

CURSO SUPERIOR DE TECNOLOGIA EM REDES DE COMPUTADORES

Endereçamento IPv4

IP

- (*Internet Protocol*) é um protocolo que faz parte da arquitetura TCP/IP. Tem como principais características:
 - Localiza-se na camada de Internet do modelo em questão.
 - Traz as informações encapsuladas das camadas superiores e as organiza em "pacotes IP", onde apresentam informações importantes de cabeçalho como o IP origem e o IP destino, tal como a porta de origem e a porta de destino que será acionada com a comunicação.
 - Este pacotes também apresentam informações extras como um número sequencial para que se saiba no final do caminho a ordem que os pacotes devem ser montados, já que isso é imprescindível para alguns tipos de informações transmitidas, e também para que roteadores no meio do caminho possam controlar o fluxo e para garantir que o pacote chegará ao seu destino e se ele se perder na rede sem chegar ao destino ele será destruído para não congestionar a rede (TTL).

IP

- Endereçamento IPv4:
- 200.20.28.143 → Composto de 4 partes (octetos) que tem um tamanho de 4 bytes.
- <u>IPv4</u>: É uma tecnologia construída para endereçamento IP que atinge a rede internet, mas hoje não está atendendo bem, pois estão surgindo cada vez mais dispositivos que se conectam e precisam de um IP para navegar.
 - Esta tecnologia tem 32 bits, o que permite uma quantidade de endereços IP equivalente a 4.294.967.296.
- <u>IPv6</u>: Hoje em dia alguns dispositivos implementam esta tecnologia, que está se difundindo e a mesma trabalha com uma forma especial de endereçamento:

IP

- Endereçamento IPv6:
- 20DA:2004:28AC:143D:3FF1:1000:00AD:FFFE → Composto de 8 partes com 4 dígitos hexadecimais cada, que tem um tamanho de 16 bytes.
- Esta tecnologia tem 128 bits, o que permite uma quantidade de endereços IP equivalente a 3,4*10³⁸.

IPs - Classes

Classe	Primeiros bits	Núm. de redes	Número de hosts	Máscara padrão
A 1-126	0	2 ⁷ -2=126	2 ²⁴ =16.777.214	255.0.0.0 (/8)
B 128-191	10	214=16.384	2 ¹⁶ -2=65.534	255.255.0.0 (/16)
C 192-223	110	2 ²¹ =2.097.152	28-2=254	255.255.255.0 (/24)
D 224-239	1110	Utilizado para tráfego Multicast		
E 240-255	1111	Res	servado para uso fu	turo

IPs - Classes - Reservados para LAN

Classe	Faixa de Endereços IP	Máscara padrão	Notação CIDR
Α	10.0.0.0 – 10.255.255.255	255.0.0.0	10.0.0.0/8
В	172.16.0.0 – 172.31.255.255	255.255.0.0	172.16.0.0/12
С	192.168.0.0 – 192.168.255.255	255.255.255.0	192.168.0.0/16

para determinar Serve quantidade de máquinas (hosts) de uma rede ou subdividir uma rede em uma quantidade determinada de sub-redes com uma determinada quantidade de hosts em cada uma destas subredes.

- Ex: Prédio
 - Apto 124 e Apto 133 estão no mesmo andar?
 - Depende das regras de numeração do prédio. (Máscara)
 - Se a máscara for o 1º dígito apenas, 124, quer dizer que o 1 foi utilizado para numerar o andar e o restante dos dígitos, que é o 24 foi utilizado para numerar o apto.

Continuando:

- 1º dígito para o andar e os outros 2 para o apto, quer dizer que podemos ter 10 andares com 100 aptos cada, pois o 1º dígito permite variar de 0 a 9 = 10 andares e os outros 2 permitem variar de 00 a 99 = 100 aptos.
- Portanto neste caso os aptos 124 e
 133 estão no mesmo andar.

- Ex: Prédio
 - Apto 124 e Apto 133 estão no mesmo andar?
 - Se a máscara for o 1º e o 2º dígitos, 124, quer dizer que o 12 foi utilizado para numerar o andar e o dígito restante, que é o 4 foi utilizado para numerar o apto.

Continuando:

- 1° e o 2° dígito para o andar e o outro dígito para o apto, quer dizer que podemos ter 100 andares com 10 aptos cada, pois o 1° e o 2° dígitos permitem variar de 00 a 99 = 100 andares e o outro dígito permite variar de 0 a 9 = 10 aptos.
- Portanto neste caso os aptos 124 e
 133 não estão no mesmo andar.

Cálculo de IPs e Máscara de Red

Máscara: 24 bits, /24, Classe C, 255.255.25.0

Ex: IP: 192.168.0.1 192.168.0.190

192.168.0.1 192.168.0.190

Cálculo: 2 elevado ao núm de bits do lado hosts -2.

 2^8 -2 = 256 - 2 = 254 (1° IP é da rede e o último IP é para o Broadcast)

192.168.0.0 - 192.168.0.255

Cálculo de IPs e Máscara de Red

Máscara: 16 bits, /16, Classe B, 255.255.0.0

Ex: IP: 192.168.0.1 192.168.18.190

192.168.0.1 192.168.18.190

Cálculo: 2 elevado ao núm de bits do lado hosts -2.

 2^{16} -2 = 65.536 - 2 = 65.534 (1° IP é da rede e o último IP é para o Broadcast)

192.168.0.0 - 192.168.255.255

Cálculo de IPs e Máscara de Red

Máscara: 8 bits, /8, Classe A, 255.0.0.0

Ex: IP: 192.168.0.1 192.168.18.190

192.168.0.1 192.168.18.190

Cálculo: 2 elevado ao núm de bits do lado hosts -2.

 $2^{?}-2 = ? - 2 = ?$ (1° IP é da rede e o último IP é para o Broadcast)

$$5.5.5.5 - 5.5.5.5$$

Cálculo de IPs e Máscara de Sub-Red

Máscara: 25 bits, /25, 255.255.255.128

Ex: IP: 192.168.10.1 192.168.10.190

192.168.0.1 192.168.10.190

Cálculo: 2 elevado ao núm de bits do lado hosts -2.

 $2^{7}-2 = 128 - 2 = 126$ (1° IP é da rede e o último IP é

para o Broadcast) 1^a 192.168.10.0 - 192.168.10.127 2^a 192.168.10.128 - 192.168.10.255

Cálculo de IPs e Máscara de Sub-Rede-

• Exercícios:

- 1) Verifique se os IPs 10.1.1.34 e 10.1.1.45 são da mesma rede?
- 2) Verifique quantos IPs existem em uma subrede /29 e a quantidade de sub-redes?
- 3) Qual a quantidade de IPs em uma rede /32?

Cálculo de IPs e Máscara de Sub-Rede

• Desafio:

- •1) Qual faixa de IPs pertence à rede 172.16.10.64/26 e quantas sub-redes podem ser criadas a partir desta máscara?
 - •A) 172.16.10.127 a 172.16.10.132; Cinco subredes classe /26.
 - •B) 172.16.10.120 a 172.16.10.125; Três subredes classe /26.
 - •C) 172.16.10.120 a 172.16.10.125; Quatro subredes classe /26.
 - •D) 172.16.10.127 a 172.16.10.132; Seis subredes classe /26.
 - •E) 172.16.10.127 a 172.16.10.132; Quatro subredes classe /26.

Cálculo de IPs e Máscara de Sub-Rede Desafio:

- •2) Há uma estação com o IP 192.168.42.130 e máscara de rede 255.255.255.224.
 - •A) A qual rede o IP pertence?
 - •B) Qual o 1º IP válido da rede?
 - •C) Qual o último IP válido da rede?
 - •D) Qual o Broadcast da rede?
- •3) Verifique se o IP 10.0.0.1 e o IP 10.0.2.255 pertencem a mesma rede com uma máscara /23. Se não como modificar a máscara para que passem a pertencer?

Cálculo de IPs e Máscara de Sub-Rede

ed**e**

• Desafio:

- •4) Você está participando de um projeto de rede para a empresa "YYY" que possui 3 filiais (SP, RJ e MG). Sabendo que:
 - SP possui 400 estações;
 - RJ possui 200 estações;
 - •MG possui 100 estações.
- •Calcule as sub-redes para um melhor aproveitamento.

Configurações de Rede nos S.O.s

Configurando Redes no Windows

- Basta acessarmos o dispositivo de rede (com ou sem fio) e colocarmos as seguintes informações:
 - IP;
 - Máscara;
 - Gateway;
 - DNS 1 e DNS 2;

Configurando Redes no Windows

Veja:

Veja:

• Digitamos via prompt de comando:

Interface de Rede

• #ifconfig etho 192.168.10.45 netmask 255.255.255.0 IP Máscara

· Aqui configuramos IP e Máscara.

Agora o gateway:

Digitamos via prompt de comando:

• #route add default gw 192.168.10.1

Aqui configuramos o gateway.

Agora o DNS:

 Precisamos alterar o arquivo "/etc/resolv.conf".

• Colocamos: nameserver 200.204.0.10

DNS 1

nameserver 200.204.0.138

DNS 2

• Podemos configurar de outra maneira:

- Indo direto ao arquivo "/etc/network/interfaces"
- Colocando as informações diretamente no arquivo.
- É importante colocar os nomes das máquinas em "/etc/hosts"
- Depois é só reiniciar a máquina.


```
# The loopback network interface
auto lo
iface lo inet loopback
# The primary network interface
allow-hotplug eth0
#NetworkManager#iface eth0 inet dhcp
auto eth0
iface ethO inet static
        address
                            192.168.10.83
        netmask
                            255.255.255.0
        network
                            192.168.10.0
        broadcast
                            192.168.10.255
        gateway
                            192.168.10.1
        dns-nameservers
                            192.168.10.1 8.8.8.8
```