

Kvalifikace výpočetního programu ANDREA v2.0

Technická zpráva

Jonatan Hejzlar František Havlůj Radim Vočka

Abstrakt

Předkládaná zpráva byla vypracována za účelem kvalifikace komplexu výpočetních programů HE-LIOS/ANDREA pro provádění výpočtů bezpečnostního hodnocení palivových vsázek reaktorů a charakteristik AZ reaktorů VVER-1000 a VVER-440. Jejím hlavním cílem je doklad vhodnosti a přesnosti metod použitých v komplexu programů a průkaz přesnosti jeho predikcí. Důležitou součástí dokumentu je i stanovení nepřesnosti predikovaných pokazetových a poproutkových koeficientů nevyrovnání, které vstupují do metodiky bezpečnostního hodnocení vsázek.

Obsah

1	Úvo	\mathbf{d}	3
2	Pře s 2.1 2.2	snost výpočetního programu HELIOS Výpočty palivových souborů typu TVSA-T	4 4 6
3	Vali 3.1 3.2 3.3 3.4 3.5 3.6	idace nodálního řešení na modelových úlohách Modelová úloha pro VVER-440 (TRIGON440)	12 12 13 13 13 13
4	Pře : 4.1 4.2	snost metody rekonstrukce poproutkových výkonů Výsledky přepočtů minizón	18 18 30
5	5.15.25.3	Popis validačních úloh Kritická koncentrace kyseliny borité v průběhu cyklu 5.2.1 Způsob vyhodnocení, očekávaná přesnost 5.2.2 Shrnutí výsledků Rozložení výkonu - porovnání s výkony kazet ze systému monitorování 5.3.1 Způsob vyhodnocení, očekávaná přesnost 5.3.2 Shrnutí výsledků 5.3.3 Zhodnocení Pogležení výkony spravký samonapájacích detektorů	31 32 32 32 34 34 34 34
	5.4	Rozložení výkonu - analýza proudů samonapájecích detektorů	35 35 37

$ m \acute{U}JV$ 3720 rev.	1, Kvalifikace	výpočetního	programu	ANDREA	v2.0
J. Heizlar, F. Hay	důi. R. Vočka				

J.]	Hejzla	r, F. Ha	vlůj, R. Vočka	2
	5.5	5.5.1 5.5.2 5.5.3 5.5.4	Metodika vyhodnocení výsledků Zhodnocení ze spouštění Izotermický koeficient reaktivity Účinnost kyseliny borité Kritická koncentrace H3BO3 Váha klastrů	38 46 46 46 48 48
6	Pře	$egin{array}{c} 5.5.5 \ \mathbf{snost} \end{array}$	Zhodnocení	50 51
7	Zaji	ištění (jakosti	53
8	Záv	ěr		55
\mathbf{A}	Tab	ulky		58
В	Gra	fy a o	brázky	80

KAPITOLA 1

Úvod

Předkládaná zpráva byla vypracována za účelem kvalifikace komplexu výpočetních programů HELIOS/ANDREA pro provádění výpočtů bezpečnostního hodnocení palivových vsázek reaktorů VVER-1000 a VVER-440. Jejím hlavním cílem je doklad vhodnosti a přesnosti metod použitých v komplexu programů a průkaz přesnosti jeho predikcí. Důležitou součástí dokumentu je i stanovení nepřesnosti predikovaných pokazetových a poproutkových koeficientů nevyrovnání, které vstupují do metodiky bezpečnostního hodnocení vsázek.

Zpráva je rozdělena do následujících kapitol. V kapitolách 2 a 3 je dokladována přesnost použitých modelů. Kapitola 2 dokladuje přesnost výpočetního programu HELIOS a na příkladu palivové kazety VVER-1000 korektnost modelu vytvořeného za účelem výpočtu účinných průřezů a dalších konstant pro program ANDREA. Kapitola 3 pak dokladuje vhodnost a přesnost použitého algoritmu v programu ANDREA pro řešení dvougrupové difúzní rovnice. Následující kapitoly dokladují přesnost výpočtů komplexu HELIOS/ANDREA. Kapitola 4 dokladuje přesnost metody rekonstrukce poproutkových výkonů, v kapitole 5 jsou porovnány predikce komplexu HELIOS/ANDREA s provozními daty: daty ze spouštění, měřeními koncentrace kyseliny borité a měřeními rozložení výkonu v AZ. Na základě analýz provedených v kapitole 4 a sekcích 5.3 a 5.4 kapitoly 5 je v kapitole 6 odvozena nepřesnost stanovení peaking faktorů pro poproutkové rozložení výkonu. V kapitole 7 je stručně popsán systém zajištění jakosti používaný při vývoji a testování programu ANDREA. Nejdůležitější výsledky jsou shrnuty v kapitole 8.

Přesnost výpočetního programu HELIOS

Přesnost výpočetního programu HELIOS je dokladována při jeho standardizaci, pro kterou byly předloženy výsledky přepočtů množství kritických experimentů, včetně experimentů na reaktoru ZR6 s trojúhelníkovou palivovou mříží, a porovnání výsledků kódu HELIOS s alternativními výpočetními programy.

Do této kapitoly jsou převzaty pouze výsledky důležité pro dokladování přesnosti poproutkového rozložení výkonu.

Jelikož je poproutkové rozložení výkonu obtížně měřitelné experimentálně, jsme v tomto případě odkázáni na srovnání s výsledky jiných výpočetních programů. Pro účely tohoto srovnání jsme vybrali program MCNP5, který provádí výpočty metodou Monte Carlo, což je metoda vyššího řádu pro řešení transportní rovnice než metoda první srážky, použitá v programu Helios. Kromě informace o samotné přesnosti výpočetního programu získané výsledky samozřejmě podávají i cennou informaci o kvalitě modelů palivových kazet v programu HELIOS.

Srovnání bylo provedeno na několika modelových úlohách pro paliva TVSA-T. Modelové úlohy pokrývají jak paliva bez vyhořívajících absorbérů, tak s vyhořívajícími absorbéry. Oba typy paliv byly počítány s vysunutými i zasunutými absorpčními klastry. Z důvodů dostupnosti knihoven k programu MCNP byly všechny výpočty provedeny pro izotermický stav 600 K, a to s nulovým vyhořením paliva (program MCNP5 neumožňuje modelování vyhořívání paliva). Přesné zadání modelových úloh je uvedeno v dokumentu [10].

K programu HELIOS jsou standardně dodávány dva typy knihoven - knihovny 49-grupové a knihovny 177-grupové. Abychom zhodnotili vliv výběru knihovny na přesnost výsledků, byly všechny výpočty provedeny s použitím obou typů knihoven.

2.1 Výpočty palivových souborů typu TVSA-T

Srovnání bylo provedeno pro čtyři typy paliv TVSA-T: neprofilovanou kazetu A20 s obohacením 2.0%, neprofilovanou kazetu A40E6 s obohacením 4.0% a šesti Gd proutky, profilovanou kazetu P44E6 se středním obohacením 4.4% a šesti Gd proutky a profilovanou kazetu P45G12 se středním obohacením 4.5% a dvanácti Gd proutky. Všechny kazety mají standardní 60-stupňovou symetrii

FA type	H-177g	H-49g	MCNP	$\delta_{MC,H177}$	$\delta_{MC,H49}$
A20	1.26090	1.26000	1.26066 ± 0.00026	+15	-41
A40E6	1.37300	1.37210	1.37327 ± 0.00034	-14	-62
P44E6	1.39140	1.39050	1.39245 ± 0.00034	-54	-100
P45G12	1.33440	1.33350	1.33568 ± 0.00036	-71	-122

Tabulka 2.1: Výsledky výpočtů k_{∞} pro vybrané 4 typy kazet TVSA-T, s vysunutými absorpčními klastry. V 2. a 3. sloupci jsou výsledky výpočtů programem HELIOS se 177- a 49-grupovou knihovnou, ve 4. sloupci jsou výsledky výpočtů programem MCNP a v dalších sloupcích jsou v pcm uvedeny rozdíly reaktivit, počítané jako $(k_{\infty}^2 - k_{\infty}^1)/(k_{\infty}^2 k_{\infty}^1)$.

FA type	CR type	H-177g	H-49g	MCNP	$\delta_{MC,H177}$	$\delta_{MC,H49}$
A20	_	1.26090	1.26000	1.26066 ± 0.00026	+15	-41
A20	$\mathrm{B_{4}C}$	0.95333	0.95216	0.94694 ± 0.00034	+707	+578
A20	$\mathrm{Dy}_2\mathrm{TiO}_5$	1.00270	1.00180	0.99576 ± 0.00034	+695	+605
A40E6	_	1.37300	1.37210	1.37327 ± 0.00034	-14	-62
A40E6	B_4C	1.12640	1.12530	1.11964 ± 0.00038	+536	+449
A40E6	$\mathrm{Dy}_2\mathrm{TiO}_5$	1.17910	1.17840	1.17202 ± 0.00040	+512	+461
P44E6	_	1.39140	1.39050	1.39245 ± 0.00034	-54	-100
P44E6	$\mathrm{B_{4}C}$	1.14600	1.14490	1.13931 ± 0.00040	+512	+428
P44E6	$\mathrm{Dy}_2\mathrm{TiO}_5$	1.19970	1.19900	1.19231 ± 0.00040	+516	+467
P45G12	_	1.33440	1.33350	1.33568 ± 0.00036	-71	-122
P45G12	$\mathrm{B_{4}C}$	1.08890	1.08780	1.08404 ± 0.00042	+411	+318
P45G12	$\mathrm{Dy}_2\mathrm{TiO}_5$	1.14240	1.14170	1.13638 ± 0.00038	+463	+410

Tabulka 2.2: Výsledky výpočtů k_{∞} pro vybrané 4 typy kazet TVSA-T, s vysunutými a zasunutými absorpčními klastry B₄C a Dy₂TiO₅. V 3. a 4. sloupci jsou výsledky výpočtů programem HELIOS se 177- a 49-grupovou knihovnou, v 5. sloupci jsou výsledky výpočtů programem MCNP a v dalších sloupcích jsou v pcm uvedeny rozdíly reaktivit, počítané jako $(k_{\infty}^2 - k_{\infty}^1)/(k_{\infty}^2 k_{\infty}^1)$.

a byly počítány bez klastrů i se zasunutými klastry s absorbérem B_4C i s absorbérem Dy_2TiO_5 .

Výsledky k_{∞} jsou srovnány v tabulce 2.1 a v tabulce 2.2 (včetně stavů se zasunutými regulačními klastry). Srovnání ukazuje na minimální vliv výběru použité knihovny programu HE-LIOS na přesnost výpočtů. Rozdíl mezi výsledky s použitím 49- a 177-grupové knihovny nepřesahují 100 pcm, přičemž výpočty se 49-grupovou knihovnou vedou systematicky k o něco vyšší reaktivitě než výpočty se 177-grupovou knihovnou. Rozdíly mezi výsledky programu HELIOS a MCNP jsou také relativně malé. Pro stavy bez zasunutých klastrů se maximální rozdíl pohybuje okolo 70 pcm. Pro stavy se zasunutými klastry rozdíly nepřesahují 700 pcm, což je stále možno považovat za dobrou shodu.

V tabulce 2.3 jsou uvedeny výsledky výpočtu váhy klastrů B_4C a Dy_2TiO_5 .

Presentované výsledky ukazují tendenci programu HELIOS spíše podhodnocovat reaktivitu při porovnání s programem MCNP. Program HELIOS v porovnání s programem MCNP také podhodnocuje váhu klastrů .

V tabulce 2.4 jsou uvedeny střední kvadratické odchylky pro rozložení relativních výkonů palivových proutků odpovídající výpočtům pomocí programů HELIOS a MCNP. Z výsledků vyplývá,

FA type	MCNP	H-49g	H-177g	$\delta_{MC,H177}$	$\delta_{H177,H49}$
A20	26279	25659	25587	-692	+72
A40E6	16495	15984	15945	-550	+39
P44E6	15956	15427	15389	-567	+38
P45G12	17379	16938	16895	-484	+43
FA type	MCNP	H-49g	H-177g	$\delta_{MC,H177}$	$\delta_{H177,H49}$
FA type A20	MCNP 21102	H-49g 20455	H-177g 20422	$\delta_{MC,H177}$ -680	$\delta_{H177,H49} +33$
A20	21102	20455	20422	-680	+33

Tabulka 2.3: Váhy klastrů B_4C a Dy_2TiO_5 pro vybrané 4 typy kazet TVSA-T, počítané jako $(k_\infty^2 - k_\infty^1)/(k_\infty^2 k_\infty^1)$. Ve 2. sloupci jsou výsledky výpočtů programem MCNP a ve 3. a 4. sloupci jsou výsledky výpočtů programem HELIOS se 49- a 177-grupovou knihovnou; v dalších sloupcích jsou v pcm uvedeny rozdíly mezi výsledky MCNP a HELIOS se 177-grupovou knihovnou a rozdíly mezi výsledky výpočtu programem HELIOS se 49- a 177-grupovou knihovnou.

že výkony palivových proutků závisí velmi málo na použité knihovně programu HELIOS. Maximální relativní odchylky se pohybují okolo 0.2~% a maximální střední kvadratická odchylka nepřesahuje 0.06~% (viz tabulka 2.4). Shoda mezi výsledky programů HELIOS a MCNP je pro stavy bez zasunutých absorpčních klastrů vynikající - střední kvadratické odchylky nepřesahují 0.25~%, což o málo převyšuje nepřesnost samotných výpočtů MCNP ($\sigma\approx0.25-0.3$). Pro stavy se zasunutými absorpčními klastry střední kvadratická odchylka nepřesahuje 1~%, což je stále možno považovat za velmi dobrou shodu.

Detailní srovnání výsledků výpočtů programů MCNP a HELIOS je uvedeno na obrázcích 2.1, 2.2, 2.3 a 2.4. Z tohoto detailního srovnání je zřetelná vynikající shoda obou programů při predikci výkonů proutků s Gd. Přestože výkon těchto proutků je výrazně nižší, než proutků bez Gd, relativní odchylky určení jejich výkonů jsou srovnatelné s ostatními palivovými proutky.

2.2 Shrnutí výsledků výpočtů samostatných souborů

V této kapitole byly na několika modelových úlohách s palivy TVSA-T srovnány predikce reaktivit a relativních rozložení výkonů proutků počítaných programy MCNP5 a HELIOS. Výsledky jsou pro oba typy paliv srovnatelné. Pro případ bez zasunutých absorpčních klastrů maximální rozdíly v predikcích reaktivit nepřevyšují 150 pcm. Pro stavy se zasunutými klastry se maximální rozdíly pohybují okolo 700 pcm. Ukazuje se, že HELIOS má tendenci spíše mírně podhodnocovat reaktivitu v porovnání s programem MCNP. Výsledky dále ukazují, že program HELIOS podhodnocuje váhu klastrů v porovnání s programem MCNP - analýzy provedené pomocí programu HELIOS by tedy měly vést spíše ke konzervativním výsledkům.

Shoda v predikci relativního rozložení výkonů palivových proutků je mezi programy HELIOS a MCNP velmi dobrá. Pro stavy bez zasunutých klastrů střední kvadratická odchylka relativních výkonů proutků nepřevyšuje 0,25 %, což je hodnota srovnatelná s přesností samotných výpočtů MCNP. Pro stavy se zasunutými klastry střední kvadratická odchylka nepřevyšuje 0,6 %. Výsledky

		σ	Ċ	$\delta_{ m max}$	$\delta_{ m m}$	ax,U
Kazeta	177	49	177	49	177	49
A20	0.10	0.11	0.36	0.39	0.36	0.39
A40E6	0.22	0.24	1.22	1.30	0.82	0.88
P44E6	0.22	0.23	0.94	1.04	0.84	0.84
P45G12	0.18	0.19	0.87	0.96	0.68	0.66
A20	0.40	0.43	2.01	2.17	2.01	2.17
A40E6	0.53	0.56	2.32	2.44	2.32	2.44
P44E6	0.49	0.52	2.19	2.40	1.98	2.11
P45G12	0.43	0.45	1.97	2.12	1.97	2.04
A20	0.24	0.26	1.31	1.37	1.31	1.37
A40E6	0.34	0.37	1.60	1.78	1.60	1.78
P44E6	0.32	0.35	1.67	1.74	1.67	1.74
P45G12	0.27	0.29	1.41	1.58	1.15	1.25

Tabulka 2.4: Střední kvadratické odchylky σ , maximální odchylky a maximální odchylky $\delta_{\rm max}$ pro proutky bez vyhořívajících absorbátorů $\delta_{\rm max,U}$ spočítané z rozložení relativních rozdílů výkonů palivových proutků (pro kazety bez zasunutých klastrů, se zasunutými klastry B₄C a se zasunutými klastry Dy₂TiO₅) dle výsledků výpočtů programu HELIOS se 177- / 49- grupovou knihovnou a programu MCNP. Hodnoty jsou uvedeny v procentech.

ukazují velmi dobrou shodu ve výkonech proutků s vyhořívajícím absorbérem. Shoda v predikci výkonů těchto proutků je srovnatelná s proutky bez vyhořívajícího absorbéru.

Obrázek 2.1: Srovnání relativních výkonů palivových proutků v neprofilované kazetě A20 bez zasunutých klastrů (nahoře), se zasunutými klastry s absorbérem B_4C (vlevo dole) a se zasunutými klastry s absorbérem Dy_2TiO_5 (vpravo dole) při teplotě 600 K. Vrchní hodnoty jsou referenční relativní výkony palivových proutků vypočtené programem MCNP5 a programem HELIOS (177-grupová knihovna), spodní hodnoty jsou relativní odchylky výsledků získaných programem HELIOS od referenčních výsledků.

Obrázek 2.2: Srovnání relativních výkonů palivových proutků v profilované kazetě A40E6 se 12 Gd proutky bez zasunutých klastrů (nahoře), se zasunutými klastry s absorbérem B_4C (vlevo dole) a se zasunutými klastry s absorbérem Dy_2TiO_5 (vpravo dole) při teplotě 600 K. Vrchní hodnoty jsou referenční relativní výkony palivových proutků vypočtené programem MCNP5 a programem HELIOS (177-grupová knihovna), spodní hodnoty jsou relativní odchylky výsledků získaných programem HELIOS od referenčních výsledků. Gd proutky jsou označeny zesíleným ohraničením.

Obrázek 2.3: Srovnání relativních výkonů palivových proutků v profilované kazetě P44E6 se 12 Gd proutky bez zasunutých klastrů (nahoře), se zasunutými klastry s absorbérem B_4C (vlevo dole) a se zasunutými klastry s absorbérem Dy_2TiO_5 (vpravo dole) při teplotě 600 K. Vrchní hodnoty jsou referenční relativní výkony palivových proutků vypočtené programem MCNP5 a programem HELIOS (177-grupová knihovna), spodní hodnoty jsou relativní odchylky výsledků získaných programem HELIOS od referenčních výsledků. Gd proutky jsou označeny zesíleným ohraničením.

Obrázek 2.4: Srovnání relativních výkonů palivových proutků v profilované kazetě P45G12 se 12 Gd proutky bez zasunutých klastrů (nahoře), se zasunutými klastry s absorbérem B_4C (vlevo dole) a se zasunutými klastry s absorbérem Dy_2TiO_5 (vpravo dole) při teplotě 600 K. Vrchní hodnoty jsou referenční relativní výkony palivových proutků vypočtené programem MCNP5 a programem HELIOS (177-grupová knihovna), spodní hodnoty jsou relativní odchylky výsledků získaných programem HELIOS od referenčních výsledků. Gd proutky jsou označeny zesíleným ohraničením.

Validace nodálního řešení na modelových úlohách

Tato kapitola obsahuje výsledky výpočtů 2D a 3D modelových úloh, dokladující přesnost implementovaného nodálního algoritmu řešení dvougrupové difúzní rovnice. Pro tento účel bylo z literatury vybráno pět modelových úloh s hexagonální geometrií. Tři z nich jsou definovány ve 2D geometrii, dvě úloha mají 3D geometrii.

Pro srovnání byly použity v literatuře uvedené referenční výsledky a vlastní výsledky kontrolních výpočtů provedených pomocí programu DIF-3D založeném na diferenční metodě. Jako referenční jsme přitom použili výsledky vlastních přepočtů pomocí programu DIF-3D (s výjimkou úlohy FCM-101), a to především proto, že v literatuře uvedené výsledky některých úloh nebyly úplné. Ověřili jsme ale, že rozdíl mezi výsledky výpočtů programem DIF-3D a výsledky v literatuře je velmi malý v porovnání s rozdíly mezi výsledky nodálních a referenčních výpočtů, což je dáno i tím, že výsledky v literatuře byly zpravidla počítány pomocí programu DIF-3D.

3.1 Modelová úloha pro VVER-440 (TRIGON440)

Úloha je definována v [2], kapitola 7.1^1 . Úloha modeluje zmenšenou zónu reaktoru VVER-440, okrajové podmínky jsou zadány pomocí albeda.

Referenční výsledky pro rozložení výkonu byly spočítány programem DIF-3D s n=100, referenční k_{eff}bylo spočítáno extrapolací s výsledků programu DIF-3D s různým dělením kazety.

Výsledky výpočtů jsou shrnuty v tabulce 3.1. Detailní srovnání rozložení výkonu je zobrazeno na obr. 3.1.

3.2 Modelová úloha pro VVER-440 (Seidel 2-D)

Úloha je definována v [2], kapitola 7.2. Úloha modeluje zónu reaktoru VVER-440 se zasunutou regulační kazetou. Data pro reflektor i data pro regulační kazetu jsou zadány pomocí charakteristik difúzního prostředí.

¹Tato definice však obsahuje chybu v zadání geometrie aktivní zóny. Správné zadání geometrie lze nalézt v [3]

Referenční výsledky pro rozložení výkonu byly spočítány programem DIF-3D s n=54, referenční k_{eff}bylo spočítáno extrapolací z výsledků programu DIF-3D s různým dělením kazety. Výsledky výpočtů jsou shrnuty v tabulce 3.1. Detailní srovnání rozložení výkonu je zobrazeno na obr. 3.3.

3.3 Modelová úloha pro VVER-1000 (TRIGON1000)

Úloha je definována v [2], kapitola 7.3. Úloha modeluje zónu reaktoru VVER-1000 bez radiálního reflektoru, okrajové podmínky jsou zadány pomocí albeda.

Referenční výsledky pro rozložení výkonu byly spočítány programem DIF-3D s n-96, referenční $k_{\rm eff}$ bylo spočítáno extrapolací z výsledků programu DIF-3D s různým dělením kazety.

Výsledky výpočtů jsou shrnuty v tabulce 3.1. Detailní srovnání rozložení výkonu je zobrazeno na obr. 3.2.

3.4 Modelová úloha pro VVER-440 (Seidel 3-D)

Úloha je definována v [2], kapitola 7.5. Úloha modeluje 3D aktivní zónu reaktoru VVER-440 s regulační kazetou zasunutou do poloviny výšky AZ. Data pro radiální i axiální reflektor i data pro regulační kazetu jsou zadány pomocí charakteristik difúzního prostředí.

Referenční výsledky pro rozložení výkonu byly spočítány programem DIF-3D s n-9 a 120 body po výšce kazety. Výsledky byly následně zkondenzovány do 10 vrstev po výšce. Referenční $k_{\rm eff}$ bylo spočítáno extrapolací z výsledků programu DIF-3D s různým dělením kazety.

Výsledky výpočtů jsou shrnuty v tabulce 3.1. Detailní srovnání radiálního rozložení výkonu je zobrazeno na obr. 3.4.

3.5 Modelová úloha FCM

Jedná se o jednu z AER modelových úloh, definice je v [11]. Jedná se o 3D model aktivní zóny reaktoru VVER-1000 ve stacionárním svavu. Palivové soubory jsou homogenní, representované parametry pro dvougrupové výpočty v difúzním přiblížení. Úloha obsahuje 7 různých materiálů, zahrnujících 4 druhy obohacení, vyhořívající absorbátory, regulační klastry a reflektor. Regulační kastry jsou zasunuté do poloviny výšky aktivní zóny. Výška aktivní zóny je 355 cm, krok mříže palivových souborů 24.1 cm. Aktivní zóna je radiálně i axiálně obklopena reflektorem, reprezentovaným difúzním (nenásobivým) prostředím. Jako referenční byly převzaty doporučené výsledky z [11].

Výsledky výpočtů jsou shrnuty v tabulce 3.1. Detailní srovnání radiálního rozložení výkonu je zobrazeno na obr. 3.5.

3.6 Zhodnocení

Kapitola shrnuje výsledky verifikačních výpočtů pro ověření vhodnosti zvolené výpočetní metody pro řešení úloh s hexagonální geometrií palivových souborů. Výsledky získané na pěti modelových úlohách - třech 2D a dvěma 3D - ukazují, že zvolená metoda je adekvátní. Maximální odchylky

pro radiální rozložení výkonu nepřesahují 1.6%, maximální odchylka pro nodální rozložení výkonu nepřesahuje 2.1%, střední kvadratická odchylka nepřesahuje 1%, resp. 0.7% (viz tab. 3.1). Tato přesnost výpočtu by měla umožnit dosažení požadované přesnosti i pro výpočty AZ reaktoru, při kterých by maximální odchylky v radiálním rozložení výkonu neměly přesáhnout 5%. Hodnota $k_{\rm eff}$ je predikována s velmi dobrou přesností, maximální odchylka v reaktivitě dosahuje 51 pcm.

úloha	$k_{ m eff}^{ m ref}$	k _{eff}	$\Delta \rho$	$\sigma_{ m FHA}$	$\sigma_{ m KV}$	$\delta_{ m FHA}^{ m max}$	$\delta_{ m KV}^{ m max}$
TRIGON440	0.97760	0.97809	51 pcm	0.80 %	_	1.50 %	_
TRIGON1000	1.01660	1.01707	$45~\mathrm{pcm}$	0.96~%	_	1.56~%	_
SEIDEL2D	1.01020	1.01020	0 pcm	0.54~%	_	1.13~%	_
SEIDEL3D	1.01177	1.01177	0 pcm	0.74~%	0.68~%	1.52~%	2.04~%
FCM101	1.04954	1.04994	$36~\mathrm{pcm}$	0.78 %	0.72~%	1.53 %	1.89~%

Tabulka 3.1: Statistické srovnání výsledků verifikačních výpočtů. $\sigma_{\rm FHA}$ udává střední kvadratickou odchylku mezi predikcí programu ANDREA a referenčním výpočtem ((ANDREA-DIF3D)/DIF3D)) v pokazetových výkonech, $\sigma_{\rm KV}$ ve výkonech nodálních, δ_{FHA}^{max} a δ_{KV}^{max} udávají maximální absolutní hodnotu odchylky, k_{eff} udává vypočtenou hodnotu vlastního čísla, $\Delta \rho$ pak rozdíl v reaktivitě mezi predikcí a referenčním řešením (k_{eff} – k_{eff})/(k_{eff} k_{eff}).

Obrázek 3.1: Srovnání výkonů kazet získaných výpočty programem ANDREA s referenčními výsledky pro modelovou úlohu TRIGON440. Horní hodnoty udávají referenční výkon a výkon vypočtený programem ANDREA, spodní pak relativní odchylku (ANDREA-referenční)/referenční.

Obrázek 3.2: Srovnání výkonů kazet získaných výpočty programem ANDREA s referenčními výsledky pro modelovou úlohu TRIGON1000. Horní hodnoty udávají referenční výkon a výkon vypočtený programem ANDREA, spodní pak relativní odchylku (ANDREA-referenční)/referenční.

Obrázek 3.3: Srovnání výkonů kazet získaných výpočty programem ANDREA s referenčními výsledky pro modelovou úlohu SEIDEL2D. Horní hodnoty udávají referenční výkon a výkon vypočtený programem ANDREA, spodní pak relativní odchylku (ANDREA-referenční)/referenční.

Obrázek 3.4: Srovnání výkonů kazet získaných výpočty programem ANDREA s referenčními výsledky pro modelovou úlohu SEIDEL3D. Horní hodnoty udávají referenční výkon a výkon vypočtený programem ANDREA, spodní pak relativní odchylku (ANDREA-referenční)/referenční.

Obrázek 3.5: Srovnání výkonů kazet získaných výpočty programem ANDREA s referenčními výsledky pro modelovou úlohu FCM101. Horní hodnoty udávají referenční výkon a výkon vypočtený programem ANDREA, spodní pak relativní odchylku (ANDREA-referenční)/referenční.

Přesnost metody rekonstrukce poproutkových výkonů

Výkon palivového proutku není v reaktoru měřenou veličinou, a proto přesnost jeho predikce výpočtovým programem není možno přímo kvantifikovat s použitím měřených dat. Chybu predikce výkonu palivového proutku je však možno odvodit součtem chyb, kterých se dopouštíme v jednotlivých krocích procesu jeho určování. V programu ANDREA jsou hlavními kroky určení nodálního rozložení výkonu na úrovni palivové kazety (nepřesnost viz kapitola 5) a určení poproutkových výkonů v kazetě. Metodika jejich stanovení - tzv. rekonstrukce poproutkových výkonů - je založená na složení hladkého průběhu výkonu v nódu s předpočítanou mapou výkonů palivových proutků. Tato kapitola je věnována ověření metodiky rekonstrukce poproutkových výkonů a stanovení její nepřesnosti.

Nepřesnost rekonstrukce poproutkového výkonu je stanovena na základě přepočtu dvou typů modelových úloh. Prvním z nich jsou tzv. minizóny. Pro každou modelovou úlohu bylo vytvořeno referenční řešení programem MCNP-5, se kterým jsou následně srovnávány výsledky výpočtů programu ANDREA. Jako doplnění byly použity výsledky přepočtu úlohy Fullcore VVER-440: jedná se o 2D model palivové vsázky reaktoru VVER-440. Referenční řešení bylo opět spočítáno programem MCNP, a s tím byly následně srovnány výsledky výpočtů programu ANDREA.

4.1 Výsledky přepočtů minizón

Byly definovány čtyři modelové úlohy - jedna složená z kazet typu VVANTAGE-6 a tři složené z kazet typu TVSA-T. Minizóny jsou zobrazeny na obr. 4.1. Každá je složena ze sedmi kazet, axiální i radiální okrajové podmínky jsou reflexní. Pro složení minizón byly vybrány kazety s velmi rozdílným obohacením, tedy i rozdílnými násobícími vlastnostmi tak, aby byla modelována úloha s co možná největší nerovnoměrností rozložení výkonu. Detailní zadání modelových úloh včetně referenčních výsledků získaných programem MCNP je uvedeno v dokumentu [5]; jedná se o benchmarky 3.1-3.4. Zde proto uvedeme pouze základní charakteristiky jednotlivých úloh:

1. Minizóna VVANTAGE-6: Tato minizóna je složena ze dvou typů kazet VVANTAGE-6. Centrální kazeta je neprofilovaná s nižším obohacením 2,1 %. Periferní kazeta je profilovaná

Obrázek 4.1: Definice modelových úloh - minizón - pro stanovení nepřesnosti rekonstrukce poproutkového rozložení výkonu. Zobrazeny jsou minizóny VVANTAGE-6 (vlevo nahoře), TVSA-T (vpravo nahoře), střídavá TVSA-T (vlevo dole) a obrácená TVSA-T (vpravo dole).

s obohacením 3,7 % a 24 proutky IFBA. Úloha je počítána s vysunutými i zasunutými B_4C klastry v centrální kazetě.

- 2. Minizóna TVSA-T: Složení minizóny analogické minizóně VVANTAGE-6, je ale složena z kazet TVSA-T.
- 3. Střídavá minizóna TVSA-T: Ve středu minizóny je kazeta s nižším obohacením, na periferii se střídají kazety s nižším a vyšším obohacením. Cílem vyhodnocení této úlohy je průkaz zachování přesnosti rekonstrukce i v nesymetrických případech.
- 4. Obrácená minizóna TVSA-T: Ve středu minizóny je kazeta s vyšším obohacením, na periferii pak kazety s nižším obohacením. Tato minizóna modeluje oblast AZ 1. vsázky 1. bloku ETE, ve které je pozorováno velké nevyrovnání výkonu. Cílem je tedy průkaz zachování přesnosti rekonstrukce poproutkových výkonů i v takovémto uspořádání kazet.

Cílem vyhodnocení je určení odchylek stanovení výkonů palivových proutků v kazetě, tedy bez vlivu nepřesnosti určení výkonu palivové kazety. Proto jsou srovnávány normované výkony proutků v jednotlivých kazetách samostatně. V minizónách se 60° symetrií má smysl vyhodnocovat pouze rozložení ve dvou kazetách - střední a vybrané periferní, což v této kapitole je vždy levá horní kazeta. Tyto dvě kazety byly zahrnuty do vyhodnocení i v případě nesymetrických minizón.

Označíme-li Δ_i relativní rozdíl výkonu proutků z výpočtu programy ANDREA (p_i^A) a MCNP (p_i^M) ve vybrané kazetě s N proutky,

$$\Delta_i = 100 \frac{p_i^A - p_i^M}{p_i^M},\tag{4.1}$$

byly vyhodnocované veličiny počítány podle vztahů

$$\overline{\Delta} = \frac{1}{N} \sum_{i=1}^{N} \Delta_i \tag{4.2}$$

$$\sigma_{PP} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} \left(\Delta_i - \overline{\Delta}\right)^2}$$
(4.3)

$$\Delta_{max} = \max_{i} \{\Delta_i\} \tag{4.4}$$

(4.5)

Sumární výsledky jsou uvedeny v tabulkách 4.1 a 4.2. Z výsledků vyplývá, že pro palivové kazety se zasunutým absorbérem je nepřesnost predikce poproutkových výkonů vyšší, než pro kazety bez absorbéru. Toto zvýšení nepřesnosti však není omezující, neboť z hlediska omezení daných na rozložení výkonu v AZ nejsou nikdy kazety se zasunutým absorbérem limitující. Z důvodů konzervativnosti však pro určení nepřesnosti rozložení výkonu budeme uvažovat kombinovanou střední kvadratickou odchylku z výpočtů se zasunutým absorbérem i bez absorbéru.

Z výsledků dále vyplývá, že přesnost určení rozložení výkonu palivových proutků je pro paliva VVANTAGE-6 a TVSA-T srovnatelná. V případě paliva VVANTAGE-6 je pro kazety bez absorbéru sumární střední kvadratická odchylka rovna 0.64 %, pro palivo TVSA-T pak 0.65 %.

Důležité je i zjištění, že rekonstrukce je velmi přesná i pro proutky s Gd absorbérem. Přestože pro čerstvé proutky je jejich relativní výkon zhruba třetinový oproti ostatním proutkům, relativní odchylky ve výkonech jsou pro tyto proutky srovnatelné s odchylkami pro proutky bez absorbéru.

Sumární střední kvadratická odchylka pro všechny studované případy je $\sigma_{PP} = 0.87$. Pakliže tuto hodnotu převedeme na 95 % hladinu spolehlivosti nepřekročení limitní hodnoty, dostaneme neurčitost metodiky poproutkové rekonstrukce 1.43 %.

Detailní výsledky vybraných úloh jsou zobrazeny na obr. 4.3-4.9: byly vynechány minizóna TVSA-T se zasunutými klastry a "střídavá" minizóna, jelikož jejich výsledky se nijak nevymykají výsledkům prezentovaným.

typ	klastry	C	centrální		eriferní
minizóny		σ_{PP}	$\Delta_{max} [\%]$	σ_{PP}	$\Delta_{max}[\%]$
VVANTAGE-6	bez	0.72	1.61	0.59	-2.32
	B ₄ C	2.07	-5.5	0.60	-2.21
TVSA-T	bez	0.93	3.02	0.44	1.37
	B ₄ C	1.89	-4.53	0.39	1.13
Střídavá	bez	0.76	2.53	0.44	1.80
Obrácená	bez	1.07	-3.76	0.57	3.16

Tabulka 4.1: Porovnání poproutkového rozložení výkonu pro různé varianty minizón. Uvedeny jsou střední kvadratické odchylky relativních rozdílů rozložení výkonů proutků udávaných programy ANDREA a MCNP (σ_{PP}) a maximální relativní odchylky (Δ_{max}) .

	σ_{PP}			
typ paliva	bez klastrů	s klastry	vše	
VVANTAGE-6	0.64	2.07	0.99	
TVSA-T	0.65	1.89	0.81	
vše	0.65	1.97	0.87	

Tabulka 4.2: Souhrnné výsledky dat prezentovaných v tabulce 4.1.

Obrázek 4.2: Rozložení výkonu v centrální kazetě minizóny s palivem VVANTAGE-6. Horní hodnoty udávají relativní výkon palivových proutků vypočtený programem ANDREA, spodní hodnoty jsou pak relativní odchylky od hodnot vypočtených programem MCNP: (ANDREAMCNP)/MCNP, v %.

Obrázek 4.3: Rozložení výkonu v periferní kazetě minizóny s palivem VVANTAGE-6. Horní hodnoty udávají relativní výkon palivových proutků vypočtený programem ANDREA, spodní hodnoty jsou pak relativní odchylky od hodnot vypočtených programem MCNP: (ANDREA-MCNP)/MCNP, v %.

Obrázek 4.4: Rozložení výkonu v centrální kazetě minizóny s palivem VVANTAGE-6 a zasunutým regulačním klastrem. Horní hodnoty udávají relativní výkon palivových proutků vypočtený programem ANDREA, spodní hodnoty jsou pak relativní odchylky od hodnot vypočtených programem MCNP: (ANDREA-MCNP)/MCNP, v %.

Obrázek 4.5: Rozložení výkonu v periferní kazetě minizóny s palivem VVANTAGE-6 a zasunutým regulačním klastrem. Horní hodnoty udávají relativní výkon palivových proutků vypočtený programem ANDREA, spodní hodnoty jsou pak relativní odchylky od hodnot vypočtených programem MCNP: (ANDREA-MCNP)/MCNP, v %.

Obrázek 4.6: Rozložení výkonu v centrální kazetě minizóny s palivem TVSA-T. Horní hodnoty udávají relativní výkon palivových proutků vypočtený programem ANDREA, spodní hodnoty jsou pak relativní odchylky od hodnot vypočtených programem MCNP: (ANDREA-MCNP)/MCNP, v %.

Obrázek 4.7: Rozložení výkonu v periferní kazetě minizóny s palivem TVSA-T. Horní hodnoty udávají relativní výkon palivových proutků vypočtený programem ANDREA, spodní hodnoty jsou pak relativní odchylky od hodnot vypočtených programem MCNP: (ANDREA-MCNP)/MCNP, v %.

Obrázek 4.8: Rozložení výkonu v centrální kazetě "Obrácené" minizóny s palivem TVSA-T. Horní hodnoty udávají relativní výkon palivových proutků vypočtený programem ANDREA, spodní hodnoty jsou pak relativní odchylky od hodnot vypočtených programem MCNP: (ANDREA-MCNP)/MCNP, v %.

Obrázek 4.9: Rozložení výkonu v periferní kazetě "Obrácené" minizóny s palivem TVSA-T. Horní hodnoty udávají relativní výkon palivových proutků vypočtený programem ANDREA, spodní hodnoty jsou pak relativní odchylky od hodnot vypočtených programem MCNP: (ANDREA-MCNP)/MCNP, v %.

4.2 Modelová úloha Fullcore VVER-440

Modelová úloha Fullcore VVER-440 byla navržena ve Škodě JS pro potřeby validace systémů určených pro výpočty neutronově-fyzikálních charakteristik aktivních zón, a to především za účelem analýzy predikce výkonu v blízkosti radiálního reflektoru. Jedná se o 2D model vsázky reaktoru VVER-440, jejíž kartogram je zobrazen na obr. 4.10. Vzhledem k tomu, že referenční řešení, získané pomocí programu MCNP, obsahuje výkony všech palivových proutků v 30° segmentu aktivní zóny, mohla být tato úloha použita i pro účely validace poproutkové rekonstrukce v palivových souborech reaktoru VVER-440. V tomto případě jsme se zaměřili na všechny palivové soubory kromě periferních, jelikož v periferních palivových souborech jsou výsledky ovlivněny nejen samotnou poproutkovou rekonstrukcí, ale i chybou v určení výkonů palivových souborů vlivem nepřesností při modelování radiálního reflektoru.

Výsledky byly analyzovány obdobně jako v případě minicore: srovnávali jsme normované výkony proutků v jednotlivých kazetách samostatně. Střední kvadratická odchylka relativních rozdílů rozložení výkonů proutků udávaných programy ANDREA a MCNP dosahuje 0.77%, což je konzistentní s výsledy uvedenými v tabulce 4.2. Detailní vyhodnocení úlohy Fullcore VVER-440 je dokladováno ve zprávě [4].

Obrázek 4.10: Kartogram palivové vsázky použité v úloze fullcore VVER-440

Kvalifikace na provozních datech

5.1 Popis validačních úloh

V této kapitole je provedena kvalifikace programového komplexu HELIOS/ANDREA na provozních datech. Pro tento účel jsme použili provozní data z 1.-5. a 9.-10. cyklu 1. bloku ETE a 1.-4. a 9.-10. cyklu 2. bloku ETE. JE Temelín byla v uvedených cyklech provozována s palivem VVANTAGE-6 s IFBA vyhořívajícími absorbéry od výrobce Westinghouse a (od 9. cyklu) s palivem TVSA-T dodávaným firmou TVEL s Gd vyhořívajícími absorbéry. Dále byla použita provozní data z 1.-26. cyklu 1.-3. bloku EDU a 27. cyklus na 1. a 2. bloku EDU.

V rámci kvalifikace bylo provedeno srovnání na 3 typech dat:

Nejdříve je v kapitole 5.2 provedeno srovnání kritické koncentrace kyseliny borité v průběhu vyhořívání. Z tohoto srovnání vyplývají informace o schopnosti programu predikovat délku cyklu a podkritičnost AZ.

Dále je v kapitolách 5.3 a 5.4 provedeno srovnání predikovaného a měřeného rozložení výkonu v AZ. V kapitole 5.3 jsou predikce komplexu HELIOS/ANDREA srovnávány s údaji o radiálním rozložení výkonu v AZ pocházejícím z monitorovacího systému AZ (BEACON pro ETE, SCORPIO-VVER pro EDU). Nejedná se tedy o přímé srovnání s měřenými daty, neboť do zpracování měřených dat vstupují i výpočetní data ze simulátoru. V kapitole 5.4 je provedeno srovnání predikovaného a měřeného 3D rozložení výkonu prostřednictvím srovnání predikovaných a měřených proudů detektorů SPD. Z uvedených srovnání vyplývají informace o přesnosti predikcí rozložení výkonu v AZ, které jsou podkladem pro určení přesnosti predikcí faktorů poproutkových nevyrovnání výkonu.

Nakonec jsou v kapitole 5.5 srovnány predikce komplexu HELIOS/ANDREA s daty měřenými při testech spouštění. Srovnávány jsou hodnoty izotermického teplotního koeficientu reaktivity, účinnosti kyseliny borité, kritické koncentrace kyseliny borité ve stavu minimálního kritického výkonu (MKV) a váhy regulačních klastrů. Srovnání provozních dat z testů spouštění bylo provedeno pouze pro ETE.

5.2 Kritická koncentrace kyseliny borité v průběhu cyklu

5.2.1 Způsob vyhodnocení, očekávaná přesnost

V této kapitole je provedeno vyhodnocení průběhu kritické koncentrace kyseliny borité v závislosti na vyhoření. Měřená data, udávající detailní historii vyhořívání, byla kondenzována do zjednodušené historie (COHIS), popisující každý cyklus ve zhruba 50-150 úsecích vyhoření[6]. Ze všech úseků vyhoření byly vybrány jen úseky s důvěryhodnými daty a pro ně bylo provedeno srovnání koncentrace kyseliny borité.

Přesnost predikce koncentrace kyseliny borité je důležitá především pro správné stanovení podkritičnosti reaktoru. Zde stanovené kritérium nepřesnosti vychází z bezpečnostního a projektového kritéria aplikovaného při testech spouštění. Podle projektového kritéria se nesmí při dosažení kritického stavu lišit predikce od skutečnosti o více než 500 pcm, podle bezpečnostního kritéria je maximální odchylka 1000 pcm. Kritérium pro stanovení přesnosti určení koncentrace kyseliny borité jsme proto stanovili na ± 0.4 g/kg, což přibližně odpovídá projektovému kritériu 500 pcm. Splnění bezpečnostního kritéria bude zajištěno, pokud maximální nepřesnost nepřekročí ± 0.7 g/kg.

5.2.2 Shrnutí výsledků

Srovnání vypočtené a měřené koncentrace kyseliny borité na ETE je znázorněno na obr. B.42 – B.55.

Výsledky ukazují, že program ANDREA predikuje strmější pokles koncentrace kyseliny borité oproti měření. Zatímco na počátku cyklu je koncentrace kyseliny borité predikována s dobrou přesností, případně mírně nadhodnocena (viz též kapitola 5.5), v druhé polovině cyklu je kritická koncentrace kyseliny borité podhodnocena. U vsázek s palivem WEC je koncentrace na konci podhodnocena o 0.1 až 0.3 g/kg (kromě zkrácené 5. vsázky na 1. bloku kdy je koncentrace podhodnocena o více než 0.3 g/kg). U přepočtených vsázek s palivem TVEL bylo pozorováno podhodnocení na konci cyklu okolo 0 až 0.2 g/kg. Data shrnutá v tabulce 5.1 ukazují, že pro cykly ETE je stanovené kritérium ± 0.4 g/kg splněno v 98.3 % případů. Bezpečnostní kritérium porušeno nebylo.

Srovnání vypočtené a měřené koncentrace kyseliny borité na EDU je v tabulce 5.2, podrobněji pro jednotlivé bloky pak v tabulkách A.12 až A.14 a na obrázcích B.56 až B.82. Průběh predikce borité je obdobný průběhu u vsázek ETE, kdy ve druhé polovině vsázky jsou hodnoty borité podhodnocené. Největší odchylky byly pozorovány v 26. cyklu na 3. bloku EDU, kdy 13.4% případů přesáhla projektové kritérium. Data shrnutá v tabulce 5.2 ukazují, že pro cykly EDU je stanovené kritérium ± 0.4 g/kg splněno v 98.6 % případů. Bezpečnostní kritérium porušeno nebylo.

kampaň	N	% N(> 0.4g/kg)	% N(> 0.7g/kg)
ETE – U1C1	150	2.7	0.0 %
ETE - U1C2	99	7.1	0.0~%
ETE - U1C3	94	0.0	0.0~%
ETE - U1C4	66	0.0	0.0~%
ETE - U1C5	38	7.9	0.0~%
ETE - U1C5-1	31	0.0	0.0~%
ETE - U2C1	98	0.0	0.0~%
ETE - U2C2	99	3.0	0.0~%
ETE - U2C3	114	0.0	0.0~%
ETE - U2C4	49	0.0	0.0~%
ETE - U1C9	39	0.0	0.0~%
ETE - U1C10	47	0.0	0.0~%
ETE - U2C9	47	0.0	0.0~%
ETE - U2C10	32	0.0	0.0 %
celkem	1003	1.7	0.0 %

Tabulka 5.1: Statistické zhodnocení srovnání vypočtené a měřené koncentrace kyseliny borité pro ETE. Ve 2. sloupci je uveden počet hodnocených bodů v daném cyklu, ve 3., resp. 4. sloupci pak procento případů, ve kterém bylo překročeno kritérium 0.4 g/kg resp. 0.7 g/kg.

blok	N	% N(> 0.4g/kg)	% N(> 0.7g/kg)
EDU – B1	1022	1.0	0.0 %
$\mathrm{EDU}-\mathrm{B2}$	1031	0.2	0.0~%
EDU – B3	851	3.5	0.0~%
celkem	2904	1.4	0.0 %

Tabulka 5.2: Statistické zhodnocení srovnání vypočtené a měřené koncentrace kyseliny borité pro EDU. Pro podrobnější popis viz tabulku 5.1.

5.3 Rozložení výkonu - porovnání s výkony kazet ze systému monitorování

5.3.1 Způsob vyhodnocení, očekávaná přesnost

V této kapitole je provedeno vyhodnocení přesnosti predikce radiálního rozložení výkonu v aktivní zóně porovnáním s daty z monitorovacího systému AZ. V každém cyklu na ETE bylo zpracováno zhruba 40 a na EDU pak zhruba 20 výkonových map.

Porovnávanou veličinou byl rozdíl predikovaného a monitorovaného výkonu kazet, převedený střední výkon AZ. Pro kazetu i tedy tato veličina odpovídá

$$\Delta_i = P_{\text{calc},i} - P_{\text{monitor},i} \tag{5.1}$$

Střední kvadratická odchylka σ je pak spočtena jako

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (\Delta_i - \overline{\Delta})^2}$$
 (5.2)

Monitorovaný výkon P_{monitor} je stejně jako výkon predikovaný P_{calc} určen s jistou nepřesností. Označíme-li neurčitost predikce monitorovaného výkonu σ_{monitor} a neurčitost vypočteného výkonu σ_{calc} , pak lze na základě rovnice 5.1 odvodit neurčitost sledované veličiny Δ_i .

$$\sigma = \sqrt{\sigma_{\text{calc}}^2 + \sigma_{\text{monitor}}^2} \tag{5.3}$$

 σ představující neurčitost v rozdílu vypočteného od monitorovaného výkonu je složením neurčitostí monitorovaného a vypočteného výkonu. Proto platí, že skutečná neurčitost vypočteného výkonu a tedy přesnost predikce výkonu kazet je menší než počítané neurčitosti σ . Konzervativní odhad přesnosti monitorovaného rozložení výkonu je udáván jako $\sigma_{\text{monitor}} = 1.3\%$. V každém případě platí

$$\sigma_{\rm calc} < \sigma.$$
 (5.4)

5.3.2 Shrnutí výsledků

Celkové porovnání predikovaných a monitorovaných výkonů kazet v jednotlivých cyklech ETE je uvedeno v tabulce 5.3, pro EDU pak v tabulce 5.4. Střední kvadratická odchylka rozdílu predikce od monitorovaných hodnot s výjimkou cyklu 5-1 na 1. bloku ETE nepřekročila 2 %. Celková střední kvadratická odchylka 1.49% ukazuje dobrou shodu mezi monitorovaným a vypočteným výkonem.

Porovnání predikovaných a monitorovaných výkonů kazet na EDU vychází o něco hůře. Střední kvadratická odchylka se ve všech cyklech vešla pod 2.5 %.

Detailní porovnání predikovaných a monitorovaných výkonů v jednotlivých palivových cyklech je provedeno na obrázcích $\rm B.1-B.41.$

5.3.3 Zhodnocení

Výsledky ukazují dobrou shodu mezi predikovaným a monitorovaným radiálním rozložením výkonu AZ. Ve většině případů na ETE nepřesahují maximální odchylky relativních výkonů 5 %, celková

kampaň	$N_{\rm map}$	$N_{\rm kaz}$	σ [%]	$\Delta_{\min} [\%]$	$\Delta_{ m max} [\%]$
ETE – U1C1	44	7172	1.73	-5.13	6.49
ETE - U1C2	40	6520	0.87	-3.16	4.37
ETE - U1C3	40	6520	1.17	-5.61	3.29
ETE - U1C4	31	5053	1.60	-5.96	5.10
ETE - U1C5	37	6031	1.98	-5.58	5.35
ETE - U1C5-1	30	4890	2.11	-6.26	4.86
ETE - U2C1	39	6357	1.21	-5.51	4.71
ETE - U2C2	42	6846	1.12	-3.67	4.47
ETE - U2C3	54	8802	1.20	-6.11	4.05
ETE - U2C4	50	8150	1.46	-5.27	4.84
ETE - U1C9	39	6357	1.75	-4.20	6.63
ETE - U1C10	45	7335	1.44	-3.82	6.60
ETE - U2C9	43	7009	1.27	-3.47	5.54
ETE - U2C10	30	4890	1.89	-6.31	13.27
celkem	564	91932	1.49	-6.31	13.27

Tabulka 5.3: Celkové porovnání predikovaných a monitorovaných výkonů kazet na ETE. Nmap udává počet zpracovaných map pokazetových výkonů, Nkaz celkový počet kazetových výkonů, σ udává střední kvadratickou odchylku rozdílu relativního predikovaného a monitorovaného výkonu (v %), $\Delta_{min,max}$ udávají minimální a maximální odchylky.

nepřesnost pro ETE byla stanovena jako 1.49~%. Z tohoto porovnání vyplývá, že skutečná přesnost predikce relativních výkonů by měla být menší než 1.49~%.

Pro EDU byly pozorovány větší maximální odchylky (až 10 %), zejména v kazetách na okraji zóny. Celková nepřesnost byla stanovena jako 1.86~%.

5.4 Rozložení výkonu - analýza proudů samonapájecích detektorů

5.4.1 Úvod

V reaktorech s bezobálkovým palivem, mezi něž patří i reaktory VVER-1000, jsou výsledky vnitroreaktorového měření toku neutronů základní informací pro rekonstrukci rozložení výkonu v aktivní zóně. Srovnání výsledků těchto měření s predikcí výpočetních programů je proto hlavním podkladem pro zhodnocení přesnosti výpočtů.

V reaktorech VVER-1000 je neutronový tok měřen pomocí samonapájecích detektorů (SPD), mechanismus jehož fungování je popsáno dále. Detektory jsou umístěny v centrálních trubkách kazet, a to v řetězcích po sedmi (tzv. KNI) tak, aby byla axiálně pokryta celá kazeta. V reaktoru je takto instrumentováno 64 ze 163 kazet, tedy více než jedna třetina.

Pro vyhodnocení přesnosti rozložení výkonu se nabízejí dvě cesty. První z nich je rekonstrukce kazetových výkonů na základě signálů detektorů a poté porovnání rekonstruovaných a predikovaných lokálních výkonů. Tento postup má ale své úskalí v tom, že pro zpětnou rekonstrukci

kampaň	$N_{\rm map}$	$N_{\rm kaz}$	σ [%]	$\Delta_{\min}[\%]$	$\Delta_{\max}[\%]$
EDU – B1C19	23	8027	1.89	-6.31	8.85
EDU - B1C19	22	7678	1.84	-0.51 -7.79	4.89
EDU – B1C21	$\frac{22}{24}$	8376	1.70	-4.01	10.43
EDU – B1C22	21	7329	2.06	-6.84	10.13
EDU – B1C23	23	8027	2.03	-9.31	50.66
EDU – B1C24	22	7678	2.10	-5.52	10.53
EDU – B1C25	23	8027	2.44	-5.51	12.39
EDU – B1C26	23	8027	1.42	-4.71	7.62
EDU – B1C27	22	7590	1.79	-6.73	8.48
EDU – B2C18	21	7329	2.03	-5.37	8.37
EDU – B2C19	22	7678	1.57	-5.69	6.65
EDU – B2C20	22	7678	1.34	-5.44	6.49
EDU – B2C21	20	6980	1.53	-5.20	6.07
EDU - B2C22	22	7678	1.68	-4.69	6.79
EDU - B2C23	23	8027	1.81	-5.73	9.49
EDU - B2C24	24	8376	2.23	-5.91	11.56
EDU - B2C25	21	7329	2.02	-5.98	12.78
EDU - B2C26	19	6556	1.85	-5.48	9.34
EDU - B2C27	11	3839	2.17	-5.63	11.93
EDU - B3C19	21	7329	1.90	-5.04	8.59
EDU - B3C20	20	6980	1.81	-6.05	6.29
EDU - B3C21	23	8027	1.85	-7.24	7.79
EDU - B3C22	22	7678	1.90	-7.30	9.82
EDU - B3C23	21	7329	1.54	-5.55	8.71
EDU - B3C24	21	7329	1.67	-5.50	11.40
EDU - B3C25	21	7329	1.54	-6.11	9.50
EDU – B3C26	17	5933	1.92	-8.24	12.01
celkem	574	200163	1.86	-9.31	50.66

Tabulka 5.4: Celkové porovnání predikovaných a monitorovaných výkonů kazet na EDU. Nmap udává počet zpracovaných map pokazetových výkonů, Nkaz celkový počet kazetových výkonů, σ udává střední kvadratickou odchylku rozdílu relativního predikovaného a monitorovaného výkonu (v %), $\Delta_{min,max}$ udávají minimální a maximální odchylky.

proudu na výkon jsou třeba data z výpočtů, jejichž přesnost není předem známa. Proto je obtížné i ocenění přesnosti rekonstruovaných výkonů. Druhou cestou je výpočet proudů SPD na základě vypočtených lokálních výkonů a přímé porovnání predikovaných a měřených proudů. Jelikož v ustáleném stavu platí, že proud detektoru je přímo úměrný neutronovému toku, a tedy i lokálnímu výkonu, bude chyba v predikci proudů přímo úměrná chybě predikce lokálních výkonů. Vzhledem k tomu, že proces výpočtu proudů zatíží výpočet lokálního výkonu dodatečnou chybou, bude ve skutečnosti chyba v predikci proudů větší, než chyba predikce lokálního výkonu. Uvedený postup k určení chyby predikce výkonu je tedy možno považovat za konzervativní. S ohledem na výše uvedené jsme pro vyhodnocení přesnosti výpočtů použili druhý z nastíněných postupů.

5.4.2 Model SPD detektoru

Mechanismus měření neutronového toku je založen na reakci $n \to \gamma$ na rhodiu. Při následném β rozpadu je uvolněn elektron, který je odveden do měřicí aparatury: neutronový tok je tedy v daném místě a okamžiku úměrný odvedenému elektrickému proudu. Označíme-li σ_g^a absorbční účinný průřez pro rhodium v dané grupě, ϕ_g tok neutronů v dané grupě, n hustotu atomů rhodia v detektoru, V objem detektoru, e elektrický náboj a β pravděpodobnost, že uvolněný elektron je odveden do měřicí aparatury, můžeme odvedený proud vypočítat podle rovnice

$$i = \beta eV n \sum_{q} \phi_{q} \sigma_{q}^{a} \tag{5.5}$$

V dalším stručně popíšeme postup určení jednotlivých parametrů v rovnici 5.5 a tedy i postup predikce proudů na základě výpočtu rozložení neutronového toku:

- Absorbční účinný průřez je závislý na lokálním prostředí. Zde uvažujeme jeho závislost na šesti parametrech: obohacení paliva, množství Gd vyhořívajících absorbérů, koncentraci kyseliny borité, teplotě moderátoru, lokálním vyhoření paliva a vyhoření detektoru (hustotě atomů rhodia). Pro určení této závislosti jsme provedli řadu parametrických výpočtů programem HELIOS. Závislost je popsána úplným polynomem 3. stupně [9].
- Tok neutronů v centrální trubce vychází z hladkého rozložení toku v kazetě, které je opraveno o podíl proudu v centrální trubce ku střednímu proudu v kazetě získaný z transportních výpočtů programem HELIOS.
- Hustota atomů rhodia je počítána z počáteční hustoty zákonem vyhoření.
- Pravděpodobnost záchytu neutronu β je obtížné předem stanovit. Proto ji vždy pro daný typ detektoru určujeme z porovnání predikovaných a měřených proudů: použili jsme jednu závislost pro detektory u paliva TVEL a jednu pro detektory u paliva WEC. Ve výpočetním programu β vystupuje jako polynom 3. stupně hustoty atomů rhodia; je tedy závislá na vyhoření detektoru.

5.4.3 Validační úlohy

Pro vyhodnocení jsme zpracovali data z JE Temelín kampaně 1 až 4 na 1. bloku a kampaně 1 až 3 na 2. bloku (palivo WEC), kampaně 9 až 10 na obou blocích (palivo TVEL). Z hlediska NF charakteristik jsou paliva typu WEC a TVEL velmi podobné. Oba využívají axiálních blanketů

z přírodního uranu i radiálního profilování paliva. Hlavní odlišností jsou typy vyhořívajících absorbérů. Palivo WEC typu VVANTAGE-6 využívá absorbéry IFBA zatímco palivo TVEL typu TVSA obsahuje Gd vyhořívající absorbéry.

Data z JE Temelín obsahují výkonovou historii zprůměrovanou po kalendářních dnech. Ve vybraných bodech odpovídajících ustálenému provozu na vyšším výkonu byly sejmuty mapy proudů SPD a jim odpovídající stav AZ (poloha absorpčních klastrů, výkon, teplota chladiva). V každé kampani bylo sejmuto přibližně 40 map SPD.

Pro vyhodnocení jsme výkonovou historii zjednodušili zprůměrováním úseků ustáleného provozu do delších časových intervalů. Do této historie pak byly vloženy stavy, pro které byla spočtena okamžitá rozložení výkonu.

Předaná data signálů detektorů SPD byla předzpracována - měli jsme k dispozici signály opravené o fónové proudy.

Jednou z charakteristik detektorů SPD, kterou je třeba znát při zpracování měřených dat, je variabilita signálů SPD, která je mírou jejich nestability. Pro detektory použité na JE Temelín byla variabilita analyzována a její hodnota je tedy známá.

5.4.4 Metodika vyhodnocení výsledků

Statistické zpracování relativních odchylek proudů SPD

Neurčitost v určení lokálního rozložení výkonu určujeme pomocí v procentech vyjádřené relativní odchylky Δi měřeného proudu i_m od predikovaného proudu i_c ,

$$\Delta i = 100(i_m/i_c - 1) \tag{5.6}$$

Mezi výkonem kazety a součtem proudů řetězce detektorů apriori neplatí přímá úměra, neboť proud detektoru závisí na jeho vyhoření, a vyhoření jednotlivých detektorů v řetězci se může lišit. Vzhledem k tomu, že hlavní část výkonu kazety je generována v její stření části a v této části je vyhoření detektorů vyrovnané, je předpoklad přímé úměry mezi součtem proudů a výkonem kazety dobrým přiblížením. Proto odvodíme přesnost predikce kazetových výkonů na základě chování relativní odchylky ΔI počítané ze vztahu

$$\Delta I = 100 \left(\sum_{z \in KNI} i_m^z / \sum_{z \in KNI} i_c^z - 1 \right), \tag{5.7}$$

kde sumy probíhají přes řetězce detektorů. Vadné detektory jsou ze sumy vynechány.

V případě, že je v řetězci více než 5 vadných detektorů, je celý řetězec detektorů považován za nevěrohodný a z porovnání je vyloučen.

Statistické zpracování dat je založeno na předpokladu, že odchylky Δi a ΔI vypočtené z rovnic 5.6 a 5.7 jsou rozložené podle Gaussova rozložení. Relativní odchylky však nejsou běžnou statistickou veličinou a proto je při vyhodnocování třeba jejich chování ověřit.

Prvním krokem při vyhodnocení výsledků bylo spočtení střední hodnoty a střední kvadratické odchylky veličin Δi a ΔI , definovaných vztahy (5.6),(5.7). Střední hodnoty a střední kvadratické odchylky jsou spočteny podle vztahů

$$\overline{\Delta i} = \frac{1}{N_{SPD}} \sum_{j=1}^{N_{SPD}} (\Delta i)_j, \quad \sigma_{SPD} = \sqrt{\frac{1}{N_{SPD} - 1} \sum_{j=1}^{N_{SPD}} \left((\Delta i)_j - \overline{\Delta i} \right)^2}$$
 (5.8)

kampaň	N_{map}	N_{KNI}	$\overline{\Delta I}$	σ_{KNI}	N_{SPD}	$\overline{\Delta i}$	σ_{SPD}
u1c1	44	2813	-0.031	1.410	19353	-0.070	2.897
u1c2	40	2507	-0.061	1.481	16201	-0.027	2.314
u1c3	40	2378	-0.173	1.902	13371	-0.124	2.517
u1c4	31	1984	-0.257	2.356	13255	-0.191	3.038
u2c1	39	2458	-0.105	1.614	17096	-0.137	2.779
u2c2	42	2682	-0.139	1.740	16869	-0.144	2.374
u2c3	54	3381	-0.231	1.718	22255	-0.176	2.461
u1c9	39	2496	-0.057	1.725	17227	0.462	3.709
u1c10	45	2880	-0.020	1.815	19924	0.093	2.603
u2c9	42	2650	0.285	1.771	18417	0.697	3.227
u2c10	28	1792	0.110	1.690	12460	0.239	2.426
celkem	444	28021	-0.065	1.753	186428	0.059	2.808
celkem^R	444	11931	0.438	1.648	49687	0.261	2.376

Tabulka 5.5: Souhrnné výsledky výpočtů statistického chování středních kvadratických odchylek predikovaných a měřených proudů SPD a KNI. Poslední řádek ^R udává souhrnné výsledky pro kazety s relativním výkonem vyšším než 1.1 a pro SPD v místech kazet s relativním výkonem vyšším, než 1.3.

$$\overline{\Delta I} = \frac{1}{N_{KNI}} \sum_{j=1}^{N_{KNI}} (\Delta I)_j, \quad \sigma_{KNI} = \sqrt{\frac{1}{N_{KNI} - 1} \sum_{j=1}^{N_{KNI}} \left((\Delta I)_j - \overline{\Delta I} \right)^2}$$
 (5.9)

Výsledné hodnoty jsou shrnuty v tabulce 5.5. Z výsledků je zřejmé, že přestože jsou mapy predikovaných a měřených výkonů před porovnáním normovány, střední hodnoty $\overline{\Delta i}$, $\overline{\Delta I}$ nejsou nulové. Je to dáno tím, že porovnáváme relativní, nikoli absolutní odchylky. Detailní výsledky pro jednotlivé zpracované mapy jsou pak uvedeny v tabulkách A.1 – A.11.

Pro přehlednost jsme výsledky zpracovali i graficky. Na obrázcích B.83 – B.89 jsou zobrazeny průměrné relativní odchylky měřeného a vypočteného proudu SPD Δi spočteného z rovnice (5.6) v jednotlivých axiálních vrstvách detektorů SPD. Na obrázku B.90 jsou pak zobrazevn průměrné relativní odchylky měřeného a vypočteného proudu SPD Δi pro všechny axiální vrstvy, zatímco na obrázku B.91 jsou zobrazeny průměrné relativní odchylky pro řetězce KNI ΔI spočtené z rovnice (5.7). Ze zobrazených výsledků je zřejmé, že počítané rozložení výkonu nevykazuje zřetelný trend ani v radiálním směru, ani po výšce AZ.

Z hlediska bezpečnostních analýz je třeba ověřit, že přesnost predikcí není zhoršena pro nejzatíženější kazety. Proto jsme samostatně srovnali predikce proudů s měřením v nejzatíženějších místech AZ. Tato místa byla určena podle vypočtených rozložení výkonu. Vyhodnoceny byly KNI v kazetách s relativním výkonem F_{HA} vyšším než 1.1 a SPD v místech s lokálním relativním výkonem k_v větším než 1.3. Detailní výsledky jsou uvedeny opět v tabulkách A.1 – A.11, souhrnné výsledky jsou pak uvedeny v posledním řádku tabulky 5.5. Tyto výsledky ukazují, že přesnost predikce v nejzatíženějších místech AZ je srovnatelná nebo lepší než průměrná přesnost predikcí v AZ. Proto budeme konzervativně přesnost určovat na základě průměrných výsledků pro všechny detektory.

Statistické zpracování axiálního distribuce výkonu z SPD proudů

Přesnost predikce axiální distribuce výkonu je indikována i srovnáním přibližných hodnot axiálního offsetu, počítaného jako podíl sumy proudů detektorů v axiálních vrstvách 5,6,7 se sumou proudů v axiálních vrstvách 1,2,3. Tyto hodnoty jsou uvedeny v posledních sloupcích tabulek A.1-A.11. Statistické shrnutí těchto hodnot je uvedeno v tabulce 5.6, ΔAO je počítáno jako rozdíl naměřené (AO_m) od vypočtené hodnoty (AO_c) . Celková průměrná odchylka $\overline{\Delta AO} = 1.28$ spolu se střední kvadratickou odchylkou $\sigma_{AO} = 1.65$, potvrzují dobrou přesnost predikce axiálního offestu.

$$\Delta AO = AO_m - AO_c, \tag{5.10}$$

$$\sigma_{AO} = \sqrt{\frac{1}{N_{AO} - 1} \sum_{j=1}^{N_{AO}} \left((\Delta AO)_j - \overline{\Delta AO} \right)^2}$$

$$(5.11)$$

kampaň	N_{AO}	$\overline{\Delta AO}$	σ_{AO}
u1c1	44	0.473	3.257
u1c2	40	2.000	0.873
u1c3	40	0.606	1.009
u1c4	31	1.772	1.095
u2c1	39	0.373	2.009
u2c2	42	0.938	0.840
u2c3	54	1.372	1.151
u1c9	39	2.330	1.591
u1c10	45	1.890	0.998
u2c9	42	1.167	1.185
u2c10	28	1.277	0.743
celkem	444	1.281	1.646

Tabulka 5.6: Souhrnné výsledky výpočtů statistického chování středních kvadratických odchylek predikovaného a měřeného AO na základě proudů SPD.

Odvození neurčitostí v určení nodálního a kazetového výkonu

Jelikož další statistické zpracování výsledků vychází z předpokladu, že odchylky Δi a ΔI jsou náhodné veličiny sledující Gaussovo rozložení, je třeba při vyhodnocení ověřit, nakolik je tento předpoklad splněn. Na obrázcích 5.1 a 5.2 jsou vykresleny histogramy odchylek Δi a ΔI spolu s Gaussovými distribucemi, jejichž střední hodnota a střední kvadratická odchylka odpovídají výpočtům dle vztahů (5.8),(5.9) (hodnoty viz též tabulka 5.5). Srovnání ukazují, že v některých případech odchylky Gaussovo rozložení nesledují, proto je třeba zaručit, aby procento větších odchylek nebylo vyšší, než by odpovídalo Gaussovu rozložení.

Z hlediska bezpečnostních analýz je sledovanou limitní veličinou výkon, který nebude překročen na 95 % hladině spolehlivosti. V tomto případě se sleduje jednostranná odchylka, kdy hodnoty měření překročí hodnoty výpočtu. Při Gaussově rozložení odchylek a za předpokladu, že srovnáváme řádově tisíce predikovaných a experimentálních hodnot tato hladina výkonu bude

Obrázek 5.1: Histogramy relativních odchylek pro SPD a KNI. Histogramy udávají relativní četnosti odchylek definovaných vztahy (5.6) a (5.7). Křivky pak znázorňují Gaussovo rozložení odpovídající střední hodnotě a disperzi odpovídajících distribuci odchylek (viz vztahy (5.8), (5.9)).

Obrázek 5.2: Histogramy relativních odchylek pro SPD a KNI, kde $F_{HA} > 1.1$ a $K_V > 1.3$. Histogramy udávají relativní četnosti odchylek definovaných vztahy (5.6) a (5.7). Křivky pak znázorňují Gaussovo rozložení odpovídající střední hodnotě a disperzi odpovídajících distribuci odchylek (viz vztahy (5.8), (5.9)).

kampaň	$ (P_I)^{95} $	$1.645\sigma_{KNI}$	P/σ	$ (P_i)^{95} $	$1.645\sigma_{SPD}$	P/σ
u1c1	2.100	2.319	0.906	4.380	4.766	0.919
u1c2	2.400	2.436	0.985	3.350	3.807	0.880
u1c3	3.030	3.129	0.968	4.000	4.140	0.966
u1c4	3.180	3.876	0.820	4.660	4.998	0.932
u2c1	2.420	2.655	0.911	4.290	4.571	0.939
u2c2	2.600	2.862	0.908	3.670	3.905	0.940
u2c3	2.270	2.826	0.803	3.430	4.048	0.847
u1c9	2.600	2.838	0.916	7.430	6.101	1.218
u1c10	3.480	2.986	1.165	4.740	4.282	1.107
u2c9	3.040	2.913	1.044	6.960	5.308	1.311
u2c10	2.570	2.780	0.924	4.470	3.991	1.120
celkem	2.650	2.884	0.919	4.500	4.619	0.974

Tabulka 5.7: Srovnání absolutní hodnoty 95-ti procentních percentilů $(P_I)^{95}$, resp. $(P_i)^{95}$, s hodnotou 1.645 σ . 4. a 7. sloupec tabulky udávají poměr těchto hodnot pro SPD a KNI, kvantifikující odklon skutečné distribuce odchylek od Gaussova rozložení.

kampaň	$ (P_I)^{2.5} $	$(P_I)^{97.5}$	$1.96\sigma_{KNI}$	P_{max}/σ	$ (P_i)^{2.5} $	$(P_i)^{97.5}$	$1.96\sigma_{SPD}$	P_{max}/σ
u1c1	2.770	2.400	2.764	1.002	6.060	5.580	5.678	1.067
u1c2	3.090	2.810	2.903	1.064	4.870	3.840	4.535	1.074
u1c3	3.420	3.600	3.728	0.966	4.340	5.070	4.933	1.028
u1c4	4.740	3.690	4.618	1.026	6.110	5.690	5.954	1.026
u2c1	3.570	2.770	3.163	1.129	5.550	5.210	5.447	1.019
u2c2	3.510	2.930	3.410	1.029	4.830	4.360	4.653	1.038
u2c3	4.020	2.580	3.367	1.194	5.080	4.010	4.824	1.053
u1c9	3.650	2.850	3.381	1.080	5.360	10.170	7.270	1.399
u1c10	3.580	4.590	3.557	1.290	4.290	5.820	5.102	1.141
u2c9	2.960	3.430	3.471	0.988	4.360	9.330	6.325	1.475
u2c10	3.740	2.820	3.312	1.129	4.420	5.690	4.755	1.197
celkem	3.620	3.110	3.436	1.054	5.110	5.880	5.504	1.068

Tabulka 5.8: Srovnání většího z percentilů $|P^{2.5}|$ a $P^{97.5}$ s hodnotou 1.96 σ . 4. a 7. sloupec tabulky udávají poměr těchto hodnot pro SPD a KNI, kvantifikující odklon skutečné distribuce odchylek od Gaussova rozložení.

odpovídat 1.645σ . Pro další otestování aplikovatelnosti předpokladu Gaussova rozložení pro odchylky Δi , ΔI jsme proto ze skutečného rozložení odchylek vybrali 95-ti procentní percentil $(P_i)^{95}$ (resp. $(P_I)^{95}$), který odpovídá maximální odchylce, o kterou bude na 95 % hladině spolehlivosti naměřená hodnota vyšší než hodnota vypočtená. Tuto odchylku jsme v absolutní hodnotě srovnali s hodnotou 1.645σ (tabulka 5.7).

U některých vsázek vykazovalo skutečné rozložení větší odchylky od rozložení Gaussova. Rozložení odchylek Δi a ΔI bylo proto aproximováno Gaussovým rozložením (*) se střední hodnotou $\overline{\Delta} = 0$, jehož rozptyl byl konzervativně upraven podle rovnice

$$1.645\sigma^* = \max(1.645\sigma, 1.645\sigma + \overline{\Delta}, (P)^{95})$$
(5.12)

Tím je zaručeno, že při používání nově odvozeného Gaussova rozložení nebude na 95 % hladině spolehlivosti naměřená hodnota vyšší než hodnota vypočtená.

Tento postup je znázorněn na obrázku 5.3, kde modrá křivka zobrazuje Gaussova rozložení aproximující skutečné rozložení se střední kvadratickou odchylkou σ a střední hodnotě $\overline{\Delta}$ odpovídající střední hodnotě skutečného rozložení. Modře vybarvený interval $(-\infty, 1.645\sigma)$ zahrnuje 95% hodnot pod touto křivkou. Dále je vykreslen 95-ti procentní percentil $(P)^{95}$ a oranžovou barvou nové Gaussovo rozložení s rozptylem σ^* a střední hodnotou $\overline{\Delta}=0$, které konzervativně aproximuje skutečné rozložení tak, aby interval $(-\infty, 1.645\sigma^*)$ zahrnoval 95% hodnot skutečného rozložení.

Obrázek 5.3: Příklad určení σ^* Gaussova rozložení pro stanovení neurčitosti jednostranné odchylky

Obdobně byla odvozena neurčitost, že vypočtený výkon nebude na 95 % hladině spolehlivosti mimo zvolený interval. V tomto případě se sleduje oboustranná odchylka, kdy se hodnoty výpočtu liší od hodnot měření na dané hladině spolehlivosti. Srovnávány byly absolutní hodnoty percentilů $2.5 |(P_i)^{2.5}|$ a 97.5 $|(P_i)^{97.5}|$ s hodnotou 1.96σ . Interval mezi zvolenými percentily zahrnuje 95% hodnot skutečného rozložení, stejně jako interval o poloměru 1.96σ zahrnuje 95% hodnot Gaussova

rozložení (tabulka 5.8). Opět byl rozptyl Gaussova rozložení upraven, tentokrát podle vzorce

$$1.96\sigma^* = \max\left(1.96\sigma + |\overline{\Delta}|, |(P)^{2.5}|, |(P)^{97.5}|\right)$$
(5.13)

Výsledné neurčitosti predikce proudů detektorů a řetězců KNI pro zvolené hladiny spolehlivosti jsou uvedeny v tabulce 5.9.

Tento postup je znázorněn na obrázku 5.4. Modrá křivka zobrazuje Gaussova rozložení aproximující skutečné rozložení se střední kvadratickou odchylkou σ a střední hodnotou $\overline{\Delta}$ odpovídající střední hodnotě skutečného rozložení. Modře vybarvený interval $(-1.96\sigma, 1.96\sigma)$ zahrnuje 95% hodnot pod touto křivkou. Dále je vykreslen 2.5 procentní percentil $(P)^{2.5}$ a 97.5 procentní percentil $(P)^{97.5}$ a oranžovou barvou nové Gaussovo rozložení s rozptylem σ^* a střední hodnotou $\overline{\Delta} = 0$, které konzervativně aproximuje skutečné rozložení tak, aby interval $(-1.96\sigma^*, 1.96\sigma^*)$ zahrnoval 95% hodnot skutečného rozložení.

Obrázek 5.4: Příklad určení σ^* Gaussova rozložení pro stanovení neurčitosti oboustranné odchylky

Pro určení skutečné chyby predikce proudu detektoru je třeba od výsledné neurčitosti odečíst takzvanou variabilitu detektoru, která je závislá pouze na šumu detektoru a citlivosti měřící aparatury. Pro detektory IST na ETE byla na základě analýzy chování signálů detektorů odvozena variabilita detektorů $\sigma_{SPD}^{var} = 1.86$ a variabilita řetězců KNI $\sigma_{KNI}^{var} = 1.23$. Neurčitost predikce výkonu kazety σ_{PK} a predikce nodálních výkonů σ_{PN} tedy určíme ze vztahů

$$\sigma_{PK} = \sqrt{(\sigma_{KNI}^*)^2 - (\sigma_{KNI}^{var})^2} \tag{5.14}$$

$$\sigma_{P^N} = \sqrt{(\sigma_{SPD}^*)^2 - (\sigma_{SPD}^{var})^2} :$$
 (5.15)

Výsledné neurčitosti predikce výkonů kazety a nodálních výkonů jsou uvedeny v tabulce 5.10. V bezpečnostních výpočtech se pak nejčastěji používají jednostranné neurčitosti σ_+ , konzervativně je brána hodnota větší z hodnot σ_+ a σ_+^R na 95 % hladině spolehlivosti. Není-li jinak specifikováno, pak je neurčitostí myšleno právě toto číslo.

	K	NI	SPD		
	σ^*	95%	σ^*	95%	
σ_{+}	1.75	2.88	2.84	4.68	
σ_{\pm}	1.85	3.62	3.00	5.88	
σ_+^R	1.91	3.15	2.53	4.17	
σ_{\pm}^{R}	1.87	3.67	2.51	4.92	

Tabulka 5.9: Neurčitost předikce proudů detektorů a řetězců KNI na hladině spolehlivosti 95% a rozptyl jejich rozložení σ^* . $_+$ značí jednostrannou odchylky, kdy hodnota výpočtu nebude vyšší než měření, $_\pm$ značí oboustrannou odchylku, kdy se hodnota výpočtu od měření neliší a R platí pouze pro výpočty kdy $k_v > 1.3$ a $F_{HA} > 1.1$.

P	K	P^N		
σ	95%	σ	95%	
	2.05 2.70			
	2.41 2.76			

Tabulka 5.10: Neurčitost předikce nodálních výkonů a výkonů kazety pro hladiny spolehlivosti 95% a rozptyl jejich rozložení σ^* . $_+$ značí jednostrannou odchylky, kdy hodnota výpočtu nebude vyšší než měření, $_\pm$ značí oboustrannou odchylku, kdy se hodnota výpočtu od měření neliší a R platí pouze pro výpočty kdy $k_v > 1.3$ a $F_{HA} > 1.1$.

- \bullet výsledná neurčitost predikce kazetového rozložení výkonu je 2.41 % na 95 % hladině spolehlivosti.
- \bullet výsledná neurčitost predikce nodálního rozložení výkonu je 3.54 % na 95 % hladině spolehlivosti.

5.4.5 Zhodnocení

Výsledky srovnání predikovaných a měřených proudů SPD ukazují, že komplex programů HE-LIOS/ANDREA umožňuje dostatečně přesnou predikci pokazetových a nodálních výkonů.

Z výsledků srovnání přibližné hodnoty axiálního offsetu, počítaného jako podíl sumy proudů detektorů v axiálních vrstvách 5,6,7 se sumou proudů v axiálních vrstvách 1,2,3 vyplývá, že predikované axiální rozložení výkonu je v dobré shodě s měřeným rozložením. Celková průměrná odchylka $\overline{\Delta AO} = 1.28$ při střední kvadratické odchylce $\sigma_{AO} = 1.65$.

Prezentované výsledky dále ukazují i dobrou shodu mezi predikcí a měřením v radiálním směru.

Pokazetové výkony jsou určeny s nepřesností 2.41 % na 95 % hladině spolehlivosti, nodální výkony pak s nepřesností 3.54 % na 95 % hladině spolehlivosti. Výsledky jsou konzistentní s výsledky srovnání predikovaných a monitorovaných pokazetových výkonů, prezentovanými v kapitole 5.3.

5.5 Data ze spouštění

Tato část dokumentu obsahuje výsledky přepočtů testů spouštění prvních cyklů pro 1. a 2. blok ETE: stanovení izotermického koeficientu reaktivity (ITC), účinnosti kyseliny borité (BCF), kritické koncentrace kyseliny borité v MKV a stanovení váhy jednotlivých skupin tyčí.

5.5.1 Izotermický koeficient reaktivity

Na ETE je zavedeno projektové kritérium, podle kterého nesmí rozdíl měřeného a predikovaného izotermického koeficientu reaktivity přesáhnou 3.5 pcm/°C.

Výsledky stanovení výpočtů izotermického koeficientu reaktivity jsou uvedeny v tabulce 5.11. Vypočtené hodnoty ukazují dobrou shodu s měřením, většinou se neliší o více než 1 pcm/°C od měření. Vypočtené hodnoty většinou mírně podhodnocují ITC (průměrná odchylka -0.88 pcm/°C). Nejhorší predikce byla ve 3. cyklu na 1. bloku, kdy byl naměřen velký rozdíl v ITC mezi nahříváním a vychlazováním.

Ve všech případech bylo projektové kritérium s rezervou splněno.

5.5.2 Účinnost kyseliny borité

Na ETE je zavedeno projektové kritérium, podle kterého se nesmí naměřená hodnota účinnosti kyseliny borité od predikované lišit o více než 15%.

Výsledky stanovení výpočtů účinnosti kyseliny borité jsou uvedeny v tabulce 5.12. Projektové kritérium ve všech případech, krom jednoho měření na 2. bloku ve 2. cyklu, kdy naměřená hodnota byla o 17.6 % nižší než vypočtená. Celková střední kvadratická odchylka 5.38% při průměrné relativní odchylce -2.85% naznačuje akceptovatelnou shodu výpočtu s měřením.

1 *	$\mathrm{ITC}_{\mathrm{m}}$	ITC_c	ΔITC_{c-m}
kampaň	$[pcm/^{\circ}C]$	$[pcm/^{\circ}C]$	$[pcm/^{\circ}C]$
ETE – U1C2	-5.45	-6.31	-0.86
ETE - U1C3	-9.96	-9.56	0.40
ETE - U1C4	-8.99	-9.44	-0.45
ETE - U1C5	-8.37	-9.39	-1.02
ETE - U1C5-1	-15.62	-16.26	-0.64
ETE - U2C2	-4.80	-5.38	-0.58
ETE - U2C3	-8.66	-9.24	-0.58
ETE - U2C4	-15.38	-16.59	-1.21
ETE - U1C9	-3.53	-4.76	-1.23
ETE - U1C10	-6.03	-6.78	-0.75
ETE - U2C9	-4.42	-5.00	-0.58
ETE - U2C10	-6.37	-6.70	-0.33
ETE - U1C2	-5.29	-6.31	-1.02
ETE - U1C3	-6.42	-9.56	-3.14
ETE - U1C4	-8.89	-9.44	-0.55
ETE - U1C5	-8.97	-9.39	-0.42
ETE - U1C5-1	-15.07	-16.26	-1.19
ETE - U2C2	-4.96	-5.38	-0.42
ETE - U2C3	-8.04	-9.24	-1.20
ETE - U2C4	-14.44	-16.59	-2.15
ETE - U1C9	-4.33	-5.31	-0.98
ETE - U1C10	-6.04	-6.78	-0.74
ETE - U2C9	-4.64	-5.19	-0.55
celkem			-0.88 ± 0.67

Tabulka 5.11: Izotermický koeficient reaktivity (při vychlazování, resp. náhřevu) – srovnání měřených a vypočtených hodnot

kampaň	$\mathrm{BCF}_{\mathrm{m}}$	$\mathrm{BCF_c}$	$\Delta \mathrm{BCF}_{(\mathrm{c-m})/\mathrm{n}}$
каптрап	[pcm/(g/kg)]	[pcm/(g/kg)]	[%]]
ETE - U1C2	-1295 / -1435 / -1365	-1346	+4.0 / -6.2 / -1.4
ETE - U1C3	-1174 / -1273	-1212	+3.3 / -4.7
ETE - U1C4	-1157 / -1155	-1174	+1.5 / +1.7
ETE - U1C5	-1224 / -1211	-1244	+1.6 / +2.7
ETE - U1C5-1	-1479 / -1461	-1450	-1.9 / -0.7
ETE - U2C2	-1619 / -1558	-1333	-17.6 / -14.4
ETE - U2C3	-1298 / -1309	-1231	-5.1 / -5.9
ETE - U2C4	-1368 / -1339	-1334	-2.5 / -0.4
ETE - U1C9	-1923 / -2073	-1947	+1.2 / -6.1
ETE - U1C10	-1492 / -1396	-1433	-3.9 / +2.7
ETE - U2C10	-1494 / -1551	-1418	-5.0 / -8.5
celkem			-2.85 ± 5.38

Tabulka 5.12: Účinnost kyseliny borité – srovnání měřených a vypočtených hodnot

5.5.3 Kritická koncentrace H3BO3

Projektové kritérium pro maximální odchylku kritické koncentrace kyseliny borité je 500 pcm, bezpečnostní pak 1000 pcm.

Srovnání vypočtené a měřené koncentrace kyseliny borité ve stavu MKV je provedeno v tabulce 5.13. Odchylka mezi vypočtenou a měřenou kritickou koncentrací kyseliny borité byla většinou menší než $0.2~\mathrm{g/kg}$. Nejhorší odchylka nastala u 3. vsázky na 1. bloku $(0.401~\mathrm{g/kg}=490\mathrm{pcm}$ při použití průměrné změřené váhy borité). I v tomto případě bylo projektové kritérium splněno. Průměrná odchylka činí $0.130~\mathrm{g/kg}$.

Souhlas kritické a predikované koncentrace kyseliny borité lze tedy považovat za akceptovatelný.

5.5.4 Váha klastrů

Projektové kritérium pro maximální ochylku měřené a predikované váhy tyčí je 15~% nebo 100~ pcm. Bezpečnostní kritérium pro maximální odchylku pak 30% nebo 200~pcm.

Tabulky A.15 - A.26 obsahují srovnání vypočtených a měřených vah jednotlivých skupin tyčí. Tabulka 5.14 pak souhrnné vyhodnocení projektového a bezpečnostního kritéria.

Střední kvadratická odchylka vah tyčí činí 37pcm přičemž 95% hodnot se nachází v intervalu (-48pcm, 87pcm), při relativním porovnávání pak v intervalu (-11%, 15.9%). Větší relativní chyby byly pozorovány zejména u 6. skupiny u vsázek s palivem WEC.

Projektové kritérium nebylo splněno pouze na 1. bloku ve 3. cyklu u 6. a 10. skupiny, ve všech ostatních případech (98.9% případů) splněno bylo.

kompoň	CB_{m}	CB_{c}	$\Delta \mathrm{CB}_{\mathrm{c-m}}$
kampaň	[g/kg]	[g/kg]	[g/kg]
$\overline{\text{ETE} - \text{U1C2}}$	9.337	9.526	0.189
ETE - U1C3	9.694	10.095	0.401
ETE - U1C4	10.530	10.718	0.188
ETE - U1C5	9.570	9.390	-0.180
ETE - U1C5-1	6.528	6.507	-0.021
ETE - U2C2	9.546	9.694	0.148
ETE - U2C3	9.880	10.100	0.220
ETE - U2C4	7.330	7.530	0.200
ETE - U1C9	6.591	6.648	0.057
ETE - U1C10	8.941	9.200	0.259
ETE - U2C9	6.690	6.679	-0.011
ETE - U2C10	9.116	9.230	0.114
celkem			0.130 ± 0.146

Tabulka 5.13: Kritická koncentrace kyseliny borité na minimálním kontrolovaném výkonu – srovnání měřených a vypočtených hodnot

kampaň	N	% N(projektové)	% N(bezpečnostní)
ETE - U1C2	10	0.0	0.0 %
ETE - U1C3	10	20.0	0.0~%
ETE - U1C4	20	0.0	0.0~%
ETE - U1C5	10	0.0	0.0~%
ETE - U1C5-1	20	0.0	0.0~%
ETE - U2C2	10	0.0	0.0~%
ETE - U2C3	10	0.0	0.0~%
ETE - U2C4	10	0.0	0.0~%
ETE - U1C9	20	0.0	0.0~%
ETE - U1C10	20	0.0	0.0~%
ETE - U2C9	20	0.0	0.0~%
ETE - U2C10	20	0.0	0.0 %
celkem	180	1.1	0.0 %

Tabulka 5.14: Statistické zhodnocení srovnání vypočtené a měřené váhy klastrů pro ETE. Ve 2. sloupci je uveden počet hodnocených bodů v daném cyklu, ve 3., resp. 4. sloupci pak procento případů, ve kterém bylo překročeno projektové resp. bezpečnostní kritérium.

5.5.5 Zhodnocení

Výsledky přepočtu testů spouštění prokázaly dostatečnou přesnost programového komplexu HE-LIOS/ANDREA. V případě predikce izotermického koeficientu reaktivity bylo ve všech případech s rezervou splněno projektové kritérium 3.5 pcm/°C pro maximální odchylku predikované a měřené hodnoty. Rovněž výpočty účinnosti kyseliny borité splňovaly projektové kritérium 15% ve všech případech kromě jednoho. Střední kvadratická odchylka neurčitosti predikce účinnosti kyseliny borité byla 5.37 %. V případě kritické koncentrace kyseliny borité bylo projektové kritérium vždy s rezervou splněno kromě jednoho případu kdy bylo téměř porušeno. V případě váhy klastrů bylo kromě dvou případu projektové kritérium vždy splněno.

Přesnost predikce poproutkového rozložení výkonu

Výkon palivového proutku není v reaktoru měřenou veličinou, a proto přesnost jeho predikce výpočtovým programem není možno přímo kvantifikovat s použitím měřených dat. Chybu predikce výkonu palivového proutku je však možno odvodit součtem chyb, kterých se dopouštíme v jednotlivých krocích v procesu jeho určování.

V programu ANDREA sestává určení výkonu palivového proutku ze 3. kroků:

- 1. určení nodálního rozložení výkonu (rozlišení na úrovni palivové kazety),
- 2. určení distribuce poproutkového výkonu v samostatné kazetě,
- 3. rekonstrukce poproutkového výkonu na základě hladkého průběhu výkonu v nódu a předpočítané mapy výkonů proutků.

Nepřesnost určení nodálního rozložení výkonu byla stanovena v kapitole 5.4 na základě predikce měřených proudů SPD a oceněna srovnáním kazetových výkonů, viz sekce 5.3. Nepřesnost určení kazetového výkonu na 95 % hladině spolehlivosti činí 2.41 %, nepřesnost určení nodálního výkonu na 95 % hladině spolehlivosti 3.54 %.

Nepřesnost určení distribuce poproutkového výkonu v kazetě a nepřesnost rekonstrukce poproutkového výkonu byly analyzovány v kapitolách 2 a 4. V kapitole 2 byla pro nekonečnou mříž kazet srovnávána predikce poproutkových výkonů získaná programem HELIOS s predikcí programu MCNP-5, založeným na metodice vyššího řadu pro řešení transportní rovnice. Bylo ukázáno, že rozdíl predikcí obou programů je v řádu statistické chyby výsledků programu MCNP. V kapitole 4 pak bylo provedeno srovnání predikcí komplexu HELIOS/ANDREA s výsledky programu MCNP-5 pro tzv. minizóny - soubory sedmi kazet v nekonečné mříži. Jednotlivé kazety zastoupené v minizónách byly voleny takovým způsobem, aby bylo dosaženo maximálního nevyrovnání výkonu. Na základě tohoto srovnání byla odvozena nepřesnost metody rekonstrukce poproutkového výkonu (zahrnující i nepřesnost určení poproutkového rozložení výkonu), která činí 1.43 % na 95 % hladině spolehlivosti.

Složením uvedených nepřesností podle následujících vztahů 6.1 a 6.2

$$\frac{\Delta^{M}(F_{\Delta H})}{F_{\Delta H}} = \sqrt{\left(\frac{\Delta K_{k}}{K_{k}}\right)^{2} + \left(\frac{\Delta F_{HA}}{F_{HA}}\right)^{2}} \tag{6.1}$$

		$\frac{F_{\Delta H})}{\Delta H}$		$\frac{(F_Q)}{Q}$
	σ^*	95%	σ^*	95%
σ_+ σ_\pm	1.52	2.50	2.32	3.82
	1.63	3.19	2.51	4.92
$ \begin{array}{c} \sigma_+^R \\ \sigma_\pm^R \end{array} $	1.71	2.81	1.93	3.17
	1.66	3.25	1.90	3.72

Tabulka 6.1: Neurčitost předikce výkonu proutku a lineárního výkonu proutku pro hladiny spolehlivosti 95% a rozptyl jejich rozložení σ^* . $_+$ značí jednostrannou odchylky, kdy hodnota výpočtu nebude vyšší než měření, $_\pm$ značí oboustrannou odchylku, kdy se hodnota výpočtu od měření neliší a R platí pouze pro výpočty kdy $k_v > 1.3$ a $F_{HA} > 1.1$.

$$\frac{\Delta^M(F_Q)}{F_Q} = \sqrt{\left(\frac{\Delta K_k}{K_k}\right)^2 + \left(\frac{\Delta K_V}{K_V}\right)^2} \tag{6.2}$$

získáme nepřesnost pro určení výkonu palivového proutku, která na 95 % hladině spolehlivosti činí 2.50 %, a nepřesnost pro určení lineárního výkonu palivového proutku, která která na 95 % hladině spolehlivosti činí 3.82 %. Přehled všech neurčitostí poproutkové rekonstrukce výkonu je uveden v tabulce 6.1.

Zajištění jakosti

Pro trvalé zajištění jakosti programu ANDREA je implementována rozsáhlá sada automatizovaných testů ověřujících správnou funkci jednotlivých částí programu.

Testová sada byla vyvinuta podle moderních metodik návrhu software a jeho zajištění jakosti. Silný důraz je kladen na automatizaci testování, které zajišťuje přesnou opakovatelnost testů v každé iteraci vývoje programu bez možnosti chyby lidského faktoru.

Základní sada testů je spouštěna při každé změně v programu; periodicky je spouštěna kompletní testová matice. Níže jsou popsány jednotlivé komponenty testové sady.

Testování aplikačních jednotek Sada několika stovek krátkých testů se soustředí na prověření jednotlivých aspektů funkčnosti programu ANDREA; zásadní význam této testové sady je jednak v jejím rozsahu (jsou otestovány prakticky všechny funkce programu, různá nastavení výpočtu apod.) a také v možnosti snadno odhalit případnou závadu. Testy jsou založeny na popisu očekávaného chování při zadaných vstupních datech. Nejsou porovnávány celé výstupní soubory, tyto testy jsou tedy velmi stabilní i vzhledem ke změnám ve formátu a rozsahu výstupních dat.

Integrální testy Malá sada testů porovnávající celé výstupní soubory z jednotlivých výpočtů. Nevýhodou je nutnost detailně kontrolovat rozdíly ve výstupech při změnách, nicméně je touto testovou sadou zajištěno sledování všech výstupních veličin.

Benchmarkové testy Nedílnou součástí testování programu je i pravidelný přepočet numerických benchmarků – jedná se jednak o nodální benchmarky, jednak o benchmarky na poproutkové rozložení výkonu. Výsledky benchmarků na výpočet koeficientu násobení, nodálních výkonů i poproutkového rozložení výkonu jsou popsány v kapitolách 3 a 4.

Srovnání s provozními daty Pro srovnání výsledků výpočtu programu ANDREA s provozními záznamy z ETE a EDU byl vyvinut systém *ANDĚLA*, který na základě identifikátoru verze programu ANDREA a verze knihoven málogrupových dat provede veškeré potřebné výpočty a provede srovnání průběhu koncentrace kyseliny borité, axiálního ofsetu a pokazetového rozložení

výkonu. Kromě toho provádí také přepočet jednotlivých testů spouštění (izotermický koeficient, váhy regulačních orgánů apod.). Kvalifikace na provozních datech je podrobněji rozebrána v kapitole 5.

Pro verzi programu ANDREA předkládanou ke kvalifikaci byla provedena kompletní sada testů s pozitivním výsledkem.

Závěr

V této výzkumné zprávě jsou shrnuty výsledky výpočtů a analýz provedených s cílem kvalifikace výpočetního programu ANDREA pro NF výpočty aktivních zón reaktorů VVER-1000 a VVER-440.

První část zprávy byla zaměřena na prokázání vhodnosti použití výpočetního programu HE-LIOS v. 1.10 pro přípravu knihoven účinných průřezů a konstant pro palivové kazety s hexagonální geometrií včetně paliv s Gd vyhořívajícími absorbéry. Na porovnání s výsledky programu MCNP používající metodiku vyššího řádu než program HELIOS pro řešení transportní rovnice byla prokázána velmi dobrá přesnost programu HELIOS. Byla prokázána velmi dobrá shoda při určení poproutkových rozložení výkonu v palivové kazetě, a to jak pro palivové proutky bez vyhořívajícího absorbéru, tak pro proutky s Gd vyhořívajícím absorbérem.

Další část zprávy byla zaměřena na prokázání vhodnosti a přesnosti metod implementovaných v programu ANDREA pro řešení dvougrupové difúzní rovnice. Na přepočtech modelových úloh bylo prokázáno, že maximální odchylky pro radiální rozložení výkonu nepřesahují 1.6 %, maximální odchylka pro nodální rozložení výkonu dosahuje 2 %, střední kvadratická odchylka nepřesahuje 1 % (viz tab. 3.1). Tato přesnost výpočtu by měla umožnit dosažení požadované přesnosti i pro výpočty AZ reaktoru, při kterých by maximální odchylky v radiálním rozložení výkonu neměly přesáhnout 5 %. Hodnota k_{ef} je predikována s velmi dobrou přesností, maximální odchylka v reaktivitě dosahuje 51 pcm. V této části zprávy bylo také poukázáno na fakt, že v případě běžných výpočtů dostaneme velmi dobrou shodu výsledků pří použití 49- a 177-grupové knihovny.

Další kapitola je zaměřena na stanovení přesnosti metody poproutkové rekonstrukce výkonu. Za tímto účelem byly provedeny výpočty čtyřech minizón (některých i ve variantách se zasunutými a vysunutými klastry). Z výsledků vyplývá, že přesnost určení rozložení výkonu palivových proutků je pro palivové soubory bez absorbéru rovna zhruba 0.65 %.

Důležité je i zjištění, že rekonstrukce je velmi přesná i pro proutky s Gd absorbérem. Přestože pro čerstvé proutky je jejich relativní výkon zhruba třetinový oproti ostatním proutkům, relativní odchylky ve výkonech jsou pro tyto proutky srovnatelné s odchylkami pro proutky bez absorbéru.

Sumární střední kvadratická odchylka pro všechny studované případy je $\sigma=0.87$. Pakliže

tuto hodnotu převedeme na 95 % hladinu spolehlivosti nepřekročení limitní hodnoty, dostaneme neurčitost metodiky poproutkové rekonstrukce 1.43 %.

Závěrečná část zprávy je věnována kvalifikaci programu ANDREA na provozních datech. Pro kvalifikaci byla použita data ze spouštění (váha klastrů, zpětnovazební konstanty, parametry kritického stavu) a data z provozu (historie vyhořívání, signály proudů detetkorů SPD).

Přesnost predikce kritické koncentrace kyseliny borité je akceptovatelná. V případě bloků JE Temelín i JE Dukovany nepřekročil počet případů překročení projektového kritéria 0.4 g/kg 2 % případů. Bezpečnostní kritérium 0.7 g/kg nebylo nikdy překročeno.

Výsledky testů spouštění (vyhodnoceny jen pro ETE) jsou rovněž dobré. U žádných testů nebylo porušeno bezpečnostní kritérium. Výpočty izotermického koeficientu reaktivity vždy splnily projektové kritérium, výpočty váhy klastrů splnily projektové kritérium v 99% případů, výpočty kritické koncentrace kyseliny borité při spouštění splnily projektové kritérium ve všech případech a při výpočtech účinnosti kyseliny borité bylo pouze v jednom případě projektové kritérium mírně překročeno. Střední kvadratická odchylka predikce účinnosti kyseliny borité byla stanovena jako 5.37 %.

Srovnání kazetových výkonů s výkony z monitorování vedlo ke stanovení odhadu přesnosti predikce kazetových výkonů. Pro ETE byl tento odhad stanoven jako $\sigma < 1.49 \%$ (vyhodnocení měření proudů samonapájecích detektorů vedl k $\sigma = 1.34 \%$), pro EDU $\sigma < 1.89 \%$.

Na základě dat z měření proudů samonapájecích detektorů byla provedena analýza přesnosti predikce nodálního a radiálního rozložení výkonu. Na základě těchto dat byla určena přesnost predikce poproutkového rozložení výkonu. Bylo ukázáno, že

- \bullet výsledná neurčitost predikce kazetového rozložení výkonu je $\Delta^M F_{HA}=2.41\%$ na 95 % spolehlivosti,
- výsledná neurčitost predikce nodálního rozložení výkonu je $\Delta^M K_V = 3.54\%$ na 95 % hladině spolehlivosti,
- výsledná neurčitost predikce poproutkového rozložení výkonu je $\Delta^M F_{\Delta H}=2.81\%$ na 95 % spolehlivosti,
- $\bullet\,$ výsledná neurčitost predikce nodálního poproutkového rozložení výkonu je $\Delta^M F_Q=3.82\%$ na 95 % hladině spolehlivosti.

Výsledky předložených analýz ukazují, že program ANDREA splňuje požadavky na přesnost pro výpočty aktivních zón reaktorů VVER-1000 a VVER-440 a je ho proto možno použít pro výpočty bezpečnostího hodnocení vsázek a NF charakteristik aktivních zón reaktorů VVER.

Literatura

- [1] F. Havlůj, R, Vočka. Kvalifikace výpočetního kódu HELIOS. Zpráva ÚJV, 2013.
- [2] M. Makai, editor. Final Report of TIC, volume 5. Akadémiai Kiadó, Budapest, 2000.
- [3] V. Krýsl. Řešení modelových úloh pomocí kódu Moby-Dick. Technical report, Škoda JS a.s., 2002.
- [4] L. Heraltová Vyhodnocení validační úlohy Fullcore pro reatkory VVER-440, r1 Technická zpráva ÚJV Z-2497, 2009.
- [5] J. Jošek, J. Kyncl, R. Vočka. *Benchmarky programu ANDREA* Technická zpráva ÚJV-ORF-2013-006, 2013.
- [6] M. Juříčková Databáze DataVVER-1000. Technická zpráva ÚJV Z-2585, 2009.
- [7] TEM-NC-02. Core Design Report Rev. 0
- [8] TEM-NC-03. Preliminary Core Design Report for 1 transient cycle with TVSA at Unit 1. Rev. 0
- [9] M. Kvasnička *Model SPD detektoru pro program ANDREA*. Zpráva ÚJV Z-2639, Prosinec 2009.
- [10] F. Havlůj ANDREA studies: HELIOS/MCNP comparison for a single assembly. Zpráva ÚJV-ORF-2012-014, Listopad 2012.
- [11] Atomic Energy Research AER Benchmark Book. Elektronická databáze, http://aerbench.kfki.hu/.

příloha A

Tabulky

$T_{ m eff}$	Power	N_{KNI}	σ_{KNI}	N_{det}	σ_{det}	N_{KNI}	σ_{KNI}	N_{det}	σ_{det}	AO_m	AO_c
[d]	[%]	vš	sechny d	etekto	ry	$ K_q $	> 1.1	K_v	> 1.3	[%]	[%]
5.07	29.8	64	2.668	445	3.832	30	1.613	156	3.262	3.92	-1.16
13.10	55.0	64	2.287	443	4.347	26	2.490	152	2.835	-13.76	-9.88
40.56	75.6	64	1.906	442	3.346	20	2.219	160	2.353	-12.24	-13.22
60.73	90.0	64	1.773	442	3.561	20	1.784	120	2.165	-14.10	-11.57
80.49	100.0	64	1.503	441	2.144	20	1.569	125	1.640	-13.58	-12.70
93.51	99.8	64	1.412	441	2.227	20	1.455	130	1.843	-10.66	-9.46
97.39	99.9	64	1.521	441	6.175	20	1.267	120	4.065	-11.21	-21.23
100.18	99.8	64	1.314	441	3.820	20	1.593	130	2.755	-12.93	-7.65
104.89	99.5	64	1.307	440	2.221	20	1.486	130	2.069	-7.17	-8.27
108.91	98.3	64	1.276	439	2.134	20	1.452	120	1.829	-5.25	-3.75
112.98	99.1	64	1.256	439	2.096	20	1.438	124	1.830	-4.49	-3.35
126.11	99.9	64	1.291	441	2.277	20	1.506	105	2.088	-2.56	-3.98
128.12	99.8	64	1.285	441	2.883	20	1.449	116	2.190	-8.99	-6.79
130.12	99.9	64	1.266	441	4.913	20	1.518	108	3.656	-11.67	-3.65
135.68	99.7	64	1.308	441	2.537	20	1.523	94	1.889	-4.33	-3.03
140.68	99.6	64	1.292	440	2.715	20	1.492	84	1.827	-4.53	-2.18
146.09	99.7	64	1.278	440	2.623	20	1.438	84	2.142	-2.42	-4.54
154.10	99.8	64	1.261	442	3.030	20	1.422	80	1.966	-5.49	-2.36
162.11	100.1	64	1.223	442	2.459	20	1.401	72	1.848	-1.07	-1.57
169.12	99.7	64	1.224	442	2.637	20	1.391	80	1.969	-2.07	-3.02
176.11	99.9	64	1.219	442	2.321	20	1.362	72	1.472	-2.91	-2.24
186.12	99.8	64	1.205	442	2.316	20	1.282	72	1.515	-2.39	-2.08
194.99	99.9	64	1.233	441	2.281	20	1.198	72	1.880	-2.25	-3.81
202.53	100.2	64	1.219	440	2.554	20	1.144	72	1.392	-4.91	-3.35
208.56	99.7	64	1.208	440	2.316	32	1.180	72	1.795	-3.49	-4.51

pokračuje na další stránce . . .

$T_{\rm eff}$ [d]	Power [%]	$ullet$ N_{KNI} vš	σ_{KNI} sechny d	N_{det} etekto	σ_{det} ry	$\left \begin{array}{c} N_{KNI} \\ K_q \end{array} \right $	σ_{KNI} > 1.1	$N_{det} \ K_v$	σ_{det} > 1.3	AO_m [%]	AO_c [%]
212.79	100.0	64	1.266	440	2.523	20	1.100	72	2.257	-0.61	-3.16
218.79	99.5	64	1.195	440	2.366	20	1.039	72	1.842	-2.09	-3.27
223.79	99.9	64	1.204	440	2.208	20	1.028	60	1.507	-2.69	-3.04
231.08	85.2	64	1.494	439	3.168	24	1.328	59	1.819	-1.51	0.94
236.83	99.8	64	1.297	439	2.454	20	1.090	60	1.339	-6.01	-4.01
259.37	99.8	64	1.244	438	3.187	12	0.767	48	2.988	0.13	-4.79
260.36	99.5	64	1.278	438	2.412	12	0.782	48	1.995	-1.66	-3.93
261.36	99.2	64	1.250	438	4.762	24	1.149	48	4.567	2.26	-6.58
271.68	99.6	64	1.250	437	1.945	12	0.804	27	1.501	-1.18	-1.16
275.67	100.0	64	1.210	437	1.851	12	0.809	35	1.523	-3.27	-2.73
281.60	81.8	64	1.594	437	2.217	24	1.193	39	1.188	-3.04	-2.79
287.34	81.9	64	1.593	440	2.248	24	1.162	36	1.092	-2.79	-2.50
293.06	81.4	64	1.613	439	2.161	24	1.155	36	1.316	-1.51	-2.11
297.80	99.8	64	1.335	439	2.869	12	0.800	39	3.140	-0.98	-5.47
304.74	100.0	64	1.292	439	1.916	12	0.885	35	2.091	-4.62	-6.21
307.74	99.9	64	1.295	439	2.404	12	0.874	35	2.836	-2.80	-6.25
313.02	99.4	63	1.349	435	1.875	12	0.928	27	1.958	-4.00	-5.06
317.02	100.1	63	1.342	435	2.254	12	0.885	35	1.588	-5.61	-8.17
320.01	99.2	63	1.343	435	2.451	12	0.909	31	3.016	-2.22	-5.93

Tabulka A.1: Vyhodnocení proudů SPD pro 1. cyklus 1. bloku ETE. N_{KNI} značí počet věrohodných KNI, N_{det} počet věrohodných detektorů. σ jsou střední kvadratické odchylky pro KNI a samostatné detektory. V levé části tabulky jsou střední kvadratické odchylky pro všechny věrohodné detektory/KNI, v pravé části pak pouze pro detektory/KNI v nódech/kazetách s nadprůměrným výkonem. Poslední dva sloupce pro informaci udávají měřený (m) a spočtený (c) axiální offset odvozený ze součtů proudů v horní a dolní polovině AZ (4. vrstva SPD je vynechána)

T_{eff} [d]	Power [%]	N_{KNI} vš	σ_{KNI} echny d	N_{det}	σ_{det} ry	$egin{array}{c} N_{KNI} \ K_q \end{array}$	σ_{KNI} > 1.1	$N_{det} \ K_v$	σ_{det} > 1.3	AO_m [%]	AO_c [%]
10.47	99.5	64	1.757	431	3.309	34	1.665	164	2.869	-2.70	-5.66
17.96	100.1	64	1.756	434	2.971	34	1.744	168	2.439	-5.31	-6.70
26.78	99.7	64	1.581	433	2.542	34	1.486	169	2.321	-4.70	-6.88
37.80	100.1	64	1.482	433	2.182	34	1.342	174	2.177	-5.39	-7.21
45.76	100.1	64	1.440	433	2.333	34	1.311	174	2.404	-3.96	-6.70
54.70	99.9	64	1.406	433	2.316	34	1.269	174	2.432	-3.44	-6.31
60.78	99.8	64	1.400	431	2.248	34	1.228	174	2.394	-2.72	-5.43
67.78	99.7	64	1.389	431	2.397	34	1.223	174	2.560	-2.74	-5.94
74.78	100.0	64	1.371	430	2.062	34	1.218	174	2.195	-3.95	-5.92
81.77	99.3	64	1.369	430	2.175	34	1.210	174	2.319	-3.09	-5.45
88.51	99.7	64	1.635	429	2.744	34	1.758	174	3.116	-2.57	-5.75
91.28	99.7	64	1.336	427	2.227	34	1.196	172	2.346	-3.46	-5.77
101.25	99.8	63	1.319	422	2.772	33	1.196	169	3.076	-1.67	-5.99
109.25	99.9	63	1.365	423	2.265	33	1.222	169	2.511	-4.28	-6.93
117.92	99.9	63	1.397	422	2.095	33	1.239	171	2.182	-5.60	-6.88
127.92	99.7	63	1.354	420	1.984	33	1.157	170	2.062	-6.39	-7.53
136.92	99.8	63	1.412	418	2.178	33	1.232	169	2.368	-6.75	-8.73
145.90	99.9	63	1.391	417	2.133	33	1.200	171	2.300	-7.04	-8.89
152.93	99.9	62	1.379	413	2.072	32	1.166	168	2.190	-7.82	-9.37
158.92	99.8	62	1.428	411	2.040	32	1.160	167	2.021	-8.93	-9.96
164.60	99.4	61	1.508	402	2.228	31	1.200	161	2.341	-8.80	-10.53
176.59	99.5	62	1.394	402	2.079	32	1.188	165	2.185	-10.22	-11.78
184.58	99.8	62	1.400	399	2.541	32	1.200	163	2.785	-9.81	-12.96
192.58	99.6	62	1.357	397	1.885	32	1.095	162	1.775	-11.52	-12.07
201.53	99.4	62	1.381	396	2.060	32	1.099	163	2.123	-9.01	-10.71
211.28	100.1	62	1.423	394	2.414	32	1.184	158	2.585	-8.12	-11.03
218.13	99.4	62	1.359	392	2.003	32	1.049	158	1.962	-9.13	-11.00
226.10	99.5	62	1.364	392	1.903	32	1.055	158	1.834	-9.69	-10.82
234.10	99.6	62	1.385	391	1.856	32	1.049	152	1.613	-10.45	-10.89
243.08	99.5	62	1.428	388	2.065	32	1.139	152	2.079	-7.60	-9.55
250.06	99.4	63	1.792	389	3.560	33	1.759	153	1.754	-6.50	-7.13
260.03	99.6	62	1.463	385	1.979	32	1.157	151	1.875	-6.86	-8.35
268.02	99.8	62	1.496	383	2.054	32	1.240	150	2.006	-7.60	-9.40
277.01	99.5	62	1.554	381	2.248	32	1.295	149	2.214	-7.38	-9.94
284.97	99.8	62	1.550	375	2.007	32	1.255	147	1.820	-8.73	-10.30
291.97	99.5	62	1.517	374	1.890	32	1.190	147	1.577	-9.66	-10.28
301.91	99.7	62	1.731	371	2.458	32	1.568	139	2.788	-7.31	-9.07
309.89	99.6	63	1.501	365	1.979	33	1.244	136	1.746	-8.83	-10.57
312.91	99.5	60	1.763	352	2.578	31	1.781	133	2.565	-3.90	-7.53
319.69	94.1	60	2.004	352	2.383	31	1.899	136	2.098	0.05	-1.67

Tabulka A.2: Vyhodnocení proudů SPD pro 2. cyklus 1. bloku ETE. Popis viz tabulka A.1.

4.76 99.6 63 2.000 370 3.340 42 1.734 156 2.741 -6.36 -4.62 11.75 99.5 63 1.937 369 3.137 42 1.802 160 2.617 -6.97 -5.69 18.74 99.8 63 1.789 368 2.846 42 1.685 151 2.446 -6.31 -5.79 25.73 99.6 62 1.720 362 2.568 41 1.703 155 2.503 -5.00 -7.58 39.54 100.0 62 1.723 359 2.799 41 1.877 152 3.170 -8.83 -7.89 47.77 190.2 62 1.748 358 2.406 41 1.772 151 2.371 10.12 -9.33 54.77 100.2 62 1.788 355 2.385 41 1.827 139 2.323 -11.77 -10.58 68.86 100.1 <th>T_{eff} [d]</th> <th>Power [%]</th> <th>N_{KNI}</th> <th>σ_{KNI} sechny d</th> <th>N_{det}</th> <th>σ_{det}rv</th> <th>N_{KNI}</th> <th>$\sigma_{KNI} > 1.1$</th> <th>N_{det} K_v</th> <th>σ_{det} > 1.3</th> <th>AO_m [%]</th> <th>AO_c [%]</th>	T_{eff} [d]	Power [%]	N_{KNI}	σ_{KNI} sechny d	N_{det}	σ_{det} rv	N_{KNI}	$\sigma_{KNI} > 1.1$	N_{det} K_v	σ_{det} > 1.3	AO_m [%]	AO_c [%]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
18.74 99.8 63												
25.73 99.6 62 1.742 364 2.464 41 1.706 151 2.339 -5.38 -5.91 32.54 100.0 62 1.720 362 2.568 41 1.703 155 2.503 -8.60 -7.58 47.77 99.9 62 1.748 358 2.406 41 1.772 151 2.371 -10.12 -9.33 54.77 100.2 62 1.746 355 2.311 41 1.782 147 2.281 -11.12 -10.50 61.24 99.7 62 1.788 355 2.385 41 1.827 139 2.323 -11.77 10.58 68.86 100.3 62 1.881 349 2.320 41 1.939 129 2.181 -10.23 -9.70 85.80 100.2 62 1.927 345 2.284 30 1.746 128 2.240 -10.56 -11.30 110.38												
32.54 100.0 62 1.720 362 2.568 41 1.703 155 2.503 -8.60 -7.58 39.54 100.0 62 1.823 359 2.799 41 1.877 152 3.170 -8.83 -7.89 47.77 100.2 62 1.746 355 2.311 41 1.782 147 2.281 -11.12 -10.50 61.24 99.7 62 1.788 355 2.385 41 1.827 139 2.323 -11.77 -10.58 68.86 100.3 62 1.934 353 2.409 41 2.021 139 2.541 -12.56 -12.18 76.87 100.1 62 1.881 349 2.320 41 1.939 129 2.181 -10.56 -12.18 76.87 100.2 62 1.920 348 2.285 33 1.941 129 2.230 -11.14 -11.19 95.50												
39.54 100.0 62 1.823 359 2.799 41 1.877 152 3.170 -8.83 -7.89 47.77 99.9 62 1.748 358 2.406 41 1.772 151 2.371 -10.12 -9.33 54.77 100.2 62 1.746 355 2.311 41 1.782 147 2.281 -11.12 -10.50 68.86 100.3 62 1.934 353 2.409 41 2.021 139 2.323 -11.77 -10.58 68.86 100.1 62 1.881 349 2.320 41 1.939 129 2.181 -10.23 -9.70 85.80 100.2 62 1.920 348 2.285 33 1.941 129 2.230 -11.14 -11.19 95.85 100.2 62 1.882 344 2.228 30 1.661 128 2.240 -10.56 -11.39 111.73												
47.77 99.9 62 1.748 358 2.406 41 1.772 151 2.371 -10.12 -9.33 54.77 100.2 62 1.746 355 2.311 41 1.782 147 2.281 -11.12 -10.50 61.24 99.7 62 1.788 355 2.385 41 1.827 139 2.323 -11.17 -10.58 68.86 100.1 62 1.881 349 2.320 41 1.939 129 2.181 -10.23 -9.70 85.80 100.2 62 1.920 348 2.285 33 1.941 129 2.230 -11.14 -11.19 95.85 100.2 62 1.920 345 2.284 30 1.746 128 2.304 -10.23 -11.30 111.73 99.9 62 1.882 344 2.2236 30 1.572 128 2.111 -11.03 -11.30 119.75											I	
54.77 100.2 62 1.746 355 2.311 41 1.782 147 2.281 -11.12 -10.50 61.24 99.7 62 1.788 355 2.385 41 1.827 139 2.323 -11.77 -10.58 68.86 100.3 62 1.934 353 2.409 41 2.021 139 2.541 -12.56 -12.18 76.87 100.1 62 1.881 349 2.320 41 1.939 129 2.181 -10.23 -9.70 85.80 100.2 62 1.920 348 2.285 33 1.941 129 2.230 -11.14 -11.19 95.85 100.2 62 1.920 345 2.284 30 1.746 128 2.304 -10.56 -11.30 103.86 100.2 62 1.888 342 2.236 30 1.651 128 2.154 -10.66 -11.30 117.75												
61.24 99.7 62 1.788 355 2.385 41 1.827 139 2.323 -11.77 -10.58 68.86 100.3 62 1.934 353 2.409 41 2.021 139 2.541 -12.56 -12.18 76.87 100.1 62 1.881 349 2.320 41 1.939 129 2.181 -10.23 -9.70 85.80 100.2 62 1.920 348 2.285 33 1.941 129 2.230 -11.14 -11.19 95.85 100.2 62 1.910 345 2.284 30 1.746 128 2.304 -10.23 -11.30 103.86 100.2 62 1.882 344 2.228 30 1.651 128 2.154 -10.65 -11.03 111.73 9.9 62 1.882 344 2.228 30 1.651 128 2.154 -10.65 -11.03 1127.58												
68.86 100.3 62 1.934 353 2.409 41 2.021 139 2.541 -12.56 -12.18 76.87 100.1 62 1.881 349 2.320 41 1.939 129 2.181 -10.23 -9.70 85.80 100.2 62 1.920 348 2.285 33 1.941 129 2.230 -11.14 -11.19 95.85 100.2 62 1.920 345 2.281 30 1.746 128 2.304 -10.23 -11.30 103.86 100.2 62 1.882 344 2.228 30 1.761 128 2.304 -10.23 -11.30 111.73 99.9 62 1.882 344 2.228 30 1.651 128 2.111 -11.06 -11.03 119.75 100.0 62 1.881 339 2.270 30 1.628 128 2.117 -11.03 11.54 127.58												
76.87 100.1 62 1.881 349 2.320 41 1.939 129 2.181 -10.23 -9.70 85.80 100.2 62 1.920 348 2.285 33 1.941 129 2.230 -11.14 -11.19 95.85 100.2 62 1.927 345 2.261 33 1.922 128 2.240 -10.56 -11.30 111.73 99.9 62 1.882 344 2.228 30 1.651 128 2.154 -10.65 -11.03 119.75 100.0 62 1.868 342 2.236 30 1.572 128 2.111 -11.08 -11.54 127.58 100.0 62 1.881 339 2.270 30 1.628 128 2.111 -10.62 11.03 146.29 99.9 61 1.906 334 2.322 29 1.630 124 2.187 -10.70 10.24 19.92 39 1.905												
85.80 100.2 62 1.920 348 2.285 33 1.941 129 2.230 -11.14 -11.19 95.85 100.2 62 1.927 345 2.261 33 1.922 128 2.240 -10.56 -11.30 103.86 100.2 62 1.910 345 2.284 30 1.746 128 2.304 -10.23 -11.39 111.73 99.9 62 1.882 344 2.228 30 1.651 128 2.178 -11.65 -11.03 119.75 100.0 62 1.881 339 2.270 30 1.661 128 2.178 -11.70 -12.31 134.59 100.3 62 1.926 337 2.352 30 1.661 128 2.178 -11.70 -12.31 134.59 100.3 62 1.926 337 2.352 30 1.661 128 2.179 -10.33 -11.16 142.29 <td></td>												
95.85 100.2 62 1.927 345 2.261 33 1.922 128 2.240 -10.56 -11.30 103.86 100.2 62 1.910 345 2.284 30 1.746 128 2.304 -10.23 -11.39 111.73 99.9 62 1.882 344 2.228 30 1.651 128 2.154 -10.65 -11.03 119.75 100.0 62 1.881 339 2.270 30 1.628 128 2.111 -11.08 -11.54 127.58 100.0 62 1.881 339 2.270 30 1.628 128 2.178 -11.70 -12.31 134.59 100.3 62 1.926 337 2.352 30 1.661 128 2.267 -11.35 -12.56 146.29 99.9 61 1.906 334 2.322 29 1.661 125 2.187 -10.44 -11.23 154.30 <td></td>												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											l .	
111.73 99.9 62 1.882 344 2.228 30 1.651 128 2.154 -10.65 -11.03 119.75 100.0 62 1.868 342 2.236 30 1.572 128 2.111 -11.08 -11.54 127.58 100.0 62 1.881 339 2.270 30 1.628 128 2.178 -11.70 -12.31 134.59 100.3 62 1.926 337 2.352 30 1.661 128 2.267 -11.35 -12.56 146.29 99.9 61 1.906 334 2.322 29 1.630 124 2.187 -10.44 -11.23 154.30 99.8 59 1.905 331 2.296 29 1.626 125 2.179 -10.33 -11.60 162.22 99.8 59 1.910 331 2.337 29 1.6661 125 2.253 -9.66 -10.79 178.25												
119.75 100.0 62 1.868 342 2.236 30 1.572 128 2.111 -11.08 -11.54 127.58 100.0 62 1.881 339 2.270 30 1.628 128 2.178 -11.70 -12.31 134.59 100.3 62 1.926 337 2.352 30 1.661 128 2.267 -11.35 -12.56 146.29 99.9 61 1.906 334 2.322 29 1.630 124 2.187 -10.44 -11.23 154.30 99.8 59 1.905 331 2.296 29 1.661 125 2.253 -9.66 -10.79 170.24 99.9 59 1.920 331 2.375 29 1.661 125 2.253 -9.66 -10.79 178.25 99.9 59 1.844 330 2.443 29 1.627 123 2.315 -10.00 -10.75 185.26											l .	
127.58 100.0 62 1.881 339 2.270 30 1.628 128 2.178 -11.70 -12.31 134.59 100.3 62 1.926 337 2.352 30 1.661 128 2.267 -11.35 -12.56 146.29 99.9 61 1.906 334 2.322 29 1.630 124 2.187 -10.44 -11.23 154.30 99.8 59 1.905 331 2.296 29 1.626 125 2.179 -10.33 -11.16 162.22 99.8 59 1.910 331 2.337 29 1.661 125 2.253 -9.66 -10.79 170.24 99.9 59 1.920 331 2.375 29 1.681 123 2.315 -10.00 -10.75 185.26 99.8 59 1.844 330 2.510 29 1.682 123 2.415 -9.32 -10.62 195.28												
134.59 100.3 62 1.926 337 2.352 30 1.661 128 2.267 -11.35 -12.56 146.29 99.9 61 1.906 334 2.322 29 1.630 124 2.187 -10.44 -11.23 154.30 99.8 59 1.905 331 2.296 29 1.626 125 2.179 -10.33 -11.16 162.22 99.8 59 1.910 331 2.337 29 1.661 125 2.253 -9.66 -10.79 170.24 99.9 59 1.920 331 2.375 29 1.681 123 2.319 -9.47 -10.79 178.25 99.9 59 1.844 330 2.510 29 1.682 123 2.315 -10.00 -10.75 185.26 99.8 59 1.876 330 2.564 29 1.751 124 2.443 -8.91 -10.57 202.29											l .	
146.29 99.9 61 1.906 334 2.322 29 1.630 124 2.187 -10.44 -11.23 154.30 99.8 59 1.905 331 2.296 29 1.626 125 2.179 -10.33 -11.16 162.22 99.8 59 1.910 331 2.337 29 1.661 125 2.253 -9.66 -10.79 170.24 99.9 59 1.920 331 2.375 29 1.698 123 2.319 -9.47 -10.79 178.25 99.9 59 1.844 330 2.443 29 1.627 123 2.315 -10.00 -10.75 185.26 99.8 59 1.876 330 2.564 29 1.751 124 2.443 -8.91 -10.57 202.29 99.9 58 2.019 322 2.599 29 1.684 117 2.243 -8.91 -10.57 202.29												
154.30 99.8 59 1.905 331 2.296 29 1.626 125 2.179 -10.33 -11.16 162.22 99.8 59 1.910 331 2.337 29 1.661 125 2.253 -9.66 -10.79 170.24 99.9 59 1.920 331 2.375 29 1.698 123 2.319 -9.47 -10.79 178.25 99.9 59 1.844 330 2.443 29 1.627 123 2.315 -10.00 -10.75 185.26 99.8 59 1.876 330 2.510 29 1.682 123 2.415 -9.32 -10.62 195.28 99.8 59 1.897 330 2.564 29 1.751 124 2.443 -8.91 -10.57 202.29 99.9 58 2.019 322 2.599 29 1.684 117 2.243 -8.93 -10.20 210.31												
162.22 99.8 59 1.910 331 2.337 29 1.661 125 2.253 -9.66 -10.79 170.24 99.9 59 1.920 331 2.375 29 1.698 123 2.319 -9.47 -10.79 178.25 99.9 59 1.844 330 2.443 29 1.627 123 2.315 -10.00 -10.75 185.26 99.8 59 1.876 330 2.564 29 1.751 124 2.443 -8.91 -10.57 202.29 99.9 58 2.019 322 2.599 29 1.684 117 2.293 -8.93 -10.20 210.31 99.9 57 1.842 320 2.374 29 1.638 117 2.144 -9.36 -10.06 218.32 99.8 57 1.862 318 2.415 29 1.766 116 2.236 -8.67 -9.74 227.16 <												
170.24 99.9 59 1.920 331 2.375 29 1.698 123 2.319 -9.47 -10.79 178.25 99.9 59 1.844 330 2.443 29 1.627 123 2.315 -10.00 -10.75 185.26 99.8 59 1.876 330 2.510 29 1.682 123 2.415 -9.32 -10.62 195.28 99.8 59 1.897 330 2.564 29 1.751 124 2.443 -8.91 -10.57 202.29 99.9 58 2.019 322 2.599 29 1.684 117 2.293 -8.93 -10.20 210.31 99.9 57 1.842 320 2.374 29 1.638 117 2.144 -9.36 -10.06 218.32 99.8 57 1.862 318 2.415 29 1.783 116 2.236 -8.67 -9.74 227.16 <												
178.25 99.9 59 1.844 330 2.443 29 1.627 123 2.315 -10.00 -10.75 185.26 99.8 59 1.876 330 2.510 29 1.682 123 2.415 -9.32 -10.62 195.28 99.8 59 1.897 330 2.564 29 1.751 124 2.443 -8.91 -10.57 202.29 99.9 58 2.019 322 2.599 29 1.684 117 2.293 -8.93 -10.20 210.31 99.9 57 1.842 320 2.374 29 1.638 117 2.144 -9.36 -10.06 218.32 99.8 57 1.862 318 2.415 29 1.726 116 2.236 -8.67 -9.74 227.16 100.2 57 1.891 317 2.414 29 1.783 116 2.159 -7.61 -8.81 242.97 <												
185.26 99.8 59 1.876 330 2.510 29 1.682 123 2.415 -9.32 -10.62 195.28 99.8 59 1.897 330 2.564 29 1.751 124 2.443 -8.91 -10.57 202.29 99.9 58 2.019 322 2.599 29 1.684 117 2.293 -8.93 -10.20 210.31 99.9 57 1.842 320 2.374 29 1.638 117 2.144 -9.36 -10.06 218.32 99.8 57 1.862 318 2.415 29 1.726 116 2.236 -8.67 -9.74 227.16 100.2 57 1.891 317 2.414 29 1.783 116 2.221 -9.09 -9.97 235.21 97.5 57 2.335 314 2.532 29 2.637 116 2.159 -7.61 -8.81 242.97 <td< td=""><td>170.24</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.698</td><td></td><td></td><td>-9.47</td><td>-10.79</td></td<>	170.24							1.698			-9.47	-10.79
195.28 99.8 59 1.897 330 2.564 29 1.751 124 2.443 -8.91 -10.57 202.29 99.9 58 2.019 322 2.599 29 1.684 117 2.293 -8.93 -10.20 210.31 99.9 57 1.842 320 2.374 29 1.638 117 2.144 -9.36 -10.06 218.32 99.8 57 1.862 318 2.415 29 1.726 116 2.236 -8.67 -9.74 227.16 100.2 57 1.891 317 2.414 29 1.783 116 2.221 -9.09 -9.97 235.21 97.5 57 2.335 314 2.532 29 2.637 116 2.159 -7.61 -8.81 242.97 96.7 56 1.958 313 2.286 28 1.816 111 2.063 -5.60 -6.66 250.72						2.443		1.627		2.315	-10.00	-10.75
202.29 99.9 58 2.019 322 2.599 29 1.684 117 2.293 -8.93 -10.20 210.31 99.9 57 1.842 320 2.374 29 1.638 117 2.144 -9.36 -10.06 218.32 99.8 57 1.862 318 2.415 29 1.726 116 2.236 -8.67 -9.74 227.16 100.2 57 1.891 317 2.414 29 1.783 116 2.221 -9.09 -9.97 235.21 97.5 57 2.335 314 2.532 29 2.637 116 2.159 -7.61 -8.81 242.97 96.7 56 1.958 313 2.286 28 1.816 111 2.063 -5.60 -6.66 250.72 97.4 56 1.991 313 2.341 28 1.837 112 2.121 -6.27 -7.58 258.51 97.2 56 1.944 312 2.291 28 1.831 112 2.072<	185.26	99.8	59	1.876		2.510		1.682		2.415	-9.32	-10.62
210.31 99.9 57 1.842 320 2.374 29 1.638 117 2.144 -9.36 -10.06 218.32 99.8 57 1.862 318 2.415 29 1.726 116 2.236 -8.67 -9.74 227.16 100.2 57 1.891 317 2.414 29 1.783 116 2.221 -9.09 -9.97 235.21 97.5 57 2.335 314 2.532 29 2.637 116 2.159 -7.61 -8.81 242.97 96.7 56 1.958 313 2.286 28 1.816 111 2.063 -5.60 -6.66 250.72 97.4 56 1.991 313 2.341 28 1.837 112 2.121 -6.27 -7.58 258.51 97.2 56 1.984 313 2.367 28 1.883 112 2.199 -6.11 -7.72 266.32 97.1 56 1.940 312 2.291 28 1.843 111 1.995 </td <td>195.28</td> <td>99.8</td> <td>59</td> <td>1.897</td> <td></td> <td>2.564</td> <td>29</td> <td>1.751</td> <td>124</td> <td>2.443</td> <td>-8.91</td> <td>-10.57</td>	195.28	99.8	59	1.897		2.564	29	1.751	124	2.443	-8.91	-10.57
218.32 99.8 57 1.862 318 2.415 29 1.726 116 2.236 -8.67 -9.74 227.16 100.2 57 1.891 317 2.414 29 1.783 116 2.221 -9.09 -9.97 235.21 97.5 57 2.335 314 2.532 29 2.637 116 2.159 -7.61 -8.81 242.97 96.7 56 1.958 313 2.286 28 1.816 111 2.063 -5.60 -6.66 250.72 97.4 56 1.991 313 2.341 28 1.837 112 2.121 -6.27 -7.58 258.51 97.2 56 1.984 313 2.367 28 1.883 112 2.199 -6.11 -7.72 266.32 97.1 56 1.940 312 2.291 28 1.831 112 2.072 -6.64 -7.93 276.03 97.5 56 1.901 311 2.236 30 1.843 111 1.995 <td>202.29</td> <td>99.9</td> <td>58</td> <td>2.019</td> <td>322</td> <td>2.599</td> <td>29</td> <td>1.684</td> <td>117</td> <td>2.293</td> <td>-8.93</td> <td>-10.20</td>	202.29	99.9	58	2.019	322	2.599	29	1.684	117	2.293	-8.93	-10.20
227.16 100.2 57 1.891 317 2.414 29 1.783 116 2.221 -9.09 -9.97 235.21 97.5 57 2.335 314 2.532 29 2.637 116 2.159 -7.61 -8.81 242.97 96.7 56 1.958 313 2.286 28 1.816 111 2.063 -5.60 -6.66 250.72 97.4 56 1.991 313 2.341 28 1.837 112 2.121 -6.27 -7.58 258.51 97.2 56 1.984 313 2.367 28 1.883 112 2.199 -6.11 -7.72 266.32 97.1 56 1.940 312 2.291 28 1.831 112 2.072 -6.64 -7.93 276.03 97.5 56 1.901 311 2.236 30 1.843 111 1.995 -6.38 -7.30 284.01 97.5 56 2.068 311 2.466 30 2.138 111 2.107 <td>210.31</td> <td>99.9</td> <td>57</td> <td>1.842</td> <td>320</td> <td>2.374</td> <td>29</td> <td>1.638</td> <td>117</td> <td>2.144</td> <td>-9.36</td> <td>-10.06</td>	210.31	99.9	57	1.842	320	2.374	29	1.638	117	2.144	-9.36	-10.06
235.21 97.5 57 2.335 314 2.532 29 2.637 116 2.159 -7.61 -8.81 242.97 96.7 56 1.958 313 2.286 28 1.816 111 2.063 -5.60 -6.66 250.72 97.4 56 1.991 313 2.341 28 1.837 112 2.121 -6.27 -7.58 258.51 97.2 56 1.984 313 2.367 28 1.883 112 2.199 -6.11 -7.72 266.32 97.1 56 1.940 312 2.291 28 1.831 112 2.072 -6.64 -7.93 276.03 97.5 56 1.901 311 2.236 30 1.843 111 1.995 -6.38 -7.30 284.01 97.5 56 2.068 311 2.466 30 2.138 111 2.323 -6.07 -8.07 293.80 97.8 56 2.008 311 2.341 30 2.053 111 2.107 <td>218.32</td> <td>99.8</td> <td>57</td> <td>1.862</td> <td>318</td> <td>2.415</td> <td>29</td> <td>1.726</td> <td>116</td> <td>2.236</td> <td>-8.67</td> <td>-9.74</td>	218.32	99.8	57	1.862	318	2.415	29	1.726	116	2.236	-8.67	-9.74
242.97 96.7 56 1.958 313 2.286 28 1.816 111 2.063 -5.60 -6.66 250.72 97.4 56 1.991 313 2.341 28 1.837 112 2.121 -6.27 -7.58 258.51 97.2 56 1.984 313 2.367 28 1.883 112 2.199 -6.11 -7.72 266.32 97.1 56 1.940 312 2.291 28 1.831 112 2.072 -6.64 -7.93 276.03 97.5 56 1.901 311 2.236 30 1.843 111 1.995 -6.38 -7.30 284.01 97.5 56 2.068 311 2.466 30 2.138 111 2.323 -6.07 -8.07 293.80 97.8 56 2.008 311 2.341 30 2.053 111 2.107 -6.29 -7.64 301.62 98.1 56 2.020 308 2.400 30 2.110 111 2.167 <td>227.16</td> <td>100.2</td> <td>57</td> <td>1.891</td> <td>317</td> <td>2.414</td> <td>29</td> <td>1.783</td> <td>116</td> <td>2.221</td> <td>-9.09</td> <td>-9.97</td>	227.16	100.2	57	1.891	317	2.414	29	1.783	116	2.221	-9.09	-9.97
250.72 97.4 56 1.991 313 2.341 28 1.837 112 2.121 -6.27 -7.58 258.51 97.2 56 1.984 313 2.367 28 1.883 112 2.199 -6.11 -7.72 266.32 97.1 56 1.940 312 2.291 28 1.831 112 2.072 -6.64 -7.93 276.03 97.5 56 1.901 311 2.236 30 1.843 111 1.995 -6.38 -7.30 284.01 97.5 56 2.068 311 2.466 30 2.138 111 2.323 -6.07 -8.07 293.80 97.8 56 2.008 311 2.341 30 2.053 111 2.107 -6.29 -7.64 301.62 98.1 56 2.020 308 2.400 30 2.110 111 2.167 -6.10 -7.82 309.46 97.1 55 2.022 306 4.136 29 2.051 111 2.117 <td>235.21</td> <td>97.5</td> <td>57</td> <td>2.335</td> <td>314</td> <td>2.532</td> <td>29</td> <td>2.637</td> <td>116</td> <td>2.159</td> <td>-7.61</td> <td>-8.81</td>	235.21	97.5	57	2.335	314	2.532	29	2.637	116	2.159	-7.61	-8.81
258.51 97.2 56 1.984 313 2.367 28 1.883 112 2.199 -6.11 -7.72 266.32 97.1 56 1.940 312 2.291 28 1.831 112 2.072 -6.64 -7.93 276.03 97.5 56 1.901 311 2.236 30 1.843 111 1.995 -6.38 -7.30 284.01 97.5 56 2.068 311 2.466 30 2.138 111 2.323 -6.07 -8.07 293.80 97.8 56 2.008 311 2.341 30 2.053 111 2.107 -6.29 -7.64 301.62 98.1 56 2.020 308 2.400 30 2.110 111 2.167 -6.10 -7.82 309.46 97.1 55 2.022 306 4.136 29 2.051 111 2.117 -4.61 -5.95	242.97	96.7	56	1.958	313	2.286	28	1.816	111	2.063	-5.60	-6.66
266.32 97.1 56 1.940 312 2.291 28 1.831 112 2.072 -6.64 -7.93 276.03 97.5 56 1.901 311 2.236 30 1.843 111 1.995 -6.38 -7.30 284.01 97.5 56 2.068 311 2.466 30 2.138 111 2.323 -6.07 -8.07 293.80 97.8 56 2.008 311 2.341 30 2.053 111 2.107 -6.29 -7.64 301.62 98.1 56 2.020 308 2.400 30 2.110 111 2.167 -6.10 -7.82 309.46 97.1 55 2.022 306 4.136 29 2.051 111 2.117 -4.61 -5.95	250.72	97.4	56	1.991	313	2.341	28	1.837	112	2.121	-6.27	-7.58
276.03 97.5 56 1.901 311 2.236 30 1.843 111 1.995 -6.38 -7.30 284.01 97.5 56 2.068 311 2.466 30 2.138 111 2.323 -6.07 -8.07 293.80 97.8 56 2.008 311 2.341 30 2.053 111 2.107 -6.29 -7.64 301.62 98.1 56 2.020 308 2.400 30 2.110 111 2.167 -6.10 -7.82 309.46 97.1 55 2.022 306 4.136 29 2.051 111 2.117 -4.61 -5.95	258.51	97.2	56	1.984	313	2.367	28	1.883	112	2.199	-6.11	-7.72
284.01 97.5 56 2.068 311 2.466 30 2.138 111 2.323 -6.07 -8.07 293.80 97.8 56 2.008 311 2.341 30 2.053 111 2.107 -6.29 -7.64 301.62 98.1 56 2.020 308 2.400 30 2.110 111 2.167 -6.10 -7.82 309.46 97.1 55 2.022 306 4.136 29 2.051 111 2.117 -4.61 -5.95	266.32	97.1	56	1.940	312	2.291	28	1.831	112	2.072	-6.64	-7.93
293.80 97.8 56 2.008 311 2.341 30 2.053 111 2.107 -6.29 -7.64 301.62 98.1 56 2.020 308 2.400 30 2.110 111 2.167 -6.10 -7.82 309.46 97.1 55 2.022 306 4.136 29 2.051 111 2.117 -4.61 -5.95	276.03	97.5	56	1.901	311	2.236	30	1.843	111	1.995	-6.38	-7.30
301.62 98.1 56 2.020 308 2.400 30 2.110 111 2.167 -6.10 -7.82 309.46 97.1 55 2.022 306 4.136 29 2.051 111 2.117 -4.61 -5.95	284.01	97.5	56	2.068	311	2.466	30	2.138	111	2.323	-6.07	-8.07
309.46 97.1 55 2.022 306 4.136 29 2.051 111 2.117 -4.61 -5.95	293.80	97.8	56	2.008	311	2.341	30	2.053	111	2.107	-6.29	-7.64
	301.62	98.1	56	2.020	308	2.400	30	2.110	111	2.167	-6.10	-7.82
318.24 98.5 55 2.071 303 2.591 29 2.099 111 2.241 -3.35 -5.98	309.46	97.1	55	2.022	306	4.136	29	2.051	111	2.117	-4.61	-5.95
510.21 50.0 50 2.011 505 2.051 25 2.055 111 2.211 -0.00 -0.50	318.24	98.5	55	2.071	303	2.591	29	2.099	111	2.241	-3.35	-5.98

Tabulka A.3: Vyhodnocení proudů SPD pro 3. cyklus 1. bloku ETE. Popis viz tabulka A.1.

$T_{\rm eff}$	Power	N_{KNI}	σ_{KNI}	N_{det}	σ_{det}	N_{KNI}	σ_{KNI}	N_{det}	σ_{det}	AO_m	AO_c
[d]	[%]		$\operatorname{echny} d$			$K_q > K_{q}$			> 1.3	$\begin{bmatrix} AO_m \\ [\%] \end{bmatrix}$	[%]
3.97	96.5	64	2.904	427	3.670	38	2.000	189	2.440	3.71	3.06
10.71	96.2	64	2.621	425	3.474	38	1.928	188	2.472	3.86	1.57
16.50	96.4	64	2.467	423	3.341	38	1.904	188	2.501	4.36	1.32
23.30	96.5	64	2.352	423	3.275	38	1.831	184	2.484	4.05	0.57
30.06	96.3	64	2.272	428	3.039	38	1.781	185	2.321	2.82	-0.00
35.84	96.1	64	2.240	435	2.985	38	1.745	187	2.268	0.11	-2.61
41.13	96.4	64	2.303	434	3.386	38	1.795	187	2.593	1.81	-2.34
47.90	96.5	64	2.281	434	2.947	38	1.823	183	2.284	-0.86	-3.40
54.66	96.3	64	2.267	434	2.908	38	1.807	179	2.251	-1.28	-3.68
61.41	96.3	64	2.327	433	3.049	38	1.798	179	2.303	-1.31	-4.09
68.82	96.8	64	2.294	430	2.838	38	1.881	178	2.255	-2.83	-4.62
75.63	97.4	64	2.319	430	3.081	38	1.887	181	2.462	-2.02	-4.86
81.47	96.6	64	2.289	430	2.736	38	1.881	178	2.201	-3.43	-4.45
88.84	97.0	64	2.347	430	3.206	38	1.915	173	2.651	-1.73	-4.81
95.68	97.3	64	2.362	432	3.206	38	1.926	177	2.699	-2.79	-5.84
102.47	96.0	64	2.294	431	2.695	38	1.888	177	2.197	-4.88	-4.41
109.25	96.6	64	2.315	430	2.844	38	1.883	179	2.341	-3.67	-4.99
116.02	96.2	64	2.314	427	2.924	38	1.899	178	2.433	-1.78	-3.50
120.17	96.4	64	2.314	427	2.917	38	1.917	178	2.441	-3.14	-4.52
126.92	96.6	64	2.292	427	2.746	38	1.913	178	2.261	-4.81	-4.74
133.69	96.5	64	2.305	427	2.899	38	1.900	178	2.409	-3.39	-4.74
140.41	96.4	64	2.389	426	3.035	38	1.945	174	2.518	-3.07	-4.87
147.13	96.3	64	2.380	426	2.941	38	1.921	172	2.406	-3.63	-4.84
153.88	96.2	64	2.355	426	2.860	38	1.892	172	2.323	-4.35	-4.89
160.63	96.2	64	2.364	426	2.871	38	1.884	169	2.309	-4.49	-5.04
167.38	96.2	64	2.372	426	2.947	38	1.880	170	2.400	-4.03	-5.16
178.79	96.3	64	2.394	424	2.987	38	1.893	163	2.437	-4.29	-5.43
184.60	96.3	64	2.439	423	3.142	38	1.908	159	2.591	-3.77	-5.69
191.35	96.5	64	2.424	422	2.967	38	1.920	153	2.455	-4.84	-5.73
198.11	96.4	64	2.432	419	2.956	38	1.908	150	2.443	-3.40	-4.29
205.84	96.3	64	2.408	420	2.968	38	1.871	150	2.486	-4.05	-5.08
(T. 1)	A 4 37 1	1 1		° CDD		11 1	111	DOD	D	1 1 1	

Tabulka A.4: Vyhodnocení proudů SPD pro 4. cyklus 1. bloku ETE. Popis viz tabulka A.1.

$\begin{array}{c} \overline{T_{\rm eff}} \\ [d] \end{array}$	Power [%]	N_{KNI}	σ_{KNI} sechny d	N_{det}	σ_{det} rv	N_{KNI}	σ_{KNI} > 1.1	$N_{det} \ K_v$	σ_{det} > 1.3	$ \begin{array}{ c c } AO_m \\ [\%] \end{array} $	AO_c [%]
35.00	99.8	64	2.443	448	4.275	20	2.403	144	2.738	-21.18	-19.70
38.79	97.3	64	2.496	448	3.010	20	2.755	152	2.489	-19.24	-19.42
44.17	99.3	64	2.073	448	3.662	20	2.304	153	2.437	-20.28	-18.60
51.06	100.0	64	2.004	448	3.025	20	2.180	154	2.066	-18.63	-18.95
57.05	99.8	64	1.868	448	2.871	20	2.088	148	1.974	-17.63	-17.06
64.05	99.7	64	1.769	448	2.569	20	2.058	128	1.952	-15.32 -16.67	-14.70
71.87	99.6	63	1.630	441	3.191	20	1.997	125	2.039		-13.53
78.76	99.6	63	1.583	441	2.575	20	1.899	125	1.914	-12.53	-10.61
84.57	100.1	63	1.591	441	2.931	20	1.852	125	1.973	-13.14	-10.57
89.87	100.1	63	1.688	441	3.001	20	1.931	129	2.030	-13.28	-10.66
96.88	100.2	63	1.537	441	2.510	20	1.856	136	2.166	-10.43	-9.35
102.89	99.8	63	1.581	441	2.654	20	1.888	131	2.950	-5.79	-8.45
108.87	100.2	63	1.573	441	2.580	20	1.872	121	2.380	-6.19	-5.06
117.46	99.8	63	1.639	441	2.946	20	1.835	121	2.361	-7.19	-4.74
122.07	99.3	63	1.651	441	2.764	20	1.801	110	2.737	-4.45	-4.25
126.08	100.3	63	1.658	440	2.894	20	1.861	114	3.401	-3.69	-7.05
131.86	99.5	63	1.720	441	2.650	20	1.874	98	2.535	-2.65	-4.70
138.86	99.5	63	1.636	441	2.833	20	1.806	90	1.903	-4.81	-3.61
142.60	99.8	63	1.874	441	3.144	20	1.856	90	2.096	-5.11	-4.25
150.60	99.8	63	1.636	441	2.785	20	1.699	75	1.916	-4.52	-3.28
157.60	99.7	63	1.621	441	2.696	20	1.694	71	2.013	-2.98	-2.25
164.93	99.9	63	1.611	440	2.766	20	1.599	70	1.765	-5.61	-3.90
174.87	99.9	63	1.559	440	2.621	31	1.761	70	2.144	-4.02	-4.01
184.71	99.9	63	1.633	440	2.381	31	1.802	70	1.993	-3.98	-4.33
191.52	99.4	63	1.562	440	2.821	31	1.716	70	1.746	-5.66	-3.84
198.21	100.0	63	1.545	440	2.726	23	1.279	70	2.849	-1.58	-4.06
203.84	100.0	63	1.534	439	2.460	23	1.252	70	2.296	-3.12	-4.17
208.09	100.5	63	1.657	438	2.935	23	1.337	70	3.019	-2.65	-5.42
215.02	99.6	63	1.251	437	2.301	23	1.158	70	2.299	-5.69	-7.00
226.64	99.8	63	1.333	437	2.463	23	1.190	58	2.686	-3.63	-5.72
235.18	100.0	63	1.268	435	2.284	23	1.165	58	2.318	-6.26	-7.43
242.59	100.0	63	1.393	432	2.606	23	1.222	47	2.872	-6.18	-8.91
251.71	100.0	63	1.539	431	2.527	23	1.193	47	2.775	-7.16	-9.80
260.51	99.6	63	1.184	429	2.940	23	1.163	47	3.493	-5.90	-10.16
272.31	99.9	62	1.187	427	2.236	12	0.967	47	2.643	-7.71	-9.98
281.02	100.0	62	1.178	425	2.326	12	0.980	47	2.839	-9.21	-11.83
291.02	99.8	62	1.150	424	2.326	12	0.975	47	2.870	-9.33	-12.06
301.03	99.7	62	1.125	421	2.191	12	0.901	23	1.794	-10.77	-13.05
309.03	99.2	62	1.149	419	2.208	12	0.876	32	1.797	-11.76	-13.99
Tabulle		l				ļ.	9 blolm			Į.	

Tabulka A.5: Vyhodnocení proudů SPD pro 1. cyklus 2. bloku ETE. Popis viz tabulka A.1.

T_{eff} [d]	Power [%]	N_{KNI} vš	σ_{KNI} echny d	N_{det} etekto	σ_{det} ry	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	σ_{KNI} > 1.1	$N_{det} \ K_v$	σ_{det} > 1.3	AO_m [%]	AO_c [%]
10.67	99.8	64	1.790	429	2.881	34	1.567	164	2.805	-13.76	-15.52
18.33	99.5	64	1.778	429	2.640	34	1.508	164	2.500	-11.93	-13.32
26.07	99.8	64	1.767	428	2.648	34	1.456	162	2.595	-12.29	-14.60
31.27	99.7	64	1.770	428	2.515	34	1.434	162	2.463	-12.44	-14.39
39.24	99.8	64	1.770	427	2.438	34	1.408	164	2.340	-12.33	-13.96
46.18	99.9	64	1.718	426	2.392	34	1.364	166	2.337	-11.14	-12.88
53.35	99.9	64	1.769	423	2.372	34	1.328	165	1.787	-12.02	-11.93
61.36	100.0	64	1.744	423	2.300	34	1.338	172	1.790	-12.31	-12.50
73.34	99.7	64	1.733	420	2.288	34	1.298	170	1.841	-12.26	-12.53
76.34	99.7	64	1.764	420	2.384	34	1.313	170	2.181	-11.46	-12.79
83.34	100.0	64	1.763	419	2.282	34	1.299	170	1.608	-12.74	-12.10
89.35	100.2	64	1.759	419	2.383	34	1.304	170	2.177	-11.79	-13.14
101.36	99.9	64	1.776	416	2.309	34	1.286	168	1.785	-13.04	-13.03
109.37	100.0	64	1.754	414	2.288	34	1.262	167	1.703	-13.30	-13.12
118.39	100.0	64	1.732	413	2.310	34	1.268	166	2.005	-12.93	-13.79
125.40	100.1	64	1.735	412	2.324	34	1.279	166	2.057	-13.64	-14.64
132.67	99.9	64	1.735	411	2.299	34	1.318	166	1.962	-13.48	-14.03
139.68	99.9	64	1.747	411	2.276	34	1.310	166	1.890	-13.33	-13.67
145.68	99.8	64	1.746	409	2.334	34	1.324	165	2.107	-13.39	-14.49
157.70	99.9	64	1.733	406	2.271	34	1.310	163	2.005	-14.85	-15.71
164.72	99.8	64	1.733	405	2.244	34	1.275	163	1.674	-16.08	-15.65
174.73	100.0	64	1.776	402	2.277	34	1.312	167	1.940	-15.03	-15.67
178.73	100.0	64	1.764	402	2.251	34	1.295	167	1.808	-15.46	-15.64
188.79	99.7	64	1.759	401	2.237	34	1.277	168	1.822	-15.65	-16.08
195.71	100.0	64	1.742	399	2.219	34	1.261	168	1.640	-15.83	-15.38
202.73	99.8	64	1.771	397	2.207	34	1.272	169	1.699	-15.05	-15.02
209.74	99.9	64	1.767	393	2.218	34	1.264	170	1.831	-14.33	-14.93
215.74	99.8	64	1.797	390	2.470	34	1.408	168	2.378	-14.61	-16.71
223.75	99.8	64	1.767	390	2.185	34	1.323	166	1.766	-15.39	-15.64
231.29	99.3	64	1.836	387	2.262	34	1.355	161	1.864	-17.10	-17.70
237.29	100.0	64	1.759	387	2.257	34	1.362	161	2.038	-15.76	-17.06
246.11	99.2	64	1.763	383	2.319	34	1.425	154	2.145	-15.47	-16.96
252.23	100.1	64	1.764	383	2.355	34	1.439	154	2.169	-17.22	-18.92
260.24	100.0	64	1.732	383	2.374	34	1.410	154	2.246	-15.51	-17.50
267.24	100.0	64	2.093	382	3.060	34	1.368	153	2.065	-16.96	-18.42
274.09	99.3	64	1.772	380	2.372	34	1.547	153	2.375	-16.83	-17.86
281.06	99.8	63	1.624	373	2.163	34	1.314	150	1.931	-18.83	-19.89
288.98	100.0	63	1.649	373	2.228	34	1.332	150	1.966	-18.69	-19.95
299.56	99.1	63	1.631	372	2.274	34	1.356	150	2.071	-17.38	-18.95
309.17	99.7	63	1.725	369	2.758	34	1.630	141	3.054	-16.99	-19.40
319.85	99.8	63	1.631	368	2.563	34	1.353	140	2.304	-16.30	-18.86
329.44	92.1	63	1.626	367	2.161	34	1.262	135	1.711	-11.23	-11.17
Tahulka	A C. 17-	1l		1º CD	D 0		0 1.1.1	ECE	D		1 A 1

Tabulka A.6: Vyhodnocení proudů SPD pro 2. cyklus 2. bloku ETE. Popis viz tabulka A.1.

$\frac{T_{\text{eff}}}{[d]}$	Power [%]	N_{KNI} vš	σ_{KNI} echny d	N_{det} etekto	σ_{det} ry	$\left \begin{array}{c} N_{KNI} \\ K_q \end{array} \right $	σ_{KNI} > 1.1	$N_{det} \ K_v$	σ_{det} > 1.3	AO_m [%]	AO_c [%]
4.28	87.6	63	2.099	432	3.243	26	1.977	117	2.217	4.84	6.29
6.91	87.6	63	1.938	432	3.066	26	1.792	114	1.979	4.74	5.19
12.75	87.7	63	1.826	432	2.903	26	1.771	110	1.860	2.21	2.60
18.68	78.5	63	1.871	432	3.577	26	1.936	114	2.860	7.00	1.03
23.48	81.5	63	1.632	432	2.575	26	1.673	104	1.758	2.93	2.09
26.68	79.7	63	1.552	431	2.510	26	1.636	107	1.888	4.66	2.61
30.64	76.6	63	1.528	431	2.470	26	1.581	109	1.695	4.87	4.00
32.92	75.8	63	1.477	431	2.437	26	1.533	109	1.633	4.86	4.17
37.58	80.3	63	1.464	431	2.486	26	1.519	93	1.920	4.58	1.96
42.13	82.5	63	1.377	431	2.373	26	1.363	88	1.650	3.85	1.87
47.10	83.0	63	1.362	431	2.291	26	1.358	85	1.476	1.47	0.54
53.20	87.8	63	1.384	431	2.391	26	1.347	87	2.196	-0.50	-2.89
59.36	87.9	63	1.350	430	2.262	26	1.297	86	1.943	-2.53	-4.05
62.85	87.3	63	1.342	430	2.258	26	1.278	86	2.003	-2.31	-3.89
77.65	87.4	63	1.346	427	2.339	26	1.165	86	2.175	-2.37	-4.63
83.61	78.9	63	1.400	427	2.313	26	1.052	86	1.683	-2.38	-3.16
89.19	$80.4 \\ 75.6$	63 63	1.419	427 427	2.297	26 26	1.041	86 74	1.768	-3.18 -0.22	-4.38 1.12
94.75 99.31	75.8	63	1.487 1.492	$\frac{427}{427}$	2.346 2.402	26	0.998 0.977	74 80	1.311 1.193	-0.22	-1.12 -2.23
99.31 104.64	76.3	63	1.492 1.517	426	2.402 2.335	26	0.977 0.954	86	1.193 1.624	-2.90	-2.23 -3.70
104.04 109.47	87.6	63	1.454	426	2.305 2.205	26	1.005	76	1.624 1.630	-5.80	-6.67
114.69	86.8	63	1.499	426	2.229	26	0.969	76	1.541	-6.09	-6.67
120.66	84.1	63	1.542	425	2.285	26	0.966	86	1.648	-5.58	-6.41
127.43	87.4	63	1.564	424	2.247	26	0.961	65	1.627	-7.18	-8.08
133.55	86.9	63	1.576	424	2.282	26	0.946	59	1.481	-7.23	-7.11
138.72	86.2	63	1.665	424	2.318	26	1.027	59	1.851	-6.51	-7.76
145.44	96.4	63	1.568	420	2.840	26	1.111	61	3.048	-10.82	-14.70
154.13	96.4	63	1.569	419	2.431	26	1.072	61	2.475	-11.02	-13.47
160.89	96.7	63	1.592	418	2.410	26	1.076	61	2.403	-11.01	-13.29
167.67	96.2	63	1.628	417	2.384	26	1.052	55	2.282	-10.87	-13.04
173.46	96.3	63	1.684	413	2.537	26	1.132	54	2.480	-11.52	-14.07
174.43	96.6	63	1.764	413	2.528	26	1.136	54	2.420	-11.88	-14.22
185.05	96.7	63	4.344	410	3.719	26	1.092	54	1.948	-13.36	-14.26
191.78	96.3	62	1.722	408	2.414	26	1.105	52	2.131	-12.19	-14.01
198.52	96.4	62	1.677	407	2.313	26	1.116	46	2.098	-12.32	-14.00
204.31	96.2	62	1.670	406	2.354	26	1.118	40	2.251	-11.88	-13.84
220.74	96.6	62	1.735	399	2.328	26	1.092	43	2.104	-11.23	-12.86
225.59	96.5	62	1.739	398	2.290	22	1.145	46	1.993	-12.40	-13.40
233.34	96.7	62	1.758	397	2.381	26	1.242	46	2.199	-11.23	-12.96
240.12	96.3	62	1.714	397	2.258	22	1.243	46	1.787	-12.73	-13.13
246.88	96.5	62	1.728	392	2.223	22	1.137	46 46	1.853	-11.65	-12.36
253.63	96.3	62	1.767	390	2.313	22	1.199	46	2.128	-10.69	-12.19
								pokra	čuje na	další str	ánce

T_{eff} [d]	Power [%]	$ullet$ N_{KNI} vš	σ_{KNI} sechny d	N_{det} etekto	σ_{det} ry	$N_{KNI} K_q$	σ_{KNI} > 1.1	$N_{det} \ K_v$	σ_{det} > 1.3	$ \begin{array}{c c} AO_m \\ [\%] \end{array} $	AO_c [%]
260.39	96.4	62	1.736	390	2.217	22	1.197	46	1.850	-11.61	-12.32
267.15	96.3	62	1.734	389	2.212	22	1.237	45	1.898	-11.09	-11.56
271.98	96.5	62	1.752	388	2.261	22	1.286	45	2.089	-10.83	-12.02
278.74	96.3	62	1.746	386	2.218	22	1.281	45	2.019	-9.68	-10.59
284.54	96.4	62	1.744	385	2.237	22	1.283	44	2.003	-10.45	-11.66
293.22	96.6	62	1.751	383	2.396	22	1.248	44	2.062	-9.21	-11.45
299.97	96.3	62	1.722	382	2.342	22	1.314	44	1.976	-8.93	-11.01
303.83	96.6	62	1.712	382	2.327	18	1.427	44	2.008	-9.61	-11.66
312.75	94.4	62	1.770	382	2.558	22	1.304	33	1.940	-5.81	-8.76
320.09	88.4	62	1.738	379	2.230	18	1.581	30	1.582	-1.67	-3.12
325.28	84.1	62	1.726	379	2.188	18	1.525	40	1.426	1.45	0.67
327.79	82.4	62	1.733	379	2.211	18	1.503	40	1.385	2.23	2.26

Tabulka A.7: Vyhodnocení proudů SPD pro 3. cyklus 2. bloku ETE. Popis viz tabulka A.1.

T_{eff} $[d]$	Power [%]	N_{KNI} vš	σ_{KNI} sechny d	N_{det} etekto	σ_{det} ry	N_{KNI} K_a	σ_{KNI} > 1.1	$N_{det} \ K_v$	σ_{det} > 1.3	AO_m [%]	AO_c [%]
2.71	78.1	64	2.161	438	4.295	34	2.104	153	2.443	-15.23	-16.13
7.69	100.0	64	2.135	437	5.716	28	1.904	147	2.429	-13.88	-16.64
14.69	99.9	64	2.118	440	6.157	28	1.874	164	2.496	-13.35	-17.00
21.73	100.1	64	2.083	440	5.920	28	1.805	164	2.389	-13.48	-16.63
28.73	100.0	64	2.037	440	5.631	28	1.771	162	2.315	-12.65	-15.91
35.73	100.1	64	1.991	440	5.482	28	1.735	164	2.545	-12.03	-15.30
42.73	100.0	64	1.946	442	5.348	28	1.673	165	2.453	-11.02	-14.57
49.73	100.0	64	1.912	442	4.799	28	1.656	158	2.252	-11.03	-13.75
56.72	100.0	64	1.880	442	4.388	28	1.638	145	2.144	-10.16	-12.40
63.72	100.0	64	1.865	442	4.015	28	1.657	139	2.114	-9.24	-11.23
68.72	99.9	64	1.868	443	3.576	28	1.680	134	2.072	-10.38	-11.09
77.72	100.0	64	1.862	443	3.580	28	1.676	135	2.313	-8.43	-11.19
84.72	99.8	64	1.907	443	3.009	28	1.733	140	2.071	-9.52	-10.08
91.68	100.0	64	1.940	443	3.035	28	1.767	140	2.290	-8.08	-9.77
98.69	100.0	64	1.920	443	3.367	28	1.692	140	2.542	-6.47	-9.63
105.69	100.1	64	1.882	443	2.519	28	1.623	134	2.040	-8.91	-8.88
112.69	100.1	64	1.829	442	2.557	28	1.525	131	1.950	-8.63	-9.72
119.68	100.0	64	1.797	442	2.761	28	1.508	132	2.008	-7.04	-9.13
126.68	100.1	64	1.758	442	4.338	28	1.442	132	3.171	-1.89	-8.29
133.68	100.0	64	1.682	442	2.351	28	1.293	136	1.667	-7.82	-8.64
140.68	100.0	64	1.608	442	3.667	28	1.143	136	2.665	-5.74	-10.89
146.72	100.0	64	1.631	442	2.989	28	1.252	140	2.098	-7.22	-10.69
153.75	99.9	64	1.542	442	2.537	28	1.190	140	1.460	-5.67	-7.02
160.74	99.9	64	1.502	442	2.280	28	1.149	140	1.429	-6.49	-6.96
174.20	99.8	64	1.455	442	2.422	28	1.138	140	1.448	-6.00	-6.06
181.20	100.1	64	1.431	442	2.399	28	1.074	140	1.589	-4.63	-6.07
188.20	100.1	64	1.446	442	2.479	28	1.177	140	1.506	-4.87	-5.52
195.20	100.2	64	1.442	442	2.731	28	1.183	140	1.639	-2.07	-4.29
202.24	100.1	64	1.476	442	2.683	28	1.254	140	1.648	-1.79	-3.65
209.27	100.0	64	1.507	442	2.509	28	1.330	124	1.898	-4.19	-2.75
216.27	99.9	64	1.466	442	2.695	28	1.262	124	1.773	-0.41	-2.90
223.27	99.9	64	1.430	442	2.402	28	1.214	124	1.757	-2.40	-4.25
230.26	99.8	64	1.450	442	2.532	28	1.281	124	1.830	-3.69	-6.00
237.22	100.0	64	1.434	442	2.323	28	1.256	112	1.801	-4.09	-5.78
244.21	99.9	64	1.505	442	2.875	28	1.357	108	2.035	-2.19	-5.51
251.21	100.0	64	1.555	442	3.097	28	1.415	96	2.134	-1.43	-5.11
258.21	100.0	64	1.529	442	3.313	28	1.360	90	2.440	-0.01	-4.63
265.25	100.1	64	1.538	442	3.262	28	1.360	83	2.236	-0.44	-4.79
272.25	100.0	64	1.479	442	3.207	28	1.289	72	2.504	-0.32	-4.92
Tabullea	A O 37	1 1		10 CD		1.1	1 blol	DOD	ъ .	1 1	1 4 4

Tabulka A.8: Vyhodnocení proudů SPD pro 9. cyklus 1. bloku ETE. Popis viz tabulka A.1.

$T_{\rm eff}$ [d]	Power [%]	N_{KNI} vš	σ_{KNI} echny d	N_{det} etekto:	σ_{det} ry	$\left \begin{array}{c} N_{KNI} \\ K_q \end{array}\right $	σ_{KNI} > 1.1	$N_{det} \ K_v$	σ_{det} > 1.3	AO_m [%]	AO_c [%]
4.52	99.9	64	2.625	445	4.322	18	2.459	110	3.103	1.84	2.40
11.51	99.9	64	2.399	445	3.813	18	2.261	87	2.449	0.81	1.53
18.51	100.0	64	2.382	445	3.448	18	2.220	87	2.384	0.67	0.15
25.51	100.0	64	2.353	445	3.311	18	2.173	87	2.338	0.86	0.07
32.51	100.0	64	2.350	445	3.241	18	2.138	87	2.355	1.01	-0.37
42.61	100.0	64	2.340	445	3.115	18	2.095	87	2.365	1.05	-0.74
46.55	99.7	64	2.341	444	2.964	18	2.112	86	2.285	-1.01	-1.92
53.35	100.0	64	2.384	444	3.057	17	2.102	84	2.422	0.17	-1.82
60.35	100.1	64	2.305	443	2.785	16	2.083	82	2.254	-1.24	-2.10
67.34	99.9	64	2.276	443	3.030	16	2.045	81	2.504	0.05	-2.50
73.34	100.3	64	2.266	443	2.683	16	2.044	73	2.343	-2.69	-3.59
81.34	100.0	64	2.204	443	2.705	16	1.997	63	2.480	-2.37	-3.82
88.34	100.0	64	2.147	443	2.637	16	1.943	51	2.656	-1.47	-3.03
95.34	99.9	64	2.084	443	2.660	16	1.917	50	2.825	-1.83	-3.88
101.34	100.0	64	2.058	443	2.708	16	1.901	48	2.938	-1.88	-4.25
109.33	100.0	64	2.002	443	2.609	16	1.876	47	2.854	-1.84	-4.03
116.33	100.0	64	1.947	443	2.453	16	1.839	40	2.979	-3.57	-5.25
123.33	100.0	64	1.935	443	2.626	16	1.826	37	3.230	-3.00	-5.38
130.33	100.0	64	1.907	443	2.439	16	1.802	35	3.007	-3.63	-5.31
137.33	99.7	64	1.848	443	2.378	16	1.769	34	2.996	-3.06	-4.79
144.33	99.9	64	1.789	442	3.147	16	1.735	34	4.002	-2.39	-6.68
151.33	100.0	64	1.776	442	2.146	16	1.720	34	2.559	-5.40	-6.10
156.63	100.0	64	1.821	442	2.684	16	1.722	33	3.479	-3.71	-6.68
163.59	100.0	64	1.694	442	2.174	16	1.629	33	2.610	-5.92	-7.30
170.59	99.9	64	1.640	442	2.008	16	1.559	26	2.028	-5.42	-6.19
177.59	100.0	64	1.592	442	2.330	16	1.503	26	2.555	-4.35	-6.75
184.58	100.0	64	1.564	442	2.254	16	1.467	25	2.479	-4.51	-6.80
191.54	99.8	64	1.505	442	2.484	16	1.391	25	2.704	-3.40	-6.59
198.53	99.7	64	1.461	442	2.205	16	1.312	21	1.818	-4.06	-6.42
205.53	100.1	64	1.438	442	2.185	16	1.241	23	1.774	-5.05	-7.20
212.53	100.1	64	1.428	442	2.267	16	1.206	26	1.966	-4.53	-7.08
219.53	99.9	64	1.442	442	1.919	16	1.183	25	1.238	-4.74	-5.95
226.53	100.0	64	1.397	442	2.379	16	1.139	25	2.127	-3.07	-6.17
233.54	100.0	64	1.396	442	1.888	16	1.093	25	1.110	-4.91	-5.95
240.53	99.9	64	1.367	442	2.319	16	1.054	24	1.729	-2.97	-5.83
247.52	100.0	64	1.350	442	2.061	16	1.008	24	1.247	-4.08	-6.01
254.52	100.0	64	1.317	442	1.885	16	0.968	24	1.155	-4.68	-6.22
261.52	100.1	64	1.286	442	2.236	16	0.927	24	1.785	-3.59	-6.43
268.28	100.1	64	1.263	442	2.365	16	0.879	24	1.915	-3.28	-6.45
275.28	100.0	64	1.243	442	2.088	16	0.822	24	1.515	-4.26	-6.61
282.28	99.9	64	1.227	442	2.009	16	0.779	24	1.318	-4.49	-6.50
287.28	100.0	64	1.210	442	1.882	16	0.756	24	1.083	-5.18	-6.71

pokračuje na další stránce ...

		Power [%]										
4	296.28	100.0	64	1.206	442	2.276	16	0.713	24	1.882	-3.95	-7.00
•	303.18	94.7	64	1.195	442	2.359	16	0.702	26	2.395	1.15	-2.15
	309.65	88.4	64	1.204	442	2.096	16	0.713	28	2.346	5.94	3.33

Tabulka A.9: Vyhodnocení proudů SPD pro 10. cyklus 1. bloku ETE. Popis viz tabulka A.1.

$\mathrm{T}_{\mathrm{eff}}$ $[\mathrm{d}]$	Power [%]	N_{KNI} vš	σ_{KNI} echny d	N_{det} etekto	σ_{det} ry	N_{KNI}	σ_{KNI} > 1.1	$N_{det} \ K_v$	σ_{det} > 1.3	AO_m [%]	AO_c [%]
0.07	55.6	64	2.119	445	4.789	34	2.064	160	3.251	-19.62	-15.09
2.78	99.8	64	2.382	444	4.756	28	2.013	150	2.601	-14.81	-16.00
7.77	100.0	64	2.424	442	5.162	28	2.149	150	2.765	-15.56	-16.77
14.77	100.0	64	2.480	440	5.441	28	2.108	161	2.888	-14.15	-16.51
21.77	99.9	63	2.437	439	5.366	28	2.069	163	2.804	-13.83	-16.03
28.77	100.0	63	2.384	439	5.066	28	1.999	163	2.679	-13.28	-15.35
35.77	99.9	63	2.312	438	4.907	28	1.955	164	2.752	-12.16	-14.32
43.97	100.0	63	2.302	438	4.456	28	1.858	162	2.621	-11.62	-13.85
47.97	100.2	63	2.173	438	4.635	28	1.837	156	2.515	-10.90	-13.01
54.97	100.0	63	2.105	438	4.137	28	1.755	144	2.208	-10.38	-11.97
61.97	99.9	63	2.017	438	3.763	28	1.707	137	2.130	-9.86	-11.11
68.97	100.0	63	1.977	438	3.350	28	1.653	132	2.040	-9.10	-10.12
75.97	100.0	63	1.913	438	2.953	28	1.631	132	2.025	-8.54	-9.18
90.01	99.9	63	1.758	438	2.308	28	1.570	138	1.999	-8.51	-8.38
90.01	100.0	63	1.884	438	2.549	28	1.534	138	1.987	-7.80	-8.40
97.00	99.8	63	1.861	438	2.414	28	1.485	138	1.949	-8.25	-7.71
104.00	99.9	63	1.850	438	2.357	28	1.415	132	1.913	-7.69	-7.64
111.00	100.0	63	1.821	438	2.325	28	1.366	126	1.837	-6.66	-7.17
117.00	100.0	63	1.813	438	2.276	28	1.277	130	1.771	-6.71	-7.00
125.00	100.2	63	1.772	438	2.242	28	1.235	130	1.725	-5.89	-6.47
132.00	100.0	63	1.777	438	2.251	28	1.160	133	1.668	-4.88	-5.48
139.00	99.9	63	1.736	438	2.183	28	1.114	138	1.576	-5.08	-5.21
144.99	99.9	63	1.700	438	2.206	28	1.075	138	1.508	-4.47	-5.00
152.97	99.9	63	1.651	438	2.270	28	1.036	138	1.516	-3.63	-4.70
159.97	100.0	63	1.623	438	2.362	28	1.024	138	1.601	-2.97	-4.58
166.97	100.2	63	1.562	438	2.277	28	1.001	138	1.531	-2.70	-3.98
173.96	100.0	63	1.503	438	2.241	28	0.987	138	1.503	-2.37	-3.48
180.96	100.1	63	1.461	438	2.257	28	0.983	138	1.548	-1.57	-2.95
187.96	99.9	63	1.427	438	2.524	28	0.986	138	1.841	-0.02	-2.79
194.96	100.0	63	1.370	438	2.187	28	0.960	138	1.572	0.23	-1.25
201.96	100.0	63	1.302	438	2.165	28	0.988	138	1.563	0.36	-1.00
208.96	100.0	63	1.270	438	2.140	28	1.017	134	1.580	0.09	-1.16
215.96	100.0	63	1.240	438	2.127	28	1.039	122	1.578	0.08	-1.17
222.96	100.0	63	1.233	438	2.184	28	1.039	122	1.675	0.55	-1.19
229.96	100.0	63	1.229	438	2.124	28	1.065	110	1.650	0.25	-1.37
236.76	99.9	63	1.215	438	2.051	28	1.070	110	1.691	-0.54	-2.09
243.76	100.0	63	1.227	438	2.217	28	1.109	106	1.773	-0.04	-2.26
250.76	100.1	63	1.243	438	2.297	28	1.126	95	1.874	0.07	-2.41
257.75	99.9	63	1.229	438	2.109	28	1.123	84	1.681	-0.52	-2.38
264.75	100.2	63	1.239	438	2.166	28	1.113	87	1.673	-0.44	-2.56
271.75	100.1	63	1.218	438	1.879	28	1.097	74	1.496	-1.86	-2.76
278.75	100.0	63	1.226	438	2.058	28	1.109	67	1.717	-0.89	-2.86
Tabulka		l								l .	

Tabulka A.10: Vyhodnocení proudů SPD pro 9. cyklus 2. bloku ETE. Popis viz tabulka A.1.

$\overline{\mathrm{T}_{\mathrm{eff}}}$	Power	N_{KNI}	σ_{KNI}	N_{det}	σ_{det}	N_{KNI}	σ_{KNI}	N_{det}	σ_{det}	AO_m	AO_c
[d]	[%]	vš	sechny d	etekto	ry	K_q	> 1.1	K_v	> 1.3	[%]	[%]
0.83	79.6	64	1.875	445	3.403	19	2.101	120	2.520	8.08	9.00
3.56	100.0	64	1.853	445	3.527	26	2.171	121	2.527	4.47	3.53
6.56	100.0	64	1.882	445	3.560	26	2.232	120	2.604	2.45	3.21
15.55	100.0	64	1.942	445	3.207	26	2.316	118	2.576	2.80	1.91
22.55	100.0	64	1.941	445	2.961	26	2.294	117	2.536	2.41	1.62
29.55	99.9	64	1.903	445	2.778	26	2.237	109	2.427	2.08	1.20
36.55	99.9	64	1.860	445	2.582	26	2.167	107	2.369	1.74	0.78
43.55	99.8	64	1.839	445	2.484	26	2.125	100	2.280	2.29	0.86
50.55	100.0	64	1.789	445	2.271	26	2.054	95	2.162	1.22	0.50
57.55	100.2	64	1.763	445	2.240	26	2.005	89	2.110	0.98	-0.12
64.55	100.1	64	1.727	445	2.181	26	1.943	87	2.056	0.59	-0.66
67.54	99.9	64	1.715	445	2.152	26	1.920	87	2.038	0.83	-0.42
71.54	100.0	64	1.709	445	2.177	26	1.904	87	2.043	0.87	-0.73
78.54	100.0	64	1.688	445	2.109	26	1.861	87	1.969	-0.16	-1.48
84.54	99.8	64	1.671	445	2.100	26	1.826	87	1.957	0.15	-1.35
91.54	99.8	64	1.651	445	2.291	26	1.783	87	2.019	0.79	-1.73
99.54	100.2	64	1.632	445	2.122	26	1.748	81	1.907	-0.07	-1.94
106.50	100.0	64	1.609	445	2.070	26	1.716	77	1.889	-0.48	-2.23
113.50	99.9	64	1.598	445	2.047	26	1.693	77	1.859	-1.27	-2.88
120.49	99.9	64	1.576	445	1.955	26	1.657	77	1.804	-1.73	-2.91
133.50	100.0	64	1.561	445	1.972	26	1.620	71	1.804	-2.12	-3.43
141.50	99.9	64	1.538	445	1.954	26	1.588	71	1.789	-2.48	-3.76
148.50	100.1	64	1.542	445	2.073	26	1.582	71	1.823	-2.30	-4.21
155.50	100.0	64	1.544	445	2.119	26	1.578	71	1.840	-2.11	-4.26
162.50	99.9	64	1.534	445	2.084	26	1.564	71	1.818	-2.34	-4.42
169.50	100.0	64	1.527	445	1.988	26	1.541	71	1.763	-2.63	-4.27
176.50	100.0	64	1.518	445	1.996	26	1.522	65	1.777	-2.60	-4.34
183.49	100.2	64	1.514	445	1.994	26	1.520	52	1.803	-2.86	-4.67

Tabulka A.11: Vyhodnocení proudů SPD pro 10. cyklus 2. bloku ETE. Popis viz tabulka A.1.

kampaň	N	% N(> 0.4g/kg)	% N(> 0.7g/kg)
EDU - B1C19	120	1.7	0.0 %
EDU - B1C20	109	0.0	0.0~%
EDU - B1C21	123	2.4	0.0~%
EDU - B1C22	105	1.0	0.0~%
EDU - B1C23	115	2.6	0.0~%
EDU - B1C24	108	0.0	0.0~%
EDU - B1C25	117	0.0	0.0~%
EDU - B1C26	114	0.0	0.0~%
EDU – B1C27	111	0.9	0.0 %
celkem	1022	1.0	0.0 %

Tabulka A.12: Statistické zhodnocení srovnání vypočtené a měřené koncentrace kyseliny borité pro 1. blok EDU. Ve 2. sloupci je uveden počet hodnocených bodů v daném cyklu, ve 3., resp. 4. sloupci pak procento případů, ve kterém bylo překročeno kritérium 0.4 g/kg resp. 0.7 g/kg.

kampaň	N	% N(> 0.4g/kg)	% N(> 0.7g/kg)
EDU – B2C18	107	0.0	0.0 %
EDU - B2C19	108	0.0	0.0~%
EDU - B2C20	107	0.0	0.0~%
EDU - B2C21	100	0.0	0.0~%
EDU - B2C22	109	0.0	0.0~%
EDU - B2C23	117	0.0	$0.0 \ \%$
EDU - B2C24	122	0.8	0.0~%
EDU - B2C25	106	0.0	0.0~%
EDU - B2C26	97	1.0	0.0~%
EDU - B2C27	58	0.0	0.0 %
celkem	1031	0.2	0.0 %

Tabulka A.13: Statistické zhodnocení srovnání vypočtené a měřené koncentrace kyseliny borité pro 2. blok EDU. Ve 2. sloupci je uveden počet hodnocených bodů v daném cyklu, ve 3., resp. 4. sloupci pak procento případů, ve kterém bylo překročeno kritérium 0.4 g/kg resp. 0.7 g/kg.

kampaň	N	% N(> 0.4g/kg)	% N(> 0.7g/kg)
EDU – B3C19	109	0.0	0.0 %
EDU - B3C20	102	0.0	0.0~%
EDU - B3C21	117	0.0	0.0~%
EDU - B3C22	111	0.0	0.0~%
EDU - B3C23	120	7.5	0.0~%
EDU - B3C24	106	2.8	0.0~%
EDU - B3C25	104	6.7	0.0~%
EDU – B3C26	82	13.4	0.0 %
celkem	851	3.5	0.0 %

Tabulka A.14: Statistické zhodnocení srovnání vypočtené a měřené koncentrace kyseliny borité pro 3. blok EDU. Ve 2. sloupci je uveden počet hodnocených bodů v daném cyklu, ve 3., resp. 4. sloupci pak procento případů, ve kterém bylo překročeno kritérium 0.4 g/kg resp. 0.7 g/kg.

	BW _m [pcm]	BW _c [pcm]	ΔBW_{c-m} [pcm]	$\Delta \mathrm{BW}_{(\mathrm{c-m})/\mathrm{m}}$
	[Pcm]	[Pem]	[Pcm]	[/0]
Váha 1. skupiny	629	615	-13	-2.2
Váha 2. skupiny	621	611	-10	-1.6
Váha 3. skupiny	761	708	-53	-7.0
Váha 4. skupiny	724	693	-31	-4.3
Váha 5. skupiny	660	694	34	+5.3
Váha 6. skupiny	299	344	45	+15.1
Váha 7. skupiny	738	701	-36	-5.0
Váha 8. skupiny	704	688	-16	-2.4
Váha 9. skupiny	816	785	-31	-3.9
Váha 10. skupiny	499	544	44	+9.0

Tabulka A.15: Váhy skupin regulačních klastrů, 2. cyklus 1. bloku ETE; měřená a vypočtená hodnota, absolutní a relativní odchylka

	$\mathrm{BW_m}$ [pcm]	$\mathrm{BW_{c}}$ [pcm]	ΔBW_{c-m} [pcm]	$\begin{array}{c} \Delta BW_{(c-m)/m} \\ [\%] \end{array}$
Váha 1. skupiny	864	919	54	+6.4
Váha 2. skupiny	864	918	53	+6.2
Váha 3. skupiny	556	537	-18	-3.3
Váha 4. skupiny	554	537	-17	-3.2
Váha 5. skupiny	615	686	70	+11.5
Váha 6. skupiny	397	503	105	+26.7
Váha 7. skupiny	824	857	32	+4.0
Váha 8. skupiny	821	852	30	+3.8
Váha 9. skupiny	658	691	33	+5.0
Váha 10. skupiny	521	630	109	+21.0

Tabulka A.16: Váhy skupin regulačních klastrů, 3. cyklus 1. bloku ETE; měřená a vypočtená hodnota, absolutní a relativní odchylka

	$\mathrm{BW_m}$ [pcm]	$\mathrm{BW_{c}}$ [pcm]	ΔBW_{c-m} [pcm]	$\begin{array}{c} \Delta BW_{(c-m)/m} \\ [\%] \end{array}$
Váha 1. skupiny	621 / 613	664	42 / 50	+6.9 / +8.3
Váha 2. skupiny	628 / 621	665	37 / 43	+5.9 / +7.0
Váha 3. skupiny	505 / 503	538	32 / 34	+6.4 / +6.9
Váha 4. skupiny	500 / 505	540	40 / 35	+8.0 / +7.0
Váha 5. skupiny	651 / 655	738	87 / 83	+13.5 / +12.7
Váha 6. skupiny	418 / 410	505	86 / 94	+20.8 / +23.0
Váha 7. skupiny	755 / 755	799	43 / 43	+5.7 / +5.7
Váha 8. skupiny	768 / 773	804	36 / 31	+4.7 / +4.1
Váha 9. skupiny	755 / 768	809	53 / 40	+7.1 / +5.3
Váha 10. skupiny	522 / 512	590	67 / 77	+12.9 / +15.2

Tabulka A.17: Váhy skupin regulačních klastrů, 4. cyklus 1. bloku ETE; měřená a vypočtená hodnota, absolutní a relativní odchylka

	$\mathrm{BW_m}$ [pcm]	$\mathrm{BW_{c}}$ [pcm]	ΔBW_{c-m} [pcm]	$\begin{array}{c} \Delta BW_{(c-m)/m} \\ [\%] \end{array}$
Váha 1. skupiny	462	481	19	+4.1
Váha 2. skupiny	467	484	16	+3.6
Váha 3. skupiny	557	527	-29	-5.3
Váha 4. skupiny	560	530	-29	-5.3
Váha 5. skupiny	804	819	15	+1.9
Váha 6. skupiny	551	579	27	+5.0
Váha 7. skupiny	835	846	10	+1.3
Váha 8. skupiny	831	851	19	+2.4
Váha 9. skupiny	611	602	-8	-1.4
Váha 10. skupiny	889	952	63	+7.1

Tabulka A.18: Váhy skupin regulačních klastrů, 5. cyklus 1. bloku ETE; měřená a vypočtená hodnota, absolutní a relativní odchylka

	$\mathrm{BW_m}$ [pcm]	BW _c [pcm]	ΔBW_{c-m} [pcm]	$\begin{array}{c} \Delta BW_{(c-m)/m} \\ [\%] \end{array}$
Váha 1. skupiny	496 / 491	534	37 / 42	+7.6 / +8.7
Váha 2. skupiny	506 / 502	542	36 / 40	+7.2 / +8.0
Váha 3. skupiny	631 / 617	644	13 / 27	+2.1 / +4.4
Váha 4. skupiny	625 / 609	622	-3 / 12	-0.5 / +2.1
Váha 5. skupiny	745 / 722	774	29 / 51	+3.9 / +7.2
Váha 6. skupiny	497 / 497	519	22 / 22	+4.5 / +4.5
Váha 7. skupiny	810 / 798	834	24 / 35	+3.0 / +4.5
Váha 8. skupiny	829 / 835	848	19 / 13	+2.3 / +1.6
Váha 9. skupiny	816 / 801	854	38 / 53	+4.7 / +6.7
Váha 10. skupiny	759 / 752	799	40 / 47	+5.3 / +6.3

Tabulka A.19: Váhy skupin regulačních klastrů, 5-1. cyklus 1. bloku ETE; měřená a vypočtená hodnota, absolutní a relativní odchylka

	$\mathrm{BW_{m}}$ [pcm]	$\mathrm{BW_{c}}$ [pcm]	ΔBW_{c-m} [pcm]	$\begin{array}{c} \Delta BW_{(c-m)/m} \\ [\%] \end{array}$
Váha 1. skupiny	633	609	-23	-3.7
Váha 2. skupiny	615	606	-9	-1.5
Váha 3. skupiny	754	725	-28	-3.8
Váha 4. skupiny	707	710	3	+0.5
Váha 5. skupiny	660	677	16	+2.5
Váha 6. skupiny	280	324	44	+15.9
Váha 7. skupiny	732	699	-33	-4.5
Váha 8. skupiny	695	685	-9	-1.4
Váha 9. skupiny	810	791	-19	-2.4
Váha 10. skupiny	465	523	57	+12.5

Tabulka A.20: Váhy skupin regulačních klastrů, 2. cyklus 2. bloku ETE; měřená a vypočtená hodnota, absolutní a relativní odchylka

	BW _m [pcm]	$\mathrm{BW_{c}}$ [pcm]	ΔBW_{c-m} [pcm]	$\begin{array}{c} \Delta BW_{(c-m)/m} \\ [\%] \end{array}$
Váha 1. skupiny	658	699	41	+6.3
Váha 2. skupiny	663	698	35	+5.4
Váha 3. skupiny	559	599	40	+7.3
Váha 4. skupiny	533	582	49	+9.2
Váha 5. skupiny	803	844	41	+5.2
Váha 6. skupiny	475	500	25	+5.4
Váha 7. skupiny	780	840	60	+7.8
Váha 8. skupiny	758	827	69	+9.2
Váha 9. skupiny	694	753	59	+8.5
Váha 10. skupiny	732	775	43	+6.0

Tabulka A.21: Váhy skupin regulačních klastrů, 3. cyklus 2. bloku ETE; měřená a vypočtená hodnota, absolutní a relativní odchylka

	$\mathrm{BW_{m}}$ [pcm]	$\mathrm{BW_{c}}$ [pcm]	ΔBW_{c-m} [pcm]	$\begin{array}{c} \Delta BW_{(c-m)/m} \\ [\%] \end{array}$
Váha 1. skupiny	565	590	24	+4.4
Váha 2. skupiny	563	579	15	+2.7
Váha 3. skupiny	577	612	34	+6.0
Váha 4. skupiny	607	634	27	+4.5
Váha 5. skupiny	707	775	68	+9.6
Váha 6. skupiny	401	461	59	+14.8
Váha 7. skupiny	818	870	51	+6.3
Váha 8. skupiny	797	848	51	+6.5
Váha 9. skupiny	800	839	39	+4.9
Váha 10. skupiny	666	761	95	+14.3

Tabulka A.22: Váhy skupin regulačních klastrů, 4. cyklus 2. bloku ETE; měřená a vypočtená hodnota, absolutní a relativní odchylka

	BW _m [pcm]	BW _c [pcm]	ΔBW_{c-m} [pcm]	$\begin{array}{c} \Delta BW_{(c-m)/m} \\ [\%] \end{array}$
Váha 1. skupiny	531 / 538	512	-18 / -25	-3.6 / -4.8
Váha 2. skupiny	522 / 531	512	-10 / -19	-1.9 / -3.6
Váha 3. skupiny	787 / 800	823	35 / 23	+4.5 / +2.9
Váha 4. skupiny	774 / 759	823	48 / 64	+6.3 / +8.5
Váha 5. skupiny	463 / 463	425	-38 / -37	-8.2 / -8.2
Váha 6. skupiny	245 / 246	210	-34 / -35	-14.2 / -14.5
Váha 7. skupiny	565 / 574	545	-20 / -29	-3.6 / -5.1
Váha 8. skupiny	561 / 575	545	-16 / -30	-2.9 / -5.2
Váha 9. skupiny	883 / 897	906	22 / 9	+2.6 / +1.0
Váha 10. skupiny	425 / 433	400	-25 / -32	-6.0 / -7.5

Tabulka A.23: Váhy skupin regulačních klastrů, 9. cyklus 1. bloku ETE; měřená a vypočtená hodnota, absolutní a relativní odchylka

	${ m BW_m}$ [pcm]	$\mathrm{BW_{c}}$ [pcm]	ΔBW_{c-m} [pcm]	$\begin{array}{c} \Delta BW_{(c-m)/m} \\ [\%] \end{array}$
Váha 1. skupiny	516 / 517	495	-20 / -22	-4.0 / -4.3
Váha 2. skupiny	509 / 510	493	-15 / -16	-3.0 / -3.3
Váha 3. skupiny	683 / 666	709	25 / 43	+3.7 / +6.5
Váha 4. skupiny	679 / 675	714	34 / 38	+5.0 / +5.7
Váha 5. skupiny	521 / 524	476	-44 / -47	-8.6 / -9.1
Váha 6. skupiny	170 / 169	146	-24 / -22	-14.1 / -13.6
Váha 7. skupiny	606 / 601	584	-22 / -17	-3.7 / -2.8
Váha 8. skupiny	608 / 611	586	-21 / -24	-3.6 / -4.0
Váha 9. skupiny	872 / 881	896	23 / 14	+2.7 / +1.6
Váha 10. skupiny	508 / 511	471	-37 / -39	-7.3 / -7.8

Tabulka A.24: Váhy skupin regulačních klastrů, 10. cyklus 1. bloku ETE; měřená a vypočtená hodnota, absolutní a relativní odchylka

	BW _m [pcm]	BW _c [pcm]	ΔBW_{c-m} [pcm]	$\begin{array}{c} \Delta BW_{(c-m)/m} \\ [\%] \end{array}$
Váha 1. skupiny	530 / 525	504	-26 / -20	-5.0 / -3.9
Váha 2. skupiny	527 / 516	504	-22 / -12	-4.3 / -2.4
Váha 3. skupiny	809 / 800	834	25 / 34	+3.1 / +4.3
Váha 4. skupiny	791 / 790	834	43 / 43	+5.5 / +5.6
Váha 5. skupiny	447 / 436	409	-37 / -26	-8.5 / -6.1
Váha 6. skupiny	223 / 219	198	-24 / -20	-11.0 / -9.4
Váha 7. skupiny	572 / 562	539	-33 / -22	-5.8 / -4.1
Váha 8. skupiny	563 / 563	539	-24 / -23	-4.3 / -4.2
Váha 9. skupiny	896 / 889	908	12 / 19	+1.4 / +2.1
Váha 10. skupiny	406 / 400	382	-23 / -17	-5.9 / -4.5

Tabulka A.25: Váhy skupin regulačních klastrů, 9. cyklus 2. bloku ETE; měřená a vypočtená hodnota, absolutní a relativní odchylka

	$\mathrm{BW_m}$ [pcm]	$\mathrm{BW_{c}}$ [pcm]	ΔBW_{c-m} [pcm]	$\begin{array}{c} \Delta BW_{(c-m)/m} \\ [\%] \end{array}$
Váha 1. skupiny	508 / 522	473	-34 / -49	-6.8 / -9.4
Váha 2. skupiny	511 / 516	486	-24 / -29	-4.9 / -5.7
Váha 3. skupiny	733 / 741	711	-22 / -30	-3.1 / -4.1
Váha 4. skupiny	764 / 759	770	6 / 11	+0.9 / +1.5
Váha 5. skupiny	577 / 583	526	-50 / -57	-8.8 / -9.8
Váha 6. skupiny	227 / 228	206	-20 / -22	-9.1 / -9.7
Váha 7. skupiny	515 / 520	472	-42 / -48	-8.2 / -9.2
Váha 8. skupiny	523 / 526	489	-33 / -37	-6.4 / -7.0
Váha 9. skupiny	862 / 864	891	29 / 27	+3.4 / +3.2
Váha 10. skupiny	470 / 472	445	-25 / -27	-5.4 / -5.8

Tabulka A.26: Váhy skupin regulačních klastrů, 10. cyklus 2. bloku ETE; měřená a vypočtená hodnota, absolutní a relativní odchylka

рříloha B

Grafy a obrázky

Obrázek B.1: Rozdíly v pokazetových výkonech, 1. cyklus 1. bloku ETE. Horní hodnota udává střední odchylku mezi monitorovanou a vypočtenou hodnotou relativního pokazetového výkonu během cyklu (té také odpovídá barevná škála), spodní hodnota pak střední kvadratickou odchylku.

Obrázek B.2: Rozdíly v pokazetových výkonech, 2. cyklus 1. bloku ETE. Popis viz obr. B.1.

Obrázek B.3: Rozdíly v pokazetových výkonech, 3. cyklus 1. bloku ETE. Popis viz obr. B.1.

Obrázek B.4: Rozdíly v pokazetových výkonech, 4. cyklus 1. bloku ETE. Popis viz obr. B.1.

Obrázek B.5: Rozdíly v pokazetových výkonech, 5. cyklus 1. bloku ETE. Popis viz obr. B.1.

Obrázek B.6: Rozdíly v pokazetových výkonech, 5-1. cyklus 1. bloku ETE. Popis viz obr. B.1.

Obrázek B.7: Rozdíly v pokazetových výkonech, 1. cyklus 2. bloku ETE. Popis viz obr. B.1.

Obrázek B.8: Rozdíly v pokazetových výkonech, 2. cyklus 2. bloku ETE. Popis viz obr. B.1.

Obrázek B.9: Rozdíly v pokazetových výkonech, 3. cyklus 2. bloku ETE. Popis viz obr. B.1.

Obrázek B.10: Rozdíly v pokazetových výkonech, 4. cyklus 2. bloku ETE. Popis viz obr. B.1.

Obrázek B.11: Rozdíly v pokazetových výkonech, 9. cyklus 1. bloku ETE. Popis viz obr. B.1.

Obrázek B.12: Rozdíly v pokazetových výkonech, 10. cyklus 1. bloku ETE. Popis viz obr. B.1.

Obrázek B.13: Rozdíly v pokazetových výkonech, 9. cyklus 2. bloku ETE. Popis viz obr. B.1.

Obrázek B.14: Rozdíly v pokazetových výkonech, 10. cyklus 2. bloku ETE. Popis viz obr. B.1.

Obrázek B.15: Rozdíly v pokazetových výkonech, 19. cyklus 1. bloku EDU. Popis viz obr. B.1.

Obrázek B.16: Rozdíly v pokazetových výkonech, 20. cyklus 1. bloku EDU. Popis viz obr. B.1.

Obrázek B.17: Rozdíly v pokazetových výkonech, 21. cyklus 1. bloku EDU. Popis viz obr. B.1.

Obrázek B.18: Rozdíly v pokazetových výkonech, 22. cyklus 1. bloku EDU. Popis viz obr. B.1.

Obrázek B.19: Rozdíly v pokazetových výkonech, 23. cyklus 1. bloku EDU. Popis viz obr. B.1.

Obrázek B.20: Rozdíly v pokazetových výkonech, 24. cyklus 1. bloku EDU. Popis viz obr. B.1.

Obrázek B.21: Rozdíly v pokazetových výkonech, 25. cyklus 1. bloku EDU. Popis viz obr. B.1.

Obrázek B.22: Rozdíly v pokazetových výkonech, 26. cyklus 1. bloku EDU. Popis viz obr. B.1.

Obrázek B.23: Rozdíly v pokazetových výkonech, 27. cyklus 1. bloku EDU. Popis viz obr. B.1.

Obrázek B.24: Rozdíly v pokazetových výkonech, 18. cyklus 2. bloku EDU. Popis viz obr. B.1.

Obrázek B.25: Rozdíly v pokazetových výkonech, 19. cyklus 2. bloku EDU. Popis viz obr. B.1.

Obrázek B.26: Rozdíly v pokazetových výkonech, 20. cyklus 2. bloku EDU. Popis viz obr. B.1.

Obrázek B.27: Rozdíly v pokazetových výkonech, 21. cyklus 2. bloku EDU. Popis viz obr. B.1.

Obrázek B.28: Rozdíly v pokazetových výkonech, 22. cyklus 2. bloku EDU. Popis viz obr. B.1.

Obrázek B.29: Rozdíly v pokazetových výkonech, 23. cyklus 2. bloku EDU. Popis viz obr. B.1.

Obrázek B.30: Rozdíly v pokazetových výkonech, 24. cyklus 2. bloku EDU. Popis viz obr. B.1.

Obrázek B.31: Rozdíly v pokazetových výkonech, 25. cyklus 2. bloku EDU. Popis viz obr. B.1.

Obrázek B.32: Rozdíly v pokazetových výkonech, 26. cyklus 2. bloku EDU. Popis viz obr. B.1.

Obrázek B.33: Rozdíly v pokazetových výkonech, 27. cyklus 2. bloku EDU. Popis viz obr. B.1.

Obrázek B.34: Rozdíly v pokazetových výkonech, 19. cyklus 3. bloku EDU. Popis viz obr. B.1.

Obrázek B.35: Rozdíly v pokazetových výkonech, 20. cyklus 3. bloku EDU. Popis viz obr. B.1.

Obrázek B.36: Rozdíly v pokazetových výkonech, 21. cyklus 3. bloku EDU. Popis viz obr. B.1.

Obrázek B.37: Rozdíly v pokazetových výkonech, 22. cyklus 3. bloku EDU. Popis viz obr. B.1.

Obrázek B.38: Rozdíly v pokazetových výkonech, 23. cyklus 3. bloku EDU. Popis viz obr. B.1.

Obrázek B.39: Rozdíly v pokazetových výkonech, 24. cyklus 3. bloku EDU. Popis viz obr. B.1.

Obrázek B.40: Rozdíly v pokazetových výkonech, 25. cyklus 3. bloku EDU. Popis viz obr. B.1.

Obrázek B.41: Rozdíly v pokazetových výkonech, 26. cyklus 3. bloku EDU. Popis viz obr. B.1.

Obrázek B.42: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 1. cyklus 1. bloku ETE.

Obrázek B.43: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 2. cyklus 1. bloku ETE.

Obrázek B.44: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 3. cyklus 1. bloku ETE.

Obrázek B.45: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 4. cyklus 1. bloku ETE.

Obrázek B.46: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 5. cyklus 1. bloku ETE.

Obrázek B.47: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 5-1. cyklus 1. bloku ETE.

Obrázek B.48: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 1. cyklus 2. bloku ETE.

Obrázek B.49: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 2. cyklus 2. bloku ETE.

Obrázek B.50: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 3. cyklus 2. bloku ETE.

Obrázek B.51: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 4. cyklus 2. bloku ETE.

Obrázek B.52: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 9. cyklus 1. bloku ETE.

Obrázek B.53: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 10. cyklus 1. bloku ETE.

Obrázek B.54: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 9. cyklus 2. bloku ETE.

Obrázek B.55: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 10. cyklus 2. bloku ETE.

Obrázek B.56: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 19. cyklus 1. bloku EDU.

Obrázek B.57: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 20. cyklus 1. bloku EDU.

Obrázek B.58: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 21. cyklus 1. bloku EDU.

Obrázek B.59: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 22. cyklus 1. bloku EDU.

Obrázek B.60: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 23. cyklus 1. bloku EDU.

Obrázek B.61: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 24. cyklus 1. bloku EDU.

Obrázek B.62: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 25. cyklus 1. bloku EDU.

Obrázek B.63: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 26. cyklus 1. bloku EDU.

Obrázek B.64: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 27. cyklus 1. bloku EDU.

Obrázek B.65: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 18. cyklus 2. bloku EDU.

Obrázek B.66: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 19. cyklus 2. bloku EDU.

Obrázek B.67: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 20. cyklus 2. bloku EDU.

Obrázek B.68: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 21. cyklus 2. bloku EDU.

Obrázek B.69: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 22. cyklus 2. bloku EDU.

Obrázek B.70: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 23. cyklus 2. bloku EDU.

Obrázek B.71: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 24. cyklus 2. bloku EDU.

Obrázek B.72: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 25. cyklus 2. bloku EDU.

Obrázek B.73: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 26. cyklus 2. bloku EDU.

Obrázek B.74: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 27. cyklus 2. bloku EDU.

Obrázek B.75: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 19. cyklus 3. bloku EDU.

Obrázek B.76: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 20. cyklus 3. bloku EDU.

Obrázek B.77: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 21. cyklus 3. bloku EDU.

Obrázek B.78: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 22. cyklus 3. bloku EDU.

Obrázek B.79: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 23. cyklus 3. bloku EDU.

Obrázek B.80: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 24. cyklus 3. bloku EDU.

Obrázek B.81: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 25. cyklus 3. bloku EDU.

Obrázek B.82: Srovnání vypočtené a měřené kritické koncentrace kyseliny borité, 26. cyklus 3. bloku EDU.

Obrázek B.83: Průměrná relativní odchylka Δi pro proudy SPD (viz rovnice (5.6)) a její rozptyl v 1. axiální vrstvě řetězce na blocích ETE.

Obrázek B.84: Průměrná relativní odchylka Δi pro proudy SPD (viz rovnice (5.6)) a její rozptyl v 2. axiální vrstvě řetězce na blocích ETE.

Obrázek B.85: Průměrná relativní odchylka Δi pro proudy SPD (viz rovnice (5.6)) a její rozptyl v 3. axiální vrstvě řetězce na blocích ETE.

Obrázek B.86: Průměrná relativní odchylka Δi pro proudy SPD (viz rovnice (5.6)) a její rozptyl v 4. axiální vrstvě řetězce na blocích ETE.

Obrázek B.87: Průměrná relativní odchylka Δi pro proudy SPD (viz rovnice (5.6)) a její rozptyl v 5. axiální vrstvě řetězce na blocích ETE.

Obrázek B.88: Průměrná relativní odchylka Δi pro proudy SPD (viz rovnice (5.6)) a její rozptyl v 6. axiální vrstvě řetězce na blocích ETE.

Obrázek B.89: Průměrná relativní odchylka Δi pro proudy SPD (viz rovnice (5.6)) a její rozptyl v 7. axiální vrstvě řetězce na blocích ETE.

Obrázek B.90: Průměrná relativní odchylka Δi pro proudy SPD (viz rovnice (5.6)) a její rozptyl ve všech axiálních vrstvách na blocích ETE.

Obrázek B.91: Průměrná relativní odchylka ΔI pro proudy KNI (viz rovnice (5.7)) a její rozptyl na blocích ETE.