Метод зацепления в задачах Метода Монте-Карло на Марковских Цепях

Мехнин Павел Владимирович, гр. 21.М03-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика

Научный руководитель: к.ф.-м.н. Шпилёв П. В. Консультант: к.ф.-м.н. Коробейников А. И. Рецензент: к.ф.-м.н. Гуревич А. А.

Санкт-Петербург, 2023

Идентификация пептидов

Выявление пептидов с похожими свойствами

Обнаружение соединений с аналогичной структурой

Получение экспериментального спектра исследуемого образца методом масс-спектрометрии

Поиск в базе данных спектра, наиболее схожего с экспериментальным, и оценка этого сходства

Актуальность

- MS-GF+ (Kim et al., 2014)
- MS-DPR (Mohimani et al., 2013)

• только для пептидов линейной структуры

• оценки потенциально смещены

Предлагаемое решение: обобщение метода зацепления марковских цепей (Jacob et. al., 2020).

Цель работы: разработка алгоритма вычисления несмещённых оценок значимости совпадений пептидного спектра.

Задачи:

- эффективное построение марковских цепей;
- валидация работы для пептидов различной структуры.

Вероятностная модель спектра (Abramova et al., 2017)

Пусть P — пептид из k аминокислот общей массой M, $\mu=(\mu_1,\dots,\mu_k)$ — вектор масс аминокислот, \mathbb{H} — матрица фрагментации пептида, $Score(\mu)=Score(S,\mathbb{H}\mu)$ — функция оценки сходства экспериментального S и ожидаемого $\mathbb{H}\mu$ спектров.

Предполагая, что μ равномерно распределён на множестве $\mathcal{M}=\{(\mu_1,\dots,\mu_k)|\,\mu_i>0,\sum_{i=1}^k\mu_i=M\}$, определение значимости совпадений спектра сводится к оценке вероятности

$$p = \mathbb{P}(Score(\mu) \ge r),$$

где r — заранее фиксированный порог.

Оценка по методу существенной выборки

Обозначим множество $\mathcal{A} = \{ \nu \in \mathcal{M} : Score(\nu) \geq r \},$ f — плотность равномерного распределения на множестве \mathcal{M} , плотность $q(\nu) \propto w(Score(\nu)) f(\nu)$.

Рассмотрим выборку $\nu_1, \ldots, \nu_N \sim q$.

Оценка по методу существенной выборки для вероятности $p = \mathbb{P}(\nu \in \mathcal{A})$:

$$\hat{p}_{IS} = \frac{\sum_{n=1}^{N} \mathbb{1}_{\{\nu_n \in A\}} / w(Score(\nu_n))}{\sum_{n=1}^{N} 1 / w(Score(\nu_n))}.$$

Идея метода зацепления (Jacob et al., 2020)

Определение

Парой сцепленных марковских цепей с пространством состояний $\mathcal X$ и стохастическим ядром $P(\cdot,\cdot)$ называется марковская цепь $Z_t=(X_t,Y_t)$ с пространством состояний $\mathcal X\times\mathcal X$, такая что: $\mathbb P\{X_{t+1}=x'|Z_t=(x,y)\}=\mathbb P\{X_{t+1}=x'|X_t=x\}=P(x,x'),$ $\mathbb P\{Y_t=y'|Z_{t-1}=(x,y)\}=\mathbb P\{Y_t=y'|Y_{t-1}=y\}=P(y,y').$

Рис. 1: Траектории сцепленных марковских цепей

Несмещённая оценка

С помощью выборки $\{(X_t,Y_{t-1})|t=1,2,...\}$ из сцепленных цепей Маркова можем вычислить несмещённую оценку

$$H_i = h(X_i) + \sum_{t=i+1}^{\tau-1} \{h(X_t) - h(Y_{t-1})\},\$$

где h — индикатор множества \mathcal{A} , $au = \inf\{t \geq 1: X_t = Y_{t-1}\}$ — момент зацепления цепей.

Алгоритм моделирования сцепленных цепей

Алгоритм 1 Построение сцепленных марковских цепей

```
1: Вход: число итераций m, оценки весов w
 2: Выход: выборка \{(X_t, Y_{t-1})|t=1,2,\dots\}
 3: X_1 \leftarrow \nu_x, Y_0 \leftarrow \nu_y, t \leftarrow 1
 4: while t < \max(m, \tau), где \tau = \inf\{t > 1 : X_t = Y_{t-1}\} do
           \nu^* \sim \gamma(\cdot|\nu)
 5:
          \alpha_x \leftarrow \min \left[ 1, \frac{w(Score(\nu^*))}{w(Score(\nu_x))} \right], \ \alpha_y \leftarrow \min \left[ 1, \frac{w(Score(\nu^*))}{w(Score(\nu_x))} \right]
 6:
 7: u \sim U[0,1]
     if u < \alpha_x then
 8:
 9:
                  \nu_x \leftarrow \nu^*. X_{t\perp 1} \leftarrow \nu^*
10:
            else
                  X_{t\perp 1} \leftarrow X_t
11:
           if u < \alpha_u then
12:
13:
                  \nu_{\nu} \leftarrow \nu^*, Y_t \leftarrow \nu^*
14:
            else
                  Y_t \leftarrow Y_{t-1}
15:
16:
            t \leftarrow t + 1
```

Несмещённая оценка

Схема вычисления несмещённой оценки \hat{p}_C :

- f O Выбор весов $\hat{w}(s)$ алгоритмом Ванга–Ландау (Iba et al., 2014).
- ② Построение сцепленных марковских цепей со стационарным распределением $q(\nu) \propto \hat{w}(Score(\nu)) \, f(\nu)$ модифицированным алгоритмом Метрополиса-Гастингса.
- 3 Вычисление несмещённой оценки

$$\hat{p}_C = \frac{\sum_{i=1}^n H_i / w(Score(\nu_i))}{\sum_{i=1}^n 1 / w(Score(\nu_i))}$$

Уменьшение дисперсии

Несмещённые оценки можно усреднить, чтобы уменьшить дисперсию оценок

Промоделируем параллельно множество цепей и объединим результаты независимых вычислений

Для уменьшения дисперсии оценки отбросим первые k элементов цепи (0.99-квантиль распределения времени зацепления au)

Для уменьшения «бесполезных» вычислений ограничим число итераций m как кратное k

Схема проведения экспериментов

- Для пептидов различной структуры были вычислены:
 - $oldsymbol{0}$ оценки по методу существенной выборки \hat{p}_{IS}
 - $oldsymbol{2}$ оценки по методу зацепления \hat{p}_C
- Для оценок построены 95% доверительные интервалы.
 Оценки дисперсий вычислены по рекурсивному методу TSR (Yau et al., 2016).
- Выполнено сравнение смещения оценок $b = \hat{p} p$ от ожидаемого значения.

Оценки и их доверительные интервалы

Рис. 2: GPDGPEEK

Рис. 3: PPAEDSQK

Оценки и их доверительные интервалы

Рис. 4: (10,20,40,80,160)

Рис. 5: Surfactin

Численные результаты

Таблица 1: Сравнение смещения оценок

Пептид	$ b_{IS} $	$ b_C $	$\frac{ b_{IS} }{ b_C }$
GPDGPEEK	11.2%	2.55%	4.38
GEEEPSQGQK	8.07%	0.70%	11.5
PPAEDSQK	1.91%	1.07%	1.79
(10,20,40,80)	4.48%	0.40%	11.2
(10,20,40,80,160)	5.43%	0.47%	11.6
Surfactin	5.22%	0.82%	6.36

Выводы

- В работе исследован метод зацепления, позволяющий уменьшить смещение в оценках, полученных с помощью алгоритмов МСМС.
- Разработан алгоритм вычисления несмещённых оценок статистической значимости совпадений спектра пептидов с использованием сцепленных марковских цепей.
- Проведено сравнение полученного алгоритма с методом существенной выборки.
- Эмпирически показано, что подход довольно общий и потенциально может применяться к пептидам различной структуры.
- Метод открывает простор для масштабирования посредством многопоточных приложений или облачной контейнеризации.