QUALIDADE DO LEITE

Quais as características de um bom e mal leite?

Descoberta de conhecimento em base de dados

1 Escolha da Base

kaggle

Préprocessamento

Transformação de dados

4 Mineração dos dados

Interpretação do resultado

BASE DE DADOS

Número de amostras: 1059

Número de atributos: 8

Tipos de atributos: Numéricos

(com rótulo categórico)

Dados ausentes: Não

Sabor

Dado categórico 0 -> Sabor ruim

1 -> Sabor agradável

Atributos da Base

Odor

Dado categórico 0 -> Odor desagradavel

1 -> Odor padrão

Gordura

Dado categórico 0 -> Baixa gordura

1 -> Muita gordura

Cor

Varia entre 240-255, e indica a cor do leite

Turbidez

Dado categórico 0 -> Baixa turbidez 1 -> Alta turbidez.

Temperatura

Varia de 34°C a 90°, se a temperatura estiver no intervalo de 34°C a 45,20°C, considera-se boa.

PH

Varia de 3 a 9,5, se estiver no intervalo de 34°C a 45,20°C, considera-se boa.

Atributos Alvo

indesejáveis e impurezas, e

cor normal.

Seleção e pré-processamento de dados

Informações da Base

INFORMAÇÕES GERAIS DOS DADOS <class 'pandas.core.frame.dataframe'=""></class>										
	RangeIndex: 1057 entries, 0 to 1056									
_	Data columns (total 8 columns):									
	# Column ` Non-Null Count Dtype									
0	рН	1057 non-null	float64							
1	Temprature	1057 non-null	int64							
2	Taste	1057 non-null	int64							
3	0dor	1057 non-null	int64							
4	Fat	1057 non-null	int64							
		1057 non-null								
6	Colour	1057 non-null	int64							
7	Grade	1057 non-null	object							
dtypes: float64(1), int64(6), object(1)										
memory usage: 66.2+ KB										
None	None									

VALORES FALT	ANTES
рН	0
Temprature	0
Taste	0
Odor	0
Fat	0
Turbidity	0
Colour	0
Grade	0
dtype: int64	

REDUÇÃO DE DADOS

- Não foi possivel reduzir atributos (sao poucos)
- Balanceamento utilizando <u>OVERSAMPLING</u>

Balanceamento da Base

Classe RandomOverSampler do módulo imblearn.over_sampling da biblioteca imbalanced-learn


```
Quantidade de dados por target antes do balanceamento:
low 429
medium 374
high 254
Name: Grade, dtype: int64
```

```
Quantidade de dados por target após o balanceamento:
low 429
medium 429
high 429
Name: Grade, dtype: int64
```

NORMALIZAÇÃO

• Técnica escolhida = Min-Max (muitos dados binarios)

	pН	Temprature	Taste	Odor	Fat	Turbidity	Colour
0	8.5	70	1	1	1	1	246
1	9.5	34	1	1	0	1	255
2	6.6	37	0	0	0	0	255
3	6.6	37	1	1	1	1	255
4	5.5	45	1	0	1	1	250
5	4.5	60	0	1	1	1	250
6	8.1	66	1	0	1	1	255
7	6.7	45	1	1	0	0	247
8	6.7	45	1	1	1	0	245
9	5.6	50	0	1	1	1	255

None							
	pН	Temprature	Taste	0dor	Fat	Turbidity	Colour
count	1287.000000	1287.000000	1287.000000	1287.000000	1287.000000	1287.000000	1287.000000
mean	0.559907	0.170149	0.551671	0.459984	0.705517	0.491064	0.791608
std	0.195489	0.168168	0.497516	0.498590	0.455987	0.500114	0.287013
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.538462	0.071429	0.000000	0.000000	0.000000	0.000000	0.666667
50%	0.569231	0.107143	1.000000	0.000000	1.000000	0.000000	1.000000
75%	0.584615	0.196429	1.000000	1.000000	1.000000	1.000000	1.000000
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
			<u> </u>	1 1 1 1 1			

NORMALIZAÇÃO

• Técnica escolhida = Min-Max (muitos dados binarios)

	pН	Temprature	Taste	Odor	Fat	Turbidity	Colour	Grade
0	0.846154	0.642857	1.0	1.0	1.0	1.0	0.400000	low
1	1.000000	0.000000	1.0	1.0	0.0	1.0	1.000000	low
2	0.553846	0.053571	0.0	0.0	0.0	0.0	1.000000	medium
3	0.553846	0.053571	1.0	1.0	1.0	1.0	1.000000	high
4	0.384615	0.196429	1.0	0.0	1.0	1.0	0.666667	low
5	0.230769	0.464286	0.0	1.0	1.0	1.0	0.666667	low
6	0.784615	0.571429	1.0	0.0	1.0	1.0	1.000000	low
7	0.569231	0.196429	1.0	1.0	0.0	0.0	0.466667	medium
8	0.569231	0.196429	1.0	1.0	1.0	0.0	0.333333	medium
9	0.400000	0.285714	0.0	1.0	1.0	1.0	1.000000	low

NORMALIZAÇÃO

PCA -> Encontrar direções ao longo das quais os dados variam

VISUALIZAÇÃO

VISUALIZAÇÃO

VISUALIZAÇÃO

MEDIDAS DE TENDENCIA CENTRAL

```
MEDIDAS DE TENDENCIA CENTRAL
Temperatura
Media:
43.52836052836053
Mediana:
40.0
Ponto médio:
62.0
Moda:
Name: Temprature, dtype: int64
Media:
6.639393939393939
Mediana:
6.7
Ponto médio:
6.25
Moda:
0 6.8
Name: pH, dtype: float64
Cor
Media:
251.87412587412587
Mediana:
255.0
Ponto médio:
247.5
Moda:
Name: Colour, dtype: int64
```

```
Gosto
Moda:
Name: Odor, dtype: int64
Odor
Moda:
Name: Taste, dtype: int64
Gordura
Moda:
Name: Fat, dtype: int64
Turbidez
Moda:
Name: Turbidity, dtype: int64
```

MEDIDAS DE DISPERSÃO

MEDIDAS DE DISPERSAO

Temperatura

Amplitude:

Desvio padrão:

0.09417428452771771

Variância:

88.6879586630753

Coeficiente de variação:

21.635155421569177

pН

Amplitude:

6.5

Desvio padrão:

0.01270680475317081

Variância:

1.614628870352043

Coeficiente de variação:

19.138500997473155

Cor

Amplitude:

15

Desvio padrão:

0.043051931091782646

Variância:

18.534687707316014

MEDIDAS DE POSIÇÃO RELATIVA

```
MEDIDAS DE POSICAO RELATIVA
Temperatura
Quartis:
0.25
        38.0
0.50
       40.0
       45.0
0.75
Name: Temprature, dtype: float64
Escore-z:
       2.810920
       -1.011779
       -0.693221
       -0.693221
       0.156268
1282
       -0.268477
1283
       -0.799407
       -0.799407
1284
1285
       0.156268
1286
       -0.587035
```

MEDIDAS DE ASSOCIAÇÃO

MEDIDAS DE ASSOCIAÇÃO

MEDIDAS DE ASSOCIACAO

Covariância entre Cor e Turbidez:

0.2725913278012814

Correlação entre Cor e Turbidez:

0.12660474045084952

MEDIDAS Diagrama de Caixa

K-MENS - Distancia euclidiana

K-MENS - Distancia euclidiana

K-MENS - Distancia euclidiana

K-MENS - Distancia Manhattan

K-MENS - Distancia Manhattan

K-MENS - Distancia Manhattan

K-MENS - Euclidiana vs Manhattan K = 10

GMM

GMM

GMM

QUALIDADE DOS AGRUPAMENTOS

Coeficiente de forma

Kmeans - Euclidana

K3 = 0.40246724529144123

K5 = 0.20268239032562355

K10 = 0.023440377867055884

Kmeans - Manhattan

K3 = 0.45895422253875

K5 = 0.224443811142217

K10 = 0.1038507034678613

GMM

K3 = 0.4105691464559676

K5 = 0.3373034798290252

K10 = 0.09551553478201857

QUALIDADE DOS AGRUPAMENTOS

HOMOGENIDADE

Kmeans - Euclidana

K3 = 0.2766691913417482

K5 = 0.30356149881449795

K10 = 0.36749783082413234

Kmeans - Manhattan

K3 = 0.24936000363501326

K5 = 0.24441188763277777

K10 = 0.35451597076560104

GMM

K3 = 0.20860604862337456

K5 = 0.2620263757465329

K10 = 0.36749783082413245

Arvore de Decisão

Árvore de Decisão

Classe

DecisionTreeClassifier do módulo sklearn.tree do scikit-learn.

Base de dados Pré-processada e Balanceada

18 nós

Acuracia:100%

F1-Score: 1

K-Nearest Neighbors

KNN

Classe

KNeighborsClassifier do módulo sklearn.neighbors do scikit-learn.

Base de dados Préprocessada e Balanceada

F1-Score: 0.9915

Support Vectors Machine (SVM)

SVM

Classe SVC do módulo sklearn.svm do scikit-learn.

Base de dados
Pré-processada e
Balanceada

Kernel Polinomial (poly, rbf, linear)

Acuracia:94.16%

F1-Score: 0,94

Rede Neural Multilayer Perceptron

MLP

Classe MLPClassifier do módulo

sklearn.neural_network do scikit-learn.

Base de dados Pré-processada e Balanceada

2 camadas ocultas, onde cada camada tem 20 neurônios

F1-Score: 0.9969

TABELA DE RESULTADOS CLASSIFICAÇÃO

Métodos	Holdout		Cross-Validation	
Métricas	Acurácia	F1-Score	Acurácia	F1-Score
Árvore de Decisão	100%	1	99,69%	0.99688
K-Nearest Neighbors(KNN)	100%	1	99.1437%	0.9915
Support Vectors Machine(SVM)	93.5233%	0.9351	94.1589%	0.9416
Rede Neural Multilayer Perceptron (MLP)	100%	1	99.6890%	0.9969