Übung 01

Grundlagen & Standortplanung

Einführung

Die Standortplanung ist eine zentrale Aufgabe des strategischen Produktionsmanagements.

Notation: - $\gamma_i \in \{0,1\}$: Binärvariable für Standortwahl (1 = Standort wird errichtet) - $x_{ij} \geq 0$: Transportmenge von Standort i zu Abnehmer j - f_i : Fixkosten für Standort i - c_{ij} : Transportkosten pro ME von i nach j - b_i : Kapazität von Standort i - d_j : Bedarf von Abnehmer j

Aufgabe 1 - Standortplanung ohne Kapazitätsbeschränkung

Ein Unternehmen plant die Belieferung von drei Abnehmern $(j \in \{1, 2, 3\})$ von potentiellen Standorten $(i \in \{A, B, C\})$ mit unbegrenzter Kapazität. Folgende Daten sind gegeben:

Transportkosten c_{ij} [\in /ME] und Fixkosten f_i [\in]:

Standort i	Abnehmer 1	Abnehmer 2	Abnehmer 3	Fixkosten f_i	
A	10	20	30	1.000	
В	50	40	50	2.000	
С	80	30	40	2.500	

Bedarfe: $d_1=100$ ME, $d_2=150$ ME, $d_3=200$ ME

- a) Bestimmen Sie den/die kostenminimalen Standort(e) unter der Annahme, dass jeder Abnehmer vollständig vom günstigsten Standort beliefert wird.
- b) Wie viele Kombinationsmöglichkeiten müssten theoretisch geprüft werden, wenn Sie alle möglichen Standortkombinationen untersuchen wollten?
- c) Interpretieren Sie Ihr Ergebnis aus a). Warum ist diese Lösung in der Praxis möglicherweise nicht optimal?

Aufgabe 2 - Mathematische Modellierung

Gegeben sei ein Standortplanungsproblem mit ${\cal I}$ potentiellen Standorten und ${\cal J}$ Abnehmern.

a) Formulieren Sie die vollständige mathematische Modellierung des Standortplanungsproblems mit Kapazitätsbeschränkungen (Zielfunktion und alle Nebenbedingungen).

- b) Erläutern Sie, aus welchen zwei Teilproblemen das Standortplanungsproblem besteht.
- c) Formulieren Sie explizit die Zielfunktion für eine konkrete Instanz mit 3 Standorten (A, B, C) und 3 Abnehmern (1, 2, 3) mit folgenden Daten:
 - Fixkosten: $f_A = 1.000, \, f_B = 1.200, \, f_C = 900$
 - Transportkosten: $c_{A1} = 1$, $c_{A2} = 2$, $c_{A3} = 3$, etc.
- d) Welche Nebenbedingung stellt sicher, dass Standorte nur genutzt werden können, wenn sie auch errichtet wurden? Formulieren Sie diese für Standort B.

Aufgabe 3 - Standortplanung mit Kapazitätsbeschränkung Betrachten Sie folgendes Standortplanungsproblem:

Daten:

Standort i	c_{i1}	c_{i2}	c_{i3}	Fixkosten f_i	Kapazität b_i	
Α	1	2	3	1.000	400	
В	4	5	6	1.200	400	
С	7	8	9	900	400	

Bedarfe: $d_1 = 200$, $d_2 = 300$, $d_3 = 250$

- a) Gegeben sei folgende Lösung: $\gamma_A=1, \gamma_B=1, \gamma_C=0$
 - Abnehmer 1 wird vollständig von A beliefert: $x_{A1} = 200$
 - Abnehmer 2 wird je zur Hälfte von A und B beliefert: $x_{A2}=150$, $x_{B2}=150$
 - Abnehmer 3 wird vollständig von B beliefert: $x_{B3}=250$

Berechnen Sie den Zielfunktionswert dieser Lösung.

- b) Prüfen Sie die Zulässigkeit dieser Lösung bezüglich aller Nebenbedingungen.
- c) Ist folgende alternative Belieferung zulässig: Abnehmer 2 wird vollständig von A beliefert ($x_{A2}=300$)? Begründen Sie.
- d) Schlagen Sie eine verbesserte Lösung vor und begründen Sie Ihre Wahl.

Aufgabe 4 - Heuristiken zur Standortplanung

Ein mittelständisches Unternehmen plant die Versorgung von drei regionalen Abnehmern. Folgende Daten liegen vor:

Transportkosten c_{ij} [€/ME], Fixkosten und Kapazitäten:

Standort i		Ab-		Fixkosten f_i	Kapazität b_i
	nehmer 1	nehmer 2	nehmer 3		
Α	4	4	9	60	25
В	8	7	2	60	20

Standort i		Ab- nehmer 2		Fixkosten f_i	Kapazität b_i
С	6	3	5	70	25

Bedarfe: $d_1=20$, $d_2=10$, $d_3=10$

- a) Wenden Sie die Add-Heuristik an, um eine Lösung zu bestimmen. Dokumentieren Sie jeden Schritt.
- b) Sind heuristische Lösungen optimal? Begründen Sie Ihre Antwort.
- c) Auf welcher Managementebene sind Standortentscheidungen angesiedelt und warum?