

Compact, Small Package 100mA Power-Distribution Switches

Features

- · High Side N-MOSFET with Internal Charge Pump
- · 0.1A Continuous Current
- · Built-in Soft-Start
- Wide Supply Voltage Range
- · Current-Limit Protection
- · Input Voltage Under Voltage Lockout Protection
- · Reverse Current Blocking when Switch Disabled
- · Output OVP Protection
- · Reverse Current-Limit Protection
- · Output Discharge
- Over-Temperature Protection
- UL Approved-File No.E328191
- Nemko IEC 60950-1: 2005(2nd Edition);
 Am 1:2009 CB; EN60950-1:2006; A11: 2009; A1:
 2010 Scheme Certified. No 65711
- Lead Free and Green Devices Available (RoHS Compliant)

Applications

- · HDMI Port Protection Switches
- · Bluetooth Protection Switches
- · High-side Power Protection Switches

Simplified Application Circuit

General Description

The APL3517/A/B is a power-distribution switch with current- limiting function and output OVP protections that can deliver current up to 0.1A. The device incorporates a $250m\Omega$ N-channel MOSFET power switch.

The device integrates some protection features, including current-limit protection, output over-voltage protection, over-temperature protection and UVLO. The current-limit protection can protect down-stream devices from catastrophic failure by limiting the output current at current-limit threshold during over-load or short-circuit events. The output over-voltage protection can prevent current flowing from VOUT to VIN when an abnormally high voltage exists in VOUT. The over-temperature protection function shuts down the N-channel MOSFET power switch when the junction temperature rises beyond 140°C and will automatically turns on the power switch when the temperature drops by 20°C. The UVLO function keeps the power switch in off state until there is a valid input voltage present.

The device is available in lead free SOT-23-3 and SOT-23-5 packages.

Pin Configuration

ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.

1

Ordering and Marking Information

Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for MSL classification at lead-free peak reflow temperature. ANPEC defines "Green" to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).

Absolute Maximum Ratings (Note 1)

Symbol	Parameter	Rating	Unit
V _{IN}	VIN to GND Voltage	-0.3 ~ 6.5	V
V _{OUT}	VOUT to GND Voltage	-0.3 ~ 6.5	٧
$V_{\text{EN}},V_{\text{ENB}}$	EN, ENB to GND Voltage	-0.3 ~ 6.5	V
T_J	Maximum Junction Temperature	-40 ~ 150	°C
T _{STG}	Storage Temperature	-65 ~ 150	°C
T _{SDR}	Maximum Lead Soldering Temperature (10 Seconds)	260	°C

Note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Thermal Characteristics (Note 2)

Symbol	Parameter	Typical Value	Unit
θ_{JA}	Junction-to-Ambient Resistance in free air (SOT-23-3, SOT-23-5)	260	°C/W

Note 2: θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air.

Recommended Operating Conditions (Note 3)

Symbol	Parameter	Range	Unit
V _{IN}	VIN Input Voltage	2.7~ 5.25	٧
I _{OUT}	OUT Output Current	0 ~ 0.1	Α
T _A	Ambient Temperature	-40 ~ 85	°C
TJ	Junction Temperature	-40 ~ 125	°C

Note 3: Refer to the typical application circuit.

Electrical Characteristics

 V_{IN} =5V, V_{EN} =5V or V_{ENB} =0V and T_A =25 $^{\circ}$ C (unless otherwise noted).

Symbol	Parameter	Test Conditions	A	Unit		
Symbol	Parameter	rest conditions	Min.	Тур.	Max.	Unit
UNDER-V	OLTAGE LOCKOUT					
	VIN UVLO Threshold Voltage	V _{IN} rising	2.35	2.5	2.65	V
	VIN UVLO Hysteresis		-	0.1	-	V
SUPPLY (CURRENT			•	•	
I _{cc}	VIN Supply Current	No load, V _{EN} = Low (or V _{ENB} = High)	-	-	1	μА
ICC	уну Зирріу Оштені	No load, V _{EN} =High (or V _{ENB} = High)	-	100	150	μΑ
	OUT Leakage Current	VOUT tied to ground, V _{EN} =Low (or V _{ENB} = High)	ı	-	1	μΑ
	OUT Input Current	V_{OUT} =5V, V_{IN} = 0V, no matter V_{EN} = Low or High	-	-	1	μΑ
POWER S	SWITCH					
	Dower Switch On Registeres	I _{OUT} =0.1A, T _J =25°C	-	250	350	mΩ
$R_{DS(ON)}$	Power Switch On Resistance	I _{OUT} =0.1A, T _J =-40~125°C	-	-	400	mΩ
CURREN	F-LIMIT PROTECTIONS					
I _{LIM}	Current-Limit Threshold	T _J =25°C,	0.25	0.37	0.5	Α
ILIM	Ourient Limit Thioshold	T _J =-40~125°C	0.20	-	-	Α
OUTPUT	OVER-VOLTAGE PROTECTS					
I_{RV}	Reverse Current Blocking Threshold	V _{OUT} - V _{IN} =1V, T _J =25°C	80	190	300	mA
t _{RVDEG}	Reverse Current Blocking Deglitch Time	Guaranteed by Design	-	0.7	-	ms
V_{OVP}	Output OVP Threshold		5.3	5.45	5.6	V
T_OVD	Output OVP Delay Time		-	20	-	μs
SOFT-STA	ART CONTROL PIN					
t _{SS}	Soft-Start Time		1	2.5	4	ms
OUTPUT	DISCHARGE AND ENABLE					
	VOUT Discharge Resistance	V_{IN} =5V, V_{EN} =Low(or V_{ENB} =High), V_{OUT} =1V	-	40	-	Ω
V V	Input Logic High		2	-	-	V
$V_{\text{EN}}, V_{\text{ENB}}$	Input Logic Low		-	-	0.8	V
	EN, ENB Input Current		_	-	1	μΑ

Electrical Characteristics (Cont.)

 $\rm V_{IN}\!\!=\!\!5V,\,V_{EN}\!\!=\!\!5V$ or $\rm V_{ENB}\!\!=\!\!0V$ and $\rm T_{A}\!\!=\!\!25^{\circ}\!C$ (unless otherwise noted).

Symbol	Parameter	Test Conditions	Α	PL3517/A/	В	Unit
Syllibol	Farameter	rest Conditions	Min.	Тур.	Max.	Onit
OUTPUT	TEMPERATURE PROTECTION (OTP)					
T _{OTP}	Over-Temperature Threshold	T _J rising	-	140	-	°C
	Over-Temperature Hysteresis		1	20	-	°C

Typical Operating Characteristics

Copyright © ANPEC Electronics Corp. Rev. A.4 - Apr., 2012

Typical Operating Characteristics

Current-Limit Response vs. Output Peak Current

Reverse Current Blocking Threshold vs. Junction Temperature

Reverse Current Blocking Threshold vs. Output Voltage

Rev. A.4 - Apr., 2012

Operating Waveforms

Refer to the typical application circuit. The test condition is V_{IN} =5V, T_A = 25°C unless otherwise specified.

Power On

 $C_{\text{IN}}{=}0.1\mu\text{F, }C_{\text{OUT}}{=}0.1\mu\text{F, }R_{\text{OUT}}{=}50\Omega$

CH1: V_{IN}, 2V/Div, DC CH2: V_{OUT}, 2V/Div, DC CH3: I_{OUT}, 50mA/Div, DC

TIME: 2ms/Div

Power Off

 $C_{\text{IN}}{=}0.1\mu\text{F, }C_{\text{OUT}}{=}0.1\mu\text{F, }R_{\text{OUT}}{=}50\Omega$

CH1: V_{IN}, 2V/Div, DC CH2: V_{OUT}, 2V/Div, DC CH3: I_{OUT}, 50mA/Div, DC

TIME: 5ms/Div

Short Circuit Response

 $\label{eq:continuous_continuous_continuous} \text{C_{IN}=$330$$\mu$F, C_{OUT}=$0$$\mu$F, R_{OUT}=$0$$pen} \qquad 0\Omega$

CH1: V_{IN} , 2V/Div, DC CH2: V_{OUT} , 2V/Div, DC CH3: I_{OUT} , 5A/Div, DC TIME: 400ns/Div

Over-Current Protection

 $C_{\text{IN}}{=}0.1\mu\text{F},\,C_{\text{OUT}}{=}0.1\mu\text{F},\,I_{\text{OUT}}{=}\,50\Omega$ to 10Ω

CH1: V_{IN} , 2V/Div, DC CH2: V_{OUT} , 2V/Div, DC CH3: I_{OUT} , 200mA/Div, DC

TIME: 50µs/Div

Operating Waveforms

Refer to the typical application circuit. The test condition is V_{IN} =5V, T_A = 25°C unless otherwise specified.

Output Over-Voltage Protection

 $C_{\text{IN}} \!\!=\!\! 0.1 \mu\text{F},\, C_{\text{OUT}} \!\!=\!\! 0.1 \mu\text{F},\, V_{\text{OUT}} \!\!=\!\! \text{open}$ 6V CH1: $V_{\text{IN}},\, 2V/Div,\, DC$

CH2: V_{OUT}, 2V/Div, DC CH3: I_{OUT}, 1A/Div, DC TIME: 20µs/Div

Reverse Current Protection

 $\begin{array}{l} C_{\text{IN}} = 0.1 \mu \text{F}, \ C_{\text{OUT}} = 0.1 \mu \text{F} \\ V_{\text{IN}} = 4.5 \text{V} \ , V_{\text{OUT}} = \text{open} \end{array} \quad 5 \text{V} \end{array}$

CH1: V_{IN}, 2V/Div, DC CH2: V_{OUT}, 2V/Div, DC CH3: I_{OUT}, 0.5A/Div, DC TIME: 0.2ms/Div

Enable Response

 $V_{\text{ENB}} {=} 5$ to 0V, $C_{\text{IN}} {=} 0.1 \mu \text{F}, \, C_{\text{OUT}} {=} 0.1 \mu \text{F}, \, R_{\text{OUT}} {=} 50 \Omega$

CH1: V_{OUT} , 2V/Div, DC CH2: V_{ENB} , 5V/Div, DC CH3: I_{OUT} , 100mA/Div, DC

TIME: 1ms/Div

Shutdown Response

 $V_{ENB}\!\!=\!0$ to 5V, $C_{IN}\!\!=\!\!0.1\mu\text{F},\,C_{OUT}\!\!=\!\!0.1\mu\text{F},\,R_{OUT}\!\!=\!\!50\Omega$

CH1: V_{OUT} , 2V/Div, DC CH2: V_{ENB} , 5V/Div, DC CH3: I_{OUT} , 100mA/Div, DC

TIME: 40µs/Div

Pin Description

	PIN			
N	0.	NAME	FUNCTION	
SOT-23-3	SOT-23-5	INAIVIE		
1	1	GND	Ground.	
2	3	VOUT	Output Voltage Pin. The output voltage follows the input voltage. When EN is low or V_{IN} is UVLO, the output voltage is discharged by an internal resistor.	
3	4	VIN	Power Supply Input Connect this pin to external DC supply.	
-	2	EN/ENB	Pulling the ENB above 2V or EN below 0.8V will disable the device, and pulling ENB pin below 0.8V or EN above 2V will enable the device. The EN and ENB pins cannot be left floating.	
-	5	NC	Not Connected Internally.	

Block Diagram

Typical Application Circuit

Function Description

VIN Under-voltage Lockout (UVLO)

The APL3517/A/B power switch has a built-in under-voltage lockout circuit to keep the output shut off until internal circuitry is operating properly. The UVLO circuit has hysteresis and a de-glitch feature so that it will typically ignore undershoot transients on the input. When input voltage exceeds the UVLO threshold, the output voltage starts a soft-start to reduce the inrush current.

Power Switch

The power switch is an N-channel MOSFET with a low $R_{\rm DS(ON)}$. The internal power MOSFET does not have the body diode. When IC is in UVLO state, the MOSFET prevents a current flowing from the VOUT back to VIN and VIN to VOUT.

Current-Limit Protection

The APL3517/A/B power switch provides the current-limit protection function. During current-limit, the devices limit output current at current-limit threshold. For reliable operation, the device should not be operated in current-limit for extended period time.

Soft-Start

The APLA3517/A/B has a built-in output soft-start control to limit the current surge during start-up. The soft-start interval is 2.5ms.

Output Over-Voltage Protection

The output over-voltage protection is implemented by 2 either sensing mechanisms. One is by sensing when V_{OUT} voltage is above V_{OVP} threshold, the internal power MOSFET is turned off. The other is by sensing when reverse current, flowing from VOUT to VIN, surpasses I_{RV} . When the reverse current reachers the reverse current Blocking threshold, the device limits the reverse current at I_{RV} threshold level. When the reverse current fault exists for more than 0.7ms, the internal power MOSFET is turned off. The internal power MOSFET is allowed to turnon once the output voltage gose below $V_{\text{IN}}\textsc{-}1\text{V}$.

Output Discharge

When the input voltage is under VIN UVLO Threshold or V_{EN} =Low or V_{ENB} =High, the output discharge device is turned on to discharge the output voltage.

Enable/Disable (SOT-23-5)

Pulling the ENB above 2V or EN below 0.8V will disable the device, and pulling ENB pin below 0.8V or EN above 2V will enable the device.

When the IC is disabled the supply current is reduced to less than $1\mu A$. The enable input is compatible with both TTL and CMOS logic levels. The EN/ENB pins cannot be left floating.

Over-temperature Protection

When the junction temperature exceeds 140° C, the internal thermal sense circuit turns off the power FET and allows the device to cool down. When the device's junction temperature cools by 20° C, the internal thermal sense circuit will enable the device, resulting in a pulsed output during continuous thermal protection. Thermal protection is designed to protect the IC in the event of overtemperature conditions. For normal operation, the junction temperature cannot exceed T_j =+125°C.

Application Information

Input Capacitor

 $0.1\mu F$ ceramic bypass capacitor from V_{IN} to GND, located near the APL3517/A/B, is strongly recommended to suppress the ringing during short circuit fault event. Without the bypass capacitor, the output short may cause sufficient ringing on the input (from supply lead inductance) to damage internal control circuitry.

Layout Consideration

The PCB layout should be carefully performed to maximize thermal dissipation and to minimize voltage drop, droop and EMI. The following guidelines must be considered:

- 1. Please place the input capacitors near the VIN pin as close as possible.
- Output decoupling capacitors for load must be placed near the load as close as possible for decoupling highfrequency ripples.
- Locate APL3517/A/B and output capacitors near the load to reduce parasitic resistance and inductance for excellent load transient performance.
- The negative pins of the input and output capacitors and the GND pin must be connected to the ground plane of the load.
- 5. Keep $V_{\rm IN}$ and $V_{\rm OUT}$ traces as wide and short as possible.

Recommanded Minimum Footprit

SOT-23-3

Copyright © ANPEC Electronics Corp. Rev. A.4 - Apr., 2012

Package Information

SOT-23-3

Ş	SOT-23-3				
%≻ ∑ BOL	MILLIM	ETERS	INCHES		
6	MIN.	MAX.	MIN.	MAX.	
Α		1.45		0.057	
A1	0.00	0.15	0.000	0.006	
A2	0.90	1.30	0.035	0.051	
b	0.30	0.50	0.012	0.020	
С	0.08	0.22	0.003	0.009	
D	2.70	3.10	0.106	0.122	
Е	2.60	3.00	0.102	0.118	
E1	1.40	1.80	0.055	0.071	
е	0.95	0.95 BSC 0.037 BSC		7 BSC	
e1	1.90	BSC	0.07	5 BSC	
L	0.30	0.60	0.012	0.024	
θ	0°	8°	0°	8°	

Note: Dimension D and E1 do not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 10 mil per side.

Package Information

SOT-23-5

Ş	SOT-23-5					
SYMBOL	MILLIM	ETERS	INC	HES		
6	MIN.	MAX.	MIN.	MAX.		
Α		1.45		0.057		
A1	0.00	0.15	0.000	0.006		
A2	0.90	1.30	0.035	0.051		
b	0.30	0.50	0.012	0.020		
С	0.08	0.22	0.003	0.009		
D	2.70	3.10	0.106	0.122		
Е	2.60	3.00	0.102	0.118		
E1	1.40	1.80	0.055	0.071		
е	0.95 BSC 0.037 BSC		7 BSC			
e1	1.90	BSC	0.07	5 BSC		
L	0.30	0.60	0.012	0.024		
θ	0°	8°	0°	8°		

Note: 1. Follow JEDEC TO-178 AA.

Dimension D and E1 do not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 10 mil per side.

Carrier Tape & Reel Dimensions

Application	Α	Н	T1	С	d	D	W	E1	F
	178.0 ₤.00	50 MIN.	8.4+2.00 -0.00	13.0+0.50 -0.20	1.5 MIN.	20.2 MIN.	8.0 ±0.30	1.75 ±0.10	3.5 ±0.05
SOT-23-3	P0	P1	P2	D0	D1	Т	A0	В0	K0
	4.0 ±0.10	4.0 ± 0.10	2.0 ± 0.05	1.5+0.10 -0.00	1.0 MIN.	0.6+0.00 -0.40	3.20 ±0.20	3.10 ±0.20	1.50 ±0.20
Application	Α	H	T1	С	d	D	W	E1	F
	178.0 ₤.00	50 MIN.	8.4+2.00 -0.00	13.0+0.50 -0.20	1.5 MIN.	20.2 MIN.	8.0 ± 0.30	1.75 ± 0.10	3.5 ±0.05
SOT-23-5	P0	P1	P2	D0	D1	T	A0	В0	K0
	4.0 ± 0.10	4.0 ± 0.10	2.0 ±0.05	1.5+0.10 -0.00	1.0 MIN.	0.6+0.00 -0.40	3.20 ±0.20	3.10 ±0.20	1.50 ±0.20

(mm)

Devices Per Unit

Package Type	Unit	Quantity
SOT-23-3	Tape & Reel	3000
SOT-23-5	Tape & Reel	3000

Taping Direction Information

SOT-23-3

SOT-23-5

Classification Profile

Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Preheat & Soak Temperature min (T _{smin}) Temperature max (T _{smax}) Time (T _{smin} to T _{smax}) (t _s)	100 °C 150 °C 60-120 seconds	150 °C 200 °C 60-120 seconds
Average ramp-up rate (T _{smax} to T _P)	3 °C/second max.	3 °C/second max.
Liquidous temperature (T _L) Time at liquidous (t _L)	183 °C 60-150 seconds	217 °C 60-150 seconds
Peak package body Temperature (T _p)*	See Classification Temp in table 1	See Classification Temp in table 2
Time (t _P)** within 5°C of the specified classification temperature (T _c)	20** seconds	30** seconds
Average ramp-down rate (T _p to T _{smax})	6 °C/second max.	6 °C/second max.
Time 25°C to peak temperature	6 minutes max.	8 minutes max.

^{*} Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.

^{**} Tolerance for time at peak profile temperature (t_{p}) is defined as a supplier minimum and a user maximum.

Classification Reflow Profiles (Cont.)

Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)

Package	Volume mm ³	Volume mm ³
Thickness	<350	³ 350
<2.5 mm	235 °C	220 °C
≥2.5 mm	220 °C	220 °C

Table 2. Pb-free Process – Classification Temperatures (Tc)

Package Thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ >2000
<1.6 mm	260 °C	260 °C	260 °C
1.6 mm – 2.5 mm	260 °C	250 °C	245 °C
≥2.5 mm	250 °C	245 °C	245 °C

Reliability Test Program

Test item	Method	Description
SOLDERABILITY	JESD-22, B102	5 Sec, 245°C
HOLT	JESD-22, A108	1000 Hrs, Bias @ T _j =125°C
PCT	JESD-22, A102	168 Hrs, 100%RH, 2atm, 121°C
TCT	JESD-22, A104	500 Cycles, -65°C~150°C
НВМ	MIL-STD-883-3015.7	VHBM 2KV
MM	JESD-22, A115	VMM 200V
Latch-Up	JESD 78	10ms, 1 _{tr} 100mA

Customer Service

Anpec Electronics Corp.

Head Office:

No.6, Dusing 1st Road, SBIP, Hsin-Chu, Taiwan, R.O.C. Tel: 886-3-5642000

Fax: 886-3-5642050

Taipei Branch:

2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City, Taipei County 23146, Taiwan

Tel: 886-2-2910-3838 Fax: 886-2-2917-3838