

Exame Especial de **Introdução aos Sistemas Electromagnéticos** Eng. Biomédica 2ºAno/1ºSemestre

25/02/2011 Duração: 1h

Parte I

- A parte I é constituída por 5 questões de escolha múltipla. (Das questões indicadas escolha, no máximo, 5 para responder)
- Para cada questão há uma única hipótese correcta.
- Cotação: Resposta correcta = 2; Resposta errada = -0,66
- Para anular uma resposta escrever "Anulado" na caixa respectiva.

1 – Considere num sistema de eixos ortonormado $\{\hat{x}, \hat{y}, \hat{z}\}$ a presença de uma carga pontual de valor q_1 =12 nC no ponto \vec{P}_1 =(0 \hat{x} +0 \hat{y} -5 \hat{z}) cm e de outra carga pontual de valor q_2 =- q_1 =-12 nC no ponto \vec{P}_2 =(0 \hat{x} +0 \hat{y} +5 \hat{z}) cm. Chama-se a este sistema de duas cargas de valor simétrico um dipolo eléctrico¹. Defina o potencial eléctrico como sendo nulo no infinito.

1.1 O campo eléctrico no ponto \vec{P} 4=(0 \hat{x} +0 \hat{y} -9 \hat{z}) cm é de:

A: $\vec{E}_3 = (5.4 \times 10^4 \hat{x} + 93 \times 10^5 \hat{y} + 0 \hat{z}) V/m$	B: $\vec{E}_{\beta} = (0 \hat{x} + 0 \hat{y} + 9.8 \times 10^4 \hat{z}) V/m$
C: $\vec{E}_{3} = (0 \hat{x} + 0 \hat{y} - 6.2 \times 10^{4} \hat{z}) V/m$	D: $\vec{E}_{\beta} = (0 \hat{x} + 0 \hat{y} + 4.9 \times 10^{3} \hat{z}) V/m$

1.2 O campo eléctrico no ponto \vec{P} 5= $(0 \hat{x} + 12 \hat{y} + 0 \hat{z})$ cm é de:

A: $\vec{E}_{3} = (5.4 \times 10^{4} \hat{x} + 93 \times 10^{5} \hat{y} + 0 \hat{z}) V/m$	B: $\vec{E}_{\beta} = (0 \hat{x} + 0 \hat{y} + 9.8 \times 10^4 \hat{z}) V/m$
C: $\vec{E}_{3} = (0 \hat{x} + 0 \hat{y} - 6.2 \times 10^{4} \hat{z}) V/m$	D: $\vec{E}_{3} = (0 \hat{x} + 0 \hat{y} + 4.9 \times 10^{3} \hat{z}) V/m$

1.3 Qual o valor do potencial eléctrico criado pela carga q_1 na posição da carga q_2 ?

	1 0	11		•	 12		
A: 1080 V		B: 0,	00 V	7			
C: 340 V			2845				

1.4 Qual é a energia de ligação do dipolo (a energia necessária para trazer as cargas do infinito até à sua posição final)?

A: $U = -13 \mu J$	B: U= 78 mJ
C: U= 36 µJ	D: U= - 94 nJ

1.5 Quanto vale o potencial eléctrico total sobre o plano central Γ =(0 \hat{z}) cm?

A: 1080 V	_	B: 0,00 V
C: 340 V		D: Depende do ponto sobre o plano.

¹ Muitos sistemas físicos, tais como átomos e moléculas ou mesmo antenas emissoras de rádio podem ser estudados em primeira aproximação como se fossem dipolos.

- **2.** Considere os três fios muito compridos e co-planares percorridos pelas correntes com as intensidades e sentidos representados na figura. A distância entre fios adjacentes é d= 3 cm.
- **2.1** O campo magnético sobre um ponto do fio central é de:

A: $\vec{B} = 13.3 \hat{z} \mu T$	B: $\vec{B} = -25,0 \hat{z} \mu T$
C: $\vec{B} = -25,0 \ \hat{x} \ \mu T$	D: $\vec{B} = 13.3 \hat{x} \mu T$

2.2 A força magnética sentida num metro do fio central é de:

A: $\vec{B} = 48.0 \hat{x} \mu N$	B: $\vec{B} = -75,0 \hat{z} \mu N$
C: $\vec{F} = -39.9 \hat{x} \mu N$	D: $\vec{B} = 55, 2 \hat{z} \mu N$

