IceParser: An Incremental Finite-State Parser for Icelandic

Hrafn Loftsson¹ Eiríkur Rögnvaldsson²

¹Department of Computer Science, Reykjavik University, Iceland ²Department of Icelandic, University of Iceland, Iceland

NoDaLiDa 2007

- 1 Introduction
- 2 The Icelandic language
- 3 The annotation scheme
- 4 IceParser
 - The phrase structure module
 - The syntactic functions module
- 5 Evaluation
- 6 Summary

- 1 Introduction
- 2 The Icelandic language
- 3 The annotation scheme
- 4 IceParser
 - The phrase structure module
 - The syntactic functions module
- 5 Evaluation
- 6 Summary

Finite-state parsing (a form of shallow parsing)

Reductionist approach (Koskenniemi et al., 1992)

- Syntactic tags are associated with words.
- All possible readings of a sentence are reduced to one correct reading using elimination rules.

Constructive approach

- Consists of a collection of syntactic patterns.
- Syntactic labels are inserted into the input strings, e.g.:
 - Brackets denoting constituent structure.
 - Names for grammatical functions.
- lacktriangle A sequence of transducers \Rightarrow incremental finite-state parsing.
- Xerox Finite-State Tool (XFST) (Karttunen et al., 1996)

Finite-state parsing (a form of shallow parsing)

Reductionist approach (Koskenniemi et al., 1992)

- Syntactic tags are associated with words.
- All possible readings of a sentence are reduced to one correct reading using elimination rules.

Constructive approach

- Consists of a collection of syntactic patterns.
- Syntactic labels are inserted into the input strings, e.g.:
 - Brackets denoting constituent structure.
 - Names for grammatical functions.
- lacksquare A sequence of transducers \Rightarrow incremental finite-state parsing.
- Xerox Finite-State Tool (XFST) (Karttunen et al., 1996)

Motivation for developing a finite-state parser

- No parser has been published for Icelandic.
- Shallow parsing is sufficient for many NLP applications, e.g.:
 - Information Extraction
 - Question answering
 - Some types of grammar checking
- Part of the *IceNLP* tool, which itself is a part of a BLARK (Basic Language Resource Kit)
- lacksquare Efficiency is important \Rightarrow Finite-state parser

- 1 Introduction
- 2 The Icelandic language
- 3 The annotation scheme
- 4 IceParser
 - The phrase structure module
 - The syntactic functions module
- 5 Evaluation
- 6 Summary

The Icelandic language

Heavily inflected

- Nouns: three genders, four cases, two numbers, sometimes suffixed definite article.
- Adjectives: four cases, three genders, two numbers, three degrees, "strong" and "weak" form.
- Verbs: three persons, two moods, two tenses, two voices.
- Word order is relatively free.

The POS tagset

- Large, about 660 tags.
- Example: "hestarnir" (horses) ⇒ nkfng; noun (n), masculine (k), plural (f), nominative (n), and suffixed definite article (g)

The Icelandic language

Heavily inflected

- Nouns: three genders, four cases, two numbers, sometimes suffixed definite article.
- Adjectives: four cases, three genders, two numbers, three degrees, "strong" and "weak" form.
- Verbs: three persons, two moods, two tenses, two voices.
- Word order is relatively free.

The POS tagset

- Large, about 660 tags.
- Example: "hestarnir" (horses) \Rightarrow nkfng; noun (n), masculine (k), plural (f), nominative (n), and suffixed definite article (g).

- 1 Introduction
- 2 The Icelandic language
- 3 The annotation scheme
- 4 IceParser
 - The phrase structure module
 - The syntactic functions module
- 5 Evaluation
- 6 Summary

The annotation scheme (Loftsson & Rögnvaldsson, 2006)

Theory-neutral shallow annotation

- Constituent structure
 - Standard labels: AdvP, AP, NP, PP, VP
 - Additionally: CP, SCP, InjP, MWE, APs, NPs
 - [NP ...NP], [VP ...VP]
 - \blacksquare [VPx ... VPx]; x ϵ {i, b, s, p, g}
- Functional tags
 - Subjects and objects/complements: *SUBJ, *OBJ, *IOBJ,
 *OB IAP *OB INOM *COMP
 - Other: *QUAL, *TIMEX
 - Relative position indicator, e.g.: *SUBJ>
 (the verb is positioned to the right of the subject)

The annotation scheme (Loftsson & Rögnvaldsson, 2006)

Theory-neutral shallow annotation

- Constituent structure
 - Standard labels: AdvP, AP, NP, PP, VP
 - Additionally: CP, SCP, InjP, MWE, APs, NPs
 - [NP ... NP], [VP ... VP]
 - \blacksquare [VPx ... VPx]; x \in {i, b, s, p, g}
- Functional tags
 - Subjects and objects/complements: *SUBJ, *OBJ, *IOBJ, *OBJAP, *OBJNOM, *COMP
 - Other: *QUAL, *TIMEX
 - Relative position indicator, e.g.: *SUBJ>
 (the verb is positioned to the right of the subject)

The annotation scheme

Some examples

- *SUBJ> [NP vagnstjórinn NP] *SUBJ>} [VP sá VP]
 {*OBJ< [NP mig NP] *OBJ<}
 (driver-the saw me)</pre>
- *SUBJ> [NP systir NP] {*QUAL [NP hennar NP] *QUAL}
 *SUBJ>} [VPb var VPb] ...
 (sister her was ...)
- [VPb er VPb] {*SUBJ< [NP ég NP] *SUBJ<} {*COMP< [VPp fædd VPp] [CP og CP] [VPp uppalin VPp] *COMP<] (am I born and raised)

The annotation scheme

Some examples

- *SUBJ> [NP vagnstjórinn NP] *SUBJ>} [VP sá VP]
 {*OBJ< [NP mig NP] *OBJ<}
 (driver-the saw me)</pre>
- *SUBJ> [NP systir NP] {*QUAL [NP hennar NP] *QUAL}
 *SUBJ>} [VPb var VPb] ...
 (sister her was ...)
- [VPb er VPb] {*SUBJ< [NP ég NP] *SUBJ<} {*COMP< [VPp fædd VPp] [CP og CP] [VPp uppalin VPp] *COMP<] (am I born and raised)</p>

The annotation scheme

Some examples

- *SUBJ> [NP vagnstjórinn NP] *SUBJ>} [VP sá VP]
 {*OBJ< [NP mig NP] *OBJ<}
 (driver-the saw me)</pre>
- *SUBJ> [NP systir NP] {*QUAL [NP hennar NP] *QUAL}
 *SUBJ>} [VPb var VPb] ...
 (sister her was ...)
- [VPb er VPb] {*SUBJ< [NP ég NP] *SUBJ<} {*COMP< [VPp fædd VPp] [CP og CP] [VPp uppalin VPp] *COMP<} (am I born and raised)

- 1 Introduction
- 2 The Icelandic language
- 3 The annotation scheme
- 4 IceParser
 - The phrase structure module
 - The syntactic functions module
- 5 Evaluation
- 6 Summary

IceParser

Design

- Produces annotations according to our annotation scheme.
- An incremental finite-state parser.
- A purely constructive parser.
- Consists of two modules:
 - The phrase structure module (14 transducers).
 - The *syntactic functions module* (8 transducers).

Implementation language

- Java and JFlex (a lexical analyser generator tool); the resulting Java code is a DFA.
- XFST is not used.

IceParser

Design

- Produces annotations according to our annotation scheme.
- An incremental finite-state parser.
- A purely constructive parser.
- Consists of two modules:
 - The phrase structure module (14 transducers).
 - The *syntactic functions module* (8 transducers).

Implementation language

- Java and JFlex (a lexical analyser generator tool); the resulting Java code is a DFA.
- XFST is not used.

The transducers

- Include numerous syntactic patterns.
- The actions add syntactic information into the text.
- Rely mainly on word class and subclass information from POS tags.
- The syntactic functions module uses the grammatical case feature.

- 1 Introduction
- 2 The Icelandic language
- 3 The annotation scheme
- 4 IceParser
 - The phrase structure module
 - The syntactic functions module
- 5 Evaluation
- 6 Summary

- Adds brackets and labels to indicate constituent structure.
- Input to first transducer is POS tagged text.
- lacktriangle Deepest constituents are analysed first; $AdvP \Rightarrow AP \Rightarrow NP$
- Consider the patterns of the AP transducer:

```
Adj={WordSpaces}{AdjTag}
OpenAdvP="[AdvP" CloseAdvP="AdvP]"
AdvPhrase={OpenAdvP}~{CloseAdvP}
AdjPhrase={AdvPhrase}?{Adj}
```

- [AdvP mjög aa AdvP] góður lkensf (very good)
- [AP [AdvP mjög aa AdvP] góður lkensf AP]

- Adds brackets and labels to indicate constituent structure.
- Input to first transducer is POS tagged text.
- lacktriangle Deepest constituents are analysed first; $AdvP \Rightarrow AP \Rightarrow NP$
- Consider the patterns of the AP transducer:

```
Adj={WordSpaces}{AdjTag}
OpenAdvP="[AdvP" CloseAdvP="AdvP]"
AdvPhrase={OpenAdvP}~{CloseAdvP}
AdjPhrase={AdvPhrase}?{Adj}
```

- [AdvP mjög aa AdvP] góður lkensf (very good)
- [AP [AdvP mjög aa AdvP] góður lkensf AP]

- Adds brackets and labels to indicate constituent structure.
- Input to first transducer is POS tagged text.
- lacktriangle Deepest constituents are analysed first; $AdvP \Rightarrow AP \Rightarrow NP$
- Consider the patterns of the AP transducer:

```
Adj={WordSpaces}{AdjTag}
OpenAdvP="[AdvP" CloseAdvP="AdvP]"
AdvPhrase={OpenAdvP}~{CloseAdvP}
AdjPhrase={AdvPhrase}?{Adj}
```

- [AdvP mjög aa AdvP] góður lkensf (very good)
- [AP [AdvP mjög aa AdvP] góður lkensf AP]

- Adds brackets and labels to indicate constituent structure.
- Input to first transducer is POS tagged text.
- lacktriangle Deepest constituents are analysed first; $AdvP \Rightarrow AP \Rightarrow NP$
- Consider the patterns of the AP transducer:

```
Adj={WordSpaces}{AdjTag}
OpenAdvP="[AdvP" CloseAdvP="AdvP]"
AdvPhrase={OpenAdvP}~{CloseAdvP}
AdjPhrase={AdvPhrase}?{Adj}
```

- [AdvP mjög aa AdvP] góður lkensf (very good)
- [AP [AdvP mjög aa AdvP] góður lkensf AP]

- The NP transducer is the most complicated.
- Due to the various ways an NP can be formed.
- The resulting DFA consists of about 50,000 states.
- [AP [AdvP mjög AdvP] góður AP] kennari (very good teacher)
- [NP [AP [AdvP mjög AdvP] góður AP] kennari NP]

- The NP transducer is the most complicated.
- Due to the various ways an NP can be formed.
- The resulting DFA consists of about 50,000 states.
- [AP [AdvP mjög AdvP] góður AP] kennari (very good teacher)
- [NP [AP [AdvP mjög AdvP] góður AP] kennari NP]

- The NP transducer is the most complicated.
- Due to the various ways an NP can be formed.
- The resulting DFA consists of about 50,000 states.
- [AP [AdvP mjög AdvP] góður AP] kennari (very good teacher)
- [NP [AP [AdvP mjög AdvP] góður AP] kennari NP]

- 1 Introduction
- 2 The Icelandic language
- 3 The annotation scheme
- 4 IceParser
 - The phrase structure module
 - The syntactic functions module
- 5 Evaluation
- 6 Summary

- Adds brackets and labels to indicate syntactic functions.
- Input to first transducer: Output of last transducer in the phrase structure module.
- Consider a part of the patterns of the COMP transducer:

- Adds brackets and labels to indicate syntactic functions.
- Input to first transducer: Output of last transducer in the phrase structure module.
- Consider a part of the patterns of the COMP transducer:

```
Comp1={APSeqNom} | {VPPastSeq}
SubjVerbBe={Subject}{WS}+{VPBe}{WS}+
SubjVerbComp1={SubjVerbBe}{Comp1}
```

An example

- *SUBJ> [NP hann NP] *SUBJ>} [VPb er VPb] [NP [AP [AdvP mjög AdvP] góður AP] kennari NP]
- (he is (a) very good teacher)

An example

- *SUBJ> [NP hann NP] *SUBJ>} [VPb er VPb] [NP [AP [AdvP mjög AdvP] góður AP] kennari NP]
- (he is (a) very good teacher)
- {*SUBJ> [NP hann NP] *SUBJ>} [VPb er VPb] [NP [AP {*COMP< [AdvP mjög AdvP] góður AP] kennari NP] *COMP<}

- 1 Introduction
- 2 The Icelandic language
- 3 The annotation scheme
- 4 IceParser
 - The phrase structure module
 - The syntactic functions module
- 5 Evaluation
- 6 Summary

Evaluation

Experimental setup

- A gold standard was constructed:
 - About 500 sentences randomly selected from the POS tagged IFD corpus.
 - Manually annotated with constituent structure and syntactic functions using the annotation scheme.
- The *Evalb* (Sekine & Collins, 1997) bracket scoring program used for automatic evaluation.
- The parser evaluated using correct POS tags and tags generated by *IceTagger* (Loftsson, 2006).
 - POS tagging accuracy was 91.1% (unknown word ratio 7.8%).

Results for the various phrase types

Phrase	F-measure	F-measure	Freq. in
type	using correct	using	test data
	POS tags	$\mathit{IceTagger}$	
AdvP	91.8%	85.1%	8.2%
AP	95.1%	86.3%	8.1%
APs	87.0%	68.6%	0.5%
NP	96.8%	93.0%	37.6%
NPs	80.4%	74.3%	1.5%
PP	96.7%	91.3%	13.0%
VPx	99.2%	93.8%	19.3%
CP	100.0%	99.6%	5.7%
SCP	99.6%	97.6%	3.4%
InjP	100.0%	96.3%	0.2%
MWE	96.9%	92.6%	2.5%
All	96.7%	91.9%	100.0%

Constituents: A comparison

- First parser evaluation published for Icelandic.
- Comparison with Swedish:

	_		
	F-measure		
Parser	All phrases	NP	Tagger
IceParser	96.7%	96.8%	No
Kokkinakis & JKokkinakis (1999)	93.3%	96.2%	Yes (98.7%)
<i>lceParser</i>	91.9%	93.0%	Yes (91.1%)
Knutsson et al. (2003)*	88.7%	91.4%	Yes
* not finite-state			

Results for the various syntactic functions

Function	F-measure	F-measure	Freq in
type	using correct	using	test data
	POS tags	lceTagger	
SUBJ	68.2%	47.6%	4.7%
SUBJ>	92.7%	89.4%	30.3%
SUBJ<	83.7%	75.1%	12.3%
OBJ	0.0%	0.0%	0.2%
OBJ>	43.5%	20.0%	0.8%
OBJ<	90.2%	78.2%	19.7%
OBJAP>	71.4%	57.2%	0.2%
OBJAP<	75.0%	46.2%	0.4%
OBJNOM<	30.8%	16.7%	0.6%
All	84.3%	75.3%	100.0%

Syntactic functions: A comparison

■ Comparison with German:

	F-measure			
Parser	All functions	SUBJ	OBJ	Tagger
<i>lceParser</i>	84.3%	90.5%	88.2%	No
Müller (2004)	82.5%	90.8%	64.5% (acc.)	No
			81.9% (dat.)	

Efficiency

Method	Word-tag pairs	Speed increase
	per sec.	
Writing output to files	6,700	
Writing output to memory	11,300	75%

- 1 Introduction
- 2 The Icelandic language
- 3 The annotation scheme
- 4 IceParser
 - The phrase structure module
 - The syntactic functions module
- 5 Evaluation
- 6 Summary

Summary

- IceParser is an incremental finite-state parser, based on a shallow annotation scheme.
 - A phrase structure module.
 - A syntactic functions module.
- *IceParser* is both effective and efficient.
- Future work:
 - Improve individual components.
 - Build a version which uses the morphological info in POS tags to a greater extent.
- The parser can be tested by visiting http://nlp.ru.is