Balaji_DS assignment

November 3, 2021

INTRODUCTION TO DATA SCIENCE - IRIS

BALAJI.R 2020mc21501

Importing libraries

```
[1]: import pandas as pd import matplotlib.pyplot as plt import seaborn as sns
```

[2]: data = pd.read_csv(r'/Users/balajir/Documents/MSC/Sem 2/Introduction to Data

→Science/Assignment/Iris.csv')

Analysing Dataset

```
[3]: data.head()
```

[3]:	Id	${\tt SepalLengthCm}$	${\tt SepalWidthCm}$	${\tt PetalLengthCm}$	${\tt PetalWidthCm}$	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Tris-setosa

[4]: data.describe()

[4]:		Id	SepalLengthCm	${\tt SepalWidthCm}$	PetalLengthCm	${\tt PetalWidthCm}$
	count	150.000000	150.000000	150.000000	150.000000	150.000000
	mean	75.500000	5.843333	3.054000	3.758667	1.198667
	std	43.445368	0.828066	0.433594	1.764420	0.763161
	min	1.000000	4.300000	2.000000	1.000000	0.100000
	25%	38.250000	5.100000	2.800000	1.600000	0.300000
	50%	75.500000	5.800000	3.000000	4.350000	1.300000
	75%	112.750000	6.400000	3.300000	5.100000	1.800000
	max	150.000000	7.900000	4.400000	6.900000	2.500000

[5]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype			
0	Id	150 non-null	int64			
1	${\tt SepalLengthCm}$	150 non-null	float64			
2	${\tt SepalWidthCm}$	150 non-null	float64			
3	${\tt PetalLengthCm}$	150 non-null	float64			
4	${\tt PetalWidthCm}$	150 non-null	float64			
5	Species	150 non-null	object			
<pre>dtypes: float64(4), int64(1), object(1)</pre>						
memory usage: 7.2+ KB						

Scatter Plots


```
[7]: data['Species'].value_counts().plot(kind='bar', color = 'Grey')
```

[7]: <AxesSubplot:>


```
[8]: color_pallete = ['#fc5185', '#3fc1c9', '#364f6b']
sns.set_palette(color_pallete)
sns.set_style("white")
sns.pairplot(data.drop(['Id'],axis=1),hue='Species')
plt.show()
```


Correlation within dataset

[9]: data.corr()

[9]:		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	\
	Id	1.000000	0.716676	-0.397729	0.882747	
	${\tt SepalLengthCm}$	0.716676	1.000000	-0.109369	0.871754	
	${\tt SepalWidthCm}$	-0.397729	-0.109369	1.000000	-0.420516	
	${\tt PetalLengthCm}$	0.882747	0.871754	-0.420516	1.000000	
	${\tt PetalWidthCm}$	0.899759	0.817954	-0.356544	0.962757	
		PetalWidth	ıCm			

 Id
 0.899759

 SepalLengthCm
 0.817954

 SepalWidthCm
 -0.356544

 PetalLengthCm
 0.962757

 PetalWidthCm
 1.000000

```
[10]: plt.figure()
sns.heatmap(data.corr(),annot=True)
plt.show()
```


Assigning x & y variables

```
[11]: x = data.iloc[:,1:5]
y = data.iloc[:,5]
```

Data split

Decision Tree

```
[13]: from sklearn import tree
  dt= tree.DecisionTreeClassifier()
  dt.fit(X_train,y_train)
  y_pred = dt.predict(X_test)
  dt.score(X_test,y_test)
```

[13]: 0.9777777777777777

Confusion matrix - Decision Tree

```
[14]: from sklearn import metrics
  from sklearn.metrics import confusion_matrix , classification_report
  cfdt = metrics.confusion_matrix(y_test,y_pred)
  sns.heatmap(cfdt, annot=True,cmap="mako")
  plt.xlabel('Predicted')
  plt.ylabel('Truth')
```

[14]: Text(34.0, 0.5, 'Truth')

Cross validation - Decision Tree (10 fold)

```
[15]: from sklearn.model_selection import cross_val_score
    scores_dt = cross_val_score(dt, X_train, y_train, cv=10)
    print("Mean:", scores_dt.mean())
    scores_dt
```

Mean: 0.9045454545454545

Precision, recall, F1score - Decision tree

```
[16]: print(classification_report(y_test, y_pred))
                       precision
                                    recall f1-score
                                                        support
         Iris-setosa
                            1.00
                                      1.00
                                                 1.00
                                                              14
     Iris-versicolor
                                      1.00
                            0.94
                                                 0.97
                                                              17
      Iris-virginica
                            1.00
                                      0.93
                                                 0.96
                                                              14
            accuracy
                                                 0.98
                                                              45
           macro avg
                            0.98
                                      0.98
                                                 0.98
                                                              45
        weighted avg
                                      0.98
                                                 0.98
                                                              45
                            0.98
     Logistic regression
[17]: from sklearn.linear_model import LogisticRegression
      lr = LogisticRegression(max_iter= 1000)
      lr.fit(X_train,y_train)
      lr.score(X_test,y_test)
[17]: 1.0
[18]: y_pred_lr = lr.predict(X_test)
     Confusion matrix - Logistic regression
[19]: cflr= metrics.confusion_matrix(y_test,y_pred_lr)
      sns.heatmap(cflr, annot=True,cmap="mako")
      plt.xlabel('Predicted')
      plt.ylabel('Truth')
```

[19]: Text(34.0, 0.5, 'Truth')

Precision, recall, F1score - Logistic regression

[20]: print(classification_report(y_test, y_pred_lr))

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	14
Iris-versicolor	1.00	1.00	1.00	17
Iris-virginica	1.00	1.00	1.00	14
accuracy			1.00	45
macro avg	1.00	1.00	1.00	45
weighted avg	1.00	1.00	1.00	45

Cross validation - Logistic Regression (10 fold)

```
[21]: scores_lr = cross_val_score(lr, X_train, y_train, cv=10)
print("Mean:", scores_lr.mean())
scores_lr
```

Mean: 0.95272727272728

Random Forest

```
[22]: from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
rf.fit(X_train, y_train)
rf.score(X_test,y_test)
```

[22]: 0.977777777777777

```
[23]: y_pred_rf = rf.predict(X_test)
```

Confusion matrix - Random Forest

```
[24]: cfrf= metrics.confusion_matrix(y_test,y_pred_rf)
    sns.heatmap(cfrf, annot=True,cmap="mako")
    plt.xlabel('Predicted')
    plt.ylabel('Truth')
```

[24]: Text(34.0, 0.5, 'Truth')

Precision, recall, F1score - Linear regression

[25]: print(classification_report(y_test, y_pred_rf))

	precision	recall	f1-score	support	
Iris-setosa	1.00	1.00	1.00	14	
Tris-versicolor	1.00	0.94	0.97	17	

```
Iris-virginica
                      0.93
                                 1.00
                                           0.97
                                                        14
                                           0.98
                                                        45
      accuracy
     macro avg
                      0.98
                                 0.98
                                           0.98
                                                        45
 weighted avg
                                                        45
                      0.98
                                 0.98
                                           0.98
```

Cross validation - Random forest (10 fold)

```
[26]: scores_rf = cross_val_score(rf, X_train, y_train, cv=10)
print("Mean:", scores_rf.mean())
scores_rf
```

Mean: 0.9436363636363636

```
[26]: array([0.90909091, 0.90909091, 0.90909091, 1. , , 0.9 , 1. , 0.9 , 1. ])
```

Converting Precision, recall, f1score to Data frame

```
[27]: rf_clas = classification_report(y_test, y_pred_rf, output_dict= True)
    rf_clas_df = pd.DataFrame(rf_clas).transpose()
    dt_clas = classification_report(y_test, y_pred, output_dict= True)
    dt_clas_df = pd.DataFrame(dt_clas).transpose()
    lr_clas = classification_report(y_test, y_pred_lr, output_dict= True)
    lr_clas_df = pd.DataFrame(lr_clas).transpose()
    lr_clas_df
```

```
[27]:
                       precision recall f1-score support
      Iris-setosa
                             1.0
                                      1.0
                                                1.0
                                                        14.0
      Iris-versicolor
                             1.0
                                      1.0
                                                1.0
                                                        17.0
      Iris-virginica
                             1.0
                                      1.0
                                                1.0
                                                        14.0
                                      1.0
                                                1.0
                                                         1.0
      accuracy
                             1.0
      macro avg
                             1.0
                                      1.0
                                                1.0
                                                        45.0
                                                1.0
                                                        45.0
      weighted avg
                             1.0
                                      1.0
```

Final scores

```
[28]: Classifier precision recall f1-score macro avg Random Forest 0.977778 0.980392 0.978405 macro avg Logistic Regression 1.000000 1.000000 1.000000
```

```
macro avg
                        Decsion Tree
                                       0.981481 0.976190 0.978131
     all classifier scores
[29]: Classifier_scores = pd.DataFrame({
          'Model': ['Decision Tree', 'LogisticRegression', 'Random Forest'],
          'Score': [dt.score(X_test,y_test),lr.score(X_test,y_test),rf.

score(X_test,y_test)]
})
      Classifier_scores.sort_values(by='Score', ascending=False)
[29]:
                      Model
                                Score
      1 LogisticRegression 1.000000
              Decision Tree 0.977778
      0
      2
              Random Forest 0.977778
     Cross validation ranking
[30]: Classifier_cv = pd.DataFrame({
          'Model': ['Decision Tree', 'LogisticRegression', 'Random Forest'],
          'cv_Score': [scores_rf.mean(),scores_lr.mean(),scores_dt.mean()]})
      Classifier_cv.sort_values(by='cv_Score', ascending=False)
[30]:
                      Model cv_Score
      1 LogisticRegression 0.952727
              Decision Tree 0.943636
              Random Forest 0.904545
      2
```

By the above scores and models Logistic regression is the best classifier.