

Wahrscheinlichkeitstheorie und Frequentistische Inferenz

BSc Psychologie WiSe 2022/23

Prof. Dr. Dirk Ostwald

(6) Erwartungswert,	Varianz	Kovarianz
(o) Li wai tangswere,	varianz,	TOVATIATIZ

Modul B1 Deskriptive Statistik | Wahrscheinlichkeitstheorie und Frequentistische Inferenz

Datum	Einheit	Thema
13.10.2022	Einführung	(1) Einführung
20.10.2022	Wahrscheinlichkeitstheorie	(2) Wahrscheinlichkeitsräume
27.10.2022	Wahrscheinlichkeitstheorie	(3) Elementare Wahrscheinlichkeiten
03.11.2022	Wahrscheinlichkeitstheorie	(4) Zufallsvariablen I
10.11.2022	Wahrscheinlichkeitstheorie	(4) Zufallsvariablen II
17.11.2022	Wahrscheinlichkeitstheorie	(5) Multivariate Verteilungen
24.11.2022	Wahrscheinlichkeitstheorie	(6) Erwartungswert und Kovarianz
01.12.2022	Wahrscheinlichkeitstheorie	(7) Ungleichungen und Grenzwerte
08.12.2022	Wahrscheinlichkeitstheorie	(8) Transformationen der Normalverteilung
15.12.2022	Frequentistische Inferenz	(9) Statistische Modelle, Statistiken, Schätzer
	Weihnachtspause	
05.01.2023	Frequentistische Inferenz	(10) Schätzereigenschaften
12.01.2023	Frequentistische Inferenz	(11) Konfidenzintervalle
19.01.2023	Frequentistische Inferenz	(12) Hypothesentests
26.01.2023	Frequentistische Inferenz	(13) T-Tests
02.02.2023	Klausur	G44-H6, 16:00 - 17:00 Uhr
Jul 2023	Klausurwiederholungstermin	

Wahrscheinlichkeitstheorie

Probabilistisches Modell

$$(\Omega, \mathcal{A}, \mathbb{P}), \xi : \Omega \to \mathbb{R}$$

Wahrscheinlichkeitsrechnung

$$\mathbb{P}_{\xi}(S) = \mathbb{P}(\xi^{-1}(S))$$

Zufallsvorgänge

Phänomene, die von Menschen nicht mit absoluter Sicherheit vorhergesagt werden können.

Quantifizierung von Unsicherheit

Wir nehmen an, dass die BDI Score Fehler der Proband:innen Realisierungen unabhängiger und identisch normalverteilter Zufallsvariablen sind.

Wahrscheinlichkeitstheorie

$$\begin{aligned} y_{1j} &= \mu_1 + \varepsilon_{1j} \cdot \varepsilon_{1j} \sim N(0, \sigma^2), j = 1, ..., n_1 \\ y_{2j} &= \mu_2 + \varepsilon_{2j} \cdot \varepsilon_{2j} \sim N(0, \sigma^2), j = 1, ..., n_2 \\ \mathbb{E}(\varepsilon_{ij}) &= 0, \mathbb{V}(\varepsilon_{ij}) = \sigma^2 \ \forall \ i, j \\ \mathbb{C}(\varepsilon_{ij}, \varepsilon_{kl}) &= 0 \ \forall \ i \neq k, j \neq l \end{aligned}$$

Zufallsvorgang

Klinische Studie zum Vergleich der Effekte von Face-to-Face und Online PT bei Depression

Vorhersagen

Erwartungswert Varianz und Standardabweichung Stichprobenmittel, Stichprobenvarianz, Stichprobenstandardabweichung Kovarianz und Korrelation Selbstkontrollfragen

Varianz und Standardabweichung

Stichprobenmittel, Stichprobenvarianz, Stichprobenstandardabweichung

Kovarianz und Korrelation

Selbstkontrollfragen

Definition (Erwartungswert)

 $(\Omega, \mathcal{A}, \mathbb{P})$ sei ein Wahrscheinlichkeitsraum und ξ sei eine Zufallsvariable. Dann ist der *Erwartungswert* von ξ definiert als

- $\bullet \ \ \mathbb{E}(\xi) := \sum\nolimits_{x \in \mathcal{X}} x \, p_{\xi}(x) \text{, wenn } \xi : \Omega \to \mathcal{X} \text{ diskret mit WMF } p_{\xi} \text{ und Ergebnisraum } \mathcal{X} \text{ ist,}$
- $\mathbb{E}(\xi):=\int^{\infty}x\,p_{\xi}(x)\,dx$, wenn $\xi:\Omega\to\mathbb{R}$ kontinuierlich mit WDF p_{ξ} ist.

Der Erwartungswert einer Zufallsvariable heißt existent, wenn er endlich ist.

Bemerkungen

- Der Erwartungswert ist eine skalare Zusammenfassung einer Verteilung.
- Intuitiv ist $\mathbb{E}(\xi) \approx \frac{1}{n} \sum_{i=1}^{n} \xi_i$ für eine große Zahl n von Kopien ξ_i von ξ .

Beispiel (Erwartungswert einer Bernoulli Zufallsvariable)

Es sei $\xi \sim \operatorname{Bern}(\mu)$. Dann gilt $\mathbb{E}(\xi) = \mu$.

Beweis

 ξ ist diskret mit $\mathcal{X} = \{0,1\}$. Also gilt

$$\mathbb{E}(\xi) = \sum_{x \in \{0,1\}} x \operatorname{Bern}(x;\mu)$$

$$= 0 \cdot \mu^{0} (1 - \mu)^{1-0} + 1 \cdot \mu^{1} (1 - \mu)^{1-1}$$

$$= 1 \cdot \mu^{1} (1 - \mu)^{0}$$

$$= \mu.$$
(1)

Beispiel (Erwartungswert einer normalverteilten Zufallsvariable)

Es sei $\xi \sim N(\mu, \sigma^2)$. Dann gilt $\mathbb{E}(\xi) = \mu$.

Beweis

Wir halten zunächst ohne Beweis fest, dass

$$\int_{-\infty}^{\infty} \exp(-x^2) \, dx = \sqrt{\pi}.\tag{2}$$

Mit der Definition des Erwartungswerts für kontinuierliche Zufallsvariablen gilt

$$\mathbb{E}(\xi) = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (x - \mu)^2\right) dx. \tag{3}$$

Mit der Substitutionsregel

$$\int_{g(a)}^{g(b)} f(x) dx = \int_{a}^{b} f(g(x))g'(x) dx \tag{4}$$

und der Definition von

$$g: \mathbb{R} \to \mathbb{R}, x \mapsto g(x) := \sqrt{2\sigma^2}x + \mu \text{ with } g'(x) = \sqrt{2\sigma^2},$$
 (5)

gilt dann

$$\mathbb{E}(\xi) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} x \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} (\sqrt{2\sigma^2}x + \mu) \exp\left(-\frac{1}{2\sigma^2} \left(\left(\sqrt{2\sigma^2}x + \mu\right) - \mu\right)^2\right) \sqrt{2\sigma^2} dx$$

$$= \frac{\sqrt{2\sigma^2}}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} (\sqrt{2\sigma^2}x + \mu) \exp\left(-x^2\right) dx$$

$$= \frac{1}{\sqrt{\pi}} \left(\sqrt{2\sigma^2} \int_{-\infty}^{\infty} x \exp\left(-x^2\right) dx + \mu \int_{-\infty}^{\infty} \exp\left(-x^2\right) dx\right)$$

$$= \frac{1}{\sqrt{\pi}} \left(\sqrt{2\sigma^2} \int_{-\infty}^{\infty} x \exp\left(-x^2\right) dx + \mu \sqrt{\pi}\right)$$

$$= \frac{1}{\sqrt{\pi}} \left(\sqrt{2\sigma^2} \int_{-\infty}^{\infty} x \exp\left(-x^2\right) dx + \mu \sqrt{\pi}\right)$$

Eine Stammfunktion von $x \exp\left(-x^2\right)$ ist $-\frac{1}{2}\exp(-x^2)$. Mit

$$\lim_{x \to -\infty} \exp(-x^2) = 0 \text{ und } \lim_{x \to \infty} \exp(-x^2) = 0$$
 (7)

verschwindet der Integralterm und wir erhalten

$$\mathbb{E}(\xi) = \frac{1}{\sqrt{\pi}} \left(\mu \sqrt{\pi} \right) = \mu. \tag{8}$$

7

Theorem (Eigenschaften des Erwartungswerts)

(1) (Linear-affine Transformation) Für eine Zufallsvariable ξ und $a,b\in\mathbb{R}$ gilt

$$\mathbb{E}(a\xi + b) = a\mathbb{E}(\xi) + b. \tag{9}$$

(2) (Linearkombination) Für Zufallsvariablen $\xi_1, ..., \xi_n$ und $a_1, ..., a_n \in \mathbb{R}$ gilt

$$\mathbb{E}\left(\sum_{i=1}^{n} a_i \xi_i\right) = \sum_{i=1}^{n} a_i \mathbb{E}(\xi_i). \tag{10}$$

(3) (Faktorisierung bei Unabhängigkeit) Für unabhängige Zufallsvariablen $\xi_1,...,\xi_n$ gilt

$$\mathbb{E}\left(\prod_{i=1}^{n} \xi_{i}\right) = \prod_{i=1}^{n} \mathbb{E}(\xi_{i}). \tag{11}$$

Bemerkung

• Die genannten Eigenschaften sind oft nützlich zur Berechnung von Erwartungswerten.

Beweis

Eigenschaft (1) folgt aus den Linearitätseigenschaften von Summen und Integralen. Wir betrachten nur den Fall einer kontinuierlichen Zufallsvariable ξ mit WDF p_{ξ} genauer und definieren zunächst $v:=a\xi+b$. Dann gilt

$$\mathbb{E}(v) = \mathbb{E}(a\xi + b)$$

$$= \int_{-\infty}^{\infty} (ax + b)p_{\xi}(x) dx$$

$$= \int_{-\infty}^{\infty} axp_{\xi}(x) + bp_{\xi}(x) dx$$

$$= a\int_{-\infty}^{\infty} xp_{\xi}(x) dx + b\int_{-\infty}^{\infty} p_{\xi}(x) dx$$

$$= a\mathbb{E}(\xi) + b.$$
(12)

Beweis (fortgeführt)

Eigenschaft (2) folgt gleichfalls aus den Linearitätseigenschaften von Summen und Integralen. Wir betrachten nur den Fall von zwei kontinuierlichen Zufallsvariablen ξ_1 und ξ_2 mit bivariater WDF p_{ξ_1,ξ_2} genauer. In diesem Fall gilt

$$\mathbb{E}\left(\sum_{i=1}^{2} a_{i} \xi_{i}\right) \\
= \mathbb{E}(a_{1} \xi_{1} + a_{2} \xi_{2}) \\
= \iint_{\mathbb{R}^{2}} (a_{1} x_{1} + a_{2} x_{2}) p_{\xi_{1}, \xi_{2}}(x_{1}, x_{2}) dx_{1} dx_{2} \\
= \iint_{\mathbb{R}^{2}} a_{1} x_{1} p_{\xi_{1}, \xi_{2}}(x_{1}, x_{2}) + a_{2} x_{2} p_{\xi_{1}, \xi_{2}}(x_{1}, x_{2}) dx_{1} dx_{2} \\
= a_{1} \iint_{\mathbb{R}^{2}} x_{1} p_{\xi_{1}, \xi_{2}}(x_{1}, x_{2}) dx_{1} dx_{2} + a_{2} \iint_{\mathbb{R}^{2}} x_{2} p_{\xi_{1}, \xi_{2}}(x_{1}, x_{2}) dx_{1} dx_{2}$$
(13)

Beweis (fortgeführt)

$$\begin{split} &=a_{1}\int_{-\infty}^{\infty}x_{1}\left(\int_{-\infty}^{\infty}p_{\xi_{1},\xi_{2}}(x_{1},x_{2})\,dx_{2}\right)\,dx_{1}+a_{2}\int_{-\infty}^{\infty}x_{2}\left(\int_{-\infty}^{\infty}p_{\xi_{1},\xi_{2}}(x_{1},x_{2})\,dx_{1}\right)\,dx_{2}\\ &=a_{1}\int_{-\infty}^{\infty}x_{1}p_{\xi_{1}}(x_{1})\,dx_{1}+a_{2}\int_{-\infty}^{\infty}x_{2}p_{\xi_{2}}(x_{2})\,dx_{2}\\ &=a_{1}\mathbb{E}(\xi_{1})+a_{2}\mathbb{E}(\xi_{2})\\ &=\sum_{i=1}^{2}a_{i}\mathbb{E}(\xi_{i}). \end{split}$$

Ein Induktionsargument erlaubt dann die Generalisierung vom bivariaten zum n-variaten Fall.

Beweis (fortgeführt)

Zu Eigenschaft (3) betrachten wir den Fall von n kontinuierlichen Zufallsvariablen mit gemeinsamer WDF p_{ξ_1,\dots,ξ_n} . Weil als ξ_1,\dots,ξ_n unabhängig vorausgesetzt sind, gilt

$$p_{\xi_1,...,\xi_n}(x_1,...,x_n) = \prod_{i=1}^n p_{\xi_i}(x_i).$$
 (15)

Weiterhin gilt also

$$\mathbb{E}\left(\prod_{i=1}^{n} x_{i}\right) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \left(\prod_{i=1}^{n} x_{i}\right) p_{\xi_{1}, \dots, \xi_{n}}(x_{1}, \dots, x_{n}) dx_{1} \dots dx_{n}$$

$$= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \prod_{i=1}^{n} x_{i} \prod_{i=1}^{n} p_{\xi_{i}}(x_{i}) dx_{1} \dots dx_{n}$$

$$= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \prod_{i=1}^{n} x_{i} p_{\xi_{i}}(x_{i}) dx_{1} \dots dx_{n}$$

$$= \prod_{i=1}^{n} \int_{-\infty}^{\infty} x_{i} p_{\xi_{i}}(x_{i}) dx_{i} = \prod_{i=1}^{n} \mathbb{E}(\xi_{i}).$$
(16)

П

Varianz und Standardabweichung

Stichprobenmittel, Stichprobenvarianz, Stichprobenstandardabweichung

Kovarianz und Korrelation

Stichprobenkovarianz und Stichprobenkorrelation

Selbstkontrollfragen

Definition (Varianz und Standardabweichung)

Es sei ξ eine Zufallsvariable mit Erwartungswert $\mathbb{E}(\xi)$. Die Varianz von ξ ist definiert als

$$\mathbb{V}(\xi) := \mathbb{E}\left(\left(\xi - \mathbb{E}(\xi)\right)^2\right),\tag{17}$$

unter der Annahme, dass dieser Erwartungswert existiert. Die Standardabweichung von ξ ist definiert

$$\mathbb{S}(\xi) := \sqrt{\mathbb{V}(\xi)}.\tag{18}$$

Bemerkungen

- Die Varianz misst die Streuung (Breite) einer Verteilung.
- Quadration ist nötig wegen $\mathbb{E}(\xi \mathbb{E}(\xi)) = \mathbb{E}(\xi) \mathbb{E}(\xi) = 0$.
- ullet Ein alternatives Maß für die Streuung einer Verteilung ist $\mathbb{E}(|\xi \mathbb{E}(\xi)|)$.
- Ein weiteres Maß für die Streuung einer Verteilung ist die Entropie $-\mathbb{E}(\ln p_{\xi})$.

Beispiel (Varianz einer Bernoulli Zufallsvariable)

Es sei $\xi \sim \mathrm{Bern}(\mu)$. Dann ist die Varianz von ξ gegeben durch

$$\mathbb{V}(\xi) = \mu(1-\mu). \tag{19}$$

Beweis

 ξ ist eine diskrete Zufallsvariable und es gilt $\mathbb{E}(\xi)=\mu.$ Also gilt

$$\mathbb{V}(\xi) = \mathbb{E}\left((\xi - \mu)^2\right) \\
= \sum_{x \in \{0,1\}} (x - \mu)^2 \mathsf{Bern}(x; \mu) \\
= (0 - \mu)^2 \mu^0 (1 - \mu)^{1-0} + (1 - \mu)^2 \mu^1 (1 - \mu)^{1-1} \\
= \mu^2 (1 - \mu) + (1 - \mu)^2 \mu \\
= \left(\mu^2 + (1 - \mu)\mu\right) (1 - \mu) \\
= \left(\mu^2 + \mu - \mu^2\right) (1 - \mu) \\
= \mu(1 - \mu).$$
(20)

Theorem (Varianzverschiebungssatz)

Es sei ξ eine Zufallsvariable. Dann gilt

$$\mathbb{V}(\xi) = \mathbb{E}\left(\xi^2\right) - \mathbb{E}(\xi)^2. \tag{21}$$

Beweis

Mit der Definition der Varianz und der Linearität des Erwartungswerts gilt

$$V(\xi) = \mathbb{E}\left(\left(\xi - \mathbb{E}(\xi)\right)^{2}\right)$$

$$= \mathbb{E}\left(\xi^{2} - 2\xi\mathbb{E}(\xi) + \mathbb{E}(\xi)^{2}\right)$$

$$= \mathbb{E}(\xi^{2}) - 2\mathbb{E}(\xi)\mathbb{E}(\xi) + \mathbb{E}\left(\mathbb{E}(\xi)^{2}\right)$$

$$= \mathbb{E}(\xi^{2}) - 2\mathbb{E}(\xi)^{2} + \mathbb{E}(\xi)^{2}$$

$$= \mathbb{E}(\xi^{2}) - \mathbb{E}(\xi)^{2}.$$
(22)

Bemerkung

ullet Das Theorem ist nützlich, wenn $\mathbb{E}\left(\xi^2\right)$ und $\mathbb{E}(\xi)$ leicht zu berechnen sind.

Beispiel (Varianz einer normalverteilten Zufallsvariable)

Es sei $\xi \sim N(\mu, \sigma^2)$. Dann gilt $\mathbb{V}(\xi) = \sigma^2$.

Beweis

Wir halten zunächst fest, dass mit dem Varianzverschiebungssatz gilt, dass

$$\mathbb{V}(\xi) = \mathbb{E}(\xi^2) - \mathbb{E}(\xi)^2 = \frac{1}{2\pi\sigma^2} \int_{-\infty}^{\infty} x^2 \exp\left(-\frac{1}{2\sigma^2} (x - \mu)^2\right) dx - \mu^2$$
 (23)

Mit der Substitutionsregel

$$\int_{a}^{b} f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(x) dx$$
 (24)

und der Definition von

$$g: \mathbb{R} \to \mathbb{R}, x \mapsto \sqrt{2\sigma^2}x + \mu, g(-\infty) := -\infty, g(\infty) := \infty, \text{ with } g'(x) = \sqrt{2\sigma^2},$$
 (25)

kann das Integral auf der rechten Seite von Gleichung (23) dann als

Beweis (fortgeführt)

$$\int_{-\infty}^{\infty} x^2 \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx$$

$$= \int_{-\infty}^{\infty} (\sqrt{2\sigma^2}x + \mu)^2 \exp\left(-\frac{1}{2\sigma^2}((\sqrt{2\sigma^2}x + \mu) - \mu)^2\right) \sqrt{2\sigma^2} dx$$

$$= \sqrt{2\sigma^2} \int_{-\infty}^{\infty} (\sqrt{2\sigma^2}x + \mu)^2 \exp\left(-\frac{2\sigma^2x^2}{2\sigma^2}\right) dx$$

$$= \sqrt{2\sigma^2} \int_{-\infty}^{\infty} (\sqrt{2\sigma^2}x + \mu)^2 \exp\left(-x^2\right) dx.$$
(26)

geschrieben werden. Also gilt

$$\mathbb{V}(\xi) = \frac{\sqrt{2\sigma^2}}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} (\sqrt{2\sigma^2}x + \mu)^2 \exp\left(-x^2\right) dx - \mu^2$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} (\sqrt{2\sigma^2}x)^2 + 2\sqrt{2\sigma^2}x\mu + \mu^2) \exp\left(-x^2\right) dx - \mu^2$$

$$= \frac{1}{\sqrt{\pi}} \left(2\sigma^2 \int_{-\infty}^{\infty} x^2 \exp\left(-x^2\right) dx + 2\sqrt{2\sigma^2}\mu \int_{-\infty}^{\infty} x \exp\left(-x^2\right) dx + \mu^2 \int_{-\infty}^{\infty} \exp\left(-x^2\right) dx \right) - \mu^2$$

Beweis (fortgeführt)

Wir halten weiterhin ohne Beweis fest, dass

$$\int_{-\infty}^{\infty} x \exp(-x^2) dx = 0 \text{ und } \int_{-\infty}^{\infty} \exp(-x^2) dx = \sqrt{\pi}.$$
 (27)

Es ergibt sich dann

$$\mathbb{V}(\xi) = \frac{1}{\sqrt{\pi}} \left(2\sigma^2 \int_{-\infty}^{\infty} x^2 \exp\left(-x^2\right) dx + \mu^2 \sqrt{\pi} \right) - \mu^2$$

$$= \frac{2\sigma^2}{\sqrt{\pi}} \int_{-\infty}^{\infty} x^2 \exp\left(-x^2\right) dx + \mu^2 - \mu^2$$

$$= \frac{2\sigma^2}{\sqrt{\pi}} \int_{-\infty}^{\infty} x^2 \exp\left(-x^2\right) dx$$

$$= \frac{2\sigma^2}{\sqrt{\pi}} \int_{-\infty}^{\infty} x^2 \exp\left(-x^2\right) dx$$
(28)

Mit der partiellen Integrationsregel

$$\int_{-b}^{b} f'(x)g(x) dx = f(x)g(x)\Big|_{a}^{b} - \int_{-a}^{b} f(x)g'(x) dx$$
 (29)

und der Definition von

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto f(x) := \exp(-x^2) \text{ with } f'(x) = -2 \exp(-x^2)$$
 (30)

Beweis (fortgeführt)

und

$$g: \mathbb{R} \to \mathbb{R}, x \mapsto g(x) := -\frac{1}{2}x \text{ with } g'(x) = -\frac{1}{2},$$
 (31)

so dass

$$f'(x)g(x) = -2\exp(-x^2)\left(-\frac{1}{2}x\right) = x^2\exp(-x^2),$$
 (32)

gilt, ergibt sich dann

$$\mathbb{V}(\xi) = \frac{2\sigma^2}{\sqrt{\pi}} \int_{-\infty}^{\infty} x^2 \exp\left(-x^2\right) dx$$

$$= \frac{2\sigma^2}{\sqrt{\pi}} \left(-\frac{1}{2}x \exp(-x^2)|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \exp\left(-x^2\right) \left(-\frac{1}{2}\right) dx\right)$$

$$= \frac{2\sigma^2}{\sqrt{\pi}} \left(-\frac{1}{2}x \exp(-x^2)|_{-\infty}^{\infty} + \frac{1}{2} \int_{-\infty}^{\infty} \exp\left(-x^2\right) dx\right),$$
(33)

Aus $\lim_{x\to\pm\infty}\exp(-x^2)=0$ schließen wir, dass der erste Term in den Klammern auf der rechten Seite der obigen Gleichung gleich 0 ist. Schließlich ergibt sich

$$\mathbb{V}(\xi) = \frac{2\sigma^2}{\sqrt{\pi}} \left(\frac{1}{2} \int_{-\infty}^{\infty} \exp\left(-x^2\right) dx \right) = \frac{\sigma^2}{\sqrt{\pi}} \sqrt{\pi} = \sigma^2. \tag{34}$$

П

Theorem (Eigenschaften der Varianz)

(1) (Linear-affine Transformation) Für eine Zufallsvariable ξ und $a,b\in\mathbb{R}$ gelten

$$\mathbb{V}(a\xi + b) = a^2 \mathbb{V}(\xi) \text{ und } \mathbb{S}(a\xi + b) = |a|\mathbb{S}(\xi). \tag{35}$$

(2) (Linearkombination bei Unabhängigkeit) Für unabhängige Zufallsvariablen $\xi_1,...,\xi_n$ und $a_1,...,a_n\in\mathbb{R}$ gilt

$$\mathbb{V}\left(\sum_{i=1}^{n} a_i \xi_i\right) = \sum_{i=1}^{n} a_i^2 \mathbb{V}(\xi_i). \tag{36}$$

Beweis

Um Eigenschaft (1) zu zeigen, definieren wir zunächst $v:=a\xi+b$ und halten fest, dass $\mathbb{E}(v)=a\mathbb{E}(\xi)+b$. Für die Varianz von v ergibt sich dann

$$V(v) = \mathbb{E}\left((v - \mathbb{E}(v))^2\right)$$

$$= \mathbb{E}\left((a\xi + b - a\mathbb{E}(\xi) - b)^2\right)$$

$$= \mathbb{E}\left((a\xi - a\mathbb{E}(\xi))^2\right)$$

$$= \mathbb{E}\left((a(\xi - \mathbb{E}(\xi))^2\right)$$

$$= \mathbb{E}\left(a^2(\xi - \mathbb{E}(\xi))^2\right)$$

$$= a^2\mathbb{E}\left((\xi - \mathbb{E}(\xi))^2\right)$$

$$= a^2\mathbb{V}(\xi)$$
(37)

Wurzelziehen ergibt dann das Resultat für die Standardabweichung.

Für Eigenschaft (2) betrachten wir den Fall zweier unabhängiger Zufallsvariablen ξ_1 und ξ_2 genauer. Wir halten zunächst fest, dass in diesem Fall gilt, dass

$$\mathbb{E}(a_1\xi_1 + a_2\xi_2) = a_1\mathbb{E}(\xi_1) + a_2\mathbb{E}(\xi_2). \tag{38}$$

Beweis (fortgeführt)

Es ergibt sich also

$$\begin{split} & \mathbb{V}\left(\sum_{i=1}^{2} a_{i}\xi_{i}\right) \\ & = \mathbb{V}(a_{1}\xi_{1} + a_{2}\xi_{2}) \\ & = \mathbb{E}\left((a_{1}\xi_{1} + a_{2}\xi_{2} - \mathbb{E}\left(a_{1}\xi_{1} + a_{2}\xi_{2}\right))^{2}\right) \\ & = \mathbb{E}\left((a_{1}\xi_{1} + a_{2}\xi_{2} - a_{1}\mathbb{E}(\xi_{1}) - a_{2}\mathbb{E}(\xi_{2}))^{2}\right) \\ & = \mathbb{E}\left((a_{1}\xi_{1} - a_{1}\mathbb{E}(\xi_{1}) + a_{2}\xi_{2} - a_{2}\mathbb{E}(\xi_{2}))^{2}\right) \\ & = \mathbb{E}\left(((a_{1}(\xi_{1} - \mathbb{E}(\xi_{1})) + (a_{2}(\xi_{2} - \mathbb{E}(\xi_{2})))^{2}\right) \\ & = \mathbb{E}\left((a_{1}(\xi_{1} - \mathbb{E}(\xi_{1})))^{2} + 2(a_{1}(\xi_{1} - \mathbb{E}(\xi_{1}))(a_{2}(\xi_{2} - \mathbb{E}(\xi_{2})) + (a_{2}(\xi_{2} - \mathbb{E}(\xi_{2})))^{2}\right) \\ & = \mathbb{E}\left((a_{1}^{2}(\xi_{1} - \mathbb{E}(\xi_{1})))^{2} + 2a_{1}a_{2}(\xi_{1} - \mathbb{E}(\xi_{1}))(\xi_{2} - \mathbb{E}(\xi_{2})) + a_{2}^{2}(\xi_{2} - \mathbb{E}(\xi_{2}))^{2}\right) \\ & = a_{1}^{2}\mathbb{E}\left((\xi_{1} - \mathbb{E}(\xi_{1}))^{2}\right) + 2a_{1}a_{2}\mathbb{E}\left((\xi_{1} - \mathbb{E}(\xi_{1}))(\xi_{2} - \mathbb{E}(\xi_{2}))\right) + a_{2}^{2}\mathbb{E}\left((\xi_{2} - \mathbb{E}(\xi_{2}))^{2}\right) \\ & = a_{1}^{2}\mathbb{V}(\xi_{1}) + 2a_{1}a_{2}\mathbb{E}\left((\xi_{1} - \mathbb{E}(\xi_{1}))(\xi_{2} - \mathbb{E}(\xi_{2}))\right) + a_{2}^{2}\mathbb{V}(\xi_{2}) \\ & = \sum_{1}^{2}a_{1}^{2}\mathbb{V}(\xi_{i}) + 2a_{1}a_{2}\mathbb{E}\left((\xi_{1} - \mathbb{E}(\xi_{1}))(\xi_{2} - \mathbb{E}(\xi_{2}))\right). \end{split}$$

Beweis (fortgeführt)

Weil ξ_1 und ξ_2 unabhängig sind, ergibt sich mit den Eigenschaften des Erwartungswerts für unabhängige Zufallsvariablen, dass

$$\mathbb{E}((\xi_{1} - \mathbb{E}(\xi_{1}))(\xi_{2} - \mathbb{E}(\xi_{2}))) = \mathbb{E}((\xi_{1} - \mathbb{E}(\xi_{1}))) \,\mathbb{E}((\xi_{2} - \mathbb{E}(\xi_{2})))$$

$$= (\mathbb{E}(\xi_{1}) - \mathbb{E}(\xi_{1}))(\mathbb{E}(\xi_{2}) - \mathbb{E}(\xi_{2}))$$

$$= 0$$
(39)

ist. Damit folgt also

$$\mathbb{V}\left(\sum_{i=1}^{2} a_i \xi_i\right) = \sum_{i=1}^{2} a_i^2 \mathbb{V}(\xi_i). \tag{40}$$

Ein Induktionsargument erlaubt dann die Generalisierung vom bivariaten zum n-variaten Fall.

Erwartungswert Varianz und Standardabweichung Stichprobenmittel, Stichprobenvarianz, Stichprobenstandardabweichung Kovarianz und Korrelation

Selbstkontrollfragen

Stichprobenmittel, Stichprobenvarianz, Stichprobenstandardabweichung

Definition (Stichprobenmittel, -varianz, -standardabweichung)

 ξ_1, \ldots, ξ_n seien Zufallsvariablen. Dann nennt man ξ_1, \ldots, ξ_n auch eine Stichprobe.

• Das Stichprobenmittel von $\xi_1, ..., \xi_n$ ist definiert als der arithmetische Mittelwert

$$\bar{\xi}_n := \frac{1}{n} \sum_{i=1}^n \xi_i. \tag{41}$$

ullet Die *Stichprobenvarianz* von $\xi_1, ..., \xi_n$ ist definiert als

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (\xi_i - \bar{\xi}_n)^2. \tag{42}$$

Die Stichprobenstandardabweichung ist definiert als

$$S_n := \sqrt{S_n^2}. (43)$$

Bemerkungen

- $\mathbb{E}(\xi)$, $\mathbb{V}(\xi)$, und $\mathbb{S}(\xi)$ sind Kennzahlen einer Zufallsvariable ξ .
- $\bar{\xi}_n, S_n^2$, und S_n sind Kennzahlen einer Stichprobe $\xi_1, ..., \xi_n$.
- $\bar{\xi}_n, S_n^2$, und S_n sind Zufallsvariablen, ihre Realisationen werden mit \bar{x}_n, s_n^2 , und s_n bezeichnet.

Stichprobenmittel, Stichprobenvarianz, Stichprobenstandardabweichung

Beispiel (Stichprobenmittel, Stichprobenvarianz, Stichprobenstandardabweichung)

- Es seien $\xi_1, ..., \xi_{10} \sim N(1, 2)$.
- Wir nehmen die folgenden Realisationen an

Die Stichprobenmittelrealisation ist

$$\bar{x}_{10} = \frac{1}{10} \sum_{i=1}^{10} x_i = \frac{6.88}{10} = 0.68.$$
 (44)

Die Stichprobenvarianzrealisation ist

$$s_{10}^{2} = \frac{1}{9} \sum_{i=1}^{10} (x_{i} - \bar{x}_{10})^{2} = \frac{1}{9} \sum_{i=1}^{10} (x_{i} - 0.68)^{2} = \frac{25.37}{9} = 2.82.$$
 (45)

Die Stichprobenstandardabweichungrealisation ist

$$s_{10} = \sqrt{s_{10}^2} = \sqrt{2.82} = 1.68.$$
 (46)

Varianz und Standardabweichung

Stichprobenmittel, Stichprobenvarianz, Stichprobenstandardabweichung

Kovarianz und Korrelation

Selbstkontrollfragen

Definition (Kovarianz und Korrelation)

Die Kovarianz zweier Zufallsvariablen ξ und υ ist definiert als

$$\mathbb{C}(\xi, \upsilon) := \mathbb{E}\left(\left(\xi - \mathbb{E}(\xi)\right)\left(\upsilon - \mathbb{E}(\upsilon)\right)\right). \tag{47}$$

Die Korrelation zweier Zufallsvariablen ξ und v ist definiert als

$$\rho(\xi, v) := \frac{\mathbb{C}(\xi, v)}{\sqrt{\mathbb{V}(\xi)}\sqrt{\mathbb{V}(v)}} = \frac{\mathbb{C}(\xi, v)}{\mathbb{S}(\xi)\mathbb{S}(v)}.$$
 (48)

Bemerkungen

• Die Kovarianz von ξ mit sich selbst ist die Varianz von ξ ,

$$\mathbb{C}(\xi,\xi) = \mathbb{E}\left(\left(\xi - \mathbb{E}(\xi)\right)^2\right) = \mathbb{V}(\xi). \tag{49}$$

- $\rho(\xi, \upsilon)$ wird auch Korrelationskoeffizient von ξ und υ genannt.
- Wenn $\rho(\xi, v) = 0$ ist, werden ξ und v unkorreliert genannt.
- Wir zeigen später mit der Cauchy-Schwarz Ungleichung, dass $-1 \leq \rho(\xi, \upsilon) \leq 1$.

Beispiel (Kovarianz und Korrelation zweier diskreter Zufallsvariablen)

Es sei $\xi:=(\xi_1,\xi_2)$ ein Zufallsvektor mit WMF p_{ξ_1,ξ_2} definiert durch

$p_{\xi_1,\xi_2}(x_1,x_2)$	$x_2 = 1$	$x_2 = 2$	$x_2 = 3$	$p_{\xi_1}(x_1)$
$x_1 = 1$	0.10	0.05	0.15	0.30
$x_1 = 2$	0.60	0.05	0.05	0.70
$p_{\xi_{2}}(x_{2})$	0.70	0.10	0.20	

 ξ_1 , ξ_2 sind also zwei Zufallsvariablen mit einer definierten bivariaten Verteilung. Um $\mathbb{C}(\xi_1, \xi_2)$ und $\rho(\xi_1, \xi_2)$ zu berechnen, halten wir zunächst fest, dass

$$\mathbb{E}(\xi_1) = \sum_{x_1 = 1}^{2} x_1 p_{\xi_1}(x_1) = 1 \cdot 0.3 + 2 \cdot 0.7 = 1.7 \tag{50}$$

und

$$\mathbb{E}(\xi_2) = \sum_{x_2=1}^{3} x_2 p_{\xi_2}(x_2) = 1 \cdot 0.7 + 2 \cdot 0.1 + 3 \cdot 0.2 = 1.5.$$
 (51)

Mit der Definition der Kovarianz von ξ_1 und ξ_2 , gilt dann

$$\begin{split} &\mathbb{C}(\xi_1,\xi_2) \\ &= \mathbb{E}((\xi_1 - \mathbb{E}(\xi_1))(\xi_2 - \mathbb{E}(\xi_2))) \\ &= \sum_{x_1 = 1}^2 \sum_{x_2 = 1}^3 (x_1 - \mathbb{E}(\xi_1))(x_2 - \mathbb{E}(\xi_2)) p_{\xi_1,\xi_2}(x_1,x_2) \\ &= \sum_{x_1 = 1}^2 \sum_{x_2 = 1}^3 (x_1 - 1.7)(x_2 - 1.5) p_{\xi_1,\xi_2}(x_1,x_2) \\ &= \sum_{x_1 = 1}^2 \sum_{x_2 = 1}^3 (x_1 - 1.7)(1 - 1.5) p_{\xi_1,\xi_2}(x_1,x_2) \\ &= \sum_{x_1 = 1}^2 (x_1 - 1.7)(1 - 1.5) p_{\xi_1,\xi_2}(x_1,1) \\ &\quad + (x_1 - 1.7)(2 - 1.5) p_{\xi_1,\xi_2}(x_1,2) \\ &\quad + (x_1 - 1.7)(3 - 1.5) p_{\xi_1,\xi_2}(x_1,3) \\ &= (1 - 1.7)(1 - 1.5) p_{\xi_1,\xi_2}(x_1,1) + (1 - 1.7)(2 - 1.5) p_{\xi_1,\xi_2}(1,2) + (1 - 1.7)(3 - 1.5) p_{\xi_1,\xi_2}(1,3) \\ &\quad + (2 - 1.7)(1 - 1.5) p_{\xi_1,\xi_2}(2,1) + (2 - 1.7)(2 - 1.5) p_{\xi_1,\xi_2}(2,2) + (2 - 1.7)(3 - 1.5) p_{\xi_1,\xi_2}(2,3) \\ &= (-0.7) \cdot (-0.5) \cdot 0.10 \qquad + (-0.7) \cdot 0.5 \cdot 0.05 \qquad + (-0.7) \cdot 1.5 \cdot 0.15 \\ &\quad + 0.3 \cdot (-0.5) \cdot 0.60 \qquad + 0.3 \cdot 0.5 \cdot 0.05 \qquad + 0.3 \cdot 1.5 \cdot 0.05 \\ &= 0.035 - 0.0175 - 0.1575 - 0.09 + 0.0075 + 0.0225 \\ &= -0.2. \end{split}$$

Theorem (Kovarianzverschiebungssatz)

 ξ und υ seien Zufallsvariablen. Dann gilt

$$\mathbb{C}(\xi, v) = \mathbb{E}(\xi v) - \mathbb{E}(\xi)\mathbb{E}(v). \tag{52}$$

Beweis

Mit der Definition der Kovarianz gilt

$$\mathbb{C}(\xi, \upsilon) = \mathbb{E}\left((\xi - \mathbb{E}(\xi))(\upsilon - \mathbb{E}(\upsilon))\right)
= \mathbb{E}\left(\xi \upsilon - \xi \mathbb{E}(\upsilon) - \mathbb{E}(\xi)\upsilon + \mathbb{E}(\xi)\mathbb{E}(\upsilon)\right)
= \mathbb{E}(\xi \upsilon) - \mathbb{E}(\xi)\mathbb{E}(\upsilon) - \mathbb{E}(\xi)\mathbb{E}(\upsilon) + \mathbb{E}(\xi)\mathbb{E}(\upsilon)
= \mathbb{E}(\xi \upsilon) - \mathbb{E}(\xi)\mathbb{E}(\upsilon).$$
(53)

Bemerkungen

- Das Theorem ist nützlich, wenn $\mathbb{E}(\xi v)$, $\mathbb{E}(\xi)$, und $\mathbb{E}(v)$ leicht zu berechnen sind
- Für $v = \xi$ erhalten wir $V(\xi) = \mathbb{E}(\xi^2) \mathbb{E}(\xi)^2$.

Theorem (Varianzen von Summen und Differenzen von Zufallsvariablen)

 ξ und υ seien zwei Zufallsvariablen und es seien $a,b,c\in\mathbb{R}.$ Dann gilt

$$\mathbb{V}(a\xi + b\upsilon + c) = a^2 \mathbb{V}(\xi) + b^2 \mathbb{V}(\upsilon) + 2ab\mathbb{C}(\xi, \upsilon). \tag{54}$$

Speziell gelten

$$\mathbb{V}(\xi + \upsilon) = \mathbb{V}(\xi) + \mathbb{V}(\upsilon) + 2\mathbb{C}(\xi, \upsilon)$$
(55)

und

$$\mathbb{V}(\xi - \upsilon) = \mathbb{V}(\xi) + \mathbb{V}(\upsilon) - 2\mathbb{C}(\xi, \upsilon)$$
(56)

Bemerkungen

- Varianzen von Zufallsvariablen addieren sich nicht einfach.
- Die Varianz der Summe zweier Zufallsvariablen hängt von ihrer Kovarianz ab.

Beweis

Wir halten zunächst fest, dass

$$\mathbb{E}(a\xi + b\upsilon + c) = a\mathbb{E}(\xi) + b\mathbb{E}(\upsilon) + c. \tag{57}$$

Es ergibt sich also

$$\mathbb{V}(a\xi + bv + c) \\
= \mathbb{E}\left((a\xi + bv + c - a\mathbb{E}(\xi) - b\mathbb{E}(v) - c)^2\right) \\
= \mathbb{E}\left((a(\xi - \mathbb{E}(\xi)) + b(v - \mathbb{E}(v)))^2\right) \\
= \mathbb{E}\left(a^2(\xi - \mathbb{E}(\xi))^2 + 2ab(\xi - \mathbb{E}(\xi))(v - \mathbb{E}(v)) + b^2(v - \mathbb{E}(v))^2\right) \\
= a^2\mathbb{E}\left((\xi - \mathbb{E}(\xi))^2\right) + b^2\mathbb{E}\left((v - \mathbb{E}(v))^2\right) + 2ab\mathbb{E}\left((\xi - \mathbb{E}(\xi))(v - \mathbb{E}(v))\right) \\
= a^2\mathbb{V}(\xi) + b^2\mathbb{V}(v) + 2ab\mathbb{C}(\xi, v)$$
(58)

Die Spezialfälle folgen dann direkt mit a:=b:=1 und a:=1,b:=-1, respektive.

Theorem (Korrelation und Unabhängigkeit)

 ξ und v seien zwei Zufallsvariablen. Wenn ξ und v unabhängig sind, dann ist $\mathbb{C}(\xi,v)=0$ und ξ und v sind unkorreliert. Ist dagegen $\mathbb{C}(\xi,v)=0$ und sind ξ und v somit unkorreliert, dann sind ξ und v nicht notwendigerweise unabhängig.

Beweis

Wir zeigen zunächst, dass aus der Unabhängigkeit von ξ und υ $\mathbb{C}(\xi, \upsilon)=0$ folgt. Hierzu halten wir zunächst fest, dass für unabhängige Zufallsvariablen gilt, dass

$$\mathbb{E}(\xi v) = \mathbb{E}(\xi)\mathbb{E}(v). \tag{59}$$

Mit dem Kovarianzverschiebungssatz folgt dann

$$\mathbb{C}(\xi, v) = \mathbb{E}(\xi v) - \mathbb{E}(\xi)\mathbb{E}(v) = \mathbb{E}(\xi)\mathbb{E}(v) - \mathbb{E}(\xi)\mathbb{E}(v) = 0. \tag{60}$$

Mit der Definition des Korrelationskoeffizienten folgt dann unmittelbar, dass $\rho(\xi, v)=0$ und ξ und v somit unkorreliert sind.

Beweis (fortgeführt)

Wir zeigen nun durch Angabe eines Beispiels, dass die Kovarianz von abhängigen Zufallsvariablen ξ und v null sein kann.

Zu diesem Zweck betrachten wir den Fall zweier diskreter Zufallsvariablen ξ und v mit Ergebnisräumen $\mathcal{X}=\{-1,0,1\}$ und $v=\{0,1\}$, marginaler WMF von ξ gegeben durch $p_{\xi}(x):=1/3$ für $x\in\mathcal{X}$ und der Definition $v:=\xi^2$.

Wir halten dann zunächst fest, dass

$$\mathbb{E}(\xi) = \sum_{x \in \mathcal{X}} x p_{\xi}(x) = -1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} = 0$$
 (61)

und

$$\mathbb{E}(\xi v) = \mathbb{E}(\xi \xi^2) = \mathbb{E}(\xi^3) = \sum_{x \in \mathcal{X}} x^3 p_{\xi}(x) = -1^3 \cdot \frac{1}{3} + 0^3 \cdot \frac{1}{3} + 1^3 \cdot \frac{1}{3} = 0.$$
 (62)

Mit dem Kovarianzverschiebungssatz ergibt sich dann

$$\mathbb{C}(\xi, \upsilon) = \mathbb{E}(\xi\upsilon) - \mathbb{E}(\xi)\mathbb{E}(\upsilon) = \mathbb{E}(\xi^3) - \mathbb{E}(\xi)\mathbb{E}(\upsilon) = 0 - 0 \cdot \mathbb{E}(\upsilon) = 0.$$
 (63)

Die Kovarianz von ξ und v ist also null. Wie unten gezeigt faktorisiert die gemeinsame WMF von ξ und v jedoch nicht, und somit sind ξ und v nicht unabhängig.

Beweis (fortgeführt)

Die Definition of $\upsilon:=\xi^2$ impliziert die folgende bedingte WMF

$p_{v \xi}(y x)$	x = -1	x = 0	x = 1
y = 0	0	1	0
y = 1	1	0	1

Die marginale WMF p_{ξ} und die bedingte WMF $p_{v \mid \xi}$ implizieren die gemeinsame WMF

$$\begin{array}{c|ccccc} p_{\xi,\upsilon}(x,y) & x=-1 & x=0 & x=1 & p_{\upsilon}(y) \\ y=0 & 0 & 1/3 & 0 & 1/3 \\ y=1 & 1/3 & 0 & 1/3 & 2/3 \\ \hline p_{F}(x) & 1/3 & 1/3 & 1/3 & \end{array}$$

Es gilt also zum Beispiel

$$p_{\xi,\upsilon}(-1,0) = 0 \neq \frac{1}{9} = \frac{1}{3} \cdot \frac{1}{3} = p_{\xi}(-1)p_{\upsilon}(0)$$
 (64)

und damit sind ξ und υ nicht unabhängig.

Varianz und Standardabweichung

Stichprobenmittel, Stichprobenvarianz, Stichprobenstandardabweichung

Kovarianz und Korrelation

Selbstkontrollfragen

Selbstkontrollfragen

- 1. Definieren und interpretieren Sie den Erwartungswert einer Zufallsvariable.
- 2. Berechnen Sie den Erwartungswert einer Bernoulli Zufallsvariable.
- 3. Nennen Sie drei Eigenschaften des Erwartungswerts.
- 4. Definieren und interpretieren Sie die Varianz einer Zufallsvariable.
- 5. Berechnen Sie die Varianz einer Bernoulli Zufallsvariable.
- 6. Drücken Sie $\mathbb{E}(\xi^2)$ mithilfe der Varianz und des Erwartungswerts von ξ aus.
- 7. Was ist $\mathbb{V}(a\xi)$ für konstantes $a \in \mathbb{R}$?
- 8. Definieren Sie die Kovarianz und Korrelation zweier Zufallsvariablen ξ und v.
- 9. Geben Sie das Theorem zur Varianz von Linearkombinationen von Zufallsvariablen bei Unabhängigkeit wieder.
- 10. Definieren Sie den Begriff der Stichprobe.
- 11. Definieren Sie den Begriff des Stichprobenmittels.
- 12. Definieren Sie Stichprobenvarianz und Stichprobenstandardabweichung.
- Erläutern Sie die Unterschiede zwischen dem Erwartungswertparameter, dem Erwartungswert und dem Stichprobenmittel von normalverteilten Zufallsvariablen.
- 14. Definieren Sie die Kovarianz und die Korrelation zweier Zufallsvariablen.
- 15. Schreiben Sie die Kovarianz zweier Zufallsvariablen mithilfe von Erwartungswerten.
- 16. Geben Sie das Theorem zur Korrelation und Unabhängigkeit zweier Zufallsvariablen wieder.
- 17. Was ist die Varianz der Summe zweier Zufallsvariablen bei Unabhängigkeit?
- 18. Was ist die Varianz der Summe zweier Zufallsvariablen im Allgemeinen?