

SOME RESULTS ON EVOLUTION

CONTENTS

1. Introduction.	1
2. Solution of the parabolic problem.	4
2.1. Geometric properties of weak solutions.	4
2.2. Comparison principle. Walsh Lemma in unbounded domains.	12
2.3. Existence of solutions and evolution.	13
2.4. Some geometric properties	19
3. Evolution of graphs	22
4. Limit for solutions	26
References	29

1. INTRODUCTION.

Let z_1, \dots, z_n be complex coordinates in \mathbb{C}^n , $n \geq 2$. Given a smooth function ϱ we set

$$|\partial\varrho|^2 = \sum_{1 \leq \alpha \leq n} |\varrho_\alpha|^2,$$

$$\varrho_\alpha = \varrho_{z_\alpha}, \varrho_{\bar{\alpha}} = \varrho_{\bar{z}_\alpha}, 1 \leq \alpha \leq n.$$

Let M be a smooth hypersurface in \mathbb{C}^n of local equation $\varrho = 0$. For every point $p \in M$ let $HT_p(M) \subset T_p(M)$ be the complex tangent hyperplane to M at p and $\nu = (\varrho_{\bar{1}}, \dots, \varrho_{\bar{n}})$ the normal vector to $HT_p(M)$.

Let $\{E_1, \dots, E_n\}$ be an orthonormal frame with origin at p and such that $\{E_1, \dots, E_{n-1}\}$ is a frame in $HT_p(M)$ and ζ_1, \dots, ζ_n the complex coordinates determined by $\{E_1, \dots, E_n\}$. The restriction to $\{\zeta_n = 0\}$ of the Levi form of ϱ is the *intrinsec Levi form* of M at p . Its

trace is

$$\mathcal{H}(\varrho) = |\partial\varrho|^{-1} \sum_{\alpha,\beta=1}^n \left(\delta^{\alpha\bar{\beta}} - \frac{\varrho_\alpha \varrho_{\bar{\beta}}}{|\partial\varrho|^2} \right) \varrho_{\alpha\bar{\beta}}$$

at p .

For $n = 2$, \mathcal{H} is essentially the Levi operator.

Let K be a compact subset of \mathbb{C}^n , $g : \mathbb{C}^n \rightarrow \mathbb{R}$ a continuous function which is constant for $|z| \gg 0$ and such that $K = \{g = 0\}$. Assume that $v \in C^0(\mathbb{C}^n \times \mathbb{R}^+)$ is a *weak solution* of the parabolic problem

$$(*) \quad \begin{cases} v_t = \sum_{\alpha,\beta=1}^n \left(\delta^{\alpha\beta} - \frac{v_\alpha v_{\bar{\beta}}}{|\partial v|^2} \right) v_{\alpha\bar{\beta}} & \text{in } \Omega \times (0, +\infty) \\ v = g & \text{on } \mathbb{C}^n \times \{0\} \\ v = \text{const} & \text{for } t \gg 0. \end{cases}$$

Then the family $\{K_t\}_{t \geq 0}$ of the subsets $K_t = \{z \in \mathbb{C}^n : v(z, t) = 0\}$ (which actually depends only on K) is called the *evolution of K by \mathcal{H}* .

Evolution of a compact subset K of \mathbb{C}^2 was introduced in [7], [8] where, after proving that the parabolic problem has a unique (weak) solution u , it was shown that if Ω is a bounded pseudoconvex domain of \mathbb{C}^2 with boundary of class C^3 , the evolution $\{\overline{\Omega}_t\}_{t \geq 0}$ of $\overline{\Omega}$ is contained in $\overline{\Omega}$. Conversely, pseudoconcave points "move out by evolution", i.e. if Ω is not pseudoconvex then $\overline{\Omega}_t \not\subseteq \Omega$ for some $t > 0$ (cfr. [9, Theorem 0.1]). The natural problem of what kind of hull one can recover by evolution was investigated in [11].

In this paper we consider the evolution of a compact subset of \mathbb{C}^n by \mathcal{H} with a fixed part $K^* \subseteq K$. Precisely, we study the following parabolic problem:

$$(P) \quad \begin{cases} v_t = \sum_{\alpha,\beta=1}^n \left(\delta^{\alpha\beta} - \frac{v_\alpha v_{\bar{\beta}}}{|\partial v|^2} \right) v_{\alpha\bar{\beta}} & \text{in } \Omega \times (0, +\infty) \\ v = g & \text{on } \overline{\Omega} \times \{0\} \\ v(z, t) = g(z) & \text{for } z \in \text{b}\Omega \times (0, +\infty) \end{cases}$$

where Ω is a bounded strictly pseudoconvex domain in \mathbb{C}^n such that

$$K \setminus K^* \subseteq \Omega, \quad K^* \subseteq \text{b}\Omega$$

and $g : \overline{\Omega} \rightarrow \mathbb{R}$ is a continuous function such that $g^{-1}(0) = K$. In Section 2 (see Theorems 2.6, 2.7) we will prove that

- a) the problem (P) has a unique (weak) solution v which is bounded and uniformly continuous in $\overline{\Omega} \times [0, +\infty)$;
- b) if g is a C^2 function, the corresponding solution v of (P) is Lipschitz on $\overline{\Omega} \times [0, +\infty)$;
- c) the set

$$X = \{(z, t) \in \overline{\Omega} \times [0, +\infty) : v(z, t) = 0\}$$

satisfies

$$X \cap (\overline{\Omega} \times \{0\}) = K \times \{0\}, \quad X \cap (\text{b } \Omega \times [0, +\infty)) = K^* \times [0, +\infty)$$

and it is actually independent of the choice of g and Ω .

The family $\{E_t(K, K^*)\}_{t \geq 0}$ of compact subsets defined by

$$E_t(K, K^*) = \{z \in \mathbb{C}^n : (z, t) \in X \text{ i.e. } v(z, t) = 0\}.$$

is then said to be the *evolution* of K with fixed part K^* (by \mathcal{H}).

Of particular interest in this setting is the case when K is the graph M of a continuous function on the closure \overline{D} of a bounded domain D in $\mathbb{C}^{n-1} \times \mathbb{R}$ and $K^* = \text{b } M$ is the boundary $\text{b } M$ of M . Generalizing the results of [10] for $n = 2$ we then prove the following theorem (see Theorem 4.4: if D is bounded, strictly pseudoconvex domain i.e. $D \times i\mathbb{R}$ is a strictly pseudoconvex domain in \mathbb{C}^n then

- d) $E_t(M, \text{b } M)$ is a graph for all $t \geq 0$ (Theorem 3.1);
- e) if $\text{b } M$ is smooth and satisfies the compatibility conditions discovered in [2], then asymptotically $E_t(M, \text{b } M)$ approaches, in the C^0 -topology the Levi flat hypersurface with boundary $\text{b } M$ whose existence was proved in [2].

Let us mention that in the smooth case a parabolic initial value problem related to the flow of a real hypersurface of \mathbb{C}^n by the trace of the Levi form is studied in a nice paper by Huisken and Klingenberg (cfr. [4]).

2. SOLUTION OF THE PARABOLIC PROBLEM.

2.1. Geometric properties of weak solutions. Let $U \subset \mathbb{C}^n \times (0, +\infty)$ be an open subset. An upper semicontinuous function $v : U \rightarrow [-\infty, +\infty)$ is said to be a (*weak*) *subsolution* of

$$v_t = \mathcal{H}(v) = \sum_{\alpha, \beta=1}^n (\delta^{\alpha\bar{\beta}} - |\partial v|^{-2} v_\alpha v_{\bar{\beta}}) v_{\alpha\bar{\beta}}.$$

if, for every (z^0, t^0) and a (viscosity) test function ϕ at (z^0, t^0) (i.e. ϕ is smooth near (z^0, t^0) and $v - \phi$ has a local maximum at (z^0, t^0)), one has

$$\phi_t(z^0, t^0) \leq \mathcal{H}(\phi)(z^0, t^0)$$

if $\partial\phi(z^0, t^0) \neq 0$ and

$$\phi_t(z^0, t^0) \leq \sum_{\alpha, \beta=1}^n \left(\delta^{\alpha\bar{\beta}} - \eta_\alpha \eta_{\bar{\beta}} \right) \phi_{\alpha\bar{\beta}}(z^0, t^0)$$

for some $\eta \in \mathbb{C}^n$ with $|\eta| \leq 1$, if $\partial\phi(z^0, t^0) = 0$.

A lower semicontinuous function $v : U \rightarrow (-\infty, +\infty]$ is said to be a (*weak*) *supersolution* if, for every (z^0, t^0) and a test function ϕ at (z^0, t^0) (i.e. ϕ is smooth near (z^0, t^0) and $v - \phi$ has a local minimum at (z^0, t^0)), one has

$$\phi_t(z^0, t^0) \geq \mathcal{H}(\phi)(z^0, t^0)$$

if $\partial\phi(z^0, t^0) \neq 0$ and

$$\phi_t(z^0, t^0) \geq \sum_{\alpha, \beta=1}^n \left(\delta^{\alpha\bar{\beta}} - \eta_\alpha \eta_{\bar{\beta}} \right) \phi_{\alpha\bar{\beta}}(z^0, t^0)$$

for some $\eta \in \mathbb{C}^n$ with $|\eta| \leq 1$, if $\partial\phi(z^0, t^0) = 0$.

Remark 2.1. Let A be an $n \times n$ hermitian matrix and $\eta \in \mathbb{C}^n$ with $|\eta| \leq 1$. Then $\text{Tr}A > \bar{\eta}^t A \eta$ provided $A > 0$. Conversely, if $\text{Tr}A > \bar{\eta}^t A \eta$ for some $\eta \in \mathbb{C}^n$ with $|\eta| \leq 1$ then A cannot be negative definite. In particular, from the above definition it follows that plurisubharmonic functions are (weak) subsolutions to $v_t = \mathcal{H}(v)$.

A (*weak*) *solution* is a continuous function which is both a subsolution and a supersolution.

One checks that the following properties are true:

- 1) maximum (minimum) of a finite number of subsolutions (supersolutions) is a subsolution (supersolution);
- 2) if $W' \subset W \subset \mathbb{C}^n \times (0, +\infty)$, W, W' open and $v : W \rightarrow (-\infty, +\infty)$, $v' : W' \rightarrow [-\infty, +\infty)$ are subsolutions, such that for all $\zeta \in bW' \cap W$

$$\limsup_{z \rightarrow \zeta} v'(z) \leq v(\zeta)$$

then the function

$$w(z) = \begin{cases} \max(v(z), v'(z)) & \text{if } z \in W' \\ v(z) & \text{if } z \in W \setminus W' \end{cases}$$

is a subsolution in W ;

- 3) translations of subsolutions (supersolutions) are subsolutions (supersolutions); i.e. if $\zeta \in \mathbb{C}^n$, $h \in \mathbb{R}$ is positive and $v^{\zeta, h}(z, t) = v(z + \zeta, t + h)$ then $v^{\zeta, h}$ is a subsolution (supersolution) provided v is;
- 4) the limit of a decreasing sequence of subsolutions is a subsolution.

Lemma 2.1. If $\varrho : (a, b) \rightarrow \mathbb{R}$ is a continuous non decreasing function and v is a subsolution (or a supersolution) with the range of v in (a, b) , then $\varrho \circ v$ is a subsolution (or a supersolution, respectively). In particular, if v is a weak solution, then $\varrho \circ v$ is a solution.

Proof. There is a sequence of C^∞ functions $\varrho_n : (a, b) \rightarrow \mathbb{R}$ such that $\varrho'_n(t) > 0$, $\varrho_n(t) \searrow \varrho(t)$, $t \in (a, b)$, therefore it suffices to prove the lemma for $\varrho = \varrho_n$, for then $\varrho_n \circ v \searrow \varrho \circ v$

and $\varrho \circ v$ will be a subsolution due to 4). Let ϕ be a test function for $\varrho \circ v$. Then $\chi = \varrho^{-1}$ is smooth and (strictly) increasing; since $\psi\chi \circ \phi$ is a test function for v hence we have

$$\psi_t(z^0, t^0) \leq \mathcal{H}(\psi)(z^0, t^0)$$

if $\partial\psi(z^0, t^0) \neq 0$ and

$$\psi_t(z^0, t^0) \leq \sum_{\alpha, \beta=1}^n \left(\delta^{\alpha\bar{\beta}} - \eta_\alpha \eta_{\bar{\beta}} \right) \psi_{\alpha\bar{\beta}}(z^0, t^0)$$

for some $\eta \in \mathbb{C}^n$ with $|\eta| \leq 1$, if $\partial\psi(z^0, t^0) = 0$.

Consider now the case $\partial\psi(z^0, t^0) \neq 0$ and suppose, by a contradiction, that

$$\phi_t(z^0, t^0) > \mathcal{H}(\phi)(z^0, t^0).$$

Then

$$\begin{aligned} \psi_t(z^0, t^0) &= \chi'(\phi(z^0, t^0)) \phi_t(z^0, t^0) \\ &> \chi'(\phi(z^0, t^0)) \mathcal{H}(\phi)(z^0, t^0) = \mathcal{H}(\psi)(z^0, t^0) \end{aligned}$$

which is absurd.

As for the case $\partial\psi(z^0, t^0) = 0$ it is enough to show the following: let $W \subset \mathbb{C}^n$ be open and $\varrho : W \rightarrow \mathbb{R}$ a weak continuous solution of the inequality

$$\mathcal{H}(\varrho)(z) \geq -h(z)$$

where $h : W \rightarrow \mathbb{R}^+$ is a continuous positive function. Suppose that χ is a continuous increasing function $\mathbb{R} \rightarrow \mathbb{R}$ with $\chi' \in L^\infty(\mathbb{R})$ and $0 \leq \chi' \leq 1$. Then

$$H(\chi \circ \varrho)(z) \geq -h(z),$$

in the weak sense. We proceed as follows. Since χ can be approximated uniformly on compact subsets of \mathbb{R} by smooth functions with the required properties, we may assume

that $\chi : \mathbb{R} \rightarrow \mathbb{R}$, $\chi \in C^\infty(\mathbb{R})$, $0 < \chi'(s) \leq 1$; hence $\chi^{-1} \in C^\infty(\mathbb{R})$. Let ψ be a smooth test function for $\mathcal{H}(\chi \circ \varrho) \geq -h$, i.e.

$$\psi(z) \geq (\chi \circ \varrho)(z) \text{ and } \psi(z^0) = (\chi \circ \varrho)(z^0);$$

then $\psi^* = \chi^{-1} \circ \varrho$ is a test function too, i.e.

$$\psi^*(z) \geq \varrho(z), \psi^*(z^0) = \varrho(z^0).$$

If $\partial\psi(z^0) \neq 0$ we have $\partial\psi^*(z^0) \neq 0$ and, by virtue of the hypothesis, $\mathcal{H}(\psi^*)(z^0) \geq -h(z^0)$, hence

$$\begin{aligned} \mathcal{H}(\psi)(z) = \mathcal{H}(\chi \circ \psi^*)(z^0) &= \chi'(\psi^*(z^0)) \mathcal{H}(\psi^*)(z^0) \geq \\ &\geq -\chi'(\psi^*(z^0)) h(z^0) > -h(z^0). \end{aligned}$$

If $\partial\psi(z^0) = 0$, then $\partial\psi^*(z^0) = 0$ and there is a vector $\eta \in \mathbb{C}^n$, $|\eta| \leq 1$, with

$$\sum_{\alpha,\beta=1}^n \left(\delta^{\alpha\bar{\beta}} - \eta_\alpha \eta_{\bar{\beta}} \right) \phi_{\alpha\bar{\beta}}(z^0, t^0) \geq -h(z^0).$$

Now we observe that, since $\psi_\alpha^*(z^0) = 0$, $1 \leq \alpha \leq n$

$$\begin{aligned} \sum_{\alpha,\beta=1}^n \left(\delta^{\alpha\bar{\beta}} - \eta_\alpha \eta_{\bar{\beta}} \right) \phi_{\alpha\bar{\beta}}(z^0, t^0) &= \chi'(\psi^*(z^0)) \phi_t(z^0, t^0) \sum_{\alpha,\beta=1}^n \left(\delta^{\alpha\bar{\beta}} - \eta_\alpha \eta_{\bar{\beta}} \right) \phi_{\alpha\bar{\beta}}(z^0, t^0) \geq \\ &\quad -\chi'(\psi^*(z^0)) h(z^0) \geq -h(z^0). \end{aligned}$$

This ends the proof. \square

In the sequel we will use the following

Proposition 2.2. *Let $\{v_\alpha\}_{\alpha \in A}$ be a family of weak subsolution of $v_t = \mathcal{H}(v)$ and assume that $v = \sup_{\alpha \in A} v_\alpha$ is locally bounded from above. Then the upper semicontinuous regularization of v*

$$v^*(z, t) = \limsup_{(z', t') \rightarrow (z, t)} v(z', t').$$

is a weak subsolution.

Proof. We first prove the following: let $B \Subset W$ be a ball of radius r centered at $w^0 = (z^0, t^0)$ and ϕ be such that $(v - \phi)(w^0) > (v - \phi)(w)$ for $w \in \overline{B} \setminus w^0$. Then there is a sequence $w^\nu \rightarrow w^0$ and indices $\alpha_\nu \in A$ such that for every ν the function $v_{\alpha_\nu} - \phi$ has a maximum at w^ν (relative to \overline{B}).

We may assume that $(v - \phi)(w^0) = 0$. For every $\nu \in \mathbb{N}$ such that $1/\nu \leq r$ let

$$-\delta_\nu = \max \{(v - \phi)(w) : 1/\nu \leq r |w - w^0| \leq r\}.$$

Since $v - \phi$ has a strict maximum ($=0$) at w^0 (relative to \overline{B}), $-\delta_\nu < 0$ i.e. $\delta_\nu > 0$. By definition of regularization

$$\left\{ (w, s) \in B \times [-\infty, +\infty) : s \leq (v^* - \phi)(w) \right\}$$

is the closure of

$$\bigcup_{\alpha \in A} \{(w, s) \in B \times [-\infty, +\infty) : s \leq (v_\alpha - \phi)(w)\}.$$

Thus, for every ν there is a point $(w^\nu, s^\nu) \in B \times \mathbb{R}$ and $\alpha_\nu \in A$ such that

$$s^\nu \leq (v_{\alpha_\nu} - \phi)(w^\nu) \leq 0, \quad |w^\nu - w^0| + s^\nu \leq \frac{1}{2} \min(\delta_\nu, 1/\nu);$$

in particular

$$|w^\nu - w^0| \leq \frac{1}{\nu}, \quad -\frac{1}{2}\delta_\nu(v_{\alpha_\nu} - \phi)(w^\nu) \leq 0.$$

Let now w^ν denote any of the maximum points of $(v_{\alpha_\nu} - \phi)|_{\overline{B}}$. Since

$$\begin{aligned} (v_{\alpha_\nu} - \phi)(w^\nu) &\geq -\frac{1}{2}\delta_\nu > -\delta_\nu \\ &\geq \max \{(v - \phi)(w) : \nu^{-1} \leq |w - w^0| \leq r\} \\ &> \max \{(v_{\alpha_\nu} - \phi)(w) : \nu^{-1} \leq |w - w^0| \leq r\} \end{aligned}$$

we conclude that $|w^\nu - w^0| \leq \nu^{-1}$ i.e. $w^\nu \rightarrow w^0$.

In order to prove that v^* is a weak subsolution let $\phi \in C^\infty(B)$ and suppose that $v^* - \phi$ has a maximum at $w^0 = (z^0, t^0)$ with $\partial\phi(z^0, t^0) \neq 0$. Let $\phi_\varepsilon(w) = \phi(w) + \varepsilon|w - w^0|^2$; then $\partial\phi(z^0, t^0) \neq 0$, ϕ_ε has a strict maximum at w^0 so, in view of what already proved, there

are point $w^\nu = (z^\nu, t^\nu) \rightarrow w^0 = (z^0, t^0)$ and $\alpha_\nu \in A$ such that $(v_{\alpha_\nu} - \phi_\varepsilon)$ have maximum at w^ν with $\partial\phi_\varepsilon(z^\nu, t^\nu) \neq 0$ and

$$\mathcal{H}(\phi_\varepsilon)(z^\nu, t^\nu) \geq \frac{\partial\phi_\varepsilon}{\partial t}(z^\nu, t^\nu).$$

Letting $\nu \rightarrow +\infty$, we get

$$\mathcal{H}(\phi_\varepsilon)(z^0, t^0) \geq \frac{\partial\phi_\varepsilon}{\partial t}(z^0, t^0)$$

and then with $\varepsilon \rightarrow 0$

$$\mathcal{H}(\phi_\varepsilon)(z^0, t^0) \geq \frac{\partial\phi_\varepsilon}{\partial t}(z^0, t^0).$$

The proof if $\partial\phi(z^0, t^0) = 0$ is similar. \square

Finally, in order to prove the independence of the evolution of the pair (K, K^*) on Ω (see Introduction, c)) we discuss a local maximum property of the level sets of a weak solution v .

For an open set V in $\mathbb{C}^n \times (0, +\infty)$ set

$$\mathcal{P}_{\mathcal{H}}(V) = \left\{ \psi \in C^2(V) : \psi_t \leq \mathcal{H}(\psi) \right\}.$$

Let Z be a locally closed subset of V . We say that Z has *local maximum property (relative to $\mathcal{P}_{\mathcal{H}}$)* if for every open set $V' \Subset \mathbb{C}^n \times (0, +\infty)$ such that $\overline{V} \cap Z$ is closed and \overline{V} is compact, and for every $\psi \in \mathcal{P}_{\mathcal{H}}(V')$ where V' is a neighbourhood of \overline{V} it holds:

$$\max_{\overline{V} \cap Z} \psi = \max_{b V \cap Z} \psi.$$

Lemma 2.3. *Let $W \subseteq \mathbb{C}^n \times (0, +\infty)$ be open, $v : W \rightarrow \mathbb{R}$ a weak solution of the $v_t = \mathcal{H}(v)$ and $Z = \{v = 0\}$. Then*

- a) *Z has local maximum property;*
- b) *for every $c > 0$, $Z^c = \{(z, t) \in Z : t \leq c\}$ has local maximum property.*

Proof. We first prove the following. Let v be a weak supersolution of $v_t = \mathcal{H}(v)$ in W .

Fix a point $(z^0, t^0) \in W$ and a neighbourhood $V \subset W$ of (z^0, t^0) . Let $\phi \in C^2(V)$ be such that $\phi(z^0, t^0) = v(z^0, t^0) = c$ and

$$(1) \quad \{(z, t) \in V : \phi(z, t) > c\} \subseteq \{(z, t) \in V : v(z, t) > c\}.$$

Then

$$\phi_t(z^0, t^0) \geq \mathcal{H}(\phi)(z^0, t^0)$$

if $\partial\phi(z^0, t^0) \neq 0$ and

$$\phi_t(z^0, t^0) \geq \sum_{\alpha, \beta=1}^n \left(\delta^{\alpha\bar{\beta}} - \eta_\alpha \eta_{\bar{\beta}} \right) \phi_{\alpha\bar{\beta}}(z^0, t^0)$$

for some $\eta \in \mathbb{C}^n$ with $|\eta| \leq 1$, if $\partial\phi(z^0, t^0) = 0$.

Observe that, if there exists a non-decreasing continuous function $\varrho : \mathbb{R} \rightarrow \mathbb{R}$ such that $\varrho(c) = c$ and $\phi(z, t) \leq (\varrho \circ u)(z, t)$ on a neighbourhood of (z^0, t^0) , then $\varrho \circ u$ is still a weak supersolution, so the conclusions concerning ϕ are immediate.

In order to construct ϱ let N be a compact neighbourhood of (z^0, t^0) such that $N \subset V \subset W$. Set $\varrho_1(s) = c$ for $s \leq c$. For every s satisfying

$$c \leq s \leq s_\infty := \sup \{v(z, t) : (z, t) \in N\text{Big}\}$$

let

$$R_s = \{(z, t) : (z, t) \in N : v(z, t) \leq s\}.$$

Since v is lower semicontinuous, the R_s 's are compact and $R_s \subset R_{s'}$ if $s \leq s'$. For $c \leq s \leq s_\infty$ we then define

$$\varrho_1(s) = \max\{\phi(z, t) : (z, t) \in R_s\}.$$

Clearly, ϱ_1 is a non decreasing upper semicontinuous function, $s \mapsto R_s$ being an upper semicontinuous correspondence. Moreover, $\phi(z, t) \leq (\varrho \circ u)(z, t)$. Indeed, assume for a contradiction that $\phi(z, t) > (\varrho \circ u)(z, t)$. If $\phi(z, t) > (\varrho \circ u)(z, t)$ this is impossible as

$\varrho_1 \geq c$ always. If $\phi(z, t) > c$, by 1, $v(z, t) > c$. Let $s = v(z, t)$; then $(z, t) \in R_s$ and so $\varrho_1(s) \geq \phi(z, t)$, i.e. $\phi(z, t) \leq (\varrho \circ u)(z, t)$. Choose finally a continuous non decreasing function $\varrho : \mathbb{R} \rightarrow \mathbb{R}$ such that $\varrho \geq \varrho_1$, $\varrho(c) = c$. Then $\phi(z, t) \leq (\varrho \circ u)(z, t)$. (Note that ϱ can be chosen continuous because $\lim_{s \rightarrow 0^+} \varrho_1(s) = c$).

Now suppose the claim a) is false, i.e.

$$\max_{\overline{V} \cap Z} \psi > \max_{bV \cap Z} \psi,$$

for some $\psi \in \mathcal{P}_H(V')$. Then there is $\varepsilon > 0$ small enough so that the function $\psi^\varepsilon = \psi - \varepsilon t$ still satsfies

$$\max_{\overline{V} \cap Z} \psi^\varepsilon > \max_{bV \cap Z} \psi^\varepsilon,$$

and, in addition $\psi_t^\varepsilon < \mathcal{H}(\psi^\varepsilon)$ in \overline{V} . Let (z^0, t^0) denote the point where ψ^ε takes maximum value, say M , relative to $\overline{V} \cap Z$. Clearly $(z^0, t^0) \in V \cap Z$, and

$$\begin{aligned} \{(z, t) \in V : \psi^\varepsilon(z, t) > m\} \subset V \setminus Z &= \{(z, t) \in V : u(z, t) \neq 0\} \\ &= \{(z, t) \in V : u(z, t)^2 > 0\}. \end{aligned}$$

If we set $\phi = \psi^\varepsilon - m$ and $w = u^2$, then w is still a weak solution of the parabolic problem, $\phi(z^0, t^0) = w(z^0, t^0)$ and

$$\{(z, t) \in V : \phi(z, t) > 0\} \subset \{(z, t) \in V : w(z, t) > 0\}.$$

Taking into account what proved in the first part we obtain

$$\psi_t^\varepsilon(z^0, t^0) = \phi_t(z^0, t^0) \geq \mathcal{H}(\phi)(z^0, t^0) = \mathcal{H}(\psi^\varepsilon)(z^0, t^0)$$

which is a contradiction.

In order to prove b) fix $c > 0$ and consider ψ as in definition of local maximum property. Let $\varrho : \mathbb{R} \rightarrow \mathbb{R}$ defined by $\varrho(t) = 0$ if $t \leq c$, $\varrho(t) = -(c-t)^3$ if $t > c$ and, for $N > 0$, $(z, t) \in \overline{V}$, let $\psi^N(z, t) = \psi(z, t) + N\varrho(t)$. Clearly $\psi^N \in \mathcal{P}_H(V')$ and so, by part

a),

$$\max_{\overline{V} \cap X} \psi^N = \max_{bV \cap X} \psi^N.$$

Observe, however, that

$$\lim_{N \rightarrow +\infty} \psi^N(z, t) = -\infty$$

if $t > c$ and

$$\psi(z, t)^N = \psi(z, t)$$

for $(z, t) \in X^c$, thus

$$\lim_{N \rightarrow +\infty} \max_{\overline{V} \cap X} \psi^N = \max_{\overline{V} \cap X^c} \psi.$$

The same being true for $bV \cap X^c$, we conclude that

$$\max_{\overline{V} \cap X^c} \psi^N = \max_{bV \cap X^c} \psi^N.$$

□

2.2. Comparison principle. Walsh Lemma in unbounded domains. Let us consider the cylinder $Q = \Omega \times (0, h)$ in $\mathbb{C}^n \times \overline{\mathbb{R}}^+$, where Ω is a bounded domain of \mathbb{C}^n and let

$$\Sigma = (\overline{\Omega} \times \{0\}) \cup (b\Omega \times (0, h)).$$

We have the following comparison principle which can be proved arguing as in [8, Theorem 1.1].

Theorem 2.4. *Let $v, w \in C^0(\overline{Q})$ be respectively a weak subsolution and a weak supersolution in Q . If $v \leq w$ on Σ then $v \leq w$. In particular, $v \leq \max_{\Sigma} v$, $w \geq \min_{\Sigma} w$.*

We also need the following unbounded version of the Walsh Lemma proved in [11].

Let $W \subset \mathbb{R}^N$ be a domain with $bW \neq \emptyset$ and $\mathcal{F} = \mathcal{F}(\overline{W})$ a class of functions v satisfying the following properties:

- 1) v is upper semicontinuous in \overline{W} and $\sup_{\overline{W}} v = \sup_{bW} v < +\infty$;

- 2) for every constant α , $v + \alpha \in \mathcal{F}$, if $v \in \mathcal{F}$;
- 3) if v is locally equal to the maximum of finitely many translates of functions in \mathcal{F} , then $v \in \mathcal{F}$;
- 4) upper semicontinuous regularization of the supremum of a family of functions in \mathcal{F} is a member of \mathcal{F} , provided it is uniformly bounded on \overline{W} ;
- 5) if W' is relatively open in \overline{W} , $v \in \mathcal{F}(\overline{W})$, $v' \in \mathcal{F}(\overline{W}')$ and $v'(\zeta) \leq v(\zeta)$ for $\zeta \in (\text{b } W') \cap W$ then the function

$$w(z) = \begin{cases} \max(v(z), v'(\zeta)) & \text{if } z \in W' \\ v(z) & \text{if } z \in W \end{cases}$$

belongs to $\mathcal{F}(\overline{W})$.

Lemma 2.5. *Let $g \in C^0(\text{b } W)$ be a bounded uniformly continuous function and*

$$v(z) = \sup \left\{ w(z) : v \in \mathcal{F}, w \leq g \text{ on } \text{b } W \right\}.$$

Suppose that $v = g$ on $\text{b } W$ and v is uniformly continuous at the points of $\text{b } W$, with the modulus of continuity $\omega(\delta)$, $\lim_{\delta \rightarrow 0^+} \omega(\delta) = 0$, i.e.

$$\sup \left\{ |v(z) - g(\zeta)|, \zeta \in \text{b } W, z \in \overline{W}, |z - \zeta| \leq \delta \right\} \leq \omega(\delta).$$

Then v is uniformly continuous on \overline{W} with the same $\omega(\delta)$ as its modulus of continuity.

2.3. Existence of solutions and evolution. We are in position to prove the following existence theorem:

Theorem 2.6. *Let Ω be a bounded strictly pseudoconvex domain in \mathbb{C}^n , $g : \overline{\Omega} \rightarrow \mathbb{R}$ a continuous function. Then the problem (P) has a unique weak solution v which is bounded and uniformly continuous in $\overline{\Omega} \times [0, +\infty)$.*

Proof. Unicity is a consequence of the comparison principle. Existence will be proved by Perron method.

Let $W = \Omega \times [0, +\infty)$ and $\mathcal{F} = \mathcal{F}_g$ be the class of all functions $w : \overline{W} \rightarrow [-\infty, +\infty)$ with the following properties:

- 1) w is upper semicontinuous in \overline{W} and is a subsolution in W ;
- 2) $w \leq \max_{\overline{W}} g$;
- 3) $w \leq g$ on $b W$

Let $v : \overline{W} \rightarrow \mathbb{R}$ be the function

$$(z, t) \longrightarrow \sup \left\{ w(z, t) : w \in \mathcal{F} \right\}$$

and v^* its upper semicontinuous regularization: v^* is a subsolution (cfr. Proposition 2.2).

We want to prove that $v = v^*$ and v is actually the solution of the problem (P) .

The proof is divided in several steps.

A) $v = g$, for $(\zeta, t) \in b\Omega \times [0, +\infty)$. Furthermore, v is uniformly continuous at the points of $b\Omega \times [0, +\infty)$ in the following sense: given $\varepsilon > 0$ there exists $\delta > 0$ such that $|v(z, t) - g| \leq \varepsilon$ if $\text{dist}((z, t), b\Omega \times [0, +\infty)) < \delta$.

Let $\varepsilon > 0$ be fixed and $g_1 \in C^2(\mathbb{C}^n)$ such that $|g_1 - g| < \varepsilon$ on $\overline{\Omega}$. Since Ω is strictly pseudoconvex there is a strictly plurisubharmonic function ϱ on a neighbourhood U of $\overline{\Omega}$, such that $\varrho = 0$ on $b\Omega$ and $\Omega = \{\varrho < 0\}$. For $m > 0$ big enough the time-independent function

$$v_m^\varepsilon(z) = m\varrho(z) + g_1 - \varepsilon,$$

is strongly plurisubharmonic in U , therefore a subsolution of $v_t = \mathcal{H}(v)$ and

$$v_m^\varepsilon(z) = n\varrho(z) + g_1 - \varepsilon \leq n\varrho(z) + g \leq g(z)$$

for $z \in \overline{W}$.

Thus $v_m^\varepsilon \in \mathcal{F}$ and consequently

$$m\varrho(z) + g - \varepsilon \leq v_m^\varepsilon(z, t) \leq v(z, t) \leq g.$$

It follows

$$|v(z, t) - g| \leq m|\varrho| + \varepsilon.$$

It is evident now that, for a fixed ε , there is $\delta > 0$ such that the statement A) holds true.

B) For all $a \in \Omega$

$$(2) \quad \lim_{(z,t) \rightarrow (a,0)} v(z, t) = \lim_{(z,t) \rightarrow (a,0)} v^*(z, t) = g(a)$$

In order to prove this we fix $\varepsilon > 0$ and smooth functions ϕ, ψ on \mathbb{C}^n in such a way to have

$$g(z) - \varepsilon < \phi(z) < g(z) < \psi(z) < g(z) + \varepsilon.$$

Let c be a constant such that

$$\left| \sum_{\alpha,\beta=1}^n \phi_{\alpha\bar{\beta}}(z) \xi^\alpha \overline{\xi^\beta} \right| < c|\xi|^2, \quad \left| \sum_{\alpha,\beta=1}^n \psi_{\alpha\bar{\beta}}(z) \xi^\alpha \overline{\xi^\beta} \right| < c|\xi|^2$$

for all $z \in \Omega$ and $\xi \in \mathbb{C}^n$. Then

$$v_+(z, t) = \psi(z) + ct, \quad v_-(z, t) = \phi(z, t) - ct$$

are respectively a regular supersolution and a regular subsolution in W ; moreover, $v_- \in \mathcal{F}$ and $v_{|\text{b } W} \leq v_{+|\text{b } W}$. In view of the comparison principle for v_+ and v_- , we deduce that

$$v_- \leq v \leq v^* \leq v_+$$

in \overline{W} and consequently, since v_- and v_+ are continuous, that

$$g(a) - \varepsilon \leq v_-(a, 0) \leq \liminf_{(z,t) \rightarrow (a,0)} v(z, t) \leq \limsup_{(z,t) \rightarrow (a,0)} v(z, t) \leq u_+(a, 0) \leq g(a) + \varepsilon.$$

for all $a \in \overline{\Omega}$.

2 follows ε being arbitrary.

A), B) imply that $v^* \in \mathcal{F}$ therefore, by definition of v , we have $v^* = v$. In particular, $v = v^*$ is a subsolution which is continuous at every point of $\text{b } W$. Thus all the hypothesis of the Walsh Lemma (see 2.5) are satisfied hence v is continuous in \overline{W} .

Finally v is a weak solution in W . For if not there is $(z^0, t^0) \in W$ and $\phi \in C^\infty(W)$ such that $v - \phi$ has a strict local minimum ($=0$) at (z^0, t^0) and

$$\phi_t(z^0, t^0) < \mathcal{H}(\phi)(z^0, t^0)$$

if $\partial\phi(z^0, t^0) \neq 0$ and

$$(3) \quad \phi_t(z^0, t^0) < \sum_{\alpha, \beta=1}^n \left(\delta^{\alpha\bar{\beta}} - \eta_\alpha \eta_{\bar{\beta}} \right) \phi_{\alpha\bar{\beta}}(z^0, t^0)$$

for some $\eta \in \mathbb{C}^n$ with $|\eta| \leq 1$, if $\partial\phi(z^0, t^0) = 0$. Observe that $v(z^0, t^0) < \max_{\overline{W}} g$, otherwise, by definition of v , (z^0, t^0) would be a maximum point for v hence for ϕ and this contradicts 3 (see Remark 2.1). Thus, we can find $\varepsilon > 0$ small enough such that $\phi + \varepsilon$ is a subsolution on a neighbourhood U of (z^0, t^0) , $\phi + \varepsilon < \max_{\overline{W}} g$ and

$$\emptyset \neq V = \left\{ (z, t) \in U : (\phi + \varepsilon - v)(z, t) > 0 \right\} \Subset U.$$

It is now clear that

$$\tilde{v}(z, t) = \begin{cases} \max(v(z, t), \phi(z, t) + \varepsilon) & \text{if } (z, t) \in U \\ v(z, t) & \text{if } (z, t) \in \overline{W} \setminus \overline{V} \end{cases}$$

is a subsolution, $\tilde{v} \in \mathcal{F}$ and $v < \tilde{v}$ near (z^0, t^0) : contradiction.

Theorem 2.6 is completely proved. \square

Remark 2.2. The strict pseudoconvexity condition can be relaxed. In particular the following condition suffices: for all $\zeta \in b\Omega$ there is a ball B centered at ζ and a strictly plurisubharmonic function $\phi : B \rightarrow \mathbb{R}$ such that $\phi(\zeta) = 0$ and $\phi < 0$ on $B \cap \Omega$.

Remark 2.3. Using the method employed in [5] it can be proved that if the boundary value g is $C^2(b\Omega)$ the solution of the problem (P) is Lipschitz in $\overline{\Omega}$.

Theorem 2.7. Let (K^*, K) be a pair of compact sets in \mathbb{C}^n such that $K^* \subset K$, $K \neq \emptyset$ and Ω a bounded strictly pseudoconvex domain such that $K \setminus K^* \subseteq \Omega$, $K^* \subseteq b\Omega$. Assume

that $K = g^{-1}(0) = K$ with $g : \overline{\Omega} \rightarrow \mathbb{R}$ and let v be the solution of the parabolic problem (P) . Then the set

$$X = \{(z, t) \in \overline{\Omega} \times [0, +\infty) : v(z, t) = 0\}$$

is independent of the choice of g and Ω . Moreover

- i) $X \cap (\overline{\Omega} \times \{0\}) = K \times \{0\}$,
- ii) $X \cap (\text{b } \Omega \times [0, +\infty)) = K^* \times [0, +\infty)$.

Proof. The independence of the zero set $\{u = 0\}$ of the choice of g satisfying $g^{-1}(0) = K$ is essentially the argument of Evans and Spruck in [3] (cfr. also [11]).

It remains to show independence of $X = u^{-1}(0)$ of the choice of Ω satisfying the conditions of Theorem 2.7 .

Suppose Ω_1, Ω_2 are such domains and $\Omega_0 = \Omega_1 \cap \Omega_2$. Then Ω_0 satisfies condition (C) of Remark 2.2 and also $K \setminus K^* \subseteq \Omega_0$, $K^* \subseteq \text{b } \Omega_0$. For each of these sets we have unique (independent of respective u) "evolution hypersurface" i.e X_j , where $j = 0, 1, 2$, $X_j \subseteq \overline{\Omega}_j \times [0, +\infty)$ and

- i) $X_j \cap (\overline{\Omega} \times \{0\}) = K \times \{0\}$,
- ii) $X_j \cap (\text{b } \Omega \times [0, +\infty)) = K^* \times [0, +\infty)$.

We will show that $X_1 = X_0$ and this will imply that $X_1 = X_2$, as required.

Let g, v be as in Theorem 2.7, for the domain Ω_1 , so that $X_1 = u^{-1}(0)$. Let now $g_0 = g|_{\overline{\Omega}_0}$ and $u_0 \in C^0(\overline{\Omega}_0 \times [0, +\infty))$ be the corresponding solutions of the parabolic problem so that $X_0 = u_0^{-1}(0)$.

The following is true:

- i) $X_1 \subseteq \overline{\Omega}_0 \times [0, +\infty)$;
- ii) $X_1 \subseteq (\Omega_0 \cup K^*) \times [0, +\infty)$.

Since Ω_0 is the intersection of two strictly pseudoconvex domains Ω_1, Ω_2 , there is a neighbourhood N of $\overline{\Omega}_0$ and a continuous plurisubharmonic function $\phi : N \rightarrow \mathbb{R}$ such

that $\overline{\Omega}_0 = \{\phi \leq 0\}$. Suppose $X_1 \not\subseteq \overline{\Omega}_0$, then there exists $c > 0$ such that $X^c \not\subseteq \overline{\Omega}_0$ but $X_1^c \subset N$. (Observe that $c \mapsto X^c$ is an upper semicontinuous correspondence and $X_1^\circ = K \subset N$.)

Let $\tilde{\phi}(z, t) = \phi(z)$ and define

$$M = \max_{X^c} \tilde{\phi}, \quad F = \left\{ (z, t) \in X^c : \tilde{\phi}(z, t) = M \right\}.$$

Then $M > 0$, F is compact and $F \cap (K^* \times \{0\}) = \emptyset$. Choose V , a neighbourhood of F such that \overline{V} is compact, $\overline{V} \subset N \setminus \overline{\Omega}_0 \times (0, +\infty)$. Then

$$M = \max_{X_1^c \cap \overline{V}} \tilde{\phi} > \max_{X_1^c \cap bV} \tilde{\phi}$$

which contradicts the local maximum property (b) of Lemma 2.3 since, clearly, $u \in \mathcal{P}_{\mathcal{H}}$.

. This proves i).

As for ii) suppose $(z^0, t^0) \in X_1 \cap (b\Omega_0 \setminus K^*) \times [0, +\infty)$. Then $z^* \in b\Omega_1$ or $z^* \in b\Omega_2$. In either case there is a C^2 strictly plurisubharmonic function $v = v(z)$ in a neighbourhood of z^* such that $v(z^*) = 0$, $v(z) < 0$ for $z \in B(z^*, r) \cap (\overline{\Omega}_0 \setminus \{z^*\})$. Since v is strictly plurisubharmonic, there is an $\varepsilon > 0$, small enough so that the function $\psi^\varepsilon(z, t) = v(z) - \varepsilon(t - t^*)^2$ is of the class $\mathcal{P}_{\mathcal{H}}$ in $V = B \times (t^0 - r, t^* + r)$. Observe now that $\psi^*(z^0, t^0) = 0$ while $\psi^\varepsilon(z, t) < 0$ for $(z, t) \in X_1 \cap V \setminus \{(z^0, t^0)\}$. This contradicts again the local maximum property (a) of Lemma 2.3. Thus $X_1 \cap (b\Omega_0 \setminus K^*) \times [0, +\infty) = \emptyset$, whence ii).

We can now show that $X_0 = X_1$. Fix $c > 0$ and let

$$W^c = \Omega_0 \times (0, c), \quad \Sigma^c = (\overline{\Omega}_0 \times \{0\}) \cup (b\Omega_0 \times [0, c]).$$

Let $U^c = u|_{\overline{W}^c}$. Then u_0, U^c are continuous weak solutions in \overline{W} . By i), ii)

$$u^{-1}(0) \cap \Sigma^c = (U^c)^{-1}(0) \cap \Sigma^c.$$

Hence, similarly as in [ES1] there are continuous increasing functions $\chi_1, \chi_2 : \mathbb{R} \rightarrow \mathbb{R}$, with $\chi_j(0) = 0$, $j = 1, 2$, such that

$$\chi_1 \circ u_0 \leq U^c \leq \chi_2 \circ u_0$$

on Σ^c .

Since $\chi_j \circ u_0$, $j = 1, 2$, are weak solutions the comparison principle implies that

$$\chi_1 \circ u_0 \leq U^c \leq \chi_2 \circ u_0$$

in W and so

$$X_0^c = (u_0)^{-1}(0) = (U^c)^{-1}(0) = X_1^c,$$

for every $c > 0$. Thus $X_0 = X_1$. \square

In light of this theorem we define

$$E_t(K, K^*) = \left\{ z \in \mathbb{C}^n : (z, t) \in X \text{ i.e. } u(z, t) = 0 \right\}.$$

The family $\{E_t(K, K^*)\}_{t \geq 0}$ is said to be the *evolution* of K mod K^* (by \mathcal{H}).

The semigroup property

$$(4) \quad E_{t+t'}(K, K^*) = E_t(E_{t'}(K, K^*), K^*)$$

holds true as well as for the standard evolution (i.e. when $K^* = \emptyset$).

2.4. Some geometric properties.

Theorem 2.8. *Let Ω be a bounded, strictly pseudoconvex domain of \mathbb{C}^n , $K \subset \overline{\Omega}$, $K^* \subset b\Omega$ compact sets such that: $K^* \subset K$, $K \setminus K^* \subset \Omega$ and separates Ω . Let $\{E_t(K, K^*)\}_{t \geq 0}$ be the evolution of K mod K^* . Then, for every t the subset $E_t(K, K^*) \setminus K^*$ separates Ω .*

Proof. Choose $g \in C^0(\overline{\Omega})$ such that $g^{-1}(0) = K$; $\Omega \setminus K = \{g > 0\} \cup \{g < 0\}$ and we choose ζ_1, ζ_2 such that $g(\zeta_1) > 0$, $g(\zeta_2) < 0$. Let u be the weak solution of (P) . Then

$E_t(K, K^*) = \{u(\cdot, t) = 0\}$ and $\Omega \setminus \{E_t(K, K^*)\}_{t \geq 0}$ is a union $\{u(\cdot, t) > 0\} \cup \{u(\cdot, t) < 0\}$ of nonempty subsets. \square

Proposition 2.9. *In the context of the previous theorem*

$$\limsup_{t \rightarrow +\infty} E_t(K, K^*) = K^\infty$$

where $K^\infty \setminus K^*$ is pseudoconcave i.e. has local maximum property with respect to the functions $|P|$, $P \in \mathbb{C}[z_1, z_2, \dots, z_n]$. Furthermore, $K^\infty \setminus K^*$ separates Ω .

Proof. First of all we point out the following fact whose proof is a straightforward consequence of the definition. Let $\{X_t\}_{t \in T}$, where T is a (direct) partially ordered set, be a family of relatively closed subsets of an open subset W of $\mathbb{C}^n \times (0, +\infty)$. Assume all X_t have local maximum property relative to \mathcal{P}_H . Then

$$\limsup_{t \rightarrow +\infty} X_t = \bigcap_{t^\circ} \overline{\bigcup_{t \geq t^\circ} X_t}$$

has local maximum property relative to \mathcal{P}_H provided it is nonempty.

In order to prove that $K^\infty \setminus K^*$ is pseudoconcave let $W = \Omega \times (0, +\infty)$ and u be the solution of the parabolic problem (P). We know that v is uniformly continuous in \overline{W} .

Let

$$X = \{(z, t) \in \Omega \times (0, +\infty) : v(z, t) = 0\}$$

and

$$X^h = \{(z, t) \in \Omega \times (0, +\infty) : v^h(z, t) = 0\}$$

where $v^h(z, t) = v(z, t + h)$, $h > 0$.

Since the equation $v_t = \mathcal{H}(v)$ is invariant with respect to time shift $t \mapsto t + h$, $h \geq 0$, we obtain that $\{X^h \cap W\}_{h>0}$ is a family of sets with local maximum property relative to \mathcal{P}_H defined above. Let

$$X^\infty = \limsup_{h \rightarrow +\infty} X^h.$$

By what observed at the beginning, $X^\infty \cap W$ has local maximum property relative to \mathcal{P}_H provide $X^\infty \cap W \neq \emptyset$. On the other hand, from

$$X^h \cap (\mathbb{C}^n \times \{t\}) = E_{t+h}(K, K^*) \times \{t\},$$

and

$$\limsup_{h \rightarrow +\infty} E_{t+h}(K, K^*) = K^\infty,$$

for each $t > 0$ we deduce that $X^\infty = K^\infty \times (0, +\infty)$ and so the set $(K^\infty \setminus K^*) \times (0, +\infty)$ has local maximum property relative to the class of subsolutions \mathcal{P}_H .

Suppose now that $K^\infty \setminus K^*$ is not a local maximum set relative to the functions $|P|$, $P \in \mathbb{C}[z_1, z_2, \dots, z_n]$. Then, by [6] there are a point $z^0 \in K^\infty \setminus K^* \subset \Omega$ and a strictly plurisubharmonic function $\varrho \in C^2(B(z^0, r))$, $r > 0$, such that $\varrho(z^0) = 0$ and $\varrho(z) < 0$ for $z \in K^\infty \cap (B(z^0, r) \setminus \{z^0\})$. Choose a small $\varepsilon > 0$ such that the function $\psi(z, t) = \varrho(z) - \varepsilon(t - t^0)^2$ satisfies $\mathcal{H}(\psi) - \psi_t > 0$ in $B(z^0, r) \times (t^0 - r, t^0 + r)$, i.e. $\psi \in \mathcal{P}_H$ in a neighbourhood of (z^0, t^0) . Owing to the properties of ϱ ,

$$\psi|_{(K^\infty \setminus K^*) \times (0, +\infty)} = \psi|_{X^\infty \cap W}$$

$$\psi|_{(K^\infty \setminus K^*) \times (0, +\infty)} = \psi|_{X^\infty \cap W}$$

has strict local maximum at (z^0, t^0) : contradiction. \square

We will need the following general fact.

Proposition 2.10. *Let $\Omega \subset \mathbb{C}^n$ be a bounded strictly pseudoconvex domain and K, K' disjoint compact subsets of Ω . Let $K \cap b\Omega = K^*$, $K' \cap b\Omega = K'^*$. Then*

$$E_t(K, K^*) \cap E_t(K', K'^*) = \emptyset$$

for every $t > 0$.

Proof. Take a continuous function $g : \overline{\Omega} \rightarrow \mathbb{R}$ such that $g^{-1}(0) = K$, $g^{-1}(1) = K'$ and solve the problem

$$\begin{cases} v_t = \mathcal{H}(v) \text{ in } \Omega \times (0, +\infty) \\ v = g \text{ on } (\overline{\Omega} \times \{0\}) \cup (\partial \Omega \times (0, +\infty)). \end{cases}$$

Then

$$E_t(K, K^*) = \{v(\cdot, t) = 0\}, \quad E_t(K', K'^*) = \{v(\cdot, t) = 1\}$$

and consequently the subsets $E_t(K, K^*)$, $E_t(K', K'^*)$ are disjoint for every $t > 0$. \square

Remark 2.4. We do not know if the same is true if we have two different strictly pseudoconvex domains Ω, Ω' with $K \subseteq \Omega$, $K' \subseteq \Omega'$.

3. EVOLUTION OF GRAPHS

From now on we assume that K is the graph Γ of a continuous function $u : \overline{D} \rightarrow \mathbb{R}$ where D is a bounded domain of $\mathbb{C}^{(n-1)} \times \mathbb{R}$ and $K^* = \partial \Gamma$.

We have the following theorem:

Theorem 3.1. *If $D \times i\mathbb{R}$ is strictly pseudoconvex then $E_t(\Gamma, \partial \Gamma)$ is a graph for every $t \geq 0$.*

Proof. In our situation $K = \Gamma$ and $D \times i\mathbb{R}$ is a strictly pseudoconvex domain in \mathbb{C}^n . Set $z' = (z_1, \dots, z_{n-1})$ and consider translations $T_h : \mathbb{C}^n \rightarrow \mathbb{C}^n$ of the form $(z', z) \mapsto (z', z_n + ih)$, $h \in \mathbb{R}$.

For fixed $h > 0$, consider a bounded strictly pseudoconvex domain Ω and a large enough number M such that

$$\begin{aligned} \overline{D} \times i\mathbb{R} \supset \overline{\Omega} &\supset \overline{D} \times [-iM, iM] \\ &\supset \Gamma \cup T_h(\Gamma). \end{aligned}$$

Then we can consider the evolutions of Γ and $T_h(\Gamma) \pmod{b\Gamma}$ with such $\overline{\Omega}$ and they must be disjoint in view of Proposition 2.10. (The evolution is independent of the specific choice of such Ω .) \square

The operator \mathcal{H} does not depend upon the equation of a surface. In particular, if $x_1, y_1, \dots, x_n, y_n$ are real coordinates with $z_\alpha = x_\alpha + iy_\alpha$, $1 \leq \alpha \leq n$, for a graph of a smooth function $y_n = u(x_1, \dots, x_n, y_1, \dots, y_{n-1})$ one has $\mathcal{H}(y_n - u) = \mathcal{H}_0(u)$ where \mathcal{H}_0 is a quasilinear degenerate elliptic operator in the real coordinates.

If $n = 2$ \mathcal{H}_0 is the Levi operator for graphs (cfr. [7])

$$\begin{aligned} \mathcal{H}_0(u) = & \frac{1}{4}(1 + |Du|^2)^{-1} \{ (1 + u_3^2)(u_{11} + u_{22}) + (u_1^2 + u_2^2)u_{33} \\ & + 2(u_2 - u_1 u_3)u_{13} - 2(u_1 + u_2 u_3)u_{23} \} \end{aligned}$$

$$(u_j = \partial u / \partial x_j, u_{ij} = \partial^2 u / \partial x_i \partial x_j).$$

Lemma 3.2. *Let u be continuous in a domain $D \subseteq \mathbb{C}^{n-1} \times \mathbb{R}$. Then $y_n - u$ is a weak solution of $v_t = \mathcal{H}(v)$ in $D \times i\mathbb{R} \times (0, +\infty)$ if and only if u is a weak solution of $u_t = \mathcal{H}_0(u)$ in $D \times \mathbb{R}$.*

Proof. Set $x = (x_1, \dots, x_n)$, $y' = (y_1, \dots, y_{n-1})$. If $v = y_n - u(x, y')$ is a weak solution of $v_t = \mathcal{H}(v)$ in $D \times i\mathbb{R} \times (0, +\infty)$ then it is immediately seen that u is a weak solution of $u_t = \mathcal{H}_0(u)$ in $D \times (0, +\infty)$.

Conversely, let us suppose that u is a weak solution of $u_t = \mathcal{H}_0(u)$ and let $\phi = \phi(x, y, t)$ be smooth and such that $y_n - u - \phi$ has a local maximum at $(\bar{x}, \bar{y}', \bar{t})$. We may assume that $(\bar{x}, \bar{y}', \bar{t}) = (0, 0, 0)$ and $u(0, 0, 0) = \phi(0, 0, 0) = 0$. Since, locally at $(0, 0, 0)$, $y_n - u \leq \phi$ we have $\phi_{y_n}(0, 0, 0) = 1$. In particular, $\phi = 0$ is a (local) graph $y_n = f(x, y', t)$ and $\phi = \lambda(y_n - h)$ with λ smooth and $\lambda(0, 0, 0) = 1$. Moreover, since \mathcal{H} is invariant with respect to unitary transformations of \mathbb{C}^n , we may also assume that $d_{x,y'} f(0, 0, 0) = 0$. In

this situation we have

$$-u(x, y', t) \leq -\lambda(x, 0, t)f(x, y', t)$$

and

$$\mathcal{H}_0(-\lambda f)(0) = -\frac{1}{4} \sum_{j=1}^{n_1} [f_{x_j x_j}(0, 0, 0) + f_{y_j y_j}(0, 0, 0)] = \mathcal{H}_0(-f)(0, 0, 0).$$

Furthermore

$$\phi_t(0, 0, 0) = f_t(0, 0, 0), \quad \mathcal{H}(\phi)(0, 0, 0) = \mathcal{H}_0(-f)(0, 0, 0).$$

Since $-u$ is a weak solution of $w_t = \mathcal{H}_0(w)$

$$-f_t(0, 0, 0) \leq \mathcal{H}(-f)(0, 0, 0).$$

From this, in view of the above identities, we obtain

$$\phi_t(0, 0, 0) = -f_t(0, 0, 0) \leq -\mathcal{H}_0(-f)(0, 0, 0) = \mathcal{H}_0(-f)(0, 0, 0) = \mathcal{H}(\phi)(0, 0, 0).$$

This proves that $y_n - u$ is a weak subsolution.

Similarly we prove that $y_n - u$ is a weak supersolution.

Therefore $v = y_n - u$ is a weak solution of $v_t = \mathcal{H}(v)$. \square

Taking into account the semigroup property 4 and independence of defining function we deduce from Lemma 3.2 the following

Lemma 3.3. *Let $v = v(z, t)$ be a local weak solution of $v_t = \mathcal{H}(v)$. Suppose that, locally at (z^0, t^0) , $v = 0$ is a graph $y_n = u(x, y', t)$ of a continuous function. Then u is a weak solution of $u_t = \mathcal{H}_0(u)$.*

Now we are in position to prove the following

Theorem 3.4. *Let D be a bounded strictly pseudoconvex domain in $\mathbb{C}^{n-1} \times \mathbb{R}$, Γ_0 the graph of a continuous function $u_0 : \overline{D} \rightarrow \mathbb{R}$. Then the evolution of Γ_0 with fixed boundary*

is governed by the following parabolic problem

$$(5) \quad \begin{cases} u_t = \mathcal{H}_0(u) & \text{in } D \times (0, +\infty) \\ u(x, y', 0) = u_0(x, y') & \text{for } (x, y', 0) \in \overline{D} \times \{0\} \\ u(x, y', t) = u_0(x, y') & \text{for } (x, y', t) \in \partial D \times [0, +\infty). \end{cases}$$

Proof. Let the evolution be defined by the zero set $\{v = 0\}$ where v is the weak solution of the parabolic problem (P) .

In view of Theorem 3.1 every $E_t(\Gamma_0, \partial \Gamma_0)$, $t \geq 0$, is a graph, a priori over a subset of \overline{D} , but in view of Theorem 2.8 it separates $D \times i\mathbb{R}$ so is the graph over \overline{D} , say of a continuous function $u^t = u^t(x, y')$. Define $u : \overline{D} \times (0, +\infty) \rightarrow \mathbb{R}$ by $u(x, y', t) = u^t(x, y')$. The function u is continuous: if $(x^n, y'^n, t^n) \rightarrow (\bar{x}, \bar{y}', \bar{t})$ then the sequence $(x^n, y'^n, u^{t^n}(x^n, y'^n), t^n)$ tends to a point $(\bar{x}, \bar{y}', \bar{y}_n, \bar{t})$ which lies on the graph of u^t . In particular $\bar{y}_n = u(\bar{x}, \bar{y}', \bar{t})$.

Thus

$$E_t(\Gamma_0, \partial \Gamma_0) = \{y_n = u(x, y', t)\}.$$

Owing to Lemma 3.3 u is a weak solution of $u_t = \mathcal{H}_0(u)$ which satisfies all conditions (5).

This concludes the proof. \square

The following lemma will be used in the next section

Lemma 3.5. *Let U be a domain in \mathbb{C}^n and $u \in C^0(U \times (0, +\infty))$ a continuous subsolution of $u_t = \mathcal{H}_0(u)$ such that $\mathcal{H}_0(u) \leq 0$ (in the weak sense). Then u is non increasing in time.*

Proof. This follows from the more general fact: let $W = V \times (a, b) \subset \mathbb{R}^N$, V open in \mathbb{R}^{N-1} , $u = u(x, t)$ an upper semicontinuous function in W such the inequality $u_t \leq 0$ is satisfied in W (in the weak sense). Then, for every $x \in V$, $a < t_1 < t_2 < b$ we have $u(x, t_1) \geq u(x, t_2)$.

Fix t_1 and let

$$W_1 = \{(x, t) \in \mathbb{R}^N : x \in V, t_1 < t < b\}.$$

We may assume, without loss of generality that $u \leq M < +\infty$ on W_1 (M constant), $m = \inf g > -\infty$ and that $b - t_1 < 1$. It suffices to show the following: for every $v \in C^\infty(V)$ such that $u(x, t_1) < v(x)$, it holds $u(x, t) < v(x)$ for every $(x, t) \in W_1$.

Set, for $\alpha \in [0, +\infty)$,

$$\varphi^\alpha(x, t) = v(x) + (M - m)(t - t_1)^\alpha.$$

Then $\varphi^\alpha \in C^\infty(W_1)$ and

$$\varphi^0(x, t) = v(x) + (M - m) \geq u(x, t),$$

$$\lim_{\alpha \rightarrow +\infty} \varphi^\alpha(x, t) = v(x),$$

for $t - t_1 < 1$, $(x, t) \in W_1$.

Suppose now that $u(x_0, t_0) > v(x_0)$ for some $(x_0, t_0) \in W_1$. Then there is an $\alpha \in (0, +\infty)$ and $(x^*, t^*) \in W_1$ such that $\varphi^\alpha(x^*, t^*) = u(x^*, t^*)$. Since $u_t \leq 0$ in the weak sense, $\varphi^\alpha((x^*, t^*)) \leq 0$, a contradiction. \square

4. LIMIT FOR SOLUTIONS

In order to describe the asymptotic behaviour of the weak solution u of (5) we need to recall some results about the existence of Levi flat hypersurfaces with prescribed boundary.

Let $S \subset \mathbb{C}^n$ be a connected smooth submanifold of dimension $(2n - 2)$. Assume that:

- (1) S is compact and nowhere minimal at its CR points;
- (2) S has at least one complex point and every such point of is flat and elliptic;
- (3) S does not contain complex manifold of dimension $(n - 2)$.

Then in [1] the following two theorems are proved

Theorem 4.1. *S is diffeomorphic to the unit sphere with two complex points p_1, p_2 . The CR orbits of S are topological $(2n - 3)$ -spheres that can be represented as level sets of a*

smooth function $\nu : S \rightarrow \mathbb{R}$, inducing on $S_0 = S \setminus \{p_1, p_2\}$ a foliation \mathcal{F} of class C^∞ with 1-codimensional compact leaves.

Theorem 4.2. *There exist a smooth submanifold \tilde{S} and a Levi-flat $(2n - 1)$ -subvariety \tilde{M} in $\mathbb{R} \times \mathbb{C}^n$ (i.e. \tilde{M} is Levi-flat in $\mathbb{C} \times \mathbb{C}^n$), both contained in $[0, 1] \times \mathbb{C}^n$, such that $\tilde{S} = d\tilde{M}$ in the sense of currents and the natural projection $\pi : [0, 1] \times \mathbb{C}^n \rightarrow \mathbb{C}^n$ restricts to a diffeomorphism between \tilde{S} and S .*

We can go further if S is a graph:

Theorem 4.3. ([2, Theorem 3.1]) *Let $D \subset \mathbb{C}^{n-1} \times \mathbb{R}$ be a strictly pseudoconvex bounded domain, $g_0 : \text{b}D \rightarrow \mathbb{R}$ a smooth function. Assume that the graph S of g_0 satisfies the hypothesis of Theorem 4.2. Then there exists a Lipschitz function $f : \overline{D} \rightarrow \mathbb{R}$ which is smooth on $\overline{D} \setminus \{q_1, q_2\}$, the projections of the only two complex elliptic points of S , and such that $f|_{\text{b}D} = g_0$ and $M = \text{graph}(f) \setminus S$ is a Levi flat hypersurface of \mathbb{C}^n .*

We want to prove that in this situation, the evolution of an arbitrary, continuous graph over D , with boundary S tends as $t \rightarrow +\infty$ to the Levi flat graph M . This follows from

Theorem 4.4. *Let $u_0 : \overline{D} \rightarrow \mathbb{R}$ be a continuous function such that $g_0 = u_0|_{\text{b}D}$ and $u \in C^0(\overline{D} \times [0, +\infty))$ the weak solution of the problem (5). Then*

$$\lim_{t \rightarrow +\infty} u(\cdot, t) = f$$

in $C^0(\overline{D})$. In particular, if $\Gamma_0 = \text{graph}(u_0)$ we have

$$E_t(\Gamma_0, S) \rightarrow M$$

as $t \rightarrow +\infty$ in the C^0 -topology.

Proof. Observe that $\mathcal{H}_0(f) = 0$ on D , $M = \text{graph}(f) \setminus S$ being a Levi flat hypersurface.

We divide the proof in several steps. First of all we construct two smooth barriers δ^\pm : $\delta^- \leq u_0 \leq \delta^+$ in D , $\delta^- = \delta^+ = u_0$ on ∂D and $\mathcal{H}_0(\delta^-) \geq 0$, $\mathcal{H}_0(\delta^+) \leq 0$ in D . This is easily done using the functions $\delta^\pm = u_0 \mp \lambda\varrho$ where λ is a suitable positive constant $\varrho = \varrho(x, y')$ a smooth function on a neighbourhood U of \overline{D} with the following properties: ϱ is strictly plurisubharmonic in $D \times i\mathbb{R}$, $D = \{\varrho < 0\}$ and $d\varrho \neq 0$ on ∂D .

Next we consider the weak solutions u^\pm of (5) corresponding respectively to the boundary values δ^\pm on D and g_0 on $\partial D \times [0, +\infty)$. u^\pm are bounded by virtue of the maximum principle and uniformly continuous because of Walsh's Lemma. Moreover, by Lemma 3.5, u^+ (u^-) is non increasing (non decreasing) in t since $\mathcal{H}_0(\delta^+) \leq 0$ ($\mathcal{H}_0(\delta^-) \geq 0$). It follows that $\lim_{t \rightarrow +\infty} u^\pm(\xi, t) := \tilde{u}^\pm(\xi)$ exists pointwise.

Now define functions $u_h^\pm(\cdot, t) = u^\pm(\cdot, t + h)$ for each positive h . These functions are still weak solutions (with different boundary values). Moreover, since u^\pm are bounded, the sets $\{u_h^\pm\}_{h \geq 0}$ are equicontinuous and

$$\tilde{u}^\pm(x) = \lim_{t \rightarrow +\infty} u^\pm(x, t) = \lim_{t \rightarrow +\infty} u_h^\pm(x, t)$$

for every $\xi \in D$. It follows that \tilde{u}^\pm are continuous in D , $\tilde{u}^\pm = \phi_0$ on ∂D and $\mathcal{H}_0(u^\pm) = 0$ in D and consequently (by uniqueness) $\tilde{u}^+ = \tilde{u}^- = w$ in D . Consider now the weak solution u of the parabolic problem (5). By virtue of the comparison principle we have

$$u^-(\cdot, t) \leq u(\cdot, t) \leq u^+(\cdot, t)$$

and from this, letting $t \rightarrow +\infty$ we obtain

$$f(\xi) = \lim_{t \rightarrow +\infty} u^-(\xi, t) \leq \liminf_{t \rightarrow +\infty} u(\xi, t) \leq \limsup_{t \rightarrow +\infty} u(\xi, t) = \lim_{t \rightarrow +\infty} u^+(\xi, t) = f(\xi)$$

for every $\xi \in D$, so

$$\liminf_{t \rightarrow +\infty} u(\cdot, t) = \limsup_{t \rightarrow +\infty} u(\cdot, t) = \lim_{t \rightarrow +\infty} u(\cdot, t) = f$$

in $C^0(\overline{D})$. \square

REFERENCES

- [1] P. Dolbeault, G. Tomassini, and D. Zaitsev, *On Levi-flat Hypersurfaces with Prescribed Boundary*, Pure and Applied Mathematics Quarterly (Special Issue: In honor of Joseph J. Kohn) **6**, n. **3** (July 2010), 725-753.
- [2] _____, *Boundary problem for Levi flat graphs*, to appear in Indiana Univ. Math. J.
- [3] L. C. Evans and J. Spruck, *Motion of level sets by mean curvature. I*, J. Differential Geometry **33**, n. **4** (1991), 635-681.
- [4] Huisken G. and Klingenberg W., *Flow of real hypersurfaces by the trace of the Levi form*, Math. Res. Lett. **6** (1999), 645-661.
- [5] A. Simionuc and G. Tomassini, *The Bremermann-Dirichlet problem for unbounded domains*, Manuscripta Mathematica **126**, n. **1** (2008), 73-97.
- [6] Z. Slodkowski, *Local maximum property and q -plurisubharmonic functions in uniform algebras*, J. Math. Anal. Appl. **115** (1986), 105-130.
- [7] Z. Slodkowski and G. Tomassini, *Levi equation and evolution of subsets of \mathbb{C}^2* , Rend. Mat. Acc. Lincei s. 9 **7** (1996), 235-239.
- [8] _____, *Evolution of subsets of \mathbb{C}^2* , Annali Sc. Norm. Sup. Pisa **4** (1997), 757-784.
- [9] _____, *Evolution of special subsets of \mathbb{C}^2* , Adv. in Math. **152** (2000), 336-358.
- [10] _____, *Evolution of a graph by Levi form*, Contemporary Mathematics **268**, 2000.
- [11] _____, *Stein hull and evolution*, Math. Annalen **320** (2001), 665-684.