SUPERFLAT GRAPHS ARE DP-MINIMAL

ANTON BOBKOV

ABSTRACT. We show that the theory of superflat graphs is dp-minimal.

We work with an infinite graph G and a subset of vertices $V \subset V(G)$. Say that V is n-connected if there aren't a set of n-1 vertices removing which disconnects every pair of vertices in V. Connectivity of V is the smallest n such that V are n-connected.

Lemma 0.1. Suppose $\{a,b\}$ in G have finite connectivity n+1. Then there are finitely many n-point sets that disconnect a from b.

Corollary 0.2. Suppose a finite $V \subset V(G)$ has finite connectivity n+1. Then there are finitely many n-point sets that disconnect V.

Definition 0.3. Suppose $V \subset V(G)$ has finite connectivity n+1. Let connectivity hull of V to be union of all n-point sets that disconnect it.

From now on work in a flat graph. It is stable so all the indiscernible sequences are totally indiscernible.

Lemma 0.4. Suppose we have an indiscernible sequence over parameter set A in a flat graph $(a_i)_{i\in I}$ with I countable. Then (a_i)

Suppose we have an indiscernible sequence over parameter set A in a flat graph $(a_i)_{i\in I}$ with I countable. Fix n. By a flatness result we can find an infinite $J\subset I$ and a finite set B' such that each pair from $(a_j)_{j\in J}$ have infinite distance over B'. Using total indispensability we have an automorphism sending $(a_j)_{j\in J}$ to $(a_i)_{i\in I}$. Denote image of B' under this automorphism as B.

Theorem 0.5. Suppose we have an indiscernible sequence over parameter set A in a flat graph $(a_i)_{i\in I}$ with I countable. Fix $n\in\mathbb{N}$. Then there exists a finite set B such that (a_i) is indiscernible over $A\cup B$ and $\forall i\neq j$ $d_B(a_i,a_j)\geq n$.

Corollary 0.6. Let $(a_i)_{i\in I}$ be a countable indiscernible sequence over A. Then there is a countable B such that (a_i) is indiscernible over $A \cup B$ and

$$\forall i \neq j \ d_B(a_i, a_j) = \infty$$

That is every indiscernible sequence can be upgraded to have infinite distance over its parameter set.

Lemma 0.7. Suppose $a \equiv_A b$ and $d_A(a,c) = d_A(b,c) = \infty$. Then $a \equiv_{Ac} b$

Theorem 0.8. Let G be a flat graph with $(a_i)_{i\in\mathbb{Q}}$ indiscernible over A and $b\in G$. There exists $c\in\mathbb{Q}$ such that $(a_i)_{i\in\{\mathbb{Q}-c\}}$ is indiscernible over Ab.

Corollary 0.9. Flat graphs are dp-minimal.

E-mail address: bobkov@math.ucla.edu