

Lecture 1-- Spikes

Maria Kesa

The Brain is Mysterious.

How do neurons communicate?

With Spikes and Neurotransmitters

From "Neuronal Dynamics", Gerstner et al, https://neuronaldynamics.epfl.ch/

Hodgkin-Huxley Model

Nobel Prize in Physiology or Medicine, 1963

$$I = C_m \frac{\mathrm{d}V_m}{\mathrm{d}t} + \bar{g}_{\mathrm{K}} n^4 (V_m - V_K) + \bar{g}_{\mathrm{Na}} m^3 h (V_m - V_{Na}) + \bar{g}_l (V_m - V_l),$$

$$\frac{dn}{dt} = \alpha_n (V_m) (1 - n) - \beta_n (V_m) n \qquad \text{Conductances}$$

$$\frac{dm}{dt} = \alpha_m (V_m) (1 - m) - \beta_m (V_m) m \qquad \text{Gating variables}$$

$$\frac{dh}{dt} = \alpha_h (V_m) (1 - h) - \beta_h (V_m) h \qquad \text{Reversal potentials}$$

Solution of the equation for currents that are Inserted into the neuron (mimicking real synaptic input)

https://en.wikipedia.org/wiki/Hodgkin%E2%80%93Huxle y_model#/media/File:Hodgkins_Huxley_Plot.gif

Let's simulate some SPIKES!