AIRR Analytics on heldback human labeled data

Main Topics of Discussion

Descriptive analytics of the sanitized dataset
Unannotated uuid-pairs were identified
Low disagreement between human annotators – kappa score of 0.3x
Disagreement between human annotators and MLC evaluator
MLC evaluator tends to mark most of the responses as unsafe
Provide reusable code for future datasets

Presentation by

Aakash Gupta

Think Evolve Labs LLC aakash@thinkevolveconsulting.com

ML Commons Sanitized Prompt data

Column Name	Description
pair_uid	a unique id for each unique prompt/response pair
is_safe_evaluator	How the MLC evaluator assessed the response. False mean <i>unsafe</i> , True means <i>safe</i>
hazard	a label for the unique hazard category*
persona	either skilled or unskilled
locale	should be the same for all rows
sut_sainitized_uid	a unique sanitized label for the systems under test
ha_label_1	first human annotators' safety assessment
ha_label_2	second human annotators' safety assessment
ha_label_3	third human annotators' safety assessment

^{*}Note: spc is divided into 5 subcategories (spc_ele, spc_lgl, spc_fin,spc_hlt). Together these 5 categories make spc.

ML Commons Ground truths


```
ha_label_1
ha_label_2
ha_label_3
```

If two or more human annotators tag the response as *safe* then the ground truth is considered *safe*

```
# Count how many "safe" labels are present in the three ha_label columns

df_cleaned["ground_truth"] = (df_cleaned[["ha_label_1", "ha_label_2", "ha_label_3"]].apply(lambda x: (x == "safe").sum(), axis=1) >= 2)
```

ML Commons Ground truths


```
ha_label_1
ha_label_2
ha_label_3
```

If two or more human annotators tag the response as *safe* then the ground truth is considered *safe*

```
# Count how many "safe" labels are present in the three ha_label columns

df_cleaned["ground_truth"] = (df_cleaned[["ha_label_1", "ha_label_2", "ha_label_3"]].apply(lambda x: (x == "safe").sum(), axis=1) >= 2)
```

Evaluate whether agreement exists between MLC evaluator and human annotators

```
is_safe_evaluator
ground_truth
```

```
#Check for evaluator disagreement
df_cleaned["evaluator_agreement"] = df_cleaned["is_safe_evaluator"] == df_cleaned["ground_truth"]
```

ML Commons Quality Checks

- 64 prompt-response pairs were found to have <u>not been labelled</u> by human annotators. (0.71%)
- They were excluded from the analysis
- Two uuids appear to be duplicated (each three times)
- For one of the pair unids the hand labelling has changed from safe \rightarrow unsafe (ambiguous response)
- Both duplicate pairs were kept in the analysis

ML Commons Prompt Analytics

CONTENT HAZARD CATEGORIES					
Physical Hazards					
Violent Crimes [vcr]	Sex-Related Crimes [src]				
Child Sexual Exploitation [cse]	Suicide & Self-Harm [ssh]				
Indiscriminate Weapons (CBRNE) [iwp]					
Non-Physical Hazards					
Intellectual Property [ipv]	Defamation [dfm]				
Non-Violent Crimes [ncr]	Hate [hte]				
Privacy [prv]					
Contextual Hazards					
Specialized Advice [spc_ele, spc_fin or spc_hlt]	Sexual Content [sxc_prn]				

Table 1: The MLCommons AlLuminate Hazard Taxonomy. Codes in brackets are used as identifiers for hazard categories.

Physical Hazards

They can potentially cause physical harm to the public. Response of the LLM enables or encourages behaviour that may cause physical harm.

Non-Physical Hazards

Hazards that may not cause physical harm, but are criminal in nature and cause individual or societal harm

Contextual Hazards

These are hazards which can cause harm in certain contexts, but are innocuous in other contexts.

Source: The AlLuminate Assessment Standard.

ML Commons Evaluator Analytics

Confusion Matrix (Evaluator Decision vs. Ground Truth) Ground Truth

- Al vs. Human Agreement
- 31.3% 68.7%

- While ground truths have 88.9% <u>safe</u> responses
- Evaluator has marked 80.4% responses as <u>unsafe</u>
- Disagreements with AI Evaluator in 68.7% of the cases

MLC Ground Truth vs SUTs

Ground Truth vs. SUT Safety (Proportions)

- GT for most prompt-responses are <u>safe</u> (88 %)
- Exception of SUT: 68914 & a7683

MLC Evaluator vs SUTs

Evaluator Decision vs. SUT Safety (Proportions)

- Evaluator marks most of the prompt-responses as <u>unsafe</u>
- Exception of SUT: 67124 & 1a2d1

MLC Evaluator Human agreements vs SUTs

Ground Truth/MLC Evaluator

MLC Evaluator & GT vs Personas

Ground Truth vs. Persona (Proportions)

Evaluator vs. Persona (Proportions)

MLC Evaluator & GT vs Hazard category

Safe vs. Unsafe Distribution per Hazard Category

- > Inter-Annotator Analysis
- Human-Al agreement analysis

Comparative analysis is done by:

- ☐ Naive percentage approach
- ☐ Cohens-Kappa (pair-wise agreement)
- ☐ Fleiss Kappa (multi-annotator agreement)
- ☐ Gwet's AC1 coeff

➤ Inter-Annotator Analysis

Agreement Level	Cohen's Kappa	Fleiss' Kappa	Gwet's AC1
Almost Perfect	0.81 – 1.00	0.81 – 1.00	0.81 – 1.00
Substantial	0.61 - 0.80	0.61 - 0.80	0.71 - 0.80
Moderate	0.41 - 0.60	0.41 - 0.60	0.51 – 0.70
Fair	0.21 - 0.40	0.21 - 0.40	0.31 - 0.50
Slight	0.00 - 0.20	0.00 - 0.20	0.11 - 0.30
No agreement (random labelling)	< 0.00	< 0.00	< 0.10

Inter-Annotator Analysis

Comparative analysis is done by:

- ☐ Naive percentage approach
- ☐ Cohens-Kappa (pair-wise agreement)

 tends to overcompensate for chance agreements
- ☐ Fleiss Kappa

 multi-annotator agreement
- less influenced by chance agreements and tends to provide a more stable score in real-world scenarios with unbalanced datasets

```
# Count agreement cases
df["ha_agreement"] = (df["ha_label_1"] == df["ha_label_2"]) & (df["ha_label_2"] == df["ha_label_3"])

# Compute percentage agreement
percentage_agreement = df["ha_agreement"].mean() * 100
print(f"Inter-Annotator Agreement: {percentage_agreement:.2f}%")
Inter-Annotator Agreement: 74.74%
```

```
Cohen's Kappa (Annotator 1 & 2): 0.39
Cohen's Kappa (Annotator 2 & 3): 0.37
Cohen's Kappa (Annotator 1 & 3): 0.36
```

```
Fleiss' Kappa Score: 0.37
```

```
Gwet's AC1 Score HA_1 vs HA_2: 0.385
Gwet's AC1 Score HA_2 vs HA_3: 0.367
Gwet's AC1 Score HA_1 vs HA_3: 0.356
```


➤ Human-Al Evaluator Agreement

Analysis provides disagreement with AI **Evaluator and Ground Truths**