# This Page Is Inserted by IFW Operations and is not a part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

F-019

(19)日本国特許庁 (JP)

### (12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-235852

(43)公開日 平成7年(1995)9月5日

(51) Int.Cl.c

識別記号

FΙ

技術表示簡所

H03H 7/075 H01F 27/00

A 8321-5J

庁内整理番号

8123-5E

H01F 15/00

D

審査請求 未請求 請求項の数1 OL (全 4 頁)

(21)出願番号

特顯平6-25378

(71)出源人 000006264

三菱マテリアル株式会社

(22)出願日

平成6年(1994)2月23日

東京都千代田区大手町1丁目5番1号

(72) 発明者 内田 彰

埼玉県秩父郡横瀬町大字横瀬2270番地 三

**菱マテリアル株式会社セラミックス研究所** 

内

(74)代理人 弁理士 小杉 佳男 (外2名)

#### (54)【発明の名称】 パイ形フィルタ

#### (57)【要約】

【目的】本発明は、電子機器のノイズ除去等に用いられるパイ形フィルタに関し、低コストかつ安定した製造を可能とする。

【構成】コンデンサ部11を形成するシート1~3とフェライトビーズ部12を形成するシート4~7が誘電体と磁性体との混合体を含有する。





#### 【特許請求の範囲】

【請求項1】 「誘電体を含む第1の層と、該第1の層の **両面に形成されるとともに少なくとも該第1の層の一面** 側が複数に分離されてなる内部電極とから形成された複 数のコンデンサ素子を有するコンデンサ部、および、磁 性体を含む複数の第2の層と、該複数の第2の層に挟ま れた内部電板とから形成されるインダクタ素子を有する フェライトビーズ部が互いに積層されるとともに、前記 複数のコンデンサ素子と、前配インダクタ素子とにより パイ形フィルタ回路が形成されてなるパイ形フィルタで 10 あって、

前記コンデンサ部を形成する前記第1の層と前記フェラ イトピーズ部を形成する前記第2の層が、誘策体と磁性 体との混合体を含有するものであることを特徴とするパ イ形フィルタ。

#### 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電子機器のノイズ除去 等に用いられるパイ形フィルタに関する。

[0002]

【従来の技術】従来、電子機器の高周波ノイズ対策用と してチップコンデンサ、フェライトチップピーズ、T形 EMIフィルタ等の電子チップ部品が販売されている が、パイ形のチップフィルタは販売されていない。この ため、パイ形フィルタが必要な場合は、チップコンデン サとフェライトチップピーズを組み合わせて使用してい る.

[0003]

【発明が解決しようとする課題】パイ形のチップフィル タが一般に販売されていない理出は、その製作の困難性 30 にある。すなわち、チップコンデンサを構成する誘電体 とフェライトチップピーズを構成する磁性体を積層して 同時に焼成すると誘電体と磁性体との収縮の違いにより クラックが発生してしまい、そのままでは安定した製造 を行うことはできない。このため、パイ形のチップフィ ルタを製造するには、チップコンデンサとフェライトチ ップピーズを互いに独立した工程で焼成した後、貼り合 わせる必要があり、工数、コストがかかるという問題が

【0004】本発明は、上記事情に鑑み、低コストかつ 安定した製造が可能なパイ形フィルタを提供することを 目的とする。

[0005]

【課題を解決するための手段】上記目的を達成する本発 明のパイ形フィルタは、誘電体を含む第1の層と、その 第1の層の両面に形成されるとともに少なくともその第 1の層の一面側が複数に分離されてなる内部電極とから 形成された複数のコンデンサ素子を有するコンデンサ 部、および、磁性体を含む複数の第2の層と、それら複 数の第2の層に挟まれた内部電極とから形成されるイン 50 したものを用いた。尚、上記程合体には、上記誘電体と

ダクタ素子を有するフェライトピーズ部が互いに積層さ れるとともに、上記複数のコンデンサ素子と、上記イン ダクタ素子とによりパイ形フィルタ回路が形成されてな るパイ形フィルタであって、上記コンデンサ部を形成す る第1の層と上記フェライトピーズ部を形成する第2の **層が、誘電体と磁性体との混合体を含有するものである** ことを特徴とするものである。

【0006】ここで、本発明において、コンデンサ部に は誘電体リッチの混合体を用い、フェライトビーズ部に は磁性体リッチの混合体を用いてもよい。

[0007]

【作用】本発明のパイ形フィルタは、コンデンサ部を形 成する第1の層とフェライトピーズ部を形成する第2の 層が誘電体と磁性体との混合体を含有するものであるた め、収縮率の相違によるクラックの発生等が防止され る。したがって、コンデンサ部とフェライトピーズ部を 互いに積層した後に焼成することができ、従来のように 独立した工程で焼成して張り合せるという手間は不要で あり、工数、コストが削減される。

【0008】尚、誘電体と磁性体とを混合すると、誘電 率の低下、初期透磁率の低下を来たすが、近年パーソナ ルコンピュータ等のクロック信号はますます高速化して きており、一方、ノイズ対策に使用されるコンデンサの 容量値は1000pF以下が主流になってきている。し たがって誘電体に磁性体を混合することにより誘電率が 低下しても容量値的には全く問題はない。また、初期透 磁率にしても高周波ノイズ対策の観点から考えれば若干 低下しても十分なノイズ除去効果があり、この点も問題 はない。

[0009]

【実施例】以下、本発明の実施例について説明する。図 1は、積層されるシートの一例を積層順に並べた平面図 である。ここでは図示の7枚のグリーンシート1~7が 用意される。それらのグリーンシート1~7は、ポリエ ステルのペースシートに誘電体と磁性体との混合体スラ リーをドクタープレード法によりコーティングし乾燥す ることにより形成される。ここで用いた頻量体材料は、 PbO, Laz O; , ZrOz , TiOz を湿式混合 し、1150℃2時間焼成後温式ミルで粉砕した、平均 40 粒径0. 1 μmの粉体であり、Pbe. 88 Lae. 12 Zr 0.7 Tio.3 Oc.01の組成を有するものである。また、 ここで用いた磁性体材料は、NIO, ZnO, CuO, Fe2 O: を温式混合し、1000℃2時間焼成後温式 ミルで粉砕した、平均粒径0. 1 μmの粉体であり、N io.:4 Zno.22 Cuo.06 Feo.86 Ot.88 の組成を有する ものである。

【0010】ここでは、上記の混合体として、上述の誘 電体材料と磁性体材料を各々仮焼きした後、粉砕し、6 0:40の重量比で混合し、更にパインダを入れて粉砕

磁性体の他、それら誘電体と磁性体との反応防止と焼結 温度低下のための改良剤を加えることが好ましい。ここ では、以下の改良剤を加えたものと加えないものとの双 方について実験を行なった。改良剤としては、CdO、 2nO, Bz O: を1:1:1のモル比で混合し、90 0℃1時間焼成後ミル粉砕し、平均粒径0.1 umの粉 体としたものを用いた。改良剤を加えるときは、誘電 体:磁性体:改良剤を40:60:1.5重量比とし

した後、グリーンシート2,5,6にそれぞれ図示の形 状となるように導電性ペーストをスクリーン印刷法によ り印刷し、これにより内部電極8, 9a, 9b, 10を 形成した。これらの内部電極8, 9a, 9b, 10のう ち、内部電極2は磁性体に取り囲まれてインダクタ素子 を構成し、内部電極9a, 9b, 10は、誘電体を挟ん で2つのコンデンサ素子を構成する。

【0012】以上のようにして形成されたフェライトピ ーズ部11を構成する3枚のグリーンシート1~3およ びコンデンサ部12を構成する4枚のグリーンシート5 ~7を全て積層し、約1時間焼成して焼結体を得た。焼 成温度は、改良剤を加えない混合体を用いた場合は10 30℃、改良剤を加えた混合体の場合は950℃であ

【0013】図2は、この実施例におけるパイ形チップ フィルタの外観斜視図、図3はそのパイ形フィルタ回路 の等価回路図である。上配のようにして焼結体を得た 後、その焼結体の側面から内部電極8,9a,9b,1 0 が露出するようにその焼結体をパレル研磨し、内部電 **極8,9a,9b,10が露出した部分に、それぞれ、** Agを主成分とした導電性ペーストを塗布し、これによ り、内部電極8及び内部電極9aと接続された電極1 3、内部電極8及び内部電極9bと接続された電極1 4, さらに内部電極11と接続された電極15a, 15 bを形成した。

【0014】これを図3に示す等価回路と対照すると、 内部電極9 a と内部電極1 0、およびそれらの内部電極 9 a, 10に挟まれた誘電体によりコンデンサ素子16 が形成され、内部電極9bと内部電極10、およびそれ らの内部電極 9 a. 10 に挟まれた誘策体によりコンデ 40 13.14.15 a.15 b. 電極 ンサ素子17が形成され、さらにそれら2つのコンデン サ素子16,17の間を結ぶように、内部電極8および その内部電極8を取り巻く磁性体によりインダクタ素子

18が形成され、これにより、全体としてパイ形フィル 夕回路が構成されている。

【0015】上記のように製作したパイ形チップフィル 夕の特性を調べたところ良好であり、また分解して観察 しても、クラック等の発生は見られなかった。尚、上記 実施例では、グリーンシート1~7の全てについて同一 組成の混合体が用いられているが、フェライトピーズ部 11を構成するグリーンシート1~3には磁性体リッチ の混合体を用い、コンデンサ部12を構成するグリーン 【0011】以上のようなグリーンシート1~7を形成 10 シート4~7には誘電体リッチの混合体を用いてもよ

> 【0016】図4は、積層されるシートの他の例を積層 順に並べた平面図である。図1に示すシートと同一の構 成部分には図1に付した符号を付して示し、相違点につ いてのみ説明する。図4に示す例では、シート5に内部 電極9cが形成されている。この内部電極9cは、図2 に示すように完成した状態ではシート6の内部電極10 と接続され、グラウンドとして使用される。この場合、 2つのコンデンサ16、17がグラウンドとして内部電 20 極9 c により分離されることになり、それらのコンデン サ16、17間のクロストークの低減化が図られる。

[0 0 1 7]

【発明の効果】以上説明したように、本発明によれば、 誘電体と磁性体の収縮率の相違によるクラックの発生等 が防止され、コンデンサ素子とインダクタ素子を互いに 積層して同時に安定的に焼成することができ、工数、コ ストが低減化される。

#### 【関節の簡単な説明】

【図1】積層されるシートの一例を積層期に並べた平面 30 図である。

- 【図2】パイ形チップフィルタの外観斜視図である。
- 【図3】パイ形フィルタ回路の等価回路図である。
- 【図4】 積層されるシートの他の例を積層順に並べた平 面図である。

#### 【符号の説明】

- 1, 2, …, 7 グリーンシート
- 8, 9a, 9b, 9c, 10 内部電板
- 11 フェライトピーズ部
- 12 コンデンサ部
- 16,17 コンデンサ素子
- 18 インダクタ素子

