(23) Complete Specification filed 30 Nov. 1973

(44) Complete Specification published 2 July 1975

(51) INT CL² C03C 3/04, 13/00, 3/08, 3/10

(52) Index at acceptance

OIM 11B1 11C10 11C1 11C4 11C3 11C6 11C7 11C9 11F14 11F1 11F29 11F33 11F34 11J2 11J3 11K1 11K3 S9A4

(72) Inventors BRIAN YALE and ANUP SIRCAR

1 399 556

(54) IMPROVEMENTS RELATING TO ALKALI-RESISTANT GLASS COMPOSITIONS

(71) We, PILKINGTON BROTH-ERS LIMITED, a Company incorporated under the laws of Great Britain, of Prescot Road, St. Helens, Lancashire, England, do hereby declare the invention for which we pray that a patern may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

This invention relates to alkali-resistant glass compositions and particularly, though not exclusively, to such compositions which can be formed into glass fibres. It is known to include a proportion of zirconia (ZrO₁) in glass compositions for enhancing their resismince to aikalia. It is also known that the inclusion of substantial proportions of boron oxide (B₂O₂) and/or alkali metal oxides (M,O) has a deleterious effect on the alkali resistance of the glass, although both these constituents have other favourable properties which have bitherto been considered to make their inclusion desirable. For _cample, both B₂O₃ and M₂O act as fluxes to aid melting and thus help to overcome the tendency of ZrO, to make melting difficult, and they can also improve the characteristics of the glass for drawing glass fibres.

It is an object of the present invention to provide glass compositions with a particularly high alkali resistance.

According to the present invention, a glass composition comprises, in weight percentages:

SiO, 45 to 65% ZrO, 6 to 20% RO 20 to 45%

the total of SiO₁+ZrO₂+RO being not less than 94% by weight of the glass, where RO represents at least one divalent oxide of the group consisting of CaO, MgO, SrO, BaO and ZnO, the amount of said divalent oxide or oxides lying within the ranges, in weight percentages: CaO 12 to 45%; MgO 0 to 14%; SrO 0 to 2%: "10 0 to 10% and ZnO 0 to 5%; the induce (if any) of the composition consisting of other compatible constituents."

(11)

The bulines of the emposition may consist of at lines on of the following constituents: TiO₁, Al₂O₂, P₂O₃, F₂O₃, F₃ and M₃O, where M₂O represents K₂O, Na₃O or Li₂O, the amount of any one of the said constituents not exceeding 5% by weight of the composition. Preferably the amount of M₃O does not exceed 3% by weight of the composition.

The glass compositions according to the invention thus contain relatively large proportions of ZrO₂, while being free from, or containing only low proportions of, B₁O₂ and M₁O. In spite of the absence or low level of these fluxing agents, it has proved possible to melt the glass compositions quite readily.

When subjected to standard tests for chemical durability in aqueous and in alkaline environments, such glass compositions have shown excellent results. It has also proved possible to form them into glass wool fibres, e.g. by high temperature blown type processes.

Specific embodiments of glass commonitions in accordance with the invention will now be described by way of example.

The following Table 1 lists 18 class compositions consisting of ZrO₁, SiO₂ and CaO₃, illustrating the use of four different values for ZrO₂ (18, 14, 10 and 8 weight %) with varying proportions of SiO₂ between 45 and 65 weight % and correspondingly inversely varying proportions of CaO between 45 and 21 weight %.

BEST AVAILABLE COP

70

75

[Price 33p]

35

TABLE 2

Glassia	C 0.	Ī	157	1	158	T	1.59		163	
Glass No. C 07		Vol	Wit. 7	Mot	₩t. द	Mol	W1. %	Mol	W1.%	
SiO,		54	51.55	58	55.2	55	53.6	50	47.9	
ZrO _z		7	13.7	7	13.7	5	10.0	7	13.7	
C20		39	34.75	35	31.1	40	36.4	43	38.4	
MgO			1	1						
Sri	SrO									
BJ	BaO			l						
Ti	TiO,									
Na	Na ₂ O									
. Zn	ZnO						•		İ	
Al	A1,0,									
Liquide Temperati	Liquidus Temperature TL -C		1405		1420		1450		1450	
Chemical	Chemical Durability									
Reagent	Oxide Reagent extracted									
	Na,O									
H,O	1,0 SiO, 1.0		.0	1.0		0.6		1.2		
	CaO 0.63		0.65		1. }		0.73			
N/10	SiO,	0.6		0.8		1.6		0.05		
NaOH	C ₂ O	0.26		0.26		0.24		0.31		
N	SiO,	1.4		1.25		1.2		1.25		
NaOH CaO		0.59		0.74		0.81		0.75		

ſ 		т	179	7	183	, 	104	,		
Glass No. C 07		Mol	Wt. %	Mol	₩C. %	Mot	186 Wi. %	Mol	199 Wt.%	
SiO,		56	53.7	58	55.0		58.2	54	51.4	
2:0,			13.75	7	13.63		14.0	7	13.66	
CaO		30	26.8	:8	24.8	ł	22.8	32	28.44	
۱gO		5	3.2	5	3.2			5	3.19	
SrO				2	3.3			2	3.28	
Ba	BaO									
TiO,		2	2.55							
Na ₂ O				<u> </u>			5.0			
ZaO										
AI,0,										
Liguiau	Liquiaus		<u> </u>		L	 -	L	·		
Temperature TL C		1395		1418		1370		1400		
Chemical Durability										
Reagent	Oxide extracted									
	Na ₇ O					0.33				
н'о	н'о 2!0'				0.25		0.8		1.0	
	CaO	1.02		0.35		0.42		0.37		
N/10	SiO,	1.15		0.85		1.2		0.8		
NaOH CaO		υ. 25		0.1		0.21		0.2		
N	SiO,	1.3				2.0		0.4		
NaOH CaO		0.95		0.25		0.5		0.25		

*!~

LABLE 2 (continued)

Glass No. C-07		Mol 20	16 Wt. 7:	Me I)8 Wt. 70	Mol 20)9 Wt. 1	14.4	11 4
S ₁ O ₁		58	58.48	1	65.0		65.0	i	\$2.0
200,		7	1.171		10.0		12.0	!	l i 182
ChO		28	23.0		20.0		20.0	1	, 50 ù
MaO		5	3 21						
SrO							: 	•	
11af1) 							!	
TiO	2							!	
Na ₂	υ		}		5.0		3.0	!	1.3
ZnC)	2	2.59						į
AI,C	ο,							:	
Unquidi Temperatu	is re TL 'C	- 1419			<u> </u>				I
Chemical Durability				 		1		į	
Resgont	Oxide extracted							1	
	Na ₂ O			0.22		0.133			
	SiO,	0,4		0.7		0.25		:	
11,0	CaO	0.2		0.19		0.125		•	
	BaO			1					
	ZnO	0.5							
	510,	0.5		1.15		1.05		!	
N/10	Ca O	0.15		0.3			0.1		
NaOH	MgO							1	
.44///1	8a0			1				ĺ	
	ZnO	0.1							
	SiO,	2	.85		2. 25		2,25	1	
7.	CaO 0.3		.3		0.38		25		
NaOH	MgO								
	ВаО							İ	
	ZnO	0	1. 15	1		1		•	

15

20

25

30

35

When using the maximum permissible amount of SiO, (65 weight %) a proportion of up to 5 weight %. Na O may be included, as in glasses C/07/208 and 209, to improve the drawing characteristics of the glass and thereby facilitate the formation of fibres. These glasses also contain the minimum permissible amount of RO (20 weight %). In general, the amount of RO increases as the amount of SiO, is reduced. As shown by the foregoing Examples, CaO may vary between 19 and 45% and up to 14% of the RO may consist of MgO, as in glass C/07/176. Up to 10% of the RO can be B3O, up to 8%, of the RO can be SrO, and up to 5% of the RO can be ZnO, if desired. With MgO or SrO present, a slight lowering of the liquidus temperature can be achieved, which is beneficial for formation of glass fibres. A small amount of TiO, an also be included, as in glass C/07/179, to produce a similar lowering of the liquidus temperature, but TiO, also tends to reduce the alkali resistance so it can only be used to a limited extent, i.e. up to 5 weight %. Al2O3 produces similar effects, as seen from glass C/07/176.

B₁O₃ or F₇ cmld also be included in amounts of up to 5 weight % to assist melting. Fe₁O₃ may be present in the customary small amounts (up to 0.5 weight %)

which result from the normal impurities in raw materials.

WHAT WE CLAIM IS:—
1. A glass composition which comprises, in weight percentages:—

50

70

75

SiO₁ 45 to 65%. ZrO₁ 6 to 20% RO 20 to 45%

the total of SiO, +ZrO, +RO being not less than 94% by weight of the glass, where RO represents at least one divalent oxide of the group consisting of CaO, MgO, SrO, BaO and ZnO, the amount of said divalent oxide or oxides lying within the ranges, in weight percentages: CaO 19 to 45%; MgO 0 to 14%; SrO 0 to 8%; BaO 0 to 10%, and ZnO 0 to 5%, the balance (if any) of the composition consisting of other compatible constituents.

2. A glass composition according to Claim 1, wherein the balance of the composition consists of at least one of the following constituents: TiO, AlO, BO, Fe.O., F. and M.O., where M.O. represents K.O., Na,O or LiO, the amount of any one of the said constituents not exceeding 5% by weight of the composition.

3. A glass composition according to Claim 2, wherein the amount of M₂O does not exceed 3°4 by weight of the composition.

4. A glass composition according to Claim 2, wherein SiO₂=65% and CaO=20% and the composition also contains 5% Na₂O by weight.

5. An alkali-resistant plass composition in accordance with any one of the compositions listed in Table 1 or Table 2.

PAGE, WHITE & FARRER,

Chartered Patent Agents, 27, Chancery Lane, London WC2A 1NT, Agents for the Applicants.

Printed for Her Majesty's Stationery Office by the Courier Press, Leamington Spa, 1975, Published by the Patent Office, 25 Southampton Hulldings, London, WC2A 1AY, from which copies may be obtained.

BEST AVAILABLE COPY