T.C.

PAMUKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

CENG 306 BİÇİMSEL DİLLER ve OTOMATA TEORİSİ DERSİ VİZE SINAV SORULARI

Soru 1	Soru 2	Soru 3	Soru 4	Soru 5	Toplam
16	16	20	24	24	100

Süre: 80 dakika, Notlar: kapalı

Başarılar dilerim. Prof.Dr. Sezai TOKAT

SORU 1) L dili $\{w \in \{a, b\} * \mid |w| \ge 0 \text{ ve } w \text{ katarında olan her b'den sonra bir a gelir} şeklinde tanımlanmış olsun. Bu tanıma uyan düzenli ifadeyi elde ediniz.$

Çözüm: a * (baa*) * kullanabiliriz.

Açıklama: Bu dildeki bir katar sonlu sayıda (hiç olmaya da bilir) ba'lar içermelidir. Ve bu ba'lar arasında istediğimiz kadar a'ların geldiğini düşünebiliriz: Bu durumda:

L dili yapısal olarak:

aⁿ¹ (ba)aⁿ² . . . (ba)a^{nk} n1, n2 . . . nk ≥0 şeklinde olacaktır. Bunu düzenli ifade olarak yazmak için:

a* (baa*) * kullanabiliriz (çözüm).

Diğer doğru cevaplar:

veya

(a * ba) *a *.

SORU 2) Aşağıda bir otomat verilmiştir. Bu otomata ait L(M) dilini üreten bağlamdan bağımsız grameri $G = (V, \Sigma, R, S)$ değerlerini tanımlayarak elde ediniz.

SORU 3) L={w \in {0,1}*| {w=0ⁱ1^j0^k, i = j veya j = k, i, j, k \geqslant 0} dilini V={S,A,B,C} non-terminal ifadelerini kullanarak G(V, Σ ,R,S} CFG'sine ait R kurallarını elde ediniz.

 $S \rightarrow AC \mid CB$ % i=j (A) veya j=k (B)için iki ayrı gramer elde edebiliriz.

A → 0A1 | e % i=j olacak şekilde üretiriz

B → 1B0 | e %j=k olacak şekilde üretiriz

C → 0C | e i=j veya j=k sağladıktan sonra kalanı istediğimiz kadar üretip sonlandırabiliriz

SORU 4)

a) Yukarıdaki NFA'yı eşdeğer DFA'ya sadece başlangıçtan ulaşılan durumları göstererek ve adım adım ε-geçişleri (ε-transitions) göstererek dönüştürünüz.

b) Düzenli ifade olarak yazınız.(0U1)*1

SORU 5)

a) Başlangıç ve kabul durumlarını ϵ -geçişleri (ϵ -transitions) ile diğer durumlardan ve döngülerden ayırarak, düzenli dil elde etmek için oluşturduğumuz başlangıç NFA yapısını elde ediniz.

b) C durumunu kaldırdığınızda oluşan NFA'yı elde ediniz.

c) B durumunu kaldırdığınızda oluşan NFA'yı elde ediniz.

d) A durumunu kaldırdığınızda oluşan düzenli ifadeyi elde ediniz.

SORU 6) Tablo indirgeme yöntemini kullanarak aşağıdaki DFA'ya ait indirgenmiş DFA'yı elde ediniz.

Tablo indirgeme:

ilk olarak ulaşılamaz durumları kaldırın. Yukarıdaki DFA'da q3, girişi olmayan tek durumdur, bu yüzden onu kaldırıyoruz.

GeçişTablosundan:

Eş durumları belirle ve indirge.

q₁ ve q₁ eş durum: q₁ kaldır.

q₀ ve q₄ eş durum. q₄ kaldır.

Sonuçta indirgenmiş DFA::

