Introduction to Logic Programming

Study of Logic!

What is logic? Why is it important?

- Logic is about reasoning
 - One has to show validity of arguments
 - Reasoning is sound only if it is impossible to draw false conclusions from true facts.
 - Sound reasoning can however produce true/false conclusions from false premises
- Logic is a tool to study computation systems: example law, PL, math etc.
 - For instance, one can cleanly identify circular reasoning in a mathematical proof!
- Formal logic can also be viewed as a formal language with syntax and semantics.

Example of Reasoning

- Forms of reasoning:
 - Deductive: the truth of premises guarantees the truth of the conclusion
 - Humans are mortal, Socrates is a human => Socrates is mortal
 - Inductive: Conclusions follow from premises with some probability; in other words we make broad generalisations from specific observations.
 - First note pulled is one rupee, second note pulled is again one rupee note => all notes in the purse are one rupee notes
 - Abductive: From some partial observations, create the most likely explanation
 - Eg: I saw milk spilled from a packet, I also saw a cat nearby => Cat spilled the milk
 - We will restrict ourselves to deductive reasoning in this course.

- Study of statements expressed in natural languages
 - Eg: Ostriches cannot fly, It rained today. In general assertions and denials can be considered as propositions.
- Syntax:
 - A: A countable set of proposition atoms
 - Assign a variable, say c, to Ostriches cannot fly. c is then a propositional atom.
 - $\Omega = \{ \perp, \top, \neg, \wedge, \vee, \rightarrow, \leftrightarrow \}$ as set of operators/connectives with well defined arities
 - Parenthesis (and)
 - $\mathscr{P}=\mathscr{T}_{\Omega}(A)$ is the smallest set generated from A and Ω

- Such that:
 - ⊥, T ∈ 𝒯
 - If $p \in A$ then $p \in \mathscr{P}$
 - If $f \in \mathscr{P}$ then $\neg f \in \mathscr{P}$
 - If $f,g \in \mathcal{P}$ then $f \circ g \in \mathcal{P}$ where $\circ \in \Omega$
- In BNF: $\phi, \psi := \bot \mid \top \mid p \in A \mid (\neg \phi) \mid \phi \circ \psi$
 - The first three are atomic formulae (ie. \bot , \top , $v \in A$)
- Each expression of this language is callee a well-formed formula of ${\mathscr P}$

Associativity and Precedence

- Why do we need it?
 - So that we can translate an expression unambiguously into its AST (for parsing).
- Assuming the language to be fully parenthesised
 - Operators ∧, ∨ are left associative
 - Operators \rightarrow , \leftrightarrow are right associative
 - Precedence convention: ↔ ≺ → ≺ ∨ ≺ ∧ ≺ ¬

Identity, Subformula, Parsing

- Any two propositions ϕ and ψ which have the same AST are syntactically identical, $\phi \equiv \psi$
 - They may differ only in redundant parenthesis
- Consider $(\neg(p \land \neg q) \lor r)$:
- Subformula: defined by induction on the structure of the formula
 - $SF(\bot) = \{\bot\}, SF(\top) = \{\top\},$
 - $SF(p) = \{p\}, SF(\neg \phi) = SF(\phi) \cup SF(\neg \phi)$
 - $SF(\phi \circ \psi) = SF(\phi) \cup SF(\psi) \cup \{\phi \circ \psi\}$, where $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$

Identity, Subformula, Parsing

 Atoms of a formula are leaves in the AST of the formula. They can also be defined by induction on the structure of the formula.

•
$$A(\bot) = \{\bot\}, A(\top) = \{\top\},$$

•
$$A(p) = \{p\}, A(\neg \phi) = A(\phi)$$

•
$$A(\phi \circ \psi) = A(\phi) \cup A(\psi)$$
, where $\circ \in \{ \land, \lor, \rightarrow, \leftrightarrow \}$

- Atoms in the example?
- Immediate subformulas are the children of the formula in the AST
- Leading connective is the connective that is used to join the children

Identity, Subformula, Parsing

- Again consider: $p \land \neg q \rightarrow r \lor s$
- Parsing by precedence order:
 - \neg has the highest precedence: thus $(\neg q)$
 - \land has higher precedence than \rightarrow : thus, $(p \land (\neg q))$
 - \vee has higher precedence than \rightarrow : thus $(r \vee s)$
 - Leading connective: →

Identity, Subformula, Parsing

- Exercise: Which of the following can be unambiguously parsed without associativity?
 - $p \vee q \wedge r$
 - $\neg p \land q \leftrightarrow p \lor r$
- Exercise: Define the parsing algorithm given a formula ϕ . HINT: look at the inductive definition of subformulas!

Semantics

- Truth assignment or truth valuation is a function τ which assigns to each propositional atom a truth value $\in \{0,1\}$
 - $\tau:A \rightarrow \{0,1\}$
 - The semantics of propositions via $\mathcal{T}[\![.]\!]_{ au}:\mathcal{P} \to \{0,1\}$
 - $\mathcal{T} \llbracket \bot \rrbracket_{\tau} \triangleq 0$, $\mathcal{T} \llbracket \top \rrbracket_{\tau} \triangleq 1$
 - $\mathcal{T}[p]_{\tau} \triangleq \tau(p)$, $\mathcal{T}[\neg \phi]_{\tau} \triangleq \neg \mathcal{T}[\phi]_{\tau}$ and so on.
 - The semantics are enumerated truth assignments in the form of a truth table.

Models and Satisfiability

- A truth assignment τ is a model of a formula ϕ (denote by $\tau \models \phi$) iff $\mathcal{T}[\![\phi]\!]_{\tau} \triangleq 1$
- A formula is satisfiable if it has a model. Otherwise it is said to be unsatisfiable (or UNSAT).
- For any finite set $S = \{\phi_i | 1 \le i \le n\}, \tau \models S \text{ iff } \tau \models \phi_1 \land \ldots \land \phi_n\}$
- Satisfaction relation between models and formulas is the smallest relation that satisfies the following conditions:
 - $\tau \vDash p$ if $\tau(p) = 1$; $\tau \vDash \neg F$ if $\tau \nvDash F$; $\tau \vDash F_1 \lor F_2$ if $\tau \vDash F_1$ or $\tau \vDash F_2$.. and so on.

Models and Satisfiability

• Eg: Consider $(\neg(p \land \neg q) \lor r)$ with model $\tau = \{p \mapsto 1, q \mapsto 1, r \mapsto 0\}$

Tautology, Contradiction, Contingent

- A proposition is said to be a :
 - Tautology if it is true under all possible truth assignments
 - Contradiction if it is false under all possible truth assignments
 - Contingent if it is both satisfiable as well as falsifiable.
 - Exercise:
 - If F is valid then $\neg F$ is ?
 - If F is a contradiction then $\neg F$ is?
 - If F is satisfiable then $\neg F$ is ?

Logical Consequence, Equivalence, Equisatisfiability

- A proposition ϕ is called a logical consequence of a set Γ of formulas (denote as $\Gamma \vDash \phi$) if any truth assignment that satisfies **all formulas** of Γ also satisfy ϕ .
 - When $\Gamma = \emptyset$, then logical consequence reduces to logical validity.
 - $\Gamma \nvDash \phi$ denotes that ϕ is not a logical consequence of Γ .
 - $\Gamma \vDash \phi$ iff $\bigwedge \psi_i \to \phi$ is **valid** where $\psi_i \in \Gamma$
- $F \equiv G$ if for each model τ , we have $\tau \vDash F$ iff $\tau \vDash G$
 - Eg: $(p \lor q) \lor r \equiv p \lor (q \lor r)$
- F and G are equisatisfiable if F is SAT iff G is SAT.

Normal Forms

- Conjunctive Normal Form (CNF)
 - Of the form $\int \!\!\! \int \delta_i$ where $\delta_i = \int \!\!\! \int \gamma_j$
 - Analogously one can define DNF.
- Thm: Every formula in this logic is logically equivalent to its CNF
- Thm: Every formula in this logic is logically equivalent to its DNF

Tautology Checking

- Verifying validity of a formula by truth table can be quite tedious.
- Checking validity (or tautology) involves finding a falsifying assignment.
 - Given a formula in CNF of the form $\bigwedge \delta_i$ where $\delta_i = \bigvee \gamma_j$ where the literals in $\gamma_i = P_i \cup N_i$
 - Then γ_i can be falsified iff $P_i \cap N_i = \emptyset$
 - Complexity is linear in the size of a clause.