

«Московский государственный технический университет имени Н.Э. Баумана» (национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФУНДАМЕНТАЛЬНЫЕ НАУКИ

КАФЕДРА ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА (ФН11)

НАПРАВЛЕНИЕ ПОДГОТОВКИ МАТЕМАТИКА И КОМПЬЮТЕРНЫЕ НАУКИ (02.03.01)

Отчет

по лабораторной работе № 8

Название лабораторной работы: Применение критерия χ^2 Пирсона к проверке гипотезы о виде функции распределения

Вариант № 9

Дисциплина:

Теория вероятности и математическая статистика

Студент группы ФН11-52Б		Очкин Н.В.
	(Подпись, дата)	(И.О. Фамилия)
Преподаватель		Облакова Т.В.
•	(Подпись, дата)	(И.О. Фамилия)

Задание

- 1. Используя группированную выборку из задачи 1, проверьте на уровне α гипотезу H_0 : выборка взята из генеральной совокупности, распределенной по закону F(x).
- 2. Неизвестные параметры распределения F(x), если это необходимо, найдите методом моментов или методом максимального правдоподобия по выборке.
- 3. Постройте совмещенные графики гистограммы относительных частот и плотности, соответствующей функции распределения F(x).
- 4. Дайте анализ полученного решения.

Исходные данные

			R	[a, b]	$\alpha = 0.0$)1			
14.495	4.715	7.175	8.428	11.093	3.375	12.906	8.415	8.916	13.48
5.343	4.715 17.985	15.992	13.89	9.838	3.373 13.924	9.012	9.458	17.69	$\frac{15.48}{6.542}$
14.396	8.592	8.206	14.237	7.357	10.821	12.767	16.058	12.959	4.354
12.888	10.268	9.182	5.647	8.282	2.903	15.988	12.959	14.919	6.339
2.375	17.921	9.097	15.85	11.449	11.095	9.493	12.175	7.479	13.535
9.234	6.078	4.964	6.355	13.957	12.911	15.694	14.286	9.869	5.175
5.811	7.241	5.814	3.086	6.875	3.878	5.333	15.134		9.159
$\begin{vmatrix} 4.727 \\ 4.843 \end{vmatrix}$	4.646 9.927	15.535 15.864	9.919 3.635	17.117 17.963	10.351 8.25	16.892 5.14	12.423 6.734	10.511 12.622	4.942 13.325
3.377	9.927 16.195	12.04	12.768	2.744	0.25 14.186	9.354	15.439	14.612	15.525 15.649
1									I

Ход выполнения работы

Сгруппируем данные:

```
def group(data):
    n_{-} = len(data)
    min_{-} = min(data)
    max_ = max(data)
    range_ = max_ - min_
    l_{-} = 1 + int(np.log2(n_{-}))
    h_ = range_ / 1_
    int_boundaries_ = np.array(
        [min_ + i * h_ for i in range(0, l_ + 1, 1)]
    intervals_ = np.array(
        [(int_boundaries_[i], int_boundaries_[i+1]) for i in range(0, 1_, 1)]
    mid_ranges_ = np.array(
        [sum(interval)/2 for interval in intervals_]
    present = lambda el, int_ : int_[0] <= el < int_[1]</pre>
    freqs_ = np.zeros(1_)
    for el in data:
        for j in range(0, l_, 1):
            if present(el, intervals_[j]):
                freqs_[j] += 1
    freqs_[-1] += np.count_nonzero(data == max_)
    rel_freqs_ = freqs_ / n_
    rel_freqs_density_ = rel_freqs_ / h_
    return n_, min_, max_, range_, l_, h_, int_boundaries_, \setminus
           intervals_, mid_ranges_, freqs_, rel_freqs_, rel_freqs_density_
```

Параметр	Значение
Количество наблюдений, n	120
Минимальное значение	2.375
Максимальное значение	17.985
Размах	15.61
Количество интервалов, l	7
Ширина интервала, h	2.23

Границы	Интервалы	Середины	Частоты	Относительные	Плотность
интервалов					относительных
				частоты	частот
2.375	[2.375, 4.605]	3.49	12	0.1	0.04484305
4.605	[4.605, 6.835]	5.72	20	0.167	0.07473842
6.835	[6.835, 9.065]	7.95	18	0.15	0.06726457
9.065	[9.065, 11.295]	10.18	18	0.15	0.06726457
11.295	[11.295, 13.525]	12.41	17	0.14167	0.06352765
13.525	[13.525, 15.755]	14.64	20	0.167	0.07473842
15.755	[15.755, 17.985]	16.87	14	0.1167	0.05231689
17.985					

Оценим параметры:

$$a = min = 2.375$$

 $b = max = 17.985$

Найдем $\chi^2_{\scriptscriptstyle \rm B}$:

$$\chi_{\mathrm{B}}^2 = \sum_{i=1}^l \frac{(\nu_i - np_i)^2}{np_i}$$

Количество значений, попавших в j-ый интервал группировки (ν) нам уже известно и записано в столбце **Частоты** в таблице выше.

Определим теоретическую вероятность попадания в j-ый интервал группировки (p):

```
theorIntHitProbs_ = [] # p_j
theorIntHitProbsN_ = [] # n*p_j

cdf_ = lambda x : sp.stats.uniform.cdf(x, loc=a, scale=b-a)

for interval in intervals_:
   beg = interval[0]
   end = interval[1]

   theorIntHitProb = cdf_(end) - cdf_(beg)
   theorIntHitProbs_.append(theorIntHitProb)

   theorIntHitProbsN_.append(n_ * theorIntHitProb)
```

 $p_i:[0.143 \quad 0.143 \quad 0.143 \quad 0.143 \quad 0.143 \quad 0.143 \quad 0.143]$ $n\cdot p_i:[17.143 \quad 17.143 \quad 17.143 \quad 17.143 \quad 17.143 \quad 17.143]$

$$sum(p) == 1$$

Итого имеем:

Chi2_v = sum([((freqs_[i] - theorIntHitProbsN_[i])**2) / \ theorIntHitProbsN_[i] for i in range(l_)])
$$\chi^2_{\rm p} \approx 3.1583$$

Теперь определим квантиль с l-1-2=4 степенями свободы:

quantile = sp.stats.chi2.ppf(1 - alpha_, l_ - 1 - 2)
$$\chi^2_{1-\alpha}(l-1-2) = \chi^2_{0.99}(4) \approx 13.2767$$

$$\chi^2_{\scriptscriptstyle \rm B} < \chi^2_{0.99}(4) \Rightarrow$$
 гипотеза принимается

Построим совмещенные графики гистограммы относительных частот и плотности, соответствующей функции непрерывного равномерного распределения с параметрами a=2.375 и b=17.985.

Вывод

В ходе выполнения лабораторной работы были перепроверены выводы, сделанные в первой лабораторной работе, и действительно показано, что на уровне доверия $\alpha=0.01$ выборка взята из генеральной совокупности, распределенной по непрерывному нормальному закону с найденными параметрами а и b.

Приложение

Программный код, с помощью которого была выполнена данная лабораторная работа.

```
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
alpha_= 0.01
data_ = [
    14.495, 4.715, 7.175, 8.428, 11.093, 3.375, 12.906, 8.415, 8.916, 13.48,
    5.343, 17.985, 15.992, 13.89, 9.838, 13.924, 9.012, 9.458, 17.69, 6.542,
    14.396, 8.592, 8.206, 14.237, 7.357, 10.821, 12.767, 16.058, 12.959, 4.354,
    12.888, 10.268, 9.182, 5.647, 8.282, 2.903, 15.988, 12.959, 14.919, 6.339,
    2.375, 17.921, 9.097, 15.85, 11.449, 11.095, 9.493, 12.175, 7.479, 13.535,
    9.234, 6.078, 4.964, 6.355, 13.957, 12.911, 15.694, 14.286, 9.869, 5.175,
    5.811, 7.241, 5.814, 3.086, 6.875, 3.878, 5.333, 15.134, 12.924, 9.159,
    4.727, 4.646, 15.535, 9.919, 17.117, 10.351, 16.892, 12.423, 10.511, 4.942,
    4.843, 9.927, 15.864, 3.635, 17.963, 8.25, 5.14, 6.734, 12.622, 13.325,
    3.377, 16.195, 12.04, 12.768, 2.744, 14.186, 9.354, 15.439, 14.612, 15.649,
    8.681, 5.006, 3.608, 2.867, 12.177, 15.506, 7.683, 14.022, 17.103, 8.905,
    12.173, 17.757, 6.883, 2.666, 9.861, 5.743, 16.175, 15.308, 7.039, 15.238
]
def decorate_plot(ax, x_ticks, xname, yname, loc=(-0.025, -0.3)):
    SIZE_TICKS = 10
    # Eliminate upper and right axes
    ax.spines['right'].set_color('none')
    ax.spines['top'].set_color('none')
    # Show ticks in the left and lower axes only
    ax.xaxis.set_ticks_position('bottom')
    ax.yaxis.set_ticks_position('left')
    # axis names
    ax.set_xlabel(xname, fontsize=15)
    ax.xaxis.set_label_coords(0.98, 0.05)
    ax.set_ylabel(yname, rotation=0, fontsize=15)
    ax.yaxis.set_label_coords(0.025, 0.95)
    ax.set_xticks(x_ticks)
    # Adjust the font size of the tick labels
    ax.tick_params(axis='both', which='major', labelsize=SIZE_TICKS)
    plt.legend(fontsize=10, loc=loc)
    # Update font settings
    plt.rcParams.update({'font.family': 'serif', 'font.size': 12})
```

```
# Adjust layout
    plt.tight_layout()
def clean(data):
    res = []
    for el in data:
        res.append(round(el, 3))
    return res
def group(data):
    n_{-} = len(data)
    print(f'n: {n_}')
    min_{-} = min(data)
    max_ = max(data)
    print(f'min: {min_} max: {max_}')
    range_ = max_ - min_
    print(f'range: {range_}')
    l_{-} = 1 + int(np.log2(n_{-}))
    print(f'1: {1_}')
    h_ = range_ / l_
    print(f'h: {h_}')
    int_boundaries_ = np.array(
        [\min_{+} + i * h_{-} \text{ for i in range}(0, l_{-} + 1, 1)]
    print(f'interval boundaries: {int_boundaries_}')
    intervals_ = np.array(
        [(int_boundaries_[i], int_boundaries_[i+1]) for i in range(0, 1_, 1)]
    )
    print(f'intervals: {intervals_}')
    mid_ranges_ = np.array(
        [sum(interval)/2 for interval in intervals_]
    print(f'intervals\' midpoints: {mid_ranges_}')
    present = lambda el, int_ : int_[0] <= el < int_[1]</pre>
    freqs_ = np.zeros(1_)
    for el in data:
        for j in range(0, l_, 1):
            if present(el, intervals_[j]):
                freqs_[j] += 1
    freqs_[-1] += np.count_nonzero(data == max_)
    print(f'frequencies: {freqs_}')
    rel_freqs_ = freqs_ / n_
    print(f'relative frequencies: {rel_freqs_}')
    rel_freqs_density_ = rel_freqs_ / h_
    print(f'relative frequencies\' density: {rel_freqs_density_}')
```

```
print(f'-'*100)
              space_= ' ' * 5
              for i in range(l_):
                           print(f'{intervals_[i]}{space_}{freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{space_}{rel_freqs_[i]}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_
              return n_, \
                                     min_, \
                                     max_, \
                                     range_, \
                                     1_, \
                                     h_, \
                                      int_boundaries_, \
                                      intervals_, \
                                     mid_ranges_, \
                                     freqs_, \
                                      rel_freqs_, \
                                     rel_freqs_density_
n_, \
min_, \
max_, \
range_, \
1_, \
h_, \
int_boundaries_, \
intervals_, \
mid_ranges_, \
freqs_, \
rel_freqs_, \
rel_freqs_density_ = group(data_)
a = min_{\underline{}}
b = max_{}
theorIntHitProbs_ = [] # p_j
theorIntHitProbsN_= = [] # n*p_j
cdf_ = lambda x : sp.stats.uniform.cdf(x, loc=a, scale=b-a)
for interval in intervals_:
             beg = interval[0]
              end = interval[1]
              theorIntHitProb = cdf_(end) - cdf_(beg)
              theorIntHitProbs_.append(theorIntHitProb)
              theorIntHitProbsN_.append(n_ * theorIntHitProb)
print(f'p_i: {clean(theorIntHitProbs_)}')
print(f'n * p_i: {clean(theorIntHitProbsN_)}')
sum(theorIntHitProbs_)
```

```
Chi2_v = sum([((freqs_[i] - theorIntHitProbsN_[i])**2)/theorIntHitProbsN_[i] for i i
Chi2_v
quantile = sp.stats.chi2.ppf(1 - alpha_, l_ - 1 - 2)
quantile
def buildBar(filename):
   RED = '#6F1D1B'
    _, ax = plt.subplots(figsize=(10, 6))
   x_values = mid_ranges_
    y_values = rel_freqs_density_
    ax.bar(x_values,
           y_values,
           width=h_,
           color='white',
           edgecolor=RED,
           linestyle='-',
           linewidth=1.5,
           align='center')
    x_values = np.linspace(min_, max_, 100)
    y_values = sp.stats.uniform.pdf(x_values, loc=a, scale=b-a)
    ax.plot(x_values,
            y_values,
            color='black',
            linestyle='--',
            linewidth=3)
    decorate_plot(ax, int_boundaries_, 'int', '$p^r$', loc=(0, 0))
    plt.savefig(f'{filename}.png', dpi=300, transparent=True)
   plt.show()
buildBar('hist')
```