ПРАКТИЧЕСКАЯ РАБОТА № 8.

ИНФРАСТРУКТУРА ОТКРЫТЫХ КЛЮЧЕЙ И УДОСТОВЕРЯЮЩИЕ ЦЕНТРЫ

Цель: изучить инфраструктуру открытых ключей, и принцип создания удостоверяющих центров.

Теоретические вопросы

- 1. Предмет и задачи удостоверяющих центров.
- 2. Основные понятия инфраструктуры открытых ключей.
- 3. Классификация удостоверяющих центров.
- 4. Как удостоверяющий центр (УЦ) осуществляет выполнение функций, связанных с обеспечением ЭЦП всех участников информационного обмена.

Иерархическая система удостоверяющих центров

Рассмотрим снова ситуацию двух клиентов, зарегистрированных в разных удостоверяющих центрах, и введем следующие обозначения:

 Y_1, Y_2 — два разных удостоверяющих центра,

 A_1, A_2 — клиенты, зарегистрированные в удостоверяющих

центрах Y_1 и Y_2 соответственно,

 \bar{A}_1, \bar{A}_2 — открытые ключи соответствующих клиентов,

 $\overline{Y}_1,\overline{Y}_2$ — открытые ключи соответствующих удостоверяющих центров,

 $ar{ar{Y}}_1, ar{ar{Y}}_2$ — их закрытые ключи.

Для сертификатов клиентов A_1 и A_2 , содержащих открытые ключи клиентов и их удостоверяющих центров и подписанных закрытым ключом соответствующего удостоверяющего центра, введем обозначения:

 $C(A_1) = (\overline{A}_1, \overline{Y}_1)s/\overline{\overline{Y}}_1$ и $C(A_2) = (\overline{A}_2, \overline{Y}_2)s/\overline{\overline{Y}}_2$

соответственно.

Будем считать, что удостоверяющие центры Y_1 и Y_2 являются удостоверяющими центрами нижнего уровня. С целью взаимного признания ЭЦП всех клиентов удостоверяющих центров Y_1 и Y_2 создадим в информационной системе еще один удостоверяющий центр Y, который будет по отношению к Y_1 и Y_2 удостоверяющим центром более высокого уровня.

Потребуем далее, чтобы при своем создании удостоверяющие центры Y_1 и Y_2 прошли стандартную процедуру регистрации в удостоверяющем центре Y. При этом в соответствии с протоколом регистрации удостоверяющие центры Y_1 и Y_2 получат свои сертификаты $C(Y_1)$ и $C(Y_2)$, содержащие открытый ключ регистрирующего удостоверяющего центра Y и подписанные его закрытым ключом. В соответствии с принятой системой обозначений указанные сертификаты в дальнейшем обозначим:

$$C(Y_1) = (\overline{Y}_1, \overline{Y})s/\overline{\overline{Y}}$$
 и $C(Y_2) = (\overline{Y}_2, \overline{Y})s/\overline{\overline{Y}}$

соответственно.

Потребуем далее, чтобы при регистрации клиентов A_1 и A_2 в соответствующих удостоверяющих центрах Y_1 и Y_2 клиенты вместе с их собственными сертификатами $C(A_1)$ и $C(A_2)$ получали также соответствующие сертификаты регистрирующих их удостоверяющих центров $C(Y_1)$ и $C(Y_2)$, которые удостоверяющие центры получили во время своей регистрации в удостоверяющем центре Y.

Общая схема взаимодействия удостоверяющих центров Y_1 , Y_2 и Y представлена на рис. 4.

Рассмотрим последовательность операций при обмене сообщениями между клиентом A_1 и клиентом A_2 , действующими в информационной системе, образованной удостоверяющими центрами Y_1 , Y_2 и Y. изображенной на рис. 4. Прежде всего, будем считать, что в процессе

Рис. 4. Общая схема взаимодействия удостоверяющих центров Y_1 , Y_2 и Y

выполнения стандартных процедур регистрации все субъекты информационной системы (удостоверяющие центры и клиенты) получили ключи и сертификаты, как это показано на рис. 4.

Тогда клиент-отправитель A_1 при отправке сообщения клиенту-получателю A_2 должен кроме трех операций, приведенных в разделе 3.2.3.4, выполнить еще одну — а именно, переслать клиенту A_2 сертификат своего удостоверяющего центра. Приведем всю последовательность операций клиента-отправителя A_1 в новых обозначениях:

$$(m, A_1) \stackrel{G}{\rightarrow} (m) s/A_1$$
 — формирование ЭЦП сообщения m ; (A1.1)

$$(m) \, s/A_1 \to A_2$$
 — отправка подписанного сообщения; (A1.2)

$$(\bar{A}_1, \bar{Y}_1)s/\bar{\bar{Y}}_1 \to A_2$$
 — отправка своего сертификата; (A1.3)

$$\left(\overline{Y}_1,\overline{Y}\right)s/\overline{\overline{Y}}\to A_2$$
 — отправка сертификата своего (A1.4) удостоверяющего центра.

Клиенту-получателю необходимо выполнить дополнительные операции по сравнению с приведенными в разделе 3.2.3.5, поскольку проверка (A2.2) (см. ниже) в данной ситуации заведомо дает отрицательный результат, так как Y_1 и Y_2 — разные удостоверяющие центры. Вся последовательность операций клиента-получателя приведена ниже.

$$(\bar{A}_2, \bar{Y}_2)s/\bar{\bar{Y}}_2 \stackrel{E}{\to} \bar{Y}_2$$
 — извлечение открытого ключа Y_2 из собственного сертификата A_2 ;

$$\left(\left(\bar{A}_1, \overline{Y}_1\right) s / \overline{\overline{Y}}_1, \overline{Y}_2\right) \overset{V}{\to} 1 - \text{проверка подписи присланного}$$
 сертификата; (A2.2)

$$(\overline{Y}_2, \overline{Y})s/\overline{\overline{Y}} \stackrel{E}{\to} \overline{Y}$$
 — извлечение открытого ключа Y из имеющегося сертификата Y_2 ;

$$\left(\left(\overline{Y}_{1},\overline{Y}\right)s/\overline{\overline{Y}},\overline{Y}\right)\overset{V}{\to}0 \longrightarrow \text{проверка подписи присланного} \\ \text{сертификата }Y_{1};$$

$$\left(\overline{Y}_1,\overline{Y}\right)s/\overline{\overline{Y}}\stackrel{E}{\to}\overline{Y}_1$$
 — извлечение открытого ключа Y_1 из (A2.5) присланного сертификата Y_1 ;

$$\left(\left(\bar{A}_1, \overline{Y}_1\right) s / \overline{\overline{Y}}_1, \overline{Y}_1\right) \overset{V}{\to} 0$$
— проверка подписи присланного сертификата A_1 ;

$$ig(ar{A}_1,ar{Y}_1ig)s/ar{ar{Y}}_1\stackrel{E}{ o} ar{A}_1$$
 — извлечение открытого ключа A_1 из (A2.7) присланного сертификата A_1 ;

$$(m) s/\bar{A}_1, \bar{A}_1) \stackrel{V}{\to} 0$$
 — проверка подписи сообщения m . (A2.8)

Покажем, что последовательность операций (A2.1)—(A2.8) удовлетворяет всем требованиям информационной безопасности, связанным с функциями удостоверяющих центров по подтверждению полномочий всех участников информационной схемы.

Действительно, невыполнение проверки (A2.2) означает, что клиент-отправитель не зарегистрирован в том же удостоверяющем центре, в котором зарегистрирован клиент-получатель.

Убедившись в этом, клиент-получатель с помощью пары операций (A2.3)—(A2.4) приходит к выводу, что удостоверяющие центры Y_1 (где зарегистрирован клиент-отправитель) и Y_2 (где зарегистрирован клиент-получатель) оба зарегистрированы в одном удостоверяющем центре Y. Тем самым «чужой» с точки зрения клиента-получателя удостоверяющий центр Y_1 становится легитимным участником информационной схемы. И клиент-получатель может признать присланный ему отправителем по операции (A1.4) сертификат этого удостоверяющего центра.

Следующей парой операций (A2.5)—(A2.6) клиент-получатель убеждается, что присланный ему по операции (A1.3) сертификат действительно является сертификатом клиента A_1 , зарегистрированного в удостоверяющем центре Y_1 .

Поэтому из присланного сертификата клиент-получатель может извлечь открытый ключ клиента \bar{A}_1 и использовать его для проверки ЭЦП сообщения m. Что он и делает операциями (A2.7)—(A2.8).

Рассмотренная простейшая схема, содержащая лишь два удостоверяющих центра нижнего уровня, естественным образом обобщается на случай произвольного числа таких удостоверяющих центров.

Действительно, пусть в схеме уже задействовано n-1 удостоверяющих центров нижнего уровня. Тогда при добавлении к схеме еще одного удостоверяющего центра нижнего уровня Y_n необходимо выполнить следующие операции:

- 1. Зарегистрировать Y_n в удостоверяющем центре Y с выдачей ему стандартного сертификата $C(Y_n) = (\overline{Y}_n, \overline{Y})s/\overline{\overline{Y}}$.
- 2. При регистрации в Y_n клиентов выдавать каждому из них пару сертификатов: $C(A_n) = (\bar{A}_n, \bar{Y}_n)s/\overline{\bar{Y}}_n$ собственный сертификат клиента A_n и $C(Y_n) = (\bar{Y}_n, \overline{Y})s/\overline{\bar{Y}}$ сертификат удостоверяющего центра Y_n .

Выполнение действий 1 и 2, первое из которых производится только один раз при регистрации добавляемого в схему удостоверяющего центра, позволяет включить в единую информационную схему всех клиентов всех удостоверяющих центров $Y_1, Y_2, ..., Y_n$.

Важным преимуществом указанной схемы является то обстоятельство, что при добавлении в схему нового удостоверяющего центра вообще не нужно знать, сколько удостоверяющих центров уже задействовано в схеме. Это выгодно отличает ее от схем типа попарных обменов сертификатами между всеми удостоверяющими центрами, действующими в схеме.

Еще одним преимуществом указанной схемы является отсутствие необходимости каких-либо обменов информацией между клиентомполучателем и удостоверяющими центрами, задействованными в информационной системе.

Приведенная схема обобщается также и на произвольную систему удостоверяющих центров, устроенную иерархическим образом. В этом случае произвольный набор удостоверяющих центров, объединенных в иерархическую информационную систему, естественно изображать в виде $zpa\phi a$, то есть множества узлов (вершин), причем некоторые из них соединены связями — ребрами графа. Узлами графа будут являться удостоверяющие центры. Два удостоверяющих центра Y_i и Y_k соединены ребром графа, если Y_i зарегистрирован в удостоверяющем центре быть зарегистрирован только в одном удостоверяющий центре более высокого уровня, граф, их изображающий, является depesom (быть может, несвязным). Один удостоверяющий центр самого высокого уровня, не зарегистрированный ни в каком другом, называется kop невым удостоверяющим центром.

В любом удостоверяющем центре системы могут быть также зарегистрированы пользователи-клиенты.

При получении сообщения от клиента A_i , зарегистрированного в удостоверяющем центре Y_i , клиент-получатель A_j , зарегистрированный в удостоверяющем центре Y_j , должен убедиться, что отправитель A_i зарегистрирован в одном из удостоверяющих центров, входящих в общую систему с удостоверяющим центром Y_j , в котором зарегистрирован получатель A_i .

Для решения этой задачи может быть использован механизм сертификатов удостоверяющих центров.

Будем по-прежнему называть сертификатом удостоверяющего центра Y_i набор записей, содержащий открытый ключ самого удостоверяющего центра \overline{Y}_i , открытый ключ удостоверяющего центра \overline{Y}_i , в котором зарегистрирован Y_i , и подписанный закрытым ключом удостоверяющего центра \overline{Y}_k . Будем обозначать сертификат удостоверяющего центра Y_i через

 $C(Y_i) = (\overline{Y}_i, \overline{Y}_k) s / \overline{\overline{Y}}_k.$

Пусть $C(Y_i) = (\overline{Y}_i, \overline{Y}_k)s/\overline{\overline{Y}}_k$, $C(Y_j) = (\overline{Y}_j, \overline{Y}_l)s/\overline{\overline{Y}}_l$ — сертификаты двух удостоверяющих центров: Y_i — зарегистрированного в Y_k и Y_j — зарегистрированного в Y_i .

Введем две формальных операции с сертификатами.

а) Соответствие сертификатов

Будем говорить, что сертификаты $C(Y_i)$ и $C(Y_j)$ соответствуют другу другу, если выполнено условие

$$((\bar{Y}_i, \bar{Y}_k)s/\bar{\bar{Y}}_k, \bar{Y}_l) \stackrel{V}{\to} 0. \tag{14}$$

Это условие может быть выполнено только в том случае, если $\overline{Y}_l = \overline{Y}_k$, а это в свою очередь означает, что оба удостоверяющих центра Y_i и Y_j зарегистрированы в одном удостоверяющем центре, т. е. удостоверяющий центр Y_k совпадает с удостоверяющим центром Y_l .

При этом, если $C(Y_i)$ соответствует $C(Y_j)$, то и $C(Y_k)$ соответствует $C(Y_l)$, т. е. если выполнено (14), то выполняется и симметричное условие

$$\left(\left(\overline{Y}_{j}, \overline{Y}_{l}\right) s / \overline{\overline{Y}}_{l}, \overline{Y}_{k}\right) \stackrel{V}{\to} 0. \tag{14'}$$

б) Проверка регистрации

Пусть по-прежнему $C(Y_i)$ и $C(Y_j)$ — сертификаты двух удостоверяющих центров. Для того чтобы проверить, действительно ли удостоверяющий центр Y_i зарегистрирован в Y_j , достаточно проверить выполнение условия

$$((\overline{Y}_i, \overline{Y}_k)s/\overline{\overline{Y}}_k, Y_j) \stackrel{V}{\to} 0. \tag{15}$$

Действительно, проверка (15) может быть выполнена только в случае, если \overline{Y}_k соответствует \overline{Y}_j , а это означает, что $Y_k = Y_j$ и сертификат $C(Y_i)$ может быть переписан в виде $\left(\overline{Y}_i, \overline{Y}_j\right) s / \overline{\overline{Y}}_j$, а это, в свою очередь, означает, что удостоверяющий центр Y_i зарегистрирован в удостоверяющем центре Y_i .

Теперь может быть сформулирован алгоритм определения открытого ключа отправителя.

Пусть A — клиент-отправитель, зарегистрированный в удостоверяющем центре Y_0 , а A' — клиент-получатель, зарегистрированный в удостоверяющем центре Y_0' (см. рис. 5).

Здесь

$$Y_0 o Y_1 o \dots o Y_{n-1} o Y_n$$
— цепочка регистрации клиента A .

$$Y_0' \to Y_1' \to \dots \to Y_{m-1}' \to Y_m' = Y_{n-1} \to Y_n$$
 — цепочка регистрации клиента A' .

Рис. 5. Цепочки регистрации клиентов

В соответствии с соглашением при своей регистрации в Y_0 клиент A получает свой собственный сертификат C(A) и всю цепочку сертификатов удостоверяющих центров вышестоящих уровней, начиная с Y_0 :

Аналогично, клиент-получатель A' при своей регистрации в удостоверяющем центре Y_0' получает цепочку сертификатов

Цепочки (16) и (16') могут быть, вообще говоря, разной длины.

Во время обмена информацией клиент A отправляет клиенту A' сообщение m, подписанное своим закрытым ключом $(m) s/\bar{A}$, и всю цепочку сертификатов C(A), $C(Y_0)$, $C(Y_1)$, ..., $C(Y_{n-1})$.

Чтобы проверить правильность принятого сообщения m, клиентполучатель должен иметь открытый ключ клиента-отправителя \bar{A} ,
который ему прислан в составе сертификата C(A). Для того чтобы
убедиться в легитимности его использования, клиенту A' необходимо
проверить, что удостоверяющие центры Y_0 и Y_0' находятся в одной
информационной системе. Другими словами, что в цепочках удостоверяющих центров, имеющих сертификаты (16) и (16'), имеется
общий узел. Выполнение этого условия проверяется путем попарного
сравнения сертификатов из цепочек (16) и (16') с помощью операции (14).

Если ни для одной из возможных пар сертификатов $(C(Y_p), C(Y'_r))$, где $C(Y_p)$ — сертификат из цепочки (16), $C(Y'_r)$ — сертификат из цепочки (16'), операция соответствия не выполняется, то это означает, что удостоверяющий центр Y_0 не находится в одной информационной системе с удостоверяющим центром Y'_0 .

Если же для какой-то пары сертификатов $(C(Y_p), C(Y'_r))$ операция соответствия (14) выполнена, то это означает, что удостоверяющий центр Y_p из цепочки (16) и Y'_r из цепочки (16') зарегистрированы в одном удостоверяющем центре.

Для завершения процедуры проверки легитимности использования открытого ключа клиента-отправителя A, присланного в составе сертификата C(A), достаточно убедиться, что все удостоверяющие центры в цепочке (16), начиная с Y_p и включая Y_0 , легитимно зарегистрированы.

Для этого необходимо последовательно проверить, что для всех сертификатов, начиная с $C(Y_p)$ до $C(Y_0)$ включительно, выполняется условие

$$\left(\left(\overline{Y}_{k}, \overline{Y}_{k+1}\right) s / \overline{\overline{Y}}_{k+1}, \overline{Y}_{k+1}\right) \stackrel{V}{\to} 0, \tag{17}$$

где k пробегает все значения от p до 0. Если хотя бы одна из подобных проверок (17) не выполнена, цепочку регистрации Y_0 нельзя считать легитимной.

Если же выполнены все проверки (17), клиент-получатель может из присланного ему сертификата C(A) извлечь открытый ключ отправителя \bar{A} и проверить с его помощью правильность подписи сообщения m с использованием стандартного алгоритма проверки ЭЦП:

$$((m) s/\overline{\overline{A}}, \overline{A}) \stackrel{V}{\rightarrow} \{0; 1\}.$$

Задание.

Реализовать на любом машинном языке процесс обмена сертификатами между клиентами разных удостоверяющих центрах, которые зарегистрированы в удостоверяющем центре более высокого уровня:

- 1. Этапы процесса регистрации УЦ1 и УЦ2 в УЦ более высокого уровня.
- 2. Этапы процесса регистрации клиентов в разных УЦ (УЦ1 и УЦ2 зарегистрированных в УЦ более высокого уровня). Продемонстрировать как минимум на четырех клиентах (двух из УЦ1 и двух клиентах из УЦ2.
- 3. Процесс создания сертификатов УЦ1 и УЦ2.
- 4. Процесс создания сертификатов клиентов.
- 5. Осуществить пересылку сертификатов между УЦ.
- 6. Осуществить пересылку сертификатов между пользователями УЦ1 и УЦ2.
- 7. Оформить отчет о проделанной работе.