Spatial Filtering

CSC 391: Introduction to Computer Vision

Spatial filtering

A function operating on the intensity of an image

- Applications
 - Image enhancement, contrast manipulation, denoising, blurring, edge detection, detecting patterns, etc.

Point-wise operation: Contrast stretching

- Assume image f with intensity range 0 255
 - Transformation function: $g = h(f) = \frac{1}{1 + (m/f)^E}$

m = 128, E=5

Linear filtering

$$g(i,j) = \sum_{k=1}^{3} \sum_{\ell=1}^{3} f(i+k-2, j+\ell-2)h(k,\ell)$$

- filter: h (3 x 3)
- input image: f
- resulting image: g

Box filter

$$h(\cdot, \cdot)$$
 $\frac{1}{9}$
 $\frac{1}{1}$
 $\frac{1}{1}$
 $\frac{1}{1}$
 $\frac{1}{1}$
 $\frac{1}{1}$

$$f(\cdot, \cdot)$$

$$g(\cdot, \cdot)$$

$$f(\cdot, \cdot)$$

$$g(\cdot, \cdot)$$

$$f(\cdot, \cdot)$$

$$g(\cdot, \cdot)$$

$$h(\cdot,\cdot)^{\frac{1}{9}}$$

$$f(\cdot, \cdot)$$

$$g(\cdot, \cdot)$$

$$h(\cdot,\cdot)^{\frac{1}{9}}$$

$$f(\cdot, \cdot)$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$g(\cdot, \cdot)$$

$$f(\cdot, \cdot)$$

$$g(\cdot, \cdot)$$

$$f(\cdot, \cdot)$$

$$g(\cdot, \cdot)$$

Linear filtering

$$f(\cdot, \cdot)$$

$$g(\cdot, \cdot)$$

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

$h(\cdot, \cdot)$							
1	1	1	1				
<u> </u>	1	1	1				
9	1	1	1				

Smoothing with box filter

\bigcirc	•	•	1
\mathbf{O}	r1g	311	nal

0	0	0
0	1	0
0	0	0

Original

Filtered (no change)

\sim	•	1
O r	igin	lal

0	0	0
0	0	1
0	0	0

Source: D. Lowe

Original

Shifted left By 1 pixel

Original

0	0	0	1	1	1	1
0	2	0	- $\frac{1}{9}$	1	1	1
0	0	0	9	1	1	1

(Note that filter sums to 1)

0	0	0
0	2	0
0	0	0

Original

Sharpening filter

- Accentuates differences with local average

Sharpening

before

after

Source: D. Lowe

Other filters

1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value)
Source: J. Hays

Other filters

1	2	1
0	0	0
-1	-2	-1

Sobel

Horizontal Edge (absolute value)
Source: J. Hays

Key properties of linear filters

Linearity:

```
filter(a*f_1 + b*f_2) = a*filter(f_1) + b*filter(f_2)
```

Any linear operator can be represented by matrix-vector multiplication

Shift invariance:

```
If filter(shift(f)) == shift(filter(f))
```

Any linear, shift-invariant operator can be represented as a convolution

Gaussian filters

Weight contributions of neighboring pixels by nearness

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
1	0.059			
0.003	0.013	0.022	0.013	0.003

$$5 \times 5$$
, $\sigma = 1$

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

```
>> [X,Y] = meshgrid([-2:2],[-2:2]);
>> sigma = 1;
>> G = 1/(2*pi*sigma^2) * exp(-(X.^2 + Y.^2)/(2*sigma^2));
```

Smoothing with Gaussian filter

Smoothing with box filter

Practical considerations

How big should the filter be?

- Values at edges should be near zero
- Rule of thumb for Gaussian: set filter half-width to about 3 σ

Source: J. Hays

Practical considerations

- What about near the edge of the image?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Median filters

Nonlinear filter

- A Median Filter operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

© 2006 Steve Marschner • 45 Slide by Steve Seitz

Comparison: salt and pepper noise

© 2006 Steve Marschner • 46 Slide by Steve Seitz

Practice questions

Filtering Operator

3. Fill in the blanks:

a)
$$\underline{-} = D * B$$

b) $A = \underline{-} * \underline{-}$

$$d) = D * \overline{D}$$

Н

Source: J. Hays

Credit:

Slide set developed by J. Hays, Brown University.