A helyes zárójelezés egyik lehetséges grammatikája a következő:

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow aSbS$$

(2)
$$S \rightarrow \varepsilon$$

SLR(1)-es kanonikus halmazok:

$$\begin{split} I_0 &= closure(S' \to .S) = \{ \ S' \to .S, \ S \to .aSbS, \ S \to . \} \\ I_1 &= read(\ I_0, \ S) = \{ \ S' \to S. \ \} \\ I_2 &= read(\ I_0, \ a) = \{ \ S \to a.SbS, \ S \to .aSbS, \ S \to . \} \\ I_3 &= read(\ I_2, \ S) = \{ \ S \to aS.bS \ \} \\ &\quad read(\ I_2, \ a) = I_2 \\ I_4 &= read(\ I_3, \ b) = \{ \ S \to aSb.S, \ S \to .aSbS, \ S \to . \} \\ I_5 &= read(\ I_4, \ S) = \{ \ S \to aSbS. \ \} \\ &\quad read(\ I_4, \ a) = I_2 \end{split}$$

$$follow(S) = \{b\} \cup follow(S') = \{b,\#\}$$

SLR(1)-es elemző táblázat:

	action		goto	
	a	b	#	S
0	shift 2	$S \rightarrow \epsilon$	S→ ε	1
1			accept	
2	shift 2	$S \rightarrow \epsilon$	$S \rightarrow \epsilon$	3
3		shift 4		
4	shift 2	$S \rightarrow \epsilon$	$S \rightarrow \epsilon$	5
5		$S \rightarrow aSbS$	$S \rightarrow aSbS$	

Definíció: LR(1) elem

Ha $A \to \alpha$ a grammatika egy helyettesítési szabálya, akkor az $\alpha = \alpha_1 \alpha_2$ tetszőleges felbontás és **a** terminális szimbólum (vagy a = #) esetén [$A \to \alpha_1.\alpha_2$, **a**] a grammatika egy LR(1)-eleme.

 $A \rightarrow \alpha 1.\alpha 2$ az LR(1) elem magja, **a** pedig az előreolvasási szimbóluma.

Definíció: lezárás (closure)

Ha I a grammatika egy LR(1) elemhalmaza, akkor closure(I) a legszűkebb olyan halmaz, amely az alábbi tulajdonságokkal rendelkezik:

- $I \subseteq closure(I)$
- ha $[A \to \alpha.B\gamma,a] \in closure(I)$, és $B \to \beta$ a grammatika egy szabálya, akkor $\forall b \in FIRST_1(\gamma a)$ esetén $[B \to .\beta,b] \in closure(I)$

Definíció: olvasás (read)

Ha I a grammatika egy LR(1) elemhalmaza, X pedig terminális vagy nemterminális szimbóluma, akkor read(I, X) a legszűkebb olyan halmaz, amely az alábbi tulajdonsággal rendelkezik:

• ha $[A \to \alpha.X\beta,a] \in I$, akkor closure($[A \to \alpha X.\beta,a]$) \subseteq read(I,X).

A helyes zárójelezés egyik lehetséges grammatikája a következő:

- $(0) S' \rightarrow S$
- (1) $S \rightarrow aSbS$
- (2) S $\rightarrow \epsilon$

LR(1)-es kanonikus halmazok:

$$\begin{split} &I_0 = closure([S' \to .S,\#]) = \{ \ [S' \to .S,\#], \ [S \to .aSbS,\#], \ [S \to .,\#] \ \} \\ &I_1 = read(\ I_0,\ S) = \{ \ [S' \to S.,\#] \ \} \\ &I_2 = read(\ I_0,\ a) = \{ \ [S \to a.SbS,\#], \ [S \to .aSbS,b], \ [S \to .,b] \ \} \\ &I_3 = read(\ I_2,\ S) = \{ \ \ [S \to aS.bS,\#] \ \} \\ &I_4 = read(\ I_2,\ a) = \{ \ \ [S \to a.SbS,b], \ [S \to .aSbS,b], \ [S \to .,b] \ \} \\ &I_5 = read(\ I_3,\ b) = \{ \ \ [S \to aSb.S,\#], \ [S \to .aSbS,\#], \ [S \to .,\#] \ \} \\ &I_6 = read(\ I_4,\ S) = \{ \ \ [S \to aS.bS,b] \ \} \\ &read(\ I_4,\ a) = I_4 \\ &I_7 = read(\ I_5,\ S) = \{ \ \ [S \to aSbS.,\#] \ \} \\ &read(\ I_5,\ a) = I_2 \\ &I_8 = read(\ I_6,\ b) = \{ \ \ [S \to aSbS.,b], \ [S \to .aSbS,b], \ [S \to .,b] \ \} \\ &I_9 = read(\ I_8,\ S) = \{ \ \ [S \to aSbS.,b] \ \} \\ &read(\ I_8,\ S) = \{ \ \ [S \to aS$$

LR(1)-es elemző táblázat:

		action	goto	
	a	b	#	S
0	shift 2		S→ ε	1
1			accept	
2	shift 4	$S \rightarrow \epsilon$		3
3		shift 5		
4	shift 4	$S \rightarrow \epsilon$		6
5	shift 2		S→ ε	7
6		shift 8		
7			$S \rightarrow aSbS$	
8	shift 4	$S \rightarrow \epsilon$		9
9		$S \rightarrow aSbS$		

Összevonható állapotok: $I_2 - I_4$, $I_3 - I_6$, $I_5 - I_8$, $I_7 - I_9$

LALR(1)-es elemző táblázat:

	action		goto	
	a	b	#	S
0	shift 24		S→ ε	1
1			accept	
24	shift 24	$S \rightarrow \epsilon$		36
36		shift 58		
58	shift 24	$S \rightarrow \epsilon$	S→ ε	79
79		$S \rightarrow aSbS$	$S \rightarrow aSbS$	

Példa egy szó LALR(1) elemzésére:

 $u=\boldsymbol{abb}$

verem input (#0, abb#)

(#0a24, bb#) redukció: $S \rightarrow \varepsilon$

(#0a24S36, bb#)

(#0a24S36b58, b#) redukció: $S \rightarrow \epsilon$ (#0a24S36b58S79, b#) redukció: $S \rightarrow aSbS$

(#0S1, b#) hiba! Tehát a szó rossz szó.

Példa ugyan annak a szónak LR(1) elemzésére:

 $\mathbf{u} = \mathbf{abb}$

verem input (#0, abb#)

(#0a2, bb#) redukció: $S \rightarrow \varepsilon$

(#0a2S3, bb#)

(#0a2S3b5, b#) hiba! Tehát a szó rossz szó. (Előbb fedezi fel a hibát.)