MM102 Applications of Calculus Answers to the exam in May 2018

1. (a) (i)
$$-\frac{3}{2} - \ln 2$$

(ii)
$$-\frac{5\sqrt{3}}{2} + \frac{\pi}{2} + 4$$

2. (a)
$$\frac{dy}{dx} = \frac{(1+t)e^t}{2t+1}$$
, $\frac{d^2y}{dx^2} = \frac{(2t^2+3t)e^t}{(2t+1)^3}$

- (b) The y-coordinate is decreasing at a rate of $12 \,\mathrm{cm/s}$.
- (c) (i) $dom(f) = \{x \in \mathbb{R} : x \neq 1 \text{ and } x \neq -1\}$
 - (ii) Vertical asymptotes: x = 1, x = -1Horizontal asymptote: y = 0
 - (iii) Local maximum at $x = \frac{1}{2}$ with $f\left(\frac{1}{2}\right) = -8$; local minimum at x = 2 with f(2) = -2. The function is increasing on the intervals $(-\infty, -1)$, $\left(-1, \frac{1}{2}\right)$, and $(2, \infty)$. The function is decreasing on the intervals $\left(\frac{1}{2}, 1\right)$ and (1, 2).
 - (iv) Point of intersection with the y-axis: (0, -10)Point of intersection with the x-axis: $(\frac{5}{4}, 0)$

(v)

3. (a)
$$\frac{1}{\sqrt{2}}(-\sqrt{3}+i)$$

(b)
$$a = -\frac{1}{16}$$
, $b = -\frac{1}{16}$, $c = \frac{1}{8}$

(c)
$$P(z) = (z+2)(z-4-i)(z-4+i)$$

(d)
$$\frac{1}{2}\ln 2 + i\left(-\frac{\pi}{3} + k\pi\right)$$
, $k \in \mathbb{Z}$

4. (a) (i) Integrating factor: $I(x) = x^4$

(ii)
$$y = x^{-4} \left(\frac{2}{3} (x+1)^{3/2} + C \right)$$

(b)
$$y = \sqrt{2} x (\ln x + 4)^{1/4}$$

(c)
$$y = Ae^{3x} + Be^{-x} + 2xe^{-2x} - 2x + \frac{4}{3}$$