UFRGS

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

Departamento de Matemática Pura e Aplicada

MAT01168 - Turma D - 2023/2

Prova da área I

1	2	3	4	5	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- $\bullet~$ Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f=f(x,y,z)e g=g(x,y,z)são funções escalares; $\vec{F}=\vec{F}(x,y,z)$ e $\vec{G}=\vec{G}(x,y,z)$ são funções vetoriais.

1	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
1.	$\nabla (f+g) = \nabla f + \nabla g$
2.	$ec{ abla} \cdot \left(ec{F} + ec{G} ight) = ec{ abla} \cdot ec{F} + ec{ abla} \cdot ec{G}$
3.	$\vec{\nabla} \times \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \times \vec{F} + \vec{\nabla} \times \vec{G}$
4.	$\vec{\nabla}\left(fg\right) = f\vec{\nabla}g + g\vec{\nabla}f$
5.	$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right)$
6.	$ec{ abla} imes\left(fec{F} ight)=ec{ abla}f imesec{F}+fec{ abla} imesec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$\vec{\nabla} \times \left(\vec{\nabla} f \right) = 0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$ec{ abla} imes\left(ec{ abla} imesec{F} ight)=ec{ abla}\left(ec{ abla}\cdotec{F} ight)-ec{ abla}^2ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = \vec{G} \cdot \left(\vec{\nabla} \times \vec{F} \right) - \vec{F} \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	
14.	$ec{ abla}arphi(r)=arphi'(r)\hat{r}$

Curvatura, torção e aceleração:				
Nome	Fórmula			
Vetor normal	$\vec{N} = \frac{\vec{r}^{\prime}(t) \times \vec{r}^{\prime\prime}(t) \times \vec{r}^{\prime\prime}(t)}{\ \vec{r}^{\prime}(t) \times \vec{r}^{\prime\prime}(t) \times \vec{r}^{\prime\prime}(t)\ }$			
Vetor binormal	$ec{B} = rac{ec{r}^{\prime}(t) imesec{r}^{\prime\prime}(t)}{\ ec{r}^{\prime}(t) imesec{r}^{\prime\prime}(t)\ }$			
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{d\vec{T}}{\frac{dt}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}'(t)\ ^3}$			
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}'''(t)\ ^2}$			
Módulo da Torção	$ au = \left\ rac{dec{B}}{ds} ight\ = \left\ rac{dec{B}}{rac{ds}{dt}} ight\ $			
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$			
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$			

Equações de Frenet-Serret:

$\frac{d\vec{T}}{ds}$	=		$\kappa \vec{N}$	
$\frac{d\vec{N}}{ds}$	=	$-\kappa \vec{T}$		$+\tau\vec{B}$
$\frac{d\vec{B}}{ds}$	=		$-\tau \vec{N}$	

• Questão 1 (3.0 pontos) Um motoboy saiu de uma pizzaria para uma entrega na casa de um cliente ao longo de uma estrada descrita pela função vetorial

$$\vec{r}(t) = 10t\vec{i} + \frac{t^3}{30}\vec{j}, \quad 0 \le t \le 10$$

pela função vetorial $\vec{r}(t)=10t\vec{i}+\frac{t^3}{30}\vec{j},\quad 0\leq t\leq 10.$ A pizzaria está localizada no ponto (0,0) e o cliente no ponto final da trajetória medida em metros. Observe que o motoboy estava com pressa, percorrendo todo o trajeto desde a pizzaria até o ponto $P\left(100,\frac{1000}{30}\right)$ em apenas 10 segundos.

- a) (0.5 ponto) Calcule a velocidade e a aceleração do motoboy em t=2.
- b) (0.5 ponto) Calcule os vetores \vec{T} e \vec{N} em t=2.
- c) (1.0 ponto) Calcule as componentes normal e tangencial da aceleração em t=2.
- d) (1.0 ponto) Suponha que o motoboy voltou para a pizzaria pelo mesmo trajeto, mas agora com velocidade constante igual a 10m/s. Calcule as componentes normal e tangencial da aceleração no retorno para a pizzaria no mesmo ponto da curva onde o motoboy estava nos itens b), c) e d).

 \bullet Questão 2 (1.0 ponto) Calcule a função torção para a curva

$$\vec{r}(t) = t\vec{i} + \frac{t^4}{4}\vec{j} + \frac{t^3}{3}\vec{k}, \qquad t > 0.$$

• Questão 3 (2.0 pontos) Considere o campo

$$\vec{F} = (x - y)\vec{i} + (y + x)\vec{j} + z\vec{k}$$

e a curva ${\cal C}$ dada pela parametrização

$$\vec{r} = \cos(t)\vec{i} + \sin(t)\vec{j} + \sin(2t)\vec{k}, \qquad 0 \le t \le 2\pi.$$

- a) (0.5 ponto) Verifique se o campo
 \vec{F} é conservativo.
- b) (1.5 ponto) Calcule $\int_C \vec{F} \cdot d\vec{r}$.

 \bullet Questão 4 (2.0 pontos) Considere o campo

$$\vec{F} = x^3 z^2 \vec{i} + y^3 z^2 \vec{j} + 2z^3 \vec{k}$$

e a superfície fechada formada pelo cubo formado pelos planos $x=\pm 1,\,y=\pm 1$ e $z=\pm 1$, orientado para fora.

- a) (0.5 ponto) Calcule $\vec{\nabla} \cdot \vec{F}$.
- b) (1.5 ponto) Calcule

$$\iint_{S} \vec{F} \cdot \vec{n} dS.$$

 \bullet Questão 5 (2.0 pontos) Considere o campo

$$\vec{F} = (x - 2zy^2 + z)\vec{i} + (3zx^2 + y - z)\vec{j} + (-x + y + z)\vec{k}$$

e a curva fechada formada pela poligonal formada pelos pontos $P_0=(0,0,1),\,P_1=(4,2,1)$ e $P_2=(4,0,1)$ no sentido $P_0\to P_1\to P_2\to P_0$.

- a) (0.5 ponto) Calcule $\vec{\nabla}\times\vec{F}$.
- b) (1.5 ponto) Calcule

$$\int_C \vec{F} \cdot d\vec{r}.$$