

Data Basics

Prof. Dr. Jan Kirenz HdM Stuttgart

Observations, variables, and data matrices

Six observations from the loan 50 dataset

variable

	loan_amount	interest_rate	term	grade	state	total_income	homeownership
1	22,000	10.90	60	В	NJ	59,000	rent
2	6,000	9.92	36	В	CA	60,000	rent
3	25,000	26.30	36	E	SC	value 75,000	mortgage
4	6,000	9.92	36	В	CA	75,000	rent
5	25,000	9.43	60	В	ОН	254,000	mortgage
6	6,400	9.92	36	В	IN	67,000	mortgage

observation

- The data in this table represents a data frame
- Each **row** is a unique case (observational unit),
- Each column is a variable
- Each **cell** is a single value

Source: Çetinkaya-Rundel & Hardin (2021); Prof. Dr. Jan Kirenz

Variables descriptions for the loan 50 dataset.

Variable	Description
loan_amount	Amount of the loan received, in US dollars.
interest_rate	Interest rate on the loan, in an annual percentage.
term	The length of the loan, which is always set as a whole number of months.
grade	Loan grade, which takes a values A through G and represents the quality of the loan and its likelihood of being repaid.
state	US state where the borrower resides.
total_income	Borrower's total income, including any second income, in US dollars.
homeownership	Indicates whether the person owns, owns but has a mortgage, or rents.

Source: Çetinkaya-Rundel & Hardin (2021); Prof. Dr. Jan Kirenz

Types of variables

Breakdown of variables into their respective types

Six observations and six variables from the county dataset

name	state	pop2017	pop_change	unemployment_rate	median_edu
Autauga County	Alabama	55,504	1.48	3.86	some_college
Baldwin County	Alabama	212,628	9.19	3.99	some_college
Barbour County	Alabama	25,270	-6.22	5.90	hs_diploma
Bibb County	Alabama	22,668	0.73	4.39	hs_diploma
Blount County	Alabama	58,013	0.68	4.02	hs_diploma
Bullock County	Alabama	10,309	-2.28	4.93	hs_diploma

What is the difference between the variables:

- unemployment_rate
- pop2017
- state
- median_edu

3,142 counties in the United States

Variable	Description
name	Name of county.
state	Name of state.
pop2000	Population in 2000.
pop2010	Population in 2010.
pop2017	Population in 2017.
pop_change	Population change from 2010 to 2017 (in percent).
poverty	Percent of population in poverty in 2017.
homeownership	Homeownership rate, 2006-2010.
multi_unit	Multi-unit rate: percent of housing units that are in multi-unit structures, 2006-2010.
unemployment_rate	Unemployment rate in 2017.
metro	Whether the county contains a metropolitan area, taking one of the values yes or no.
median_edu	Median education level (2013-2017), taking one of the values below_hs, hs_diploma, some_college, or bachelors.
per_capita_income	Per capita (per person) income (2013-2017).
median_hh_income	Median household income.
smoking_ban	Describes the type of county-level smoking ban in place in 2010, taking one of the values none, partial, or comprehensive.

Example

Data were collected about students in a statistics course. Three variables were recorded for each student:

- number of siblings,
- student height, and
- 3. whether the student had previously taken a statistics course.

Classify each of the variables as

- continuous numerical
- discrete numerical
- nominal categorical
- ordinal categorical

What are the possible levels of the variables?

Practice - Start

Classroom survey

A survey was conducted on students in an introductory statistics course. Below are a few of the questions on the survey, and the corresponding variables the data from the responses were stored in:

- **gender**: What is your gender?
- intro_extra: Are you an introvert or an extrovert?
- sleep: How many hours do you sleep at night, on average?
- bedtime: What time do you usually go to bed?
- **countries**: How many countries have you visited?
- dread: On a scale of 1-5, how much do you dread being here?

Data matrix

Data collected on students in a statistics class on a variety of variables:

variable

*				
gender	intro₋extra		dread	•
male	extravert		3	
female	extravert		2	
female	introvert	• • •	4	←
female	extravert	• • •	2	observation
Ė	:	:	E	
male	extravert	• • •	3	_
	male female female female :	male extravert female extravert female introvert female extravert	male extravert female extravert female introvert female extravert	male extravert ··· 3 female extravert ··· 2 female introvert ··· 4 female extravert ··· 2 : : : :

	gender	sleep	bedtime	countries	dread
1	male	5	12-2	13	3
2	female	7	10-12	7	2
3	female	5.5	12-2	1	4
4	female	7	12-2		2
5	female	3	12-2	1	3
6	female	3	12-2	9	4

• gender:

	gender	sleep	bedtime	countries	dread
1	male	5	12-2	13	3
2	female	7	10-12	7	2
3	female	5.5	12-2	1	4
4	female	7	12-2		2
5	female	3	12-2	1	3
6	female	3	12-2	9	4

• gender: categorical, nominal

3 	gender	sleep	bedtime	countries	dread
1	male	5	12-2	13	3
2	female	7	10-12	7	2
3	female	5.5	12-2	1	4
4	female	7	12-2		2
5	female	3	12-2	1	3
6	female	3	12-2	9	4

- gender: categorical, nominal
- sleep:

	gender	sleep	bedtime	countries	dread
1	male	5	12-2	13	3
2	female	7	10-12	7	2
3	female	5.5	12-2	1	4
4	female	7	12-2		2
5	female	3	12-2	1	3
6	female	3	12-2	9	4

- gender: categorical, nominal
- sleep: numerical, continuous

3 	gender	sleep	bedtime	countries	dread
1	male	5	12-2	13	3
2	female	7	10-12	7	2
3	female	5.5	12-2	1	4
4	female	7	12-2		2
5	female	3	12-2	1	3
6	female	3	12-2	9	4

- gender: categorical, nominal
- sleep: numerical, continuous
- bedtime:

	gender	sleep	bedtime	countries	dread
1	male	5	12-2	13	3
2	female	7	10-12	7	2
3	female	5.5	12-2	1	4
4	female	7	12-2		2
5	female	3	12-2	1	3
6	female	3	12-2	9	4

- gender: categorical, nominal
- sleep: numerical, continuous
- bedtime: categorical, ordinal

	gender	sleep	bedtime	countries	dread
1	male	5	12-2	13	3
2	female	7	10-12	7	2
3	female	5.5	12-2	1	4
4	female	7	12-2		2
5	female	3	12-2	1	3
6	female	3	12-2	9	4

- gender: categorical, nominal
- sleep: numerical, continuous
- bedtime: categorical, ordinal
- countries:

3 	gender	sleep	bedtime	countries	dread
1	male	5	12-2	13	3
2	female	7	10-12	7	2
3	female	5.5	12-2	1	4
4	female	7	12-2		2
5	female	3	12-2	1	3
6	female	3	12-2	9	4

- gender: categorical, nominal
- sleep: numerical, continuous
- bedtime: categorical, ordinal
- countries: numerical, discrete

	gender	sleep	bedtime	countries	dread
1	male	5	12-2	13	3
2	female	7	10-12	7	2
3	female	5.5	12-2	1	4
4	female	7	12-2		2
5	female	3	12-2	1	3
6	female	3	12-2	9	4

- gender: categorical, nominal
- sleep: numerical, continuous
- bedtime: categorical, ordinal
- countries: numerical, discrete
- dread:

	gender	sleep	bedtime	countries	dread
1	male	5	12-2	13	3
2	female	7	10-12	7	2
3	female	5.5	12-2	1	4
4	female	7	12-2		2
5	female	3	12-2	1	3
6	female	3	12-2	9	4

- gender: categorical, nominal
- sleep: numerical, continuous
- bedtime: categorical, ordinal
- countries: numerical, discrete
- dread: categorical, ordinal could also be used as numerical

Practice - End

Relationships between variables

Many analyses are motivated by looking for a relationship between two or more variables.

Relationships between variables

- When two variables show some connection with one another, they are called associated variables.
- If two variables are not associated, then they are said to be independent

Relationships between variables

- Examining **summary statistics** (like the mean) can provide numerical insights about the specifics of each of these questions.
- Scatterplots are one type of graph used to study the relationship between two numerical variables

Scatterplot of US county dataset

If homeownership in one county is lower than the national average, will the percent of housing units that are in multi-unit structures in that county tend to be above or below the national average?

The scatterplot suggests a relationship between the two variables

Chattahoochee County, Georgia 39.4% multi-unit structures 31.3% homeownership rate

Because there is a downward trend – counties with more housing units that are in multi-unit structures are associated with lower homeownership – these variables are said to be **negatively associated**

A scatterplot showing population change against median household income.

Owsley County of Kentucky, is highlighted, which lost 3.63% of its population from 2010 to 2017 and had median household income of \$22,736.

A **positive association** is shown in the relationship between the median_hh_income and pop_change variables, where counties with higher median household income tend to have higher rates of population growth.

Practice - Start

Relationships among variables

Does there appear to be a relationship between the hours of study per week and the GPA of a student?

Relationships among variables

Does there appear to be a relationship between the hours of study per week and the GPA of a student?

Can you spot anything unusual about any of the data points?

Relationships among variables

Does there appear to be a relationship between the hours of study per week and the GPA of a student?

Can you spot anything unusual about any of the data points? There is one student with *GPA* > 4.0, this is likely a data error.

Practice

Based on the scatterplot on the right, which of the following statements is correct about the head and skull lengths of possums?

- (a) There is no relationship between head length and skull width, i.e. the variables are independent.
- (b) Head length and skull width are positively associated.
- (c) Skull width and head length are negatively associated.
- (d) A longer head causes the skull to be wider.
- (e) A wider skull causes the head to be longer.

Practice

Based on the scatterplot on the right, which of the following statements is correct about the head and skull lengths of possums?

- (a) There is no relationship between head length and skull width, i.e. the variables are independent.
- (b) Head length and skull width are positively associated.
- (c) Skull width and head length are negatively associated.
- (d) A longer head causes the skull to be wider.
- (e) A wider skull causes the head to be longer.

Practice - End

Explanatory and response variables

Explanatory and response variables

When we ask questions about the relationship between two variables, we sometimes also want to determine if the change in one variable causes a change in the other.

explanatory variable \rightarrow might affect \rightarrow response variable

Example

Consider the following question about the county dataset:

"If there is an increase in the median household income in a county, does this drive an increase in its population?"

What is explanatory and what is the response variable?

- In this question, we are asking whether one variable affects another.
- If this is our underlying belief, then median household income is the explanatory variable
- and the population change is the response variable in the hypothesized relations

Observational studies and experiments

There are two primary types of data collection: experiments and observational studies.

Experiments

- When we want to evaluate the effect of particular traits, treatments, or conditions, we conduct an **experiment**.
- When individuals are randomly assigned to a group, the experiment is called a randomized experiment.

Experiments

 We typically use placebos (fake treatment) to ensure roughly equal conditions

Observational study

- We perform an observational study when we collect data in a way that does not directly interfere with how the data arise.
- We may collect information via surveys, review medical or company records
- Or follow a **cohort** of many similar individuals over time

Terms you need to know

associated experiment explanatory variable case categorical independent cohort level continuous negative association nominal data data frame numerical dependent observational study

observational unit

discrete

ordinal placebo positive association randomized experiment response variable summary statistic variable

Resources

The slides are based on the excellent book "Introduction to Modern Statistics" by Mine Çetinkaya-Rundel and Johanna Hardin.

The online version of the book can be accessed for free:

https://openintro-ims.netlify.app/inde x.html

