Full Title of the Talk

John Smith

May 23, 2020

University of California john@smith.com

目录

• First Section

Second Section

John Smith $\,\,$ Short title $\,\,$ 1/13

Overview

• First Section

Second Section

Paragraphs of Text

Sed iaculis dapibus gravida. Morbi sed tortor erat, nec interdum arcu. Sed id lorem lectus. Quisque viverra augue id sem ornare non aliquam nibh tristique. Aenean in ligula nisl. Nulla sed tellus ipsum. Donec vestibulum ligula non lorem vulputate fermentum accumsan neque mollis.

Sed diam enim, sagittis nec condimentum sit amet, ullamcorper sit amet libero. Aliquam vel dui orci, a porta odio. Nullam id suscipit ipsum. Aenean lobortis commodo sem, ut commodo leo gravida vitae. Pellentesque vehicula ante iaculis arcu pretium rutrum eget sit amet purus. Integer ornare nulla quis neque ultrices lobortis. Vestibulum ultrices tincidunt libero, quis commodo erat ullamcorper id.

- Lorem ipsum dolor sit amet, consectetur adipiscing elit
- Aliquam blandit faucibus nisi, sit amet dapibus enim tempus eu
- Nulla commodo, erat quis gravida posuere, elit lacus lobortis est, quis porttitor odio mauris at libero
- Nam cursus est eget velit posuere pellentesque
- Vestibulum faucibus velit a augue condimentum quis convallis nulla gravida

- Lorem ipsum dolor sit amet, consectetur adipiscing elit
- Aliquam blandit faucibus nisi, sit amet dapibus enim tempus eu
- Nulla commodo, erat quis gravida posuere, elit lacus lobortis est, quis porttitor odio mauris at libero
- Nam cursus est eget velit posuere pellentesque
- Vestibulum faucibus velit a augue condimentum quis convallis nulla gravida

- Lorem ipsum dolor sit amet, consectetur adipiscing elit
- Aliquam blandit faucibus nisi, sit amet dapibus enim tempus eu
- Nulla commodo, erat quis gravida posuere, elit lacus lobortis est, quis porttitor odio mauris at libero
- Nam cursus est eget velit posuere pellentesque
- Vestibulum faucibus velit a augue condimentum quis convallis nulla gravida

- Lorem ipsum dolor sit amet, consectetur adipiscing elit
- Aliquam blandit faucibus nisi, sit amet dapibus enim tempus eu
- Nulla commodo, erat quis gravida posuere, elit lacus lobortis est, quis porttitor odio mauris at libero
- Nam cursus est eget velit posuere pellentesque
- Vestibulum faucibus velit a augue condimentum quis convallis nulla gravida

- Lorem ipsum dolor sit amet, consectetur adipiscing elit
- Aliquam blandit faucibus nisi, sit amet dapibus enim tempus eu
- Nulla commodo, erat quis gravida posuere, elit lacus lobortis est, quis porttitor odio mauris at libero
- Nam cursus est eget velit posuere pellentesque
- Vestibulum faucibus velit a augue condimentum quis convallis nulla gravida

Blocks of Highlighted Text

Block 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue.

Block 2

Pellentesque sed tellus purus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos.

Block 3

Suspendisse tincidunt sagittis gravida. Curabitur condimentum, enim sed venenatis rutrum, ipsum neque consectetur orci, sed blandit justo nisi ac lacus.

Multiple Columns

Heading

- 1. Statement
- 2. Explanation
- 3. Example

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan dolor.

Overview

First Section

Second Section

John Smith $\,\mid\,\,$ Short title $\,\,\,$ 7 / 13

Table and Lemma

Table 2.1: Table caption

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Lemma 2.1

For any $v \in H_A^r(\Lambda)$ and $r \ge 0$,

$$||P_N v - v|| \le cN^{-r}||v||_{r,A}.$$
 (2.1)

Theorem

Theorem 2.1 (Lax-Milgram Lemma)

Let X be a Hilbert space, let $a(\cdot,\cdot): X\times X\to \mathbb{R}$ be a continuous and coercive bilinear form, and let $F:X\to \mathbb{R}$ be a linear functional in X'. Then the variational problem:

$$\begin{cases} \textit{Find } u \in X \textit{ such that} \\ a(u,v) = F(v), \forall v \in X \end{cases} \tag{2.2}$$

has a unique solution. Moreover, we have

$$||u|| \le \frac{1}{\alpha} ||F||_{X'} \tag{2.3}$$

Verbatim

Example 1 (Theorem Slide Code)

```
\begin{frame}
\frametitle{Theorem}
\begin{theorem}[Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}
```

Theorem 2.2 (Mass-energy equivalence)

 $E = mc^2$

Figure

Uncomment the code on this slide to include your own image from the same directory as the template .TeX file.

Citation

An example of the \cite command to cite within the presentation:

This statement requires citation [Smith, 2012].

References

John Smith (2012)

Title of the publication

Journal Name 12(3), 45 - 678.

Thank you!