YZM 3217 – YAPAY ZEKA **DERS#13:GENETIK ALGORITMA**

Sınıflandırma Yöntemleri:

- Karar Ağaçları (Decision Trees)
- Örnek Tabanlı Yöntemler (Instance Based Methods): k en yakın komşu (k nearest neighbor)
- Bayes Sınıflandırıcı (Bayes Classifier)
- Yapay Sinir Ağları (Artificial Neural Networks)
- Genetik Algoritmalar (Genetic Algorithms)

•

Genetik Algoritmalar

- Yapay zekanın bir araştırma alanıdır ve birçok alanda kullanılmaktadır.
- Darwin'in <u>doğal seçim</u> ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.
- Genetik algoritmaların temelleri 1970'li yıllarda John HOLLAND tarafından ortaya atılmıştır.

Doğal Seçim

- Canlılar, doğada yaşamlarını sürdürmek için savaşırlar ve güçlü olanlar savaşı kazanır.
- Yeni bir nesil için iyi bireyler seçilir ve bunlardan çocuklar üretilir.
- Çocuklar anne ve babalarına benzer ama aynı değillerdir. Bu nedenle anne ve babalarından daha kötü veya daha iyi olabilirler.
- Amaç iyi bir kuşak oluşturmaktır.

Neden Genetik Algoritmalar?

 Bazı problemlerde sonsuz sayıda çözüm olabilir ama en uygun ve hızlı çözümü bulmaya ihtiyacımız vardır.

Biyolojik bilgiler

- Gen: Canlıların karakterlerini belirleyen ve anlamlı bilgi içeren en küçük birimlerdir.
- Kromozom (Birey): Birden fazla genin bir araya gelerek oluşturduğu diziye denir.
- Popülasyon: Kromozomlardan oluşan topluluktur.

Genetik Algoritma (GA)

Algoritmanın Adımları:

- 1. Uygunluk (fitness) fonksiyonunun tanımlanması
- 2. Kodlama (genetik kodlama)
- 3. Rastgele bireylerden oluşacak şekilde başlangıç popülasyonunun seçilmesi

Genetik Algoritma (GA)

- 4. Tekrarla (yeterince iyi bir çözüm bulunana kadar)
 - Popülasyondaki bütün bireylerin uygunluk fonksiyonunun hesaplanması
 - Yeni nesil için en iyi bireylerin seçilmesi
 - Çaprazlama ve mutasyon ile yeni neslin oluşturulması
 - Yeni nesli (kromozomları) popülasyona ekle
- 5. En iyi çözümü döndür.

GA Şematik Gösterimi

Başlangıç Popülasyonun Oluşturulması

- Başlangıçta belirli kriterlere göre rastgele bireylerden oluşan bir popülasyon oluşturulur.
 - Popülasyondaki bireylerin sayısı küçük seçildiğinde iterasyonlar daha hızlı olur ancak algoritmanın yerel optimuma takılma şansı artar.
 - Birey sayısının çok **fazla** olması ise çözüm kalitesini arttırır ancak algoritmanın adımları daha uzun zaman alır.
 - n: kromozom uzunluğu => [n,2n]

Uygunluk(Fitness) Fonksiyonu

- Farklı çözümlerin (kromozomların)
 karşılaştırılması ve iyi olanların seçimi için
 gereklidir.
- f(X1) > f(X2) ise
 X1, X2'den daha iyidir.

Uygunluk(Fitness) Fonksiyonu

 Bir popülasyon oluşturulduktan sonra, popülasyondaki her bireyin uygunluk (fitness) değeri hesaplanır.

12

Örnek: Gezgin Satıcı Problemi

- Gezi için birçok yol seçeneği vardır:
 - Uygunluk fonksiyonu: f(x) = min(uzunluk)
 - f(X1) < f(X2) olduğu için X1, X2'den daha iyi bir çözümdür. Bu nedenle X1 seçilir.

Genetik Kodlama

Kodlama genetik algoritmanın önemli bir aşamasıdır.

 GA uygulamasına başlamadan önce, verilerin uygun şekilde kodlanması gerekir.

 Geliştirilen modelin hızlı ve güvenilir çalışması için bu kodlamanın doğru yapılması gerekir.

Örnek kodlama

Gezgin satıcı problemi için

L: London, C: Cairo, H: Hong-Kong, T: Tokyo

$$x_1 = LCHTL$$

$$x_2 = LCTHL$$

Kodlama Çeşitleri

- 1. İkili (binary) kodlama
- 2. Permütasyon kodlama
- 3. Değer kodlama
- 4. Ağaç kodlama

İkili (Binary) kodlama

- En çok kullanılan kodlama yöntemidir. Basit, kolay ve hızlı işlemler için uygundur.
- Kromozomların tanımlanması genellikle ikili sayı sistemi ile (0,1) yapılır.

• Örnek:

- Kromozom1: 1101100100110110
- Kromozom2: 1101111000011110

Permütasyon kodlama

- Sıralamaya veya düzenlemeye yönelik problemler için uygundur.
- Gezgin satıcı problemi (TSP) veya görev sıralama gibi problemlerin çözümü için kullanılır.

• Örnek:

- Kromozom-A: 153264798
- Kromozom-B: 8 5 6 7 2 3 1 4 9

Değer kodlama

- Gerçek sayılar gibi karmaşık verilerin kullanıldığı problemlerde kullanılır.
- Değerler; gerçek sayılar, karakterler veya nesneler olabilir.
- Bu tip kodlamada probleme özgü yeni çaprazlama ve mutasyon yöntemleri geliştirmek gereklidir.

Kromozom A	1.2324 5.3243 0.4556 2.3293 2.4545
Kromozom B	ABDJEIFJDHDIERJFDLDFLFEGT
Kromozom C	(geri), (geri), (sağ), (ileri), (sol)

Ağaç kodlama

- İfadesel çözümler içeren problemlerde kullanılır, her kromozom bir nesnenin ağacıdır.
 - Örneğin, işlevler veya programlama dilindeki komutlar gibi.
- Evrimleşen programlar veya ağaç şeklinde kodlanabilecek herhangi diğer yapılar için uygundur.
 - Örnek: LISP

Seçim

- Popülasyondaki bütün bireylerin uygunluk fonksiyonu hesaplandıktan sonra, bunlardan bazıları yeni kuşaklar üretmek için seçilirler
- Seçim işlemi için bazı yöntemler:
 - Rulet yöntemi
 - Sabit durum yöntemi
 - Turnuva yöntemi
- Genelde, popülasyonun büyüklüğünün değişmesine (artmasına) izin verilmez.

Rulet yöntemi

- Kromozomlar uygunluklarına göre seçilirler.
- Daha iyi kromozomlar, daha fazla seçilme şansına sahip olanlardır.
 - Popülasyondaki tüm kromozomların yerleştirildiği bir rulet tekerini hayal edelim.
 - Rulet tekeri üzerindeki kromozomun yerinin boyutu kromozomun uygunluğuyla orantılıdır.
 - Daha uygun olan kromozom daha geniş bir kısma sahip olur.

Örnek: Rulet yöntemi

- Uygunluk fonksiyonu: f(x)=x²
 - Birey 1: 1101, x = 13, $x^2 = 169$
 - Birey 2: 0100, x = 4, $x^2 = 16$
 - Birey 3: 1011, x = 11, $x^2 = 121$
 - Birey 4: 1000, x = 8, $x^2 = 64$

- Toplam = 169+16+121+64 = 370
 - Birey 1: 169/370 = %46
 - Birey 2: $16/370 = \frac{4}{9}$
 - Birey 3: 121/370 = $\frac{33}{3}$
 - Birey 4: 64/370 = %17

Rulet 1 defa çevrildiğinde gelme ihtimalleri

Rulet yöntemi

- Eğer uygunluk değerleri arasında büyük farklar varsa problemler ortaya çıkacaktır.
- Örneğin, eğer en iyi kromozomun uygunluğu diğer tüm kromozomların toplamının %90'ı ise diğer kromozomların seçilme şansı çok azalacaktır.
- Bunu önlemek için sıralı seçim kullanılabilir.

Sıralı seçim

- Sıralı seçimde en kötü uyumlulukta olan kromozoma 1 değeri, sonrakine 2 değeri, ..., sonuncuya N (birey sayısı) verilir
- Böylelikle seçilmede bunlara öncelik tanınmış olur. Bu şekilde onların da seçilme şansı artar
- Ancak bu yöntem, çözümün daha geç yakınsamasına neden olabilir.

Sabit durum yöntemi

- Her yeni nesilde yüksek uygunluk değerine sahip kromozomlar yeni çocukları oluşturmak için seçilir.
- Düşük uygunluk değerine sahip çocuklar kaldırılarak yerlerine bu yeni oluşturulan çocuklar konur.
- Toplumun geri kalan kısmı da aynen yeni nesle aktarılır.

Çaprazlama

- Anne ve babadaki bazı genlerin yer değiştirmesi ile yeni çocukların oluşturulma işlemidir.
- Örnek: Tek nokta çaprazlama
 - P: Parents (anne-baba)
 - O: Offspring (çocuk)

2 noktalı çaprazlama

111000010110

Mutasyon

- Rastgele seçilen bir genin değiştirilmesi: Örneğin, bit değerini diğer bit değerine dönüştürme (0 veya 1).
- Sürekli yeni nesil üretimi sonucunda, belli bir süre sonra nesildeki kromozomlar tekrar edebilir ve farklı kromozom üretimi azalabilir.
- Nesildeki kromozom çeşitliliğini artırmak için kromozomlardan bazılarına mutasyona işlemi uygulanır.

Mutasyon

 Örneğin O1'deki 3 ve 5 nolu bitlerdeki mutasyon işlemi şu şekildedir.

$$O_1 = 10\underline{1}1\underline{0}01 \implies O_1 = 10\underline{0}1\underline{1}01$$

 Çaprazlama ve mutasyon işlemlerinden sonra, yeni nesil bireyler, anne ve babalarından daha iyi olabilirler.

Diğer Mutasyon Yöntemleri

 Öteleme Yöntemi: Dizi içerisinde rassal olarak belirlenen bir blok genin yine aynı dizi içerisinde rastgele bir konuma yerleştirilmesidir.

- -P1 = AKDEMZIF
- P1'= AEMZIKDF

Diğer Mutasyon Yöntemleri

 Yerleştirme Yöntemi: Dizi içinde rastgele bir genin seçilerek, yine aynı dizi içinde rastgele başka bir konuma yerleştirilmesidir.

- -P1 = AKDEMZIF
- P1'= ADEMZKIF

Diğer Mutasyon Yöntemleri

 Karşılıklı Değişim Yöntemi: Dizi içerisinde rassal olarak iki gen seçilmekte ve bu iki genler birbiriyle yer değiştirmektedir.

- -P1 = AKDEMZIF
- P1'= AZDEMKIF

Genetik Algoritma Parametreleri

- Çaprazlama Olasılığı
 - Çaprazlamanın ne sıklıkla yapılacağını belirtir.
- Mutasyon Olasılığı
 - Kromozom parçalarının ne sıklıkla mutasyon geçireceğini belirtir.
- Popülasyon Büyüklüğü
 - Toplumdaki birey sayısını belirtir.
- Uygunluk Fonksiyonu

Genetik Algoritma Özellikleri

Avantajları

- Çok amaçlı optimizasyon yöntemleri ile kullanılabilmesi
- Çok karmaşık ortamlara uyarlanması
- Kısa sürelerde iyi sonuçlar verebilmesi

Dezavantajları

- Son kullanıcının modeli anlaması güç
- Problemi GA ile çözmeye uygun hale getirmek zor
- Uygunluk fonksiyonunu belirlemek zor
- Çaprazlama ve mutasyon tekniklerini belirlemek zor

Elimizde 6 genden oluşan kromozomlar var:

$$-x_i = abcdef$$

- Her gen 0 ile 9 arasında numaralandırılmıştır.

• 4 kromozomdan oluşan popülasyonumuz var:

$$x_1 = 435216$$

$$x_2 = 173965$$

$$x_3 = 248012$$

$$x_4 = 908123$$

 Uygunluk (fitness) fonksiyonu aşağıda verilmiştir:

$$f(x) = (a + c + e) - (b + d + f)$$

İstenenler:

- Kromozomları uygunluk fonksiyonuna göre sıralayınız.
- 3. ve 4. kromozomları tam orta noktalarından ayırarak çaprazlama yapınız.
- 1. ve 2. kromozomların 2. ve 4. bitlerinden ayırarak 2 noktalı çaprazlama yapınız.
- Yeni neslin uygunluk fonksiyonunu hesaplayınız.

Uygunluk fonksiyonunu uygulayalım:

$$f(x) = (a + c + e) - (b + d + f)$$

$$f(x_1) = (4+5+1) - (3+2+6) = -1$$

$$f(x_2) = (1+3+6) - (7+9+5) = -11$$

$$f(x_3) = (2+8+1) - (4+0+2) = 5$$

$$f(x_4) = (9+8+2) - (0+1+3) = 15$$

Uygunluk fonksiyonuna göre sıralama X4, X3, X1 ve X2

• 3. ve 4. kromozomları tam orta noktalarından ayırarak çaprazlama:

1. ve 2. kromozomların 2. ve 4. bitlerinden ayırarak
2 noktalı çaprazlama:

$$x_3 =$$
 24 $\begin{vmatrix} 80 \\ x_1 = \end{vmatrix}$ **12** \Rightarrow $O_3 =$ **24** 5 2 **12** $O_4 =$ 4 3 **80** 1 6

 Yeni neslin uygunluk fonksiyonunun hesaplanması:

$$f(x) = (a+c+e) - (b+d+f)$$
:

$$f(O_1) = (9+8+1) - (0+0+2) = 16$$

 $f(O_2) = (2+8+2) - (4+1+3) = 4$
 $f(O_3) = (2+5+1) - (4+2+2) = 0$
 $f(O_4) = (4+8+1) - (3+0+6) = 4$