	AI-ML Video Notes.
	Rational: Maximally achieving pre-defined goals.
	Being rational means maximising your expected utility.
	Reflex Agent:
	- Chooses action based on owverl percept (& maybe memory), also "I do esn't consider the fature conveys
	d their action.
	+/* Y
_	Search Problems:
20	A search problem whally whilst of: a state space & a furcency function, a start state & a
	goal state.
	divine at the street of
	A sol is exentially a sequence of steps which baniforms the start state to a goal state.
	State Space Graph: It is a mathematical reprir of a search problem, with rades representing
_	configurations. Two representing successes Each state occurs only one! And building the entire
_	Gaph & very expensive memory wise.
	General Tree Seasch Algorithm:
_	function TREE-SEARCH (problem, strategy) return a sol, or a failure
_	initialize the search tree using the initial state of the mobilem.
	loop do:
_	it there are no cardidales for expansion -> return failure.
	choose a leaf node for expansion according to strategy.
	If node contains a goal state then return the corr. sol
	else expand the node & add the resulting nodes to the season tree
	end has
	Forester: (for DFS)
	fragenties: (for DES)
()	H'll stop at the left most sol
	In the word care, it'll explore the entire tree. b. branch factor
-	m: max" dept.
	Has much space does the fringe take?

Only has siblings from on rath to root,	so O(lm)
Is the algo complete? (a can we Am : No as m could be infinite	Sird a self wherever it is in the tree)
That I've to the trifficult	

How much space dues the fringe take? ? Roughly the last tier so O(15)

⇒ It m is finite then we can find a sol".

Uniform Cost Search: Special Core of 1x (Rove ?1)

•	Search Heuristics:
	Search Heuristics: Neuristic is a function that maps states to real moss be estimates how done we are to the good.
	Designed la a revisional search problem.
	Greedy Search: (Best First Search)
	the day will agreed a node that we think is no cosess to in your
	Hewitic: We sestimate the distance to the nearest good for each state.
Ý.	
•	Combining UCS & Greedy:
	thetern (act Search a dex by the path cost or backward on gent
	> 1x Search a day by the sun : ((n) = q(n) + h(n).
	> A* Search a days by the sum : $f(n) = g(n) + h(n)$. We only stop when we dequeue a goal.
	Admissibality: They slow down the had plans but never outweigh true costs.
	A heuristic is admissible (aplimistic) if:
	$0 \in h(m) \in h^*(m)$
	where h*(n) is the true cost to the nearest goal.
	Optimality of A" Search:
	4 second with the
	a suboptimal and node.
	h is admissible
	N IS GONUSSIONE
	Claim:
-	Clarin .
	A will exit he fringe ho kee
	Proof:
25	Imagine B is on the fringe. Now there will be some ancester of A thou is on the fringe too (may even be A) cuz of
=	Au I Laland M
-	n will be expanded before B. [(n) - g(n) + h(n)] admissing the following of the first of the f
	f(n) is less than a equal to $f(A)$. $f(n) = g(n) + h(n)$
(1. $f(A) < f(B)$ $g(A) < g(B)$ and $f(m) \le g(A)$. The proposition of
	an expanses mo

Minimar Algorithm:	
Convention: Suppose that we're playing then then white tries to reasoninize the score while blow	ek
tites to minimize it. Leaf nodes -> static evaluation of modes.	
Minimor (pos, depth, playerone)	
if depth == 0 or game Over in pos: . This is for the leaf moder.	
return static evaluation of pu	
it player One:	
mage Eval = - 00	
for each dried of pus:	
erul = minimar (child, depth-1, False)	
man End = mon (eval, man Eval)	
rehun man bral.	
elre:	
min Eral > +∞	
Fur each child of nos:	
eral: minimax (child, depth-1, True)	
mun Eval, min (eval, min Eval)	
retrun min Eral	

marimising Mayer:

$$\alpha = \max (q, eval)$$

break

if a > β

break

Constraint Satisfaction Roblems: ('Put-j) Map Coloring: We want to color each of the countries but we don't want neighbouring

countries to have the came esture.

State: Ik a black box Goal test: It is a function that checks if a particular state is a goal state or not.

Stule - raviable X: with values from domain D.

Gual fest -> set of countraint specifying allowable combinations of values for subset of rotables.

Each country - variables.

May Coloring:

Domain : D = { color set }

Constraint : Adjacent regions should have different colors.

<u>lapticit</u>: Combraint in terms of termain

<u>Implicit</u>: Direct inequalities.

N-Queen :

<u>doll .</u> Assignment of variables that paves all constraints.

Variables: Position of queen in each raw Qu

umain :	[1, 2, n³→ row number	
brutraink:		
	+i,j (li, li) ⇒ mon-threatening.	(Implicit)
	(Q,Q) t { ? (bylicit)	

Combaint Graph: Binary ClP: Each construint relates at most 2 variables

Cryptarithmetic Puzzlee:

**, **, **

TWO

+ TWO

Approach:

Waltz Algorithm: Ctrample of CSP)

Noder are reviables k edges are constraints.

You'ables: X, X2, X3, T, W, O, F, V, R

Domain: {0,1, ... 9}

Combrains G Graph wan't he binary

Wed for the interpretation of line drawings of solid polyhedra as 3D objects.

Each intercession is a raxiable.

Adjacent intersections impose combraints on each other. of an physically realizable 3D intemprebations.

Type of CBPe:	
a) Discrete Voviables	h) Conhirous Voreahles
finite domain infinite domains	eg: linear constrainte cotrable in
d → U(d") integeu, chinqu	polynemial time by LP nethode.
eg: Boolean Che eg: Tob Schedulin	
Types of Constraints:	yalue.
Vnery Constraints: eg: var +	n ^t
Binouy Combains: eg: var, 7	
Higher ordered: Lincolving 3 or	
Preforence => 2 % better than y.	
Solving CSR:	Cuz we hacktrack only we don't have more
	option !!
- One variable at a time! Work	y need to consider assignments to one variable
at a fime 81t that doesn't break	•
→ Check consirraints con the go!	· ·
Δ	
Prendo code:	

function Backtrack (CSP) initially e	unigrmentic e	mply.
return recurive Search ({ }, cep)		V
function recursive-Sewith (angn, cep)		
if any is complete => punes all con	abrainh.	
Thun angr		
var ← relect un-anigned-variable (
For each value in Orden-demain-values l	var, angn, o	up):
if value == consistent given	Come trainly (ap]:
add f non = value ? }		
result recunive	•	r, apl
if result ≠ failure	ļ	Normal hackbacks
if result ≠ fuilure rehum result	7	with this chek.
remove from = val		,
rehum failure.		
cur of this		
•		
Improving:		
	Ruling and europ	ech.
Filtering: Can we detect a failure early on.	J	
Smeture: Can we exploit the problem smeture.		

Filtering:
We keep a track of demains for unanigned variables & cross-off the bad option.

Forward Checking: (Ik re-filtering of all variables after each anignment)
We cross-off values that could vidate a combraint when added to exciting anignment

 $(0,3) \times (2,3) \times (2,3$

Essentially broward checking doesn't contribute to early detection of failures which is precisely what we want!! It drewit come about rel" blow consigned & unanigoed variables

Constraint Propagation: Rea on from constraint to constraint.

The state !!

Convistency of a single Arc:

Def": An arc $X \to Y$ is consistent if and only if for every x in the tail,

there is some y in the head which could be an igned without violating a constraint.

To make 8 - Y consistent, we need to delete south from the tail.

A simple form of propagation makes sure that all area (or edges) are consistent.

I forward filtering, we are just cheeking the constitency of all redu with the
ole:
X lover a value, then neighbour of X need to be re-cheeked!
Limitation: Those can 1, 0 or multiple colors
Abording hre Consistency in a CSP: $T=O(n^2d^3) \Rightarrow O(n^2d^2)$
neum MC-9 (77 h.)e.min (71)
g → queue of once Cinitrally all once in UPs)
while q \neq \delta do:
Lx, zy) ← remore-fixt (q)
if re-more-incomistent-values (20, 24) then:
for each zu in Neighbour [zi] do:
add (2i, 2n) to the q.
nchian re-move- Priomistent-values (re. 71;)

removed - false (a,4) to satisfy for each a in Domain Cail if no value y in Domain [2] allows) 2i \rightarrow 2j remove a from Domain [Ti] remove - hue return removed

Claim: Strong n-consistency means we can other without bushtracking! Why! Choose any anignment to a variable By 2-consistent, the given choice is consistent with the first

!

K=3 => m. U ... ? ! k= 3 => path comistery. How to utilize the structure of problems to goin advantages? Dividing a given problem into smaller sub-problems. eq: If originally we have on variables -> divided into sub-problems of only T= 0 (m/c) dc), linear in n. variables Theorem: If constitent graph has no loops, then CSP can be solved in o(nd2) Compared to general one, T= 0(d") Tree-Smuhured CSP

· Order: Choose a root, order the variables so that partent preceed distinct

Remore hadrward: for i= n to 1: Remore Inconsistent (Par(Is), Xs)

or Topological Surling

Algo:

Strong k-curvistency: \Rightarrow also $k-1 \Rightarrow k-2 \dots \Rightarrow 1$ -consistent

 Ascign 	forward:	For i = 1 !	tom: Onsi	ign Xi comi	stently with	Powent (1;)	
				or the proof.			

Adversarial Search.

All leanther we've seen till new - single Agent Trees

Leaves = values of the state

Value of a state " the best ashierable outcome (utility) from that state.

(a) = known for terminal states

V(s) = max v(s) for non-ferminal states.

Minimus (Cuz ih like eathaustive DFS)

1= 0(6m)

.

8 = v(hm)