Model

$$\frac{u}{m} = \frac{\delta}{\delta + \lambda_0}.$$

The measure of individuals earning a wage w equals g(w)(m - u)dw, and the measure of firms offering a wage w equals f(w)dw.

$$l(w; r, F) = \frac{g(w)dw}{f(w)dw}(m - u) = \frac{m\lambda_0 \delta(\delta + \lambda_1)}{(\delta + \lambda_0)(\delta + \lambda_1 \overline{F}(w))^2} \quad \text{on } [\underline{w}, \overline{w}].$$

Model (Production)

$$F(w) = \frac{\delta + \lambda_1}{\lambda_1} \cdot \left(1 - \sqrt{\frac{p - w}{p - \underline{w}}}\right) \quad \text{on} \quad [\underline{w}, \overline{w}]$$

$$f(w) = \frac{\delta + \lambda_1}{2\lambda_1\sqrt{p-\underline{w}}} \cdot \frac{1}{\sqrt{p-w}}$$
 on $[\underline{w}, \overline{w}]$.

$$r = \frac{(\delta + \lambda_1)^2 \cdot b + (\lambda_0 - \lambda_1) \lambda_1 \cdot p + \delta_0 (\lambda_0 - \lambda_1) \cdot \underline{w}_L}{(\delta + \lambda_0)(\delta + \lambda_1)} \quad \text{if} \quad r < \underline{w}_L,$$

$$r = \frac{(\delta + \lambda_1)^2 \cdot b + (\lambda_0 - \lambda_1) \lambda_1 \cdot p}{(\delta + \lambda_1)^2 + (\lambda_0 - \lambda_1) \lambda_1} \quad \text{if} \quad r \ge \underline{w}_L,$$

$$\overline{w} = \left(\frac{\delta}{\delta + \lambda_1}\right)^2 \cdot \underline{w} + \left(1 - \left(\frac{\delta}{\delta + \lambda_1}\right)^2\right) \cdot p.$$

Model (Productivity)

$$g(w) = \frac{\delta\sqrt{p-\underline{w}}}{2\lambda_1} \cdot \frac{1}{(p-w)^{3/2}}$$
 on $[\underline{w}, \overline{w}]$.

Given an arbitrary transformation of w, $y=\frac{p-w}{p-\underline{w}}$, the excess wage equation is $w-\underline{w}=(1-y)(p-\underline{w})$. $(\eta=\frac{\delta}{\delta+\lambda_1})$ $\frac{\lambda_1}{\delta}$: expected number of wage offers during a spell of employment

$$f_{y}(y) = \frac{1}{2(1-\eta)}y^{-1/2}, \qquad \eta^{2} \le y \le 1,$$

$$g_y(y) = \frac{\eta}{2(1-\eta)} y^{-3/2}, \qquad \eta^2 \le y \le 1,$$

- The probability of being unemployed at a randomly chosen date : $\frac{\delta}{\delta + \lambda_0}$
- The elapsed unemployment duration t_{0b} and the residual unemployment duration t_{0f} are i.i.d. and have an exponential distribution with parameter λ_0
- d_{0b} denote a dummy that is one if it is only known that the elapsed duration exceeds a certain value, i.e. is right-censored, and zero otherwise
- d_{0f} is for residual duration

$$\mathcal{L}_{0} = \frac{\delta}{\delta + \lambda_{0}} \cdot \lambda_{0}^{1 - d_{0b} + 1 - d_{0f}} \cdot \exp(-\lambda_{0}(t_{0b} + t_{0f})).$$

- The job duration t_1 has an exponential distribution with parameter $\delta + \lambda_1 \bar{F}(w)$
- Exit into unemployment occurs with probability $\frac{\delta}{\delta + \lambda_1 \bar{F}(w)}$ and exit into another job with probability $\frac{\lambda_1 \bar{F}(w)}{\delta + \lambda_1 \bar{F}(w)}$
- Measurement errors in the wage data is represented by ϵ . The observed wage \tilde{w} equals the true wage w times an error term ϵ
- ullet $d_1 = 1$ if $ilde{w}$ is missing and zero otherwise
- If $d_{0f}=1$ or $d_1=1$, then we do not follow the individual any further
- $d_2 = 1$ if t_1 is right-censored and zero otherwise
- $d_3 = 1$ if the destination following exit out of the job is unknown and zero otherwise
- $d_4 = 1$ if the destination is another job and zero if the destination is unemployment

$$\mathcal{L}_{1} = f(w) \cdot \exp(-(\delta + \lambda_{1} \overline{F}(w)) \cdot t_{1}) \cdot (\delta + \lambda_{1} \overline{F}(w))^{d_{3}(1 - d_{2})} \cdot (\lambda_{1} \overline{F}(w))^{d_{4}(1 - d_{2})(1 - d_{3})} \cdot \delta^{(1 - d_{4})(1 - d_{3})(1 - d_{2})}$$

The total individual likelihood contribution for a respondent who is unemployed at the date of the first interview equals

$$\mathcal{L}_0 \cdot \mathcal{L}_1^{(1-d_{0f})(1-d_1)}.$$

- The probability of being employed at a randomly chosen date equals $\frac{\lambda_0}{\delta + \lambda_0}$
- $d_5 = 1$ if \tilde{w} is unobserved, and zero otherwise
- The elapsed job duration t_{1b} and the residual job duration t_{1f} are i.i.d. and have an exponential distribution with parameter $\delta + \lambda_1 \bar{F}(w1)$
- d_{6b} denote a dummy that is one if it is only known that the elapsed duration exceeds a certain value, i.e. is right-censored, and zero otherwise. d_{6f} is for residual duration
- ullet $d_7=1$ if the destination following exit out of the job is unknown and zero otherwise
- $d_8 = 1$ if the destination is another job and zero if it is unemployment
- $d_0=1$ if t_0 , unemployment duration, is right-censored, and zero otherwise
- Dummy variables d_{10} , d_{11} , d_{12} , and d_{13} indicate whether w_2 is unobserved, whether t_2 is right-censored, whether the destination state is unobserved, and whether the destination state is another job, respectively.

$$\mathcal{L} = \frac{\lambda_{0}}{\delta + \lambda_{0}} \cdot g(w_{1}) \cdot (\delta + \lambda_{1} \overline{F}(w_{1}))^{1 - d_{6b}} \cdot \exp(-(\delta + \lambda_{1} \overline{F}(w_{1})) \cdot (t_{1b} + t_{1f}))$$

$$\cdot (\delta + \lambda_{1} \overline{F}(w_{1}))^{d_{7}(1 - d_{6f})} \cdot [\delta \cdot \lambda_{0}^{(1 - d_{9})} \cdot \exp(-\lambda_{0} t_{0})]^{(1 - d_{8})(1 - d_{7})(1 - d_{6f})}$$

$$\cdot \left[\lambda_{1} \overline{F}(w_{1}) \cdot \left[\frac{f(w_{2})}{\overline{F}(w_{1})} \cdot (\delta + \lambda_{1} \overline{F}(w_{2}))^{d_{12}(1 - d_{11})}\right]^{(1 - d_{13})(1 - d_{12})(1 - d_{11})}$$

$$\cdot \exp(-(\delta + \lambda_{1} \overline{F}(w_{2})) \cdot t_{2}) \cdot \delta^{(1 - d_{13})(1 - d_{12})(1 - d_{11})}$$

$$\cdot (\lambda_{1} \overline{F}(w_{2}))^{d_{13}(1 - d_{12})(1 - d_{11})}\right]^{(1 - d_{10})} d_{8}^{(1 - d_{7})(1 - d_{6f})}$$

Heterogeneity

- Separate labor markets as different segments of the labor market, for different types of individuals and firms
- The deep structural parameters in the model (p, λ_0 , λ_1 , and δ) do not vary over the different labor markets significantly
- x is the vector of age, education, and occupation dummies (and a constant). We assume that p, λ_0 , λ_1 , and δ are log-linear functions of x

$$p = \exp(\beta_1' x),$$
 $\lambda_0 = \exp(\beta_2' x),$ $\lambda_1 = \exp(\beta_3' x),$ $\delta = \exp(\beta_4' x).$

In order to capture unobserved heterogeneity, p is represented by $p = v \cdot exp(\beta_1'x)$ that v has a discrete distribution with a finite number of unknown points of support.

Data

- Labor Force Survey(LFS) data of Iran's labor market
- Household Budget Survey(HBS) data of Iran's population

Data

Data

Unemployed	Peri		
_t1	1	2	Total
0 1	59,675 10,780	27,845 2,140	87 , 520 12 , 920
Total	70 , 455	29,985	100,440

Unemployed _t1	Unemploy 0	Unemployed_t2 0 1 To		
0 1	25,587 2,140	2 , 258 0	27,845 2,140	
Total	27 , 727	2 , 258	29 , 985	

Thank you for your attention. Any questions?