WINE QUALITY ANALYSIS IN VINHO VERDE WINE

By

Paul Parks, Alden Caterio, Mayank Bhatt

AAI-500-02-SU23

Probability and Statistics for Artificial Intelligence

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Applied Artificial Intelligence

UNIVERSITY OF SAN DIEGO
SHILEY-MARCOS SCHOOL OF ENGINEERING
Summer 2023

Table of Contents

Introduction	3
Data Cleaning and Preparation	4
Exploratory Data Analysis	5
General Descriptive Statistics	5
Quantifying Outliers	8
Correlation	9
Model Selection	10
Model Analysis	10
Red Wine Model Analysis	10
White Wine Model Analysis	11
Summary	12
Conclusion	
Recommendation	13
Appendix: Github	15
Appendix: Code Output	15
Datasets	
Boxplot all data to view outliers	17
Correlation and Variation	
Probability of Scores	23
Remove all outliers	
Generalized Linear Model Regression	
Predictions	
Bibliography	
Dionography	
Table of Figures	
Figure 1: Boxplots for Red Wine Attributes	7
Figure 2: Boxplots for White Wine Attributes	
Figure 3: Correlation Matrix for Red Wine Attributes	
Figure 4: Correlation Matrix for White Wine Attributes	
Figure 5: Red Wine Model Regression Results	
Figure 7: Wine Simulated 1 Quality Increase	
Figure 8: Wine pH and alcohol summary	

Figure 9: Red Wine alcohol/pH quality correlation	14
Figure 10: White Wine alcohol/pH quality correlation	14
T-1.1 CT-1.1	
Table of Tables	
Table 1: Physicochemical Attributes	5
Table 2: General Descriptive Statistics	
Table 3: Total Outliers	

Introduction

Wine quality is known to be a very subjective topic. Wine taste, smell, and consistency will vary depending on many factors. Type of fruit, sugar content, age, temperature, pH level, additives, and more can affect how a glass of wine tastes to the consumer. Additionally, the consumer's taste pallet, aversion to alcohol content, and other external factors will further change how the wine is perceived. Pinpointing what "quality" truly means in terms of wine is a difficult task, but it is heavily studied for wine companies to produce higher quality products. Analyzing data gathered from wine studies can give insight into the subjectivity.

In this report, two datasets of wine from a popular Portuguese wine company called Vinho Verde are analyzed. Two types of wine are represented: red wine and white wine. They are separated since they are drastically different in taste and composition. Each dataset contains 12 attributes. There are 11 physicochemical attributes, measured and recorded by an official certification entity dealing with wine quality and marketing. The last attribute is Quality, attained through blind tastes, and rated on a scale from 0, meaning very bad, to 10, meaning excellent.

In our models, we focus on 2 attributes: pH and alcohol. The "pH" attribute quantifies the acidity or basic levels of the sample wine on a scale from 0 (very acidic) to 14 (very basic). The "alcohol" attribute describes how much alcohol is in the wine, measured in percent per volume. Through statistical inference, predictions about wine quality and the effects of these attributes can be made with a degree of confidence. Our models indicate that lowering pH levels while increasing alcohol content can lead to an increase in wine quality. Knowing this may be desirable for wine companies and their constituents because understanding the factors that increase overall wine quality can lead to improvements in production processes and profitability.

Data Cleaning and Preparation

Wines are often identified by their physicochemical attributes and sensory test to characterize the overall composition. Physicochemical attributes such as fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol in relation to a quality sensory test by individuals determine the quality of a wine. Much of the raw data is gathered through physicochemical laboratory test to quantify each attribute. To develop accurate and precise analysis the raw data provided from these tests were cleaned by developing boxplots regarding each variable to remove any anomalies. Additionally, published papers regarding the same dataset state, "during the preprocessing stage, the database was transformed to include a distinct wine sample (with all tests) per row. To avoid discarding examples, only the most common physicochemical tests were selected". Therefore, much of the data was optimized by researchers conducting the tests resulting in the raw dataset provided. By removing outliers from our data set we can interpret more accurate conclusion and develop an accurate model. The table below shows the significance of each physicochemical attribute on the composition of wine. Having a better understanding of these variables will allow for a better understanding of the data.

Table 1: Physicochemical Attributes

	Effects
fixed acidity	Provides wine with fresh and vibrant taste
volatile acidity	Measure of wines acid, acetic acid
citric acid	increase acidity, complements a specific flavor or prevent ferric hazes
residual sugar	Sweetness of the wine
chlorides	Saltiness of the wine
free sulfur dioxide	Unreacted ciomponents
total sulfur dioxide	Binds with pigments and phenolics
density	.99g/mL
рН	Most wines are slightly acidic
sulphates	Preserver and enhancer of wine
alcohol	Around 12%, higher in red
quality	Human expert opinion

Exploratory Data Analysis

General Descriptive Statistics

The data to be analyzed consists of two different datasets: red wine and white wine. The datasets were divided into red and white wine due to the difference in taste and appearance. The red wine dataset contains 1599 samples, and the white wine dataset contains 4898 samples. In both datasets, there are 12 characteristics: 11 physicochemical attributes and 1 quality attribute. The physicochemical attributes are independent variables, and the quality attribute is the dependent variable. Table 1 shows general descriptive statistics of each dataset's attributes.

Table 22: General Descriptive Statistics

	RED W	INE (159	9 SAMF	PLES)	WHITE WINE (4898 SAMPLES)				
	Mean	Std	Min	Max	Mean	Std	Min	Max	
FIXED ACIDITY	8.32	1.74	4.60	15.90	6.86	0.84	3.80	14.20	
VOLATILE ACIDITY	0.53	0.18	0.12	1.58	0.28	0.10	0.08	1.10	
CITRIC ACID	0.27	0.19	0.00	1.00	0.33	0.12	0.00	1.60	
RESIDUAL SUGAR	2.54	1.41	0.90	15.50	6.39	5.07	0.60	65.80	
CHLORIDES	0.09	0.05	0.01	0.61	0.04	0.02	0.01	0.35	
FREE SULFUR DIOXIDE	15.87	10.46	1.00	72.00	35.08	17.01	2.00	289.00	
TOTAL SULFUR DIOXIDE	46.47	32.90	6.00	289.00	138.36	42.50	9.00	440.00	
DENSITY	1.00	0.002	0.99	1.00	0.99	0.003	0.99	1.03	
PH	3.31	0.15	2.74	4.01	3.19	0.15	2.72	3.82	
SULPHATES	0.66	0.17	0.33	2.00	0.49	0.11	0.22	1.08	
ALCOHOL	10.42	1.07	8.40	14.9	10.51	1.23	8.00	14.2	
QUALITY	5.64	0.81	3.00	8.00	5.88	0.89	3.00	9.00	

In the red wine dataset, the maximum value for a handful of attributes falls more than 3 standard deviations away from their respective mean, representing an outlier. The same is observed in the white wine dataset. "Outliers can have adverse effects on the model analysis if unaccounted for. Boxplots for both datasets are graphed and shown in Figure 1 and Figure 2 in order to visualize the general descriptive statistics and identify outliers that may affect the models.

In Figure 1, the red wine samples for fixed acidity, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, and sulphates are skewed to the right, possessing low-valued means and many outliers greater than the maximum values. Each box plot contains at least a few outliers. In Figure 2, the white wine samples for fixed acidity, volatile acidity, citric acid, chlorides, free sulfur dioxide, and sulphates seem skewed to the right. All attributes except alcohol contain outliers.

Figure 1: Boxplots for Red Wine Attributes

Figure 2: Boxplots for White Wine Attributes

Quantifying Outliers

The boxplots reveal many outliers in certain attributes. Table 2 quantifies the outliers and the percentage relative to the total number of samples for each dataset. For red wine, the percentages are high for chlorides and sugar. For white wine, there are double-digit percentages in volatile acidity, citric acid, and chlorides. The high number of outliers increases variability which may decrease the statistical accuracy of our models. Techniques such as nonparametric tests and certain bootstrapping techniques can assist with handling outliers.

When comparing the outliers between both datasets, there are many outliers for residual sugar in red wine while there are only some in white wine. Additionally, there are many outliers in citric acid for white wine and very few in red wine. The difference in variability further confirms the need to separate the datasets.

Table 33: Total Outliers

	RED WINE (15)	99 SAMPLES)	WHITE WINE (4	898 SAMPLES)
	Total Outliers	Percentage	Total Outliers	Percentage
FIXED ACIDITY	49	3.06	119	7.44
VOLATILE ACIDITY	19	1.19	186	11.63
CITRIC ACID	1	0.06	270	16.89
RESIDUAL SUGAR	155	9.39	7	0.44
CHLORIDES	112	7	208	13.01
FREE SULFUR DIOXIDE	30	1.88	50	3.13
TOTAL SULFUR DIOXIDE	55	3.44	19	1.19
DENSITY	45	2.81	5	0.31
PH	35	2.19	75	4.69
SULPHATES	59	3.69	124	7.75
ALCOHOL	13	0.81	0	0
QUALITY	28	1.75	200	12.51

The number of outliers in chlorides range from moderate in red wine to high in white wine. Chlorides in wine are influenced by both terroir and type of grape (Coli et al, 2015). The type of grape can be controlled, but the terroir, or entire natural environment in which the wine is produced, is highly variable. Soil composition, natural weather phenomenon, humidity, temperature, and other extraneous factors can alter the terroir as often as every day. This variability may explain the variability of the data and the high number of outliers. Volatile acidity and citric acid also have a high number of outliers in white wine, but a low number in red wine. This might be explained by the way each type of wine is produced. Red wines are fermented with the grape seeds and skins while white wines are not. Mineral elements from the environment are absorbed through the roots of the vine and are mainly present in the skin, seeds, and pulp of the grape (Coli et al, 2015). The presence of these minerals in red wine may alter the chemical composition by decreasing acidity. White wine is generally more acidic than red wine, and this difference is evident in the taste.

Correlation

Another important statistic to analyze is correlation between individual attributes. High correlation between explanatory variables can lead to multicollinearity which causes large standard errors and overfitting a model. Figure 1 and Figure 2 show a correlation matrix for red wine and white wine respectively. Analyzing the red wine correlation matrix in Figure 3, fixed acidity is positively correlated with citric acid. Same with total sulfur dioxide and free sulfur dioxide. For the white wine correlation matrix in Figure 4, total sulfur dioxide and residual sugar are moderately correlated. For both datasets, residual sugar and density have a strong positive correlation, and density and alcohol have a strong negative correlation. Additionally, alcohol has a moderate positive correlation with quality. Alcohol is one of the attributes that will be analyzed in the model analysis section.

Figure 3: Correlation Matrix for Red Wine Attributes

Figure 4: Correlation Matrix for White Wine Attributes

Model Selection

The model chosen for the Wine dataset is the Generalized Linear Model (GLM) from the statsmodels library. The Generalized Linear Model (GLM) is an improved version of linear regression that can handle different types of data, including those that do not follow a normal distribution, by incorporating various types of regression like multiple linear, logistic, and Poisson. In this specific case, we are using the Gaussian model. The response or dependent variable is 'quality'; all other dataset features are treated as independent variables. After removing outliers from the dataset, the GLM model is fitted with these independent variables to predict the response variable 'quality'. The process is done separately for red wine and white wine data. Two models are created and used for each type of wine, red and white.

Model Analysis

Red Wine Model Analysis

The Generalized Linear Model (GLM) for the red wine quality prediction has been trained on 1,124 observations and includes 11 predictor variables. The model summary's coefficients provide insight into each variable's impact on wine quality. For instance, 'sulphates' and 'alcohol' appear to have a significant positive effect on wine quality, as suggested by their respective

positive coefficients (1.8195 and 0.2699) and small p-values (< 0.05). Similarly, 'volatile acidity', 'citric acid', 'total sulfur dioxide', and 'pH' also significantly influence but negatively.

In contrast, some variables like 'fixed acidity', 'residual sugar', 'chlorides', 'free sulfur dioxide', and 'density' exhibit large p-values (> 0.05), suggesting that these predictors might not be statistically significant in explaining the variation in wine quality. Particularly, 'density' has a very large standard error compared to its coefficient, further indicating that it may not be a reliable predictor.

Figure 5: Red Wine Model Regression Results

Gen	eralized Line	ar Mode	l Regression	Results		
Dep. Variable:	qua	lity	 No. Observati	 ons:	1124	
Model:		GLM	Df Residuals:		1112	
Model Family:	Gaus	sian	Df Model:		11	
Link Function:	Iden	tity	Scale:		0.33074	
Method:		IRLS	Log-Likelihoo	d:	-967.05	
Date:	Sat, 17 Jun	2023	Deviance:		367.79	
Time:	11:4	7:23	Pearson chi2:		368.	
No. Iterations:		3	Pseudo R-squ.	(CS):	0.4471	
Covariance Type:	nonro					
	coef	std e	======== rr z	P> z	[0.025	0.975
const	13.3441	27.3	 33 0.488	0.625	-40 . 228	66.916
fixed acidity	0.0181	0.0	31 0.580	0.562	-0.043	0.079
volatile acidity	-0.8159	0.1	50 -5. 457	0.000	-1.109	-0.523
citric acid	-0.3364	0.1	68 –1.997	0.046	-0.666	-0.006
residual sugar	0.0096	0.0	51 0.189	0.850	-0.090	0.110
chlorides	-1.1807	1.4	14 -0.835	0.404	-3.953	1.591
free sulfur dioxide	0.0029	0.0	03 1.041	0.298	-0.003	0.008
total sulfur dioxide	-0.0023	0.0	01 -2.254	0.024	-0.004	-0.000
density	-9.4483	27.9	02 -0.339	0.735	-64.135	45.239
pH	-0.5278	0.2	33 -2.261	0.024	-0.985	-0.070
sulphates	1.8195	0.1	76 10.310	0.000	1.474	2.165
alcohol	0.2699	0.0	34 7 . 931	0.000	0.203	0.337

The Pseudo R-squared value is approximately 0.4471, which indicates that the model explains around 44.71% of the variability in wine quality, leaving a substantial portion unexplained. This suggests there may be other factors not included in the model that could contribute to red wine's quality, or non-linear relationships that this GLM does not capture.

White Wine Model Analysis

This Generalized Linear Model (GLM) for white wine quality prediction has been trained on a larger set of 3,815 observations. It reveals that the statistically significant factors influencing white wine quality include 'fixed acidity', 'volatile acidity', 'residual sugar', 'chlorides', 'free sulfur dioxide', 'density', 'pH', 'sulphates', and 'alcohol'.

Among these, 'density' and 'volatile acidity' exhibit a substantial negative relationship with quality. Interestingly, unlike red wine, 'residual sugar' and 'pH' positively influences white wine

quality. 'Citric acid' and 'total sulfur dioxide', however, do not have a statistically significant impact, indicating that they may not be crucial in predicting white wine quality.

Figure 6: White Wine Model Regression Results

Gen	eralized Line		-			
Dep. Variable:			o. Observatio		3815	
Model:	·	GLM D	f Residuals:		3803	
Model Family:	Gaus	sian D	f Model:		11	
Link Function:	Iden	tity S	cale:		0.43001	
Method:		IRLS L	og-Likelihoo	d:	-3797.4	
Date:	Mon, 19 Jun	2023 D	eviance:		1635.3	
Time:	17:2	8:35 P	earson chi2:		1.64e+03	
No. Iterations:		3 P	seudo R-squ.	(CS):	0.2766	
Covariance Type:	nonro	bust				
=======================================	coef	std er	======== r z	P> z	[0.025	0.975]
const	174.4951	24.94	6 6.995	0.000	125.602	223.388
fixed acidity	0.1173	0.02	5 4.697	0.000	0.068	0.166
volatile acidity	-1.7875	0.15	0 -11.939	0.000	-2.081	-1.494
citric acid	0.0518	0.13	4 0.387	0.699	-0.211	0.314
residual sugar	0.0834	0.00	9 8.919	0.000	0.065	0.102
chlorides	-3.8680	1.33	5 –2.898	0.004	-6.484	-1.252
free sulfur dioxide	0.0035	0.00	1 3.652	0.000	0.002	0.005
total sulfur dioxide	0.0003	0.00	0.630	0.529	-0.001	0.001
density	-174.5434	25.28	2 -6.904	0.000	-224.095	-124.992
рН	0.7944	0.11	9 6.696	0.000	0.562	1.027
sulphates	0.7817	0.11	6.750	0.000	0.555	1.009
alcohol	0.1028	0.03	1 3.293	0.001	0.042	0.164

Despite the model accounting for these factors, it explains only about 27.66% of the variability in white wine quality (as denoted by the Pseudo R-squared value), suggesting other important factors or non-linear relationships might not be captured in the model. While the deviance of 1635.3 indicates a reasonable model fit, the model may benefit from further enhancements such as considering additional predictors or refining variable interactions.

Summary

In summary, while the model's reveal some interesting patterns and appears to predict some quality variance, the relatively low R-squared value and high p-values for certain predictors suggest room for further refinement.

Conclusion

While the predictive models developed in this study do not achieve perfect accuracy, they successfully identify the attributes that correlate with higher wine quality. These insights can prove invaluable to experienced winemakers, enabling them to refine their products and enhance their wine ratings through simple modifications.

Our model identified two modifiable attributes post-fermentation: 'pH' and 'alcohol'. The model suggests that wines with a higher alcohol content generally receive higher quality scores. In contrast, red wines exhibiting lower pH values tend to achieve higher quality ratings. White wines exhibiting higher pH achieve higher quality scores. Based on the current red and white wine datasets, our model predicts that a change in pH by 1.5 units, coupled with an increase in alcohol by 1.5 units, could potentially increase the quality score by one unit across all wines.

Figure 7: Wine Simulated 1 Quality Increase

Recommendation

Our model predicts winemakers can increase quality scores by 1 unit by changing pH by 1.5 units and increasing alcohol by 1.5 units. To accomplish this, we recommend using an acidifying agent to decrease pH or using carbonate salts to increase pH. To increase alcohol content, we recommend back-adding higher alcohol wine or increasing fermentable sugars. Commonly used acidifiers in beer and wine include phosphoric acid and lactic acid. We recommend using phosphoric acid to decrease pH levels in the wine since it does not contain adverse flavors that the lactic acid may contain. To increase alcohol, we recommend blending a higher-alcohol wine or adding additional fermentable sugars such as dextrose. pH can be brought down to a low of 2.74 units for red wine and raised to 3.82 units for white wine. Alcohol can be raised to 14.9 units in red wine and 14.2 units in white wine.

Red Wine pH and alcohol summary White Wine pH and alcohol summary pН alcohol alcohol Нα count 1599.000000 1599.000000 4898.000000 4898.000000 count mean 3.311113 10.422983 mean 3.188267 10.514267 1.065668 0.154386 std std 0.151001 1.230621 min 2.740000 8.400000 2.720000 8.000000 min 25% 3.210000 9.500000 9.500000 25% 3.090000 50% 3.310000 10.200000 3.180000 10.400000 50% 75% 3.400000 11.100000 75% 3.280000 11.400000 4.010000 14.900000 3.820000 14.200000 max

Figure 8: Wine pH and alcohol summary

Figure 9: Red Wine alcohol/pH quality correlation

Figure 10: White Wine alcohol/pH quality correlation

Appendix: Github

https://github.com/p-parks/AAI-500-Team-4-Final-Project/tree/main

Appendix: Code Output

```
In []:
# imports
import pandas as pd
from scipy import stats
import statsmodels.api as sm
import random
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import norm
from sklearn.metrics import mean_absolute_error
from tabulate import tabulate
Datasets
                                                                            In []:
wine white = pd.read csv('../Dataset/wine+quality/winequality-white.csv',
sep=';')
wine white.describe()
```

Out[]:

	fixed acidit y	volatil e acidit y	citric acid	residu al sugar	chlori des	free sulfur dioxid e	total sulfur dioxid e	densit y	рН	sulpha tes	alcoho l	qualit y
co un t		4898.0 00000	4898.0 00000	4898.0 00000	4898.0 00000	4898.0 00000	4898.0 00000	4898.0 00000	4898.0 00000	4898.0 00000	4898.0 00000	4898.0 00000
m ea n	6.8547 88	0.2782 41	0.3341 92	6.3914 15	0.0457 72	35.308 085	138.36 0657	0.9940 27	3.1882 67	0.4898 47	10.514 267	5.8779 09
st	0.8438	0.1007	0.1210	5.0720	0.0218	17.007	42.498	0.0029	0.1510	0.1141	1.2306	0.8856
d	68	95	20	58	48	137	065	91	01	26	21	39
mi n	3.8000	0.0800	0.0000	0.6000 00	0.0090 00	2.0000 00	9.0000 00	0.9871 10	2.7200 00	0.2200 00	8.0000	3.0000
25	6.3000	0.2100	0.2700	1.7000	0.0360	23.000	108.00	0.9917	3.0900	0.4100	9.5000	5.0000
%	00	00	00	00	00	000	0000	23	00	00	00	00
50	6.8000	0.2600	0.3200	5.2000	0.0430	34.000	134.00	0.9937	3.1800	0.4700	10.400	6.0000
%	00	00	00	00	00	000	0000	40	00	00	000	
75	7.3000	0.3200	0.3900	9.9000	0.0500	46.000	167.00	0.9961	3.2800	0.5500	11.400	6.0000
%	00	00	00	00	00	000	0000	00	00	00	000	

	fixed acidit y	P	citric	al	chlori		total sulfur dioxid e	densit	рН	sulpha tes	alcoho l	qualit y
m	14.200	1.1000	1.6600	65.800	0.3460	289.00	440.00	1.0389	3.8200	1.0800	14.200	9.0000
ax	000	00	00	000	00	0000	0000	80	00	00	000	00

In []:

wine_red = pd.read_csv('../Dataset/wine+quality/winequality-red.csv',
sep=';')
wine_red.describe()

Out[]:

	fixed acidit y	volatil e acidit y	citric acid	residu al sugar	chlori des	free sulfur dioxid e	total sulfur dioxid e	densit y	рН	sulpha tes	alcoho l	qualit y
co un t			1599.0 00000	1599.0 00000	1599.0 00000	1599.0 00000	1599.0 00000	1599.0 00000	1599.0 00000	1599.0 00000	1599.0 00000	1599.0 00000
m ea n	8.3196 37	0.5278 21	0.2709 76	2.5388 06	0.0874 67	15.874 922	46.467 792	0.9967 47	3.3111 13	0.6581 49	10.422 983	5.6360 23
st	1.7410	0.1790	0.1948	1.4099	0.0470	10.460	32.895	0.0018	0.1543	0.1695	1.0656	0.8075
d	96	60	01	28	65	157	324	87	86	07	68	69
mi	4.6000	0.1200	0.0000	0.9000	0.0120	1.0000	6.0000	0.9900	2.7400	0.3300	8.4000	3.0000
n	00	00		00	00	00	00	70	00	00	00	00
25	7.1000	0.3900	0.0900	1.9000	0.0700	7.0000	22.000	0.9956	3.2100	0.5500	9.5000	5.0000
%	00	00	00	00	00	00	000	00	00	00	00	00
50	7.9000	0.5200	0.2600	2.2000	0.0790	14.000	38.000	0.9967	3.3100	0.6200	10.200	6.0000
%	00	00	00	00	00	000	000	50	00	00	000	00
75	9.2000	0.6400	0.4200	2.6000	0.0900	21.000	62.000	0.9978	3.4000	0.7300	11.100	6.0000
%	00	00	00	00	00	000	000	35	00	00	000	00
m	15.900	1.5800	1.0000	15.500	0.6110	72.000	289.00	1.0036	4.0100	2.0000	14.900	8.0000
ax	000	00	00	000	00	000	0000	90	00	00	000	00

In []:

```
columns = [
    'fixed acidity',
    'volatile acidity',
    'citric acid',
    'residual sugar',
    'chlorides',
    'free sulfur dioxide',
    'total sulfur dioxide',
    'density',
    'pH',
    'sulphates',
    'alcohol',
```

```
'quality'
```

Boxplot all data to view outliers

```
In []:
def do boxplot(data):
    # fig, axes = plt.subplots(nrows=3, ncols=4, figsize=(15,10))
    \# 6/19/23 ACaterio: Lowering figsize to fit into screenshot for EDA in
the report
    fig, axes = plt.subplots(nrows=3, ncols=4, figsize=(10,8))
    axes = axes.ravel()
    for i, column in enumerate(columns):
        axes[i].boxplot(data[column])
        axes[i].set title(f'Boxplot of {column}')
    plt.tight layout()
    plt.show()
                                                                            In []:
print('BoxPlots Red Wine')
do boxplot(wine red)
BoxPlots Red Wine
```


print('BoxPlots White Wine')
do_boxplot(wine_white)
BoxPlots White Wine

print(tabulate(arr, headers=['Attribute', 'Total Outliers',
'Percentage'], tablefmt="fancy_grid"))

In []:

countOutliers(wine_red, "Red Wine", wine_red_n)

Attribute	Total Outliers	Percentage
fixed acidity	49	3.06
volatile acidity	19	1.19
citric acid	1	0.06
residual sugar	155	9.69
chlorides	112	7
free sulfur dioxide	30	1.88
total sulfur dioxide	55	3.44
density	45	2.81
pH	35	2.19
sulphates	59	3.69
alcohol	13	0.81
quality	28	1.75

countOutliers(wine_white, "White Wine", wine_white_n)

Total Outliers	Percentage
119	7.44
186	11.63
270	16.89
7	0.44
208	13.01
	119 186 270

In []:

free sulfur dioxide	50	3.13
total sulfur dioxide	 19	1.19
density	T 5	0.31
Г рН 	75 	4.69
sulphates	124	7.75
alcohol	0	0
quality	200	12.51

Correlation and Variation

```
In[]:
def createCorrMatr(df, df_str, color):
    cols_df = df.corr().nlargest(len(columns), 'quality')['quality'].index
    correl = df[cols_df].corr()
    plt.figure(figsize=(10,8))
    plt.title(f"Correlation Matrix: {df_str}")
    sns.heatmap(correl, annot=True, cmap = color)

createCorrMatr(wine_red, 'Red Wine', 'plasma')
createCorrMatr(wine_white, 'White Wine', 'GnBu')
```


Probability of Scores

```
In []:
    def get_probability(df):
        df.sort_values(by=['quality'], inplace=True)
        df_mean = np.mean(df["quality"])
        df_std = np.std(df["quality"])
        pdf = stats.norm.pdf(df["quality"], df_mean, df_std)

        plt.xlabel('Quality')
        plt.ylabel('Probability')
        plt.title('PDF of Quality')
        plt.plot(df["quality"], pdf)

In []:
get probability(wine red)
```


get_probability(wine_white)

Remove all outliers

```
In[]:
def remove_all_outliers(data_source):
    data = data_source.copy()
    for column in columns:
        Q1 = data[column].quantile(0.25)
        Q3 = data[column].quantile(0.75)
        IQR = Q3 - Q1
        data = data[(data[column] >= Q1 - 1.5*IQR) & (data[column] <= Q3 +
1.5*IQR)]
    return data</pre>
```

```
In []:
wine red cleaned = remove all outliers(wine red)
wine white cleaned = remove all outliers(wine white)
Generalized Linear Model Regression
                                                            In []:
def create_glm_fitted_model(df):
   X = df.drop('quality', axis=1)
   y = df['quality']
   X = sm.add constant(X)
   # Create the model
   model = sm.GLM(y, X)
   return model.fit()
                                                            In []:
wine red results = create glm fitted model(wine red)
print(wine_red_results.summary())
             Generalized Linear Model Regression Results
______
Dep. Variable:
                       quality No. Observations:
1599
                           GLM Df Residuals:
Model:
1587
Model Family: Gaussian Df Model:
11
Link Function:
                      Identity Scale:
0.41992
Method:
                          IRLS Log-Likelihood:
1569.1
Date:
              Sat, 24 Jun 2023 Deviance:
666.41
Time:
                       18:16:51 Pearson chi2:
666.
No. Iterations:
                             3 Pseudo R-squ. (CS):
0.4286
Covariance Type:
                     nonrobust
______
=========
                    coef std err z P>|z| [0.025]
0.9751
                   21.9652 21.195 1.036 0.300 -19.575
const
63.506
```

fixed acidity	0.0250	0.026	0.963	0.336	-0.026
0.076					
volatile acidity	-1.0836	0.121	-8.948	0.000	-1.321
-0.846					
citric acid	-0.1826	0.147	-1.240	0.215	-0.471
0.106					
residual sugar	0.0163	0.015	1.089	0.276	-0.013
0.046					
chlorides	-1.8742	0.419	-4.470	0.000	-2.696
-1.052					
free sulfur dioxide	0.0044	0.002	2.009	0.045	0.000
0.009					
total sulfur dioxide	-0.0033	0.001	-4.480	0.000	-0.005
-0.002					
density	-17.8812	21.633	-0.827	0.408	-60.281
24.519					
рн	-0.4137	0.192	-2.159	0.031	-0.789
-0.038					
sulphates	0.9163	0.114	8.014	0.000	0.692
1.140					
alcohol	0.2762	0.026	10.429	0.000	0.224
0.328					
					========

The variables 'volatile acidity', 'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'pH', 'sulphates', and 'alcohol' are statistically significant predictors of wine quality because their p-values are less than 0.05.

In []:

wine_white_results = create_glm_fitted_model(wine_white)
print(wine_white_results.summary())

Generalized Linear Model Regression Results

=

Dep. Variable: quality No. Observations:

4898

Model: GLM Df Residuals:

4886

Model Family: Gaussian Df Model:

11

Link Function: Identity Scale:

0.56454

Method: IRLS Log-Likelihood: -

5543.7

Date: Sat, 24 Jun 2023 Deviance:

2758.3

Time: 18:16:51 Pearson chi2:

2.76e+03

No. Iterations: 3 Pseudo R-squ. (CS):

0.3240

Covariance Type: nonrobust

=======					
	coef	std err	Z	P> z	[0.025
0.975]					
const	150.1928	18.804	7.987	0.000	113.337
187.048					
fixed acidity	0.0655	0.021	3.139	0.002	0.025
0.106					
volatile acidity	-1.8632	0.114	-16.373	0.000	-2.086
-1.640					
citric acid	0.0221	0.096	0.231	0.818	-0.166
0.210					
residual sugar	0.0815	0.008	10.825	0.000	0.067
0.096					
chlorides	-0.2473	0.547	-0.452	0.651	-1.318
0.824					
free sulfur dioxide	0.0037	0.001	4.422	0.000	0.002
0.005					
total sulfur dioxide	-0.0003	0.000	-0.756	0.450	-0.001
0.000					
density	-150.2842	19.075	-7.879	0.000	-187.670
-112.899					
рН	0.6863	0.105	6.513	0.000	0.480
0.893					
sulphates	0.6315	0.100	6.291	0.000	0.435
0.828					
alcohol	0.1935	0.024	7.988	0.000	0.146
0.241					
=======================================			========		

The variables 'volatile acidity', 'residual sugar', 'free sulfur dioxide', 'density', 'pH', 'sulphates', and 'alcohol' are statistically significant predictors of wine quality because their p-values are less than 0.05.

In []:

wine_red_cleaned_results = create_glm_fitted_model(wine_red_cleaned)
print(wine_red_cleaned_results.summary())

Generalized Linear Model Regression Results

=

Dep. Variable: quality No. Observations:

1124

Model: GLM Df Residuals:

1112

Model Family: Gaussian Df Model:

11

Link Function: Identity Scale:

0.33074

Method: IRLS Log-Likelihood:

967.05

Date: Sat, 24 Jun 2023 Deviance:

367.79

Time: 18:16:51 Pearson chi2:

368.

No. Iterations: 3 Pseudo R-squ. (CS):

0.4471

Covariance Type: nonrobust

Covariance Type:	nonro	bust 			
0.975]	coef	std err	z	P> z	[0.025
const 66.916	13.3441	27.333	0.488	0.625	-40.228
fixed acidity 0.079	0.0181	0.031	0.580	0.562	-0.043
volatile acidity -0.523	-0.8159	0.150	-5.457	0.000	-1.109
citric acid -0.006	-0.3364	0.168	-1.997	0.046	-0.666
residual sugar 0.110	0.0096	0.051	0.189	0.850	-0.090
chlorides 1.591	-1.1807	1.414	-0.835	0.404	-3.953
free sulfur dioxide 0.008	0.0029	0.003	1.041	0.298	-0.003
total sulfur dioxide -0.000	-0.0023	0.001	-2.254	0.024	-0.004
density 45.239	-9.4483	27.902	-0.339	0.735	-64.135
рН -0.070	-0.5278	0.233	-2.261	0.024	-0.985
sulphates 2.165	1.8195	0.176	10.310	0.000	1.474

alcohol	0.2699	0.034	7.931	0.000	0.203
0 337					

In []:

wine_white_cleaned_results = create_glm_fitted_model(wine_white_cleaned) print(wine white cleaned results.summary())

Generalized Linear Model Regression Results

Dep. Variable: quality No. Observations:

3815

Model: GLM Df Residuals:

3803

Model Family: Gaussian Df Model:

11

Link Function: Identity Scale:

0.43001

Method: IRLS Log-Likelihood:

3797.4

Sat, 24 Jun 2023 Deviance: Date:

1635.3

Time: 18:16:51 Pearson chi2:

1.64e+03

No. Iterations: 3 Pseudo R-squ. (CS):

0.2766

Covariance Type: nonrobust

coef std err z P>|z| [0.025] 0.9751 ______ const 174.4951 24.946 6.995 0.000 125.602 223.388 0.068 fixed acidity 0.1173 0.025 4.697 0.000 0.166 volatile acidity -1.7875 0.150 -11.939 0.000 -2.081 -1.4940.0518 0.134 0.387 citric acid 0.699 -0.211 0.314 0.000 residual sugar 0.0834 0.009 8.919 0.065 0.102 -3.8680 1.335 -2.898 chlorides 0.004 -6.484 -1.252

free sulfur dioxide	0.0035	0.001	3.652	0.000	0.002
0.005					
total sulfur dioxide	0.0003	0.000	0.630	0.529	-0.001
0.001	154 5404	05.000	6 004	0.000	004 005
density	-174.5434	25.282	-6.904	0.000	-224.095
-124.992	0.7944	0.119	6.696	0.000	0.562
рН 1.027	0.7944	0.119	0.090	0.000	0.362
sulphates	0.7817	0.116	6.750	0.000	0.555
1.009	0.7017	0.110	0.730	0.000	0.333
alcohol	0.1028	0.031	3.293	0.001	0.042
0.164					

Predictions

In []: def quality_histogram(X, y, results): predicted scores = [] actual scores = [] for row iter in range(len(X)): row = X.iloc[row iter] predicted quality = results.predict(row) predicted scores.append(predicted quality[0]) actual_scores.append(y.iloc[row_iter]) sns.kdeplot(predicted_scores, label='Predicted Score') sns.kdeplot(actual scores, label="Actual Score") plt.legend() plt.show() def predict wine using df(df source, results): df = df source.copy() get_mse_predictions(df, results) X = df.drop('quality', axis=1) X = sm.add constant(X)y = df['quality'] index = random.randint(0, len(df)) row = X.iloc[index] predicted_quality = results.predict(row) print('Predicted wine quality:', predicted_quality[0]) print('Predicted wine quality rounded:', round(predicted quality[0])) print('Actual wine quality:', y.iloc[index])

```
quality histogram(X, y, results)
                                                                            In []:
def get mse predictions(df, results):
    X = df.drop('quality', axis=1)
    X = sm.add constant(X)
    y = df['quality']
    predictions = results.predict(X)
    mae = mean absolute error(y, predictions)
    print(f'Mean Absolute Error: {mae}')
                                                                            In []:
def predict simulated best wine (data source, results):
    print('Take the best scoring wine in the dataset and make it even
better.')
    # new wine = {
          'const': [1],
          'fixed acidity': [8.5],
         'volatile acidity': [0.8],
          'citric acid': [0.56],
          'residual sugar': [1.8],
    #
          'chlorides': [0.077],
    #
          'free sulfur dioxide': [10.0],
          'total sulfur dioxide': [37.0],
    #
          'density': [0.9968],
    #
          'pH': [3.2],
          'sulphates': [0.68],
    #
          'alcohol': [9.8]
    # }
    data = data source.copy()
    # get the best scoring wine in the real dataset
    X = sm.add constant(data)
    max quality index = X['quality'].idxmax()
    max quality row = X.loc[max quality index]
    actual score = max quality row['quality']
    print(f'Actual quality: {actual score}')
    max quality row = max quality row.drop('quality')
    # Statistically significant values for both red and white wines
    # tldr how to get a 11/10 wine
    max quality row['alcohol'] = 15 #high alcohol
    max quality row['sulphates'] = 2 #high sulphates
    max quality row['volatile acidity'] = 0.1 #low volatile acidity
    max quality row['total sulfur dioxide'] = 30 # low total sulfur dioxide
    max quality row['pH'] = 2 # low pH
    print(max quality row)
```

```
predicted_quality = results.predict(max_quality_row)
print(f'\nPredicted wine quality: {round(predicted_quality[0])}\n')
```

In []:

print('\nRed Wine prediction: \n')
predict wine using df(wine red, wine red results)

Red Wine prediction:

Mean Absolute Error: 0.500489963564491 Predicted wine quality: 6.4713673724387

Predicted wine quality rounded: 6

Actual wine quality: 6

In []:

print('\nWhite Wine prediction: \n')
predict wine using df(wine white, wine white results)

White Wine prediction:

Mean Absolute Error: 0.5836349500279457 Predicted wine quality: 5.6392830408493975

Predicted wine quality rounded: 6

Actual wine quality: 6

In []:

print('\nRed Wine Cleaned prediction: \n')
predict_wine_using_df(wine_red_cleaned, wine_red_cleaned_results)

Red Wine Cleaned prediction:

Mean Absolute Error: 0.4593529800397901 Predicted wine quality: 5.2065795461938 Predicted wine quality rounded: 5

Actual wine quality: 5

In []:

print('\nWhite Wine Cleaned prediction: \n')
predict_wine_using_df(wine_white_cleaned, wine_white_cleaned_results)

White Wine Cleaned prediction:

Mean Absolute Error: 0.5287723085610089
Predicted wine quality: 6.218434120248082

Predicted wine quality rounded: 6

Actual wine quality: 6

print('\nRed Wine prediction: \n')
predict_simulated_best_wine(wine_red, wine_red_cleaned_results)

Red Wine prediction:

Take the best scoring wine in the dataset and make it even better.

Actual quality: 8.0

1 1	
const	1.0000
fixed acidity	5.5000
volatile acidity	0.1000
citric acid	0.0300
residual sugar	1.8000
chlorides	0.0440
free sulfur dioxide	28.0000
total sulfur dioxide	30.0000
density	0.9908
рН	2.0000
sulphates	2.0000
alcohol	15.0000

Name: 1269, dtype: float64

Predicted wine quality: 11

print('\nWhite Wine prediction: \n')
predict_simulated_best_wine(wine_white, wine_white_cleaned_results)

In []:

In []:

```
Take the best scoring wine in the dataset and make it even better.
Actual quality: 9.0
                        1.000
const
fixed acidity
                        9.100
volatile acidity
                       0.100
citric acid
                        0.450
residual sugar
                      10.600
chlorides
                       0.035
free sulfur dioxide
                      28.000
total sulfur dioxide
                      30.000
density
                       0.997
                        2.000
рΗ
sulphates
                        2.000
alcohol
                       15.000
Name: 774, dtype: float64
Predicted wine quality: 7
                                                                          In []:
def predict simulated best wine only modify pH and alcohol (data source,
results):
    predicted scores original = []
    predicted scores with modifications = []
    score diff = []
    data = data source.copy()
    X = sm.add constant(data)
    for row iter in range(len(data)):
        row = X.loc[row iter]
        row = row.drop('quality')
        predicted quality = results.predict(row)
        row['alcohol'] = row['alcohol'] + 1.5
        row['pH'] = row['pH'] - 1.5
        predicted quality modified = results.predict(row)
        predicted scores original.append(predicted quality[0])
predicted_scores_with_modifications.append(predicted_quality_modified[0])
        score diff = predicted quality modified[0] - predicted quality[0]
    sns.kdeplot(predicted scores original, label='Predicted Score
```

White Wine prediction:

(Original)')

```
sns.kdeplot(predicted_scores_with_modifications, label="Predicted Score
(+1.5% abv -1.5%pH)")

plt.legend()
plt.show()
print(f'Average Score difference (Score point out of 10):
{np.mean(score_diff)}')

In[]:
# pH and Alcohol and both easily adjustable post fermentation.
# What would happen to our wine scores if we increased alcohol and decreased
pH?
```

predict_simulated_best_wine_only_modify_pH_and_alcohol(wine_red,
wine red cleaned results)

Average Score difference (Score point out of 10): 1.1965024634214307

In []:

predict_simulated_best_wine_only_modify_pH_and_alcohol(wine_white,
wine white cleaned results)

Average Score difference (Score point out of 10): -1.0374215502692428

Increasing alcohol percentage by 1.5 and lowering pH by 1.5 gains an average of 1 whole score point.

```
In []:
subset = wine red[["pH", "alcohol"]]
description = subset.describe()
print('Red Wine pH and alcohol summary')
print(description)
Red Wine pH and alcohol summary
                Нф
                         alcohol
count 1599.000000
                   1599.000000
mean
          3.311113
                      10.422983
std
          0.154386
                        1.065668
          2.740000
                        8.400000
min
25%
          3.210000
                        9.500000
50%
          3.310000
                      10.200000
75%
          3.400000
                      11.100000
          4.010000
                      14.900000
max
                                                                             In []:
subset = wine white[["pH", "alcohol"]]
description = subset.describe()
print('White Wine pH and alcohol summary')
print(description)
White Wine pH and alcohol summary
                         alcohol
                рН
count
       4898.000000
                    4898.000000
          3.188267
                      10.514267
mean
std
          0.151001
                        1.230621
          2.720000
                        8.000000
min
```

3.090000

9.500000

25%

```
50%
    3.180000 10.400000
75%
        3.280000 11.400000
         3.820000 14.200000
max
                                                                          In []:
def do regression and plot(df, param, axs, label):
    X = df[[param]]
    y = df['quality']
    # Add a constant to the independent value
    X = sm.add constant(X)
    # Perform regression
    model = sm.GLM(y, X)
    results = model.fit()
    axs.scatter(X[param], y, alpha=0.5)
    # Fitted line
    y pred = results.predict(X)
    axs.plot(X[param], y pred, color='red')
    axs.set xlabel(param)
    axs.set ylabel('Quality')
    axs.set title(label + ' Wine Quality vs ' + param + ' Content')
def create scatterplot(df, label):
    # Create two subplots side by side
    fig, axs = plt.subplots(1, 2, figsize=(10, 5)) # 1 row, 2 columns
    # Scatter plot for first set of data
    do regression and plot(df, 'alcohol', axs[0], label)
    # Scatter plot for second set of data
    do regression and plot(df, 'pH', axs[1], label)
    # Display the plots
    plt.show()
                                                                          In []:
create scatterplot(wine red, 'Red')
```


Bibliography

10

11

alcohol

3

- 1. https://archive.ics.uci.edu/dataset/186/wine+quality
- 2. http://www3.dsi.uminho.pt/pcortez/wine5.pdf

12

- 3. http://www3.dsi.uminho.pt/pcortez/wine5.pdf
- 4. https://www.scielo.br/j/cta/a/HQsrPrPMNZYgRzSKtrjHyHh/?format=pdf

3

2.8

3.0

3.2

рΗ

3.4

3.6

3.8

14

13

- 5. https://r4ds.had.co.nz/exploratory-data-analysis.html
- 6. https://towardsdatascience.com/exploratory-data-analysis-8fc1cb20fd15
- 7. https://www.vinhoverde.pt/en/homepage
- 8. https://www.vinhoverde.pt/en/homepage