LATEX FOR UNDERGRADUATES INTRODUCTION

Lecture Notes

Tom Schenk Jr.

Version of October 24, 2005

Example Document

This output is an excerpt from a sample document written by Harvey Gould. To view the source code, return to the website and open the .txt file.

1 Output

Introduction to I₄TEX Harvey Gould January 16, 2005

2 Introduction

TeX looks more difficult than it is. It is almost as easy as π . See how easy it is to make special symbols such as α , β , γ , δ , $\sin x$, \hbar , λ , ... We also can make subscripts A_x , A_{xy} and superscripts, e^x , e^{x^2} , and e^{a^b} . We will use LaTeX, which is based on TeX and has many higher-level commands (macros) for formatting, making tables, etc. More information can be found in Ref. [1].

We just made a new paragraph. Extra lines and spaces make no difference. Note that all formulas are enclosed by \$ and occur in *math mode*.

The default font is Computer Modern. It includes *italics* or *italics*, **boldface** or **boldface**, *slanted* or *slanted*, and monospaced or monospaced (typewriter) fonts.

3 Equations

Let us see how easy it is to write equations.

$$\Delta = \sum_{i=1}^{N} w_i (x_i - \bar{x})^2. \tag{1}$$

It is a good idea to number equations, but we can have a equation without a number by writing

$$P(x) = \frac{x - a}{b - a},$$

and

$$g = \frac{1}{2}\sqrt{2\pi}.$$

Note the different ways of writing a ratio.

We can give an equation a label so that we can refer to it later.

$$E = -J \sum_{i=1}^{N} s_i s_{i+1}, \tag{2}$$

Equation (2) expresses the energy of a configuration of spins in the Ising model.¹ We can define our own macros to save typing. For example, suppose that we introduce the macros:

\newcommand{\lb}{{\langle}}
\newcommand{\rb}{{\rangle}}

Then we can write the average value of x as

\begin{equation}
\lb x \rb = 3
\end{equation}

The result is

$$\langle x \rangle = 3. \tag{3}$$

Examples of more complicated equations:

$$I = \int_{-\infty}^{\infty} f(x) \, dx. \tag{4}$$

We can do some fine tuning by adding small amounts of horizontal spacing:

\, small space \! negative space

as is done in Eq. (4).

We also can align several equations:

$$a = b \tag{5}$$

$$c = d, (6)$$

or number them as subequations:

$$a = b (7a)$$

$$c = d. (7b)$$

 $^{^{1}\}mathrm{It}$ is necessary to process (typeset) a file twice to get the counters correct.

We can also have different cases:

$$m(T) = \begin{cases} 0 & T > T_c \\ \left(1 - \left[\sinh 2\beta J\right]^{-4}\right)^{1/8} & T < T_c \end{cases}$$
 (8)

write matrices

$$\mathbf{T} = \begin{pmatrix} T_{++} & T_{+-} \\ T_{-+} & T_{--} \end{pmatrix},$$

$$= \begin{pmatrix} e^{\beta(J+B)} & e^{-\beta J} \\ e^{-\beta J} & e^{\beta(J-B)} \end{pmatrix}.$$
(9)

and

$$\sum_{i} \vec{A} \cdot \vec{B} = -P \int \mathbf{r} \cdot \hat{\mathbf{n}} \, dA = P \int \vec{\nabla} \cdot \mathbf{r} \, dV. \tag{10}$$

4 Tables

Tables are a little more difficult until you get the knack. TeX automatically calculates the width of the columns.

lattice	d	q	$T_{ m mf}/T_c$
square	2	4	1.763
triangular	2	6	1.648
diamond	3	4	1.479
simple cubic	3	6	1.330
bcc	3	8	1.260
fcc	3	12	1.225

Table 1: Comparison of the mean-field predictions for the critical temperature of the Ising model with exact results and the best known estimates for different spatial dimensions d and lattice symmetries.

5 Lists

Some example of formatted lists include the following:

- 1. bread
- 2. cheese
- Tom
- Dick

References

- [1] Helmut Kopka and Patrick W. Daly, A Guide to LATEX: Document Preparation for Beginners and Advanced Users, third edition, Addison-Wesley (1999).
- [2] Some useful links are given at http://sip.clarku.edu/tutorials/TeX/.