

Prospects for Shale Gas Exploration in Europe by legor Riepin

Chair of energy economics
Brandenburg University of Technology

38th IAEE International Conference

25 - 27 May 2015 / Antalya,

Contents:

1. Background of the research

2. Data and assumptions

3. Mathematical modelling

4. Results & Conclusions

Unconventional wisdom

✓ In perspective US to become the biggest natural gas producer in the world and to change soon net status from "importer" to "exporter"

- ✓ In 2012 US produced 290 bcm of unconventional natural gas
- ✓ Wellhead prices for US natural gas had a sharp drop from 8 USD/Mbtu (2008) to 4 USD/Mbtu (2013)

US natural gas trade balance forecasts (Spencer et al., 2013):

Unconventional wisdom

✓ LNG imports decreased by 45% from the 2012 level to 97 Bcf in 2013, the lowest level since 1998

✓ Pipeline exports to Mexico rose by 6% to 658 Bcf (a record level).

US EIA

Rising interest all around the world

- The focus is on original estimates of OGIP, TRR or ERR
- "Original estimate" is the one from a source that has either developed the estimate itself using recognized methodologies, or adapted the estimate from existing sources

Pearson et al., JRC EC (2012)

Objective and questions to answer

The objective of the study is to estimate a potential for shale gas exploration in Europe and consequent impact on natural gas market.

To what extent can shale gas production influence energy security concerns of EU (or certain member states) by

- compensating the drop of European indigenous conventional gas production?
- substituting natural gas imports?

Contents:

1. Background of the research

- 2. Data and assumptions
- 3. Mathematical modelling

4. Results & Conclusions

Major European sedimentary basins with shale gas potential

P. Karcz et al.: Compilation based on Szalay & Koncz (1993), Poprawa (2010b), Schulz et al. (2010), Kuuskraa et al. (2011), BGR (2012)

Resources and reserves

Set of basic geological parameters characterizing European shale rocks

State	Basin	Depth (m)		TRR (TCM)					
Poland	Baltic	1000 - 4500 112	1900 - 4800 4	3,65 ¹			2,98 4	0,0257 6	
	Podlasie	500 - 5000 112	1820 - 4800 4	0,4 1	0,34 -0,76 5	0 - 0,11 ²	0,29 4		
	Lublin	1000 - 4000 112	3350 4	1,25 ¹	1		0,26 4		
	Fore Sudetic	2400 - 4	1900 4	n.d.			0,6 4	1	
Lithuania	Baltic	1950 - 2120 112		0,11 1					
Ukraine	Lviv Depression	1000 - 1500 112		4.2.1			n.d.		
	Dnieper-donets	1000 - 5000 4		1,2 ¹		2,15 5			
	Maykop Shales	n.d.		n.d.					
Romania	Pannonian	n.c	n.d.				n.d.		
	Moldavian/ Scythian Platform	n.c	n.d.				0,1579 4		
	Moesian Platform	1000 1100 112	1500 5000 4	0,54 ¹		1,32 4	n.d.		
Bulgaria	Moesian Platform	1000 - 4400 *-	1800 - 4400 112 1500 - 5000 4				n.d.		
Hungary	Pannonian	n.d.		n.d.					
Austria	Vienna	2000 - 8	2000 - 8500 112		0,425 4				
Turkey	Thrace	n.c	n.d.		0,17 ¹				
United Kingdom	North UK	1500 - 4000 4		0,71 4					
	South UK	1200 - 1	1200 - 1830 4		0,017 4				
Spain	Basque-Cantabrian	2400 - 4	2400 - 4420 4		0,24 4			1,084 5	
	Others	n.c	n.d.		0,893 5				
France	Paris	1200 - 5	1200 - 5000 4		3,66 4				
	South -East	2500 - 5	2500 - 5000 4		0,21 4				
Germany	Lower Saxony	1000 - 5	1000 - 5000 4		0,48 4		1,3 ⁵		
Netherlands	West Netherlands	1000 - 5	1000 - 5000 4		0,73 4		2,39 5	2,39 5	
Sweden	Alum Shale	1000 - 2	1000 - 2150 4		0,28 4				
Denmark	Alum Shale	3300 - 4	3300 - 4600 4		0,9 4		0,2061 5		

^{1.} P. Karcz et al. (2011); 2. Gautier et al. (2012); 3-4. ARI (2-11, 2013); 5. National Reports*; 6. U.S. Geological Survey (2012)

TRR by country: comparison

^{*} Spain: ACIEP (2013), Germany: BGR (2012a), Netherlands: TNO (2009), Denmark: Gautier et al. (2013), Austria: OMV (2012), Poland: PIG-PIB (2012)

Countries included in a model and costs assumption

	Basin			Costs* (\$/tcm)			
State		Dept	h (m)	Conservative	Reference	Optimistic	
Otato		Бори	'' (''')	EUR 20	EUR 40	EUR 60	
				mcm	mcm	mcm	
	Baltic	1000 - 4500 112	1900 - 4800 4		365	241	
Poland	Podlasie	500 - 5000 ^{1'2}	1820 - 4800 4	731			
Folariu	Lublin	1000 - 4000 112	3350 4] /31			
	Fore Sudetic	2400 - 4900 4					
	Lviv Depression	1000 - 1500 ¹ '2					
Ukraine	Dnieper-donets	1000 -	5000 4	562	281	185	
	Maykop Shales	n.	d.				
	Pannonian	n.	d.	646	323	213	
Romania	Moldavian Scythian Platform	n.	d.				
	Moesian Platform	4000 4400 112	1500 - 5000 4				
Bulgaria	Moesian Platform	1800 - 4400 ^{1'2}		646	323	213	
United Kingdom	North UK	1500 - 4000 4		539	270	178	
	South UK	1200 - 1830 4					
Глоноо	Paris	1200 - 5000 4		562	281	185	
France	South -East	2500 - 5000 4					
Germany	Lower Saxony	1500 - 5000 4		577	289	190	

*G. Thonhauser, JRC EC (2012)

Contents:

1. Background of the research 2. Data and assumptions 3. Mathematical modelling 4. Results & Conclusions

Design of employed natural gas market model

Model focus

 The model simulates operation and future developments of European gas sector for a middleand long time periods

Model scope

- European, FSU, North Africa and Middle East countries
- · Natural gas pipeline infrastructure
- . LNG liquefaction and regasification terminals
- Storage facilities

Model output

- Production&Consumption volumes
- Gas traded volumes
- · Physical gas flow volumes
- Price levels for natural gas
 Seasonal storage dispatch

Model approach

- Model formulated as a mixed complementarity problem (MCP)
- Solved in GAMS

Design of employed natural gas market model

29%

29%

Contents:

1. Background of the research 2. Data and assumptions 3. Mathematical modelling 4. Results &

Conclusions

Investments in shale gas

European supply mix for year 2030

Consumption: 526.2 BCM Shale gas: 11.9 BCM*

Optimistic scenario:

Consumption: 530.4 BCM Shale gas: 59.1 BCM*

*Excluding production in France

■ Russia ■ Algeria ■ Norway ■ Libya ■ Qatar ■ Nigeria ■ Indigenous conventional gas ■ Indigenous shale gas

2% 10% 12% 26% 2% 2%

Natural gas self sufficiency for selected countries

Conclusions

- ✓ Shale gas in *itself* should not be perceived as a solution to European energy security concerns
- ✓ Under a reference scenario shale gas will not provide any significant contribution to European supply mix by 2030
- ✓ The shale gas production, though, can have a positive influence on a market situation in particular European countries by reducing their import dependence.
- ✓ The analysis examines only the *economic potential* of shale gas exploration and should be seen together with the associated reports addressing *regulatory*, *environmental*, *technical* and *social* issues.

THANK YOU!

legor Riepin
Chair of energy economics
Brandenburg University of Technology

This presentation is based on a joined research with Felix Müsgens

Appendix A: Approaches used by reports providing countrylevel shale gas resource estimates

- Bottom-up analysis of geological parameters
- Literature review
- Extrapolation of production experience
- Expert judgement
- Method not stated

Pearson et al., JRC EC (2012)

Appendix B: European shale gas potential estimates

Study	Cost Assumption	Projected EU shale gas production in 2035	NG import dependence in 2035 (63% in 2011)
JRC 2012	5-12 USD/Mbtu	1 to 2.1 tcm cumulatively to 2035	57% (high scen.) 72% (low scen.)
IEA WEO 2013	-	20 bcm in 2035	81%
Poryry and Cambridge Econometrics study for IA of Oil and Gas Producers, 2013)	9 USD/Mbtu	60 to 150 bcm in the high scenario	63% (high scen.) 80% (low scen.)
BP WEO 2013	-	37 bcm in 2035	C.a. 75%
EIA 2013	-	79 bcm in 2035 (figures for OECD Europe, not the EU)	75%

T. Spencer et al. (2014)

Appendix C: European supply mix (with France) 2030

2%

23%

17%

9%

25%

15%

9%

6%

Consumption: 526.2 BCM Shale gas: 30.33 BCM*

Optimistic scenario:

Consumption: 530.4 BCM Shale gas: 77.6 BCM*

2% 10% 21% 25% 15%

*Including production in France

■ Russia ■ Algeria ■ Norway ■ Libya ■ Qatar ■ Nigeria ■ Indigenous conventional gas ■ Indigenous shale gas