Équations différentielles ordinaires à coefficients constants

CESI École d'ingénieurs

Valentin Bahier

1er semestre 2019-2020

1 Equations différentielles du premier ordre

On cherche les fonctions y dérivables telles que y' + ay = f(x) sur un intervalle I de \mathbb{R} , pour une certaine fonction f donnée, et un réel a fixé. La résolution se fait généralement en deux temps : on résout l'équation homogène (c'est-à-dire sans le membre de droite, appelé aussi second membre), puis on cherche une solution particulière à l'équation avec second membre.

1.1 Equation homogène : y' + ay = 0

Pour tout $x \in I$,

$$y'(x) + ay(x) = 0 \iff (y'(x) + ay(x))e^{ax} = 0$$
$$\iff (y(x)e^{ax})' = 0$$
$$\iff y(x)e^{ax} = C$$
$$\iff y(x) = Ce^{-ax}$$

où C est une constante.

Si de plus on impose une condition initiale de la forme $y(x_0) = y_0$ pour un certain $x_0 \in I$, alors la solution est unique (la constante C est déterminée) :

$$y(x) = y_0 e^{-a(x-x_0)}$$

Exemple 1

La solution du système
$$\begin{cases} y' + \frac{1}{2}y = 0 \\ y(1) = 4 \end{cases} \text{ est } y(x) = 4e^{-\frac{1}{2}(x-1)}.$$

Remarque : Un tel système formé d'une équation de la forme y' + ay = f(x) et d'une condition initiale $y(x_0) = y_0$ est appelé un « problème de Cauchy ».

1.2 Equation avec second membre : y' + ay = f(x)

L'ensemble des solutions à y' + ay = f(x) peut toujours être décrit comme l'ensemble des solutions à l'équation homogène + **une** solution particulière à l'équation avec second membre.

Exemple 2

Déterminer l'ensemble des solutions à $y' + 3y = 4e^x$. Réponse :

- 1ère étape : On résout l'équation homogène, ce qui donne $y(x) = Ce^{-3x}$, où C est une constante.
- 2ème étape : On cherche une solution particulière à l'équation avec second membre. On remarque que la fonction $\widetilde{y}(x) = e^x$ est solution. En effet,

$$\tilde{y}'(x) + 3\tilde{y}(x) = e^x + 3e^x = 4e^x.$$

Ainsi, les solutions à $y' + 3y = 4e^x$ sont les fonctions y de la forme

$$y(x) = Ce^{-3x} + e^x$$

 $où C \in \mathbb{R}$.

Principe de superposition: Si y_1 est solution de y' + ay = f(x) et y_2 une solution de y' + ay = g(x), alors $\lambda_1 y_1 + \lambda_2 y_2$ est solution de $y' + ay = \lambda_1 f(x) + \lambda_2 g(x)$, pour tous $\lambda_1, \lambda_2 \in \mathbb{R}$.

Exemple 3

Résoudre $y' + y = 4e^x + \frac{1}{3} + \frac{x}{3}$.

Réponse : On remarque qu'en posant $y_1(x) = e^x$ et $y_2(x) = x$, on a

$$y_1'(x) + y_1(x) = 2e^x$$

et

$$y_2'(x) + y_2(x) = 1 + x$$

donc $2y_1 + \frac{1}{3}y_2$ est solution particulière de $y' + y = 4e^x + \frac{1}{3} + \frac{x}{3}$, et donc finalement

l'ensemble des solutions est l'ensemble des fonctions y de la forme

$$y(x) = Ce^{-x} + 2e^x + \frac{x}{3}$$

 $où C \in \mathbb{R}$

1.3 Seconds membres spécifiques

 \triangleright Supposons que le second membre f soit de la forme $f(x) = P(x)e^{sx}$ où P est un polynôme, et $s \in \mathbb{R}$. Alors on cherche une solution particulière y de la forme

- $y(x) = Q(x)e^{sx}$ si $s \neq -a$,
- $y(x) = xQ(x)e^{sx}$ si s = -a.

où Q est un polynôme de même degré que P.

Exemple 4

Résoudre $y' + 5y = (x^2 + 1)e^{2x}$.

Réponse : Ici, $2 \neq -5$, donc on cherche une solution particulière de la forme

$$\widetilde{y}(x) = (\alpha x^2 + \beta x + \gamma)e^{2x}$$

où α, β, γ sont des constantes à déterminer. On a

$$\tilde{y}'(x) + 5\tilde{y}(x) = ((2\alpha x + \beta) + 2(\alpha x^2 + \beta x + \gamma) + 5(\alpha x^2 + \beta x + \gamma))e^{2x} = (x^2 + 1)e^{2x}$$

donc en simplifiant par $e^{2x} \neq 0$ et en regroupant les termes on obtient

$$7\alpha x^{2} + (2\alpha + 7\beta)x + (\beta + 7\gamma) = x^{2} + 1$$

ce qui donne par identification des coefficients

$$\begin{cases} 7\alpha = 1 \\ 2\alpha + 7\beta = 0 \\ \beta + 7\gamma = 1 \end{cases} \iff \begin{cases} \alpha = \frac{1}{7} \\ \beta = -\frac{2}{49} \\ \gamma = \frac{51}{343} \end{cases}.$$

Ainsi, les solutions à $y' + 5y = (x^2 + 1)e^{2x}$ sont les fonctions y de la forme

$$y(x) = Ce^{-5x} + \left(\frac{1}{7}x^2 - \frac{2}{49}x + \frac{51}{343}\right)e^{2x}.$$

Exemple 5

Résoudre $y' - 3y = (4x + 1)e^{3x}$.

Réponse : On est dans le cas où le coefficient dans l'exponentielle vaut exactement l'opposé du coefficient devant y, donc on cherche une solution particulière de la forme

$$\widetilde{y}(x) = x(\alpha x + \beta)e^{3x} = (\alpha x^2 + \beta x)e^{3x}$$

où α et β sont à déterminer. On a

$$\tilde{y}'(x) - 3\tilde{y}(x) = (2\alpha x + \beta + 3\alpha x^2 + 3\beta x - 3\alpha x^2 - 3\beta x)e^{3x} = (4x + 1)e^{3x}$$

donc $2\alpha x + \beta = 4x + 1$, c'est-à-dire $2\alpha = 4$ et $\beta = 1$. On en déduit que les solutions à $y' - 3y = (4x + 1)e^{3x}$ sont les fonctions y de la forme

$$y(x) = Ce^{3x} + (2x^2 + x)e^{3x}$$
$$= (2x^2 + x + C)e^{3x}$$

 $où C \in \mathbb{R}$.

 \triangleright Supposons que le second membre f soit de la forme $f(x) = P(x)\cos(sx)$ (ou $P(x)\sin(sx)$) où P est un polynôme de degré n, et $s \in \mathbb{R}$. Alors à l'aide de la méthode ci-dessus on cherche d'abord une solution particulière à

$$y' + ay = P(x)e^{isx}.$$

La partie réelle de cette solution est une solution particulière à $y'+ay=P(x)\cos(sx)$, et la partie imaginaire une solution particulière de $y'+ay=P(x)\sin(sx)$.

2 Equations différentielles du deuxième ordre

Les équations différentielles du deuxième ordre ay'' + by' + cy = f(x) (où $a \neq 0$) se résolvent de manière très analogue à celle du premier ordre : on commence par résoudre l'équation homogène, puis on cherche une solution particulière à l'équation avec second membre.

2.1 Equation homogène : ay'' + by' + cy = 0

On appelle **polynôme caractéristique** (resp. **équation caractéristique**) de l'équation différentielle homogène ay'' + by' + cy = 0 le polynôme $aX^2 + bX + c$ (resp. l'équation $ax^2 + bx + c = 0$). Notons $\Delta = b^2 - 4ac$ son discriminant.

Nous traitons ici le cas réel, c'est-à-dire lorsque $a, b, c \in \mathbb{R}$.

— Si $\Delta > 0$, alors en notant r_1 et r_2 les racines distinctes du polynôme caractéristique, les solutions sont de la forme

$$y(x) = \lambda_1 e^{r_1 x} + \lambda_2 e^{r_2 x}, \quad \lambda_1, \lambda_2 \in \mathbb{R}.$$

— Si $\Delta = 0$, alors en notant r l'unique racine (double) du polynôme caractéristique, les solutions sont de la forme

$$y(x) = (\lambda x + \mu)e^{rx}, \quad \lambda, \mu \in \mathbb{R}.$$

— Si $\Delta < 0$, alors en notant $r+i\omega$ et $r-i\omega$ les deux racines complexes conjuguées du polynôme caractéristique, les solutions sont de la forme

$$y(x) = (\lambda \cos(\omega x) + \mu \sin(\omega x)) e^{rx}, \quad \lambda, \mu \in \mathbb{R}.$$

Si de plus on impose une condition initiale du type $y(x_0) = y_0$ et $y'(x_0) = y_1$, alors il y a une unique solution (les deux constantes qui apparaissent dans la solution générale sont déterminées).

Exemple 6

Résoudre
$$\begin{cases} 2y'' + 3y' + y = 0 \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$
.

Réponse : Le polynôme caractéristique est ici $2X^2 + 3X + 1$, de discriminant $\Delta = 9 - 4 \times 2 \times 1 = 1 > 0$, donc les racines sont $r_1 = \frac{-3-1}{4} = -1$ et $r_2 = \frac{-3+1}{4} = -\frac{1}{2}$, et donc les solutions de l'équation différentielle sont de la forme $y(x) = \lambda_1 e^{-x} + \lambda_2 e^{-x/2}$ avec λ_1 et λ_2 à déterminer. De plus,

$$\begin{cases} y(0) = 1 \\ y'(0) = 0 \end{cases} \iff \begin{cases} \lambda_1 + \lambda_2 = 1 \\ -\lambda_1 - \frac{\lambda_2}{2} = 0 \end{cases} \iff \begin{cases} \lambda_2 = 1 - \lambda_1 \\ -\lambda_1 - \frac{1 - \lambda_1}{2} = 0 \end{cases} \iff \begin{cases} \lambda_1 = -1 \\ \lambda_2 = 2 \end{cases}.$$

Par conséquent, la solution est

$$y(x) = -e^{-x} + 2e^{-x/2}$$
.

Remarque : Un tel système d'une équation de la forme ay'' + by' + cy = f(x) et d'une condition initiale du type $y(x_0) = y_0$ et $y'(x_0) = y_1$ est également appelé un « problème de Cauchy ».

2.2 Equation avec second membre : ay'' + by' + cy = f(x)

Comme pour l'ordre 1, la structure de l'espace des solutions est identique : solution générale de l'équation homogène + **une** solution particulière de l'équation avec second membre.

De plus, le principe de superposition reste valable : Si y_1 est solution à ay'' + by' + cy = f(x) et y_2 solution à ay'' + by' + cy = g(x), alors $\lambda_1 y_1 + \lambda_2 y_2$ est solution de $ay'' + by' + cy = \lambda_1 f(x) + \lambda_2 g(x)$.

Exemple 7

Résoudre $y'' - 4y' + 4y = 3e^x - 2$.

Réponse : On remarque qu'en posant $y_1(x) = e^x$ et $y_2(x) = 1$, on a

$$y_1''(x) - 4y_1'(x) + 4y_1(x) = e^x$$

et

$$y_2''(x) - 4y_2'(x) + 4y_2(x) = 4$$

donc $3y_1 - \frac{1}{2}y_2$ est solution particulière. De plus, le polynôme caractéristique de l'équation homogène est $X^2 - 4X + 4$, de discriminant $\Delta = 16 - 4 \times 4 = 0$ donc la racine double est $r = -\frac{b}{2a} = \frac{4}{2} = 2$. Ainsi, les solutions à l'équation homogène sont de la forme

$$y(x) = (\lambda x + \mu)e^{2x}, \quad \lambda, \mu \in \mathbb{R}.$$

Finalement, les solutions de l'équation avec second membre sont de la forme

$$y(x) = (\lambda x + \mu)e^{2x} + 3e^x - \frac{1}{2}, \quad \lambda, \mu \in \mathbb{R}.$$

2.3 Seconds membres spécifiques

 \triangleright Supposons que le second membre f soit de la forme $f(x) = P(x)e^{sx}$ où P est un polynôme, et $s \in \mathbb{R}$. Alors on cherche une solution particulière y de la forme

- $y(x) = Q(x)e^{sx}$ si s n'est pas racine du polynôme caractéristique,
- $y(x) = xQ(x)e^{sx}$ si s est <u>racine simple</u> du polynôme caractéristique,
- $y(x) = x^2 Q(x) e^{sx}$ si s est <u>racine double</u> du polynôme caractéristique,

où Q est un polynôme de même degré que P.

Exemple 8

Résoudre $y'' + 2y' + y = (2x^2 + x + 3)e^{-x}$.

Réponse : Le polynôme caractéristique est $X^2 + 2X + 1 = (X+1)^2$ donc -1 est racine double. Ainsi on cherche une solution particulière de la forme $\tilde{y}(x) = x^2(\alpha x^2 + \beta x + \gamma)e^{-x} = (\alpha x^4 + \beta x^3 + \gamma x^2)e^{-x}$. On a

$$\widetilde{y}'(x) = (4\alpha x^3 + 3\beta x^2 + 2\gamma x)e^{-x} - \widetilde{y}(x)$$

puis

$$\widetilde{y}''(x) = (12\alpha x^2 + 6\beta x + 2\gamma)e^{-x} - (\widetilde{y}'(x) + \widetilde{y}(x)) - \widetilde{y}'(x)$$

donc

$$\widetilde{y}'' + 2\widetilde{y}' + \widetilde{y} = (12\alpha x^2 + 6\beta x + 2\gamma)e^{-x}$$

et donc par identification, $\begin{cases} 12\alpha = 2 \\ 6\beta = 1 \\ 2\gamma = 3 \end{cases} \iff \begin{cases} \alpha = \frac{1}{6} \\ \beta = \frac{1}{6} \\ \gamma = \frac{3}{2} \end{cases}$. De plus, la solution gé-

nérale à l'équation homogène est $y(x) = (\lambda x + \mu)e^{-x}$. Finalement, les solutions de l'équation avec second membre sont de la forme

$$y(x) = (\lambda x + \mu)e^{-x} + x^{2} \left(\frac{1}{6}x^{2} + \frac{1}{6}x + \frac{3}{2}\right)e^{-x}$$
$$= \left(\frac{1}{6}x^{4} + \frac{1}{6}x^{3} + \frac{3}{2}x^{2} + \lambda x + \mu\right)e^{-x}$$

 \triangleright Supposons que le second membre f soit de la forme $f(x) = P(x)\cos(sx)$ (ou $P(x)\sin(sx)$) où P est un polynôme de degré n, et $s \in \mathbb{R}$. Alors à l'aide de la méthode ci-dessus on cherche d'abord une solution particulière à

$$ay'' + by' + cy = P(x)e^{isx}.$$

La partie réelle de cette solution est une solution particulière à

$$ay'' + by' + cy = P(x)\cos(sx)$$

et la partie imaginaire une solution particulière de

$$ay'' + by' + cy = P(x)\sin(sx).$$