Esercitazioni di Analisi 2

DIFFERENZIABILITA', PIANO TANGENTE

- $1 \quad \text{Sia } f(x,y) = x\sqrt[3]{y}.$
 - (a) Mostra che f è differenziabile in (0,0) . [Utilizza la definizione]
 - (b) Stabilisci dove f è differenziabile. $[y \neq 0 \lor (0,0)]$
- 2. Stabilisci dove è differenziabile.la funzione $f(x,y) = |x\sin(xy)|$ $[(xy \neq k\pi, k \in \mathbb{Z}) \lor x = 0]$
- 3. Sia $f(x,y) = \sqrt[5]{x^4y^2}$.
 - (a) Stabilisci, usando la definizione, se f è differenziabile in (0,0). [Si]
 - (b) Calcola $D_{\overrightarrow{v}}f(0,0)$ rispetto al versore $\overrightarrow{v} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. $[D_{\overrightarrow{v}}f(0,0) = 0]$
- 4. Determina l'insieme dei punti in cui è necessario studiare la differenziabilità della funzione $f\left(x,y\right)=\sqrt[3]{y^2-x^3} \qquad \left\lceil |y|=\sqrt{x^3}\right\rceil$
- 5. Stabilisci se le seguenti funzioni sono differenziabili nell'origine:

(a)
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 [No]

- (b) $f(x,y) = |x| \log(1+y)$ [Si]
- 6. Sia $f(x,y) = \begin{cases} \frac{x^2y^3}{x^4 + y^4} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$

dimostra che f è continua ma non differenziabile nell'origine.

- 7. Considera la funzione $f(x,y) = \begin{cases} x^2 y^2 \cos \frac{1}{x^2 y^2} & \text{se } x \neq 0 \land y \neq 0 \\ 0 & \text{se } x = 0 \lor y = 0 \end{cases}$
 - (a) Determina l'insieme dei punti $(x,y) \in \mathbb{R}^2$ in cui f è continua. $[\mathbb{R}^2]$
 - (b) Determina l'insieme dei punti $(x, y) \in \mathbb{R}^2$ in cui f ammette derivate parziali e calcolale.

1

$$[\mathbb{R}^2; \quad \frac{\partial f}{\partial x} = \begin{cases} 2xy^2 \cos \frac{1}{x^2y^2} + \frac{2}{x} \sin \frac{1}{x^2y^2} & \text{se } x \neq 0 \land y \neq 0 \\ 0 & \text{se } x = 0 \lor y = 0 \end{cases},$$

$$\frac{\partial f}{\partial y} = \begin{cases} 2x^2 \cos \frac{1}{x^2 y^2} + \frac{2}{y} \sin \frac{1}{x^2 y^2} & \text{se } x \neq 0 \land y \neq 0 \\ 0 & \text{se } x = 0 \lor y = 0 \end{cases}$$

(c) Determina se $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ sono continue nell'origine. [No]

(d) Determina se f è differenziabile nell'origine. [Si]

8. Sia
$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

- (a) Calcola le derivate parziali di f nell'origine. $\left[\frac{\partial f}{\partial x}(0,0) = 1; \frac{\partial f}{\partial y}(0,0) = 1\right]$
- (b) Stabilisci se f è differenziabile in (0,0). [No (definizione)]

9. Sia
$$f(x,y) = \begin{cases} \frac{x \ln(1+y)}{\sqrt{x^2 + y^2}} & \text{se } x > 0 \land y > 0 \\ y^2 & \text{altrove} \end{cases}$$

- (a) Stabilisci se f è continua in (0,1). [No]
- (b) Stabilisci se f è differenziabile in (0,1). [No]]
- (c) Stabilisci se f è continua in (0,0). [Si]
- (d) Stabilisci se f è differenziabile in (0,0). [No (definizione)]

10. Sia
$$f(x,y) = \begin{cases} \frac{y \sin(xy)}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

- (a) Studia la continuità di f in \mathbb{R}^2 . f è continua in \mathbb{R}^2
- (b) Calcola tutte le derivate direzionali di f nell'origine (se esistono). $\left[D_{\overrightarrow{v}}f(0,0) = \sin^2\theta\cos\theta\right]$
- (c) Stabilisci se f è differenziabile in (0,0). [No, non è soddisfatta la formula del gradiente (oppure definizione)]

11. Sia
$$f(x,y) = \begin{cases} \frac{y \ln(1+xy^3)}{(x^2+y^2)^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

- (a) Studia la continuità di f in \mathbb{R}^2 . $\left[f$ è continua in $dom\left(f\right)\subset\mathbb{R}^2\right]$
- (b) Calcola tutte le derivate direzionali di f nell'origine (se esistono). $\left[D_{\overrightarrow{v}}f(0,0) = \sin^4\theta\cos\theta\right]$
- (c) Stabilisci se f è differenziabile in (0,0). [No, non è soddisfatta la formula del gradiente (oppure definizione)]
- 12. **Piano tangente** (la differenziabilità delle funzioni assegnate nel punto indicato può essere stabilita facilmente con il teorema del differenziale totale (condizione sufficiente di differenziabilità) o con considerazioni di carattere generale sulla natura della funzione (es.: polinomi, funzioni razionali ecc.))
 - (a) Calcola l'equazione del piano tangente al grafico di $f(x,y) = e^x \sin y$ in $(1,\pi,f(1,\pi))$, dopo averne giustificato l'esistenza. Calcola inoltre $D_{\overrightarrow{v}}f(1,\pi)$, dove $\overrightarrow{v} = \left(\frac{3}{5},\frac{4}{5}\right)$.

$$z(x,y) = f(1,\pi) + \overrightarrow{\nabla} f(1,\pi) \cdot (x-1,y-\pi) = -e(y-\pi);$$

$$D_{\overrightarrow{v}} f(1,\pi) = \overrightarrow{\nabla} f(1,\pi) \cdot \overrightarrow{v} = -\frac{4}{5}e$$

- (b) Determina il piano tangente alla funzione $f(x,y) = \log(x^2 + y^4)$ in P = (1,-1,f(1,-1)). $[z = \log 2 + (x-1) 2(y+1)]$
- (c) Sia $f(x,y) = \frac{y^2(e^x 1)}{x^2 + y^2}$ e sia z = z(x,y) il piano tangente ad f nel punto (1,1,f(1,1)). Calcola l'equazione di z e z(0,1). $\left[z(x,y) = \frac{x-1}{2} + \frac{e-1}{2}y; \ z(0,1) = \frac{e}{2} 1\right]$
- (d) Calcola l'equazione del piano tangente al grafico di $f(x,y) = (x^2 + y^2)^{-2}$ in (1,1,f(1,1)). $\left[z\left(x,y\right) = \frac{5}{4} \frac{x}{2} \frac{y}{2}\right]$
- (e) Scrivi l'equazione del piano tangente a $f(x,y)=x^2(y-1)$ nel punto (1,1,0) . [z=y-1]
- (f) Calcola l'equazione del piano tangente al grafico di $f(x,y)=e^{\sqrt{2x-y}}$ in $\left(3,2,e^2\right)$. $\left[z\left(x,y\right)=\frac{e^2}{2}x-\frac{e^2}{4}y\right]$
- (g) Scrivi l'equazione del piano tangente alla superficie di equazione $z = f(x, y) = x^2 2y^2$ nel punto A(1, 1, f(1, 1)). [z = 2x 4y + 1]
- (h) Verifica che i piani tangenti al grafico della funzione $f(x,y) = \sqrt{x^2 + y^2} x$ passano tutti per l'origine.
- (i) Calcola l'equazione del piano tangente al grafico di $f\left(x,y\right)=\cos xy$ in $(\pi,1,-1)$. $[z\left(x,y\right)=-1]$
- **13.** Sia $f(x,y) = (x+1)y + \ln(1+2x)$
 - (a) Calcola $\overrightarrow{\nabla} f(0,0)$ e determina massimo e minimo di $\overrightarrow{\nabla} f(0,0) \cdot \overrightarrow{v}$ al variare del generico versore \overrightarrow{v} del piano xy.

Massimo per
$$\theta = \arctan\left(\frac{1}{2}\right)$$
, corrispondente a $\overrightarrow{v} = \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$; minimo per $\theta = \arctan\left(\frac{1}{2}\right) + \pi$, corrispondente al versore opposto al precedente.

- (b) Verifica che $\overrightarrow{\nabla} f(0,0)$ è ortogonale in (0,0) alla linea di equazione $y = -\frac{\ln(1+2x)}{1+x}$.
- 14. Data la superficie S di equazione $z=x^y$, individua i punti P in cui il piano tangente a S è parallelo al piano xy.

Deve essere
$$\overrightarrow{\nabla} f(x,y) = (0,0)$$
; $P(1,0,1)$; il piano ha equazione $z = 1$.

15. Considera la funzione $f(x,y) = x \sin y$. Individua in quale direzione $D_{\overrightarrow{v}} f(1,1) = 0$.

$$f$$
 è differenziabile in $(1,1)$, vale la formula del gradiente $D_{\overrightarrow{v}}f(1,1) = \overrightarrow{\nabla}f(1,1) \cdot \overrightarrow{v}$, quindi la derivata direzionale è nulla nella direzione ortogonale al gradiente: $\overrightarrow{v} = \pm(\cos 1, -\sin 1)$

3

- 16. Considera la funzione $f(x,y)=(x+y)^2$ in un intorno di P(1,1). In quale direzione $D_{\overrightarrow{v}}f(1,1)$ è massima e in quale minima? In quale direzione $D_{\overrightarrow{v}}f(1,1)=0$?
- 17. Data la funzione $f(x,y) = y^4 e^{3x}$, individua in quale direzione $D_{\overrightarrow{v}} f(1,1) = 0$. $\left[\overrightarrow{v} = \pm \left(\frac{4}{5}, \frac{3}{5}\right)\right]$
- 18. Data la superficie di equazione $z = 3x^2 3y^2 + 2x xy$ e il punto P(1,1), nell'intorno di P:
 - (a) qual è la direzione di massima pendenza? Quanto vale la massima pendenza?
 - (b) in quali direzioni la pendenza sale o scende?
 - (c) in quale direzione la pendenza è di 30°?
 - (d) in quale direzione la pendenza è $\alpha = \arctan(7)$?