Advanced Test 4 Solutions

Stellenbosch Camp 2022

1. You have an $n \times n$ chessboard which starts with all its squares white. An operation involves choosing a row or column and flipping the colour of every square in this row or column between white and black. Is it possible that for all $0 \le k \le n^2$, you can do some sequence of operations and end up with k black squares?

Solution: First note that performing a flip on a row or column twice is the same as having not performed a flip at all. Secondly note that the order of flips do not matter. Let there be p row-flips and q column-flips, with $0 \le p, q \le n$. The number of values of k we can achieve with a series of operations is less than or equal to the number of ordered pairs (p,q), which we will define as S_n . The ordered restriction is due to (p,q) and (q,p) yielding the same number of black squares. If S_n is less than the number of squares on the board, then there will exist some number of k black squares we cannot achieve. Therefore we need that:

$$S_n = \frac{(n+1)(n+2)}{2} \ge n^2 + 1$$

Which is only true for $n \leq 3$. Checking the number of black squares for these cases with all the possible pairs (p,q) shows that only the n=1 case is possible.

2. Show that 2022×2^n can be written as the sum of three distinct non-zero squares for every natural number n.

Solution: Note that $1011 = 31^2 + 7^2 + 1^2$ and $2022 = 43^2 + 13^2 + 2^2$.

If n is odd, let n = 2k + 1. Then we have that

$$2022 \times 2^{n} = 1011 \times 2^{2k+2} = \left(31^{2} + 7^{2} + 1^{2}\right) \times \left(2^{k+1}\right)^{2} = \left(31 \times 2^{k+1}\right)^{2} + \left(7 \times 2^{k+1}\right)^{2} + \left(1 \times 2^{k+1}\right)^{2}.$$

Similarly, if n is even, let n = 2k. Then we have that

$$2022 \times 2^n = 2022 \times 2^{2k} = \left(43^2 + 13^2 + 2^2\right) \times \left(2^k\right)^2 = \left(43 \times 2^k\right)^2 + \left(13 \times 2^k\right)^2 + \left(2 \times 2^k\right)^2.$$

3. A triple of positive real numbers (a, b, c) is called *good* if a, b, c are the side lengths of a non-degenerate triangle, and *cute* if a, b, c are the sides of an acute angled triangle. Prove that (a, b, c) is *good* if and only if $(\sqrt{a}, \sqrt{b}, \sqrt{c})$ is *cute*.

Solution: Notice that if $(\sqrt{a}, \sqrt{b}, \sqrt{c})$ is *cute*, then $\sqrt{a}^2 + \sqrt{b}^2 > \sqrt{c}^2$ for all permutatios of (a, b, c) (Pythagoras' inequality) so $(\sqrt{a}^2, \sqrt{b}^2, \sqrt{c}^2) = (a, b, c)$ is *good*.

If (a, b, c) is good we note that it is sufficient to prove that $(\sqrt{a}, \sqrt{b}, \sqrt{c})$ is good as Pythagoras' inequality would be trivialy satisfied. Use the Ravi substitution a = x + y, b = y + z, c = z + x where x, y, z > 0.

Then

$$\sqrt{a} + \sqrt{b} = \sqrt{x+y} + \sqrt{y+z}$$

$$= \sqrt{\left(\sqrt{x+y} + \sqrt{y+z}\right)^2}$$

$$= \sqrt{\left(x+y+y+z+2\sqrt{(x+y)(y+z)}\right)}$$

$$= \sqrt{\left(x+z+(2y+2\sqrt{(x+y)(y+z)})\right)}$$

$$> \sqrt{x+z}$$

$$= \sqrt{c}$$

Similarly, $\sqrt{a} + \sqrt{c} > \sqrt{b}$ and $\sqrt{b} + \sqrt{c} > \sqrt{a}$.

4. The incircle of $\triangle ABC$ is tangent to BC, CA, and AB at D, E, and F respectively. P, Q, and R are the incenters of $\triangle AEF$, $\triangle BFD$, and $\triangle CDE$ respectively. Prove that DP, EQ, and RS are concurrent.

Solution: Let the point P' be the intersection of AI and the incircle. Notice that $\angle AFP' = \angle P'EF = \angle P'FE$ (tan-chord, angles subtended by equal sides) therefore FP' is the angle bisector of $\angle AFE$, so P' = P is the incentre of $\triangle AFE$. Similarly we deduce Q and R are the intersections of BI and CI with the incircle respectively. Then $\angle PDF = \angle PDE$ (angles subtended by equal sides) so DP is the angle bisector of $\angle FDE$. Similarly we deduce that EQ and FR are angle bisectors of $\angle DEF$ and $\angle EFD$ respectively. The three lines intersect at the incenter of $\triangle DEF$ and are therefore concurrent.

5. Every point in space is coloured red, blue, or green. Prove that for at least one of the 3 colours, the set of distances between points of that colour contains all positive real numbers.

Solution: Assume for contradiction that none of the colours has this property. Let x_R be a positive real number for which there are no two red points having this distance between them. Similarly, let x_B and x_G be such a real number for the colours blue and green respectively. Assume W.L.O.G. that $x_R \geq x_B \geq x_G$. Start by selecting a red point. If no such point exists, select a blue point. If no such point exists, we only have green points and we reach a clear contradiction. If a blue point does exist (but a red point does not), all points in a shell of radius x_B around that point must be green. Then we have two green points on this shell with distance x_G between them, since $x_G \leq x_B$, which is a contradiction.

Finally, if our red point does exist, every point in a shell of radius x_R around it must be either blue or green. Select a blue point on this shell. If no such point exists, this whole shell is green and there must exist two points on this shell with distance x_G between them, a contradiction. If the blue point does exist, we consider the intersection of the shell around our blue point with radius x_B and the shell around our red point with radius x_R . This intersection is a circle with radius at least $\frac{x_B}{\sqrt{2}}$, which means it has diameter larger than x_B . All points on this circle must be green, but there will exist two of them with distance x_G , a contradiction.