Mathe 1: Klausur #1

1. Aufgabe

Mög lichkeit #1: Durch schartes Hinschauen erhennt man 217.1+35.(-4)=217-140=77,dh. k=1 und e=-4 sind eine Lösung.

Möglichkeit #2: Wir wenden den Erweiterten Euklid an. Sei dazu ao:= 217 und bo:= 35.

Zeile m					
0	90=217	b ₀ = 35	90= [a0] = 6	ko= 1	Co=14-90: C1=-6
1	a ₁ = bo = 35	b1=9-90-b0 =7	$q_1 = \left\lfloor \frac{a_1}{b_1} \right\rfloor$ $= 5$	kn= 0	l ₁ =1
2	az=bn=7	b2=91-91-61 = 0		k2=1	e = 0

Noch Erweitertem Eulchid ist

7=99T(217,35)=217.1+35.(-6), d.h.

77=7.11=217.11+35. (-66). Somit sind k=11
und l=-66 eine Lösung.

2. Aufgabe nicht für diese Mathe 1

3. Aufgabe

2

by and be Basis von Regenay dann, wenn by and be linear unabhängig (aus Dimensions-gründen ist dann (Ebribe 3) = 1R7 dh.

B = Ebribe 3 ist Erzeugendensystem).

Seien L. B = R mit L. br + B. be = (8). Dann ist L-B=0 and a + B.0=0, dh.

d=B and d=0. Somit ist d=B=0, dh.

by and be sind linear unabhängig.

(b) Nach Voraussetzung ist $\Phi(b_1) = b_2 = 0.b_1 + 1.b_2$ und $\Phi(b_2) = b_1 = 1.b_1 + 0.b_2$.

Also ist $M_{\mathbb{R}}^{\mathbb{R}}(\Phi) = \left(\begin{bmatrix} \Phi(b_1) \end{bmatrix}_{\mathbb{R}} \begin{bmatrix} \Phi(b_2) \end{bmatrix}_{\mathbb{R}} \right)$ $= \left(\begin{array}{c} \Phi(b_1) \\ 1 \end{array} \right).$

Sei $\mathcal{E} = \{(3), (9)\}$. Nach Basiswechsel formel ist $M_{\mathcal{E}}^{\mathcal{E}}(\phi) = M_{\mathcal{E}}^{\mathcal{B}}(id_{\mathbb{R}^2}) \cdot M_{\mathcal{B}}^{\mathcal{B}}(\phi) \cdot M_{\mathcal{B}}^{\mathcal{E}}(id_{\mathbb{R}^2})$.

Es gilt
$$M_{\varepsilon}^{\mathcal{B}}(id_{R^2}) = (b_1 b_2) = (1-1)$$

weil & die Standardbasis ist. Weiter ist

$$M_{g}^{\varepsilon}(id_{R^{2}}) = (M_{\varepsilon}^{\varepsilon}(id_{R^{2}}))^{-1} = (1-1)^{-1} = \frac{1}{1} \cdot (01)$$

$$= (01)$$

$$= (-11)$$

Also gilt

$$M_{\varepsilon}(\phi) = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 1 \\ -1$$

(c) Das charalteristische Polynom von A=ME(b) ist

$$= (-1-t)\cdot(1-t) - (-1)\cdot0 = (-1-t)\cdot(1-t).$$

Die Nullstellen von pa sind $\lambda_1 = -1$ und $\lambda_2 = 1$.

(d) Wir haben zwei verschiedene Eigenwerte, so dass

$$M_1 = \dim (E(A_1-1)) = 1$$
 and $M_2 = \dim (E(A_1,1)) = 1$ (da dim(\mathbb{R}^2) = 2). Weiter

ist M1+M2 = 2 = dim (IR2). Nach Satz 3.11.13.

ist A diagona lisierbar.

4. Aufgabe nicht für diese Mathe 1

5. Aufgabe

- (a) Falsch: Es it 3=3, d.h. ≠ ist nicht reflexiv.
- (b) Wahr: Sei $y \in f(A \cap B)$. Dann gibt es $X \in A \cap B$ mit y = f(X). Dann ist auch Y = f(X) in f(A) und f(B) enthalten, d.h. $y \in f(A) \cap f(B)$.
 - (c) Falsch: Sei $(G_1 *_1 n) = (Z_2, +_1 \delta)$. Dann ist $\widehat{1} + \widetilde{1} = \widehat{1} + \widetilde{1} = \widehat{2} = \delta = n, d.h.$ $g = \widetilde{1}$ ist ein Element mit $g = g^{\#}$ und $g \neq n$.
 - (d) Falsch: AERnxn orthogonal impliziert, dass
 Spalten von A eine Orthonormalbasis sind.
 Insbesondere sind die Spalten linear unabhängig, d.h. det (A) + O. Wäre O Eigenwert von A, so müsste

det (A) = det (A-O. In) = O gelten, ein Widerspruch zu det (A) + O. Also kann O kein Eigenwert von A gewesen sein.

- (a) Wahr:
- (b) Wahr: Aus f (g#a) = f (g) #H folgt die Gleichung durch nochmaliges invertieren in H.
- (c) Falsch: z=i wählen, dann -1=z2 #1=1212
- (d) Wahr: Satz 3.5.10. für d=0.
- (e) Falsch: Wähle U=V
- (f) Falsch: (A+B)·(A-B)=A·A-A·B+B·A-B·B und für nz2 gibt es A,B mit A.B + B.A.
- (g) Falsch: A = (10), 1=1, A-1 = (00)
- (i) Wahr: Satz 3.6.19.
- (i) Wahr: Definition von V/U