DAFTAR ISI

DAFTAR ISI	i
DAFTAR TABEL	i
DAFTAR GAMBAR	i
Bab I. Pendahuluan	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	3
1.3 Tujuan	3
1.4 Luaran yang Diharapkan	3
1.5 Kegunaan	3
Bab 2. Tinjauan Pustaka	4
2.1 Microbial Fuel Cell (MFC)	4
2.2 Microalgae Microbial Fuel Cell (MMFC)	4
2.3 Mikroalga	5
2.4 Air Limbah Industri Pengolahan Kedelai	5
2.5 State of The Art Penelitian	6
Bab 3. Metode Penelitian	7
3.1 Tahapan Penelitian	7
3.2 Indikator Capaian	7
3.3 Teknik Pengambilan Data	8
3.4 Analisis dan Pengolahan Data	8
Bab 4. Biaya dan Jadwal Kegiatan	8
4.1 Anggaran Biaya	8
4.2 Jadwal Kegiatan	9
Daftar Pustaka	9
Lampiran	11
Lampiran 1. Biodata Ketua dan Anggota dan Dosen Pendamping	11
Lampiran 2. Justifikasi Anggaran Kegiatan	16
Lampiran 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas	18
Lampiran 4. Surat Penyataan Ketua Peneliti	19
DAFTAR TABEL	
Tabel 2. 1 State of The Art Penelitia	6
Tabel 4. 1 Anggaran Biaya Penelitian	9
Tabel 4. 2 Jadwal Kegiatan Penelitian	9
DAFTAR GAMBAR	
Gambar 2. 1 Ilustrasi Mekanisme MMFC	5
Gambar 3. 1 Diagram Alir Penelitian	7
Gambar 3. 2 Ilustrasi Rangkajan MMFC	7

Bab 1. Pendahuluan

1.1 Latar Belakang

Microbial Fuel Cell (MFC) merupakan jenis Fuel Cell (FC) yang menggunakan mikroorganisme aktif untuk menghasilkan biolistrik. Sistem ini menghasilkan arus listrik dengan bantuan reaksi redoks biokatalitik oleh mikroorganisme (Jaiswal et al., 2020). Dalam kompartemen MFC, mikroorganisme akan mendegradasi senyawa organik dengan melepas elektron dan proton (Passos et al., 2015). Proton akan langsung ditransfer menuju katoda sedangkan elektron akan ditransfer melalui sirkuit eksternal, dimana proses ini berperan dalam menghasilkan arus listrik (Roy et al., 2017). Aplikasi utama MFC yang dikembangkan pada beberapa dekade terakhir antara lain adalah untuk menghasilkan biolistrik melalui aliran elektron antar elektroda, produksi biohidrogen, pemulihan air limbah, hingga aplikasi sebagai biosensor (Rahimnejad et al., 2015) serta desalinasi (Chhazed, Makwana, & Chavda, 2019).

Pada MFC dengan substrat air limbah, pada dasarnya air limbah tersebut sudah mengandung bakteri indigenous yang langsung dapat digunakan sebagai agen pendegradasi. Misalnya pada hasil isolasi bakteri yang dilakukan pada limbah tahu menunjukkan adanya bakteri jenis Pseudomonas sebanyak 72 x 10² cfu/ml dan bakteri jenis Aeromonas sebanyak 18 x 10² cfu/ml (Asril, Oktaviani, & Leksikowati, 2019). Berdasarkan data dari Kelompok Teknologi Pengelolaan Air Bersih dan Limbah Cair BPPT, limbah produksi tahu-tempe mempunyai kadar BOD sekitar 5.000 - 10.000 mg/L dan COD sekitar 7.000 - 12.000 mg/L. Salah satu penelitian mengenai MFC yang diakukan oleh Arbianti dkk. mengambil air limbah tempe sebagai substrat dalam rangkaian MFC. Penelitian ini dilakukan pada single-chamber (SC) MFC menggunakan elektroda grafit dengan luas permukaan aktif pada anoda sebesar 127,75 cm². Katoda dibuat agar berkontak langsung dengan udara luar (aircathode). Penelitian yang dilakukan selama 50 jam ini menghasilkan voltase 291,1 mV dan energi listrik 66,33 mW/m2 pada 1% konsentrasi kultur serta 42,97% penurunan COD pada 10% konsentrasi kultur pada air limbah (Arbianti et al., 2018).

Salah satu faktor penting yang memengaruhi produksi listrik oleh rangkaian MFC adalah akseptor elektron (Ucar, Zhang, & Angelidaki, 2017). Pada umumnya, penggunaan oksigen sebagai akseptor elektron pada kompartemen katoda MFC cenderung disukai karena aksesibilitasnya yang mudah, potensi oksidasi yang intens, serta tidak menghasilkan limbah kimia yang beracun (hanya menghasilkan air sebagai produk akhir) (Rahimnejad et al., 2015). Beberapa penelitian terdahulu menyediakan oksigen secara langsung kedalam MFC, namun proses ini mengonsumsi energi yang cukup

besar (Ucar, Zhang, & Angelidaki, 2017). Pada penelitian lainnya mulai dikembangkan *air-cathode*, dimana katoda ini dibuat dengan satu sisi berinteraksi langsung dengan cairan elektrolit dan sisi lainnya berinteraksi dengan udara untuk mengeliminasi kebutuhan aerasi dalam penyediaan oksigen (Midyurova & Nenov, 2017) sehingga oksigen di udara dapat langsung dimanfaatkan. Meskipun begitu, penggunaan *air-cathode* ini masih memiliki beberapa limitasi terkait kontak udara pada permukaan katoda serta kebutuhan katalis yang cukup mahal (Ucar, Zhang, & Angelidaki, 2017). Mengingat pentingnya kebutuhan oksigen bagi rangkaian MFC, pemilihan metode penyediaan oksigen menjadi salah satu aspek penting dalam perancangannya. Kini beberapa penelitian menunjukkan kemampuan mikroalga untuk berintegrasi dengan sistem MFC yang didasari oleh sifat fotoautotrof mikroalga dimana mikroalga ini dapat berperan sebagai penghasil O₂ in situ untuk memfasilitasi reaksi pada kompartemen katoda (Jaiswal et al., 2020).

Penggunaan mikroalga sebagai mikroorganisme fotosintetik pada MFC melahirkan suatu integrasi yang biasa disebut dengan *Microalgae-Microbial Fuel Cell* (MMFC). Pada reaksi yang tejadi di dalam MMFC, substrat organik teroksidasi (pemulihan limbah) membentuk CO₂ sedangkan pada kompartemen katoda terjadi reduksi CO₂ menjadi biomassa dan oksigen dengan adanya fiksasi CO₂. Oksigen ini nantinya akan direduksi pula menjadi air. demikian, penemuan ini berpotensi menghasilkan sebuah rangkaian alat yang multifungsi yakni: (1) Produksi energi, (2) Pemulihan air limbah, (3) Pengikatan CO₂, dan (4) Produksi biomassa mikroalga (Kusmayadi et al., 2020).

Melanjutkan dari penelitian sebelumnya yang telah dilakukan di Departemen Teknik Kimia UI mengenai MFC dengan memanfaatkan limbah tempe, pada penelitian ini rancangan MFC akan lebih difokuskan kepada integrasinya menjadi MMFC dan faktor yang terkait dengan mikroorganisme di dalamnya. Mikroalga Chlorella vulgaris dan Spirulina platensis merupakan jenis mikroalga yang berpotensi digunakan dalam MMFC dan paling banyak digunakan dalam penelitian di seluruh dunia (Roy et al., 2017). Berdasarkan penelitian yang pernah dilakukan oleh Fu dkk. pada Photosynthetic Microbial Cell (PMC) menggunakan Spirulina platensis, dihasilkan power density sebesar 6,6 mW/m² sedangkan berdasarkan penelitian Wu dkk. pada MMFC menggunakan Chlorella vulgaris dengan rangkaian tubular fotobioreaktor pada katodanya, dihasilkan power density sebesar 21,4 mW/m² (Jaiswal et al., 2020). Ketika dikultivasi secara bersamaan, interaksi kedua jenis mikroalga ini dapat bersifat sinergis. Cyanobacteria, termasuk Spirulina platensis memiliki kemampuan mengikat nitrogen atmosfer melalui sel heterokista. Ketersediaan nitrogen yang diikat secara alami oleh Cyanobacteria dapat meningkatkan pertumbuhan *Chlorophyta* (alga hijau) seperti *Chlorella vulgaris*. Penelitian terbaru juga menunjukkan *Cyanobacteria* mengikat lebih banyak nitrogen dengan adanya kehadiran *Chlorophyta* (Gautam et al., 2018). Interaksi ini menunjukkan potensi dari kombinasi mikroalga *Chlorella vulgaris* dan *Spirulina platensis* dalam optimasi pertumbuhan kultur untuk meningkatkan kinerja rangkaian MMFC.

Pada penelitian ini akan dilakukan percobaan merancang MMFC dengan menggunakan konsorsium *Chlorella vulgaris* dan *Spirulina platensis* (*Chlorina*) untuk menghasilkan oksigen dengan harapan oksigen yang dihasilkan oleh konsorsium tersebut dapat meningkatkan kinerja MMFC.

1.2 Rumusan Masalah

Rumusan masalah pada penelitian ini adalah:

Bagaimana pengaruh rasio kombinasi mikroalga *Chlorella vulgaris* dan *Spirulina platensis* terhadap kinerja *Microalgae-Microbial Fuel Cell* (MMFC) dalam menghasilkan biolistrik yang optimum?

1.3 Tujuan

Tujuan dari penelitian ini adalah:

- 1. Menentukan rasio konsorsium mikroalga *Chlorella vulgaris* dan *Spirulina platensis* yang optimum dalam pertumbuhannya untuk menghasilkan oksigen dalam *Microalgae-Microbial Fuel Cell* (MMFC).
- 2. Menentukan tingkat energi listrik yang dihasilkan pada rangkaian *Microalgae-Microbial Fuel Cell* (MMFC) menggunakan rasio konsorsium *Chlorella vulgaris* dan *Spirulina platensis* yang optimum.

1.4 Luaran yang Diharapkan

Luaran yang diharapkan dari penelitian ini adalah:

- 1. Publikasi ilmiah dalam seminar, jurnal, dan konferensi.
- 2. Teknologi MMFC sebagai alternatif produksi listrik sekaligus pemulihan air limbah tempe dan produksi biomassa mikroalga.

1.5 Kegunaan

- 1. Menghasilkan biolistrik dengan konversi langsung dari substrat oleh mikroorganisme tanpa produk samping yang berbahaya.
- 2. Melakukan pemulihan air limbah secara alami menggunakan mikroorganisme.
- 3. Mendapatkan biomassa mikroalga yang dapat digunakan sebagai bahan baku produk bernilai.

4. Memperoleh kondisi optimum dalam hal rasio komposisi konsorsium mikroalga *Chlorella vulgaris* dan *Spirulina platensis* untuk digunakan dalam MMFC.

Bab 2. Tinjauan Pustaka

2.1 Microbial Fuel Cell (MFC)

Krisis energi mendorong sejumlah penelitian untuk memanfaatkan sumber energi terbarukan, salah satunya adalah *Fuel Cell* (FC) yang menghasilkan energi dalam perangkat sel elektrokimia. Salah satu jenis FC adalah *Microbial Fuel Cell* (MFC) yang menggunakan mikroorganisme aktif pada kompartemen anoda untuk menghasilkan biolistrik (Rahimnejad et al., 2015) dengan bantuan reaksi redoks biokatalitik (Jaiswal et al., 2020). Mikroorganisme mendegradasi senyawa organik dengan melepas elektron dari senyawa tersebut (oksidasi) dan dilepas menuju reseptor akhir seperti oksigen (Passos et al., 2015).

Kini beberapa penelitian menunjukkan kemampuan mikroalga untuk berintegrasi dengan sistem MFC. Integrasi ini merupakan penemuan yang menjanjikan karena mikroalga fotoautotrof dapat berperan sebagai penghasil O₂ *in situ* untuk memfasilitasi reaksi pada kompartemen anoda (Jaiswal et al., 2020).

2.2 Microalgae Microbial Fuel Cell (MMFC)

MMFC memanfaatkan substrat yang dioksidasi pada anoda dan menggunakan mikroalga pada katoda sebagai akseptor elektron biologis dengan menghasilkan O₂ sekaligus mereduksi CO₂ secara simultan menjadi biomassa (Pandit & Das, 2015). Hal ini menunjukkan MMFC dapat menghasilkan listrik sekaligus mengikat CO₂, produksi biomassa, dan pemulihan air limbah secara keberlanjutan (Kusmayadi et al., 2020).

Selama pencahayaan, reaksi biokimia yang terjadi pada kompartemen anoda dan katoda dengan substrat glukosa adalah sebagai berikut (Costa & Hadiyanto, 2018).

Reaksi oksidasi pada anoda:

$$C_6H_{12}O_6 + 6H_2O \ Oksidasi \rightarrow 6CO_2 + 24H^+ + 24e^-$$
 (2. 1)

Reaksi generasi substrat dan oksigen oleh mikroalga pada kompartemen katoda:

$$6CO_2 + 12H^+ + 12e^- Cahaya \rightarrow C_6H_{12}O_6 + 3O_2$$
 (2. 2)

Reaksi reduksi pada katoda:

$$3O_2 + 12e^{-} + 12H^{+} Reduksi \rightarrow 6H_2O$$
 (2. 3)

Ketika tidak ada cahaya, metabolisme mikroalga akan memasuki fase gelap dan menghasilkan energi melalui oksidasi senyawa organik yang sebelumnya disintesis (Pandit & Das, 2015).

Gambar 2. 1 Ilustrasi Mekanisme MMFC (Sumber: Kusmayadi et al., 2020)

2.3 Mikroalga

Mikroalga merupakan kelompok makhluk hidup fotosintetik yang sangat bervariasi dan dapat hidup di berbagai habitat termasuk air tawar dan air laut. Spesies atau konsorsium mikroalga yang digunakan juga menjadi faktor yang memengaruhi efisiensi MMFC (Jaiswal et al., 2020). Mikroalga jenis *Chlorella* dan *Spirulina* menjadi jenis mikroalga yang berpotensi digunakan dalam MMFC dan paling banyak digunakan dalam penelitian di seluruh dunia (Roy et al., 2017).

Chlorella sp. Merupakan mikroalga hijau akuatik uniseluler yang sederhana. Mikroalga ini memiliki ukuran antara 5-10 µm yang dapat dilihat dibawah mikroskop dengan bentuk bulat dan berwarna hijau. Spirulina merupakan cyanobacteria (alga hijau-biru) berbentuk filamen yang dapat dikenali dengan struktur multiseluler silinder trikoma dalam bentuk open helix sepanjang filamennya. Panjang mikroalga ini dapat mencapai 1mm dengan diameter sel antara 1-3 µm pada spesies kecil dan 3-12 µm pada spesies yang lebih besar (Costa & Morais, 2014).

Penelitian yang dilakukan oleh Thompson dkk. melaporkan simbiosis yang melibatkan interaksi nitrogen yang diikat oleh *cyanobacteria* dan karbon yang diikat oleh alga uniseluler. Interaksi ini disimpulkan dapat meningkatkan pertumbuhan dibandingkan dengan kultur individu. Penelitian terbaru juga menunjukkan *cyanobacteria* mengikat lebih banyak nitrogen dengan adanya kehadiran alga hijau sehingga dilihat dari aspek nitrogen dan pertumbuhan, interaksinya bersifat ko-metabolik dan cendereung sinergis (Gautam et al., 2018).

2.4 Air Limbah Industri Pengolahan Kedelai

Pada umumnya, air limbah industri tahu tempe memiliki kandungan bahan organik yang cukup tinggi dan bersifat asam. Senyawa organik tersebut terdiri dari 40-60% protein, 25-50% karbohidrat, serta 10% lemak dan minyak. Total protein (N-total) yang terkandung dapat mencapai 226,06 sampai 434,78 mg/L. Limbah produksi tahu tempe mempunyai

kadar BOD sekitar 5.000 - 10.000 mg/L dan COD sekitar 7.000 - 12.000 mg/L (BPPT, 1999). Hasil isolasi bakteri yang dilakukan pada limbah tahu menunjukkan adanya bakteri jenis *Pseudomonas* sebanyak 72 x 10² cfu/ml dan bakteri jenis *Aeromonas* sebanyak 18 x 10² cfu/ml (Asril, Oktaviani, & Leksikowati, 2019).

2.5 State of The Art Penelitian

Tabel 2. 1 State of The Art Penelitian

Penelitian	Penulis (Tahun)	Limbah	Alga	Hasil
The Effects of Biofilm and Selective Mixed Culture in the Electricity Outputs and Wastewater Quality of Tempe Liquid Waste Based Microbial Fuel Cell	Arbianti et al. (2018)	Limbah Tempe	-	Penurunan COD dan BOD sebesar 29,32% dan 51,32%. Produksi listrik tertinggi 0,26 mW/m².
Bioelectrogenesis with Microbial Fuel Cells (MFCs) using The Microalga Chlorella vulgaris and Bacterial Communities	Huarachi- Olivera et al. (2018)	Limbah Industri	Chlorella vulgaris	Energi listrik di awal 23,17 mW/m² dan 327,67 mW/m² pada hari ke-32. Tingkat penurunan COD 78%.
Bioelectricity Production from Microalgae-Microbial Fuel Cell Technology (MMFC)	Costa & Hadiyanto (2018)	Limbah Tapioka	Spirulina platensis	Listrik mencapai 44,33 mW/m² pada hari ke-6.
Pemanfaatan Alga Hijau sebagai Biokatoda pada PMFC (Photosynthetis Microbial Fuel Cell)	Rosyadi et al. (2017)	Limbah Tempe	Makroalga Cladophora	Tegangan listrik dan kuat arus maksimum 320 mV dan 5,9 μA, energi listrik sebesar 1293,151 μW/m ² .
Penelitian ini		Limbah Tempe	Konsorsium Chlorella vulgaris dan Spirulina platensis	Kegiatan akan dilakukan pada penelitian ini.

Bab 3. Metode Penelitian

3.1 Tahapan Penelitian

Gambar 3. 1 Diagram Alir Penelitian

Gambar 3. 2 Ilustrasi Rangkaian MMFC

3.2 Indikator Capaian

Indikator pencapaian dari penelitian ini adalah mendapatkan kondisi optimum rasio konsorsium mikroalga pada MMFC sehingga dapat memperoleh produski listrik, biomassa mikroalga, dan tingkat pemulihan air limbah yang optimum pada perangkat MMFC.

3.3 Teknik Pengambilan Data

3.3.1 Analisis Spektrofotometri Mikroalga

Laju pertumbuhan mikroalga ditentukan dengan menggunakan analisis spektrofotometri. Analisis ini dilakukan dengan mengatur panjang gelombang spektrofotometer, kalibrasi alat, dan pengukuran *optical density*. Penentuan berat kering mikroalga dilakukan berdasarkan kurva kalibrasi OD vs X. Berat kering mikroalga nantinya akan diolah untuk mendapatkan laju pertumbuhan.

3.3.2 Analisis Data Kelistrikan MMFC

Data kelistrikan yang diambil pada rangkaian MMFC adalah kuat arus dan tegangan listrik. Pengambilan data ini dilakukan dengan menggunakan multimeter. Sebelum pengambilan data dilakukan, multimeter dikalibrasi terlebih dahulu.

3.4 Analisis dan Pengolahan Data

3.4.1 Laju Pertumbuhan Mikroalga

Persamaan yang digunakan untuk menghitung laju pertumbuhan spesifik mikroalga adalah persamaan Monod yang dapat dituliskan sebagai berikut.

$$\mu = \frac{1}{x} \frac{dX}{dt} \tag{3.1}$$

Dimana μ adalah laju pertumbuhan spesifik (jam⁻¹), X adalah berat kering sel (g/dm³), dan t adalah waktu (jam).

3.4.2 Energi Listrik (Power Density) dari MMFC

Untuk menentukan energi listrik atau *power density*, dilakukan berdasarkan hubungannya dengan variabel berikut.

$$P = \frac{V \times I}{A} \tag{3.2}$$

Dimana P adalah power density (mW/m²), V adalah tegangan listrik atau voltase (volt), I adalah arus listrik (ampere), dan A adalah luas permukaan anoda (m²).

Bab 4. Biaya dan Jadwal Kegiatan

4.1 Anggaran Biaya

Tabel 4. 1 Anggaran Biaya Penelitian

No	Jenis Pengeluaran	Biaya (Rp)
1	Perlengkapan yang diperlukan	Rp 6.524.000
2	Bahan Habis Pakai	Rp 2.876.000
3	Perjalanan dalam kota	Rp 200.000
4	Lain-lain	Rp 400.000
	Jumlah	Rp 10.000.000

4.2 Jadwal Kegiatan

Tabel 4. 2 Jadwal Kegiatan Penelitian

			Bul	lan		Person	
No	Jenis Kegiatan	1	1 2 3 4		4	Penanggung- Jawab	
1	Studi Literatur					Luqyaanaa, Cindy, dan Evani	
2	Persiapan Alat					Luqyaanaa dan Cindy	
3	Penyediaan Bahan					Luqyaanaa dan Evani	
4	Penentuan Rasio Konsorsium Mikroalga Optimum					Luqyaanaa	
5	Perangkaian dan Preparasi MMFC					Luqyaanaa	
6	Proses Pengujian dan Pengumpulan Data					Luqyaanaa dan Cindy	
7	Pengolahan Data dan Analisis					Luqyaanaa dan Evani	
8	Penulisan Laporan Akhir					Luqyaanaa, Cindy, dan Evani	

Daftar Pustaka

- Arbianti, R., Utami, T. S., Mariana, M., Karina, N. D., & Leondo, V. (2018). The effects of biofilm and selective mixed culture on the electricity outputs and wastewater quality of tempe liquid waste based microbial fuel cell. *Reaktor*, 18(2), 84-91.
- Asril, M., Oktaviani, I., & Leksikowati, S. (2019). Isolasi Bakteri Indigineous dari Limbah Cair Tahu dalam Mendegradasi Protein dan Melarutkan Fosfat. *Jurnal Teknologi Lingkungan*, 20(1), 67-72.
- Chhazed, Makwana, & Chavda. (2019). Microbial Fuel Cell Functioning, Developments And Applications-A Review. *International Journal of Scientific & Technology Research*. 12(8).
- da Costa, C. (2018). Bioelectricity production from microalgae-microbial fuel cell technology (MMFC). In *MATEC Web of Conferences* (Vol. 156, p. 01017). EDP Sciences.
- Gautam, K., Tripathi, J. K., Pareek, A., & Sharma, D. K. (2019). Growth and secretome analysis of possible synergistic interaction between green algae and cyanobacteria. *Journal of bioscience and bioengineering*, 127(2), 213-221.
- Huarachi-Olivera, R., Dueñas-Gonza, A., Yapo-Pari, U., Vega, P., Romero-Ugarte, M., Tapia, J., ... & Esparza, M. (2018). Bioelectrogenesis with microbial fuel cells (MFCs) using the microalga Chlorella vulgaris and bacterial communities. *Electronic Journal of Biotechnology*, 31, 34-43.

- Jaiswal, K. K., Kumar, V., Vlaskin, M. S., Sharma, N., Rautela, I., Nanda, M., ... & Chauhan, P. K. (2020). Microalgae fuel cell for wastewater treatment: Recent advances and challenges. *Journal of Water Process Engineering*, 38, 101549.
- Kusmayadi, A., Leong, Y. K., Yen, H. W., Huang, C. Y., Dong, C. D., & Chang, J. S. (2020). Microalgae-microbial fuel cell (mMFC): an integrated process for electricity generation, wastewater treatment, CO2 sequestration and biomass production. *International Journal of Energy Research*.
- Midyurova, B., & Nenov, V. (2017). Electricity Generation in Microbial Fuel Cells as a Function of Air: Cathode Configuration. *International Journal of Alternative Fuels and Energy*, 1(1), 9-13.
- Pandit, S., & Das, D. (2015). Role of microalgae in microbial fuel cell. In *Algal Biorefinery: An Integrated Approach* (pp. 375-399). Springer, Cham.
- Passos, V. F., Aquino Neto, S., Andrade, A. R. D., & Reginatto, V. (2016). Energy generation in a microbial fuel cell using anaerobic sludge from a wastewater treatment plant. *Scientia Agricola*, 73(5), 424-428.
- Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., & Oh, S. E. (2015). Microbial fuel cell as new technology for bioelectricity generation: A review. *Alexandria Engineering Journal*, 54(3), 745-756.
- Rosyadi, F. A., Laily, E. N., Sitoresmi, S., & Yushardi, Y. (2017). PEMANFAATAN ALGA HIJAU SEBAGAI BIOKATODA PADA PMFC (PHOTOSYNTHETIS MICROBIAL FUEL CELL). *Jurnal Teknik Kimia*, 12(1), 4-8.
- Roy, S., Marzorati, S., Schievano, A., Pant, D., 2017. Microbial Fuel Cells. In: Abraham, M.A. (Ed.), *Encyclopedia of Sustainable Technologies*. Elsevier, pp. 245–259.
- Said & Wahjono. (1999). Teknologi Pengolahan Limbah Tahu-Tempe Dengan Proses Biofilter Anaerob Dan Aerob. Kelompok Teknologi Pengelolaan Air Bersih dan Limbah Cair Direktorat Teknologi Lingkungan, Deputi Bidang Teknologi Informasi, Energi, Material dan Lingkungan Badan Pengkajian dan Penerapan Teknologi.
- Ucar, D., Zhang, Y., & Angelidaki, I. (2017). An overview of electron acceptors in microbial fuel cells. *Frontiers in microbiology*, 8, 643.

Lampiran 1. Biodata Ketua dan Anggota dan Dosen Pendamping

A. Biodata Ketua

A. Identitas diri

1.	Nama Lengkap	Luqyaanaa Mursyidah Zahra A S
2.	Jenis Kelamin	Perempuan
3.	Program Studi	Teknik Bioproses
4.	NIM	1706044856
5.	Tempat dan Tanggal Lahir	Pekanbaru, 10 Oktober 2000
6.	Alamat e-mail	luqyaanaamursyidah@gmail.com
7.	No. Telepon/HP	082288384745

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1.	IMTK FTUI (Ikatan Mahasiswa Teknik Kimia Fakultas Teknik UI)	Staf Kesekretariatan	2018, FTUI
2.	IATMI SMUI (Ikatan Ahli Teknik Perminyakan Indonesia Seksi Mahasiswa UI)	Staf Kesekretariatan	2018, FTUI
	SBE UISC (Society for	Staf Kesekretariatan	2018, FTUI
3.	Biological Engineer UI	Wakil Sekretaris Umum	2019, FTUI
	Student Chapter)	Sekretaris Umum	2020, FTUI

C. Penghargaan yang Pernah Diterima

No.	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1.	•		

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE

Depok, 11 Februari 2021

Ketua

(Luqyaanaa Mursyidah Zahra A)

ygghanun).

B. Biodata Anggota ke-1

A. Identitas diri

1.	Nama Lengkap	Cindy Anggraeni
2.	Jenis Kelamin	Perempuan
3.	Program Studi	Teknik Kimia
4.	NIM	1806199530
5.	Tempat dan Tanggal Lahir	Ciamis, 2 Desember 1999
6.	Alamat e-mail	cndyang02@gmail.com
7.	No. Telepon/HP	08118307890

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1.	IMTK FTUI (Ikatan Mahasiswa Teknik Kimia Fakultas Teknik Universitas Indonesia)	Staff of Penelitian dan Pengembangan	Tahun 2019, Fakultas Teknik Universitas Indonesia
2.	SBE UISC (Society for Biological Engineering Universitas Indonesia Student Chapter)	Deputy Director of Secretary	Tahun 2020, Fakultas Teknik Universitas Indonesia
3.	SBE UISC (Society for Biological Engineering Universitas Indonesia Student Chapter)	Director of Secretary	Tahun 2021, Fakultas Teknik Universitas Indonesia

C. Penghargaan yang Pernah Diterima

No.	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1.			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Depok, 12 Februari 2021 Anggota

Cu

Cindy Anggraeni

C. Biodata Anggota ke-2

A. Identitas diri

1.	Nama Lengkap	Evani Gloria Riska Matualaga	
2.	Jenis Kelamin	Perempuan	
3.	Program Studi	Teknik Bioproses	
4.	NIM	1906302112	
5.	Tempat dan Tanggal Lahir	Depok, 21 September 2001	
6.	Alamat e-mail	evaniriska@gmail.com	
7.	No. Telepon/HP	081237092459	

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No.	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1.			
2.			
3.			

C. Penghargaan yang Pernah Diterima

No.	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1.	Best Staff Rokim 2020	Ikatan Mahasiswa Teknik Kimia FTUI	2020

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Depok, 2 Februari 2021

Anggota

Evani Gloria Riska Matualaga

D. Biodata Dosen Pendamping

A. Identitas diri

1.	Nama Lengkap	Dr. Dianursanti, S.T., M.T.
2.	Jenis Kelamin	Perempuan
3.	Program Studi	Teknik Bioproses
4.	NIP/NIDN	197201211997022001
5.	Tempat dan Tanggal Lahir	Bandung/21-01-1972
6.	Alamat E-mail	dianursanti@ui.ac.id
7.	No. Telepon/HP	08111921565

B. Riwayat Pendidikan

	S1	S2	S3
Nama	Universitas	Universitas	Universitas
Institusi	Indonesia	Indonesia	Indonesia
Jurusan /	Teknik gas dan	Teknik Kimia	Teknik Kimia
Prodi	Petrokimia	Tekilik Kililia	Tekilik Kililia
Tahun	1991-1996	1999-2002	2009-2012
masuk-lulus	1991-1990	1333-2002	2009-2012

C. Rekam Jejak Tri Dharma PT

C.1. Pendidikan / Pengajaran

No.	Nama Mata Kuliah	Wajib / Pilihan	SKS
1.	Bioenergetika	Wajib	2
2.	Kecakapan Komunikasi	Wajib	2
3.	Kimia Analitik Instrumental	Wajib	3
4.	Perpindahan Kalor	Wajib	3
5.	Rekayasa Bioreaktor	Wajib	3
6.	Industri Oleokimia	Pilihan	3
7.	Teknologi Penyimpanan dan Pengemasan	Pilihan	3

C.2. Penelitian

No.	Judul Penelitian	Penyandang Dana	Tahun
1.	Pengembangan Teknik Ekstraksi Senyawa Esensial dari Mikroalga Strain Lokal sebagai Bahan Baku Peningkat Mutu Pangan dan Produk Hayati	PUTI Q2	2020
2.	Konversi Bio-oil menjadi BTX melalui Perengkahan Hidrotermal Katalitik (Conversion of Bio-oil into BTX through the Hydrothermal Catalytic Cracking)	PUTI Saintekes	2020

No.	Judul Penelitian	Penyandang Dana	Tahun	
Pengolahan Mikroalga Starain Lokal untuk Pembuatan Biomaterial Peningkat Mutu Pangan dan Produk Hayati		PUTI Prosiding	2020	
4.	Upgrading Bio-Oil melalui Proses Hidrotermal Katalitik dan Pengembangan Senyawa Esensial dari Biomassa Hayati	PITTA B	2019	
5.	Pemanfaatan Ekstrak dari Spirulina platensis sebagai Bahan Baku Pembuatan Produk Farmasi: Cangkang kapsul dan Sabun	PITTA B	2019	

C.1. Pengabdian Kepada Masyarakat

No.	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1.	-		

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE

Depok, 15 Februari 2021 Dosen Pendamping

(Dr. Dianursanti, S.T., M.T.)

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Jenis Perlengkapan	Volume	Harga Satuan (Rp)	Nilai (Rp)	
Uji spektrofotometri	10 kali	50.000	500.000	
Dissolved oxygen meter	1 buah	1.200.000	1.200.000	
Multimeter digital	1 buah	100.000	100.000	
Reaktor MFC	2 buah	2.000.000	4.000.000	
Aerator	2 buah	50.000	100.000	
Lampu	2 buah	50.000	100.000	
Flowmeter	2 buah	150.000	300.000	
Gelas ukur 100 ml	1 buah	40.000	40.000	
Gelas beker 500 ml	1 buah	50.000	50.000	
Gelas beker 250 ml	5 buah	25.000	125.000	
Pipet tetes	3 buah	3.000	9.000	
		SUBTOTAL (Rp)	6.524.000	
2. Barang Habis Pakai	Volume	Harga Satuan	Nilai (Rp)	
		(Rp)	_	
Kacang kedelai	600 gr	6.000	6.000	
Kultur cair Chlorella	1 T	250,000	250,000	
vulgaris	1 L	250.000	250.000	
Kultur cair Spirulina	1 L	200.000	200.000	
platensis	1 L	200.000	200.000	
Medium Walne	1 botol	60.000	60.000	
Batang grafit	5 batang	7.000	35.000	
Membran Nafion 117	1 lembar	2.000.000	2.000.000	
Kawat Tembaga	1 meter	4.000	4.000	
Jepit buaya	3 pasang	4.000	12.000	
Selang udara	2 meter	2.000	4.000	
HCl (Asam klorida)	200 ml	30.000	30.000	
NaOH (Sodium hidroksida)	200 ml	10.000	10.000	
H ₂ O ₂ 3% (Hidrogen peroksida)	100 ml	10.000	10.000	
H ₂ SO ₄ (Asam sulfat)	100 ml	30.000	30.000	
Aquades	5 L	30.000	150.000	
Alkohol	250 ml	20.000	20.000	
Aluminium foil	1 gulung	25.000	25.000	
Plastic wrap	1 gulung	30.000	30.000	
		SUBTOTAL (Rp)	2.876.000	
3. Perjalanan Dalam Kota	Volume	Harga Satuan	Nilai (Rp)	
		(Rp)	· -	
Perjalanan pengujian spektrofotometri	2 kali	50.000	100.000	
Perjalanan pembelian alat	1 kali	50.000	50.000	
Perjalanan pembelian bahan	1 kali	50.000	50.000	

		SUBTOTAL (Rp)	200.000	
4. Lain-lain	Volume	Harga Satuan (Rp)	Nilai (Rp)	
Fotokopi, print, ATK	1 periode	100.000	100.000	
Biaya pulsa dan berlangganan internet	1 periode	300.000	300.000	
		SUBTOTAL (Rp)	400.000	
	10.000.000			
(Sepuluh Juta Rupiah)				

Lampiran 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas

No.	Nama / NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/ minggu)	Uraian Tugas
1.	Luqyaanaa Mursyidah Zahra Ash- Shalehah/ 1706044856	Teknik Bioproses	-	30	 Melakukan koordinasi antar anggota Melakukan variasi percobaan dan menentukan rasio konsorsium mikroalga optimum Melakukan perangkaian MMFC Melakukan pengujian dan pengumpulan data Melakukan pengumpulan data Melakukan pengolahan data dan analisis hasil Membuat laporan
2.	Cindy Anggraeni/ 1806199530	Teknik Kimia	-	20	 Membantu persiapan alat Membantu pengujian dan pengumpulan data Membuat laporan
3.	Evani Gloria Riska Matualaga/ 1906302112	Teknik Bioproses	-	20	 Membantu persiapan bahan Membantu pengolahan data dan analisis hasil Membuat laporan

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertanda tangan di bawah ini:

Nama

: Luqyaanaa Mursyidah Zahra Ash-Shalehah

NIM

: 1706044856

Program Studi: Teknik Bioproses

Fakultas

: Teknik

Dengan ini menyatakan bahwa proposal PKM-RE saya dengan judul (Pengaruh Konsorsium Chlorella vulgaris dan Spirulina platensis (Chlorina) terhadap Kinerja Microalgae-Microbial Fuel Cell (MMFC)) yang diusulkan untuk tahun anggaran 2021 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

> Depok, 11 Februari 2021 Yang menyatakan,

(Luqyaanaa Mursyidah Z A)

yours!

NIM 1706044856