Package 'tidyindex'

November 16, 2023

```
Type Package
Title A Tidy Data Pipeline to Construct, Compare, and Analyse Indexes
Version 0.1.0
Description Construct and analyse indexes in a pipeline tidy workflow.
      'tidyindex' contains modules for transforming variables, aggregating
      variables across time, reducing data dimension through weighting, and
      fitting distributions. A manuscript describing the methodology can be
      found at <https://github.com/huizezhang-sherry/paper-tidyindex>.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
URL https://github.com/huizezhang-sherry/tidyindex
BugReports https://github.com/huizezhang-sherry/tidyindex/issues
Imports cli, dplyr, generics, ggplot2, glue, purrr, rlang (>= 1.1.0),
      tidyr, tidyselect, tsibble, vctrs
RoxygenNote 7.2.3
Suggests covr, knitr, Imomco, lubridate, rmarkdown, slider, SPEI,
      testthat (>= 3.0.0)
Config/testthat/edition 3
Depends R (>= 2.10)
VignetteBuilder knitr
NeedsCompilation no
Author H. Sherry Zhang [aut, cre, cph]
       (<https://orcid.org/0000-0002-7122-1463>),
      Dianne Cook [aut] (<a href="https://orcid.org/0000-0002-3813-7155">https://orcid.org/0000-0002-3813-7155</a>),
      Ursula Laa [aut] (<a href="https://orcid.org/0000-0002-0249-6439">https://orcid.org/0000-0002-0249-6439</a>),
      Nicolas Langrené [aut] (<a href="https://orcid.org/0000-0001-7601-4618">https://orcid.org/0000-0001-7601-4618</a>),
      Patricia Menéndez [aut] (<a href="https://orcid.org/0000-0003-0701-6315">https://orcid.org/0000-0003-0701-6315</a>)
Maintainer H. Sherry Zhang <a href="https://www.nize.zhang@monash.edu">huize.zhang@monash.edu</a>
Repository CRAN
Date/Publication 2023-11-16 11:20:02 UTC
```

2 add_paras

R topics documented:

Index		17
	variable_trans	16
	trans_thornthwaite	13
	theme_benchmark	13
	tenterfield	12
	temporal_aggregate	11
	swap_values	10
	rescaling	9
	normalise	8
	init	8
	hdi	
	gggi	
	distribution_fit	5
	dimension reduction	
	add_paras	

add_paras

Add parameters to an index table object

Description

The function joins the parameter table to the 'paras' element of an index table object.

Usage

```
add_paras(data, para_tbl, by)
```

Arguments

data a idx_tbl object

para_tbl a tibble or data frame object with parameter of variables

by a single column name (support tidyselect) in the 'para_tbl' that maps to the

variable name in the data

Value

an index object

```
init(gggi) |> add_paras(gggi_weights, by = "variable")
```

compute_indexes 3

compute_indexes

Calculate multiple indexes at once

Description

Calculate multiple indexes at once

Usage

```
compute_indexes(.data, ...)
## S3 method for class 'idx_res'
augment(x, .id = ".id", ...)
```

Arguments

```
.data an idx_tbl object
... Unused, included for generic consistency only
x an idx_res object, calculated from compute_indexes
.id a character string, the name of the first column
```

Value

```
an idx_res object
```

```
library(dplyr)
library(lmomco)
library(generics)
res <- tenterfield |>
  mutate(month = lubridate::month(ym)) |>
  init(id = id, time = ym, group = month) |>
  compute_indexes(
    spi = idx_spi(),
    spei = idx_spei(.lat = lat, .tavg = tavg),
    edi = idx_edi()
)
```

4 dimension_reduction

dimension_reduction

The dimension reduction module

Description

The module combines multiple variables into a new variable. The new variable can be a linear combination of the original variables, aggregate_linear(), or a geometric mean of the original variables, aggregate_geometry(), or created from an user formula input, aggregate_manual().

Usage

```
dimension_reduction(data, ...)
aggregate_linear(formula, weight)
aggregate_geometrical(formula)
aggregate_manual(formula)
```

Arguments

Value

an index table object

```
dt <- gggi |>
   dplyr::select(country, sex_ratio_at_birth:healthy_life_expectancy) |>
   init()

dt |>
   dimension_reduction(health = aggregate_manual(
        ~sex_ratio_at_birth * 0.693 + healthy_life_expectancy * 0.307))

dt |>
   add_paras(gggi_weights, by = variable) |>
   dimension_reduction(health = aggregate_linear(
        ~sex_ratio_at_birth:healthy_life_expectancy, weight = var_weight))

dt |>
   dimension_reduction(health = aggregate_geometrical(
```

distribution_fit 5

```
~sex_ratio_at_birth:healthy_life_expectancy)
```

distribution_fit

The distribution fit module

Description

This module fits a distribution to the variable of interest. Currently implemented distributions are: gamma, dist_gamma(), generalized logistic, dist_glo(), generalized extreme value, dist_gev(), and Pearson Type III, dist_pe3()

Usage

```
distribution_fit(data, ...)
dist_gamma(var, method = "lmoms", .n_boot = 1, .boot_seed = 123)
dist_glo(var, method = "lmoms", .n_boot = 1, .boot_seed = 123)
dist_gev(var, method = "lmoms", .n_boot = 1, .boot_seed = 123)
dist_pe3(var, method = "lmoms", .n_boot = 1, .boot_seed = 123)
```

Arguments

data	an index table object
	a distribution fit object, currently implemented are $dist_gamma(), dist_glo(), dist_gev(), and dist_pe3()$
var	used in dist_*() functions, the variable to fit
method	used in $\mbox{dist_*()}$ functions, the fitting method, currently support "lmoms" for L-moment fit
.n_boot	the number of bootstrap replicate, default to 1
.boot_seed	the seed to generate bootstrap replicate, default to 123

Value

an index table object

6 gggi

Examples

```
library(dplyr)
library(lmomco)
tenterfield |>
  mutate(month = lubridate::month(ym)) |>
  init(id = id, time = ym, group = month) |>
  temporal_aggregate(.agg = temporal_rolling_window(prcp, scale = 12)) |>
  distribution_fit(.fit = dist_gamma(.agg, method = "lmoms"))
```

gggi

Global Gender Gap Index (2023)

Description

The Global Gender Gap Index combines 14 variables from four dimensions to measure the gender parity across 146 countries in the world.

Usage

```
gggi_weights
```

Format

An object of class tbl_df (inherits from tbl, data.frame) with 146 rows and 22 columns. An object of class tbl_df (inherits from tbl, data.frame) with 14 rows and 7 columns.

Details

The dataset includes country, region, GGGI score and rank, the combined four dimensions (Economic Participation and Opportunity, Educational Attainment, Health and Survival, and Political Empowerment), and variables under each dimensions. The variable composition of each dimension is as follows:

- * Economic Participation and Opportunity: Labour force participation, Wage equality for similar work, Estimated earned income, Legislators, senior officials and managers, and Professional and technical workers
- * Educational attainment: Literacy rate, Enrolment in primary education, Enrolment in secondary education, Enrolment in tertiary education
- * Health and survival: Sex ratio at birth and Healthy life expectancy
- * Political empowerment: Women in parliament, Women in ministerial positions, and Years with female head of state

Variable names are cleaned with [janitor::clean_names()].

The weight data is extracted from page 65 of the Global Gender Gap Report (see reference), see page 61 for the region classification.

hdi 7

References

https://www3.weforum.org/docs/WEF_GGGR_2023.pdf

hdi

Human Development Index (2022)

Description

Human Development Index (2022)

Usage

hdi

hdi_scales

Format

A tibble with three columns:

id the row number

country 191 countries with computed HDI

hdi the HDI index value

life_exp life expectancy

exp_sch expected schooling

avg_sch average schooling

gni_pc GNI per capital, logged

An object of class tbl_df (inherits from tbl, data.frame) with 4 rows and 5 columns.

References

https://hdr.undp.org/data-center/human-development-index#/indicies/HDI

8 normalise

init

Initialise the tidyindex pipeline

Description

Initialise an index table object with a data frame or a tibble.

Usage

```
init(data, ...)
## S3 method for class 'idx_tbl'
print(x, ...)
```

Arguments

a tibble or data frame to be converted into a index object
 arguments to give variables roles, recorded in the paras element of the index table object, currently used for id and time
 an index object

Value

an index table object

Examples

```
init(hdi)
init(gggi)
```

normalise

The normalise module

Description

The normalise module takes a probability value from a distribution fit norm_quantile() to convert based on the normal quantile function

Usage

```
normalise(data, ...)
norm_quantile(var)
```

rescaling 9

Arguments

```
data an index table object
... the expression to be evaluated
var used in norm_quantile(); the variable to be converted
```

Value

an index table object

Examples

```
library(dplyr)
library(lmomco)
tenterfield |>
  mutate(month = lubridate::month(ym)) |>
  init(id = id, time = ym, group = month) |>
  temporal_aggregate(.agg = temporal_rolling_window(prcp, scale = 12)) |>
  distribution_fit(.fit = dist_gamma(.agg, method = "lmoms")) |>
  normalise(index = norm_quantile(.fit))
```

rescaling

The rescaling module

Description

The rescale module changes the scale of the variable(s) using one of the available rescaling functions: rescale_zscore(), rescale_minmax(), and rescale_center.

Usage

```
rescaling(data, ...)
rescale_zscore(var, na.rm = TRUE)
rescale_minmax(var, min = NULL, max = NULL, na.rm = TRUE, censor = TRUE)
rescale_center(var, na.rm = TRUE)
```

Arguments

data	an index table object, see [tidyindex::init()]
	used in rescaling, a rescaling object of class rescale, currently one of the rescale_zscore(), rescale_minmax(), and rescale_center(),
var	the variable(s) to rescale, accept tidyselect syntax
na.rm	used in rescale_*(), logical, whether to remove NAs
min, max	used in rescale_minmax(), the minimum and maximum value
censor	used in rescale_minmax(), logical; whether to censor points outside min and max, if provided

10 swap_values

Value

an index table object

Examples

```
dt <- hdi |> init()
dt |> rescaling(life_exp = rescale_zscore(life_exp))
dt |> rescaling(life_exp2 = rescale_minmax(life_exp, min = 20, max = 85))
```

swap_values

Testing alternatives

Description

The two functions allows you to substitute a value/expression in the pipeline with other options. These functions will evaluate the modified pipeline step, as well as its prior and subsequent steps to create different versions of the index.

Usage

```
swap_values(data, .var, .param, .values)
swap_exprs(data, .var, .exprs)
```

Arguments

```
data an idx_tbl object

.var the name of the variable, which the step is tested for alternatives

.param the name of the parameter to swap

.values, .exprs

a list of values or expressions
```

Value

an index table

temporal_aggregate 11

```
dt <- hdi |>
 init(id = country) |>
 add_paras(hdi_paras, by = var) |>
 rescaling(life_exp = rescale_minmax(life_exp, min = min, max = max)) |>
 rescaling(exp_sch = rescale_minmax(exp_sch, min = min, max = max)) |>
 rescaling(avg_sch = rescale_minmax(avg_sch, min = min, max = max)) |>
 rescaling(gni_pc = rescale_minmax(gni_pc, min = min, max = max)) |>
 dimension_reduction(sch = aggregate_manual(~(exp_sch + avg_sch)/2)) |>
 dimension_reduction(index = aggregate_linear(~c(life_exp, sch, gni_pc),
                     weight = weight))
dt2 <- dt |>
 swap_values(.var = "index", .param = weight,
              .value = list(weight2, weight3, weight4))
augment(dt2)
dt3 <- dt |>
 swap_exprs(.var = index, .exprs = list(
             aggregate_geometrical(~c(life_exp, sch, gni_pc))))
augment(dt3)
```

temporal_aggregate

The temporal processing module

Description

The temporal processing module is used to aggregate data along the temporal dimension. Current available aggregation recipe includes temporal_rolling_window.

Usage

```
temporal_aggregate(data, ...)
temporal_rolling_window(
  var,
  scale,
  .before = 0L,
  .step = 1L,
  .complete = TRUE,
  rm.na = TRUE,
  ...
)
```

Arguments

```
data an index table object, see [tidyindex::init()]
... an temporal processing object of class temporal_agg
```

12 tenterfield

```
var the variable to aggregate
scale numeric, the scale (window) of the aggregation
.before, .step, .complete
see slide_dbl
rm.na logical, whether to remove the first few rows with NAs
```

Value

an index table object

Examples

```
tenterfield |>
  init(time = ym) |>
  temporal_aggregate(.agg = temporal_rolling_window(prcp, scale = 12))

# multiple ids (groups), and multiple scales
queensland |>
  dplyr::filter(id %in% c("ASN00029038", "ASN00029127")) |>
  init(id = id, time = ym) |>
  temporal_aggregate(temporal_rolling_window(prcp, scale = c(12, 24)))
```

tenterfield

Weather data for in-situ stations in Queensland from 1990 to 2020

Description

Weather data for in-situ stations in Queensland from 1990 to 2020

Usage

```
tenterfield
aus_climate
queensland
```

Format

```
A tibble with 9 columns:

id station ID, ASN000xxxxx

ym date in 'tsibble::yearmonth' format

prcp aggregated monthly precipitation from daily data

tmax, tmin, tavg maximum/minimum/ average temperature

long, lat longitude and latitude of the station
```

theme_benchmark 13

name station name

An object of class tbl_df (inherits from tbl, data.frame) with 52373 rows and 9 columns. An object of class tbl_df (inherits from tbl, data.frame) with 11252 rows and 9 columns.

theme_benchmark

A ggplot2 theme for benchmarking the index series

Description

A ggplot2 theme for benchmarking the index series

Usage

```
theme_benchmark(yintercept = -2, linetype = "dashed")
```

Arguments

```
yintercept intercept linetype linetype
```

Value

```
a ggplot2 object
```

Examples

```
if (require("ggplot2", quietly = TRUE) ){
dplyr::tibble(x = 1:100, y = rnorm(100, sd = 2)) |>
    ggplot(aes(x = x, y =y )) +
    geom_line() +
    theme_benchmark()
}
```

trans_thornthwaite

Drought-related index functions

Description

The functions are used for quick computing of some common drought indexes built from wrappers of the underlying modules. For more customised needs, users may build their own indexes from the modules.

14 trans_thornthwaite

trans_thornthwaite(var, lat, na.rm = FALSE, verbose = TRUE)

idx_spi(data, .prcp, .dist = dist_gamma(), .scale = 12)

Usage

```
idx_spei(
      data,
      .tavg,
      .lat,
      .prcp,
      .pet_method = trans_thornthwaite(),
      .scale = 12,
      .dist = dist_glo()
    )
    idx_rdi(
      data,
      .tavg,
      .lat,
      .prcp,
      .pet_method = trans_thornthwaite(),
      .scale = 12
    idx_edi(data, .tavg, .lat, .prcp, .scale = 12)
Arguments
                     the variable to be transformed, see [tidyindex::variable_trans()] and [SPEI::thornthwaite()]
    var
    lat, na.rm, verbose
                     see [SPEI::thornthwaite]
    data
                     an id_tbl object
```

the distribution used for distribution fit, see [tidyindex::distribution_fit()] the temporal aggregation scale, see [tidyindex::temporal_aggregation()]

the method used for calculating potential evapotranspitation, currently only trans_thornthwaite()

Details

.dist

.scale

.tavg, .lat, .prcp

.pet_method

Below explains the steps wrapped in each index and the intermediate variables created.

variables to be used in the index calculation, see Details

The idx_spi() function performs

- 1. a temporal aggregation on the input precipitation series, .prcp, as .agg,
- 2. a distribution fit step on the aggregated precipitation, .agg, as .fit, and
- 3. a normalising step on the fitted values, .fit, as .index

trans_thornthwaite 15

The idx_spei() function performs

1. a variable transformation step on the inut average temperature, .tavg, to obtain the potential evapotranspiration, .pet,

- 2. a dimension reduction step to calculate difference series, .diff, between the input precipitation series, .prcp, and .pet,
- 3. a temporal aggregation step on the difference series, .diff, as .agg,
- 4. a distribution fit step on the aggregated series, .agg, as .fit, and
- 5. a normalising step on the fitted value, .fit, to obtain .index.

The idx_rdi() function performs

- 1. a variable transformation step on the input average temperature, .tavg, to obtain potential evapotranspiration .pet,
- 2. a dimension reduction step to calculate the ratio of input precipitation, .prcp, to .pet as .ratio,
- 3. a temporal aggregation step on the ratio series, .ratio, as .agg
- 4. a variable transformation step to take the log10 of the aggregated series, .agg, as .y, and
- 5. a rescaling step to rescale .y by zscore to obtain .index.

The idx_edi() function performs

- 1. a dimension reduction step to aggregate the input precipitation series, prcp, as .mult,
- 2. a temporal aggregation step on the aggregated precipitation series (.mult) as .ep, and
- 3. a rescaling step to rescale .ep by zscore to obtain .index.

Value

an index table object

```
library(dplyr)
library(lmomco)
dt <- tenterfield |>
    mutate(month = lubridate::month(ym)) |>
    init(id = id, time = ym, group = month)

dt |> idx_spi()
dt |> idx_spi(.scale = c(12, 24))
dt |> idx_spei(.lat = lat, .tavg = tavg)
dt |> idx_rdi(.lat = lat, .tavg = tavg)
dt |> idx_edi(.lat = lat, .tavg = tavg)
```

16 variable_trans

variable_trans

The variable transformation module

Description

The variable transformation module is used to transform a single variable in the index table object. The transformation is specified by a variable transformation object of class var_trans, created by trans_* functions. Currently, the following transformation functions are supported: trans_log10, trans_quadratic, trans_square_root, and trans_cubic_root.

Usage

```
variable_trans(data, ...)
trans_log10(var)
trans_quadratic(var)
trans_square_root(var)
trans_cubic_root(var)
```

Arguments

data an index table object

... an variable transformation recipe of class var_trans, created by trans_* func-

tion, the transformation recipe to be evaluated

var used in trans_* functions, the variable to be transformed

Value

an index table object

```
hdi |> init() |> variable_trans(gni_pc = trans_log10(gni_pc))
```

Index

```
* datasets
                                                rescale_center (rescaling), 9
    gggi, 6
                                                rescale_minmax (rescaling), 9
    hdi, 7
                                                rescale_zscore (rescaling), 9
    tenterfield, 12
                                                rescaling, 9
add_paras, 2
                                                slide_dbl, 12
aggregate_geometrical
                                                swap_exprs (swap_values), 10
        (dimension_reduction), 4
                                                swap_values, 10
aggregate_linear (dimension_reduction),
                                                 temporal_aggregate, 11
                                                 temporal_rolling_window
aggregate_manual (dimension_reduction),
                                                         (temporal_aggregate), 11
                                                tenterfield, 12
augment.idx_res (compute_indexes), 3
                                                 theme_benchmark, 13
aus_climate (tenterfield), 12
                                                 trans_cubic_root (variable_trans), 16
compute_indexes, 3
                                                trans_log10 (variable_trans), 16
                                                trans_quadratic (variable_trans), 16
dimension_reduction, 4
                                                trans_square_root (variable_trans), 16
dist_gamma (distribution_fit), 5
                                                trans_thornthwaite, 13
dist_gev (distribution_fit), 5
dist_glo (distribution_fit), 5
                                                variable_trans, 16
dist_pe3 (distribution_fit), 5
distribution_fit, 5
gggi, 6
gggi_weights(gggi), 6
hdi, 7
hdi_scales(hdi), 7
idx_edi (trans_thornthwaite), 13
idx_rdi (trans_thornthwaite), 13
idx_spei (trans_thornthwaite), 13
idx_spi (trans_thornthwaite), 13
init, 8
norm_quantile(normalise), 8
normalise, 8
print.idx_tbl (init), 8
queensland (tenterfield), 12
```