

Figure 2. Mass Transfer Zone

Inventor: Matthew L. McCullough

Title: Method for Achieving Ultra-Low Emission Limits for VOC/HAP/TAC Control

Figure 3. Adsorption Breakthrough R sults - GAC Adsorption Bed at Ultra-Low Concentrations Op rating in Humid Air Stream Matth w L. McCullough M thod for Achieving Ultra-Low Emission Limits for VOC/HAP/TAC Control Concentration Total HAPs (ppbv) **Days in Service**

Figure 5. Laboratory Adsorption Apparatus

Inventor: Matthew L. McCullough

Title: Method for Achieving Ultra-Low Emission Limits for VOC/HAP/TAC Control

Air Stripper

Figure 6. Laboratory Desorption Apparatus

Inventor: Matthew L. McCullough

Figure 8. Ultra-Low Concentration Study Results

Matthew L. McCullough

Method for Achieving Ultra-Low Emission Limits for VOC/HAP/TAC Control

Method for Achieving Ultra-Low Emission Limits for VOC/HAP/TAC Control Sample Name Comment Result		
Comment	Result (ppbv)	
First sample of raw V493 resin in a	Various alcohols and esters.	
fixed-head space 100 ml vial.		
	Various alcohols and esters	
raw V493 resin in a fixed-head	identical to first sample.	
	ND for all compounds - flat	
not exposed to VOCs in a fixed-	chromatogram.	
	ND for all compounds - flat	
	chromatogram.	
		
	~22,000 ppbv TCE	
	800 ppbv c-1,2-DCE	
space 100 ml vial.	700 ppbv PCE	
	270 1,1-DCE	
	~15,900 ppbv TCE	
	260 ppbv c-1,2-DCE	
	240 ppbv PCE	
	7,400 ppbv TCE	
	100 ppbv c-1,2-DCE	
	65 ppbv PCE	
	4,000 ppbv TCE	
	1,200 ppbv TCE	
	'	
	430 ppbv TCE	
	re 1 mon	
	56 ppbv TCE	
	ND 6 - 1 l	
	ND for all compounds.	
	ND for all compounds.	
	14D for an compounds.	
	ND for all compounds - flat	
	chromatogram.	
	ND for all compounds - flat	
desorbed V493 resin at design	chromatogram.	
accorned 1175 reals at design		
temperature after 100 minutes of		
	Second (confirming) sample of raw V493 resin in a fixed-head space 100 ml vial. First sample of clean V493 resin not exposed to VOCs in a fixed-head space 100 ml vial. Confirming sample of clean V493 resin not exposed to VOCs in a fixed-head space 100 ml vial. First sample of V493 resin exposed to VOCs in a fixed-head space 100 ml vial. Second (confirming) sample of XUR resin exposed to VOCs in a fixed-head space 100 ml vial. Desorption of V493 resin at design temperature and air flow—initial sample. Desorption of V493 resin at design temperature and air flow—sample after 1 minute. Desorption of V493 resin at design temperature and air flow—sample after 3 minutes. Desorption of V493 resin at design temperature and air flow—sample after 5 minutes. Desorption of V493 resin at design temperature and air flow—sample after 5 minutes. Desorption of V493 resin at design temperature and air flow—sample after 45 minutes. Desorption of V493 resin at design temperature and air flow—sample after 45 minutes. Desorption of V493 resin at design temperature and air flow—sample after 45 minutes. Desorption of V493 resin at design temperature and air flow—sample after 60 minutes. Fixed head space of sample of desorbed V493 resin at design temperature after 60 minutes. Fixed head space of sample of desorption. Fixed head space of sample of	

Figure 8. Ultra-Low Concentration Study Results

Matthew L. McCullough

Method for Achieving Ultra-Low Emission Limits for VOC/HAP/TAC Control

Sample Name Comment Result		
Sample Hame	Comment	(ppbv)
DIRTY V493-1D (SECOND	First sample of V493 resin after 2	11,200 ppbv TCE
CYCLE)	desorption cycles and one	230 ppbv c-1,2-DCE
CICLE	adsorption cycle in a fixed-head	220 ppbv PCE
	space 100 ml vial.	220 ppbv FCE
AIR STRIPPER EXHAUST	Test bed influent.	145 ppbv TCE
AIR STRIPPER EXHAUST	Test bed influent – confirming	130 ppbv TCE
AIR STRITER EXTENSE	sample.	130 ppbv 1CE
C22 REGEN EFFLUENT MIX 1	Effluent from 22nd regeneration	ND for all compounds – flat
Desorption Time = 20 Minutes	cycle – confirmation of clean	chromatogram.
	resin.	
C22 REGEN EFFLUENT MIX 2	Effluent from 22 nd regeneration	ND for all compounds – flat
Desorption Time = 30 Minutes	cycle - confirmation of clean	chromatogram.
	resin.	
C22 REGEN EFFLUENT MIX 3	Effluent from 22nd regeneration	ND for all compounds - flat
Desorption Time = 45 Minutes	cycle – confirmation of clean	chromatogram.
	resin.	
C23 REGEN HEADSPACE	Fixed-headspace of 22nd	10 ppbv c-1,2-DCE. Resin has a
Desoprtion Time = 45 Minutes	regeneration cycle resin. This	slight residual of VOCs.
	provides a worst-case analysis of	
	whether the resin has been	
	completely cleaned.	
C23 BED 2 @ 25 MINUTES	Adsorption bed 2 (in series)	ND for all compounds - flat
	effluent after 25 minutes of	chromatogram.
	operation	
C23 BED 1 12:30	Adsorption bed 1 effluent after 0.5	ND for all compounds - flat
Adsorption time = 30 Minutes	hours of operation	chromatogram.
C23 BED 1 12:45	Adsorption bed 1 effluent after	ND for all compounds - flat
Adsorption time = 45 Minutes	0.75 hours of operation	chromatogram.
C23 BED 1 13:30	Adsorption bed 1 effluent after 1.5	ND for all compounds - flat
Adsorption time = 90 Minutes	hours of operation	chromatogram.
C23 BED 1 14:00	Adsorption bed 1 effluent after 2	ND for all compounds - flat
Adsorption time = 120 Minutes	hours of operation	chromatogram.

Figure 9. Desorption Effluent TCE Concentration versus Time Matthew L. McCullough Method for Achieving Ultra-Low Emission Limits for VOC/HAP/TAC Control TCE Concentration (ppbv)
0000
0000
0000
0000 Time (minutes)

Figure 12. Generalized System Components

Matthew L. McCullough

Method for Achieving Ultra-Low Emission Limits in VOC/HAP/TAC Control

FIGURE 13. PREFERRED EMBODIEMENT GENERALIZED LAYOUT AND P&ID MATTHEW L. McCULLOUGH METHOD FOR ACHIEVING ULTRA-LOW EMISSION LIMITS FOR VOC/HAP/TAC CONTROL

[38] [37] (CONTINUED) MATTHEW L, McCULLDUGH METHOD FOR ACHIEVING ULTRALOW EMMISION LIMITS FOR **@** [5] [40] -[4] VENT **E** € <u>a</u> (£) **E** C-1101 FLUDIZED BED ADSTRBER FLDV RATE 14,000 OURWAL) [3] VOC/HAP/TAC CONTROL E-1101 AIR STRIBPER M.IDVER

TO CONVEYING TO CONVEYING DESCIRBER

IAS ANI

4

7-1500

VENTED AIR FROM C-1131 SCRUBBER

[14]

[12]

[13]

[9]

.[]

FROM CONVEYOR DESCIRBE

CHANGE AND A STATE OF THE STATE

MATTHEW L, McCULLDUGH METHOD FOR ACHIEVING ULTRALDW EMMISION LIMITS FOR VOC/HAP/TAC CONTROL

SEVER LINE (E) VENTED AIR TO C-1101 ADSCIRBER BY MC2BY DTHERS 13 21 (A) 12" DUCT [45] C-1131 MATTHEW L. McCULLOUGH METHOD FOR ACHIEVING ULTRALOW EMMISION LIMITS FOR VOC/HAP/TAC CONTROL C-1131 SCRUBBER RECIRCULATION PUMP METERING PUMP FLOW: 10 GPM (MAX) 20 GPM (MAX) J_E V-1133 6 EE) 1131 TT TAH TISIT CH-1131 MISTING WATER BUENCH FLDW: 0.5 GPW WATER 50% NADH CH-1131 [43] SCRUBBER HSD

HEW L, McCULLOUGH JD FOR ACHIEVING ULTRALOW EMMISION LIMITS FOR IGURE 17, PREFERRED EMBODIEMENT GENERALIZED AYOUT AND P&ID (CONTINUED) VOC/HAP/TAC CONTROL

HIGURE 18. PREFERRED EMBODIEMENT GENERALIZED LAYOUT AND P&ID (CONTINUED)
MATTHEW L. McCULLOUGH
METHOD FOR ACHIEVING ULTRALOW EMMISION LIMITS

FOR VOC/HAP/TAC_ CONTROL_

Figure 19. Alternative Embodiment for Recovery of Low Boiling Point Compounds

Matthew L. McCullough

Method for Achieving Ultra-Low Emission Limits in VOC/HAP/TAC Control

Figure 20. Alternative Embodiment Utilizing Recirculating Fluidized Bed

Matthew L. McCullough

Method for Achieving Ultra-Low Emission Limits in VOC/HAP/TAC Control

Figure 21. Alternative Embodiment for Recovery of Liquid Solvent

Matthew L. McCullough

Method for Achieving Ultra-Low Emission Limits in VOC/HAP/TAC Control

