Введение в молекулярную биологию

Лекция 1. Строение и функции клеток

Введение в клетки

Прокариотические клетки: обзор

Эукариотические клетки: обзор

Сходства между клетками прокариот и эукариот

- Имеют клеточную мембрану, отделяющую внутреннюю среду от внешней.
- Содержат ДНК как генетический материал.
- Имеют рибосомы для синтеза белков.
- Содержат цитоплазму, где протекают метаболические процессы.
- Способны к репликации и обмену веществ.

Ключевые отличия прокариот и эукариот

• Ядро:

- Прокариоты: ядро отсутствует, ДНК свободно в цитоплазме.
- Эукариоты: ядро присутствует, ДНК заключена в ядерной оболочке.

• Органеллы:

- Прокариоты: нет мембранных органелл.
- **Эукариоты**: имеются мембранные органеллы (митохондрии, ЭПС и др.).

• Размеры клеток:

- Прокариоты: 0,1−5 мкм.
- Эукариоты: 10−100 мкм.

• Деление клетки:

- Прокариоты: бинарное деление.
- Эукариоты: митоз и мейоз.

История развития клеточной теории

- 1665: Роберт Гук впервые описывает клетки, наблюдая срез пробки под микроскопом.
- 1674: Антони ван Левенгук открывает одноклеточные организмы, усовершенствовав микроскоп.
- 1838: Матиас Шлейден заявляет, что все растения состоят из клеток.
- 1839: Теодор Шванн расширяет клеточную теорию на животных организмов.
- 1855: Рудольф Вирхов утверждает: «Каждая клетка происходит из другой клетки».

Рис. 10.1. Микроскоп Р. Гука (а) и рисунок клеток пробки, выполненный ученым (б)

Основные постулаты клеточной теории

- Все живые организмы состоят из одной или более клеток.
- Клетка основная структурная и функциональная единица жизни.
- Все клетки возникают из предшествующих клеток путем клеточного деления.

Современные дополнения к клеточной теории

- Клетки передают наследственную информацию (ДНК) при делении.
- Все клетки сходны по химическому составу и метаболизму.
- Деятельность организма зависит от активности его клеток.

Структура клеточной мембраны

Функции клеточной мембраны

- Барьерная функция: отделяет внутреннее содержимое клетки от внешней среды.
- Селективная проницаемость: регулирует транспорт веществ внутрь и наружу клетки.
- Рецепция сигналов: содержит рецепторы для восприятия химических сигналов.
- Клеточное взаимодействие: участвует в адгезии и коммуникации между клетками.
- Транспорт веществ: обеспечивает пассивный и активный транспорт молекул.
- Эндоцитоз и экзоцитоз: процессы поглощения и выведения крупных частиц.

Мембранные белки и их роль

Механизмы мембранного транспорта

Клеточная сигнализация через мембрану

Состав и структура цитоплазмы

Состав и структура цитоплазмы

Цитоскелет

Цитоскелет

А. Микрофиламенты и промежуточные волокна

Б. Микротрубочки

Цитоскелет

Рис. 12.3. Схема движения моторных белков

Ядро: хранение генетической информации

Рис. 14.1. Схема строения ядра

Ядрышко: производство рибосом

Митохондрии: энергетические станции клетки

Митохондрии: энергетические станции клетки

Эндоплазматическая сеть (ЭПС): шероховатая и гладкая

Аппарат Гольджи: модификация и сортировка белков

А. Шероховатый эндоплазматический ретикулум и аппарат Гольджи

Вопросы и обсуждение

Основы микроскопии

Сравнение световой и электронной микроскопии

Фактические размеры органоидов клетки

- Клетка 10 мкм.
- ядро 5-30 мкм.
- хлоропласт 2-6 мкм, 3-10 мкм, средний- 5 мкм.
- митохондрин 0,5-5 мкм, 1,5-10 мкм.
- рибосомы 25 им.
- Амеба 20-60 мкм.
- Лизосома- 1 мкм.
- Аппарат Гольджи-20 нм.
- ЭПС-50—100 нм.

Цвет	Длина волны нм
Kpaeman	620-700
Оранжевый	590-620
Желтый	540-690
Зеленый	500-540
Голубой	470-500
C)mma	430-470
Фиолеговый	400-430

Сравнение световой и электронной микроскопии

Принципы световой микроскопии

Принципы световой микроскопии

Reflected

Transmitted

Типы световой микроскопии

Типы световой микроскопии

Типы световой микроскопии

Brightfield

Darkfield

Электронная микроскопия: ТЭМ и СЭМ

Scanning Electron Microscope (SEM)

Transmission Electron Microscope (TEM)

Электронная микроскопия: ТЭМ и СЭМ

Основы флуоресцентной микроскопии

Флуоресцентные красители и метки

Digital Imaging of Localized Fluorescent Protein Chimeras

Применение флуоресцентной микроскопии

- Выявление и визуализация специфических клеточных структур и молекул
- Определение локализации белков, нуклеиновых кислот и органелл
- Исследование динамики внутриклеточных процессов в реальном времени
- Применение в диагностике онкологических и инфекционных заболеваний
- Использование в изучении сигнализации и взаимодействий между клетками

Конфокальная микроскопия

Конфокальная микроскопия

Конфокальная микроскопия

Суперразрешающая микроскопия

Суперразрешающая микроскопия

Методы получения и предобработки изображений

Получение изображений:

- Световая микроскопия: стандартная, флуоресцентная
- Электронная микроскопия: ТЭМ, СЭМ
- Суперразрешающая микроскопия

Предобработка изображений:

- Фильтрация шума (Gaussian, Median)
- Коррекция яркости и контраста
- Вырезка областей интереса
- Сглаживание и выравнивание изображений

Сегментация и количественный анализ

Сегментация и количественный анализ

Сегментация и количественный анализ

Вопросы и обсуждение