# Modelos de Linguagem para Recuperação de Informação

Recuperação de Informação na *Web*Prof. Guilherme Tavares de Assis

Universidade Federal de Ouro Preto – UFOP Instituto de Ciências Exatas e Biológicas – ICEB Departamento de Computação – DECOM

UFOP - RIW - Prof. Guilherme Tavares de Assis

## Processo de Recuperação



- Sistemas de RI geralmente adotam termos de índice para processar consultas.
  - Já que usuários não são treinados em "elaboração de consultas", mediante uma necessidade de informação, o resultado pode não ser satisfatório.
  - Visando escalabilidade, geralmente, um arquivo invertido é confeccionado para os termos de índice de uma coleção.
- A determinação da relevância entre uma consulta e os documentos de uma determinada coleção é uma questão crítica em sistemas de RI.
  - Os modelos de RI tentam determinar tal relevância.

3

UFOP - RIW - Prof. Guilherme Tavares de Assis

## Modelagem



4



5

UFOP - RIW - Prof. Guilherme Tavares de Assis

## Modelagem

- Recuperação: modo operacional ad hoc.
  - Os documentos na coleção permanecem intactos enquanto consultas são submetidas por meio de um sistema de RI.



6

- Recuperação: modo operacional *filtering*.
  - Consultas permanecem relativamente intactas enquanto a coleção é alterada (entrada e saída de documentos).
  - Um "perfil do usuário" é criado descrevendo as necessidades do usuário.
  - O perfil é comparado com os documentos da coleção, na tentativa de encontrar aqueles que são de interesse para o usuário.



UFOP - RIW - Prof. Guilherme Tavares de Assis

### Modelagem

- Cada documento é representado por um conjunto de termos de índice ou palavras-chave representativas.
  - Termos de índice podem ser apenas substantivos já que possuem significado próprio.
  - Em uma representação *full text*, máquinas de busca assumem que todas as palavras são termos de índice.
  - Nem todos os termos s\(\tilde{a}\) igualmente \(\tilde{t}\) teis para representar o conte\(\tilde{u}\) do um documento, j\(\tilde{a}\) que os termos apresentam frequ\(\tilde{e}\) ncias distintas no documento.
- Em uma coleção, termos menos frequentes permitem identificar um conjunto mais restrito de documentos.
  - A importância dos termos de índice em uma coleção pode ser representada por pesos associados a eles (termos ponderados).

- Definições:
  - *t* é o número total de termos de índice da coleção.
  - $k_i$ é o i-ésimo termo de índice da coleção.
  - $K = (k_1, k_2, ..., k_t)$  é o vetor de termos de índice da coleção.
  - $d_i$  é o j-ésimo documento da coleção.
  - $w_{i,j}$  é o peso associado ao par  $(k_i, d_j)$ .
    - O peso  $w_{i,j}$  quantifica a importância do termo  $k_i$  na descrição do conteúdo do documento  $d_i$ , sendo sempre  $\geq 0$ .
    - $w_{i,j} = 0$  indica que o termo  $k_i$  não pertence ao documento  $d_i$ .
  - $\text{vec}(d_j) = (w_{1,j}, w_{2,j}, ..., w_{t,j})$  é o vetor de pesos dos termos de índice associado ao documento  $d_i$ .

9

UFOP - RIW - Prof. Guilherme Tavares de Assis

### Modelo Booleano

- O Modelo Booleano é um modelo simples e fácil de implementar, baseado na teoria de conjuntos.
  - Os termos da consulta estão presentes ou não em um documento, sem distinção de importância; logo,  $w_{i,j} \in \{0,1\}$ .
  - A recuperação é baseada em decisão binária; logo, um documento é ou não relevante à consulta.
  - Não há ranking.
  - O modelo Booleano, frequentemente, retorna poucos ou muitos documentos em resposta à consulta do usuário.
- A necessidade de informação deve ser traduzida em uma expressão booleana.
  - Geralmente, as consultas booleanas formuladas são simples.

### Modelo Booleano

• Exemplo de consulta:

$$q = k_a \wedge (k_b \vee \neg k_c)$$

Forma normal disjuntiva da consulta (FND), envolvendo três componentes conjuntivos:





• Um documento  $d_j$  é relevante à consulta q se os pesos dos termos do documento ( $\text{vec}(d_j)$ ) forem iguais a de algum componente conjuntivo da consulta.

11

UFOP - RIW - Prof. Guilherme Tavares de Assis

## Modelo Booleano - Exemplo

 Coleção composta por 20 documentos relativos a curiosidades de Copas do Mundo de Futebol.

| Doc.           | Texto do documento                                                                                                                                                                                                                                                                                                        |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d <sub>1</sub> | Em 1994, o Brasil sagrou-se campeão, porém o artilheiro da competição foi o búlgaro Hristo Stoichkov, com 6 gols.                                                                                                                                                                                                         |
| $d_2$          | O primeiro gol brasileiro em Copas do Mundo foi marcado por Preguinho, atacante do Fluminense, em 1930, no Uruguai.                                                                                                                                                                                                       |
| d <sub>3</sub> | Gols do Brasil na Copa de 1994: Brasil 2 x 0 Rússia (Romário, Raí); Brasil 3 x 0 Camarões (Romário, Márcio Santos, Bebeto); Brasil 1 x 1 Suécia (Romário); Brasil 1 x 0 EUA (Bebeto); Brasil 3 x 2 Holanda (Romário, Bebeto, Branco); Brasil 1 x 0 Suécia (Romário). Artilheiro da competição: Hristo Stoichkov (6 gols). |
| $d_4$          | A Copa do Mundo surgiu com a intenção de ampliar, em termos mundiais, a chamada <i>Cup</i> britânica, instituída pela <i>The Football Association</i> em 1872.                                                                                                                                                            |
| d <sub>5</sub> | O goleiro mexicano Antonio Carbajal foi o jogador que participou do maior número de Copas (1950, 1954, 1958, 1962 e 1966).                                                                                                                                                                                                |
| d <sub>6</sub> | Leônidas da Silva e Ademir de Menezes, em 1938 e 1950, respectivamente, foram os únicos brasileiros que conseguiram se tornar o artilheiro de uma Copa do Mundo.                                                                                                                                                          |
| d <sub>7</sub> | Na Copa de 1994, o artilheiro Romário, com sua genialidade e seus gols, contrabalançou o pobre futebol demonstrado pelo Brasil e pelos adversários.                                                                                                                                                                       |
| d <sub>8</sub> | A seleção da Alemanha foi a grande campeã da Copa de 1990, quando venceu a Argentina na final, com um gol de pênalti de Brehme, aos 40 minutos do 2º tempo.                                                                                                                                                               |

### Modelo Booleano - Exemplo

| $d_9$           | O número de países participantes da Copa do Mundo, passou de 13 (em 1930) para 24 (em 1994).                                                                                                                                |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d <sub>10</sub> | Com Passarela, Kempes e Fillol, a Argentina venceu a Holanda por 3 x 1 na final do mundial de 1978.                                                                                                                         |
| d <sub>11</sub> | O maior artilheiro da história das Copas foi o francês Just Fontaine, que em 1958 marcou 13 gols.                                                                                                                           |
| d <sub>12</sub> | Na final da Copa de 1974, o Carrossel Holandês, como era conhecida a seleção da Holanda, foi anulado pela anfitriã Alemanha Ocidental, que venceu por 2 x 1 e ficou com o título.                                           |
| d <sub>13</sub> | Em 1950, a seleção brasileira perdeu a chance de conquistar seu primeiro título jogando em casa, perdendo a final de forma inesperada para o Uruguai.                                                                       |
| d <sub>14</sub> | Desde seu início, a Copa de 1954, disputada na Suíça, parecia destinada àquele fantástico time da Hungria. Da estréia, massacrando a Coréia do Sul por 9 x 0, até a final, contra a Alemanha, seu ataque não deixou barato. |
| d <sub>15</sub> | O artilheiro da seleção brasileira na Copa do Mundo de 1994 foi o jogador Romário, que marcou 5 gols.                                                                                                                       |
| d <sub>16</sub> | A Copa da Suíça mantém até hoje a maior média de gols em mundiais. Foram 140 tentos em 26 jogos (média de 5,28 gols por jogo).                                                                                              |
| d <sub>17</sub> | 2000 jornalistas cobriram a Copa de 1958. Destes, 200 (10%) eram da Alemanha, a então campeã do mundo.                                                                                                                      |
| d <sub>18</sub> | Eusébio, jogador de Portugal, foi o artilheiro da Copa do Mundo de 1966.                                                                                                                                                    |
| d <sub>19</sub> | Menor média de público da história das Copas: 1938 (20.829 pessoas). Maior média de público da história das Copas: 1994 (68.991 pessoas).                                                                                   |
| d <sub>20</sub> | Classificação final da Copa do Mundo de 1986: Argentina (1º), Alemanha (2º), França (3º) e Bélgica (4º).                                                                                                                    |
|                 |                                                                                                                                                                                                                             |

UFOP - RIW - Prof. Guilherme Tavares de Assis

### Modelo Booleano - Exemplo

- Necessidade de informação: "Que jogador foi o artilheiro do Brasil na Copa de 1994? Quantos gols ele marcou?".
  - Documentos relevantes definidos por um especialista da área: d<sub>15</sub>, d<sub>3</sub>, d<sub>7</sub> (nesta ordem).
  - Possível consulta: artilheiro ∧ brasil ∧ 1994 ∧ gols.
- Como os termos de índice da consulta são ligados, simplesmente, pelo conectivo ∧ (and), tem-se que:
  - FND = (1,1,1,1);
  - pelo modelo Booleano, são recuperados, como relevantes, os documentos d<sub>1</sub>, d<sub>3</sub> e d<sub>7</sub>;
  - O documento d<sub>15</sub> (mais relevante pelos especialistas) foi ignorado e o documento irrelevante d<sub>1</sub> foi recuperado.

- O Modelo Vetorial permite o uso de pesos não binários, associados aos termos de índice, proporcionando combinação parcial entre a consulta e os documentos da coleção.
  - Tais pesos permitem o cálculo do grau de similaridade entre a consulta e um determinado documento.
  - Um documento é retornado se há combinação parcial entre os termos de índice do documento e da consulta.
  - Os documentos recuperados são ordenados de acordo com o grau de similaridade calculado, em ordem decrescente, permitindo um resultado mais preciso em relação ao Modelo Booleano.

15

UFOP - RIW - Prof. Guilherme Tavares de Assis

#### Modelo Vetorial

- Definições:
  - Documentos  $(d_j)$  e consultas (q) são representados como vetores de pesos dos termos de índice.
  - $w_{i,j}$  é o peso associado ao par  $(k_i, d_j)$ :  $w_{i,j} > 0$  se  $k_i \in d_j$ .
  - $w_{i,q}$  é o peso associado ao par  $(k_i, q)$ :  $w_{i,q} > 0$  se  $k_i \in q$ .
  - $\operatorname{vec}(d_j) = (w_{1,j}, w_{2,j}, ..., w_{t,j}).$
  - $\operatorname{vec}(q) = (w_{1,q}, w_{2,q}, ..., w_{t,q}).$
  - Cada termo  $k_i$  está associado a um vetor unitário vec(i).
    - Os *t* vetores unitários vec(*i*) formam uma base ortogonal (ou seja, os termos de índice ocorrem nos documentos de forma independente) para o espaço *t*-dimensional.



• O grau de similaridade entre o documento  $d_j$  e a consulta q é dado pela correlação entre os vetores associados. Tal correlação pode ser quantificada, por exemplo, pelo coseno do ângulo  $\theta$  entre tais vetores.

$$sim(d_{j}, q) = \frac{\vec{d}_{j} \bullet \vec{q}}{|d_{j}| \times |\vec{q}|} = \frac{\sum_{i=1}^{t} w_{i, j} \times w_{i, q}}{\sqrt{\sum_{i=1}^{t} w_{i, j}^{2}} \times \sqrt{\sum_{j=1}^{t} w_{j, q}^{2}}}$$

onde  $|\vec{d}_j|$  e  $|\vec{q}|$  são as normas dos vetores do documento e da consulta, respectivamente. A norma  $|\vec{q}|$  não afeta o *ranking* porque é a mesma para todos os documentos. Já a norma  $|\vec{d}_j|$  proporciona uma normalização no espaço dos documentos.

17

UFOP - RIW - Prof. Guilherme Tavares de Assis

#### Modelo Vetorial

$$sim(d_{j}, q) = \frac{\vec{d}_{j} \bullet \vec{q}}{|d_{j}| \times |\vec{q}|} = \frac{\sum_{i=1}^{t} w_{i, j} \times w_{i, q}}{\sqrt{\sum_{i=1}^{t} w_{i, j}^{2}} \times \sqrt{\sum_{j=1}^{t} w_{j, q}^{2}}}$$

• Para os documentos recuperados  $(w_{i,j} > 0 \text{ e } w_{i,q} > 0 \text{ para algum termo } k_i)$ , tem- se que:

$$0 \le \sin(d_j, q) \le 1.$$

• Problema: como calcular os pesos  $w_{i,j}$  e  $w_{i,q}$ ?

- Para calcular  $w_{i,j}$ , é utilizada uma estratégia de ponderação de peso, chamada de esquema tf-idf, que se baseia nos princípios básicos relativos às técnicas de agrupamento. Deve-se então quantificar:
  - a similaridade intra-agrupamento (term frequency tf): frequência com que um termo incide no documento, determinando se o mesmo descreve bem ou não o conteúdo do documento;
  - a não-similaridade inter-agrupamento (*inverse document* frequency idf): frequência inversa do termo nos documentos da coleção, determinando se o mesmo é considerado útil ou não, dentro da coleção, para descrever a relevância de um documento.
- Logo, balanceando os dois fatores, tem-se que:

$$w_{i,j} = f_{i,j} \times idf_i$$

19

UFOP - RIW - Prof. Guilherme Tavares de Assis

#### Modelo Vetorial

- Como calcular, para cada termo  $k_i$  presente em um documento  $d_j$ , a frequência do termo  $tf(f_{i,j})$ ?
- Como calcular, para cada termo  $k_i$  presente na coleção, a frequência inversa do termo idf  $(idf_i)$ ?
- Definições:
  - *n* é o número total de documentos na coleção.
  - $n_i$  é o número de documentos que contêm o termo  $k_i$ .
  - $freq_{i,j}$  é o número de vezes que o termo  $k_i$  aparece no texto do documento  $d_i$ .

• O fator normalizado  $f_{i,j}$ , referente ao termo  $k_i$  presente no documento  $d_i$ , é dado por:

$$f_{i,j} = \frac{freq_{i,j}}{\max_{l} freq_{l,j}}$$

onde  $max_l freq_{l,j}$  é a frequência máxima dentre as frequências de todos os termos  $k_i$  no documento  $d_i$ .

• O fator  $idf_i$ , referente ao termo  $k_i$ , é dado por:

$$\log \frac{N}{n_i} = idf_i$$

onde o log torna os valores de tf e idf comparáveis.

21

UFOP - RIW - Prof. Guilherme Tavares de Assis

#### Modelo Vetorial

• Para os termos de índice presentes na consulta, tem-se que:

$$w_{i,q} = \left(0.5 + \frac{0.5 \, freq_{i,q}}{\max_{l} \, freq_{l,q}}\right) \times \log \frac{N}{n_i}$$

onde:

- $freq_{i,q}$  é o número de vezes que o termo  $k_i$  é mencionado no texto da consulta q;
- $max_l freq_{l,q}$  é a frequência máxima dentre as frequências de todos os termos  $k_i$  na consulta q.
- Como geralmente, em uma determinada consulta, os termos de índice não se repetem, tem-se que:

$$W_{i,q} = idf_i$$

#### Vantagens:

- É um modelo simples, rápido de computar e tão eficaz quanto qualquer outro modelo de *ranking* existente.
- A fórmula de ranking, baseada no coseno, ordena os documentos recuperados de acordo com o grau de similaridade à consulta, permitindo a recuperação de documentos que não possuem todos os termos da consulta.
- O esquema *tf-idf*, para ponderação dos termos, é eficiente e melhora a qualidade do conjunto resposta.

### • Desvantagem:

• Assume independência entre os termos de índice.

23

UFOP - RIW - Prof. Guilherme Tavares de Assis

### Modelo Vetorial

• Exemplo simples:



|                       | $\mathbf{k_1}$ | $\mathbf{k}_2$ | k <sub>3</sub> | q • d <sub>j</sub> |
|-----------------------|----------------|----------------|----------------|--------------------|
| q                     | 1              | 2              | 3              |                    |
| $\mathbf{d_1}$        | 2              | 0              | 1              | 5                  |
| $\mathbf{d_2}$        | 1              | 0              | 0              | 1                  |
| $\mathbf{d_3}$        | 0              | 1              | 3              | 11                 |
| $d_4$                 | 2              | 0              | 0              | 2                  |
| $\mathbf{d_5}$        | 1              | 2              | 4              | 17                 |
| d <sub>6</sub>        | 1              | 2              | 0              | 5                  |
| <b>d</b> <sub>7</sub> | 0              | 5              | 0              | 10                 |

24

## Modelo Vetorial - Exemplo

- Necessidade de informação: "Que jogador foi o artilheiro do Brasil na Copa de 1994? Quantos gols ele marcou?".
  - Documentos relevantes definidos por um especialista da área: d<sub>15</sub>, d<sub>3</sub>, d<sub>7</sub> (nesta ordem).
  - Possível consulta: artilheiro ∧ brasil ∧ 1994 ∧ gols.

25

UFOP - RIW - Prof. Guilherme Tavares de Assis

## Modelo Vetorial - Exemplo

- Como todos os termos de índice da consulta aparecem uma única vez, tem-se que  $w_{i,q} = idf_i$ .
- Logo:

| Termo de índice | n <sub>i</sub> | $idf_i = \log \frac{N}{n_i}$ |
|-----------------|----------------|------------------------------|
| artilheiro      | 6              | 0,523                        |
| brasil          | 3              | 0,824                        |
| 1994            | 6              | 0,523                        |
| gols            | 6              | 0,523                        |

# Modelo Vetorial - Exemplo

Pesos  $w_{i,j}$  referentes aos termos da consulta

Documentos da coleção em que pelo menos um termo da consulta aparece. Para os demais, tem-se  $w_{i,j}$ =0 para todos os termos da consulta.

| Doc.                   | <b>W</b> artilheiro,j | W <sub>brasil,j</sub> | W <sub>1994,j</sub> | <b>W</b> <sub>gols,j</sub> |
|------------------------|-----------------------|-----------------------|---------------------|----------------------------|
| $d_1$                  | 0,523                 | 0,824                 | 0,523               | 0,523                      |
| $d_3$                  | 0,075                 | 0,824                 | 0,075               | 0,149                      |
| $d_6$                  | 0,523                 | 0                     | 0                   | 0                          |
| <b>d</b> <sub>7</sub>  | 0,523                 | 0,824                 | 0,523               | 0,523                      |
| $d_{g}$                | 0                     | 0                     | 0,523               | 0                          |
| <b>d</b> <sub>11</sub> | 0,523                 | 0                     | 0                   | 0,523                      |
| <b>d</b> <sub>15</sub> | 0,523                 | 0                     | 0,523               | 0,523                      |
| <b>d</b> <sub>16</sub> | 0                     | 0                     | 0                   | 0,523                      |
| <b>d</b> <sub>18</sub> | 0,523                 | 0                     | 0                   | 0                          |
| <b>d</b> <sub>19</sub> | 0                     | 0                     | 0,523               | 0                          |

27

UFOP - RIW - Prof. Guilherme Tavares de Assis

## Modelo Vetorial - Exemplo

Retorno final do Modelo Vetorial

| Doc.                   | $\sum_{i=1}^{t} w_{i,j} \times w_{i,q}$ | $\sqrt{\sum\nolimits_{i=1}^{t} w^{2}_{i,j}}$ | $\sqrt{\sum_{j=1}^{t} w^{2}_{j,q}}$ | $sim(d_j, q)$ |
|------------------------|-----------------------------------------|----------------------------------------------|-------------------------------------|---------------|
| d <sub>1</sub>         | 1,500                                   | 1,225                                        | 1,225                               | 1             |
| <b>d</b> <sub>7</sub>  | 1,500                                   | 1,225                                        | 1,225                               | 1             |
| <b>d</b> <sub>3</sub>  | 0,780                                   | 0,884                                        | 1,225                               | 0,754         |
| <b>d</b> <sub>15</sub> | 0,821                                   | 0,906                                        | 1,225                               | 0,740         |
| <b>d</b> <sub>11</sub> | 0,547                                   | 0,740                                        | 1,225                               | 0,603         |
| <b>d</b> <sub>6</sub>  | 0,274                                   | 0,523                                        | 1,225                               | 0,428         |
| d <sub>9</sub>         | 0,274                                   | 0,523                                        | 1,225                               | 0,428         |
| <b>d</b> <sub>16</sub> | 0,274                                   | 0,523                                        | 1,225                               | 0,428         |
| d <sub>18</sub>        | 0,274                                   | 0,523                                        | 1,225                               | 0,428         |
| <b>d</b> <sub>19</sub> | 0,274                                   | 0,523                                        | 1,225                               | 0,428         |

### Modelo Vetorial - Exemplo

- Pelos resultados obtidos, observa-se que:
  - entre os quatro documentos recuperados com o maior grau de similaridade, estão os três considerados relevantes;
  - como no Modelo Booleano, o documento  $d_1$  continua no topo da classificação, mesmo sendo irrelevante.
- Analisando os documentos da coleção, verifica-se que a consulta poderia ter sido melhor formulada para se obter o resultado esperado.
  - Substituindo o termo "brasil" por "seleção brasileira", provavelmente o documento  $d_{15}$  apareceria no topo da classificação por apresentar tal termo e o documento  $d_1$  cairia na classificação por não ter tal termo.

29

UFOP - RIW - Prof. Guilherme Tavares de Assis

### Modelo Probabilístico

- O Modelo Probabilístico fornece um arcabouço probabilístico para se resolver problemas de recuperação de informação, possibilitando estimar a probabilidade de um documento ser relevante a uma consulta do usuário.
  - Dada uma consulta, o modelo assume que existe um conjunto ideal de respostas que contém exatamente os documentos relevantes.

#### Modelo Probabilístico

- O processo de consulta pode ser visto como um processo de especificação das propriedades do conjunto ideal de respostas.
- Problema: como definir tais propriedades?
  - Já que as propriedades não são conhecidas, deve-se definir um conjunto inicial de respostas como sendo o ideal (suposição);
  - Iniciam-se interações com o usuário no intuito de melhorar a descrição probabilística do conjunto ideal de respostas.
- Logo, o modelo é descrito como uma série de interações com o usuário, no intuito de refinar o conjunto ideal de respostas.

31

UFOP - RIW - Prof. Guilherme Tavares de Assis

### Modelo Probabilístico

- Dada uma consulta q e um documento  $d_j$ , o modelo estima a probabilidade que o usuário ache tal documento relevante.
  - O modelo assume que tal probabilidade de relevância depende apenas das representações da consulta e do documento.
  - No modelo, são associados pesos binários aos termos de índice dos documentos e consultas.
- O conjunto ideal de respostas *R* deve maximizar a probabilidade de relevância. Documentos em *R* são considerados relevantes.
- Para computar a chance de um documento  $d_j$  ser relevante à consulta q, a similaridade entre os mesmos é dada por:

 $sim(d_j,q) = P(d_j \ relevante-a \ q) / P(d_j \ n\tilde{a}o-relevante-a \ q)$ 

32

#### Modelo Probabilístico

• Aplicando as regras de Bayes e assumindo independência entre os termos de índice, tem-se que:

$$sim(d_j, q) = \sum_{i=1}^{t} w_{i, q} \times w_{i, j} \times \left( \log \frac{P(k_i \mid R)}{1 - P(k_i \mid R)} + \log \frac{1 - P(k_i \mid \overline{R})}{P(k_i \mid \overline{R})} \right)$$

#### onde:

- $w_{i,j}$  é o peso do termo  $k_i$  no documento  $d_j$ ;
- $w_{i,q}$  é o peso do termo  $k_i$  na consulta q;
- *R* é conjunto ideal de respostas (documentos relevantes);
- $\overline{R}$  é o complemento de R (documentos não relevantes);
- $P(k_i \mid R)$  é a probabilidade do termo  $k_i$  estar presente em um documento aleatoriamente selecionado de R;
- $P(k_i | \overline{R})$  é a probabilidade do termo  $k_i$  estar presente em um documento aleatoriamente selecionado de  $\overline{R}$ .

33

UFOP - RIW - Prof. Guilherme Tavares de Assis

### Modelo Probabilístico

- Considerações:
  - Se um termo  $k_i$  está presente no documento  $d_j$ , o peso  $w_{i,j}$  é igual a 1; caso contrário, o peso  $w_{i,j}$  é igual a 0.
  - Se um termo  $k_i$  é um termo de índice da consulta q, o peso  $w_{i,q}$  é igual a 1; caso contrário, o peso  $w_{i,q}$  é igual a 0.
  - Inicialmente,  $P(k_i \mid R)$  é igual a 0.5 para qualquer termo de índice  $k_i$ .
  - Inicialmente,  $P(k_i | \overline{R})$  é igual a  $(n_i/N)$  para qualquer termo de índice  $k_i$ , onde  $n_i$  é o número de documentos que contém  $k_i$  e N representa o número total de documentos da coleção.

#### Modelo Probabilístico

- Aplicando-se a fórmula de similaridade, obtém-se o conjunto inicial de documentos recuperados.
  - Assim, é possível definir um subconjunto V contendo os r documentos de maior similaridade, que é utilizado para refinar as seguintes fórmulas de probabilidade para as próximas interações:

$$P(k_i \mid R) = \frac{V_i + \frac{n_i}{N}}{V+1} \qquad P(k_i \mid \overline{R}) = \frac{n_i - V_i + \frac{n_i}{V}}{N-V+1}$$

#### Onde:

- V é o número de documentos do próprio subconjunto;
- $V_i$  é o número de documentos de V que contém o termo  $k_i$ .

35

UFOP - RIW - Prof. Guilherme Tavares de Assis

### Modelo Probabilístico

- Vantagem:
  - Classifica os documentos, em ordem decrescente, pela probabilidade de relevância à consulta.
- Desvantagens:
  - Necessita definir as probabilidades iniciais e, a cada processo interativo, um conjunto ideal de respostas.
  - Não considera a frequência dos termos de índice nos documentos da coleção.
  - Assume independência entre os termos de índice.

## Modelo Probabilístico - Exemplo

- Necessidade de informação: "Que jogador foi o artilheiro do Brasil na Copa de 1994? Quantos gols ele marcou?".
  - Possível consulta: artilheiro ∧ brasil ∧ 1994 ∧ gols.
- Probabilidades iniciais e cálculos relacionados, segundo o Modelo Probabilístico, para cada termo da consulta:

| Termo de índice | <b>n</b> i | $P(k_i \mid R)$ | $P(k_i \mid \overline{R}) = \frac{n_i}{N}$ | $\log \frac{P(k_i \mid R)}{1 - P(k_i \mid R)} + \log \frac{1 - P(k_i \mid \overline{R})}{P(k_i \mid \overline{R})}$ |
|-----------------|------------|-----------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| artilheiro      | 6          | 0,500           | 0,300                                      | 0,368                                                                                                               |
| brasil          | 3          | 0,500           | 0,150                                      | 0,753                                                                                                               |
| 1994            | 6          | 0,500           | 0,300                                      | 0,368                                                                                                               |
| gols            | 6          | 0,500           | 0,300                                      | 0,368                                                                                                               |

37

UFOP - RIW - Prof. Guilherme Tavares de Assis

## Modelo Probabilístico - Exemplo

Resultados obtidos na 1ª interação do Modelo

| Doc.                   | Termos de índice                        | $sim(d_j, q)$ |
|------------------------|-----------------------------------------|---------------|
| d <sub>1</sub>         | artilheiro, brasil, 1994, gols          | 1,857         |
| <b>d</b> <sub>3</sub>  | artilheiro, brasil, 1994, gols          | 1,857         |
| <b>d</b> <sub>7</sub>  | artilheiro, brasil, 1994, gols          | 1,857         |
| <b>d</b> <sub>15</sub> | artilheiro, 1994, gols                  | 1,104         |
| d <sub>11</sub>        | <b>d</b> <sub>11</sub> artilheiro, gols |               |
| <b>d</b> <sub>6</sub>  | artilheiro                              | 0,368         |
| $d_g$                  | 1994                                    | 0,368         |
| <b>d</b> <sub>16</sub> | gols                                    | 0,368         |
| <b>d</b> <sub>18</sub> | artilheiro                              | 0,368         |
| <b>d</b> <sub>19</sub> | 1994                                    | 0,368         |

## Modelo Probabilístico - Exemplo

• Probabilidades e cálculos relacionados, na 2ª interação do Modelo, para cada termo da consulta, considerando que o subconjunto *V* é composto pelos 5 primeiros documentos do conjunto inicial recuperado:

| Termo de<br>índice | <b>n</b> i | V | $V_i$ | $P(k_i \mid R)$ | $P(k_i \mid \overline{R})$ | $\log \frac{P(k_i \mid R)}{1 - P(k_i \mid R)} + \log \frac{1 - P(k_i \mid \overline{R})}{P(k_i \mid \overline{R})}$ |
|--------------------|------------|---|-------|-----------------|----------------------------|---------------------------------------------------------------------------------------------------------------------|
| artilheiro         | 6          | 5 | 5     | 0,883           | 0,138                      | 1,674                                                                                                               |
| brasil             | 3          | 5 | 3     | 0,525           | 0,038                      | 1,446                                                                                                               |
| 1994               | 6          | 5 | 4     | 0,717           | 0,200                      | 1,006                                                                                                               |
| gols               | 6          | 5 | 5     | 0,883           | 0,138                      | 1,674                                                                                                               |

• Existem várias formas de se definir os documentos do subconjunto *V*. Uma delas é considerar a metade superior dos documentos do *ranking* gerado na interação inferior do Modelo Probabilístico.

39

UFOP - RIW - Prof. Guilherme Tavares de Assis

## Modelo Probabilístico - Exemplo

Resultados obtidos na 2ª interação do Modelo

| Doc.                   | Termos de índice               | $sim(d_j, q)$ |
|------------------------|--------------------------------|---------------|
| d <sub>1</sub>         | artilheiro, brasil, 1994, gols | 5,800         |
| d <sub>3</sub>         | artilheiro, brasil, 1994, gols | 5,800         |
| <b>d</b> <sub>7</sub>  | artilheiro, brasil, 1994, gols | 5,800         |
| <b>d</b> <sub>15</sub> | artilheiro, 1994, gols         | 4,354         |
| <b>d</b> <sub>11</sub> | artilheiro, gols               | 3,348         |
| $d_6$                  | artilheiro                     | 1,674         |
| <b>d</b> <sub>16</sub> | gols                           | 1,674         |
| <b>d</b> <sub>18</sub> | artilheiro                     | 1,674         |
| $d_g$                  | 1994                           | 1,006         |
| d <sub>19</sub>        | 1994                           | 1,006         |

## Modelo Probabilístico - Exemplo

- Pelos resultados obtidos, observa-se que:
  - da 1ª para a 2ª interação, só houve diferença no ranking dos 5 últimos documentos;
  - em uma possível 3ª interação, como o subconjunto V seria o mesmo da 2ª, não haveria diferença no *ranking* gerado (ou seja, o resultado da aplicação do Modelo estabilizou-se na 2ª interação);
  - o Modelo Probabilístico teve um comportamento semelhante ao Modelo Vetorial.
- A ideia do Modelo Probabilístico é fazer com que o *ranking* dos documentos melhore, a cada interação, a partir dos documentos do conjunto *V*, até um ponto de estabilização.
- Da mesma forma que no Modelo Vetorial, verifica-se que a consulta poderia ter sido melhor formulada para se obter um resultado melhor.

41

UFOP - RIW - Prof. Guilherme Tavares de Assis

## Modelo Booleano Estendido

- O Modelo Booleano estendido surgiu em 1983, com o propósito de suprir a deficiência do Modelo Booleano clássico de não gerar um *ranking* dos documentos recuperados, retornando geralmente um número grande ou pequeno de documentos.
- A ideia é combinar as características dos Modelos Clássicos Booleano (expressões booleanas) e Vetorial (vetores de pesos).
  - Por exemplo, para um determinado documento  $d_j$  formado pelos termos  $k_x$  e  $k_y$ , o modelo assume pesos  $w_{x,j}$  e  $w_{y,j}$  que podem ser calculados da mesma forma que no Modelo Vetorial; ou seja

$$w_{i,j} = f_{i,j} \times idf_i$$
, onde:

$$f_{i,j} = \frac{freq_{i,j}}{\max_{l} freq_{l,j}}$$
  $\log \frac{N}{n_i} = idf_i$ 

#### Modelo Booleano Estendido



UFOP - RIW - Prof. Guilherme Tavares de Assis

### Modelo Booleano Estendido

• Representando os peso  $w_{x,j}$  e  $w_{y,j}$  como sendo x e y, as similaridades de um documento d em relação às consultas  $q_{or}$  e  $q_{and}$  são dadas por:

$$sim(q_{or}, d) = \sqrt{\frac{x^2 + y^2}{2}}$$
  $sim(q_{and}, d) = 1 - \sqrt{\frac{(1-x)^2 + (1-y)^2}{2}}$ 

- Se todos os pesos são binários ( $w_{i,j} \in \{0,1\}$ ), um documento encontra-se em um dos cantos: (0,0), (0,1), (1,0), (1,1).
  - Os valores de sim $(q_{or}, d_i)$  podem ser  $0, 1/\sqrt{2}$  e 1
  - Os valores de  $sim(q_{and}, d_j)$  podem ser  $0, 1 1/\sqrt{2}$  e 1 Contudo, pesos não binários são adotados.

#### Modelo Booleano Estendido

- Dado que o nº de termos de índice é *t*, o Modelo considera distâncias euclidianas em um espaço com *t* dimensões.
- Contudo, uma generalização mais compreensiva é adotar a teoria das normas de vetores.
  - O modelo *p-norm* generaliza a noção de distância para incluir não apenas distâncias euclidianas, mas também distâncias p, onde  $1 \le p \le \infty$ .
  - As formas generalizadas para consultas  $q_{or}$  e  $q_{and}$  tornam-se:

$$q_{or} = k_1 \vee^p k_2 \vee^p \dots \vee^p k_m$$

$$q_{and} = k_1 \wedge^p k_2 \wedge^p \dots \wedge^p k_m$$

45

UFOP - RIW - Prof. Guilherme Tavares de Assis

#### Modelo Booleano Estendido

• Assim, as similaridades de um documento  $d_j$  em relação às consultas  $q_{or}$  e  $q_{and}$  são dadas por:

$$sim(q_{or}, d_j) = \left(\frac{x_1^p + x_2^p + \dots + x_m^p}{m}\right)^{\frac{1}{p}}$$

$$sim(q_{and}, d_j) = 1 - \left(\frac{(1 - x_1)^p + (1 - x_2)^p + \dots + (1 - x_m)^p}{m}\right)^{\frac{1}{p}}$$

Onde  $x_i$  é o peso  $w_{i,j}$  associado ao par  $[k_i,d_j]$  e  $1 \le p \le \infty$ .

• Variando o valor do parâmetro *p*, pode-se variar o comportamento da classificação: característica poderosa do Modelo Booleano Estendido.

#### Modelo Booleano Estendido

- Para as consultas que envolvem tanto componentes disjuntivos quanto conjuntivos, os operadores são agrupados pela ordem de precedência.
- Para  $q = (k_1 \wedge^p k_2) \vee^p k_3$ , a similaridade é dada por:

$$sim(q, d_{j}) = \left(\frac{\left(1 - \left(\frac{(1 - x_{1})^{p} + (1 - x_{2})^{p}}{2}\right)^{\frac{1}{p}}\right)^{p} + x_{3}^{p}}{2}\right)^{\frac{1}{p}}$$

47

UFOP - RIW - Prof. Guilherme Tavares de Assis

#### Modelo Booleano Estendido

- O modelo é bem poderoso e relaxa a álgebra booleana, interpretando os operadores como distâncias algébricas.
- Um ponto positivo é a possibilidade de variar a distância *p* entre 1 e infinito.
  - Para p = 1,  $sim(q_{or}, d_j) = sim(q_{and}, d_j) = (\sum x_i)/m$  (≈ vetorial).
  - Para  $p = \infty$ ,  $sim(q_{or},d_j) = max(x_i)$  e  $sim(q_{and},d_j) = min(x_i)$  ( $\approx$  Fuzzy).
- No entanto, o modelo não é muito utilizado, já que a computação é um pouco complexa.

## Modelo Booleano Estendido - Exemplo

• Consulta conjuntiva: artilheiro ∧ brasil ∧ 1994 ∧ gols.

Os pesos  $w_{i,j}$  são calculados da mesma forma que no Modelo Vetorial.

| Doc.                   | <b>W</b> artilheiro,j | W <sub>brasil,j</sub> | W <sub>1994,j</sub> | <b>W</b> <sub>gols,j</sub> |
|------------------------|-----------------------|-----------------------|---------------------|----------------------------|
| <b>d</b> <sub>1</sub>  | 0,523                 | 0,824                 | 0,523               | 0,523                      |
| <b>d</b> <sub>3</sub>  | 0,075                 | 0,824                 | 0,075               | 0,149                      |
| <b>d</b> <sub>6</sub>  | 0,523                 | 0                     | 0                   | 0                          |
| <b>d</b> <sub>7</sub>  | 0,523                 | 0,824                 | 0,523               | 0,523                      |
| $d_g$                  | 0                     | 0                     | 0,523               | 0                          |
| <b>d</b> <sub>11</sub> | 0,523                 | 0                     | 0                   | 0,523                      |
| <b>d</b> <sub>15</sub> | 0,523                 | 0                     | 0,523               | 0,523                      |
| <b>d</b> <sub>16</sub> | 0                     | 0                     | 0                   | 0,523                      |
| <b>d</b> <sub>18</sub> | 0,523                 | 0                     | 0                   | 0                          |
| <b>d</b> <sub>19</sub> | 0                     | 0                     | 0,523               | 0                          |

49

UFOP - RIW - Prof. Guilherme Tavares de Assis

## Modelo Booleano Estendido - Exemplo

Retorno final do Modelo para p = 3.

O ranking é parecido com o do Vetorial, sendo diferente na troca dos docs  $d_3$  e  $d_{15}$  (o mais relevante).

| Doc.                   | $sim(d_j, q) = 1 - \left(\frac{(1 - x_{ARTILHEIRO})^3 + (1 - x_{BRASIL})^3 + (1 - x_{1994})^3 + (1 - x_{GOLS})^3}{4}\right)$ |
|------------------------|------------------------------------------------------------------------------------------------------------------------------|
| <b>d</b> <sub>1</sub>  | 0,564                                                                                                                        |
| <b>d</b> <sub>7</sub>  | 0,564                                                                                                                        |
| <b>d</b> <sub>15</sub> | 0,308                                                                                                                        |
| d <sub>3</sub>         | 0,181                                                                                                                        |
| <b>d</b> <sub>11</sub> | 0,178                                                                                                                        |
| $d_6$                  | 0,081                                                                                                                        |
| $d_g$                  | 0,081                                                                                                                        |
| d <sub>16</sub>        | 0,081                                                                                                                        |
| <b>d</b> <sub>18</sub> | 0,081                                                                                                                        |
| <b>d</b> <sub>19</sub> | 0,081                                                                                                                        |

#### Modelo Generalized Vector

- Todos os modelos apresentados assumem independência entre os termos de índice, ou seja, cada par de termos  $k_i$  e  $k_j$  é ortogonal  $(\vec{k_i} \bullet \vec{k_j} = 0)$ .
- Já que a independência entre os termos pode restringir os modelos, em 1985, foi proposto o modelo *Generalized Vector*, assumindo que os vetores dos termos de índice são independentes, mas os pares de vetores não são necessariamente ortogonais.
- Considerando  $w_{i,j}$  binário, é possível representar todas as possibilidades de ocorrência mútua dos termos nos documentos da coleção, por meio de um conjunto de  $2^t$  mintermos, onde t é o número total de termos de índice.

51

UFOP - RIW - Prof. Guilherme Tavares de Assis

### Modelo Generalized Vector

| Mintermo $(t = 3)$ | Descrição da ocorrência mútua                                   |
|--------------------|-----------------------------------------------------------------|
| $m_1 = (0,0,0)$    | Indica os documentos que não contêm algum dos termos            |
| $m_2 = (1,0,0)$    | Indica os documentos que contêm apenas o termo $k_1$            |
| $m_3 = (0,1,0)$    | Indica os documentos que contêm apenas o termo $k_2$            |
| $m_4 = (0,0,1)$    | Indica os documentos que contêm apenas o termo $k_3$            |
| $m_5 = (1,1,0)$    | Indica os documentos que contêm os termos $k_1$ e $k_2$         |
| $m_6 = (1,0,1)$    | Indica os documentos que contêm os termos $k_1$ e $k_3$         |
| $m_7 = (0,1,1)$    | Indica os documentos que contêm os termos $k_2$ e $k_3$         |
| $m_8 = (1,1,1)$    | Indica os documentos que contêm os termos $k_1$ , $k_2$ e $k_3$ |

• Considere  $g_i(m_r)$  uma função que retorna o peso binário do termo de índice  $k_i$  no mintermo  $m_r$ . Logo, por exemplo,  $g_i(m_I) = 0$ , para todo  $k_i$ .

52

#### Modelo Generalized Vector

- A ideia é criar vetores ortogonais  $\vec{m}_i$  associados aos mintermos.
  - Para todo  $\mathbf{i} \neq \mathbf{j}$ ,  $\vec{m_i} \bullet \vec{m_j} = 0$ . No entanto, os pares de vetores  $\vec{m_i}$  ortogonais não implicam na independência entre os termos de índice, pois estes estão correlacionados pelos mintermos.

| Vetor $\vec{m}_i$                      | Mintermo associado |
|----------------------------------------|--------------------|
| $\vec{m}_1 = (1, 0, 0, 0, 0, 0, 0, 0)$ | $m_{I}$            |
| $\vec{m}_2 = (0, 1, 0, 0, 0, 0, 0, 0)$ | $m_2$              |
| $\vec{m}_3 = (0, 0, 1, 0, 0, 0, 0, 0)$ | $m_3$              |
| $\vec{m}_4 = (0, 0, 0, 1, 0, 0, 0, 0)$ | $m_4$              |
| $\vec{m}_5 = (0, 0, 0, 0, 1, 0, 0, 0)$ | $m_5$              |
| $\vec{m}_6 = (0, 0, 0, 0, 0, 1, 0, 0)$ | $m_6$              |
| $\vec{m}_7 = (0, 0, 0, 0, 0, 0, 1, 0)$ | $m_7$              |
| $\vec{m}_8 = (0, 0, 0, 0, 0, 0, 0, 1)$ | $m_8$              |

53

UFOP – RIW – Prof. Guilherme Tavares de Assis

### Modelo Generalized Vector

- O Modelo adota a ideia de que co-ocorrência de termos de índice em documentos da coleção induz dependência entre tais termos.
- A dependência entre termos de índice melhora a eficácia em um processo de recuperação?
  - Ainda há dúvidas.
  - Não é claro, por exemplo, que a estrutura do Modelo Generalized Vector proporciona uma vantagem em situações práticas, já que é mais complexo e mais custoso computacionalmente que o Modelo Vetorial.

#### Modelo Generalized Vector

- Deve-se determinar, para cada termo  $k_i$ , o vetor de termo  $\vec{k_i}$  associado.
  - Deve-se, então, calcular a soma normalizada dos vetores dos mintermos  $m_r$  onde o termo  $k_i$  possui o valor 1:

$$\vec{k}_{i} = \frac{\sum_{\forall r, g_{i}(m_{r}) = 1} c_{i,r} \vec{m}_{r}}{\sqrt{\sum_{\forall r, g_{i}(m_{r}) = 1} c^{2}_{i,r}}} \qquad c_{i,r} = \sum_{d_{j} \mid g_{1}(\vec{d}_{j}) = g_{l}(m_{r}) \ para \ todo \ l}$$

#### onde:

- r é o número do mintermo  $m_r$ , que varia de 1 a  $2^t$ ;
- $g_i(m_r)$  é a função que retorna o peso binário do termo  $k_i$  no mintermo  $m_r$ ;
- $\vec{m}_r$  é o vetor associado ao mintermo  $m_r$ ;
- $c_{i,r}$  é o fator de correlação definido entre o vetor  $\vec{m}_r$  e o termo de índice  $k_i$ ; tal fator é calculado a partir dos documentos  $d_j$ , cuja ocorrência dos termos de índice coincide com o mintermo  $m_r$ ;
- $w_{i,j}$  é o peso associado ao par  $(k_i, d_j)$ , calculado como no Modelo Vetorial.

55

UFOP - RIW - Prof. Guilherme Tavares de Assis

### Modelo Generalized Vector

• Os vetores  $\vec{k}_i$  servem de base para o cálculo dos vetores  $\vec{d}_j$  e  $\vec{q}$ , que são utilizados para se obter a similaridade de um documento  $d_j$  em relação à consulta q, fornecida pela medida de coseno utilizada pelo Modelo Vetorial.

$$\vec{d}_{j} = \sum_{\forall i} w_{i,j} \vec{k}_{i} \qquad \vec{q} = \sum_{\forall i} w_{i,q} \vec{k}_{i}$$
 
$$sim(d_{j}, q) = \frac{\vec{d}_{j} \bullet \vec{q}}{\left| \vec{d}_{j} \right| \times \left| \vec{q} \right|}$$

## Modelo Generalized Vector - Exemplo

• Consulta conjuntiva: artilheiro ∧ brasil ∧ 1994 ∧ gols.

Relação de mintermos e vetores  $\vec{m}_i$  associados para a consulta q.

| Mintermo                | Vetor $ec{m}_i$ associado                                      |
|-------------------------|----------------------------------------------------------------|
| $m_1 = (0, 0, 0, 0)$    | $\vec{m}_1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$       |
| $m_2 = (1, 0, 0, 0)$    | $\vec{m}_2 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$    |
| $m_3 = (0, 1, 0, 0)$    | $\vec{m}_3 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$    |
|                         |                                                                |
| $m_{15} = (0, 1, 1, 1)$ | $\vec{m}_{15} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)$ |
| $m_{16} = (1, 1, 1, 1)$ | $\vec{m}_{16} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$     |

57

UFOP - RIW - Prof. Guilherme Tavares de Assis

# Modelo Generalized Vector - Exemplo

Fatores de correlação  $c_{i,r}$  para os termos de índice e mintermos (apenas aqueles que combinam com algum documento da coleção), considerando os pesos  $w_{i,j}$  calculados no Modelo Vetorial.

| Minitermo             | C <sub>artilheiro,r</sub> | C <sub>brasil,r</sub> | C <sub>1994,r</sub> | C <sub>gols,r</sub> |
|-----------------------|---------------------------|-----------------------|---------------------|---------------------|
| <i>m</i> <sub>2</sub> | 1,046                     | 0,0                   | 0,0                 | 0,0                 |
| $m_4$                 | 0,0                       | 0,0                   | 1,046               | 0,0                 |
| $m_5$                 | 0,0                       | 0,0                   | 0,0                 | 0,523               |
| m <sub>8</sub>        | 0,523                     | 0,0                   | 0,0                 | 0,523               |
| m <sub>14</sub>       | 0,523                     | 0,0                   | 0,523               | 0,523               |
| m <sub>16</sub>       | 1,121                     | 2,472                 | 1,121               | 1,195               |

## Modelo Generalized Vector - Exemplo

Vetor  $\vec{k}_i$  vinculado a cada termo  $k_i$ , uma vez calculados os fatores de correlação  $c_{i,r}$ .

| Termo<br>de índice | $\sqrt{\sum_{\forall r, g_i(m_r)=1} c_{i,r}^2}$ | Vetor $ec{k_i}$                                                  |
|--------------------|-------------------------------------------------|------------------------------------------------------------------|
| artilheiro         | 1,702                                           | (0, 0.615, 0, 0, 0, 0, 0, 0.307, 0, 0, 0, 0, 0, 0.307, 0, 0.659) |
| brasil             | 2,472                                           | (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)                                |
| 1994               | 1,620                                           | (0,0,0,0.646,0,0,0,0,0,0,0,0,0.323,0,0.692)                      |
| gols               | 2,249                                           | (0,0,0,0,0.233,0,0,0.233,0,0,0,0,0.233,0,0.531)                  |

59

UFOP - RIW - Prof. Guilherme Tavares de Assis

## Modelo Generalized Vector - Exemplo

• Como  $w_{i,q} = idf_i$  para todos os termos da consulta, tem-se que:  $\vec{q} = (0, 0.322, 0, 0.338, 0.122, 0, 0, 0.283, 0, 0, 0, 0, 0, 0.452, 0, 1.809)$ 

| Doc.                   | Vetor $\vec{d}_j$                                                                         | $sim(d_{j},q)$ |
|------------------------|-------------------------------------------------------------------------------------------|----------------|
| <b>d</b> <sub>1</sub>  | $\vec{d}_1 = (0, 0.332, 0, 0.338, 0.122, 0, 0, 0.283, 0, 0, 0, 0, 0, 0.452, 0, 1.809)$    | 1              |
| <b>d</b> <sub>7</sub>  | $\vec{d}_{7} = (0, 0.332, 0, 0.338, 0.122, 0, 0, 0.283, 0, 0, 0, 0, 0, 0.452, 0, 1.809)$  | 1              |
| <b>d</b> <sub>15</sub> | $\vec{d}_{15} = (0, 0.332, 0, 0.338, 0.122, 0, 0, 0.283, 0, 0, 0, 0, 0, 0.452, 0, 0.985)$ | 0,968          |
| $d_3$                  | $\vec{d}_3 = (0, 0.046, 0, 0.048, 0.035, 0, 0, 0.058, 0, 0, 0, 0, 0, 0.082, 0, 1.004)$    | 0,967          |
| <b>d</b> <sub>11</sub> | $\vec{d}_{11} = (0, 0.332, 0, 0, 0.122, 0, 0, 0.283, 0, 0, 0, 0, 0, 0.283, 0, 0.623)$     | 0,914          |
| <b>d</b> <sub>16</sub> | $\vec{d}_{16} = (0, 0, 0, 0, 0.122, 0, 0, 0.122, 0, 0, 0, 0, 0, 0.122, 0, 0.278)$         | 0,893          |
| <b>d</b> <sub>6</sub>  | $\vec{d}_6 = (0, 0.332, 0, 0, 0, 0, 0.161, 0, 0, 0, 0, 0.161, 0, 0.345)$                  | 0,829          |
| <b>d</b> <sub>18</sub> | $\vec{d}_{18} = (0, 0.332, 0, 0, 0, 0, 0, 0.161, 0, 0, 0, 0, 0, 0.161, 0, 0.345)$         | 0,829          |
| d <sub>9</sub>         | $\vec{d}_9 = (0, 0, 0, 0.338, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.169, 0, 0.362)$                | 0,828          |
| <b>d</b> <sub>19</sub> | $\vec{d}_{19} = (0, 0, 0, 0.338, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.169, 0, 0.362)$             | 0,828          |

60

### Modelo Generalized Vector - Exemplo

- Observa-se que:
  - o resultado é bem parecido com o do Modelo Vetorial;
  - como no Modelo Booleano Estendido, o documento  $d_{15}$  aparece melhor classificado em relação ao Modelo Vetorial;
  - o documento  $d_{16}$  melhorou no *ranking* em relação aos demais documentos que possuem apenas um termo de índice (isso se deve ao fato de que o termo *gols*, único presente no documento, possui um maior fator de correlação para o mintermo  $m_{16}$ , em comparação com os termos *artilheiro* e 1994).

61

UFOP - RIW - Prof. Guilherme Tavares de Assis

### Modelo Belief Network

- O funcionamento do Modelo é descrito como a associação de variáveis aleatórias (termos de índice) relativas aos documentos e à consulta.
  - Assim, tantos os documentos quanto a consulta são modelados de tal forma a gerar a topologia de uma rede de crenças.



• A classificação do documento  $d_j$  relativa à consulta q é interpretada como o quanto a consulta q cobre o documento  $d_i$ .

### Modelo Belief Network

• Aplicando as regras de *Bayes* e instanciando as variáveis aleatórias dos termos de índice, o que os torna mutuamente independentes, a probabilidade do documento  $d_j$  ser relevante para a consulta q é estabelecida por:

$$P(d_j \mid q) \approx \sum_{\forall \vec{k}} P(d_j \mid \vec{k}) \times P(q \mid \vec{k}) \times P(\vec{k})$$

63

UFOP - RIW - Prof. Guilherme Tavares de Assis

### Modelo Belief Network

- A definição  $P(d_i \mid q)$  serve para conceituar a rede de crenças.
- Para que o Modelo se torne aplicável, deve-se definir uma estratégia de classificação que, associada à rede de crenças, permita a recuperação ordenada dos documentos.
  - Pelo Modelo Vetorial, são estabelecidas as probabilidades:

$$P(d_{j} \mid \vec{k}) = \begin{cases} \frac{w_{i,j}}{\sqrt{\sum_{i=1}^{t} w^{2}_{i,j}}} & \text{se } \vec{k} = \vec{k}_{i} \land g_{i}(\vec{d}_{j}) = 1 \\ 0 & \text{caso contrário} \end{cases}$$

$$P(\vec{k}) = \begin{cases} \frac{w_{i,q}}{\sqrt{\sum_{i=1}^{t} w^{2}_{i,q}}} & \text{se } \vec{k} = \vec{k}_{i} \land g_{i}(q) = 1 \\ 0 & \text{caso contrário} \end{cases}$$

## Modelo Belief Network - Exemplo

Consulta conjuntiva: artilheiro ∧ brasil ∧ 1994 ∧ gols.

Retorno do Modelo, considerando os pesos  $w_{i,j}$  e  $w_{i,q}$  calculados no Vetorial.

| Doc.                  | $sim(d_j, q) = P(d_j \mid q)$                                                                            |
|-----------------------|----------------------------------------------------------------------------------------------------------|
| $d_1$                 | $0,427^*0,427^*0,063 + 0,673^*0,673^*0,063 + 0,427^*0,427^*0,063 + 0,427^*0,427^*0,063 = 0,063$          |
| <i>d</i> <sub>7</sub> | $0,427^*0,427^*0,063 + 0,673^*0,673^*0,063 + 0,427^*0,427^*0,063 + 0,427^*0,427^*0,063 = \textbf{0,063}$ |
| $d_3$                 | 0.085*0.427*0.063 + 0.932*0.673*0.063 + 0.085*0.427*0.063 + 0.169*0.427*0.063 = 0.050                    |
| d <sub>15</sub>       | $0.577^*0.427^*0.063 + 0.577^*0.427^*0.063 + 0.577^*0.427^*0.063 = $ <b>0.047</b>                        |
| $d_{11}$              | 0.707*0.427*0.063 + 0.707*0.427*0.063 = <b>0.038</b>                                                     |
| $d_6$                 | 1,000*0,427*0,063 = <b>0,027</b>                                                                         |
| $d_9$                 | 1,000*0,427*0,063 = <b>0,027</b>                                                                         |
| $d_{16}$              | 1,000*0,427*0,063 = <b>0,027</b>                                                                         |
| d <sub>18</sub>       | 1,000*0,427*0,063 = <b>0,027</b>                                                                         |
| $d_{19}$              | 1,000*0,427*0,063 = <b>0,027</b>                                                                         |

65

UFOP - RIW - Prof. Guilherme Tavares de Assis

## Modelo Belief Network - Exemplo

- Percebe-se, pelo resultado obtido, que a ordem dos documentos recuperados coincide com o *ranking* gerado pelo Modelo Vetorial.
  - Entre os quatro documentos recuperados com o maior grau de similaridade, estão os três considerados relevantes.
  - Não há, no caso, nenhuma conclusão adicional, além das observações já descritas na ilustração do Modelo Vetorial.

## Modelo Belief Network

- Vantagens:
  - Modelo rápido de computar.
  - Possibilidade de adoção de outras estratégias para gerar o ranking dos documentos.
- Desvantagem:
  - Assume independência entre os termos de índice.