Institut de Financement du Développement du Maghreb

Concours de recrutement de la 39 ème Promotion Assurance

Techniques Quantitatives

Juin 2022 Durée: 1 h 30

Remarques:: aucun document n'est autorisé

Le sujet comporte 2 pages .

Exercice 1: (4 points: 2 +2)

On note σ_X et σ_Y les écarts types respectivement de deux variables non indépendantes X et Y

- 1- Comparer σ_{X+Y} à $\sigma_X + \sigma_Y$ Interpréter ce résultat en termes d'additivité du risque
- 2- Vérifier vos calculs sur l'exemple suivant : X et Y constituent un vecteur ayant pour matrice de variances- covariances :

$$\begin{bmatrix} 16 & -10 \\ -10 & 25 \end{bmatrix}$$

Exercice 2: (8 points: 2+2+2+2)

Le nombre X d'accidents commis par un client d'une compagnie d'assurance durant une période donnée suit une loi de Poisson de paramètre λ avec $\lambda > 0$

On rappelle que
$$P[X = x]$$
) = $e^{-\lambda} \frac{\lambda^x}{x!}$

- 1- Calculer E(X) et $E(X^2)$
- 2- Déterminer en fonction de λ la valeur du paramètre $\theta = P[X \le 1]$ En déduire un estimateur de θ en fonction d'un échantillon d'observations $X_1, X_2; \ Xn$ indépendantes et de même loi que X
- 3- En admettant que n est élevé, expliquer sans faire de calcul comment on peut déterminer un intervalle de confiance à un niveau $(1-\alpha)\%$ du paramètre λ où α est un scalaire strictement compris entre 0 et 1
- 4-La compagnie d'assurance a fixé pour chacun de ses clients le nombre de remboursement Y à m inférieur ou égal à 2

Déterminer la distribution de Y ainsi que son espérance mathématique. Conclure

Exercice 3 (8 points : 1.5+1.5+1.5+1.5+2)

Considérons un modèle, appelé le vrai modèle (VM) ayant K=2 variables explicatives centrées sans constante :

$$y_i = a_1 x_{1i} + a_2 x_{2i} + u_i$$
.

avec u_i des termes d'erreur ayant les propriétés classiques indépendantes d'espérances nulles et de variances σ^2 pour i = 1, 2, ..., n.

L'erreur de l'analyste (l'économètre) a conduit à omettre (oublier) la variable x_2 du vrai modèle, ce qui donne un modèle erroné, appelé le faux modèle (FM) défini par .

$$y_i = \alpha x_{1i} + v_i.$$

- 1-Déterminer \widehat{a} l'estimation par les MCO dans le faux modèle
- 2- Calculer l'espérance mathématique de $\widehat{\alpha}$ dans le vrai modèle
- 3 En déduire que cette estimation est biaisé. Dans quel cas ce biais est-il-nul ? Interpréter ce résultat.
- 4- Calculer la variance du coefficient de la variable x_1 , dans le faux modèle.
- 5 Comparer cette variance alors à la vraie valeur de la variance du coefficient de x_1 dans le modèle à deux variables.