StrDiscr2 v.1.0

Short User Manual

StrDiscr2 is the program for structural classification and similarity estimation of atomic clusters. It reads the Cartesian coordinates of cluster structures written in different formats along with the cluster energies and frequencies (if they are available) calculated at the quantum chemical or empirical potential levels and applies several algorithms in order to compare the supplied structures with each other and classify them to the classes of identic structures.

Algorithms that are used to classify the clusters

- 1. Comparison of cluster energies;
- 2. Comparison of the cluster principal moments of inertia;
- 3. Comparison of sorted lists of interatomic distances between all atom pairs in the cluster;
- 4. Comparison of structural "fingerprints" i.e. sorted eigenvalues of the matrix of overlap integrals between the Gaussian functions solid spherical functions (Gaussian atomic pseudo orbitals, pseudo-GAO) centered at all atoms of a cluster;
- 5. Comparison of canonicalized g6-strings describing the isomorphic graphs corresponding to the cluster connectivity matrix.

Formats of files containing the cluster coordinates

- 1. ASCII files containing the NXYZ matrices of atom names and Cartesian coordinates of cluster structures (both single and multiple structures per file). The beginning of each structure is marked with a text label at any place of the line preceding the NXYZ matrix. The energy of the structure should be provided as a separate word/value at the line where the text label is present. The calculated frequencies of the cluster (obtained e.g. using quantum chemical calculations) can also be provided at the same file. The end of structure is marked with blank line(s) immediately after NXYZ matrix. Example files are given below.
- 2. Output file of Gaussian03/09/16 containing Cartesian coordinates (standard orientation), energies and vibrational frequencies (if any) calculated with DFT/HF methods. In the case of successful optimization, only the optimized structure (located by the Gaussian text string 'Stationary point found') will be analyzed. In the case of multiple structures presented in the file without a successful optimization string, only the last structure will be analyzed.

Main input file of the program

The file *StrDiscr2.inp* should be present at the same directory where the program runs. It contains the main keywords and parameters describing the program operations. The first line of the file contains the keywords, the remaining lines describe files where the Cartesian coordinates have to be read from. There can be single or multiple coordinate files, each at the separate line. First blank line appeared in the list of structure files means the end of input stream. Main keywords (placed at the first line of *StrDiscr2.inp*, case insensitive) are:

Keyword	Example	Meaning	Default
FilOut	FilOut=Mg10.out	Output file name	StrDiscr2.out
Method=[Str PMOI FP]	Method=FP	Main classification algorithm to be used	All algorithms 1-5 at once
Rbond= <rmax></rmax>	Rbond=3.2	Maximum bond length in Angstroems to be used as a threshold for connectivity matrix construction	1.15*(Ra+Rb) where Ra, Rb – valence readii of atoms A and B
EpsE= <value></value>	EpsE=0.01	Threshold (in the units of energy) for discrimination on the basis of energy (algorithm 1). The structures are considered identic if the relative absolute difference between their energies is within EpsE.	0.1 units of energy (units can be indicated by <i>Eunits</i> keywords)
EpsPMOI= <value></value>	EpsPMOI=0.05	Threshold (dimensionless) for discrimination on the basis of PMI (algorithm 2). The structures are considered identic if the relative absolute difference between each pair of their sorted PMIs is within epsPMOI: $\left \frac{PMI_i^A - PMI_i^B}{PMI_i^B} \right < EpsPMOI$	0.01
EpsStr= <value></value>	EpsStr=0.01	Threshold (dimensionless units) for discrimination on the basis of interatomic distances (algorithm 3). The structures are considered identic if the relative absolute deviation for any pair in the lists of sorted interatomic distances of two clusters is within EpsStr: $\left \frac{r_{ij}^A - r_{ij}^B}{r_{ij}^B}\right < EpsStr$	0.03
EpsFP= <value></value>	EpsFP=0.01	Threshold (dimensionless) for discrimination on the basis of fingerprints (algorithm 4). Two structures are considered	10 ⁻⁴

		: 14:- :£ 411-4:	
		identic if the relative	
		absolute deviation for any	
		pair in the lists of their	
		sorted fingerprints is within	
		EpsFP:	
		$\left \frac{p_i^A - p_i^B}{p_i^B} \right < EpsStr$	
		$\left \frac{1}{n^B} \right < EpsStr$	
		1	
StrLabel= <string></string>	StrLabel=*Geo	Label to read the Cartesian	no defaults
		coordinates from the ASCII	
		file with structures(s). It is	
		case insensitive.	
Eword= <string></string>	Eword=9	Ordering number of the	no defaults
		word (i.e. separate value)	
		on the line with StrLabel	
		containing the value of	
		structure energy	
E1value= <value></value>	E1value=-2605.354678	Single atom energy for the	no default.
		atoms forming the cluster.	Units are
		It is needed to calculate the	regulated by
		binding energy and	the Eunits
		energies per atom.	keyword.
Einput= <integer></integer>	Einput=2	Type of energy on input	1
		(total energy (1), binding	
		energy (2), per atom	
		binding energy (3))	
Eanalysis= <integer></integer>	Eanalysis=3	Type of energy to be	1
	-	analyzed (total energy (1),	
		binding energy (2), per	
		atom binding energy (3))	
Eunits=[au ev kcal kj]	Eunits=kcal	Units of the energy that is	au
		read in (Hartee(au),	
		electron-volts(ev),	
		kcal/mol(kcal), kJ/mol(kj)	
SymEps= <value></value>	SymEps=0.05	Threshold (Angstroems) to	0.1
		recognize the symmetry	
		group. Atoms are	
		considered equivalent if	
		they are within SymEps	
		after symmetry	
		transformation.	
Freq1min= <value></value>	Fre1min=5	Minimum frequency	0.
_		allowed. Structure will be	
		discarded from the further	
		analysis if it has the	
		frequencies lower	
		Freq1min	
ShowAll(nr,ud,hs,vs,np	ShowAll(5,1,19.,15.,30	Combine all the clusters as	nr=1
))	a single structure (for	ud=1
		drawing on a single page).	hs=15
		Nr – number of structures	
	1		

		numeration up to down or vice versa; hs,vs –	-
		horizontal and vertical shifts; np – number of clusters on a page.	
NoGraph	Present Not present	Do not carry out the graph isomorphism calculations	Not present
GeoTemp= <file></file>	GeoTemp=g.gjf	Generate the additional input file(s) with the corrected structures in case the imaginary frequencies were found on input. The structures will be corrected by the addition of the imaginary vibration vector to the input coordinates.	no defaults

Output files

After the calculations finished, the main output file *StrDiscr2.out* will be created. Its name can be changed by the keyword *FilOut*. It contains all the comments on the calculations and the final table with classified structures.

Along with *StrDiscr2.out*, additional files will be created:

File	Description
Structures-original.xyz	Original structures to be analyzed (all coordinates extracted from all
	input files, some structures discarded due to negative frequencies
	and other restrictions, as described in file StrDiscr2.out)
Structures-rotated.xyz	Original structures reduced to the principal axes
Structures-classes.xyz	Classified structures: 1 st structures of each class
Structures-graphs.g6	g6 strings corresponding to each structure to be analyzed. This file
	is used for further graph isomorphism analysis

Graph isomorphism analysis

To perform classification based on the graph isomorphism algorithm (algorithm 5), the generated file *Structures-graphs.g6* should be processed with the separate program *labelg* from the program suite *Traces/Nauty* of B.D. McKay and A. Piperno. This program is freely available on the *Traces/Nauty* site https://pallini.di.uniroma1.it/. Unfortunately, it operates under LINUX only. Once *labelg* is downloaded and compiled, the generated file *Structures-graphs.g6* should be processed with it using the command

This produces the file *Structures-canonic.g6* containing the canonicalized g6 strings corresponding to the clusters under analysis. The file *Structures-canonic.g6* should be transferred to your working directory and *StrDiscr2.exe* should be run once more with the same input files (no input file modifications are required). Once *StrDiscr2* finds the *Structures-canonic.g6* it compares the canonic strings of the connectivity graphs and classifies the structures based on the graph isomorphism. The results will be printed at the end of main output file *StrDiscr2.out*.

Analysis of results

Some additional information on the input and results can be found in the example files described below.

Author, licenses and reviews

The author of the program:
Prof. Dr. Stanislav K. Ignatov
Theoretical Chemistry Group, Chair of Physical Chemistry, Department of Chemistry
N.I. Lobachevsky State University of Nizhny Novgorod,
Nizhny Novgorod, Russia, 2020-2021.
skignatov@gmail.com , ignatov@ichem.unn.ru , http://qchem.unn.ru

The program is experimental, distributed on the "as is" basis, under the BSD2 license.

Questions about program usage, messages about possible bugs, feedback and wishes should be sent to skignatov@gmail.com

Example of the main input file StrDiscr2.inp:

```
EpsE=1.0 EpsFP=0.0001 EpsStr=0.05 EpsPMOI=0.01 StrLabel=*lm Eword=9 Elvalue=-200.069705900 Eanalysis=2 Einput=1 Eunits=au
mg13.sbas_
mg13-nneg.sbas_
mg13-coh-cont2-tight.log
```

EOF

Example of NXYZ coordinate file mg13.bas_.

The file was generated by the program of global optimization RUNNER. It contains some comments (marked with ! sign at the beginning of lines), NXYZ matrices of Cartesian coordinates (columns 1-4 after line marked with the label *lm requested in the main input file). It also contains the vibrational frequencies (columns 5-7) and some other information which does not matter for calculations. There are 2 clusters in the example file. Energy of each structure is the 9th word on the line being recognized by the label *lm.

<Beginning of the file *mg13.bas_>*

!ShortE	Base file :01/0	09/2020 15:4	4:45 RunCode 20090	1-154445-520	791					
!Stoich	niometry :Mg13	3								
@geo-00	00204-00 icyc	17 iStrGeo	9246 nStrProc	201 Etot	-260	1.109823	*end *opt *freq *1	lm	5.73 6.84	21.31
Mg1	-1.185901	0.543332	-1.453378	5.731	6.841	21.315	0.070	-0.080	0.030	
Mg2	-3.879159	2.218442	-1.393885	30.533	36.669	48.376	0.190	0.110	-0.040	
Mg3	1.173944	-1.639323	-0.413771	54.834	56.936	64.652	-0.100	-0.230	0.080	
Mg4	3.596972	-0.000321	-0.000226	72.703	74.014	87.110	0.000	-0.390	0.070	
Mg5	6.672047	-0.000150	-0.000018	101.373	109.702	115.677	0.000	-0.120	-0.010	
Mg6	9.983393	0.000214	0.000270	117.781	117.981	129.687	0.000	0.670	-0.140	
Mg7	-4.440231	0.856101	1.281450	136.375	142.187	143.393	0.020	0.150	-0.060	
Mg8	1.174258	1.639130	0.413412	155.242	159.932	169.756	0.100	-0.230	0.080	
Mg9	-1.794660	2.465461	0.854672	170.772	176.764	178.432	0.150	-0.040	0.020	
Mg10	-1.185850	-0.543261	1.453155	184.709	194.204	200.804	-0.070	-0.080	0.030	
Mg11	-3.879064	-2.218366	1.394173	204.182	229.342	264.488	-0.190	0.110	-0.040	
Mg12	-1.795042	-2.465327	-0.854886	0.000	0.000	0.000	-0.150	-0.040	0.020	
Mg13	-4.440706	-0.855932	-1.280969	0.000	0.000	0.000	-0.020	0.150	-0.060	
@geo-00	00205-00 icyc	37 iStrGeo	9283 nStrProc	202 Etot	-260	1.108000	*end *opt *freq *1	lm	9.30 18.78	29.86
Mg1	2.114945	-0.884675	1.126934	9.299	18.777	29.859	0.130	-0.030	0.140	
Mg2	0.483242	1.479274	-0.130703	35.288	39.799	48.216	0.000	0.000	0.340	
Mg3	5.020322	-1.491294	-0.769086	54.032	63.310	71.094	-0.050	0.030	-0.200	
Mg4	3.683349	1.378816	-0.209598	76.591	85.146	91.449	-0.010	0.010	0.050	
Mg5	1.793634	-0.684518	-1.854895	105.329	106.139	113.147	-0.160	0.050	0.170	
Mg6	-2.601103	1.441255	-0.089957	127.802	138.840	139.326	0.000	-0.010	0.210	
Mg7	-5.379175	1.011108	1.604629	149.100	151.333	152.721	-0.260	0.090	-0.210	
Mg8	-0.793330	-1.345701	-0.173120	154.978	161.054	167.424	0.010	0.000	0.410	

Mg9	-3.886129	-1.341362	0.010285	170.126	172.885	181.337	-0.010	-0.010	0.150	
Mg10	-5.588968	1.002911	-1.354144	185.042	196.588	202.502	0.200	-0.080	-0.240	
Mg11	5.361970	-0.326498	1.967783	206.055	217.554	241.921	0.230	-0.090	-0.190	
Mg12	6.783953	0.971355	-0.368403	0.000	0.000	0.000	-0.030	0.030	-0.290	
Mg13	-6.992710	-1.210670	0.240275	0.000	0.000	0.000	-0.050	0.010	-0.330	
(EOE)										

 $\langle EOF \rangle$

Example of NXYZ coordinate file mg13-nneg.bas_.

It contains NXYZ matrices of Cartesian coordinates (columns 1-4) after the line marked with the requested label *lm. No frequencies, no other information except for Cartesian coordinates. There is only 1 cluster in a single file. Energy of the structure is a 9th word on the line labeled *lm (-2601.157248)

Example of NXYZ coordinate file mg13-nneg.sbas_

@geo-000	0001-00 icyc	68 iStrGeo	68 nStrProc	1 Etot	-2601.157248	*end *opt *freq *lm	33.81	57.41	59.40
Mg1	-0.798616	-1.521954	-2.127490						
Mg2	-0.798656	1.520814	-2.128293						
Mg3	-2.122554	-2.004816	0.508246						
Mg4	0.807039	-2.144862	0.447859						
Mg5	-0.580600	0.000610	2.221105						
Mg6	-2.122684	2.005108	0.507151						
Mg7	-3.462261	-0.000431	-1.447479						
Mg8	3.973031	1.507641	-0.179525						
Mg9	1.752717	-0.000398	-1.642894						
Mg10	-3.952499	0.000351	1.606679						
Mg11	3.973074	-1.507728	-0.178693						
Mg12	0.806940	2.145111	0.446782						
Mg13	2.525069	0.000553	1.966552						

<*EOF*>

Example of output file StrDiscr2.out (shown only partially)

Some comments on the information in the file are given with *** labels.

```
<br/>beginning of file>
 ***** StrDiscr2 v.1.0 *****
 Keyword found: EPSE=1.0
 Keyword found: EPSFP=0.0001
Keyword found: EPSSTR=0.05
Keyword found: EPSPMOI=0.01
Keyword found: STRLABEL=*LM
Keyword found: EWORD=9
Keyword found: E1VALUE=-200.069705900
Keyword found: EINPUT=1
Keyword found: EUNITS=AU
Keyword found: SHOWALL(5,1,20.,15.,30)
Classification thresholds:
Energy 1.00000
Structure 0.05000
 PMOI
               0.01000
Fingerprints 0.00010
SymGroup eps 0.10000 A
RbondMax not set -- will be used by default as 1.15*(Ra+Rb)
 Structures will be read in from files:
  1 mg13.sbas
  2 mg13-nneg.sbas
  3 mg13-coh-cont2-tight.log
*** Comments for the information above: Here are the keywords found in the main input file and the main options in effect.
```

*** Then, the information on the structures read-in from 3 structure input files follows:

Structures will be selected from file using the label (case-insensitive): *LM

i	Fil	FilSt	r Str	Energy(1)	Energy(2)	Energy(3)	StrDiam	Connect	Graph Graph	No.	SymGrp	StrLabel in fil
1	1	1	1	-2601.16097400	-159.87577633	-12.29813664	7.85	1	Lyf\Re_EpD	-1	C1	@geo-000002-00
2	1	2	2	-2601.16372600	-161.60255341	-12.43096565	8.19	1	LqBG^W\``U	-1	C1	@geo-000001-00
3	1	3	3	-2601.15886200	-158.55057532	-12.19619810	7.86	1	L~_uBEI?{w	-1	C1	@geo-000005-00
4	1	4	4	-2601.16097400	-159.87577633	-12.29813664	7.85	1	LJPLC`g te	-1	C1	@geo-000003-00
5	1	5	5	-2601.16097400	-159.87577633	-12.29813664	7.85	1	L^IkjoNCyA	-1	C1	@geo-000004-01
6	1	6	6	-2601.15803400	-158.03103629	-12.15623356	7.82	1	LVUY^e` GE	-1	Cs	@geo-000009-00
7	1	7	7	-2601.16372600	-161.60255341	-12.43096565	8.19	1	Lm}BcG\EHO	-1	C1	@geo-000006-00

8 1 8	8 -2601.15791900	-157.95887809	-12.15068293	8.12	1	Ln?^`yUBHE	-1	C1	@geo-000010-00
9 1 9	9 -2601.15724800	-157.53785068	-12.11829621	8.26	1	LcCLfD`XGw	-1	Cs	@geo-000012-00
10 1 10	10 -2601.15700600	-157.38600473	-12.10661575	8.23	1	LcwhEiqiIY	-1	C2	@geo-000014-00
11 1 11	11 -2601.15617800	-156.86646570	-12.06665121	7.80	1	L}iZ_OaJwA	-1	Cs	@geo-000016-00
12 1 12	12 -2601.16097400	-159.87577633	-12.29813664	7.85	1	LzBAhql@GP	-1	C1	@geo-000007-00
13 1 13	13 -2601.16097400	-159.87577633	-12.29813664	7.85	1	LZ1FgtOaqH	-1	C1	@geo-000013-00
14 1 14	14 -2601.15616900	-156.86081854	-12.06621681	7.81	1	LqalMRBbx?	-1	Cs	@geo-000015-00
15 1 15	15 -2601.15602300	-156.76920900	-12.05916992	7.62	1	LqjokRVAT]	-1	C2	@geo-000017-00
16 1 16	16 -2601.15571200	-156.57406813	-12.04415909	8.26	1	Lz@NH`TGON	-1	Cs	@geo-000020-00
17 1 17	17 -2601.16372600	-161.60255341	-12.43096565	8.19	1	LAjLOhdSPD	-1	C1	@geo-000008-01
18 1 18	18 -2601.15537300	-156.36135831	-12.02779679	8.30	1	LK}WysUSVO	-1	Cs	@geo-000022-00
19 1 19	19 -2601.15519600	-156.25029743	-12.01925365	8.26	1	LUd_tJwXIG	-1	C1	@geo-000023-00
20 1 20	20 -2601.15517800	-156.23900310	-12.01838485	7.98	1	L\PkbcChwX	-1	C1	@geo-000024-00

<continued for 208 structures found in 3 structure input files>

- *** Here, i numerates the structures found in file(s), Str is the number of the structures to be analyzed (some structures can be omitted during primary check)
- *** E.g. if the connectivity > 1 (disconnected graph) the structure will be discarded
- *** Graph strings means that the file Structures-canonical.g96 (generated by labelg program) is present in the work directory.
- *** Energies 1, 2, 3 are the total energy, binding energy and binding energy per atom
- < Detailed information on calculations not shown here>
- *** Final part (below) gives the most reliable classifications by algorithms 4 and 5. 165 structural classes were found among 208 structures
- *** Classification is identic in the cases of both algorithms:

Structure classes, discriminated by fingerprints. Nstr: 208 Ntypes: 165
Threshold for discrimination: 0.01000% of each compared value.
Classes with large energy scatter (SD) are marked with ? sign.
Classes are sorted by energy. SymGroup eps: 0.1000 A

Class	іТур	Nstr	Nbeg	Nend	Eaver(1)	SD	Eaver(2)	SD	Eaver(3)	SD	IsoGraph	SymGrp	Structures:
1	2	9	1	9	-2601.1637	0.0000	-161.6026	0.0000	-12.4310	0.0000	2	C1	2 7 17 22 48 64 119 120 205
2	1	8	10	17	-2601.1610	0.0000	-159.8758	0.0001	-12.2981	0.0000	1	C1	1 4 5 12 13 76 145 208
3	3	3	18	20	-2601.1589	0.0000	-158.5506	0.0000	-12.1962	0.0000	3	C1	3 27 30
4	4	1	21	21	-2601.1580	0.0000	-158.0310	0.0000	-12.1562	0.0000	4	Cs	6
5	5	1	22	22	-2601.1579	0.0000	-157.9589	0.0000	-12.1507	0.0000	5	C1	8
6	6	5	23	27	-2601.1572	0.0000	-157.5379	0.0000	-12.1183	0.0000	6	Cs	9 23 47 206 207
7	7	2	28	29	-2601.1570	0.0000	-157.3860	0.0000	-12.1066	0.0000	7	C2	10 99
8	8	2	30	31	-2601.1562	0.0000	-156.8665	0.0000	-12.0667	0.0000	8	Cs	11 53
9	9	1	32	32	-2601.1562	0.0000	-156.8608	0.0000	-12.0662	0.0000	9	Cs	14
10	10	2	33	34	-2601.1560	0.0000	-156.7692	0.0000	-12.0592	0.0000	10	C2	15 156
11	11	4	35	38	-2601.1557	0.0000	-156.5741	0.0000	-12.0442	0.0000	11	Cs	16 36 125 129
12	12	1	39	39	-2601.1554	0.0000	-156.3614	0.0000	-12.0278	0.0000	12	Cs	18
13	13	1	40	40	-2601.1552	0.0000	-156.2503	0.0000	-12.0193	0.0000	13	C1	19
14	14	1	41	41	-2601.1552	0.0000	-156.2390	0.0000	-12.0184	0.0000	14	C1	20
15	15	8	42	49	-2601.1552	0.0000	-156.2265	0.0000	-12.0174	0.0000	15	C1	21 39 46 49 107 114 118 139
16	20	1	50	50	-2601.1550	0.0000	-156.0959	0.0000	-12.0074	0.0000	20	C1	29
17	16	1	51	51	-2601.1548	0.0000	-156.0137	0.0000	-12.0011	0.0000	16	Cs	24
18	18	1	52	52	-2601.1548	0.0000	-155.9736	0.0000	-11.9980	0.0000	18	C2	26

```
19 17 1 53 53 -2601.1547 0.0000 -155.9654 0.0000 -11.9973 0.0000 17 C1 25
20 19 1 54 54 -2601.1544 0.0000 -155.7577 0.0000 -11.9814 0.0000 19 C1 28
```

- ... <continued for 165 classes>
- *** In the table above, Class is the number of unique class (its internal number iTyp), Nstr is number of structures within the class,
- *** column Structures gives the number of structures (Str column in the first table of the file) belonging to the class.
- *** Eaver 1, 2, 3 are the averaged energies of the structures within the class, and SD and the corresponding standard deviations.
- *** If SD is too large, there are some doubts on the proper assignment of structures to the same class. In this case, SD value is marked with '?' sign
- *** Isograph is the number of isomorphic graph corresponding to the fingerprint class (isographs are listed below)

* * *

*** Additional information on classes follows. It contains label strings taken from the structure input files, energies, and lowest frequencies (if any):

Class	1Str	SymGrp	Structure label in fi	le. SymGroup	eps: 0.1000 A						
1	2	C1	@geo-000001-00 icyc	51 iStrGeo	83 nStrProc	2 Etot	-2601.163726	*end *opt *freq *lm	12.40	42.45	52.87
2	1	C1	@geo-000002-00 icyc	32 iStrGeo	32 nStrProc	1 Etot	-2601.160974	*end *opt *freq *lm	29.89	34.39	54.63
3	3	C1	@geo-000005-00 icyc	32 iStrGeo	115 nStrProc	3 Etot	-2601.158862	*end *opt *freq *lm	48.80	50.28	62.17
4	6	Cs	@geo-000009-00 icyc	38 iStrGeo	337 nStrProc	6 Etot	-2601.158034	*end *opt *freq *lm	21.75	46.48	50.84
5	8	C1	@geo-000010-00 icyc	15 iStrGeo	444 nStrProc	8 Etot	-2601.157919	*end *opt *freq *lm	35.26	58.10	62.73
6	9	Cs	@geo-000012-00 icyc	49 iStrGeo	493 nStrProc	9 Etot	-2601.157248	*end *opt *freq *lm	33.80	57.41	59.40
7	10	C2	@geo-000014-00 icyc	42 iStrGeo	535 nStrProc	10 Etot	-2601.157006	*end *opt *freq *lm	33.81	42.17	61.37
8	11	Cs	@geo-000016-00 icyc	23 iStrGeo	558 nStrProc	11 Etot	-2601.156178	*end *opt *freq *lm	31.38	35.31	38.56
9	14	Cs	@geo-000015-00 icyc	19 iStrGeo	767 nStrProc	14 Etot	-2601.156169	*end *opt *freq *lm	40.20	52.96	63.35
10	15	C2	@geo-000017-00 icyc	30 iStrGeo	797 nStrProc	15 Etot	-2601.156023	*end *opt *freq *lm	43.44	56.73	70.76
11	16	Cs	@geo-000020-00 icyc	30 iStrGeo	927 nStrProc	16 Etot	-2601.155712	*end *opt *freq *lm	27.48	46.09	50.04
12	18	Cs	@geo-000022-00 icyc	37 iStrGeo	968 nStrProc	18 Etot	-2601.155373	*end *opt *freq *lm	21.17	29.42	40.66
13	19	C1	@geo-000023-00 icyc	28 iStrGeo	996 nStrProc	19 Etot	-2601.155196	*end *opt *freq *lm	24.25	36.45	42.40
14	20	C1	@geo-000024-00 icyc	39 iStrGeo	1035 nStrProc	20 Etot	-2601.155178	*end *opt *freq *lm	28.71	34.33	43.60
15	21	C1	@geo-000025-00 icyc	21 iStrGeo	1056 nStrProc	21 Etot	-2601.155158	*end *opt *freq *lm	37.00	44.63	56.11
16	29	C1	@geo-000026-00 icyc	49 iStrGeo	1431 nStrProc	29 Etot	-2601.154950	*end *opt *freq *lm	13.33	34.21	45.68
17	24	Cs	@geo-000027-00 icyc	32 iStrGeo	1247 nStrProc	24 Etot	-2601.154819	*end *opt *freq *lm	40.52	55.59	62.56
18	26	C2	@geo-000029-00 icyc	34 iStrGeo	1301 nStrProc	26 Etot	-2601.154755	*end *opt *freq *lm	39.33	51.75	57.44
19	25	C1	@geo-000030-00 icyc	20 iStrGeo	1267 nStrProc	25 Etot	-2601.154742	*end *opt *freq *lm	27.19	48.89	50.62
20	28	C1	@geo-000031-00 icyc	42 iStrGeo	1382 nStrProc	28 Etot	-2601.154411	*end *opt *freq *lm	19.80	32.13	39.59

- ... <continued for 165 classes>
- *** Finally, information on classes found in the basis of isomorphic graphs follows.
- *** It appears only if the file Structures-canonic.q6 is present in the work directory
- *** This table gives the canonic g6 strings for each class. If the classifications by algorithms 4 and 5 is different,
- *** the corresponding warnings will be given describing relationships between fingerprint and isograph assignments.

Class	1Str	SymGrp	Graph No.	Canonic graph g6 string
1	2	C1	2	L_N@OsBoHwCvD^
2	1	C1	1	LOO_qucTSTAvzF
3	3	C1	3	LE@XPS`gm`hlff
4	6	Cs	4	LC@HWbPkQZDZxn
5	8	C1	5	LGESKwgaykKV]J
6	9	Cs	6	LGESS _THTOv]E
7	10	C2	7	LAGGeIaTp\y[jW
8	11	Cs	8	Lt?KLAyXHR r
9	14	Cs	9	L@GOX}SQe@wvN~

10	15	C2	10	L?hUCTEMPht^T}
11	16	Cs	11	LP?CATFFAZfYLl
12	18	Cs	12	L@MCGgI[RPg~fx
13	19	C1	13	L?_sOl_SZhd{a
14	20	C1	14	LG@g_uQeZDDxrN
15	21	C1	15	L@GAGnE`XqxF]r
16	29	C1	20	L?aiacPKiRTfZf
17	24	Cs	16	L@P?cUFrZWFXLj
18	26	C2	18	L?ddQiaSP}REXL
19	25	C1	17	L?AKHdgUJbbyjx
20	28	C1	19	L?_PkPS[h]KNbZ

^{... &}lt;continued for 165 classes>

<EOF>