

Politecnico di Milano Fisica Sperimentale I

a.a. 2013-2014 - Scuola di Ingegneria Industriale e Informatica

II Prova in Itinere - 30/06/2014

Giustificare le risposte e scrivere in modo chiaro e leggibile. Sostituire i valori numerici solo alla fine, dopo aver ricavato le espressioni letterali. Scrivere in stampatello nome, cognome, matricola e firmare ogni foglio.

- 1. Un'asta omogenea di lunghezza L=1 m e massa m=10 kg ha gli estremi vincolati a scorrere lungo due guide ortogonali, poste in un piano verticale come in figura. La guida A scorre di un piano liscio, mentre tra la guida B e il piano è presente una forza di attrito. Determinare:
 - a. il minimo valore del coefficiente di attrito statico μ_s tale per cui l'asta sia in quiete con $\Theta_0 = \pi/3$.

Supponendo ora che entrambe le guide siano libere di muoversi su di un piano liscio e considerando $\Theta_0 = \pi/3$, determinare:

- b. il legame tra la velocità del centro di massa v_{CM} e la velocità angolare ω dell'asta;
- c. i valori di v_{CM} e ω quando l'asta tocca terra. [$\mu_s > 1/2 \tan \theta_0 = 0.86$; $v_x = L/2 \cos \theta \omega$; $v_v = -L/2 \sin \theta \omega$; $v_{CM} = 1.92$ m/s; $\omega = 3.83$ rad/s]

- b. La velocità del fluido in funzione di Q;
- c. La potenza erogata dalla pompa.

Si supponga ora che il diametro finale della tubazione prima della cisterna sia $D_0 = 0.5$ cm e che la differenza di quota tra l'uscita della pompa e l'uscita della tubazione sia pari a $h_1 = 9$ m. Si calcoli:

- 3. Si considerino n=3 mol di gas ideale biatomico con un volume iniziale $V_0=2$ l e pressione iniziale $p_0=1.33$ atm. Il gas subisce una espansione irreversibile caratterizzata da un volume finale $V_1=9$ l e pressione finale $p_1=6$ atm. Calcolare [R = 8.314 J/mol K]:
 - a. La variazione di energia interna del gas ΔU durante la trasformazione;
 - b. La variazione di entropia ΔS del gas;
 - c. Il calore specifico molare, supponendo che la trasformazione sia reversibile con $\Delta p/\Delta V = cost$. [$\Delta U = 13kJ$; $\Delta S = 225$ J/K; $c_x = 0.024$ J/mol K]

 il lavoro ed il rendimento η della macchina, confrontando quest'ultimo con il rendimento di una macchina di Carnot operante con le stesse sorgenti;

V_A

 $V_C = 3V_A$