BIST Part1 - TPG

- Introduction
- Test Pattern Generation (TPG)
 - Deterministic: ROM, Algorithm, Counter
 - Pseudo Random
 - Linear Feedback Shift Register, LFSR (1977)
 - Two types of LFSR
 - Design of LFSR
 - ⇒ How to find seed?
 - ⇒ What polynomial?
 - ⇒ All-zero pattern?
 - ⇒ What is LFSR degree?
 - Cellular Automata, CA (1984)

Q: Given two LFSR of x^4+x^3+1 , x^4+x^2+1 . seed=1000. Fill in table. $L_c=?$

		—	•		
<i>Q</i> ₃	Q_2	∐ •	Q_1	→ [Q_{θ}
state	Q_3	Q_2	Q_1	Q_0	
0	1	0	0	0	
1					
2					
3					
4					
5					
6					
7					
8					$L_c=?$
9					
10					
11					
12					
13					
14					
15					

Polynomial and L_c

Larger L_c , Better TPG

Primitive Polynomial

- Primitive polynomial (PP) generates maximum-length sequence
 - $L_c = 2^N-1$, N=degree of PP
- PP NOT unique for a given N
 - $1+x+x^4$, $1+x^3+x^4$ are both PP
- PP of degree N must satisfy:
 - PP is irreducible
 - PP has odd number of terms
 - PP divides 1+x^{2^N-1}; *N*>3
 - more details see (BMS 87)
- PP can be found by Seive Method
 - Many available on line

N			prim	itive	poly	non	nial j	f(X)
1,2,3,4,6,7,15,22	1	+	X	+	X^N			
5,11,21,29	1	+	<i>X</i> 2	+	χN			
10,17,20,25,28,31	1	+	<i>X</i> 3	+	X^N			
9	1	+	X^4	+	X^N			
23	1	+	<i>X</i> 5	+	X^N			
18	1	+	<i>X</i> ⁷	+	X^N			
8	1	+	χ^2	+	χ 3	+	<i>X</i> 4	+ <i>XN</i>
12	1	+	X	+	<i>X</i> 2	+	<i>X</i> 4	+ <i>XN</i>
13	1	+	X	+	х3	+	<i>X</i> 4	+ <i>XN</i>
14,16	1	+	<i>X</i> 3	+	<i>X</i> 4	+	<i>X</i> 5	+ <i>XN</i>
19,27	1	+	X	+	X^2	+	<i>X</i> 5	+ <i>XN</i>
24	1	+	X	+	<i>X</i> 2	+	X ⁷	+ <i>XN</i>
26	1	+	X	+	X ²	+	Х6	+ <i>XN</i>
30	1	+	X	+	X ²	+	X23	+ <i>XN</i>
32	1	+	X	+	X ²	+	X22	+XN

PP Often Used to Design TPG

Q_3	Q_2	→ [Q_I	Q_{θ}	
state	Q_3	Q_2	Q ₁	Q_0	
0	1	0	0	0	
1					
2					
3					
4					
5					
6					
7					
8					L_c =
9					
10					
11					
12					
13					
14					
15 (=0)					

m-Sequence

- A sequence generated by primitive polynomial LFSR is called
 - Maximum-length sequence (m-sequence)
 - aka. pseudorandom sequence, pseudonoise sequence
- m-sequence has period $L_c=2^{N}-1$
- Example: *N*=4
 - $x^4 + x^3 + 1$
 - Period L_c = 15

m-sequence=000111101011001 (left bit first)

state	Q_3	Q_2	Q_1	Q_0
0	1	0	0	0
1	1	1	0	0
2	1	1	1	0
3	1	1	1	1
4	0	1	1	1
5	1	0	1	1
6	0	1	0	1
7	1	0	1	0
8	1	1	0	1
9	0	1	1	0
10	0	0	1	1
11	1	0	0	1
12	0	1	0	0
13	0	0	1	0
14	0	0	0	1

Properties of m-Sequence (1)

- 1. Period $L_c = 2^{N}-1$
 - Example: x^4+x^3+1 , *N*=4
 - 000111101011001
 - $L_c=15$
- 2. 2^{N-1} ones and 2^{N-1}-1 zeros
 (almost equal probability)
 - Example:
 - 8 ones, 7 zeros
- 3. If a window of width N is slid along m-sequence, each of 2^N-1 non-zero N-tuple is seen exactly once in a period

Properties of m-Sequence (2)

- 4. m-sequence + its cyclic shift = another cyclic shift of itself
 - cyclic-shift-and-add property
 - This property is useful for phase shifter (see BIST-2 chapter)
 - Example: m-sequence of x^4+x^3+1 , N=4
 - * NOTE: mod-2 add = XOR

See finite filed theory or (BMS 87) for more properties

m-sequence Has Nice Properties

Q: Given another m-sequence 000100110101111 generated by PP x^4+x+1 .

Show that it also satisfies properties:

- 1) $L_c=15$
- 2) 8 ones and 7 zeros
- 3) it has cyclic-shift-add property

original + left-shift-by-2-bit = left-shift-by-?-bit

A:

	0	0	0	1	0	0	1	1	0	1	0	1	1	1	1
\oplus	0	1	0	0	1	1	0	1	0	1	1	1	1	0	0

				- +-	
L,	Q_{β}	₽ Q ₂	Q	,] 	Q_{θ}
		Q_3	Q_2	Q_1	Q_0
	0	1	0	0	0
	1	0	1	0	0
	2	0	0	1	0
	3	1	0	0	1
	4	1	1	0	0
	5	0	1	1	0
	6	1	0	1	1
	7	0	1	0	1
	8	1	0	1	0
	9	1	1	0	1
	10	1	1	1	0
	11	1	1	1	1
	12	0	1	1	1
	13	0	0	1	1
	14	0	0	0	1

BIST Part1 - TPG

- Introduction
- Test Pattern Generation (TPG)
 - Deterministic: ROM, Algorithm, Counter
 - Pseudo Random
 - Linear Feedback Shift Register, LFSR (1977)
 - Two types of LFSR
 - Design of LFSR
 - ⇒ How to find seed?
 - ⇒ What polynomial?
 - ⇒ All-zero pattern?
 - ⇒ What is LFSR degree?
 - Cellular Automata, CA (1984)

State Diagram

Exhaustive Feedback Shift Register

- Exhaustive feedback Shift Register (aka. De Bruijn Counter)
 - 2^N different states
- Example: N=4; 16 exhaustive states
 - 0001→ 0000 → 1000

NOTE: This is NOT LFSR because AND is nonlinear

DB Counter Generates All-zero Patterns

 Q_3 Q_2 Q_0

Q: Show this DB counter generates all 16 states. Fill in table.

state	Q_3	Q_2	Q_1	Q_0
0	1	0	0	0
1	1	1	0	0
2	1	1	1	0
3	1	1	1	1
4	0	1	1	1
5	1	0	1	1
6	0	1	0	1
7	1	0	1	0
8	1	1	0	1
9	0	1	1	0
10	0	0	1	1
11	1	0	0	1
12	0	1	0	0
13	0	0	1	0
14	0	0	0	1
15 =0	1	0	0	0

				_
state	Q_3	Q_2	Q_1	Q_0
0	1	0	0	0
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				

BIST Part1 - TPG

- Introduction
- Test Pattern Generation (TPG)
 - Deterministic: ROM, Algorithm, Counter
 - Pseudo Random
 - Linear Feedback Shift Register, LFSR (1977)
 - Two types of LFSR
 - Design of LFSR
 - ⇒ How to find seed?
 - ⇒ What polynomial?
 - ⇒ All-zero pattern?
 - ⇒ What is LFSR degree?
 - * Cellular Automata, CA (1984)

What is LFSR Degree? [Konemann 91] *not in exam

- Suppose N-degree LFSR, S care bits (i.e. specified bits)
 - N variables, S equations
 - What is minimum N to guarantee a solution (seed) can be found?
- Probability of not finding a solution

$$P(S,N) = \prod_{i=0}^{S-1} \frac{(2^{N}-1)-(2^{i}-1)}{(2^{N}-1)-1} \approx 1 - e^{(-2^{(S-N)})}$$

- When $N \ge (S+20)$, probability not finding solution is 10^{-6}
- Example: scan chain length = 1,000. Assume 5% care bits
 - S = 1000x5% = 50; N = 50 + 20 = 70
 - Primitive polynomial: $f(x)=x^{70}+x^{16}+x^{15}+x+1$

LFSR Degree $N \ge (S + 20)$

Summary

- What polynomial to use?
 - Primitive polynomials generates m-sequence
 - * $L_c = 2^{N-1}$
 - Almost half one and half zero
 - Cyclic-shift-and-add property
- How to generate all-zero pattern?
 - Exhaustive feedback shift register
- How many degree N?
 - N ≥ care-bits + 20

Pros and Cons of LFSR

- Advantages
 - © Small area.
 - Easy to design: PP → structure
 - m-sequence has nice properties
- Disadvantages
 - Not enough randomness
 - Control Large LFSR has many tap points. too slow!
 How to solve? see Cellular Automata

state	Q_0	Q_1	Q ₂	Q_3
0	1	0	0	0
1	0	1	0	0
2	0	0	1	0
3	0	0	0	1
4	1	1	0	0
5	0	1	1	0
6	0	0	1	1
7	1	1	0	1
8	1	0	1	0
9	0	1	0	1
10	1	1	1	0
11	0	1	1	1
12	1	1	1	1
13	1	0	1	1
14	1	0	0	1

LFSR Is Most Popular TPG

FFT

- Q: De Bruijn Counter generates 2^N sequence

 - Does it satisfy cyclic-shift-and-add property?

?

