AD-A071 670

WESTERN UNION TELEGRAPH CO MCLEAN VA SYSTEM ENGINEER-ETC F/6 17/2 INITIAL AUTODIN II SEGMENT INTERFACE PROTOCOL (SIP) SPECIFICATI--ETC(U) DCA200-C-0637

UNCLASSIFIED

TN-78-07.3

SBIE -AD-E100 245

NL





TN 78-07.3
Revised 3/5/79

AD A 071670

INITIAL

AUTODIN II SEGMENT INTERFACE PROTOCOL (SIP)

SPECIFICATION

SYSTEM ENGINEERING TECHNICAL NOTE 78-07.3

5 March 1979

Author:

Injuy Kulkus

Approved:

P. J. Nichol

D E Hunter

ILE COPY

WESTERN UNION

GOVERNMENT SYSTEMS DIVISION

SYSTEM ENGINEERING DEPARTMENT

DDC

PROCEMIC

JUL 25 1979

ISUSSIVE

B

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

411078

79 07 24 008

## UNCLASSIFIED 450 14 JUNE 1979

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered)

| REPORT DOCUMENTATION PAGE                                                                                                               | READ INSTRUCTIONS BEFORE COMPLETING FORM                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| DCA 200-C-637-P003                                                                                                                      | SION NO. 3. RECIPIENT'S CATALOG NUMBER                                       |
| Initial AUTODIN II Segment Interface Protocol (SIP) Specification, TN 78-07.3                                                           | 5. TYPE OF REPORT & PERIOD COVERED  Interim 6. PERFORMING ORG. REPORT NUMBER |
| V.R. Kulkarni                                                                                                                           | DCA 200-C-637                                                                |
| Western Union Telegraph Company<br>Government Systems Division<br>7916 Westpark Drive, McLean, VA 221                                   | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS               |
| Defense Communications Agency                                                                                                           | 12. REPORT DATE 5 March 1979                                                 |
| ATTN: Code 450<br>Washington, D. C. 20305                                                                                               | 13. NUMBER OF PAGES                                                          |
| 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Defense Communications Agency ATTN: Code 450 Washington, D. C. 20305 | UNCLASSIFIED  13. DECLASSIFICATION/DOWNGRADING SCHEDULE  13. N/A             |

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, if different from Report)

Approved for public release; distribution unlimited

18. SUPPLEMENTARY NOTES

Review relevance five years from submission date.

Data Links, Telecommunications, Switching Systems, Data Communications Protocol, Telecommunications Systems, Data Communications System, Telecommunication Links, Network Interface, AUTODIN II

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This document provides the functional specification for the AUTODIN II Segment Interface Protocol (SIP) in the abstract sense. It describes the externally (to the host) visible and mandatory portions of the SIP. It describes the protocol commands and formats, and the prescribed state transition stimuli and responses. This document revises and replaces the 3 October 1978 version, identified as TN-78-07.2.

2

#### EXECUTIVE SUMMARY

This is the initial Segment Interface Protocol (SIP) Specification. It is the formal protocol specification developed as a result of extensive redesign and associated changes since it was first defined in the original System Performance Specification. The protocol may still undergo some minor refinements as a result of implementation, system testing and early network operation.

SIP is the protocol by which AUTODIN II access components (TAC, SCCU, and MCCU) communicate with the backbone network. A host may also directly access the backbone using SIP. A host using SIP will be provided pure packet transport service to other hosts. The accountability and flow control functions at this level within the AUTODIN II protocol hierarchy are rudimentary, but the service is extremely efficient.

Each data segment is handled individually and expeditiously. The protocol is not burdened with connection and sequencing functions. Each self contained segment is tagged with a Binary Segment Leader (BSL) which includes all the necessary information required for proper handling to the destination host. The protocol operates with minimal controls. It is, therefore, a simple protocol to implement.

This document is intended to give the Host Subscriber an indication of the protocol's complexity and usefulness. Furthermore, it provides the specific formal definition of SIP commands, formats, states and operating principles for the subscriber who chooses to implement SIP in his host.

| Acces | sion For  |       |
|-------|-----------|-------|
| NTIS  | GRIA&I    |       |
| DDC I | AB        |       |
| Unann | ounced    | П     |
| Justi | fication_ |       |
| Ву    |           |       |
| Distr | ibution/  |       |
| Avai  | lability  | Codes |
|       | Availand  | l/or  |
| Dist  | specia    | 1     |
| A     |           |       |

# TABLE OF CONTENTS

| 1. | Intr | oductio          | n                                                                                                                   | Page                                 |
|----|------|------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 2. | 1.2  | SIP Ar<br>Functi | ew of SIP<br>chitecture<br>onal Interaction between SIP & Mode VI<br>terpreter                                      | 1-2<br>1-9<br>1-11<br>2-1            |
|    |      |                  | ate Description<br>ts to the SCM                                                                                    | 2-5<br>2-7                           |
|    |      |                  | Request Window Processing<br>Subscriber Status Processing                                                           | 2-8<br>2-11<br>2-12<br>2-16          |
|    | 2.3  | Segmen           | ts From the SCM                                                                                                     | 2-19                                 |
|    |      | 2.3.2            | Data Segment Ready for Next Segment (RFNS) Validation Reject, Error Reject, and Non-Delivery Notice SCM Status Echo | 2-19<br>2-21<br>2-24<br>2-27<br>2-30 |
| 3. | Stat | e/Stimu          | lus Description                                                                                                     | 3-1                                  |

## LIST OF FIGURES

|      |                                                                      | Page  |
|------|----------------------------------------------------------------------|-------|
| 1-1  | AUTODIN II Protocols                                                 | 1-3   |
| 1-2  | SIP Properties                                                       | 1-5   |
| 1-3  | General Binary Segment Leader                                        | 1-6   |
| 1-4  | General SIP Architecture                                             | 1-10  |
| 1-5  | SIP Data Flow                                                        | 1-12  |
| 2-1  | SIP-to-SCM Commands                                                  | 2-2   |
| 2-2  | SCM-to-SIP Commands                                                  | 2-3   |
| 2-3  | SIP State Diagram                                                    | 2-6   |
| 2-4  | SIP-to-SCM Data Segment                                              | 2-9   |
| 2-5  | Levels of Precedence                                                 | 2-10  |
| 2-6  | SIP-to-SCM Request Window Segment                                    | 2-13  |
| 2-7  | SIP-to-SCM Subscriber Status Segment                                 | 2-15  |
| 2-8  | SIP-to-SCM Echo Request Segment                                      | 2-17  |
| 2-9  | SIP-to-SCM Echo Reply Segment                                        | 2-18  |
| 2-10 | SCM-to-SIP Data Segment                                              | 2-20  |
| 2-11 | SCM-to-SIP RFNS Segment                                              | 2-23  |
| 2-12 | Validation Reject, Error Reject, and<br>Non-Delivery Notice Segments | 2-26  |
| 2-13 | SCM-to-SIP SCM Status Segment                                        | 2-29  |
| 2-14 | SCM Status Reason Codes                                              | 2-31  |
| 2-15 | SCM-to-SIP Echo Request Segment                                      | 2- 32 |
| 2-16 | SCM-to-SIP Echo Reply Segment                                        | 2-34  |

### SECTION 1

#### INTRODUCTION

This is the initial AUTODIN II Segment Interface Protocol (SIP) Specification. This Technote documents the protocol as currently designed. This specification is being provided to host subscribers as the formal definition of the SIP protocol. This protocol has undergone extensive redesign since the System Performance and System Technical Design Specifications were written.

The protocol design is basically stable. There may, however, be some minor design changes which could result from the implementation, system test and early operational phases of the system. Design refinements, protocol redefinition or editorial improvements may generate updates to this document. Past experience has shown that computer protocols undergo several revisions during a network's infancy.

This is a functional description of the SIP protocol in its abstract sense. It is not a description of a SIP functional entity (e.g. SIP software module) with all of the associated internal functions. It does not explain how to design a SIP software module nor how to interface such a module to other protocols and the host's operating system. It describes the externally (to the host) visible and mandatory portions of the SIP. Section 2 describes the protocol commands and formats while Section 3 describes the prescribed state transition stimuli and responses.

It is assumed that the reader of this Technote is familiar with computer communications protocols in general and the AUTODIN II protocol layered design in specific. The reader should be familiar with the AUTODIN II system design and user interface

options. If the reader is not familiar with the AUTODIN II system design, then the following documents will provide the proper background:

- o AUTODIN II System Performance Specification (type "A") Nov 1975 as amended through September 1976, plus all approved Specification Change Notices.
- o AUTODIN II System Design (Technical) Specification [Western Union Proposal (Part 5),
  April 76; plus Refinements and Clarifications,
  June 76 and August 76; plus Best and Final
  Offer October 76] plus all approved
  Specification Change Notices.
- o AUTODIN II Final Design Plan, June 1978, plus all approved Specification Change Notices.
- o AUTODIN II Design Executive Summary, 18 May 1978.

### 1.1 Overview of SIP

The SIP is the backbone access/exit protocol of AUTODIN II. Its relationship to other protocols that exist in AUTODIN II is depicted in Figure 1-1. A host subscriber hereafter referred to as the user need not implement the higher level Host-to-Host or Terminal-to-Host protocols to access the backbone. All that is necessary is the SIP and the Mode VI link procedure. SIP provides a set of procedures and rules by which to reliably exchange data and control information with the backbone (SCM in particular). SIP will accept user information, attach the appropriate leader and pass it to the Mode VI controller for transfer across the SIP-SCM access line. In the other direction SIP will receive information from the backbone, detach the leader and



Figure 1-1 Antadin II Protocols

pass it to the user. The properties of SIP are listed in Figure 1-2 and explained below.

The information entities SIP transmits to and receives from the backbone are called segments. A segment is a completely self-contained unit of information as far as SIP and backbone handling are concerned. It will include in its header control information, source and destination addressing, security, precedence and Transmission Control Code (TCC); in essence everything the backbone requires to route it to its destination. The leader is called the Binary Segment Leader (BSL). See Figure 1-3.

Because of the independent handling of segments by both the backbone and SIP, relationship between a series of segments such as the order of presentation by the user may be lost. Adaptive routing and retransmissions within the backbone might cause out-of-order arrivals at the destination SIP. Also, since segments of differing precedence from multiple sources can arrive at the destination simultaneously, the SCM-to-SIP segment stream will be multiplexed and unordered. Further, under abnormal conditions (i.e. switch failure) the backbone may lose or duplicate segments, therefore, no guarantees against possible duplication, loss, or nonsequenced delivery to the destination SIP are made. Recovering lost segments, resequencing of out-of-order arrivals, demultiplexing segments from multiple sources and end-to-end accountability are the responsibilities of the end users or any higher level protocol acting in behalf of the end users. The backbone will, however, report back to the source SIP on a per segment basis if it knowingly fails to successfully deliver a segment to the destination or deliberately destroys a segment to relieve congestion. These backbone accountability messages are called Non-Delivery Notices (NDN).

The SCM will control the flow of segments from the SIP to it in order to provide an equitable sharing of its resources and to relieve possible congestion within the backbone. The control is exercised by a periodic window allocation which informs the SIP the number of segments it may transmit with minimal rejection. The SIP will also have the ability to request more

| PROPERTIES       | SIP TO SCM                                           | SCM TO SIP                                           |  |  |  |
|------------------|------------------------------------------------------|------------------------------------------------------|--|--|--|
| Unit of Transfer | Segment                                              | Segment                                              |  |  |  |
| Leader Type      | Binary Segment<br>Leader                             | Binary Segment<br>Leader                             |  |  |  |
| Accountability   | None                                                 | Non-Delivery<br>Notices                              |  |  |  |
| Flow Control     | None                                                 | Window                                               |  |  |  |
| Recovery         | Subscriber Status<br>Notices                         | SCM Status<br>Notices                                |  |  |  |
| Routing Data     | Source and<br>Destination<br>Subscriber<br>Addresses | Source and<br>Destination<br>Subscriber<br>Addresses |  |  |  |
| Privacy Label    | Security and TCC<br>Designations                     | Security and TCC Designations                        |  |  |  |
| Testing          | Echo                                                 | Echo                                                 |  |  |  |

FIGURE 1-2 SIP PROPERTIES

|              |               |                    | •               |  |  |  |  |  |
|--------------|---------------|--------------------|-----------------|--|--|--|--|--|
| 15           |               | 8 7                | 0               |  |  |  |  |  |
| TYPE OF SEGM | ENT           | SEGMENT I.D.       |                 |  |  |  |  |  |
| SPARE=ZERO   |               | START TIME         |                 |  |  |  |  |  |
| REASON FOR   | OUTAGE        | WINDOW OR DU       | RATION          |  |  |  |  |  |
| COMMAND CONT | ROL FIELD     | PRECEDENCE         | TCP VERSION NO. |  |  |  |  |  |
|              | SOURCE SUE    | SCRIBER ADDRESS    |                 |  |  |  |  |  |
|              | DESTINATION S | SUBSCRIBER ADDRESS |                 |  |  |  |  |  |
| SPARE=ZERO   | TCC-          | -1                 | SECURITY-1      |  |  |  |  |  |
| SECURITY-2   | SPARE=ZERO    | SPARE=ZERO TCC-2   |                 |  |  |  |  |  |

<sup>\*</sup> In the bit serial transmission across the interface, this is the first bit out.

GENERAL BINARY SEGMENT LEADER
FIGURE 1-3

Type of - This field is always set to zero by SIP and used by the Segment network to tag segments for NCC reporting (e.g. trace). The field may, therefore, be filled in with a non-zero code on segments from the network.

Segment - This field is used by SIP to uniquely identify all data I.D. segments and optionally to identify control segments. The network ignores this field. Any segment report (NDN, reject, etc.) on a data or control segment will be a return of the BSL with this field unchanged.

Spare - All spare fields must be set to zero by both the SIP and the network.

Start Time,- These fields are parameters which must be set by SIP Duration, or network when using the "Going Inoperable" status Reason for subcommands.
Outage

Window - This field is used by the network to pass the new data segment window (W) to the SIP. It is a parameter of the flow control command. The window value replaces any previous values of W. Each data segment which is passed from the SIP to the network decrements this window.

Command - This field is used by both the SIP and network to distinguish between data and control segments and to identify control functions/services between the SIP and the network. Control segments never carry text (except the SCM initiated echo text). Controls are never piggy-backed with data segments. See Figures 2-1 and 2-2.

Prece- - This field identifies the precedence handling and prodence tection level at which the segment (control or data) should be handled. See Figure 2-5.

TCP - This field identifies the originating SIP's user (TCP, Version other high level protocol, utility, etc.). It is ignored by the network and is used by the destination SIP to pass the segment on to the proper higher level protocol.

Source - This field is the originating SIP's logical address.

Subscriber This is the single, unique host level logical address

Address associated with the SIP and its access line.

Destination - This field is the destination SIP's logical address. Subscriber All SIPs have only one logical address which is used Address for both source and destination labling.

GENERAL BSL FIELD DESCRIPTIONS

FIGURE 1-3 (Cont'd)

- TCC (1&2) The TCC-1 field identifies the Transmission Control Code (privacy code) which designates the privacy handling which the network must give to the segment. All segments must be labeled with an authorized TCC. The TCC-2 Field is a redundant exact duplicate of TCC-1. The TCC is assigned by the source SIP and delivered intact to the destination.
- Security The Security-I field designates the security level at which the network must handle the data segment text.

  All segments must be labeled with an authorized security level. The Security-2 field is a redundant exact duplicate of Security-1. The security level is assigned by the source SIP and delivered intact to the destination.
  - NOTE: Specific binary patterns for security, TCC and address field entries are available upon request from DCA Code 530, Washington, DC 20305.

GENERAL BSL FIELD DESCRIPTIONS

FIGURE 1-3 (Cont'd)

window space in the event the SCM does not automatically update the window or the SIP exhausts its window supply quickly.

SIP's recovery procedures are minimal since segment sequence synchronization procedures aren't required. The segment I.D. may or may not be assigned consecutive sequence numbers. Its only purpose is for the user to identify a segment uniquely. Therefore synchronization on what sequence number the SIP will begin transmitting at and the SCM will receive at is unnecessary. Other recovery aspects include the ability of the SCM and SIP to each declare its own status i.e., Operable or Inoperable.

A data segment transmitted by SIP to the SCM will contain source and destination subscriber addressing. In the SCM, the segment is converted to a packet by adding the source and destination SCM addressing. It is routed based on these addresses to the proper destination SCM where the packet is reconverted to a segment and transmitted on the destination SIP's access line.

Each segment will also contain privacy information consisting of security and TCC designations. These codes are validated at the source SCM before acceptance and at the destination SCM before delivery.

The Echo feature is in SIP to allow online testing of the SIP-SCM access line.

## 1.2 SIP Architecture

SIP is organized into four major sections: the User Interface, the Internal Interface, the Mode VI Interface and the SIP/
SCM Protocol Interpreter. These sections and their counterparts at the SCM are depicted in Figure 1-4.

The User Interface exchanges with the User Program entities called user-segments. A user-segment consists of user text and segment parameters. The parameters are security, TCC, precedence, destination subscriber address and a segment ID. These parameters along with a few others are encoded into the BSL by the Protocol Interpreter of SIP and then passed on to the Mode VI



General SIP Architecture Figure 1-4

controller by the Mode VI Interface. Notice the layered architecture of the link and segment protocols. The link protocol's only responsibility is to reliably exchange information across the transmission medium whereas SIP's major function is to reliably exchange segments with sufficient information included to allow the backbone to verify, route and deliver the segments out of the backbone.

The major SIP data flows are depicted in Figure 1-5.

The remainder of this document only specifies the stimuli/ response functions of the host SIP interpreter. These are the functions which will be tested and certified before a subscriber host is permitted to operate on the network. The internal SIP interfaces are purely host unique and are therefore not specified.

The description of the SIP interpreter functions is from the point of view of the host SIP. These descriptions in Section 2 are high level functional definitions of a SIP interpreter software module.

## 1.3 Functional Interaction Between SIP and Mode VI

There are a few minimal functional couplings between the SIP and the Mode VI link level protocol. These couplings are required in order for the host/backbone interface to operate as a system:

- o Each segment must be totally carried in a Mode VI frame with no other segments. A segment always starts with a full (128 bit) BSL followed by zero (for controls) to 4992 bits of user data.
- o Control segments must be processed firstin-first-out (FIFO) through both SIP and
  Mode VI to keep both SIP and SCM in
  synchronization. Non-control segments
  may be processed in any order by SIP,
  but Mode VI must process them FIFO as
  received, since the Mode VI Ack serves
  as the SIP Ack.



o The SIP Interface Down state must be coupled to the Mode VI Receiver Not ready (RNR) state. That is if the SIP transitions to Interface Down then the Mode VI must transition to Mode VI RNR. They must similarly make the same coupled transitions out of these states. Temporary Mode VI RNR conditions (such as exhaustion of Mode VI sequence numbers or buffer space) should not be coupled to SIP Interface Down state, rather persistent Mode VI problems must be coupled back to SIP. The Mode VI may transition to deeper states of inoperability once the SIP is in the Interface Down state. The only fatal coupling condition is the SIP in Interface Down state while the Mode VI is still accepting segments. The equivalent state coupling is true in the SCM. This is because the Mode VI ACK is assumed by the switch to indicate successful reception by the user.

#### SECTION 2

#### PROTOCOL INTERPRETER

The Protocol Interpreter part of SIP is responsible for implementing precise data and control transfer procedures to reliably exchange segments between the SCM and SIP. Every segment exchanged across the SIP-SCM access line has appended to it a 128 bit Binary Segment Leader (BSL). The BSL is essentially the carrier of the protocol with fields specifying the command, related parameters, security, TCC, precedence, and addressing. complete set of commands are listed in Figures 2-1 and 2-2. Data segments from the User are appended BSLs containing the user supplied source and destination subscriber addresses, security, TCC, precedence and the user segment identification. The segment is passed to the Mode VI controller for transmission if a non-zero window exists. The window reflects the number of segments the SCM is willing to receive with minimal rejection. A zero window causes the segment to be held temporarily until either the holding period has expired or the SCM has updated the window. An updated window will cause the held segment to be transmitted to the SCM, whereas a holding period expiration will cause a message to be returned to the user indicating the segment was blocked due to SCM flow control.

Several commands exist which control SIP to SCM segment flow. These are Request Window, Subscriber Status and the Echo commands. Request Window allows SIP to request window space from the SCM such that temporarily held segments can be transmitted. The Subscriber Status commands inform the SCM of a change in user status.

Data segments received from Mode VI controller and therefore from the SCM require minimal processing. They are first validated and then passed on for delivery to the User.

Control segments received from the SCM can be classified as Reject Notices, Window Update (Ready for Next Segment),

| COMMAND     |                      | S           | UBCOMMAND                                     | PARAMETERS                        |  |  |
|-------------|----------------------|-------------|-----------------------------------------------|-----------------------------------|--|--|
| BIT<br>POS. |                      | BIT<br>POS. |                                               |                                   |  |  |
| 15-11       | DESCRIPTION          | 10-8        | DESCRIPTION                                   |                                   |  |  |
| 00000       | (Not Used)           | 000         |                                               |                                   |  |  |
| 00001       | Data                 | 000         | None                                          |                                   |  |  |
| 00010       | Echo                 | 001         | Reply                                         |                                   |  |  |
| 00011       | (Reserved)           |             |                                               |                                   |  |  |
| 00110       | Request              | 000         | None                                          |                                   |  |  |
|             | Window               |             |                                               |                                   |  |  |
| 01101       | Subscriber<br>Status | 000         | Subscriber Going Inoperable                   | Start Time, Dura-<br>tion, Reason |  |  |
|             |                      | 001         | Subscriber Operable                           |                                   |  |  |
|             |                      | 010         | Subscriber Access Circuit<br>Going Inoperable | Start Time, Dura-<br>tion, Reason |  |  |
|             |                      | 011         | Subscriber Busy                               |                                   |  |  |
|             |                      |             |                                               |                                   |  |  |
|             |                      |             |                                               |                                   |  |  |
|             |                      |             |                                               |                                   |  |  |
|             |                      |             |                                               |                                   |  |  |
|             |                      |             |                                               |                                   |  |  |
|             |                      |             |                                               |                                   |  |  |
|             |                      |             |                                               |                                   |  |  |
|             |                      |             |                                               |                                   |  |  |
|             |                      |             |                                               |                                   |  |  |

SIP - TO - SOM COMMANDS

FIGURE 2-1

VEATSER 3/3/13

| (                       | COMMAND                                   | SU                | BCOMMAND                                                           | PARAMETERS                        |
|-------------------------|-------------------------------------------|-------------------|--------------------------------------------------------------------|-----------------------------------|
| BIT<br>POS.             |                                           | BIT<br>POS.       |                                                                    |                                   |
| 15-11                   | DESCRIPTION                               | 10-8              | DESCRIPTION                                                        |                                   |
| 00000                   | (Not Used)                                | 000               |                                                                    |                                   |
| 00001                   | Data                                      | 000               | None                                                               |                                   |
| 00010                   | Echo                                      | 000               | Request                                                            |                                   |
| 00011                   | (Reserved)                                |                   |                                                                    |                                   |
| 00100                   | Flow Control                              | 000               | Ready for next Segment                                             | Window                            |
| 00101<br>00110<br>00111 | (Not Used)                                |                   |                                                                    |                                   |
| 01000                   | Non-Delivery<br>Notice (Flow              | 000               | Blocked at the Source-Traffic<br>Acceptance Category too low       |                                   |
|                         | Control)                                  | 001               | Rejected, beyond Global Window                                     |                                   |
|                         |                                           | 010               | Rejected, Congestion at Source SCM                                 |                                   |
|                         |                                           | 011               | Rejected, Congestion at a Backbone<br>Trunk                        |                                   |
|                         |                                           | 100               | Rejected, Congestion at the<br>Destination Access Line             |                                   |
|                         |                                           |                   |                                                                    |                                   |
| 01001                   | Error Reject                              | 000               | Invalid BSL                                                        |                                   |
|                         |                                           | 010               | Illegal Command Code                                               |                                   |
| 01010                   | Non-Delivery<br>Notice<br>(Undeliverable) | 000               | Destination Subscriber Down                                        |                                   |
|                         |                                           | 001               | Destination Subscriber Circuit Down                                |                                   |
| 01011                   | Validation Re-                            | 010<br>011<br>000 | Destination Subscriber Busy<br>Network Discard<br>Invalid Security |                                   |
|                         | ject(any SCM)                             | 001               | Invalid TCC                                                        |                                   |
|                         |                                           | 010               | Invalid Address                                                    |                                   |
|                         |                                           | 011               | Invalid Precedence                                                 |                                   |
| 01100                   | SCM Status                                | 000               | SCM Going Inoperable                                               | Start Time<br>Duration,<br>Reason |
|                         |                                           | 001               | SCM Operable                                                       | reason                            |

SCM - TO - SIP COMPANDS FIGURE 2-2

| COMMAND     |             | COMMAND SUBCOMMAND |                              |                                   |  |
|-------------|-------------|--------------------|------------------------------|-----------------------------------|--|
| BIT<br>POS. |             | BIT<br>POS.        |                              |                                   |  |
| 15-11       | DESCRIPTION | 10-8               | DESCRIPTION                  |                                   |  |
|             |             | 010                | Access Line Going Inoperable | Start Time<br>Duration,<br>Reason |  |
|             |             | 011                | Access Line Operable         |                                   |  |
|             |             | 100                | SCM Busy                     |                                   |  |
| 01101       | (Reserved)  |                    |                              |                                   |  |
| 01110       | (1)         |                    |                              |                                   |  |
| THRU        | (Not Used)  |                    |                              |                                   |  |
|             |             |                    |                              |                                   |  |
|             |             |                    |                              |                                   |  |
|             |             |                    |                              |                                   |  |
|             |             |                    |                              |                                   |  |
|             |             |                    |                              |                                   |  |
|             |             | •                  |                              |                                   |  |
|             |             |                    |                              |                                   |  |
|             |             |                    |                              |                                   |  |
|             |             |                    |                              |                                   |  |
|             |             |                    |                              |                                   |  |
|             |             |                    |                              |                                   |  |
|             |             |                    |                              |                                   |  |
|             |             |                    |                              |                                   |  |
|             |             |                    |                              |                                   |  |
|             |             |                    |                              |                                   |  |
|             |             |                    |                              |                                   |  |
|             |             |                    |                              |                                   |  |

SCM - TO - SIP COMMANDS (Cont'd)

FIGURE 2-2

SCM Status Message and the Echo commands. Reject Notices refer to a particular segment that the backbone was unable to deliver to the destination subscriber. The Ready for Next segment updates the SIP window, thereby controlling the rate at which SIP can transmit segments to the SCM. The SCM status message indicates a change in SCM status. The echo functions exist for testing purposes only.

### 2.1 SIP State Description

The protocol aspects of SIP can be modelled and completely described by a five-state protocol diagram. The general SIP state diagram is depicted in Figure 2-3. It is not intended to be complete in detail; specifically, all state transitions are not shown. Complete detail is contained in Section 3. A brief description of the SIP states follows.

In the READY state segments can flow in either direction. User segments are appended BSLs and transmitted to the SCM. Data segments from the SCM are stripped of their BSLs and delivered to the User. The flow of segments from the SIP to the SCM is controlled by the SCM by periodic window allocations via the RFNS command. SIP can move to the INTERFACE DOWN state if either end of the line goes inoperable or the line itself fails. Either the SCM or SIP can declare himself busy and move SIP to the SCM RNR or SIP RNR state. These RNR states are not to be confused with Mode VI RNR. From the READY state SIP moves to the W=O (Window=Zero) state once the window is depleted.

In the W=O state, data segment flow (not control segment flow) is not allowed in the SIP-to-SCM direction although user segments are held in SIP allowing for the condition to clear up if at all possible. In the opposite direction, SCM-to-SIP, segments are processed as in the READY state. In this W=O state, SIP can request for a window update via the Request Window command if the SCM fails to update in its periodic fashion. However, the likely explanation for SIP being in this state is that this subscriber is exhausting his equitably allocated window too quickly or is the cause of congestion within the backbone. In both cases



the throttling is purposeful and transmission of excessive Request Window commands will cause the SCM to respond with an SCM Busy status moving SIP to the SCM RNR condition.

In the SCM RNR state, the SCM will discard without returning Non-Delivery Notices any segment transmitted by SIP. However, segment flow in the opposite direction, SCM-to-SIP, is still in force.

The SIP RNR state is almost the opposite of the previous state except that the SCM is allowed to send controls to the SIP such as replenishing the window allocation. Segment flow from the SIP-to-SCM is processed as in the READY state.

The INTERFACE DOWN state is the default state (initial state) of SIP. The only events permitted in this state are Mode VI Initialization in either direction, and the Subscriber Operable control segment from SIP to the SCM. This state is actually the combination of several states: SIP DOWN and SCM READY, SIP READY and SCM DOWN, SIP DOWN and SCM DOWN, and SIP RNR and SCM RNR. This state is the initial state of SIP from a previous SIP down condition. Normally the end that moves SIP to the INTERFACE DOWN condition is responsible for moving SIP out of that state, but as part of the initialization process the SIP sends the SCM a Subscriber Operable command, since history of who initiated the down state is lost. Likewise, the SCM will send an SCM operable command when the SCM begins initialization.

#### 2.2 Segments to the SCM

The following functions manage the transfer of data and control segments to the SCM. A 128-bit Binary Segment Leader (BSL) is appended to data segments from the user. Controls and associated parameters are coded in the proper BSL fields. All of the fields are not used for all segments. In particular, the Start Time, Duration, and Reason Code fields are used only for the Subscriber Status command. All non data segments are considered control segments. No control functions piggyback on data segments.

## 2.2.1 Data Segment to SCM Processing

This function will be responsible for processing data segments from the User. In the SIP RNR and READY states, user segments are appended a BSL and released to the Mode VI controller. The window is decremented by one for each data segment only (control segments do not decrement window). If the window reduces to zero, SIP moves to the W=O state. A user segment is held in queue if SIP is in the W=O state. In the SCM RNR and INTERFACE DOWN states user segments are not processed for transmission to the backbone, but are either discarded or returned to the User with an appropriate cause (either SCM Busy or Interface Down).

The proper coding of the BSL is explained below and depicted in Figure 2-4.

Type of Segment Field - This field is set to zero for all segments in the SIP-to-SCM direction.

Segment I.D. Field - Segment identification provided by the User is placed in this field. The segment I.D. is used by SIP to uniquely identify a segment.

Unused and Spare Fields - All unused and spare fields are set to zero.

Command Control Field - This field is coded as data.

It indicates that the segment contains text following the BSL.

Precedence Field - The precedence associated with the segment is coded into precedence field. This will indicate to the backbone the urgency of the segment. High precedence segments will normally get priority in both processing and resources in the backbone. The SIP to SCM access line will be authorized a ceiling precedence level above which it cannot assign to segments. If the precedence exceeds the ceiling level, the SCM will return a validation reject with the appropriate cause. The precedence codes are listed in Figure 2-5.

TCP Version No. Field - The TCP Version Number of the User allows for the identification of different versions of TCP that

| 15                           |             | į             | 8    | 7    |       |      |      |      |     | į    | 1        | 0  |
|------------------------------|-------------|---------------|------|------|-------|------|------|------|-----|------|----------|----|
| TYPE OF SEGMENT SEGMENT I.D. |             |               |      |      |       |      |      |      |     |      |          |    |
| SPARE=ZERO                   | טאט         | UNUSED = ZERO |      |      |       |      |      |      |     |      |          |    |
| UNUSI                        | ED = ZERO   |               |      |      | UN    | IUSE | D =  | ZERO |     |      |          |    |
| COMMAND CONT                 | ROL FIELD = | = DATA        |      | PRE  | CEDEN | CE   |      | TCP  | VE  | RSIC | ON I     | 10 |
|                              | sou         | RCE ST        | JBSC | RIBE | R ADD | RES  | s    |      |     |      |          |    |
|                              | DESTIN      | ATION         | SUB  | SCRI | BER A | DDR  | ESS  |      |     |      |          |    |
| SPARE=ZERO                   |             | TC            | C-1  |      |       |      |      | SEC  | URI | TY-1 | <u> </u> |    |
| SECURITY-2                   | SPARE=      | ZERO          |      |      |       | T    | CC-2 |      |     |      |          | _  |
|                              |             |               | USE  | R TE | KT·   |      |      |      |     |      |          |    |

SIP - TO - SCM DATA SEGMENT

FIGURE 2-4

|          |       | BIT | r pos | ITIO | NS          |                            |
|----------|-------|-----|-------|------|-------------|----------------------------|
| USER CAT | EGORY | 7   | .6    | 5    | DESCRIPTION |                            |
| CAT I    | I-1   | 1   | 1     | 1    | 1           | NETWORK ONLY               |
|          | I-2   | 1   | 1     | 1    | 0           | NETWORK ONLY               |
|          | 1-3   | 1   | 1     | 0    | 1           | CRITIC/ECP                 |
|          | I-4   | 1   | 1     | 0    | 0           | FLASH, I/A,Q/R,N/R, & BULK |
| CAT II   | AII   | 1   | 0     | 1    | 1           | I/A                        |
|          | IIB   | 1   | 0     | 1    | 0           | Q/R                        |
|          | HCI   | 1   | 0     | 0    | 1           | BULK 1/NARRATIVE           |
|          | 11C2  | 1   | 0     | 0    | 0           | BULK 2                     |
| CAT III  | AIII  | 0   | 1     | 1    | 1           | I/A                        |
|          | IIIB  | 0   | 1     | 1    | 0           | Q/R                        |
|          | iiici | 0   | 1     | 0    | 1           | BULK 1/NARRATIVE           |
|          | 11102 | 0   | 1     | 0    | 0           | BULK 2                     |
| CAT IV   | AVI   | 0   | 0     | 1    | 1           | I/A                        |
|          | IVB   | 0   | 0     | 1    | 0           | Q/R                        |
|          | IVC1  | 0   | 0     | 0    | 1           | BULK 1/NARRATIVE           |
|          | IVC2  | 0   | 0     | 0    | 0           | BULK 2                     |

NOTES: 1. The combination of bits in positions 7 and 6 uniquely define the user precedence category.

 The combination of bits in positions 5 and 4 uniquely define the subcategory within each category.

LEVELS OF PRECEDENCE Figure 2-5

may exist at the user side of SIP. The code for the AUTODIN II TCP is one. The code for no TCP is zero. All other codes are reserved and will be assigned by DCA Code 530.

Source Subscriber Address Field - The subscriber address of the host accessing AUTODIN II via this SIP is placed in this field.

<u>Destination Subscriber Address Field</u> - The address of the subscriber to which this segment is destined is placed in this field.

Security Fields - The security assigned by the User to this segment is inserted in both fields. The user text will be handled at the security level assigned by the SIP. The security field allows up to 16 security designations. The redundant security field is present to provide the means to detect store/fetch malfunctions.

TCC Fields - The TCC code assigned by the User to this segment is inserted in both fields. The TCC provides a means to partition traffic and define controlled communities of interest among subscribers. A redundant TCC field provides the same malfunction protection as provided by the redundant security field.

# 2.2.2 Request Window Processing

Request for Window processing can take place only in the W=O state and SIP RNR state with window depleted. When a user segment is processed and transmitted to the SCM, the window is reduced by one. If the window is reduced to zero, then a timer is set to approximately the value of the SCM's window update period. A Request Window command is sent to the SCM if the timer expires and the SIP state is either SIP RNR with window still zero or W=O. A timer expiration with SIP in any other state is ignored and indicates that either the SCM has updated the window or some other stimulus has moved SIP to another state. The Request Window can be retransmitted (upon successive timer expirations) up to five times if no responses are received from

the SCM. After the fifth unsuccessful attempt, the SCM is assumed to be down or busy and SIP moves accordingly to the INTERFACE DOWN state if in the SIP RNR state or to the SCM RNR state if in W=O state.

The proper coding of the BSL is explained below and depicted in Figure 2-6.

Type of Segment Field - This field is set to zero.

Spare and Unused Fields - All unused and spare fields are set to zero.

Command Control Field - This field is coded as Request Window.

Precedence Field - All SIP-to-SCM controls are assigned the maximum allowable precedence the SIP-to-SCM access line is authorized to carry.

Source Subscriber Address Field - The subscriber address of the host accessing AUTODIN II via this SIP is placed in the field.

<u>Destination Subscriber Address Field</u> - The AUTODIN II backbone is assigned a general network address. This address is placed in this field.

Security Fields - Any authorized security level of this SIP's subscriber is placed in these fields.

TCC Fields - Any authorized TCC designation of this SIP's subscriber is placed in these fields.

## 2.2.3 Subscriber Status Processing

The Subscriber Status command has four subcommands specifying the status. These status messages are sent to the SCM (from any state except SCM RNR) only if a change in the present or future status of the subscriber is to take place. The Subscriber Going Inoperable and Subscriber Access Circuit Going Inoperable subcommands move SIP to INTERFACE DOWN state at the time indicated in the parameter field. After the duration of inoperability,

| 15           |             | 8              | 7       | 1     |       | ! |                         | 1    | 1 0  |
|--------------|-------------|----------------|---------|-------|-------|---|-------------------------|------|------|
| TYPE OF SEGM | ENT         |                | UNUSE   | D = 2 | ERO   |   |                         |      |      |
| SPARE=ZERO   |             | U              | NUSED   | = ZEF | 80    |   |                         |      |      |
| טאט          | SED = ZERO  |                |         | UI    | NUSED | £ | ZERO                    |      |      |
| COMMAND CONT |             | UEST           | PRECE   | DENCE | AUTH  |   | UNUSE                   | ED-= | ZERO |
|              | SOURCE S    | UBSCI          | RIBER . | ADDRE | ess   |   |                         |      |      |
|              | DESTINATION | SUBS           | SCRIBE  | R ADI | ORESS | = | GENER<br>NETWO<br>ADDRE | RK   |      |
| SPARE=ZERO   | TC          | TCC-1 SECURITY |         |       |       |   |                         | -YTI | 1    |
| SECURITY-2   | SPARE=ZERO  |                |         |       | TCC-  | 2 |                         |      |      |

SIP - TO - SCM REQUEST WINDOW SEGMENT FIGURE 2-6 the Subscriter Operable subcommand is sent and SIP moves to the W=O state. From this state SIP moves to the READY state after the SCM updates the window with the RFNS command. When the Subscriber Busy subcommand, indicating that the subscriber is temporarily unable to handle any more data, is sent to the SCM, SIP moves to the SIP RNR state from all other states except SCM RNR and INTERFACE DOWN states. In these states SIP moves to the INTERFACE DOWN state. The SCM on reception of the Subscriber Busy subcommand will inhibit all data segment transmission to the SIP.

The proper coding of the BSL is explained below and depicted in Figure 2-7.

Type of Segment Field - This field is set to zero.

Unused and Spare Fields - All unused and spare fields are set to zero.

Start Time - This field is unused except for the "Going Inoperable" subcommands. For these subcommands, the time that the INTERFACE DOWN condition will begin is indicated by the number of minutes (binary number in the Start Time field) from the current time.

<u>Duration</u> - This field remains unused except for the "Going Inoperable" subcommands. For these subcommands, the duration of the down condition is indicated by a number of minutes binary number.

Reason - This field contains the cause for the impending down condition. The only reason for outage thus far identified is scheduled maintenance (code = zero).

<u>Command Control Field</u> - The particular status code is inserted in this field.

<u>Precedence Field</u> - As in all control segments, the maximum authorized precedence level is assigned.

Source Subscriber Address Field - The subscriber address of the host accessing AUTODIN II via this SIP is placed in this field.

<u>Destination Subscriber Address Field</u> - The general network address is placed in this field.

Security Fields - Any authorized security level of this SIP's subscriber is placed in these fields.

| 15            | 111                       | 8                              | 7    |       |      |                    |      | 1                    | i   | !   | 0          |  |  |  |
|---------------|---------------------------|--------------------------------|------|-------|------|--------------------|------|----------------------|-----|-----|------------|--|--|--|
| TYPE OF SEGMI | ENT                       | UNUSED = ZERO                  |      |       |      |                    |      |                      |     |     |            |  |  |  |
| SPARE=ZERO    |                           | START TIME = MINUTES TO OUTAGE |      |       |      |                    |      |                      |     |     |            |  |  |  |
| REASON FOR    | OUTAGE = ZERO             | AGE = ZERO                     |      |       |      | DURATION = MINUTES |      |                      |     |     |            |  |  |  |
| COMMAND CONT  | SUBSCR<br>ROL FIELD = STA |                                |      | CEDE  |      | AUTH               |      | JSED                 | = 2 | ERC | )          |  |  |  |
|               | SOURCE S                  | UBSCI                          | RIBE | R ADI | RES  | s _                |      |                      |     |     |            |  |  |  |
|               | DESTINATION               | SUBS                           | CRI  | BER A | ADDR | ESS                | _ NI | ENER<br>ETWO<br>DDRE | RK  |     |            |  |  |  |
| SPARE=ZERO    | TC                        | TCC-1                          |      |       |      |                    |      |                      |     |     | SECURITY-1 |  |  |  |
| SECURITY-2    | SPARE=ZERO                | SPARE=ZERO TCC-2               |      |       |      |                    |      |                      |     |     |            |  |  |  |

SIP - TO - SCM SUBSCRIBER STATUS SEGMENT

FIGURE 2-7

TCC Fields - Any authorized TCC designation of this SIP's subscriber is placed in these fields.

## 2.2.4 Echo

The Echo data segment, used for testing purposes, can be sent in only the READY state. It expects the SCM to return the entire self addressed segment. The Echo Reply subcommand is the response for the SCM's echo request and is only sent in the READY state.

The proper coding of the BSL is explained below and depicted in Figures 2-8 and 2-9.

Type of Segment Field - This field is set to zero for the echo request. For Echo Reply the field is left unchanged from that of the SCM's echo request format.

Segment I.D. Field - This field is coded and interpreted in the same manner as any other data segment for echo request. For Echo Reply the field is left unchanged from the SCM's echo request format.

Unused and Spare Fields - These fields are set to zero.

Command Control Field - This field is set to data for echo request and to Echo Reply for the Echo Reply.

Precedence Field - For the echo request any precedence level authorized for the SIP-SCM access line may be placed in this field. If the User is originating the echo request, the precedence assigned by User is placed in this field as long as it lies within the ceiling authorized. For the Echo Reply the precedence field setting is unchanged from that of the SCM's echo request.

TCP Version No. Field - For the echo request the field is set to the value assigned by the User if the User originated the echo segment or to any value if SIP originates the echo segment. The field is left unchanged for the Echo Reply from that of the SCM's echo request.

| TYPE OF SEGME | TR              | SEGMENT I.D.      |                                 |
|---------------|-----------------|-------------------|---------------------------------|
| SPARE=ZERO    |                 | UNUSED = ZERO     | 6                               |
| UNUSED •      | = ZERO          | UNUSED =          | ZERO                            |
| COMMAND CONTR | OL FIELD = DATA | PRECEDENCE        | TCP VERSION NO                  |
|               | SOURCE SUB      | SCRIBER ADDRESS   |                                 |
|               | DESTINATION S   | UBSCRIBER ADDRESS | SOURCE<br>SUBSCRIBER<br>ADDRESS |
| SPARE=ZERO    | TCC-            | 1                 | SECURITY-1                      |
| SECURITY-2    | SPARE=ZERO      | TCC-              | -2                              |
|               |                 |                   |                                 |

SIP - TO - SCM ECHO REQUEST DATA SEGMENT FIGURE 2-8

|                                   |          |      |            |     | a Date |       |       |      |                |      |
|-----------------------------------|----------|------|------------|-----|--------|-------|-------|------|----------------|------|
| TYPE OF SEGME                     | INT      |      |            |     | SEGR   | ENT   | 1.0.  |      |                |      |
| SPARE=ZERO                        |          |      |            |     | UNUSI  | ED =  | ZERO  |      |                |      |
| UNUSED                            | = ZERO   |      |            |     |        | UNU   | SED = | ZERO |                |      |
| COMMAND CONTI                     | OL FIELI | , =  | ECH<br>REP |     | PRECE  | DENC  | E     | TCP  | VERSION        | N NC |
| SOURCE SUBSCRIBER ADDRESS GENERAL |          |      |            |     |        |       |       |      |                |      |
|                                   | DEST     | INAT | ION        | SUB | SCRIBE | ER AD | DRESS | = NE | TWORK<br>DRESS |      |
| SPARE=ZERO                        |          |      | TC         | 2-1 |        |       |       | SEC  | URITY-1        |      |
| SECURITY-2                        | SPARI    | =ZE  | RO         |     |        |       | TCC-  | 2    |                |      |
|                                   |          |      |            |     |        |       |       |      |                |      |

SIP - TO - SCM ECHO REPLY SEGMENT FIGURE 2-9

Source Subscriber Address Field - The SIP's subscriber address is placed in this field for both Echo Request and Echo Reply.

Destination Subscriber Address Field - This field is set to the source subscriber address (self addressed) for the Echo Request. This field is set to the general network address for the Echo Reply.

Security Fields - These fields may be set to any authorized security level.

TCC Fields - These fields may be set to any authorized TCC designation.

### 2.3 Segments From the SCM

The following functions manage the transfer of data and control segments from the SCM. A 128-bit Binary Segment Leader(BSL) has been appended to data segments from the SCM. Controls and associated parameters are coded in the proper BSL fields. All of the fields are not used for all segments. In particular, the Start Time, Duration, and Reason Code fields are used only for the Subscriber Status command. All non data segments are considered control segments. No control functions piggyback on data segments.

### 2.3.1 Data Segment

A data segment from the SCM is accepted in the READY, W=O and SCM RNR states only. Data segments received in the other two states are discarded. The BSL is validated by the SIP for proper format.

The proper format of the received BSL is explained below and depicted in Figure 2-10.

Type of Segment Field - The settings in this field are ignored by the SIP.

Segment I.D. - The segment I.D. identifies the segment for the source transmitting the segment and is mainly used to report back to the source if the segment is rejected in the backbone. To the destination subscriber this field might have no meaning, but the end users might desire to use the segment I.D. field for end-to-end purposes. Therefore, the segment I.D. field is passed to the User along with the other segment parameters.

| 15            | 8               | 7                | 0               |
|---------------|-----------------|------------------|-----------------|
| TYPE OF SEGME | NT              | SEGMENT I.D.     |                 |
| SPARE=ZERO    |                 | JNUSED = ZERO    |                 |
| UNUSEI        | O = ZERO        | UNUSED =         | ZERO            |
| COMMAND CONTR | OL FIELD = DATA | PRECEDENCE       | TCP VERSION NO. |
|               | SOURCE SUBS     | CRIBER ADDRESS   |                 |
|               | DESTINATION SU  | BSCRIBER ADDRESS |                 |
| SPARE=ZERO    | TCC-1           |                  | SECURITY-1      |
| SECURITY-2    | SPARE=ZERO      | TCC-2            |                 |
|               | USER            | EXT              |                 |
|               |                 |                  |                 |

SCM - TO - SIP DATA SEGMENT FIGURE 2-10 · Spare and Unused Fields - All spare and unused fields must be set to zero.

<u>Command Control Field</u> - This field identifies the segment as containing text following the BSL.

<u>Precedence Field</u> - The precedence parameter may be passed on to the user with the text. It indicates the urgency of the text.

TCP Version No. Field - The setting in this field is used to identify the proper user of SIP. If the TCP Version No. is invalid, the segment is discarded.

Source Subscriber Address Field - This field identifies the originating subscriber of this segment. This address may be passed on to the user as a parameter along with the text.

<u>Destination Subscriber Address Field</u> - This field should match this SIP's subscriber address. This address need not be passed on to the user as a parameter along with the text. If the address is invalid, the segment is discarded.

Security Fields - The two security fields settings must match and the security level must be within the maximum security authorization for this SIP's subscriber. If these tests (optional) hold, then the security level is passed on to the user as a parameter along with the text. If any of the above tests fail, the segment is discarded.

TCC Fields - The two TCC fields settings must match and the TCC designation must be authorized for this SIP's subscriber. If these tests (optional) hold, then the TCC code is passed on to the user as a parameter along with the text. If any of the above tests fail, the segment is discarded.

## 2.3.2 Ready for Next Segment (RFNS)

This command regulates the flow of segments from the SIP to the SCM. The command includes the parameter, W, which is the number of data segments that may be sent by the SIP to the SCM. This command will be sent by the SCM periodically. Presently the design calls for updating the window every second. The window is global, in the sense that it does not specify to what destination the segments must be sent. It does, however, represent the

general health of all the flows that the SIP is utilizing. A flow is a stream of segments of a single category to one particular destination. If several flows are congested either at source, tandem, or destination switches, they will tend to constrict the global window. The window will never recede to zero as long as some flows exist that are not congested. Category I flows will not normally be congested since these packets/segments are given highest processing priority at all switches. But if CAT I flows are congested (because of too many CAT I segments queued for output at the output SIP access line, for example) along with all other flows then the window will shrink to near zero (minimum window update is w=1). Therefore, a zero window restricts all data segments, CAT I and non-CAT I, from transmission The RFNS command is accepted and processed by SIP to the SCM. in all but INTERFACE DOWN states. The window in the RFNS command replaces the present value of the window. The window represents the new allocation. If SIP is in the W=O state and this command is received, SIP moves to the READY state and dequeues and transmits to the SCM any held segments.

The proper format of the received RFNS segment is explained below and depicted in Figure 2-11.

Type of Segment Field - This field is ignored.

Unused and Spare Fields - All unused and spare fields must be set to zero.

<u>Window Field</u> - This field will contain the number of data segments that the SIP can send to the SCM. This window replaces any previous window.

Command Control Field - This field will identify the segment as a Ready for Next Segment command.

<u>Precedence Field</u> - This field will contain the precedence level of the segment.

| SECURITY-2   | SPARE=ZERO       | TCC-2                                    |   |  |  |  |  |  |  |
|--------------|------------------|------------------------------------------|---|--|--|--|--|--|--|
| SPARE=ZERO   | TCC-1            | SECURITY-1                               |   |  |  |  |  |  |  |
|              | DESTINATION SU   | BSCRIBER ADDRESS = SUBSCRIBER<br>ADDRESS |   |  |  |  |  |  |  |
|              | SOURCE SUBS      | GENERAL NETWORK ADDRESS ADDRESS          |   |  |  |  |  |  |  |
| COMMAND CONT | ROL FIELD = RFNS | PRECEDENCE UNUSED = ZERO                 |   |  |  |  |  |  |  |
| UNUS         | ED = ZERO        | WINDOW                                   |   |  |  |  |  |  |  |
| SPARE=ZERO   |                  | UNUSED = ZERO                            |   |  |  |  |  |  |  |
| TYPE OF SEGM | ENT              | UNUSED = ZERO .                          |   |  |  |  |  |  |  |
| 15           | 8                | 7                                        | 0 |  |  |  |  |  |  |

SCM - TO - SIP RFNS SEGMENT FIGURE 2-11 <u>Source Subscriber Address Field</u> - This field will contain the general network address.

<u>Destination Subscriber Address Field</u> - This field will contain this SIP's subscriber address.

Security Fields - The two security fields must match and be any authorized security level for SCM-to-SIP exit line. If the test (optional) fails, the segment is discarded.

TCC Fields - The two TCC fields must match and the value must be an authorized TCC code fot this SIP's subscriber. If the test (optional) fails, then the segment is discarded.

### 2.3.3 Validation Reject, Error Reject, and Non-Delivery Notice

These notices indicate that the backbone has discarded the specified segment. The Non-Delivery Notice (NDN) indicates that the segment specified was discarded because of one of the following reasons:

- o Destination Subscriber is Down
- o Destination Subscriber Circuit is Down
- o Destination Subscriber is Busy
- o Traffic Acceptance Category Too Low
- o Rejected, beyond Global Window
- o Congestion at the Source SCM
- o Congestion at a Backbone Trunk
- o Congestion at the Destination Access Line
- O Network Discard
  The Validation Reject identifies the following causes:
  - o <u>Invalid security</u> indicates that the security fields within the segment leader were inconsistent with each other, did not contain valid security information for the source or destination access circuit, or contained an unknown security code.
  - O <u>Invalid TCC</u> indicates that an SCM has determined that the TCC fields of the segment leader are inconsistent with each other or invalid for the source or destination access circuit.

- o <u>Invalid address</u> indicates that the segment leader destination address is unknown to the validating SCM.
- o <u>Invalid precedence</u> indicates that the segment precedence field value exceeds the authorized precedence level for source access line.

The Error Reject command indicates that the source SIP has transmitted a segment with an invalid leader or that the leader was garbled within the validating SCM. If the Segment I.D. is ungarbled the user may be able to identify the segment and retransmit it.

These notices are accepted by SIP in all states except in the INTERFACE DOWN state. These notices are passed on to the User along with the discarded segments's original parameters. The original segment I.D. is passed on, since this will uniquely identify the particular segment and enable the User to recover if possible. The BSL of the discarded segment is returned unmodified except the appropriate cause placed on the Command Control Field and the source and destination address fields switched.

The proper format of the received segments is explained below and depicted in Figure 2-12.

Type of Segment Field - This field is ignored.

<u>Segment I.D. Field</u> - The original segment's segment I.D. is in this field. This field is passed on to the User as a parameter.

Spare and Unused Fields- All of these fields should be set to zero.

Command Control Field - This field identifies the particular discard notice. This cause may be passed on to the User.

<u>Precedence Field</u> - The precedence of the original segment is contained in this field and may be passed on to the User. The precedence value is not validated by SIP.

TCP Version No. Field - This field will identify the User who originated the original segment.

| 15            | 8                                  | 7                                                                    | 0              |  |  |  |  |  |  |
|---------------|------------------------------------|----------------------------------------------------------------------|----------------|--|--|--|--|--|--|
| TYPE OF SEGME | NT                                 | SEGMENT I.D. = OF THE DIS-<br>CARDED SEGMENT -                       |                |  |  |  |  |  |  |
| SPARE=ZERO    |                                    | UNUSED = ZERO                                                        |                |  |  |  |  |  |  |
| UNUSE         | ED = ZERO                          | UNUSED = ZERO                                                        |                |  |  |  |  |  |  |
| COMMAND CONTR | PARTICULAR DISCARD OL FIELD NOTICE | PRECEDENCE                                                           | TCP VERSION NO |  |  |  |  |  |  |
|               |                                    | DISCARDED SEGMENTS CRIBER ADDRESS = DESTINATION SUB- SCRIBER ADDRESS |                |  |  |  |  |  |  |
|               |                                    | DISCARDED SEGMENTS BSCRIBER ADDRESS = SOURCE SUB-                    |                |  |  |  |  |  |  |
| SPARE=ZERO    | TCC-1                              | SECURITY-1                                                           |                |  |  |  |  |  |  |
| SECURITY-2    | SPARE=ZERO                         | TCC-2                                                                |                |  |  |  |  |  |  |

VALIDATION REJECT, ERROR REJECT, AND NON-DELIVERY, NOTICE SEGMENTS

FIGURE 2-12

Source Subscriber Address Field - This field contains the discarded segment's destination subscriber address and may be passed on to the User.

<u>Destination Subscriber Address Field</u> - This field contains the discarded segment's source subscriber address. This should match with the SIP's subscriber address, otherwise the segment is discarded.

Security Fields - These fields contain the original segment's security level. The parameter may be passed on to the User. The two security fields should not be validated.

TCC Fields - These fields contain the original segment's TCC code. It may be passed on to the User. The two TCC fields should not be validated.

### 2.3.4 SCM Status

This command indicates the status of the SCM and the access line between the SCM and SIP. Five subcommands have been defined to allow identification of SCM going down, SCM operable, access circuit going inoperable, access circuit operable, and SCM Busy.

Parameters associated with the SCM going-down subcommand will indicate how soon (Start Time), the reason (Reason for Outage) and the expected duration. Start Time specifies how soon the SCM will be going down in number of minutes from current time; Duration specifies when the SCM expects to again become operable in minutes from start time; and the RFO contains a reason code. Currently identified reason codes are scheduled maintenance, detected hardware/software failure, and switchover.

The SCM operable subcommand is issued when the SCM actually becomes operational after initialization, or after the SCM has recovered from an inoperable state as previously described. The Access-Circuit-Operable subcommand indicates that the access

circuit is operating. The access circuit includes transmission media, crypto, and modems.

The Access-Circuit-Going-Inoperable subcommand indicates that the access circuit is going inoperable. Parameters associated with this subcommand will indicate how soon (Start Time), the reason (Reason For Outage) and the expected duration (Duration). Start Time is the time in minutes from the current time, RFO contains a reason code and Duration indicates when the access line will again become operable.

The SCM Busy subcommand indicates that the SCM is temporarily unable to handle any more segments from the SIP, and moves SIP to the SCM RNR state from all states except SIP RNR and INTERFACE DOWN. From these states SIP moves to the INTERFACE DOWN state.

The inoperable subcommands on reception by the SIP will transition it to the INTERFACE DOWN state at the indicated time from all states. In this state no data segments can traverse the SIP/SCM link. The operable subcommands are explicit indications that the SCM or access line is backup. These notices along with the Mode VI initialization indication transition SIP to W=O state where he waits for a window update from the SCM. The Operable subcommands are also used to negate an SCM Busy subcommand. The SCM Status notice may be delivered to the User such that he can flow control and notify his sources.

The proper format of the received segment is explained below and depicted in Figure 2-13.

Type of Segment Field - This field is ignored.

Unused and Spare Fields - All unused and spare fields should be set to zero.

Start Time Field - This field is unused except for SCM going inoperable and Access Line going inoperable. For these commands the start time field will contain the number minutes (binary number) from the current time that the down condition will begin.

<u>Duration Field</u> - This field remains unused except for the Inoperable subcommands. When it exists, it indicates the duration of the down condition in minutes (binary number).

| 15           |                                | 8    | 7                                                  |  |  |  |  |  | 1 | 0 |
|--------------|--------------------------------|------|----------------------------------------------------|--|--|--|--|--|---|---|
| TYPE OF SEG  | IENT                           |      | UNUSED = ZERO                                      |  |  |  |  |  |   |   |
| SPARE=ZERO   |                                |      | START TIME = MINUTES                               |  |  |  |  |  |   |   |
| REASON       | FOR OUTAGE                     |      | DURATION = MINUTES                                 |  |  |  |  |  |   |   |
| COMMAND CONT | PARTICULA<br>PROL FIELD STATUS |      | PRECEDENCE UNUSED = ZERO GENERAL                   |  |  |  |  |  |   |   |
|              | SOURCE S                       | UBSC | CRIBER ADDRESS = ADDRESS                           |  |  |  |  |  |   |   |
|              | DESTINATION                    | SUB  | SIP's SUB-<br>BSCRIBER ADDRESS =SCRIBER<br>ADDRESS |  |  |  |  |  |   |   |
| SPARE=ZERO   | TC                             | C-1  | SECURITY-1                                         |  |  |  |  |  |   |   |
| SECURITY-2   | SPARE=ZERO                     |      | TCC-2                                              |  |  |  |  |  |   |   |

SCM - TO - SIP SCM STATUS SEGMENT FIGURE 2-13 Reason Field - This field will contain the cause for impending down condition. The codes are listed in Figure 2-14.

Command Field - This field will indicate the SCM Status subcommand.

Precedence Field - This field will contain the precedence level of the segment.

Source Subscriber Address Field - This field will contain the general network address.

Destination Subscriber Address Field - This field will contain the receiving SIP address: If this address does not match the SIP's subscriber address, the segment is discarded.

Security Fields - The two security fields must match and be any security level assigned to the SIP's subscriber.

TCC Fields - The two TCC codes must match and any authorized TCC code assigned to the SIP's subscriber is acceptable.

### 2.3.5 Echo

The Echo Request subcommand requests that the SIP Echo reply the entire segment. Echo Requests are accepted only in the READY state. In all other states, the segment is discarded. When accepted an Echo Reply is sent as described in paragraph 2.2.4. Echo Replies are validated and processed like any other data segment.

The proper format of the received Echo Request segment is explained below and depicted in Figure 2-15.

Type of Segment Field - This field is ignored but unchanged when responding to an Echo Request.

Segment I.D. Field - This field can be used by the SCM to identify the Echo segment. It is left unchanged when responding with Echo Reply.

Unused and Spare Fields - All unused and spare fields should be zero.

| 15 CODE 8 | REASON                                   |
|-----------|------------------------------------------|
| 00000000  | SCHEDULED<br>MAINTENANCE                 |
| 00000001  | DETECTED HARDWARE<br>SOFTWARE<br>FAILURE |
| 00000010  | SWITCHOVER                               |

SCM STATUS REASON FOR OUTAGE CODES
FIGURE 2-14

| 15           |           | <u> </u>      | 8                                     | 7                                   |        |      |     |       | 1    | !   | 0 |
|--------------|-----------|---------------|---------------------------------------|-------------------------------------|--------|------|-----|-------|------|-----|---|
| TYPE OF SEGM | ENT       |               |                                       | SEGMENT I.D.                        |        |      |     |       |      |     |   |
| SPARE=ZERO   |           |               |                                       | UNU                                 | SED =  | ZERO |     |       |      |     |   |
| UNUS         | ED = ZERO |               |                                       | UNUSED = ZERO                       |        |      |     |       |      |     |   |
| COMMAND CONT | ROL FIELD | ECHO<br>_REQU |                                       | PRECI                               | EDENCE | 2    | J.t | JNUSE | o T≆ | ZER | 0 |
|              | SOI       | UBSCI         | GENERAL  NETWORK  ADDRESS  SIP'S SUB- |                                     |        |      |     |       |      |     |   |
|              | DESTI     | NATION        | SUBS                                  | UBSCRIBER ADDRESS = SCRIBER ADDRESS |        |      |     |       |      |     |   |
| SPARE=ZERO   |           | TC            | c-1                                   | 1 SECURITY-1                        |        |      |     |       |      |     |   |
| SECURITY-2   | SPARE:    | =ZERO         |                                       | TCC-2                               |        |      |     |       |      |     |   |
|              |           |               |                                       |                                     |        |      |     |       |      |     |   |
|              |           |               | USEF                                  | TEXT                                |        |      |     |       |      |     |   |
| :            |           |               |                                       |                                     |        |      |     |       |      |     |   |

SCM - TO - SIP ECHO REQUEST SEGMENT FIGURE 2-15 <u>Command Control Field</u> - This field identifies the segment as an Echo Request segment.

<u>Precedence Field</u> - This field may be set to any authorized precedence level of the SIP.

Source Subscriber Address Field - This field is set to the general network address.

<u>Destination Subscriber Address Field</u> - This field contains this SIP's subscriber address field.

Security Fields - These fields must match and contain an authorized security level for this SIP's subscriber.

TCC Fields - These fields must match and contain an authorized TCC code for this SIP's subscriber.

The proper format of the received echo reply segment is explained below and depicted in Figure 2-16.

Type of Segment Field - This field is ignored.

Segment I.D. Field - This field identifies the echo segment to the User.

Unused and Spare Fields - All unused and spare fields are zero.

<u>Command Control Field</u> - This field indicates that the segment is a data segment.

Precedence Field - The precedence assigned to the echo segment by the User is returned in the echo reply.

Source Subscriber Address Field - This field contains the SIP's subscriber address.

<u>Destination Subscriber Address Field</u> - This field contains SIP's subscriber address.

Security Fields - The security fields must match and be a level authorized for this SIP's User. These fields may be checked and passed on to the User.

TCC Fields - The TCC fields must match and the TCC must be an authorized code for this SIP's User.

Text Fields - Any text portions are returned to the User along with the above parameters.

| 15                                  |     |         |      | 8   | 7    |      |      |       | 1   | 1                       | 1    | 1   | 0  |
|-------------------------------------|-----|---------|------|-----|------|------|------|-------|-----|-------------------------|------|-----|----|
| TYPE OF SEGM                        | ENT |         |      |     | SE   | GMEN | T I. | D.    |     |                         |      |     |    |
| SPARE=ZERO                          |     |         |      |     | UNU  | SED  | = ZI | ERO   |     |                         |      |     |    |
| UNUSED                              | = z | ERO     |      |     |      |      | UNUS | SED : | = Z | ERO                     |      |     |    |
| COMMAND CONT                        | ROL | FIELD = | DATA |     | PRE  | CEDE | NCE  |       |     | UNUSI                   | ED = | ZEI | 30 |
| SOURCE SUBSCRIBER ADDRESS = ADDRESS |     |         |      |     |      |      |      |       |     |                         |      |     |    |
|                                     |     | DESTINA | TION | SUB | SCRI | BER  | ADDF | ŒSS   |     | SIP'S<br>SCRIE<br>ADDRE | BER  | B-  |    |
| SPARE=ZERO                          |     |         | TC   | C-1 |      |      |      |       | s   | ECUR:                   | TTY- | 1   |    |
| SECURITY-2                          |     | SPARE=Z | ERO  |     |      |      | 7    | rcc-: | 2   |                         |      |     |    |
|                                     |     |         |      |     |      |      |      |       |     |                         |      |     |    |
|                                     |     |         | . u  | SER | TEXT |      |      |       |     |                         |      |     |    |
| 4                                   |     |         |      |     |      |      |      |       |     |                         |      |     |    |

SCM-TO-SIP ECHO REPLY SEGMENT

FIGURE 2-16

### SECTION 3

### STATE/STIMULUS DESCRIPTION

A complete state description of SIP is contained in this section in the form of state transition charts. For each state of the five states a State Chart is present. Five states are identified:

READY

W=O

SIP RNR

SCM RNR

INTERFACE DOWN

Under the column <u>Stimulus</u> are listed the entire set of stimuli. The stimuli are broken out as follows:

User Stimuli

User segment

Subscriber Going Inoperable

Subscriber Access Circuit
Going Inoperable

Subscriber Operable

Subscriber Busy

Echo Request

Network Stimuli

Data

Echo Request

Ready For Next Segment

SCM Going Inoperable

SCM Busy

SCM Operable

Access Line Going Inoperable

Access Line Operable

Validation Reject

Error Reject

Non-Delivery Notice

Mode VI Stimuli

Mode VI RNR

Mode VI Initialized

Internal Stimuli

Request Window Timeout

Zero Window

Initialization

Request Window Threshold

When a stimulus is applied to a SIP state, SIP will either transition to another state or stay in the same state. The next state SIP moves to is listed under the column Next State. Any outputs that result from the state transition are listed under the columns <u>User</u>, <u>Internal</u>, <u>Mode VI</u> and <u>Network</u>. Outputs to the user consist of data segments and status messages. Outputs to the internal mechanisms consist of setting timers, discarding segments and queueing and dequeueing held segments. Outputs to Mode VI are segments, initialization and set Mode VI RNR. Finally, outputs to the network consist of data segments and status and control messages.

## SIP STATE = READY

|       | Stimulus                                               | Next State                                     |              | OUTPUT      |                                                   |                                                        |
|-------|--------------------------------------------------------|------------------------------------------------|--------------|-------------|---------------------------------------------------|--------------------------------------------------------|
| From  | Type                                                   |                                                | User         | Internal    | Mode VI                                           | Network                                                |
|       | User<br>Segment                                        | Ready                                          |              | Decrement W | Segment                                           | Data Segment                                           |
|       | Subscriber<br>Going<br>Inoperable                      | Ready (Interface<br>Down at time<br>indicated) |              |             | Segment<br>(RANR Mode<br>VI at time<br>indicated) | Subscriber<br>Going<br>Inoperable                      |
| DONK  | Subscriber<br>Access<br>Circuit<br>Going<br>Inoperable | Ready (Interface<br>Down at time<br>indicated) |              |             | Segment<br>(RNR Mode<br>VI at time<br>indicated)  | Subscriber<br>Access<br>Circuit<br>Going<br>Inoperable |
|       | Subscriber<br>Operable                                 | Ready                                          | SCM Operable |             | Segment                                           | Subscriber<br>Operable                                 |
|       | Subscriber                                             | SIP RNR                                        |              |             | Segment                                           | Subscriber<br>Busy                                     |
|       | Echo Request                                           | Ready                                          |              | Decrement W | Segment                                           | Self-Addressed<br>Data Segment                         |
| ZN    | Data from Net.                                         | Ready                                          | User Segment |             |                                                   |                                                        |
| H 3 O | Echo Request                                           | Ready                                          |              |             | Segment                                           | Echo, Reply                                            |
| ××    |                                                        |                                                |              |             |                                                   |                                                        |

|            |           | <u> </u>                  |                                               |          |              |                                               |                         |                              |                              |                              |  |
|------------|-----------|---------------------------|-----------------------------------------------|----------|--------------|-----------------------------------------------|-------------------------|------------------------------|------------------------------|------------------------------|--|
|            | I Network |                           | RNR Mode VI<br>at time indicated)             |          |              | RNR Mode VI<br>at time indicated)             |                         |                              |                              |                              |  |
|            | Mode VI   |                           | (RNR Mode VI<br>at time indica                |          |              | (RNR Mode VI<br>at time indica                |                         |                              |                              |                              |  |
| OUTPUT     | Internal  | Update window             |                                               |          |              |                                               |                         |                              |                              |                              |  |
|            | User      |                           | SCM Going<br>Inoperable                       | SCM Busy | SCM Operable | Access Line<br>Going<br>Inoperable            | Access Line<br>Operable | Segment Reject<br>with cause | Segment Reject<br>with cause | Segment Reject<br>with cause |  |
| Next State |           | Ready                     | Ready(Interface<br>Down at time<br>indicated) | SCM RINR | Ready        | Ready(Interface<br>Down at time<br>indicated) | Ready                   | Ready                        | Ready                        | Ready                        |  |
| Stimulus   | Type      | Ready for<br>Next Segment | SCM Going<br>Inoperable                       | SCM Busy | SCM Operable | Access Line<br>Going<br>Inoperable            | Access Line<br>Operable | Validation<br>Reject         | Error Reject                 | Non Delivery<br>Notice       |  |
|            | From      |                           |                                               |          | Z            | х н и                                         | 0 % %                   |                              |                              |                              |  |

|            | Ι.       |                           | <u>,</u>                       |                             |                           |             |                       |  |  |
|------------|----------|---------------------------|--------------------------------|-----------------------------|---------------------------|-------------|-----------------------|--|--|
|            | Network  |                           | Segment Subscriber<br>Operable |                             |                           |             | Q.                    |  |  |
|            | Mode VI  |                           | Segment                        |                             |                           |             | Initialize<br>Mode VI |  |  |
| OUTPUT     | Internal |                           | Set Timer                      | Ignore                      | Ignore                    | Set Timer   |                       |  |  |
|            | User     | Access Line<br>Inoperable | Access Line<br>Operable        |                             |                           |             |                       |  |  |
| Next State |          | Interface<br>Down         | 0                              | Ready                       | Ready                     | Wino        | Interface<br>Down     |  |  |
| Stimulus   | Type     | Mode VI RNR               | Mode VI Ini-<br>tialized       | Request Window<br>Threshold | Request Window<br>Timeout | Zero Window | Initialization        |  |  |
|            | From     | 200                       | MY                             | -                           | ZHW                       | ZKI         |                       |  |  |

| PION NO N |              | Next State W=0 (Interface Down at time indicated) W=0 (Interface Down at time indicated) W=0 W=0 W=0 W=0 | User Segment | Internal Hold Queue Hold Queue | Segment (RNR Mode VI at time indicated) Segment (RNR Mode VI at time dudicated) Segment Segment | 1 1 1 기본 등 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|--------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------|--------------|--------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------|
| BOKK                                       | Echo Request | <b>W</b> =0                                                                                              |              |                                | Segment                                                                                         | Встю Керлу                                     |

|            | Network  | Data<br>Segments                                   |                                             |                                  |              |                                             |                         |                              |                              |                              |  |
|------------|----------|----------------------------------------------------|---------------------------------------------|----------------------------------|--------------|---------------------------------------------|-------------------------|------------------------------|------------------------------|------------------------------|--|
|            | Mode VI  | Segments                                           | (RNR Mode<br>VI at time<br>indicated)       |                                  |              | (RNR Mode<br>VI at time<br>indicated)       |                         |                              |                              |                              |  |
| OUTPUT     | Internal | Update Window,<br>Dequeue Held<br>Segments, Decre- |                                             | Degueue<br>Held Segments         |              |                                             |                         |                              |                              |                              |  |
| 9          | User     |                                                    | SCM Going<br>Inoperable                     | SCM Busy-Return<br>Held Segments | SCM Operable | Access Line<br>Going<br>Inoperable          | Access Line<br>Operable | Segment Reject<br>with cause | Segment Reject<br>with cause | Segment Reject<br>with cause |  |
| Next State |          | Ready                                              | W=O(Interface<br>Down at time<br>indicated) | SCM RNR                          | W=0          | W≑O(Interface<br>Down at time<br>indicated) | W=0                     | <b>W</b> =0                  | <b>W</b> =0                  | <b>M</b> =0                  |  |
| Stimulus   | Type     | Ready for<br>Next Segment                          | SCM Going<br>Inoperable                     | SCM Busy                         | SCM Operable | Access Line<br>Going<br>Inoperable          | Access Line<br>Operable | Validation<br>Reject         | Error Reject                 | Non Delivery<br>Notice       |  |
|            | From     |                                                    |                                             |                                  | z            | M H M                                       | 0 K K                   |                              |                              |                              |  |

SIP STATE = W=0 (Cont'd)

|            | Network  | Subscriber<br>Operable    |                                     | Request                   |             |                       |   | ţ. |  |
|------------|----------|---------------------------|-------------------------------------|---------------------------|-------------|-----------------------|---|----|--|
|            | Mode VI  | Segment                   |                                     | Segment                   |             | Initialize<br>Mode VI | • | :  |  |
| OUTPUT     | Internal | Set timer                 | Dequeue Held<br>Segments            |                           | Ignore      |                       |   |    |  |
|            | User     | Access Line<br>Inoperable | SCM Busy<br>Return Held<br>Segments |                           |             |                       |   |    |  |
| Next State |          | Interface Down<br>W=O     | SCM RNR                             | <b>₩</b> =0.              | W=0         | Interface Down        |   |    |  |
| Stimulus   | Type     | Mode VI RNR Mode VI Ini-  | Request Window<br>Threshold         | Request Window<br>Timeout | Zero Window | Initialization        |   |    |  |
|            | From     | EOON :                    | H                                   | ZHNA                      | 4 Z Z A     |                       |   |    |  |

|        |                                            | 1                                                          |      |                                                     |                                                  |                                                        |
|--------|--------------------------------------------|------------------------------------------------------------|------|-----------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|
|        | Sermana                                    | Next State                                                 |      | TUATUO                                              |                                                  |                                                        |
| From   | Type                                       |                                                            | User | Internal                                            | Mode VI                                          | Network                                                |
|        | User<br>Segment                            | SIP RNR                                                    |      | Held if window is<br>zero, otherwise<br>decrement W | Segment                                          | Data Segment<br>if window is<br>not zero               |
|        | Subscriber<br>Going<br>Inoperable          | SIP RNR (Interface Down at time indicated)                 |      |                                                     | Segment<br>(RNR Mode<br>VI at time<br>indicated) | Subscriber<br>Going<br>Inoperable                      |
| DWMK   | Subscriber Access Circuit Going Inoperable | SIP RWR (Interface Down at time indicated)                 |      |                                                     | Segment<br>(RNR Mode<br>VI at time<br>indicated) | Subscriber<br>Access<br>Circuit<br>Going<br>Inoperable |
| 1,12   | Subscriber<br>Operable                     | W=O,if window is<br>zero - Ready, if<br>window is non zero |      | Set Timer if window is zero                         | Segment                                          | Subscriber<br>Operable                                 |
| 7      | Subscriber<br>Busy                         | SIP RNR                                                    |      |                                                     | Segment                                          | Subscriber<br>Busy                                     |
|        | Echo Request                               | SIP RNR                                                    |      | Discard                                             |                                                  |                                                        |
| 2 11 1 | Data from Net.                             | SIP RNR                                                    |      | Discard                                             | Segment                                          | Subscriber<br>Busy                                     |
| ZOKK   | Echo Reguest                               | SIP RNR                                                    |      | Diścard                                             | Segment                                          | Subscriber<br>Busy.                                    |

SIP STATE = SIP RNR (Cont'd)

|       | Stimulus                           | Next State                                        |                                    | OUTPUT                                                   |                                       |                  |
|-------|------------------------------------|---------------------------------------------------|------------------------------------|----------------------------------------------------------|---------------------------------------|------------------|
| From  | Туре                               |                                                   | User                               | Internal                                                 | Mode VI                               | Network          |
|       | Ready for<br>Next Segment          | SIP RNR                                           |                                    | Update window<br>Dequeue held<br>segment,<br>decrement W | Segment                               | Data-<br>segment |
|       | SCM Going<br>Inoperable            | SIP RNR(Interface Down at time indicated)         | SCM Going<br>Inoperable            |                                                          | (RNR Mode<br>VI at time<br>indicated) |                  |
|       | SCM Busy                           | Interface<br>Down                                 | SCM Busy                           |                                                          | RNR Mode VI                           |                  |
| z     | SCM Operable                       | SIP RNR                                           | SCM Operable                       |                                                          |                                       |                  |
| M H Z | Access Line<br>Going<br>Inoperable | SIP RNR(Inter-<br>face Down at<br>time indicated) | Access Line<br>Going<br>Inoperable |                                                          | (RNR Mode<br>VI at time<br>indicated) |                  |
| 0 4 4 | Access Line<br>Operable            | SIP RNR                                           | Access Line<br>Operable            |                                                          |                                       |                  |
|       | Validation<br>Reject               | SIP RNR                                           | Segment Reject<br>With cause       |                                                          |                                       |                  |
|       | Error Reject                       | SIP RNR                                           | Segment Reject<br>with cause       |                                                          |                                       |                  |
|       | Non Delivery<br>Notice             | SIP RNR                                           | Segment Reject<br>With cause       |                                                          |                                       |                  |
|       | *.                                 |                                                   |                                    |                                                          |                                       |                  |
|       |                                    |                                                   |                                    |                                                          |                                       |                  |

|            | 'I Network | *                         | it Subscriber<br>Busy    | ť                                           | nt Request Win-<br>ow dow if zero<br>Window |             | 17                 |  |       |     |
|------------|------------|---------------------------|--------------------------|---------------------------------------------|---------------------------------------------|-------------|--------------------|--|-------|-----|
|            | Mode VI    |                           | Segment                  | RNR<br>Mode VI                              | Segment<br>if window<br>is zero             |             | Initialize Mode VI |  |       | . • |
| OUTPUT     | Internal   |                           | Set Timer                | Dequeue<br>Held Segments<br>(Ignore if win- | Ignore if window not zero                   | Set Timer   |                    |  |       |     |
|            |            |                           |                          |                                             |                                             |             |                    |  |       |     |
|            | User       | Access Line<br>Inoperable | Access Line<br>Operable  | SCM Busy<br>Return Held<br>Segments         |                                             |             |                    |  |       |     |
| Next State |            | Interface<br>Down         | SIP RNR                  | Interface<br>Down                           | SIP RNR                                     | SIP RNR     | Interface<br>Down  |  |       |     |
| Stimulus   | Type       | Mode VI RNR               | Mode VI Inf-<br>tialized | Request Window<br>Threshold                 | Request Window<br>Timeout                   | Zero Window | Initialization     |  |       |     |
|            | From       | EOC                       | N I                      | (н:                                         | 2 1- 12 12                                  | ZAJ         |                    |  | J - 1 |     |

|       |                                                        | 0 14                                               |                            |          |                                  |
|-------|--------------------------------------------------------|----------------------------------------------------|----------------------------|----------|----------------------------------|
|       | Stimulus                                               | Next State                                         |                            | OUTPUT   |                                  |
| From  | Туре                                                   |                                                    | User                       | Internal | Mode VI Network                  |
|       | User<br>Segment                                        | SCM RNR                                            | SCM Busy<br>Return Segment |          |                                  |
|       | Subscriber<br>Going<br>Inoperable                      | SCM RNR (Inter-<br>face Down at<br>time indicated) |                            |          | (RNR<br>Mode VI at<br>time ind.) |
| DOME  | Subscriber<br>Access<br>Circuit<br>Going<br>Inoperable | SCM RWR (Interface Down at time indicated)         |                            |          | (RNR<br>Mode VI at<br>time ind.) |
|       | Subscriber<br>Operable                                 | SCM RNR                                            | SCM Busy                   |          |                                  |
|       | Subscriber                                             | Interface<br>Down                                  |                            |          | (RNR Mode VI)                    |
|       | Echo Request                                           | SCM RINR                                           | SCM Busy Die               | Discard  | Mart Mode VI                     |
| ZN    | Data from Net.                                         | SCM RNR                                            | User Segment               |          |                                  |
| HROKK | Echo Request                                           | SCM RNR                                            | PO                         | Discard  |                                  |
|       |                                                        |                                                    |                            |          |                                  |

.

|              | Stimulus                           | Next State                                         |                                    | OUTPUT        |                                       |         |
|--------------|------------------------------------|----------------------------------------------------|------------------------------------|---------------|---------------------------------------|---------|
| From         | Туре                               |                                                    | User                               | Internal      | Mode VI                               | Network |
|              | Ready for<br>Next Segment          | Ready                                              | SCM Operable                       | Update Window |                                       |         |
|              | SCM Going<br>Inoperable            | SCM RNR (Inter-<br>face Down at time<br>indicated) | SCM Going<br>Inoperable            |               | (RNR Mode<br>VI at time<br>indicated) |         |
|              | SCM Busy                           | SCM RNR                                            | SCM Busy                           |               |                                       |         |
| z            | SCM Operable                       | W=0                                                | SCM Operable                       | Set Timer     |                                       |         |
| <b>ы н ≥</b> | Access Line<br>Going<br>Inoperable | SCM RNR (Interface Down at time ind.)              | Access Line<br>Going<br>Inoperable |               | (RNR Mode<br>VI at time<br>indicated) |         |
| 0 %          | Access Line<br>Operable            | 0= <b>M</b>                                        | Access Line<br>Operable            | Set Timer     |                                       |         |
| 4            | Validation<br>Reject               | SCM RNR                                            | Segment Reject<br>with cause       |               |                                       |         |
|              | Error Reject                       | SCM RNR                                            | Segment Reject<br>with cause       |               |                                       |         |
|              | Non Delivery<br>Notice             | SCM RNR                                            | Segment Reject<br>with cause       |               |                                       |         |
|              |                                    |                                                    |                                    |               |                                       |         |

| Mode VI RNR Interface Access Line Inoperable Down Lialized Threshold Threshold SCM RNR SCM RNR SCM RNR SCM RNR SCM RNR Interface Interfa |      | Stimulus                    | Next State        |                           | OUTPUT   |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------|-------------------|---------------------------|----------|-----------------------|
| Mode VI RNR Interface Access Line Down Hode VI Ini- SCM RNR FRE Threshold Request Window Timeout Zero Window SCM RNR Initialization Down Initialization Therefore Down Interface Initialization Therefore Down Interface Initialization Interface Down Interface Initialization Interface Initialization Interface Initialization Interface Initialization Interface | From |                             |                   |                           | Internal | Mode VI Network       |
| Mode VI Initialized  Request Window Threshold Request Window Timeout Timeout Timeout Tomitialization Tomitialization Tomitialization Timeout Tomitialization T | EOC  | Mode VI RNR                 | Interface<br>Down | Access Line<br>Inoperable |          |                       |
| Threshold Request Window Timeout Zero Window SCM RNR Initialization Initialization Down Interface Down Ignore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M I  | Mode VI Ini-<br>tialized    |                   | ;;                        | Ignore   | •                     |
| Timeout Zero Window SCM RNR Initialization Interface Down  Initialization Company SCM RNR Ini | -    | Request Window<br>Threshold | SOM FAIR          |                           | Ignore   |                       |
| Zero Window SCM RNR Initialization Interface Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ZHWE | Request Window<br>Timeout   |                   |                           | Ignore   |                       |
| Initialization Interface Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ZZZ  | Zero Window                 |                   |                           | Ignore   |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    | Initialization              | Interface<br>Down |                           |          | Initialize<br>Mode VI |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                             |                   |                           |          |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                             |                   |                           |          |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                             |                   |                           |          |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                             |                   |                           |          |                       |

# SIP STATE = INTERFACE DOWN

|            | Network   |                                             |                                   |                                                        |                        |                    |                           |                   |                   |
|------------|-----------|---------------------------------------------|-----------------------------------|--------------------------------------------------------|------------------------|--------------------|---------------------------|-------------------|-------------------|
| •          | Mode VI N |                                             |                                   |                                                        | Initialize<br>Mode VI  |                    | ,                         |                   |                   |
| TUGTUO     | Internal  |                                             | Ignore                            | Ignore                                                 | Set Timer              | Ignore             | Discard                   | Discard           | Discard           |
|            | User      | Access Line<br>Inoperable<br>Return Segment |                                   |                                                        |                        |                    | Access Line<br>Inoperable |                   |                   |
| Next State |           | Interface<br>Down                           | Interface<br>Down                 | Interface<br>Down                                      | <b>W</b> =0            | Interface<br>Down  | Interface<br>Down         | Interface<br>Down | Interface<br>Down |
| Stimulus   | Type      | User<br>Segment                             | Subscriber<br>Going<br>Inoperable | Subscriber<br>Access<br>Circuit<br>Going<br>Inoperable | Subscriber<br>Operable | Subscriber<br>Busy | Echo Request              | Data from Net.    | Echo Request      |
| 0          | From      |                                             |                                   | D S E K                                                | 6                      |                    |                           | ·                 | ****              |

SIP STATE = INTERFACE DOWN (Cont'd)

| OUTPUT     | Internal Mode VI Network | Discard                   | Discard                 | Discard           | Discard           | Discard                            | Discard                 | Discard              | Discard           | Discard                |  |
|------------|--------------------------|---------------------------|-------------------------|-------------------|-------------------|------------------------------------|-------------------------|----------------------|-------------------|------------------------|--|
| ITUO       | User Inte                | Dis                       | D18                     | Dis               | Dis               | Dis                                | Dis                     | Dis                  | Dis               | Dis                    |  |
| Next State | D                        | Interface<br>Down         | Interface<br>Down       | Interface<br>Down | Interface<br>Down | Interface<br>Down                  | Interface<br>Down       | Interface<br>Down    | Interface<br>Down | Interface<br>Down      |  |
| Stimulus   | Type                     | Ready for<br>Next Segment | SCM Going<br>Inoperable | SCM Busy          | SCM Operable      | Access Line<br>Going<br>Inoperable | Access Line<br>Operable | Validation<br>Reject | Error Reject      | Non Delivery<br>Notice |  |
|            | From                     |                           |                         |                   | z                 | <b>E</b> H B                       | 0 % %                   |                      |                   |                        |  |

SIP STATE = INTERFACE DOWN (Cont'd) .

| M Mode VI RNR Interface D D Down E Mode VI Ini- VI tialized I Request Window Down I Request Window Down I Threshold I Timeout I Initialization Interface Down I Initialization Down I Initialization Down I Down I Initialization Down I Initialization Down I Initialization Down I Initialization Down | OUTPUT    |                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|
| NO HO HO                                                                                                                                                                                                                                                                                                 | Internal  | Mode VI Network    |
| 8 8                                                                                                                                                                                                                                                                                                      | Ignore    |                    |
| indow indow ation                                                                                                                                                                                                                                                                                        | Set Timer | Segment Operable   |
|                                                                                                                                                                                                                                                                                                          | Ignore    | .•                 |
|                                                                                                                                                                                                                                                                                                          | Ignore    |                    |
|                                                                                                                                                                                                                                                                                                          | Ignore    |                    |
|                                                                                                                                                                                                                                                                                                          |           | Initialize Mode VI |
|                                                                                                                                                                                                                                                                                                          |           |                    |
|                                                                                                                                                                                                                                                                                                          |           |                    |
|                                                                                                                                                                                                                                                                                                          |           |                    |
|                                                                                                                                                                                                                                                                                                          |           | . :                |