.

◆ロト ◆団ト ◆恵ト ◆恵ト ・恵 ・ からぐ。

19/25

B. Pawlik Digrafy 14 sierpnia 2024

Zauważmy, że turnieje mogą mieć źródła i ujścia, co sugeruje że na ogół nie są one digrafami hamiltonowskimi. Zachodzi jednak następujące twierdzenie:

Twierdzenie (Rédei, Camion)

Każdy turniej jest trasowalny lub hamiltonowski.

Dowód. (1/2)

B Pawlik

Aby teza była prawdziwa, wystarczy aby turniej zawierał ścieżkę Hamiltona. Niech ${\cal T}$ będzie turniejem i niech

$$P = (v_1, v_2, \dots, v_k)$$

będzie najdłuższą ścieżką w T. Jeżeli P nie jest ścieżką Hamiltona, to $1 \leqslant k < n$ oraz istnieje wierzchołek $v \in V(T)$ taki, że $v \notin P$. Z faktu, że P jest najdłuższą ścieżką otrzymujemy, że

$$(v, v_1), (v_k, v) \notin E(T).$$

Zatem, na mocy faktu że T jest turniejem, mamy

$$(v_1, v), (v, v_k) \in E(T).$$

Digrafy

14 sierpnia 2024

23 / 25

Digrafy

dr inż. Bartłomiej Pawlik

14 sierpnia 2024

Podstawowe twierdzenie teorii digrafów

Dla każdego digrafu D zachodzi

$$\sum_{v \in V(D)} \operatorname{outdeg} v = \sum_{v \in V(D)} \operatorname{indeg} v = |E(D)|.$$

Dowód.

Podczas dodawania stopni wyjściowych każdy łuk jest liczony tylko raz — podobnie jak podczas dodawania stopni wejściowych.

Powyższe twierdzenie jest digrafowym odpowiednikiem lematu o uściskach dłoni.