

Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ΕΜΠ

Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Ηλεκτρονικής

Ηλεκτρονική Ι (4° Εξαμήνου) **3**η Σειρά Ασκήσεων

<u>Ονοματεπώνυμο</u>: Δημήτριος Ζάρρας

<u>A.M.</u>: 031 15 092

<u>Εξάμηνο</u>: 4<u>0</u>

Ακαδημαϊκή Περίοδος: 2016 - 2017

<u>Διδάσκων</u>: Αν. Καθηγητής Παύλος-Πέτρος Σωτηριάδης

Μελέτη: Δίοδοι – Κεφ. 3 (εκτός η παράγραφος 3.7, εγκυκλοπαιδική η 3.8) από το βιβλίο «Μικροηλεκτρονικά Κυκλώματα», 5^{η} Έκδοση, Εκδόσεις Παπασωτηρίου.

Zappais Dynigos	
A.M.: 031 15 092	
E34440: 4º	
Exoly: HMMY EMO	
Adayon 1 - npie27/19 3.34	
1v = + v ₀ (2x-jp-a 1)	
(a) Ynoserovas, apxini, ou Vo=0,7V propospi and to mining curingly to anappropria primates is the dioda.	na va Zabogue pia Apobrogo-
And N.T. M.: $-1 + 200. i_0 + V_0 = 0$ (i) $= \frac{1-97}{200}$ A (i) $= \frac{1}{200}$ A	= io = 0,0015 A =
B) Me violety pa $V_0 = 0,7V$ spilyun are to minima is = 1,5 mf Neytouponaigne, rings, cy egitoute, cys sides, pa a viologicage 176, cys V_0 , biter to it no pions viologicagne. Eval: $I_1 = I_5 \cdot e^{V_2 l_{11}V_2}$ $I_2 = e^{V_2 l_{12}V_2}$ $I_2 = I_3 \cdot e^{V_2 l_{12}V_2}$ $I_3 = e^{V_2 l_{12}V_2}$	Wis respected to be the sail
1 V2-V1 = nVe ly 12 11 10 Vp = V1 + nVe ly 10 11	major II = InA ma VI = 9,7V
	77 + 2.0,025.0,4055) V = 720 V.
Apa, 7 spires maisty Siver io = 1,5 mA man Vo=0,720	, v.

Nath, pe rapiposo sporo, pa Vo = 0,720 0 N.T. M. Sive:

io = 1-0,700 A = io = 0,0014A = io = 4,4 mA.

 $\int_{10}^{10} t_0 puipe qV6: V2-V_1 = 4V_1 ln \frac{I_2}{I_1} = V_0 = (9,720 + 2.9025 ln \frac{9,0044}{9,0015})V = V_0 = (9,720 + 9,05 \cdot (-9,063))V = V_0 = 9,717V$

Apa, y Switchen Enaudhypy Siver io = 1,4 mA mas Vo = 0,717 V.

Eurzijage ugi o N.T. K. Siver:

 $i_p = \frac{1 - 0.717}{200} A$ m $i_p = 0.00142A$ m $i_p = 1.42 mA.$

 $\int_{14}^{14} \frac{1}{10} \frac{1}{10} = \frac{1}{10} \frac{1$

Apa, γ Toity enaighty Siry ip=1,42 mA uai $V_0=0,718V$.

Bhirapse ou or typis the Volume ip St Superpose Sympassis and theirs no rippopse Gyr posympay enaighty. Enquires, Osupoipse ou Sw analthian the view enaighty was Sexphance of tehnis his as this: $V_0=0,718V$ uar $V_0=1,412$ mA.

Asman 2 - npoblyma 3.54

Dividi 34 of numeris (2 mg, (2 vival roli preparos mas enspiron of Sièrnes to signator Us (enspiron of neprodu to AC), uni eprobijon of poi, to priparos I (epro-Sijon of nymin of DC).

Atheore, o numeris exer sindery arcistasy: $\frac{L}{c} = \frac{L}{sc} = \frac{L}{jwc}$, order se DC thropping with w = 0 = 1 $Rc = \infty$ (with Rc = 0) up se AC thropping, the neutrosping societies we exer (-100) (apai CL, (2.10)) project, (2.10) Rc = 0 (reprise Rc = 0).

Elei, to 160 Singro winding pa ty posignes as or signatur pomintes assurance
whireres the 170's primates I was beautiful aces to remercis (1 mg, Co, and
y Siodos arruagataras and tyr artistaxy artistasy asonals signatus. Da sinas:
Rs
+
υ, (Σχήνα 2')
= = - (SKY)M 2/
Eni, 62/2 DC avistos to Exjertes 2, pr avouroninhos um 4 us, in da sius:
QI Δηλαδη το DC pripa no Siappier ty δίοδο είραι όλο το I: ID=I.
Z Apa, par $E_{xypq} 2'$ Or $E_{ypq} 2'$ Or $E_{ypq} 2'$ Or $E_{ypq} 2''$
A. S. W. B. D. WY
The Oldiples taleys 6th Existed E was: No = 115 = 115 = 115
T WY O
And Sidipus, takeys 66 Exting 2' Einar: $U_0 = U_s \frac{V_0}{V_0 + R_s} \frac{D}{U_0} U_s \frac{V_0V_T}{T} + R_s$ $= U_0 = U_s \frac{V_0V_T}{V_0V_T + LR_s} $ $= U_0 = V_s \frac{V_0V_T}{V_0V_T + LR_s} $
ha Us= 10mv, Rs= the up n=2 y naparam 471646y Sim:
110 US = 10ml FS = I'm ug W=Z y napanam E)16mby alm:
2.9,025
$V_0 = 0.01. \frac{2.0,025}{2.0,025 + 100.1}$ (v)
Apq: Uo(I=LmA) = 0,476 mV
46 (I=91nA) = 3,333 mV
Uo(I=1,A) = 9,804 mV
W D W WY
40 planes 66 plas Us stav: 40= = = = = = = = = = = = = = = = = = =
H uo prives 66 pi60 bys us otav: uo= us
9,05+1000I (I = 50 pA , was No = 45.
To winhung Auroppei car egaldentis ejpotos, ono o enterlectis egaldentes eligyeta, and to a rexts prima I.
voice Peulo I.

H rds & & Stapping and yearspine pring, apa Uras) =0 = AV = DV =0 = 40=0. Apa, To =0, The I=Opp 181 I= 1,A In= 1mA-4A = 933 pA. $V_{01} = \frac{41/4}{1} = \frac{9,025}{9,00001} = \frac{9}{1} V_{01} = \frac{25}{1} V_{02} = \frac{41/4}{1} = \frac{9,025}{1} = \frac{9}{9,000983} = \frac{9}{1} V_{01} = \frac{25}{1} = \frac{9}{1} = \frac{9}{$ 1 = 10 = 25,025 = 0,001 = 10 = 0,001 , may 1=1pA X/ I=10 ,A In = ImA - 10,A = 330 ,A. $V_{01} = \frac{4V_{T}}{I} = \frac{0.025}{9.0001} = -701 = \frac{2.5 \text{ h}}{2.5 \text{ h}} = \frac{4V_{T}}{I_{01}} = \frac{9.025}{9.00035} = -701 = 25.25 = \frac{1}{2}$ D= 10 = 25,25 = 0,01 = 10 = 0,01, na 1=10pA. 8) I=10,A In= 1mA-100MA = 900 MA. $V_{d_1} = \frac{uv_7}{L} = \frac{9,025}{9,0001} = V_{d_1} = 2500$ $V_{d_2} = \frac{uv_7}{L_0} = \frac{9,025}{9,0003} = 27,780$ D= 46 = 27,78 = 0,1 = 46 = 0,1 , no 1 = 100 pA. (2) 1=500 HA Ioz = 1mA-500pA = 500pA. $V_{d4} = \frac{uV_T}{L} = \frac{9025}{90005} = 9V_{d4} = 5000$, $V_{d2} = \frac{4V_T}{L_{DL}} = \frac{9025}{30005} = 9V_{d2} = 500$ 62) I=600 NA In= 1mA-600 pA = 400 pA. $V_{01} = \frac{uv_{1}}{I} = \frac{0,025}{9006} = uv_{01} = 41,67 = 101 = \frac{uv_{1}}{101} = \frac{9,025}{30004} = uv_{01} = 62,5 = 62$ D= 40 = 62,5 = 0,6 = 46,67+67,5 = 0,6 , ma 1 = 600 pA.

1 1=300 MA In= 1mA-30pA = 100pA. $V_{01} = \frac{4\sqrt{r}}{L} = \frac{0.025}{9.0009} = 1 V_{01} = \frac{27,78}{2}, V_{02} = \frac{4\sqrt{r}}{L_{02}} = \frac{9.025}{9.0001} = 1 V_{02} = 250 = 1$ D= 4 = 250 =0,3 = 40 =0,3 , pg 1=30 pA. 1 I= 330 HA In= 1nA-330pA= 10pA. $V_{01} = \frac{4\sqrt{7}}{L} = \frac{9,025}{9,00099} = V_{01} = 25,250$, $V_{02} = \frac{4\sqrt{7}}{L_{02}} = \frac{3,025}{9,00001} = V_{02} = 2,5 \text{ he}$ D=1 40 = 2500 = 0,33 = 40 = 999 , And I = 990 pA. 0) I = 1 nA I= InA gips In=OpA many In Sw ages. $Vd_1 = \frac{u\sqrt{r}}{L} = \frac{0.025}{0.001} = 1 Vd_1 = 252$, $Vd_2 = \frac{u\sqrt{r}}{L_{D_2}} = 0$: $\frac{di}{dt}$ H vds de Sapperty, and ysurpino pripa, apa i(rds)=0 = DV = DV=0 = 40=4i Apa , wi = 1 , na I = 1mA. Onus cidane and ras independes 6 to reparam courinars, no Oc puins or wite diada pre IO>10pA, Da Exapre artistal, tys artistalxys Sides 16 2,5 he (agos sidegre of pa I=10pA y Sides DI like rol= 2,5 he was iso avgaritar to I, y roll presenter). Ard position was and by 6x26y: rd = 4Vt < 4Vt = 9,025 0 = 2,569 Dempaque pringer IDA man Ion 621, Sodar, pe IDA, IDA JOHA COM anapéperan 60 redenais epul-2740 25 day 675). Basen to Exypatos 3" da 10x18, anighy, IDI+ IDI = 2mA. (161, rd1 = with was rd2 = with Ion Of Dayle if & O, L. ID1 was id2 & O, L. Ion - id2max = O, L. Io1 mg, id2max = O, L. Ion. And to Exigna 3' (BD. 6ED. 4) da Exagre Siasoxivi: Udz = Ua = idz. rdz @ , Udz = idz. rdz = Ui-Ua 3 'Apa, 3 = U1 = Ua + ida · rda = ida · rda + ida · rda = ida · rda + ida · rda = ida · rda + ida · rda = = Uimax = 0,1. In. 44 + 0,1. In. 4VT = (0,1.9025 + 91.925) V = [Uimax = Smv]

- Npibaypa 3.57 To 1606 ways windrups no ty possiops asoland, 6; paros da cina: Ydz= rdz = rdz = rd4 = 17 (Exyma 41) Egy DC quiday to Exiports 4 da vivas: My Energy of Di, i=1,23,4 cinal rappositiones & I 6194 62 164 pipy I 6 to niple A). $D = u_0 = u_i \cdot \frac{R}{R + \frac{u_1 v_1}{I}} = u_i \cdot \frac{1000}{1000 + \frac{0.05}{I}} = \frac{u_0}{u_i} = \frac{1000}{1000 + \frac{0.05}{I}}$ (14 45 Sigreples typis to I Aponinter o Endylos niverus (B), 6E). 8) you tes te-

HE'S TO DOYOU NEW	cabooys acteurs ogpatos ublui:
I	<u>Uo</u> <u>Ui</u>
OnA	0
1 _µ A	0,167
10rA	0,667
100 pA	0,952
1mA	0,935
DMA	0,9335
6) To pripa 6 jpa	= 10 + id = ipt = To = 0,1:10 =
वा रायकु : तमारा	= ip(t) = 9,3. Lo ins 4,1. Lo 6
Apa,	12) To biblion wings ip(t) = $I_0 \cdot e^{4d/4\sqrt{t}}$ $\frac{\dot{i}_0}{I_0} = e^{4d/4\sqrt{t}}$ $\frac{\dot{i}_0}{I_0} = 0.3 \text{ ins } 41$
المركمة في المركبة	repiral $Vd = \begin{cases} -2.5 \text{ mV} \\ \text{èus} \end{cases}$
o unocyping in repopi)	poli shuping Siodo no agen, y prejazirez rep; raiss signaros no propris era, repino sta [Udmax=2,5mV] (aupibéolique 2,38 mV), viole ravioxpor signaros va lejiserva, 670 ±10% to DC primaros.
+ 10% ys Oc 214	of Mina = Day pe to pripate the Sidem is repapied was to its to 160 Siapo minima na tyr posignos asotrais sipates posignom spripamo spripamo, ia pira (62.622.3):

Admy 5 - Apiedypa 3.62 il = 2mA Eur 7mA. I = SmA ; LOMA ; LSMA. U0 = 45V + Duo. (Exipa S) (10 a upging, to is and 2mA ins 7mA la pine, paganis, I>7mA. Apa, anappineers, of entropy bys noois 6 to 9 god pringers tun Sun.A. To 1608 impo mindinga as DEra's 6 jears va civa: pape of Orupjane in=(4,5 ± 2,5) mA. Naphanape , Sylady, mis newpord typi ma to in icy me 4,5mA tiva Va = 4V7 , one Io = I - in 1 Blérage ou y égosos possies puins regina iso per 4,5 mA poite to puins Io to Siappier us Sidas, princera, naria avoi to noto. Ear anotilitapa, y tity 620 dupa um er cerps andergium bioder peninter used in noco ico pe: $\Delta u_0 = -4, 5. r = \frac{r=2r_0}{I} -4, 5. 2 = \frac{nv_T}{I_0} = \Delta u_0 = -3. \frac{nv_T}{I-i_L}$ yra I= LomA: - mv > Duo = - 81,82 mv pa I=10mA 101 Dub = -81,82 mV = 040 = -18,2 mg 2 >1 D40 = -9. 2.25 mV = D40 = -42,86 mV pa 1= 15 mA 141 Δ40 = -42,86 mV = Duo = -3,5 mV mA

10

Naparpaine , somi, ou spondrital purporgo peralodis 6 cy visto vyodo (lover load regulation) 62/2 registraly tys 170/s I=15 mA. Inemis, pa to 60000 no endypolyce प्य ध्यान्त्रपूर्व प्रथं, a anaiss हिम सामा वंशिवा वर्ष यूर दिखि क्वितां पृत्र खंदा क्युं कि (purportery surely arounder Dus) y ward 2 my oradeps pripares ring and "Era paparis provinges us 170% um 15mA warte um 20mA ujon des amilie Aspillotopo pring. 20060 y Enilipape, apoi enipipe unterpo 64 deponing tys 40. Guyan 6 - Apolanna 3.66 Arring ciologe, tys Sidos tener per to 160 Sirapo unaproparios poviels ys: R = 820 R 2829 = (Σχ'yηα 6') And to Exigna 6' naipropie to issurano windupa assures signatos: A DV = L,3V H META 6024 Tys apxing, Taky, Toxosoias Aponoli, \$ 12=5º Duo = DV. 12 = 43. 82+5 V 31 ([[[[[X]]]] [] [] [] 21 DU0 = 0,0747 V 21 DU0 = 74,7 mV

Δημήτριος Ζάρρας

tribys, ip3 = Is e 103/gors 3 (pa 1= 6,314. 10-16 A joins beigner 62 apx) [19 2 Dz Eins Var= 3,025. lu in 15 (pa Is = 6,344.6-16 A jones Bridger organiza) And 6 exylor rad, Voz = VA - 40 = Uo = VA - VOZ 6 was a upa i by = s , powersy Uz = 40 - ipz. 3000) - And us existus @ ins @ propair or inologosar upis us to my unis us us us us Us oroies abow your of Dz ug, Dz. H poppy of xapaurypolinis pelaropois no reminer sia y offis: + udioy = 1/4 42/6y=0

