R Minicourse Workshop, Part 3

Presented to the Washington State Deptment of Ecology September 2–3, 2014

Dr. Robin Matthews, Institute for Watershed Studies Dr. Geoffrey Matthews, Computer Science Department Western Washington University

Part 3 - Sept. 3, 2014

Bivariate Analysis Using R

Correlation and Regression

- Regression measures the relationship between an independent variable (x) and one or more dependent variables (y_i)
 - Used to predict (model) unmeasured values of the dependent variable(s)
- Correlation analysis measures the relationship between two variables that are not necessarily functionally dependent
 - Used to explore patterns in measured variables and to identify indicators that predict responses in other variables

Correlation vs. Regression

Correlation and regression examine monotonic relationships between variables

Assumptions for Correlation and Regression

- Parametric correlation (r) and simple linear regression (r^2) is based on several important assumptions:
 - The samples were collected randomly
 - The variables or linear residuals are normally distributed
 - The variance is constant (homoscedastic)
 - The relationship is monotonic (±linear)
 - The data do not contain outliers (or not very many)
- Nonparametric correlation (ρ, τ) does not require a linear relationship or homoscedasticity, but it still assumes that the relationship between x and y is monotonic

Correlation Analysis

• The strength of a correlation is measured using a correlation coefficient (Pearson's r, Spearman's ρ , Kendall's τ)

$$r = \frac{1}{n-1} \sum \left(\frac{x_i - \overline{x}}{s_x} \times \frac{y_i - \overline{y}}{s_y} \right)$$

ho is linear correlation computed on ranks

$$\tau = \frac{S}{n(n-1)/2}$$

$$S = P - M$$

P = number of times y increases with x;

 $M = \mathsf{number} \; \mathsf{of} \; \mathsf{times} \; \mathsf{y} \; \mathsf{decreases} \; \mathsf{as} \; \mathsf{x} \; \mathsf{increases}$

• H_o : r or ρ or $\tau = 0$

 H_a : r or ρ or $\tau \neq 0$

• $-1 \le r$ or ρ or $\tau \le 1$

Correlation Analysis Using R

Parametric and nonparametric correlation is done using cor.test

Simple Linear Regression

Simple linear regression is based on the model:

$$y_i = a + bx_i + \varepsilon_i$$

 $a = \text{intercept}$
 $b = \text{slope}$
 $\varepsilon = \text{residual for the i}^{th} \text{ observation}$

• The strength of the regression is measured with the regression statistic or coefficient of determination (r^2)

•
$$H_o$$
: $r^2 = 0$ H_a : $r^2 \neq 0$

•
$$-1 \le r^2 \le 1$$

Simple Linear Regressions Using R

The easiest option for simple linear regressions is 1m

```
X < -c(1:10)
Y \leftarrow c(49.8,51.6,53.7,53.9,55.1,56.5,57.4,57.9,58.9,60.8)
##### Y is x+50, with "noise"
1m(Y~X)
Call:
lm(formula = Y ~ X)
Coefficients:
(Intercept)
     49.460
                   1.109
##### X = 1.109 * Y + 49.460
##### Predicting Y for unmeasured values of X:
predict(Yfit, list(X=6.7))
56.89091
##### Predicting Y for all measured values of X:
round(predict(Yfit),2)
50.57 51.68 52.79 53.90 55.01 56.11 57.22 58.33 59.44 60.55
```

Correlation/Regression

Comparison Using Four Types of Curves

Plotting Simple Linear Regressions Using R

Advanced Plotting Features - IWS Lakes Data

Adding Confidence Intervals

Syntax for Adding Confidence Intervals

```
lakes = read.table("lakes.csv", T, sep=",")
attach(lakes)
### Step 1: create linear model (chl ~ alk)
alkchl.lm = lm(log10(chl) ~ alk)
### Step 2: sort the x axis (unique values only)
alk.sort = sort(unique(alk))
### Step 3: use predict to predict chl ~ tp from linear model
pred.chl = predict(alkchl.lm,
   newdata = data.frame(alk = alk.sort). int="pred")
### Step 4: plot original data and linear model
plot(log10(chl) ~ alk,
    xlab="Alkalinity (mg/L)".
     ylab=expression(paste("Log10 Chlorophyll " (mu * "g/L"))),
    pch=21, bg="skyblue", cex=1.5)
abline(alkchl.lm, lwd=2, ltv=2, col="red")
```

Syntax for Adding Confidence Intervals, continued

Or, you can use one of the many R packages that adds confidence intervals automatically!

Revisiting the Regression Assumptions

- Linear regression builds a model of the relationship between X and Y, with the assumption that the relationship is monotonic and linear
- All of the linear models plotted on page 9 had statistically significant regression statistics (r^2)
- If that relationship between X and Y is *monotonic* but not linear, you can still use simple linear regression if you transpose the variables
- R makes it very easy to insert transformations directly into the regression and plotting syntax

```
##### Untransformed linear model:
lm(Y ~ X)

##### Log (base e) transformed linear model
lm(log(Y) ~ X)

##### Log10 transformed linear model
lm(log10(Y) ~ X)
```

Regression Transformations

Ladder of Power

Match your line shape to one of these curves, then transform (straighten) by converting x, y, or both

Regression Transformations

Ladder of Power - R Syntax

Description	Transformation	R Code
Negative skewness	Cube	Y∧3
(top of ladder)	Square	Y∧2
	Square root	$Y \wedge (1/2)$ or $sqrt(Y)$
	Cube root	Y∧(1/3)
center - start here \Rightarrow	Log	log10(Y)
	Reciprocal root	-1/sqrt(Y)
Positive skewness	Reciprocal	-1/Y
	Reciprocal root	-1/sqrt(Y)
Positive skewness	Reciprocal	-1/Y
(bottom of ladder)	Reciprocal of square	-1/(Y∧2)

Adapted from Helsel and Hirsch, Statistical Methods in Water Resources

Logs other than base 10 can be used Constants can be added to x to avoid dividing by zero (log1p(x)) computes log(1+x)) Higher and lower powers can be used

Finding the Best Transformation

Box-Cox Procedure

- The Box-Cox procedure in the MASS library will estimate the "best" power (lambda) for transforming Y
- The procedure defaults to ± 2 (Y⁻² to Y²)

```
X <- c(1:10)
Y <- c(0.021,0.671,1.094,1.390,1.602,1.792,1.950,2.085,2.201,2.311)
### Y is ln(X) plus noise

Yfit <- lm(Y~X)
library(MASS)
Yfit.bc <- boxcox(Yfit)
Yfit.bc$x[which.max(Yfit.bc$y)]
[1] 2
##### Best est. for transformation will be Y^2
YfitBC.trans <- lm(Y^2 ~ X)</pre>
```

Example of Transforming Y to Y²

Advanced Plotting Example

Plotting Linear Models and Residuals With/Without Transformation

Plotting example uses data and Box-Cox transformation show on page 17

```
### Set plotting output to 4x per page
par(mfrow=c(2,2))
### Plot untransformed Y and residuals from Yfit
plot(Y ~ X, main="Y vs X, untransformed", pch=21, bg="red", cex=1.5)
abline(Yfit, lwd=2, lty=2, col="red")
legend(x="topleft", c(paste("Y =", round(Yfit$coef[2].4),
         "* X + ", round(Yfit$coef[1], 4)),
         paste("Adj.R-squared =", round(summary(Yfit)$adj.r.squared, 4)),
         paste("p-value =", round(summary(Yfit)$coef[8], 4))),
         bty="n", cex=0.7)
plot(Yfit$fitted.values, resid(Yfit), main="Untransformed residuals",
     pch=21, bg="red", cex=1.5, xlab="Fitted Values", ylab="Residuals")
abline(h=0, lwd=2, lty=2, col="red")
### Plot transformed Y using Box-Cox estimate and YfitBC residuals
plot(Y^2 ~ X, main="Y^2 vs X", pch=21, bg="red", cex=1.5)
abline(YfitBC.trans, lwd=2, lty=2, col="red")
legend(x="topleft", c(paste("Y^2 =", round(YfitBC.trans$coef[2],4),
         "* X ", round(YfitBC.trans$coef[1], 4)),
         paste("Adj.R-squared =", round(summary(YfitBC.trans)$adj.r.squared, 4)),
         paste("p-value =", round(summary(YfitBC.trans)$coef[8], 4))),
         bty="n", cex=0.7)
plot(YfitBC.trans$fitted.values, resid(YfitBC.trans), main="Transformed residuals",
     pch=21. bg="red", cex=1.5, xlab="Fitted Values", vlab="Residuals")
abline(h=0, lwd=2, ltv=2, col="red")
```

Example of Transforming to Y to exp(Y)

Examining Transformations Using Density Plots

basic plotting code:
plot(density(alk)); plot(density(sqrt(alk)));

Examining Transformations Using QQ Plots

QQ plots are a simply way to explore distributions; if the data are normally distributed, the points will be close to the diagonal reference line. Syntax: qqnorm(alk); qqline(alk)

Part 3 - Sept. 3. 2014

Part 3 - Sept. 3, 2014

Multiple Linear Regression

 The equation for multiple regression is a logical expansion of the basic linear model:

$$y_i = a + b_1 u_i + b_2 v_i + b_3 w_i + \varepsilon_i$$

 $a = \text{intercept}$
 $b = \text{slopes associated with variables } u, v, \text{ and } w$
 $\varepsilon = \text{residual for the i}^{th} \text{ observation}$

R syntax: lm(y ~u + v + w)

For linear regressions with interaction terms, the model becomes:

$$y_i = a + b_1 u_i + b_2 v_i + b_3 u_i v_i + \varepsilon_i$$

\$\text{S syntax: } \text{lm}(\text{y} \tilde{\circ} \u * \underline{\chi})

• Interpreting the output and selecting the best subset of variables for the final multiple regression model in not simple!

Analysis of Variance

 Analysis of variance procedures (t test, ANOVA, MANOVA) use ratios of within-group variance to total variance to test for significant differences between groups

$$H_o$$
: $\overline{x_1} = \overline{x_2} = \dots \overline{x_n}$ ($n = \text{number of groups}$)
 H_a : $\overline{x_1} \neq \overline{x_2} \neq \dots \overline{x_n}$

- The decision to accept or reject the null hypothesis carries a
 probability (p) of committing a Type I error, which is rejection of
 the null hypothesis when it is actually true.
- ANOVA tests whether any of the groups are significantly different
- ANOVA is often used in conjunction with a multiple range test to determine which groups are different from the others.

Type I and II Errors

- Type I errors become more likely when you repeat ANOVA on subgroups of the data (use p-value adjustment)
- Type II errors usually indicates a small samples size, but can also be caused by extremely large samples sizes (use sample)

Decision	H₀ is true	H _o is false
Accept H _o	ok	Type II error
(Fail to Reject H _o)	$Prob = 1 – \alpha$	$Prob = \beta$
Reject H₀	Type I error	ok
	$Prob = \alpha$	$Prob = 1 – \beta$
	Significance level	Power

ANOVA

Assumptions for Analysis of Variance (ANOVA)

- ANOVA is based on several important assumptions:
 - The samples were collected randomly
 - The measured variables are distributed normally within each group
 - The variances are homogeneous (homoscedastic) across groups ⇒ very important assumption!
- Most uses of ANOVA rely heavily on its ability to perform despite departures from normality and homogeneity
- Nonparametric versions of ANOVA are easy to use, powerful, and avoid the issue of normality and homogeneity

Testing Assumption of Normality

- You want to accept the hypotheses H_o that the data from each group fits a normal distribution (p-value >0.050)
- The Shapiro-Wilks test of normality is simple in R:

• Alternatively, you could use qqnorm to examine the data graphically

ANOVA

Testing Assumption of Variance Homogeneity

- You want to accept the H_o that variances are homogeneous
- Use Bartlett's test if the data are normally distributed or Fligner's test if you don't want to make that assumption

- The sepal length data fail the assumption of homoscedasticity!
 Optional exercise: Modify the syntax to show that a log transformation of the sepal length data corrects the heteroscedasticity problem
- You could also use boxplots to examine the data graphically

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < (で

ANOVA Using R

The simplest R syntax for ANOVA uses aov

```
##### Untransformed sepal lengths
data(iris); attach(iris)
aov.SL <- aov(Sepal.Length ~ Species)
summary(aov.SL)
             Df Sum Sq Mean Sq F value Pr(>F)
Species
              2 63.21 31.606 119.3 <2e-16 ***
Residuals 147 38.96
                        0.265
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
##### Log-transformed sepal lengths
aov.logSL <- aov(log(Sepal.Length) ~ Species)</pre>
summary(aov.logSL)
             Df Sum Sq Mean Sq F value Pr(>F)
              2 1.892 0.9459 128.9 <2e-16 ***
Species
Residuals 147 1.079 0.0073
```

• Both tests indicate that there are significant differences between the sepal lengths for the different iris species

ANOVA Using R

Adding Post-Hoc Tests

- The ANOVA doesn't tell us which species are different, so we use a post-hoc test
- Which post-hoc test to use is beyond the scope of this class ... there are many choices
- Most R textbooks use pairwise.t.test, which does 2-group ANOVAs, correcting the p-value for repeated testing (Type I errors)
- The post-hoc test should use log-transformed data (see page 29)

Nonparametric Alternatives to ANOVA

- The Kruskal-Wallis rank sum test (kruskal.test), paired with the Wilcoxon rank sum test (pairwise.wilcox.test) will provide a nonparametric alternative to ANOVA
- For untransformed heteroscedastic data, the nonparametric results are usually far more useful than anything based on variance

Supplemental References

- Crawley, Michael J. 2013. The R Book. John Wiley & Sons. ISBN 978-0-470-97392-9.
- Faraway, Julian J. 2014. Linear Models with R, 2nd Edition. CRC Press. ISBN 978-1-439-88733-2.
- Lander, Jared P. 2014. R for Everyone, Advanced Analytics and Graphics. Addison Wesley Data & Analytics Series, ISBN 978-0-321-88803-7.
- Teetor, Paul. 2011. The R Cookbook. O'Reilly Publishers. ISBN 978-0-596-880915-7

Part 3 - Sept. 3, 2014