CSCI4333 Database Design & Implement

Lecture Seven – Relational Model 2

Instructor: Dr. Yifeng Gao

Relations

A **relation** is a more concrete construction, of something we have seen before, the ER diagram.

A relation is (just!) a table!

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

Students

Relations

Differences between **entities** must be expressed in terms of attributes.

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

Differences between **entities** must be expressed in terms of attributes.

Key is a set of attribute that allow us to identify uniquely an entity in the entity set.

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

SSN

(SSN, Name)

(SSN, Name, street)

(SSN, Name, street, city)

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

We have multiple keys in a table. But not all keys are very useful! Types of key:

- 1. **superkey:** a set of one or more attributes which, taken collectively, allow us to identify uniquely an entity in the entity set
- 2. candidate key: A superkey for which no subset is a superkey.

SSN:
candidate key
(SSN, Name)
superkey
(SSN, Name, street)
superkey
(SSN, Name, street, city)
superkey

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

We have multiple keys in a table. But not all keys are very useful! Types of key:

superkey: a set of one or more attributes which, taken collectively, allow us to identify uniquely an entity in the entity set

candidate key: A superkey for which no subset is a superkey.

Look at the following table. Answer following questions:

Make	Model	Owner	State	License #	VIN#
Ford	Focus	Mike	CA	SD123	34724
BMW	Z 4	Joe	CA	JOE	55725
Ford	Escort	Sue	AZ	TD4352	75822
Honda	Civic	Bert	CA	456GHf	77924

Look at the following table. Answer following questions:

(State, License#, VIN#) Key? Superkey? Candidate Key?

(Make, Model, Owner) Key? Superkey? Candidate Key?

(State, License#) Key? Superkey? Candidate Key?

(VIN#) Key? Superkey? Candidate Key?

Make	Model	Owner	State	License #	VIN#
Ford	Focus	Mike	CA	SD123	34724
BMW	Z4	Joe	CA	JOE	55725
Ford	Escort	Sue	AZ	TD4352	75822
Honda	Civic	Bert	CA	456GHf	77924

Look at the following table. Answer following questions:

(State, License#, VIN#): superkey

(Make, Model, Owner): Not a key

(State, License#): candidate key

(VIN#): candidate key

Make	Model	Owner	State	License #	VIN#
Ford	Focus	Mike	CA	SD123	34724
BMW	Z4	Joe	CA	JOE	55725
Ford	Escort	Sue	AZ	TD4352	75822
Honda	Civic	Bert	CA	456GHf	77924

Look at the following table. Answer following questions:

(State, License#, VIN#): superkey (Make, Model, Owner): Not a key (State, License#): candidate key

(VIN#): candidate key

A table can have multiple candidate keys!

Make	Model	Owner	State	License #	VIN#
Ford	Focus	Mike	CA	SD123	34724
BMW	Z4	Joe	CA	JOE	55725
Ford	Escort	Sue	AZ	TD4352	75822
Honda	Civic	Bert	CA	456GHf	77924

Look at the following table. Answer following questions:

```
(State, License#, VIN#): superkey
(Make, Model, Owner): Not a key
(State, License#): candidate key
```

(VIN#): candidate key

A table can have multiple candidate keys! But each table we only choose one.

Make	Model	Owner	State	License #	VIN#
Ford	Focus	Mike	CA	SD123	34724
BMW	Z 4	Joe	CA	JOE	55725
Ford	Escort	Sue	AZ	TD4352	75822
Honda	Civic	Bert	CA	456GHf	77924

Different Types of Key:

superkey: a set of one or more attributes which, taken collectively, allow us to identify uniquely an entity in the entity set

candidate key: A superkey for which no subset is a superkey.

primary key is a candidate key (there may be more than one) chosen by the DB designer to identify entities in an entity set.

•The **primary key** is denoted in an ER diagram by underlining.

•The **primary key** is denoted in an ER diagram by underlining.

Note that a good choice of primary key is very important!

For example, it is usually much faster to search a database by the primary key, than by any other key (we will see why later).

Go back to relation

A **relation** is a more concrete construction, of something we have seen before, the ER diagram.

A relation is (just!) a table!

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

Go back to relation

A **relation** is a more concrete construction, of something we have seen before, the ER diagram.

A relation is (just!) a table!

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

A relation consists of a relational schema and a relational instance.

Go back to relation

A **relation** is a more concrete construction, of something we have seen before, the ER diagram.

A relation is (just!) a table!

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

A relation consists of a relational schema and a relational instance.

A **relation schema** is essentially a list of column names with their data types. In this case...

students(name: string, $\underline{S.S.N}$: string, street: string, city: string)

• A relation instance is made up of zero or more tuples (rows, records)

name	S.S.N	street	city
Lisa	1272	Main	Fairfax
Bart	5592	Apple	Manassas
Lisa	7552	Ox	Fairfax
Sue	5555	Lee	Vienna

students(name: string, $\underline{S.S.N}$: string, street: string, city: string)

A schema specifies a relation's name.

students(name: string, <u>S.S.N</u>: string, <u>street</u>: string, <u>city</u>: string)

A schema specifies a relation's name.

students(name : string, <u>S.S.N</u> : string, street : string, city : string)

A schema also specifies the name of each **field**, and its domain. **Fields** are often referred to as columns, attributes, dimensions

A schema specifies a relation's name.

students(name: string, $\underline{S.S.N}$: string, street: string, city: string)

A schema also specifies the name of each **field**, and its domain. **Fields** are often referred to as columns, attributes, dimensions

primary key: just like ER diagram. Remember that the primary key may be a combination of two or more fields.

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

name	<u>S.S.N</u>	city	street
Lisa	1272	Mcallen	10 th
Bart	5592	Edinburg	Sugar
Lisa	7552	Mission	9 th
Sue	5555	Brownsville	Coria

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

name	<u>S.S.N</u>	city	street
Lisa	1272	Mcallen	10 th
Bart	5592	Edinburg	Sugar
Lisa	7552	Mission	9 th
Sue	5555	Brownsville	Coria

This is not a problem, since we refer to fields by name.

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

name	<u>S.S.N</u>	city	street
Lisa	1272	Mcallen	10 th
Bart	5592	Edinburg	Sugar
Lisa	7552	Mission	9 th
Sue	5555	Brownsville	Coria

This is not a problem, since we refer to fields by name.

However sometimes, we refer to the fields by their column number, in which case the ordering becomes important. I will point this out when we get there.

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

name	<u>S.S.N</u>	city	street
Lisa	1272	Mcallen	10 th
Bart	5592	Edinburg	Sugar
Lisa	7552	Mission	9 th
Sue	5555	Brownsville	Coria

This is not a problem, since we refer to fields by name.

However sometimes, we refer to the fields by their column number, in which case the ordering becomes important. I will point this out when we get there.

Also, the tuples are unordered too!

Note that every tuple in our instance is unique. This is not a coincidence. The definition of relation demands it.

name	<u>S.S.N</u>	street	city
Lisa	1272	Main	Fairfax
Bart	5592	Apple	Manassas
Lisa	7552	Ох	Fairfax
Sue	5592	Lee	Vienna

The number of tuples = **cardinality** of the relation

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	McAllen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

The number of tuples = **cardinality** of the relation

Of course, we don't count the row of the attribute name!

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	McAllen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

The number of tuples = **cardinality** of the relation

Of course, we don't count the row of the attribute name!

In this table, cardinality is 4

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	McAllen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

The number of fields is called the **degree** (or **arity**, or dimensionality of the relation).

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	McAllen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

The number of fields is called the **degree** (or **arity**, or dimensionality of the relation).

Below we have a table of degree 4.

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	McAllen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

•Example

Professor(PID : int, name : string)

Course(Number: int, Name: string)

Teaches(*PID*: int, Number: int,days: date)

Name	State	Established
Yellow Stone	WY	1872
Great Smoky Mountain	TN	1934
Acadia	ME	1916

Yellow Stone

Great Smoky Mountain

Acadia

Suppose the schema is: (Name, State, Established, Trail Name)

degree? cardinality?

Name	State	Establis hed
Yellow Stone	WY	1872
Great Smoky Mountain	TN	1934
Acadia	ME	1916

Great Smoky Mountain

Acadia

Suppose the schema is: (Name, State, Established, Trail Name)

degree? 4 cardinality? 264+ 373+ 224= 861

Name	State	Establis hed
Yellow Stone	WY	1872
Great Smoky Mountain	TN	1934
Acadia	ME	1916

Great Smoky Mountain

Acadia

Suppose the schema of Table A is: (Name, State, Established)

Table B is: (Name, Trail Name)

Table A: degree? cardinality? Table B: degree? cardinality?

Name	State	Establis hed
Yellow Stone	WY	1872
Great Smoky Mountain	TN	1934
Acadia	ME	1916

Great Smoky Mountain

Acadia

Frist design (a big table): degree x cardinality = $4 \times 861 = 3444$

Two table design:

Table A: degree x cardinality = 3x3

Table B: degree x cardinality = 2x861

Total: 1731

Name	State	Establis hed
Yellow Stone	WY	1872
Great Smoky Mountain	TN	1934
Acadia	ME	1916

Great Smoky Mountain

Acadia

Frist design (a big table): degree x cardinality = $4 \times 861 = 3444$

Two table design:

Table A: degree x cardinality = 3x3

Table B: degree x cardinality = 2x861

Total: (1731)

Reduce almost 50% space!

Great Smoky Mountain

Acadia

53