

PARTICIPEM

A ESTRUTURA

PROBABILIDADE

CONCEITOS

AS ORIGENS DA PROBABILIDADE

Imagem: Jacopo de' Barbari / Retrato de Fra Luca Pacioli e um jovem desconhecido /Public Domain

As questões envolvendo a teoria elementar das probabilidades já eram objeto de estudo desde a Antiguidade. Mas foi no início do século XV que as discussões em relação aos "jogos de azar" (aquele em que a perda ou o ganho depende exclusivamente do acaso – sorte) passaram a ter um tratamento matemático mais sistematizado. Um dos primeiros impressos acerca desse assunto está na Suma (1494) do frade franciscano italiano Luca Pacioli (1445-1509).

AS ORIGENS DA PROBABILIDADE

Imagem: Ecummenic /Pierre Dupin (c.1690-c.1751) / Public Domain

A partir daí, vários estudiosos contribuíram para a sistematização acerca da probabilidade, entre eles os franceses Blaise Pascal (1623-1662) e Pierre de Fermat (1601-1665), aos quais geralmente é creditada a origem da teoria das probabilidades.

Nos séculos XVIII e XIX, essa teoria continuou a se desenvolver com contribuições de grandes matemáticos, entre eles, Jakob Bernoulli (1654-1705), cujo livro Ars conjectandi, dedicado exclusivamente às probabilidades, foi publicado, postumamente, em 1713.

- A teoria das probabilidades busca estimar as chances de ocorrer um determinado acontecimento.
- É um ramo da matemática que cria, elabora e pesquisa modelos para estudar experimentos ou fenômenos aleatórios.

Probabilidade (probability, chance, likelihood)

- Quantifica o grau de incerteza de eventos, variando de 0 (0%) a 1 (100%)
- Um evento impossível de ocorrer tem probabilidade 0 (zero)
- Um evento certo n\u00e3o \u00e9 probabil\u00edstico

Exemplo 1: Lançar um dado e registrar os resultados:

Espaço amostral: = { 1, 2, 3, 4, 5, 6 }

Evento A: Ocorrência de um número menor que 7 e maior que zero.

$$A = \{1, 2, 3, 4, 5, 6\}$$

Portanto $A = \Omega$, logo o evento é certo.

Evento B: Ocorrência de um número maior que 6.

$$C = \{ 2, 4, 6 \}$$

Evento D: Ocorrência de múltiplo de 3.

$$D = \{3, 6\}$$

Evento E: Ocorrência de número par ou número múltiplo de 3

$$E = C \cup D$$

 $E = \{2, 4, 6\} \cup \{3, 6\}$
 $E = \{2, 3, 4, 6\}$

União de eventos

Evento F: Ocorrência de número par e múltiplo de 3

$$F = C \cap D$$

 $F = \{2, 4, 6\} \cap \{3, 6\}$
 $F = \{6\}$

Intersecção de eventos

Evento G: Ocorrência de número ímpar

$$G = \{ 1, 3, 5 \}$$

Observe que
$$C \cap G = \emptyset$$

$$C = \{ 2, 4, 6 \} \cap G = \{ 1, 3, 5 \} = \emptyset$$

Quando a intersecção de dois eventos é o conjunto vazio, eles são chamados eventos mutuamente exclusivos.

PROBABILIDADE DE UM EVENTO OCORRER

$$P(A) = \frac{\text{número de elementos de A}}{\text{número de elementos de }\Omega} \Rightarrow P(A) = \frac{n(A)}{n(\Omega)}$$

Consideremos o experimento Aleatório do lançamento de um moeda perfeita. Calcule a probabilidade de sair cara.

Espaço amostral:
$$\Omega = \{cara, coroa\} \Rightarrow n(\Omega) = 2$$

Evento A: $A = \{cara\} \Rightarrow n(A) = 1$

Como
$$P(A) = \frac{n(A)}{n(B)}$$
, temos $P(A) = \frac{1}{2}$ ou 0,50 = 50%

No lançamento de um dado perfeito, qual é a probabilidade de sair número maior do que 4?

Espaço amostral:
$$\Omega = \{1, 2, 3, 4, 5, 6\} \Rightarrow n(\Omega) = 6$$

Evento A:
$$A = \{5, 6\} \Rightarrow n(A) = 2$$

Como:

$$P(A) = \frac{n(A)}{n(B)} \rightarrow P(A) = \frac{2}{6} \rightarrow P(A) = \frac{1}{3}$$

No lançamento simultâneo de 3 moedas perfeitas distinguíveis, qual é a probabilidade de serem obtidas:

- a) Pelo menos 2 caras?
- b) Exatamente 2 caras?

$$Ω$$
 = { CCC, CCK, CKC, CKK, KCC, KCK, KKC, KKK } ⇒ $n(Ω)$ = 8

$$A = \{ CCC, CCK, CKC, KCC \} \Rightarrow n(A) = 4$$

A = { CCC, CCK, CKC, KCC }
$$\Rightarrow$$
 n(A) = 4
 $P(A)$ = 4/8 = 1/2 = 50%

b) B = { CCK, CKC, KCC }
$$\Rightarrow$$
 n(B) = 3

$$P(B) = \frac{3}{8} = 0.375 = 37.5\%$$

Vamos formar todos os números de 3 algarismos distintos, permutando os dígitos 7, 8 e 9. Qual é a probabilidade de, escolhendo um número desses ao acaso, ele ser:

- a) ímpar
- b) par?
- c) múltiplo de 6?
- d) múltiplo de 4?
- e) maior que 780?
- $\Omega = \{789, 798, 879, 897, 978, 987\} \Rightarrow n(\Omega) = 6$

a) ímpar

$$P(A) = \frac{4}{6} = \frac{2}{3} = 0.66 = 66\%$$

Evento A: ser ímpar \Rightarrow A = {789, 879, 897, 987} \Rightarrow n(A) = 4

$$P(B) = \frac{2}{6} = \frac{1}{3} = 0.33 = 33\%$$

b) Evento B: ser par \Rightarrow B = {798, 978} \Rightarrow n(B) = 2

c) múltiplo de 6?

$$P(C) = \frac{2}{6} = 0.33 = 33\%$$

c) Evento C: ser múltiplo de $6 \Rightarrow C = \{798, 978\}$

d) múltiplo de 4?

$$P(D) = \frac{n(D)}{n(\Omega)} = \frac{0}{6} = 0 = 0\%$$

d) Evento D: ser múltiplo de $4 \Rightarrow D \stackrel{\Rightarrow}{=} D^{(D)} = 0$

e) maior que 780?

$$P(E) = \frac{n(E)}{n(\Omega)} = \frac{6}{6} = 1 = 100\%$$

e) Evento E: ser maior que 780 \Rightarrow E = $\Omega \Rightarrow$ n(E) = 6

Num grupo de 75 jovens, 16 gostam de música, esporte e leitura; 24 gostam de música e esporte; 30 gostam de música e leitura; 22 gostam de esporte e leitura; 6 gostam somente de música; 9 gostam somente de esporte e 5 gostam somente de leitura. CALCULE a probabilidade de escolher, ao acaso, um desses jovens:

- a) ele gostar de música;
- b) ele não gostar de nenhuma dessas atividades.

24 gostam de música e esporte 16 gostam de música, esporte e leitura

75 jovens

6 gostam somente de música

30 gostam de música e leitura 5 gostam somente de leitura 22 gostam de esporte e leitura 9 gostam

de esporte

somente

24 gostam de música e esporte 16 gostam de música, esporte e leitura

75 jovens

6 gostam somente de música

9 gostam somente de esporte

30 gostam de música e leitura 5 gostam somente de leitura 22 gostam de esporte e leitura

$$n(\Omega) = 75$$

a) Ele gostar de música gostam de música: 6 + 8 + 16 + 14 = 44

 b) Ele não gostar de nenhuma dessas atividades não gostam de nenhuma dessas atividades:

$$75 - (6 + 9 + 5 + 8 + 6 + 14 + 16) = 75 - 64 = 11$$

a) probabilidade de gostar de música:

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{44}{75} \cong 58\%$$

b) probabilidade de não gostar de nenhuma dessas atividades:

$$P(B) = \frac{n(B)}{n(\Omega)} = \frac{11}{75} \cong 14\%$$

PROBABILIDADE DA UNIÃO DE DOIS EVENTOS

Consideremos dois eventos A e B de um mesmo espaço amostral ff. Da teoria dos conjuntos, sabemos que:

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

Dividindo os membros da equação por $n(\Omega)$, temos:

$$\frac{n(A \cup B)}{n(\Omega)} = \frac{n(A)}{n(\Omega)} + \frac{n(B)}{n(\Omega)} - \frac{n(A \cap B)}{n(\Omega)}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

PROBABILIDADE DA UNIÃO DE DOIS EVENTOS

No lançamento de um dado, qual é a probabilidade de se obter o número 3 ou um número ímpar?

Espaço amostral: $\Omega = \{1, 2, 3, 4, 5, 6\} \Rightarrow n(\Omega) = 6$

Evento A: número $3 \Rightarrow A = \{3\} \Rightarrow n(A) = 1$

Evento B: número ímpar \Rightarrow b = {1, 3, 5} \Rightarrow n(B) = 3

PROBABILIDADE DA UNIÃO DE DOIS EVENTOS

$$A \cap B = \{3\} \cap \{1,3,5\} = \{3\}$$

$$n(A \cap B) = 1$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = \frac{1}{6} + \frac{3}{6} - \frac{1}{6} = \frac{3}{6}$$

PROBABILIDADE DO EVENTO COMPLEMENTAR

A probabilidade de não ocorrer o evento A é a probabilidade de ocorrer o evento complementar de A, representado por $\overline{\bf A}$.

Nessas condições, temos:

$$A \cup \overline{A} = \Omega \in A \cap \overline{A}$$

$$P(\Omega) = P(A \cup A)$$

Então:

$$1 = P(A) + P$$

$$1 - P(A) = P$$

EXEMPLO

No lançamento simultâneo de dois dados perfeitos distinguíveis, vamos calcular a probabilidade de NÃO sair soma 5.

$$\Omega = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\}. \Rightarrow n(\Omega) = 36.$$

Seja A o evento "sair soma 5". Então:

$$A = \{(1,4), (2,3), (3,2), (4,1)\} \Rightarrow n(A) = 4$$

EXEMPLO

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{4}{36} = \frac{1}{9} \qquad P(\overline{A}) = 1 - P(A) \Rightarrow P(\overline{A}) = 1 - \frac{1}{9}$$
$$P(\overline{A}) = \frac{8}{9}$$

PROBABILIDADE CONDICIONAL

Definição

Dados dois eventos A e B, com $P(A) \neq 0$, a probabilidade condicional de B, na certeza de A é o número

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Se
$$P(B) = 0$$
, decretamos $P(A|B) = 0$

É muito comum o uso dessa fórmula para o cálculo de P(A ∩ B).

Pois,
$$P(A \cap B) = P(A) \times P(B|A)$$

PROBABILIDADE CONDICIONAL

Numa caixa, contendo 4 bolas roxas e 6 bolas brancas, retiram-se, sucessivamente e sem reposição, duas bolas dessa urna. Determine a probabilidade de ambas serem roxas.

PROBABILIDADE CONDICIONAL

Numa caixa, contendo 4 bolas roxas e 6 bolas brancas, retiram-se, sucessivamente e sem reposição, duas bolas dessa urna. Determine a probabilidade de ambas serem roxas.

Solução: Sejam A = {a primeira bola é vermelha} e B = {a segunda bola é vermelha}, temos:

$$P(A \cap B) = P(A) \times P(B|A) = \frac{4}{10} \times \frac{3}{9} = \frac{2}{15}$$

TEOREMA DE BAYES

O teorema de Bayes é um corolário (consequência imediata de um teorema) do teorema da probabilidade total. E com ele é capaz o cálculo da seguinte probabilidade:

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

Onde,

- P(A) e P(B) são as probabilidades a priori de A e B.
- P(B|A) e P(A|B) s\u00e3o as probabilidades posteriores de B condicional a A e de A condicional a B, respectivamente.

TEOREMA DE BAYES

Exemplo:

A tabela abaixo oferece a distribuição dos funcionários de uma empresa, por gênero e por departamento que está alocado.

DEPARTAMENTO	HOMENS (H)	MULHERES (M)	TOTAL
VENDA (V)	153	48	201
OPERAÇÕES (O)	161	153	314
ADMINISTRATIVO (A)	18	10	28
DEMAIS (D)	45	25	70
TOTOAL	377	236	613

Escolhe-se, ao acaso, um funcionário. Defina os eventos:

H: o funcionário selecionado é homem

C: o funcionário selecionado é do departamento de vendas

TEOREMA DE BAYES

DEPARTAMENTO	HOMENS (H)	MULHERES (M)	TOTAL
VENDA (V)	153	48	201
OPERAÇÕES (O)	161	153	314
ADMINISTRATIVO (A)	18	10	28
DEMAIS (D)	45	25	70
TOTOAL	377	236	613

Escolhe-se, ao acaso, um funcionário. Defina os eventos:

H: o funcionário selecionado é homem

C: o funcionário selecionado é do departamento de vendas

P(H) = 377 / 613, P(V) = 201 / 613, mas, dentre os funcionários do departamento de Vendas, temos que a probabilidade de ele ser homem é: 153 / 201.

Isto é, P(H|V) = 153 / 201

Uma determinada peça é manufaturada em 3 fábricas: A, B e C. Sabe-se que A produz o dobro de peças que B. A fábrica B e C produzem o mesmo número de peças.

Sabe-se ainda que 2% das peças produzidas por A e por B são defeituosas, enquanto que 4% das produzidas por C são defeituosas. Todas as peças produzidas são misturadas e colocadas em um depósito.

Se do depósito for retirada uma peça ao acaso, qual a probabilidade de que ela seja defeituosa?

D = {A peça é defeituosa}

A = { A peça provém da fábrica A]

B = { A peça é a da fábrica B}

C = { A peça é da fábrica C}

$$P(A) = 50\%, P(B) = P(C) = 25\%$$

$$P(D|A) = P(D|B) = 2\%$$
 e que $P(D|C) = 4\%$

Pelo teorema da probabilidade total temos que

$$P(D) = P(A) \times P(D/A) + P(B) \times P(D/B) + P(C) \times P(D/C)$$

$$P(D) = 0.5 \times 0.02 + 0.25 \times 0.02 + 0.25 \times 0.04 = 2.50\%$$

Uma montadora trabalha com 2 fornecedores (A e B) de um determinada peça. As chances de que uma peça proveniente dos fornecedores A e B esteja fora das especificações são 10% e 5%, respectivamente. A montadora recebe 30% das peças do fornecedor A e 70% de B. Se uma peça do estoque inteiro é escolhida ao acaso:

- 1. Calcule a probabilidade de que ela esteja fora das especificações
- 2. Se uma peça escolhida ao acaso está fora das especificações, qual é a probabilidade que venha do fornecedor A?

Uma montadora trabalha com 2 fornecedores (A e B) de um determinada peça. As chances de que uma peça proveniente dos fornecedores A e B esteja fora das especificações são 10% e 5%, respectivamente. A montadora recebe 30% das peças do fornecedor A e 70% de B. Se uma peça do estoque inteiro é escolhida ao acaso:

1. Calcule a probabilidade de que ela esteja fora das especificações

$$P(E) = P(A) \times P(E|A) + P(B) \times P(E|B)$$

$$P(E) = (0.30) \times (0.10) + (0.70) \times (0.05) = 0.065 = 6.5\%$$

Uma montadora trabalha com 2 fornecedores (A e B) de um determinada peça. As chances de que uma peça proveniente dos fornecedores A e B esteja fora das especificações são 10% e 5%, respectivamente. A montadora recebe 30% das peças do fornecedor A e 70% de B. Se uma peça do estoque inteiro é escolhida ao acaso:

2. Se uma peça escolhida ao acaso está fora das especificações, qual é a probabilidade que venha do fornecedor A?

$$P(A|E) = \frac{P(A) X P(E|A)}{P(A) X P(E|A) + P(B) X P(E|B)} = \frac{0.3 X 0.10}{0.3 X 0.1 + 0.7 X 0.05} = \frac{0.03}{0.065} = 0.46$$

OBRIGADO

Copyright © 2021 | Professor André Silva de Carvalho

Todos os direitos reservados. Reprodução ou divulgação total ou parcial deste documento, é expressamente proibido sem consentimento formal, por escrito, do professor/autor

