

korean-summarization

2020-07-01 ~ 2020-12-31까지 진행한 문서요약 프로젝트의 아카이브입니다.

Datasets

한글 데이터셋

• 신문기사

• train: 260,697

dev: 10,000

• test: 10,000

• 사설, 잡지

• train: 53,265

dev: 5,000

• test: 5,000

• 법률문서

train: 20,000

· dev: 2,695

· test: 2,694

Models & checkpoints

requirements는 최소한의 필요 패키지만 기재했습니다. 하이퍼 파라미터 및 실행 방법은 각 모델의 **학습&테스트 쉘 스크립트**를 참조해주세요.

전체적인 모델의 학습 환경은 Ubuntu 18.04 / CUDA 10.1 입니다.

Extractive Summarization

1. TextRank (paper link)

작성자의 코드 매뉴얼

프레임워크: pytorch

requirements

```
numpy==1.17.2
konlpy==0.5.2
tqdm==4.46.0
sklearn
```

소스코드

실행코드(학습 불필요)

```
scripts/

-- test_textrank_news.sh
-- test_textrank_magazine.sh
-- test_textrank_law.sh
```

2. SummaRunner(paper link, checkpoint)

작성자의 코드 매뉴얼

프레임워크: pytorch-lightning

requirements

```
torch==1.4.0

pytorch-lightning==1.0.2

numpy==1.17.2

konlpy==0.5.2

tqdm==4.46.0

dil==0.3.1.1
```

소스코드

```
src/
— extractive/
— summarunner/
```

```
scripts/
L train_summarunner_news.sh
L train_summarunner_magazine.sh
L train_summarunner_law.sh
L test_summarunner_news.sh
L test_summarunner_magazine.sh
L test_summarunner_law.sh
```

3. BertSumExt (paper link, checkpoint)

작성자의 코드 매뉴얼

프레임워크: pytorch

아래 내용은 BertSumAbs와 동일합니다.

requirement 설치 전, 아래 명령어를 통해 KoBERT 설치 필요

```
git clone https://github.com/SKTBrain/KoBERT.git
cd KoBERT
pip install -r requirements.txt
pip install .
```

requirements

```
multiprocess==0.70.9
mxnet == 1.7.0.post1
gluonnlp == 0.10.0
sentencepiece == 0.1.6
onnxruntime == 0.3.0
numpy==1.17.2
pyrouge==0.1.3
transformers==3.0.2
tensorboardX==1.9
torch==1.1.0
konlpy
```

소스코드

```
src/
└─ bertsum/
```

```
scripts/

L train_bertsumext_news.sh

L test_bertsumext_news.sh

L test_bertsumext_magazine.sh

L test_bertsumext_law.sh
```

Abstractive Summarization

1. PointerGenerator (paper link, checkpoint)

작성자의 코드 매뉴얼

프레임워크: pytorch-lightning

mecab tokenizer와 sentencepiece tokenizer를 사용하는 버전이 각각 존재하는데, mecab은 문장 생성 시 원형 단어를 복원할 수 없어 결과가 불완전합니다.

따라서 sentencepiece tokenizer 사용을 추천드립니다.

학습은 covloss를 사용하지 않고 학습한 뒤 covloss를 사용하여 조금 더 학습했습니다(논문 참고).

requirements

```
konlpy==0.5.2
gluonnlp==0.10.0
mxnet == 1.7.0.post1
onnxruntime == 0.3.0
pytorch-lightning==1.0.5
transformers==4.0.1
numpy==1.17.2
tqdm==4.46.0
tensorboard==2.4.0
sklearn
```

소스코드

```
src/
└── abstractive/
└── pointergenerator/
```

```
scripts/
L train_pointer_generator_sp_news.sh
L train_pointer_generator_mecab.sh
L test_pointer_generator_sp_news.sh
L test_pointer_generator_sp_magazine.sh
L test_pointer_generator_sp_law.sh
```

2. BottomUpSummarization (paper link)

작성자의 코드 매뉴얼

프레임워크: pytorch-lightning

bottomup 폴더의 소스코드는 bottom-up summarization을 위해 필요한 input 파일을 생성하기 위한 BERT 모델입니다.

input 파일이 생성되면 이를 pointer-generator 모델의 input으로 추가해서 사용합니다.

• 주의: 실험 결과 한국어에 대해서는 bottom-up을 진행하지 않은 일반 pointer-generator가 성능이 더 잘 나옵니다. 사용 시 참고해주세요.

requirements

```
konlpy==0.5.2
gluonnlp==0.10.0
mxnet == 1.7.0.post1
onnxruntime == 0.3.0
pytorch-lightning==1.0.5
transformers==4.0.1
numpy==1.17.2
tqdm==4.46.0
tensorboard==2.4.0
sklearn
```

소스코드

```
src/
L abstractive/
L bottomup/
L pointergenerator/
```

```
scripts/
L train_bottomup.sh
L train_pointer_generator_mecab.sh
L test_pointer_generator_sp_news.sh
L test_pointer_generator_sp_magazine.sh
L test_pointer_generator_sp_law.sh
```

3. BertSumAbs (paper link, checkpoint)

작성자의 코드 매뉴얼

프레임워크: pytorch

아래 내용은 BertSumExt와 동일합니다.

requirement 설치 전, 아래 명령어를 통해 KoBERT 설치 필요

```
git clone https://github.com/SKTBrain/KoBERT.git
cd KoBERT
pip install -r requirements.txt
pip install .
```

requirements

```
multiprocess==0.70.9
mxnet == 1.7.0.post1
gluonnlp == 0.10.0
sentencepiece == 0.1.6
onnxruntime == 0.3.0
numpy==1.17.2
pyrouge==0.1.3
transformers==3.0.2
tensorboardX==1.9
torch==1.1.0
konlpy
```

소스코드

```
src/
└─ bertsum/
```

scripts/

└─ train_bertsumext_news.sh

└─ test_bertsumext_news.sh

└─ test_bertsumext_magazine.sh

└─ test_bertsumext_law.sh

ROUGE Score on test set

생성 요약 및 추출 요약 모두 모델이 생성/선택한 정답 문장과 **생성요약문**과의 rouge score를 계산합니다.

Abstractive

신문기사

Model	Reference	ROUGE-1(F1)	ROUGE-2(F1)	ROUGE-L(F1)
Pointer Generator	생성요약문	46.3	29.8	37.7
Bottom up	생성요약문	41.5	22.9	31.2
BertSumAbs	생성요약문	52.0	34.6	41.9

잡지, 기고문

Model	Reference	ROUGE-1(F1)	ROUGE-2(F1)	ROUGE-L(F1)
Pointer Generator	생성요약문	49.4	31.1	37.8
Bottom up	생성요약문	40.3	18.6	27.0
BertSumAbs	생성요약문	54.8	36.0	42.4

법률문서

Model	Reference	ROUGE-1(F1)	ROUGE-2(F1)	ROUGE-L(F1)
Pointer Generator	생성요약문	32.8	14.5	24.5
Bottom up	생성요약문	31.8	12.2	23.3

Model	Reference	ROUGE-1(F1)	ROUGE-2(F1)	ROUGE-L(F1)
BertSumAbs	생성요약문	38.2	18.4	28.8

Extractive

주의: 추출요약은 대부분의 논문이 생성요약 정답문과의 비교를 통한 greedy selection 방식으로 정답 요약 문을 설정합니다(e.g. oracle summary).

이는 존재하는 대부분의 벤치마크 데이터셋(ex. CNN/DailyMail)이 생성요약 정답문만을 제공하기 때문입니다.

그러나 본 과제에서는 추출요약 정답문도 annotator들에 의해 생성되었습니다.

TextRank와 Summarunner는 annotator가 생성한 추출 요약 정답문을 사용해 학습되었고 BertSumExt 는 성능 문제로 greedy selection을 통해 선정된 추출 요약 정답문을 이용해 학습되었습니다.

신문기사

Model	Reference	ROUGE-1(F1)	ROUGE-2(F1)	ROUGE-L(F1)
TextRank	생성요약문	36.0	19.1	25.5
SummaRunner	생성요약문	48.2	32.4	35.4
BertSumExt	생성요약문	50.8	35.6	38.0

잡지, 기고문

Model	Reference	ROUGE-1(F1)	ROUGE-2(F1)	ROUGE-L(F1)
TextRank	생성요약문	31.6	11.2	21.0
SummaRunner	생성요약문	39.8	20.7	30.4
BertSumExt	생성요약문	38.3	19.3	28.0

법률문서

Model	Reference	ROUGE-1(F1)	ROUGE-2(F1)	ROUGE-L(F1)
TextRank	생성요약문	55.1	37.9	44.0

Model	Reference	ROUGE-1(F1)	ROUGE-2(F1)	ROUGE-L(F1)
SummaRunner	생성요약문	56.2	39.0	46.4
BertSumExt	생성요약문	56.9	39.8	38.8