Haberman's Survival Exercise

March 21, 2018

1 Exercise

1.0.1 Haberman's Survival

Survival of patients who had undergone surgery for breast cancer

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
In [2]: patients = pd.read_csv('haberman.csv')
        patients.shape
Out[2]: (306, 4)
```

Observation: There are total 305 data points There are 3 Features/dimensions Columns Information:

1)Age of patient at time of operation (numerical) 2)Patient's year of operation (year - 1900, numerical) 3)Number of positive axillary nodes detected (numerical) 4)Survival status (class attribute) 1 = the patient survived 5 years or longer 2 = the patient died within 5 year

```
In [3]: patients.head()
```

```
Out[3]:
           Age Year
                     No.of Pos Axillary nodes Survival Status
        0
           30
                                             1
       1
           30
                  62
                                             3
                                                              1
        2
          30
                  65
                                             0
                                                              1
                  59
                                             2
           31
                                                              1
           31
                  65
```

In [4]: patients.describe()

Out[4]:		Age	Year	No.of Pos Axillary nodes	Survival Status
	count	306.000000	306.000000	306.000000	306.000000
	mean	52.457516	62.852941	4.026144	1.264706
	std	10.803452	3.249405	7.189654	0.441899
	min	30 000000	58 000000	0 000000	1 000000

25%	44.000000	60.000000	0.000000	1.000000
50%	52.000000	63.000000	1.000000	1.000000
75%	60.750000	65.750000	4.000000	2.000000
max	83.000000	69.000000	52.000000	2.000000

Observation: The Average age is 30

In [5]: # getting survival status count of 2 groups

patients.get('Survival Status').value_counts()

Out[5]: 1 225 2 81

Name: Survival Status, dtype: int64

Observation: Survived: 225 out of 305 Dead with in 5 years: 81 out of 305 Its Imbalanced Data Set.

1.1 BiVariant Analysis

1.1.1 2D Scatter Plot

Observation:

For Most of the Patients The No.of axillary nodes is '0'

```
In [7]: sns.set_style("whitegrid")
         sns.FacetGrid(patients,hue='Survival Status',size=5) \
              .map(plt.scatter,'Age','No.of Pos Axillary nodes') \
              .add_legend()
         plt.show()
         50
        40
     No.of Pos Axillary nodes
         30
                                                                            Survival Status
                                                                                      2
        20
         10
```

Observation: We cant classify through this features with this type of plot.

60

Age

50

40

30

1.1.2 PairPlot

70

80

Note: Without Considering Survival statues column there are 3 cols-> 3C2 plots -> 3 plots With this 3 plots its difficult to classify the survival status.

1.2 Univariant Analysis

1.2.1 PDF

Observation: Spread is more for status 1 than status 2

More no.of patients of status 1 has less no.of Axillary Nodes That may indicate a inverse relation between Axillary nodes and Survival Status

Out[13]:		Age	Year	No.of Pos	Axillary nodes	Survival	${\tt Status}$
	0	30	64		1		1
	1	30	62		3		1
	2	30	65		0		1
	3	31	59		2		1
	4	21	65		А		1

Out[14]:		Age	Year	No.of Pos Axillary nodes	Survival Status
	7	34	59	0	2
	8	34	66	9	2
	24	38	69	21	2
	34	39	66	0	2
	43	41	60	23	2

```
In [15]: status_1.describe()
Out[15]:
                                         No.of Pos Axillary nodes
                        Age
                                   Year
                                                                    Survival Status
                                                        225.000000
                                                                               225.0
                225.000000
                             225.000000
                 52.017778
                              62.862222
                                                          2.791111
                                                                                 1.0
         mean
         std
                 11.012154
                               3.222915
                                                          5.870318
                                                                                 0.0
         min
                 30.000000
                              58.000000
                                                                                 1.0
                                                          0.000000
         25%
                                                                                 1.0
                 43.000000
                              60.000000
                                                          0.000000
         50%
                              63.000000
                                                                                 1.0
                 52.000000
                                                          0.000000
         75%
                 60.000000
                              66.000000
                                                          3.000000
                                                                                 1.0
         max
                 77.000000
                              69.000000
                                                         46.000000
                                                                                 1.0
In [16]: status_2.describe()
Out[16]:
                                 Year No. of Pos Axillary nodes Survival Status
                       Age
                                                       81.000000
                81.000000 81.000000
                                                                              81.0
         count
                                                                               2.0
         mean
                53.679012
                            62.827160
                                                        7.456790
                                                                               0.0
         std
                10.167137
                             3.342118
                                                        9.185654
                34.000000 58.000000
                                                                               2.0
         min
                                                        0.000000
         25%
                                                                               2.0
                46.000000
                            59.000000
                                                        1.000000
         50%
                53.000000
                            63.000000
                                                        4.000000
                                                                               2.0
         75%
                61.000000
                            65.000000
                                                       11.000000
                                                                               2.0
         max
                83.000000
                            69.000000
                                                       52.000000
                                                                               2.0
```

Observation: Status 1: Mean of no.of axillary nodes -> 2.8~ std -> 5.9~ Status 2: Mean of no.of axillary nodes -> 7.5~ std -> 9.1~

That Implies More no. of Axillary nodes patients may tend to die with in 5 years of operation

1.2.2 PDF CDF

1.2.3 Box Plot

In [20]: sns.boxplot(x='Survival Status',y='No.of Pos Axillary nodes', data=patients)
 plt.show()

Observation:

Status1 -> About 50 percentile people has Axillary nodes 0 and 75 percentile have about $3\sim$ axillary nodes. status2 -> About 50 percentile people has Axillary nodes more than $4\sim$ and 25percentile patients have 1-3 nodes.

1.2.4 Violin Plot

1.3 MultiVariant Analysis

In [22]: sns.jointplot(x= 'Age',kind = 'kde', y='Year', data = patients)
 plt.show()

There are more number of patients undergone operation during the year 1960 - 1964 period and between ages 45 - 55

Conclusion: From PDF,Box plot and Means of no.of axillary nodes, It is evident that if there are more no.of axillary nodes the patient may tend to die with in 5 years of operation.