Characteristic Boolean algebras in classical realizability: a completeness result

Guillaume Geoffroy

IRIF, Université Paris Cité

Classical realizability

```
Formulas: (A,B,...)
```

- ▶ first-order
- ► language of Boolean algebras

```
Programs: t, u := x \mid \lambda x. t \mid tu
```

Realizability relation: "t realizes A"

Classical realizability

Formulas: (A,B,...)

- ► first-order
- ► language of Boolean algebras

Programs:
$$t, u := x \mid \lambda x. t \mid tu$$

Realizability relation:

"t realizes A"
$$e.g. \ \lambda x. \lambda y. xyy$$

$$realizes (A \to A \to B) \to A \to B$$
for all A, B

A completeness result

Adequacy (standard): if A is true in all Boolean algebras, then there exists a λ -term t that realizes A

A completeness result

Adequacy (standard): if A is true in all Boolean algebras, then there exists a λ -term t that realizes A

Theorem: A is true in all Boolean algebras $\underbrace{\text{iif}}$ there exists a λ -term t that realizes A

Allowed questions (variant k/n)

Initial situation (N_{red} , N_{balls})

Formula $A_{k,n}$ Formula $A_{N_{\text{red}}}$, N_{balls}

Formula Ak n Allowed questions (variant $\frac{k}{n}$) Formula $A_{N_{red}, N_{balls}}$ Initial situation (N_{red}, N_{balls}) λ -term that realizes Winning strategy $A_{k,n} \to A_{N_{\text{red}},N_{\text{balls}}}$

Translating variant 2/3 ► The key: • • ⇔ ⊥ • ⇔ ⊤

Translating variant ²/₃

- universal quantification ⇔ intersection type

Translating variant $\frac{2}{3}$

- - universal quantification ⇔ intersection type
- ► Variant ²/₃ is the intersection of:

Translating variant ²/₃

- - universal quantification ⇔ intersection type
- ► Variant ²/₃ is the intersection of:

Translating variant $\frac{2}{3}$

- ► Variant ²/₃ is the intersection of:

 \triangleright $A_{2,3}$ is the formula:

$$\forall x \forall y \forall z \ (x \neq 0 \rightarrow y \neq 0 \rightarrow z \neq 0 \rightarrow (x \land y \lor y \land z \lor z \land x) \neq 0)$$

Translating variant ²/₃

- ► Variant ²/₃ is the intersection of:

 $ightharpoonup A_{2,3}$ is the formula:

$$\forall x \forall y \forall z \ (x \neq 0 \rightarrow y \neq 0 \rightarrow z \neq 0 \rightarrow (x \land y \lor y \land z \lor z \land x) \neq 0)$$