السقوط الرأسي لجسم صلب

I. السقوط الرأسي باحتكاك

• دراسة تجريبية

بواسطة كاميرا رقمية تصور حركة كرية فولاذية تسقط في مائع (محلول الغليسيرول أو زيت) بدون سرعة بدئية . تمكن معالجة الشريط بواسطة حاسوب من تحديد مواضع مركز القصور للكرية و حساب سرعته اللحظية (v(t) .

يبرز مخطط السرعة v = f(t) نظامين:

- نظام بدئي يسمى النظام الانتقالي حيث ترتفع سرعة الكرية ، مع تناقص في التسارع.
 - نظام نهائي يسمى النظام الدائم حيث سرعة الكرية تؤول إلى قيمة حدية ٧ تبقى ثابتة.

1 كهرمغنطيس 2 كرية فولاذية 3 أنبوب مملوء بزيت

• دراسة نظرية

• جرد القوى و مميزاتها

في مائع يخصع جسم لَثلَاثُ قوى و هي:

$\overrightarrow{F}_A = -\rho_0 V \ \overrightarrow{g}$ قوم الجاه: اتجاه متجهة سرعة مركز قصور الجسم الاتجاه: اتجاه متجهة سرعة مركز قصور الجسم المنحى: نحو الأسفل - المنحى: نحو الأسفل - المنحى: نحو الأسفل - المنحى: معاكسة لمتجهة مركز قصور الجسم الشدة: $F_A = \rho_0 V g \ (N)$ $F_A = \rho_0 V g \ (N)$ $F_A = K V^n \ (N)$ عدم الجسم باعتباره مغمورا $F_A = K V^n \ (N)$ عدم الجسم باعتباره مغمورا $F_A = K V^n \ (N)$ عدم الجسم باعتباره مغمورا $F_A = K V^n \ (N)$ عدم الجسم باعتباره مغمورا $F_A = K V^n \ (N)$ عدم الجسم باعتباره مغمورا $F_A = K V^n \ (N)$ عدم الجسم باعتباره مغمورا $F_A = K V^n \ (N)$ عدم الجسم باعتباره مغمورا $F_A = K V^n \ (N)$ عدم الجسم باعتباره مغمورا $F_A = K V^n \ (N)$	قوة الاحتكاك المائع	دافعة أرخميد	وزنه
m المائع حاله سرعه حديه مرتفعه. m المائع g شدة الثقالة $(N \cdot kg^{-1})$ g	$\overrightarrow{f} = -Kv^n \overrightarrow{k}$ الاتجاه: اتجاه متجهة سرعة مركز قصور الجسم المنحى: معاكسة لمتجهة سرعة مركز قصور الجسم الشدة: $F_A = Kv^n \ (N)$	$\overrightarrow{F}_A = - ho_0 V \overrightarrow{g}$ - الاتجاه: رأسي - المنحى: نحو الأعلى - الشدة: - الشدة: $F_A = ho_0 V g \ (N)$ الكتلة الحجمية للمائع $ ho_0$ حجم الجسم باعتباره مغمورا	$\overrightarrow{P} = m \overrightarrow{g}$ - الاتجاه: رأسي - المنحى: نحو الأسفل - الشدة: - الشدة: $P = mg = \rho Vg \ (N)$ (kg) - كتلة الجسم ($kg \cdot m^{-3}$) كتلته الحجمية ($kg \cdot m^{-3}$) حجمه $kg \cdot m^{-3}$

🐒 لمقارنة وزن الجسم و دافعة أرخميد التي يطبقها المائع عليه تعتبر النسبة التالية:

$$\frac{F_A}{P} = \frac{\rho_0 Vg}{\rho Vg} = \frac{\rho_0}{\rho}$$

في الحالة $ho_0 \ll
ho$ يمكن إهمال دافعة أرخميد أمام وزن الجسم. كمثال لهذه الحالة سقوط جسم صلب كثيف(كرية فولاذية مثلا) في الهواء.

• المعادلة التفاضلية للحركة

 $\overrightarrow{P}+\overrightarrow{F}_A+\overrightarrow{f}=m\overrightarrow{a}_G$: تطبيق القانون الثاني لنيوتن على الجسم (الكرية) يعطي: (Oz) تستنتج المعادلة التفاضلية المميزة للسقوط الرأسي باحتكاك:

$$\left\{egin{aligned} lpha &= rac{k}{m} \ eta &= g \ (I - rac{
ho_0}{
ho}) \end{aligned}
ight.$$
 : بوضع:

• المقادير المميزة للحركة

- قبيانيا: باستغلال مخطط السرعة الشرعة الخدية تظريا: باعتبار $v = v_{\ell} = cte$ في المعادلة التفاضلية يتوصل إلى: $v_{\ell} = \left[\frac{mg}{k}(1-\frac{\rho_0}{\rho})\right]^{\frac{1}{n}}$ مبيانيا: تساوي ميل المماس لمخطط السرعة عند أصل التواريخ.
 - السرعة عبد أصل التواريخ.

 التسارع البدئي المعادلة التفاضلية يستنتج:

$$a_0 = g(I - \frac{\rho_0}{\rho})$$

 مبيانيا: يمثل أفصول نقطة تقاطع المماس عند أصل التواريخ مع المقارب.

$$au = \frac{v_{\ell}}{a_0}$$
 نظریا:

• حل المعادلة التفاضلية بطريقة "أولير"

الزمن المميز

- (1) $a_i = \beta \alpha v_i^n$: t_i من المعادلة التفاضلية يستنتج التسارع في لحظة \clubsuit
- $rac{dv}{dt}pproxrac{\delta v}{\delta t}$:من جهة أخرى في مجال زمني δt صغير جدا يمكن تطبيق المقاربة التالية $m{\delta}t$

(2)
$$v_{i+1} = v_i + a_i \delta t$$
 اأي: $a_i \approx \frac{v_{i+1} - v_i}{\delta t}$

بمعرفة السرعة البدئية v_0 و الثابتتين α و α تمكن العلاقتان (1) ثم (2) من حساب قيم السرعة اللحظية δ بمعرفة السرعة البدئية δ و الثابتين متالية تفصل بينها المدة δ . هذه المدة تسمى خطوة في لحظات متتالية تفصل بينها المدة δ . δ و بالتالى يمكن تمثيل المنحنى النظري δ النظري δ و بالتالى يمكن تمثيل المنحنى النظري المنحنى النظري عمكن تمثيل المنحنى النظري المنحنى النظري و بالتالي يمكن تمثيل المنحنى النظري المنحنى النظري و بالتاليد بمكن تمثيل المنحنى النظري المنحنى النظري و بالتاليد بمكن تمثيل المنحنى النظري المنحنى النظري و بالتاليد بمكن تمثيل المنحنى النظري و بالتاليد بالتاليد بمكن تمثيل المنحنى النظري و بالتاليد بالمكن المكن ا

- .(پرمن المميز). $\delta t = \frac{\tau}{10}$ الزمن المميز). عطي هذه الحسابات نتائج أكثر دقة كلما كانت المدة δt
 - ❖ يمكن التطابق بين النتائج النظرية و التجريبية من التحقق من صلاحية نموذج قوة الاحتكاك المعمول به:

$$f = Kv^2$$
 | $f = Kv^2$ | $f = Kv$

II. السقوط الرأسي الحر

يعتبر جسم في سقوط حر إذا كان يخضع لوزنه فقط.

• دراسة تجرسة

بواسطة كاميرا رقمية نصور حركة كرية فولاذية تسقط في الهواء بدون سرعة بدئية . تمكن معالجة الشريط بواسطة حاسوب من تحديد مواضع مركز القصور للكرية و حساب سرعتها اللحظية (v(t).

مخطط السرعة مستقيم: حركة الكرية مستقيمية

a = g متسارعة بانتظام، و تسارعها هو

🤏 مبيانيا التسارع يساوي ميل المستقيم.

• دراسة نظرية

• المعادلة التفاضلية

 $\overrightarrow{P} = m \overrightarrow{g}$ يخضع الجسم(الكرية) لوزنه فقط:

 $\vec{P} = m\vec{a}_G$ الثاني لنيوتن على الجسم:

 $\vec{a}_G = \vec{g}$:پستنتج تسارع مرکز قصوره

ثم بالإسقاط على محور(Oz) رأسي موجه نحو الأسفل، تستنتج المعادلة التفاضلية المميزة للسقوط الرأسي الحر:

$$\frac{dv}{dt} = g$$

• المعادلات الزمنية

a = g	التسارع
$v = gt + v_0$	السرعة
$z = \frac{1}{2}gt^2 + v_0t + z_0$	الموضع