TITLE OF THE INVENTION

10

ONE-PIECE INJECTION-MOLDED OR CAST SILK SCREEN FRAME
BACKGROUND OF THE INVENTION

This invention relates to rectangular or square screen printing frames and in particular to an improvement in screen printing frame design and manufacture.

Existing rectangular and square screen printing frames are intended to support the screen mesh while maintaining an even strain on the screen at all points when ink is forced through the screen. Uneven screen tension causes uneven printing of the desired image. Hence, a rigid and strong frame is required to obtain the best results, requiring strong and lightweight components.

Typical screens are made out of wood or extruded aluminum hollow tubing side members with rectangular or square cross-sections. Each of these component materials has limitations.

Welding the aluminum frames together is expensive and requires

relatively thicker metal in the side members, thereby increasing the weight of the screen. Wooden frames must be cut and formed, then connected with fasteners and/or glue. Each frame requires a certain amount of manpower to manufacture from its component parts.

A recurring problem with screen printing frames is that they need to be washed with water regularly between uses. The solid wooden frames can warp or crack after repeated washings. While aluminum does not absorb water, a pinhole in a frame weld will allow water into the hollow frame interior.

5

10

15

Plastic frames are light-weight and low-cost, but a plastic hollow-tube frame is not strong enough to hold the tension on the silkscreen itself and still has to be cut and joined. A plastic screen with an open design and integral bracing members solves the weight and strength problem. Casting the frame in one piece is a low-cost solution.

None of the prior art screen frame devices have this approach, a single-piece injection-mold or casting of rigid material. The present invention differs from the state-of-the-art devices by virtue of its low-cost manufacture, its ease of assembly with the silk screen itself, and its self-drying capability.

BRIEF SUMMARY OF THE INVENTION

5

15

It is an object of this invention to provide a screen printing frame that is low-cost to manufacture.

It is an object of this invention to provide a screen printing

frame that is light-weight, strong and durable in use.

It is a further object of this invention to provide a screen printing frame that is low-cost to manufacture.

Further objects of this invention can be discerned by perusing the detailed description, drawings, specifications and claims of this application.

BRIEF DESCRIPTION OF THE DRAWING

The construction and operation of the invention can be readily appreciated from inspection of the drawings that accompany this application, combined with the detailed specification to follow.

Figure 1 is a perspective drawing of the preferred embodiment of the invention.

Figure 2 is a cross-section diagram of the preferred embodiment of the invention.

Figure 3 is a cross-section of the side of the frame.

Figure 4 is side view of the invention.

15

Figure 5 is a perspective view of an alternative embodiment

Figure 6 is a bottom view of an alternative embodiment

DETAILED DESCRIPTION OF THE INVENTION

The invention is best described by referring to the preferred embodiment illustrated in the drawing in Fig. 1. Referring to Fig. 1, a one-piece injection-molded or cast screen printing frame (cast frame) ¹⁰¹ is a structure that resembles a picture frame, but the

frame itself is not a solid piece of wood or a hollow metal tube. The cast frame ¹⁰¹ is a rectangular structure comprised of a single piece of cast material. The cast frame possesses a top edge ¹⁰², a bottom edge¹¹⁰, an interior edge¹¹¹, and a plurality of support ribs¹⁰³ which, in the preferred embodiment, are parallel to the top and bottom edges ^{102,110} of the cast frame ¹⁰¹ and perpendicular to the interior edge¹¹¹. In other embodiments, these support ribs ¹⁰³ could be cast such that they form an angle to the top and bottom edges ^{102,110}. In a particular alternate embodiment, illustrated in Fig. 6, the bottom edge¹¹⁰ can possess bottom support ribs ¹¹⁵ while the sides ¹¹⁴ and top ¹⁰² are solid.

5

10

15

A corner support rib^{104} is placed in each corner 105 of the plastic frame 101 as shown in Fig. 1, 2, and 4, and each corner support rib^{104} is merged into the one-piece cast frame 101 and the support ribs^{103} . The corner support ribs^{103} and the top 102 and bottom edges 110 . They run

from the apex of the corner 112 to the angle 113 of the interior edge 111 .

5

10

15

The silk screen fabric 106 is fixedly attached to the top surface of the cast frame. The silk screen fabric 106 can be made from a number of different materials including polyester and metal.

The cast frame¹⁰¹ itself can be made of several materials, including nylon, styrene, polypropylene, or metal. Metals include aluminum. The preferred embodiment of this invention is a cast plastic frame¹⁰¹ and a polyester silk screen fabric¹⁰⁶ with the silk screen fabric¹⁰⁶ attached to the frame¹⁰¹ by means of adhesive.

A further alternative embodiment of this invention, where the plastic used for the cast frame ¹⁰¹ will not hold the silk screen ¹⁰⁶ adequately, the silk screen ¹⁰⁶ being attached by means of adhesive, is to add an aluminum or steel liner ¹¹² to the top edge ¹⁰² of the cast frame ¹⁰¹, the liner fixedly attached to the top edge ¹⁰² of the cast frame ¹⁰¹ by mechanical means, by being cast into the top

edge 102 when the cast frame 101 is made, or by means of adhesive, the silk screen fabric 106 then connected fixedly to the liner by means of adhesive.

Another alternative embodiment of the cast frame 101 is where the frame sides 114 , inside and outside, are bowed in an outwards direction slightly to give the cast frame 101 added strength when the silk screen fabric 106 is stretched over it. The bowed shape confers strength and stability to the sides 114 when under the stress of the stretched silk screen fabric 106 .

While the foregoing describes a preferred embodiment and several alternative embodiments, variation on this design and equivalent designs may be resorted to in the scope and spirit of the claimed invention.

15

5