ANEXO

Correcciones

- En mutación de un gen, el gen a mutar se estaba tomando como parámetro. Se corrigió seleccionando aleatoriamente ese gen en cada mutación.
- En cruce de un punto y dos puntos, se estaban tomando como parámetros las posiciones de los locus involucrados. Se corrigió eligiendo los valores aleatoriamente en cada cruce.
- En cruce anular, caso análogo con el largo del segmento involucrado en el cruce.
- Se dispuso de un valor parametrizable de semilla para la selección de la población inicial, para poder hacer comparaciones más precisas en caso de ser requerido.

Resultados

Como hay una considerable cantidad de variables a tener en cuenta al analizar algoritmos genéticos, se determinó ir realizando comparaciones focalizadas en los distintos operadores genéticos, y a partir de cada resultado avanzar en la búsqueda de aquella combinación que brinde una mayor cantidad de *fitness*.

En cada comparación, se fueron cambiando los valores de sólo aquellas variables que influyen en el caso de análisis.

Población:

Inicialmente, se comenzó por ver cómo influye la cantidad de individuos de la población y el tamaño del grupo de la misma que es reemplazado en cada generación. Los gráficos 1 y 2 y los casos 1 y 2 de la hoja de cálculos muestran los resultados.

- Selección:

Luego, se pasó a comparar los operadores de selección. La tabla 1 y los casos 4 a 10 de la hoja de cálculos muestran los resultados. Una vez hecho esto, se observó cómo una mezcla de distintos algoritmos de selección podría ser provechosa; esto se ve en el gráfico 3 y en el caso 11 de la hoja de cálculos.

Reemplazo:

Lo siguiente fue comparar los 3 métodos de reemplazo. Se pueden ver los resultados en los gráficos 4, 5 y 6 y en los casos 12, 13 y 14.

Cruce:

Después se pasó al operador de cruce. En la tabla 2 y en los casos 15 a 18 se ven los resultados.

Mutación:

Las últimas comparaciones directa se efectuaron con respecto a la mutación. En este apartado se diferenciaron tanto las mutaciones gen y multigen como las uniformes y no uniformes (resultados en la tabla 3 y casos 19 a 22), y luego se comparó la influencia de la probabilidad de mutación, observable en los gráficos 7 y 8 y en los casos 19 y 23.

- Mejor combinación:

Finalmente, y a medida que se iban observando los resultados de los casos previos, se fue en busca de la combinación que arroje un mejor *fitness*, y la elegida se evidencia en caso 24 y su evolución a lo largo de las generaciones en el gráfico 9 (El *fitness* final dio 59,3581).

Conclusiones

Población:

- Con una población y cantidad de reemplazo chicos, la variedad genética es acotada y se precisa mutación y buenos cruces. Se tiende a estancar y no diversificarse, como es esperable.
- Si la población aumenta, hay mayor diversidad genética y, en principio, se expande el alcance de búsqueda.

Selección:

- Algoritmos como torneos, Boltzmann (con ruleta) y ranking proveen mejores resultados que Ruleta y Universal, evitando pérdida de diversidad y convergencia prematura.
- Elite, si bien también tiende a converger con rapidez al elegir siempre los mejores, es bueno para combinarlo con otros algoritmos y con mutación, para juntar las ventajas que provee cada algoritmo y evitar caer en máximos locales.

Reemplazo:

- El método de reemplazo 1, por lo general, resultó el peor de los 3, y se debe a que, al reemplazar toda la población, pueden quedar afuera individuos más aptos, y no se garantiza el progreso.
- Los métodos 2 y 3 arrojaron resultados similares, presentando ambos ventaja sobre el 1 (evidenciándose en la tendencia creciente del *fitness*).

Cruce:

 No se obtuvieron diferencias significativas entre los 4 métodos, ya que influye el azar en todos de alguna u otra forma.

Mutación

- Tanto la mutación uniforme y no uniforme como la gen y multigen no presentaron diferencias significativas. La mutación busca ampliar la diversidad, y todas las variables, junto con una buena combinación de los demás operadores, dan resultados similares.
- El porcentaje de probabilidad de mutación sí evidenció diferencias. A mayor probabilidad, más se diversifica la población: si bien se mantiene el mejor fitness, baja el promedio y oscilan los valores intermedios.

Generales:

• Al haber una gran cantidad de variables, existen diversas buenas combinaciones que puedan acercarse a resultados óptimos. Se deben mezclar distintas variantes de los operadores genéticos y en variadas proporciones para encontrarlas.

Gráficos y Tablas

Gráfico 1: N = 50, k = 5.

Gráfico 2: N = 1000, k = 100.

Gráfico 3: combinación de selecciones.

Gráfico 4: reemplazo 1.

Gráfico 5: reemplazo 2.

Gráfico 6: reemplazo 3.

Gráfico 7: probabilidad de mutación = 0.2

Gráfico 8: probabilidad de mutación = 0.9

Gráfico 9: Mejor combinación.

Selección	Mejor Desempeño	Generaciones
Elite	43,7939	118
Ruleta	18,3639	135
Ruleta (Boltzmann)	32,9021	120
Universal	19,7704	118
Toreno Determ.	39,8749	124
Torneo Prob.	37,2887	126
Ranking	43,9078	124

Tabla 1: comparación de métodos de selección.

Cruce	Mejor Desempeño	
Un punto	54,2596	
Dos puntos	54,7678	
Anular	55,7549	
Uniforme (p = 0,6)	52,8787	

Tabla 2: comparación de métodos de cruce.

Combinación	Mejor Desempeño	Desempeño Promedio	Peor Desempeño
Gen / Uniforme (p = 0,2)	55,6269	54,3298	25,3595
Multigen / Uniforme (p = 0,2)	55,4246	54,4248	32,0027
Gen / No Uniforme	55,8514	55,7096	32,0368
Multigen / No Uniforme	54,9622	54,9042	40,0980

Tabla 3: comparación de combinaciones de mutación.