GATE 2023 - EC 50

EE23BTECH11220 - R.V.S.S Varun

QUESTION

Let $x_1(t)$ and $x_2(t)$ be two band-limited signals having bandwidth B = $4\pi \times 10^3$ rad/s each. In the figure below, the Nyquist sampling frequency, in rad/s, required to sample y(t), is

- (a) $20\pi \times 10^3$
- (b) $40\pi \times 10^3$
- (c) $8\pi \times 10^3$
- (*d*) $32\pi \times 10^3$

 $X_2(f)$

From figure,

(GATE EC 50)

$$y(t) = x_1(t)\cos(4\pi \times 10^3 t) + x_2(t)\cos(12\pi \times 10^3 t)$$
 (1)

Y(f)

Symbol	Description
Y(f)	y(t) in frequency domain
ω_m	Maximum frequency of $Y(f)$
ω_s	Nyquist sampling rate
TADLEA	

TABLE OF PARAMETERS

 $x_1(t)$ and $x_2(t)$ in frequency domain,

y(t) in frequency domain

$$\omega_m = 16\pi \times 10^3 rad/sec. \tag{2}$$

$$\omega_s = 2\omega_m = 32\pi \times 10^3 rad/sec. \tag{3}$$