

■变压器漏感问题

 \diamond 实际上整流变压器绕组总有漏感。漏感和交流侧电感可用一个集中的电感 $L_{\scriptscriptstyle B}$ 表示,并将

其折算到变压器二次侧

- ◆由于电感对电流的变化起阻碍作用,电感电流不能突变,因此换相过程不能瞬间完成, 而是会持续一段时间
- ■现以三相半波为例进行分析,得到的结论可推广到其他电路
 - ◆假设负载中电感很大,负载电流为水平线。

图3-26 考虑变压器漏感时的 三相半波可控整流电路及波形

- ◆从VT₁换相至VT₂的过程分析
- 下在 αt_1 时刻之前 VT_1 导通, αt_1 时刻触发 VT_2 ,因a、b两相均有漏感,故 i_a 、 i_b 均不能突变,于是 VT_1 和 VT_2 同时导通,相当于将a、b两相短路,两相间电压差为 u_b - u_a ,它在两相组成的回路中产生环流 i_k 如图所示。
 - $\mathbf{r}_{i_k}=i_h$ 是逐渐增大的,而 $i_a=I_a-i_k$ 是逐渐减小的。
- =当 i_k 增大到等于 I_d 时, $i_a=0$, VT_1 关断,换流过程结束。
- ☞换相过程持续的时间用电角度 *γ* 表示,称为换相重叠角。

■換相压降

☞换相过程中,整流输出电压瞬时值为

$$u_{d} = u_{a} + L_{B} \frac{di_{k}}{dt} = u_{b} - L_{B} \frac{di_{k}}{dt} = \frac{u_{a} + u_{b}}{2}$$
 (3-30)

呼换相压降:与不考虑变压器漏感时相比, u_d 平均值降低的数值,即

$$\Delta U_{d} = \frac{1}{2\pi/3} \int_{\frac{5\pi}{6} + \alpha}^{\frac{5\pi}{6} + \alpha + \gamma} (u_{b} - u_{d}) d(\omega t) = \frac{3}{2\pi} \int_{\frac{5\pi}{6} + \alpha}^{\frac{5\pi}{6} + \alpha + \gamma} [u_{b} - (u_{b} - L_{B} \frac{di_{k}}{dt})] d(\omega t)$$

$$= \frac{3}{2\pi} \int_{\frac{5\pi}{6} + \alpha}^{\frac{5\pi}{6} + \alpha + \gamma} L_{B} \frac{di_{k}}{dt} d(\omega t) = \frac{3}{2\pi} \int_{0}^{I_{d}} \omega L_{B} di_{k} = \frac{3}{2\pi} X_{B} I_{d}$$
(3-31).

換相重叠角
$$\gamma$$

由式 (3-30) 得出:
$$\frac{\mathrm{d}i_k}{\mathrm{d}t} = (u_\mathrm{b} - u_\mathrm{a})/2L_\mathrm{B} = \frac{\sqrt{6}U_2(\sin\omega t - \frac{5\pi}{6})}{2L_\mathrm{B}}$$
 (3-32)

$$\frac{\mathrm{d}i_k}{\mathrm{d}\omega t} = \frac{\sqrt{6}U_2}{2X_{\mathrm{R}}}\sin(\omega t - \frac{5\pi}{6})\tag{3-33}$$

$$i_{k} = \int_{\frac{5\pi}{6} + \alpha}^{\omega t} \frac{\sqrt{6}U_{2}}{2X_{B}} \sin(\omega t - \frac{5\pi}{6}) d(\omega t) = \frac{\sqrt{6}U_{2}}{2X_{B}} [\cos \alpha - \cos(\omega t - \frac{5\pi}{6})]$$
(3-34)

当
$$\omega t = \alpha + \gamma$$
时, $i_k = I_d$, 于是

$$I_{\rm d} = \frac{\sqrt{6}U_2}{2X_{\rm B}} \left[\cos\alpha - \cos(\alpha + \gamma)\right]$$

$$\cos\alpha - \cos(\alpha + \gamma) = \frac{2X_{\rm B}I_{\rm d}}{\sqrt{6}U_2}$$
(3-36)

$$\cos \alpha - \cos(\alpha + \gamma) = \frac{2X_{\rm B}I_{\rm d}}{\sqrt{6}U_2} \tag{3-36}$$

☞ γ 随其它参数变化的规律:

(1)**Ⅰ**,越大则γ越大;

 $(2)X_{R}$ 越大 γ 越大;

(3)当 $\alpha \leq 90$ °时, α 越小 γ 越大。

☞其它整流电路的分析结果

表3-2 各种整流电路换相压降和换相重叠角的计算

电路形式	单相全波	单相全控桥	三相半波	三相全控桥	m脉波整流电路
$\Delta U_{ m d}$	$\frac{X_{\mathrm{B}}}{\pi}I_{\mathrm{d}}$	$\frac{2X_{\rm B}}{\pi}I_{\rm d}$	$\frac{3X_{\rm B}}{2\pi}I_{\rm d}$	$\frac{3X_{\rm B}}{\pi}I_{\rm d}$	$\frac{mX_{\rm B}^{(1)}}{2\pi}I_{\rm d}$
$\cos \alpha - \cos(\alpha + \gamma)$	$\frac{I_{\rm d}X_{\rm B}}{\sqrt{2}U_2}$	$\frac{2I_{\rm d}X_{\rm B}}{\sqrt{2}U_{\rm 2}}$	$\frac{2X_{\rm B}I_{\rm d}}{\sqrt{6}U_{2}}$	$\frac{2X_{\rm B}I_{\rm d}}{\sqrt{6}U_{2}}$	$\frac{I_{\rm d}X_{\rm B}}{\sqrt{2}U_2\sin\frac{\pi}{m}}$ 2

注: ①单相全控桥电路的换相过程中,环流 i_d 是从- I_d 变为 I_d ,等效为m=4; ②三相桥等效为相电压等于 $\sqrt{3}U_2$ 的6脉波整流电路,故其m=6,相电压按 $\sqrt{3}U_2$ 代入。

- ■变压器漏感对整流电路影响小结
- \square 出现换相重叠角 γ ,整流输出电压平均值 U_d 降低
- □ 整流电路的工作状态增多: 6→12
- □ 晶闸管的di/dt 减小,有利于晶闸管的安全开通
- □ 在一定程度上取代了用以抑制晶闸管的di/dt的进线电抗器
- □ 换相时晶闸管电压出现缺口,产生正的 $\frac{du}{dt}$,可能误导通 \rightarrow 加吸收(缓冲)电路
- □ 换相使电网电压出现缺口,成为干扰源
- □ 分析举例: 例 3-2 (p. 67)。

The Ema