GATE 2023[IN]-36

EE23BTECH11066 - Yakkala Amarnath Karthik

Question:

The impulse response of an LTI system is $h(t) = \delta(t) + 0.5\delta(t-4)$, where $\delta(t)$ is continuous-time unit impulse signal if the input signal $x(t) = \cos\left(\frac{7\pi t}{4}\right)$, the output is (GATE IN 2023)

Solution:

Variable	Description	value
$\delta\left(t\right)$	Dirac delta function	∞ if t=0; 0 in other cases
		$\int_{-\infty}^{\infty} \delta\left(t\right) = 1$
$h\left(t\right)$	impulse response	$\delta(t) + 0.5\delta(t-4)$
$x\left(t\right)$	input signal	$x(t) = \cos\left(\frac{7\pi t}{4}\right)$
$y\left(t\right)$	output signal	x(t)*h(t)
$\mathcal{F}(\cos at)$	Fourier transform of $\cos at$	$0.5 \left[\delta \left(f - \frac{a}{2\pi} \right) + \delta \left(f + \frac{a}{2\pi} \right) \right]$
$X\left(f\right)$	Fourier transform of $x(t)$	$0.5\left[\delta\left(f-\frac{7}{8}\right)+\delta\left(f+\frac{7}{8}\right)\right]$
$H\left(f\right)$	Fourier transform of $h(t)$	$1 + 0.5e^{-j8\pi f}$
Y(f)	Fourier transform of $y(t)$	$X(f)\overline{H(f)}$
	TABLE I	

A TABLE WITH INPUT PARAMETERS

from Table I

$$y(t) = x(t) * h(t)$$

$$= x(t) * (\delta(t) + 0.5\delta(t - 4))$$

$$= x(t) + 0.5x(t - 4)$$

$$= \cos\left(\frac{7\pi t}{4}\right) + 0.5\cos\left(\frac{7\pi(t - 4)}{4}\right)$$

$$= \cos\left(\frac{7\pi t}{4}\right) + 0.5\cos\left(\frac{7\pi t}{4} - 7\pi\right)$$

$$= \frac{1}{2}\cos\left(\frac{7\pi t}{4}\right)$$

$$= \frac{1}{2}x(t)$$
(6)
$$= \frac{1}{2}x(t)$$

$$Y(f) = X(f) H(f)$$

$$= \frac{1}{2} \left[\delta \left(f - \frac{7}{8} \right) + \delta \left(f + \frac{7}{8} \right) \right] \left[1 + 0.5e^{-j8\pi f} \right]$$

$$(9)$$

$$Y(f) = \frac{1}{2} \left(1 + 0.5e^{-j8\pi f} \right) \delta \left(f - \frac{7}{8} \right) + \frac{1}{4} \left(1 + 0.5e^{-j8\pi f} \right) \delta \left(f - \frac{7}{8} \right) e^{-j8\pi f}$$

$$= \frac{1}{2} X(f)$$
(11)

Fig. 1. Graph showing x(t) and y(t)