VECTOR-VALUED FUNCTIONS OF A VECTOR VARIABLE

 \bullet Let X and Y be sets. A function

$$f: X \longrightarrow Y$$

is a rule that associates a value $f(x) \in Y$ to every element $x \in X$.

• Single variable calculus:

$$f: X \longrightarrow \mathbb{R}$$
, where $X \subseteq \mathbb{R}$.

Typically, X is an interval or a union of such.

• Multivariable calculus:

$$\mathbf{f}: X \longrightarrow \mathbb{R}^m$$
, where $X \subseteq \mathbb{R}^n$.

Here.

$$\mathbb{R}^n := \{ \mathbf{x} = (x_1, \dots, x_n) : x_1, \dots, x_n \in \mathbb{R} \}.$$

• **f** itself can be viewed as a vector:

$$f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x})),$$

where

$$f_i(\mathbf{x}) := i$$
-th component of $f(\mathbf{x}), \quad 1 \le i \le m$.

Note that f_i is a real-valued (scalar-valued) function of the vector variable $\mathbf{x} \in \mathbb{R}^n$.

$$f_i: \mathbb{R}^n \longrightarrow \mathbb{R}.$$

We call f_i the *i*-th component function of **f** and we write

$$\mathbf{f} = (f_1, \dots, f_m).$$

• Scalar-valued functions of a vector variable:

- (1) Define $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, $f(\mathbf{x}) := x_1 x_2$.
- (2) Define $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, $f(x,y) := e^{-\pi(x^2 + y^2)}$.

(3) Define
$$f: \mathbb{R}^n \setminus \{\mathbf{0}\} \longrightarrow \mathbb{R}$$
, $f(\mathbf{x}) := \frac{1}{\|\mathbf{x}\|^2}$. $(X \setminus Y := \{x \in X : x \notin Y\})$

• Natural domains: If \mathbf{f} is defined via formula without explicit reference to a domain $X \subseteq \mathbb{R}^n$, we take X — the natural domain of \mathbf{f} — to be the largest subset of \mathbb{R}^n on which the formula defining \mathbf{f} makes sense.

(1)
$$g(t) = \left(\frac{1}{t^2 - 1}, \frac{1}{t^3 - 1}\right), X = \mathbb{R} \setminus \{-1, 1\}.$$

(2)
$$f(x,y) = \log(y-x), X = \{(x,y) \in \mathbb{R}^2 : y > x\}.$$

(3)
$$\theta(x, y, z) = \cos^{-1}\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right), X = \mathbb{R}^3 \setminus \{(0, 0, 0)\}.$$