EXERCICES TIRÉS DE L'EXAMEN FINAL H2012

Problème no. 1 (25 points)

Une diode Zener 1N5232B est utilisée pour réaliser un régulateur de tension.

La valeur nominale de la source continue est $V_{cc} = 10 \text{ V}$. Cette tension peut varier entre 9 V et 11 V.

Les spécifications de la diode Zener 1N5232B (à I_Z = 20 mA) sont: V_Z = 5.6 V et r_Z = 11 Ω . Le courant minimal de la diode Zener 1N5232B est I_{ZK} = 0.25 mA.

- a) Tracer un circuit équivalent du régulateur. (4 points)
- b) Dans le cas où $V_{cc} = 9 \text{ V}$, calculer le courant I_o maximal que le régulateur peut fournir à la charge R_L . (4 points) **Déterminer** la tension V_o pour ce cas. (4 points)
- c) Un transistor de puissance TIP41C est ajouté à la sortie pour augmenter la capacité en courant du régulateur de tension.

Le transistor TIP41C a un gain en courant de β = 30. La tension V_{BE} est supposée constante et égale à 0.7 V.

c) Dans le cas où $V_{cc} = 11$ V, **calculer** le courant I_o maximal que le régulateur peut fournir à la charge R_L . (4 points) Une charge $R_L = 4$ Ω est connectée à la sortie, **calculer** la tension V_o . (5 points)

Calculer la puissance dissipée dans le transistor TIP41C. (4 points)

Problème no. 2 (25 points)

Considérons l'amplificateur différentiel à MOSFETs montré dans la figure suivante.

Les MOSFETs sont identiques et possèdent une caractéristique de transfert décrite par la relation suivante:

$$I_D = 0.004(V_{GS} - 1.5)^2$$

- a) Quelle est la fonction des deux MOSFETs Q₃ et Q₄? (2 points)
 Utilisant la caractéristique de transfert donnée ci-haut, déterminer le courant I_{D4}. (4 points)
 Déduire les courants I_{D3}, I_{D2} et I_{D1}. (3 points)
- b) À partir des résultats de la question a, **calculer** la transconductance g_m des MOSFETs Q_1 et Q_2 . (4 points) **Tracer** le modèle petit signal de l'amplificateur. (4 points) <u>Note</u>: On suppose que $r_0 = \infty$
- c) À l'aide du modèle petit signal, calculer les quantités suivantes:
 - Gain différentiel en tension $A_d = \frac{v_o}{v_{in}}$ (4 points)
 - Résistance d'entrée R_{in} (2 points)
 - Résistance de sortie R_o (2 points)

Problème no. 3 (25 points)

Considérons l'amplificateur à trois étages à transistors bipolaires suivant.

Le gain en courant des transistors est β = 100. Les transistors Q_1 , Q_2 et Q_4 sont identiques. La tension V_{BE} des transistors est constante et égale à 0.7 V.

- a) Calculer la valeur DC des courants et des tensions du circuit: I₃, I_{C1}, I_{C2}, I_{C3}, I_{C4} et V_{E2}, V_{C3}, V_{C3}, V_{E4}. (10 points)
- b) Identifier la rétroaction (DC et AC) utilisée dans ce montage. (2 points)
 Déterminer le facteur de rétroaction β (rétroaction AC). (4 points)
 En supposant que le gain en tension sans rétroaction (en boucle ouverte) est très grand (A_{vo} = 5000), calculer le gain en tension avec rétroaction A_{vof} (en boucle fermée). (4 points)
- c) On annule la rétroaction AC en utilisant $R_7 = 0 \Omega$. Calculer la résistance d'entrée R_{in} et la résistance de sortie R_0 pour ce cas. (5 points)

Problème no. 4 (25 points)

Considérons l'étage de sortie d'un amplificateur qui fonctionne en classe AB.

Les hypothèses suivantes sont posées:

- Les étages qui précèdent l'étage de sortie sont représentés par l'amplificateur A₁
- La tension DC à la sortie (V_{E1}) est maintenue à 0 V grâce à la rétroaction DC (qui n'est pas montrée dans la figure)
- Les connexions de rétroaction DC et AC ne sont pas montrées dans la figure
- Le gain en courant des transistors TIP41C et TIP42C est égal à 30 (β = 30)
- Le gain en courant du transistor 2N4401 est égal à 80 (β = 80)
- La tension V_{RE} des transistors est constante et égale à 0.7 V.
- a) **Expliquer** le rôle du transistor Q_4 . (3 points)
 - Calculer R_1 et R_2 pour obtenir une tension de 1 V entre les deux bases B_1 et B_2 . (4 points)
 - Calculer le courant de collecteur I_{C3} du transistor Q₃. (4 points)
- b) Le signal de sortie v_o est une tension sinusoïdale d'amplitude 10 V et de fréquence 1 kHz.
 Déterminer et tracer en fonction du temps les formes d'ondes des courants i_o, i_{E1} et i_{E2}. (4 points)
- c) Calculer la puissance P_o dissipée dans la résistance de charge R_L. (4 points)

 Calculer la puissance P_{dc} fournie par les deux sources +15V et -15V. (4 points)

Déduire la puissance P_d dissipée dans les deux transistors Q₁ et Q₂. (2 points)