Введение в римановы поверхности

С. К. Ландо

Национальный исследовательский университет Высшая школа экономики

2021

Для любой пары точек проективной прямой существует ее автоморфизм, переводящий первую точку во вторую. То же самое справедливо и для любой эллиптической кривой. Однако для кривых рода $g \geq 2$ аналогичное утверждение уже неверно, и точки на них отличаются друг от друга. Формула Римана—Роха позволяет "измерить" это отличие.

Theorem

Если C- гладкая алгебраическая кривая рода $g, D \in \mathrm{Div}(C), d = \deg(D),$ то I(D) = d-g+1+i(D).

Для любой пары точек проективной прямой существует ее автоморфизм, переводящий первую точку во вторую. То же самое справедливо и для любой эллиптической кривой. Однако для кривых рода $g \geq 2$ аналогичное утверждение уже неверно, и точки на них отличаются друг от друга. Формула Римана—Роха позволяет "измерить" это отличие.

Theorem

Если C- гладкая алгебраическая кривая рода g, $D\in \mathrm{Div}(C)$, $d=\deg(D)$, то I(D)=d-g+1+i(D).

Применим ее к ситуации, когда дивизор D эффективен и сосредоточен в одной точке $x \in C$, $D = k \cdot x$, $k = 0, 1, 2, 3, \dots$

Lemma

Если $k \ge 2g - 1$, то $l(k \cdot x) = k - g + 1$.

Действительно, при таких k размерность $i(k \cdot x) = 0$ для любой точки $x \in C$, поскольку не существует голоморфных 1-форм с нулем порядка 2g - 1 или выше.

Для любой пары точек проективной прямой существует ее автоморфизм, переводящий первую точку во вторую. То же самое справедливо и для любой эллиптической кривой. Однако для кривых рода $g \geq 2$ аналогичное утверждение уже неверно, и точки на них отличаются друг от друга. Формула Римана—Роха позволяет "измерить" это отличие.

Theorem

Если C- гладкая алгебраическая кривая рода $g, D \in \mathrm{Div}(C), d = \deg(D),$ то I(D) = d-g+1+i(D).

Применим ее к ситуации, когда дивизор D эффективен и сосредоточен в одной точке $x \in C$, $D = k \cdot x$, $k = 0, 1, 2, 3, \dots$

Lemma

Если $k \geq 2g - 1$, то $l(k \cdot x) = k - g + 1$.

Действительно, при таких k размерность $i(k\cdot x)=0$ для любой точки $x\in C$, поскольку не существует голоморфных 1-форм с нулем порядка 2g-1 или выше.

Таким образом, последовательность $I(k \cdot x)$ при $k \geq 2g-1$ ведет себя одинаково для всех точек $x \in C$; а вот при $1 \leq k \leq 2g-2$ ее поведение зависит от выбора точки.

Theorem

Если C — гладкая алгебраическая кривая рода g, $D \in \mathrm{Div}(C)$, $d = \deg(D)$, то I(D) = d - g + 1 + i(D).

$$I(k \cdot x) = k - g + 1$$
 при $k \geq 2g - 1$.

Theorem

Если C — гладкая алгебраическая кривая рода g, $D \in \mathrm{Div}(C)$, $d = \deg(D)$, то I(D) = d - g + 1 + i(D).

$$I(k \cdot x) = k - g + 1$$
 при $k \ge 2g - 1$.

Lemma

В частности, для всех $k \geq 2g-1$ выполняется равенство $I((k+1)\cdot x) = I(k\cdot x)+1$.

$\mathsf{Theorem}$

Если C — гладкая алгебраическая кривая рода g, $D \in \mathrm{Div}(C)$, $d = \deg(D)$, то I(D) = d - g + 1 + i(D).

$$I(k \cdot x) = k - g + 1$$
 при $k \ge 2g - 1$.

Lemma

Последовательность $l(k \cdot x)$ монотонно неубывающая, причем $l((k+1) \cdot x) = l(k \cdot x)$, если на C не существует мероморфной функции c единственным полюсом b точке x, порядок которого b точности равен k+1, и $l((k+1) \cdot x) = l(k \cdot x) + 1$ b противном случае.

В частности, для всех $k \geq 2g-1$ выполняется равенство $I((k+1)\cdot x) = I(k\cdot x)+1$.

Corollary

На отрезке $1 \leq k \leq 2g-1$ последовательность $l(k \cdot x)$ имеет g-1 подскоков на 1 .

Lemma

Пусть k_1, k_2 — две точки подскока последовательности $I(k \cdot x)$. Тогда $k_1 + k_2$ также является точкой подскока. Другими словами, множество точек подскока является подполугруппой в группе $\mathbb N$ натуральных чисел по сложению.

Действительно, если на C есть мероморфная функция f_1 с полюсом порядка k_1 в x, не имеющая других полюсов, и мероморфная функция f_2 с полюсом порядка k_2 в x, не имеющая других полюсов, то их произведение f_1f_2 является мероморфной функцией с полюсом порядка k_1+k_2 в x, не имеющей других полюсов.

Lemma

Пусть k_1, k_2 — две точки подскока последовательности $I(k \cdot x)$. Тогда $k_1 + k_2$ также является точкой подскока. Другими словами, множество точек подскока является подполугруппой в группе $\mathbb N$ натуральных чисел по сложению.

Действительно, если на C есть мероморфная функция f_1 с полюсом порядка k_1 в x, не имеющая других полюсов, и мероморфная функция f_2 с полюсом порядка k_2 в x, не имеющая других полюсов, то их произведение f_1f_2 является мероморфной функцией с полюсом порядка $k_1 + k_2$ в x, не имеющей других полюсов.

Remark. Полного независимого описания всех встречающихся подполугрупп в $\mathbb N$ такого вида не существует.

Lemma

Пусть k_1, k_2 — две точки подскока последовательности $I(k \cdot x)$. Тогда $k_1 + k_2$ также является точкой подскока. Другими словами, множество точек подскока является подполугруппой в группе $\mathbb N$ натуральных чисел по сложению.

Действительно, если на C есть мероморфная функция f_1 с полюсом порядка k_1 в x, не имеющая других полюсов, и мероморфная функция f_2 с полюсом порядка k_2 в x, не имеющая других полюсов, то их произведение f_1f_2 является мероморфной функцией с полюсом порядка $k_1 + k_2$ в x, не имеющей других полюсов.

Remark. Полного независимого описания всех встречающихся подполугрупп в $\mathbb N$ такого вида не существует.

Значения параметра k, для которых $I(k \cdot x) = I((k-1) \cdot x)$ называются лакунами в точке x. Число лакун в каждой точке равно g и все они находятся на начальном отрезке $\{1,2,\ldots,2g-1\}$ значений параметра k. При $g \geq 1$ значение k=1 является лакуной в любой точке x: $I(1 \cdot x) = I(0 \cdot x) = 1$. Множество лакун образует дополнение k полугруппе подскоков.

Example

При g=0 последовательность $I(k\cdot x)$ имеет вид $2,3,4,\ldots$ для любой точки $x\in\mathbb{C}P^1$. При g=1 последовательность $I(k\cdot x)$ имеет вид $1,2,3,4,\ldots$ для любой точки $x\in\mathcal{C}$.

Example

При g=0 последовательность $I(k\cdot x)$ имеет вид $2,3,4,\ldots$ для любой точки $x\in\mathbb{C}P^1$. При g=1 последовательность $I(k\cdot x)$ имеет вид $1,2,3,4,\ldots$ для любой точки $x\in C$.

Example

Всякая кривая рода g=2 гиперэллиптическая, и последовательность $l(k\cdot x)$ зависит от выбора точки x. Если x является неподвижной точкой гиперэаллиптической инволюции, то $l(2\cdot x)=2$, т.е. значение k=2 является точкой подскока. Поскольку на отрезке $\{1,2,3\}$ значений k должно быть две лакуны, то это значения k=1 и k=3. Таким образом, последовательность значений $l(k\cdot x)$ имеет вид $1,2,2,3,4,5,\ldots$. Если же x не является неподвижной точкой гиперэллиптической инволюции, то $l(2\cdot x)=1$, а значит лакуны это k=1 и k=2; последовательность $l(k\cdot x)$ имеет вид $1,1,2,3,4,\ldots$

Definition

Точка $x\in C$ гладкой алгебраической кривой C рода g называется точкой Вейерштрасса, если $l(k\cdot x)=2$ для некоторого значения $k\le g$ (эквивалентно, если $l(g\cdot x)\ge 2$). Точка Вейерштрасса называется нормальной, если последовательность ее лакун имеет вид $1,2,3,\ldots,g-1,g+1$.

Definition

Точка $x\in C$ гладкой алгебраической кривой C рода g называется точкой Вейерштрасса, если $l(k\cdot x)=2$ для некоторого значения $k\le g$ (эквивалентно, если $l(g\cdot x)\ge 2$). Точка Вейерштрасса называется нормальной, если последовательность ее лакун имеет вид $1,2,3,\ldots,g-1,g+1$.

Пусть $1 = a_1 < a_2 < \dots < a_g \le 2g-1$ — последовательность лакун точки x гладкой кривой C рода g.

Definition

Весом точки $x \in C$ гладкой алгебраической кривой C рода g называется величина $\sum_{i=1}^g (a_i-i)$.

Definition

Точка $x\in C$ гладкой алгебраической кривой C рода g называется точкой Вейерштрасса, если $l(k\cdot x)=2$ для некоторого значения $k\le g$ (эквивалентно, если $l(g\cdot x)\ge 2$). Точка Вейерштрасса называется нормальной, если последовательность ее лакун имеет вид $1,2,3,\ldots,g-1,g+1$.

Пусть $1 = a_1 < a_2 < \dots < a_g \le 2g-1$ — последовательность лакун точки x гладкой кривой C рода g.

Definition

Весом точки $x \in C$ гладкой алгебраической кривой C рода g называется величина $\sum_{i=1}^g (a_i-i)$.

В частности, если x — не точка Вейерштрасса, то ее вес равен 0. Вес нормальной точки Вейерштрасса равен 1.

Lemma

Если $x \in C$ — точка Вейерштрасса, то ее вес положителен.

Theorem

Сумма весов всех точек гладкой алгебраической кривой ${\sf C}$ рода ${\sf g}$ равна $({\sf g}-1){\sf g}({\sf g}+1)$.

Theorem

Сумма весов всех точек гладкой алгебраической кривой ${\sf C}$ рода ${\sf g}$ равна $({\sf g}-1){\sf g}({\sf g}+1)$.

Corollary

Число точек Вейерштрасса на всякой гладкой алгебраической кривой конечно и не превосходит (g-1)g(g+1), где g — род кривой.

Theorem

Сумма весов всех точек гладкой алгебраической кривой ${\sf C}$ рода ${\sf g}$ равна $({\sf g}-1){\sf g}({\sf g}+1)$.

Доказательство.

Theorem

Сумма весов всех точек гладкой алгебраической кривой ${\sf C}$ рода ${\sf g}$ равна $({\sf g}-1){\sf g}({\sf g}+1)$.

Доказательство.

Пусть ω_1,\ldots,ω_g — базис в пространстве голоморных 1-форм на кривой C. Запишем эти 1-формы в локальной координате z в окрестности данной точки $x\in C$: $\omega_i=\varphi_i(z)dz$. Составим из коэффициентов ϕ_i этих 1-форм и их производных $g\times g$ -матрицу Вронского

$$W(z) = \begin{pmatrix} \varphi_1(z) & \varphi_1'(z) & \dots & \varphi_1^{(g-1)}(z) \\ \varphi_2(z) & \varphi_2'(z) & \dots & \varphi_2^{(g-1)}(z) \\ \dots & \dots & \dots & \dots \\ \varphi_g(z) & \varphi_g'(z) & \dots & \varphi_g^{(g-1)}(z) \end{pmatrix}.$$

Theorem

Сумма весов всех точек гладкой алгебраической кривой ${\sf C}$ рода ${\sf g}$ равна $({\sf g}-1){\sf g}({\sf g}+1)$.

Доказательство.

Пусть ω_1,\ldots,ω_g — базис в пространстве голоморных 1-форм на кривой C. Запишем эти 1-формы в локальной координате z в окрестности данной точки $x\in C$: $\omega_i=\varphi_i(z)dz$. Составим из коэффициентов ϕ_i этих 1-форм и их производных $g\times g$ -матрицу Вронского

$$W(z) = \begin{pmatrix} \varphi_1(z) & \varphi_1'(z) & \dots & \varphi_1^{(g-1)}(z) \\ \varphi_2(z) & \varphi_2'(z) & \dots & \varphi_2^{(g-1)}(z) \\ \dots & \dots & \dots & \dots \\ \varphi_g(z) & \varphi_g'(z) & \dots & \varphi_g^{(g-1)}(z) \end{pmatrix}.$$

Lemma

Вес точки кривой совпадает с порядком нуля определителя |W(z)| матрицы Вронского (вронскиана) в этой точке.

Lemma

Вес точки кривой совпадает с порядком нуля вронскиана в этой точке.

В частности, если точка кривой не является точкой Вейерштрасса, то вронскиан в ней отличен от нуля. Ясно также, что порядок нуля вронскиана в данной точке не зависит от выбора базиса в пространстве голоморфных 1-форм.

Lemma

Вес точки кривой совпадает с порядком нуля вронскиана в этой точке.

В частности, если точка кривой не является точкой Вейерштрасса, то вронскиан в ней отличен от нуля. Ясно также, что порядок нуля вронскиана в данной точке не зависит от выбора базиса в пространстве голоморфных 1-форм.

Вывод теоремы из леммы: выбор базиса в пространстве голоморфных 1-форм определяет отображение кривой C в пространство, двойственное пространству голоморфных сечений тензорного произведения линейных расслоений

$$T^{\vee}C\otimes (T^{\vee})^{\otimes 2}C\otimes (T^{\vee})^{\otimes 3}C\otimes \cdots \otimes (T^{\vee})^{\otimes g}C.$$

Степень этого линейного расслоения равна

$$(2g-2)+2\cdot(2g-2)+3\cdot(2g-2)+\cdots+g\cdot(2g-2)=(g-1)g(g+1).$$

Эта степень совпадает с суммой порядков нулей любого его голоморфного сечения, в том числе, вронскиана в любом базисе.

Lemma

Вес точки кривой совпадает с порядком нуля вронскиана в этой точке.

Lemma

Вес точки кривой совпадает с порядком нуля вронскиана в этой точке.

Доказательство. Утверждение локально. Пусть $x \in C$. Построим индуктивно базис в пространстве голоморфных 1-форм:

- в качестве ω_1 возьмем 1-форму, отличную от нуля в т. x (такая 1-форма существует, поскольку у кокасательного расслоения к C нет базисных точек);
- разложим пространство голоморфных 1-форм в прямую сумму прямой $\mathbb{C}\omega_1$ и дополнительного подпространства, состоящего из 1-форм, имеющих нуль в т. x; пусть b_2 наименьший порядок нуля в x у 1-форм из этого подпространства;
- выберем в построенном подпространстве 1-форму с нулем порядка b_2 в x и возьмем ее в качестве ω_2 ;
- разложим построенное подпространство голоморфных 1-форм в прямую сумму прямой $\mathbb{C}\omega_2$ и дополнительного подпространства, состоящего из 1-форм, имеющих в т. x нуль порядка $>b_2$; пусть b_3 наименьший порядок нуля в x у 1-форм из этого подпространства; и т.д.

Lemma

Порядок точки кривой совпадает с порядком нуля вронскиана в этой точке.

Получили упорядоченный базис 1-форм $\omega_1, \dots, \omega_g$, порядки нулей элементов которого в точке x равны $0=b_1 < b_2 < \dots < b_g$. Матрица Вронского такого набора 1-форм имеет вид

$$W(z) = \left(egin{array}{cccc} 1+\ldots & \ldots & \ldots & \ldots & \ldots \ z^{b_2}+\ldots & b_2z^{b_2-1}+\ldots & \ldots & \ldots \ \ldots & \ldots & \ldots & \ldots & \ldots \ z^{b_g}+\ldots & b_gz^{b_g-1}+\ldots & \ldots & \ldots \end{array}
ight).$$

Порядок нуля вронскиана равен $0+(b_2-1)+(b_3-2)+\cdots+(b_g-g+1)$.

Lemma

Порядок точки кривой совпадает с порядком нуля вронскиана в этой точке.

Получили упорядоченный базис 1-форм $\omega_1, \dots, \omega_g$, порядки нулей элементов которого в точке x равны $0=b_1 < b_2 < \dots < b_g$. Матрица Вронского такого набора 1-форм имеет вид

$$W(z) = \left(egin{array}{cccc} 1 + \dots & \dots & \dots & \dots \ z^{b_2} + \dots & b_2 z^{b_2-1} + \dots & \dots & \dots \ \dots & \dots & \dots & \dots \ z^{b_g} + \dots & b_g z^{b_g-1} + \dots & \dots & \dots \end{array}
ight).$$

Порядок нуля вронскиана равен $0+(b_2-1)+(b_3-2)+\cdots+(b_g-g+1)$. С другой стороны, условие $\mathrm{Res}_x f\omega=0$ накладывает на коэффициенты главной части функции f в точке x линейные условия, количество независимых среди которых в точности равно требуемому числу.

Лекция 15. Точки перегиба плоских квартик

Гладкая плоская кривая C степени d=4 (квартика) является кривой рода g=(d-1)(d-2)/2=3. Каждая точка x гладкой плоской квартики определяет мероморфную функцию степени 3 на ней — проекцию из этой точки. Одну из прямых, проходящих через x, мы можем считать бесконечностью. Если y — точка простого перегиба кривой C, то проходящая через нее касательная пересекает C еще в одной точке, которую мы обозначим через x.

Лекция 15. Точки перегиба плоских квартик

Гладкая плоская кривая C степени d=4 (квартика) является кривой рода g=(d-1)(d-2)/2=3. Каждая точка x гладкой плоской квартики определяет мероморфную функцию степени 3 на ней — проекцию из этой точки. Одну из прямых, проходящих через x, мы можем считать бесконечностью. Если y — точка простого перегиба кривой C, то проходящая через нее касательная пересекает C еще в одной точке, которую мы обозначим через x.

Проекция, определяемая точкой $x\in C$, имеет в точке y полюс третьего порядка и не имеет других полюсов (прямая xy не пересекает C в других точках). Тем самым, $l(3\cdot y)\geq 2$, т.е. y является точкой Вейерштрасса кривой C. На общей гладкой квартике имеется 24 точки простого перегиба. Поскольку $(g-1)g(g+1)=2\cdot 3\cdot 4=24$, мы заключаем, что все точки простого перегиба имеют вес 1, а лакуны в этих точках равны 1,2,4.

Лекция 15. Точки перегиба плоских квартик

Гладкая плоская кривая C степени d=4 (квартика) является кривой рода g=(d-1)(d-2)/2=3. Каждая точка x гладкой плоской квартики определяет мероморфную функцию степени 3 на ней — проекцию из этой точки. Одну из прямых, проходящих через x, мы можем считать бесконечностью. Если y — точка простого перегиба кривой C, то проходящая через нее касательная пересекает C еще в одной точке, которую мы обозначим через x.

Проекция, определяемая точкой $x\in C$, имеет в точке y полюс третьего порядка и не имеет других полюсов (прямая xy не пересекает C в других точках). Тем самым, $I(3\cdot y)\geq 2$, т.е. y является точкой Вейерштрасса кривой C. На общей гладкой квартике имеется 24 точки простого перегиба. Поскольку $(g-1)g(g+1)=2\cdot 3\cdot 4=24$, мы заключаем, что все точки простого перегиба имеют вес 1, а лакуны в этих точках равны 1,2,4.

Каждая гладкая плоская квартика является канонической кривой рода 3, при каноническом вложении негиперэллиптической кривой рода 3 точки Вейерштрасса переходят в точки перегиба. Точки Вейерштрасса канонических кривых старших родов представляют собой обобщения точек перегиба плоских квартик.

Theorem

Группа автоморфизмов гладкой алгебраической кривой рода $g \geq 2$ конечна.

Theorem

Группа автоморфизмов гладкой алгебраической кривой рода $g \geq 2$ конечна.

Lemma

Если автоморфизм гладкой алгебраической кривой C рода g имеет более 2g+2 неподвижных точек, то он тождественный.

Theorem

Группа автоморфизмов гладкой алгебраической кривой рода $g \geq 2$ конечна.

Lemma

Если автоморфизм гладкой алгебраической кривой C рода g имеет более 2g+2 неподвижных точек, то он тождественный.

Доказательство. Пусть $\eta:C\to C$ — автоморфизм, имеющий s неподвижных точек. Возьмем эффективный дивизор D, состоящих из g+1 точек кратности 1, ни одна из которых не является неподвижной точкой автоморфизма η . По теореме Римана–Роха, I(D)=(g+1)-g+1+i(D)=2+i(D). Поэтому существует функция $f:C\to \mathbb{C}P^1$, имеющая полюса не выше первого порядка, причем только в точках дивизора D. Функция $f-f\circ\eta$ имеет не более чем 2g+2 полюсов первого порядка и не менее s нулей (всякая неподвижная точка автоморфизма η является ее нулем). Поэтому $s\leq 2g+2$.

Theorem

Группа автоморфизмов гладкой алгебраической кривой рода $g \geq 2$ конечна.

Lemma

Если автоморфизм гладкой алгебраической кривой C рода g имеет более 2g+2 неподвижных точек, то он тождественный.

Доказательство. Пусть $\eta:C\to C$ — автоморфизм, имеющий s неподвижных точек. Возьмем эффективный дивизор D, состоящих из g+1 точек кратности 1, ни одна из которых не является неподвижной точкой автоморфизма η . По теореме Римана—Роха, I(D)=(g+1)-g+1+i(D)=2+i(D). Поэтому существует функция $f:C\to \mathbb{C}P^1$, имеющая полюса не выше первого порядка, причем только в точках дивизора D. Функция $f-f\circ\eta$ имеет не более чем 2g+2 полюсов первого порядка и не менее s нулей (всякая неподвижная точка автоморфизма η является ее нулем). Поэтому $s\leq 2g+2$.

Lemma

Минимальное количество точек Вейерштрасса на кривой рода g равно 2g+2, и оно достигается только для гиперэллиптических кривых.

Семинар 15.

- Докажите, что на кривой C рода $g \ge 2$ значение k=2 не является лакуной в точке $x \in C$ в том и только в том случае, когда C гиперэллиптическая и x неподвижная точка гиперэллиптической инволюции.
- Докажите, что всякая точка Вейерштрасса гиперэллиптической кривой является неподвижной точкой гиперэллиптической инволюции.
- Докажите теорему Клиффорда: для любой точки x негиперэллиптической кривой C рода $g \geq 3$ справедливо неравенство $l(k \cdot x) < \frac{k}{2} + 1$ для всех $k = 1, 2, \dots, 2g 1$.

Семинар 15.

- Докажите, что на негиперэллиптической кривой рода $g \ge 3$ есть по крайней мере 2g+6 точек Вейерштрасса.
- Вычислите лакуны в точке перегиба второго порядка гладкой плоской квартики.
- Найдите точки перегиба квартики Клейна

$$x^3y + y^3z + z^3x = 0$$

и опишите действие группы автоморфизмов этой кривой на множестве точек перегиба.

Семинар 15.

- Найдите все точки Вейерштрасса плоской кривой Ферма $x^4+y^4=1$ и укажите их тип. Воспользовавшись этим результатом, найдите группу автоморфизмов кривой Ферма.
- Докажите лемму Шенберга: если у автоморфизма гладкой алгебраической кривой рода $g \geq 2$ больше 4 неподвижных точек, то все они являются точками Вейерштрасса.