Esercitazione Sistemi Digitali

30/11/2022

Esercizio 1- Traccia

- 1 Disegnare il circuito sequenziale il cui funzionamento è descritto dalle seguenti espressioni booleane
 - $J0 = \bar{Q1} \cdot \bar{Q2}$
 - $K0 = \bar{Q2}$
 - J1=K1=1
 - J2=Q0+Q1
 - $K2 = \bar{Q1}$
- 2 Derivare la tabella degli stati futuri dal circuito descritto nel punto 1

Soluzione 1

Si (Q2Q1Q0) stato di partenza	J2K2 J1K1 J0K0	Sj stato di arrivo
000	11 11 11	111
001	11 11 11	110
010	00 11 01	000
011	10 11 01	100
100	11 11 00	010
101	11 11 00	011
110	00 11 00	100
111	10 11 00	101

Esercizio 2- Traccia

 Minimizzare il seguente automa usando il metodo di minimizzazione (tabella triangolare)

Soluzione 2

S_1	(1,2)								
S_2	Х	Х							
S_3	X	Х							
S_4	(1,7) (4,5)	(2,7) (4,5)	Х	Х	1				
S_5	Х	X	Х	Х	X				
S_6	X	Х	Χ	Χ	X	(1,7)			
S_7	(1,2)		Х	Х	(2,7) (5,4)	Х	Х		
S_8	(1,7) (4,9)	(2,7) (4,9)	Χ	Х	(5,9)	Х	Х	(2,7) (4,9)	
S_9	Х	Х	Х	Х	Х		(1,7)	Х	Х
	S_0	S_1	S_2	S_3	S_4	S_5	S_6	S ₇	S_9

Dalla tabella:

- 1 Individuata l'indistinguibilità per le seguenti coppie di stati: (1,7), (2,3), (5,9) Ogni coppia a fronte degli stessi input transita negli stessi stati producendo gli stessi output
- Dal punto precedente deriviamo l'indistinguibilità di:
 - (5,6) a seguito di (1,7)
 - (6,9) a seguito di (1,7)
 - (4,8) a seguito di (5,9)
- 3 In conclusione (1,7), (2,3), (4,8), (5,6,9) sono gruppi di stati indistinguibili

Esercizio 3- Traccia

 Analizzare il seguente circuito sequenziale e ricavare il diagramma di stato

Soluzione 3 (1)

Dalla rappresentazione del circuito ricaviamo che:

$$D_0 = x$$

$$J_1 = y$$

$$K_1 = \bar{y}$$

$$J_2 = Q_0 + Q_1$$

$$K_2 = \bar{Q}_1$$

$$Z = Q_2 \cdot \bar{Q}_1$$

Soluzione 3 (2)

X	y	Q ₂ (t)	Q ₁ (t)	Q ₀ (t)	J_2	K ₂	J_1	K ₁	$\mathbf{D_0}$	Q2(t+1)	Q1(t+1)	Q ₀ (t+1)	Z
0	0	0	0	0	0	1	0	1	0	0	0	0	0
0	0	0	0	1	1	1	0	1	0	1	0	0	0
0	0	0	1	0	1	0	0	1	0	1	0	0	0
0	0	0	1	1	1	0	0	1	0	1	0	0	0
0	0	1	0	0	0	1	0	1	0	0	0	0	1
0	0	1	0	1	1	1	0	1	0	0	0	0	1
0	0	1	1	0	1	0	0	1	0	1	0	0	0
0	0	1	1	1	1	0	0	1	0	1	0	0	0
0	1	0	0	0	0	1	1	1	0	0	1	0	0
0	1	0	0	1	1	1	1	1	0	1	1	0	0
0	1	0	1	0	1	0	1	1	0	1	0	0	0
0	1	0	1	1	1	0	1	1	0	1	0	0	0
0	1	1	0	0	0	1	1	1	0	0	1	0	1

0	1	1	0	1	1	1	1	1	0	0	1	0	1
0	1	1	1	0	1	0	1	1	0	1	0	0	0
0	1	1	1	1	1	0	1	1	0	1	0	0	0
1	0	0	0	0	0	1	0	0	1	0	0	1	0
1	0	0	0	1	1	1	0	0	1	1	0	1	0
1	0	0	1	0	1	0	0	0	1	1	1	1	0
1	0	0	1	1	1	0	0	0	1	1	1	1	0
1	0	1	0	0	0	1	0	0	1	0	0	1	1
1	0	1	0	1	1	1	0	0	1	0	0	1	1
1	0	1	1	0	1	0	0	0	1	1	1	1	0
1	0	1	1	1	1	0	0	0	1	1	1	1	0
1	1	0	0	0	0	1	1	0	1	0	1	1	0
1	1	0	0	1	1	1	1	0	1	1	1	1	0
1	1	0	1	0	1	0	1	0	1	1	1	1	0
1	1	0	1	1	1	0	1	0	1	1	1	1	0
1	1	1	0	0	0	1	1	0	1	0	1	1	1
1	1	1	0	1	1	1	1	0	1	0	1	1	1
1	1	1	1	0	1	0	1	0	1	1	1	1	0
1	1	1	1	1	1	0	1	0	1	1	1	1	0

Esercizio 4- Traccia

Un distributore di benzina accetta banconote da:

- 5 Euro
- 10 Euro
- 20 Euro

Per ogni cliente viene erogata benzina fino a 20 Euro. Notare che:

- Eventuali banconote in eccesso vengono restituite automaticamente
- Monete in eccedenza al valore di 20 Euro non vengono accettate
- Il cliente può procedere al rifornimento se ha inserito almeno 5 Euro

Il circuito riceve in input anche l'informazione che indica se il cliente ha effettuato il riferimento. In tal caso il contatore di banconote viene azzerato. Output del circuito:

- Banconote da restituire
- Possibilità o meno per il cliente di rifornirsi

Notare che le banconote vengono restituite sempre con i tagli massimi accettate (es. 15 Euro vengono restituiti con un banconota da 10 e una da 5 e non con 3 da 5). Steps:

- Individuare inputs, outputs, e possibili stati del sistema
 - Disegnare automa
- Derivare tabella stati futuri (utilizzare Flip Flop JK per gli stati)
- Minimizzare inputs Flip Flop con mappe di Karnaugh

Suggerimento: Input deve modellare informazione su rifornimento o inserimento banconote. Output indica eventuale resto da restituire e possibilità di effettuare

rifornimento.

Soluzione 4 (1)

Codifica Input:

- . 00 inserito biglietto da 5 Euro
- 01 inserito biglietto da 10 Euro
- 10 inserito biglietto da 20 Euro
- 11 rifornimento effettuato da cliente

Codifica Output per il resto:

- 00 resto 0
- 01 resto 5 Euro
- 10 resto 10 Euro
- 11 resto 15 Euro

Codifica Output per possibilità rifornimento:

- 0 impossibile rifornire
- 1 possibile rifornire

Codifica Stati:

- S₀=00 indica 0 oppure 20 Euro inseriti
- S₁=01 indica 5 Euro inseriti
- S₂=10 indica 10 Euro inseriti
- S₃=11 indica 15 Euro inseriti

Soluzione 4 (2)

Q ₁ (t)	Q ₀ (t)	\mathbf{x}_1	$\mathbf{x_0}$	J_1	K_1	J_0	K_0	$Q_1(t+1)$	$Q_0(t+1)$	\mathbf{z}_2	\mathbf{z}_1	$\mathbf{z_0}$
0	0	0	0	0	X	1	X	0	1	0	0	1
0	0	0	1	1	X	0	X	1	0	0	0	1
0	0	1	0	0	X	0	X	0	0	0	0	1
0	0	1	1	0	X	0	X	0	0	0	0	1
0	1	0	0	1	X	X	1	1	0	0	0	1
0	1	0	1	1	X	X	0	1	1	0	0	1
0	1	1	0	0	X	X	1	0	0	0	1	1
0	1	1	1	0	X	X	1	0	0	0	0	0
1	0	0	0	X	0	1	X	1	1	0	0	1
1	0	0	1	X	1	0	X	0	0	0	0	1
1	0	1	0	X	1	0	X	0	0	1	0	1
1	0	1	1	X	1	0	X	0	0	0	0	0
1	1	0	0	X	1	X	1	0	0	0	0	1
1	1	0	1	X	1	X	1	0	0	0	1	1
1	1	1	0	X	1	X	1	0	0	1	1	1
1	1	1	1	X	1	X	1	0	0	0	0	0

Soluzione 4 (3)

$$J_1 = \bar{x_1}x_0 + \bar{x_1}Q_0 = \bar{x_1}(x_0 + Q_0)$$

$$K_1 = Q_0 + x_0 + x_1$$

Soluzione 4 (4)

$$J_0=\bar{x_1}\bar{x_0}$$

$$K_0 = \bar{x_0} + Q_1 + x_1$$

