Lecture

_

Model Assessment Model Selection

Agenda

- Generalization ability
- Bias, variance and model complexity
- The "data-rich situation": Train-Validation-Test
- The training error: a too optimistic estimate
- Structural risk minimization (VC theory)
- Cross-validation: a popular method for prediction error estimation
- Bootstrap techniques

Looking for the right amount of complexity

Errors, training errors, generalization errors

• Learning is based on a training sample

$$\mathcal{D}_n = \{(X_1, Y_1), \ldots, (X_n, Y_n)\}$$

• The classifier $\hat{C}_n \in \mathcal{G}$ selected through an "ERM like" method is random, depending on \mathcal{D}_n , as well as its error:

$$L(\hat{C}_n) = \mathbb{E}\left[\mathbb{I}\{Y \neq \hat{C}_n(X)\} \mid \mathcal{D}_n\right]$$

Expectation is taken over a pair (X, Y) independent from training data \mathcal{D}_n

ullet The **generalization error**: take next expectation over \mathcal{D}_n

$$Err = \mathbb{E}\left[L(\hat{C}_n)\right]$$

Methods for performance assessment, for model selection

• Training error is not a good estimate!

$$\hat{L}_n(\hat{C}_n) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{Y_i \neq C(X_i)\}\$$

It vanishes as soon as the class $\mathcal G$ is complex enough \Rightarrow Overfitting and poor generalization

- The objective is twofold
 - ► Model selection: choose the best model among a collection of models
 - ▶ Model assessment: for a given model, estimate its generalization error

When data are not expensive

• Divide the data into three parts:

Training - Validation - Test

- Typical choice: 50% 25% 25%
- $K \geq 1$ model candidates: $\mathcal{G}_1, \ldots, \mathcal{G}_K$
 - ▶ For each $k \in \{1, ..., K\}$, apply ERM to training data $\Rightarrow \hat{C}^{(k)}$
 - ▶ Use validation data to find the "best" $\hat{k} \in \{1, \ldots, K\}$
 - ▶ Estimate the error using the test data (independent from \hat{k})
- How to proceed in a data-poor situation?

Complexity regularization (structural risk minimiation), resampling methods, *etc.*

Model selection by penalization

- Consider a sequence of model classes $\mathcal{G}_1, \mathcal{G}_2, \ldots$ As $k \nearrow +\infty$, \mathcal{G}_k gets richer
- ullet Let $\hat{C}^{(k)}$ be the empirical risk minimizer over \mathcal{G}_k
- Our goal: select \hat{k} so that $\mathbb{E}[L(\hat{C}^{(\hat{k})})] L^*$ is close to

$$\min_{k} \mathbb{E}[L(\hat{C}^{(k)})] - L^* =$$

$$\min_{k} \left\{ \left(\mathbb{E}[L(\hat{C}^{(k)})] - \inf_{C \in G_k} L(C) \right) + \left(\inf_{C \in G_k} L(C) - L^* \right) \right\}$$

 Idea: add a complexity penalty to the training error to compensate the overfitting effect

$$\hat{L}_n(\hat{C}^{(k)}) + pen(n,k)$$

- The penalty may depend on the data or not
- The penalty is related to a distribution-free upper bound for

Complexity regularization

• Suppose that an estimate $R_{n,k}$ of $L(\hat{C}_k)$ is available, s.t. for all $\epsilon>0$

$$\mathbb{P}\left\{L(\hat{C}_k) - R_{n,k} > \epsilon\right\} \le c e^{-2m\epsilon^2}$$

for fixed constants c, m

• The ideal optimization would be

$$L(\hat{C}_k) - \hat{L}_n(\hat{C}_k)$$

that can be estimated by

$$R_{n,k} - \hat{L}_n(\hat{C}_k)$$

• This yields $pen(n, k) = R_{n,k} - \hat{L}_n(\hat{C}_k) + \sqrt{\log(k)/m}$

Complexity regularization

Select the prediction rule

$$C_n^* = \operatorname*{arg\,min}_k \tilde{L}_n(\hat{g}_k)$$

based on the complexity penalized training error

$$ilde{L}_n(\hat{g}_k) = \hat{L}_n(\hat{g}_k) + extit{pen}(n,k) = R_{n,k} + \sqrt{\log(k)/m}$$

Penalization by the VC dimension

$$R_{n,k} = \hat{L}_n(\hat{g}_k) + 2\sqrt{\frac{V_{\mathcal{G}_k}\log(n+1) + \log 2}{n}}$$

Cross-Validation

- Goal: estimate the generalization error
- Let $K \ge 1$ (typical choices are 5 or 10), "K-fold cross-validation" (K=n "leave-one-out" estimation)
- Split the data into K parts (of same size)
- For all $k \in \{1, ..., K\}$,
 - ▶ learn $\hat{C}^{(-k)}$ based on all data except the k-th part
 - ▶ calculate the error of $\hat{C}^{(-k)}$ over the k-th part
- Average the K quantities

"Pulling yourself up by your own bootstrap" (Baron de Münchausen)

• Bootstrap (the plug-in principle): estimate the distribution of

$$\mathbb{E}^*[\mathbb{I}\{\hat{C}(X)\neq Y\}]$$

where $\mathbb{E}^*[.]$ is the expectation w.r.t. the empirical df of the $(X_i,Y_i)'s$

- Heuristics: replace the unknown df by an estimate
- Monte-Carlo approximation
- Higher-order validity