Quantum Computing Implications and Potential Impacts on Machine Learning

Lesson 10 - Section 4

PROFESSIONAL & CONTINUING EDUCATION

Agenda

What is Quantum Computing What can it be used for What tools exist today

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

What is Quantum Computing?

We first must start with a clear understand of classical computing or CC

CC is based on a binary system of 1s and 0's To encode information we use bits which are either on of off (1 or 0)

'A' for example is 065 or 1100001 and 'a' is 097 or 1000001

PROFESSIONAL & CONTINUING EDUCATION

CC Review

In CC bits formed bytes (8 bits)

These can be combined into larger and larger collections of information:

- -kilobytes (KB) 1000 bytes or 10³ bytes or 8K bits
- -megabytes (MB) 1000KB
- -gigabytes (GB) 1000MB
- -terabytes (TB) 1000GB
- -petabytes (PB), exabytes (EB), zettabyte, (ZB), yottabyte (YB)... etc.

PROFESSIONAL & CONTINUING EDUCATION

Difference between a quantum speed up and current microprocessors

- We've been increasing the number of bits we can process against from 8-bit to 16, 32 and now 64-bit processors.
- Theoretically, quantum is x² an exponential speed up.

bit	qubit
1	2
2	4
4	16
8	256
16	65536
32	4.29E+09
64	1.84E+19
128	3.4E+38

Binary Representation vs. Quantum

Classical Bit

Qubit

One out of 2^N Possible Permutations

ALL of 2^N Possible Permutations

 $a_1 \mid 0000 \dots 0 \mid + a_2 \mid 1100 \dots 0 \mid + a_3 \mid 1110 \dots 0 \mid + a_3 \mid 1111 \dots 1 \mid$ PROFESSIONAL & CONTINUING EDUCATION UNIVERSITY of WASHINGTON

States of a Qubit

Parallel Computing at the Atomic Level

Qubits increase storage capacity <u>exponentially</u>
Can do operations on all superpositions...like parallel computation only much better

- -One math operation on 2ⁿ numbers encoded with n bits requires 2ⁿ steps or 2ⁿ parallel processors
- –The same operation on 2^n numbers encoded by n qubits takes $\underline{1}$ step

This makes complex problems much easier

PROFESSIONAL & CONTINUING EDUCATION

Important Concepts for Quantum Algorithms

Superposition – alignment and initialization

Quantum interference

- constructive vs. destructive

Entanglement

Wavelets

Measurement

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

Will Quantum replace Classic Computing?

Will Quantum Replace Classic Computing?

Not all problems are applicable to quantum computing

Many, if not most computing can easily and efficiently be conducted

As we do more, we'll find even more interesting ways to use them, but for now, classic computing is safe from extinction

PROFESSIONAL & CONTINUING EDUCATION

How QC Works

We determine the number of qubits needed

 Initialize the qubits by aligning them to the same superposition state

Use quantum algorithms to "entangle" them into a common pool of potential interactions

 Use interference to cause quantum state changes that hopefully reinforce the signal and reduce the noise.

Lastly we use algorithms to measure these states

Hardware Challenges

Qubits are fragile—they are susceptible to noise

-Breakthroughs in "topological" qubits are trying to address this by separating the memory from the calculation—storing it "globally"

Qubits also require extreme cold—colder than deep space (455°F) at -459°F—near absolute zero

- -Quantum computers they are building need to be kept at -452°F
- Cryogenic systems are needed in order to maintain these temperatures

PROFESSIONAL & CONTINUING EDUCATION

Software Challenges

Familiarity with "cloud" computing is helpful

Quantum computing is unlike classical computation systems and requires its own language

 Because of the difference in the way that qubits work and encode information, it's a bit like programming a "tide pool" of qubits there's a lot of complexity and power in that capability

Today you can access SDKs that allows a developer to remotely access a simulated quantum computer

PROFESSIONAL & CONTINUING EDUCATION

UNIVERSITY of WASHINGTON

Summary

- >Quantum hardware, software and applications will be significantly different than classical systems.
- >They are not ubiquitously better at all computing applications
- >Eventually we could choose a Quantum accelerator as easily as we select GPUs and FPGAs
- >This area is changing rapidly and will radically change the way we do computing in the future

Emerging Trends

Lesson 10

PROFESSIONAL & CONTINUING EDUCATION