

Nombre	/Id:	Nota:	/10

1. (5 points) Complete los espacios en blanco en la siguiente expresión. Sean A un anillo y $\mathfrak{a} \subset A$ un ideal. Se define el lugar de <u>ANULACIÓN</u> de \mathfrak{a} como:

$$V(\mathfrak{a}) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{p} \supset \mathfrak{a} \}$$

Estos definen los conjuntos <u>CERRADOS</u> de la topología de <u>ZARISKI</u> de Spec A.

2. (3 points) Sea $\phi \colon A \to B$ un homomorfismo de anillos. Pruebe que la función

$$\operatorname{Spec} \phi \colon \operatorname{Spec} B \xrightarrow{\mathfrak{q} \mapsto \phi^{-1}(\mathfrak{q})} \operatorname{Spec} A$$

está bien definida (i.e. $\phi^{-1}(\mathfrak{q}) \in \operatorname{Spec} A$).

Solution: Sea \mathfrak{q} un ideal primo de B. Hay que probar que $\phi^{-1}(\mathfrak{q})$ es un ideal primo de A, i.e. que $A/\phi^{-1}(\mathfrak{q})$ es un domio entero. Note que $\phi^{-1}(\mathfrak{q})$ es el núcleo de la composición $A \to B \to B/\mathfrak{q}$. En particular, por los teoremas del ismorfismo, $A/\phi^{-1}(\mathfrak{q})$ se puede ver como un subanillo de B/\mathfrak{q} y entonces es un dominio entero.

3. (2 points) Use el ejemplo $\phi \colon \mathbb{C}[t] \xrightarrow{\subseteq} \mathbb{C}(t)$ para mostrar que $(\operatorname{Spec} \phi)(\mathfrak{q})$ no es necesariamente maximal aún si \mathfrak{q} lo es.

Solution: Sea $f = \operatorname{Spec} \phi$. Note que $\operatorname{Spec} \mathbb{C}(t) = \{0\}$ y $f(0) = \ker \phi = 0 \subset \mathbb{C}[t]$. Sin embargo, $0 \subset \mathbb{C}[t]$ no es un ideal maximal pues $\mathbb{C}[t]$ no es un cuerpo.