Evaluation of the Cell Allocation Mechanism in 6TiSCH Minimal Scheduling Function for Wireless Sensor Networks - Kickoff

TUHH

Technische Universität Hamburg

Benjamin Ko Supervisor: Yevhenii Shudrenko First Examiner: Prof. Timm-Giel

		тинн
	1. Introduction	
Agenda:	2. Motivation	
	3. Research question	
	4. Schedule	
<u>-</u>		
		2

1. Introduction	TUHH
	3

1. Introduction - Internet of Things (IoT)

- Effort to digitalize the environment by outfitting objects with digital capability and connecting them
- Gain control and insight into the physical environment
- Many (sensor) nodes that need to be connected
- ⇒ Wireless networks most suitable for that

Figure 1. IoT network [2]

1. Introduction - Wireless networks for IoT

- Wireless network needed for IoT
 - Cheap
 - Dynamic
 - Scalable
 - Easy to maintain
 - Energy efficient
- Low-power and Lossy Networks (LLN)
- 6TiSCH as a protocol stack for these networks

Figure 1. IoT network [2]

1. Introduction - 6TiSCH

- Enables IPv6 for LLN networks using IEEE 802.15.4
- 6TiSCH stands for IPv6 over TSCH
- Convergence of Operational Technology (OT) and Information Technology (IT)[8]
- Using 6LoWPAN standard for e.g. header compression and neighbour discovery

Figure 2. Protocol stack of 6TiSCH [1]

1. Introduction - 6TiSCH

- TSCH used as MAC protocol
 - Mix of TDM/FDM creating a matrix of cells for transmission
 - 6top Protocol (6P) used as communication [3]
- Scheduling function (SF) handles schedule

Figure 3. TSCH TDM/FDM schedule [7]

1. Introduction - Scheduling Function

TUHH

- The scheduling functions tasks for a node are: [1]
 - When and how many to cells add/delete
 - Which cells to include in CellList of the 6P ADD request
- The only scheduling function that has a official RFC by the IETF is the Minimal Scheduling function

В

Figure 3. TSCH TDM/FDM schedule [7]

1. Introduction - Minimal Scheduling Function (MSF)

TUHH

- Has mechanisms to decide when to add/delete cells
- CellList is chosen randomly and uniformly
- Example: Relocation of a cell

$$PDR_{cellmax} - PDR_{i} > RELOCATE_PDRTHRES$$

⇒ If true MSF will relocate the cell

+======================================	+======+
	101 slots
NUM_CH_OFFSET	16
MAX_NUM_CELLS	100
LIM_NUMCELLSUSED_HIGH	75
LIM_NUMCELLSUSED_LOW	
MAX_NUMTX	256
HOUSEKEEPINGCOLLISION_PERIOD	1 min
	50 %
QUARANTINE_DURATION	***************************************
WAIT_DURATION_MIN	30 s
WAIT_DURATION_MAX	60 s
,	,T

RECOMMENDED value

Figure 4. MSF recommended values [4]

PDR = Packet delivery ratio

2. Motivation														TUH	н													
			0		0					0		0		 0	0			0	0 1		0			0				
						•) •																					
																											10	

2. Motivation - Pre-existing evaluations of MSF

- Minimal scheduling function has been studied analytically and with simulations in regards to:
 - Convergence in the MSF adaptation period [5]
 - Performance in constant and varying traffic [6]
 - Influence of 6TiSCH MSF parameters on network KPIs, such as PDR, delay, duty cycle and cell utilisation [7]

2. Motivation - Need for study in depth

- 6 TiSCH is an important protocol stack for standardizing the development of loT
- MSF as the only 6TiSCH SF having an official RFC standard [4]
- More in depth evaluation and understanding valuable
 - Cell allocation mechanism not studied in detail yet
 - Many simulations but little experimental validation

TUHH 3. Research question 13

3. Research question - Headline

TUHH

Evaluation of the Cell Allocation Mechanism in 6TiSCH Minimal Scheduling Function for Wireless Sensor Networks

3. Research question - Evaluation

- Evaluation of cell allocation duration dependent on:
 - Node density
 - Amount of traffic
 - MSF parameters
 - Cell allocation mechanisms (optional)

3. Research question - Cell allocation mechanisms

- Different cell allocation mechanisms to evaluate:
 - Random uniform selection of free cells (default)
 - Keeping a list of candidates in which the node listens and if traffic is detected then it will be exchanged with another cell
 - Stated as possibility in RFC for MSF [4]

TUHH 3. Research question - How? . Analytical modeling 2. Experimental validation © Bildnachweis oder andere Copyright Links

3. Research question - Analytical modeling

TUHH

- Adapt pre-existing statistical models to the situation

$$T_{a} = \sum_{i=1}^{\mu_{\text{max}}} E[A] \left(E[R] \left(\frac{M}{\mu_{i}} + \frac{1}{\mu_{i} + 1} + 0.5 \right) + \left(E[R] - 1 \right) t_{o} \right), \quad \mu_{i} = i$$

$$E[R] = \frac{1}{1 - p_{i}}$$

$$E[A] = \frac{1}{p_{nov}}$$

Figure 5. Pre-existing statistical model for adaptation time

3. Research question - Analytical modeling

TUHH

$$p_{nov}^{(i)} = rac{X(X-1)(X-2)\dots(X-n)}{X^n} \qquad egin{array}{c} ext{X} = ext{total amount of cells,} \ ext{n} = ext{amount of cells to allocate} \end{array}$$

Figure 6. Base formula for calculating probability of all cell allocation to be without interference

$$p_{nov}^{(i)} = \frac{(X - n\mu_{i-1})(X - n\mu_{i-1} - 1)(X - n\mu_{i-1} - 2)\cdots(X - n\mu_{i-1} - n)}{(X - n\mu_{i-1})^n}$$

Figure 7. Further specified formula based on the one above

3. Research question - Analytical modeling

$$T_a = \sum_{i=1}^{\mu_{\text{max}}} E[A] \left(E[R] \left(\frac{M}{\mu_i} + \frac{1}{\mu_i + 1} + 0.5 \right) + (E[R] - 1) t_o \right), \quad \mu_i = i$$

$$E[R] = \frac{1}{1 - p_I}$$
$$E[A] = \frac{1}{p_{nov}}$$

$$p_{fi} = rac{nm_i}{(X-m_{i-1})},$$

$$p_{fi}' = rac{nm_i - n_s}{X - m_{i-1} - n_s}, \quad n_s < nm_i$$
 $m_i = i$

$$X=Sn_{ch}$$

3. Research question - Experimental validation

- Using 3 OpenMote B boards running the Contiki-NG operating system
 - Simple 2 node configuration as parent (sink) and child
 - A third board will serve as emulator for different network conditions

	ТИНН
4.Schedule	
	22

4. Schedule

References

- [1] Pascal Thubert . 'An Architecture for IPv6 over the Time-Slotted Channel Hopping Mode of IEEE 802.15.4 (6TiSCH)' . RFC 9030 . May 2021 . url: https://datatracker.ietf.org/doc/html/rfc9030.
- [2] https://pixabay.com/images/search/iot%20network/. Pixabay. last visited 27.11.2024
- [3]Qin Wang, Xavier Vilajosana, Thomas Watteyne. 6TiSCH Operation Sublayer (6top) Protocol (6P). RFC 8480. November 2018. https://datatracker.ietf.org/doc/rfc8480/.
- [4] T. Chang, Ed., M. Vučinić, Inria, X. Vilajosana, . '6TiSCH Minimal Scheduling Function (MSF)' . RFC 9033. May 2021. doi: 10.17487/RFC9033. url: https://datatracker.ietf.org/doc/rfc9033/.
- [5] David Hauweele, Remous-Aris Koutsiamanis, Bruno Quoitin et al. 'Pushing 6TiSCH Minimal Scheduling Function (MSF) to the Limits'. In: 2020 IEEE Symposium on Computers and Communications (ISCC). 2020, pp. 1–7. doi: 10.1109/ISCC50000. 2020.9219692.
- [6] David Hauweele, Remous-Aris Koutsiamanis, Bruno Quoitin et al. 'Thorough Performance Evaluation & Analysis of the 6TiSCH Minimal Scheduling Function (MSF)'. In: Journal of Signal Processing Systems 93 (6 June 2021). doi: 10.1007/S11265-021-01668-w.
- [7] Lukas Borutta. 'Evaluation of the Minimal Scheduling Function for 6TiSCH-based Wireless Sensor Networks' . (16 September 2021)
- [8] Pascal Thubert . 'IPv6 over the TSCH mode of IEEE 802.15.4e' . https://datatracker.ietf.org/wg/6tisch/about/ . last visited 15.12.2024.

Thank you!

Technische Universität Hamburg (TUHH) Ko Benjamin

tuhh.de

TUHH Technische Universität Hamburg