2/2

2/2

2/2

2/2

2/2

2/2

Q.7 Pour $e = (a+b)^* + \varepsilon$, $f = (a^*b^*)^*$:

Deville Vincent Note: 20/20 (score total : 20/20)

			Г

+13/1/48+

QCM	THLR 2
Nom et prénom, lisibles :	Identifiant (de haut en bas):
DEVILLE Vincent AZ	
us restrictive (par exemple s'il est demandé si 0 es	•
.2 Pour toute expression rationnelle e , on a $\varepsilon e \equiv e$.	$\Box L(e) \supseteq L(f) \qquad \Box L(e) \stackrel{\not\subseteq}{\supset} L(f)$
☐ faux 🙀 vrai	$L(e) = L(f)$ $L(e) \subseteq L(f)$
faux vrai o.3 Pour toutes expressions rationnelles e, f , on a	0.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$. $L_1, L_2 \subseteq$
🗌 faux 🍇 vrai	Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq$
faux vrai Pour toutes expressions rationnelles e, f , on a $+ f \equiv f + e$.	Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq \Sigma^*$, on a $L_1^* = L_2^* \Longrightarrow L_1 = L_2$. \square vrai \square faux Q.9 L'expression Perl '[-+]?[0-9A-F]+([-
faux vrai Four toutes expressions rationnelles e, f , on a $+f \equiv f + e$.	Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq \Sigma^*$, on a $L_1^* = L_2^* \Longrightarrow L_1 = L_2$.
faux vrai vrai Pour toutes expressions rationnelles e, f , on a $+f \equiv f + e$.	Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq \Sigma^*$, on a $L_1^* = L_2^* \Longrightarrow L_1 = L_2$. Urai faux Q.9 L'expression Perl '[-+]?[0-9A-F]+([-+/*][-+]?[0-9A-F]+)*' n'engendre pas :
faux vrai 1.3 Pour toutes expressions rationnelles e, f , on a $+f \equiv f + e$. 1.4 À quoi est équivalent ε^* ? 1.5 Pour toutes expressions rationnelles e, f , on a	Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq \Sigma^*$, on a $L_1^* = L_2^* \Longrightarrow L_1 = L_2$. Urai faux Q.9 L'expression Perl '[-+]?[0-9A-F]+([-+/*][-+]?[0-9A-F]+)*' n'engendre pas: '-42' '42+42' (42*42)' (-42-42') G.10 \(\text{Soit } A, L, M \) trois langages. Parmi les pro-
faux vrai 1.3 Pour toutes expressions rationnelles e , f , on a f	Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq \Sigma^*$, on a $L_1^* = L_2^* \Longrightarrow L_1 = L_2$. Urai faux Q.9 L'expression Perl '[-+]?[0-9A-F]+([-+/*][-+]?[0-9A-F]+)*' n'engendre pas: '-42' '42+42' (42*42)' (42+42') (42+42')' (42-42-42')
faux vrai 1.3 Pour toutes expressions rationnelles e , f , on a f	Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq \Sigma^*$, on a $L_1^* = L_2^* \Longrightarrow L_1 = L_2$. Urai faux Q.9 L'expression Perl '[-+]?[0-9A-F]+([-+/*][-+]?[0-9A-F]+)*' n'engendre pas: '-42' '42+42' (42*42)' '42+42' Q.10 \(\triangle \) Soit A, L, M trois langages. Parmi les propositions suivantes, lesquelles sont suffisantes pour

Fin de l'épreuve.

☐ Aucune de ces réponses n'est correcte.