<u>1.โจทย์ปัญหาการเล่นกอล์ฟ</u>

จงเขียนโปรแกรมสร้าง Decision Tree ที่ใช้ในการตัดสินใจปัญหาการเล่นกอลฟ์?

Outlook	Temperature	Humidity	Windy	Play (positive) / Don't Play (negative)	
sunny	85	85	false	Don't Play	
sunny	80	90	true	Don't Play	
overcast	83	78	false	Play	
rain	70	96	false	Play	
rain	68	80	false	Play	
rain	65	70	true	Don't Play	
overcast	64	65	true	Play	
sunny	72	95	false	Don't Play	
sunny	69	70	false	Play	
rain	75	80	false	Play	
sunny	75	70	true	Play	
overcast	72	90	true	Play	
overcast	81	75	false	Play	
rain	71	80	true	Don't Play	

2.ทฤษฎี Decision Tree นำมาใช้แก้ปัญหาการเล่นกอล์ฟ

Decision Tree

- Decision Tree เป็นเทคนิคการเรียนรู้แบบมีผู้สอน ที่มีลักษณะเป็นแบบจำลองทางคณิตศาสตร์ที่ใช้
 ทำนายหรือจำแนกประเภทของวัตถุหรือเหตุการณ์โดยพิจารณาจากลักษณะของวัตถุหรือเหตุการณ์
- Decision Tree เป็นอัลกอริทึมการเรียนรู้ที่มีลักษณะไม่ค่อยซับซ้อนมาก โดยจะมีการแตกแขนงจาก โหนคราก (Root) สู่ใบ (Leaf) และมีกิ่งก้าน (Branch) แตกออกไปตามเงื่อนไขหรือข้อมูลที่ได้ กาดคะเนไว้ว่าจะเกิดขึ้น เพื่อให้ทราบถึงผลลัพธ์ของแต่ละเหตุการณ์
- เช่น คุณหิวข้าวไหม คำตอบสามารถเป็นไปได้ทั้ง หิว และไม่หิว เป็นต้น

โครงสร้าง Decision Tree

- Decision Tree จะทำการจัดกลุ่มชุดข้อมูลประกอบด้วย
 - โหนคหรือบัพ (node) เป็นส่วนที่แสดงคุณสมบัติหรือตัวแปร (attribute) ของชุดข้อมูล
 - กิ่ง (link) ที่ต่อกับ โหนค เป็นส่วนที่แสดงค่าของคุณสมบัติหรือตัวแปร(attribute)
 - โหนดที่ปลายสุดเรียกว่าโหนดใบ (leaf node) หรือเรียกย่อๆว่าใบ (leaf) เป็นส่วนที่แสดง
 ประเภทของวัตถุหรือเหตุการณ์
- ตัวอย่างต้นไม้ตัดสินใจแสดงดังรูป

• ตัวอย่างแบบจำลองของ Decision Tree ที่แสคงถึงเหตุการณ์ร้านอาหารเต็มแล้วจะตัดสินใจอย่างไร แสคงคังรูป

• จากรูปเมื่อเกิดเหตุการณ์ร้านอาหารเต็ม เราจะจองหรือไม่ ถ้าตัดสินใจว่าไม่จอง เหตุการณ์ที่เกิดขึ้น ก็จะแตกต่างกันไป เช่น เดินทางกลับบ้าน หรือเดินทางไปหาร้านอาหารใหม่ เป็นต้น โดยจะ แยกแยะสิ่งที่เราสนใจได้ 3 อย่าง คือ จำนวนลูกค้า ระยะเวลาในการรอ และการจองโต๊ะ

ตัวอย่าง Decision Tree

- การสร้าง Decision Tree ทำได้โดยสร้างโหนดที่ละโหนดเพื่อตรวจสอบคุณสมบัติของตัวอย่าง แล้ว แยกตัวอย่างลงตามค่าของกิ่ง ทำจนกระทั่งตัวอย่างในใบแต่ละใบอยู่ในประเภทเดียวกันทั้งหมด
- ปัญหาการผึ้งแคด
 - เราไปเที่ยวที่ชายทะเลและพบว่าคนที่ไปผึ้งแคคตามชายทะเล บางคนก็จะมีผิวเปลี่ยนเป็นสี แทน แต่บางคนต้องได้รับความทรมานจากผิวไหม้ เราต้องการหาว่าอะไรคือปัจจัยที่ทำให้ คนที่ไปผึ้งแคคตามายทะเลแล้วผิวไหม้หรือไม่ไหม้ โคยข้อมูลที่สังเกตได้ประกอบด้วย ความแตกต่างของสีผม น้ำหนัก ส่วนสูงของผู้ที่ไปผึ้งแคค และการใช้โลชัน ซึ่งบางคนก็ใช้ โลชัน บางคนก็ไม่ใช้ ดังรูป

						ประเภท ↓
คุณสมบัติ 🛶	Name	Hair	Height	Weight	Lotion	Result
	Sarah	blonde	average	light	no	sunburned
	Dana	blonde	tall	average	yes	none
	Alex	brown	short	average	yes	none
ค่า 🗸	Annie	blonde	short	average	no	sunburned
···)	Emily	red	average	heavy	no	sunburned
	Pete	brown	tall	heavy	no	none
	John	brown	average	heavy	no	none
(Katie	blonde	short	light	Yes	none

• การเรียนรู้ต้น ไม้ตัดสินใจจะทำการวางนัยทั่ว ไปของข้อมูล โดยสร้างเป็น โมเดลอยู่ในรูปต้น ไม้ ตัดสินใจ

- สมมติว่าเราเลือกกุณสมบัติ hair color เป็นโหนดแรกหรือโหนดรากของต้นไม้ เราจะแยกตัวอย่าง ลงตามกิ่งของโหนด hair color ตัวอย่างใดที่มีค่าของ hair color เป็น blonde ก็แยกลงตามกิ่งซ้าย ถ้า เป็น red ก็แยกลงตามกิ่งกลาง และถ้าเป็น brown ก็แยกลงตามกิ่งขวา
 - เครื่องหมาย + และ แสดงประเภท sunburned และ node ตามลำดับดังรูป

3.โฟลว์ชาร์ตกระบวนการทำงานของโปรแกรม

4.โค้ดโปรแกรมแก้ปัญหาการเล่นกอล์ฟ

```
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Collections;
namespace Golf_Decision_Tree
{
  public partial class Form1 : Form
    public Form1()
       InitializeComponent();
    //variable
    DataTable data = new DataTable();
    string[] outlook;
    string[] temperature;
    string[] humidity;
    string[] windy;
    string[] play;
    int row;
    private void Form1_Load(object sender, EventArgs e)
       data.Columns.Add("Outlook");
       data.Columns.Add("Temperature");
       data.Columns.Add("Humidity");
       data.Columns.Add("Windy");
       data.Columns.Add("Play");
       data.Rows.Add("sunny", "85", "85", "fale", "Don't Play");
       data.Rows.Add("sunny", "80", "90", "true", "Don't Play");
       data.Rows.Add("overcast", "83", "78", "fale", "Play");
       data.Rows.Add("rain", "70", "96", "fale", "Play");
       data.Rows.Add("rain", "68", "80", "fale", "Play");
```

```
data.Rows.Add("rain", "65", "70", "true", "Don't Play");
data.Rows.Add("overcast", "64", "65", "true", "Play");
data.Rows.Add("sunny", "72", "95", "fale", "Don't Play");
data.Rows.Add("sunny", "69", "70", "fale", "Play");
data.Rows.Add("rain", "75", "80", "fale", "Play");
data.Rows.Add("sunny", "75", "70", "true", "Play");
data.Rows.Add("overcast", "72", "90", "fale", "Play");
data.Rows.Add("overcast", "81", "75", "fale", "Play");
data.Rows.Add("rain", "71", "80", "true", "Don't Play");
dataGridView1.DataSource = data;
groupBox4.Enabled = false;
panel1.Visible = false;
panel2.Visible = false;
panel3. Visible = false;
label6.Visible = false;
label7.Visible = false;
label8.Visible = false;
label9.Visible = false;
label10.Visible = false;
label11.Visible = false;
label12.Visible = false;
textBox4. Visible = false;
textBox5.Visible = false;
textBox6.Visible = false;
textBox7.Visible = false;
textBox8.Visible = false;
textBox9.Visible = false;
textBox10.Visible = false;
lineShape1.Visible = false;
lineShape2.Visible = false;
lineShape3.Visible = false;
lineShape4.Visible = false;
lineShape5.Visible = false;
lineShape6.Visible = false;
lineShape7.Visible = false;
```

```
//build tree
private void button2_Click(object sender, EventArgs e)
  panel1.Visible = true;
  panel3. Visible = true;
  row = dataGridView1.Rows.Count;
  outlook = new string[row];
  temperature = new string[row];
  humidity = new string[row];
  windy = new string[row];
  play = new string[row];
  for (int i = 0; i < row; i++)
     outlook[i] = Convert. To String (data Grid View 1. Rows[i]. Cells[0]. Value); \\
     temperature[i] = Convert. To String(dataGridView1.Rows[i]. Cells[1]. Value);
     humidity[i] = Convert. To String (data Grid View 1. Rows[i]. Cells[2]. Value); \\
     windy[i] = \underbrace{Convert.ToString}(dataGridView1.Rows[i].Cells[3].Value);
     play[i] = Convert. To String (data Grid View 1. Rows[i]. Cells [4]. Value); \\
  }
  textBox2.Text = "Calculate root";
  timer1.Enabled = true;
}
//check
private void button1_Click(object sender, EventArgs e)
  if (Outlook.SelectedIndex ==0)
     if (int.Parse(Humidity.Text.ToString()) <= 70)
       ans.Text = "Play";
       ans.BackColor = Color.Green;
     else if (int.Parse(Humidity.Text.ToString()) > 70)
       ans.Text = "Don't Play";
       ans.BackColor = Color.Red;
  }
```

```
else if (Outlook.SelectedIndex == 1)
  {
    ans.Text = "Play";
    ans.BackColor = Color.Green;
  else if (Outlook.SelectedIndex == 2)
    if (Windy.SelectedIndex == 1)
      ans.Text = "Play";
      ans.BackColor = Color.Green;
    else if (Windy.SelectedIndex == 0)
      ans.Text = "Don't Play";
      ans.BackColor = Color.Red;
private void timer1_Tick(object sender, EventArgs e)
  timer1.Enabled=false;
  double a1, b1, c1, d1, e1;
  a1 = entropy();
  b1 = outlook_gain();
  c1 = temperature_gain();
  d1 = humidity_gain();
  e1 = windy_gain();
  textBox2.Text += "\r\n outlook_gain = " + b1;
  textBox2.Text += "\r\n temperature_gain = " + c1;
  textBox2.Text += "\r\n humidity_gain = " + d1;
  textBox2.Text += "\r\ windy_gain = " + e1;
  if (b1 > c1 \&\& b1 > d1 \&\& b1 > e1)
    textBox2.Text += "\nRoot = outlook";
    textBox3.Text = "Outlook";
  else if(c1 > b1 && c1 > d1 && c1 > e1)
```

```
textBox2.Text += "\nRoot = temperature";
    textBox3.Text = "Temperature";
  else if(d1 > b1 \&\& d1 > c1 \&\& d > e1)
    textBox2.Text += "\rnRoot = humidity";
    textBox3.Text = "Humidity";
  else if (e1 > b1 && e1 > c1 && e1 > d1)
    textBox2.Text += "\r\nRoot = windy";
    textBox3.Text = "Windy";
  label6.Visible = true;
  label7.Visible = true;
  label8.Visible = true;
  textBox4.Visible = true;
  textBox5.Visible = true;
  textBox6.Visible = true;
  lineShape1.Visible = true;
  lineShape2.Visible = true;
  lineShape7.Visible = true;
  textBox6.Text = "Play";
  textBox2.Text += "\r\nCalculate subroot";
  timer2.Enabled = true;
private void timer2_Tick(object sender, EventArgs e)
  timer2.Enabled = false;
  double a2, b2, c2, d2;
  a2 = entropy2();
  b2 = temperature_gain2();
  c2 = humidity_gain2();
  d2 = windy_gain2();
  textBox2.Text += "\r\n temperature_gain = " + b2;
```

```
textBox2.Text += "\r\n humidity_gain = " + c2;
  textBox2.Text += "\r\n windy_gain = " + d2;
  if (b2 > c2 \&\& b2 > d2)
    textBox2.Text += "\r\nRoot = temperature";
    textBox4.Text = "Temperature";
  else if (c2 > d2 \&\& c2 > b2)
    textBox2.Text += "\rnRoot = humidity";
    textBox4.Text = "Humidity";
  }
  else if (d2 > b2 \&\& d2 > c2)
    textBox2.Text += "\r\nRoot = windy";
    textBox4.Text = "Windy";
  label9.Visible = true;
  label10.Visible = true;
  textBox7.Visible = true;
  textBox8.Visible = true;
  lineShape3.Visible = true;
  lineShape4.Visible = true;
  textBox7.Text = "Play";
  textBox8.Text = "Don't play";
  textBox2.Text += "\r\nCalculate subroot";
  timer3.Enabled = true;
private void timer3_Tick(object sender, EventArgs e)
{
  timer3.Enabled = false;
  double a3, b3, c3, d3, e3;
  a3 = entropy3();
  b3 = temperature_gain3();
  c3 = windy_gain3();
```

```
textBox2.Text += "\r\n temperature_gain = " + b3;
  textBox2.Text += "\r windy_gain = " + c3;
  if (b3 > c3)
    textBox2.Text += "\r\nRoot = temperature";
    textBox5.Text = "temperature";
  else if (c3 > b3)
  {
    textBox2.Text += "\r\nRoot = windy";
    textBox5.Text = "Windy";
  }
  label11.Visible = true;
  label12.Visible = true;
  textBox9.Visible = true;
  textBox10.Visible = true;
  lineShape5.Visible = true;
  lineShape6.Visible = true;
  textBox9.Text = "Play";
  textBox10.Text = "Don't play";
  panel2.Visible = true;
  groupBox4.Enabled = true;
//หาค่าเอนโทรปี
double e;
double p, d;
double entropy()
  for (int i = 0; i < row; i++)
  {
    if (play[i] == "Play")
       p++;
    }
    else if (play[i] == "Don't Play")
       d++;
```

```
}
  }
  e = ((-p \ / \ row) * ((Math.Log10(p \ / \ row)) / Math.Log10(2))) + ((-d \ / \ row) * ((Math.Log10(d \ / \ row)) / Math.Log10(2)));
  return e;
}
//หาค่าเกนของoutlook
double s, o, r, goutlook;
double sp, op, rp, sd, od, rd;
double outlook_gain()
  for (int i = 0; i < row; i++)
  {
     if (outlook[i] == "sunny")
     {
       s++;
       \quad \quad \textbf{if} \, (play[i] == "Play") \\
          sp++;
       }
       else if (play[i] == "Don't Play")
       {
          sd++;
       }
     else if (outlook[i] == "overcast")
       0++;
       if(play[i] == "Play")
          op++;
       else if (play[i] == "Don't Play")
       {
          od++;
       }
     else if (outlook[i] == "rain")
     {
       r++;
       if(play[i] == "Play")
       {
```

```
rp++;
      }
      else if (play[i] == "Don't Play")
         rd++;
      }
    }
  (o \ / \ row \ * (((-op \ / \ o) \ * ((Math.Log10(op \ / \ o)) \ / \ Math.Log10(2))))) \ +
    (r \ / \ row \ * \ (((-rp \ / \ r) \ * \ ((Math.Log10(rp \ / \ r)) \ / \ Math.Log10(2))) \ + \ ((-rd \ / \ r) \ * \ ((Math.Log10(rd \ / \ r)) \ / \ Math.Log10(2))))));
  return goutlook;
//หาค่าเกนของtemperature
double t1, t2, gtemperature;
double t1p, t2p, t1d, t2d;
double temperature_gain()
{
  for (int i = 0; i < row; i++)
  {
    //temperature
    if (int.Parse(temperature[i]) <=70 )</pre>
    {
      t1++;
      if(play[i] == "Play")
      {
         t1p++;
      else if (play[i] == "Don't Play")
         t1d++;
    else if (int.Parse(temperature[i]) > 70)
      t2++;
      \quad \quad \text{if } (play[i] == "Play") \\
         t2p++;
```

```
else if (play[i] == "Don't Play")
           {
             t2d++;
           }
         }
      }
      Math.Log10(2))))) +
         (t2 \ / \ row \ * (((-t2p \ / \ t2) \ * \ ((Math.Log10(t2p \ / \ t2)) \ / \ Math.Log10(2))) + ((-t2d \ / \ t2) \ * ((Math.Log10(t2d \ / \ t2)) \ / \ Math.Log10(2))))));
      return gtemperature;
    }
    //หาค่าเกนของhumidity
    double h1, h2, ghumidity;
    double h1p, h2p, h1d, h2d;
    double humidity_gain()
    {
      for (int i = 0; i < row; i++)
         //humidity
         \begin{array}{l} \textbf{if (int.Parse(humidity[i]) <= 70)} \end{array}
           h1++;
           if(play[i] == "Play")
             h1p++;
           else if (play[i] == "Don't Play")
           {
             h1d++;
           }
         else if (int.Parse(humidity[i]) > 70)
           h2++;
           if (play[i] == "Play")
             h2p++;
           else if (play[i] == "Don't Play")
             h2d++;
```

```
}
            ghumidity = e - ((h1 \ / \ row \ * (((-h1p \ / \ t1) \ * \ ((Math, Log10(h1p \ / \ h1)) \ / \ Math, Log10(2))) + ((-h1d \ / \ h1) \ * \ ((Math, Log10(h1d \ / \ h1)) \ / \ Math, Log10(2))) + ((-h1d \ / \ h1) \ * \ ((Math, Log10(h1d \ / \ h1)) \ / \ Math, Log10(2))) + ((-h1d \ / \ h1) \ * \ ((Math, Log10(h1d \ / \ h1)) \ / \ Math, Log10(2))) + ((-h1d \ / \ h1) \ * \ ((Math, Log10(h1d \ / \ h1)) \ / \ Math, Log10(2))) + ((-h1d \ / \ h1) \ * \ ((Math, Log10(h1d \ / \ h1)) \ / \ Math, Log10(2)))) + ((-h1d \ / \ h1) \ * \ ((Math, Log10(h1d \ / \ h1)) \ / \ Math, Log10(2)))) + ((-h1d \ / \ h1) \ * \ ((Math, Log10(h1d \ / \ h1)) \ / \ Math, Log10(h1d \ / \ h1))))))
Math.Log10(2))))) +
                Math.Log10(2)))));
            return ghumidity;
        }
        //หาค่าเกนของwindy
        double t, f, gwindy;
        double tp, fp, td, fd;
        double windy_gain()
            for (int i = 0; i < row; i++)
            {
                //windy
                if (windy[i] == "true")
                    t++;
                    if(play[i] == "Play")
                        tp++;
                    else if (play[i] == "Don't Play")
                        td++;
                    }
                else if (windy[i] == "fale")
                {
                    f++;
                    if (play[i] == "Play")
                    {
                        fp++;
                    else if (play[i] == "Don't Play")
                    {
                       fd++;
                    }
                }
```

```
}
  (f/row*(((-fp/f)*((Math,Log10(fp/f))/Math,Log10(2)))+((-fd/f)*((Math,Log10(fd/f))/Math,Log10(2))))));
  return gwindy;
}
//หาค่าเอนโทรปี2
double e2, c2;
double p2, d2;
double entropy2()
  for (int i = 0; i < row; i++)
  {
    if(outlook[i] == "sunny")
    {
      c2++;
      \quad \quad \text{if } (play[i] == "Play") \\
        p2++;
      }
      else if (play[i] == "Don't Play")
      {
        d2++;
      }
    }
  e2 = ((-p2\ /\ c2)\ *\ ((Math.Log10(p2\ /\ c2))\ /\ Math.Log10(2))) + ((-d2\ /\ c2)\ *\ ((Math.Log10(d2\ /\ c2))\ /\ Math.Log10(2)));
  return e2;
//หาค่าเกนของtemperature2
double t12, t22, gtemperature2;
double t1p2, t2p2, t1d2, t2d2;
double temperature_gain2()
{
  for (int i = 0; i < row; i++)
    if (outlook[i] == "sunny")
    {
      //temperature
      if (int.Parse(temperature[i]) <= 70)</pre>
      {
```

```
t12++;
                                                       if(play[i] == "Play")
                                                       {
                                                              t1p2++;
                                                       else if (play[i] == "Don't Play")
                                                       {
                                                               t1d2++;
                                             else if (int.Parse(temperature[i]) > 70)
                                                      t22++;
                                                       \quad \quad \textbf{if} \, (play[i] == "Play") \\
                                                               t2p2++;
                                                       else if (play[i] == "Don't Play")
                                                               t2d2++;
                                                       }
                                             }
                            (t22 \ / \ c2 \ * (((-t2p2 \ / \ t22)) \ * \ ((Math, Log10(t2p2 \ / \ t22)) \ / \ Math, Log10(2))) + ((-t2d2 \ / \ t22)) \ * ((Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22))) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t22)) \ / \ Math, Log10(t2d2 \ / \ t2
Math.Log10(2)))));
                           return gtemperature2;
                  }
                  //หาค่าเกนของhumidity2
                  double h12, h22, ghumidity2;
                  double h1p2, h2p2, h1d2, h2d2;
                  double humidity_gain2()
                  {
                           for (int i = 0; i < row; i++)
                                     if (outlook[i] == "sunny")
                                     {
                                             //humidity
                                             if (int.Parse(humidity[i]) <= 70)</pre>
                                             {
```

```
h12++;
                                          if(play[i] == "Play")
                                          {
                                                  h1p2++;
                                          else if (play[i] == "Don't Play")
                                          {
                                                    h1d2++;
                               else if (int.Parse(humidity[i]) > 70)
                                         h22++;
                                         if (play[i] == "Play")
                                                   h2p2++;
                                          else if (play[i] == "Don't Play")
                                                   h2d2++;
                                          }
                               }
          ghumidity2 = e2 - ((h12 \ / \ c2 \ * (((-h1p2 \ / \ h12) \ * \ ((Math.Log10(h1p2 \ / \ h12)) \ / \ Math.Log10(2))))) + (h1p2 \ / \ h1p2 \ / \
                     (h22\ /\ c2\ *\ (((-h2d2\ /\ h22)\ *\ ((Math.Log10(h2d2\ /\ h22))\ /\ Math.Log10(2))))));
          return ghumidity2;
}
//หาค่าเกนของwindy2
double tt2, ff2, gwindy2;
double tp2, fp2, td2, fd2;
double windy_gain2()
          for (int i = 0; i < row; i++)
                     if (outlook[i] == "sunny")
                               //windy
                               \quad \quad \text{if} \, (windy[i] == \text{"true"}) \\
                                          tt2++;
```

```
if (play[i] == "Play")
                                                          {
                                                                   tp2++;
                                                          else if (play[i] == "Don't Play")
                                                          {
                                                                   td2++;
                                                else \ if \ (windy[i] == "fale")
                                                 {
                                                          ff2++;
                                                          \quad \quad \textbf{if} \, (play[i] == "Play") \\
                                                                    fp2++;
                                                          \begin{array}{l} \textbf{else if (play[i] == "Don't Play")} \end{array}
                                                                    fd2++;
                                                          }
                                                }
                                       }
                             Math.Log10(2))))) +
                                       (ff2 \ / \ c2 \ * (((-fp2 \ / \ ff2) \ * \ ((Math.Log10(fp2 \ / \ ff2)) \ / \ Math.Log10(2))) \ + \ ((-fd2 \ / \ ff2) \ * \ ((Math.Log10(fd2 \ / \ ff2)) \ / \ Math.Log10(2))) \ + \ ((-fd2 \ / \ ff2) \ * \ ((Math.Log10(fd2 \ / \ ff2)) \ / \ Math.Log10(2))) \ + \ ((-fd2 \ / \ ff2) \ * \ ((Math.Log10(fd2 \ / \ ff2)) \ / \ Math.Log10(fd2 \ / \ ff2)) \ / \ Math.L
Math.Log10(2)))));
                             return gwindy2;
                    }
                    //หาค่าเอนโทรปี3
                    double e3, c3;
                    double p3, d3;
                    double entropy3()
                    {
                             for (int i = 0; i < row; i++)
                                       if(outlook[i] == "rain")
                                       {
                                               c3++;
                                                \quad \quad \textbf{if} \, (play[i] == "Play")
                                                {
```

```
p3++;
       }
       else if (play[i] == "Don't Play")
       {
          d3++;
       }
     }
  e3 = ((-p3 \ / \ c3) \ * \ ((Math.Log10(p3 \ / \ c3)) \ / \ Math.Log10(2))) \ + \ ((-d3 \ / \ c3) \ * \ ((Math.Log10(d3 \ / \ c3)) \ / \ Math.Log10(2)));
  return e3;
}
//หาค่าเกนของtemperature3
double t13, t23, gtemperature3;
double t1p3, t2p3, t1d3, t2d3;
double temperature_gain3()
{
  for (int i = 0; i < row; i++)
     if (outlook[i] == "rain")
     {
       //temperature
       if(int.Parse(temperature[i]) \le 70)
       {
         t13++;
          if (play[i] == "Play")
            t1p3++;
          else if (play[i] == "Don't Play")
          {
            t1d3++;
          }
       }
       else if (int.Parse(temperature[i]) > 70)
       {
          t23++;
          if (play[i] == "Play")
          {
            t2p3++;
          else if (play[i] == "Don't Play")
```

```
{
              t2d3++;
          }
      }
      t13)) / Math.Log10(2))))) +
        (t23 / c3 * (((-t2p3 / t23) * ((Math.Log10(t2p3 / t23)) / Math.Log10(2))) + ((-t2d3 / t23) * ((Math.Log10(t2d3 / t23)) /
Math.Log10(2)))));
      return gtemperature3;
    }
    //หาค่าเกนของwindy3
    double tt3, ff3, gwindy3;
    double tp3, fp3, td3, fd3;
    double windy_gain3()
      for (int i = 0; i < row; i++)
      {
        if \, (outlook[i] == "rain") \\
        {
          //windy
          \quad \quad \text{if } (windy[i] == \text{"true"}) \\
          {
            tt3++;
            if(play[i] == "Play")
            {
              tp3++;
            else if (play[i] == "Don't Play")
            {
              td3++;
          else if (windy[i] == "fale")
            ff3++;
            if(play[i] == "Play")
            {
              fp3++;
```

```
else if (play[i] == "Don't Play")
{
     fd3++;
}
}
gwindy3 = e3 - ((tt3 / c3 * (((-td3 / tt3) * ((Math.Log10(td3 / tt3)) / Math.Log10(2)))))) +
     (ff3 / c3 * (((-fp3 / ff3) * ((Math.Log10(fp3 / ff3)) / Math.Log10(2))))));
return gwindy3;
}
}
```

<u>5.ผลการรันโปรแกรมแก้ปัญหาการเล่นกอล์ฟ</u>

