

TD - Semantics and Verification

VII– Büchi Automata and ω -Regular Properties Friday 11th March 2022

TA: Ralph Sarkis ralph.sarkis@ens-lyon.fr

In the rest of the exercises, we will discuss properties of ω -regular expressions and Büchi automata. Given $U \subseteq \Sigma^*$ and $A \subseteq \Sigma^\omega$, recall that

• A is ω -regular iff there are regular languages $E_1,...,E_n,F_1,...,F_n\subseteq \Sigma^*$ such that for all $i,\,\epsilon\notin F_i$ and

$$A = E_1 \cdot F_1^{\omega} + \dots + E_n \cdot F_n^{\omega}$$

- $U \cdot A = {\hat{\sigma} \cdot \sigma \in \Sigma^{\omega} \mid \hat{\sigma} \in U \text{ and } \sigma \in A}$
- If $\epsilon \notin U$, $U^{\omega} = \{ \sigma \in \Sigma^{\omega} \mid \exists (u_k \in U)_{k \in \mathbb{N}} . \ \sigma = u_0 \cdot u_1 \cdot u_2 \cdots \}$

Exercise 1.

Let φ , ψ with parameters ρ and let $\theta(X) := \psi \vee (\varphi \wedge \bigcirc X)$. Let further $P := [\![(\varphi \cup \psi) \vee \Box \varphi]\!]_{\rho}$. Show that P is a fixpoint of $[\![\theta]\!]_{\rho}(X)$.

Exercise 2.

Let $A = \{a, b, c\}$. For the following subsets $P_i \subseteq A^{\omega}$: is P_i open? closed? dense?, ω -regular?

- 1. $P_1 = \{ \sigma \in A^\omega \mid \exists^\infty i, \sigma(i) = \mathbf{a} \text{ and there are arbitrarily large consecutive sequences of bs} \}$
- 2. $P_2 = \{ \sigma \in A^\omega \mid \exists^\infty i, \sigma(i) = \mathbf{a} \land \exists k > i, \sigma(k) = \mathbf{b} \}$

Büchi Automata

Exercise 3.

- 1. Let $AP = \{a, b\}$. Give an non-deterministic Büchi automaton (NBA) that accepts "b holds for a finite time until a holds forever and b never holds again". You may use propositional formulas as labels.
- 2. Depict an NBA for the language described by the ω -regular expression $(AB+C)^*((AA+B)C)^{\omega}+(A^*C)^{\omega}$.

Constructions on Büchi Automata

Exercise 4.

Let A_1 and A_2 be Büchi automata, and A an NFA.

- 1. Show that there is a Büchi automaton $A_1 + A_2$ with $\mathcal{L}_{\omega}(A_1 + A_2) = \mathcal{L}_{\omega}(A_1) \cup \mathcal{L}_{\omega}(A_2)$.
- 2. Show that there is a Büchi automaton $\mathcal{A} \odot \mathcal{A}_1$ with $\mathcal{L}_{\omega}(\mathcal{A} \odot \mathcal{A}_1) = \mathcal{L}(\mathcal{A}) \cdot \mathcal{L}(\mathcal{A}_1)$.
- 3. Show that if $\epsilon \notin \mathcal{L}(\mathcal{A})$, there is a Büchi automaton \mathcal{A}_{ω} such that $\mathcal{L}_{\omega}(\mathcal{A}_{\omega}) = \mathcal{L}(\mathcal{A})^{\omega}$.
- 4. Show that there is a Büchi automaton $\mathcal{A}_1 \sqcap \mathcal{A}_2$ with $\mathcal{L}_{\omega}(\mathcal{A}_1 \sqcap \mathcal{A}_2) = \mathcal{L}_{\omega}(\mathcal{A}_1) \cap \mathcal{L}_{\omega}(\mathcal{A}_2)$.

Decomposition of ω -regular Linear Time Properties

Exercise 5.

Let $U \subseteq \Sigma^*$ and $A, B \subseteq \Sigma^{\omega}$.

- 1. Show that $\operatorname{pref}(A \cup B) = \operatorname{pref}(A) \cup \operatorname{pref}(B)$.
- 2. Show that $\operatorname{pref}(U \cdot A) = \operatorname{pref}(U) \cup U \cdot \operatorname{pref}(A)$.
- 3. Show that $\operatorname{pref}(U^{\omega}) = \operatorname{pref}(U^*)$.

Exercise 6.

We want to show the decomposition theorem for ω -regular properties.

- 1. Show that if $A \subseteq \Sigma^{\omega}$ is ω -regular, then $\operatorname{pref}(A) \subseteq \Sigma^*$ is regular. (You may use that $\operatorname{pref}(U)$ is regular if $U \subseteq \Sigma^*$ is regular.)
- 2. Show that cl(U) is a safety property induced by $P_{bad} = U^c$.
- 3. Deduce that if $P \subseteq \mathcal{P}(AP)^{\omega}$ is an ω -regular safety property, then P is a regular safety property.
- 4. Let P_{bad} be a set of bad prefix of cl(U) and \mathcal{A} be a complete deterministic automaton recognizing P_{bad} such that for all final state q_F of \mathcal{A} and all $a \in \Sigma$, $\delta(q_F, a) = q_F$. Show that $\mathcal{L}_{\omega}(\mathcal{A}) = (2^{AP})^{\omega} \backslash cl(U)$.
- 5. Show that if U is regular then cl(U) is ω -regular (we recall that if cl(U) is a regular safety property, we can always find P_{bad} and A satisfying the properties of the previous question).
- 6. Show that for every ω -regular linear time property P, there is a ω -regular safety property P_{safe} and a ω -regular liveness property P_{live} such that $P = P_{safe} \cap P_{live}$.