Pavan Rathnakar Shetty EECE 5644 HW 4

Due date: December 14, 11:59 pm GitHub: Files in the hw4 folder

https://github.com/Pavan-r-shetty/5644.git

Question 1

Muth hayer	Peruption was	used to	affronomate	class babel posters
Loss weal of	or Deathing < Mi	hinimum ave	tage choss-en	toly lon.
Trashed mod	els were than we winimum	ed to a	of error or	MAP classification no validation dataset.
Data:	+ clave with	ungorm p	ni ^k ors	
clause.				00.70.8
closs 1°			ſ	- 1 0 0.6 7
b(T:	(i) = 0.25, ml	= 3	cov1=	0.6 1 0
dan 2°		L47		
p(1=2):	0.25, MZ:	2	cov1:	0.8 0.1 0.7
		2		0.7 0.8 0.9
chow 3°		F>7	. 2 /	1 0.6 0.9
p(L=3)	= 0.25 m3=	1	10032	0.1 0.8 0.3
		3		0.7 0.81

train_data_100

train_data_200

train_data_500

train_data_1000

train_data_2000

train_data_5000

Tigure below shows the don'fination done byte the model on datasets.

Classification with 5000-100 Train data is shown below

data- 10,000 was used to validate.

0

2

×

6

8 6

Correctly Classified

True

False

Summary of Performance

Model	Size	Probability of Error (%)
train_data_100	100	17.12
train_data_200	200	0.175
train_data_500	500	7.5
train_data_1000	1000	6.4
train_data_2000	2000	6.7
train_data_10000	10000	6.1

Packages Used: Keras, Scikit Learn, Pandas, Matplotlib

Question 2:

Problem 2:
Generating Gaussian Minture Model for 2D data should have 4 components with the Unique Probability of selection, man
components with with Unique Probability of scalled
and covariones.
The state of the s
The mu's, sigma's & weight charen are " wo= 0.2, mo= [27, 6000= 0.10]
$w_0 = 0.2$, $m_0 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ (av $0 = \begin{bmatrix} 0.1 & 0 \\ 0 & 0.1 \end{bmatrix}$ $w_1 = 0.3$, $m_1 = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$ (av $1 = \begin{bmatrix} 0.1 & 0 \\ 0 & 0.1 \end{bmatrix}$
$w3 = 0.15, m2 = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$ $w012 = \begin{bmatrix} 0.3 & 0 \\ 0 & 0.2 \end{bmatrix}$
w4:0.35, m3=[-1] wu3=[0.20]

10 points dataset:

GMM order selection based on (-) log-likelihood	Frequency
1	30

100 points dataset:

GMM order selection based on (-) log-likelihood	Frequency
4	25
5	5

1000 points dataset:

GMM order selection based on (-) log-likelihood	Frequency
4	23
5	5
6	2

10000 points dataset:

GMM order selection based on (-) log-likelihood	Frequency
4	26
5	4

The (-ve) log-likelihood vs n_component graphs for one iteration (of the 30 experimental cycles) of every dataset is plotted and shown below:

Dataset with 10 points:

Negative log_likelihood score for different GMM models

Dataset with 100 points:

Dataset with 1000 points:

Negative log_likelihood score for different GMM models

Dataset with 10000 points:

Observations and Inference:

- 1) For data sets with 100 points, 1000 points, and 10000 points the order that is mostly chosen based on minima of -ve likelihood score is 4. There are few occurrences of 5 and 6 but the most dominant order is 4.
- 2) The -ve likelihood vs n_component graphs show which order produces the least -ve likelihood score and will be chosen accordingly. (best)