6.1: ARIMA models for nonstationary series

Taylor

University of Virginia

Taylor (UVA) "6.1" 1 /

Motivation

This chapter is all about putting the "I" in ARIMA.

Taylor (UVA) "6.1" 2 / 6

Definition

definition

If d is a nonnegative integer, then $\{X_t\}$ is an $\mathsf{ARIMA}(\mathsf{p},\mathsf{d},\mathsf{q})$ process if $Y_t = (1-B)^d X_t$ is a causal $\mathsf{ARMA}(\mathsf{p},\mathsf{q})$ process.

- X_t now has d unit roots: it satisfies $\phi^*(B)X_t = \phi(B)(1-B)^dX_t = \theta(B)Z_t$
- We've been doing this already when we difference our log-prices

Taylor (UVA) "6.1" 3 / 6

Explanation

"I" stands for integrated (summed) because

$$X_t = X_0 + \sum_{j=1}^t Y_j$$

where each Y_j is from some stationary ARMA process. Clearly

$$Y_t = (1 - B)X_t$$

Taylor (UVA) "6.1" 4 /

Mean versus Intercept

Writing the intercept or mean terms can be done in two different ways. Make sure you know what your software is giving you.

The equation

$$\phi(B)(1-B)^d(X_t-\mu t^d/d!)=\theta(B)Z_t$$

is the same as

$$\phi(B)(1-B)^dX_t=c+\theta(B)Z_t.$$

What's EX_t ? What about μ . What is c?

Taylor (UVA) "6.1" 5 / 6

A Common Bug

Warning!

By default, stats::arima() does not include a mean term when you fit ARIMA models. forecast::Arima() does. Make sure you are not forcing your expected returns to be 0. Fore more information, see 6.1.R

Taylor (UVA) "6.1" 6 /