Symmetries, Fields and Particles. Examples 2.

1. Let X be an element of the Lie algebra of a matrix Lie group G. Consider the curve in G defined by q(t) = Exp(tX) where t is a real parameter. Show that,

$$g(t_1)g(t_2) = g(t_2)g(t_1) = g(t_1 + t_2)$$

for all values of t_1 and t_2 . Assuming there is no non-zero value of t for which g(t) is equal to the identity, show that the curve defines a Lie subgroup of G which is isomorphic to $(\mathbb{R}, +)$ (ie the real line with addition as the group multiplication law).

2. Verify the Baker-Campbell-Hausdorff (BCH) formula

$$\exp X \cdot \exp Y = \exp \left(X + Y + \frac{1}{2} [X, Y] + \frac{1}{12} [X, [X, Y]] - \frac{1}{12} [Y, [X, Y]] + \dots \right)$$

to the order shown.

- 3. Let $g(t) = \text{Exp } it\sigma_1$. By evaluating g(t) as a matrix, show that $\{g(t) : 0 \le t \le 2\pi\}$ is a 1-parameter subgroup of SU(2). Describe geometrically how this subgroup sits inside the group manifold of SU(2).
- 4. For each $A \in SU(2)$, we define a 3×3 matrix with entries,

$$R(A)_{ij} = \frac{1}{2} \operatorname{tr}_2 \left(\sigma_i A \sigma_j A^{\dagger} \right)$$
 – (1)

for i, j = 1, 2, 3. Using the Pauli matrix identity,

$$\sum_{j=1}^{3} (\sigma_j)_{\alpha\beta} (\sigma_j)_{\delta\gamma} = 2\delta_{\alpha\gamma}\delta_{\delta\beta} - \delta_{\alpha\beta}\delta_{\delta\gamma}$$

show that R(A) is an element of SO(3). Hint: You may appeal to the fact that $SU(2) \simeq S^3$ is connected to check that $\det R = 1$.

*(Harder) Check that we may invert Eqn (1) to express $A \in SU(2)$ in terms of $R \in SO(3)$ by setting,

$$A = \pm \frac{(I_2 + \sigma_i R_{ij} \sigma_j)}{2\sqrt{1 + \text{Tr}_3 R}}$$

where I_2 is the 2 × 2 unit matrix and summation over repeated indices is implied.*

This map provides an isomorphism between SO(3) and $SU(2)/\mathbb{Z}_2$.

5. Let G be a matrix Lie group and d a representation of its Lie algebra L(G). For group elements $g = \operatorname{Exp} X$ with $X \in L(G)$ we define $D(g) = \operatorname{Exp}(d(X))$. Using the BCH formula show that

$$D(g_1g_2) = D(g_1)D(g_2)$$

for all group elements $g_1 = \operatorname{Exp} X_1$ and $g_2 = \operatorname{Exp} X_2$ with $X_1, X_2 \in L(G)$. Can we conclude that D is a representation of G? Explain your answer.

- 6. (a) Let L be a real Lie algebra (i.e. there is a basis $T^a: a=1,\ldots,n=\mathrm{Dim}\,L$ with real structure constants f_c^{ab}). Suppose R is a representation of L. Write down the algebraic equations that the matrices $R(T^a)$ must satisfy. Show that the complex conjugate matrices $\bar{R}(T^a)=R(T^a)^*$ also define a representation of L.
- (b) Show that the fundamental representation $R(T^a) = -\frac{1}{2}i\sigma_a$, with a = 1, 2, 3 and its complex conjugate $\bar{R}(T^a) = \frac{1}{2}i(\sigma_a)^*$ are equivalent representations of L(SU(2)).

Show that the weights of the L(SU(2)) representations R and \bar{R} are the same.

7. Let R_1 and R_2 be two representations of a Lie algebra L with representation spaces V_1 and V_2 respectively. The tensor product of R_1 and R_2 is defined by the formula,

$$R_1 \otimes R_2(X) = R_1(X) \otimes I_2 + I_1 \otimes R_2(X)$$

where I_1 and I_2 are the identity maps on V_1 and V_2 respectively. Show that $R_1 \otimes R_2$ is a representation of L with representation space $V_1 \otimes V_2$.

8. Find the multiplicity of each weight of the tensor product $R_N \otimes R_M$ where N and M are nonegative integers. Here R_{Λ} denotes the irreducible representation of L(SU(2)) with highest weight Λ defined in the lectures. Deduce the Clebsch-Gordon decomposition,

$$R_N \otimes R_M = R_{|N-M|} \oplus R_{|N-M|+2} \oplus \cdots \oplus R_{N+M}$$
.

Verify that the dimensions of the reducible representation defined on the two sides of the equation are the same.

9 a) A Lie algebra is semi-simple if it has no abelian ideals. A semi-simple Lie algebra has a non-degenerate Killing form.

Consider the Lie algebra defined in Sheet 1, Question 8. Is it semi-simple? Find its Killing form explicitly and determine whether it is degenerate.

b) A finite-dimensional real Lie algebra is of compact type if it has a basis $\{T^a\}$ in which the Killing form has components, $\kappa^{ab} = -\kappa \, \delta^{ab}$ for some positive constant κ . Let L be a real Lie algebra of compact type and let I be an ideal of L. Let I_{\perp} denote the orthogonal complement of I with respect to the Killing form κ . $(Y \in I_{\perp})$ if and only if $\kappa(X, Y) = 0$ for all $X \in I$.) By considering $\kappa(X, [Y, Z])$, where $X \in I$, $Y \in I$ and $Z \in I_{\perp}$, show that I_{\perp} is an ideal and that

$$L=I\oplus I_\perp$$

where the summands mutually commute.

Deduce that any semi-simple complex Lie algebra M of finite dimension is the direct sum of a finite number of simple Lie algebras. You may use the fact stated in the lectures that any such M has a real form of compact type.