Знайти область збівності додикціональних Tou cnocedu. 2) Ozn. Davambepa. $\lim_{n\to\infty} \left| \frac{(\ln x)^{n+1}}{(\ln x)^n} \right| = \lim_{n\to\infty} \left| \ln x \right| = \left| \ln x \right| < 1$; 1) $Un = ln^n x$ 1) OZH NOPI BN - 3 Z 9n ge q=/lnx1/21, → 3) Ozn. pague. kouu. Bignobigh $x \in (\frac{1}{e}; e)$. lim $\sqrt[n]{(\ln x)^n} = |\ln x| < 1$. $x > 0 - \infty 3$! 3) Озн. разик. Коши. $-1 \leq \ln \alpha \leq 1$ lne / Llna - lne, 1-1x2e Перевірка збілиності на кінцях інтервам. $\alpha = \frac{1}{e}$; $\frac{1}{n=0}$ $\ln\left(\frac{1}{e}\right) = \frac{5}{n=0}(-1)^n \ln e = \frac{5}{n=0}(-1)^n$ Озн. Даламбера $\sum_{n=0}^{\infty} (1)^n = 1 - 1 + 1 - 1 + \dots$ He ichy ϵ chieven. $x = e; \sum_{n=0}^{\infty} (e_n e)^n = \sum_{n=0}^{\infty} 1^n = 1 + 1 + 1 + \dots \to \infty.$ He ichy ϵ chieven. $x = e; \sum_{n=0}^{\infty} (e_n e)^n = \sum_{n=0}^{\infty} 1^n = 1 + 1 + 1 + \dots \to \infty.$ He ichy ϵ chieven. $\lim_{n\to\infty}\left|\frac{x^{n+1}}{(n+1)^2}\cdot\frac{h^2}{x^n}\right|=|x|-1,$ -14χ21. Μα κίμιζε ίμτερβαλή: $\chi = -1$ $\int_{n=1}^{\infty} \frac{(-1)^n}{n^2}$; αδεοιμότηο π Τ.9° AP Omone, obs. zoiann: $x \in (\frac{1}{e}; e)$. $\alpha=1$ $\sum_{n=1}^{\infty}\frac{1}{n^2}$ $\sum_{\substack{n=1\\n=1}}^{\infty}\frac{1}{n^2}$ $\sum_{\substack{n=1\\n=1}}^{\infty}\frac{1}{n^2}$ $\sum_{\substack{n=1\\n=1}}^{\infty}\frac{1}{n^2}$ $\frac{2^{n}}{n+\sqrt{n}} \cdot 3a \text{ oznakoro Darambera: } \lim_{n\to\infty} \left| \frac{x^{n+1} (n+\sqrt{n})}{(n+1+\sqrt{n+1})x^{n}} \right| = |x|$ $|x| \leq 1$ -14χ ≤ 1 . Ha n'hyex zhavigenoro immepbany: $\chi = -1: \sum_{n=0}^{\infty} \frac{(-1)^n}{n+\sqrt{n}} - 3\rho$ AP: \(\frac{1}{n=0} \frac{1}{n+\varphin} \); HO buronyember . DO: nopibushus \(\frac{1}{n+\varphin} \cdot \frac{1}{n+\varphin} \cdot \frac{1}{n} \); = >. APpozoiraembal, all 3P goiraembal za T. laidruys, mony 140 que AP buronyembal. Om me, 3P zoiraembal yuobro $x=1: \sum_{n=0}^{\infty} \frac{1}{n+\sqrt{n}}$ -passicaembas, so AP o nonepegusoro nyurmy. Bignobigo: $x \in [-1, 1)$. 4) $f_n(x) = e^{-nx}$ Ja pagur 03H. Rouu lim η e^{-nx} = e^{-x} (e^{->0}!) μοργιό με ποτρίσκια $e^{-x} \angle 1 - Togi pag z Sira Embers <math>\Rightarrow x > 0$. $\mathcal{X}=0$ $\sum_{n=0}^{\infty}1\to\infty$, pag \longleftrightarrow Bignobigs $x\in(0;+\infty)$.

Мотино було порівнити з геанетр. прогр. 9=€° і т.д

Mp5_Pag

5)
$$\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 10^n}$$
. $3a$ oznarow Danambera: $\lim_{n\to\infty} \left|\frac{x^n \cdot n \cdot 10^n}{(n+1) \cdot 10^{n+1} \cdot 10^{n+1}}\right| = \frac{|x|}{10} \angle 1$ -mod preg $\rightarrow \leftarrow$. Pimenus Heribuccini: $-10^{\infty} \propto 2 \angle 10$.

Tepebipra Ha Rihujex: $x = 10$; $\sum_{n=1}^{\infty} \frac{10^n}{n \cdot 10^n} = \sum_{n=1}^{\infty} \frac{1}{n} - \text{bigonini} \iff preg.$
 $x = -10$; $\sum_{n=1}^{\infty} \frac{(-10)^n}{n \cdot 10^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} - 3P$. $\text{Liono AP} \iff \text{gub. } x = 10$). T-ma

Secionally Buronyc-Fore-HO AP buron. $\Rightarrow 3P \implies \text{yunobino}$.

Omerie, $x \in [-10; 10)$

b) $\sum_{n=1}^{\infty} x^{n-1} x^{2(n-1)}$ $x = 2(n-1)$ $x = 2(n-1)$

8)
$$\frac{\infty}{n=1} \frac{(-1)^{n+1}(x-5)^n}{3^n \cdot n}$$
; $3a \text{ expraneous} \exists a \text{ auxubepa}$:

 $\lim_{n\to\infty} \left| \frac{(x-5)^{n+1} \cdot 3^n \cdot n}{3^{n+1}(n+1) \cdot (x-5)^n} \right| = \left| \frac{(x-5)}{3} \right| \ge 1$; $|x-5| \ge 3$.

 $-3 \le x-5 \le 3$; $3 \le x \le 3$; $3 \le x \le 3$. There bipona we kingly:

 $x = 2 \cdot \sum_{n=1}^{\infty} \frac{(-1)^{n+1}(-3)^n}{3^n \cdot n} = \sum_{n=1}^{\infty} \frac{(-1)^{n+2} \cdot 3^n}{n} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{$