Arquitectura de Computadores

Fundamentos

Basado en texto: "*Digital Design and Computer Architecture*, 2nd Edition", David Money Harris and Sarah L. Harris

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <1>

From ZERO To ONE

Tópicos

- Conceptos básicos
- El plan de juego del curso
- El arte de manejar la complejidad
- La abstracción Digital
- Sistemas numéricos
- Compuertas Lógicas
- Niveles Lógicos
- Transistores CMOS
- Consumo de Potencia

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <2>

Conceptos básicos

- Los microprocesadores han revolucionado nuestro mundo
 - Teléfonos celulares, Internet, avances rápidos en medicina, etc.
- La industria de semiconductores ha crecido desde \$21 billones en 1985 hasta los \$300 billones en 2011

m ZERO To ONE

El Arte de Manejar la Complejidad

- Abstracción
- Disciplina
- Las tres y's
 - Jerarquía (Hierarchy)
 - Modularidad (Modularity)
 - Regularidad (Regularity)

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <4>

Abstracción

 Ocultar detalles cuando estos no son importantes

© Digital Design and Computer Architecture, 2nd Edition, 2012

rom ZERO To ONE

Disciplina

- Intencionalmente restringir la selección del diseño
- Ejemplo: Disciplina digital
 - Voltajes discretos en vez de continuos
 - Es mas simple que diseñar circuitos analógicos podemos construir mas sistemas sofisticados
 - Sistemas digitales reemplazan a sus predecesores análogos
 - i.e., cámaras digitales, televisión digital, teléfono celular, CDs

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <6>

Las tres -y's

- Jerarquia Hierarchy
- Modularidad Modularity
- Regularidad Regularity

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <7>

om ZERO To ONE

Las tres -y's

- Jerarquía
 - Un sistema es dividido en módulos y sub-módulos
- Modularidad
 - Poseer interfaces y funciones bien definidas
- Regularidad
 - Alentar la uniformidad, de modo que los módulos puedan ser fácilmente reusables

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <8>

Ejemplo: Rifle Flintlock

• Jerarquía

- Hay tres módulos principales:acción (lock), culata (stock), y cañón (barrel)
- Submodulos de la acción: martillo, percutor seguro, etc.

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <9>

From ZERO To ONE

Ejemplo: El Rifle Flintlock

Modularidad

- Función de la culata: montar el cañón con la acción
- Interfaz de la culata: largo y ubicación delos pasadores de montaje

• Regularidad

Partes intercambiables

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <10>

La Abstracción Digital

- La mayoría de las variables son continuas
 - Voltaje en un cable
 - Frecuencia de oscilador
 - Posición de un objeto
- La abstracción digital considera un conjunto discreto de valores

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <11>

om ZERO To ONE

Disciplina Digital: Valores Binarios

- Dos valores discretos:
 - 1's y 0's
 - 1, VERDADDERO (true), ALTO (high)
 - 0, FALSO (falso), BAJO (low)
- 1 y 0: niveles de voltaje, engranajes giratorios, niveles de fluido, etc.
- Los circuitos digitales usan niveles de voltaje para representar 1 y 0
- Bit: Dígito binario

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <12>

George Boole, 1815-1864

- Nació de en una familia de clase media
- Autodidacta de las matemática y fue profesor de la facultad del Queen's College en Ireland
- Escribió An Investigation of the Laws of Thought (1854)
- Propuso las variables binarias
- Propuso las tres operaciones lógicas básicas: AND, OR, and NOT

Scanned at the American

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <13>

Sistemas numéricos

• Números decimales

• Números binarios

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <14>

Sistemas numéricos

• Números decimales

$$5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$$

$$\text{five thousands hundreds tens}$$

$$\text{four ones}$$

• Números binarios

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <15>

Potencias de dos

n ZERO To ONE

- 2⁰ =
- 28 =

• 21 =

- 29 =
- $2^2 =$
- 2¹⁰ =
- $2^3 =$
- 2^{11} =
- $2^4 =$
- 2^{12} =
- $2^5 =$
- 2¹³ =
- 26 =
- 214 =
- 27 =
- $2^{15} =$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <16>

Potencias de dos

•
$$2^0 = 1$$

•
$$2^0 = 1$$
 • $2^8 = 256$

•
$$2^1 = 2$$

•
$$2^1 = 2$$
 • $2^9 = 512$

•
$$2^2 = 4$$

•
$$2^{10} = 1024$$

•
$$2^3 = 8$$

•
$$2^{11} = 2048$$

•
$$2^4 = 16$$

$$2^{12} = 4096$$

•
$$2^5 = 32$$

$$2^6 = 64$$

$$\begin{array}{lll}
\bullet & 2^{7} - 2 \\
\bullet & 2^{2} = 4 \\
\bullet & 2^{3} = 8 \\
\bullet & 2^{4} = 16 \\
\bullet & 2^{5} = 32 \\
\bullet & 2^{6} = 64 \\
\bullet & 2^{7} = 128 \\
\bullet & 2^{10} = 1024 \\
\bullet & 2^{11} = 2048 \\
\bullet & 2^{12} = 4096 \\
\bullet & 2^{13} = 8192 \\
\bullet & 2^{14} = 16384 \\
\bullet & 2^{7} = 32768 \\
\bullet & 2^{15} = 32768
\end{array}$$

•
$$2^7 = 128$$

•
$$2^{15} = 32768$$

• Es útil memorizar hasta 29

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <17>

From ZERO To ONE

Grandes Potencias de Dos

- $2^{10} = 1 \text{ kilo } \approx 1000 \text{ (1024)}$
- $2^{20} = 1 \text{ mega } \approx 1 \text{ millón } (1.048.576)$
- $2^{30} = 1$ giga \approx Mil millones (1.073.741.824)

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 < 18>

Estimando una potencia de Dos

- ¿Cual es el valor de 2²⁴?
- ¿Cuantos valores distintos puede representar una variable de 32-bit?

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <19>

om ZERO To ONE

Estimando Potencias de Dos

• ¿Cual es el valor de 2²⁴?

• ¿Cuantos valores distintos puede representar una variable de 32-bit?

$$2^2 \times 2^{30} \approx 4$$
 mil millones

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <20>

Conversión de números

- Conversión binaria a decimal:
 - Convertir 10011₂ a decimal
- Conversión decimal a binaria:
 - Convertir 47₁₀ a binaria

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <21>

om ZERO To ONE

Conversión numérica

- Conversión binaria a decimal:
 - Convertir 10011₂ a decimal
 - $-16 \times 1 + 8 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 19_{10}$
- Conversión decimal a binaria:
 - Convertir 47₁₀ a binario
 - $\quad 32 \times 1 + 16 \times 0 + 8 \times 1 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 101111_2$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <22>

Rango y valores binarios

- Números decimales de N-dígitos
 - ¿Cuantos valores distintos?
 - ¿Rango?
 - Ejemplo: numero decimal de 3-dígitos:
- Números binarios de N-bits
 - ¿Cuantos valores distintos?
 - Rango:
 - Ejemplo: numero binario de 3-bits:

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <23>

om ZERO To ONE

Valores Binarios y Rango

- Numero decimales de N-dígitos
 - ¿Cuantos valores distintos? 10^N
 - ¿Rango? [0, 10^N 1]
 - Ejemplo: numero decimal de 3-dígitos:
 - 10³ = 1000 valores posibles
 - Rango: [0, 999]
- Numero binario de N-bit
 - ¿Cuantos valores distintos? 2^N
 - Rango: $[0, 2^N 1]$
 - Ejemplo: numero binario de 3-bits:
 - 2³ = 8 valores posibles
 - Rango: [0, 7] = [000, al 111,]

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <24>

Números Hexadecimales From ZERO To ONE A В С D Е © Digital Design and Computer Architecture, 2nd Edition, 2012 Chapter 1 <25>

Números Hexadecimales From ZERO To ONE Α В С D Е F © Digital Design and Computer Architecture, 2nd Edition, 2012 Chapter 1 <26>

Números Hexadecimales

- Base 16
- Notación abreviada para los representar números binarios

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <27>

om ZERO To ONE

Conversión Hexadecimal a Binario

- Conversión Hexadecimal a binario:
 - Convertir 4AF₁₆ (también se escribe como 0x4AF) a binario
- Conversión Hexadecimal a decimal:
 - Convertir 0x4AF a decimal

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <28>

Conversión hexadecimal a binaria

- Conversión hexadecimal a binario:
 - Convertir 4AF₁₆ (también se escribe como 0x4AF) a binario
 - 0100 1010 1111₂
- Conversión hexadecimal a decimal
 - Convertir 4AF₁₆ a decimal
 - $-16^2 \times 4 + 16^1 \times 10 + 16^0 \times 15 = 1199_{10}$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <29>

Bits, Bytes, Nibbles...

• Bits

10010110 most least significant

bit

significant

Bytes & Nibbles

byte 10010110 nibble

Bytes

CEBF9AD7

¿Por que el byte mas significativo se compone de dos dígitos hexadecimales?

least significant significant byte byte

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <30>

Suma

From ZERO To ONE

• Decimal

• Binaria

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <31>

Suma

rom ZERO To ONE

• Decimal

• Binaria

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <32>

Ejemplos de Suma Binaria

• Sume los siguientes números binarios de 4-bit

• Sume los siguientes números binarios de 4-bit

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <33>

From ZERO To ONE

Ejemplos de Suma Binaria

 Sume los siguientes números binarios de 4-bit

• Sume los siguientes números binarios de 4-bit

¡Desbordamiento!

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <34>

Desbordamiento

- Los sistemas digitales operan sobre un numero fijo de bits
- Desbordamiento (Overflow): cuando el resultado es demasiado grande para calzar en los bits disponibles
- Vea el ejemplo previo de 11 + 6

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <35>

From ZERO To ONE

Números Binarios con Signo

- Números con Signo/Magnitud
- Números en complemento de dos

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <36>

Números con Signo/Magnitud

- 1 bit de signo, N-1 bits para magnitud
- Bit signo es el mas significativo, el bit mas a la $A: \{a_{N-1}, a_{N-2}, \cdots a_2, a_1, a_0\}$ izquierda
 - Numero positivo: bit signo = 0
 - $A = (-1)^{a_{n-1}} \sum_{i=1}^{n-2} a_i 2^i$ Numero negativo: bit signo = 1
- Ejemplo, representación \pm 6 con sign/mag de 4 bits:

 - **-** 6 =
- Rango de numero con signo/magnitud de N-bit:

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <37>

From ZERO To ONE

Números con Signo/Magnitud

- 1 bit de signo, N-1 bits para magnitud
- Bit signo es el mas significativo, el bit mas a la izquierda
 - Numero positivo: bit signo = 0 $A:\{a_{N-1}, a_{N-2}, ..., a_2, a_1, a_0\}$
 - $A = (-1)^{a_{n-1}} \sum_{i=1}^{n-2} a_{i} 2^{i}$ Numero negativo: bit signo = 1
- Ejemplo, representación ± 6 con sign/mag de 4 bits:
 - +6 = 0110
- Rango de numero con signo/magnitud de N-bit: $[-(2^{N-1}-1), 2^{N-1}-1]$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <38>

Números con Signo/Magnitud

- Problemas:
 - Suma no funciona, por ejemplo -6 + 6:

1110 + 0110 10100 (;error!)

– Dos representaciones del 0 (\pm 0):

1000 0000

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <39>

Números complemento de dos

om ZERO To ONE

- No tenemos los problemas de los números con signo/magnitud:
 - Suma funciona
 - Una sola representación para el 0

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <40>

Números en Complemento de Dos

• Msb tiene el valor de -2^{N-1}

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- El mayor numero positivo de 4-bit:
- El numero mas negativo de 4-bit:
- El bit mas significativo aun indica el signo (1 = negativo, 0 = positivo)
- Rango de un numero de *N*-bit en complemento de dos:

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <41>

From ZERO To ONE

Números en Complemento de Dos

• Msb tiene el valor de -2^{N-1}

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- El mayor numero positivo de 4-bit: 0111
- El numero mas negativo de 4-bit: 1000
- El bit mas significativo aun indica el signo (1 = negativo, 0 = positivo)
- Rango de un numero de *N*-bit en complemento de dos: [-(2^{N-1}), 2^{N-1}-1]

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chanter 1 <42>

"Tomando el complemento de dos"

- Invierta el signo del numero en complemento de dos
- Método:
 - 1. Invertir los bits
 - 2. Sume 1
- Ejemplo: Invertir el signo de $3_{10} = 0011_2$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <43>

om ZERO To ONE

"Tomando complemento de dos"

- Invertir el signo del numero en complemento de dos
- Método:
 - 1. Invertir los bits
 - 2. Sume 1
- Ejemplo: Invierta el signo de $3_{10} = 0011_2$
 - $\frac{1.}{2.} \frac{1100}{+1}$
 - $1101 = -3_{10}$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <44>

Ejemplos de Complemento de Dos

- Tome el complemento de dos de $6_{10} = 0110_2$
- ¿Cual es el valor decimal de 1001₂?

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <45>

From ZERO To ONE

Ejemplos de Complemento de Dos

• Tome el complemento de dos de $6_{10} = 0110_2$

1.
$$1001$$
2. $+ 1$
 $1010_2 = -6_{10}$

• ¿Cual es el valor decimal del numero en complemento de dos 1001₂?

1.
$$0110$$
2. + 1
 $0111_2 = 7_{10}$, luego $1001_2 = -7_{10}$

ELSEVIER

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <46>

Suma de Complemento de dos

• Sume 6 + (-6) con números en complemento de dos

 Sume -2 + 3 con numero en complemento de dos

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <47>

Suma de Complementos de Dos

om ZERO To ONE

• Sume 6 + (-6) con números en complemento de dos 111

• Sume -2 + 3 con números en complemento de dos

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <48>

Incrementar Ancho Bit

- Extender numero de N a M bits (M > N):
 - Extensión de signo
 - Extensión de cero

Copyright © 2012 Elsevier © Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 < 49>

ZERO TO ONE

Extensión de signo

- Bit Signo copiado al msb's
- Valor del numero es el mismo

Ejemplo 1:

- Representación del 3 en 4-bit = 0011
- Valor con signo extendido de 8-bit: 00000011

Ejemplo 2:

- Representación de -5 en 4-bit = 1011
- Valor con signo extendido de 8-bit: 11111011

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <50>

Extensión Cero

- Ceros copiados al msb's
- Valor cambia para números negativos
- Ejemplo 1:
 - Valor 4-bit =

$$0011_2 = 3_{10}$$

- Valor con cero extendido de 8-bit: $00000011 = 3_{10}$
- Ejemplo 2:
 - Valor 4-bit =

$$1011 = -5_{10}$$

- Valor con signo extendido de 8-bit: $00001011 = 11_{10}$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <51>

| Resumen: Comparación de Sistemas Numéricos | Sistema Numérico | Rango | Sin Signo | [0, 2^N-1] | Signo/Magnitud | [-(2^{N-1}-1), 2^{N-1}-1] | Complemento Dos | [-2^{N-1}, 2^{N-1}-1] | | Por ejemplo, representación con 4 bits: | Unsigned | 0000 0001 0010 0011 0100 0101 0111 1000 1001 1010 1011 1100 1101 1110 1111 | 1101 1101 1101 1110 1101 1110 1101 1110 1111 | 1100 1001 1010 0111 0100 1011 0111 | Two's Complement | 1111 1110 1101 1101 1011 1010 1011 0100 0101 0110 0111 0111 | Sign/Magnitude | © Digital Design and Computer Architecture, 2nd Edition, 2012 | Chapter 1 < 52> | ELSEVIER | Chapter 1 < 52> | Chapter 1 < 52

Compuertas Lógicas

- Realizar funciones lógicas:
 - inversión (NOT), AND, OR, NAND, NOR, etc.
- Simple-entrada:
 - Compuerta NOT, buffer
- Dos-entradas:
 - AND, OR, XOR, NAND, NOR, XNOR
- Múltiples-entradas

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <53>

rom ZERO To ONE

Compuertas Lógicas de una entrada

NOT

$$Y = \overline{A}$$

BUF

$$Y = A$$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <54>

Compuertas Lógicas de una entrada NOT BUF $A - \bigvee Y = \overline{A}$ Y = A $A \mid Y$ $0 \mid 1$ $1 \mid 0$ Solipital Design and Computer Architecture, 2nd Edition, 2012 Chapter 1 < 55> Chapter 1 < 55> ELSEVIER

Compuertas Lógicas de Dos Entradas

AND

Y = AB

Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

OR

$$Y = A + B$$

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <57>

Mas Compuertas Lógicas de Dos Entradas

XOR

 $Y = A \oplus B$

		1
Α	В	Υ
0	0	
0	1	
1	0	
1	1	

 $Y = \overline{AB}$

		1
Α	В	Υ
0	0	
0	1	
1	0	
1	1	

 $Y = \overline{A + B}$

Α	В	Y
0	0	
0	1	
1	0	
1	1	

 $Y = \overline{A \oplus B}$

		ı
Α	В	Υ
0	0	
0	1	
1	0	
1	1	

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <58>

Compuertas Lógicas de Múltiples Entradas

From ZERO To ONE

NOR₃

1	AND3	
A — B — C —		Y

 $Y = \overline{A + B + C}$

Α	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	Ω	1	0

Y	= /	ABC

Α	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

• XOR multi entrada: paridad impar

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <61>

Niveles Lógicos

1 ZERO To ONE

- Voltajes discretos representan un 1 y un 0
- Por ejemplo:
 - -0 = tierra/ground (GND) o 0 volts
 - $-1 = V_{DD}$ o 5 volts
- ¿Que hay de 4,99 volts? Es eso un 0 o un 1?
- ¿Que hay de 3,2 volts?

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <62>

Niveles Lógicos

- Rango de voltajes para 1 y para 0
- Diferentes rangos para la entrada y la salida se definen debido al ruido

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <63>

om ZERO To ONE

¿Que es el ruido?

- Cualquier cosa que degrada a una señal
 - E.g., resistencia, ruido eléctrico de la fuente de poder, inducción por cables cercanos, etc.
- Ejemplo: Una compuerta (Driver) entrega 5 V de salida pero, debido a la resistencia eléctrica en un cable largo, el receptor obtiene 4.5 V

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 < 64>

La Disciplina de la Estática

- Con entradas lógicas validas, cada elemento de circuito debe producir salidas lógicas validas
- Use rangos limitados de voltaje para representar valores discretos

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <65>

Ajuste de V_{DD}

- En los años 70 y 80, V_{DD} = 5 V
- V_{DD} se ha ido reduciendo
 - Evitar freír a transistores muy pequeños
 - Ahorro de energía
- 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, ...
- Se debe ser cuidadoso al conectar chips con diferentes voltajes de alimentación

Los chips funcionan porque poseen un humo mágico

Demostración:

© Digital Design and Computer Architecture, 2nd Edition, 2012

 Si se deja salir el humo mágico, el chip deja de funcionar

Chapter 1 <67>

m ZERO To ONE

Ejemplo de Familias Lógicas

Familia Lógica	V_{DD}	V_{IL}	$V_{I\!H}$	V_{OL}	V_{OH}
TTL	5 (4,75 – 5,25)	0,8	2,0	0,4	2,4
CMOS	5 (4,5 - 6)	1,35	3,15	0,33	3,84
LVTTL	3.3 (3 – 3,6)	0,8	2,0	0,4	2,4
LVCMOS	3,3 (3 – 3,6)	0,9	1,8	0,36	2,7

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <68>

Transistores y Relés

- Antiguamente las compuertas lógicas se construían con relés
- Hoy en día se construyen de transistores
- Tanto relés como los transistores pueden ser entendidos como interruptores controlados por voltaje o por una fuerza mecánica

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <69>

rom ZERO To ONE

Relé: Conmutador electromecánico

Un relé o relevador es básicamente **un interruptor** o conmutador accionado por un electroimán.

- El electroimán esta compuesto por una barra de hierro dulce, llamado núcleo,
- El núcleo esta rodeado por una bobina de hilo de cobre.

http://bricotronika.blogspot.com/2016/04/como-funciona-un-rele-electromecanico.html

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 < 70>

Robert Noyce, 1927-1990

- Apodado "El alcalde de Silicon Valley"
- Co-fundo Fairchild Semiconductor en 1957
- Co-fundo Intel en 1968
- Co-inventó el circuito integrado

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <73>

• Los trans semicono e El silicio libres) • El silicio libres) • El silicio libres) • El silicio libres | libre

- Los transistores se construyen de silicio, que es un semiconductor
- El silicio puro es un conductor muy pobre (sin cargas libres)
- El silicio dopado es un buen conductor (cargas libres)
 - Tipo-n (cargas negativas libres, electrones)

Transistores MOS From ZERO To ONE • Transistores Metal oxido silicio (MOS): - Compuerta de Polisilicio (solía ser metal) e - Aislante **Oxido** (dioxido de silicio) - Silicio dopado gate source drain Polysilicon SiO₂ gate source ____ drain nMOS © Digital Design and Computer Architecture, 2nd Edition, 2012 Chapter 1 < 75>

Compuerta NOR

¿Como construir un compuerta NOR de tres entradas?

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <83>

Otras Compuertas CMOS

¿Como construir una compuerta AND de dos entradas?

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <85>

Compuerta AND2

A - Y

From ZERO To ONE

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <86>

Resumen

rom ZERO To ON

- Puede construir cualquier compuerta lógica (NOT, AND, OR) solo con interruptores
 - Antiguamente Relés
 - Hoy en día transistores

- En realidad usted necesita solo construir compuertas NAND o NOR
 - Lo veremos formalmente mas adelante (algebra de Boole)

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <87>