Solution of algebraic and transcendental equations Order/rate of convergence

An iterative method is said to be of order β or has note of convergence β , if β is the tree real no. for which β a finite constant β a such that $|\mathcal{E}_{n+1}| \leq C|\mathcal{E}_n|^{\beta}$ where $\mathcal{E}_{n-2}\eta_{n-3}$ is the error in nth iterate. β defends on durivatives of β at n-3. β is the exact root.

Bisection method

Let z be a root of the eqn. f(2120 lying in the interval [a,6] i.e. f(a).f(b) <0.

The inhard [a,6] is divided into two equal intervals [a,c] and [c,6] each of length $\frac{6-a}{2}$ and $c = \frac{a+6}{2}$ [figure]. If f(c) > 0, then c is an exact root.

Now if $f(c) \neq 0$, then the root lies either in the interval [c,6]. If $f(a) \cdot f(c) < 0$, then the interval [a,c] is taken as new interval otherwise [c,6] is taken as the new interval.

It may be noted that when the reduced interval be $[a_1,b_1]$, then the length of the interval $b = a_2$, when the interval $b = a_1,b_2$, then the length is $\frac{b-a}{a^2}$. At the nth step, the length of the interval being $\frac{b-a}{a^2}$. In the final step, when $a_1 = \frac{a_1+b_1}{a_1}$ is chosen as a root, then the length of the interval being $\frac{b-a}{a_1}$ and hence the error does not exceed $\frac{b-a}{a_1+1}$.

Thus, if $2 \cdot 6e^{2n+1}$ the error at the nth step then the lower bound of n is obtained from the following relation $\frac{|6-a|}{2^n} \leq \varepsilon$

The lower bound of n is obtained by rewriting this inequalism as $n > \frac{\log(16-a1) - \log \varepsilon}{\log 2}$

Hence the minimum no. of iterations negld to achieve the accuracy 2 is log (16-a1) for ex, if the length of the interval is 16-a1>1 and E = 0001, then n is given by n>14.