Analysis of Stress-Heart Rate Coherence & Well-Being

$Sasha\ Sommerfeldt$

November 2018

Contents

PREP	ę
Prep variables in long format df	7
TESTS	10
Stress-heart rate coherence associations	
Multiple Comparisons Correction	27
Reactivity and Recovery	27
Is reactivity or recovery associated with coherence?	30
Is stress reactivity associated with heart rate reactivity?	38
Does coherence predict well-being outcomes when adjusting for reactivity?	
Does coherence predict well-being outcomes when adjusting for recovery?	
Does coherence predict well-being outcomes when adjusting for reactivity and recovery?	
Does reactivity and/or recovery predict well-being outcomes?	81
PLOT	92
FIGURE 1: Stress and heart rate by phase histograms	92
FIGURE 2: Interaction plots	94
FIGURE 3: Plot individual subject slopes	106
FIGURE 3: Histogram of BLUPS	111
SUPPLEMENTAL	112
I. Correlation (r) as coherence	112
Multiple Comparisons Correction	121
FIGURE S1: Correlations histogram	121
II. Lag from Survey to Biomarker substudies	122
III. PWB subscales	133

Non-linear Age

RStudio version 1.1.453 R version 3.5

Directories

Raw data files downloaded from http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies /29282 (biomarker/project 4) and /04652 (survey/project 1) And from http://midus.colectica.org/ for MIDUS 2 Milwaukee subsample

Then processed through Prep_Coherence_MIDUSII.R script. Find at: github.com/sashasomms/coherence_behavioral/

```
dir = '~/Desktop/UWMadison/MIDUS'
# Data directory
ddir = paste(dir, '/data', sep='')
# Analysis directory (to output plots)
adir = paste(dir, '/analysis', sep='')
setwd(ddir)
```

Packages

```
library(data.table)
library(plyr)
library(stats)
library(car)
library(ggplot2)
library(multilevel)
library(lme4)
library(lmSupport)
library(AICcmodavg)
library(pbkrtest)
library(boot)
library(rmarkdown)
library(broom)
```

```
library(pander)
library(broom.mixed)

## Warning in checkMatrixPackageVersion(): Package version inconsistency detected.
```

TMB was built with Matrix version 1.2.15

Current Matrix version is 1.2.14

Please re-install 'TMB' from source using install.packages('TMB', type = 'source') or ask CRAN for a binary version of 'TMB' matching (

Read in processed data files

Files generated in Prep_Coherence_MIDUSII.R script

```
# Wide format
fnameW = paste("coh_",today,".csv",sep='')
fpathW = paste(ddir,"/",fnameW, sep='')

# Long format
fnameL = paste("cohLong_",today,".csv",sep='')
fpathL = paste(ddir,"/",fnameL, sep='')

# Read in processed data
df = read.csv(fpathW)
dfL = read.csv(fpathL)
```

PREP

Subset dataframe

A condensed/subsetted dataframe for analysis - excluding the many survey/P1 people without biomarker/P4/coherence data

```
dfLs = dfL[!is.na(dfL$coherence_slope),]
length(unique(dfLs$M2ID)) # 1065
```

```
# [1] 1065
```

```
# Transform that subsetted version to wide format
dfLsW = reshape(dfLs, idvar = "M2ID", v.names=c('hr', 'stress', 'stress_CMC', 'ecgQ'), drop=c('X', 'stressMC'), timevar = "timepoint", dir
names(dfLsW)
# [1] "M2ID"
                             "birth year"
                                                   "P1 sex"
# [4] "P1_race"
                             "P1_ethnicity"
                                                   "pwb2"
                             "envMast2"
  [7] "autonomy2"
                                                   "persGrow2"
# [10] "posRela2"
                             "purpLife2"
                                                   "selfAcce2"
# [13] "COPEem"
                             "COPEprob"
                                                   "COPE denial"
# [16] "COPE_vent"
                             "COPE_disengage"
                                                   "COPE_posReGrow"
                             "COPE_plan"
# [19] "COPE_active"
                                                   "ZYGCAT"
# [22] "TOT_SIBS"
                             "M2FAMNUM"
                                                   "SAMPLMAJ"
# [25] "B4VTASK1str"
                             "gender"
                                                   "P1_PIage"
# [28] "P4_age"
                             "months_P1PI_to_P4"
                                                   "months_P1SAQ_to_P4"
                                                   "P4_CESD"
# [31] "months_P1cog_to_P4"
                             "P4_STAItrait"
# [34] "P4_diabetes"
                                                   "IL6"
                             "P4_BMI"
# [37] "CRP"
                             "coherence_as_r"
                                                   "coherence_as_r5"
# [40] "stressNotNA"
                             "hrNotNA"
                                                   "complete"
# [43] "coherence_slope"
                             "hr.3"
                                                   "stress.3"
# [46] "stress_CMC.3"
                                                   "hr.4"
                             "ecgQ.3"
# [49] "stress.4"
                             "stress CMC.4"
                                                   "ecgQ.4"
# [52] "hr.1"
                             "stress.1"
                                                   "stress_CMC.1"
# [55] "ecgQ.1"
                             "hr.2"
                                                   "stress.2"
# [58] "stress_CMC.2"
                             "ecgQ.2"
                                                   "hr.5"
# [61] "stress.5"
                             "stress_CMC.5"
                                                   "ecgQ.5"
length(dfLsW$M2ID)
```

[1] 1065

Summary statistics and demographics

```
summary(dfLsW$gender)
# (1) MALE (2) FEMALE
# 455 610
```

```
varDescribe(dfLsW$months_P1SAQ_to_P4)
           n mean
                     sd median min max skew kurtosis
# X1 1 1065 25.89 14.19
                            24 0 62 0.39 -0.71
varDescribe(dfLsW$P4_age)
                     sd median min max skew kurtosis
    vars
           n mean
# X1 1 1065 56.4 11.21
                           56 35 86 0.41
                                             -0.47
varDescribe(dfLsW$P1_PIage)
           n mean sd median min max skew kurtosis
# X1 1 1065 53.55 11.4
                           53 34 83 0.42
                                              -0.5
varDescribe(dfLsW$months_P1SAQ_to_P4)
           n mean sd median min max skew kurtosis
      1 1065 25.89 14.19
                            24 0 62 0.39
                                              -0.71
varDescribe(dfLsW$months P1PI to P4)
           n mean
                     sd median min max skew kurtosis
      1 1065 28.4 13.93
                           27 5 63 0.37
varDescribe(dfLsW$months P1cog to P4)
  vars n mean
                     sd median min max skew kurtosis
# X1 1 973 23.62 13.64
                           21 1 61 0.53
varDescribe(dfLsW$pwb2)
           n mean
                       sd median min max skew kurtosis
# X1 1 1061 232.81 35.25
                            238 97 294 -0.7
varDescribe(dfLsW$P4_CESD)
           n mean sd median min max skew kurtosis
# X1 1 1057 8.61 8.1
                        6 0 54 1.6
                                            3.16
varDescribe(dfLsW$P4_STAItrait)
           n mean sd median min max skew kurtosis
```

0.39

X1 1 1057 34.2 8.98 33 20 71 0.84

```
varDescribe(dfLsW$IL6)
            n mean sd median min max skew kurtosis
     1 1058 2.96 2.89
                           2.1 0.26 21.82 3.36
                                                 14.45
varDescribe(dfLsW$CRP)
            n mean sd median min max skew kurtosis
       1 1052 2.85 4.26 1.38 0.14 59.3 5.09
# X1
                                                42.36
varDescribe(dfLsW$COPE_denial)
          n mean sd median min max skew kurtosis
# X1
       1 1060 6.09 2.22
                             5 4 16 1.16
summary(dfLsW$P1_race) # Asian = 3, black = 193, Native american or alaska native aleutian islander/eskimo = 14, other = 27, white = 825,
                                                        1
                                                      819
                                                        2
                                                       23
                                                        3
                                                       11
                                                        3
                                                        5
                                                       25
                                                        7
                                                        1
                                                        8
                             BLACK AND/OR AFRICAN AMERICAN
                                                      170
# NATIVE AMERICAN OR ALASKA NATIVE ALEUTIAN ISLANDER/ESKIMO
                                           OTHER (SPECIFY)
                                                    WHITE
```

Siblings

Prep variables in long format df

- Have age for everyone (so don't need to recenter well-being variable based on who has age)
- Stress is centered within cluster (centered around each subject's mean)
- Thus: for each analysis, just need to re-center age based on who has that well-being variable (this is probably overkill, the mean changes very little, but it's done)

Cluster mean center

```
dfLs$stress_CMC = dfLs$stress - ave(dfLs$stress, dfLs$M2ID, na.rm=T)
dfLs$hr_CMC = dfLs$hr - ave(dfLs$hr, dfLs$M2ID, na.rm=T)
```

Mean Center

```
dfLs$P4_age_C = dfLs$P4_age - mean(dfLs$P4_age, na.rm=T)
# Self reports
dfLs$pwb2_C = dfLs$pwb2 - mean(dfLs$pwb2, na.rm=T)
dfLs$P4_CESD_C = dfLs$P4_CESD- mean(dfLs$P4_CESD, na.rm=T)
dfLs$P4_STAItrait_C = dfLs$P4_STAItrait - mean(dfLs$P4_STAItrait, na.rm=T)
dfLs$COPE_denial_C = dfLs$COPE_denial - mean(dfLs$COPE_denial, na.rm=T)
# Divide pwb, cesd, stai by 10 so SEs larger, interpretable
dfLs$pwb2_C_d10 = dfLs$pwb2_C/10.000000
dfLs$P4_CESD_C_d10 = dfLs$P4_CESD_C/10.000000
dfLs$P4_STAItrait_C_d10 = dfLs$P4_STAItrait_C/10.000000
```

```
# PWB subscales
dfLs\u00e9autonomy2 C = dfLs\u00e9autonomy2 - mean(dfLs\u00e9autonomy2, na.rm=T)
dfLs\u00a9envMast2 C = dfLs\u00a9envMast2 - mean(dfLs\u00a4envMast2, na.rm=T)
dfLs$persGrow2 C = dfLs$persGrow2 - mean(dfLs$persGrow2, na.rm=T)
dfLs$posRela2 C = dfLs$posRela2 - mean(dfLs$posRela2, na.rm=T)
dfLs$purpLife2 C = dfLs$purpLife2 - mean(dfLs$purpLife2, na.rm=T)
dfLs$selfAcce2 C = dfLs$selfAcce2 - mean(dfLs$selfAcce2, na.rm=T)
# Inflammatory
dfLs$IL6_C = dfLs$IL6 - mean(dfLs$IL6, na.rm=T)
dfLs$CRP_C = dfLs$CRP - mean(dfLs$CRP, na.rm=T)
# Wide data frame
dfLsW$P4_age_C = dfLsW$P4_age - mean(dfLsW$P4_age, na.rm=T)
# Self reports
dfLsW$pwb2 C = dfLsW$pwb2 - mean(dfLsW$pwb2, na.rm=T)
dfLsW$P4 CESD C = dfLsW$P4 CESD- mean(dfLsW$P4 CESD, na.rm=T)
dfLsW$P4 STAItrait C = dfLsW$P4 STAItrait - mean(dfLsW$P4 STAItrait, na.rm=T)
dfLsW$COPE denial C = dfLsW$COPE denial - mean(dfLsW$COPE denial, na.rm=T)
# Inflammatory
dfLsW$IL6 C = dfLsW$IL6 - mean(dfLsW$IL6, na.rm=T)
dfLsW$CRP C = dfLsW$CRP - mean(dfLsW$CRP, na.rm=T)
# PWB subscales
dfLsW\u00e4autonomy2 C = dfLsW\u00e4autonomy2 - mean(dfLsW\u00e4autonomy2, na.rm=T)
dfLsW$envMast2_C = dfLsW$envMast2 - mean(dfLsW$envMast2, na.rm=T)
dfLsW$persGrow2_C = dfLsW$persGrow2 - mean(dfLsW$persGrow2, na.rm=T)
dfLsW$posRela2_C = dfLsW$posRela2 - mean(dfLsW$posRela2, na.rm=T)
dfLsW$purpLife2_C = dfLsW$purpLife2 - mean(dfLsW$purpLife2, na.rm=T)
dfLsW$selfAcce2_C = dfLsW$selfAcce2 - mean(dfLsW$selfAcce2, na.rm=T)
```

Recode dichotomous

```
dfLs$gender_C = varRecode(dfLs$gender, c('(1) MALE', '(2) FEMALE'), c(-.5,.5))
```

Log transform inflammatory markers for normal distribution

```
dfLs$IL6_T = log2(dfLs$IL6)
dfLsW$IL6_T = log2(dfLsW$IL6)
hist(dfLs$IL6_T)
```

Histogram of dfLs\$IL6_T


```
dfLs$CRP_T = log(dfLs$CRP, base=10)
dfLsW$CRP_T = log(dfLsW$CRP, base=10)
hist(dfLs$CRP_T)
```

Histogram of dfLs\$CRP_T


```
dfLs$IL6_T_C = dfLs$IL6_T - mean(dfLs$IL6_T, na.rm=T)
dfLs$CRP_T_C = dfLs$CRP_T - mean(dfLs$CRP_T, na.rm=T)
```

TESTS

Stress-heart rate coherence associations

Age

```
lmerM = lmer(hr ~ stress_CMC * P4_age_C + (1+ stress_CMC | M2ID) + (1 | M2FAMNUM), data=dfLs)
a = Anova(lmerM, type=3, test="F")
a
```

```
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
##
                               F Df Df.res
                                              Pr(>F)
## (Intercept)
                      49053.1688 1 910.30 < 2.2e-16 ***
## stress_CMC
                        677.6757 1 834.03 < 2.2e-16 ***
## P4_age_C
                         24.3479 1 951.47 9.49e-07 ***
## stress_CMC:P4_age_C
                       7.7536 1 842.97 0.005481 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * P4_age_C + (1 + stress_CMC | M2ID) + (1 | M2FAMNUM)
     Data: dfLs
## REML criterion at convergence: 29188.2
##
## Scaled residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -7.0979 -0.4728 -0.0427 0.4042 9.4677
## Random effects:
   Groups
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 83.2926 9.1265
            stress CMC
                       0.5321 0.7294
                                          0.18
## M2FAMNUM (Intercept) 30.1982 5.4953
## Residual
                         5.5894 2.3642
## Number of obs: 5174, groups: M2ID, 1065; M2FAMNUM, 940
## Fixed effects:
                       Estimate Std. Error t value
## (Intercept)
                      74.606886
                                  0.336632 221.627
## stress_CMC
                       0.879697
                                  0.033773 26.047
                                  0.029872 -4.937
## P4_age_C
                      -0.147480
## stress_CMC:P4_age_C -0.008380
                                  0.003008 -2.786
## Correlation of Fixed Effects:
```

```
## (Intr) st_CMC P4_g_C
## stress_CMC   0.105
## P4_age_C   -0.009   0.001
## s_CMC:P4_C   0.001 -0.031   0.106

table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)

## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLs): The following column names in ANOVA output were not recognized or
## transformed: Df.res

pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	49053	1	910	0
$stress_CMC$	678	1	834	8.05e-110
$P4_age_C$	24.3	1	951	9.49 e-07
$stress_CMC:P4_age_C$	7.75	1	843	0.00548

Gender

```
lmerM = lmer(hr ~ stress_CMC * gender_C + (1+ stress_CMC | M2ID) + (1 | M2FAMNUM), data=dfLs)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: hr
                               F Df Df.res
                                              Pr(>F)
## (Intercept)
                      20311.9902 1 997.91 < 2.2e-16 ***
## stress_CMC
                        258.9752 1 890.34 < 2.2e-16 ***
## gender C
                         27.0488 1 1034.08 2.391e-07 ***
## stress_CMC:gender_C 0.5594 1 850.02
                                              0.4547
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
```

```
## Formula:
## hr ~ stress_CMC * gender_C + (1 + stress_CMC | M2ID) + (1 | M2FAMNUM)
      Data: dfLs
##
## REML criterion at convergence: 29178.1
## Scaled residuals:
       Min
                1Q Median
                                3Q
                                       Max
## -7.0543 -0.4760 -0.0405 0.4079 9.4955
##
## Random effects:
   Groups
                         Variance Std.Dev. Corr
           Name
## M2ID
             (Intercept) 83.5457 9.1403
             stress\_CMC
                         0.5396 0.7346
                                           0.20
## M2FAMNUM (Intercept) 29.6326 5.4436
   Residual
                          5.5901 2.3643
## Number of obs: 5174, groups: M2ID, 1065; M2FAMNUM, 940
## Fixed effects:
                          Estimate Std. Error t value
## (Intercept)
                          72.60364
                                      0.50890 142.669
## stress CMC
                           0.84851
                                      0.05270 16.102
## gender C0.5
                           3.48633
                                      0.66938
                                               5.208
## stress_CMC:gender_C0.5 0.05149
                                      0.06881 0.748
##
## Correlation of Fixed Effects:
               (Intr) st_CMC g_C0.5
## stress_CMC
              0.111
## gender C0.5 -0.751 -0.085
## s_CMC:_C0.5 -0.086 -0.766 0.115
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLs): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	20312	1	998	0
$stress_CMC$	259	1	890	2.44e-51
$\operatorname{gender} \mathcal{L}$	27	1	1034	2.39e-07
$stress_CMC:gender_C$	0.559	1	850	0.455

PWB

```
# Center age for subjects in this analysis
varDescribe(dfLs$pwb2_C)
##
                        sd median
      vars
                                     min
                                           max skew kurtosis
             n mean
## X1
        1 5305
                  0 35.23 5.19 -135.81 61.19 -0.7
length(dfLs$P4_age[!is.na(dfLs$pwb2_C)])
## [1] 5305
dfLs$P4_age_C = dfLs$P4_age - mean(dfLs$P4_age[!is.na(dfLs$pwb2_C)], na.rm=T)
# Run the test
lmerM = lmer(hr ~ stress_CMC * pwb2_C_d10 + P4_age_C*stress_CMC + (1+ stress_CMC | M2ID) + (1 | M2FAMNUM), data=dfLs)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: hr
##
                                 F Df Df.res
                                                 Pr(>F)
## (Intercept)
                        49048.2054 1 904.94 < 2.2e-16 ***
## stress_CMC
                          692.2135 1 827.82 < 2.2e-16 ***
## pwb2_C_d10
                           0.0059 1 1058.31 0.9385844
## P4_age_C
                           23.9414 1 951.02 1.166e-06 ***
## stress_CMC:pwb2_C_d10 26.6977 1 822.77 2.987e-07 ***
## stress_CMC:P4_age_C
                           14.9033 1 846.04 0.0001218 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

summary(lmerM)

```
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * pwb2_C_d10 + P4_age_C * stress_CMC + (1 + stress_CMC |
      M2ID) + (1 | M2FAMNUM)
     Data: dfLs
##
##
## REML criterion at convergence: 29066.1
## Scaled residuals:
      Min
               1Q Median
                               3Q
                                     Max
## -7.0804 -0.4734 -0.0403 0.4042 9.4774
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 82.9873 9.1097
            stress_CMC 0.5161 0.7184
                                         0.18
## M2FAMNUM (Intercept) 29.9774 5.4752
## Residual
                         5.5892 2.3642
## Number of obs: 5154, groups: M2ID, 1061; M2FAMNUM, 936
## Fixed effects:
                         Estimate Std. Error t value
## (Intercept)
                        74.576312 0.336510 221.617
## stress CMC
                         0.883415 0.033557 26.326
## pwb2 C d10
                         0.007326 0.094901 0.077
## P4_age_C
                        -0.149293 0.030494 -4.896
## stress_CMC:pwb2_C_d10 0.050252
                                   0.009720 5.170
## stress_CMC:P4_age_C -0.011877
                                   0.003075 -3.863
## Correlation of Fixed Effects:
              (Intr) st_CMC p2_C_1 P4_g_C s_CMC:2
## stress_CMC
              0.103
## pwb2_C_d10 0.004 -0.001
## P4_age_C
              -0.010 0.001 -0.187
## s CMC:2_C_1 -0.001 0.028 0.107 -0.020
## s_CMC:P4__C 0.001 -0.038 -0.020 0.103 -0.219
```

```
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)

## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLs): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	49048	1	905	0
$stress_CMC$	692	1	828	2.37e-111
$pwb2_C_d10$	0.00594	1	1058	0.939
$P4_age_C$	23.9	1	951	1.17e-06
$stress_CMC:pwb2_C_d10$	26.7	1	823	2.99e-07
$stress_CMC:P4_age_C$	14.9	1	846	0.000122

Depression

```
# Center age for subjects in this analysis
varDescribe(dfLs$P4_CESD_C)
              n mean sd median min max skew kurtosis
## X1
        1 5285
                   0 8.1 -2.61 -8.61 45.39 1.61
                                                     3.17
length(dfLs$P4_age[!is.na(dfLs$P4_CESD_C)])
## [1] 5285
dfLs$P4_age_C = dfLs$P4_age - mean(dfLs$P4_age[!is.na(dfLs$P4_CESD_C)], na.rm=T)
# Run the test
lmerM = lmer(hr ~ stress_CMC * P4_CESD_C_d10 + P4_age_C*stress_CMC + (1 + stress_CMC | M2ID) + (1 | M2FAMNUM), data=dfLs)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
                                     F Df Df.res
                                                  Pr(>F)
```

```
## (Intercept)
                          48675.0923 1 903.93 < 2.2e-16 ***
## stress CMC
                           708.6105 1 821.66 < 2.2e-16 ***
## P4 CESD C d10
                             0.8915 1 1053.83
                                                   0.3453
## P4_age_C
                             21.6462 1 943.62 3.746e-06 ***
## stress CMC:P4 CESD C d10
                              36.7742 1 783.73 2.061e-09 ***
## stress_CMC:P4_age_C
                             15.6921 1 833.89 8.091e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula: hr ~ stress_CMC * P4_CESD_C_d10 + P4_age_C * stress_CMC + (1 +
      stress_CMC | M2ID) + (1 | M2FAMNUM)
     Data: dfLs
##
## REML criterion at convergence: 28941.4
## Scaled residuals:
      Min
               10 Median
                               3Q
                                     Max
## -7.1330 -0.4775 -0.0407 0.4082 9.4424
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 81.7186 9.0398
            stress CMC 0.4949 0.7035
                                         0.20
## M2FAMNUM (Intercept) 31.5649 5.6183
## Residual
                         5.5949 2.3654
## Number of obs: 5136, groups: M2ID, 1057; M2FAMNUM, 933
## Fixed effects:
                            Estimate Std. Error t value
## (Intercept)
                           74.604070
                                     0.337934 220.765
## stress CMC
                           0.885757 0.033254 26.636
## P4_CESD_C_d10
                           0.390758 0.413199 0.946
## P4_age_C
                           -0.141844 0.030469 -4.655
## stress_CMC:P4_CESD_C_d10 -0.249253 0.041077 -6.068
## stress_CMC:P4_age_C
                           -0.011962 0.003018 -3.964
## Correlation of Fixed Effects:
```

```
## (Intr) st_CMC P4_CES P4_g_C s_CMC:P4_C
## stress_CMC    0.113
## P4_CESD_C_1 -0.011    0.000
## P4_age_C    -0.012    0.001    0.179
## s_CMC:P4_CE    0.000 -0.037    0.117    0.020
## s_CMC:P4_C    0.001 -0.040    0.020    0.114    0.199
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLs): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	48675	1	904	0
$stress_CMC$	709	1	822	4.53e-113
$P4_CESD_C_d10$	0.891	1	1054	0.345
$P4_age_C$	21.6	1	944	3.75 e- 06
$stress_CMC:P4_CESD_C_d10$	36.8	1	784	2.06e-09
$stress_CMC:P4_age_C$	15.7	1	834	8.09e-05

Anxiety

```
# Center age for subjects in this analysis
varDescribe(dfLs$P4_STAItrait_C)

## vars n mean sd median min max skew kurtosis
## X1 1 5285 0 8.98 -1.2 -14.2 36.8 0.84 0.4

length(dfLs$P4_age[!is.na(dfLs$P4_STAItrait_C)])

## [1] 5285

dfLs$P4_age_C = dfLs$P4_age - mean(dfLs$P4_age[!is.na(dfLs$P4_STAItrait_C)], na.rm=T)

# Run the test
lmerM = lmer(hr ~ stress_CMC * P4_STAItrait_C_d10 + P4_age_C*stress_CMC + (1 + stress_CMC | M2ID) + (1 | M2FAMNUM), data=dfLs)
```

```
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: hr
##
                                        F Df Df.res
                                                        Pr(>F)
## (Intercept)
                               48804.0381 1 901.75 < 2.2e-16 ***
## stress_CMC
                                 698.7427 1 824.85 < 2.2e-16 ***
## P4_STAItrait_C_d10
                                  0.6496 1 1050.97 0.4204417
## P4 age C
                                  22.5998 1 946.23 2.305e-06 ***
## stress CMC:P4 STAItrait C d10 32.4933 1 769.39 1.704e-08 ***
## stress CMC:P4 age C
                           14.4580 1 834.40 0.0001538 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula: hr ~ stress_CMC * P4_STAItrait_C_d10 + P4_age_C * stress_CMC +
       (1 + stress_CMC | M2ID) + (1 | M2FAMNUM)
     Data: dfLs
##
##
## REML criterion at convergence: 28933.7
##
## Scaled residuals:
      Min
               1Q Median
                               3Q
                                     Max
## -7.0941 -0.4783 -0.0381 0.4069 9.4807
## Random effects:
                        Variance Std.Dev. Corr
   Groups Name
## M2ID
            (Intercept) 82.7810 9.0984
            stress CMC 0.5074 0.7123
                                         0.20
## M2FAMNUM (Intercept) 30.3042 5.5049
   Residual
                         5.5802 2.3622
## Number of obs: 5134, groups: M2ID, 1057; M2FAMNUM, 932
```

Fixed effects:

##

Estimate Std. Error t value

```
## (Intercept)
                                74.59287
                                            0.33743 221.063
## stress_CMC
                                 0.88498
                                            0.03346 26.450
## P4 STAItrait C d10
                                 0.30179
                                            0.37381 0.807
## P4 age C
                                -0.14510
                                            0.03050 - 4.757
## stress CMC:P4 STAItrait C d10 -0.21105
                                            0.03700 -5.704
## stress_CMC:P4_age_C
                                -0.01157
                                            0.00304 -3.805
## Correlation of Fixed Effects:
              (Intr) st_CMC P4_STA P4_g_C s_CMC:P4_S
## stress_CMC 0.113
## P4_STAI_C_1 -0.009 0.001
## P4_age_C -0.011 0.001 0.180
## s_CMC:P4_ST 0.001 -0.042 0.118 0.021
## s_CMC:P4__C 0.001 -0.042 0.021 0.114 0.198
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLs): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	48804	1	902	0
$stress_CMC$	699	1	825	5.05e-112
$P4_STAItrait_C_d10$	0.65	1	1051	0.42
$P4_age_C$	22.6	1	946	2.31e-06
$stress_CMC:P4_STAItrait_C_d10$	32.5	1	769	1.7e-08
$stress_CMC:P4_age_C$	14.5	1	834	0.000154

IL6

```
# Center age for subjects in this analysis
varDescribe(dfLs$IL6_T_C)
```

```
length(dfLs$P4_age[!is.na(dfLs$IL6_T_C)])
## [1] 5290
dfLs$P4_age_C = dfLs$P4_age - mean(dfLs$P4_age[!is.na(dfLs$IL6_T_C)], na.rm=T)
# Run the test
lmerM = lmer(hr ~ stress_CMC * IL6_T_C + P4_age_C*stress_CMC + (1 + stress_CMC | M2ID) + (1 | M2FAMNUM), data=dfLs)
a = Anova(lmerM, type=3, test="F")
a
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
                               F Df Df.res
                                               Pr(>F)
## (Intercept)
                      49387.3244 1 902.50 < 2.2e-16 ***
                        701.9324 1 820.80 < 2.2e-16 ***
## stress CMC
## IL6 T C
                       14.5493 1 1055.38 0.0001445 ***
## P4_age_C
                         29.1957 1 949.54 8.275e-08 ***
## stress_CMC:IL6_T_C
                         22.2044 1 762.26 2.913e-06 ***
## stress_CMC:P4_age_C
                          5.1371 1 818.63 0.0236806 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * IL6_T_C + P4_age_C * stress_CMC + (1 + stress_CMC |
      M2ID) + (1 | M2FAMNUM)
     Data: dfLs
##
## REML criterion at convergence: 28974.2
##
## Scaled residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -7.1655 -0.4782 -0.0442 0.4062 9.4401
##
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
```

```
M2ID
            (Intercept) 84.1103 9.1712
            stress_CMC 0.4884 0.6989
##
                                          0.23
## M2FAMNUM (Intercept) 27.9945 5.2910
## Residual
                         5.5835 2.3629
## Number of obs: 5147, groups: M2ID, 1058; M2FAMNUM, 933
## Fixed effects:
                       Estimate Std. Error t value
## (Intercept)
                      74.566859
                                  0.335299 222.389
## stress_CMC
                       0.876484
                                  0.033062 26.510
## IL6_T_C
                       1.202373
                                  0.314616 3.822
## P4_age_C
                      -0.163316
                                  0.030207 -5.407
## stress_CMC:IL6_T_C -0.145483
                                  0.030856 - 4.715
## stress_CMC:P4_age_C -0.006733
                                  0.002969 -2.268
## Correlation of Fixed Effects:
              (Intr) st_CMC IL6_T_ P4_g_C s_CMC:I
## stress_CMC 0.129
## IL6 T C
              -0.004 -0.001
## P4_age_C
              -0.008 0.001 -0.160
## s CMC:IL6 T -0.001 -0.007 0.136 -0.022
## s_CMC:P4__C 0.001 -0.035 -0.022 0.132 -0.134
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLs): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	49387	1	902	0
$stress_CMC$	702	1	821	2.93e-112
${ m IL6_T_C}$	14.5	1	1055	0.000144
$P4_age_C$	29.2	1	950	8.27e-08
$stress_CMC:IL6_T_C$	22.2	1	762	2.91e-06
$stress_CMC:P4_age_C$	5.14	1	819	0.0237

CRP

```
# Center age for subjects in this analysis
varDescribe(dfLs$CRP_T_C)
             n mean sd median min max skew kurtosis
## X1
        1 5260
                  0 0.51 -0.03 -1.02 1.61 0.05
                                                   -0.44
length(dfLs$P4_age[!is.na(dfLs$CRP_T_C)])
## [1] 5260
dfLs$P4_age_C = dfLs$P4_age - mean(dfLs$P4_age[!is.na(dfLs$CRP_T_C)], na.rm=T)
# Run the test
lmerM = lmer(hr ~ stress_CMC * CRP_T_C + P4_age_C*stress_CMC + (1 + stress_CMC | M2ID) + (1 | M2FAMNUM), data=dfLs)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
                              F Df Df.res
                                              Pr(>F)
## (Intercept)
                      49078.668 1 902.33 < 2.2e-16 ***
## stress CMC
                      680.613 1 819.13 < 2.2e-16 ***
## CRP_T_C
                       24.137 1 1046.92 1.041e-06 ***
## P4 age C
                         23.060 1 939.56 1.826e-06 ***
## stress_CMC:CRP_T_C 7.155 1 827.20 0.007623 **
## stress CMC:P4 age C
                          8.802 1 829.94 0.003095 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * CRP_T_C + P4_age_C * stress_CMC + (1 + stress_CMC |
      M2ID) + (1 | M2FAMNUM)
     Data: dfLs
##
## REML criterion at convergence: 28817.8
```

```
##
## Scaled residuals:
      Min
##
               1Q Median
                               3Q
                                      Max
## -7.1728 -0.4754 -0.0394 0.4055 9.4259
## Random effects:
   Groups Name
                        Variance Std.Dev. Corr
   M2ID
            (Intercept) 78.7779 8.8757
            stress_CMC 0.5023 0.7087
                                          0.22
## M2FAMNUM (Intercept) 32.6217 5.7115
## Residual
                         5.5965 2.3657
## Number of obs: 5117, groups: M2ID, 1052; M2FAMNUM, 928
## Fixed effects:
##
                       Estimate Std. Error t value
## (Intercept)
                      74.547465
                                  0.336296 221.672
## stress_CMC
                       0.872203
                                  0.033412 26.104
## CRP_T_C
                       3.199604
                                  0.650060 4.922
                      -0.143695
                                  0.029908 -4.805
## P4 age C
## stress_CMC:CRP_T_C -0.175099
                                  0.065423 - 2.676
## stress CMC:P4 age C -0.008831
                                  0.002975 -2.969
##
## Correlation of Fixed Effects:
               (Intr) st_CMC CRP_T_ P4_g_C s_CMC:C
## stress CMC 0.122
## CRP_T_C
              -0.002 -0.001
## P4_age_C
              -0.010 0.001 0.016
## s_CMC:CRP_T -0.001 -0.012 0.126 0.002
## s CMC:P4__C 0.001 -0.038 0.002 0.124 0.044
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLs): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	49079	1	902	0

term	statistic	df	Df.res	p.value
$stress_CMC$	681	1	819	1.09e-109
$\operatorname{CRP}_{\operatorname{T}}$	24.1	1	1047	1.04e-06
$P4_age_C$	23.1	1	940	1.83e-06
$stress_CMC:CRP_T_C$	7.15	1	827	0.00762
$stress_CMC:P4_age_C$	8.8	1	830	0.0031

Denial

```
# Center age for subjects in this analysis
length(dfLs$P4_age[!is.na(dfLs$COPE_denial_C)])
## [1] 5300
dfLs$P4 age C = dfLs$P4 age - mean(dfLs$P4 age[!is.na(dfLs$COPE denial C)], na.rm=T)
# Run the test
lmerM = lmer(hr ~ stress_CMC * COPE_denial_C + P4_age_C*stress_CMC + (1+ stress_CMC | M2ID) + (1 | M2FAMNUM), data=dfLs)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: hr
##
                                    F Df Df.res
                                                    Pr(>F)
## (Intercept)
                           48794.9153 1 903.47 < 2.2e-16 ***
## stress_CMC
                             697.4192 1 821.28 < 2.2e-16 ***
## COPE_denial_C
                             0.0640 1 1057.62 0.800396
## P4_age_C
                              24.0417 1 945.63 1.109e-06 ***
## stress_CMC:COPE_denial_C
                              20.6906 1 853.31 6.179e-06 ***
## stress_CMC:P4_age_C
                              6.8998 1 830.01 0.008779 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula: hr ~ stress CMC * COPE denial C + P4 age C * stress CMC + (1 +
      stress_CMC | M2ID) + (1 | M2FAMNUM)
```

```
##
      Data: dfLs
##
## REML criterion at convergence: 28988.6
##
## Scaled residuals:
       Min
                10 Median
                               3Q
                                      Max
## -7.1781 -0.4782 -0.0401 0.4055 9.4747
## Random effects:
    Groups Name
                         Variance Std.Dev. Corr
## M2ID
             (Intercept) 84.4781 9.191
             stress\_CMC
                        0.4859 0.697
                                           0.18
   M2FAMNUM (Intercept) 29.2390 5.407
    Residual
                          5.5473 2.355
## Number of obs: 5149, groups: M2ID, 1060; M2FAMNUM, 936
## Fixed effects:
##
                            Estimate Std. Error t value
## (Intercept)
                           74.603472
                                       0.337499 221.048
## stress_CMC
                            0.871002
                                       0.032961 26.425
## COPE denial C
                           -0.037553
                                       0.148277 -0.253
## P4_age_C
                           -0.147097
                                       0.029983 - 4.906
## stress CMC:COPE denial C -0.068955
                                       0.015150 - 4.552
## stress_CMC:P4_age_C
                           -0.007733
                                      0.002942 - 2.628
##
## Correlation of Fixed Effects:
               (Intr) st_CMC COPE__ P4_g_C s_CMC:C
## stress_CMC
               0.103
## COPE_denl_C -0.010 0.000
              -0.009 0.001 -0.017
## P4_age_C
## s_CMC:COPE_ 0.000 0.013 0.104 -0.004
## s_CMC:P4__C 0.001 -0.033 -0.004 0.104 -0.034
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLs): The following column names in ANOVA output were not recognized or
## transformed: Df.res
```

pander(table_obj, digits = 3) # Using pander() to view the created table, with 3 sig figs

term	statistic	df	Df.res	p.value
(Intercept)	48795	1	903	0
$stress_CMC$	697	1	821	9.55e-112
$COPE_denial_C$	0.064	1	1058	0.8
$P4_age_C$	24	1	946	1.11e-06
$stress_CMC:COPE_denial_C$	20.7	1	853	6.18e-06
$stress_CMC:P4_age_C$	6.9	1	830	0.00878

Multiple Comparisons Correction

```
Holm-Bonferonni
```

```
## p value for each test of a well-being marker

p = c(2.99E-07, 2.06E-09, 1.70E-08, 2.91E-06, 0.00762, 6.18E-06)

## Holm-bonferonni

p.adjust(p, method= 'holm')

## [1] 1.196e-06 1.236e-08 8.500e-08 8.730e-06 7.620e-03 1.236e-05
```

Reactivity and Recovery

Compute reactivity measures

```
# Stress reactivity
dfLsW$stressChange2to1 = dfLsW$stress.2 - dfLsW$stress.1
varDescribe(dfLsW$stressChange2to1)

## vars n mean sd median min max skew kurtosis
## X1 1 1065 2.35 1.76 2 -7 9 0.14 1.39
dfLsW$stressChange4to1 = dfLsW$stress.4 - dfLsW$stress.1
varDescribe(dfLsW$stressChange4to1)
```

```
sd median min max skew kurtosis
             n mean
## X1
        1 1065 2.85 2.06
                              3 -8 9 0.11
                                                 0.77
dfLsW\$stressChangeStresstoBase = rowMeans(dfLsW[c('stressChange2to1', 'stressChange4to1')], na.rm=TRUE)
varDescribe(dfLsW$stressChangeStresstoBase) # mean = 2.6, sd = 1.75, min = -7.5, max = 8
     vars
             n mean sd median min max skew kurtosis
## X1
        1 1065 2.6 1.75
                            2.5 - 7.5 8
                                                  1.14
# Heart rate reactivity
dfLsW$hrChange2to1 = dfLsW$hr.2 - dfLsW$hr.1
varDescribe(dfLsW$hrChange2to1)
     vars
             n mean sd median min max skew kurtosis
## X1
       1 1008 3.97 4.25
                            3.3 -7.3 38 1.71
                                                  7.35
dfLsW$hrChange4to1 = dfLsW$hr.4 - dfLsW$hr.1
varDescribe(dfLsW$hrChange4to1)
                      sd median min max skew kurtosis
     vars
             n mean
## X1
        1 1001 2.88 3.88
                            2.4 -9.4 26.8 1.21
                                                   4.11
dfLsW\$hrChangeStresstoBase = rowMeans(dfLsW[c('hrChange2to1', 'hrChange4to1')], na.rm=TRUE)
varDescribe(dfLsW$hrChangeStresstoBase) # mean = 3.42, sd = 3.81, min = -7.1, max = 30.95
                      sd median min max skew kurtosis
             n mean
                            2.9 -7.1 30.95 1.43
## X1
        1 1035 3.42 3.81
                                                    5.41
# Center reactivity
dfLsW$stressChangeStresstoBase C = dfLsW$stressChangeStresstoBase - mean(dfLsW$stressChangeStresstoBase, na.rm=T)
dfLsW$hrChangeStresstoBase_C = dfLsW$hrChangeStresstoBase - mean(dfLsW$hrChangeStresstoBase, na.rm=T)
# Self-reported stress
dfLsW$stressChange3to2 = dfLsW$stress.3 - dfLsW$stress.2
varDescribe(dfLsW$stressChange3to2)
             n mean sd median min max skew kurtosis
     vars
## X1
        1 1065 -2.17 1.76
                              -2 -8
                                       6 - 0.29
dfLsW$stressChange5to4 = dfLsW$stress.5 - dfLsW$stress.4
varDescribe(dfLsW$stressChange5to4)
             n mean sd median min max skew kurtosis
                              -3 -9 8 -0.06
## X1
      1 1065 -2.74 2.04
                                                   0.91
```

```
dfLsW\$stressChangeRecovtoStress = rowMeans(dfLsW[c('stressChange3to2', 'stressChange5to4')], na.rm=TRUE)
varDescribe(dfLsW$stressChangeRecovtoStress)
                               n mean sd median min max skew kurtosis
## X1 1 1065 -2.46 1.66 -2.5 -7.5 5 -0.14
# center
dfLsW$stressChangeRecovtoStress C = dfLsW$stressChangeRecovtoStress - mean(dfLsW$stressChangeRecovtoStress, na.rm=T)
# Heart rate
dfLsW$hrChange3to2 = dfLsW$hr.3 - dfLsW$hr.2
varDescribe(dfLsW$hrChange3to2)
                               n mean sd median min max skew kurtosis
## X1
                   1 1003 -3.35 3.93 -2.9 -33 7.1 -1.77
                                                                                                                     8.26
dfLsW$hrChange5to4 = dfLsW$hr.5 - dfLsW$hr.4
varDescribe(dfLsW$hrChange5to4)
             vars n mean sd median min max skew kurtosis
                   1 994 -2.8 3.38 -2.3 -24.8 8.3 -1.08
## X1
                                                                                                                     3.84
dfLsW\$hrChangeRecovtoStress = rowMeans(dfLsW[c('hrChange3to2', 'hrChange5to4')], na.rm=TRUE)
varDescribe(dfLsW$hrChangeRecovtoStress)
                               n mean sd median
                                                                                  min max skew kurtosis
## X1
                    1 1030 -3.06 3.33 -2.75 -26.45 6.45 -1.44
                                                                                                                              5.94
# center
dfLsW\$hrChangeRecovtoStress_C = dfLsW\$hrChangeRecovtoStress - mean(dfLsW\$hrChangeRecovtoStress, na.rm=T)
## Merge reactivity and recovery measures into dfLs
varsToMerge = c('M2ID', 'hrChangeStresstoBase', 'hrChangeStresstoBase C', 'stressChangeStresstoBase', 'stressChangeStresstoBase C', 'hrChangeStresstoBase', 'hrChangeStresstoBase C', 'stressChangeStresstoBase', 'hrChangeStresstoBase', 'hrchan
#dfLsW[varsToMerge]
# dfLs with Reactivity and Recovery data = dfLsRR
dfLsRR = merge.data.frame(dfLs, dfLsW[varsToMerge], by='M2ID', all=TRUE)
#varDescribe(dfLsRR)
# Center age
dfLsRR$P4_age_C = dfLsRR$P4_age - mean(dfLsRR$P4_age, na.rm=T)
```

Is reactivity or recovery associated with coherence?

Heart rate reactivity

```
# hr reactivity
lmerM = lmer(hr ~ stress CMC * hrChangeStresstoBase C + P4 age C * stress CMC + (1+ stress CMC M2ID) + (1 M2FAMNUM), data=dfLsRR)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
##
                                            F Df Df.res
                                                           Pr(>F)
## (Intercept)
                                    48347.497 1 884.70 < 2.2e-16 ***
## stress_CMC
                                    1477.918 1 553.80 < 2.2e-16 ***
## hrChangeStresstoBase_C
                                       18.144 1 1017.96 2.238e-05 ***
## P4_age_C
                                       19.873 1 916.88 9.299e-06 ***
## stress_CMC:hrChangeStresstoBase_C 1318.695 1 752.53 < 2.2e-16 ***
## stress_CMC:P4_age_C
                                        1.973 1 508.76
                                                            0.1607
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * hrChangeStresstoBase_C + P4_age_C * stress_CMC +
       (1 + stress CMC | M2ID) + (1 | M2FAMNUM)
     Data: dfLsRR
## REML criterion at convergence: 27851.6
##
## Scaled residuals:
       Min
                 1Q Median
                                   ЗQ
                                           Max
## -12.0186 -0.4942 -0.0253 0.4459 7.0565
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 8.305e+01 9.11338
```

```
stress_CMC 9.804e-04 0.03131 1.00
## M2FAMNUM (Intercept) 2.925e+01 5.40850
## Residual
                       5.357e+00 2.31460
## Number of obs: 5098, groups: M2ID, 1035; M2FAMNUM, 918
## Fixed effects:
                                    Estimate Std. Error t value
##
## (Intercept)
                                   74.611591 0.339084 220.039
## stress CMC
                                    ## hrChangeStresstoBase_C
                                    0.376262 0.088110 4.270
## P4_age_C
                                   -0.135265 0.030323 -4.461
## stress_CMC:hrChangeStresstoBase_C 0.195908 0.005386 36.376
## stress_CMC:P4_age_C
                                   -0.002527 0.001794 -1.409
##
## Correlation of Fixed Effects:
              (Intr) st_CMC hCSB_C P4_g_C s_CMC:C
## stress CMC
             0.042
## hrChngStB_C 0.006 0.000
## P4 age C
               0.001 0.001 0.070
## s_CMC:CSB_C 0.000 0.017 0.042 0.003
## s CMC:P4 C 0.001 -0.058 0.003 0.043 0.058
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsRR)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsRR): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	48347	1	885	0
$stress_CMC$	1478	1	554	1.93e-158
$hr Change Stress to Base_C$	18.1	1	1018	2.24 e-05
$P4_age_C$	19.9	1	917	9.3e-06
$stress_CMC: hrChangeStresstoBase_C$	1319	1	753	1.31e-167
$stress_CMC:P4_age_C$	1.97	1	509	0.161

Stress reactivity

```
# stress reactivity
lmerM = lmer(hr ~ stress_CMC * stress_CMC * stress_CMC * stress_CMC + P4_age_C * stress_CMC + (1+ stress_CMC | M2ID) + (1 | M2FAMNUM), data=dfLsRR)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: hr
                                                 F Df Df.res
                                                                 Pr(>F)
##
## (Intercept)
                                        49060.5947 1 908.36 < 2.2e-16 ***
## stress CMC
                                          652.6562 1 1108.84 < 2.2e-16 ***
## stressChangeStresstoBase C
                                          0.6268 1 1060.01 0.428720
## P4_age_C
                                           23.7626 1 951.90 1.276e-06 ***
## stress CMC:stressChangeStresstoBase C 10.3484 1 714.50 0.001354 **
## stress CMC:P4 age C
                                           6.5206 1 840.94 0.010839 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * stressChangeStresstoBase_C + P4_age_C * stress_CMC +
       (1 + stress_CMC | M2ID) + (1 | M2FAMNUM)
     Data: dfLsRR
## REML criterion at convergence: 29185.3
## Scaled residuals:
               10 Median
                               30
                                      Max
## -7.2472 -0.4730 -0.0443 0.4016 9.3916
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 83.5713 9.1417
            stress CMC 0.5241 0.7239
                                          0.17
## M2FAMNUM (Intercept) 29.9308 5.4709
## Residual
                         5.5843 2.3631
```

```
## Number of obs: 5174, groups: M2ID, 1065; M2FAMNUM, 940
##
## Fixed effects:
                                         Estimate Std. Error t value
## (Intercept)
                                        74.603915 0.336590 221.646
## stress CMC
                                        0.919418 0.035971 25.560
## stressChangeStresstoBase C
                                        -0.149642 0.188708 -0.793
## P4_age_C
                                        -0.146056 0.029945 -4.877
## stress CMC:stressChangeStresstoBase C -0.061563 0.019123 -3.219
## stress_CMC:P4_age_C
                                        -0.007672 0.003003 -2.555
##
## Correlation of Fixed Effects:
              (Intr) st_CMC sCSB_C P4_g_C s_CMC:C
## stress_CMC 0.092
## strssChSB C 0.004 0.002
## P4_age_C
             -0.009 0.000 -0.071
## s CMC:CSB C 0.002 -0.353 0.101 -0.005
## s_CMC:P4__C 0.001 -0.004 -0.004 0.099 -0.072
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsRR)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsRR): The following column names in ANOVA output were not recognized or
## transformed: Df.res
```

term	statistic	df	Df.res	p.value
(Intercept)	49061	1	908	0
$stress_CMC$	653	1	1109	1.41e-113
$stressChangeStresstoBase_C$	0.627	1	1060	0.429
$P4_age_C$	23.8	1	952	1.28e-06
$stress_CMC:stressChangeStresstoBase_C$	10.3	1	714	0.00135
$stress_CMC:P4_age_C$	6.52	1	841	0.0108

pander(table_obj, digits = 3)

Heart rate recovery

```
# hr recovery
lmerM = lmer(hr ~ stress_CMC * hrChangeRecovtoStress_C + P4_age_C * stress_CMC + (1+ stress_CMC | M2ID) + (1 | M2FAMNUM), data=dfLsRR)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: hr
                                             F Df Df.res
                                                             Pr(>F)
##
## (Intercept)
                                     48082.160 1 879.41 < 2.2e-16 ***
## stress CMC
                                      1324.508 1 548.48 < 2.2e-16 ***
## hrChangeRecovtoStress C
                                        19.528 1 1002.86 1.099e-05 ***
## P4_age_C
                                        22.602 1 911.21 2.315e-06 ***
## stress CMC:hrChangeRecovtoStress C 1306.213 1 672.09 < 2.2e-16 ***
## stress CMC:P4 age C
                                        17.280 1 512.28 3.780e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * hrChangeRecovtoStress_C + P4_age_C * stress_CMC +
       (1 + stress_CMC | M2ID) + (1 | M2FAMNUM)
     Data: dfLsRR
## REML criterion at convergence: 27788
## Scaled residuals:
       Min
                 10
                     Median
                                   3Q
                                           Max
## -11.6864 -0.4747 -0.0338 0.4379 7.2108
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 8.318e+01 9.12006
            stress CMC 5.754e-04 0.02399 1.00
## M2FAMNUM (Intercept) 2.923e+01 5.40604
## Residual
                        5.377e+00 2.31887
```

```
## Number of obs: 5085, groups: M2ID, 1030; M2FAMNUM, 913
##
## Fixed effects:
                                      Estimate Std. Error t value
## (Intercept)
                                     74.624414 0.340075 219.435
## stress CMC
                                      0.735922 0.020171 36.484
## hrChangeRecovtoStress C
                                     -0.447674 0.101052 -4.430
## P4_age_C
                                     -0.144192 0.030311 -4.757
## stress CMC:hrChangeRecovtoStress C -0.215940 0.005963 -36.211
## stress_CMC:P4_age_C
                                     -0.007483 0.001795 -4.169
##
## Correlation of Fixed Effects:
              (Intr) st_CMC hCRS_C P4_g_C s_CMC:C
## stress_CMC
              0.032
## hrChngRcS_C -0.005 0.001
## P4_age_C
               0.000 0.001 0.009
## s_CMC:CRS_C 0.000 0.037 0.034 0.001
## s_CMC:P4__C 0.001 -0.057 0.001 0.034 0.019
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsRR)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsRR): The following column names in ANOVA output were not recognized or
## transformed: Df.res
```

term	statistic	df	Df.res	p.value
(Intercept)	48082	1	879	0
$stress_CMC$	1325	1	548	2.16e-148
$hrChangeRecovtoStress_C$	19.5	1	1003	1.1e-05
$P4_age_C$	22.6	1	911	2.32e-06
$stress_CMC:hrChangeRecovtoStress_C$	1306	1	672	1.04e-159
$stress_CMC:P4_age_C$	17.3	1	512	3.78e-05

pander(table_obj, digits = 3)

Stress recovery

```
# stress recovery
lmerM = lmer(hr ~ stress_CMC * stress_CMC * stress_CMC + P4_age_C * stress_CMC + (1+ stress_CMC | M2ID) + (1 | M2FAMNUM), data=dfLsRR)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: hr
                                                 F Df Df.res
                                                                 Pr(>F)
##
## (Intercept)
                                         49002.4502 1 909.07 < 2.2e-16 ***
## stress CMC
                                           632.8103 1 1129.40 < 2.2e-16 ***
## stressChangeRecovtoStress C
                                            0.0162 1 1057.93 0.898838
## P4 age C
                                          24.2816 1 950.78 9.815e-07 ***
## stress CMC:stressChangeRecovtoStress C 5.2489 1 711.29 0.022252 *
## stress CMC:P4 age C
                                           7.4174 1 842.03 0.006593 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * stressChangeRecovtoStress_C + P4_age_C * stress_CMC +
       (1 + stress_CMC | M2ID) + (1 | M2FAMNUM)
     Data: dfLsRR
## REML criterion at convergence: 29190.3
## Scaled residuals:
               10 Median
                               30
                                      Max
## -7.1327 -0.4739 -0.0447 0.4039 9.4526
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 83.3065 9.1272
            stress CMC 0.5292 0.7274
                                          0.18
## M2FAMNUM (Intercept) 30.2880 5.5035
## Residual
                         5.5863 2.3635
```

```
## Number of obs: 5174, groups: M2ID, 1065; M2FAMNUM, 940
##
## Fixed effects:
                                         Estimate Std. Error t value
## (Intercept)
                                        74.605982 0.336802 221.513
## stress CMC
                                         0.909223 0.036127 25.168
## stressChangeRecovtoStress C
                                         0.025278 0.198451 0.127
## P4_age_C
                                        -0.147419 0.029900 -4.930
## stress CMC:stressChangeRecovtoStress C 0.045771 0.019964 2.293
## stress_CMC:P4_age_C
                                        -0.008186 0.003004 -2.725
##
## Correlation of Fixed Effects:
              (Intr) st_CMC sCRS_C P4_g_C s_CMC:C
## stress_CMC 0.096
## strssChRS C -0.005 -0.001
## P4_age_C
             -0.009 0.000 0.031
## s_CMC:CRS_C -0.001 0.357 0.108 0.002
## s_CMC:P4__C 0.001 -0.020 0.002 0.105 0.028
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsRR)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsRR): The following column names in ANOVA output were not recognized or
## transformed: Df.res
```

term	statistic	df	Df.res	p.value
(Intercept)	49002	1	909	0
$stress_CMC$	633	1	1129	3.1e-111
$stressChangeRecovtoStress_C$	0.0162	1	1058	0.899
$P4_age_C$	24.3	1	951	9.81e-07
$stress_CMC:stressChangeRecovtoStress_C$	5.25	1	711	0.0223
$stress_CMC:P4_age_C$	7.42	1	842	0.00659

pander(table_obj, digits = 3)

Is stress reactivity associated with heart rate reactivity?

```
lmerM = lmer(hrChangeStresstoBase C ~ stressChangeStresstoBase C + P4 age C + (1 M2FAMNUM), data=dfLsW)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: hrChangeStresstoBase_C
                                  F Df Df.res Pr(>F)
                             0.0681 1 896.19 0.79413
## (Intercept)
## stressChangeStresstoBase_C 0.1077 1 1031.57 0.74285
## P4_age_C
                             5.0072 1 921.99 0.02548 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula: hrChangeStresstoBase C ~ stressChangeStresstoBase C + P4 age C +
       (1 | M2FAMNUM)
     Data: dfLsW
## REML criterion at convergence: 5677.6
## Scaled residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -2.2963 -0.5023 -0.0954 0.3750 5.5446
## Random effects:
## Groups Name
                        Variance Std.Dev.
## M2FAMNUM (Intercept) 5.403
                                 2.324
                        8.833
## Residual
                                 2.972
## Number of obs: 1035, groups: M2FAMNUM, 918
## Fixed effects:
                             Estimate Std. Error t value
## (Intercept)
                             -0.03164
                                         0.12115 -0.261
## stressChangeStresstoBase C 0.02217
                                         0.06744 0.329
```

term	statistic	df	Df.res	p.value
(Intercept)	0.0681	1	896	0.794
$stressChangeStresstoBase_C$	0.108	1	1032	0.743
$P4_age_C$	5.01	1	922	0.0255

Does coherence predict well-being outcomes when adjusting for reactivity?

PWB + reactivity

```
# PWB
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
                            F Df Df.res
                                       Pr(>F)
## (Intercept)
                   48451.0786 1 876.85 < 2.2e-16 ***
## stress_CMC
                     696.3578 1 820.74 < 2.2e-16 ***
## pwb2 C d10
                       0.0137 1 1024.71 0.9068054
## P4_age_C
                      18.5708 1 917.85 1.814e-05 ***
## stressChangeStresstoBase C 1.4874 1 1024.46 0.2229064
```

```
## hrChangeStresstoBase C
                               16.8527 1 1008.69 4.366e-05 ***
## stress_CMC:pwb2_C_d10
                               26.7139 1 816.69 2.968e-07 ***
## stress CMC:P4 age C
                               12.9924 1 832.53 0.0003313 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * pwb2_C_d10 + P4_age_C * stress_CMC + stressChangeStresstoBase_C +
      hrChangeStresstoBase C + (1 + stress CMC | M2ID) + (1 | M2FAMNUM)
##
     Data: dfLsRR
## REML criterion at convergence: 28627
## Scaled residuals:
      Min
               10 Median
                                     Max
## -7.1162 -0.4768 -0.0415 0.4007 9.3894
##
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 83.4966 9.138
            stress CMC 0.5127 0.716
                                         0.01
## M2FAMNUM (Intercept) 28.0835 5.299
## Residual
                         5.6293 2.373
## Number of obs: 5078, groups: M2ID, 1031; M2FAMNUM, 914
## Fixed effects:
                              Estimate Std. Error t value
## (Intercept)
                            74.578126 0.338560 220.280
## stress_CMC
                             0.888089 0.033640 26.400
## pwb2_C_d10
                             -0.011324
                                        0.096535 -0.117
## P4_age_C
                             -0.133923 0.031055 -4.312
## stressChangeStresstoBase_C -0.233787
                                        0.191172 -1.223
## hrChangeStresstoBase_C
                             0.364889
                                        0.088572 4.120
## stress_CMC:pwb2_C_d10
                             0.050377
                                        0.009741 5.171
## stress_CMC:P4_age_C
                            -0.011161 0.003095 -3.607
```

Correlation of Fixed Effects:

term	statistic	df	Df.res	p.value
(Intercept)	48451	1	877	0
$stress_CMC$	696	1	821	1.33e-111
$pwb2_C_d10$	0.0137	1	1025	0.907
$P4_age_C$	18.6	1	918	1.81e-05
$stressChangeStresstoBase_C$	1.49	1	1024	0.223
$hrChangeStresstoBase_C$	16.9	1	1009	4.37e-05
$stress_CMC:pwb2_C_d10$	26.7	1	817	2.97e-07
$stress_CMC:P4_age_C$	13	1	833	0.000331

Depression + reactivity

##

```
# CESD
lmerM = lmer(hr ~ stress_CMC * P4_CESD_C_d10 + P4_age_C * stress_CMC + stressChangeStresstoBase_C + hrChangeStresstoBase_C +
a = Anova(lmerM, type=3, test="F")
a

## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
```

F Df Df.res Pr(>F)

```
## (Intercept)
                             48198.8180 1 874.70 < 2.2e-16 ***
## stress CMC
                               711.9971 1 814.50 < 2.2e-16 ***
## P4 CESD C d10
                                 2.1285 1 1018.78 0.1448862
## P4 age C
                               16.0595 1 908.08 6.641e-05 ***
## stressChangeStresstoBase C
                              1.4078 1 1020.13 0.2357016
## hrChangeStresstoBase C
                               16.6307 1 1010.18 4.898e-05 ***
## stress CMC:P4 CESD C d10
                                36.5551 1 777.64 2.303e-09 ***
## stress_CMC:P4_age_C
                               13.7432 1 819.84 0.0002237 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * P4_CESD_C_d10 + P4_age_C * stress_CMC + stressChangeStresstoBase_C +
      hrChangeStresstoBase_C + (1 + stress_CMC | M2ID) + (1 | M2FAMNUM)
##
      Data: dfLsRR
##
## REML criterion at convergence: 28502.2
## Scaled residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -7.1618 -0.4822 -0.0399 0.4075 9.3588
## Random effects:
   Groups Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 82.2990 9.0719
            stress CMC 0.4917 0.7012
                                          0.03
## M2FAMNUM (Intercept) 29.3471 5.4173
   Residual
                         5.6345 2.3737
## Number of obs: 5060, groups: M2ID, 1027; M2FAMNUM, 911
## Fixed effects:
                              Estimate Std. Error t value
##
## (Intercept)
                             74.605761
                                        0.339581 219.699
## stress_CMC
                              0.890243
                                        0.033349 26.695
## P4_CESD_C_d10
                              0.615523 0.421293 1.461
## P4_age_C
                             -0.124569 0.031062 -4.010
## stressChangeStresstoBase C -0.227692 0.191378 -1.190
```

```
## hrChangeStresstoBase_C
                             0.364627
                                        0.089095 4.093
## stress_CMC:P4_CESD_C_d10 -0.249095
                                        0.041175 -6.050
## stress_CMC:P4_age_C
                            -0.011272
                                        0.003039 -3.709
## Correlation of Fixed Effects:
              (Intr) st_CMC P4_CES P4_g_C sCSB_C hCSB_C s_CMC:P4_C
## stress_CMC 0.017
## P4_CESD_C_1 -0.010 0.000
## P4 age C
             -0.001 0.000 0.199
## strssChSB_C 0.007 0.007 -0.043 -0.082
## hrChngStB_C 0.003 0.000 0.145 0.096 -0.026
## s_CMC:P4_CE 0.000 -0.036 0.017 0.003 0.000 0.000
## s_CMC:P4__C 0.001 -0.034 0.003 0.018 0.001 0.000 0.200
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsRR)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsRR): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	48199	1	875	0
$stress_CMC$	712	1	814	3.25e-113
$P4_CESD_C_d10$	2.13	1	1019	0.145
$P4_age_C$	16.1	1	908	6.64 e-05
$stressChangeStresstoBase_C$	1.41	1	1020	0.236
$hrChangeStresstoBase_C$	16.6	1	1010	4.9e-05
$stress_CMC:P4_CESD_C_d10$	36.6	1	778	2.3e-09
stress_CMC:P4_age_C	13.7	1	820	0.000224

Anxiety + reactivity

```
# P4_STAItrait
lmerM = lmer(hr ~ stress_CMC * P4_STAItrait_C_d10 + P4_age_C * stress_CMC + stressChangeStresstoBase_C + hrChangeStresstoBase_C + (1+ stressChangeStresstoBase_C + total content of the stressChangeStresstoBase_C + hrChangeStresstoBase_C + (1+ stressChangeStresstoBase_C + total content of the stressChangeStresstoBase_C + hrChangeStresstoBase_C + (1+ stressChangeStresstoBase_C + total content of the stressChangeStresstoBase_C + hrChangeStresstoBase_C + (1+ stressChangeStresstoBase_C + total content of the stressChangeStresstoBase_C + hrChangeStresstoBase_C + (1+ stressChangeStresstoBase_C + total content of the stressChangeStresstoBase_C + (1+ stressChangeStresstoBase_C + total content of the stressChangeStressChangeStressChangeStressChangeStressChangeStressChangeStressChangeStressChangeStressChangeStressChangeStressC
```

```
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
##
                                       F Df Df.res
                                                      Pr(>F)
## (Intercept)
                              48247.7375 1 873.01 < 2.2e-16 ***
## stress CMC
                                702.1587 1 817.53 < 2.2e-16 ***
## P4_STAItrait_C_d10
                                  1.0661 1 1014.58 0.3020789
                                 17.5177 1 912.50 3.122e-05 ***
## P4 age C
## stressChangeStresstoBase C
                                 1.1415 1 1020.46 0.2855890
                                 15.1972 1 1008.27 0.0001033 ***
## hrChangeStresstoBase_C
## stress_CMC:P4_age_C
                                 12.5194 1 821.03 0.0004254 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula: hr ~ stress_CMC * P4_STAItrait_C_d10 + P4_age_C * stress_CMC +
      stressChangeStresstoBase_C + hrChangeStresstoBase_C + (1 +
##
      stress_CMC | M2ID) + (1 | M2FAMNUM)
##
     Data: dfLsRR
##
## REML criterion at convergence: 28495.6
## Scaled residuals:
      Min
               1Q Median
                              3Q
                                    Max
## -7.1192 -0.4771 -0.0426 0.4046 9.4008
## Random effects:
                       Variance Std.Dev. Corr
   Groups Name
   M2ID
            (Intercept) 83.3342 9.1288
##
            stress\_CMC
                        0.5042 0.7101
                                        0.03
## M2FAMNUM (Intercept) 28.2878 5.3186
## Residual
                        5.6193 2.3705
## Number of obs: 5058, groups: M2ID, 1027; M2FAMNUM, 910
## Fixed effects:
                              Estimate Std. Error t value
## (Intercept)
                              74.59753
                                          0.33936 219.816
```

```
## stress CMC
                                 0.88940
                                           0.03355 26.510
## P4_STAItrait_C_d10
                                 0.39387
                                           0.38083
                                                    1.034
## P4 age C
                                -0.13014
                                           0.03107 -4.188
## stressChangeStresstoBase_C
                                -0.20481
                                           0.19117 - 1.071
## hrChangeStresstoBase C
                                 0.34682
                                           0.08865 3.912
## stress_CMC:P4_STAItrait_C_d10 -0.21103
                                           0.03709 -5.690
## stress CMC:P4 age C
                                -0.01083
                                           0.00306 -3.540
## Correlation of Fixed Effects:
              (Intr) st_CMC P4_STA P4_g_C sCSB_C hCSB_C s_CMC:P4_S
## stress_CMC 0.020
## P4_STAI_C_1 -0.005 0.000
## P4_age_C
               0.003 0.000 0.189
## strssChSB_C 0.005 0.008 -0.024 -0.081
## hrChngStB_C 0.007 0.000 0.125 0.091 -0.020
## s_CMC:P4_ST 0.000 -0.041 0.021 0.004 0.000 0.000
## s_CMC:P4__C 0.001 -0.034 0.004 0.021 0.001 0.000 0.197
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsRR)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsRR): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	48248	1	873	0
$stress_CMC$	702	1	818	3.57e-112
$P4_STAItrait_C_d10$	1.07	1	1015	0.302
$P4_age_C$	17.5	1	912	3.12e-05
$stressChangeStresstoBase_C$	1.14	1	1020	0.286
$hrChangeStresstoBase_C$	15.2	1	1008	0.000103
stress_CMC:P4_STAItrait_C_d10	32.3	1	763	1.84e-08
$stress_CMC:P4_age_C$	12.5	1	821	0.000425

IL6 + reactivity

```
# IL6
lmerM = lmer(hr ~ stress_CMC * IL6_T_C + P4_age_C * stress_CMC + stressChangeStresstoBase_C + hrChangeStresstoBase_C + (1+ stress_CMC|M2II
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: hr
                                     F Df Df.res
                                                     Pr(>F)
##
## (Intercept)
                            49112.6562 1 874.02 < 2.2e-16 ***
## stress CMC
                              705.0468 1 813.81 < 2.2e-16 ***
## IL6 T C
                             18.7398 1 1025.27 1.645e-05 ***
## P4_age_C
                               25.2120 1 915.77 6.172e-07 ***
## stressChangeStresstoBase C 0.7484 1 1022.79
                                                  0.38719
## hrChangeStresstoBase C
                             15.7779 1 1007.58 7.630e-05 ***
                       22.5271 1 754.82 2.479e-06 ***
## stress CMC:IL6 T C
## stress_CMC:P4_age_C
                              3.9751 1 805.25 0.04651 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## hr ~ stress_CMC * IL6_T_C + P4_age_C * stress_CMC + stressChangeStresstoBase_C +
      hrChangeStresstoBase_C + (1 + stress_CMC | M2ID) + (1 | M2FAMNUM)
##
     Data: dfLsRR
## REML criterion at convergence: 28549.4
##
## Scaled residuals:
               10 Median
                              3Q
## -7.1803 -0.4791 -0.0437 0.4051 9.3687
##
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 84.0928 9.1702
```

stress_CMC 0.4863 0.6973

0.06

```
## M2FAMNUM (Intercept) 26.0281 5.1018
## Residual
                       5.6202 2.3707
## Number of obs: 5073, groups: M2ID, 1030; M2FAMNUM, 913
## Fixed effects:
                            Estimate Std. Error t value
## (Intercept)
                           74.557851 0.336166 221.789
## stress CMC
                            0.881594 0.033187 26.565
## IL6 T C
                            1.379825 0.318100 4.338
## P4_age_C
                           -0.153349 0.030518 -5.025
## hrChangeStresstoBase_C
                          0.351570 0.088203 3.986
## stress_CMC:IL6_T_C
                           -0.147131
                                      0.030982 - 4.749
## stress_CMC:P4_age_C
                           -0.005968 0.002991 -1.995
## Correlation of Fixed Effects:
             (Intr) st_CMC IL6_T_ P4_g_C sCSB_C hCSB_C s_CMC:I
## stress_CMC 0.036
## IL6 T C
             -0.013 0.000
## P4_age_C
              0.002 0.000 -0.157
## strssChSB_C 0.005 0.015 0.047 -0.084
## hrChngStB_C 0.006 0.000 0.127 0.051 -0.015
## s CMC:IL6 T -0.001 -0.008 0.038 -0.006 0.000 -0.001
## s_CMC:P4__C 0.001 -0.029 -0.006 0.037 0.001 0.000 -0.136
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsRR)
## Warning in tidy.anova(a, effects = c("ran pars", "fixed"), data =
## dfLsRR): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	49113	1	874	0
$stress_CMC$	705	1	814	2.21e-112
${ m IL6_T_C}$	18.7	1	1025	1.65e-05
$P4_age_C$	25.2	1	916	6.17e-07
$stressChangeStresstoBase_C$	0.748	1	1023	0.387
hrChangeStresstoBase C	15.8	1	1008	7.63e-05

term	statistic	df	Df.res	p.value
stress_CMC:IL6_T_C	22.5	1	755	2.48e-06
stress_CMC:P4_age_C	3.98	1	805	0.0465

CRP + reactivity

##

Min

1Q Median

3Q

Max

```
# CRP
lmerM = lmer(hr ~ stress_CMC * CRP_T_C + P4_age_C * stress_CMC + stressChangeStresstoBase_C + hrChangeStresstoBase_C + (1+ stress_CMC|M2II
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
##
                                    F Df Df.res
                                                    Pr(>F)
## (Intercept)
                            48861.7504 1 874.20 < 2.2e-16 ***
## stress_CMC
                              684.2299 1 812.37 < 2.2e-16 ***
## CRP_T_C
                              29.6922 1 1017.01 6.353e-08 ***
## P4_age_C
                             18.6059 1 907.56 1.783e-05 ***
## stressChangeStresstoBase_C 0.9048 1 1018.28 0.341732
## hrChangeStresstoBase C
                           ## stress_CMC:CRP_T_C
                              7.8016 1 818.40 0.005342 **
## stress_CMC:P4_age_C
                              7.2423 1 817.43 0.007266 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * CRP_T_C + P4_age_C * stress_CMC + stressChangeStresstoBase_C +
      hrChangeStresstoBase_C + (1 + stress_CMC | M2ID) + (1 | M2FAMNUM)
     Data: dfLsRR
##
## REML criterion at convergence: 28390.6
## Scaled residuals:
```

```
## -7.1897 -0.4745 -0.0387 0.4034 9.3526
##
## Random effects:
   Groups Name
                        Variance Std.Dev. Corr
  M2ID
            (Intercept) 78.7101 8.8719
##
            stress CMC
##
                        0.5005 0.7075
                                         0.04
## M2FAMNUM (Intercept) 30.5743 5.5294
   Residual
                         5.6324 2.3733
## Number of obs: 5043, groups: M2ID, 1024; M2FAMNUM, 908
##
## Fixed effects:
                              Estimate Std. Error t value
## (Intercept)
                             74.535174
                                        0.336962 221.198
## stress_CMC
                              0.877712
                                        0.033540 26.169
## CRP T C
                              3.583501
                                        0.656354 5.460
                             -0.130430
                                        0.030219 -4.316
## P4_age_C
## stressChangeStresstoBase_C -0.180621
                                        0.189359 -0.954
                                        0.087855 4.312
## hrChangeStresstoBase_C
                              0.378851
## stress CMC:CRP T C
                             -0.183689
                                        0.065729 - 2.795
## stress_CMC:P4_age_C
                             -0.008068
                                        0.002996 - 2.693
## Correlation of Fixed Effects:
              (Intr) st_CMC CRP_T_ P4_g_C sCSB_C hCSB_C s_CMC:C
##
## stress CMC
             0.021
## CRP T C
              -0.013 0.000
## P4 age C
              -0.004 0.000 0.016
## strssChSB C 0.005 0.009 0.025 -0.079
## hrChngStB_C 0.007 0.000 0.102 0.073 -0.015
## s_CMC:CRP_T 0.000 -0.014 0.022 0.001 0.000 -0.001
## s_CMC:P4__C 0.001 -0.035 0.001 0.022 0.001 0.000 0.039
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsRR)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsRR): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	48862	1	874	0
$stress_CMC$	684	1	812	6.83e-110
CRP_T_C	29.7	1	1017	6.35 e-08
$P4_age_C$	18.6	1	908	1.78e-05
$stressChangeStresstoBase_C$	0.905	1	1018	0.342
hrChangeStresstoBase_C	18.5	1	1008	1.9e-05
$stress_CMC:CRP_T_C$	7.8	1	818	0.00534
$stress_CMC:P4_age_C$	7.24	1	817	0.00727

Denial + reactivity

```
# denial
lmerM = lmer(hr ~ stress_CMC * COPE_denial_C + P4_age_C * stress_CMC + stressChangeStresstoBase_C + hrChangeStresstoBase_C + (1+ stress_CMC)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
                                     F Df Df.res
                                                     Pr(>F)
## (Intercept)
                            48109.4888 1 875.91 < 2.2e-16 ***
## stress_CMC
                             701.5992 1 814.45 < 2.2e-16 ***
## COPE_denial_C
                               0.0001 1 1024.71 0.9934647
## P4_age_C
                               19.0976 1 912.29 1.385e-05 ***
## stressChangeStresstoBase_C 1.2045 1 1023.33 0.2726830
## hrChangeStresstoBase_C
                         13.7280 1 1020.10 0.0002226 ***
## stress_CMC:COPE_denial_C
                           21.2404 1 847.12 4.675e-06 ***
## stress_CMC:P4_age_C
                          5.5655 1 816.65 0.0185521 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * COPE_denial_C + P4_age_C * stress_CMC + stressChangeStresstoBase_C +
      hrChangeStresstoBase_C + (1 + stress_CMC | M2ID) + (1 | M2FAMNUM)
```

```
##
     Data: dfLsRR
##
## REML criterion at convergence: 28549.4
##
## Scaled residuals:
      Min
               10 Median
                               3Q
                                      Max
## -7.2063 -0.4843 -0.0381 0.4045 9.3967
## Random effects:
   Groups Name
                        Variance Std.Dev. Corr
   M2ID
            (Intercept) 85.0358 9.2215
            stress\_CMC
                        0.4831 0.6951
                                          0.02
## M2FAMNUM (Intercept) 27.4894 5.2430
   Residual
                         5.5837 2.3630
## Number of obs: 5073, groups: M2ID, 1030; M2FAMNUM, 914
## Fixed effects:
                              Estimate Std. Error t value
## (Intercept)
                             74.611286
                                         0.339904 219.507
## stress CMC
                              0.875742
                                        0.033048 26.499
## COPE denial C
                             -0.001239
                                        0.150958 -0.008
## P4_age_C
                             -0.133549
                                         0.030539 - 4.373
## stressChangeStresstoBase C -0.212189
                                         0.192810 -1.101
## hrChangeStresstoBase C
                              0.333195
                                         0.089631 3.717
## stress CMC:COPE denial C
                           -0.070040
                                        0.015188 - 4.612
## stress_CMC:P4_age_C
                             -0.006992
                                         0.002962 -2.361
## Correlation of Fixed Effects:
              (Intr) st_CMC COPE__ P4_g_C sCSB_C hCSB_C s_CMC:C
## stress_CMC
              0.014
## COPE_denl_C -0.011 0.000
               0.005 0.001 -0.023
## P4_age_C
## strssChSB_C 0.003 0.006 0.067 -0.082
## hrChngStB_C 0.008 0.000 0.119 0.068 -0.010
## s_CMC:COPE_ 0.000 0.012 0.013 -0.001 0.000 0.000
## s CMC:P4 C 0.001 -0.025 -0.001 0.015 0.001 0.000 -0.036
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsRR)
```

Warning in tidy.anova(a, effects = c("ran pars", "fixed"), data =

 $\mbox{\tt \#\#}$ dfLsRR): The following column names in ANOVA output were not recognized or $\mbox{\tt \#\#}$ transformed: Df.res

pander(table_obj, digits = 3)

term	statistic	df	Df.res	p.value
(Intercept)	48109	1	876	0
$stress_CMC$	702	1	814	5.3e-112
$COPE_denial_C$	6.71 e-05	1	1025	0.993
$P4_age_C$	19.1	1	912	1.38e-05
stressChangeStresstoBase C	1.2	1	1023	0.273
hrChangeStresstoBase C	13.7	1	1020	0.000223
stress_CMC:COPE_denial_C	21.2	1	847	4.67e-06
stress CMC:P4 age C	5.57	1	817	0.0186

Does coherence predict well-being outcomes when adjusting for recovery?

PWB + recovery

```
# PWB
lmerM = lmer(hr ~ stress_CMC * pwb2_C_d10 + P4_age_C * stress_CMC + stressChangeRecovtoStress_C + hrChangeRecovtoStress_C + (1+ stress_CMC
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
                                       F Df Df.res
                                                      Pr(>F)
## (Intercept)
                              48154.2993 1 871.94 < 2.2e-16 ***
## stress_CMC
                                693.4114 1 818.08 < 2.2e-16 ***
## pwb2_C_d10
                                  0.0699 1 1019.70 0.7915532
## P4_age_C
                                 21.3914 1 910.04 4.286e-06 ***
## stressChangeRecovtoStress_C 0.7717 1 1018.61 0.3798914
## hrChangeRecovtoStress_C
                                 22.9971 1 996.22 1.870e-06 ***
## stress CMC:pwb2 C d10
                                 26.6775 1 813.91 3.025e-07 ***
## stress_CMC:P4_age_C
                                12.7347 1 830.59 0.0003795 ***
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * pwb2_C_d10 + P4_age_C * stress_CMC + stressChangeRecovtoStress_C +
      hrChangeRecovtoStress C + (1 + stress CMC | M2ID) + (1 |
      M2FAMNUM)
##
     Data: dfLsRR
##
## REML criterion at convergence: 28553.8
##
## Scaled residuals:
               10 Median
                                      Max
      Min
                               ЗQ
## -7.1260 -0.4790 -0.0428 0.4036 9.3728
## Random effects:
   Groups Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 83.4912 9.1374
            stress_CMC 0.5145 0.7173
                                         -0.02
## M2FAMNUM (Intercept) 28.2379 5.3139
## Residual
                         5.6379 2.3744
## Number of obs: 5065, groups: M2ID, 1026; M2FAMNUM, 909
## Fixed effects:
                               Estimate Std. Error t value
## (Intercept)
                              74.593814
                                         0.339673 219.605
## stress CMC
                              0.888587
                                         0.033730 26.344
## pwb2_C_d10
                              -0.025748
                                         0.097221 -0.265
## P4_age_C
                              -0.143135
                                         0.030927 -4.628
## stressChangeRecovtoStress_C 0.177241
                                         0.201195 0.881
## hrChangeRecovtoStress_C
                                         0.102359 -4.813
                              -0.492615
## stress_CMC:pwb2_C_d10
                              0.050460
                                         0.009764 5.168
## stress_CMC:P4_age_C
                              -0.011079
                                         0.003103 -3.571
##
## Correlation of Fixed Effects:
              (Intr) st_CMC p2_C_1 P4_g_C sCRS_C hCRS_C s_CMC:2
## stress CMC -0.012
## pwb2 C d10 0.002 0.000
```

```
## P4_age_C     0.001     0.001 -0.184
## strssChRS_C -0.009     0.005     0.003     0.003
## hrChngRcS_C -0.002     0.000     0.142 -0.019 -0.097
## s_CMC:2_C_1     0.000     0.026 -0.013     0.002     0.001     0.000
## s_CMC:P4_C     0.001 -0.031     0.002 -0.011 -0.001     0.000 -0.220

table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsRR)

## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsRR): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	48154	1	872	0
$stress_CMC$	693	1	818	3.63e-111
$pwb2_C_d10$	0.0699	1	1020	0.792
$P4_age_C$	21.4	1	910	4.29 e - 06
$stressChangeRecovtoStress_C$	0.772	1	1019	0.38
$hrChangeRecovtoStress_C$	23	1	996	1.87e-06
stress_CMC:pwb2_C_d10	26.7	1	814	3.03e-07
$stress_CMC:P4_age_C$	12.7	1	831	0.00038

Depression + recovery

stress_CMC

P4_CESD_C_d10

```
# CESD
lmerM = lmer(hr ~ stress_CMC * P4_CESD_C_d10 + P4_age_C * stress_CMC + stressChangeRecovtoStress_C + hrChangeRecovtoStress_C + (1+ stress_a = Anova(lmerM, type=3, test="F")
a

## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: hr
## F Df Df.res Pr(>F)
## (Intercept) 47871.9751 1 869.72 < 2.2e-16 ***</pre>
```

709.8430 1 811.90 < 2.2e-16 ***

2.0320 1 1013.45 0.1543288

```
## P4 age C
                                 18.8640 1 900.24 1.563e-05 ***
## stressChangeRecovtoStress C
                                  0.5418 1 1013.76 0.4618572
## hrChangeRecovtoStress C
                                 20.3574 1 997.10 7.189e-06 ***
## stress CMC:P4 CESD C d10
                                 36.4240 1 775.17 2.459e-09 ***
## stress CMC:P4 age C
                                 13.4368 1 817.70 0.0002627 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * P4_CESD_C_d10 + P4_age_C * stress_CMC + stressChangeRecovtoStress_C +
      hrChangeRecovtoStress_C + (1 + stress_CMC | M2ID) + (1 |
      M2FAMNUM)
##
##
     Data: dfLsRR
## REML criterion at convergence: 28430.2
## Scaled residuals:
      Min
               1Q Median
                               3Q
## -7.1650 -0.4824 -0.0391 0.4101 9.3471
## Random effects:
   Groups Name
                        Variance Std.Dev. Corr
   M2ID
             (Intercept) 82.4206 9.0786
            stress CMC
                         0.4935 0.7025
                                          0.01
## M2FAMNUM (Intercept) 29.4537 5.4271
## Residual
                         5.6429 2.3755
## Number of obs: 5047, groups: M2ID, 1022; M2FAMNUM, 906
## Fixed effects:
                               Estimate Std. Error t value
## (Intercept)
                              74.619523
                                          0.340800 218.954
## stress_CMC
                               0.891440
                                          0.033444 26.654
## P4_CESD_C_d10
                               0.602676
                                          0.422189 1.428
## P4_age_C
                              -0.134388
                                          0.030921 -4.346
## stressChangeRecovtoStress_C 0.149214
                                          0.202155 0.738
## hrChangeRecovtoStress_C
                              -0.465876
                                          0.102887 - 4.528
## stress CMC:P4 CESD C d10
                              -0.249206
                                          0.041267 -6.039
```

```
## stress_CMC:P4_age_C
                              -0.011174 0.003047 -3.668
##
## Correlation of Fixed Effects:
              (Intr) st_CMC P4_CES P4_g_C sCRS_C hCRS_C s_CMC:P4_C
## stress_CMC 0.006
## P4_CESD_C_1 -0.011 0.000
## P4_age_C -0.001 0.001 0.185
## strssChRS_C -0.007 -0.002 0.014 0.034
## hrChngRcS_C 0.001 0.000 -0.148 -0.024 -0.101
## s_CMC:P4_CE 0.000 -0.037 0.005 0.001 0.000 0.000
## s_CMC:P4__C 0.001 -0.034 0.001 0.006 -0.001 0.000 0.199
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsRR)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsRR): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	47872	1	870	0
$stress_CMC$	710	1	812	7.13e-113
$P4_CESD_C_d10$	2.03	1	1013	0.154
$P4_age_C$	18.9	1	900	1.56e-05
$stressChangeRecovtoStress_C$	0.542	1	1014	0.462
$hrChangeRecovtoStress_C$	20.4	1	997	7.19e-06
$stress_CMC:P4_CESD_C_d10$	36.4	1	775	2.46e-09
$stress_CMC:P4_age_C$	13.4	1	818	0.000263

Anxiety + recovery

```
# P4_STAItrait
lmerM = lmer(hr ~ stress_CMC * P4_STAItrait_C_d10 + P4_age_C * stress_CMC + stressChangeRecovtoStress_C + hrChangeRecovtoStress_C + (1+ st
a = Anova(lmerM, type=3, test="F")
a
```

Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)

```
##
## Response: hr
                                         F Df Df.res
                                                         Pr(>F)
##
## (Intercept)
                                47932.3025 1 868.26 < 2.2e-16 ***
## stress CMC
                                  699.4756 1 814.85 < 2.2e-16 ***
## P4_STAItrait_C_d10
                                    1.2523 1 1007.96 0.2633873
## P4 age C
                                   20.0665 1 904.04 8.437e-06 ***
## stressChangeRecovtoStress_C
                                   0.3825 1 1014.85 0.5364128
## hrChangeRecovtoStress C
                                   19.1951 1 993.78 1.305e-05 ***
## stress_CMC:P4_STAItrait_C_d10
                                   31.8875 1 760.93 2.307e-08 ***
## stress_CMC:P4_age_C
                                   12.2718 1 818.99 0.0004848 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula: hr ~ stress_CMC * P4_STAItrait_C_d10 + P4_age_C * stress_CMC +
      stressChangeRecovtoStress_C + hrChangeRecovtoStress_C + (1 +
      stress CMC | M2ID) + (1 | M2FAMNUM)
##
     Data: dfLsRR
##
##
## REML criterion at convergence: 28423.3
##
## Scaled residuals:
      Min
               1Q Median
                                      Max
## -7.1234 -0.4784 -0.0420 0.4054 9.3883
##
## Random effects:
   Groups Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 83.1481 9.1186
            stress\_CMC
                         0.5065 0.7117
                                          0.01
## M2FAMNUM (Intercept) 28.6447 5.3521
   Residual
                         5.6276 2.3723
## Number of obs: 5045, groups: M2ID, 1022; M2FAMNUM, 905
##
## Fixed effects:
                                Estimate Std. Error t value
## (Intercept)
                                74.61361
                                            0.34055 219.096
## stress CMC
                                 0.89041
                                            0.03365 26.459
```

```
## P4_STAItrait_C_d10
                                 0.42860
                                            0.38237
                                                     1.121
## P4_age_C
                                -0.13877
                                            0.03096 -4.483
## stressChangeRecovtoStress C
                               0.12520
                                            0.20186 0.620
## hrChangeRecovtoStress_C
                                -0.45084
                                            0.10254 -4.397
## stress_CMC:P4_STAItrait_C_d10 -0.21021
                                            0.03720 -5.650
## stress_CMC:P4_age_C
                                -0.01076
                                            0.00307 -3.505
## Correlation of Fixed Effects:
              (Intr) st_CMC P4_STA P4_g_C sCRS_C hCRS_C s_CMC:P4_S
## stress_CMC
             0.009
## P4_STAI_C_1 -0.007 0.000
## P4_age_C
               0.002 0.001 0.181
## strssChRS_C -0.004 -0.004 0.010 0.038
## hrChngRcS_C -0.004 0.000 -0.138 -0.020 -0.101
## s_CMC:P4_ST 0.000 -0.042 0.009 0.002 0.000 0.000
## s_CMC:P4__C 0.001 -0.034 0.002 0.010 -0.001 0.000 0.200
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsRR)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsRR): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	47932	1	868	0
$stress_CMC$	699	1	815	9.09e-112
P4_STAItrait_C_d10	1.25	1	1008	0.263
$P4_age_C$	20.1	1	904	8.44e-06
$stressChangeRecovtoStress_C$	0.382	1	1015	0.536
$hrChangeRecovtoStress_C$	19.2	1	994	1.31e-05
$stress_CMC:P4_STAItrait_C_d10$	31.9	1	761	2.31e-08
$stress_CMC:P4_age_C$	12.3	1	819	0.000485

IL6 + recovery

M2ID

(Intercept) 84.1098 9.1711

```
# IL6
lmerM = lmer(hr ~ stress_CMC * IL6_T_C + P4_age_C * stress_CMC + stress_ChangeRecovtoStress_C + hrChangeRecovtoStress_C + (1+ stress_CMC | M2
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: hr
                                      F Df Df.res
                                                     Pr(>F)
##
## (Intercept)
                             48821.9934 1 868.56 < 2.2e-16 ***
## stress CMC
                               704.6114 1 811.04 < 2.2e-16 ***
## IL6 T C
                                19.0056 1 1020.12 1.435e-05 ***
## P4_age_C
                                28.5993 1 909.04 1.127e-07 ***
## stressChangeRecovtoStress C 0.2623 1 1016.89 0.60865
                            ## hrChangeRecovtoStress_C
## stress CMC:IL6 T C
## stress_CMC:P4_age_C
                              3.7054 1 803.00 0.05459 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## hr ~ stress_CMC * IL6_T_C + P4_age_C * stress_CMC + stressChangeRecovtoStress_C +
      hrChangeRecovtoStress_C + (1 + stress_CMC | M2ID) + (1 |
##
      M2FAMNUM)
     Data: dfLsRR
##
## REML criterion at convergence: 28476.3
## Scaled residuals:
      Min
               1Q Median
                                     Max
## -7.1900 -0.4797 -0.0460 0.4051 9.3523
## Random effects:
## Groups Name
                       Variance Std.Dev. Corr
```

```
stress_CMC 0.4875 0.6982
                                          0.03
## M2FAMNUM (Intercept) 26.1089 5.1097
## Residual
                         5.6283 2.3724
## Number of obs: 5060, groups: M2ID, 1025; M2FAMNUM, 908
## Fixed effects:
                               Estimate Std. Error t value
##
## (Intercept)
                              74.568839
                                          0.337214 221.132
## stress CMC
                               0.883553
                                          0.033271 26.556
## IL6_T_C
                               1.397468
                                          0.319880 4.369
## P4_age_C
                              -0.163139
                                          0.030483 -5.352
## stressChangeRecovtoStress_C 0.103183
                                          0.200904 0.514
## hrChangeRecovtoStress_C
                              -0.472659
                                          0.102183 -4.626
## stress_CMC:IL6_T_C
                              -0.150195
                                          0.031183 -4.817
## stress_CMC:P4_age_C
                              -0.005778
                                          0.003000 - 1.926
## Correlation of Fixed Effects:
              (Intr) st_CMC IL6_T_ P4_g_C sCRS_C hCRS_C s_CMC:I
## stress CMC 0.020
## IL6_T_C
              -0.019 0.000
## P4 age C
               0.002 0.001 -0.168
## strssChRS C -0.006 -0.009 -0.031 0.041
## hrChngRcS C -0.005 0.000 -0.131 0.025 -0.100
## s_CMC:IL6_T -0.001 -0.013 0.022 -0.003 -0.001 0.000
## s CMC:P4 C 0.001 -0.028 -0.003 0.021 -0.001 0.000 -0.140
table obj = broom.mixed::tidy(a, effects = c("ran pars", "fixed"), data=dfLsRR)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsRR): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	48822	1	869	0
$stress_CMC$	705	1	811	3.1e-112
$IL6_T_C$	19	1	1020	1.44e-05
$P4_age_C$	28.6	1	909	1.13e-07
$stressChangeRecovtoStress_C$	0.262	1	1017	0.609

term	statistic	df	Df.res	p.value
hrChangeRecovtoStress_C	21.2	1	996	4.57e-06
$stress_CMC:IL6_T_C$	23.2	1	754	1.79e-06
$stress_CMC:P4_age_C$	3.71	1	803	0.0546

CRP + recovery

##

```
# CRP
lmerM = lmer(hr ~ stress_CMC * CRP_T_C + P4_age_C * stress_CMC + stress_ChangeRecovtoStress_C + hrChangeRecovtoStress_C + (1+ stress_CMC | M2
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: hr
                                       F Df Df.res
                                                       Pr(>F)
##
## (Intercept)
                              48464.5847 1 868.90 < 2.2e-16 ***
## stress_CMC
                                682.0911 1 809.71 < 2.2e-16 ***
                                 27.8573 1 1012.23 1.598e-07 ***
## CRP_T_C
## P4_age_C
                                 21.7846 1 900.11 3.514e-06 ***
## stressChangeRecovtoStress_C 0.2836 1 1012.69 0.594466
## hrChangeRecovtoStress_C
                                 19.7030 1 998.21 1.005e-05 ***
## stress_CMC:CRP_T_C
                                7.7853 1 815.08 0.005390 **
## stress_CMC:P4_age_C
                                  7.0466 1 815.21 0.008096 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## hr ~ stress_CMC * CRP_T_C + P4_age_C * stress_CMC + stressChangeRecovtoStress_C +
      hrChangeRecovtoStress C + (1 + stress CMC | M2ID) + (1 |
##
      M2FAMNUM)
##
     Data: dfLsRR
## REML criterion at convergence: 28319.6
```

```
## Scaled residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -7.1855 -0.4763 -0.0397 0.4039 9.3457
## Random effects:
   Groups Name
                        Variance Std.Dev. Corr
   M2ID
            (Intercept) 78.9119 8.8832
            stress CMC
                        0.5023 0.7088
                                          0.03
## M2FAMNUM (Intercept) 30.7158 5.5422
## Residual
                         5.6408 2.3750
## Number of obs: 5030, groups: M2ID, 1019; M2FAMNUM, 903
## Fixed effects:
                               Estimate Std. Error t value
## (Intercept)
                              74.550368
                                          0.338407 220.298
## stress_CMC
                               0.878823
                                          0.033635 26.128
## CRP T C
                               3.478391
                                          0.657730
                                                    5.288
## P4_age_C
                              -0.140863
                                          0.030162 -4.670
## stressChangeRecovtoStress C 0.106584
                                          0.199570 0.534
## hrChangeRecovtoStress C
                              -0.452388
                                          0.101554 - 4.455
## stress CMC:CRP T C
                              -0.183965
                                          0.065897 - 2.792
## stress CMC:P4 age C
                              -0.007978
                                          0.003004 - 2.656
##
## Correlation of Fixed Effects:
              (Intr) st_CMC CRP_T_ P4_g_C sCRS_C hCRS_C s_CMC:C
## stress CMC 0.017
## CRP_T_C
              -0.019 0.000
              -0.005 0.001 0.010
## P4_age_C
## strssChRS C -0.008 -0.007 -0.023 0.036
## hrChngRcS_C -0.010 0.000 -0.067 0.006 -0.099
## s_CMC:CRP_T 0.000 -0.016 0.018 0.001 0.000 0.001
## s_CMC:P4__C 0.001 -0.034 0.001 0.018 -0.001 0.001 0.039
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsRR)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsRR): The following column names in ANOVA output were not recognized or
## transformed: Df.res
```

pander(table_obj, digits = 3)

term	statistic	df	Df.res	p.value
(Intercept)	48465	1	869	0
$stress_CMC$	682	1	810	1.5e-109
CRP T C	27.9	1	1012	1.6e-07
$P4_age_C$	21.8	1	900	3.51e-06
$stressChangeRecovtoStress_C$	0.284	1	1013	0.594
hrChangeRecovtoStress_C	19.7	1	998	1.01e-05
$stress_CMC:CRP_T_C$	7.79	1	815	0.00539
$stress_CMC:P4_age_C$	7.05	1	815	0.0081

denial + recovery

```
# Denial
lmerM = lmer(hr ~ stress_CMC * COPE_denial_C + P4_age_C * stress_CMC + stressChangeRecovtoStress_C + hrChangeRecovtoStress_C + (1+ stress_CMC * COPE_denial_C + P4_age_C * * cope_deni
a = Anova(lmerM, type=3, test="F")
a
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
##
                                                                                                                                         F Df Df.res
                                                                                                                                                                                                Pr(>F)
## (Intercept)
                                                                                                 47817.4673 1 870.91 < 2.2e-16 ***
## stress_CMC
                                                                                                                699.2313 1 811.90 < 2.2e-16 ***
## COPE_denial_C
                                                                                                                       0.0212 1 1019.72
                                                                                                                                                                                                0.8843
## P4 age C
                                                                                                                    22.0675 1 904.67 3.041e-06 ***
0.4884
## hrChangeRecovtoStress_C 19.2600 1 1008.99 1.261e-05 ***
## stress_CMC:COPE_denial_C 20.9901 1 844.56 5.312e-06 ***
## stress_CMC:COPE_denial_C
## stress_CMC:P4_age_C
                                                                                                             5.4155 1 814.63
                                                                                                                                                                                               0.0202 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
```

Linear mixed model fit by REML ['lmerMod']

```
## Formula:
## hr ~ stress CMC * COPE denial C + P4 age C * stress CMC + stressChangeRecovtoStress C +
      hrChangeRecovtoStress C + (1 + stress CMC | M2ID) + (1 |
      M2FAMNUM)
##
##
     Data: dfLsRR
## REML criterion at convergence: 28476.5
## Scaled residuals:
      Min
               10 Median
                               3Q
                                      Max
## -7.2149 -0.4851 -0.0393 0.4060 9.3811
## Random effects:
   Groups
          Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 84.9254 9.2155
            stress_CMC 0.4852 0.6966
                                          -0.01
## M2FAMNUM (Intercept) 27.7282 5.2658
## Residual
                         5.5919 2.3647
## Number of obs: 5060, groups: M2ID, 1025; M2FAMNUM, 909
## Fixed effects:
##
                               Estimate Std. Error t value
## (Intercept)
                              74.625852
                                          0.341007 218.840
## stress CMC
                               0.876828
                                          0.033145 26.454
## COPE denial C
                               0.022099
                                          0.151639 0.146
## P4 age C
                              -0.143177
                                          0.030459 - 4.701
## stressChangeRecovtoStress_C 0.140866
                                          0.202670 0.695
## hrChangeRecovtoStress_C
                              -0.453425
                                          0.102980 -4.403
## stress_CMC:COPE_denial_C
                              -0.069778
                                          0.015221 -4.584
## stress_CMC:P4_age_C
                              -0.006915
                                          0.002970 -2.329
## Correlation of Fixed Effects:
              (Intr) st_CMC COPE__ P4_g_C sCRS_C hCRS_C s_CMC:C
## stress_CMC -0.002
## COPE_denl_C -0.012 0.000
## P4 age C
               0.004 0.001 -0.029
## strssChRS C -0.006 0.001 -0.078 0.037
## hrChngRcS C -0.004 0.000 -0.128 0.011 -0.089
## s CMC:COPE 0.000 0.011 -0.003 0.000 0.000 -0.001
```

```
## s_CMC:P4_C 0.001 -0.024 0.000 -0.001 -0.001 0.001 -0.035
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsRR)

## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsRR): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	47817	1	871	0
$stress_CMC$	699	1	812	1.23e-111
$COPE_denial_C$	0.0212	1	1020	0.884
$P4_age_C$	22.1	1	905	3.04e-06
$stressChangeRecovtoStress_C$	0.48	1	1018	0.488
$hrChangeRecovtoStress_C$	19.3	1	1009	1.26e-05
$stress_CMC:COPE_denial_C$	21	1	845	5.31e-06
$stress_CMC:P4_age_C$	5.42	1	815	0.0202

Does coherence predict well-being outcomes when adjusting for reactivity and recovery?

PWB + reactivity + recovery

```
# PWB
lmerM = lmer(hr ~ stress_CMC * pwb2_C_d10 + P4_age_C * stress_CMC + stressChangeStresstoBase_C + hrChangeStresstoBase_C + stressChangeRecc
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
##
                                       F Df Df.res
                                                       Pr(>F)
## (Intercept)
                              48150.6948 1 870.61 < 2.2e-16 ***
## stress_CMC
                                694.0895 1 818.80 < 2.2e-16 ***
## pwb2 C d10
                                  0.2240 1 1018.00 0.6360748
## P4_age_C
                                 18.0891 1 915.15 2.325e-05 ***
## stressChangeStresstoBase C
                              1.6652 1 1014.99 0.1971997
```

```
## hrChangeStresstoBase_C
                                  3.0462 1 1011.20 0.0812276 .
## stressChangeRecovtoStress C
                                  0.1731 1 1016.42 0.6774429
## hrChangeRecovtoStress C
                                  5.9531 1 1015.92 0.0148617 *
## stress CMC:pwb2 C d10
                                 26.9403 1 814.30 2.652e-07 ***
## stress CMC:P4 age C
                                 12.7211 1 830.96 0.0003822 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * pwb2_C_d10 + P4_age_C * stress_CMC + stressChangeStresstoBase_C +
      hrChangeStresstoBase_C + stressChangeRecovtoStress_C + hrChangeRecovtoStress_C +
       (1 + stress_CMC | M2ID) + (1 | M2FAMNUM)
##
##
     Data: dfLsRR
## REML criterion at convergence: 28552.7
## Scaled residuals:
               10 Median
      Min
                                      Max
## -7.1912 -0.4825 -0.0412 0.4046 9.3278
## Random effects:
   Groups Name
                         Variance Std.Dev. Corr
   M2ID
             (Intercept) 83.9083 9.1601
            stress CMC
                         0.5149 0.7176
                                          -0.09
## M2FAMNUM (Intercept) 27.8855 5.2807
   Residual
                          5.6372 2.3743
## Number of obs: 5065, groups: M2ID, 1026; M2FAMNUM, 909
## Fixed effects:
                               Estimate Std. Error t value
## (Intercept)
                              74.593679
                                          0.339682 219.598
## stress_CMC
                               0.889094
                                          0.033734 26.356
## pwb2_C_d10
                              -0.046161
                                          0.097345 -0.474
                               -0.133034
## P4_age_C
                                          0.031256 - 4.256
## stressChangeStresstoBase_C -0.397955
                                          0.307519 -1.294
## hrChangeStresstoBase_C
                               0.235610
                                          0.134554 1.751
## stressChangeRecovtoStress C -0.135131
                                          0.323852 -0.417
```

```
## hrChangeRecovtoStress_C
                              -0.380672
                                          0.155512 -2.448
## stress_CMC:pwb2_C_d10
                               0.050703
                                          0.009763 5.193
## stress_CMC:P4_age_C
                              -0.011072
                                         0.003102 -3.569
## Correlation of Fixed Effects:
              (Intr) st_CMC p2_C_1 P4_g_C sCSB_C hCSB_C sCRS_C hCRS_C
## stress CMC -0.050
## pwb2_C_d10 0.002 0.000
## P4 age C
               0.001 0.002 -0.188
## strssChSB_C -0.003 -0.006 0.041 -0.093
## hrChngStB_C 0.001 0.001 -0.018 0.117 -0.066
## strssChRS_C -0.008  0.008  0.035 -0.058  0.783 -0.101
## hrChngRcS_C -0.001 0.001 0.078 0.079 -0.088 0.753 -0.145
## s_CMC:2_C_1 0.000 0.026 -0.051 0.009 0.001 0.000 0.002 0.000
## s_CMC:P4__C 0.001 -0.031 0.009 -0.049 0.000 0.000 0.000 0.000
              s_CMC:2
## stress CMC
## pwb2_C_d10
## P4 age C
## strssChSB C
## hrChngStB C
## strssChRS C
## hrChngRcS C
## s CMC:2 C 1
## s CMC:P4 C -0.220
table obj = broom.mixed::tidy(a, effects = c("ran pars", "fixed"), data=dfLsRR)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsRR): The following column names in ANOVA output were not recognized or
## transformed: Df.res
```

term	statistic	df	Df.res	p.value
(Intercept)	48151	1	871	0
$stress_CMC$	694	1	819	2.85e-111
$pwb2_C_d10$	0.224	1	1018	0.636
$P4_age_C$	18.1	1	915	2.32e-05
stressChangeStresstoBase C	1.67	1	1015	0.197

pander(table_obj, digits = 3)

term	statistic	df	Df.res	p.value
hrChangeStresstoBase_C	3.05	1	1011	0.0812
$stressChangeRecovtoStress_C$	0.173	1	1016	0.677
$hrChangeRecovtoStress_C$	5.95	1	1016	0.0149
$stress_CMC:pwb2_C_d10$	26.9	1	814	2.65e-07
$stress_CMC:P4_age_C$	12.7	1	831	0.000382

Depression + reactivity + recovery

(1 + stress_CMC | M2ID) + (1 | M2FAMNUM)

##

```
# CESD
lmerM = lmer(hr ~ stress_CMC * P4_CESD_C_d10 + P4_age_C * stress_CMC + stressChangeStresstoBase_C + hrChangeStresstoBase_C + stressChangeF
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
                                       F Df Df.res
                                                       Pr(>F)
## (Intercept)
                              47946.7718 1 867.80 < 2.2e-16 ***
## stress CMC
                                710.1739 1 812.37 < 2.2e-16 ***
## P4_CESD_C_d10
                                  3.0031 1 1011.61 0.0834101 .
## P4_age_C
                                 15.5848 1 905.28 8.500e-05 ***
## stressChangeStresstoBase_C
                                 1.8712 1 1011.97 0.1716431
## hrChangeStresstoBase_C
                                  3.2962 1 1005.05 0.0697389 .
## stressChangeRecovtoStress_C
                                  0.3181 1 1013.54 0.5728949
## hrChangeRecovtoStress_C
                                  4.9913 1 1011.16 0.0256935 *
## stress_CMC:P4_CESD_C_d10
                                 36.5236 1 775.45 2.341e-09 ***
## stress_CMC:P4_age_C
                                 13.4003 1 817.99 0.0002677 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * P4_CESD_C_d10 + P4_age_C * stress_CMC + stressChangeStresstoBase_C +
      hrChangeStresstoBase_C + stressChangeRecovtoStress_C + hrChangeRecovtoStress_C +
```

```
##
     Data: dfLsRR
##
## REML criterion at convergence: 28428.7
##
## Scaled residuals:
      Min
               10 Median
                               30
                                      Max
## -7.2274 -0.4816 -0.0396 0.4111 9.3036
## Random effects:
   Groups Name
                        Variance Std.Dev. Corr
   M2ID
            (Intercept) 82.6613 9.092
            stress\_CMC
                        0.4943 0.703
                                          -0.06
   M2FAMNUM (Intercept) 29.0765 5.392
   Residual
                         5.6418 2.375
## Number of obs: 5047, groups: M2ID, 1022; M2FAMNUM, 906
## Fixed effects:
                               Estimate Std. Error t value
## (Intercept)
                              74.616926
                                          0.340520 219.127
## stress CMC
                               0.891897
                                          0.033454 26.660
## P4 CESD C d10
                               0.734480
                                          0.423220
                                                    1.735
## P4 age C
                                          0.031242 -3.951
                              -0.123428
## stressChangeStresstoBase C -0.423482
                                          0.308693 -1.372
## hrChangeStresstoBase C
                               0.245795
                                          0.134937 1.822
## stressChangeRecovtoStress C -0.184334
                                          0.325909 -0.566
## hrChangeRecovtoStress C
                              -0.348963
                                          0.155682 - 2.242
## stress_CMC:P4_CESD_C_d10
                              -0.249599
                                          0.041276 -6.047
## stress_CMC:P4_age_C
                              -0.011161
                                          0.003047 - 3.663
##
## Correlation of Fixed Effects:
              (Intr) st_CMC P4_CES P4_g_C sCSB_C hCSB_C sCRS_C hCRS_C
## stress_CMC -0.034
## P4_CESD_C_1 -0.011 0.000
## P4_age_C
              -0.001 0.001 0.194
## strssChSB C 0.005 -0.004 -0.060 -0.095
## hrChngStB_C 0.003 0.001 0.053 0.120 -0.066
## strssChRS C -0.001 0.005 -0.040 -0.059 0.784 -0.097
## hrChngRcS C 0.003 0.001 -0.055 0.078 -0.083 0.750 -0.140
## s CMC:P4 CE 0.000 -0.037 -0.035 -0.006 0.000 0.000 -0.001 0.000
```

```
## s_CMC:P4__C 0.001 -0.033 -0.006 -0.032 0.001 0.000 0.000 0.000
               s_CMC:P4_C
## stress_CMC
## P4_CESD_C_1
## P4_age_C
## strssChSB_C
## hrChngStB_C
## strssChRS_C
## hrChngRcS_C
## s_CMC:P4_CE
## s_CMC:P4__C 0.199
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsRR)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsRR): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	47947	1	868	0
$stress_CMC$	710	1	812	6.29e-113
$P4_CESD_C_d10$	3	1	1012	0.0834
$P4_age_C$	15.6	1	905	8.5 e-05
$stressChangeStresstoBase_C$	1.87	1	1012	0.172
$hrChangeStresstoBase_C$	3.3	1	1005	0.0697
$stressChangeRecovtoStress_C$	0.318	1	1014	0.573
$hrChangeRecovtoStress_C$	4.99	1	1011	0.0257
$stress_CMC:P4_CESD_C_d10$	36.5	1	775	2.34e-09
$stress_CMC:P4_age_C$	13.4	1	818	0.000268

Anxiety + reactivity + recovery

```
# P4_STAItrait
lmerM = lmer(hr ~ stress_CMC * P4_STAItrait_C_d10 + P4_age_C * stress_CMC + stressChangeStresstoBase_C + hrChangeStresstoBase_C + stressChangeStresstoBase_C + stressChangeStresstoBase_C + stressChangeStresstoBase_C + stressChangeStresstoBase_C + hrChangeStresstoBase_C + stressChangeStresstoBase_C + stressChangeStr
```

```
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
##
                                         F Df Df.res
                                                         Pr(>F)
## (Intercept)
                                48008.7015 1 866.23 < 2.2e-16 ***
## stress CMC
                                  699.7750 1 815.19 < 2.2e-16 ***
## P4_STAItrait_C_d10
                                    1.7951 1 1006.37 0.1806029
## P4_age_C
                                   16.9509 1 909.57 4.185e-05 ***
## stressChangeStresstoBase C
                                   1.7481 1 1012.49 0.1864185
## hrChangeStresstoBase_C
                                    2.8777 1 1005.92 0.0901246 .
## stressChangeRecovtoStress_C
                                  0.3637 1 1013.79 0.5465772
## hrChangeRecovtoStress_C
                                   4.7699 1 1012.41 0.0291904 *
## stress_CMC:P4_STAItrait_C_d10
                                   31.8758 1 761.16 2.320e-08 ***
## stress_CMC:P4_age_C
                                   12.2192 1 819.22 0.0004984 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula: hr ~ stress_CMC * P4_STAItrait_C_d10 + P4_age_C * stress_CMC +
       stressChangeStresstoBase C + hrChangeStresstoBase C + stressChangeRecovtoStress C +
##
##
      hrChangeRecovtoStress_C + (1 + stress_CMC | M2ID) + (1 |
      M2FAMNUM)
##
##
     Data: dfLsRR
## REML criterion at convergence: 28422.2
##
## Scaled residuals:
               1Q Median
                                      Max
      Min
                               3Q
## -7.1802 -0.4789 -0.0434 0.4057 9.3484
## Random effects:
   Groups
                        Variance Std.Dev. Corr
           Name
   M2ID
             (Intercept) 83.3871 9.1317
##
            stress CMC
                         0.5072 0.7122
                                          -0.05
## M2FAMNUM (Intercept) 28.2726 5.3172
## Residual
                         5.6266 2.3721
## Number of obs: 5045, groups: M2ID, 1022; M2FAMNUM, 905
##
```

```
## Fixed effects:
                                 Estimate Std. Error t value
##
## (Intercept)
                                74.612817
                                            0.340275 219.272
## stress CMC
                                 0.890835
                                           0.033662 26.464
## P4 STAItrait C d10
                                 0.513393
                                           0.382536
                                                      1.342
## P4 age C
                                -0.128776
                                           0.031255 -4.120
## stressChangeStresstoBase C
                                -0.408762
                                           0.308290 -1.326
## hrChangeStresstoBase C
                                 0.229227
                                            0.134685
                                                      1.702
## stressChangeRecovtoStress C
                                            0.325555 -0.605
                                -0.196904
## hrChangeRecovtoStress_C
                                -0.341217
                                            0.155726 - 2.191
## stress_CMC:P4_STAItrait_C_d10 -0.210219
                                            0.037213 -5.649
## stress_CMC:P4_age_C
                                -0.010741
                                           0.003071 - 3.498
## Correlation of Fixed Effects:
              (Intr) st_CMC P4_STA P4_g_C sCSB_C hCSB_C sCRS_C hCRS_C
## stress_CMC -0.028
## P4 STAI C 1 -0.006 0.000
               0.002 0.001 0.186
## P4_age_C
## strssChSB C 0.003 -0.003 -0.034 -0.089
## hrChngStB C 0.002 0.001 0.032 0.118 -0.065
## strssChRS C 0.000 0.005 -0.022 -0.051 0.784 -0.099
## hrChngRcS C -0.001 0.001 -0.066 0.078 -0.085 0.752 -0.144
## s CMC:P4 ST 0.000 -0.041 -0.030 -0.005 -0.001 0.000 -0.001 0.000
## s CMC:P4 C 0.001 -0.034 -0.005 -0.027 0.001 0.000 0.000 0.000
##
              s CMC:P4 S
## stress_CMC
## P4_STAI_C_1
## P4_age_C
## strssChSB C
## hrChngStB_C
## strssChRS C
## hrChngRcS_C
## s_CMC:P4_ST
## s_CMC:P4__C 0.200
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsRR)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsRR): The following column names in ANOVA output were not recognized or
## transformed: Df.res
```

pander(table_obj, digits = 3)

term	statistic	df	Df.res	p.value
(Intercept)	48009	1	866	0
$stress_CMC$	700	1	815	8.16e-112
P4_STAItrait_C_d10	1.8	1	1006	0.181
$P4_age_C$	17	1	910	4.18e-05
$stressChangeStresstoBase_C$	1.75	1	1012	0.186
$hrChangeStresstoBase_C$	2.88	1	1006	0.0901
$stressChangeRecovtoStress_C$	0.364	1	1014	0.547
$hrChangeRecovtoStress_C$	4.77	1	1012	0.0292
stress_CMC:P4_STAItrait_C_d10	31.9	1	761	2.32e-08
$stress_CMC:P4_age_C$	12.2	1	819	0.000498

IL6 + reactivity + recovery

```
# IL6
lmerM = lmer(hr ~ stress_CMC * IL6_T_C + P4_age_C * stress_CMC + stress_ChangeStresstoBase_C + hrChangeStresstoBase_C + stress_ChangeRecovto
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
                                       F Df Df.res
                                                       Pr(>F)
##
## (Intercept)
                              48920.3032 1 866.47 < 2.2e-16 ***
## stress_CMC
                                704.5798 1 811.32 < 2.2e-16 ***
## IL6_T_C
                                 20.5949 1 1018.12 6.351e-06 ***
## P4_age_C
                                 25.4623 1 913.26 5.443e-07 ***
## stressChangeStresstoBase_C
                                  1.4279 1 1016.14
                                                      0.23239
## hrChangeStresstoBase_C
                                  3.0770 1 1011.69
                                                      0.07971 .
## stressChangeRecovtoStress_C
                                  0.3239 1 1017.35
                                                      0.56940
## hrChangeRecovtoStress_C
                                  5.4686 1 1015.73
                                                      0.01955 *
## stress_CMC:IL6_T_C
                                 23.1448 1 754.10 1.815e-06 ***
## stress_CMC:P4_age_C
                                  3.6530 1 803.30
                                                     0.05632 .
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * IL6_T_C + P4_age_C * stress_CMC + stressChangeStresstoBase_C +
      hrChangeStresstoBase_C + stressChangeRecovtoStress_C + hrChangeRecovtoStress_C +
       (1 + stress CMC | M2ID) + (1 | M2FAMNUM)
##
     Data: dfLsRR
## REML criterion at convergence: 28475.3
##
## Scaled residuals:
               10 Median
                                      Max
      Min
                               3Q
## -7.2451 -0.4775 -0.0436 0.4051 9.3142
## Random effects:
                        Variance Std.Dev. Corr
   Groups Name
   M2ID
            (Intercept) 84.1453 9.1731
            {\tt stress\_CMC}
                         0.4888 0.6991
                                          -0.04
## M2FAMNUM (Intercept) 25.8727 5.0865
## Residual
                         5.6266 2.3720
## Number of obs: 5060, groups: M2ID, 1025; M2FAMNUM, 908
## Fixed effects:
                               Estimate Std. Error t value
## (Intercept)
                              74.567090
                                          0.336865 221.356
## stress CMC
                               0.884057
                                          0.033291 26.555
## IL6_T_C
                               1.455603
                                          0.320079 4.548
## P4_age_C
                              -0.155226
                                          0.030738 -5.050
## stressChangeStresstoBase_C -0.367590
                                          0.306759 -1.198
## hrChangeStresstoBase_C
                               0.235175
                                          0.133642 1.760
## stressChangeRecovtoStress_C -0.185247
                                          0.324567 -0.571
## hrChangeRecovtoStress_C
                              -0.363101
                                          0.154765 -2.346
## stress_CMC:IL6_T_C
                              -0.150199
                                          0.031203 -4.814
## stress_CMC:P4_age_C
                              -0.005741
                                          0.003002 -1.912
## Correlation of Fixed Effects:
              (Intr) st_CMC IL6_T_ P4_g_C sCSB_C hCSB_C sCRS_C hCRS_C
```

```
## stress CMC -0.019
## IL6_T_C
             -0.019 0.000
## P4 age C 0.002 0.001 -0.163
## strssChSB_C 0.001 -0.002 0.025 -0.088
## hrChngStB C -0.001 0.000 0.046 0.109 -0.066
## hrChngRcS C -0.004 0.000 -0.053 0.102 -0.091 0.750 -0.149
## s_CMC:IL6_T 0.000 -0.013 -0.019 0.004 0.000 0.001 0.000 0.000
## s CMC:P4 C 0.001 -0.028 0.004 -0.018 0.001 0.000 0.000 0.000
##
             s_CMC:I
## stress_CMC
## IL6_T_C
## P4_age_C
## strssChSB_C
## hrChngStB_C
## strssChRS_C
## hrChngRcS_C
## s_CMC:IL6_T
## s_CMC:P4__C -0.140
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsRR)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsRR): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	48920	1	866	0
$stress_CMC$	705	1	811	3.06e-112
${ m IL6_T_C}$	20.6	1	1018	6.35 e-06
$P4_age_C$	25.5	1	913	5.44 e-07
$stressChangeStresstoBase_C$	1.43	1	1016	0.232
$hrChangeStresstoBase_C$	3.08	1	1012	0.0797
$stressChangeRecovtoStress_C$	0.324	1	1017	0.569
$hrChangeRecovtoStress_C$	5.47	1	1016	0.0196
$stress_CMC:IL6_T_C$	23.1	1	754	1.81e-06
$stress_CMC:P4_age_C$	3.65	1	803	0.0563

CRP + reactivity + recovery

```
# CRP
lmerM = lmer(hr ~ stress_CMC * CRP_T_C + P4_age_C * stress_CMC + stress_ChangeStresstoBase_C + hrChangeStresstoBase_C + stress_ChangeRecovtc
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: hr
                                       F Df Df.res
                                                       Pr(>F)
##
## (Intercept)
                              48583.5205 1 867.05 < 2.2e-16 ***
## stress CMC
                                682.0273 1 810.22 < 2.2e-16 ***
## CRP T C
                                 30.2179 1 1009.79 4.890e-08 ***
## P4_age_C
                                 18.4103 1 904.70 1.973e-05 ***
## stressChangeStresstoBase C
                             1.5335 1 1008.79 0.215876
## hrChangeStresstoBase_C
                                  4.1742 1 1001.88 0.041305 *
## stressChangeRecovtoStress C
                                  0.3506 1 1010.51 0.553928
## hrChangeRecovtoStress C
                                  4.4212 1 1006.46 0.035743 *
## stress_CMC:CRP_T_C
                                  7.6815 1 815.46 0.005706 **
## stress_CMC:P4_age_C
                                  6.9289 1 815.65 0.008642 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * CRP_T_C + P4_age_C * stress_CMC + stressChangeStresstoBase_C +
      hrChangeStresstoBase_C + stressChangeRecovtoStress_C + hrChangeRecovtoStress_C +
##
       (1 + stress_CMC | M2ID) + (1 | M2FAMNUM)
     Data: dfLsRR
##
## REML criterion at convergence: 28317.8
## Scaled residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -7.2447 -0.4755 -0.0417 0.4040 9.3047
##
## Random effects:
```

```
Name
                        Variance Std.Dev. Corr
   Groups
            (Intercept) 78.9964 8.888
## M2ID
            stress CMC
                        0.5041 0.710
                                          -0.05
## M2FAMNUM (Intercept) 30.3873 5.512
## Residual
                         5.6385 2.375
## Number of obs: 5030, groups: M2ID, 1019; M2FAMNUM, 903
## Fixed effects:
##
                               Estimate Std. Error t value
## (Intercept)
                              74.547630
                                          0.337978 220.569
## stress_CMC
                               0.879474
                                          0.033662 26.126
## CRP_T_C
                               3.631461
                                          0.659316 5.508
                              -0.130733
                                          0.030449 -4.293
## P4_age_C
## stressChangeStresstoBase_C -0.377893
                                          0.304279 - 1.242
## hrChangeStresstoBase C
                               0.273761
                                          0.133554 2.050
## stressChangeRecovtoStress_C -0.190391
                                          0.320632 -0.594
## hrChangeRecovtoStress_C
                              -0.325312
                                          0.154199 -2.110
## stress_CMC:CRP_T_C
                              -0.182874
                                          0.065948 -2.773
## stress CMC:P4 age C
                              -0.007918
                                          0.003006 - 2.634
## Correlation of Fixed Effects:
               (Intr) st_CMC CRP_T_ P4_g_C sCSB_C hCSB_C sCRS_C hCRS_C
## stress CMC -0.028
## CRP T C
              -0.019 0.001
              -0.006 0.002 0.019
## P4 age C
## strssChSB C 0.000 -0.003 0.005 -0.088
## hrChngStB_C -0.005 0.001 0.082 0.122 -0.067
## strssChRS_C -0.005  0.004 -0.015 -0.053  0.782 -0.105
## hrChngRcS_C -0.010 0.001 0.018 0.099 -0.089 0.752 -0.149
## s_CMC:CRP_T 0.001 -0.016 -0.029 0.000 0.002 0.001 0.002 0.000
## s_CMC:P4__C 0.001 -0.034 0.000 -0.027 0.001 0.000 0.000 0.000
              s_CMC:C
## stress_CMC
## CRP_T_C
## P4_age_C
## strssChSB C
## hrChngStB C
## strssChRS C
## hrChngRcS C
```

```
## s_CMC:CRP_T
## s_CMC:P4_C 0.039

table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsRR)

## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsRR): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	48584	1	867	0
$stress_CMC$	682	1	810	1.47e-109
CRP_T_C	30.2	1	1010	4.89e-08
$P4_age_C$	18.4	1	905	1.97e-05
$stressChangeStresstoBase_C$	1.53	1	1009	0.216
hrChangeStresstoBase_C	4.17	1	1002	0.0413
$stressChangeRecovtoStress_C$	0.351	1	1011	0.554
$hrChangeRecovtoStress_C$	4.42	1	1006	0.0357
$stress_CMC:CRP_T_C$	7.68	1	815	0.00571
$stress_CMC:P4_age_C$	6.93	1	816	0.00864

Denial + reactivity + recovery

COPE_denial_C

P4_age_C

0.0836 1 1017.77 0.77248

19.0939 1 909.65 1.388e-05 ***

```
## stressChangeStresstoBase_C
                                   1.6072 1 1015.13
                                                       0.20517
## hrChangeStresstoBase C
                                   2.4944 1 1009.31
                                                       0.11456
## stressChangeRecovtoStress C
                                   0.2688 1 1016.29
                                                       0.60422
## hrChangeRecovtoStress_C
                                   5.0153 1 1015.34
                                                       0.02534 *
## stress CMC:COPE denial C
                                  20.9227
                                          1 844.91 5.498e-06 ***
## stress_CMC:P4_age_C
                                   5.3923
                                          1 814.97
                                                       0.02047 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * COPE_denial_C + P4_age_C * stress_CMC + stressChangeStresstoBase_C +
      hrChangeStresstoBase_C + stressChangeRecovtoStress_C + hrChangeRecovtoStress_C +
##
       (1 + stress_CMC | M2ID) + (1 | M2FAMNUM)
##
      Data: dfLsRR
## REML criterion at convergence: 28475.9
##
## Scaled residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -7.2703 -0.4868 -0.0391 0.4032 9.3429
## Random effects:
    Groups
                         Variance Std.Dev. Corr
             (Intercept) 85.248
    M2ID
                                  9.2330
             stress CMC
                         0.486
                                 0.6971
                                           -0.07
## M2FAMNUM (Intercept) 27.400
                                  5.2345
   Residual
                          5.591
                                  2.3645
## Number of obs: 5060, groups: M2ID, 1025; M2FAMNUM, 909
## Fixed effects:
                                Estimate Std. Error t value
## (Intercept)
                               74.628681
                                           0.340924 218.901
## stress_CMC
                               0.877327
                                           0.033155 26.461
## COPE_denial_C
                                           0.151725
                               0.043947
                                                     0.290
## P4_age_C
                               -0.134598
                                           0.030781 -4.373
## stressChangeStresstoBase_C -0.394045
                                           0.309939 - 1.271
## hrChangeStresstoBase C
                               0.215421
                                           0.135955
                                                    1.584
```

```
## stressChangeRecovtoStress_C -0.169537
                                          0.326045 -0.520
## hrChangeRecovtoStress C
                              -0.351093
                                          0.156274 -2.247
## stress CMC:COPE denial C
                              -0.069679
                                          0.015224 -4.577
## stress_CMC:P4_age_C
                              -0.006902
                                          0.002970 - 2.324
## Correlation of Fixed Effects:
              (Intr) st_CMC COPE__ P4_g_C sCSB_C hCSB_C sCRS_C hCRS_C
## stress CMC -0.037
## COPE denl C -0.012 -0.002
## P4_age_C
               0.004 0.002 -0.026
## strssChSB_C -0.002 -0.004 0.002 -0.091
## hrChngStB_C 0.004 0.001 0.033 0.120 -0.068
## strssChRS_C -0.005  0.006 -0.048 -0.054  0.782 -0.102
## hrChngRcS_C 0.000 0.001 -0.060 0.101 -0.094 0.751 -0.146
## s_CMC:COPE_ 0.000 0.011 -0.037 0.001 -0.001 0.002 0.000 0.001
## s_CMC:P4__C 0.001 -0.024 0.001 -0.036 0.001 0.000 0.000 0.000
              s CMC:C
## stress_CMC
## COPE_denl_C
## P4_age_C
## strssChSB C
## hrChngStB C
## strssChRS C
## hrChngRcS_C
## s CMC:COPE
## s_CMC:P4__C -0.035
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsRR)
## Warning in tidy.anova(a, effects = c("ran pars", "fixed"), data =
## dfLsRR): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	47844	1	869	0
$stress_CMC$	700	1	812	1.06e-111
$COPE_denial_C$	0.0836	1	1018	0.772
$P4_age_C$	19.1	1	910	1.39 e-05

term	statistic	df	Df.res	p.value
stressChangeStresstoBase_C	1.61	1	1015	0.205
$hrChangeStresstoBase_C$	2.49	1	1009	0.115
$stressChangeRecovtoStress_C$	0.269	1	1016	0.604
$hrChangeRecovtoStress_C$	5.02	1	1015	0.0253
$stress_CMC:COPE_denial_C$	20.9	1	845	5.5e-06
$stress_CMC:P4_age_C$	5.39	1	815	0.0205

Does reactivity and/or recovery predict well-being outcomes?

PWB ~ reactivity + recovery

```
# PWB
lmerM = lmer(pwb2 ~ P4_age_C + stressChangeStresstoBase_C + hrChangeStresstoBase_C + stressChangeRecovtoStress_C + hrChangeRecovtoStress_C
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: pwb2
                                       F Df Df.res
                                                       Pr(>F)
## (Intercept)
                              44668.6544 1 878.35 < 2.2e-16 ***
## P4_age_C
                                 36.8092 1 912.23 1.907e-09 ***
## stressChangeStresstoBase_C
                              1.5743 1 1015.95
                                                    0.20988
## hrChangeStresstoBase_C
                                  0.3877 1 1000.57
                                                     0.53367
## stressChangeRecovtoStress_C
                                  1.1799 1 1017.82
                                                     0.27763
## hrChangeRecovtoStress_C
                                  6.1532 1 1009.14
                                                    0.01328 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## pwb2 ~ P4_age_C + stressChangeStresstoBase_C + hrChangeStresstoBase_C +
       stressChangeRecovtoStress_C + hrChangeRecovtoStress_C + (1 |
##
       M2FAMNUM)
##
      Data: dfLsW
```

```
##
## REML criterion at convergence: 10142.8
## Scaled residuals:
       Min
                1Q Median
                                3Q
                                       Max
## -3.1368 -0.5364 0.1045 0.6361 1.7732
## Random effects:
   Groups Name
                         Variance Std.Dev.
## M2FAMNUM (Intercept) 371.2
                                  19.27
## Residual
                         802.2
                                  28.32
## Number of obs: 1026, groups: M2FAMNUM, 909
## Fixed effects:
##
                                Estimate Std. Error t value
## (Intercept)
                                            1.10048 211.471
                               232.71937
                                0.60304
## P4_age_C
                                            0.09934 6.070
## stressChangeStresstoBase_C
                               -1.24258
                                           0.98868 -1.257
## hrChangeStresstoBase C
                                0.26974
                                            0.43217 0.624
## stressChangeRecovtoStress_C -1.13350
                                            1.04175 -1.088
## hrChangeRecovtoStress C
                                -1.23929
                                            0.49841 -2.486
##
## Correlation of Fixed Effects:
               (Intr) P4_g_C sCSB_C hCSB_C sCRS_C
## P4 age C
                0.000
## strssChSB C -0.003 -0.086
## hrChngStB_C 0.001 0.114 -0.065
## strssChRS_C -0.008 -0.052 0.782 -0.102
## hrChngRcS C -0.001 0.094 -0.092 0.754 -0.149
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsW)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsW): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	44669	1	878	0

term	statistic	df	Df.res	p.value
P4_age_C	36.8	1	912	1.91e-09
$stressChangeStresstoBase_C$	1.57	1	1016	0.21
$hrChangeStresstoBase_C$	0.388	1	1001	0.534
$stressChangeRecovtoStress_C$	1.18	1	1018	0.278
$hr Change Recovto Stress_C$	6.15	1	1009	0.0133

Depression ~ reactivity + recovery

##

```
# CESD
lmerM = lmer(P4_CESD ~ P4_age_C + stressChangeStresstoBase_C + hrChangeStresstoBase_C + stressChangeRecovtoStress_C + hrChangeRecovtoStress_
a = Anova(lmerM, type=3, test="F")
a
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: P4_CESD
                                                      Pr(>F)
                                      F Df Df.res
## (Intercept)
                              1158.3974 1 884.90 < 2.2e-16 ***
## P4_age_C
                                39.5213 1 912.13 5.024e-10 ***
## stressChangeStresstoBase_C
                              3.6272 1 1002.78
                                                   0.05713 .
## hrChangeStresstoBase_C
                                 2.7069 1 963.49
                                                    0.10024
## stressChangeRecovtoStress_C 1.5700 1 1007.31 0.21050
## hrChangeRecovtoStress_C
                                 3.2894 1 977.67
                                                    0.07003 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## P4_CESD ~ P4_age_C + stressChangeStresstoBase_C + hrChangeStresstoBase_C +
      stressChangeRecovtoStress_C + hrChangeRecovtoStress_C + (1 |
##
       M2FAMNUM)
##
##
      Data: dfLsW
## REML criterion at convergence: 7117.4
```

```
## Scaled residuals:
       Min
                1Q Median
                                3Q
                                      Max
## -1.9016 -0.5315 -0.1796 0.3434 4.1373
## Random effects:
    Groups Name
                         Variance Std.Dev.
## M2FAMNUM (Intercept) 26.96
                                  5.192
                                  5.988
                         35.85
    Residual
## Number of obs: 1022, groups: M2FAMNUM, 906
## Fixed effects:
                               Estimate Std. Error t value
## (Intercept)
                               8.74762
                                           0.25692 34.047
## P4_age_C
                               -0.14504
                                           0.02306 -6.289
## stressChangeStresstoBase_C
                               0.43391
                                           0.22738 1.908
## hrChangeStresstoBase_C
                               -0.16332
                                           0.09899 - 1.650
## stressChangeRecovtoStress_C 0.30200
                                           0.24055
                                                   1.255
## hrChangeRecovtoStress_C
                                0.20803
                                           0.11439
                                                   1.819
## Correlation of Fixed Effects:
               (Intr) P4_g_C sCSB_C hCSB_C sCRS_C
## P4_age_C
               -0.003
## strssChSB C 0.004 -0.083
## hrChngStB_C 0.005 0.109 -0.062
## strssChRS C -0.003 -0.051 0.781 -0.098
## hrChngRcS_C 0.001 0.088 -0.089 0.750 -0.146
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsW)
## Warning in tidy.anova(a, effects = c("ran pars", "fixed"), data =
## dfLsW): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	1158	1	885	5.6e-163
${ m P4_age_C}$	39.5	1	912	5.02e-10
$stressChangeStresstoBase_C$	3.63	1	1003	0.0571
hrChangeStresstoBase_C	2.71	1	963	0.1

term	statistic	df	Df.res	p.value
stressChangeRecovtoStress_C	1.57	1	1007	0.211
$hrChangeRecovtoStress_C$	3.29	1	978	0.07

Anxiety ~ reactivity + recovery

```
# P4_STAItrait
lmerM = lmer(P4_STAItrait ~ P4_age_C + stressChangeStresstoBase_C + hrChangeStresstoBase_C + stressChangeRecovtoStress_C + hrChangeRecovtoStress_C
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: P4_STAItrait
                                        F Df Df.res
                                                        Pr(>F)
## (Intercept)
                              14533.6009 1 884.76 < 2.2e-16 ***
## P4_age_C
                                  35.0611 1 912.03 4.522e-09 ***
## stressChangeStresstoBase_C
                                  1.1324 1 1001.76
                                                       0.28753
## hrChangeStresstoBase_C
                                  0.7231 1 958.99
                                                       0.39535
## stressChangeRecovtoStress_C
                                  0.5516 1 1004.85
                                                      0.45784
## hrChangeRecovtoStress_C
                                   5.0441 1 974.47
                                                      0.02493 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## P4_STAItrait ~ P4_age_C + stressChangeStresstoBase_C + hrChangeStresstoBase_C +
       stressChangeRecovtoStress_C + hrChangeRecovtoStress_C + (1 |
##
       M2FAMNUM)
      Data: dfLsW
##
## REML criterion at convergence: 7320.2
## Scaled residuals:
       Min
                1Q Median
                                ЗQ
                                       Max
## -2.1295 -0.5766 -0.1190 0.4637 2.9583
```

```
##
## Random effects:
   Groups Name
                        Variance Std.Dev.
## M2FAMNUM (Intercept) 33.96
                                 5.828
## Residual
                        42.86
                                 6.547
## Number of obs: 1022, groups: M2FAMNUM, 905
## Fixed effects:
##
                              Estimate Std. Error t value
## (Intercept)
                              34.30337
                                          0.28445 120.596
## P4_age_C
                              -0.15161
                                          0.02560 -5.923
## stressChangeStresstoBase_C
                              0.26772
                                          0.25108 1.066
## hrChangeStresstoBase_C
                              -0.09308
                                          0.10915 -0.853
## stressChangeRecovtoStress_C 0.19755
                                          0.26545
                                                   0.744
## hrChangeRecovtoStress_C
                               0.28432
                                          0.12625
                                                   2.252
## Correlation of Fixed Effects:
              (Intr) P4_g_C sCSB_C hCSB_C sCRS_C
## P4 age C
              -0.001
## strssChSB C 0.004 -0.081
## hrChngStB C 0.003 0.111 -0.063
## strssChRS_C -0.002 -0.047 0.782 -0.102
## hrChngRcS C -0.003 0.089 -0.090 0.750 -0.149
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsW)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsW): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	14534	1	885	0
$P4_age_C$	35.1	1	912	4.52e-09
$stressChangeStresstoBase_C$	1.13	1	1002	0.288
$hrChangeStresstoBase_C$	0.723	1	959	0.395
$stressChangeRecovtoStress_C$	0.552	1	1005	0.458
${\bf hrChangeRecovtoStress_C}$	5.04	1	974	0.0249

IL6 ~ reactivity + recovery

Number of obs: 1025, groups: M2FAMNUM, 908

```
# IL6
lmerM = lmer(IL6_T ~ P4_age_C + stressChangeStresstoBase_C + hrChangeStresstoBase_C + stressChangeRecovtoStress_C + hrChangeRecovtoStress_
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: IL6_T
                                     F Df Df.res
                                                     Pr(>F)
##
## (Intercept)
                             1247.1982 1 866.82 < 2.2e-16 ***
## P4 age C
                               27.9526 1 908.04 1.558e-07 ***
## stressChangeStresstoBase C 0.6373 1 1017.56 0.42487
## hrChangeStresstoBase C
                          2.1842 1 1012.81 0.13975
## stressChangeRecovtoStress C 0.0047 1 1018.61 0.94541
## hrChangeRecovtoStress C
                           2.8516 1 1017.12 0.09159 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## IL6_T ~ P4_age_C + stressChangeStresstoBase_C + hrChangeStresstoBase_C +
      stressChangeRecovtoStress_C + hrChangeRecovtoStress_C + (1 |
      M2FAMNUM)
##
     Data: dfLsW
##
## REML criterion at convergence: 3000.9
## Scaled residuals:
       Min
                 1Q
                     Median
                                  3Q
## -2.60015 -0.58969 -0.06949 0.51579 3.16225
##
## Random effects:
## Groups Name
                        Variance Std.Dev.
## M2FAMNUM (Intercept) 0.2424 0.4924
## Residual
                        0.8222 0.9067
```

```
##
## Fixed effects:
                               Estimate Std. Error t value
## (Intercept)
                                          0.032946 35.344
                               1.164457
## P4 age C
                               0.015695
                                          0.002967 5.291
## stressChangeStresstoBase_C -0.024005
                                          0.030023 -0.800
## hrChangeStresstoBase C
                              -0.019359
                                          0.013069 -1.481
## stressChangeRecovtoStress_C 0.002180
                                          0.031774 0.069
## hrChangeRecovtoStress C
                               0.025605
                                          0.015129 1.692
##
## Correlation of Fixed Effects:
              (Intr) P4_g_C sCSB_C hCSB_C sCRS_C
## P4_age_C
              -0.001
## strssChSB_C 0.001 -0.086
## hrChngStB_C 0.000 0.118 -0.067
## strssChRS_C -0.003 -0.051 0.785 -0.101
## hrChngRcS_C -0.005 0.095 -0.090 0.755 -0.149
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsW)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsW): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	1247	1	867	5.49e-170
$P4_age_C$	28	1	908	1.56e-07
$stressChangeStresstoBase_C$	0.637	1	1018	0.425
$hr Change Stress to Base_C$	2.18	1	1013	0.14
$stressChangeRecovtoStress_C$	0.00469	1	1019	0.945
${\bf hrChangeRecovtoStress_C}$	2.85	1	1017	0.0916

$CRP \sim reactivity + recovery$

```
# CRP
lmerM = lmer(CRP_T ~ P4_age_C + stressChangeStresstoBase_C + hrChangeStresstoBase_C + stressChangeRecovtoStress_C + hrChangeRecovtoStress_
```

```
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: CRP T
                                    F Df Df.res
                                                    Pr(>F)
## (Intercept)
                             117.1964 1 876.02 < 2.2e-16 ***
                               0.3592 1 908.49 0.549078
## P4_age_C
## stressChangeStresstoBase_C 0.0199 1 1006.53 0.887865
## hrChangeStresstoBase C
                          7.1247 1 985.49 0.007728 **
## stressChangeRecovtoStress C 0.2230 1 1009.27 0.636865
                          0.3684 1 994.15 0.544005
## hrChangeRecovtoStress C
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## CRP_T ~ P4_age_C + stressChangeStresstoBase_C + hrChangeStresstoBase_C +
      stressChangeRecovtoStress_C + hrChangeRecovtoStress_C + (1 |
##
      M2FAMNUM)
##
##
     Data: dfLsW
## REML criterion at convergence: 1515.8
## Scaled residuals:
       Min
                 1Q
                      Median
## -2.58665 -0.57063 -0.04282 0.58332 2.56396
## Random effects:
## Groups Name
                        Variance Std.Dev.
## M2FAMNUM (Intercept) 0.09056 0.3009
## Residual
                        0.16191 0.4024
## Number of obs: 1019, groups: M2FAMNUM, 903
## Fixed effects:
```

Estimate Std. Error t value

##

```
## (Intercept)
                               0.1759434 0.0162444 10.831
## P4_age_C
                              -0.0008763 0.0014614 -0.600
## stressChangeStresstoBase C -0.0020457 0.0144782 -0.141
## hrChangeStresstoBase_C
                              -0.0169171 0.0063217 -2.676
## stressChangeRecovtoStress C 0.0072199 0.0152617
                                                    0.473
## hrChangeRecovtoStress_C
                              -0.0044591 0.0073278 -0.609
## Correlation of Fixed Effects:
              (Intr) P4_g_C sCSB_C hCSB_C sCRS_C
## P4_age_C
              -0.008
## strssChSB_C 0.000 -0.087
## hrChngStB_C -0.003 0.119 -0.067
## strssChRS_C -0.006 -0.052 0.781 -0.105
## hrChngRcS_C -0.010 0.097 -0.090 0.751 -0.150
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsW)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsW): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	117	1	876	1.01e-25
$P4_age_C$	0.359	1	908	0.549
$stressChangeStresstoBase_C$	0.0199	1	1007	0.888
$hr Change Stress to Base_C$	7.12	1	985	0.00773
$stressChangeRecovtoStress_C$	0.223	1	1009	0.637
${\bf hrChangeRecovtoStress_C}$	0.368	1	994	0.544

Denial ~ reactivity + recovery

```
# Denial
lmerM = lmer(COPE_denial ~ P4_age_C + stressChangeStresstoBase_C + hrChangeStresstoBase_C + stressChangeRecovtoStress_C + hrChangeRecovtoStress_C + hrChangeReco
```

```
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: COPE denial
                                      F Df Df.res Pr(>F)
## (Intercept)
                              7434.4395 1 878.04 < 2e-16 ***
## P4_age_C
                                 0.5886
                                        1 912.05 0.44317
## stressChangeStresstoBase C
                                 0.0067 1 1014.82 0.93495
## hrChangeStresstoBase_C
                                 1.1399 1 998.67 0.28592
## stressChangeRecovtoStress C
                                 2.3013 1 1016.75 0.12958
## hrChangeRecovtoStress_C
                                 3.7390 1 1008.94 0.05344 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## COPE_denial ~ P4_age_C + stressChangeStresstoBase_C + hrChangeStresstoBase_C +
       stressChangeRecovtoStress_C + hrChangeRecovtoStress_C + (1 |
##
      M2FAMNUM)
     Data: dfLsW
##
## REML criterion at convergence: 4545.1
##
## Scaled residuals:
      Min
               1Q Median
                                      Max
## -1.6846 -0.6835 -0.2290 0.5407 3.8140
##
## Random effects:
## Groups Name
                        Variance Std.Dev.
## M2FAMNUM (Intercept) 1.510
                                 1.229
   Residual
                         3.362
                                 1.834
## Number of obs: 1025, groups: M2FAMNUM, 909
## Fixed effects:
##
                               Estimate Std. Error t value
## (Intercept)
                                          0.070898 86.274
                               6.116677
## P4_age_C
                               0.004907
                                          0.006392
                                                    0.768
## stressChangeStresstoBase_C -0.005232
                                          0.063977 -0.082
## hrChangeStresstoBase C
                              -0.029976
                                          0.028007 -1.070
```

```
## stressChangeRecovtoStress_C 0.102182
                                          0.067245 1.520
## hrChangeRecovtoStress_C
                               0.062365
                                          0.032178 1.938
##
## Correlation of Fixed Effects:
              (Intr) P4_g_C sCSB_C hCSB_C sCRS_C
## P4_age_C
               0.002
## strssChSB C -0.002 -0.090
## hrChngStB_C 0.005 0.120 -0.068
## strssChRS C -0.006 -0.055 0.783 -0.101
## hrChngRcS_C -0.001 0.099 -0.095 0.753 -0.150
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsW)
## Warning in tidy.anova(a, effects = c("ran pars", "fixed"), data =
## dfLsW): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	7434	1	878	0
$P4_age_C$	0.589	1	912	0.443
$stressChangeStresstoBase_C$	0.00667	1	1015	0.935
$hrChangeStresstoBase_C$	1.14	1	999	0.286
$stressChangeRecovtoStress_C$	2.3	1	1017	0.13
$hr Change Recovto Stress_C$	3.74	1	1009	0.0534

PLOT

FIGURE 1: Stress and heart rate by phase histograms

Facet-wrapped histograms of stress and heart rate at each phase of stress induction

```
ylimits = c(0, 610)
colcode = "#4ECDC1"
stressHist=ggplot()+
geom_histogram(data=dfL, aes(stress), fill=colcode, binwidth=1, color="black") +
facet_wrap(~timepoint, ncol=5) +
```

```
labs(x="Self-reported stress", y="Number of subjects") +
ylim(ylimits)+
scale_x_continuous(breaks=c(1,2,3,4,5,6,7,8,9,10) )+
theme_bw(base_size=18)+
theme(axis.text.x=element_text(size=14),
axis.text.y=element_text(size=14),
panel.grid.minor=element_blank(),
panel.background=element_rect(fill="transparent"),
plot.background=element_rect(fill="transparent"))
stressHist
```

Warning: Removed 32624 rows containing non-finite values (stat_bin).

#ggsave(stressHist, filename=paste(adir,"/stressHist.png", sep=''), bg="transparent", height=2.8, width=10.45, units="in")

```
xlimits = c(30,150)
ylimits = c(0, 240)
colcode = "#900C3F"
hrHist=ggplot()+
geom_histogram(data=dfL, aes(hr), fill=colcode, binwidth=6, color="black") +
facet_wrap(~timepoint, ncol=5) +
labs(x="Heart rate", y="Number of subjects") +
```

```
ylim(ylimits)+
xlim(xlimits)+
geom_vline(xintercept=75, size=.5, color="blue")+
#scale_x_continuous(breaks=c(1,2,3,4,5,6,7,8,9,10))+
theme_bw(base_size=18)+
theme(axis.text.x=element_text(size=14),
axis.text.y=element_text(size=14),
panel.grid.minor= element_blank(),
panel.background=element_rect(fill="transparent"),
plot.background=element_rect(fill="transparent"))
hrHist
```

Warning: Removed 33222 rows containing non-finite values (stat_bin).

#ggsave(hrHist, filename=paste(adir,"/hrHist.png", sep=''), bg="transparent", height=2.8, width=10.45, units="in")

FIGURE 2: Interaction plots

```
# PWB
mod = lmer(hr ~ stress*pwb2 + (1 + stress | M2ID), data=dfLs)
```

```
# Prepare independent variables for applot
XToPredict = seq(min(dfLs$stress), max(dfLs$stress), length = 100)
pwb2_lo = mean(dfLsW$pwb2, na.rm=T) - sd(dfLsW$pwb2, na.rm=T)
pwb2_hi = mean(dfLsW$pwb2, na.rm=T) + sd(dfLsW$pwb2, na.rm=T)
# Use modelPredictions() to generate Y-hats
yHats = expand.grid(stress = XToPredict, pwb2=c(pwb2 lo, pwb2 hi)) # all IVs
yHats = modelPredictions(mod, yHats)
modelplot = ggplot() +
            geom_smooth(aes(ymin = CILo, ymax = CIHi, x = stress, y = Predicted,
                  colour=as.factor(pwb2), group=as.factor(pwb2)),
                  data = yHats, stat = "identity")
#modelplot
pwb2plot = modelplot + scale_x_continuous("Stress", breaks = seq(0, 10, by=1)) +
             scale_y_continuous("Heart Rate", breaks = seq(60, 100, by=1)) +
             scale color manual(name ="PWB",
                    labels=c("Low (-1SD)", "High (+1SD)"), values=c("#0679A4", "#FDA603")) +
             theme bw(base size = 14) +
             theme(legend.position = c(0.75, 0.15), panel.grid.major = element blank(), panel.grid.minor = element blank(),
                  panel.background = element blank(), axis.line = element line(colour = "black"))
pwb2plot
```



```
## CESD
mod = lmer(hr ~ stress*P4_CESD + (1 + stress| M2ID), data=dfLs)
# Prepare independent variables for ggplot

XToPredict = seq(min(dfLs$stress), max(dfLs$stress), length = 100)
P4_CESD_lo = mean(dfLsW$P4_CESD, na.rm=T) - sd(dfLsW$P4_CESD, na.rm=T)
P4_CESD_hi = mean(dfLsW$P4_CESD, na.rm=T) + sd(dfLsW$P4_CESD, na.rm=T)

# Use modelPredictions() to generate Y-hats
yHats = expand.grid(stress = XToPredict, P4_CESD=c(P4_CESD_lo, P4_CESD_hi)) # all IVs
yHats = modelPredictions(mod, yHats)

modelplot = ggplot() +
```



```
## P4_STAItrait
mod = lmer(hr ~ stress*P4_STAItrait +(1 + stress| M2ID), data=dfLs)
# Prepare independent variables for ggplot

XToPredict = seq(min(dfLs$stress), max(dfLs$stress), length = 100)
P4_STAItrait_lo = mean(dfLsW$P4_STAItrait, na.rm=T) - sd(dfLsW$P4_STAItrait, na.rm=T)
P4_STAItrait_hi = mean(dfLsW$P4_STAItrait, na.rm=T) + sd(dfLsW$P4_STAItrait, na.rm=T)

# Use modelPredictions() to generate Y-hats
yHats = expand.grid(stress = XToPredict, P4_STAItrait_lo, P4_STAItrait_hi)) # all IVs
yHats = modelPredictions(mod, yHats)

modelplot = ggplot() +
```



```
## IL6
mod = lmer(hr ~ stress*IL6_T + (1 + stress| M2ID), data=dfLs)
# Prepare independent variables for ggplot

XToPredict = seq(min(dfLs$stress), max(dfLs$stress), length = 100)
IL6_T_lo = mean(dfLsW$IL6_T, na.rm=T) - sd(dfLsW$IL6_T, na.rm=T)
IL6_T_hi = mean(dfLsW$IL6_T, na.rm=T) + sd(dfLsW$IL6_T, na.rm=T)

# Use modelPredictions() to generate Y-hats
yHats = expand.grid(stress = XToPredict, IL6_T=c(IL6_T_lo, IL6_T_hi)) # all IVs
yHats = modelPredictions(mod, yHats)

# Starting plot in which we graph regression lines
```



```
## CRP
mod = lmer(hr ~ stress*CRP_T + (1 + stress| M2ID), data=dfLs)
# Prepare independent variables for ggplot

XToPredict = seq(min(dfLs$stress), max(dfLs$stress), length = 100)
CRP_T_lo = mean(dfLsW$CRP_T, na.rm=T) - sd(dfLsW$CRP_T, na.rm=T)
CRP_T_hi = mean(dfLsW$CRP_T, na.rm=T) + sd(dfLsW$CRP_T, na.rm=T)

# Use modelPredictions() to generate Y-hats
yHats = expand.grid(stress = XToPredict, CRP_T=c(CRP_T_lo, CRP_T_hi)) # all IVs
yHats = modelPredictions(mod, yHats)

modelplot = ggplot() +
```



```
## Denial
mod = lmer(hr ~ stress*COPE_denial + (1 + stress| M2ID), data=dfLs)
# Prepare independent variables for ggplot

XToPredict = seq(min(dfLs$stress), max(dfLs$stress), length = 100)
COPE_denial_lo = mean(dfLsW$COPE_denial, na.rm=T) - sd(dfLsW$COPE_denial, na.rm=T)
COPE_denial_hi = mean(dfLsW$COPE_denial, na.rm=T) + sd(dfLsW$COPE_denial, na.rm=T)

# Use modelPredictions() to generate Y-hats
yHats = expand.grid(stress = XToPredict, COPE_denial=c(COPE_denial_lo, COPE_denial_hi)) # all IVs
yHats = modelPredictions(mod, yHats)

modelplot = ggplot() +
```


FIGURE 3: Plot individual subject slopes

```
dfL$stressMC = dfL$stress - ave(dfL$stress, dfL$M2ID)
dfL$hrM = ave(dfL$stress, dfL$M2ID)

ggplot(dfL, aes(stress, hr, color=as.factor(M2ID)))+
geom_smooth(aes(group=as.factor(M2ID)),method="lm",se=F,size=.2, alpha=.6, position="jitter")+
xlim(c(0,11))+
theme_bw() +
theme(panel.grid.minor = element_blank(), axis.text=element_text(size=14), axis.title=element_text(size=24)) +
```

```
labs(x="Self-Reported Stress", y="Heart Rate")+
theme(legend.position="none")
```

Warning: Removed 33248 rows containing non-finite values (stat_smooth).

With heat map where color is the magnitude of the slope

Warning: Removed 33248 rows containing non-finite values (stat_smooth).

FIGURE 3: Histogram of BLUPS

```
ggplot(dfLsW, aes(coherence_slope)) +
    geom_histogram(aes(fill=as.factor(coherence_slope)), binwidth=.2, col="black", fill="#FFC300") +
    #scale_fill_gradientn("Slope", colours=mycol, limits=c(-.4, 4.5), values = scales::rescale(c(-0.5, -0.05, 0, 0.05, 0.5,1,2,3,4)), breaks
    labs(x="eBLUP", y="Number of Subjects") +
    theme_bw() +
    theme(panel.grid.minor = element_blank(), axis.text=element_text(size=12), axis.title=element_text(size=24)) +
    theme(legend.position="none")
```


SUPPLEMENTAL

I. Correlation (r) as coherence

See Prep_Coherence_MIDUSII.R for correlation computation. There, each subject's set of heart rate and stress measures are subset to their own data frame and a correlation is computed. The resulting within-subject (i.e., single-subject) r's compose a new variable in the main dataframe. ### Center correlations variable

```
varDescribe(dfLsW$coherence_as_r) # .49(.47) median.66 skew = -1.18, kurtosis = .55

## vars n mean sd median min max skew kurtosis
## X1 1 1019 0.49 0.47 0.66 -1 1 -1.18 0.55

# Center age for subjects in this analysis
dfLsW$P4_age_C = dfLsW$P4_age - mean(dfLsW$P4_age[!is.na(dfLsW$coherence_as_r)], na.rm=T)
# Center correlations
dfLsW$coherence_as_r_C = dfLsW$coherence_as_r - mean(dfLsW$coherence_as_r, na.rm=T)
```

PWB ~ coherence as r

```
# Run the test
lmerM = lmer(pwb2 ~ coherence as r C + P4 age C + (1 M2FAMNUM), data=dfLsW)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: pwb2
##
                           F Df Df.res
                                           Pr(>F)
## (Intercept)
                   45020.082 1 869.78 < 2.2e-16 ***
                      22.265 1 1009.70 2.709e-06 ***
## coherence_as_r_C
                      36.439 1 899.61 2.301e-09 ***
## P4_age_C
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula: pwb2 ~ coherence_as_r_C + P4_age_C + (1 | M2FAMNUM)
```

```
Data: dfLsW
##
##
## REML criterion at convergence: 10028.8
## Scaled residuals:
       Min
                10 Median
                               3Q
                                      Max
## -3.3098 -0.5173 0.1010 0.6546 1.9594
## Random effects:
## Groups Name
                        Variance Std.Dev.
## M2FAMNUM (Intercept) 311.8
                                 17.66
## Residual
                         848.9
                                 29.14
## Number of obs: 1015, groups: M2FAMNUM, 902
## Fixed effects:
                    Estimate Std. Error t value
## (Intercept)
                    232.7142
                                1.0960 212.329
## coherence_as_r_C 10.7949
                                2.2832 4.728
## P4_age_C
                      0.5901
                                0.0977 6.040
## Correlation of Fixed Effects:
               (Intr) ch___C
## chrnc s r C 0.008
              -0.008 -0.043
## P4_age_C
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsW)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsW): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)  # Using pander() to view the created table, with 3 sig figs
```

term	statistic	df	Df.res	p.value
(Intercept)	45020	1	870	0
$coherence_as_r_C$	22.3	1	1010	2.71e-06
P4_age_C	36.4	1	900	2.3e-09

Depression \sim coherence as r

```
# Run the test
lmerM = lmer(P4_CESD ~ coherence_as_r_C + P4_age_C + (1|M2FAMNUM), data=dfLsW)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: P4_CESD
                          F Df Df.res
                                        Pr(>F)
##
## (Intercept) 1156.707 1 880.23 < 2.2e-16 ***
## coherence as r C 26.764 1 991.53 2.782e-07 ***
## P4_age_C
                     32.831 1 901.73 1.369e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula: P4 CESD ~ coherence as r C + P4 age C + (1 | M2FAMNUM)
     Data: dfLsW
##
## REML criterion at convergence: 7043.7
## Scaled residuals:
               1Q Median
                                     Max
## -1.9587 -0.5336 -0.1845 0.3551 3.9821
## Random effects:
## Groups Name
                        Variance Std.Dev.
## M2FAMNUM (Intercept) 26.33
                                5.131
## Residual
                        36.96
                                6.079
## Number of obs: 1011, groups: M2FAMNUM, 899
##
## Fixed effects:
##
                   Estimate Std. Error t value
## (Intercept)
                  8.80758
                             0.25887 34.023
## coherence as r C -2.74867 0.53010 -5.185
## P4_age_C -0.13159
                            0.02296 -5.732
```

```
##
## Correlation of Fixed Effects:
## (Intr) ch___C
## chrnc_s_r_C 0.009
## P4_age_C -0.012 -0.043

table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsW)

## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsW): The following column names in ANOVA output were not recognized or
## transformed: Df.res

pander(table_obj, digits = 3)  # Using pander() to view the created table, with 3 sig figs
```

term	statistic	df	Df.res	p.value
(Intercept)	1157	1	880	1.52e-162
$coherence_as_r_C$	26.8	1	992	2.78e-07
$P4_age_C$	32.8	1	902	1.37e-08

Anxiety ~ coherence as r

```
# Run the test
lmerM = lmer(P4_STAItrait ~ coherence_as_r_C + P4_age_C + (1 M2FAMNUM), data=dfLsW)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: P4 STAItrait
                           F Df Df.res
                                         Pr(>F)
## (Intercept)
                 14579.980 1 876.14 < 2.2e-16 ***
## coherence_as_r_C 26.018 1 996.74 4.048e-07 ***
## P4_age_C
                      30.794 1 900.17 3.775e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
```

Linear mixed model fit by REML ['lmerMod']

```
## Formula: P4_STAItrait ~ coherence_as_r_C + P4_age_C + (1 | M2FAMNUM)
     Data: dfLsW
##
## REML criterion at convergence: 7243.1
## Scaled residuals:
      Min
               1Q Median
                                      Max
## -1.9139 -0.6078 -0.1262 0.4790 3.1466
## Random effects:
## Groups Name
                        Variance Std.Dev.
## M2FAMNUM (Intercept) 28.76
                                 5.363
## Residual
                        48.04
                                 6.931
## Number of obs: 1011, groups: M2FAMNUM, 898
## Fixed effects:
                   Estimate Std. Error t value
## (Intercept)
                   34.37249
                              0.28453 120.803
## coherence as r C -2.99025
                             0.58495 -5.112
## P4_age_C
                  -0.14050
                             0.02531 -5.552
## Correlation of Fixed Effects:
              (Intr) ch C
## chrnc s r C 0.008
## P4 age C
              -0.009 -0.048
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsW)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsW): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)  # Using pander() to view the created table, with 3 sig figs
```

term	statistic	df	Df.res	p.value
(Intercept)	14580	1	876	0
$coherence_as_r_C$	26	1	997	4.05e-07
$P4_age_C$	30.8	1	900	3.77e-08

$IL6 \sim coherence as r$

```
# Run the test
lmerM = lmer(IL6_T ~ coherence_as_r_C + P4_age_C + (1|M2FAMNUM), data=dfLsW)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: IL6_T
                        F Df Df.res
                                        Pr(>F)
##
## (Intercept) 1182.49 1 867.60 < 2.2e-16 ***
## coherence as r C 13.15 1 1009.08 0.0003019 ***
## P4_age_C
                     28.37 1 899.04 1.267e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula: IL6 T ~ coherence as r C + P4 age C + (1 | M2FAMNUM)
     Data: dfLsW
##
## REML criterion at convergence: 2948.3
## Scaled residuals:
               1Q Median
                                     Max
## -2.4905 -0.5820 -0.0698 0.4970 3.2446
## Random effects:
## Groups Name
                       Variance Std.Dev.
## M2FAMNUM (Intercept) 0.2755 0.5249
## Residual
                        0.7890 0.8882
## Number of obs: 1014, groups: M2FAMNUM, 901
##
## Fixed effects:
##
                    Estimate Std. Error t value
## (Intercept)
                  1.141957 0.033184 34.413
## coherence as r C -0.251793 0.069300 -3.633
## P4_age_C 0.015702 0.002946 5.330
```

```
##
## Correlation of Fixed Effects:
## (Intr) ch___C
## chrnc_s_r_C 0.004
## P4_age_C -0.011 -0.043

table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsW)

## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsW): The following column names in ANOVA output were not recognized or
## transformed: Df.res

pander(table_obj, digits = 3)  # Using pander() to view the created table, with 3 sig figs
```

term	statistic	df	Df.res	p.value
(Intercept)	1182	1	868	3.53e-164
$coherence_as_r_C$	13.1	1	1009	0.000302
$P4_age_C$	28.4	1	899	1.27e-07

CRP ~ coherence as r

```
# Run the test

lmerM = lmer(CRP_T ~ coherence_as_r_C + P4_age_C + (1|M2FAMNUM), data=dfLsW)
a = Anova(lmerM, type=3, test="F")
a

## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)

## Response: CRP_T

## F Df Df.res Pr(>F)

## (Intercept) 101.4269 1 876.07 <2e-16 ***

## coherence_as_r_C 1.8679 1 992.28 0.1720

## P4_age_C 0.2395 1 899.91 0.6247

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lmerM)
```

Linear mixed model fit by REML ['lmerMod']

```
## Formula: CRP_T ~ coherence_as_r_C + P4_age_C + (1 | M2FAMNUM)
     Data: dfLsW
##
## REML criterion at convergence: 1491.7
## Scaled residuals:
       Min
                 1Q Median
                                           Max
## -2.52285 -0.54340 -0.05445 0.56941 2.46170
## Random effects:
## Groups Name
                        Variance Std.Dev.
## M2FAMNUM (Intercept) 0.1001 0.3164
## Residual
                        0.1565
                               0.3956
## Number of obs: 1009, groups: M2FAMNUM, 897
## Fixed effects:
                     Estimate Std. Error t value
## (Intercept)
                    0.1660189 0.0164776
                                         10.07
## coherence as r C -0.0462399 0.0337564 -1.37
## P4_age_C
                   -0.0007146 0.0014594 -0.49
## Correlation of Fixed Effects:
              (Intr) ch C
## chrnc s r C 0.009
## P4 age C
              -0.019 -0.043
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLsW)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLsW): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)  # Using pander() to view the created table, with 3 sig figs
```

term	statistic	df	Df.res	p.value
(Intercept)	101	1	876	1.2e-22
$coherence_as_r_C$	1.87	1	992	0.172
$P4_age_C$	0.24	1	900	0.625

Denial ~ coherence as r

```
# Run the test
lmerM = lmer(COPE_denial ~ coherence_as_r_C + P4_age_C + (1 M2FAMNUM), data=dfLsW)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: COPE_denial
                           F Df Df.res
                                          Pr(>F)
##
## (Intercept)
                   7444.9908 1 874.41 < 2.2e-16 ***
## coherence as r C 17.4605 1 1007.48 3.188e-05 ***
## P4_age_C
                      0.7412 1 901.50
                                          0.3895
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula: COPE denial ~ coherence as r C + P4 age C + (1 | M2FAMNUM)
     Data: dfLsW
##
## REML criterion at convergence: 4471.1
## Scaled residuals:
               1Q Median
                                     Max
## -1.8207 -0.6923 -0.2848 0.4765 3.8784
## Random effects:
## Groups Name
                        Variance Std.Dev.
## M2FAMNUM (Intercept) 1.431
                                1.196
## Residual
                        3.362
                                1.833
## Number of obs: 1015, groups: M2FAMNUM, 903
##
## Fixed effects:
##
                    Estimate Std. Error t value
## (Intercept)
                    6.091732 0.070556 86.338
## coherence as r C -0.614323 0.146718 -4.187
## P4_age_C 0.005407 0.006277 0.861
```

term	statistic	df	Df.res	p.value
(Intercept)	7445	1	874	0
$coherence_as_r_C$	17.5	1	1007	3.19e-05
$P4_age_C$	0.741	1	901	0.39

Multiple Comparisons Correction

```
Holm-Bonferonni
```

```
## p value for each test of a well-being marker/denial
p = c(2.71E-06, 2.78E-07, 4.05E-07, 3.02E-04, 0.172, 3.19E-05)
## Holm-bonferonni
p.adjust(p, method= 'holm')

## [1] 1.084e-05 1.668e-06 2.025e-06 6.040e-04 1.720e-01 9.570e-05
# 1.084e-05 1.668e-06 2.025e-06 6.040e-04 1.720e-01 9.570e-05
```

FIGURE S1: Correlations histogram

```
ggplot(dfLsW, aes(coherence_as_r)) +
geom_histogram(aes(fill=as.factor(coherence_as_r)), binwidth=.2, col="black", fill="#FFC300") +
#scale_fill_gradientn("Slope", colours=mycol, limits=c(-.4, 4.5), values = scales::rescale(c(-0.5, -0.05, 0.05, 0.5,1,2,3,4)), breaks =
labs(x="Correlation", y="Number of Subjects") +
```

```
theme_bw() +
theme(panel.grid.minor = element_blank(), axis.text=element_text(size=12), axis.title=element_text(size=24)) +
theme(legend.position="none")
```

Warning: Removed 46 rows containing non-finite values (stat_bin).

II. Lag from Survey to Biomarker substudies

There was a lag of 0-60 months from the survey to the stress-induction (biomarker) substudies. The COPE and PWB were completed as part of the Survey substudy. All other measures were collected as part of the stress-induction substudy.

PWB + lag

```
# Center age for subjects in this analysis
length(dfLs$P4_age[!is.na(dfLs$pwb2_C)])
## [1] 5305
dfLs$P4_age_C = dfLs$P4_age - mean(dfLs$P4_age[!is.na(dfLs$pwb2_C)], na.rm=T)
# Center lag for subjects in this analysis
length(dfLs$months_P1SAQ_to_P4[!is.na(dfLs$pwb2_C)])
## [1] 5305
dfLs$months_P1SAQ_to_P4_C = dfLs$months_P1SAQ_to_P4 - mean(dfLs$months_P1SAQ_to_P4[!is.na(dfLs$pwb2_C)], na.rm=T)
# Lag moderate?
lmerM = lmer(hr ~ stress_CMC * pwb2_C * months_P1SAQ_to_P4_C + P4_age_C*stress_CMC + (1+ stress_CMC | M2ID) + (1 | M2FAMNUM), data=dfLs)
a = Anova(lmerM, type=3, test="F")
a
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
##
                                                  F Df Df.res
                                                                 Pr(>F)
                                         48988.5270 1 897.24 < 2.2e-16 ***
## (Intercept)
## stress CMC
                                           686.6727 1 825.97 < 2.2e-16 ***
## pwb2 C
                                             0.0071 1 1056.23 0.932993
## months P1SAQ to P4 C
                                            2.1792 1 898.38 0.140239
## P4_age_C
                                            24.5582 1 951.28 8.532e-07 ***
## stress_CMC:pwb2_C
                                            26.9152 1 822.80 2.679e-07 ***
## stress_CMC:months_P1SAQ_to_P4_C
                                          2.1993 1 791.73 0.138470
## pwb2_C:months_P1SAQ_to_P4_C
                                            0.6201 1 1045.39 0.431197
## stress_CMC:P4_age_C
                                          15.0641 1 843.20 0.000112 ***
## stress_CMC:pwb2_C:months_P1SAQ_to_P4_C 2.8509 1 744.79 0.091740 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula: hr ~ stress_CMC * pwb2_C * months_P1SAQ_to_P4_C + P4_age_C *
```

```
stress_CMC + (1 + stress_CMC | M2ID) + (1 | M2FAMNUM)
##
     Data: dfLs
##
## REML criterion at convergence: 29114.4
## Scaled residuals:
      Min
               1Q Median
                              3Q
                                     Max
## -7.1040 -0.4761 -0.0453 0.4029 9.4751
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 82.6862 9.0932
            stress_CMC 0.5195 0.7208
                                         0.18
## M2FAMNUM (Intercept) 30.2170 5.4970
## Residual
                         5.5798 2.3622
## Number of obs: 5154, groups: M2ID, 1061; M2FAMNUM, 936
## Fixed effects:
                                          Estimate Std. Error t value
## (Intercept)
                                         7.456e+01 3.366e-01 221.475
## stress CMC
                                         8.817e-01 3.363e-02 26.220
## pwb2 C
                                         7.993e-04 9.488e-03 0.084
## months P1SAQ to P4 C
                                        -3.534e-02 2.390e-02 -1.479
## P4_age_C
                                        -1.514e-01 3.053e-02 -4.959
## stress CMC:pwb2 C
                                       5.056e-03 9.740e-04 5.191
## stress_CMC:months_P1SAQ_to_P4_C
                                   -3.430e-03 2.311e-03 -1.484
## pwb2_C:months_P1SAQ_to_P4_C
                                        -5.223e-04 6.615e-04 -0.790
## stress_CMC:P4_age_C
                                        -1.197e-02 3.082e-03 -3.884
## stress_CMC:pwb2_C:months_P1SAQ_to_P4_C -1.095e-04 6.484e-05 -1.689
##
## Correlation of Fixed Effects:
              (Intr) st_CMC pwb2_C m_P1SA P4_g_C st_CMC:2_C s_CMC:_ p2_C:_
## stress CMC
              0.100
               0.004 -0.001
## pwb2_C
## m_P1SAQ__P4 0.028 0.000 0.005
## P4 age C
             -0.009 0.001 -0.186 0.051
## str CMC:2 C -0.001 0.028 0.104 0.002 -0.019
## s CMC: P1SA 0.000 0.017 0.002 0.102 0.005 0.018
## p2 C: P1SAQ 0.014 0.003 -0.017 -0.006 -0.008 -0.003
                                                           -0.001
```

```
## s_CMC:P4__C 0.001 -0.038 -0.019 0.005 0.100 -0.218
                                                         0.038 -0.001
## s_CMC:2_C:_ 0.003 0.027 -0.003 -0.001 -0.001 -0.029
                                                         0.018 0.107
              s CMC:P
##
## stress_CMC
## pwb2_C
## m_P1SAQ__P4
## P4_age_C
## str_CMC:2_C
## s_CMC:_P1SA
## p2_C:_P1SAQ
## s_CMC:P4__C
## s_CMC:2_C:_ -0.018
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLs): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	48989	1	897	0
$stress_CMC$	687	1	826	1.24e-110
$\mathrm{pwb2}_\mathrm{C}$	0.00707	1	1056	0.933
$months_P1SAQ_to_P4_C$	2.18	1	898	0.14
$P4_age_C$	24.6	1	951	8.53e-07
$stress_CMC:pwb2_C$	26.9	1	823	2.68e-07
stress_CMC:months_P1SAQ_to_P4_C	2.2	1	792	0.138
pwb2_C:months_P1SAQ_to_P4_C	0.62	1	1045	0.431
$stress_CMC:P4_age_C$	15.1	1	843	0.000112
$stress_CMC:pwb2_C:months_P1SAQ_to_P4_C$	2.85	1	745	0.0917

```
# Adjust for lag
lmerM = lmer(hr ~ stress_CMC * pwb2_C + months_P1SAQ_to_P4_C + P4_age_C*stress_CMC + (1+ stress_CMC|M2ID) + (1|M2FAMNUM), data=dfLs)
a = Anova(lmerM, type=3, test="F")
a
```

Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)

```
##
## Response: hr
                                F Df Df.res
                                                Pr(>F)
## (Intercept)
                       49004.7489 1 898.19 < 2.2e-16 ***
## stress CMC
                         692.4292 1 827.74 < 2.2e-16 ***
## pwb2_C
                           0.0049 1 1057.37 0.9441624
## months P1SAQ to P4 C
                          1.7921 1 895.61 0.1810050
## P4_age_C
                          24.5394 1 952.25 8.612e-07 ***
## stress CMC:pwb2 C
                          26.7247 1 822.69 2.947e-07 ***
## stress_CMC:P4_age_C
                          14.9189 1 845.95 0.0001208 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula: hr ~ stress_CMC * pwb2_C + months_P1SAQ_to_P4_C + P4_age_C *
       stress_CMC + (1 + stress_CMC | M2ID) + (1 | M2FAMNUM)
     Data: dfLs
##
##
## REML criterion at convergence: 29079.2
## Scaled residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -7.0803 -0.4737 -0.0411 0.4044 9.4762
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 82.4498 9.0802
            stress_CMC 0.5159 0.7183
                                          0.18
## M2FAMNUM (Intercept) 30.4158 5.5150
   Residual
                         5.5895 2.3642
## Number of obs: 5154, groups: M2ID, 1061; M2FAMNUM, 936
## Fixed effects:
##
                         Estimate Std. Error t value
## (Intercept)
                       74.5628781 0.3366110 221.511
## stress_CMC
                        0.8835150 0.0335559 26.330
## pwb2 C
                        0.0006656 0.0094850
                                              0.070
## months P1SAQ to P4 C -0.0319043 0.0237671 -1.342
```

```
## P4_age_C
               -0.1513089 0.0305267 -4.957
## stress_CMC:pwb2_C 0.0050275 0.0009719 5.173
## stress_CMC:P4_age_C -0.0118830 0.0030747 -3.865
## Correlation of Fixed Effects:
              (Intr) st_CMC pwb2_C m_P1SA P4_g_C s_CMC:2
## stress CMC 0.101
## pwb2_C
               0.005 -0.001
## m_P1SAQ__P4 0.029 -0.002 0.005
## P4_age_C -0.009 0.001 -0.186 0.051
## str_CMC:2_C -0.001 0.028 0.105 0.000 -0.019
## s_CMC:P4__C 0.001 -0.038 -0.019 0.001 0.102 -0.219
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLs): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	49005	1	898	0
$stress_CMC$	692	1	828	2.25e-111
$pwb2_C$	0.00491	1	1057	0.944
$months_P1SAQ_to_P4_C$	1.79	1	896	0.181
$P4_age_C$	24.5	1	952	8.61e-07
$stress_CMC:pwb2_C$	26.7	1	823	2.95e-07
$stress_CMC:P4_age_C$	14.9	1	846	0.000121

Denial + lag

```
# Center age for subjects in this analysis
length(dfLs$P4_age[!is.na(dfLs$COPE_denial_C)])
```

[1] 5300

```
dfLs$P4_age_C = dfLs$P4_age - mean(dfLs$P4_age[!is.na(dfLs$COPE_denial_C)], na.rm=T)
# Center lag for subjects in this analysis
length(dfLs$months_P1SAQ_to_P4[!is.na(dfLs$COPE_denial_C)])
## [1] 5300
dfLs\( months_P1SAQ to_P4_C = dfLs\( months_P1SAQ to_P4 - mean(dfLs\( months_P1SAQ to_P4[!is.na(dfLs\( condition COPE = denial_C)], na.rm=T)
# Lag moderate?
lmerM = lmer(hr ~ stress_CMC * COPE_denial_C * months_P1SAQ_to_P4_C + P4_age_C*stress_CMC + (1+ stress_CMC|M2ID) + (1|M2FAMNUM), data=dfLs
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: hr
                                                           F Df Df.res
##
## (Intercept)
                                                  48761.5860 1 895.68
## stress_CMC
                                                    694.0683 1 820.02
## COPE_denial_C
                                                     0.0519 1 1055.60
## months_P1SAQ_to_P4_C
                                                      2.4453 1 891.75
## P4_age_C
                                                     24.6019 1 946.35
## stress_CMC:COPE_denial_C
                                                    20.4366 1 854.53
## stress_CMC:months_P1SAQ_to_P4_C
                                                     2.8355 1 788.64
## COPE_denial_C:months_P1SAQ_to_P4_C
                                                     0.3430 1 1030.15
## stress_CMC:P4_age_C
                                                     7.1730 1 827.56
## stress_CMC:COPE_denial_C:months_P1SAQ_to_P4_C
                                                     0.0763 1 858.26
##
                                                    Pr(>F)
## (Intercept)
                                                  < 2.2e-16 ***
## stress_CMC
                                                  < 2.2e-16 ***
## COPE denial C
                                                  0.819858
## months_P1SAQ_to_P4_C
                                                  0.118231
## P4_age_C
                                                 8.353e-07 ***
## stress CMC:COPE denial C
                                                 7.033e-06 ***
## stress_CMC:months_P1SAQ_to_P4_C
                                                  0.092598 .
## COPE_denial_C:months_P1SAQ_to_P4_C
                                                  0.558259
## stress_CMC:P4_age_C
                                                  0.007548 **
## stress_CMC:COPE_denial_C:months_P1SAQ_to_P4_C 0.782407
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * COPE_denial_C * months_P1SAQ_to_P4_C + P4_age_C *
      stress CMC + (1 + stress CMC | M2ID) + (1 | M2FAMNUM)
     Data: dfLs
##
## REML criterion at convergence: 29018.5
## Scaled residuals:
      Min
               1Q Median
                                      Max
## -7.2209 -0.4774 -0.0413 0.4087 9.4570
## Random effects:
   Groups
           Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 84.4202 9.1880
            stress_CMC 0.4889 0.6992
                                          0.18
## M2FAMNUM (Intercept) 29.2166 5.4052
## Residual
                         5.5416 2.3541
## Number of obs: 5149, groups: M2ID, 1060; M2FAMNUM, 936
## Fixed effects:
                                                  Estimate Std. Error
## (Intercept)
                                                74.5871496 0.3375500
## stress CMC
                                                 0.8704579 0.0330203
## COPE denial C
                                                -0.0338159 0.1482474
## months_P1SAQ_to_P4_C
                                                -0.0376248 0.0240167
## P4_age_C
                                                -0.1490200 0.0300271
## stress_CMC:COPE_denial_C
                                                -0.0686662 0.0151799
## stress_CMC:months_P1SAQ_to_P4_C
                                                -0.0038323 0.0022746
## COPE_denial_C:months_P1SAQ_to_P4_C
                                                 0.0062525 0.0106480
## stress_CMC:P4_age_C
                                                -0.0079143 0.0029532
## stress_CMC:COPE_denial_C:months_P1SAQ_to_P4_C 0.0002999 0.0010848
                                                t value
## (Intercept)
                                                220.966
## stress_CMC
                                                 26.361
## COPE denial C
                                                 -0.228
```

```
## months_P1SAQ_to_P4_C
                                                  -1.567
## P4_age_C
                                                  -4.963
## stress CMC:COPE denial C
                                                  -4.523
## stress_CMC:months_P1SAQ_to_P4_C
                                                  -1.685
## COPE denial C:months P1SAQ to P4 C
                                                  0.587
## stress CMC:P4 age C
                                                  -2.680
## stress_CMC:COPE_denial_C:months_P1SAQ_to_P4_C
                                                  0.276
## Correlation of Fixed Effects:
##
                  (Intr) st_CMC COPE_d_C m_P1SA P4_g_C st_CMC:COPE__C s_CMC:_
## stress_CMC
                   0.100
## COPE_denl_C
                  -0.010 0.000
## m_P1SAQ__P4
                   0.028 0.000 -0.017
## P4_age_C
                  -0.008 0.001 -0.018
                                          0.052
## st_CMC:COPE__C 0.000 0.013 0.101
                                         -0.002 -0.004
## s_CMC:_P1SA
                  0.000 0.016 -0.003
                                         0.102 0.006 -0.016
## COPE C: P1
                  -0.016 -0.002 -0.004
                                         -0.002 0.031 0.000
                                                                       0.000
## s_CMC:P4__C
                   0.001 -0.033 -0.004
                                         0.006 0.101 -0.036
                                                                       0.044
## s CMC:COPE C: -0.002 -0.016 0.000
                                          0.000 0.003 -0.027
                                                                       0.021
                  COPE__C: s_CMC:P
## stress CMC
## COPE_denl_C
## m P1SAQ P4
## P4_age_C
## st CMC:COPE C
## s_CMC:_P1SA
## COPE__C:_P1
## s_CMC:P4__C
                   0.003
## s CMC:COPE C: 0.101
                            0.051
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLs): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

Table 46: Table continues below

term	statistic	df	Df.res
(Intercept)	48762	1	896
$stress_CMC$	694	1	820
$\operatorname{COPE_denial_C}$	0.0519	1	1056
$months_P1SAQ_to_P4_C$	2.45	1	892
$P4_age_C$	24.6	1	946
$stress_CMC:COPE_denial_C$	20.4	1	855
$stress_CMC:months_P1SAQ_to_P4_C$	2.84	1	789
COPE_denial_C:months_P1SAQ_to_P4_C	0.343	1	1030
$stress_CMC:P4_age_C$	7.17	1	828
stress_CMC:COPE_denial_C:months_P1SAQ_to_P4_C	0.0763	1	858

p.value
0
2.61e-111
0.82
0.118
8.35 e-07
7.03e-06
0.0926
0.558
0.00755
0.782

```
# Adjust for lag
lmerM = lmer(hr ~ stress_CMC * COPE_denial_C + months_P1SAQ_to_P4_C + P4_age_C*stress_CMC + (1+ stress_CMC|M2ID) + (1|M2FAMNUM), data=dfLs
a = Anova(lmerM, type=3, test="F")
a

## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
Response: hr
```

Pr(>F)

F Df Df.res

48766.0503 1 896.78 < 2.2e-16 ***

(Intercept)

```
## stress CMC
                            697.6348 1 821.19 < 2.2e-16 ***
## COPE_denial_C
                             0.0527 1 1056.66 0.818475
## months P1SAQ to P4 C
                             1.9550 1 890.35 0.162396
## P4 age C
                              24.6873 1 947.14 7.998e-07 ***
## stress CMC:COPE denial C
                              20.6837 1 853.22 6.201e-06 ***
## stress_CMC:P4_age_C
                              6.9081 1 829.92 0.008739 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * COPE_denial_C + months_P1SAQ_to_P4_C + P4_age_C *
      stress_CMC + (1 + stress_CMC | M2ID) + (1 | M2FAMNUM)
##
     Data: dfLs
## REML criterion at convergence: 28992.3
## Scaled residuals:
               10 Median
      Min
                                     Max
## -7.1780 -0.4780 -0.0415 0.4063 9.4735
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 83.9333 9.1615
            stress_CMC 0.4857 0.6969
                                         0.18
## M2FAMNUM (Intercept) 29.6581 5.4459
## Residual
                         5.5476 2.3553
## Number of obs: 5149, groups: M2ID, 1060; M2FAMNUM, 936
## Fixed effects:
                            Estimate Std. Error t value
## (Intercept)
                          74.589990
                                     0.337551 220.974
## stress_CMC
                           0.871111 0.032960 26.429
## COPE_denial_C
                          -0.034070 0.148200 -0.230
## months_P1SAQ_to_P4 C
                          -0.033501
                                     0.023894 -1.402
## P4_age_C
                           -0.149210
                                    0.030013 -4.971
## stress_CMC:COPE_denial_C -0.068942  0.015149 -4.551
## stress CMC:P4 age C
                          -0.007738 0.002942 -2.630
```

term	statistic	df	Df.res	p.value
(Intercept)	48766	1	897	0
$stress_CMC$	698	1	821	9.08e-112
$COPE_denial_C$	0.0527	1	1057	0.818
$months_P1SAQ_to_P4_C$	1.96	1	890	0.162
$P4_age_C$	24.7	1	947	8e-07
$stress_CMC:COPE_denial_C$	20.7	1	853	6.2e-06
$stress_CMC:P4_age_C$	6.91	1	830	0.00874

III. PWB subscales

Exploratory analyses investigating individual subscales of the Psychological Well-Being Scales

```
# Center age for subjects in this analysis
varDescribe(dfLs$pwb2_C)

## vars n mean sd median min max skew kurtosis
## X1 1 5305 0 35.23 5.19 -135.81 61.19 -0.7 0.14
length(dfLs$P4_age[!is.na(dfLs$pwb2_C)])
```

```
## [1] 5305
dfLs$P4_age_C = dfLs$P4_age - mean(dfLs$P4_age[!is.na(dfLs$pwb2_C)], na.rm=T)
```

Autonomy

```
# Run the test
lmerM = lmer(hr ~ stress_CMC * autonomy2_C + P4_age_C*stress_CMC + (1+ stress_CMC | M2ID) + (1 | M2FAMNUM), data=dfLs)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: hr
##
                                  F Df Df.res
                                                 Pr(>F)
## (Intercept)
                         49034.4174 1 904.95 < 2.2e-16 ***
## stress_CMC
                          676.6076 1 831.90 < 2.2e-16 ***
## autonomy2_C
                           0.0001 1 1051.89 0.992530
## P4_age_C
                          24.3123 1 947.70 9.669e-07 ***
## stress_CMC:autonomy2_C 4.2915 1 830.99 0.038610 *
## stress_CMC:P4_age_C
                       9.0387 1 839.98 0.002722 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula: hr ~ stress_CMC * autonomy2_C + P4_age_C * stress_CMC + (1 +
##
      stress_CMC | M2ID) + (1 | M2FAMNUM)
     Data: dfLs
## REML criterion at convergence: 29091.1
##
## Scaled residuals:
               1Q Median
      Min
                               3Q
                                     Max
## -7.1009 -0.4729 -0.0443 0.4022 9.4548
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
```

```
M2ID
            (Intercept) 83.0622 9.1138
            stress_CMC 0.5349 0.7314
                                         0.19
## M2FAMNUM (Intercept) 29.9432 5.4720
## Residual
                         5.5989 2.3662
## Number of obs: 5154, groups: M2ID, 1061; M2FAMNUM, 936
## Fixed effects:
                           Estimate Std. Error t value
## (Intercept)
                         74.5786003 0.3365674 221.586
## stress_CMC
                        0.8826133 0.0339117 26.027
## autonomy2_C
                         -0.0004671 0.0497839 -0.009
## P4_age_C
                         -0.1489096 0.0301827 -4.934
## stress_CMC:autonomy2_C 0.0105787 0.0051036 2.073
## stress_CMC:P4_age_C
                         -0.0091880 0.0030543 -3.008
## Correlation of Fixed Effects:
              (Intr) st_CMC atn2_C P4_g_C s_CMC:2
## stress_CMC 0.106
## autonomy2 C -0.007 -0.001
## P4_age_C
           -0.008 0.001 -0.121
## str CMC:2 C -0.001 0.035 0.109 -0.014
## s CMC:P4 C 0.001 -0.036 -0.014 0.107 -0.124
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)
## Warning in tidy.anova(a, effects = c("ran pars", "fixed"), data =
## dfLs): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	49034	1	905	0
$stress_CMC$	677	1	832	1.26e-109
${\rm autonomy2_C}$	8.77e-05	1	1052	0.993
$P4_age_C$	24.3	1	948	9.67e-07
$stress_CMC:autonomy2_C$	4.29	1	831	0.0386
$stress_CMC:P4_age_C$	9.04	1	840	0.00272

Environmental Mastery

```
# Run the test
lmerM = lmer(hr ~ stress_CMC * envMast2_C + P4_age_C*stress_CMC + (1+ stress_CMC | M2ID) + (1 | M2FAMNUM), data=dfLs)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: hr
                                 F Df Df.res
                                                Pr(>F)
##
## (Intercept)
                        49062.6979 1 905.16 < 2.2e-16 ***
## stress CMC
                          689.1703 1 828.03 < 2.2e-16 ***
## envMast2_C
                          0.1037 1 1058.09
                                                0.7475
## P4 age C
                           22.7475 1 961.59 2.133e-06 ***
## stress CMC:envMast2 C 23.9722 1 825.22 1.176e-06 ***
## stress CMC:P4 age C
                          16.4475 1 863.28 5.454e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * envMast2_C + P4_age_C * stress_CMC + (1 + stress_CMC |
      M2ID) + (1 | M2FAMNUM)
##
     Data: dfLs
## REML criterion at convergence: 29071.4
## Scaled residuals:
      Min
               10 Median
                               3Q
                                      Max
## -7.0699 -0.4760 -0.0435 0.4051 9.4820
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 83.1025 9.1161
            stress CMC 0.5189 0.7203
                                          0.19
## M2FAMNUM (Intercept) 29.8517 5.4637
## Residual
                         5.5900 2.3643
```

```
## Number of obs: 5154, groups: M2ID, 1061; M2FAMNUM, 936
##
## Fixed effects:
##
                         Estimate Std. Error t value
## (Intercept)
                        74.577110
                                  0.336463 221.650
## stress_CMC
                        0.882616 0.033601 26.268
## envMast2 C
                        -0.014026 0.043465 -0.323
## P4_age_C
                                   0.030755 - 4.772
                        -0.146770
## stress CMC:envMast2 C 0.021893
                                   0.004469
                                             4.899
## stress_CMC:P4_age_C
                       -0.012700 0.003130 -4.058
##
## Correlation of Fixed Effects:
              (Intr) st_CMC enM2_C P4_g_C s_CMC:M
## stress_CMC
              0.106
## envMast2_C 0.002 0.000
## P4_age_C
              -0.009 0.001 -0.227
## st_CMC:M2_C -0.001 0.024 0.110 -0.026
## s_CMC:P4__C 0.001 -0.038 -0.026 0.106 -0.280
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLs): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	49063	1	905	0
$stress_CMC$	689	1	828	5.36e-111
${\rm envMast2_C}$	0.104	1	1058	0.747
$P4_age_C$	22.7	1	962	2.13e-06
$stress_CMC:envMast2_C$	24	1	825	1.18e-06
$stress_CMC:P4_age_C$	16.4	1	863	5.45 e - 05

Personal Growth

```
# Run the test
lmerM = lmer(hr ~ stress_CMC * persGrow2_C + P4_age_C*stress_CMC + (1+ stress_CMC | M2ID) + (1 | M2FAMNUM), data=dfLs)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: hr
                                  F Df Df.res
                                                 Pr(>F)
##
## (Intercept)
                         49076.8992 1 905.01 < 2.2e-16 ***
## stress CMC
                           682.8387 1 828.37 < 2.2e-16 ***
## persGrow2 C
                           0.0921 1 1058.73 0.7615953
## P4 age C
                          24.2902 1 945.48 9.781e-07 ***
## stress CMC:persGrow2 C 13.7872 1 821.09 0.0002186 ***
## stress CMC:P4 age C
                          9.5863 1 839.10 0.0020256 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula: hr ~ stress_CMC * persGrow2_C + P4_age_C * stress_CMC + (1 +
      stress_CMC | M2ID) + (1 | M2FAMNUM)
     Data: dfLs
##
## REML criterion at convergence: 29081.3
## Scaled residuals:
      Min
               1Q Median
                                      Max
## -6.9893 -0.4692 -0.0449 0.4008 9.5146
## Random effects:
                        Variance Std.Dev. Corr
   Groups
           Name
## M2ID
            (Intercept) 83.2885 9.1263
            stress_CMC 0.5239 0.7238
                                          0.19
## M2FAMNUM (Intercept) 29.6629 5.4464
## Residual
                         5.5990 2.3662
## Number of obs: 5154, groups: M2ID, 1061; M2FAMNUM, 936
```

```
##
## Fixed effects:
                          Estimate Std. Error t value
## (Intercept)
                         74.578359 0.336418 221.683
## stress CMC
                         0.881072 0.033697 26.147
## persGrow2_C
                         -0.014627
                                    0.048120 -0.304
## P4 age C
                         -0.148115
                                    0.030036 -4.931
## stress_CMC:persGrow2_C 0.018304 0.004927 3.715
## stress CMC:P4 age C
                         -0.009370 0.003025 -3.098
##
## Correlation of Fixed Effects:
              (Intr) st_CMC prG2_C P4_g_C s_CMC:G
## stress CMC
             0.106
## persGrow2_C 0.002 0.000
## P4_age_C
              -0.009 0.001 -0.076
## st_CMC:G2_C 0.000 0.016 0.112 -0.007
## s_CMC:P4__C 0.001 -0.034 -0.007 0.107 -0.086
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLs): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	49077	1	905	0
$stress_CMC$	683	1	828	2.96e-110
$\operatorname{persGrow2_C}$	0.0921	1	1059	0.762
$P4_age_C$	24.3	1	945	9.78e-07
$stress_CMC:persGrow2_C$	13.8	1	821	0.000219
$stress_CMC:P4_age_C$	9.59	1	839	0.00203

Positive Relations with Others

```
# Run the test
lmerM = lmer(hr ~ stress_CMC * posRela2_C + P4_age_C*stress_CMC + (1+ stress_CMC|M2ID) + (1|M2FAMNUM), data=dfLs)
```

```
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: hr
##
                                 F Df Df.res
                                                Pr(>F)
## (Intercept)
                        49124.0666 1 903.61 < 2.2e-16 ***
## stress_CMC
                          687.8391 1 827.31 < 2.2e-16 ***
## posRela2_C
                          1.2684 1 1057.99 0.2603247
## P4_age_C
                           25.9641 1 947.83 4.197e-07 ***
## stress CMC:posRela2 C 23.0475 1 802.05 1.885e-06 ***
## stress CMC:P4 age C
                         14.8001 1 849.96 0.0001285 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * posRela2_C + P4_age_C * stress_CMC + (1 + stress_CMC |
      M2ID) + (1 | M2FAMNUM)
     Data: dfLs
##
##
## REML criterion at convergence: 29072.5
## Scaled residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -7.1346 -0.4717 -0.0410 0.4027 9.4414
##
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 82.9150 9.1058
            stress_CMC
                        0.5166 0.7188
                                          0.17
## M2FAMNUM (Intercept) 29.8756 5.4659
   Residual
                         5.5946 2.3653
## Number of obs: 5154, groups: M2ID, 1061; M2FAMNUM, 936
```

Fixed effects:

```
##
                        Estimate Std. Error t value
## (Intercept)
                        74.57943
                                    0.33626 221.788
## stress CMC
                         0.88091
                                    0.03357 26.242
## posRela2_C
                         0.05221
                                    0.04629
                                             1.128
## P4 age C
                        -0.15601
                                    0.03060 -5.099
## stress_CMC:posRela2_C 0.02277
                                    0.00474 4.804
## stress CMC:P4 age C
                       -0.01189
                                    0.00309 -3.849
## Correlation of Fixed Effects:
              (Intr) st_CMC psR2_C P4_g_C s_CMC:R
## stress_CMC 0.098
## posRela2_C 0.012 -0.001
## P4_age_C
             -0.011 0.001 -0.208
## st_CMC:R2_C -0.001 0.015 0.102 -0.021
## s_CMC:P4__C 0.001 -0.035 -0.021 0.099 -0.237
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLs): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	49124	1	904	0
$stress_CMC$	688	1	827	8.14e-111
$ m posRela2_C$	1.27	1	1058	0.26
$P4_age_C$	26	1	948	4.2e-07
$stress_CMC:posRela2_C$	23	1	802	1.89e-06
$stress_CMC:P4_age_C$	14.8	1	850	0.000128

Purpose in Life

```
# Run the test
lmerM = lmer(hr ~ stress_CMC * purpLife2_C + P4_age_C*stress_CMC + (1+ stress_CMC|M2ID) + (1|M2FAMNUM), data=dfLs)
a = Anova(lmerM, type=3, test="F")
a
```

```
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
##
                                  F Df Df.res
                                                 Pr(>F)
## (Intercept)
                         49052.8574 1 905.18 < 2.2e-16 ***
## stress CMC
                           682.6914 1 829.00 < 2.2e-16 ***
## purpLife2 C
                             0.1229 1 1058.85 0.725976
## P4_age_C
                            24.2779 1 947.71 9.838e-07 ***
## stress CMC:purpLife2 C
                         19.3809 1 836.88 1.209e-05 ***
## stress_CMC:P4_age_C
                           10.2231 1 837.54 0.001439 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula: hr ~ stress_CMC * purpLife2_C + P4_age_C * stress_CMC + (1 +
       stress_CMC | M2ID) + (1 | M2FAMNUM)
     Data: dfLs
##
##
## REML criterion at convergence: 29075.4
## Scaled residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -7.1596 -0.4731 -0.0432 0.4046 9.4353
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 83.0364 9.1124
            stress\_CMC
                         0.5251 0.7247
                                          0.19
## M2FAMNUM (Intercept) 29.9263 5.4705
   Residual
                         5.5886 2.3640
## Number of obs: 5154, groups: M2ID, 1061; M2FAMNUM, 936
## Fixed effects:
##
                          Estimate Std. Error t value
## (Intercept)
                         74.576549
                                     0.336495 221.628
## stress_CMC
                          0.881153 0.033704 26.144
## purpLife2_C
                         -0.017454 0.049705 -0.351
## P4_age_C
                         -0.148133 0.030047 -4.930
```

term	statistic	df	Df.res	p.value
(Intercept)	49053	1	905	0
$stress_CMC$	683	1	829	2.94e-110
$\operatorname{purpLife2_C}$	0.123	1	1059	0.726
$P4_age_C$	24.3	1	948	9.84 e - 07
$stress_CMC:purpLife2_C$	19.4	1	837	1.21e-05
$stress_CMC:P4_age_C$	10.2	1	838	0.00144

Self Acceptance

```
# Run the test
lmerM = lmer(hr ~ stress_CMC * selfAcce2_C + P4_age_C*stress_CMC + (1+ stress_CMC|M2ID) + (1|M2FAMNUM), data=dfLs)
a = Anova(lmerM, type=3, test="F")
a

## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
## F Df Df.res Pr(>F)
```

```
## (Intercept)
                        49054.6598 1 904.71 < 2.2e-16 ***
## stress CMC
                          692.6108 1 828.21 < 2.2e-16 ***
## selfAcce2 C
                           0.0372 1 1058.70 0.847026
## P4 age C
                           24.1982 1 949.56 1.024e-06 ***
## stress CMC:selfAcce2 C 21.8916 1 800.38 3.386e-06 ***
## stress_CMC:P4_age_C
                           13.7539 1 842.77 0.000222 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula: hr ~ stress_CMC * selfAcce2_C + P4_age_C * stress_CMC + (1 +
      stress_CMC | M2ID) + (1 | M2FAMNUM)
     Data: dfLs
##
## REML criterion at convergence: 29074.5
## Scaled residuals:
      Min
               10 Median
                              3Q
                                     Max
## -7.0548 -0.4735 -0.0431 0.4064 9.4796
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 83.0666 9.1141
            stress CMC 0.5143 0.7172
## M2FAMNUM (Intercept) 29.8927 5.4674
## Residual
                         5.5991 2.3662
## Number of obs: 5154, groups: M2ID, 1061; M2FAMNUM, 936
## Fixed effects:
                          Estimate Std. Error t value
## (Intercept)
                        74.576559
                                    0.336488 221.632
## stress_CMC
                         0.883295 0.033543 26.333
## selfAcce2_C
                         0.007714 0.039906 0.193
## P4_age_C
                        -0.149799 0.030434 -4.922
## stress_CMC:selfAcce2_C 0.018883
                                    0.004034 4.682
## stress_CMC:P4_age_C
                        -0.011376 0.003066 -3.711
## Correlation of Fixed Effects:
```

```
## (Intr) st_CMC s1A2_C P4_g_C s_CMC:A
## stress_CMC     0.103
## selfAcce2_C     0.006 -0.001
## P4_age_C     -0.010     0.001 -0.177
## st_CMC:A2_C -0.001     0.032     0.108 -0.018
## s_CMC:P4_C     0.001 -0.039 -0.018     0.103 -0.208
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)

## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLs): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	49055	1	905	0
$stress_CMC$	693	1	828	2.07e-111
$\operatorname{selfAcce2}_{-}\mathrm{C}$	0.0372	1	1059	0.847
$P4_age_C$	24.2	1	950	1.02e-06
$stress_CMC:selfAcce2_C$	21.9	1	800	3.39e-06
$stress_CMC:P4_age_C$	13.8	1	843	0.000222

Non-linear Age

 $HR \sim age^2$

Including age² in our model did not impact results.

```
# Center age (been centered for subsets of participants on different analyses where participants are missing data on well-being indicators dfLs$P4_age_C = dfLs$P4_age - mean(dfLs$P4_age, na.rm=T)

dfLs$P4_age_C2 = dfLs$P4_age_C^2
```

```
lmerM = lmer(hr ~ P4_age_C + P4_age_C2 + (1|M2ID) + (1|M2FAMNUM), data=dfLs)
a = Anova(lmerM, type=3, test="F")
```

```
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: hr
                       F Df Df.res
                                     Pr(>F)
## (Intercept) 28012.6195 1 904.80 < 2.2e-16 ***
## P4_age_C
                 23.2375 1 944.22 1.668e-06 ***
## P4_age_C2
                  0.2268 1 951.34
                                      0.634
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula: hr ~ P4 age C + P4 age C2 + (1 | M2ID) + (1 | M2FAMNUM)
     Data: dfLs
## REML criterion at convergence: 30408.7
## Scaled residuals:
      Min
               1Q Median
                               3Q
                                     Max
## -4.7670 -0.5209 -0.0751 0.4372 7.9457
##
## Random effects:
## Groups Name
                        Variance Std.Dev.
## M2ID
            (Intercept) 80.451 8.969
## M2FAMNUM (Intercept) 32.383 5.691
## Residual
                         8.935 2.989
## Number of obs: 5174, groups: M2ID, 1065; M2FAMNUM, 940
##
## Fixed effects:
               Estimate Std. Error t value
## (Intercept) 74.417042 0.444334 167.480
## P4_age_C
             -0.153042 0.031730 -4.823
## P4_age_C2 0.001090 0.002288 0.477
## Correlation of Fixed Effects:
            (Intr) P4_g_C
## P4_age_C 0.211
```

```
## P4_age_C2 -0.651 -0.334

table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)

## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLs): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	28013	1	905	0
$P4_age_C$	23.2	1	944	1.67e-06
$P4_age_C2$	0.227	1	951	0.634

$PWB + age^2$

```
# Center age for subjects in this analysis
varDescribe(dfLs$pwb2_C)
##
      vars
              n mean
                        sd median
                                      min
                                           max skew kurtosis
## X1
        1 5305
                  0 35.23 5.19 -135.81 61.19 -0.7
                                                         0.14
length(dfLs$P4_age[!is.na(dfLs$pwb2_C)])
## [1] 5305
dfLs$P4_age_C = dfLs$P4_age - mean(dfLs$P4_age[!is.na(dfLs$pwb2_C)], na.rm=T)
dfLs$P4_age_C2 = dfLs$P4_age_C^2
# Run the test
lmerM = lmer(hr ~ stress_CMC * pwb2_C + P4_age_C + P4_age_C2 + (1+ stress_CMC M2ID) + (1 M2FAMNUM), data=dfLs)
a = Anova(lmerM, type=3, test="F")
a
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## Response: hr
                                              Pr(>F)
                             F Df Df.res
## (Intercept)
                     28241.5889 1 903.34 < 2.2e-16 ***
## stress_CMC
                       677.3817 1 829.20 < 2.2e-16 ***
```

```
## pwb2 C
                     0.0000 1 1058.09
                                            0.9997
## P4 age C
                     18.7926 1 941.97 1.614e-05 ***
## P4 age C2
                     0.0474 1 944.39
                                            0.8276
## stress_CMC:pwb2_C 19.4558 1 817.13 1.167e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * pwb2_C + P4_age_C + P4_age_C2 + (1 + stress_CMC |
      M2ID) + (1 \mid M2FAMNUM)
##
     Data: dfLs
## REML criterion at convergence: 29090.7
## Scaled residuals:
      Min
               1Q Median
                              ЗQ
                                     Max
## -7.0394 -0.4727 -0.0429 0.4053 9.4972
## Random effects:
## Groups Name
                       Variance Std.Dev. Corr
## M2ID
            (Intercept) 83.129 9.118
            stress_CMC 0.530 0.728
                                         0.18
## M2FAMNUM (Intercept) 29.971 5.475
## Residual
                        5.591 2.365
## Number of obs: 5154, groups: M2ID, 1061; M2FAMNUM, 936
## Fixed effects:
                     Estimate Std. Error t value
## (Intercept)
                    7.451e+01 4.429e-01 168.234
## stress_CMC
                    8.798e-01 3.379e-02 26.042
## pwb2_C
                    3.793e-06 9.494e-03 0.000
## P4_age_C
                   -1.394e-01 3.211e-02 -4.342
## P4_age_C2
                    4.995e-04 2.290e-03 0.218
## stress_CMC:pwb2_C 4.217e-03 9.555e-04 4.413
## Correlation of Fixed Effects:
              (Intr) st_CMC pwb2_C P4_g_C P4__C2
```

```
## stress_CMC    0.080
## pwb2_C    0.005 -0.001
## P4_age_C    0.205    0.005 -0.175
## P4_age_C2    -0.650 -0.001 -0.002 -0.327
## str_CMC:2_C -0.001    0.020    0.106    0.003    0.001
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)

## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data = ## dfLs): The following column names in ANOVA output were not recognized or ## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	28242	1	903	0
$stress_CMC$	677	1	829	1.25e-109
$pwb2_C$	1.59 e-07	1	1058	1
$P4_age_C$	18.8	1	942	1.61e-05
$P4_age_C2$	0.0474	1	944	0.828
$stress_CMC:pwb2_C$	19.5	1	817	1.17e-05

Depression + age²

Warning in checkConv(attr(opt, "derivs"), opt\$par, ctrl =

```
## control$checkConv, : unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge: degenerate Hessian with 1
## negative eigenvalues
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
                          F Df Df.res Pr(>F)
## (Intercept)
                             1
                                  Inf
                          0 1
                                 2879
                                           1
## stress CMC
## P4_CESD_C
                             1
                                  Inf
## P4_age_C
                                  Inf
## P4_age_C2
                                  Inf
## stress_CMC:P4_CESD_C
                         0 1
                                 2877
                                           1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * P4_CESD_C + P4_age_C + P4_age_C2 + (1 + hr_CMC |
      M2ID) + (1 \mid M2FAMNUM)
##
     Data: dfLs
## REML criterion at convergence: -46388.1
## Scaled residuals:
          Min
                      10
                             Median
                                            3Q
                                                      Max
## -3.971e-06 -3.146e-07 -5.640e-08 1.989e-07 2.363e-06
##
## Random effects:
## Groups
           Name
                         Variance Std.Dev. Corr
## M2ID
             (Intercept) 3.183e+01 5.642e+00
             hr_CMC
                         2.623e+01 5.122e+00 -0.63
## M2FAMNUM (Intercept) 4.638e+00 2.153e+00
   Residual
                         2.292e-11 4.788e-06
## Number of obs: 4800, groups: M2ID, 960; M2FAMNUM, 859
```

```
##
## Fixed effects:
                         Estimate Std. Error t value
## (Intercept)
                       7.653e+01 2.110e-01 362.714
## stress CMC
                       -9.057e-14 5.960e-08 0.000
## P4_CESD_C
                       2.764e-02 1.955e-02
                                             1.414
## P4_age_C
                       -1.759e-01 1.533e-02 -11.479
## P4_age_C2
                       3.539e-03 1.138e-03 3.109
## stress CMC:P4 CESD C 1.857e-15 6.948e-09
                                            0.000
## Correlation of Fixed Effects:
              (Intr) st_CMC P4_CES P4_g_C P4__C2
## stress_CMC 0.000
## P4_CESD_C
              0.024 0.000
## P4_age_C
               0.196 0.000 0.207
## P4_age_C2 -0.657 0.000 -0.048 -0.268
## s_CMC:P4_CE 0.000 -0.126 0.000 0.000 0.000
## convergence code: 0
## unable to evaluate scaled gradient
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLs): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	NA	1	Inf	NA
$stress_CMC$	2.31e-12	1	2879	1
$P4_CESD_C$	NA	1	Inf	NA
$P4_age_C$	NA	1	Inf	NA
$P4_age_C2$	NA	1	Inf	NA
$stress_CMC:P4_CESD_C$	7.15e-14	1	2877	1

Anxiety + age²

```
# Center age for subjects in this analysis
varDescribe(dfLs$P4_STAItrait_C)
             n mean sd median min max skew kurtosis
## X1
        1 5285
                  0 8.98 -1.2 -14.2 36.8 0.84
                                                    0.4
length(dfLs$P4_age[!is.na(dfLs$P4_STAItrait_C)])
## [1] 5285
dfLs$P4 age C = dfLs$P4 age - mean(dfLs$P4 age[!is.na(dfLs$P4 STAItrait C)], na.rm=T)
dfLs$P4 age C2 = dfLs$P4 age C^2
# Run the test
lmerM = lmer(hr ~ stress_CMC * P4_STAItrait_C + P4_age_C + P4_age_C2 + (1 + stress_CMC M2ID) + (1 M2FAMNUM), data=dfLs)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
                                     F Df Df.res
                                                    Pr(>F)
## (Intercept)
                         28183.5673 1 902.00 < 2.2e-16 ***
## stress CMC
                           683.1555 1 825.76 < 2.2e-16 ***
## P4 STAItrait C
                              0.7483 1 1050.55
                                                    0.3872
## P4 age C
                             17.9748 1 936.65 2.460e-05 ***
## P4 age C2
                              0.1943 1 940.69
                                                    0.6595
## stress CMC:P4 STAItrait C 25.2136 1 768.77 6.383e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula: hr ~ stress_CMC * P4_STAItrait_C + P4_age_C + P4_age_C2 + (1 +
      stress_CMC | M2ID) + (1 | M2FAMNUM)
##
     Data: dfLs
## REML criterion at convergence: 28957.7
```

```
## Scaled residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -7.0524 -0.4783 -0.0413 0.4103 9.5026
## Random effects:
   Groups Name
                        Variance Std.Dev. Corr
   M2ID
            (Intercept) 82.9260 9.1064
            stress_CMC 0.5216 0.7222
                                          0.20
## M2FAMNUM (Intercept) 30.2846 5.5031
## Residual
                         5.5810 2.3624
## Number of obs: 5134, groups: M2ID, 1057; M2FAMNUM, 932
## Fixed effects:
                             Estimate Std. Error t value
## (Intercept)
                            74.467443
                                       0.443101 168.060
## stress_CMC
                             0.881004
                                       0.033687 26.153
## P4_STAItrait_C
                             0.032431
                                        0.037425
                                                  0.867
## P4_age_C
                            -0.136744
                                        0.032204 -4.246
## P4 age C2
                             0.001006
                                        0.002280
                                                 0.441
## stress_CMC:P4_STAItrait_C -0.018367
                                        0.003656 -5.024
## Correlation of Fixed Effects:
##
              (Intr) st_CMC P4_STA P4_g_C P4__C2
## stress CMC
             0.087
## P4 STAItr C 0.020 0.001
## P4 age C
               0.210 0.006 0.182
## P4_age_C2 -0.648 -0.001 -0.041 -0.337
## s_CMC:P4_ST 0.000 -0.034 0.117 -0.002 0.001
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)
## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLs): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	28184	1	902	0
$stress_CMC$	683	1	826	3.3e-110

term	statistic	df	Df.res	p.value
P4_STAItrait_C	0.748	1	1051	0.387
$P4_age_C$	18	1	937	2.46e-05
$P4_age_C2$	0.194	1	941	0.659
$stress_CMC:P4_STAItrait_C$	25.2	1	769	6.38e-07

$IL6 + age^2$

```
# Center age for subjects in this analysis
varDescribe(dfLs$IL6_T_C)
##
             n mean
                      sd median min max skew kurtosis
                  0 1.06 -0.07 -3.09 3.3 0.31
## X1
        1 5290
                                                   0.46
length(dfLs$P4_age[!is.na(dfLs$IL6_T_C)])
## [1] 5290
dfLs$P4_age_C = dfLs$P4_age - mean(dfLs$P4_age[!is.na(dfLs$IL6_T_C)], na.rm=T)
dfLs$P4_age_C2 = dfLs$P4_age_C^2
# Run the test
lmerM = lmer(hr ~ stress_CMC * IL6_T_C + P4_age_C + P4_age_C2 + (1 + stress_CMC M2ID) + (1 M2FAMNUM), data=dfLs)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
                              F Df Df.res
                                              Pr(>F)
##
                     28397.2334 1 901.76 < 2.2e-16 ***
## (Intercept)
## stress CMC
                       695.8501 1 820.98 < 2.2e-16 ***
## IL6 T C
                        13.9561 1 1055.42 0.0001971 ***
## P4_age_C
                        25.5974 1 939.76 5.058e-07 ***
## P4 age C2
                        0.3543 1 938.24 0.5518418
## stress_CMC:IL6_T_C
                      25.4905 1 773.24 5.548e-07 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

summary(lmerM)

```
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * IL6_T_C + P4_age_C + P4_age_C2 + (1 + stress_CMC |
      M2ID) + (1 | M2FAMNUM)
##
     Data: dfLs
##
## REML criterion at convergence: 28979.5
## Scaled residuals:
      Min
               1Q Median
                               3Q
                                     Max
## -7.1438 -0.4799 -0.0427 0.4044 9.4522
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 84.2004 9.1761
            stress_CMC 0.4929 0.7021
                                         0.23
## M2FAMNUM (Intercept) 27.9994 5.2914
## Residual
                         5.5832 2.3629
## Number of obs: 5147, groups: M2ID, 1058; M2FAMNUM, 933
## Fixed effects:
                      Estimate Std. Error t value
## (Intercept)
                     74.397161 0.440991 168.704
## stress_CMC
                      0.874287 0.033123 26.395
## IL6 T C
                      1.178947 0.314964 3.743
## P4_age_C
                     -0.160345 0.031643 -5.067
## P4_age_C2
                      0.001355 0.002273 0.596
## stress_CMC:IL6_T_C -0.154875
                                0.030658 -5.052
## Correlation of Fixed Effects:
              (Intr) st_CMC IL6_T_ P4_g_C P4__C2
## stress_CMC 0.099
               0.025 -0.002
## IL6_T_C
## P4_age_C
               0.203 0.006 -0.136
## P4_age_C2 -0.649 0.000 -0.043 -0.322
## s_CMC:IL6_T 0.000 -0.011 0.135 -0.003 -0.001
```

```
table_obj = broom.mixed::tidy(a, effects = c("ran_pars", "fixed"), data=dfLs)

## Warning in tidy.anova(a, effects = c("ran_pars", "fixed"), data =
## dfLs): The following column names in ANOVA output were not recognized or
## transformed: Df.res
pander(table_obj, digits = 3)
```

term	statistic	df	Df.res	p.value
(Intercept)	28397	1	902	0
$stress_CMC$	696	1	821	1.5e-111
$IL6_T_C$	14	1	1055	0.000197
$P4_age_C$	25.6	1	940	5.06e-07
$P4_age_C2$	0.354	1	938	0.552
$stress_CMC:IL6_T_C$	25.5	1	773	5.55e-07

$CRP + age^2$

```
# Center age for subjects in this analysis
varDescribe(dfLs$CRP_T_C)
              n mean sd median min max skew kurtosis
## X1
        1 5260
                   0 0.51 -0.03 -1.02 1.61 0.05
                                                    -0.44
length(dfLs$P4_age[!is.na(dfLs$CRP_T_C)])
## [1] 5260
dfLs$P4_age_C = dfLs$P4_age - mean(dfLs$P4_age[!is.na(dfLs$CRP_T_C)], na.rm=T)
dfLs$P4_age_C2 = dfLs$P4_age_C^2
# Run the test
lmerM = lmer(hr ~ stress_CMC * CRP_T_C + P4_age_C + P4_age_C2 + (1 + stress_CMC | M2ID) + (1 | M2FAMNUM), data=dfLs)
a = Anova(lmerM, type=3, test="F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: hr
                               F Df Df.res
                                               Pr(>F)
```

```
28222.4019 1 900.55 < 2.2e-16 ***
## (Intercept)
                       670.5415 1 819.88 < 2.2e-16 ***
## stress_CMC
## CRP T C
                       24.2691 1 1045.86 9.732e-07 ***
## P4_age_C
                       20.2115 1 932.30 7.806e-06 ***
## P4 age C2
                        0.7039 1 934.49
                                             0.4017
## stress_CMC:CRP_T_C
                        6.3996 1 827.38
                                             0.0116 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmerM)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## hr ~ stress_CMC * CRP_T_C + P4_age_C + P4_age_C2 + (1 + stress_CMC |
      M2ID) + (1 | M2FAMNUM)
##
     Data: dfLs
## REML criterion at convergence: 28826.4
## Scaled residuals:
      Min
               1Q Median
                               3Q
## -7.1343 -0.4778 -0.0401 0.4001 9.4480
## Random effects:
## Groups Name
                        Variance Std.Dev. Corr
## M2ID
            (Intercept) 78.8713 8.881
            stress_CMC 0.5113 0.715
                                         0.22
## M2FAMNUM (Intercept) 32.5930 5.709
## Residual
                         5.5956 2.365
## Number of obs: 5117, groups: M2ID, 1052; M2FAMNUM, 928
## Fixed effects:
                      Estimate Std. Error t value
## (Intercept)
                     74.307688 0.441866 168.168
## stress_CMC
                      0.869309 0.033551 25.910
## CRP_T_C
                      3.209457 0.650282 4.935
## P4_age_C
                     -0.141302 0.031385 -4.502
## P4_age_C2
                      0.001912 0.002275 0.840
## stress_CMC:CRP_T_C -0.166243  0.065678 -2.531
##
```

term	statistic	df	Df.res	p.value
(Intercept)	28222	1	901	0
$stress_CMC$	671	1	820	1.64e-108
CRP_T_C	24.3	1	1046	9.73e-07
$P4_age_C$	20.2	1	932	7.81e-06
$P4_age_C2$	0.704	1	934	0.402
$stress_CMC:CRP_T_C$	6.4	1	827	0.0116