Table des matières

ZFS	2
1.1 Introduction	
1.2 ZPOOL	2
1.2.1 Création de pool (les différentes possibilités)	
1.2.2 Disque de spare	
1.2.3 Modification d'un paramètre	
1.2.4 Migration d'un pool	
1.2.5 Manipulations	
1.3 ZFS	
1.3.1 Manipulation sur les filesystemes	
1.3.2 Partages NFS	
1.3.3 Quotas	
1.3.4 Réservation	
1.3.5 Raw volume ZFS	10
1.3.6 Snapshot	10
1.3.7 Clones	
1.3.8Interface graphique	
1.4 ZFS et zones.	
1.5Les ACL	

1 ZFS

1.1 Introduction

Système de fichier 128 bits

Checksum 64 bits

Plusieurs systèmes de fichiers dans 1 pool ZFS.

Copy On Write (COW)

ZFS détermine lui-même par ses checksum s'il y a un pb de cohérence sur un miroir et le corrige automatiquement.

Pool: ensemble de disques VDEV: 1 groupe miroir ZFS Clone: copie accessible en RW Réargenture: resynchro Jeux de données (dataset):

Taille mini d'un disque : 128MB

Format EFI: table de partitionnement va de 0 à 8, la 8 est réservée (8M), le 2 n'est plus réservée.

Le label par défaut était SMI.

Pour passer d'un format de disque à un autre :

Format -e
--> label
0 SMI
1 EFI

1.2 ZPOOL

1.2.1 Création de pool (les différentes possibilités)

```
# zpool create pool1 c1t0d0 c1t1d0 # zpool create pool1 mirror c1t0d0 c1t1d0 mirror c3t0d0 c3t1d0 # zpool create pool1 raidz c1t0d0 c1t1d0 c3t0d0 c3t1d0 c4t0d0 # zpool create pool1 raidz2 c1t0d0 c2t1d0 c3t1d0
```

!! le répertoire /pool1 ne doit pas exister ou doit être vide.

Option -n pour simuler la création

Stauts du pool : # zpool status -v pool1

Point de montage : # zpool create -m /export/home users c2t1d0

Suppression d'un pool : #zpool destroy pool1

zpool add : on ajoute un élément (une concaténation ou un miroir) # zpool attach : on ajoute un élément en concaténation à un élément donné.

Pour agrandir un miroir on fait un attach sur chacun des VDEV.

zpool detach p1 c1t1d0 : supprime le device de la configuration offline p1 c1t1d0 : on garde le device dans la config mais il n'y a plus d'I/O dessus online p1 c1t1d0 : on redonne l'accès en RW clear p1 : nettoyage des messages d'erreur

zpool iostat [pool] [frequence]

1.2.2 Disque de spare

Association d'un disque de hot spare à un miroir :

zpool create pool1 mirror c1t0d0 c1t1d0 spare c3t1d0

zpool status -x

=> on voit dans la config qu'il y a un disque de spare associé au miroir.

Remettre un disque de spare dans une fonction spare (après son utilisation suite à erreur disque):

zpool detach pool1 c3t1d0

1.2.3 Modification d'un paramètre

zpool get all pool1 : donne des infos sur le pool : taille, état, guid, autoreplace (quand on change le disque), failmode (wait, panic, continue)

wait: plus d'I/O sur le pool

continue : on accède aux données en RO

panic: systeme part en panic!!

zpool [get|set] autoreplace[=on/off] pool1

Historique des commandes :

zpool history [-l] [-i] [pool] : donne l'historique des commandes passées

1.2.4 Migration d'un pool

```
Machine1: # zpool export [-f] pool1
```

Machine2: # **zpool import** => liste tous les pools importables # **zpool import pool1** [pool12] => importe effectivement le pool, et le renomme si on indique un autre nom.

```
# zpool destroy pool1
```

zpool import -D pool1 => liste les pools qui peuvent récupérés

```
# zpool import -Df pool1 => pour forcer la récupération # zpool online pool1 cxtxdx
```

1.2.5 Manipulations

* Création d'un pool concaténé

```
global# zpool create -f p1 c1d0s4
global# zpool add p1 c1d0s5
global# zpool list
```

NAME SIZE USED AVAIL CAP HEALTH ALTROOT p1 30G 79,5K 30,0G 0% ONLINE -

global# zpool status

```
pool : p1
état : ONLINE
purger : aucun requis
configuration :
        NAME
                     STATE
                               READ WRITE CKSUM
                                   0
                                         0
                                                0
        р1
                     ONLINE
                                         0
                                                0
          c1d0s4
                                   0
                     ONLINE
          c1d0s5
                     ONLINE
                                   0
                                         0
                                                0
```

global# df -h Système de fichiers taille utilisé dispo capacité Monté sur p1 30G 21K 30G 1% /p1

* Création d'un pool miroir

global# zpool create -m /data p1 mirror c1d0s4 c1d0s5

global# zpool status p1 pool : p1

```
état : ONLINE
purger : aucun requis
configuration :
       NAME
                   STATE
                            READ WRITE CKSUM
       p1
                  ONLINE
                             0
                                   0
                                           0
                                     0
                               0
                                           0
         mirror
                  ONLINE
                               0
                                     0
                                           0
           c1d0s4 ONLINE
           c1d0s5 ONLINE
                                0
                                     0
                                           0
```

erreurs : aucune erreur de données connue global# df -h Système de fichiers taille utilisé dispo capacité Monté sur p1 15G 21K 15G 1% /data

* Créations d'un pool avec 2 miroirs concaténés

global# zpool create p1 mirror c1d0s4 c1d0s5 global# zpool add p1 mirror c1d0s3 c1d0s6

global# zpool list

NAME SIZE USED AVAIL CAP HEALTH ALTROOT p1 30G 79,5K 30,0G 0% ONLINE -

global# zpool status p1

```
pool : p1
état : ONLINE
purger : aucun requis
configuration :
        NAME
                    STATE
                              READ WRITE CKSUM
                                 0
                                       0
                                              0
        р1
                    ONLINE
         mirror
                    ONLINE
                                 0
                                       0
                                              0
                                 0
                                       0
                                              0
            c1d0s4 ONLINE
            c1d0s5 ONLINE
                                 0
                                       0
                                              0
          mirror
                    ONLINE
                                 0
                                       0
                                              0
                                 0
            c1d0s3
                   ONLINE
                                       0
                                              0
            c1d0s6 ONLINE
                                 0
                                       0
                                              0
```

* Mettre un device offline

global# zpool offline p1 c1d0s6 global# zpool status

```
pool : p1
 état : DEGRADED
statut : Un ou plusieurs périphériques ont été placés hors ligne par
l'administrateur. Un nombre suffisant de répliques existe pour que le pool
continue à fonctionner dans un état endommagé.
action : mettez en ligne le périphérique en utilisant 'zpool online' ou
remplacez-le avec 'zpool replace'.
purger : aucun requis
configuration :
        NAME
                              READ WRITE CKSUM
                    STATE
        p1
                               0
                                        \cap
                                              0
                    DEGRADED
          mirror
                    ONLINE
                                 0
                                        0
                                              0
            c1d0s4 ONLINE
                                 0
                                        0
                                              0
            c1d0s5 ONLINE
                                 0
                                        0
                                              0
          mirror
                    DEGRADED
                                 0
                                        0
                                              0
                                 0
                                        0
                                              0
            c1d0s3 ONLINE
            c1d0s6 OFFLINE
                                 0
                                        0
                                              0
```

* Remettre le device online

global# zpool online p1 c1d0s6 global# zpool status p1

```
pool : p1
état : ONLINE
purger: resilver completed après 0h0m avec 0 erreurs sur Wed May 19 15:08:47
2010
configuration :
        NAME
                     STATE
                               READ WRITE CKSUM
        р1
                     ONLINE
                                   0
                                         0
                                               0
          mirror
                     ONLINE
                                   0
                                         0
                                               0
```

c1d0s4	ONLINE	0	0	0		
c1d0s5	ONLINE	0	0	0		
mirror	ONLINE	0	0	0		
c1d0s3	ONLINE	0	0	0		
c1d0s6	ONLINE	0	0	0	10,5K resilvered	

* Création d'un miroir manuel

global# zpool create p1 c1d0s3 global# zpool attach -f p1 c1d0s3 c1d0s4

```
global# zpool status
```

```
pool : p1
état : ONLINE
purger: resilver completed après 0h0m avec 0 erreurs sur Wed May 19 15:13:37
2010
configuration :
       NAME
                    STATE
                              READ WRITE CKSUM
        р1
                    ONLINE
                                0
                                       0
                                              0
                                 0
                                       \cap
                                              \cap
                   ONLINE
         mirror
            c1d0s3 ONLINE
                                 0
                                       0
                                              0
            c1d0s4 ONLINE
                                 0
                                       0
                                              0
```

global# zpool history

```
Historique de 'p1':
2010-05-19.15:12:48 zpool create -f p1 c1d0s3
2010-05-19.15:13:37 zpool attach -f p1 c1d0s3 c1d0s4
```

* Récupération d'un pool détruit (à partir de l'ID)

global# zpool import -D

```
pool : p1
   id: 13683450957060884102
état : DEGRADED (DETRUIT)
état : un ou plusieurs périphériques contiennent des données endommagées.
action : le pool peut être importé même si des périphériques sont endommagés
ou manquants. Cependant, la tolérance de pannes du pool importé risque d'être
compromise. reportez-vous au site : http://www.sun.com/msg/ZFS-8000-4J
configuration :
       p1
                  DEGRADED
         mirror
                  DEGRADED
           c1d0s4 FAULTED données endommagées
           c1d0s5 ONLINE
                  DEGRADED
         mirror
           c1d0s3 OFFLINE
           c1d0s6 ONLINE
 pool : p1
   id: 10535841933837252604
état : ONLINE (DETRUIT)
action : vous pouvez importer le pool en utilisant son nom ou son
identificateur numérique.
```

```
configuration :
      p1
                 ONLINE
        mirror ONLINE
          c1d0s3 ONLINE
          cld0s4 ONLINE
```

global# zpool import -D 13683450957060884102

1.3 ZFS

1.3.1 Manipulation sur les filesystemes

Création d'un filesysteme global# zfs create p1/fs1

global# zfs	list			
NAME	USED	AVAIL	REFER	MOUNTPOINT
p1	142K	29 , 5G	39K	/p1
p1/fs1	21K	29,5G	21K	/p1/fs1

global# zfs list p1

NAME	USED	AVAIL	REFER	MOUNTPOINT
p1	142K	29 , 5G	39K	/p1

global# zfs list -r p1							
NAME	USED	AVAIL	REFER	MOUNTPOINT			
p1	142K	29 , 5G	39K	/p1			
p1/fs1	21K	29 , 5G	21K	/p1/fs1			

Renommage d'un filesysteme

global# zfs rename p1/fs1/fs2 p1/fs1/fs4

global# zfs get all p1

grobain	Zis get an pi		
NAME	PROPERTY	VALUE	SOURCE
p1	type	filesystem	-
p1	creation	mer. mai 19 15:05 2010	-
p1	used	202K	-
p1	available	29,5G	-
р1	referenced	40K	-
p1	compressratio	1.00x	-
p1	mounted	yes	-
р1	quota	none	default
p1	reservation	none	default
p1	recordsize	128K	default
p1	mountpoint	/p1	default
p1	sharenfs	off	default
p1	checksum	on	default
p1	compression	off	default
p1	atime	on	default
p1	devices	on	default

p1	exec	on	default
p1	setuid	on	default
p1	readonly	off	default
p1	zoned	off	default
р1	snapdir	hidden	default
р1	aclmode	groupmask	default
р1	aclinherit	restricted	default
р1	canmount	on	default
p1	shareiscsi	off	default
р1	xattr	on	default
р1	copies	1	default
p1	version	4	-
p1	utf8only	off	-
p1	normalization	none	-
p1	casesensitivity	sensitive	-
p1	vscan	off	default
p1	nbmand	off	default
p1	sharesmb	off	default
p1	refquota	none	default
p1	refreservation	none	default
p1	primarycache	all	default
p1	secondarycache	all	default
p1	usedbysnapshots	0	-
p1	usedbydataset	40K	-
p1	usedbychildren	162K	-
p1	usedbyrefreservation	0	-

Quand on a un – dans source cela signifie que le paramètre est non modifiable.

Modification du paramètre canmount

global# zfs set canmount=off p1/fs1 global# zfs get canmount p1/fs1

NAME PROPERTY VALUE SOURCE p1/fs1 canmount off local

p1/fs1 n'apparaît plus avec df -h

On peut monter/démonter un filesysteme avec zfs : global# zfs mount p1/fs1/fs2/fs3

Changement du point de montage :

global# zfs set mountpoint=/export/users p1/fs1

p1/fs1/fs2 30G 23K 30G 1% /export/users/fs2

global# zfs set mountpoint=/export/users/titi p1/fs1/fs2

global# df -h /export/users/titi

Système de fichiers taille utilisé dispo capacité Monté sur p1/fs1/fs2 30G 23K 30G 1% /export/users/titi

Destruction récursive des filesystèmes :

global# zfs destroy -r p1

1.3.2 Partages NFS

global# zfs create p1/fs1 global# zfs create p1/fs2

global# zfs set sharenfs=on p1 global# zfs get -r sharenfs p1

NAME	PROPERTY	VALUE	SOURCE
p1	sharenfs	on	local

p1/fs1 sharenfs on inherited from p1 p1/fs2 sharenfs on inherited from p1

global# dfshares

RESOURCE	SERVER	ACCESS	TRANSPORT
stagiaire6:/p1	stagiaire6	_	_
stagiaire6:/p1/fs1	stagiaire6	_	_
stagiaire6:/p1/fs2	stagiaire6	_	_

bash-3.00# share

- /p1 rw "" - /p1/fs1 rw "" - /p1/fs2 rw ""

Monter en NFS /p1/fs1:

bash-3.00# mount stagiaire6:/p1/fs1 /mnt

Supprimer le partage NFS:

bash-3.00# zfs set sharenfs=off p1

1.3.3 Quotas

Attribuer un quota à p1/fs1

bash-3.00# zfs set quota=200m p1/fs1

bash-3.00# zfs list -r p1

NAME	USED	AVAIL	REFER	MOUNTPOINT	
p1	10,1M	29 , 5G	24K	/p1	
p1/fs1	9,93M	190M	9,91M	/p1/fs1	=> auparavant 29,5G
p1/fs1/sfs1	21K	190M	21K	/p1/fs1/sfs1	
p1/fs2	21K	29,5G	21K	/p1/fs2	

Annuler un quota

bash-3.00# zfs set quota=none p1/fs1

On peut créer des quotas sur des utilisateurs ou des groupes.

1.3.4 Réservation

On garantie un espace pour le filesysteme.

bash-3.00# zfs set reservation=100m p1/fs1

bash-3.00# zfs list -r p1

NAME	USED	AVAIL	REFER	MOUNTPOINT	
p1	100M	29,4G	24K	/p1	=> auparavant 203K
p1/fs1	45,5K	29 , 5G	24 , 5K	/p1/fs1	
p1/fs1/sfs1	21K	29 , 5G	21K	/p1/fs1/sfs1	
p1/fs2	21K	29,4G	21K	/p1/fs2	

1.3.5 Raw volume ZFS

bash-3.00# zfs create -V 1g p1/bdd

bash-3.00# zfs list -r

NAME	USED	AVAIL	REFER	MOUNTPOINT
p1	1,10G	28,4G	24K	/p1
p1/bdd	1G	29,4G	16K	-
p1/fs1	45,5K	28,5G	24 , 5K	/p1/fs1
p1/fs1/sfs1	21K	28,5G	21K	/p1/fs1/sfs1
p1/fs2	21K	28,4G	21K	/p1/fs2

bash-3.00# swap -1

swapfile dev swaplo blocs libres /dev/dsk/cld0s1 102,1 8 8401984 8401984

bash-3.00# swap -a /dev/zvol/dsk/p1/bdd

bash-3.00# swap -1

1.3.6 Snapshot

- Copie temporaire en lecture seule d'un système de fichier ou d'un volume à des fins de sauvegarde
- Création quasi immédiate
- Consomment de l'espace dans le pool de stockage auquel appartient le FS à partir duquel ils ont été créés
- Attention : le snapshot ne diminue pas en taille => possibilité saturation du pool de stockage

Le snapshot stocke les informations d'origine, avant modification.

Création

```
# zfs snapshot pool1/home/user1@friday
# zfs snapshot -r pool1/home@now
```

Suppression

```
# zfs destroy pool1/home/user1@friday
# zfs destroy -r pool1/home@now
```

Renommage

```
# zfs rename pool1/home/user1@080324 pool1/home/user1@friday # zfs rename pool1/home/user1@yesterday @2daysago
```

!! Les snapshots doivent se trouver dans le même dataset.

Affichage

```
# zfs list -r pool1 => n'affiche pas les snapshots
# zfs list -t snapshot
# zfs list -r snapshot -o name,creation pool1/home
```

- Accès
 - #/pool1/home/user1/.zfs/snapshot
- Restauration

On revient à l'était du snapshot. Suppression des snapshots intermédiaires.

=> Si c'est le snapshot le plus récent :

zfs rollback pool1/home/user1@tuesday

=> Si ce n'est plus le snapshot le plus récent : message pour indiquer que de plus récents existent.

Il faut utiliser l'option -r.

zfs rollback -r pool1/home/user1@tuesday

!! Dans ce cas les snapshots intermédiaires seront supprimés.

ATELIER

```
bash-3.00# zfs create p1/fs1
bash-3.00# zfs create p1/fs2
bash-3.00# zfs create p1/fs1/fs3
bash-3.00# zfs list
NAME USED AVAIL REFER MOUNTPOINT
            159K 14,8G 24K /p1
p1
p1 159K 14,8G 24K /p1
p1/fs1 42K 14,8G 21K /p1/fs1
p1/fs1/fs3 21K 14,8G 21K /p1/fs1/fs3
p1/fs2 21K 14,8G 21K /p1/fs2
bash-3.00# mkfile 10m /p1/fs1/fic1
bash-3.00# zfs list -r p1/fs1
NAME
            USED AVAIL REFER MOUNTPOINT
p1/fs1
            10,0M 14,8G 10,0M /p1/fs1
p1/fs1/fs3 21K 14,8G 21K /p1/fs1/fs3
bash-3.00# zfs snapshot p1/fs1@lundi
bash-3.00# zfs list -r p1/fs1
NAME USED AVAIL REFER FOOTILO
p1/fs1 10,0M 14,8G 10,0M /p1/fs1
              USED AVAIL REFER MOUNTPOINT
p1/fs1@lundi 0
                      - 10,0M -
p1/fs1/fs3
                21K 14,8G 21K /p1/fs1/fs3
bash-3.00# mkfile 10m /p1/fs1/fic2
bash-3.00# zfs list -r p1/fs1
              USED AVAIL REFER MOUNTPOINT
NAME
p1/fs1
             20,1M 14,7G 20,0M /p1/fs1
p1/fs1@lundi 19K - 10,0M
```

```
p1/fs1/fs3 21K 14,7G 21K /p1/fs1/fs3
bash-3.00# zfs snapshot -r p1/fs1@mardi
                                     => -r pour récursif sur sous-rep.
bash-3.00# zfs list -r p1/fs1
                USED AVAIL REFER MOUNTPOINT
NAME
p1/fs1
               20,1M 14,7G 20,0M /p1/fs1
p1/fs1@lundi
                19K - 10,0M - 0 - 20,0M -
p1/fs1@mardi
p1/fs1/fs3
                  21K 14,7G 21K /p1/fs1/fs3
p1/fs1/fs3@mardi
                0 -
                              21K -
=> va créer des snapshots pour chaque filesystemes (à cause -r).
bash-3.00# zfs list -r -o space p1/fs1
NAME
         AVAIL USED USEDSNAP USEDDS USEDREFRESERV USEDCHILD
p1/fs1
               14,7G 20,1M 19K 20,0M 0
                                                               21K
p1/fs1@lundi
                       19K
                        0
p1/fs1@mardi
p1/fs1/fs3 14,7G
                                     21K
                        21K
                                  0
                                                        0
                                                                  0
p1/fs1/fs3@mardi -
                        0
bash-3.00# zfs rollback -r p1/fs1@lundi
bash-3.00# zfs destroy -r p1/fs1@lundi
* *
bash-3.00# mkfile 10m /p1/fs1/fic2
bash-3.00# zfs snapshot p1/fs1@lundi
bash-3.00# cd /p1/fs1/.zfs/snapshot/lundi
bash-3.00# ls -al
-rw----T
           1 root
                             10485760 mai 20 11:16 fic1
                     root
=> on trouve sous .zfs les données sauvegardées dans le snapshot.
bash-3.00# mkfile 10m /p1/fs1/fic2
bash-3.00# zfs snapshot p1/fs1@mardi
bash-3.00# cd /p1/fs1/.zfs/snapshot/mardi
bash-3.00 \# ls -al
-rw----T 1 root
                     root
                             10485760 mai 20 11:16 fic1
                             10485760 mai 20 11:35 fic2
-rw----T 1 root
                     root
```

1.3.7 Clones

- Accessible en lecture/écriture
- Création quasi instantanée et ne consomme rien initialement
- Les clones se créent uniquement à partir d'un snapshot
- un clone n'hérite pas des propriétés du dataset à partir duquel il a été créé
- aucun espace disque supplémentaire
- un clone partage initialement son espace disque avec le snapshot d'origne
- Création
 - # zfs snapshot <u>projets/newprojet@today</u>
 - # zfs clone <u>pprojets/newprojet@today</u> projets/teamA/tempuser

```
# zfs set sharenfs=on projets/teamA/tempuser
# zfs set quota=5G projets/teamA/tempuser
```

Suppression

```
# zfs destroy projets/teamA/tempuser
# zfs destroy -R projets/newprojet
```

• remplacement du FS par un clone

```
# zfs create pool1/test/productA => FS d'origine
# zfs snapshot pool1/test/productA@today => snapshot
# zfs clone pool1/test/productA@today pool1/test/productAbeta => clone
# zfs list -r pool1/test => le USED du clone est à 0
# zfs promote pool1/test/productAbeta => le clone devient un FS (non cloné)
# zfs list -r pool1/test => on voit que le FS Abeta est noté avec un USED
# zfs rename pool1/test/productA pool1/test/productAorig
# zfs rename pool1/test/productAbeta pool1/test/productA => le clone est maintenant nommé et monté comme
```

• Sauvegarde/restauration : send/receive

```
# zfs send pool1/dana@snap1 > /sauve/snap.dmp

# zfs receive pool1/mark@snp < /sauve/snap.dmp => va créer le FS pool1/mark + le snapshot

# zfs send pool1/dana@snap1 | zfs receive spool/ds01 (ou ssh host2 zfs receive newpool1/dana)
```

Cas des incrémentales (le FS destination doit exister et on doit utiliser l'option -F) :

```
# zfs send -i pool1/dana@snap2 pool1/dana@snap3 | ssh host2 zfs receive -F newpool1/dana
```

=> on envoie (send) le delta entre snap2 et snap3. Il faut avoir au préalable snap2 et snap3.

Remarque : option -R du send pour répliquer toute l'arborescence des snapshots (le FS racine + tous les sous points de montage).

users/user1 users/user2 users/user3 FS d'origine.

1.3.8 Interface graphique

Accessible à l'URL https://localhost:6789

1.4 ZFS et zones

```
# zonecfg -z zion
zonecfg:zion> add fs
zonecfg:zion:fs> set type=zfs
zonecfg:zion:fs> set special=pool1/zone/zion
zonecfg:zion:fs> set dir=/export/shared
zonecfg:zion:fs> end
```

Délégation de dataset à une zone non globale => pour pouvoir faire des créations zfs depuis la zone non-globale

```
zonecfg:zion> add dataset
zonecfg:zion:device> set name=pool1/zone/zion
zonecfg:zion:device> end
zonecfg:zion> add device
zonecfg:zion:device> set match=/dev/zvol/dsk/pool1/vol
zonecfg:zion:device> end
```

Mot clé zoned : gestion des risques de sécurité, présence de binaires setuid, de liens, ... qui pourraient compromettre la sécurité de la zone globale.

ZFS utilise la propriété zoned pour indiquer qu'un dataset a été délégué à une zone non globale à in moment donné.

=> pour protéger la zone globale.

1.5 Les ACL

```
setfacl -m m:7,u:marc:5 /mnt/fic
getfacl
# ls -V fic
# ls -v fic
```

ID de l'index owner@ group@ everyone@ user group privileges heritage allow/deny

chmod A+acl-specification filename

A+ ajout A- retrait A= remplacement