Kompiuterinio modeliavimo pradžiamokslis

Aleksas Mazeliauskas aleksas.eu

CERN teorinės fizikos departamentas, Ženeva, Šveicarija

2021 m. vasario 17 d.

Kompiuterinis modeliavimo svarba fizikoje

Fizikos teorijos yra patvirtinamos eksperimentu – tam reikalingos tikslios mokslinės prognozės.

Ką daryti, jei teorija neturi paprastų sprendinių? ⇒ šiuolaikiniai kompiuteriai leidžia apskaičiuoti labai sudėtingus modelius.

Gravitacijos aprašymas įvairiose situacijose

Juodųjų skylių susidūrimus galima aprašyti tik skaitmeniškai sprendžiant Einšteino bendrosios reliatyvumo teorijos lygtis.

Pirmas gravitacinių bangų užfiksavimas

2015 m. užfiksuotas pirmas gravitacinių bangų signalas – Einšteino teorija dar kartą patvirtinta eksperimentu.

Prireikė ne tik 100 metų sukurti tinkamą observatoriją, bet ir tikslius kompiuterinius modelius.

Antras pavyzdys: galaktikos modeliavimas

Galimybė modeliuoti visatos ir galaktikų formavimą. TNG projektas https://youtu.be/0674AZ_UKZk

Net ir nesudėtingi fizikos dėsniai sukuria sudėtingus reiškinius.

Trečias pavyzdys: dalelių fizika

Standartinis dalelių fizikos modelis yra gerai eksperimentais patvirtinta teorija.

Tačiau šiuolaikinės prognozės neįmanomos be kompiuterių pagalbos.

Penki galingiausi superkompiuteriai pasaulyje (TOP500.org)

 $1EFLOP/s = 10^6TFLOP/s = 10^{18} FLOP/s$.

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.20Hz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.076Hz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.16Hz, NVIDIA Votta GV100, Dual-rait Meltanox EDR Infiniband, IBM / NVIDIA / Meltanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
5	Setene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Meltanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520	63,460.0	79,215.0	2,646

Teorija \leftrightarrow modelis \leftrightarrow eksperimentas

Sėkmingas modelis turi būti gerai apgalvotas

- Ar visa būtina fizika įtraukta?
- Ar modelis atitinka eksperimento sąlygas?
- Ar modelis padeda suprasti kas vyksta?

"All models are wrong, but some are useful" - George Box

Python

Programavimo kalba Python (nuo Monty Python).

- Paprasta nereikia deklaruoti kintamųjų tipų ar kompiliuoti.
- Tinka darbui su tekstu, skaičiais, grafikais.
- Naudingos bibliotekos (numpy, matplotlib, scipy).
- Galima dirbti interaktyviai (jupyter notebook, ipython).
- Nemokama.

Trumpas pradžiamokslis orientuotas modelių kūrimui https://github.com/amazeliauskas/NMA20210217

Antra dalis

Oilerio metodas

Duota kūno greičio funkciją v(t). Pradinė pozicija x_0 laiko momentu t_0 . Kokia kūno pozicija laiko momentu t_1 ?

$$\frac{dx}{dt} = v(t)$$

$$x(t_0 + dt) = x_0 + v(t_0)dt$$

$$x(t_0 + 2dt) = x(t_0 + dt) + v(t_0 + dt)dt$$

$$\dots$$

$$x(t_1) = x(t_1 - dt) + v(t_1 - dt)dt.$$

Kad atsakymas butų tikslus, dt turi būti pakankamai mažas.

Jei $v(t)=t^3$, tada $x(t_1)=x_0+\frac{t_1^4-t_0^4}{4}$. Patikrinkite, koks turi būti δt , kad atsakymas turėtų 1% tikslumą $(x_0=0,t_0=0,t_1=1)$.

Daug tikslesnis metodas

$$\frac{dx}{dt} = v(t, x)
v_1 = v(t_0, x_0)
v_2 = v(t_0 + \frac{1}{2}dt, x_0 + \frac{dt}{2}v_1)
v_3 = v(t_0 + \frac{1}{2}dt, x_0 + \frac{dt}{2}v_2)
v_4 = v(t_0 + dt, x_0 + dtv_3)
x(t_0 + dt) = x_0 + \frac{dt}{6}(v_1 + 2v_2 + 2v_3 + v_4).$$

Koks turi būti dt, kad būtų pasiektas 1% tikslumas?

Kūnų judėjimas gravitaciniame lauke

$$m\vec{a} = -\hat{\vec{r}} G \frac{Mm}{r^2}.$$

Vektorius ir vienetinis vektorius $\vec{r}=(x,y)$, $\hat{\vec{r}}=\left(\frac{x}{\sqrt{x^2+y^2}},\frac{y}{\sqrt{x^2+y^2}}\right)$ Perrašome lygčių sistemą.

$$\frac{dv^{x}}{dt} = -\frac{x}{\sqrt{x^{2} + y^{2}}} \frac{GM}{r^{2}}$$

$$\frac{dv^{y}}{dt} = -\frac{y}{\sqrt{x^{2} + y^{2}}} \frac{GM}{r^{2}}$$

$$\frac{dx}{dt} = v^{x}$$

$$\frac{dy}{dt} = v^{y}.$$

Prieš sprendžiant kompiuteriu, gerai parinkti tinkamus vienetus.

Vienetų parinkimas

Kompiuteris atlieka veiksmus su skaičiau, bet ne vienetais.

$$r_0 = 1.49 \times 10^{11} \,\mathrm{m}, \quad G = 6.674 \times 10^{-11} \,\mathrm{m}^3 \,\mathrm{kg}^{-1} \,\mathrm{s}^{-2}, \quad M = 1.988 \times 10^{30} \,\mathrm{kg}$$
 $v_I = \sqrt{\frac{GM}{r_0}} = 2.98 \times 10^5 \,\mathrm{m} \,\mathrm{s}^{-1}.$ $r = r_0 \bar{r}, \quad t = \frac{r_0}{M} \bar{t}.$

$$|a| = \frac{GM}{r^2} \Longrightarrow r_0 \left(\frac{r_0}{v_I}\right)^{-2} |\bar{a}| = \frac{GM}{r_0^2 \bar{r}^2} \Longrightarrow |\bar{a}| = \underbrace{\frac{GM}{r_0 v_I^2}}_{\bar{r}^2} \frac{1}{\bar{r}^2}.$$

Jei atstumą matuojame r_0 vienetais, o laiką r_0/v_I , Niutono gravitacijos dėsnis tampa

$$|a|=\frac{1}{r^2}.$$

Kiek užtrunka viena orbita?