

Rapport de Projet

Analyse de données

Réalisé par : Bouibauan mohamed

Maataoui Mohamed

2021-2022

Table des matières

1	Cha	apitre	1 : Régression linéaire multiple	3
	1.1	Le jeu	de données	3
	1.2	Modèl	e de régression linéaire multiple incluant toute les variables	4
		1.2.1	les variables explicatives non significatives	4
		1.2.2	la valeur de \mathbb{R}^2 et R^2_{ajus}	4
		1.2.3	Le test de Fisher et sa signification	4
	1.3	Amél	ioration du modèle initiale par la procédure de step	5
		1.3.1	Remarques:	7
		1.3.2	les tests de validation :	8
		1.3.3	Test d'himosadicite	9
		1.3.4	Test de Normalité	9
		1.3.5	Les valeurs aberrantes	10
	1.4	la mé	thode pas à pas de sélection des variables	10
		1.4.1	les tests de validation :	12
		1.4.2	Test d'himosadicite	12
		1.4.3	Test de Normalité	13
		1.4.4	Les valeurs aberrantes	13
		1.4.5	le critère AIC du modèle obtenu	13
2	Cor	clusio	n	14
2 3				14 15
			2 :Les méthodes de classification	
	Cha	apitre :	2 :Les méthodes de classification	15
	Cha	apitre i kmea	2 :Les méthodes de classification	15 15
	Cha	apitre 3 kmea 3.1.1 3.1.2	2 :Les méthodes de classification ns	15 15 15
	Cha 3.1	apitre 3 kmea 3.1.1 3.1.2	2 :Les méthodes de classification ns	15 15 15 15
	Cha 3.1	kmea 3.1.1 3.1.2 Appli 3.2.1 3.2.2	2:Les méthodes de classification ns	15 15 15 15 15
	Cha 3.1	kmea 3.1.1 3.1.2 Appli 3.2.1 3.2.2	2 :Les méthodes de classification ns	15 15 15 15 15 16
	Cha 3.1	Appli 3.1.1 3.1.2 Appli 3.2.1 3.2.2 3.2.3 3.2.4	2 :Les méthodes de classification ns	15 15 15 15 16 16 16
	Cha 3.1	Appli 3.2.1 3.2.2 3.2.3 3.2.4 le non	2 :Les méthodes de classification ns Description de données : Normalisation cation de kmeans affichage des résultats : le taux d'inertie avec 6 classe : L'enertie expliqué le nombre de classe N Avec max(inertie.expl)>0.95 abre de classes avec le critère $\frac{\text{var}(I_2)}{\text{var}(I)} < 0,05$	15 15 15 15 16 16 16 16 18
	Cha 3.1	Appli 3.2.1 3.2.2 3.2.3 3.2.4 le non	2 :Les méthodes de classification ns	15 15 15 15 16 16 16 16 18
	Cha 3.1 3.2 3.3	Appli 3.2.1 3.2.2 3.2.3 3.2.4 le non	2:Les méthodes de classification ns Description de données: Normalisation deation de kmeans affichage des résultats: le taux d'inertie avec 6 classe: L'enertie expliqué le nombre de classe N Avec max(inertie.expl)>0.95 abre de classes avec le critère $\frac{\text{var}(I_2)}{\text{var}(I)} < 0,05$ assification Ascendante Hiérarchique CAH centré et réduire les variables	15 15 15 15 16 16 16 16 18
	Cha 3.1 3.2 3.3	Appli 3.1.1 3.1.2 Appli 3.2.1 3.2.2 3.2.3 3.2.4 le nom La Cla	2 :Les méthodes de classification ns Description de données: Normalisation cation de kmeans affichage des résultats: le taux d'inertie avec 6 classe: L'enertie expliqué le nombre de classe N Avec max(inertie.expl)>0.95 abre de classes avec le critère $\frac{\text{var}(I_2)}{\text{var}(I)} < 0,05$ assification Ascendante Hiérarchique CAH	15 15 15 15 16 16 16 16 18
	Cha 3.1 3.2 3.3	Appli 3.1.1 3.1.2 Appli 3.2.1 3.2.2 3.2.3 3.2.4 le non La Cla 3.4.1	2 :Les méthodes de classification ns Description de données : Normalisation cation de kmeans affichage des résultats : le taux d'inertie avec 6 classe : L'enertie expliqué le nombre de classe N Avec max(inertie.expl)>0.95 abre de classes avec le critère $\frac{\text{var}(I_2)}{\text{var}(I)} < 0,05$ assification Ascendante Hiérarchique CAH centré et réduire les variables critère du coupe (manuellement) Critère du coupe de François Husson	15 15 15 15 16 16 16 16 18 19
	Cha 3.1 3.2 3.3	Appli 3.1.1 3.1.2 Appli 3.2.1 3.2.2 3.2.3 3.2.4 le non La Cla 3.4.1 3.4.2	2:Les méthodes de classification ns Description de données: Normalisation deation de kmeans affichage des résultats: le taux d'inertie avec 6 classe: L'enertie expliqué le nombre de classe N Avec max(inertie.expl)>0.95 abre de classes avec le critère $\frac{\text{var}(I_2)}{\text{var}(I)} < 0,05$ assification Ascendante Hiérarchique CAH centré et réduire les variables critère du coupe (manuellement)	15 15 15 15 16 16 16 16 18 19 19

3.4.5	la description des classes retenues par la varaiable	
	qualitatives	23
3.4.6	calcule des taux d'inertie avant et après la consolida-	
	tion de la CAH.	24
3.4.7	Comparaison Kmeans VS CAH	24

1 Chapitre 1 : Régression linéaire multiple

1.1 Le jeu de données

X	turda	X2.house.age	X3.distance.to.the.nearest.MRT.station	X4.number.of.convenience.stores	X5.latitude	X6.longitude	dephm	SOLID	Condi	Y.house.price.of.unit.area
0	1604.093	32.0	84.87882	10	24.98298	121.5402	0	2912.211	532.8852	37.9
1	1603.160	19.5	306.59470	9	24.98034	121.5395	8	8896.195	430.8368	42.2
2	1603.993	13.3	561.98450	5	24.98746	121.5439	10	20988.429	381.3573	47.3
3	1604.064	13.3	561.98450	5	24.98746	121.5439	19	21144.975	306.3559	54.8
4	1602.545	5.0	390.56840	5	24.97937	121.5425	20	22372.303	341.7602	43.1
5	1603.357	7.1	2175.03000	3	24.96305	121.5125	30	14859.060	445.0375	32.1
6	1604.181	34.5	623.47310	7	24.97933	121.5364	39	16905.802	481.3071	40.3
7	1603.783	20.3	287.60250	6	24.98042	121.5423	50	14462.674	534.8010	46.7
8	1602.283	31.7	5512.03800	1	24.95095	121.4846	58	2552.963	517.4275	18.8
9	1604.193	17.9	1783.18000	3	24.96731	121.5149	75	7013.212	419.7889	22.1
10	1603.878	34.8	405.21340	1	24.97349	121.5337	78	10859.554	358.0563	41.4
11	1603.354	6.3	90.45606	9	24.97433	121.5431	100	34226.072	415.5775	58.1
12	1602.752	13.0	492.23130	5	24.96515	121.5374	117	15249.620	361.9016	39.3
13	1602.856	20.4	2469.64500	4	24.96108	121.5105	125	18409.037	389.6832	23.8
14	1602.957	13.2	1164.83800	4	24.99156	121.5341	150	26132.212	326.0262	34.3
15	1603.947	35.7	579.20830	2	24.98240	121.5462	152	28001.118	365.0916	50.5
16	1604.532	0.0	292.99780	6	24.97744	121.5446	200	21575.245	444.1166	70.1
17	1604.482	17.7	350.85150	1	24.97544	121.5312	221	15335.511	399.6054	37.4
18	1604.649	16.9	368.13630	8	24.96750	121.5445	250	29542.338	456.3085	42.3

FIGURE 2

——>le but de ces données est la prédiction du prix des logements dans la banlieue de Boston..

FIGURE 3

1.2 Modèle de régression linéaire multiple incluant toute les variables

#model de regression lineaire

modele <- lm(Y.house.price.of.unit.area~.,data=data)

1.2.1 les variables explicatives non significatives

> summary(modele)\$coefficients

```
Std. Error
                                             Estimate
                                                                      t value
                                        -1.780052e+04 1.752935e+04 -1.0154691 0.3139597143
(Intercept)
                                        -4.567688e-01 1.212037e+00 -0.3768604 0.7076069028
turda
                                        -3.263998e-01 9.210312e-02 -3.5438520 0.0007708619
X2. house. age
X3.distance.to.the.nearest.MRT.station -3.448119e-03 1.988284e-03 -1.7342183 0.0880148172
                                                                    1.8302300 0.0721837845
                                        9.729484e-01 5.315990e-01
X4. number. of. convenience. stores
X5.latitude
                                        2.310774e+02 9.656375e+01
                                                                    2.3930038 0.0198574041
X6.longitude
                                        1.053800e+02 1.459596e+02
                                                                    0.7219804 0.4731109996
dephm
                                        4.567810e-04 3.460764e-03 0.1319885 0.8954350286
SOLID
                                        -6.085670e-05 1.166753e-04 -0.5215901 0.6038759014
                                        3.739665e-03 1.346177e-02 0.2777988 0.7821217913
Condi
```

La constant et les variables Turda, X3. distance. to. the. nearest. MRT. station, X6. longitude, dephm, SOLID, Condi sont significativement nul car ils ont une Valeur de P-Value >5 %

1.2.2 la valeur de \mathbb{R}^2 et R_{ajus}^2

-Multiple R-squared: 0.6783,

-Adjusted R-squared: 0.6301

1.2.3 Le test de Fisher et sa signification

F-statistic: 14.06 > 0 on 9 and 60 DF P-value: 7.39e-12 < 5% donc est Valide

==> l'hypothèse H0 qui dit que tous les coefficients sont nuls est rejetée car p-value de Fisher <5

1.3 Amélioration du modèle initiale par la procédure de step

-la fonction step élimine a chaque fois une variable on commence par l'introduction de tout les variable c'est a dire tout "V"

-SI une variable est éliminer on met "F" dans la case sélectionnées

Step1:Start: AIC=305.07

Variables	Variables			
variables	sélectionnées			
turda	V			
X2.house.age	V			
X3.distance.to.the.nearest.MRT.station	V			
X4.number.of.convenience.stores	V			
X5.latitude	V			
X6.longitude	V			
dephm	V			
SOliD	V			
Condi	V			

Step2: AIC = 303.09

Variables	Variables
Variables	sélectionnées
turda	V
X2.house.age	V
X3.distance.to.the.nearest.MRT.station	V
X4.number.of.convenience.stores	V
X5.latitude	V
X6.longitude	V
dephm	F
SOLID	V
Condi	V

Step 3:AIC=301.18

Variables	Variables sélectionnées
turda	V
X2.house.age	V
X3.distance.to.the.nearest.MRT.station	V
X4.number.of.convenience.stores	V
X5.latitude	V
X6.longitude	V
dephm	F
SOUD	V
Condi	F

Step 4 : AIC=299.31

Variables	Variables sélectionnées
turda	F
X2.house.age	V
X3.distance.to.the.nearest.MRT.station	V
X4.number.of.convenience.stores	V
X5.latitude	V
X6.longitude	V
dephm	F
SOUD	V
Condi	F

Step 5 : AIC=297.67

Variables	Variables sélectionnées
turda	F
X2.house.age	F
X3.distance.to.the.nearest.MRT.station	V
X4.number.of.convenience.stores	V
X5.latitude	V
X6.longitude	V
dephm	F
SOUD	F
Condi	F

Step 6 : AIC=296.38 **Fin**

Variables	Variables sélectionnées
turda	F
X2.house.age	F
X3.distance.to.the.nearest.MRT.station	V
X4.number.of.convenience.stores	V
X5.latitude	V
X6.longitude	F
dephm	F
SOUD	F
Condi	F

1.3.1 Remarques:

-la fonction step élimine a chaque fois une variable -la diminuation du critière AIC à chaque step

-Le Modèle choisi par step:

 $\label{eq:Multiple R-squared of R-squared of R-squared of R-squared} \mbox{Adjusted R-squared}: 0.6521$

Conclusion:

- -Grace au fonction ${f step}$ Adjusted R-squared agumenter de ${f 0.6301}$ à ${f 0.6521}$ donc ila ya une amélioration .
- -Multiple R-squared diminué mais c'est pas un critère car les deux modèle n'a pas les même nombre de variables

1.3.2 les tests de validation :

- -Est-ce que le modèle représente bien la réalité? ==>Ona plusieur critère :
- -Test d'himosadicite
- -Test de Normalité
- -Les valeurs aberrantes

1.3.3 Test d'himosadicite

-On remarque que la distribution des résidus en fonction des predictions est n'est pas aléatoire alors on peut dire l'homoscédasticité n'est pas vérifiée.

FIGURE 4

1.3.4 Test de Normalité

-Test de Kolmogorov-Smirnov:

p-value = 4.386e-12 ===> la normalité des résidus est rejeté par KS

-Test de Shapiro:

p-value = 0.2273 ===> la normalité des résidus est acceptée par Shapiro

1.3.5 Les valeurs aberrantes

1.4 la méthode pas à pas de sélection des variables

les critières de selection :

A chaque étape :

La var entrante est celle qui présente le plus grand F avec pvalue<10% La var sortante est celle qui présente le plus petit F avec pvalue>10%

Arrêt:

Si les var entrantes ont p-values>10% et les var sortantes ont des pvalues<10%

$$pvalue = P(F(1, n - k - 2) > F)$$

Les etapes qui on a suivre :

-1) On commence la méthode pas à pas par l'intégration de la variable la plus significative (F le plus grand) c'est la variable X3. distance.to.the.nearest.MRT.station dans notre cas F=77.88 et P-value=6.981082e-13<10%:

- -3) Aucune variable n'est retirée, les F sont significatifs
- -4) introduction de variable X5.latitude F= 8.86 et P-value=0.0040<10%:

-5) introduction de variable X4.number.of.convenience.stores F=3.56 et P-value= 0.0634<10%:

-6) Aucune variable n'est retirée, les F sont significatifs -on a calculer le Fisher pour ajouter un variable significatif mais ona a touver que P-value du variable qui a plus grand F est égal à **0.4244>10%** donc aucun variable à entrer ou à sortie d'après 6 ==>le test d'arrêt est vérifier.

Tableau de resultats du Méthode pas à pas :

- F et P-value dans le tableau c'est du modèle avec les variables choisi à chaque etape
- fisher avec p-value du critère de selection du variable entrant et sortant et déja citer en haut "les etapes qui on a suivre"

Etape	Var entrée	Var sortie	$R_{ m ajus}^2$	F	P-value
0	X3.distance.to.the.nearest.MRT.station	aucun	0.527	77.89	6.981e - 13
1	X2.house.age	aucun	0.5962	51.94	$2.39\mathrm{e}-14$
2	X5.latitude"	aucun	0.6386	41.64	3.191e - 15
3	X4.number.of.convenience.stores	aucun	0.6521	33.34	$4.092 \mathrm{e} - 15$

1.4.1 les tests de validation :

-Puisque nous avons trouvé le même modèle que celui sélectionné par la procédure step ,nous avons donc les mêmes tests de validation

1.4.2 Test d'himosadicite

-On remarque que la distribution des résidus en fonction des predictions est n'est pas aléatoire alors on peut dire l'homoscédasticité n'est pas vérifiée.

Rapport de Projet

1.4.3 Test de Normalité

-Test de Kolmogorov-Smirnov:

```
p-value = 4.386e-12 ===> la normalité des résidus est rejeté par KS
```

-Test de Shapiro:

p-value = 0.2273 ===> la normalité des résidus est acceptée par Shapiro

1.4.4 Les valeurs aberrantes

1.4.5 le critère AIC du modèle obtenu

-le modèle sélectionner par les deux Méthodes : $\begin{array}{lllllllll} \textbf{model} <& \text{-lm}(Y.house.price.of.unit.area & X2.house.age + X3.distance.to. + X4.number.of.convenience.stores + X5.latitude, data = data) \end{array}$

```
AIC(model_par_step)
497.0287
AIC(model_par_fischer)
497.0287
```


2 Conclusion

-Dans notre cas les deuxméthodes de selection des variables donne les mèmes Resultats

3 Chapitre 2 :Les méthodes de classification

3.1 kmeans

K-means est un algorithme de clustering.,Il consiste à regrouper les éléments de notre jeu de donnée en groupes, appelés clusters. Le but est de faire ressortir les patterns cachés dans la donnée en regroupant les éléments qui se « ressemblent ».

L'algorithme des k-moyens regroupe les points en k clusters. Cela suppose qu'il faut avoir une idée du nombre de clusters pour appliquer cet algorithme.

3.1.1 Description de données :

```
> str(daca)
'data.frame':
 str(data)
                  70 obs. of 11 variables:
                                               : int 0 1 2 3 4 5
                                              : num 1604 1603 1604 1604 1603 ...
: num 32 19.5 13.3 13.3 5 7.1 34.5 20.3 31.7 17.9 ...
 $ turda
 $ x2.house.age
 $ x3.distance.to.the.nearest.MRT.station: num 84.9 306.6 562 562 390.6 ...
 $ X4.number.of.convenience.stores
                                           : int 10 9 5 5 5 3 7 6 1 3 ...
                                                             25 25 25
 $ x5.latitude
                                               : num
                                                      122 122 122 122 122
 $ X6.longitude
                                               : num
                                               : num
                                                      0 8 10 19 20 30 39 50 58 75 ...
 $ dephm
                                                            8896 20988 21145 22372 ...
                                               : num
                                                      533 431 381 306 342 ...
37.9 42.2 47.3 54.8 43.1 32.1 40.3 46.7 18.8 22.1 ...
   Y.house.price.of.unit.area
                                               : num
```

3.1.2 Normalisation

-Cette operation permet de centré et de réduire les données en divisant sur l'ecart type non biaisé pour accélerer l'operation de processing des données

3.2 Application de kmeans

-on commence par nombre de groupes center = 6 et nstart = 5 nombre d'essais avec différents individus de départ, c'est-à-dire 5 exécution de kemeans avec différents choix de classe initiale.

```
groupes.kmeans <- kmeans (data.actifs,centers =6, nstart =5)
```


3.2.1 affichage des résultats :

```
> print(groupes.kmeans)
K-means clustering with 6 clusters of sizes 12, 17, 7, 13, 9, 12
        turda X2.house.age X3.distance.to.the.nearest.MRT.station X4.number.of.convenience.stores X5.latitude X6.longitude
001090 1.0318206 -0.4873911 0.6461264 0.4311625 0.4764639
   0.89001090
                                                                                                          -0.1959471
-1.7765055
   0.07417499
                  0.2823709
                                                            0.2967160
                                                                                              -0.9589810
                                                                                                                          -0.2928688
  -0.23954990
                  0.5097803
                                                                                                                         -2.2614861
                                                            2.5145266
                                                                                              -1.4364298
  -0.10506315
                 -0.6693349
                                                            -0.6039875
                                                                                               0.8473991
                                                                                                            0.3987236
                                                                                                                          0.6585649
  -0.06296237
                 -0.4406623
                                                           -0.4543341
                                                                                               0.3138667
                                                                                                           -0.1966947
                                                                                                                          0.2074337
  -0.69431451
                 -0.6736084
                                                           -0.4046934
                                                                                                            0.5982946
                                                                                                                          0.3886132
                                                                                               0.3969316
  dephm
-0.20021207
                    SOLID
               0.4217135 -0.33346559
                           0.02877736
  -0.07631418
               -0.4218050
  1.91519310
               0.9880881 -0.17540007
6 -0.69586336  0.4344598 -0.78478972
```

- ===>
- -On 6 classe alors 6 moyennes on remarque que les classes 4 et 5 et 6 contiennent la majorité des moyennes avec des valeurs négatives ce qui indique que ces classes regroupent les valeurs faibles
- les moyennes de la classe 1 presque toutes positives Puis regroupent les variables élevé.

3.2.2 le taux d'inertie avec 6 classe :

$$between_{s/total_ss} = 50.6\% \tag{1}$$

==>le taux d'inertie >50% la plupart d'inertie totale est explique. -Le taux d'inertie augmente avec l'augmentation de nombre de classe

3.2.3 L'enertie expliqué

 $0.0000000 \ 0.2337813 \ 0.3333622 \ 0.4120560 \ 0.4506834 \ 0.5082593$

3.2.4 le nombre de classe N Avec max(inertie.expl)>0.95

le critère de choisi N :est le plus petit entier tel que max(inertie.expl)>0.95

l'evolution de l'inertie explique en fonction de nombre de classes

-Avec N=42 on a trouve max(inertie.expl)=0.93

-Avec N=46 on a trouve max(inertie.expl)=0.952>0.95

==>le critère est vérifier

3.3 le nombre de classes avec le critère $\frac{\text{var}(I_2)}{\text{var}(I)} < 0,05$

le 2ème critère de choix du nombre de classes est le quotient de variance qui doit être<5%

-Si on élimine apartir de 16 :

```
var(inertie.expl[16:N])*(N-16)*100/(var(inertie.expl)*(N-1))
5.647233
```

-Si on élimine apartir de ${\bf 17}$:

```
var(inertie.expl[17:N])*(N-17)*100/(var(inertie.expl)*(N-1))
4.77011
```

===> Alors nombre de classes retenus est 16

3.4 La Classification Ascendante Hiérarchique CAH

- -Principe de l'algorithme : construire dans chaque étape une partition de l'ensemble des individus en regroupant les éléments les plus proches.
- 1. On commence par calculer la dissimilarité entre les N objets.
- 2. Puis on regroupe les deux objets dont le regroupement minimise un critère d'agrégation donné, créant ainsi une classe comprenant ces deux objets.
- 3. On calcule ensuite la dissimilarité entre cette classe et les N-2 autres objets en utilisant le critère d'agrégation. Puis on regroupe les deux objets ou classes d'objets dont le regroupement minimise le critère d'agrégation.

3.4.1 centré et réduire les variables

```
data.actifs_cr<-scale(data.actifs,center=T,scale=T)
```

```
> str(as.data.frame(data.actifs_cr))
'data.frame':
                 70 obs. of 9 variables:
                                              : num 0.0644 -1.0086 -0.0502 0.0305 -1.7159 ...
 $ turda
 $ x2.house.age : num 1.1627 0.0662 -0.4777 -0.4777 -1.2058 ... $ x3.distance.to.the.nearest.MRT.station: num -0.777 -0.613 -0.425 -0.425 -0.551 ...
                                            : num 2.141 1.768 0.272 0.272 0.272 ...
 $ X4.number.of.convenience.stores
 $ X5.latitude
                                                     0.966 0.765 1.308 1.308 0.691
                                               num
 $ x6.longitude
                                              : num -0.861 -0.836 -0.83 -0.803 -0.8 ...
: num -2.049 -1.3974 -0.0806 -0.0635 0.0701 ...
 $ dephm
 $ 501 TD
 $ Condi
                                              : num 1.177 -0.109 -0.733 -1.678 -1.232 ...
```

3.4.2 critère du coupe (manuellement)

- -1 première étape on coupe manuellement l'arbre on choisit les classes homogènes
- -2 On coupe au niveau d'une longue branche

```
===>on a obtenue 6 classes :
```


Hierarchical Clustering

Hierarchical clustering on the factor map

Rapport de Projet

3.4.3 Critère du coupe de François Husson

$Res < - \ HCPC (as.data.frame (data.actifs), nb.clust = -1)$

-on obtient 3 classes avec cettte coupe:

Hierarchical Clustering

Hierarchical clustering on the factor map

3.4.4 les variables quantitatives les plus corrélées avec la variable classification

Analyse de variance :

Link between the cluster variable and the quantitative variables

	========	
	Eta2	P-value
X6.longitude	0.78287334	6.024082e-23
X3. distance.to.the.nearest.MRT.station	0.77573734	1.779749e-22
X2. house. age	0.46841279	6.408354e-10
X4. number. of. convenience. stores	0.44094642	3.464894e-09
X5.latitude		2.913492e-04
turda	0.11550008	1.638235e-02
dephm	0.09284964	3.821694e-02

-on remarque que seules les variables quantitatives qui présentent une analyse de variance ont un facteur significatif par rapport à la variable de classification

==>les varaibles **Solid** et **Condi** ne présent pas car ne sont pas significatif par l'analyse de variance avec le variable quantitative de classification

Corrélation

D'après le tableau précident on la corelation **Etat2** :

	Eta2
X6. longitude	0.78287334
X3. distance. to. the. nearest. MRT. station	0.77573734
X2. house. age	0.46841279
X4. number. of. conveni ence. stores	0.44094642
X5. 7atitude	0.21573991
turda	0.11550008
dephm	0.09284964

==>donc les varaiabes X6.longitude et X3. distance. to. the. nearest.MRT.station les plus corrélées avec la variable classification

3.4.5 la description des classes retenues par la varaiable qualitatives

```
Description of each cluster by quantitative variables
$11
v.test Mean in category Overall mean sd in category Overall sd X3.distance.to.the.nearest.MRT.station 7.229963 1.7282917 -4.594539e-17 0.8998377 0.9928314
                                                                                                                          Overall sd p.value
0.9928314 4.831258e-13
                                          -3.626551
                                                                                                            1.3390329 0.9928314 2.872325e-04
x5.latitude
                                                                      -0.8669114 -4.645003e-14
X4.number.of.convenience.stores
X6.longitude
                                                                      -1.0359382 2.220446e-17
-1.7333722 3.990956e-13
                                                 -4.333640
-7.251216
                                                                                                             0.5238808 0.9928314 1.466637e-05
                     v.test Mean in category Overall mean sd in category Overall sd
194946 0.8077402 8.624054e-18 0.8188269 0.9928314
                                                                              sd in category Overall sd p.value
0.8188269 0.9928314 2.047794e-07
X2.house.age 5.194946
                                         0.4354587 -8.964055e-14
                                                                                    0.8482860 0.9928314 5.100238e-03
turda
                   2.800634
dephm
                   2.531099
                                         0.3935499 3.682570e-17
                                                                                   1.1256129 0.9928314 1.137057e-02
                                                      v.test Mean in category Overall mean sd in category Overall sd p.value
952469 0.6835056 2.220446e-17 0.5898340 0.9928314 7.327785e-07
220830 0.5825299 3.990956e-13 0.2028792 0.9928314 2.434041e-05
X4.number.of.convenience.stores
                                                   4.952469
 x6.longitude
                                                    4.220830
 x5.latitude
                                                   2.757366
                                                                      0.3805527 -4.645003e-14
-0.2938665 -8.964055e-14
                                                                                                             0.6570157
                                                                                                                           0.9928314 5.826910e-03
0.9928314 3.323236e-02
                                                                                                             0.8230847
                                                   -2.129265
turda
X3.distance.to.the.nearest.MRT.station -4.139863
                                                                       -0.5713553 -4.594539e-17
                                                                                                              0.1624278
                                                                                                                          0.9928314 3.475137e-05
X2. house. age
                                                  -5.181605
                                                                      -0.7151294 8.624054e-18
                                                                                                             0.6391993 0.9928314 2.199853e-07
```

-la classe 1 regroupe les batiments qui ont une faible dimention (distance, longitude...)

-la classe 3 regroupe les bâtiments à grande dimension

3.4.6 calcule des taux d'inertie avant et après la consolidation de la CAH.

-la varaiance c'esi au niveau du inertie inter alors :

	Avant	après
	consolidation	consolidation
	de la CAH.	de la CAH.
Inertie inter	2.780738	2.928891

==> il y a une amélioration de l'inter inertie, elle est passer de 2,78 à 2,92 après consolidation des k-means

3.4.7 Comparaison Kmeans VS CAH

-Le clustering K-Means nécessite une connaissance préalable de K, c'est-à-dire du nombre de clusters que l'on veut diviser dans les données

-Dans le clustering hiérarchique CAH, on peut s'arrêter à n'importe quel nombre de clusters, que l'on trouve approprié en interprétant le dendrogramme.

-Dans notre cas avec Kmeans on a trouver N=46 classe (un nombre qui est trés grand), et avec CAH le nombre de class retenue est N=16