Primeiro trabalho de CDI II

10/06/2021

1. Calcule:

(a)
$$\int_{1}^{2} x^4 - \frac{3}{x} - \sqrt[5]{x} dx$$
 (1,0 pt)

(a)
$$\int_{1}^{2} x^{4} - \frac{3}{x} - \sqrt[5]{x} dx$$
 (1,0 pt)
(b) $\int_{0}^{\frac{\pi}{2}} \cos x \cdot \sqrt{1 + \sin^{2} x} dx$ (1,0 pt)
(c) $\int_{-\infty}^{0} \ln(1 + e^{x}) e^{x} dx$ (1,0 pt)

(c)
$$\int_{-\infty}^{0} \ln(1+e^x)e^x dx$$
 (1,0 pt)

- 2. Calcule o valor de a para que $\int_{-1}^{1} e^{-ax} dx = 1$ (1,0 pt)
- 3. Encontre o valor da área da região R delimitada pelas seguintes curvas:

(a)
$$y = x^2 - 5$$
 $y = 2x^2 + 6x$ (1.0 pt)

(b)
$$x + y = 0$$
; $y + \frac{x}{9} = 0$; $y^2 + x = 0$ (1.0 pt)

- (c) $r = 2\sin 2\theta$; $r = \sqrt{3}$ (interior à ambas) (em coordenadas polares) (1,0 pt)
- 4. Calcule o volume do sólido de revolução da curva $C: y = x^2 3x + 10$, $2 \leq x \leq 3$ em torno do eixo

(a)
$$\circ x$$
 (1,0 pt)

(b)
$$\circ y$$
 (1,0 pt)

5. Determine $\overline{S}(f, P)$ em [0, 2] onde $f(x) = x^3 + x$. (1, 0 pt)