

Aug 03, 2020

Target Guide Sequence Cloning Protocol

Skye Waterland¹, Yang Li¹

¹Baylor College of Medicine

Works for me dx.doi.org/10.17504/protocols.io.bij2kcqe

Dr. Shen's Lab Group Tech. support email: Skye. Waterland@bcm.edu

Skye Waterland

ABSTRACT

Create single gRNA vectors for targeted cloning utilizing CRISPR or CRISPR-based systems.

THIS PROTOCOL ACCOMPANIES THE FOLLOWING PUBLICATION

Improved vectors and genome-wide libraries for CRISPR screening . Sanjana NE, Shalem 0, Zhang F. Nat Methods. 2014 Aug;11(8):783-4. doi: 10.1038/nmeth.3047.10.1038/nmeth.3047PubMed 25075903

ATTACHMENTS

Lentivirus_Protocol.pdf

Addgene_ Protocol Bacterial Transformation.pdf

DO

dx.doi.org/10.17504/protocols.io.bij2kcqe

PROTOCOL CITATION

Skye Waterland, Yang Li 2020. Target Guide Sequence Cloning Protocol . **protocols.io** dx.doi.org/10.17504/protocols.io.bij2kcqe

MANUSCRIPT CITATION please remember to cite the following publication along with this protocol

Improved vectors and genome-wide libraries for CRISPR screening . Sanjana NE, Shalem O, Zhang F. Nat Methods. 2014 Aug;11(8):783-4. doi: 10.1038/nmeth.3047. 10.1038/nmeth.3047PubMed 25075903

KEYWORDS

Lentivirus vector, cloning, vector digestion, oligo annealing, CRISPR

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

IMAGE ATTRIBUTION

https://www.addgene.org/52963/

CREATED

Jul 14, 2020

LAST MODIFIED

Aug 03, 2020

PROTOCOL INTEGER ID

39258

protocols.io

08/03/2020

 $\textbf{Citation:} \ \ \text{Skye Waterland, Yang Li (08/03/2020).} \ \ \ \text{Target Guide Sequence Cloning Protocol} \\ \hat{\mathbb{A}} \hat{\mathbb{A}} \ . \\ \underline{\text{https://dx.doi.org/10.17504/protocols.io.bij2kcqe}} \\ \mathbf{Citation:} \ \ \ \mathbf{Citation:} \ \ \mathbf$

MATERIALS

NAME	CATALOG #	VENDOR
NEBuffer 3.1 - 5.0 ml	B7203S	New England Biolabs
T4 DNA Ligase - 20,000 units	M0202S	New England Biolabs
Agar		
lentiGuide-Puro	52963	addgene
double distilled water (ddH20)		
SOC Media		
1X TAE Buffer		
10X NEB T4 DNA ligase buffer		New England Biolabs
10X T4 PNK Reaction Buffer		New England Biolabs
ethanol		
10X PCR Buffer	10966-034	Life Technologies
LB-Broth Miller (= LB mix)	LMM0104	Formedium
One Shot™ TOP10 Chemically Competent <i>E. coli</i>	C404010	Thermo Fisher
BsmBl-v2	R0739L	New England Biolabs
HotStarTaq Plus DNA Polymerase (1000)	203605	Qiagen
dNTP Set (100mM each A C G T)	95038-256	Ge Healthcare

STEPS MATERIALS

NAME	CATALOG #	VENDOR
ddH20		
NEBuffer 3.1 - 5.0 ml	B7203S	New England Biolabs
lentiGuide-Puro	52963	addgene
double distilled water (ddH2O)		
10X T4 PNK Reaction Buffer		New England Biolabs
BsmBl-v2	R0739L	New England Biolabs
One Shot™ TOP10 Chemically Competent <i>E. coli</i>	C404010	Thermo Fisher
10X NEB T4 DNA ligase buffer		New England Biolabs
T4 DNA Ligase - 20,000 units	M0202S	New England Biolabs
ethanol		
LB-Broth Miller (= LB mix)	LMM0104	Formedium
SOC Media		
Agar		
1X TAE Buffer		
10X PCR Buffer	10966-034	Life Technologies
HotStarTaq Plus DNA Polymerase (1000)	203605	Qiagen
dNTP Set (100mM each A C G T)	95038-256	Ge Healthcare

MATERIALS TEXT

<u>lentiGuide-Puro</u>: RRID:Addgene_52963 <u>Sigma-Aldrich</u>: RRID:SCR_008988

EQUIPMENT

NAME	CATALOG #	VENDOR	
Snap Cap Microcentrifuge Tube or equivalent	07200210		
Mini-centrifuge	S67601B		
SimpliAmp Thermal Cycler	A24811		

NAME CATALOG # VENDOR

Oven 15-103-0510

DISCLAIMER:

This protocol is a modified version of the Zhang Lab's *GeCKOv2*Target Guide Sequence Cloning Protocol attached below based off of Joung, J., Konermann, S., Gootenberg, J.*et al.* Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. *Nat Protoc***12**, 828–863 (2017). https://doi.org/10.1038/nprot.2017.016

Other protocols modified/used in this protocol:

Bacterial Transformation, Addgene: https://www.addgene.org/protocols/bacterial-transformation/

More information about the specific lentiGuide-puro plasmid can be found here: https://www.addgene.org/52963/.

BEFORE STARTING

Design and order gRNA oligos from Sigma-Aldrich (RRID:SCR_008988).

Lentiviral vector digestion

Digest and dephosphorylate 2μ (equivalent to 1μ g) of the

(9550) Noti

(9550

Image attribution: https://www.addgene.org/52963/

with

Citation: Skye Waterland, Yang Li (08/03/2020). Target Guide Sequence Cloning ProtocolÃÂ . https://dx.doi.org/10.17504/protocols.io.bij2kcqe

for **© 03:30:00** at § 37 °C.

1.1 Add **□40** µI

to a **1.5 mL**

07200210 👄

1.2 Add **□5** µl of

to solution.

1.3 Add **□3 μl** of

to solution.

1.4 Add $\mathbf{2} \mu$ of

to solution.

1.5 Close cap on microcentrifuge tube and place in

for \bigcirc **00:00:10** on until all of the solution is at the bottom of the tube.

1.6 Place microcentrifuge tube with vector digestion mixture in a

on § 55 °C

1.7 Close lid and set a timer for © 01:00:00

⋈ protocols.io 5 08/03/2020

6.2 Add **□0.5** µl

6.3 Vortex, microcentrifuge, and then place phosphorylation/annealing reaction in a

with the following settings: § 37 °C for © 00:30:00 , § 95 °C for © 00:05:00 , and then ramp down to § 25 °C at § 5 °C / © 00:01:00 .

Setting up and incubating the ligation reaction

7 Place **4.8** μl of

in a microcentrifuge tube.

7.1 Add **□2.2** µI

7.2 Add $\mathbf{1}$ μ I each of

, diluted oligo duplex from $\, \odot \, \mathbf{go} \, \, \mathbf{to} \, \, \mathbf{step} \, \, \mathbf{\#6} \,$, and

.

7.3 Lightly vortex, microcentrifuge, and incubate at room temperature for \bigcirc 02:00:00 - \bigcirc 03:00:00

Transformation into E. coli bacteria

8 Take competent cells

out of \S -80 °C and thaw on ice (00:20:00 - 00:30:00).

- 9 Remove Agar Ampicillin Plates **250 μl** from δ 4 °C and let warm up to room temperature.
- 10 Set up a sterile environment for your bench area by wiping down your bench with at least 70%

and lighting a bunsen burner.

11 Add 100 μl of E.coli cells to 10 μl of DNA in a microcentrifuge tube next to the bunsen burner.

- 11.1 Gently flick tube a few times with your finger to mix.
- 12 Incubate the competent cell/DNA mixture on ice for **© 00:30:00**.
- Heat shock transformation tube(s) by placing into water bath at 8 42 °C for © 00:00:30 © 00:01:00
- 14 Place the transformation tube(s) back on ice for \circlearrowleft 00:02:00.
- 15 Add **□250** µl

(without antibiotic) or

to the tube(s).

- Place tube(s) in § 37 °C shaking incubator for 00:45:00 00:00:00.
- 17 Plate all of transformation onto LB agar plate(s) with ampicillin.

18 Incubate plates at § 37 °C overnight.

Colony Selection and Suspension Growth

- 19 Select 10-15 colonies from each agar plate to suspend in an LB solution.
 - We originally selected only 4 colonies from each plate, but did not have a successful PCR. To increase chances of successfully amplifying the plasmid vector, we suggest picking 10-15 colonies.
- 20 Place each colony in a tube with **□3 mL** of LB.
 - Reminder to work in an aseptic area when handling the bacterial colonies.
- 21 Place tubes into shaking incubator at § 37 °C overnight.
 - Strong suggestion to do this whole section sometime in the late afternoon (~4-5pm), so that you can run PCR for the bacterial plasmids you collect the next morning (~16 hours later). More than 24 hours of incubation can cause other non-ampicillin resistant bacteria to grow in the suspension tubes.

Run PCR for Bacterial Plasmids

Proportions for the Master PCR Mix are below. Simply multiply each value by the same amount (x 10, 15, etc.) according to how much master mix you think you'll need to run your sets.

22.1

Add **15.875** μl

, **⊒2.5** μl

- x35 cycles steps 2-4.
- 5) 72 for 10mins.

PCR product is about 200bp.

Running Gel for PCR

Prepare a gel of 2% concentration. Run gel and examine bands. Desired band length is about 200bp with the gRNA insertion.

Congrats!

You have successfully transformed a lentiviral vector with your gRNA sequence of interest! For confirmation, feel free to sequence your vector.