EECS 545 - Machine Learning Review Session 3: Probability

01/21/2020

Geunseob (GS) Oh

Ph.D. Candidate

University of Michigan

Outline

- Terminology, Law of Total Probability
- Conditional probability, Independence, Bayes' rule
- Maximum likelihood, Maximum a posteriori
- MLE and MAP estimation for 1D Gaussian
- Expectations and Variances
- Distributions

Probability

The world is full of uncertainty

```
Probability of Wolverines beat Spartans in 2021? P(W_{2021})

Probability of rain tomorrow? P(R_{tom})

P(W_{2021}|W_{2020})

We beat Spartans (2020). Probability of Wolverines beat Spartans in 2021?

The weather is rainy today. Probability of rain tomorrow? P(R_{tom}|R_{today})
```

- Probability is a tool to represent uncertainty
- We build models to estimate the uncertainty using probability

$$P_{model}(W_{2021})$$

Terminology

Name	What it is	Common	What it means		
		Symbols			
Sample Space	Set	Ω, S	"Possible outcomes."		
Event Space	Collection of subsets	\mathcal{F}, \mathcal{E}	"The things that have		
			probabilities"		
Probability Measure	Measure	Ρ, π	Assigns probabilities		
			to events.		
Probability Space	A triple	(Ω, \mathcal{F}, P)			

Remarks: may consider the event space to be the power set of the sample space (for a discrete sample space - more later). e.g., rolling a fair die:

$$\begin{split} \Omega &= \{1,2,3,4,5,6\} \\ \mathcal{F} &= 2^\Omega = \{\{1\},\{2\}\dots\{1,2\}\dots\{1,2,3\}\dots\{1,2,3,4,5,6\},\{\}\} \\ P(\{1\}) &= P(\{2\}) = \dots = \frac{1}{6} \text{ (i.e., a fair die)} \\ P(\{1,3,5\}) &= \frac{1}{2} \text{ (i.e., half chance of odd result)} \\ P(\{1,2,3,4,5,6\}) &= 1 \text{ (i.e., result is "almost surely" one of the faces)}. \end{split}$$

Law of Total Probability

- *P*(*A*)≥0, ∀*A*∈*F*
- $P(\Omega)=1$
- Law of total probability

$$P(A) = P(A \cap B) + P(A \cap B^{C})$$

$$P(A) = \sum_{i} P(A \cap B_i)$$
 Discrete B_i

$$P(A) = \int P(A \cap B_i) dB_i \qquad \text{Continuous } B_i$$

Conditional Probability

For events $A, B \in \mathcal{F}$ with P(B) > 0, we may write the **conditional probability of A given B**:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
 $P(A,B)$ Joint probability of A and B $P(A)$ Marginal probability of A probability of A given B is true

Suppose we throw a fair die:

$$\Omega = \{1, 2, 3, 4, 5, 6\}, \ \mathcal{F} = 2^{\Omega}, \ P(\{i\}) = \frac{1}{6}, \ i = 1 \dots 6$$

 $A = \{1, 2, 3, 4\}$ i.e., "result is less than 5,"
 $B = \{1, 3, 5\}$ i.e., "result is odd."

What is the probability of A given B? Probability of B given A?

Conditional Probability

Suppose we throw a fair die:

$$\Omega = \{1, 2, 3, 4, 5, 6\}, \ \mathcal{F} = 2^{\Omega}, \ P(\{i\}) = \frac{1}{6}, \ i = 1...6$$
 $A = \{1, 2, 3, 4\}$ i.e., "result is less than 5," $B = \{1, 3, 5\}$ i.e., "result is odd."

What is the probability of A given B? Probability of B given A?

$$P(A) = \frac{2}{3}$$
 $P(A|B) = \frac{P(A \cap B)}{P(B)}$ $P(B|A) = \frac{P(A \cap B)}{P(A)}$
 $P(B) = \frac{1}{2}$ $P(B|A) = \frac{P(A \cap B)}{P(A)}$ $P(B|A) = \frac{P(A \cap B)}{P(A)}$ $P(B|A) = \frac{1}{2}$ $P(B|A) = \frac{1}{2}$

Conditional Probability

For events $A, B \in \mathcal{F}$ with P(B) > 0, we may write the conditional probability of A given B:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

 $P(A|B) = rac{P(A \cap B)}{P(B)}$ P(A,B) Joint probability of A and B P(A) Marginal probability of A

$$P(A \mid B_1) = 1$$

$$P(A | B_2) = 0.12 \div (0.12 + 0.04) = 0.75$$

$$P(A|B_3) = 0$$
 (disjoint)

$$B_4 = (B_1 \cup B_2 \cup B_3)^c$$

$$P(A, B_4) = 0.3$$

Conditional Probability w Law of Total Prob

For events $A, B \in \mathcal{F}$ with P(B) > 0, we may write the conditional probability of A given B:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \qquad \& \qquad P(A) = \sum_{i} P(A \cap B_i)$$

$$P(A) = \sum_{i} P(A \cap B_i)$$

P(A) (The unconditional probability)

$$0.1 0.12 0 0.3$$

$$= P(A, B_1) + P(A, B_2) + P(A, B_3) + P(A, B_4)$$

$$= P(A|B_1)P(B_1) + P(A|B_2)P(B_2)$$

$$= P(A|B_3)P(B_3) + P(A|B_4)P(B_4)$$

$$= 0.52$$

From Wikipedia

Independence

Two events A, B are called **independent** if $P(A \cap B) = P(A)P(B)$.

When P(A) > 0 this may be written P(B|A) = P(B) (why?) e.g., rolling two dice, flipping n coins etc.

Two events A, B are called **conditionally independent given** C when $P(A \cap B|C) = P(A|C)P(B|C)$.

When P(A) > 0 we may write P(B|A, C) = P(B|C) e.g., "the weather tomorrow is independent of the weather yesterday, knowing the weather today."

Independence -> Conditional Independence ?

Conditional Independence -> Independence ?

Conditional Probability & Independence

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A,B|C) = \frac{P(A,B,C)}{P(C)} = \frac{P(A|B,C)P(B,C)}{\frac{P(B,C)}{P(B|C)}} = P(A|B,C)P(B|C)$$

If A, B are conditionally independent given C:

$$P(A,B|C) = P(A|C)P(B|C)$$

Chain Rule and Independence

Chain rule: From the definition of conditional probabilities, one can show that

$$\begin{split} p\big(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\big) &= p\big(\mathbf{x}^{(N)} \big| \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N-1)} \big) p(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N-1)}) \\ &= p\big(\mathbf{x}^{(N)} \big| \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N-1)} \big) p\big(\mathbf{x}^{(N-1)} \big| \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N-2)} \big) p(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N-2)}) \\ &= \prod_{i=1}^{N} p\big(\mathbf{x}^{(i)} \big| \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(i-1)} \big) \end{split}$$

Random variables $x^{(1)}$, ..., $x^{(N)}$ are **independent** if and only if

$$p(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}) = p(\mathbf{x}^{(1)})p(\mathbf{x}^{(2)}) \cdots p(\mathbf{x}^{(N)})$$

Lecture 3: Linear Regression Revisited

Linear regression modeled using gaussian distribution:

$$y^{(n)} = \mathbf{w}^T \phi(\mathbf{x}^{(n)}) + \epsilon$$
$$p(y^{(n)} | \phi(\mathbf{x}^{(n)}), \mathbf{w}, \beta) = \mathcal{N}(y^{(n)} | \mathbf{w}^T \phi(\mathbf{x}^{(n)}), \beta^{-1})$$

We quickly went over:

$$\log p(y^{(1)}, y^{(2)}, ..., y^{(N)} | \mathbf{\Phi}, \mathbf{w}, \beta)$$

$$= \log \prod_{n=1}^{N} \mathcal{N}(y^{(n)} | \mathbf{w}^{T} \phi(\mathbf{x}^{(n)}), \beta^{-1})$$

Detailed derivation:

$$p(y^{(1)}, ..., y^{(N)} | \mathbf{x}^{(1)}, ..., \mathbf{x}^{(N)}, \mathbf{w}, \beta) \quad \text{Using Chain Rule}$$

$$= p(y^{(N)} | y^{(1)}, ..., y^{(N-1)}, \mathbf{x}^{(1)}, ..., \mathbf{x}^{(N)}, \mathbf{w}, \beta) p(y^{(1)}, ..., y^{(N-1)} | \mathbf{x}^{(1)}, ..., \mathbf{x}^{(N)}, \mathbf{w}, \beta)$$

$$= \prod_{n=1}^{N} p(y^{(n)} | y^{(1)}, ..., y^{(n-1)}, \mathbf{x}^{(1)}, ..., \mathbf{x}^{(N)}, \mathbf{w}, \beta)$$

$$= \prod_{n=1}^{N} p(y^{(n)} | \mathbf{x}^{(n)}, \mathbf{w}, \beta) = \prod_{n=1}^{N} N(y^{(n)} | \mathbf{w}^{T} \phi(\mathbf{x}^{(n)}), \beta^{-1})$$

Bayes' Theorem

Using the chain rule we may see:

$$P(A|B)P(B) = P(A \cap B) = P(B|A)P(A)$$

Rearranging this yields **Bayes' rule**:

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Often this is written as:

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_i P(A|B_i)P(B_i)}$$

Where B_i are a partition of Ω (note the bottom is just the law of total probability).

Bayes' Theorem, Example

- Marie is getting married tomorrow at an outdoor ceremony in the desert. In recent years, it has rained only 5 days each year. Unfortunately, the weatherman is forecasting rain for tomorrow. When it actually rains, the weatherman has forecast rain 90% of the time. When it doesn't rain, he has forecast rain 10% of the time. What is the probability it will rain on the day of Marie's wedding?
- Event A: The weatherman has forecast rain.
- Event B: It rains.
- We want to know p(B | A), the probability it will rain on the day of Marie's wedding, given a forecast for rain by the weatherman. The answer can be determined from Bayes rule:

Bayes' Theorem, Example

- Marie is getting married tomorrow at an outdoor ceremony in the desert. In recent years, it has rained only 5 days each year. Unfortunately, the weatherman is forecasting rain for tomorrow. When it actually rains, the weatherman has forecast rain 90% of the time. When it doesn't rain, he has forecast rain 10% of the time. What is the probability it will rain on the day of Marie's wedding?
- Event A: The weatherman has forecast rain.
- Event B: It rains.
- We know:
 - p(B) = 5 / 365 = 0.0137 [It rains 5 days out of the year.]
 - p(not B) = 360 / 365 = 0.9863
 - $p(A \mid B) = 0.9$ [When it rains, the weatherman has forecast rain 90% of the time.]
 - $p(A \mid \text{not } B) = 0.1$ [When it does not rain, the weatherman has forecast rain 10% of the time.]

Bayes' Theorem, Example

- We know:
 - p(B) = 5 / 365 = 0.0137 [It rains 5 days out of the year.]
 - p(not B) = 360 / 365 = 0.9863
 - $p(A \mid B) = 0.9$ [When it rains, the weatherman has forecast rain 90% of the time.]
 - $p(A \mid \text{not } B) = 0.1$ [When it does not rain, the weatherman has forecast rain 10% of the time.]

What we would like to compute using Bayes' Rule:

1.
$$p(B|A) = p(A|B) \cdot p(B) / p(A)$$

Obtain P(A) using Law of Total Probability:

2.
$$p(A) = p(A \mid B) \cdot p(B) + p(A \mid \text{not } B) \cdot p(\text{not } B) = (0.9)(0.014) + (0.1)(0.986) = 0.111$$

3.
$$p(B|A) = (0.9)(0.0137) / 0.111 = 0.111$$

Bayes' Theorem in Learning

 Why is Bayes' so useful in learning? Allows us to compute the posterior of w given data D:

$$p(w|D) = \frac{p(D|w)p(w)}{p(D)}$$
 Prior
$$p(D) = \int p(D|w)p(w)dw$$
 Likelihood

• Bayes' rule in words: posterior ∝ likelihood × prior

$$p(\mathbf{w}|D) \propto p(D|\mathbf{w})p(\mathbf{w})$$

• The likelihood function, p(D|w), is evaluated for observed data D as a function of w. It expresses how probable the observed data set is for various parameter settings w.

Maximum Likelihood vs Maximum A Posteriori

- Maximum likelihood:
 - choose parameter setting w that maximizes likelihood function p(D|w).
 - Choose the value of w that maximizes the probability of observed data.

- Cf. MAP (Maximum a posteriori) estimation
 - Equivalent to maximizing $P(w|D) \propto P(D|w)P(w)$
 - Can compute this using Bayes rule!
 - This will be covered in later lectures

Gaussian Distribution

• PDF:
$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

$$\mathcal{N}(x|\mu,\sigma^2) > 0$$

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu, \sigma^2\right) \, \mathrm{d}x = 1$$

Maximum Likelihood Estimation (MLE) for Linear Regression

Assume a stochastic model:

Assume a stochastic model:
$$y^{(n)} = \mathbf{w}^T \phi(\mathbf{x}^{(n)}) + \epsilon \ \text{where} \ \epsilon \sim \mathcal{N}(0, \beta^{-1})$$

This gives a likelihood function:

$$p(y^{(n)}|\phi(\mathbf{x}^{(n)}), \mathbf{w}, \beta) = \mathcal{N}(y^{(n)}|\mathbf{w}^T\phi(\mathbf{x}^{(n)}), \beta^{-1})$$

• With input matrix Φ and output matrix y, the data likelihood is:

$$p(\mathbf{y}|\mathbf{\Phi}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(y^{(n)}|\mathbf{w}^{T}\phi(\mathbf{x}^{(n)}), \beta^{-1})$$

$$p(D|\mathbf{w})_{\text{likelihood}}^{n=1} \log p(\mathbf{y}|\mathbf{\Phi}, \mathbf{w}, \beta) = N \log \beta - \frac{N}{2} \log 2\pi - \beta E_D(\mathbf{w})$$

MLE for 1D Gaussian

Problem:

Suppose we are given a data set of samples of a Gaussian random variable X, $D = \{x^{(1)}, ..., x^{(N)}\}$ and told that the variance of the data is σ^2

• What we want to get:

 μ that best fits the data points μ that maximizes the probability $p(D|\mu)$

MLE for 1D Gaussian

• What we want to get: μ that maximizes the probability $p(D|\mu)$

Maximum Likelihood

$$\begin{split} p(D|\mu) &= p(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)}|\mu) \\ &= p\big(\mathbf{x}^{(1)}\big|\mu\big)p(\mathbf{x}^{(2)}|\mu), \dots, p(\mathbf{x}^{(N)}|\mu) \\ \log(p(D|\mu)) &= \sum \log(p(\mathbf{x}^{(n)}|\mu)) \qquad \qquad \mu_{\mathit{ML}} = \frac{1}{\mathit{N}} \sum \mathbf{x}^{(n)} \end{split}$$

Problem:

Suppose we are given a data set of samples of a Gaussian random variable X, $D = \{x^{(1)}, ..., x^{(N)}\}$ and told that the variance of the data is σ^2

- What we want to get: $p(\mu|D)$, The distribution of μ after observing D
- Let's say we believe that μ is a random variable distributed normally with mean μ_0 variance σ_0^2

$$p(\mu) = N(\mu_0, \sigma_0^2)$$

$$p(\mu) = N(\mu_0, \sigma_0^2)$$

$$= \frac{1}{\sqrt{2\pi}\sigma_0} \exp(-\frac{(\mu - \mu_0)^2}{2\sigma_0^2})$$

$$= \frac{1}{\sqrt{2\pi}\sigma_0} \exp(-\frac{(\mu - \mu_0)^2}{2\sigma_0^2})$$
Prior belief

- $p(\mu)$ is the prior probability of μ
- What we want to get: $p(\mu|D) = \frac{p(D|\mu)p(\mu)}{p(D)}$
- Since D is from a 1D Gaussian,

$$p(D|\mu) = p(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)}|\mu)$$
$$= \prod p(\mathbf{x}^{(n)}|\mu) = \prod \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(\mathbf{x}^{(n)} - \mu)^2}{2\sigma^2})$$

• What we want to get: $p(\mu|D) = \frac{p(D|\mu)p(\mu)}{p(D)}$

•
$$p(D|\mu)p(\mu) = \prod \left[\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x^{(n)}-\mu)^2}{2\sigma^2}\right)\right] \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left(-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}\right)$$

"The product of two Gaussian pdfs = A bivariate Gaussian pdf"

•
$$p(\mu|D) = N(\mu|\mu_N, \sigma_N)$$

where
$$\mu_N = \frac{\sigma^2}{N\sigma_0^2 + \sigma^2}\mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2}\mu_{ML}$$

$$\mu_{ML} = \frac{1}{N} \sum_{n} \mathbf{x}^{(n)} \qquad \qquad \frac{1}{\sigma_N^2} = \frac{1}{\sigma_0^2} + \frac{N}{\sigma^2}$$

Prior belief Maximum Likelihood Posterior Distribution

Random Variables: Discrete vs Continuous

Discrete RV: only takes a countable number of values
 Distribution defined by probability mass function (PMF)
 or cumulative density function (CDF)

Marginalization:
$$p(x) = \sum_{y} p(x, y)$$

Continuous RV: takes infinitely many values (its CDF is continuous everywhere)
 Distribution defined by probability density function (PDF)
 or cumulative density function (CDF)

Marginalization:
$$p(x) = \int_{V} p(x, y) dy$$

Expectations

• Let X be a random variable with a finite number of outcomes $x^{(1)}, ..., x^{(N)}$ occurring with probabilities $p^{(1)}, ..., p^{(N)}$, then the expectation of X:

$$E(X) = \sum x^{(i)} p^{(i)}$$

• The expected value of the function f(x) given that x has a probability density function p(x):

[Discrete]
$$\mathbb{E}[f] = \sum_{x} p(x) f(x)$$

Q. What is the expected value of a roll of a fair die?

[Continuous]
$$\mathbb{E}[f] = \int p(x)f(x) dx$$

Q. What is the expected value of f(x) = 1 where x is drawn from standard normal distribution ?

Variance

 Variance: measures how far a set of (random) numbers are spread out from the expected value

•
$$Var(X) = E(X - E[X])^2 = E[X^2] - E[X]^2$$

Q. Variance of a coin toss?

- Var[a] = 0 for any constant $a \in \mathbb{R}$.
- $Var[af(X)] = a^2 Var[f(X)]$ for any constant $a \in \mathbb{R}$.
- E[a] = a for any constant $a \in \mathbb{R}$.
- E[af(X)] = aE[f(X)] for any constant $a \in \mathbb{R}$.
- (Linearity of Expectation) E[f(X) + g(X)] = E[f(X)] + E[g(X)].

Expectation and Covariance Multi-variable Distribution

Expectation

[Discrete]
$$E[g(X,Y)] \triangleq \sum_{x \in Val(X)} \sum_{y \in Val(Y)} g(x,y) p_{XY}(x,y).$$

[Continuous]
$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{XY}(x,y) dx dy$$
.

Covariance

$$Cov[X,Y] \triangleq E[(X - E[X])(Y - E[Y])]$$

$$Cov[X,Y] = E[(X - E[X])(Y - E[Y])]$$

$$= E[XY - XE[Y] - YE[X] + E[X]E[Y]]$$

$$= E[XY] - E[X]E[Y] - E[Y]E[X] + E[X]E[Y]]$$

$$= E[XY] - E[X]E[Y].$$

Expectation and Covariance Multi-variable Distribution

- If X and Y are independent, then Cov[X, Y] = 0.
- If X and Y are independent, then E[f(X)g(Y)] = E[f(X)]E[g(Y)].
- (Linearity of expectation) E[f(X,Y) + g(X,Y)] = E[f(X,Y)] + E[g(X,Y)].
- Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y].

Multivariate Gaussian Distribution

• PDF:
$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

 μ : Mean vector (d by 1)

 Σ : Covariance matrix (d by d)

 $|\Sigma|$: Matrix determinant

Gaussian: (Credit to Andrew Ng)

Common Discrete Random Variables

• $X \sim Bernoulli(p)$ (where $0 \le p \le 1$): one if a coin with heads probability p comes up heads, zero otherwise.

$$p(x) = \begin{cases} p & \text{if } p = 1\\ 1 - p & \text{if } p = 0 \end{cases}$$

• $X \sim Binomial(n, p)$ (where $0 \le p \le 1$): the number of heads in n independent flips of a coin with heads probability p.

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

• $X \sim Geometric(p)$ (where p > 0): the number of flips of a coin with heads probability p until the first heads.

$$p(x) = p(1-p)^{x-1}$$

• $X \sim Poisson(\lambda)$ (where $\lambda > 0$): a probability distribution over the nonnegative integers used for modeling the frequency of rare events.

$$p(x) = e^{-\lambda} \frac{\lambda^x}{x!}$$

Common Continuous Random Variables

• $X \sim Uniform(a, b)$ (where a < b): equal probability density to every value between a and b on the real line.

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b\\ 0 & \text{otherwise} \end{cases}$$

• $X \sim Exponential(\lambda)$ (where $\lambda > 0$): decaying probability density over the nonnegative reals.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

• $X \sim Normal(\mu, \sigma^2)$: also known as the Gaussian distribution

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

Properties of Common Distributions

Distribution	PDF or PMF	Mean	Variance
Bernoulli(p)	$\begin{cases} p, & \text{if } x = 1\\ 1 - p, & \text{if } x = 0. \end{cases}$	p	p(1-p)
Binomial(n,p)	$\binom{n}{k} p^k (1-p)^{n-k}$ for $0 \le k \le n$	np	npq
Geometric(p)	$p(1-p)^{k-1}$ for $k = 1, 2, \dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$Poisson(\lambda)$	$e^{-\lambda}\lambda^x/x!$ for $k=1,2,\ldots$	λ	λ
Uniform(a,b)	$\frac{1}{b-a} \ \forall x \in (a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$Gaussian(\mu,\sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
$Exponential(\lambda)$	$\lambda e^{-\lambda x} \ x \ge 0, \lambda > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$