MATEO MINGHI ENRIQUE AYALA LEONARDO CERVANTES NICOLAS DONATI

## PANEL SOLAR

PRESENTACIÓN MEDIO TERMINO

## Vision

Crear un panel solar que siga la trayectoria del sol para maximizar la recolección de energía.







## Monitor de Energía Solar

Producción

Estado

Rendimiento

## Producción de Energía

Total Generada: 0 kWh

Generación Actual: 0 kW

#### Estado del Panel

Temperatura: 0°C

Estado: Funcionando

### Rendimiento Diario

Período Energía (kWh)

Mañana 0

Tarde 0

Noche 0

Última Actualización: --/--/

# Progreso y prototipos

- ESP32 con lógica
- Fotorresistencias para seguimiento
- Servo de prueba
- Interfaz prototipo
- Base de datos local

## Respuestas

Respuestas a las preguntas que consideramos más relevantes en nuestro proyecto

## Futuro

Queremos mejorar la estética del dispositivo, más ergonómico, cableado sencillo y una base de datos accesible desde la red, con una interfaz más amigable.

## **Ambiente Arduino y Tarjeta IoT**

¿Cómo se programa una tarjeta IoT?

- Mediante entorno Arduino, lenguaje C/C++, usando librerías.
- ¿Qué características tiene una tarjeta de IoT?
  - Conectividad inalámbrica, procesador de bajo consumo, interfaz de sensores.

### Conectividad y Puertos de Entrada/Salida

¿Qué función tienen las terminales GPIO y cómo se configuran?

- Pines programables para entrada/salida digital, se configuran por software.
- ¿Cómo se conecta apropiadamente un LED a un pin GPIO para no exceder corriente?
  - Mediante resistencia limitadora, calcular corriente según especificaciones del LED.

### Habilitación y Lectura del Sensor

¿Cómo se manejan las salidas digitales de un sensor?

- Mediante lectura de estados lógicos, uso de librerías de comunicación.
- ¿Cuáles son los parámetros por considerar para leer un sensor?
  - Precisión, rango de medición, tiempo de respuesta, resolución