Chapter 1: Selecting the Right Hardware

Power Cortex-M0+ Cortex-M23 Cortex-M0 Cortex-M3 Cortex-M3 Cortex-M4

Perf - DSP

Highest

Cortex-M85

Cortex-M7

Cortex-M55

Cortex-M33

Cortex-M4

Cortex-M3

Perf - ML

Highest

Cortex-M85

Cortex-M55

Cortex-M7

Cortex-M4

Security

Highest

Cortex-M85

Cortex-M55

Cortex-M33

Cortex-M23

Safety

Cost / Area

Arm Cortex-M0+

Dynamic Power	3.8μW/MHz	
Arm Cortex-M23		
Dynamic Power	3.86μW/MHz	
Arm Cortex-M4		
Dynamic Power	12.26μW/MHz	
Arm Cortex-M33		
Dynamic Power	12.0μW/MHz	

Chapter 2: Selecting the Right Software

Chapter 3: Selecting the Right Tools

8 METRICS TO EVALUATE DEVELOPMENT PLATFORMS		
Ease of use		
Performance (speed)		
Accuracy		
Synchronization		
Abstraction		
Visibility and debugging		
Time to create		
Automated testing		

	Interactive	Automated
Simplicity	Critical	Helpful
Mostly all developers know how to use the environment and tools well	Where most developers do day-to-day work, must be as streamlined as possible	Typically, only one or a few dedicated members actively work on the details
Replicability	Helpful	Critical
The same errors can be seen in other developers' environments	May not be developing the same area of code, or when working alone	To streamline development, enabling all developers to be able to see the error
Longevity	Depends	Critical
Able to be used for longer than the current project	May need to change environments to match the needs of diverse projects, but it certainly helps to have a consistent bit for years to come	The value of scaling up tests comes when you don't have to keep setting up unique automated flows each time

	VirtualBox	Multipass	Docker
Host OS	Any	Any	Any
Guest OS	Any	Linux (Ubuntu)	Any
Image size	Gigabytes (GB)	GB	Megabytes (MB)
Startup time	Minutes	A minute	Seconds
Ideal for	Robust GUI development	Command-line general Linux development	Specific, repeatable services

Chapter 4: Booting to Main

Chapter 5: Optimizing Performance

CMAKE_BUILD_TYPE	GCC flags used for optimization
Release	-O3 (max optimization)
Debug	-Og and -g (max debug)
RelwithDebInfo	-02 and -g (good optimization with debug)
MinSizeRel	-Os (minimum code size)

Implementation	Number of cycles
1: Plain C code	41,668
2: CMSIS-DSP for multiply then add	54,539
3: CMSIS-DSP for dot product	41,808

Ideal for	Arm Compiler for Embedded flags for optimization
Performance	-Ofast or -O3
Debug, low performance	-00
Debug, more optimized	-01
Minimum code size	-Oz

Implementation	Number of cycles
1: Plain C code	2,398
2: CMSIS-DSP for multiply then add	9,765
3: CMSIS-DSP for dot product	2,422
Minimum code size	-Oz

Implementation	Number of cycles
1: Plain C code	42,696
2: CMSIS-DSP for multiply then add	56,902
3: CMSIS-DSP for dot product	42,937

Implementation	Number of cycles
1: Plain C code	41,668
2: CMSIS-DSP for multiply then add	60,887
3: CMSIS-DSP for dot product	41,034

Implementation	Number of cycles
1: Plain C code	2,100
2: CMSIS-DSP for multiply then add	8,891
3: CMSIS-DSP for dot product	1,857

Implementation	Number of cycles
1: Plain C code	1,752
2: CMSIS-DSP for multiply then add	11,246
3: CMSIS-DSP for dot product	1,652

Implementation	Number of cycles
1: Plain C code	4,294,967,295
2: CMSIS-DSP for multiply then add	11,390,997
3: CMSIS-DSP for dot product	5,201,475

Chapter 6: Leveraging Machine Learning


```
INFO - Application Note AN228, Revision C
INFO - MPS3 build 3
INFO - MPS3 core clock has been set to: 32000000Hz
INFO - CPU ID: 0x411fd220
INFO - CPU: Cortex-M55 r1p0
INFO - Enabling I-cache.
INFO - Enabling I-cache.
INFO - Enabling D-cache.
INFO - Target system design: Arm Corstone-300 - AN552
INFO - ARM ML Embedded Evaluation Kit
INFO - Version 22.08.0 Build date: Oct 4 2022 @ 18:08:44
INFO - Copyright (C) ARM Ltd 2021-2022. All rights reserved.
\overline{\rm INFO} - Added support to op resolver \overline{\rm INFO} - Creating allocator using tensor arena at 0x31000000
INFO - Allocating tensors
INFO - Model INPUT tensors:
INFO -
           tensor type is INT8
INFO
            tensor occupies 1024 bytes with dimensions
INFO -
                        0:
INFO
                        1:
                               32
TNFO -
                        2:
                               32
INFO -
                        3:
                                1
INFO - Quant dimension: 0
INFO - Scale[0] = 0.192437
INFO - ZeroPoint[0] = 11
INFO - Model OUTPUT tensors:
INFO -
           tensor type is INT8
INFO -
            tensor occupies 8 bytes with dimensions
INFO -
                        0:
INFO
                        1:
                                8
INFO - Quant dimension: 0
INFO - Quart dimension; o
INFO - Scale[0] = 0.048891
INFO - ZeroPoint[0] = -30
INFO - Activation buffer (a.k.a tensor arena) size used: 275660
INFO - Number of operators: 14
INFO - Operator 0: CONV_2D
INFO - Operator 1: DEPTHHISE_CONV_2D
            Operator 2: CONV_2D
Operator 3: DEPTHWISE_CONV_2D
Operator 4: CONV_2D
Operator 5: DEPTHWISE_CONV_2D
INFO -
INFO -
INFŌ -
            Operator 6: CONV_2D
Operator 7: DEPTHWISE_CONV_2D
INFO
INFO -
INFO -
            Operator 8: CONV_2D
            Operator 9: DEPTHWISE_CONV_2D
Operator 10: CONV_2D
Operator 11: AVERAGE_POOL_2D
Operator 12: CONV_2D
INFO -
INFO -
INFO -
            Operator 13: RESHAPE
INFO - Running inference on audio clip 0 => random_id_00_000000.wav
INFO - Inference 1/1
INFO - Average anomaly score is: -0.883147
INFO - Anomaly threshold is: -0.800000
INFO - Everything fine, no anomaly detected!
INFO - Main loop terminated.
INFO - program terminating...
```


User input required Enter option number from:

- 1. Classify next ifm 2. Classify ifm at chosen index 3. Run classification on all ifm 4. Show NN model info 5. List ifm

Choice: 1

```
INFO - Running inference on image 0 => cat.bmp
INFO - Final results:
INFO - Total number of inferences: 1
INFO - 0) 282 (0.753906) -> tabby, tabby cat
INFO - 1) 286 (0.148438) -> Egyptian cat
INFO - 2) 283 (0.062500) -> tiger cat
INFO - 3) 458 (0.003906) -> bow tie, bow-tie, bowtie
INFO - 4) 288 (0.003906) -> bow tie, bow-tie, bowtie
INFO - Horolie for Inference:
INFO - NPU INILE: 784 cycles
INFO - NPU AXIO_RD_DATA_BEAT_RECEIVED: 2029001 beats
INFO - NPU AXIO_MR_DATA_BEAT_WRITTEN: 1151315 beats
INFO - NPU AXI1_RD_DATA_BEAT_RECEIVED: 432187 beats
```

Platform	Arm Virtual Hardware – Corstone-300
Software	ML Application
Environment	Amazon Elastic Compute Cloud (EC2) (Amazon Web Services (AWS) account required)
Host OS	Ubuntu Linux
Compiler	Arm Compiler for Embedded
IDE	-

Platform	Arm Virtual Hardware – Corstone-300
Software	ML Application
Environment	Amazon EC2 (AWS account required)
Host OS	Ubuntu Linux
Compiler	Arm Compiler for Embedded
IDE	-

Platform	Arm Virtual Hardware – Corstone-300
Software	ML Application
Environment	Amazon EC2 (AWS account required)
Host OS	Ubuntu Linux
Compiler	Arm Compiler for Embedded
IDE	-

Chapter 7: Enforcing Security

Documents > trustzone_examples > hello_world > cm33_core0 > hello_world_s > mdk


```
TZM JumpToNormalWorld
;;; .\tzm api.c (351)
        0x10000b48:
                       b580
                                           PUSH
                                                    {r7, lr}
        0x10000b4a:
                       f64e5208
                                                    r2, #0xed08
                                  N..R
                                           MOV
                                                    r2,#0xe002
        0x10000b4e:
                      f2ce0202
                                           MOVT
                                   . . . .
        0x10000b52:
                       6801
                                                    r1, [r0, #0]
                                   .h
                                           LDR
        0x10000b54:
                       f3818888
                                           MSR
                                                    MSP NS,r1
                                   . . . .
                                   . `
        0x10000b58:
                       6010
                                           STR
                                                    r0, [r2, #0]
        0x10000b5a:
                       6840
                                   @h
                                          LDR
                                                    r0, [r0, #4]
        0x10000b5c:
                       e92d0ff0
                                   -...
                                          PUSH
                                                    {r4-r11}
        0x10000b60:
                      f0200001
                                           BIC
                                                    r0,r0,#1
                                    . . .
        0x10000b64:
                     b0a2
                                   - -
                                           SUB
                                                    sp, sp, #0x88
                                   -...
        0x10000b66:
                      ec2d0a00
                                           VLSTM
                                                    sp
        0x10000b6a:
                       4601
                                   .F
                                           MOV
                                                    r1, r0
        0x10000b6c:
                       4602
                                   .F
                                           MOV
                                                    r2, r0
                                   .F
        0x10000b6e:
                      4603
                                           MOV
                                                    r3,r0
                                   .F
        0x10000b70:
                      4604
                                           MOV
                                                    r4, r0
        0x10000b72:
                      4605
                                   .F
                                           MOV
                                                    r5, r0
                     4606
        0x10000b74:
                                   .F
                                           MOV
                                                    r6, r0
                                   .F
        0x10000b76:
                     4607
                                           MOV
                                                    r7, r0
                                   .F
        0x10000b78:
                      4680
                                           MOV
                                                    r8,r0
        0x10000b7a:
                      4681
                                   .F
                                           MOV
                                                    r9,r0
        0x10000b7c:
                       4682
                                   .F
                                           MOV
                                                    r10,r0
;;; .\tzm api.c (357)
                                   .F
        0x10000b7e:
                       4683
                                           MOV
                                                    r11, r0
                                   .F
        0x10000b80:
                       4684
                                           MOV
                                                    r12,r0
        0x10000b82:
                       f3808c00
                                           MSR
                                                    APSR nzcvqg,r0 ;
                                   . . . .
formerly CPSR fs
                                   .G
        0x10000b86:
                       4784
                                           BLXNS
                                                    r0
                                   =...
        0x10000b88:
                       ec3d0a00
                                           VLLDM
                                   ".
                                                    sp,sp,#0x88
        0x10000b8c:
                       b022
                                           ADD
        0x10000b8e:
                       e8bd0ff0
                                           POP
                                                     {r4-r11}
                                   . . . .
        0x10000b92:
                       bd80
                                           POP
                                                    {r7,pc}
                                   - -
    DbgConsole Printf NSE
        0x1000fe00:
                                            SG
                      e97fe97f
                                   . . . .
                                                     ; [0x1000fc08]
                       f7f0bd42
        0x1000fe04:
                                    ..B.
                                            В
  acle se DbgConsole Printf NSE; 0x1000088c
    StringCompare NSE
        0x1000fe08:
                       e97fe97f
                                            SG
                                                     ; [0x1000fc10]
                                   . . . .
        0x1000fe0c:
                       f7f0bdc2
                                   . . . .
                                            В
 acle se StringCompare NSE ; 0x10000994
```



```
__acle_se_tfm_psa_connect_veneer
         0x11009434: ed6dcf81 m... STCL p15,c12,[sp,#-0x204]!
0x11009438: b500 .. PUSH {1r}
0x1100943a: f016fe18 ... BL psa_connect_cross;
0x1102006e
          0x1100943e: f85deb04 ]... POP
0x11009442: ec9f0a10 ... VLDM
                                                                   {lr}
                                                                   pc, {s0-s15} ; ? ;
                                             . . . .
[0x11009484] = 0
          0x11009446: e89f900e
0x1100944a: ecfdcf81
0x1100944e: 4774
                                                                  pc, {r1-r3,r12,pc} ; ?
                                            . . . .
                                                       LDM
                                          tG
                                                      LDCL
                                                                 þ.
lr
                                                                    p15,c12,[sp],#0x204
                                                    BXNS
```

Chapter 8: Streamlining with the Cloud

CITM KEIL Hardware Documentation ✓ Keil Forum Keil Studio

Hardware

Chapter 9: Implementing Continuous Integration

Chapter 10: Looking Ahead

