EXAMEN DU BACCALAURÉAT	BURKINA FASO			
BACCALAURÉAT DE L'ENSEIGNEMENT GÉNÉRAL	Unité-Progrès-Justice			
SESSION NORMALE 2024				
SÉRIE : D	1er TOUR			

ÉPREUVE DE MATHÉMATIQUES

(Calculatrice non autorisée)

Durée : 04 heures Coefficient : 05

EXERCICE No 1 (04 points)

L

D

D

S

S

Le plan complexe est muni d'un repère orthonormé direct (O ; \vec{u} , \vec{v}) d'unité graphique 2 cm.

- 1. Écrire $a = (3 i)^2$ sous la forme algébrique. (0,25pt)
- 2. On considère le polynôme P défini par $P(z) = z^3 + (-1+i)z^2 + (2+2i)z + 8i$.
- a) Démontrer que l'équation P(z) = 0 admet une unique solution imaginaire pure αi ; $(\alpha \in \mathbb{R}^*)$. (0,25pt)
- b) Déterminer les nombres complexes a, b et c tels que :

$$P(z) = (z - \alpha i)(az^2 + bz + c).$$
 (0,5pt)

- c) Résoudre dans \mathbb{C} l'équation P(z) = 0. (0,5pt)
- 3. On considère les points A, B et C d'affixes respectives -1-i; 2-2i; 2i.
- a) Placer les points A, B et C dans le repère. (0,5pt)
- b) Quelle est la nature du triangle ABC? Justifier. (0,5pt)
- c) Déterminer l'affixe du point D, image du point A par la translation du vecteur BC. (0,25pt)
- 4. On considère le point E d'affixe 2 + 2i.
- a) Placer le point E dans le repère. (0,25pt)
- b) Démontrer que les points A, B C et E sont situés sur un même cercle dont on précisera le centre et le rayon. (1pt)

EXERCICE Nº 2 (04 points)

Le tableau suivant, extrait du rapport d'activités 2020 de l'Autorité de Régulation du secteur de l'Énergie, donne la consommation d'électricité des burkinabès en gigawattheure (GWh) entre 2015 et 2020.

Années	2015	2016	2017	2018	2019	2020
Rang de l'année x_i	1	2	3	4	5	6
Consommation en (GWh) y_i	1200	1317	1452	1568	1686	1858

Le plan est muni d'un repère orthonormé (O, I, J). On prendra 1 cm pour l'unité des rangs des années sur l'axe des abscisses et 1 cm pour 100 GWh sur l'axe des ordonnées, avec 1000 GWh à l'origine.

- 1. a) Représenter le nuage de points associé à cette série statistique. (0,5pt)
- b) Un ajustement affine de ce nuage parait-il possible? Justifier. (0,5pt)

- **2.** Soient A le point moyen du sous nuage constitué par les trois premiers points et B le point moyen du sous nuage constitué par les trois derniers points.
- a) Calculer les coordonnées de A et B. (1pt)
- b) Placer les points A et B dans le repère puis tracer la droite (AB). (0,5pt)
- c) Déterminer une équation réduite de la droite de régression (AB). (0,5pt)
- **3.** *a)* En admettant que cette évolution se poursuit, quelle sera en GWh la consommation d'électricité en 2023 ? (0,5pt)
- b) Déterminer l'année à laquelle cette consommation sera de 5641 GWh? (0,5pt)

PROBLÈME (12 points)

Partie A

S

S

Soit
$$f$$
 la fonction définie par :
$$\begin{cases} f(x) = \frac{x^2 - 4}{x + 1} & \text{si } x \in] - \infty ; 2[\\ f(x) = \sqrt{x^2 - x - 2} & \text{si } x \in [2 ; + \infty[$$

On appelle (%) sa courbe représentative dans un repère orthonormé (O, I, J) d'unité graphique 1 cm.

- 1. Montrer que l'ensemble de définition D_f de f est $]-\infty$; $-1[\cup]-1$; $+\infty[$. (0,25pt)
- **2.** a) Calculer les limites de f aux bornes de D_f . Interpréter géométriquement le résultat de la limite de f en -1.
- b) Montrer que la droite d'équation $y = x \frac{1}{2}$ est asymptote à (\mathscr{C}) en $+ \infty$. (0,5pt)
- 3. a) Déterminer les réels a, b et c tels que pour $x \in]-\infty$; 2[l'on ait $f(x) = ax + b + \frac{c}{x+1}$.
- b) En déduire que (D) d'equation y = x 1 est asymptote à (\mathscr{C}) en $-\infty$. (0,5pt)
- 4. Étudier la continuité de f en 2. (0,5pt)
- 5. a) Calculer $\lim_{x\to 2^-} \frac{f(x)-f(2)}{x-2}$ et $\lim_{x\to 2^+} \frac{f(x)-f(2)}{x-2}$ puis déduire la dériviabilité de f en 2. (1,5pt)
- b) Interpréter géométriquement les résultats précédents. (0,5pt)

Partie B

- **1.** a) Étudier les variations de f sur $]-\infty$; $-1[\cup]-1$; 2[et sur]2; $+\infty[$.
- b) Dresser le tableau de variation de f. (1,75pt)
- 2. Déterminer une équation de la tangente (T) à (C) au point d'abscisse 0. (0,5pt)
- 3. Déterminer les coordonnées des points d'intersection de (4) avec l'axe des abscisses.
- 4. Tracer (T), les asymptotes, les demi-tangentes au point d'abscisse en 2 et (\mathscr{C}) . (1pt)

Partie C

1. Donner une primitive $F \operatorname{de} f \operatorname{sur}]_{-\infty}$; – 1[.

On pourra utiliser 3. a) de la partie A. (0,5pt)

- **2.** Soit \mathcal{A} l'aire de la partie du plan délimitée par (%), (D) et les droites d'équations x = -5 et x = -2.
- a) Hachurer sur le graphique l'aire A. (0,25pt)
- b) Calculer \mathcal{A} en cm². (0,5pt)
- 3. On considère Σ , la portion du plan comprise entre les droites d'équations x = 2 et x = 3, l'axe des abscisses et la courbe ($\mathscr C$). On note $\mathscr V$ le volume engendré par la rotation complète de Σ autour de l'axe des abscisses. Calculer $\mathscr V$ en cm³. ($\mathcal O$,5pt)

Partie D

S

S

S

D

S

S

S

S

S

S

S

S

S

Soit la fonction g définie par g(x) = |f(x)| et (Γ) sa représentation graphique.

- **1.** Sans étudier la fonction g, tracer (Γ) à l'aide de (\mathscr{C}). Expliquer la construction. (\mathcal{O} ,5pt)
- 2. Déterminer graphiquement le nombre de solution sur D_g de l'équation g(x) = m où m est un réel donné. (0,5pt)