# Master 2 MISO/OSB

# DNA mutations and prediction of genetic diseases

Morgane Baron morgane.baron@univ-lille.fr



# What Are Mutations?

- Changes in the nucleotide sequence of DNA
- May occur in somatic cells (aren't passed to offspring)
- May occur in gametes (eggs & sperm) and be passed to offspring

# Are Mutations Helpful or Harmful?

- Mutations happen regularly
- Almost all mutations are neutral
- Chemicals & UV radiation cause mutations
- Many mutations are repaired by enzymes

# Are Mutations Helpful or Harmful?

- Some type of skin cancers and leukemia result from somatic mutations
- Some mutations may improve an organism's survival (beneficial)

# Types of Mutations

# **Chromosome Mutations**

- May Involve:
  - Change in the structure
  - loss or gain



# **Chromosome Mutations**

- •Four types exist:
  - Deletion
  - Inversion
  - Translocation
  - Nondisjunction

## Deletions

- Due to breakage
- A piece of a chromosome is lost



If too much information is lost, it may be fatal to the organism and may result in early death (e.g., Cri-du-chat syndrome – large deletion from chromosome #5)

# Inversions within chromosome

- Chromosome segment breaks off
- Segment flips around backwards
- Segment reattaches

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

# Inverted ABCDEFGHIJ ADCBEFGHIJ

# Duplications within chromosome

# Occurs when a gene sequence is repeated

Duplication

Duplicated

ABCDEFGHIJ → ABCDBCDEFGHIJ

Effect of base duplications depend on location within the chromosome – whether or not duplication resides in coding or non-coding region of DNA

## Translocations within chromosome

- Involves two chromosomes that aren't homologous
- Part of one chromosome is transferred to another chromosomes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



Associated with 2 forms of leukemia – oncogenes translocated to incorrect regions within chromosomes of leukocytes (white blood cells)

# Nondisjunction

- Failure of chromosomes to separate during meiosis
- Causes gamete to have too many or too few chromosomes



normally.

homologs does not

separate (= nondisjunction).

Tetrads line up in middle of cell.

number of chromosomes-either

one too many or one too few.

- ⇒ In these disorders, entire chromosomes, or large segments of them, are missing, duplicated, or otherwise altered
- Can be organized in two basic groups:
- 1/ Numerical abnormalities: when an individual is missing either a chromosome from a pair (monosomy) or has more than two chomosomes of a pair (trisomy)
  - 2/ Structural Abnormalities

<u>Deletions</u>: A portion of the chromosome is missing or deleted.

<u>Duplications or segmental duplications</u>: A portion of the chromosome is duplicated, resulting in extra genetic material.

<u>Translocations</u>: A portion of one chromosome is transferred to another chromosome. 2 main types of translocation: a/ reciprocal translocation: segments from two different chromosomes have been exchanged; b/ Robertsonian translocation: an entire chromosome has been attached to another at the centromere.

#### ⇒ Down Syndrome





#### ⇒ Turner Syndrome





#### Cri-du-chat-Syndrome



#### Characteristics

Severe developmental delay and cognitive deficits and distinctive facial abnormalities



Round face, low-set ears



Microcephaly



Hypoplastic nasal bridge



Cri-du-chat Chromosome 5 pair

| <b>AUTOSOMAL DI</b> | SO | RDI | ERS |
|---------------------|----|-----|-----|
|---------------------|----|-----|-----|

#### **Common Aneuploidies**

Trisomy 21 (Down syndrome)

Trisomy 18 (Edward syndrome)

Trisomy 13 (Patau syndrome)

#### Structural Abnormalities: Deletion Syndromes

Cri du Chat syndrome (5p-)

#### Structural Abnormalities: Microdeletion Syndromes

Di George syndrome (22q11)

Prader-Willi syndrome (pat 15q11-q13)

Angelman syndrome (mat 15q11-q13)

#### Structural Abnormalities: Trinucleotide Expansion Disorders

**Huntington Disease (4p16.3)** 

**Myotonic Dystrophy (19q13.2)** 

Freidreich Ataxia (9q13)

#### SEX CHROMOSOMAL DISORDERS

#### **Common Aneuploidies**

Klinefelter syndrome (47,XXY)

47,XYY syndrome

Turner syndrome (45,X and variants)

#### Structural Abnormalities

Fragile X syndrome (trinucleotide expansion; Xq27.3)

Sex Reversal (deletion, translocation; Yp11.32)

# **Gene Mutations**

- Change in the nucleotide sequence of a gene
- May only involve a single nucleotide
- May be due to copying errors, chemicals, viruses, etc.

# Types of Gene Mutations

- •Include:
  - Substitutions
  - Insertions
  - Deletions

# **Point Mutations**

- •Change of a single nucleotide
- •Includes the deletion, insertion, or substitution of ONE nucleotide in a gene

# **Point Mutations**

- Substitution of 1 base for another
- If purine (A/G) or pyrimidine (T/C) substitutes for itself = transition substitution
- If purine substitutes for pyrimidine or vice versa = transversion substitution

# Genetic code



# Results of point mutations

- <u>Silent mutations</u> = due to redundancy of the Genetic Code, some point mutations are silent do not code for a different amino acid
- Missense mutations = produces change in amino acid in protein but does not change the function of the protein
- Nonsense mutations = produces a STOP codon in the midst of the mRNA transcript; can produce a non-functional protein

## Silent mutation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Silent Mutation 5'-ATGCCCTATCGCTGA-3' Sense 3'-TACGGGATAGCGACT-5' Template 5'-AUGCCCUAUCGCUGA-3' mRNA Protein Met Pro Thr Arg Stop

Due to redundancy of Genetic Code, no change in amino acid sequence is produced

## Missense mutation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



Missense mutation produces a change in amino acid sequence in protein product (Histidine in for Arginine); It may change function of protein or may not.

## Nonsense mutation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



Nonsense mutation produces a STOP codon within the mRNA transcript leading to a truncated protein. How short the protein product depends on where the STOP codon was produced within the mRNA transcript.

# Frameshift Mutation

- Inserting or deleting one or more nucleotides
- Changes the "reading frame" like changing a sentence
- Proteins built incorrectly

Triplets de bases (ADN)

ATG GGC ATT CGT AGC TAT CCA TAA AAA TATA ...

CAU

Triplets de bases (ADN)

ATG GGC ATT CGT AGC TAT CCA TAA AAA TATA ...

**GGA** 

Triplets de bases (ADN)

ATG GGC ATT CGT AGC TAT CCA TAA AAA TATA ...

UUA

Triplets de bases (ADN)

ATG GGC ATT CGT AGC TAT CCA TAA AAA TATA ...

**UAA** 

Triplets de bases (ADN)

ATG GGC ATT CGT AGC TAT CCA TAA AAA TATA ...



# Amino Acid Sequence Changed



# Mutations are classified by effect on protein function

- loss-of-function (most common)
   decreased amount normal protein, or altered cell traficking
- gain-of-function
- novel property
- inappropriate expression
  - ex: Oncogenes in cancer

### Mutations result in different alleles

- alleles are classified as "dominant" or "recessive"
- dominant phenotypes observable in heterozygotes
- recessive phenotypes observable only in homozygotes



### Pedigree legend in genetics



#### Autosomal recessive





#### X-linked recessive



#### **Multifactorial genetic disorders**



#### **Multifactorial genetic disorders**

#### Mutations that proliferate are 'SNPs'

- Single Nucleotide Polymorphisms
- The most common type of variation in DNA
- Substitution of 1 nucleotide for another
- 2/3 SNPs involve C-> T
- Definition is evolving:
  - Old definition: SNPs must be seen in 1% of the population
  - SNPs occur ~ every 300 bp
  - Therefore ~ 10 million SNPs in the human genome

#### **Multifactorial genetic disorders**

Main assumption: A common human disease (e.g. type 2 diabetes, obesity, cancer, Alzheimer disease, Parkinson...) is due to frequent mutations (with a minor allele frequency)



#### Rare genetic disorders

- ► Genetic disorder = when the illness is caused by one or more abnormalities in the genome
- Rare genetic disorder = when the abnormality is monogenic /located on one gene
- >5000 human diseases are caused by rare genetic disorders
- ▶ Only one abnormality can cause the illness!!

### How to filter NGS data?



#### **Diagnosis: ACMG criteria**

- ACMG = American College of Medical Genetics and Genomics
- ► Consensus: criteria to classify pathogenic variants



**ACMG** criteria

### Diagnosis: ACMG criteria

#### ACMG STANDARDS AND GUIDELINES

RICHARDS et al. | Interpretation of sequence variants

| Table 3 Criteria for classifyi | ng pathogenic variants                                                                                                                                                                                              |            |                                                                                                                                                                                                                      |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Evidence of pathogenicity      | Category                                                                                                                                                                                                            |            |                                                                                                                                                                                                                      |
| Very strong                    | PVS1 null variant (nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where LOF is a known mechanism of disease                                        | Moderate   | PM1 Located in a mutational hot spot and/or critical and well-established functional domain (e.g., active site of an enzyme) without benign variation                                                                |
|                                | Caveats:  • Beware of genes where LOF is not a known disease mechanism (e.g., GFAP, MYH7)                                                                                                                           |            | PM2 Absent from controls (or at extremely low frequency if recessive) (Table 6) in Exome Sequencing Project,<br>1000 Genomes Project, or Exome Aggregation Consortium                                                |
|                                | Use caution interpreting LOF variants at the extreme 3' end of a gene                                                                                                                                               |            | Caveat: Population data for insertions/deletions may be poorly called by next-generation sequencing.                                                                                                                 |
|                                |                                                                                                                                                                                                                     |            | PM3 For recessive disorders, detected in trans with a pathogenic variant                                                                                                                                             |
|                                | <ul> <li>Use caution with splice variants that are predicted to lead to exon skipping but leave the remainder of the protein intact</li> </ul>                                                                      |            | Note: This requires testing of parents (or offspring) to determine phase.                                                                                                                                            |
|                                | Use caution in the presence of multiple transcripts                                                                                                                                                                 |            | PM4 Protein length changes as a result of in-frame deletions/insertions in a nonrepeat region or stop-loss variants                                                                                                  |
| Strong                         | PS1 Same amino acid change as a previously established pathogenic variant regardless of nucleotide change                                                                                                           |            | PMS Novel missense change at an amino acid residue where a different missense change determined to be<br>pathogenic has been seen before                                                                             |
|                                | Example: Val—Leu caused by either G>C or G>T in the same codon                                                                                                                                                      |            | Example: Arg156His is pathogenic; now you observe Arg156Cys                                                                                                                                                          |
|                                | Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level                                                                                                                          |            | Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level.                                                                                                                          |
| N                              | PS2 De novo (both maternity and paternity confirmed) in a patient with the disease and no family history                                                                                                            |            | PM6 Assumed de novo, but without confirmation of paternity and maternity                                                                                                                                             |
|                                | Note: Confirmation of paternity only is insufficient. Egg donation, surrogate motherhood, errors in embryo<br>transfer, and so on, can contribute to nonmaternity.                                                  | Supporting | PP1 Cosegregation with disease in multiple affected family members in a gene definitively known to cause the disease                                                                                                 |
|                                | PS3 Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene<br>product                                                                                          |            | Note: May be used as stronger evidence with increasing segregation data                                                                                                                                              |
|                                | Note: Functional studies that have been validated and shown to be reproducible and robust in a clinical diagnostic laboratory setting are considered the most well established.                                     |            | PP2 Missense variant in a gene that has a low rate of benign missense variation and in which missense variants<br>are a common mechanism of disease                                                                  |
|                                | PS4 The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in controls                                                                                       |            | PP3 Multiple lines of computational evidence support a deleterious effect on the gene or gene product<br>(conservation, evolutionary, splicing impact, etc.)                                                         |
|                                | Note 1: Relative risk or OR, as obtained from case-control studies, is >5.0, and the confidence interval around<br>the estimate of relative risk or OR does not include 1.0. See the article for detailed guidance. |            | Caveat: Because many in silico algorithms use the same or very similar input for their predictions, each algorithm should not be counted as an independent criterion. PP3 can be used only once in any evaluation of |
|                                | Note 2: In instances of very rare variants where case-control studies may not reach statistical significance, the                                                                                                   |            | a variant.                                                                                                                                                                                                           |
|                                | prior observation of the variant in multiple unrelated patients with the same phenotype, and its absence in<br>controls, may be used as moderate level of evidence.                                                 |            | PP4 Patient's phenotype or family history is highly specific for a disease with a single genetic etiology                                                                                                            |
|                                | controls, may be used as moderate level of evidence.                                                                                                                                                                |            | PPS Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory<br>to perform an independent evaluation                                                             |
|                                |                                                                                                                                                                                                                     |            |                                                                                                                                                                                                                      |

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology; Genet Med. 2015 May;17(5)

#### Where find data?

- Databases: HGMD, clinVar, GnomAD....
- **▶** Data about known variants, for example:
- Presence of another variant at the same locus in a gene
- > Allelic frequence in general populations
- Evidence of deleterious effect on the gene or on the gene product
- Scientific publication about mutations
- > In vivo functional studies
- Alamut software is a convenient access to several databases of known variants
- Warning: always check that you explore the same transcript: NM\_....

- Prediction algorithmes:
- **►** Splice site prediction
- **►** Nucleotide conservation prediction

All these data are needed in order to classify the variants

## PVS1 criterion (Pathogenicity Very Strong)

null variant = nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion



```
Nonsense mutation: check the Amino Acid change: *=stop
Examples:
NM_000207.2 c.184C>T, p. Gln62*)
NM_000207.2 c.324C>G, p.(Tyr108*)

CDNA protein
```

null variant = nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion

```
Nonsense mutation: check the Amino Acid change:
*=stop
Exemples:
gene INS (AD)
NM_000207.2 c.184C>T, p.(Gln62*) ht, AD
NM_000207.2 c.324C>G, p.(Tyr108*) ht, AD

CDNA protein
```

#### Where to check:

- NGS Annotation File
- Alamut software
- Public databases



null variant = nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion



Frameshift mutation: deletion/insertion in which the number of deleted base pairs is not divisible by three: check the Amino Acid change and consequences
Example:
c.2711-2714del // p.(His905Alafs\*34)

Warning: Indel of multiple of 3 nucleotides = indel of amino acid without frameshift

null variant = nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion

Alamut

Frameshift mutation: in case of insertion or deletion: check the Amino Acid change and consequences

Exemple:

NM\_018534 c.2712-2715del // p.(His905Alafs\*34)

Warning: Insertion /deletion of multiple of 3 nucleotides = indel of amino acid without frameshift

Where to check:

- NGS Annotation File
- Alamut software
- Public databases

| Variant NM_018534.3(NRP2):c.2712_2715del [Unsaved] |          |           |                  |       |               |  |
|----------------------------------------------------|----------|-----------|------------------|-------|---------------|--|
| Variant                                            | Occ      | urrences  |                  |       |               |  |
| Caracté                                            | ristiqu  | ies       |                  |       |               |  |
| gDNA:                                              |          | Chr2(GRC  | :h38):g.20577651 | 7_205 | 776520del     |  |
| cDNA:                                              |          | NM_0185   | 34.3(NRP2):c.271 | 2_271 | 5del          |  |
| Localisa                                           | tion:    | Exon 16   |                  |       | Mutalyzer     |  |
| Type:                                              |          | Deletion  |                  | Vari  | iantValidator |  |
| Effet su                                           | ır le co | odage: Fr | ameshift         |       |               |  |
| % A                                                | A/AA     | p.        | (His905Alafs*34) |       |               |  |

null variant = nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion

Alamut

AGGTAGAGCAGATCCTGGC

- - - N

Splice site variant: at the boundary of an exon and an intron .

For example: gene GCK (AD)

Intronic:

NM 000162.3 c.46-4G>A, ht

Exonic:

NM\_000162.3 c.211G>C, ht (intron start after c.211)



SpliceSiteFinder-like

MaxEntScan

SINSPILICE

5

Reference Sequence

NNSPLICE

GeneSplicer

Branch Points

GeneSplicer

GeneSplicer

SpliceSiteFinder-like

MaxEntScan
NNSPLICE 5

Mutated Sequence

Splicing ok

TGCTCCCATCCCCTCCCTGTG

No splicing

FGCT CCCAT CCCCT CCCT GT GC AGT AGAGCAGAT CCT GGC

Where to check:

- Alamut software
- Splicing prediction tools

null variant = nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion

Initiation codon: first ATG = Methionine = M exemple: c.1A>G, p.?

**Alamut** 

single or multi-exon deletion

## **PS1** criterion (Pathogenicity Strong)

Same amino acid change as a previously established pathogenic variant regardless of nucleotide change

example: Val -> Leu caused by either G > C or G > T in the same codon



Can been checked in Alamut (database ClinVar) and/or in HGMD

## **PS1** criterion (Pathogenicity Strong)

HGMD



Variant: NM\_000162.5(GCK):c.523G>C // p.Gly175Arg
Already present in HGMD (in this case with the same nucleotide change)

In HGMD, check by categories: Missense/nonsense, splicing mutations, insertions, deletions

## PS1 criterion (Pathogenicity Strong)

ClinVar via Alamut

Variant: Gene GCK (AD<u>/AR)</u>

NM\_000162.5(GCK):c.217G>A, p.(Gly73Arg)

Red =pathogenic
Orange = likely pathogenic
Green, uncertain signifiance
Red = PS1! (read publication)



## **PS3** criterion (Pathogenicity Strong)

Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product



**DM = Disease Mutation** 

reference with [Functional characterisation]= PS3! (read publication)

Estalella (2007) Clin Endocrinol (Oxf) 67, 538

Estalella (2008) J Hum Genet 53: 460 [Functional characterisation]

### PM1 criterion (Pathogenicity Moderate)

PM1 Located in a mutational hot spot and/or critical and well-established functional domain (e.g., active site of an enzyme) without benign variation



Hotspot: pathogenic variant (red) in one residue before or after the interest variant without benign variant (green)

### PM1 criterion (Pathogenicity Moderate)

PM1 Located in a mutational hot spot and/or critical and well-established functional domain (e.g., active site of an enzyme) without benign variation

#### **HGMD**

| HGMD<br>accession | HGMD<br>codon<br>change | HGMD<br>amino<br>acid change | HGVS<br>(nucleotide) | HGVS<br>(protein) | Variant<br>class | Reported phenotype   | Reference                                                                                                                                                                               | Extra<br>information   |
|-------------------|-------------------------|------------------------------|----------------------|-------------------|------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| CM1812672         | TTA-TCA                 | Leu662Ser                    | c.1985T>C            | p.L662S           | DM               | Obesity              | Kleinendorst (2018) J Med Genet 55, 578  Kleinendorst (2017) BMJ Case Rep 2017: [Additional report]                                                                                     | hg38 hg19 dbSNP        |
| CM070187          | CAT-CCT                 | His684Pro                    | c.2051A>C            | p.H684P           | DM               | Obesity, early-onset | Farooqi (2007) N Engl J Med 356, 237  Kimber (2008) Endocrinology 149: 6043 [Functional characterisation]  Clément (2018) Nat Med 24: 551 [Additional case report]  2 more reference(s) | hgá8 hg19 dbSNP gnomAD |
| CM168926          | тст-ттт                 | Ser723Phe                    | c.2168C>T            | p.\$723F          | DM               | Obesity, severe      | Hannema (2016) Horm Res Paediatr 85, 412<br>Kleinendorst (2017) BMJ Case Rep 2017: [Additional report]<br>Kleinendorst (2018) J Med Genet 55: 578 [Additional report]                   | hg38] hg19             |

#### **Example:**

NM\_002303.5(LEPR):c.2047C>T, p.(His683Tyr), ht

In case of misense or insertion or deletion, check missense variants

Hotspot: pathogenic variant or after the interest variant without benign variant (green)

#### PM2 criterion (Pathogenicity Moderate)

PM2 Absent from controls (or at extremely low frequency if recessive) in GnomAD

Where to check? gnomAD browser gnomAD v2.1.1 ▼ Search

| Variant ID       | <u> </u> | Consequence        | Annotation                    | Flags             | Allele Count | Allele<br>Number | Allele<br>Frequency | Number of<br>Homozygote |
|------------------|----------|--------------------|-------------------------------|-------------------|--------------|------------------|---------------------|-------------------------|
| 11-2181011-T-C   | E G      | c.*71A>G           | <ul><li>3' UTR</li></ul>      |                   | 3            | 236228           | 1.27e-5             | 0 🖆                     |
| 11-2181016-C-T   | E        | p.Glu92Lys +       | <ul><li>missense</li></ul>    |                   | 1            | 211970           | 4.72e-6             | 0                       |
| 11-2181023-T-C   | E        | p.Lys89Lys +       | <ul><li>synonymous</li></ul>  |                   | 1            | 220918           | 4.53e-6             | 0                       |
| 11-2181028-T-C   | G        | p.Asn88Asp †       | <ul><li>missense</li></ul>    |                   | 1            | 31316            | 3.19e-5             | 0                       |
| 11-2181029-C-T   | E        | p.Trp87Ter +       | <ul><li>stop gained</li></ul> | LC pLoF pLoF flag | 1            | 226462           | 4.42e-6             | 0                       |
| 11-2181031-ATC-A | G        | p.Arg86MetfsTer3 + | frameshift                    | LC pLoF pLoF flag | 1            | 31194            | 3.21e-5             | 0                       |
| 11-2181037-C-G   | E        | p.Glu85GIn +       | <ul><li>missense</li></ul>    |                   | 7            | 232958           | 3e-5                | 0                       |

Example: NM\_000207.2(INS): p.(Ile91Val), ht: PM2=yes

NM 000207.2(INS): p.(Glu92Lys), ht: PM2=no, homoz:PM2= yes

# PM3 criterion (Pathogenicity Moderate)

- ▶ PM3 For <u>recessive disorders</u>, detected in *trans* with a pathogenic variant
- ▶ Note: This requires testing of parents (or offspring) to determine phase.

Two pathogenic variants in the same gene:

#### Sequencing of the parents:

- one parent is carrier of the two variants: PM3 = no
- each parent is carrier of one variant: PM3 = yes



### PM4 criterion (Pathogenicity Moderate)

► PM4 <u>Protein length</u> changes as a result of <u>in-frame</u> deletions/insertions in a <u>nonrepeat region</u> or stop-loss variants





### PM5 criterion (Pathogenicity Moderate)

- ▶ Novel <u>missense</u> change at an amino acid residue where a different missense change determined to be pathogenic has been seen before
- Example: Arg156His is pathogenic; now you observe Arg156Cys

NM\_000162.5(GCK):c.67T>C, p.(Phe23Leu)

HGMD

| CM191975 | CTG-CGG | Leu20Arg  | c.59T>G | p.L20R | DM | Diabetes, gestational | Zubkova (2019) Acta Diabeto1,                                                            |
|----------|---------|-----------|---------|--------|----|-----------------------|------------------------------------------------------------------------------------------|
| CM074228 | CTG-CCG | Leu20Pro  | c.59T>C | p.L20P | DM | Diabetes, MODY        | Estalella (2007) Clin Endocrinol (Oxf) 67, 538                                           |
| CM096803 | TTC-GTC | Phe23Val  | c.67T>G | p.F23V | DM | Diabetes, MODY        | Osbak (2009) Hum Mutat 30, 1512                                                          |
| CM096790 | CAG-TAG | Gln24Term | c.70C>T | p.Q24* | DM | Diabetes, MODY        | Osbak (2009) Hum Mutat 30, 1512<br>Xiong (2015) Science 347: 1254806 [Additional report] |

PM5: yes

### PP1 criterion (Supporting Pathogenicity)

- ► Cosegregation with disease in multiple affected family members in a gene definitively known to cause the disease
- ▶ Needs sequencing of more than three members of the family.
- ▶ PP1 = yes if the variant is carried only by ill family's members

### PP2 criterion (Supporting Pathogenicity)

<u>Missense variant</u> in a gene that has a low rate of benign missense variation and in which missense variants are a common mechanism of disease

Where to check:
GnomAD: Constraint function

If Constraint (Missense)  $Z \ge 1,75$ , PP2= yes



### PP3 criterion (Supporting Pathogenicity)

▶ Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.)

Splicing predictors via Alamut

#### Example: splicing effect:

#### Where to check:

- Alamut
- Splicing predictors





### PP3 criterion (Supporting Pathogenicity)

► Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.)

**Example: misense** 

#### Where to check:

- Alamut
- pathogenicity predictors





**PP3** = yes if :

SIFT: Deleterious

**AND** 

**Mutation Taster: Disease Causing** 

### PP4 criterion (Supporting Pathogenicity)

► Patient's phenotype or family history is highly specific for a disease with a single genetic etiology

example: HNf4A, GCK, HNF1A, HNF1B, ... MODY diabetes

#### Diagnosis: Rules to classify variants

#### Table 5 Rules for combining criteria to classify sequence variants

Pathogenic

(i) 1 Very strong (PVS1) AND

(a) ≥1 Strong (PS1–PS4) OR

(b) ≥2 Moderate (PM1–PM6) OR

(c) 1 Moderate (PM1–PM6) and 1 supporting (PP1–PP5) OR

(d) ≥2 Supporting (PP1–PP5)

(ii) ≥2 Strong (PS1–PS4) OR

(iii) 1 Strong (PS1–PS4) AND

(a)≥3 Moderate (PM1–PM6) OR

(b)2 Moderate (PM1–PM6) AND ≥2

Supporting (PP1–PP5) OR

(c)1 Moderate (PM1–PM6) AND ≥4

supporting (PP1–PP5)

| Likely pathogenic | (i) 1 Very strong (PVS1) AND 1 moderate (PM1–<br>PM6) OR                      |
|-------------------|-------------------------------------------------------------------------------|
|                   | <ul><li>(ii) 1 Strong (PS1–PS4) AND 1–2 moderate<br/>(PM1–PM6) OR</li></ul>   |
|                   | (iii) 1 Strong (PS1–PS4) AND≥2 supporting<br>(PP1–PP5) OR                     |
|                   | (iv) ≥3 Moderate (PM1–PM6) OR                                                 |
|                   | <ul><li>(v) 2 Moderate (PM1–PM6) AND ≥2 supporting<br/>(PP1–PP5) OR</li></ul> |
|                   | <ul><li>(vi) 1 Moderate (PM1–PM6) AND ≥4 supporting<br/>(PP1–PP5)</li></ul>   |

Uncertain significance

- (i) Other criteria shown above are not met OR
- (ii) the criteria for benign and pathogenic are contradictory

### Diagnosis: Rules to classify variants

#### **Table 5** Rules for combining criteria to classify sequence variants

Pathogenic

(i) 1 Very strong (PVS1) AND

(a) ≥1 Strong (PS1-PS4) OR

(b) ≥2 Moderate (PM1-PM6) OR

(c) 1 Moderate (PM1-PM6) and 1 supporting (PP1-PP5) OR

(d) ≥2 Supporting (PP1-PP5)

(ii) ≥2 Strong (PS1-PS4) OR

(iii) 1 Strong (PS1-PS4) AND

(a)≥3 Moderate (PM1-PM6) OR

(b)2 Moderate (PM1-PM6) AND ≥2 Supporting (PP1-PP5) OR

(c)1 Moderate (PM1-PM6) AND ≥4 supporting (PP1-PP5)

Example: selected criteria are:

- PVS1, PM1, PP2: the variant is pathogenic
- PS1, PS3, PM2: the variant is pathogenic
- PVS1: the variant is VUS (Variant Uncertain Signifiance)

### Diagnosis: Rules to classify variants

| Likely pathogenic | (i) 1 Very strong (PVS1) AND 1 moderate (PM1–<br>PM6) OR                      |
|-------------------|-------------------------------------------------------------------------------|
|                   | <ul><li>(ii) 1 Strong (PS1–PS4) AND 1–2 moderate<br/>(PM1–PM6) OR</li></ul>   |
|                   | <ul><li>(iii) 1 Strong (PS1–PS4) AND≥2 supporting<br/>(PP1–PP5) OR</li></ul>  |
|                   | (iv) ≥3 Moderate (PM1–PM6) OR                                                 |
|                   | <ul><li>(v) 2 Moderate (PM1–PM6) AND ≥2 supporting<br/>(PP1–PP5) OR</li></ul> |
|                   | (vi) 1 Moderate (PM1–PM6) AND ≥4 supporting<br>(PP1–PP5)                      |
| Unantria          | C Other division to the control of OR                                         |
| Uncertain         | (i) Other criteria shown above are not met OR                                 |
| significance      | (ii) the criteria for benign and pathogenic are<br>contradictory              |

#### Example: selected criteria are:

- PVS1, PM1: the variant is likely pathogenic
- PS1, PM2, PM5: the variant is likely pathogenic
- PM2, PP2, PP3, PP4: the variant is VUS (Variant Uncertain Signifiance)
- PV\$1 only: variant VU\$