Indução Matemática Matemática Discreta

Prof. MSc. Samy Sá

Universidade Federal do Ceará Campus de Quixadá

2 de abril de 2014

Outline

Introdução

Indução Matemática

Cuidados e Orientações

Outline

Introdução

Indução Matemática

Cuidados e Orientações

Muitos enunciados matemáticos afirmam propriedades que seriam verdadeiras para todos os inteiros ou elementos de algum conjunto contável.

Muitos enunciados matemáticos afirmam propriedades que seriam verdadeiras para todos os inteiros ou elementos de algum conjunto contável.

Exemplo

Para todo n inteiro positivo, $n^3 - n$ é divisível por 3.

Muitos enunciados matemáticos afirmam propriedades que seriam verdadeiras para todos os inteiros ou elementos de algum conjunto contável.

Exemplo

Para todo n inteiro positivo, $n^3 - n$ é divisível por 3.

Constatação:

Compreender como ler e construir provas pro indução é um objetivo chave no aprendizado de matemática discreta.

Outline

Introdução

Indução Matemática

Cuidados e Orientações

Provas usando indução matemática têm dois passos...

 Primeiro, mostramos que a propriedade P(k) é válida para k = 1.

Provas usando indução matemática têm dois passos...

- Primeiro, mostramos que a propriedade P(k) é válida para k = 1.
- Em seguida, mostramos que $\forall k (P(k) \rightarrow P(k+1))$.

Provas usando indução matemática têm dois passos...

- Primeiro, mostramos que a propriedade P(k) é válida para k = 1.
- Em seguida, mostramos que $\forall k(P(k) \rightarrow P(k+1))$.

Constatação:

Se valem P(1) e $\forall k(P(k) \rightarrow P(k+1))$, então a propriedade deve ser válida para todos os inteiros positivos.

Indução Matemática

Figura: Indução ilustrada: A subida de uma escada infinita.

Indução Matemática

Figura: Indução ilustrada: Uma sequência infinita de dominós.

Exemplo

Se n é um inteiro positivo, então $n^3 - n$ é um múltiplo de 3.

Exemplo

Se n é um inteiro positivo, então $n^3 - n$ é um múltiplo de 3.

Prova

Por indução.

B Seja n = 1, temos $1^3 - 1 = 1 - 1 = 0$, um múltiplo de 3.

Exemplo

Se n é um inteiro positivo, então $n^3 - n$ é um múltiplo de 3.

Prova

- **B** Seja n = 1, temos $1^3 1 = 1 1 = 0$, um múltiplo de 3.
- **P** Seja um k qualquer, suponha que $k^3 k$ é um múltiplo de 3 (**hipótese de indução**).

Exemplo

Se n é um inteiro positivo, então $n^3 - n$ é um múltiplo de 3.

Prova

- **B** Seja n = 1, temos $1^3 1 = 1 1 = 0$, um múltiplo de 3.
- **P** Seja um k qualquer, suponha que $k^3 k$ é um múltiplo de 3 (**hipótese de indução**).Considere agora o caso k + 1.

Exemplo

Se n é um inteiro positivo, então $n^3 - n$ é um múltiplo de 3.

Prova

- **B** Seja n = 1, temos $1^3 1 = 1 1 = 0$, um múltiplo de 3.
- P Seja um k qualquer, suponha que $k^3 k$ é um múltiplo de 3 (hipótese de indução). Considere agora o caso k + 1. Nesse caso, teremos $(k + 1)^3 (k + 1)$ = $k^3 + 3 \cdot k^2 \cdot 1 + 3 \cdot k \cdot 1^2 + 1^3 - (k + 1)$

Exemplo

Se n é um inteiro positivo, então $n^3 - n$ é um múltiplo de 3.

Prova

- **B** Seja n = 1, temos $1^3 1 = 1 1 = 0$, um múltiplo de 3.
- P Seja um k qualquer, suponha que $k^3 k$ é um múltiplo de 3 (hipótese de indução). Considere agora o caso k + 1. Nesse caso, teremos $(k + 1)^3 (k + 1)$

$$= k^3 + 3 \cdot k^2 \cdot 1 + 3 \cdot k \cdot 1^2 + 1^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - k - 1$$

Exemplo

Se n é um inteiro positivo, então $n^3 - n$ é um múltiplo de 3.

Prova

Por indução.

- **B** Seja n = 1, temos $1^3 1 = 1 1 = 0$, um múltiplo de 3.
- **P** Seja um k qualquer, suponha que $k^3 k$ é um múltiplo de 3 (**hipótese de indução**). Considere agora o caso k + 1. Nesse caso, teremos $(k + 1)^3 (k + 1)$

$$= k^3 + 3.k^2.1 + 3.k.1^2 + 1^3 - (k+1) = k^3 + 3k^2 + 3.k + 1 - k - 1 = k^3 + 3k^2 + 3.k - k$$
. Pela hipótese

 $k^3 + 3k^2 + 3.k + 1 - k - 1 = k^3 + 3k^2 + 3.k - k$. Pela hipótese de indução, $k^3 - k$ é um múltiplo de 3.

Exemplo

Se n é um inteiro positivo, então $n^3 - n$ é um múltiplo de 3.

Prova

Por indução.

B Seja
$$n = 1$$
, temos $1^3 - 1 = 1 - 1 = 0$, um múltiplo de 3.

P Seja um k qualquer, suponha que $k^3 - k$ é um múltiplo de 3 (hipótese de indução). Considere agora o caso k + 1. Nesse caso, teremos $(k + 1)^3 - (k + 1)$ = $k^3 + 3.k^2.1 + 3.k.1^2 + 1^3 - (k + 1)$ = $k^3 + 3k^2 + 3.k + 1 - k - 1 = k^3 + 3k^2 + 3.k - k$. Pela hipótese de indução, $k^3 - k$ é um múltiplo de 3. Logo, temos que

 $(k+1)^3 - (k+1) = (k^3 - k) + 3.(k^2 + k)$ é um múltiplo de 3.

Outline

Introdução

Indução Matemática

Cuidados e Orientações

Indução Matemática - Observações

Alguns cuidados importantes:

• Uma prova por indução precisa da base E do passo.

Indução Matemática - Observações

Alguns cuidados importantes:

- Uma prova por indução precisa da base E do passo.
- É necessário que a prova de P(k + 1) utilize a hipótese de indução, ou seja, o caso P(k) como parte da prova.

Indução Matemática - Observações

Alguns cuidados importantes:

- Uma prova por indução precisa da base E do passo.
- É necessário que a prova de P(k + 1) utilize a hipótese de indução, ou seja, o caso P(k) como parte da prova.
- Uma prova por indução normalmente não nos dá intuições sobre o motivo de um teorema ser verdade.

Orientações Básicas para Uso de Indução

Busque sempre seguir os passos:

- **1.** Expresse a senteça que deseja provar na forma $\forall n \geq b, P(n)$, para algum b fixo.
- **2.** Escreva "BASE" e mostre que P(b) é verdadeiro.
- 3. Escreve "PASSO INDUTIVO".
- **4.** Enuncie e identifique claramente a hipótese de indução na forma "assuma que P(k) é verdade para algum $k \ge b$.
- **5.** Reforce o que precisa ser provado a partir da hipótese, ou seja, enuncie o que P(k + 1) significa.
- **6.** Mostre que P(k + 1) vale utilizando de alguma forma a hipótese de que P(k) vale.
- 7. Identifique claramente a conclusão do passo de indução.
- **8.** Enuncie a conclusão de que P(n) vale p/ todo inteiro $n \ge b$.

Outline

Introdução

Indução Matemática

Cuidados e Orientações

- 1. Demonstrar os seguintes enunciados por indução.
 - a) Mostre que se n é um inteiro positivo, então $1+2+...+n=\frac{n(n+1)}{2}$
 - **b)** $1 + 2 + 2^2 + ... + 2^n = 2^{n+1} 1$
 - c) Para todo n inteiro positivo, $n < 2^n$.
 - **d)** Se um conjunto S tem n elementos, então S terá 2^n subconjuntos.
 - e) $n^2 1$ é divisível por 8 sempre que *n* for um inteiro positivo ímpar.