Homework Assignment 5

Matthew Tiger

October 4, 2016

Problem 2.6.9. i. Use the results of section 2.6 to show that the logistic map $L_4(x) = 4x(1-x)$ cannot have a super-attracting cycle.

ii. Find a point $x_0 \in (0,1)$ which is not a periodic point for L_4 .

 \Box

Problem 2.8.3. Show that

$$\left\{\frac{\mu}{1+\mu^3}, \frac{\mu^2}{1+\mu^3}, \frac{\mu^3}{1+\mu^3}\right\}$$

is a 3-cycle for T_{μ} when $\mu \geq (1 + \sqrt{5})/2$.

Problem 3.2.5. Show that the map f(x) = (x - 1/x)/2, $x \neq 0$, has no fixed points but it has period 2-points. Find the 2-cycle, and by looking at the graph of $f^3(x)$, check to see whether or not it has a 3-cycle. Why does this not contradict Sharkovskys Theorem?

Problem 3.2.6. A map $f:[1,7] \to [1,7]$ is defined so that f(1)=4, f(2)=7, f(3)=6, f(4)=5, f(5)=3, f(6)=2, f(7)=1, and the corresponding points are joined so the map is continuous and piece-wise linear. Show that f has a 7-cycle but no 5-cycle.

Problem 3.2.10. Let $f: \mathbb{R} \to \mathbb{R}$. Write down all the possibilities for a 4-cycle $\{a, b, c, d\}$ with a < b < c < d for f (e.g. f(a) = c, f(c) = d, f(d) = b, and f(b) = a). Indicate which are mirror images, and which give rise to a 3-cycle.

Problem 3.2.11. Use Sharkovskys Theorem to prove that if $f:[a,b] \to [a,b]$ is a continuous function and $\lim_n f^n(x)$ exists for every $x \in [a,b]$, then f can have no points of period n > 1. Solution.