Dokumentace k projektu UPA

Zvolené téma

COVID-19 (varianta 04) – dr. Rychlý

Řešitelé

- Filip Jeřábek (xjerab24)
- Daniel Konečný (xkonec75)
- Tomáš Ryšavý (xrysav27)

Zvolené dotazy a formulace vlastního dotazu

Dotaz varianty A

V grafech zobrazte tempo změny počtů aktuálně nemocných (absolutní i procentuální přírůstek pozitivních případů a klouzavý průměr různých délek v různých časech).

Dotaz varianty B

Určete vliv počtu nemocných a jeho změny v čase na sousední okresy (aneb zjistěte jak se šíří nákaza přes hranice okresů).

Vlastní dotaz (C)

Lokalizujte ohniska přírůstku nakažených nemocí COVID-19. Dotaz u každého okresu porovná jeho denní přírůstek s denními přírůstky všech sousedních okresů. Pokud je jeho přírůstek ze všech nejvyšší, je daný okres označený jako ohnisko.

Stručná charakteristika zvolené datové sady

Zdrojem dat jsou otevřené datové sady publikované Ministerstvem zdravotnictví České republiky týkající se onemocnění COVID-19 dostupné na adrese: https://onemocneni-aktualne.mzcr.cz/api/v2/covid-19. Používaná data jsou z datové sady s názvem COVID-19: Přehled epidemiologické situace dle hlášení krajských hygienických stanic podle okresu a zpracovaná jsou ve formátu JSON, který je dostupný na této adrese: https://onemocneni-aktualne.mzcr.cz/api/v2/covid-19/kraj-okres-nakazeni-vyleceni-umrti.json. Datová sada obsahuje denní informace o přírůstku nakažených, vyléčených a zemřelých osob v jednotlivých krajích a okresech. Je aktualizovaná s týdenním zpožděním z důvodu validace informací krajskými hygienickými stanicemi.

Data ve formátu JSON jsou stažena z internetové adresy uvedené výše. Kořenový JSON objekt obsahuje informaci o čase vytvoření této datové sady, dále zdroj, ze kterého data pocházejí, a poté pole samotných dat o přírůstcích. Jedna položka tohoto pole odpovídá informacím z jednoho dne v jednom okrese a navíc je uveden i kraj. Dále obsahuje kumulativní počet nakažených, vyléčených a zemřelých.

```
{
    "modified": "2020-10-21T01:01:32+02:00",
    "source": "https:\/\/onemocneni-aktualne.mzcr.cz\/",
    "data": [
        {
            "datum": "2020-03-01",
            "kraj nuts kod": "CZ010",
            "okres lau kod": "CZ0100",
            "kumulativni pocet nakazenych": 2,
            "kumulativni pocet vylecenych": 0,
            "kumulativni pocet umrti": 0
        },
        {
            "datum": "2020-03-01",
            "kraj nuts kod": "CZ020",
            "okres lau kod": "CZ020A",
            "kumulativni pocet nakazenych": 0,
            "kumulativni pocet vylecenych": 0,
            "kumulativni pocet umrti": 0
        },
        . . .
    ]
}
```

Dále se využívá námi vytvořená datová sada, která obsahuje informace o tom, který okres sousedí se kterým. A datová sada přiřazující názvu okresu LAU kód, která pochází z webu Ministerstva zemědělství České republiky. Datová sada se nachází zde:

https://eagri.cz/ssl/nosso-app/DataKeStazeni/Okresy?page=1&sortBy=NAZEV&pageSize=100 0&collapsed=False

Zvolený způsob uložení surových dat

Data budou uložena v NoSQL databázi Neo4j. Každý denní záznam v jednom okrese reprezentuje jeden uzel. Sousedící okresy jsou propojeny patřičnou vazbou. Dále jsou postupně propojeny vazbou jednotlivé denní záznamy náležející jednomu okresu. V každém uzlu je uveden kumulativní počet nakažených, vyléčených a zemřelých jako vlastnost tohoto uzlu.

Řešení a výsledky dotazů

Dotaz varianty A

Je implementován dotaz, který získá absolutní i procentuální přírůstek v daném okresu v dané datum a tato data jsou poté importována do vlastní tabulky relační databáze (SQLite). Přírůstky je třeba počítat z kumulativního počtu nakažených, vyléčených a zemřelých. Dále je implementován druhý dotaz, který vypočítá klouzavý průměr přírůstků a uloží je do další tabulky relační databáze. Tyto průměry jsou vypočítané pro 4 možné délky klouzavého průměru (3, 7, 14 a 28 dní), tedy je možné pracovat pouze s nimi. Pro jiné intervaly lze pouze jednoduše změnit délku průměru ve skriptu nosql_to_relation.py.

Increase/decrease of infected in Brno-venkov

Dotaz varianty B

Dotaz B není implementován z důvodu obtížnosti a nedostatku znalostí z oboru epidemiologie a matematického modelování. Z pohledu získávání dat (sousedních uzlů a přírůstků) není příliš mnoho principiálních rozdílů mezi dotazem B a vlastním dotazem (C). Byl by tedy využit stejný mechanismus získání sousedů pomocí přechodů mezi okresy a dny. Problém je však ve vyhodnocení, zda některý okres má doopravdy vliv na zvýšení přírůstku nakažených. Je třeba testovat, kterým okresem je konkrétní okres ovlivněný, a jestli takto ovlivňuje i jeho další sousední okresy (tím se potvrdí, že reálně ovlivňuje sousedy). Dále je potřeba určit, jaká hodnota už reálně je ovlivňující a jaká je pouze normální zvýšený přírůstek. A nakonec je potřeba vzít v potaz, že ovlivnění se ukáže až s několikadenním zpožděním, než se nakažení lidé nechají otestovat.

Vlastní dotaz (C)

Dotaz C se provádí nad jedním konkrétním uzlem v databázi, který představuje okres v konkrétním dnu. Získáním všech sousedních okresů a uzlů předchozích dnů všech těchto okresů jsme schopni získat maximální přírůstek nakažených v okolních okresech a porovnat ho s přírůstkem testovaného okresu. Pokud je hodnota testovaného uzlu větší než jeho sousedů, okres splňuje podmínky ohniska a je vrácen jako výsledek dotazu. Dále je vrácena hodnota přírůstku a rozdíl od druhého nejvyšší přírůstku v sousedních okresech.

