Learning structure in gene expression data using deep architectures, with an application to gene clustering

Nipun Agarwala, Oliver Bear Don't Walk, David Cohn, Yuki Inoue, Axel Sly

Gene Expression

Previous Work

- Wavelet transformations
- Missing Value Imputation
 - Bayesian approach
 - Least Squares approach
- PCA
 - Did not improve cluster quality
- Autoencoder used to featurize breast cancer data

Motivation

 Objective: Learn interesting patterns in the input distribution of gene expression profiles using deep networks with denoising autoencoders

- Learn and generalize
- Clustering

What is an Auto-encoder?

- Tries to learn $h_{W,b}(x) \simeq x$, so that the output \hat{x} is close to x
- Typically, learn lower
 dimension representation of
 features i.e. hidden layers have
 lower dimension than input
- In some cases, hidden layers
 can have higher dimension, with
 an additional sparse
 (regularization) constraint, like
 KL divergence

Why Autoencoders?

Additions to Vanilla Autoencoder

- Two additional changes are made to the vanilla autoencoders.
 - Stacking Autoencoders
 - Denoising Autoencoders

Deep Autoencoders

- Sigmoid layers present in between each layer, for non-linearities
- Transformation matrix = $f_1(W_1 * f_2(W_2...))$

Denoising Autoencoders

- To avoid learning an identity mapping, two methods are usually used:
 - Lower dimensionality for the hidden layer
 - Train with corrupt input
- 2 Types of noise used:
 - Gaussian
 - Masking

What were the improvements made?

- The authors decided to **stack multiple hidden layers** for the autoencoders
- The **training was done greedily**, training 1 layer at a time and minimizing the reconstruction error each time.
- By adding noise and stacking the layers, the encoders are able to generalize properties and learn interesting features.
- Similar to how Deep Belief
 Network is trained

Restricted Boltzmann Machine (RBM)

- Has a visible layer and a hidden layer, neither of which are connected to nodes from its own layer
- RBM is a generative model, tries to capture the probability distribution of the sample
- The visible layer emulates the samples
- As a result, the hidden layer learns interesting features of the samples
- The training is done to minimize the "energy" equation.

$$E = - (\sum_{i < j} w_{ij} \ s_i \ s_j + \sum_i heta_i \ s_i)$$

Deep Belief Network

RBM

- Another method to preprocess the data
- Created using stacking multiple layers of RBM
- Visible layers are taken as the inputs, and the Hidden layers are taken as the outputs to the next layer.
- Training is done layer by layer, and a global-parameter turning at the end
- Each layer of RBM learns interesting features of the first visible layer

Unsupervised Clustering: K-means

- Cluster the lower-dimensional points so that similar points are together.
 Centroids can be treated as "representative" points.
- Assign random (k < n) points as centroids. Assign clusters based on the closest centroid and then update centroid as mean of the vectors in that cluster.
- Helps find non-readily apparent patterns

Yeast Cell Cycle Datasets

- Gupta et al. evaluated their autoencoder-based methodology on two yeast cell cycle data sets (Yeung et al. 2001)
- Two data sets derived from gene expression data for 6000 genes across 17 time points; of 6000 total genes, 380 genes identifiably peak in expression during a single phase of mitotic cell cycle
- Expression data normalized, with mean 0 and variance 1

DNA Microarrays

DNA microarray analysis of gene expression

Yeast Mitotic Cell Cycle

Hyper-parameter Tuning

- Hidden Layer Size and Corruption Level contributed the most to the variance in results
- Performance of all hyper-parameter combinations considered in selection of parameter values
- Selected parameter values based on "best results" (validation set?)
- Number of hyper-parameters vs. dataset size

Parameters	Values Used
Batch Size	4,8,12
Number of Training Epochs	2000, 5000
Number of Hidden Nodes	Number between 4-17
Corruption Level	0, 0.05, 0.1, 0.15, 0.2
Learning Rate	0.05, 0.1

Evaluation Criteria

Adjusted Rand Index

- Quantitative measure of the similarity in composition between two clusters
- The "corrected-for-chance" version of the Rand Index
- Used to assess performance of auto-encoder based clusters, as compared to "gold-standard" cluster labels

Given two clusters X and Y, and a set S of n elements,

$$Adjusted \ Rand \ Index = \frac{{\tiny Rand \ Index \ Score-Expected \ Index \ Score}}{{\tiny Maximum \ Index \ Score-Expected \ Index \ Score}},$$

where

$$Rand\ Index = \frac{\#\ of\ agree.\ in\ pairs\ of\ elements\ between\ clusters}{Total\ Number\ of\ Pairs\ of\ Elements}$$

Clustering Algorithms and Implementation

Clustering

 K-means and spectral clustering

Implementation

 Single hidden layer used, as opposed to three hidden layers, based largely on computation time, but also superior performance

theano

Experimental Results

Comparison for clustering score for raw data and regenerated data: Yeast dataset 1

Experimental Results

Comparison for clustering score for raw data and regenerated data: Yeast dataset 2

Shortcomings

- Will this generalize?
- Clustering
- Weak Evidence

Comparison for clustering score for raw data and regenerated data: Yeast dataset 2

Number of nodes in hidden layer

12

14

16

10

Questions?