第3节 不等式的进阶方法 (★★★)

内容提要

有的题目用基本不等式比较麻烦,若掌握一些拓展的方法和不等式,则可以快速求解问题. 但本节的方法非必学内容,同学们可选择性地学习. 有关的拓展方法和不等式如下:

- 1. 柯西不等式: $(a_1^2 + a_2^2 + \dots + a_n^2) \cdot (b_1^2 + b_2^2 + \dots + b_n^2) \ge (a_1b_1 + a_2b_2 + \dots + a_nb_n)^2$, 当且仅当 $b_i = 0$ ($i = 1, 2, \dots, n$)或存在实数 λ 使得 $a_i = \lambda b_i$ ($i = 1, 2, \dots, n$)时等号成立. 实际操作时,二维、三维形式的柯西不等式用得较多.
- ①二维形式的柯西不等式: $(x_1^2 + y_1^2)(x_2^2 + y_2^2) \ge (x_1x_2 + y_1y_2)^2$, 当且仅当 $x_1y_2 = x_2y_1$ 时等号成立.
- ②三维形式的柯西不等式: $(x_1^2 + y_1^2 + z_1^2)(x_2^2 + y_2^2 + z_2^2) \ge (x_1x_2 + y_1y_2 + z_1z_2)^2$, 当且仅当 $x_1 = y_1 = z_1 = 0$ 或存在

实数
$$\lambda$$
 使得
$$\begin{cases} x_2 = \lambda x_1 \\ y_2 = \lambda y_1 \end{cases}$$
 时等号成立.
$$z_2 = \lambda z_1$$

提醒:用柯西不等式求最值的核心在于凑出柯西不等式的形式以及凑定值,在一些带有平方和结构的求最值问题中,使用柯西不等式可以快速调节系数,凑出定值.

2. 权方和不等式: 设 x、y 均为正数,则 $\frac{a^2}{x} + \frac{b^2}{y} \ge \frac{(a+b)^2}{x+y}$,当且仅当 $\frac{a}{x} = \frac{b}{y}$ 时取等号. 权方和不等式常用

于速求一些分式和的最值. 事实上,权方和不等式有更复杂、更一般化的形式,但高考范畴内上述特定条件下的权方和不等式用得最多,本节的题目也只会用到它,故其它形式此处不再给出.

3. 三角换元法: 涉及平方和或平方差为常数的求最值问题, 可考虑三角换元法. 例如, 若已知 $x^2 + y^2 = r^2$,

则可令
$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$
,把求最值的式子化为关于 θ 的函数来分析;若已知 $x^2 - y^2 = r^2$,则可令 $\begin{cases} x = \frac{r}{\cos\theta} \\ y = r\tan\theta \end{cases}$

高考范畴内,一般平方和的三角换元比较常用,平方差的三角换元用得较少.

典型例题

类型 I: 柯西不等式的应用

【例 1】已知 $b_1^2 + b_2^2 = 5$,则 $3b_1 + 4b_2$ 的最大值为_____.

解析:条件中有平方和结构,考虑用柯西不等式,为了产生3b,+4b,,两端同乘以32+42,

因为 $b_1^2 + b_2^2 = 5$,所以 $125 = (3^2 + 4^2)(b_1^2 + b_2^2) \ge (3b_1 + 4b_2)^2$,故 $3b_1 + 4b_2 \le 5\sqrt{5}$,

取等条件是
$$\frac{b_1}{3} = \frac{b_2}{4}$$
,结合 $b_1^2 + b_2^2 = 5$ 可得此时 $b_1 = \frac{3\sqrt{5}}{5}$, $b_2 = \frac{4\sqrt{5}}{5}$,所以 $(3b_1 + 4b_2)_{\text{max}} = 5\sqrt{5}$.

答案: 5√5

【变式 1】已知 $a,b,c \in \mathbb{R}$, a+2b+3c=6 , 则 $a^2+4b^2+9c^2$ 的最小值为 .

解析: 求最值的式子中有平方和结构,考虑用柯西不等式,注意到 $a^2 + 4b^2 + 9c^2 = a^2 + (2b)^2 + (3c)^2$,所以凑一个 $1^2 + 1^2 + 1^2$,系数就恰为所给等式的结构,

因为
$$a+2b+3c=6$$
,所以 $a^2+4b^2+9c^2=\frac{1}{3}\times(1^2+1^2+1^2)(a^2+4b^2+9c^2)\geq \frac{1}{3}(1\times a+1\times 2b+1\times 3c)^2=12$,

取等条件是 $\frac{a}{1} = \frac{2b}{1} = \frac{3c}{1}$,结合a + 2b + 3c = 6可得此时a = 2,b = 1, $c = \frac{2}{3}$,故 $(a^2 + 4b^2 + 9c^2)_{min} = 12$.

答案: 12

【变式 2】设 $x, y, z \in \mathbb{R}$, $x^2 + y^2 + z^2 = 25$,则 x - 2y + 2z 的最大值是____,最小值是____.

解析:给出的是三项平方和,考虑用柯西不等式,为了凑出x-2y+2z,可乘以系数 $1^2+(-2)^2+2^2$,

因为 $x^2 + y^2 + z^2 = 25$,所以 $25 \times 9 = [1^2 + (-2)^2 + 2^2](x^2 + y^2 + z^2) \ge [1 \cdot x + (-2) \cdot y + 2 \cdot z]^2 = (x - 2y + 2z)^2$,

故
$$-15 \le x - 2y + 2z \le 15$$
,取等条件是 $\frac{x}{1} = \frac{y}{-2} = \frac{z}{2}$,结合 $x^2 + y^2 + z^2 = 25$ 可得
$$\begin{cases} x = -\frac{5}{3} \\ y = \frac{10}{3} \end{cases}$$
 或
$$\begin{cases} x = \frac{5}{3} \\ y = -\frac{10}{3} \end{cases}$$

$$z = -\frac{10}{3}$$

它们分别对应左、右两侧取等的情形,所以x-2y+2z的最大值为15,最小值为-15.

答案: 15, -15

【总结】从上面几道题可以看出,涉及 $Ax^2 + By^2 + Cz^2(A, B, C > 0)$ 和 ax + by + cz 之间的最值问题,可考虑用柯西不等式快速调节系数得出结果,需注意一次项这部分的系数 a, b, c 可以为负,如上面的变式 2.

类型 II: 权方和不等式的应用

【例 2】已知
$$0 < x < 1$$
,则 $\frac{9}{x} + \frac{16}{1-x}$ 的最小值为____.

解析: 涉及分式和的最值, 考虑权方和不等式, 此处分子为常数, 分母之和为定值, 可直接用,

由权方和不等式,
$$\frac{9}{x} + \frac{16}{1-x} = \frac{3^2}{x} + \frac{4^2}{1-x} \ge \frac{(3+4)^2}{x+(1-x)} = 49$$
, 取等条件是 $\frac{3}{x} = \frac{4}{1-x}$,解得: $x = \frac{3}{7}$,

满足0 < x < 1,所以 $\frac{9}{x} + \frac{16}{1-x}$ 的最小值是 49.

答案: 49

【变式 1】已知
$$a > 2b > 0$$
,且 $a + b = 1$,则 $\frac{1}{a-2b} + \frac{3}{b}$ 的最小值是_____.

解析: 涉及分式型最值, 考虑权方和不等式, 由于分母之和(a-2b)+b不是常数, 为了凑出分母之和为定值, 在 $\frac{3}{5}$ 上下同乘以 3,

由权方和不等式,
$$\frac{1}{a-2b} + \frac{3}{b} = \frac{1^2}{a-2b} + \frac{3^2}{3b} \ge \frac{(1+3)^2}{a-2b+3b} = \frac{16}{a+b} = 16$$
,

取等条件是
$$\frac{1}{a-2b} = \frac{3}{3b}$$
, 结合 $a+b=1$ 可得
$$\begin{cases} a = \frac{3}{4}, & \text{满足 } a > 2b > 0, \text{ 所以 } \frac{1}{a-2b} + \frac{3}{b} \text{ 的最小值为 16.} \\ b = \frac{1}{4} \end{cases}$$

答案: 16

【变式 2】已知
$$a > 1$$
 , $b > 1$, 则 $\frac{b^2}{a-1} + \frac{a^2}{b-1}$ 的最小值为_____.

解析: 涉及分式型最值,考虑权方和不等式,观察发现此处若用权方和不等式,尽管分子分母都凑不出定值,但可化为a+b的整体结构,再进一步分析,

由权方和不等式, $\frac{b^2}{a-1} + \frac{a^2}{b-1} \ge \frac{(b+a)^2}{a-1+b-1} = \frac{(a+b)^2}{a+b-2}$ ①,变量 a 和 b 以 a+b 整体形式出现,可换元,

设
$$t = a + b - 2$$
,则由 $a > 1$, $b > 1$ 可得 $t > 0$,且 $\frac{(a+b)^2}{a+b-2} = \frac{(t+2)^2}{t} = \frac{t^2 + 4t + 4}{t} = t + \frac{4}{t} + 4 \ge 2\sqrt{t \cdot \frac{4}{t}} + 4 = 8$,

结合①可得
$$\frac{b^2}{a-1} + \frac{a^2}{b-1} \ge \frac{(a+b)^2}{a+b-2} \ge 8$$
,取等条件是 $\left\{ \frac{b}{a-1} = \frac{a}{b-1} \right\}$,此时 $a = b = 2$,所以 $\left(\frac{b^2}{a-1} + \frac{a^2}{b-1} \right)_{\min} = 8$.

答案: 8

【总结】权方和不等式可用于速求分式和的最值,故遇到分式相加,可尝试用权方和不等式,先看用了能 否凑出定值,若能,则可直接求出最值;若不能,再看看能否化为更优良的结构,如上面的变式 2.

类型III: 用三角换元法求最值

【例 3】已知 $b_1^2 + b_2^2 = 5$,则 $3b_1 + 4b_2$ 的最大值为_____.

解析:此题在上面例1中已用柯西不等式求出了最值,其实涉及两项平方和,也可考虑三角换元,

因为
$$b_1^2 + b_2^2 = 5$$
,所以可设
$$\begin{cases} b_1 = \sqrt{5}\cos\theta \\ b_2 = \sqrt{5}\sin\theta \end{cases}$$
,则 $3b_1 + 4b_2 = 3\sqrt{5}\cos\theta + 4\sqrt{5}\sin\theta = 5\sqrt{5}\sin(\theta + \varphi)$,

故当 $\sin(\theta+\varphi)=1$ 时, $3b_1+4b_2$ 取得最大值 $5\sqrt{5}$.

答案: 5√5

【变式 1】已知 $x^2 - 2xy + 2y^2 = 2$,则 $x^2 + 2y^2$ 的取值范围是_____.

解析:条件中没有直接给出平方和结构,但观察发现,可通过配方,凑出平方和,

曲
$$x^2 - 2xy + 2y^2 = 2$$
 可得 $(x - y)^2 + y^2 = 2$, 所以可设
$$\begin{cases} x - y = \sqrt{2}\cos\theta \\ y = \sqrt{2}\sin\theta \end{cases}$$
, 则
$$\begin{cases} x = \sqrt{2}\sin\theta + \sqrt{2}\cos\theta \\ y = \sqrt{2}\sin\theta \end{cases}$$

所以
$$x^2 + 2y^2 = (\sqrt{2}\sin\theta + \sqrt{2}\cos\theta)^2 + 2\times(\sqrt{2}\sin\theta)^2 = 6\sin^2\theta + 2\cos^2\theta + 4\sin\theta\cos\theta$$

$$= 2 + 4\sin^2\theta + 2\sin 2\theta = 2 + 4\cdot\frac{1 - \cos 2\theta}{2} + 2\sin 2\theta = 4 + 2\sin 2\theta - 2\cos 2\theta = 4 + 2\sqrt{2}\sin(2\theta - \frac{\pi}{4}),$$

因为
$$-1 \le \sin(2\theta - \frac{\pi}{4}) \le 1$$
,所以 $4 - 2\sqrt{2} \le x^2 + 2y^2 \le 4 + 2\sqrt{2}$,故 $x^2 + 2y^2$ 的取值范围是 $[4 - 2\sqrt{2}, 4 + 2\sqrt{2}]$.

答案: $[4-2\sqrt{2},4+2\sqrt{2}]$

【反思】有的等式虽然没有直接的平方和结构,但可通过配方化为平方和结构,也能用三角换元处理.

【变式 2】 $\sqrt{x} + \sqrt{4-x}$ 的取值范围是 .

解析: 这题表面上看与平方和没什么关系,但观察发现 $(\sqrt{x})^2 + (\sqrt{4-x})^2 = 4$,所以它其实隐藏了一个平方 和为常数的条件,换元即可转化为我们熟悉的形式,

设 $a = \sqrt{x}$, $b = \sqrt{4-x}$, 则 $a \ge 0$, $b \ge 0$, 且 $a^2 + b^2 = 4$, 此时 $\sqrt{x} + \sqrt{4-x} = a + b$,

所以问题等价于在 $a^2+b^2=4(a\geq 0,b\geq 0)$ 的条件下,求a+b的取值范围,可用三角换元,

设
$$\begin{cases} a=2\cos\theta\\ b=2\sin\theta \end{cases}$$
, 由于 $a\geq 0$, $b\geq 0$, 所以不妨规定 $\theta\in[0,\frac{\pi}{2}]$,

此时 $a+b=2\cos\theta+2\sin\theta=2\sqrt{2}\sin(\theta+\frac{\pi}{4})$,因为 $\theta\in[0,\frac{\pi}{2}]$,所以 $\theta+\frac{\pi}{4}\in[\frac{\pi}{4},\frac{3\pi}{4}]$,

从而
$$\sin(\theta + \frac{\pi}{4}) \in [\frac{\sqrt{2}}{2}, 1]$$
,故 $a + b \in [2, 2\sqrt{2}]$.

答案: [2,2√2]

强化训练

1. (★★) 已知 a > 0, 则 $(a^2 + 3a + 1)(\frac{1}{a^2} + \frac{3}{a} + 1)$ 的最小值为_____.

- 2. (2021 浙江卷改编 ★★★) 已知实数 x, y, z 满足 $2x+y-\sqrt{5}z=2$, 则 $x^2+y^2+z^2$ 的最小值为____.
- 3. (★★★) 已知 x > 1, y > 1, xy = 10, 则 $\frac{1}{\lg x} + \frac{4}{\lg v}$ 的最小值是_____.
- 5. (2023・全国乙卷・★★★) 已知实数 x, y 满足 $x^2 + y^2 4x 2y 4 = 0$, 则 x y 的最大值是 ()

(A)
$$1 + \frac{3\sqrt{2}}{2}$$
 (B) 4 (C) $1 + 3\sqrt{2}$ (D) 7

(C)
$$1+3\sqrt{2}$$

- 6. (2020・清华强基试题・★★★)若 $x^2 + y^2 \le 1$,则 $x^2 + xy y^2$ 的取值范围为()

- (A) $\left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right]$ (B) $\left[-1,1\right]$ (C) $\left[-\frac{\sqrt{5}}{2}, \frac{\sqrt{5}}{2}\right]$ (D) $\left[-2,2\right]$
- 7. (2022 · 新高考 II 卷 · ★★★★) (多选) 若实数 x, y 满足 x² + y² xy = 1,则()

- (A) $x+y \le 1$ (B) $x+y \ge -2$ (C) $x^2+y^2 \ge 1$ (D) $x^2+y^2 \le 2$