

CS4302-01 Parallel and Distributed Computing

Lecture 8 CUDA Optimization

Zhuoran Song 2023/10/24

Shared Memory

- Faster than global memory
- Reduce access time by reusing data
- Threads can cooperate through shared memory
- Avoid accesses that cannot be coalesce
 - Rearrange data

Shared Memory

- 很多线程访问shared memory
 - 被分为bank
 - 连续32-bit访存被分到连续bank
- 每个bank每个周期可以相应 一个地址
 - 如果有多个bank则可以相应多 个地址
- 对同一bank进行多个并发访问,会产生冲突
 - 冲突必须串行执行

 Shared memory is as fast as registers if there are no bank conflicts

The fast case:

- If all threads access different banks, there is no bank conflict
- If all threads access the identical address, there is no bank conflict (broadcast)

The slow case:

- Bank Conflict: multiple threads access the same bank
- > Must serialize the accesses
- \triangleright Cost = max # of simultaneous accesses to a single bank

Case study: Matrix Transpose

- 每个线程块在矩阵的一个瓦片(tile)操作
- · 原始版本存在对global memory按步长访问的情况

Case study: Matrix Transpose

• 读操作支持合并,写操作不支持

```
__global__ void transposeNaive(float *odata, const float *idata) {
    int x = blockIdx.x * TILE_DIM + threadIdx.x;
    int y = blockIdx.y * TILE_DIM + threadIdx.y;
    int width = gridDim.x * TILE_DIM;
    for (int j = 0; j < TILE_DIM; j+= BLOCK_ROWS){
        odata[x*width + (y+j)] = idata[(y+j)*width + x];
    }
}
```


- 通过shared memory实现合并
- 先将tile的多列元素存入shared memory,再以连续化的数据写 入global memory
- 需要同步 __syncthreads()


```
global__ void transposeCoalesced(float *odata, const float *idata, int
width, int height) {
           shared__ float tile[TILE_DIM][TILE_DIM];
        int x = blockldx.x * TILE_DIM + threadIdx.x;
        int y = blockldx.y * TILE_DIM + threadIdx.y;
        int index in = x + y^* width;
        x = blockldx.y * TILE_DIM + threadldx.x;
        y = blockldx.x * TILE_DIM + threadldx.y;
        int index_out = x + y* height;
        tile[threadldx.y][threadldx.x] = idata[index_in];
           syncthreads();
        odata[index_out] = tile[threadldx.x][threadldx.y];
```

- Tile内16*16个floats存于shared memory
 - 列中的数据存于相同的bank
 - 读入tile一列数据存在16-way bank conflict
- 解决方法:填充shared memory数组
 - __shared__ float tile[TILE_DIM][TILE_DIM+1];

Case study: Matrix Transpose

m00	m01	m02	m03	m04	m00	m01	m02	m03
m10	m11	m12	m13	m14	m04	m10	m11	m12
m20	m21	m22	m23	m24	m13	m14	m20	m21
m30	m31	m32	m33	m34	m22	m23	m24	m30
					m31	m32	m33	m34
Bank0	Bank1	Bank2	Bank3					
					Bank0	Bank1	Bank2	Bank3

- 在一次global memory读操作与实际用到该数据的语句中间插入 独立于以上数据的指令
 - 隐藏访存

```
float m = Md[i];
float f = a * b + c;
float f2 = m * f;
```

 从global memory预取数据可以有效提升独立指令的数量,减少 访存开销 回顾tile based 矩阵乘法

```
__global___ void matrix_multiplication(float *odata, const float *idata) {

for (...){

// Load current tile into shared memory

__syncthreads();

// Accumulate dot product

__syncthreads();

}
```

回顾tile based 矩阵乘法

Optimization for IPC

- 指令优化
 - 如果不够仔细,计算密集型算法很容易受限于带宽
 - 典型情况,在存储器和执行配置优化完成后,担心指令优化
- Int multiplication: 2 cycles
- Int divide and module are expensive
 - 2ⁿ: 采用>>n
 - 以2ⁿ求模,采用&(2ⁿ-1)
- · 避免double到float类型的自动转换
 - 添加"f"到float常量,缺省为double

• 循环展开

每轮循环包括到指令:

- 一条浮点数乘法
- 一条浮点数加法

?

• 循环展开

每轮循环包括到指令:

- 一条浮点数乘法
- 一条浮点数加法

更新循环计数器

分支

地址运算

• 循环展开