

GEOG653 – Spatial Analysis

Lecture 5

Jianguo (Jack) Ma

Department of Geographical Sciences University of Maryland at College Park

Outline

- Announcements
- Line Analysis
 - Overview
 - Line Length
 - Line Density
 - Line Direction
 - Line Orientation
 - Linear Directional Mean
 - Linear Orientational Mean
 - Common ArcGIS tools dealing with lines
 - Track Analyst

Announcements

- Updates
 - COVID-19 in Maryland

• http://umdmpsgis.maps.arcgis.com/apps/opsdashboard/i ndex.html#/2ba7de6e8d9d433b9f26ad33474699dc

Announcements

Updates

GEOG653: Spatial Analysis

Spatial Analyst extension license

• https://pro.arcgis.com/en/pro-app/help/analysis/spatial-analyst/basics/enabling-the-spatial-analyst-

https://www.arcgis.com/

Announcements

• Lab 2

- Lab session on Tuesday
 - Common questions from Lab 2
 - Data processing
 - Calculations on Population Mean Centers
 - Demo on Exercise #3
- Exercises 4, 5, 6
- Lab 2, 3

Overview

- Using the same data and the same tool, the results from ArcMap might slightly differ that from ArcGIS Pro.
- Restrictions on data input
 - The results from using the software might be slightly different from that from manual calculations.

Overview

- Lines represent one dimensional objects, or linear features, e.g. road, streams, transmission & distribution lines, etc.
- Lines are made up of a series of interconnected points.
- A line typically starts and ends with a special point called a node, and the points that make up the rest of a line are called vertices.

Overview

- Depending on scale, the same entity can be represented either as a line or polygon.
 - Cartographic abstraction
 - Example: Potomac River

Overview

- Line objects are not limited to representing linear geographic features. They can also be used to represent phenomena or events that have beginning location and ending locations.
 - Not real objects
 - Example: wind directions and magnitude; animal migration (beginning and ending points only)

Line Length

- Length of individual line segment (on flat surface)
 - Pythagorean Theorem

$$d_{i} = \sqrt{(x_{i} - x_{j})^{2} + (y_{i} - y_{j})^{2}}$$

Line Length

Length of multiple line segments

$$L = \sum_{i=1}^{n} d_i$$

where d_i is the Euclidean distance of segment i.

Line Length

 To more accurately calculate the distance between aby two locations with latitudes and longitudes on the Earth's surface, we need to calculate the great circle distance.

- Line Length
 - Great Circle Distance
 - The distance of a line between two points on a globe.

13

GEOG653: Spatial Analysis

Line Length

- Great Circle Distance
 - The distance of a line between two points on a globe.
 - Based on latitude and longitude.
 - Haversine formula:
 - Assuming spherical globe.
 - $-R = Earth's radius (\sim 6,371km)$

$$\Delta = long2 - long1$$

Approximate distance: D = $a\cos(\sin(\tan_1)*\sin(\tan_2)+\cos(\tan_1)*\cos(\tan_2)*\cos(\cot_2)*\cos(\Delta))*R$

BALTIMORE/WASHINGTON... KE

Distance:

Scheduled

39°10'31"N, 76°40'5"

1938nm, 3589km

- Line Length
 - Great Circle Distance
 - Limitation Earth isn't really spherical
 - GCD is accurate to about 0.5%
 - Example The Great Circle Mapper
 - http://www.greatcirclemapper.net/

- Line Length
 - Great Circle Distance
 - Planar Distance vs. Great Circle Distance

ollege Park

Line Length

- Great Circle Distance
 - The difference between the distance calculated with Pythagorean Theorem and the great circle distance is minimal if the study area is small (e.g. city, county).
 - The need for accuracy depends on the nature of the application or analysis.
 - Navigation, land surveying (higher accuracy)
 - Traveling route between cities (lower accuracy)

GEOG653: Spatial Analysis

Line Length

- The length of multiple line segments can be problematic.
- The lengths of linear objects are dependent on the scale of measurement.

Line Length

- Using different measurement (e.g. meter vs. centimeter), the results will be different.
 - Example: What is the length of this river anyway?!

Length = 30,628 ft (measured in ft)

Length = 35,064 ft (measured in cm)

Line Length

- The complexity (i.e. dimension) of the linear features also affect the measurement.
 - Example: What is the length of this river anyway?!

Line Length

- The complexity (i.e. dimension) of the linear features also affect the measurement.
 - When the line feature becomes infinitely complex, it is approximating to 2D instead of linear (one dimension).

Line Length

- Fractals
 - A measure of how "complicated" a linear geographic object is.
 - <u>https://fractalfoundation.org/resources/what-are-fractals/</u>
 - Potential applications:
 - Geology
 - Biology
 - Medical
 - Forestry
 - Other

Line Density

Average total length of lines within a unit size of area

24

Line Analysis

Line Density

- Average total length of lines within a unit size of area
 - Very different from definition of point density.

$$L_D = \frac{(n-1) \bullet L}{n \bullet A}$$

n: the number of lines in the study area

L: the sum of all the line lengths

A: the area of the study area

- Line Density
 - Example: Drainage Density
 - Higher stream density → Higher flood potential

• Line Density

Example: major roads in Hillsborough County,
 Florida

• Line Direction & Orientation

- The trend of a set of line features is measured by calculating the average angle of the lines (i.e. directional mean).
- Direction represents the path of objects that move.
 - The line features have a beginning and an end.
 - Example: hurricane, water flow, disease outbreak, wildlife migration routes, etc.

Orientation

- The line features don't have start and end point.
- Example: earth quake fault lines

GEOG653: Spatial Analysis

- Line Direction & Orientation
 - Direction vs. Orientation

• Line Direction & Orientation

Direction vs. Orientation

- Line Direction & Orientation
 - Direction Units
 - Polar
 - North azimuth
 - South azimuth
 - Quadrant bearing

• Line Direction & Orientation

- Direction Units
 - Polar
 - Polar angles are measured counterclockwise from the positive x-axis starting at zero. Angular values increase in the counterclockwise direction and decrease in the clockwise direction.

• Line Direction & Orientation

- Direction Units
 - North Azimuth
 - In the north azimuth system, the azimuth of a line is the horizontal angle measured from a meridian to the line, measured in the clockwise direction from north.

• Line Direction & Orientation

- Direction Units
 - South Azimuth
 - In the south azimuth system, the angles are measured clockwise from south.

Line Direction & Orientation

- Direction Units
 - Quadrant Bearing
 - The quadrant bearing system divides the compass into four equal sections of 90 degrees. The bearing of a line is measured as an angle from the reference meridian, either the north or the south, and toward the east or the west.
 - Quadrant bearings are written as a meridian, an angle, and a direction.

- Line Direction & Orientation
 - About the angle:
 - The lines are considered to have two points even though there might be many vertices.
 - Only the start and end points count.
 - Each line is considered one unit long, i.e. unit vector.
 - Line direction is counterclockwise from the East (*x*-Axis).

GEOG653: Spatial Analysis

• Line Direction & Orientation

- About the angle:
 - The lines are considered to have two points even though there might be many vertices.
 - Only the start and end points count.
 - Each line is considered one unit long, i.e. unit vector.
 - Line direction is counterclockwise from the East (x-Axis).

- Line Direction & Orientation
 - Calculating Line Direction
 - Given a line with the start and end points as (x_{start}, y_{start}) and (x_{end}, y_{end}) ,

$$\theta' = \arctan \frac{(y_{end} - y_{start})}{(x_{end} - x_{start})}$$

 θ' takes a values between -90 and +90 degrees.

- Line Direction & Orientation
 - Calculating Line Direction
 - Determining line direction θ (counterclockwise from East)

 $\begin{aligned} x_{end} - x_{start} &> 0 & x_{end} - x_{start} &< 0 \\ y_{end} - y_{start} &> 0 & \theta = \theta \end{aligned} \qquad \theta = 180 + \theta \end{aligned}$ $\begin{aligned} y_{end} - y_{start} &< 0 & \theta = 360 + \theta \end{aligned} \qquad \theta = 180 + \theta \end{aligned}$

• Line Direction & Orientation

- Calculating Line Orientation
 - Given a line with end points as (x_{start}, y_{start}) and (x_{end}, y_{end}) ,

$$\theta'_{O} = \arctan \frac{(y_{end} - y_{start})}{(x_{end} - x_{start})}$$

 θ'_{o} takes a values between -90 and +90 degrees

$$\theta_O = \theta'_O \text{ if } \theta'_O > 0$$

 $\theta_O = 180 + \theta'_O \text{ if } \theta'_O < 0$

• Line Direction & Orientation

- Linear Directional Mean
 - It is the angle of a line that represents the mean direction of all the lines in the dataset.
 - It is not the mathematic mean or average of the angles of all the lines in the dataset.
 - Angles are on the circular scale.

Mathematic mean = $(355+15+20)/3 = 130^{\circ}$

The real direction mean is actually 10°

- Line Direction & Orientation
 - Linear Directional Mean

$$\theta_{R}' = \arctan \frac{\sum_{i=1}^{n} \sin \theta_{i}}{\sum_{i=1}^{n} \cos \theta_{i}}$$

 θ_i : the direction of line *i*

n: the total number of lines

GEOG653: Spatial Analysis

- Line Direction & Orientation
 - Linear Directional Mean
 - Determining directional mean θ_R (counterclockwise from East)

	$\sum_{i=1}^{n} \sin \theta_i \ge 0$	$\sum_{i=1}^{n} \sin \theta_i < 0$
$\sum_{i=1}^{n} \cos \theta_i > 0$	$\theta_R = \theta_R$ '	$\theta_R = 360 - \theta_R$ '
$\sum_{i=1}^{n} \cos \theta_i < 0$	$\theta_R = 180$ - θ_R '	$\theta_R = 180 + \theta_R$ '

- Line Direction & Orientation
 - Linear Directional Mean
 - Determining directional mean θ_R (counterclockwise from East)
 - Example:

Direction Mean			Orientati	on Mean	
Degree	Cos	Sin	Degree	Cos	Sin
30	0.866025404	0.5	30	0.866025	0.5
135	-0.707106781	0.707106781	-45	0.707107	-0.707106781
225	-0.707106781	-0.707106781	45	0.707107	0.707106781
Sum	-0.548188159	0.5	Sum	2.280239	0.5
Arctan	-0.739457697	-42.36781	Arctan	0.215859	12.367805
Theta		137.632195			

- Line Direction & Orientation
 - Linear Directional Mean
 - Determining directional mean θ_R
 - Example: verifying with the results using ArcGIS Pro

- Line Direction & Orientation
 - Linear Directional Mean
 - Determining directional mean θ_R

Example: verifying with the results using ArcMap

- Line Direction & Orientation
 - For the tool Linear Directional Mean to work properly, a minimum of 4 lines are required.
 - https://pro.arcgis.com/en/pro-app/tool-reference/tool-errors-and-warnings/110001-120000/tool-errors-and-warnings-110051-110075-110068.htm

Line Direction & Orientation

- The direction/orientation mean of lines are determined by the start and end points only.
 - Example: two sets of lines with same start/end points will have the same direction/orientation mean even though those two sets of lines have different shapes.

- Line Direction & Orientation
 - The direction/orientation mean of lines are determined by the start and end points only.

- Line Direction & Orientation
 - The direction/orientation mean of lines are determined by the start and end points only.

Line Direction & Orientation

- Why is it useful to calculate direction mean?
 - Compare the trend in a set of lines to other features to look for possible relationships.
 - Example: You can calculate the direction mean of a set of streams in the study area and compare it to the standard deviational ellipse for a species' habitat areas. You can find out if the habitat areas' orientation corresponds to the direction of streams, i.e. if the streams influence the locations of the habitat.

- Line Direction & Orientation
 - Linear Orientational Mean
 - Similar to calculating Linear Directional Mean
 - Same formula but different restrictions

$$\theta'_{O} = \arctan \frac{\sum_{i=1}^{n} \sin \theta_{Oi}}{\sum_{i=1}^{n} \cos \theta_{Oi}}$$

 θ_{Oi} : the orientation of the line i

n: the total number of lines

 θ_{Oi} : takes a value between -90 and +90 degrees

- Line Direction & Orientation
 - Linear Orientational Mean
 - Example: calculating the orientation mean of rivers in Maryland
 - Why is the angle different from the Direction Mean?
 - Go to Discussion Board.....

- Line Direction & Orientation
 - For the same set of lines, the directional mean often does not match the orientational mean.

• Line Direction & Orientation

- Circular Variance
 - Mean direction or orientation tells the trend of the lines, but does not tell the variation of the lines' directions or orientations.
 - Measures the variability in direction of lines.
 - The extent to which lines all point in the same direction.

55

Line Analysis

- Line Direction & Orientation
 - Circular Variance
 - Calculation:

$$S = 1 - \frac{\sqrt{\left(\sum_{i=1}^{n} \sin \theta_{i}\right)^{2} + \left(\sum_{i=1}^{n} \cos \theta_{i}\right)^{2}}}{n}$$

 θ_i : the direction of line i

n: the total number of lines

- Line Direction & Orientation
 - Circular Variance
 - Example: Biology ~ "Refined three-dimensional solution structure of insect defensin A" (i.e. proteins)
 - Comparing protein conformations

http://www.sciencedirect.com/science/article/pii/S0969212601001770

ArcGIS Tools

- Common ArcGIS tools
 - Creating lines from points or polygon boundaries
 - XY to Line (Data Management Tools)
 - Points to Line (Data Management Tools)
 - Polygon to Line (Data Management Tools)

ArcGIS Tools

- Common ArcGIS tools
 - Creating lines from raster data layers
 - Raster to Polyline (Data Conversion)
 - Stream to Feature (Spatial Analysis)
 - » Hydrological Modeling

ArcGIS Tools

- Common ArcGIS tools
 - Converting track intervals to line
 - Track Intervals to Line (Tracking Analyst)
 - » Calculates values that are computed from the difference between successively ordered features in a track
 - » A new line feature is created to represent track intervals and store the calculated values (distance, duration, speed, direction)

ArcGIS Tools

- Common ArcGIS tools
 - Manipulating lines

× Vertex

- Split Line at Point (Data Management Tools)
- Split Line at Vertices (Data Management Tools)
- Unsplit Line (aka Dissolve) (Data Management Tools)

ArcGIS Tools

- Common ArcGIS tools
 - Manipulating lines
 - Simplify Line (Cartography Tools)
 - Smooth Line (Cartography Tools)

• ArcGIS Tools

Tracking Analysis

- ArcGIS Tools
 - Tracking Analysis
 - Example: Eagle Migration 10 Eagles

- ArcGIS Tools
 - Tracking Analysis
 - Track Intervals to Line

- ArcGIS Tools
 - Tracking Analysis
 - Mean Linear Direction

66

THE END