CS211: Computer Architecture

Summer 2020

Instructors and TAs

- Instructor:
 - David Domingo
 - Email: <u>david.domingo@rutgers.edu</u>
 - Office Hours: Fridays 2pm-3pm
- Teaching Assistants:
 - Yujie Ren
 - Email: yujie.ren@rutgers.edu
 - Office Hours: Mondays Ipm-2pm
 - Shaleen Garg
 - Email: shaleen.garg@rutgers.edu
 - Office Hours: Thursdays I Iam-I2pm
 - Chengguizi Han
 - Email: chengguizi.han@rutgers.edu
 - Office Hours: Thursdays 2pm-3pm

Course Logistics

- Sakai will be the primary source of course information
 - https://sakai.rutgers.edu
 - Announcements, course material, assignments, etc.
- Lectures
 - Held synchronously online via Sakai Meetings
 - Slides will be uploaded after lecture
 - Lectures will be recorded and available*
- Office Hours
 - Held online via Sakai Meetings
- Piazza
 - Main forum for questions and discussion on lecture materials and assignments.

Textbooks

- Required
 - Computer Systems: A Programmer's Perspective, by R.E.Bryant and D.R.O'Hallaron
- Recommended:
 - Computer Organization and Design: The Hardware/Software Interface by D.A.Patterson and J.L.Hennessy
 - The C Programming Language by B.W.Kernighan and D.M.Ritchie
 - Any book about C similar to (https://publications.gbdirect.co.uk/c_book/)

What You Should Know

- Prerequisite: CS 112 Data Structures
- Programming Languages
- Algorithms
- Data Structures
- Basics of how to write, run, and test programs

Goal

- Understand how programs run on hardware
- Write programs with good performance on modern architecture computers.

What you will learn

- How to program in C and Assembly
- The major hardware components in computer systems
- Trends in technology and computer architecture
- How hardware components are built from digital logic
- How programs written in a high-level language (e.g., C) is actually executed by the hardware
- How to understand and improve the performance of programs

Course Expectations

- Fun part:
 - 3+ Projects (programming assignments)
- Not So Fun Part:
 - I Midterm and I Final*
- What we expect from you
 - Attend Lectures
 - Ask Questions
 - Ask for help if you feel lost
 - Start programming assignments early
 - Do not copy or cheat

No Late Assignments

- We will not accept late assignments
- Emails with assignment attach will be discarded
- Assignments must be handed-in on Sakai
 - Deadline enforces by Sakai
 - Can submit unlimited number of times

Collaboration vs. Cheating

- Collaboration is encouraged!
 - Learn by discussing and helping each other
 - But, you must not cheat and copy
- Cheating will not be tolerated
 - We will look for cheating
 - Once, found everyone involved will be punished
 - https://www.cs.rutgers.edu/academics/undergraduate/academic-integrity-policy
- If you having any trouble with the course seek help
 - Email me or the TAs

List of topics

- Hardware trends
- C programming
- Data representation
- Assembly program
- Memory Hierarchy/Caching
- Digital Logic

Programming Assignments

- 3 Programming Assignments
- Program in C and/or Assembly
 - Start early, do not wait until the last minute
- Programming and Grading done using iLab Machines
 - https://resources.cs.rutgers.edu/docs/instructional-lab/
 - Sign up for account if you haven't already https://services.cs.rutgers.edu/accounts/
 - Programming in Linux Environment

Grading

- Grading:
 - 45%: Programming Assignments
 - 20%: Midterm
 - 30%: Final Exam
 - 5%: Class Participation
 - Asking Questions in Class
 - Asking/answering questions in Piazza
 - All exams are cumulative
 - No make-up exams except for university sanctioned reasons
 - Must inform me before the exam

Tentative Schedule

- June 22nd July 1st : C Programming
- July 6th: Data Representation
- July 8th July 20th: Assembly Language
- July 22nd: Midterm
- July 29: Memory Hierarchy/Cache
- July 31st August 10: Digital Logic
- August 12th: Final Exam