Proofs0

Asher Kirshtein

January, 31 2022

1 Proof 1:

If x is an odd integer, then x + 1 is even. Formally, you must prove that $\forall x \in Z$ (x is odd $\rightarrow x + 1$ is even).

Proof:

Step 1: By definition an even number is divisible by 2.

Step 2: 1 is half of 2; Since one is half of 2 if you add one to an even number twice (x + 1) two times then you will still be at a number that is divisible by 2.

Step 3: But, if you add 1 to an even it is no longer divisible by 2 and therefore every time you add 1 it cycles between being divisible by 2 and not being divisible by 2.

Step 4: Therefore, if x is odd then x+1 is even.

QED

2 **Proof 2:**

First some notation and a definition for divisibility. We say that integer a divides b (or b is divisible by a), if and only if for some integer q, b = aq. We write this as a|b.

Theorem: $\forall n \in \mathbb{N}, 3 | (n^3 - n)$ Prove the theorem using induction.

Proof:

Step 1: Assume that n=1; then $1^3-1=0$ and 0/3=0 so there is a q that exists and that q is 0. Therefore our base case P(1) holds true.

Step 2: Assume that this holds true for some integer k. That means that $k^3 - k$ is divisible by 3.

Step 3: Now lets try to prove $(k+1)^3 - (k+1)$ is divisible by 3.

Step 4: $(k+1)^3$ can be simplified to $k^3 + 3k^2 + 3k + 1$. So we now have $k^3 + 3k^2 + 3k + 1 - (k+1)$; and this expression can be simplified even further to $k^3 + 3k^2 + 2k$ by combining like terms.

Step 5: We already know that $k^3 - k$ is divisible by 3(from our assumption in step 2). $k^3 + 3k^2 + 2k$ is equivalent to $k^3 - k + 3k^2 + 3k$ and since $k^3 - k$ is divisible by 3 there exists some integer a so that $k^3 - k = 3a$. (Since they are equal we can just write $k^3 - k$ as 3a)

Step 6: We have $3a+3k^2+3k$. We can then factor out a 3 so we have $3(a+k^2+k)$. Since you are multiplying by a 3 in the front if you divide by 3 you are left with $a+k^2+k$. So therefore $3(a+k^2+k)$ is divisible by 3

QED

3 Proof 3:

Theorem: $\forall n \in \mathbb{N}$, for n > 1 we have $n! < n^n$.

Step 1: Assume that n=2. Then $2!<2^2$ which is the same as 2<4. So therefore our base case P(2) holds.

Step 2: Assume this holds true for some integer k. so $k! < k^k$

Step 3: Now let's prove $(k+1)! < (k+1)^{(k+1)}$

Step 4: By the definition of factorials we know k! * (k+1) = (k+1)! We also know that $(k+1)^{k+1} = (k+1)^k * (k+1)$ Since we know all of this we can simply rewrite them together as $k! * (k+1) < (k+1)^k * (k+1)$

Step 5: We can start by canceling out our (k+1) which is on both sides so we can simply divide them out and be left with $k! < (k+1)^k$

Step 6: Since we have already said that this holds true for $k! < k^k$ and since its obvious that $k^k < (k+1)^k$ when dealing with whole positive Integers. Then $k! < (k+1)^k$ and so to $(k+1)! < (k+1)^{k+1}$

QED