	, ,	1	
G(p)	g(t)	G(z)	G(z, m)
$\frac{\omega_0}{p^2 + \omega_0^2}$	$\sin \omega_0 t$	$\frac{z \sin \omega_0 T}{z^2 - 2 z \cos \omega_0 T + 1}$	$\frac{z \sin m\omega_0 T + \sin (1 - m)\omega_0 T}{z^2 - 2z \cos \omega_0 T + 1}$
$\frac{p}{p^2 + \omega_0^2}$	$\cos \omega_0 t$	$\frac{z(z-\cos\omega_0 T)}{z^2-2z\cos\omega_0 T+1}$	$\frac{z\cos m\omega_0 T - \cos(1-m)\omega_0 T}{z^2 - 2z\cos\omega_0 T + 1}$
$\frac{\omega_0}{p^2 - \omega_0^2}$	sh ω ₀ t	$\frac{z \operatorname{sh} \omega_0 T}{z^2 - 2 z \operatorname{ch} \omega_0 T + 1}$	$\frac{z \operatorname{sh} m\omega_0 T + \operatorname{sh} (1 - m) \omega_0 T}{z^2 - 2 z \operatorname{ch} \omega_0 T + 1}$
$\frac{p}{p^2 - \omega_0^2}$	ch ω ₀ t	$\frac{z(z - \operatorname{ch} \omega_0 T)}{z^2 - 2 z \operatorname{ch} \omega_0 T + 1}$	$\frac{z \operatorname{ch} m\omega_0 T - \operatorname{ch} (1 - m) \omega_0 T}{z^2 - 2 z \operatorname{ch} \omega_0 T + 1}$
$\frac{\omega_0^2}{p(p^2-\omega_0^2)}$	$ch \omega_0 t - 1$	$\frac{z(z - \operatorname{ch} \omega_0 T)}{z^2 - 2 z \operatorname{ch} \omega_0 T + 1} - \frac{z}{z - 1}$	$\frac{z \operatorname{ch} m\omega_0 T - \operatorname{ch} (1 - m) \omega_0 T}{z^2 - 2 z \operatorname{ch} \omega_0 T + 1} - \frac{1}{z - 1}$
$\frac{\omega_0^2}{p(p^2+\omega_0^2)}$	$1-\cos\omega_0 t$	$z-1$ $z^2-2z\cos\omega_0T+1$	$\frac{1}{z-1} - \frac{z \cos m\omega_0 T - \cos (1-m) \omega_0 T}{z^2 - 2 z \cos \omega_0 T + 1}$
$\frac{a^2}{p(p+a)^2}$	$1 - (1 + at) e^{-at}$	$\frac{z}{z-1} - \frac{z}{z-e^{-aT}} - \frac{aTe^{-aT}z}{(z-e^{-aT})^2}$ $\frac{z}{bz}$	$\begin{bmatrix} \frac{1}{z-1} - \left[\frac{1+amT}{z-e^{-aT}} + \frac{aTe^{-aT}}{(z-e^{-aT})^2} \right] e^{-amT} \\ b & \left[amT(a-b) - b \right] \end{bmatrix}$
$\frac{a^2(p+b)}{p(p+a)^2}$	$b - b e^{-at} + a(a - b) t e^{-at}$	$\frac{ z-1 }{ z-1 } = \frac{z - e^{-aT}}{ z-1 } = \frac{ z-e^{-aT} ^2}{ z-e^{-aT} } + \frac{ a(a-b) Te^{-aT} z}{ (z-e^{-aT})^2 }$	$\frac{z-1}{z-1} + \left[\frac{aT(a-b)e^{-aT}}{z-e^{-aT}} + \frac{aT(a-b)e^{-aT}}{(z-e^{-aT})^2}\right]e^{-amT}$
$\frac{\omega_0}{(p+a)^2+\omega_0^2}$	$e^{-at} \sin \omega_0 t$	$(z - e^{-aT})^2$ $z e^{-aT} \sin \omega_0 T$ $z^2 - 2z e^{-aT} \cos \omega_0 T + e^{-2aT}$	$ \frac{\left[z \sin m\omega_0 T + e^{-aT} \sin (1 - m) \omega_0 T\right] e^{-amT}}{z^2 - 2 z^{-aT} \cos \omega_0 T + e^{-2aT}} $
$\frac{p+a}{(p+a)^2+\omega_0^2}$	e ^{-et} cos m. t		$\frac{[z\cos m\omega_0 T - e^{-eT}\cos(1-m)\omega_0 T]e^{-emT}}{z^2 - 2ze^{-eT}\cos\omega_0 T + e^{-2eT}}$