

FUNDAMENTOS FÍSICOS Y TECNOLÓGICOS

2020/2021

Temas: 6 y 7

Problemas propuestos para trabajar de cara a la semana 14

PARA ALUMNOS CON LIBRO DE TEXTO O ACCESO A ÉL

Los problemas para trabajar de cara a la semana 14 con los contenidos de teoría vistos hasta ahora son:

Volumen: Parte II.

• Problemas: **66**, **67**, **71**, **75**, **76**, **77**.

Estos problemas son de nivel básico e intermedio.

PARA ALUMNOS SIN ACCESO AL LIBRO DE TEXTO

Los problemas cuyos enunciados se recogen a continuación se corresponden con los del nivel básico e intermedio del libro de texto (segunda edición). Para facilitar su identificación, se ha respetado para cada uno la numeración que le corresponde en el libro.

66. Suponga los dos transistores MOSFET M_1 y M_2 conectados según el circuito de la figura

Demuestre que M_1 y M_2 no pueden estar a la vez funcionando en su región lineal.

Datos: $V_{\rm SS}=10$ V, $V_{\rm T1}=1.5$ V, $|V_{\rm T2}|=1.5$ V, $V_{\gamma}=2$ V, $k_1=k_2=2$ ${\rm mA\over V^2}$.

NIVEL: INTERMEDIO

67. Suponga de nuevo el circuito del problema anterior. Demuestre que existe un único valor de V_1 para el que ambos transistores están a la vez en saturación. Calcule dicho valor.

Datos: $V_{\rm SS}=10$ V, $V_{\rm T1}=1.5$ V, $|V_{\rm T2}|=1.5$ V, $V_{\gamma}=2$ V, $k_1=k_2=2$ ${\rm \frac{mA}{V^2}}.$

NIVEL: BÁSICO

71. En el circuito de la imagen, calcule la corriente I_0 en función de las señales de entrada V_1 y V_2 . Suponga que tanto M_1 como M_2 están en saturación.

Datos: $|V_{\rm T1}|=|V_{\rm T2}|=1$ V, $k_1=k_2=2$ ${\rm \frac{mA}{V^2}}$, R=1 k Ω .

NIVEL: INTERMEDIO

75. Supongamos que la respuesta del inversor de una cierta tecnología es la representada en la siguiente figura.

Determine los márgenes de ruido en estado alto y bajo si $V_{\rm IL}=0.5$ V, $V_{\rm IH}=4.5$ V, $V_{\rm OL}=0.2$ V y $V_{\rm OH}=4.7$ V.

NIVEL: BÁSICO

76. Dentro de la familia CMOS, existen distintas series desarrolladas para obtener mejoras en algunas de las características de los circuitos integrados. En la siguiente tabla, se muestran los niveles de entradasalida para algunas de dichas series CMOS cuando $V_{\rm DD}=5$ V.

	4000	74HC	74HCT	74AC	74ACT	74AHC	74AHCT
$V_{\mathrm{OH}}\left(V\right)$	4.95	4.9	4.9	4.9	4.9	4.4	3.15
$V_{ m OL}$ (V)	0.05	0.1	0.1	0.1	0.1	0.44	0.1
$V_{\mathrm{IH}}\left(V\right)$	3.5	3.5	2.0	3.5	2.0	3.85	2.0
$V_{\mathrm{IL}}\left(V\right)$	1.5	1.0	0.8	1.5	0.8	1.65	0.8

Se pide calcular los márgenes de ruido para cada serie y determinar, tomando como base los cálculos que se realicen, la que ofrece mejor inmunidad frente al ruido.

NIVEL: BÁSICO

77. En la siguiente figura, se muestran las variaciones temporales de las tensiones de entrada y salida de un inversor creado con una cierta tecnología.

Determine:

- (a) Los tiempos de subida y bajada de la señal de entrada.
- (b) Los tiempos de subida y bajada de la señal de salida.
- (c) El tiempo de propagación de nivel alto a bajo.
- (d) El tiempo de propagación de nivel bajo a alto.
- (e) El retardo de la puerta.

NIVEL: BÁSICO