fW11 20224314 2627.

A 12.6.6

|               | Degree of Fradum | Sum       | Mean square | F-value. |                |
|---------------|------------------|-----------|-------------|----------|----------------|
| 1/ regression | 1                | 7.299     | 7.299       | 1.1298 - | p-value: 0.3/3 |
| yy error      | 10               | 64.602.   | 6.4602      |          |                |
| 4-7 Total.    | [ ]              | 11.90152. |             |          |                |

$$Y = 0.94371 + 37.7537$$

$$\sum \left( \frac{1}{1}, -\frac{1}{2} \right)^{2} = \sum \left( \frac{1}{1} \cdot \frac{1}{2} \right)^{2} + \left( \frac{1}{1} \cdot \frac{1}{2} \right)^{2}$$

=) It is hard to reject Ho: P=0.

# 2.7.2.

We can check outlier- by Se.(ei) ~ N(0,1)

Since s.e.(ei) =  $\sqrt{(1-\frac{1}{h}-\frac{(x_i-x_i)^2}{S_k})}$ ,  $\delta \approx 0$ .

Since 6= MSE, 8,3900.



normal. Drobubility plot = 22/2/2011

The stan stor, normal of 32/2/4/2011

# 12.7.6.



There is possible outlier.

And ag plot is not similar strict live,
fitted regression model call be not appropriate.

# 128.2.



This graph looks like log function.

So change it as

lay = rot last . r.



it looks similar as linear.

Then  $\ln \hat{y} = 0.32652 \cdot \ln x - 0.31891$ when  $\chi = 2$ .  $\hat{y} = 0.9115/3$ 

it looks like Strict line, So, this model appeal to provide a good. fit to the data set.

(b) 
$$lny = 4.4937 \cdot lnx + 1.8824$$
.

$$(C) \quad \mathcal{T}_{1} \quad \sim \quad \mathcal{M}(\mathcal{T}_{1}, \frac{\delta}{\int SX})$$

x olah z'= lnz.B

Since 
$$\int_{0.015}^{2} = \frac{SE}{n-2} \approx 0.0115$$

95% C.I. of 
$$T_1 = [4.4937 - 2.306 \times 1.6083, 6.8189]$$

$$= [2.1684, 6.8189]$$

since to = Iny - Ti Inx

$$e^{\frac{1}{2}} = \frac{1}{2}$$

$$e^{\frac{1}} = \frac{1}{2}$$

$$e^{\frac{1}} = \frac{1}{2}$$

$$e^{\frac{1}} = \frac{1}{2}$$

$$e^{\frac{1}} = \frac{$$

$$\Rightarrow y = r_0 \cdot \ln r_1 - 2r_0 \cdot \ln x.$$

$$\approx \beta_0 \qquad \approx \beta_1,$$

let 
$$lnX=t$$
, then  $y=3o \cdot lnT_1 - 2To \cdot t \cdot - linear form$ .  
We dready know how to find  $\hat{\beta}o$ ,  $\hat{\beta}i$ ;  
And  $\hat{\beta}i = -2Fo$ ,  $\hat{\beta}o = Fo \cdot lnTi$ .  
 $\Leftrightarrow \hat{\gamma}o = -\frac{1}{2}\cdot\hat{\beta}i$ ,  $\hat{\gamma}i = e^{(\frac{\hat{\beta}o}{\hat{\beta}o})} = exp(-2\hat{\beta}o/\hat{\beta}i)$ .

then 
$$t=\frac{r\sqrt{n-2}}{\sqrt{1-r^2}} \approx 1.0628$$
.

$$\hat{\beta}_{i} = \frac{S_{XX}}{S_{XX}} \approx 0.2658$$
, S.C.  $(\hat{\beta}_{i}) = \frac{\hat{\delta}}{S_{XX}}$ .  $\approx 0.2501$ .

$$\frac{1}{103.2431} = \frac{556}{103.2431} = \frac{556}{103.2431}$$

$$t = \frac{t - \sqrt{\Lambda - 2}}{\sqrt{1 - t^2}} \approx (.0628, \frac{\cancel{\beta_1}}{\text{s.e.}(\cancel{\beta_1})} = 1.0620.$$

#12.12.19

lat. lay = to+ti-lax.

