14

iii.	Write	the	first	and	second	law	of	thermodynamics	and	explain	5
	briefly	. Als	so wr	ite an	applica	tion (of e	ach.			

OR iv. Write short note on: 5

(a) Entropy

(b) Heat engine and its thermal efficiency.

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

Faculty of Engineering

End Sem (Odd) Examination Dec-2019 EN3BS10 Physics for Computing Science

Programme: B.Tech. Branch/Specialisation: CSBS

Maximum Marks: 60 Duration: 3 Hrs.

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- The lower energy level contains more atoms than upper level under 1 Q.1 i. the conditions of _____ (a) Isothermal packaging (b) Population inversion
 - (c) Thermal equilibrium (d) Pumping
 - In an optical fiber, the concept of Numerical aperture is applicable 1 in describing the ability of_
 - (a) Light Collection (b) Light Scattering
 - (c) Light Dispersion (d) Light Polarization
 - The fringe width for Fresnel's Biprism experiment can be expressed 1 as
 - (c) β = D λ / 2d (d) β = $\lambda \times$ 2d (a) $\beta = \lambda / D$ (b) $\beta = \lambda.D$
 - Polaroid sunglasses decreases the glare on a sunny day because it
 - (a) Completely absorb the light
 - (b) Refract the light
 - (c) Have a special colour
 - (d) Block a portion of light
 - If x, y, and z are three positive axes of the crystallographic coordinat 1e system with origin at point A, 1 then which line points in the direction [1 0 1]?

(a) AD

(b) CH

(c) FB

(d) GE

P.T.O.

	vi.	The concept of matter wave was suggested by					
		(a) Heisenberg	(b) de Broglie				
		(c) Schrodinger	(d) Laplace				
	vii.	What type of waves carry sou	nd in air	1			
		(a) Transverse wave	(b) Longitudinal wave				
		(a) Electromagnetic wave	(d) Transverse and Longitudinal wave				
	viii. At the mean position, the total energy in S.H.M. is						
		(a) Purely potential (b) Purely kinetic					
		(c) Zero	(d) None of these				
	ix.	The cut-in voltage for Si diod	e is approximately	1			
		(a) 0.2 V (b) 0.6 V	(c) 1.1 V (d) None of these				
	х.	The conduction of heat from	hot body to a cold body is an example	1			
		of					
		(a) Reversible process					
		(b) Irreversible process					
	e process both						
		(d) None of these					
Q.2	i.	The refractive indices of core	and cladding materials of a step index	2			
		fibre are 1.48 and 1.45, respectively. Calculate:					
		(a) Numerical aperture (b) Acceptance angle.					
	ii.	Derive the relation between Einstein's A and B coefficients.					
	iii.	What do you understand by Step and Graded index fiber (GIF)? 5					
		Explain briefly and give the reason for the absence of modal					
		dispersion in GIF.					
OR	iv.	Describe the construction and	l working principal of a Nd:YAG laser	5			
		with the help of a suitable ene	ergy level diagram.				
Q.3	i.	In a Newton's ring experime	nt the diameter of the 4 th and 12 th dark	2			
		_	700 cm, respectively. Determine the				
		diameter of 20 th dark ring.					
	ii.	In a grating spectrum, which	spectral line in 4 th order will overlap	3			
		with 3 rd order line of 5891 A ⁰	•				
	iii.	What do you understand by	double refraction phenomenon? Write	5			
		the name of two doubly	refracting crystals. Also discuss the				
		difference between positive	and negative crystals with the help of				
		suitable diagrams.					

OR	iv.	What is a plane transmission grating? Obtain the expression $(a + b) \sin \theta = n\lambda$.	
Q.4	i. ii. iii.	Write the physical significance of wave function Ψ . Prove that electron cannot be present inside the nucleus. Particle which is moving in one-dimensional box described by the following boundary conditions; $V=0 \text{ for } 0 < x < L \text{ and } \\ V=\infty \text{ for } 0 \geq x \text{ and } x \geq L$	2 3 5
		Write and solve its Schrodinger's wave equation and obtain Eigen value and Eigen function.	
OR	iv.	What is meant by Atomic Packing Factor (APF)? Show that APF for face centered cubic (FCC) structure is 0.74.	5
Q.5	i.	The displacement equation of a particle describing simple harmonic motion is $x = 0.01 \sin 100 \pi (t + 0.005)$ meter, where x is displacement of the particle at any instant t. Calculate the amplitude, periodic time, maximum velocity and displacement at the time of the motion.	2
	ii.	What you meant by simple harmonic motion (SHM), explain? Also define few important characteristics of SHM such as (a) Acceleration (b) Frequency (c) Phase.	3
	iii.	What do you understand by Damped oscillations, derive the relation between angular frequency, damping coefficient and natural frequency? Also discuss briefly about weak, heavy and critical damping.	5
OR	iv.	Write the Maxwell equations in both differential and integral forms and provide the physical significance of each equation.	5
Q.6	i.	Calculate the conductivity of pure Silicon at room temperature when the concentration of carriers is 1.6×10^{10} per cm ³ . (Given $\mu_e=1500$ cm ² /volt-sec and $\mu_h=500$ cm ² /volt-sec at room temperature).	2
	ii.	What do you understand by depletion layer? Describe in detail with the help of suitable diagram and show how it changes in forward and reverse bias condition.	3

P.T.O.

Marking Scheme EN3BS10 Physics for Computing Science

Q.1	i.	The lower energy level contains more atoms than upper level under the conditions of							
	ii.	(c) Thermal equilibrium In an optical fiber, the concept of Numerical aperture is applicable in describing the ability of	1						
	iii.	(a) Light Collection The fringe width for Fresnel's Biprism experiment can be expressed as	1						
		c) $\beta = D\lambda / 2d$							
	iv.	Polaroid sunglasses decreases the glare on a sunny day because it (d) Block a portion of light							
	v.	If x, y, and z are three positive axes of the crystallographic coordinates of the crystallographic coo							
		e system with origin at point A, 1 then which line points in direction [1 0 1]? (c) FB							
	vi.	The concept of matter wave was suggested by	1						
	V1.	(b) de Broglie	_						
	vii.	What type of waves carry sound in air?	1						
		(b) Longitudinal wave							
	viii.	At the mean position, the total energy in S.H.M. is	1						
		(a) Purely potential (b) Purely kinetic							
		(c) Zero (d) None of these							
	ix.	The cut-in voltage for Si diode is approximately (b) 0.6 V	1						
	х.	The conduction of heat from hot body to a cold body is an example of (b) Irreversible process	1						
Q.2	i.	Calculate:	2						
		(a) Numerical aperture 1 mark							
		(b) Acceptance angle 1 mark							
	ii.	Derive the relation between Einstein's A and B coefficients. Expression till probability of stimulate absorption = probability of stimulate emission: 1 mark Expression till energy density of photons in equilibrium: 1 mark	3						
		Expression till final expression of Einstein's A and B coefficients:							
		1 mark							

	iii.	Definition of Step and Graded index fiber Profile of Step and Graded index fiber	2 marks 2 marks	5
		Reason for the absence of modal dispersion in GIF		
OR	iv.	Construction of a Nd:YAG laser	2 marks	5
	1,,	Working principal of a Nd:YAG laser	2 marks	
		Energy level diagram	1 mark	
Q.3	i.	Determine the diameter of 20 th dark ring		2
		Formula	1 mark	
		Result	1 mark	
	ii.	In a grating spectrum,		3
		Formula	1 mark	
		Rest calculation	2 marks	
	iii.	Double refraction phenomenon	2 marks	5
		Two doubly refracting crystals	1 mark	
		Positive and negative crystals with diagrams	2 marks	
OR	iv.	Plane transmission grating	1 mark	5
		Derivation of expression $(a + b) \sin \theta = n\lambda$.	4 marks	
Q.4	i.	Physical significance of wave function Ψ		2
		1 mark for each	(1 mark * 2)	
	ii.	Prove that electron cannot be present inside the nuc	eleus.	3
	iii.	Schrodinger's wave equation	1 mark	5
		Figure	1 mark	
		Eigen value	2 marks	
		Eigen function	1 mark	
OR	iv.	Atomic Packing Factor (definition with formula)	2 marks	5
		Diagram of face centered cubic (FCC) structure	1 mark	
		Atomic Packing Factor calculation	2 marks	
Q.5	i.	Calculate the amplitude, periodic time, maxir	num velocity and	2
		displacement at the time of the motion.	·	
		Stepwise marking		
	ii.	Simple harmonic motion (SHM)	1.5 marks	3
		(a) Acceleration	0.5 mark	
		(b) Frequency	0.5 mark	
		(c) Phase.	0.5 mark	
	iii.	Damped oscillations	1 mark	5
		Relation between angular frequency, damping coe		
		frequency 3 mar		
		1		

OR	iv.	Weak, heavy and critical damping Maxwell equations in both differential and integral	3 marks	5
Q.6	i.	Physical significance of each equation Calculate the conductivity of pure Silicon at room to	2 marks emperature	2
	ii.	Depletion layer Diagram and changes in forward and reverse bias co	1 mark ondition 2 marks	3
	iii.	First and second law of thermodynamics Application of both laws	3 marks 2 marks	5
OR	iv.	Write short note on: (a) Entropy (b) Heat engine Its thermal efficiency.	2 marks 1 mark 2 marks	5
