# Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Телематика (при ЦНИИ РТК)»

# Отчет по лабораторным работам № 3, 4

По дисциплине «Теория вероятностей и Математическая статистика»

Выполнил
Студент гр. 3630201/80101 \_\_\_\_\_ Печеный Н. А.

Руководитель
к.ф.-м.н., доцент Баженов А. Н.

«\_\_\_» 2020г.

# Содержание

| 1  | 1 Постановка задачи |                                                                       |    |  |  |  |  |
|----|---------------------|-----------------------------------------------------------------------|----|--|--|--|--|
| 2  | Теория              |                                                                       |    |  |  |  |  |
|    |                     | Боксплот Тьюки                                                        | 6  |  |  |  |  |
|    |                     | 2.1.1 Построение                                                      | 6  |  |  |  |  |
|    | 2.2                 | Теоретическая вероятность выбросов                                    | 6  |  |  |  |  |
|    | 2.3                 | Эмпирическая функция распределения                                    | 6  |  |  |  |  |
|    |                     | 2.3.1 Статистический ряд                                              | 6  |  |  |  |  |
|    |                     | 2.3.2 Эмпирическая функция распределения                              | 6  |  |  |  |  |
|    |                     | 2.3.3 Нахождение э. ф. р                                              | 7  |  |  |  |  |
|    | 2.4                 | Оценки плотности вероятности                                          | 7  |  |  |  |  |
|    |                     | 2.4.1 Определение                                                     | 7  |  |  |  |  |
|    |                     | 2.4.2 Ядерные оценки                                                  | 7  |  |  |  |  |
| 3  | Pea                 | пизация                                                               | 8  |  |  |  |  |
| 4  | Резу                | ультаты                                                               | 9  |  |  |  |  |
|    | 4.1                 |                                                                       |    |  |  |  |  |
|    | 4.2                 | Сравнение теоретической вероятности и экспериментальной доли выбросов | 11 |  |  |  |  |
|    | 4.3                 | Эмпирическая функция респределения                                    | 12 |  |  |  |  |
|    | 4.4                 | Ядерные оценки                                                        | 17 |  |  |  |  |
| 5  | Зак                 | пючение                                                               | 22 |  |  |  |  |
|    | 5.1                 | Экспериментальная доля и теоретическая вероятность выбросов           | 22 |  |  |  |  |
|    | 5.2                 | Эмпирическая функция и ядерные оценки плотности распределения         | 22 |  |  |  |  |
| Сп | исок                | Литературы                                                            | 23 |  |  |  |  |
| Пр | илох                | кение А. Репозиторий с исходным кодом                                 | 24 |  |  |  |  |

# Список иллюстраций

| 1  | Боксплоты выборок нормального распределения                                     | 9  |
|----|---------------------------------------------------------------------------------|----|
| 2  | Боксплоты выборок распределения Коши                                            | 9  |
| 3  | Боксплоты выборок распределения Лапласа                                         | 10 |
| 4  | Боксплоты выборок распределения Пуассона                                        | 10 |
| 5  | Боксплоты выборок равномерного распределения                                    | 11 |
| 6  | $\Theta$ . ф. р. нормального распределения $N(x,0,1)$                           | 12 |
| 7  | $\Theta$ . ф. р. распределения Коши $C(x,0,1)$                                  | 13 |
| 8  | $\Theta$ . ф. р. распределения Лапласа $L(x,0,1/\sqrt{2})$                      | 14 |
| 9  | $\Theta$ . ф. р. распределения Пуассона $P(k,10)$                               | 15 |
| 10 | $\Theta$ . ф. р. равномерного распределения $U(x,-\sqrt{3},\sqrt{3})$           | 16 |
| 11 | Ядерная оценка плотности нормального распределения $N(x,0,1)$                   | 17 |
| 12 | Ядерная оценка плотности распределения Коши $C(x,0,1)$                          | 18 |
| 13 | Ядерная оценка плотности распределения Лапласа $L(x,0,1/\sqrt{2})$              | 19 |
| 14 | Ядерная оценка плотности распределения Пуассона $P(k,10)$                       | 20 |
| 15 | Ядерная оценка плотности равномерного распределения $U(x, -\sqrt{3}, \sqrt{3})$ | 21 |

# Список таблиц

| 1 | Таблица распределения                                                 | 7 |
|---|-----------------------------------------------------------------------|---|
|   | Сравнение экспериментальной доли и теоретической вероятности выбросов |   |

# 1 Постановка задачи

#### Для 5 распределений:

- Нормальное распределение N(x, 0, 1)
- Распределение Коши C(x,0,1)
- Распределение Лапласа  $L(x, 0, 1/\sqrt{2})$
- ullet Распределение Пуассона P(k,10)
- Равномерное распределение  $U(x,-\sqrt{3},\sqrt{3})$

#### Требуется:

- 1. Сгенерировать выборки размером 20 и 100 элементов. Построить для них боксплот Тьюки. Для каждого распределения определить долю выбросов экспериментально (сгенерировав выборку, соответствующую распределению 1000 раз, и вычислив среднюю долю выбросов) и сравнить с результатами, полученными теоретически.
- 2. Сгенерировать выборки размером 20, 60 и 100 элементов. Построить на них эмпирические функции распределения и ядерные оценки плотности распределения на отрезке [-4;4] для непрерывных распределений и на отрезке [6;14] для распределения Пуассона.

#### 2 Теория

#### 2.1 Боксплот Тьюки

#### 2.1.1 Построение

Границы ящика — первый и третий квартили, линия в середине ящика — медиана. Концы усов — края статистически значимой выборки (без выбросов). Длина «усов»:

$$X_1 = Q_1 - \frac{3}{2}(Q_3 - Q_1), \ X_2 = Q_3 + \frac{3}{2}(Q_3 - Q_1)$$
 (1)

где  $X_1$  — нижняя граница уса,  $X_2$  — верхняя граница уса,  $Q_1$  — первый квартиль,  $Q_3$  — третий квартиль.

Данные, выходящие за границы усов (выбросы), отображаются на графике в виде маленьких кружков [1].

#### 2.2 Теоретическая вероятность выбросов

Можно вычислить теоретические первый и третий квартили распределений —  $Q_1^T$  и  $Q_3^T$ . По ф-ле (1) — теоретические нижнюю и верхнюю границы уса —  $X_1^T$  и  $X_2^T$ . Выбросы — величины x:

$$\begin{vmatrix} x < X_1^T \\ x > X_2^T \end{vmatrix}$$

Теоретическая вероятность выбросов:

• для непрерывных распределений

$$P_B^T = P(x < X_1^T) + P(x > X_2^T) = F(X_1^T) + (1 - F(X_2^T))$$
 (2)

• для дискретных распределений

$$P_B^T = P(x < X_1^T) + P(x > X_2^T) = (F(X_1^T) - P(X = X_1^T)) + (1 - F(X_2^T))$$
 (3)

где  $F(X) = P(x \leqslant X)$  — функция распределения.

#### 2.3 Эмпирическая функция распределения

#### 2.3.1 Статистический ряд

Статистический ряд — последовательность различных элементов выборки  $z_1, z_2, \ldots, z_k$ , расположенных в возрастающем порядке с указанием частот  $n_1, n_2, \ldots, n_k$ , с которыми эти элементы содержатся в выборке. Обычно записывается в виде таблицы [2].

#### 2.3.2 Эмпирическая функция распределения

Эмпирическая (выборочная) функция распределения (э. ф. р.) — относительная частота события X < x, полученная по данной выборке:

$$X_n^*(x) = P^*(X < x).$$

#### 2.3.3 Нахождение э. ф. р.

Для получения относительной частоты  $P^*(X < x)$  просуммируем в статистическом ряде, построенном по данной выборке, все частоты  $n_i$ , для которых элементы  $z_i$  статистического ряда меньше x. Тогда  $P^*(X < x) = \frac{1}{n} \sum_{x < x} n_i$ . Получаем

$$F^*(x) = \frac{1}{n} \sum_{z_i < x} n_i$$

 $F^*(x)$  — функция распределения дискретной случайной величины  $X^*$ , заданной таблицей распределения, приведённой ниже в Таблице 1.

Таблица 1: Таблица распределения

| $X^*$ | $z_1$           | $z_2$           | <br>$z_k$           |
|-------|-----------------|-----------------|---------------------|
| P     | $\frac{n_1}{n}$ | $\frac{n_2}{n}$ | <br>$\frac{n_k}{n}$ |

Эмпирическая функция распределения является оценкой, т. е. приближённым значением, генеральной функции распределения

$$F_n^*(x) \approx F_X(x). \tag{4}$$

#### 2.4 Оценки плотности вероятности

#### 2.4.1 Определение

Оценкой плотности вероятности f(X) называется функция  $\hat{f}(x)$ , построенная на основе выборки, приближённо равная f(x)

$$\hat{f}(x) \approx f(x)$$

#### 2.4.2 Ядерные оценки

Представим оценку в виде суммы с числом слагаемых, равным объёму выборки:

$$\hat{f}_n(x) = \frac{1}{nh_n} \sum_{i=1}^n K\left(\frac{x - x_i}{h_n}\right)$$

Здесь функция K(u), называемая ядерной (ядром), непрерывна и является плотностью вероятности,  $x_1,\dots,x_n$  — элементы выборки,  $\{h_n\}$  — любая последовательность положительных чисел, облажающая свойствами

$$h_n \xrightarrow[n \to \infty]{} 0; \qquad \frac{h_n}{n^{-1}} \xrightarrow[n \to \infty]{} \infty.$$

Такие оценки называются непрерывными ядерными.

Гауссово (нормальное) ядро:

$$K(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}}. (5)$$

Правило Сильвермана:

$$h_n = 1.06\hat{\sigma}n^{-1/5},\tag{6}$$

где  $\hat{\sigma}$  — выборочное стандартное отклонение[2].

# 3 Реализация

Расчёты проводились в среде аналитических вычислений Maxima. Для генерации выборок и создания и отрисовки графиков были использованы библиотечные функции среды разработки. Код скрипта представлен в репозитории на GitHub, ссылка на репозиторий находится в **Приложении A**.

# 4 Результаты

# 4.1 Боксплот Тьюки

На каждом из представленных рисунков 1-5 по горизонатльной оси отложены значения элементов выборки, по вертикальной - размеры выборок.

#### Нормальное распределение



Рис. 1: Боксплоты выборок нормального распределения

# Распределение Коши



Рис. 2: Боксплоты выборок распределения Коши

# Распределение Лапласа



Рис. 3: Боксплоты выборок распределения Лапласа

# Распределение Пуассона



Рис. 4: Боксплоты выборок распределения Пуассона

#### Равномерное распределение



Рис. 5: Боксплоты выборок равномерного распределения

# 4.2 Сравнение теоретической вероятности и экспериментальной доли выбросов

Для каждого распределения были 1000 раз сгенерированы выборки, соответствующие распределению, была вычислена средня доля выбросов. Погрешность средней доли выбросов была рассчитана по формуле

$$\Delta_z = \sqrt{\left(\overline{z^2} - \overline{z}^2\right)} \tag{7}$$

Значения экспериментальной средней доли выбросов были округлены в соответствии с погрешностями. Результаты представлены ниже в Таблице 2.

Таблица 2: Сравнение экспериментальной доли и теоретической вероятности выбросов

| Распределение | N   | Доля<br>выбросов  | $P_B^T(2)$ |
|---------------|-----|-------------------|------------|
| Нормальное    | 20  | $0.00 \pm 0.02$   | 0.0069     |
| Пормальное    | 100 | $0.007 \pm 0.008$ | 0.0003     |
| Коши          | 20  | $0.16 \pm 0.08$   | 0.156      |
| Коши          | 100 | $0.16 \pm 0.04$   | 0.130      |
| Лапласа       | 20  | $0.06 \pm 0.06$   | 0.0625     |
| Jianijiaca    | 100 | $0.06 \pm 0.02$   | 0.0023     |
| Пуассона      | 20  | $0.01 \pm 0.02$   | 0.0099     |
| Пуассона      | 100 | $0.008 \pm 0.009$ | 0.0033     |
| Нормальное    | 20  | $0.0 \pm 0.0$     | 0.0        |
| Пормальное    | 100 | $0.0 \pm 0.0$     | 0.0        |

# 4.3 Эмпирическая функция респределения

На рисунках 6-10 представлены графики, по которым можно оценить отклонение эмпирических функций (4) распределений от теоретических.





#### Нормальное распределение, N = 60



Нормальное распределение, N = 100



Рис. 6: Э. ф. р. нормального распределения N(x,0,1)

# Распределение Коши, N=20



# Распределение Коши, N=60



#### Распределение Коши, N = 100



Рис. 7: Э. ф. р. распределения Коши C(x,0,1)

#### Распределение Лапласа, N=20



# Распределение Лапласа, N=60



#### Распределение Лапласа, N = 100



Рис. 8: Э. ф. р. распределения Лапласа  $L(x,0,1/\sqrt{2})$ 

#### Распределение Пуассона, N=20



# Распределение Пуассона, N=60



#### Распределение Пуассона, N = 100



Рис. 9: Э. ф. р. распределения Пуассона P(k,10)

#### Равномерное распределение, N = 20



#### Равномерное распределение, N = 60



Равномерное распределение, N = 100



Рис. 10: Э. ф. р. равномерного распределения  $U(x,-\sqrt{3},\sqrt{3})$ 

#### 4.4 Ядерные оценки

На рисунках 11-15 представлены графики ядерных оценок плотности для выборок, соответствующих заданным распределениям. Ядерная функция имеет вид (5). Чёрной линией обозначена теоретическая плотность вероятности, красной линией обозначена ядерная оценка с параметром сглаживания  $h_n/2$ , зелёной —  $h_n$ , синей —  $2h_n$ . Параметр сглаживания рассчитан по формуле (6).







Рис. 11: Ядерная оценка плотности нормального распределения N(x,0,1)



#### Распределение Коши, N = 60



#### Распределение Коши, N = 100



Рис. 12: Ядерная оценка плотности распределения Коши C(x,0,1)



#### Распределение Лапласа, N = 60



#### Распределение Лапласа, N = 100



Рис. 13: Ядерная оценка плотности распределения Лапласа  $L(x,0,1/\sqrt{2})$ 







Рис. 14: Ядерная оценка плотности распределения Пуассона P(k,10)



#### Равномерное распределение, N = 60



#### Равномерное распределение, N = 100



Рис. 15: Ядерная оценка плотности равномерного распределения  $U(x,-\sqrt{3},\sqrt{3})$ 

#### 5 Заключение

#### 5.1 Экспериментальная доля и теоретическая вероятность выбросов

В ходе выполнения лабораторной работы были построены боксплоты Тьюки для выборок разного размера, соответствующих заданным распределениям. По построенным боксплотам удалось визуально оценить мощность выбросов соответствующих распределений и сделать вывод о том, что наиболее подвержены выбросам выборки, построенные по распределению Коши.

Также были рассчитаны теоретические вероятности выбросов для каждого распределения. После этого на основе генерации 1000 выборок размерами в 20 и 100 элементов для каждого распределения были вычислены экспериментальные доли выбросов. На основании полученных результатов можно сделать вывод о том, что экспериментальные доли выбросов достаточно близки к теоретическим вероятностям и тем сильнее к ним приближаются, чем больше размер выборки.

# **5.2** Эмпирическая функция и ядерные оценки плотности распределения

В ходе выполнения лабораторной работы были построены эмпирические функции распределения для выборок разного размера, соответствующих пяти заданыым распределениям. Из построенных графиков можно сделать вывод, что эмпирическая функция распределения тем ближе к теоретической, чем больше размер выборки.

Также были построены ядерные оценки плотности вероятностей распределений. Из графиков можно сделать вывод, что чем шире полоса пропускания (больше параметр сглаживания), тем более более график сглажен и менее чувствителен к выбросам. Для нормального распределения и распределения Пуассона больше всего подходит выбор параметра сглаживания  $h_n$ , для равномерного распределения —  $2h_n$ , для распределения Лапласа —  $h_n/2$ . Для распределения Коши не подходит ни один из параметров сглаживания, при любом его выборе ядерная оценка достаточно далека от теоретической плотности вероятности.

# Список литературы

- [1] Box plot https://en.wikipedia.org/wiki/Box\_plot Дата обращения 7.12.2020
- [2] Теоретическое приложение к лабораторным работам №1-4 по дисциплине «Математическая статистика». СПб.: СПбПУ, 2020. 12 с

# Приложение А. Репозиторий с исходным кодом

Ссылка на репозиторий GitHub с исходным кодом: https://github.com/pchn/TeorVer