Unevenly Fourier

April 19, 2024

Abstract

This is a simple example to showcase the Obsidian to LaTeX converter.

1 Introduction

This document demonstrates the conversion of Markdown notes to a La-TeX document, including internal links and embedded content.

Figure 1: This is the caption

Remark 1.1. I remark that this plugin is awsome.

2 Results

Given suitable definitions, the following follows.

$$\|\hat{x} - x_0\|_2 \le \|x^{\perp}\|_2 + 3\|\tilde{F}x^{\perp}\|_2 + 3\|\eta\|_2 + \frac{3}{2}\hat{\varepsilon}.$$

 \Diamond

where $\sum a_i = 0$. See the proof.

$$\sum_{i=1}^{k} A_i$$

We also present the following lemma:

Lemma 2.1 (lemma₁). Every even integer greater than 2 can be expressed as the sum of two prime numbers.

Proof of ??. This is Goldbach's Conjecture, which remains unproven as of the knowledge cutoff date (2021-09). $\hfill\Box$

The main theorem is:

Theorem 2.2 (theorem₁). For every positive integer n, the sum of the first n odd integers is equal to n^2 .

3 Proofs

Here is the proof for the main theorem. The proof is specifically for $\ref{fig:proof}$. I may or may not follow from [rudelsonSparseReconstructionFourier2008]. We proceed by induction. Base case (n=1): The sum of the first odd integer (1) is equal to 1^2 , which is true. Inductive step: Assume that the sum of the first k odd integers is equal to k^2 . We want to show that the sum of the first k+1 odd integers is equal to $(k+1)^2$. The sum of the first k odd integers is k^2 . The next odd integer is (2k+1). Therefore, the