Review of Operating System Principle

Li-Xudong

leexudong@nankai.edu.cn

OSP Contents

- OS Overview
- Processes And Threads
- Memory Management
- File Systems
- Input/Output
- Advanced Topics
- Operating System Design
- OS Case Studies

leexudong@nankai.edu.cn

OSP Contents

- Processes And Threads
- Memory Management
- File Systems
- Input/Output
- Advanced Topics
- Operating System Design
- OS Case Studies

What is an operating system?

OS Overview

- Computer hardware overview
- What is an operating system?
- The evolution of operating systems
- Operating system concepts
 Process, address spaces, file, input/output
 Protection, shell

 - -System calls
- The operating system categories
 - Batch, Interactive, Real-Time
- Operating system structures
- Operating system Evaluation

leexudong@nankai.edu.cn

Key to Computer System Overview

- Computer hardware componentsJohn von Neumann Architecture
- CPU, Instruction
 - Kernel Mode: Privileged instruction User Mode: Unprivileged instruction
- Memory Storage Architecture
 Cache Memory
- Bus
- Clock
- I/O Device
 - Disk, Tape, IDE, SATA, USB, SCSI
- Booting Operating System

Key to Cont., Operating System Overview

- Viewpoints of OSExtended Machine
 - -Resource Manager
- OS development driving force
- Multi-programming, Time-sharing, Concurrent, Parallel, Multi-cores, Multi-processors
 Operating System Functions
- OS Characteristics
 - -Concurrent, Shareable, Virtualization, Asynchronous
- System call, Trap, Library

leexudong@nankai.edu.cn

OSP Contents

- OS Overview
- Memory Management
- File Systems
- Input/Output
- Advanced Topics
- Operating System Design
- OS Case Studies

leexudong@nankai.edu.cn

Processes And Threads

- Process Model
- Thread Model
- Process/Thread Scheduling
- Inter-Process Communication (IPC)
- Deadlock

xudong@nankai.edu.cn

Key to Process/Thread Model

- Process Running
 - Sequential Processes

 - Parallel Processes Directed Acyclic Graph (DAG)
- Process Model

 - What is Process? Process Characteristics
- Dynamic, Concurrent,
 Independence, Asynchronous
 Process Creation, Termination, State
 Process Hierarchies
- Process Control Block (PCB), PID

xudong@nankai.edu.cn

Key to Process/Thread Model

- Thread Model

 - What is Thread? Thread Creation, Termination, State
- Thread HierarchiesThread Control Block, TID, Private Stack
- Implementing Threads

 User-level Thread, Kernel-level Thread

 Hybrid Thread

 - Comparison of User-level and Kernel-level Thread
- Scheduler Activations
- Pop-up Threads
- Making Single-Threaded Code *Multithreaded*
- Comparison of processes and threads

Key to Scheduling

- 3+1 Scheduling

 - High Level Scheduling (Job) Intermediate-Level Scheduling (Memory) Low Level Scheduling (Process/thread)
- Process/Thread Scheduling
 - Process Behavior: Compute-bound, I/O-bound
 - Scheduler

 - Scheduling algorithm
 preemptive scheduling, non-preemptive scheduling
 When to Schedule?
- Scheduling Algorithm Goals

 - Fairness, Policy enforcement, Balance Throughput, Turnaround Time, CPU utilization Response Time, Proportionality Meeting deadlines, Predictability

Key to Scheduling

- Scheduling in Batch Systems
 - First Come First Served
 - Shortest Job First, Shortest Remaining Time Next
- Scheduling in Interactive Systems

 - Round-Robin Scheduling
 Priority Scheduling, Multiple Queues
 Shortest Process Next, Guaranteed Scheduling
- Lottery Scheduling, Fair-Share Scheduling

 Scheduling in Real-Time Systems

 Hard real time, soft real time

 Periodic, aperiodic
- Policy versus Mechanism
- Thread Scheduling

leexudong@nankai.edu.cn

Cont.,

Cont.,

Kev to IPC

- Race Conditions
- Critical Regions
- Mutual Exclusion with Busy Waiting
 - Disabling Interrupts
 - Lock Varīables

 - Strict Alternation Peterson's Solution TSL Instruction
- Swap Instruction Primitives(原语): Sleep and Wakeup
- Priority Inversion Problem(优先权倒置)

leexudong@nankai.edu.cn

Key to IPC

- Mutual Exclusion
 - Semaphore, Semaphores Set
 - Mutex
 - Event Counter
 - Condition Variable
 - Monitor
 - Message Passing
- Synchronization
 - -Barriers
- Data Communication
 - -Pipe, Shared Memory, Message

exudong@nankai.edu.cn

Key to IPC

- Classical IPC Problems
 - -The Producer and Consumer Problem
 - (The Bounded-Buffer Problem)
 - -The Dining Philosophers Problem
 - -The Readers and Writers Problem
 - Readers Have Priority
 - Writers Have Priority
 - -The Sleeping Barber Problem

exudong@nankai.edu.cn

Cont.,

Key to Deadlock

- What is Deadlock?
- Preemptable and Nonpreemptable Resource
- Four Necessary Conditions for Deadlock

 Mutual exclusion, Hold and wait,
 No preemption, Circular wait

 Deadlock Modeling: Resource allocation Graphs
 The Ostrich(党岛) Algorithm
 Deadlock Detection
- Deadlock Detection

 - Detection with One Resource of Each Type Detection with Multi-Resources of Each Type
- Deadlock Recovery
 - Preemption, Rollback, Killing Process

Key to Deadlock

- Deadlock Avoidance
 - Resource Trajectories
 - <u>Safe</u> State, Unsafe State
- Banker Algorithm
 Deadlock Prevention

 - Attacking One of the Four Conditions
 SPOOLing, Order resources numerically
- Other Issues Two-Phase Locking
 - Non-resource Deadlock: semaphore
 - Starvation
 - Comparison of Deadlock and Starvation
 - Live Lock

leexudong@nankai.edu.cn

leexudong@nankai.edu.cn

Cont.,

OSP Contents

- OS Overview
- Processes And Threads
- File Systems
- Input/Output
- Advanced Topics
- Operating System Design
- OS Case Studies

leexudong@nankai.edu.cn

Memory Management

- Program Loading and Linking
- Memory hierarchy
- Memory Address Space
- Basic Memory Management
- Virtual Memory Management
 Paging System
 Page Replacement Algorithms
- - Thrashing(科动): Causes, How to Avoidance Design Issues for Paging System Implementation Issues for Paging System
- Segmentation System

leexudong@nankai.edu.cn

Key to Basic Memory Management

- Partition-Based Memory Management
 - Fixed Partition, Dynamic Partition

 - Relocation, Protection *Dynamic Partition Allocation Algorithm **Free Partitions Management**: Linked List
- Fragmentation
- Memory Compaction
- Swapping(交换), Overlay(覆盖) Basic Paging Management
- Page table, TLB, Multi-Level Page table Inverted Page Table
- Basic Segmentation Management
 - -Segmentation table

exudong@nankai.edu.cn

Key to Dynamic Partition Allocation Algorithm

- First Fit Allocation AlgorithmNext Fit Allocation Algorithm
- Best Fit Allocation Algorithm
- Worst Fit Allocation Algorithm
- Buddy(伙伴式)Allocation Algorithm
- Quick Fit Allocation Algorithm

exudong@nankai.edu.cn

Key to Virtual Memory Management

- Principle of Locality
 - Time Locality
 - -Space Locality
- What is virtual memory?
 Required Paging
 Required Segmentation
- MMU: Memory Management Unit
- Virtual Memory Characteristics
 - -Discrete, Many times, Swap in out, Virtual
 - Required Paging System
 - Required Segmentation System

leexudong@nankai.edu.cn

Key to Page Replacement Algorithms

- The Optimal Page Replacement Algorithm
 The Not Recently Used Page Replacement Algorithm
 The First-In, First-Out Page Replacement
- Algorithm
- The Second-Chance Page Replacement Algorithm
- The Clock Page Replacement Algorithm
 The Least Recently Used (LRU) Page Replacement Algorithm
- Simulating LRU in Software
 The Working Set Page Replacement Algorithm
 The WSClock Page Replacement Algorithm

- Belady's AnomalyStack-like Page Replacement Algorithm

Key to Design Issues For Paging Systems

- Local versus Global Allocation Policies
- Load Control
- Page Size
- Separate Instruction and Data Spaces
- Shared Pages
- Shared Libraries
- Mapped Files
- Cleaning Policy
- Virtual Memory Interface

leexudong@nankai.edu.cn

Key to Implementation Issues For Paging System

- Operating System Involvement with Paging
- Page Fault Handling
- Instruction Backup
- Locking Pages in Memory
- Backing Store
- Separation of Policy and Mechanism

leexudong@nankai.edu.cn

OSP Contents

- OS Overview
- Processes And Threads
- Memory Management
- File SystemsInput/Output
- Advanced Topics
- Operating System Design
- OS Case Studies

File Systems

- - Logical Structure, Physical Structure(Index-node) File Control Block(FCB), file descriptor, handle
- Directories
 Tree-Structured Directory
 Physical Structure
 File Share, File Protection, File Confidentiality
 File System Implementation
 VFS, Log-Structured File System
 Storage Management
 DISK, CD-ROM
 File System Readup

- DISK, CD-ROM

 File System Backup

 File System Reliability

 RAID: RAIDO, RAIDI, RAID5, RAID6, RAID10

 File System Performance
- Example File Systems

kudong@nankai.edu.cn

Key to Storage Management

- Block Size
- Disk Quotas
 - -Soft file limit -Hard file limit
- Free Space Management File Using Free Block
 - -Bitmap
 - -Free Block linked
 - Group Free Blocks linked (成组链接法)

Key to Disk

- Disk Hardware
- RAID
 - $-RAID 0, 1, 5, 1+0, \dots$
- Disk Formatting
- Disk Arm Scheduling Algorithms
 - First-Come First-Served (FCFS)

 - Shortest Seek First (SSF) Elevator(电梯) Algorithm (SCAN)
- Error Handling

leexudong@nankai.edu.cn

OSP Contents

- OS Overview
- Processes And Threads
- Memory Management
- File Systems
- Advanced Topics
- Operating System Design
- OS Case Studies

leexudong@nankai.edu.cn

Input/Output

- I/O Management TaskPrinciples of I/O hardware
 - I/O Architecture, I/O Devices, Device
- Principles of I/O Software

 Goals of the I/O Software

 Ways of I/O Controlled
- I/O Software Layers
- (Disks)
- Clocks
- Power Management

leexudong@nankai.edu.cn

Key to Goals of I/O Software

- device independence
- uniform naming
- error handling
- synchronous vs. asynchronous
- buffer
- shareable vs. dedicated devices

exudong@nankai.edu.cn

Key to Ways of I/O Controlled

- Programmed I/O
- Interrupt-Driven I/O
- I/O Using DMA
- I/O Using Channel
- Comparison of Above Four Ways

xudong@nankai.edu.cn

Key to I/O Software Layers

- Interrupt Handlers
- Device Drivers
 - -Block Device, Character Device
- Device-Independent I/O Software
 - -Uniform Interfacing for Device Drivers
 - -Buffering
 - Error Reporting
 - -Allocating and Releasing Dedicated Devices
- User-Space I/O Software SPOOLing

leexudong@nankai.edu.cn

Key to Interrupt

- Interrupt Concept
 - Interrupt Controller

 - Interrupt Controller
 Interrupt Event
 Outer Interrupt
 Inter Interrupt (trap)
 Interrupt Signal, PSW, Interrupt Vector
 Precise Interrupt, Imprecise Interrupt
- Interrupt Processing
 - Disabled Interrupt Interrupt Mask

 - Interrupt Priority
 - Interrupt Handler

Kev to Clock

- Clock Hardware
 - -Crystal Oscillator
 - •One-shot mode
 - Square-wave mode
 - -UTC: Universal Coordinated Time
- Clock Software
 - -Clock functions
- Soft Timer

leexudong@nankai.edu.cn

Key to User Interfaces

- - -Kevboard Software
 - Canonical mode
 - Mouse Software
- Output Software
 - Ťext Windows
 - GUI
 - The X Window System Microsoft Windows
- TerminalsTHIN Clients

leexudong@nankai.edu.cn

Key to Power Management

- Hardware Issues Disposable, Rechargeable
- Operating System Issues
 The Display

 - The Hard Disk

 - The CPU, GPU The Memory

 - Wireless Communication Thermal(热) Management
- Battery Management

 OS Driver Interface
- - Advanced Configuration and Power Interface, ACPI
- Application Program Issues
 Degrade Performance to Save Energy

OSP Contents

- OS Overview
- Processes And Threads
- Memory Management
- File Systems
- Input/Output
- Operating System Design
- OS Case Studies

exudong@nankai.edu.cn

Advanced Topics: Security

- Threats, Intruders, Accidental Data Loss
 Basics of Cryptography
 Protection Mechanisms

- Authentication
- Insider Attacks
 Logic Bombs, Trap Doors, Login Spoofing
 Exploiting Code Bugs
- - Buffer Overflow Attacks, Format String
- Attacks,...
 Malware(恶意软件)
 Trojan Horses, Viruses, Worms, Spyware
 Rootkits
- · Defenses

leexudong@nankai.edu.cn

Security: Key to Protection Domain

- Protection Domain
 - -Object
 - -Access Right
 - -Domain
- Principle
 - -Read to Know
- Access Matrix
 - -Access Control List(ACL, 访问控制表)
 - -Access Capabilities(访问权限表)

Advanced Topics: Virtualization and Cloud

- Requirements for Virtualization

- Sensitive Instructions
 Type 1 and Type 2 Hypervisors
 Key Technologies of Virtualization
- Virtual Appliances
- Cloud as a Service
- Cloud Computing

leexudong@nankai.edu.cn

OSP Contents

- OS Overview
- Processes And Threads
- Memory Management
- File Systems
- Input/Output
- Advanced Topics
- Operating System Design OS Case Studies

leexudong@nankai.edu.cn

Operating System Design

- Goals of OS Design
- Why is it hard to design an OS?
 Operating System Standards
 Interface Design

- Implementation
- Performance
- Evaluation of the operating system
- Project ManagementTrends in Operating System Design

exudong@nankai.edu.cn

Key to Operating System Design

- Design & Runtime Architecture
 - Monolithic Systems
 - Layered Systems Micro kernels

 - Client-Server Model
 - Object-Oriented
 - Exokernels

 - Monitor Virtual Machines

exudong@nankai.edu.cn

Cont.,

Key to Operating System Design

- Implementation

 - Mechanism versus Policy Static Versus Dynamic Structure
- Performance
 - Space-Time Trade-offs Caching
- Evaluation of the operating system
 - Performance
 - Reliability, Availability, Maintainability
 MTBF 平均故障时间
 MTTR 平均故障修复时间

 - Portability

leexudong@nankai.edu.cn

Key to Operating System Design

- Trends in OS Design
 - Multi-core

 - Large Address Space, Network Parallel and Distributed Systems
 - Multimedia
 - Battery-Powered Computers Embedded Systems

 - Sensor Nodes

Key to Operating System Design • Project Management - The Mythical Man Month - No Silver Bullet 银弹

OSP Contents

- OS Overview
- Processes And Threads
- Memory Management
- File Systems
- Input/Output
- Advanced Topics
- Operating System Design
- OS Case Studies

leexudong@nankai.edu.cn

OS Case Studies

- Linux
- Windows Research Kernel
- Open Solaris
- FreeBSD
- MacOS
- Android
- i0<u>S</u>
- . . .

eexudong@nankai.edu.cn