分散ファイルシステム とクラスター計算

性能問題とボトルネック

ビッグデータの分析では大量のデータを扱うため、問題のほとんどは性能問題(分析バッチ処理が朝までに終わらない、BI 製品の画面が重い、予測API の応答速度が遅い)

処理時間の大部分を占めている処理「ボトルネック」を解析して、それを解消する ネットワーク CPU ディスク

一般的な計算処理

単一のプロセッサー、メインメモリー、ローカルディスク

マルチコア CPU

計算ノード

一般的な計算処理

単一のプロセッサー、メインメモリー、ローカルディスク

マルチコア CPU

CPUのクロック周波数

https://www.pc-koubou.jp/magazine/23926

計算ノード

一般的な計算処理

単一のプロセッサー、メインメモリー、ローカルディスク

マルチコア CPU

計算ノード

CPUのクロック周波数 CPUのコア(Core)数

https://www.pc-koubou.jp/magazine/23926

"Classical" Machine Learning & Data Mining, Statistics, ...

small dataの世界

一般的な計算処理 + アクセラレータ

- コアよりも性能や機能が低い演算装置を多数配置
- ・ 基本的な演算(積, 和など)を高い電力効率で実行
- ホストCPUから操作

例) GPGPU (General Purpose computation on Graphic Processing Unit)

一般的な計算処理 + アクセラレータ

- コアよりも性能や機能が低い演算装置を多数配置
- ・ 基本的な演算(積, 和など)を高い電力効率で実行
- ホストCPUから操作

例) GPGPU (General Purpose computation

on Graphic Processing Unit)

もともとグラフィック処理用プロセッサGPUをシミュレーションや機械学っ習の計算に使用

例)NVIDIA Tesla P100: 3584 CUDAコア A100: 6912 CUDA cores

Googleが開発I

Deep Learning, +

一般的な計算処理 + アクセラレータ

Different Kinds of Parallelism

CPU - Task Parallelism

GPU - Data Parallelism

Slide form S. Seibert (Anaconda)

専用の並列計算機(スーパーコンピュータ)

多数のプロセッサーと特殊なハードウェア

例) 九州大学のスーパーコンピュータ ITO

(サブシステムA)

システムを構成するサーバ数: 2,000 台

サーバあたりのCPU数: 2個

• CPUあたりのコア数: **18** 個

コアあたりの最大同時演算数: 32

CPUのクロック周波数: 3.0 GHz

計算機 サーバ **CPU**

6912000 GFLOPS(ギガ フロップス) = 2000 * 2 * 18 * 32 * 3.0 一秒間に 6912兆回の演算が出来る

Kilo = 10^3 , Mega = 10^6 , Giga = 10^9 , Tera = 10^{12} , Peta = 10^{15} , Exa = 10^{18}

HUMAN BRAIN PROJECT

歴代1位の一覧

ランク付け年月		設置国	ベンダ	名称	
2019年	11月		IBM		
20194	6月	■■ フノリカ合衆国		サミット	
2018年	11月	■ アメリカ合衆国			
20104	6月				
2017年	11月		NRCPC		
2017+	6月			カボ・ナルウル	
2016年	11月			117级。《加及之	
20104	6月				
2015年	11月	■ 中華人民共和国			
20154	6月	十千人民共和国			
2014年	11月		NUDT	天河二号	
20144	6月		NODT	\M_5	
2013年	11月				
20154	6月				
2012年	11月	■■ アメリカ合衆国	Cray	タイタン	
20124	6月	プラカロ水国	IBM	セコイア	
2011年	11月	● 日本	富士通	京	
2011+	6月	山本		N.	

歴代1位の一覧

ランク付け年月		設置国	ベンダ	名称		
2021年	6月					
2020年	11月	● 日本	富士通	富岳		
	6月					
2019年	11月					
2017-	6月	■ アメリカ合衆国	IBM	サミット		
2018年	11月		IDM			
2010-	6月					
2017年	11月		NRCPC			
	6月			神威・太湖之光		
2016年	11月			TTIM XXIIIIX		
2010	6月					
2015年	11月	■ 中華人民共和国				
2010	6月	T T Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	NUDT			
2014年	11月			天河二号		
20111	6月			7(//3/3		
2013年	11月					
20154	6月					
2012年	11月	■ アメリカ合衆国	Cray	タイタン		
	6月	■■ ノブ・フルロ水田	IBM	セコイア		
2011年	11月	● 日本	富士通	京		
	6月	Ŭ LIT	田工畑			
2010年	11月	中華人民共和国	NUDT	天河一号A		
20104	6月					

歴代1位の一覧

2022年5月、<u>TOP500</u>で、 1.102エクサFLOPSを達成 し、<u>富岳</u>を抜き世界1位の スーパーコンピュータとなっ た

Auroraは2023年6月22日に完成 アメリカで2番目の<u>エクサスケール</u> コンピュータとなる 2exaFLOPS/s(毎秒200京回の計算 に相当)

ランク付け年月		設置国	ベンダ	名称	
2022年	6月	■ アメリカ合衆国	HPE	Frontier	
	11月				
2021年	6月				
2020/	11月	● 日本	富士通	富岳	
2020年	6月				
2010年	11月				
2019年	6月	■■ マメリカ合衆国	TDM	サミット	
2018年	11月	- == アメリカ合衆国	IBM		
20164	6月				
2017年	11月	中華人民共和国	NRCPC		
20174	6月			カロス 十年 カリ	
2016年	11月			14版。《公司》	
20104	6月				
2015年	11月		NUDT		
20134	6月				
2014年	11月			工河一只	
	6月			天河二号	
2013年	11月				
2013年	6月				

歴代1位の一覧

El Capitan (エル・キャピタン)は、 2019年8月に開発が発表され、 2024年に完成し、2024年11月の TOP500で2.79 エクサFLOPSを達成 し世界最高速となったスーパーコン ピュータ

CPUとGPUのコア数合計は 1,103万9,616基を搭載し ている

ランク付け年月		設置国	ベンダ	名称	
2024年	11月		HPE	El Capitan	
	6月	■ アメリカ合衆国			
2023年	11月				
20234	6月	■ アクカロ水国		Frontier	
2022年	11月				
20224	6月				
2021年	11月		富士通	富丘	
20214	6月	■日本			
2020年	11月	→ 山本			
20204	6月				
2019年	11月		IBM		
20154	6月	アメリカ合衆国		サミット	
2018年	11月			9291	
2018#	6月				
2017年	11月		NRCPC		
	6月			神威・太湖之光	
2016年	11月			117×4 - 7√14/1×=70	
	6月				

スパコン ランキング 性能

2020年 富岳

順位	Rmax Rpeak (PFLOPS)	名称	コンピュータ設計 プロセッサ, 接続	ベンダー	場所 国, 年
1	442.010 537.212	富岳	A64FX 48C 2.2GHz Tofu interconnect D	富士通	RIKEN
2	148.600 200.795	Summit	IBM Power System AC922 Power9 22C + Tesla V100, Mellanox dual-rail EDR InfiniBand	IBM	オークリッジ国立研究所 アメリカ合衆国, 2018
3	94.640 125.712	Sierra	IBM Power System S922LC Power9 22C + Tesla V100, Mellanox dual-rail EDR InfiniBand	IBM	ローレンス・リバモア国立研 アメリカ合衆国, 2018
4	93.015 125.436	神威・太湖之光	Sunway MPP SW26010, Sunway	NRCPC	国家超級計算無錫中心(英語版中国, 2016
5_	64.590 89.795	Perlmutter	HPE Cray EX235n AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10	HPE	ローレンス・バークレー国立・ アメリカ合衆国, 2021

性能指標 (Peta FLOPS)

講義の内容について

SUPERCOMPUTER

ゲノム科学の研究をやっているある研究チームが、普通のパソコンでやったら30年もかかる計算をサミットで1時間で終わった

https://en.wikipedia.org/wiki/Frontier (supercomputer)

スーパーコンピュータ と PC、スマートフォンの CPUの演算性能

クロック周波数はほぼ同じ

基本的に CPU数やコア数で演算性能を稼ぐ

アクレラレータを加えた性能

	スーパーコンピュ サブシステム A	ータ ITO サブシステム B	スーパーコンピュータ Summit 世界2位 https://www.lbm.com/thought-leadership/summit-supercomputer/	スーパーコンピュータ 富岳 (Fujitsu A64FX) 世界1位
CPU数	4,000	256	9,216	158,976
クロック周波数	3.0GHz	2.3GHz	3.07GHz	2.0GHz
コア数	18	18	22	48
コア当たり 最大同時演算数	32	32	8	32
CPU理論演算性能	6.9 PFLOPS	0.3 PFLOPS	5.0 PFLOPS	488 PFLOPS
アクセラレータ数	0	512	27,648	0
アクセラレータ 理論演算性能	0	2.7 PFLOPS	193.5 PFLOPS	0
総演算性能		9.9 PFLOPS	199 PFLOPS	488 PFLOPS

ITOの後継として導入 新スーパーコンピュータシステム玄界(げんかい) (2024年10月運用開始) 富士通社のFUJITSU Server PRIMERGYシリーズを中核 とするシステム

新スーパーコンピュータシステム玄界の概要

総理論演算性能は約 13 PFLOPS

ノードグループA 1,024ノード

CPU: Intel Xeon (Sapphire Rapids, 60core) \times 2 / node

RAM: 512 GiB / node

ノードグループB 38ノード

CPU: Intel Xeon (Sapphire Rapids, 60core) × 2 / node

RAM: 1 TiB / node

GPU: NVIDIA H100 (SXM) x 4 / node

SSD: 12.8TB / node

ノードグループC 2ノード

CPU: Intel Xeon (Sapphire Rapids, 56core) × 2 / node

RAM: 8 TiB / node

GPU: NVIDIA H100 (SXM) x 8 / node

SSD: 15.3TB / node

ストレージ

HDD: 55.2 PB

SSD: 0.7 PB

https://www.kyushu-u.ac.jp/ja/notices/view/2699/

<u>クラスター計算(Cluster Computing)</u>

- INTERNET + 大規模なウェブサービスの普及
- ◆ 現代のインターネットアプリケーションでは、巨大なデータを迅速 に管理することが求められるようになった
- ◆ 多くのアプリケーションでは、データは極めて規則的であり、並列 化を活用できる十分な余地がある

<u>クラスター計算(Cluster Computing)</u>

- INTERNET + 大規模なウェブサービスの普及
- ◆ 現代のインターネットアプリケーションでは、巨大なデータを迅速 に管理することが求められるようになった
- ◆ 多くのアプリケーションでは、データは極めて規則的であり、並列 化を活用できる十分な余地がある
- 例:
- ウェブページを重要度に応じてランキングする(次元が 数百億におよぶ行列とベクトルの乗算の繰り返しが生じ る)
- ソーシャルネットワークサイトで友達のネットワークを検索する(数億のノード(個人)と数十億の枝(友達関係)を扱う)

- 20,000,000,000+ web pages x 20KB = 400+ TB
- Assume 1 computer reads 30-35 MB/sec from disk
- How long it would take to read the web (単一計算ノードで)
 - 1 day to read the web
 - 4 months to read the web
 - 2 years to read the web

- 20,000,000,000+ web pages x 20KB = 400+ TB
- Assume 1 computer reads 30-35 MB/sec from disk
- How long it would take to read the web (単一計算ノードで)
 - 1 day to read the web
 - 4 months to read the web
 - 2 years to read the web

- How many pages to print all web pages on the Internet
 - **200,000,000**
 - **200,000,000,000**
 - **200,000,000,000,000**

- How many pages to print all web pages on the Internet
 - **200,000,000**
 - **200,000,000,000**
 - **200,000,000,000,000**

<u>クラスター計算(Cluster Computing)</u>

新しい計算システム+新世代のプログラミングシステムの 先駆け →

独立した計算ノード(プロセッサ,主記憶,ディスク)のクラスター

- 有利な点:
- ▶並列化を活用できる
- ▶信頼性(障害対応)
- ▶計算ノードはありふれたハードウェアであり、 専用並列計算機と比べてコストを大きく削減 することができる

http://bit.ly/Shh0RO

計算ノードクラスターの物理的な構成

ラックは異なるレベルのネットワークやスイッチを使って接続さる(2-10 Gbps backbone between racks)

1つのラックに16-64個の計算ノードが配置される

構成要素の障害

- 計算ノードや相互接続ネットワークなどシステムを構成する要素が多くなればなるほど、システムが任意の時点で動かなくなる可能性が高くなる
- ・障害の主要な要因
 - 1. ノードの損失(例えば、ハードデイスクの損傷)
 - 2. ラック全体の損失(他のノードや外界と接続しているネット ワークの障害)
 - One server(node) may stay up 3 years (1,000 days)
 - If you have 1,000 servers, expect to loose 1/day
 - People estimated Google had ~1M machines in 2011
 - 1,000 machines fail every day!

構成要素の障害 → 対策

・重要な計算途中、1つの計算ノードが障害を起こすたびに、処理を中断し構成要素を再起動するのでは、計算を完了させることはできない。...

構成要素の障害 → 対策

・重要な計算途中、1つの計算ノードが障害を起こすたびに、処理を中断し構成要素を再起動するのでは、計算を完了させることはできない...

- 対策
 - (1) ファイルを冗長に保存する

*複数の計算ノード上でファイルを複製する

構成要素の障害 → 対策

・重要な計算途中、1つの計算ノードが障害を起こすたびに、処理を中断し構成要素を再起動するのでは、計算を 完了させることはできない...

- 対策
 - (1) ファイルを冗長に保存する
 - *複数の計算ノード上でファイルを複製する
 - (2) 計算をタスクに分割する
 - *どれか1つのタスクの実行が止まっても、他のタスクに影響を与えることなく再開できる(MapReduceで実現)

分散ファイルシステム (Distributed File System, DFS)

大規模ファイルシステムの特徴

ファイルサイズは巨大(TBレベル)

<u>分散ファイルシステム (Distributed File System, DFS)</u>

大規模ファイルシステムの特徴

- ファイルサイズは巨大(TBレベル)
- ファイルはチャンク(chunk) に分割される

チャンクサイズ: 通常128MB

各チャンクを3つに複製、3つの異なる計算ノードに置かれる

チャンクの複製を保持するノードは、別のラックに置かれる

Chunk server は Compute server としても使う

Bring computation directly to the data!

<u>分散ファイルシステム (Distributed File System, DFS)</u>

大規模ファイルシステムの特徴

- マスターノード(Master Node, Name Node)
- *ファイルのチャンクの場所についてのデータ(メタデータ)
- *マスターノード自体も複製される
- *ファイルシステム全体のデイレクトリーは、どこに複製があるかを 知っている
- * デイレクトリーそのものも複製することが可能, DFSの使用者は, デイレクトリーの複製がどこにあるかを知ることができるようになっている

<u>分散ファイルシステム (Distributed File System, DFS)</u>

代表的な製品はHadoop プロジェクトの一部である ■ HDFS の構成 **HDFS** アプリケーション データを分散して格納する DataNode データの保管場所を管理する NameNode 読み込み の二つの役割を持つプロセスから構成されます ファイル 要求 В データ格納場所 HDFS クライアント NameNode ファイルの 一部を返却 読み込み 要求 DataNode DataNode DataNode レプリケーション

分散ファイルシステム (Distributed File System, DFS)

データへのアクセス方法

• アプリケーションからファイルにアクセスする場合は HDFS クライアントを使います

レプリケーション

■ HDFS の構成

DataNode

HDFSクライアントは最初にNameNodeに対してファイルが格納されているDataNode群を問い合わせ、次にそのサーバ群からファイルを構成するデータを取得する

データ格納場所 NameNode DataNode

最後にHDFSクライアント上で 一つのファイルに統合し、 アプリケーションに返す

分散ファイルシステム (Distributed File System, DFS)

HDFS Architecture

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

References

Leskovec et al., Mining of Massive Datasets, 3ed., CUP, 2020.

渡部徹太郎, 図解即戦力 ビッグデータ分析, 技術評論社, 2021.