基于时间序列预测的物料生产安排模型

摘 要

论文试图根据某企业产品需求的历史记录,建立数学模型,解决合理安排生产计划问题。

首先,统计所有 284 种不同物料需求出现的频数、数量、趋势、销售单价和销售总额, 选择销售总额较大、记录频数较多、需求数量较高的不同趋势(水平型、上升型、下降型) 的 6 种物料进行关注。

其次,对选择重点关注的 6 种物料,以周为单位,统计每种物料的周需求量。建立物料需求的周预测模型,采用三次指数平滑预测法,编写程序,进行短期预测。即用前 100 周数据预测第 101 周数据,用前 101 周数据预测第 102 周数据,以此类推。经过不断尝试,并且考虑到平均服务水平不低于 85%的要求,针对不同趋势的数据,采用不同的参数(水平型取参数 α=0.3,上升型取参数 α=0.8,下降型取参数 α=0.4),这样选择的参数可以快速、大幅提高需求量的增长,从而降低缺货量,进而保障服务水平的高质量。

根据这个原则,分别对 6 种不同物料进行统计和计算,得到 6 种物料第 101-177 周的库存量、缺货量和服务水平,以及综合结果。计算结果发现,6 种物料的平均服务水平都超过85%,绝大多数周的服务水平都达到100%,然而,平均库存量也较大。其中物料6004021055平均库存量高达 198.63 件/周。

再次,在第 2 题的生产安排模型中,服务水平高,但是库存量大,为了在二者之间寻求平衡,论文提出"强化参数法"和"联合调整法"。在"强化参数法"中,对于每周需求量计算都按照方案调整一次参数,及时地补充和跟进需求量的增加,以保证服务水平不会连续较低的情况。而"联合调整法"则是联合上周库存量、缺货量和本周需求预测值,极大限度地压缩库存量,减少成本。在这两个方法相继使用之下,很好地平衡了服务水平和库存量的关系。

根据这个想法,分别对 6 种不同物料进行统计和计算,得到 6 种物料第 101-177 周的库存量、缺货量和服务水平,以及综合结果。计算结果发现,所有物料的平均库存量均有不同程度下降,物料 6004021055 的平均库存量降到 45.51 件/周,降幅 77.1%,而平均服务水平则降为 82.91%。针对其他平均库存量本来就较小的物料,改进方案,使得服务水平达到 85%以上的同时,平均库存量也在 20 件/周以下。

最后,调整假设条件,延长产品从计划到使用的时间,这必然导致缺货量增加,所以对"强化参数法"和"联合调整法"都进行了改进,倾向于增加库存量来避免持续缺货,严重影响服务水平的情况,针对延长 k 周 (k=2)的情况进行计算,从计算结果来看,效果是很好的,只是对于这两种方法中的参数,需要更多数据和探索,以期获得更多经验。

关键词: 生产安排 时间序列 三次指数平滑 预测 MATLAB 库存量 服务水平

一、问题重述

某电子产品制造企业, 欲分析已有历史数据, 预测物料需求, 进而安排生产 计划。

赛题附件提供某电子产品制造企业自 2019 年 1 月 1 日起至 2022 年 5 月 21 日的物料编码及其需求量、销售单价记录, 我们将解决以下:

- 1、分析历史数据,选择6种应当重点关注的物料,建立物料需求的周预测模型,并利用历史数据对预测模型进行评价;
- 2、如果本周计划生产的物料只能在 k (k=1) 周及以后使用,制定 6 种重点物料的生产计划表(含第 101 周-177 周生产计划数、实际需求量、库存量、缺货量、服务水平),计算 6 种物料的综合结果,使得平均服务水平不低于 85%;
- 3、平衡库存量成本与服务水平之间的关系,调整周生产计划,重新制定生产计划表和计算综合结果;
- 4、如果本周计划生产的物料只能在 k (k≥2) 周及以后使用, 重新制定生产 计划。

二、问题分析

2.1 问题 1 分析

- 1.结合物料需求出现的频数、数量、趋势、销售单价和销售总额,利用 EXCEL 工具排序,选择 6 种重点关注的物料。
 - 2.以周为单位,统计周需求量历史数据。
 - 3.建立时间序列三次指数平滑预测模型,对周需求量进行预测,计算误差。

2.2 问题 2 分析

- 1.假设周需求量预测值为生产计划,提出"参数调整法",即对物料趋势进行分类,利用三次指数平滑预测法,水平型取参数 α =0.3,上升型取参数 α =0.7(为了保障服务水平处于较高的质量),下降型取参数 α =0.6,确定生产计划。
- 2.梳理生产计划、实际需求、库存、缺货量及服务水平之间的关系,按照一周后才能使用产品的假设,计算6种重点关注物料在第101-177周的库存、缺货量及服务水平。
 - 3.进一步计算6种物料的综合结果。
 - 4.分析问题。

2.3 问题 3 分析

1.将问题 2 的流程进行调整,增加调整生产计划的步骤:

确定需求量预测——"强化参数法+联合调整法"调整实际生产计划——计 算库存、缺货量、服务水平——计算综合结果。

- 2.确定调整实际生产计划的方案,即根据库存、需求量调整生产计划(降低库存成本),根据服务水平、缺货量调整生产计划(提高服务水平),以实现平均服务水平高于80%,且库存量大幅度低于问题2中库存量。最终实现库存量与服务水平之间的平衡。
- 3.计算 6 种物料的库存、缺货量及服务水平,及综合结果,并与问题 2 中的结果进行对比。

2.4 问题 4 分析

- 1.更改假设,假设本周计划生产的物料只能在 k=2 周及以后使用,那么对突然增加需求量的情况就必然导致服务水平极低,所以必须继续调大参数 $\alpha=0.9$,并且在需求量基础上数乘 β ($\beta\ge1$),以达到快速增加需求量的目的。k 值越大, β 值也越大。
 - 2.计算6种物料的库存、缺货量及服务水平,及综合结果。

三、模型假设与符号说明

3.1 模型假设

- 1、假设附件所给数据无遗漏,数值均无误;
- 2、假设本周生产计划所生产的产品,本周并不能使用,必须在k(k≥1)周之后才能使用。

3.2 符号说明

符号	含义	
y_1	第t周实际需求量	
y_{t}	第t周需求量预測值	KX 1
C_{t}	第t周生产计划数量	1
$K_{\mathbf{t}}$	第t周库存量	CI
$Q_{\rm t}$	第t周缺货量	100
F_{t}	第 t 周服务水平	9
α	三次指数平滑预测法中的参数	
β	问题 4 中生产计划调整参数	

表 1 论文中使用的符号说明

四、模型的建立与求解

4.1 问题 1 的模型

4.1.1 选择 6 种重点关注的物料

附件中给出 2019 年 1 月 1 日-2022 年 5 月 21 日共 22453 条数据,每条数据 含物料编码、需求量及销售单价。

在 EXCEL 中,对物料编码去重复,得到共 284 个不同的物料编码,再用 COUNTIF 函数分类计数得到不同物料编码的频数,用 SUMIF 函数分类求和得到不同物料编码的数量,考虑到企业盈利的目的,计算不同物料编码的销售总额。需要指出的是,同一物料编码的销售单价在不同时间会有差别,论文中将采用平均销售单价的计算办法,即:

平均销售单价=
$$\frac{销售总额}{总数量} = \frac{\sum(数量×销售单价)}{\sum 数量}$$

接下来考虑几项指标:

- ·频数,代表订单客户的数量,频数越大,客户群体越大。
- ·数量,代表物料需求总量,关系到销售数量、销售总额,影响生产计划。
- ·平均销售单价,与销售总额相关。
- ·趋势, 代表对产品的预判, 影响生产计划。

不同物料的各项计算结果如表 2 (按销售总额降序排列,颜色代表在该项目降序排列中居前十五):

物料编码	频数	数量	平均销 售单价	销售总额	趋势(特点)	重点
6004020918	620	2213	2280	5045408	下降型数据	V
6004010372	80	2657	1815	4823621	频数太少,数据量不够 多,影响预测,建议后 期关注	
6004020900	444	717	6332	4540071	上升型数据	1
6004021155	130	1075	3517	3781103	類数太少, 数据量不够 多, 影响预测, 建议后 期关注	
6004010174	418	2601	1302	3386739	2021.11.5 之后 无数据,不值得关注	
6004021055	318	2969	1050	3116285	下降型数据 水平型数据,从 2019-	٧
6004020768	180	434	6410	2781860	2022 年需求量持续保 持,有特点	V
6004021096	160	569	4456	2535298	频数太少,数据量不够	

6004021111	139	375	6521	2445243	多,影响预测,建议后 期关注 频数太少,数据量不够 多,影响预测,建议后 期关注	
6004020763	126	283	8609	2436296	频数太少,数据量不够 多,影响预测,建议后 期关注	
6004020921	337	934	2396	2238134	水平型数据	V
6004010256	955	1585	1366	2165199	上升型数据	V

表 2 不同物料编码的频数、数量、销售单价、销售总额计算

表 2 列出的是按销售总额排序的前 10 位, 其他有些物料虽然销售单价高达 上万元,但是需求量不大,导致销售总额不高,如果利润率相当的情况下,利润 也就不如销售总额更高的物料来得大。

挑选原则: 在选择重点关注的 6 种物料时, 优先考虑销售总额高的物料, 其 次,考虑物料的频数较多、需求数量较大,最好有不同趋势的物料。如果周需求 量的数据太少,会影响预测结果,建议后期再关注。

例如, 在统计周需求量时, 发现物料 6004010174 在 2021 年 11 月 5 日之后 就没有需求数据了,该情况被认为是产品停产或者不再销售,也就是需求趋势为 0, 故不应关注这样的物料。另外, 物料 6004020900 从 2019 年 10 月 21 日才开 始出现记录,持续到2022年5月21日,且需求量逐步增加,这样的物料值得被 关注。

最后,在综合考虑频数、数量、销售单价、销售总额等各项因素后,选择以 下 6 种物料重点关注:

	物料编码
1	6004020918
2	6004020900
3	6004021055
4	6004020768
5	6004020921
6	6004010256
£3 重点5	6004010256 关注的 6 种物料编码
	5

4.1.2 物料需求的周预测模型——时间序列模型 (三次指数平滑法)

首先,对6种不同物料需求量按周进行统计,绘制散点图:

图 1 重点关注的 6 种物料周需求量散点图

观察散点图,发现:

1.6004020918、6004020768、6004020921、6004010256 物料自 2019 年 1 月 2 日以来保持持续生产,而 6004020900、6004021055 物料都只是近一年来才有

生产记录。

2. 6004020900、6004010256 物料的周需求量有上升趋势,6004020918、6004021055 物料周需求量略有下降趋势,6004020768、6004020721 物料周需求量则有水平型趋势。

针对数据特点,建立时间序列模型来进行周预测。

假设周需求量为时间序列{v},下面综述时间序列的几种模型:

时间序 列方法	时间序列模型	為徐
简单一 次移动 平均预 測法	$\hat{y}_{t+1} = \frac{y_t + y_{t-1} + \dots + y_{t-n+1}}{n}$ \hat{y}_{t+1} 表示第 t+1 期预测值(t≥n) y_t 表示第 t 期实际值 n 表示移动平均的项数 $\overline{y}_{t+1} = \frac{\sum_{t=1}^{n} (y_{t+1} - \hat{y}_{t+1})^2}{N-n}$ N 为时间序列 $\{y_t\}$ 所含原始数据的个数	把参与平均的数据在预测中所起的作用同等对待; n不宜过大或过小, 如果没有周期变动,n可取较大,如果数据类型呈上升型或下降型趋势,n可取较小的数。
加权一次移项平均	$\hat{y}_{t+1} = \frac{w_1 y_t + w_2 y_{t-1} + \dots + w_n y_{t-n+1}}{w_1 + w_2 + \dots + w_n}$ \hat{y}_{t+1} 表示第 t+1 期预测值 y_t 表示第 t 期实际值 w_i 表示权重 n 表示移动平均的项数 预测误差 $\sigma = \sqrt{\frac{\sum (y_{t+1} - \hat{y}_{t+1})^2}{N-n}}$ N 为时间序列 $\{y_t\}$ 所含原始数据的个数	把参与平均的数据在预测中 所起的作用区别对待; 一般原则:近期数据的权重 大,远期数据的权重小。
一 次 指 数 平 滑 预测法	$\hat{\mathbf{y}}_{t+1} = \mathbf{S}_t^{(1)} = \alpha y_t + (1-\alpha) \mathbf{S}_{t-1}^{(1)}$ $\hat{\mathbf{y}}_{t+1}$ 表示第 t+1 期预测值 \mathbf{y}_t 表示第 t 期实际值 $\mathbf{S}_{t+1}^{(1)}$ 、 $\mathbf{S}_t^{(1)}$ 分别表示第 t-1,t 期一次指数平滑值	实际预测时,可选不同的 α 值进行比较,选择一个比较 合适的 α 值。 需要给出初值 $S_0^{(1)}$,可取原 时间序列的第一项或前几项

	α 表示平滑系数, $0 < \alpha < 1$ 预测误差 $\sigma = \sqrt{\sum_{t=1}^{n-1} (y_{t+1} - \hat{y}_{t+1})^2 \over n-1}$ n 为时间序列 $\{y_t\}$ 所含原始数据的个数	的算数平均值为初值。
二次指数平滑预测法	$\begin{cases} S_t^{(1)} = \alpha y_t + (1 - \alpha) S_{t-1}^{(1)} \\ S_t^{(2)} = \alpha S_t^{(1)} + (1 - \alpha) S_{t-1}^{(2)} \\ \hat{y}_{t+T} = A_T + B_T T \\ A_T = 2 S_t^{(1)} - S_t^{(2)} \\ B_T = \frac{\alpha}{1 - \alpha} (S_t^{(1)} - S_t^{(2)}) \end{cases}$	适用于时间序列呈线性增长 趋势情况下的短期预测
三次指数平滑预测法	$\begin{split} & \begin{bmatrix} \mathbf{S}_{t}^{(0)} = \alpha \mathbf{y}_{t} + (1-\alpha)\mathbf{S}_{t-1}^{(0)} \\ \mathbf{S}_{t}^{(2)} = \alpha \mathbf{S}_{t}^{(1)} + (1-\alpha)\mathbf{S}_{t-1}^{(2)} \\ \mathbf{S}_{t}^{(3)} = \alpha \mathbf{S}_{t}^{(2)} + (1-\alpha)\mathbf{S}_{t-1}^{(3)} \\ \mathbf{S}_{t}^{(3)} = \alpha \mathbf{S}_{t}^{(2)} + (1-\alpha)\mathbf{S}_{t-1}^{(3)} \\ \hat{\mathbf{y}}_{t+7} = \mathbf{A}_{T} + \mathbf{B}_{T}T + \mathbf{C}_{T}T^{2} \\ \mathbf{A}_{t} = 3\mathbf{S}_{t}^{(0)} - 3\mathbf{S}_{t}^{(2)} + \mathbf{S}_{t}^{(3)} \\ \mathbf{B}_{t} = \left(\frac{\alpha}{2(1-\alpha)^{2}}\right) \left[(6-5\alpha)\mathbf{S}_{t}^{(0)} - 2(5-4\alpha)\mathbf{S}_{t}^{(2)} + (4-3\alpha)\mathbf{S}_{t}^{(3)} \right] \\ \mathbf{C}_{t} = \left(\frac{\alpha^{2}}{2(1-\alpha)^{2}}\right) \left[\mathbf{S}_{t}^{(0)} - 2\mathbf{S}_{t}^{(2)} + \mathbf{S}_{t}^{(0)} \right] \\ \mathbf{\overline{M}} \mathbf{W} \mathbf{W} \mathbf{\overline{Z}} \boldsymbol{\sigma} = \sqrt{\frac{\sum_{t=1}^{n-1} (\mathbf{y}_{t+1} - \mathbf{\hat{y}}_{t+1})^{2}}{n-1}} \end{split}$	三次指数平滑在二次指数平滑的基础上保留了季节性的信息,使得其可以预测带有季节性的时间序列。适用更多时间序列的应用问题。 经验地,当时间序列数据是水平型的发展趋势类型,α可取 0-0.3;当时间序列数据是上升(或下降)的发展趋势类型,发型,α可取 0.6-1.

表 4 时间序列方法

根据物料周需求量散点图,发现并不是所有需求量都具有上升型或下降型的 特点,还是有水平型的的数据存在。所以,论文将采用三次指数平滑预测法,以 适合更多的需求量类型。

具体算法:

- 1.利用 $y_{1.}y_{2.}$ … y_{100} 预测 y_{101} ,
- 2.再利用 $y_{1,}y_{2,}\cdots y_{101}$ 预测 y_{102} ,, 以此类推,
- 3.如果遇到周需求量预测值 $y_{t}<0$,**校准**取 $y_{t}=0$ 。

根据三次指数平滑预测法的算法编写 MATLAB 程序实现计算(见附录)。 以物料编号 6004020768 为例,由于数据有水平型特点,故取 α =0.3,计算 结果如下:

	实际值 y,	预测值y	方差(ソュー・・
第 101 周	4.00	3.14	0.74
第 102 周	0.00	4.79	22.92
第 103 周	4.00	1.72	5.19
第 104 周	0.00	3.88	15.09
第 105 周	0.00	1.15	1.31
第106周	0.00	0.00	0.00
第 107 周	0.00	0.00	0.00
*****	******		******
第173周	6.00	5.77	0.05
第174周	0.00	7.00	48.98
第175周	0.00	1.88	3.52
第176周	0.00	0.00	0.00
第177周	$\frac{\overbrace{(y_{t+1} - \hat{y}_{t+1})^2}^{6.00}}{n-1} = 0.481846$	0.00	36.00

表 5 预测值与实际值误差计算

图 2 实际值与预测值比较图

所有6种物料的预测值及误差计算见支撑材料"第1题-6种物料的预测值及误差计算.xlsx"。

对于前期为 0 后面才出现数据的情况,我们尝试了保留数据 0 和删除数据 0 两种方法进行预测,得到计算结果对比图:

图 3 是否使用前期 0 数据对比图

可以发现,除了最初的几个数据预测有偏差之外,后面的预测结果几乎一致, 但是前面数据增长速度跟不上的话,会影响服务水平的计算。所以,论文中采用 删除前期全是0的数据,从第一个不是0的数据开始。

采用时间序列三次指数平滑预测法模型评价:

(1)利用三次指数平滑预测法,适合更多样的数据变化类型,包括水平型、

上升型、下降型等。水平型取参数 $\alpha=0.3$,上升型取参数 $\alpha=0.6$,下降型取参数 $\alpha=0.6$,预测周需求量。

- (2) 使用 MATLAB 编程计算, 快速便捷;
- (3) 利用前 100 多个数据预测下一个数据, 预测更准, 误差更小;
- (4) 对于企业来说,只需要每周运行一次程序,即可得到下周需求量的预测,很方便;积累的数据量越大,预测的结果越可靠。

4.2 问题 2 的模型

4.2.1 制定生产计划——参数调整法 (确保服务水平高质量)

1. 理清生产计划、实际需求量、库存量、缺货量、服务水平之间的关系 根据题目假设,本周计划生产的物料只能在下周及以后使用,那么,五个元 素之间的关系如下:

周	生产计划	实际需求量	库存量	缺货量	服务水平
	C_1	У,	$K_{_{\mathrm{t}}}$	$Q_{_1}$	F_{i}
t	<i>C</i> ,	y_{i}	$K_{\mathbf{t}}$	Q_{i}	$F_{\rm t}$
t+1	C_{t+1}	<i>y</i> ₁₊₁	$K_{::1}$	Q_{i+1}	F_{t+1}

表 6 生产计划、实际需求量、库存量、缺货量、服务水平之间关系

$$\begin{split} K_{t+1} &= \begin{cases} C_t + K_t - (y_{t+1} + Q_t), & \text{如果} C_t + K_t \geq y_{t+1} + Q_t \\ 0, & \text{否则} \end{cases} \\ Q_{t+1} &= \begin{cases} y_{t+1} + Q_t - (C_t + K_t), & \text{如果} C_{t-1} + K_{t-1} \leq y_t + Q_t \\ 0, & \text{否则} \end{cases} \\ F_{t+1} &= 1 - \frac{Q_{t+1}}{y_{t+1}} \end{split}$$

进一步假设第 100 周末的库存量和缺货量均为零,第 100 周的生产计划数恰好等于第 101 周的实际需求数,即第 101 周库存量=0,缺货量=0。

2. "参数调整法"确定生产计划 (确保服务水平高质量)

根据需求量数据的趋势特点,采用不同的参数进行平滑:水平型取参数 α =0.3, 上升型取参数 α =0.8, 下降型取参数 α =0.4。这样选择参数,会使得数据在上升 时快速增加,以达到避免积累缺货的目的。 利用第 1 题三次指数平滑预测法得到的第 t 周需求量预测值 y_t ,用来估计第 t 周的生产计划 C_t ,以物料 6004010256 为例,由于数据具有上升型特点,故取参数 α =0.8,计算第 101-110 周的服务水平。为了避免实际需求量为 0 时出现服务水平计算过程中分母等于 0 的情况,将公式修改为:

下表为物料 6004010256 的生产计划、实际需求量、库存量、缺货量和服务 水平的计算结果:

周	生产计划 C,	实际需求量 y,	库存量 <i>K</i> ,	缺货量 <i>Q</i> ₁	服务水平 F:
101	63.82	8.00	0.00	0.00	100.0%
102	13.00	25.00	38.82	0.00	100.0%
103	18.74	33.00	18.82	0.00	100.0%
104	31.35	11.00	26.57	0.00	100.0%
105	8.44	16.00	41.92	0.00	100.0%
106	9.33	12.00	38.36	0.00	100.0%
107	6.76	6.00	41.69	0.00	100.0%
108	0.62	35.00	13.46	0.00	100.0%
109	35.71	10.00	4.07	0.00	100.0%
110	14.58	3.00	36.78	0.00	100.0%

表 7 "参数调整法"计算的生产计划(物料 6004010256)

从表格中可以看出,库存量持续为正,缺货量就能保持是 0,那么服务水平 将得到极大保障。

所有 6 种物料第 101-110 周的计算结果见支撑材料"第 2 题-6 种物料的 101~110 周生产计划数、实际需求量、库存量、缺货量和服务水平.xlsx"。

同样的方法,计算6种物料第101-177周的计算结果。()

所有 6 种物料第 101-177 周的计算结果见支撑材料"第 2 题-6 种物料的 101~177 周生产计划数、实际需求量、库存量、缺货量和服务水平.xlsx"。

接下来,考查6种物料的综合结果;

物料编码	平均生产计 划数/(件/ 周)	平均实际需 求量/(件/ 周)	平均库存量 (件/周)	平均缺货量/ (件/周)	平均服务水 平
6004021055	37.78	34.70	198.63	0.00	100.00%
6004020900	4.63	4.58	13.84	0.00	100.00%
6004010256	11.89	11.22	35.80	0.00	100.00%
6004020768	2.78	2.47	17.47	0.00	100.00%
6004020918	10.58	9.94	31.81	1.09	88.45%
6004020921	4.13	3.87	11.86	0.39	93.63%

表 8 "参数调整法"计算的综合结果

计算结果发现:

- 1.6种物料的平均服务水平都超过85%,达到要求。
- 2. 平均库存量均大于 0, 而且物料 6004021055 的平均库存量高达近 200 件/周, 有很大的压缩空间。
- 3. 绝大多数情况下, 服务水平均为 100%, 在遇到实际需求数量突然增加时, 生产计划跟不上, 于是会出现 1 周或连续 2 周平均服务水平较低的情况。例如, 物料 6004020900 在第 146、147 周、第 167 周出现服务水平较低,均是因为上一 周出现需求量至少增加 10 件的差值。

145	\$	6	960	0	100.00%
146	7.0	16	0	- 5	71.40%
147	19	6		A	34,885
148		12	3		100 00% 71 44% 34 88% 100 00%
166	1	13	3	0	
167	16	8	0	4	100 00% \$3.81%
168	12	11	1	0	100.00%
	4.4				

图 4 物料 6004020900 在第 146、147 周、第 167 周出现服务水平较低

4.3 问题 3 的模型

4.3.1 调整生产计划——强化参数法 (利于提高服务水平)

如果为了满足服务水平,可以加大生产计划,弊端是很可能造成库存量大,增加成本;反之,如果为了降低库存成本,减少生产计划,弊端是很可能造成库存不足,缺货量增加,引起服务水平下降。

(一)强化参数法(利于提高服务水平)

为了避免因需求量激增而生产计划跟不上的现象,在使用三次指数平滑预测 法时,注意时刻调整参数α,而不是针对某一物料统一采用相同的参数α,具体 地,观察最近的两次数据,按照下面的表格选择参数:

	情况	参数选择	说明
$y_{t+1} - y_t$	[100,+∞)	$\alpha = 0.9$	面对上周需求量数据从 0 突然激增到很大 的数时,需要快速、大幅度地预测,不仅能 超过上周实际需求量,还要能预留出富余 来应对本周的实际需求量,以保障服务水 平不会连续 2 周都出现低质量情况。
$y_{t+1} - y_t$	[50,100)	$\alpha = 0.8$	
$y_{t+1} - y_t$	[10,50)	$\alpha = 0.6$	
$y_{t+1} - y_t$	(-10,10)	$\alpha = 0.3$	面对需求数量稳定变化不大的情况,预测 值也稳定地随之变化,不会积压过多的库 存量。
$y_{t+1} - y_t$	[-50,-10)	$\alpha = 0.4$	
$y_{t+1} - y_t$	[-100,-50)	$\alpha = 0.5$	
$y_{t+1} - y_t$	[-∞,-100)	$\alpha = 0.6$	面对需求数量突然减小,为了留有一定储 备,所以下降幅度相对激增时的增加幅度 来得缓一些。

表 9 "强化参数法"的参数选择参考值

4.3.2 调整生产计划——联合调整法 (利于降低库存量)

为了尽可能地降低库存量成本,将生产计划C,进行以下调整:

$$C_{t+1} = \begin{cases} \hat{y}_{t+1} - K_t + Q_t, & \text{如果} \hat{y}_{t+1} - K_t + Q_t \ge 0 \\ 0, & 否则 \end{cases}$$

如果(本周预测需求量+上周缺货量)高于上周库存量,则本周生产 $y_{t+1}-K_t+Q_t$,如果(本周预测需求量+上周缺货量)低于上周库存量,则本周生产为0。

按照这样的调整方案,尽可能减少本周库存量,降低成本。

4.3.3 调整生产计划前后效果对比

在先后使用"强化参数法"和"联合调整法"之后,对之前的6种物料重新计算 生产计划、库存量、缺货量、服务水平,综合结果如下:

周	预测需求 量/件	实际生产计划/ 件	实际需求量/	库存量/ 件	缺货量/ 件	服务水平
101	14.95	15.00	4.00	0.00	0.00	100.00%

1	1		T someway	T management	100000000000000000000000000000000000000	0.000
102	5.33	5.33	8.00	7.00	0.00	100.00%
103	8.51	1.51	4.00	8.33	0.00	100.00%
104	5.89	0.00	5.00	4.84	0,00	100.00%
105	6.18	1.35	4.00	0.84	0.00	100.00%
106	4.88	4.05	2.00	0.18	0.00	100.00%
107	1.56	1.37	12.00	0.00	7,77	35.31%
108	13.53	21.30	13.00	0.00	19.40	0.00%
109	15.91	35.31	3.00	0.00	1.10	63.46%
110	6.24	7.34	8.00	26.21	0.00	100.00%

表 10 "强化参数法"+"联合调整法"计算结果(物料 6004020921)

物料编码	平均預測 需求量/ (件/周)	平均生产 计划数/ (件/周)	平均实际 需求量/ (件/周)	平均库存 量 (件/ 周)	平均缺货 量/(件/ 周)	平均服务 水平
6004021055	37.15	34.39	34.70	45.51	9.74	82.91%
6004020900	4.78	4.38	4.58	6.01	1.39	81.34%
6004010256	12.36	11.31	11.22	13.89	3.20	79.14%
6004020768	3.55	2.58	2.47	6.64	0.41	89.00%
6004020918	11.26	10.07	9.94	20.76	3.94	80.92%
6004020921	4.58	3.88	3.87	7.40	1.20	77.93%

表 11 "强化参数法"+"联合调整法"计算的综合结果

具体 6 种物料在 101-110、101-177 周的生产情况计算见支撑材料"第 3 题-6 种物料的 101~110 周生产计划数、实际需求量、库存量、缺货量和服务水平.xlsx"、"第 3 题-6 种物料的 101~177 周生产计划数、实际需求量、库存量、缺货量和服务水平.xlsx"、"第 3 题-6 种物料的综合结果.xlsx"。

对比表 9 和表 10,可以发现:

- 1. 所有物料的平均库存量均有不同程度下降,平均服务水平也有降低。
- 2. 物料 6004021055 平均库存量从 198.63 下降到 45.51, 降幅 77.1%, 而平均服务水平则从 100%下降到 82.91%。
- 3. 物料 6004020921 平均库存量从 11.86 下降到 7.4, 降幅 37.6%, 而平均服 务水平则从 93.63%下降到 77.93%。
- 4. 针对库存量较大的物料,"强化参数法"和"联合调整法"大幅度减少了库存量成本,损失了部分服务水平应该是值得的;而针对库存量较小的物料,减少的库存量绝对值不多,但平均服务水平低于85%太多,容易流失客户,不值得。

针对这个问题,我们将"强化参数法"和"联合调整法"模型再次改进:

若经历"强化参数法"和"联合调整法"步骤之后,平均库存量低于 30 件/周,

且平均服务水平低于 85%的,令 $C_{t+1} = (\hat{y}_{t+1} - K_t + Q_t) \times 1.1$,使得平均库存量小幅增加,但平均服务水平达到 85%。

再次计算6种物料的各项数据和综合结果,得到:

周	预测需求 量/件	实际生产计划/ 件	实际需求量/ 件	库存量/ 件	缺货量/ 件	服务水平
101	14.95	15.00	4.00	0.00	0.00	100.00%
102	5.33	7.27	8.00	7.00	0.00	100.00%
103	8.51	2.06	4.00	10.27	0.00	100.00%
104	5.89	0.00	5.00	7.33	0.00	100.00%
105	6.18	0.00	4.00	3.33	0.00	100.00%
106	4.88	2.12	2.00	1.33	0.00	100.00%
107	1.56	0.30	12.00	0.00	8.55	28.81%
108	13.53	30.14	13.00	0.00	21.25	0.00%
109	15.91	50.72	3.00	5.89	0.00	100.00%
110	6.24	0.48	8.00	48.61	0.00	100.00%

表 12 "强化参数法"+"联合调整法"(改进版)计算结果(物料 6004020921)

物料编码	平均预测 需求量/ (件/周)	平均生产 计划数/ (件/周)	平均实际 需求量/ (件/周)	平均库存 量 (件/ 周)	平均缺货 量/(件/ 周)	平均服务 水平
6004021055	37.15	34.09	34.70	81.23	6.45	87.76%
6004020900	4.78	4.37	4.58	10.15	1.15	85.40%
6004010256	12.36	11.32	11.22	23.33	1.83	89.35%
6004020768	3.55	2.58	2.47	6.64	0.41	89.00%
6004020918	11.26	10.39	9.94	31.11	2.52	85.63%
6004020921	4.58	3.90	3.87	9.88	0.70	87.93%

表 13 "强化参数法"+"联合调整法"(补充版)计算的综合结果

改进调整之后,发现平均服务水平都上升,且达到85%以上!物料6004020921 第109周的服务水平从63.46%上升到100%。

具体 6 种物料在 101-110、101-177 周的生产情况计算见支撑材料"第 3 题-6 种物料的 101~110 周生产计划数、实际需求量、库存量、缺货量和服务水平(改进版).xlsx"、"第 3 题-6 种物料的 101~177 周生产计划数、实际需求量、库存量、缺货量和服务水平(改进版).xlsx"、"第 3 题-6 种物料的综合结果(改进版).xlsx"。

4.4 问题 4 的模型

4.4.1 推广模型 (考虑 k=2 周及以后才能使用)

更改假设,假设本周计划生产的物料只能在 k=2 周及以后使用,那么对突然增加需求量的情况就必然导致服务水平极低,而且会有持续影响,所以必须继续调大参数 $\alpha=0.9$,并且在需求量基础上数乘 β ($\beta\ge1$),以达到快速增加需求量的目的。k 值越大, β 值也越大。

可以增加参数 $\beta(\beta>0)$, 使得

$$\begin{split} &C_{t+1} = \begin{cases} \left(\stackrel{\circ}{y}_{t+1} - K_t + Q_t \right) \times \beta, & \text{如果} \stackrel{\circ}{y}_{t+1} - K_t + Q_t \geq 0 \\ 0, & \text{否则} \end{cases} \\ &K_{t+1} = \begin{cases} C_{t-1} + K_t - X_t - Q_t, & \text{如果} C_{t-1} + K_t - Q_t \geq 0 \\ 0, & \text{否则} \end{cases} \end{split}$$

如果想要提高服务水平,就让 β >1, β 越大,生产越多,库存越多;反之,如果想要降低库存量,就让 $0<\beta\leq 1$, β 越小,生产越少,库存越少,但缺货量提高,服务水平就越小。

对于 k=2, 取 β =1.3~1.4, 计算 6 种物料的库存、缺货量及服务水平, 及综合结果。

物料编码	平均预测 需求量/ (件/周)	平均生产 计划数/ (件/周)	平均实际 需求量/ (件/周)	平均库存 量 (件/ 周)	平均缺货 量/(件/ 周)	平均服务 水平
6004021055	37.15	32.97	34.70	74.57	16.05	80.00%
6004020900	4.78	4.62	4.58	11.97	2.26	65.82%
6004010256	12.36	11.44	11.22	20.87	5.00	67.54%
6004020768	3.55	2.74	2.47	9.27	0.81	73.14%
6004020918	11.26	10.23	9.94	28.75	4.15	63.33%
6004020921	4.58	3.95	3.87	9.04	1.34	67.15%

表 14 6 种物料的综合结果 (β=1)

物料编码	平均预测 需求量/ (件/周)	平均生产 计划数/ (件/周)	平均实际 需求量/ (件/周)	平均库存 量 (件/ 周)	平均缺货 量/(件/ 周)	平均服务水平
6004021055	37.15	35.96	34.70	104.13	10.73	81.61%
6004020900	4.78	4.75	4.58	19.88	1.65	81.71%
6004010256	12.36	10.98	11.22	42.43	3,77	85.10%
6004020768	3.55	2.74	2.47	12.81	0.58	86.34%
6004020918	11.26	10.25	9.94	49.32	2.48	86.50%
6004020921	4.58	4.25	3.87	16.98	1.13	84.24%

表 15 6 种物料的综合结果 (B=1.3~1.4)

所有6种物料具体各周、综合结果的计算结果见支撑材料:

"第 4 题-6 种物料的 101~110 周生产计划数、实际需求量、库存量、缺货量和服务水平(k=2)($\beta=1$).xlsx"、

"第 4 题-6 种物料的 101~177 周生产计划数、实际需求量、库存量、缺货量和服务水平(k=2) (β=1).xlsx"、

"问题 4-6 种物料的综合结果(k=2) (β=1)"

"第 4 题-6 种物料的 101~110 周生产计划数、实际需求量、库存量、缺货量和服务水平(k=2) (β=1.3~1.4).xlsx"、

"第 4 题-6 种物料的 101~177 周生产计划数、实际需求量、库存量、缺货量和服务水平(k=2) (β=1.3~1.4) .xlsx"、

"问题 4-6 种物料的综合结果(k=2) (β=1.3~1.4)"

4.4.2 推广模型 (考虑 k (≥2) 周及以后才能使用)

对于 k≥2,

$$\begin{split} C_{t+1} = & \begin{cases} \left(\overset{\circ}{y}_{t+1} - K_t + Q_t \right) \times \beta, & \text{如果} \overset{\circ}{y}_{t+1} - K_t + Q_t \geq 0 \\ 0, & \text{否则} \end{cases} \\ K_{t+1} = & \begin{cases} C_{t+1-k} + K_t - X_t - Q_t, & \text{如果} C_{t+1-k} + K_t - X_t - Q_t \geq 0 \\ 0, & \text{否则} \end{cases} \end{split}$$

此时,建议 β 取更大的数值,具体参数需要在实际计算中不断摸索。

五、模型的结果

- 1. 小批量物料的生产安排过程,可以总结为:
- (1) 统计周需求量:
- (2)利用时间序列三次指数平滑模型,结合历史数据,预测本周需求量, 融合参数调整法,实时调整参数,提高服务水平;
- (3) 利用联合调整法, 联合上周库存量和缺货量, 兼顾物料 k 周之后使用的情况, 采用公式

$$C_{t+1} = \begin{cases} \left(\hat{y}_{t+1} - K_t + Q_t\right) \times \beta, & \text{如果} \hat{y}_{t+1} - K_t + Q_t \ge 0 \\ 0, & \text{否则} \end{cases}$$

确定本周生产计划最终结果,其中β>0。

(4) 每周实时检查库存量、缺货量以及服务水平,及时调整相关参数,做 到库存量与服务水平的平衡。

- 2. 所有计算结果:
- (1)第1题时间序列模型三次指数平滑预测法计算程序见附录第二部分 "程序附录":
 - (2) 第1题预测值与实际值的误差计算见支撑材料
 - "第 1 题-6 种物料的预测值及误差计算.xlsx";
 - (3) 第2题"参数调整法"计算结果见支撑材料
- "第2题-6种物料的101~110周生产计划数、实际需求量、库存量、缺货量和服务水平.xlsx"、
- "第 2 题-6 种物料的 101~177 周生产计划数、实际需求量、库存量、缺货量和服务水平.xlsx"、
 - "第 2 题-6 种物料的综合结果.xlsx";
 - (4) 第3题"强化参数法"+"联合调整法"计算结果见支撑材料
- "第 3 题-6 种物料的 101~110 周生产计划数、实际需求量、库存量、缺货量和服务水平.xlsx"、
- "第 3 题-6 种物料的 101~177 周生产计划数、实际需求量、库存量、缺货量和服务水平.xlsx"、
 - "第 3 题-6 种物料的综合结果.xlsx":
 - (5) 第3题"强化参数法"+"联合调整法"(改进版)计算结果见支撑材料
- "第 3 题-6 种物料的 101~110 周生产计划数、实际需求量、库存量、缺货量和服务水平(改进版).xlsx"、
- "第 3 题-6 种物料的 101~177 周生产计划数、实际需求量、库存量、缺货量和服务水平(改进版).xlsx"、
 - "第3题-6种物料的综合结果(改进版).xlsx";
 - (6) 第 4 题 k=2 计算结果见支撑材料
- "第 4 题-6 种物料的 101~110 周生产计划数、实际需求量、库存量、缺货量和服务水平(k=2) (β=1).xlsx"、
- "第 4 题-6 种物料的 101~177 周生产计划数、实际需求量、库存量、缺货量和服务水平(k=2) (β=1).xlsx"、
 - "第 4 题-6 种物料的综合结果(k=2) (β=1).xlsx"、
- "第 4 题-6 种物料的 101~110 周生产计划数、实际需求量、库存量、缺货量和服务水平(k=2) (β=1.3~1.4).xlsx"、
- "第 4 题-6 种物料的 101~177 周生产计划数、实际需求量、库存量、缺货量和服务水平(k=2) (β=1.3~1.4) .xlsx"、
 - "第 4 题-6 种物料的综合结果(k=2) (β=1.3~1.4) .xlsx".

- 3. 所有计算结论:
- (1) 利用三次指数平滑模型预测需求量,标准差较小,稳定准确;
- (2)"参数调整法"模型下,服务水平较高,6种物料的平均服务水平均达 到 85%以上:
- (3) "强化参数法"+"联合调整法"模型下,库存量大幅下降,平均服务水 平在80%以上,经过参数调整改进后,服务水平上升至85%以上;
- (4) 如果本周计划生产的物料只能在k(k≥2)周及以后使用,可以预测 服务水平将普遍下降(β=1时),增加β参数继续调整,对于k=2的情况进行 计算,取β=1.3~1.4,计算得到平均服务水平仍然在80%以上。

六、模型的评价与改进

- 1、论文给出小批量物料生产过程的具体步骤(见第五部分模型的结果), 清晰明了、易操作, 具有一定推广意义。
- 2、有效地应用 MATLAB 软件编写三次指数平滑预测法的算法程序,方便 调整参数 α, 极大地提高运算速度。
- 3、在选择重点关注物料的时候,如果能将所有284种物料的周需求量都绘 图, 就能找到更多不同的类型来关注。
- 4、该问题可能还可以尝试用规划模型来求解生产规划,由于时间有限,未 能深入探索。

七、参考文献

[1] 时间序列挖掘-预测算法-三次指数平滑法(Holt-Winters)

https://www.cnblogs.com/kemaswill/archive/2013/04/01/2993583.html, 2022年9月16日。

[2] Matlab 实现指数平滑。

https://blog.csdn.net/qq 43605229/article/details/116358184?utm source=app&app version=5.3. 0&code=app 1562916241&uLinkId=usr1mkqgl919blenhttps://www.cnblogs.com/kemaswill/arch ive/2013/04/01/2993583.html, 2022年9月16日。

- [3] 布罗克威尔,《时间序列的理论与方法》第二版, 北京:高等教育出版社, 2001年.
- [4] 王立柱,《时间序列模型及预测》,北京:科学出版社,2018年。
- [5] 王倩,《数学建模方法与应用》,北京:北京师范大学出版社,2016年.

附录

(一) 支撑材料的文件列表

第 1 题-6 种物料的预测值及误差计算.xlsx

第 2 题-6 种物料的 101~110 周生产计划数、实际需求量、库存量、缺货量和服务水平.xlsx 第 2 题-6 种物料的 101~177 周生产计划数、实际需求量、库存量、缺货量和服务水平.xlsx 第 2 题-6 种物料的综合结果.xlsx

第 3 题-6 种物料的 101~110 周生产计划数、实际需求量、库存量、缺货量和服务水平.xlsx 第 3 题-6 种物料的 101~177 周生产计划数、实际需求量、库存量、缺货量和服务水平.xlsx 第 3 题-6 种物料的综合结果.xlsx

第3题-6种物料的综合结果(改进版).xlsx

第 3 题-6 种物料的 101~110 周生产计划数、实际需求量、库存量、缺货量和服务水平(改进版).xlsx

第 3 题-6 种物料的 101~177 周生产计划数、实际需求量、库存量、缺货量和服务水平(改进版).xlsx

第 4 题-6 种物料的 101~110 周生产计划数、实际需求量、库存量、缺货量和服务水平.xlsx 第 4 题-6 种物料的 101~177 周生产计划数、实际需求量、库存量、缺货量和服务水平.xlsx 第 4 题-6 种物料的综合结果.xlsx

(二)程序附录

```
1、三次指数平滑算法 MATLAB 程序
clc,clear
load fulua.txt
yt=fulua;
n=length(yt);
yt=fulua;
n=size(yt,1);
alpha=0.4;
stl_0=mean(yt(1:3));
st2_0=st1_0;st3_0=st1_0;
stl(1)=alpha*yt(1)+(1-alpha)*stl_0;
st2(1)=alpha*st1(1)+(1-alpha)*st2_0;
st3(1)=alpha*st2(1)+(1-alpha)*st3_0;
for i=2:n
     stl(i)=alpha*yt(i)+(1-alpha)*stl(i-1);
     st2(i)=alpha*st1(i)+(1-alpha)*st2(i-1);
     st3(i)=alpha*st2(i)+(1-alpha)*st3(i-1);
end
xlswrite('fulua',[st1',st2',st3'])
stl=[stl_0,stl];
st2=[st2_0,st2];
st3=[st3 0,st3];
a=3*st1-3*st2+st3;
b=0.5*alpha/(1-alpha)^2*((6-5*alpha)*st1-2*(5-4*alpha)*st2+(4-3*alpha)*st3);
c=0.5*alpha^2/(1-alpha)^2*(st1-2*st2+st3);
yu=a+b+c;
for i=1:n+1
     if yu(i)<0
    yu(i)=0;
     end
end
xlswrite('fulua.xls','1','sheet1','D1')
plot(1:n,yt,'r',1:n,yu(1:n),'b')
title('物料编码 6004020900');
legend('实际值','预测值');
kn=1
result=[a(n+1),b(n+1),c(n+1)];
for i=1:kn yshu(i)=polyval(result,i);
     str=char(['B',int2str(n+i)]);
     xlswrite('jieguo.xls',yshu(i),'20900',str)
```

```
end
if yshu<0
    yshu=0;
end
yshu
yu=yu';
2、问题 3 MATLAB 程序 (物料编码 6004010256)
clc,clear
load fulu1.txt
yt=fulu1;
n=length(yt);
yt=fulu1;
n=size(yt,1);
alpha=0.5;
st1_0=mean(yt(1:3));
st2_0=st1_0;st3_0=st1_0;
st1(1)=alpha*yt(1)+(1-alpha)*st1_0;
st2(1)=alpha*st1(1)+(1-alpha)*st2_0;
st3(1)=alpha*st2(1)+(1-alpha)*st3_0;
for i=2:n
     st1(i)=alpha*yt(i)+(1-alpha)*st1(i-1);
     st2(i)=alpha*st1(i)+(1-alpha)*st2(i-1);
     st3(i)=alpha*st2(i)+(1-alpha)*st3(i-1);
end
xlswrite('fulua',[st1',st2',st3'])
stl=[stl 0,stl];
st2=[st2_0,st2];
st3=[st3_0,st3];
a=3*st1-3*st2+st3;
b=0.5*alpha/(1-alpha)^2*((6-5*alpha)*st1-2*(5-4*alpha)*st2+(4-3*alpha)*st3);
c=0.5*alpha^2/(1-alpha)^2*(st1-2*st2+st3);
yu=a+b+c;
for i=101:140
     if yu(i)>0
    yu(i)=yu(i)*1.15;
     end
end
for i=1:n
     if yu(i)<17.9
    yu(i)=yu(i)*1.25;
     end
end
```

```
for i=1:n+1
     if yu(i)>35.8
    yu(i)=yu(i)*0.85;
     end
end
for i=140:n+1
     if yu(i)>35.8
    yu(i)=yu(i)*0.9;
     end
end
for i=1:n+1
     if yu(i)>17.9
    yu(i)=yu(i)*0.85;
     end
end
for i=140:n+1
     if yu(i)>17.9
    yu(i)=yu(i)*0.9;
     end
end
for i=1:n+1
     if yu(i)<0
    yu(i)=0;
     end
end
xlswrite('fulua.xls','1','sheet1','D1')
plot(1:n,yt,'r',1:n,yu(1:n),'b')
title('物料编码 6004010256');
legend('实际值','预测值');
kn=1
result=[a(n+1),b(n+1),c(n+1)];
for i=1:kn yshu(i)=polyval(result,i);
    str=char(['B',int2str(n+i)]);
    xlswrite('jieguo.xls',yshu(i),'10372',str)
end
if yshu<0
    yshu=0;
end
yshu
yu=yu';
```