UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE DISCIPLINA: REDES NEURAIS - POS 3 ª LISTA DE EXERCÍCIO - 2024.1

1-) Considere os dados apresentados na tabela abaixo. Determine os centroides dos aglomerados "clusters" presentes nos dados, fazendo uso do algoritmo da rede competitiva que corresponde ao algoritmo K-means. Para tanto considere os itens (a) - (c) referentes ao processo de inicialização.

A4			
Amostra	X ₁	X ₂	X3
1	7.82	-4.58	-3.97
2	-6.68	3.16	2.71
3	4.36	2.19	2.09
4	6.72	0.88	2.80
5	-8.64	-3.06	3.50
6	-6.87	0.57	-5.45
7	4.47	-2.62	5.76
8	6.73	-2.01	4.18
9	-7.71	2.34	-6.33
10	-6.91	-0.49	-5.68
11	6.18	-2.81	5.82
12	6.72	-0.93	-4.04
13	-6.25	-0.26	0.56
14	-6.94	-1.22	1.13
15	8.09	0.20	2.25
16	6.81	0.17	-4.15
17	-5.19	4.24	4.04
18	-6.38	-1.74	1.43
19	4.08	1.30	5.33
20	6.27	0.93	-2.78

- a-) Considere que existam três clusters e a inicialização dos centros seja aleatória
- b-) Considere que existam três clusters e a inicialização dos centros seja dada por $\mathbf{m_1} = (0,0,0)^t$, $\mathbf{m_2} = (0,1,1)^t$, $\mathbf{m_3} = (-1,1,2)^t$.
- c-) Repita o item a considerando que os centros iniciais sejam $\mathbf{m_1}$ = $(-0.1,0,0.1)^t$, $\mathbf{m_2}$ = $(0,-0.1,0.1)^t$, $\mathbf{m_3}$ = $(-0.1,-0.1,0.1)^t$. Compare o resultado obtido com o item (a) e explique a razão da diferenças, incluindo o número de interações para alcançar a convergência.
- 2-) A propriedade de ordenação topológica do algoritmo SOM pode ser usada para formar uma representação bidimensional abstrata para fins de visualização de um espaço de entrada de alta dimensionalidade. O objetivo é visualizar os dados de dimensão 8 em um espaço de dimensão 2, constituído pela grade de neurônios. Para investigar esta forma de representação, considere uma grade bidimensional de neurônios que é treinada tendo como entrada

os dados oriundos de quatro distribuições gaussianas, C_1 , C_2 , C_3 , e C_4 , em um espaço de entrada de dimensionalidade igual a oito, isto é $\mathbf{x} = (x_1, x_2, \dots x_8)^t$. Todas as nuvens têm variâncias unitária, mas centros ou vetores média diferentes dados por $\mathbf{m}_1 = (0,0,0,0,0,0,0,0)^t$, $\mathbf{m}_2 = (4,0,0,0,0,0,0,0)^t$ $\mathbf{m}_3 = (0,0,0,4,0,0,0)^t$, $\mathbf{m}_4 = (0,0,0,0,0,0,0,0)^t$. Calcule o mapa produzido pelo algoritmo SOM, e verifique como as distribuições dos dados estão representadas.

3-) Considere a tabela de índices de desenvolvimento de países (Fonte ONU- 2002, Livro – Análise de dados através de métodos de estatística multivariada – Sueli A. Mingoti) abaixo. Gere o mapa SOM e com isto identifique os clusters existentes, i.e., o países com características mais similares.

Países	Expectativa de	Educação	PIB	Estabilidade
	Vida			Política
Reino Unido	0.88	0.99	0.91	1.10
Austrália	0.90	0.99	0.93	1.26
Canadá	0.90	0.98	0.94	1.24
Estados Unidos	0.87	0.98	0.97	1.18
Japão	0.93	0.93	0.93	1.20
França	0.89	0.97	0.92	1.04
Cingapura	0.88	0.87	0.91	1.41
Argentina	0.81	0.92	0.80	0.55
Uruguai	0.82	0.92	0.75	1.05
Cuba	0.85	0.90	0.64	0.07
Colômbia	0.77	0.85	0.69	-1.36
Brasil	0.71	0.73	0.72	0.67
Paraguai	0.75	0.83	0.63	-0.87
Egito	0.70	0.62	0.60	0.21
Nigéria	0.44	0.58	0.37	-1.36
Senegal	0.47	0.37	0.45	-0.68
Serra Leoa	0.23	0.33	0.27	-1.26
Angola	0.34	0.36	0.51	-1.98
Etiópia	0.31	0.35	0.32	-0.55
Moçambique	0.24	0.37	0.36	0.20
China	0.76	0.80	0.95	1.09
Média	0.69	0.75	0.68	0.16
Desvio Padrão	0.24	0.249	0.229	1.056

- 4-) Apresente um trabalho sobre a rede ART (Adaptive Resonamce Theory) ou rede de Grossberg.
- 5-) Apresente um trabalho sobre a rede Growing Neuro Gas GNG

6-) Apresente um trabalho sobre redes neurais/deep learning com aprendizagem semisupervisionada.

Trabalho Final da Disciplina:

Desenvolva um trabalho com base em um ou mais tópicos do que foi estudado du rante o curso. A escolha é livre. Prepare o trabalho sob forma de um artigo científico.

A entrega e apresentação dos trabalhos correspondem a um processo de avaliação. Portanto a presença é obrigatória.

O trabalho e a lista podem ser feitos de forma individual ou em grupo com dois componentes.

Na apresentação os componentes serão submetidos a questionamentos sobre a solução da lista e o desenvolvimento dos trabalhos.

Calendário das Atividades do Final do Curso:

25/06/2024 - Apresentação da Lista

27/06/2024 - Entrega da lista

Apresentação do Trabalho Final:27/06/2024 (10 minutos para cada grupo)