Lezione 17 Geometria I

Federico De Sisti2024-04-17

1 Prodotto Hermitiano

V spazio vettoriale complesso

Definizione 1 (Funzione sesquilineare)

Una funzione sesquilineare su V è un'applicazione $h: V \times V \to \mathbb{C}$ che è lineare nella prima variabile e antilineare nella seconda, cioè

$$h(v + v', w) = h(v, w) + g(v', w)$$

$$h(\alpha v, w) = \alpha h(v, w)$$

$$h(v, w + w') = h(v, w) + h(v, w')$$

$$h(v, \alpha w) = \overline{\alpha}h(v, w)$$

per ogni scelta di $v, w, v', w' \in V$ e $\alpha \in \mathbb{C}$

Definizione 2 (Forma hermitiana)

Una forma sesquilineare si dice hermitiana se

$$h(v, w) = \overline{h(w, v)}.$$

Osservazione

Se h è hermitiana, $h(v,v) \in \mathbb{R}$, infatti deve risultare $h(v,v) = \overline{h(v,v)}$

Definizione 3 (Forma antihermitiana)

Una forma sesquilineare si dice antihermitiana se

$$g(v, w) = -\overline{h(v, w)}.$$

Osservazione

In questo caso $h(v,v) \in \sqrt{1}\mathbb{R}$

Definizione 4

Una forma hermitiana si dice semidefinita positiva se

$$h(v, v) \ge 0 \quad \forall v \in V.$$

Definizione 5

Una forma hermitiana si dice definita positiva se

$$h(v,v) > 0 \quad \forall v \neq 0.$$

ovvero

$$(h(v, v) \ge 0 \ e \ h(v, v) = 0 \Rightarrow v = 0).$$

Esempio

 $V=\mathbb{C}^n$

$$h\left(\begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}, \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}\right) = \sum_{i=1}^n z_i \overline{w_i}.$$

questo viene chiamato prodotto hermitiano standard su \mathbb{C}^n

$$h(\left(\begin{array}{c} z_1 \\ \vdots \\ z_n \end{array}\right), \left(\begin{array}{c} z_1 \\ \vdots \\ z_n \end{array}\right)) = \sum_{i=1}^n z_i \overline{z_i} = \sum_{i=1}^n |z_i|^2$$

Dato V, consideriamo una base $B = \{v_1, \ldots, v_n\}$ di V Se h è una forma heritiana, diciamo che $(h_{ij}) = h(v_i, v_j)$ è la matrice che rappresenta h nella base B e la denoto come $(h)_B$

e la denoto come
$$(h)_B$$

se $v = \sum_{i=1}^n x_i v_i$, $w = \sum_{i=1}^n y_i v_i$
 $h(v, w) = h(\sum_{i=1}^n x_i v_i, \sum_{i=1}^n y_i v_i) =$
 $= \sum_{i=1}^n x_i h_i(v_i, \sum_{i=1}^n y_i v_i) =$
 $= \sum_{i=1}^n x_i \overline{y_i} h(v_i, v_i) =$
 $= x^t H \overline{y}$

Poiché h è hermitiana, $h(v, w) = \overline{h(w, v)}$

$$X^{t}HY = \overline{Y^{t}HX}$$

$$= \overline{Y}^{t}\overline{HX}$$

$$= (\overline{Y}^{t}\overline{HX})^{t}$$

$$= \overline{X}^{t}\overline{H}^{t}\overline{Y} \implies H = \overline{H}^{t}$$

Definizione 6

Una matrice $M \in M_n(\mathbb{C})$ si dice hermitiana se

$$H = \overline{H}^t$$
.

Esercizio

le matrici hermitiane 2×2 sono un \mathbb{R} -sottospazio di $M_2(\mathbb{C})$ di dimensione 4

$$\begin{pmatrix} a_1 + ib_1 & a_2 + ib_2 \\ a_3 + ib_3 & a_4 + ib_4 \end{pmatrix} = \begin{pmatrix} a_1 - ib_1 & a_3 - ib_3 \\ a_2 - ib_2 & a_4 - ib_4 \end{pmatrix}.$$

$$a_1 + ib_1 = a_1 - ib_1 \Rightarrow b_1 = 0$$

$$a_2 + ib_2 = a_3 - ib_3 \Rightarrow a_2 = a_3 \quad b_2 = -b_3$$

$$a_3 + ib_3 = a_2 - ib_2 \Rightarrow a_2 = a_3 \quad b_2 = -b_3$$

$$a_4 + ib_4 = a_4 - ib_4 \Rightarrow b_4 = 0$$

$$\begin{pmatrix} a_1 & a_2 + ib_2 \\ a_2 - ib_2 & a_4 \end{pmatrix}$$

$$M_2 = \mathbb{R} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \oplus \mathbb{R} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \oplus \mathbb{R} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \oplus \mathbb{R} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$

 $M_2=\mathbb{R}\left(\begin{smallmatrix}1&0\\0&0\end{smallmatrix}\right)\oplus\mathbb{R}\left(\begin{smallmatrix}0&0\\0&1\end{smallmatrix}\right)\oplus\mathbb{R}\left(\begin{smallmatrix}0&1\\1&0\end{smallmatrix}\right)\oplus\mathbb{R}\left(\begin{smallmatrix}0&i\\-i&0\end{smallmatrix}\right)$ il professore qui lascia un esercizio, non penso che realisticamente qualcuno lo farà

Si definiscano allo stesso modo del caso reale simmetrico S^t coefficiente di Fourier

$$|\langle v, w \rangle| \le ||v|| ||w||.$$

disuguaglianza triangolare $||v + w|| \le ||v|| + ||w||$ Operatore unitario: $T \in End_{\mathbb{C}}(V)$ t.c.

$$\langle T(u), T(v) \rangle = \langle u, v \rangle \quad \forall u, v \in V.$$

Verifichiamo le caratteristiche degli operatori unitari dati nel caso reale

Gram Schmidt

 $T \in End(V)$ operatore unitario

- 1. Gli autovalori hanno modulo 1
- 2. Autospazi relativi ad autovalori distinti sono ortogonali
- 1. Sia v un autovettore di autovalore λ

$$\begin{split} \langle v,v\rangle &= \langle Tv,Tv\rangle = \langle tv,tv\rangle = \lambda\overline{\lambda}\langle v,v\rangle = |\lambda|^2\langle v,v\rangle. \\ v\neq 0 \Rightarrow & |\lambda|^2 = 1 \quad \Rightarrow \quad |\lambda| = 1. \end{split}$$

2. Sia $v \in V_{\lambda}$, $w \in V_{\mu}$ $\lambda \neq \mu$

$$\langle v, w \rangle = \langle Tv, Tw \rangle = \langle \lambda v, \mu w \rangle = \lambda \overline{\mu} \langle v, w \rangle.$$

$$\begin{array}{ll} \operatorname{Se} \ \langle v,w\rangle \neq 0 \neq 0 \Rightarrow \lambda \overline{\mu} = 1. Perilpunto 1 \\ \lambda \overline{\lambda} \ \Rightarrow \ \overline{\lambda} = \overline{\mu} \ \Rightarrow \ \lambda = \mu \ \text{assurdo}. \end{array}$$

Definizione 7

Diciamo che $U \in M_n(\mathbb{C})$ è unitaria se

$$U\overline{U}^t = Id.$$

Proposizione 1

 $T \in End(V)$ è unitario se e solo se la sua matrice in una base ortonormale è unitaria

Dimostrazione

Sia $B = \{v_1, \ldots, v_n\}$ una base ortonormale di V

$$\delta_{ij} = \langle v_i, v_j \rangle = \langle Tv_i, Tv_j \rangle = \langle Ae_i, Ae_j \rangle = e_i^t A^t \overline{A} e_j = A_i^t \overline{A}_j$$

dove abbiamo posto $A=(T)_B$ e $\{e_i\}$ è una base di \mathbb{C}^n

TODO dimostrazione da finire

Come nel caso reale si dimostra

Teorema 1

Sia $T \in End(V)$ un operatore unitario Esiste una base standard di autovettori per T

In particolare, per ogni matrice unitaria $A \in U(n)$ esiste $M \in U(n)$ tale che $M^{-1}AM$ è diagonale a volte si pone

$$A^* = \overline{A}^t$$
.

A unitario $AA^* = Id$

A hermitiano $A = A^*$

A antihermitiano $A = -A^*$

Definizione 8 (Operatore Aggiunto)

Dato $T \in End(V)$, esiste unico $S \in End(V)$ tale che

$$\langle Tu, w \rangle = \langle u, Sw \rangle \quad \forall u, w \in V.$$

Tale operatore è detto aggiunto hermitiano di T e denotato con T^*

Definizione 9 (operatore normale)

Sia V uno spazio vettoriale complesso dotato di prodotto hermitiano (forma hermitiana definita positiva), un operatore $L \in End(V)$ è normale se

$$L \circ L^* = L^* \circ L.$$

Osservazione

L unitario, hermitiano, antihermitiano $\Rightarrow L$ diagonale

Teorema 2

Sono equivalenti le seguenti affermazioni: $1)\ L\ \grave{e}\ normale$

- 2) esiste una base ortonormale di V formata da autovettori di L