

ACQUISITION ET VISUALISATION D'IMAGES COULEUR DE HAUTE DYNAMIQUE

ENCADRE PAR:BIGUE Laurent

Présentation à mi-parcours :

BAYA Haytam CHIKHI Yasmine

SOMMAIRE

CONTEXTE, PROBLEMATIQUE ET OBJECTIF DU PROJET

METHODOLOGIE

DIAGRAMME DE GANTT

SPECIFICATIONS

CONCEPTION

DEVELOPPEMENT

TESTS ET OPTIMISATIONS -> RESULTATS

PROCHAINES ETAPES

CONTEXTE, PROBLEMATIQUE ET OBJECTIF DU PROJET

HDR (High Dynamic Range) : Technologie permettant de capturer une large plage dynamique de luminosité.

SOURCE : HDR10, HDR10+, HLG ET DOLBY VISION : QUELLES DIFFÉRENCES ENTRE LES STANDARDS HDR — FRANDROID.

Absence de bibliothèques standards pour :

- Acquérir des images aux formats rgb24 et bayer24.
- Traiter et convertir ces images pour les adapter aux écrans standards.

Objectif du projet :

Développer un système capable de :

- 1. Acquérir des images HDR au format rgb24 et bayer24 depuis notre caméra Lucid Vision.
- 2.Les traiter pour un affichage en temps réel optimal.

METHODOLOGIE

DIAGRAMME DE GANTT

Acquisition et visualisation d'images couleur de haute dynamique																						
BAYA Haytam CHIKHI Yasmine			18/09/2024																			
S			2			oct24					nov24				déc24						janv25	
			,	23	30	7	14	21	28	4	11	ı	18	25	2	9	16	23	30	6		13
Etapes:	AVANCEMENT	DÉBUT	FIN																			
Phase 1: Traitement des Images RGB																						
Rédaction des spécification	100%	18/09/2024	25/09/2024																			
Conception de l'architecture	100%	25/09/2024	05/10/2024																			
Développement des module	es 100%	05/10/2024	06/10/2024																			
Réalisation des tests	100%	06/10/2024	21/10/2024																			
Intégration des composants	100%	21/10/2024	25/10/2024																			
Phase 2 : Traitement des Images Bayer																						
Rédaction des spécification	ns 100%	25/10/2024	04/11/2024																			
Conception de l'architectu	re 100%	04/11/2024	14/11/2024																			
Développement des module	es 70%	14/11/2024	13/01/2025																			
Réalisation des tests	20%	30/11/2024	22/01/2025																			
Intégration des composant	20%	02/12/2024	31/01/2025																			

SPECIFICATIONS

Contraintes matérielles et calcul de la performance cible en termes de fluidité pour notre système.

CONCEPTION

Choix Technologiques et Architecture Logicielle

langage de programmation

- Simplicité de programmation.
- Bibliothèque Arena API : Récupération des données brutes de la caméra.

Architecture logicielle

Basée sur 3 modules principaux :

- Acquisition des images
- Traitement des images
- · Affichage en temps réel

DEVELOPPEMENT

Acquisition

- Arena API -> données binaires
- Données binaires -> Image RGB24

• Algorithme gamma > RGB8

Affichage en temps réel

• Intégration des modules d'acquisition et d'affichage dans une boucle.

DEVELOPPEMENT: ACQUISITION

DEVELOPPEMENT: AFFICHAGE

Adapter les images HDR (RGB24) pour des écrans standards (RGB8)

► Formule utilisée :

$$I_{
m sortie} = I_{
m entr\'ee}^{rac{1}{\gamma}}$$

- ► Objectif:
 - ▶ Éclaircir les zones sombres et compresser les hautes lumières.
 - ▶ Préserver les détails visuels tout en rendant les images compatibles avec les écrans RGB8.

DEVELOPPEMENT: AFFICHAGE EN TEMPS REEL

Assurer un flux continu pour afficher les images HDR en temps réel

· Intégration des modules : Boucle continue combinant acquisition et affichage.

TESTS ET OPTIMISATIONS

RESULTATS

Performances en temps réel

FPS=2.3 img/s

Rendu visuel

· Aucune perte notable dans les zones sombres ou lumineuses

PROCHAINES ETAPES

Développement sur le format Bayer

Explorer des pistes d'optimisation

Perfectionnement du rendu d'affichage

MERCI!