MA 205: Complex Analysis TSC

Siddhant Midha

2nd September 2022

Welcome!

Welcome to the (first?) TSC for Complex Analysis 2022! Before we start, here are some things to note,

- These slides, along with tutorial solutions and some other material can be found at this page – tinyurl.com/ma-205-22.
- Feel free to stop me and ask questions.
- Given the rough time limit of two hours, we will not be able to cover everything done in the lectures.
- It follows that this session is purely a supplementary one, not a compensation for the lectures.
- Finally, if you notice some mistake, do let me know.

Table of Contents

- Preliminaries
- 2 Functions, Continuity, Differentiability
- Power Series
- Integrals and all that

Open and Closed Sets

Definition (Open Disks)

For any $z \in \mathbb{C}$, and for any r > 0 define the open disk, denoted B(z,r) as

$$B(z,r) := \{z_1 | d(z,z_1) < r\}$$

Definition (Open Sets)

A subset $S \subseteq \mathbb{C}$ is said to be open if for all $z \in S$ there exists an r > 0 such that $B(z, r) \subset S$.

Definition (Closed Sets)

A subset $S\subseteq\mathbb{C}$ is said to be closed if its complement is open. Equivalently, a set is closed if it contains all of its limit points.

Recall: $z \in \mathbb{C}$ is a limit point of $\Omega \subset \mathbb{C}$ if there exists a sequence $z_n \in \Omega$, $z_n \neq z$, such that $z_n \to z$.

Connectedness

Definition (Connected)

A subset $S \subseteq \mathbb{C}$ is said to be connected if given any 2 points $x,y \in S$, there exists a continuous path joining them. i.e, a continuous function $f:[0,1] \to S$ such that f(0)=x and f(1)=y.

Definition (Domain)

A open and connected subset of $\mathbb C$ is called a domain.

Questions

Questions?

- lacktriangledown $\Bbb C$ minus the non-zero real numbers, is
 - Open? No. Closed? No!
 - Connected? Yes.
- 2 [2020 Quiz] $\mathbb C$ minus the rational real numbers, is
 - Open? No. Closed? No!
 - Connected? Yes.
- $(0,1) \subset \mathbb{R}$
 - Open? Yes.
 - Closed? No.
- $(0,1)\subset\mathbb{C}$
 - Open? No.
 - Closed? No.

Sequences and Convergence

Definition (Sequences)

A sequence in $\mathbb C$ is a function $f:\mathbb N\cup\{0\}\to\mathbb C$. We denote $z_n=f(n)$.

Definition (Convergence)

A sequence z_n is said to be converging to some $z \in \mathbb{C}$ if $\forall \epsilon > 0$, $\exists N_{\epsilon} \in \mathbb{N}$ s.t.

$$n > N_{\epsilon} \implies |z - z_n| < \epsilon$$

Theorem

If $z_n = x_n + \iota y_n$ is a sequence in \mathbb{C} , then

$$z_n \rightarrow z = x + \iota y \Leftrightarrow x_n \rightarrow x \text{ and } y_n \rightarrow y$$

Table of Contents

- Preliminaries
- 2 Functions, Continuity, Differentiability
- Power Series
- Integrals and all that

Continuity

Definition (Continuity)

A function $f:\Omega\subset\mathbb{C}\to\mathbb{C}$ is said to be continuous at a point $z_0\in\Omega$ if

$$\lim_{z\to z_0}f(z)=f(z_0)$$

Equivalently^a, f is continuous at z_0 if for all sequences $(z_n)_n$ $(z_n \in \Omega)$ such that $z_n \to z_0$ we have $f(z_n) \to f(z_0)$.

 a The $\epsilon-\delta$ continuity definition \Leftrightarrow the sequential definition

- f is said to be continuous if it is continuous at all $z_0 \in \Omega$.
- f is continuous iff u and v are continuous.

Differentiability

Definition (Complex Differentiability (CD))

Let $\Omega \subset \mathbb{C}$ be open. A function $\Omega \to \mathbb{C}$ is said to be complex-differentiable at $z_0 \in \mathbb{C}$ if the limit

$$\lim_{h\to 0}\frac{f(z_0+h)-f(z_0)}{h}$$

exists. If it does, we denote it by $f'(z_0)$.

- Note that *h* above is *complex*.
- Clearly this is stronger than differentiability of functions on R
 (Why?). As a result, we do **not** get an iff condition as in the case for continuity.
- f is said to be CD on Ω if it is CD on all $z \in \Omega$.
- ullet Differentiability \Longrightarrow Continuity.

Holomorphicity

Definition (Holomorphicity)

Let $\Omega \subset \mathbb{C}$ be open. A function $\Omega \to \mathbb{C}$ is said to be holomorphic on Ω if it is complex differentiable at each $z_0 \in \Omega$ and the derivative f' is continuous on Ω . We denote $f \in C^1(\Omega)$.

- Can we drop the $C^1(\Omega)$ condition?
- f is called holomorphic at a point if it is holomorphic on an open disk containing that point.
- A function holomorphic on $\mathbb C$ is said to be entire.
- Holomorphic at a point ⇒ CD at a point. Reverse?
- **Remark**: A function can be CD at a point and not holomorphic at the same point. Consider $f(z) = |z|^2$.

Properties

If $f: \Omega \to A$ and $g: \Omega \to B$ are holomorphic on Ω , then,

- $c_1f + c_2g$ is holomorphic on Ω , and $(c_1f + c_2g)' = c_1f' + c_2g'$.
- (fg) is holomorphic on Ω , and (fg)' = f'g + g'f.
- If $h: A \to \mathbb{C}$ is holomorphic on A, then $h \circ f(z) := h(f(z))$ is holomorphic on Ω , and $(h \circ f)'(z) = h'(f(z))f'(z)$.
- For $z_0 \in \Omega$ s.t. $g(z_0) \neq 0$, f/g is holomorphic at z_0 , and,

$$\left(\frac{f}{g}\right)(z_0) = \frac{f'(z_0)g(z_0) - g'(z_0)f(z_0)}{g(z_0)^2}$$

Questions

1 [2020 Quiz] If the composite of two non-constant, continuous complex functions defined on all of $\mathbb C$ is entire - do the functions themselves need to be entire? (Converse of the composition property?) No. Consider $f(z) = g(z) := \bar{z}$.

Real Differentiability

For some $f:\Omega\to\mathbb{C}$ we will denote $F:\Omega_R\to\mathbb{R}^2$ the corresponding real function. Further, we let

$$F(x,y) = (u(x,y), v(x,y))^T$$

Real Differentiability

 $F:\Omega_R\to\mathbb{R}^2$ is differentiable at $(x,y)\in\Omega$ if there exists a 2×2 matrix DF(x,y) such that

$$\lim_{h,k\to 0} \frac{\left|\left| \begin{pmatrix} u(x+h,y+k) \\ v(x+h,y+k) \end{pmatrix} - \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix} - DF(x,y) \begin{pmatrix} h \\ k \end{pmatrix} \right|\right|}{\left|\left| \begin{pmatrix} h \\ k \end{pmatrix} \right|\right|} = 0$$

If so, we have

$$DF(x,y) = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}$$

Necessary Conditions for (complex) differentiability

Theorem (The CR Equations)

Let $f(z) = u(x,y) + \iota v(x,y)$ be defined on some open set Ω . Suppose that $f'(z_0)$ exists for some point $z_0 = x_0 + \iota y_0 \in \Omega$. Then the first order partial derivatives of u and v exist at that point (x_0,y_0) and satisfy the CR equations

$$u_x = v_y$$
 , $v_x = -u_y$

at that point.

i.e., $CD \implies CR$.

Theorem

Let f be defined on some open set Ω be differentiable at some $z = (x + \iota y) \in \Omega$. Then, the real counterpart F will be differentiable at $(x, y) \in \Omega_R$.

i.e., $CD \implies RD$.

Remark

We have seen that CR and RD are both necessary conditions for CD. But, none of them implies CD. Consider,

- $f(z) = \bar{z}$. RD, not CD.
- [2020 Quiz] Consider,

$$f(z) := \begin{cases} \frac{\overline{z}^2}{z} & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \end{cases}$$

CR equations are satisfied at zero, but it is not CD at zero.

• We shall see that together they are sufficient to show CD.

Necessary and Sufficient Condition

Theorem

Let $f(z) = u(x,y) + \iota v(x,y)$ be defined on some open set Ω and let $F: \Omega_R \to \mathbb{R}^2$ be the corresponding real function. For some $z_0 = x_0 + \iota y_0 \in \Omega$, if

- **1** F is differentiable at (x_0, y_0) .
- 2 The $DF(x_0, y_0)$ is of the following form

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

(equivalently, the CR equations are satisfied at (x_0, y_0))

Then, we have that $f'(z_0)$ exists and equals $a + \iota b$. Further, the converse holds.

Another Sufficient Condition

Theorem

Let $f(z) = u(x, y) + \iota v(x, y)$ be defined on some open set Ω . For some $z_0 = x_0 + \iota y_0 \in \Omega$, if

- the partial derivatives of u and v exist in some neighbourhood of (x_0, y_0) and are continuous at (x_0, y_0) , and
- 2 the CR equations are satisfied at (x_0, y_0)

Then, we have that $f'(z_0)$ exists.

This turns out to be easier to check.

Harmonic Functions

Definition (Harmonic Function)

A function $g:\Omega_R\subset\mathbb{R}^2\to\mathbb{R}$ is said to be harmonic if it has continuous partial derivatives of the first and second order, and satisfies

$$\triangle g(x,y) = g_{xx}(x,y) + g_{yy}(x,y) = 0 \ \forall (x,y) \in \Omega_R$$

Theorem

If a function $f(z) = u(x, y) + \iota v(x, y)$ is CD in a domain Ω , then u and v are harmonic in D_R .

Summarizing ...

- \bullet CD \Longrightarrow RD.
- $CD \implies CR$.
- $CR \not\Longrightarrow CD$.
- $(CR + RD) \iff CD$

Table of Contents

- Preliminaries
- 2 Functions, Continuity, Differentiability
- Power Series
- Integrals and all that

Series

Definition (Series)

A *series* is an expression of the form $\sum_n z_n$, for $z_n \in \mathbb{C}$.

- **1** A series $\sum_n z_n$ is said to converge to L if the sequence $s_n := \sum_{i=0}^n z_n$ converges to L.
- ② Absolute Convergence: A series $\sum_n z_n$ is said to converge absolutely if $\sum_n |z_n|$ converges.
- Fact: Absolute Convergence ⇒ Convergence.

Definition (Power Series)

A power series is an expression of the form $\sum_n a_n (z-z_0)^n$, for $a_n, z_0 \in \mathbb{C}$.

The word 'expression' signifies that the series/power series may or may not be meaningful (read convergent).

The Convergence Theorem

Convergence of Power Series

Given the power series,

$$P = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

such that $a_n \in \mathbb{C} \forall n, z_0 \in \mathbb{C}$, we have that *only one* of the following is true

- **1** P converges only at $z = z_0$.
- 2 P converges at all $z \in \mathbb{C}$.
- **③** There exists $R \in \mathbb{R}$, ∞ > R > 0, such that P converges for all $z : |z z_0| < R$ and diverges for all $z : |z z_0| > R$.

Usually, we allow for $R = 0, \infty$ for convenience.

ano comments on the boundary!

Follow up theorem

Convergence of Power Series

The radius of convergence of a power series as defined before is given as

$$R = \frac{1}{|\limsup |a_n|^{1/n}}$$

Herein, we allow for $R=0,\infty$ by letting $1/0=\infty,1/\infty=0$.

What is the limsup?

Definition

limsup For a **real** sequence x_n , define,

$$s_n := \sup\{x_n, x_{n+1} \dots\} \forall n$$

Define $\limsup x_n := \lim s_n$.

Points to be noted.

- s_n is a **non-increasing** sequence. (Why?)
- Because of that, the limit of s_n always exists (can be $\pm \infty$). (Why?)
- Thus, the lim-sup always exists. The limit might not.
- When the limit exists, the limsup is equal to the limit.

Power series are holomorphic

Theorem

- **1** The power series $\sum_n a_n(z-z_0)^n$ defines a holomorphic function $f: D(z_0,R) \to \mathbb{C}$, $f(z) := \sum_n a_n(z-z_0)^n$ where R is the RoC.
- The derivative of f is given by term by term differentiation of the power series. Further, it has the same RoC as of the power series defining f.
- Thus, power series are infinitely differentiable in their disc of convergence.

This leads to the statement

Analytic ⇒ **Holomorphic**

Questions

Questions?

• [2020 Quiz] RoC of

$$\sum_{n} (2 + (-1)^{n})^{n} (z+1)^{n^{2}}$$

Answer: 1

2 [2020 Endsem] RoC of

$$\sum_{n} \frac{(-1)^n z^{n^2}}{n!}$$

Answer: 1

Checking Convergence

Monotone Convergence Theorem (MCT)

For a **real** sequence x_n , we have that if x_n is monotone and bounded, then it converges.

Let $\sum_{n} z_n$ be a complex series. Note the following,

- **1** Necessary Condition for Convergence If $\sum_n z_n$ converges, then $|z_n| \to 0$ as $n \to \infty$. (Recall the tutorial question about $\sum nz^n$)
- **Necessary & Sufficient Condition for Convergence** Note that $|z_n| \ge 0$ (thus $s_n := \sum_{k=0}^n |z_k|$ is monotonic increasing), we have that $\sum_n |z_n|$ converges iff $s_n = \sum_{k=0}^n |z_k|$ is bounded above. (follows from the MCT, recall the tutorial question about $\sum z^n/n^2$)

Table of Contents

- Preliminaries
- 2 Functions, Continuity, Differentiability
- Power Series
- Integrals and all that

Integration Along Curves

Definition (Curve)

A curve in $\mathbb C$ is an infinitely differentiable (smooth) map $\gamma: [a,b] \to \mathbb C$.

We have, that

$$\int_{\gamma} f(z)dz := \int_{a}^{b} f(\gamma(t))\gamma'(t)dt$$

- $|\int_{\gamma} f(z)dz| \leq \max_{z \in |\text{Image}(\gamma)|} |f(z)| \cdot \text{length}(\gamma)$
- If f is holomorphic on an open set containing Image(γ), then,

$$\int_{\gamma} f'(z)dz = f(\gamma(b)) - f(\gamma(a))$$

Primitives etc.

Definition (Primitives)

A holomorphic function $\Omega \to \mathbb{C}$ is said to admit a primitive F in Ω if F'(z) = f(z) for all $z \in \Omega$.

Theorem

If γ is a closed curve in an open set $\Omega \in \mathbb{C}$, and $f : \Omega \to \mathbb{C}$ has a primitive in Ω , then,

$$\int_{\gamma} f(z)dz = 0$$

Follows that f(z) := 1/z does not have a primitive in \mathbb{C}^* .

Theorem

If f is holomorphic in a domain (thus, connected), and $f' \equiv 0$ in that region, then f is a constant.

The Cauchy Theorem(s)

Cauchy Integral Theorem

Let Ω be a bounded domain in \mathbb{C} , with piecewise smooth boundary $\partial\Omega$ and $f\in C^1(\bar{\Omega})$ is holomorphic on Ω . Then,

$$\int_{\partial\Omega}f(z)dz=0$$

Cauchy Integral Formula

Let Ω be a bounded domain in $\mathbb C$ with piecewise smooth boundary $\partial\Omega$, and $f\in C^1(\bar\Omega)$ is holomorphic on Ω . Then for all $z\in\Omega$, we have,

$$f(z) = \frac{1}{2\pi\iota} \int_{\partial\Omega} \frac{f(\eta)}{\eta - z} d\eta$$

Note that, in these theorems we are dealing with $\partial\Omega$ being traversed anticlockwise. Also, we do *not* need $f \in C^1(\bar{\Omega})$, as holomorphicity of f guarantees holomorphicity and thus continuity of f'.

Another way

Another way to state the CIT, which can avoid possible mistakes.

CIT - Aliter

If $f:\Omega\to\mathbb{C}$ is holomorphic, and Ω is a **simply connected** domain, then for every closed piecewise smooth curve γ within Ω we have,

$$\int_{\gamma} f(z)dz = 0$$

Questions

1 [2020 Quiz]

$$\int_{|z|=1} \frac{e^z \sin(z) - z}{z^2 \cos(z)} dz$$

Answer: 0

2 [2020 Quiz]

$$\int_{|z|=5} \frac{z}{(z-3)^2(z-1)} dz$$

Answer: 0

Slides

$$\int_{|z|=5} \frac{e^z}{z^2(z-1)} dz$$

Answer: $2\pi\iota(e-2)$.

Consequences of Cauchy's Theorem(s)

Strong Regularity If f is holomorphic at some z₀, then the
derivatives of all orders are holomorphic at that point. Further, we
have

$$f^{(n)}(z_0) = \frac{n!}{2\pi \iota} \int_{D(z_0,r)} \frac{f(\eta)}{((\eta - z_0)^{n+1}} d\eta$$

for some small r.

Consequences of Cauchy's Theorem(s)

• **Holomorphic** \Longrightarrow **Analytic**. If f is holomorphic at a point $z_0 \in \mathbb{C}$, then we have that $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ for all $z : |z - z_0| < r$ for some small r. Where,

$$a_n = \frac{1}{2\pi \iota} \int_{D(z_0,r)} \frac{f(\eta)}{(\eta - z_0)^{n+1} d\eta}$$

Note that any r s.t. $D(z_0,r)$ is contained in the region of holomorphicity gives the same a_n . This means that an entire function has $RoC = \infty$ when expanded about any point as a power series. Also, we had previously seen that power series are holomorphic in their region of convergence. Thus, Analytic \implies Holomorphic. Hence we have the statement,

Holomorphic ⇔ **Analytic**

Consequences of Cauchy's Theorem(s)

• $f^{(n)}(z) = \frac{n!}{2\pi\iota} \int_{\partial\Omega} \frac{f(\eta)}{(\eta-z)^{n+1}} d\eta$ for all $z \in \Omega$. Particularly,

$$|f^{(n)}(z_0)| \leq \frac{n!M_R}{R^n}$$
 Cauchy's Estimate

if f is holomorphic on a open set containing $D(z_0, R)$ and $M_R = \max\{|f(z)| : |z - z_0| = R\}$

- Louiville's Theorem: A bounded above entire function is a constant.
- ullet FTC: A non-constant complex polynomial has atleast one root in $\mathbb C.$
- Mean Value Property: If f is holomorphic on Ω and $D(z_0, r) \subset \Omega$, then,

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt$$

Zeros of Analytic Functions

Theorem

Suppose $f: \Omega \to \mathbb{C}$ is holomorphic, where Ω is a domain. Further suppose $f(z_0) = 0$. Then, we have

- $f \equiv 0 \text{ on } \Omega, \text{ or,}$
- ② $\exists m \in \mathbb{N}$ and a holomorphic function $g: \Omega \to \mathbb{C}$ such that $g(z_0) \neq 0$ and $f(z) = (z z_0)^m g(z)$ in $D(r, z_0)$ for some small r.
 - Isolated Zeros: Zeros of a non constant analytic function on a domain Ω are *isolated*. Formally, the set of zeros do not have a limit point.
 - Vanishing Behaviour
 - **1** Vanishes at a sequence of points with a limit point in $\Omega \implies f \equiv 0$ on Ω .
 - ② Vanishes on an open subset $A \subset \Omega \implies f \equiv 0$ on Ω .
 - **3** $f^{(n)}(z_0) = 0 \forall n$ for some $z_0 \in \Omega \implies f \equiv 0$ on Ω .
 - **Identity Principle**: If f, g holomorphic agree on a 'suitable' set of points, then $f \equiv g$ on Ω .

Questions

- [2020 Endsem] Comment on the topology of the set of zeros of an entire function.
- **2** [2020 Endsem] A holomorphic function $f = u + \iota v$ defined on a non-empty domain satisfies $v^2 = u^3$ at all points in the domain.
- **3** [2020 Endsem] Extensions of real analytic functions onto \mathbb{C} . Use $f(x) := 1/(1+x^2)$
- ① $[\int (\bigcirc) dx]$ Consider the RHCP $\{z|Re(z)>0\}$. Can we have a holomorphic function on this set, which vanishes on $\{1/n:n\in\mathbb{N}\}$. Does this not contradict the theorems we have seen?

And that's a wrap!

Thank you! All the best for the quiz.