Firm Expansion through Innovation Network

Zhiyu Fu

M.A. in Computational Social Science

April 3, 2018

https://www.linkedin.com/pulse/20140721180246-21534059-microsoft-mobile-first-nokia-last

Questions

- Why are firms diversifying their portfolio?
 - ▶ Agency theory: e.g., Jensen & Meckling (1976); Williamson (1975);
 - ▶ Resource-Based theory: See Wan et al. (2011) for a review;
 - ▶ Within-firm R&D spillover: Klette (1996); MacDonald (1985); Jovanovic and Gilbert (1993); .
- Where do they expand?
 - Related industries: e.g., product similarity (Berry, 1975); similarity of customers (Lemelin, 1982); similar intensity of R&D (MacDonald, 1985).

My answer: Firms expand into new industries due to the R&D spillovers through innovation network.

Innovation Network

Innovation network captures how knowledge is shared and transferred across knowledge fields (Acemoglu et al., 2016).

Results and Contributions

Result:

Firms tend to expand into indutries that are closely connected in innovation networks, both upstream and downstream.

Contribution:

- ► Provide a new explanation and evidence of corporate diversification in a dynamic perspective with detailed mechanism;
- Propose a framework for endogenous growth models that incorporates hetergeneous industries and innovation networks;
- Give policy suggestions under heterogeneous industries.

Empirical Evidence

Strategy

- Data: NBER patent and citation data 1963-1997 (U.S. non-government organization only)
- Identify "expansion":
 - Accumulation Period: Firms built their portfolios m_f during this period;
 - ► Expansion period: Once a firm holds patents in a new industry above certain thesholds (e.g., 30% of current portfolio), it is counted as an expansion:

Empirical Evidence

Index Construction

Network Strength:

- Upstream_j = $\frac{1}{N} \sum_{i \in \mathbf{m}_f} n_i \alpha_{ij}$
- lacksquare Downstream $j=rac{1}{N}\sum_{i\in\mathbf{m}_f}n_ilpha_{ji}$

$$V_{fji} = \beta_1 \mathsf{Upstream}_{fj} + \beta_2 \mathsf{Downstream}_{fj} + \beta_j \mathbf{x}_{fj} + \epsilon_{fji}$$

Empirical Evidence

Results

Table: Network Strengths and Probability of Expanding into a Certain Industry

	Probability of Expanding into a certain industry			
	(1)	(2)	(3)	(4)
Upstream	14.009***	17.308***	11.625***	20.571***
	(1.364)	(3.215)	(4.248)	(4.466)
Downstream	16.311***	20.347***	20.437***	17.352***
	(1.360)	(3.235)	(4.473)	(4.354)
Avg. Marginal Effect: Up	0.367	0.45	0.3	0.532
Avg. Marginal Effect: Down	0.428	0.529	0.527	0.449
Min. Percentage	30%	30%	50%	30%
Min. Num	1	3	3	3
Accumulation (yr)	10	10	10	15
Expansion (yr)	10	10	10	5
Observations	2,641	585	296	270

^{***} Significant at the 1 percent level.

^{**}Significant at the 5 percent level.

^{*}Significant at the 10 percent level.

Theoretical Model

Main Features

Firms' R&D function:

$$x_i = [\prod_h s_h^{\alpha_{ih}}]^{\alpha}, \sum_{\alpha_{ih}} = 1$$

Consider a firm targeting in innovating in industry *i*:

- Upstream effect: It will invest higher in industry j where α_{ij} is larger;
- Downstream effect: It will invest heavily in i, generating higher innovation rate in industry j where α_{ji} is higher.

Theoretical Model

Simulation (Partial Equilibrium)

Figure: Simulated Results in Partial Equilibrium

Further Steps

- Derive general equilibria;
- Use Simulated Moment Method (SMM) to calibrate the model;
- Analyze policy instruments.

