

Fractional step method for the incompressible **Navier-Stokes equations**

as part of the course Computational Fluid Dynamics II Michael Stumpf | June 24, 2014

Outline

- Assignment
- 2 Numerical elaboration

Michael Stumpf - CFD II: Fractional step method

- 3 Implementation
- 4 Simulation

Aim of this project

- simulation of the interaction between two counterrotating vortices
- tracking of vortex centers
- influence of Reynolds number and distance between centers

quiver plot of velocity

Subtasks

Numerical elaboration

- spatial and temporal discretization
- stability analysis

Implementation

- implementation of discretized equations in C++
- verification of the code with help of analytic solution (Taylor-Green)

Simulation & Post-Processing

- simulation of the vortices and parameter studies
- graphical post-processing with Matlab

Numerical elaboration

starting point: dimensionless, incompressible Navier-Stokes equations

$$\nabla \cdot \mathbf{u} = 0$$

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla \rho = \frac{1}{\mathsf{Re}} \nabla^2 \mathbf{u}$$

Problems

- $lue{}$ incompressible ightarrow no equation for pressure
- non-linear convective term

Non-linear term

- hard to discretize (most higher-order schemes need unknown velocity field at future time step)
- second order discretization can be archieved with Adams-Bashforth temporal discretization

$$\partial_t \mathbf{H} = rac{1}{2} \left(3 \mathbf{H}^n - \mathbf{H}^{n-1} \right) + \mathcal{O}(\Delta t^2)$$
 where $\mathbf{H} = -\mathbf{u} \cdot \nabla \mathbf{u}$

⇒ needs velocity fields from current and previous time step, which are known

Incompressibility

role of pressure: force velocity field to be divergence-free

Fractional step method (Kim and Moin, 1985)

calculate a velocity field which is not divergence-free

$$\frac{\mathbf{u}^* - \mathbf{u}^n}{\Delta t} = \underbrace{\frac{1}{2} \left(3\mathbf{H}^n - \mathbf{H}^{n-1} \right)}_{\text{Adams-Bashforth } \mathcal{O}(\Delta t^2)} + \underbrace{\frac{1}{\text{Re}}}_{\text{Crank-Nicholson } \mathcal{O}(\Delta t^2)}$$

• correct the preliminary field with help of a correctional term ϕ (derived from the continuity equation)

$$\frac{\mathbf{u}^{n+1} - \mathbf{u}^*}{\Delta t} = -\nabla \phi, \qquad \nabla^2 \phi = \frac{1}{\Delta t} \nabla \cdot \mathbf{u}^*$$

Discretization

Temporal discretization

- convective term: Adams-Bashforth $\mathcal{O}(\Delta t^2)$
- diffusive term: Crank-Nicholson $\mathcal{O}(\Delta t^2)$

Spatial discretization

• central difference on staggered grid $\mathcal{O}(\Delta x^2)$

Stability analysis

von Neumann analysis for prototype equation (1D advection-diffusion)

$$u_{,t} = -cu_{,x} + \nu u_{,xx}, \qquad \nu \geq 0$$

analysis results in quadratic equation

$$G-1=-rac{\sigma}{4}\left(3-rac{1}{G}
ight)\left(e^{l heta}-e^{-l heta}
ight)+rac{eta}{2}(G+1)\left(e^{l heta}+e^{-l heta}-2
ight)$$

with the stability parameters

$$\sigma = c \frac{\Delta t}{\Delta x} \qquad \beta = \nu \frac{\Delta t}{\Delta x^2}$$

Stability analysis

June 24, 2014

Michael Stumpf - CFD II: Fractional step method

Implementation

- square uniform grid on 2D domain
- boundary conditions are periodic
- calculations are done in C++ (efficient, fast code)
- post-processing is done in Matlab (convenient plotting utilities)

Eigen3 library

- library for linear algebra, matrix and vector operations
- includes various algorithms for solving
- open source (MPL2 license)
 - (http://eigen.tuxfamily.org/)

Program flow chart

Solving algorithm

Assignment Numerical elaboration Implementation

Verification

- Verification of the code using the analytic solution of incompressible Navier-Stokes by Taylor and Green
- root mean square derivation (RMSD)

$$RMSD = \frac{1}{u_{TG,max}} \sqrt{\frac{\sum^{N} (u - u_{TG})^2}{N}}$$

N: number of gridpoints

- double-logarithmic plot RMSD vs. $\Delta x/\Delta t$
- ⇒ error should decrease with slope 2 (second order)

Verification - grid width

Verification - time step

Parameters

 Δx 0.004 N(1D) 250 Re_{TG} 10

Vortex simulation

- initial velocity field with two counterrotating vortices
- two parameters:
 - characterstic radius (determines size)

Numerical elaboration

Re_□ Reynoldsnumber of vortex (determines circumferential velocity)

$$v_{ heta} = rac{
u Re_{\Gamma}}{2\pi r} \left(1 - exp\left(-rac{r^2}{a^2}
ight)
ight)$$

Assignment

pressure

Vortex simulation

■ length ratio *L* (normalized distance)

$$L = \frac{b}{a}$$
 where *b*: distance

Reynoldsnumber Re_Γ (intertia vs. viscosity)

$$Re_{\Gamma} = \frac{1}{\nu}$$
 where Γ : circulation

quiver plot of velocity

Vortex tracking

- location of vortex centers is recorded every time step
- criteria: global maximum and minimum of vorticity

Post-processing

- C++ code exports binary data on
 - 1) velocity
 - 2) pressure
 - 3) vorticity
- export interval for field data is adjustable
- vortex position is saved separately every time step
- various Matlab-scripts for graphical post-processing

Results

Simulations have been performed for

1) Re = 1 and Re = 10

Michael Stumpf - CFD II: Fractional step method

2) L = 1, L = 10 and L = 50

Maximum of vorticity vs. time

Maximum of vorticity vs. time

Source code

- source code is available at github
- https://github.com/donlimon/CFD.git (branch: final)

Git command

git clone -b final https://github.com/donlimon/CFD.git

Verification - time step (full data)

Discretization - momentum (x)

x-component:

$$\left(\frac{1}{\Delta t} + \frac{2}{\text{Re }\Delta x^{2}}\right) u_{i+\frac{1}{2},j}^{*} - \frac{1}{2 \text{Re }\Delta x^{2}} \left(u_{i+\frac{3}{2},j}^{*} + u_{i-\frac{1}{2},j}^{*} + u_{i+\frac{1}{2},j+1}^{*} + u_{i+\frac{1}{2},j-1}^{*}\right) \\
= -\frac{1}{4\Delta x} \left[3 \left(u_{i+\frac{1}{2},j}^{n} \cdot \left(u_{i+\frac{3}{2},j}^{n} - u_{i-\frac{1}{2},j}^{n}\right) + v_{i+\frac{1}{2},j}^{n} \cdot \left(u_{i+\frac{1}{2},j+1}^{n} - u_{i+\frac{1}{2},j-1}^{n}\right)\right) \\
- \left(u_{i+\frac{1}{2},j}^{n-1} \cdot \left(u_{i+\frac{3}{2},j}^{n-1} - u_{i-\frac{1}{2},j}^{n-1}\right) + v_{i+\frac{1}{2},j}^{n-1} \cdot \left(u_{i+\frac{1}{2},j+1}^{n-1} - u_{i+\frac{1}{2},j-1}^{n-1}\right)\right)\right] \\
+ \frac{1}{2 \text{Re }\Delta x^{2}} \left(u_{i+\frac{3}{2},j}^{n} + u_{i-\frac{1}{2},j}^{n} + u_{i+\frac{1}{2},j+1}^{n} + u_{i+\frac{1}{2},j-1}^{n} - 4u_{i+\frac{1}{2},j}^{n}\right) + \frac{1}{\Delta t} u_{i+\frac{1}{2},j}^{n}\right)$$

Discretization - momentum (y)

y-component:

$$\begin{split} &\left(\frac{1}{\Delta t} + \frac{2}{\text{Re}\,\Delta x^2}\right) v_{i,j+\frac{1}{2}}^* - \frac{1}{2\,\text{Re}\,\Delta x^2} \left(v_{i,j+\frac{3}{2}}^* + v_{i,j-\frac{1}{2}}^* + u_{i+1,j+\frac{1}{2}}^* + v_{i-1,j+\frac{1}{2}}^*\right) \\ &= -\frac{1}{4\Delta x} \left[3 \left(u_{i,j+\frac{1}{2}}^n \cdot \left(v_{i+1,j+\frac{1}{2}}^n - v_{i-1,j+\frac{1}{2}}^n\right) + v_{i,j+\frac{1}{2}}^n \cdot \left(v_{i,j+\frac{3}{2}}^n - v_{i,j-\frac{1}{2}}^n\right)\right) \\ &- \left(u_{i,j+\frac{1}{2}}^{n-1} \cdot \left(v_{i+1,j+\frac{1}{2}}^{n-1} - v_{i-1,j+\frac{1}{2}}^{n-1}\right) + v_{i,j+\frac{1}{2}}^{n-1} \cdot \left(v_{i,j+\frac{3}{2}}^{n-1} - v_{i,j-\frac{1}{2}}^{n-1}\right)\right)\right] \\ &+ \frac{1}{2\,\text{Re}\,\Delta x^2} \left(v_{i+1,j+\frac{1}{2}}^n + v_{i-1,j+\frac{1}{2}}^n + v_{i,j+\frac{3}{2}}^n + v_{i,j-\frac{1}{2}}^n - 4v_{i,j+\frac{1}{2}}^n\right) + \frac{1}{\Delta t} v_{i,j+\frac{1}{2}}^n \end{split}$$

Discretization - poisson

$$\begin{split} \phi_{i+1,j} + \phi_{i-1,j} + \phi_{i,j+1} + \phi_{i,j-1} - 4\phi_{i,j} \\ &= \frac{\Delta x}{\Delta t} \left(u_{i+\frac{1}{2},j}^* - u_{i-\frac{1}{2},j}^* + v_{i,j+\frac{1}{2}}^* - v_{i,j-\frac{1}{2}}^* \right) \end{split}$$

Discretization - corrector

$$u^{n+1} - u^* = -\Delta t \frac{\partial \phi}{\partial x}$$
$$v^{n+1} - v^* = -\Delta t \frac{\partial \phi}{\partial y}$$

