

Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Scienze Statistiche Corso di Dottorato di Ricerca in Scienze Statistiche Ciclo XXXIV

Thesis Title

Coordinatore del Corso: Prof. Nicola Sartori

Supervisore: Prof. Antonio Canale

Co-supervisore: Prof. Michele Guindani

Dottoranda: Laura D'Angelo

Day Month Year of submission

Abstract

Abstract content.

Sommario

Contenuto del sommario.

Contents

Li	st of	Figures	vii
Li	st of	Tables	viii
In		ıction	1
		rview	
	Maı	n contributions of the thesis	2
1	Stat	istical modeling of calcium imaging data	3
	1.1	Overview of calcium imaging data	3
		1.1.1 Allen Brain Observatory data	4
	1.2	A brief review of some Bayesian nonparametric models	4
2	Effic	cient posterior sampling for Bayesian log-linear models	5
	2.1	Algorithm	5
3	Bay	esian nonparametric analysis for partially exchangeable single-neuron data	7
	3.1	Model specification	7
	3.2	Posterior computation	7
Bi	bling	craphy	9

List of Figures

List of Tables

Introduction

Overview

A fundamental but unsolved problem in neuroscience is understanding the functioning of neurons and neuronal networks in processing sensory information, generating locomotion, and mediating learning and memory. The investigation of the structure and function of the nervous system can be dated back to the nineteenth century with the invention of the technique of silver impregnation by Camillo Golgi in 1873, which allowed the visualization of individual neurons (Drouin et al., 2015). The technique initiated the study of the microscopic anatomy of the nervous system, and the investigation of how neurons organize to form the brain. Ever since there has been a significant research effort both to discover the cellular properties of the nervous system, and to characterize behaviors and correlate them with activity imaged in different regions of the brain. However, many scientists recognize that despite the innovative techniques developed to observe and analyze neurons, we are still facing an "explanatory gap" between the understanding of elemental components and the outputs that they produce (Parker, 2006, 2010; Dudai, 2004). That is, we know a lot about the components of the nervous system, but still we have little insight into how these components work together to enable us to think, remember, or behave. One of the reasons of this gap is the availability of a huge quantity of data, but a lack of tools to integrate these data in order to obtain a coherent picture of the brain functioning (Parker, 2010).

The technological developments of the last few decades have opened fundamentally new opportunities to investigate the nervous system. Large neuronal networks can now be visualized using *in vivo* high-resolution imaging techniques, which permit to record the neuronal activity in freely moving animals over long periods of time. In this thesis, we focus on data resulting from the application of the two-photon calcium imaging technique. Calcium ions generate intracellular signals that determine a large variety of functions in all neurons: when a neuron fires, calcium floods the cell and produces a transient spike in its concentration (Grienberger and Konnerth, 2012). By using genetically encoded calcium indicators, which are fluorescent molecules that react when binding to the calcium ions, it is possible to optically measure the level of calcium by analyzing the observed fluorescence trace. However,

extracting these fluorescent calcium traces is just the first step towards the understanding of brain circuits: how to relate the observed pattern of neuronal activity with its output remains an open problem of research.

Main contributions of the thesis

Chapter 1

Statistical modeling of calcium imaging data

1.1 Overview of calcium imaging data

Calcium ions generate intracellular signals that control key functions in all types of neurons. At rest, most neurons have an intracellular calcium concentration of about 100 nm; however, during electrical activity, the concentration can rise transiently up to levels around 1000 nm (Berridge *et al.*, 2000). The development of techniques that enable the visualization and quantitative estimation of the intracellular calcium signals have thus greatly enhanced the investigation of neuronal functioning. The development of calcium imaging techniques involved two parallel processes: the development of calcium indicators, which are fluorescent molecules that react when binding to the calcium ions, and the implementation of the appropriate imaging instrumentation, in particular, the introduction of two-photon microscopy (Denk *et al.*, 1990). In recent years, the innovations achieved in these two fields have allowed for real-time observation of biological processes at the single-cell level simultaneously for large groups of neurons (Grienberger and Konnerth, 2012).

The output two-photon calcium imaging is a movie of time-varying fluorescence intensities, and a first complex pre-processing phase deals with the identification of the spatial location of each neuron in the optical field and source extraction (Mukamel *et al.*, 2009; Dombeck *et al.*, 2010). The resulting processed data consist of a fluorescent calcium trace for each observable neuron in the targeted area which, however, is only a proxy of the underlying neuronal activity. Hence further analyses are needed to deconvolve the fluorescence trace to extract the spike train (i.e. the series of recorded firing times), and to try to explain how these firing events are linked with the experiment that generated that particular pattern of activity.

There is currently a rich literature of methods addressing the issue of deconvolving the raw fluorescent trace to extract the spike train. A successful approach is to assume a biophysical model to relate the spiking activity, to the calcium dynamics, and to the observed fluorescence.

Vogelstein $et\ al.\ (2010)$ proposed a simple but effective model that has later been adopted by several authors (Pnevmatikakis $et\ al.\ 2016$; Friedrich and Paninski, 2016; Friedrich $et\ al.\ 2017$; Jewell and Witten, 2018; Jewell $et\ al.\ 2019$). The model considers the observed fluorescence as a linear (and noisy) function of the intracellular calcium concentration; the calcium dynamics is then modeled using an autoregressive process with jumps in correspondence of the neuron's firing events. Denoting with y_t the observed fluorescence trace of a neuron and with c_t the underlying calcium concentration, for time $t=1,\ldots,T$, the model can be written as

$$y_t = b + c_t + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, \sigma^2),$$
$$c_t = \gamma c_{t-1} + A_t + w_t, \quad w_t \sim \mathcal{N}(0, \tau^2),$$

where b models the baseline level of the observed trace and ϵ_t is a Gaussian measurement error. In the absence of neuronal activity, the true calcium concentration c_t is considered to be centered around zero. The parameter A_t captures the neuronal activity: in the absence of a spike $(A_t=0)$, the calcium level follows a AR(1) process controlled by the parameter γ ; when a spike occurs, the concentration increases instantaneously with the spike amplitude $A_t>0$.

1.1.1 Allen Brain Observatory data

1.2 A brief review of some Bayesian nonparametric models

Chapter 2

Efficient posterior sampling for Bayesian log-linear models

2.1 Algorithm

Chapter 3

Bayesian nonparametric analysis for partially exchangeable single-neuron data

- 3.1 Model specification
- 3.2 Posterior computation

Bibliography

- Berridge, M. J., Lipp, P. and Bootman, M. D. (2000) The versatility and universality of calcium signalling. *Nature Reviews Molecular Cell Biology* **1**, 11 21.
- Denk, W., Strickler, J. H. and Webb, W. W. (1990) Two-photon laser scanning fluorescence microscopy. *Science* **248**, 73–76.
- Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. and Tank, D. W. (2010) Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. *Nature Neuroscience* **13**, 1433 1440.
- Drouin, E., Piloquet, P. and Péréon, Y. (2015) The first illustrations of neurons by Camillo Golgi. *The Lancet Neurology* **14**(6), 567.
- Dudai, Y. (2004) The neurosciences: the danger that we will think that we have understood it all. In *The new brain sciences: perils and prospects*, eds S. Rose and D. Rees, pp. 167 180. Cambridge University Press.
- Friedrich, J. and Paninski, L. (2016) Fast active set methods for online spike inference from calcium imaging. In *Advances In Neural Information Processing Systems*, eds D. Lee, M. Sugiyama, U. Luxburg, I. Guyon and R. Garnett, pp. 1984 1992.
- Friedrich, J., Zhou, P. and Paninski, L. (2017) Fast online deconvolution of calcium imaging data. *PLOS Computational Biology* **13**(3), 1 26.
- Grienberger, C. and Konnerth, A. (2012) Imaging calcium in neurons. *Neuron* **73**(5), 862 885.
- Jewell, S. and Witten, D. (2018) Exact spike train inference via L0 optimization. *The Annals of Applied Statistics* **12**(4), 2457 2482.
- Jewell, S. W., Hocking, T. D., Fearnhead, P. and Witten, D. M. (2019) Fast nonconvex deconvolution of calcium imaging data. *Biostatistics* **21**(4), 709–726.
- Mukamel, E. A., Nimmerjahn, A. and Schnitzer, M. J. (2009) Automated analysis of cellular signals from large-scale calcium imaging data. *Neuron* **63**(6), 747 760.
- Parker, D. (2006) Complexities and uncertainties of neuronal network function. *Philosophical transactions of the Royal Society of London. Series B, Biological sciences* **361**(1465), 81 99.

10 Bibliography

Parker, D. (2010) Neuronal network analyses: premises, promises and uncertainties. *Philosophical transactions of the Royal Society of London. Series B, Biological sciences* **365**(1551), 2315 – 2328.

- Pnevmatikakis, E. A., Soudry, D., Gao, Y., Machado, T. A., Merel, J., Pfau, D., Reardon, T., Mu, Y., Lacefield, C., Yang, W., Ahrens, M., Bruno, R., Jessell, T. M., Peterka, D. S., Yuste, R. and Paninski, L. (2016) Simultaneous denoising, deconvolution, and demixing of calcium imaging data. *Neuron* **89**(2), 285 299.
- Vogelstein, J. T., Packer, A. M., Machado, T. A., Sippy, T., Babadi, B., Yuste, R. and Paninski, L. (2010) Fast nonnegative deconvolution for spike train inference from population calcium imaging. *Journal of Neurophysiology* **104**(6), 3691–3704.