Projeto I MAE001 - Modelagem Mat. em Finanças I O Modelo Binomial

Universidade Federal do Rio de Janeiro Instituto de Matemática Bacharelado em Matemática Aplicada Prof.: Marco Cabral

 ${\bf Brasil}$

Maio, 2019

Sumário

1	OS ALGORITMOS
1.1	Simulação do modelo binomial
1.2	Plotando o gráfico da questão 1
1.2.1	Plot usual
1.2.2	Plot com escala Log em Y
1.3	Boxplots da questão 2
1.4	Boxplots da questão 3
1.5	Função para calculo da esperança 6
1.6	Plot dos gráficos de erro
2	QUESTÃO 1
2.0.1	Plot com escala comum
2.0.2	Plot com escala log
3	QUESTÃO 2
4	QUESTÃO 3
5	QUESTÃO 4
5.0.1	Valor esperado para o primeiro caso
5.0.2	Valor esperado para o segundo caso
5.0.3	Média dos valores para o primeiro caso
5.0.4	Média dos valores para o segundo caso
5.0.5	Conclusão
6	QUESTÃO 5
6.0.1	Plot dos gráficos em escala usual
6.0.2	Plot dos gráficos em escala log

1 Os Algoritmos

Esta seção tem como objetivo apresentar todos os códigos utilizados nas simulações.

1.1 Simulação do modelo binomial

Utilizamos a linguagem Python3 para a implementação do algoritmo que simula os caminhos da ação

Esse algoritmo tem depedência do pacote Numpy do Python, e os gráficos foram plotados com o pacote MatPlotLib.pyplot

1.2 Plotando o gráfico da questão 1

Foram plotados dois gráficos, os quais seguem os códigos

1.2.1 Plot usual

```
In [3]: ## Definição dos parametros
        T = 20
        dt = 0.5
        S0 = 5
        u = 120/110
        d = 110/120
        p = 0.5
        ## Construção da lista de valores da ação pelo tempo
        x = [binomial(S0, T, dt, u, d, p) for i in range(0,20)]
        ## Inserir o valor inicial em cada lista
        for i in range(0,20):
            x[i].insert(0,S0)
        ## Discretização do tempo
        ts = np.linspace(0,20,41)
        ## Plot do gráfico
        plt.figure(figsize=(20,10))
        for i in range(0,20):
            plt.plot(ts,x[i],label="{0:.5f}".format(x[i][-1]))
        plt.title('Simulação com 20 caminhos de valor da ação')
        plt.legend(title='Valor final', loc='upper center',

    fancybox=True, shadow=True,

                   ncol=7, bbox_to_anchor=(0.5,1.05))
        plt.xlabel('Tempo')
        plt.ylabel('Valor da Ação.')
        plt.show()
```

1.2.2 Plot com escala Log em Y

1.3 Boxplots da questão 2

1.4 Boxplots da questão 3

```
In [55]: u_n = np.sqrt(u)
    d_n = np.sqrt(d)
    dt_n = dt/2
    for j in [250,500,1000,2000]:
        vs[1].append([binomial(S0, T, dt_n, u_n, d_n, p)[-1] for i in range(0,j)])

plt.boxplot(vs[1])

plt.title('Boxplot com simulações')
    plt.ylabel('Valores das ações ao tempo final')
    plt.xlabel('Número de caminhos executados na simulação')
```

plt.xticks([1,2,3,4],[250,500,1000,2000])

1.5 Função para calculo da esperança

1.6 Plot dos gráficos de erro

```
In [58]: ts = np.linspace(250,2000,4)
         ys = [[],[]]
         for j in [0,1]:
             for i in vs[j]:
                 ys[j].append(abs((np.mean(i)-e[0])))
         plt.plot(ts,ys[0])
         plt.plot(ts,ys[1])
         plt.title('Gráfico do erro em relação ao número de simulações')
         plt.xlabel('Número de simulações')
         plt.ylabel('Erro relativo')
         plt.show()
         plt.semilogy(ts,ys[0])
         plt.semilogy(ts,ys[1])
         plt.title('Gráfico do erro em relação ao número de simulações escala log')
         plt.xlabel('Número de simulações')
         plt.ylabel('Erro relativo')
         plt.show()
```

Foi pedido para fixar os parametros T=20 e $\Delta t=0.5$ e escolher os outros, nossos parâmetros então ficaram:

- T = 20
- $\Delta t = 0.5$
- $S_0 = 5$
- $u = \frac{120}{110}$
- $d = \frac{110}{120}$
- p = 0.5

Como estamos tratando de um modelo binomial que lida com exponenciais, faz-se necessário também visualizar os valores com escala log.

2.0.1 Plot com escala comum

2.0.2 Plot com escala log

Foi pedido um boxplot para 250,500,1000,2000 caminhos de valor de ação

Foi pedido um mesmo boxplot, mas com novos parametros, que ficaram:

- T = 20
- $\Delta t = 0.5$
- $S_0 = 5$
- $u = \sqrt{\frac{120}{110}}$
- $d = \sqrt{\frac{110}{120}}$
- p = 0.5

Podemos ver que quando fazemos mais passos com up e down menores, os valores finais ficam bem mais 'comportados', por exemplo os outliers aqui chegaram a no máximo 20, enquanto no caso anterior chegavam a 50.

A média esperada da binomial pode ser dada pela seguinte fórmula:

$$E[X] = (p \cdot u + q \cdot d)^n \cdot S_0$$

onde q=(1-p), n=T, e os outros são os parametros do algoritmo A média do conjunto de dados é obtida pela média aritmetica, utilizando o método mean do numpy.

5.0.1 Valor esperado para o primeiro caso

$$E[X] = \left(0.5 \cdot \frac{120}{110} + 0.5 \cdot \frac{110}{120}\right)^{20} \cdot 5$$

$$\approx (1.0038)^{20} \cdot 5$$

$$\approx (1.079) \cdot 5$$

$$\approx 5.393$$

5.0.2 Valor esperado para o segundo caso

$$E[X] = \left(0.5 \cdot \sqrt{\frac{120}{110}} + 0.5 \cdot \sqrt{\frac{110}{120}}\right)^{20} \cdot 5$$

$$\approx (1.0095)^{20} \cdot 5$$

$$\approx (1.019) \cdot 5$$

$$\approx 5.095$$

5.0.3 Média dos valores para o primeiro caso

Simulações	Média
250	5.828
500	5.965
1000	5.643
2000	5.762

5.0.4 Média dos valores para o segundo caso

Simulações	Média
250	5.332
500	5.342
1000	5.326
2000	5.415

5.0.5 Conclusão

Podemos ver que as médias se aproximam das esperanças a medida que o número de simulações aumenta $\,$

6.0.1 Plot dos gráficos em escala usual

 ${\bf A}$ curva azul representa o caso em que $u=\frac{120}{110}$ e a curva laranja o caso onde $u=\sqrt{\frac{120}{110}}$

6.0.2 Plot dos gráficos em escala log

A curva azul representa o caso em que $u=\frac{120}{110}$ e a curva laranja o caso onde $u=\sqrt{\frac{120}{110}}$

Gráfico do erro em relação ao número de simulações escala log

