

Flash Technology: 200-400Mbps and Beyond

KeunSoo Jo Samsung Electronics Co. LTD Doug Wong Toshiba

Sep. 29th, 2010 Hsinchu Oct. 1st, 2010 Seoul TOSHIBA
Leading Innovation >>>

Oct. 4th, 2010 San Jose

Table of Agenda

- NAND Flash Primer
- NAND Interface Evolution (~200Mbps)
- Need for higher NAND interface speed
- High-Speed NAND Flash Interface (400Mbps and above)
 - Differential Signaling
 - Vref
 - On Die Termination
 - Latency DQS Cycle
 - External Vpp
 - Features Enable/Disable
 - Backwards Compatibility

GND

NAND Flash Primer (1/2)

NAND requires Erase before Programming

Erase GND GND Program Erase 999 Vth. Verase GND Program GND Vpgm Erase Program 999 Vth'

GND

NAND Flash Primer (2/2)

- NAND Flash is page-based for Read & Program Operation
 - The internal data register holds one page of date
 - A Page is the unit of transfer between the data register and the memory array.
 All program and read operations transfer a page of data between the data register and a page in the memory array.

NAND Interface Evolution (~200Mbps)

- As performance requirements increase, the legacy NAND interface(SDR-single data rate) becomes bottleneck, esp. for read performance.
- JEDED NAND Flash I/F specification is scheduled to be ratified by early 2011

	Legacy SDR (~66Mbps)	Toggle-mode DDR (~200Mbps)	Synchronous DDR (~200Mbps)	
Pinout	→ WE# RE# DQ	→ WE# RE# DQ DQS	CK W/R# DQ DQS	
Writes	WE# Din	WE# DQS Din	CK W/R# DQS Din	
Reads	RE# Dout	RE# DQS Dout	CK W/R# DQS Dout	

Supported interface is identified by Read ID

Growing Need for Higher NAND I/F Speed

- Conventional NAND Flash memory application
 - High capacity (low cost), small form factor & low power consumption
 - -> Common in most CE devices

- System performance devices
 - High-performance computing
 - Massive data processing

- New CE devices
 - High performance

3D gaming

Growing Need for Higher NAND I/F Speed

- Performance demand with the growth of storage interface
- With continuing innovations in such as the NAND architecture and enhanced I/O speed, performance can be achieved.

Introducing High-Speed NAND Flash Interface

- New features to enable 400 Mbps
 - Complementary DQS and RE signals
 - Vref (SSTL)
 - On Die Termination
 - DQS latency adjustment

Differential Signaling

- Independent enablement of RE and DQS
- Immunity to GND Noise and Cross Talk

Toggle	CE#
DDR	CLE
NAND	ALE
	RE#
	WE#
	WP#
	R/B#
	DQS
	DQ[0:7]

CE# CLE ALE RE# WE#	Toggle DDR 400 NAND
WP# R/B#	DQS#
DQS	Vref
DQ[0:7]	Vpp

Legacy SDR	DDR (Toggle/ Sync)	High- Speed DDR	Туре	Description
15	16	20		
ALE	ALE	ALE	I	Address Latch Enable
CLE	CLE	CLE	I	Command Latch Enable
/CE	/CE	/CE	I	Chip Enable
/RE	/RE or W/R#	/RE	I	Read Enable
/WE	/WE or CK	/WE	I	Write Enable
/WP	/WP	/WP	I	Write Protect
R/B	R/B	R/B	0	Ready/Busy
DQ	DQ	DQ	I/O	Data Input/Output
	DQS	DQS	I/O	Data Strobe
		/DQS	I/O	Data Strobe Complement
		RE	- 1	Read Enable Complement
		Vpp	I	External High Voltage
		Vref	I	Voltage Reference

Vref

- SSTL
 - 400 Mbps only supported at 1.8V VccQ
 - Industry standard that is easily adaptable
 - Allows for higher speeds and lower power consumption
- External Vref
 - VccQ/2
 - Allows for tighter setups/holds due to controlled reference
 - Reduces effects from external GND bounce

On Die Termination

- Once ODT is enabled by Set Feature, no other operation by host required.
- For example, if program command is issued, ODT is turned on only during data transfer period.

High-Speed Interface Simulation with On Die termination

Test Condition

1. Cin: 3.5pF/Die

2. Host Cin: 8pF

3. PKG Cap: 2.03pF

4. VccQ: 1.8V

5. Transmission Line: 50ohm

(X-talk included)

6. Termination: 100 Ω

7. Freq: 400Mbps(200MHz)

Write Operation without ODT

Write Operation with ODT

Latency DQS Cycle

- Pre-toggles of DQS until valid DQS is stabilized
 - Appropriate duty ratio can be obtained
 - Latency provided for current specification is from zero to 4 cycles.
 - Latency DQS Cycle can be programmed for Data In and Data Out respectively.

External Vpp for NAND

- Using external power supply reduces current consumption for Program/Read operation
 - On-chip charge pumps have relatively low power efficiency (<30%)
 - In server SSD applications, high voltage source is provided.
 - If NAND can utilize these high voltage source, overall SSD power efficiently can be lowered. (no staggered program operation)

Parameter	Symbol	Min	Тур.	Max	Unit
External Vpp	Vpp	11.5	12	12.5	V

Functional Block Diagram

Features Enable/Disable

New signals and functions can be enabled selectively

 Features introduced with High-Speed I/F for NAND flash will be available to be enabled or disabled with Feature

address 02h.

P0

P1

107 106 105 104 103 102 101 100 ODT Reserved **CMPR** CMPD Vref Latency DQS cycles for Data Input (Optional) Latency DQS cycles for Data Output (Mandatory) P2-P3 Reserved(0)

	Description
Vref	0 : Disabled (default) 1 : Enabled
CMPD (DQS Complement)	0 : Disabled (default) 1 : Enabled
CMPR (RE_n Complement)	0 : Disabled (default) 1 : Enabled
ODT	0000 : Disabled (default) 0001 : Enabled with 150ohm 0010 : Enabled with 100ohm 0011 : Enabled with 75ohm 0100 : Enabled with 50ohm Others reserved for future use
Latency DQS cycles for Data Input/Output	0000 : No latency DQS cycle (default) 0001 : One latency DQS cycle 0010 : Two latency DQS cycle 0011 : Four latency DQS cycle Others reserved for future use

Backward Compatibility

- High-Speed NAND Flash supports backward compatibility
 - New signals and functions are user-selective
 - Set feature command is used for changing interface
- ONFi-JEDEC Joint Task Group collaborating to provide a single, industry standard, high-speed NAND interface with backward compatibility.

Join JEDEC for early access to the spec

 For an early and close look at the spec or contribution to standard, please join JEDEC or contact your NAND suppliers

Thank You