4.4 Differentialförstärkaren

4.4.1 - Introduktion

- Differentialförstärkaren är ett förstärkarsteg som vanligtvis används på ingången till OPförstärkare för att kancellera brus, samtidigt som spänningsnivån på övriga signaler,
 såsom ljudsignaler, förstärks.
- Eventuellt brus som kommer in i OP-förstärkaren kommer förstärkas av efterföljande förstärkarsteg, vilket vanligtvis är en spänningsförstärkare samt eventuellt även ett slutsteg, vilket hade medfört en förstärkt nivå av brus.
- Genom att förhindra att brus passerar in i OP-förstärkaren, så sker inte denna brusförstärkning till lika höga grad. Dock får vi räkna med att allt brus inte kan kancelleras.
- Differentialförstärkaren kan ses som två spegelvända spänningsförstärkare, som delar på en strömgenerator i emittern/source, såsom en strömspegel, se figuren till höger.
- Differentialförstärkaren sägs arbeta i Differential Mode när insignalerna U_{IN1} samt U_{IN2} är olika stora och Common Mode när insignalerna är lika stora. Genom att placera en strömspegel mellan ingångstransistorernas emittrar, så innehar differentialförstärkaren olika förstärkningsfaktor i Differential Mode samt Common Mode.

Enkel differentialförstärkare med kollektorresistorer R_C i respektive kollektor samt en enkel strömspegel mellan ingångstransistorer Q1:s samt Q2:s emittrar.

- Värt att nämna är att strömspegelns utresistans r₀,cM fungerar som en emitterresistor R̄ med mycket hög resistans i Common Mode, vilket kraftigt minskar förstärkningen. Vanligtvis är därmed den så kallade Common Mode-förstärkningen G_{CM} mycket låg, vilket är önskvärt för att dämpa Common Mode-signaler, såsom brus.
- Däremot i Differential Mode, så kommer spänningsskillnaden U_{IN1} U_{IN2} mellan de två insignalerna medföra att en så kallad virtuell jordpunkt uppstår i punkten P mellan ingångstransistorer Q1:s samt Q2:s emittrar ovan, vilket innebär att strömspegelns utresistans r_{0,CM} blir förbikopplad.
- Därmed påverkar inte strömspegelns utresistans r_{o,CM} differentialförstärkarens förstärkningsfaktor i Differential Mode, vilket innebär att den så kallade differentialförstärkningen G_{DM} kan bli mycket hög. Som vi kommer se senare, så har differentialförstärkaren samma parametrar som motsvarande spänningsförstärkare i Differential Mode.
- För att mäta en given differentialförstärkares egenskaper så beräknas vanligtvis ration mellan differentialförstärkningen G_{DM} samt Common Mode-förstärkningen G_{CM}. Denna ratio kallas *Common Mode Rejection Ratio*, som förkortas CMRR:

$$CMRR = \frac{G_{DM}}{G_{CM}},$$

där G_{DM} är differentialförstärkningen och G_{CM} är Common Mode-förstärkningen.

- CMRR indikerar hur väl en given differentialförstärkare kancellerar Common Mode-signaler, alltså icke önskvärda signaler såsom brus, i förhållande till hur väl den förstärker differentialsignaler, alltså önskvärda signaler såsom ljud.
- Ju högre CMRR, desto bättre egenskaper kan en differentialförstärkare tänkas ha. Som vi kommer se senare så kan den enkla differentialförstärkaren ovan tänkas ha en CMRR omkring 80 000. Denna siffra kan öka till oändlighet genom att använda så kallade förbättrade differentialförstärkare, där bland annat kollektorresistorer R_C ersätts med en strömspegel.

Efter att ha läst detta kapitel så förväntas läsaren kunna:

- Känna till differentialförstärkarens funktion, kunna redogöra för begreppen Differential Mode samt Common Mode.
- Känna till skillnaden mellan differentialförstärkning G_{DM} och Common Mode-förstärkning G_{CM}.
- Förklara sambandet mellan en given differentialförstärkares Common Mode Rejection Ratio (CMRR) samt dess egenskaper.
- Kunna konstruera olika typer av differentialförstärkare konstruerade med både BJT- samt MOSFET-transistorer samt beräkna förstärkningsfaktor, in- samt utresistans i *Differential Mode* samt *Common Mode*.
- Kunna konstruera en differentialförstärkare med CMOS-teknologi utifrån specificerad effektbudget samt givna transistorparametrar.

Kapitlets upplägg

- Först behandlas den enkla differentialförstärkaren konstruerade med BJT-transistorer. Formler för dess förstärkningsfaktor G samt in- och utresistans R_{IN} samt R_{UT} härleds i både *Differential Mode* samt *Common Mode*, vilket mynnar ut i att en formel för dess *Common Mode Rejection Ratio* CMRR härleds. Slutligen konstrueras en enkel differentialförstärkare utifrån givna specifikationer och ovanstående parametrar beräknas.
- Därefter behandlas differentialförstärkare med en utgång samt förbättrade differentialförstärkare konstruerade med BJT-transistorer, där kollektorresistorer Rc ersätts med en BJT-strömspegel. Först sker analys
- Teleskopiskt kaskadkopplade BJT för diskret design
- Därefter behandlas den enkla differentialförstärkaren konstruerade med MOSFET-transistorer. Formler för dess
 förstärkningsfaktor G samt in- och utresistans R_{IN} samt R_{UT} härleds i både *Differential Mode* samt *Common Mode*, vilket
 mynnar ut i att en formel för dess *Common Mode Rejection Ratio* CMRR härleds. Slutligen konstrueras en enkel
 differentialförstärkare utifrån givna specifikationer och ovanstående parametrar beräknas.
- Därefter behandlas förbättrade differentialförstärkare konstruerade med MOSFET-transistorer, där drainresistorer RD ersätts med en BJT-strömspegel. Först sker analys
- Förbättrad differentialförstärkare konstruerad med CMOS-teknologi.
- Teleskopiskt kaskadkopplade MOSFET
- Teleskopiskt kaskadkopplade differentialförstärkare konstruerade med CMOS-teknologi.

4.4.2 - Differentialförstärkarens uppbyggnad

- Innan vi går in på förstärkningsfaktor och dylikt, så bör differentialförstärkarens grundfunktion behandlas.
- Notera att mellan den positiva matningsspänningen V_{CC} samt punkten P, så utgörs differentialförstärkaren av två spegelvända spänningsförstärkare, där Q1 och Q2 utgör ingångstransistorerna.
- Mellan ingångstransistorernas emittrar så placeras en strömspegel, som avgör den totala storleken på ingångstransistorernas kollektorströmmar Ic1 samt Ic2. Som vi kommer se senare, så gäller att

$$I_{EE}\approx I_{C1}+I_{C2}$$

- Som vi kommer se senare, så har strömspegelns utresistans ro,CM en mycket viktig funktion för att kancellera Common Mode-signaler, speciellt på differentialförstärkare där endast en utgång används.
 - Enkel differentialförstärkare I figuren till höger så är var sin emitterresistor R_E placerad i transistorer Q1:s samt Q2:s utritade. respektive emitter för ökad temperaturinstabilitet och därigenom minskad distorsion. Emitterresistorerna medför att kollektorströmmarna Ic1 och Ic2 hålls relativt konstanta trots förändringar i den omgivande temperaturen.
- Differentialförstärkarens utsignal Uut är lika med differensen Vx Vy mellan spänningsfallet på respektive utgång, se figuren ovan till höger:

$$U_{IIT} = V_X - V_Y$$

- Båda sidor av differentialförstärkaren innehar en kollektorresistor Rc samt en utgång under denna, likt ett GE-steg. Genom kollektorresistorer Rc så flödar transistor Q1:s och Q2:s respektive kollektorström Ic1 samt Ic2.
- Potentialen V_X samt V_Y på respektive utgång kan beräknas med Kirchhoffs spänningslag, via beräkning från den positiva matningsspänningen Vcc ned till respektive utgång Vx samt Vy.
- Potentialen V_X är lika med den positiva matningsspänningen V_{CC} minus spänningsfallet R_CI_{C1} över kollektorresistor R_C:

$$V_X = V_{CC} - R_C I_{C1}$$

Samtidigt gäller att potentialen Vy är lika med den positiva matningsspänningen Vcc minus spänningsfallet Rclc2 över kollektorresistor Rc:

$$V_Y = V_{CC} - R_C I_{C2}$$

Därmed kan differentialförstärkarens utsignal Uut beräknas med formeln

$$U_{UT} = V_{CC} - R_C I_{C1} - (V_{CC} - R_C I_{C2}),$$

vilket kan transformeras till

$$U_{UT} = V_{CC} - R_C I_{C1} - V_{CC} + R_C I_{C2}$$

vilket är ekvivalent med

$$U_{IIT} = R_C I_{C2} - R_C I_{C1}$$

med samtliga strömmar

• Därefter kan kollektorresistor R_C brytas ut ur formeln ovan, vilket resulterar i följande formel:

$$U_{IIT} = R_C (I_{C2} - I_{C1}),$$

där R_C är storleken på respektive kollektorresistor och I_{C1} samt I_{C2} är kollektorströmmen på respektive sida av differentialförstärkaren.

• Differentialförstärkarens kollektorströmmar Ic1 och Ic2 är proportionerliga med respektive insignal U_{IN1} samt U_{IN2}:

 $I_{C1} \sim U_{IN1}$

samt

 $I_{C2} \sim U_{IN2}$

• I Common Mode, då insignalerna U_{IN1} samt U_{IN2} är lika stora:

$$U_{IN1} = U_{IN2}$$
,

så gäller då att transistor Q1:s samt Q2:s kollektorströmmar I_{C1} samt I_{C2} blir lika stora:

$$I_{C1}=I_{C2},$$

vilket innebär att differensen Ic2 – Ic1 blir noll:

$$I_{C2} - I_{C1} = 0$$

Då blir differentialförstärkarens utsignal U∪T lika med noll, då

$$U_{UT} = R_C(I_{C2} - I_{C1}) = R_C * 0 = 0$$

- Därmed kancelleras Common Mode-signaler effektivt när differentialförstärkaren innehar två utgångar, oberoende av förstärkningsfaktor.
- I Differential Mode, då insignalerna U_{IN1} samt U_{IN2} inte är lika stora:

$$U_{IN1} \neq U_{IN2}$$
,

så blir transistor Q1:s samt Q2:s kollektorströmmar Ic1 samt Ic2 lika stora:

$$I_{C1} \neq I_{C2}$$
,

vilket innebär att

$$I_{C2}-I_{C1}\neq 0$$

• Fortfarande gäller dock att summan av kollektorströmmarna I_{C1} samt I_{C2} är ungefär lika med strömmen I_{EE} genom strömspegeln:

$$I_{C1} + I_{C2} \approx I_{EE}$$

vilket innebär att om den ena kollektorströmmen öka med en viss mängd ΔI , så kommer den andra kollektorströmmen minska lika mycket.

Därmed så blir differentialförstärkarens utsignal Uut i Differential Mode, inte lika med noll, då

$$U_{UT} = R_C(I_{C2} - I_{C1}) \neq R_C * 0 \neq 0$$

- Därmed möjliggörs förstärkning av differentialsignaler samt kancellering av Common Mode-signaler, som vi såg tidigare.
- Som exempel, anta att insignalen U_{IN1} ökar så att denna är större än U_{IN2}:

$$U_{IN1} > U_{IN2}$$

• Eftersom transistor kollektorströmmarna Ic1 samt Ic2 är proportionerliga med respektive insignal U_{IN1} samt U_{IN2}:

 $I_{C1} \sim U_{IN1}$

samt

 $I_{C2} \sim U_{IN2}$,

så kommer transistor Q1:s kollektorström IC1 överstiga transistor Q2:s kollektorström IC2:

 $I_{C1} > I_{C2}$,

vilket innebär att differensen I_{C2} – I_{C1} understiger noll

 $I_{C2} - I_{C1} < 0$

• Därmed kommer utsignalen U_{UT} understiga noll, då

 $U_{UT} = R_C(I_{C2} - I_{C1}) < R_C * 0,$

vilket innebär att

 $U_{IIT} < 0$

• Som vi såg tidigare gäller att summan av kollektorströmmarna I_{C1} samt I_{C2} är ungefär lika med strömmen I_{EE} genom strömspegeln:

 $I_{C1} + I_{C2} \approx I_{EE}$

vilket kan transformeras till

 $I_{C2} \approx I_{EE} - I_{C1}$

• Detta medför att om kollektorströmmen Ic1 ökar med ΔI:

$$\Delta I_{C1} = I_{C1} + \Delta I_{I}$$

där ΔIc1 är transistor Q1:s kollektorström efter strömökningen, så kommer kollektorströmmen Ic2 minska lika mycket, då

 $\Delta I_{C2} \approx I_{EE} - \Delta I_{C1} = I_{EE} - (I_{C1} + \Delta I),$

vilket är ekvivalent med

 $\Delta I_{C2} \approx I_{EE} - I_{C1} - \Delta I$

• Vi såg tidigare att kollektorströmmen Ic2 är ungefär lika med differensen IEE – Ic1:

$$I_{C2} \approx I_{EE} - I_{C1}$$

Genom att sätta in detta i formeln för ΔI_{C2} ovan, så ser vi då att

$$\Delta I_{C2} = I_{C2} - \Delta I,$$

vilket indikerar att kollektorströmmen I_{C2} då minskar med mängden ΔI , alltså lika mycket som kollektorströmmen I_{C1} ökar, då inspänningen U_{IN1} överstiger inspänningen U_{IN2} .

• Däremot om insignalen U_{IN1} minskar så att denna är mindre än U_{IN2}:

$$U_{IN1} < U_{IN2}$$
,

så kommer transistor Q1:s kollektorström Ic1 understiga transistor Q2:s kollektorström Ic2:

$$I_{C1} < I_{C2}$$
,

vilket innebär att differensen Ic2 – Ic1 överstiger noll:

$$I_{C2} - I_{C1} > 0$$

Därmed kommer utsignalen U_{UT} överstiga noll, då

$$U_{UT} = R_C(I_{C2} - I_{C1}) > R_C * 0,$$

vilket innebär att

$$U_{UT} > 0$$

- Vi kan enkelt demonstrera att kollektorströmmen I_{C1} kommer minska lika mycket som kollektorströmmen I_{C2} ökar då inspänningen U_{IN1} understiger U_{IN2}.
- Återigen gäller att summan av kollektorströmmarna Ic1 samt Ic2 är ungefär lika med strömmen IEE genom strömspegeln:

vilket kan transformeras till

$$I_{C1} + I_{C2} \approx I_{EE}$$

$$I_{C1} \approx I_{EE} - I_{C2}$$

• Därmed gäller att om kollektorströmmen I_{C2} ökar med ΔI:

$$\Delta I_{C2} = I_{C2} + \Delta I$$

där ΔI_{C2} är transistor Q2:s kollektorström efter strömökningen, så kommer kollektorströmmen I_{C1} minska lika mycket, då

$$\Delta I_{C1} \approx I_{EE} - \Delta I_{C2} = I_{EE} - (I_{C2} + \Delta I),$$

vilket är ekvivalent med

$$\Delta I_{C1} \approx I_{EE} - I_{C2} - \Delta I$$

• Vi såg tidigare att kollektorströmmen I_{C1} är ungefär lika med differensen I_{EE} − I_{C2}:

$$I_{C1} \approx I_{EE} - I_{C2}$$

• Genom att sätta in detta i formeln för Δlc1 ovan, så ser vi då att

$$\Delta I_{C1} = I_{C1} - \Delta I,$$

vilket indikerar att kollektorströmmen I_{C1} då minskar med mängden ΔI , alltså lika mycket som kollektorströmmen I_{C2} ökar, då inspänningen U_{IN1} överstiger inspänningen U_{IN2} .

Strömspegelns funktion:

- Som vi såg tidigare så placeras en strömspegel mellan transistorernas emittrar och ned till den negativa matningsspänningen V_{EE}, delvis för att generera den ström som flödar genom differentialförstärkaren och delvis för att kancellera Common Mode-signaler.
- Hur strömspegeln kancellerar Common Mode-signaler, såsom brus, kommer gås igenom senare, men värt att nämna är att ju högre utresistans r_{o,CM} strömspegeln har, desto effektiv kancelleras Common Mode-signaler.
- Strömmen I_{EE} genom strömspegeln är lika med summan av transistor Q1:s och Q2:s emitterströmmar I_{E1} samt I_{E2}:

$$I_{EE} = I_{E1} + I_{E2}$$

• För enkelhets skull så försummas den lilla skillnaden mellan transistor Q1:s och Q2:s respektive emitterströmmar I_{E1} och I_{E2} samt I_{C1} samt I_{C2}:

$$I_{E1} \approx I_{C1}$$

samt

$$I_{E2} \approx I_{C2}$$

• Därmed kan strömmen IEE genom strömspegeln approximeras till summan av transistor Q1:s och Q2:s kollektorströmmar IC1 samt IC2:

$$I_{EE} \approx I_{C1} + I_{C2}$$

 Strömmen IEE är en kopia av referensströmmen IREF, som flödar genom strömspegelns referenskrets:

$$I_{EE} = I_{REF}$$

 $\begin{array}{c|c}
V_{CC} \\
\downarrow I_{C1} \\
\downarrow I_{C2} \\
R_{C} \\
R_{C} \\
R_{C} \\
\downarrow V_{V} \\
\downarrow$

En enkel strömspegel bestående av transistor Q3 samt A4 är placerad emellan transistorer Q1:s samt Q2:s respektive emitter för att dämpa Common Mode-signaler samt för att förse de två sidorna av differentialförstärkaren med adekvat strömstorlek.

- Därmed är det via referensströmmen I_{REF} som storleken på strömmen I_{EE} sätts, vilket avgör storleken på transistor Q1:s och Q2:s kollektorströmmar I_{C1} samt I_{C2}. I_{REF} sätts i sin tur genom att en lämplig storlek väljs på referensresistor R_{REF}.
- I enlighet med Ohms lag så gäller att referensströmmen I_{REF} kan beräknas med formeln

$$I_{REF} = \frac{U_{REF}}{R_{REF}},$$

där U_{REF} är spänningsfallet över referensresistorn och R_{REF} är dess resistans.

Formeln ovan kan transformeras till

$$R_{REF} = \frac{U_{REF}}{I_{REF}}$$

Vanligtvis vet vi vilken ström IEE som skall flödar genom strömspegeln. Då är även storleken på referensströmmen IREF känd,
 då

$$I_{REF} = I_{EE}$$

- Dock måste referensspänningen UREF beräknas, vilket enkelt kan genomföras med Kirchhoffs spänningslag, från den negativa matningsspänningen VEE upp till jord via referensresistor RREF. Vi räknar då mot strömmens riktning, vilket medför att eventuella spänningsfall räknas som positiva (då strömmen flödar från plus till minuspolen). Under denna väg så passerar vi transistor Q4:s bas-emitterspänning UBE4.
- Därmed gäller att

$$V_{EE} + U_{RE4} + U_{REF} = 0,$$

vilket kan transformeras till

$$U_{REF} = -V_{EE} - U_{BE4},$$

som är ekvivalent med

$$U_{REF} = -(V_{EE} + U_{BE4})$$

• Därefter hade ett lämpligt värde kunnat beräknas på referensresistor RREF genom att sätta in värden i följande formel:

$$R_{REF} = -\frac{V_{EE} + U_{BE4}}{I_{RFF}}$$

Transistor Q4:s bas-emitterspänning U_{BE4} kan antas vara 0,65 V:

$$U_{BE4} = 0.65 V$$
,

vilket innebär att

$$R_{REF} = -\frac{V_{EE} + 0.65}{I_{REF}}$$

• I vilopunkten gäller att ingångstransistorerna Q1:s och Q2:s kollektorströmmar är lika stora:

$$I_{C1} = I_{C2}$$

- Strömmens storlek i vilopunkten kallas vanligtvis viloström och betecknas vanligtvis I_Q, där q:et kommer från det engelska ordet *quiescent*, vilket kan översättas till stilla på svenska. Vidare gäller att *quiescent current* är det engelska formeln för viloströmmen.
- För kollektorströmmar i vilopunkten så används istället beteckningen I_{CQ}, som står för *quiscent collector current,* eller rättare sagt kollektorströmmen I_C i vilopunkten.
- I vilopunkten så är både transistor Q1:s och Q2:s respektive kollektorström lika med viloströmmen Icq:

$$I_{C1} = I_{C2} = I_{CO}$$

• I vilopunkten så sätts vanligtvis potentialerna V_X samt V_Y på de två utgångarna till hälften av matningsspänningen V_{CC}, för maximal svängning utan klippning:

$$V_X = V_Y = \frac{V_{CC}}{2}$$

- För att beräkna ett lämpligt värde på kollektorresistorer R_C, så kan Kirchhoffs spänningslag användas på valfri sida av differentialförstärkaren, via beräkning från matningsspänningen V_{CC} ned till utgången V_X (eller V_Y) via kollektorresistor R_C.
- Antag att beräkningen genomförs på vänster sida. Summan av matningsspänningen V_{CC}, spänningsfallet R_CI_{C1} över kollektorresistor R_C samt potentialen U_X på utgången är lika med noll, i enlighet med Kirchhoffs spänningslag. Eftersom beräkningen sker i kollektorströmmen I₁:s riktning, så beräknas spänningsfallet över resistor R_C samt potentialen U_X som negativa storheter (då strömmen flödar från plus- till minuspolen).

• Genom att använda Kirchhoffs spänningslag på vänster sida av differentialförstärkaren, så kan därmed följande formel härledas:

$$V_{CC} - R_C I_{C1} - V_X = 0,$$

som kan transformeras till

$$R_C I_{C1} = V_{CC} - V_X$$

Genom att dividera med kollektorströmmen I_{C1} i både vänster- och högerled, så kan en formel härledas för kollektorresistor
 R_C:

$$R_C = \frac{V_{CC} - V_X}{I_{C1}},$$

där V_{CC} är matningsspänningen, V_X är potentialen på utgången och I_{C1} är kollektorströmmen på vänster sida av differentialförstärkaren.

• Eftersom potentialen V_x på utgången skall sättas till halva matningsspänningen V_{CC} i vilopunkten:

$$V_X = \frac{V_{CC}}{2},$$

så kan formeln för kollektorresistor Rc ovan transformeras till

 $R_C = \frac{V_{CC} - \frac{V_{CC}}{2}}{I_{C1}},$

där

 $V_{CC} - \frac{V_{CC}}{2} = \frac{V_{CC}}{2},$

vilket innebär att

$$R_C = \frac{\left(\frac{V_{CC}}{2}\right)}{I_{C1}}$$

• Genom att multiplicera med 1/I_{C1} i både täljare och nämnare, så kan formeln ovan förenklas till

$$R_{C} = \frac{\left(\frac{V_{CC}}{2}\right)}{I_{C1}} * \frac{\left(\frac{1}{I_{C1}}\right)}{\left(\frac{1}{I_{C1}}\right)} = \frac{\left(\frac{V_{CC}}{2I_{C1}}\right)}{\left(I_{C1} * \frac{1}{I_{C1}}\right)} = \frac{V_{CC}}{2I_{C1}}$$

Därmed gäller att ett lämpligt värde på kollektorresistor R_C kan beräknas med formeln

$$R_C = \frac{V_{CC}}{2I_{C1}},$$

där Vcc är matningsspänningen och Ic1 är kollektorströmmen på vänster sida av differentialförstärkaren.

• Eftersom de två kollektorströmmarna Ic1 samt Ic2 är lika stora i vilopunkten och därmed kan betecknar som Ic2:

$$I_{C1} = I_{C2} = I_{C0}$$

så kan storleken på differentialförstärkarens kollektorresistorer R_C beräknas med formeln

$$R_C = \frac{V_{CC}}{2I_{CQ}},$$

där Vcc är matningsspänningen och Icq i kollektorströmmarna Ic1 samt Ic2 i vilopunkten.

- Som vi tidigare har sett vid analys av GE-steg, så används emitterresistorer R_E för ökad temperaturinstabilitet och därigenom minskad distorsion. Emitterresistorerna medför att kollektorströmmarna I_{C1} och I_{C2} hålls relativt konstanta trots förändringar i den omgivande temperaturen.
- Detta håller både differential- samt Common Mode-förstärkningen G_{DM} och G_{CM} stabila, då dessa är omvänt proportionerliga med transistorer Q1:s samt Q2:s inbyggda emitterresistanser r_{e1} samt r_{e2}:

$$G_{DM},G_{CM}\sim\frac{1}{r_{e1},r_{e2}},$$

som i sin tur är omvänt proportionerliga med respektive kollektorström Ic1 samt Ic2:

$$r_{e1}, r_{e2} \sim \frac{1}{I_{C1}, I_{C2}}$$

• Därmed gäller att både differential- samt Common Mode-förstärkningen G_{DM} och G_{CM} är proportionerliga med kollektorströmmarna I_{C1} samt I_{C2}:

$$G_{DM}, G_{CM} \sim I_{C1}, I_{C2}$$

- Genom att emitterresistorer R_E håller kollektorströmmarna I_{C1} samt I_{C2} stabila trots förändrad temperatur, så hålls därmed differential- samt Common Mode-förstärkningen G_{DM} och G_{CM} stabila, vilket medför minskad distorsion.
- Som vi har sett tidigare så bör storleken på emitterresistorer R_E sättas så att ett spänningsfall på ca 220 mV faller över dem vid specificerad kollektorström I_{CQ} i vilopunkten:

$$R_E = \frac{220m}{I_{CQ}},$$

där

$$I_{CO} = I_{C1} = I_{C2}$$

• Därmed gäller att emitterresistorer R_E bör sättas ca nio gånger högre än de inbyggda emitterresistanserna re1 samt re2, då

$$r_{e1} = r_{e2} = \frac{26}{I_{co}},$$

vilket innebär att

$$\frac{R_E}{r_{e1}} = \frac{\left(\frac{220m}{I_{CQ}}\right)}{\left(\frac{26m}{I_{CQ}}\right)}$$

• Genom att multiplicera med Icq i både täljare och nämnare, så ser vi att

$$\frac{R_E}{r_{e1}} = \frac{\left(\frac{220m}{I_{CQ}}\right)}{\left(\frac{26m}{I_{CQ}}\right)} * \frac{I_{CQ}}{I_{CQ}} = \frac{\left(\frac{220m}{I_{CQ}} * I_{CQ}\right)}{\left(\frac{26m}{I_{CQ}} * I_{CQ}\right)} = \frac{220m}{26m}$$

Därmed gäller att

$$\frac{R_E}{r_{e1}} = \frac{220m}{26m} \approx 9,$$

vilket kan transformeras till

$$R_E \approx 9r_{e1}$$

• Eftersom transistor Q1:s samt Q2:s respektive inbyggda emitterresistanser är lika stora:

$$r_{e1}=r_{e2},$$

så gäller därmed att

$$R_E \approx 9r_{e1} = 9r_{e2}$$

• Därmed gäller att emitterfaktor EF på respektive sida av differentialförstärkaren hamnar runt tio, då

$$EF = \frac{R_E + r_{e1}}{r_{e1}} \approx \frac{9r_{e1} + r_{e1}}{r_{e1}} = \frac{10r_{e1}}{r_{e1}} = 10,$$

vilket också gäller på höger sida av differentialförstärkaren:

$$EF = \frac{R_E + r_{e2}}{r_{e2}} \approx \frac{9r_{e2} + r_{e2}}{r_{e2}} = \frac{10r_{e2}}{r_{e2}} = 10$$

• Emitterfaktor EF är omvänt proportionerlig med differential- samt Common Mode-förstärkningen G_{DM} och G_{CM}:

$$EF \sim \frac{1}{G_{DM}, G_{CM}},$$

vilket innebär att dessa minskar med en faktor tio vid användning av lagom stora emitterresistorer R_E. Detta är till viss del positivt, då det medför effektivare dämpning av Common Mode-signaler.

- Samtidigt minskar dock även differentialförstärkningen G_{DM} med en faktor tio, vilket även var fallet för de GE-steg vi såg tidigare. Dock kan differentialförstärkningen G_{DM} fortfarande bli hög, särskilt när strömspeglar och kaskadkopplingar används.
- Precis som för de GE-steg vi har sett tidigare så är emitterfaktor EF också proportionerlig med differentialförstärkarens utresistans R_{UT}:

$$EF \sim R_{UT}$$

• En emitterfaktor EF på tio medför därmed en ökning av differentialförstärkarens utresistans Rut med en faktor tio.

Common Mode Rejection Ratio (CMRR):

• För att mäta en given differentialförstärkares egenskaper så beräknas vanligtvis ration mellan differentialförstärkningen G_{DM} samt Common Mode-förstärkningen G_{CM}. Denna ratio kallas *Common Mode Rejection Ratio*, som förkortas CMRR:

$$CMRR = \frac{G_{DM}}{G_{CM}},$$

 $\mbox{där} \ G_{DM} \ \mbox{\"ar} \ \mbox{differentialf\"orst\"arkningen} \ \mbox{och} \ G_{CM} \ \mbox{\"ar} \ \mbox{Common Mode-f\"orst\"arkningen}.$

- CMRR indikerar hur väl en given differentialförstärkare kancellerar Common Mode-signaler, alltså icke önskvärda signaler såsom brus, i förhållande till hur väl den förstärker differentialsignaler, alltså önskvärda signaler såsom ljud.
- Ju högre CMRR, desto bättre egenskaper kan en differentialförstärkare tänkas ha. Som vi kommer se senare så kan den enkla differentialförstärkaren ovan kan tänkas ha en CMRR omkring 80 000:

$$CMRR \approx 80000$$

- Genom att använda en teleskopiskt kaskadkopplad differentialförstärkare med kaskadkopplade strömspeglar i kollektorn/drain samt mellan ingångstransistorernas emitter/source, så kan CMRR gå mot oändlighet.
- Som nämndes tidigare så används differentialförstärkaren som ingångssteg på nästan alla OP-förstärkare. Genom så kallad feedback så matas en kopia av den tidigare insignalen tillbaka till en av ingångarna för att jämföras med (den nya) insignalen på den andra ingången.
- Insignalerna kan innehålla ljud, som uppträder som sinuskurvor och därmed varierar över tid. Ljud är därmed en så kallad differentialsignal, dvs. en sådan signal som förstärks av differentialförstärkaren.
- Insignalerna kan också innehålla brus, vars amplitud är mer eller mindre konstant över tid, vilket medför att brus uppträder som Common Mode-signaler på de två ingångarna.
- I och med att den gamla kopian ser ut som insignalen gjorde för några mikro- eller millisekunder tidigare (beroende på insignalens frekvens) så kommer ljudsignaler kontinuerligt förstärkas, eftersom den nya insignalen och kopian därmed aldrig kommer uppträda som identiska signaler på ingångarna (den nya insignalen är alltid lite före i tid, medan den gamla alltid är lite efter).
- Samtidigt så kommer brus kancelleras, eftersom vågformerna från bruset på den nya insignalen och den gamla kopian kommer vara samma, då bruset är mer eller mindre kontinuerligt och kommer uppträda som Common Mode-signaler på ingångarna.

4.4.5 - Differentialförstärkningen GDM

- När differentialsignaler uppträder på transistor Q1:s samt Q2:s respektive ingång, alltså
 olika stora inspänningar U_{IN1} samt U_{IN2}, så kommer ingången med den högre
 inspänningen försöka dra upp spänningen i punkten mellan de två emittrarna, se punkten
 P i figuren till höger.
- Samtidigt så försöker den andra ingången dra ned spänningen i punkten P lika mycket.
 Detta innebär att potentialen V_P i punkten P blir 0 V, vilket medför att en så kallad virtuell jord skapas där:

$$U_{IN1} \neq U_{IN2} \rightarrow Virtuell\ jordpunkt\ i\ punkten\ P$$

- Därmed blir strömspegeln förbikopplad i *Differential Mode,* vilket medför att strömspegelns utresistans r_{o,CM} inte kommer påverka differentialförstärkningen G_{DM}.
- I *Differential Mode* så kommer en virtuell jordpunkt skapas i punkten P oavsett storleken på de två insignalerna U_{IN1} samt U_{IN2}. Det är spänningsskillnaden ΔU mellan dem som ger upphov till den virtuella jordpunkten, inte deras respektive storlek.

- I båda fall så är spänningsskillnaden ΔU lika med 20 mV, vilket medför att strömmen I_{C1} kommer hamna runt 1,2 mA och I_{C2} kommer hamna runt 0,8 mA, oavsett de exakta värdena på insignalerna U_{IN1} samt U_{IN2}.
- För att härleda en formel för differentialförstärkningen G_{DM} så ritar vi ut småsignalschemat för differentialförstärkare i *Differential Mode*, alltså med punkten P mellan ingångstransistorer Q1:s samt Q2:s emittrar jordad, se den vänstra figuren nedan.
- Som vanligt så kortsluts även matningsspänningen V_{CC} , spänningsfallen $r_{e1}l_{C1}$ samt $r_{e2}l_{C2}$ ritas ut mellan transistor Q1:s samt Q2:s respektive bas och emitter.

Fullständigt kretsschema för en enkel differentialförstärkare.

Ekvivalent schema för en enkel differentialförstärkare i Differential Mode.

Transistor Q1:s samt Q2:s respektive utresistans r₀₁ samt r₀₂ ritas ut mellan deras respektive kollektor och jord. Av rymlighets skäl, så ritas r₀₁ samt r₀₂ ut horisontellt i originalschemat. Slutligen ersätts in- och utsignalerna U_{IN1}, U_{IN2}, Vx, Vy samt U_{UT} med deras motsvarigheter i småsignalschemat ΔU_{IN1}, ΔU_{IN2}, ΔVx, ΔVy samt ΔU_{UT}.

Ekvivalent småsignalschema för en enkel differentialförstärkare i Differential Mode.

- Därefter kan differentialförstärkarens småsignalschema förenklas till den mittersta figuren ovan, där de två sidorna av differentialförstärkaren har separerats för tydlighets skull.
- Genom att även separera de två sidornas respektive utsignal ΔV_X samt ΔV_Y , se figuren näst längst till höger ovan, så ser vi att differentialförstärkarens småsignalschema efter förenkling är identiskt med två spegelvända GE-steg.
- Notera på den vänstra sidan av differentialförstärkaren att transistor Q1:s utresistans r_{o1} utgör en parallellkoppling med den vänstra sidans kollektorresistor R_C, då båda dessa resistanser är ansluta till samma punkt åt ena hållet (tillsammans med ΔV_x) och jord åt det andra.
- Därmed är spänningsfallet över båda dessa resistanser lika med $\Delta V_X 0 = \Delta V_X$ och de kan därmed ersättas med resistansen $R_C//r_{o1}$ placerad i transistor Q1:s kollektor.
- Detsamma gäller för den högre sidan av differentialförstärkaren. Transistor Q2:s utresistans r_{o2} utgör en parallellkoppling med den högre sidans kollektorresistor R_C, då båda dessa resistanser är ansluta till samma punkt åt ena hållet (tillsammans med ΔV_Y) och jord åt det andra.
- Därmed är spänningsfallet över båda dessa resistanser lika med $\Delta V_Y 0 = \Delta V_X$ och de kan därmed ersättas med resistansen $R_C//r_{o2}$ placerad i transistor Q2:s kollektor.
- Därmed kan differentialförstärkarens småsignalschema ritas om till figuren längst till höger ovan, där resistanserna $R_C//r_{o1}$ respektive $R_C//r_{o2}$ är placerade i transistor Q1:s samt Q2:s respektive kollektor.
- Notera att spänningsfallet över dessa resistanser fortfarande är $\Delta V_X 0 = \Delta V_X$ samt $\Delta V_Y 0 = \Delta V_Y$, vilket även var fallet innan förenklingen. Detta indikerar att förenklingen av småsignalschemat är korrekt, då det skall vara ekvivalent med originalschemat.
- På grund av symmetrin mellan de två sidorna av differentialförstärkaren, så kan differentialförstärkningen G_{DM} (samt övriga parametrar) antas vara samma på båda sidor av differentialförstärkaren. Vi kan därför genomföra beräkningen av G_{DM} på valfri sida, exempelvis den vänstra sidan, där insignalen ΔU_{IN} är ansluten till transistor Q1: bas.

Ekvivalent småsignalschema i Differential Mode sett från den vänstra sidan av differentialförstärkaren.

Ekvivalent småsignalschema i Differential Mode sett från den högra sidan av differentialförstärkaren.

Kom ihåg: På grund av differentialförstärkarens symmetri, så kan dess parametrar, såsom förstärkningsfaktor samt in- och utresistans i både *Differential Mode* samt *Common Mode*, antas vara samma på båda sidorna av differentialförstärkaren.

Därmed kan differentialförstärkarens parametrar beräknas via småsignalschema på valfri sida av differentialförstärkaren.

Differentialförstärkning G_{DM} på den vänstra sidan av differentialförstärkaren:

Vi härleder därmed differentialförstärkningen G_{DM} via den vänstra sidan av differentialförstärkaren, som är lika med ration av in- och utsignalen ΔU_{IN1} samt ΔV_X i småsignalschemat:

$$G_{DM} = \frac{\Delta V_X}{\Delta U_{IN1}}$$

- Därmed måste formler härledas för ΔU_{IN1} samt ΔV_X, vilket kan genomföras med det förenklade småsignalschemat till höger.
- Som vanligt så kan skillnaden mellan transistor Q1:s kollektor- och emitterström Ic1 samt IE1 försummas:

$$I_{C1} \approx I_{E1}$$

Genom att använda Kirchhoffs spänningslag, för att genomföra en beräkning från transistor Q1:s insignal ΔU_{IN1} till jord, så kan följande formel härledas:

$$\Delta U_{IN1} - r_{e1}I_{C1} - R_EI_{C1} \approx 0$$
,

vilket kan transformeras till

$$\Delta U_{IN1} \approx r_{e1}I_{C1} + R_EI_{C1}$$

Genom att bryta ut kollektorströmmen Ic1, så kan sedan följande formel härledas:

$$\Delta U_{IN1} \approx (r_{e1} + R_E)I_{C1}$$

där re1 är transistor Q1:s inbyggda emitterresistans, RE är emitterresistorns resistans och Ic1 är transistor Q1:s kollektorström.

- Därefter kan Kirchhoffs spänningslag används för att härleda en formel för transistor Q1:s utsignal ΔV_X i småsignalmodellen.
- Vi börjar från jordpunkten längst upp i småsignalschemat och beräknar ned till utsignalen ΔV_Xi kollektorströmmen I_{C1}:s riktning, vilket innebär att eventuella spänningsfall beräknas som negativa, då strömmen flödar från plus- till minuspolen.
- Därmed kan följande formel härledas:

$$-(R_C//r_{o1})I_{C1} - \Delta V_X = 0$$

vilket kan transformeras till

$$\Delta V_X = -(R_C / / r_{o1}) I_{C1}$$

Därmed kan en formel för differentialförstärkningen G_{DM} härledas:

$$G_{DM} = \frac{\Delta V_X}{\Delta U_{IN1}} \approx -\frac{(R_C//r_{o1})I_{C1}}{(r_{e1} + R_E)I_{C1}}$$

där kollektorströmmen Ic1 kan elimineras, då denna ström förekommer i både täljaren och nämnaren.

Därmed gäller att

$$G_{DM} \approx -\frac{R_C//r_{o1}}{r_{e1} + R_E},$$

där R_C samt R_E är kollektor- respektive emitterresistorns resistans och r₀₁ samt r₀₁ är transistor Q1:s utresistans respektive inbyggda emitterresistans.

differentialförstärkare i Differential Mode.

• Vidare kan transistor Q1:s utresistans rol antas vara mycket högre än kollektorresistor Rc:

$$r_{o1} \gg R_C$$

vilket innebär att ro1 kan försummas, då

$$R_C//r_{o1} = \frac{R_C * r_{o1}}{R_C + r_{o1}} \approx \frac{R_C * r_{o1}}{r_{o1}} = R_C$$

• Därmed kan differentialförstärkningen G_{DM} approximeras till

$$G_{DM} pprox -rac{R_C}{r_{e1}+R_E}$$

där R_C samt R_E är kollektor- respektive emitterresistorns resistans och r_{e1} är transistor Q1:s inbyggda emitterresistans.

b) Differentialförstärkning G_{DM} på den högra sidan av differentialförstärkaren:

- Eftersom de två sidorna av differentialförstärkaren är symmetriska, så kan alltså differentialförstärkningen G_{DM} även appliceras på den högra sidan av differentialförstärkaren.
- Därmed gäller att

$$G_{DM} = \frac{\Delta V_Y}{\Delta U_{IN2}} \approx -\frac{R_C//r_{o2}}{r_{e2} + R_E},$$

där R_C samt R_E är kollektor- respektive emitterresistorns resistans och r_{o2} samt r_{e2} är transistor Q2:s utresistans respektive inbyggda emitterresistans.

• Även transistor Q2:s utresistans r₀₂ kan antas vara mycket högre än kollektorresistor R_C:

$$r_{o2} \gg R_C$$
,

vilket innebär att ro2 kan försummas, då

$$R_C / / r_{o2} = \frac{R_C * r_{o2}}{R_C + r_{o2}} \approx \frac{R_C * r_{o2}}{r_{o2}} = R_C$$

• Därmed kan differentialförstärkningen G_{DM} approximeras till

$$G_{DM} \approx -\frac{R_C}{r_{e2} + R_E}$$

c) Sambandet mellan differentialförstärkningen G_{DM} och ration mellan in- och utsignalerna:

- Vid formeln för differentialförstärkningen, så kan en formel för ration mellan insignalerna ΔU_{IN1} och ΔU_{IN2} samt utsignalen ΔU_{UT} ur småsignalschemat härledas.
- Som synes i det fullständiga småsignalschemat till höger, så är utsignalen ΔU_{UT} lika med ration av potentialerna ΔV_X samt ΔV_Y :

$$\Delta U_{IIT} = \Delta V_Y - \Delta V_Y$$

• Vi såg tidigare att differentialförstärkningen G_{DM} är lika med ration av in- och utsignalen på respektive sida av differentialförstärkaren:

$$G_{DM} = \frac{\Delta V_X}{\Delta U_{IN1}} = \frac{\Delta V_Y}{\Delta U_{IN2}},$$

Formeln ovan kan transformeras till

$$\Delta V_X = G_{DM} * \Delta U_{IN1}$$

samt

$$\Delta V_{\rm Y} = G_{\rm DM} * \Delta U_{\rm IN2}$$

$$\Delta U_{UT} = G_{DM} * \Delta U_{IN1} - G_{DM} * \Delta U_{IN2},$$

där G_{DM} kan brytas ut, vilket medför att

$$\Delta U_{UT} = (\Delta U_{IN1} - \Delta U_{IN2}) * G_{DM}$$

Formeln ovan kan sedan transformeras till

$$G_{DM} = \frac{\Delta U_{UT}}{\Delta U_{IN1} - \Delta U_{IN2}}$$

Därmed gäller att

$$G_{DM} = \frac{\Delta V_X}{\Delta U_{IN1}} = \frac{\Delta V_Y}{\Delta U_{IN2}} = \frac{\Delta U_{UT}}{\Delta U_{IN1} - \Delta U_{IN2}}$$

- Därmed ser vi att differentialförstärkningen G_{DM} för enkelhets skull kan beräknas på via ration av in- och utsignalen på en sida av differentialförstärkaren, vilket ger samma resultat som vi hade fått ifall vi hade beräknat ration av insignalerna ΔU_{IN1} och ΔU_{IN2} samt utsignalen ΔU_{UT} .
- Av denna anledning så kommer resterande parametrar att beräknas på en sida av differentialförstärkaren, vilket sedan kan appliceras på båda sidor (förutsatt att differentialförstärkaren är symmetrisk).

Fullständigt småsignalschema för den enkla differentialförstärkaren.

4.4.6 - Inresistans R_{IN,DM} i Differential Mode

- Förutsatt att differentialförstärkaren är symmetrisk, så kan inresistansen R_{IN,DM} på respektive ingång i *Differential Mode* antas vara ungefär samma.
- Därmed kan en formel för R_{IN,DM} härledas via småsignalschemat på en av ingångarna, exempelvis på vänster ingång via transistor Q1:s bas.
- Differentialförstärkarens inresistansen R_{IN,DM} i *Differential Mode* kan beräknas via inspänningen ΔU_{IN1} i småsignalschemat:

$$R_{IN,DM} = \frac{\Delta U_{IN1}}{I_{IN1}},$$

där inströmmen I_{IN} är lika med transistor Q1:s basström I_{B1}, som flödar via ingången på vänster sida av differentialförstärkaren:

$$I_{IN} = I_{B1}$$

Därmed gäller att

$$R_{IN,DM} = \frac{\Delta U_{IN1}}{I_{R1}}$$

- Därmed måste en formel härledas för inspänningen ΔU_{IN1} i småsignalschemat. Som vi såg tidigare så uppstår en virtuell jordpunkt i punkten P mellan transistorer Q1:s och Q2:s emittrar i *Differential Mode*, alltså då insignalerna U_{IN1} samt U_{IN2} är olika stora.
- Detta beror på att ingången med den högre inspänningen försöka dra upp spänningen i punkten P, samtidigt som den andra ingången försöker dra ned spänningen lika mycket, vilket leder till att potentialen V₁ i punkten P blir 0 V:

$$U_{IN1} \neq U_{IN2} \rightarrow Virtuell jordpunkt i punkten P$$

- Därmed blir strömspegeln förbikopplad i Differential Mode, se figuren till höger, vilket medför att strömspegelns utresistans r_{o,CM} inte kommer ha någon påverkan på differentialförstärkarens inresistans R_{IN,DM} i Differential Mode (eller differentialförstärkningen G_{DM} för den delen).
- För att härleda en formel för inspänningen ΔU_{IN1} i småsignalschemat, så ritar vi differentialförstärkarens småsignalschema.
- Som vi såg tidigare, så medför differentialförstärkarens symmetri att det räcker med att rita ut ena sida av småsignalschemat och genomföra beräkning på denna. I detta fall ritas endast vänster sida ut, se figuren till höger.
- Matningsspänningen V_{CC} kortsluts och transistor Q1:s utresistans r_{01} samt spänningsfallet $r_{e1}l_{C1}$ mellan transistor Q1:s bas och emitter ritas ut.
- Slutligen ersätts in- och utsignalen U_{IN1} och V_X med deras motsvarigheter i småsignalschemat, vilket är ΔU_{IN1} samt ΔV_X .
- Notera att småsignalschemat till höger är identiskt med ett enkelt GE-steg, vilket innebär att formlerna för differentialförstärkningen G_{DM} samt in- och utresistansen R_{IN,DM} samt R_{UT,DM} i Differential Mode är identiska med de formler vi tidigare har härlett för GE-stegets förstärkningsfaktor G samt in- och utresistansen R_{IN} samt R_{UT}.

Fullständigt kretsschema för en enkel differentialförstärkare.

Ekvivalent schema för en enkel differentialförstärkare i Differential Mode.

Ekvivalent småsignalschema för den vänstra sidan av en enkel differentialförstärkare i Differential Mode.

- Notera i småsignalschemat ovan att transistor Q1:s utresistans r₀₁ utgör en parallellkoppling med kollektorresistor R_C, då båda dessa resistanser är ansluta till samma punkt åt ena hållet (tillsammans med ΔV_X) och jord åt det andra.
- Därmed är spänningsfallet över båda dessa resistanser lika med $\Delta V_X 0 = \Delta V_X$ och de kan därmed ersättas med resistansen $R_C//r_{o1}$ placerad i transistor Q1:s kollektor.
- Därmed kan differentialförstärkarens småsignalschema ritas om till figuren till höger, där resistansen $R_c//r_{o1}$ är placerad i transistor Q1:s kollektor.
- Notera att spänningsfallet över resistansen $R_C//r_{o1}$ också är $\Delta V_X 0 = \Delta V_X$, vilket även var fallet för resistanserna R_C samt r_{o1} innan förenklingen. Detta indikerar att förenklingen av småsignalschemat är korrekt, då det skall vara ekvivalent med originalschemat.

Förenklat småsignalschema för den vänstra sidan av en enkel differentialförstärkare i Differential Mode.

- Därefter kan en formel härledas för inspänningen i småsignalmodellen ΔU_{IN1}.
- Som vanligt så kan skillnaden mellan transistor Q1:s kollektor- och emitterström Ic1 samt IE1 försummas:

$$I_{C1} \approx I_{E1}$$

• Genom att använda Kirchhoffs spänningslag, för att genomföra en beräkning från transistor Q1:s insignal ΔU_{IN1} till jord, så kan följande formel härledas:

$$\Delta U_{IN1} - r_{e1}I_{C1} - R_EI_{C1} \approx 0,$$

vilket kan transformeras till

$$\Delta U_{IN1} \approx r_{e1}I_{C1} + R_EI_{C1}$$

• Genom att bryta ut kollektorströmmen Ic1, så kan sedan följande formel härledas:

$$\Delta U_{IN1} \approx (r_{e1} + R_E)I_{C1}$$

där r_{e1} är transistor Q1:s inbyggda emitterresistans, R_E är emitterresistorns resistans och I_{C1} är transistor Q1:s kollektorström.

• Därefter kan en formel härledas för differentialförstärkarens inresistans R_{IN,DM} i *Differential Mode:*

$$R_{IN,DM} = \frac{\Delta U_{IN1}}{I_{B1}} \approx \frac{(r_{e1} + R_E)I_{C1}}{I_{B1}} \label{eq:RINDM}$$

Vidare gäller följande förhållande mellan transistor Q1:s kollektor- och basström Ic1 samt IB1:

$$I_{C1} = I_{B1}h_{FE1},$$

 $\ d\ddot{a}r\ h_{\text{FE1}}\ \ddot{a}r\ transistor\ Q1{:}s\ str\"{o}mf\"{o}rst\ddot{a}rkningsfaktor.$

• Genom att ersätta kollektorströmmen I_{C1} med motsvarande basström I_{B1} i formeln för R_{IN,DM} ovan, så ser vi att

$$R_{IN,DM} \approx \frac{(r_{e1} + R_E)I_{B1}h_{FE1}}{I_{B1}}, \label{eq:RIN,DM}$$

där basströmmen IB1 förekommer i både täljare och nämnare och därför kan elimineras.

• Därmed kan differentialförstärkarens inresistans R_{IN,DM} i Differential Mode approximeras till

$$R_{IN,DM} \approx (r_{e1} + R_E) h_{FE1}$$

där r_{e1} och h_{FE1} är transistor Q1:s inbyggda emitterresistans respektive strömförstärkningsfaktor och R_E är emitterresistorns resistans.

• Formeln ovan kan även appliceras på höger sida av differentialförstärkaren. Inresistansen R_{IN,DM} sett från höger ingång i Differential Mode kan därmed approximeras till

$$R_{IN.DM} \approx (r_{e2} + R_E) h_{FE2}$$

där r_{e2} och h_{FE2} är transistor Q2:s inbyggda emitterresistans respektive strömförstärkningsfaktor och R_E är emitterresistorns resistans.

- Via formlerna ovan ser vi att inresistansen R_{IN,DM} på respektive ingång i *Differential Mode* är proportionerlig med strömförstärkningsfaktorn h_{FE1} samt h_{FE2} på respektive ingångstransistor Q1 och Q2.
- Detta innebär att om transistor Q1:s och Q2:s respektive strömförstärkningsfaktor hfe1 samt hfe2 är olika stora:

$$h_{FE1} \neq h_{FE2}$$
,

så kommer inresistansen $R_{IN,DM}$ på respektive ingång inte vara exakt samma, trots differentialförstärkarens symmetri. Då BJT-transistorers strömförstärkningsfaktor h_{FE} varierar mellan olika exemplar, även av samma modell, så kan vi därmed anta att inresistansen $R_{IN,DM}$ på respektive ingång är lite olika något. Dock bör inte detta göra något i praktiken.

4.4.7 - Utresistans Rut, DM i Differential Mode:

- Som vi såg tidigare så uppstår en virtuell jordpunkt i punkten P ingångstransistorer Q1:s samt Q2:s emittrar, vilket medför att strömspegeln förbikopplas. Därmed kan figuren till höger användas som ekvivalent schema i *Differential Mode*.
- På grund av differentialförstärkarens symmetri, så kan utresistansen R_{UT,DM} på differentialförstärkaren i *Differential Mode* beräknas på en sida.
- Vi utgår därför från den vänstra sidan av differentialförstärkaren och ritar ut dess småsignalschema, se den vänstra figuren nedan.
- Matningsspänningen V_{CC} kortsluts och transistor Q1:s utresistans r_{01} samt spänningsfallet $r_{e1}l_{C1}$ mellan transistor Q1:s bas och emitter ritas ut. Slutligen ersätts in- och utsignalen U_{IN1} och V_X med deras motsvarigheter i småsignalschemat, vilket är ΔU_{IN1} samt ΔV_X .

med ΔV_X) och jord åt det andra.

• Därmed är spänningsfallet över båda dessa resistanser lika med $\Delta V_X - 0 = \Delta V_X$ och de kan därmed ersättas med resistansen R_C//r_{o1} placerad i transistor Q1:s kollektor.

resistanser är ansluta till samma punkt åt ena hållet (tillsammans

 Därmed kan differentialförstärkarens småsignalschema ritas om till den högra figuren, där resistansen R_C//r₀₁ är placerad i transistor Q1:s kollektor.

Ekvivalent schema för en enkel differentialförstärkare i Differential Mode.

Ekvivalent småsignalschema för den vänstra sidan av en enkel differentialförstärkare i Differential Mode.

- Notera att spänningsfallet över resistansen $R_C//r_{o1}$ också är $\Delta V_X 0 = \Delta V_X$, vilket även var fallet för resistanserna R_C samt r_{o1} innan förenklingen. Detta indikerar att förenklingen av småsignalschemat är korrekt, då det skall vara ekvivalent med originalschemat.
- För att sedan beräkna differentialförstärkarens utresistans R_{UT,DM} i *Differential Mode*, så kortsluts in- och inspänningen ΔU_{IN1} samt ΔU_{UT}. Därefter placeras en spänningskälla U_X på utgången. Vi ritar därefter ut det vänstra småsignalschemat nedan.
- Notera att transistor Q1:s inbygga basresistans $r_{\pi 1}$ samt emitterresistorn R_E utgör en parallellkoppling, då dessa är anslutna till samma punkt åt ena hållet och jord åt det andra. Vi ersätter därför dessa resistanser med ersättningsresistansen $R_E//r_{\pi 1}$, placerad i emittern. Därefter ritar vi om småsignalschemat till den högra figuren nedan.

 $\textit{Ekvivalent småsignal schema för beräkning av differential förstärkarens utresistans \textit{R}_{\textit{UT},\textit{DM}}\textit{ i Common Mode}$

 För att underlätta beräkningen av utresistansen så inför vi beteckningarna R₁ och R₂ i småsignalschemat, se den högra figuren nedan.

För att förenkla beräkningarna så införs storheterna R_1 och R_2 , där $R_1 = R_C//r_{o1}$ och $R_2 = R_E//r_{\pi 1}$.

Därmed gäller att

 $R_1 = R_C / / r_{o1}$

samt

$$R_2 = R_E / / r_{\pi 1}$$

• Differentialförstärkarens utresistans R_{UT,DM} i *Differential Mode* kan sedan beräknas med följande formel:

$$R_{UT,DM} = \frac{U_X}{I_X},$$

där U_X är matningsspänningen från den tillsatta spänningskällan och I_X är strömmen som flödar från denna spänningskälla ned till emittern.

Vi kör Kirchhoffs spänningslag från spänningskällan U_X ned till emittern för att härleda formel för U_X:

$$U_x - R_1 * I_0 - R_2 * I_x = 0$$

vilket kan transformeras till

$$U_x = R_1 * I_0 + R_2 * I_x$$

• Genom att beräkna med Kirchhoffs strömlag, så ser vi att strömmen Ix är lika med summan av strömmarna Io samt UBE1/re1:

$$I_{x} = I_0 + \frac{U_{BE1}}{r_{e1}},$$

vilket kan transformeras till

$$I_0 = I_x - \frac{U_{BE1}}{r_{e1}}$$

• Genom att beräkna med Kirchhoffs spänningslag från basen ned till emittern, så kan en formel härledas för basemitterspänningen UBE1:

 $-U_{BE1}-R_2I_x=0,$

vilket kan transformeras till

$$U_{BE1} = -R_2I_x$$

• Därmed kan formeln för strömmen I₀ ovan förenklas genom att ersätta bas-emitterspänningen U_{BE1} med motsvarande spänningsfall -R₂I_X:

$$I_0 = I_x - \frac{U_{BE1}}{r_{e1}} = I_x + \frac{R_2 I_x}{r_{e1}}$$

• Genom att bryta ut strömmen Ix, så kan formeln ovan transformeras till

$$I_0 = I_x \left[1 + \frac{R_2}{r_{e1}} \right]$$

Därefter kan ovanstående formel för strömmen I₀ sättas in i den tidigare härledda formeln för matningsspänningen Ux,
 vilket medför att

$$U_x = R_1 * I_0 + R_2 * I_x = R_1 * I_x \left[1 + \frac{R_2}{r_{e1}} \right] + R_2 * I_x$$

• Genom att bryta ut strömmen Ix, så kan formeln ovan transformeras till

$$U_x = I_X \left[R_1 \left(1 + \frac{R_2}{r_{c1}} \right) + R_2 \right]$$

Därefter kan en formel differentialförstärkarens utresistans Rut, DM i Differential Mode härledas, då

$$R_{UT,DM} = \frac{U_X}{I_X} = \frac{I_X \left[R_1 \left(1 + \frac{R_2}{r_{e1}} \right) + R_2 \right]}{I_X}$$
,

där strömmen Ix kan elimineras, då denna förekommer i både högerledets täljare och nämnare.

• Därmed gäller att

$$R_{UT,DM} = R_1 \left(1 + \frac{R_2}{r_{e1}} \right) + R_2$$

• Därefter ersätter vi storheterna R₁ och R₂ med de egentliga resistanserna

 $R_1 = R_C / / r_{o1}$

samt

$$R_2 = R_E / / r_{\pi 1}$$

• Differentialförstärkarens utresistans Rut, DM i Differential Mode kan därmed beräknas med formeln

$$R_{UT,DM} = R_C / / r_{o1} \left(1 + \frac{R_E / / r_{\pi 1}}{r_{e1}} \right) + R_E / / r_{\pi 1},$$

där R_C är kollektorresistorns resistans, r_{01} är transistor Q1:s utresistans, R_E är emitterresistorns resistans och $r_{\pi 1}$ samt r_{e1} är transistor Q1:s inbyggda bas- respektive emitterresistans.

• Vi kan anta att transistor Q1:s utresistans ro1 är mycket högre än kollektorresistor Rc:s resistans:

$$r_{o1} \gg R_{C}$$

vilket medför att ro1 kan försummas, då

$$R_C / / r_{o1} = \frac{R_C * r_{o1}}{R_C + r_{o1}} \approx \frac{R_C * r_{o1}}{r_{o1}} = R_C$$

• Därmed kan differentialförstärkarens utresistans Rut, DM i Differential Mode approximeras till

$$R_{UT,DM} \approx R_C \left(1 + \frac{R_E//r_{\pi 1}}{r_{e1}} \right) + R_E//r_{\pi 1},$$

 I de exempel som vi har sett tidigare, så dimensioneras emitterresistor R_E till en storlek som medför en emitterfaktor EF runt tio:

$$EF \approx 10$$

• Emitterfaktorn EF kan beräknas med formeln

$$EF = \frac{r_{e1} + R_E}{r_{e1}} \approx 10,$$

där r_{e1} är transistor Q1:s inbyggda emitterresistans och R_E är emitterresistorns resistans.

Formeln ovan kan transformeras till

$$r_{e1} + R_E = EF * r_{e1}$$

• Genom att subtrahera med re1 i både vänster- och högerled, så kan formeln ovan transformeras till

$$R_E = EF * r_{e1} - r_{e1}$$

• Genom att bryta ut rel ur formeln ovan, så erhållas följande formel

$$R_E = r_{e1}(EF - 1)$$

- Vi ser vi att emitterresistor R_E bör sättas till ett värde som är lika med transistor Q1:s inbyggda emitterresistans r_{e1} multiplicerat med emitterfaktorn EF − 1.
- För en emitterfaktor EF runt tio, så bör då emitterresistor R_E sättas ca nio gånger högre än transistor Q1:s inbyggda emitterresistans r_{e1}, då

$$R_E \approx r_{e1}(10-1) = 9r_{e1}$$

• Förutsatt att vi använder tumregeln med en emitterfaktor runt tio, så kan alltså emitterresistor R_E antas vara omkring nio gånger högre än transistor Q1:s inbyggda emitterresistans r_{e1}:

$$R_E \approx 9r_{e1}$$

• Som vi har sett tidigare så gäller följande samband mellan transistor Q1:s inbyggda bas- respektive emitterresistans $r_{\pi 1}$ samt r_{e1} :

$$r_{\pi 1} = r_{e1} * h_{FE1},$$

där h_{FE1} är transistor Q1:s strömförstärkningsfaktor.

• Strömförstärkningsfaktorn h_{FE1} kan antas ligga mellan 50 – 250, med en faktor 100 som ett normalvärde:

$$h_{FE1} \approx 100$$

• Därmed kan transistor Q1:s inbyggda basresistans $r_{\pi 1}$ antas vara ca 100 gånger högre än dess inbyggda emitterresistans r_{e1} :

$$r_{\pi 1} \approx 100 r_{e1}$$

Eftersom

$$R_E \approx 9r_{e1}$$

samt

$$r_{\pi 1} \approx 100 r_{e1}$$
,

så kan resistansen $R_E//r_{\pi 1}$ approximeras till

$$R_E / / r_{\pi 1} \approx 9 r_{e 1} / / 100 r_{e 1}$$

• Eftersom

$$100r_{e1} \gg 9r_{e1}$$

så kan vi anta att transistor Q1:s inbyggda basresistans $r_{\pi 1}$ är mycket högre än emitterresistor R_E :s resistans:

$$r_{\pi 1} \gg R_E$$

• Därmed kan basresistansen r_{π1} försummas, då

$$R_E//r_{\pi 1} = \frac{R_E * r_{\pi 1}}{R_E + r_{\pi 1}} \approx \frac{R_E * r_{\pi 1}}{r_{\pi 1}} = R_E$$

• Därmed kan differentialförstärkarens utresistans R_{UT,DM} i *Differential Mode* approximeras till

$$R_{UT,DM} \approx R_C \left(1 + \frac{R_E}{r_{e1}} \right) + R_E$$

• Som vi såg tidigare så kan emitterresistor R_E antas vara ca nio gånger högre än transistor Q1:s inbyggda emitterresistans re1:

$$R_E \approx 9r_{e1}$$
,

 Genom att ersätta emitterresistor R_E med motsvarande inbyggda emitterresistans r_{e1}, så kan formeln för R_{UT,DM} transformeras till

 $R_{UT,DM} \approx R_C \left(1 + \frac{9r_{e1}}{r_{e1}} \right) + R_E,$

där

 $\frac{9r_{e1}}{r_{e1}} = 9$

Därmed gäller att

 $R_{UT.DM} \approx R_C(1+9) + R_E$

vilket är ekvivalent med

$$R_{UT.DM} \approx 10R_C + R_E$$

• Vidare kan vi anta att 10Rc är mycket högre än emitterresistor RE:s resistans:

$$10R_C \gg R_E$$

• Därmed kan följande approximation härledas för differentialförstärkarens utresistans Rut, DM i Differential Mode:

$$R_{UT,DM} \approx 10R_C$$

där R_C är kollektorresistorns resistans.

• Att utresistansen R_{UT,DM} kan approximeras till kollektorresistor R_C:s resistans multiplicerat med en faktor tio, beror på att emitterfaktorn EF tidigare sattes till tio:

$$EF \approx 10$$

• Förutsatt att emitterfaktorn EF inte är så hög att emitterresistor R_E :s börjar närma sig transistor Q1:s inbyggda basresistans $r_{\pi 1}$, så gäller att resistansen $R_E / / r_{\pi 1}$ kan approximeras till R_E , då

$$R_E//r_{\pi 1} = \frac{R_E * r_{\pi 1}}{R_E + r_{\pi 1}} \approx \frac{R_E * r_{\pi 1}}{r_{\pi 1}} = R_E,$$

• Vi såg tidigare att resistor R_E kan dimensioneras med följande formel

$$R_E = r_{e1}(EF - 1)$$

• Vi såg tidigare att differentialförstärkarens utresistans R_{UT,DM} i *Differential Mode* kan approximeras med formeln

$$R_{UT,DM} \approx R_C \left(1 + \frac{R_E}{r_{e1}} \right) + R_E$$

 Genom att ersätta emitterresistor R_E med motsvarande inbyggda emitterresistans r_{e1}, så kan formeln för R_{UT,DM} transformeras till

$$R_{UT,DM} \approx R_C \left(1 + \frac{r_{e1}(EF - 1)}{r_{e1}} \right) + R_E,$$

där

$$\frac{r_{e1}(EF-1)}{r_{e1}} = EF - 1$$

• Därmed gäller att

$$R_{UT.DM} \approx R_C(1 + EF - 1) + R_E$$

vilket är ekvivalent med

$$R_{UT.DM} \approx EF * R_C + R_E$$

där resistansen EF * R_C kan antas vara mycket högre än emitterresistor R_E:s resistans:

$$EF * R_C \gg R_E$$

vilket medför att

$$R_{UT,DM} \approx EF * R_C$$

där EF är emitterfaktorn och R_C är kollektorresistorns resistans.

• Därmed ser vi att differentialförstärkarens utresistans R_{UT,DM} i *Differential Mode* är proportionell med emitterfaktorn EF:

$$R_{UT,DM} \sim EF$$
,

- Vi har tidigare sett approximationen ovan i samband med utresistansen R_{UT} på GE-steg.
- Utan emitterresistorer R_E, så är differentialförstärkarens emitterfaktor EF lika med ett, då

$$EF = \frac{r_{e1} + R_E}{r_{e1}} = \frac{r_{e1} + 0}{r_{e1}} = 1,$$

vilket medför att differentialförstärkarens utresistans $R_{UT,DM}$ i *Differential Mode* är ungefär lika med kollektorresistor R_c :s utresistans, då

$$R_{UT,DM} \approx EF * R_C = 1 * R_C = R_C$$

• Som vi har sett tidigare så sätts dock emitterfaktorn EF vanligtvis till tio, vilket medför att differentialförstärkarens utresistans R_{UT,DM} i *Differential Mode* ökar med en faktor runt tio jämfört med utan emitterresistorer R_E, då

$$R_{UT,DM} \approx EF * R_C = 10R_C$$

4.4.8 - Härledning av Common Mode-förstärkningen GcM

 När Common Mode-signaler uppträder på transistor Q1:s samt Q2:s respektive bas, så kommer insignalerna U_{IN1} samt U_{IN2} bli lika stora:

Common Mode
$$\rightarrow U_{IN1} = U_{IN2}$$

• Eftersom U_{IN1} samt U_{IN2} är lika stora så kommer dessa dra upp eller ned potentialen V_P i punkten P mellan transistor Q1:s samt Q2:s emittrar lika mycket, se figuren till höger. Därmed kommer V_P över- eller understiga noll:

$$V_P \neq 0$$
,

vilket medför att ingen virtuell jordpunkt uppstår i punkten P i *Common Mode*, då detta kräver att en av insignalerna U_{IN1} samt U_{IN2} försöker dra upp V_P och den andra ned V_P lika mycket.

- Detta medför att resistansen R_{EE} från strömspegeln mellan transistor Q1:s och Q2:s emittrar utgör en mycket stor emitterresistor i *Common Mode*.
- Genom att använda en strömspegel med mycket hög utresistans R_{EE} , så kan Common Mode-signaler kancelleras effektivt genom att Common Mode-förstärkningen G_{CM} då blir mycket låg.

Fullständigt småsignalschema i Common Mode.

- Precis som vid beräkning av differentialförstärkningen G_{DM} , så medför differentialförstärkarens symmetri att så vi endast behöver beräkna Common Mode-förstärkningen G_{CM} på en av sidorna. Därför kommer beräkningarna genomföras på vänster sida i detta fall.
- För att härleda en formel för Common Mode-förstärkningen G_{CM} så ritar vi ut differentialförstärkarens småsignalschema i *Common Mode*, alltså med resistansen R_{EE} från strömspegeln placerad mellan transistor Q1:s samt Q2:s emittrar, se den vänstra figuren nedan.
- Som vanligt så kortsluts även matningsspänningen V_{CC} , spänningsfallen $r_{e1}l_{C1}$ samt $r_{e2}l_{C2}$ ritas ut mellan transistor Q1:s samt Q2:s respektive bas och emitter.
- Transistor Q1:s samt Q2:s respektive utresistans r₀₁ samt r₀₂ ritas ut mellan deras respektive kollektor och jord. Av rymlighets skäl, så ritas r₀₁ samt r₀₂ ut horisontellt i originalschemat. Slutligen ersätts in- och utsignalerna U_{IN1}, U_{IN2}, V_X, V_Y samt U_{UT} med deras motsvarigheter i småsignalschemat ΔU_{IN1}, ΔU_{IN2}, ΔV_X, ΔV_Y samt ΔU_{UT}.

Ekvivalent småsignalschema för en enkel differentialförstärkare i Common Mode.

- Därefter kan differentialförstärkarens småsignalschema förenklas till den mittersta figuren ovan, där de två sidorna av differentialförstärkaren har separerats för tydlighets skull. Genom att också separera utsignalerna ΔV_X samt ΔV_Y, så blir de två sidorna av differentialförstärkaren helt separerade, se den högra figuren ovan.
- Notera att kollektorströmmarna I_{C1} samt I_{C2} antas flöda genom respektive emitter, istället för emitterströmmarna I_{E1} samt I_{E2}. Därmed försummas den lilla skillnaden mellan transistor Q1:s samt Q2:s respektive kollektor- och emitterströmmar:

 $I_{C1} \approx I_{E1}$

samt

 $I_{C2} \approx I_{E2}$,

• Eftersom strömspegelns resistans R_{EE} i originalfiguren är placerad mellan transistor Q1 och Q2:s emittrar och differentialförstärkaren nu skall delas i två delar, så ersätts R_{EE} med två parallellkopplade resistanser på 2R_{EE} vardera. Eftersom dessa resistanser är parallellkopplade så blir ersättningsresistansen 2R_{EE}//2R_{EE} lika med R_{EE}, då

$$2R_{EE}//2R_{EE} = \frac{2R_{EE} * 2R_{EE}}{2R_{EE} + 2R_{EE}} = \frac{4R_{EE}^{2}}{4R_{EE}} = \frac{4}{4} * \frac{R_{EE}^{2}}{R_{EE}} = R_{EE}$$

- Därmed så utgör de två resistanserna 2R_{EE} samt 2R_{EE} en parallellkoppling, som är ekvivalent med resistansen R_{EE}. Att bytet är ekvivalent kan demonstreras genom att undersöka potentialen V_P i punkten P i originalfiguren och jämföra efter bytet.
- I originalfiguren till vänster ovan, så kan potentialen VP i punkten P beräknas med Ohms lag:

$$V_P = R_{EE} * I_{EE},$$

där REE är strömspegelns utresistans och IEE är strömmen som flödar genom den.

Strömmen lee är i sin tur lika med summan av transistor Q1:s samt Q2:s emitterströmmar lee samt lee:

$$I_{EE} = I_{E1} + I_{E2}$$

• I Common Mode, så är transistor Q1:s samt Q2:s emitterströmmar IE1 samt IE2 lika stora:

 $I_{E1}=I_{E2}$,

vilket innebär att

$$I_{EE} = 2I_{E1} = 2I_{E2}$$

• Därmed gäller att potentialen V_P kan beräknas till

$$V_P = R_{EE} * 2I_{E1} = R_{EE} * 2I_{E2}$$

som kan transformeras till

$$V_P = 2R_{EE} * I_{E1} = 2R_{EE} * I_{E2}$$

- Vi ser då att potentialen V_P blir samma som i originalfiguren ifall resistansen på respektive sida av differentialförstärkaren är satt till 2R_{EE}, då respektive emitterström I_{E1} samt I_{E2} är exakt hälften av strömmen I_{EE} i originalfiguren.
- Som vi har sett tidigare så kan skillnaden mellan transistorernas kollektor- och emitterströmmar försummas, vilket innebär att

$$I_{EE} \approx I_{C1} + I_{C2}$$

samt

$$V_P \approx 2R_{EE} * I_{C1} = 2R_{EE} * I_{C2}$$

• Vid beräkning i småsignalschemat, så antar vi därför att kollektorströmmarna I_{C1} samt I_{C2} flödar genom en resistans på 2R_{EE} vardera i respektive emitter.

Ekvivalent småsignalschema för en enkel differentialförstärkare i Common Mode.

- Vi fortsätter sedan med den vänstra figuren ovan. Notera att när utsignalen ΔV_X samt ΔV_Y på respektive sida av differentialförstärkaren separeras, så ser vi att differentialförstärkarens småsignalschema efter förenkling är identiskt med två spegelvända GE-steg, med två emitterresistanser vardera (R_E samt 2R_{EE}).
- Notera på den vänstra sidan av differentialförstärkaren att transistor Q1:s utresistans r_{o1} utgör en parallellkoppling med den vänstra sidans kollektorresistor R_C, då båda dessa resistanser är ansluta till samma punkt åt ena hållet (tillsammans med ΔVx) och jord åt det andra.
- Detsamma gäller för den högre sidan av differentialförstärkaren. Transistor Q2:s utresistans r₀₂ utgör en parallellkoppling med den högre sidans kollektorresistor R_C, då båda dessa resistanser är ansluta till samma punkt åt ena hållet (tillsammans med ΔV_Y) och jord åt det andra.
- Därmed kan differentialförstärkarens småsignalschema ritas om till den mittersta figuren ovan, där resistanserna $R_C//r_{o1}$ respektive $R_C//r_{o2}$ är placerade i transistor Q1:s samt Q2:s respektive kollektor.
- Slutligen noterar vi att resistanserna R_E samt 2R_{EE} är seriekopplade på respektive sida av differentialförstärkaren. Därmed kan dessa ersättas med en resistans R_E + 2R_{EE}, placerad i respektive emitter. Därmed kan småsignalschemat ritas om till den högra figuren ovan.

Ekvivalent småsignalschema i Common Mode, sett från den vänstra sidan av differentialförstärkaren.

Ekvivalent småsignalschema i Common Mode, sett från den högra sidan av differentialförstärkaren.

Kom ihåg: På grund av differentialförstärkarens symmetri, så kan dess parametrar, såsom förstärkningsfaktor samt in- och utresistans i både *Differential Mode* samt *Common Mode*, antas vara samma på båda sidorna av differentialförstärkaren.

Därmed kan differentialförstärkarens parametrar beräknas via småsignalschema på valfri sida av differentialförstärkaren, exempelvis vänster sida. • Common Mode-förstärkningen G_{CM} är lika med ration mellan in- och utsignalen ΔU_{IN1} samt ΔV_X i *Common Mode:*

$$G_{CM} = \frac{\Delta V_X}{\Delta U_{IN1}}$$

- Därmed måste formler härledas för in- och utspänningen ΔU_{IN1} samt ΔV_X, vilket kan genomföras med småsignalschemat på vänster sida av differentialförstärkaren, se figuren till höger.
- Som vanligt så kan skillnaden mellan transistor Q1:s kollektor- och emitterström I_{C1} samt I_{E1} försummas:

$$I_{C1} \approx I_{E1}$$

- En formel för inspänningen ΔU_{IN1} kan härledas via Kirchhoffs spänningslag, med beräkning från transistor Q1:s bas (se ΔU_{IN1}) ned till jord via resistansen $R_E + 2R_{EE}$ i emittern.
- Därmed kan följande formel härledas:

vilket kan transformeras till

$$\Delta U_{IN1} \approx r_{e1}I_{C1} + (R_E + 2R_{EE})I_{C1}$$

$$\Delta U_{IN1} \approx (r_{e1} + R_E + 2R_{EE})I_{C1},$$

där r_{e1} är transistor Q1:s inbyggda emitterresistans, R_E är emitterresistorns resistans, 2R_{EE} är strömspegelns ersättningsresistans och I_{C1} är transistor Q1:s kollektorström.

- En formel för utspänningen ΔV_X kan också härledas via Kirchhoffs spänningslag, med beräkning från transistor Q1:s kollektor ned till utgången (se ΔV_X) via ersättningsresistansen $R_C//r_{o1}$.
- Därmed kan följande formel härledas:

$$-(R_C//r_{o1})I_{C1} - \Delta V_X = 0$$
,

vilket kan transformeras till

$$\Delta V_X = -(R_C//r_{o1})I_{C1}$$

• Via de härledda formlerna för in- och utspänningen ΔU_{IN1} samt ΔV_X, så kan en formel för Common Mode-förstärkningen G_{CM} härledas:

$$G_{CM} = \frac{\Delta V_X}{\Delta U_{IN1}} \approx -\frac{(R_C//r_{o1})I_{C1}}{(r_{e1} + R_E + 2R_{EE})I_{C1}},$$

där strömmen I1 kan elimineras, då denna förekommer i båda täljare och nämnare. Därmed gäller att

$$G_{CM} \approx -rac{R_C//r_{o1}}{r_{e1} + R_E + 2R_{EE}},$$

där $R_C//r_{o1}$ är ersättningsresistansen i kollektorn, r_{e1} är transistor Q1:s inbyggda emitterresistans, R_E är emitterresistorns resistans och $2R_{EE}$ är strömspegelns ekvivalenta ersättningsresistans i småsignalschemat.

Strömspegelns ekvivalenta ersättningsresistans 2REE kan antas vara mycket högre än resterande emitterresistans re1 + RE:

Ekvivalent småsignalschema i Common Mode, sett från den vänstra sidan av differentialförstärkaren.

$$2R_{EE} \gg r_{e1} + R_E$$

vilket innebär att re1 + RE kan försummas, då

$$r_{e1} + R_E + 2R_{EE} \approx 2R_{EE}$$

■ Därmed kan Common Mode-förstärkningen G_{CM} approximeras till

$$G_{CM} \approx -\frac{R_C//r_{o1}}{2R_{EE}},$$

där R_C // r_{o1} är ersättningsresistansen i kollektorn och $2R_{EE}$ är strömspegelns ekvivalenta ersättningsresistans i småsignalschemat.

Vidare kan transistor Q1:s utresistans ro₁ antas vara mycket högre än kollektorresistor Rc:s resistans:

$$r_{o1} \gg R_C$$
,

vilket innebär att ro1 kan försummas, då

$$R_C / / r_{o1} = \frac{R_C * r_{o1}}{R_C + r_{o1}} \approx \frac{R_C * r_{o1}}{r_{o1}} = R_C$$

• Därmed gäller att Common Mode-förstärkningen Gc™ kan approximeras till

$$G_{CM} \approx -\frac{R_C}{2R_{EE}}$$

där R_C är kollektorresistorns resistans och 2R_{EE} är strömspegelns ekvivalenta ersättningsresistans i småsignalschemat.

• Notera att Common Mode-förstärkningen G_{CM} är omvänt proportionell mot strömspegelns ekvivalenta ersättningsresistans 2R_{FF}:

$$G_{CM} \sim \frac{1}{2R_{EE}}$$

vilket innebär att ju högre strömspegelns ekvivalenta ersättningsresistans är, desto lägre Common Mode-förstärkning G_{CM}.

• Slutligen kan strömspegelns ekvivalenta ersättningsresistans 2REE antas vara mycket högre än kollektorresistorns resistans:

$$2R_{EE}\gg R_C$$
,

vilket innebär att Common Mode-förstärkningen G_{CM} hamnar mycket nära noll:

$$G_{CM} \approx 0$$

• Ovanstående approximationer kan givetvis även appliceras på den högra sidan av differentialförstärkaren:

$$G_{CM} \approx -\frac{R_C//r_{o2}}{r_{e2} + R_E + 2R_{EE}},$$

där $R_C//r_{o2}$ är ersättningsresistansen i kollektorn, r_{e2} är transistor Q2:s inbyggda emitterresistans, R_E är emitterresistorns resistans och $2R_{EE}$ är strömspegelns ekvivalenta ersättningsresistans i småsignalschemat.

Strömspegelns ekvivalenta ersättningsresistans 2R_{EE} kan antas vara mycket högre än resterande emitterresistans r_{e2} + R_E:

$$2R_{EE} \gg r_{e2} + R_E$$

vilket innebär att re2 + RE kan försummas, då

$$r_{e2} + R_E + 2R_{EE} \approx 2R_{EE}$$

Därmed kan Common Mode-förstärkningen G_{CM} approximeras till

$$G_{CM} \approx -\frac{R_C//r_{o2}}{2R_{EE}},$$

där $R_C//r_{o2}$ är ersättningsresistansen i kollektorn och $2R_{EE}$ är strömspegelns ekvivalenta ersättningsresistans i småsignalschemat.

• Vidare kan transistor Q2:s utresistans r_{o2} antas vara mycket högre än kollektorresistor R_C:s resistans:

$$r_{o2} \gg R_{C}$$

vilket innebär att ro2 kan försummas, då

$$R_C//r_{o2} = \frac{R_C * r_{o2}}{R_C + r_{o2}} \approx \frac{R_C * r_{o2}}{r_{o2}} = R_C$$

• Därmed gäller att Common Mode-förstärkningen G_{CM} kan approximeras till

$$G_{CM} \approx -\frac{R_C}{2R_{EE}}$$

där R_C är kollektorresistorns resistans och 2R_{EE} är strömspegelns ekvivalenta ersättningsresistans i småsignalschemat.

• Slutligen kan strömspegelns ekvivalenta ersättningsresistans 2R_{EE} antas vara mycket högre än kollektorresistorns resistans:

$$2R_{EE}\gg R_C$$

vilket innebär att Common Mode-förstärkningen G_{CM} hamnar mycket nära noll:

$$G_{CM} \approx 0$$

- Det är önskvärt att Common Mode-förstärkningen G_{CM} hamnar så nära noll som möjligt för effektiv kancellering av Common Mode-signaler, såsom brus.
- Faktum är att ju högre strömspegelns ekvivalenta ersättningsresistans 2R_{EE} är, desto lägre blir Common Mode-förstärkningen G_{CM}.
- I mer avancerade differentialförstärkare så används därför kaskadkopplade strömspeglar för att öka strömspegelns ekvivalenta utresistans 2R_{EE} och därigenom minska G_{CM}, se figuren till höger.
- När mer avancerade differentialförstärkare behandlas, så kommer Common Modeförstärkningen G_{CM} inte beräknas via småsignalschema.
- Istället kommer G_{CM} antas vara mycket nära noll, vilket alltid är fallet för välkonstruerade differentialförstärkare med en strömspegel mellan ingångstransistorernas emittrar.

Enkel differentialförstärkare med en kaskadkopplad strömspegel mellan ingångstransistorerna Q1:s och Q2:s emittrar, för minskad Common Mode-förstärkning G_{CM} .

4.4.9 - Inresistans R_{IN,CM} i Common Mode

- Förutsatt att differentialförstärkaren är symmetrisk, så kan inresistansen R_{IN,CM} på respektive ingång i *Common Mode* antas vara samma.
- Därmed kan en formel för R_{IN,CM} härledas via småsignalschemat på en av ingångarna, exempelvis på vänster ingång via transistor Q1:s bas.
- Inresistansen $R_{IN,CM}$ på vänster ingång kan beräknas via inspänningen ΔU_{IN1} i småsignalschemat:

$$R_{IN,CM} = \frac{\Delta U_{IN1}}{I_{IN1}},$$

där inströmmen I_{IN} är lika med transistor Q1:s basström I_{B1} , som flödar via ingången på vänster sida av differentialförstärkaren:

$$I_{IN} = I_{B1}$$

Därmed gäller att

$$R_{IN,CM} = \frac{\Delta U_{IN1}}{I_{B1}}$$

Fullständigt småsignalschema för en enkel differentialförstärkare i Common Mode.

- Därmed måste en formel härledas för inspänningen ΔU_{IN1} i småsignalschemat.
 Därför så ritar vi ut differentialförstärkarens småsignalschema i Common Mode, se figuren till höger.
- Som vi såg tidigare, så medför differentialförstärkarens symmetri att det räcker med att rita ut
 ena sida av småsignalschemat och genomföra beräkning på denna. I detta fall ritas endast
 vänster sida ut, se figuren till höger, som tidigare togs fram i avsnittet om
 differentialförstärkarens Common Mode-förstärkning G_{CM}.
- Matningsspänningen V_{CC} kortsluts och transistor Q1:s utresistans r₀₁ samt spänningsfallet r_{e1}I_{C1}
 mellan transistor Q1:s bas och emitter ritas ut.
- Slutligen ersätts in- och utsignalen U_{IN1} och V_X med deras motsvarigheter i småsignalschemat, vilket är ΔU_{IN1} samt ΔV_X .
- Notera i småsignalschemat ovan att transistor Q1:s utresistans r_{01} utgör en parallellkoppling med kollektorresistor R_C , då båda dessa resistanser är ansluta till samma punkt åt ena hållet (tillsammans med ΔV_X) och jord åt det andra.
- Därmed är spänningsfallet över båda dessa resistanser lika med $\Delta V_X 0 = \Delta V_X$ och de kan därmed ersättas med resistansen $R_C//r_{o1}$ placerad i transistor Q1:s kollektor.
- Därmed kan differentialförstärkarens småsignalschema ritas om till figuren till höger, där resistansen $R_c//r_{o1}$ är placerad i transistor Q1:s kollektor.
- Notera att spänningsfallet över resistansen $R_C//r_{o1}$ också är $\Delta V_X 0 = \Delta V_X$, vilket även var fallet för resistanserna R_C samt r_{o1} innan förenklingen. Detta indikerar att förenklingen av småsignalschemat är korrekt, då det skall vara ekvivalent med originalschemat.
- Slutligen så noterar vi att emitterresistor R_E samt strömspegelns ekvivalenta ersättningsresistans 2R_{EE} är seriekopplade, vilket innebär att dessa kan ersättas med resistansen R_E + 2R_{EE}, placerad i emittern.

Småschema för den vänstra sidan av en enkel differentialförstärkare i Common Mode.

Förenklat småsignalschema för den vänstra sidan av en enkel differentialförstärkare i Common Mode.

- Därefter kan en formel härledas för inspänningen i småsignalmodellen ΔU_{IN1}.
- Som vanligt så kan skillnaden mellan transistor Q1:s kollektor- och emitterström Ic1 samt IE1 försummas:

$$I_{C1} \approx I_{E1}$$

• Genom att använda Kirchhoffs spänningslag, för att genomföra en beräkning från transistor Q1:s insignal ΔU_{IN1} ned till jord via resistansen R_E + 2R_{EE} i emittern, så kan följande formel härledas:

$$\Delta U_{IN1} - r_{e1}I_{C1} - (R_E + 2R_{EE})I_{C1} \approx 0$$
,

vilket kan transformeras till

$$\Delta U_{IN1} \approx r_{e1}I_{C1} + (R_E + 2R_{EE})I_{C1}$$

• Genom att bryta ut kollektorströmmen I_{C1}, så kan sedan följande formel härledas:

$$\Delta U_{IN1} \approx (r_{e1} + R_E + 2R_{EE})I_{C1},$$

där r_{e1} är transistor Q1:s inbyggda emitterresistans, R_E är emitterresistorns resistans och I_{C1} är transistor Q1:s kollektorström.

• Därefter kan en formel härledas för differentialförstärkarens inresistans R_{IN,CM} i *Common Mode:*

$$R_{IN,CM} = \frac{\Delta U_{IN1}}{I_{B1}} \approx \frac{(r_{e1} + R_E + 2R_{EE})I_{C1}}{I_{B1}}$$

Vidare gäller följande förhållande mellan transistor Q1:s kollektor- och basström Ic1 samt IB1:

$$I_{C1} = I_{B1}h_{FE1},$$

där h_{FE1} är transistor Q1:s strömförstärkningsfaktor.

Genom att ersätta kollektorströmmen Ic1 med motsvarande basström IB1 i formeln för RIN,DM ovan, så ser vi att

$$R_{IN,CM} \approx \frac{(r_{e1} + R_E + 2R_{EE})I_{B1}h_{FE1}}{I_{B1}},$$

där basströmmen IB1 förekommer i både täljare och nämnare och därför kan elimineras.

• Därmed kan differentialförstärkarens inresistans R_{IN,CM} i *Common Mode* approximeras till

$$R_{IN.CM} \approx (r_{e1} + R_E + 2R_{EE})h_{FE1}$$

där r_{e1} och h_{FE1} är transistor Q1:s inbyggda emitterresistans respektive strömförstärkningsfaktor, R_E är emitterresistorns resistans och $2R_{EE}$ är strömspegelns ekvivalenta ersättningsresistans.

Strömspegelns ekvivalenta ersättningsresistans 2R_{EE} kan antas vara mycket högre än resterande emitterresistans re1 + R_E:

$$2R_{EE}\gg r_{e1}+R_E,$$

vilket innebär att re1 + RE kan försummas, då

$$r_{e1} + R_E + 2R_{EE} \approx 2R_{EE}$$

• Därmed kan differentialförstärkarens inresistans R_{IN,CM} i Common Mode approximeras till

$$R_{IN.CM} \approx 2R_{EE}h_{FE1}$$
,

där h_{FE1} är transistor Q1:s strömförstärkningsfaktor och 2R_{EE} är strömspegelns ekvivalenta ersättningsresistans.

• Formeln ovan kan även appliceras på höger sida av differentialförstärkaren. Inresistansen R_{IN,CM} sett från höger ingång i Common Mode kan därmed approximeras till

$$R_{IN.CM} \approx (r_{e2} + R_E + 2R_{EE})h_{FE2}$$

där r_{e2} och h_{FE2} är transistor Q2:s inbyggda emitterresistans respektive strömförstärkningsfaktor, R_E är emitterresistorns resistans och $2R_{EE}$ är strömspegelns ekvivalenta ersättningsresistans.

• Som vi såg tidigare så kan strömspegelns ekvivalenta ersättningsresistans $2R_{EE}$ antas vara mycket högre än resterande emitterresistans r_{e2} + R_{E} :

$$2R_{EE} \gg r_{e2} + R_E$$

vilket innebär att re2 + RE kan försummas, då

$$r_{e2} + R_E + 2R_{EE} \approx 2R_{EE},$$

vilket innebär att inresistansen R_{IN,CM} sett från differentialförstärkarens högra ingång i *Common Mode* kan approximeras till

$$R_{IN.CM} \approx 2R_{EE}h_{FE2}$$
,

där hfez är transistor Q2:s strömförstärkningsfaktor och 2Ree är strömspegelns ekvivalenta ersättningsresistans.

- Vi kan därmed anta att differentialförstärkaren innehar mycket hög inresistans R_{IN,CM} på respektive ingång i Common Mode, särskilt när mer en mer avancerad strömspegel används.
- Längre fram i kapitlet, då mer avancerade differentialförstärkare analyseras, så kommer därmed inresistansen R_{IN,CM} på respektive ingång *Common Mode* antas gå mot oändlighet:

$$R_{IN,CM}=\infty,$$

vilket innebär att analys inte kommer genomföras för att härleda formler för de mer avancerade differentialförstärkarnas respektive inresistans R_{IN,CM} i *Common Mode*.

4.4.10 – Utresistans R_{UT,CM} i *Common Mode:*

- I Common Mode, så måste vi ta med strömspegelns utresistans R_{EE} i beräkningarna. figuren till höger kan användas som ekvivalent schema i Common Mode.
- På grund av differentialförstärkarens symmetri, så kan utresistansen R_{UT,CM} på differentialförstärkaren i *Common Mode* beräknas på en sida.
- Vi utgår därför från den vänstra sidan av differentialförstärkaren och ritar ut dess småsignalschema, se den vänstra figuren nedan.
- Matningsspänningen V_{CC} kortsluts och transistor Q1:s utresistans r_{o1} samt spänningsfallet $r_{e1}l_{C1}$ mellan transistor Q1:s bas och emitter ritas ut. Slutligen ersätts in- och utsignalen U_{IN1} och V_X med deras motsvarigheter i småsignalschemat, vilket är ΔU_{IN1} samt ΔV_X .
- Notera i småsignalschemat till höger transistor Q1:s utresistans r₀₁ utgör en parallellkoppling med kollektorresistor R_C, då båda dessa

resistanser är ansluta till samma punkt åt ena hållet (tillsammans med ΔV_X) och jord åt det andra.

 Genom att titta på differentialförstärkarens emitter, så ser vi att emitterresistor R_E samt strömspegelns ekvivalenta ersättningsresistans 2R_{EE} utgör en serieresistans, vilket innebär att dessa resistanser kan ersättas med resistansen R_E + 2R_{EE}, placerad i emittern.

Fullständigt småschema för en enkel differentialförstärkare i Common Mode.

Ekvivalent småsignalschema för den vänstra sidan av en enkel differentialförstärkare i Common Mode.

- För att sedan beräkna differentialförstärkarens utresistans R_{UT,CM} i *Common Mode*, så kortsluts in- och inspänningen ΔU_{IN1} samt ΔU_{UT}. Därefter placeras en spänningskälla U_X på utgången. Vi ritar därefter ut det vänstra småsignalschemat nedan.
- Notera att transistor Q1:s inbygga basresistans $r_{\pi 1}$ samt resistansen ($R_E + 2R_{EE}$) utgör en parallellkoppling, då dessa är anslutna till samma punkt åt ena hållet och jord åt det andra. Vi ersätter därför dessa resistanser med ersättningsresistansen ($R_E + 2R_{EE}$)// $r_{\pi 1}$, placerad i emittern. Därefter ritar vi om småsignalschemat till den högra figuren nedan.

Ekvivalent småsignalschema för beräkning av differentialförstärkarens utresistans R_{UT,CM} i Common Mode.

• För att underlätta beräkningen av utresistansen så inför vi beteckningarna R₁ och R₂ i småsignalschemat, se den högra figuren nedan.

För att förenkla beräkningarna så införs storheterna R_1 och R_2 , där $R_1 = R_C//r_{o1}$ och $R_2 = (R_E + R_{EE})//r_{\pi L}$.

Därmed gäller att

$$R_1 = R_C / / r_{o1}$$

samt

$$R_2 = (R_E + 2R_{EE})//r_{\pi 1}$$

• Differentialförstärkarens utresistans R_{UT,CM} i *Common Mode* kan sedan beräknas med följande formel:

$$R_{UT,CM} = \frac{U_X}{I_X},$$

där U_X är matningsspänningen från den tillsatta spänningskällan och I_X är strömmen som flödar från denna spänningskälla ned till emittern.

Vi kör Kirchhoffs spänningslag från spänningskällan U_X ned till emittern för att härleda formel för U_X:

$$U_x - R_1 * I_0 - R_2 * I_x = 0$$
,

vilket kan transformeras till

$$U_x = R_1 * I_0 + R_2 * I_x$$

• Genom att beräkna med Kirchhoffs strömlag, så ser vi att strömmen Ix är lika med summan av strömmarna Io samt UBE1/re1:

$$I_{x} = I_0 + \frac{U_{BE1}}{r_{e1}},$$

vilket kan transformeras till

$$I_0 = I_x - \frac{U_{BE1}}{r_{e1}}$$

• Genom att beräkna med Kirchhoffs spänningslag från basen ned till emittern, så kan en formel härledas för basemitterspänningen UBE1:

$$-U_{BE1}-R_2I_x=0,$$

vilket kan transformeras till

$$U_{BE1} = -R_2I_x$$

• Därmed kan formeln för strömmen I₀ ovan förenklas genom att ersätta bas-emitterspänningen U_{BE1} med motsvarande spänningsfall -R₂I_X:

$$I_0 = I_x - \frac{U_{BE1}}{r_{e1}} = I_x + \frac{R_2 I_x}{r_{e1}}$$

• Genom att bryta ut strömmen Ix, så kan formeln ovan transformeras till

$$I_0 = I_x \left[1 + \frac{R_2}{r_{e1}} \right]$$

Därefter kan ovanstående formel för strömmen I₀ sättas in i den tidigare härledda formeln för matningsspänningen Ux,
 vilket medför att

$$U_x = R_1 * I_0 + R_2 * I_x = R_1 * I_x \left[1 + \frac{R_2}{r_{e1}} \right] + R_2 * I_x$$

• Genom att bryta ut strömmen Ix, så kan formeln ovan transformeras till

$$U_x = I_X \left[R_1 \left(1 + \frac{R_2}{r_{c1}} \right) + R_2 \right]$$

Därefter kan en formel differentialförstärkarens utresistans Rut,cm i Common Mode härledas, då

$$R_{UT,CM} = \frac{U_X}{I_X} = \frac{I_X \left[R_1 \left(1 + \frac{R_2}{r_{e1}} \right) + R_2 \right]}{I_X}$$
,

där strömmen Ix kan elimineras, då denna förekommer i både högerledets täljare och nämnare.

• Därmed gäller att

$$R_{UT,CM} = R_1 \left(1 + \frac{R_2}{r_{e1}} \right) + R_2$$

• Därefter ersätter vi storheterna R₁ och R₂ med de egentliga resistanserna

 $R_1 = R_C / / r_{o1}$

samt

$$R_2 = (R_E + 2R_{EE})//r_{\pi 1}$$

• Differentialförstärkarens utresistans Rut,cm i Common Mode kan därmed beräknas med formeln

$$R_{UT,CM} = R_C / / r_{o1} \left(1 + \frac{(R_E + 2R_{EE}) / / r_{\pi 1}}{r_{e1}} \right) + (R_E + 2R_{EE}) / / r_{\pi 1},$$

där R_C är kollektorresistorns resistans, r_{01} är transistor Q1:s utresistans, R_E är emitterresistorns resistans, $2R_{EE}$ är strömspegelns ekvivalenta ersättningsresistans och $r_{\pi 1}$ samt r_{e1} är transistor Q1:s inbyggda bas- respektive emitterresistans.

• Vi kan anta att transistor Q1:s utresistans r₀1 är mycket högre än kollektorresistor Rc:s resistans:

$$r_{o1} \gg R_C$$

vilket medför att ro1 kan försummas, då

$$R_C//r_{o1} = \frac{R_C * r_{o1}}{R_C + r_{o1}} \approx \frac{R_C * r_{o1}}{r_{o1}} = R_C$$

• Därmed kan differentialförstärkarens utresistans R_{UT,CM} i *Common Mode* approximeras till

$$R_{UT,CM} \approx R_C \left(1 + \frac{(R_E + 2R_{EE})//r_{\pi 1}}{r_{e1}} \right) + (R_E + 2R_{EE})//r_{\pi 1}$$

• Vidare kan vi anta att resistansen R_E + $2R_{EE}$ är mycket högre än transistor Q1:s inbyggda basresistans $r_{\pi 1}$:

$$R_E + 2R_{EE} \gg r_{\pi 1}$$

vilket innebär att RE + 2REE kan försummas, då

$$(R_E + 2R_{EE})//r_{\pi 1} = \frac{(R_E + 2R_{EE}) * r_{\pi 1}}{(R_E + 2R_{EE}) + r_{\pi 1}} \approx \frac{(R_E + 2R_{EE}) * r_{\pi 1}}{R_E + 2R_{EE}} = r_{\pi 1}$$

• Därmed kan differentialförstärkarens utresistans Rut,cm i Common Mode approximeras till

$$R_{UT,CM} \approx R_C \left(1 + \frac{r_{\pi 1}}{r_{e1}}\right) + r_{\pi 1},$$

• Som vi har sett tidigare så gäller följande samband mellan transistor Q1:s inbyggda bas- respektive emitterresistans $r_{\pi 1}$ samt r_{e1} :

$$r_{\pi 1} = r_{e1}h_{FE1},$$

där h_{FE1} är transistor Q1:s strömförstärkningsfaktor.

• Därmed kan formeln för Rut,cm ovan transformeras till

 $R_{UT,CM} \approx R_C \left(1 + \frac{r_{e1}h_{FE1}}{r_{e1}} \right) + r_{e1}h_{FE1},$

där

 $\frac{r_{e1}h_{FE1}}{r_{e1}} = h_{FE1},$

vilket innebär att

$$R_{UT,CM} \approx R_C(1 + h_{FE1}) + r_{e1} * h_{FE1}$$

• Vi kan också anta att transistor Q1:s strömförstärkningsfaktor hfe1 vid överstiger ett:

 $h_{FE1}\gg 1$,

vilket innebär att

$$1 + h_{FE1} \approx h_{FE1}$$

Därmed gäller att

$$R_{UT,CM} \approx R_C h_{FE1} + r_{e1} h_{FE1}$$

• Genom att bryta ut strömförstärkningsfaktor hfel, så kan formeln ovan transformeras till

$$R_{UT,CM} \approx (R_C + r_{e1}) h_{FE1}$$

• Slutligen kan kollektorresistorns resistans R_C antas vara mycket högre än transistor Q1:s inbyggda emitterresistans r_{e1}:

 $R_C \gg r_{e1}$

vilket innebär att re1 kan försummas, då

$$R_C + r_{e1} \approx R_C$$

• Därmed ser vi att differentialförstärkarens utresistans R_{UT,CM} i Common Mode kan approximeras till

$$R_{UT,CM} \approx R_C h_{FE1}$$
,

där R_C är kollektorresistorns resistans och h_{FE1} är transistor Q1:s strömförstärkningsfaktor.

• Approximationen ovan kan givetvis appliceras på högra sidan av differentialförstärkaren:

$$R_{UT.CM} \approx R_C h_{FE2}$$
,

 $\label{eq:continuous} \mbox{där } R_C \mbox{ \"{ar} kollektorresistorns resistans och } h_{FE2} \mbox{ \"{ar} transistor } Q2 : s \mbox{ str\"{o}mf\"{o}rst\"{a}rkningsfaktor.}$

• Av resultatet ovan så ser vi att differentialförstärkarens utresistans R_{UT,CM} i *Common Mode* kan antas vara mycket hög. Särskilt när mer avancerade differentialförstärkare används, där kollektorresistor R_C ersätts med någon typ av strömspegel, så kan R_{UT,CM} antas gå mot oändlighet:

$$R_{UT.CM} \approx \infty$$

• Längre fram i kapitlet, där mer avancerade differentialförstärkare behandlas, så kommer därför ingen analys genomföras för att härleda formler för utresistansen R_{UT,CM} i *Common Mode*. Istället antar vi att R_{UT,CM} är mycket hög.

I de flesta differentialförstärkare, så används någon typ av strömspegel istället för kollektorresistorer, se transistor Q3 och Q4 ovan, framförallt för ökad differentialförstärkning G_{DM}, samtidigt som endast en utgång kan användas utan negativa effekter.

Användning av strömspegel medför också att andra parametrar förändras, såsom utresistansen $R_{UT,CM}$ i Common Mode, som ökar kraftigt.

4.4.11 - Differentialförstärkare med en utgång

- Samtliga differentialförstärkare vi har sett hittills har haft två utgångar.
 I normalfallet så tas dock en av utgångarna samt motsvarande kollektorresistor R_c bort, såsom i figuren till höger. Detta görs för att efterföljande steg i de flesta fall endast har en ingång, som skall anslutas till differentialförstärkarens utgång.
- En nackdel med att ta bort en av differentialförstärkarens utgångar är dock att differentialförstärkningen G_{DM} halveras, eftersom endast sidan med utgången kommer påverka utsignalen U_{UT}:s storlek. Detta kan enkelt demonstreras genom att beräkna differentialförstärkarens utström I_{UT}, som är proportionerlig med utspänningen U_{UT}.
- När två utgångar används, så blir utsignalen U_{UT} lika med differensen V_X V_Y mellan potentialen på respektive utgång V_X samt V_Y :

$$U_{IIT} = V_X - V_Y$$
,

vilket medför att båda sidor bidrar till utsignalens storlek.

Enkel differentialförstärkare med en utgång, vilket medför halverad differentialförstärkning G_{DM}.

1. Härledning av kollektorströmmarna Ic1 samt Ic2 i vilopunkten (Common Mode):

Antag att vi börjar med en differentialförstärkare i vilopunkten, vilket innebär att differentialförstärkarens insignaler U_{IN1} samt U_{IN2} är noll:

$$U_{IN1} = U_{IN2} = 0$$

• Eftersom U_{IN1} samt U_{IN2} är lika stora, så arbetar differentialförstärkarens i *Common Mode och* transistor Q1:s samt Q2:s kollektorströmmar I_{C1} samt I_{C2} är då lika stora:

$$I_{C1}=I_{C2}$$

• Vi säger därmed att kollektorströmmarna på båda sidorna av differentialförstärkaren är lika med Ico, som står för *quiscent* collector current, alltså kollektorström i vilopunkten:

$$I_{C1} = I_{C2} = I_{CQ}$$

2. Härledning av kollektorströmmarna I_{C1} samt I_{C2} i *Differential Mode*:

Antag sedan att inspänningen U_{IN1} överstiger U_{IN2}:

$$U_{IN1} > U_{IN2}$$
,

vilket medför att transistor Q1:s kollektorström Ic1 överstiger transistor Q1:s kollektorström Ic2:

$$I_{C1} > I_{C2}$$

• Antag att transistor Q1:s kollektorström I_{C1} ökar med ΔI från viloströmmen I_{CQ}:

$$I_{C1} = I_{CO} + \Delta I$$
,

där I_{CQ} är transistor Q1:s kollektorström i vilopunkten.

• Eftersom summan av kollektorströmmarna Ic1 samt Ic2 är ungefär lika med strömmen IEE genom strömspegeln:

$$I_{C1} + I_{C2} \approx I_{EE}$$

så kommer transistor Q2:s kollektorström Ic2 minska med mängden ΔI, då

$$I_{C2} \approx I_{EE} - I_{C1}$$

• Genom att transformera formeln ovan, så ser vi att

$$I_{C2} \approx I_{EE} - (I_{CO} + \Delta I) = I_{EE} - I_{CO} - \Delta I$$

• Som vi har sett tidigare, så gäller att summan av kollektorströmmarna I_{C1} samt I_{C2} är ungefär lika med strömmen I_{EE} genom strömspegeln:

$$I_{C1} + I_{C2} \approx I_{EE}$$

• I vilopunkten, då Ic1 och Ic2 är lika med viloströmmen Ico, så gäller då att

$$I_{CO} + I_{CO} \approx I_{EE}$$

som kan transformeras till

$$I_{CO} \approx I_{EE} - I_{CO}$$

Därmed kan transistor Q2:s kollektorström Ic2 efter strömförändringen approximeras till

$$I_{C2} \approx I_{EE} - I_{CQ} - \Delta I \approx I_{CQ} - \Delta I$$
,

vilket indikerar att kollektorströmmen I_{C2} minskar med mängden ΔI , alltså lika mycket som kollektorströmmen I_{C1} ökar, då inspänningen U_{IN1} överstiger inspänningen U_{IN2} .

3. Spänningsskillnaden $\Delta U_{IN,DM}$ mellan insignalerna i *Differential Mode*:

• För att underlätta jämförelse av differentialförstärkningen G_{DM} med en eller två utgångar, så härleder vi en formel för spänningsskillnaden ΔU_{IN,DM} mellan de två insignalerna i *Differential Mode:*

$$\Delta U_{IN,DM} = \Delta U_{IN1} - \Delta U_{IN2},$$

där ΔU_{IN1} samt ΔU_{IN2} är differentialförstärkarens inspänningar i *Differential Mode*.

- Därmed måste formler för differentialförstärkarens inspänningar ΔU_{1N1} samt ΔU_{1N2} i *Differential Mode* härledas, vilket kan genomföras via differentialförstärkarens småsignalschema i *Differential Mode*. För enkelhets skull så försummas transistor Q1:s och Q2:s respektive utresistans r_{o1} samt r_{o2} i detta fall.
- Som vanligt så försummas skillnaden mellan transistor Q1:s och Q2:s emitterströmmar:

$$I_{C1}\approx I_{E1}$$

samt

$$I_{C2} \approx I_{E2}$$

- Vi börjar med att härleda inspänningen ΔU_{IN1} på vänster sida av differentialförstärkaren, med beräkning via Kirchhoffs spänningslag från den vänstra ingången ned till den virtuella jordpunkten P, se figuren till höger.
- Därmed kan följande formel härledas:

 $\Delta U_{IN1} - r_{e1}I_{C1} - R_EI_{C1} \approx 0,$

vilket kan transformeras till

$$\Delta U_{IN1} \approx r_{e1}I_{C1} + R_EI_{C1}$$

• Genom att bryta ut kollektorströmmen Ic1, så kan formeln ovan transformeras till

$$\Delta U_{IN1} \approx (r_{e1} + R_E)I_{C1},$$

där r_{e1} är transistor Q1:s inbyggda emitterresistans, R_E är emitterresistorns resistans och I_{C1} är transistor Q1:s kollektorström.

• Som vi såg tidigare så gäller att kollektorströmmen I_{C1} , som i vilopunkten är lika med viloströmmen I_{CQ} , i detta fall har ökat med mängden ΔI :

$$I_{C1} = I_{CO} + \Delta I,$$

vilket innebär att formeln för ΔU_{IN1} ovan kan transformeras till

$$\Delta U_{IN1} \approx (r_{e1} + R_E)(I_{CQ} + \Delta I),$$

där r_{e1} är transistor Q1:s inbyggda emitterresistans, R_E är emitterresistorns resistans, I_{CQ} är viloströmmen och ΔI är strömförändringen i *Differential Mode*.

- Därefter kan inspänningen ΔU_{IN2} på höger sida av differentialförstärkaren härleda, via beräkningen med Kirchhoffs spänningslag från den högra ingången ned till den virtuella jordpunkten P.
- Därmed kan följande formel härledas.

$$\Delta U_{IN2} - r_{e2}I_{C2} - R_EI_{C2} \approx 0,$$

vilket kan transformeras till

$$\Delta U_{IN2} \approx r_{e2}I_{C2} + R_E I_{C2}$$

• Genom att bryta ut kollektorströmmen Ic2, så kan formeln ovan transformeras till

$$\Delta U_{IN2} \approx (r_{e2} + R_E) I_{C2}$$

• Som vi såg tidigare så gäller att transistor Q2:s kollektorström I_{C2}, som är lika med viloströmmen I_{CQ} i vilopunkten, i detta fall har minskat med mängden ΔI:

$$I_{C2} = I_{CQ} - \Delta I,$$

vilket innebär att formeln för ΔU_{IN2} ovan kan transformeras till

$$\Delta U_{IN2} \approx (r_{e2} + R_E)(I_{CO} - \Delta I),$$

där r_{e2} är transistor Q2:s inbyggda emitterresistans, R_E är emitterresistorns resistans, I_{CQ} är viloströmmen och ΔI är strömförändringen i *Differential Mode*.

Fullständigt småsignalschema för en enkel differentialförstärkare i Differential Mode, där transistor Q1:s samt Q2:s respektive utresistans r₀₁ samt r₀₂ har försummats.

 Därefter kan en formel för spänningsskillnaden ΔU_{IN,DM} mellan ingångarna i *Differential Mode* härledas via de tidigare härledda formlerna för inspänningarna ΔU_{IN1} samt ΔU_{IN2} i småsignalmodellen:

$$\Delta U_{IN,DM} = \Delta U_{IN1} - \Delta U_{IN2},$$

vilket är ekvivalent med

$$\Delta U_{IN,DM} \approx (r_{e1} + R_E)(I_{CO} + \Delta I) - (r_{e2} + R_E)(I_{CO} - \Delta I),$$

som kan transformeras till

$$\Delta U_{IN,DM} \approx r_{e1}(I_{CO} + \Delta I) + R_E(I_{CO} + \Delta I) - [r_{e2}(I_{CO} - \Delta I) + R_E(I_{CO} - \Delta I)],$$

• Formeln för ΔU_{IN1,DM} ovan kan sedan förenklas till

$$\Delta U_{IN,DM} \approx r_{e1} \big(I_{CQ} + \Delta I\big) + R_E \big(I_{CQ} + \Delta I\big) - r_{e2} \big(I_{CQ} - \Delta I\big) - R_E \big(I_{CQ} - \Delta I\big),$$

som är ekvivalent med

$$\Delta U_{IN,DM} \approx r_{e1} \big(I_{CQ} + \Delta I \big) - r_{e2} \big(I_{CQ} - \Delta I \big) + R_E \big(I_{CQ} + \Delta I \big) - R_E \big(I_{CQ} - \Delta I \big)$$

• Genom att bryta ut emitterresistor R_E ur formeln ovan, så kan formeln ovan transformeras till

$$\Delta U_{IN,DM} \approx r_{e1}(I_{CO} + \Delta I) - r_{e2}(I_{CO} - \Delta I) + R_E(I_{CO} + \Delta I - I_{CO} + \Delta I),$$

där

$$I_{CO} + \Delta I - I_{CO} + \Delta I = 2\Delta I,$$

vilket innebär att

$$\Delta U_{IN,DM} \approx r_{e1}(I_{CO} + \Delta I) - r_{e2}(I_{CO} - \Delta I) + 2R_E \Delta I$$

• Som vi har sett tidigare så gäller att transistorer Q1:s samt Q2:s respektive inbyggda emitterresistans r_{e1} samt r_{e2} kan härleda med formlerna

$$r_{e1} = \frac{U_T}{I_{C1}}$$

samt

$$r_{e2} = \frac{U_T}{I_{C2}},$$

där U_T är BJT-transistorernas så kallade termiska spänning, som är lika med 26 mV:

$$U_T = 26 \ mV$$

och Ic1 samt Ic2 är respektive transistors kollektorström.

• Eftersom I_{C1} har ökat med mängden ΔI:

$$I_{C1} = I_{CO} + \Delta I$$

och Ic2 har minskat med lika stora mängd:

$$I_{C2} = I_{CO} - \Delta I,$$

så kan formlerna för re1 samt re2 ovan transformeras till

$$r_{e1} = \frac{U_T}{I_{CQ} + \Delta I}$$

samt

$$r_{e2} = \frac{U_T}{I_{CQ} - \Delta I}$$

där

samt

• Genom att ersätta re1 och re2 med ovanstående formler, så kan formeln för ΔU_{IN,DM} ovan transformeras till

$$\Delta U_{IN,DM} \approx \frac{U_T}{I_{CQ} + \Delta I} \left(I_{CQ} + \Delta I \right) - \frac{U_T}{I_{CQ} - \Delta I} \left(I_{CQ} - \Delta I \right) + 2R_E \Delta I,$$

$$\frac{U_T}{I_{CQ} + \Delta I} \left(I_{CQ} + \Delta I \right) = U_T * \frac{I_{CQ} + \Delta I}{I_{CQ} + \Delta I} = U_T$$

$$\frac{U_T}{I_{CQ} - \Delta I} \left(I_{CQ} - \Delta I \right) = U_T * \frac{I_{CQ} - \Delta I}{I_{CQ} - \Delta I} = U_T$$

• Därmed kan formeln för ΔU_{IN,DM} förenklas till

$$\Delta U_{IN,DM} \approx U_T - U_T + 2R_E \Delta I,$$

där den termiska spänningen U_T kan elimineras ur formeln, då

$$U_T - U_T = 0$$

Därmed kan spänningsskillnaden mellan differentialförstärkarens insignaler ΔU_{IN,DM} approximeras till

$$\Delta U_{IN,DM} \approx 2R_E \Delta I$$
,

där R_E är respektive emitterresistors resistans och ΔI är strömförändringen på respektive sida av differentialförstärkaren.

Vi ser därmed att ΔU_{IN,DM} är proportionell med strömförändringen på båda sidor av differentialförstärkaren, alltså 2ΔI:

$$\Delta U_{INDM} \sim 2\Delta I$$
,

vilket beror på att differentialförstärkaren har två ingångar som påverkas av strömförändringen ΔI på respektive sida av differentialförstärkaren.

• För att inte differentialförstärkningen G_{DM} skall minska, så måste även spänningsskillnaden mellan differentialförstärkarens utsignaler ΔU_{UT,DM} vara proportionell med strömförändringen på båda sidor av differentialförstärkaren:

$$\Delta U_{UT,DM} \sim 2\Delta I$$

- Som vi kommer se senare, så kommer dock ΔU_{UT,DM} halveras då en utgång tas bort, vilket medför halverad differentialförstärkning G_{DM}.
- Dock finns det förbättrade differentialförstärkare, som möjliggör att en utgång kan användas utan att G_{DM} halveras. Istället kan G_{DM} förväntas öka, då sådana differentialförstärkare innehåller en strömspegel i kollektorn istället för kollektorresistorer.

4. Spänningsskillnaden ΔU_{IN} mellan insignalerna i Differential Mode respektive Common Mode:

• Via de härledda formlerna för inspänningen ΔU_{IN,DM} i *Differential Mode* respektive ΔU_{IN,CM} i vilopunkten *(Common Mode)* så kan en formel för spänningsskillnaden ΔU_{IN} dem emellan härledas:

$$\Delta U_{IN} = \Delta U_{IN,DM} - \Delta U_{IN,CM},$$

 $d\ddot{a}r \Delta U_{IN,DM}$ samt $\Delta U_{IN,CM}$ alltså är spänningsskillnaden mellan ingångarna i *Differential Mode* respektive vilopunkten (Common Mode).

• Som har sett ett flertal gånger tidigare, så gäller att inspänningarna ΔU_{IN1} – ΔU_{IN2} lika stora i vilopunkten:

$$\Delta U_{IN1} = \Delta U_{IN2}$$
,

vilket innebär att spänningsskillnaden ΔU_{IN,CM} dem emellan är noll:

$$\Delta U_{INCM} = \Delta U_{IN1} - \Delta U_{IN2} = 0$$

- Därmed behöver ingen analys av spänningsskillnaden ΔU_{IN,CM} mellan differentialförstärkarens insignaler i vilopunkten genomföras.
- Tidigare såg vi att spänningsskillnaden ΔU_{IN,DM} mellan differentialförstärkarens insignaler i *Differential Mode* kan approximeras till

$$\Delta U_{IN,DM} \approx 2R_E \Delta I$$
,

där R_E är respektive emitterresistors resistans och ΔI är strömförändringen på respektive sida av differentialförstärkaren.

• Därmed kan en formel för ΔU_{IN} härledas

$$\Delta U_{IN} = \Delta U_{IN.DM} - \Delta U_{IN.CM} \approx 2R_E \Delta I - 0 = 2R_E \Delta I$$

• Eftersom ΔU_{IN,CM} är noll, så gäller att

$$\Delta U_{IN} \approx 2R_E \Delta I$$
,

där R_E är respektive emitterresistors resistans och ΔI är strömförändringen på respektive sida av differentialförstärkaren.

• Ovanstående approximation kommer användas för att härleda formler för differentialförstärkningen G_{DM} på enkla differentialförstärkare med en respektive två utgångar.

5. Differentialförstärkning G_{DM} på differentialförstärkare med två utgångar:

- I detta avsnitt används det förenklade småsignalschemat till höger, där transistor Q1:s samt Q2:s respektive utresistans r_{o1} samt r_{o2} försummas för enkelhets skull.
- Vi utgår från vilopunkten, alltså utan insignaler, vilket innebär att differentialförstärkaren arbetar i *Common Mode*. Då gäller att inspänningarna ΔU_{IN1} samt ΔU_{IN2} är lika med noll:

$$\Delta U_{IN1} = \Delta U_{IN2} = 0 V,$$

vilket innebär att transistor Q1:s samt Q2:s kollektorströmmar I_{C1} samt I_{C2} båda är lika med viloströmmen I_{C0} :

$$I_{CQ}=I_{C1}=I_{C2}$$

Då de två sidorna av differentialförstärkaren är symmetriska och kollektorströmmarna I_{C1}
 samt I_{C2} är lika stora, så kommer utspänningen U_{UT,CM} i vilopunkten bli noll:

Fullständigt småsignalschema för en enkel differentialförstärkare i Common Mode, där transistor Q1:s samt Q2:s respektive utresistans r_{o1} samt r_{o2} har försummats.

$$\Delta U_{UT,CM} = \Delta V_X - \Delta V_Y = 0,$$

vilket enkelt kan demonstreras via formler för potentialerna ΔV_X samt ΔV_Y på differentialförstärkarens vänstra respektive högra utgång i småsignalschemat ovan.

• En formel för potentialen ΔV_X på differentialförstärkarens vänstra utgång kan härledas med Kirchhoffs spänningslag, med beräkning från den vänstra sidans kollektor ned till utgången märkt ΔV_X. Därmed kan följande formel härledas:

$$-R_C I_{CO} - \Delta V_X = 0,$$

vilket kan transformeras till

$$\Delta V_X = -R_C I_{CO},$$

där Rclcq är spänningsfallet över kollektorresistor Rc i vilopunkten.

 Likaså kan en formel för potentialen ΔV_Y på differentialförstärkarens högra utgång härledas med Kirchhoffs spänningslag, med beräkning från den högra sidans kollektor ned till utgången märkt ΔV_Y. Därmed kan följande formel härledas:

$$-R_C I_{CO} - \Delta V_Y = 0,$$

vilket kan transformeras till

$$\Delta V_Y = -R_C I_{CO},$$

 $\label{eq:constraint} \mbox{d\"{a}r} \ R_{C} I_{CQ} \ \mbox{\'{a}r} \ sp\"{a}nningsfallet \ \mbox{\"{o}ver} \ kollektorresistor \ R_{C} \ \mbox{\'{i}} \ vilopunkten.$

 Därmed kan en formel för differentialförstärkarens utspänning ΔU_{UT,CM} i Common Mode härledas via de framtagna formlera för potentialerna ΔV_X samt ΔV_Y på differentialförstärkarens vänstra respektive högra utgång:

$$\Delta U_{UT,CM} = \Delta V_X - \Delta V_Y = -R_C I_{CO} - (-R_C I_{CO})$$

• Genom att transformera formeln ovan, så ser vi att differentialförstärkarens utspänning ΔU_{UT,CM} i vilopunkten är noll, då

$$\Delta U_{UT,CM} = -R_C I_{CO} + R_C I_{CO} = 0$$

Utspänning $\Delta U_{UT,DM}$ i Differential Mode:

Antag sedan att transistor Q1:s kollektorström I_{C1} ökar med ΔI:

$$I_{C1} = I_{CO} + \Delta I$$

• Som vi såg tidigare så minskar då transistor Q2:s kollektorström I_{C2} med ΔI:

$$I_{C2} = I_{CO} - \Delta I$$

Vi härleder sedan en formel för differentialförstärkarens utspänning ΔU_{UT,DM} i
 Differential Mode genom att undersöka potentialerna ΔV_X samt ΔV_Y på
 differentialförstärkarens vänstra respektive högra utgång efter strömförändringen:

$$\Delta U_{IIT\ DM} = \Delta V_X - \Delta V_Y$$

 Som vi såg tidigare så kan en formel för potentialen ΔV_X på differentialförstärkarens vänstra utgång härledas med Kirchhoffs spänningslag, med beräkning från den vänstra sidans kollektor ned till utgången märkt ΔV_X. Därmed kan följande formel härledas:

Fullständigt småsignalschema för en enkel differentialförstärkare i Differential Mode, där transistor Q1:s samt Q2:s respektive utresistans r_{01} samt r_{02} har försummats.

 $-R_C I_{C1} - \Delta V_X = 0,$

$$\Delta V_X = -R_C I_{C1}$$

• I detta fall måste vi ha i åtanke att kollektorströmmen Ic1, som tidigare var lika med viloströmmen Ic2, har ökat med mängden ΔI:

$$I_{C1} = I_{CO} + \Delta I,$$

vilket innebär att potentialen ΔV_X på differentialförstärkarens vänstra utgång är lika med

$$\Delta V_X = -R_C (I_{CO} + \Delta I),$$

där R_C är kollektorresistorns resistans, I_{CQ} är viloströmmen och ΔI är strömförändringen i *Differential Mode*.

• Därefter kan även en formel för potentialen ΔV_Y på differentialförstärkarens högra utgång härledas via Kirchhoffs spänningslag, med beräkning från den högra sidans kollektor ned till utgången märkt ΔV_Y. Därmed kan följande formel härledas:

$$-R_CI_{C2}-\Delta V_Y=0,$$

vilket kan transformeras till

vilket kan transformeras till

$$\Delta V_Y = -R_C I_{C2}$$

• I detta fall måste vi ha i åtanke att kollektorströmmen I_{C2}, som tidigare var lika med viloströmmen I_{CQ}, har minskat med mängden ΔI:

$$I_{C2} = I_{CO} - \Delta I,$$

vilket innebär att potentialen ΔV_{Y} på differentialförstärkarens högra utgång är lika med

$$\Delta V_Y = -R_C (I_{CO} - \Delta I),$$

där R_C är kollektorresistorns resistans, I_{CQ} är viloströmmen och ΔI är strömförändringen i *Differential Mode*.

• Därmed kan en formel härledas för differentialförstärkarens utspänning ΔU_{UT,DM} i *Differential Mode*, via de framtagna formlera för potentialerna ΔV_X samt ΔV_Y på differentialförstärkarens vänstra respektive högra utgång i småsignalschemat:

$$\Delta U_{UT,DM} = \Delta V_X - \Delta V_Y = -R_C (I_{CQ} + \Delta I) - [-R_C (I_{CQ} - \Delta I)],$$

som kan förenklas till

$$\Delta U_{UT,DM} = -R_C (I_{CO} + \Delta I) + R_C (I_{CO} - \Delta I),$$

vilket är ekvivalent med

$$\Delta U_{UT,DM} = R_C (I_{CQ} - \Delta I) - R_C (I_{CQ} + \Delta I)$$

• Genom att bryta ut kollektorresistor R_C ur hela högerledet, så kan formeln ovan transformeras till

$$\Delta U_{UT,DM} = R_C (I_{CQ} - \Delta I - I_{CQ} - \Delta I),$$

vilket är ekvivalent med

$$\Delta U_{UT,DM} = R_C(-\Delta I - \Delta I) = -2R_C\Delta I$$

• Därmed gäller att utspänningen ΔU_{UT,DM} i detta fall kan beräknas med formeln

$$\Delta U_{UT,DM} = -2R_C\Delta I$$
,

där R_C är kollektorresistorns resistans och ΔI är strömförändringen per sida av differentialförstärkaren.

Vi ser då att differentialförstärkarens utström l_{UT} med två utgångar är lika med -2ΔI, då

$$I_{UT} = \frac{\Delta U_{UT,DM}}{R_C} = -2\Delta I,$$

vilket indikerar att utströmmen Iut är ett resultat av strömförändringen på båda sidor av differentialförstärkaren.

Spänningsskillnad ΔU_{UT} mellan utsignaler ΔU_{UT,DM} i *Differential Mode* samt ΔU_{UT,CM} i vilopunkten:

Därmed gäller att en formel för spänningsskillnaden ΔU_{UT} mellan utsignaler ΔU_{UT,DM} i *Differential Mode* samt ΔU_{UT,CM} i vilopunkten (Common Mode) härledas via de tidigare härledda formlerna för ΔU_{UT,DM} ΔU_{UT,CM}:

$$\Delta U_{UT} = \Delta U_{UT,DM} - \Delta U_{UT,CM},$$

där vi tidigare såg att utspänningen ΔU_{UT,CM} i vilopunkten är lika med noll:

$$\Delta U_{UT,CM} = 0$$

• Därmed gäller att enbart utspänningen ΔU_{UT,DM} i *Differential Mode* påverkar spänningsskillnaden ΔU_{UT} mellan utsignalen i vilopunkten samt *Differential Mode*, då

$$\Delta U_{UT} = \Delta U_{UT,DM} - 0 = \Delta U_{UT,DM},$$

vilket är ekvivalent med

$$\Delta U_{IIT} = -2R_C \Delta I,$$

där R_C är kollektorresistorns resistans och ΔI är strömförändringen per sida av differentialförstärkaren.

Härledning av differentialförstärkningen G_{DM}:

Som vi har sett tidigare så kan differentialförstärkningen G_{DM} beräknas som ration mellan in- och utsignalen ΔU_{IN} samt ΔU_{UT}:

$$G_{DM} = \frac{\Delta U_{UT}}{\Delta U_{IN}},$$

där insignalen ΔU_{IN} tidigare approximerades till

$$\Delta U_{IN} \approx 2R_E \Delta I$$

och utsignalen ΔU_{UT} tidigare fastställdes till

$$\Delta U_{UT} = -2R_C \Delta I,$$

vilket medför att differentialförstärkningen G_{DM} han härledas till

$$G_{DM} = -\frac{2R_C \Delta I}{2R_E \Delta I'}$$

där 2ΔI kan elimineras ut högerledet, då denna faktor förekommer i både täljaren och nämnaren.

• Därmed kan differentialförstärkningen G_{DM} på en enkel differentialförstärkare med två utgångar approximeras till

$$G_{DM} \approx -\frac{R_C}{R_E}$$

där R_C och R_E är kollektorresistorns respektive emitterresistorns resistans på respektive sida av differentialförstärkaren.

När en av kollektorströmmarna I_{C1} samt I_{C2} ökar med mängden ΔI , så minskar den andra lika mycket. Eftersom både I_{C1} samt I_{C2} påverkar utspänningen U_{UT} , så påverkas U_{UT} av en total strömförändring ΔI , vilket innebär en förändring av U_{UT} med mängden $2R_{C}\Delta I$.

6. Differentialförstärkning G_{DM} på differentialförstärkare med en utgång:

- Även i detta fall så jämförs förändringen av utspänningen ΔU_{UT} mellan vilopunkten samt i Differential Mode, då inspänningen ΔU_{IN1} ökar något.
- Vi utgår återigen från vilopunkten, alltså utan insignaler, vilket innebär att differentialförstärkaren arbetar i *Common Mode*. Då är inspänningarna ΔU_{IN1} samt ΔU_{IN2} lika med noll:

$$\Delta U_{IN1} = \Delta U_{IN2} = 0 V,$$

vilket innebär att transistor Q1:s samt Q2:s kollektorströmmar I_{C1} samt I_{C2} är lika stora:

$$I_{C1} = I_{C2}$$

- Vi använder småsignalschemat till höger för beräkningen. Återigen försummas transistor Q1:s samt Q2:s respektive utresistans r₀₁ samt r₀₂ för enkelhets skull.
- Som tidigare används beteckningen I_{CQ} för kollektorströmmarna i vilopunkten, vilket står för *quiescent collector current*, alltså kollektorström i vilopunkten. I vilopunkten gäller därmed att

$$I_{CO} = I_{C1} = I_{C2}$$

Fullständigt småsignalschema för en enkel differentialförstärkare med en utgång i Common Mode.

Transistor Q1:s samt Q2:s respektive utresistans r_{o1} samt r_{o2} har försummats för enkelhets skull.

• Som vi har sett tidigare så gäller att strömmen IEE som flödar genom strömspegeln är ungefär lika med summan av kollektorströmmarna Ic1 samt Ic2:

$$I_{C1} + I_{C2} \approx I_{EE}$$

• I vilopunkten, då Ic1 samt Ic2 är lika med IcQ, så gäller därmed att

$$I_{EE} \approx I_{CQ} + I_{CQ} = 2I_{CQ}$$

- I detta fall skall utspänningen $\Delta U_{UT,CM}$ i vilopunkten jämföras med utspänningen $\Delta U_{UT,DM}$ i *Differential Mode,* för att härleda en formel för utsignalens förändring ΔU_{UT} .
- På grund av att bara en utgång används, så kommer differentialförstärkarens utspänning ΔU_{UT,CM} i vilopunkten överstiga noll. Detta kan demonstreras genom att härleda en formel för utspänningen ΔU_{UT,CM} i vilopunkten, vilket enkelt kan genomföras med Kirchhoffs spänningslag, från kollektorn på differentialförstärkarens högra sida ned till utgången (via ΔU_{UT,CM} i figuren ovan).
- Därmed kan följande formel härledas:

$$-R_C I_{CO} - \Delta U_{UT,CM} = 0,$$

vilket kan transformeras till

$$\Delta U_{UT,CM} = -R_C I_{CO},$$

där R_Cl_{CQ} är spänningsfallet över kollektorresistor R_C i vilopunkten.

Utspänning $\Delta U_{UT,DM}$ i Differential Mode:

• Låt oss sedan anta att inspänningen ΔU_{IN1} ökar något, så att denna överstiger ΔU_{IN2}:

$$\Delta U_{IN1} > \Delta U_{IN2}$$

 Vi kan då anta att transistor Q1:s kollektorström I_{C1}, som tidigare var lika med viloströmmen I_{CQ}, nu ökar med en given mängd ΔI:

$$I_{C1} = I_{CQ} + \Delta I,$$

• Som vi har sett tidigare, så kommer då transistor Q2:s kollektorström I_{C2}, som tidigare också var lika med viloströmmen I_{CQ}, minskar med samma mängd ΔI, då

$$I_{C1}+I_{C2}\approx I_{EE},$$

vilket medför att

vilket innebär att

$$I_{C2} \approx I_{EE} - I_{C1}$$

• Vi såg tidigare att strömmen IEE är ungefär lika med viloströmmen IcQ multiplicerat med en faktor två:

 $I_{EE} \approx I_{CQ} + I_{CQ} = 2I_{CQ},$

 $I_{C2} \approx 2I_{CO} - I_{C1}$

Eftersom I_{C1} har ökat med mängden ΔI:

$$I_{C1} = I_{CO} + \Delta I,$$

så kan formeln för kollektorströmmen IC2 ovan transformeras till

$$I_{C2} \approx 2I_{CO} - (I_{CO} + \Delta I),$$

vilket är ekvivalent med

$$I_{C2} \approx 2I_{CO} - I_{CO} - \Delta I = I_{CO} - \Delta I$$

• Därmed ser vi att transistor Q2:s kollektorström minskar med mängden ΔI från vilopunkten:

$$I_{C2} = I_{CQ} - \Delta I$$

- Därefter kan en formel härledas för utspänningen U_{UT,DM} i Differential Mode, efter att strömmen I_{C2} har minskat med mängden ΔI. Detta kan enkelt genomföras via beräkning med Kirchhoffs spänningslag, från den positiva matningsspänningen V_{CC} ned till utgången via kollektorresistor R_C.
- Därmed kan följande formel härledas:

$$U_{UT,DM} = V_{CC} - R_C I_{C2},$$

vilket är ekvivalent med

$$U_{UT,DM} = V_{CC} - R_C (I_{CO} - \Delta I)$$

Fullständigt småsignalschema för en enkel differentialförstärkare med en utgång i Differential Mode.

Transistor Q1:s samt Q2:s respektive utresistans r_{o1} samt r_{o2} har försummats för enkelhets skull.

Spänningsskillnad ΔU_{UT} mellan utsignaler ΔU_{UT,DM} i *Differential Mode* samt ΔU_{UT,CM} i vilopunkten:

Därmed gäller att en formel för förändringen ΔU_{UT} av differentialförstärkarens utsignal kan härledas via de tidigare härledda formlerna för utspänningen i *Differential Mode* respektive *Common Mode* U_{UT,DM} samt U_{UT,CM}.

$$\Delta U_{UT} = U_{UT,DM} - U_{UT,CM},$$

vilket innebär att

$$\Delta U_{UT} = V_{CC} - R_C (I_{CO} - \Delta I) - [V_{CC} - R_C I_{CO}],$$

som är ekvivalent med

$$\Delta U_{UT} = V_{CC} - R_C (I_{CQ} - \Delta I) - V_{CC} + R_C I_{CQ},$$

där matningsspänningen V_{CC} kan elimineras ur formeln, då

$$V_{CC} - V_{CC} = 0$$

• Därmed kan formeln ovan förenklas till

$$\Delta U_{UT} = R_C I_{CO} - R_C (I_{CO} - \Delta I)$$

• Genom att bryta ur kollektorresistor Rc ur hela formeln, så ser vi att

$$\Delta U_{UT} = R_C (I_{CQ} - I_{CQ} + \Delta I),$$

där viloströmmen Icq kan elimineras ur formeln, då

$$\Delta U_{UT} = R_C \Delta I$$

• Vi ser då att differentialförstärkarens utström I_{UT} är lika med ΔI, då

$$I_{UT} = \frac{\Delta U_{UT}}{R_C} = \Delta I,$$

vilket är hälften av strömförändringen när två utgångar används, vilket innebär halverad differentialförstärkning G_{DM}.

Härledning av differentialförstärkningen G_{DM}:

• Som vi har sett tidigare så kan differentialförstärkningen G_{DM} beräknas som ration mellan in- och utsignalen ΔU_{IN} samt ΔU_{UT}:

$$G_{DM} = \frac{\Delta U_{UT}}{\Delta U_{IN}}$$

där insignalen ΔU_{IN} tidigare approximerades till

$$\Delta U_{IN} \approx 2R_E \Delta I$$

och utsignalen ΔU_{UT} tidigare fastställdes till

$$\Delta U_{IIT} = -R_C \Delta I$$
,

vilket medför att differentialförstärkningen G_{DM} kan härledas till

$$G_{DM} = -\frac{R_C \Delta I}{2R_E \Delta I'}$$

där ΔI kan elimineras ut högerledet, då denna faktor förekommer i både täljaren och nämnaren.

• Därmed kan differentialförstärkningen G_{DM} på en enkel differentialförstärkare med en utgång approximeras till

$$G_{DM} \approx -\frac{R_C}{2R_F}$$

där R_C och R_E är kollektorresistorns respektive emitterresistorns resistans på respektive sida av differentialförstärkaren och tvåan i nämnaren indikerar att differentialförstärkningen G_{DM} halveras när endast en utgång används.

- Att differentialförstärkningen G_{DM} halveras när endast en utgång används beror på att utsignalen U_{UT} då endast är känslig för strömförändringen ΔI på höger sida av differentialförstärkaren.
- Däremot om två utgångar används, så är utsignalen U_{UT} känslig för strömförändringen ΔI på respektive sida av differentialförstärkaren. Då en av kollektorströmmarna I_{C1} samt I_{C2} ökar med mängden Δ, så kommer den andra kollektorströmmen minska lika mycket, vilket medför en total strömförändring på 2ΔI.
- Därmed kan utsignalen U∪T tänkas vara dubbelt så känslig för förändringar av kollektorströmmar Ic1 samt Ic2 då två utgångar används istället för en.
- Eftersom förändringar av kollektorströmmarna Ic1 samt Ic2 är beroende av förändringar av insignalerna U_{IN1} samt U_{IN2}, så är alltså en differentialförstärkare med två utgångar dubbelt så känslig för differentialsignaler jämfört med då endast en utgång. Därmed är differentialförstärkningen G_{DM} dubbelt så hög när två utgångar används.
- Genom att ersätta kollektorresistor R_C med en strömspegel, så kan dock halveringen av differentialförstärkningen G_{DM} undvikas, trots att endast en utgång används.

Genom att ta bort en av differentialförstärkarens utgångar, så halveras differentialförstärkningen G_{DM} , då endast strömförändringen ΔI på höger sida av differentialförstärkaren påverkar utsignalen U_{UT} då en utgång används.

Däremot om två utgångar används, så påverkas utsignalen $U_{\rm UT}$ av strömförändringen ΔI på respektive sida av differentialförstärkaren, vilket medför en total strömförändring på $2\Delta I$.

Därmed kan utsignalen U_{UT} tänkas vara dubbelt så känslig för förändringar av kollektorströmmar I_{C1} samt I_{C2} , och därmed även inspänningarna U_{IN1} samt U_{IN2} , om två utgångar används istället för en.

Med strömspegel: Fortsätt här!

$$I_{C1} = I_{C3} = I_{CQ} + \Delta I$$

• Strömspegeln kopierar Ic3 till höger sida av differentialförstärkaren, vilket medför att

$$I_{C3} = I_{C4} = I_{CO} + \Delta I$$

Samtidigt gäller att

$$I_{C2} = I_{CO} - \Delta I$$

• Därmed gäller att

$$I_{UT} = I_{C4} - I_{C2}$$

vilket är ekvivalent med

$$I_{UT} = I_{CO} + \Delta I - (I_{CO} - \Delta I),$$

som kan transformeras till

$$I_{UT} = I_{CO} + \Delta I - I_{CO} + \Delta I = 2\Delta I,$$

• Därmed är utströmmen I_{UT} samma som för en differentialförstärkare, vilket medför samma differential- samt Common Mode-förstärkning G_{DM} samt G_{CM}.

$$I_{UT} = \frac{\Delta U_{UT}}{R_C} = 2\Delta I,$$

vilket innebär att

$$\Delta U_{UT} = 2R_C \Delta I$$

• Därmed gäller att

$$G_{DM} = \frac{\Delta U_{UT}}{\Delta U_{IN1} - \Delta U_{IN2}},$$

där differensen $\Delta U_{IN1} - \Delta U_{IN2}$ tidigare beräknades till

vilket medför att

$$\Delta U_{IN1} - \Delta U_{IN2} = 2R_E \Delta I,$$

$$G_{DM} = \frac{2R_C \Delta I}{2R_E \Delta I} = \frac{R_C}{R_E}$$

$$\Delta U_{IN1} - r_{e1}I_{C1} - R_EI_{C1} \approx 0$$
,

vilket kan transformeras till

$$\Delta U_{IN1} \approx r_{e1}I_{C1} + R_EI_{C1}$$

• Genom att bryta ut kollektorströmmen Ic1, så kan formeln ovan transformeras till

• Som vi såg tidigare så gäller att

$$\Delta U_{IN1} \approx (r_{e1} + R_E) I_{C1}$$

vilket innebär att

$$I_{C1}=I_{CQ}+\Delta I,$$

$$\Delta U_{IN1} \approx (r_{e1} + R_E)(I_{CQ} + \Delta I)$$

$$\Delta U_{IN2} - r_{e2}I_{C2} - R_EI_{C2} \approx 0,$$

vilket kan transformeras till

$$\Delta U_{IN2} \approx r_{e2}I_{C2} + R_EI_{C2}$$

• Genom att bryta ut kollektorströmmen Ic2, så kan formeln ovan transformeras till

$$\Delta U_{IN2} \approx (r_{e2} + R_E)I_{C2}$$

• Som vi såg tidigare så gäller att

$$I_{C2}=I_{CO}-\Delta I,$$

vilket innebär att

$$\Delta U_{IN2} \approx (r_{e2} + R_E)(I_{CO} - \Delta I)$$

• Därmed gäller att

$$\Delta U_{IN1} - \Delta U_{IN2} \approx (r_{e1} + R_E)(I_{CQ} + \Delta I) - (r_{e2} + R_E)(I_{CQ} - \Delta I),$$

vilket kan transformeras till

$$\Delta U_{IN1} - \Delta U_{IN2} \approx r_{e1} (I_{CQ} + \Delta I) + R_E (I_{CQ} + \Delta I) - [r_{e2} (I_{CQ} - \Delta I) + R_E (I_{CQ} - \Delta I)],$$

vilket kan förenklas till

$$\Delta U_{IN1} - \Delta U_{IN2} \approx r_{e1}(I_{CO} + \Delta I) + R_E(I_{CO} + \Delta I) - r_{e2}(I_{CO} - \Delta I) - R_E(I_{CO} - \Delta I),$$

vilket är ekvivalent med

$$\Delta U_{IN1} - \Delta U_{IN2} \approx r_{e1} \big(I_{CQ} + \Delta I \big) - r_{e2} \big(I_{CQ} - \Delta I \big) + R_E \big(I_{CQ} + \Delta I \big) - R_E \big(I_{CQ} - \Delta I \big)$$

• Genom att bryta ut RE ur formeln ovan, så ser vi att

$$\Delta U_{IN1} - \Delta U_{IN2} \approx r_{e1}(I_{CO} + \Delta I) - r_{e2}(I_{CO} - \Delta I) + R_E(I_{CO} + \Delta I - I_{CO} + \Delta I),$$

vilket är ekvivalent med

$$\begin{split} \Delta U_{IN1} - \Delta U_{IN2} &\approx r_{e1} \big(I_{CQ} + \Delta I\big) - r_{e2} \big(I_{CQ} - \Delta I\big) + 2R_E \Delta I \end{split}$$

$$r_{e1} &= \frac{26m}{I_{C1}} = \frac{26m}{I_{CO} + \Delta I}$$

samt

$$r_{e2} = \frac{26m}{I_{C2}} = \frac{26m}{I_{C0} - \Delta I'}$$

vilket innebär att

$$\Delta U_{IN1} - \Delta U_{IN2} \approx \frac{26m}{I_{CQ} + \Delta I} \left(I_{CQ} + \Delta I \right) - \frac{26m}{I_{CQ} - \Delta I} \left(I_{CQ} - \Delta I \right) + 2R_E \Delta I,$$

som kan transformeras till

$$\Delta U_{IN1} - \Delta U_{IN2} \approx 26m - 26m + 2R_E \Delta I,$$

vilket innebär att

$$\Delta U_{IN1} - \Delta U_{IN2} \approx 2R_E \Delta I$$

Därmed gäller att

$$G_{DM} = \frac{\Delta U_{UT}}{\Delta U_{IN1} - \Delta U_{IN2}} = \frac{\Delta V_X - \Delta V_Y}{\Delta U_{IN1} - \Delta U_{IN2}} \approx -\frac{2R_C \Delta I}{2R_E \Delta I} = -\frac{R_C \Delta I}{R_E \Delta I}$$

där strömmen ΔI kan elimineras, då denna förekommer i både täljare och nämnare. Därmed gäller att

$$G_{DM} \approx -\frac{R_C}{R_E}$$

• Om vi sedan tar bort utgången på vänster sida av differentialförstärkaren, såsom ovan, så kommer potentialen ΔV_Y istället jämföras mot bias-spänningen ΔV_{BIAS} vilket innebär att

 $\Delta U_{IJT} = \Delta V_{BIAS} - \Delta V_{Y}$

där

 $\Delta V_{BIAS} \approx -R_C I_{CO}$

V_Y härleddes tidigare till

 $\Delta V_Y = -(R_C//r_{o2})I_{C1} \approx -R_C I_{C2}$

där

 $I_{C2} = I_{CO} - \Delta I,$

vilket innebär att

$$\Delta V_Y \approx -R_C (I_{CO} - \Delta I)$$

$$\Delta V_{BIAS} - \Delta V_Y \approx -R_C I_{CO} - [-R_C (I_{CO} - \Delta I)],$$

som kan transformeras till

$$\Delta V_{BIAS} - \Delta V_Y \approx -R_C I_{CQ} + R_C (I_{CQ} - \Delta I)$$

• Genom att bryta ut kollektor Rc, så kan formeln ovan transformeras till

 $\Delta V_{BIAS} - \Delta V_Y \approx R_C (-I_{CQ} + I_{CQ} - \Delta I),$

vilket är ekvivalent med

$$\Delta V_{BIAS} - \Delta V_{Y} \approx -R_{C}\Delta I$$

• Därmed gäller att

$$G_{DM} = \frac{\Delta U_{UT}}{\Delta U_{IN1} - \Delta U_{IN2}} = \frac{\Delta V_{BIAS} - \Delta V_Y}{\Delta U_{IN2} - \Delta U_{IN1}} \approx -\frac{-R_C \Delta I}{2R_E \Delta I},$$

där strömmen AI kan elimineras, då denna förekommer i både täljare och nämnare. Därmed gäller att

$$G_{DM} \approx -\frac{R_C}{2R_F}$$

vilket indikerar att differentialförstärkningen halveras med en ingång.

• Därmed gäller att differentialförstärkningen G_{DM} på differentialförstärkaren till höger är lika med

$$G_{DM} = -\frac{R_C//r_{o2}}{2(r_{e2} + R_E)'}$$

där R_C är kollektorresistorns resistans, r_{02} samt r_{e2} är transistor Q2:s utresistans respektive inbyggda emitterresistans och R_E är emitterresistorns resistans.

$$G_{DM} = -\frac{\Delta U_{UT}}{\Delta U_{IN2} - \Delta U_{IN1}}$$

• I Differential Mode, så gäller att insignalerna i småsignalschemat ΔU_{IN1} samt ΔU_{IN2} är inverterade;

$$\Delta U_{IN1} = -\Delta U_{IN2}$$

vilket innebär att

$$G_{DM} = -\frac{\Delta U_{UT}}{\Delta U_{IN2} - (-\Delta U_{IN2})} = \frac{\Delta U_{UT}}{2\Delta U_{IN2}}$$

• Men bara en utgång så kommer utspänningen U_{UT} på den högra sidan av differentialförstärkaren jämföras mot jord. Vid dimensionering av differentialförstärkaren bör därför utspänningen U_{UT} i vilopunkten sättas till halva matningsspänningen V_{CC} för maximalt topp-till-topp-värde på utsignalen utan klippning:

$$U_{UT} = \frac{V_{CC}}{2}$$

Därmed hamnar biaspunkten runt halva matningsspänningen V_{CC}. Som exempel, om matningsspänningen V_{CC} är satt till 20
 V, så bör biaspunkten sättas till 10 V, då

$$U_{UT} = \frac{V_{CC}}{2} = \frac{20}{2} = 10 \ V,$$

vilket medför att utspänningen UUT kan svänga ± 10 V från biaspunkten utan klippning.

• Genom att använda Kirchhoffs spänningslag och beräkna från matningsspänningen V_{CC} ned till utgången via U_{UT}, så kan följande formel härledas:

$$V_{CC} - R_C I_{C2} - U_{UT} = 0,$$

vilket kan transformeras till

$$R_C I_{C2} = V_{CC} - U_{UT}$$

• Eftersom utspänningen U_{UT} i vilopunkten skall sättas till halva matningsspänningen:

$$U_{UT} = \frac{V_{CC}}{2},$$

så gäller att

$$V_{CC}-U_{UT}=V_{CC}-\frac{V_{CC}}{2}=\frac{V_{CC}}{2}$$

• Därmed gäller att

$$R_C I_{C2} = \frac{V_{CC}}{2},$$

vilket kan transformeras till

$$R_C = \frac{V_{CC}}{2I_{C2}}$$

• I vilopunkten så är både transistor Q1:s och Q2:s respektive kollektorström lika med viloströmmen Icq:

$$I_{CO} = I_{C1} = I_{C2}$$
,

där CQ står för *quiescent collector current*, alltså kollektorström i vilopunkten:

• Antag att kollektorströmmen Icq i vilopunkten skall sättas till 1 mA:

$$I_{CO} = 1 \, mA$$

• Vid en matningsspänning V_{CC} på 20 V så bör då kollektorresistor R_C sättas till 10 k Ω , då

$$R_C = \frac{V_{CC}}{2I_{C2}} = \frac{V_{CC}}{2I_{CQ}} = \frac{20}{2*1m} = 10 \ k\Omega$$

• Emitterresistorer R_E kan dimensioneras utefter tumregeln att spänningsfallet över dem bör sättas till ca 220 mV:

$$R_E \approx \frac{220m}{I_{C1}} = \frac{220m}{I_{C2}}$$

• Eftersom kollektorströmmarna I_{C1} samt I_{C2} är satta till I_{C1} 1 mA i vilopunkten, så bör emitterresistorer R_E sättas till 220 Ω, då

$$R_E \approx \frac{220m}{I_{CO}} = \frac{220m}{1m} = 220 \,\Omega$$

• Strömmen lee genom strömspegeln är lika med summan av transistor Q1:s och Q2:s emitterströmmar le1 samt le2:

$$I_{EE} = I_{E1} + I_{E2}$$

• För enkelhets skull så försummas den lilla skillnaden mellan transistor Q1:s och Q2:s respektive emitterströmmar I_{E1} och I_{E2} samt I_{C1}:

 $I_{E1} \approx I_{C1}$

samt

$$I_{E2} \approx I_{C2}$$

Därmed kan strömmen I_{EE} genom strömspegeln approximeras till summan av transistor Q1:s och Q2:s kollektorströmmar I_{C1} samt I_{C2}:

$$I_{EE} \approx I_{C1} + I_{C2}$$

• Eftersom transistor Q1:s och Q2:s respektive kollektorström Ic1 samt Ic2 är satta till kollektorströmmen Icq i vilopunkten:

$$I_{CO} = I_{C1} = I_{C2}$$
,

så gäller att strömmen IEE kan approximeras till

$$I_{EE} \approx I_{C1} + I_{C2} = I_{CO} + I_{CO} = 2I_{CO}$$

• Eftersom kollektorströmmen Icq i vilopunkten är satt till 1 mA:

$$I_{CQ}=1 mA$$
,

så kan strömmen IEE genom strömspegeln approximeras till 2 mA, då

$$I_{EE} \approx 2I_{CO} = 2 * 1m = 2 mA$$

• Strömmen IEE är en kopia av referensströmmen IREF, som flödar genom strömspegelns referenskrets:

$$I_{EE} = I_{REF}$$

• Därmed kan referensströmmen I_{REF} approximeras till 2 mA, eftersom:

$$I_{REF} = I_{EE} \approx 2 \, mA$$

- Det är via referensströmmen I_{REF} som storleken på strömmen I_{EE} sätts, vilket avgör storleken på transistor Q1:s och Q2:s kollektorströmmar I_{C1} samt I_{C2}. I_{REF} sätts i sin tur genom att en lämplig storlek väljs på referensresistor R_{REF}.
- I enlighet med Ohms lag så gäller att referensströmmen IREF kan beräknas med formeln

$$I_{REF} = \frac{U_{REF}}{R_{REF}},$$

där U_{REF} är spänningsfallet över referensresistorn och R_{REF} är dess resistans.

• Formeln ovan kan transformeras till

$$R_{REF} = \frac{U_{REF}}{I_{REF}},$$

där referensströmmen IREF tidigare approximeras till 2 mA:

$$I_{REF}\approx 2\;mA$$

- Dock måste referensspänningen U_{REF} beräknas, vilket enkelt kan genomföras med Kirchhoffs spänningslag, från den negativa matningsspänningen V_{EE} upp till jord via referensresistor R_{REF}. Vi räknar då mot strömmens riktning, vilket medför att eventuella spänningsfall räknas som positiva (då strömmen flödar från plus till minuspolen). Under denna väg så passerar vi transistor Q4:s bas-emitterspänning U_{BE4}.
- Därmed gäller att

$$V_{EE} + U_{BE4} + U_{REF} = 0,$$

vilket kan transformeras till

$$U_{REF} = -V_{EE} - U_{BE4},$$

som är ekvivalent med

$$U_{REF} = -(V_{EE} + U_{BE4})$$

Därefter hade ett lämpligt värde kunnat beräknas på referensresistor RREF genom att sätta in värden i följande formel:

$$R_{REF} = -\frac{V_{EE} + U_{BE4}}{I_{REF}}$$

• Transistor Q4:s bas-emitterspänning U_{BE4} kan antas vara 0,65 V:

$$U_{BE4} = 0.65 V$$
,

vilket innebär att

$$R_{REF} = -\frac{V_{EE} + 0.65}{I_{REF}}$$

• Eftersom den positiva matningsspänningen V_{CC} är satt till 20 V, så kan vi anta att den negativa matningsspänningen V_{EE} är satt till -20 V:

$$V_{EE} = -20 V$$

Genom att sätta in värden i formeln ovan, så kan ett lämpligt värde för referensresistor RREF beräknas:

$$R_{REF} \approx -\frac{-20 + 0.65}{2m} = \frac{19.35}{2m} = 9.675 \text{ } k\Omega$$

• Närmaste värde i E12-serien är 10 k Ω , som därmed används:

$$R_{REF} = 10 k\Omega$$

Färdigdimensionerad differentialförstärkare.

Varför halveras förstärkningen när bara en utgång används?

 Vi analyserar differentialförstärkaren till höger, så kan halveringen av differentialförstärkningen demonstreras. Matningsspänningen Vcc/VEE är satt till 20 V:

 $V_{CC} = 20 V$

samt

$$V_{EE} = -20 V,$$

kollektorströmmarna Ic1 samt Ic2 är satta till IcQ = 1 mA i vilopunkten:

$$I_{CO} = 1 \, mA$$

och kollektorresistor R_C är satt till 10 kΩ:

• Genom att beräknas med Kirchhoffs spänningslag från den positiva matningsspänningen V_{CC} ned till utgången via U_{UT}, så kan följande formel härledas:

$$V_{CC} - R_C I_C - U_{UT} = 0,$$

vilket kan transformeras till

$$U_{UT} = V_{CC} - R_C I_C$$

• I vilopunkten / i *Common Mode*, då kollektorströmmar I_{C1} och I_{C2} är lika stora, så gäller då att utspänningen U_{UT,BIAS} hamnar på 10 V, då

$$U_{UT.CM} = V_{CC} - R_C I_{CO} = 20 - 10k * 1m = 10 V$$

- Antag att inspänningen U_{IN1} ökar något, medan U_{IN2} fortfarande är samma. Då kommer I_{C1} öka något, medan I_{C2} kommer minska lika mycket.
- Låt oss anta att I_{C1} ökade med mängden $\Delta I = 0.2$ mA:

$$I_{C1} = I_{CO} + \Delta I,$$

alltså till 1,2 mA, då

$$I_{C1} = 1m + 0.2m = 1.2 \, mA$$

• Då minskar Ic2 lika mycket, alltså till 0,8 mA, då

$$I_{EE} \approx I_{CO} + I_{CO} = 2I_{CO}$$

samt

$$I_{EE} \approx I_{C1} + I_{C2}$$

vilket innebär att

$$I_{C2} \approx I_{EE} - I_{C1}$$
,

som kan transformeras till

$$I_{C2} \approx 2I_{CO} - (I_{CO} + \Delta I) = I_{CO} - \Delta I$$

Därmed gäller att

$$I_{C2} = 1m - 0.2m = 0.8 \, mA$$

• Notera att summan IEE av de två strömmarna, alltså strömmen som flödar genom strömspegeln mellan ingångstransistorernas emittrar, fortfarande är 2,0 mA, vilket den alltid kommer vara:

$$I_{EE} \approx I_{C1} + I_{C2} = 1.2m + 0.8m = 2.0 \text{ mA}$$

• I detta fall, så kommer differentialförstärkarens utspänning U_{UT,DM} istället bli

$$U_{UT.DM} = V_{CC} - R_C I_{C2} = 20 - 10k * 0.8m = 12 V$$

• Därmed ser vi att utsignalen U∪T ökade med 2 V jämfört med i vilopunkten, då

$$\Delta U_{UT} = \Delta U_{UT,DM} - \Delta U_{UT,CM} = 12 - 10 = 2 V$$

 $U_{UT,DM} = V_{CC} - R_C I_{C2},$

där

 $I_{C2} = I_{CO} - \Delta I,$

vilket innebär att

 $U_{UT.DM} = V_{CC} - R_C (I_{CO} - \Delta I)$

$$\Delta U_{UT} = U_{UT,DM} - U_{UT,CM},$$

vilket är ekvivalent med

 $\Delta U_{UT} = V_{CC} - R_C (I_{CQ} - \Delta I) - [V_{CC} - R_C I_{CQ}],$

som kan transformeras till

$$\Delta U_{UT} = V_{CC} - R_c \big(I_{CQ} - \Delta I\big) - V_{CC} + R_c I_{CQ}$$

Formeln ovan kan transformeras till

$$\Delta U_{UT} = R_C I_{CO} - R_C (I_{CO} - \Delta I)$$

• Genom att bryta ut kollektorresistor R_C, så kan formeln ovan transformeras till

 $\Delta U_{UT} = R_C (I_{CO} - I_{CO} + \Delta I),$

vilket är ekvivalent med

$$\Delta U_{IIT} = R_C \Delta I$$

• Vi ser då att strömförändringen på utgången är lika med ΔI, då

$$\frac{\Delta U_{UT}}{R_C} = \Delta I$$

Insignaler i Common Mode:

$$U_{IN1,CM} - U_{BE1} - R_E I_{CQ} - R_{EE} I_{EE} \approx 0,$$

vilket kan transformeras till

$$U_{IN1,DM} \approx U_{BE1} + R_E I_{CQ} + R_{EE} I_{EE},$$

där

$$I_{EE}\approx I_{CQ}+I_{CQ}=2I_{CQ},$$

vilket innebär att

$$U_{IN1,CM} \approx U_{RE1} + R_E I_{CO} + 2R_{EE} I_{CO}$$

• Genom att bryta ut viloströmmen Ico, så kan formeln ovan transformeras till

$$U_{IN1,CM} \approx U_{BE1} + (R_E + 2R_{EE})I_{CO}$$

• För insignalen U_{IN2} på höger sida av differentialförstärkaren gäller istället att

$$U_{IN2,CM} - U_{BE2} - R_E I_{CQ} - R_{EE} I_{EE} \approx 0,$$

vilket kan transformeras till

 $U_{IN2,CM} \approx U_{BE2} + R_E I_{CQ} + R_{EE} I_{EE}$

där

 $I_{EE} \approx I_{CO} + I_{CO} = 2I_{CO},$

vilket innebär att

$$U_{IN2,CM} \approx U_{BE2} + R_E I_{CO} + 2R_{EE} I_{CO}$$

• Genom att bryta ut viloströmmen Icq, så kan formeln ovan transformeras till

$$U_{IN2,CM} \approx U_{BE2} + (R_E + 2R_{EE})I_{CO}$$

• Därmed gäller att

$$U_{IN,CM} = U_{IN1,CM} - U_{IN2,CM},$$

vilket är ekvivalent med

$$U_{IN,CM} \approx U_{BE1} + (R_E + 2R_{EE})I_{CQ} - [U_{BE2} + (R_E + 2R_{EE})I_{CQ}]$$

som kan transformeras till

$$U_{IN,CM} \approx U_{BE1} + (R_E + 2R_{EE})I_{CO} - U_{BE2} - (R_E + 2R_{EE})I_{CO}$$

där

$$U_{BE1}=U_{BE2}$$
,

vilket innebär att

$$U_{IN.CM} \approx (R_E + 2R_{EE})I_{CO} - (R_E + 2R_{EE})I_{CO}$$

• Genom att bryta ut viloströmmen Icq ur hela uttrycket ovan, så kan formeln transformeras till

 $U_{IN,CM} = (R_E + 2R_{EE} + R_E - 2R_{EE})I_{CQ},$

vilket kan förenklas till

$$U_{IN,CM} = 2R_E I_{CO}$$

Insignaler Differential Mode:

$$U_{IN1|DM} - U_{RE1} - R_E I_{C1} \approx 0,$$

vilket kan transformeras till

$$U_{IN1.DM} \approx U_{BE1} + R_E I_{C1}$$
,

där

$$I_{C1} = I_{CO} + \Delta I_{I}$$

vilket innebär att

$$U_{IN1,DM} \approx U_{BE1} + R_E (I_{CO} + \Delta I)$$

 $U_{IN2,DM} \approx U_{BE2} + R_E I_{C2}$,

där

$$I_{C2} = I_{CO} - \Delta I,$$

vilket innebär att

$$U_{IN2,DM} \approx U_{BE2} + R_E (I_{CO} - \Delta I)$$

Därmed gäller att

$$U_{IN,DM} = U_{IN1,DM} - U_{IN2,DM},$$

vilket är ekvivalent med

$$U_{IN,DM} \approx U_{BE1} + R_E (I_{CO} + \Delta I) - [U_{BE2} + R_E (I_{CO} - \Delta I)],$$

som kan transformeras till

$$U_{IN,DM} = U_{BE1} + R_E (I_{CQ} + \Delta I) - U_{BE2} - R_E (I_{CQ} - \Delta I)$$

där

$$U_{BE1}=U_{BE2}$$

vilket innebär att

$$U_{IN,DM} = R_E (I_{CO} + \Delta I) - R_E (I_{CO} - \Delta I)$$

• Genom att bryta ut emitterresistor R_E ur hela uttrycket, så kan formeln ovan transformeras till

 $U_{IN,DM} = R_E (I_{CQ} + \Delta I - I_{CQ} + \Delta I),$

vilket kan förenklas till

$$U_{IN,DM} = 2R_E \Delta I$$

• Därmed gäller att

$$\Delta U_{IN} = U_{IN,DM} - U_{IN,CM} = 2R_E \Delta I - 2R_E I_{CO},$$

vilket kan transformeras till

$$\Delta U_{IN} = 2R_E (\Delta I - I_{CO}),$$

vilket är ekvivalent med

$$\Delta U_{IN} = -2R_E (I_{CO} - \Delta I)$$

$$\Delta U_{IN} = -2 * 0.22k(1m - 0.2m) = -0.352 V$$

$$\frac{\Delta U_{UT}}{\Delta U_{IN}} = \frac{R_C \Delta I}{-2R_E (I_{CO} - \Delta I)}$$

$$\frac{\Delta U_{UT}}{\Delta U_{IN}} = \frac{2}{-0.352} \approx -5.68$$

- Eftersom vi endast har en utgång och jämför denna mot jord så beräknas spänningsskillnaden i det två fallen genom att beräkna differensen av utsignalerna:
- Strömförändringen på utgången blir då lika med:

$$\Delta I_{UT} = \frac{\Delta U_{UT}}{R_C} = \frac{6,24 - 5,3}{4,7k} = \frac{0,94}{4,7k} = 0,2 \text{ mA}$$

 Notera att strömförändringen på utgången är lika med strömförändringen på ena sidan, strömmen förändrades ju 0,2 mA på de två sidorna. Om vi istället hade använt en differentialförstärkare med två utgångar, såsom figuren till höger och återigen antar att kollektorströmmen I_{C1} på den vänstra sidan av differentialförstärkaren ökar till 1,2 mA:

$$I_{C1} = I_{CO} + \Delta I = 1m + 0.2m = 1.2 \text{ mA}$$

så hade potentialen $V_{X,DM}$ på den vänstra sidan av differentialförstärkaren i *Differential Mode* blivit 8 V, då

$$V_{XDM} = V_{CC} - R_C(I_{CO} + \Delta I) = 20 - 10k * 1,2m = 8 V$$

• I vilopunkten så är potentialen V_{X,CM} lika med 10 V, då

$$V_{CC} - R_C I_{CO} - V_{X,CM} = 0,$$

vilket kan transformeras till

$$V_{X.CM} = V_{CC} - R_C I_{CO}$$

• Genom att sätta in värden, så ser vi att V_{X,CM} hamnar på 10 V, då

$$V_{YCM} = 20 - 10k * 1m = 10 V$$

• Spänningsförändringen ΔV_X på differentialförstärkarens vänstra utgång blir därmed lika med -2 V, då

$$\Delta V_X = V_{X.DM} - V_{X.CM} = 8 - 10 = -2 V$$

• Strömförändringen på den vänstra utgången blir då lika med:

$$\Delta I_{UT1} = \frac{\Delta U_{UT1}}{R_C} = \frac{4,36 - 5,3}{4.7k} = \frac{-0,94}{4.7k} = -0,2 \text{ mA}$$

• Spännings- och strömförändringen på den högra sidan hade blivit samma som i föregående exempel när vi utförde beräkningar med en utgång. Nu betecknar vi dock dessa med ΔI_{UT2} och ΔU_{UT2} , för att förtydliga vilka signaler som är vilka:

$$I_{C2} = I_{CO} - \Delta I = 1m - 0.2m = 0.8 \text{ mA}$$

så hade potentialen V_{Y,DM} på den högra sidan av differentialförstärkaren i Differential Mode blivit 12 V, då

$$V_{Y,DM} = V_{CC} - R_C (I_{CO} - \Delta I) = 20 - 10k * 0.8m = 12 V$$

• I vilopunkten så är potentialen V_{Y,CM} lika med 10 V, då

$$V_{CC} - R_C I_{CO} - V_{YCM} = 0$$

vilket kan transformeras till

$$V_{VCM} = V_{CC} - R_C I_{CO}$$

Genom att sätta in värden, så ser vi att V_{Y,CM} hamnar på 10 V, då

$$V_{Y,CM} = 20 - 10k * 1m = 10 V$$

• Spänningsförändringen ΔV_Y på differentialförstärkarens vänstra utgång blir därmed lika med 2 V, då

$$\Delta V_Y = V_{Y,DM} - V_{Y,CM} = 12 - 10 = 2 V$$

Differentialförstärkare med två utgångar i Differential Mode, där inspänningen U_{IN1} överstiger U_{IN2}.

Den totala spänningsförändringen ΔU_{UT} mellan differentialförstärkarens utgångar hade alltså blivit -4 V, då

$$\Delta U_{IIT} = \Delta V_x - \Delta V_y = -2 - 2 V = -4 V$$

- Med två utgångar blev alltså spänningsförändringen ΔU_{UT} dubbelt så hög jämfört med en utgång, vilket medför dubbelt så hög differentialförstärkning G_{DM} (samt Common Mode-förstärkning G_{CM}) för samma spänningsskillnad U_{IN1} – U_{IN2} mellan insignalerna.
- Den totala strömförändringen på utgångarna hade blivit

$$\Delta I_{UT} = \Delta I_{UT2} - \Delta I_{UT1} = 0.2m - (-0.2m) = 0.4 \text{ mA}$$

- Även strömförstärkningen blev dubbelt så hög med två utgångar.
- Detta innebär att differentialförstärkare med en utgång har halva förstärkningen jämfört med två utgångar. Då hade strömförändringen på utgången istället blivit 0,4 mA, vilket hade inneburit dubbelt så hög förstärkning.
- Som tidigare nämnts så är det möjligt att få dubbelt så hög förstärkning trots att man använder en utgång ifall man använder en strömspegel istället för en drainresistor.

 Motsvarande MOSFET-variant av differentialförstärkaren (med en utgång) har differentialförstärkningen

$$G_{DM} = -\frac{g_m R_D}{2}$$

- Jämfört med formeln för BJT-varianten ovan så har R_C ersatts med drainresistorn R_D och den inbyggda emitterresistansen r_e har blivit ersatt med inversen till transkonduktansen g_m, dvs. 1/g_m:
- Common Mode-förstärkningen, dvs. förstärkningen av signaler som är lika på de två ingångarna såsom brus, kan beräknas med följande formel:

$$G_{CM} = -\frac{R_C}{2(R_{EE} + r_e)'}$$

där R_{EE} är strömgeneratorns utresistans.

Motsvarande MOSFET-variant av differentialförstärkaren (med en utgång) har Common Mode-förstärkningen

$$G_{CM} = -\frac{R_D}{2(R_{SS} + \frac{1}{g_m})}$$

• Notera återigen att vi också bytte namn på strömgeneratorns resistans från R_{EE} till R_{SS}. Detta beror på att EE står för emitter och SS står för source. På MOSFET-transistorer så har emittern blivit ersatt av source, så därav namnbytet.

- Anmärkning: Den halvering av differentialförstärkningen som sker på grund av att endast en utgång används kan elimineras genom att vi ersätter kollektorresistorn med en strömspegel, som medför samma förstärkning som med två utgångar, se nästa stycke för mer information. Dessutom så kommer förstärkningen bli mycket högre, eftersom transistorernas utresistanser är mycket högre än kollektorresistorn. Därmed så kan förstärkningen uppnå en faktor -5000 eller mer. Dock måste feedback användas och inresistansen på efterföljande steg eller last måste vara mycket hög för att inte förstärkningen skall minska.
- Om emitterresistorer hade använts så hade vi också fått ändra om formeln ovan, genom att addera resistansen R_E i täljaren.
- Differentialförstärkningen med en utgång och emitterresistorer blir lika med

$$G_{DM} = -\frac{R_C}{2(R_E + r_e)},$$

medan Common Mode-förstärkningen blir lika med

$$G_{CM} = -\frac{R_C}{2(R_{EE} + R_E + r_e)},$$

 Motsvarande MOSFET-variant av differentialförstärkaren (med en utgång) har då differentialförstärkningen

$$G_{DM} = -\frac{R_D}{2(R_S + \frac{1}{g_m})}$$

Och Common Mode-förstärkningen

$$G_{CM} = -\frac{R_D}{2(R_{SS} + R_S + \frac{1}{g_m})}$$

Common Mode-förstärkningen applicerad på MOSFET-varianter

Resultatet ovan kan också appliceras på MOSFET-transistorer. Vi behöver endast byta
ut kollektorresistorn R_C mot drainresistorn R_D samt den inbyggda emitterresistansen r_e
mot inversen till transkonduktansen g_m:

$$G_{CM} = -\frac{R_D}{2R_{SS} + \frac{1}{q_m}},$$

där g_m är MOSFET-transistorns transkonduktans (MOSFET-transistorns motsvarighet till den inbyggda emitterresistansen, fast inverterat) och R_D är drainresistorns resistans.

 Notera att vi också bytte namn på strömgeneratorns resistans från R_{EE} till R_{SS}. Detta beror på att EE står för emitter to emitter och SS står för source-source . På MOSFETtransistorer så har emittern blivit ersatta av source, därav namnbytet.

Differentialförstärkare med emitterresistorer/sourceresistorer

- I andra förstärkarsteg så behövde vi emitterresistorerna för att förstärkningen skulle vara jämn vid olika temperaturer, då re varierar stort mellan olika transistorer. Även på differentialförstärkaren är det vanligt att använda emitterresistorer för att reducera olinjariteter och därmed minska distorsion, särskilt inom audioförstärkare.
- Däremot så fungerar differentialförstärkaren okej även utan emitterresistorer, eftersom den ändå är temperaturstabil. Detta beror på att det nu finns två transistorer och de har samma temperatur hela tiden.
- Även om spänningen mellan transistorernas baser och emittrar förändras med temperaturen så kommer inte detta påverka deras kollektorströmmar, vilket medför att differentialförstärkarens utspänning inte förändras.
- Om man av någon anledning vill begränsa förstärkningen så kan emitterresistorer användas, precis som i ett GE-steg, se figuren till höger.
- Om emitterresistorer används måste formlerna för differentialförstärkning och Common Mode-förstärkning ovan modifieras, genom att man måste räkna med emitterresistansen R_E i täljaren.
- Med emitterresistorer kan differentialförstärkningen beräknas med formeln:

$$G_{DM} = -\frac{R_C}{R_E + r_e},$$

där R_C är kollektorresistorn på höger sida av differentialförstärkaren, R_E är emitterresistorn på en av sidorna och r_e är den inbyggda emitterresistansen på transistorerna på en av ingångarna.

Inresistans för enkel BJT-differentialförstärkare i Differential Mode och Common Mode

• Inresistansen på de två transistorernas basar blir i Differential Mode lika med resistansen sedd från emittern multiplicerad med transistorns strömförstärkningsfaktor h_{FE}, precis som på ett GE-steg. Eftersom inga emitterresistorer finns så kan inresistansen enkelt beräknas:

$$R_{IN} = 2 * r_e * h_{FE}$$

- Inresistansen på respektive transistor kommer vara lika olika vid olika inspänningen, eftersom kollektorströmmarna då förändras, vilket förändrar den inbyggda emitterresistansen re.
 Dessutom kan vi inte garantera att transistorernas strömförstärkningsfaktorer är samma. För olika exemplar av samma transistormodell så kan hfe ligga mellan 50–250 för varje transistor.
- Inresistansen på de två BJT-transistorerna i Differential Mode kan alltså beräknas med följande formel:

$$R_{IN,DM} = 2 * r_e * h_{FE}.$$

- där r_e är transistorernas respektive inbyggda emitterresistans och h_{FE} är transistorns strömförstärkningsfaktor.
- Som vi ser ovan så kommer inresistansen bli ett problem om BJT-transistorer används. Om vi antar att kollektorströmmarna alltid varierar runt 1 mA, exempelvis mellan 0,5–1,5 mA, så kan vi anta att r_e blir 25 Ω , eftersom

$$r_e = \frac{25}{I_C(mA)} \approx \frac{25}{1} = 25 \,\Omega$$

• Om vi antar att h_{FE} är 100 så blir därmed inresistansen på respektive transistor låg, på bara några $k\Omega!$

$$R_{IN,DM} = r_e * h_{FE} \approx 25 * 100 = 2.5 k\Omega$$

• Helst hade vi behövt inresistans på några GΩ, men åtminstone MΩ. Detta kan vi enkelt lösa genom att ersätta transistorerna på ingången med MOSFET-transistorer, eller placera sourceföljare framför differentialförstärkarens ingångar.

- I Common Mode måste vi räkna med resistansen R_{EE}, eftersom den inte blir kancellerad som i Differential Mode. Vi kan därför använda samma småsignalschema som vi använde för härledning av förstärkningsfaktorn i Common Mode. Ignorera att en kollektorresistor är utritad istället för den övre strömspegelns transistorer, då detta inte spelar någon roll för inresistansen.
- För att beräkna inresistansen i Common Mode så behöver vi bara beräkna på en av ingångarna. Inresistansen kommer vara samma på de två ingångarna. Vid jämvikt så kommer samma kollektorström flöda på de båda sidorna, vilket medför att rel och rel blir lika stora:

$$I_{C1} = I_{C2} = I_C \rightarrow r_{e1} = \frac{25}{I_{C(mA)}} = r_{e2}$$

 $\rightarrow r_{e1} = r_{e2} = r_e$

• Samma formel gäller då för de båda ingångarna. Dock får vi ha i åtanke att de strömmen genom resistansen R_{EE} är dubbelt så stor som I_{C2} , vilket vi återigen förenklar genom att låtsas att strömmen I_{C2} flödar genom resistansen $2R_{EE}$.

Detta medför att vi får räkna med

$$R_{EE} * I_{EE} = R_{EE} * 2I_C = 2R_{EE} * I_C$$

när vi beräknar inresistansen per ingång. Vi kan därmed rita ut det förenklade schemat nedan. Där ser vi att det ser ut som ett GE-steg med en emitterresistor 2R_{EE}, som är lika med strömspegelns utresistans.

• Inresistansen på transistorernas basar (en av dem) är ungefär lika med all resistans från emittern samt $2R_{\text{EE}}$ multiplicerat med transistorns strömförstärkningsfaktor h_{FE} .

$$R_{IN,CM} \approx 2 * (r_e + 2R_{EE})h_{FE}$$

 För att härleda det exakta formeln så måste vi ha i åtanke att kollektorströmmen och emitterströmmen inte är exakta lika stora, eftersom emitterströmmen är lika med summan av kollektorströmmen och den mycket mindre basströmmen. Dock är de nästan identiska, vilket medför att denna skillnad brukar försummas:

$$I_E = I_C + I_B,$$

där

$$I_C = I_B * h_{FE},$$

vilket medför att

$$I_E = I_C + I_B = I_B * h_{FE} + I_B = I_B (h_{FE} + 1)$$

- I kretsen till höger så flödar emitterströmmen I_{E2} genom resistansen 2R_{EE}, medan strömmen I_{C2} flödar genom r_{e2}. Eftersom vi utgår från basströmmen för beräkningen av inresistansen så måste vi multiplicera med en faktor h_{FE} för kollektorströmmen och en faktor h_{FE} + 1 för emitterströmmen, se Appendix F för mer ingående förklaringar av beräkning av inresistansen.
- Därför så blir det exakta formeln för inresistansen i Common Mode lika med:

$$R_{IN,CM} = 2[r_e * h_{FE} + 2R_{EE}(h_{FE} + 1)]$$

• Formeln ovan gäller för en av ingångarna. Summan av dem är lika med den totala inresistansen för en av ingångarna.

• Notera i formeln ovan att inresistansen i Common Mode är bra, även med BJT-transistorer. Om vi använder en förbättrad Kaskadkopplad strömspegel så kommer inresistansen i Common Mode ligga i området GΩ, precis vad vi önskar. Men eftersom inresistansen i Differential Mode är så låg så bör vi ända använda MOSFET-transistorer på ingångarna.

Differentialförstärkaren med MOSFET-ingångar för ökad inresistans

- Som vi såg tidigare så medför BJT-transistorer på differentialförstärkarens ingångar att inresistansen i Differential Mode blir väldigt låg, vilket inte är bra. Utan emitterresistorer så kan vi räkna med att inresistansen då hamnar omkring några k Ω , men vi behöver helst $G\Omega$, åtminstone $M\Omega$, för att inte riskera en rad nackdelar, se nedan.
- För att öka differentialförstärkarens inresistans så kan BJT-transistorerna på ingångarna ersättas med MOSFET-transistorer, se figuren nedan. MOSFET-transistorernas höga inresistans har flera fördelar, bland annat lägre strömförbrukning, ingen påverkan av utresistanser från signalgeneratorer eller tidigare steg samt att vi inte behöver oroa oss för att inströmmarna blir olika stora, vilka kan orsaka så kallad offset, dvs. att utsignalens värde blir fel på grund av att ingångsströmmarna på de två ingångarna är olika stora. Om MOSFET-transistorer används så blir inströmmarna så små att skillnaden blir försumbar och ingen märkbar offset uppstår.
- Den främsta nackdelen med att använda MOSFET-transistorer på ingångarna är att förstärkningen kommer bli lägre än om
 vi hade använt BJT-transistorer. Med strömspegel som last så kan förstärkningsfaktorn uppnå -2000 eller mer med BJTtransistorer och omkring -200 eller mer med MOSFET-transistorer. Dock kan vi enkelt öka förstärkningen i efterföljande
 steg, som vanligtvis är en spänningsförstärkare, exempelvis ett GE-steg eller ett GS-steg.

• Om BJT-transistorer används på ingångarna så kan skillnaden mellan strömmarna på de två ingångarna bli så stor att utsignalen påverkas så att vi får en avvikelse, en så kallad offset. Som exempel, om inspänningen sätts till 0 V och utspänningen blir 0,2 V istället för 0 V så har vi en offset på 0,2 V, orsakad av strömskillnaden mellan de två ingångarna. Då måste vi korrigera detta med en extern resistor på en av ingångarna så att ingångsresistanserna blir lika stora. Då blir inströmmarna lika stora och offseten elimineras. Dock så kanske det inte är möjligt att få tag på en resistor som är lika med inresistansen på den andra ingången. Då kan man testa att parallellkoppla två resistorer som är lika stora som de två

resistorerna på den andra ingången eller acceptera en liten offset.

Det bästa och effektivaste sättet att eliminera offset är dock, som tidigare nämndes, att använda MOSFET-transistorer på
ingångarna, som på grund av sina höga inresistans medför att ingångsströmmen blir så liten att offseten blir försumbar.
 Nästan alla moderna OP-förstärkare är därför konstruerade med MOSFET-transistorer på ingångssteget.

Härledning av utresistansen på en enkel BJT-differentialförstärkare i Differential Mode

- För att beräkna utresistansen på differentialförstärkaren till höger så kortsluter vi återigen in- och utspänningen och placerar en spänningskälla U_X på utgången.
- Därefter ritar vi ut småsignalschemat för GE-steget, se den vänstra figuren nedan.
- Vi noterar återigen att kollektorresistorn R_C och transistorns utresistans r_o är parallellkopplade. Därför ersätter vi dessa med en ersättningsresistans som är lika med $R_C//r_o$. Vi ritar sedan om småsignalschemat till det högra nedan.

- I denna uppgift skall vi börja med att göra några förenklingar, se den högra figuren ovan:
- När emitterresistor saknas så blir bas-emitterspänningen UBE lika med noll, vilket man lätt kan visa med Kirchhoffs spänningslag. Vi börjar från toppen av basen och går ned till emittern, dvs. från jord till jord:

$$-U_{BE}-0=0\to U_{BE}=0$$

• Eftersom U_{BE} är lika med noll så blir också strömmen $\frac{U_{BE}}{r_e}$ lika med noll:

$$U_{BE} = 0 \rightarrow \frac{U_{BE}}{r_e} = \frac{0}{r_e} = 0$$

• Därefter utför vi beräkningarna. Utresistansen beräknas med följande formel:

$$R_{UT} = \frac{U_X}{I_X}$$

Vi kör Kirchhoffs spänningslag för att härleda formel för spänningen Ux:

$$U_x - R_C / / r_o * I_0 = 0$$

$$\to U_x = R_C / / r_o * I_0$$

- Vi använder Kirchhoffs strömlag för att härleda en formel för strömmen Io.
- Som synes så är strömmen I_X lika med summan av strömmarna I_0 och $\frac{U_{BE}}{r_e}$:

$$I_x = I_0 + \frac{U_{BE}}{r_e} \to I_0 = I_x - \frac{U_{BE}}{r_e}$$

 Vi såg tidigare att $\frac{U_{BE}}{r_e}$ är lika med noll när emitterresistor saknas:

$$\frac{U_{BE}}{r_e}=0$$

• Därför blir strömmarna Ix och Io lika stora:

$$\rightarrow I_x = I_0 + \frac{U_{BE}}{r_e} = I_0 + 0 = I_0$$

• Vi kan därför byta ut strömmen I₀ mot I_X i formeln för spänningen U_X ovan:

$$U_x = R_C / / r_o * I_0 = R_C / / r_o * I_X$$

• Därefter kan vi beräkna utresistansen:

$$R_{UT} = \frac{U_X}{I_X} = \frac{R_C//r_o * I_X}{I_X} = R_C//r_o$$

- Utan emitterresistor så blir alltså utresistansen lika med parallellkopplingen bestående av kollektorresistorn och transistorns utresistans, dvs. Rc//ro.
- Vi kan också anta att transistorns utresistans r₀ är mycket större än kollektorresistorn R_C. Då kan utresistansen försummas:

$$R_C//r_o \approx R_C$$

- Det är lätt att komma ihåg att transistorns utresistans utan emitterresistor är ungefär lika med kollektorresistorn Rc.
- För GE-steg u så gäller alltså följande formel för utresistansen i Differential Mode:

$$R_{UT} = R_C / / r_o \approx R_C$$

 Utresistansen hade blivit samma om emitterresistor användes. Det är endast om en last hade placerats på utgången som utresistansen hade blivit lika med

$$R_{UT,LAST} = R_C / / R_L / / r_o$$

där R_L är lastens resistans. Detta formel kan sedan avrundas till

$$R_{UT,LAST} \approx R_C//R_L$$

Härledning av utresistansen i Common Mode

• För att beräkna utresistansen i Common Mode så utför vi samma beräkningar som i Differential Mode, med skillnaden att vi måste ha resistorn Ree eller motsvarande strömgenerator i åtanke.

• Vi utför beräkningar på en av ingångarna och måste ha i åtanke att de två ingångarna nu kommer dela på resistansen R_{EE}.

Dock får vi komma ihåg att det kommer flöda dubbelt så hög ström genom R_{EE} som genom r_{e2} och R_C, eftersom I_{EE} = I_{C1} + I_{C2} = 2 * I_C, där strömmen genom R_{EE} är lika med

$$I_{EE}=I_{C1}+I_{C2},$$

där

$$I_{C1} = I_{C2} \rightarrow I_{EE} = 2I_C$$

• Detta medför att våra beräkningar direkt kan förenklas att göra följande observation:

$$R_{EE} * I_{EE} = R_{EE} * 2I_C = 2R_{EE} * I_C$$

• Vi beräknar därmed med R_{EE} för varje sida nedan, se figuren nedan. Som synes så kan R_{EE} tänkas fungera som en emitterresistor:

- Beräkningarna för utresistansen i Common Mode är ungefär samma som för utresistansen i Differential Mode, med skillnaden att vi har en emitterresistor R_{EE}. I beräkningen så låtsas vi att det inte är något annat än en helt vanlig emitterresistor.
- Vi kan därmed rita ut det ekvivalenta schemat för att beräkna utresistansen R_{UT}:

• Notera att resistansen r_{π} och resistansen $2R_{EE}$ också är parallellkopplade, eftersom de båda är anslutna till samma punkt på ena sidan och båda är anslutna till jord på andra sidan. Därmed är spänningsfallet över de båda resistanserna samma. Vi ersätter därför dessa resistanser med en ersättningsresistans som är lika med $2R_{EE}//r_{\pi}$, som vi placerar i emittern. Därefter ritar vi om schemat till det vänstra nedan.

 För att underlätta beräkningen av utresistansen så inför vi beteckningarna R₁ och R₂ i småsignalschemat, se den högra figuren ovan.

Följande gäller för dessa storheter:

$$R_1 = R_C / / r_o$$

$$R_2 = 2R_{EE}//r_{\pi}$$

• Eftersom ingången är kortsluten så medför det bas-emitterspänningen är lika med noll och att transistorn är strypt. Detta förenklar våra beräkningar, eftersom spänningsfallet över emittern (R₂ i detta fall) är lika med noll:

$$U_{BE}=0$$

• Därefter utför vi beräkningarna. Utresistansen beräknas med följande formel:

 Vi kör Kirchhoffs spänningslag för att härleda formel för spänningen Ux:

$$U_x - R_1 * I_0 - R_2 * I_x = 0$$

$$\to U_x = R_1 * I_0 + R_2 * I_x$$

- Vi använder Kirchhoffs strömlag för att härleda en formel för strömmen I₀.
- Som synes så är strömmen I_X lika med summan av strömmarna I_0 och $\frac{U_{BE}}{r_e}$:

$$I_x = I_0 + \frac{U_{BE}}{r_e} \to I_0 = I_x - \frac{U_{BE}}{r_e}$$

• Eftersom bas-emitterspänningen UBE är lika med noll så ser vi att strömmen I₀ är lika med Iχ:

$$I_0 = I_x - \frac{U_{BE}}{r_e} = I_x - \frac{0}{r_e} = I_x - 0 = I_x$$

 $\to I_0 = I_x$

Dessutom så blir spänningsfallet över emittern, dvs. resistor R₂ ovan, lika med noll:

$$-U_{BE} - R_2 I_X = 0 \rightarrow U_{BE} = -R_2 I_X = 0$$
$$\rightarrow R_2 I_X = 0$$

 $\bullet \quad \text{D\"{a}rmed s\'{a} kan vi bryta ut eliminera detta sp\"{a}nningsfall ur formeln f\"{o}r sp\"{a}nningen \, U_X \, ovan: \\$

$$\rightarrow U_x = R_1 * I_0 + R_2 * I_x = R_1 * I_0 + 0$$

$$\rightarrow U_x = R_1 I_0$$

• Vi såg också ovan att strömmen I₀ är lika med I_x så vi kan ersätta strömmen I₀ med I_x i formeln ovan:

$$I_0 = I_x$$

$$\rightarrow U_{x} = R_{1}I_{x}$$

• Vi kan därefter härleda en formel för utresistansen:

$$R_{UT} = \frac{U_X}{I_X} = \frac{R_1 I_X}{I_X} = R_1$$

• Därefter ersätter vi beteckningen R₁ med den egentliga storheten:

$$R_1 = R_C / / r_o$$

• Därmed så är utresistansen i Common Mode lika med

$$R_{UT} = R_C / / r_o$$
,

som kan avrundas till

$$R_{UT} \approx R_C$$

• Alltså är utresistansen samma i Differential Mode som Common Mode. Den hade också varit samma om emitterresistorer användes. Det är endast om en last hade placerats på utgången som utresistansen hade blivit lika med

$$R_{UT,LAST} = R_C //R_L //r_o,$$

där R_L är lastens resistans. Denna formel kan sedan avrundas till

$$R_{UT,LAST} \approx R_C //R_L$$

4.4.x - Dimensionering av en enkel differentialförstärkare

• Dimensionering av differentialförstärkaren görs precis som GE-steget i den så kallad vilopunkten, dvs. utan insignaler till förstärkarsteget.

- Precis som för GE-steget så bör kollektorresistorerna dimensioneras så att utspänningarna U_{IN1} och U_{IN2} är lika med halva matningsspänningen utan insignaler på ingångarna. Detta görs för att sätta utsignalen i mittpunkten mellan det högsta och det minsta värdet som utsignalen kan anta.
- För differentialförstärkaren så är mittpunkten mitt emellan den positiva matningsspänningen V_{CC} och jord (0 V), vilket i
 exemplet ovan är mittpunkten mellan 0 och 20 V, dvs. 10 V. Resten av spänningen (V_{EE} upp till jord) skall falla över
 strömspegeln.
- Vi sätter därför de två utsignalerna till halva den positiva matningsspänningen i vilopunkten, dvs. 10 V:

$$U_{UT1} = U_{UT2} = \frac{V_{CC}}{2} = \frac{20}{2} = 10 \text{ V}$$

• Ett lämpligt värde på kollektorresistorerna beräknar vi sedan med Ohms lag på valfri sida av differentialförstärkaren. Det spelar ingen roll vilken sida vi väljer, för de är identiska. Dock väljer vi höger i detta fall. Eftersom 10 V av de 20 V vi fick från den positiva matningsspänningen togs av U_{UT2} så hamnar resten, dvs. 10 V, över kollektorresistorn. Dela detta värde med kollektorströmmen i vilopunkten (1 mA) så ser vi att vi bör använda kollektorresistorer vars resistans är lika med 10 kΩ:

$$R_C = \frac{V_{CC} - U_{UT2}}{I_{C2}} = \frac{20 - 10}{1m} = 10 \ k\Omega$$

 Referensresistorn R_{REF} måste väljas ovan så att rätt ström I_{EE} flödar genom strömgeneratorn. Om vi antar att vi vill att strömmen på de två sidorna av differentialförstärkaren i jämvikt skall vara 1,0 mA var så skall strömmen I_{EE} genom strömgeneratorn vara lika med 1,0m + 1,0m = 2,0 mA. Därför så hade ett lämpligt värde på referensresistorn kunnat beräknas med formeln

$$R_{REF} = \frac{|V_{EE}| - 0.7}{I_{FF}},$$

där |V_{EE}| är absolutbeloppet av den negativa matningsspänningen och 0,7 V är spänningsfallet mellan strömgeneratorns

(den högra transistorns) bas och emitter.

- Av de -20 V vi får från den negativa matningsspänningen så kommer alla dessa 20 V, förutom de 0,7 V som faller över området mellan strömgeneratorns bas och emitter, falla över referensresistorn. Det kommer alltså falla 19,3 V över referensresistorn.
- Vi kan också visa detta med Kirchhoffs spänningslag, där vi går från den negativa matningsspänningen upp till jord. Låt oss benämna spänningsfallet över referensresistorn UREF:

$$V_{EE} + 0.7 + U_{REF} = 0 \rightarrow U_{REF} = -V_{EE} - 0.7 = -(-20) - 0.7 = 20 - 0.7 = 19.3 V$$

• Om vi då vill att strömmen I_{EE} skall bli 2 mA så vill vi också att referensströmmen genom referensresistorn är lika med 2 mA. Därmed så kan vi enkelt beräkna ett lämpligt värde på referensresistorn:

$$R_{REF} = \frac{20 - 0.7}{2m} = \frac{19.3}{2m} = 9.65 \text{ } k\Omega$$

- Närmaste värdet i E12-serien är 10 kΩ, som dock medför att strömmen I_{EE} blir lite mindre än väntat. I de flesta fall är detta
 okej, men om strömmen I_{EE} måste vara lika med 2 mA så hade vi kunnat införskaffa resistorer i en annan resistorserie. Detta
 kanske kostar lite mer, men förmodligen väldigt lite.
- Med en referensresistor på 10 kΩ så blir strömmen IEE lika med:

$$I_{EE} = \frac{19,3}{10k} = 1,93 \ mA$$

• Som vi kommer se längre frami kapitlet så beräknas differentialförstärkningen precis som på ett GE-steg utan emitterresistor:

$$G_{DM} = -\frac{R_C}{r_{e1}} = -\frac{R_C}{r_{e2}},$$

där R_C är storleken kollektorresistorerna och r_{e1} samt r_{e2} är den inbyggda emitterresistansen på respektive ingångstransistor Q1 samt Q2, som kan beräknas med formeln

$$r_{e1} = \frac{26}{I_{C1(mA)}}$$

samt

$$r_{e2} = \frac{26}{I_{C2(mA)}},$$

där Ic1(mA) samt Ic2(mA) är ingångstransistorer Q1:s samt Q2:s respektive kollektorström, mätt i mA.

Eftersom kollektorströmmarna Ic1 samt Ic2 är lika stora:

$$I_{C1} = I_{C2}$$

så blir då också re1 samt re2 lika stora, eftersom

$$r_{e1} = r_{e2} = \frac{26}{I_{C1(mA)}} = \frac{26}{I_{C2(mA)}}$$

• Eftersom kollektorströmmarna I_{C1} samt I_{C2} båda är satta till 1 mA i vilopunkten så blir de inbyggda emitterresistanserna r_{e1} samt r_{e2} lika med 26 Ω , då

$$r_{e1} = \frac{26}{I_{C1(mA)}} = \frac{26}{1} = 26 \,\Omega$$

samt

$$r_{e2} = \frac{26}{I_{C2(mA)}} = \frac{26}{1} = 26 \,\Omega$$

• Därmed blir differentialförstärkningen G_{DM} lika med -400, då

$$G_{DM} = -\frac{R_C}{r_{e1}} = -\frac{R_C}{r_{e2}} = \frac{-10k}{25} = -400$$

- Därmed är differentialförstärkningen G_{DM} i detta fall relativt hög, men kan bli mycket högre genom att kollektorresistorer R_C ersätts med en strömspegel, föredragsvis en kaskadkopplad sådan. Ytterligare högre förstärkning kan erhållas ifall en teleskopiskt kaskadkopplad differentialförstärkare används, i likhet med de teleskopiskt kaskadkopplade spänningsförstärkare vi har sett tidigare. Vi kommer se mer av detta längre fram i kapitlet.
- Vi kommer också se längre fram att differentialförstärkarens Common Mode-förstärkning G_{CM} kan beräknas med formeln:

$$G_{CM} = -\frac{R_C}{2R_{EE} + r_e},$$

där R_{EE} är strömspegelns utresistans. Det är svårt att veta exakt hur hög denna resistans är, men en bra uppskattning är 1 $M\Omega$.

• Därmed så beräknar vi Common Mode-förstärkningen:

$$G_{CM} = -\frac{R_C}{2R_{EE} + r_e} = -\frac{10k}{2*1M + 25} \approx -0.005$$

- Common Mode-förstärkningen är relativt låg, vilket är positivt. Dock hade vi kunnat göra Common Mode-förstärkningen omkring 100 gånger mindre om vi hade använt en mer avancerad strömspegel, exempelvis en förbättrat Kaskadkopplad strömspegel.
- Differentialförstärkarens utresistans blir, precis som på ett GE-steg, lika med:

$$R_{UT}\approx R_C=10\;k\Omega$$

- För att beräkna inresistansen så antar vi att strömförstärkningsfaktorn är lika med 50 (värstafallscenariot).
- Inresistansen i Differential Mode är minst lika med:

$$R_{IN,DM} \approx 2 * h_{FE} * r_e = 50 * 25 = 2,5 k\Omega$$

- Detta var som sagt inresistansen i värstafallscenariot, dvs. lägsta möjligt värde. Eftersom BJT-transistorers strömförstärkningsfaktor kan variera mellan 50–250 så kan inresistansen vara upp till fem gånger högre, dvs. upp till 12,5 kΩ. Dock är detta inte särskilt högt i vilket fall, vilket medför att MOSFET-transistorer ofta föredras på differentialförstärkarens ingångar.
- För att beräkna inresistansen i Common Mode så måste vi uppskatta strömspegelns resistans. Vi kan inte ta reda på ett exakt värde, men 1 M Ω är normalt på enkla strömspeglar som den ovan. Vi antar därför att strömspegelns resistans R_{EE} är lika med 1 M Ω .
- Inresistansen i Common Mode uppskattas därför vara minst lika med:

$$R_{IN,CM} \approx 2 * h_{FE} * (r_e + R_{EE}) = 2 * 50 * (25 + 1M) \approx 100 M\Omega$$

• Inresistansen i Common Mode är därmed helt okej, men lågt ifrån lika hög som om MOSFET-transistorer hade använts.

Strömspegel som last för att maximera differentialförstärkningen

- I IC-kretsar, exempelvis OP-förstärkare, så brukar en strömspegel används i stället för kollektorresistorerna, se figuren till höger. Detta också ökar differentialförstärkningen samt att det generellt tar upp mindre yta, särskilt när man använder CMOS-transistorer. Resultatet blir extremt hög differentialförstärkning, under förutsättningarna att differentialförstärkaren används i en feedback-loop samt att efterföljande steg har mycket hög inresistans.
- När en strömspegel ersätter kollektorresistorerna så gäller följande formel för differentialförstärkningen:

$$G_{DM} = -\frac{r_{o2}//r_{o4}}{r_{e2}}$$

där r_{o2} och r_{o4} är varje utresistansen på transistor Q2 respektive Q4 och r_{e2} är transistor Q2:s inbyggda emitterresistans. Notera att förstärkningen nu inte blir halverad, trots att vi bara har en utgång.

- Detta beror på att strömspegeln är konstruerad på så sätt att den vänstra sidan av differentialförstärkaren utgör strömspegelns referenskrets, därav är transistor Q3:s bas och kollektor sammankopplade.
- Strömspegeln kopierar därmed transistor Q1:s kollektorström I_{C1} till höger sida av strömspegeln, vilket medför att transistor Q2:s kollektorström I_{C2} är en kopia av I_{C1}:

$$I_{C1} = I_{C2}$$

- Strömspegels funktion är att se till att det alltid flödar samma ström I_{C1} samt I_{C2} på de två sidorna av transistorn. Som exempel, antag att vi startar med differentialförstärkaren i jämvikt, dvs. de två insignalerna är lika stora, vilket medför att utsignalen är lika med noll.
- Vi skall nu utföra samma exempel som vi gjorde tidigare på differentialförstärkare med en samt två utgångar. Där noterade vi att spännings- och strömförändringen blev dubbelt så hög när vi använder två utgångar istället för en. För en viss skillnad mellan insignalerna så blev strömförändringen 0,4 mA med två utgångar och 0,2 mA med en utgång. Detta medförde också att utspänningen blev dubbelt så hög med två utgångar.

Exempel 1: Inspänningen på vänster sida är större än inspänningen på höger sida

- Låt oss anta att strömspegeln (den nedre delen i figuren till höger) har dimensionerats så att strömmen som flödar genom den alltid är lika med 2,0 mA, se lee i figuren till höger. Vid jämvikt så kommer då kollektorströmmarna på de två sidorna, se lc1 och lc2 till höger, vara 1,0 mA var.
- Om inspänningen på den vänstra sidan nu skulle öka medan inspänningen på den högra sidan förblir konstant så kommer den vänstra kollektorströmmen öka, låt oss anta att den ökar till 1,2 mA.
- Med tanke på att endast 2,0 mA kommer flöda genom den strömgeneratorn så medför detta att den högra kollektorströmmen kommer minska till 2,0–1,2
 = 0,8 mA. Detta medför att utsignalen kommer öka lite, eftersom

$$V_{CC} - (r_{o2}//r_{o4}) * I_{C2} - U_{UT} = 0 \rightarrow U_{UT} = V_{CC} - (r_{o2}//r_{o4}) * I_{C2}$$

- Som synes så kommer utspänningen U_{UT} minska om den högra kollektorspänningen I_{C2} ökar. För en vanlig differentialförstärkare med drainresistor så hade därmed den vänstra kollektorströmmen varit 1,2 mA och den högre varit 0,8 mA.
- Dock så kopierar strömgeneratorn strömmen från den vänstra sidan till den högra, vilket medför att den högra kollektorströmmen också blir 1,2 mA. Då blir summan av kollektorströmmarna lika med 2,4 mA, men i strömgeneratorn så kan de endast flöda 2,0 mA, eftersom den dimensionerats till detta.
- Vad händer med de 2,4–2 = 0,4 mA som uppkom när den högra kollektorströmmen ökade, om de inte kommer flöda genom strömgeneratorn?
- Jo, dessa 0,4 mA som den högra kollektorströmmen ökade med kommer istället flöda från transistor Q4:s kollektor till utgången.
 Därmed så blev strömförändringen på utgången 0,4 mA, lika mycket som på en differentialförstärkare med två utgångar, som vi mätte tidigare i kapitlet. Därmed höjs utsignalen ytterligare.
- Notera att vid detta tillfälle så kommer transistor Q4:s kollektorström vara 1,2 mA, medan transistorn nedanför den, Q2, har en kollektorström på 0,8 mA.
- Eftersom utsignalen är ansluten till den högra sidan så kommer Q4

 och Q2 ha olika kollektorströmmar i Differential Mode. Endast i
 jämvikt (Common Mode) är kollektorströmmar på differentialförstärkarens högra sida identiska. Dessa kollektorströmmar kommer i detta fall också vara identiska med kollektorströmmarna på den vänstra sidan.
- Transistorerna Q3 och Q1 har identiska kollektorströmmar på 1,2 mA. Eftersom utsignalen inte tas från den vänstra sidan så är kollektorströmmarna på den vänstra sidan alltid identiska.

Exempel 2: Inspänningen på vänster sida är lägre än inspänningen på höger sida

Låt oss istället anta att vi återigen startar med differentialförstärkaren i jämvikt. Då är de två insignalerna lika stora och utspänningen är därmed lika med noll.

- Om nu inspänningen på den höra sidan minskar, medan inspänningen på den högra fortfarande är samma, så kommer kollektorströmmen på den vänstra sidan minska och kollektorströmmen på den högra sidan öka.
- Låt oss anta att I_{C2} ökar med 0,4 mA till 1,4 mA. Då kommer kollektorströmmen på den vänstra sidan, I_{C1}, minska med lika mycket, dvs. från 1,0 mA till 0,6 mA. Strömmen ned till strömgeneratorn kommer alltid vara 2,0 mA, men strömspegeln kopierar I_{C1} till I_{C2}, vilket medför att I_{C2} minskar till 0,6 mA.
- Vad händer med de övriga 0,8 mA? De tas från utsignalen, som förser den högra sidan av differentialförstärkaren med ström. Vid sådana situationer så blir utspänningen negativ.
- Notera nu att Q4:s kollektorström är lika med 0,6 mA, medan transistorn nedanför den, Q2, har en kollektorström på 1,4 mA.
- Transistor Q3 och Q1 har identiska kollektorströmmar på 0,6 mA. Eftersom utsignalen inte tas från den vänstra sidan så kommer Q3 och Q1 alltid ha samma kollektorströmmar.

- Detta medför att utgången känner av skillnader på de båda sidorna av strömgeneratorn, vilket medför att differentialförstärkaren ovan har lika hög förstärkning som om den hade två utgångar, dvs. dubbelt så hög jämfört med om en drainresistor användes. Genom detta så fungerar differentialförstärkaren på samma sätt som om den hade två utgångar.
- **Slutsats:** Genom att ersätta kollektorresistorn med en strömspegel så får vi samma förstärkning som en differentialförstärkare med två utgångar, trots att vi bara använder en utgång!

Härledning av differentialförstärkningen och utresistans när strömspegel används som last

- Vi kan härleda formel för förstärkningsfaktorn (samt utresistansen) genom att rita ut småsignalschemat för differentialförstärkaren. Vi behöver bara rita ut en av sidorna, eftersom de två sidorna är symmetriska. Vi väljer att rita ut den högra sidan, eftersom utgången är placerad på denna sida.
- De två sidorna av differentialförstärkaren antas vara identiska, dvs.
 NPN-transistorerna Q1 och Q2 är identiska, samtidigt som PNP-transistorerna Q3 och Q4 är identiska.
- Symmetrin mellan de två sidorna av differentialförstärkaren medför en del virtuella jordpunkter, bland annat i punkten mellan transistor Q1 och Q3.
- I Differential mode så uppkommer också en virtuell jordpunkt i punkten mellan transistor Q1 och Q2:s emittrar, eftersom den ena ingången vill dra upp spänningen i denna punkt, medan den andra kommer vilja dra ned spänningen lika mycket. Därmed så kommer inte strömspegeln påverka differentialförstärkningen och vi kommer inte rita ut denna.
- Eftersom vi endast är intresserade av signaler som förändras över tid så kortsluter vid alla konstanta parametrar, vilket i detta fallet är matningsspänningen V_{CC}.

- Som synes i småsignalschemat ovan så består den högra sidan av ett vanligt GE-steg utan emitterresistor. I detta exempel har transistorernas utresistans r₀₂ och r₀₄ ritats ut. Dessa resistorer är anslutna på ena sidan till jord och andra sidan till samma punkt, dvs. ΔU_{UT}. Därför är spänningsfallet över de två transistorerna identiska, vilket medför att de kan antas vara parallellkopplade.
- Vi kan därför förenkla figuren genom att ersätta de två utresistanserna med en ersättningsresistans r₀₂//r₀₄, som placeras i kollektorn. Vi ritar nu om schemat till figuren nedan.

• Som synes så ser figuren nu ut som ett vanligt GE-steg utan emitterresistor. Genom att använda Kirchhoffs spänningslag så härleder vi formel för in- och utspänningen, och därigenom förstärkningsfaktorn:

$$\Delta U_{IN2} - r_{e2}I_{C2} = 0 \rightarrow \Delta U_{IN2} = r_{e2}I_{C2}$$

$$-I_{C2} * (r_{o2}//r_{o4}) - \Delta U_{UT} = 0 \rightarrow \Delta U_{UT} = -I_{C2} * (r_{o2}//r_{o4})$$

$$G = \frac{\Delta U_{UT}}{\Delta U_{IN2}} = -\frac{I_{C2} * (r_{o2}//r_{o4})}{r_{e2}I_{C2}} = \frac{r_{o2}//r_{o4}}{r_{e2}}$$

För att beräkna utresistansen så använder vi följande formel:

$$G = -G_m * R_{UT},$$

där G är differentialförstärkarens förstärkningsfaktor, G_m är den så kallad stora transkonduktansen och R_{UT} är differentialförstärkarens utresistans.

• Formeln ovan kan omvandlas för att beräkna utresistansen:

$$G = -G_m * R_{UT} \to R_{UT} = -\frac{G}{G_m}$$

• Vi kan beräkna den stora transkonduktansen med följande formel:

$$G_m = \left| \frac{I_{UT}}{\Delta U_{IN}} \right|_{U_{UT}=0} = \frac{I_{C2}}{r_{e2}I_{C2}} = \frac{1}{r_{e2}}$$

- När utspänningen är lika med noll så kommer utströmmen vara lika med kollektorströmmen I_{C2}. ΔU_{IN} beräknade vi tidigare till r_{e2}I_{C2}.
- Därefter härleder vi en formel för utresistansen:

$$R_{UT} = -\frac{G}{G_m} = -\frac{\left(-\frac{r_{o2}//r_{o4}}{r_{e2}}\right)}{\left(\frac{1}{r_{e2}}\right)} = \frac{\left(\frac{r_{o2}//r_{o4}}{r_{e2}}\right)}{\left(\frac{1}{r_{e2}}\right)} = r_{e2} * \left(\frac{r_{o2}//r_{o4}}{r_{e2}}\right) = r_{o2}//r_{o4}$$

Utresistansen blev alltså lika med parallellkopplingen av transistorernas utresistanser. Detta hade vi också kunnat räkna ut
rent intuitivt, eftersom vi i småsignalschemat endast hade denna resistans som kollektorresistans, medan vi inte hade
någon emitterresistans.

Minimera Common Mode-förstärkningen genom att använda en förbättrad Kaskadkopplad strömspegel som strömgenerator

- För att uppnå låg Common Mode-förstärkningen så brukar man använda strömgeneratorer, oftast i form av strömspeglar. Vi har tidigare sett exempel på enklare typer av strömspeglar, som på grund av sin höga resistans (runt 1 MΩ) orsakar låg Common Mode-förstärkning.
- Dock kan vi enkelt göra Common Mode-förstärkningen omkring 100 gånger lägre genom att använda en förbättrad Kaskadkopplad strömspegel, vars utresistans är ca 100 M Ω , vilket ger Common Mode-förstärkning extremt nära noll och därmed nästan oändlig CMRR. Resistorerna R₁ och R₂ bör sättas till 1 k Ω var.

- En fördel med denna strömspegel är att den har två kaskadkopplade strömspeglar, vilket medför att kollektorströmmen hålls konstant, trots den så kallad Earlyeffekten, en effekt som uppstår i alla transistorer. Earlyeffekten medför att kollektorströmmen I_C ökar när kollektor-emitterspänningen U_{CE} ökar.
- Dessutom så används två emitterresistorer, R₁ och R₂ för att minska påverkan av de olika transistorernas strömförstärkningsfaktorer. Eftersom dessa är olika för varje transistor så kommer referensströmmen I_{REF} skilja sig något från strömmen I_{EE}. Men med emitterresistorerna, som bör ha en resistans på 1 kΩ var, så kommer denna skillnad att minska.
- Låt oss anta att strömmen I_{REF} sätts till 2 mA, så att spänningen över de två resistorerna R₁ och R₂ skall vara 2 V var, eftersom 1 kΩ * 2 mA = 2 V. Då skall också I_{EE} bli lika med 2 mA, men på grund av att en av transistorerna på höger sida har något högre strömförstärkningsfaktor så ökar strömmen I_{EE} till 2,2 mA. Då kommer spänningsfallet över resistor R₂ öka från 2 V till 2,2 V, medan spänningsfallet över resistor R₁ fortfarande är 2 V.
- Spänningsfallet i punkten mellan de två transistorerna ovanför emitterresistorerna bör i normalfallet vara 2 + 0,7 = 2,7 V. Antag att spänningen i denna punkt fortfarande är 2,7 V, medan spänningsfallet över resistor R₂, U_{R2}, är lika med 2,2 V. Då kommer bas-emitterspänningen mellan den nedersta transistorn till höger och resistor R₂, se U_{BE} i figuren, minska till 2,7 2,2 = 0,5 V, vilket minskar strömmen I_{EE} på höger sida, tills spänningsfallet U_{R2} minskar till 2 V igen, vilket medför att bas-emitterspänningen U_{BE} återgår till 0,7 V. Då är strömmen I_{EE} lika med 2 mA, så som vi vill att den skall vara.

- Denna princip fungerar också åt det andra hållet. Om strömmen I_{EE} istället skulle minska till 1,8 mA så kommer spänningsfallet U_{R2} minska till 1,8 V, vilket medför att bas-emitterspänningen U_{BE} ökar till 2,7 − 1,8 = 0,9 V, vilket ökar strömmen I_{EE} tills den når 2 mA, då spänningsfallet U_{R2} ökar till 2 V, vilket minskar bas-emitterspänningen U_{BE} till 0,7 V.
- Dessa emitterresistorer fungerar alltså kontinuerligt som ett feedback-system, som kan liknas vid en temperaturregulator; om det blir för varmt (IEE blir högre än 2 mA) så minskar temperaturen (IEE minskar till 2 mA). Om det blir för kallt (IEE blir lägre än 2 mA) så ökar temperaturen (IEE ökar till 2 mA).
- Antag att V_{EE} = -15 V och att strömmen genom varje kollektor är 1 mA vid jämvikt (U_{IN1} = U_{IN2}). Då kommer strömmen I_{EE} måste vi dimensionera strömgeneratorn så att strömmen I_{EE} = 2 mA:

$$I_{EE} = I_{C1} + I_{C2} = 1m + 1m = 2mA$$

• Vi måste därför sätta strömmen I_{REF} till 2 mA, eftersom denna ström är på andra sidan av strömspegeln och ställs in av oss. Strömmen I_{EE} är dess spegelbild och kommer få samma storlek.

$$I_{REF} = I_{EE} = 2 mA$$

• Strömmen I_{EE} kommer flöda genom resistor R₂ längst ner i strömgeneratorn och strömmen I_{REF} kommer flöda genom resistor R₁. Spänningsfallet över resistorerna kommer därför vara samma, förutsatt att resistorerna är lika stora. Dock är vi endast intresserade av strömmen I_{EE}, så vi kommer använda denna ström för att ställa in resistor R_{REF}. Vi kör Kirchhoffs spänningslag, från jordtecknet längst upp till vänster i strömspegeln. Spänningsfallet över resistor R₂ betecknas U_{R2}:

$$\begin{split} R_{REF} * I_{REF} - U_{BE} - U_{BE} - U_{R2} &= 0 \rightarrow R_{REF} * I_{REF} = U_{BE} + U_{BE} + U_{R2} \\ \rightarrow R_{REF} &= \frac{2U_{BE} + U_{R2}}{I_{BEE}} \end{split}$$

Vi kan enkelt beräkna spänningsfallet över resistor R₂ med Ohms lag:

$$U_{R2} = R_2 * I_{EE} = 1k * 2m = 2V$$

Därefter kan vi enkelt beräkna ett lämpligt värde på resistor RREF:

$$R_{REF} = \frac{2U_{BE} + U_{R2}}{I_{REF}} = \frac{2 * 0.7 + 2}{2m} = 1.7 \ k\Omega$$

- Närmaste värde i E12-serien är 1,8 kΩ, vilket ger en något lägre ström, men som inte borde orsaka några problem.
- Den förbättrade Kaskadkopplad strömspegeln innebär alltså att summan av strömmarna som flödar på de två sidorna av
 differentialförstärkaren är konstant. Samtidigt har strömgeneratorn har extremt hög impedans/resistans, vilket kraftigt
 minskar Common Mode-förstärkningen.

4.4.4 - CMRR: Mått på differentialförstärkarens duglighet

- En bra differentialförstärkare har hög differentialförstärkning och låg Common Mode-förstärkning. Förhållandet mellan differentialförstärkningen och Common Mode-förstärkningen betecknas Common Mode Rejection Ratio, eller CMRR.
- CMRR (Common Mode Rejection Ratio) är alltså ett mått på hur bra differentialförstärkaren kancellerar Common Modesignaler i förhållande till hur mycket den förstärker differentialsignaler. Ju högre CMRR, desto bättre differentialförstärkare. En differentialförstärkares CMRR kan beräknas med formeln

$$CMRR = \frac{G_{DM}}{G_{CM}},$$

där G_{DM} är differentialförstärkningen och G_{CM} är Common Mode-förstärkningen.

• CMRR kan höjas genom att man ökar differentialförstärkningen, exempelvis genom att använda en strömspegel som last, eller genom att man minska Common Mode-förstärkningen, exempelvis genom att använda en strömgenerator med mycket hög impedans, såsom den förbättrade Kaskadkopplad strömspegeln i figuren nedan.

Snabbguide för konstruktion av differentialförstärkare med hög CMRR

Innan vi går vidare och fördjupar oss i detaljer så finns här några tips på hur man enkelt och snabbt kan konstruera en mycket bra differentialförstärkare, för den som inte gillar att läsa stora mängder information.

Vänligen se avsnittet "Modifikationer för att öka CMRR" för mer djupgående förklaringar och detaljerade lösningar av tips 1 & 3.

1. Använd en strömspegel som last samt för att öka differentialförstärkningen samt minska distorsion

- För att maximera differentialförstärkningen kan man ersätta kollektorresistorn med en strömspegel, se figuren ovan. Förutsättningen för detta är att feedback används, såsom i en OP-förstärkarkoppling. Både BJT- eller MOSFET- transistorer kan användas, men BJT-transistorer har oftast högre utresistans och ger därmed ger högre förstärkning. Dock så kommer förstärkningen bli mycket hög oavsett om BJT- eller MOSFET-transistorer används i strömspegeln.
- Förstärkningsfaktorn i en differentialförstärkare med strömspegel som last kan uppnå -1000 eller mer, beroende på
 inresistansen på efterföljande steg samt om BJT- eller MOSFET-transistorer används på ingångarna. MOSFETtransistorer medför lägre förstärkning, exempelvis omkring -250 (ifall en strömspegel används som last), men har flera
 fördelar, exempelvis högre inresistans, som gör att dessa ofta används istället.
- Det enda som behövs är två PNP-transistorer (eller PMOS-transistorer), vars basar är sammankopplade. Deras emittrar (sources) skall kopplas till matningsspänningen V_{CC} och kollektorerna (drains) till varsin sida av differentialförstärkaren.

2. Använd MOSFET-transistorer på ingångarna för att öka inresistansen

- Vi använder MOSFET-transistorer på ingångarna för att uppnå hög inresistans, antingen genom att placera sourceföljare framför differentialförstärkarens ingångar eller genom att MOSFET-ingångar används direkt på ingångarna. Den främsta nackdelen med att använda MOSFET-transistorer på differentialförstärkarens ingångar är att förstärkningen kommer bli lägre än om vi hade använt BJTtransistorer. Därför är det första alternativet att föredra, då vi får det bästa av två världar; BJT-transistorns höga förstärkning samt MOSFET-transistorns höga inresistans.
- Att använda MOSFET-ingångar har flera fördelar. Den största fördelen är att MOSFET-transistorer har mycket hög inresistans, som medför lägre strömförbrukning, ingen påverkan av utresistans från signalgeneratorer eller tidigare steg samt att vi inte behöver oroa oss för att inströmmarna blir olika stora, vilka kan orsaka så kallad offset, dvs. att utsignalens värde blir fel på grund av att ingångsströmmarna på de två ingångarna är olika stora, se figuren nedan. Om MOSFET-transistorer används så blir inströmmarna så små att skillnaden blir försumbar och ingen märkbar offset uppstår.

- Om BJT-transistorer används på ingångarna så kan skillnaden mellan strömmarna på de två ingångarna bli så stor att utsignalen påverkas så att vi får en avvikelse, en så kallad offset. Som exempel, om inspänningen sätts till 0 V och utspänningen blir 0,2 V istället för 0 V så har vi en offset på 0,2 V, orsakad av strömskillnaden mellan de två ingångarna. Då måste vi korrigera detta med en extern resistor på en av ingångarna så att ingångsresistanserna blir lika stora. Då blir inströmmarna lika stora och offseten elimineras. Dock så kanske det inte är möjligt att få tag på en resistor som är lika med inresistansen på den andra ingången. Då kan man testa att parallellkoppla två resistorer som är lika stora som de två resistorerna på den andra ingången eller acceptera en liten offset.
- Det bästa och effektivaste sättet att eliminera offset är dock, som tidigare nämndes, att använda MOSFET-transistorer på
 ingångarna, som på grund av sina höga inresistans medför att ingångsströmmen blir så liten att offseten blir försumbar.
 Nästan alla moderna OP-förstärkare är därför konstruerade med MOSFET-transistorer på ingångssteget.

- Figuren nedan visar hur vi skulle kunna få BJT-transistorns mycket höga förstärkningsfaktor samtidigt som vi har MOSFET-transistorns mycket högra ingångsresistans genom att vi använder BJT-ingångar på differentialförstärkaren, men placerar var sin sourceföljare framför ingångarna, se figuren nedan.
- Sourceföljarnas ingångar består utav MOSFET-transistorer, så ingångsresistansen är mycket hög. Utsignalen från respektive sourceföljare är ansluten till var sin BJT-ingång på differentialförstärkaren.

- Utresistansen ur sourceföljaren är ungefär lika med inversen till transkonduktansen. Ett lämpligt värde på drainströmmen som flödar genom varje sourceföljare är 0,5 mA.
- Om vi sätter resistor R_{REF} till ett lämpligt värde så att drainströmmen I_1 är lika med ca 0,5 mA så kan vi räkna med att transkonduktansen är ungefär lika med 2 mS för en vanligt MOSFET-transistor. Därmed så blir utresistansen ur sourceföljaren ungefär lika med 500 Ω , eftersom

$$R_{UT} \approx \frac{1}{g_m} = \frac{1}{40m} = 500 \,\Omega$$

- För att se till att en ström på 0,5 mA flödar genom respektive sourceföljare så använder vi en strömgenerator, bestående av en enkel strömspegel. I denna strömspegel så måste vi välja ett lämpligt värde på resistor R_{REF1} så att vi får till en ström på ca 0,5 mA.
- Notera att nedre delen av strömspegeln är ansluten till den negativa matningsspänningen V_{EE}. I och med att vi passerar en bas-emitterspänning på 0,65 V upp till referensresistorn R_{REF} så medför detta att all matningsspänning V_{EE} förutom 0,65 V, faller över resistor R_{REF1}.
- Sammansatt i en formel så kan vi välja ett lämpligt värde på resistor RREF1 med formeln nedan:

$$R_{REF1} = \frac{|V_{EE}| - 0.65}{I_1},$$

där $|V_{EE}|$ är absolutbeloppet av den negativa matningsspänningen, I_1 är önskad ström genom sourceföljarna och 0,7 står för spänningsfallet mellan BJT-transistorns bas och emitter.

 Som exempel, om matningsspänningen V_{EE} skulle vara -15 V så hade vi därmed valt en referensresistor på ca 15 kΩ, eftersom

$$R_{REF1} = \frac{15 - 0.65}{1m} = 14.35 \, k\Omega$$

- Närmaste värdet i E12-serien är 15 k Ω , så vi hade fått köra med detta. Då blir strömmen I₁ lika med ungefär 0,95 mA, men detta kommer inte ha någon praktisk betydelse.
- För att sourceföljarens utresistans inte skall belasta differentialförstärkaren till en betydande grad, vilket hade kunnat försvaga utsignalen ur differentialförstärkaren, så måste vi se till att differentialförstärkarens inresistans är minst tio gånger

högre än utresistansen ur sourceföljaren, dvs. minst 1 k Ω . Ju högre inresistansen är, desto mindre kommer sourceföljarens utresistans belasta differentialförstärkaren.

- Helst vill vi därför att differentialförstärkaren skall ha en inresistans som är 100 gånger högre än sourceföljarens utresistans, gärna mer. Helst vill vi alltså att differentialförstärkarens inresistans är 10 k Ω eller mer, men absolut minst 1 k Ω . Hur kan vi enkelt öka inresistansen på differentialförstärkaren?
- Vi använder ett Darlingtonpar på respektive BJT-ingång för att öka inresistansen på differentialförstärkaren med en faktor hfe, dvs. minst 50 gånger jämfört med en vanligt BJT-ingång. Vi har tidigare sett Darlingtonpar när vi gick genom slutsteg, men det är också möjligt att använda på ingångar. Innan MOSFET-transistorer blev vanliga så användes nästan alltid Darlington par på ingång för att öka inresistansen. Numera används oftast MOSFET-transistorer på ingångarna istället,

antingen direkt på förstärkarsteget eller så använder man sourceföljare på ingångarna som vi gör här.

- Låt oss som exempel anta värstafallscenariot, dvs. samtliga BJT-transistorers strömförstärkningsfaktor hfe är lägsta möjliga, dvs. 50. Då hade inresistasen blivit som lägst.
- Antag att kollektorströmmarna I_{C1} och I_{C2} är 1 mA var i jämvikt. Då hade samtliga inbyggda emitterresistorer blivit 26 Ω,
 eftersom

$$r_e = \frac{26}{I_{C(mA)}} = \frac{26}{1} = 26 \ \Omega$$

• Vi beräknar på en ingång. Eftersom eventuella insignaler alltid hade sett två ingångar så blir inresistansen dubbelt så hög jämfört med en ingång. Därför så kommer vi multiplicera med två. Inresistansen hade då blivit

$$R_{IN} = 2 * h_{FE} * h_{FE} * r_e = 2 * 50 * 50 * 26 = 130 k\Omega$$

- Notera att inresistansen som lägst hade blivit 130 kΩ, vilket är mycket högre än vårt målvärde (10 kΩ)! Därmed så kommer sourceföljarens inresistans inte belasta differentialförstärkaren. Dessutom kommer inresistansen med största sannolikhet vara högre, då det inte är troligt att samtliga transistorer har lägsta möjliga strömförstärkningsfaktor. Om strömförstärkningsfaktorn istället hade varit 100 på respektive transistorer så hade inresistansen istället blivit 500 kΩ!
- Eftersom detta kapitel handlar om differentialförstärkaren så kommer lösningen ovan inte gås igenom mer i detta kapitel. I senare kapitel när OP-förstärkare skall konstrueras så kommer dock denna lösning gås igenom i detalj.

3. Använd en förbättrad Kaskadkopplad strömspegel som strömgenerator för att minska Common Mode-förstärkningen

- I figuren till höger så ersätts den tidigare resistorn R_{EE}
 med en strömgenerator för att kraftigt öka resistansen,
 samtidigt som den ger oss möjlighet att ställa in en
 lämplig referensström (I_{SS}).
- Utresistansen på denna strömgenerator ligger omkring 100 M Ω , vilket medför att Common Modeförstärkningen blir mycket låg. Om en strömgenerator används som last enligt exemplen ovan så kommer CMRR maximeras!
- Det enda vi behöver beräkna och välja är resistor R_{REF}, som dimensioneras med önskad referensström I_{SS} enligt formeln

$$R_{REF} = \frac{|V_{EE}| - 1k * I_{SS} - 2 * 0.65}{I_{SS}},$$

där $|V_{EE}|$ är absolutbeloppet av den negativa matningsspänningen, I_{SS} är önskad ström som flödar genom strömgeneratorn och 0,65 står för spänningsfallet mellan BJT-transistorns bas och emitter. Eftersom vi passerar två sådana spänningsfall så räknar vi med 2 * 0,65 = 1,3 V.

- 4. Använd PNP-transistorer på ingångarna för att minska brus.
- Om vi använder PNP-transistorer på ingångarna så måste vi vända på hela differentialförstärkaren samt strömgeneratorn mellan dess emittrar, se figuren nedan.
- Det finns två fördelar med att använda PNP-transistorer på differentialförstärkarens ingångar:
- 1. PNP-transistorer har generellt sätt lägre brus än NPN-transistorer. Därmed så är det mycket vanligt att använda PNP-transistorer på differentialförstärkarens ingångar. Eftersom differentialförstärkare vanligtvis används på OP-förstärkares ingångar så medför detta att mindre brus kommer in i förstärkaren och förstärks av spänningsförstärkaren. Detta leder totalt sett till mindre brus.
- 2. När PNP-transistorer används på differentialförstärkarens ingångar så leder detta också till att efterföljande spänningsförstärkare har en NPN-transistor på ingången. Detta leder till en något bättre spänningsförstärkare, med lägre intern kapacitans samt något högre övre gränsfrekvens. Anledningen till att spänningsförstärkaren och differentialförstärkaren kan enkelt förklaras med följande exempel:
- Anta att vi konstruerar en OP-förstärkare med matningsspänningen ± 30 V. För enkelhets skull använder vi en spänningsförstärkare med BJT-transistor på ingången, utan någon emitterresistor. BJT-transistorns emitter är då direkt ansluten till den negativa matningsspänningen, som vi kan anta vara -30 V. Spänningen in på BJT-transistorns bas, som också är spänningsförstärkarens inspänning, blir då 0,65 V högre än den negativa matningsspänningen (på grund av basemitterspänningen, som är lika med 0,65 V). Därmed så skall spänningsförstärkarens inspänning vara lika med -30 + 0,65 V = -29,35 V (i vilopunkten).
- Eftersom spänningsförstärkarens inspänning är lika med differentialförstärkarens utspänning så skall alltså utsignalen ur differentialförstärkaren vara -29,35 V i vilopunkten. Om vi hade använt en differentialförstärkare med NPN-transistorer så hade utsignalen legat i området 0 30 V, alltså kunder utsignalen inte hamna i närheten av -29,35 V, vilket medför att förstärkarsteget inte hade fungerat. Kom ihåg att utsignalen på de differentialförstärkaren vi sett tidigare endast har kunnat anta värden mellan jord upp till den positiva matningsspänningen, resten är fördelat över strömspegeln mellan emittrarna.
- I bästa fall, om utsignalen hade nått sitt minimala värde 0 V, så hade ändå inspänningen på spänningsförstärkaren blivit 29,35 V för högt. Bas-emitterspänningen hade då blivit 30 V i ställt för 0,65 V, vilket med största sannolikhet hade lett till att transistorn bränder sönder.
- Även om transistorn mot all förmodan hade klarat den mycket höga bas-emitterspänningen så hade vi mättat transistorn
 och vi hade fått en mycket hög ström genom spänningsförstärkaren, förmodligen på flera Ampere. Då hade förmodligen
 någon annan komponent i kretsen blivit sönderbränd, särskilt om vi inte använder transistorer som tål mycket höga effekter
 (sådana transistorer som vi använder på utgången av slutsteget).

Skillnaden mellan att ha PNP- och NPN-transistorer är inte jättestor, men kan leda till en förstärkare med något bättre egenskaper, där lägre brus är den främsta orsaken.

Differentialförstärkningen applicerad på MOSFET-varianter

 Resultatet ovan kan också appliceras på MOSFET-transistorer. Vi behöver endast byta ut kollektorresistorn R_C mot drainresistorn R_D samt den inbyggda emitterresistansen r_e mot inversen till transkonduktansen g_m:

$$G_{DM}=-rac{R_C}{r_e}$$
 översätts till $G_{DM}=-rac{R_D}{\left(rac{1}{g_m}
ight)}=-g_mR_D$ $ightarrow G_{DM}=-g_mR_D$

där g_m är MOSFET-transistorns transkonduktans (MOSFET-transistorns motsvarighet till den inbyggda emitterresistansen, fast inverterat) och R_D är drainresistorns resistans.

- Transkonduktansen g_m kan antas vara 4 mS vid en drainström på 1 mA. g_m ökar också proportionerlig med drainströmmen, så om drainströmmen fördubblas till 2 mA, så kan vi anta att drainströmmen är 8 mS. På samma sätt så gäller att om drainströmmen minskar till 0,5 mA så kan vi anta att transkonduktansen minskar till 2 mS.
- Därmed så blir det mycket enkelt att uppskatta
 differentialförstärkningen. Vi skulle också kunna uppskatta
 differentialförstärkningen på MOSFET-varianten genom att beräkna differentialförstärkningen på motsvarande
 differentialförstärkare med BJT-ingångar och sedan dela detta värde med tio (eftersom MOSFET-transistorer vanligtvis har
 ca tio gånger lägre transkonduktans och därmed ca tio gånger lägre förstärkning).

Kaskadkopplade differentialförstärkare

- Kaskadkopplade differentialförstärkare, se figuren till höger, används ibland i IC-kretsar för att öka differentialförstärkningen mer än vad som är möjligt med bara en strömspegel som last. Dock blir konstruktionen mycket mer komplicerad med kaskadkopplingen, främst därför att ett flertal matningsspänningar behövs för att mata transistorerna i kaskadkopplingen.
- Därför är oftast alternativet med strömspegel som last föredraget.
 Differentialförstärkningen blir ändå hög, samtidigt som förstärkningsfaktorn enkelt kan ökas i efterföljande steg, som bör vara någon typ spänningsförstärkare.
- Dock kan det vara bra att veta hur kaskadkopplade differentialförstärkare fungerar. I detta avsnitt så kommer därför den kaskadkopplade differentialförstärkaren analyseras, men inga konstruktionsexempel kommer visas. För att erhålla hög förstärkning så fungerar differentialförstärkare med last utmärkt.
- Kaskadkoppling höjer utresistansen och därmed förstärkningen kraftigt. För att beräkna differentialförstärkningen samt utresistansen så behöver vi endast rita ut småsignalschemat på ena sidan. Vi väljer vänster sida, se figurerna nedanför det fullständiga schemat.

$$G_{CM} \approx 0$$

$$R_{UT,CM} \approx \infty$$

• Eftersom vi använder MOSFET-transistorer på ingången så antar vi också att inresistansen alltid är nästintill oändlig:

$$R_{IN} \approx \infty$$

- På grund av symmetrin så får vi också många virtuella jordpunkter, som vi markerar med jordsymboler.
- På grund av den virtuella jordpunkten mellan M1 och M2 så kommer effekten av strömkällan elimineras, vilket gör att denna ersätts med en jordsymbol.

• För att beräkna differentialförstärkningen på kaskadkopplade förstärkarsteg så kan följande formel användas:

$$G_{DM} = -G_m * R_{UT},$$

där G_{DM} differentialförstärkningen, G_m är den så kallad stora transkonduktansen, dvs. transkonduktansen på den transistor som insignalen når differentialförstärkaren och R_{UT} är differentialförstärkarens utresistans på en av sidorna (utresistansen är lika stor på båda sidorna).

- Rent generellt så är det väldigt enkelt att ta reda på den stora transkonduktansen G_m genom att undersöka vilken transistor som insignalen är ansluten till. Den stora transkonduktansen G_m är lika med transkonduktansen på den transistor vars gate insignalen är ansluten till, vilket för den vänstra sidan är transistor M1 och för den högra sidan är transistor M2. Därför så blir G_m lika med g_{m1} om vi utför beräkningar på vänster sida och g_{m2} om vi utför beräkningar på den högra sidan.
- Matematiskt formelt så kan Gm härledas med formeln:

$$G_m = \left| \frac{I_{UT}}{\Delta U_{IN1}} \right|_{\Delta U_{UT} = 0}$$

 Eftersom villkoret ovan gäller när ΔU_{UT} är lika med noll så kommer utströmmen vara lika med drainströmmen. Därefter gäller det bara att härleda en formel för ΔU_{IN}, vilket görs med Kirchhoffs spänningslag:

$$\Delta U_{IN1} - \frac{I_D}{g_{m1}} = 0 \rightarrow \Delta U_{IN1} = \frac{I_D}{g_{m1}}$$

$$G_m = \left| \frac{I_{UT}}{\Delta U_{IN1}} \right|_{\Delta U_{UT} = 0} = \frac{I_D}{\left(\frac{I_D}{g_{m1}}\right)} = g_{m1}$$

- Minnesregel: Den stora transkonduktansen G_m är lika med transkonduktansen på den transistor vars gate den är ansluten till (i Differential Mode).
- Dela differentialförstärkaren i två delar, vi kollar på den vänstra sidan:

$$R_{UT} = R_{UT1} / / R_{UT2},$$

där Rut1 är utresistansen från NMOS-delen (M1 och M3) och Rut2 är utresistansen från PMOS-delen (M5 och M7).

• Vi beräknar först R_{UT1}. Vi använder småsignalschemat för beräkningen, som om det vore ett GS-steg. Tänk att r₀₃ är drainresistorn och r₀₁ är sourceresistorn, se figuren nedan.

• Därefter så utför vi följande beräkningar för att beräkna utresistansen R_{UT1}:

$$R_{UT1} = \frac{U_X}{I_X}$$

$$U_X - r_{o3} * I_0 - r_{o1} * I_X = 0$$

$$\to U_X = r_{o3} * I_0 + r_{o1} * I_X$$

$$\begin{split} I_x &= I_0 + g_{m3} U_{GS3} \to I_0 = I_x - g_{m3} U_{GS3} \\ -U_{GS3} - r_{o1} * I_x &= 0 \to U_{GS3} = -r_{o1} * I_x \end{split}$$

$$\begin{split} R_{UT1} &= \frac{U_X}{I_X} = \frac{I_X[r_{o3}(1+g_{m3}*r_{o1})+r_{o1}]}{I_X} = r_{o3}(1+g_{m3}*r_{o1})+r_{o1} \\ &= r_{o3}+g_{m3}*r_{o1}r_{o3}+r_{o1} = r_{o1}(1+g_{m3}r_{o3})+r_{o3} \approx r_{o1}g_{m3}r_{o3} \\ &\to R_{UT1} = r_{o1}(1+g_{m3}r_{o3})+r_{o3} \approx r_{o1}g_{m3}r_{o3} \end{split}$$

• Minnesregel: För figuren nedan, där vi räknar r₀₃ som drainresistor och r₀₁ som sourceresistor, så gäller att

$$\rightarrow R_{UT} = r_{o1}(1 + g_{m3}r_{o3}) + r_{o3}$$

• Memorera detta, så kommer framtida beräkningar gå mycket fortare, eftersom du kan beräkna utresistansen intuitivt.

• Vi beräknar sedan resistansen R_{UT2} på samma sätt:

- Denna gång så är transistorerna av motsatt polaritet, dvs. PMOS, vilket medför att vi måste räknar från motsatt håll. Vi räknar därför från U_{G2} och tänker oss att r_{o5} är vår drainresistor och r_{o7} är vår sourceresistor.
- Rent intuitivt vet vi då att utresistansen är lika med:

$$R_{UT2} = r_{o7}(1 + g_{m5}r_{o5}) + r_{o5} \approx g_{m5}r_{o5}r_{o7}$$

• Vi kan också utföra beräkningar av småsignalschemat ovan för att verifiera resultatet:

$$R_{UT1} = \frac{U_X}{I_X}$$

$$U_x - r_{o5} * I_0 - r_{o7} * I_x = 0$$

$$\to U_x = r_{o5} * I_0 + r_{o7} * I_x$$

$$I_x = I_0 + g_{m5}U_{GS5} \rightarrow I_0 = I_x - g_{m5}U_{GS5}$$
$$-U_{GS5} - r_{o7} * I_x = 0 \rightarrow U_{GS5} = -r_{o7} * I_x$$

$$\begin{split} R_{UT2} &= \frac{U_X}{I_X} = \frac{I_x [r_{o5}(1 + g_{m5} * r_{o7}) + r_{o7}]}{I_X} = r_{o5}(1 + g_{m5} * r_{o7}) + r_{o7} \\ &= r_{o5} + g_{m5} * r_{o5}r_{o7} + r_{o7} = r_{o7}(1 + g_{m5}r_{o5}) + r_{o5} \approx g_{m5}r_{o5}r_{o7} \\ &\to R_{UT2} = r_{o7}(1 + g_{m5}r_{o5}) + r_{o5} \approx g_{m5}r_{o5}r_{o7} \end{split}$$

Beräkning av den totala utresistansen

• Därefter kan vi beräkna den totala utresistansen, exakt och approximativt:

Exakt:

$$R_{UT} = R_{UT1} / / R_{UT2} = [(1 + g_{m5}r_{o5}) + r_{o5}] / [r_{o7}(1 + g_{m5}r_{o5}) + r_{o5}]$$

Approximativt:

$$R_{UT} = R_{UT1} / / R_{UT2} \approx (r_{o1}g_{m3}r_{o3}) / / (g_{m5}r_{o5}r_{o7})$$

- Det är en bra idé att också lägga detta på minnet. Notera att vi transkonduktansen från M3 respektive R5 är med i ekvationen. I övrigt så är både transistorernas utresistans också med i ekvationen.
- Notera också att de två delarna av utresistansen är varandras spegelbild, eftersom M3 respektive M5 fungerade som drain vid beräkningarna. Att M5 användes istället för M7, trots att M7 var placerad längre upp, beror på att M5 och M7 var PMOS-transistorer och därmed omvända, vilket medförda att vi fick beräkna åt andra hållet, dvs. som om M7 var source och M5 var drain.

Beräkning av förstärkningsfaktorn

• Därefter kan vi beräkna differentialförstärkningen, exakt och approximativt:

$$G_{DM} = -G_m * R_{UT}$$

• Insignalen kommer in på transistor M1, därför är den stora transkonduktansen lika med gm1:

$$G_m=g_{m1}$$

Exakt:

$$G_{DM} = -g_{m1} * [(1 + g_{m5}r_{o5}) + r_{o5}]//[r_{o7}(1 + g_{m5}r_{o5}) + r_{o5}]$$

Approximativt:

$$G_{DM} \approx -g_{m1} * (r_{o1}g_{m3}r_{o3}) / / (g_{m5}r_{o5}r_{o7})$$

Analys av kaskadkopplad differentialförstärkare med externa resistorer

- Vi skall härleda formel för differentialförstärkningen, Common Modeförstärkningen, in- och utresistansen i både Differential Mode och Common Mode samt CMRR för differentialförstärkaren till höger.
- För tillvägagångssätt och figurer, se nästa sida.

 Notera att externa resistorer är placerade mellan de två sidorna. För att utföra beräkningar på differentialförstärkaren så behöver vi endast rita ut ena sidan. Vi ritar ut den högra sidan eftersom utsignalen är där.

- På grund av symmetrin så får vi också många virtuella jordpunkter, bland annat punkterna från gatespänningarna U_{G1}, U_{G2} och U_{G3}, punkten mellan transistor M1 och M2:s sources samt mellan resistorerna R₃ och R₄, vars resistans fördelas jämnt mellan de två sidorna. Därför ritar vi ut R₃/2 respektive R₄/2 i småsignalschemat.
- På grund av den virtuella jordpunkten mellan M1 och M2 så kommer effekten av strömgeneratorn elimineras, vilket gör att denna ersätts med en jordsymbol.
- Eftersom det bara finns en utgång men två ingångar så kommer förstärkningen halveras. I övrigt så använder vi samma metod för att beräkna differentialförstärkningen: på denna differentialförstärkare som på förra uppgiften, dvs. med utresistansen:

$$G_{DM} = \frac{-G_m * R_{UT}}{2}$$

där G_{DM} är differentialförstärkningen, G_m är den så kallad stora transkonduktansen, dvs. transkonduktansen på den transistor som insignalen når differentialförstärkaren och R_{UT} är differentialförstärkarens utresistans på en av sidorna (utresistansen är lika stor på båda sidorna). Att förstärkningsfaktorn delas med två beror, som nämndes tidigare, på att denna differentialförstärkare endast ha en utgång.

• Insignalen kommer in på transistor M2, därför är den stora transkonduktansen lika med g_{m2}, enligt vår minnesregel (i Differential Mode).

$$G_m = g_{m2}$$

• Vi kommer dela den högra sidans av differentialförstärkaren i två delar, en övre och en lägre del. Därefter kommer vi beräkna den totala utresistansen på den högra sidan med formeln:

$$R_{UT} = R_{UT1} / / R_{UT2},$$

där R_{UT1} är utresistansen från den nedre delen (nedanför ΔU_{UT}) och R_{UT2} är utresistansen från den övre delen (ovanför ΔU_{UT}).

• Följ stegen på nästa sida för tillvägagångssätt och figuren för hur utresistansen beräknas.

Vi börjar med att rita ut småsignalschemat för differentialförstärkaren i Differential Mode.

Vi behöver bara rita ut en av sidorna på differentialförstärkaren. Vi ritar ut höger sida, eftersom utgången är placerad där.

Eftersom vi endast har en utgång så kommer förstärkningsfaktorn halveras.

Symmetrin i differentialförstärkaren innebär flera virtuella jordpunkter. Bland annat så finns en virtuell jordpunkt mellan transistor M1 och M2:s sources, vilket medför att effekten av strömkällan elimineras i Differential Mode. Därmed så ritar vi inte ut den i småsignalschemat.

 $R_{3/2}$ $M_{8/2}$ $M_{8/2}$

De resistorer som var placerade mellan de två sidorna fördelas symmetrisk mellan de två sidorna. Därmed så räknar vi att halva resistansen hamnar på höger sida och den andra halvan på vänster.

R_{UT1} består av NMOS-transistorer, så vi får räknar att transistor M4 är placerad i drain och transistor M2 är placerad i source.

Runz består av PMOS-transistorer, så vi får räkna från omvänt håll. Detta medför att transistor M6 är placerad i drain och transistor M8 är placerad i source. • Vi utför samma beräkningar som i det introducerande avsnittet om kaskadkopplade differentialförstärkare, men vi gör det utan småsignalschema. Följande regler gäller:

$$R_{UT} = R_S(1 + g_{mD}R_D) + R_D$$

där R_S är den aktuella sourceresistansen, R_D är den aktuella drainresistansen och g_{mD} är transkonduktansen på resistorn som vi utgår från, vilket i detta och i många fall är den transistor som vi utgår från. I fall med kaskadkopplingar så utgår vi alltid från den transistor som är i anslutning till drainresistansen, vilket i detta fall är transistor M4.

R_{UT1} består av NMOS-transistorer, så vi får räknar att transistor M4 är placerad i drain och transistor M2 är placerad i source.

• För R_{UT1} så tittar vi på schemat till höger och ser då att:

$$R_S = R_1//r_{o2}$$

$$R_D = \frac{R_2}{2} / / r_{o4}$$

$$g_{mD} = g_{m4}$$

• Därefter så härleder vi det fullständiga formeln för R_{UT1}:

$$R_{UT1} = (R_1//r_{o2}) \left(1 + g_{m4} \left(\frac{R_2}{2} / / r_{o4} \right) \right) + \frac{R_2}{2} / / r_{o4}$$

• Detta formel kan också approximeras till:

$$R_{UT1} \approx (R_1//r_{o2}) * g_{m4} \left(\frac{R_2}{2}//r_{o4}\right)$$

• För R_{UT2} så tittar vi på schemat till höger och ser då att:

$$R_S = \frac{R_3}{2} / / r_{o8}$$

$$R_D = r_{o6}$$

$$g_{mD} = g_{m6}$$

R_{UT2} består av PMOS-transistorer, så vi får räkna från omvänt håll. Detta medför att transistor M6 är placerad i drain och transistor M8 är placerad i source.

• Därefter så härleder vi det fullständiga formeln för R_{UT2}:

$$R_{UT2} = \left(\frac{R_3}{2} / / r_{o8}\right) (1 + g_{m6} r_{o6}) + r_{o6}$$

• Detta formel kan också approximeras till:

$$R_{UT2} \approx \left(\frac{R_3}{2}//r_{o8}\right) g_{m6} r_{o6}$$

- Därefter så kan vi härleda det fullständiga formeln för differentialförstärkningen:
- Antingen kan formeln presenteras på detta sätt:

$$G_{DM} = -\frac{G_m * R_{UT}}{2} = -\frac{g_{m2}}{2} * (R_{UT1}//R_{UT2}),$$

där

$$\begin{cases} R_{UT1} = (R_1//r_{o2}) \left(1 + g_{m4} \left(\frac{R_2}{2}//r_{o4}\right)\right) + \frac{R_2}{2}//r_{o4} \\ \\ R_{UT2} = \left(\frac{R_3}{2}//r_{o8}\right) * (1 + g_{m6}r_{o6}) + r_{o6} \end{cases}$$

• Eller så kan förstärkningsfaktorn formelas i ett fullständigt, men väldigt långt, formel:

$$G_{DM} = -\frac{g_{m2}}{2} \left[\left[(R_1//r_{o2}) \left(1 + g_{m4} \left(\frac{R_2}{2} //r_{o4} \right) \right) + \frac{R_2}{2} //r_{o4} \right] // \left[\left(\frac{R_3}{2} //r_{o8} \right) (1 + g_{m6} r_{o6}) + r_{o6} \right] \right]$$

• Detta formel kan givetvis approximeras. Vi får då:

$$G_{DM} \approx -\frac{g_{m2}}{2} \left[\left[(R_1//r_{o2}) * g_{m4} \left(\frac{R_2}{2} //r_{o4} \right) \right] // \left[\left(\frac{R_3}{2} //r_{o8} \right) * g_{m6} r_{o6} \right] \right]$$

• Vi hade kunnat formela förstärkningsfaktorn på samma sätt på den vänstra sidan, genom att byta ut transistorernas utresistanser och transkonduktanser i formeln ovan mot motsvarande sådana på den vänstra sidan. Samtidigt så håller vi de externa resistanserna samma, eftersom dessa är samma på båda sidor. Vi får då:

$$G_{DM} = -\frac{g_{m1}}{2} \left[\left[(R_1//r_{o1}) \left(1 + g_{m3} \left(\frac{R_2}{2} //r_{o3} \right) \right) + \frac{R_2}{2} //r_{o3} \right] // \left[\left(\frac{R_3}{2} //r_{o7} \right) (1 + g_{m5} r_{o5}) + r_{o5} \right] \right]$$

Detta formel kan approximeras till:

$$G_{DM} \approx -\frac{g_m}{2} \left[\left[(R_1//r_{o1}) * g_{m3} \left(\frac{R_2}{2} //r_{o3} \right) \right] // \left[\left(\frac{R_3}{2} //r_{o7} \right) * g_{m5} r_{o5} \right] \right]$$

- Därefter kan vi enkelt härleda formel för in- och utresistansen.
- Eftersom insignalerna går in direkt på transistorernas gate så kan inresistansen anses vara oändlig:

$$R_{IN} = \infty$$

- Detta gäller för båda ingångar.
- Utresistansen härledde vi tidigare när en formel för förstärkningsfaktorn skulle härledas:

$$R_{UT} = R_{UT1} / / R_{UT2} = \left[\left[(R_1 / / r_{o2}) \left(1 + g_{m4} \left(\frac{R_2}{2} / / r_{o4} \right) \right) + \frac{R_2}{2} / / r_{o4} \right] / \left[\left(\frac{R_3}{2} / / r_{o8} \right) (1 + g_{m6} r_{o6}) + r_{o6} \right] \right]$$

Formeln ovan kan approximeras till:

$$R_{UT} \approx \left[(R_1//r_{o2}) * g_{m4} \left(\frac{R_2}{2} / / r_{o4} \right) \right] / / \left[\left(\frac{R_3}{2} / / r_{o8} \right) * g_{m6} r_{o6} \right]$$

• På samma sätt som vi kunde formela förstärkningsfaktorn på både sidor så kan vi också formela utresistansen på både sidor. Formeln med storheterna på vänster sida så blir utresistansen lika med:

$$R_{UT} = \left[(R_1//r_{o1}) \left(1 + g_{m3} \left(\frac{R_2}{2} //r_{o3} \right) \right) + \frac{R_2}{2} //r_{o3} \right] // \left[\left(\frac{R_3}{2} //r_{o7} \right) (1 + g_{m5} r_{o5}) + r_{o5} \right]$$

• Detta formel kan approximeras till:

$$R_{UT} \approx \left[(R_1//r_{o1}) * g_{m3} \left(\frac{R_2}{2} //r_{o3} \right) \right] // \left[\left(\frac{R_3}{2} //r_{o7} \right) * g_{m5} r_{o5} \right]$$

Förstärkningsfaktor i Common Mode

- Förstärkningsfaktorn i Common Mode kan härledas med ungefär samma formel som i Differential Mode, med skillnaden att vi måste ta med strömkällans resistans vid beräkning av den stora transkonduktansen G_m. Låt oss kalla strömkällans resistans R_{SS}.
- I Common Mode så kommer strömmen genom strömkällan, R_{SS}, vara dubbelt så stor som drainströmmen på valfri sida, eftersom:

Common Mode
$$\rightarrow U_{IN1}=U_{IN2}\rightarrow I_{D1}=I_{D2}=I_{D}$$

$$I_{SS}=I_{D1}+I_{D2}=2I_{D}$$

• Men eftersom de två sidorna delar på strömkällans resistans så skall denna räknas som R_{SS}/2 på en sida, dvs. på det sätt som vi skall beräkna den på. Men eftersom strömmen genom strömkällan är dubbelt så stor så kommer spänningsfallet över denna bli lika med:

$$\frac{R_{SS}}{2} * I_{SS} = \frac{R_{SS}}{2} * 2I_D = R_{SS}I_D$$

• Minnesregel: I Common Mode så kan vi räkna att strömkällans resistans Rss ligger i serie med sourceresistansen.

• Matematiskt formelt så kan Gm härledas med formeln:

$$G_m = \left| \frac{I_{UT}}{\Delta U_{IN2}} \right|_{\Delta U_{IIT} = 0}$$

• Eftersom villkoret ovan gäller när ΔU_{UT} är lika med noll så kommer utströmmen vara lika med drainströmmen. Därefter gäller det bara att härleda en formel för ΔU_{IN} , vilket görs med Kirchhoffs spänningslag:

$$\Delta U_{IN2} - \frac{I_D}{g_{m2}} - R_{SS}I_D = 0 \rightarrow \Delta U_{IN2} = I_D \left(\frac{1}{g_{m2}} + R_{SS}\right)$$

• Detta medför att den stora transkonduktansen Gm enkelt kan beräknas:

$$G_{m} = \left| \frac{I_{UT}}{\Delta U_{IN1}} \right|_{\Delta U_{UT} = 0} = \frac{I_{D}}{I_{D} \left(\frac{1}{g_{m2}} + R_{SS} \right)} = \frac{1}{\frac{1}{g_{m2}} + R_{SS}}$$
$$= \frac{1}{\left(\frac{1 + g_{m2}R_{SS}}{g_{m2}} \right)} = \frac{g_{m2}}{1 + g_{m2}R_{SS}}$$

• R_{UT1} kommer öka kraftigt i Common Mode på grund av strömgeneratorns resistans R_{EE}. Kom ihåg vår minnesregel om strömgeneratorns resistans i Common Mode:

I Common Mode så kan vi räkna att strömkällans resistans Rss ligger i serie med sourceresistansen.

Vi måste därmed addera R_{SS} till varje del där sourceresistansen ingår:

$$R_{S,CM} = R_1//r_{o2} + R_{SS}$$

$$R_{UT1} = \left[(R_1//r_{o2}) + R_{SS} \right] \left(1 + g_{m4} \left(\frac{R_2}{2} / / r_{o4} \right) \right) + \frac{R_2}{2} / / r_{o4}$$

• Eftersom R_{UT1} nu kan antas bli nästan oändligt stor så kommer R_{UT1} ha minimal påverkan på den totala utresistansen, eftersom:

$$R_{UT1}//R_{UT2} = \infty//R_{UT2} \approx R_{UT2}$$

Därmed blir den totala utresistansen ungefär lika med Rutz:

$$R_{IJT} = R_{IJT1} / / R_{IJT2} \approx R_{IJT2}$$

Därmed sätter vi in våra nya värden i formeln för att beräkna Common Mode-förstärkningen:

$$G_{CM} = -\frac{G_m * R_{UT}}{2} \approx -\frac{g_{m2} * R_{UT2}}{2(1 + g_{m2}R_{SS})}$$

Därmed blir Common Mode-förstärkningen ungefär lika med:

$$G_{CM} \approx -\frac{g_{m2}}{2(1+g_{m2}R_{SS})} \left[\left(\frac{R_3}{2} / / r_{o8} \right) (1+g_{m6}r_{o6}) + r_{o6} \right] \approx 0$$

• Eftersom strömspegelns utresistans R_{SS} är så extremt hög (ca 100 M Ω) så blir Common Mode-förstärkningen nästan lika med 0.

CMRR

• En formel för Common Mode Rejection Ratio kan därmed härledas. Vi använder oss utav förkortningarna Ruti och Ruti för att förenkla formeln, samtidigt som ekvationerna inte blir för långa:

$$CMRR = \frac{G_{DM}}{G_{CM}} \approx \frac{\left[\frac{g_{m2}}{2} * (R_{UT1}//R_{UT2})\right]}{\left[\frac{g_{m2} * R_{UT2}}{2(1 + g_{m2}R_{SS})}\right]} = (1 + g_{m2}R_{SS}) * \frac{(R_{UT1}//R_{UT2})}{R_{UT2}}$$
$$= (1 + g_{m2}R_{SS}) * \frac{R_{UT1}}{R_{UT1} + R_{UT2}} \approx \infty$$

• På grund av att strömkällan R_{SS} kan anses vara nästintill oändligt stor så kommer CMRR bli nästan oändligt högt. Detta är en riktigt bra differentialförstärkare, helt enkelt!

Sammanfattning av differentialförstärkaren

- Differentialförstärkare förstärker signaler som är olika på de två ingångarna, exempelvis ljud och kancellerar signaler som är lika på de två ingångarna, exempelvis brus. Sådana signaler kallas differentialsignaler respektive Common Mode-signaler.
- En bra differentialförstärkare har hög differentialförstärkning och låg Common Mode-förstärkning.
- Differentialförstärkare med bara en utgång används mycket oftare i IC-kretsar och OP-förstärkare än varianter med två utgångar, eftersom man med en utgång enkelt kan koppla till nästa steg i kretsen (förmodligen en spänningsförstärkare.
- Om kollektorresistorer används så beräknas differentialförstärkarens förstärkningsfaktor på samma sätt som på ett GE-steg, oavsett om det har en eller två utgångar. Om det endast har en utgång så skall dock denna förstärkningsfaktor halveras.

 För att kraftigt öka inresistansen så kan man använda CMOS-transistorer på ingången istället för BJT-transistorer. Dock blir förstärkningsfaktorn lägre, men i de flesta avseenden är extremt hög inresistans och hög förstärkning föredraget framför moderat inresistans och maximerad förstärkning, särskilt med tanke på att förstärkningsfaktorn lätt kan ökas i efterföljande steg.

 V_{DD}

- Anslut en strömgenerator till den nedre delen av differentialförstärkaren, dvs. till transistorernas emitterdel. Strömgeneratorn innebär konstant ström genom differentialförstärkaren samt extremt hög impedans (resistans), vilket medför extremt låg Common Modeförstärkning och därmed effektiv dämpning av Common Mode-signaler. Använd helst en förbättrad Kaskadkopplad strömspegel, se den högra figuren nedan. Denna strömspegel har en impedans på ca 100 MΩ, vilket är mycket bra för att kancellera icke-önskvärda signaler.
- CMRR (Common Mode Rejection Ratio) är ett mått på hur bra differentialförstärkaren kancellerar Common Modesignaler, exempelvis brus i förhållande till hur mycket den förstärker differentialsignaler, exempelvis ljud. Ju högre CMRR, desto bättre differentialförstärkare. CMRR kan höjas
- Vianvänder MOSFET-transistorer på ingångarna för att få mycket hög inresistans $R_{REF} = \frac{|V_{SS}| 1k*I_{REF} 2*0,65}{I_{REF}}$ nom att använda en strömspegel som last, eller genom att om att använda en strömgenerator med mycket hög

o U_{UT}

- genom att man ökar differentialförstärkningen, exempelvis genom att använda en strömspegel som last, eller genom att man minskar Common Mode-förstärkningen, exempelvis genom att använda en strömgenerator med mycket hög impedans, såsom den förbättrade Kaskadkopplad strömspegeln i den högra figuren nedan.
- Kaskadkopplade differentialförstärkare kan användas för att öka differentialförstärkningen. Dock blir detta mer komplicerat, främst därför att ett flertal matningsspänningar behövs för att mata transistorernas i kaskadkopplingen. Därför är oftast alternativet med strömspegel som last föredraget. Differentialförstärkningen blir ändå hög, samtidigt som förstärkningsfaktorn enkelt kan ökas i efterföljande steg, som bör vara någon typ spänningsförstärkare. Bäst är om ett GS-

Vi använder en strömspegel som last

för att få mycket hög förstärkning

steg används, så vi inte behöver oroa oss för att spänningsförstärkarens inresistans är för låg, som annars kan medföra att differentialförstärkningen minskar kraftigt.

• Utresistansen beräknas på samma sätt som på ett GE-steg, oavsett antalet utgångar. Om MOSFET-transistorer används på ingångarna så blir inresistansen i princip oändligt stor. Om BJT-transistorer används på ingångarna så beräknas inresistansen som på ett GE-steg. I Common Mode får man dock räkna att strömgeneratorns resistans R_{EE} utgör en emitterresistor.

Formler för en differentialförstärkare med strömspegel som last och MOSFETtransistorer på ingången

Differentialförstärkningen kan beräknas med följande formel:

$$G_{DM} = -g_{m2}(r_{o2}//r_{o4}),$$

där r_{02} och r_{04} är varje utresistansen på transistor M2 respektive Q4 och g_{m2} är transistor M2:s så kallad transkonduktans, som är motsvarigheten till bipolartransistorns inbyggda emitterresistans i hybrid- π modellen.

• Förhållandet mellan transkonduktansen g_m och den inbyggda emitterresistansen r_e är:

$$g_m = \frac{1}{r_e},$$

där transkonduktansen mäts i enheten Siemens (S).

Transistor M2:s transkonduktans kan beräknas med formeln

$$g_{m2} = \frac{2 * I_{D2}}{U_{GS2} - U_{T}},$$

Common Mode-förstärkningen kan beräknas med formeln

$$G_{CM} = -rac{r_{o2}//r_{o4}}{2*R_{EE} + rac{1}{g_{m2}}} \approx -rac{r_{o2}//r_{o4}}{2*R_{EE}} \approx 0,$$

 $\ d\ddot{a}r\ R_{\text{EE}}\ \ddot{a}r\ str\ddot{o}mspegelns\ impedans,\ som\ \ddot{a}r\ ca\ 100\ M\Omega\ med\ den\ f\ddot{o}rb\ddot{a}ttrade\ Kaskadkopplad\ str\ddot{o}mspegeln\ ovan.$

- Common Mode-förstärkningen blir nästan noll, vilket är mycket bra, för det betyder att önskvärda signaler, exempelvis brus, kancelleras mycket kraftigt.
- Inresistansen på MOSFET-transistorer är så hög att den kan tänkas vara oändligt hög. Detta gäller både i Differential Mode och Common mode:

$$R_{IN,DM} \approx \infty$$

$$R_{IN,CM} \approx \infty$$

Utresistans i Differential Mode utan emitterresistorer kan beräknas med formeln:

$$R_{UT,DM} = r_{o2}//r_{o4},$$

där r₀₂ och r₀₄ är varje utresistansen på transistor M2 respektive Q4.

• Utresistans i Common Mode utan emitterresistorer kan beräknas med formeln:

$$R_{UT,CM} = 2R_{EE}[1 + g_{m2}(r_{o2}//r_{o4})] + r_{o2}//r_{o4} \approx \infty$$

där $2R_{EE}$ är strömspegelns resistans och g_{m2} är transistor M2:s transkonduktans.

• Utresistansen i Differential Mode med emitterresistorer kan beräknas med formeln:

$$R_{UT,DM} = R_E[1 + g_{m2}(r_{o2}//r_{o4})] + r_{o2}//r_{o4}$$

$$\approx g_{m2}R_E(r_{o2}//r_{o4})$$

Utresistansen i Common Mode med emitterresistorer kan beräknas med formeln:

$$R_{UT,CM} = (2R_{EE} + R_E)[1 + g_{m2}(r_{o2}//r_{o4})] + r_{o2}//r_{o4} \approx \infty$$

Det är mycket viktigt att efterföljande steg, som förmodligen är en spänningsförstärkare, har mycket hög inresistans för att inte sänka

differentialförstärkningen. Det lättaste sättet att sett till detta är att efterföljande steg har en MOSFET-transistor på ingången. Därför är det föredraget att detta steg består utav ett GS-steg, som ytterligare förstärker den signal som differentialförstärkaren förstärkte.

Formler för en kaskadkopplad differentialförstärkare med MOSFET-transistorer

• Differentialförstärkningen kan beräknas med formeln:

$$G_{DM} = -g_{m1} * [(1 + g_{m5}r_{o5}) + r_{o5}] / [r_{o7}(1 + g_{m5}r_{o5}) + r_{o5}],$$

vilket kan avrundas till

$$G_{DM} \approx -g_{m1} * (r_{o1}g_{m3}r_{o3})//(g_{m5}r_{o5}r_{o7})$$

• Eftersom vi använder en förbättrad Wilson strömspegel så blir Common Mode förstärkningen ungefär lika med 0:

$$G_{DM} \approx 0$$

• CMRR kan därför antas vara nästintill oändligt hög:

$$CMRR = \frac{G_{DM}}{G_{CM}} \approx \infty$$

• Utresistansen i Differential Mode kan beräknas med följande formel:

$$R_{UT,DM} = R_{UT1}//R_{UT2} = [(1 + g_{m5}r_{o5}) + r_{o5}]//[r_{o7}(1 + g_{m5}r_{o5}) + r_{o5}],$$

vilket kan avrundas till

$$R_{UT} = R_{UT1} / / R_{UT2} \approx (r_{o1}g_{m3}r_{o3}) / / (g_{m5}r_{o5}r_{o7})$$

• På grund av den förbättrade Kaskadkopplad strömspegeln så blir utresistansen i Common Mode nästintill oändlig:

$$R_{UT.CM} \approx \infty$$

• Eftersom MOSFET-transistorer används så kan inresistansen alltid anses vara nästintill oändligt hög:

$$R_{IN} \approx \infty$$

Formler för en differentialförstärkare med BJT-transistorer på utgången

- 1. Differentialförstärkning (med emitterresistorer):
- Differentialförstärkningen motsvarar förstärkningsfaktorn på GE-steget.
- Vi har tidigare sett att GE-stegets förstärkningsfaktor kan beräknas med följande formel:

$$G = -\frac{R_C}{R_E + r_e}$$

- Samma formel gäller för differentialförstärkaren med två utgångar, som inte är något annat än två sammankopplade GE-steg, se figurerna till höger.
- Om inga emitterresistorer används, ta bort R_E ut formeln ovan.

$$G_{DM} = -\frac{R_C}{2(R_E + r_e)}$$

- Det blir alltså dubbelt så mycket resistans från emittern. Därmed så blir förstärkningen halverad.
- Om inga emitterresistorer används, ta bort RE ut formeln ovan.
- När en strömspegel används som last på differentialförstärkaren, såsom i figuren nedan till höger, så blir förstärkningsfaktorn identisk med ett GE-steg med strömgenerator som last.

$$G_{DM} = -\frac{r_{o2}//r_{o4}}{r_{e2}},$$

där r_{02} och r_{04} är varje utresistansen på transistor Q2 respektive Q4 och r_{e2} är transistor Q2:s inbyggda emitterresistans. Differentialförstärkningen kan uppnå - 5000 eller mer när BJT-transistorer används på ingångarna.

• Den inbyggda emitterresistansen kan beräknas med formeln:

$$r_{e2}=\frac{25}{I_{C2(mA)}},$$

där I_{C2} är kollektorströmmen som flödar på höger sida av differentialförstärkaren, mätt i mA.

2. Common Mode-förstärkning:

- I Common Mode så är signalerna på differentialförstärkarens två ingångar identiska. Dessa signaler vill vi inte förstärka. Common Mode-förstärkningen bör därför vara så nära noll som möjligt.
- Common Mode-förstärkningen med en utgång är samma som för två utgångar, eftersom det endast är differentialförstärkningen som blir halverad när en utgång tas bort:

$$G_{CM} = -\frac{R_C}{2R_{EE} + R_E + r_e},$$

där $2R_{EE}$ är resistansen nedanför transistorernas emittrar. Denna resistor bör vara så hög som möjligt samtidigt som tillräckligt stor ström skall flöda ned till den negativa matningsspänningen V_{EE} . Därför brukar en strömgenerator användas, som medför extremt hög resistans och konstant ström. Då blir Common Mode-förstärkningen nästan 0.

$$G_{CM} \approx 0 \ om \ R_{EE} \approx \infty$$

$$G_{CM} = -\frac{R_C}{2R_{EE} + R_E + r_e} \approx 0 \text{ om } R_{EE} \approx \infty$$

 Common Mode-förstärkningen med strömspegel som last, se figuren nedan till höger, är lika med:

$$G_{CM} = -\frac{r_{o2}//r_{o4}}{2R_{EE} + R_E + r_{e2}} \approx 0 \text{ om } R_{EE} \approx \infty,$$

där re2 är transistor Q2:s inbyggda emitterresistans. När en strömspegel används som last så blir inte förstärkningen halverad, trots att bara en utgång används. Detta beror på att strömspegel ser till att kollektorströmmarna alltid är lika stora, vilket medföra att ström måste skickas eller dras från utgången, lika stor ström som strömskillnaden på de två sidorna hade varit om två utgångar hade använts. Detta medför också att spänningsskillnaden på utsignalen blir identisk med den resulterande spänningsskillnaden på utsignalen om två utgångar hade använts.

3. CMRR (Common Mode Rejection Ratio)

 CMRR är ett mått på hur mycket önskvärda signaler (exempelvis ljud) förstärks i förhållande till icke önskvärda signaler (exempelvis brus). CMRR kan sägas vara ett mått på hur bra differentialförstärkaren är.

$$CMRR = \frac{G_{DM}}{G_{CM}}$$

 Ju högre CMRR, desto bättre är differentialförstärkaren. En mycket bra differentialförstärkare kan ha nästan oändlig CMRR. För detta krävs att väldigt låg Common Mode-förstärkning, vilket kräver att en strömgenerator med väldig hög utresistans används, exempelvis en förbättrad Kaskadkopplad strömspegel såsom i figuren till höger.

In- och utresistans för den enkla BJT-differentialförstärkaren i Differential Mode

Nedanstående formel gäller endast för en ingång. Summan av de två ingångarna är det dubbla.

$$R_{IN,DM} \approx (r_e + R_E + 2R_{EE})h_{FE}$$

Nedanstående formler för utresistans gäller endast för sidan med utgången, inte på den andra, eftersom detta är den enda utgången. Om två ingångar finns så är har de två sidorna samma utresistans.

• Utresistans utan emitterresistorer (som differentialförstärkare vanligtvis saknar):

$$R_{UT,DM} \approx R_C$$

Utresistans med emitterresistorer:

$$R_{UT,DM} pprox rac{R_E//r_\pi}{r_e} * R_C$$
,

där

$$r_{\pi} = r_e * h_{FE}$$

In- och utresistans vid Common Mode:

Nedanstående formler för inresistansen i Common Mode gäller endast för en ingång. Summan av de två ingångarna är det dubbla.

$$R_{IN.CM} \approx 2[(2R_{EE} + R_E + r_e)h_{FE}]$$

Vanligtvis består REE av en strömgenerator med mycket hög resistans, vilket medför att

$$R_{IN,CM} \approx 4R_{EE} * h_{FE} \approx \infty$$

Nedanstående formler för utresistans i Common Mode gäller endast för sidan med utgången, inte på den andra, eftersom detta är den enda utgången. Om två ingångar finns så är har de två sidorna samma utresistans.

• Utresistans utan emitterresistorer:

$$R_{UT.CM} \approx R_C * h_{FE}$$

Utresistans med emitterresistorer:

$$R_{UT,CM} \approx \frac{(2R_{EE} + R_E)//r_\pi}{r_e} * R_C \approx R_C * h_{FE},$$

där

$$r_{\pi} = r_e * h_{FE}$$

Appendix A

Härledning av förstärkningsfaktorn i Differential Mode, med emitterresistorer och en utgång

 Om tittar på de två sidorna av differentialförstärkaren så ser vi att varje sida kan ses som ett separat GE-steg. Eftersom differentialförstärkningen är differensen mellan de två insignalerna så kommer vi se att resistansen från R_{EE} eller motsvarande strömgenerator elimineras:

$$G_{DM} = \frac{\Delta U_{UT}}{\Delta U_{IN1} - \Delta U_{IN2}}$$

- Vi härleder formel för ΔU_{IN1} och ΔU_{IN2} precis som på ett GE-steg. Vi ignorerar de signaler som är konstanta, exempelvis matningsspänningen V_{CC} och V_{EE} . Dessutom ersätter vi transistorernas bas-emitterspänning U_{BE} med formeln r_{elc} .
- Vi börjar med att köra Kirchhoffs spänningslag på vänster sida av differentialförstärkaren för att härleda en formel för ΔU_{IN1}:

$$\Delta U_{IN1} - r_{e1}I_{C1} - R_EI_{C1} - R_{EE} * I_{EE} = 0$$

$$\rightarrow \Delta U_{IN1} = r_{e1}I_{C1} + R_EI_{C1} + R_{EE}I_{EE}$$

$$\Delta U_{IN2} - r_{e2}I_{C2} - R_EI_{C2} - R_{EE} * I_{EE} = 0$$

$$\rightarrow \Delta U_{IN2} = r_{e2}I_{C2} + R_EI_{C2} + R_{EE} * I_{EE}$$

• Vi beräknar sedan differensen av ΔU_{IN1} och ΔU_{IN2}:

$$\begin{split} \Delta U_{IN1} - \Delta U_{IN2} &= r_{e1}I_{C1} + R_EI_{C1} + R_{EE}I_{EE} - (r_{e2}I_{C2} + R_EI_{C2} + R_{EE} * I_{EE}) \\ &= r_{e1}I_{C1} + R_EI_{C1} + R_{EE}I_{EE} - r_{e2}I_{C2} - R_EI_{C2} + -R_{EE} * I_{EE} \\ &\rightarrow \Delta U_{IN1} - \Delta U_{IN2} = r_{e1}I_{C1} + R_E(I_{C1} - I_{C2}) - r_{e2}I_{C2} \end{split}$$

- I differential Mode kan vi därmed alltid exkludera REE ur beräkningarna, även vid beräkning av inresistansen.
- Punkten mellan de två transistorernas emittrar fungerar som en virtuell jord i Differential Mode, eftersom REE eller motsvarande strömgenerator kancelleras ut. I Differential Mode blir då spänningen i den punkten ungefär lika med noll.
- Vi härleder också en formel för ΔU_{UT} med Kirchhoffs spänningslag:

$$-R_C I_{C2} - \Delta U_{UT} = 0 \rightarrow \Delta U_{UT} = -R_C I_{C2}$$

- För att beräkna differentialförstärkningen med en ingång så beräknar vi förstärkningen på ena sidan och dividerar med två. Eftersom utgången är placerad på höger sida så beräknar vi på
- denna sida.

Vi härleder en formel för ΔU_{IN2} i Differential Mode, dvs. med R_{EE}lee kancellerad:

$$\rightarrow \Delta U_{IN2} = r_{e2}I_{C2} + R_EI_{C2} = (r_{e2} + R_E)I_{C2}$$

Förstärkningsfaktorn på höger sida, låt oss kalla denna G2, blir därför:

$$G_2 = \frac{\Delta U_{UT}}{\Delta U_{IN2}} = -\frac{R_C I_{C2}}{(r_{e2} + R_E)I_{C2}} = -\frac{R_C}{r_{e2} + R_E}$$

Den totala förstärkningsfaktorn med båda sidor inräknat blir halva G2, eftersom vi har två ingångar, men bara en ingång:

$$G_{DM} = \frac{G_2}{2} = -\frac{R_C}{2(r_{e2} + R_E)}$$

Vid jämvikt, exempelvis när vi beräknar småsignalförstärkningen som här, så antas de två kollektorströmmarna vara lika stora, vilket medför att de inbyggda emitterresistanserna blir lika stora:

$$I_{C1} = I_{C2} \rightarrow r_{e1} = \frac{25}{I_{C1(mA)}} = r_{e2} = \frac{25}{I_{C2(mA)}} \rightarrow r_{e1} = r_{e2} = r_{e}$$

Därmed så kan formeln för differentialförstärkningen modifieras till:

$$G_{DM} = -\frac{R_C}{2(r_e + R_E)}$$

Appendix B

Härledning av förstärkningsfaktorn i Common Mode, med emitterresistorer och en utgång

• Common Mode-förstärkningen kan beräknas med följande formel:

$$G_{CM} = \frac{\Delta U_{UT}}{\left(\frac{\Delta U_{IN1} + \Delta U_{IN2}}{2}\right)}$$

• I Common Mode så är de två insignalerna identiska:

$$\Delta U_{IN1} = \Delta U_{IN2} = \Delta U_{IN}$$

 Detta medför att beräkningar, exempelvis av förstärkningsfaktor eller inresistans, endast behöver göras på en sida.

$$\frac{\Delta U_{IN1} + \Delta U_{IN2}}{2} = \frac{2\Delta U_{IN}}{2} = \Delta U_{IN}$$

• Vi beräknar därmed inte differensen av de två insignalerna, utan det räcker med att beräkna ΔU_{IN} på en av sidorna.

$$G_{CM} = \frac{\Delta U_{UT}}{\Delta U_{IN1}} = \frac{\Delta U_{UT}}{\Delta U_{IN2}} = \frac{\Delta U_{UT}}{\Delta U_{IN}},$$

 Dessutom gäller att de två kollektorströmmarna är lika stora, vilket medför att strömmen I_{EE} dubbelt så stor som kollektorströmmen I_{C2}:

$$I_{C1} = I_{C2} \rightarrow I_{EE} = I_{C1} + I_{C2} = 2I_{C2}$$

- Vi beräknar inspänningen på höger sida, eftersom det är på den sidan som utgången finns.
- Vi härleder en formel för ΔU_{IN2} med Kirchhoffs spänningslag:

$$\Delta U_{IN2} - r_{e2}I_{C2} - R_EI_{C2} - R_{EE} * I_{EE} = 0$$

$$\rightarrow \Delta U_{IN2} = r_{e2}I_{C2} + R_EI_{C2} + R_{EE} * I_{EE} = r_{e2}I_{C2} + R_EI_{C2} + R_{EE} * 2I_{C2}$$

$$\rightarrow \Delta U_{IN2} = I_{C2}(r_{e2} + R_E + 2R_{EE})$$

Vi härleder också en formel för ΔU_{UT}, för att kunna härleda förstärkningsfaktorn:

$$-R_C I_{C2} - \Delta U_{IJT} = 0 \rightarrow \Delta U_{IJT} = -R_C I_{C2}$$

Förstärkningsfaktorn i Common Mode blir då:

$$G_{CM} = \frac{\Delta U_{UT}}{\Delta U_{IN2}} = -\frac{R_C I_{C2}}{I_{C2}(r_{e2} + R_E + 2R_{EE})} = -\frac{R_C}{2R_{EE} + R_E + r_{e2}}$$

Vid jämvikt så kommer samma kollektorström flöda på de båda sidorna, vilket medför att rel och rel blir lika stora:

$$I_{C1} = I_{C2} \rightarrow r_{e1} = \frac{25}{I_{C1(mA)}} = r_{e2} = \frac{25}{I_{C2(mA)}} \rightarrow r_{e1} = r_{e2} = r_e$$

Common Mode-förstärkningen blir inte halverad när bara en utgång används, eftersom det är spänningsskillnaden på
utsignalen som blir halverad med en utgång. Denna spänningsskillnad existerar inte i Common Mode. Därmed blir Common
Mode-förstärkningen lika med:

$$G_{CM} = -\frac{R_C}{2R_{EE} + R_E + r_e}$$

Appendix C

Inresistans i Differential Mode, med emitterresistorer

• Inresistansen på de två transistorernas basar blir därmed ungefär lika med resistansen sedd från emittern multiplicerad med transistorns strömförstärkningsfaktor hfe, precis som på ett GE-steg.

$$R_{IN} \approx 2(r_e + R_E)h_{FE}$$

- I differential Mode så kancelleras effekten av strömgeneratorn R_{EE}, eftersom den ena ingången vill dra upp spänningen i punkten mellan de två transistorernas emittrar, medan den vill dra ned den lika mycket. Detta medför att potentialen i denna punkt är lika med noll. Därmed så har en så kallad virtuell jordpunkt skapats. Därför så exkluderas R_{EE} ur beräkningarna.
- Vi kan förtydliga att strömgeneratorns resistans R_{EE} kancelleras i Differential Mode genom att rita ut separata småsignalscheman för ingångarna utan R_{EE}, se den mittersta och den högra figuren nedan. Som

- Vi kan också göra en exakt beräkning av inresistansen med småsignalschema. Detta görs då på exakt samma sätt som för ett GE-steg. Vi börjar med att kortsluta in- och utspänningen. Därefter placerar vi en spänningskälla i baskretsen, U_B. Vi ritar ut småsignalschemat för bipolartransistorn.
- Basen är till vänster, kollektor till högern och emittern mitt emellan dem.
- Vi tillsätter en spänningskälla U_B på basen. Inresistansen beräknas med följande formel:

$$R_{IN} = \frac{U_B}{I_B}$$

Resistansen r_{π} är den inbyggda emitterresistansen r_{e} , fast sedd från basen, dvs. emitterresistansen multiplicerat med strömförstärkningsfaktorn h_{FE} .

 Detta medför att följande förhållande råder mellan de resistanserna:

$$r_{\pi} = h_{FE} * r_{e}$$

• Notera att strömkällan $\frac{U_{BE}}{r_e}$ är lika med kollektorströmmen I $_{C}$:

$$\frac{U_{BE}}{r_a} = I_C$$

 Vi kör Kirchhoffs spänningslag för att härleda formel för basspänningen U_B:

$$U_B - r_\pi I_B - R_E I_E = 0 \rightarrow U_B = r_\pi I_B + R_E I_E$$

• Vi använder Kirchhoffs strömlag för att härleda en formel för emitterströmmen I_E. Som synes så är emitterströmmen I_E summan av basströmmen I_B och kollektorströmmen I_C:

$$I_E = I_B + I_C = I_B + \frac{U_{BE}}{r_e}$$

Vi noterar också i småsignalschemat ovan att bas-emitterspänningen U_{BE} är lika med spänningsfallet över resistansen rπ:

$$U_{BE} = r_{\pi} * I_{B}$$

• Vi sätter in det i ekvationen för emitterströmmen ovan:

$$I_{E} = I_{B} + \frac{U_{BE}}{r_{e}} = I_{B} + \frac{r_{\pi} * I_{B}}{r_{e}} = I_{B} \left(1 + \frac{r_{\pi}}{r_{e}} \right)$$

$$r_{\pi} = h_{FE} * r_{e}$$

$$\to I_{E} = I_{B} \left(1 + \frac{r_{\pi}}{r_{e}} \right) = I_{B} \left(1 + \frac{h_{FE} * r_{e}}{r_{e}} \right) = I_{B} (1 + h_{FE})$$

• Vi sätter in detta i formeln för basspänningen U_B ovan:

$$U_B = r_{\pi}I_B + R_EI_E = r_{\pi}I_B + R_EI_B(1 + h_{FE}) = I_B[r_{\pi} + R_E(1 + h_{FE})]$$

• Därefter kan vi härleda en formel för inresistansen i Differential Mode:

$$R_{IN} = \frac{U_B}{I_B} = \frac{I_B[r_\pi + R_E(1 + h_{FE})]}{I_B} = r_\pi + R_E(1 + h_{FE})$$

• Därefter så måste vi multiplicera inresistansen med två, eftersom signaler som uppträder på ingångarna alltid kommer se båda ingångarna, dvs. två basar. Därför måste vi fördubbla inresistansen:

$$R_{IN} = 2[r_{\pi} + R_E(1 + h_{FE})]$$

Exakt formel

Följande formel kan användas för att exakt beräkning inresistansen på en differentialförstärkare med emitterresistor:

$$R_{IN} = 2[r_{\pi} + R_{F}(1 + h_{FF})]$$

Approximativt formel

Vid tidigare beräkningar så använde vi ett förenklat formel, som härleddes genom följande steg:

$$r_{\pi} = h_{FE} * r_e$$
127

$$R_E(1+h_{FE}) \approx h_{FE} * R_E$$

$$\rightarrow R_{IN} \approx 2[h_{FE} * r_e + h_{FE} * R_E] = 2[h_{FE}(r_e + R_E)]$$

Exakt formel utan emitterresistor

• Utan emitterresistor så tar vi bort emitterdelen av formeln:

$$R_{IN,utan\;emitterresistor} = 2*r_{\pi} = 2*h_{FE}*r_{e}$$

Appendix D

Inresistans i Common Mode, med emitterresistorer

- I Common Mode måste vi räkna med resistansen R_{EE}, eftersom den inte blir kancellerad som i Differential Mode:
- För att beräkna inresistansen i Common Mode så behöver vi bara beräkna på en ingång. Inresistansen kommer vara samma på de två ingångarna. Vid jämvikt så kommer samma kollektorström flöda på de båda sidorna, vilket medför att r_{e1} och r_{e2} blir lika stora:

$$I_{C1} = I_{C2} \rightarrow r_{e1} = \frac{25}{I_{C1(mA)}} = r_{e2} = \frac{25}{I_{C2(mA)}}$$

$$\rightarrow r_{e1} = r_{e2} = r_{e}$$

$$I_{C1} = I_{C2} = I_{C}$$

- Samma formel gäller då för de båda ingångarna. Dock får vi ha i åtanke att strömmen genom resistansen Ree är dubbelt så hög som kollektorströmmen Ic2.
- Detta medför att vi får räkna med

$$R_{EE} * I_{EE} = R_{EE} * 2I_{C2} = 2R_{EE} * I_{C2}$$

när vi beräknar inresistansen per ingång.

• Vi kan därmed rita ut det förenklade till vänster nedan. Där ser vi att det ser ut som ett GE-steg med en ytterligare emitterresistor 2R_{EE} i serie med den vanliga emitterresistorn R_E. Vi ersätter dessa med en ersättningsresistans som är lika med 2R_{EE} + R_E. Därefter ritar vi om småsignalschemat till det göra nedan, som ser ut som ett helt vanligt GE-steg. Inresistansen är då väldigt enkel att härleda.

• Inresistansen på basen är ungefär lika med all resistans från emittern samt R_{EE} multiplicerat med transistorns strömförstärkningsfaktor h_{FE}.

$$R_{IN.CM} \approx (r_e + R_E + 2R_{EE})h_{FE}$$

• Därefter så måste vi multiplicera inresistansen med två, eftersom signaler som uppträder på ingångarna alltid kommer se båda ingångarna, dvs. två basar. Därför måste vi fördubbla inresistansen:

$$R_{IN.CM} \approx 2(r_e + R_E + 2R_{EE})h_{FE}$$

• För ett exakt formel på inresistansen så måste vi ha den minimala skillnaden i kollektor- och emitterström i åtanke. Följande formler visar förhållandet mellan de basströmmen och kollektor- respektive emitterströmmen:

$$I_C = h_{FE} * I_B$$

$$I_E = (h_{FE} + 1) * I_B$$

• Förhållandet mellan emitter- och kollektorströmmen är därför:

$$\frac{I_E}{I_C} = \frac{(h_{FE} + 1) * I_B}{h_{FE} * I_B} = \frac{h_{FE} + 1}{h_{FE}}$$

• Sen får vi tänka rent intuitivt:

Genom den inbyggda emitterresistansen så flödar strömmen I_c , eftersom vi vet att resistor r_π ligger i basen och kommer ha samma spänningsfall som dess motsvarighet i emittern, r_e :

$$r_{\pi} * I_{B} = r_{e} * h_{FE} * I_{B} = r_{e} * h_{FE} * \frac{I_{C}}{h_{FE}} = r_{e}I_{C}$$

- Genom emitterresistorn R_E och resistansen 2R_{EE} så flödar strömmen
 I_E, dvs. (h_{FE} + 1) * I_B, se figuren ovan till höger.
- Vi kör sedan Kirchhoffs spänningslag från en av ingångarna ned till jord. Vi kör utan småsignalschema, men samma principer gäller.
- Vi använder oss utav följande formel för att beräkna inresistansen:

$$\Delta U_{IN} = R_{IN,CM} * I_B \rightarrow R_{IN,CM} = \frac{\Delta U_{IN}}{I_B}$$

- Detta motsvarar $R_{IN}=\frac{U_B}{I_B}$ i ett småsignalschema för beräkning av inresistans, som vi har sett tidigare i avsnittet med GE-steget.
- Vi utför alltså samma beräkningar, bara att vi kör med det vanliga småsignalschemat till höger.
- För att förenkla beräkningarna använder vi oss av

$$r_{e1} = r_{e2} = r_e$$

samt

$$I_{C1} = I_{C2} = I_{C}$$

• Detta medför att formeln som härleds gäller för de båda sidorna, fast vi beräknar inresistansen per ingång, inte båda, som hade blivit dubbelt så stor.

• Vi härleder formel för inspänningen ur småsignalschemat till höger:

$$\Delta U_{IN} - r_e I_C - (2R_{EE} + R_E)I_E = 0$$

$$\rightarrow \Delta U_{IN} = r_e * I_C + (2R_{EE} + R_E)I_E$$

• Vi ersätter sedan strömmarna Ic och IE med motsvarande formel för basströmmen IB:

$$\rightarrow \Delta U_{IN} = r_e * h_{FE} * I_B + (2R_{EE} + R_E) * (h_{FE} + 1) * I_B$$

• Vi bryter sedan ut I_B för att kunna beräkna inresistansen:

$$\to \Delta U_{IN} = I_B [r_e * h_{FE} + (2R_{EE} + R_E) * (h_{FE} + 1)]$$

$$R_{IN,CM} = \frac{\Delta U_{IN}}{I_B} = \frac{I_B[r_e * h_{FE} + (2R_{EE} + R_E) * (h_{FE} + 1)]}{I_B}$$

$$\rightarrow R_{IN,CM} = r_e * h_{FE} + (2R_{EE} + R_E) * (h_{FE} + 1)$$

• Därefter så måste vi multiplicera inresistansen med två, eftersom signaler som uppträder på ingångarna alltid kommer se båda ingångarna, dvs. två basar. Därför måste vi fördubbla inresistansen:

$$R_{IN,CM} = 2[r_e * h_{FE} + (2R_{EE} + R_E) * (h_{FE} + 1)]$$

• Som synes så kan detta formel mycket lätt approximeras med minimala avvikelser:

$$\rightarrow R_{INCM} \approx 2[r_e * h_{FE} + (2R_{EE} + R_E) * h_{FE}]$$

• Vi bryter sedan ut strömförstärkningsfaktorn hfe:

$$\rightarrow R_{INCM} = 2[h_{FF}(r_e + R_F + 2R_{FF})]$$

- Denna approximation är väldigt nära det exakta formeln ovan samtidigt som det är logiskt rent intuitivt.
- Anmärkning: I hybrid- π modellen så ersätts r_e av r_π :

Appendix E

Utresistans i Differential MODE, utan emitter-/sourceresistorer

- För att beräkna utresistansen när emitterresistorer saknas så kortsluter vi återigen in- och utspänningen och placerar en spänningskälla Ux på utgången. Därefter ritar vi ut småsignalschemat för GE-steget, se den vänstra figuren nedan.
- Vi noterar återigen att kollektorresistorn R_C och transistorns utresistans r_0 är parallellkopplade. Därför ersätter vi dessa med en ersättningsresistans som är lika med $R_C//r_0$. Vi ritar sedan om småsignalschemat till det högra nedan.

- I denna uppgift skall vi börja med att göra några förenklingar, se den högra figuren ovan:
- När emitterresistor saknas så blir bas-emitterspänningen UBE lika med noll, vilket man lätt kan visa med Kirchhoffs spänningslag. Vi börjar från toppen av basen och går ned till emittern, dvs. från jord till jord:

$$-U_{BE}-0=0\to U_{BE}=0$$

• Eftersom UBE är lika med noll så blir också strömmen $\frac{U_{BE}}{r_e}$ lika med noll:

$$U_{BE} = 0 \rightarrow \frac{U_{BE}}{r_{e}} = \frac{0}{r_{e}} = 0$$

• Därefter utför vi beräkningarna. Utresistansen beräknas med följande formel:

$$R_{UT} = \frac{U_X}{I_X}$$

• Vi kör Kirchhoffs spänningslag för att härleda formel för spänningen Ux:

$$U_x - R_C / / r_o * I_0 = 0$$

$$\rightarrow U_x = R_C / / r_o * I_0$$

- Vi använder Kirchhoffs strömlag för att härleda en formel för strömmen Io.
- Som synes så är strömmen I_X lika med summan av strömmarna I_0 och $\frac{U_{BE}}{r_e}$:

$$I_x = I_0 + \frac{U_{BE}}{r_e} \rightarrow I_0 = I_x - \frac{U_{BE}}{r_e}$$

• Vi såg tidigare att $\frac{U_{BE}}{r_e}$ är lika med noll när emitterresistor saknas:

$$\frac{U_{BE}}{r_e} = 0$$

• Därför blir strömmarna Ix och I₀ lika stora:

$$\to I_x = I_0 + \frac{U_{BE}}{r_e} = I_0 + 0 = I_0$$

• Vi kan därför byta ut strömmen I₀ mot Ix i formeln för spänningen Ux ovan:

$$U_x = R_C / / r_o * I_0 = R_C / / r_o * I_X$$

• Därefter kan vi beräkna utresistansen:

$$R_{UT} = \frac{U_X}{I_X} = \frac{R_C//r_o * I_X}{I_Y} = R_C//r_o$$

- Utan emitterresistor så blir alltså utresistansen lika med parallellkopplingen bestående av kollektorresistorn och transistorns utresistans, dvs. $R_c//r_o$.
- Vi kan också anta att transistorns utresistans ro är mycket större än kollektorresistorn Rc. Då kan utresistansen försummas:

$$R_C//r_o \approx R_C$$

- Det är lätt att komma ihåg att transistorns utresistans utan emitterresistor är ungefär lika med kollektorresistorn Rc.
- För GE-steg utan emitterresistor så gäller alltså följande formel för utresistansen i Differential Mode:

$$R_{UT} = R_C / / r_o \approx R_C$$

Utresistans i Differential Mode med MOSFET-ingångar, utan emitterresistorer

- Vi kan direkt översätta resultatet ovan till att gälla för MOSFET-varianter av differentialförstärkare också.
- Utresistansen f\u00f6r differentialf\u00f6rst\u00e4rkare med MOSFET-ing\u00e4ngar i Differential Mode utan sourceresistorer kan approximeras till

$$R_{UT,DM} = R_D / / r_o$$

där R_D är drainresistorns resistans och r_0 är MOSFET-transistorns utresistans.

• Formeln ovan kan därefter avrundas till

$$R_{UT,DM} \approx R_D$$

Appendix F

Utresistans i Differential Mode, med emitter-/sourceresistorer

- För att beräkna utresistansen på differentialförstärkaren så beräknar vi på en sida i taget. I Differential Mode så fungerar punkten mellan transistorernas emittrar som en virtuell jord, vilket medför att vi kan bortse från REE.
- Utresistansen i Differential Mode beräknas i detta fall på samma sätt som för ett GE-steg med emitterresistorer. Vi kortsluter inspänningen och utspänningen. Därefter så placerar vi en spänningskälla på utgången, som vi kallar U_X. Vi ritar därefter ut det vänstra småsignalschemat nedan.
- Som synes så är kollektorresistorn samt transistorns utresistans parallellkopplade, så dessa ersätts med en resistans, R_c//r_o. Vi ritar därefter om småsignalschemat till det högra nedan.

• Notera att resistansen r_{π} och emitterresistorn R_E också är parallellkopplade, eftersom de båda är anslutna till samma punkt på ena sidan och båda är anslutna till jord på andra sidan. Därmed är spänningsfallet över de båda resistanserna samma. Vi ersätter därför dessa resistanser med en ersättningsresistans som är lika med $R_E//r_{\pi}$, som vi placerar i emittern. Därefter ritar vi om schemat till det vänstra nedan.

• För att underlätta beräkningen av utresistansen så inför vi beteckningarna R₁ och R₂ i småsignalschemat. Följande gäller för dessa storheter:

$$R_1 = R_C / / r_o$$

$$R_2 = R_E / / r_{\pi}$$

• Utresistansen beräknas med följande formel:

$$R_{UT} = \frac{U_X}{I_X}$$

 Vi kör Kirchhoffs spänningslag för att härleda formel för spänningen Ux:

$$U_x - R_1 * I_0 - R_2 * I_x = 0$$

 $\to U_x = R_1 * I_0 + R_2 * I_x$

• Som synes så är strömmen I_X lika med summan av strömmarna I_0 och $\frac{U_{BE}}{r_0}$:

$$I_x = I_0 + \frac{U_{BE}}{r_e} \to I_0 = I_x - \frac{U_{BE}}{r_e}$$

• Därefter härleder vi en formel för bas-emitterspänningen UBE:

$$-U_{BE} - R_2 I_x = \rightarrow U_{BE} = -R_2 * I_x$$

Därmed så kan vi förenkla formeln för spänningen Ux ovan:

$$I_0 = I_x - \frac{U_{BE}}{r_e} = I_x + \frac{R_2 * I_x}{r_e} = I_x \left[1 + \frac{R_2}{r_e} \right]$$

• Därefter sätter vi in formeln för Io i formeln för Ux ovan:

$$U_x = R_1 * I_0 + R_2 * I_x = R_1 * I_x \left[1 + \frac{R_2}{r_0} \right] + R_2 * I_x = I_x \left[R_1 \left(1 + \frac{R_2}{r_0} \right) + R_2 \right]$$

• Vi kan därefter härleda en formel för utresistansen:

$$R_{UT} = \frac{U_X}{I_X} = \frac{I_X \left[R_1 \left(1 + \frac{R_2}{r_e} \right) + R_2 \right]}{I_X} = R_1 \left(1 + \frac{R_2}{r_e} \right) + R_2$$

• Därefter ersätter vi beteckningen R₁ och R₂ med den egentliga resistansen:

$$R_1 = R_C / / r_o$$

$$R_2 = R_E / / r_\pi$$

• Utresistansen kan alltså beräknas med formeln:

$$\rightarrow R_{UT} = R_C / / r_o \left(1 + \frac{R_E / / r_\pi}{r_e} \right) + R_E / / r_\pi,$$

där resistansen r_{π} är BJT-transistorns inbyggda emitterresistans r_{e} sedd från baskretsen, som därmed är lika med r_{e} multiplicerat med transistorns strömförstärkningsfaktor h_{FE} :

$$r_{\pi} = r_{e} * h_{FE}$$

• Formeln ovan följer samma princip som när vi beräknar inresistansen på GE-steget och alla andra förstärkarsteg, då inresistansen är lika med all resistans från emittern multiplicerat med strömförstärkningsfaktorn h_{FE}.

Formeln för utresistansen ovan kan också omvandlas till:

$$R_{UT} = R_C / / r_o \left(1 + \frac{R_E / / r_\pi}{r_e} \right) + R_E / / r_\pi = R_C / / r_o + R_C / / r_o * \frac{R_E / / r_\pi}{r_e} + R_E / / r_\pi$$

$$= R_E / / r_\pi + R_C / / r_o * \frac{R_E / / r_\pi}{r_e} + R_C / / r_o = R_E / / r_\pi \left(1 + \frac{R_C / / r_o}{r_e} \right) + R_C / / r_o$$

• Vi ser därmed att utresistansen även kan formelas på följande sätt:

$$R_{UT} = R_E / / r_\pi \left(1 + \frac{R_C / / r_o}{r_o} \right) + R_C / / r_o$$

Detta värde kan avrundas till:

$$R_{UT} pprox R_E / / r_{\pi} * rac{R_C / / r_o}{r_e}$$

• Vi kan också anta att kollektorresistorn R_C är mycket mindre än BJT-transistorns utresistans r_o, vilket medför att parallellresistansen R_C//r_o är ungefär lika med R_C:

$$R_C//r_o \approx R_C$$

• Därmed så kan GE-stegets utresistans avrundas till:

$$R_{UT} \approx R_E / / r_\pi * \frac{R_C}{r_e}$$

där

$$r_{\pi} = r_e * h_{FE}$$

• Som en tumregel så kan utresistansen med emitterresistorn approximeras med hög precision med följande formel:

$$R_{UT} \approx R_C * \frac{r_e + R_E}{r_e}$$

där R_C är kollektorresistorns resistans, r_e är BJT-transistorn inbyggda emitterresistans och R_E är emitterresistorns resistans.

Som exempel, om emitterresistorn sätts till ett värde som är ca nio gånger högre än den inbyggda emitterresistansen, som vi brukar göra för att minska distorsion i differentialförstärkare (samt spänningsförstärkare), så kommer utresistansen öka omkring (9 + 1) / 1 = 10 gånger. Samtidigt hade förstärkningsfaktorn minskat tio gånger, men detta är ofta nödvändigt för att minimera distorsion, exempelvis i audioförstärkare.

Utresistans för differentialförstärkare med MOSFET-ingångar, med sourceresistorer

 Vi kan översätta resultatet ovan till att gälla för MOSFET-varianter av differentialförstärkare också. Utresistansen för differentialförstärkare med sourceresistorer är lika med

$$R_{UT} = R_S [1 + g_m(R_D//r_o)] + R_D//r_o,$$

där R_S är sourceresistorn, g_m är MOSFET-transistorns transkonduktans, R_D är drainresistorn och r_o är MOSFET-transistorns utresistans.

Detta värde kan sedan approximeras till

$$R_{UT} \approx g_m R_S(R_D//r_o)$$

• Om vi sedan gör det säkra antagandet att drainresistorn R_D är mycket mindre än MOSFET-transistorns utresistans r₀, så kan vi ersätta parallellresistansen R_D//r₀ med R_D, eftersom:

$$R_D//r_o \approx R_D$$

Därmed så kan utresistansen avrundas till

$$R_{UT} \approx g_m R_S R_D$$

- Notera att vi ersätter kollektorresistorn R_C med drainresistorn R_D , emitterresistorn R_E med sourceresistorn R_S , den inbyggda emitterresistansen r_e med inversen till transkonduktansen $1/g_m$.
- Dessutom så tar vi bort motsvarigheten till BJT-transistorns resistans r_{π} , som är lika med den inbyggda emitterresistansen r_{e} sedd från basen, dvs. $r_{\pi} = r_{e} * h_{FE}$. På grund av MOSFET-transistorns nästintill oändliga strömförstärkningsfaktor så blir motsvarande resistans i MOSFET-transistorn lika med $1/g_{m} * h_{FE} = 1/g_{m} * \infty = \infty$, dvs. nästintill oändligt.
- Jämfört med formeln för BJT-transistorns utresistans,

$$R_{UT} = R_E//r_\pi \left(1 + \frac{R_C//r_o}{r_e}\right) + R_C//r_o,$$

där vi har formeln

$$R_E//r_{\pi}$$
,

varav

$$r_{\pi} = r_{\rho} * h_{FE}$$

så får vi

$$R_{\rm S}//\infty = R_{\rm S}$$

vilket medför att vi försummar r_{π} på MOSFET-transistorer.

• Det finns också en mycket bra tumregel för GS-stegets utresistans som är mycket ackurat:

$$R_{\rm UT} \approx R_{\rm D} * \frac{\frac{1}{g_{\rm m}} + R_{\rm S}}{\left(\frac{1}{g_{\rm m}}\right)},$$

där R_D är drainresistorn, $1/g_m$ är inversen till transistorns inbyggda sourceresistans, som motsvarar BJT-transistorns inbyggda emitterresistans, och R_S är sourceresistansen.

• Tumregeln ovan säger att utresistansen med sourceresistor ökar med den så kallade sourcefaktorn, som är lika med ration av den totala resistansen i source när sourceresistor används (1/g_m + R_s) dividerat med den totala resistansen i source utan sourceresistor (som är lika med inversen till transkonduktansen, 1/g_m).

- Som exempel, om sourceresistorn sätts till tio fyra gånger inversen till transkonduktansen så kommer utresistansen bli ungefär fem gånger större än drainresistorn, dvs. R_D * 5, eftersom den totala resistansen i source då blir fem gånger större än utan sourceresistor (1/g_m + R_S blir 1/g_m + 4 * 1/g_m = 5/g_m, som är fem gånger mer än 1/g_m). Därmed så blir GS-stegets utresistans i detta fall ca fem gånger större än utan sourceresistor, alltså ungefär lika med drainresistorn R_D multiplacerat med en faktor 5.
- Skillnaden mellan det exakta värdet och tumregeln ovan är mycket liten.

Appendix G

Utresistans i Common Mode, utan emitterresistorer/sourceresistorer

• För att beräkna utresistansen i Common Mode så utför vi samma beräkningar som i Differential Mode, med skillnaden att vi måste ha resistorn R_{EE} eller motsvarande strömgenerator i åtanke.

• Vi utför beräkningar på en av ingångarna och måste ha i åtanke att de två ingångarna nu kommer dela på resistansen R_{EE}. Dock får vi komma ihåg att det kommer flöda dubbelt så hög ström genom R_{EE} jämfört med en av emittrarna, eftersom strömmen I_{EE} = I_{C1} + I_{C2} = 2 * I_C, där strömmen genom R_{EE} är lika med

$$I_{EE} = I_{C1} + I_{C2}$$
,

där

$$I_{C1} = I_{C2} \rightarrow I_{EE} = 2I_C$$

• Detta medför att våra beräkningar direkt kan förenklas att göra följande observation:

$$R_{EE} * I_{EE} = R_{EE} * 2I_C = 2R_{EE} * I_C$$

• Vi beräknar därmed med 2R_{EE} för varje sida nedan. Notera att resistansen 2R_{EE} nu fungerar som en vanlig emitterresistor i ett vanligt GE-steg. Därmed så kan vi beräkna utresistansen på samma sätt som ett GE-steg med emitterresistor, fast vi ersätter emitterresistorn R_E med 2*R_{EE}, dvs. strömspegelns utresistans multiplicerat med en faktor 2:

- Vi kortsluter inspänningen och utspänningen. Därefter så placerar vi en spänningskälla på utgången, som vi kallar Ux. Vi ritar därefter ut det vänstra småsignalschemat nedan.
- Som synes så är kollektorresistorn samt transistorns utresistans parallellkopplade, så dessa ersätts med en resistans, R_c//r_o. Vi ritar därefter om småsignalschemat till det högra nedan.

• Notera att resistansen r_{π} och resistansen $2R_{ER}$ också är parallellkopplade, eftersom de båda är anslutna till samma punkt på ena sidan och båda är anslutna till jord på andra sidan. Därmed är spänningsfallet över de båda resistanserna samma. Vi ersätter därför dessa resistanser med en ersättningsresistans som är lika med $2R_{ER}//r_{\pi}$, som vi placerar i emittern. Därefter ritar vi om schemat till det vänstra nedan.

• För att underlätta beräkningen av utresistansen så inför vi beteckningarna R₁ och R₂ i småsignalschemat. Följande gäller för dessa storheter:

$$R_1 = R_C / / r_o$$

$$R_2 = 2R_{EE}//r_{\pi}$$

• Utresistansen beräknas med följande formel:

$$R_{UT} = \frac{U_X}{I_X}$$

 Vi kör Kirchhoffs spänningslag för att härleda formel för spänningen Ux:

$$U_x - R_1 * I_0 - R_2 * I_x = 0$$

 $\to U_x = R_1 * I_0 + R_2 * I_x$

• Som synes så är strömmen I_X lika med summan av strömmarna I_0 och $\frac{U_{BE}}{r_0}$:

$$I_x = I_0 + \frac{U_{BE}}{r_e} \to I_0 = I_x - \frac{U_{BE}}{r_e}$$

Därefter härleder vi en formel för bas-emitterspänningen UBE:

$$-U_{BE} - R_2 I_x = \rightarrow U_{BE} = -R_2 * I_x$$

• Därmed så kan vi förenkla formeln för spänningen U_x ovan:

$$I_0 = I_x - \frac{U_{BE}}{r_e} = I_x + \frac{R_2 * I_x}{r_e} = I_x \left[1 + \frac{R_2}{r_e} \right]$$

• Därefter sätter vi in formeln för Io i formeln för Ux ovan:

$$U_x = R_1 * I_0 + R_2 * I_x = R_1 * I_x \left[1 + \frac{R_2}{r_0} \right] + R_2 * I_x = I_x \left[R_1 \left(1 + \frac{R_2}{r_0} \right) + R_2 \right]$$

• Vi kan därefter härleda en formel för utresistansen:

$$R_{UT} = \frac{U_X}{I_X} = \frac{I_X \left[R_1 \left(1 + \frac{R_2}{r_e} \right) + R_2 \right]}{I_X} = R_1 \left(1 + \frac{R_2}{r_e} \right) + R_2$$

• Därefter ersätter vi beteckningen R₁ och R₂ med den egentliga resistansen:

$$R_1 = R_C / / r_o$$

$$R_2 = 2R_{EE}//r_{\pi}$$

Utresistansen kan alltså beräknas med formeln:

$$ightharpoonup R_{UT} = R_C / / r_o \left(1 + \frac{2R_{EE} / / r_\pi}{r_e} \right) + 2R_{EE} / / r_\pi$$

där resistansen r_π är BJT-transistorns inbyggda emitterresistans r_e sedd från baskretsen, som därmed är lika med r_e multiplicerat med transistorns strömförstärkningsfaktor h_{FE} :

$$r_{\pi} = r_{e} * h_{FE}$$

• Formeln ovan följer samma princip som när vi beräknar inresistansen på GE-steget och alla andra förstärkarsteg, då inresistansen är lika med all resistans från emittern multiplicerat med strömförstärkningsfaktorn h_{FE}.

• Formeln för utresistansen ovan kan också omvandlas till:

$$R_{UT} = R_C / / r_o \left(1 + \frac{2R_{EE} / / r_\pi}{r_e} \right) + R_{EE} / / r_\pi = R_C / / r_o + R_C / / r_o * \frac{2R_{3E} / / r_\pi}{r_e} + R_{EE} / / r_\pi$$

$$= 2R_{EE} / / r_\pi + R_C / / r_o * \frac{2R_{EE} / / r_\pi}{r_e} + R_C / / r_o = 2R_{EE} / / r_\pi \left(1 + \frac{R_C / / r_o}{r_e} \right) + R_C / / r_o$$

• Vi ser därmed att utresistansen även kan formelas på följande sätt:

$$R_{UT} = 2R_{EE}//r_{\pi} \left(1 + \frac{R_C//r_o}{r_e}\right) + R_C//r_o$$

Detta värde kan avrundas till:

$$R_{UT} \approx 2R_{EE}//r_{\pi} * \frac{R_C//r_o}{r_o}$$

• Vi kan med stor säkerhet anta att resistansen $2R_{EE}$ är mycket större än resistansen r_{π} , vilket medför att parallellresistansen $2R_{EE}/r_{\pi}$ är ungefär lika med r_{π} :

$$2R_{EE}//r_{\pi} \approx r_{\pi}$$

Därmed så kan vi avrunda formeln för utresistansen till

$$R_{UT} \approx r_{\pi} * \frac{R_C//r_o}{r_e} = \frac{r_{\pi}}{r_e} * (R_C//r_o),$$

där

$$r_{\pi} = r_e * h_{FE},$$

vilket medför att

$$R_{UT} \approx \frac{r_{\pi}}{r_e} * (R_C//r_o) = \frac{r_e * h_{FE}}{r_e} * (R_C//r_o) = h_{FE} * (R_C//r_o)$$

• Vi kan också anta att kollektorresistorn R_C är mycket mindre än BJT-transistorns utresistans r_o , vilket medför att parallellresistansen R_C / r_o är ungefär lika med R_C :

$$R_C//r_o \approx R_C$$

• Därmed så kan differentialförstärkarens utresistans med emitterresistorer i Common Mode beräknas med formeln:

$$R_{UT} \approx h_{FE} * R_C$$

 $\label{eq:definition} \mbox{d\"{a}r} \ h_{\text{FE}} \ \mbox{\"{a}r} \ \mbox{BJT-transistorns} \ \mbox{str\"{o}mf\"{o}rst\"{a}rkningsfaktor} \ \mbox{och} \ \mbox{R_{C} \'{a}r$ kollektorresistorn.}$

 För differentialförstärkare med MOSFET-ingångar utan sourceresistorer så blir utresistansen i Common Mode istället lika med

$$R_{UT} = (2R_{SS})[1 + g_m(R_D//r_0)] + R_D//r_0$$

vilket kan avrundas till

$$R_{UT}=2g_mR_{SS}R_D,$$

där g_m är MOSFET-transistorns transkonduktans, R_{SS} är strömspegelns utresistans (som bör vara mycket hög) och R_D är drainresistorn.

Appendix H

Utresistans i Common Mode, med emitterresistorer/sourceresistorer

- För att beräkna utresistansen i Common Mode så utför vi samma beräkningar som i Differential Mode, med skillnaden att vi måste ha resistorn R_{EE} eller motsvarande strömgenerator i åtanke.
- Som vi såg i exemplet ovan så kommer resistansen från emittern inte ha någon påverkan på utresistansen.
- Vi utför beräkningar på en av ingångarna och måste ha i åtanke att de två ingångarna nu kommer dela på resistansen R_{EE} . Dock får vi komma ihåg att det kommer flöda dubbelt så hög ström genom R_{EE} jämfört med R_E , eftersom $I_{EE} = I_{C1} + I_{C2} = 2 * I_C$, där strömmen genom R_{EE} är lika med

$$I_{EE} = I_{C1} + I_{C2}$$
,

där

$$I_{C1} = I_{C2} \rightarrow I_{EE} = 2I_C$$

Detta medför att våra beräkningar direkt kan förenklas att göra följande observation:

$$R_{EE} * I_{EE} = R_{EE} * 2I_C = 2R_{EE} * I_C$$

• Vi beräknar därmed med 2R_{EE} för varje sida nedan, se den vänstra figuren nedan. Som synes så ligger nu R_E och 2R_{EE} i serie, så dessa kan ersättas med en ersättningsresistans som är lika med 2R_{EE} + R_E:

Nu när vi måste räkna med resistansen R_{EE} från strömspegeln så ser vi att denna blir seriekopplad med emitterresistorn. Vi kan därför ersätta emitterresistor med en serieresistans som är lika med 2R_{EE} + R_E, se den högra figuren ovan. Vi använder därmed samma formel för utresistansen i Common Mode som i Differential Mode, med skillnaden med att vi ersätter emitterresistorn R_E med serieresistansen 2R_{EE} + R_E:

$$R_{UT} = (2R_{EE} + R_E)//r_{\pi} \left(1 + \frac{R_C//r_o}{r_e}\right) + R_C//r_o$$

• Vi kan anta att serieresistansen 2R_{EE} + R_E är mycket större än resistansen rπ, vilket medför att vi kan avrunda formeln till

$$R_{UT} \approx r_{\pi} \left(1 + \frac{R_C//r_o}{r_o} \right) + R_C//r_o,$$

eftersom

$$(2R_{EE}+R_E)//r_{\pi}\approx r_{\pi}$$

Vårt formel för utresistansen kan vidare förenklas med ytterligare avrundningar:

$$R_{UT} \approx r_{\pi} * \frac{R_C//r_o}{r_e} = \frac{r_{\pi}}{r_e} * (R_C//r_o),$$

där

$$r_{\pi} = r_e * h_{FE},$$

vilket medför att

$$R_{UT} \approx \frac{r_{\pi}}{r_e} * (R_C//r_o) = \frac{r_e * h_{FE}}{r_e} * (R_C//r_o) = h_{FE} * (R_C//r_o)$$

• Vi kan också anta att kollektorresistorn R_C är mycket mindre än BJT-transistorns utresistans r_o, vilket medför att parallellresistansen R_C//r_o är ungefär lika med R_C:

$$R_C//r_o \approx R_C$$

Därmed så kan differentialförstärkarens utresistans med emitterresistorer i Common Mode beräknas med formeln:

$$R_{UT} \approx h_{FE} * R_C$$

där h_{FE} är BJT-transistorns strömförstärkningsfaktor och R_C är kollektorresistorn. Notera att utresistansen i Common Mode blir ungefär samma, oavsett om emitterresistorer används eller inte.

 För differentialförstärkare med MOSFET-ingångar och sourceresistorer så blir utresistansen i Common Mode istället lika med

$$R_{UT} = (2R_{SS} + R_S)[1 + g_m(R_D//r_o)] + R_D//r_o$$

vilket kan avrundas till

$$R_{IIT} = 2g_m R_{SS} R_D$$

där g_m är MOSFET-transistorns transkonduktans, R_{SS} är strömspegelns utresistans (som bör vara mycket hög) och R_D är drainresistorn.

Appendix I

Konstruktion av en CMOS differentialförstärkare med strömspegel som last

• Vi skall konstruera en differentialförstärkare i ren CMOS-teknologi.

• Differentialförstärkaren skall ha följande data:

 $V_{DD} = 1.8 \text{ V}; V_{SS} = -1.8 \text{ V}; P_L \le 2 \text{ mW}; \text{Slew Rate} \ge 50 \text{ V}/\mu\text{s}; -1.0 \text{ V} \le \text{ICMR} \le 1.5 \text{ V}; C_L = 10 \text{ pF}; G_{DM} = -500; f_{\ddot{0}} = 200 \text{ kHz}; C_{DM} = -500; C_{DM}$

• Transistorerna har följande parametrar:

PMOS: $u_nC_{ox} = 100 \ \mu A/V^2$, $U_T = 0.5 \ V$; $\Lambda_N = 0.04 \ V^{-1}$

NMOS: $u_pC_{ox} = 50 \mu A/V^2$, $U_T = -0.5 V$; $\Lambda_P = 0.05 V^{-1}$

Steg:

- Välj lämplig I_{SS} enligt specifikationerna för slew rate och maximal förlusteffekt P_L.
- 2. Kontrollera att transistorns utresistans R_{UT} är tillräckligt låg för kraven på differentialförstärkarens övre gränsfrekvens.
- **3.** Dimensionera W/L på M3 & M4 efter övre gränsen på ICMR.

- 4. Dimensionera W/L på M1 & M2 efter önskad differentialförstärkning.
- 5. Dimensionera W/L på M5 & M6 efter nedre gränsen på ICMR.
- 6. Dimensionera Rss efter Iss via UGS5.
- 1. Välj lämplig Iss enligt specifikationerna för slew rate och maximal förlusteffekt PL:

Slew rate =
$$\frac{I_{SS}}{C_L} \rightarrow I_{SS} = Slew \ rate * C_L \ge 50M * 10p = 0,5 \ mA$$

$$P_L = (V_{DD} - V_{SS})I_{SS} \rightarrow I_{SS} = \frac{P_L}{V_{DD} - V_{SS}} \le \frac{2m}{1.8 - (-1.8)} = \frac{2m}{3.6} \approx 0.56 \text{ mA}$$

$$0.5m \le I_{SS} \le 0.56 \, mA$$

• Vi siktar på I_{SS} = 0,55 mA för att klara kraven på slew rate och förlusteffekt.

$$I_{SS} = 0.55 \, mA$$

2. Kontrollera att transistorns utresistans R_{UT} är tillräckligt låg för kraven på differentialförstärkarens övre gränsfrekvens:

$$f_{\ddot{0}} = \frac{1}{2\pi * R_{UT} * C_L} \rightarrow R_{UT} = \frac{1}{2\pi * f_{\ddot{0}} * C_L} = \frac{1}{2\pi * 200k * 10p} \approx 79,6 \ k\Omega$$

$$R_{UT} = \frac{1}{(\Lambda_N + \Lambda_P)I_{SS}} \rightarrow I_{SS} = \frac{1}{(\Lambda_N + \Lambda_P)R_{UT}} \approx \frac{1}{(0,04 + 0,05)79,6k} \approx 0,14 \ mA \le 0,5 \ mA \rightarrow OK$$

- 3. Dimensionera W/L på M3 & M4 efter övre gränsen på ICMR:
- Därefter så skall vi dimensionera W/L på transistorerna i strömspegeln, dvs. M3 och M4, efter maximal Common Modeinsignal, ICMR_{max}:

$$V_{DD} - U_{GS3} - U_{DS1} = 0 \rightarrow U_{GS3} = V_{DD} - U_{DS1}$$

$$U_{DS1} = ICMR_{max} - U_T = 1,5 - 0,5 = 1,0 V$$

$$\rightarrow U_{GS3} = V_{DD} - U_{DS1} = 1,8 - 1,0 = 0,8 V$$

$$I_D = \frac{\mu_p C_{ox}}{2} * \frac{W_3}{L_3} (U_{GS3} - U_T)^2$$

$$\rightarrow \frac{W_3}{L_3} = \frac{2I_D}{\mu_p C_{ox} * (U_{GS3} - U_T)^2}$$

$$I_D = \frac{I_{SS}}{2} = 0,275 \, mA$$

$$\rightarrow \frac{W_3}{L_3} = \frac{2 * 0,275m}{50\mu * (0,8 - 0,5)^2} \approx 122$$

4. Dimensionera W/L på M1 & M2 efter önskad differentialförstärkning:

- I differential Mode så fungerar de två sidorna av differentialförstärkaren som var sitt GS-steg. Genom att titta på höger sida av differentialförstärkaren så ser vi ett GS-steg vars drainresistor består av transistor M4.
- Vi ritar ut småsignalschemat nedan och noterar att transistorernas utresistanser, r₀₂ och r₀₄, är parallellkopplade. Vi förenklar småsignalschemat och härleder därefter formel för in- och utspänningen:

 r_{02} och r_{04} är parallellkopplade, eftersom de båda är anslutna till samma punkt på ena hållet och till jord på andra.

$$\Delta U_{IN} - \frac{I_D}{g_{m2}} = 0 \rightarrow \Delta U_{IN} = \frac{I_D}{g_{m2}}$$

$$-I_D * (r_{o2}//r_{o4}) - \Delta U_{UT} = 0 \rightarrow \Delta U_{UT} = -I_D * (r_{o2}//r_{o4})$$

• Därefter kan vi härleda en formel för differentialförstärkningen:

$$G_{DM} = \frac{\Delta U_{UT}}{\Delta U_{IN}} = -\frac{I_D * (r_{o2}//r_{o4})}{\left(\frac{I_D}{g_{m2}}\right)} = -g_{m2}(r_{o2}//r_{o4})$$

$$G_{DM} = -500 = -g_{m2}(r_{o2}//r_{o4}) \rightarrow g_{m2} = \frac{500}{r_{o2}//r_{o4}}$$

• Transistor M2 är en NMOS-transistor:

$$r_{o2} = \frac{1}{I_D * \Lambda_N} = \frac{1}{0,275m * 0,04} \approx 90.9 \ k\Omega$$

Transistor M4 är en PMOS-transistor:

$$r_{o4} = \frac{1}{I_D * \Lambda_P} = \frac{1}{0.275m * 0.05} \approx 72.7 \ k\Omega$$

$$\rightarrow g_{m2} = \frac{500}{r_{o2}//r_{o4}} \approx \frac{500}{90.9k//72.7k} \approx \frac{500}{40.4k} = 12,375 \text{ mS}$$

$$g_{m2} = \frac{2I_D}{U_{GS2} - U_T} \rightarrow U_{GS2} - U_T = \frac{2I_D}{g_{m2}} \rightarrow U_{GS2} = \frac{2I_D}{g_{m2}} + U_T = \frac{2 * 0,275m}{12,375m} + 0,5 \approx 0,54 V$$

$$I_D = \frac{\mu_p C_{ox}}{2} * \frac{W_2}{L_2} (U_{GS2} - U_T)^2$$

$$\rightarrow \frac{W_2}{L_2} = \frac{2I_D}{\mu_p C_{ox} * (U_{GS2} - U_T)^2} = \frac{2 * 0.275m}{50\mu * (0.54 - 0.5)^2} \approx 5569$$

5. Dimensionera W/L på M5 & M6 efter nedre gränsen på ICMR:

$$ICMR_{min} - U_{GS1} - U_{DS6} - V_{SS} = 0 \rightarrow U_{DS6} = ICMR_{min} - U_{GS1} - V_{SS}$$

$$U_{GS1} = U_{GS2} \approx 0.54 V$$

$$\rightarrow U_{DS6} \approx -1.0 - 0.54 - (-1.8) \approx 0.26 V$$

$$I_{SS} = \frac{\mu_n C_{ox}}{2} * \frac{W_6}{L_6} * U_{DS6}^2$$

$$\rightarrow \frac{W_6}{L_6} = \frac{2I_{SS}}{\mu_n C_{OX} * U_{DS6}^2} \approx \frac{2 * 0.55m}{100\mu * 0.26^2} \approx 168$$

6. Dimensionera Rss efter Iss via UGSS:

$$-U_R - U_{GS6} - V_{SS} = 0 \to U_R = -U_{GS6} - V_{SS}$$

$$U_{GS6} = U_{GS5} \approx 0,26 V$$

$$\to U_R = -0,26 - (-1,8) \approx 1,54 V$$

$$U_R = R_{SS} * I_{SS} \to R_{SS} = \frac{U_R}{I_{SS}} \approx \frac{1,54}{0,55m} \approx 2,8 k\Omega$$

- Närmaste värde i E12-serien är 2,7 kΩ, vilket vi använder. Detta medför att I_{SS} blir något högre än 0,55 mA, ca 0,57 mA.
 Detta är strax över specifikationen på förlusteffekten, som nu blir ca 2,06 mW. Dock är detta endast ca 0,06 mW, vilket kan anses vara försumbar.
- Alternativt så kan vi investera i en 2,8 kΩ-resistor, som finns i E96-serien.

Övningsuppgifter till kapitel 3.5

1. Du har en differentialförstärkare med MOSFET-ingångar till höger, som har följande data:

$$V_{CC} = 20 \text{ V}; V_{EE} = -20 \text{ V}; I_{SS} = 4 \text{ mA}$$

- a) Förklara kortfattat differentialförstärkarens funktion.
- b) Ange en fördel samt en nackdel med att använda MOSFET-ingångar på differentialförstärkaren, såsom i differentialförstärkaren till höger.
- En förbättrad Wilson-spegel används istället för en vanlig strömspegel i den nedre delen av differentialförstärkaren. Ange två fördelar med en sådan strömspegel.
- d) I figuren så har vi en strömspegel, som består av transistor Q3 respektive Q4 i differentialförstärkarens drain. Nästan alla differentialförstärkare har en sådan konstruktion.

Varför används nästan alltid en strömspegel i differentialförstärkares kollektor/drain?

e) Välj ett lämpligt värde på resistor R_{REF} så att strömmen I_{SS} blir lika med 4,0 mA.

2. Differentialförstärkaren till höger har följande data:

$$V_{CC} = 15 \text{ V}; \quad V_{EE} = -15 \text{V}; \quad I_{CQ} = 0,1 \text{ mA}$$

- a) Dimensionera resistorerna i kretsen så att differentialförstärkningen blir -100. Beräkna sedan CMRR.
- Differentialförstärkaren skall nu användas i en feedback-loop. Gör nödvändiga modifikationer för att maximera CMRR.
- c) Ange hur kretsen kan modifieras för att öka inresistansen.

3. Rita småsignalscheman och härled formel för differentialförstärkningen samt Common Modeförstärkningen på BJT-differentialförstärkaren till höger. Översätt detta till motsvarande formel på MOSFET-transistorn.

4. Figuren nedan till höger visar en differentialförstärkare med strömspegel som last. Förklara hur denna strömspegel arbetar och varför förstärkningen inte blir halverad, trots att endast en utgång används. Förklara strömspegelns funktion när insignalen på vänster sida är större än insignalen på höger och vice versa.

5. Rita småsignalschema och härled formel för differentialförstärkaren till höger.

Lösning till uppgift 1:

a) Differentialförstärkaren används för att förstärka önskvärda signaler, exempelvis ljud, och kancellera oönskade signaler, exempelvis brus, genom att förstärka spänningsskillnaden mellan pluspolen och minuspolen (ljud), samtidigt som den kancellerar inkommande signaler som är lika stora på båda ingångarna (brus).

b)

- Fördel: Med MOSFET-ingångar så blir inresistansen skyhög.
- Nackdel: Differentialförstärkningen kommer minska.

Anmärkning:

- Dock kommer differentialförstärkningen fortfarande vara mycket hög, eftersom vi använder en strömspegel som last.
 Istället för en förstärkningsfaktor på -1000 eller högre, som är möjligt med BJT-transistorer på ingångarna, så kanske den blir omkring -250 med CMOS-transistorer, beroende på modell.
- Man får helt enkelt väga upp om man vill ha maximal förstärkning och lägre inresistans eller mycket hög, men inte maximal, förstärkning och extremt hög inresistans. Oftast är det senare alternativet föredraget, särskilt med tanke på att man enkelt kan öka förstärkningen i efterföljande steg

c)

- Den förbättrade Kaskadkopplad strömspegeln har mycket hög utresistans (ca 100 MΩ), vilket medför att brus kancelleras mycket effektivt (eftersom Common Mode-förstärkningen blir mycket låg).
- Den förbättrade Kaskadkopplad strömspegeln medför också att strömmen Iss alltid hålls konstant, eftersom olinjariteter som uppkommer på grund av temperaturförändringar eller av den så kallad Earlyeffekten elimineras. Den övre strömspegeln sätter strömmen Iss, men denna strömspegel blir inte påverkad av de tidigare nämnda effekterna, eftersom den nedre strömspegeln tar upp all denna effekt.
- d) Strömspeglar används nästan alltid i differentialförstärkarens kollektor/drain för att kraftigt öka förstärkningen, som då kan uppgå till -250 eller mer med MOSFET-ingångar samt -1000 eller mer med BJT-ingångar.

e)

Det enda vi behöver ställa in är resistor RREF, som dimensioneras med önskad referensström Iss enligt formeln

$$R_{REF} = \frac{|V_{EE}| - 1k * I_{SS} - 2 * 0.7}{I_{SS}},$$

där |V_{EE}| är absolutbeloppet av den negativa matningsspänningen, I_{SS} är önskad ström som flödar genom strömgeneratorn och 0,7 står för spänningsfallet mellan BJT-transistorns bas och emitter. Eftersom vi passerar två sådana spänningsfall så räknar vi med 2 * 0,7.

Därmed kan vi beräkna ett lämpligt värde på resistor R_{REF}:

$$R_{REF} = \frac{20 - 1k * 4m - 2 * 0.7}{4m} = 3,65 k\Omega$$

• Närmaste värde i E12-serien är 3,9 k Ω , så i praktiken hade detta värde valts. Strömmen I_{SS} hade då blivit ca 3,8 mA, men skillnaden är mycket liten mot 4,0 mA, så vi kör på det.

Lösning till uppgift 2:

- Som vanligt utför vid beräkningarna vid jämvikt, dvs. då U_{IN1} = U_{IN2}.
- Som vanligt så bör utsignalen dimensioneras till halva den positiva matningsspänningen:

$$U_{UT} = \frac{V_{CC}}{2}$$

- Resten av matningsspänningen (från VEE upp till jord) skall endast falla över strömspegeln.
- Därefter använder vi Kirchhoffs spänningslag för att bestämma ett lämpligt värde på kollektorresistorn R_C.

$$V_{CC} - R_C I_C - U_{UT} = 0 \rightarrow V_{CC} - R_C I_C - \frac{V_{CC}}{2} = 0 \rightarrow \frac{V_{CC}}{2} - R_C I_C = 0$$

$$\rightarrow R_C I_C = \frac{V_{CC}}{2} \rightarrow R_C = \frac{V_{CC}}{2I_C} = \frac{15}{2 * 0.1m} = 75 \text{ k}\Omega$$

$$R_C = 82 k\Omega$$

- Kollektorresistorn Rc bör alltså sättas till 82 kΩ för att kollektorströmmen skall bli ca 0,1 mA.
- Därefter skall vi dimensionera emitterresistorerna R_E, vilket vi kan göra via formeln för differentialförstärkningen.
- Differentialförstärkningen kan beräknas med formeln

$$G_{DM} = = -\frac{R_C}{2(R_E + r_e)} = -100$$

OU_{UT}

OU_{IN2}

- Vi vet att differentialförstärkningen G_{DM} är lika med -100, dvs. |G_{DM}| = 100.
- Vi härleder sedan en formel för emitterresistansen R_E ur formeln ovan:

$$|G_{DM}| = \frac{R_C}{2(R_E + r_e)} \rightarrow 2(R_E + r_e) = \frac{R_C}{G_{DM}}$$

 $\rightarrow R_E + r_e = \frac{R_C}{2 * |G_{DM}|} \rightarrow R_E = \frac{R_C}{2 * |G_{DM}|} - r_e$

Vi beräknar den lilla emitterresistansen re med formeln:

$$r_e = \frac{25}{I_{C(mA)}} = \frac{25}{0.1} = 250 \,\Omega$$

Därefter beräknar vi emitterresistansen:

$$R_E = \frac{R_C}{2*|G_{DM}|} - r_e = \frac{82k}{2*100} - 250 = 410 - 250 = 160 \,\Omega$$

Närmaste värde i E12-serien är 150 Ω , så vi väljer detta värde:

$$R_E = 150 \Omega$$

Referensresistorn R_{REF} måste väljas så att rätt ström I_{EE} flödar genom strömgeneratorn.
 Eftersom strömmen på de två sidorna av differentialförstärkaren i jämvikt skall vara 0,1 mA var så skall strömmen I_{EE} genom strömgeneratorn vara lika med 0,1m + 0,1m = 0,2 mA.
 Därför så hade ett lämpligt värde på referensresistorn kunnat beräknas med formeln

$$R_{REF} = \frac{|V_{EE}| - 0.7}{I_{EE}},$$

där |V_{EE}| är absolutbeloppet av den negativa matningsspänningen och 0,7 V är spänningsfallet mellan strömgeneratorns (den högra transistorns) bas och emitter.

- Av de -15 V vi får från den negativa matningsspänningen så kommer alla dessa 15 V, förutom de 0,7 V som faller över området mellan strömgeneratorns bas och emitter, falla över referensresistorn. Det kommer alltså falla 14,3 V över referensresistorn.
- Vi kan också visa detta med Kirchhoffs spänningslag, där vi går från den negativa matningsspänningen upp till jord. Låt oss benämna spänningsfallet över referensresistorn URFF:

$$V_{EE} + 0.7 + U_{REF} = 0 \rightarrow U_{REF} = -V_{EE} - 0.7 = -(-15) - 0.7 = 15 - 0.7 = 14.3 \text{ V}$$

• Om vi då vill att strömmen I_{EE} skall bli 2 mA så vill vi också att referensströmmen genom referensresistorn är lika med 2 mA. Därmed så kan vi enkelt beräkna ett lämpligt värde på referensresistorn:

$$R_{REF} = \frac{15 - 0.7}{2m} = \frac{14.3}{2m} = 7.15 \text{ } k\Omega$$

- Närmaste värdet i E12-serien är 6,8 kΩ, som dock medför att strömmen I_{EE} blir lite större än väntat. I de flesta fall är detta okej, men om strömmen I_{EE} måste vara lika med 2 mA så hade vi kunnat införskaffa resistorer i en annan resistorserie. Detta kanske kostar lite mer, men förmodligen väldigt lite.
- Med en referensresistor på 6,8 kΩ så blir strömmen I_{EE} lika med:

$$I_{EE} = \frac{14,3}{6.8k} \approx 2,10 \ mA$$

• Common Mode-förstärkningen kan beräknas med formeln:

$$G_{CM} = -\frac{R_C}{2R_{EE} + R_E + r_e'}$$

där R_{EE} är den enkla strömspegelns utresistans, som kan antas vara 1 M Ω . Common Mode-förstärkningen kan därför uppskattas till:

$$G_{CM} = -\frac{R_C}{2R_{EE} + R_E + r_e} = -\frac{82k}{2*1M + 150 + 250} \approx -0.04$$

• Vi kan nu enkelt beräkna Common Mode-förstärkningen:

$$CMRR = \frac{G_{DM}}{G_{CM}} \approx \frac{-100}{-0.04} \approx 2440$$

b) Det finns tre modifikationer vi kan göra för att öka CMRR:

1. Ta bort emitterresistorerna:

Emitterresistorerna kan elimineras utan problem med temperaturinstabilitet, vilket gäller just för differentialförstärkaren, inte för andra förstärkarsteg. Differentialförstärkaren är temperaturstabil även utan emitterresistorer, eftersom de två transistorerna har samma temperatur hela tiden och därmed samma kollektorströmmar. Även om spänningen mellan transistorernas baser och emittrar förändras med temperaturen så kommer inte detta påverka deras kollektorströmmar, vilket medför att differentialförstärkarens utspänning inte förändras.

2. Använd en strömspegel som last.

- För att maximera differentialförstärkningen kan man ersätta kollektorresistorn med en strömspegel. Förutsättningen
 för detta är att feedback används, såsom i en OP-förstärkarkoppling. Både BJT- eller MOSFET-transistorer kan användas,
 men BJT-transistorer har oftast högre utresistans och ger därmed ger högre förstärkning. Dock så kommer
 förstärkningen bli mycket hög oavsett om BJT- eller MOSFET-transistorer används i strömspegeln.
- Förstärkningsfaktorn i en differentialförstärkare med strömspegel som last kan uppnå -5000 eller mer, beroende på inresistansen på efterföljande steg samt om BJT- eller MOSFET-transistorer används på ingångarna. MOSFET-transistorer medför lägre förstärkning, exempelvis omkring -500 (ifall en strömspegel används som last), men har flera fördelar, exempelvis högre inresistans, som gör att dessa ofta används istället.

3. Använd en förbättrad Kaskadkopplad strömspegel som strömgenerator för att minska Common Modeförstärkningen

- I figuren till höger så ersätts den tidigare resistorn
 REE med en strömgenerator för att kraftigt öka
 resistansen, samtidigt som den ger oss möjlighet att
 ställa in en lämplig referensström (Iss).
- Utresistansen på denna strömgenerator ligger omkring 100 MΩ, vilket medför att Common Modeförstärkningen blir mycket låg. Om en strömgenerator används som last enligt exemplen ovan så kommer CMRR maximeras!
- Det enda vi behöver ställa in är resistor R_{REF}, som dimensioneras med önskad referensström I_{SS} enligt formeln

$$R_{REF} = \frac{|V_{EE}| - 1k * I_{SS} - 2 * U_{BE}}{I_{SS}},$$

där $|V_{EE}|$ är absolutbeloppet av den negativa matningsspänningen, I_{SS} är önskad referensström och U_{BE} är spänningsfallet mellan BJT-transistorns bas och emitter, som är ungefär lika med 0,7 V.

• Vi måste därför ersätta vårt tidigare val av referensresistor:

$$R_{REF} = \frac{|V_{EE}| - 1k * I_{SS} - 2 * U_{BE}}{I_{SS}} = \frac{15 - 1k * 0.2m - 2 * 0.7}{0.2m} = 67 \ k\Omega$$

• Närmaste värdet i E12-serien är 68 k Ω , så vi väljer detta värde.

$$R_{REF} = 68 k\Omega$$

- c) Vi ersätter BJT-transistorerna på ingången med MOSFET-transistorer för att öka inresistansen
- Vi använder MOSFET-transistorer på ingångarna för att uppnå hög inresistans. Den främsta nackdelen med att använda MOSFET-transistorer på ingångarna är att förstärkningen kommer bli lägre än om vi hade använt BJT-transistorer. Dock kan vi enkelt öka förstärkningen i efterföljande steg, som vanligtvis är en spänningsförstärkare, exempelvis ett GS-steg.
- Den lägre förstärkningen som uppkommer då MOSFET-transistorer används på ingångarna uppvägs av deras fördelar, främst deras mycket höga inresistans, som medför lägre strömförbrukning, ingen påverkan av utresistanser från signalgeneratorer eller tidigare steg samt att vi inte behöver oroa oss för att inströmmarna blir olika stora, vilka kan orsaka så kallad offset, dvs. att utsignalens värde blir fel på grund av att ingångsströmmarna på de två ingångarna är olika stora. Om MOSFET-transistorer används så blir inströmmarna så små att skillnaden blir försumbar och ingen märkbar offset uppstår.
- Om BJT-transistorer används på ingångarna så kan skillnaden mellan strömmarna på de två ingångarna bli så stor att utsignalen påverkas så att vi får en avvikelse, en så kallad offset. Som exempel, om inspänningen sätts till 0 V och utspänningen blir 0,2 V

istället för 0 V så har vi en offset på 0,2 V, orsakad av strömskillnaden mellan de två ingångarna. Då måste vi korrigera detta med en extern resistor på en av ingångarna så att ingångsresistanserna blir lika stora. Då blir inströmmarna lika stora och offseten elimineras. Dock så kanske det inte är möjligt att få tag på en resistor som är lika med inresistansen på den andra ingången. Då kan man testa att parallellkoppla två resistorer som är lika stora som de två resistorerna på den andra ingången eller acceptera en liten offset.

Det bästa och effektivaste sättet att eliminera offset är dock, som tidigare nämndes, att använda MOSFET-transistorer på
ingångarna, som på grund av sina höga inresistans medför att ingångsströmmen blir så liten att offseten blir försumbar.
 Nästan alla moderna OP-förstärkare är därför konstruerade med MOSFET-transistorer på ingångssteget.

Lösning till uppgift 3: Härledning av differentialförstärkningen

- När differentialsignaler uppträder på de två ingångarna så kommer ingången med den högre inspänningen försöka dra upp spänningen i punkten mellan de två emittrarna, se punkten P i figuren nedan. Samtidigt så försöker den andra ingången dra ned spänningen i denna punkt lika mycket. Detta medför att spänningen i punkten P blir O, vilket medför att en så kallad virtuell jord skapas där. Därmed så kommer inte resistansen från strömgeneratorn påverka differentialsignaler.
- Detta förhållande gäller oavsett värdena på insignalerna. Det är spänningsskillnaden mellan insignalerna som spelar roll, inte de absoluta värdena på dem. Antag att U_{IN1} är 20 mV större än U_{IN2} och att detta leder till att I_{C1} är lika med 1,2 mA och I_{C2} är lika med 0,8 mA. Differentialförstärkaren kommer fungera på samma sätt om U_{IN1} är lika med 20 mV och U_{IN2} är lika med 0 V som om U_{IN1} är lika med 10 mV och U_{IN2} är lika med -10 mV. I båda fall så är spänningsskillnaden lika med 20 mV, vilket medför att strömmen I_{C1} kommer vara 1,2 mA och I_{C2} kommer vara 0,8 mA, oavsett de individuella värdena. Eftersom strömmarna är lika så kommer utsignalerna på de två sidorna vara lika stor i båda fall.
- För att härleda formel för förstärkningsfaktorn så ritar vi ut småsignalschemat för differentialförstärkare i Differential Mode, dvs. med punkten mellan emittrarna jordad.

- För att beräkna differentialförstärkningen med en ingång så beräknar vi förstärkningen på ena sidan. Vi utför beräkningarna på höger sida.
- Som vanligt så förenklar vi beräkningarna genom antagandet att emitterströmmen I_E är lika med kollektorströmmen I_C. Egentligen är emitterströmmen något större, men skillnaden är så liten att den är försumbar.
- Vi härleder en formel för ΔU_{IN2} i Differential Mode, dvs. med R_{EE}l_{EE} kancellerad:

$$\rightarrow \Delta U_{IN2} - r_{e2}I_{C2} = 0 \rightarrow \Delta U_{IN2} = r_{e2}I_{C2}$$

• Förstärkningsfaktorn på höger sida blir därför:

$$G_{DM} = \frac{\Delta U_{UT2}}{\Delta U_{IN2}} = -\frac{R_C I_{C2}}{r_{e2} I_{C2}} = -\frac{R_C}{r_{e2}}$$

• Eftersom kollektorströmmarna är lika stora så blir $r_{e1} = r_{e2} = r_e$. Därför formulerar vi om formeln för differentialförstärkningen till.

$$G_{DM} = -\frac{R_C}{r_e},$$

 $\label{eq:continuous} \mbox{d\"{a}r} \; r_e \; \mbox{\"{a}r} \; transistorernas \; respektive \; inbyggda \; emitterresistans.$

Härledning av Common Mode-förstärkningen

När Common Mode-signaler uppträder på de två ingångarna så kommer båda ingångarna dra upp spänningen i punkten P
mellan emittrarna lika mycket, se figuren nedan. Därmed så är spänningen i denna punkt inte lika med noll, vilket medför
att det inte finns någon virtuell jord där. Därmed så fungerar resistansen från strömgeneratorn som en jättestor
emitterresistor för Common Mode-signaler. Genom att denna strömgenerator har extremt hög resistans så kommer
därmed Common Mode-signaler att kancelleras effektivt.

- Eftersom de två sidorna är identiska så behöver vi bara beräkna Common Mode-förstärkningen på en av sidorna. Precis som i fallet med differentialförstärkningen så utförs beräkningarna på höger sida.
- I Common Mode så är de två kollektorströmmarna är lika stora, vilket medför att strömmen IEE dubbelt så stor som kollektorströmmen Ic2:

$$I_{EE} = I_{C1} + I_{C2}$$

$$I_{C1} = I_{C2} \rightarrow I_{EE} = I_{C1} + I_{C2} = 2I_{C2}$$

- Eftersom strömmen genom resistansen Ree från strömspegeln är dubbelt så stor som kollektorströmmen Ic2 så kan vi underlätta för oss själva genom att låtsas att det är strömmen som flödar genom strömspegeln och kompensera för detta genom att låtsas att strömspegelns resistans är dubbelt så hög, dvs. 2*Ree. Genom att göra detta så blir det enklare att härleda formel för Common Mode-förstärkningen.
- Vi hade också kunnat härleda detta genom att undersöka spänningsfallet över resistansen Ree:

$$R_{EE} * I_{EE} = R_{EE} * 2I_{C2} = 2R_{EE} * I_{C2}$$

 $\rightarrow vi$ låtsas att strömmen I_{C2} flödar genom resistansen $2R_{EE}$

• Vi härleder en formel för ΔU_{IN2} med Kirchhoffs spänningslag:

$$\Delta U_{IN2} - r_{e2}I_{C2} - 2R_{EE} * I_{C2} = 0$$

$$\rightarrow \Delta U_{IN2} = r_{e2}I_{C2} + 2R_{EE} * I_{C2}$$

$$\rightarrow \Delta U_{IN2} = I_{C2}(2R_{EE} + r_{e2})$$

• Vi härleder också en formel för ΔU_{UT2}, för att kunna härleda förstärkningsfaktorn:

$$-R_C I_{C2} - \Delta U_{UT2} = 0 \rightarrow \Delta U_{UT2} = -R_C I_{C2}$$

• Förstärkningsfaktorn i Common Mode blir då:

$$G_{CM} = \frac{\Delta U_{UT2}}{\Delta U_{IN2}} = -\frac{R_C I_{C2}}{I_{C2} (2R_{FF} + r_{e2})} = -\frac{R_C}{2R_{FF} + r_{e2}}$$

• Vid jämvikt så är r_{e1} och r_{e2} blir lika stora, eftersom kollektorströmmarna är lika stora:

$$I_{C1} = I_{C2} \rightarrow r_{e1} = \frac{25}{I_{C1(mA)}} = r_{e2} = \frac{25}{I_{C2(mA)}} \rightarrow r_{e1} = r_{e2} = r_e$$

• Common Mode-förstärkningen kan därför beräknas med följande formel:

$$G_{CM} = -\frac{R_C}{2R_{EE} + r_e}$$

 Detta resultat kan också appliceras på MOSFET-transistorer, se figuren till höger. Vi behöver endast byta ut kollektorresistorn R_C mot drainresistorn R_D, strömgeneratorns resistans R_{EE} mot R_{SS} (eftersom EE står för emitter och SS står för source) samt den inbyggda emitterresistansen r_e mot inversen till transkonduktansen g_m:

$$G_{CM} = -\frac{R_D}{2R_{SS} + \frac{1}{g_m}}$$

Lösning till uppgift 4:

- Strömspegels funktion är att se till att det alltid flödar samma ström på de två sidorna av transistorn. Som exempel, antag
 att vi startar med differentialförstärkaren i jämvikt, dvs. de två insignalerna är lika stora, vilket medför att utsignalen är lika
 med noll.
- Vi skall nu utföra samma exempel som vi gjorde tidigare på differentialförstärkare med en samt två utgångar. Där noterade vi att spännings- och strömförändringen blev dubbelt så hög när vi använder två utgångar istället för en. För en viss skillnad mellan insignalerna så blev strömförändringen blev 0,4 mA med två utgångar och 0,2 mA med en utgång. Detta medförde också att utspänningen blev dubbelt så hög med två utgångar.

Exempel 1: Inspänningen på vänster sida är större än inspänningen på höger sida

- Låt oss anta att strömspegeln (den nedre delen i figuren till höger) har dimensionerats så att strömmen som flödar genom den alltid är lika med 2,0 mA, se lee i figuren till höger. Vid jämvikt så kommer då kollektorströmmarna på de två sidorna, se lc1 och lc2 till höger, vara 1,0 mA var.
- Om inspänningen på den vänstra sidan nu skulle öka medan inspänningen på den högra sidan förblir konstant så kommer den vänstra kollektorströmmen öka, låt oss anta att den ökar till 1,2 mA.
- Med tanke på att endast 2,0 mA kommer flöda genom den strömgeneratorn så medför detta att den högra kollektorströmmen kommer minska till 2,0–1,2
 = 0,8 mA. Detta medför att utsignalen kommer öka lite, eftersom

$$V_{CC} - r_{o2} * I_{C2} - U_{UT} = 0 \rightarrow U_{UT} = V_{CC} - r_{o2} * I_{C2}$$

- Som synes så kommer utspänningen U_{UT} öka om den högra kollektorspänningen I_{C2} ökar. För en vanlig differentialförstärkare med drainresistor så hade därmed den vänstra kollektorströmmen varit 1,2 mA och den högre varit 0,8 mA.
- Dock så kopierar strömgeneratorn strömmen från den vänstra sidan till den högra, vilket medför att den högra kollektorströmmen också blir 1,2 mA. Då blir summan av kollektorströmmarna lika med 2,4 mA, men i strömgeneratorn så kan de endast flöda 2,0 mA, eftersom den dimensionerats till detta.
- Vad händer med de 2,4–2 = 0,4 mA som uppkom när den högra kollektorströmmen ökade, om de inte kommer flöda genom strömgeneratorn?
- Jo, dessa 0,4 mA som den högra kollektorströmmen ökade med kommer istället flöda från den högra kollektorn till utgången. Därmed så blev strömförändringen på utgången 0,4 mA, lika mycket som på en differentialförstärkare med två utgångar, som vi mätte tidigare i kapitlet. Därmed höjs utsignalen ytterligare.
- Notera att vid detta tillfälle så kommer transistor Q4:s kollektorström vara 1,2 mA, medan transistorn nedanför den, Q2, har en kollektorström på 0,8 mA.

- Eftersom utsignalen är ansluten till den högra sidan så kommer Q4 och Q2 ha olika kollektorströmmar i Differential Mode. Endast i jämvikt (Common Mode) är kollektorströmmar på differentialförstärkarens högra sida identiska. Dessa kollektorströmmar kommer i detta fall också vara identiska med kollektorströmmarna på den vänstra sidan.
- Transistorerna Q3 och Q1 har identiska kollektorströmmar på 1,2 mA. Eftersom utsignalen inte tas från den vänstra sidan så är kollektorströmmarna på den vänstra sidan alltid identiska.

Exempel 2: Inspänningen på vänster sida är lägre än inspänningen på höger sida

• Låt oss istället anta att vi återigen startar med differentialförstärkaren i jämvikt. Då är de två insignalerna lika stora och

utspänningen är därmed lika med noll.

 Om nu inspänningen på den höra sidan minskar, medan inspänningen på den högra fortfarande är samma, så kommer kollektorströmmen på den vänstra sidan minska och kollektorströmmen på den högra sidan öka.

- Låt oss anta att I_{C2} ökar med 0,4 mA till 1,4 mA. Då kommer kollektorströmmen på den vänstra sidan, I_{C1}, minska med lika mycket, dvs. från 1,0 mA till 0,6 mA. Strömmen ned till strömgeneratorn kommer alltid vara 2,0 mA, men strömspegeln kopierar I_{C1} till I_{C2}, vilket medför att I_{C2} minskar till 0,6 mA.
- Vad händer med de övriga 0,8 mA? De tas från utsignalen, som förser den högra sidan av differentialförstärkaren med ström. Vid sådana situationer så blir utspänningen negativ.
- Notera nu att Q4:s kollektorström är lika med 0,6 mA, medan transistorn nedanför den, Q2, har en kollektorström på 1,4 mA.
- Transistor Q3 och Q1 har identiska kollektorströmmar på 0,6 mA. Eftersom utsignalen inte tas från den vänstra sidan så kommer Q3 och Q1 alltid ha samma kollektorströmmar.
- Detta medför att utgången känner av skillnader på de båda sidorna av strömgeneratorn, vilket medför att
 differentialförstärkaren ovan har lika hög förstärkning som om den hade två utgångar, dvs. dubbelt så hög jämfört med om
 en drainresistor användes. Genom detta så fungerar differentialförstärkaren på samma sätt som om den hade två utgångar.
- **Slutsats:** Genom att ersätta kollektorresistorn med en strömspegel så får vi samma förstärkning som en differentialförstärkare med två utgångar, trots att vi bara använder en utgång!

Lösning till uppgift 5:

Härledning av differentialförstärkningen och utresistansen när strömspegel används som last

- Vi kan härleda formel för förstärkningsfaktorn (samt utresistansen) genom att rita ut småsignalschemat för differentialförstärkaren. Vi behöver bara rita ut en av sidorna, eftersom de två sidorna är symmetriska. Vi väljer att rita ut den högra sidan, eftersom utgången är placerad på denna sida.
- De två sidorna av differentialförstärkaren antas vara identiska, dvs.
 NPN-transistorerna Q1 och Q2 är identiska, samtidigt som PNP-transistorerna Q3 och Q4 är identiska.
- Symmetrin mellan de två sidorna av differentialförstärkaren medför en del virtuella jordpunkter, bland annat i punkten mellan transistor Q1 och Q3.
- I Differential mode så uppkommer också en virtuell jordpunkt i punkten mellan transistor Q1 och Q2:s emittrar, eftersom den ena ingången vill dra upp spänningen i denna punkt, medan den andra kommer vilja dra ned spänningen lika mycket. Därmed så kommer inte strömspegeln påverka differentialförstärkningen och vi kommer inte rita ut denna.
- Eftersom vi endast är intresserade av signaler som förändras över tid så kortsluter vid alla konstanta parametrar, vilket i detta fallet är matningsspänningen Vcc.

• Som synes i småsignalschemat ovan så består den högra sidan av ett vanligt GE-steg utan emitterresistor. I detta exempel har transistorernas utresistans r_{o2} och r₀₄ ritats ut. Dessa resistorer är anslutna på ena sidan till jord och andra sidan till samma punkt, dvs. ΔU_{UT}. Därför är spänningsfallet över de två transistorerna identiska, vilket medför att de kan antas vara parallellkopplade.

- Vi kan därför förenkla figuren genom att ersätta de två utresistanserna med en ersättningsresistans r₀₂//r₀₄, som placeras i kollektorn. Vi ritar nu om schemat till figuren nedan.
- Som synes så ser figuren nu ut som ett vanligt GE-steg utan emitterresistor. Genom att använda Kirchhoffs spänningslag så härleder vi formel för in- och utspänningen, och därigenom förstärkningsfaktorn:

οΔ∪υτ

$$\Delta U_{IN2} - r_{e2}I_{C2} = 0 \rightarrow \Delta U_{IN2} = r_{e2}I_{C2}$$

$$-I_{C2} * (r_{o2}//r_{o4}) - \Delta U_{UT} = 0 \rightarrow \Delta U_{UT} = -I_{C2} * (r_{o2}//r_{o4})$$

$$G = \frac{\Delta U_{UT}}{\Delta U_{IN2}} = -\frac{I_{C2} * (r_{o2}//r_{o4})}{r_{e2}I_{C2}} = \frac{r_{o2}//r_{o4}}{r_{e2}}$$

$$G = -G_m * R_{IIT}$$

där G är differentialförstärkarens förstärkningsfaktor, G_m är den så kallad stora transkonduktansen och R_{UT} är differentialförstärkarens utresistans.

• Formeln ovan kan omvandlas för att beräkna utresistansen:

$$G = -G_m * R_{UT} \to R_{UT} = -\frac{G}{G_m}$$

• Vi kan beräkna den stora transkonduktansen med följande formel:

$$G_m = \left| \frac{I_{UT}}{\Delta U_{IN}} \right|_{U_{UT}=0} = \frac{I_{C2}}{r_{e2}I_{C2}} = \frac{1}{r_{e2}}$$

- När utspänningen är lika med noll så kommer utströmmen vara lika med kollektorströmmen I_{C2}. ΔU_{IN} beräknade vi tidigare till r_{e2}I_{C2}.
- Därefter härleder vi en formel för utresistansen:

$$R_{UT} = -\frac{G}{G_m} = -\frac{\left(-\frac{r_{o2}//r_{o4}}{r_{e2}}\right)}{\left(\frac{1}{r_{e2}}\right)} = \frac{\left(\frac{r_{o2}//r_{o4}}{r_{e2}}\right)}{\left(\frac{1}{r_{e2}}\right)} = r_{e2} * \left(\frac{r_{o2}//r_{o4}}{r_{e2}}\right) = r_{o2}//r_{o4}$$

• Utresistansen blev alltså lika med parallellkopplingen av transistorernas utresistans. Detta hade vi också kunnat räkna ut rent intuitivt, eftersom vi i småsignalschemat endast hade denna resistans som kollektorresistans, medan vi inte hade någon emitterresistans.