SYLLABUS DE LA ASIGNATURA CÁLCULO NUMÉRICO 521230

Segundo semestre de 2013

Unidad académica responsable: Departamento de Ingeniería Matemática

Facultad de Ciencias Físicas y Matemáticas

Universidad de Concepción.

Carreras a la que se imparte: Astronomía, Geofísica, Ingeniería Civil (varias especialidades)

Módulos: No tiene Semestre actual: 2 Año: 2013

Profesores:

Sección 1: Sr. Manuel Campos (Coordinador)

Sección 2: Sr. Rodolfo Araya Sección 3: Sr. Philippe Caillol

Sección 4: Sra. Mónica Selva (Coordinadora de los Laboratorios)

I.- Identificación.

Nombre: Cálculo Numérico					
Código: 521230	go: 521230 Créditos: 4		Créditos SCT:		
Prerrequisitos: 503201, 521218, 521227					
Modalidad: Presencial	Calidad: Obligatoria	Duración: Semestral			
Semestre en el plan de estudios:		Carrera: Códigos varios			
Trabajo académico semanal					
Horas teóricas: 3	Horas práctica: 0	Horas laboratorio: 2	Horas otras actividades: .		

II.- Descripción.

Asignatura teórico-práctica que contiene los fundamentos de los algoritmos numéricos para resolver problemas de la Matemática Aplicada por medio del computador.

Esta asignatura contribuye a la formación de las siguientes competencias del perfil de egreso: Conocimientos sobre el área de estudios y la profesión.

III.- Resultados de aprendizaje esperados.

Al completar en forma exitosa esta asignatura los estudiantes serán capaces de:

- 1.- Deducir algoritmos que se detallan en los contenidos.
- 2.- Estimar cotas de errores de los resultados obtenidos.
- 3.- Usar técnicas para demostrar propiedades sencillas relacionadas con los algoritmos.
- 4.- Resolver modelos matemáticos sencillos por medio de algunos métodos computacionales.

IV.- Contenidos.

• Revisión de conceptos básicos.

- Normas: Normas vectoriales y matriciales. Productos interiores.
- Errores: Fuentes del error en la resolución numérica de modelos matemáticos de fenómenos reales.
 Errores computacionales. Propagación de errores.

• Sistemas de ecuaciones lineales.

- Preliminares: Expresión matricial. Relación con la matriz inversa. Métodos directos e iterativos.
 Costo computacional operacional y en memoria. Propagación de errores de redondeo.
- Factorización LU: Eliminación Gaussiana. Relación con la factorización LU. Solución de sistemas triangulares. Costo operacional. Conveniencia de la factorización.
- **Pivoteo:** Estrategia de pivoteo parcial; necesidad. Matrices de permutación. Matrices "psicológicamente" triangulares.
- Adaptación a matrices con estructuras particulares: Matrices simétricas y definidas positivas; método de Cholesky. Matrices banda. Matrices tridiagonales.
- Propagación de errores: Propagación de errores en los datos. Número de condición. Propagación de errores de redondeo. Estimación a posteriori del error.
- Métodos iterativos: Matrices dispersas; almacenamiento. Esquema general de métodos iterativos.
 Matriz de iteración. Criterios de convergencia. Criterios de detención.
- **Métodos iterativos clásicos:** Métodos de Jacobi y Gauss-Seidel. Criterios de convergencia.
- Métodos de tipo gradiente: Método del gradiente. Método del gradiente conjugado. Convergencia. Precondicionamiento.

• Aproximación por cuadrados mínimos.

- Ajuste de curvas: Solución en el sentido de cuadrados mínimos de sistemas rectangulares. Ecuaciones normales. Problemas de rango deficiente.
- Ortogonalización: Factorización QR. Método de Gram-Schmidt. [Método de Householder].
- Problemas de cuadrados mínimos no lineales: Reducción a problemas lineales.

• Interpolación numérica.

- Interpolación polinomial: Existencia y unicidad del polinomio de interpolación. Fórmula de Lagrange. Error en la interpolación. Fenómeno de Runge.
- Interpolación por "splines": Interpolación lineal a trozos. "Splines" cúbicos.

• Integración numérica.

- Métodos elementales: Reglas del punto medio, de los trapecios y de Simpson. Acotación del error.
- Método de Romberg: Extrapolación de Richardson. Método de Romberg.
- Método de Gauss: Polinomios de Legendre. Reglas de Gauss. Precisión. Aplicación.
- Integración de funciones singulares: Reducción a integrales de funciones regulares. Métodos adaptativos.
- Integrales múltiples.

• Ecuaciones no lineales.

- Métodos de convergencia garantizada: Bisección. Convergencia lineal.
- Métodos de convergencia veloz: Newton-Raphson. Convergencia cuadrática. Condiciones de convergencia. Criterio de detención. Método de la secante.
- Sistemas de ecuaciones no lineales: Método de Newton.

• Ecuaciones diferenciales ordinarias.

- Problemas de valores iniciales: Existencia y unicidad de solución. Sistemas de ecuaciones diferenciales. Ecuaciones de orden superior. Métodos numéricos de paso simple y múltiple. Método de Euler. Error local de truncamiento. Error global.
- Métodos de paso simple: Métodos de tipo Runge-Kutta: Euler-Cauchy, Euler mejorado, Runge Kutta de orden 4. Estimación a posteriori del error. Control del paso de integración. Métodos Runge-Kutta-Fehlberg.
- Métodos de paso múltiple: Métodos explícitos: Adams-Bashforth. Métodos implícitos: Adams-Moulton. Métodos predictor-corrector.
- Ecuaciones "Stiff": Estabilidad de las ecuaciones y de los métodos numéricos. Ecuaciones "Stiff".
 Métodos implícitos: métodos de Euler y de los trapecios.
- Problemas de valores de contorno: Existencia y unicidad de solución. Método de "shooting".
 Método de diferencias finitas. Método de elementos finitos.

V.- Metodología.

- El curso se desarrolla con tres horas de clases teóricas y un laboratorio computacional semanal, de dos horas. Tanto a las clases teóricas, como a los laboratorios, la asistencia es obligatoria (100%). Una inasistencia se podrá justificar en la misma forma que se justifica la inasistencia a una evaluación. No obstante, una asistencia inferior al 75% en el semestre a clases teóricas, o a los laboratorios, significará obtener Nota Final NCR. El cursar otra asignatura con topón de horario, con las clases o los laboratorios de este curso, no se considerará justificación válida para inasistencias.
- Los alumnos se deberán inscribir en los laboratorios desde las 12 horas del Lunes 19 de Agosto y hasta las 18 horas del Martes 20 de Agosto, mediante internet en la dirección electrónica:
 - www.ing-mat.udec.cl > Pregrado > Asignaturas > 521230 CALCULO NUMERICO La elección de laboratorios será estrictamente por orden de inscripción.
- Los alumnos podrán resolver con el profesor, asuntos relacionados con la asignatura, en el **horario de consultas** que se fije con los alumnos en las primeras clases (ver última página).
- Información variada, como también las Notas de las Evaluaciones, serán canalizadas a través de la plataforma Infoalumno.

VI.- Evaluación.

- (a) La evaluación en la asignatura se hará por medio de dos (2) evaluaciones parciales y dos (2) tests de laboratorio.
- (b) Las dos evaluaciones consistirán en pruebas escritas. Cada una de estas evaluaciones tendrá una ponderación en la Nota Final de un 40%. Los laboratorios serán evaluados por dos (2) tests de 45 minutos frente al computador; cada uno con una ponderación en la Nota Final de un 10%.
- (c) Al final del semestre habrá una (1) Evaluación de Recuperación que abarcará toda la materia del semestre y que reemplazará la menor de las notas obtenidas en las evaluaciones parciales.
- (d) En las evaluaciones, así como en los tests, se prohíbe estrictamente el uso de calculadoras, celulares y cualquier otro medio (MP3, MP4, iPod, iPad, etc).
- (e) La inasistencia a una evaluación significará obtener Nota Final NCR. No obstante, quien justifique su inasistencia a una evaluación deberá regularizar su situación, en los plazos y la forma indicada en el Artículo 18 del Reglamento de Docencia de Pregrado de la Facultad de Ciencias Físicas y Matemáticas. Este reglamento lo encuentra en:

http://www.cfm.udec.cl/docencia/reglamentos.

(f) La inasistencia a un test significará obtener la calificación *NCR*. Quien justifique su inasistencia a un test, en la forma indicada en la letra (e), se podrá presentar a un test de recuperación. El test de recuperación, que se toma el mismo día de la Evaluación de Recuperación, es de contenido global y no sirve para mejorar nota.

VII.- Bibliografía y material de apoyo.

Bibliografía básica.

- 1. Atkinson, Kendall: An introduction to Numerical Analysis. Wiley New York, 1978.
- 2. Grossman, S.: Análisis numérico y visualización gráfica con matlab. Prentice-Hall Hispanoamericana, México, 1997.

Bibliografía complementaria.

- 1. H. Alder & E. Figueroa: *Introducción al Análisis Numérico*. Facultad de Ciencias Físicas y Matemáticas. Universidad de Concepción. 1995.
- 2. K. Atkinson: Elementary Numerical Analysis, John Wiley and Sons, 1993.
- 3. R. L. Burden & J. D. Faires: Análisis Numérico, Thomson, 1998.
- 4. S. C. Chapra & R. P. Canale: Métodos Numéricos para Ingenieros, McGraw-Hill, 1999.
- 5. G. HÄMMERLIN & K.-H. HOFFMANN: Numerical Mathematics, Springer-Verlag, 1991.
- 6. D. R. Kincaid & W. Cheney: Análisis Numérico: las Matemáticas del Cálculo Científico, Addison-Wesley Iberoamericana, 1994.
- 7. A. Quarteroni & F. Saleri: Scientific Computing with MATLAB, Springer-Verlag, 2003.
- 8. H. R. Shwartz: Numerical Analysis. A Comprehensive Introduction. John Wiley and Sons, 1989.
- 9. J. Stoer & R. Bulirsch: Introduction to Numerical Analysis. Springer-Verlag, 1993.
- 10. L.N. Trefethen & D. Bau: Numerical linear algebra, SIAM, 1997.

Material de apoyo.

1. Todo el abundante material de apoyo de la asignatura lo encuentra en:

http://www.ing-mat.udec.cl/pregrado/asignaturas/521230/documentacion.

VIII.- Planificación de las clases. (Inicio: Lunes 12 de Agosto)

Semana 1: del 12 al 16 de Agosto de 2013.

Semana	Actividad: Clases teóricas	Responsable	Trabajo académico
1	Inicio.	Docente	3 horas
	• Presentación del Syllabus, Que es Cálculo Numérico.		
	• Revisión de conceptos básicos: Normas vectoriales y matriciales. Productos interiores.		
2	Revisión de conceptos básicos.	Docente	3 horas
	• Errores: Fuentes del error en la resolución numérica de modelos matemáticos de fenómenos reales. Errores computacionales. Propagación de errores.		
	• Sistemas de ecs. lineales. Expresión matricial. Relación con la matriz inversa. Métodos directos e iterativos. Costo computacional operacional y en memoria. Propagación de errores de redondeo.		
3	Sistemas de ecs. lineales.	Docente	3 horas
	• Factorización LU: Eliminación Gaussiana. Relación con la factorización LU. Solución de sistemas triangulares. Costo operacional. Conveniencia de la factorización.		
	• Pivoteo: Estrategia de pivoteo parcial; necesidad. Matrices de permutación. Matrices "psicológicamente" triangulares.		
	• Adaptación a matrices con estructuras particulares: Matrices simétricas y definidas positivas; método de Cholesky. Matrices banda. Matrices tridiagonales.		
4	Sistemas de ecs. lineales.	Docente	3 horas
	• Propagación de errores: Propagación de errores en los datos. Número de condición. Propagación de errores de redondeo. Estimación a posteriori del error.		
	• Métodos iterativos: Matrices dispersas; almacenamiento. Esquema general de métodos iterativos. Matriz de iteración. Criterios de convergencia. Criterios de detención.		
	• Métodos iterativos clásicos: Métodos de Jacobi y Gauss-Seidel. Criterios de convergencia.		
5	Sistemas de ecs. lineales.	Docente	3 horas
	• Métodos de tipo gradiente: Método del gradiente. Método del gradiente conjugado. Convergencia.		
	• Precondicionamiento. Precondicionador de Jacobi, de Cholesky incompleto.		
	Semana del 16 al 20 de Septiembre sin actividades académicas.		
6	Aproximación por cuadrados mínimos.	Docente	3 horas
	• Ajuste de curvas: Solución en el sentido de cuadrados mínimos de sistemas rectangulares. Ecuaciones normales. Problemas de rango deficiente.		
	• Ortogonalización: Factorización QR. Método de Gram-Schmidt. [Método de Householder].		

Semana	Actividad: Clases teóricas	Responsable	Trabajo académico
7 y 8	 Aproximación por cuadrados mínimos. Problemas no lineales: Reducción a problemas lineales. Interpolación numérica. Interpolación polinomial: Existencia y unicidad del polinomio de interpolación. Fórmula de Lagrange. Error en la interpolación. Fenómeno de Runge. Interpolación por splines: Interpolación lineal a trozos. Splines cúbicos. 	Docente	6 horas
9	 Integración numérica. Métodos elementales: Reglas del punto medio, de los trapecios y de Simpson. Acotación del error. Método de Romberg: Extrapolación de Richardson. Método de Romberg. 	Docente	3 horas
10	Integración numérica. • Método de Gauss: Polinomios de Legendre. Reglas de Gauss. Precisión. • Integrales múltiples.	Docente	2 horas
10	Mi 23 de Oct. : Presentación de Evaluación con formato Selección Múltiple.	Docente	1 hora
11	Eval-1: Materia: hasta Splines cúbicos	Docente	2 horas
11 y 12	 Integración de funciones singulares: Reducción a integrales de funciones regulares. Ecuaciones no lineales. Métodos de convergencia garantizada: Bisección. Convergencia de tipo lineal y de orden p. Métodos de convergencia veloz: Newton-Raphson. Convergencia cuadrática. Condiciones de convergencia. Criterio de detención. Método de la secante. Sistemas de ecuaciones no lineales: Método de Newton. 	Docente	6 horas
13, 14 y 15	 Problemas de valores iniciales: Existencia y unicidad de solución. Sistemas de ecuaciones diferenciales. Ecuaciones de orden superior. Métodos numéricos de paso simple y múltiple. Método de Euler. Error local de truncamiento. Error global. Métodos de paso simple: Métodos de tipo Runge-Kutta: Euler-Cauchy, Euler mejorado, Runge Kutta de orden 4. Estimación a posteriori del error. Control del paso de integración. Métodos Runge-Kutta-Fehlberg. Métodos de paso múltiple: Métodos explícitos: Adams-Bashforth. Métodos implícitos: Adams-Moulton. Métodos predictor-corrector. Ecuaciones "Stiff": Estabilidad de las ecuaciones y de los métodos numéricos. Ecuaciones "Stiff". Métodos implícitos: métodos de Euler y de los trapecios. Problemas de valores de contorno: Existencia y unicidad de solución. Método de "shooting". Método de diferencias finitas. Método de elementos finitos. 	Docente	9 horas
16	Eval-2: Materia: desde integración numérica.	Docente	2 horas

IX.- Planificación de los laboratorios.

Semana	Fecha	Contenido Laboratorio
1	12.8.2013-16.8.2013	-
2	19.8.2013-20.8.2013	Inscripción Online
3	26.8.2013-30.8.2013	Introducción a Matlab
4	2.9.2013-6.9.2013	Introducción a Matlab
5	9.9.2013-13.9.2013	Métodos Directos para sistemas de ecuaciones lineales
-	16.9.2013-20.9.2013	Feriados
6	23.9.2013-27.9.2013	Métodos Iterativos para sistemas de ecuaciones lineales
7	30.9.2013-4.10.2013	Mínimos Cuadrados
8	7.10.2013-11.10.2013	Interpolación
9	14.10.2013-18.10.2013	Laboratorio Complementario
10	21.10.2013-25.10.2013	Test 1
11	28.10.2013-1.11.2013	Feriados
12	4.11.2013-8.11.2013	Integración numérica + muestra Test-1
13	11.11.2013-15.11.2013	Sistemas de ecuaciones no lineales
14	18.11.2013-22.11.2013	Ecuaciones Diferenciales Ordinarias
15	25.11.2013-29.11.2013	Test 2
16	2.12.2013-6.12.2013	Muestra de test 2

X.- Fecha de las Evaluaciones.

Evaluacion - 1	Lunes 28 de Octubre.	
Evaluacion - 2	Viernes 06 de Diciembre.	
Eval. de Recuperación	Viernes 20 de Diciembre.	
Test de Recuperación	Viernes 20 de Diciembre.	

Cualquier cambio se comunicará oportunamente en clases y/o por Infoalumno.

La programación de cada evaluación, incluyendo además sala y hora, la podrá ver -más adelante - en la página:

http://www.cfm.udec.cl/docencia/calendario-de-evaluaciones

accesando por Departamento de Ingeniería Matemática.

XI.- Otros (Atención de alumnos).

Profesor de sección 1: Sr. Manuel Campos Oficina: 427, 4º piso FCFM*

Fono: 220-3150

e-mail: mcampos@udec.cl

Secretaria: 220-4119 (Sra. Ana Opazo)

Oficina: $404, 4^0$ piso FCFM*

Horario de clases: Lunes de 8:15 a 9:45 en A-412

 $\label{eq:miércoles} \mbox{Miércoles de } 8{:}15 \ \mbox{a} \ 9{:}00 \ \mbox{en} \ \mbox{A-3}12$

Horario de consultas: Lunes de 18:10 a 19:00 horas, en oficina.

Profesor de sección 2: Sr. Rodolfo Araya

Oficina: Decanato, 2º piso FCFM*

Fono: 220-4103

e-mail: rodolfo.araya@udec.cl

Secretaria: 220-4119 (Sra. Ana Opazo)

Oficina: $404, 4^0$ piso FCFM*

Horario de clases: Lunes de 8:15 a 9:45 en A-9

Horario de consultas: Martes de 15:30 a 16:30 horas, en oficina.

Profesor de sección 3: Sr. Philippe Caillol Oficina: 410, 4⁰ piso FCFM*

Fono: 220-3124

e-mail: pcaillol@ing-mat.udec.cl

Horario de clases: Lunes de 8:15 a 9:45 en A-414

 $\label{eq:miércoles} \mbox{Miércoles de } 8{:}15 \ \mbox{a} \ 9{:}00 \ \mbox{en} \ \mbox{A-}214$

Secretaria: 220-4119 (Sra. Ana Opazo)

Oficina: $404, 4^0$ piso FCFM*

Horario de consultas: Martes de 12:10 a 13:00 horas, en oficina.

Profesor de sección 4: Sra. Mónica Selva Oficina: 408, 4º piso FCFM*

Fono: 220-3119

e-mail: mselva@ing-mat.udec.cl

Secretaria: 220-4119 (Sra. Ana Opazo)

Oficina: $404, 4^0$ piso FCFM*

Horario de clases: Lunes de 8:15 a 9:45 en A-6

Horario de consultas: Lunes de 14:10 a 16:00, en oficina.

(*) FCFM: Facultad de Ciencias Físicas y Matemáticas.