Natural Language Processing (2)

Formal Language Theory

Daisuke Kawahara

Department of Communications and Computer Engineering, Waseda University

Lecture Plan

- 1. Overview of Natural Language Processing
- 2. Formal Language Theory
- 3. Word Senses and Embeddings
- 4. Topic Models
- 5. Collocations, Language Models, and Recurrent Neural Networks
- 6. Sequence Labeling and Morphological Analysis
- 7. Parsing (1)
- 8. Parsing (2)
- 9. Transfer Learning
- 10. Knowledge Acquisition
- 11. Information Retrieval, Question Answering, and Machine Translation
- 12. Guest Talk (1)
- 13. Guest Talk (2)
- 14. Project: Survey or Programming
- 15. Project Presentation

Grading

- In-class quizzes or assignments: 50% (several times)
- A report for your project: 50%
 - Project: programming or survey (will be announced later)
- No exam

Assignment

- 1. Describe your research theme or interest.
- 2. Choose one (or more) service(s) or system(s) based on NLP. Describe problems that arise with these services or systems and how they try to solve the problems.
- 3. Describe any thoughts about this class if you have.

Deadline: April 21 (Thu) 23:59

X You can write it in English or Japanese.

Formal Language Theory

- Formal Definition of Languages
- Formal Grammars
 - Phrase Structure Grammars
- Regular Grammars
- Finite Automata
- Context-free Grammars

Syntactic Structure (English)

Syntactic Structure (Japanese)

Sentence → PP PP Verb
PP → Noun Postposition

Formal Definition of Languages

- Alphabet: a finite set of symbols (basic units of language) e.g., $\Sigma = \{0, 1\}$, phonemes, English alphabet, English words
- String: a finite sequence of symbols

```
e.g., in the case of \Sigma = \{0, 1\}:
```

- $\Sigma^0 = \{\varepsilon\}$
- $\Sigma^1 = \{0, 1\}$
- $\Sigma^2 = \{00, 01, 10, 11\}, \dots$
- $\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, \dots\}$

The set of all finite length strings over Σ , consisting of a countably infinite number of elements.

Formal Definition of Languages

- Language L
 - A subset of Σ^* ($L \subset \Sigma^*$)
- Sentence α
 - An element of L ($\alpha \in L$)
- Grammar G
 - Specify a language

Syntactic Structure (English)

production rule (生成規則/書換え規則)

Phrase Structure Grammars (PSG)

⇒: iteration of derivations

• $G = \langle N, T, P, S \rangle$ N: a finite set of nonterminals • T: a finite set of terminals finite • *P*: a finite set of productions $\alpha \to \beta$ $\alpha \in (N \cup T)^+, \beta \in (N \cup T)^*$ • *S*: the start symbol • $L(G) = \{w | w \in T^*, S \stackrel{*}{\Rightarrow} w\}$ infinite ⇒ : derivation

An Example of PSG

$$S \rightarrow aA$$
 $A \rightarrow aA$
 $A \rightarrow a$

 $S \Rightarrow aA \Rightarrow aaA \Rightarrow aaa$

derivation tree

Regular Grammars (正規文法)

• $A \rightarrow aB, A \rightarrow a$ $A, B \in N, a \in T$

Example:

$$S \rightarrow aA$$
 $S \rightarrow bB$
 $A \rightarrow aA$ $A \rightarrow a$
 $B \rightarrow bB$ $B \rightarrow b$

Finite Automata (有限オートマトン)

Finite Automata (有限オートマトン)

- Production rules
 - $A \rightarrow aB$

• A → aA

• A → a

Acceptance of Regular Languages (正規言語の受理)

Nondeterministic FA → Deterministic FA

Practice

- For the alphabet $\Sigma = \{0,1\}$, design a DFA that accepts only strings that contain an even number of 0s.
 - For example, this DFA accepts 001010, 00, and 111.

Practice: FA accepting "1月" – "12月"

NFA:

DFA:

Pumping Lemma for Regular Languages

- Let *L* be a regular language.
- Then there exists an integer $p \geq 1$ depending only on L such that every string w in L of length at least p can be written as w = xyz, satisfying the following conditions:

- $|xy| \leq p$
- $(\forall n \geq 0)(xy^nz \in L)$

Does a regular grammar generate a^nb^n ?

Prove that the language $L = \{a^n b^n : n \ge 0\}$ over the alphabet $\sum = \{a, b\}$ is not regular

Context Free Grammars (文脈自由文法)

• $A \rightarrow \beta$ $A \in N, \beta \in (N \cup T)^*$

Example:

$$S \rightarrow aSb S \rightarrow ab$$

Grammar for Arithmetic Expressions

- Consider a grammar that interprets the priority of operators in arithmetic expressions properly.
 - Terminals: +, -, x, /, (,), a, b, c
 - Grammar 1

$$E \rightarrow E+E \mid E-E \mid ExE \mid E/E \mid a \mid b \mid c \mid (E)$$

• Grammar 2

$$E \rightarrow T \mid E+T \mid E-T$$

 $T \rightarrow F \mid TxF \mid T/F$
 $F \rightarrow a \mid b \mid c \mid (E)$

Grammar for Arithmetic Expressions

$$E \rightarrow E+E \mid E-E \mid ExE \mid E/E \mid a \mid b \mid c \mid (E)$$

Grammar for Arithmetic Expressions

$$E \rightarrow T \mid E+T \mid E-T$$

 $T \rightarrow F \mid TxF \mid T/F$
 $F \rightarrow a \mid b \mid c \mid (E)$

Normal Forms for CFG

- Chomsky Normal Form
 - A → BC | a
- Greibach Normal Form
 - $A \rightarrow a\alpha, \alpha \in N^*$

Practice

Convert the following CFG grammar to Chomsky Normal Form

 $S \rightarrow bA \mid aB$ $A \rightarrow bAA \mid aS \mid a$ $B \rightarrow aBB \mid bS \mid b$

Chomsky Hierarchy

Grammar	Language	Production Rules	Automaton
Type-0		no constraints	Turing machine
Type-1	context sensitive	$\alpha \to \beta$ $ \alpha \le \beta $	Linear-bounded automaton
Type-2	context free	$A \rightarrow \beta$ $A \in N, \beta \in (N \cup T)^*$	Pushdown automaton
Type-3	regular	$A \rightarrow aB, A \rightarrow a$ $A, B \in N, a \in T$	Finite automaton

Practice

• When the grammar *G* has the following production rules, what type of grammar is *G*?

- 1. $S \rightarrow aA$, $A \rightarrow aAB$, $B \rightarrow b$, $A \rightarrow a$
- 2. $S \rightarrow aAB$, $AB \rightarrow bB$, $B \rightarrow b$, $A \rightarrow aB$
- 3. $S \rightarrow aAB$, $AB \rightarrow c$, $A \rightarrow b$, $B \rightarrow AB$
- 4. $S \rightarrow aB$, $B \rightarrow bA$, $B \rightarrow b$, $B \rightarrow a$, $A \rightarrow aB$, $A \rightarrow a$

Ambiguous Grammar

Two or more derivation trees exist for a sentence

$$S \rightarrow SbS$$

 $S \rightarrow ScS$
 $S \rightarrow a$

Ambiguous Grammar

Two or more derivation trees exist for a sentence

Ambiguities in Natural Language

Naive Parsing Method

- Derivation starting with S (in a top-down manner)
- If there is an ambiguity, apply rules in some fixed order and do a backtracking if it fails
- Exponential explosion by repeating the same calculation

$$S \rightarrow NP \ VP$$
 $VP \rightarrow V$ $PP \rightarrow PREP \ NP$ $NP \rightarrow N$ $VP \rightarrow V \ NP$ $NP \rightarrow DET \ N$ $VP \rightarrow V \ VP \ PP$

Naive Parsing Method

```
S \rightarrow NP \ VP VP \rightarrow V PP \rightarrow PREP \ NP

NP \rightarrow N VP \rightarrow V \ NP

NP \rightarrow DET \ N VP \rightarrow V \ NP \ PP
```

I/N saw/V a/DET girl/N with/PREP a/DET telescope/N

$$S \Rightarrow NP VP \Rightarrow N VP \Rightarrow N V$$

$$\Rightarrow N V NP \Rightarrow N V N$$

$$\Rightarrow N V DET N$$

$$\Rightarrow N V NP PP \Rightarrow N V N PP$$

$$\Rightarrow N V DET N PP ...$$

CKY (Cocke-Kasami-Younger) Algorithm

- Produce S from the input in a bottom-up manner
- Keep the intermediate results in a table
- Work with Chomsky Normal Form

$$S \rightarrow NP VP$$
 $VP \rightarrow V NP$
 $NP \rightarrow DET N$ $VP \rightarrow VP PP$
 $NP \rightarrow NP PP$ $PP \rightarrow PREP NP$

CKY Algorithm

```
Input := w_1 w_2 \dots w_n
for i := 1 to n do
   a(i, i) = \{ A \mid A \rightarrow w_i \in Lexical Rules \}
for d := 1 to n - 1 do
   for i := 1 to n - d do
     i = i + d
      for k := i to j - 1 do
         a(i, j) = a(i, j) \cup \{A \mid A \rightarrow BC \in Production Rules, B \in a(i, k), C \in a(k+1, j) \}
if (S \in a(1, n)) then accept else reject
```


Chart Parsing

- Generalize the CKY algorithm for All CFGs
- Keep which symbols were rewritten in the right-hand side string of the production rule

Formal Language Theory

- Formal Definition of Languages
- Formal Grammars
 - Phrase Structure Grammars
- Regular Grammars
- Finite Automata
- Context-free Grammars