Quantum Algorithms for Lattice-based Cryptography

Yixin Shen

November 1, 2022

NIST selected algorithms:

- encryption: the only selected candidate is based on lattices
- signatures: 2 out of 3 based on lattices

What is a (Euclidean) lattice?

Definition

$$\mathcal{L}(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n) = \left\{\sum_{i=1}^n x_i \boldsymbol{b}_i : x_i \in \mathbb{Z}\right\}$$
 where $\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n$ is a basis of \mathbb{R}^n .

3/11

Lattice-based cryptography: fundamental idea

- good basis: private information, makes problem easy
- bad basis: public information, makes problem hard

Lattice-based cryptography: fundamental idea

- good basis: private information, makes problem easy
- bad basis: public information, makes problem hard

Basis reduction: transform a bad basis into a good one Main tool: BKZ algorithm and its variants

Requires to solve the (approx-)SVP problem in smaller dimensions.

Shortest Vector Problem (SVP): Given a basis for the lattice \mathcal{L} , find a shortest nonzero lattice vector. $\lambda_1(\mathcal{L}) = \text{length of such a vector.}$

Shortest Vector Problem (SVP):

Given a basis for the lattice \mathcal{L} , find a shortest nonzero lattice vector.

 $\lambda_1(\mathcal{L}) = \text{length of such a vector.}$

γ -approx-SVP ($\gamma > 1$):

Given a basis of \mathcal{L} , find a nonzero lattice vector of length at most $\gamma \cdot \lambda_1(\mathcal{L})$.

 γ is approximation factor.

Depending on the dimension *n*:

- ► NP-Hardness (randomized reduction)
- ► NP ∩ co-NP
- Subexponential-time algorithms
- Poly-time algorithms

Approx factor:

- ► O(1)
- $ightharpoonup \sqrt{r}$
- ≥ 2√″
- $> 2^{\frac{n \log \log n}{\log n}}$

Depending on the dimension *n*:

- NP-Hardness (randomized reduction)
- ► NP ∩ co-NP
- Subexponential-time algorithms
- ▶ Poly-time algorithms

Approx factor:

- ► O(1)
- $ightharpoonup \sqrt{n}$
- $\triangleright 2^{\sqrt{n}}$
- ▶ 2 nog log n

Main approaches for SVP:

- ► Enumeration: $2^{O(n \log(n))}$ time and poly(n) space
- ► Sieving: $2^{O(n)}$ time and $2^{O(n)}$ space

Enumeration Algorithm

Given $x_n, \ldots, x_{i+1}, ||x|| \le R \Rightarrow$ the integer x_i belongs to an interval of small length

Quantum Speed-up for Enumeration

Quantum Backtracking [Montanaro15]

- blackbox access to a tree with marked nodes:
 - can only query the local structure of the tree
- ▶ tree of size *T*, depth *n*, constant max degree
- \Rightarrow $O^*(\sqrt{T})$ queries to find a marked node [ANS18] Combine with clever ways of pruning the tree

Quantum Speed-up for Enumeration

Quantum Backtracking [Montanaro15]

- blackbox access to a tree with marked nodes:
 - can only query the local structure of the tree
- ▶ tree of size *T*, depth *n*, constant max degree
- \Rightarrow $O^*(\sqrt{T})$ queries to find a marked node [ANS18] Combine with clever ways of pruning the tree

Variational Quantum Algorithm [APSW22]

- ignore the tree structure, encode SVP into a QUBO
- upper bound the x_is
- modify the classical loop of VQE to target directly the first excited state
- ▶ 1500 qubits suffice to solve SVP in dim 180
- time complexity? unknown...

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Sieve:

Input: many vectors of length $\leqslant \ell$ **Output:** many vectors of length $\leqslant \frac{\ell}{2}$

Combine pairs of vectors to produce shorter vectors

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Sieve:

Input: many vectors of length $\leqslant \ell$ **Output:** many vectors of length $\leqslant \frac{\ell}{2}$

Combine pairs of vectors to produce shorter vectors

Idea: LLL reduced \sim length $\ell \leqslant 2^{O(n)} \lambda_1$, sieve O(n), solve SVP

Original idea [AKS01]:

- Reduce basis
- Generate random vectors
- Repeat many times:
 - Sieve vectors

Sieve:

Input: many vectors of length $\leqslant \ell$ **Output:** many vectors of length $\leqslant \frac{\ell}{2}$

Combine pairs of vectors to produce shorter vectors

Idea: LLL reduced \sim length $\ell \leqslant 2^{O(n)} \lambda_1$, sieve O(n), solve SVP

Many heuristic variants: local sensitive hash, tuple sieve, ...

quantum access

Assumption: O(1) time cost

Interlude: quantum memory models

Assumption: O(1) time cost

Interlude: quantum memory models

Assumption: O(1) time cost

 $|y \oplus x_i\rangle$ $|i\rangle$

Interlude: quantum memory models

Assumption: O(1) time cost

Results in the Classical and Quantum Setting

Time	Р	P Space Complexity			Reference
Complexity	Н	Classical	Qubits	Model	Helefelice
2 ^{n+o(n)}	P	$2^{n+o(n)}$	N/A	N/A	[LMP15]
2 ^{0.950n+o(n)}	Р	$2^{0.5n+o(n)}$	poly(n)	plain	[ACKS21]
2 ^{0.835n+o(n)}	Р	$2^{0.5n+o(n)}$	poly(n)	QRACM	[ACKS21]
2 ^{0.292n+o(n)}	Н	$2^{0.292n+o(n)}$	N/A	N/A	[BDGL16]
2 ^{0.265n+o(n)}	Н	$2^{0.265n+o(n)}$	poly(n)	QRACM	[Laa15]
2 ^{0.2563n+o(n)}	Н	$2^{0.2075n+o(n)}$	poly(n)	QRAQM	[BCSS22]

P=provable, H=heuristic

Tools: Quantum Amplitude Amplification/Estimation, Quantum Walks Currently interested in: Heuristic algorithms for lattice sieving without QRACM. Such algorithm exists for collision finding: [CNS17].