Chapter 1

Regular Languages

1.1 Deterministic Finite State Automata

Definition 1.1.1. An alphabet Σ is a finite set of symbols.

- A string over Σ is a finite sequence of symbols from Σ .
- The **length** of a string w, denoted by |w|, is the number of symbols it contains.
- The string of length 0 is called the **empty string**, denoted by ϵ .

Definition 1.1.2. Let Σ be an alphabet.

- For any nonnegative integer n, Σ^n denotes the set of words of length n.
- Σ^* denotes the set of all strings over Σ .
- A language over Σ is a subset of Σ^* .

Definition 1.1.3. A deterministic finite state automaton is a system $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$, where each component is as follows.

- Σ is the alphabet.
- Q is a finite set of **states**.
- $q_0 \in Q$ is the **initial** state.
- $F \subseteq Q$ is the set of **accepting** states.
- δ is the **transition function** from $Q \times \Sigma$ to Q.

Definition 1.1.4. The **run** of DFA $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$ on an input string $w = a_1 \cdots a_n$ over Σ is the sequence of states

$$r = (r_0, r_1, \dots, r_n)$$

where $r_0 = q_0$ and $\delta(r_{i-1}, a_i) = r_i$ for each $i \in \{1, \ldots, n\}$.

- r is an **accepting** run if $r_n \in F$.
- We say that \mathcal{A} accepts w if the run of \mathcal{A} on w is an accepting run.

- \bullet The language of all strings accepted by ${\mathcal A}$ is denoted by $L({\mathcal A}).$
- A language L is **regular** if there is a DFA \mathcal{A} with $L = L(\mathcal{A})$.

Remark. For DFA $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$, the empty string ϵ is accepted by \mathcal{A} if and only if $q_0 \in F$.

1.2 Nondeterministic Finite State Automata

Definition 1.2.1. A nondeterministic finite state automaton is a system $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$, where each component is as follows.

- Σ is the alphabet.
- Q is a finite set of **states**.
- $q_0 \in Q$ is the **initial** state.
- $F \subseteq Q$ is the set of **accepting** states.
- $\delta \subseteq Q \times \Sigma \times Q$ is the transition relation.

Definition 1.2.2. A run of NFA $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$ on an input string $w = a_1 \cdots a_n$ over Σ is the sequence of states

$$r = (r_0, r_1, \dots, r_n)$$

where $r_0 = q_0$ and $(r_{i-1}, a_i, r_i) \in \delta$ for each $i \in \{1, \ldots, n\}$.

- r is an **accepting** run if $r_n \in F$.
- We say that \mathcal{A} accepts w if there is an accepting run of \mathcal{A} on w.
- The language of all strings accepted by \mathcal{A} is denoted by $L(\mathcal{A})$.

Theorem 1.2.3. For every NFA \mathcal{A} , there is a DFA \mathcal{A}' with $L(\mathcal{A}) = L(\mathcal{A}')$.

Proof. To be completed.