Профессиональное медицинское сопровождение супружеской пары при бесплодии: современный подход

О.Б.Жуков¹, В.В.Евдокимов¹, А.А.Жуков¹, Л.Х.Шугушева², Е.Е.Брагина³ 1 ФГБУ НИИ урологии Минздрава РФ;

²Кафедра акушерства и гинекологии стоматологического факультета ГБОУ ВПО МГМСУ им А.И Евдокимова Минздрава РФ;

³НИИ физико-химической биологии им. А.Н.Белозерского МГУ

Введение

Бесплодие - это отсутствие беременности в течение года при регулярной половой жизни без использования противозачаточных средств. По статистике в России около 17% браков являются бесплодными, т. е. каждая шестая супружеская пара имеет проблемы с зачатием в тот или иной период своего репродуктивного возраста [1]. Проблема бесплодия в паре рассматривалась урологами и гинекологами обособленно друг от друга. В связи с чем восстановление сперматогенеза у мужчин и возможности зачатия у их партнерш не всегда приводят к реализации репродуктивной функции [2]. С нашей точки зрения, проблему бесплодия в паре целесообразно решать совместно специалистам двух смежных специальностей. Этому процессу стал активно помогать комплекс новых препаратов Спематон и Прегнотон. Они создают благоприятные условия для наступления маточной беременности при формирующемся бесплодии. Уникальность этого комплекса состоит в том, что он разработан для совместной подготовки обоих партнеров к реализации репродуктивной функции. Компоненты Спематона стимулируют сперматогенез, повышая концентрацию и увеличивая подвижность сперматозоидов в эякуляте. Прегнотон восполняет недостаток витаминов и минералов, необходимых для подготовки женского организма к зачатию и сохранению беременности. Компоненты Прегнотона нормализуют менструальный цикл, улучшают кровоснабжение в органах малого таза, создавая оптимальные условия для наступления беременности. Важно отметить, что Прегнотон не является гормональным препаратом и нормализует менструальный цикл за счет входящего в его состав растительного экстракта витекса [3, 4]. Лечение обоих партнеров в бесплодной паре при наличии показаний и их информированность о том, что каждый проходит курс терапии, улучшающий их репродуктивные возможности, положительно сказываются на доверительных отношениях друг к другу и дополнительно мотивируют к реализации репродуктивной функции.

Целью нашего исследования явилось изучение влияния препаратов Спематон и Прегнотон на реализацию репродуктивной функции в исследуемых парах.

Материалы и методы

В исследование были включены 50 семейных пар, планирующих зачатие: 25 пар с мужским фактором бесплодия секреторного типа (1-я группа), 25 пар с бесплодием, обусловленным варикоцеле в послеоперационном периоде (2-я группа). Сроки бесплодия в парах колебались от 1 до 4,5 года и в среднем достигали 2,8±1,6 года.

Спематон принимали мужчины в возрасте 20–45 лет с секреторной формой бесплодия и отсутствием беременности партнерши в браке (более 12 мес половой жизни без контрацепции). Критериями исключения

были обтурационная форма бесплодия, наличие женского бесплодия у партнерши (непроходимость маточных труб, нарушения овуляции, распространенный эндометриоз и др.), алкогольная или наркотическая зависимость, повышенная чувствительность к любому из компонентов препарата, нарушения функции печени и почек, участие в другом клиническом исследовании в последние 3 мес.

Пациенты 1-й группы получали по 1 саше-пакету препарата Спематон в день в течение 3 мес, пациенты 2-й группы – по 2 саше-пакета в день в течение 3 мес. Активный период наблюдения составил 3 мес и включал в себя контрольные исследования на 1 и 90-й дни терапии. Всем пациентам на 1 и 90-й дни терапии проводились клинико-лабораторная диагностика, 3D-4Dультразвуковая ангиография яичка и придатка, трансректальное ультразвуковое исследование, спермограмма, определение антиспермальных антител (АСАТ), определялся уровень гормонов (пролактин, тестостерон, лютеинизирующий - и фолликулостимулирующий гормоны – ЛГ и ФСГ). Всем больным с патозооспермией проводилась ульгразвуковая эластография яичка и придатка. Исследования выполняли на ультразвуковых приборах, Acuson S-3000, компании «Сименс». Общий период наблюдения обследуемой группы составил до 12 мес. Половые гормоны исследовались на иммунохемилюминисцентном анализаторе Access 2, производства Beckman Coulter, США. Биохимические исследования микронутриентов проводились на анализаторе Advia-1200.

Оценка ACAT проходила в виде MAP-теста (MAR-test) – смешанная реакция иммуноглобулинов.

Для женщин критериями включения являлись: возраст 20–40 лет, период подготовки к беременности, отсутствие беременности, отсутствие инфекций репродуктивного тракта, отсутствие выраженной соматической патологии, отмена в течение 3 мес и более, предшествующих проводимому обследованию, гормонотерапии и других медикаментов, влияющих на уровень половых стероидов и пролактина, отсутствие сопутствующей эндокринной патологии (нарушения функции щитовидной железы), исключение рака молочной железы, эндометрия или других гормонозависимых опухолей.

Критериями исключения являлись наличие бесплодия (непроходимость маточных труб, нарушения овуляции, распространенный эндометриоз и др.), за исключением бесплодия, вызванного недостаточностью лютеиновой фазы, беременность и лактация, возраст младше 20 и старше 40 лет, алкогольная или наркотическая зависимость, повышенная чувствительность к любому из компонентов препарата, нарушения функции печени и почек, заболевания эндокринной системы, прием препаратов, влияющих на уровень пролактина в течение последних 3 мес, наличие герпетической инфекции в острой стадии, участие в другом клиническом исследовании в последние 3 мес.

В 1-ю группу вошли пациентки с относительной гиперпролактинемией, во 2-ю — 25 соматически здоровых пациенток. Прегнотон принимался пациентками обеих групп по 1 саше-пакету 1 раз в день в течении 3 мес. Для включенных в исследование женщин активный период наблюдения составил 3 мес.

Результаты

Исследование проведено у мужчин 20–44 лет (средний возраст составил 31,5±6,5 года), 1-ю группу мужчин составили 25 больных с секреторным бесплодием и назначенной терапией по 1 саше-пакетику Спематона в сутки (средний возраст 31,4±4,7 года). Во 2-ю группу включены 25 мужчин после операций по поводу варикоцеле (средний возраст 2-й группы 30,4±4,9 года); табл. 1, 2.

Партнерш этих больных распределили на 2 группы: в 1-ю группу вошли 25 женщин (средний возраст 27,4±6,1 года) с относительной гипепролактинимией; во 2-ю группу были включены 25 соматически здоровых женщин (средний возраст 26,1±3,4 года, табл. 3).

Средняя продолжительность бесплодия в группах составила: 1-я группа — $4,2\pm3,7$ года, 2-я группа $5,1\pm4,7$ года.

Всего оперировано 25 пациентов с варикоцеле: 4 больных с субклинической стадией варикоцеле, 6 больных – с I стадией, 12 – со II стадией, 3 – с III. Операция проведена с двух сторон 3 больным. Из 25 больных 3 пациентам произведена операция Мармара слева, 22 больным проведена эндоваскулярная склеротерапия тестикулярных вен этоксисклеролом 3%, двум из

Таблица 1. Распределение пациентов в исследуемых группах мужчин Группа 26-30 30-35 35-40 20-25 40-45 Возраст, лет 1-я - секреторное 5 4 9 3 бесплодие 2-я - после 5 2 варикоцелэктомии

них интраоперационно использовались рентгенозащитные накладки для яичек.

В ходе обследования соноэластография яичек и придатка была выполнена у всех мужчин, участвующих в исследовании, и была этапом ультразвукового комплексного исследования органов мошонки. Снижение эластичности ткани с наличием очагов повышенной плотности придатка яичка были выявлены у 34 пациентов (14 больных 1-й группы и 20 больных 2-й группы), участки сниженной эхогенности неоднородной структуры обнаружены у 12 пациентов 2-й группы. В режиме энергетического и цветового допплеровского картирования в данных зонах отмечалось обеднение сосудистого рисунка и снижение индекса перфузии. Применение ультразвуковой эластографии придатка яичка у больных с секреторным бесплодием и варикоцеле обусловлено тем, что высокая плотность придатка яичка у этих больных зачастую коррелирует с низким уровнем карнитина, обусловливающим снижение фертильности эякулята.

Через 3 мес контрольное исследование показало, что в группах больных с варикоцеле происходит снижение коэффициентов эластичности ткани в среднем в 1,6 раза по сравнению с исходными данными. В группе с секреторным бесплодием аналогичные изменения происходили медленнее. При ультразвуковой эластографии мошонки в обеих группах больных выявлено, что уменьшается площадь картирования плотных участков в среднем на 42% от исходной, что коррелировало с улучшением сперматогенеза (рис. 1, 2).

Таблица 3. Распределение пациенток в исследуемых группах женщин							
Группа Возраст, лет	20-25	26-30	30-35	35–40			
1-я – относительная гипепролактинимия	5	12	6	4			
2-я – относительно здоровые	6	14	3	2			

Название группы	Объем эякулята до лечения, мл	Количество сперматозоидов в 1 мл эякулята до лечения, млн/мл	Подвижность сперматозоидов до лечения (быстрое поступательное движение) А,%	Медленное поступательное движение до лечения В,%	Морфология сперматозоидов до лечения (нормальные формы),%	p
1-я группа, секреторное бесплодие	3,9±1,07	74,03±79,15	18,0±0,18	18,0±0,10	22±0,2	0,05
2-я группа, после варикоцелэктомии	2,88±1,52	60,0±66,6	23,0±0,14	24,0±0,031	33,0±0,2	0,04
Общая	3,39±1,38	67,0±62,3	20,0±0,15	21,0±0,07	28,0±0,2	0,04

Данные наблюдения были подтверждены с помощью ARFI-Virtual Touch Tissue imaging, по данным которой качественная визуализация степени смещения ткани придатка и самого яичка стали меньше после лечения, что указывало на косвенные структурные изменения данной ткани с уменьшением ее плотности (рис. 3—5). При этом Vs— скорость поперечной волны— снизилась с 2,07 до 1,26 м/с.

По результатам сравнительного анализа данных спермограмм выявлено, что объем эякулята после лечения в среднем увеличился на 11,4%, в большей степени за счет 1-й группы больных. Концентрация сперматозоидов в 1 мл возросла на 32,5% в 1-й группе и на 25% — во 2-й. Быстрая подвижность сперматозоидов (А) выросла в 1-й группе на 100%, а во 2-й — на 62%, медленное поступательное движение сперматозоидов уменьшилось в 1-й группе на 34%, во 2-й — на 18% (р<0,05). Прирост вычислялся по формуле:

[(x1-x2)/x2]*100%,

где x1 – достигнутый результат, x2 – исходный показатель.

Изменения в спермограммах (табл. 4) после лечения послужили причиной проведения уточняющего эксперимента, связанного с непосредственным влиянием Спематона на подвижность сперматозоидов in vitro.

Таблица 4. Результаты обслед Показатели спермограммы		Количество сперматозоидов в 1 мл эякулята после лечения, млн/мл	Подвижность сперматозоидов после лечения (быстрое поступательное движение) А,%	Медленное поступательное движение после лечения В,%	Морфология сперматозоидов после лечения (нормальные формы),%	p
1-я группа, секреторное бесплодие	4,49±1,08	94,15±73,59	36,0±0,16	11,0±0,07	42,0±0,21	0,05
2-я группа, после варикоцелэктомии	3,46±1,67	74,1±24,45	39,0±0,15	22,0±0,1	51,0±0,25	0,04
Общая	4,02±1,49	84,12±54,35	38,0±0,15	16,0±0,1	47,0±0,22	0,04

Рис 6. Головки сперматозоидов нормальной формы с аномальной акросомой (A) и конденсированным хроматином. Больной С., 44 года.

Рис. 7. Нормальные сперматозоиды с конденсированным хроматином (X) и нормальной акросомой (A). Больной С., 44 года, после лечения.

Был использован препарат в концентрации 100 и 1000 мкг/мл. Результаты представлены в табл. 5. Установлена прямая зависимость эффекта от концентрации добавленного препарата. Максимальный эффект проявился через 1 ч инкубации с некоторым снижением к 3-му часу наблюдения во фракции активноподвижных сперматозоидов.

Поскольку Спематон содержит L-карнитин, обладающий антиоксидантным действием, полученные результаты можно сравнить с другими препаратами, также содержащими антиоксиданты. Ранее были проведены опыты с препаратом Оводорин, содержащим экстракт мицелия гриба вешенки. В эякулят вносили препарат в разной концентрации (30 и 60 мкг/мл). Общая подвижность сперматозоидов через 3 ч повысилась на 104–107% по отношению к исходному уровню 100%.

Другой препарат, обладающий антиоксидантным свойством, также изученный нами ранее, – Мексидол. Препарат вносили в 2 разных концентрациях (50 и 500 мкг/мл). Была обнаружена зависимость эффекта от концентрации препарата. Общая подвижность сперматозоидов при добавлении малой концентрации препарата через 3 ч инкубации с эякулятом повысилась на 104–109%, высокая концентрация препарата повышала подвижность сперматозоидов в те же сроки на 116–120%.

Таким образом, Спематон в сравнении с другими антиоксидантными препаратами в эксперименте обладает более высоким положительным эффектом в отношении подвижности сперматозоидов, что позволяет рекомендовать его в терапии мужской патоспермии, связанной с падением подвижности – астенозоспермии [5].

ДЛЯ ТЕХ, КТО ПЛАНИРУЕТ РЕБЕНКА

Спематон – комбинированный препарат для повышения мужской фертильности.

Компоненты Спематона:

- стимулируют сперматогенез;
- повышают концентрацию сперматозоидов в семенной жидкости;
- увеличивают подвижность сперматозоидов.
- Прегнотон препарат для прегравидарной подготовки.

Таблица 5. Влияние Спематона на подвижность сперматозоидов человека in vitro									
	Исход	30 мин	30 мин	1 ч	1 ч	3 ч	3 4	Контроль 3 ч	
n=12		100 мкг/мл	1000 мкг/мл	100 мкг/мл	1000 мкг/мл	100 мкг/мл	1000 мкг/мл		
Активная подвижность (%)	19,6 (100%)	21,7 (111%)	22,2 (113%)	24,3 (124%)	26,5 (135%)	22,1 (113%)	24,8 (126%)	19,2 (98%)	
Общая подвижность (%)	42,2 (100%)	40,2 (95%)	43,0 (101%)	46,2 (109%)	48,3 (114%)	45,3 (107%)	49,2 (116%)	40,1 (95%)	

Таблица 6. Уровень половых гормонов в группах исследования до и после терапии										
№ группы	Пролактин, мМЕ/л		ЛГ, мЕд/мл		ФСГ, МЕ/мл		Эстрадиол, пг/мл		Прогестерон, нг/мл	
1-я	до	после	до	после	до	после	до	после	до	после
	590±240	285±187	6,9±4,2	7,1±3,8	14,1	15,1	340±231,4	460,7±125,0	9,5±4,2	22,6±21,4
2-я	до	после	до	после	до	после	до	после	до	после
	190±12	221±4,2	4,9±1,2	5,3±4,8	11,21	14,1	221±41,4	270,7±215,0	9,5±6,7	19,6±27,4

Таблица 7. Уровень микронутриентов в плазме крови пациенток в группах исследования до и после терапии.										
№ группы	Фолиевая кислота, мкг		Мд, мкг		Zn, мкг		Se, мкг			
1-я	до	после	до	после	до	после	до	после		
	125±87,1	409,±129,6	309±260	560±207,3	9,6±4,3	15,7±3,1	48±4,3	55±32,2		
2-я	до	после	до	после	до	после	до	после		
	187±21,6	506±203,3	405±126,5	610 ±312,3	10,1±3,2	17,1±5,2	51±3,1	77±4,3		

Несоответствие между дозозависимыми данными эксперимента и отсутствием выраженного клинического эффекта при приеме 2 саше-пакетиков связаны, вероятно, с распадом составляющих в агрессивной среде желудочно-кишечного тракта, возможностью усвоения только определенного количества L-карнитина.

Другим подтверждением влияния Спематона на улучшение подвижности сперматозоидов в эякуляте послужили исследования электронной микроскопии сперматозоидов до и после лечения. При данном исследовании на фоне антиоксидантной терапии выявлены следующие признаки нормализации мембраны акросомы: уменьшение вакуолизации и уменьшение фрагментации хроматина [6]; рис. 6, 7.

С целью изучения взаимосвязи между относительной гиперпролактинемией и гормональной функцией яичников и бесплодием проведено обследование 25 женщин. Из них 21 имели разные формы и типы овариальной недостаточности. У 19 из них содержание пролактина в крови превышало 190 мМЕ/л и у 6 женщин уровень пролактина колебался от 530 до 600 мМЕ/л.

Вторую группу составили 25 здоровых женщин с регулярным менструальным циклом, содержание пролактина в крови которых было в пределах физиологических колебаний (170–200 МЕ/л).

Возраст наступления менархе у обследованных женщин колебался от 11 до 15 лет и в среднем составил 13,6±0,3 года. У 28 (59,6%) женщин сразу установился регулярный менструальный цикл, у 8 (14,8%) – регулярный менструальный цикл установился в течение первого года после начала месячных и у 12 (17,2%) – через год и более. У 2 (10%) больных наблюдалась первичная аменорея. Нерегулярный менструальный цикл с момента менархе до проведения обследования наблюдался у 19 (42,97%) женщин. У матерей 2 (10%) больных имелась вторичная аменорея.

У большинства обследованных больных (42,8%) наблюдались аденовирусные и респираторные заболевания в анамнезе. Хронический тонзиллит имели 7,2% женщин. Кроме того, в анамнезе у обследованных женщин имелись следующие заболевания: хронический пиелонефрит — у 3,6%, хронический холецистит — у 2,4%, хронический гастрит — у 3,0%, язвенная болезнь. Среди обследованных женщин 25 (50%) не имели беременностей. Большинство больных 41 (85,0%) страдали первичным бесплодием, 9 страдали вторичным бесплодием.

Всем женщинам было проведено общеклиническое и гинекологическое обследование. Для уточнения раз-

меров матки, толщины эндометрия и состояния яичников всем больным было произведено ультразвуковое исследование. Исследование проводилось на аппарате абдоминальным секторным датчиком с рабочей частотой 3,5 МГц. Некоторым больным дополнительно выполнялось исследование на аппарате фирмы Брюль и Кьер (Дания) с вагинальным секторным датчиком с рабочей частотой 7–10 МГц. Признаки гипоплазии матки выявлены у 17 (36%) больных. У 18 (36,4%) женщин яичники были обычной структуры. Поликистозные яичники были выявлены у 15 (42,8%) больных. Всем больным была произведена обзорная рентгенография черепа и прицельные снимки области турецкого седла с целью исключения объемного процесса в гипофизе. Ни в одном случае отклонений от нормы не было выявлено.

У обследованных женщин выявлены разные типы яичниковой недостаточности: ановуляция – у 23 (46%) больных и недостаточность лютеиновой фазы цикла – у 10 (20%) больных.

Клинические проявления нарушения менструального цикла у обследованных женщин были разнообразны: олигоменорея у 11 (21%) больных, олигоопсоменорея – у 13 (24,8%) больных, гиперполименорея – у 5 (10%).

К провоцирующим факторам, которые могли играть роль в инициации нарушений менструального цикла, по данным анамнеза, относились:

- эмоционально-психическая травма у 7 (14,0%) женщин:
 - перемена климата у 13 (21%) женщины;
 - снижение массы тела у 22 (45,3%) женщин.

Следует отметить, что на фоне приема Прегнотона у многих больных нормализовался менструальный цикл, уменьшились проявления нарушений в виде дисменореи, пришел в норму уровень прогестерона (табл. 6).

Анализируя ситуацию, связанную с уровнем микронутриентов, следует понимать, что подавляющее число женщин (76%) в периоде преконцепции испытывают дефицит в организме микронутриентов, что связано с их урбанизированным уровнем жизни и нарушением пищеварения (табл. 7) [7].

Прегнотон принимался женщинами для подготовки организма к беременности. Они отмечали приятный дынный вкус препарата. За время приема Прегнотона была зарегистрирована 1 нежелательная реакция на компоненты препарата (по-видимому, витамин С) в виде шелушения кожных покровов на лице через 10 нед применения.

На фоне применения Прегнотона были отмечены снижение уровня эмоциональной лабильности в пред-

менструальном периоде, повышение работоспособности и оживление элементов гетеросексуального влечения на фоне возросшей длительности лютеиновой фазы цикла. Этот препарат восполнил недостаток витаминов и минералов, которые необходимы на этапе подготовки к зачатию. Компоненты Прегнотона нормализовали менструальный цикл, улучшали кровообращение и насыщение тканей кислородом в органах малого таза по данным ультразвукового исследования органов малого таза и таким образом повышали женскую фертильность, создавая оптимальные условия для наступления беременности [7, 8].

Основным результатом нашего исследования в 1-й группе больных с мужским фактором секреторного бесплодия и относительной гиперпролактинемией у партнерш этих больных были нормализация пограничных значений гипепролактинемии и зарегистрированное наступление 2 беременностей на протяжении 4 мес наблюдения. У 3 партнерш мужчин 2-й группы было документировано наличие беременностей.

Обсуждение

Оценив результаты лечения обследуемых больных, мы пришли к выводу, что стратегия профессионального сопровождения пары при бесплодии с участием гинеколога и уролога является более эффективной, чем разрозненное и несогласованное ведение этих больных.

Результаты совместной подготовки пары препаратами Спематон и Прегнотон при секреторном бесплодии мужчин и в послеоперационном ведении больных, перенесших варикоцелэктомию, позволяют предположить не только половой, но и лекарственный синергизм, направленный на улучшение репродуктивной функции пары в целом. Спематон зарекомендовал себя как препарат выбора при идиопатическом бесплодии, в послеоперационном ведении больных с целью более быстрого восстановления фертильности мужчины. Следует отметить, что 3 мес являются достаточным сроком для улучшения функциональных параметров сперматозоидов. По результатам сравнительного анализа данных спермограмм выявлено, что объем эякулята после лечения в среднем увеличился на 11,4%, в большей степени за счет 1-й группы больных. Концентрация сперматозоидов в 1 мл возросла на 32,5% в 1-й группе и на 25% – во 2-й группе. Быстрая подвижность сперматозоидов (А) выросла в 1-й группе на 100%, а во 2-й – на 62%, медленное поступательное движение сперматозоидов (В) уменьшилось в 1-й группе на 34%, во 2-й - на 18% (р<0,05). Данные изменения коррелировали с эластографическими изменениями структуры придатка и яичка. Контрольные исследования показали, что в группах больных с варикоцеле происходит снижение коэффициентов эластичности ткани в среднем на 1,6 раза по сравнению с исходными данными, что коррелирует с восстановлением сперматогенеза у этих больных. Проведенные исследования электронной микроскопии сперматозоидов позволили сделать предположения о возможном влиянии антиоксидантов препарата Спематон на уменьшение фрагментации хроматина. Рациональное содержание L-карнитина позволяет предположить его влияние на сохранение мембраны акросомы и повышение метаболизма митохондрий сперматозоидов.

Прием 2 саше-пакетов у мужчин не приводит к статистически значимой разнице по эффективности воздействия на сперматогенез по сравнению с приемом Спематона в количестве 1 саше-пакета в сутки.

Таким образом, Спематон позволяет повысить мужскую фертильность, улучшая функциональное состояние мужской репродуктивной системы: улучшает качественные и количественные показатели спермограммы (улучшает морфологию сперматозоидов, увеличи-

вает их подвижность, концентрацию, и объем эякулята) и восполняет недостаток витамина Е и цинка. Спематон не вызывал аллергических реакций и других побочных явлений.

Оценка эффективности препарата Прегнотон у женщин выявила очевидные преимущества. К ним можно отнести снижение относительно повышенного уровня пролактина, удлинение лютеиновой фазы менструального цикла, нормализацию месячных, уменьшение болевого компонента и повышение уровня прогестерона.

Новая стратегия профессионального медицинского сопровождения пары при бесплодии препаратами Спематон и Прегнотон, является эффективной за счет правильной подборки компонентов [9-12]. У партнерш мужчин в семьях с мужским фактором бесплодия одной из причин ненаступления беременности является стрессово-детерминированное повышение уровня пролактина. Экстракт витекса способствует нормализации уровня пролактина, улучшению баланса эстрогенов и прогестерона, что приводит к нормализации менструального цикла и более частому наступлению беременности. Прегнотон, таким образом, улучшает функциональное состояние женской репродуктивной системы: восполняет недостаток витаминов и минералов, необходимых для правильного формирования и развития плода на ранних стадиях беременности; способствует восстановлению организма после стрессов и повышенных эмоциональных нагрузок; снижает относительно повышенный уровень пролактина и позволяет нормализовать менструальный цикл (в случае нарушений, вызванных стрессами). Прегнотон не оказывает влияния на артериальное давление и может применяться при гипотонии. Если изначальный уровень пролактина был в норме, прием Прегнотона не будет оказывать какого-либо отрицательного эффекта на менструальный цикл и организм в целом.

Применение комплекса препаратов Спематон и Прегнотон эффективно и безопасно для будущих родителей.

Литература

1. Сухих Г.Т., Божедомов ВА. Мужское бесплодие. М.: Эксмо, 2008. 2. Вишневский А.С., Сафронникова Н.Р., Мельникова Н.Ю., Григорьева Т.А. Новые подходы к синдрому гиперпролактинемии. Журнал акушерства и женских болезней. 2000; 1 (XLIX): 39–41. 3. Berger D. Vitex Agnes castus: Unbedenklichkeit and Wirksamkeit beim praemenstruellen Syndrom, Wirkprinzipien und Wirkmecbanismen eines neuetwickelten Extraktes. Dissertation, Phil.-Naturwissen-scgrlliche Fakultat, Universitat Basel, 1998.

4. Jarr H, Leonbardt S, Wuttke W, Bebr B et al. Agnus castus als dopaminerges Wirkprinzip in Mastodynon. N Zeitschrift für Phytotherapie 1991; 12:77–82.

5. Виноградов И.В., Капто АА., Афанасьева Л.М. Опыт применения Карнитина у больных с идиопатической патоспермией. Проблемы репродукции. 2009; 1:. 76–7.

6.Zini A,AL-Hatal N.Aнтиоксидантная терапия при мужском бесплодии: факт или вымысел. Азиатский журн. андрологии. 2011; 13: 1–9.

7. Манухин И.Б., Федорова Т.Н., Смирнова С.О., Кузнецова Е.М. Пипеандрогения и оксидативный стресс. Проблемы репродукции. 2012: 2: 41–5.

8. Vicari E, Calogero AE. Effects of treatment with carnitines in infertile patients with prostato-vesiculo-epididymis. Hum Reprod 2001; 16 (11): 2338–42

9. Курило Л.Ф. Руководство ВОЗ по исследованию и обработке эякулята человека. 5-е изд. ВОЗ. Медикогенетический научный центр Российской академии медицинских наук. М.: Капитал принт, 2012.

10. Жуков О.Б., Верзин А.В., Пеньков П.Л. Современные методы хирургического лечения варикоцеле. Андрология и генитальная хирургия. 2012; 3: 4–15.

11. Жуков О.Б., Уколов В.А., Жуков А.А. Комплексная терапия патоспермии у больных после рентгеноэндовпаскулярной склеротерапии тестикулярных вен. Андрология и генитальная хирургия. 2012; 4: 70–9.

12. Божедомов ВА, Торопцева МВ, Ушакова ИВ. и др. Активные формы кислорода и репродуктивная функция мужчин: фундаментальные и клинические аспекты. Андрология и генитальная хирургия. 2011; 3.

Индекс