

Special data types

Special data types

• A dataframe can contain six types of data. These are summarized in the table below:

Data type	Description	Example
numeric	Any number	c(1, 12.3491, 10/2, 10*6)
character	Character strings	c("E. saligna", "HFE", "a b c")
factor	Categorical variable	factor(c("Control", "Fertilized", "Irrigated"))
logical	Either TRUE or FALSE	10 == 100/10
Date	Special Date class	as.Date("2010-6-21")
POSIXct	Special Date-time class	Sys.time()

• R has a very useful built-in data type to represent missing values. This is represented by NA (Not Available)

- The factor data type is used to represent qualitative, categorical data.
- When reading data from file, for example with read.csv, **R** will automatically convert any variable to a factor if it is unable to convert it to a numeric variable.
- You can use as.factor to convert it to a factor if its already numeric


```
0.244 0.319 0.221 0.28 0.257 0.333 0.275 0.312 0.254 0.356 ...
## $ PupalWeight : num
## $ Frass : num 1.9 2.77 NA 2 1.07 ...
# To convert it to a factor, we use:
pupae$CO2_treatment <- as.factor(pupae$CO2_treatment)</pre>
# Compare with the above,
str(pupae)
## 'data.frame': 84 obs. of 5 variables:
## $ T_treatment : Factor w/ 2 levels "ambient", "elevated": 1 1 1 1 1 1 1 1 1 1 ...
## $ CO2_treatment: Factor w/ 2 levels "280", "400": 1 1 1 1 1 1 1 1 1 1 ...
   $ Gender : int 0 1 0 0 0 1 0 1 0 1 ...
   $ PupalWeight : num 0.244 0.319 0.221 0.28 0.257 0.333 0.275 0.312 0.254 0.356 ...
## $ Frass : num 1.9 2.77 NA 2 1.07 ...
```


 A factor variable has a number of 'levels', which are the text values that the variable has in the dataset.

```
levels(allom$species)
## [1] "PIMO" "PIPO" "PSME"
```

This Shows the three unique species in this dataset

We can count the number of rows in the dataframe for each species

```
table(allom$species)

##

## PIMO PIPO PSME

## 19 22 22
```


 when the dataframe is read, the levels are assigned based on alphabetical order(Often, not very logical)

```
allom$species <- factor(allom$species, levels=c("PSME","PIMO","PIPO"))
```

We can generate new factors, and add them to the dataframe

```
# Add a new variable to allom: 'small' when diameter is less than 10, 'large' otherwise.
allom$treeSizeClass <- factor(ifelse(allom$diameter < 10, "small", "large"))

# Now, look how many trees fall in each class.
# Note that somewhat confusingly, 'large' is printed before 'small'.
# Once again, this is because the order of the factor levels is alphabetical by default.
table(allom$treeSizeClass)

##
## large small
## 56 7</pre>
```


 to add a new factor based on a numeric variable with more than two levels:

```
# The cut function takes a numeric vectors and cuts it into a categorical variable.
# Continuing the example above, let's make 'small', 'medium' and 'large' tree size classes:
allom$treeSizeClass <- cut(allom$diameter, breaks=c(0,25,50,75),
                           labels=c("small", "medium", "large"))
# And the results,
table(allom$treeSizeClass)
##
    small medium large
##
```


 To add a new factor based on a numeric variable with more than two levels:

```
# The cut function takes a numeric vectors and cuts it into a categorical variable.
# Continuing the example above, let's make 'small', 'medium' and 'large' tree size classes:
allom$treeSizeClass <- cut(allom$diameter, breaks=c(0,25,50,75),
                           labels=c("small", "medium", "large"))
# And the results,
table(allom$treeSizeClass)
##
##
    small medium
                 large
##
```


Empty factor levels

- Each unique value of a factor variable is assigned a level, which is used every time you summarize your data by the factor variable.
- Even when you delete data, the original factor level is still present
- Sometimes it is more convenient to drop empty factor levels with the drop levels function.

Empty factor levels


```
# Read the Pupae data:
pupae <- read.csv("pupae.csv")</pre>
# Note that 'T_treatment' (temperature treatment) is a factor with two levels,
# with 37 and 47 observations in total:
table(pupae$T_treatment)
##
##
    ambient elevated
##
         37
                  47
# Suppose we decide to keep only the ambient treatment:
pupae_amb <- subset(pupae, T_treatment == "ambient")</pre>
# Now, the level is still present, although empty:
table(pupae_amb$T_treatment)
##
    ambient elevated
##
##
         37
# In this case, we don't want to keep the empty factor level.
# Use droplevels to get rid of any empty levels:
pupae_amb2 <- droplevels(pupae_amb)</pre>
```

Changing the levels of a factor

- If you want to change the levels of a factor, to replace abbreviations with more readable labels.
- To do this, you can assign new values with the levels function,

```
# Change the levels of T_treatment by assigning a character vector to the levels.
levels(pupae$T_treatment) <- c("Ambient", "Ambient + 3C")

# Or only change the first level, using subscripting.
levels(pupae$T_treatment)[1] <- "Control"</pre>
```


Working with logical data

- Some data can only take two values: true, or false.
- R has the logical data type.
- Logical data are coded by integer numbers (0 = FALSE, 1= TRUE)

Working with logical data

```
# Answers to (in)equalities are always logical:
10 > 5
## [1] TRUE
101 == 100 + 1
## [1] TRUE
# ... or use objects for comparison:
apple <- 2
pear <- 3
apple == pear
## [1] FALSE
# NOT equal to.
apple != pear
## [1] TRUE
# Logical comparisons like these also work for vectors, for example:
nums \leftarrow c(10,21,5,6,0,1,12)
nums > 5
## [1]
        TRUE TRUE FALSE TRUE FALSE FALSE TRUE
# Find which of the numbers are larger than 5:
which(nums > 5)
## [1] 1 2 4 7
# Other useful functions are 'any' and 'all':
# Are any numbers larger than 25?
```


Working with logical data

```
any(nums > 25)
## [1] FALSE
# Are all numbers less than or equal to 10?
all(nums <= 10)
## [1] FALSE
# Use & for AND, for example to take subsets where two conditions are met:
subset(pupae, PupalWeight > 0.4 & Frass > 3)
##
      T_treatment CO2_treatment Gender PupalWeight Frass
## 25
          ambient
                            400
                                      4
                                              0.405 3.117
# Use | for OR
nums[nums < 2 \mid nums > 20]
## [1] 21 0 1
# How many numbers are larger than 5?
#- Short solution
sum(nums > 5)
## [1] 4
#- Long solution
length(nums[nums > 5])
## [1] 4
```


Special data types

Working with missing values

- In **R**, missing values are represented with NA, a special data type that indicates the data is simply *Not Available*.
- Never use 'NA' as an abbreviation for anything (like North America).
- Many functions can handle missing data, usually in different ways

$$myvec1 <- c(11,13,5,6,NA,9)$$

• In order to calculate the mean, we might want to either exclude the missing value or we might want mean(myvec1) to fail (produce an error).

Working with missing values

```
# Calculate mean: this fails if there are missing values
mean(myvec1)
## [1] NA
# Calculate mean after removing the missing values
mean(myvec1, na.rm=TRUE)
## [1] 8.8
```

The function is.na returns TRUE when a value is missing, which can be useful to see which values are missing, or how many,

Making missing values

 In many cases it is useful to change some bad data values to NA by using indexes

```
# Some vector that contains bad values coded as -9999
datavec <- c(2,-9999,100,3,-9999,5)

# Assign NA to the values that were -9999
datavec[datavec == -9999] <- NA</pre>
```


Making missing values

 Missing values may arise when certain operations did not produce the desired result.

```
# A character vector, some of these look like numbers:
myvec <- c("101","289","12.3","abc","99")
                                             The warning message NAs introduced
# Convert the vector to numeric:
                                              by coercion means that missing values
                                             were produced by when we tried to
as.numeric(myvec)
                                             turn one data type
                                             (character) to another (numeric).
## Warning: NAs introduced by coercion
       101.0 289.0 12.3 NA
                                      99.0
```


Not A Number

 Another type of missing value is the result of calculations that went wrong:

```
# Attempt to take the logarithm of a negative number:
log(-1)
## Warning in log(-1): NaNs produced
## [1] NaN
```

- The result is NaN, short for Not A Number
- Dividing by zero is not usually meaningful, but R does not produce a missing value:

[1] Inf

Missing values in dataframes

• When working with dataframes, you often want to remove missing values for a particular analysis:

```
# Read the data
pupae <- read.csv("pupae.csv")</pre>
# Look at a summary to see if there are missing values:
summary (pupae)
##
      T_treatment CO2_treatment
                                      Gender
                                                    PupalWeight
##
    ambient:37 Min.
                         :280.0
                                         :0.0000
                                                    Min.
                                                           :0.1720
                                  Mim.
    elevated:47 1st Qu.:280.0
                                  1st Qu.:0.0000
                                                    1st Qu.:0.2562
##
                  Median:400.0
                                  Median :0.0000
                                                   Median :0.2975
##
##
                  Mean :344.3
                                  Mean :0.4487
                                                   Mean :0.3110
##
                  3rd Qu.:400.0
                                  3rd Qu.:1.0000
                                                    3rd Qu.:0.3560
##
                  Max.
                         :400.0
                                  Max.
                                         :1.0000
                                                    Max.
                                                           :0.4730
##
                                  NA's :6
##
        Frass
##
    Min.
           :0.986
##
    1st Qu.:1.515
##
    Median :1.818
##
    Mean
           :1.846
##
    3rd Qu.:2.095
##
    Max. :3.117
    NA's
##
           : 1
```


Missing values in dataframes

```
# Notice there are 6 NA's (missing values) for Gender, and 1 for Frass.
# Option 1: take subset of data where Gender is not missing:
pupae_subs1 <- subset(pupae, !is.na(Gender))</pre>
# Option 2: take subset of data where Frass AND Gender are not missing
pupae_subs2 <- subset(pupae, !is.na(Frass) & !is.na(Gender))</pre>
# A more rigorous subset: remove all rows from a dataset where ANY variable
# has a missing value:
pupae_nona <- pupae[complete.cases(pupae),]</pre>
```

Subsetting when there are missing values

use which to drop missing values when subsetting

```
# A small dataframe
dfr \leftarrow data.frame(a=1:4, b=c(4,NA,6,NA))
# subset drops all missing values
subset(dfr, b > 4, select=b)
## b
## 3 6
# square bracket notation keeps them
dfr[dfr$b > 4,"b"]
## [1] NA 6 NA
# ... but drops them when we use 'which'
dfr[which(dfr$b > 4),"b"]
```


Working with text

Learn how to modify, extract, and analyse text-based ('character') variables.

```
# Count number of characters in a bit of text:
sentence <- "Not a very long sentence."
nchar(sentence)
## [1] 25
# Extract the first 3 characters:
substr(sentence, 1, 3)
## |1| "Not."
```


Working with text

When we have character vectors:

```
# Substring all elements of a vector
substr(c("good", "good riddance", "good on ya"), 1, 4)
## [1] "good" "good" "good"
# Number of characters of all elements of a vector
nchar(c("hey", "hi", "how", "ya", "doin"))
  ## [1] 3 2 3 2 4
```


Working with text

• To glue bits of text together, use the paste function, like so:

```
# Add a suffix to each text element of a vector:
txt <- c("apple", "pear", "banana")</pre>
paste(txt, "-fruit")
## [1] "apple -fruit" "pear -fruit" "banana -fruit"
# Glue them all together into a single string using the collapse argument
paste(txt, collapse="-")
## [1] "apple-pear-banana"
# Combine numbers and text:
paste("Question", 1:3)
## [1] "Question 1" "Question 2" "Question 3"
# This can be of use to make new variables in a dataframe,
# as in this example where we combine two factors to create a new one:
pupae$T_CO2 <- with(pupae, paste(T_treatment, CO2_treatment, sep="-"))</pre>
head(pupae$T_CO2)
## [1] "ambient-280" "ambient-280" "ambient-280" "ambient-280" "ambient-280"
## [6] "ambient-280"
```

Column names


```
# Change the names of a dataframe:
hydro <- read.csv("hydro.csv")
names(hydro) # first print the old names
## [1] "Date" "storage"
names(hydro) <- c("Date", "Dam_Storage") # then change the names
# Change only the first name (you can index names() just like you can a vector!)
names(hydro)[1] <- "Datum"
```


Column names

 Sometimes it is useful to find out which columns have particular names

use the match function

```
match(c("diameter","leafarea"), names(allom))
## [1] 2 4
```

Text in dataframes and grep

When you read in a dataset (with read.csv, read.table or similar), any
variable that R cannot convert to numeric is automatically converted
to a factor, sometimes we want a variable to be treated like text

```
# Read data, tell R to treat the first variable ('Cereal.name') as character, not factor
cereal <- read.csv("cereals.csv", stringsAsFactors=FALSE)</pre>
# Make sure that the Cereal name is really a character vector:
is.character(cereal$Cereal.name)
## [1] TRUE
# The above example avoids converting any variable to a factor,
# what if we want to just convert one variable to character?
cereal <- read.csv("cereals.csv")</pre>
```