

Sequential Circuit Lecture No. 07

By- CHANDAN SIR

TOPICS TO BE COVERED **01 ASYNCHRNOUS COUNTER**

02 Synchronous Counter

03 Discussion

Sequential circuit

Asynchronous Counter Ripple counter M0D-8UP Ripple counter TA Qc 90

clk

FEEDBACK REDUCES THE NUMBER OF STATES

(1r= 909, 9B BA

1011 -> MOD-11 UP Ripple wunter

ASYNCHRONOUS COUNTER

00

ON

clr

10

	0	0	0	0
I	1	L	1	1
I	2	1	1	0
I	3	No	80	٥۔در
	4	1	1	J
٩	5			
	6		1	
	7			
			1	

Q_c

000 -	1117	110

	8-5	5 = (3)
(full-1	$) \rightarrow = 0$	OWN

ASYNCHRONOUS COUNTER

FULL-UP = DOWN 8-3=5)

Ch-QCQBQA

CLK	٩c	ap	BA	CIY
0	0	0	0	0
1	L	1	.1	0
2	1	1	0	0
3	1	0	1	0
4	1	0	0	0
5	80	₹0	*	70
6	1	1	7	Ó
7	1	1	Ó	O
8				

8	g _e	gn
0	1	1

ASYNCHRONOUS COUNTER

MOD-a' DOWN Ripple counter.

CLK		
0		
1		
2		
3		
4		
5		
6	7.0	
7		
8		

MOD" LI DOWN RIPPLE COUNTER 8-7

Besign a MOD-9 DOWN Ripple counter?

Q. Which type of counter is shown below?

- A. mod 5 down counter
- c. mod 6 up counter

mod 5 up counter

D. mod 6 down counter

Consider the following counter

If counter starts at 000, what will be the count after 13 clock

pulses?

8th
$$0 \rightarrow 000$$

 $9th \cdot 1 \rightarrow 000$
 $10^{t} 2 \rightarrow 010$
 $11^{th} 3 \rightarrow 011$
 $12^{th} 4 \rightarrow 100$
 $13^{th}, 5 \rightarrow 100$
 $14^{th} 6 \rightarrow 110$
 $15^{t} 7 \rightarrow 111$

"n" bit Ripple counter

1cm> U. Shatt

$$\frac{1}{\sqrt{f_{crk}}} = \frac{1}{n \cdot r_{pdff}}$$

MOD-3

			:	
(lk	Q _c	Org	Q _A	Clr= 960
0	8	D	D	K I
1	0	0	T	0
2	0	1	0	0
3	Ø	2	ر ر ا	1° 1
4				••••••
,				

Pr = QcQBQp Pr

۵	Q _B		Pr
			0
1	Ī	1	0
1	1	0	0
J.	8	7	XO
1	l	0	0
7	10	1	NO
	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 1 1 8 1 1 8	

Synchronous counter:

Pw

17 Ring counter

>27 Johnson counter

1) RING COUNTER:

Pw.

Ly It is a \$150 shift Register in the form of Rigg.

3 bit Ring counter

CLK	Q _A	Q _B	9c
0	0	0	0
1	L	7	Ö
2	0	1	0.
3	0	Ö	1
4	1	Ó	0
5	0	1	0
6	0	0	.1

3 bit Ring counter

"N' bit Ring counter

MOD = used state= N

4 bit Ring counter

Self starting Ring counter

000100100000000

3 JOHNSON COUNTER

Pw

- Twisted Ring Counter
- Creeping Counter
- Mobies Counter
- Walking Counter

Clock	Q_2	Q_1	Q_0
0	0	0	0
1	1	Ó	0
2	1	1	0
3	ļ	Í	1
4	0	Ť	1
5	O	0	1
6	0	0	0
7	J	0	0
8	1	1	0
	i i		

9

3 bit Johnson counter

$$\begin{array}{c} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$$

4 bit Johnson counter

Pw

"N' bit Johnson counter

MOD = Used states = 2N

'Symbolic Representation."

LOCK OUT PROBLEM

Whenever Johnson Counter enters into its unused state then it will lock into its unused state is called lock out problem.

Clock	Q_2	Q_1	Q_0
0	0	1	0
1	1	Q	1
2	0	j	0
3	4	0	1
4	0	1	0
5			
6			
7			
8			
9			

JOHNSON COUNTER BY USING JK FLIP FLOP

DESIGNING OF SYNCHRONOUS COUNTER

STEP 1. Write the Previous and Present State.

STEP 2. Write the Excitation Table of FF.

STEP 3. Write the Logical Expression.

STEP 4. Minimize the Logical expression.

STEP 5. Hardware Implementation.

the sequence $0 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 0$ $\{00 \rightarrow 10 \rightarrow 01 \rightarrow 11 \rightarrow 00 \rightarrow \dots\}$

he sequence
$$0 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 0$$

I						
	Q_{L}	Qo	Q+	Q+	p ₁	ನಿ.
	0	0		0	1	
		1	1	1	1	1
	1	0	0	1	0	1
	L	1	0	0	Ó	0

Step 3.
$$D_1 = \overline{q_1}\overline{q_0} + \overline{q_1}\overline{q_0}$$

Step 4 $D_1 = \overline{q_1}(\overline{q_0} + \overline{q_0})$
 $D_1 = \overline{q_1}$
 $D_0 = \overline{q_1}\overline{q_0} + \overline{q_1}\overline{q_0}$
 $D_0 = \overline{q_1}\overline{q_0} + \overline{q_1}\overline{q_0}$
 $D_0 = \overline{q_1}\overline{q_0} + \overline{q_1}\overline{q_0}$

Steps

Jus	rifica	tion

$$\begin{array}{c|cccc}
CLk & Q_1 & Q_0 \\
0 & 0 & 0 \\
1 & 1 & 0 \\
2 & 0 & 1 \\
3 & 1 & 1
\end{array}$$

$$\begin{array}{c|cccc}
A & 0 & 0 \\
4 & 0 & 0
\end{array}$$

Q.

Design a Synchronous Counter by using T Flip Flop which count

the sequence
$$0 \rightarrow 2 \rightarrow 3 \rightarrow 0$$
 $\{00 \rightarrow 10 \rightarrow 11 \rightarrow 00\}$

				-	
Q_1	Qo	Q ₁ ¹	Qto	τ_{i}	To
0	0		0	1	0
	1		×	×	×
1	0	1	1	0	1
1	1	0	Ò	1	1

Design a Synchronous Counter by using JK Flip Flop which

count the sequence $0 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 1 \rightarrow 6 \rightarrow 0$

Design a Synchronous Counter by using T Flip Flop which count

the sequence $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 0$

