公司金融第四次作业

Karry 计算金融交叉试验班

1.一个项目每年的现金流量为18000美元,持续10年,当前的投资成本为100000美元。如果必要报酬率为10%,那么是否接受该项目?如果必要报酬率是15%呢,是否接受?在什么贴现率水平下,拒绝和接受项目没有区别?

答: 由公式

$$NPV = \sum_{i=1}^{n} \frac{C_i}{(1+r)^i} - C_0$$

其中 C_i 为每年的现金流量, C_0 为初期投入资本

因此当必要报酬率为 10% 时:

$$NPV_1 = 18000 \times (1 - (1/(1 + 10\%)^{10}))/10\% - 100000 = 10602.28$$

此时投资的净现值为正,接受该项目

而当必要报酬率为 15% 时:

$$NPV_2 = 18000 \times (1 - (1/(1 + 15\%)^{10}))/15\% - 100000 = -9661.85$$

此时投资的净现值为负, 拒绝该项目

令 NPV = 0 解得 r = 12.41%

即在贴现率为 12.41% 时拒绝和接受项目没有区别

2.一个投资项目每年的现金流入分别为3000美元、4000美元、5000美元、4500美元,并且贴现率为15%。如果项目初始成本为5000美元,那么该项目的贴现回收期为多久?如果初始成本为8000美元呢?如果初始成本为10000美元呢?

答: 由题可以得到以下未来现金流贴现表

年度	贴现现金流量	累计现金流量
1	2608.70	2608.70
2	3024. 57	5633. 27
3	3287.58	8920.85
4	2572. 89	11493. 74

由于在一年内的现金流情况并不清楚,因此在计算一年内的时间时我直接 采用平均方法来计算

• 当项目初始成本为 5000 美元时, 贴现回收期为:

$$1 + (5000 - 2608.70)/3024.57 = 1.79$$
年

• 当项目初始成本为 8000 美元时, 贴现回收期为:

$$2 + (8000 - 5633.27)/3287.58 = 2.72$$
年

• 当项目初始成本为 10000 美元时, 贴现回收期为:

$$3 + (10000 - 8290.85)/2572.89 = 3.42$$
年

3.如果一个项目相关的贴现率是 8%,那么下面一组现金流量的获利能力指数为多少?如果贴现率是 12% 呢?如果贴现率是 20% 呢?

年度	现金流量(美元)
0	-24000
1	10000
2	12000
3	9000

答: 因为获利能力指数 PI 的计算公式为:

$$PI = \sum_{i=1}^n rac{C_i}{(1+r)^i}/C_0$$

故当贴现率为 8% 时: $PI = (\frac{10000}{1.08} + \frac{12000}{1.08^2} + \frac{9000}{1.08^3})/24000 = 1.11$

当贴现率为 12% 时: $PI = (\frac{10000}{1.12} + \frac{12000}{1.12^2} + \frac{9000}{1.12^3})/24000 = 1.04$

4.ABC公司2020年的利润表上列示了以下信息:销售收入=240万美元,成本=135万美元,其他费用=12万美元,计提折旧=15万美元,利息费用=10万美元,所得税=24万美元,股利支付=32万美元。除此之外,该公司2020年发行了18万美元的新股,偿还14万美元的长期债务。

- 求: (1) 该公司2020年的经营性现金流;
 - (2) 流向股东的现金流;
 - (3) 流向债权人的现金流。

答:

(1) 由公式:

经营现金流 = 息税前利润 + 折旧 - 税收 = 销售收入 - 总成本 - 税收

代入数据可得: 经营现金流 = (240 - 135 - 12) - 24 = 69 (万美元)

(2) 由公式: 流向股东的现金流 = 股利支付 - 发行新股净额

代入数据可得: 流向股东的现金流 = 32 - 18 = 14 (万美元)

(3) 由公式: 流向债权人的现金流 = 利息支出 - 净新增借款

代入数据可得: 流向债券人的现金流 = 10 - (-14) = 24 (万美元)

5.NY公司正在研究推出一种新产品的可行性。产品的预计市场需求如下表:

年度	1	2	3	4
市场需求	5000件	6000件	8000件	7000件

该种产品开始的价格为100美元一件,但随着市场供给的增加,其价格在 第三年下降为80美元一件。 为了生产该产品,公司需要购买新设备,预计需要一次性投入50万美元,该设备仅用于生产该产品,项目结束是预计残值为10万美元,该公司使用直线法计提折旧。

该项目的启动需要经营运资本为4万美元,随后,每年年末的经营运资本总额为当年销售额的 10%。该产品的单位变动成本为50美元一件,固定成本为每年3万美元,所得税率为25%。

求: (1) 该项目的年利润预测值(制表)

(2) 该项目的净营运资本变动值(制表)

答: (1) 该项目的年利润预测表如下

年度	1	2	3	4
单价	100	100	80	80
销量	5000件	6000件	8000件	7000件
销售收入	50万	60万	64万	56万
变动成本	25万	30万	40万	35万
固定成本	3万	3万	3万	3万
折旧	10万	10万	10万	10万
息税前利润	12万	17万	11万	8万
所得税	3万	4.25万	2.75万	2万
净利润	9万	12.75万	8.25万	6万

(2) 该项目的经营运资本变动值

年度	0	1	2	3	4
年末净营运资本	4万	5万	6万	6.4万	5.6万
净营运资本变动	-4万	-1万	-1万	-0.4万	0.8万
净营运资本回收	0	0	0	0	5.6万
净营运资本总变动	-4万	-1万	-1万	-0.4万	6.4万

6.假设NY公司的资本必要报酬率为12%,利用第5题的信息判断该项目是否可行。(求出每年的总现金流)(10分)

年度	0	1	2	3	4
息税前利润	0	12万	17万	11万	8万
折旧	0	10万	10万	10万	10万
所得税	0	3万	4.25万	2.75万	2万
经营性现金流	0	19万	22.75万	18.25万	16万
净营运资本总变动	-4万	-1万	-1万	-0.4万	6.4万
初始投资	54万	\	\	\	\
税后残值					
资本性支出	-50万	0	0	0	+10万
总现金流量	-54万	18万	21.75万	17.85万	32.4万
贴现现金流	-54万	16.07万	17.34万	12.71万	20.59万
净现值	12.71万				

由公式: 净现值 $NPV = \sum_{i=1}^{n} \frac{C_i}{(1+r)^i} - C_0 = 12.71$ (万美元) > 0 所以本项目可行。

7.运用CAPM 一只股票的贝塔系数是1.15, 市场的期望收益是10.6%, 无风险利率是4.5%, 这支股票的期望收益是多少?

答:由 CAPM 模型

$$E(R_i) = R_f + [E(R_M) - R_f] \times \beta_i$$

代入数据可得:

$$E(R) = 0.045 + (0.106 - 0.045) \times 1.15 = 11.52\%$$

即这支股票的期望收益是 11.52%

8.运用CAPM 一只股票的期望收益率是11.2%, 贝塔系数是1.15, 市场的期望收益率10.4%, 无风险收益必须是多少?

答:由 CAPM 模型

$$E(R_i) = R_f + [E(R_M) - R_f] imes eta_i$$

代入数据有:

$$E(R) = R_f + (0.104 - R_f) \times 1.15 = 11.2\%$$

可解得: $R_f = 5.07\%$

即无风险收益必须是 5.07%

- 9.运用CAPM 一只股票的贝塔系数1.13,期望收益是12.1%,无风险资产目前的收益率是3.6%。
- a. 投资于两个资产的组合期望收益是多少?
- b. 如果两个资产组合的贝塔系数是0.5, 组合的投资比重是多少?
- c. 如果两个资产组合的期望收益是10%, 贝塔系数是多少?

答: a. 设组合期望收益为 $E(R_n)$

$$E(R_p) = \sum_{i=1}^n P_i imes R_i = 12.1\% imes 50\% + 3.6\% imes 50\% = 7.85\%$$

即投资于两个资产的组合期望收益是 7.85%

b. 设股票资产的投资比重为 p 则有:

$$eta = \sum_{i=1}^n P_i imes eta_i = p imes 1.13 + (1-p) imes 0$$

解得: p = 0.443

即股票资产的投资比重为 44.3% 无风险资产的投资比重为 55.7%

c. 设此时股票资产的投资比重为 P 则有:

$$E(R_p) = \sum_{i=1}^n P_i imes R_i = 12.1\% imes (1-P) + 3.6\% imes P = 10\%$$

因此组合的 β 系数为 $P \times 1.13 + (1-P) \times 0 = 0.851$

10.资产W的期望收益是11.9%,贝塔系数是1.2,如果无风险利率是4%,完成下面资产W和无风险资产的表格,通过画图揭示组合的期望收益和贝塔系数之间的关系,直线斜率是多少?(10分)

答: 本题中核心使用以下两个公式

• 组合期望收益满足: $E(R_p) = \sum_{i=1}^n P_i \times R_i$

• 组合的 β 系数满足: $E(\beta) = \sum_{i=1}^{n} P_i \times \beta_i$

组合中W的百分比(%)	组合期望收益(%)	组合的贝塔系数
0	4	0
25	5. 97	0.3
50	7. 95	0.6
75	9.925	0.9
100	11.9	1.2
125	13.88	
130	15.85	1.8

组合的期望收益和贝塔系数之间的关系图如下:

