In [4]:

```
import os
import matplotlib.pyplot as plt
import numpy as np
from skimage.io import imread
from sklearn.model_selection import train_test_split
from skimage.transform import resize
import seaborn as sns
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
from sklearn.metrics import precision_score
```

In [5]:

```
target = []
images = []
flat_data = []
PATH = 'C:\\Users\\YakupAkdin\\AAAaVeriMadenciligi\\data'
cate = ['arp','baglama','elektroGitar','gitar','kanun','keman','kemence','mandolin','ud','yayliTambur']
import io
#Görüntü Formatı ve diziye atama
for category in cate:
    class_num = cate.index(category)
    path = os.path.join(PATH, category)
    for img in os.listdir(path):
        print(img)
        img_array = imread(os.path.join(path,img))
        img_array= resize(img_array, (64,64,3))
        images.append(img_array)
        img_array = img_array.flatten()
flat_data.append(img_array)
        target.append(class_num)
flat_data = np.array(flat_data)
target = np.array(target)
images = np.array(images)
yayliTambur(82).jpg
yayliTambur(83).jpg
yayliTambur(84).jpg
yayliTambur(85).jpg
yayliTambur(86).jpg
yayliTambur(87).jpg
yayliTambur(88).jpg
yayliTambur(89).jpg
yayliTambur(9).jpg
yayliTambur(90).jpg
yayliTambur(91).jpg
yayliTambur(92).jpg
yayliTambur(93).jpg
yayliTambur(94).jpg
yayliTambur(95).jpg
yayliTambur(96).jpg
yayliTambur(97).jpg
yayliTambur(98).jpg
yayliTambur(99).jpg
In [6]:
from sklearn.ensemble import RandomForestClassifier
```

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
#Train-Test
x_train, x_test, y_train, y_test = train_test_split(flat_data,target,test_size=0.3)
model=RandomForestClassifier()
```

In [7]:

```
#Eğitme
model.fit(x_train,y_train)

y_pred=model.predict(x_test)

cm = confusion_matrix(y_test, y_pred)
```

In [8]:

```
#Grafik
p = classification_report(y_pred,y_test, target_names=cate)
accuracy_score(y_pred,y_test)
print(classification_report(y_pred,y_test))
print ("Precision = %.3f" % precision_score(y_test, y_pred,average = 'weighted'))
```

	precision	recall	f1-score	support
0	0.20	1.00	0.33	9
1	0.77	0.49	0.60	568
2	0.76	0.62	0.68	627
3	0.75	0.76	0.76	597
4	0.32	0.40	0.36	115
5	0.48	0.64	0.55	166
6	0.29	0.57	0.38	76
7	0.11	0.21	0.15	80
8	0.48	0.50	0.49	224
9	0.05	0.40	0.08	5
accuracy			0.59	2467
macro avg	0.42	0.56	0.44	2467
weighted avg	0.66	0.59	0.61	2467

Precision = 0.589

In [10]:

```
fig, ax = plt.subplots(figsize=(8,8))
sns.heatmap(cm, annot=True, xticklabels = sorted(set(y_test)), yticklabels = sorted(set(y_test)),cbar=False,ax=ax)
```

Out[10]:

<AxesSubplot: >

In []: