Computational Science on Many-Core Architectures

360.252

Karl Rupp

Institute for Microelectronics Vienna University of Technology http://www.iue.tuwien.ac.at

Zoom Channel 95028746244 Wednesday, October 14, 2020

Introducing Myself

Current Positions

- Postdoctoral Researcher at IμE
- Co-Founder and Managing Director at BrickXter GmbH

Professional Interests

- Efficient computation on modern hardware
- Semiconductor device simulation
- Circuit design
- Making technology useful for "the average Joe"

Sideline Activities

- PETSc developer (https://www.mcs.anl.gov/petsc/)
- ViennaCL developer (http://viennacl.sourceforge.net/)

Course Content

Subjects

- Ahmdal's Law
- FLOPs, Bandwidth, and Latency
- Performance Modeling
- Graphics Processing Units (SIMT processing, thread block synchronization)
- Programming Models (Annotation-driven such as OpenMP, native such as CUDA)
- Field Programmable Gate Arrays
- Emerging Many-Core Architectures

Course Objectives

Main Objective

Maximize students' useful knowledge on using many-core architectures within the available time

Modalities

- 11 lectures (45 60 minutes each)
- 10 exercises (DIY-approach)
- Slides and exercise material: https://owncloud.tuwien.ac.at/index.php/s/xjvjXD1077CC4zv

Outcome

- Hands-on experience
- You will create some of the fastest GPU kernels in the world

Inspiration

Tell me and I forget.

Teach me and I remember.

Involve me and I learn.

Benjamin Franklin

Related CSE Courses

Term 1

- 360.242 Numerical Simulation and Scientific Computing I
- 101.826 Numerical Computation

Term 2

- 184.726 Advanced Multiprocessor Programming
- 101.773 Numerical Methods for PDEs

Grading

Part 1: Hands-On Exercises

- approx. 100 points over 10 exercises (excl. bonus points)
- approx. 40 percent of overall grade
- minimum of 50 percent of total points

Part 2: Oral exam

- oral exam (most likely virtual because of COVID-19)
- approx. 60 percent of overall grade
- "Fail" on oral exam means "Fail" on course

Many-Core Architectures

- High FLOP/Watt ratio
- High memory bandwidth
- (Usually) Attached via PCI-Express

AMD FirePro W9100 320 GB/sec

INTEL Xeon Phi 320 (220?) GB/sec

NVIDIA Tesla K20 250 (208) GB/sec

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2019 by K. Rupp

Theoretical Peak Performance

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Theoretical Peak Performance per Watt

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/space-ch

Theoretical Peak Performance (FLOPs) per Byte of Memory Bandwidth

Computing Architecture Schematic

- Good for large FLOP-intensive tasks, high memory bandwidth
- PCI-Express can be a bottleneck
- >> 10-fold speedups (usually) not backed by hardware

Details

- Workgroups consist of 32-64 hardware threads
- Up to 24 hardware workgroups
- Shared memory small: approx. 32-64 KB

Reminder: AVX

· One instruction for all elements of a vector register

:	:	:	:	:	:	:
:			/ T O \			
:	:	:	ODIT: L-XI	:	:	:
			OD(III-O)		•	
:	:	:	1 ' 1 '	:	:	:
		_				

Single Instruction Multiple Threads (SIMT)

- One instruction for all threads in workgroup
- Each thread has separate registers
- Efficient if all threads execute the same instruction

GDDR5

- Optimized for throughput
- · Channel width: multiple of 32 bits
- · High bus width: 256 bits, 384 bits

Structured Memory Access

- Memory controllers use 32/64/128 byte transactions
- Partial transactions degrade effective bandwidth

128 Byte	128 Byte	128 Byte
	,	
>	>	>
ζ	ζ	ζ

Host-Device Communication

- PCI-Express v2: 8 GB/sec max
- PCI-Express v3: 16 GB/sec max
- Latency: about 10 μs

