Optimal spectral transportation with application to music transcription

Ghassan Najjar, Ruben Illouz

Feburary 8, 2022

Overview

1. Problem presentation

2. Solution

3. Results

The unmixing problem

- Input: vector v that represents the frequency spectrum of a signal s ($v_i = FT(s)(f_i)$) $v \in \mathbb{R}^M$ normalized to 1.
- Dictionary : matrix W where each column is a template spectrum, $W \in \mathbb{R}^{M \times K}$ (dictionary of K templates normalized to 1)
- Goal : find a vector $h \in \mathbb{R}^K$ where $Wh \approx v$
- But which meaning to give to " \approx "?

Figure: Spectrum

Figure: Played notes

First meaning : approximation with the meaning of KL

Approximation with the meaning of Kullback-Leibler

$$\min_{\textbf{H} \geq 0} D_{\mathrm{KL}}(\textbf{v} \mid \textbf{Wh}) \quad \text{ s.t } \quad \left\lVert \textbf{h} \right\rVert_1 = 1,$$

avec
$$D_{\mathrm{KL}}(\mathbf{v} \mid \hat{\mathbf{v}}) = \sum_{i} v_{i} \log (v_{i}/\hat{v}_{i})$$

• Disproportionate recognition of small errors

Second Meaning: approximation with the meaning of the OT

Wasserstein distance

Let C a cost matrix.

$$J(\mathbf{T} \mid \mathbf{v}, \hat{\mathbf{v}}, \mathbf{C}) \stackrel{\text{def}}{=} \sum_{ij} c_{ij} t_{ij}$$

$$D_{\mathbf{C}}(\mathbf{V} \mid \mathbf{Wh}) \stackrel{\text{def}}{=} \min_{\mathbf{T}} J(\mathbf{T} \mid \mathbf{v}, \hat{\mathbf{v}}, \mathbf{C})$$

sous contrainte $\forall i, j = 1, \dots, N, \sum_{j=1}^{M} t_{ij} = v_i, \sum_{j=1}^{M} t_{ij} = \hat{v}_j$

Approximation with the meaning of Wasserstein

$$\min_{\mathbf{h} > 0} D_{\mathbf{C}}(\mathbf{V} \mid \mathbf{W}\mathbf{h}) \quad \text{ s.t } \quad \left\| \mathbf{h} \right\|_1 = 1,$$

Second Meaning : Approximation with the meaning of I'OT

Approximation au sens de Wasserstein

$$\min_{\mathbf{h} \geq 0} D_{\mathbf{C}}(\mathbf{V} \mid \mathbf{W}\mathbf{h}) \quad \text{ s.t } \quad \|\mathbf{h}\|_1 = 1,$$

Par exemple avec $C_{i,j} = (f_i - f_j)^2$

No penalty for small mistakes

• Disadvantage: requires to have in W all fundamental+harmonic configurations

Construction of C

Approximation au sens de Wasserstein

$$C_{ij} = \min_{q=1,...,q_{\mathsf{max}}} (f_i - qf_j)^2 + \epsilon \delta_{q
eq 1}$$

- Harmonic-invariant cost.
- We can take diracs for the columns of W

Solution 1

Optimal transport problem

$$\min_{\mathbf{h}\geq 0, \mathbf{T}\geq 0} \langle \mathbf{T}, \mathbf{C}
angle = \sum_{ij} t_{ij} c_{ij} \quad \text{ s.t. } \quad \mathbf{T} \mathbf{1}_M = \mathbf{v}, \quad \mathbf{T}^{\top} \mathbf{1}_M = \mathbf{W} \mathbf{h},$$

Optimisation of the problelm

$$W \in \mathbb{R}^{M \times K}$$
 et $K << M$

W is composed of K diracs of frequencies $(f_i)_{i \in S}$

$$\min_{\mathbf{h} \geq 0, \widetilde{\mathbf{T}} \geq 0} \langle \widetilde{\mathbf{T}}, \widetilde{\mathbf{C}} \rangle \quad \text{ s.t. } \quad \widetilde{\mathbf{T}} \mathbf{1}_K = \mathbf{v}, \quad \widetilde{\mathbf{T}}^\top \mathbf{1}_M = \mathbf{h}.$$

Solution 1

Reformulation of the problem

$$\min_{\tilde{t}_i \geq 0} \sum_k \tilde{t}_{ik} \tilde{c}_{ik} \quad \text{s.t. } \sum_k \tilde{t}_{ik} = v_i.$$

Solution 1

Let's define $k_i^* = \arg\min_k \{\tilde{c}_{ik}\}$ by defining $\mathbf{L} = (\delta_{(i,k_i^*)}(i,j))_{(i,j)}$, we get the solution h given by:

$$\hat{\mathbf{h}} = \mathbf{L}^{\top} \mathbf{v}$$

Implementation of solution 1: case of pure sound

Implementation of solution 1: presence of harmonics

Solution 2: Entropic regularisation

Optimal transport problem with entropy regularisation

$$\min_{\boldsymbol{h} \geq 0, \widetilde{\boldsymbol{T}} \geq 0} \langle \widetilde{\boldsymbol{T}}, \widetilde{\boldsymbol{C}} \rangle + \lambda_e \Omega_e (\widetilde{\boldsymbol{T}}) \quad \text{ s.t. } \quad \widetilde{\boldsymbol{T}} \boldsymbol{1}_{\mathcal{K}} = \boldsymbol{v}, \quad \widetilde{\boldsymbol{T}}^\top \boldsymbol{1}_{\mathcal{M}} = \boldsymbol{h}$$

avec
$$\Omega_e(\widetilde{\mathbf{T}}) = \sum_{ik} \widetilde{t}_{ik} \log{(\widetilde{t}_{ik})}$$

• This regulation promotes the transport of v_i to several destinations

Expression of the solution

$$\hat{\mathbf{h}} = \mathbf{L}_e^{ op} \mathbf{v}$$

avec
$$\mathbf{L_e} = (\exp(-\tilde{c}_{ik}/\lambda_e)/\sum_{p} \exp(-\tilde{c}_{ip}/\lambda_e))_{i,k}$$

Solution 3: group regularisation

Optimal transport problem with group regularisation

$$\min_{\mathbf{h} \geq 0, \widetilde{\mathbf{T}} \geq 0} \langle \widetilde{\mathbf{T}}, \widetilde{\mathbf{C}} \rangle + \lambda_g \Omega_g(\widetilde{\mathbf{T}}) \quad ext{ s.t. } \quad \widetilde{\mathbf{T}} \mathbf{1}_{\mathcal{K}} = \mathbf{v}, \quad \widetilde{\mathbf{T}}^{ op} \mathbf{1}_M = \mathbf{h}$$

avec
$$\Omega_g(\widetilde{\mathbf{T}}) = \sum_k \sqrt{\left\|\widetilde{\mathbf{t}}_k \right\|_1}$$

• Cette régularisation favorise la régularisation group-sparse (force certaines colonnes de $\widetilde{\mathbf{T}}$ à être nulles).

Solution 3: group regularisation

Expression of the solution

There is no explicit solution for this problem, but one can reason iteratively until convergence occurs, following the following algorithm:

Require: Sample v, transportation cost matrix $\widetilde{\mathbf{C}}$, hyper-parameter λ_a .

- 1: Initialise $\widetilde{\mathbf{R}}^{(0)}$ with zeros, set iter = 0
- 2: repeat
- 3: iter = iter + 14: Compute $\widetilde{\mathbf{C}}^{(iter)} = \widetilde{\mathbf{C}} + \widetilde{\mathbf{R}}^{(iter)}$ with $\widetilde{\mathbf{R}}^{(iter)}$ computed with Eq. (8)
- 5: Compute $\mathbf{L}_{g}^{(iter)}$ with Algorithm 1 applied to $\widetilde{\mathbf{C}}^{(iter)}$ 6: Compute $\widetilde{\mathbf{T}}^{(iter)} = \operatorname{diag}(\mathbf{v})\mathbf{L}_{g}^{(iter)}$ and $\mathbf{h}^{(iter)} = \mathbf{L}_{g}^{(iter)\top}\mathbf{v}$
- 7: **until** convergence
- The equation (8) is $\widetilde{r}_{ik}^{(i \text{ ter })} = \frac{1}{2} \left\| \widetilde{\mathbf{t}}_{k}^{(\text{iter })} \right\|_{-\frac{1}{2}}^{-\frac{1}{2}}$.

Comparison of the methods

• Choosing a chord on the piano: C5/E5/G5

Figure: Spectrum of the chord

Figure: Midis of the chord

Comparison of the methods

Figure: Méthode OST

*l*₁ error: **1.42** Time (ms): 1.25

Figure: Méthode OST_e

 l_1 error: 1.67 Time (ms): **0.67**

Figure: Méthode OST_g

*l*₁ error: **1.42** Time (ms): 2 070

Conclusion

- The OST method is more efficient and faster than KL: the use of optimal transport is justified
- OSTE and OSTG are not efficient on this simple example of a chord
- In reality Deep Learning is more efficient than any OST method or KL one: but training data is needed