PMATH 336 Introduction to Group Theory

Keven Qiu Instructor: Wentang Kuo Fall 2024

Contents

1	Rings, Fields, and Groups	2
2	Subgroups	11
3	Symmetric and Alternating Groups	19
4	Homomorphisms	24
5	Cosets and Normal Subgroups	25
6	Free and Finite Abelian Groups	26
7	Isometrics and Symmetric Groups	27
8	Group Actions	28
9	Sylow Theorems	29

Rings, Fields, and Groups

Definition: Cartesian Product

For a set S, we write $S \times S = \{(a, b) : a \in S, b \in S\}.$

Definition: Binary Operation

A binary operation on S is a map $*: S \times S \to S$, where for $a, b \in S$, we denote *(a,b) = a*b.

E.g. For $S = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, there are $* : \times, +$.

Definition: Ring (With Identity)

A set R together with two binary operations + and \times , where for $a, b \in R$, we often write $a \times b = a \cdot b = ab$ and a + b and two distinct elements 0 and 1, such that

- 1. + is associative: (a + b) + c = a + (b + c) for all $a, b, c \in R$
- 2. + is commutative: a + b = b + a for all $a, b \in R$
- 3. 0 is an additive identity: 0 + a = a for all $a \in R$
- 4. Every element has an additive inverse: $\forall a \in \mathbb{R}, \exists b \in \mathbb{R} \text{ such that } a+b=0$
- 5. · is associative: (ab)c = a(bc) for all $a, b, c \in R$
- 6. 1 is a multiplicative identity: $1 \cdot a = a \cdot 1 = a$ for all $a \in R$
- 7. · is distributive over +: a(b+c) = ab + ac for all $a, b, c \in R$

Note that we do not assume that ab = ba.

Definition: Commutative Ring

A set R that is a ring and \cdot is commutative.

Definition: Right(Left) Inverse

For $a \in R$, $a \neq 0$, we say a has a right(left) inverse if $\exists b \in R$, ab = 1 (ba = 1).

Definition: Unit (Invertible)

We say a is a unit/invertible if a has the same right and left inverse, ab = ba = 1.

Definition: Field

A commutative ring that satisfies every non-zero element is a unit.

Remark: For some non-commutative ring, there exists $a \in R$, a has a right inverse, but it has no left inverse. We have ab = ca = 1, but $b \neq c$.

E.g. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are commutative rings. \mathbb{Z} is not a field, take 2, the inverse is $\frac{1}{2}$, but $\frac{1}{2} \notin \mathbb{Z}$. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all fields.

 $\mathbb{F}_p = \mathbb{Z}_p$ where p is prime, then this is a field. \mathbb{Z}_m where $m \in \mathbb{N}$ and m is not prime is a ring, but not a field.

E.g. If R is a ring, then R[x] (the set of all polynomials in x with coefficients in R) is a ring and not a field. x has no inverse.

Proposition

In R[x], the set of units in R[x] is the same as that in R.

So the set of units in $\mathbb{Z}[x]$ is the set of units in \mathbb{Z} .

Proposition

If R is a ring and $n \in N$, then $M_n(R)$ (the set of all $n \times n$ matrices with entries in R) is a ring. It is usually non-commutative.

E.g. Let R and S be rings. Then

$$R\times S=\{(r,s):r\in R,s\in S\}$$

Define $(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2)$ and $(r_1, s_1) \cdot (r_2, s_2) = (r_1 r_2, s_1 s_2)$. Then $(R \times S, +, \cdot)$ is a ring with $0_{R \times S} = (0_R, 0_S)$ and $1_{R \times S} = (1_R, 1_S)$.

Theorem (Uniqueness of Inverse)

Let R be a commutative ring. Let $a \in R$, then

- 1. The additive inverse of a is unique. $(a + b = 0 = a + c \implies b = c)$
- 2. For $a \neq 0$, if a has an inverse, then it is unique. $(ab = 1 = ac \implies b = c)$

Proof. 1.

$$b = 0 + b$$

$$= (c + a) + b$$

$$= c + (a + b)$$

$$= c + 0$$

$$= c$$

2. Similar.

Definition: Additive Inverse

For $a \in R$, denote -a as the unique additive inverse of a.

Definition: Inverse

For $a \in R$, if a has an inverse, denote a^{-1} or $\frac{1}{a}$ as the inverse of a.

Theorem (Cancellation)

Let R be a ring, then for all $a, b, c \in R$,

- 1. If a + b = a + c, then b = c.
- 2. If a + b = a, then b = 0.
- 3. If a + b = 0, then b = -a.

Let F be a field, then for all $a, b, c \in F$,

- 1. If ab = ac, then either a = 0 or b = c.
- 2. If ab = a, then either a = 0 or b = 1.
- 3. If ab = 1, then $b = a^{-1}$.
- 4. If ab = 0, then either a = 0 or b = 0.

Proof. 1. b = 0 + b = (-a + a) + b = -a + (a + b) = -a + (a + c) = (-a + a) + c = 0 + c = c.

- 2. a + b = a + 0, then it follows from 1.
- 3. a + b = 0 = a + (-a), then it follows from 1.

4. Recall $A \implies B \lor C$ is the same as $A \land \neg B \implies C$. So assume $a \ne 0$. We have ab = ac. Since $a \ne 0$ and F is a field, a has the inverse a^{-1} . Thus,

$$b = 1 \cdot b = (a^{-1} \cdot a)b$$

$$= a^{-1}(ab)$$

$$= a^{-1}(ac)$$

$$= (a^{-1}a)c$$

$$= 1 \cdot c = c$$

5, 6, 7 follows from 4.

Theorem

Let R be a ring and $a \in R$, then

- 1. $0 \cdot a = 0$.
- 2. $(-1) \cdot a = -a$.

Proof. 1. $0 \cdot a = (0+0) \cdot a = 0 \cdot a + 0 \cdot a$. By cancellation theorem (2), $0 \cdot a = 0$.

2. $0 = 0 \cdot a = (1 + (-1)) \cdot a = 1 \cdot a + (-1) \cdot a$. Since $a + (-1) \cdot a = 0$, then by cancellation theorem (3), $(-1) \cdot a = -a$.

Definition: Group

A set G with a binary operation $\cdot: G \times G \to G$ satisfying the following conditions:

- 1. For all $f, g, h \in G$, (fg)h = f(gh)
- 2. There exists an element e called an identity such that for all $g \in G$,
 - (a) $e \cdot g = g$
 - (b) there exists an element g^{-1} such that $g^{-1} \cdot g = g \cdot g^{-1} = e$

Remark: In this class, we use the left identity, but we can show that we can use either left or right. Note that commutativity is not implied.

Definition: Order of G

The cardinality of G denoted by |G|.

If |G| = n is finite, we say G is a finite group. If $|G| = \infty$, G is an infinite group.

Definition: Abelian Group

A group G where for every $a, b \in G$, ab = ba.

If the group is Abelian, we sometimes use + as the binary operation notation. The identity will be denoted by 0. For all $k \in \mathbb{Z}, a \in G$, then $ka := \underbrace{a + a + \cdots + a}_{}$.

In general, we use 1 or e as the identity of G. So $a^k = \underbrace{a \cdots a}_k$. $a^0 = 1$ or e and $a^{-k} = \underbrace{a^{-1} \cdots a^{-1}}_k$.

Theorem

Let G be a group with identity e and $a, b, c \in G$.

- 1. If ab = ac or ba = ca, then b = c.
- 2. If ab = e, then $a^{-1} = b$ and $b^{-1} = a$.
- 3. If ab = a, then b = e.
- 4. If ba = a, then b = e.

Proof. 1. Let a^{-1} be an inverse of a.

$$b = eb = (a^{-1}a)b = a^{-1}(ab) = a^{-1}(ac) = (a^{-1}a)c = ec = c$$

2 and 3 are similar.

Corollary

The identity and the inverse are unique.

If $e_1, e_2 \in G$ such that for any $g \in G$, $e_1g = ge_1, e_2g = ge_2$, then $e_1 = e_2$. If for $g \in G$, $b_1, b_2 \in G$ such that $b_1g = gh_1 = e = b_2g = gb_2$, then $b_1 = b_2$.

E.g. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all Abelian groups with infinite orders. Note that the binary operation is addition.

Let R be a ring. We define

$$R^*$$
 = the set of all invertible elements/units in R

Then R^* is a group with binary operation being multiplication. Addition does not work, take 1 and -1, if we add 1 + (-1) = 0 does not have an inverse and is not in R^* .

Definition: Groups of Units Modulo n

$$U_n = \mathbb{Z}_n^* = \{ [b]_n : 1 \le b \le n, \gcd(b, n) = 1 \}$$

 $\mathbb{Z}^* = \{1, -1\}$ is a finite group. $\mathbb{Q}^* = \{r \in \mathbb{Q} : r \neq 0\} = \mathbb{Q} \setminus \{0\}$. $\mathbb{R}^* = \mathbb{R} \setminus \{0\}, \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ are infinite groups.

$$\mathbb{Z}_m^* = \{ [b]_m : 1 \le b \le m, \gcd(b, m) = 1 \}. \ |\mathbb{Z}_m^*| = \phi(m)$$

Definition: Euler's Phi Function ϕ

If $m = p_1^{k_1} \cdots p_\ell^{k_\ell}$, then

$$\phi(m) = (p_1^{k_1} - p_1^{k_1 - 1}) \cdots (p_{\ell}^{k_{\ell}} - p_{\ell}^{k_{\ell} - 1})$$

$$|\mathbb{Z}_{10}^*| = |\{1, 3, 7, 9\}| = 4 = (5^1 - 5^0)(2^1 - 2^0).$$

 $|\mathbb{Z}_{100}^*| = (5^2 - 5^1)(2^2 - 2^1) = 20(2) = 40.$

Recall that $M_n(R)$ where R is a ring is non-commutative. We can define

$$M_n(R)^* = GL_n(R)$$

Definition: General Linear Group

Let R be a ring. The set of $n \times n$ matrices A such that $\det(A) \neq 0$.

$$M_n(R)^* = GL_n(R)$$

Note that $M_1(R)^* = GL_1(R) = R^*$. If R is commutative, $GL_1(R)^* = R^*$ is Abelian. However, if $n \geq 2$, $GL_n(R)$ must be non-Abelian.

 $GL_n(\mathbb{Z}_p)$ is finite. $GL_n(\mathbb{Q}), GL_n(\mathbb{R}), GL_n(\mathbb{C}), GL_n(\mathbb{Z})$ are infinite.

 $GL_n(\mathbb{Z})$ is infinite for $n \geq 2$. Take n = 2. If the matrix is $\binom{n}{n+1} \binom{n-1}{n} \in GL_2(\mathbb{Z})$. So we have infinitely many elements in $GL_2(\mathbb{Z})$.

If G is finite, we would like to know |G|.

Proposition

$$|GL_n(\mathbb{Z}_p)| = (p^n - 1)(p^n - p)\cdots(p^n - p^{n-1}).$$

Proof. For a matrix $A = (v_1, v_2, \dots, v_n)^T$ where $v_i \in M_{1 \times n}(\mathbb{Z}_p)$. $A \in GL_n(\mathbb{Z}_p)$ if and only if v_1, \dots, v_n are linearly independent if and only if for all i where $2 \le i \le n$, $v_i \notin \operatorname{Span}\{v_1, \dots, v_{i-1}\}$. Therefore, the number of choices for v_1 is $p^n - 1$. The number of choices for v_2 is $p^n - p$. For v_3 is $p^n - p^2$. For v_n , there are $p^n - p^{n-1}$.

Definition: Special Linear Group

 $SL_n(R)$ = the set of all $n \times n$ matrices A with entries in R and det(A) = 1

Proposition

$$|SL_n(\mathbb{Z}_p)| = |GL_n(\mathbb{Z}_p)|/(p-1).$$

Recall s

Definition: Permutation

For a set S, the set of permutations $\operatorname{Perm}(S) = \{f : S \to S : f \text{ is bijective}\}$, $\operatorname{Perm}(S)$ is a group with the composition as its binary operation and the identity bijection as its identity.

Proposition

 $|\operatorname{Perm}(S)| = |S|!.$

Definition: nth Symmetric Group

Let $S = \{1, 2, ..., n\}$. Then $S_n = \text{Perm}(\{1, 2, ..., n\})$.

Definition: Operation/Multiplication Table

For a finite group, we can specify its operation * by making a table showing the value of the product a*b for each pair $a,b \in G^2 = G \times G$.

E.g.
$$U_{12} = \{1, 5, 7, 11\}.$$

a/b	1	5	7	11
1	1	5	5	7
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

Proposition

If G and H are groups, then $G \times H$ is also a group.

The order is $|G \times H| = |G||H|$.

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2).$$

Definition: Order of a in G

Let G be a group and $a \in G$, the order of a in G, denoted by |a| or ord(a), is the smallest positive integer n such that $a^n = e$.

8

If there is no positive integer, $|a| = \infty$.

If |a| is finite, then we say a has a finite order, otherwise it has infinite order.

ord(e) = 1 and in the previous example, ord(5) = ord(7) = ord(11) = 2.

E.g. If $G = \mathbb{Z}$ and for all $n \in \mathbb{Z}, n \neq 0$, the order n is infinite.

E.g. If $G = \mathbb{Z}_n$ and $a \in G$, then $|a| = \frac{n}{\gcd(a,n)}$.

E.g. If $G = \mathbb{C}^*$, $|C^*| = \infty$. If $z \in \mathbb{C}^*$, we can write $z = re^{i\theta}$ where $r > 0, \theta \in \mathbb{R}$. What choices of r and θ make ord(z) finite?

By De Mouvre's Theorem, $z^n = r^n e^{in\theta}$. If |z| = n, then

$$z^n = r^n e^{in\theta} = 1$$

This implies r=1 and θ/π is rational. Thus, |z| is finite if and only if r=1 and $\theta=s\pi$ where $s\in\mathbb{Q}$.

Proposition

For $a \in G, b \in H$, then |(a,b)| = lcm(|a|,|b|).

Proof. If |a| = n, |b| = m, then for $k \in \mathbb{N}$ we have $(a, b)^k = (a^k, b^k) = (e_G, e_H)$ if and only if $a^k = e_G$, $b^k = e_H$ if and only if n|k and m|k if and only if lcm(m, n)|k. Thus, the smallest positive value of k is lcm(n, m).

Claim: Let G be a group and $a \in G$. $\forall m \in \mathbb{Z}, a^m = e$, then ord(a)|m.

Proof. (Claim) Let n = ord(a). Since $a^m = e$, then $ord(a) < \infty$. By the division algorithm, there exists $q, r \in \mathbb{Z}$ where $q \le r < n$ such that m = qn + r.

$$e = a^{m} = a^{qn+r}$$

$$= (a^{n})^{q} \cdot a^{r}$$

$$= e^{q} \cdot a^{r}$$

$$= a^{r}$$

By the definition of |a|, r=0, which shows n|m.

Definition: Conjugate

Let G be a group. For $a, b \in G$, we say a and b are conjugate in G, written as $a \sim b$, when $b = xax^{-1}$ for some $x \in G$.

Definition: Conjugate Class Cl

$$Cl(a) = Cl_G(a) = \{b \in G : b \sim a\} = \{xax^{-1} : x \in G\}$$

Remark: The binary relation \sim is an equivalence relation on G. For all $a, b, c \in G$, we have $a \sim a, a \sim b, b \sim a$ and $a \sim b, b \sim c \implies a \sim c$.

Remark: If $a \sim b$, then |a| = |b|.

E.g. Consider two groups G and H, when and how can we view them as the same ones. Take $G = \mathbb{Z}^* = \{-1, 1\}$ and $H = \mathbb{Z}_2 = \{0, 1\}$. To view two groups as the same, they must share the operation tables. If ϕ maps 1 to 0 and -1 to 1, then under ϕ , their operation table are the same.

a/b	1	-1
1	1	-1
-1	-1	1

a/b	0	1
0	0	1
1	1	0

Definition: Homomorphism

Let G and H be groups and $\phi: G \to H$, we say ϕ is a homomorphism if for any $a, b \in G$, $\phi(ab) = \phi(a)\phi(b)$.

Definition: Isomorphism

If ϕ and ϕ^{-1} are homomorphisms (ϕ is a bijection), then ϕ is an isomorphism and G and H are isomorphic, denoted by $G \cong H$.

E.g. $\mathbb{Z}^* \cong \mathbb{Z}_2$.

E.g. $U_{12} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Subgroups

Definition: Subgroup

A subgroup H of a group G is a subset which is also a group under the same binary operation, denoted $H \leq G$.

For any group G, G and $\{e\}$ are subgroups of G. $\{e\}$ is called the trivial subgroup.

Definition: Proper Subgroup

H is a proper subgroup of G if $H \leq G$ and $H \neq G$, denoted H < G.

E.g. $\mathbb{Z} < \mathbb{Q} < \mathbb{R} < \mathbb{C}$. $\mathbb{Z}^* < \mathbb{Q}^* < \mathbb{R}^* < \mathbb{C}^*$.

E.g. If we denote $\mathbb{Z}_n = \{0, \dots, n-1\}$, \mathbb{Z}_n is not a subgroup of \mathbb{Z} .

 U_n is not a subgroup of \mathbb{Z}_n under the binary operation + (U_n has no 0, which is the identity in \mathbb{Z}_n).

Theorem (Subgroup Test I)

Let G be a group and $H \subseteq G$, then $H \leq G$ if and only if

- 1. H contains the identity $e \in G$.
- 2. H is closed under operation, i.e. $a, b \in H$ then $ab \in H$.
- 3. H is closed under inversion, i.e. $a \in H$ then $a^{-1} \in H$.

Proof. (\Longrightarrow) 2 and 3 are clear. For 1, let e_H be the identity of H. We have $e_H \cdot e_H = e_H \in G$. By the Cancellation Law in G, we have $e_H = e_G$. Thus, $e_G \in H$.

(\iff) 1 and 3 imply the second condition of a group. The associativity is already true for H. The only problem is that H is closed under operation. This is just 2 of the test.

E.g. $G = \mathbb{R}^2$ and $H = \{(x, y) : xy \ge 0\}$. We have $(0, 0) \in H$ and $(x, y), (-x, -y) \in H$, but

number 2 fails. Thus, H is not a subgroup.

Theorem (Subgroup Test II)

Let G be a group and $H \subseteq G$, then $H \leq G$ if and only if

- 1. $H \neq \emptyset$.
- 2. For all $a, b \in H$, $ab^{-1} \in H$.

Proof. (\Longrightarrow) Trivial.

(\Leftarrow) Since H is nonempty, there exists $a \in H$. By 2, $aa^{-1} = e_G \in H$. For the third point in Subgroup Test I, for any $g \in H$, by 2, $e_G \in H$, $e_G \cdot g^{-1} = g^{-1} \in H$.

For the second point in Subgroup Test I, for all $a, b \in H$, $ab = a(b^{-1})^{-1}$, by the third point, $b^{-1} \in H$ and therefore, $ab \in H$.

Theorem (Finite Subgroup Test)

Let G be a group and $H \subseteq G$ is finite, then $H \leq G$ if and only if

- 1. $H \neq \emptyset$.
- 2. For all $a, b \in H$, $ab \in H$.

Proof. By Subgroup Test II, we only need to show that for any $a \in H$, $a^{-1} \in H$.

Consider the set $\{a, a^2, a^3, \dots, \} \subseteq H$. By 2, since H is finite, there exist $i, j \in \mathbb{N}, i < j$, then $a^i = a^j$. By the Cancellation Law, $a^{j-i} = e$, i.e. $a^{-1} = a^{j-i-1} \in H$.

E.g. For all $a \in \mathbb{N}$. Define

$$C_n := \{ z \in \mathbb{C} : z^n = 1 \} = \{ e^{2\pi i k/n} : 0 \le k \le n-1 \}$$

 $C_{\infty} := \{z \in \mathbb{C} : z^n = 1 \text{ for some } n \in \mathbb{Z}\} = \text{set of all finite order elements in } \mathbb{C}^*$

$$S^1 := \{ z \in \mathbb{C} : |z| = 1 \}$$

We have $C_n < C_\infty < S^1 < \mathbb{C}^*$.

Remark: $|C_n| = n = |\mathbb{Z}_n|$. $C_n \cong \mathbb{Z}_n$.

E.g. Let R be commutative. $GL_n(R)$ is the set of all $n \times n$ invertible matrices with coefficients in R.

$$SL_n(R) = \{A \in M_n(R) : \det(A) = 1\}$$

$$O_n(R) = \{A \in M_n(R) : A^T A = I\}$$
 $SO_n(R) = \{A \in M_n(R) : A^T A = I, \det(A) = 1\}$

We have $SO_n(R) \leq O_n(R) \leq GL_n(R)$ and $SO_n(R) \leq SL_n(R) \leq GL_n(R)$.

E.g. For $\theta \in \mathbb{R}$, the rotation in \mathbb{R}^2 about (0,0) by the angle θ is given by the matrix

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

The reflection in \mathbb{R}^2 in the line through (0,0) and the point $\left(\cos\frac{\theta}{2},\sin\frac{\theta}{2}\right)$ is given by the matrix

$$F_{\theta} = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

Define

$$O_2(\mathbb{R}) = \{ F_{\theta}, R_{\theta} : \theta \in \mathbb{R} \}$$
$$SO_2(\mathbb{R}) = \{ R_{\theta} : \theta \in \mathbb{R} \}$$

For all $\alpha, \beta \in \mathbb{R}$, we have

$$F_{\beta}F_{\alpha} = R_{\beta-\alpha}, F_{\beta}R_{\alpha} = F_{\beta-\alpha}, R_{\beta}F_{\alpha} = F_{\alpha+\beta}, R_{\alpha}R_{\beta} = R_{\alpha+\beta}$$

E.g. Let $n \in \mathbb{N}$. Define the dihedral group D_n as

$$D_n = \{R_k, F_k : k \in \mathbb{Z}_n\} = \{R_0, R_1, \dots, R_{k-1}, F_0, \dots, F_{k-1}\}\$$

where $R_k = R_{\theta_k}, F_k = F_{\theta_k}$ and $\theta_k = \frac{2\pi k}{n}$.

 $|D_n| = n + n = 2n$ and $D_n \le O_2(\mathbb{R})$.

Proposition

If H and K are subgroups of G, then $H \cap K$ is also a subgroup. In general, $\bigcap_{\alpha \in I} H_{\alpha}$ for a set I is a subgroup.

Definition: Center

Let G be a group and $a \in G$, the center of G is the set

$$Z(G) = \{ a \in G : ax = xa, \forall x \in G \}$$

Theorem

G is Abelian if and only if Z(G) = G.

Definition: Centralizer

The centralizer of a in G is the set

$$C(a) = \{x \in G : ax = xa\}$$

We would like to find a subgroup H containing a particular element a. H must contain $e, a, a^{-1}, a^2, a^3, \ldots$ Define

$$\langle a \rangle = \{ a^k : k \in \mathbb{Z} \} = \{ \dots, a^{-2}, a^{-1}, e, a, a^2, \dots \}$$

Then $\langle a \rangle$ is a subgroup of G.

Proof. By Subgroup Test II,

- 1. $\langle a \rangle \neq \emptyset$ since $e \in \langle a \rangle$.
- 2. For all $a^i, a^j \in \langle a \rangle$, $a^i \cdot a^{-j} = a^{i-j} \in \langle a \rangle$.

Thus, $\langle a \rangle$ is a subgroup of G.

Definition: Subgroup Generator ()

Let G be a group and $S \subseteq G$. The subgroup of G generated by S, denoted by $\langle S \rangle$, is the smallest subgroup of G containing S.

The elements of S are called the generators of the group $\langle S \rangle$. When S is finite, we omit brackets and write $\langle a_1, \ldots, a_k \rangle := \langle \{a_1, \ldots, a_k\} \rangle$.

Definition: Cyclic Subgroup

If $S = \{a\}$, $\langle S \rangle = \langle a \rangle$ is a cyclic subgroup of G and $\langle a \rangle$ is called a cyclic subgroup generated by a.

Definition: Cyclic Group

If $G = \langle a \rangle$ for some $a \in G$, then G is cyclic.

E.g. $G = \mathbb{Z}_{12}$ is cyclic. $G = \langle [1] \rangle = \langle [5] \rangle = \langle [7] \rangle = \langle [11] \rangle$ are generators. Note that $1, 5, 7, 11 \in U_{12}$.

Proposition

For all $n \in \mathbb{Z}$, if gcd(a, n) = 1, then $\langle [a] \rangle = \mathbb{Z}_n$.

Remark:

- 1. If G is cyclic, its generator might not be unique.
- 2. If G is cyclic and of finite order n, G must be isomorphic to \mathbb{Z}_n by $\phi: G \to \mathbb{Z}_n$, $a \mapsto [1]$ where a is the generator.
- 3. If G is cyclic and of infinite order, $G \cong \mathbb{Z}$ by $\phi : G \to \mathbb{Z}$, $a \mapsto 1$ where a is the generator.

Theorem (Elements of a Cyclic Group)

Let G be a group and $a \in G$, then

- 1. $\langle a \rangle = \{ a^k : k \in \mathbb{Z} \}.$
- 2. If $ord(a) = |a| = \infty$, then the elements a^k with $k \in \mathbb{Z}$ are all distinct so we have $|\langle a \rangle| = \infty$.
- 3. If $|a| = n < \infty$, then for all $k, \ell \in \mathbb{Z}$, we have $a^k = a^\ell$ if and only if $k \cong \ell \pmod{n}$, so

$$\langle a \rangle = \{a^k : k \in \mathbb{Z}\} = \{e, a, \dots, a^{n-1}\} \cong \mathbb{Z}_n$$

Proof. 1 is done.

- 2. Assume that $a^k = a^\ell$ for $k, \ell \in \mathbb{Z}, k > \ell$. By Cancellation Law, we have $e = a^{k-\ell}$, then $ord(a) \leq k \ell$, a contradiction.
- 3. Assume that $a^k = a^\ell$ for $k, \ell \in \mathbb{Z}, k > \ell$. By Cancellation Law, $a^{k-\ell} = e$. Since ord(a) = n, $n \mid (k \ell)$, then $k \cong \ell \pmod{n}$.

Theorem (Classification of Subgroups of a Cyclic Group)

Let G be a group and $a \in G$,

- 1. Every subgroup of $\langle a \rangle$ is cyclic.
- 2. If $|a| = \infty$, then $\langle a^k \rangle = \langle a^\ell \rangle$ if and only if $\ell = \pm k$. So the distinct subgroups of $\langle a \rangle$ are the trivial group $\langle a^0 \rangle = \{e\}$ and $\langle a^d \rangle = \{a^{kd} : k \in \mathbb{Z}_+\}$ for $d \in \mathbb{N}$.
- 3. If |a| = n, then we have $\langle a^k \rangle = \langle a^\ell \rangle$ if and only if $\gcd(k, n) = \gcd(\ell, n)$. So the distinct subgroups of $\langle a \rangle$ are the groups $\langle a^d \rangle = \{a^{kd} : k \in \mathbb{Z}_+\} =$

Proof. 1. Let $H \leq \langle a \rangle$. If $H = \{e\}$, we are done. Otherwise, there exists $k \in \mathbb{N}$, $a^k \in H$. If k < 0, $(a^k)^{-1} = a^{-k} \in H$, we choose $-k \in \mathbb{N}$.

Let $k = \min\{k : a^k \in H, k \in \mathbb{N}\}.$

Claim: $\langle a^k \rangle = H$.

Proof. (Claim) For all $m \in \mathbb{Z}$, $a^m \in H$. By the division algorithm, there exists $q \in \mathbb{Z}$, $r \in \mathbb{Z}_+$, $r < \ell$ such that m = q.

$$a^{m} = a^{q \cdot \ell + r}$$

$$= (a^{\ell})^{q} \cdot a^{r}$$

$$a^{r} = a^{m - \ell \cdot q}$$

$$= \underbrace{a^{m}}_{\in H} \cdot \underbrace{(a^{\ell})^{(-q)}}_{\in H} \in H$$

By the minimality of ℓ , r = 0 and $\ell | m$.

2. Assume that $|a| = \infty$. If $\ell = \pm k$, then we have $\langle a^k \rangle = \langle a^\ell \rangle$.

Suppose that $\langle a^k \rangle = \langle a^\ell \rangle$. Since $a^k \in \langle a^\ell \rangle$, we have $a^k = (a^\ell)^t$ for $t \in \mathbb{Z}$. This implies $a^{k-\ell t} = e$, so $k = \ell t$.

Conversely $a^{\ell} \in \langle a^k \rangle$, $a^{\ell} = a^{kt'}$, $\ell = kt'$, there exists $t' \in \mathbb{Z}$ such that $\ell = t'k$. Thus, we have $k = \ell t = tt'k$, $\langle a^k \rangle = \langle a^{\ell} \rangle = \{e\}$. If k = 0, it is clear. We can assume that $k \neq 0$ and 1 = tt'. This implies $t = t' = \pm 1$, we are done.

3. Suppose that $|a| = n, \forall d | n, d > 0, \langle a^d \rangle = \{a^{kd} : k \in \mathbb{Z}_{n/d}\} \text{ and } |\langle a^d \rangle| = n/d.$

Thus, we only need to show

$$\left\langle a^{k}\right\rangle =\left\langle a^{\ell}\right\rangle \Leftrightarrow\gcd(k,n)=\gcd(\ell,n)$$

Claim: $\langle a^k \rangle = \langle a^{\gcd(k,n)} \rangle$

Proof. (Claim) Let $d = \gcd(k, n)$. If $k = 0 \pmod{n}$, $\langle a^k \rangle = \langle a^0 \rangle = \{e\}$ and $\langle a^{\gcd(k, n)} \rangle = \langle a^n \rangle = \{e\}$.

So assume that $k \neq 0 \pmod{n}$, $1 \leq k \leq n$. Thus, $d = \gcd(k, n) \geq 1$. We need to show $a^k \subseteq \langle a^d \rangle$. Since d|k and $d \neq 0$, there exists $t \in \mathbb{Z}$ such that k = td. This implies $a^k = (a^d)^t \in \langle a^d \rangle$.

Now we need to show $a^d \subseteq \langle a^k \rangle$. Since $d = \gcd(k, n)$ by Extended Euclidean Algorithm, there exists $\ell, t \in \mathbb{Z}$ such that $d = kt + n\ell$.

$$a^d = a^{kt+n\ell} = (a^k)^t (a^n)^\ell = (a^k)^t \cdot e^\ell = (a^k)^t \in \langle a^k \rangle$$

Proposition

In \mathbb{Z}_n , the cyclic group of order n, there are exactly $\phi(n)$ many generators.

Corollary

Let G be a group, $a \in G$, then

- 1. If $|a| = \infty$, then $|a^0| = |e| = 1$ and $|a^k| = \infty$ for all $k \in \mathbb{Z}, k \neq 0$.
- 2. If |a| = n, then $|a^k| = \frac{n}{\gcd(k,n)}$.
- 3. If $|a| = \infty$, then $|a^k| = \langle a \rangle \Leftrightarrow k = \pm 1$.
- 4. If |a| = n, $\langle a^k \rangle = \langle a \rangle \Leftrightarrow \gcd(k, n) = 1 \Leftrightarrow k \in U_n$.

Definition: ϕ

$$\phi(n) = n \left(\prod_{p|n} \left(1 - \frac{1}{p} \right) \right)$$

Corollary

$$\sum_{d|n} \phi(d) = n = |\langle a \rangle|$$

Corollary

Let G be a finite group, for all $d \in \mathbb{N}$, the number of elements in G of order d is equal to $\phi(d)$ multiplied by the number of cyclic subgroups of G of order d.

Theorem (Elements in $\langle S \rangle$)

Let G be a group and $\phi \neq S \subseteq G$, then

$$\langle S \rangle = \{ a_1^{k_1} a_2^{k_2} \cdots a_{\ell}^{k_{\ell}} : \ell \ge 0, a_i \in S, k_i \in \mathbb{Z} \}$$

= $\{ a_1^{k_1} \cdots a_{\ell}^{k_{\ell}} : \ell \ge 0, a_i \in S, a_i \ne a_{i+1}, 0 \ne k_i \in \mathbb{Z} \}$

where $\ell = 0$ means e. If G is Abelian, then

$$\langle S \rangle = \{a_1^{k_1} \cdots a_\ell^{k_\ell} : \ell \geq 0, a_i \in S, a_i \neq a_i, \forall i \neq j, 0 \neq k_i \in \mathbb{Z}\}$$

E.g. In \mathbb{Z} , $\langle k, \ell \rangle = \langle \gcd(k, \ell) \rangle$. In $D_n = \langle R_1, F_0 \rangle$ in $O_2(\mathbb{R})$ because $R_k = R_1^k$ and $F_k = R_k F_0$.

Definition: Free Group

Let S be a set. The free group on S is the set whose elements are

$$F(S) = \{a_1^{k_1} a_2^{k_2} \cdots a_{\ell}^{k_{\ell}} : \ell \ge 0, a_i \in S, 0 \ne k_i \in \mathbb{Z}\}$$

with the operation given by concatenation

$$(a_1^{j_1}\cdots a_\ell^{j_\ell})(b_1^{k_1}\cdots b_m^{k_m})=a_1^{j_1}\cdots a_\ell^{j_\ell}b_1^{k_1}\cdots b_m^{k_m}$$

followed by grouping and cancellation in the sense that if $a_{\ell} = b_1$, then we replace $a_{\ell}^{j\ell}b_1^{k_1}$ by $a_{\ell}^{j_{\ell}+k_1}$ and if in addition, $j_{\ell}+k_1=0$, we can check the next pair $a_{\ell-1}^{j_{\ell}-1}$ and $b_2^{k_2}$ and continue the process.

E.g.

$$(ab^2a^{-3}b)(b^{-1}a^3ba^{-2}) = (ab^2a^{-3})(bb^{-1})(a^3ba^{-2}) = (ab^2a^{-3})(a^3ba^{-2}) = ab^2ba^{-2} = ab^3a^{-2}$$

Definition: Free Abelian Group

Let S be a set. The free Abelian group on S is the set

$$A(S) = \{k_1 a_1 + \dots + k_{\ell} a_{\ell} : \ell \ge 0, a_i \in S, a_i \ne a_j, 0 \ne k_i \in \mathbb{Z}\}$$

Remark: $A(S) = \sum_{a \in S} \mathbb{Z} = \{f : S \to \mathbb{Z} : f(a) = 0 \text{ for all but finitely many } a \in S\}$. (f + g)(a) = f(a) + g(a) is the operation.

Symmetric and Alternating Groups

Definition: Symmetric Group S_n

$$S_n = \text{Perm}\{1, \dots, n\}$$

For $\alpha \in S_n$, we can write

$$\alpha = \begin{pmatrix} 1 & 2 & \cdots & n \\ \alpha(1) & \alpha(2) & \cdots & \alpha(n) \end{pmatrix}$$

This is called array notation for α .

E.g.
$$S_2 = \left\{ \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\}.$$
 $S_3 \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \dots \right\}.$

E.g. S_n is big. Many known groups such as C_n , D_n can be viewed as subgroups of S_n . Recall $C_n \cong \mathbb{Z}_n = \{e^{2\pi i k/n} : k = 1, \dots, n\}$. For $C_n \to S_n$, $e^{2\pi i/n} \mapsto \begin{pmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 2 & 3 & 4 & \cdots & n & 1 \end{pmatrix} = \alpha$. Thus, $\langle \alpha \rangle \cong C_n$ and $|\alpha| = n$.

 $D_n \cong \langle \alpha, \beta \rangle$ where $\alpha \sim R_1$ and $\beta = F_{n-1}$. $\beta = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ n & n-1 & \cdots & 2 & 1 \end{pmatrix}$, $|\beta| = 2$, $|\alpha| = n$. The reason behind this isomorphism is D_n preserves an n-regular polygon.

Definition: Cyclic Representation

When a_1, \ldots, a_ℓ are distinct elements in $\{1, \ldots, n\}$, we write $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_\ell)$ for a permutation $\alpha \in S_n$ given by $\alpha(a_1) = a_2, \alpha(a_2) = a_3, \ldots, \alpha(a_{\ell-1}) = a_\ell, \alpha(a_\ell) = a_1$ and $\alpha(k) = k$ for all $k \notin \{a_1, \ldots, a_\ell\}$.

E.g.
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \rightsquigarrow (1, 2, 3).$$

Among those cycle representations for an element in S_n , we can choose one cycle starting with the smallest number in the cycle. Then it becomes unique.

 ℓ is called the length of the cycle α and we say α is an ℓ -cycle.

Remark:

- 1. $|\alpha| = \ell$ is its length.
- 2. $e = (1) = (2) = \cdots = (n)$.
- 3. (1,2)(2,3) = (1,2,3). We can multiply cycles using the composition of functions. (2,3)(1,2) = (1,3,2). So $(1,2)(2,3) \neq (2,3)(1,2)$ and therefore, S_3 is non-Abelian. In general, S_n is non-Abelian.

Definition: Disjoint Cycles

Two cycles $\alpha = (a_1, \ldots, a_\ell), \beta = (b_1, \ldots, b_m)$ are said to be disjoint when $\{a_1, \ldots, a_\ell\} \cap \{b_1, \ldots, b_m\} = \emptyset$, we can extend this to n cycles.

Remark: If α and β are disjoint, α and β commute, i.e. $\alpha\beta = \beta\alpha$.

Proof. For all $t \in \{1, ..., n\}$.

- Case 1: $t \in \{a_1, \dots, a_\ell\}$. $\alpha\beta(t) = \alpha(t), \beta\alpha(t) = \beta(\alpha(t)) = \alpha(t)$.
- Case 2: $t \in \{b_1, \dots, b_m\}$. $\alpha\beta(t) = \alpha(\beta(t)) = \beta(t), \beta\alpha(t) = \beta(t)$.
- $t \notin \{a_1, \dots, a_\ell\} \cup \{b_1, \dots, b_m\}.$ $\alpha \beta(t) = t = \beta \alpha(t).$

Theorem (Cycle Notation)

Every $\alpha \in S_n$ can be written as a product of disjoint cycles. Indeed, for all $\alpha \neq e$ can be written uniquely in the form

$$\alpha = (a_{1,1}, \dots, a_{1,\ell_1}), (\dots), \dots, (a_{m,1}, \dots, a_{m,\ell_m})$$

with $m \ge 1$, each $\ell_i \ge 2$, each $a_{i,1} = \min\{a_{i,1}, \dots, a_{i,\ell_i}\}$ and $a_{1,1} < a_{2,1} < \dots < a_{m,1}$.

Proof. Let $e \neq \alpha \in S_n$. Choose $a_{1,1}$ to be the smallest k such that $\alpha(k) \neq k, \alpha_{1,2} = \alpha(a_{1,1}), \alpha_{1,3} = \alpha(a_{1,2}), \ldots$ until we find the first k such that $\alpha(k) = a_{1,1}$. Then we have the first cycle.

Choose $a_{2,1}$ to bet he smallest k such that $k \notin \{a_{1,1}, \ldots, a_{1,\ell}\}$ and $\alpha(k) \neq k$. Continue this process by induction.

Remark: In this way, we write e = (1).

E.g. $S_3 \cong D_3 = \{(1), (1,2), (2,3), (1,3), (1,2,3), (1,3,2)\}.$

 $S_4 = \{(1), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2), (2, 3, 4), (2, 4, 3), (1, 3, 4), (1, 4, 3), (1, 2, 3, 4), (1, 3, 4, 2), (1, 4, 2, 3), \dots \}.$

E.g. $\alpha = (1, 3, 5, 2), \beta = (2, 6, 3)$. Compute $\alpha\beta$ in cycles.

$$\alpha\beta = (1,3,1)(2,6,5,2) = (1,3)(2,6,5).$$
 $|\alpha| = 2, |\beta| = 3, |\alpha\beta| = 2 \cdot 3 = 6.$

E.g.
$$|(1,2,3)(4,5,6)| = 3$$
 since $(1,2,3)^3 = (4,5,6)^3 = e$.

Theorem (Order of Disjoint Cycles Permutation)

Let $\alpha = \alpha_1 \dots \alpha_\ell$ where α_i are disjoint cycles. Then

$$|\alpha| = \operatorname{lcm}(|\alpha_1|, \dots, |\alpha_\ell|)$$

Recall that in a group G, $a, b \in G$, we say a is conjugate to b if $\exists x \in G$, $b = xax^{-1}$. If a is conjugate to b, |a| = |b|, since $b^k = (xax^{-1})^k = xa^kx^{-1}$.

Theorem (Conjugacy Class of a Permutation)

Let $\alpha, \beta \in S_n$. Then α and β are conjugate in S_n if and only if when written in cycle notation, α and β have the same number of cycles of each length, or we say that α and β have the same cycle-type.

The cycle type means that if α is written as $\alpha = \alpha_1 \dots \alpha_\ell$ where α_i are disjoint cycles, then $\{|\alpha_1|, \dots, |\alpha_\ell|\}$ is the cycle type of α .

E.g. (1,2,3) is conjugate to (3,4,5). (1,2,3)(4,5) is conjugate to (1,5)(2,3,4). (1,2)(3,4) is conjugate to (1,3)(2,4).

Proof. (Conjugacy Class) Write α is cycle notation as

$$\alpha = (a_{1,1}, \dots, a_{1,\ell_1}) \dots (a_{m,1}, \dots, a_{m,\ell_m})$$

disjoint cycles. Let $\sigma \in S_n$.

Claim:
$$\sigma \alpha \sigma^{-1} = (\sigma(a_{1,1}), \dots, \sigma(a_{1,\ell_1})) \dots (\sigma(a_{m,1}), \dots, \sigma(a_{m,\ell_m})).$$

If the claim is true, for any β with the same cycle type, we can define σ by

$$\sigma(a_{i,i_j}) = b_{i,i_j}, 1 \le i \le m, 1 \le i_j \le \ell_i$$

Then we are done.

Proof. (Claim) Given $i, i_j, 1 \le i \le m, 1 \le i_j < \ell_i$. We also have $\sigma(a_{i,i_j}) = \sigma(a_{i,i_j+1})$.

$$\sigma \alpha \sigma^{-1} = \sigma \alpha (\sigma^{-1}(\sigma \sigma(a_{i,i_j}))$$

$$= \sigma(\alpha(a_i, a_{i_j}))$$

$$= \sigma(a_{i,i_j+1})$$

If $i_j = \ell_i$, then

$$\sim \alpha \sigma^{-1}(\sigma(a_{i,\ell_i})) = \sigma(\alpha(a_{i,\ell_i}))$$
$$= \sigma(a_{i,1})$$

Thus, $\sim \alpha \sigma^{-1}$ is as desired.

E.g. In S_{15} , compute the number of elements of cycle type 4, 4, 4, i.e. three 4-cycles.

We look for a cycle like

$$(a_1, a_2, a_3, a_4)(a_5, a_6, a_7, a_8)(a_9, a_{10}, a_{11}, a_{12})$$

The total choices of a_1 to a_{12} is $\binom{15}{12}$.

 a_1 has 1 choice since it must be the smallest one, a_2 has 11, a_3 has 10, and a_4 has 9 choices.

 a_5 has 1 choice since it must be the smallest one among the a_5, \ldots, a_{12}, a_6 has 7, a_7 has 6, and a_8 has 5 choices.

 a_9 has 1 choice among the $a_9, \ldots, a_{12}, a_{10}$ has 3, a_{11} has 2, and a_{12} has 1 choice.

The total number is

$$\binom{15}{12} 11(10)(9)(7)(6)(5)(3)(2)(1) = \binom{15}{12} \frac{12!}{12 \cdot 8 \cdot 4}$$

E.g. Compute the number of elements in S_{20} of cycle type four 2-cycles, two 3-cycles, and one 4-cycle.

Consider

$$\alpha = (a_1, a_2)(a_3, a_4)(a_5, a_6)(a_7, a_8)(b_1, b_2, b_3)(b_4, b_5, b_6)(c_1, c_2, c_3, c_4)$$

There are $\binom{20}{8}$ choices for a_1 to a_8 . The choices for a_1, \ldots, a_8 is (1,7), (1,5), (1,3), (1,1). So the total for the 2-cycles is $\binom{20}{8} \frac{8!}{8 \cdot 6 \cdot 4 \cdot 2}$.

There are $\binom{12}{6}$ for the b_i 's with the choices being (1,5,4), (1,2,1). So the total is $\binom{12}{6}\frac{6!}{6\cdot 3}$.

The total for c_i 's is $\binom{6}{4} \frac{4!}{4}$.

The total is

$$\binom{20}{8} \frac{8!}{8 \cdot 6 \cdot 4 \cdot 2} \binom{12}{6} \frac{6!}{6 \cdot 3} \binom{6}{4} \frac{4!}{4}$$

Let α be a product of cycles, which may not be disjoint. What can we say about α ?

Theorem (Even and Odd Permutations)

In S_n for $n \geq 2$,

- 1. Every $\alpha \in S_n$ can be written as a product of 2-cycles.
- 2. If $e = (a_1, b_1)(a_2, b_2) \dots (a_\ell, b_\ell)$ for $\ell \geq 1$, then ℓ must be even.
- 3. If $\alpha = (a_1, b_1)(a_2, b_2) \dots (a_\ell, b_\ell) = (c_1, d_1)(c_2, d_2) \dots (c_m, d_m)$, then $\ell \equiv m \pmod{2}$.

${\bf Homomorphisms}$

Cosets and Normal Subgroups

Free and Finite Abelian Groups

Isometrics and Symmetric Groups

Group Actions

Sylow Theorems