TIES WITHOUT WRDERS

МАТЕМАТИКА БЕЗ ГРАНИЦИ

9-12 КЛАС

ЗИМА 2016

УВАЖАЕМИ УЧЕНИЦИ,

Времето за работа по задачите е 60 минути.

За задачите с посочен отговор в листа за отговори посочвате буквата на верния отговор, а за задачите със свободен отговор – посочвате отговора/ите.

Забранено е използването на учебници, калкулатори, мобилни телефони и справочници с формули.

За всеки правилен отговор се присъжда по 1 точка.

Самостоятелната и честна работа е главното изискване на организаторите към участниците в турнира.

Желаем успех!

Задача 1. След опростяване на израза

$$1 - x + x^2 - x^3 + x^4 - x^5 + x^6$$
). $(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)$

и превеждането му в нормален вид коефициентът пред деветата степен е:

A) 0

B) 1

C) -1

D) друг отговор

Задача 2. Най-малкото естествено число N, за което $\sqrt{2016.N}$ е рационално число, е:

A) 2

B) 7

C) 14

D) 28

Задача 3. За колко цели числа x е изпълнено неравенството

 $\frac{x-1}{\sqrt{x+1}} \le 0$?

A) 1

B) 2

C) 3

D) повече от 3

Задача 4. Триъгълник ABC е равностранен. Точката M е от по-малката от дъгите AC от описаната около триъгълника окръжност. Колко са ъглите на чертежа с върхове A, B, C и M, които са равни на 60° ?

Задача 7. Ако α и β са реалните корени на уравнението $x^4 - (x-1)^2 = 0$, тогава

A) 5 **B)**
$$\sqrt{5}$$
 C) $-\sqrt{5}$ **D)** -5

B) 4

B) 7

B) 5

A) 3

A) 6

A) 0

 $|\alpha - \beta|$ е равно на:

Задача 8. На 50 картички са записани всички цели числа от 1 до 50. Колко най-малко картички трябва да изберем, без да гледаме, за да сме сигурни, че сме взели картички с написани върху тях поне 3 прости числа?

Задача 9. Равнобедрен триъгълник има обиколка 56 ст, а две от страните му се отнасят, както 3:2. Най- малката възможна негова страна е:

Задача 10. Колко е броят на естествените числа с три различни цифри, такива че някоя от цифрите е средно геометрично на другите две?

A) 6 **B**) 12 **C**) 18 **D**) 24
$$\underline{\textit{Пояснение}}$$
: Казваме, че числото a е средно геометрично на числата b и c , ако $a^2 = b.c$.

Задача 11. Ако a и b са числа от множеството $\{2, 2 - \sqrt{3}, 2 + \sqrt{3}, \sqrt{3}\}$, колко са наредените двойки числа a, b), за които или + b, или a. b са естествени числа.

Задача 12. Намерете цифрата на единиците на числото, равно на сбора на кубовете на целите числа от 1 до 101 включително.

Задача 13. Ако ABCD е квадрат и точка F е такава, че триъгълник BCF е равностранен, да се определи най-голямата възможна стойност на ъгъл AFD.

Задача 14. Колко са правилните несъкратими дроби, на които числителят и знаменателят са естествени числа със сбор 14?

Задача 15. Кое е най-малкото естествено число N, за което произведението на 13, 17 и N може да се представи като произведение на три последователни естествени числа?

Задача 16. Ъглите при върховете B и C на триъгълник ABC са съответно 50° и 60° . Точката M е вътрешна за триъгълника и $\sphericalangle MAC = \sphericalangle MCA = 40^{\circ}$. Пресметнете $\sphericalangle BMC$.

Задача 17. Пресметнете A, ако

$$\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \frac{1}{3^{2016}} + \frac{1}{2 \cdot 3^{2016}} = \frac{A}{2016}.$$

Задача 18. Определете стойностите на параметъра a, при които кординатните оси и правите y = 1 - ax и y = 2 - x определят трапец.

Задача 19. Колко са целите числа от 2000 до 2016, които не могат да бъдат стойности на дискриминантата на квадратно уравнение с цели коефициенти?

Задача 20. Даден е равнобедрен триъгълник ABC с лице $20\ cm^2$ и бедра AC и BC на равни на $10\ cm$. Точка M е от основата AB, а точките E и F са петите на перпендикулярите от точката M към бедрата BC и AC. Да се определи най-голямата стойност на произведението ME. MF.

