

# Hi3861V100 / Hi3861LV100 开发板

# 使用指南

文档版本 01

发布日期 2020-04-30

#### 版权所有 © 上海海思技术有限公司2020。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

#### 商标声明

(HISILICON)、海思和其他海思商标均为海思技术有限公司的商标。本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

#### 注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

## 上海海思技术有限公司

地址: 深圳市龙岗区坂田华为总部办公楼 邮编: 518129

网址: https://www.hisilicon.com/cn/

客户服务邮箱: support@hisilicon.com

# 前言

# 概述

本文档详细的介绍了Hi3861V100/Hi3861LV100 loT模组和开发板的操作指导,同时提供了常见的问题解答及故障处理方法。

# 产品版本

与本文档相对应的产品版本如下。

| 产品名称    | 产品版本 |
|---------|------|
| Hi3861  | V100 |
| Hi3861L | V100 |

# 读者对象

本文档主要适用于以下工程师:

- 单板硬件开发工程师
- 软件工程师
- 技术支持工程师

# 符号约定

在本文中可能出现下列标志,它们所代表的含义如下。

| 符号   | 说明                             |
|------|--------------------------------|
| ▲ 危险 | 表示如不避免则将会导致死亡或严重伤害的具有高等级风险的危害。 |
| ▲ 警告 | 表示如不避免则可能导致死亡或严重伤害的具有中等级风险的危害。 |



| 符号         | 说明                                                                        |  |
|------------|---------------------------------------------------------------------------|--|
| <u></u> 注意 | 表示如不避免则可能导致轻微或中度伤害的具有低等级风险的危害。                                            |  |
| 须知         | 用于传递设备或环境安全警示信息。如不避免则可能会导致设备<br>损坏、数据丢失、设备性能降低或其它不可预知的结果。<br>"须知"不涉及人身伤害。 |  |
| 🖺 说明       | 对正文中重点信息的补充说明。<br>"说明"不是安全警示信息,不涉及人身、设备及环境伤害信<br>息。                       |  |

# 修改记录

| 文档版本  | 发布日期       | 修改说明                                       |  |
|-------|------------|--------------------------------------------|--|
| 01    | 2020-04-30 | 第一次正式版本发布。                                 |  |
|       |            | ● 在 "2.2.2 10PIN连接信号"的表2-2中<br>更新管脚9的功能描述。 |  |
| 00B02 | 2020-04-10 | 新增"4.3 开发板串口配置说明"小节。                       |  |
| 00B01 | 2020-01-15 | 第一次临时版本发布。                                 |  |

# 目录

| <u> </u>                         | i  |
|----------------------------------|----|
| 1 概述                             | 1  |
|                                  |    |
| 2.1 开发板布局                        |    |
| 2.2 开发板主要模块介绍                    |    |
| 2.2.1 电源模块                       | 3  |
| 2.2.2 10PIN 连接信号                 | 3  |
| 2.2.3 主时钟模块                      | 5  |
| 2.2.4 接口调试                       | 5  |
| 2.3 开发板按键和硬件指示灯                  | 6  |
| 3 IoT 模组功能与布局                    | 8  |
| 3.1 模组布局                         |    |
| 3.2 模组的管脚定义                      | g  |
| 3.3 模组主要模块介绍                     | 12 |
| 3.3.1 主时钟模块                      | 12 |
| 3.3.2 射频接口                       | 12 |
| 4 USB 转串口驱动 <del>安</del> 装与开发板连接 | 15 |
| 4.1 USB 转串口驱动安装                  | 15 |
| 4.2 开发板连接                        |    |
| 4.3 开发板串口配置说明                    | 19 |
| 4.3.1 开发板默认串口配置                  | 19 |
| 4.3.2 开发板修改串口配置                  | 20 |
| 4.3.2.1 修改 NV 配置串口               | 20 |
| 4.3.2.2 AT 命令配置串口                | 21 |
| 5. 注音車備                          | 22 |

1 概述

Hi3861/Hi3861L IOT模组是提供给用户进行IoT模组开发参考设计的产品板。 HI1131HEVA005&007是为了配合IoT模组搭接使用的开发板,两者原理图和PCB一致,只有PCB丝印不同。

#### 模组支持功能如下:

- 支持板载PCB天线或IPEX座子外置天线。
- 支持产线顶针校准测试。
- 支持一个串口用于维测和下载升级固件;另一个串口用于和主机通信。
- 支持5个GPIO用于PWM信号。

#### 开发板支持功能如下:

- 支持USB 5V供电,以及USB转串口通信。
- 支持RS232调试串口。
- 支持power-on复位按键,以及预留的外部按键。
- 支持GPIO点灯,点灯数量为2个。
- 支持搭接到1拖10主板上进行测试。

# 2 开发板功能与布局

本章主要介绍单板的系统框图和布局图,详细描述系统各主要组成部分的功能。

- 2.1 开发板布局
- 2.2 开发板主要模块介绍
- 2.3 开发板按键和硬件指示灯

# 2.1 开发板布局

底板主要器件的布局如<mark>图2-1</mark>所示,提供了以下器件的位置信息,具体的器件信息**表2-1**如所示。

- 关键模块(Hi3861模组)
- 电源供电接口的位置
- 按键和LED灯位置
- 串口通信端口位置

#### 图 2-1 Hi1131HEVA005&007 的单板布局图



#### 表 2-1 开发板关键器件列表

| 器件                           | 描述                                              | 功能              |
|------------------------------|-------------------------------------------------|-----------------|
| Hi3861/<br>Hi3861L loT模<br>组 | WiFi模组                                          | 全功能测试           |
| DC-DC芯片                      | Switching Regulators-Buck-RT8095-<br>Richtek    | 供电产生            |
| USB转串口芯片                     | USB转UART 一拖四-CH9344                             | 串口通信            |
| 30M晶体                        | 晶体谐振器-30MHz-15pF-<br>+/-10ppm-50ohm-2.5*2.0*0.5 | USB芯片时钟信号<br>产生 |

# 2.2 开发板主要模块介绍

## 2.2.1 电源模块

单板的总电源输入: USB输入5V/1A,具体电源路径为单板经DCDC电源模块转为自身和模组需要的3V3电源。电源树如<mark>图2-2</mark>所示。

图 2-2 开发板的电源树



# 2.2.2 10PIN 连接信号

2个10PIN连接座J501和J502对接HI1131HTST03一拖10主板。

表 2-2 开发板的 10PIN 管脚定义(GPIO 工作电平为 3.3V)

| 连接器J501的管<br>脚序号 | 管脚功能 | 连接器J502的管<br>脚序号 | 管脚功能      |
|------------------|------|------------------|-----------|
| 1                | 3V3  | 1                | LOG打印串口RX |
| 2                | EN   | 2                | LOG打印串口TX |
| 3                | PWM0 | 3                | 通信串口-RTS  |

### Hi3861V100 / Hi3861LV100 开发板 使用指南

| 连接器J501的管<br>脚序号 | 管脚功能          | 连接器J502的管<br>脚序号 | 管脚功能     |
|------------------|---------------|------------------|----------|
| 4                | PWM1          | 4                | 通信串口-CTS |
| 5                | PWM2          | 5                | 通信串口-TX  |
| 6                | PWM3          | 6                | 通信串口-RX  |
| 7                | NC            | 7                | NC       |
| 8                | PWM4          | 8                | GND      |
| 9                | 预留的下载使能信<br>号 | 9                | NC       |
| 10               | 外接5V          | 10               | NC       |

图 2-3 开发板的 10PIN 连接器



图 2-4 IoT 模组的管脚定义



### 2.2.3 主时钟模块

HI1131HEVA005&007开发板的时钟支持无源晶体,时钟频率为30MHz,时钟电路如**图2-5**所示。

#### 图 2-5 开发板的主时钟方案



#### 2.2.4 接口调试

USB接口为5V供电和串口通信端口,其中USB转串口芯片为1拖4方案,即同时可以并行运行4个串口信号输出。在本单板上,仅将模组的2个串口引到该USB口,具体对应关系如表2-3和图2-6所示。使用时,USB口被接入电脑或电源适配器的USB接口,即可进行5V供电。J304和J305选择模组的串口信号传输路径,具体使用如图2-6所示。当跳线帽在J304和J305靠近模组方向的两个pin之间连接时,模组的下载升级串口连接到USB口。当跳线帽在J304和J305靠近J302方向的两个pin之间连接时,模组的下载升级串口连接到串口排针。

表 2-3 开发板的 USB 接口

| USB串口序号  | 对应芯片的串口信息                 |  |
|----------|---------------------------|--|
| USB CH A | WiFi芯片的通信串口,4线模式。         |  |
| USB CH B | WiFi芯片的LOG打印和下载固件串口,2线模式。 |  |

Hi3861V100 / Hi3861LV100 开发板 使用指南

图 2-6 开发板的接口示例



# 2.3 开发板按键和硬件指示灯

HI1131HEVA005&007开发板的指示灯含义如表2-4所示,按键含义如表2-5所示。

#### □ 说明

各指示灯含义除了参考<mark>表2-4</mark>,也可参考指示灯旁的丝印。

#### 表 2-4 HI1131HEVA005&007 开发板的指示灯含义

| 指示灯位<br>号 | 含义                          |
|-----------|-----------------------------|
| D501      | 蓝色,GPIO点亮,连接到模组的PWM0,低电平有效。 |

| 指示灯位号 | 含义                           |
|-------|------------------------------|
| D502  | 黄绿色,GPIO点亮,连接到模组的PWM1,低电平有效。 |

#### 表 2-5 HI1131HEVA005&007 开发板的按键含义

| 按键位号 | 含义                        |
|------|---------------------------|
| S501 | 预留的下载升级按键,连接到芯片的UART1_Rx。 |
| S502 | 复位按键,连接到模组的EN。            |

# 3 IoT 模组功能与布局

本章给出模组的系统框图和布局图,详细描述系统各主要组成部分的功能。

- 3.1 模组布局
- 3.2 模组的管脚定义
- 3.3 模组主要模块介绍

# 3.1 模组布局

模组主要器件的布局如图3-1、图3-2所示,提供了以下器件的位置信息:

- 板载天线和外置天线座子
- 主时钟晶体位置

图 3-1 Hi3861V100 IoT 模组布局图



#### 图 3-2 Hi3861LV100 IoT 模组布局图



表 3-1 IoT 模组关键器件列表

| 器件                   | 描述                                                        | 功能        |
|----------------------|-----------------------------------------------------------|-----------|
| Hi3861或<br>Hi3861L芯片 | WiFi芯片                                                    | 全功能功能测试   |
| 40M晶体                | 晶体谐振器-40MHz-15pF-<br>+/-10ppm-25ohm-SMD3225               | 40M时钟信号产生 |
| 32K晶体                | 晶体谐振器-0.032768MHz-12.5pF-<br>+/-20ppm-70000ohm-SMD3.2*1.5 | 32K时钟信号产生 |

# 3.2 模组的管脚定义

在模组的天线区域,白色丝印标记模组的各个硬件版本(如<mark>图3-3</mark>中红框内白色丝印)。根据该丝印的前缀(例如:"A10L14")可以分辨出各个硬件版本,不同硬件版本的管脚定义如**表3-2**、**表3-3**所示。





表 3-2 前缀为 A10L1、A10L5、A10L6、A10L7、A10L8、A10L13 和 A10L14 的模组 管脚定义

| 模组管脚序号 | 模组管脚名称    | 芯片管脚序号 | 芯片管脚功能 |
|--------|-----------|--------|--------|
| 1      | 3V3       | -      | -      |
| 2      | EN        | 22     | PWRON  |
| 3      | PWM0      | 27     | GPIO9  |
| 4      | PWM1      | 28     | GPIO10 |
| 5      | PWM2      | 29     | GPIO11 |
| 6      | PWM3      | 30     | GPIO12 |
| 7      | NC        | -      | -      |
| 8      | PWM4      | 31     | GPIO13 |
| 9      | GND       | -      | -      |
| 10     | NC        | -      | -      |
| 11     | UART1_RX  | 17     | GPIO5  |
| 12     | UART1_TX  | 18     | GPIO6  |
| 13     | GND       | -      | -      |
| 14     | UART1_CTS | 19     | GPIO7  |
| 15     | UART1_RTS | 20     | GPIO8  |
| 16     | UART0_TX  | 5      | GPIO3  |
| 17     | UART0_RX  | 6      | GPIO4  |

| 模组管脚序号 | 模组管脚名称 | 芯片管脚序号 | 芯片管脚功能 |
|--------|--------|--------|--------|
| 18     | GND    | -      | -      |

#### □ 说明

- 对于前缀为A10L1、A10L5、A10L6和A10L14的模组,没有引到模组管脚的芯片GPIO为不可用状态,例如GPIO2/14,软件配置为输入态或高阻态即可。
- 对于前缀为A10L7、A10L8和A10L13的模组,没有引到模组管脚的芯片GPIO为不可用状态,例如GPIO0/1/2/14,软件配置为输入态或高阻态即可。

#### 表 3-3 前缀为 A10L3 和 A10L16 的模组管脚定义

| 模组管脚序号 | 模组管脚名称    | 芯片管脚序号 | 芯片管脚功能 |
|--------|-----------|--------|--------|
| 1      | 3V3       | -      | -      |
| 2      | EN        | 22     | PWRON  |
| 3      | PWM0      | 27     | GPIO9  |
| 4      | PWM1      | 28     | GPIO10 |
| 5      | PWM2      | 2      | GPIO0  |
| 6      | PWM3      | 3      | GPIO1  |
| 7      | NC        | -      | -      |
| 8      | PWM4      | 4      | GPIO2  |
| 9      | GND       | -      | -      |
| 10     | NC        | -      | -      |
| 11     | UART1_RX  | 17     | GPIO5  |
| 12     | UART1_TX  | 18     | GPIO6  |
| 13     | GND       | -      | -      |
| 14     | UART1_CTS | 19     | GPIO7  |
| 15     | UART1_RTS | 20     | GPIO8  |
| 16     | UARTO_TX  | 5      | GPIO3  |
| 17     | UARTO_RX  | 6      | GPIO4  |
| 18     | GND       | -      | -      |

#### □ 说明

对于前缀为A10L3和A10L16的模组,没有引到模组管脚的芯片GPIO为不可用状态,例如GPIO11/12/13/14,软件配置为输入态或高阻态即可。

# 3.3 模组主要模块介绍

# 3.3.1 主时钟模块

Hi3861 IoT模组的主时钟支持无源晶体,时钟频率为40MHz; Hi3861LV100的外置 32K晶体支持无源晶体。时钟电路如图3-4、图3-5所示。

图 3-4 40M 晶体电路



图 3-5 32K 晶体电路



# 3.3.2 射频接口

模组提供2种WiFi测试方式:

- 板上IPEX座子传导测试
- 板载天线辐射测试

如果需要使用外置天线或板载天线测试时,需要对单板进行硬件切换,具体的切换方案如表3-4、图3-6、图3-7所示。

# Hi3861V100 / Hi3861LV100 开发板

#### 表 3-4 板载天线或外置天线传导测试的切换方案

| 射频测试方式             | 位号                        | 备注                                                      |
|--------------------|---------------------------|---------------------------------------------------------|
| IPEX座<br>子传导<br>测试 | J1、J9、<br>J10、<br>J22、J43 | 当需要切换为IPEX座子时,需要焊接0R电阻,位号为R3或R8或R18或R34或R19,同时去除天线匹配电容。 |
| 板载天<br>线辐射<br>测试   | -                         | 需要测试板载天线时,需要去除0R电阻和IPEX座子,加上天<br>线匹配电容。                 |

#### 图 3-6 IPEX 座子传导测试方案



#### 图 3-7 板载天线测试方案



# USB 转串口驱动安装与开发板连接

- 4.1 USB转串口驱动安装
- 4.2 开发板连接
- 4.3 开发板串口配置说明

# 4.1 USB 转串口驱动安装

**步骤1** 插入USB,确保板子上电的情况下打开USBMSER.rar中的驱动安装包,单击"安装驱动"按钮。





步骤2 等待驱动安装完成。

#### 图 4-2 驱动安装完成示例



步骤3 安装完成后,打开"设备管理器->端口",出现如<mark>图4-3</mark>所示4个新端口,证明驱动安装成功。

#### 图 4-3 端口查看示例



----结束

# 4.2 开发板连接

程序烧写工具及LOG打印工具选择CH B对应端口(图4-4所示对应端口为COM9)。

#### 图 4-4 烧写工具连接示例



串口通信工具选择CH A对应端口(图4-5所示对应端口为COM8)。

#### 图 4-5 串口通信工具连接示例



# 4.3 开发板串口配置说明

### 4.3.1 开发板默认串口配置

芯片默认支持3个串口,各串口默认功能配置如下:

- UARTO: 烧写bin文件、HSO(HiStudio)工具或shell命令使用串口(HSO工具和shell命令由用户在app\_main文件中二选一)
- UART1: AT命令使用串口
- UART2: WFA认证使用串口

通过"设备管理器->端口"查看端口,如图4-6所示。

#### 图 4-6 端口查看示例



#### 开发板的串口对应的端口如下:

UART0: Ch BUART1: Ch A

● UART2:目前单板未引出,需要飞线与DB-9串口连接

#### 4.3.2 开发板修改串口配置

默认串口配置与实际硬件设计或应用场景不匹配时,SDK支持对串口默认配置进行修改。修改方法有两种:

- 通过修改NV xml文件配置
- 通过AT命令修改配置

#### 4.3.2.1 修改 NV 配置串口

步骤1 打开NV配置文件。

NV配置文件为SDK代码目录下(tools/nvtool/xml\_file/)的xml文件(如图4-7所示)。

#### 图 4-7 NV xml 文件目录

| 名称                   | 修改日期            | 类型     | 大小   |
|----------------------|-----------------|--------|------|
| € mss_nvi_db.xml     | 2020/3/28 14:50 | XML 文件 | 7 KB |
| @ mss_nvi_db_fcc₊xml | 2020/3/28 10:22 | XML 文件 | 6 KB |
| mss_nvi_db_max.xml   | 2020/3/28 10:22 | XML 文件 | 6 KB |

**步骤2** 根据NV配置端口需要,修改NV ID为0x42的NV项(如<mark>图4-8</mark>所示)的 PARAM VALUE。

#### 图 4-8 NV ID 为 0x42 的 NV 项示例

PARAM\_VALUE前3个参数分别对应AT命令串口、调试串口、WFA认证使用串口,默认值分别为1、0、2(即:AT命令使用UART1、调试串口使用UART0、WFA认证使用UART2),第4个参数为默认值,保持为0即可。

详细的NV工具使用方法请参见《Hi3861V100 / Hi3861LV100 NV 使用指南》。

#### ----结束

以修改AT命令使用UART2、调试串口仍使用UART0为例,NV配置修改方法如下:

**步骤1** 修改NV配置项为"PARAM\_VALUE="{2,0,1,0}""。

步骤2 重新编译,生成固件程序。

----结束

#### 4.3.2.2 AT 命令配置串口

可以通过AT命令"AT+SETUART"配置串口功能,具体命令说明请参见《Hi3861V100/Hi3861LV100 AT命令 使用指南》。

#### 【应用场景示例】

产测某个阶段,受硬件环境约束,仅UARTO可用,此时可以通过以下方法使用该AT命令:

**步骤1** 编译固件程序时,通过 "**4.3.2.1 修改NV配置串口**" 修改NV配置的方法,将UARTO配置为AT命令使用的串口 "PARAM\_VALUE="{0,1,2,0}""。

步骤2 产测该阶段结束后,通过AT命令,将AT命令使用的串口修改回UART1,重启后生效,继续进行后续阶段的功能测试。

----结束

# 5 注意事项

HI1131HEVA005&007可以应用于实验室环境或外场测试环境,为避免损坏单板,请注意以下事项:

- 单板必须水平放置于防静电台上,TOP层朝上,单板下方不能有任何导电异物 (尤其是镊子、探头、焊锡、螺丝、跳线帽等)。
- 操作单板时请佩戴防静电手套或接地手腕。
- 请勿使用锐器撞击或刮擦单板,以免对PCB板或器件造成损害。
- DC-DC电源模块温度较高,请勿接触。示波器接地端避免在电源模块区域接地, 以免接地端滑落到电源上,导致单板损坏。
- 安装USB转串口驱动时,务必保证Demo板与PC已经连接。接线未连接或中途断开 连接会出现驱动安装卡死的情况,如果出现此情况,请重启PC,重新检查接线情 况后安装。