

Intro to Data Science

Learning Objectives & Agenda

METIS

Learning objectives

Be able to

- Describe data science and explain its different facets
- Explain the differences between statistics and machine learning
- Explain the major branches of machine learning and the types of problems they solve
- Describe special topics within data science

Agenda

- 1. A Brief History of Data Science
- 2. Basics of Data Science
- 3. Analytics and Statistics
- 4. Statistics and Machine Learning
- 5. Machine Learning and Artificial Intelligence
- 6. Special Topics
- 7. Course Structure

A BRIEF HISTORY OF DATA SCIENCE

METIS

Definition

Data science is the practice of extracting useful and actionable information from data, which is then used to create value

This is achieved through a combination of analysis, statistics, machine learning, artificial intelligence, and programming

With these tools, we can use computers to answer questions and achieve results that were previously untenable

BASICS OF DATA SCIENCE

METIS

Major Components

Analytics: the discovery of patterns in data and their application to decision making

Statistics: branch of mathematics focusing on uncovering meaning in data and randomness

Major Components

Machine Learning: the study of algorithms and statistical models to improve task performance

Computer Science: the study of algorithms and computation

Artificial Intelligence (AI): No agreed upon definition

Major Components

- There is no hard cut line between any of these components
- They cannot stand independent of each other

Data Science Team Skills

To be successful, data science teams need a variety of skills

Communicate Integrate code into Comms/ **Data Mining** backend software with business Modeling **Storytelling** leaders systems **Domain Software Statistics Expertise Engineering**

Data Science Team Roles

To support the needed skills and achieve impact, data science teams need a diverse set of roles

Data Science Project Workflow

Data science projects have predictable steps, but iterate on and revisit them often

Problem Statement

What problem are you trying to solve?

Data Collection

What data do you need to solve it?

Data Exploration & Preprocessing

Do you understand your data? Will your model?

Modeling

Build a model to solve your problem

Validation

Did I solve the problem?

Decision Making & Deployment

Communicate to stakeholders or put into production

ANALYTICS & STATISTICS

METIS

Types of Analytics Techniques

Descriptive: What did happen?

Mean, median, distribution, max

Predictive: What will (likely) happen?

 Stock price prediction, estimated probability of churn

Prescriptive: What should we do?

Pricing, resource allocation

Analytics

Answers direct, clear questions with deterministic answers

Monitors changes in business and informs decision makers

Leans heavily on business rules

Statistics

A field of mathematics dedicated to interpreting patterns in data and making inferences about them

Two major branches: frequentist (standard) and Bayesian (new & exciting)

Specialized subfields, e.g. time series analysis, experimental design

"Backbone" of modern science

Statistics

Answers descriptive, predictive, and relationship questions

Probability and mathematical guarantees

Concerned with the distribution of numbers & metrics

STATISTICS & MACHINE LEARNING

METIS

All models are wrong, but some are useful"

No Free Lunch.

MACHINE LEARNING & ARTIFICIAL INTELLIGENCE

METIS

Machine Learning (ML)

Machine learning allows computers to learn and infer from data

These programs learn from repeatedly seeing data, rather than being explicitly programmed by humans

Machine Learning (ML)

- Algorithms and statistical models that enable computers to uncover patterns in data
- High overlap with statistics; some classic statistical models are also referred to as machine learning models, e.g. linear regression
- Two main branches of algorithms: supervised and unsupervised

Supervised Learning

Supervised Learning

- Machine learning with **labels**
- Label: also known as target, y, output, class
- Two major flavors: regression and classification

Supervised Learning: Regression

Answers questions like:

- How much profit will we make next year?
- How long will a reader stay on our site?

Applications: demand forecasting, predicting stock prices, customer lifetime value

- · Demand forecasting
- · Lifetime value

- · Demand forecasting
- · Lifetime value

Supervised Learning: Classification

Labels are class or group, e.g. 1 or 0, "churned" or "not churned"

Linear and nonlinear models

Algorithms include k-nearest neighbors, logistic regression, decision trees, SVMs

Fraud

Unsupervised Learning

Unsupervised Learning

- Machine learning without labels
- Uncover the underlying structure of data
- Two major branches: clustering and dimension reduction

Machine Learning

Machine Learning

Demand forecasting

Fraud

Image Compression

Feature generation

Customer Segmentation

Feature generation

Machine Learning

SPECIAL TOPICS

A/B Testing: running an "experiment" to test two (or more) alternatives against each other

- Common in marketing and online sales
- Everyday application: button color testing

NLP (Natural Language Processing): analysis of human language by computers; machine learning and Al applied to text

- Methods: sentiment analysis, topic modelling, etc.
- Everyday application: autocomplete,

Time Series Analysis: applying statistical and machine learning techniques to find patterns in and predict with time-indexed data

- Common in financial markets
- Everyday application: demand forecasting

Neural Network: a type of machine learning vaguely inspired by the workings of neurons in a brain; composed of an input layer, output layer, and "hidden" layers

Deep Learning: a type of neural net with many hidden layers

- Common in image recognition, NLP
- Everyday application: speech recognition

Computer Vision: a field of study on how computers can gain information about an environment through images

- Machine learning and neural networks are often applied for image recognition
- Everyday application: goofy video filters

Bayesian Statistics: a theory in statistics which takes the approach that probability expresses a "degree of belief"

- Results in different assumptions and underlying math
- Machine learning methods naïve Bayes

Machine Learning Projects Life Cycle

Machine Learning Project Life Cycle

Machine Learning Project Life Cycle

Business Requirements

- Ask Relevant Questions
- Define Problem Objectives

Data Collection and Prep.

- Gather and scrape necessary data
- Clean Data : inconsistency, missing data,...etc

Exploratory Data Analysis

- Form Hypothesis
- Data visualization
- Data Analysis
- Data Exploration: correlation

Data Engineering

- Select Important Features
- Build new features

Data Modelling and Model Selection

- Train Machine Learning Models
- Evaluate Performance
- Chose best model

Model Tuning and Deployment

- Tune selected model
- Deploy Model
- Communicate performance and results

Course Structure

Course Structure

- Module 1: Basic Python & Math (weeks 1 and 2)
- Module 2: Exploratory Data Analysis (weeks 3 and 4)
- Module 3: Regression (weeks 5 and 6)
- Module 4: Classification (weeks 7 and 8)
- Module 5: Unsupervised Learning & NLP (weeks 9 and 10)
- Module 6: Deep Learning (weeks 11 and 12)

Recap

Learning objectives

Be able to

- Describe data science and explain its different facets
- Explain the differences between statistics and machine learning
- Explain the major branches of machine learning and the types of problems they solve
- Describe special topics within data science

Takeaways

- Data science means different things at different places, but it generally involves, analytics, statistics, machine learning, artificial intelligence, and programming.
- Supervised and unsupervised learning are the two main branches of machine learning
- Statistics and machine learning have a large overlap
- Artificial Intelligence is not well defined

QUESTIONS?