Variável Complexa

Oitava Lista de Exercícios

01. Seja $\alpha \in \mathbb{C}$ tal que $|\alpha| > e$. Mostre que a equação

$$e^z = \alpha z^n$$

possui n raízes no disco $\{z \in \mathbb{C}; |z| < 1\}.$

02. Para cada um dos polinômios a seguir, encontre o número de zeros do mesmo no disco $\{z\in\mathbb{C};\ |z|<1\}.$

(a)
$$p(z) = z^9 - 2z^6 + z^2 - 8z - 2$$

(b)
$$p(z) = z^4 - 5z + 1$$

03. Determine a ordem do polo de f em a e calcule res(f, a).

(a)
$$f(z) = \frac{\sin(z)}{z^4}$$
, $a = 0$

(d)
$$f(z) = \frac{1}{z^4 - z^5}$$
, $a = 1$

(b)
$$f(z) = \frac{e^{-z}}{z^{n+1}}, \ a = 0$$

(e)
$$f(z) = \frac{\sin(1/z)}{z^4 - z^5}, \ a = 1$$

(c)
$$f(z) = \frac{\cos(z)}{z^3(z-1)}$$
, $a = 0$.

(f)
$$f(z) = \frac{z}{1 - \cos(z)}$$
, $a = 0$

04. Utilize resíduos para calcular as integrais.

(a)
$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+5)} dx$$

(e)
$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)^2} dx$$

(b)
$$\int_{-\infty}^{\infty} \frac{1}{(x^4+1)} dx$$

(f)
$$\int_{-\pi}^{\pi} \frac{1}{1 + \sin^2(t)} dt$$

(c)
$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^2} dx$$

(g)
$$\int_0^{2\pi} [2\cos^3(t) + 4\sin^5(t)]dt$$

(d)
$$\int_{-\infty}^{\infty} \frac{e^{ix}}{(x^2+1)} dx$$

(h)
$$\int_0^\infty \frac{x^2}{(x^2+a^2)^3} dx$$
, onde $a > 0$.