

FIG. 1a

FIG. 1b

Spectrum of SE with and without 1200Å SiO₂/Si Mirror

FIG. 2

FIG.4

FIG. 3

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10a

FIG. 10b

FIG. 10c

FIG. 10d

FIG. 10e

10f1

10f2

FIG. 10g

FIG. 10h

FIG. 10i

FIG10j1

FIG. 10J2

FIG. 10k1

FIG. 10k2

FIG. 10l

Providing a spectroscopic ellipsometer system comprising:
a source of polychromatic electromagnetic radiation;
a polarizer which remains fixed in position during
data acquisition;
a stage for supporting a sample system;
an analyzer which remains fixed in position during
data acquisition; and
a detector system;

said spectroscopic ellipsometer system further comprising at least one means for discretely, sequentially, progressively modifying a polarization state of a beam of electromagnetic radiation provided by said source of polychromatic electromagnetic radiation through a plurality of polarization states, said means being present at at least one location selected from the group consisting of:
between said polarizer and said stage for supporting a sample system; and
between said stage for supporting a sample system and said analyzer.

For each of at least two ellipsometrically distinguished sample systems, obtaining at least one multi-dimensional data set(s) comprising magnitude as a function of wavelength and a function of a plurality of discrete settings of said at least one means for discretely, sequentially, progressively modifying a polarization state of a beam of electromagnetic radiation provided by said source of polychromatic electromagnetic radiation.

Providing a mathematical model of the ellipsometer system, including provision for accounting for the settings of said at least one means for discretely, sequentially, progressively modifying a polarization state of a beam of electromagnetic radiation provided by said source of polychromatic electromagnetic radiation.

By simultaneous mathematical regression onto said data sets, evaluating parameters in said mathematical model, including polarization state changing aspects of each of said plurality of discrete settings of said at least one means for discretely, sequentially, progressively modifying a polarization state of a beam of electromagnetic radiation provided by said source of polychromatic electromagnetic radiation.

FIG. 11

FIG. 12

FIG. 13

Sample *3

FIG. 14

Sample *4

FIG. 15

FIG. 16

FIG. 17

FIG. 19

FIG. 20

Retardance Characteristics of Waveplates
used in Dual Element Compensator Design

FIG. 22

FIG. 23