Universidad Autónoma de Baja California Facultad de Ciencias Químicas e Ingeniería

SISTEMAS EMBEBIDOS

Práctica 1 Entorno de Desarrollo Integrado (IDE)

Docente: Lara Camacho, Evangelina

Alumno: Gómez Cárdenas, Emmanuel Alberto

Matricula: 01261509

Objetivo

El alumno conocerá e instalará un entorno de desarrollo integrado para sistemas embebidos, con actitud proactiva y sistemática.

Equipo

Computadora personal con conexión a internet.

Teoría

Resumen sobre las diferencias entre los módulos ESP32 y ESP8266.

Ambos ESP32 y ESP8266 son SOC (System on Chip) basados en WiFi que cuentan con un procesador de 32 bits, funcionan en un rango de voltaje de 2.5V a 3.6 y comparten interfaces (UART, SDIO, SPI, I2C). A pesar de tener estas similutedes, tambien cuentan con diferencias claves, las cuales determinan que SoC tomar dependiendo de los requerimentos específicos del proyecto en el que se trabajará.

	ESP32	ESP8266
CPU	Xtensa Dual-Core 32-bit LX6	Xtensa Single-Core 32-bit L106
WiFi	802,11 b/g/n (2,4 Ghz)	802,11 b/g/n (2,4 Ghz)
	hasta 150mbps	hasta 72.2 Mbps
Bluetooth	Si	No
DAC	Dos canales DAC de 8 bits	No
ADC	SAR de 12 bits	SAR de 10 bits
Sensores	Táctil, Temperatura y Efecto Hal	No
GPIO	36	17
Memoria	520KB SRAM	RAM (<50KB)
	4MB FLASH	4MB FLASH
	448KB ROM	No ROM
Rango de Temperatura	- 40°C a + 85°C	- 40°C a + 125°C

Como se puede observar en la tabla anterior, el ESP32 es más potente y versátil que el ESP8266, ya que cuenta con características adicionales como Bluetooth, más GPIOs, sensores, entre otros. Sin embargo la ventaja del ESP8266 es que suele ser más económico, y por lo tanto puede ser suficiente para proyectos más simples.

Desarrollo

Debido a que ya contaba con *Visual Studio Code* y la extensión *Espress IDF* no necesité realizar ninguna configuración extra.

- 1. Abra el ejemplo de proyecto **BLINK** por medio de presionar F1 y escribir en el cuadro de texto **ESP-IDF: Show Examples Projects**
- 2. Haga clic en el siguiente icono para compilar el proyecto:

Programe un proyecto en un ESP32 y compruebe su funcionamiento
 https://drive.google.com/file/d/1BONqgtuode4MA0W7zOR3JmtfBGVQegOz/view?usp=drive_lin_k

4. Conecte un DIP-switch y 5 LEDs al ESP32. Realice las modificaciones necesarias al código de una manera que se desplieguen dos diferentes animaciones en los LEDs. El usuario puede elegir por medio del DIP-switch la animación a mostrar y también puede elegir la velocidad de la animación

https://drive.google.com/file/d/17kjNvV0xDNRIVURDKnlWQ11ueVXAXXUx/view?usp=sharing

Conclusiones y comentarios

Un buen IDE, a pesar de no ser necesario es una forma de proporcionar todas las herramientas necesarias, gracias a esto, tener un IDE ayuda a desarrollar código de una manera eficiente.

Dificultades en el desarrollo

Debido a que no fue necesario que hiciera la configuración inicial, no tuve dificultades en esta práctica.

Referencias

Redacción. (2020, July 29). ESP32 vs esp8266 ¿Cuales son las diferencias entre Ambos Módulos?. Descubrearduino.com | Inicio. https://descubrearduino.com/esp32-vs-esp8266/