11. Intégration et forme locale de Granss-Bounet

On montrera le théorème suivant:

Théorème (Ganss-Bonnet, forme locale)

Soit $S \subset \mathbb{R}^3$ une surface orientée, et soit RCS ouvert contemn dons l'image d'une corte, tel que $QR = \gamma$ est une courbe simple fernie lisse por une recenx Alors

Courbone valour algébrique angles ganssieure de le courbone géalésique intérieurs

Exemples pour
$$S = \mathbb{S}^2$$
 ($k = 1$)

1) $j = grand cerde, $J = hémisphère$$

Aire
$$(\Omega)$$
 + $\int_{\mathcal{K}} + \sum (\pi - \theta) = 2\pi$

=> Aire (SL)= 2T

2) y = twangle avec angles
$$\theta_1, \theta_2, \theta_3$$

$$\theta_1$$
 θ_2
 $\Omega = T$

Formule de la sonne des angles:

Aire
$$(T) = \theta_1 + \theta_2 + \theta_3 - \pi$$

Par exemple, si
$$\theta_1 = \theta_2 = \theta_1 = \frac{\pi}{2}$$

Aire
$$(T) = \frac{\pi}{2} \left(= \frac{1}{8} \text{ Aire } (S^2) \right)$$

Soit $\Phi: \Omega^{clR^2} \longrightarrow S$ cartz locale et soit $f: S \longrightarrow R$ et $Vac\Phi(\Omega)$.

Rung $\Phi_n \otimes \Phi_r$ est un vecteur proportional à N_1 et $\Phi_n \otimes \Phi_r = \|\Phi_n\| \|\Phi_r\| \sin \theta$ angle entre $\Phi_n \otimes \Phi_r = \|\Phi_n\| \|\Phi_r\| \sin \theta$

On vérifie que If est bien défin'; soit à une autre conte locale.

$$\int (f \cdot \hat{\Phi}) \sqrt{\det I^{\hat{\Phi}}} \, d\hat{u} d\hat{u} = \int ((f \cdot \hat{\Phi}) \cdot \varphi) (\sqrt{\det I^{\hat{\Phi}}} \cdot \varphi) | \det D\varphi | \, du \, du$$

$$\hat{\Phi}^{-1}(V) \qquad \qquad | \varphi^{-1}(\hat{\Phi}^{-1}(V)) |$$
formule $du = \int (f \cdot \hat{\Phi}) \sqrt{\det D\varphi} \cdot \det(I^{\hat{\Phi}}, \varphi) \cdot \det D\varphi \, du \, du$

$$\operatorname{Anongenent} \, de \qquad \qquad | \Phi^{-1}(V) |$$

$$= \int (f \cdot \hat{\Phi}) \sqrt{\det (D\varphi^{-1}(I^{\hat{\Phi}}, \varphi) \cdot D\varphi)} \, du \, du$$

J-1(V) (f. I) Vet I duda

Sinon, on pent prendre \$: 1:1, -, n, talks que

U = U (Un \$ (()) 0- pare alors $\int_{U}^{f} := \sum_{i=1}^{\infty} \int_{U_{i}, \Phi_{i}(\Omega_{i})}^{f}$

Considerans maintenant la fonction f= k (= courbure ganssieure)

Le terme \int_{V} lutervient dans la formule de Ganss-Bouret.

$$\int_{\overline{\Phi}} (K \cdot \overline{\Phi}) \sqrt{EF - G^2} du dv$$

Prop Soit UcS tel que l'application de Gamss $N:S \longrightarrow S^2$ est un diffeo sur U. Alors $\int_{U} |K| = Aire(N(U))$.

La preuve découle de la formule $N_{U} \boxtimes N_{V} = K(\underline{\Phi}_{U} \boxtimes \underline{\Phi}_{V})$ (*)

An fait, $\int |K| = \int |K| ||\underline{\Phi}_{U} \boxtimes \underline{\Phi}_{V}|| = \int ||N_{U} \boxtimes N_{V}|| = \int 1 = Ahre(N(U))$ $\underline{\Phi}^{-1}(U)$ $\underline{\Phi}^{-1}(U)$ N(U)

Pour montrer & come N est orthogonal à TpS et à TNO \$2,

Pour montrer (\mathcal{R}) comme N est orthogonal à T_pS et à $T_{N(p)}S^2$, $N_u \boxtimes N_v$ et $\Phi_u \boxtimes \Phi_v$ sont propositionels à N.

Il reste danc à montrer;

 $B = -dN = \begin{pmatrix} a & b \\ a & d \end{pmatrix}$ Pour da

< N, N, N, N) = det (Nu, Nr, N) = = det (a In +b Iv, · In + d Iv, N)

= ac det (In, In, N) + ad det (In, Iv, N) + bc det (Iv, In, N) + bd det (Iv, Iv, N)

= (ac-bd) det (In, In, N) = det B < In DIEN, N)

= K< 重1回重1,N>

Corollaire Soit S in surface compacts over
$$K>0$$

Alors $\int_S K = 4\pi$

Prenie: $N: S \to S^2$ est in diffeo local \Longrightarrow diffeo

Coolonnain = S^2

Note that $\int_S K = Aire(S^2) = 4\pi$. \Box

La formule de Ganse-Bounet globale est un véentet beaucomp plus général.