

FCC & Industry Canada Certification Test Report For the Motorola - Enterprise Mobility Solutions FX7400

FCC ID: UZ7FX7400 IC: 109AN-FX7400

WLL JOB# 11047-01 Rev.2 October 29, 2009

Prepared for:

Motorola - Enterprise Mobility Solutions
Jays Close
Viables Industrial Estate
Basingstoke
Hampshire
RG22 4PD
United Kingdom

Prepared By:

Washington Laboratories, Ltd. 7560 Lindbergh Drive Gaithersburg, Maryland 20879

FCC & Industry Canada Certification Test Report for the

Motorola - Enterprise Mobility Solutions FX7400

FCC ID: UZ7FX7400

IC: 109AN-FX7400

October 29, 2009

WLL JOB# 11047-01 Rev.2

Prepared by:

James Ritter

EMC Compliance Engineer

Reviewed by:

Steven D. Koster EMC Operations Manager

Abstract

This report has been prepared on behalf of Motorola - Enterprise Mobility Solutions to support the attached Application for Equipment Authorization. The test report and application are submitted for a Frequency Hopping Spread Spectrum Transmitter under Part 15.247 (7/2008) of the FCC Rules and Regulations and Spectrum Management and Telecommunications Policy RSS-210e issue 7 of Industry Canada. This Certification Test Report documents the test configuration and test results for the Motorola - Enterprise Mobility Solutions FX7400.

Testing was performed on an Open Area Test Site (OATS) of Washington Laboratories, Ltd, 7560 Lindbergh Drive, Gaithersburg, MD 20879. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. The Industry Canada OATS numbers are 3035A-1 and 3035A-2 for Washington Laboratories, Ltd. Site 1 and Site 2, respectively. Washington Laboratories, Ltd. has been accepted by the FCC and approved by the American Association for Laboratory Accreditation (A2LA) under Certificate 2675.01 as an independent FCC test laboratory.

The Motorola - Enterprise Mobility Solutions FX7400 complies with the limits for a Frequency Hopping Spread Spectrum Transmitter device under FCC Part 15.247 and Industry Canada RSS-210e issue 7.

Revision History	Description of Change	Date
Rev 0	Initial Release	October 17, 2009
Rev 1	Correction of Company Name & address, Addition of Globetek PS Motorola part number, minor typographical corrections	October 19, 2009
Rev 2	Addition of Astec AC/DC Converter Data	October 29, 2009

Table of Contents

Abstr	act	ii
1	Introduction	1
1.1	Compliance Statement	1
1.2	Test Scope	1
1.3	Contract Information	1
1.4	Test Dates	1
1.5	Test and Support Personnel	1
1.6	Abbreviations	2
2	Equipment Under Test	3
2.1	EUT Identification & Description	3
2.2	Test Configuration	4
2.3	Testing Algorithm	4
2.4	Modulation Modes (profiles)	5
2.5	Test Location	5
2.6	Measurements	5
2	2.6.1 References	5
2.7	Measurement Uncertainty	6
3	Test Equipment	7
4	Test Summary	8
5	Test Results	9
5.1	RF Power Output: (§2.1046, §15.247 (b)(2), RSS-210 [A8.4(1)])	9
5.2		
5.3	Channel Spacing /Number of Hop Channels (§15247(a)(1), RSS210[A8.1])	14
5.4	Time of Occupancy (§15.247 (a)(i), RSS-210 [A8.1(c)])	15
5.5	Conducted Spurious Emissions at Antenna Terminals (§2.1051)	16
5	5.5.1 Band-edge Measurements	
5	5.5.2 Conducted Spurious Plots	16
5.6	Radiated Transmitter Spurious Emissions: (§15.205, 15.209, RSS210[A8.5]).	41
5	5.6.1 Test Procedure	41
5.7	Receiver Radiated Spurious Emissions: (§15.209, RSS-Gen [7.2.3.2])	49
5	5.7.1 Test Procedure	49
5	5.7.2 Test Summary	
5.8	AC Conducted Emissions (FCC Pt.15.207, RSS-Gen [7.2.2])	54
5	5.8.1 Requirements	54
5	5.8.2 Test Procedure	54
5	5.8.3 Test Data	54
Appe	ndix A1 RF Peak Power Plots	59
Appe	ndix A2 20dB Power Plots	107
Appe	ndix A3 Number of Hoppers and Channel Spacing Plots	131
	ndix A4 Time of Occupancy Plots	
Appe	ndix A5 Band-edge Plots	164

List of Tables

Table 1: Device Summary	3
Table 2: Modulation Profiles	
Table 3: Expanded Uncertainty List	7
Table 4: Test Equipment List	
Table 5: Test Summary Table	8
Table 6 RF Power Summary –Highest Power Level	9
Table 7: RF Power Output – Complete Table	9
Table 8: Occupied Bandwidth Summary (shows widest OBW)	12
Table 9: Occupied Bandwidth Results- Complete Results	12
Table 10: Number of Hoppers Summary	14
Table 11: Channel Spacing Summary	14
Table 12: Time of Occupancy Summary table	15
Table 13 Band-edge Summary Table (worst case)	16
Table 14: Spectrum Analyzer Settings	
Table 15: Radiated Spurious Emissions Summary Table	41
Table 16: Radiated Emission Test Data, 4-Port unit GlobeTek PS, Low Channel	42
Table 17: Radiated Emission Test Data, 4-Port unit POE PS, Center Channel	
Table 18: Radiated Emission Test Data, 4-Port unit GlobeTek PS, High Channel	
Table 19: Radiated Emission Test Data <1GHz 4 Port Unit with Astec PS	
Table 20: Radiated Emission Test Data, 2-Port unit GlobeTek PS, Low Channel	
Table 21: Radiated Emission Test Data, 2-Port unit GlobeTek PS, Center Channel	
Table 22: Radiated Emission Test Data, 2-Port unit GlobeTek PS, High Channel	
Table 23: Receiver Radiated Spurious Emissions Summary Table	
Table 24: Receiver Radiated Emission Test Data, 4-Port unit GlobeTek PS	
Table 25: Receiver Radiated Emission Test Data, 4-Port unit Astec PS	
Table 26: Receiver Radiated Emission Test Data, 4-Port unit POE PS	
Table 27: Receiver Radiated Emission Test Data, 2-Port unit GlobeTek PS	
Table 28: Conducted Emission Test Data, 4-Port unit GlobeTek PS	
Table 29: Conducted Emission Test Data, 4-Port unit Astec PS	
Table 30: Conducted Emission Test Data, 4-Port unit POE PS	
Table 31 Conducted Emission Test Data, 2-Port unit GlobeTek PS	58
List of Figures	
Figure 1: System Configuration	4
Figure 2: Conducted Spurious Emissions, Low Channel, High Power, 30 - 900MHz	
Figure 3: Conducted Spurious Emissions, Low Channel, High Power, 900-930MHz	
Figure 4: Conducted Spurious Emissions, Low Channel, High Power, 930MHz -5GHz	
Figure 5: Conducted Spurious Emissions, Low Channel, High Power, 5-10GHz	
Figure 6: Conducted Spurious Emissions, Low Channel, Low Power, 30 - 900MHz	
Figure 7: Conducted Spurious Emissions, Low Channel, Low Power, 900 - 930MHz	
Figure 8: Conducted Spurious Emissions, Low Channel, Low Power, 930MHz-5GHz	
Figure 9: Conducted Spurious Emissions, Low Channel, Low Power, 5-10GHz	
Figure 10: Conducted Spurious Emissions, Center Channel, High Power, 30-900MHz	
Figure 11: Conducted Spurious Emissions, Center Channel, High Power, 900-930MHz	
Figure 12: Conducted Spurious Emissions, Center Channel, High Power, 930MHz-5GHz	

Figure 13: Conducted Spurious Emissions, Center Channel, High Power, 5-10GHz	28
Figure 14: Conducted Spurious Emissions, Center Channel, Low Power, 30-900MHz	29
Figure 15: Conducted Spurious Emissions, Center Channel, Low Power, 900-930MHz	
Figure 16: Conducted Spurious Emissions, Center Channel, Low Power, 930MHz-5GHz	31
Figure 17: Conducted Spurious Emissions, Center Channel, Low Power, 5-10GHz	32
Figure 18: Conducted Spurious Emissions, High Channel, High Power, 30-900MHz	
Figure 19: Conducted Spurious Emissions, High Channel, High Power, 900-930MHz	
Figure 20: Conducted Spurious Emissions, High Channel, High Power, 930MHz-5GHz	
Figure 21: Conducted Spurious Emissions, High Channel, High Power, 5-10GHz	
Figure 22: Conducted Spurious Emissions, High Channel, Low Power, 30-900MHz	
Figure 23: Conducted Spurious Emissions, High Channel, Low Power, 900-930MHz	
Figure 24: Conducted Spurious Emissions, High Channel, Low Power, 930MHz-5GHz	
Figure 25: Conducted Spurious Emissions, High Channel, low Power, 5-10GHz	
Figure 26: RF Peak Power, Low Channel, High Power, Modulation Profile 0	
Figure 27: RF Peak Power, Low Channel, High Power, Modulation Profile 1	
Figure 28: RF Peak Power, Low Channel, High Power, Modulation Profile 2	
Figure 29: RF Peak Power, Low Channel, High Power, Modulation Profile 3	
Figure 30: RF Peak Power, Low Channel, High Power, Modulation Profile 4	
Figure 31: RF Peak Power, Low Channel, High Power, Modulation Profile 5	
Figure 32: RF Peak Power, Low Channel, High Power, Modulation Profile 6	
Figure 33: RF Peak Power, Low Channel, High Power, Modulation Profile 7	
Figure 34: RF Peak Power, Center Channel, High Power, Modulation Profile 0	
Figure 35: RF Peak Power, Center Channel, High Power, Modulation Profile 1	
Figure 36: RF Peak Power, Center Channel, High Power, Modulation Profile 2	
Figure 37: RF Peak Power, Center Channel, High Power, Modulation Profile 3	
Figure 38: RF Peak Power, Center Channel, High Power, Modulation Profile 4	
Figure 39: RF Peak Power, Center Channel, High Power, Modulation Profile 5	
Figure 40: RF Peak Power, Center Channel, High Power, Modulation Profile 6	
Figure 41: RF Peak Power, Center Channel, High Power, Modulation Profile 7	
Figure 42: RF Peak Power, High Channel, High Power, Modulation Profile 0	
Figure 43: RF Peak Power, High Channel, High Power, Modulation Profile 1	
Figure 44: RF Peak Power, High Channel, High Power, Modulation Profile 2	
Figure 45: RF Peak Power, High Channel, High Power, Modulation Profile 3	
Figure 46: RF Peak Power, High Channel, High Power, Modulation Profile 4	
Figure 47: RF Peak Power, High Channel, High Power, Modulation Profile 5	
Figure 48: RF Peak Power, High Channel, High Power, Modulation Profile 6	
Figure 49: RF Peak Power, High Channel, High Power, Modulation Profile 7	82
Figure 50: RF Peak Power, Low Channel, Low Power, Modulation Profile 0	
Figure 51: RF Peak Power, Low Channel, Low Power, Modulation Profile 1	
Figure 52: RF Peak Power, Low Channel, Low Power, Modulation Profile 2	
Figure 53: RF Peak Power, Low Channel, Low Power, Modulation Profile 3	
Figure 54: RF Peak Power, Low Channel, Low Power, Modulation Profile 4	87
Figure 55: RF Peak Power, Low Channel, Low Power, Modulation Profile 5	88
Figure 56: RF Peak Power, Low Channel, Low Power, Modulation Profile 6	
Figure 57: RF Peak Power, Low Channel, Low Power, Modulation Profile 7	90

Figure 58: RF Peak Power, Center Channel, Low Power, Modulation Profile 0	91
Figure 59: RF Peak Power, Center Channel, Low Power, Modulation Profile 1	92
Figure 60: RF Peak Power, Center Channel, Low Power, Modulation Profile 2	93
Figure 61: RF Peak Power, Center Channel, Low Power, Modulation Profile 3	94
Figure 62: RF Peak Power, Center Channel, Low Power, Modulation Profile 4	95
Figure 63: RF Peak Power, Center Channel, Low Power, Modulation Profile 5	96
Figure 64: RF Peak Power, Center Channel, Low Power, Modulation Profile 6	97
Figure 65: RF Peak Power, Center Channel, Low Power, Modulation Profile 7	98
Figure 66: RF Peak Power, High Channel, Low Power, Modulation Profile 0	99
Figure 67: RF Peak Power, High Channel, Low Power, Modulation Profile 1	100
Figure 68: RF Peak Power, High Channel, Low Power, Modulation Profile 2	101
Figure 69: RF Peak Power, High Channel, Low Power, Modulation Profile 3	
Figure 70: RF Peak Power, High Channel, Low Power, Modulation Profile 4	
Figure 71: RF Peak Power, High Channel, Low Power, Modulation Profile 5	
Figure 72: RF Peak Power, High Channel, Low Power, Modulation Profile 6	
Figure 73: RF Peak Power, High Channel, Low Power, Modulation Profile 7	
Figure 74: Occupied Bandwidth, Low Channel, Modulation Profile 0	107
Figure 75: Occupied Bandwidth, Low Channel, Modulation Profile 1	
Figure 76: Occupied Bandwidth, Low Channel, Modulation Profile 2	
Figure 77: Occupied Bandwidth, Low Channel, Modulation Profile 3	
Figure 78: Occupied Bandwidth, Low Channel, Modulation Profile 4	
Figure 79: Occupied Bandwidth, Low Channel, Modulation Profile 5	
Figure 80: Occupied Bandwidth, Low Channel, Modulation Profile 6	113
Figure 81: Occupied Bandwidth, Low Channel, Modulation Profile 7	
Figure 82: Occupied Bandwidth, Center Channel, Modulation Profile 0	
Figure 83: Occupied Bandwidth, Center Channel, Modulation Profile 1	116
Figure 84: Occupied Bandwidth, Center Channel, Modulation Profile 2	117
Figure 85: Occupied Bandwidth, Center Channel, Modulation Profile 3	118
Figure 86: Occupied Bandwidth, Center Channel, Modulation Profile 4	
Figure 87: Occupied Bandwidth, Center Channel, Modulation Profile 5	
Figure 88: Occupied Bandwidth, Center Channel, Modulation Profile 6	
Figure 89: Occupied Bandwidth, Center Channel, Modulation Profile 7	
Figure 90: Occupied Bandwidth, High Channel, Modulation Profile 0	
Figure 91: Occupied Bandwidth, High Channel, Modulation Profile 1	
Figure 92: Occupied Bandwidth, High Channel, Modulation Profile 2	
Figure 93: Occupied Bandwidth, High Channel, Modulation Profile 3	
Figure 94: Occupied Bandwidth, High Channel, Modulation Profile 4	
Figure 95: Occupied Bandwidth, High Channel, Modulation Profile 5	
Figure 96: Occupied Bandwidth, High Channel, Modulation Profile 6	
Figure 97: Occupied Bandwidth, High Channel, Modulation Profile 7	
Figure 98: Number of Channels	
Figure 99: Channel Spacing, Modulation Profile 0	
Figure 100: Channel Spacing, Modulation Profile 1	
Figure 101: Channel Spacing, Modulation Profile 2	
Figure 102: Channel Spacing, Modulation Profile 3	135

	103: Channel Spacing, Modulation Profile 41	
Figure	104: Channel Spacing, Modulation Profile 51	37
	105: Channel Spacing, Modulation Profile 6	
Figure	106: Channel Spacing, Modulation Profile 71	39
Figure	107: Time of Occupancy, Off Time between data Bits, data Profile 0	40
Figure	108: Time of Occupancy, On time per pulse train, data Profile 0	41
Figure	109: Time of Occupancy, On Time Per 20 Sec., data Profile 0	42
Figure	110: Time of Occupancy, Off Time between data Bits, data Profile 1	43
Figure	111: Time of Occupancy, On time per pulse train, data Profile 1	44
Figure	112: Time of Occupancy, On Time Per 20 Sec., data Profile 1	45
Figure	113: Time of Occupancy, Off Time between data Bits, data Profile 2	46
Figure	114: Time of Occupancy, On time per pulse train, data Profile 2	47
Figure	115: Time of Occupancy, On Time Per 20 Sec., data Profile 2	48
Figure	116: Time of Occupancy, Off Time between data Bits, data Profile 3	49
Figure	117: Time of Occupancy, On time per pulse train, data Profile 3	50
Figure	118: Time of Occupancy, On Time Per 20 Sec., data Profile 3	51
Figure	119: Time of Occupancy, Off Time between data Bits, data Profile 4	52
Figure	120: Time of Occupancy, On time per pulse train, data Profile 4	53
Figure	121: Time of Occupancy, On Time Per 10 Sec., data Profile 4	54
Figure	122: Time of Occupancy, Off Time between data Bits, data Profile 5	55
Figure	123: Time of Occupancy, On time per pulse train, data Profile 5	56
Figure	124: Time of Occupancy, On Time Per 20 Sec., data Profile 5	57
Figure	125: Time of Occupancy, Off Time between data Bits, data Profile 6	58
Figure	126: Time of Occupancy, On time per pulse train, data Profile 6	59
Figure	127: Time of Occupancy, On Time Per 20 Sec., data Profile 6	60
Figure	128: Time of Occupancy, Off Time between data Bits, data Profile 7 1	61
Figure	129: Time of Occupancy, On time per pulse train, data Profile 7	62
	130: Time of Occupancy, On Time Per 20 Sec., data Profile 7	
Figure	131: Low Band-edge Non-hopping, High Power, Modulation Profile 0	64
	132: Low Band-edge Non-hopping, High Power, Modulation Profile 1 1	
	133: Low Band-edge Non-hopping, High Power, Modulation Profile 2 1	
	134: Low Band-edge Non-hopping, High Power, Modulation Profile 3 1	
Figure	135: Low Band-edge Non-hopping, High Power, Modulation Profile 4 1	68
Figure	136: Low Band-edge Non-hopping, High Power, Modulation Profile 5 1	69
	137: Low Band-edge Non-hopping, High Power, Modulation Profile 6	
_	138: Low Band-edge Non-hopping, High Power, Modulation Profile 7 1	
	139: Upper Band-edge Non-hopping, High Power, Modulation Profile 0 1	
	140: Upper Band-edge Non-hopping, High Power, Modulation Profile 1 1	
_	141: Upper Band-edge Non-hopping, High Power, Modulation Profile 2 1	
Figure	142: Upper Band-edge Non-hopping, High Power, Modulation Profile 3 1	75
_	143: Upper Band-edge Non-hopping, High Power, Modulation Profile 4 1	
_	144: Upper Band-edge Non-hopping, High Power, Modulation Profile 5 1	
_	145: Upper Band-edge Non-hopping, High Power, Modulation Profile 6 1	
	146: Upper Band-edge Non-hopping, High Power, Modulation Profile 7 1	
Figure	147: Lower Band-edge Hopping, High Power, Modulation Profile 0	80

Figure 148: Lower Band-edge Hopping, High Power, Modulation Profile 1	181
Figure 149: Lower Band-edge Hopping, High Power, Modulation Profile 2	182
Figure 150: Lower Band-edge Hopping, High Power, Modulation Profile 3	183
Figure 151: Lower Band-edge Hopping, High Power, Modulation Profile 4	184
Figure 152: Lower Band-edge Hopping, High Power, Modulation Profile 5	185
Figure 153: Lower Band-edge Hopping, High Power, Modulation Profile 6	
Figure 154: Lower Band-edge Hopping, High Power, Modulation Profile 7	187
Figure 155: Upper Band-edge Hopping, High Power, Modulation Profile 0	188
Figure 156: Upper Band-edge Hopping, High Power, Modulation Profile 1	189
Figure 157: Upper Band-edge Hopping, High Power, Modulation Profile 2	
Figure 158: Upper Band-edge Hopping, High Power, Modulation Profile 3	191
Figure 159: Upper Band-edge Hopping, High Power, Modulation Profile 4	192
Figure 160: Upper Band-edge Hopping, High Power, Modulation Profile 5	193
Figure 161: Upper Band-edge Hopping, High Power, Modulation Profile 6	194
Figure 162: Upper Band-edge Hopping, High Power, Modulation Profile 7	195
Figure 163: Low Band-edge Non-hopping, Low Power, Modulation Profile 0	196
Figure 164: Low Band-edge Non-hopping, Low Power, Modulation Profile 1	197
Figure 165: Low Band-edge Non-hopping, Low Power, Modulation Profile 2	198
Figure 166: Low Band-edge Non-hopping, Low Power, Modulation Profile 3	199
Figure 167: Low Band-edge Non-hopping, Low Power, Modulation Profile 4	200
Figure 168: Low Band-edge Non-hopping, Low Power, Modulation Profile 5	
Figure 169: Low Band-edge Non-hopping, Low Power, Modulation Profile 6	
Figure 170: Low Band-edge Non-hopping, Low Power, Modulation Profile 7	203
Figure 171: High Band-edge Non-hopping, Low Power, Modulation Profile 0	
Figure 172: High Band-edge Non-hopping, Low Power, Modulation Profile 1	
Figure 173: High Band-edge Non-hopping, Low Power, Modulation Profile 2	
Figure 174: High Band-edge Non-hopping, Low Power, Modulation Profile 3	
Figure 175: High Band-edge Non-hopping, Low Power, Modulation Profile 4	
Figure 176: High Band-edge Non-hopping, Low Power, Modulation Profile 5	
Figure 177: High Band-edge Non-hopping, Low Power, Modulation Profile 6	
Figure 178: High Band-edge Non-hopping, Low Power, Modulation Profile 7	
Figure 179: Lower Band-edge Hopping, Low Power, Modulation Profile 0	
Figure 180: Lower Band-edge Hopping, Low Power, Modulation Profile 1	
Figure 181: Lower Band-edge Hopping, Low Power, Modulation Profile 2	
Figure 182: Lower Band-edge Hopping, Low Power, Modulation Profile 3	
Figure 183: Lower Band-edge Hopping, Low Power, Modulation Profile 4	
Figure 184: Lower Band-edge Hopping, Low Power, Modulation Profile 5	
Figure 185: Lower Band-edge Hopping, Low Power, Modulation Profile 6	
Figure 186: Lower Band-edge Hopping, Low Power, Modulation Profile 7	
Figure 187: Upper Band-edge Hopping, Low Power, Modulation Profile 0	
Figure 188: Upper Band-edge Hopping, Low Power, Modulation Profile 1	
Figure 189: Upper Band-edge Hopping, Low Power, Modulation Profile 2	
Figure 190: Upper Band-edge Hopping, Low Power, Modulation Profile 3	
Figure 191: Upper Band-edge Hopping, Low Power, Modulation Profile 4	
Figure 192: Upper Band-edge Hopping, Low Power, Modulation Profile 5	225

Figure	193:	Upper	Band-edge	Hopping,	Low	Power,	Modulation	Profile 6)	226
Figure	194:	Upper	Band-edge	Hopping,	Low	Power,	Modulation	Profile 7	• • • • • • • • • • • • • • • • • • • •	227

1 Introduction

1.1 Compliance Statement

The Motorola - Enterprise Mobility Solutions FX7400 complies with the limits for a Frequency Hopping Spread Spectrum Transmitter device under FCC Part 15.247 (7/2008) and Industry Canada RSS-210e issue 7.

1.2 Test Scope

Tests for radiated and conducted (at antenna terminal) emissions were performed. All measurements were performed in accordance Public Notice DA 00-705 "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems". The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation.

1.3 Contract Information

Customer: Motorola - Enterprise Mobility Solutions

Jays Close

Viables Industrial Estate

Basingstoke Hampshire RG22 4PD

United Kingdom

Purchase Order Number: NP4798797

Quotation Number: 64683D

1.4 Test Dates

Testing was performed on the following date(s): 9/2/2009 to 9/29/2009

1.5 Test and Support Personnel

Washington Laboratories, LTD James Ritter
Client Representative Alan Parrish

1.6 Abbreviations

A	Ampere	
ac	alternating current	
AM	Amplitude Modulation	
Amps	Amperes	
b/s	bits per second	
BW	B and W idth	
CE	Conducted Emission	
cm	c enti m eter	
CW	Continuous Wave	
dB	d eci B el	
dc	direct current	
EMI	Electromagnetic Interference	
EUT	Equipment Under Test	
FM	Frequency Modulation	
G	giga - prefix for 10 ⁹ multiplier	
Hz	H ertz	
<u>IF</u>	Intermediate Frequency	
k	k ilo - prefix for 10 ³ multiplier	
LISN	<u> </u>	
M	M ega - prefix for 10 ⁶ multiplier	
m	m eter	
μ	m icro - prefix for 10 ⁻⁶ multiplier	
NB	Narrowband	
QP	Quasi-Peak	
RE	Radiated Emissions	
RF	Radio Frequency	
rms	root-mean-square	
SN	Serial Number	
S/A	Spectrum Analyzer	
V	Volt	

2 Equipment Under Test

2.1 EUT Identification & Description

The Motorola - Enterprise Mobility Solutions FX7400 is a fixed RFID Reader in the 902-928 MHz band. The unit comes in 4 antenna port (FX7400-4) and a 2 antenna port version (FX7400-2). These units are identical except for the number of available antenna ports. Each unit has 2 external power supply options as follows.

- a) A GlobeTek external 100-240Vac to +24Vdc power supply adaptor Motorola Part No: 50-14000-159R.
- b) A power over Ethernet (POE) with Symbol power Injector 1 port PN# AP-PSBIAS-1P2-AFR.
- c) An Astec external 100-240Vac to +24Vdc power supply adaptor Motorola Part No 50-14000-260R RevA.

Table 1: Device Summary

ITEM	DESCRIPTION
Manufacturer:	Motorola - Enterprise Mobility Solutions
FCC ID:	UZ7FX7400
IC:	109AN-FX7400
Model:	FX7400
Serial Number tested	US-01 (2 port unit), US-02 (4 port unit)
FCC Rule Parts:	§15.247
Industry Canada:	RSS210e issue 7
Frequency Range:	902.75-927.25MHz
Maximum Output Power:	993.12mW (29.97dBm)
Modulation:	DB-ASK, PR-ASK
Occupied Bandwidth:	432.18kHz
Keying:	Automatic
Type of Information:	Data
Number of Channels:	50
Power Output Level	User selectable 15dBm-30dBm
Antenna Connector	Reverse TNC
Antenna Type	6dBiL Plate (STI AN480-CL66100WR)
Interface Cables:	USB, Ethernet, GPIO, Power input, 4 antenna ports (2 for 2 port unit)
Power Source & Voltage:	+24VDC supplied from 1 of 3 configurations listed above
Highest Transmit Spurious	138.0 uV/m @ 3m- 1000MHz
emission	
Highest Receive Spurious	133.9uV/m @3m -1125.25MHz
Emission	
Emission Designator	432kG1D

2.2 Test Configuration

For Conducted Radio RF testing the 4 port FX7400 unit w/ a Globetek external 100-240Vac to +24Vdc power supply adaptor was used. The antenna ports transmit sequentially with only one port transmitting at a time. In light of this conducted antenna port transmitter testing was performed on antenna port 1 (with ports 2-4 disabled) using the GlobeTek power supply. Radiated Testing was performed on the 4 port unit with 4 antennas. In addition Radiated tests and AC Mains testing were performed with the Astec AC/DC adaptor and the Power over Ethernet power option. Radiated tests and AC Mains testing were also performed with the 2 port version. Conducted testing was conducted at the lowest and highest power levels.

Figure 1: System Configuration

2.3 Testing Algorithm

The FX7400 was programmed for testing on stationary channels using customer Telnet commands from a support Laptop (via Ethernet). Hopping functions were tested in a user based WEB application. Both of these applications allowed setting of the transmitter power and data profiles.

Worst case emission levels are provided in the test results data.

2.4 Modulation Modes (profiles)

The FX7400 can operate with 8 distinct modulation data profiles as listed in the below table. Throughout this test report these will be referred to by the profile number in the leftmost column of the below table.

Rtcal Trcal Data-LF PW Mod-Tari DR ID_High ID_Low X (uS) (uS) **TRExt** M lec rate (uS) (uS) (KHz) type -tor (Calc'd) (Calc'd) (kbps) DSB-0x0000 0009 0x0004 0001 0 25.00 1.00 12.50 75.00 200.00 8.00 FM0 40.00 40 ASK DSB-0x0000 0009 0x0004 0004 12.50 1.00 37.50 50.00 8.00 160.00 6.25 M=2 80 ASK 2 0x0000 0009 0x0001 0090 PR-ASK 25.00 0.50 12.50 62.50 85.33 21.33 1 250.00 62.5 M=40x0000 0009 0x0004 0008 PR-ASK 25.00 0.50 12.50 62.50 71.11 21.33 M=4 300.00 75 Rtcal Trcal Data-Mod-PW IF Tari ID_Low ID_High X (uS) (uS) DR M **TRExt** rate lec (uS) (KHz) (uS) type (Calc'd) (Calc'd) (kbps) -tor DSB-0x0000 0009 0x0004 0013 6.25 0.50 3.13 20.00 8.00 FM0 400.00 400 15.63 ASK 0x0000 0009 0x0004 0052 PR-ASK 25.00 0.50 12.50 62.50 85.33 21.33 M=2 250.00 125

Table 2: Modulation Profiles

2.5 Test Location

0x0000 0001

0x0000 0001

0x0000 0001

0x0000 0002

PR-ASK

PR-ASK

25.00

25.00

0.50

0.50

12.50

12.50

62.50

62.50

85.33

71.11

21.33

21.33

M=4

M=4

0

250.00

300.00

62.5

75

6

All measurements herein were performed at Washington Laboratories, Ltd. test center in Gaithersburg, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. The Industry Canada OATS numbers are 3035A-1 and 3035A-2 for Washington Laboratories, Ltd. Site 1 and Site 2, respectively. Washington Laboratories, Ltd. has been accepted by the FCC and approved by the American Association for Laboratory Accreditation (A2LA) under Certificate 2675.01 as an independent FCC test laboratory.

2.6 Measurements

2.6.1 References

FCC Public Notice DA 00-705, Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation

ANSI C63.4 Methods of Measurement of Radio Noise from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

2.7 Measurement Uncertainty

All results reported herein relate only to the equipment tested. The basis for uncertainty calculation uses ANSI/NCSL Z540-2-1997 with a type B evaluation of the standard uncertainty. Elements contributing to the standard uncertainty are combined using the method described in Equation 1 to arrive at the total standard uncertainty. The standard uncertainty is multiplied by the coverage factor to determine the expanded uncertainty which is generally accepted for use in commercial, industrial, and regulatory applications and when health and safety are concerned (see Equation 2). A coverage factor was selected to yield a 95% confidence in the uncertainty estimation.

Equation 1: Standard Uncertainty

$$u_{c} = \pm \sqrt{\frac{a^{2}}{div_{a}^{2}} + \frac{b^{2}}{div_{b}^{2}} + \frac{c^{2}}{div_{c}^{2}} + \dots}$$

Where u_c = standard uncertainty

a, b, $c_{,...}$ = individual uncertainty elements

Div_a, _b, _c = the individual uncertainty element divisor based

on the probability distribution

Divisor = 1.732 for rectangular distribution

Divisor = 2 for normal distribution

Divisor = 1.414 for trapezoid distribution

Equation 2: Expanded Uncertainty

$$U = ku_c$$

Where U = expanded uncertainty

k = coverage factor

 $k \le 2$ for 95% coverage (ANSI/NCSL Z540-2 Annex G)

 u_c = standard uncertainty

The measurement uncertainty complies with the maximum allowed uncertainty from CISPR 16-4-2. Measurement uncertainty is <u>not</u> used to adjust the measurements to determine compliance. The expanded uncertainty values for the various scopes in the WLL accreditation are provided in Table 3 below.

Table 3: Expanded Uncertainty List

Scope	Standard(s)	Expanded Uncertainty
Conducted Emissions	CISPR11, CISPR22, CISPR14, FCC Part 15	2.63 dB
Radiated Emissions	CISPR11, CISPR22, CISPR14, FCC Part 15	4.55 dB

3 Test Equipment

Table 4 shows a list of the test equipment used for measurements along with the calibration information.

Table 4: Test Equipment List

Bench Conducted Testing

WLL Asset # Manufacturer Model/Type		Function	Cal. Due
00618	HP 8563A	Analyzer, Spectrum	4/10/2010

Radiated Emissions Testing

WLL Asset #	Manufacturer Model/Type	Function	Cal. Due
626	ARA, DRG-118/A	Antenna, Horn	06/03/2011
66	HP, 8449B	Pre-Amplifier, RF. 1-26.5GHz	07/21/2010
280	ITC, 21C-3A1	Waveguide 3.45-11.0GHz	02/19/2010
337	WLL, 1.2-5GHz	Filter, Band Pass	02/19/2010
69	HP, 85650A	Adapter, QP	06/28/2010
73	HP, 8568B	Analyzer, Spectrum	06/28/2010
71	HP, 85685A	Preselector, RF	06/28/2010
618	HP 8563A	Analyzer, Spectrum	04/10/2010
644	Sunol Science JB1	BiConalog Antenna	12/29/2009

Conducted AC Mains testing

WLL Asset #	Manufacturer Model/Type	Function	Cal. Due
125	Solar, 8028-50-TS-24-BNC	LISN	07/17/2010
126	Solar, 8028-50-TS-24-BNC	LISN	07/17/2010
69	HP, 85650A	Adapter, QP	06/28/2010
73	HP, 8568B	Analyzer, Spectrum	06/28/2010
71	HP, 85685A	Preselector, RF	06/28/2010
53	HP, 11947A	Limiter, Transient	03/09/2010

4 Test Summary

The Table Below shows the results of testing for compliance with a Digital Transmission System in accordance with FCC Part 15.247:2007 and RSS210e issue 7. Full results are shown in section 5.

Table 5: Test Summary Table

TX Test Summary (Frequency Hopping Spread Spectrum)				
FCC Rule Part	FCC Rule Part IC Rule Part Description			
15.247 (a)(1)(i)	RSS-210 [A8. 1 (c)]	20dB Bandwidth	Pass	
15.247 (b)(2)	RSS-210 [A8.4 (1)]	Transmit Output Power	Pass	
15.247 (a)(1)	RSS-210 [A8.1 (b)]	Channel Separation	Pass	
15.247 (a)(1)(i)	RSS-210 [A8. 1 (c)]	Number of Channels =50	Pass	
		minimum		
15.247 (a)(1)(i)	RSS-210 [A8. 1 (c)]	Time of Occupancy		
15.247 (d)	RSS-210 [A8. 5]	Occupied BW / Out-of-	Pass	
		Band Emissions (Band		
		Edge @ 20dB below)		
15.205	RSS-210 [A8. 5]	General Field Strength	Pass	
15.209		Limits (Restricted Bands		
		& RE Limits)		
15.207	RSS-Gen [7.2.2]	AC Conducted Emissions	Pass	
	RX/Digital Te	est Summary		
	(Frequency Hopping	g Spread Spectrum)		
FCC Rule Part	IC Rule Part	Description	Result	
15.207	RSS-Gen [7.2.2]	AC Conducted Emissions	Pass	
15.209	RSS-Gen [7.2.3.2]	General Field Strength	Pass	
		Limits (Restricted Bands		
		& RE Limits)		

5 Test Results

5.1 RF Power Output: (§2.1046, §15.247 (b)(2), RSS-210 [A8.4(1)])

To measure the output power the hopping sequence was stopped while the frequency dwelled on a low, high and middle channel. The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer. The analyzer offset was adjusted to compensate for the attenuator and other losses in the system. Readings were taken with a spectrum analyzer in Max Hold using a resolution bandwidth greater than the 20dB bandwidth and a video bandwidth 3 times the RBW.

Power Plots of the results are presented in appendix A1.

Table 6 RF Power Summary -Highest Power Level

Level	Limit	Pass/Fail
29.97dBm	30dBm	Pass

Table 7: RF Power Output – Complete Table

Frequency	Modulation Profile	Power Setting	Level	Limit	Pass/Fail
Low Channel: 902.75MHz	0	High	29.80dBm	30dBm	Pass
		Low	14.88dBm	30dBm	Pass
Low Channel: 902.75MHz	1	High	29.97dBm	30dBm	Pass
		Low	14.89dBm	30dBm	Pass
Low Channel: 902.75MHz	2	High	29.89dBm	30dBm	Pass
		Low	15.14dBm	30dBm	Pass
Low Channel: 902.75MHz	3	High	29.97dBm	30dBm	Pass
		Low	14.80dBm	30dBm	Pass
Low Channel: 902.75MHz	4	High	29.64dBm	30dBm	Pass
		Low	14.8dBm	30dBm	Pass
Low Channel: 902.75MHz	5	High	29.97dBm	30dBm	Pass
		Low	14.89dBm	30dBm	Pass
Low Channel: 902.75MHz	6	High	29.88dBm	30dBm	Pass
		Low	15.30dBm	30dBm	Pass
Low Channel: 902.75MHz	7	High	29.97dBm	30dBm	Pass
		Low	14.96dBm	30dBm	Pass

Frequency	Modulation Profile	Power Setting	Level	Limit	Pass/Fail
Center Channel: 915.25MHz	0	High	29.80dBm	30dBm	Pass
		Low	15.03dBm	30dBm	Pass
Center Channel: 915.25MHz	1	High	29.97dBm	30dBm	Pass
		Low	14.80dBm	30dBm	Pass
Center Channel: 915.25MHz	2	High	29.89dBm	30dBm	Pass
		Low	15.39dBm	30dBm	Pass
Center Channel: 915.25MHz	3	High	29.97dBm	30dBm	Pass
		Low	14.80dBm	30dBm	Pass
Center Channel: 915.25MHz	4	High	29.64dBm	30dBm	Pass
		Low	14.72dBm	30dBm	Pass
Center Channel: 915.25MHz	5	High	29.97dBm	30dBm	Pass
		Low	14.97dBm	30dBm	Pass
Center Channel: 915.25MHz	6	High	29.80dBm	30dBm	Pass
		Low	15.22dBm	30dBm	Pass
Center Channel: 915.25MHz	7	High	29.89dBm	30dBm	Pass
		Low	14.80dBm	30dBm	Pass

Frequency	Modulation Profile	Power Setting	Level	Limit	Pass/Fail
High channel: 927.25MHz	0	High	29.64dBm	30dBm	Pass
		Low	14.72dBm	30dBm	Pass
High channel: 927.25MHz	1	High	29.64dBm	30dBm	Pass
		Low	14.64dBm	30dBm	Pass
High channel: 927.25MHz	2	High	29.72dBm	30dBm	Pass
		Low	14.80dBm	30dBm	Pass
High channel: 927.25MHz	3	High	29.97dBm	30dBm	Pass
		Low	14.72dBm	30dBm	Pass
High channel: 927.25MHz	4	High	29.80dBm	30dBm	Pass
		Low	14.56dBm	30dBm	Pass
High channel: 927.25MHz	5	High	29.72dBm	30dBm	Pass
		Low	15.06dBm	30dBm	Pass
High channel: 927.25MHz	6	High	29.88dBm	30dBm	Pass
		Low	14.64dBm	30dBm	Pass
High channel: 927.25MHz	7	High	29.64dBm	30dBm	Pass
		Low	14.67dBm	30dBm	Pass

5.2 Occupied Bandwidth: (§2.1046, §15.247 (a)(1)(i), RSS-210 [A8.1(c)])

Occupied bandwidth was performed by coupling the output of the EUT to the input of a spectrum analyzer. The spectrum analyzer RBW was set to larger than 1% of the 20dB bandwidth with the VBW set greater than the RBW in a Max Hold mode.

For Frequency Hopping Spread Spectrum Systems, FCC Part 15.247 requires the maximum 20 dB bandwidth not exceed 500kHz. At full modulation, the occupied bandwidth was measured as shown:

The below table provides a summary of the Occupied Bandwidth Results.

20dB Bandwidth Plots of the results are presented in appendix A2.

Table 8: Occupied Bandwidth Summary (shows widest OBW)

Modulation Profile	Bandwidth	Limit	Pass/Fail
4	432.18 kHz	500 kHz	Pass

Table 9: Occupied Bandwidth Results- Complete Results

Frequency	Modulation Profile	Bandwidth	Limit	Pass/Fail
Low Channel: 902.75MHz	0	82.87 kHz	500 kHz	Pass
	1	184.42 kHz	500 kHz	Pass
	2	81.27 kHz	500 kHz	Pass
	3	82.75 kHz	500 kHz	Pass
	4	431.84 kHz	500 kHz	Pass
	5	82.59 kHz	500 kHz	Pass
	6	81.12 kHz	500 kHz	Pass
	7	82.03 kHz	500 kHz	Pass

Frequency	Modulation Profile	Bandwidth	Limit	Pass/Fail
Center Channel: 915.25MHz	0	82.57 kHz	500 kHz	Pass
	1	184.35 kHz	500 kHz	Pass
	2	81.23 kHz	500 kHz	Pass
	3	81.61 kHz	500 kHz	Pass
	4	431.67 kHz	500 kHz	Pass
	5	81.32 khz	500 kHz	Pass
	6	81.01 kHz	500 kHz	Pass
	7	81.88 kHz	500 kHz	Pass

Frequency	Modulation Profile	Bandwidth	Limit	Pass/Fail
High Channel: 927.25MHz	0	82.57 kHz	500 kHz	Pass
	1	183.67 kHz	500 kHz	Pass
	2	81.34 kHz	500 kHz	Pass
	3	80.73 kHz	500 kHz	Pass
	4	432.18 kHz	500 kHz	Pass
	5	80.91 kHz	500 kHz	Pass
	6	78.93 kHz	500 kHz	Pass
	7	80.74 kHz	500 kHz	Pass

5.3 Channel Spacing /Number of Hop Channels (§15247(a)(1), RSS210[A8.1])

Per the FCC requirements, frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20 dB bandwidth, whichever is greater. In addition, for transmitters in the 902-928MHz frequency range the number of hopping channels shall be stated.

The EUT antenna was removed and the cable was connected directly into a spectrum analyzer through a 20 dB attenuator. An offset was programmed into the spectrum analyzer to compensate for the loss of the external attenuator. The spectrum analyzer resolution bandwidth was set to 300 kHz and the video bandwidth was set to 1MHz for the number of hoppers measurement. The channel spacing of 2 adjacent channels was measured using a spectrum analyzer span setting greater than 1% of the applicable span.

The following tables show the channel spacing and number of hopping channels data. The number of hoppers is the same for all profiles. Plot data is presented in appendix A3 of this report.

Table 10: Number of Hoppers Summary

Number of Hoppers	Limit	Pass/Fail
50	50 minimum	Pass

Table 11: Channel Spacing Summary

Modulation Profile	Chanel Spacing	Minimum Limit (20dB BW)	Pass/Fail
0	503.3kHz	82.9kHz	Pass
1	506.7kHz	184.4kHz	Pass
2	509.5khz	81.4kHz	Pass
3	503.3kHz	82.8kHz	Pass
4	507.7Khz	432.2kHz	Pass
5	506.7kHz	82.6kHz	Pass
6	506.7kHz	81.2kHz	Pass
7	504.3kHz	82.0kHz	Pass

5.4 Time of Occupancy (§15.247 (a)(i), RSS-210 [A8.1(c)])

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

Modulation profile 4 is the only profile with a 20dB bandwidth greater than 250kHz.

The readings were taken at with the EUT antenna port connected to a spectrum analyzer through a suitable attenuator. The RBW of the analyzer was set to 300kHz (the RBW was reduced from the prescribed 1MHz in order to prevent merging of adjacent channels that are only 500MHz apart). The analyzer was set to zero-span and the on time was measured. As the On time pulse train consisted of various size ON bits with a constant off time between bits the pulse train total ON time was calculated by subtracting the total off time from the pulse train total time. This was then compared to the allowed on time in order to verify compliance.

The below table summarizes the results. Plot data is supplied in appendix A4 of this report.

Modulation Profile Time of Occupancy **Maximum Limit** Pass/Fail 0 350.2ms 0.4 seconds per 20 sec Pass 1 290.0ms 0.4 seconds per 20 sec Pass 2 325.3ms 0.4 seconds per 20 sec **Pass** 3 315.3ms 0.4 seconds per 20 sec **Pass** 4 243.3ms 0.4 seconds per 10 sec Pass 5 307.0ms 0.4 seconds per 20 sec Pass 307.0ms 6 0.4 seconds per 20 sec **Pass** 7 308.7ms 0.4 seconds per 20 sec **Pass**

Table 12: Time of Occupancy Summary table

5.5 Conducted Spurious Emissions at Antenna Terminals (§2.1051)

The EUT must comply with requirements for spurious emissions at antenna terminals. Per §15.247(c) all spurious emissions in any 100 kHz bandwidth outside the frequency band in which the spread spectrum device is operating shall be attenuated 20 dB below the highest power level in a 100 kHz bandwidth within the band containing the highest level of the desired power.

The EUT antenna was removed and the cable was connected directly into a spectrum analyzer through a 10 dB attenuator. An offset was programmed into the spectrum analyzer to compensate for the loss of the external attenuator. The spectrum analyzer resolution bandwidth was set to 100 kHz and the video bandwidth was set to 300 kHz. The amplitude of the EUT carrier frequency was measured to determine the emissions limit (20 dB below the carrier frequency amplitude). The emissions outside of the allocated frequency band were then scanned from 30 MHz up to the tenth harmonic of the carrier.

5.5.1 Band-edge Measurements

Table 13 provides a summary of the highest levels in relation to the band-edge for stationary and hopping signals both high and low power.

Close-up plots of the conducted band-edge are provided for each modulation profile in high and low power in a hopping and non hopping mode in appendix A4 of this report.

Band-edge	Condition	Power-level	Modulation Profile	Relative level of Spur	Minimum Limit	Pass/fail
Lower	902.75MHz	High	3	-62.1dBc	-20dBc	Pass
Upper	927.25MHz	High	4	-47.13dBc	-20dBc	Pass
Lower	902.75MHz	Low	4	-46.4dBc	-20dBc	Pass
Upper	927.25MHz	Low	4	-59.3dBc	-20dBc	Pass
Lower	Hopping	High	7	-36.5dBc	-20dBc	Pass
Upper	Hopping	High	7	-36.2dBc	-20dBc	Pass
Lower	Hopping	Low	1	-34.2dBc	-20dBc	Pass
Upper	Hopping	Low	6	-34.5dBc	-20dBc	Pass

Table 13 Band-edge Summary Table (worst case)

5.5.2 Conducted Spurious Plots

The following are plots of the conducted spurious emissions data taken in the high and low power modes at modulation profile 0

Figure 2: Conducted Spurious Emissions, Low Channel, High Power, 30 - 900MHz

Figure 3: Conducted Spurious Emissions, Low Channel, High Power, 900-930MHz

Figure 4: Conducted Spurious Emissions, Low Channel, High Power, 930MHz -5GHz

Figure 5: Conducted Spurious Emissions, Low Channel, High Power, 5-10GHz

Figure 6: Conducted Spurious Emissions, Low Channel, Low Power, 30 - 900MHz

Figure 7: Conducted Spurious Emissions, Low Channel, Low Power, 900 - 930MHz

Figure 8: Conducted Spurious Emissions, Low Channel, Low Power, 930MHz-5GHz

Figure 9: Conducted Spurious Emissions, Low Channel, Low Power, 5-10GHz

Figure 10: Conducted Spurious Emissions, Center Channel, High Power, 30-900MHz

Figure 11: Conducted Spurious Emissions, Center Channel, High Power, 900-930MHz

Figure 12: Conducted Spurious Emissions, Center Channel, High Power, 930MHz-5GHz

Figure 13: Conducted Spurious Emissions, Center Channel, High Power, 5-10GHz

Figure 14: Conducted Spurious Emissions, Center Channel, Low Power, 30-900MHz

Figure 15: Conducted Spurious Emissions, Center Channel, Low Power, 900-930MHz

Figure 16: Conducted Spurious Emissions, Center Channel, Low Power, 930MHz-5GHz

Figure 17: Conducted Spurious Emissions, Center Channel, Low Power, 5-10GHz

Figure 18: Conducted Spurious Emissions, High Channel, High Power, 30-900MHz

Figure 19: Conducted Spurious Emissions, High Channel, High Power, 900-930MHz

Figure 20: Conducted Spurious Emissions, High Channel, High Power, 930MHz-5GHz

Figure 21: Conducted Spurious Emissions, High Channel, High Power, 5-10GHz

Figure 22: Conducted Spurious Emissions, High Channel, Low Power, 30-900MHz

Figure 23: Conducted Spurious Emissions, High Channel, Low Power, 900-930MHz

Figure 24: Conducted Spurious Emissions, High Channel, Low Power, 930MHz-5GHz

Figure 25: Conducted Spurious Emissions, High Channel, low Power, 5-10GHz

5.6 Radiated Transmitter Spurious Emissions: (§15.205, 15.209, RSS210[A8.5])

The EUT must comply with the requirements for radiated spurious emissions that fall within the restricted bands. These emissions must meet the limits specified in §15.209 and §15.35(b) for peak measurements.

5.6.1 Test Procedure

The EUT was placed on motorized turntable for radiated testing on a 3-meter open field test site. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Receiving antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The peripherals were placed on the table in accordance with ANSI C63.4-2003. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured.

The Unit was tested with the 4 port and 2 Port EUT versions with both the GlobeTek and POE power options. The Astec power supply was tested with the 4 port unit below 1GHz for verification purposes. The emissions were measured using the following resolution bandwidths:

Frequency RangeResolution BandwidthVideo Bandwidth30MHz-1000 MHz120kHz>100 kHz>1000 MHz1 MHz10 Hz (Avg.), 1MHz (Peak)

Table 14: Spectrum Analyzer Settings

Table 15: Radiated Spurious Emissions Summary Table

4 Port Unit

Channel	Highest Emission Relative to limit (uV/m)	Frequency of emission (MHZ)	Margin to Limit (dB)
902.75MHz	82.2	1000.00	-15.7
915.25MHz	138.0	1000.00	-11.2
927.25MHz	128.8	2781.75	-11.8

2 Port Unit

Channel	Highest Emission Relative to limit (uV/m)	Frequency of emission (MHZ)	Margin to Limit (dB)
902.75MHz	108.4	1000.00	-13.3
915.25MHz	117.0	2745.75	-12.6
927.25MHz	108.4	1000.00	-13.3

Table 16: Radiated Emission Test Data, 4-Port unit GlobeTek PS, Low Channel Transmit @ 902.75MHz

Frequency (MHz)	Polarity H/V	Azimuth (Degree)	Ant. Height (m)	SA Level (dBuV)	Corr Factors (dB)	Corr. Level (uV/m)	Limit (uV/m)	Margin (dB)
Peak								
2708.25	Н	0.00	2.36	46.83	-4.3	133.2	5000.0	-31.5
3611.00	Н	10.00	2.50	43.33	-3.0	104.4	5000.0	-33.6
4513.75	Н	0.00	2.60	42.17	-2.3	98.7	5000.0	-34.1
5416.50	Н	0.00	2.50	42.17	0.3	132.2	5000.0	-31.6
8124.75	Н	10.00	2.70	43.67	3.0	216.3	5000.0	-27.3
AVG								
2708.25	Н	0.00	2.36	35.67	-4.3	36.8	500.0	-22.7
3611.00	Н	10.00	2.50	32.20	-3.0	29.0	500.0	-24.7
4513.75	Н	0.00	2.60	30.83	-2.3	26.7	500.0	-25.4
5416.50	Н	0.00	2.50	31.17	0.3	37.3	500.0	-22.6
8124.75	Н	10.00	2.70	33.00	3.0	63.3	500.0	-17.9
Peak								
2708.25	V	0.00	2.00	47.10	-4.3	137.4	5000.0	-31.2
3611.00	V	180.00	2.60	44.83	-3.0	124.1	5000.0	-32.1
4513.75	V	10.00	2.50	41.33	-2.3	89.6	5000.0	-34.9
5416.50	V	0.00	2.50	41.67	0.3	124.8	5000.0	-32.1
8124.75	V	10.00	2.60	43.83	3.0	220.3	5000.0	-27.1
AVG								
2708.25	V	0.00	2.32	36.90	-4.3	42.5	500.0	-21.4
3611.00	V	180.00	2.60	34.60	-3.0	38.2	500.0	-22.3
4513.75	V	10.00	2.50	31.17	-2.3	27.8	500.0	-25.1
5416.50	V	0.00	2.50	31.17	0.3	37.3	500.0	-22.6
8124.75	V	10.00	2.60	33.00	3.0	63.3	500.0	-17.9
Non								
Harmonics								
108.79	V	10.00	1.25	11.60	12.5	16.0	150.0	-19.5
114.53	V	0.00	1.48	7.60	13.1	10.9	150.0	-22.8
170.89	V	180.00	1.52	3.90	13.3	7.2	150.0	-26.3
249.97	V	270.00	1.85	9.30	13.7	14.1	200.0	-23.0
1000.00	V	90.00	6.70	6.50	29.9	66.1	500.0	-17.6
105 ==								,
108.75	Н	290.00	3.89	14.20	12.5	21.5	150.0	-16.9
165.82	Н	0.00	3.70	10.50	13.6	16.1	150.0	-19.4
272.01	Н	0.00	2.09	7.50	16.6	16.0	200.0	-21.9
1000.00	Н	180.00	1.50	8.40	29.9	82.2	500.0	-15.7

Table 17: Radiated Emission Test Data, 4-Port unit POE PS, Center Channel Transmit @ 915.25 MHz

Frequency (MHz)	Polarity H/V	Azimuth (Degree)	Ant. Height (m)	SA Level (dBuV)	Corr Factors (dB)	Corr. Level (uV/m)	Limit (uV/m)	Margin (dB)
Peak								
2745.75	Н	0.00	2.42	56.17	-4.3	392.0	5000.0	-22.1
3661.00	Н	350.00	2.60	44.50	-2.9	119.7	5000.0	-32.4
4576.25	Н	10.00	2.55	43.00	-2.0	112.0	5000.0	-33.0
7322.00	Н	180.00	2.80	44.00	3.3	232.3	5000.0	-26.7
8237.25	Н	350.00	2.65	46.17	3.3	295.8	5000.0	-24.6
9152.50	Н	0.00	2.50	43.17	4.8	250.8	5000.0	-26.0
AVG								
2745.75	Н	0.00	2.42	42.50	-4.3	81.2	500.0	-15.8
3661.00	Н	350.00	2.60	32.17	-2.9	28.9	500.0	-24.8
4576.25	Н	10.00	2.55	30.83	-2.0	27.6	500.0	-25.2
7322.00	Н	180.00	2.80	33.33	3.3	68.0	500.0	-17.3
8237.25	Н	350.00	2.65	33.67	3.3	70.2	500.0	-17.1
9152.50	Н	0.00	2.50	34.00	4.8	87.3	500.0	-15.2
Peak								
2745.75	V	15.00	2.51	52.00	-4.3	242.5	5000.0	-26.3
3661.00	V	0.00	2.60	44.80	-2.9	123.9	5000.0	-32.1
4576.25	V	10.00	2.40	42.17	-2.0	101.8	5000.0	-33.8
7322.00	V	190.00	2.50	42.33	3.3	191.7	5000.0	-28.3
8237.25	V	200.00	2.40	46.50	3.3	307.3	5000.0	-24.2
9152.50	V	180.00	2.50	46.80	4.8	381.0	5000.0	-22.4
AVG								
2745.75	V	15.00	2.51	41.33	-4.3	71.0	500.0	-17.0
3661.00	V	0.00	2.60	32.83	-2.9	31.2	500.0	-24.1
4576.25	V	10.00	2.40	31.33	-2.0	29.2	500.0	-24.7
7322.00	V	190.00	2.50	31.33	3.3	54.0	500.0	-19.3
8237.25	V	200.00	2.40	33.50	3.3	68.8	500.0	-17.2
9152.50	V	180.00	2.50	34.10	4.8	88.3	500.0	-15.1
Non Harmonics								
114.18	V	180.00	1.30	15.90	13.1	28.1	150.0	-14.5
162.96	V	180.00	1.31	7.70	13.6	11.7	150.0	-22.2
168.80	V	190.00	1.29	10.20	13.4	15.2	150.0	-19.9
244.08	V	180.00	1.58	9.80	13.5	14.7	200.0	-22.7
272.05	V	0.00	1.70	7.80	16.6	16.6	200.0	-21.6
1000.00	V	200.00	1.30	8.50	29.9	83.2	500.0	-15.6
111.62	Н	270.00	3.70	13.60	12.8	20.9	150.0	-17.1
168.79	Н	0.00	3.12	14.90	13.4	26.1	150.0	-15.2
272.01	Н	190.00	1.74	8.90	16.6	18.8	200.0	-20.5
1000.00	Н	180.00	1.80	12.90	29.9	138.0	500.0	-11.2

Table 18: Radiated Emission Test Data, 4-Port unit GlobeTek PS, High Channel Transmit @ 927.25MHz

Frequency (MHz)	Polarity H/V	Azimuth (Degree)	Ant. Height (m)	SA Level (dBuV)	Corr Factors (dB)	Corr. Level (uV/m)	Limit (uV/m)	Margin (dB)
Peak								
2781.75	Н	0.00	2.30	57.33	-4.3	449.8	5000.0	-20.9
3709.00	Н	45.00	2.39	45.00	-2.9	127.0	5000.0	-31.9
4636.25	Н	90.00	2.50	42.85	-1.8	113.4	5000.0	-32.9
7418.00	Н	0.00	2.40	42.33	3.4	192.7	5000.0	-28.3
8345.25	Н	10.00	2.80	47.50	3.5	353.2	5000.0	-23.0
AVG								
2781.75	Н	0.00	2.30	46.50	-4.3	128.8	500.0	-11.8
3709.00	Н	45.00	2.39	32.10	-2.9	28.8	500.0	-24.8
4636.25	Н	90.00	2.50	31.20	-1.8	29.7	500.0	-24.5
7418.00	Н	0.00	2.40	33.00	3.4	65.8	500.0	-17.6
8345.25	Н	10.00	2.80	33.50	3.5	70.5	500.0	-17.0
Peak								
2781.75	V	0.00	2.32	56.17	-4.3	393.6	5000.0	-22.1
3709.00	V	0.00	2.20	44.20	-2.9	115.8	5000.0	-32.7
4636.25	V	180.00	2.50	42.67	-1.8	111.1	5000.0	-33.1
7418.00	V	45.00	2.60	44.00	3.4	233.6	5000.0	-26.6
8345.25	V	10.00	2.63	46.50	3.5	314.8	5000.0	-24.0
AVG								
2781.75	V	0.00	2.32	41.67	-4.3	74.1	500.0	-16.6
3709.00	V	0.00	2.20	32.60	-2.9	30.5	500.0	-24.3
4636.25	V	180.00	2.50	31.33	-1.8	30.1	500.0	-24.4
7418.00	V	45.00	2.60	33.00	3.4	65.8	500.0	-17.6
8345.25	V	10.00	2.63	33.50	3.5	70.5	500.0	-17.0
Non								
Harmonics								
108.75	V	0.00	1.00	8.10	12.5	10.7	150.0	-23.0
114.50	V	180.00	1.20	13.20	13.1	20.7	150.0	-17.2
171.82	V	180.00	1.00	13.40	13.2	21.5	150.0	-16.9
249.97	V	270.00	1.70	11.90	13.7	19.1	200.0	-20.4
1000.00	V	225.00	1.40	7.00	29.9	70.0	500.0	-17.1
108.75	Н	0.00	2.00	7.10	12.5	9.5	150.0	-24.0
114.52	Н	315.00	2.20	9.80	13.1	14.0	150.0	-20.6
171.81	Н	90.00	2.10	12.10	13.2	18.5	150.0	-18.2
249.98	Н	135.00	1.70	12.50	13.7	20.4	200.0	-19.8
1000.00	Н	180.00	2.20	8.90	-11.2	0.8	500.0	-56.3

Table 19: Radiated Emission Test Data <1GHz 4 Port Unit with Astec PS

Frequency (MHz)	Polarity H/V	Azimuth (Degree)	Ant. Height (m)	SA Level (dBuV)	Corr Factors (dB)	Corr. Level (uV/m)	Limit (uV/m)	Margin (dB)
110.82	V	90.00	1.20	10.20	13.5	15.3	150.0	-19.8
114.61	V	90.00	1.17	10.50	14.2	17.2	150.0	-18.8
252.74	V	10.00	1.80	9.30	13.1	13.1	200.0	-23.7
1000.00	V	0.00	0.00	7.40	26.9	51.9	500.0	-19.7
1125.25	V	270.00	2.70	46.50	-10.7	61.9	500.0	-18.1
112.24	Н	45.00	3.84	8.90	13.8	13.6	150.0	-20.9
252.05	Н	270.00	3.20	5.70	13.1	8.7	200.0	-27.3
272.01	Н	0.00	0.00	0.00	14.4	5.3	200.0	-31.6
1000.00	Н	0.00	0.00	6.80	26.9	48.4	500.0	-20.3
1125.25	Н	190.00	2.65	52.90	-10.7	129.3	500.0	-11.7

Table 20: Radiated Emission Test Data, 2-Port unit GlobeTek PS, Low Channel Transmit @ 902.75MHz

Frequency (MHz)	Polarity H/V	Azimuth (Degree)	Ant. Height (m)	SA Level (dBuV)	Corr Factors (dB)	Corr. Level (uV/m)	Limit (uV/m)	Margin (dB)
Peak								
2708.25	Н	0.00	205.00	47.00	-4.3	135.8	5000.0	-31.3
3611.00	Н	10.00	2.35	44.50	-3.0	119.5	5000.0	-32.4
4513.75	Н	90.00	2.50	43.50	-2.3	115.0	5000.0	-32.8
5416.50	Н	45.00	2.70	44.17	0.3	166.4	5000.0	-29.6
8124.75	Н	10.00	2.50	45.00	3.0	252.1	5000.0	-25.9
AVG								
2708.25	Н	0.00	205.00	39.20	-4.3	55.3	500.0	-19.1
3611.00	Н	10.00	2.35	32.80	-3.0	31.1	500.0	-24.1
4513.75	Н	90.00	2.50	31.20	-2.3	27.9	500.0	-25.1
5416.50	Н	45.00	2.70	31.00	0.3	36.5	500.0	-22.7
8124.75	Н	10.00	2.50	32.83	3.0	62.1	500.0	-18.1
Peak								
2708.25	V	10.00	2.00	48.10	0.0	254.1	5000.0	-25.9
3611.00	V	270.00	2.28	45.60	-3.0	135.6	5000.0	-31.3
4513.75	V	270.00	2.50	44.17	-2.3	124.2	5000.0	-32.1
5416.50	V	10.00	2.50	44.00	0.3	163.2	5000.0	-29.7
8124.75	V	50.00	2.60	45.50	3.0	267.0	5000.0	-25.4
AVG								
2708.25	V	10.00	2.32	36.67	-4.3	41.3	500.0	-21.7
3611.00	V	270.00	2.28	31.50	-3.0	26.7	500.0	-25.4
4513.75	V	270.00	2.50	31.60	-2.3	29.2	500.0	-24.7
5416.50	V	10.00	2.50	30.83	0.3	35.8	500.0	-22.9
8124.75	V	50.00	2.60	32.83	3.0	62.1	500.0	-18.1
Non								
Harmonics								
123.55	V	90.00	1.50	9.70	14.7	16.7	150.0	-19.1
124.99	V	180.00	1.20	14.00	15.0	28.3	150.0	-14.5
272.03	V	90.00	2.00	6.40	16.6	14.1	200.0	-23.0
1000.00	V	90.00	2.00	6.70	29.9	67.6	500.0	-17.4
124.99	Н	190.00	3.54	11.90	15.0	22.2	150.0	-16.6
1000.00	Н	180.00	180.00	10.80	29.9	108.4	500.0	-13.3

Table 21: Radiated Emission Test Data, 2-Port unit GlobeTek PS, Center Channel Transmit @ 915.25MHz

Frequency (MHz)	Polarity H/V	Azimuth (Degree)	Ant. Height (m)	SA Level (dBuV)	Corr Factors (dB)	Corr. Level (uV/m)	Limit (uV/m)	Margin (dB)
Peak								
2745.75	Н	0.00	2.29	58.83	-4.3	532.4	5000.0	-19.5
3661.00	Н	45.00	2.53	45.67	-2.9	136.9	5000.0	-31.3
4576.25	Н	0.00	2.50	42.80	-2.0	109.5	5000.0	-33.2
7322.00	Н	180.00	2.60	43.00	3.3	207.0	5000.0	-27.7
8237.25	Н	0.00	2.60	46.50	3.3	307.3	5000.0	-24.2
9152.50	Н	10.00	2.40	43.80	4.8	269.7	5000.0	-25.4
AVG								
2745.75	Н	0.00	2.29	45.67	-4.3	117.0	500.0	-12.6
3661.00	Н	45.00	2.53	32.33	-2.9	29.5	500.0	-24.6
4576.25	Н	0.00	2.50	30.60	-2.0	26.9	500.0	-25.4
7322.00	Н	180.00	3.60	32.00	3.3	58.4	500.0	-18.7
8237.25	Н	0.00	2.60	34.00	3.3	72.9	500.0	-16.7
9152.50	Н	10.00	2.40	34.20	4.8	89.3	500.0	-15.0
Peak								
2745.75	V	10.00	2.54	56.83	-4.3	422.9	5000.0	-21.5
3661.00	V	90.00	2.51	45.17	-2.9	129.3	5000.0	-31.8
4576.25	V	0.00	2.60	43.10	-2.0	113.3	5000.0	-32.9
7322.00	V	270.00	2.53	43.20	3.3	211.9	5000.0	-27.5
8237.25	V	190.00	2.61	45.80	3.3	283.5	5000.0	-24.9
9152.50	V	0.00	2.62	45.80	4.8	339.5	5000.0	-23.4
AVG								
2745.75	V	10.00	2.54	44.50	-4.3	102.3	500.0	-13.8
3661.00	V	90.00	2.51	32.33	-2.9	29.5	500.0	-24.6
4576.25	V	0.00	2.60	33.00	-2.0	35.4	500.0	-23.0
7322.00	V	270.00	2.53	32.80	3.3	64.0	500.0	-17.9
8237.25	V	190.00	2.61	33.20	3.3	66.5	500.0	-17.5
9152.50	V V	0.00	2.62	33.60	4.8	83.3	500.0	-15.6
Non	· •							
Harmonics								
123.55	V	90.00	1.50	9.70	14.7	16.7	150.0	-19.1
124.99	V	180.00	1.20	14.00	15.0	28.3	150.0	-14.5
272.03	V	90.00	2.00	6.40	16.6	14.1	200.0	-23.0
1000.00	V	90.00	2.00	6.70	29.9	67.6	500.0	-17.4
124.99	Н	190.00	3.54	11.90	15.0	22.2	150.0	-16.6
1000.00	Н	180.00	180.00	10.80	29.9	108.4	500.0	-13.3

Table 22: Radiated Emission Test Data, 2-Port unit GlobeTek PS, High Channel Transmit @ 927.25MHz

Frequency (MHz)	Polarity H/V	Azimuth (Degree)	Ant. Height (m)	SA Level (dBuV)	Corr Factors (dB)	Corr. Level (uV/m)	Limit (uV/m)	Margin (dB)
Peak								
2781.75	Н	0.00	2.32	53.50	-4.3	289.4	5000.0	-24.7
3709.00	Н	10.00	2.50	45.00	-2.9	127.0	5000.0	-31.9
4636.25	Н	45.00	2.63	42.85	-1.8	113.4	5000.0	-32.9
7418.00	Н	45.00	2.58	42.33	3.4	192.7	5000.0	-28.3
8345.25	Н	0.00	2.60	47.50	3.5	353.2	5000.0	-23.0
AVG								
2781.75	Н	0.00	2.32	42.67	-4.3	83.2	500.0	-15.6
3709.00	Н	10.00	2.50	32.10	-2.9	28.8	500.0	-24.8
4636.25	Н	45.00	2.63	31.20	-1.8	29.7	500.0	-24.5
7418.00	Н	45.00	2.58	33.00	3.4	65.8	500.0	-17.6
8345.25	Н	0.00	2.60	33.50	3.5	70.5	500.0	-17.0
Peak								
2781.75	V	0.00	2.52	53.17	-4.3	278.6	5000.0	-25.1
3709.00	V	10.00	2.50	44.20	-2.9	115.8	5000.0	-32.7
4636.25	V	20.00	2.80	42.67	-1.8	111.1	5000.0	-33.1
7418.00	V	0.00	2.62	44.00	3.4	233.6	5000.0	-26.6
8345.25	V	180.00	2.63	46.50	3.5	314.8	5000.0	-24.0
AVG								
2781.75	V	0.00	2.52	42.17	-4.3	78.5	500.0	-16.1
3709.00	V	10.00	2.50	32.60	-2.9	30.5	500.0	-24.3
4636.25	V	20.00	2.80	31.33	-1.8	30.1	500.0	-24.4
7418.00	V	0.00	2.62	33.00	3.4	65.8	500.0	-17.6
8345.25	V	180.00	2.63	33.50	3.5	70.5	500.0	-17.0
Non Harmonics								
123.55	V	90.00	1.50	9.70	14.7	16.7	150.0	-19.1
124.99	V	180.00	1.20	14.00	15.0	28.3	150.0	-14.5
272.03	V	90.00	2.00	6.40	16.6	14.1	200.0	-23.0
1000.00	V	90.00	2.00	6.70	29.9	67.6	500.0	-17.4
124.99	Н	190.00	3.54	11.90	15.0	22.2	150.0	-16.6
1000.00	Н	180.00	180.00	10.80	29.9	108.4	500.0	-13.3

5.7 Receiver Radiated Spurious Emissions: (§15.209, RSS-Gen [7.2.3.2])

The EUT must comply with the requirements for radiated spurious emissions from the receiver. These emissions must meet the limits specified in §15.209 and RSS-Gen.

5.7.1 Test Procedure

The EUT was placed on motorized turntable for radiated testing on a 3-meter open field test site. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Receiving antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The emissions were measured using the following resolution bandwidths:

The Unit was tested with the 4 port and 2 Port EUT versions with the GlobeTek Power supply. The POE and Astec PS power options were verified on the 4 Port Unit.

Frequency Range	Resolution Bandwidth	Video Bandwidth		
30MHz-1000 MHz	120kHz	> 100 kHz		
>1000 MHz	1 MHz	10 Hz (Avg.)		

5.7.2 Test Summary

The EUT complied with the requirements for receiver radiated emissions FCC 15.209 IC RSS-Gen. Receiver Radiated Spurious Test Data

Table 23: Receiver Radiated Spurious Emissions Summary Table

Configuration	Highest Emission Relative to limit (uV/m)	Frequency of emission (MHZ)	Margin to Limit (dB)
4 Port unit w. GlobeTek PS	34.8	81.48	-9.2
4 Port unit w. Astec PS	54.2	39.53	-5.3
4 Port unit w. POE PS	69.1	47.01	-3.2
2 Port unit w. GlobeTek PS	41.4	81.66	-7.7

Table 24: Receiver Radiated Emission Test Data, 4-Port unit GlobeTek PS

Frequency (MHz)	Polarity H/V	Azimuth (Degree)	Ant. Height (m)	SA Level (dBuV)	Corr Factors (dB)	Corr. Level (uV/m)	Limit (uV/m)	Margin (dB)
33.47	V	90.00	1.00	6.70	20.0	21.6	100.0	-13.3
39.53	V	100.00	1.00	7.70	15.0	13.7	100.0	-17.3
49.58	V	90.00	1.00	12.60	9.3	12.4	100.0	-18.1
57.18	V	270.00	1.00	17.30	7.4	17.2	100.0	-15.3
81.48	V	0.00	1.00	18.60	9.8	26.4	100.0	-11.6
108.75	V	0.00	1.00	8.10	12.5	10.7	150.0	-23.0
114.50	V	180.00	1.20	13.20	13.1	20.7	150.0	-17.2
143.15	V	225.00	1.20	12.50	14.0	21.2	150.0	-17.0
171.82	V	180.00	1.00	13.40	13.2	21.5	150.0	-16.9
207.50	V	0.00	1.00	12.60	13.6	20.3	150.0	-17.4
249.97	V	270.00	1.70	11.90	13.7	19.1	200.0	-20.4
300.37	V	225.00	1.70	10.30	16.3	21.4	200.0	-19.4
499.50	V	180.00	1.65	11.70	20.7	41.7	200.0	-13.6
750.00	V	180.00	1.70	4.80	26.0	34.6	200.0	-15.2
1000.00	V	225.00	1.40	7.00	29.9	70.0	500.0	-17.1
1125.25	V	270.00	2.70	46.50	-10.7	61.9	500.0	-18.1
33.43	Н	45.00	3.72	4.50	20.0	16.8	100.0	-15.5
39.53	Н	225.00	3.37	9.20	15.0	16.3	100.0	-15.8
49.82	Н	270.00	2.80	19.50	9.2	27.3	100.0	-11.3
57.18	Н	270.00	3.24	20.60	7.4	25.1	100.0	-12.0
81.48	Н	225.00	2.50	21.00	9.8	34.8	100.0	-9.2
108.75	Н	0.00	2.00	7.10	12.5	9.5	150.0	-24.0
114.52	Н	315.00	2.20	9.80	13.1	14.0	150.0	-20.6
143.15	Н	315.00	2.20	17.20	14.0	36.4	150.0	-12.3
171.81	Н	90.00	2.10	12.10	13.2	18.5	150.0	-18.2
207.50	Н	135.00	1.70	20.50	13.6	50.5	150.0	-9.5
249.98	Н	135.00	1.70	12.50	13.7	20.4	200.0	-19.8
300.34	Н	135.00	1.90	7.20	16.3	15.0	200.0	-22.5
499.50	Н	180.00	2.00	13.20	20.7	49.5	200.0	-12.1
750.00	Н	180.00	2.00	6.10	26.0	40.2	200.0	-13.9
1000.00	Н	180.00	2.20	8.90	-11.2	0.8	500.0	-56.3
1071.86	Н	90.00	2.61	41.00	-10.9	32.1	500.0	-23.9
1125.25	Н	190.00	2.65	52.90	-10.7	129.3	500.0	-11.7