# Московский физико-технический институт Факультет общей и прикладной физики

Лабораторная работа № 3.3.4

(Общая физика: электричество и магнетизм)

# Эффект Холла в полупроводниках

Работу выполнил: Иванов Кирилл, 625 группа

г. Долгопрудный 2017 год

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

**Оборудование:** электромагнит с источником питания, батарейка, амперметр, реостат, цифровой вольтметр, милливеберметр, образцы легированного германия.

#### 1. Теоретическая справка

Суть эффекта Холла состоит в следующем. Пусть через однородную пластину металла вдоль оси x течет ток I (рис. 1).



Рис. 1: Образец с током в магнитном поле

Если эту пластину поместить в магнитное поле, направленное по оси у, то между гранями A и Б появляется разность потенциалов.

В самом деле, на электрон (для простоты рассматриваем один тип носителей), движущийся со средней скоростью  $\langle \vec{v} \rangle$  в электромагнитном поле, действует сила Лоренца:

$$\vec{F}_{\pi} = -e\vec{E} - e\langle \vec{v} \rangle \times \vec{B},$$

где e- абсолютный заряд электрона,  $\vec{E}$  - напряженность электрического поля,  $\vec{B}$  - индукция магнитного поля.

В проекции на ось z получаем

$$F_B = e|\langle v_x \rangle|B.$$

Под действием этой силы электроны отклоняются к грани Б, заряжая ее отрицательно. На грани А накапливаются нескомпенсированные положительные заряды. Это приводит к возникновению электрического поля  $E_z$ , направленного от А к Б, которое действует на электроны с силой  $F_E = eE_z$ . В установившемся режиме  $F_E = F_B$ , поэтому накопление электрических зарядов на боковых гранях пластины прекращается. Отсюда

$$E_z = |\langle v_x \rangle| B.$$

С этим полем связана разность потенциалов

$$U_{AB} = E_z l = |\langle v_x \rangle| B l.$$

В этом и состоит эффект Холла.

Замечая, что сила тока

$$I = ne|\langle v_x \rangle| la,$$

найдем ЭДС Холла:

$$\mathscr{E}_X = U_{AB} = \frac{IB}{nea} = R_X \frac{IB}{a} \tag{1}$$

Константа  $R_X = \frac{1}{ne}$  называется постоянной Холла.

В полупроводниках, когда вклад в проводимость обусловлен и электронами и дырками, выражение для постоянной Холла имеет более сложный вид:

$$R_X = \frac{nb_e^2 - pb_p^2}{e(nb_e + pb_p)^2},$$

где n и p - концентрации электронов и дырок,  $b_e$   $b_p$  - их подвижности.

# 2. Экспериментальная установка.

Схема экспериментальной установки показана на рис. 2.



Рис. 2: Схема установки для исследования эффекта Холла в полупроводниках

В зазоре электромагнита (рис. 1a) создаётся постоянное магнитное поле, величину которого можно менять с помощью регуляторов источника питания. Ток измеряется амперметром источника питания  $A_1$ . Разъем  $K_1$  позволяет менять направление тока в обмотках электромагнита.

Образец из легированного германия, смонтированный в специальном держателе (рис. 16), подключается к батарее. При замыкании ключа  $K_2$  вдоль длинной стороны образца течет ток, величина которого регулируется реостатом R и измеряется миллиамперметром  $A_2$ .

В образце с током, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов  $U_{34}$ , которая измеряется с помощью цифрового вольтметра.

Контакты 3 и 4 вследствие неточности подпайки не всегда лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец.

Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом их разности. В этом случае ЭДС Холла  $\mathscr{E}_X$  может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение  $U_0$  остается неизменным. От него следует (с учетом знака) отсчитывать величину ЭДС Холла:

$$\mathscr{E}_X = U_{34} \pm U_0$$

.

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку  $\mathscr{E}_X$  можно определить характер проводимости - электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение  $U_{35}$  между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле:

$$\sigma = \frac{IL_{35}}{U_{35}al} \tag{2}$$

где  $L_{35}$  - расстояние между контактами 3 и 5, a - толщина образца, l - его ширина.

## 3. Ход работы

1. Запишем данные установки:

a=2,2 мм,  $L_{35}=6,0$  мм, l=7,0 мм, SN=75 см $^2\cdot$ вит - площадь сечения контура катушки на число витков в ней.

2. Настроим приборы согласно инструкции.

3. Запишем предельное значение тока через электромагнит:

$$I_{max} = 2.13 \text{ A}.$$

4. Исследуем зависимость потока  $\Phi$  магнитного поля в зазоре электромагнита от тока через обмотки магнита. Данные занесём в табл. 1.

Индукцию В найдем по формуле

$$B = \frac{\Delta \Phi}{SN},$$

где  $\Delta \Phi = \Phi - \Phi_0$  - разность между начальным и конечным значением потока вектора индукции, который пронизывал пробную катушку, находившуюся в зазоре электромагнита.



Рис. 3: График зависимости  $B(I_M)$ 

По этим данным построим график зависимости  $B = B(I_M)$  (рис. 3).

5. Снимем зависимость  $U_{34}(I_{\rm M})$  различных токах через образец (табл. 2). А именно, он изменяется от 0,23 до 1,07 мА. При этом в отсутствие магнитного поля вольтметр покажет напряжение  $U_0$ . Результаты занесём в таблицу 2, подписывая сверху  $I, U_0$  в мА и мкВ соответственно. В последнем опыте изменим направление магнитного поля.

Рассчитаем ЭДС Холла  $\mathscr{E}_X$  по формуле и занесем результаты в таблицу 3:

$$\mathscr{E}_X = U_{34} - U_0$$

Теперь вычислим  $R_X$  из формулы (1):

Таблица 1: Зависимость  $B(I_{\scriptscriptstyle \mathrm{M}})$ 

| $N_{\overline{0}}$ | $I_{\scriptscriptstyle \mathrm{M}},\mathrm{A}$ | Фо, мВб | Ф, мВб | $\Delta\Phi$ , мВб | B, Тл |
|--------------------|------------------------------------------------|---------|--------|--------------------|-------|
| 1                  | 0,30                                           | 2       | 3,4    | 1,4                | 0,19  |
| 2                  | 0,50                                           | 2       | 4,3    | 2,3                | 0,31  |
| 3                  | 0,70                                           | 2       | 5,2    | 3,2                | 0,43  |
| 4                  | 0,90                                           | 2       | 6,0    | 4,0                | 0,53  |
| 5                  | 1,20                                           | 2       | 7,2    | $5,\!2$            | 0,69  |
| 6                  | 1,50                                           | 2       | 8,0    | 6,0                | 0,80  |
| 7                  | 1,80                                           | 2       | 8,5    | 6,5                | 0,86  |
| 8                  | 2,06                                           | 2       | 8,9    | 6,9                | 0,92  |

Таблица 2: Результаты измерений  $U_{34}$ 

|   |          | $I, U_0$                | $I, U_0$ | $I, U_0$  | $I, U_0$  | $I, U_0$  | $I, U_0$  | $I, U_0$  | $I, U_0$  |
|---|----------|-------------------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|
| N | $I_M, A$ | 0,22, 46                | 0,35, 72 | 0,50, 102 | 0,60, 123 | 0,70, 145 | 0,85, 175 | 1,07, 220 | 1,07, 220 |
|   |          | $U_{34},\ \mathrm{mkB}$ |          |           |           |           |           |           |           |
| 1 | 0.1      | 38                      | 62       | 88        | 107       | 125       | 150       | 191       | 268       |
| 2 | 0.3      | 27                      | 41       | 57        | 69        | 83        | 100       | 124       | 334       |
| 3 | 0.6      | 8                       | 10       | 13        | 17        | 18        | 23        | 32        | 432       |
| 4 | 0.9      | -9                      | -15      | -20       | -28       | -28       | -34       | -42       | 517       |
| 5 | 1.2      | -22                     | -34      | -49       | -60       | -68       | -81       | -104      | 582       |
| 6 | 1.5      | -30                     | -48      | -67       | -82       | -94       | -114      | -144      | 629       |
| 7 | 1.8      | -36                     | -56      | -89       | -96       | -112      | -135      | -169      | 658       |
| 8 | 2.1      | -40                     | -62      | -88       | -106      | -123      | -146      | -184      | 674       |

$$R_X = \frac{a\mathscr{E}_X}{BI}$$

Результаты сведем в таблицу 4:

6. Теперь посчитаем для наших  $R_X$ , начиная со вторых значений, истинное среднее, вычисляя погрешность через коэффициент Стьюдента, равный A=2.

$$R_X = R_{\rm cp} \pm A \frac{\sigma}{\sqrt{N}}$$

 $R_{\rm cp} \approx 9.9 \cdot 10^{-4}, \frac{{\rm M}^3}{{\rm K}_{\rm J}}$  — среднее арифметическое,  $\sigma \approx 0.5$  — среднеквадратичное отклонение, N=56. Отсюда

$$R_X = (9.9 \pm 0.2) \cdot 10^{-4}, \frac{\text{M}^3}{\text{K}_{\text{J}}}$$

|   |          | $I, U_0$                          | $I, U_0$ | $I, U_0$  | $I, U_0$  | $I, U_0$  | $I, U_0$  | $I, U_0$  | $I, U_0$  |
|---|----------|-----------------------------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|
| N | $I_M, A$ | 0,22, 46                          | 0,35, 72 | 0,50, 102 | 0,60, 123 | 0,70, 145 | 0,85, 175 | 1,07, 220 | 1,07, 220 |
|   |          | $\mathscr{E}_X$ , мк $\mathrm{B}$ |          |           |           |           |           |           |           |
| 1 | 0.1      | -8                                | -10      | -14       | -16       | -20       | -25       | -29       | -28       |
| 2 | 0.3      | -19                               | -31      | -45       | -54       | -62       | -75       | -96       | -94       |
| 3 | 0.6      | -38                               | -62      | -89       | -106      | -127      | -152      | -188      | -192      |
| 4 | 0.9      | -55                               | -87      | -122      | -151      | -173      | -209      | -262      | -277      |
| 5 | 1.2      | -68                               | -106     | -151      | -183      | -213      | -256      | -324      | -342      |
| 6 | 1.5      | -76                               | -120     | -169      | -205      | -239      | -289      | -364      | -389      |
| 7 | 1.8      | -82                               | -128     | -191      | -219      | -257      | -310      | -389      | -418      |
| 8 | 2.1      | -86                               | -134     | -190      | -229      | -268      | -321      | -404      | -434      |

Таблица 3: Результаты измерений  $\mathscr{E}_X$ 

Таблица 4: Результаты измерений  $R_X$ 

|   |       | $I, U_0$                                                    | $I, U_0$ | $I, U_0$  | $I, U_0$  | $I, U_0$  | $I, U_0$  | $I, U_0$  | $I, U_0$  |
|---|-------|-------------------------------------------------------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|
| N | B, Тл | 0,22, 46                                                    | 0,35, 72 | 0,50, 102 | 0,60, 123 | 0,70, 145 | 0,85, 175 | 1,07, 220 | 1,07, 220 |
|   |       | $R_X \cdot 10^{-4}, \frac{\text{M}^3}{\text{K}_{\text{J}}}$ |          |           |           |           |           |           |           |
| 1 | 0.17  | 4.7                                                         | 3.7      | 3.6       | 3.5       | 3.7       | 3.8       | 3.5       | 3.4       |
| 2 | 0.19  | 10.0                                                        | 10.3     | 10.4      | 10.4      | 10.3      | 10.2      | 10.4      | 10.2      |
| 3 | 0.37  | 10.3                                                        | 10.5     | 10.6      | 10.5      | 10.8      | 10.6      | 10.4      | 10.7      |
| 4 | 0.53  | 10.4                                                        | 10.3     | 10.1      | 10.4      | 10.3      | 10.2      | 10.2      | 10.7      |
| 5 | 0.69  | 9.9                                                         | 9.7      | 9.6       | 9.7       | 9.7       | 9.6       | 9.7       | 10.2      |
| 6 | 0.8   | 9.5                                                         | 9.4      | 9.3       | 9.4       | 9.4       | 9.4       | 9.4       | 10.0      |
| 7 | 0.86  | 9.5                                                         | 9.4      | 9.8       | 9.3       | 9.4       | 9.3       | 9.3       | 10.0      |
| 8 | 0.92  | 9.3                                                         | 9.2      | 9.1       | 9.1       | 9.2       | 9.0       | 9.0       | 9.7       |

- 7. Определим, что наши частицы движутся к клемме №4 образца. Зная направление магнитного поля в электромагните и тока через образец, мы определяем, что наши частицы заряжены отрицательно, т.е. являются электронами.
- 8. Теперь определим концентрацию электронов:

$$n = \frac{1}{R_X e} \pm \frac{1}{R_X e} \frac{\sigma_{R_X}}{R_X} \approx (6.3 \pm 0.1) \cdot 10^{21} \frac{1}{\text{m}^3}$$

9. При токе через образец I=1 мA по формуле (2) посчитаем удельную проводимость:

$$\sigma \approx (80.8 \pm 0.6) \cdot \frac{1}{\text{OM} \cdot \text{M}}$$

10. По формуле посчитаем подвижность электронов:

$$b = \frac{\sigma}{en} \approx (797 \pm 11) \frac{\text{cm}^2}{\text{B} \cdot \text{c}}$$

#### 11. Построим итоговую таблицу:

| $R_X$ ,                                | Знак носителей | n,                         | $n, \qquad \qquad \sigma, \qquad \qquad $ |                  |
|----------------------------------------|----------------|----------------------------|-------------------------------------------|------------------|
| $10^{-4} \; \mathrm{m}^3/\mathrm{K}$ л | энак носителеи | $10^{21}, \mathrm{m}^{-3}$ | $\mathrm{Om}^{-1}\cdot\mathrm{m}^{-1}$    | $cm^2/B \cdot c$ |
| $9,9 \pm 0,2$                          | _              | $6,3 \pm 0,1$              | $80.8 \pm 0.6$                            | $797 \pm 11$     |

#### 4. Вывод

Мы изучили явление эффекта Холла в полупроводниках, измерили для нашего образца (Германий) такие величины как постоянная Холла, концентрацию электронов, удельную проводимость и подвижность электронов.

Допуская существование добавок в материале образца, результаты вполне соответствуют табличным.