Definition 14.3. Given a sesquilinear form $\varphi \colon E \times E \to \mathbb{C}$, the function $\Phi \colon E \to \mathbb{C}$ defined such that $\Phi(u) = \varphi(u, u)$ for all $u \in E$ is called the *quadratic form* associated with φ .

The standard example of a Hermitian form on \mathbb{C}^n is the map φ defined such that

$$\varphi((x_1,\ldots,x_n),(y_1,\ldots,y_n))=x_1\overline{y_1}+x_2\overline{y_2}+\cdots+x_n\overline{y_n}.$$

This map is also positive definite, but before dealing with these issues, we show the following useful proposition.

Proposition 14.1. Given a complex vector space E, the following properties hold:

- (1) A sesquilinear form $\varphi \colon E \times E \to \mathbb{C}$ is a Hermitian form iff $\varphi(u, u) \in \mathbb{R}$ for all $u \in E$.
- (2) If $\varphi \colon E \times E \to \mathbb{C}$ is a sesquilinear form, then

$$4\varphi(u,v) = \varphi(u+v,u+v) - \varphi(u-v,u-v) + i\varphi(u+iv,u+iv) - i\varphi(u-iv,u-iv),$$

and

$$2\varphi(u,v) = (1+i)(\varphi(u,u) + \varphi(v,v)) - \varphi(u-v,u-v) - i\varphi(u-iv,u-iv).$$

These are called polarization identities.

Proof. (1) If φ is a Hermitian form, then

$$\varphi(v, u) = \overline{\varphi(u, v)}$$

implies that

$$\varphi(u,u) = \overline{\varphi(u,u)},$$

and thus $\varphi(u,u) \in \mathbb{R}$. If φ is sesquilinear and $\varphi(u,u) \in \mathbb{R}$ for all $u \in E$, then

$$\varphi(u+v,u+v) = \varphi(u,u) + \varphi(u,v) + \varphi(v,u) + \varphi(v,v),$$

which proves that

$$\varphi(u, v) + \varphi(v, u) = \alpha,$$

where α is real, and changing u to iu, we have

$$i(\varphi(u,v) - \varphi(v,u)) = \beta,$$

where β is real, and thus

$$\varphi(u, v) = \frac{\alpha - i\beta}{2}$$
 and $\varphi(v, u) = \frac{\alpha + i\beta}{2}$,

proving that φ is Hermitian.

(2) These identities are verified by expanding the right-hand side, and we leave them as an exercise. \Box