No Probllama: Fine-Tuning Llama Using GRPO

Brandt Buchda, Devi Mahajan, Peyton Nash, Kyler Rosen

3/12/2025

DeepSeek

- DeepSeek released its R1 model in January 2025
 - Produced results comparable to OpenAI and Google Gemini on reasoning tasks
 - Introduced innovations in reinforcement learning
- R1 builds on Proximal Policy Optimization with Group Relative Policy Optimization (GRPO)
 - Reduces memory and compute usage
 - Produces more stable advantage estimations

Proximal Policy Optimization

Objective function:

$$L(\theta) = \min\left(\frac{\pi_{\theta}(o_t|q)}{\pi_{\theta_{old}}(o_t|q)}A_t, \operatorname{clip}\left(\frac{\pi_{\theta}(o_t|q)}{\pi_{\theta_{old}}(o_t|q)}, 1 - \epsilon, 1 + \epsilon\right)A_t\right)$$

where:

- π_{θ} is the policy model and $\pi_{\theta_{\mathit{old}}}$ is the old policy model
- A_t is the advantage the difference between the reward and the value function

$$A_t = Q(s_t, a_t) - V(s_t)$$

Advantage vs Generalised

Advantage Function

- Measures how much better an action is compared to the baseline value function
- Can be high variance if using one-step TD
- Is noisy and has high variance during long episodes, making learning unstable
- No explicit method to adjust bias and variance

$$A_t = Q(s_t, a_t) - V(s_t)$$

Generalised Advantage Estimation

- A weighted sum of TD errors, smoothing the estimate
- Allows tuning via λ to balance bias and variance
- Ultimately smoother, more tunable, and more generalised than simulating the advantage function

$$A_t^{GAE} = \sum_{l=0}^{\infty} (\gamma \lambda)^l \delta_{t+l}$$

PPO is a powerful algorithm, but is computationally and memory intensive

- PPO uses the Generalized Advantage Estimation: $A_t = r_t V(s_t)$
 - ullet The difference between the reward at t and the predicted value of that reward
- In PPO the value model, $V(s_t)$, is trained alongside the policy model
 - Typically a model of comparable size to the policy model
 - Computationally and memory intensive to train

Training Using PPO

Group Relative Policy Optimization

- The advantage function for GRPO does not require training a value model
- Uses the average reward of multiple sampled outputs produced in response to the same question using the old policy, $\pi_{\theta_{old}}$
- Collects a sample of outputs and computes advantage as:

$$\widehat{A_t} = \frac{r_t - \text{mean}(\boldsymbol{r})}{\text{std}(\boldsymbol{r})}$$

KL Penalty in GRPO

- The KL (Kullback-Leibler) penalty quantifies the difference between the updated policy and the reference policy to ensure controlled deviation
- It is useful in that it:
 - Prevents over-exploration
 - Encourages stable learning
 - Has adjustable penalty strength as a hyperparameter
- It is an additional term in the optimization objective, thereby influencing gradient updates (keeping the policy within a trust region) while continuing to improve expected rewards

GRPO

Environment

- Hugging Face
- Provides pre-trained models for NLP and LLMs via transformers
- Supports LLM fine-tuning, RLHF, and fast model deployment
- Contains libraries for optimized text tokenization for efficient model training and inference
- Has Model Hub for sharing and Trainer API for fine-tuning and RL workflows

Agent

- Llama 3.1 8B Instruct
- 4-bit quantized model
 - Model weights are truncated
- Compact version of the Llama 3 series designed for efficiency
- Allows for deployment across devices and servers with limited resources
 - Suitable for a wider range of applications

QLoRa (Quantized Low Rank Adaptation)

- Full Fine-Tuning: Updates all d×d model weights for each layer
- LoRa: Uses matrix decomposition to approximate weight updates with two d×r matrices
- QLoRa: Compresses 16-bit float weights into a custom 4-bit integer format optimized for a normal distribution which preserves more resolution near 0

Training - Riddles

- Training on a dataset of 800, short answer riddles
- Targeting QKV, Output, Gate, Up and Down projection layers.

```
model, tokenizer = FastLanguageModel.from pretrained(
    model name = "meta-llama/meta-Llama-3.1-8B-Instruct",
    max sea length = 512.
   max lora rank = 64,
   load in 4bit = True,
   fast inference = True,
   gpu_memory_utilization = 0.8)
model = FastLanguageModel.get peft model(
    model.
    r = 64.
    target modules = [
        "q_proj", "k_proj", "v_proj", "o_proj",
        "gate proj", "up proj", "down proj",
   lora alpha = 64,
   use gradient checkpointing = "unsloth",
    random state = 3407)
```

Riddle: I have streets, but no pavement. I have cities, but no buildings. I have forests, yet no trees. I have rivers, yet no water.

Answer: A map

Riddle: I have keys but can't open locks. People make me and they use forks. In some houses, I'm big, in others small.

Answer: A piano

Training - Riddle Progress

Training - Physical Interaction

- Dataset of 2,000+ questions and answers for testing physical world commonsense
- Trained for nearly 4,000 steps
- Targeted the QKV, Output, Gate, Up and Down projection layers

Question: How do you shake something?

Option A: Move it up and down and side to side quickly.

Option B: Stir it very quickly.

Question: How do you use a capped pen?

Option A: Replace cap, put tip of pen to paper and move across paper.

Option B: Remove cap, put tip of pen to paper and move across paper.

Training - Physical Interaction

Model Evaluation Benchmark

- Evaluated using the AI2 Reasoning Challenge (ARC) dataset of grade school science questions
- Zero-shot learning to evaluate effectiveness of fine-tuning with a system prompt

Model	Without System Prompt	With System Prompt
Base Llama 3.1 8B	41.72%	66.04%
PIQA Tuned Llama 3.1 8B	-	50.46%
Riddler Tuned Llama 3.1 8B	42.24%	71.20%

Appendix