Universität Würzburg Institut für Mathematik

LEHRSTUHL FÜR KOMPLEXE ANALYSIS

Prof. Dr. Oliver Roth Annika Moucha

Einführung in die Funktionentheorie

2. Übungsblatt, Abgabe bis 29. April 2024 um 10 Uhr

Hausaufgaben

H2.1 Richtig oder falsch? (1+1+2+2)

Beweisen oder widerlegen Sie:

(i) Die Funktion

$$f: \{z \in \mathbb{C} : |\operatorname{Im} z| < 1\} \to \mathbb{C}, \quad f(z) = \frac{1}{1+z^2}$$

ist beschränkt.

- (ii) Es sei $U \subseteq \mathbb{C}$ eine offene Menge und $f \in H(U)$ nicht konstant. Dann ist die Funktion $z \mapsto f(\overline{z})$ holomorph auf $U^* := \{z \in \mathbb{C} : \overline{z} \in U\}$.
- (iii) Seien $f, g: K_1(0) \to \mathbb{C}$ stetige Funktionen. Sei außerdem die Funktion

$$h: K_1(0) \to \mathbb{C}, \quad h(z) = f(z) \cdot g(z)$$

holomorph. Dann ist auch f oder g holomorph auf $K_1(0)$.

(iv) Es sei G ein Gebiet in $\mathbb C$ und $f\in H(G)$ mit $\operatorname{Re} f(z)=1$ für alle $z\in G$. Dann ist f konstant.

H2.2 Holomorphe Funktionen (2+2)

- (i) Es seien U, V offene Menge in \mathbb{C} sowie $f: U \to V$ eine stetige und $g: V \to \mathbb{C}$ eine holomorphe Funktion. Ferner sei $g'(w) \neq 0$ für alle $w \in V$ und es gelte g(f(z)) = z für alle $z \in U$. Zeigen Sie, dass f holomorph auf U ist und f'(z) = 1/(g'(f(z))) für alle $z \in U$.
- (ii) Es sei $U\subseteq\mathbb{C}$ offen und $f\colon U\to\mathbb{C}$ stetig und nullstellenfrei. Zeigen Sie, dass aus $f^2\in H(U)$ bereits $f\in H(U)$ folgt.

H2.3 Eine komplexe Funktion (1+1+1+2)

Es sei z = x + iy mit $x, y \in \mathbb{R}$ und

$$f \colon \mathbb{C} \to \mathbb{C}, \quad z \mapsto \begin{cases} \frac{x^3 y (y - ix)}{x^6 + y^2}, & z \neq 0 \\ 0, & z = 0. \end{cases}$$

Ferner sei $z_0 = 0$. Beweisen Sie die folgenden Aussagen:

- (i) Die Funktion f ist in z_0 partiell differenzierbar.
- (ii) Die Funktion f erfüllt in z_0 die Cauchy-Riemannsche Differentialgleichung.
- (iii) Es sei $t \in \mathbb{R}$ fixiert. Dann besitzt f einen radialen Grenzwert in z_0 , also es existiert folgender Grenzwert

$$\lim_{r \to 0, \, r > 0} \frac{f(e^{it}r) - f(0)}{e^{it}r}.$$

(iv) Die Funktion f ist in z_0 nicht komplex differenzierbar. Begründen Sie außerdem, warum dies nicht im Widerspruch zu Korollar 2.10 steht.