Уравнение Линдблада для двухуровневой системы, взаимодействующей с термостатом

Pan Vyacheslav Igorevich

24 июня 2024 г.

Аннотапия

Уравнение Шредингера (5), широко применяемое для нахождения волновой функции, имеет ограниченное применение, так как, описывая изменение системы только под действием потенциальных сил, позволяет определить только чистые состояния и не способно описать диссипатицию квантовой системы.

$$i\hbar\partial_t |\psi\rangle = \hat{H} |\psi\rangle \tag{1}$$

В то же время матрица плотности может задавать как чистые, так и смешанные состояния. Уравнение Линдблада (5), рассматривоемое в данной работе, является уравнением матрицы плотности, описывающим ее эволюцию.

$$\partial_t \hat{\rho} = -\frac{i}{\hbar} [\hat{H}, \hat{\rho}] + \sum_i \gamma_i (L_i \rho L^\dagger - \frac{1}{2} [L_i^\dagger L_i, \hat{\rho}]) \tag{2}$$

1 Введение

Введем некоторые постулаты квантовой механики для чистых состояний.

Постулат 1. С любой закрытой квантовой системой связано конечномерное или бесконечномерное Γ ильбертово пространство³ \mathscr{H} над полем комплексных чисел, которому принадлежит вектор состояний $(|\psi\rangle \in \mathscr{H})$.

Состояния системы, описываемые векторами состояний называют чистыми. Зная вектор состояния системы, мы владеем наибольшей возможной информацией о ней. Вектор состояния Ψ в нотации Дирака можно записать как

$$\Psi = \sum_{i} a_i |\psi_i\rangle \tag{3}$$

где ψ_i — возможное состояние системы, a_i — амплитуда вероятности нахождения системы в состоянии с индексом і. Так как суммарная вероятность всех состояний должна ровняться единице,

$$\sum_{i} a_i^2 = 1 \tag{4}$$

В случае, если мы не владеем полным представлением о состоянии системы, мы говорим, что она находится в смешанном состоянии. Как было сказанно выше, для описания смешанных систем используется оператор ρ , принадлежащий Гильбертову пространству, называемый матрицей плотности (или оператором плотности) и задается как

$$\hat{\rho} = \sum_{i} p_i |\psi_i\rangle \langle \psi_i| \tag{5}$$

где p_i является вероятностью нахождения состояния ψ_i , а $|\psi_i\rangle\langle\psi_i|$ — соответствующий оператор проекции. След матрицы плотности равен 1 по условию нормировки $(\operatorname{tr}[\rho]=1)$, а сама матрица должна

 $^{^{1}}$ Полностью известное квантовое состояние.

²Необратимая потеря энергии.

³Линейное пространство, в котором норма порождается скалярным произведеднием.

быть положительна, по определению вероятности ($\rho > 1$).

В силу утверждения (4) случае если $tr[\rho^2] = tr[\rho] = 1$ мы считаем состояние чистым. В случае $tr[\rho^2] < 1$ состояние смешанное. Матрица плотности представляет собой квадратную матрицу размерности $N \times N$, где N — количество базисных векторов соответствующего Гильбертова пространства.

Постулат 2.Пусть до измерения система находилась в чистом состоянии ψ . В результате измерения микросистема переходит в одно из состояний различимых макроприборомю Согласно постулату 1, каждому такому состоянию соответствует векто $|\varphi_i\rangle$. Тогда вектор состояний $|\psi\rangle$ можно записать как линейнуюю суперпозицию по набору состояний $|\varphi_i\rangle$:

$$|\psi\rangle = c_i \sum_i |\varphi_i\rangle \tag{6}$$

zде c_i - набор комплексных чисел, которые определяются с помощью скалярного произведения

$$c_i = \langle \varphi_i | \psi_i \rangle \tag{7}$$

Постулат 3. Эволюция чистых состояний закрытой квантовой системы описываетя уравнением Шредингера.

$$\frac{d}{dt}|\psi(t)\rangle = -i\hbar \hat{H}|\psi(t)\rangle \tag{8}$$

Если нам известно, что в точке t=0 система находится в состоянии $|\psi(0)\rangle$, то переходя в систему единиц измерения, в которой $\hbar=1$, формальное решение уравнения Шредингера можно представить в виде:

$$|\psi(t)\rangle = e^{-i\hat{H}t} |\psi(0)\rangle \tag{9}$$

Постулат 4. Пространство состояний составной системы, состоящей из N числа подсистем, является тензорным произведением всех ее компонентов $\mathcal{H}=\mathcal{H}_1\otimes\mathcal{H}_2\otimes...\otimes\mathcal{H}_N$. Если подсистема принадлежащая Гильбертову пространству приготовлена в состоянии $|\psi_i\rangle$, то ее пространство состояний будет иметь вид $|\psi\rangle=|\psi_1\rangle\otimes|\psi_2\rangle\otimes...\otimes|\psi_N\rangle$. В случае составной системы ее конечное смешанное состояние будет иметь вид $\rho=\rho_1\otimes\rho_2\otimes...\otimes\rho_N$. Взаимозависимые состояния зовуться запутанными.