(10 points) (R-4) Let g be a Lebesgue measurable function on $\mathbb R$ such that $\|fg\|_1 \le \|f\|_1$ (for all $f \in L^1(\mathbb R)$).

Let c > 1 be a real number. Prove that

$$m(\{x \in X : |g(x)| > c\}) = 0.$$

Let $E = \{ x \in \mathbb{R} \mid |g(x)| > L \}$. Note $m(E) < \infty$ as g is L'. So assume for contradiction that m(E) > 0.

Lef
$$f(x) = \chi_E(x)$$
. Then f is also L , and

$$\int_{E} |g| = \int_{\mathbb{R}} \chi_{E} |g| = ||fg||, \leq ||f||, = \int_{\mathbb{R}} \chi_{E} = n(E)$$

Therefore
$$\int_{\mathbb{R}} \chi_{E} |g| \leq M(E)$$
.

But
$$\int_{\mathbb{R}} |g| \ge c n(E) > n(E)$$
 as $c > 1$. Therefore

$$\int_{\mathbb{R}} \chi_{E} |s| > m(E) \leq 1$$
. We conclude $m(E) = 0$.