Amplicon Analysis Using Quantitative Insights Into Microbial Ecology (QIIME)

A look at **python** syntax & common arguments in QIIME

```
filter_fasta.py -f rep_set_aligned.fasta
-o non_chimeric_rep_set_aligned.fasta -s
chimeric_seqs.txt -n <

Other arguments, specific to the script
```

Other common QIIME arguments

- -m analysis method, metric (sometimes map file)
- **-t** tree file
- -a alignment template file
- -v verbose = good for troubleshooting
- -h help
- -f force overwrite of an existing directory

Tutorial: What we're about to do

- Practice subsampling a dataset to make it managable for workflow development
- Merge paired end reads in QIIME
- Pick OTUs open reference includes:
 - Quality control/ chimera check
 - Cluster at 97% identity
 - Pick representative sequence for the whole OTU
 - Assign taxonomy to the rep. sequence
 - Make an alignment of the rep. sequence
 - Build a tree from the alignment
 - Made OTU tables (biom + classic): make_otu_table.py
- Rarefy to an equal sequencing depth
- Calculate & visualize alpha and beta diversity

How will we use QIIME?

- Using a community AMI on Amazon.
 - An operating system with a set of software and data installed on one computer that can be copied onto an users' personal instance.
 - To circumvent installation issues, the QIIME community AMI has everything you need to get the ball rolling!