TIN - Domáca úloha č. 3

Roman Dobiáš - xdobia11@stud.fit.vutbr.cz

27. decembra 2018

Úloha č.1

Identifikácia funkcie

Zjavne sa jedná o *Fibbonaciho postupnost*'. Páska č. 1 indikuje číslo N v zápise 1tiek, pre ktoré je funkcia Fib vypočítaná. Pásky 2 a 3 sľúžia na uchovanie predchádzajúcich dvoch hodnôt postupnosti.

Fibonačiho postupnosť je možné matematicky zadefinovať nasledujúco:

$$Fib(n) = \begin{cases} 0 & n = 0\\ Fib(n-1) & n = 1\\ Fib(n-1) \times Fib(n-2) & inak \end{cases}$$
 (1)

Vyjadrenie funkcie pomocou primitívnej rekurzie

Najprv zavedieme pomocnú funkciu mul:

$$mul(x,0) = \xi mul(x,y+1) = plus(x,mul(y))$$

$$Fib(0) = \xi()$$

$$Fib(x+1) = neg(x,0) \times Fib(xmonus1) + Fib(x)$$

Úloha č.2

Diagonalizáciou ukážeme, že počet ohodnotení unárneho predikátu u nad spočetným univerzom je nespočetný. Počet ohodnotení predikátu je totiž rovný $2^{\mathbb{N}}$, pretože pre každý z \mathbb{N} prkov univerza môžeme definovať p(x) alebo $\neg p(x)$.

Úloha č.3

Úloha č.4

Rozhodovací problém farbenia grafov je jazyk ColorGraph = $\{ (<V>,<E>\#k) \mid G = (<V>,<E>) je graf ofarbitelný k farbami <math>\}$. Redukcia z farbenia grafov na problem tedy Kvety

Algoritmus prevodu

Každú inštanciu jazyka ColorGraph sme schopný previesť na problém Tety Kvety nasledujúci:

Pre každý uzol E vygenerujeme K+1 surovín, kde každá surovina má kapacitu 1 (teda, Teda Kveta má práve 1 túto surovinu). K surovín reprezentuje jednotlivé z K farieb a K+1 surovina je použitá pre detekovanie, či už je vrchol ofarbený. Jednotlivé z K+1 surovín označme ako E_i, 0 ≤ i < k.

- Pre každé ofarbenie uzla E farbou F
 - vypočítame množinu vrcholov I takých, že existuje hrana medzi vrcholom E a vrcholom z I a prizjednotíme vrchol' E
 - vytvoríme "pečivo" E_F , ktorého ingrediencie sú suroviny $a_i, a \in I, i = F$ a surovina E_F .
- Pre takto zakódovaný problém riešime problém Tety Kvety pre počet priateľok k, kde k = |V|.
- Graf je ofarbiteľ ný práve vtedy, ak môžeme každý vrchol ofarbiť farbou tak, že priliehajúce vrcholy nemaju tú istú farbu.
- Zrejme platí, že ak upečiem pečivo E_F , potom toto pečivo bude pre daný vrchol jediné (vďaka surovine K+1) a zároveň priliehajúce vrcholy nebudú mať rovnaké pečivo (farbu), pretože surovina ich farby už bola vyčerpaná pri pečení E_F .
- Teda platí, že ak je možné upiecť N rôznych pečív, kde N je počet vrcholov a zároveň platia tézy vyššie, potom graf je K-ofarbiteľ ný.

Príklad

Uvažujme graf A-B, B-C, C-D, D-A. Reprezentáciu úlohy môžeme vyjadriť tabulkou: TODO suroviny ako hlavička, pečio ako riadky, Y osa ako vybrané pečivá

Úloha č.5

