

Nadai

Carlos

Sesión 3: Las matemáticas detrás de las STARKs

4 de Mayo del 2023

Stark 101: Parte 1

@Nadai02010

@0xhasher_

CuadFibonacci

(Cuadrados de Fibonacci)

CuadFibonacci (Cuadrados de Fibonacci)

CuadFibonacci:
$$a_{n+2} = a_{n+1}^2 + a_n^2$$

- Representada como: $a_0, a_1, a_2, a_3, ...$
- Determinada por los primeros dos elementos
- Ejemplo:
 - 0 1, 3, 10, 109, 11981, 143556242,...

Pequeño problema

 $a_{10} = 10585384481491331545443435980195330168085$

CuadFibonacci Mod Primo

CuadFibonacci mod primo: $a_{n+2} = a_{n+1}^2 + a_n^2 \mod primo$

Ejemplo:

1, 3, 10, 109, 11981, 143556242,...

mod 7:

0 1, 3, 3, 4, 4, 4, ...

CuadFibonacci Mod Primo

CuadFibonacci mod primo: $a_{n+2} = a_{n+1}^2 + a_n^2 \mod primo$

- Ejemplo mod 7:
 - 0 1, 3, 3, 4, 4, 4, ...

Usaremos el *primo* = $3 \cdot 2^{30} + 1 = 3221225473$

Finite field *F*

Declaración

Declaración a probar

Existe un número x tal que:

Para CuadFibonacci mod 3221225473 con

- $a_0 = 1$
- \bullet $\alpha_1 = x$

Tenemos que a_{1022} = 2338775057

$$X = 3141592$$

Protocolo STARK

Protocolo STARK - Parte I

- LDE Low Degree Extension (Extensión de Bajo Grado)
- Commitment (Compromiso)

Low Degree Extension (LDE)

Extensión de Bajo Grado

LDE en 3 Pasos

- 1. Generar input
- 2. Interpolar
- 3. Extender

LDE - General

LDE Paso 1 - Generar Input

Input: $y_0, y_1, y_2, y_3, y_4, ...$

Escoger: $X_0, X_1, X_2, X_3, X_4, ...$

X	У
<i>X</i> ₀	У ₀
<i>X</i> ₁	<i>Y</i> ₁
<i>X</i> ₂	<i>y</i> ₂
<i>X</i> ₃	<i>y</i> ₃
<i>X</i> ₄	<i>Y</i> ₄

LDE Paso 2 - Interpolación Polinómica

Interpolar un polinomio *f*:

Para cada $i: f(x_i) = y_i$

X	f(x)
<i>X</i> ₀	<i>y</i> ₀
X ₁	<i>Y</i> ₁
<i>X</i> ₂	<i>y</i> ₂
<i>X</i> ₃	<i>y</i> ₃
X ₄	<i>Y</i> ₄

LDE Paso 3 - Extender

- Elegir un dominio de evaluación más grande $\{x_i^*\}$
- Output: $\{f(x_i)\}$

x'	f(x`)
x `	f(x `_o)
X `1	f(x `1)
X '2	f(x `_2)
X '3	f(x '3)

LDE en STARK

LDE para STARK Paso 1 - Generar Input

Input: $a_0, a_1, a_2, ..., a_{1022}$ La **Traza**

Escogemos: 1, g, g^2 , g^3 ,..., g^{1022}

g - elemento de F

LDE para STARK Paso 1 - Generar Input

Input: a_0 , a_1 , a_2 ,..., a_{1022}

Escogemos: 1, g, g^2 , g^3 ,..., g^{1022}

x	f(x)
g ^o	a_{0}
g¹	$a_{_1}$
g ²	a_2
•••	•••
g ¹⁰²²	a ₁₀₂₂

LDE para STARK Paso 2 - Interpolar

Interpolar un polinomio *f*:

para cada $i: f(g^i) = a_i$

X	f(x)
g ^o	a_0
g¹	$a_{_1}$
g ²	a_2
•••	•••
g ¹⁰²²	a ₁₀₂₂

LDE para STARK Paso 3 - Extender

- Elegir un dominio de evaluación más grande (8k)
- $\{x_i^*\} = w, w \cdot h, w \cdot h^2, ..., w \cdot h^{8191}$

w, h - elementos de F

• Resultado: f(w), $f(w \cdot h)$, $f(w \cdot h^2)$, ...

Reed-Solomon codeword

LDE para STARK Paso 3 - Extender

X	f(x)
w·h ^o	$f(w \cdot h^0)$
w·h¹	$f(w \cdot h^1)$
w·h²	$f(w \cdot h^2)$
•••	•••
w·h ⁸¹⁹¹	f(w·h ⁸¹⁹¹)

Commitment (Compromiso)

Árbol de Merkle

Compromiso sobre LDE

Resumen

- Declaración
 - $\circ~$ Existe un número x tal que si iniciamos una secuencia CuadFibonacci mod 3221225473, el elemento α_{1022} = 2338775057
- Protocolo STARK parte I:
 - LDE Low Degree Extension (Extensión de Bajo Grado)
 - Commitment (Compromiso) Árbol de Merkle

¿Qué sigue?

Parte 2 - restricciones polinómicas

Pero primero - el código...

- 1) Trace, LDE
- 2) Commit LDE trace

Gracias

