Método dos Mínimos Quadrados (MMQ)

Irineu Lopes Palhares Junior

FCT/UNESP, irineu.palhares@unesp.br

Conteúdos

Informações sobre os conteúdos

Projeção Ortogonal

- Método dos Mínimos Quadrados (Linear)
 - Outros Tipos de Aproximação

Exemplo inicial

Example

Obtenha a reta que melhor se ajuste aos dados da Tabela 1

Xi	Уi
1	3
3	7
4	9

Tabela 1: Valores do gráfico de dispersão.

Projeção de um vetor sobre outro vetor

Veremos nesta aula, a projeção de um vetor sobre outro, bem como a projeção ortogonal de um vetor sobre um sub-espaço. Este último será utilizado no estudo de aproximações de funções pelo método dos mínimos quadrados.

Para analisar a projeção ortogonal de um vetor sobre outro, consideremos que x e y sejam vetores não nulos. Escolhemos um número real λ tal que λy seja ortogonal a $x-\lambda y$, como sugere a Fig., no caso em que $E=\mathbb{R}^2$.

Teorema da Melhor Aproximação

Theorem

Seja $E^{'}$ um subespaço de dimensão finita de um espaço euclidiano E. Se v for um vetor pertencente a E, então v_0 , a projeção ortogonal de v sobre $E^{'}$, será a melhor aproximação para v no sentido de que

$$|v-v_0|<|v-u|,$$

para qualquer que seja $u \in E'$, tal que $u \neq v_0$.

- Seja $f(x) = \frac{1}{x+2}$, $x \in [-1,1]$. Usando o método dos mínimos quadrados e o produto escalar usual em C[-1,1], aproximar a função f(x) por um polinômio de grau 2.
- ② Seja $f(x) = \frac{1}{x^4}$, $x \in [0,1]$. Usando o método dos mínimos quadrados, aproximar a função f(x) por um polinômio do tipo $P(x) = ax^2 + bx^4$, usando o seguinte produto escalar:

$$\langle f,g \rangle = \int_0^1 x^2 f(x)g(x)dx$$

Note que a base do subespaço neste caso é $\{x^2, x^4\}$.

- 3 Seja $f(x) = (x^3 1)^2$, $x \in [0, 1]$. Usando o método dos mínimos quadrados, aproximar a função f(x) por
 - a) uma reta.
 - b) um polinômio do 2º grau,

usando o produto escalar usual em C[0,1].

Exemplo - caso discreto

Example

Considere a função y = f(x), dada pela tabela:

Tabela 2: Caption

Ajustá-la por um polinômio do 2° grau, usando o método dos mínimos quadrados.

Erro de truncamento

O erro de truncamento no método dos mínimos quadrados é dado por:

a) Caso contínuo:

$$Q = ||f - P_m||^2 = \int_a^b (f(x) - P_m(x))^2 dx$$

b) Caso discreto:

$$Q = ||f - P_m||^2 = \sum_{k=0}^{n} (y_k - P_m(x_k))^2$$

Outros Tipos de Aproximação

O objetivo dos métodos dos mínimos quadrados é aproximar a função dada por uma família *linear* nos parâmetros, isto é, definida por expressões da forma:

$$a_0g_0(x) + a_1g_1(x) + \ldots + a_mg_m(x).$$

Muitos casos podem ser reduzidos a essa forma por uma transformação prévia do problema, isto é, nosso objetivo agora consiste na linearização do problema, através de transformações convenientes, de modo que o método dos mínimos quadrados possa ser aplicado.

Outros tipos de aproximação

Aproximação exponencial

$$f(x) \approx ab^x$$

Aproximação geométrica

$$f(x) \approx ax^b$$

Aproximação hiperbólica

$$f(x) \approx \frac{1}{a + bx}$$

Aproximação do tipo raíz quadrada

$$f(x) \approx \sqrt{a + bx}$$

Aproximação racional

$$f(x) \approx \frac{a + x^2}{b + x}$$

Exemplo

Example

Aproximar a função y = f(x) dada pela tabela:

Tabela 3: Caption

por uma função racional, isto é,

$$f(x) \approx \frac{a + x^2}{b + x}$$

A Tabela lista o número de acidentes em veículos motorizados no Brasil em alguns anos entre 1980 e 2006.

Ano	Número de acidentes (em milhares)	Acidentes por 10.000 veículos		
1980	8.300	1.688		
1985	9.900	1.577		
1990	10.400	1.397		
1993	13.200	1.439		
1997	13.600	1.418		
2000	13.700	1.385		
2006	14.600	1.415		

Tabela 4: Caption

- a) Calcule a regressão linear do número de acidentes no tempo. Use-a para prever o número de acidentes no ano 2010. (Isto é chamado análise de série temporal, visto que é uma regressão no tempo, e é usada para prognosticar o futuro.)
- b) Calcule uma regressão quadrática do número de acidentes por 10.000 veículos. Use esta para prognosticar o número de acidentes por 10.000 veículos no ano de 2007.
- c) Compare os resultados das partes a) e b). Em qual delas você está mais propenso a acreditar? Justifique.

Obs.: Observe que em qualquer trabalho de série temporal envolvendo datas contemporâneas, é uma boa idéia transladar os dados iniciais antes de formar as somas, pois isto reduzirá os problemas de arredondamento. Assim, em vez de usar para \times 1980, 1985, etc., usamos 0, 5, etc.

A tabela a seguir lista o total de água (A) consumida nos Estados Unidos em bilhões de galões por dia:

			1980		
(A)	136.43	202.70	322.90	411.20	494.10

Tabela 5: Caption

- a) Encontre uma regressão exponencial de consumo de água no tempo.
- b) Use os resultados do item a) para prever o consumo de água nos anos de 2008 e 2010.