Test 2 - Schlüsselthemen

Aufgabe 1 (Recap Basics)

					1
1)	A 7	$\times 5$	matrix	has	rows.

2) Let
$$A \in \mathbb{R}^{2\times 4}$$
, then $A \cdot B$ is defined, if B is a $\times 4$ matrix.

3) Let A be a
$$n \times n$$
 matrix. A is invertible, iff $rankA = n - 1$

4) Let
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 2 & 3 \\ 2 & 4 & 4 \end{pmatrix}$$
. A has free variable(s) and pivot(s).

5) For any A and x, the homogeneous linear systems of equations (Ax = 0) always has at least solution(s).

7) Let A = CR where C contains the r linearly independent columns of A. We know that R has 2 rows, then $r = \boxed{}$.

Summe:

Aufgabe 2 (Schlüssel)

- 1) Let $u, v, w \in \mathbb{R}^2$ and u, v be orthonormal. Then $dim(span\{u, v, w\}) =$ ______.
- 2) Let $V = \mathbb{R}^{3 \times 2}$ be a vector space. A basis of V has exactly vectors.
- 3) Given a spanning set S of a subspace U of \mathbb{R}^{10} . We know |S|=4, then $\dim U \leq$ and $\dim U \geq$.
- 4) Given a set M of vectors in a vector space V with dim V = 2. We know $\exists x \in M$ with $span(M \{x\}) = V$. M has at least vector(s).

5)	Given any basis. For all vectors there exists linear combination(s) from the basis vectors.
6)	Let $U \subseteq \mathbb{R}^3$. U is a subspace of \mathbb{R}^3 , if $U = \{ \begin{pmatrix} a & b & c \end{pmatrix}^T \in \mathbb{R}^3 \mid a+b+c = \boxed{} \}$.
7)	Let $F: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation and A the transformation matrix. A has rows und columns.
8)	Given $Ax = b$, $ref(A) = \begin{pmatrix} 2 & -5 & 0 & 1 & 0 \\ 0 & 0 & 1 & 5 & 1 \end{pmatrix}$. Then we know any b has dimension(s) of solutions x .
9)	Given $Ax = b$, $ref(A) = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Then any basis of $C(A)$ has vector(s)
	and any basis of $N(A)$ has vector(s).
10)	Let $F: \mathbb{R}^5 \to \mathbb{R}^6$ be a linear transformation and A the transformation matrix with $dimC(A)=3$. Then $dimN(A)=$
Su	ımme:
Su	umme Insgesamt: