GIAB TR

Part I

Ontology

XRepeat Sequence V Repeat Unit/Motif V Variant Sequence

an insertion/deletion comprises the expansion/contraction of a repeat

Tandem Repeat Loci Beds

- Beds provided from:
 - GIAB (Jennifer McDaniel)
 - PacBio (Egor Dolzhenko)
 - Baylor (Adam English)
 - UCSD (Helyaneh Ziaei Jam)
 - UCSD2 (Jonghun Park)
- Start with a summary
- Explore intersections
- Goal:
 - o Define GRCh38 tandem repeat regions and annotate each region's repeat

GIAB Beds

23 bed files of repeat annotations

Concat/merged cover ~30% of genome 91% of genome annotated

https://quinlan-lab.github.io/bedqc/

```
Parent Directory
 GRCh38-LowComplexity-README.md
 GRCh38 AllHomopolymers gt6bp imperfectgt10bp slop5.bed.gz
► GRCh38 AllTandemRepeats 201to10000bp slop5.bed.gz
→ GRCh38 AllTandemRepeats 51to200bp slop5.bed.gz
 GRCh38 AllTandemRepeats gt10000bp slop5.bed.gz
 GRCh38 AllTandemRepeats gt100bp slop5.bed.gz
→ GRCh38 AllTandemRepeats lt51bp slop5.bed.gz
 GRCh38 AllTandemRepeatsandHomopolymers slop5.bed.gz
 GRCh38 SimpleRepeat diTR 11to50 slop5.bed.gz
 GRCh38 SimpleRepeat diTR 51to200 slop5.bed.gz
 GRCh38 SimpleRepeat diTR gt200 slop5.bed.gz
 GRCh38 SimpleRepeat homopolymer 4to6 slop5.bed.gz
 GRCh38 SimpleRepeat homopolymer 7to11 slop5.bed.gz
 GRCh38 SimpleRepeat homopolymer gt11 slop5.bed.gz
 GRCh38 SimpleRepeat homopolymer gt20 slop5.bed.gz
 GRCh38 SimpleRepeat imperfecthomopolgt10 slop5.bed.gz
 GRCh38 SimpleRepeat imperfecthomopolgt20 slop5.bed.gz
 GRCh38 SimpleRepeat quadTR 20to50 slop5.bed.gz
 GRCh38 SimpleRepeat quadTR 51to200 slop5.bed.qz
 GRCh38 SimpleRepeat quadTR qt200 slop5.bed.qz
 GRCh38 SimpleRepeat triTR 15to50 slop5.bed.gz
 GRCh38 SimpleRepeat triTR 51to200 slop5.bed.gz
 GRCh38 SimpleRepeat triTR gt200 slop5.bed.gz
 GRCh38 notinAllHomopolymers gt6bp imperfectgt10bp slop5.bed.gz
 GRCh38 notinAllTandemRepeatsandHomopolymers slop5.bed.gz
```

Bed Summary

Source	Total Entries	Uniq Loci	Uniq Span	Genome Span	GIAB Intersection	Percent Intersect	SV Count	SV Percent
GIAB	1,400,092	1,400,092	165,371,166	5.17%	-	-	157,784	80.61%
Baylor	1,031,708	692,882	148,907,732	4.65%	541,252	78.12%	155,472	79.43%
PacBio	171,146	171,145	4,538,738	0.14%	147,970	86.46%	1,783	0.91%
UCSD	1,776,010	1,739,897	35,311,586	1.10%	565,995	32.53%	15,006	7.67%
UCSD2	10,264	10,259	612,921	0.02%	7,535	73.45%	337	0.17%

Overlapping Repeat Motifs

chr1	72120	72163	16	2.7	59	1.47	ATATATACATACACAC
chr1	72124	72164	12	3.3	62	1.49	ATATATACATAC
chr1	72128	72163	4	8.8	52	1.48	ATAC

>chr1:72120-72164

ATATATACATACACACATATATACATACACACATATACATA

ATACATACATACATACATACATACATACATACATAC

ATACATACATACATACATACATACATACATA

Intersecting Beds

Intersect the unique/merged regions per-source.

Calculate percent of genome that's covered and number of regions

- Resolved: Each source hits <= 1x
 - 2.98% 2,423,073 regions
- CPX: At least one source hits > 1x
 - 2.98% 77,337 regions

Intersecting Beds - Genome Coverage Non-Complex

All Agree: 187 regions over 14,579 bp

Intersecting Beds - Region Counts

Intersecting Beds - CPX Region Counts

Conclusions

- Proposed standard terms/definitions for Tandem Repeats
- Found ~3% of genome where 4 sources semi-agreed on Tandem Repeats
 - Motifs aren't resolved, though
- Need to solve overlapping Motifs and sources
 - Is the assumption of disjointed regions/single motif valid?
 - Why are there so many solo UCSD regions?
 - PacBio is the least self-overlapping. Are they the most resolved motifs?
 - UCSC SimpleRepeats are in Baylor and GIAB. Why is Baylor not a subset of GIAB?

GIAB TR

Part II

'Strawman' Truth-Set

- Using Garg (Heng Li) assembly of HG002, call variants with minimap2 and merge haplotypes using Truvari.
 - Minimap `-cx asm5 -t8 -k20 --secondary=no --cs`
 - o Paftools `-L10000`
- Use `truvari anno trf` to annotate variants >= 10bp
- Subset to variants within the merged tandem-repeat bed regions.
- Attempt to intersect with gangSTR / hipSTR

'Strawman' Assumptions

- 1) The variants called from assemblies are perfect
- 2) Any variant >=2bp inside a TR Region *could* be a tandem repeat
- 3) Truvari anno trf has 100% specificity

Tandem Repeat Merged Bed

- Merged bed of TR regions from 5 sources
- Total of 2,542,375 regions
- Covers 201,389,980 bp (~6.3% of GRCh38)
- Baylor "SimpleRepeats" from UCSC Track:
 - o 692,882 regions, covers 148,907,732 bp

Long-Read Assemblies

No.	[2,10)	>=10
Total	480702	303534
inTR	135648	106157

Fisher Exact:

- 1.24 OR
- P<0.01

Enrichment of >=10bp variants in TR Regions

Finding TR from Long-Read Assemblies

Truvari anno trf

- For all SVs within the UCSC SimpleRepeats track:
 - Incorporate the alternate allele into the SimpleRepeats region
 - Run TandemRepeatFinder on the altered region
 - Match TRF repeats to the longest repeat motif from overlapping SimpleRepeat annotations
 - Report motif sequence, copy-number difference, etc
- Only run on variants >=10bp
- SimpleRepeats are ~73.9% (by bp) of the TR-Regions

Truvari anno trf - QC

- 48.7% of SVs within TR annotated as tandem repeats
 - 51,740 of the 106,157 >=10bp inTR variants
- X 9.8% not in TR annotated as tandem repeats.
 - 2,901 of the 29,491 >=10bp and not inTR
 - o Off-by-one errors somewhere...
- >=10bp variants inside TR Regions = 106,157
- 81.3% inside SimpleRepeats
 - o 86,339 of the 106,157 >=10bp inTR variants
- 48.4% of candidate variants annotated by Truvari as Tandem Repeats
 - Total of 41,783 SVs

GangSTR/HipSTR

Annotate GangSTR/HipSTR variants with TR Regions and 'shared' long-read calls

All VCF E	All VCF Entries											
		Inside		With			Percent	Percent	% w/			
	Num vars	Bed	With Var	10bp Var	isSR	Has TRF	in TR	w/Var	>=10bp	% isSR	% wTR	
GangSTR	888,561	748,948	147,797	45,102	35,445	21,027	84.29%	19.73%	30.52%	78%	59%	
HipSTR	1,690,933	1,598,028	363,485	77,190	60,379	35,937	94.51%	22.75%	21.24%	78%	59%	
HG002 \	HG002 VCF Entries											
GangSTR	60,279	58,475	51,154	8,966	6,990	4,222	97.01%	87.48%	17.53%	77%	60%	
HipSTR	366,673	348,502	135,348	18,744	15,203	7,867	95.04%	38.84%	13.85%	81%	51%	

Assuming Long-Read and Short-Read Variants match

GangSTR/HipSTR

Annotate GangSTR/HipSTR variants with TR Regions and 'shared' long-read calls

All VCF E	All VCF Entries											
		Inside		With			Percent	Percent	% w/			
	Num vars	Bed	With Var	10bp Var	isSR	Has TRF	in TR	w/Var	>=10bp	% isSR	% wTR	
GangSTR	888,561	748,948	147,797	45,102	35,445	21,027	84.29%	19.73%	30.52%	78%	59%	
HipSTR	1,690,933	1,598,028	363,485	77,190	60,379	35,937	94.51%	22.75%	21.24%	78%	59%	
HG002 V	HG002 VCF Entries											
GangSTR	60,279	58,475	51,154	8,966	6,990	4,222	97.01%	87.48%	17.53%	77%	60%	
HipSTR	366,673	348,502	135,348	18,744	15,203	7,867	95.04%	38.84%	13.85%	81%	51%	

What we can evaluate.

GangSTR

- 3,006 of 4,222 (71%) of the GangSTR RepeatUnits match TRF annotation
- TRFcopies == REPCN Totals:
 - o False 2,533
 - o True 473
 - = 15% matching.

	NEF	HGUUZ_HEPUN	INFUIII	Inrcopies	INFIEL
TRBED					
chr7:106984	16	(7, 16)	-7.5	9.0	16.5
chr7:69602	24	(11, 11)	-11.0	13.0	24.0
chr5:55275	27	(20, 20)	-20.0	7.0	27.0
chr12:25359	13	(13, 18)	18.0	31.0	13.0
chr11:97807	14	(14, 22)	6.0	20.5	14.5
chr6:60372	23	(15, 15)	-15.0	8.0	23.0
chr2:135387	7	(5, 5)	-5.3	2.0	7.3
chr4:99608	6	(6, 7)	-394.5	49.0	443.5
chr1:65767	13	(13, 15)	16.0	29.200001	13.200001
chrX:61407	21	(12, 12)	-12.0	9.0	21.0
chr2:119530	20	(25, 25)	5.0	25.5	20.5
chrX:45814	26	(17, 17)	-17.5	9.0	26.5
chr2:129237	12	(12, 18)	18.0	30.5	12.5
chr9:67187	14	(6, 6)	-6.5	8.0	14.5

HG002 REPCN TRFDiff TRFcopies

TRFref

TRGT

- Reports SVs that are annotated with TR Information. (a.k.a. sequence resolved)
- VERY easy to compare using Truvari
- Large difference in precision between pVCF and HG002 only
- No bed-file used.
- >= 10bp
- GTs aren't matching up great for multiple reasons

	0,1	1,0	1,1
1,0	4,768	4,638	226
0,1	5,139	5,144	4,446

	HG002	pVCF
TP-Base	24,361	28,874
TP-Call	24,361	28,874
FP	6,652	2,139
FN	111,287	1,355,554
precision	0.786	0.931
recall	0.180	0.021
f1	0.292	0.041
Base cnt	135,648	1,384,428
Call cnt	31,013	31,013

Next Steps

- Repeat matching
 - Motif matching
 - Copy-number matching
- Improve Truvari anno trf:
 - Work with all TR Regions (not just SimpleRepeats)
 - Better annotation picking
- Need specific aims:
 - Is using the assemblies and trying to annotate them the right approach?
 - More annotations?
 - Discovered by SRS/LRS
 - Neighborhood Variant Density
 - What separates 'easy' from 'difficult' TRs?
 - Formalize what Truvari's 'sequence resolved' expectations (format standard-ish)
- Dynamic Matching (<50bp)
- Need to make better variant calls

Remaking Variants

- Previous analysis was performed with unrefined assembly mapping parameters.
- Explore improving calls with different minimap2 parameters
- Map haplotypes individually to hg19
- Annotate PASS as single-contig coverage
- Compare to GIAB SV v0.6

Name	Description	Params
tru	Used in Truvari paper	-cx asm5 -k20
giab	Seen in a GIAB presentation	-c -z 200000,10000
pan	Used in PanGenie paper	-cx asm20 -m 10000 -z 10000,50 -r 50000,2000000end-bonus=100 -O 5,56 -E 4,1 -B
cust	Custom mix of parameters	-c -m 10000 -z 200000,10000 end-bonus=100 -O 5,56 -E 4,1 -B 5 -k20

Maternal Haplotype Performance GIAB SV v0.6

asm	param	precision	TP-base	TP-call	FP
eich	tru	0.925	6,744	6,746	550
	giab	0.918	6,763	6,763	608
	pan	0.947	6,829	6,829	384
	cust	0.935	6,825	6,826	473
li	tru	0.928	6,755	6,757	527
	giab	0.913	6,778	6,780	648
	pan	0.945	6,826	6,827	395
	cust	0.931	6,833	6,835	505

~87.8% of genome covered by single contig per-assembly

Maternal Haplotype Performance - Consistency

	GIAB		'70%' Si	milarity	'0%/1000bp'			
	Base	ASM	ASM ASM1		ASM2		ASM2	
param	Shared	Shared	Unique	Unique	% Shared	Unique	Unique	% Shared
tru	0.652	11,678	4,018	4,509	0.742	2,603	2,568	0.895
giab	0.651	12,197	4,624	4,700	0.723	2,796	2,646	0.885
pan	0.654	11,372	4,129	4,194	0.732	2,690	2,504	0.899
cust	0.655	12,095	4,434	4,117	0.730	2,718	2,457	0.897

^{~86.2%} of genome covered by single contig in both assemblies

'0%/1000bp' - How Similar?

Sex Check

- Benchmark the eich/li assembly intersection results against GIAB.
- Check the TPs' parent's genotypes
- Assume 0/0 in parent is 'mendelian error'

	Intersecting - 5,604/11,372 (49.3%)									
HG004_GT	./.	0/0	0/1	1/1						
HG003_GT										
./.	86	4	136	240	MendErr Tot					
0/0	41	1	431	143	77					
0/1	81	54	586	515	Pct MendErr					
1/1	216	18	397	2416	1.44%					
Eich Unique- 1,554/4,194 (37.1%)										
HG004_GT	./.	0/0	0/1	1/1						
HG003_GT										
./.	39	14	61	19	MendErr Tot					
0/0	33	3	372	144	216					
0/1	58	143	221	152	Pct MendErr					
1/1	10	56	79	8	15.30%					
		Li Unique - 1,56	50/4,129 (37.8%)							
HG004_GT	./.	0/0	0/1	1/1						
HG003_GT										
./.	30	21	53	10	MendErr Tot					
0/0	13	3	155	59	533					
0/1	79	381	221	66	Pct MendErr					
1/1	23	128	152	10	37.96%					

Intersection with Paternal assembly

Compare the maternal allele SVs intersection sets against the paternal allele SVs (70% similarity)

Assembly	Maternal Intersection	TP	FP	Precision
li	Shared	8,237	3,100	72.66%
li	Unique	3,648	481	88.35%
eich	Shared	8,243	3,129	72.49%
eich	Unique	3,850	344	91.80%

Maternal SVs not shared between assemblies are found in the complementary Paternal assemblies

Can we reassign contigs?

- Asm<->Asm shared state can't be used to determine parental allele
- Procedure:
 - For every TP SV in an assembly that isn't
 HG002 GT == 1/1 in GIAB
 - Count how many are MendErr per-contig (Parent_GT == 0/0).
 - If MendErr >= 15%, annotate that contig as needing a parental switch.

Assembly	Parent	Num Contigs	Contigs w/ TP SV	Contigs Reassigned
li	maternal	5,912	265	72
li	paternal	5,735	281	80
eich	maternal	7,639	249	49
eich	paternal	8,003	239	52

Reassigned Assembly Results

Original								
			GIA	A B			Other Asm	
Assembly	Parent	TP	FP	Precision	MendErr %	Shared	Unique	Consistency
li	maternal	6,826	395	94.5%	9.00%	11,372	4,129	73.4%
li	paternal	6,827	393	94.6%	10.21%	11,332	4,212	72.9%
eich	maternal	6,829	384	94.7%	4.29%	11,372	4,194	73.1%
eich	paternal	6,790	395	94.5%	5.44%	11,332	4,001	73.9%
				Reassigned				
			GIA	λ Β			Other Asm	
Assembly	Parent	TP	FP	Precision	MendErr %	Shared	Unique	Consistency
li	maternal	6,641	391	94.4%	0.99%	13,811	640	95.6%
li	paternal	6,598	359	94.8%	0.20%	13,664	599	95.8%
eich	maternal	6,576	369	94.7%	0.30%	13,811	581	96.0%
eich	paternal	6,525	356	94.8%	0.93%	13,664	572	96.0%

Contig Reassignment with SNP+INDEL+SV

- Annotate contigs' variants against GIAB v4.2.1 snp/indels.
 - o Proband HET variants that are mendelian consistent and present in only one parent.
 - Suggest the contig came from the parent with more shared variants.
- Unite the SNP+INDEL with SV reassignment annotations
 - In cases where the two annotations disagree, no reassignment is performed.

Reassigned (SNP+INDEL+SV)								
		GIAB				Other Asm		
Assembly	Parent	TP	FP	Precision	MendErr %	Shared	Unique	Consistency
li	maternal	6,716	401	94.4%	0.24%	14,308	606	95.9%
li	paternal	6,670	367	94.8%	1.00%	14,183	600	95.9%
eich	maternal	6,709	394	94.5%	0.30%	14,308	556	96.3%
eich	paternal	6,670	378	94.6%	0.90%	14,183	561	96.2%

Conclusions

- Found a better set of parameters to remake variants
 - Along with a pipeline which annotates things like coverage (dipcall-esque)
- Found methods to increase consistency
 - Leveraged truth-set variants to reassign parental allele of contigs
- Found properties:
 - Assuming 2:1 het/hom should be upto ~28K high confidence, single-contig covered SVs, which is in-line with expectations
 - ~82% of genome is single covered by both assemblies per-parent. GIAB SV v0.6 Tier1 regions span ~83%.
- Found more to do:
 - Make diploid proband (truvari collapse)
 - Annotate tandem repeats (truvari anno trf)

GIAB TR

Part III

Project Key Points

- 1. Tandem repeats hold important but hard to resolve variations
- 2. Standard list(s) of tandem repeat regions? (Tiers?)
- 3. New benchmark improves characterisation and resolution for small variants and structural variants simultaneously
- 4. New benchmark tools enable accurate comparison of different representations of variants in tandem repeats.

Standard list(s) of tandem repeat regions? (Tiers?)

Step 1 - try to make non-complex annotations

- a. Using the BedFiles collected from the 5 sources
- b. Merge
- c. Run TRF on each region's reference, reporting all hits
 - a. Essentially making the UCSC 'simple repeats' track
- 2. Compare those annotations to the long-read assembly VCFs
 - a. Filter/Subset/Pick the annotation that best describes the population

New benchmark improves characterisation and resolution for small variants and structural variants simultaneously

- TrioHifiAsm is really good
 - Possibly areas for improvement, but it is really hard to say for sure if they're better
 - This is the PCTHOM stuff
- I've been wanting to make the pVCF for some time, so I'll describe that process.

Tandem Repeats and MSA

If we just use a single sample, it'll hard to say "This is the repeat" because we won't know the e.g. motif sequence / step size. There are multiple possible annotations. But presumable over multiple individuals, we can figure out the motif that 'best' captures how the genome changes...

Variant Regularization

- Can 'regularized' variants be more easily compared?
 - This is (slightly) different from 'normalization'
- Hypothesis:
 - Global realignment of haplotypes creates more consistent SVs
- Input:
 - HG002 long-read haplotype resolved assemblies from Garg et.al and Ebert et.al.
- Pipeline:
 - Run minimap2/paftools
 - Bcftools consensus to create full chromosome sequences
 - Remapping/calling the full chromosomes
 - Use `truvari bench` to measure SV (>=50bp) similarity of original and 'regularized' VCFs
 - --includebed regions covered by exactly one contig in each ASM

Reference a alleles of a tandem rep	CA short		CACACAC	GG E	deletion from the refer	rence
	Genome Re	ference	Vari	ant Call	Format	! !
	GGGCACACA	CAGGG	POS	REF	ALT	i
REF ALT	CA		8	CA		Not left aligned and alternate allele is empty
REF	CAC		6	CAC	С	Not left aligned but parsimonious
REF	GCACA		3	GCACA	GCA	Not right trimmed
REF	GCA GGCA		l 2	GGCA	GG	Not left trimmed
ALT REF ALT	GG GCA G] 3	GCA	G	Normalized (left aligned & parsimonious)
genome colored	epresented agains reference. Allele p the same, all are re ame variant.	pairs are			Variant Call Format, of the same variant.	

Source: https://genome.sph.umich.edu/wiki/Variant_Normalization

Maternal haplotype comparison

Variant Count

	Original	Regular
Matching	12,326	12,335
Unique (ASM1)	4,571	4,542
Unique (ASM2)	4,770	4,750
Precision	72.9%	73.1%
Recall	72.1%	72.2%
F1	72.5%	72.6%

Altered Bases

Assembly		State	Original	Regular	R - O
	1	Matching	6,675,826	6,674,855	-971
	2	Matching	6,673,678	6,672,574	-1,104
	1	Unmatched	2,386,915	2,385,351	-1,564
	2	Unmatched	2,195,803	2,179,734	-16,069

Comparison Metrics of Variants with similarity between [70,100)

Metric	count	mean	std	min	10%	50%	90%	max
Start								
Distance	198	11	184	-760	-165	0	178	990
SizeDiff	198	-9	71	-815	-45	0	30	210

Intersection between haplotypes from Garg assembly

SV benchmarking/merging use the same fundamental comparison approach.

What is regularization's effect on variants across haplotypes?

Overall, this effort does show a little promise. However, there's still many unknowns.

Bases by state

State	Original	Regular	R - O
tpbase	5,506,887	5,512,740	5,853
fn	4,208,477	4,195,451	-13,026
tp	5,507,836	5,510,918	3,082
fp	4,348,460	4,338,815	-9,645