Departamento de Sistemas e Computação – FURB Curso de Ciência da Computação Trabalho de conclusão de curso – 2014/01

Roteirização de veículo para realização de coleta utilizando algoritmo evolucionários

Acadêmico: Cleber José Osika

cleberosika@gmail.com

Orientador: Cláudio Ratke

ratke@furb.br

Roteiro

- Motivação
- Objetivos
- Fundamentação teórica
- Especificação do sistema
- Implementação
- Operacionalidade
- Resultados obtidos
- Conclusão
- Utilizando o sistema

Motivação

- Logística
 - Concorrência entre empresas
 - Vantagem Competitiva
 - agrega valores e disponibiliza bens e serviços para clientes, fornecedores e demais interessado.
 - Decisões de transporte é fundamental
- Importância do transporte
 - Até 60% custo logísticos
 - Custo do escoamento do produto tem influência no preço final.
 - Roteirização de veículos

Motivação

- Problema de Roteamento de veículo (PRV)
 - Benefícios: redução de custo, tempo de transporte, produtividade, melhor satisfação do cliente, menor gastos com agregados e veículos.
 - Resolver todas as combinações
 - Requere processamento elevado
- Algoritmo genético

Objetivos

 Desenvolver um sistema de roteirização de veículos para operação de coletas utilizando o algoritmo genético.

Objetivos Específicos

- calcular a melhor rota partindo de uma origem para um ou mais destinos com restrições de tempo.
- descobrir a distância entre dois pontos.
- identificar os veículos que irão compor a rota. Será verificado a capacidade de coletas das mercadorias e os veículos mais econômicos de uma determina frota.
- visualizar as rotas de coletas através de mapas.

Logística:

- Conceito:
 - Processo de gestão de produtos, serviços e da informação
- Importância
 - Importância na qualidade de vida da humanidade

Problema de roteirização de veículo (PRV):

Generalização Caixeiro viajante

Problema de roteirização de veículo:

Extensões:

- Restrição de capacidade do veículo
- Janela de Tempo
- Coleta e entrega simultânea

- Aplicabilidade
 - Transporte
 - Distribuição

- Algoritmo genético:
 - Teoria da evolução
 - Indivíduos mais adaptados ao seu meio podem gerar descendentes mais adaptados.
- Aplicabilidade
 - Espaço com dimensões elevadas e muitas variáveis

Algoritmo genético:

- Termos:
 - Cromossomo
 - Gene
 - Aptidão (fitness).

Algoritmo genético:

Trabalhos Correlatos

 Roteirização de veículos de (MIURA, 2003).

Objetivo: resolver o PRV usando Clarke e Wright.

Trabalhos Correlatos

 Sistema para logística de distribuição de (ROSA, 2005).

 Objetivo: resolver o PRV usando Constraint Satisfaction Problem (CSP).

Trabalhos Correlatos

 Modelo de roteirização de veículo por (TSUDA, 2007).

 Objetivo: resolver o PRV usando sweep algorithm.

Requisitos Funcionais:

- calcular a melhor rota entre um ponto de origem e um ou mais pontos de destinos (RF).
- calcular a distância em quilômetros (KM) entre uma origem e um destino (RF).
- identificar os veículos que irão fazer determinada rota (RF).

Requisitos Funcionais:

- disponibilizar uma interface para visualização da rota (RF).
- permitir cadastrar restrições baseada no domínio do problema (RF).

Requisitos Não Funcionais:

 utilizar web services para disponibilizar o serviço que busca a melhor rota (RNF).

Diagrama de Caso de Uso:

Diagrama de classes da camada de engine do sistema

Diagrama de atividades – Rotina de roteirizar

Implementação

Tecnologias usadas:

- IDE: Microsoft Visual Studio 2012.
- Utilizado a linguagem C# Back-end, JavaScript Frontend.
- Banco de dados: Sql Server 2008.
- Framework de Persistência: Microsoft Entity Framework
 6.0.
- Framework de desenvolvimento web: ASP.NET MVC.
- Framework de integração de sistema: Web Api.
- Geração de mapas e Serviços de geolocalização : API Bing Maps.

Implementação

Código - calcular aptidão do genes do cromossomo

```
double custoVeiculo =
(custoKMPercurso * Convert.ToDouble(veiculo.CustoPorKM));
```

```
aptidaoCromossomo += (numeroPenalidade *
Convert.ToDouble(custoVeiculo)));
```


Operacionalidade

Home Cadastros ▼ Endereços ▼ Configurações Roteirizador ▼ Pedidos Para Coletar Roteirizar Pedidos About

Operacionalidade

Operacionalidade

Resultados e Discussões

- Criado dois cenários de testes comparando resultados com Tsuda.
- Cenário 1 possui 15 pontos para coletar e dois veículos com capacidade de 60 e 85 metros cúbicos.

 Cenário 2 possui 24 pontos para coletar e dois veículos com capacidade de 60 metros cúbicos.

Cenário de teste 1

Solução	Rota do veículo	Distância total
Osika	veículo 1 0 -> 8 -> 15 -> 6 -> 5 -> 11 -> 7 -> 2 -> 1 -> 12 -> 14 -> 4 -> 0 veículo 2 0 -> 3 -> 13 -> 10 -> 9 -> 0	89 Km
Tsuda	Rota do veículo 1 0-3-5-11-6-15-8-9-10-0 Rota do veículo 2 0-4-14-12-2-7-1-13-3-0	88.8 KM
Situação real	veículo 1 0-3-0 -4-3-10-8-9-0 veículo 2 0-13-1-14-12-2-7-11-5-6- 15-0	109,6 KM

Cenário de teste 2

Soluço	Rota do veículo	Distância total
Osika	veículo 1: 0 -> 13 > 17 -> 15 -> 2 -> 1 -> 3 -> 11 -> 14 -> 22 -> 16 -> 24 -> 0 = 53.3 veículo 2: 0 -> 5 -> 12 -> 6 -> 4 -> 7 -> 9 -> 10 -> 8 -> 19 -> 18 -> 23 -> 21 -> 20 -> 0 = 82.5	135.83 KM
Tsuda	veículo 1:0 - 24 - 16 - 22 - 14 - 11 - 3 - 1 - 2 - 15 - 17 - 13 - 0 = 53,3414 veículo 2:0 - 5 - 12 - 6 - 4 - 7 - 9 - 10 - 8 - 19 - 18 - 23 - 21 - 20 - 0 = 82,4824	135.8239 KM
Situação real	veículo 1 : $0-5-6-7-3-1-2-0=93,0224$ veículo 2 : $0-12-18-23-19-9-10-8-11-14-22-16-13-17$	175.7742 KM

Resultados e Discussões

- Impacto dos parâmetros do AG e das variáveis do problema
- número de restrição do problema:
 - Quando maior for as restrições maior deverá ser o tamanho da população
- tamanho da população
 - Quanto maior o tamanho da população terá mais chance de explorar o espaço de busca
- número de geração
 - Quanto maior o numero de geração maior a chance de explorar o espaço de busca

Resultados e Discussões

- Cruzamento:
 - Taxa de cruzamento alta garanti melhores soluções
- Mutação
 - Taxa de mutação alta diminui a qualidade da solução

Comparativo dos trabalhos correlatos

Funcionalidade	Osika	Miura	Rosa	Tsuda
Plataforma	Web	Desktop	Desktop	Desktop
Disponibiliza integração da rotina de roteirização com outro sistemas	Sim	Não	Não	Não
Recursos gráficos para visualizar a rota	Sim	Não	Não	Não
Janela de tempo	Sim	Sim	Não	Não
Restrição de capacidade do veículo	Sim	Sim	Sim	Sim
Restrição dinâmica	Sim	Não	Não	Não
Possui mecanismo de geocodificação	Sim	Não	Não	Não
Método	AG	Clarke e Wright	CSP	Sweep algorith m

Conclusões

- Os objetivos propostos foram alcançados
- Qualidade da solução
- Algoritmo genético
 - Restrições e Operadores Genéticos
- Tempo de resolução do problema / Thread
- Bing Maps API
- Web Api

Limitações

- Problema para evoluir a população quando o espaço de busca é elevada.
- Parâmetros do algoritmo genético.
- Modelo definido de restrição não garante 100% que nenhuma restrição será inferida.

Extensões

- Implementar estratégias de busca local para que em conjunto com o algoritmo genético melhore a sua evolução
- Otimizar o processamento do algoritmo genético
- Implementar alguma estratégia para que os parâmetros do algoritmo genético sejam obtidos de forma dinâmica conforme o número de variáveis do problema a ser roteirizado

Extensões

 Desenvolver um aplicativo para dispositivo móvel para que seja possível visualizar o roteiro gerado em um mapa.

- Criar a entidade empresa, onde ela poderá ter mais de um deposito
- Implementar operação de entrega e gerar a roteirização com entregas e coletas simultâneas.

Demonstração

Obrigado

