Aula 15 - Diferenciais e incrementos

Muller Moreira S Lopes

Universidade Federal do Rio Grande do Norte

4 de outubro de 2023

Introdução

Definição de derivada

Seja uma função contínua e diferenciável y=f(x):

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Formulação alternativa

Seja uma função contínua e diferenciável y=f(x) e os pontos x_0 e x_1 , tal que $x_1-x_0=\Delta x$:

$$\frac{dy}{dx}(x_0) = \lim_{\Delta x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

Introdução

Definição de derivada

Seja uma função contínua e diferenciável y = f(x):

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Formulação alternativa

Seja uma função contínua e diferenciável y=f(x) e os pontos x_0 e x_1 , tal que $x_1-x_0=\Delta x$:

$$\frac{dy}{dx}(x_0) = \lim_{\Delta x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

Incrementos:

- : em x: $\Delta x = x_1 x_0$.
- : em y: $\Delta y = f(x_1) f(x_0)$.

O que acontece quando o incremento em \boldsymbol{x} tende a zero? Diferenciais.

- : $dx = \lim_{\Delta x \to \Delta x}$.
- : $dy = \lim_{\Delta x \to \Delta y}$.

Incrementos:

- : em x: $\Delta x = x_1 x_0$.
- : em y: $\Delta y = f(x_1) f(x_0)$.

O que acontece quando o incremento em \boldsymbol{x} tende a zero?

Diferenciais.

- : $dx = \lim_{\Delta x \to \Delta} x$.
- : $dy = \lim_{\Delta x \to \Delta y}$.

Incrementos:

- : em x: $\Delta x = x_1 x_0$.
- : em y: $\Delta y = f(x_1) f(x_0)$.

O que acontece quando o incremento em \boldsymbol{x} tende a zero? Diferenciais.

- : $dx = \lim_{\Delta x \to \Delta x}$.
- : $dy = \lim_{\Delta x \to} \Delta y$.

Incrementos:

- : em x: $\Delta x = x_1 x_0$.
- : em y: $\Delta y = f(x_1) f(x_0)$.

O que acontece quando o incremento em \boldsymbol{x} tende a zero? Diferenciais.

- : $dx = \lim_{\Delta x \to \Delta x}$.
- : $dy = \lim_{\Delta x \to} \Delta y$.

Idéia da aula

Transmitir a idéia de que a notação $\frac{dy}{dx}$ pode ser usada para representar uma razão de diferenciais ao invés de uma operação.

Formula da aproximação linear

Seja
$$\frac{dy}{dx} = f'(x)$$
, então:

$$dy = f'(x)dx.$$

Consequantemente, para valores pequenos de Δx :

$$f(x + \Delta x) \approx f(x) + f'(x)\Delta x.$$

$$f(x + \Delta x) \approx f(x) + dy$$
.

A penúltima relação são os primeiros termos de uma relação conhecida como série de Taylor (mas isso é matéria para cálculo 2).

Formula da aproximação linear

Seja $\frac{dy}{dx} = f'(x)$, então:

$$dy = f'(x)dx.$$

Consequantemente, para valores pequenos de Δx :

$$f(x + \Delta x) \approx f(x) + f'(x)\Delta x.$$

$$f(x + \Delta x) \approx f(x) + dy$$
.

A penúltima relação são os primeiros termos de uma relação conhecida como série de Taylor (mas isso é matéria para cálculo 2).

Aproximação linear

Erros

É esperado que tais aproximações produzam erros, definidos como:

- Erro médio: $\epsilon = \frac{\Delta y}{y}$
- Erro percentual: erro medio, mas escrito em porcentagem.

Observe que o erro não é uma medida exata em que voce poderia usa-la para reconstruir o valor real da função, mas é uma estimativa do quão errada pode ser sua medida.

Exemplo

Aproximação linear

Mostre que, para valores pequenos de $a \in \mathbb{R}$, temos que:

$$sen(a) \approx a$$

(esta aproximação é bastante usada em física para estudar pequenas vibrações)

Gráfico do exercicio

Exercício 1

Estimativa

Sabendo que $\left(\frac{15}{16}\right)^3=0.824$, estime o valor de $\left(\frac{16}{15}\right)^3$

Exercício 2

Estimativa

Sabendo que $sen\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$, estime o valor de $sen\left(\frac{4\pi}{15}\right)$. (obs: $\frac{4\pi}{15}$ radianos são 48^o)

Exercício 3

Estimativa

Seja um balão esférico cujo raio foi medido como 12cm e com erro máximo de $\pm 0.06cm$. Aproxime o erro máximo cometido no cálculo do volume desse balão.