Chapter 9: Queuing Models

Queuing or Waiting Line Analysis

- Queues (waiting lines) affect people everyday
- A primary goal is finding the best level of service
- Analytical modeling (using formulas) can be used for many queues
- For more complex situations, computer simulation is needed

Queuing System Costs

- 1. Cost of providing service
- 2. Cost of <u>not</u> providing service (waiting time)

Characteristics of a Queuing System

The queuing system is determined by:

- Arrival characteristics
- Queue characteristics
- Service facility characteristics

Arrival Characteristics

- Size of the arrival population either infinite or limited
- Arrival distribution:
 - Either fixed or random
 - Either measured by time between consecutive arrivals, or arrival rate
 - The Poisson distribution is often used for random arrivals

Poisson Distribution

- Average arrival rate is known
- Average arrival rate is constant for some number of time periods
- Number of arrivals in each time period is independent
- As the time interval approaches 0, the average number of arrivals approaches 0

Poisson Distribution

 λ = the average arrival rate per time unit

P(x) = the probability of exactly x arrivals occurring during one time period

$$P(x) = \underbrace{e^{-\lambda} \lambda^{x}}_{x!}$$

Behavior of Arrivals

- Most queuing formulas assume that all arrivals stay until service is completed
- Balking refers to customers who do not join the queue
- Reneging refers to customers who join the queue but give up and leave before completing service

Queue Characteristics

- Queue length (max possible queue length)
 - either limited or unlimited

Service discipline – usually FIFO (First In First Out)

Service Facility Characteristics

- 1. Configuration of service facility
 - Number of servers (or channels)
 - Number of phases (or service stops)
- 2. Service distribution
 - The time it takes to serve 1 arrival
 - Can be fixed or random
 - Exponential distribution is often used

Exponential Distribution

 μ = average service time

 $t = the length of service time (t <math>\geq 0$)

P(t) = probability that service time will be greater than t

$$P(t) = e^{-\mu t}$$

Measuring Queue Performance

- ρ = utilization factor (probability of all servers being busy)
- L_a = average number in the queue
- L = average number in the system
- W_q = average waiting time
- W = average time in the system
- P₀ = probability of 0 customers in system
- P_n = probability of exactly n customers in system

Kendall's Notation

A/B/s

A = Arrival distribution

(M for Poisson, D for deterministic, and G for general)

B = Service time distribution

(M for exponential, D for deterministic, and G for general)

S = number of servers

The Queuing Models Covered Here All Assume

- 1. Arrivals follow the Poisson distribution
- 2. FIFO service
- 3. Single phase
- 4. Unlimited queue length
- 5. Steady state conditions

We will look at 5 of the most commonly used queuing systems.

Name (Kendall Notation)	Example
Simple system (M / M / 1)	Customer service desk in a store
Multiple server (M / M / s)	Airline ticket counter
Constant service (M / D / 1)	Automated car wash
General service (M / G / 1)	Auto repair shop
Limited population (M / M / s / ∞ / N)	An operation with only 12 machines that might break

Single Server Queuing System (M/M/1)

- Poisson arrivals
- Arrival population is unlimited
- Exponential service times
- All arrivals wait to be served
- λ is constant
- μ > λ (average service rate > average arrival rate)

Operating Characteristics for M/M/1 Queue

1. Average server utilization

$$\rho = \lambda / \mu$$

2. Average number of customers waiting

$$L_{q} = \frac{\lambda^{2}}{\mu(\mu - \lambda)}$$

3. Average number in system

$$L = L_q + \lambda / \mu$$

4. Average waiting time

$$W_{q} = \underline{L}_{q} = \underline{\lambda}$$

$$\lambda \quad \mu(\mu - \lambda)$$

- 5. Average time in the system $W = W_q + 1/\mu$
- 6. Probability of 0 customers in system $P_0 = 1 \lambda/\mu$
- 7. Probability of exactly n customers in system

$$P_n = (\lambda/\mu)^n P_0$$

Total Cost of Queuing System

Total Cost =
$$C_w \times L + C_s \times s$$

- C_w = cost of customer waiting time per time period
- L = average number customers in system
- C_s = cost of servers per time period
- s = number of servers