Tutorial 4: Computer Architecture

December 8, 2019

- 1. Given the Figure 1 below.
 - (a) Bus is a physical connection to transfer data inside computer systems.
 - (b) Multipoint bus
 - (c) Answer
 - i. **Data bus:** Transports data between the memory CPU, memory, and input and output.
 - ii. Address bus: Specifies data receipient, and identifies source and destination of data on data bus.
 - Control bus: Provide control for synchronization & control of bus & modules connected.

	Point-to-point bus	Multipoint bus		
2.	One sender, one receipient	Multiple sender, multiple receipient		
	Data is sent directly to the receipient	Data is broadcasted to all possible receipient		

- (a) Diff 1: Bus carry from specific to specific. Multipoint: Bus connect several devices together
- (b) Bus lines: Data bus & control bus. Data bus, ADD bus, CTRL bus
- (c) Diagram: CRL U AL
 - i. CMP CMP CMP CMP
- (d) Diagram
- 3. Answer
 - (a) When attempting to retrieve data, MAR holds the address of the data to be used by CPU
 - (b) MDR will retrieve and store a copy of data pointed by MAR inside the RAM for read access
 - (c) MDR is responsible for storing data back into the RAM if write operation is carried out by the ${\rm CPU}$
- 4. Answer

(a) Answer

- i. IR stores the current instruction being executed by the CPU.
- ii. PC stores the address of the next instruction to be executed by the CPU.
- iii. A: A register used for holding data for processing by the CPU and data transfer

(b) Answer

- i. They form the machine cycle inside the LMC. The LMC's fetch operation involves the MAR and MDR. Whereas the LMC's execute operation involves the IR, PC, and A.
- (c) The ADD operation by the LMC, which involves the full fetch-execute cycle
 - i. The CPU copies the address pointed by the PC into the MAR to retrieve the next instruction.
 - ii. The MDR hold a copy of the data pointed to by the MAR for read-access.
 - iii. The IR retrieves the instruction stored in the MDR.
 - iv. The CPU decodes the instruction, and place the operand's address inside the MAR for copying purpose. A copy of the operand is returned to the MDR.
 - v. The CPU adds the adds the accumulator, A, and the MDR together, and stores the end result in the accumulator, A.
 - vi. The program counter is incremented to the next instruction.

5. Answer

- (a) $2^{36} = 6.87194767 \times 10^{10} bytes$
- 6. Answer (ASK Teacher, is this hex or decimal?)
 - (a) (Table not acceptable in final exam, must list down all the steps)

	Instruction		PC	MAR	MDR	A
,	20 (LOAD)	550	21	50	422	422
1.	21 (ADD)	151	22	51	008	430
	22 (STORE) Check with teacher	350	23	50	430	430

ii. Steps:

	Steps	Result			
	550 (Load)				
	$PC \rightarrow MAR$	MAR = 20			
	$MDR \rightarrow IR$	IR = 550			
	$IR\left[address\right] o MAR$	MAR = 50			
	MDR o A	A = 422			
	$PC + 1 \rightarrow PC$	PC = 21			
	151 (M	151 (MUL)			
	$PC \rightarrow MAR$	MAR = 21			
A.	$MDR \rightarrow IR$	IR = 151			
	$IR [address] \rightarrow MAR$	MAR = 51			
	$A \cdot MDR \to A$	$A = 23_{16} \cdot 5_{16} = 430$			
	$PC + 1 \rightarrow PC$	PC = 22			
	350 (STORE)				
	$PC \rightarrow MAR$	MAR=22			
	$MDR \rightarrow IR$	IR = 350			
	$IR[Address] \rightarrow MAR$	MAR = 50			
	$A \to MDR$	MDR = 430			
	$PC + 1 \rightarrow PC$	PC = 23			

7. Answer

(a)	Instruction	IR	PC	MAR	MDR	A
	20 (LOAD)	550	21	50	23 ₁₆	23_{16}
	21 (MUL)	151	22	51	516	$23_{16} * 5_{16} = AF_{16}$
	22 (STORE)	350	1	50	$23_{16} * 5_{16} = AF_{16}$	$23_{16} * 5_{16} = AF_{16}$

(b) Steps:

Steps	Result			
550 (Load)				
$PC \rightarrow MAR$	MAR = 20			
$MDR \rightarrow IR$	IR = 550			
$IR[address] \rightarrow MAR$	MAR = 50			
$MDR \rightarrow A$	$A = 23_{16}$			
$PC + 1 \rightarrow PC$	PC = 21			
$PC \rightarrow MAR$	MAR = 21			
$MDR \rightarrow IR$	IR = 151			
$IR[address] \rightarrow MAR$	MAR = 51			
$A \cdot MDR \to A$	$A = 23_{16} \cdot 5_{16} = AF_{16}$			
$PC + 1 \rightarrow PC$	PC = 22			
Continue				
$PC \rightarrow MAR$	MAR=22			
$MDR \rightarrow IR$	IR = 350			

8. Answer

- (a) RISC (Reduced instruction set computer)
- (b) Advantages of arthictecture (4 is enough, 1 extra):
 - i. Limited and simple instruction set. Execute at a faster clock speed, does not require complex hardware.
 - ii. **Registers-oriented instructions.** Reduces memory access, use registers to operate/hold frequently used instruction.
 - iii. **Fixed length/format instruction word.** Easy to identify, can be fetched and decodd independently -> pipelining.
 - iv. Limited addressing mode. Provide single address mode, speed up instruction executions.
 - v. Large bank of registers. Registers applied widely, reduce memory access.
- 9. Extra exercise
 - (a) PC -> MAR: 40
 - (b) MDR -> IR: 160
 - (c) $IR[address] \rightarrow MAR: 60$
 - (d) A: 150 + 25 = 175
 - (e) PC = 41
 - (f) A = 175
 - (g) MDr =

10.

- (a) PC: 68
- (b) MAR: 90
- (c) MDR: 333
- (d) IR: 390
- (e) A: 333
- (f) TraceLog
 - i. First part
 - A. PC to MAR: MAR = 65
 - B. MDR to IR = 590
 - C. IR [address] to MAR. MAR = 90
 - D. MDR to A. A = 111
 - E. PC + 1 = PC. PC = 66
 - ii. Second part
 - A. PC to MAR. MAR = 66

- B. MDR to IR. IR = 192
- C. IR[address] to MAR. MAR = 92
- D. A + MDR = A. A = 333
- E. PC + 1 = PC. PC = 67
- iii. Third part
 - A. PC to MAR. MAR = 67
 - B. MDR to IR. IR = 390
 - C. IR[address] to MAR. MAR = 90
 - D. A to MDR. MDR = 333
 - E. PC + 1 -> PC. PC = 68

1 Notes

- 1. For LMC remember:
 - (a) MAR
 - (b) MDR
 - (c) PC
 - (d) IR
 - (e) $A \rightarrow results$
- 2. FETCH (Must have this one first, then follow by one of those below)
 - (a) PC to MAR
 - (b) MDR to IR
 - (c) IR[address] to MAR
- 3. LOAD
 - (a) MDR -> A
 - (b) PC = PC + 1
- 4. Calculation
 - (a) MDR -> A
 - (b) PC + 1 -> PC
- 5. Store
 - (a) A -> MDR
 - (b) PC + 1 -> PC