TABLE 1. Sequences used during SELEX.

(all are shown in a 5' to 3' direction, and separated by a blank every 10 bases)

Sequences involved in SELEX process:

5

(P0; DNA template for round 0 of spot SELEX)

TCGGGCGAGT CGTCTGNNNN NNNNNNNNN NNNNNNNNNN 50 NNNNNCCGC ATCGTCCTCC C 71 (SEQ ID NO: 1)

A=dA; C=dC; G=dG; T=dT; N+25% each of dA, dC, dG, or dT

10

(5'N7; primer used in PCR steps of SELEX)

TAATACGACT CACTATAGGG AGGACGATGC GG 32 (SEQ ID NO: 2)

A=dA; C=dC; G=dG; T=dT

15 (3'N7; primer used in RT and PCR steps of SELEX)

TCGGGCGAGT CGTCTG 16 (SEQ ID NO: 3)

A=dA; C=dC; G=dG; T=dT

(Transcription template for round 0 of spot SELEX)

20 TAATACGACTCACTATAGGGAGGACGATGCGG-40N-CAGACGACTCGCCCGA 88 bp (SEQ ID NO:4)

ATTATGCTGAGTGATATCCCTCCTGCTACGCC-40N-GTCTGCTGAGCGGGCT (SEQ ID NO: 5) A=dA; C=dC; G=dG; T=dT; N=25% each of dA, dC, dG, or dT

25 (R0 40N7; nucleic acid library for round 0 of spot SELEX)

GGGAGGACGA UGCGGNNNNN NNNNNNNNN NNNNNNNNNN 50 NNNNNCAGAC GACUCGCCCG A 71 (SEQ ID NO: 6)

A=2'-OH A; C=2'-F C; G=2'-OH G; N=25 % each of 2'-OH A, 2'-F C, 2'-OH G, and 2'-F U; U=2'-F U

TABLE 1 CONT. Sequences used during SELEX.

(34N7.21a-21 DNA template for round 0 of biased SELEX)

GGGAGGACGA TGCGGNNNNN NNNNNNNNN NNNNNNNNN NNNNNNNNN 50 AGACGACTCG CCCGA 65 (SEQ ID NO: 7)

5 A=dA; C=dC; G=dG; T=dT, N=62.5 % NX22284 sequence as DNA and 12.5% of the other 4 nucleotides (dA, dC, dG, or dT) at each position

(Transcription template for round 0 of biased SELEX)

TAATACGACTCACTATAGGGAGGACGATGCGG-34N-CAGACGACTCGCCCGA 82 bp (SEQ

10 ID NO: 8)

ATTATGCTGAGTGATATCCCTCCTGCTACGCC-34N-GTCTGCTGAGCGGGCT (SEQ ID NO: 9)

A=dA; C=dC; G=dG; T=dT, N=62.5 % NX22284 sequence as DNA and 12.5% of the other 4 nucleotides (dA, dC, dG, or dT) at each position

15

(34N7.21a-21 nucleic acid library for round 0, biased SELEX)

GGGAGGACGA UGCGGNNNNN NNNNNNNNN NNNNNNNNN NNNNNNNNN 50

20 AGACGACUCG CCCGA 65 (SEQ ID NO: 10)

A=2'-OH A; C=2'-F C; G=2'-OH G; N=62.5 % NX22284 sequence and 12.5% of other 4 nucleotides (2'-OH A, 2'-F C, 2'-OH G, or 2'-F U) at each position; U=2'-F U

Sequences used for subcloning, screening, sequencing ligand

25 (ML-34; used for subcloning)

CGCAGGATCC TAATACGACT CACTATA 27 (SEQ ID NO: 11)

A=dA; C=dC; G=dG; T=dT

(ML-78; used for subcloning)

TABLE 1 CONT. Sequences used during SELEX.

GGCAGAATTC TCATCTACTT AGTCGGGCGA GTCGTCTG (SEQ ID NO: 12)

A=dA; C=dC; G=dG; T=dT

5

(RSP1; vector-specific primer used to screen transformants for ligand inserts)

AGCGGATAAC AATTTCACAC AGG 23 (SEQ ID NO: 13)

A=dA; C=dC; G=dG; T=dT

10 (FSP2; vector-specific primer used to screen transformants for ligand inserts)

GTGCTGCAAG GCGATTAAGT TGG 23 (SEQ ID NO: 14)

A=dA; C=dC; G=dG; T=dT

(RSP2; primer for sequencing ligands)

15 ACTTTATGCT TCCGGCTCG 19 (SEQ ID NO: 15)

A=dA; C=dC; G=dG; T=dT

Sequences used to detect specific ligands

(ligand 14i-1 specific primer; ML85)

20 GCCAAATGCC GAGAGAACG 19 (SEQ ID NO: 16)

A=dA; C=dC; G=dG; T=dT

(ligand 21a-4 specific primer; ML-79)

GGGGACAAGC GGACTTAG 18 (SEQ ID NO: 17)

25 A=dA; C=dC; G=dG; T=dT

(ligand 21a-21 specific primer; ML-81)

GGGAGTACAG CTATACAG 18 (SEQ ID NO: 18)

A=dA; C=dC; G=dG; T=dT

TABLE 1 CONT. Sequences used during SELEX.

Sequences used for RNAse H cleavage

(5'N7 cleave)

5 CCGCaugeue eucce 15 (SEQ ID NO: 19)
a=2'-OCH₃ A; c=2'-OCH₃ C; C=dC; g=2'-OCH₃ G; G=dG; u=2'-OCH₃ U

(3'N7 cleave)

ucgggcgagu cgTCTG 16 (SEQ ID NO: 20)

10 $a=2'-OCH_3 A; c=2'-OCH_3 C; C=dC; g=2'-OCH_3 G; G=dG; u=2'-OCH_3 U; T=dT$

TABLE 2. Conditions and results of filter SELEX

Kd (nM)	pu	100	75	40	30	75	30	10	S	· 5	2	ı -	-	
Bound/Background	4	33	8	7	16	20	4	5	11	4	e	ж	3	1
% Background	1.1	0.13	0.2	0.3	0.16	0.55	2.2	2.1	0.17	9.0	0.05	0.04	0.1	0.09
% Bound	4.2	4.3	1.5	2.2	2.6	14.5	8.8	9.6	1.9	2.3	0.17	0.1	0.3	0.12
[Competitor]	100 µM tRNA	100 µM tRNA	100 µM tRNA	250 µM tRNA	10 μM tRNA	10 μM heparin	0	0	0	0	0	0	0	0
RNA ^b /protein	0.01	0.03	0.03	0.01	0.04	0.01	1.0	5.5	10	S	70	11	21	7
[TGFB2], nM	100 nM	30 nM	30 nM	20 nM	10 nM	10 nM	10 nM	10 nM	3 nM	3 nM	0.1 nM	0.03 nM	0.03 nM	0.01 nM
[RNA], nM	l nM	1 nM	l nM	0.2 nM	0.4 nM	0.1 nM	$10 \mathrm{nM}$	55 nM	30 nM	15 nM	7 nM	0.33 nM	0.63 nM	0.07 nM
Rounda	9 <i>p</i>	10b	11a	12d	13i	14i	15c	16a	17a	18b	19a	20a	21a	22a

^aNumber designates the round of SELEX and letter designates the condition used for that round.

Only those rounds that were carried to the next round are shown

^bNA, nucleic acid library

TABLE 3. Conditions and results of Spot SELEX

Rd	Protein (pmoles)	RNA (pmoles)	Washes ¹ (µl/min)	Signal/ Noise	% Input	Incubation	Pre-adsorb ²
1	*200	2000	2 (500/10)	4.90	ND ³	4 hrs, 20°C	No
2	*200	1500	2 (1000/10)	1.80	ND	0.5 hrs, 37°C	5 layers, 0.75hrs
3	*200	1500	2 (1000/10)	5.50	ND	1 hr, 37°C	5 layers, 1 hr
4	200	1000	2 (1000/10)	11.20	0.18	1 hr, 37°C	5 layers, 2.5 hrs
	*67	1000	2 (1000/10)	3.70	0.06	1 hr, 37°C	5 layers, 2.5 hrs
	22	1000	2 (1000/10)	1.58	0.03	1 hr, 37°C	5 layers, 2.5 hrs
5	67	100	2 (1000/20)	26.00	1.30	1 hr, 37°C	10 layers, 0.75hrs
	*22	100	2 (1000/20)	11.00	0.56	1 hr, 37°C	10 layers, 0.75hrs
	7.3	100	2 (1000/20)	2.70	0.10	1 hr, 37°C	10 layers, 0.75hrs
6	22	50	2 (1000/20)	20.70	1.00	1 hr, 37°C	10 layers, 0.75hrs
	*7.3	50	2 (1000/20)	4.00	0.20	1 hr, 37°C	10 layers, 0.75hrs
	2.4	50	2 (1000/20)	1.20	0.06	1 hr, 37°C	10 layers, 0.75hrs
7	22	7	3 (1000/50)	24.00	1.30	1 hr, 37°C	10 layers, 1.5hrs
	*7.3	7	3 (1000/50)	7.50	0.40	1 hr, 37°C	10 layers, 1.5hrs
	2.4	7	3 (1000/50)	1.50	0.07	1 hr, 37°C	10 layers, 1.5hrs
8	*7.3	3	2 (1000/60)	77.00	0.41	0.75 hr, 37°C	10 layers, 1.5hrs
	2.4	3	2 (1000/60)	8.50	0.04	0.75 hr, 37°C	10 layers, 1.5hrs
	0.7	3	2 (1000/60)	1.00	ND	0.75 hr, 37°C	10 layers, 1.5hrs
9	*7.3	1	2 (1000/20)	87.00	0.23	1 hr, 37°C	10 layers, 1.5hrs
	2.4	1	2 (1000/20)	4.00	0.01	1 hr, 37°C	10 layers, 1.5hrs
	0.7	1	2 (1000/20)	2.50	0.006	1 hr, 37°C	10 layers, 1.5hrs
10	7.3	<1 (no tRNA)	2 (1000/20)	13.70	ND	0.5 hr, 37°C	10 layers, 1.5hrs
	7.3	$<1 (10^1 \text{ tRNA})^4$		10.50	ND	0.5 hr, 37°C	10 layers, 1.5hrs
	7.3	$<1 (10^2 \text{ tRNA})$	2 (1000/20)	5.00	ND	0.5 hr, 37°C	10 layers, 1.5hrs
	7.3	$<1 (10^3 \text{ tRNA})$	2 (1000/20)	1.80	ND	0.5 hr, 37°C	10 layers, 1.5hrs

^{*}pool carried to next round

¹Number of washes, volumes and duration

²Number of filters and duration of incubation during the background counterselection step

³ND, not determined

⁴Fold excess tRNA over the aptamer pool

TABLE 4. Conditions and results surface plasmon resonance biosensor (spr) SELEX.

Progress of BIA SELEX with TGFβ2

Rd		TGF _β 2	, RU ¹		[RNA],	Injections	Fractions	Fraction	RU after
					μM^2	$(\text{vol}, \mu L)^3$	(min each) ⁴	FW ⁵	SDS ⁶
	FC1	FC2	FC3	FC4					
2	1293	874	294	0	4	4 (40)	3 (5)	3rd & SDS	~100
3	1176	1178	1181	0	15	4 (40)	3 (5)	3rd & SDS	~50-100
4	3010	2037	1767	0	10	6 (40)	3 (5)	3rd & SDS	~80
5	5520	5334	4265	0	5	6 (40)	3 (5)	3rd & SDS	~100-150
6	4075	3143	298	0	5	6 (40)	3 (5)	3rd & SDS	~75-100
7	3773	2616	2364	0	2	6 (40)	3 (5)	3rd & SDS	~330-220
8	2574	1842	1461	0	5	4 (40)	3 (5)	3rd & SDS	~60-105
9	3180	2029	1688	0.	3	4 (40)	3 (5)	3rd & SDS	~77-114
10	344	718	1692	0	1	4 (40)	6 (10)	6th & SDS	~50
11	217	675	386	0	5	2 (40)	6 (10)	6th & SDS	~50-62

 $^{^1}$ Amount of TGF β 2 immobilized expressed in resonance units where 1RU corresponds to 1pg of protein per mm 2 . The protein is immobilized in an area of 1.2 mm 2

FC1, FC2, FC3, and FC4 designate the four flowcells of the BIA chip.

²concentration of RNA pools

³Number of injections and volume of each injection

⁴Number and length in min (in parentheses) of each fraction

⁵Fractions carried to the next round

⁶Amount of RNA eluted after SDS treatment expressed in response units

X
ELEX
S
é
Ħ
ű
esona
1.0
ŏ
plasmo
<u> </u>
e I
of surfa
£
8 of surfac
-
Ĭ
ខ្ព
rom round
,0
đ
Ę
5
s isolated fro
Ψ
g
edneuc
ed
S
ς.
Щ
TABLE 5.
X
\Box

$\overline{\text{NAME}}^{a}$	SEQ ID NO.	SEQUENCE	BINDING
8.1(1)	21	GGGAGGACGAUGCGG UCCUCAAUG-AUCUUUCCUGUUUAUGCUCCC CAGACGACUCGCCCGA	FILTER
8.2(1)	22	GGGAGGACGAUGCGG AAGUAACGUUU <u>A AGUAAAA</u> UUCGUUCUCGGU AUUUGGC CAGACGACUCGCCCGA	TGF\$2
8.3(14)	23	GGGAGGACGAUGCGG AAGUAACGUUGA_AGUAAAAUUCGUUCUCCGGC_AUUUGGC CAGACGACUCGCCCGA	TGF\$2
8.5(1)	24	GGGAGGACGAUGCGG UCCUAACCAUCACAAUCUCAAUUCUUAUAUUUUCCCGCCC CAGACGACUCGCCCGA	NONE
8.6(1)	25	GGGAGGACGAUGCGGAAACCAAAAGACCACAUCUCCAUACUCACGCUCUGCCC CAGACGACUCGCCCGA	NONE
8.8(1)	26	GGGAGGACGAUGCGG AUAGAUCGGUCCGAUAAGUCUUUCAUCUUUACCUGGCCCC CAGACGACUCGCCCGA	NONE
8.9(4)	27	GGGAGGACGAUGCGG AAGUAACGUUGA_AGUAAAAUUCGUUCUCCGGU_AUUUGGC CAGACGACUCGCCCGA	TGF\$2
8.11(1)	28	GGGAGGACGAUGCGG ACGAUCCUTUCCUUAACAUTUCAUCAUTUCUCCUGUGCCC CAGACGACUCGCCCGG	FILTER
8.12(1)	29	GGGAGGACGAUGCGG UCCAUCAACAAUCUUAUCAUUAUGUUUUUCCUUCCCGCCC CAGACGACUCGCCCGA	NONE
8.13(1)	30	GGGAGGACGAUGCGG UCCUCUGAGCCGAUCUUCUUCACUACUUCUUUUUCUGCCC CAGACGACUCGCCCGA	FILTER
8.15(2)	31	GGGAGGACGAUGCGG UUCCUCAAUUCUUCCAUCUUCAUAAUGUUUCCCUUUGCCC CAGACGACUCGCCCGA	FILTER
8.18(1)	32	GGGAGGACGAUGCGG UCUACCCUUUAGCAGUAUUUGUUUCCAUCGUUGUUUGCCC CAGACGACUCGCCCGG	NONE
8.20(1)	33	GGGAGGACGAUGCGG UCUCAACGAAGAACAUCGUUGGAUACUGUUUGUCCCGCCC CAGACGACUCGCCCGA	NONE
8.21(1)	34	GGGAGGACGAUGCGG UUCAGUUUCCUUCAGUUUUCGUUUCUAAUUCUUGUGUCCC CAGACGACUCGCCCGA	FILTER
8.22(1)	35	GGGAGGACGAUGCGGAGCGGAUJAAUUAGUCUGACUUCUUGUCCC CAGACGACUCGCCCGA	
8.23(1)	36	GGGAGGACGAUGCGG AGACAUCUTUGUCUCGAUVAGUCAUGUUCCUUACCUGCCC CAGACGACUCGCCCGA	NONE
8.24(1)	37	GGGAGGACGAUGCGGUCCUCUAGCAAGCAGCUUCUCAUCUUAUUUUCCGCCC CAGACGACUCGCCCGA	
8.25(1)	38	GGGAGGACGAUGCGG UGCACAGUGAUGGAUGACAUUGUAUAACGGUAUGCGUCCC CAGACGACUCGCCCGA	
8.26(1)	39	GGGAGGACGAUGCGG -ACCUAUCUTUCUUCCAAGUCAUAGUUTUACUUCCCGCCC CAGACGACUCGCCCGA	FILTER
8.28(1)	40	GGGAGGACGAUGCGG AUGAGACCUAAUCAUCGAUCCGCUAUCUAAAACCUCACCC CAGACGACUCGCCCGA	NONE
8.29(1)	41	GGGAGGACGAUGCGG UCCUCAGACAAAUCUUUCUUGAAUCUUUCCUUAACUGCCC CAGACGACUCGCCCGA	FILTER
8.31(1)	42	GGGAGGACGAUGCGG -ACCGAUUCUCCAACUUGACAUUUAUUCCUCUUUUCUGCCC CAGACGACUCGCCCGA	FILTER
8.33(1)	43	GGGAGGACGAUGCGG UCCUCUGAGCCAAUCUUCGCUACUUCUUUUUCUGCCC CAGACGACUCGCCCGA	FILTER
8.34(1)	44	GGGAGGACGAUGCGG AUUCUUCUCCAACGCUUUUCACUACCUACAUUUCUGCCC CAGACGACUCGCCCGA	FILTER
8.35(1)	45	GGGAGGACGAUGCGG AUCCUAUCCUCUGAAUAUCAUUAAAUCAUCUCCGCCC CAGACGACUCGCCCGA	NONE

TABLE 5. (CONTINUED) Sequences isolated from round 8 of surface plasmon resonance SELEX.

8.36(1)	46	GGGAGGACGAUGCGG UUCAAUCAUCACUCU-CAUUUCCUUUUUCCUACUCCC CAGACGACUCGCCCGA	FILTER
8.38(1)	47	GGGAGGACGAUGCGG CGAUAGAAUCUAGUCGUUCUAGAUGAUCUGGUACGUGCCC CAGACGACUCGCCCGA	
8.39(1)	48	GGGAGGACGAUGCGG UAGUAAUCCUUGUCUUCCAUUUCUCUUUACCCUUUUGCCC CAGACGACUCGCCCGA	FILTER
8.40(1)	49	GGGAGGACGAUGCGGCCCAUUAGUCCUCAUUAGUCCCCUGUGCCC CAGACGACUCGCCCGA	NONE
8.41(1)	50	GGGAGGACGAUGCGG CAUCUUAUCCUCCAUCAGUUACUCUUCGUUAUUCCCGCCC CAGACGACUCGCCCGA	
8.45(1)	51	GGGAGGACGAUGCGG UCC-AAAUCCUCUUCCCAUGUUAGCAUUCAGCCUUGUCCC CAGACGACUCGCCCGA	
8.46(1)	52	GGGAGGACGAUGCGG -UUCCGACAAUUUCCUCCACCAUUAGAUUUCUUGCUGCCC CAGACGACUCGCCCGA	
8.47(1)	53	GGGAGGACGAUGCGG UCUUGAUCCUCCUTUGUGUCUTUCUTUGUCUUCCCUGCCC CAGACGACUCGCCCGA	
8.48(2)	54	GGGAGGACGAUGCGG AAGUAACGUUGA AGUAAAAUUCGUUCUCGGU AUU-GGC CAGACGACUCGCCCGA	TGF\$2
$\overline{\text{NAME}}^a$	SEO ID NO.	<u>SEQUENCE</u> ^b	BINDING
8.49(1)	55	GGGAGGACGAUGCGG -UCCGAUCAGUUCCUUCGAUUAAUCUUCUUUCCUGCCCCC CAGACGACUCGCCCGA	
8.51(1)	56	GGGAGGACGAUGCGG AAUCCUUCUCCCUGAUGAAUAUGACCUUUUUCUUGCUCCC CAGACGACUCGCCCGA	
8.52(1)	57	GGGAGGACGAUGCGG AUGAUCUUUAAUGUCUGGUUUGAGGUCAAUGCGGGUGCCC CAGACGACUCGCCCGA	
8.56(1)	58	GGGAGGACGAUGCGG AGAUGGUACUCCAUCUCCUUVAUGUGCCCAUCGCUGUCCC CAGACGACUCGCCCGA	
8.57(1)	5.9	GGGAGGACGAUGCGG UCCUC-GAUUCUAAUUUACUCCUUUUUCCCC CAGACGACUCGCCCGA	
8.61(1)	60	GGGAGGACGAUGCGG UCUACCCUUUAGCAGUAUUUGUUUCCAUCGUUGUUUGCCC CAGACGACUCGCCCGA	
8.62(1)	61	GGGAGGACGAUGCGG -CACAAUAUUCUCCUCUACUUCCACGUAUUUUCCUGUCCC CAGACGACUCGCCCGA	
8.64(1)	62	GGGAGGACGAUGCGG UCCUCAACCUUAGACUUUCAUTUCUUCAGUUCUUCUGCCC CAGACGACUCGCCCGA	
8.65(1)	63	GGGAGGACGAUGCGG UAGUGGUCUGUCAAAGGAAUAGCUAGUAGUGUUUGGUCCC CAGACGACUCGCCCGA	
8.69(1)	64	GGGAGGACGAUGCGG CAUCUUCCUUAGCAUACCAGUJUAUUCCUUUCCCUGUCCC CAGACGACUCGCCCGA	
8.71(1)	65	GGGAGGACGAUGCGG AGCGACAGUAUAGUUAGUACUCUAGCUCUAGUGCUGUCCC CAGACGACUCGCCCGA	
8.72(1)	99	GGGAGGACGAUGCGG ACCUCUCAUGAUCAGCAUCUCGCGUAAUCACGGUUCACCC CAGACGACUCGCCCGA	
8.74(1)	29	GGGAGGACGAUGCGG UCCGUACUCCAUUUCCUAUUUGAUUCCUUUUCCUCUGCCC CAGACGACUCGCCCGA	
8.75(1)	89	GGGAGGACGAUGCGG AACCCACGACCUUACCUUAAUCAUGUAUJUCUCUCUCUGCCC CAGACGACUCGCCCGA	

TABLE 5. (CONTINUED) Sequences isolated from round 8 of surface plasmon resonance SELEX.

GGGAGGACGAUGCGGAGAUAAUGAGUGACGGUGAUUAUAGAUGCUGCCC CAGACGACUCGCCCGA	0 GGGAGGACGAUGCGG UUCCUCAAUUCUUCCAUCUUCAUAAUGUUUCCCUUUGCCC CAGACGACUCGCCCGA	1 GGGAGGACGAUGCGG UUCCUUCCAACGUUAUCUACUUUCUGCCC CAGACGACUCGCCCGA
69	70	71
8.76(1)	8.79(1)	8.80(1)

^aNames are given in the form Round 8.clone number followed by the number of clones of that sequence that were isolated in parentheses.

^CFILTER, filter-binding sequence; NONE, no binding to TGFβ2 or filters, TGFβ2, binds to TGFβ2 as well as ligand 14i-1 Underlined bases are those that differ from the ligand 14i-1 (Table 7). A=2'-OH A; C=2'-F C; G=2'-OH G; U=2'-F U. b, gaps introduced to designate sequences with selected regions that are shorter than 40 bases. An attempt was made to align such sequences with other sequences but the alignment is not necessarily optimal.

TABLE 6. Conditions and results of resonant mirror (rm) optical biosensor SELEX.

Progress of IASYS SELEX with TGFβ2

Rd	TGFβ2,	Arcsec	[RNA], μM²	Vol, μL^3	Binding (min) ⁴	Dissociation (min) ⁵	Elution ⁶
	C1	C2	·				
10	1777	0	1	50	27	29	water
11	1777	0	10	50	30	60	water
12	1777	0	10	50	60	150	water
13	1893	0	0.05	50	37	73	water&SDS
14	1721	0	3.5	50	30	35	water&SDS

¹Amount of TGFβ2 immobilized expressed in Arcsec where 1 Arcsec is 5 pg/mm² protein.

The protein is immobilized in an area of 4 mm² in cell 1 (C1).

²Concentration of RNA pools

³Volume of RNA solution used

⁴Length of binding phase in min

⁵Length of dissociation phase in min

⁶Elution used

TABLE 7. Sequences isolated from round 13 of resonant mirror SELEX

NAME	SEQ ID NO.	SEQ ID NO. SEQUENCE b	
14i-1	72	GGGAGGACGAUGCGG AAGU	GGGAGGACGAUGCGG AAGUAACGUUGUAGUAAAAUUCGUUCUCGG-CAUUUGGC CAGACGACU-CGCCCGA
13.20(1)	73	GGGAGGACGAUGCGG AAGU	GGGAGGACGAUGCGG AAGUAACGUUAUAGUAAAAUUCGUUCUCGG-UAUU_GGC CAGACGACU-CGCCCGA
13.22(2)	74	GGGAGGACGGUGCGG AAGU	GGGAGGACGGUGCGG AAGUAACGUUGUAGUAAAAUUCGUUCUCGG-CGUUUGGC CAGACGACU-CGCCCGA
13.24(2)	75	GGGAGGACGAUGCGG AAGU	GGGAGGACGAUGCGG AAGUAACGUUGUAGUAAAAUUCGUUCUCCGG-CGUUUGGU CAGACGACU-CGCCCGA
13.30(1)	76	GGGAG_ACGAUGCGG AAGU	GGGAG_ACGAUGCGG AAGUAACGUUGUAGUAAAAUUCGUUCUCCGG-CAUUUGGC CAGACGACU-CGCCCGA
13.32(1)	77	GGGAGGACGAUGCGG AAGU	GGGAGGACGAUGCGG AAGUAACGUUGAAGUAAAAUUCGUUCUCUG-CGUUUGGU CAGACGACU-CGCCCGA
13.34(1)	78	GGGAGGACGAUGCGG AAGU	GGGAGGACGAUGCGG AAGUAACGUUGAAGUAAAAUUCGUUCCCUGG-UA_UUGGC CAGACGACU-CGCCCGA
13.36(2)	79	GGGAGGACGAUGCGG AAGU	GGGAGGACGAUGCGG AAGUAACGUUGAAGUAAAAUUCGUUCUCGG-CAUUUGGC CAGACGACU-CGCCCGA
13.40(1)	80	GGGAGGACGAUGCGG AAGU	GGGAGGACGAUGCGG AAGUAACGUUGUAGUAAAAUUCGUUCUCUUGG-CAUUU_GC CAGACGACU-CGCCCGA
13.42(1)	81	GGGAGGACGAUGCGG AAGU	GGGAGGACGAUGCGG AAGUAACGUUAAAGUAAAAUUCGUUCUCGG-CGUUUGGC CAGACGACU-CGCCCGA
13.44(1)	82	GGGAGGACGAUGCGG AAGU	GGGAGGACGAUGCGG AAGUAACGUUGAAGUAAAAUUCGUUCUCGG-CGUUUGGC CAGACGACU-CGCCCGA
13.48(1)	83	GGGAGGACGAUGCGG AAGU	GGGAGGACGAUGCGG AAGUAACGUUGUAGUAAAAUUCGUUCUCCGG-UAUUUGGC CAGACGACU-CGCCCGA
13.50(1)	84	GGGAGGACGAUGCGG AAGU	GGGAGGACGAUGCGG AAGUAACGUUGUAGUAAAAUUCGUUCUCUUGG-UCUU_GGC CAGACGACU-CGCCCGA
13.54(1)	85	_GGAGGACGAUGCG_ AAGU	_GGAGGACGAUGCG AAGUAACGUUGUAGUAAAAUUCGUUCUCGGGCAUUUGG CAGACGACUUCGCCCGA

^a Names are given in the form Round 13.clone number followed by the number of clones of that sequence that were isolated.

^b Underlined bases are those that differ from ligand 14i-1 from the filter SELEX. The sequence of 14i-1 is shown at the top for comparison. A=2'-OH A; C=2'-F C; G=2'-OH G; U=2'-F U.

TABLE 8. Sequences and boundaries of TGFβ2 ligands isolated from rounds 14 and 21 of filter SELEX.

Kd (nM) Ki (nM)	230	30	10	
OM)	10	ĸ	н	
Kd (r	GCAUUUGGCCAGACGACUCGCCCGA	GCUUGUCCCCAGACGACUCGCCCGA	UGUACUCCCCAGACGACUCGCCCGA	3, fixed
	AGUAACGUUGUAGUAAAAUUCG <u>UUCUC</u> GGCAUUUGGC CAGACGACUCGCCCGA 10 230	GUUGUUUAGUCGUAUGUAUAUAACUAAGUCCGCUUGUCCCCAAGACGACUCGCCCGA	UUCAGGAGGUUAUUACAGAGUCUGUAUAGCUGUACUCCCCAGACGACUCGCCGGA	selected
SEQUENCE b	GGGAGGACGAUGCGGAAGU	gggaggacga<u>u</u>gcgg cgun	3GGAGGACGAUGCGG- UUC	5' fixed
NAME ^a SEQ ID NO.	72 6	98	87 (
NAME a	14i-1	21a-4	21a-21	region:

^a Names are in the form: round sequence was isolated-clone number.

^b Boundaries are underlined. Fixed regions are in bold-faced type. Selected sequences are in plain type.

A=2'-OH A; C=2'-F C; G=2'-OH G; U=2'-F U

TABLE 9. Number of sequences isolated using the SELEX process.

SELEX round

	8-spr	13-rm	14i	16a	18b	21a	TOTAL
Sequence	i i						
14i-1	0	0	75	2	0	0	77
14i-1 variants	21	15	22	2	0	0	09
21a-4	0	0	0	0	0	ю	
21a-4 variants	0	0	4	7	0	2	13
21a-21	0	0	0	1	11	38	20
21a-21 variants	0	0	0	2	4	4	10
unidentified	36	0	0	0	0	0	36
filter-binding	12	0	1	-	0	1	15
TOTAL	69	15	102	15	15	48	264

TABLE 10. Characteristics of nucleic acid pools isolated using the SELEX method.

Rounda	Sequence of pool ^b	% of pool	% of transformants ^d	% of clones
	random	14i-1: <0.03		
	random	14i-1: ~1		
•	slightly nonrandom	14i-1: ~5		14i-1: 30
				other: 70
	nonrandom			
	can read sequence of ligand 14i-1			
	can read sequence of ligand 14i-1			
	can read sequence of ligand 14i-1			
	can read variants of ligand 14i-1 sequence			
	can read variants of ligand 14i-1 sequence	14i-1: 10-100		14i-1: 100
		21a-21: <0.1		
				14i-1: 93
				21a-4: 4
		21a-21: 0.2-0.5		21a-21: 0
				other: 3
				14i-1: 27

TABLE 10. (CONTINUED) Characteristics of nucleic acid pools isolated using the SELEX method.

% of clones	21a-4: 47	21a-21: 20	other: 6	21a-21: 100		21a-4: 10	21a-21: 84	other: 6	
% of transformants ^d						21a-4: 9	21a-21: 90	other: 1	
% of pool		21a-21: 3-100		21a-21: 3-100			21a-21: 3-100		
Sequence of pool ^b									
Rounda				18b	21a				•

^a spr, from surface plasmon resonance biosensor SELEX; rm, from resonant mirror optical biosensor SELEX.

^b Determined by primer extension of bulk nucleic acid pools with 3'N7 primer.

^c Determined by RT-PCR of bulk nucleic acid pools with a ligand-specific primer.

^d Determined by PCR of individual transformants with a ligand-specific primer.

^e Determined by sequencing of clones. Includes sequence variants of ligands.

TABLE 11. Truncates of human TGF β 2 nucleic acid ligand 21a-21.

NAME	SEQUENCE	SEQ ID	SEQ ID BINDING ^b	LENGTH ^c BIO
21a-21	GGGAGGACGAUGCGGUUCAGG AGGUUAUUACAGAGUCUGUAUAGCUGUACUCCCC AGACGACUCGCCGA		7 0.5	70
21a-21 (U6G)	21a-21 (U6G) GGGAGGACGAUGCGGUUCAGGAGG UAUUACAGAGUCUGUAUAGCUGUACUCCCCAGACGACGACGCCGA	CCGA 88	250	34
21a-21Δ5'	GG UUCAGGAGGUUAUUACAGAGUCUGUAUAGCUGUACUCCC CAGACGACUCGCCGA	CGA 89	0.5	56
21a-21Δ3'	GGGAGGACGAUGCGG UUCAGGAGGUUAUUACAGAGUCUGUAUAGCUGUACUCCC CA	90	100	56
21a-21A5',3	3 '	91	0.5	42 1
21a-21 (ML-94)	94) GGAGGUUAUUACAGAGUCUGUAUAGCUGUACCCCC	92	0.5	36
21a-21 (ML-95)	GGAGGUUAUUACAGAGUCUGUAUAGCUGUACUCC	93	н	34
21a-21 (ML-96)	GGAGGUUAUUACAGAGUCUGUAUAGCUGUA	94	1000	30
21a-21 (ML-97)	GGAGGUUAUUACAGAGUCUGUAUAGC	95	1000	26
21a-21 (ML-99)	GGAGGUUAUUACAGAGUCUGUAUAGC CUCC	96	1000	30
21a-21(ML-101)	.01) GGAGGUUAUU AGAGUCU AUAGCUGUACUCC	97	1000	30
21a-21(ML-102)	.02) GGAGGUUAUU AGAGUCU AUAGC CUCC	98	1000	26
21a-21 (ML-103)	.03) GGAGGUUAUUACAGAGUCUGUAUAGCUGUACUC	66	20	33
21a-21 (ML-104)	.04)	100	70	32
21a-21 (ML-105)	.05) GGAGGUUAUUACAGAGUCUGUAUAGCUGUAC	101	1000	31
21a-21 (ML-114)	.14) GGAGGUUAUUACAGAGUCUGUAUAGC GUACUCC	102	1000	33
21a-21 (ML-115)	.15) GGAGGUUAUUACAGAGUCUGUAUAGCUGU CUCC	103	1000	33
21a-21 (ML-116)	.16) GGAGGUUAUUACAGAGUCUGUAUAGCU ACUCC	104	1000	32
21a-21 (ML-118)	.18) GGAGGUUAU ACAGAGUCUGUAUAGCUGUACUCC	105	1000	33
21a-21 (ML-120)	.20) GGAGGUUAUUACAGA UCUGUAUAGCUGUACUCC	106	1000	33
21a-21 (ML-122)	GGAGGUUAUUACA AGU UGUAUAGCUGUACUCC	107	1000	32
21a-21 (ML-128)	.28) GGAGGUUAUUACAGAGU UGUAUAGCUGUACUCC	108	1000	33

TABLE 11. (CONTINUED) Truncates of human TGFβ2 nucleic acid ligand 21a-21.

NAME	SEQUENCE ^a	SEO ID	SEQ ID BINDING ^b LENGTH ^c BIO	LENG	<u>IH</u> c <u>BIO</u>
		NO:			ACTIVITYd
21a-21 (ML-130)	GG GGUUAUUACAGAGUCUGUAUAGCUGUAC CC	109	77	32	
21a-21(ML-132)	GGAGGUJAUJAC GAGUCUGUAJAGC GUACUCC	110	1000	32	
21a-21(ML-134)	GGAGA UAUUACAGAGUCUGUAUAGCUGUACUCC	111	10	33	
21a-21(ML-136)	GG GGUUAUU CAGAGUCUGUAUAGCUG AC CC	112	10000	30	
21a-21(ML-138)	GG GGUUAUUA AGAGUCUGUAUAGCU UAC CC	113	10000	30	
NX22283	GGAGGUUAUUACAGAGUCUGUAUAGCUGUACUCCCC [3 'T]	114	9.0	0.6 36	0.5
NX22284	GGAGGUJAUJACAGAGUCUGUAUAGCUGUACUCC [3'T]	115	Т	34	7
NX22285	GGAGGUUAUUACAGAGUCUGUAUAGCUGUACUCCCCA	116	2	37	
NX22286	GGAGGUUAUUACAGAGUCUGUAUAGCUGUA	117	130	30	>20
NX22301	GAGGUUAUUACAGAGUCUGUAUAGCUGUACUCC [3'T]	118	1	33	2
NX22302	AGGUUAUUACAGAGUCUGUAUAGCUGUACUCC [3'T]	119	100	32	
NX22303	GGUUAUUACAGAGUCUGUAUAGCUGUACUCC [3'T]	120	>100	31	>100
NX22323 PEC	PEG-GGAGGUUAUJACAGAGŲCUGUAUAGCUGUACUCC [3'T]	121	nt	34	ĸ

The italicized G at the 5' end of the 5' RNase H cleavage products indicates that ~50% of the time cleavage leaves 2 G's and 50% of the time one G is left. The boundaries ^a The fixed regions are indicated by bold-faced letters. The point mutant in 21a-21(U6G) is underlined and in bold type. A=2'-OH A; C=2'-F C; G=2'-OH G; U=2'-F U in 21a-21 are underlined

^b Binding is expressed as the ratio of the K_d of ligand $/K_d$ of NX222884. The K_d of NX22284 is ~2 nM.

^c Length is given in bases.

^d Bioactivity is expressed as the ratio of the K_i of ligand $/K_i$ of NX22284. The K_i of NX22284 is ~10 nM.

TABLE 12. Alignment of human transforming growth factor β amino acid sequences.

SEQ ID NO.

TEKNCCVRQL YIDFRKDLGW KWIHEPKGYH ANFCLGPCPY IWSLDTQYSK 60	VQDNCCLRPL YIDFKRDLGW KWIHEPKGYN ANFCAGACPY LWSSDTQHSR 60	LEENCCVRPL YIDFRQDLGW KWVHEPKGYY ANFCSGPCPY LRSADTTHST 60	N A A S R	KPKVEQ LSNMIVRSCK CS 112	TPKIEQ LSNMIVKSCK CS 112	TPKVEQ LSNMVVKSCK CS 112 127	1
EKNCCVRQL YIDFRKDLGW KWIHE	DDNCCLRPL YIDFKRDLGW KWIHE	EENCCVRPL YIDFRQDLGW KWVHE	VQD L KR	GASAAPCCVP QALEPLPIVY YVGRKPKVEQ LSNMIVRSCK CS	EASASPCCVS QDLEPLTILY YIGKTPKIEQ LSNMIVKSCK CS	EASASPCCVP QDLEPLTILY YVGRTPKVEQ LSNMVVKSCK CS	÷
TGFß1: ALDTNYCFSS TE	TGFß2: ALDAAYCFRN VÇ	TGFß3: ALDTNYCFRN LE	AA VÇ	TGFßl: VLALYNQHNP GA	TGF32: VLSLYNTINP EA	TGF63: VLGLYNTLNP EA	+
TGFB1:	TGFß2:	TGFB3:	TGFß2 specific:	TGF81:	TGFß2:	TGFß3:	

TABLE 13. Truncates of human TGFβ2 nucleic acid ligand 14i-1.

NAME	SEQUENCE ^a	SEQ ID NO	SEQ ID NO. BINDING ^b LENGTH ^c	7 q D N	ENGTHc
14i-1	GGGAGGACGAUGCGGAAGUAACGUUGUAGUAAAA	GGGA GGACGAUGCGGAAGUAACGUUGUAGUAAAAUUCGUUCUCUC GGCAUUUGGCCCAGACGACUCGCCCGA	72	н	71
14i-1A5'd	GGAAGUAACGUUGUAGUAAAA	GGAAGUAACGUUGUAGUAAAAUUCGUUCUCUCGGCAUUUGGCCAAGACGACUCGCCCGA 128	>100	0	56
14i-1A3'd	GGGAGGACGAUGCGGAAGUAACGUUGUAGUAAAAUUCGUUCUCUCGGCAUUUGGCCA	AUUCGUUCUCUCGGCAUUUGGC CA		ъ	57
14i-1A5,3'd	GG AAGUAACGUUGUAGUAAAA	GGAAGUAACGUUGUAGUAAAAUUCGUUCUCUCGGCAUUUGGCCA	>100	0	42
14i-1t5-41	gGGAGGAUGCGGAAGUAACGUUGUAGUAAAAAUUCcUUC	NUCCUUC 131		H	38
14i-1t5-38	gGGAGGAUGCGGAAGUAACGUUGUAGUAAAAUUCc	VUUCc 132	>100	0	35
14i-1t5-35	gGGAgGAUGCGGAAGUAACGUUGUAGUAAAAU	ιU 133	>100	0	32
14i-1 (ML-86)	gGGAgGAUGCGGAAGUAACGUUGUAGU	UCcUUC 134	>100	0	33
14i-1 (ML-87)	gGGAgGAUGCGGAAGUAACGUUGUAGU	135	>100	0	27
14i-1(ML-89)	gGgaGgAGUAACGUUGUAGU	136	>100	0	20

Lowercase letters indicate bases not found at that position in the full length ligand that were added or changed to maintain transcriptional efficiency. Boundaries are underlined. The fixed regions are in bold-faced type. The italicized G at the 5' end of the 5' RNase H cleavage products indicates that $\sim 50\%$ of the time cleavage leaves 2 G's and 50% of the time one G is left. A=2'-OH A; C=2'-F C; G=2'-OH G; U=2'-F.

Binding is expressed as the ratio of K_d (ligand)/Kd (14i-1). The K_d of 14i-1 is ~10 nM.

Length is in bases.

د م

Produced by RNase H digestion.

TABLE 14. Truncates of human TGFβ2 nucleic acid ligand 21a-4.

Name	Sequence ^a			<u>SEQ ID NO. Binding^b Length^c</u>	Bindingb	<u>Length</u> c
21a-4	GGGAGGACGAU GCGGCGUUGUUUAG	JUCGUAUGUAUAUAC	GGGAGGACGAUGCGUUGUUUAGUCGUAUGUAUAUACUAAGUCCGCUUGUCCCC AGACGACUCGCCCGA 86	JCGCCCGA 86	Н	71
21a-4∆5'd	GGCGUUGUUAG	UCGUAUGUAUAUAC	GGCGUUGUUUAGUCGUAUGUAUAUACUAAGUCCGCUUGUCCCCAAGACGACUCGCCCGA 137	GCCCGA 137	>100	56
21a-4Δ3'd	GGGAGGACGAUGCGGCGUUGUUUAGUCGUAUGUAUAUACUAAGUCCGCUUGUCCCCA	ucguauguauauac	UAAGUCCGCUUGUCCC CA	138	Н	57
21a-4A5',3'd	GGCGUUGUUNAG	UCGUAUGUAUAUAC	GG CGUUGUUUAGUCGUAUGUAUAUACUAAGUCCGCUUGUCCC CA	139	>100	42
21a-4 (ML-91)	ggga GCGG CGUUGUUUAGUCGUAUGUAUAUACUAAGUCCGCUU	UCGUAUGUAUAUAC	UAAGUCCGCUU	140	н	44
21a-4 (ML-92)	gg G ga GCGG CGUUGUU	gaaa	AGUCCGCUU	141	>100	27
21a-4 (ML-108)	gggga GCG GCGUGUUU	CGUAUGUAUAU	AAGUCCGCUU	142	>100	38
21a-4 (ML-109)	gg G ga GCGG CGUUGUUU	AUGUAU	AAGUCCGCUU	143	>100	33
21a-4 (ML-110)	gg G ga GCGG CGUUGUUDAG	CGUUGUUUAGUCGUAUGUAUAUACUAAGUCCGC	UAAGUCCGC	144	г	42
21a-4 (ML-111)	gg G ga GCGG CGUUGUUDAG	CGUJGUJUAGUCGUAUGUAUAUACUAAGU	UAAGU	145	30	38

indicates that ~50% of the time cleavage leaves 2 Gs and 50% of the time one G is left. A=2'-OH A; C=2'-F C; G=2'-OH G; U=2-F U The fixed region sequences are indicated in bold-faced lettering. The italicized G at the 5' end of the 5' RNase H cleavage products Lowercase letters indicate bases not found at that position in the full length ligand. Underlining indicates boundary positions.

Binding is expressed as the ratio of K_d (ligand)/ K_d (21a-4). The K_d of 21a-4 is ~3 nM.

Length is expressed in bases.

d These ligands were generated by RNAse H digestion of 21a-4.

TABLE 15. Biased SELEX conditions and results.

Rounda	[RNA] ^b , nM	Round ^a [RNA] ^b , nM [TGF\(\beta\)2], nM RNA ^b /protein	RNA ^b /protein	[Competitor]	% Bound	% Background	% Bound % Background Bound/background Kd (nM)	Kd (nM)°
34N7.21a	-21 round 0	34N7.21a-21 round 0 nucleic acid						870
1a	1000	150	7	0	1.4	1.4	1.0	395
2a	450	300	1.5	0	1.7	1.0	1.7	186
3а	10	50	0.2	0	17.5	1.0	17.5	25
4 a	50	10	S	0	11.0	6.0	12.3	17
4p	20	10	2	333 nM NX22284	2.2	1.3	1.7	8
5 a	8	1	8	0	1.4	6.0	1.5	ı
2p	80	1	8	100 nM NX22284	8.0	0.7	1.1	17
6 a	4	0.5	80	0	2.9	2.9	1.0	г
e b	9	. 5.0	12	100 nM NX22284	1.8	1.3	1.4	1
7a	S	0.25	20	0	0.5	0.14	3.4	1
d7	2	0.25	20	200 nM NX22284	0.15	0.1	1.5	0.5
				5 mM tRNA				
8a	1	0.05	20	0	1.05	1.1	6.0	7
48	1	0.05	20	100 nM NX22284	9.0	0.5	1.2	Э
				5 mM tRNA				
9a	125	1	125	0	9.0	0.5	1.2	pu
96	6.0	0.01	06	0	0.15	0.14	1.0	nd

^a a series, without competitor; b series, with competitors

b nucleic acid ligand library

c nd, not determined

TABLE 16. Nucleic acid ligands isolated from round 5a of a human TGFβ2 biased SELEX.

NAME	5' FIXED	SELECTED ^b	3' FIXED SEQ ID NO:	NO: CHANGES	c BINDING d
putative s	structural element:	S1 B S2 L S2 S1			
21a-21:	GGGAGGAUGCGGUUCAGGAG GUUA	CAGGAG GUUAUUACAGAGUCUGUAUAG CUGUACUCCC CAGACGACUCGCCCGA	c cagacgacucgcccga	72 0	1.0
1: (2)	GGGAGGACGAUGCGG	GGUGAUJAUVACAGAGUAUGUAUAGCUGUACCC	CAGACGACUCGCCCGA	146 4	8.0
2: (1)	GGGAGGACGAUGCGG	AGGCGUUAUUAGAGAGUCUGUAUAGCUCUAGCCC	CAGACGACUCGCC-GA	147 7	9.0
4: (1)	GGGAGGACGAUGCGG	GGAGGGUAUUACAGAGUAUGUAUAGCUGUACUCC	CAGACGACUCGCCCGA	148 2	1.4
6:(2)	GGGAGGACGAUGCGG	GGAGGUUAUUA U AGAGUCUGUAUAGCU A UAC C CC	CAGACGACUCGCCCGA	149 3	1.6
7: (1)	GGGAGGACGAUGCGG	GAGGUUAUUA U AGAGUCUG C AUAGCUAUACCCC	CAGACGCCCGA	150 5	0.3
9: (1)	GGGAGGACGAUGCGG	U GAG AG UAUUAC G GAGU A UGUAUAGC C GUAC C CC	CAGACGCCCGA	151 7	0.3
10:(1)	GGGAGGACGAUGCGG	GGGCAUJAUUUCAGAGUCUGUAUAGCUGUAGCC	CAGACGACUCGCCCGA	152 6	0.3
11:(2)	GGGAGGACGAUGCGG	GCGGAUJAUCACAGAGUAUGUAUAGCUGUGCCGC	CAGACGACUCGCCCGA	153 8	0.4
13:(1)	GGGAGGACGAUGCGG	UGUGAAUAUUAGAGAGUCUGUAUAGCUCUACCC	CAGACGACUCGCCCGA	154 7	0.2
14:(1)	GGGAGGACGAUGCGG	CGGGAUUAUUACUGAGUCUGUAUAGCAGUACCC	CAGACGACUCGCCCGA	155 6	0.4
15:(1)	GGGAGGACGAUGCGG	G UGGAA UAUUAC G GAGUCUGUAUAGC C GUACUCC	CAGACGACUCGCCCGA	156 6	0.4
17:(1)	GGGAGGACGAUGCGG	GGGGACUAUUAGUGAGUCUGUAUAGCACUACCC	CAGACGACUCGCCCGA	157 8	8.0
18:(1)	GGGAGGACGAUGCGG	GUGGAUUAUUACAGCGUCUGUAUAUCUGUACCC	CAGACGACUCGCCCGA	158 6	1.0
19:(2)	GGGAGGACGAUGCGG	GCAGGUUAUUACAGAGUCUGUAUAGCUGUACUGC	CAGACGACUCGCCCGA	159 2	1.0
20:(1)	GGGAGGACGAUGCGG	GGUAGAUAUCACUGAGUCUGUAUAGCAGUGUCC	CAGACGACUCGCCCGA	160 9	5.7
21:(2)	GGGAGGACGAUGCGG	AGGGAUUAUUACAGAGUCUGUAUAGCUGUACCCC	CAGACGACUCGCCCGA	161 4	0.7
22: (4)	GGGAGGACGAUGCGG	GUGGAUUAUUACAGAGUCUGUAUAGCUGUACCC	CAGACGACUCGCCCGA	162 4	1.1
25:(1)	GGGAGGACGAUGCGG	GGGCGUUAUUACAGAGUCUGUAUAGCUGUAGCC	CAGACGACUCGCCCGA	163 4	1.0
26:(1)	GGGAGGACGAUGCGG	GGUGGUUAUUACACAGUAUGUAUAGGUGUACCCC	CAGACGACUCGCCCGA	164 4	3.1
28:(1)	GGGAGGACGAUGCGG	AGGGAAUAUUACAGAGUAUGUAUAGCUGUACCC	CAGACGACUCGCCCGA	165 6	1.0
29:(1)	GGGAGGACGAUGCGG	GGAGUUJAUJACAGCGUCUGUAUAUCUGUAGCC	CAGACGACUCGCCCGA	166 5	1.0
30:(1)	GGGAGGACGAUGCGG	U GAGGUUAUUACAGAGUCUGUAUAGCUGUACUCC	CAGACGACUCGCCCGA	167 1	2.4
34:(1)	GGGAGGACGAUGCGG	GGUGGUUAUUAGAGAGUCUGUAUAGCUCUACGCC	CAGACGACUCGCCCGA	168 4	1.7

TABLE 16 CONT.

35:(1)	GGGAGGACGAUGCGG	GGGGAGUAUUAAAGAGUCUGUAUAGCUUUUACCCC CAGACGACUCGCCCGA	CUUUACCCC	CAGACGACUCGCCCGA	169	9	0.8
36:(1)	GGGAGGACGAUGCGG	GGAGGAUAUUAUAGAGUCUGUAUAGCUAUACCCC CAGACGACUCGCCCGA	JU A UACCCC	CAGACGACUCGCCCGA	170	4	1.9
invariant:		UAU GU UG AUA	ບ				

ω

^a Number of clones isolated for each sequence is indicated in parentheses.

Putative structural elements: S1, stem 1; B, bulge; S2, stem 2; L, loop. The sequence of ligand 21a-21 is shown at the top for comparison. ^b Nucleotides that differ from the starting sequence are shown in bold-faced lettering. A=2'-OH A; C=2'-F C; G=2'-OH G; U=2'-F U

[°] Number of changes from starting sequence.

 $[^]d$ Binding is expressed as K_d (ligand)/ K_d (21a-21). The K_d of ligand 21a-21 is about 1 nM.

TABLE 17. Highest and lowest affinity $TGF\beta2$ nucleic acid ligands from biased SELEX.

CHANGES c		7	9	4	9		0		4	1	4	ю	σ	
BINDING		0.2	0.4	0.7	8.0		1.0		2.0	2.4	3.1	3.3	5.7	•
SEQ ID NO.		154	155	161	169		72		170	167	164	149	160	
SEO I	•	GCCCGA	GCCCGA	GCCCGA	GCCCGA		CGCCCGA		GCCCGA	GCCCGA	GCCCGA	GCCCGA	GCCCGA	
3' FIXED		CAGACGACU	CAGACGACUCGCCCGA	CAGACGACUCGCCCGA	CAGACGACUCGCCCGA		CAGACGACU		CAGACGACUCGCCCGA	CAGACGACUCGCCCGA	CAGACGACUCGCCCGA	CAGACGACUCGCCCGA	CAGACGACUCGCCCGA	
SELECTED ^a		UGUGAAUAUUAGAGGUCUGUAUAGCUCUACCCC CAGACGACUCGCCCGA	CGGGAUUAUUACUGAGUCUGUAUAGCAGUACCCC	AGGGA UUAUUACAGAGUCUGUAUAGCUGUACCC	GGGGAGUAUUAAAGAGUCUGUAUAGCUTUACCCC	S1 B S2 L S2 S1	GGGAGGACGAUGCGGUUCA <u>GGAG</u> GUUAUUACAGAGUCUGUAUAG CUGUA <u>CUCC</u> C CAGACGACUCGCCCGA		GGAGG A UAUUA U AGAGUCUGUAUAGCU A UACCCC	UGAGGUUAUUACAGAGUCUGUAUAGCUGUACUCC	GGUGGUUAUUACACAGUAUGUAUAGGUGUACCCC	GGAGGUUAUUA U AGAGUCUGUAUAGCU A UACCC	GGUAGAUAUCACUGAGUCUGUAUAGCAGUGUCC	UAU GU UG AUA C
5' FIXED	HIGHEST AFFINITY LIGANDS:	GGGAGGACGAUGCGG	GGGAGGACGAUGCGG	GGGAGGACGAUGCGG	GGGAGGACGAUGCGG	putative structural elements:	GGGAGGACGAUGCGGUU	LOWEST AFFINITY LIGANDS:	GGGAGGACGAUGCGG	GGGAGGACGAUGCGG	GGGAGGACGAUGCGG	GGGAGGACGAUGCGG	GGGAGGACGAUGCGG	
NAME	HIGHEST	13:	14:	21:	35:	putative	21a-21:	LOWEST A	36:	30:	26:	. 9	20:	invariant:

^a Nucleotides that differ from the starting sequence are shown in bold-faced lettering. A=2'-OH A; C=2'-F C; G=2'-OH G; U=2'-F U Putative structural elements: S1, stem1; B, bulge; S2, stem2; L, loop.

 $^{^{}b}$ Binding is expressed as K_{d} (ligand)/ K_{d} (21a-21). The K_{d} of 21a-21 is 1 nM $\,$

[°] Number of changes from starting sequence.

TABLE 18. Substitution of 2'-OH purines with 2'-OCH3 purines in NX22284 ligand.

NAME	SEQUENCE ² SEQ II	SEQ ID NO. BINDING ^b	LENGTH	BIOACTIVITY
NX22284	GGAGGUUAUUACAGAGUCUGUAUAGCUGUACUCQ3'T]	115 1	34	1
NX22304	ggaggUUaUUaCagagUCUgUaUagCUgUaCUCC[3'T]	171 >100	34	>100
NX22355	GGAGGUUAUUaCagagUCUgUaUagCUgUaCUCC[3'T]	172 >100	34	>100
NX22356	gggGUUAUUACAGAGUCUGUAUAGCUGUACUCQ3T]	173 1	34	1
NX22357	GGAGgUUaUUaCAGAGUCUGUAUAGCUGUACUCQ3T]	174 2	8	10
NX22358	GGAGGUUAUUACaggUCUGUAUAGCUGUACUCQ3T]	175 1	¥	1
NX22359	GGAGGUUAUUACAGAGUCUgUaUaGCUGUACUCQ3T]	176 >100	¥	>30
NX22360	GGAGGUUAUUACAGAGUCUGUAUAgCUgUaCUCQ3T]	177 1	¥	1
% NX22374	GGAGGUUAUUACAGAGUCUgUAUAGCUGUACUCQ3T]	178 25	¥	>100
NX22375	GGAGGUUAUUACAGAGUCUGUaUAGCUGUACUCQ3T]	179 >100	¥	>300
NX22376	GGAGGUUAUUACAGAGUCUGUAUAGCUGUACUCQ3T]	180 50 34	>100	0
NX22377	ggaggUUaUUaCAGAGUCUGUAUAgCUgUaCUCC[3 ^T]	181 1	34	
NX22383	ggaggUUaUUaCagagUCUGUAUagCUgUaCUCC[3 ^T]	182 500	34	>100
NX22384	ggaggUUaUUaCagagUCUgUAUagCUgUaCUCC[3'T]	183 10000	34	>100
NX22417	$\tt ggaggUUaUUaCagagUCUGUAUAgCUgUaCUCC[3^{\circ}T]$	184 1	34	10
NX22420	ggaggUUAUUaCagagUCUGUAUAgCUgUaCUCC[3'T]	185 1	34	1
NX22421	ggagGUUAUUACagagUCUGUAUAgCUgUaCUCC[3'T]	186 2	34	1
NX22426	ggaga-UAUUaCagagUCUGUAUAgCUgUaCUCC[3'T]	187 1	33	25
NX22427	gg-ggUUAUUaCagagUCUGUAUAgCUgUaC-CC[3'T]	188 0.3	32	0.7

TABLE 18 CONT.

- ^a A, 2'-OH A; C, 2'-F C; G, 2'-OH G; U, 2'-F U; a, 2'-OCH₃ A; g, 2'-OCH₃ G. [3'T] signifies a 3', 3' dT cap.
- ^b Binding is expressed as the ratio of the K_d of ligand $/K_d$ of NX22284. The K_d of NX22284 is ~ 1 nM.
- ^c Length is given in bases.
- ^b Bioactivity is expressed as the ratio of the K_i of ligand $/K_i$ of NX22284. The K_i of NX22284 is $\sim 10 \text{ nM}$.

TABLE 19. Truncates and 2'-OCH₃ purine modifications of nucleic acid ligand #13 from a biased SELEX.

3b LENGTH ^c		34 4	34 >100	34 30	34 >100	34 >100	
SEQ ID NO. BINDING ^b		0.4	3000	3000			
BI		189 0	190 30	191 30	92 0	193 1.5	
ON C			19	19			
<u>SEQUENCE</u> ^a	$p\overline{\lambda L}$	UGUGAAUAUUAGAGAGUCUGUAUAGCUCUACCCQ3'T]	UgUgaAUaUUaGagagUCUGUAUagCUCUaCCCC[3'T]	UgUgaaUaUUagagagUCUgUAUagCUCUaCCCC[3'T]	UgUgAAUAUUaGagagUCUGUAUAgCUCUaCCCC[3 ^T] 192 0.6	UgUgaaUAUUagagagUCUGUAUAgCUCUaCCCC[3T]	
NAME	BIOACTIVITY d	NX22385	NX22386	NX22387	NX22424	NX22425	

^a A, 2'-OH A; C, 2'-F C; G, 2'-OH G; U, 2'-F U; a, 2'-OCH₃ A; g, 2'-OCH₃ G. [3'T] signifies a 3', 3' dT cap.

^b Binding is expressed as the ratio of the K_d of ligand/ K_d of NX22284. The K_d of NX22284 is 2 nM.

^c Length is given in bases.

^b Bioactivity is expressed as the ratio of the K_i of ligand/K_i of NX22284. The K_i of NX22284 is 10 nM.

TABLE 20. Pharmacokinetic properties of NX22323 in rats using a noncompartmental analysis.

Parameter	Units	Estimate
Cmax	(μg/mL)	27.1
AUClast	((µg*min)/mL)	3028.0
AUCINF	((µg*min)/mL)	3058.0
Beta t1/2	(min)	630.9
Cl	(mL/(min*kg))	0.33
MRTINF	(min)	350.4
Vss	(mL/kg)	115.0
Vz	(mL/kg)	298.0

TABLE 21. Pharmacokinetic properties of NX22323 in rats using a compartmental analysis.

Parameter	Units	Estimate	StdError	% Error
Cmax	(μg/mL)	16.3	3.3	20.2
AUCINF	((µg*min)/mL)	2486	274	11.0
Alpha-t1/2	(min)	63.5	19.1	30.2
Beta-t1/2	(min)	467.2	83.2	17.8
A	(µg/mL)	14.63	3.21	21.9
В	(μg/mL)	1.70	0.84	49.1
Cl	(mL/(min*kg)	0.402	0.044	11.0
MRTINF	(min)	360.3	35.6	9.9
Vss	(mL/kg)	144.9	23.1	15.9

TABLE 22. Binding and inhibitory activity of 2'-Omethyl- and Pegyl-modifications of lead TGFβ1 truncate ligand CD70

		SEC ID NO	Binding	1000 C
			Siirpiira	BIOGCCIVICY
ChD70	GGGUGCCUUUUGCCUAGGUUGUGAUUUGUAACCUUCUGCCCA	216	+ + + +	+ + +
ChD70-m1	gggUgCCUUUUGCCUAGGUUGUGAUUUGUAACCUUCUGCCCA	194	+	
ChD70-m2	GGGUGCCUJUUGCCUaggUUGUGAJUUGUAACCUUCUGCCCA	195	+	
ChD70-m3	GGGUGCCUUUUGCCUAGGUU gUga UUU g UAACCUUCUGCCCA	196	+ + +	
ChD70-m4	GGGUGCCUUUUGCCUAGGUUGUGAAUUUGUaaCCUUCUgCCCa	197	+	
ChD70-m5	gGGUGCCUUUUGCCUAGGUUgUgaUUugUAACCUUCUGCCCA	198	† † †	
ChD70-m6	GgGUGCCUUUUGCCUAGGUUGUGAUUUGUAACCUUCUGCCCA	199	† † †	
ChD70-m7	GGGUGCCUUUUGCCUAGGUUGUGAUUUGUAACCUUCUGCCCA	200	+ + +	
ChD70-m8	GGGUGCCUUUUGCCUAGGUUGUGAUUUGUAACCUUCUGCCCA	201	+	
ChD70-m9	GGGUGCCUUUUgCCUAGGUUGUGAUUUGUAACCUUCUGCCCA	202	+	
ChD70-m10	GGGUGCCUJUUGCCUaGGGUUGUGUAACCUUCUGCCCA	203	† † †	
ChD70-m11	GGGUGCCUUUUGCCUAgGUUgUgaUUAGUAACCUUCUGCCCA	204	+ + +	
ChD70-m12	GGGUGCCUUUUGCCUAGgUUgUgaUUAGUAACCUUCUGCCCA	205	+ + +	
ChD70-m13	GGGUGCCUUUUGCCUAGGUUGUGUUUGUAACCUUCUGCCCA	206	÷ ÷ ÷	
ChD70-m14	GGGUGCCUJUUGCCUAGGUUGUGAUUUGUAACCUUCUGCCCA	207	+ + +	
ChD70-m15	GGGUGCCUJUUGCCUAGGUUGUGAUJUGUAACCUUCUGCCCA	208	+ + +	
ChD70-m16	GGGUGCCUJUUGCCUAGGUU g U ga UJUU g UAACCUUCUGCCCa	209	+ + +	
ChD70-m17	gggUGCCUUUUGCCUaggUUgUgaUUUgUaaCCUUCUGCCCa3'-3'U	210	+ + +	+ + +
ChD70-m18	gggUGCCUUUUGCCUaggUUgUgaUUUgUaACCUUCUGCCCa3′-3′U	211	+ + +	
ChD70-m19	gggUGCCUUUUGCCUaggUUgUgaUUUgUaaCCUUCUGCCC3′-3′U	212	++	1

TABLE 22 CONT. Binding and inhibitory activity of 2'-Omethyl- and Pegyl-modifications of lead TGFβ1 truncate ligand CD70

ChD70-m20	ChD70-m20 gggUGCCUUUUGCCUaggUUgUgUaaCCUUCUGCCCa3'-3'U	213	7
ChD70-m21	ChD70-m21 gggUGCCUUUUGCCUaggUUgUaaCCUUCUGCCCa3'-3'U	214	Ŧ
ChD70-m22	ChD70-m22 gggUGCCUUUUGCCUaggUUaaCCUUCUGCCCa3'-3'U	215	Ŧ

Lower case-bold residues indicate 2'Omethyl substitutions. The gap shown was occupied by a PEG linker (spacer 18 Glen Research). Number of (+) indicate extent of binding or inhibition of TGFβ1 bioactivity.