CHAPTER REVIEW

For more practice, go to the Problem Bank in Appendix D.

Introduction to Electrochemistry

SECTION 1 REVIEW

- **1.** In the half-cell $Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$, what is the electrode and is this half-reaction an anodic reaction or a cathodic reaction?
- **2.** What role does the porous barrier play?
- **3.** For each of the following pairs of half-cells, write the overall reaction and the cell notation. Assume the first half-cell given in each pair is the cathodic half-cell.
 - a. Ag^+/Ag , Co^{2+}/Co
 - b. Au^{3+}/Au , Zn^{2+}/Zn
 - c. $Hg^{2+}/Hg, K^{+}/K$
- **4.** Describe the components of an electrochemical cell and how the electrical charge travels through these components.

Voltaic Cells

SECTION 2 REVIEW

- **5.** Describe a voltaic cell, and give two examples of a voltaic cell.
- **6.** What is the essential advantage of a fuel cell over batteries in the generation of electrical energy?
- **7.** Explain why corrosion is a voltaic cell.
- **8.** Discuss the advantages and disadvantages of corrosion-prevention methods.
- **9.** Which half reaction would more likely be an oxidation reaction: one with a standard reduction potential of -0.42 V, or one with a standard reduction potential of +0.42 V?
- **10.** Why are dry-cell batteries called *dry cells*, even though their chemistry involves water?
- **11.** a. Explain what is meant by the potential difference between the two electrodes in an electrochemical cell.
 - b. How is this potential difference measured? What units are used?
- **12.** The standard hydrogen electrode is assigned an electrode potential of 0.00 V. Explain why this voltage is assigned.

- **13.** a. What information is provided by the standard reduction potential of a given half-cell?
 - b. What does the relative value of the reduction potential of a given half-reaction indicate about its oxidation-reduction tendency?
- **14.** When the cell $Ba(s) | Ba^{2+}(aq) | | Sn^{2+}(aq) | Sn(s)$ is running, what observations can be made?

PRACTICE PROBLEMS

- **15.** For each of the following pairs of half-cells, determine the overall electrochemical reaction that proceeds spontaneously:
 - a. Na⁺/Na, Ni²⁺/Ni
 - b. F_2/F^- , S/H_2S
 - c. Br_2/Br^- , Cr^{3+}/Cr
 - d. MnO_4^-/Mn^{2+} , Co^{2+}/Co
- **16.** Determine the values of E^{θ} for the cells in the previous problem.
- 17. Suppose chemists had chosen to make the $I_2 + 2e^- \longrightarrow 2I^-$ half-cell the standard electrode and had assigned it a potential of zero volts.
 - a. What would be the E^{θ} value for the Br₂ + $2e^{-} \longrightarrow 2Br^{-}$ half-cell?
 - b. What would be the E^0 value for the Al³⁺ + $3e^- \longrightarrow$ Al half-cell?
 - c. How much change would be observed in the E^0 value for the reaction involving $Br_2 + I^-$ if the I_2 half-cell is the standard?
- **18.** If a strip of Ni were dipped into a solution of AgNO₃, what would be expected to occur? Explain, using E^{θ} values and equations.

Electrolytic Cells

SECTION 3 REVIEW

- **19.** What reaction happens at the cathode in an electrolysis process?
- **20.** Explain why water cannot be used in the electrochemical cell during the production of aluminum.
- **21.** Calculate the voltage of a cell in which the overall reaction is the electrolysis of aqueous cadmium chloride into its elements.
- **22.** According to electrochemical data, can Ni be plated onto a zinc metal object using a nickel nitrate solution? Explain.