FINM 34500/STAT 39000

Winter 2025

Problem Set 2 (due January 21)

Reading: Sections 2.8 - 2.10.

Exercise 1 Let f(t) be a continuous function for $0 \le t \le 1$ and let

$$Q = \lim_{n \to \infty} \sum_{j=1}^{n} \left| f\left(\frac{j}{n}\right) - f\left(\frac{j-1}{n}\right) \right|^{5/4}.$$

What is Q

1. If $f(t) = t^2$?

2. If $f(t) = B_t$ where B_t is a standard Brownian motion.

Exercise 2 Suppose B_t, W_t are independent standard Brownian motions.

- 1. Let $Y_t = 2 B_t W_t t$. Show that Y_t is a (one-dimensional) Brownian motion starting at the origin. What are the drift and variance parameter?
- 2. Let $Z_t = (Z_t^1, Z_t^2)$ denote the random vector where

$$Z_t^1 = Y_t + t, \quad Z_t^2 = -B_t + 3W_t,$$

and Y_t is as in the previous part. Explain why Z_t is a two-dimensional Brownian motion starting at the origin with zero drift. What is the covariance matrix Γ ?

3. Find

$$\langle Z^1 \rangle_t, \quad \langle Z^1, Z^2 \rangle_t.$$

Exercise 3 Let B_t, W_t be independent standard Brownian motions. Find

$$\mathbb{P}\{B_t \ge 6W_t - 4 \text{ for all } 0 \le t \le 3\}.$$

Hint: You may wish to consider $6W_t - B_t$.

Exercise 4 Let B_t be a standard (one-dimensional) Brownian motion (not necessarily starting at the origin). For the following functions $\phi(t,x)$, 0 < t < 3, state the PDE that it satisfies. If you use the L or L^* notation, you must say what L or L^* is in these cases.

- 1. $\phi(t,x)$ is the density of B_t (as a function of x) given that $B_0 = 0$.
- 2. $\phi(t,x) = \mathbb{P}\{B_t < 4 \mid B_0 = x\}$
- 3. $\phi(t, x) = \mathbb{E}[B_t^3 \mid B_0 = x]$

4.
$$\phi(t,x) = E[B_4 - B_4^2 \mid B_t = x]$$

5. Repeat the examples above where B has drift 1 and variance parameter 4.

Exercise 5 Suppose B_t , W_t are independent standard Brwonian motions starting at the origin, and the random vector $Z_t = (Z_t^1, Z_t^2)$ is defined by

$$Z_t^1 = B_t + W_t - t, \qquad Z_t^2 = 2 B_t - 4 W_t.$$

Note that Z_t is a two-dimensional Brownian motion.

- 1. What are the drift and covariance matrix for Z?
- 2. What are the operators L, L^* associated to Z?
- 3. Let $\phi(t,x), t > 0, x \in \mathbb{R}^2$ be the density of Z_t at time t. Find the PDE satisfied by $\phi(t,x)$.