Department of Electrical Engineering, IIT Kanpur

Assignment-7

1. Determine V_{cc} and R_B in the following circuit.

2. Determine I_C and V_{CE} in the following circuit.

3. Determine I_{C} and V_{CE} in the following circuit.

ESc 201: Introduction to Electronics

4. For the following common emitter amplifier circuit, calculate v_{CEQ} , i_{CQ} , small signal voltage gain ($A_v = \frac{v_0}{v_i}$), and input

impedance
$$(Z_i = \frac{v_i}{i_i})$$
.

In order to increase the input impedance of the amplifier, an emitter resistor was introduced into the circuit, as shown in the following frame Calculus V. J. A. and Z.

in the following figure. Calculate V_{CEQ} , I_{CQ} , A_{ν} , and Z_i .

What happens to A_v , and Z_i if the circuit is modified as shown in the following figure? 10V

- 5. For the following common emitter amplifier circuit:
 - (a) Calculate V_{CEQ} and I_{CQ} ,
 - (b) Calculate the small signal voltage gain $(A_v = \frac{v_0}{v_i})$ and the input

impedance (
$$Z_i = \frac{v_i}{i_i}$$
), and

(c) What will the small signal voltage gain and the input impedance be if C_{E} is removed from the circuit?

6. Determine R_B and R_C such that the transistor is in saturation with $I_C=2mA$ and $\beta_{forced}=20$ when $V_i=5V$. Draw the voltage transfer characteristics (a plot of V_0 vs V_i) with these resistances.

