[CS304] Introduction to Cryptography and Network Security

Course Instructor: Dr. Dibyendu Roy Winter 2023-2024 Scribed by: Priyansh Vaishnav (202151120) Lecture 12&13 (Week 7&Week 8)

LECTURE 12

Ideal Hash Function

Let $h: P \to S$ be a hash function. h will be called an Ideal Hash Function if, given $x \in P$, to find h(x), either you have to apply h on x or look into a table corresponding to h (hash table).

$$\Pr[\text{Pre-image finding}] \simeq \frac{Q}{M}$$
 Complexity of finding pre-image = $Q(N)$

Complexity of finding pre-image = O(M)

Collison Finding Algorithm: -

$$h: X \to Y, \ |Y| = M$$
 Find $x, x' \in X$ such that $x \neq x'$ and $h(x) = h(x')$.
 Let $X_0 \subseteq X, \ |X_0| = Q$.
 For each $x \in X_0$:

- Compute $y_x = h(x)$.
- If $y_x = y_{x'}$ for some $x \neq x'$, return (x, x').

Define events E_i : $h(x_i) \notin \{h(x_1), \dots, h(x_{i-1})\}$. $P[E_1] = 1.$ $P[E_2 \mid E_1] = \frac{M-1}{M}$. Continuing this process:

$$P[E_1 \cap E_2 \cap \ldots \cap E_Q] = \prod_{i=1}^{Q-1} \frac{M-i}{M}$$

Probability of success in collision finding:

$$P[Success] = 1 - \prod_{i=1}^{Q-1} \frac{M-i}{M} \simeq 1 - e^{-\frac{i}{M} \prod_{i=1}^{Q-1} i}$$

If Q is very large, then:

$$Q^2 \simeq 2M \cdot m \left(\frac{1}{1 - \epsilon}\right)$$

Therefore:

$$Q = \sqrt{2m \cdot \frac{1}{1 - \epsilon}} \cdot \sqrt{M}$$

The complexity is $O(\sqrt{M})$.

Secure Hash Function: -

A secure hash function is one that satisfies the following conditions:

- Complexity of finding the second preimage = $O(2^M)$
- Complexity of finding a collision = $O(2^{M/2})$

Compression Function; -

Let $h: \{0,1\}^{m+t} \to \{0,1\}^m$ be a compression function where $t \ge 1$.

Our objective is to construct $H: \{0,1\}^* \to \{0,1\}^*$. The security of H heavily relies on the security of h.

Given $x \in \{0,1\}^*$ with $|x| \ge m+t+1$, we derive y using a public function such that $|y| \equiv 0$ mod t.

$$y = \begin{cases} (x, |x| \equiv 0 \mod t) \\ (x||0^d, |x| + d \equiv 0 \mod t) \end{cases}$$

Here, $IV \in \{0,1\}^m$ is a publicly chosen parameter.

We split y into blocks: $y = y_1||y_2||y_3|| \dots ||y_r|$, where $|y_i| = t$ for $1 \le i \le r$. Then, we define $Z_r = H(x)$.

$$Z_0 = IV$$

 $Z_1 = h(Z_0||y_1)$
 $Z_2 = h(Z_1||y_2)$
 \vdots
 $Z_r = h(Z_{r-1}||y_r)$

This type of hash function is known as an iterative hash function.

Merkle-Damgard: -

Let $h: \{0,1\}^* \longrightarrow \{0,1\}$ be a hash function.

Define a compression function compress: $\{0,1\}^{m+t} \longrightarrow \{0,1\}^m$, where $t \geq 2$.

Given an input x with length n = |x|, let $K = \lceil \frac{n}{t-1} \rceil$ and d = K(t-1) - n. Split x into blocks: $x = x_1 | |x_2 \dots x_k|$.

For i = 1 to K - 1:

• Set $y_i = x_i$.

Set $y_k = x_k || 0^d$ and $y_{k+1} = binary(d)$.

Initialize $Z_1 = 0^{m+1} ||y_1||$ and compute $g_1 = compress(Z_1)$.

For i = 1 to K:

- Compute $Z_{i+1} = g_i ||1|| y_{i+1}$.
- Update $g_{i+1} = compress(Z_{i+1})$.

Finally, define $h(x) = g_{k+1}$ and return h(x).

.....

LECTURE 13

.....

Secure Hash Algorithm: -

We have three Secure Hash Algorithms (SHAs), namely, SHA-160, SHA-256, and SHA-512.

Let SHA: $\{0,1\}^* \to \{0,1\}^n$. Let's start with SHA-1:

Given an input x, where $|x| \le 2^{64} - 1$, calculate:

$$d = (477 - |x|) \mod 512$$

$$l = \text{binary}(|x|)$$

$$y = x||1||0^d||l$$

where |y| = |x| + 1 + d + |l| and $|y| \equiv 0 \mod 512$.

SHA-1:-

Given $x < 2^{64} - 1$:

$$d = (447 - |x|) \mod 512$$

$$l = binary(|x|)$$

$$y = x||1||0^d||l$$

where $|x| + d \equiv 447 \mod 512$.

Standard operations:

- $X \wedge Y$: bitwise AND operation
- $X \vee Y$: bitwise OR operation
- $X \oplus Y$: bitwise XOR operation
- X + Y: addition modulo 2^{32}

Functions:

- $ROTL^{s}(x)$: Circular left shift of x by s positions.
- $f_t(B, C, D)$: Hash function defined as:

Let y = SHA-1-PAD(x):

• $y = M_1 ||M_2|| \dots ||M_n$, where $|M_i| = 512$.

- Initial values: $H_0 = 67452301$, $H_1 = EFCDAB89$, $H_2 = 98BADCFE$, $H_3 = C3D2E1F0$.
- Constants:

$$K_t = \begin{cases} 5A827999, & \text{if } 0 \le t \le 19 \\ 6ED9EBA1, & \text{if } 20 \le t \le 39 \\ 8F1BBCDC, & \text{if } 40 \le t \le 59 \\ CA62C1D6, & \text{if } 60 \le t \le 79 \end{cases}$$

Message Authentication Code (MAC): -

Alice $(K) \to Bob (K)$:

- $C = \operatorname{Enc}(M, K) \to \tilde{C}$
- $MAC = Hash(M, K) \rightarrow M\tilde{A}C$
- $\operatorname{Dec}(\tilde{C}, K) = \tilde{M}$
- $\operatorname{Hash}(\tilde{M}, K) = \operatorname{MAC}_1$
- If $MAC_1 = \{MAC\}$, then accept $\{M\}$, else reject

HMAC: -

- ipad = 3636...36 (512 bits)
- opad = 5656...56 (512 bits)
- \bullet K: Secret Key
- $\mathrm{HMAC}_K(x) = \mathrm{H}((K \oplus \mathrm{opad})||\mathrm{H}((K \oplus \mathrm{ipad})||x))$

CBC-MAC(x,K): -

- $\bullet \ x = x_1||x_2||\dots||x_n$
- $IV = 00 \dots 0$
- $y_0 = IV$
- For i = 1 to n: $y_i = \text{Enc}((y_{i-1} \oplus x_i), K)$
- Return y(n)