1 Fundamental Theorem of Galois Theory I

Theorem 1.1. Let L: K be a Galois extension with $G = \operatorname{Gal}_K L$. Define $\mathcal{I}(K, L)$ and $\mathcal{S}(G)$ as the collection of all intermediate fields of L: K and the family of all subgroups of G, respectively. Then

$$\forall P \in \mathcal{I}(K, L), \quad L^{G_P} = P$$

 $\forall H \in \mathcal{S}(G), \quad G_{L^H} = H.$

Also, $P_1 \subseteq P_2 \iff G_{P_1} \geqslant G_{P_2}$ and $H_1 \leqslant H_2 \iff L^{H_1} \subseteq L^{H_2}$ (by Theorem 1 of Lecture 19)