CNN Case Studies

Joe Yeh, M.D.

Common layer patterns

- Repeating pattern of stacks of CONV-RELU layers followed by POOL layer, which transitions into a few fully connected layers
 - INPUT -> [[CONV -> RELU]*N -> POOL?]*M -> [FC -> RELU]*K -> FC

Some good rules to follow (but not always)

- Input size should be divisible by 2 many times
- Use a convolution stride of 1 and pooling to reduce size
- Use same padding to keep size constant after convolution
- Use a stack of small filters instead of fewer large filters
- Don't try to reinvent the wheels (unless your goal is such!)

Recent departures

- Residual network doesn't have a fully connected layer
- Inception module has multiple convolutions in parallel

Landmark CNN architectures

- LeNet (http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf)
- AlexNet (https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)
- GoogLeNet (https://arxiv.org/abs/1409.4842v1)
- VGG (<u>https://arxiv.org/abs/1409.1556v6</u>)
- ResNet (<u>https://arxiv.org/abs/1512.03385v1</u>)
- DenseNet (https://arxiv.org/abs/1608.06993v5)

LeNet-5

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

LeCun et al. Gradient-Based Learning Applied to Document Recognition, 1998 http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

AlexNet

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Krizhevsky et al., ImageNet Classification Using Deep Convolutional Neural Network, 2012 https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Table 1: **ConvNet configurations** (shown in columns). The depth of the configurations increases from the left (A) to the right (E), as more layers are added (the added layers are shown in bold). The convolutional layer parameters are denoted as "conv \langle receptive field size \rangle - \langle number of channels \rangle ". The ReLU activation function is not shown for brevity.

ConvNet Configuration								
A	A-LRN				_			
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight			
layers	layers	layers	layers	layers	layers			
input (224×224 RGB image)								
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64 conv3-6				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64			
maxpool								
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128			
		conv3-128	conv3-128	conv3-128	conv3-128			
maxpool								
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
			conv1-256	conv3-256	conv3-256			
					conv3-256			
			pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
	conv3-51							
			pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
maxpool								
FC-4096								
FC-4096								
FC-1000								
soft-max								

Simonyan and Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition https://arxiv.org/pdf/1409.1556v6.pdf

Inception Module for GoogeLeNet

Szegedy et al., Going Deeper with Convolutions, 2014 https://arxiv.org/pdf/1409.4842v1.pdf

GoogLeNet

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1	· ·						2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0					[
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1\times1\times1024$	0								
dropout (40%)		$1\times1\times1024$	0								
linear		$1 \times 1 \times 1000$	1							1000K	1M
softmax		1×1×1000	0								

Table 1: GoogLeNet incarnation of the Inception architecture

Szegedy et al., Going Deeper with Convolutions, 2014 https://arxiv.org/pdf/1409.4842v1.pdf

GoogLeNet

Szegedy et al., Going Deeper with Convolutions, 2014 https://arxiv.org/pdf/1409.4842v1.pdf

ResNet

Figure 5. A deeper residual function \mathcal{F} for ImageNet. Left: a building block (on 56×56 feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.

He et al., Deep Residual Network for Image Recognition, 2015 https://arxiv.org/pdf/1512.03385v1.pdf

ResNet

layer name	output size	18-layer 34-layer		50-layer	101-layer	152-layer					
conv1	112×112	7×7 , 64, stride 2									
		3×3 max pool, stride 2									
conv2_x	56×56	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$ \left[\begin{array}{c} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{array}\right] \times 3 $					
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 4$	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array} \right] \times 4 $	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 8 $					
conv4_x			$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 6$	$\begin{bmatrix} 1 \times 1, 1024 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1, 1024 \end{bmatrix}$	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 36 $					
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3 \times 3,512 \\ 3 \times 3,512 \end{array}\right] \times 3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	$ \left[\begin{array}{c} 1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048 \end{array} \right] \times 3 $					
	1×1	average pool, 1000-d fc, softmax									
FLOPs		1.8×10^9	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10^9					

He et al., Deep Residual Network for Image Recognition, 2015 https://arxiv.org/pdf/1512.03385v1.pdf

ResNet

He et al., Deep Residual Network for Image Recognition, 2015 https://arxiv.org/pdf/1512.03385v1.pdf

DenseNet

Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

Huang et al., Densely Connected Convolutional Networks https://arxiv.org/pdf/1608.06993v5.pdf

DenseNet

Figure 2: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change feature-map sizes via convolution and pooling.

Huang et al., Densely Connected Convolutional Networks https://arxiv.org/pdf/1608.06993v5.pdf

DenseNet

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264				
Convolution	112 × 112	7×7 conv, stride 2							
Pooling	56 × 56	3×3 max pool, stride 2							
Dense Block	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 6 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$				
(1)	30 × 30	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times 3 \times 3 \text{ conv} \end{bmatrix} \times 0 \begin{bmatrix} 1 \times 3 \times$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{3}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{6}$					
Transition Layer	56×56	$1 \times 1 \text{ conv}$							
(1)	28×28	2×2 average pool, stride 2							
Dense Block	28×28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$				
(2)	26 × 26	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$	$\left[\begin{array}{c} 3 \times 3 \text{ conv} \end{array}\right]^{-12}$				
Transition Layer	28×28	$1 \times 1 \text{ conv}$							
(2)	14×14	2×2 average pool, stride 2							
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 24 \end{bmatrix} \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 48 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 64 \end{bmatrix}$				
(3)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{24}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{46}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{3}$				
Transition Layer	14×14	$1 \times 1 \text{ conv}$							
(3)	7 × 7	2×2 average pool, stride 2							
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 32 \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 48 \end{bmatrix}$				
(4)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{46}$				
Classification	1 × 1	7 × 7 global average pool							
Layer		1000D fully-connected, softmax							

Table 1: DenseNet architectures for ImageNet. The growth rate for all the networks is k = 32. Note that each "conv" layer shown in the table corresponds the sequence BN-ReLU-Conv.

Huang et al., Densely Connected Convolutional Networks https://arxiv.org/pdf/1608.06993v5.pdf