Algebraic Topology Notes

Leon Lee January 13, 2025

Contents

1	Intr	Introduction to Algebraic Topology			
	1.1	Topologies to Algebra			
	1.2	Connected Spaces	٤		
	1.3	Path-Connectedness	4		

1 Introduction to Algebraic Topology

1.1 Topologies to Algebra

We want to turn topological spaces into algebraic objects through operations called Invariants. An example is that if two topological spaces X and Y are isomorphic, the translated algebraic object should also be isomorphic

TOP
$$\leadsto$$
 ALG
$$X \mapsto A(X) \quad \text{``algebraic objects''}$$

$$X \cong Y \mapsto A(X) \cong A(Y)$$

Example 1.1.1: Examples of Algebraic Objects

Some examples of algebraic objects:

- The set of Connected Components $\pi_0(X)$
- The Fundamental Group $\pi_1(X)$
- Higher homotopy groups $\pi_n(X)$

Note: the more involved the algebraic invariant is, the more topology it sees. Computability problem leads to Homology Theory (this is non-examinable)

1.2 Connected Spaces

Recall 1.2.1: Topologies

A topology on X, \mathcal{T} , is a family of subsets s.t.

- $\emptyset, X \in \mathcal{T}$
- Closed under finite intersection, $U_1, U_2 \in \mathcal{T} \implies U_1 \cap U_2 \in \mathcal{T}$
- Closed under arbitrary unions

Examples of topological spaces:

- Trivial topology $\mathcal{T} = \{\emptyset, X\}$
- Discrete Topology $\mathcal{T} = \mathcal{P}(X)$
- \mathbb{R} or anything made from a metric space

Definition 1.2.2: Connected Spaces

A topological space X is **connected** if $X = A \uplus B$ (A and B are open) means that $A = \emptyset$ or A = X

Prop 1.2.3: Connected Spaces and Clopens

X is connected iff the only clopens are \emptyset , X

Proof.

$$(\Longrightarrow)$$
: A clopen then $X = A \uplus A^C \Longrightarrow A = \emptyset, X$ (both A and A^C open)
 (\Longleftrightarrow) : $A \uplus B \Longrightarrow A = B^C \Longrightarrow A$ is clopen

Examples:

- \mathbb{R} is connected. Opens are generated by intervals like $(-\infty, a)$, (a, b), (a, ∞) .
- The trivial topology is connected. (by definition since there are only two sets).
- The discrete topology is *not* connected, unless $X = \emptyset$ or $X = \{*\}$ in which case it coincides with the trivial topology.

Prop 1.2.4: Connectedness of Maps

For a continuous map $f: X \to Y$, and X connected, we have that f(X) is connected.

Proof.
$$f(X) = U \uplus V \implies f^{-1}(U) \uplus f^{-1}(V) = X \implies f^{-1}(U) = \emptyset, X$$

Corollary 1.2.5

If $X \cong Y$ are homeomorphic, then X is connected iff Y is connected

Prop 1.2.6

The relation $(x \sim y \text{ if } \exists \text{ connected subset } A \subseteq X \text{ s.t. } x, y \in A)$ is an equivalence relation.

Proof. We show the relation fulfils all requirements for an equivalence relation:

- Reflexivity: $x \sim x$: $x \in \{x\} \subseteq X$
- Symmetry: $x \sim y \iff y \sim x$ tautological (we don't specify between x and y so just take y = x and x = y)
- Transitivity: $x \sim y \land y \sim z \implies x \sim z, \, x,y \in A, \, y,z \in B$. Claim: $A \cup B$ is connected. Proof in workshop

Definition 1.2.7: Components

The equivalence classes of the above proposition are called **components**

1.3 Path-Connectedness

Definition 1.3.1: Path

A path in X is a continuous map $\alpha: I \to X$ for $I = \mathcal{T}(0,1)$. $x \sim y \iff \exists \alpha: I \xrightarrow{\text{path}} X \text{ s.t. } \alpha(0) = x, \alpha(1) = y$

 $x \sim y$ is an equivalence relation due to the following operations on paths:

- 1. Constant path. If $x \in X$, $c_X : I \to X$, $c_x(t) := X$
- 2. Path reversal. Let $\alpha:I\to X$ be a path. Then $\overline{\alpha}:I\to X, t\mapsto \alpha(1-t)$
- 3. Path concatenation: $\alpha:I\to X,\,\beta:I\to X$ s.t. $\alpha(1)=\beta(0).$ Then

$$(a*b)(t) = \begin{cases} \alpha(2t), & 0 \le t \le \frac{1}{2} \\ \beta(2t-1), \frac{1}{2} \le t \le 1 \end{cases}$$

Definition 1.3.2: Connected Components

The set of path-connected components (equivalence classes) is denoted by $\pi_0(X)$

Remarks:

- We have that $X \cong Y \implies \pi_0(X) \cong \pi_0(Y)$
- ullet Path-connected \Longrightarrow Connected (but not vice-versa). Counterexample: Pick

$$X = \{(x, \sin(\frac{1}{x})) \mid 0 < x < 1\}$$

is connected but not path connected