Trig Final (SLTN v653)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The arc length is 51 meters. The angle measure is 1.4 radians. How long is the radius in meters?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

r = 36.43 meters.

Question 2

Consider angles $\frac{8\pi}{3}$ and $\frac{-11\pi}{4}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{8\pi}{3}\right)$ and $\cos\left(\frac{-11\pi}{4}\right)$ by using a unit circle (provided separately).

$$\sin(8\pi/3) = \frac{\sqrt{3}}{2}$$

Find $cos(-11\pi/4)$

$$\cos(-11\pi/4) = \frac{-\sqrt{2}}{2}$$

Question 3

If $\tan(\theta) = \frac{-77}{36}$, and θ is in quadrant IV, determine an exact value for $\sin(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$36^{2} + 77^{2} = C^{2}$$

$$C = \sqrt{36^{2} + 77^{2}}$$

$$C = 85$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant IV in a unit circle.

$$\sin(\theta) = \frac{-77}{85}$$

Question 4

A mass-spring system oscillates vertically with an amplitude of 4.3 meters, a midline at y = 7.37 meters, and a frequency of 8.39 Hz. At t = 0, the mass is at the midline and moving down. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -4.3\sin(2\pi 8.39t) + 7.37$$

or

$$y = -4.3\sin(16.78\pi t) + 7.37$$

or

$$y = -4.3\sin(52.72t) + 7.37$$