

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Variable Compleja I Examen V

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2024-2025

Asignatura Variable Compleja I.

Curso Académico 2020-21.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Javier Merí de la Maza.

Descripción Prueba Intermedia.

Fecha 10 de Mayo de 2021.

Duración 120 minutos.

Ejercicio 1 (3 puntos). Sea $\{a_n\}_{n\in\mathbb{N}}$ una sucesión de números complejos convergente a $w\in\mathbb{C}$. Para cada $n\in\mathbb{N}$ definimos la función $f_n\in\mathcal{H}(\mathbb{C}\backslash\{a_n\})$ por $f_n(z)=\frac{1}{z-a_n}$. Dado el conjunto compacto $K=\{a_n:n\in\mathbb{N}\}\cup\{w\}$, probar que la serie de funciones $\sum_{n=1}^{\infty}\frac{f_n(z)}{n^2}$ converge absolutamente en todo punto del dominio $\Omega=\mathbb{C}\setminus K$ y uniformemente en cada subconjunto compacto contenido en Ω .

Ejercicio 2 (3 puntos). Estudiar la derivabilidad de las funciones $f,g:\mathbb{C}\to\mathbb{C}$ dadas por

$$f(z) = \operatorname{sen}(\overline{z})$$
 $g(z) = z(z-1)f(z)$ $(z \in \mathbb{C}).$

Ejercicio 3. Sea $\Omega \subset \mathbb{C}$ un abierto verificando $\overline{D}(0,1) \subset \Omega$ y sea $f \in \mathcal{H}(\Omega)$.

1. [1.5 puntos] Justificar que para cada $z_0 \in D(0,1)$ se tiene

$$|f(z_0)| \le \max\{|f(z)| : z \in C(0,1)^*\}.$$

2. [1.5 puntos] Demostrar que

$$\max\{|f(z)|: z \in \overline{D}(0,1)\} = \max\{|f(z)|: z \in C(0,1)^*\}.$$

- 3. [1.5 puntos] Supongamos que existe $z_0 \in D(0,1)$ tal que $|f(z_0)| = \max\{|f(z)| : z \in \overline{D}(0,1)\}$. Dado $r \in \mathbb{R}^+$ con $\overline{D}(z_0,r) \subset D(0,1)$, probar que existe $\lambda \in \mathbb{C}$ de modo que $f_{|\overline{D}(z_0,r)} \equiv \lambda$.
- 4. [1 punto extra] Probar que, de hecho, $f_{\mid D(0,1)} \equiv \lambda$.

Ejercicio 1 (3 puntos). Sea $\{a_n\}_{n\in\mathbb{N}}$ una sucesión de números complejos convergente a $w\in\mathbb{C}$. Para cada $n\in\mathbb{N}$ definimos la función $f_n\in\mathcal{H}(\mathbb{C}\setminus\{a_n\})$ por $f_n(z)=\frac{1}{z-a_n}$. Dado el conjunto compacto $K=\{a_n:n\in\mathbb{N}\}\cup\{w\}$, probar que la serie de funciones $\sum_{n=1}^{\infty}\frac{f_n(z)}{n^2}$ converge absolutamente en todo punto del dominio $\Omega=\mathbb{C}\setminus K$ y uniformemente en cada subconjunto compacto contenido en Ω .

Sea $T \subset \Omega$ compacto. Para cada $z \in T$ por ser \mathbb{K} compacto y la distancia una función continua, tenemos que se alcanza el siguiente mínimo:

$$d(z, K) = \min\{d(z, u) \mid u \in K\}$$

Por ser dicha distancia continua y T compacto, existe $R \in \mathbb{R}_0^+$ tal que

$$R = \min\{d(z, K) \mid z \in T\}$$

Además, como $T \subset \mathbb{C} \setminus K$, se tiene que $R \in \mathbb{R}^+$. Por tanto, se tiene que:

$$R \leqslant |z - a_n| \quad \forall z \in T, n \in \mathbb{N}$$

Por tanto, se tiene que:

$$\left|\frac{f_n(z)}{n^2}\right| = \frac{1}{n^2 \cdot |z - a_n|} \leqslant \frac{1}{n^2 \cdot R} = \frac{1}{R} \cdot \frac{1}{n^2} \qquad \forall z \in T, n \in \mathbb{N}$$

Como la serie $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge, al multiplicarla por la constante $^1/R$, también converge. Por tanto, por el Test de Weierstrass, la serie del enunciado converge absoluta y uniformemente en T.

Para la convergencia absoluta, consideramos $z \in \Omega$ fijo. Como $\{z\}$ es compacto, por el Test de Weierstrass tenemos que converge absolutamente en $\{z\}$. Como z es arbitrario, tenemos que la serie converge absolutamente en todo punto de Ω .

Ejercicio 2 (3 puntos). Estudiar la derivabilidad de las funciones $f, g : \mathbb{C} \to \mathbb{C}$ dadas por

$$f(z) = \operatorname{sen}(\overline{z})$$
 $g(z) = z(z-1)f(z)$ $(z \in \mathbb{C}).$

Estudiamos en primer lugar la función f. Para ello, con vistas a aplicar las ecuaciones de Cauchy-Riemann, definimos $u, v : \mathbb{R}^2 \to \mathbb{R}$ como:

$$u(x,y) = \operatorname{Re}(f(x+iy)) = \operatorname{Re}(\operatorname{sen}(x-iy)) = \operatorname{sen}(x)\operatorname{cosh}(-y)$$
$$v(x,y) = \operatorname{Im}(f(x+iy)) = \operatorname{Im}(\operatorname{sen}(x-iy)) = \operatorname{cos}(x)\operatorname{senh}(-y).$$

Calculamos ahora las derivadas parciales de u y v:

$$\frac{\partial u}{\partial x}(x,y) = \cos(x)\cosh(-y)$$

$$\frac{\partial u}{\partial y}(x,y) = -\sin(x)\sinh(-y)$$

$$\frac{\partial v}{\partial x}(x,y) = -\sin(x)\sinh(-y)$$

$$\frac{\partial v}{\partial y}(x,y) = -\cos(x)\cosh(-y)$$

La primera ecuación de Cauchy-Riemann nos dice que:

$$\frac{\partial u}{\partial x}(x,y) = \frac{\partial v}{\partial y}(x,y)$$

$$\cos(x)\cosh(-y) = -\cos(x)\cosh(-y)$$

$$\cos(x) = 0$$

$$x \in \frac{\pi}{2} + \pi \mathbb{Z}$$

La segunda ecuación de Cauchy-Riemann nos dice que:

$$\frac{\partial u}{\partial y}(x,y) = -\frac{\partial v}{\partial x}(x,y)$$
$$-\operatorname{sen}(x)\operatorname{senh}(-y) = \operatorname{sen}(x)\operatorname{senh}(-y)$$
$$x \in \pi \mathbb{Z} \vee y = 0$$

Definimos por tanto el conjunto en el que se cumplen las ecuaciones de Cauchy-Riemann como:

$$U = \{ z \in \mathbb{C} \mid \operatorname{Im}(z) = 0 \land \operatorname{Re}(z) \in \pi/2 + \pi \mathbb{Z} \}$$

Tenemos por tanto que $f \in \mathcal{H}(U)$, y no es derivable en ningún otro punto de \mathbb{C} .

Estudiamos ahora la función q. Fijado $z \in \mathbb{C}$, veamos si es derivable en z.

- Si $z \in U$, entonces g es derivable en z por serlo f y z(z-1), que son funciones holomorfas en \mathbb{C} .
- Si $z \notin U$, distinguimos de nuevo:
 - Si $z \neq 0, 1$, tenemos que:

$$f(z) = \frac{g(z)}{z(z-1)}$$
 $\forall z \notin U$

Si g fuese derivable en z, entonces f también lo sería, pero sabemos que no lo es puesto que $z \notin U$. Por tanto, g no es derivable en z.

• Si z=0, entonces:

$$g'(0) = \lim_{z \to 0} \frac{g(z) - g(0)}{z - 0} = \lim_{z \to 0} \frac{g(z)}{z} = \lim_{z \to 0} (z - 1)f(z) = -f(0) = -\sin(0) = 0$$

• Si z = 1, entonces:

$$g'(1) = \lim_{z \to 1} \frac{g(z) - g(1)}{z - 1} = \lim_{z \to 1} \frac{g(z)}{z - 1} = \lim_{z \to 1} zf(z) = f(1) = \text{sen}(1)$$

Por tanto, g es derivable en $U \cup \{0,1\}$, mientras que no es derivable en ningún otro punto de \mathbb{C} .

Ejercicio 3. Sea $\Omega \subset \mathbb{C}$ un abierto verificando $\overline{D}(0,1) \subset \Omega$ y sea $f \in \mathcal{H}(\Omega)$.

1. [1.5 puntos] Justificar que para cada $z_0 \in D(0,1)$ se tiene

$$|f(z_0)| \le \max\{|f(z)| : z \in C(0,1)^*\}.$$

2. [1.5 puntos] Demostrar que

$$\max\{|f(z)| : z \in \overline{D}(0,1)\} = \max\{|f(z)| : z \in C(0,1)^*\}.$$

- 3. [1.5 puntos] Supongamos que existe $z_0 \in D(0,1)$ tal que $|f(z_0)| = \max\{|f(z)| : z \in \overline{D}(0,1)\}$. Dado $r \in \mathbb{R}^+$ con $\overline{D}(z_0,r) \subset D(0,1)$, probar que existe $\lambda \in \mathbb{C}$ de modo que $f_{|\overline{D}(z_0,r)} \equiv \lambda$.
- 4. [1 punto extra] Probar que, de hecho, $f_{\mid D(0,1)} \equiv \lambda$.