一、单项选择题(本大题共 27 分,每小题 3 分)	(B) 部分偏振光且只是在该光由真空入射到折射率为√3 的介质时,折射角是 30°. (C) 部分偏振光,但须知两种介质的折射率才能确定折射角.
1. 一 $2x$ 轴作简谐振动的弹簧振子,振幅为 x ,周期为 x ,据动方程用余弦函数表示,如果该	(D) 部分偏振光且折射角是 30°. []
振子的初相为 $\frac{3}{4}\pi$,则 $t=0$,质点的位置在: [] (A) 过 $x=\frac{\sqrt{2}A}{2}$ 处,向负方向运动; (B) 过 $x=\frac{\sqrt{2}A}{2}$ 处,向正方向运动; (C) 过 $x=\frac{-\sqrt{2}A}{2}$ 处,向负方向运动; (D) 过 $x=\frac{-\sqrt{2}A}{2}$ 处,向正方向运动。	7. K 系与 K' 系是坐标轴相互平行的两个惯性系, K' 系相对于 K 系沿 Ox 轴正方向匀速运动. 一根刚性尺静止在 K' 系中, 与 O'x '轴成 30° 角. 今在 K 系中观测得该尺与 Ox 轴成 45° 角,则 K' 系相对于 K 系的速度是: (A) (2/3)c. (B) (1/3)c. (C) (2/3) ^{1/2} c. (D) (1/3) ^{1/2} c.
2. 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的 1/4 时,其动能为振动总能量的 (A) 7/16. (B) 15/16. (C) 13/16. (D) 9/16. []	8. 设某微观粒子的总能量是它的静止能量的 K 倍,则其运动速度的大小为(以 c 表示真空中的光速) $ (A) \ \frac{c}{K} \sqrt{K^2-1} . \qquad (B) \ \frac{c}{K} \sqrt{1-K^2} \ . $
3. 如图所示,两列波长为 λ 的相干波在 P 点相遇. 波在 S_1 点振动的初相是 ϕ_1 , S_1 到 P 点的距离是 r_1 ;波在 S_2 点的初相是 ϕ_2 , S_2 到 P 点的距离是 r_2 ,以 k 代表零或正、负整数,则 P 点是干涉极大的条件为: (A) $\phi_2 - \phi_1 + 2\pi(r_1 - r_2)/\lambda = 2k\pi$. (B) $\phi_2 - \phi_1 + 2\pi(r_2 - r_1)/\lambda = 2k\pi$. (C) $\phi_2 - \phi_1 = 2k\pi$.	(C) $\frac{c}{K-1}$. (D) $\frac{c}{K+1}\sqrt{K(K+2)}$. [] 9. 用频率为 ν_1 的单色光照射某种金属时,测得饱和电流为 I_1 ,以频率为 ν_2 的单色光照射该金属时,测得饱和电流为 I_2 ,若 $I_1>I_2$,则 (A) $\nu_1>\nu_2$. (B) $\nu_1<\nu_2$. (C) $\nu_1=\nu_2$. (D) $\nu_1=\nu_2$ 的关系还不能确定. []
 4. 在迈克耳孙干涉仪的一条光路中,放入一折射率为 n, 厚度为 d 的透明薄片,放入后,这条光路的光程改变了 (A) 2 (n-1) d+λ/2. (B) 2nd. (C) 2 (n-1) d. (D) nd. [] 	二、填空题(本大题共 25 分)
5. 一東光强为 I ₀ 的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成 45°角,则穿过两个偏振片后的光强 I 为	·
(A) $I_0/4\sqrt{2}$. (B) $I_0/4$.	

 $(C) I_0/2$. $(D) \sqrt{2} I_0/2$

(A) 完全线偏振光且折射角是 30°.

12. (本题 3 分)波长为λ的单色光垂直照射如图所示的透明

薄膜. 膜厚度为 e, 两束反射光的光程差

 $\sqrt{n_1 = 1.00} \sqrt{\lambda}$ $n_2 = 1.30$ $n_3 = 1.50$

 $\delta =$ _____.

- **15.** (本题 4 分) 在某地发生两件事,静止位于该地的甲测得时间间隔为3s,若相对于甲作匀直线运动的乙测得时间间隔为5s,则乙相对于甲的运动速度是
- 16. (本题 3 分) 频率为200MHZ的一个光子的能量是 E=______,动量的大小是 $p_c=$ _____。(普朗克常量 $h=6.63\times10^{-34}\,\mathrm{J\cdot s}$ 。)

三、计算题(本大题共48分)

17. (本题 5 分) 二小球悬于同样长度 I 的线上. 将第一球沿竖直方向上举到悬点,而将第二球从平衡位置移开,使悬线和竖直线成一微小角度 α ,如图. 现将二球同时放开,则何者先到达最低位置?

18. (本题 5 分) 一简谐振动的振动曲线如图所示. 求振动方程.

19. (本题 5 分)在弹性媒质中有一沿 x 轴正向传播的平面波,其表达式为 $y = 0.01\cos(4t - \pi x - \frac{1}{2}\pi)$ (SI). 若在 x = 5.00 m 处有一媒质分界面,且在分界面处反射波相位突变 π ,设反射波的强度不变,试写出反射波的表达式.

20. (本题 10 分) 一列平面简谐波在媒质中以波速 u = 5 m/s 沿 x 轴正向传播,原点 O 处质元的振动曲线如图所示.

- (1) 求解并画出 x = 25 m 处质元的振动曲线.
- (2) 求解并画出 t=3 s 时的波形曲线.

22. (本题 8 分) 粒子在一维矩形无限深势阱中运动,波函数为: $\psi_n(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$ (0 < x < a) 若粒子处于 n = 1 的状态,试求在区间 $0 < x < \frac{1}{2}a$ 发现粒子的几率。(积分 $\int \sin^2 x dx = \frac{1}{2}x - \frac{1}{4}\sin 2x + C$)

21. (本题 10 分) 在牛顿环装置的平凸透镜和平板玻璃之间充满折射率 n=1.33 的透明液体(设平凸透镜的折射率 1.25,平板玻璃的折射率为 1.48),凸透镜的曲率半径 R=300~cm,波长 $\lambda=650~nm$ 的平行单色光垂直照射到牛顿环装置上,凸透镜的顶部刚好与平玻璃板接触。求:

1) 从中心向外数第 6 个暗环所在处液体厚度 e_{10} ; 2) 第 6 个暗环的半径 r_{10} 。

