Devoir libre

Mohammed Khatiri - CPI1

March 16, 2024

DEVOIR : CALCUL EFFECTIF DU RANG D'UNE FAMILLE DE VECTEURS ET D'UNE BASE

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et soit $\mathcal{B}=(e_1,\ldots,e_n)$ une base de E. Un vecteur v de E s'écrit d'une manière unique comme combinaison linéaire des vecteurs e_i :

$$v = \sum_{i=1}^{n} \alpha_i e_i : (\alpha_1, \dots, \alpha_n) \in \mathbb{K}^n.$$

Le vecteur $(\alpha_1, \alpha_2, \dots, \alpha_n)$ s'appelle le vecteur ligne des coordonnées de v dans la base \mathcal{B} . Soit maintenant $V = (v_1, \dots, v_p)$ une famille finie de vecteurs de E. La matrice des lignes de V dans \mathcal{B} est le tableau, à p lignes et à n colonnes, dont la $i^{\text{ème}}$ ligne est le vecteur ligne des coordonnées du vecteur v_i dans la base \mathcal{B} . Pour $i = 1 \cdots p$, le vecteur v_i s'écrit

$$v_i = \sum_{j=1}^n \alpha_{ij} e_j : (\alpha_{i1}, \dots, \alpha_{in}) \in \mathbb{K}^n$$

Alors la matrice des lignes de V dans $\mathcal{B},$ notée $\mathrm{Row}_{\mathcal{B}}^{V},$ est donnée par :

$$\operatorname{Row}_{\mathcal{B}}^{V} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ & & & \vdots \\ \alpha_{p1} & \alpha_{p2} & \cdots & \alpha_{pn} \end{pmatrix}.$$

Remarque.

Si $E=\mathbb{K}^n$ est muni de sa base canonique $\mathcal B$ alors tout vecteur $v\in E$ coincide avec le vecteur de ses coordonnées dans $\mathcal B$.

Exercice 1.

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et soit \mathcal{B} une base de E. Soient $V = (v_1, \ldots, v_p)$ une famille de vecteurs de E et v un vecteur de E. Soient T une forme échelon obtenue par la méthode de Gauss appliquée à $\operatorname{Row}_{\mathcal{B}}^V$ et T_v la matrice à p+1 lignes, de p premières lignes, les lignes de T et de dernière ligne, la ligne des coordonnées de v dans \mathcal{B} .

- 1. Montrer que la famille formée par les vecteurs de E dont les lignes des coordonnées correspondent aux lignes non nulles de T forme une base de Vect(V).
- 2. Montrer que la famille formée par les vecteurs v_i dont les lignes des coordonnées correspondent aux lignes non nulles de T forme une base de Vect(V).
- 3. En déduire que le rang de V est égal au nombres de lignes non nulles de T.
- 4. Montrer que le vecteur v appartient à Vect(V) si, et seulement si, la dernière ligne d'une forme échelon de T_v est nulle.

1 Réponses:

1.

```
prenons v un vecteur de la famille de Vect(V), il s'écrit sous la forme : \sum_{i=1}^{n} \alpha_i v_i. chaque vecteur des lignes de T : (u_i \in E/i \in (1,...,p)), s'écrivent sous la forme: u_i = \sum_{j=1}^{p} \beta_{j,i} v_j / \forall \beta_{j,i} \neq 0
```

puisque chaque ligne de la matrice en forme échelonée est une combinaison linéaire des lignes initialle précédente de la matrice.

on peut montrer alors que les vecteurs v_i sont des combinaison linéaire des vecteur u_i :

```
on a: pour \mathbf{i} = \mathbf{p}: u_p = \beta_{p,p} v_p donc \exists \gamma_{p,p} \in K : v_p = \gamma_{p,p} u_p. supposant que : \forall i \in p, p-1, ..., n : \forall v_i \in V : \exists (\gamma_{i,j} \in K/j \in (p, p-1, p-2, ..., i)) : v_i = \sum_{j=i}^p \gamma_{j,i} u_j. montrons que c'est vrai pour \mathbf{n}+1; on a: u_{n+1} = \sum_{j=n+1}^p \beta_{j,n+1} v_j, donc u_{n+1} = \sum_{j=n}^p \beta_{j,n+1} v_j + \beta_{n+1,n+1} v_{n+1} = \sum_{j=n}^p \beta_{j,n+1} \sum_{k=j}^p \gamma_{k,j} u_k + \beta v_{n+1}. bien que: \exists (\gamma_{k,n+1} \in K/k \in p, p-1, ..., n) : \sum_{j=n}^p \frac{\beta_{j,n+1}}{\beta} \sum_{k=j}^p \gamma_{k,j} u_k = \sum_{k=n}^p \gamma_{k,n+1} u_k. donc: \frac{1}{\beta} u_{n+1} - \sum_{k=n}^p \gamma_{k,n+1} u_k = v_{n+1}. donc même \mathbf{n}+1 vérifie; d'où tout v_i est une combinaison linéaire de vecteur u_i, d'où la famille K = (u_i) est génératrice de Vect(V), de méme
```

la famille $B = (u_i/u_i \neq 0) = (w_i)$ est génératrice de vectiv), de memo la famille $B = (u_i/u_i \neq 0) = (w_i)$ est génératrice de cardinal p'.

```
supposant mainetenant que cette famille B est liée: d'où: \exists w_k, \alpha_j : w_k = \sum_{j=1}^{k-1} \alpha_j w_j + \sum_{j=k+1}^{p'} \alpha_j w_j. bien que d'aprés la matrice obtenue: on a: \forall w_i \in E, \exists ! l_i \in \mathbf{N}, \exists ! (\delta_j \in K) : w_i = \sum_{j=l_i}^n \delta_j e_j telle que la suite (l_i) est décroissante et \delta_{l_i} \neq 0 . or \exists ! (\delta'_j \in K) : \sum_{j=1}^{k-1} \alpha_j w_j = \sum_{j=l}^n \delta'_j e_j où l > l_k et \delta'_l \neq 0 si \alpha_j \neq 0, \forall j < k. \exists ! (\delta'_j \in K) : \sum_{k+1}^{p'} \alpha_j w_j = \sum_{j=l'}^n \delta'_j e_j où l' < l_k et \delta'_{l'} \neq 0 si \alpha_j \neq 0, \forall j > k. \exists ! (\delta''_j \in K) : \sum_{j=l}^n \delta''_j e_j d'où \alpha_j = 0, \forall j < k. \exists ! (\delta''_j \in K) : \sum_{j=l}^n \delta''_j e_j puisque \delta_{l_i} \neq 0: d'où \alpha_j = 0, \forall j > k.
```

donc la famille B n'est pas liée. et d'où c'est une base de Vect(V).

2.

3.

puisque p' est le nombre de vecteur non nulle formée par les lignes non nulle. on peut donc conclure que le cardinal de B est le nombre de lignes non nulles c'est p'. et d'où Dim(Vect(V)) = Card(B) = p'. d'où le rang de V est égale au nombres de lignes non nulles de T.

4.

si $v \in Vect(V)$ alors: v s'ecrit comme combinaison linéaire des autre lignes de la matrice T_v . et d'où la forme échelonée de la matrice T_v rendera la dernière ligne nulle. de même: si la dernière ligne de la matrice T_v est nulle d'où: $\exists \alpha_i : v - \sum \alpha_i w_i = 0$. d'où: v est combinaison linéaire des w_i , d'où: $v \in Vect(V)$.