Algebra 3

Lectured by Alession Corti Scribed by Yu Coughlin

Autumn 2025

Contents

1	Rings and Modules	1
	1.1 Introduction	1
2	Matrix Lie Groups	1

1 Rings and Modules

1.1 Introduction

You hopefully already know the definition of a ring, so here are some examples:

- \mathbb{Z} , the ring of integers;
- any field like \mathbb{F}_{p^n} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , and et cetera;
- for a given ring R, the ring of polynomials R[x], when we let R=k a field this is an Euclidean domain admitting many parallels to \mathbb{Z} ;
- R[[x]], the ring of power series;
- $M_n(R)$ the ring of $n \times n$ matrices with entries in R, the first noncommutative example here;
- R-valued functions out of any set have a pointwise ring structure;
- For a group G we can consider the group ring R[G], which we formalise as the set of finitely supported maps $f: G \to R$, addition is pointwise, and multiplication is given by

$$(fg)(x) := \sum_{uv = x} f(u)g(v)$$

written as R-linear combinations of elements of G, this will be commutative iff G is abelian;

- we can define the quaternions as $\mathbb{H} := \mathbb{R}[Q_8]$, where Q_8 is the quaternionic group $\{\pm 1, \pm i, \pm j, \pm k\}$;
- the first Weyl algebra is roughly "the ring of polynomial valued differential operators", defined as

$$A_1 := \mathbb{C}[x, \partial]/(\partial x - x\partial = 1)$$

you should think of this acting of $f \in \mathbb{C}[x]$, generated by the product rule:

$$\partial x f - x \partial f = f \frac{d}{dx} x f - x \frac{d}{dx} f = f.$$

2 Matrix Lie Groups