Midterm Problems

Problem 1a Prove that for \mathbb{N} , the Well-Ordering Principle implies the Induction Axiom.

Proof. Let $S \subseteq \mathbb{N}$ be a subset such that $1 \in S$ and if $n \in S$ then $n' \in S$. Suppose that $S \neq \mathbb{N}$. Then $\mathbb{N} \setminus S \neq \emptyset$. Let k be the least element of $\mathbb{N} \setminus S$. We know that k = l' for some $l \in \mathbb{N}$. Note that l < l' = k and so $l \notin \mathbb{N} \setminus S$. Then $l \in S$. But then $l' \in S$ and l' = k. This is a contradiction, hence $S = \mathbb{N}$.

Problem 1b Prove that for \mathbb{N} , the Induction Axiom implies the Well-Ordering Principle.

Proof. Let $A \subseteq \mathbb{N}$ be a nonempty subset. Suppose that A has no least element. Then let B be the set of elements of \mathbb{N} which are not in A. We see that $1 \in B$ because otherwise it would be the least element of A. Also, if $n \in B$ then $n' \in B$ because otherwise n' would be the least element of A. Then by Induction, $B = \mathbb{N}$. But then A must be empty which is a contradiction.

Problem 2a Show that the sequence

$$a_n = \sum_{k=1}^{n} \frac{1}{10^{\frac{(k^2+k)}{2}}}$$

is a Cauchy sequence.

Proof. Let $\varepsilon > 0$. Then note that there exists $N \in \mathbb{N}$ such that

$$\frac{1}{10^{\frac{N^2+N}{2}}} < \varepsilon.$$

Then for all n, m > N with n > m we have

$$|a_n - a_m| = \left| \sum_{k=m}^n \frac{1}{10^{\frac{k^2+k}{2}}} \right| < \frac{1}{10^{\frac{N^2+N}{2}}} < \varepsilon.$$

Problem 2b Show that $(a_n)_{n=1}^{\infty}$ does not converge to a rational number.

Proof. Note that

$$\lim_{n \to \infty} = 0.1.01001000100001000001\dots$$

We see that this number will never terminate or repeat. Thus it cannot be rational.

Problem 3 For $p(x), q(x) \in \mathbb{R}(x)$, we define the open interval

$$(p(x), q(x)) = \{ f(x) \in \mathbb{R}(x) \mid p(x) < f(x) < q(x) \}.$$

For any $a \in \mathbb{R}$ show that there exist $p(x), q(x) \in \mathbb{R}(x)$, such that $(p(x), q(x)) \cap \mathbb{R} = \{a\}$.

Proof. Let $a \in \mathbb{R}$ and consider the interval S = (a - 1/x, a + 1/x). Suppose that $b \in S \cap \mathbb{R}$ such that $b \neq a$. Then we have

$$0 < b - \frac{ax - 1}{x} = \frac{(b - a)x - 1}{x}$$

which means $(b-a)x^2-x>0$ and so b-a>0. Thus b>a. Similarly,

$$0 < \frac{ax+1}{x} - b = \frac{(a-b)x - 1}{x}$$

which means $(a-b)x^2-x>0$ and so a-b>0. Thus a>b. This is a contradiction and so b=a.

Problem 4a Let $(a_n)_{n=1}^{\infty}$ be a bounded sequence in \mathbb{R} . Define the sequence $(b_n)_{n=1}^{\infty}$ as

$$b_n = \sup\{a_k \mid k \ge n\}.$$

Show that $\lim_{n\to\infty}$ exists.

Proof. We have

$$b_n = \sup\{a_k \mid k \ge n\} \le \sup\{a_k \mid k \ge n+1\} = b_{n+1}$$

which means that (b_n) is a monotonically decreasing sequence. Thus it is convergent.

Problem 4b Suppose that a subsequence $(a_{n_j})_{n=1}^{\infty}$ of (a_n) converges to x. Show that $x \leq \lim_{n \to \infty} b_n$.

Proof. Note that $b_n \geq a_{n_j}$ for all n and j. Thus

$$\lim_{n\to\infty}b_n\geq x.$$

Problem 4c Prove that there exists a convergent subsequence $(a_{n_j})_{j=1}^{\infty}$ of (a_n) such that

$$\lim_{j \to \infty} a_{n_j} = \lim_{n \to \infty} b_n.$$

Proof. Let $\lim_{n\to\infty} b_n = b$. There exists N_1 such that for all $n > N_1$ we have

$$b-1 < b_n < b+1$$
.

Since there exists some $n > N_1$, there exists n_1 such that

$$b-1 < a_{n_1} < b_n < b+1$$
.

Similarly, there exists some $N_2 > N_1$ such that for all $n > N_2$

$$b - \frac{1}{2} < b_n < b + \frac{1}{2}.$$

Then there exists n_2 such that

$$b - \frac{1}{2} < a_{n_2} < b_n < b + \frac{1}{2}.$$

Then in general, there exists n_j such that

$$b - \frac{1}{j} < a_{n_j} < b + \frac{1}{j}$$

which means that a_{n_j} will converge to b.