装订线内答题无效

课程代码:

**

**

**

**

**

装

**

**

**

**

** 订

**

**

**

**

线

**

**

**

座位号:

新疆大学 2015—2016 学年第一学期 《高等数学》上册试题 (理工汉本)

姓名:		学号:	专业:	
-----	--	-----	-----	--

2016年1月8日

题号	 _	=	四	五	六	总分
得分						

得分	评卷人

学院: 班级:

一、单项选择题(本题5小题,每小题3分,共15分)

1.函数
$$f(x) = sinx + \frac{|x|}{x}$$
, 则 $\lim_{x\to 0} f(x) = ($) A. 0 B. -1 C. 1 D. 不存在

2. 满足方程
$$f'(x) = 0$$
的点 x 是函数 $y = f(x)$ 的()
A. 极大值点 B. 极小值点 C. 驻点 D. 间断点

3. 函数
$$f(x) = \begin{cases} e^x, & x \le 0 \\ x^2 + k, & x > 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $k = ()$

4.
$$y = xe^{-\frac{x^2}{2}}$$
 的单调增区间为() A. $(-\infty, +\infty)$ B. $(1, +\infty)$ C. $(0, 1)$ D. $(-1, 1)$

5. 巳知
$$f(x)=e^{-2x}$$
, 則 $\int \frac{f'(\ln x)}{x}dx=($) A. $\frac{1}{x^2}+C$ B. $-\frac{1}{x^2}+C$ C. $\ln x+C$ D. $-\ln x+C$

二、求下列极限(本题共3小题,每小题5分,共15分)

7.
$$\lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{1}{\ln x} \right)$$

8.
$$\lim_{x\to 0} \frac{\int_{\cos x}^1 e^{-t^2} dt}{x^2}$$

三、**求下列导数或微分**(本题共 4 小题,每小题 6 分,共24分)

9. 求由方程 $xy = e^{x+y}$ 所确定的隐函数y = y(x)的导数 $\frac{dy}{dx}$

**

**

**

**

**

** 订

**

**

**

10. 已知 $y = \tan(1-x^2)$, 求 $dy|_{x=1}$

11. 已知
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$$
 , 求二阶导数
$$\frac{d^2y}{dx^2}$$

12. 求函数 $y = \ln(1+x^2)$ 的凹凸区间及拐点

四、求下列各式的积分 (本题共4小题,每小题5分,共20分)

$$14. \int_{1}^{2} \frac{2 + 3\sin\frac{1}{x}}{x^{2}} dx$$

$$15. \int_{-\infty}^{+\infty} \frac{1}{x^2 + 2x + 2} dx$$

16. 计算曲线 $y = \frac{2}{3}x^{\frac{3}{2}}$ 上相应于 $a \le x \le b$ 的一段弧的长度

** ** 装 ** ** 订 ** ** 线 ** ** 内 ** 订 答 ** ** 题 ** ** 无 ** ** 效 ** ** ** ** 线 ** ** ** ** ** **

> ** **

得分 评卷人

**

**

** ** * * * * * * *

五、求解微分方程 (本大题共2小题,第17题6分,第18题8分,共14分)

17.求微分方程 $x \ln x dy + (y - \ln x) dx = 0$ 的通解

18. 求方程 $y'' - 5y' + 6y = xe^{2x}$ 的通解

六、证明题 (本大题共2小题, 每题6分, 共12分)

19. 已知数列 $\{a_n\}$ 满足 $a_1=\frac{1}{2},a_{n+1}=\frac{1+a_n^2}{2}$, n为正整数. 证明数列 $\{a_n\}$ 的极限存在并求出其极限

20. 证明: 当x > 0 时, $(x^2 - 1) \ln x \ge (x - 1)^2$

**

**

会会

**

新疆大学 2015—2016 学年度第一学期《高等数学》(上册) 汉本试卷(标准答案)

一单项选择题

- 1.D 2.C 3.A
- 4. I
- 5.A

- 二. 极限
- 6. 原式=lim $(1+\frac{-2}{2x+1})^{3x}=e^{-3}$
- 7. 原式= $\lim \frac{\ln x x + 1}{(x-1)\ln x} = \lim \frac{1-x}{x\ln x + x 1} = \lim \frac{-1}{\ln x + 2} = \frac{-1}{2}$
- 8. 原式= $\lim \frac{e^{-\cos^2 x} \sin x}{2x} = \lim \frac{e^{-\cos^2 x}}{2} = \frac{1}{2e}$
 - 三. 微分
 - 9. 两边求导得到 $y + xy' = e^{x+y}(1+y')$, 故 $\frac{dy}{dx} = \frac{e^{x+y} y}{x e^{x+y}}$
 - 10. $y' = -2x \sec^2(1-x^2)$, $dy|_{x=1} = -2$
 - 11. $\frac{dy}{dx} = \frac{\sin t}{1 \cos t}, \frac{d^2y}{dx^2} = \frac{-1}{a(1 \cos t)^2}$
 - 12. $y' = \frac{2x}{1+x^2}, y'' = \frac{2(1-x^2)}{(1+x^2)^2}$

凹区间[-1,1], 凸区间其余集。拐点(-1,ln2),(1,ln2)

- 四. 积分
- 13. 原式= $x^2 \sin x \int 2x \sin x dx = x^2 \sin x + 2x \sin x 2\sin x + c$

装 初 线 内

无

**

**

$$16. s = \int_{a}^{b} \sqrt{1 + x} dx = \int_{a+1}^{b+1} \sqrt{u} du = \frac{2}{3} [(b+1)^{\frac{3}{2}} - (a+1)^{\frac{3}{2}}]$$

五. 微分方程

- 17. 化为标准式为 $y'+\frac{1}{x\ln x}y=\frac{1}{x}$, 齐次通解为 $\frac{c}{\ln x}$, 设特解为 $\frac{c(x)}{\ln x}$ 求导代入方程得到 $c'(x)=\frac{\ln x}{x}$, $c(x)=\frac{1}{2}\ln^2 x$, 所以通解为 $\frac{c}{\ln x}+\frac{1}{2}\ln x$
- 18. 特征方程和特征根为 $\lambda^2 5\lambda + 6 = 0$, $\lambda_1 = 2$, $\lambda_2 = 3$, 齐次通解为 $c_1e^{2x} + c_2e^{3x}$, 设特解 $y^* = x(ax+b)e^{2x}$, 代入方程得到 $a = -\frac{1}{2}$, b = -1. 通解为 $c_1e^{2x} + c_2e^{3x} x(\frac{1}{2}x+1)e^{2x}$

六. 证明

19. 证明: 0 为数列下界, 数学归纳法可证明 1 为它的上界。

 $a_{n+1}-a_n=\frac{(1-a_n)^2}{2}>0$,它是单调递增的,所以极限存在,设为a,

对递归式两边取极限得到 $a = \frac{1+a^2}{2}, a = 1.$

20. 证明: 令
$$f(x) = \ln x - \frac{x-1}{x+1}$$
, $f(1) = 0$. 对函数 $f(x)$ 求导有 $f'(x) = \frac{x^2+1}{x(x+1)^2} > 0$.

当0f(x)≤0,
$$\ln x \le \frac{x-1}{x+1}$$
, $(x-1)\ln x \ge \frac{(x-1)^2}{1+x}$,

当x>1,
$$f(x)$$
 > 0, $\ln x$ > $\frac{x-1}{x+1}$, $(x-1)\ln x \ge \frac{(x-1)^2}{1+x}$