

151163A - Financial Econometrics

I. Primer on Financial Econometrics

CHEUNG Ying Lun
Capital University of Economics and Business

Asset Returns

Source: http://stockhtm.finance.qq.com/hqing/zhishu/000001.htm

If we hold an asset for one period, from t-1 to t, the *simple gross return* is given by:

$$1 + R_t = \frac{P_t}{P_{t-1}}$$
 or $P_t = P_{t-1}(1 + R_t)$.

The one-period simple net return or simple return is

$$R_t = \frac{P_t}{P_{t-1}} - 1 = \frac{P_t - P_{t-1}}{P_{t-1}} = \frac{\Delta P_t}{P_{t-1}}.$$

Source: http://stockhtm.finance.qq.com/hqing/zhishu/000001.htm

If we hold an asset for k periods, from t - k to t, the k-period simple gross return is given by:

$$1 + R_{t}[k] = \frac{P_{t}}{P_{t-k}} = \frac{P_{t}}{P_{t-1}} \frac{P_{t-1}}{P_{t-2}} \dots \frac{P_{t-k+1}}{P_{t-k}}$$
$$= (1 + R_{t})(1 + R_{t-1}) \dots (1 + R_{t-k+1})$$
$$= \prod_{j=0}^{k-1} (1 + R_{t-j}).$$

Similarly, the k-period net return is

$$R_t[k] = \frac{P_t - P_{t-k}}{P_{t-k}} = \prod_{i=0}^{k-1} (1 + R_{t-i}) - 1.$$

Day	P_{t-1}	P_t	ΔP_t	R_t	$R_t[k]$
	3031.24				
	3030.75				
	2979.40				
4	2985.66	2999.28	13.62	0.46%	-1.05%
5	2999.28	3006.45	7.17	0.24%	-0.82%

Table: One-period and multi-period simple returns

On average, what is the return per period?

Let \overline{R} be the average return,

$$1 + R_t[k] = (1 + R_t)(1 + R_{t-1})\dots(1 + R_{t-k+1})$$
$$= (1 + \overline{R})(1 + \overline{R})\dots(1 + \overline{R})$$
$$= (1 + \overline{R})^k$$

which yields

$$\overline{R} = (1 + R_t[k])^{1/k} - 1 = \left[\prod_{j=0}^{k-1} (1 + R_{t-j}) \right]^{1/k} - 1.$$

If each period spans one year, then \overline{R} is also called the annualized return.

Suppose you are going to deposit \$10,000 in a bank, which offers you a 10% per annum interest rate and the following compounding scheme:

- 1. Compounding every year, where the one-year interest rate is 10%;
- 2. Compounding every 6 months, where the 6-month interest rate is 10%/2 = 5%.

Which one should you choose?

Type	No. of	Interest rate	Total
Type	payments	per period	value
Annual	1	10%	\$11000.00
Semiannual	2	5%	\$11025.00
Quarterly	4	2.5%	\$11038.13
Monthly	12	0.833%	\$11047.13
Weekly	52	0.192%	\$11050.65
Daily	365	0.027%	\$11051.56

Table: Values of a loan with 10% per annum interest rate

In general, if the bank gives interest m times a year, you get

$$$10,000 \times \left(1 + \frac{10\%}{m}\right)^m.$$

What if $m \to \infty$?

Suppose the continuously compounded interest rate is r_t , the simple gross return, or the effective annual interest rate, is

$$1 + R_t = \lim_{m \to \infty} \left(1 + \frac{r_t}{m} \right)^m.$$

Taking logarithm, and by L'Hopital's Rule

$$\lim_{m \to \infty} m \ln \left(1 + \frac{r_t}{m} \right) = r_t.$$

Therefore, $1 + R_t = e^{r_t}$, or $r_t = \ln(1 + R_t)$, where r_t is also called the log return.

The one-period log return is given by

$$r_t = \ln(1 + R_t) = \ln \frac{P_t}{P_{t-1}} = p_t - p_{t-1}$$

where $p_t = \ln P_t$. The multi-period log return is given by

$$r_t[k] = \ln(1 + R_t[k]) = \ln[(1 + R_t)(1 + R_{t-1})\dots(1 + R_{t-k+1})]$$

= \ln(1 + R_t) + \ln(1 + R_{t-1}) + \cdots + \ln(1 + R_{t-k+1})
= r_t + r_{t-1} + \cdots + r_{t-k+1}

Suppose the log-return is constant $r_t = r$, and the price of an asset at time 0 is P_0 , then

$$r_t[t] = r_t + \dots + r_1 = t \cdot r.$$

Moreover,

$$P_t = P_0 \cdot (1 + R_1) \dots (1 + R_t)$$

= $P_0 \cdot e^r \dots e^r$
= $P_0 \cdot e^{r \cdot t}$.

The asset price will be growing exponentially.

Review of Statistical Distributions

Suppose X and Y are two random variables with support $(-\infty, \infty)$, with parameters θ . We define the *joint distribution function* as

$$F_{X,Y}(x, y; \boldsymbol{\theta}) = P(X \le x, Y \le y; \boldsymbol{\theta}).$$

If the joint probability density function $f_{X,Y}(x,y;\boldsymbol{\theta})$ exists, then

$$F_{X,Y}(x,y;\boldsymbol{\theta}) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(w,z;\boldsymbol{\theta}) dz dw.$$

Let X, Y be two random variables with a joint density function

$$f_{X,Y}(x,y) = \begin{cases} 1, & \text{if } x \in [0,1], \ y \in [0,1] \\ 0, & \text{otherwise.} \end{cases}$$

Find

$$F_{X,Y}(0.5, 0.8) = P(X \le 0.5, Y \le 0.8).$$

The conditional distribution of X given $Y \leq y$ is given by

$$F_{X|Y \le y}(x; \boldsymbol{\theta}) = \frac{P(X \le x, Y \le y; \boldsymbol{\theta})}{P(Y \le y; \boldsymbol{\theta})}.$$

The conditional density is

$$f_{X|Y}(x; \boldsymbol{\theta}|Y = y) = \frac{f_{X,Y}(x, y; \boldsymbol{\theta})}{f_{Y}(y; \boldsymbol{\theta})}$$

where the marginal density function $f_Y(y; \boldsymbol{\theta})$ is given by

$$f_Y(y; \boldsymbol{\theta}) = \int_{-\infty}^{\infty} f_{X,Y}(x, y; \boldsymbol{\theta}) dx.$$

Let X, Y be two random variables with a joint density function

$$f_{X,Y}(x,y) = \begin{cases} 1, & \text{if } x \in [0,1], \ y \in [0,1] \\ 0, & \text{otherwise.} \end{cases}$$

Find

$$F_{X|Y \le 0.8}(0.5) = P(X \le 0.5|Y \le 0.8).$$

Moments 25

The j-th moment of a random variable X is defined as

$$m'_j = \mathbb{E}\left[X^j\right] = \int_{-\infty}^{\infty} x^j f(x) dx.$$

Let $\mu_X = \mathbb{E}[X] = m'_1$, the *j*-th centered moment of X is

$$m_j = \mathbb{E}\left[(X - \mu_X)^j \right] = \int_{-\infty}^{\infty} (x - \mu_X)^j f(x) dx.$$

▶ The first moment is the mean, which measures the (average) location of X.

$$\mu_X = \mathbb{E}\left[X\right]$$

The sample mean is

$$\widehat{\mu}_X = \frac{1}{T} \sum_{t=1}^{T} x_t$$

ightharpoonup The second centered moment is the *variance*, which measures the dispersion of X around its mean.

$$\sigma_X^2 = \mathbb{E}\left[(X - \mu_X)^2 \right]$$

The sample variance is

$$\widehat{\sigma}_X^2 = \frac{1}{T-1} \sum_{t=1}^T (x_t - \widehat{\mu}_X)^2$$

▶ The third centered moment is *skewness*, which measures the degree of asymmetry in the distribution of X.

$$S(X) = \mathbb{E}\left[\frac{(X - \mu_X)^3}{\sigma_X^3}\right]$$

The sample skewness is

$$\widehat{S}(X) = \frac{1}{(T-1)\widehat{\sigma}_X^3} \sum_{t=1}^T (x_t - \widehat{\mu}_X)^3$$

Skewness

ightharpoonup The fourth centered moment is *kurtosis*, which measures the fatness of the tails of the distribution of X.

$$K(X) = \mathbb{E}\left[\frac{(X - \mu_X)^4}{\sigma_X^4}\right]$$

The sample kurtosis is

$$\widehat{K}(X) = \frac{1}{(T-1)\widehat{\sigma}_X^4} \sum_{t=1}^T (x_t - \widehat{\mu}_X)^4$$

Kurtosis 30

Let X be two random variables with a joint density function

$$f_X(x) = \begin{cases} 1, & \text{if } x \in [0, 1] \\ 0, & \text{otherwise.} \end{cases}$$

Find the mean, variance, skewness and kurtosis of X.

Suppose $X \sim \mathcal{N}(\mu, \sigma^2)$, then its density function is

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

The population moments are

Mean	Variance	Skewness	Kurtosis
μ	σ^2	0	3

A random variable with normal distribution has skewness 0 and kurtosis 3. Moreover, asymptotically,

$$\widehat{S}(x) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, \frac{6}{T}\right), \qquad \widehat{K}(x) \stackrel{d}{\longrightarrow} \mathcal{N}\left(3, \frac{24}{T}\right).$$

The hypothesis of normality can be tested using the t-statistics

$$t_S = \frac{\hat{S}(x)}{\sqrt{6/T}}, \qquad t_K = \frac{\hat{K}(x) - 3}{\sqrt{24/T}}.$$

Alternatively, one can also use the Jarque and Bera (JB) test statistic

$$JB(x) = \frac{\widehat{S}(x)^2}{6/T} + \frac{[\widehat{K}(x) - 3]^2}{24/T} \xrightarrow{d} \chi_2^2$$

	Sample moments	t-stat	95% Critical values	$\begin{array}{c} \mathbf{Reject} \\ H_0 \end{array}$
Mean	0.704	-	-	-
Variance	17.268	-	-	-
Skewness	-0.450	-5.313	(-1.96, 1.96)	\checkmark
Kurtosis	5.157	12.727	(-1.96, 1.96)	\checkmark
JB Statistic	190	-	5.99	\checkmark

Problems of using the normal distribution:

- 1. The lower bound of the simple return is -1, but the support of the normal distribution has no lower bound.
- 2. If R_t is normally distributed, then $R_t[k]$ is not normally distributed.
- 3. Empirical asset returns tend to have positive excess kurtosis.

If we assume $r_t = \ln(1 + R_t) \sim \mathcal{N}(\mu, \sigma^2)$, then we say R_t is log-normally distributed. In this case,

$$\mathbb{E}[R_t] = e^{\mu + \frac{\sigma^2}{2}} - 1, \quad \text{var}(R_t) = e^{2\mu + \sigma^2} [e^{\sigma^2} - 1]$$

If R_t is log-normally distributed with mean and variance m_1 and m_2 , then we can show that

$$\mu = \ln \left(\frac{m_1 + 1}{\sqrt{1 + m_2/(1 + m_1)^2}} \right), \qquad \sigma^2 = \ln \left(1 + \frac{m_2}{(1 + m_1)^2} \right).$$

	Sample moments	t-stat	95% Critical values	$\begin{array}{c} \mathbf{Reject} \\ H_0 \end{array}$
Mean	0.615	-	-	-
Variance	17.484	-	-	-
Skewness	-0.712	-8.401	(-1.96, 1.96)	\checkmark
Kurtosis	5.877	16.982	(-1.96, 1.96)	\checkmark
JB Statistic	359	-	5.99	\checkmark

Advantage of using the log-normal distribution

- 1. $r_t[k]$ is the sum of normally distributed random variables and is still normally distributed.
- 2. There is no lower bound for r_t and $R_t = e^{r_t} 1 \ge 0$ is still satisfied.

Problem of using the log-normal distribution

1. Empirical asset log returns tend to have positive excess kurtosis.

The log-return r_t follows a scale mixture if $r_t \sim \mathcal{N}(\mu, \sigma^2)$, where σ^2 follows a positive distribution. For example,

$$r_t \sim (1 - X)\mathcal{N}(\mu, \sigma_1^2) + (1 - X)\mathcal{N}(\mu, \sigma_2^2)$$

where X is a Bernoulli random variable such that $P(X=1)=\alpha$ and $P(X=0)=1-\alpha$, with $0<\alpha<1$. Here σ_1^2 is small and σ_2^2 is relatively large.

Advantage of using the scale mixture of normal distribution:

- 1. It maintains the tractability of normal.
- 2. Higher order moments are still finite.
- 3. It can capture the excess kurtosis.

Problem of using the scale mixture of normal distribution:

1. It is hard to estimate the mixture parameter α .

VaR and Expected Shortfall

What is the potential for loss of an asset with a certain probability?

The VaR is the potential loss that happens with a specified probability. Let ΔV be the change in values of an asset, then VaR is defined as

$$P(\Delta V \ge VaR) = F(VaR)$$

where $F(\cdot)$ is the cumulative distribution function (CDF) of ΔV .

The α -VaR can be obtained as the α -quantile of ΔV , i.e.,

$$VaR_{\alpha} = \inf\{\Delta V | F(\Delta V) \ge \alpha\}$$

If $\Delta V \sim \mathcal{N}(\mu, \sigma^2)$, then

$$VaR_{\alpha} = \mu + \sigma\Phi^{-1}(\alpha),$$

where $\Phi^{-1}(\alpha)$ is the inverse CDF of a standard normal distribution.

VaR only tells you that with $\alpha\%$ chance, you can loss more than VaR_{α} , but it does not tell you how much you can loss. Consider the following extreme case:

The expected shortfall at $\alpha\%$ level is the expected return on the portfolio/an asset in the worst $\alpha\%$ of cases, i.e.,

$$ES_{\alpha}(\Delta V) = \mathbb{E}\left[\Delta V | \Delta V \le VaR_{\alpha}\right].$$

The expected shortfall is therefore the average loss given that the loss exceeds the VaR. *Importantly, it uses the whole tail of* the distribution instead of just a single quantile.