UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PROGRAMA DE PÓS-GRADUAÇÃO em ECONOMIA Microeconometria – 2015/3

LISTA DE EXERCÍCIOS

Autor: Paulo Ferreira Naibert Professor: Hudson Torrent

 ${\bf Porto~Alegre} \\ {\bf 25/06/2020} \\ {\bf Revisão:~27~de~junho~de~2020}$

1 Panel Data and FGLS

Questão 1: Estabeleça o modelo de equações lineares, definindo a notação matricial para dados em painel. Explique quais as hipóteses adequadas para a implementação do estimador GLS em um sistema de dados de painel. Explique como implementear esse estimador na prática (FGLS). Explique também como calular a matriz de covariância de $\hat{\beta}_{FGLS}$.

Modelo de equações lineares

$$\mathbf{y}_i = X_i \boldsymbol{\beta} + \mathbf{u}_i,$$

com $i=1,\ldots,N$. Cada i tem G=T equações temporais. G=T para dados em painel, onde T é o número de equações temporais.

$$y_{it} = \mathbf{x}'_{it}\boldsymbol{\beta} + u_{it}$$

= $x_{i1}\beta_1 + \dots + x_{iK}\beta_K + u_{it}$

com
$$i = 1, ..., N$$
 e $t = 1, ..., T$.

Em notação matricial para um painel:

$$X_i = (x_{i1}, x_{i2}, \dots, x_{it})$$

Um exemplo de equação com intercepto mais 3 variáveis num intervalo de tempo com T=5:

$$\begin{bmatrix} y_{i1} \\ y_{i2} \\ y_{i3} \\ y_{i4} \\ y_{i5} \end{bmatrix} = \begin{bmatrix} 1 & x_{1i1} & x_{2i1} & x_{3i1} \\ 1 & x_{1i2} & x_{2i2} & x_{3i2} \\ 1 & x_{1i3} & x_{2i3} & x_{3i3} \\ 1 & x_{1i4} & x_{2i4} & x_{3i4} \\ 1 & x_{1i5} & x_{2i5} & x_{3i5} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{bmatrix}$$

para i = 1, ..., N. Podemos generalizar o modelo acima para K variáveis e T períodos de tempo.

Hipóteses

Para implementarmos o estimador de GLS precisamos das seguintes hipótese:

1. $E(X_i \otimes \boldsymbol{u}_i) = 0$.

Para SGLS ser consistente, precisamos que u_i não seja correlacionada com nenhum elemento de X_i .

2. Ω é positiva definida (para ter inversa). $E(X_i'\Omega^{-1}X_i)$ é **não** singular (para ter invesa). Onde, Ω é a seguinte matriz **simétrica**, positiva-definida:

$$\Omega = E(\boldsymbol{u}_i \boldsymbol{u}_i').$$

Estimação

Agora, transformamos o sistema de equações ao realizarmos a pré-multiplicação do sistema por $\Omega^{-1/2}$:

$$\Omega^{-1/2} \boldsymbol{y}_i = \Omega^{-1/2} X_i \boldsymbol{\beta} + \Omega^{-1/2} \boldsymbol{u}_i$$

 $\boldsymbol{y}_i^* = X_i^* \boldsymbol{\beta} + \boldsymbol{u}_i^*$

Estimando a equação acima por SOLS:

$$\begin{split} \beta^{SOLS} &= \left(\sum_{i=1} X_i^{*'} X_i^*\right)^{-1} \left(\sum_{i=1} X_i^{*'} \boldsymbol{y}_i^*\right) \\ &= \left(\sum_{i=1} X_i' \Omega^{-1/2} \Omega^{-1/2} X_i\right)^{-1} \left(\sum_{i=1} X_i' \Omega^{-1/2} \Omega^{-1/2} \boldsymbol{y}_i\right) \\ &= \left(\sum_{i=1} X_i' \Omega^{-1} X_i\right)^{-1} \left(\sum_{i=1} X_i' \Omega^{-1} \boldsymbol{y}_i\right) \end{split}$$

FSGLS: SGLS Factivel

Para obtermos β^{SGLS} precisamos conhecer Ω , o que não ocorre na prática. Então, precisamos estimar Ω com um estimador consistente. Para tanto usamos um procedimento de dois passos:

- 1. Estimar $y_i = X_i \beta + u_i$ via **SOLS** e guardar o resíduo estimado \hat{u}_i .
- 2. Estimar Ω com o seguinte estimador $\widehat{\Omega}$:

$$\widehat{\Omega} = N^{-1} \sum_{i=1}^{N} \boldsymbol{u}_i \boldsymbol{u}_i'$$

Com a estimativa $\widehat{\Omega}$ feita, podemos obter β^{FSGLS} pela fórmula do β^{SGLS} :

$$\beta^{FGLS} = \left[\sum_{i} X_{i}' \widehat{\Omega}^{-1} X_{i}\right]^{-1} \left[\sum_{i} X_{i}' \widehat{\Omega}^{-1} \boldsymbol{y}_{i}\right]$$

Empilhando as N observações:

$$\beta^{FGLS} = \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) \boldsymbol{y} \right]$$

Reescrevendo a equação acima:

$$\beta^{FGLS} = \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) (X\beta + u) \right]$$

$$= \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left\{ \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) X\beta \right] + \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) u \right] \right\}$$

$$= \beta + \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) u \right]$$

Valor Esperado

$$E(\beta^{FGLS}) = \beta + \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) u \right]$$

Concluímos que, se $\widehat{\Omega} \xrightarrow{p} \Omega$, então, $\beta^{FSGLS} \xrightarrow{p} \beta$,

Variância

$$Var(\beta^{FGLS}) = \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) u \right] \left\{ \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) u \right] \right\}'$$

$$= \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) u u' \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right] \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1}$$

Tirando o valor Esperado e supondo que:

$$E(X_i\Omega^{-1}u_iu_i'X_i) = E(X_i\Omega^{-1})$$

temos:

$$E\left[X'\left(I_N\otimes\widehat{\Omega}^{-1}\right)uu'\left(I_N\otimes\widehat{\Omega}^{-1}\right)'X\right] = E(X'\Omega^{-1}X)$$

e temos:

$$Var(\beta^{FSGLS}) = \left[E(X'\Omega^{-1}X\right]^{-1}.$$

2 Endogeneity and GMM

Questão 2: Explique o problema de endogeneidade. Ressalte quais características um bom instrumento deve possuir. A partir da explicação, motive e estabeleça o estimador \mathbf{GMM} para dados em painel. Qual a variância assintótica desse estimador? Qual a escolha ótima de W? Indique quem é W a fim de que o estimador de \mathbf{GMM} coincida com o estimador de $\mathbf{Variáveis}$ Instrumentais.

Modelo

No seguinte modelo cross-section:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \varepsilon_i \; ; \quad i = 1, \dots, N.$$
 (1)

A variável explicativa x_k é dita **endógena** se ela for correlacionada com erro. Se x_k for não correlacionada com o erro, então x_k é dita **exógena**.

Endogeneidade surge, normalmente, de três maneiras diferentes:

- 1. Variável Omitida;
- 2. Simultaneidade;
- 3. Erro de Medida.

No modelo (1) vamos supor:

- x_1 é exógena.
- x_2 é endógena.

Hipóteses

Assim, precisamos encontrar um instrumento z_i para x_2 , uma vez que queremos estimar β_0 , β_1 e β_2 de maneira consistente. Para z_i ser um bom instrumento precisamos que z tenha:

- 1. $Cov(z, \varepsilon) = 0 \implies z$ é exógena em (1).
- 2. $Cov(z, x_2) \neq 0 \implies$ correlação com x_2 após controlar para outras vaariáveis.

Estimação

Indo para o problema de dados de painel, temos:

$$\mathbf{y}_i = X_i \mathbf{\beta} + \mathbf{u}_i \; ; \quad i = 1, \dots, N. \tag{2}$$

onde y_i é um vetor $T \times 1$, X_i é uma matriz $T \times K$, β é o vetor de coeficientes $K \times 1$, u_i é o vetor de erros $T \times 1$.

Se é verdade que há endogeneidade em (2), então:

$$E(X_i'\boldsymbol{u}_i) \neq 0$$

Definimos Z_i como uma matriz $T \times L$ com $L \geq K$ de variáveis exógenas (incluindo o instrumento). Queremos acabar com a endogeneidade, ou seja:

$$E(Z_i' u_i) = 0$$

Supondo L = K (apenas substituímos a variável endógena por um instrumento).

$$E[Z'_{i}(\mathbf{y}_{i} - X_{i}\boldsymbol{\beta})] = 0$$

$$E(Z'_{i}\mathbf{y}_{i}) - E(Z'_{i}X_{i})\boldsymbol{\beta} = 0$$

$$E(Z'_{i}\mathbf{y}_{i}) = E(Z'_{i}X_{i})\boldsymbol{\beta}$$

$$\boldsymbol{\beta} = \left[E(Z'_{i}X_{i})\right]^{-1} \left[E(Z'_{i}\mathbf{y}_{i})\right]$$

Se Usarmos estimadores amostrais:

$$\hat{\boldsymbol{\beta}} = \left[N^{-1} \sum_{i=1}^{N} Z_i' X_i \right]^{-1} \left[N^{-1} \sum_{i=1}^{N} Z_i' \boldsymbol{y}_i \right]$$
$$\hat{\boldsymbol{\beta}} = (Z'X)^{-1} (Z'\boldsymbol{y})$$

Se L > K, vamos considerar:

$$\min_{\boldsymbol{\beta}} E(Z_i \boldsymbol{u}_i)^2$$

onde:

$$E(Z_i u_i)^2 = E[(Z_i u_i)'(Z_i u_i)] = (Z' y - Z' X \beta)'(Z' y - Z' X \beta)$$

= $y' Z Z' y - y' Z Z' X \beta - \beta' X' Z Z' y + \beta' X' Z Z' X \beta$

Derivando em relação em $\boldsymbol{\beta}$ e igualando a zero:

$$-2\mathbf{y}'ZZ'X + 2\boldsymbol{\beta}'X'ZZ'X = 0$$
$$\boldsymbol{\beta}'X'ZZ'X = \mathbf{y}'ZZ'X$$
$$\boldsymbol{\beta}' = (\mathbf{y}'ZZ'X)(X'ZZ'X)^{-1}$$
$$\boldsymbol{\beta} = (X'ZZ'X)^{-1}(X'ZZ'\mathbf{y})$$

Um estimador mais eficiente pode ser encontrado fazendo:

$$\operatorname{Min}_{\boldsymbol{\beta}} E[(Z_i'\boldsymbol{y} - Z'X\boldsymbol{\beta})'W(Z_i'\boldsymbol{y} - Z'X\boldsymbol{\beta})].$$

Escolhendo \widehat{W} , a priori, temos:

$$\underset{\boldsymbol{\beta}}{\operatorname{Min}} \left\{ \boldsymbol{y}' Z \widehat{W} Z' \boldsymbol{y} - \boldsymbol{y}' Z \widehat{W} Z' X \boldsymbol{\beta} - \boldsymbol{\beta}' X' Z \widehat{W} Z' \boldsymbol{y} + \boldsymbol{\beta}' X' Z \widehat{W} Z' X \boldsymbol{\beta} \right\}$$

Derivando em relação em $\boldsymbol{\beta}$ e igualando a zero:

$$\begin{aligned} -2 \mathbf{y}' Z \widehat{W} Z' X + 2 \boldsymbol{\beta}' X' Z \widehat{W} Z' X &= 0 \\ \boldsymbol{\beta}' X' Z \widehat{W} Z' X &= \mathbf{y}' Z \widehat{W} Z' X \\ \boldsymbol{\beta}' &= (\mathbf{y}' Z \widehat{W} Z' X) (X' Z \widehat{W} Z' X)^{-1} \\ \boxed{\boldsymbol{\beta}^{GMM} &= (X' Z \widehat{W}' Z' X)^{-1} (X' Z \widehat{W}' Z' \mathbf{y})} \end{aligned}$$

Valor Esperado

$$E(\boldsymbol{\beta}^{GMM}) = \boldsymbol{\beta} + E[(X'Z\widehat{W}'Z'X)^{-1}(X'Z\widehat{W}'Z'\boldsymbol{u})]$$

Variância

$$Var(\boldsymbol{\beta}^{GMM}) = E\left\{ \left[(X'Z\widehat{W}'Z'X)^{-1}(X'Z\widehat{W}'Z'\boldsymbol{u}) \right] \left[(X'Z\widehat{W}'Z'X)^{-1}(X'Z\widehat{W}'Z'\boldsymbol{u}) \right]' \right\}$$
$$= E\left\{ (X'Z\widehat{W}'Z'X)^{-1}X'Z\widehat{W}'Z'\boldsymbol{u}\boldsymbol{u}'Z\widehat{W}Z'X(X'Z\widehat{W}Z'X)^{-1} \right\}.$$

Definindo $\Delta = E(Z'uu'Z)$ com $\Delta = W^{-1}$:

$$\begin{split} Var(\pmb{\beta}^{GMM}) &= E\left\{(X'Z\widehat{W}'Z'X)^{-1}X'Z\widehat{W}'W^{-1}\widehat{W}Z'X(X'Z\widehat{W}Z'X)^{-1}\right\} \\ &= E\left\{(X'Z\widehat{W}'Z'X)^{-1}(X'Z\widehat{W}'Z'X)(X'Z\widehat{W}Z'X)^{-1}\right\}. \\ \\ \boxed{Var(\pmb{\beta}^{GMM}) = E\left[(X'Z\widehat{W}Z'X)^{-1}\right]}. \end{split}$$

Se tivéssemos definido $W=(Z'Z)^{-1},$ teríamos $\beta^{2SLS}.$

3 Random Effects (RE, EA)

Questão 3: Usando o problema de variável omitida como motivação (heterogeneidade não observada), explique o modelo de **Efeitos Aleatórios** para dados em painel. Explicite as hipóteses necessárias e indique o estimador apropriado para esse modelo, enfatizando as característica do estimador GLS. Como podemos fazer inferência nesse caso?

Modelo

O modelo linear de efeitos não observados:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it},\tag{1}$$

onde t = 1, ..., T e i = 1, ..., N.

O modelo contém explicitamente um componente não observado que não varia no tempo c_i . Abordamos esse componente como parte do erro, não como parâmetro a ser estimado. Para a análise de **Efeitos Aleatórios**, (**EA**) ou (**RE**), supomos que os regressões x_{it} são não correlacionados com c_i , mas fazemos hipóteses mais restritas que o **POLS**; pois assim exploramos a presença de **correlação serial** do erro composto por GLS e garantimos a consitência do estimador de FGLS.

Podemos reescrever (1) como:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + v_{it}, \tag{2}$$

onde t = 1, ..., T, i = 1, ..., N e $v_{it} = c_i + u_{it}$ é o erro composto.

Agora, vamos empilhar os t's \overline{e} reescrever (2) como:

$$\mathbf{y}_i = X_i \boldsymbol{\beta} + \mathbf{v}_i, \tag{3}$$

onde $i = 1, \dots, N$ e $v_i = c_i \mathbf{1}_T + u_i$

Hipóteses de $\widehat{oldsymbol{eta}}^{RE}$

As Hipóteses que usamos para $\hat{\beta}^{RE}$ são:

- 1. Usamos o modelo correto e c_i não é endógeno.
 - (a) $E(u_{it} | x_{i1}, \dots, x_{iT}, c_i) = 0, i = 1, \dots, N.$
 - (b) $E(c_{it} | x_{i1}, \dots, x_{iT}) = E(c_i) = 0, i = 1, \dots, N.$
- 2. Posto completo de $E(X_i'\Omega^{-1}X_i)$.

Definindo a matriz $T \times T$, $\Omega \equiv E(v_i v_i')$, queremos que $E(X_i \Omega^{-1} X_i)$ tenha posto completo (posto = K).

A matriz Ω é simétrica $\Omega' = \Omega$ e positiva definida $\det(\Omega) > 0$. Assim podemos achar $\Omega^{1/2}$ e $\Omega^{-1/2}$ com $\Omega = \Omega^{1/2}\Omega^{1/2}$ e $\Omega^{-1} = \Omega^{-1/2}\Omega^{-1/2}$.

Estimação

Premultiplicando (3) port $\Omega^{-1/2}$ do dois lados, temos:

$$\Omega^{-1/2} \boldsymbol{y}_i = \Omega^{-1/2} X_i \boldsymbol{\beta} + \Omega^{-1/2} \boldsymbol{v}_i$$
$$\boldsymbol{y}_i^* = X_i^* \boldsymbol{\beta} + \boldsymbol{v}_i^*, \tag{4}$$

Estimando o modelo acima por POLS:

$$\boldsymbol{\beta}^{POLS} = \left(\sum_{i=1}^{N} X_i^{*'} X_i^*\right)^{-1} \left(\sum_{i=1}^{N} X_i^{*'} \boldsymbol{y}_i^*\right)$$

$$= \left(\sum_{i=1}^{N} X_i' \Omega^{-1} X_i\right)^{-1} \left(\sum_{i=1}^{N} X_i' \Omega^{-1} \boldsymbol{y}_i\right)$$

$$= \left(X' (I_N \otimes \Omega^{-1}) X\right)^{-1} \left(X' (I_N \otimes \Omega^{-1}) \boldsymbol{y}\right). \tag{5}$$

O problema, agora, é estimar Ω . Supondo:

- $E(u_{it}u_{it}) = \sigma_u^2$;
- $E(u_{it}u_{is}) = 0.$

Como $\Omega = E(\boldsymbol{v}_i \boldsymbol{v}_i') = E[(c_i \boldsymbol{1}_T + \boldsymbol{u}_i)(c_i \boldsymbol{1}_T + \boldsymbol{u}_i)']$, temos que:

$$E(v_{it}v_{it}) = E(c_i^2 + 2c_iu_{it} + u_{it}^2) = \sigma_c^2 + \sigma_u^2$$

$$E(v_{it}v_{is}) = E[(c_i + u_{it})(c_i + u_{is})] = E(c_i^2 + c_iu_{is} + u_{it}c_i + u_{it}u_{is}) = \sigma_c^2$$

Assim.

$$\Omega = E(\boldsymbol{v}_i \boldsymbol{v}_i') = \sigma_u^2 I_T + \sigma_c^2 \mathbf{1}_T \mathbf{1}_T'$$

onde $\sigma_u^2 I_T$ é uma matriz diagonal, e $\sigma_c^2 \mathbf{1}_T \mathbf{1}_T'$ é uma matriz com todos os elementos iguais a σ_c^2 . Agora, rodando POLS em (3) e guardando os resíduos, temos:

$$\hat{v}_{it}^{POLS} = \hat{y}_{it}^{POLS} - \boldsymbol{x}_{it} \hat{\boldsymbol{\beta}}^{POLS}$$

e conseguimos estimar σ_v^2 e σ_c^2 por estimadores amostrais:

• como $\sigma_v^2 = E(v_{it}^2)$:

$$\hat{\sigma}_v^2 = (NT - K)^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} \hat{v}_{it}^2$$

• como $\sigma_c^2 = E(v_{it}v_{is})$:

$$\hat{\sigma}_c^2 = \left[N \frac{T(T-1)}{2} - K \right]^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T-1} \sum_{c=t+1}^{T} \hat{v}_{it} \hat{v}_{is}$$

- N indivíduos;
- \bullet T elementos da diagonal principal de Ω
- $\frac{T(T-1)}{2}$ elementos da matriz triangular superior dos elementos fora da diagonal.
- \bullet K regressores.

Agora que temos $\hat{\sigma}_v^2$ e $\hat{\sigma}_c^2$ podemos achar $\hat{\sigma}_u^2$ pela equação $\hat{\sigma}_u^2 = \hat{\sigma}_v^2 - \hat{\sigma}_c^2$. Dessa forma achamos os T^2 elementos de $\hat{\Omega}$, e podemos escrever:

$$\widehat{\Omega} = \widehat{\sigma}_u^2 I_T + \widehat{\sigma}_c^2 \mathbf{1}_T \mathbf{1}_T'$$

Com $\widehat{\Omega}$ estimado, reescrevemos (5) como:

$$\boldsymbol{\beta}^{RE} = \left[X'(I_N \otimes \widehat{\Omega}^{-1}) X \right]^{-1} \left[X'(I_N \otimes \widehat{\Omega}^{-1}) \boldsymbol{y} \right]. \tag{6}$$

Valor Esperado

$$E(\boldsymbol{\beta}^{RE}) = \boldsymbol{\beta} + \left[X'(I_N \otimes \widehat{\Omega}^{-1}) X \right]^{-1} \left[X'(I_N \otimes \widehat{\Omega}^{-1}) \boldsymbol{v} \right].$$

Variância

$$Var(\boldsymbol{\beta}^{RE}) = E\left\{ \left[X'(I_N \otimes \widehat{\Omega}^{-1})X \right]^{-1} \left[X'(I_N \otimes \widehat{\Omega}^{-1})\boldsymbol{v}\boldsymbol{v}'(I_N \otimes \widehat{\Omega}^{-1})'X \right] \left[X'(I_N \otimes \widehat{\Omega}^{-1})X \right] \right\},$$
como $E(\boldsymbol{v}_i\boldsymbol{v}_i') = \Omega,$

$$Var(\boldsymbol{\beta}^{RE}) = E\left[X'(I_N \otimes \widehat{\Omega}^{-1})X\right].$$

4 Fixed Effects (EF, FE)

Questão 4: Usando o problema de variável omitida como motivação (heterogeneidade não observada), explique o modelo de **Efeitos Fixos** para dados em painel. Explicite as hipóteses necessárias e indique o estimador apropriado para esse modelo. Como podemos fazer inferência nesse caso? Como podemos fazer inferência robusta nesse caso?

Modelo

O modelo linear de efeitos não observados:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it},\tag{1}$$

onde t = 1, ..., T e i = 1, ..., N.

O modelo contém explicitamente um componente não observado que não varia no tempo c_i . Abordamos esse componente como parte do erro, não como parâmetro a não observado. No caso da análise de **Efeitos Fixos (EF, FE)**, permitimos que esse componente c_i seja correlacionado com x_{it} . Assim, se decidíssemos estimar o modelo (1) por POLS, ignorando c_i , teríamos problemas de inconsistência devido a **endogeneidade**.

As T equações do modelo (1) podem ser reescritas como:

$$\mathbf{y}_i = X_i \boldsymbol{\beta} + c_1 \mathbf{1}_T + \mathbf{u}_i, \tag{2}$$

com $v_i = c_i \mathbf{1}_T + u_i$ sendo os erros compostos.

Matriz M^0

Definimos a matriz M^0 como:

$$M^{0} = I_{T} - T^{-1} \mathbf{1}_{T} \mathbf{1}_{T}' = I_{T} - \mathbf{1}_{T} (\mathbf{1}_{T}' \mathbf{1}_{T})^{-1} \mathbf{1}_{T}'.$$

A matriz M^0 é idempotente e simétrica.

$$M^0 x = x - \overline{x} \mathbf{1}_T = \ddot{x}.$$

Podemos transformar o modelo (3) ao premultiplicarmos todo o modelo por M^0 .

$$M^0 y_i = M^0 X_i \beta + M^0 (c_1 \mathbf{1}_T) + M^0 u_i, \quad i = 1, ..., N.$$

$$M^{0}(c_{1}\mathbf{1}_{T}) = (I_{T} - T^{-1}\mathbf{1}_{T}\mathbf{1}_{T}')c_{i}\mathbf{1}_{T} = c_{i}\mathbf{1}_{T} - T^{-1}c_{i}\mathbf{1}_{T}\mathbf{1}_{T}'\mathbf{1}_{T} = c_{i}\mathbf{1}_{T} - c_{i}\mathbf{1}_{T} \implies \boxed{M^{0}(c_{1}\mathbf{1}_{T}) = 0}$$

$$\ddot{\boldsymbol{y}}_i = \ddot{X}_i \boldsymbol{\beta} + \ddot{\boldsymbol{u}}_i, \quad i = 1, \dots, N.$$
(3)

Estimação POLS

Aplicando POLS no modelo (3)

$$\beta^{FE} = \left[\sum_{i=1}^{N} \ddot{X}_{i}' \ddot{X}_{i} \right]^{-1} \left[\sum_{i=1}^{N} \ddot{X}_{i}' \ddot{\boldsymbol{y}}_{i} \right]$$
(4)

Hipóteses

As Hipóteses que usamos para $\widehat{\boldsymbol{\beta}}^{FE}$ são:

FE.1: Exogeneidade Estrita: $E(u_{it} | \boldsymbol{x}_{i1}, \dots, \boldsymbol{x}_{iT}, c_i) = 0$, para $t = 1, \dots, T$ e $i = 1, \dots, N$.

FE.2: Posto completo de $E(X_i'\Omega^{-1}X_i)$ (para inverter a matriz). $posto[E(X_i\Omega^{-1}X_i)] = K$.

FE.3: Homoscedasticidade: $E(\mathbf{u}_i \mathbf{u}'_i | X_i, c_i) = \sigma_u^2 I_T$.

Valor Esperado

Usando FE.1 e FE.2, apenas.

$$E(\boldsymbol{\beta}^{FE}) = \boldsymbol{\beta} + E\left[\left(\sum_{i=1}^{N} \ddot{X}_{i}' \ddot{X}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \ddot{X}_{i}' \ddot{\boldsymbol{u}}_{i}\right)\right]$$
$$E(\boldsymbol{\beta}^{FE}) = \boldsymbol{\beta} + E\left[(\ddot{X}' \ddot{X})^{-1} (\ddot{X}' \ddot{\boldsymbol{u}})\right]$$

Sabendo que $\ddot{X} = (I_N \otimes M^0)X$ e $\ddot{\boldsymbol{u}} = (I_N \otimes M^0)\boldsymbol{u}$, definimos:

$$E(\boldsymbol{\beta}^{FE}) = \boldsymbol{\beta} + E\left\{ \left[X'(I_N \otimes M^0)(I_N \otimes M^0)X \right]^{-1} \left[X'(I_N \otimes M^0)(I_N \otimes M^0)\boldsymbol{u} \right] \right\}$$
$$E(\boldsymbol{\beta}^{FE}) = \boldsymbol{\beta} + E\left\{ \left[X'(I_N \otimes M^0)X \right]^{-1} \left[X'(I_N \otimes M^0)\boldsymbol{u} \right] \right\}$$

Variância

Usamos a variância do estimador para inferência. Usando FE.1 e FE.2, apenas:

$$\boxed{Var(\boldsymbol{\beta}^{FE}) = E\left[(\ddot{X}'\ddot{X})^{-1} (\ddot{X}'\ddot{\boldsymbol{u}}) (\ddot{\boldsymbol{u}}'\ddot{X}) (\ddot{X}'\ddot{X})^{-1} \right]}$$

Pão:

$$E\left[(\ddot{X}'\ddot{X})^{-1} \right] = E\left\{ \left[X'(I_N \otimes M^0)(I_N \otimes M^0)X \right]^{-1} \right\}$$
$$= E\left\{ \left[X'(I_N \otimes M^0)X \right]^{-1} \right\}$$

Recheio:

$$E\left[(\ddot{X}'\ddot{\boldsymbol{u}})(\ddot{\boldsymbol{u}}'\ddot{X})\right] = E\left[X'(I_N \otimes M^0)(I_N \otimes M^0)\boldsymbol{u}\boldsymbol{u}'(I_N \otimes M^0)(I_N \otimes M^0)X\right]$$
$$= E\left[X'(I_N \otimes M^0)\boldsymbol{u}\boldsymbol{u}'(I_N \otimes M^0)X\right]$$

 $Var(\boldsymbol{\beta}^{FE}) = P$ ão Recheio Pão

$$Var(\boldsymbol{\beta}^{FE}) = E\left\{ \left[X'(I_N \otimes M^0)X \right]^{-1} \right\} E\left[X'(I_N \otimes M^0)\boldsymbol{u}\boldsymbol{u}'(I_N \otimes M^0)X \right] E\left\{ \left[X'(I_N \otimes M^0)X \right]^{-1} \right\}$$

Variância sob Homocedasticidade

Usando FE.3, temos

Recheio':

$$E\left[X'(I_N \otimes M^0)\right] \sigma_u^2 I_{NT} E\left[(I_N \otimes M^0)X\right] = \sigma_u^2 E\left[X'(I_N \otimes M^0)X\right]$$

 $(I_N \otimes M^0)$ é uma matrix de dimensão $NT \times NT$, visto que I_N é $N \times N$ e M^0 é $T \times T$.

$$\begin{split} Var(\pmb{\beta}^{FE}) &= \text{P\~ao Recheio' P\~ao} \\ &= E\left\{\left[X'(I_N \otimes M^0)X\right]^{-1}\right\}\sigma_u^2 E\left[X'(I_N \otimes M^0)X\right] E\left\{\left[X'(I_N \otimes M^0)X\right]^{-1}\right\} \\ &= E\left\{\left[X'(I_N \otimes M^0)X\right]^{-1}\right\}\sigma_u^2 I_{NT} \\ \hline \\ Var(\pmb{\beta}^{FE}) &= \sigma_u^2 \cdot E\left[X'(I_N \otimes M^0)X\right] \end{split}$$

5 First Difference (FD, PD)

Questão 5: Usando o problema de variável omitida como motivação (heterogeneidade não observada), explique o modelo de **Primeira Diferença** para dados em painel. Explicite as hipóteses necessárias e indique o estimador apropriado para esse modelo. Como podemos fazer inferência nesse caso? Como podemos fazer inferência robusta nesse caso?

6 Strict Exogeneity, IV

Questão 6: Explique a hipótese de exogeneidade estrita dos regressores. Em seguida, argumente mostrando que a hipótese de exogeneidade estrita não se sustenta no seguinte modelo:

$$y_{it} = \mathbf{z}_{it}\boldsymbol{\gamma} + \rho y_{it-1} + c_i + u_{it}.$$

Explique detalhadamente como esse modelo pode ser estimado a partir da combinação entre Variáveis Instrumentais e método da Primeira Diferença.

7 Latent Variables, Probit and Logit

Questão 7: Usando a motivação de uma variável latente, motive a construção do estimador LOGIT/PROBIT. Explique o procedimento de estimação de verossimilhança que caracteriza o estimador. Inclua em sua explicação o resultado da distribuição assintótica de $\sqrt{n}(\theta - \theta_0)$. Ressalte a forma mais simples da variância assintótica desse estimador, devido ao fato de ser um estimador de máxima verossimilhança.

8 ATT, ATE, Propensity Score

Questão 8: Explique como estimar o efeito médio do tratamente (τ_{ATE}) e o efeito médio do tratamento sobre o tratado (τ_{ATT}) , considerando a hipótese de Ignorabilidade do Tratamento condicional a um conjunto de covariáveis. Aborde o método *Propensity Score*. Discuta a importância do hipótese *Overlap* para a aplicabilidae desse estimador. Explique resumidamente como o *Propensity Score* pode ser estimado.

Appêndice

$$\mathbf{1}_N'\mathbf{1}_N=N$$
 ; $\mathbf{1}_N\mathbf{1}_N'=\begin{bmatrix}1&\dots&1\\ \vdots&\ddots&\vdots\\ 1&\dots&1\end{bmatrix}_{N imes N}$

Defining \boldsymbol{x} with dimension $1 \times N$:

$$oldsymbol{x} = egin{bmatrix} x_1 \ dots \ x_N \end{bmatrix}$$

$$x'\mathbf{1}_N = \mathbf{1}'_N x = (x'\mathbf{1}_N)' = \sum_{i=1}^N x_i$$

$$\mathbf{1}_{N}\boldsymbol{x}' = \begin{bmatrix} x_{1} & \dots & x_{N} \\ \vdots & \ddots & \vdots \\ x_{1} & \dots & x_{N} \end{bmatrix}_{N \times N} ; \qquad \boldsymbol{x}\mathbf{1}'_{N} = \begin{bmatrix} x_{1} & \dots & x_{1} \\ \vdots & \ddots & \vdots \\ x_{N} & \dots & x_{N} \end{bmatrix}_{N \times N}$$

$$E(x) = \overline{x} = N^{-1} \sum_{i=1}^{N} x_i = N^{-1} x' \mathbf{1}_N$$

Important Idempotent Matrices

$$M^0 = I_N - \mathbf{1}_N (\mathbf{1}_N' \mathbf{1}_N)^{-1} \mathbf{1}_N' = I_N - N^{-1} \mathbf{1}_N \mathbf{1}_N'$$

A Matriz M^0 é idempotente e simétrica.

Idempotência: AA = A

Simetria: A' = A

$$M^0 \boldsymbol{x} = (I_N - N^{-1} \mathbf{1}_N \mathbf{1}_N') \boldsymbol{x} = \boldsymbol{x} - N^{-1} \mathbf{1}_N (\mathbf{1}_N' \boldsymbol{x}) = \mathbf{1}_N \overline{\boldsymbol{x}} = \begin{bmatrix} \overline{\boldsymbol{x}} \\ \vdots \\ \overline{\boldsymbol{x}} \end{bmatrix}$$