Homework 10

- Assume that V_{DD} =1.5 V, K'_n =100 uA/V², Vt_n =0.4 V, λ_n =0.1 V-1, $(W/L)_n$ =10, K'_p =60 uA/V², Vt_p =-0.4 V, λ_p =0.2 V-1, $(W/L)_p$ =17. Find R_{out} . Hint: connect a load of 100fF to the gate, calculate the LH propagation delay (t_{pLH}) using average current technique, then equate the propagation delay to a simple RC network and find R_{out} . This will effectively be $R_{out}(LH)$.
- Use Elmore technique to compute the time constant and LH propagation delay (t_{PLH}) of the above network from the gate input to node 5.