9.1 Testing Hypotheses

Example: National Assessment of Adult Literacy (NAAL) survey scores (0-500)

- ▶ 233: can add numbers of 2 checks on a bank deposit slip
- 325: can price a meal from a menu
- ▶ 375: can trasnform from cents/oz to dollar/lb

275: can Balance a check book

We collect data from n=840 men ages 21-25 (assume $\sigma=59, \bar{X}_n=272)$

Hypothesis Test Assumptions

$$X \sim N(275, 59^2)$$

pvalue=
$$Prob(\bar{X}_n \le 272 | X \sim N(275, 59^2))$$

$$H_0: \mu \geq 275$$

$$H_A: \mu < 275$$

our test statistic under the H_0 : $\bar{X}_n \sim N(275, 59^2/840)$

$$z = \frac{\bar{x} - \mu}{\sigma/n} \sim N(0, 1)$$
 under H_0

 $z_{obs} = -1.474$ and the pvalue (one sided) is 0.0708.

Using R

xpnorm(272,275,59/sqrt(840))

##
If X ~ N(275, 2.036), then
P(X <= 272) = P(Z <= -1.474) = 0.07028
P(X > 272) = P(Z > -1.474) = 0.9297
##

0.20 - Z = -1.47

Applied to 9.1

$$H_0 = \theta \in \Omega_0$$
$$H_1 = \theta \in \Omega_1$$

Where $\Omega_0 \cup \Omega_1 = \Omega$: the entire sample space for heta

Our case the context of 9.1

$$\Omega_0 = [275, 500]$$

 $\Omega_1 = [0, 275)$

Test statistic: T = r(x)

Critical region: Reject H_0 if $T \leq -1.645$

```
R
```

xqnorm(.05)

```
##
## If X ~ N(0, 1), then
## P(X <= -1.644854) = 0.05
## P(X > -1.644854) = 0.95
##
```


Power Function

Def: The probability that a test procedure δ rejects H_0 for each value of $\theta \in \Omega$

$$\pi(\theta|\delta) = Pr(x \in C|\theta) \text{ for } \theta \in \Omega$$

An ideal power function:

$$\pi(\theta|\delta) = 0 \text{ for } \theta \in \Omega_0$$

 $\pi(\theta|\delta) = 1 \text{ for } \theta \in \Omega_1$

BUT probabilities of Error exist.

Errors In Hypothese thests

	H ₀ True	H ₀ False
Accept H_0	OK	Type II Error
Reject <i>H</i> ₀	Type I Error	OK

Prob(Type I Error)= Prob(Reject H_0 when H_0 is true)

$$=\pi(\theta|\delta)$$
 for $\theta\in\Omega_0$

Prob(Type II Error)= Prob(Do not reject H_0 when H_0 is false)

$$=1-\pi(\theta|\delta)$$
 for $\theta\in\Omega_1$

Scenarios

	Innocent	Gulity
Acquit	OK	Type II Error
Convict	Type I Error	OK

Which error is worse?

Convict an innocent person? Or let a criminal run free?

	Drug does not work	Drug works
Don't Approve	OK	Type II Error
Approve	Type I Error	OK

Which error is worse?

Type I Error: Drug is marketed but doesn't really work. Type II Error: Drug that could save lives is not available

Hypothesis Testing Strategy

Set upper bound for Type I error. Then among those tests, pick one that maximizes Power (minimizes Type II Error)

Require:

$$\pi(\theta|\delta) \leq \alpha_0 \text{ for } \theta \in \Omega_0$$

Size $\alpha(\delta)$ of a test δ

$$\alpha(\delta) = \sup_{\theta \in \Omega_0} \pi(\theta|\delta)$$

Checkbook example

- ► Find P(Type I Error)
- ightharpoonup Find Size of the test if $\mu=275$
- ightharpoonup Find power of the test if $\mu=270$

Pr(Type I Error)

$$Pr(Type\ I\ Error) = Pr(Reject\ H_0|H_0\ is\ tre)$$

$$= Pr(z \le 1.645 | \mu = 275)$$

$$= Pr(\frac{\bar{X}_n - 275}{59/\sqrt{840}} < -1.645)$$

$$= Pr(\bar{X}_n < 271.65)$$

So
$$\delta : \{x : \overline{(x)}_n < 271.65\} = \{x : z = \frac{X_n - \mu}{\sigma/\sqrt{n}}\}$$

Size of the test

$$\alpha(\delta) = \sup_{\mu \ge 275} \pi(\mu|\delta)$$

$$= \sup_{\mu} \Pr(\bar{X}_n < 271.65 | \mu \ge 275)$$

$$= \Pr(\bar{X}_n < 271.65 | \mu = 275)$$

$$= \Pr(Z < \frac{271.65 - 275}{59/\sqrt{840}})$$

$$= \Pr(Z < -1.645) = 0.05$$

Power of the test for μ =270

$$\pi(\mu|\delta) = Pr(\bar{X}_n < 271.65 | \mu = 270)$$

$$= Pr(Z < \frac{271.65 - 270}{59/\sqrt{840}})$$

$$= Pr(Z < 0.81) = 0.791$$

```
pnorm(0.81)
```

```
## [1] 0.7910299
```

Plot of Type I error, Type II Error, and Power

How do the following effect Power

Power=1-Pr(Type II Error) = Probability of corretly rejeting H_0

- \triangleright α : as α increases, Power increases
- \triangleright σ : as σ decreases, Power increases
- n: as n increases, Power increases
- \blacktriangleright μ : as μ decreases(futher away from μ_0), Power increases