

R65C02 IP Core Specification

Author: Jens Gutschmidt opencores@vivare-services.com

Rev. 0.9 September 9, 2018

This page has been intentionally left blank.

Revision History

Rev	Date	Author	Description
0.1	12/18/06	Jens Gutschmidt	First Draft
0.2	01/02/07	Jens Gutschmidt	Pictures of FSM's
0.3	08/20/08	Jens Gutschmidt	Tables and timing diagramsDeleting pictures of FSM
0.4	10/01/08	Jens Gutschmidt	- New ideas for timing diagrams
0.5	01/02/09	Jens Gutschmidt	Textual changes / spell checkingInsert R6502_TC block diagram
0.6	02/01/09	Jens Gutschmidt	- Work on Timing Diagrams
0.7	23/02/09	Jens Gutschmidt	- Added new instruction codes (Timing diagrams for all new op codes missing)
0.8	16/04/14	Jens Gutschmidt	Corrected description for BITCorrected timing for JSR, RTS
0.9	09-Sep-2018	Jens Gutschmidt	 Corrected ADC /SBC descriptions (D=1 -> 1 additional cycle) Corrected all branch descriptions (page crossing computed wrong) PHP writes always E&B = '1'to stack Adding Interrupt section Adding ADC / SBC Decimal Mode

Contents

1	INTRODUCTION	1
2	ARCHITECTURE	2
3	OPERATION	6
A	1DC	
	IND	
	ISL	
	3BR	
	<i>BBS</i>	
	BCC	
E	BCS	
	BEQ	
	BIT	
E	BMI	
E	BNE	
E	3PL	
	3RA	
E	BRK	
E	BVC	
	BVS	
	CLC	
	CLD	
	CLV	
	CMP	
	CPX	
	<u>CPY</u>	
	DEC	
	DEX	
	DEY	
	EOR	
	NC	
	NX	
	NY	
	MP	
	ISR	
	.DA	
	DX	
	.DY	
	SR	
	VOP	
	ORA	
	PHA	
	PHP	
	PHX	
	PHY	
	PLA	
	PLP.	
	PLX	

<i>PLY</i>	35
ROL	36
ROR	
<i>RMB</i>	
RTI	
RTS	
SBC	
SEC	
SED	
SEI	
<i>SMB</i>	
STA	40
STX	41
STY	41
STZ	
<i>TAX</i>	
TAY	
TRB	
TSB	
TSX	
TXA	
<i>TXS</i>	
<i>TYA</i>	46
4	. 47
P	47
Registers	
List of Registers	
PSW – Description	
5	. 48
Clocks	18
6	. 49
Interrupts	49
NMI	
IRQ	
BRK	
APPENDIX A	. 51
ADC / SBC DECIMAL MODE	.51
TIMING DIAGRAMS	. 54
ADC, SBC	5.5
AND, BIT, CMP, CPX, CPY, EOR, LDA, LDX, LDY, ORA	
BCC, BCS, BVC, BVS, BPL, BMI, BEQ, BNE	
BRK	
ASL, LSR, ROL, ROR, DEC, INC	70
CLC, CLD, CLI, CLV, DEA, DEX, DEY, INA, INX, INY, SEC, SED, SEI, TAX, TAY, TSX, TXA, TY.	<i>A</i> 73
<i>JMP</i>	74
JSR	
NOP, TXS	
PLA, PLP	
·	
PHA, PHP	
RTI	
RTS	
STA, STX, STY	81
INSTRUCTION TABLE	1

INDEX	2
LIST OF FIGURES	
Figure (1): 6502 architecture	2
Figure (2): R6502_TC IP core architecture	5
Figure (3): ADC, SBC – Timing Diagram "Immediate".	55
Figure (4): ADC, SBC – Timing Diagram "Zero Page"	55
Figure (5): ADC, SBC – Timing Diagram "Zero Page, X"	56
Figure (6): ADC, SBC – Timing Diagram "Absolute"	56
Figure (7): ADC, SBC – Timing Diagram "Absolute, X" – no page crossing	57
Figure (8): ADC, SBC – Timing Diagram "Absolute, X" – page crossing	57
Figure (9): ADC, SBC – Timing Diagram "Absolute, Y" – no page crossing	58
Figure (10): ADC, SBC – Timing Diagram "Absolute, Y" – page crossing	58
Figure (11): ADC, SBC – Timing Diagram "(Indirect, X)"	59
Figure (12): ADC, SBC – Timing Diagram "(Indirect), Y" – no page crossing	59
Figure (13): ADC, SBC – Timing Diagram "(Indirect), Y" – page crossing	60
Figure (14): AND, CMP, CPX, CPY, EOR, LDA, LDX, LDY, ORA – Timing Diagram "Immedi	
Figure (15): AND, BIT, CMP, CPX, CPY, EOR, LDA, LDX, LDY, ORA – Timing Diagram "Z	Zero
Figure (16): AND, CMP, EOR, LDA, LDY, ORA – Timing Diagram "Zero Page, X"	62
Figure (17): AND, BIT, CMP, CPX, CPY, EOR, LDA, LDX, LDY, ORA – Timing Diag "Absolute"	-
Figure (18): AND, CMP, EOR, LDA, LDY, ORA – Timing Diagram "Absolute, X" – no percossing	
Figure (19): AND, CMP, EOR, LDA, LDY, ORA – Timing Diagram "Absolute, X" – page crossing	g 63
Figure (20): AND, CMP, EOR, LDA, LDX, ORA – Timing Diagram "Absolute, Y" – no percentage of the crossing	
Figure (21): AND, CMP, EOR, LDA, LDX, ORA – Timing Diagram "Absolute, Y" – page crossing	g 64
Figure (22): AND, CMP, EOR, LDA, ORA – Timing Diagram "(Indirect, X)"	65
Figure~(23):~AND,~CMP,~EOR,~LDA,~ORA-Timing~Diagram~``(Indirect),~Y"-no~page~crossing	65
Figure (24): AND, CMP, EOR, LDA, ORA – Timing Diagram "(Indirect), Y" – page crossing	66
Figure (25): BCC, BCS, BVC, BVS, BPL, BMI, BEQ, BNE – Timing Diagram "no branch, so page"	

Figure (26): BCC, BCS, BVC, BVS, BPL, BMI, BEQ, BNE – Tii page"	ming Diagram "no branch, different67
Figure (27): BCC, BCS, BVC, BVS, BPL, BMI, BEQ, BNE – Tir	
Figure (28): BCC, BCS, BVC, BVS, BPL, BMI, BEQ, BNE – page"	Timing Diagram "branch, different
Figure (29): BRK – Timing Diagram "Implied"	69
Figure (30): ASL A, LSR A, ROL A, ROR A – Timing Diagram "I	mmediate"70
Figure (31): ASL, LSR, ROL, ROR, DEC, INC – Timing Diagram	"Zero Page"70
Figure (32): ASL, LSR, ROL, ROR, DEC, INC – Timing Diagram	"Zero Page, X"71
Figure (33): ASL, LSR, ROL, ROR, DEC, INC – Timing Diagram	"Absolute"71
Figure (34): ASL, LSR, ROL, ROR, DEC, INC – Timing Diagram	"Absolute, X"
Figure (35): CLC, CLD, CLI, CLV, DEX, DEY, INX, INY, SEC, TYA – Timing Diagram	
Figure (36): JMP – Timing Diagram "Absolute"	74
Figure (37): JMP – Timing Diagram "Indirect" (must be corrected)	74
Figure (38): JSR – Timing Diagram	75
Figure (39): NOP, TXS – Timing Diagram	76
Figure (40): PLA, PLP – Timing Diagram "Implied"	77
Figure (41): PHA, PHP – Timing Diagram "Implied"	
Figure (42): RTI – Timing Diagram "Implied"	79
Figure (43): RTS – Timing Diagram "Implied"	80
Figure (44): STA, STX, STY – Timing Diagram "Zero Page"	81
Figure (45): STA, STY - Timing Diagram "Zero Page, X"	81
Figure (46): STX – Timing Diagram "Zero Page, Y"	82
Figure (47): STA, STX, STY – Timing Diagram "Absolute"	82
Figure (48): STA – Timing Diagram "Absolute, X"	83
Figure (49): STA – Timing Diagram "Absolute, Y"	83
Figure (50): STA – Timing Diagram "(Indirect, X)"	84
Figure (51): STA – Timing Diagram "(Indirect) Y"	84

LIST OF TABLES

Table (1): ADC – Short Reference	7
Table (2): AND – Short Reference	8
Table (3): ASL – Short Reference	9
Table (4): BBR – Short Reference	10
Table (5): BBS – Short Reference	11
Table (6): BCC – Short Reference	12
Table (7): BCS – Short Reference	13
Table (8): BEQ – Short Reference	14
Table (9): BIT – Short Reference	
Table (10): BMI – Short Reference	16
Table (11): BNE – Short Reference	17
Table (12): BPL – Short Reference	18
Table (13): BRA – Short Reference	19
Table (14): BRK – Short Reference	19
Table (15): BVC – Short Reference	20
Table (16): BVS – Short Reference	21
Table (17): CLC – Short Reference	22
Table (18): CLD – Short Reference	22
Table (19): CLI – Short Reference	23
Table (20): CLV – Short Reference	23
Table (21): CMP – Short Reference	24
Table (22): CPX – Short Reference	24
Table (23): CPY – Short Reference	25
Table (24): DEC – Short Reference	25
Table (25): DEX – Short Reference	26
Table (26): DEX – Short Reference	26
Table (27): EOR – Short Reference	27
Table (28): INC – Short Reference	28
Table (29): INX – Short Reference	28
Table (30): INY – Short Reference	29
Table (31): JMP – Short Reference	29
Table (32): JSR – Short Reference	30
Table (33): LDA – Short Reference	30

Table (34): LDX – Short Reference	31
Table (35): LDY – Short Reference	31
Table (36): LSR – Short Reference	32
Table (37): NOP – Short Reference	32
Table (38): OR – Short Reference	33
Table (39): PHA – Short Reference	33
Table (40): PHP – Short Reference	34
Table (41): PHX – Short Reference	34
Table (42): PHY – Short Reference	34
Table (43): PLA – Short Reference	34
Table (44): PLP – Short Reference	35
Table (45): PLX – Short Reference	35
Table (46): PLY – Short Reference	35
Table (47): ROL – Short Reference	36
Table (48): ROR – Short Reference	36
Table (49): RMB – Short Reference.	37
Table (50): RTI – Short Reference	37
Table (51): RTS – Short Reference	37
Table (52): SBC – Short Reference	38
Table (53): SEC – Short Reference	38
Table (54): CLD – Short Reference	39
Table (55): SEI – Short Reference	39
Table (56): SMB – Short Reference	40
Table (57): STA – Short Reference	40
Table (58): STX – Short Reference	41
Table (59): STY – Short Reference	41
Table (60): STZ – Short Reference	41
Table (61): TAX – Short Reference	42
Table (62): TAY – Short Reference	42
Table (63): TRB – Short Reference	43
Table (64): TSB – Short Reference	44
Table (65): TSX – Short Reference	44
Table (66): TXA – Short Reference	45

1 Introduction

The Central Processing Unit (CPU) 6502 was introduced at 1976 by Commodore Computers. It is an 8 Bit processor which is well known worldwide. The also most known computer system in the 70s/80s was the APPLE based on this famous 6502.

In this century building of little computer systems based on an 8 Bit architecture is easier than ever before. Many CAD/CAM tool are existing on the market to give you help to do this job.

In the last decade the technology give us more and more possibilities to reach our dreams – higher, faster, wider. FPGA's (Field Programmable Gate Arrays) and CPLD's (Complex Programmable Logic Devices) are coming up. They shorten the time of development, simulation and verification of such systems dramatically. On the other hand stands the rising complex of designs and well knowing of desired description languages – VHDL (Very high scale integration Hardware Description Language) or Verilog.

Many operations and functions of computer tasks aren't need really the power of "modern" processors today like Intel's Pentium. Nevertheless it is not usable – sometimes also impossible - to build simple systems with discrete IC's. The necessity of flexibility compel us the using of high tech parts and tools...to build a "simple" system.

The using of standard IP's (Intellectual Properties) is the key to reach that goal.

Now, talking about the specification of the **R65C02 True Cycle Core IP**. Written in VHDL but developed with Mentor's HDL Designer. The R65C02 is very easy to handle for people were have experience with other cpu. Also suitable for beginners who will learning to build her own first cpu system.

2 Architecture

The following figure shows the internal architecture of the Rockwell's R65C02.

Figure (1): R65C02 architecture

First, for more clearance and better understanding of the **R65C02 True Cycle Core IP** let me summarize the most important quality of Rockwell's R65C02.

This architecture based on asynch logic. The two phase clock is a special attribute of that. The Data Bus is only active while clock phase PH1 is "1" for reading and writing (PH0 is "0"). All transfers of data are occurring at active phase of PH1.

The whole R65C02 is fully statically, so all registers holding her values if the clocking will be going to D.C. Internally all operation of 16 Bit are splitted into two 8 Bit busses. This is very interesting and causes one more clock cycle in some operations (see "PCL", "PCH" -> Program Counter Low/High) which can operate over page boundaries.

Address lines are 16 Bit wide. 65.536 addresses for byte access are possible. There are no differences exist between memory and I/O cycles. All I/O devices must be connected via memory mapped I/O. The mnemonics are also all the same for both. The usage of address space is normally organized from top to the button "ROM – I/O – RAM" (0xFFFF – 0x0000).

Only one pin R/\overline{W} controls the read and writes operations.

The R65C02 can hold in every cycle by applying RDY. Wait states can be generated by using RDY.

There are two interrupts \overline{IRQ} and NMI. \overline{IRQ} is mask able, NMI is not. Note that \overline{RES} is internally handled as an interrupt, but is resetting the R65C02 to the starting point of operation at vector address 0xFFFF. Every interrupt has its own vector which can point elsewhere to the 16 Bit address space. The vectors are located from 0xFFFF to 0xFFFA.

The Stack Pointer is 256 Bytes deep and is hard-wired to 0x01FF (internally 0x0200 –0x01FF going to the address bus) for the first memory location and grows downward to 0x0100. Decrementing again will produce a wraparound back to 0x01FF.

Arithmetical operations like ADC and SBC can handle binary values from 0-255 and decimal values from 0-99 without using other op codes. Only one user changeable bit into the Status Register determine the exact arithmetic mode of that operations.

The R65C02 generally operates into a pipeline mode. That means that a finish of an OP code falls every time into a fetch cycle of the next OP. This save one clock cycle

Every operation consume between one and eight clock cycles.

To build a useful und backward software and hardware compatible VHDL Core for the R65C02 many unavoidable changes may be forced to simulation and verification before any real core will be made.

The requirements:

- Vendor independent for implementation in any FPGA
- True Cycle for all operations as described in original publications
- No "Mixed Mode" Only R65C02, not R6502 -> for performance and area
- No fantastic or useful extensions as like the original R65C02 as possible
- Only one clock source
- Full synch design
- Operating speed up to 60 MHz or higher
- Easily to change for future requirement building variants
- The activity on data and address busses since the execution of OP codes is not forced to be like the original may be or maybe not.

The design based on finite state machines (fsm). Some registers are for internally use only and stores temporally values. These registers are not accessible by the programmer.

The next picture shows the hierarchical structure of the R65C02 IP core.

Figure (2): R65C02_TC IP core architecture

3 Operation

ADC

Operation: Add memory or immediate value to accumulator A with carry $(A + M + C \rightarrow A, C)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	C
Immediate	ADC # Oper	69	2	2+			-	-	-	-	$\sqrt{}$	1
Zero Page	ADC Oper	65	2	3+		$\sqrt{}$	-	-	-	-	V	1
Zero Page, X	ADC Oper, X	75	2	4+		$\sqrt{}$	-	-	-	-	V	1
Absolute	ADC Oper	6D	3	4+		V	-	-	-	-	V	V
Absolute, X	ADC Oper, X	7D	3	4+*		$\sqrt{}$	-	-	-	-	V	1
Absolute, Y	ADC Oper, Y	79	3	4+*		V	-	-	-	-	V	V
(Indirect, X)	ADC (Oper, X)	61	2	6+		V	-	-	-	-	V	V
(Indirect), Y	ADC (Oper), Y	71	2	5+*		V	-	-	-	-	V	V
(Indirect) NEW	ADC (Oper)	72	2	5+		V	-	-	-	-	V	V

^{* =&}gt; Add 1 if page boundary is crossed

Table (1): ADC – Short Reference

Example Immediate (assumed A=\$FE, C=0, D=0):

Address	Bytes	Mnemonic	
\$9000	69 03	ADC #\$03	
\$9002	•••	next OP	; A is now \$01, C=1, N=0, Z=0, V=0

ADC 0000 0011 (\$75)

0000 0001 (\$01), C=1, N=0, Z=0, V=0

^{+=&}gt; Add 1 if mode is "DECIMAL" (D='1')

AND

Operation: "AND" memory or immediate value with accumulator A $(A \cap M \rightarrow A)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	C
Immediate	AND #Oper	29	2	2		-	-	-	-	-	$\sqrt{}$	-
Zero Page	AND Oper	25	2	3		-	-	-	-	-	V	-
Zero Page, X	AND Oper, X	35	2	4		-	-	-	-	-	V	-
Absolute	AND Oper	2D	3	4		-	-	-	-	-	V	-
Absolute, X	AND Oper, X	3D	3	4*		-	-	-	-	-	V	-
Absolute, Y	AND Oper, Y	39	3	4*		-	-	-	-	-	V	-
(Indirect, X)	AND (Oper, X)	21	2	6		-	-	-	-	-	V	-
(Indirect), Y	AND (Oper), Y	31	2	5*		-	-	-	-	-	V	-
(Indirect) NEW	AND (Oper)	32	2	5		-	-	-	-	-	V	-

^{* =&}gt; Add 1 if page boundary is crossed

Table (2): AND - Short Reference

Example Immediate (assumed A is \$C5):

Address	Bytes	Mnemonic	
\$9000 \$9002	29 71	AND #\$71 next OP	;; A is now \$41, N=0, Z=0

ASL

Operation: Shift Left One Bit (Memory or Accumulator) (C \leftarrow 7 6 5 4 3 2 1 0 \leftarrow 0)

Addressing Mode	Assem Form	bly Language	OP CODE	No. Bytes	No. Cycles	N	V	Е	В	D	I	Z	C
Accumulator	ASL	A	0A	1	2	$\sqrt{}$	-	-	-	-	-		V
Zero Page	ASL	Oper	06	2	5		-	-	-	-	-	$\sqrt{}$	V
Zero Page, X	ASL	Oper, X	16	2	6	V	-	-	-	-	-	$\sqrt{}$	V
Absolute	ASL	Oper	0E	3	6	V	-	-	-	-	-		V
Absolute, X	ASL	Oper, X	1E	3	7	V	-	-	-	-	-	$\sqrt{}$	V

Table (3): ASL – Short Reference

Example Accumulator (assumed A=\$55):

Address	Bytes	Mnemonic	
\$9000	0A	ASL A	
\$9001		next OP	: A is now \$AA. N=1. Z

<u>ASL 0101 0101 (\$55)</u> <u>1010 1010 (\$AA), C=0, N=1, Z=0</u>

BBR

Operation: Branch on memory bit x is reset, where x=0-7 MSB of op code (Branch on Mx=0)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Relative	BBR(0-7) ZP,offs8	0F-7F	3	5*	-	-	-	-	-	-	-	-

^{* =&}gt; Add 1 if branch occurs to same page

Table (4): BBR – Short Reference

Example Relative (assumed \$0032=\$24, same page):

Address	Bytes	Mnemonic	
\$9000	2F 32 10	BBR2 \$32, \$10	; BBR to same page, - NO BRANCH - jumps to ; \$9003
\$9003		next OP	M2(\$0032) = 1 = no branch, 5 cycles

Example Relative (assumed \$0032=\$24, different page):

Address	Bytes	Mnemonic	
\$90FF	5F 32 10	BBR5 \$32, \$10	; BBR to different page, - NO BRANCH – jumps ; to \$9102
\$9102		next OP	M5(\$0032) = 1 = no branch, 5 cycles (!!!)

Example Relative (assumed \$0032=\$24, same page):

Address	Bytes	Mnemonic	
\$9000	0F 32 10	BBR0 \$32, \$10	; BBR to same page, - BRANCH - jumps to \$9003 ; + $\$10$
\$9013		next OP	; $M0(\$0032)=0 => branch, 6 cycles$

Example Relative (assumed \$0032=\$24, different page):

Address	Bytes	Mnemonic	
\$90FC	0F 32 10	BBR0 \$32, \$10	; BBR to different page, - BRANCH - jumps to ; $\$900F + \10
\$910F		next OP	; M0(\$0032)=0 => branch, 7 cycles

^{* =&}gt; Add 2 if branch occurs to different page

BBS

Operation: Branch on memory bit x is set, where x=0.7 MSB-8 of op code (Branch on Mx=1)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Relative	BBS(0-7) ZP,offs8	8F-FF	3	5*	-	-	-	-	-	-	-	-

^{* =&}gt; Add 1 if branch occurs to same page

Table (5): BBS – Short Reference

Example Relative (assumed \$0032=\$24, same page):

Address	Bytes	Mnemonic	
\$9000	8F 32 10	BBS0 \$32, \$10	; BBS to same page, - NO BRANCH - jumps to ; \$9003
\$9003	•••	next OP	M0(\$0032) = 0 = no branch, 5 cycles

Example Relative (assumed \$0032=\$24, different page):

Address	Bytes	Mnemonic	
\$90FF	FF 32 10	BBS7 \$32, \$10	; BBS to different page, - NO BRANCH – jumps ; to \$9102
\$9102		next OP	M7(\$0032) = 0 = no branch, 5 cycles (!!!)

Example Relative (assumed \$0032=\$24, same page):

Address	Bytes	Mnemonic	
\$9000	AF 32 10	BBS2 \$32, \$10	; BBS to same page, - BRANCH - jumps to \$9003 ; $+$ \$10
\$9013		next OP	$M2(\$0032)=1 \Rightarrow branch, 6 cycles$

Example Relative (assumed \$0032=\$24, different page):

Address	Bytes	Mnemonic	
\$90FC	DF 32 10	BBS5 \$32, \$10	; BBS to different page, - BRANCH - jumps to ; $\$900F + \10
\$910F		next OP	; M5(\$0032)=1 => branch, 7 cycles

^{* =&}gt; Add 2 if branch occurs to different page

BCC

Operation: Branch on Carry Clear (Branch on C = 0)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	Е	В	D	I	Z	С
Relative	BCC Oper	90	2	2*	-	-	-	-	-	-	-	-

^{* =&}gt; Add 1 if branch occurs to same page

Table (6): BCC – Short Reference

Example Relative (assumed C=1, no branch):

Address	Bytes	Mnemonic	
\$9000	90 10	BCC \$10	; BCC to same page, - NO BRANCH - jumps to \$9002
\$9002		next OP	; C=1 => no branch, 2 cycles

Example Relative (assumed C=1, no branch):

Address	Bytes	Mnemonic	
\$90FF	90 10	BCC \$10	; BCC to same page, - NO BRANCH - jumps to ; \$9101
\$9101		next OP	; C=1 => no branch, 2 cycles

Example Relative (assumed C=0, branch to same page):

Address	Bytes	Mnemonic	
\$9000	90 10	BCC \$10	; BCC to same page, - BRANCH - jumps to $\$9002 + \10
\$9012		next OP	; C=0 => branch, 3 cycles

Example Relative (assumed C=0, branch to different page):

Address	Bytes	Mnemonic	
\$90FD	90 10	BCC \$10	; BCC to different page, - BRANCH - jumps to : \$9109
\$9109		next OP	; C=0 => branch, 4 cycles

^{* =&}gt; Add 2 if branch occurs to different page

BCS

Operation: Branch on Carry Set (Branch on C = 1)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Relative	BCS Oper	В0	2	2*	-	-	-	-	-	-	-	-

^{* =&}gt; Add 1 if branch occurs to same page

Table (7): BCS – Short Reference

Example Relative (assumed C=0, same page):

Address	Bytes	Mnemonic	
\$9000	B0 10	BCS \$10	; BCS to same page, - NO BRANCH - jumps to \$9002
\$9002		next OP	C=0 => no branch, 2 cycles

Example Relative (assumed C=0, different page):

Address	Bytes	Mnemonic	
\$90FF	B0 10	BCS \$10	; BCS to different page, - NO BRANCH - jumps to ; \$9101
\$9101		next OP	; C=0 => no branch, 2 cycles (!!!)

Example Relative (assumed C=1, same page):

Address	Bytes	Mnemonic	
\$9000	B0 10	BCS \$10	; BCS to same page, - BRANCH - jumps to $\$9002 + \10
\$9012		next OP	; C=1 => branch, 3 cycles

Example Relative (assumed C=1, different page):

Address	Bytes	Mnemonic	
\$90FD	B0 10	BCS \$10	; BCS to different page, - BRANCH - jumps to : \$910F
\$910F		next OP	; C=1 => branch, 4 cycles

^{* =&}gt; Add 2 if branch occurs to different page

BEQ

Operation: Branch on result zero (Branch on Z = 1)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Relative	BEQ Oper	F0	2	2*	-	-	-	-	-	-	-	-

^{* =&}gt; Add 1 if branch occurs to same page

Table (8): BEQ – Short Reference

Example Relative (assumed Z=0, same page):

Address	Bytes	Mnemonic	
\$9000	F0 10	BEQ \$10	; BEQ to same page, - NO BRANCH - jumps to \$9002
\$9002		next OP	$Z=0 \Rightarrow \text{no branch}, 2 \text{ cycles}$

Example Relative (assumed Z=0, different page):

Address	Bytes	Mnemonic	
\$90FF	F0 10	BEQ \$10	; BEQ to different page, - NO BRANCH - jumps to ; \$9101
\$9101		next OP	$Z=0 \Rightarrow \text{no branch}, 2 \text{ cycles} (!!!)$

Example Relative (assumed Z=1, same page):

Address	Bytes	Mnemonic	
\$9000	F0 10	BEQ \$10	; BEQ to same page, - BRANCH - jumps to $\$9002 + \10
\$9012		next OP	; Z=1 => branch, 3 cycles

Example Relative (assumed Z=1, different page):

<u>Address</u>	Bytes	Mnemonic	
\$90FD	F0 10	BEQ \$10	; BEQ to different page, - BRANCH - jumps to ; \$910F
\$910F		next OP	$Z=1 \Rightarrow branch, 4 cycles$

^{* =&}gt; Add 2 if branch occurs to different page

BIT

Operation (ZP and ABS): Bit 6 and 7 of the operand are transferred to the status register. If the result of $A \cap M = 0$ then Z = 1, otherwise Z = 0 ($M7 \rightarrow N$, $M6 \rightarrow V$)

Addressing Mo	ode	Asser Form	nbly Language	OP CODE	No. Bytes	No. Cycles	N	V	Е	В	D	I	Z	С
Immediate	NEW	BIT	# Oper	89	2	2	-	-	-	-	-	-		-
Zero Page		BIT	Oper	24	2	3	7	6	-	-	-	-	$\sqrt{}$	-
Zero Page, X	NEW	BIT	Oper, X	34	2	4	7	6	-	-	-	-		-
Absolute		BIT	Oper	2C	3	4	7	6	-	-	-	-	$\sqrt{}$	-
Absolute, X	NEW	BIT	Oper, X	3C	3	4*	7	6	-	-	-	-		-

^{* =&}gt; Add 1 if page boundary is crossed

Table (9): BIT – Short Reference

In mode "Immediate" BIT leaves flags N&V unchanged. This is a special case on R65C02!

BMI

Operation: Branch on result minus (Branch on N = 1)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Relative	BMI Oper	30	2	2*	-	-	-	-	-	-	-	-

^{* =&}gt; Add 1 if branch occurs to same page

Table (10): BMI – Short Reference

Example Relative (assumed Z=0, same page):

Address	Bytes	Mnemonic	
\$9000	30 10	BMI \$10	; BMI to same page, - NO BRANCH - jumps to \$9002
\$9002		next OP	$N=0 \Rightarrow \text{no branch}, 2 \text{ cycles}$

Example Relative (assumed Z=0, different page):

Address	Bytes	Mnemonic	
\$90FF	30 10	BMI \$10	; BMI to different page, - NO BRANCH - jumps to : \$9101
\$9101		next OP	; $N=0 \Rightarrow$ no branch, 2 cycles (!!!)

Example Relative (assumed Z=1, same page):

Address	Bytes	Mnemonic	
\$9000	30 10	BMI \$10	; BMI to same page, - BRANCH - jumps to $\$9002 + \10
\$9012		next OP	; N=1 => branch, 3 cycles

Example Relative (assumed Z=1, different page):

Address	Bytes	Mnemonic	
\$90FD	30 10	BMI \$10	; BMI to different page, - BRANCH - jumps to : \$910F
\$910F		next OP	; N=1 => branch, 4 cycles

^{* =&}gt; Add 2 if branch occurs to different page

BNE

Operation: Branch on result not zero (Branch on Z = 0)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Relative	BNE Oper	D0	2	2*	-	-	-	-	-	-	-	-

^{* =&}gt; Add 1 if branch occurs to same page

Table (11): BNE – Short Reference

Example Relative (assumed Z=1, same page):

Address	Bytes	Mnemonic	
\$9000	D0 10	BNE \$10	; BNE to same page, - NO BRANCH - jumps to \$9002
\$9002		next OP	; Z=1 => no branch, 2 cycles

Example Relative (assumed Z=1, different page):

Address	Bytes	Mnemonic	
\$90FF	D0 10	BNE \$10	; BNE to different page, - NO BRANCH - jumps to ; \$9101
\$9101		next OP	; Z=1 => no branch, 2 cycles (!!!)

Example Relative (assumed Z=0, same page):

Address	Bytes	Mnemonic	
\$9000	D0 10	BNE \$10	; BNE to same page, - BRANCH - jumps to $\$9002 + \10
\$9012		next OP	; Z=0 => branch, 3 cycles

Example Relative (assumed Z=0, different page):

Address	Bytes	Mnemonic	
\$90FD	D0 10	BNE \$10	; BNE to different page, - BRANCH - jumps to ; \$910F
\$910F		next OP	; Z=0 => branch, 4 cycles

^{* =&}gt; Add 2 if branch occurs to different page

BPL

Operation: Branch on result plus (Branch on N = 0)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Relative	BPL Oper	10	2	2*	-	-	-	-	-	-	-	-

^{* =&}gt; Add 1 if branch occurs to same page

Table (12): BPL – Short Reference

Example Relative (assumed N=1, same page):

Address	Bytes	Mnemonic	
\$9000	10 10	BPL \$10	; BPL to same page, - NO BRANCH - jumps to \$9002
\$9002		next OP	; N=1 => no branch, 2 cycles

Example Relative (assumed N=1, different page):

Address	Bytes	Mnemonic	
\$90FF	10 10	BPL \$10	; BPL to different page, - NO BRANCH - jumps to : \$9101
\$9101		next OP	$N=1 \Rightarrow \text{no branch}, 2 \text{ cycles } (!!!)$

Example Relative (assumed N=0, same page):

Address	Bytes	Mnemonic	
\$9000	10 10	BPL \$10	; BPL to same page, - BRANCH - jumps to $\$9002 + \10
\$9012	•••	next OP	; N=0 => branch, 3 cycles

Example Relative (assumed N=0, different page):

Address	Bytes	Mnemonic	
\$90FD	10 10	BPL \$10	; BPL to different page, - BRANCH - jumps to
\$910F		next OP	; \$910F ; N=0 => branch, 4 cycles

^{* =&}gt; Add 2 if branch occurs to different page

BRA

Operation: Branch always (Branch always)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Relative <i>NEW</i>	BRA Oper	80	2	3*	-	-	-	-	-	-	-	-

* => Add 1 if branch occurs to different page

Table (13): BRA – Short Reference

BRK

Operation: Forced Interrupt (PC + 2 \downarrow , P \downarrow NV11DIZC, E & B are written as 1 to stack)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	C
Implied	BRK	00	1	7	-	-	-	-	0	1	-	-

Table (14): BRK – Short Reference

BVC

Operation: Branch on no overflow (Branch on V = 0)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Relative	BVC Oper	50	2	2*	-	-	-	-	-	-	-	-

^{* =&}gt; Add 1 if branch occurs to same page

Table (15): BVC – Short Reference

Example Relative (assumed V=1, same page):

Address	Bytes	Mnemonic	
\$9000	50 10	BVC \$10	; BVC to same page, - NO BRANCH - jumps to \$9002
\$9002		next OP	$V=1 \Rightarrow \text{no branch}, 2 \text{ cycles}$

Example Relative (assumed V=1, different page):

Address	Bytes	Mnemonic	
\$90FF	50 10	BVC \$10	; BVC to different page, - NO BRANCH - jumps to ; \$9101
\$9101		next OP	; V=1 => no branch, 2 cycles (!!!)

Example Relative (assumed V=0, same page):

Address	Bytes	Mnemonic	
\$9000	50 10	BVC \$10	; BVC to same page, - BRANCH - jumps to $\$9002 + \10
\$9012		next OP	; V=0 => branch, 3 cycles

Example Relative (assumed V=0, different page):

Address	Bytes	Mnemonic	
\$90FD	50 10	BVC \$10	; BVC to different page, - BRANCH - jumps to
•••			; \$910F
\$910F		next OP	; $V=0 \Rightarrow$ branch, 4 cycles

^{* =&}gt; Add 2 if branch occurs to different page

BVS

Operation: Branch on overflow (Branch on V = 1)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Relative	BVS Oper	70	2	2*	-	-	-	-	-	-	-	-

^{* =&}gt; Add 1 if branch occurs to same page

Table (16): BVS – Short Reference

Example Relative (assumed V=0, same page):

Address	Bytes	Mnemonic	
\$9000	70 10	BVS \$10	; BVS to same page, - NO BRANCH - jumps to \$9002
\$9002		next OP	$V=0 \Rightarrow \text{no branch}, 2 \text{ cycles}$

Example Relative (assumed V=0, different page):

Address	Bytes	Mnemonic	
\$90FF	70 10	BVS \$10	; BVS to different page, - NO BRANCH - jumps to ; \$9101
\$9101		next OP	; V=0 => no branch, 2 cycles (!!!)

Example Relative (assumed V=1, same page):

Address	Bytes	Mnemonic	
\$9000	70 10	BVS \$10	; BVS to same page, - BRANCH - jumps to $\$9002 + \10
\$9012		next OP	; $V=1 \Rightarrow$ branch, 3 cycles

Example Relative (assumed V=1, different page):

Address	Bytes	<u>Mnemonic</u>	
\$90FD	70 10	BVS \$10	; BVS to different page, - BRANCH - jumps to ; \$910F
\$910F		next OP	; $V=1 \Rightarrow$ branch, 4 cycles

^{* =&}gt; Add 2 if branch occurs to different page

CLC

Operation: Clear Carry flag $(0 \rightarrow C)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Implied	CLC	18	1	2	-	-	-	-	-	-	-	0

Table (17): CLC – Short Reference

Example:

Address	Bytes	Mnemonic	
\$9000	18	CLC	•
\$9001		next OP	; C is now 0

CLD

Operation: Clear Decimal flag $(0 \rightarrow D)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Implied	CLD	D8	1	2	-	-	-	-	0	-	-	-

Table (18): CLD - Short Reference

Example:

Address	Bytes	Mnemonic	
\$9000	D8	CLD	
\$9001	• • •	next OP	; D is now 0

CLI

Operation: Clear Interrupt Disable flag $(0 \rightarrow I)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	C
Implied	CLI	58	1	2	-	-	-	-	-	0	-	-

Table (19): CLI – Short Reference

Example:

Address	Bytes	Mnemonic	
\$9000	58	CLI	
\$9001		next OP	; I is now 0

CLV

Operation: Clear Overflow flag $(0 \rightarrow O)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Implied	CLV	В8	1	2	-	0	-	-	-	-	-	-

Table (20): CLV - Short Reference

Example:

Address	Bytes	Mnemonic	
\$9000	В8	CLV	•
\$9001		next OP	; V is now 0

CMP

Operation: Compare Memory and Accumulator (A - M)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Immediate	CMP # Oper	C9	2	2		-	-	-	-	-	$\sqrt{}$	
Zero Page	CMP Oper	C5	2	3		-	-	-	-	-	V	V
Zero Page, X	CMP Oper, X	D5	2	4		-	-	-	-	-	V	V
Absolute	CMP Oper	CD	3	4		-	-	-	-	-	V	V
Absolute, X	CMP Oper, X	DD	3	4*		-	-	-	-	-	V	V
Absolute, Y	CMP Oper, Y	D9	3	4*		-	-	-	-	-	V	V
(Indirect, X)	CMP (Oper, X)	C1	2	6		-	-	-	-	-	V	V
(Indirect), Y	CMP (Oper), Y	D1	2	5*		-	-	-	-	-	V	V
(Indirect) NEW	CMP (Oper)	D2	2	5		-	-	-	-	-	V	V

* => Add 1 if page boundary is crossed

Table (21): CMP – Short Reference

CPX

Operation: Compare Memory and Index X (X - M)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Immediate	CPX # Oper	E0	2	2	V	-	-	-	-	-		$\sqrt{}$
Zero Page	CPX Oper	E4	2	3	V	-	-	-	-	-		$\sqrt{}$
Absolute	CPX Oper	EC	3	4		-	-	-	-	-		$\sqrt{}$

Table (22): CPX – Short Reference

CPY

Operation: Compare Memory and Index Y (Y - M)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Immediate	CPY # Oper	C0	2	2		-	-	-	-	-		
Zero Page	CPY Oper	C4	2	3	V	-	-	-	-	-		
Absolute	CPY Oper	CC	3	4	V	-	-	-	-	-		

Table (23): CPY – Short Reference

DEC

Operation: Decrement Memory by one $(M-1 \rightarrow M \text{ or } A-1 \rightarrow A)$

Addressing Mode	Assem Form	bly Language	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Accumulator NEW	DEC	A	3A	1	2		-	-	-	-	-	V	-
Zero Page	DEC	Oper	C6	2	5		-	-	-	-	-	V	-
Zero Page, X	DEC	Oper, X	D6	2	6		-	-	-	-	-	V	-
Absolute	DEC	Oper	CE	3	6		-	-	-	-	-	V	-
Absolute, X	DEC	Oper, X	DE	3	7		-	-	-	-	-	V	-

Table (24): DEC - Short Reference

DEX

Operation: Decrement index X by one $(X - 1 \rightarrow X)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Implied	DEX	CA	1	2	\checkmark	-	-	-	-	-		-

Table (25): DEX - Short Reference

Example Implied (assume X=\$01):

Address	Bytes	Mnemonic	
\$9000	CA	DEX	•
\$9001		next OP	; X is now \$00, N=0, Z=1

<u>DEX 0000 0001 (\$01)</u> 0000 0000 (\$00), N=0, Z=1

DEY

Operation: Decrement index Y by one $(Y - 1 \rightarrow Y)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	Е	В	D	I	Z	C
Implied	DEY	88	1	2		-	-	-	-	-	$\sqrt{}$	-

Table (26): DEX - Short Reference

Example Implied (assume Y=\$00):

Address	Bytes	Mnemonic	
\$9000	88	DEY	•
\$9001		next OP	; Y is now \$FF, N=1, Z=0

EOR

Operation: "Exclusive-Or" memory or immediate value with accumulator A (A \vee M \rightarrow A)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Immediate	EOR # Oper	49	2	2		-	-	-	-	-	V	-
Zero Page	EOR Oper	45	2	3		-	-	-	-	-	V	-
Zero Page, X	EOR Oper, X	55	2	4		-	-	-	-	-	V	-
Absolute	EOR Oper	4D	3	4		-	-	-	-	-	V	-
Absolute, X	EOR Oper, X	5D	3	4*		-	-	-	-	-	V	-
Absolute, Y	EOR Oper, Y	59	3	4*		-	-	-	-	-	V	-
(Indirect, X)	EOR (Oper, X)	41	2	6		-	-	-	-	-	V	-
(Indirect), Y	EOR (Oper), Y	51	2	5*		-	-	-	-	-	V	-
(Indirect) NEW	EOR (Oper)	52	2	5		-	-	-	-	-	V	-

^{* =&}gt; Add 1 if page boundary is crossed

Table (27): EOR – Short Reference

Example Immediate (assumed A is \$23):

Address	Bytes	Mnemonic	
\$9000	49 63	EOR #\$63	•
\$9002		next OP	; A is now \$40, N=0, Z=0

EOR 0110 0011 (\$63) 0010 0011 (\$23) 0100 0000 (\$40), N=0, Z=0

INC

Operation: Increment Memory by one $(M + 1 \rightarrow M \text{ or } A + 1 \rightarrow A)$

Addressing Mode	Assem Form	bly Language	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Accumulator NEW	INC	A	1A	1	2		-	-	-	-	-		-
Zero Page	INC	Oper	E6	2	5		-	-	-	-	-	$\sqrt{}$	-
Zero Page, X	INC	Oper, X	F6	2	6		-	-	-	-	-	$\sqrt{}$	-
Absolute	INC	Oper	EE	3	6		-	-	-	-	-		-
Absolute, X	INC	Oper, X	FE	3	7		-	-	-	-	-		-

Table (28): INC - Short Reference

INX

Operation: Increment index X by one $(X + 1 \rightarrow X)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Implied	INX	E8	1	2	$\sqrt{}$	-	-	-	-	-		-

Table (29): INX - Short Reference

Example Implied (assume X=\$0C):

Address	Bytes	Mnemonic	
\$9000	E8	INX	•
\$9001		next OP	; X is now \$0D, N=0, Z=0

INY

Operation: Increment index Y by one $(Y + 1 \rightarrow Y)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	Е	В	D	I	Z	С
Implied	INY	C8	1	2	$\sqrt{}$	-	-	-	-	-		-

Table (30): INY - Short Reference

Example Implied (assume Y=\$FF):

Address	Bytes	Mnemonic
\$9000	C8	INY
\$9001		next OP

INY 1111 1111 (\$FF) 0000 0000 (\$00), N=0, Z=1

JMP

Operation: Jump to new location ((PC + 1) \rightarrow PCL, (PC + 2) \rightarrow PCH)

Addressing Mode	Addressing Mode Assembly Language Form		OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Absolute	JMP	Oper	4C	3	3	-	-	-	-	-	-	-	-
(Absolute, X) NEW	JMP	(Oper, X)	7C	3	6	-	-	-	-	-	-	-	-
Indirect	JMP	(Oper)	6C	3	6	-	-	-	-	-	-	-	-

Table (31): JMP – Short Reference

In mode "Indirect" JMP fetches the high-order byte of the effective address from the first byte of the next page, if the indirect address location spans a page boundary. The 6502 fetches it from the first byte of the current page.

R65C02: JMP (\$02FF) gets ADL from \$02FF, ADH from \$0300 (6 cycles) 5502: JMP (\$02FF) gets ADL from \$02FF, ADH from \$0200 (5 cycles)

JSR

Operation: Jump to subroutine saving return address $(PC + 2 \downarrow, (PC + 1) \rightarrow PCH, (PC + 2) \rightarrow PCL)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	Е	В	D	I	Z	С
Absolute	JSR Oper	20	3	6	-	-	-	-	-	-	-	-

Table (32): JSR – Short Reference

Example:

Address	Bytes	Mnemonic	
\$9000	20 72 F0	JSR \$F072	
F072		next OP	

LDA

Operation: Load accumulator A with memory or immediate value $(M \rightarrow A)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	Е	В	D	I	Z	C
Immediate	LDA # Oper	A9	2	2		-	-	-	-	-	V	-
Zero Page	LDA Oper	A5	2	3		-	-	-	-	-	V	-
Zero Page, X	LDA Oper, X	В5	2	4		-	-	-	-	-	V	-
Absolute	LDA Oper	AD	3	4		-	-	-	-	-	$\sqrt{}$	-
Absolute, X	LDA Oper, X	BD	3	4*		-	-	-	-	-	$\sqrt{}$	-
Absolute, Y	LDA Oper, Y	В9	3	4*		-	-	-	-	-	V	-
(Indirect, X)	LDA (Oper, X)	A1	2	6		-	-	-	-	-	$\sqrt{}$	-
(Indirect), Y	LDA (Oper), Y	B1	2	5*		-	-	-	-	-	V	-
(Indirect) NEW	LDA (Oper)	B2	2	5		-	-	-	-	-	$\sqrt{}$	-

* => Add 1 if page boundary is crossed

Table (33): LDA – Short Reference

Example Immediate:

Address	Bytes	Mnemonic	
\$9000	A9 00	LDA #\$00	•
\$9002		next OP	; A is now \$00, N=0, Z=1

LDX

Operation: Load $\mbox{ index } X$ with memory or immediate value $(M \to X)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	Е	В	D	I	Z	С
Immediate	LDX # Oper	A2	2	2		-	-	-	-	-	V	-
Zero Page	LDX Oper	A6	2	3		-	-	-	-	-	V	-
Zero Page, Y	LDX Oper, Y	В6	2	4		-	-	-	-	-	V	-
Absolute	LDX Oper	AE	3	4		-	-	-	-	-	V	-
Absolute, Y	LDX Oper, Y	BE	3	4*		-	-	-	-	-	V	-

^{* =&}gt; Add 1 if page boundary is crossed

Table (34): LDX – Short Reference

Example Immediate:

Address	Bytes	Mnemonic	
\$9000	A2 8F	LDX #\$8F	•
\$9002		next OP	; X is now \$8F, N=1, Z=0

LDY

Operation: Load index Y with memory or immediate value $(M \rightarrow Y)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	Е	В	D	I	Z	С
Immediate	LDY # Oper	A0	2	2	$\sqrt{}$	-	-	-	-	-		-
Zero Page	LDY Oper	A4	2	3	V	-	-	-	-	-		-
Zero Page, X	LDY Oper, X	B4	2	4		-	-	-	-	-		-
Absolute	LDY Oper	AC	3	4	V	-	-	-	-	-		-
Absolute, X	LDY Oper, X	BC	3	4*	$\sqrt{}$	-	-	-	-	-		-

^{* =&}gt; Add 1 if page boundary is crossed

Table (35): LDY – Short Reference

Example Immediate:

Address	Bytes	Mnemonic	
\$9000	A0 02	LDY #\$02	•
\$9002		next OP	; Y is now \$02, N=0, Z=0

LSR

Operation: Shift Right One Bit (Memory or Accumulator) $(0 \rightarrow \boxed{7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1 \ 0} \rightarrow C)$

Addressing Mode	Assem Form	bly Language	OP CODE	No. Bytes	No. Cycles	N	V	Е	В	D	I	Z	С
Accumulator	LSR	A	4A	1	2	0	-	-	-	-	-	V	$\sqrt{}$
Zero Page	LSR	Oper	46	2	5	0	-	-	-	-	-	V	$\sqrt{}$
Zero Page, X	LSR	Oper, X	56	2	6	0	-	-	-	-	-	V	$\sqrt{}$
Absolute	LSR	Oper	4E	3	6	0	-	-	-	-	-	V	$\sqrt{}$
Absolute, X	LSR	Oper, X	5E	3	7	0	-	-	-	-	-	V	$\sqrt{}$

Table (36): LSR – Short Reference

NOP

Operation: No Operation

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	Е	В	D	I	Z	C
Implied	NOP	x3	1	1	-	-	-	-	-	-	-	-
		xB										
Implied	NOP	EA	1	2	-	-	-	-	-	-	-	-
Implied	NOP	02	1(+1)	2	-	-	-	-	-	-	-	-
		22										
		42										
		62										
		82										
		C2										
		E2										
Implied	NOP	44	1(+1)	3	-	-	-	-	-	-	-	-
Implied	NOP	54	1(+1)	4	-	-	-	-	-	-	-	-
		D4										
		F4										
Implied	NOP	DC	1(+2)	4	-	-	-	-	-	-	-	-
		FC										
Implied	NOP	5C	1(+2)	8	-	-	-	-	-	-	-	-

Table (37): NOP – Short Reference ("+1" or "+2" add 1 or 2 to the PC for fetching the next instruction)

ORA

Operation: "Or" memory or immediate value with accumulator A (A V M \rightarrow A)

Addressing Mode	Assemb Form	oly Language	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Immediate	OR #	Oper	09	2	2		-	-	-	-	-		-
Zero Page	OR	Oper	05	2	3		-	-	-	-	-		-
Zero Page, X	OR	Oper, X	15	2	4		-	-	-	-	-		-
Absolute	OR	Oper	0D	3	4		-	-	-	-	-		-
Absolute, X	OR	Oper, X	1D	3	4*		-	-	-	-	-		-
Absolute, Y	OR	Oper, Y	19	3	4*		-	-	-	-	-		-
(Indirect, X)	OR	(Oper, X)	01	2	6		-	-	-	-	-		-
(Indirect), Y	OR	(Oper), Y	11	2	5*		-	-	-	-	-		-
(Indirect) NEW	OR	(Oper)	12	2	5		-	-	-	-	-		-

^{* =&}gt; Add 1 if page boundary is crossed

Table (38): OR – Short Reference

Example Immediate (assumed A is \$8A):

Addres	ss Bytes	Mnemonic	
\$9000	09 11	OR #\$11	;
\$9002		next OP	; A is now \$9B, N=1, Z=0
	1000 1010 (\$8A)		
OR	0001 0001 (\$11)		
	1001 1011 (\$9B),	N=1, Z=0	

PHA

Operation: Push accumulator on stack (A \ \)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Implied	PHA	48	1	3	-	-	-	-	-	-	-	-

Table (39): PHA - Short Reference

PHP

Operation: Push processor status on stack (P \ NV11DIZC, E & B are written as 1 to stack)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Implied	PHP	08	1	3	-	-	-	-	-	-	-	-

Table (40): PHP – Short Reference

PHX

Operation: Push index register X on stack $(X \downarrow)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Implied NEW	PHX	DA	1	3	-	-	-	-	-	-	-	-

Table (41): PHX – Short Reference

PHY

Operation: Push index register Y on stack (Y ↓)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	Е	В	D	I	Z	С
Implied <i>NEW</i>	PHY	5A	1	3	-	-	-	-	-	-	-	-

Table (42): PHY - Short Reference

PLA

Operation: Pull accumulator from stack (A 1)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Implied	PLA	68	1	4	V	-	-	-	-	-		-

Table (43): PLA – Short Reference

PLP

Operation: Pull processor status from stack (P \u2221)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	C
Implied	PLP	28	1	4	From Stack							

Table (44): PLP - Short Reference

PLX

Operation: Pull index register X from stack $(X \uparrow)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Implied NEW	PLX	FA	1	4	V	-	-	-	-	-		-

Table (45): PLX – Short Reference

PLY

Operation: Pull index register Y from stack (Y 1)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	C
Implied <i>NEW</i>	PLY	7A	1	4		-	-	-	-	-		

Table (46): PLY – Short Reference

ROL

Operation: Rotate one bit left (memory or accumulator) (7 6 5

(7	6	5	4	3	2	1	0	$\left(\leftarrow C\right)$

Addressing Mode	Assemb Form	oly Language	OP CODE	No. Bytes	No. Cycles	N	V	Е	В	D	I	Z	С
Accumulator	ROL	A	2A	1	2		-	-	-	-	-		
Zero Page	ROL	Oper	26	2	5		-	-	-	-	-	V	V
Zero Page, X	ROL	Oper, X	36	2	6		-	-	-	-	-	V	
Absolute	ROL	Oper	2E	3	6		-	-	-	-	-	V	
Absolute, X	ROL	Oper, X	3E	3	7		-	-	-	-	-	V	V

Table (47): ROL – Short Reference

ROR

Operation: Rotate one bit right (memory or accumulator) (C \rightarrow 7 6 5 4 3 2 1 0

Addressing Mode	Assembly Form	y Language	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Accumulator	ROR A	A	6A	1	2		-	-	-	-	-	$\sqrt{}$	$\sqrt{}$
Zero Page	ROR (Oper	66	2	5	V	-	-	-	-	-	$\sqrt{}$	
Zero Page, X	ROR (Oper, X	76	2	6	V	-	-	-	-	-		$\sqrt{}$
Absolute	ROR (Oper	6E	3	6	$\sqrt{}$	-	-	-	-	-	$\sqrt{}$	$\sqrt{}$
Absolute, X	ROR (Oper, X	7E	3	7	V	-	-	-	-	-		$\sqrt{}$

Table (48): ROR – Short Reference

RMB

Operation: Reset memory bit x. Where x = 0-7 MSB of op code $(0 \rightarrow Mx)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	C
Zero Page NEW	RMB(0-7) Oper	07-77	2	5	-	-	-	-	-	-	-	-

Table (49): RMB – Short Reference

Example Zero Page:

Address	Bytes	Mnemonic	
\$9000	37 14	RMB3 \$14	; \$0014 = \$C9
\$9002		next OP	; \$0014 is now \$C1

RTI

Operation: Return from interrupt (P \(\gamma\), PC \(\gamma\)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	C
Implied	RTI	40	1	6			F	rom	Stacl	ζ		

Table (50): RTI – Short Reference

RTS

Operation: Return from subroutine (PC \uparrow , PC + 1 \rightarrow PC)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Implied	RTS	60	1	6	-	-	-	-	-	-	-	-

Table (51): RTS – Short Reference

SBC

Operation: Substract memory or immediate value from accumulator with borrow (A - M - $\overline{C} \rightarrow A$, C)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Immediate	SBC # Oper	E9	2	2+			-	-	-	-	V	
Zero Page	SBC Oper	E5	2	3+		$\sqrt{}$	-	-	-	-	V	$\sqrt{}$
Zero Page, X	SBC Oper, X	F5	2	4+		$\sqrt{}$	-	-	-	-	V	$\sqrt{}$
Absolute	SBC Oper	ED	3	4+			-	-	-	-	V	
Absolute, X	SBC Oper, X	FD	3	4+*		$\sqrt{}$	-	-	-	-	V	$\sqrt{}$
Absolute, Y	SBC Oper, Y	F9	3	4+*		V	-	-	-	-	V	
(Indirect, X)	SBC (Oper, X)	E1	2	6+			-	-	-	-	V	
(Indirect), Y	SBC (Oper), Y	F1	2	5+*		V	-	-	-	-	V	
(Indirect) NEW	SBC (Oper)	F2	2	5+		$\sqrt{}$	-	-	-	-	1	$\sqrt{}$

^{* =&}gt; Add 1 if page boundary is crossed

Table (52): SBC – Short Reference

SEC

Operation: Set Carry flag $(1 \rightarrow C)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Implied	SEC	38	1	2	-	-	-	-	-	-	-	1

Table (53): SEC – Short Reference

Example:

Address	Bytes	Mnemonic	
\$9000	38	SEC	
\$9001		next OP	; C is now 1

^{+ =&}gt; Add 1 if mode is "DECIMAL" (D='1')

SED

Operation: Set Decimal flag $(1 \rightarrow D)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Implied	SED	F8	1	2	-	-	-	-	1	-	-	-

Table (54): CLD – Short Reference

Example:

Address	Bytes	Mnemonic	
\$9000	F8	SED	
\$9001		next OP	; D is now 1

SEI

Operation: Set Interrupt Disable flag $(1 \rightarrow I)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	C
Implied	SEI	78	1	2	-	-	-	-	-	1	-	-

Table (55): SEI – Short Reference

Example:

Address	Bytes	Mnemonic	
\$9000	78	SEI	•
\$9001		next OP	; I is now 1

SMB

Operation: Set memory bit x. Where x = 0-7 (MSB – 8) of op code $(1 \rightarrow Mx)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Zero Page NEW	SMB(0-7) Oper	87-F7	2	5	-	-	-	-	-	-	-	-

Table (56): SMB – Short Reference

Example Zero Page:

Address	Bytes	Mnemonic	
\$9000	F7 14	SMB \$F0	\$00F0 = \$43
\$9002		next OP	; \$00F0 is now \$C3

STA

Operation: Store accumulator in memory $(A \rightarrow M)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	Е	В	D	I	Z	С
Zero Page	STA Oper	85	2	3	-	-	-	-	-	-	-	-
Zero Page, X	STA Oper, X	95	2	4	-	-	-	-	-	-	-	-
Absolute	STA Oper	8D	3	4	-	-	-	-	-	-	-	-
Absolute, X	STA Oper, X	9D	3	5	-	-	-	-	-	-	-	-
Absolute, Y	STA Oper, Y	99	3	5	-	-	-	-	-	-	-	-
(Indirect, X)	STA (Oper, X)	81	2	6	-	-	-	-	-	-	-	-
(Indirect), Y	STA (Oper), Y	91	2	6	-	-	-	-	-	-	-	-
(Indirect) NEW	STA (Oper)	92	2	5	-	-	-	-	-	-	-	-

Table (57): STA – Short Reference

STX

Operation: Store index X in memory $(X \rightarrow M)$

Addressing Mode	Assem Form	bly Language	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Zero Page	STX	Oper	86	2	3	-	-	-	-	-	-	-	-
Zero Page, Y	STX	Oper, Y	96	2	4	-	-	-	-	-	-	-	-
Absolute	STX	Oper	8E	3	4	-	-	-	-	-	-	-	-

Table (58): STX – Short Reference

STY

Operation: Store index Y in memory $(Y \rightarrow M)$

Addressing Mode	Assem! Form	bly Language	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	C
Zero Page	STY	Oper	84	2	3	-	-	-	-	-	-	-	-
Zero Page, X	STY	Oper, X	94	2	4	-	-	-	-	-	-	-	-
Absolute	STY	Oper	8C	3	4	-	-	-	-	-	-	-	-

Table (59): STY - Short Reference

STZ

Operation: Store value #\$00 in memory (# $\$00 \rightarrow M$)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Zero Page NEW	STZ Oper	64	2	3	-	-	-	-	-	-	-	-
Zero Page, X NEW	STZ Oper, X	74	2	4	-	-	-	-	-	-	-	-
Absolute <i>NEW</i>	STZ Oper	9C	3	4	-	-	-	-	-	-	-	-
Absolute, X NEW	STZ Oper, X	9E	3	5	-	-	-	-	-	-	-	-

Table (60): STZ - Short Reference

TAX

Operation: Transfer accumulator A to index $X (A \rightarrow X)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Implied	TAX	AA	1	2	V	-	-	-	-	-		-

Table (61): TAX – Short Reference

Example Implied (assume A=\$5D):

Address	Bytes	Mnemonic	
\$9000	AA	TAX	•
\$9001		next OP	; X is now \$5D, N=0, Z=0

TAY

Operation: Transfer accumulator A to index Y $(A \rightarrow Y)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	Е	В	D	I	Z	C
Implied	TAY	A8	1	2		-	-	-	-	-	V	-

Table (62): TAY – Short Reference

Example Implied (assume A=\$89):

Address	Bytes	Mnemonic	
\$9000	A8	TAY	•
\$9001		next OP	; Y is now \$89, N=1, Z=0

TRB

Operation: Test memory with accumulator A and reset memory bits. If the result of $A \cap M = 0$ then Z = 1, otherwise Z = 0 ($\overline{A} \cap M \to M$)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	Е	В	D	I	Z	С
Zero Page NEW	TRB Oper	14	2	5	-	-	-	-	-	-		-
Absolute <i>NEW</i>	TRB Oper	1C	3	6	-	-	-	-	-	-		-

Table (63): TRB – Short Reference

Example Zero Page (assume A=\$03):

Address	Bytes	Mnemonic	
\$9000	14 D2	TRB \$D2	\$00D2 = \$61
\$9002		next OP	; \$00D2 is now \$60, Z=0

0000 0011 (A=\$03)

NOT 1111 1100

AND 0110 0001 (M=\$61)

0110 0000 (\$60) New value for memory

0000 0011 (A=\$03)

AND 0110 0001 (M=\$61)

0000 0001 Z=0 New value for flag Z

TSB

Operation: Test memory with accumulator A and set memory bits. If the result of $A \cap M = 0$ then Z = 1, otherwise Z = 0 (A U M \rightarrow M)

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	Е	В	D	I	Z	С
Zero Page NEW	TSB Oper	04	2	5	-	-	-	-	-	-		-
Absolute <i>NEW</i>	TSB Oper	0C	3	6	-	-	-	-	-	-		-

Table (64): TSB – Short Reference

Example Zero Page (assume A=\$0C):

Address	Bytes	Mnemonic	
\$9000	04 D2	TSB \$D2	\$00D2 = 11
\$9002		next OP	: \$00D2 is now \$1D. Z=1

0000 1100 (A=\$0C) OR 0001 0001 (M=\$11)

0001 1101 (\$1D) New value for memory

0000 1100 (A=\$0C) AND 0001 0001 (M=\$11)

 $0000\ 0000\ Z=1$ New value for flag Z

TSX

Operation: Transfer stack pointer SP to index $X (SP \rightarrow X)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	Е	В	D	I	Z	C
Implied	TSX	BA	1	2	$\sqrt{}$	-	-	-	-	-		

Table (65): TSX – Short Reference

Example Implied (assume SP=\$F2):

Address	Bytes	Minemonic	
\$9000	BA	TSX	
\$9001		next OP	; X is now \$F2, N=1, Z=0

TXA

Operation: Transfer index X to accumulator A $(X \rightarrow A)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	C
Implied	TXA	8A	1	2	V	-	-	-	-	-		-

Table (66): TXA – Short Reference

Example Implied (assume X=\$00):

Address	Bytes	Mnemonic	
\$9000	8A	TXA	
\$9001		next OP	; A is now \$00, N=0, Z=1

TXS

Operation: Transfer index X to stack pointer SP $(X \rightarrow SP)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Implied	TXS	9A	1	2	-	-	-	-	-	-	-	-

Table (67): TXS – Short Reference

Example Implied (assume X=\$E0):

Address	Bytes	Mnemonic	
\$9000	9A	TXS	
\$9001		next OP	; SP is now \$E0 (all flags are uneffected

TYA

Operation: Transfer index Y to accumulator A $(Y \rightarrow A)$

Addressing Mode	Assembly Language Form	OP CODE	No. Bytes	No. Cycles	N	V	E	В	D	I	Z	С
Implied	TYA	98	1	2		-	-	-	-	-		-

Table (68): TYA – Short Reference

Example Implied (assume Y=\$14):

Address	Bytes	Mnemonic	
\$9000	98	TYA	•
\$9001		next OP	; A is now \$14, N=0, Z=0

4

Registers

List of Registers

Name	Address	Width	Access	Description			
Α	-	8	Instruction	Accumulator			
X	-	8	Instruction	X Register			
Y	-	8	Instruction	Y Register			
S	-	8	Instruction	Stack			
PSW	-	8	Instruction	Processor Status Word			
PC	-	16	Instruction	Program Counter			

Table 1: List of registers

PSW – Description

Bit #	Access	Description
7		N-Flag, negative result (1 -> negative)
6		V-Flag, overflow (1 -> overflow)
5		RESERVED (always read as '1')
4		B-Flag, BRK instruction
3		D-Flag, decimal mode (1 -> decimal)
2		I-Flag, interrupt disable (1 -> disabled)
1		Z-Flag, zero result (1 -> zero)
0		C-Flag, carry

Table 2: PSW Description

Reset Value: 24h

5

Clocks

Name	Source	Rates	(MHz)		Remarks	Description
		Max	Min Resolution			
clk_clk_i	-	60	0	-	Achievable rates	Master Clock
					depend on synthesis	
					and place&route.	

Table 3: List of clocks

6

Interrupts

The priority of interrupts is as followed if all of three interrupts occur at the same time:

In contrast to the chip version of the R65C02, the interrupts are not delay able by some instructions like "CLI".

NMI

The interrupt input "nmi_n_i" is edge triggered at a falling edge '1' -> '0'. It is not mask-able.

There is a need of one cycle '1' following with one cycle '0' to detect a NMI interrupt as "valid". "nmi_n_i" can switch back to '1' or held on '0' within cycle 3.

After the internal IRQ sequence of 7 cycles has finished, the "valid" flag re-set and allow another incoming NMI to detect. The maximum frequency of falling edges on "nmi_n_i" must be carefully defined to avoid a stack overflow while a currently processing interrupt is interrupted by another one.

Figure (3): Interrupt NMI – Timing Diagram

IRQ

The interrupt input "irq_n_i" is level triggered at a level of '0'. It is mask-able by using the I-Flag (I='1' to disable IRQ).

There is a need of level '0' at a rising edge of "clk_clk_i" and "SYNC='1" to detect an IRQ interrupt as "valid". "irq n i" can switch back to '1' or held on '0' within cycle 3.

After the internal IRQ sequence of 7 cycles has finished, the I-Flag is set to '1' automatically to disallow another incoming IRQ to detect. The starting ISR (Interrupt Service Routine) is responsible to manage and service the devices which were generating the interrupt and enable IRQ again (I-Flag='0').

Devices must switch back "irq n i" to '1' after the interrupt service is finished.

Figure (4): Interrupt IRQ - Timing Diagram

BRK

"BRK" is an instruction to force an interrupt by software. Internally it is handled like a real hardware interrupt and is mostly used by debug software.

"BRK" transfers the B-Flag = 1 onto the stack. The B-Flag itself leaves untouched and the I-Flag after "BRK" is 1.

Appendix A

ADC / SBC Decimal Mode

The R65C02 allows handling of Binary Coded Decimals (BCD) directly if the D-Flag is set to 1.

BCD defines a representation of decimal numbers 0-9 within an underlying hexadecimal number system.

For example:

99d = > 63h

But in BCD the representation is

99d => 99h (BCD)

The R65C02 has the ability to convert the result value into BCD automatically if the nibbles exceed the decimal range of 0-9 with some limitations. Input values are not corrected in any way.

Some examples with ADC IMM (DECIMAL):

ACCU	IMM	Carry in	Real World Result HEX	Real World Result BCD	R65C02 Result BCD	Low Nibble (LN) High Nibble (HN)
01h	09h	0	0Ah	10h	10h	LN > 9 (Ah), Carry to HN (=10h)
00h	09h	1	0Ah	10h	10h	LN > 9 (Ah), Carry to HN (=10h)
01h	0Fh	0	10h	16h	00h	LN < 9 (0h), NO Carry to HN (=00h)
0Fh	0Fh	0	1Eh	30h	14h	LN > 9 (Eh), Carry to HN (=1h new), HNnew = HNa + HNimm + 1
F0h	F0h	0	(1)E0h	(4)80h	40h	LN < 9 (0h), NO Carry to HN (=Eh new), HNnew =HNa + HNimm + 0

FFh	FFh	0	(1)FEh	(5)10h	54h	LN > 9 (Eh), Carry to HN (=Fh new), HNnew =HNa + HNimm + 1
FFh	FFh	1	(1)FFh	(5)11h	55h	LN > 9 (Fh), Carry to HN (=Fh new), HNnew =HNa + HNimm + 1

Table 4: List of registers

In general (NOT valid for 65x02), there are four levels of decoding and corrections for hexadecimal values to convert to BCD:

Level	Result pure HEX		Corrected Result	System	Tasks
L1	04h	=>	04h	(BCD)	no correction needed
L2	0Ch	=>	12h	(BCD)	correction of low nibble, add carry to the high nibble
L3	12h	=>	18h	(BCD)	correction of low nibble from high nibble (backward correction) if carry occur from low to high nibble.
L4	1Bh	=>	27h	(BCD)	correction of low nibble from high nibble, add carry to the high nibble (backward correction)

Table 5: List of registers

Even the R65C02 correct the nibbles if a nibble value is greater than 9, the handling and generation of carry bits from one nibble to the other covers not all possible decoding levels L1 to L4. Incorrect results may occur if using invalid BCD numbers containing the hex parts A-F. The backward correction to the low nibble and new generation of the carry to correct the high nibble (L4) was not implemented into the R65C02 chip and the r65c02_tc IP core also.

Timing Diagrams

ADC, SBC

Figure (5): ADC, SBC – Timing Diagram "Immediate"

Figure (6): ADC, SBC - Timing Diagram "Zero Page"

Figure (7): ADC, SBC – Timing Diagram "Zero Page, X"

Figure (8): ADC, SBC - Timing Diagram "Absolute"

Figure (9): ADC, SBC – Timing Diagram "Absolute, X" – no page crossing

Figure (10): ADC, SBC – Timing Diagram "Absolute, X" – page crossing

Figure (11): ADC, SBC – Timing Diagram "Absolute, Y" – no page crossing

Figure (12): ADC, SBC - Timing Diagram "Absolute, Y" - page crossing

Figure (13): ADC, SBC – Timing Diagram "(Indirect, X)"

Figure (14): ADC, SBC - Timing Diagram "(Indirect), Y" - no page crossing

Figure (15): ADC, SBC – Timing Diagram "(Indirect), Y" – page crossing

AND, BIT, CMP, CPX, CPY, EOR, LDA, LDX, LDY, ORA

Figure (16): AND, CMP, CPX, CPY, EOR, LDA, LDX, LDY, ORA - Timing Diagram "Immediate"

Figure (17): AND, BIT, CMP, CPX, CPY, EOR, LDA, LDX, LDY, ORA - Timing Diagram "Zero Page"

Figure (18): AND, CMP, EOR, LDA, LDY, ORA - Timing Diagram "Zero Page, X"

Figure (19): AND, BIT, CMP, CPX, CPY, EOR, LDA, LDX, LDY, ORA – Timing Diagram "Absolute"

Figure (20): AND, CMP, EOR, LDA, LDY, ORA - Timing Diagram "Absolute, X" - no page crossing

Figure (21): AND, CMP, EOR, LDA, LDY, ORA - Timing Diagram "Absolute, X" - page crossing

Figure (22): AND, CMP, EOR, LDA, LDX, ORA - Timing Diagram "Absolute, Y" - no page crossing

Figure (23): AND, CMP, EOR, LDA, LDX, ORA - Timing Diagram "Absolute, Y" - page crossing

Figure (24): AND, CMP, EOR, LDA, ORA - Timing Diagram "(Indirect, X)"

Figure (25): AND, CMP, EOR, LDA, ORA - Timing Diagram "(Indirect), Y" - no page crossing

Figure (26): AND, CMP, EOR, LDA, ORA - Timing Diagram "(Indirect), Y" - page crossing

BCC, BCS, BVC, BVS, BPL, BMI, BEQ, BNE

Figure (27): BCC, BCS, BVC, BVS, BPL, BMI, BEQ, BNE - Timing Diagram "no branch, same page"

Figure (28): BCC, BCS, BVC, BVS, BPL, BMI, BEQ, BNE - Timing Diagram "no branch, different page"

BCC, BCS, BVC, BVS, BPL, BMI, BEQ, BNE (cont.)

Figure (29): BCC, BCS, BVC, BVS, BPL, BMI, BEQ, BNE - Timing Diagram "branch, same page"

Figure (30): BCC, BCS, BVC, BVS, BPL, BMI, BEQ, BNE - Timing Diagram "branch, different page"

BRK

Figure (31): BRK – Timing Diagram "Implied"

ASL, LSR, ROL, ROR, DEC, INC

Figure (32): ASL A, LSR A, ROL A, ROR A – Timing Diagram "Immediate"

Figure (33): ASL, LSR, ROL, ROR, DEC, INC - Timing Diagram "Zero Page"

ASL, LSR, ROL, ROR, DEC, INC (cont.)

Figure (34): ASL, LSR, ROL, ROR, DEC, INC - Timing Diagram "Zero Page, X"

Figure (35): ASL, LSR, ROL, ROR, DEC, INC - Timing Diagram "Absolute"

ASL, LSR, ROL, ROR, DEC, INC (cont.)

Figure (36): ASL, LSR, ROL, ROR, DEC, INC - Timing Diagram "Absolute, X"

CLC, CLD, CLI, CLV, DEA, DEX, DEY, INA, INX, INY, SEC, SED, SEI, TAX, TAY, TSX, TXA, TYA

Figure (37): CLC, CLD, CLI, CLV, DEA, DEX, DEY, INA, INX, INY, SEC, SED, SEI, TAX, TAY, TSX, TXA, TYA – Timing Diagram

JMP

Figure (38): JMP – Timing Diagram "Absolute"

Figure (39): JMP – Timing Diagram "Indirect" (must be corrected)

JSR

Figure (40): JSR – Timing Diagram

NOP, TXS

Figure (41): NOP, TXS – Timing Diagram

PLA, PLP

Figure (42): PLA, PLP – Timing Diagram "Implied"

PHA, PHP

Figure (43): PHA, PHP – Timing Diagram "Implied"

RTI

Figure (44): RTI – Timing Diagram "Implied"

RTS

Figure (45): RTS – Timing Diagram "Implied"

STA, STX, STY

Figure (46): STA, STX, STY - Timing Diagram "Zero Page"

Figure (47): STA, STY - Timing Diagram "Zero Page, X"

STA, STX, STY (cont.)

Figure (48): STX - Timing Diagram "Zero Page, Y"

Figure (49): STA, STX, STY – Timing Diagram "Absolute"

STA, STX, STY (cont.)

Figure (50): STA – Timing Diagram "Absolute, X"

Figure (51): STA – Timing Diagram "Absolute, Y"

STA, STX, STY (cont.)

Figure (52): STA – Timing Diagram "(Indirect, X)"

Figure (53): STA - Timing Diagram "(Indirect), Y"

Instruction Table

		0	ı	2	æ	4	S	9	7	∞	6	A	В	ပ	О	Ή	ĬŦ,	
LSB	H	BBR0 ZP 3 5***	BBR1 ZP 3 5***	BBR2 ZP 3 5***	BBR3 ZP 3 5***	BBR4 ZP 3 5***	BBR5 ZP 3 5***	BBR6 ZP 3 5***	BBR7 ZP 3 5***	BBS0 ZP 3 5***	BBS1 ZP 3 5***	BBS2 ZP 3 5***	BBS3 ZP 3 5***	BBS4 ZP 3 5***	BBS5 ZP 3 5***	BBS6 ZP 3 5**	BBS7 ZP 3 5***	H
	E	ASL ABS 3 6	ASL ABS,X 3 7	ROL ABS 3 6	ROL ABS,X 3 7	LSR ABS 3 6	LSR ABS,X 3 7	ROR ABS 3 6	ROR ABS,X 3 7	STX ABS 3 4	STZ ABS,X 3 5	LDX ABS 3 4	LDX ABS,Y 3 4*	DEC ABS 3 6	DEC ABS,X 3 7	INC ABS 3 6	INC ABS,X 3 7	H
	D	ORA ABS 3 4	ORA ABS,X 3 4*	AND ABS 3 4	AND ABS,X 3 4*	EOR ABS 3 4	EOR ABS,X 3 4*	ADC ABS 3 4+	ADC ABS,X 3 4*+	STA ABS 3 4	STA ABS,X 3 5	LDA ABS 3 4	LDA ABS,X 3 4*	CMP ABS 3 4	CMP ABS,X 3 4*	SBC ABS 3 4+	SBC ABS,X 3 4*+	D
	C	TSB ABS 3 6	TRB ABS 3 6	BIT ABS 3 4	BIT ABS,X 3 4**	JMP ABS 3 3		JMP (ABS) 3 6	JMP (ABS,X) 3 6	STY ABS 3 4	STZ ABS 3 4	LDY ABS 3 4	LDY ABS,X 3 4**	CPY ABS 3 4		CPX ABX 3 4		၁
	В																	В
	A	ASL Accum 1 2	INC Accum 1 2	ROL Accum 1 2	DEC Accum 1 2	LSR Accum 1 2	PHY Implied 1 3	ROR Accum 1 2	PLY Implied 1 4	TXA Implied 1 2	TXS Implied 1 2	TAX Implied 1 2	TSX Implied 1 2	DEX Implied 1 2	PHX Implied 1 3	NOP Implied 1 2	PLX Implied 1 4	A
	6	ORA IMM 2 2	ORA ABS,Y 3 4*	AND IMM 2 2	AND ABS,Y 2 4**	EOR IMM 2 2	EOR ABS,Y 3 4*	ADC IMM 2 2+	ADC ABS,Y 3 4*+	BIT IMM 2 2	STA ABS,Y 3 5	LDA IMM 2 2	LDA ABS,Y 3 4*	CMP IMM 2 2	CMP ABS,Y 3 4*	SBC IMM 2 2+	SBC ABS,Y 3 4*+	6
	8	PHP Implied 1 3	CLC Implied 1 3	PLP Implied 1 4	SEC Implied 1 3	PHA Implied 1 3	CLI Implied 1 3	PLA Implied 1 4	SEI Implied 1 3	DEY Implied 1 3	TYA Implied 1 3	TAY Implied 1 3	CLV Implied 1 3	INY Implied 1 3	CLD Implied 1 3	INX Implied 1 3	SED Implied 1 3	∞
	7	RMB0 ZP 2 5	RMB1 ZP 2 5	RMB2 ZP 2 5	RMB3 ZP 2 5	RMB4 ZP 2 5	RMB5 ZP 2 5	RMB6 ZP 2 5	RMB7 ZP 2 5	SMB0 ZP 2 5	SMB1 ZP 2 5	SMB2 ZP 2 5	SMB3 ZP 2 5	SMB4 ZP 2 5	SMB5 ZP 2 5	SMB6 ZP 2 5	SMB7 ZP 2 5	7
	9	ASL ZP 2 5	ASL ZP,X 2 6	ROL ZP 2 5	ROL ZP,X 2 6	LSR ZP 2 5	LSR ZP,X 2 6	ROR ZP 2 5	ROR ZP,X 2 6	STX ZP 2 3	STX ZP,Y 2 4	LDX ZP 2 3	LDX ZP,Y 2 4	DEC ZP 2 5	DEC ZP,X 2 6	INC ZP 2 5	INC ZP,X 2 6	6 1 1 1 1 1 1 1 1
	5	ORA ZP 2 3	ORA ZP,X 2 4	AND ZP 2 3	AND ZP,X 2 4	EOR ZP 2 3	EOR ZP,X 2 4	ADC ZP 2 3+	ADC ZP,X 2 4+	STA ZP 2 3	STA ZP,X 2 4	LDA ZP 2 3	LDA ZP,X 2 4	CMP ZP 2 3	CMP ZP,X 2 4	$\begin{array}{c} \text{SBC} \\ \text{ZP} \\ 2 & 3+ \end{array}$	SBC ZP,X 2 4+	to N if page boundary is crossed
	4	TSB ZP 2 5	TRB ZP 2 5	BIT ZP 2 3	BIT ZP,X 2 4			STZ ZP 2 3	STZ ZP,X 2 4	STY ZP 2 3	STY ZP,X 2 4	LDY ZP 2 3	LDY ZP,X 2 4	CPY ZP 2 3		CPX ZP 2 3		
	3													4		3		3
	2		ORA (IND) 2 5		AND (IND) 2 5		EOR (IND) 2 5		ADC (IND) 2 5		STA (IND) 2 5	LDX IMM 2 2	LDA (IND) 2 5		CMP (IND) 2 5		SBC (IND) 2 5	2
	-	ORA (IND,X) 2 6	ORA (IND),Y 2 5*	AND (IND,X) 2 6	AND (IND),Y 2 5*	EOR (IND,X) 2 6	EOR (IND),Y 2 5**	ADC (IND,X) 2 6	ADC (IND),Y 2 5*+	STA (IND,X) 2 6	STA (IND),Y 2 6	LDA (IND,X) 2 6	LDA (IND),Y 2 5*	CIMP (IND,X) 2 6	CMP (IND),Y 2 5**	SBC (IND,X) 2 6+	SBC (IND),Y 2 5*+	+ Add 1 to N if in decimal mod
	0	BRK Implied 1 7	BPL Relative 2 2***	JSR ABS 3 6	BMI Relative 2 2***	RTI Implied 1 6	BVC Relative 2 2***	RTS Implied 1 6	BVS Relative 2 2***	BRA Relative 2 3*	BCC Relative 2 2***	LDY IMM 2 2	BCS Relative 2 2***	CPY IMM 2 2	BNE Relative 2 2***	CPX IMM 2 2	BEQ Relative 2 2***	0 1 1 to N :
		0		7	ε	4	S	9	7	8	6	A	В	ပ	Ω	Ħ	[III	_ \ V
	B ∞ Z										_							

+ Add 1 to N if in decimal mode, * ADD 1 to N if page boundary is crossed ** Add 1 to N if branch occurs to same page – Add 2 to N if branch occurs to different page

Index

This section contains an alphabetical list of helpful document entries with their corresponding page numbers.