Table 1: Probabilities of targets $T_1 - T_{15}$ and UAVs being destroyed

		T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	T_{10}	T ₁₁	T_{12}	T ₁₃	T ₁₄	T_{15}
TT	K_{1j}	0.36	0.38	0.89	0.32	0.88	0.34	0.88	0.91	0.9	0.37	0.91	0.34	0.32	0.37	0.4
U_1	P_{1j}	0.49	0.52	0.01	0.47	0.06	0.48	0.03	0.08	0.09	0.48	0.05	0.42	0.41	0.48	0.54
	K_{2j}	0.33	0.31	0.92	0.39	0.9	0.33	0.89	0.9	0.87	0.31	0.87	0.33	0.36	0.35	0.36
U_2	P_{2j}	0.49	0.44	0.08	0.4	0.07	0.43	0.05	0.04	0.09	0.43	0.06	0.42	0.47	0.48	0.51
U_3	K_{3j}	0.3	0.39	0.91	0.33	0.87	0.36	0.91	0.92	0.92	0.33	0.89	0.38	0.3	0.31	0.38
	P_{3j}	0.44	0.51	0.08	0.52	0.05	0.48	0.08	0.09	0.05	0.42	0.07	0.53	0.53	0.46	0.54
U_4	K_{4j}	0.57	0.51	0.96	0.6	0.95	0.64	0.92	0.93	0.92	0.61	0.95	0.64	0.54	0.64	0.51
	P_{4j}	0.62	0.63	0.21	0.64	0.18	0.64	0.21	0.22	0.16	0.56	0.18	0.61	0.62	0.56	0.6
U_5	K_{5j}	0.63	0.56	0.94	0.51	0.95	0.64	0.92	0.93	0.95	0.5	0.93	0.57	0.64	0.51	0.59
	P_{5j}	0.63	0.64	0.21	0.62	0.2	0.58	0.21	0.21	0.19	0.57	0.19	0.58	0.55	0.62	0.57
U_6	K_{6j}	0.64	0.59	0.93	0.53	0.95	0.61	0.95	0.95	0.94	0.6	0.96	0.51	0.56	0.59	0.53
	P_{6j}	0.57	0.65	0.2	0.65	0.19	0.57	0.25	0.21	0.2	0.57	0.25	0.59	0.57	0.6	0.57
U_7	K_{7j}	0.35	0.4	0.88	0.32	0.88	0.36	0.88	0.92	0.92	0.3	0.91	0.4	0.3	0.33	0.32
	P_{7j}	0.4	0.4	0.03	0.55	0.08	0.44	0.07	0.07	0.07	0.48	0.06	0.5	0.45	0.5	0.48
U_8	K_{8j}	0.55	0.61	0.94	0.56	0.96	0.54	0.97	0.92	0.94	0.5	0.94	0.58	0.64	0.58	0.56
	P_{8j}	0.6	0.57	0.25	0.55	0.24	0.55	0.16	0.24	0.2	0.59	0.24	0.65	0.6	0.57	0.56
U_9	K_{9j}	0.3	0.31	0.89	0.35	0.88	0.31	0.88	0.88	0.91	0.31	0.91	0.32	0.35	0.35	0.35
	P_{9j}	0.4	0.52	0.06	0.46	0.07	0.45	0.01	0.07	0.03	0.43	0.0	0.4	0.46	0.49	0.53
U_{10}	K_{10j}	0.62	0.54	0.95	0.63	0.97	0.56	0.92	0.96	0.95	0.62	0.96	0.5	0.63	0.58	0.64
	P_{10j}	0.57	0.59	0.17	0.62	0.21	0.64	0.17	0.16	0.17	0.61	0.22	0.56	0.59	0.59	0.59
U_{11}	K_{11j}	0.59	0.5	0.94	0.65	0.93	0.57	0.97	0.93	0.94	0.55	0.94	0.64	0.6	0.6	0.54
	P_{11j}	0.57	0.59	0.2	0.63	0.22	0.61	0.21	0.18	0.21	0.64	0.16	0.61	0.55	0.56	0.64
U_{12}	K_{12j}	0.39	0.3	0.87	0.37	0.91	0.36	0.89	0.91	0.9	0.38	0.92	0.39	0.35	0.36	0.36
	P_{12j}	0.54	0.41	0.06	0.41	0.03	0.46	0.06	0.08	0.05	0.54	0.03	0.55	0.42	0.44	0.43
U_{13}	K_{13j}	0.57	0.6	0.93	0.62	0.96	0.62	0.93	0.96	0.94	0.53	0.92	0.58	0.5	0.53	0.64
	P_{13j}	0.57	0.62	0.23	0.56	0.17	0.59	0.17	0.16	0.15	0.6	0.23	0.6	0.61	0.56	0.59
U_{14}	K_{14j}	0.53	0.57	0.92	0.61	0.96	0.53	0.95	0.96	0.94	0.64	0.93	0.65	0.64	0.51	0.61
	P_{14j}	0.55	0.63	0.19	0.61	0.22	0.6	0.18	0.16	0.22	0.65	0.16	0.59	0.55	0.62	0.59
U_{15}	K_{15j}	0.31	0.39	0.9	0.39	0.89	0.33	0.92	0.89	0.89	0.37	0.91	0.39	0.38	0.39	0.38
C 10	P_{15j}	0.48	0.48	0.0	0.55	0.02	0.52	0.08	0.05	0.07	0.42	0.0	0.51	0.54	0.4	0.52

Table 2: Probabilities of targets $T_{16}-T_{30}$ and UAVs being destroyed

		T_{16}	T_{17}	T_{18}	T_{19}	T_{20}	T_{21}	T_{22}	T_{23}	T_{24}	T_{25}	T_{26}	T_{27}	T_{28}	T_{29}	T_{30}
TT	K_{1j}	0.39	0.33	0.3	0.92	0.32	0.87	0.89	0.38	0.92	0.33	0.38	0.91	0.31	0.31	0.35
U_1	P_{1j}	0.54	0.49	0.54	0.09	0.51	0.0	0.08	0.4	0.07	0.43	0.48	0.02	0.5	0.42	0.4
TT	K_{2j}	0.36	0.33	0.32	0.89	0.37	0.91	0.87	0.34	0.9	0.35	0.36	0.87	0.4	0.34	0.32
U_2	P_{2j}	0.49	0.52	0.45	0.04	0.51	0.05	0.06	0.51	0.04	0.51	0.55	0.06	0.47	0.51	0.53
TT	K_{3j}	0.34	0.36	0.32	0.91	0.35	0.91	0.91	0.35	0.91	0.36	0.31	0.87	0.39	0.37	0.35
U_3	P_{3j}	0.45	0.5	0.48	0.05	0.45	0.06	0.06	0.41	0.07	0.45	0.49	0.05	0.43	0.47	0.51
TT	K_{4j}	0.54	0.53	0.51	0.94	0.56	0.96	0.94	0.59	0.95	0.52	0.64	0.94	0.55	0.57	0.51
U_4	P_{4j}	0.57	0.63	0.58	0.25	0.61	0.15	0.18	0.57	0.16	0.59	0.65	0.22	0.61	0.62	0.55
TT	K_{5j}	0.55	0.63	0.54	0.94	0.57	0.93	0.93	0.65	0.96	0.6	0.64	0.97	0.6	0.61	0.6
U_5	P_{5j}	0.61	0.56	0.6	0.16	0.58	0.24	0.2	0.6	0.21	0.63	0.64	0.24	0.6	0.63	0.62
TT	K_{6j}	0.59	0.55	0.6	0.94	0.57	0.92	0.92	0.55	0.97	0.51	0.62	0.94	0.58	0.65	0.6
U_6	P_{6j}	0.61	0.64	0.6	0.22	0.59	0.19	0.23	0.61	0.15	0.58	0.58	0.18	0.59	0.56	0.6
U_7	K_{7j}	0.39	0.31	0.36	0.9	0.4	0.89	0.91	0.36	0.9	0.38	0.36	0.88	0.32	0.36	0.39
07	P_{7j}	0.53	0.49	0.54	0.05	0.51	0.04	0.03	0.45	0.03	0.4	0.55	0.07	0.41	0.41	0.4
TT.	K_{8j}	0.63	0.58	0.52	0.95	0.63	0.93	0.96	0.62	0.92	0.63	0.51	0.95	0.52	0.59	0.56
U_8	P_{8j}	0.62	0.61	0.6	0.19	0.64	0.24	0.2	0.64	0.21	0.61	0.62	0.24	0.59	0.61	0.61
U_9	K_{9j}	0.36	0.31	0.37	0.91	0.4	0.88	0.89	0.35	0.88	0.35	0.38	0.89	0.38	0.32	0.4
09	P_{9j}	0.46	0.54	0.5	0.02	0.46	0.09	0.04	0.49	0.03	0.44	0.54	0.0	0.52	0.53	0.43
U_{10}	K_{10j}	0.52	0.61	0.51	0.96	0.61	0.95	0.96	0.55	0.93	0.64	0.62	0.96	0.62	0.65	0.6
010	P_{10j}	0.59	0.56	0.57	0.15	0.61	0.24	0.16	0.56	0.24	0.6	0.58	0.22	0.57	0.64	0.57
U_{11}	K_{11j}	0.59	0.62	0.63	0.92	0.55	0.95	0.96	0.6	0.96	0.62	0.57	0.94	0.65	0.64	0.6
011	P_{11j}	0.62	0.62	0.64	0.18	0.6	0.18	0.16	0.56	0.16	0.63	0.62	0.17	0.55	0.61	0.64
U_{12}	K_{12j}	0.31	0.36	0.36	0.87	0.39	0.91	0.91	0.33	0.89	0.37	0.37	0.89	0.38	0.33	0.38
012	P_{12j}	0.51	0.52	0.45	0.07	0.43	0.06	0.01	0.54	0.07	0.45	0.46	0.04	0.51	0.44	0.41
U_{13}	K_{13j}	0.52	0.56	0.59	0.96	0.6	0.93	0.96	0.64	0.96	0.56	0.52	0.94	0.52	0.61	0.58
013	P_{13j}	0.65	0.61	0.64	0.23	0.62	0.2	0.16	0.64	0.19	0.62	0.61	0.25	0.61	0.56	0.63
U_{14}	K_{14j}	0.56	0.64	0.63	0.94	0.59	0.92	0.95	0.59	0.94	0.65	0.58	0.92	0.56	0.56	0.57
∪14	P_{14j}	0.62	0.59	0.61	0.19	0.56	0.16	0.23	0.65	0.18	0.55	0.61	0.18	0.55	0.63	0.57
U_{15}	K_{15j}	0.35	0.39	0.38	0.89	0.38	0.9	0.89	0.32	0.91	0.32	0.39	0.91	0.36	0.36	0.37
∪15	P_{15j}	0.45	0.47	0.44	0.08	0.4	0.05	0.07	0.44	0.02	0.5	0.41	0.04	0.49	0.55	0.43

Table 3: Probabilities of targets $T_{31}-T_{45}$ and UAVs being destroyed

		T_{31}	T_{32}	T_{33}	T_{34}	T_{35}	T_{36}	T_{37}	T_{38}	T_{39}	T_{40}	T_{41}	T_{42}	T_{43}	T_{44}	T_{45}
TT	K_{1j}	0.33	0.88	0.9	0.89	0.31	0.34	0.34	0.89	0.35	0.92	0.37	0.32	0.91	0.91	0.89
U_1	P_{1j}	0.52	0.09	0.0	0.02	0.42	0.44	0.45	0.09	0.47	0.01	0.5	0.54	0.05	0.08	0.08
	K_{2j}	0.39	0.9	0.89	0.89	0.38	0.39	0.32	0.89	0.37	0.88	0.35	0.38	0.87	0.91	0.92
U_2	P_{2j}	0.47	0.05	0.09	0.03	0.42	0.43	0.45	0.05	0.5	0.09	0.54	0.54	0.05	0.02	0.08
TT	K_{3j}	0.39	0.89	0.92	0.87	0.35	0.4	0.38	0.9	0.34	0.91	0.38	0.38	0.89	0.91	0.88
U_3	P_{3j}	0.5	0.09	0.0	0.0	0.53	0.42	0.45	0.05	0.55	0.04	0.48	0.42	0.06	0.03	0.08
TT	K_{4j}	0.54	0.95	0.93	0.95	0.62	0.58	0.55	0.94	0.55	0.95	0.53	0.55	0.96	0.95	0.92
U_4	P_{4j}	0.61	0.25	0.24	0.21	0.57	0.58	0.6	0.25	0.63	0.21	0.61	0.65	0.17	0.18	0.19
TT	K_{5j}	0.62	0.96	0.96	0.94	0.61	0.57	0.62	0.94	0.54	0.95	0.53	0.62	0.93	0.95	0.92
U ₅	P_{5j}	0.56	0.24	0.16	0.24	0.62	0.55	0.63	0.17	0.64	0.22	0.63	0.56	0.2	0.17	0.17
TT	K_{6j}	0.62	0.93	0.94	0.94	0.63	0.63	0.65	0.94	0.63	0.94	0.62	0.5	0.95	0.95	0.95
U_6	P_{6j}	0.59	0.2	0.15	0.16	0.62	0.61	0.65	0.23	0.56	0.21	0.6	0.56	0.2	0.2	0.23
TT	K_{7j}	0.33	0.88	0.87	0.88	0.32	0.35	0.31	0.91	0.32	0.89	0.3	0.36	0.91	0.88	0.91
U_7	P_{7j}	0.51	0.03	0.02	0.02	0.43	0.48	0.55	0.01	0.48	0.04	0.51	0.47	0.08	0.07	0.0
TT	K_{8j}	0.51	0.93	0.95	0.95	0.51	0.57	0.6	0.93	0.57	0.92	0.57	0.65	0.94	0.96	0.97
U ₈	P_{8j}	0.65	0.22	0.2	0.18	0.57	0.56	0.58	0.18	0.56	0.19	0.65	0.55	0.2	0.24	0.22
II.	K_{9j}	0.4	0.92	0.88	0.88	0.34	0.35	0.32	0.91	0.35	0.91	0.36	0.38	0.88	0.9	0.89
U ₉	P_{9j}	0.48	0.05	0.0	0.02	0.47	0.45	0.5	0.06	0.46	0.05	0.53	0.43	0.03	0.08	0.05
TT	K_{10j}	0.62	0.93	0.95	0.94	0.51	0.64	0.57	0.97	0.61	0.92	0.57	0.53	0.97	0.96	0.92
U ₁₀	P_{10j}	0.62	0.16	0.21	0.23	0.56	0.56	0.57	0.21	0.59	0.2	0.57	0.55	0.2	0.15	0.25
U_{11}	K_{11j}	0.64	0.92	0.93	0.95	0.55	0.59	0.64	0.93	0.6	0.93	0.54	0.61	0.95	0.95	0.96
	P_{11j}	0.61	0.22	0.19	0.2	0.58	0.62	0.62	0.16	0.61	0.17	0.58	0.65	0.21	0.2	0.17
U_{12}	K_{12j}	0.37	0.87	0.89	0.88	0.36	0.3	0.38	0.89	0.36	0.9	0.3	0.34	0.91	0.9	0.87
	P_{12j}	0.53	0.02	0.07	0.07	0.51	0.4	0.45	0.07	0.5	0.02	0.51	0.42	0.1	0.0	0.02
U_{13}	K_{13j}	0.55	0.96	0.94	0.92	0.55	0.57	0.61	0.93	0.65	0.93	0.62	0.53	0.94	0.94	0.97
U13	P_{13j}	0.58	0.18	0.18	0.15	0.63	0.57	0.56	0.16	0.63	0.22	0.56	0.57	0.23	0.22	0.16
II	K_{14j}	0.51	0.96	0.96	0.94	0.56	0.63	0.52	0.96	0.51	0.94	0.57	0.58	0.93	0.92	0.92
U ₁₄	P_{14j}	0.58	0.2	0.16	0.2	0.62	0.63	0.58	0.2	0.64	0.16	0.63	0.65	0.22	0.24	0.21
U_{15}	K_{15j}	0.32	0.92	0.91	0.89	0.39	0.34	0.38	0.92	0.35	0.92	0.37	0.36	0.92	0.88	0.92
U15	P_{15j}	0.42	0.03	0.03	0.06	0.46	0.41	0.47	0.03	0.4	0.02	0.53	0.49	0.09	0.08	0.05

Table 4: Probabilities of targets $T_{46}-T_{60}$ and UAVs being destroyed

		T_{46}	T_{47}	T ₄₈	T ₄₉	T ₅₀	T ₅₁	T_{52}	T ₅₃	T ₅₄	T_{55}	T ₅₆	T ₅₇	T_{58}	T_{59}	T_{60}
	K_{1j}	0.34	0.92	0.9	0.34	0.33	0.31	0.91	0.32	0.32	0.9	0.39	0.89	0.33	0.31	0.33
U_1	P_{1j}	0.54	0.08	0.01	0.45	0.48	0.42	0.04	0.53	0.44	0.04	0.45	0.03	0.45	0.51	0.45
**	K_{2j}	0.33	0.89	0.91	0.35	0.4	0.36	0.89	0.38	0.3	0.89	0.35	0.92	0.33	0.38	0.32
U_2	P_{2j}	0.52	0.08	0.01	0.41	0.54	0.41	0.02	0.44	0.53	0.07	0.53	0.06	0.52	0.4	0.43
**	K_{3j}	0.34	0.92	0.89	0.31	0.34	0.36	0.87	0.35	0.36	0.89	0.37	0.91	0.37	0.32	0.38
U_3	P_{3j}	0.53	0.01	0.06	0.45	0.46	0.47	0.02	0.48	0.53	0.1	0.47	0.05	0.47	0.49	0.5
	K_{4j}	0.65	0.94	0.94	0.55	0.59	0.53	0.95	0.62	0.65	0.93	0.58	0.94	0.64	0.63	0.58
U_4	P_{4j}	0.6	0.16	0.19	0.62	0.64	0.59	0.23	0.56	0.62	0.22	0.65	0.24	0.64	0.58	0.58
	K_{5j}	0.62	0.92	0.92	0.55	0.6	0.54	0.95	0.54	0.51	0.92	0.6	0.94	0.5	0.59	0.55
U_5	P_{5j}	0.6	0.18	0.25	0.65	0.64	0.6	0.25	0.55	0.57	0.18	0.57	0.18	0.6	0.58	0.58
T.T.	K_{6j}	0.53	0.93	0.96	0.54	0.6	0.55	0.94	0.62	0.58	0.95	0.57	0.97	0.59	0.55	0.64
U_6	P_{6j}	0.57	0.21	0.16	0.64	0.62	0.56	0.16	0.58	0.61	0.17	0.58	0.15	0.63	0.62	0.61
T.T.	K_{7j}	0.31	0.91	0.91	0.33	0.32	0.32	0.91	0.32	0.35	0.89	0.31	0.87	0.35	0.35	0.32
U_7	P_{7j}	0.47	0.01	0.03	0.42	0.53	0.47	0.01	0.47	0.44	0.09	0.47	0.08	0.46	0.48	0.46
TT	K_{8j}	0.57	0.94	0.96	0.59	0.64	0.59	0.92	0.51	0.51	0.93	0.56	0.95	0.62	0.56	0.5
U_8	P_{8j}	0.61	0.17	0.16	0.61	0.62	0.6	0.23	0.57	0.62	0.18	0.64	0.24	0.57	0.56	0.62
TT	K_{9j}	0.31	0.92	0.89	0.39	0.39	0.39	0.88	0.32	0.35	0.89	0.31	0.9	0.32	0.32	0.34
U_9	P_{9j}	0.53	0.09	0.01	0.48	0.48	0.41	0.05	0.43	0.44	0.07	0.54	0.03	0.54	0.5	0.4
TT	K_{10j}	0.58	0.93	0.94	0.55	0.5	0.58	0.93	0.56	0.52	0.94	0.56	0.96	0.64	0.62	0.55
U_{10}	P_{10j}	0.55	0.24	0.23	0.55	0.55	0.64	0.15	0.55	0.62	0.24	0.64	0.24	0.65	0.58	0.63
TT	K_{11j}	0.59	0.97	0.97	0.54	0.64	0.52	0.97	0.52	0.54	0.94	0.62	0.95	0.53	0.58	0.56
U_{11}	P_{11j}	0.64	0.19	0.23	0.58	0.62	0.59	0.15	0.55	0.59	0.24	0.65	0.18	0.57	0.6	0.63
T.I.	K_{12j}	0.32	0.9	0.92	0.32	0.31	0.33	0.89	0.4	0.32	0.91	0.37	0.87	0.37	0.34	0.33
U_{12}	P_{12j}	0.52	0.05	0.07	0.52	0.41	0.49	0.05	0.45	0.42	0.03	0.49	0.07	0.42	0.45	0.41
II.	K_{13j}	0.53	0.93	0.93	0.62	0.58	0.51	0.92	0.57	0.53	0.96	0.64	0.94	0.55	0.56	0.54
U_{13}	P_{13j}	0.57	0.15	0.19	0.65	0.65	0.65	0.19	0.59	0.63	0.18	0.55	0.24	0.59	0.59	0.61
TT	K_{14j}	0.59	0.95	0.95	0.63	0.54	0.53	0.95	0.5	0.65	0.96	0.54	0.92	0.54	0.56	0.64
U_{14}	P_{14j}	0.61	0.17	0.15	0.57	0.65	0.64	0.21	0.59	0.62	0.17	0.64	0.17	0.62	0.6	0.59
TT	K_{15j}	0.39	0.89	0.91	0.33	0.32	0.39	0.89	0.36	0.38	0.92	0.32	0.9	0.36	0.39	0.4
U_{15}	P_{15j}	0.42	0.07	0.08	0.4	0.41	0.5	0.06	0.48	0.46	0.08	0.44	0.05	0.44	0.53	0.54

Table 5: Probabilities of targets $T_{61}-T_{75}$ and UAVs being destroyed

																
	**	T ₆₁	T ₆₂	T ₆₃	T ₆₄	T ₆₅	T ₆₆	T ₆₇	T ₆₈	T ₆₉	T ₇₀	T ₇₁	T ₇₂	T ₇₃	T ₇₄	T ₇₅
U_1	K_{1j}	0.3	0.36	0.37	0.34	0.88	0.92	0.37	0.9	0.36	0.39	0.35	0.37	0.89	0.38	0.88
	P_{1j}	0.48	0.52	0.45	0.44	0.01	0.09	0.44	0.1	0.52	0.53	0.44	0.5	0.08	0.43	0.05
U_2	K_{2j}	0.32	0.35	0.37	0.33	0.91	0.9	0.33	0.91	0.39	0.31	0.35	0.4	0.91	0.36	0.9
	P_{2j}	0.51	0.5	0.54	0.44	0.02	0.05	0.52	0.04	0.5	0.48	0.51	0.49	0.02	0.55	0.04
U_3	K_{3j}	0.36	0.31	0.32	0.35	0.87	0.88	0.39	0.87	0.31	0.35	0.39	0.39	0.88	0.31	0.87
	P_{3j}	0.54	0.42	0.55	0.46	0.1	0.09	0.41	0.09	0.48	0.47	0.52	0.41	0.05	0.4	0.09
U_4	K_{4j}	0.51	0.55	0.6	0.61	0.94	0.96	0.64	0.95	0.53	0.6	0.57	0.65	0.96	0.54	0.93
04	P_{4j}	0.58	0.63	0.58	0.59	0.25	0.18	0.6	0.22	0.61	0.58	0.65	0.63	0.2	0.56	0.22
TIL	K_{5j}	0.65	0.53	0.59	0.6	0.94	0.96	0.56	0.94	0.51	0.56	0.55	0.62	0.93	0.6	0.92
U_5	P_{5j}	0.63	0.65	0.56	0.55	0.2	0.24	0.6	0.24	0.62	0.58	0.61	0.58	0.21	0.63	0.22
TT.	K_{6j}	0.54	0.51	0.64	0.64	0.94	0.94	0.6	0.93	0.62	0.57	0.53	0.53	0.94	0.61	0.95
U_6	P_{6j}	0.62	0.65	0.64	0.6	0.2	0.22	0.6	0.18	0.58	0.55	0.6	0.56	0.21	0.64	0.21
TT	K_{7j}	0.37	0.32	0.3	0.35	0.9	0.92	0.33	0.9	0.31	0.32	0.37	0.32	0.87	0.36	0.88
U_7	P_{7j}	0.42	0.47	0.43	0.49	0.09	0.03	0.54	0.06	0.53	0.54	0.48	0.41	0.03	0.46	0.08
T.T.	K_{8j}	0.58	0.56	0.53	0.51	0.92	0.95	0.58	0.96	0.63	0.64	0.61	0.59	0.96	0.6	0.93
U_8	P_{8j}	0.62	0.64	0.63	0.63	0.19	0.2	0.6	0.23	0.58	0.64	0.65	0.65	0.17	0.57	0.22
	K_{9j}	0.3	0.38	0.34	0.4	0.9	0.9	0.36	0.87	0.31	0.35	0.39	0.31	0.92	0.32	0.89
U_9	P_{9j}	0.53	0.43	0.48	0.49	0.03	0.01	0.41	0.04	0.43	0.53	0.43	0.52	0.0	0.53	0.05
	K_{10j}	0.5	0.63	0.58	0.64	0.95	0.94	0.56	0.93	0.53	0.62	0.63	0.6	0.95	0.62	0.93
U_{10}	P_{10j}	0.59	0.6	0.63	0.62	0.16	0.16	0.6	0.23	0.6	0.64	0.62	0.59	0.15	0.58	0.23
	K_{11j}	0.59	0.51	0.54	0.58	0.93	0.92	0.52	0.92	0.59	0.53	0.58	0.5	0.96	0.51	0.95
U_{11}	P_{11j}	0.6	0.65	0.59	0.57	0.23	0.16	0.55	0.21	0.64	0.64	0.64	0.64	0.15	0.57	0.19
	K_{12j}	0.38	0.31	0.31	0.33	0.89	0.87	0.36	0.87	0.4	0.36	0.3	0.35	0.9	0.34	0.91
U_{12}	P_{12j}	0.52	0.54	0.48	0.47	0.07	0.09	0.44	0.02	0.54	0.54	0.54	0.44	0.08	0.48	0.09
	K_{13j}	0.53	0.52	0.55	0.52	0.93	0.96	0.63	0.95	0.55	0.57	0.52	0.64	0.95	0.52	0.93
U_{13}	P_{13j}	0.56	0.58	0.55	0.65	0.22	0.19	0.56	0.21	0.59	0.62	0.57	0.6	0.17	0.56	0.17
	K_{14j}	0.56	0.53	0.62	0.6	0.95	0.93	0.53	0.92	0.64	0.6	0.56	0.63	0.93	0.59	0.93
U_{14}	P_{14j}	0.58	0.57	0.6	0.61	0.2	0.18	0.62	0.23	0.62	0.55	0.62	0.56	0.22	0.55	0.22
	K_{15j}	0.32	0.3	0.31	0.31	0.92	0.91	0.39	0.88	0.35	0.3	0.32	0.38	0.89	0.33	0.89
U_{15}	P_{15j}	0.42	0.5	0.46	0.44	0.1	0.03	0.53	0.09	0.54	0.41	0.41	0.51	0.03	0.5	0.01

Table 6: Probabilities of targets $T_{76}-T_{90}$ and UAVs being destroyed

		T_{76}	T_{77}	T_{78}	T_{79}	T_{80}	T_{81}	T_{82}	T_{83}	T_{84}	T_{85}	T ₈₆	T_{87}	T_{88}	T_{89}	T_{90}
TT	K_{1j}	0.88	0.89	0.91	0.91	0.9	0.37	0.36	0.89	0.91	0.89	0.9	0.38	0.34	0.9	0.3
U_1	P_{1j}	0.07	0.09	0.02	0.02	0.1	0.54	0.52	0.04	0.07	0.07	0.0	0.45	0.52	0.07	0.42
**	K_{2j}	0.87	0.91	0.9	0.9	0.87	0.35	0.4	0.9	0.87	0.91	0.89	0.34	0.34	0.91	0.31
U_2	P_{2j}	0.05	0.03	0.09	0.08	0.08	0.41	0.53	0.04	0.02	0.08	0.01	0.46	0.52	0.07	0.54
	K_{3j}	0.9	0.91	0.9	0.91	0.9	0.34	0.31	0.88	0.89	0.91	0.88	0.33	0.32	0.9	0.34
U_3	P_{3j}	0.04	0.07	0.02	0.02	0.08	0.48	0.43	0.05	0.03	0.01	0.07	0.51	0.43	0.04	0.52
TT	K_{4j}	0.94	0.95	0.92	0.97	0.93	0.64	0.61	0.95	0.97	0.95	0.93	0.51	0.63	0.95	0.5
U_4	P_{4j}	0.16	0.15	0.16	0.24	0.16	0.62	0.63	0.17	0.2	0.17	0.15	0.6	0.61	0.25	0.55
TT	K_{5j}	0.95	0.93	0.93	0.93	0.96	0.63	0.51	0.95	0.94	0.95	0.93	0.62	0.55	0.96	0.63
U_5	P_{5j}	0.17	0.24	0.17	0.23	0.19	0.56	0.65	0.16	0.17	0.2	0.24	0.64	0.57	0.16	0.56
TT	K_{6j}	0.92	0.96	0.97	0.94	0.96	0.56	0.53	0.97	0.95	0.96	0.96	0.61	0.54	0.92	0.54
U_6	P_{6j}	0.17	0.24	0.21	0.21	0.18	0.56	0.59	0.21	0.21	0.18	0.16	0.58	0.57	0.24	0.6
U_7	K_{7j}	0.87	0.91	0.87	0.88	0.91	0.31	0.39	0.88	0.91	0.87	0.87	0.4	0.37	0.88	0.35
07	P_{7j}	0.03	0.05	0.03	0.07	0.05	0.54	0.46	0.03	0.02	0.02	0.05	0.52	0.4	0.03	0.46
TI.	K_{8j}	0.97	0.92	0.93	0.96	0.96	0.56	0.58	0.93	0.97	0.94	0.96	0.61	0.57	0.96	0.63
U_8	P_{8j}	0.21	0.19	0.25	0.22	0.18	0.61	0.6	0.16	0.15	0.21	0.25	0.59	0.62	0.19	0.61
U_9	K_{9j}	0.91	0.89	0.92	0.9	0.9	0.36	0.38	0.9	0.88	0.88	0.87	0.31	0.31	0.9	0.34
09	P_{9j}	0.01	0.08	0.06	0.0	0.08	0.5	0.42	0.06	0.03	0.04	0.01	0.43	0.51	0.09	0.42
U_{10}	K_{10j}	0.94	0.97	0.93	0.92	0.93	0.54	0.58	0.92	0.95	0.96	0.94	0.52	0.52	0.95	0.61
O 10	P_{10j}	0.22	0.24	0.22	0.18	0.22	0.61	0.55	0.22	0.24	0.17	0.21	0.57	0.58	0.21	0.65
U_{11}	K_{11j}	0.97	0.95	0.95	0.95	0.96	0.53	0.51	0.93	0.93	0.93	0.94	0.6	0.64	0.95	0.51
U11	P_{11j}	0.22	0.19	0.2	0.16	0.15	0.59	0.64	0.21	0.15	0.23	0.21	0.57	0.6	0.2	0.56
U_{12}	K_{12j}	0.91	0.9	0.9	0.91	0.87	0.35	0.39	0.89	0.88	0.89	0.89	0.36	0.32	0.89	0.4
O12	P_{12j}	0.06	0.06	0.02	0.07	0.09	0.46	0.5	0.09	0.03	0.06	0.02	0.48	0.42	0.06	0.48
U_{13}	K_{13j}	0.93	0.93	0.97	0.95	0.96	0.51	0.62	0.96	0.95	0.96	0.92	0.62	0.58	0.94	0.51
U13	P_{13j}	0.15	0.22	0.19	0.17	0.24	0.56	0.64	0.15	0.24	0.17	0.16	0.6	0.62	0.18	0.63
U_{14}	K_{14j}	0.94	0.95	0.93	0.93	0.93	0.52	0.52	0.93	0.95	0.96	0.95	0.58	0.63	0.92	0.57
∪14	P_{14j}	0.16	0.19	0.23	0.18	0.16	0.64	0.63	0.16	0.15	0.23	0.2	0.63	0.59	0.16	0.61
TT	K_{15j}	0.91	0.9	0.88	0.91	0.9	0.39	0.38	0.89	0.88	0.88	0.92	0.39	0.35	0.91	0.4
U_{15}	P_{15j}	0.01	0.08	0.05	0.07	0.08	0.52	0.5	0.0	0.03	0.03	0.07	0.53	0.49	0.02	0.55

Table 7: Probabilities of targets $T_{\rm 91}-T_{\rm 100}$ and UAVs being destroyed

		T_{91}	T_{92}	T_{93}	T_{94}	T_{95}	T_{96}	T_{97}	T_{98}	T_{99}	T_{100}
TT	K_{1j}	0.87	0.39	0.87	0.33	0.36	0.38	0.37	0.88	0.88	0.38
U_1	P_{1j}	0.07	0.52	0.08	0.55	0.41	0.55	0.54	0.06	0.1	0.45
TT	K_{2j}	0.9	0.32	0.91	0.39	0.32	0.33	0.4	0.88	0.87	0.33
U_2	P_{2j}	0.0	0.54	0.03	0.42	0.52	0.42	0.45	0.08	0.0	0.54
U_3	K_{3j}	0.9	0.35	0.89	0.36	0.34	0.31	0.4	0.88	0.89	0.36
	P_{3j}	0.01	0.47	0.06	0.45	0.54	0.52	0.53	0.08	0.07	0.47
TT.	K_{4j}	0.96	0.6	0.93	0.54	0.54	0.58	0.55	0.92	0.96	0.6
U_4	P_{4j}	0.2	0.62	0.23	0.61	0.63	0.56	0.64	0.2	0.2	0.65
U_5	K_{5j}	0.97	0.59	0.96	0.54	0.59	0.57	0.62	0.92	0.93	0.63
	P_{5j}	0.22	0.59	0.21	0.56	0.57	0.56	0.65	0.17	0.17	0.56
U_6	K_{6j}	0.96	0.55	0.92	0.6	0.61	0.54	0.52	0.93	0.93	0.51
	P_{6j}	0.24	0.65	0.22	0.61	0.65	0.56	0.6	0.21	0.25	0.65
U_7	K_{7j}	0.87	0.36	0.91	0.33	0.36	0.36	0.32	0.87	0.88	0.32
07	P_{7j}	0.01	0.48	0.1	0.5	0.51	0.43	0.44	0.02	0.05	0.43
U_8	K_{8j}	0.96	0.53	0.93	0.62	0.64	0.52	0.5	0.96	0.95	0.6
	P_{8j}	0.16	0.56	0.19	0.58	0.56	0.55	0.65	0.17	0.2	0.6
U_9	K_{9j}	0.87	0.35	0.87	0.34	0.36	0.39	0.37	0.89	0.89	0.35
	P_{9j}	0.04	0.45	0.09	0.5	0.49	0.5	0.46	0.05	0.06	0.53
II.	K_{10j}	0.95	0.54	0.96	0.6	0.61	0.59	0.62	0.94	0.93	0.65
U_{10}	P_{10j}	0.2	0.63	0.23	0.59	0.55	0.6	0.56	0.2	0.16	0.58
TT	K_{11j}	0.93	0.61	0.96	0.5	0.53	0.63	0.61	0.96	0.94	0.63
U ₁₁	P_{11j}	0.24	0.63	0.24	0.61	0.62	0.65	0.62	0.15	0.22	0.64
U_{12}	K_{12j}	0.88	0.36	0.89	0.39	0.32	0.32	0.39	0.87	0.89	0.31
	P_{12j}	0.01	0.54	0.08	0.54	0.54	0.48	0.43	0.01	0.1	0.43
U_{13}	K_{13j}	0.93	0.52	0.93	0.54	0.58	0.5	0.52	0.96	0.94	0.6
013	P_{13j}	0.2	0.61	0.15	0.65	0.64	0.61	0.59	0.23	0.17	0.56
U_{14}	K_{14j}	0.95	0.6	0.95	0.62	0.63	0.59	0.55	0.94	0.94	0.52
U14	P_{14j}	0.25	0.63	0.18	0.64	0.61	0.58	0.56	0.23	0.2	0.58
U_{15}	K_{15j}	0.9	0.31	0.89	0.35	0.32	0.36	0.37	0.9	0.89	0.38
U15	P_{15j}	0.03	0.41	0.02	0.43	0.47	0.42	0.41	0.07	0.01	0.47

Table 8: The values of 100 targets

	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	T_{10}	T_{11}	T_{12}	T_{13}	T_{14}	T_{15}
Value	0.85	0.81	0.64	0.77	0.62	0.79	0.67	0.64	0.63	0.86	0.67	0.76	0.82	0.84	0.8
	T_{16}	T_{17}	T_{18}	T_{19}	T_{20}	T_{21}	T_{22}	T_{23}	T_{24}	T_{25}	T_{26}	T_{27}	T_{28}	T_{29}	T_{30}
Value	0.76	0.81	0.86	0.7	0.82	0.68	0.69	0.83	0.74	0.8	0.77	0.66	0.89	0.81	0.76
	T_{31}	T_{32}	T_{33}	T_{34}	T_{35}	T_{36}	T_{37}	T_{38}	T_{39}	T_{40}	T_{41}	T_{42}	T_{43}	T_{44}	T_{45}
Value	0.79	0.61	0.64	0.74	0.76	0.8	0.84	0.63	0.76	0.67	0.86	0.81	0.64	0.7	0.65
	T_{46}	T_{47}	T_{48}	T_{49}	T_{50}	T_{51}	T_{52}	T_{53}	T_{54}	T_{55}	T_{56}	T_{57}	T_{58}	T_{59}	T_{60}
Value	0.83	0.71	0.67	0.76	0.84	0.78	0.72	0.87	0.79	0.62	0.85	0.71	0.83	0.78	0.86
	T_{61}	T_{62}	T_{63}	T_{64}	T_{65}	T_{66}	T_{67}	T_{68}	T_{69}	T_{70}	T_{71}	T_{72}	T_{73}	T_{74}	T_{75}
Value	0.81	0.79	0.83	0.83	0.74	0.63	0.76	0.62	0.88	0.85	0.82	0.81	0.71	0.9	0.7
	T_{76}	T_{77}	T_{78}	T_{79}	T_{80}	T_{81}	T_{82}	T_{83}	T_{84}	T_{85}	T_{86}	T_{87}	T_{88}	T_{89}	T_{90}
Value	0.64	0.73	0.67	0.7	0.63	0.87	0.82	0.69	0.63	0.67	0.66	0.88	0.86	0.7	0.78
	T_{91}	T_{92}	T_{93}	T_{94}	T_{95}	T_{96}	T_{97}	T_{98}	T_{99}	T_{100}					
Value	0.7	0.86	0.68	0.9	0.78	0.87	0.76	0.62	0.63	0.87					

Table 9: The values of 15 UAVs

	U_1	U_2	U_3	U_4	U_5	U_6	U_7	T_U	U_9	U_{10}	U_{11}	U_{12}	T_U	U_{14}	U_{15}
Value	1.1	1.0	0.8	1.4	1.2	1.3	0.9	1.2	1.1	1.3	1.3	0.9	1.2	1.4	0.9

Table 10: The values of 10 new targets

	T_{101}	T_{102}	T_{103}	T_{104}	T_{105}	T_{106}	T_{107}	T_{108}	T_{109}	T_{110}
Value	0.63	0.68	0.63	0.76	0.85	0.65	0.73	0.67	0.84	0.83

Table 11: Probabilities of new targets $T_{101}-T_{110}$ and UAVs being destroyed

		T_{101}	T_{102}	T_{103}	T_{104}	T_{105}	T_{106}	T_{107}	T_{108}	T_{109}	T_{110}
U_1	K_{1j}	0.87	0.39	0.87	0.33	0.36	0.38	0.37	0.88	0.88	0.38
O1	P_{1j}	0.03	0.02	0.09	0.51	0.41	0.0	0.48	0.1	0.54	0.45
U_2	K_{2j}	0.9	0.32	0.91	0.39	0.32	0.33	0.4	0.88	0.87	0.33
02	P_{2j}	0.06	0.01	0.02	0.49	0.46	0.09	0.49	0.06	0.5	0.53
U_3	K_{3j}	0.9	0.35	0.89	0.36	0.34	0.31	0.4	0.88	0.89	0.36
03	P_{3j}	0.06	0.08	0.08	0.48	0.54	0.08	0.52	0.02	0.49	0.45
U_4	K_{4j}	0.96	0.6	0.93	0.54	0.54	0.58	0.55	0.92	0.96	0.6
04	P_{4j}	0.19	0.25	0.18	0.58	0.6	0.16	0.58	0.19	0.64	0.59
TT	K_{5j}	0.97	0.59	0.96	0.54	0.59	0.57	0.62	0.92	0.93	0.63
U_5	P_{5j}	0.21	0.19	0.2	0.62	0.58	0.16	0.59	0.17	0.65	0.59
TT	K_{6j}	0.96	0.55	0.92	0.6	0.61	0.54	0.52	0.93	0.93	0.51
U_6	P_{6j}	0.24	0.21	0.24	0.64	0.64	0.24	0.61	0.22	0.62	0.56
T T	K_{7j}	0.87	0.36	0.91	0.33	0.36	0.36	0.32	0.87	0.88	0.32
U_7	P_{7j}	0.0	0.05	0.04	0.45	0.51	0.03	0.41	0.09	0.43	0.48
TT	K_{8j}	0.96	0.53	0.93	0.62	0.64	0.52	0.5	0.96	0.95	0.6
U_8	P_{8j}	0.15	0.21	0.25	0.57	0.63	0.21	0.64	0.17	0.63	0.61
T T	K_{9j}	0.87	0.35	0.87	0.34	0.36	0.39	0.37	0.89	0.89	0.35
U_9	P_{9j}	0.06	0.06	0.02	0.51	0.45	0.06	0.41	0.08	0.54	0.54
T T	K_{10j}	0.95	0.54	0.96	0.6	0.61	0.59	0.62	0.94	0.93	0.65
U_{10}	P_{10j}	0.2	0.17	0.24	0.65	0.56	0.16	0.6	0.21	0.65	0.64
	K_{11j}	0.93	0.61	0.96	0.5	0.53	0.63	0.61	0.96	0.94	0.63
U_{11}	P_{11j}	0.18	0.17	0.25	0.58	0.62	0.19	0.6	0.21	0.63	0.62
TT	K_{12j}	0.88	0.36	0.89	0.39	0.32	0.32	0.39	0.87	0.89	0.31
U_{12}	P_{12j}	0.02	0.03	0.01	0.46	0.4	0.04	0.45	0.09	0.45	0.53
TT	K_{13j}	0.93	0.52	0.93	0.54	0.58	0.5	0.52	0.96	0.94	0.6
U_{13}	P_{13j}	0.24	0.19	0.2	0.62	0.59	0.2	0.59	0.18	0.63	0.62
T.T.	K_{14j}	0.95	0.6	0.95	0.62	0.63	0.59	0.55	0.94	0.94	0.52
U_{14}	P_{14j}	0.16	0.23	0.21	0.57	0.63	0.21	0.61	0.15	0.63	0.61
**	K_{15j}	0.9	0.31	0.89	0.35	0.32	0.36	0.37	0.9	0.89	0.38
U_{15}	P_{15j}	0.03	0.01	0.09	0.52	0.44	0.0	0.48	0.02	0.45	0.54