## Intervals, Transformations, and Slope Solution (version 77)

1. The function f is graphed below.



Indicate the following intervals using interval notation. Remember, you can use  $\cup$  between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

| Feature    | Where                   |
|------------|-------------------------|
| Positive   | $(-3,0) \cup (4,7)$     |
| Negative   | $(-7, -3) \cup (0, 4)$  |
| Increasing | $(-5,-1) \cup (1,7)$    |
| Decreasing | $(-7, -5) \cup (-1, 1)$ |
| Domain     | (-7,7)                  |
| Range      | (-2,2)                  |

## Intervals, Transformations, and Slope Solution (version 77)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.









3. Let function g be defined by the table below. Use the formula  $\frac{g(x_2)-g(x_1)}{x_2-x_1}$  to find the average rate of change between  $x_1=19$  and  $x_2=46$ . Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 14 & 19 \\ 19 & 77 \\ 46 & 14 \\ 77 & 46 \\ \end{array}$$

$$\frac{g(46) - g(19)}{46 - 19} = \frac{14 - 77}{46 - 19} = \frac{-63}{27}$$

The greatest common factor of -63 and 27 is 9. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-7}{3}$$

2