

2CP

Série d'exercices N° 2 Intégrales multiples

ANA4

Intégrales doubles

Exercice 1 : Calculer, par le théorème de Fubini, les intégrales doubles suivantes :

1)
$$\iint_{D_1} \cos(x)e^y dxdy$$
 avec $D_1 = \{(x,y) \in \mathbb{R}^2 \mid 1 \le x \le 3, \ 0 \le y \le 2\}.$

2)
$$\iint_{D_2} y^2 e^{xy} dx dy$$
 avec $D_2 = \{(x, y) \in \mathbb{R}^2 \mid 1 \le y \le 3, \ 0 \le x \le 2y\}.$

3)
$$\iint_{D_3} \frac{xy}{1+x^2+y^2} dxdy \quad avec \quad D_3 = \left\{ (x,y) \in \mathbb{R}^2 \ / \ 0 \le x \le 1, \ 0 \le y \le 1, \ x^2+y^2 \ge 1 \right\}.$$

4)
$$\iint_{D_4} xy^2 dxdy$$
 avec $D_4 = \{(x,y) \in \mathbb{R}^2 \mid x+y \ge 1 \text{ et } x^2 + y^2 \le 1\}.$

5)
$$\iint_{D_5} x \cos(x+y) dx dy$$
 où D_5 la région triangulaire de sommets $(0,0)$, $(\pi,0)$, (π,π) .

Exercice 2: En utilisant un changement de variables en coordonnées polaires, calculer $\iint_{D_i} f_i(x,y) dx dy$ où

•
$$f_1(x,y) = \frac{xy}{x^2+y^2}$$
, $D_1 = \{(x,y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, 1 \le x^2+y^2 \le 4\}$

•
$$f_2(x,y=\sqrt{x^2+y^2}, D_2=\{(x,y)\in\mathbb{R}^2\mid x\geq 0, 1\leq x^2+y^2\leq 2y\}.$$

Exercice 3: En utilisant le changement de variables indiqué calculer $\iint_{D_i} f_i(x,y) dx dy$ où

•
$$f_1(x,y) = \frac{y}{x}$$
, $D_1 = \{(x,y) \in \mathbb{R}^2 \mid x < y < 2x, x < y^2 < 2x\}$, $u = \frac{x}{y}$, $v = \frac{y^2}{x}$.

•
$$f_2(x,y) = xy$$
, $D_2 = \left\{ (x,y) \in \mathbb{R}^2 \mid x \ge 0, \ y \ge 0, \ x^{\frac{2}{3}} + y^{\frac{2}{3}} \le 1 \right\}$,

$$x = r\cos^3(\theta)$$
, $y = r\sin^3(\theta)$, avec $r \ge 0$, $\theta \in [0, 2\pi[$.

Exercice 4: Soit $I = \int_0^1 \frac{\ln((1+x))}{1+x^2} dx$.

1) Montrer que
$$\forall x \in]-1, +\infty[, \int_0^1 \frac{x}{1+xy} dy = \ln((1+x).$$

2) Déduire que
$$I = \iint_D \frac{x}{(1+x^2)(1+xy)} dxdy$$
 avec $D = [0,1]^2$.

3) Montrer que
$$\iint_D \frac{x+y}{(1+x^2)(1+y^2)} dxdy = 2I$$
.

4) Déduire que $I = \frac{\pi}{8} \ln(2)$.

Exercice 5 : Calculer les intégrales doubles suivantes :

$$\overline{1) \iint_D (x-y)^2 dx dy \quad avec \quad D = \left\{ (x,y) \in \mathbb{R}^2 \ / \ \sqrt{x} + \sqrt{y} \ge 1, \ \sqrt{1-x} + \sqrt{1-y} \ge 1 \right\}.$$

2)
$$\iint_D xy dx dy$$
 avec $D = \{(x,y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, xy + x + y \le 1\}.$

3)
$$\iint_D dxdy$$
 avec $D = \{(x,y) \in \mathbb{R}^2 \mid |x-y| \le 1, |x+y| \le 1\}.$

4)
$$\iint_D (2x-y) dx dy$$
 avec $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1, \ 0 \le y \le x\}.$

4)
$$\iint_{D} (2x - y) dx dy \quad avec \quad D = \left\{ (x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 1, \quad 0 \le y \le x \right\}.$$
5)
$$\iint_{D} \sqrt{3x - y} e^{2y - x} dx dy / D \text{ est l'intérieur du parallélogramme de sommets}$$

$$(0,0)$$
; $(2,1)$; $(3,4)$; $(1,3)$.

6) $\iint xy^2 dxdy$ avec D est l'ensemble des points du plan délimité par les courbes

d'équations $x = \frac{1}{y}$ et x = -4y + 5.

Intégrales triples

Exercice 1: Soient les ensembles suivante

- $\Omega_1 = [0,1] \times [-1,2] \times [2,3].$
- Ω_2 = l'ensemble des point de \mathbb{R}^3 délimité par le cylindre élliptique $x^2 + z^2 = 4$ et les plans y = 0, y = 6.
- Ω_3 = l'ensemble des point de \mathbb{R}^3 délimité par les plans z=0, z=y et le cylindre parabolique $y = 1 - x^2$.
- 1) Représenter les ensembles Ω_1 , Ω_2 , Ω_3 .
- 2) Considérons une fonction intégrable f sur Ω_i . Exprimer $\iiint f(x,y,z) dx dy dz$ sous forme

de trois intégrales simples succéssives (sans utiliser de changement de variables).

Exercice 2: Calculer $\iiint f(x,y,z) dx dy dz$, $0 \le i \le 6$ dans chacun des cas suivants:

1)
$$f(x,y,z) = e^x$$
, $\Omega_1 = \{(x,y,z) \in \mathbb{R}^3 / 0 \le y \le 1, 0 \le x \le y, 0 \le z \le x + y\}$.

2)
$$f(x,y,z) = |xyz|$$
, $\Omega_2 = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 2pz, \ 0 \le z \le a\}$ où $a,p \in \mathbb{R}_+^*$.

3)
$$f(x,y,z) = z$$
, $\Omega_3 = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 \le z^2, x^2 + y^2 + z^2 \le a^2, z \ge 0\}$ où $a \in \mathbb{R}_+^*$.

- 4) f(x,y,z) = x, Ω_4 étant borné par le paraboloide $x = 4y^2 + 4z^2$ et le plan x = 4.
- 5) f(x,y,z) = y, Ω_5 étant le domaine se trouvant sous le plan z = x + 2y et au dessus de la région du plan xoy bornée par les courbes $y = x^2$, y = 0 et x = 1.

6)
$$f(x,y,z) = y\cos(x+z), \ \Omega_6 = \left\{ (x,y,z) \in \mathbb{R}^3 \ / \ , y \ge 0, z \ge 0, y \le \sqrt{x} \ , x+z \le \frac{\pi}{2} \right\}.$$

Exercice 3: Soient

$$\overline{\Omega_1} = \left\{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1 \text{ et } x^2 + y^2 + z^2 \le 2, \ z \ge 0 \right\},
\Omega_2 = \left\{ (x, y, z) \in \mathbb{R}^3 \text{ tq } \frac{x^2}{3} + \frac{y^2}{3} \le z^2 \le x^2 + y^2, \ z \ge 0 \text{ et } x^2 + y^2 + z^2 \le 1 \right\}.$$

- 1) Déterminer le transformé de Ω_1 en coordonnées cylindriques.
- 2) Déterminer le transformé Ω_2 en coordonnées sphériques.
- 3) Déduire le volume de Ω_1 et de Ω_2 .

Exercice 4 : Identifier les ensembles suivants et calculer leur volume :

1)
$$\Omega_1 = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 \le z \le 1, x \ge 0, y \ge 0 \}.$$

2)
$$\Omega_2 = \{(x, y, z) \in \mathbb{R}^3 \text{ tq } x^2 + y^2 + z^2 \le 4, -1 \le z \le 1 \}.$$

3)
$$\Omega_3 = \left\{ (x, y, z) \in \mathbb{R}^3 / x^2 + y^2 \le \frac{z^2}{h^2}, \ 0 \le z \le h \right\} \text{ avec } h > 0.$$

4)
$$\Omega_4 = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 \le z \le 1 - (x^2 + y^2) \}.$$