ВВЕДЕНИЕ В МАШИННОЕ ОБУЧЕНИЕ

Лекция №3

Классификация

Вспомните, что такое классификация? Возможно, вы знаете / сможете предложить как измерять качество классификации?

Классификация

Конечное число ответов

Бинарная:

• $Y = \{-1, +1\}$

Многоклассовая:

•
$$Y = \{1, 2, ..., K\}$$

С пересекающимися классами:

- \mathbf{Y} = \{0,1\}
- Ответ набор из К нулей и единиц
- і-ый элемент ответа принадлежит і-му классу

Классификация

$$X \in R^{n \times p}$$

$$Y \in C^n \quad \text{e.g. } C = \{-1, 1\}$$

$$|C| < +\infty$$

$$c(X) = \hat{Y} \approx Y$$

Линейная классификация

The most simple linear classifier

$$c(x) = \begin{cases} 1, & \text{if } f(x) \ge 0 \\ -1, & \text{if } f(x) < 0 \end{cases}$$

or equivalently

$$c(x) = \operatorname{sign}(f(x)) = \operatorname{sign}(x^T w)$$

Geometrical interpretation: hyperplane dividing space into two subspaces

Why cutoff value is fixed?

(bias term is implied)

Margin

Let's define linear model's Margin as

$$M_i = y_i \cdot f(x_i) = y_i \cdot x_i^T w$$

main property:

negative margin reveals misclassification

$$M_i > 0 \Leftrightarrow y_i = c(x_i)$$

$$M_i \leq 0 \Leftrightarrow y_i \neq c(x_i)$$

Построение модели

Remembering old paradigm

Empirical risk =
$$\sum_{\text{by objects}} \text{Loss on object} \rightarrow \min_{\text{model params}}$$

Essential loss is misclassification

$$L_{\text{mis}}(y_i^t, y_i^p) = [y_i^t \neq y_i^p] =$$

$$= [M_i \leq 0]$$

Disadvantages

- Not differentiable
- Overlooks confidence

Solution: estimate it with a smooth function

Квадратичная функция ошибки

Let's treat classification problem as regression problem:
$$\ Y \in \{-1,1\} \mapsto Y \in R$$

thus we optimize MSE

$$L_{\text{MSE}} = (y_i - x_i^T w)^2 = \frac{(y_i^2 - y_i \cdot x_i^T w)^2}{y_i^2} =$$
$$= (1 - y_i \cdot x_i^T w)^2 = (1 - M_i)^2$$

Advantage: already solved

Disadvantage: penalizes for high confidence

01

Сигмоида

I. Let's try to predict probability of an object to have positive class

$$p_{+} = P(y = 1|x) \in [0, 1]$$

III. Time for some tricks

$$\frac{p_{+}}{1 - p_{+}} \in [0, +\infty)$$

$$\log \frac{p_{+}}{1 - p_{+}} \in R$$

Here is the match

II. But all we can predict is a real number!

$$y = x^T w \in R$$

IV. Reverse to closed form

$$\frac{p_{+}}{1 - p_{+}} = \exp(x^{T} w)$$

$$p_{+} = \frac{1}{1 + \exp(-x^{T} w)} = \sigma(x^{T} w)$$

Сигмоида

$$\sigma(x) = \frac{1}{1 + exp(-x)}$$

Sigmoid is odd relative to (0, 0.5) point

Symmetric property:

$$1 - \sigma(x) = \sigma(-x)$$

Derivative:
$$\sigma'(x) = \sigma(x) \cdot (1 - \sigma(x))$$

Максимальное правдоподобие

$$\log L(w|X,Y) = \log P(X,Y|w) = \log \prod_{i=1}^n P(x_i,y_i|w)$$

Calculating probabilities for objects

if
$$y_i = 1$$
: $P(x_i, 1|w) = \sigma_w(x_i) = \sigma_w(M_i)$
if $y_i = -1$: $P(x_i, -1|w) = 1 - \sigma_w(x_i) = \sigma_w(-x_i) = \sigma_w(M_i)$

$$\log L(w|X,Y) = \sum_{i=1}^{n} \log \sigma_w(M_i) = \left(-\sum_{i=1}^{n} \log(1 + \exp(-M_i)) \to \min_{w}\right)$$

Логистическая функция ошибки

$$L_{Logistic} = \log(1 + \exp(-M_i))$$

- Задача бинерной классификации
- Минимизация верхней оценки:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

- Задача бинерной классификации
- Минимизация верхней оценки:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

• Будем говорить, что модель b(x) предсказывает вероятности, если среди объектов с b(x) = p, доля положительных равна р

- Задача бинерной классификации
- Минимизация верхней оценки:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

• Будем говорить, что модель b(x) предсказывает вероятности, если среди объектов с b(x) = p, доля положительных равна р

- $a(x) = sign \langle w, x \rangle$
- обучим на логистическую функцию потерь:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

- $a(x) = sign \langle w, x \rangle$
- обучим на логистическую функцию потерь:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

- Переведем выход модели на отрезок [0,1]
- Сигмоида:

$$\sigma(\langle w, x \rangle) = \frac{1}{1 + \exp(-\langle w, x \rangle)}$$

- $a(x) = sign \langle w, x \rangle$
- обучим на логистическую функцию потерь:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

- Переведем выход модели на отрезок [0,1]
- Сигмоида:

$$\sigma(\langle w, x \rangle) = \frac{1}{1 + \exp(-\langle w, x \rangle)}$$

- $b(x) = \underline{\sigma}(\langle w, x \rangle)$
- Если у = +1, то <u>σ</u>(⟨w, x⟩) -> 1, ⟨w, x⟩ -> +∞
 Если у = -1, то <u>σ</u>(⟨w, x⟩) -> 0, ⟨w, x⟩ -> -∞

- $b(x) = \underline{\sigma}(\langle w, x \rangle)$
- Если у = +1, то <u>σ</u>(⟨w, x⟩) -> 1, ⟨w, x⟩ -> +∞
 Если у = -1, то <u>σ</u>(⟨w, x⟩) -> 0, ⟨w, x⟩ -> -∞
- Задача сделать отступы на всех объектах максимальными

- $b(x) = \underline{\sigma}(\langle w, x \rangle)$
- Если у = +1, то <u>σ</u>(⟨w, x⟩) -> 1, ⟨w, x⟩ -> +∞
 Если у = -1, то <u>σ</u>(⟨w, x⟩) -> 0, ⟨w, x⟩ -> -∞
- Задача сделать отступы на всех объектах максимальными

$$y_i\langle w, x_i\rangle \to \max_w$$

- $b(x) = \underline{\sigma}(\langle w, x \rangle)$
- Если у = +1, то <u>σ</u>(⟨w, x⟩) -> 1, ⟨w, x⟩ -> +∞
 Если у = -1, то <u>σ</u>(⟨w, x⟩) -> 0, ⟨w, x⟩ -> -∞

$$-\sum_{i=1}^{\ell} \{ [y_i = 1] \sigma(\langle w, x_i \rangle) + [y_i = -1] (1 - \sigma(\langle w, x_i \rangle)) \} \rightarrow \min_{w}$$

Мультиклассовая задача One vs Rest

Мультиклассовая задача One vs Rest

Мультиклассовая задача One vs Rest

Мультиклассовая задача One vs One

02

Метрики классификации

Accuracy

• Доля верных ответов или доля ошибок

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i] \qquad Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

• Это нельзя называть точностью!

a(x)	У
-1	-1
+1	+1
+1	-1
+1	+1

• Доля ошибок: 0.2

• Доля верных ответов: 0.8

Accuracy

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

Решаем задачу выявления редкого заболевания

- 950 здоровых (у = +1)
- 50 больных (у = -1)

Модель: a(x) = +1

Доля ошибок: 0.05

Accuracy

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

Решаем задачу выявления редкого заболевания

- 950 здоровых (у = +1)
- 50 больных (у = -1)

Модель: a(x) = +1

Доля ошибок: 0.05

Вывод: баланс классов при использовании данной метрики очень важен

Несбалансированные выборки

- Несбалансированная выборка объектов одного класса существенно больше
- Примеры: клики по рекламе, медицинская диагностика, отток клиентов и т.д.

- Accuracy не учитывает цены ошибок
- Пример: кредитный скоринг
- Модель 1:
 - 80 кредитов вернули
 - 20 кредитов не вернули
- Модель 2:
 - 48 кредитов вернули
 - 20 кредита не вернули
- Кто лучше?

	y = 1	y = -1
a(x) = 1	True Positive (TP)	False Positive (FP)
a(x) = -1	False Negative (FN)	True Negative (TN)

<True/False> <Positive/Negative>

Что говорит модель

Совпадение с ответом

	y = 1	y = -1
a(x) = 1	True Positive (TP)	False Positive (FP)
a(x) = -1	False Negative (FN)	True Negative (TN)

НЕ было, но мы нашли

Было, но мы НЕ нашли

Модель 1

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

Модель 2

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	20	48

Точность (precision)

• Можно ли доверять классификатору при а(x) = 1?

$$precision(a, X) = \frac{TP}{TP + FP}$$

Точность (precision)

Модель 1

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

precision = ?

Модель 2

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	20	48

precision = ?

Точность (precision)

Модель 1

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

precision = 0.8

Модель 2

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	20	48

precision = 0.96

Полнота (recall)

• Как много положительных объектов находит классификатор?

$$recall(a, X) = \frac{TP}{TP + FN}$$

Полнота (recall)

Модель 1

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

recall = ?

Модель 2

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	20	48

recall = ?

Полнота (recall)

Модель 1

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

recall = 0.8

Модель 2

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	20	48

recall = 0.71

Что важнее?

- Антифрод, классифицируем транзакции, Высокая точность, низкая полнота: редко блокируем нормальные, пропускаем много мошеннических Низкая точность, высокая полнота: часто блокируем нормальные, редко пропускаем мошеннические, что лучше?
- Медицинская диагностика: надо найти не менее 80% больных, ограничение: recall > 0.8, что максимизируем?

O3 Совмещение точности и полноты

Две метрики важны, однако, как можно их совместить?

Арифметическое среднее

$$A = \frac{1}{2}(\text{precision} + \text{recall})$$

Арифметическое среднее

A = 0.5 * (precision + recall)

- pr = 0.1, rc = 1, A = 0.55, плохой алгоритм
- pr = 0.55, rc = 0.55, A = 0.55, алгоритм лучше, но качество такое же

Минимум

M = min(precision, recall)

- pr = 0.4, rc = 0.4, M = 0.4, неплохо
- pr = 0.4, rc = 0.6, A = 0.4 алгоритм лучше, но качество такое же

F-мера

•
$$pr = 0.4$$
, $rc = 0.5$, $F = 0.44$

•
$$pr = 0.4$$
, $rc = 0.9$, $F = 0.55$

F-мера

$$F = (1 + \beta)^{2} \frac{2 * precision * recall}{\beta^{2} * precision + recall}$$

• β = 0.5 - важнее точность

• β = 2 - важнее полнота

F-мера

$$F = (1 + \beta)^{2} \frac{2 * precision * recall}{\beta^{2} * precision + recall}$$

• β = 2 - важнее полнота

04

- Линейный классификатор: $a(x) = sign(\langle w, x \rangle t) = 2[\langle w, x \rangle > t] 1$
- $\langle w, x \rangle$ оценка принадлежности классу +1, часто t = 0
- Высокий порог:
 - Мало объектов относим к +1
 - Точность выше
 - Полнота ниже
- Низкий порог:
 - Много объектов относим к +1
 - Точность ниже
 - Полнота выше

- Линейный классификатор: $a(x) = sign(\langle w, x \rangle t) = 2[\langle w, x \rangle > t] 1$
- Оценка принадлежности

-1	-1	+1	-1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

- Линейный классификатор: $a(x) = sign(\langle w, x \rangle t) = 2[\langle w, x \rangle > t] 1$
- Оценка принадлежности

-1	-1	+1	-1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

- Линейный классификатор: $a(x) = sign(\langle w, x \rangle t) = 2[\langle w, x \rangle > t] 1$
- Оценка принадлежности

-1	-1	+1	-1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

- Линейный классификатор: $a(x) = sign(\langle w, x \rangle t) = 2[\langle w, x \rangle > t] 1$
- Оценка принадлежности

-1	-1	+1	-1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

- Как оценить качество b(x)?
- Порог выбирается позже
- Порог зависит от ограничения на точность или полноту

-1	-1	+1	-1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

- Кредитный скоринг
- b(x) оценка вероятности возврата кредита
- a(x) = [b(x) > 0.5]
- pr = 0.1, rc = 0.7
- дело в алгоритме или пороге?

- Кривая точности-полноты
- Ось X полнота
- Ось Ү точность
- Точки значения при последовательных порогах

- Левая точка: (0, 1)
- Правая точка: (1, r), r доля положительных объектов
- Для идеального классификатора проходит через (1,1)
- AUC-PRC площадь под PR-кривой

Место для ваших вопросов