A digital electronic circuit known as a multivibrator produces digital signals like pulses, square waves, and other types of signals. It often consists of passive elements like resistors and capacitors as well as digital logic gates. Multivibrator can be created with .BJT(active element) / OPAmp(active element) / 555 timer IC

What is multivibrator circuit?/nonlinear oscillator/Function generator

A MULTIVIBRATOR is an electronic circuit that generates square, rectangular, pulse waveforms, also called nonlinear oscillators or function generators. They are utilized for data storage, synchronization between various components, clock signal generation, timing control, and data transfer time.

he three basic types of multivibrators are astable, monostable, and bistable, each with distinct properties and uses.

- A multivibrator circuit oscillates between a "HIGH" state and a "LOW" state producing a continuous output.
- In a multivibrator, the two transistors are connected in feedback so that one transistor controls the state of the other.
- Multivibrators are used are widely used to implement two-state devices like Relaxation Oscillators, Timers, and flip-flops.

Astable Multivibrator

An astable multivibrator, also called a free-running multivibrator, is a circuit that continuously produces square waves or pulses without the use of an external trigger. The term "astable" refers to the absence of a stable state in this particular type of multivibrator.

Applications

- 1. Used in square wave frequency generator.
- 2. Used as a timing oscillator in the computer system.
- 3. Used in flashing lights.

Monostable Multivibrator

A monostable multivibrator, also called a one-shot multivibrator, is a circuit that responds to an external trigger by producing a single pulse with a set duration. A pulse from outside causes this sort of multivibrator to flip from its stable state to an unstable one.

Applications

- 1. Used for regenerating weak signals.
- 2. Used in the pulse generator.
- 3. Used in memory.
- 4. pulse shaping, debouncing, and time delay functions
- 5. Other circuits can use it as a trigger as well.
- The circuit returns to its stable condition after a certain amount of time and generates a single output pulse.

- By altering the values of the resistors and capacitors in the circuit, the output pulse's duration can be changed.
- In digital circuits, the monostable multivibrator is frequently used for pulse shaping, debouncing, and time delay functions.
- Other circuits can use it as a trigger as well.

Bistable Multivibrator

A flip-flop, or bistable multivibrator, is a circuit with two stable states that can alternately exist indefinitely.

- 1. Also known as a flip-flop multivibrator.
- 2. It has two stable states and can remain in either state indefinitely without any input signal.
- 3. It requires two transistors, two capacitors, and a few resistors.
- 4. It is commonly used in digital circuits as a memory element, latch, or flip-flop.
- 5. It is also used in applications where a simple on/off switch is required.

Applications

- 1. Used for changing the supply to two circuits.
- 2. Used in digital operation in computers.

Astable Multivibrator

Construction of Astable Multivibrator

Two transistors named Q_1 and Q_2 are connected in feedback to one another. The collector of transistor Q_1 is connected to the base of transistor Q_2 through the capacitor C_1 and vice versa. The emitters of both the transistors are connected to the ground. The collector load resistors R_1 and R_4 and the biasing resistors R_2 and R_3 are of equal values. The capacitors C_1 and C_2 are of equal values.

The following figure shows the circuit diagram for Astable Multivibrator.

Operation of Astable Multivibrator

When V_{cc} is applied, the collector current of the transistors increases. As the collector current depends upon the base current,

Ic=βIB

As no transistor characteristics are alike, one of the two transistors say Q_1 has its collector current increase and thus conducts. The collector of Q_1 is applied to the base of Q_2 through C_1 . This connection lets the increased negative voltage at the collector of Q_1 to get applied at the base of Q_2 and its collector current decreases. This continuous action makes the collector current of Q_2 to decrease further. This current when applied to the base of Q_1 makes it more negative and with the cumulative actions Q_1 gets into saturation and Q_2 to cut off. Thus, the output voltage of Q_1 will be $V_{CE (sat)}$ and Q_2 will be equal to V_{CC} .

The capacitor C_1 charges through R_1 and when the voltage across C_1 reaches 0.7v, this is enough to turn the transistor Q_2 to saturation. As this voltage is applied to the base of Q_2 , it gets into saturation, decreasing its collector current. This reduction of voltage at point B is applied to the

base of transistor Q_1 through C_2 which makes the Q_1 reverse bias. A series of these actions turn the transistor Q_1 to cut off and transistor Q_2 to saturation. Now point A has the potential V_{CC} . The capacitor C_2 charges through R_2 . The voltage across this capacitor C_2 when gets to 0.7v, turns on the transistor Q_1 to saturation.

Hence the output voltage and the output waveform are formed by the alternate switching of the transistors Q_1 and Q_2 . The time period of these ON/OFF states depends upon the values of biasing resistors and capacitors used, i.e., on the R_C values used. As both the transistors are operated alternately, the output is a square waveform, with the peak amplitude of V_{CC} .

Monostable Multivibrator

Construction of Monostable Multivibrator

Two transistors Q_1 and Q_2 are connected in feedback to one another. The collector of transistor Q_1 is connected to the base of transistor Q_2 through the capacitor C_1 . The base Q_1 is connected to the collector of Q_2 through the resistor R_2 and capacitor C. Another dc supply voltage $-V_{BB}$ is given to the base of transistor Q_1 through the resistor R_3 . The trigger pulse is given to the base of Q_1 through the capacitor Q_2 to change its state. Q_1 and Q_2 are the load resistors of Q_1 and Q_2 .

One of the transistors, when gets into a stable state, an external trigger pulse is given to change its state. After changing its state, the transistor remains in this quasi-stable state or Meta-stable state for a specific time period, which is determined by the values of RC time constants and gets back to the previous stable state.

The following figure shows the circuit diagram of a Monostable Multivibrator.

Operation of Monostable Multivibrator

Firstly, when the circuit is switched ON, transistor Q_1 will be in OFF state and Q_2 will be in ON state. This is the stable state. As Q_1 is OFF, the collector voltage will be V_{CC} at point A and hence C_1 gets charged. A positive trigger pulse applied at the base of the transistor Q_1 turns the transistor ON. This decreases the collector voltage, which turns OFF the transistor Q_2 . The capacitor C_1 starts discharging at this point of time. As the positive voltage from the collector of transistor Q_2 gets applied to transistor Q_1 , it remains in ON state. This is the quasi-stable state or Meta-stable state.

The transistor Q_2 remains in OFF state, until the capacitor C_1 discharges completely. After this, the transistor Q_2 turns ON with the voltage applied through the capacitor discharge. This turn ON the transistor Q_1 , which is the previous stable state.

Bistable Multivibrator

Construction of Bistable Multivibrator

Two similar transistors Q_1 and Q_2 with load resistors R_{L1} and R_{L2} are connected in feedback to one another. The base resistors R_3 and R_4 are joined to a common source $-V_{BB}$. The feedback resistors R_1 and R_2 are shunted by capacitors C_1 and C_2 known as **Commutating Capacitors**. The transistor Q_1 is given a trigger input at the base through the capacitor C_3 and the transistor Q_2 is given a trigger input at its base through the capacitor C_4 .

The capacitors C_1 and C_2 are also known as **Speed-up Capacitors**, as they reduce the **transition** time, which means the time taken for the transfer of conduction from one transistor to the other.

The following figure shows the circuit diagram of a self-biased Bistable Multivibrator.

Operation of Bistable Multivibrator

When the circuit is switched ON, due to some circuit imbalances as in Astable, one of the transistors, say Q_1 gets switched ON, while the transistor Q_2 gets switched OFF. This is a stable state of the Bistable Multivibrator.

By applying a negative trigger at the base of transistor Q_1 or by applying a positive trigger pulse at the base of transistor Q_2 , this stable state is unaltered. So, let us understand this by considering a negative pulse at the base of transistor Q_1 . As a result, the collector voltage increases, which forward biases the transistor Q_2 . The collector current of Q_2 as applied at the base of Q_1 , reverse biases Q_1 and this cumulative action, makes the transistor Q_1 OFF and transistor Q_2 ON. This is another stable state of the Multivibrator.

Now, if this stable state has to be changed again, then either a negative trigger pulse at transistor Q_2 or a positive trigger pulse at transistor Q_1 is applied.

Numerical:

- 1. An astable circuit to produce a series of pulses at a frequency of 500 Hz, with a mark to space ration 1:5, R₁=R₂=100 kilo-ohm. Calculate C₁ and C₂.
- 2. An astable multivibrator is constructed using two timing capacitors of 3.3 micro-farad and two base resistors of 10 kilo-ohm. Calculate maximum and minimum frequency if 100k dual gang potentiometer is connected in series with two resistors.
- 3. For the following circuit, if the input signal is 1 kHz square wave pulse with 50% duty cycle then find the approximate frequency of duty cycle.

