Data Warehouse

Data warehouse

- System used for reporting and data analysis
 - Data mining, analytical processing, market research, decision support
- Typically used as ETL
 - Extract
 - Transform
 - Load

Data marts

- Single focused
 - Collects specific data from certain systems
 - Usually used for a specific purpose (for a department)

Firstname	Lastname	Email
Joe	Smith	joe@corp.org
Susan	Black	susan@corp.org

First	Given	Email
Adam	Smith	adam@corp.org
Kate	Brown	kate@corp.org

Data Lake

First	Last	Email
Joe	Smith	joe@corp.org
Susan	Black	susan@corp.org
Adam	Smith	adam@corp.org
Kate	Brown	kate@corp.org

New App? Update to data? Multiple apps updating data?

Star schema

- Fact tables dimension tables
 - Fact table: contain metrics, reference dimensional tables
 - Entries usually identified by a surrogate key (not derived from application data)
 - Dimension table: large set of attributes
 - Usually less data then fact tables

Star Schema: pros / cons

- Advantages
 - Denormalised data
 - Simpler queries
 - Simple business logic
 - Query performance & fast aggregations

- Disadvantages
 - Difficult to keep track of data integrity
 - Purpose built, less for complex analytics

Star Schema

Snowflake

- "Snowflaking" is a method to normalise dimension tables
- "special" star schema
- However, complex joins

```
SELECT
   B.Brand,
   G.Country,
   SUM(F.Units Sold)
FROM Fact Sales F
INNER JOIN Dim Date D
                                ON F.Date Id = D.Id
INNER JOIN Dim Store S
                                ON F.Store Id = S.Id
INNER JOIN Dim Geography G ON S.Geography Id = G.Id
INNER JOIN Dim Product P ON F.Product Id = P.Id
INNER JOIN Dim Brand B ON P.Brand Id = B.Id
INNER JOIN Dim Product Category C ON P. Product Category Id = C.Id
WHERE
   D.Year = 1997 AND
   C.Product Category = 'tv'
GROUP BY
   B.Brand,
   G.Country
```


OLAP / OLTP

- Online Analytical Processing
 - Low volume transactions
 - Complex queries (usually with aggregations)
- Online Transaction Processing
 - Large number of short transactions