2010-XE-27-39

AI24BTEC11027 - R Sumanth

- 1) Let f(x+iy) = u(x,y) + iv(x,y) be an analytic defined on the complex plane satisfying $2u^2 + 3v^2 = 1$. then
 - a) f is a constant
 - b) f(z) = kz some nonzero real number k

 - c) $u(x, y) = \frac{\cos(x+y)}{\sqrt{2}}$ d) $v(x, y) = \frac{\sin(x-y)}{\sqrt{3}}$
- 2) The value of $\oint_C (xy^2 + 2x)dx + (x^2y + 4x)dy$ along the circle $C: x^2 + y^2 = 4$ in the anticlockwise direction is
 - a) -16π
 - b) -4π
 - c) 4π
 - d) 16π
- 3) The volume of the prism whose base is the triangle in the xy-plane bounded by the x-axis and the lines y = x and x = 2 and whose top lies in the plane z = 5 - x - y is
 - a) 2
 - b) 4
 - c) 6
 - d) 10
- 4) The general solution of $x(z^2 y^2)\frac{\partial z}{\partial x} + y(x^2 z^2)\frac{\partial z}{\partial y} = z(y^2 x^2)$ is
 - a) $F(x^2 + y^2 + z^2, xyz) = 0$

 - b) $F(x^2 + y^2 Z^2, xyz) = 0$ c) $F(x^2 y^2 + Z^2, xyz) = 0$ d) $F(-x^2 + y^2 + Z^2, xyz) = 0$
- 5) Choose a point uniformly distributed at random on the disc $x^2 + y^2 \le 1$. Let the random variable X denote the distance of this point from the center of the disc. Then the variance of X is
 - a) $\frac{1}{16}$ b) $\frac{1}{17}$ c) $\frac{1}{18}$ d) $\frac{1}{19}$
- 6) If Runge-kutta method of order 4 is used to solve the differential equation $\frac{dy}{dx} = f(x)$, y(0) = 0 in the interval [0.h] with step size h, then
 - a) $y(h) = \frac{h}{6}[f(0) + 4f(h/2) + f(h)]$
 - b) $y(h) = \frac{h}{6}[f(0) + 4f(h)]$
 - c) $y(h) = \frac{h}{2}[f(0) + 4f(h)]$
 - d) $y(h) = \frac{\hbar}{6} [f(0) + 2f(h/2) + f(h)]$

- 7) If a polynomial of degree three interpolates a function f(x) at the points (0,3),(1,13),(3,99) and (4, 187), then f(2) is
 - a) 20
 - b) 36
 - c) 43
 - d) 58
- 8) Let $f: R \to R$ be defined by $f(x) = x^2$ for $-\pi \le x \le \pi$ and $f(x + 2\pi) = f(x)$. The Fourier series of f in $[-\pi,\pi]$ is

 - a) $\frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$ b) $\frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{(-1)^n \cos nx}{n^2}$ c) $\frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^n \cos nx}{n^2}$ d) $\frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$
- 9) Let $f: R \to R$ be defined by $f(x) = x^2$ for $-\pi \le x \le \pi$ and $f(x+2\pi) = f(x)$. The sum of the absolute value of the Fourier coefficients of f is

 - a) $\frac{\pi^2}{6}$ b) $\frac{\pi^2}{3}$ c) $\frac{2\pi^2}{3}$ d) π^2
- 10) Let $y(x) = \sum_{n=0}^{\infty} a_n x^n$ be a solution of the differential equation $\frac{d^2y}{dx^2} + xy = 0$. The value of a_{11} is
 - a) 0
 - b) 1
 - c) 2
 - d) 3
- 11) Let $y(x) = \sum_{n=0}^{\infty} a_n x^n$ be a solution of the differential equation $\frac{d^2 y}{dx^2} + xy = 0$. The value of $a_1 1$ is The solution of the differential equation given above satisfying y(0) = 1 and y'(0) = 0 is
 - a) $y(x) = 1 + \frac{1}{213}x^2 \frac{1}{2.315.6}x^4 + \frac{1}{2.3.516.8.9}x^6 \dots$ b) $y(x) = 1 \frac{1}{213}x^2 + \frac{1}{2.315.6}x^4 \frac{1}{2.3.516.8.9}x^6 + \dots$ c) $y(x) = 1 + \frac{1}{213}x^3 \frac{1}{2.315.6}x^6 + \frac{1}{2.3.516.8.9}x^9 \dots$ d) $y(x) = 1 \frac{1}{2.3}x^3 \frac{1}{2.3.5.6}x^6 \frac{1}{2.3.5.6.8.9}x^9 + \dots$
- 12) The potential u(x, y) satisfies the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in the square $0 \le x \le \pi, 0 \le y \le \pi$. Three of the edges x = 0 and y = 0 of the square are kept at zero potential and the edge $y = \pi$ is kept at nonzero potential. the potential u(x, y) is given by

 - a) $u(x, y) = \sum_{n=1}^{\infty} A_n \cos hnx \sin ny$ b) $u(x, y) = \sum_{n=1}^{\infty} A_n \sin nx \cosh ny$ c) $u(x, y) = \sum_{n=1}^{\infty} A_n \sin hnx \sin ny$ d) $u(x, y) = \sum_{n=1}^{\infty} A_n \sin nx \sin hny$
- 13) The potential u(x,y) satisfies the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in the square $0 \le x \le \pi, 0 \le y \le \pi$. Three of the edges x = 0 and y = 0 of the square are kept at zero potential and the edge $y = \pi$ is kept at nonzero potential. If the edge $y = \pi$ is kept at the potential $\sin x$, then the potential u(x, y) is given
 - a) $u(x, y) = \sum_{n=1}^{\infty} \frac{\sin nx \sin hny}{\sin hn\pi}$

- b) $u(x, y) = \frac{\sin x \sin hy}{\sin h\pi}$ c) $u(x, y) = \frac{\sin x \cos hy}{\cos h\pi}$ d) $u(x, y) = \sum_{n=1}^{\infty} \frac{\cos hnx \sin ny}{\cos hn\pi}$