Professor Dep Profit Nome CS MIE t[DepID] = t[DepID] => t[Dnome] = t[DNome] Functional Dependen Decomposition: For a table that is not "good" - Decomposet it to Multiple good r Tables - Make Sure the Decomposition is lossless R: R, R2  $\Rightarrow$   $R_1 \otimes R_2 = R$ Join Department Professor [ID | Name | Dep Hedd ID | Address | DepID | Professor as Department = Professor Dep

| P <sub>2</sub> 1D   Dep JO                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------|
| Functional Dependency A > B Exists if the values of the Attributes A                                                        |
| Uniquely identify the volues on B                                                                                           |
| e.g., P1:                                                                                                                   |
| ID -> Name<br>ID -> Address<br>ID -> {Name, Address? == Example 1                                                           |
| SID, Name} -> ID {ID, Name} -> Name {ID, Name} -> Address {ID, Address} -> Name                                             |
| Goal: Is it ressible to find a Small  Set of functional Dependencies  that enforcing them would enforce *all *  of the FDs. |
| The Canonical Set                                                                                                           |

-Rule 1: (Reflexivity):

if 
$$X \subseteq Y$$
 then  $Y \to X$ 

-Rule 2: (Angmentation):

if  $X \to Y$ , then  $ZX \to ZY$ 

-Rule 3: (Transitivity)

if  $X \to Y$  and  $Y \to Z$ ,

then  $X \to Z$ 

-Rule 4: ( Recomposition)

if  $X \to YZ$ , then  $X \to Y$ and  $X \to Z$ -Rule 5: (Union)

if  $X \to Y$  and  $X \to Z$ , then  $X \to YZ$ Rule 6: (Bendo Transitivity)

if  $X \to Y$  and  $X \to Z$ 

Closure:

Let F be a Set of FDs.

The Closure of F, Shewn as

Ft

is the Set of FDs that Gn

derine From F, by

re Cursinely applying Rules 1-3.

e.g., Example 1.

Let  $F = \{ID \rightarrow F_1 \}$   $ID \rightarrow Address$ From that is  $F^{\dagger}$ 

Rule 2: F1 > F3: {ID, Address} None, Address} F2 > F4: {ID, None} - Mone, allress}

Rule t:

F4 F5

{ID, name} -> ID

F4 >> F6

{ID, Name} -> name

F3 >> F4

{ID, Address} -> ID

F3 >> F8

{ID, Address} -> Address

000

F is a Canoniral Set for

Ft,

if #FCF, S.t.

(F') = Ft

\* The DBMS only Needs

to Check for the

Canonical Set of

functional Dependency

Fi Francis FS

Fa FS

FA DAG

The Set of nudes with

Inologue = D is

the Canonical Set





Candidate Keys = {{ID, boatin}}

Full Functional Dependencies (FFD)

we Say X -> Y is a FFD if

V X'CX, X' -> Y

2NF: A DB design is in 2NF if all FDs are FFD

Department



X: Not in 2NF.

PD, beation? - name
is Not a FFD



J2NF Dup

| - T |               |
|-----|---------------|
| ID  | Name          |
|     | A             |
| 2   | B             |
| 7   | $\overline{}$ |

Dep-Lation

|   | Dep[p | 10 | Bly. |
|---|-------|----|------|
| _ | 7     | 2  | X    |
| _ | I     | 3  | 12   |



Enum -> DNum -> DName



Assumption: Lot # s are Unique within each county

> Tax ID

BCNF:

BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCNF:
BCN

Or X is a Super Key



Y County Name, bt # } -> Area

X BCNF

BCZ (Conty Name, Let # s is not a key





VBCNF