Mein Titel

Untertitel

Bachelorarbeit

vorgelegt am 27. Februar 2023

Fakultät Wirtschaft

 $Studiengang\ Wirtschaftsinformatik$

Kurs WWI2020F

von

LEON HENNE

Betreuerin in der Ausbildungsstätte:

DHBW Stuttgart:

IBM Deutschland GmbH

Sophie Lang

Senior Data Scientist

Prof. Dr. Kai Holzweißig Studiendekan Wirtschaftsinformatik

Unterschrift der Betreuerin

Inhaltsverzeichnis

Αl	Abkürzungsverzeichnis Abbildungsverzeichnis							
Αl								
Ta	abellenverzeichnis	\mathbf{V}						
1	Einleitung 1.1 Problemstellung							
2	Diskussion des aktuellen Stands der Forschung und Praxis 2.1 Verstärkendes Lernen	4 4						
3	Durchführung des Laborexperiments	6						
4	Ergebnisse des Laborexperiments							
5	Reflexion und Forschungsausblick							
Αı	nhang	9						
Literaturverzeichnis								

Abkürzungsverzeichnis

 $\mathbf{DHBW}\;$ Duale Hochschule Baden-Württemberg

RL Reinforcement Learning

KPI Key Performance Indicator

MARL Multi-Agent Reinforcement Learning

Abbildungsverzeichnis

1 vereinfachte Darstellung der Interaktion zwischen dem Agenten und seiner Umgebung

Tabellenverzeichnis

1 Einleitung

1.1 Problemstellung

Reinforcement Learning (RL) findet heutzutage bereits Anwendung in vielerlei Forschungsprojekten wie Deepmind AlphaStar oder OpenAI Five, aber auch in Produkten und Dienstleistungen wie AWSDeepRacer oder Metas Horizon open-source RL-Plattform.¹ RL ist im Bereich des maschinellen Lernens eine Herangehensweise zur Lösung von Entscheidungsproblemen.² Ein Software-Agent leitet dabei durchzuführende Aktionen aus seiner Umgebung ab, mit dem Ziel die kumulierte erhaltene Belohnung zu maximieren, währenddessen sich seine Umgebung durch alle Aktionen verändert.³ Die Umgebungen beinhalten in ihrer einfachsten Form eine simulierte Welt, welche zu jedem Zeitschritt eine Aktion entgegennimmt, und den eigenen nächsten Zustand sowie einen Belohnungswert zurückgibt. ⁴ Da ein Problem beim Einsatz von RL Algorithmen die Limitierungen sein können, Daten in der echten Welt zu sammeln und fürs Training zu verwenden, werden häufig hierfür Simulationsumgebungen eingesetzt.⁵ Eine Limitierung können bspw. Sicherheitsaspekte sein, welche beim Training von Roboterarmen, oder sich autonom bewegenden Systemen auftreten, da die einzelnen physischen Bewegungen nicht vorhersehbar abschätzbar sind.⁶ Simulationen nehmen damit als Testumgebung eine wichtige Rolle ein in der Entwicklung von Kontrollalgorithmen.⁷ Insgesamt bedarf die erfolgreiche Anwendung von Reinforcement Learning demnach nicht nur effiziente Algorithmen, sondern auch geeignete Simulationsumgebungen.⁸ Besonders schwierig, und daher sehr wichtig zu erforschen, ist es die Trainingsumgebung bestmöglich an die echte Welt anzupassen, sodass bspw. die Agenten für Roboter und autonome Fahrzeuge, nach dem Training mit generalisierten Policies in der Realität eingesetzt werden können.⁹ In der Forschungsliteratur wird diese beschriebene Problematik als "Sim to real"-Transfer beschrieben. 10 Eine Domäne der echten Welt wird dabei eher selten ausschließlich von veränderten dynamischen Parametern und nur einer Person oder nur einer Organisation geprägt. Oftmals beeinflussen mehrere Parteien teilweise kooperierend aber auch teilweise konkurrierend den eigenen Erfolg, wie bspw. einen dem Wettbewerb unterliegenden Markt. Stellt man sich ein solches Szenario vor, ist es naheliegend, dass auch jene Einflüsse möglichst präzise in die Simulationsumgebung integriert sein müssen, um ein generalisierendes Modell erlernen zu können. Während bereits in Produkten wie Powertac nach Collins/Ketter 2022 die Simulation von Märkten entwickelt wurde, scheint der Einfluss des Gegenspielers in kompetitiven

¹Vgl. Yuxi 2019, S. 4

²Vgl. Schuderer/Bromuri/van Eekelen 2021, S. 3

³Vgl. Schuderer/Bromuri/van Eekelen 2021, S. 3

⁴Vgl. Reda/Tao/van de Panne 2020, S. 1

⁵Vgl. Zhao/Queralta/Westerlund 2020, S. 737

⁶Vgl. Zhao/Queralta/Westerlund 2020, S. 738

⁷Vgl. Cutler/Walsh/How 2014, S. 2

 $^{^8\}mathrm{Vgl.}$ Reda/Tao/van de Panne 2020, S. 8

⁹Vgl. Slaoui u. a. 2019, S. 1

 $^{^{10}\}mathrm{Vgl.}$ Zhao/Queralta/Westerlund 2020, S. 738

Simulationen auf die Robustheit von RL Algorithmen und demnach auf die Lösung des "Sim to real"-Transfers unerforscht.

1.2 Zielsetzung

Daher soll im Rahmen dieser Arbeit untersucht werden, ob die Integrierung eines RL basierten Gegenspielers in einer Simulation die Umgebung so beeinflussen kann, dass die erlernten Verhaltensmodelle, welche im Kontext von RL oftmals als Policies referenziert werden, robuster agieren unter den veränderten dynamischen Bedingungen und alternativen deterministischen Gegenspielern im Testszenario.

Dazu soll eine kompetitive Simulationsumgebung entwickelt werden, in welcher sich zwei konkurrierender Spieler in Form von Flugobjekten spielerisch gegenseitig bekämpfen. In der Simulation werden folgend Policies in drei verschiedenen Szenarien trainiert.

- Training mit regelbasiertem Gegenspieler unter gleichbleibenden Dynamikparametern
- Training mit RL basiertem Gegenspieler unter gleichbleibenden Dynamikparametern
- Training mit regelbasiertem Gegenspieler unter sich verändernden Dynamikparametern

Anschließend werden alle trainierten Policies in einer Reihe von Testszenarien untersucht. Jedes Testszenario verfügt dabei über festgelegte sich vom Training unterscheidende Dynamikparameter und jeweils leicht unterschiedliche Handlungspräferenzen des deterministischen Gegenspielers. Bei der Untersuchung werden jeweils die folgenden Variablen als Key Performance Indicator (KPI) betrachtet.

- durchschnittlich erzielte Belohnung
- Varianz der Belohnungen
- Anzahl an Abstürzen

Aus der Auswertung der Testszenarien kann der Effekt des RL basierten Gegenspielers auf die Robustheit mittels des Vergleichs mit dem regelbasierten Gegenspieler und der Domain Randomization evaluiert werden.

1.3 Forschungsfrage

Aus der beschriebenen Problemstellung und der für den Rahmen dieser Arbeit festgelegten Zielsetzung ergibt sich folgende Forschungsfrage:

Kann durch den Einsatz eines mittels RL trainierten Gegenspielers die Robustheit der gelernten Policy verbessert werden?

Zur Beantwortung der Forschungsfrage werden folgende Hypothesen aufgestellt und im Rahmen der Arbeit untersucht:

Hypothese 1: Die durchschnittlich erzielte Belohnung ist under Verwendung der Policy aus dem Training mit RL basiertem Gegenspieler signifikant und zuverlässig höher als die Policy aus dem Training mit regelbasiertem Gegenspieler.

Hypothese 2: Die Varianz der Belohnung ist under Verwendung der Policy aus dem Training mit RL basiertem Gegenspieler signifikant und zuverlässig geringer als die Policy aus dem Training mit regelbasiertem Gegenspieler.

Hypothese 3: Die Anzahl von Abstürzen ist under Verwendung der Policy aus dem Training mit RL basiertem Gegenspieler signifikant und zuverlässig geringer als die Policy aus dem Training mit regelbasiertem Gegenspieler.

1.4 Forschungsmethodik

Als Forschungsmethodik soll im Rahmen dieser Arbeit ein quantitatives Laborexperiment nach Recker 2021 durchgeführt werden. Hierbei wird häufig nach dem hypothetisch-deduktives Modell vorgegangen, in welchem Hypothesen formuliert, empirische Studien entwickelt, Daten gesammelt, Hypothesen anhand dessen evaluiert und gewonnene Erkenntnisse berichtet werden. ¹¹ Eine Möglichkeit der Untersuchung der Ursache- und Wirkungsbeziehung stellt das Laborexperiment dar. ¹² Dabei wird die kontrollierte Umgebung der Simulation erschaffen, in welcher dessen Aufbau die unabhängige Variable darstellt. Die Metriken anhand die Performance und die Robustheit der trainierten Policies gemessen werden, bilden im Experiment die abhängigen Variablen.

1.5 Aufbau der Arbeit

Insgesamt gliedert sich die Arbeit nach einem Schema von Holzweißig 2022 Die Arbeit beginnt mit einem einleitenden Kapitel in welchem Motivation, Problemstellung, Zielsetzung und Forschungsmethodik erläutert sind. Anschließend wird im zweiten Kapitel der aktuelle Stand der Forschung zu den relevanten Konzepten der Problemstellung wiedergegeben. Im dritten Kapitel wird die Forschungsmethodik durchgeführt, indem die Simulationsumgebung als Messinstrument entwickelt wird sowie verschiedene Messszenarien erläutert und entsprechende Daten gesammelt werden. Daraufhin sind im folgenden vierten Kapitel die gesammelten Messdaten auszuwerten und aufgestellte Hypothesen zu überprüfen. Im Zuge dessen kann ebenso die Forschungsfrage anhand der Annahme oder Ablehnung der Hypothesen beantwortet werden. Abschließend wird im letzten Kapitel ein Fazit zu den erzielten Forschungsergebnissen dargelegt und ein Ausblick auf weitere Forschung gegeben.

 $^{^{11}}$ Vgl. Recker 2021, S. S.89f.

 $^{^{12}}$ Vgl. Recker 2021, S. 106

2 Diskussion des aktuellen Stands der Forschung und Praxis

2.1 Verstärkendes Lernen

Verstärkendes Lernen oder als RL in der Fachsprache bezeichnet, definiert einen konzeptionellen Ansatz zielorientiertes Lernen von Entscheidungen zu verstehen und zu automatisieren. ¹³ Dabei besteht der Fokus darauf das ein Agent aus der direkten Interaktion mit seiner Umgebung lernt, ohne das explizite Überwachung notwendig ist. ¹⁴ Der Agent lernt über die Zeit eine optimale Strategie zur Lösung des Entscheidungsproblems aus dem Versuchen von Aktionen und dem Scheitern der gewünschten Veränderung seiner Umwelt. ¹⁵ Notwendig dabei ist es, das der Agent den Zustand seiner Umgebung wahrnehmen, und auch durch entsprechende Aktionen beeinflussen kann, sodass die Erreichung des Zielzustandes möglich ist. ¹⁶ Zur Erreichung dieses Zielzustandes muss der Agent alle Aktionen entdecken, welche ihm die größtmögliche kumulierte Belohnung liefern, wobei Aktionen nicht nur die unmittelbare sondern auch zukünftige Belohnungen beeinflussen. ¹⁷ Zusammengefasst lässt sich die beschriebene Interaktion des Agenten mit seiner Umgebung wie folgt in Abbildung 1 darstellen.

Abb. 1: vereinfachte Darstellung der Interaktion zwischen dem Agenten und seiner Umgebung¹⁸

Ein Standardaufbau einer Aufgabe für verstärkendes Lernen kann demnach verstanden werden, als sequentielles Entscheidungsproblem zu dessen Lösung ein Agent zu jedem diskreten Zeitschritt eine Aktion ausführt welche den Zustand der Umgebung verändert. Betrachtet man die technische Umsetzung einer solchen Interaktion zwischen dem Agenten und dessen Umgebung, wird häufig zur Modellierung ein Markov Entscheidungsprozess verwendet. Im Kontext von RL ist der Entscheidungsprozess definiert nach einem Tupel aus folgenden sechs Elementen:²⁰

¹³Vgl. Sutton/Barto 2018, S. 13

¹⁴Vgl. Sutton/Barto 2018, S. 13

¹⁵Vgl. Yuxi 2019, S. 4

¹⁶Vgl. Sutton/Barto 2018, S. 2

 $^{^{17}\}mathrm{Vgl.}$ Sutton/Barto 2018, S. 1

¹⁸Enthalten in: Yuxi 2019, S. 5

¹⁹Vgl. Zhao/Queralta/Westerlund 2020, S. 2

 $^{^{20}\}mathrm{Vgl.}$ Zhang/Wu/Pineau 2018, S. 2

- ullet Alle Zustände S
- Alle Aktionen A
- initiale Zustandsverteilung p0(S)
- Übergangswahrscheinlichkeit $T(S_{t+1}|S_t, A_t)$
- Belohnungswahrscheinlichkeit $R(r_{t+1}|S_t, A_t)$
- Abzinsungsfaktor $\gamma \in [0, 1)$

Der Agent sucht in diesem Kontext die optimale Strategie π_{ϕ} , welche allen Zuständen S die jeweilige Aktion A(S) zuordnet, sodass die kummulierte Belohnungswahrscheinlichkeit $R(r_{t+1}|S_t,A_t)$ über alle Zeitschritte $t \to \infty$ maximal ist. 21 Neben dieser kurzfristigen direkten Belohnung müssen auch die langfristigen zukünftigen Belohnungen aus den neuen Zuständen betrachtet werden, wofür das Konzept der Wertigkeit eingeführt wird.²² Über eine Zustands- oder Aktionswertigkeitsfunktion oftmals als Q-Funktion referenziert, wird eine Vorhersage über die zu erwartende kumulierte abgezinste zukünftige Belohnung berechnet. 23 Durch den Abzinsungsfaktor γ wird der Einfluss zukünftiger Belohnungen nach ihrer zeitlichen Reihenfolge priorisiert.²⁴ Mit der Wertigkeitsfunktion kann evaluiert werden, welche Strategie langfristig am erfolgreichsten ist, da bspw. manche Aktionen trotz geringer sofortiger Belohnung einen hohen Wert aufweisen können, wenn aus dem zukünftigen Zustand eine hohe Belohnung zu erwarten ist. 25 Die Wertigkeitsfunktion und die daraus berechneten Wertigkeiten von Aktionen oder Zuständen werden über alle Zeitschritte neu geschätzt und stellen mit die wichtigste Komponenten in Algorithmen des verstärkenden Lernens dar. 26 Methoden basierend auf diesem Wertigkeitswert lernen jene Wertigkeitsfunktion jedes Zustandsaktions-Paares der optimalen Strategie π durch aktualisieren der folgenden zwei Funktionen:²⁷

• 1:
$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

• 2:
$$V(s_t) = \max_a Q(s_t, a)$$

Zum Finden der optimalen Strategie existieren die beiden Herangehensweisen des modellbasierenden verstärkenden Lernens und des modellfreien verstärkenden Lernens.²⁸ Im Kontext von modellbasierendem RL im Vergleich zum modellfreien RL sind die Übergangs- und Belohnungswahrscheinlichkeiten bekannt, wodurch mittels Strategie- und Werteevaluation sowie Optimierung die bestmögliche Strategie gefunden werden kann.²⁹

²¹Vgl. Reda/Tao/van de Panne 2020, S. 2

²²Vgl. Wang/Hong 2020, S. 3

 $^{^{23}\}mathrm{Vgl.}$ Yuxi 2019, S. 5

²⁴Vgl Yuxi 2019, S. 5

²⁵Vgl. Sutton/Barto 2018, S. 6

²⁶Vgl. Sutton/Barto 2018, S. 6f.

²⁷Vgl. Zhang/Wu/Pineau 2018, S. 2

 $^{^{28}\}mathrm{Vgl.}$ Wang/Hong 2020, S. 3

²⁹Vgl. Yuxi 2019, S. 5

3 Durchführung des Laborexperiments

4 Ergebnisse des Laborexperiments

5 Reflexion und Forschungsausblick

Anhang

Anhangverzeichnis

Anhang 1	Intervi	ew Transkripte		 	10
Anhan	$\lg 1/1$	Interview Transkript: Mitarbeiter eines Unternehmens .		 	10

Anhang 1: Interview Transkripte

Anhang 1/1: Interview Transkript: Mitarbeiter eines Unternehmens

Literaturverzeichnis

- Collins, J./Ketter, W. (2022): Power TAC: Software architecture for a competitive simulation of sustainable smart energy markets. In: SoftwareX 20, S. 101217. ISSN: 2352-7110. DOI: https://doi.org/10.1016/j.softx.2022.101217. URL: https://www.sciencedirect.com/science/article/pii/S2352711022001352.
- Cutler, M./Walsh, T. J./How, J. P. (2014): Reinforcement learning with multi-fidelity simulators. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE. DOI: 10.1109/icra.2014.6907423.
- Holzweißig, K. (2022): Wissenschaftliches Arbeiten. In: 6.6.
- Recker, J. (2021): Scientific research in information systems: A beginner's guide. Second Edition. Progress in IS. Cham: Springer International Publishing. ISBN: 9783030854362. URL: https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=6789173.
- Reda, D./Tao, T./van de Panne, M. (2020): Learning to Locomote: Understanding How Environment Design Matters for Deep Reinforcement Learning. In: *Motion, Interaction and Games*. Hrsg. von Daniele Reda/Tianxin Tao/Michiel van de Panne. New York, NY, USA: ACM, S. 1–10. DOI: 10.1145/3424636.3426907.
- Schuderer, A./Bromuri, S./van Eekelen, M. (2021): Sim-Env: Decoupling OpenAI Gym Environments from Simulation Models. In: *International Conference on Practical Applications of Agents and Multi-Agent Systems*. Springer, Cham, S. 390–393. DOI: 10.1007/978-3-030-85739-4{\textunderscore}39. URL: https://link.springer.com/chapter/10.1007/978-3-030-85739-4_39.
- Slaoui, R. B./Clements, W. R./Foerster, J. N./Toth, S. (2019): Robust Domain Randomization for Reinforcement Learning. In: *CoRR* abs/1910.10537. arXiv: 1910.10537. URL: http://arxiv.org/abs/1910.10537.
- Sutton, R. S./Barto, A. G. (2018): Reinforcement Learning, second edition: An Introduction. MIT Press. ISBN: 9780262352703.
- Wang, Z./Hong, T. (2020): Reinforcement learning for building controls: The opportunities and challenges. In: *Applied Energy* 269, S. 115036. ISSN: 0306-2619. DOI: 10.1016/j.apenergy. 2020.115036.
- Yuxi, L. (2019): Reinforcement Learning Applications. DOI: 10.48550/ARXIV.1908.06973. URL: https://arxiv.org/abs/1908.06973.
- Zhang, A./Wu, Y./Pineau, J. (2018): Natural Environment Benchmarks for Reinforcement Learning. DOI: 10.48550/ARXIV.1811.06032. URL: https://arxiv.org/abs/1811.06032.
- Zhao, W./Queralta, J. P./Westerlund, T. (2020): Sim-to-Real Transfer in Deep Reinforcement Learning for Robotics: a Survey. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE. DOI: 10.1109/ssci47803.2020.9308468.

Erklärung

Ich versichere hiermit, dass ich meine Bachelorarbeit mit dem Thema: Mein Titel selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich versichere zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

(Ort, Datum)

(Unterschrift)