Глава 1. Введение

§1. Множества и их отношения

Def. Множество - набор каких-то элементов, т.е. либо $x \in A$, либо $x \notin A(\forall x)$

Def. A, B - множества. $A \subset B$ - A подмножество B, т.е. $\forall x \in A \Rightarrow x \in B$

Def.
$$A = B \Leftrightarrow \begin{cases} A \subset B \\ B \subset A \end{cases}$$

Def. \emptyset - пустое множество, т.е. $\forall x, x \notin \emptyset$

Rem. $\forall A\emptyset \subset A$

 $\mathbf{Def.} egin{cases} A\subset B \ A\subset B \end{cases} \Leftrightarrow A\subsetneq B\Leftrightarrow \mathbf{A}$ - собственное подмножество

Операции:

• Пересечение $A \cap B = \{x | \begin{cases} x \in A \\ x \in B \end{cases} \}$

• Объединение $A \bigcup B = \{x | x \in A$ или $x \in B\}$

• Разность $A \backslash B = \{x \mid \begin{cases} x \in A \\ x \notin B \end{cases} \}$

• Симметрическая разность $A \triangle B = (A \backslash B) \bigcup (B \backslash A)$

Способы задания множеств:

- Перечисление
- Неполное перечисление
- Словесно
- С помощью функции

Канонические обозначения:

- \mathbb{N} натуральные числа
- Z целые числа
- Q рациональные числа
- \mathbb{R} вещественные числа
- С комплексные числа
- Р простые числа

$${f Def.}\ \langle a;b
angle (a\in A,b\in B)$$
 - упорядоченная пара
$$\langle a;b
angle=< p,q>\Leftrightarrow \begin{cases} a=p\\b=q \end{cases}$$

 $\mathbf{Def.} < a_1, a_2 \dots a_n > (a_k \in A_k \forall k)$ - кортеж (упорядоченная n-ка) $< a_1 \dots a_n > = < b_1 \dots b_n > \Leftrightarrow a_k = b_k \forall k$

Def. Декартово произведение $A \times B = \{\langle a; b \rangle | a \in A, b \in B\}$

Правила Д'Моргана:

1.
$$A \setminus (\bigcap_{\alpha \in I} B_{\alpha}) = \bigcup_{\alpha \in I} (A \setminus B_{\alpha})$$

2.
$$A \setminus (\bigcup_{\alpha \in I} B_{\alpha}) = \bigcap_{\alpha \in I} (A \setminus B_{\alpha})$$

$$x \in A \setminus (\bigcup_{\alpha \in I} B_{\alpha}) \Leftrightarrow \begin{cases} x \in A \\ x \notin \bigcup_{\alpha \in I} B_{\alpha} \end{cases} \Leftrightarrow \begin{cases} x \in A \\ x \notin B_{\alpha}, \forall \alpha \in I \end{cases} \Leftrightarrow x \in A \setminus B_{\alpha}, \forall \alpha \in I \Leftrightarrow x \in \bigcap_{\alpha \in I} (A \setminus B_{\alpha})$$

Теорема

•
$$A \bigcup (\bigcap_{\alpha \in I} B_{\alpha}) = \bigcap_{\alpha \in I} (A \bigcup B_{\alpha})$$

•
$$A \cap (\bigcup_{\alpha \in I} B_{\alpha}) = \bigcup_{\alpha \in I} (A \cap B_{\alpha})$$

Доказательство

$$x \in A \bigcap (\bigcup_{\alpha \in I} B_{\alpha}) \Leftrightarrow \begin{cases} x \in A \\ x \in \bigcup_{\alpha \in I} B_{\alpha} \end{cases} \Leftrightarrow \begin{cases} x \in A \\ \exists \alpha \in I : x \in B_{\alpha} \end{cases} \Leftrightarrow \exists \alpha \in I : x \in A \bigcap B_{\alpha} \Leftrightarrow x \in \bigcup_{\alpha \in I} (A \bigcap B_{\alpha})$$

Def. Бинарным отношением R на $A \times B$ называется $R \subset A \times B$

 $R = \{\langle a; b \rangle | a \in A, b \in B\}$

 $\langle a; b \rangle \in R \Leftrightarrow aRb$

Def. $\sigma_R = \{a \in A | \exists b \in B : \langle a; b \rangle \in R\}$ - область определения бинарных отношений **Def.** $\rho_R = \{b \in B | \exists a \in A : \langle a; b \rangle \in R\}$ - множество значений бинарных отношений

Def. $R^{-1} = \{ \langle b, a \rangle | \langle a; b \rangle \in R \}$ - обратное отношение

Def.
$$R_1 \circ R_2 \subset A \times C$$
;
$$\begin{cases} R_1 \subset A \times B \\ R_2 \subset B \times C \end{cases}$$
$$R_1 \circ R_2 = \{ \langle a, c \rangle | \exists b \in B \begin{cases} \langle a; b \rangle \in R_1 \\ \langle b, c \rangle \in R_2 \end{cases} \}$$

1. R - рефлексивное, если $\forall a \in A < a, a > \in R$

2. R - иррефлексивное, если $\forall a \in A < a, a > \notin R$

3. R - симметричное, если $\langle a;b\rangle \in R \Rightarrow \langle b,a\rangle \in R$

4. R - антисимметричное, если
$$\begin{cases} \langle a;b\rangle \in R \\ < b,a> \in R \end{cases} \Rightarrow a=b$$

5. R - транзитивное, если
$$\begin{cases} \langle a;b\rangle \in R \\ \in R \end{cases} \Rightarrow < a,c> \in R$$

Def. R - отношение эквивалентности, если R рефлексивно, симметрично, транзитивно

Def. R - нестрогий частичный порядок, если R - рефлексивно, антисимметрично, транзитивно

Def. R - строгий частичный порядок, если R - иррефлексивно, транзитивно

$$\mathbf{Def.} egin{cases} \langle a;b
angle \in R \ < a,c> \in R \end{cases} \Rightarrow b=c,$$
 тогда R - функция f

Def. R - строгии частичный порядок, если R - иррег
$$\{a,b\} \in R$$
 $\Rightarrow b=c$, тогда R - функция f $\{a,c\} \in R$ $\Rightarrow b=c$ тогда R - функция f $\{f(x_1)=a\}$ $\Rightarrow x_1=x_2$

Def. f - сюрьективная, если $\forall y \in Y \exists x \in X : f(x) = y$

Def. f - биективная, если f - инъективная и сюрьективная

§2. Вещественные числа

Две операции в $\mathbb R$

1. Сложение

 $A_1 \ a+b=b+a$ - коммутативность $A_2 \ (a+b)+c=a+(b+c)$ - ассоциативность

 $\frac{1}{2}(a+b)+c=a+(b+c)-acconnariable constraints$

 $A_3 \;\; \exists 0 \in \mathbb{R} : a+0=a; \forall a \in \mathbb{R}$ - существование нейтрального

 $A_4 \ \forall a \in \mathbb{R} \exists -a : a + (-a) = 0$ - существование обратного

2. Умножение

 $M_1 \ a \cdot b = b \cdot a$ - коммутативность

 $M_2 \ (a \cdot b) \cdot c = a \cdot (b \cdot c)$ - ассоциативность

 $M_3 \; \exists 1 \in \mathbb{R} : a \cdot 1 = a; \forall a \in \mathbb{R}$ - существование нейтрального

 $M_4 \ \forall a \neq 0 \in \mathbb{R} \exists a^{-1} \in \mathbb{R} : a \cdot a^{-1} = 1$ - существование обратного

 $AM \ \forall a,b,c \in \mathbb{R}(a+b) \cdot c = a \cdot c + b \cdot c$ - дистрибутивность

Rem. Если соблюдаются все эти аксиомы, то поле

Аксиомы порядка:

- $\forall x,y \in \mathbb{R} x \leq y$ или $y \leq x$
- $OA \ a < b \Rightarrow a + c < b + c$

$$\bullet \ OM \ \begin{cases} a \ge 0 \\ b \ge 0 \end{cases} \Rightarrow 0 \le a \cdot b$$

Аксиома полноты:

 $A \neq \emptyset, B \neq \emptyset, A, B \subset R$

 $\forall a \in A \\ \forall b \in B$ $a \le b \Rightarrow \exists c \in R : a \le c \le b (\forall a \in A, \forall b \in B)$

 $\mathbb Q$ не удовлетворяет аксиоме полноты:

 $A = \{x \in \mathbb{Q} | x^2 < 2\}$

 $B = \{x \in \mathbb{Q} | x^2 > 2\}$

Между ними только $\sqrt{2} \notin \mathbb{Q}$

Следствие (принцип Архимеда):

$$\forall x \in \mathbb{R} \\ \forall y \in \mathbb{R}, y > 0 \quad \exists n \in \mathbb{N} : x < ny$$

$$fix \ y > 0$$

$$A = \{x \in \mathbb{R} | \exists n : x < ny \}$$
Пусть $A \neq \mathbb{R} \Rightarrow \mathbb{R} \backslash A = B \neq \emptyset$

$$A \neq \emptyset, \text{ т.к. } 0 \in A$$
Левее ли A , чем B

Пусть $a \in A$: $b < a < ny \Rightarrow b < ny \Rightarrow b \in A$, но из $\mathbb{R} \backslash A = B \Rightarrow A \cap B = \emptyset \Rightarrow$

$$\begin{cases} \Rightarrow \forall a \in A, b \in B, a \leq b \\ A, B \subset \mathbb{R} \\ A \neq \emptyset \\ B \neq \emptyset \end{cases}$$

$$\begin{cases} c - y < c \Rightarrow c - y \in A \Rightarrow \exists n \in \mathbb{N} : c - y < ny \Rightarrow c < (n+1)y \\ c < c + y \Rightarrow c \in B \end{cases}$$

$$\Rightarrow c + y < (n+2)y \Rightarrow c + y \in A$$
- противоречие $A \cap B = \emptyset \Rightarrow A = \mathbb{R}$

Следствие:

$$\forall \varepsilon > 0 \; \exists n \in \mathbb{N} : \frac{1}{n} < \varepsilon$$

$$\frac{1}{n} < \varepsilon \Leftrightarrow 1 < n\varepsilon \text{ - принцип Архимеда } x = 1, y = \varepsilon$$
 Аксиома индукции (метод математической индукции; принцип математической индукции)
$$P_1, P_2, \dots P_n \dots \text{ - последователььностьь утверждений}$$

$$\begin{cases} P_1\text{- истина (база)} \\ P_n\text{- истина} \Rightarrow P_{n+1}\text{- истина (переход)} \end{cases} \Rightarrow \forall n \in \mathbb{N} \; P_n \text{ - истина}$$

Th. Во всяком конечном множестве вещественных чисел есть наибольший и наименьший элементы

$$a = \max A \Leftrightarrow \begin{cases} a \in A \\ \forall x \in A \end{cases} \quad x \le a$$
$$b = \min A \Leftrightarrow \begin{cases} b \in A \\ \forall x \in A \end{cases} \quad x \ge b$$

Доказательство

 P_n - в множестве из n элементов есть наибольший и наименьший элементы

- 1. P_1 истина, т.к. в множестве из 1 элемента он и наибольший, и наименьший
- $P_n \Rightarrow P_{n+1}$

$$A=\{a_1,a_2\dots a_{n+1}\}$$
 $B=\{b_1,b_2\dots b_n\}$ - n элементов $\Rightarrow \exists max B= ilde{a}$

$$\tilde{a} \in B \Rightarrow \tilde{a} \in A$$

$$\forall k, 1 \le k \le n \ a_k \le \tilde{a}$$

Случаи:

•
$$a_k \le \tilde{a} \le a_{n+1} \Rightarrow a_{n+1} = maxA$$

•
$$a_{n+1} \leq \tilde{a} \Rightarrow \tilde{a} = maxA$$

Def. Множество A называется ограниченным сверху, если $\exists c \in \mathbb{R} : a \leq c, \forall a \in A$

Def. Множество A называется ограниченным снизу, если $\exists c \in \mathbb{R} : a \geq c, \forall a \in A$

 $\mathbf{Def.}$ Множество A называется ограниченным, если оно ограничено и сверху, и снизу

$$\exists c_1, c_2 : c_1 \le a \le c_2, \forall a \in A$$

Th.

- 1. В любом непустом ограниченном сверху множестве целых чисел есть наибольший элемент
- 2. В любом непустом ограниченном снизу множестве целых чисел есть наименьший элемент
- 3. В любом непустом ограниченном сверху множестве натуральных чисел есть наибольший и наименьший элементы

$$A; a \in \mathbb{Z}, \forall a \in A$$
 b - верхняя граница $\forall a \in A \ a \leq b$. Возьмем $\tilde{a} \in A$ $\begin{cases} B = \{a \in A | a \geq \tilde{a}\} \\ B$ - конечное множество $\tilde{a} = maxA$, т.к. $\tilde{a} \leq \beta \in B \leq \tilde{\tilde{a}}$ **Def.** $x \in \mathbb{R}; [x] = \lfloor x \rfloor$ - целая часть числа $[x]$ - наибольшее целое число, не превосходящее x **Свойства:**

1.
$$[x] \le x \le [x] + 1$$

2.
$$x - 1 \le [x] \le x$$

- 1. $[x] \le x$ определение
- 2. Пусть $x \ge [x] + 1 \in \mathbb{Z}$, тогда [x] не наиболььшее, что противоречит определению

Th.
$$x, y \in \mathbb{R} : y > x \Rightarrow 1) \exists r \in \mathbb{Q} : x < r < y$$

 $2) \exists s \notin \mathbb{Q} : x < s < y$

Доказательство

1.
$$x < y \Rightarrow y - x > 0 \Rightarrow$$
 (по следствию из принципа Архимеда) $\exists n \in N: \frac{1}{n} < y - x \Leftrightarrow \frac{1}{n} + x < y$ $r = \frac{[nx]+1}{n} > \frac{nx}{n} = x$ $r = \frac{[nx]+1}{n} = \frac{[nx]}{n} + \frac{1}{n} \leq \frac{nx}{n} + \frac{1}{n} = x + \frac{1}{n} < y$ $x < r < y$

2.
$$\sqrt{2} \notin \mathbb{Q}$$

$$x < y \Rightarrow x - \sqrt{2} < y - \sqrt{2} \Rightarrow \text{(по п.1) } \exists r \in \mathbb{Q} : x - \sqrt{2} < r < y - \sqrt{2} \Rightarrow x < r + \sqrt{2} < y$$

$$s = r + \sqrt{2} \notin \mathbb{Q}$$

§3. Супремум и инфимум

Def. $A \subset \mathbb{R}, A \neq \emptyset, A$ - ограничено сверху sup A - наименьшая (точная) верхняя граница **Def.** $A \subset \mathbb{R}, A \neq \emptyset, A$ - ограничено снизу infA - наибольшая (точная) нижняя граница Th.

- 1. У любого непустого ограниченного сверху множества вещественных чисел существует единственный супремум
- 2. У любого непустого ограниченного снизу множества вещественных чисел существует единственный инфимум

Доказательство

- 1. Единственность очевидно
- 2. Существование:

$$A \neq \emptyset, A \subset \mathbb{R}$$

B - множество всех верхних границ

$$B\neq\emptyset,B\subset\mathbb{R}$$

$$\forall a \in A \\ \forall b \in B \ a \le b$$

$$\forall b \in B \ a \leq b$$

Тогджа по аксиоме полноты $\exists c \in \mathbb{R} : a \leq c \leq b (\forall a \in A, \forall b \in B)$

 $\forall a \in A \ a \leq c \Rightarrow c$ - верхняя граница $A \Rightarrow c \in B$

$$\forall b \in B \ c \leq b \Rightarrow c = minB \Rightarrow c = supA$$

Следствия:

1.
$$\begin{cases} A \neq \emptyset \\ A \subset B \subset \mathbb{R} \\ B \text{ - ограничено сверху} \end{cases} \Rightarrow sup A \leq sup B$$

2.
$$\begin{cases} A \neq \emptyset \\ A \subset B \subset \mathbb{R} \\ B \text{ - ограничено снизу} \end{cases} \Rightarrow inf A \geq inf B$$

$$\begin{cases} B \neq \emptyset \\ B \subset \mathbb{R} \\ B \text{ - ограничено сверху} \end{cases} \Rightarrow \exists supB \Rightarrow \forall b \in B \ b \leq supB \Rightarrow \forall a \in A \ a \leq supB \Rightarrow \exists supA \Rightarrow supA \leq supB$$

- 1. A не является ограниченным сверху $\Rightarrow sup A = +\infty$
- 2. A не ограничено снизу $\Rightarrow inf A = -\infty$

Th. (характеристика супремума и инфимума)

1.
$$a = \sup A \Leftrightarrow \begin{cases} \forall x \in A, x \leq a \\ \forall \varepsilon > 0, \exists x \in A : x > a - \varepsilon \end{cases}$$

1.
$$a = supA \Leftrightarrow \begin{cases} \forall x \in A, x \leq a \\ \forall \varepsilon > 0, \exists x \in A : x > a - \varepsilon \end{cases}$$
2. $b = infA \Leftrightarrow \begin{cases} \forall x \in A, x \geq b \\ \forall \varepsilon > 0, \exists x \in A : x < b + \varepsilon \end{cases}$

Доказательство

- 1. $\forall x \in A, x \geq b \Rightarrow b$ нижняя граница A
- 2. $\forall \varepsilon > 0, \exists x \in A: x < b + \varepsilon \Rightarrow$ все числа > b не являются нижними гранциами множества $A \Rightarrow b$ наибольшая нижняя граница $\Rightarrow b = infA$

Th. о вложенных отрезках

$$[a_1;b_1]\supset [a_2;b_2]\supset\ldots\supset [a_n;b_n]\supset\ldots$$
, тогда $\exists c\in\mathbb{R}:c\in[a_n;b_n]\forall n\in\mathbb{N}$ Другими словами $\bigcap_{n=1}^{+\infty}[a_n;b_n]\neq\emptyset$

Доказательство

$$a_1 \le a_2 \le a_3 \dots, A = \{a_1, a_2 \dots\}$$

$$b_1 \ge b_2 \ge b_3 \dots, B = \{b_1, b_2 \dots\}$$

$$A \ne \emptyset, B \ne \emptyset; A, B \subset R$$

$$\forall a_n \le b_n$$

$$?a_k \le b_m$$

- 1. $k < m, a_k \le a_m \le b_m$
- 2. k > m. $a_k < b_k < b_m$
- 3. $k = m, a_k \le b_m$

По аксиоме полноты $\exists c \in \mathbb{R} : a \leq c \leq b (\forall a \in A, \forall b \in B) \Rightarrow \forall n \ a_n \leq c \leq b_n \Rightarrow c \in [a_n; b_n] \forall n \in \mathbb{N}$ Замечания:

- 1. Таких точек может быть много
- 2. Интервалов недостаточно
- 3. Лучей недостаточно

Глава 2. Последовательности вещественных чисел

§1. Пределы последовательности

Def. Последовательность - функция натурального аргумента

$$f: \mathbb{N} \to \mathbb{R} \Leftrightarrow \{f_n\}_{n=1}^{+\infty}$$

 $f(1) \leftrightarrow f_1$

Как задавать последовательность?

- Формулой (форму общего члена последовательности)
- Описательно
- Рекуррентно
- График последовательности (двумерный или одномерный, но второй неудобен, если какие-то точки дублируются)

Def. x_n называется ограниченной сверху, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} \ x_n \leq M$

Def. y_n называется ограниченной снизу, если $\exists m \in \mathbb{R} : \forall n \in \mathbb{N} \ y_n \geq m$

Def. z_n называется ограниченной, если она ограничена и сверху, и снизу $\Leftrightarrow \exists c > 0 : \forall n \in \mathbb{N} \ |z_n| < c$

Def. x_n называется монотонно возрастающей, если $\forall n \in \mathbb{N} \ x_{n+1} \geq x_n$

Def. y_n строго монотонно возрастает, если $\forall n \in \mathbb{N} \ y_{n+1} > y_n$

Def. x_n монотонно убывает, если $\forall n \in \mathbb{N} \ x_{n+1} \leq x_n$

Def. y_n строго монотонно убывает, если $\forall n \in \mathbb{N} \ y_{n+1} < y_n$

 $\mathbf{Def.}\ z_n$ монотонная, если она мотонно возрастает или монотонно убывает

 $\mathbf{Def.}\ z_n$ строго монотонная, если она строго монотонно возрастает или строго монотонно убывает

Def.(1) (неклассическое)

 $a \in \mathbb{R}$

 $a=\lim_{\substack{n\to\infty\\\mathrm{cne}}}x_n\Leftrightarrow$ вне любого интервала, содержащего точку a находится лишь коненчое число членов ппоследовательности

Rem. Можно рассматривать тольько симметричные интервалы

Def.(2) (классическое)

 $a \in \mathbb{R}$

$$a = \lim_{n \to \infty} x_n \Leftrightarrow \forall \varepsilon > 0 \exists N \in \mathbb{N} : \forall n \ge N \ |x_n - a| < \varepsilon$$

Последнее неравенство равносильно выбору симметричного интервала, отсюда равносильность определений

$$\exists N \in \mathbb{N} \Leftrightarrow N = N(\varepsilon)$$

Свойства:

1. Если предел существует, то он единственный

Доказательство

От противного:
$$\begin{cases} \lim_{n \to \infty} x_n = a \\ \lim_{n \to \infty} x_n = b \\ a \neq b \end{cases}$$

Пусть $\varepsilon = \frac{|b-a|}{3}$, тогда окрестности будут непересекающимися \Rightarrow либо вне $(a-\varepsilon,a+\varepsilon)$ бесконечно много членов и вне $(b-\varepsilon,b+\varepsilon)$ бесконечно много членов, либо число n - конечно, оба варианта неверны

- 2. Если из последовательности удалить конечное число членов, то предел не изменится
- 3. Если переставить члены последовательности, то предел не изменится
- 4. Если записать некоторые члены последовательности с конечной кратностью, то предел не изменится
- 5. Если добавить конечное число членов последовательности, то предел не изменится
- 6. Если изменить конечное число членов последовательности, то предел не изменится

7. Если последовательность имеет предел, то она ограничена

Доказательство

Окрестность (a-1, a+1)

Снаружи лишь конечное число членов, в их множестве существует наибольший и наименьший элемент

Пусть $x_{\tilde{N}}$ - наибольший, а $x_{\tilde{\tilde{N}}}$ - наименьший, тогда

$$M=\max\{a+1,x_{\tilde{N}}\}$$
 и $m=\min\{a-1,x_{\tilde{\tilde{N}}}\}$

$$\begin{cases} \lim_{n \to \infty} x_n = a \\ \lim_{n \to \infty} y_n = b \end{cases} \Rightarrow \forall \varepsilon > 0 \exists N : \forall n \ge N \begin{cases} |x_n - a| < \varepsilon \\ |y_n - b| < \varepsilon \end{cases}$$

Доказательство

Для
$$x_n \ \forall \varepsilon_1 > 0 \ \exists N_1 : \forall n \geq N_1 \ |x_n - a| < \varepsilon_1$$

Для $y_n \ \forall \varepsilon_2 = \varepsilon_1 \ \exists N_2 : \forall n \geq N_2 \ |y_n - b| < \varepsilon_2$
 $\varepsilon = \varepsilon_2 = \varepsilon_1; \ N = \max\{N_1, N_2\}$

8. Предельный переход в неравенстве

$$\begin{cases} \lim_{n \to \infty} x_n = a \\ \lim_{n \to \infty} y_n = b \\ \forall n \in \mathbb{N}; x_n \le y_n \end{cases} \Rightarrow a \le b$$

Доказательство

Пусть b < a

Возьмем $\varepsilon = \frac{|a-b|}{3}$, окрестности не пересекаются

По лемме для нашего
$$\varepsilon$$
 $\exists N: \forall n \geq N \begin{cases} |x_n-a| < \varepsilon \\ |y_n-b| < \varepsilon \end{cases}$ Рассмотрим $\begin{cases} x_N \in (a-\varepsilon,a+\varepsilon) \\ y_N \in (b-\varepsilon,b+\varepsilon) \end{cases} \Rightarrow x_N > y_N$??

Значит $a \leq b$

Rem. $\forall n \ x_n < y_n \not\Rightarrow a < b$

Rem. Необязательно $\forall n \ x_n \leq y_n$, можно использовать $x_n \leq y_n \ \forall n \geq N_0$

9. Стабилизация знака

$$\lim_{n \to \infty} x_n = a \neq 0 \Rightarrow \exists N : \forall n \ge N \ x_n \cdot a > 0$$

Доказательство

8

Пусть
$$\varepsilon = \frac{|a|}{3}$$

$$\exists N : \forall n \geq N \ |x_n - a| < \varepsilon$$

10. Принцип двух миллиционеров (теорема о сжатой переменной)

$$\begin{cases} \lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = a \\ \forall n; x_n \le y_n \le z_n \end{cases} \Rightarrow \exists \lim_{n \to \infty} y_n = a$$

Хотим
$$\varepsilon > 0$$
 $\exists N : n \ge N \ |y_n - a| < \varepsilon$ $fix\varepsilon > 0$

По лемме
$$\exists N : \forall n \geq N \begin{cases} |x_n - a| < \varepsilon \\ |z_n - a| < \varepsilon \end{cases} \Leftrightarrow \begin{cases} a - \varepsilon < x_n < a + \varepsilon \\ a - \varepsilon < z_n < a + \varepsilon \end{cases}$$

Возьмем
$$\begin{cases} a - \varepsilon < x_n \\ z_n < a + \varepsilon \\ x_n \le y_n \le z_n \end{cases} \Rightarrow a - \varepsilon < x_n \le y_n \le z_n < a + \varepsilon \Rightarrow a - \varepsilon < y_n < a + \varepsilon \Leftrightarrow |y_n - a| < \varepsilon \Rightarrow 0$$

$$\exists \lim y_n = a$$

Rem. Можно вместо $\forall n \in \mathbb{N}$ использовать $\exists N_0 : \forall n \geq N_0$

Следствие:
$$\forall n \in \mathbb{N} \left\{ \begin{aligned} &|y_n| \leq z_n \\ &\lim_{n \to \infty} z_n = 0 \end{aligned} \right. \Rightarrow \lim_{n \to \infty} y_n = 0$$

Доказательство

$$|y_n| \le z_n \Leftrightarrow -z_n \le y_n \le z_n$$
, дальше очев

Rem. Вместо $\forall n \in \mathbb{N}$ можно $\exists N_0 : \forall n \geq N_0$

Теорема о пределе монотонной последовательности

- 1. Если x_n монотонно возрастает и ограничена сверху, то у нее существует пределе
- 2. Если y_n монотонно убывает и ограничена снизу, то у нее есть предел
- 3. Если z_n монотонна, то существование предела равносильно ограниченности z_n

Доказательство

1.
$$\begin{cases} \{x_1,x_2,x_3\dots x_n\dots\}=X\\ \exists M: \forall n; x_n\leq M \end{cases} \Rightarrow X$$
 - Ограничена сверху $\Rightarrow \exists supX=a$

Докажем, что
$$\lim_{n\to\infty} x_n = \sup X = a$$

$$\forall \varepsilon > 0 \ \exists N : \forall n \ge N \ |x_n - a| < \varepsilon \Leftrightarrow a - \varepsilon < x_n < a + \varepsilon$$

При этом правая часть верна всегда, докажем левую

$$fix\varepsilon > 0$$

$$a=supX\Rightarrow a\cdot arepsilon
eq supX\Rightarrow \exists x_{\tilde{N}}: x_{\tilde{N}}>a-arepsilon \Rightarrow \forall n\geq \tilde{N}\ x_n>a-arepsilon,$$
 так как x_n монотонно возрастает

9

 $2. \Rightarrow$ уже доказано (свойство 7)

$$\Leftarrow \begin{cases} \exists m, M; m \leq z_n \leq M \\ z_n - \text{монотонная} \end{cases} \Rightarrow \begin{bmatrix} z_n \uparrow \Rightarrow z_n \leq M \\ z_n \downarrow \Rightarrow m \leq z_n \end{cases}$$

Def. Последовательность x_n называется бесконечно малой, если $\lim_{n\to\infty}x_n=0$

Свойства:

1.
$$\begin{cases} x_n - \mathsf{б}/\mathsf{M} \\ y_n - \mathsf{ограниченa} \end{cases} \Rightarrow x_n \cdot y_n$$
 - $\mathsf{б}/\mathsf{M}$

2.
$$\begin{cases} \lim_{n \to \infty} x_n = 0 \\ \lim_{n \to \infty} y_n = 0 \end{cases} \Rightarrow \lim_{n \to \infty} x_n + y_n = 0$$

3.
$$\lim_{n \to \infty} x_n = a \Leftrightarrow x_n = a + \alpha_n$$
, где α_n - б/м

1.
$$y_n$$
 - ограничена $\Rightarrow \exists M>0: |y_n|\leq M \ \forall n\in \mathbb{N}$
$$\lim_{n\to\infty}x_n=0 \Leftrightarrow \forall \varepsilon>0 \ \exists N: \forall n\leq N \ |x_n|<\frac{\varepsilon}{M}$$
 Хотим $\forall \varepsilon>0 \ \exists N: \forall n\geq N \ |x_n\cdot y_n-0|<\varepsilon$ $fix\varepsilon>0$

$$fix \varepsilon>0$$
 Знаем, что $\exists N: \forall n\geq N \ \begin{cases} |x_n|<rac{arepsilon}{M} \\ |y_n|\leq M \end{cases} \Rightarrow |x_n\cdot y_n|$

2. $fix\varepsilon > 0$

$$\begin{cases} \lim_{n \to \infty} x_n = 0 \\ \lim_{n \to \infty} y_n = 0 \end{cases} \Rightarrow \text{по лемме } \varepsilon > 0 \; \exists N : \forall n \geq N \begin{cases} |x_n| < \frac{\varepsilon}{2} \\ |y_n| < \frac{\varepsilon}{2} \end{cases} \\ |x_n + y_n| \leq |x_n| + |y_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \Rightarrow \forall \varepsilon > 0 \; \exists N : \forall n \geq N \; |(x_n + y_n) - 0| < \varepsilon \Rightarrow \lim_{n \to \infty} x_n + y_n = 0 \Rightarrow (x_n + y_n) - \varepsilon \end{cases}$$

3.
$$\forall \varepsilon > 0 \ \exists N : \forall n \geq N \ |x_n - a| < \varepsilon \Leftrightarrow |(x_n - a) - 0| < \varepsilon$$

Обозначение $x_n - a = \alpha_n$, тогда

$$|\alpha_n - 0| < \varepsilon$$

$$|lpha_n|, т.е. $\lim_{n o\infty}lpha_n=0\Rightarrowlpha_n$ - б/м, а $x_n=a+lpha_n$, где $lpha_n$ - б/м$$

Тh. об арифметических действиях с пределами

1.
$$\begin{cases} \lim_{n \to \infty} x_n = a \\ \lim_{n \to \infty} y_n = b \end{cases} \Rightarrow \exists \lim_{n \to \infty} x_n + y_n = a + b$$

2.
$$\begin{cases} \lim_{n \to \infty} x_n = a \\ \lim_{n \to \infty} y_n = b \end{cases} \Rightarrow \exists \lim_{n \to \infty} x_n \cdot y_n = a \cdot b$$

3.
$$\begin{cases} \lim_{n \to \infty} x_n = a \\ \lim_{n \to \infty} y_n = b \neq 0 \end{cases} \Rightarrow \exists \lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}$$

4.
$$\lim_{n \to \infty} x_n = a \Rightarrow \lim_{n \to \infty} |x_n| = |a|$$

1.
$$\lim_{n \to \infty} x_n = a \Leftrightarrow x_n = a + \alpha_n, \alpha_n - 6/M$$

$$\lim_{n \to \infty} y_n = b \Leftrightarrow y_n = b + \beta_n, \beta_n - \mathsf{6/M}$$

$$x_n + y_n = a + \alpha_n + b + \beta_n = (a + b) + (\alpha_n + \beta_n) = a + b + \gamma_n \to a + b$$

$$2. \lim_{n \to \infty} x_n = a \Leftrightarrow x_n = a + \alpha_n$$

$$\lim_{n \to \infty} y_n = b \Leftrightarrow y_n = b + \beta_n$$

$$x_n \cdot y_n = (a + \alpha_n)(b + \beta_n) = ab + a\beta_n + b\alpha_n + \alpha_n\beta_n = ab + \gamma_n \to ab$$

3.
$$\lim_{n\to\infty} y_n = b \neq 0 \Rightarrow \exists N : \forall n \geq N \ y_n \neq 0$$

$$\frac{x_n}{y_n}$$
 – определено $\forall n \geq N$

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} x_n \cdot \frac{1}{y_n}$$

Хотим
$$\lim_{n\to\infty} \frac{1}{y_n} = \frac{1}{b}$$

$$\frac{1}{y_n} - \frac{1}{b} = \frac{1}{b = \beta_n} - \frac{1}{b} = \frac{b - b - \beta_n}{b(b + \beta_n)} = (-\beta_n) \cdot \frac{1}{b(b + \beta_n)}$$

Можем выбрать окрестность $(b-\varepsilon,b+\varepsilon); \varepsilon=\frac{|b|}{2}$

$$|b(b+\beta_n)| = |b| \cdot |b+\beta_n| \exists N : \forall n \ge N \ |\beta_n| < \frac{|b|}{2}$$

$$|b| \cdot |b + \beta_n| \le |b| \cdot (|b| + \frac{|b|}{2}) = k$$

$$|b| \cdot |b + \beta_n| \ge |b| \cdot (|b| - |\beta_n|) \ge |b| \cdot \frac{|b|}{2} = M > 0$$

$$0 < M \le |b(b + \beta_n)| \le k$$

$$\frac{1}{k} \le \frac{1}{|b(b+\beta_n)|} \le \frac{1}{M} \Rightarrow \frac{1}{|b(b+\beta_n)|}$$
 — ограничена $\Rightarrow (-\beta_n) \cdot \frac{1}{b(b+\beta_n)}$ — $6/M \Rightarrow \lim_{n \to \infty} \frac{1}{y_n} = \frac{1}{b} \Rightarrow \lim_{n \to \infty} x_n \cdot \frac{1}{y_n} = a \cdot \frac{1}{b} = \frac{a}{b}$

$$4. \lim_{n \to \infty} x_n = a$$

$$x_n = a + \alpha_n$$

$$|a| - |\alpha_n| \le |x_n| = |a + \alpha_n| \le |a| + |\alpha_n|$$

По принципу двух милиционеров

$$\begin{cases} |a| - |\alpha_n| \to a \\ |a| + |\alpha_n| \to a \end{cases} \Rightarrow |x_n| \to a \Leftrightarrow \lim_{n \to \infty} |x_n| = |a|$$

Бесконечные пределы

Def. $\lim_{n\to\infty} x_n = +\infty \Leftrightarrow \forall E \in \mathbb{R} \ \exists N : \forall n \geq N \ x_n > E$

или $\forall E \in \mathbb{R}$ вне луча $(E; +\infty)$ лежит лишь конечное число членов

Rem. Можно рассматривать только E > 0

Def.
$$\lim_{n \to \infty} x_n = -\infty \Leftrightarrow \forall E \in \mathbb{R} \ \exists N : \forall n \geq N \ x_n < E$$

или вне любого луча вида $(-\infty; E)$ лежит лишь конечное число членов

 ${f Rem.}$ Можно рассматривать только E<0

Def.
$$\lim x_n = \infty \Leftrightarrow \forall E > 0 \ \exists N : \forall n \ge N \ |x_n| > E$$

или вне любого множества вида $(-\infty;-E)\bigcup(E;+\infty)$ лежит лишь конечное число членов

Наблюдение.
$$\lim_{n\to\infty} x_n = +\infty \Rightarrow \lim_{n\to\infty} x_n = \infty$$
 $\lim_{n\to\infty} x_n = -\infty \Rightarrow \lim_{n\to\infty} x_n = \infty$ Def. $x_n - 6/6 \Leftrightarrow \lim_{n\to\infty} x_n = \infty$ Наблюдение. $x_n - 6/6 \Rightarrow x_n$ не является ограниченной

$$\lim_{n \to \infty} x_n = -\infty \Rightarrow \lim_{n \to \infty} x_n = \infty$$

$$\operatorname{Def.}^{n\to\infty} x_n - 6/6 \Leftrightarrow \lim_{n\to\infty} x_n = \infty$$

Утверждение. $x_n \neq 0 \ \forall n \in \mathbb{N}$

$$x_n - 6/M \Leftrightarrow \frac{1}{x_n} - 6/6$$

Доказательство

$$\lim_{n\to\infty} x_n = 0 \Leftrightarrow \forall \varepsilon > 0 \ \exists N : \forall n \geq N \ |x_n| < \varepsilon \Leftrightarrow \frac{1}{|x_n|} > \frac{1}{\varepsilon}$$
 T.e. $\forall E > 0 \ \exists N : \forall n \geq N \ |\frac{1}{x_n}| > E \Leftrightarrow \frac{1}{x_n} - 6/6$

Def.
$$\overline{\mathbb{R}} = \mathbb{R} \bigcup \{-\infty\} \bigcup \{+\infty\}$$

Свойства пределов в $\overline{\mathbb{R}}$

1. Предел в $\overline{\mathbb{R}}$ – единственный

$$\begin{cases} \lim_{n \to \infty} x_n = a \in \overline{\mathbb{R}} \\ \lim_{n \to \infty} x_n = b \in \overline{\mathbb{R}} \end{cases} \Rightarrow a = b$$

2. Все свойства про добавить/убрать/переставить сохраняются

3. •
$$\begin{cases} \forall n; x_n \leq y_n \\ \lim_{n \to \infty} x_n = +\infty \end{cases} \Rightarrow \exists \lim_{n \to \infty} y_n = +\infty$$

•
$$\begin{cases} \forall n; x_n \leq y_n \\ \lim_{n \to \infty} y_n = -\infty \end{cases} \Rightarrow \exists \lim_{n \to \infty} x_n = -\infty$$

$$\lim_{n \to \infty} y_n = -\infty \Leftrightarrow \forall E \in \mathbb{R} \ \exists N : \forall n \ge N \ |y_n| < E$$
$$x_n \le y_n < E \Rightarrow \forall E \in \mathbb{R} \ \exists N : \forall n \ge N \ |x_n| < E \Leftrightarrow \lim_{n \to \infty} x_n = -\infty$$

4. Арифметические действия с пределами в R Смотрите нудный, но нужный видос Александра Игоревича

§2. Экспонента

Неравенство Бернулли

 $\forall n \in \mathbb{N} \ \forall x \in \mathbb{R} \ (x > -1)$

 $(1+x)^n \ge 1 + nx$, причем равенство достигается при x = 0 или n = 1

Доказательство по ММИ

База:
$$n=1$$
 $1+x\geq 1+1\cdot x$ — верно Переход: $n\to n+1$ $(1+x)^n\geq 1+nx$ $(1+x)^{n+1}\geq (1+x)(1+nx)=1+nx+x+x^2n=1+(n+1)x+x^2n\geq 1+(n+1)x$ Наблюдение

1.
$$|a| < 1 \Rightarrow \lim_{n \to \infty} a^n = 0 \Leftrightarrow a^n - 6/M$$

2.
$$|a| > 1 \Rightarrow \lim_{n \to \infty} a^n = \infty \Leftrightarrow a^n - 6/6$$

Rem: $a>1\Rightarrow\lim_{n\to\infty}a^n=+\infty$ Rem: Из пункта $2\Rightarrow$ пункт 1

Доказательство

2.
$$|a| > 1 \Rightarrow |a| = 1 + x$$
, $x > 0$
 $|a|^n = (1+x)^n \ge 1 + nx - 6/6 \left(\lim_{n \to \infty} (1+nx) = +\infty\right) \Rightarrow \lim_{n \to \infty} |a|^n = +\infty \Leftrightarrow a^n - 6/6$

Th.

$$a \in \mathbb{R}$$

$$x_n = (1 + \frac{a}{n})^n$$

- $\{x_n\}$ возрастает при $n > -a \Leftrightarrow n+a > 0$ (строго при $a \neq 0$)
- $\{x_n\}$ ограничено сверху

Доказательство

Возрастание.
$$\frac{x_n}{x_{n-1}} = \frac{(1+\frac{a}{n})^n}{(1+\frac{a}{n-1})^{n-1}} = \frac{(n+a)^n \cdot (n-1)^n}{n^n (n-1+a)^{n-1}} = (\frac{(n+a)(n-1)}{n(n-1+a)})^n \cdot \frac{n-1+a}{n-1} = \frac{n-1+a}{n-1} \cdot (1+\frac{-a}{n(n-1+a)})^n \geq \frac{n-1+a}{n(n-1+a)} \cdot (1+\frac{-a}{n(n-$$

 $(n + a) > 0 \Leftrightarrow n > -a$, что дано, значит Бернулли разрешен

Ограниченность. $y_n = (1 + \frac{-a}{n})^n$ монотонно возрастает при n > a

$$x_n \cdot y_n = (1 + \frac{a}{n})^n \cdot (1 + \frac{-a}{n})^n = (1 - \frac{a^2}{n})^n \le 1$$
$$x_n \le \frac{1}{y_n} \le \frac{1}{y_{min}} = const$$

Следствие $\exists \lim_{n \to \infty} x_n \in \mathbb{R}$ (монотонность + ограниченность) **Def.** $a \in \mathbb{R} \exp(a) = \lim_{n \to \infty} x_n = \lim_{n \to \infty} (1 + \frac{a}{n})^n$ **Def.** $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n = \exp(1)$ **Rem.** $z_n = (1 + \frac{1}{n})^{n+1}$

Def.
$$a \in \mathbb{R} \exp(a) = \lim_{n \to \infty} x_n = \lim_{n \to \infty} (1 + \frac{a}{n})^n$$

Def.
$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n = \exp(1)$$

Rem.
$$z_n = (1 + \frac{1}{n})^{n+1}$$

- 1. z_n строго убывает
- $2. \lim_{n \to \infty} z_n = e$

Доказательство

2.
$$\lim_{n \to \infty} z_n = \lim_{n \to \infty} ((1 + \frac{1}{n})^n (1 + \frac{1}{n})) = e \cdot 1 = e$$

1.
$$z_n = (1 + \frac{1}{n})^{n+1} = (\frac{n+1}{n})^{n+1} = \frac{1}{(\frac{n}{n+1})^{n+1}} = \frac{1}{(1 - \frac{1}{n+1})^{n+1}} = \frac{1}{(1 + \frac{-1}{n+1})^{n+1}}$$

Знаменатель строго возрастает ⇒ дробь строго убывает

Свойства экспоненты:

1.
$$\exp(1) = e$$
; $\exp(a) = 1$

2. Монотонность:

$$a \le b \Rightarrow \exp(a) \le \exp(b)$$

Доказательство

$$1 + \frac{a}{n} \le 1 + \frac{b}{n}$$
 – верно $\forall n :$ обе дроби > 0 $\Rightarrow (1 + \frac{a}{n})^n \le (1 + \frac{b}{n})^n \Rightarrow \exp(a) \le \exp(b)$

3.
$$\exp(a) > 0 \ \forall a \in \mathbb{R}$$

$$(1+\frac{a}{n})^n>0$$
 НСНМ строго возрастает

$$\exists \delta > 0 : (1 + \frac{a}{n})^n > \delta > 0 \Rightarrow \exp(a) > \delta > 0$$

4.
$$\exp(a) \cdot \exp(-a) \le 1$$

$$(1 + \frac{a}{n})^n \cdot (1 + \frac{-a}{n})^n = (1 + \frac{-a^2}{n})^n \le 1 \Rightarrow \exp(a) \cdot \exp(-a) \le 1$$

5.
$$\exp(a) \ge 1 + a \ \forall a \in \mathbb{R}$$

$$(1 + \frac{a}{n})^n \ge 1 + n\frac{a}{n} = 1 + a; n > -a \Rightarrow \exp(a) \ge 1 + a$$

6. a < 1

$$\exp(a) \le \frac{1}{1-a}$$

$$\begin{cases} \exp(a) \cdot \exp(-a) < 1 \Leftrightarrow \exp(a) \le \frac{1}{\exp(-a)} \\ \exp(-a) \ge 1 - a > 0 \end{cases} \Rightarrow \frac{1}{\exp(-a)} \le \frac{1}{1 - a}$$

7. $\forall n \in \mathbb{N}$

$$(1+\frac{1}{n})^n < e < (1+\frac{1}{n})^{n+1}$$

Правое:

$$z_n=(1+rac{1}{n})^{n+1}$$
 строго убывает $\lim_{n o\infty}z_n=e$ fix n $(1+rac{1}{n+1})^{n+2}<(1+rac{1}{n})^{n+1}$

Строго убывает и $\rightarrow e \Rightarrow e = \inf(1 + \frac{1}{n+1})^{n+2} \Rightarrow e \le (1 + \frac{1}{n+1})^{n+2} < (1 + \frac{1}{n})^{n+1}$

$$(1 + \frac{1}{n})^n = 2 \ (n = 1) \Rightarrow 2 < e$$

 $(1 + \frac{1}{n})^{n+1} = (1 + \frac{1}{5})^6 \ (n = 5) < 3$
 $2 < e < 3$

e = 2,718281828459045...

Lem.
$$\lim_{n\to\infty} a_n = a \Rightarrow \lim_{n\to\infty} (1 + \frac{a_n}{n})^n = \exp(a)$$

Доказательство

$$A=1+rac{a}{n};\;B=1+rac{a_n}{n}$$
 a_n – ограниченная $\Rightarrow \exists M: \begin{cases} |A| \leq 1+rac{M}{n} \\ |B| \leq 1+rac{M}{n} \end{cases}$

$$A = 1 + \frac{a}{n}; \ B = 1 + \frac{a_n}{n}$$

$$a_n - \text{ограниченная} \Rightarrow \exists M : \begin{cases} |A| \leq 1 + \frac{M}{n} \\ |B| \leq 1 + \frac{M}{n} \end{cases}$$
 Докажем, что
$$\begin{cases} A^n - B^n \to 0 \\ \lim_{n \to \infty} A^n = \exp(a) \end{cases} \Leftrightarrow \lim_{n \to \infty} B^n = \exp(a)$$

$$0 \leq |A^n - B^n| = |(A - B)(A^{n-1} + A^{n-2}B + \ldots + B^{n-1})| = |A$$

$$0 \leq |A^n - B^n| = |(A - B)(A^{n-1} + A^{n-2}B + \ldots + B^{n-1}| = |A - B| \cdot |A^{n-1} + A^{n-2}B \ldots B^{n-1}| \leq |A - B| \cdot (|A^{n-1}| + |A^{n-2}B| + \ldots + |B^{n-1}|) \leq |A - B| \cdot n(1 + \frac{M}{n})^{n-1} = |1 + \frac{a}{n} - 1 - \frac{a_n}{n}| \cdot n \cdot (1 + \frac{M}{n})^{n-1} = \frac{|a - a_n|}{n} \cdot n \cdot (1 + \frac{M}{n})^{n-1} = |a - a_n| \cdot (1 + \frac{M}{n})^{n-1}$$
 Модуль – 6/м, скобка ограничена \Rightarrow выражение $\rightarrow 0 \Rightarrow A^n - B^n \rightarrow 0$

Следствие

$$\exp(a) \cdot \exp(b) = \exp(a+b)$$

Доказательство

$$(1+\frac{a}{n})^n \cdot (1+\frac{b}{n})^n = (1+\frac{a}{n}+\frac{b}{n}+\frac{ab}{n^2})^n = (1+\frac{a+b+\frac{ab}{n}}{n})^n \Leftrightarrow \exp(a) \cdot \exp(b) = \exp(a+b),$$
 т.к. $(a+b+\frac{ab}{n}) \to a+b$ Следствие:

1.
$$\exp(n) = e^n, n \in \mathbb{N}$$

2.
$$f(x) = \exp(x)$$
 – строго возрастает

Доказательство

1.
$$\exp(n) = \exp(1...1) = \exp(1) \cdot \exp(1)... = e^n$$

2.
$$t > 0 \exp(x+t) = \exp(x) \cdot \exp(t) > (1+t) \exp(x)$$

Теорема
$$\begin{cases} x_n > 0 \ \forall n \in \mathbb{N} \\ \lim\limits_{n \to \infty} rac{x_{n+1}}{x_n} = a < 1 \end{cases} \Rightarrow x_n - 6/\mathbf{M}$$

Доказательство

$$a < 1$$
, возьмем окрестность радиусом $\frac{a+1}{2}$ $\exists N: \forall n \geq N \frac{x_{n+1}}{x_n} < \frac{a+1}{2}$ $fix \ n > N$ $x_n = \frac{x_n}{x_{n-1}} \cdot \frac{x_{n-1}}{x_{n-2}} \dots \frac{x_{N+1}}{x_N} \cdot x_N < (\frac{a+1}{2})^{n-N} \cdot x_N$ $0 < x_n < (\frac{a+1}{2})^n \cdot \frac{x_N}{(\frac{a+1}{2})^N} \Rightarrow x_n \to 0$

Следствие

$$1. \lim_{n \to \infty} \frac{n^k}{a^n} = 0$$

$$2. \lim_{n \to \infty} \frac{a^n}{n!} = 0$$

3.
$$\lim_{n\to\infty} \frac{n!}{n^n} = 0$$

1.
$$x_n = \frac{n^k}{a^n} > 0$$

$$\frac{x_{n+1}}{x_n} = \frac{(n+1)^k \cdot a^n}{a^{n+1} \cdot n^k} = \frac{1}{a} \cdot (\frac{n+1}{n})^k = \frac{1}{a} \cdot (1 + \frac{1}{n})^k$$

$$\lim_{n \to \infty} \frac{1}{a} \cdot (1 + \frac{1}{n})^k = \frac{1}{a} < 1 \Rightarrow \lim_{n \to \infty} x_n = 0$$

2.
$$x_n = \frac{a^n}{n!}$$
$$\frac{x_{n+1}}{x_n} = \frac{a^{n+1} \cdot n!}{(n+1)! \cdot a^n} = \frac{a}{n+1}$$
$$\lim_{n \to \infty} \frac{a}{n+1} = 0 < 1 \Rightarrow \lim_{n \to \infty} x_n = 0$$

3.
$$x_n = \frac{n!}{n^n}$$

$$\frac{x_{n+1}}{x_n} = \frac{(n+1)! \cdot n^n}{(n+1)^{n+1} \cdot n!} = \frac{(n+1)n^n}{(n+1)^{n+1}} = \frac{n^n}{(n+1)^n} = \frac{1}{(1+\frac{1}{n})^n}$$

$$\lim_{n \to \infty} \frac{1}{(1+\frac{1}{n})^n} = \frac{1}{e} < \frac{1}{2} \Rightarrow \lim_{n \to \infty} x_n = 0$$

Теорема Штольца

 y_n строго возрастает и $\lim_{n\to\infty}y_n=+\infty$ Если $\exists \lim_{n\to\infty} \frac{x_n-x_{n-1}}{y_n-y_{n-1}} = \stackrel{n\to\infty}{l\in\overline{\mathbb{R}}}$, то $\exists \lim_{n\to\infty} \frac{x_n}{y_n} = l$

Если
$$\exists \lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = l \in \overline{\mathbb{R}}$$
, то $\exists \lim_{n \to \infty} \frac{x_n}{y_n} = 1$

1.
$$l = 0$$

$$\frac{x_n - x_{n-1}}{y_n - y_{n-1}} = z_n - \mathsf{6}/\mathsf{M} \Leftrightarrow \forall \varepsilon > 0 \ \exists N : \forall n \geq N \ |z_n| < \varepsilon$$

$$fix\ \varepsilon>0\to N$$

$$N \le m < n$$

$$x_n - x_{n-1} = z_n(y_n - y_{n-1})$$

$$x_n - x_m = (x_n - x_{n-1}) + (x_{n-1} - x_{n-2}) + \ldots + (x_{m+1} - x_m) = z_n(y_n - y_{n-1}) + z_{n-1}(y_{n-1} - y_{n-2}) + \ldots + z_{m+1}(y_{m+1} - y_m)$$

$$|x_n - x_m| = |\sum_{k=m+1}^n z_k (y_k - y_{k-1})| \le \sum_{k=m+1}^n |z_k (y_k - y_{k-1})| < \varepsilon \sum_{k=m+1}^n |y_k - y_{k-1}| = \varepsilon \sum_{k=m+1}^n (y_k - y_{k-1}) = \varepsilon (y_n - y_m)$$

$$|x_n - x_m| < \varepsilon(y_n - y_m)$$

$$|x_n| - |x_m| \le |x_n - x_m| < \varepsilon(y_n - y_m) < \varepsilon y_n$$

$$|x_n| < |x_m| + \varepsilon y_n$$

$$\left|\frac{x_n}{y_n}\right| < \varepsilon + \frac{|x_m|}{y_n}$$

$$fix \ m; n \to +\infty \Rightarrow |x_m| = const \Rightarrow \frac{|x_m|}{y_n} - 6/M \Rightarrow \frac{|x_n|}{y_n} < \varepsilon \Rightarrow |\frac{x_n}{y_n}| < 2\varepsilon$$

$$l \in \mathbb{R}; l \neq 0$$

$$\begin{split} \tilde{x_n} &= x_n - ly_n \\ \frac{\tilde{x_n} - \tilde{x_{n-1}}}{y_n - y_{n-1}} &= \frac{x_n - ly_n - (x_{n-1} - ly_{n-1})}{y_n - y_{n-1}} = \frac{x_n - x_{n-1}}{y_n - y_{n-1}} - l \to 0 \Rightarrow \lim_{n \to \infty} \frac{\tilde{x_n}}{y_n} = 0 \\ \frac{\tilde{x_n}}{y_n} &= \frac{x_n - ly_n}{y_n} = \frac{x_n}{y_n} - l \Rightarrow \lim_{n \to \infty} \frac{x_n}{y_n} = l \end{split}$$

3. $l=+\infty$

$$\lim_{n\to\infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=+\infty\Rightarrow\lim_{n\to\infty}\frac{y_n-y_{n-1}}{x_n-x_{n-1}}=0_+\Rightarrow\lim_{n\to\infty}\frac{y_n}{x_n}=0_+\Rightarrow\lim_{n\to\infty}\frac{x_n}{y_n}=+\infty$$

Надо доказать:

- x_n строго возрастает
- $\lim x_n = +\infty$

$$\frac{x_n-x_{n-1}}{y_n-y_{n-1}}\to +\infty \Rightarrow \text{HCHM } \frac{x_n-x_{n-1}}{y_n-y_{n-1}}>1 \Rightarrow x_n-x_{n-1}>0 \Rightarrow x_n>x_{n-1}$$

 $HCHM(N) N \leq m < n$

$$\frac{x_n - x_{n-1}}{y_n - y_{n-1}} > 1 \Rightarrow x_n - x_{n-1} > y_n - y_{n-1}$$

$$x_n - x_m = (x_n - x_{n-1}) + (x_{n-1} - x_{n-2}) + \ldots + (x_{m+1} - x_m) > (y_n - y_{n-1}) + (y_{n-1} - y_{n-2}) + \ldots + (y_{m+1} - y_m) = 0$$

 $y_n - y_m$

$$x_n - x_m > y_n - y_m > y_n$$

$$x_n > x_m + y_n$$

$$fix m; n \to +\infty$$

$$x_n > x_m + y_n \Rightarrow \lim_{n \to \infty} x_n = +\infty$$

4. $l=-\infty$

$$\tilde{x_n} = -x_n o$$
 случай 3

Теорема Штольца (ver. 2)

$$y_n : 0 < y_n < y_{n-1} \ \forall n \in \mathbb{N}$$

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0$$

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 0$$
 Если $\exists \lim_{n\to\infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = l \in \overline{\mathbb{R}}$, то $\exists \lim_{n\to\infty} \frac{x_n}{y_n} = l$

Доказательство

1. l = 0

$$\tfrac{x_n-x_{n-1}}{y_n-y_{n-1}} = z_n - \mathsf{G}/\mathsf{M} \Rightarrow \forall \varepsilon > 0 \ \exists N : \forall n \geq N \ |z_n| < \varepsilon$$

$$N \le m < n$$

$$x_n - x_m = (x_n - x_{n-1}) + (x_{n-1} - x_{n-2}) + \ldots + (x_{m+1} - x_m) = z_n(y_n - y_{n-1}) + z_{n-1}(y_{n-1} - y_{n-2}) + \ldots + z_{m+1}(y_{m+1} - y_m)$$

$$|x_n - x_m| \le \sum_{k=m+1}^n |z_k| \cdot |y_k - y_{k-1}| \le \varepsilon \sum_{k=m+1}^n |y_k - y_{k-1}| = \varepsilon \sum_{k=m+1}^n (y_{k-1} - y_k) = \varepsilon (y_m - y_n)$$

 $fix m; n \to +\infty$

$$|x_n - x_m| \le \varepsilon (y_m - y_n) \Rightarrow |x_m| \le \varepsilon y_m$$

$$\left|\frac{x_m}{y_m}\right| \le \varepsilon$$

$$\forall \varepsilon > 0 \ \exists N : \forall m \ge N \ |\frac{x_m}{y_m}| \le \varepsilon \Rightarrow \lim_{n \to \infty} \frac{x_n}{y_n} = 0$$

2-4. Упражнение

§3. Подпоследовательности

Def. n_k строго возрастающая последовательность натуральных чисел

$$x_1, x_2, x_3 \dots x_n \dots$$
 – последовательность

$$x_{n_1}, x_{n_2}, x_{n_3} \dots x_{n_k} \dots$$
 – ее подпоследовательность

Rem.

1.
$$\exists \lim x_n = a \Rightarrow \forall x_{n_k} \lim x_{n_k} = a$$

2.
$$n_k \bigcup m_l = \mathbb{N}$$

 $\lim x_{n_k} = \lim x_{m_l} = a \Rightarrow \exists \lim x_n = a$

Rem. n_k возрастающая последовательность индексов (т.е. \mathbb{N}) $\Rightarrow n_k \geq k$

Доказательство

ММИ:

$$n_1 \ge 1$$

$$n_k \ge k \Rightarrow n_{k+1} > n_k \ge k \Rightarrow n_{k+1} > k \Rightarrow n_{k+1} \ge k+1$$

Теорема о стягивающихся отрезках

$$[a_1;b_1]\supset [a_2;b_2]\supset\ldots\supset [a_n;b_n]$$

$$\lim(b_n-a_n)=0\Rightarrow\exists!c\in[a_n;b_n]\;\forall n\in\mathbb{N}$$
 и $\lim a_n=\lim b_n=c$

Доказательство

- $\exists c: c \in [a_n;b_n] \ \forall n \in \mathbb{N}$ знаем из теоремы о вложенных отрезках
- Пусть $\exists d: d \in [a_n; b_n] \ \forall n \in \mathbb{N}$

$$|c - d| \le |a_n - b_n|$$

$$|c - d| \le 0 \Rightarrow c = d$$

$$\bullet \ 0 \le |a_n - c| \le |a_n - b_n|$$

$$|a_n - c| \to 0 \Rightarrow \lim a_n = c$$

Теорема Больцано-Вейерштрасса

Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность

Доказательство

 x_n – ограничена $\Rightarrow \exists a_0, b_0 : a_0 < x_n < b_n \ \forall n \in \mathbb{N}$

Возьмемь $\frac{a_0+b_0}{2}$, выберем половину с бесконечным числом членов. Пусть левая $\Rightarrow a_1=a_0; b_1=\frac{a_0+b_0}{2}$

Возьмем $\frac{a_1+\bar{b}_1}{2}$, аналогично. Пусть правая $\Rightarrow a_2 = \frac{a_1+b_1}{2}$; $b_2 = b_1$ итд

Тогда
$$[a_0; b_0] \supset [a_1; b_1] \supset \ldots \supset [a_n; b_n] \supset \ldots$$

 $|a_n - b_n| = |\frac{a_0 - b_0}{2^n}| \Rightarrow |a_n - b_n| \to 0$

$$|a_n - b_n| = |\frac{a_0 - b_0}{2^n}| \Rightarrow |a_n - b_n| \to 0$$

Значит это система стягивающихся отрезков

На первом шаге выберем $x_{n_1} \in [a_0; b_0]$, на втором $x_{n_2} \in [a_1; b_1]$ $(n_2 > n_1)$ и так далее

Получили последовательность x_{n_k}

$$x_{n_k} \in [a_{k-1}; b_{k-1}]$$

$$a_{k-1} \leq x_{n_k} \leq b_{k-1} \Rightarrow x_{n_k} \to c$$
, где $c = \bigcap [a_n; b_n]$

$$\lim x_{n_k} = c$$

Def. x_n – фундаментальная, если $\forall \varepsilon > 0 \ \exists N : \forall n,m \geq N \ |x_m - x_m| < \varepsilon$

Свойства:

- 1. x_n сходится $\Rightarrow x_n$ фундаментальна
- 2. x_n фундаментальна $\Rightarrow x_n$ ограничена
- 3. x_n фундаментальна и $\exists n_k : \lim x_{n_k} = a \Rightarrow \lim x_n = a$

1.
$$\lim x_n = a \Leftrightarrow \forall \varepsilon > 0 \ \exists N : \forall n \ge N \ |x_n - a| < \varepsilon$$

$$m, n \ge N \begin{cases} |x_n - a| < \varepsilon \\ |x_m - a| < \varepsilon \end{cases}$$

$$|x_n-x_m| \; |(x_n-a)+(a-x_m)| \leq |x_n-a|+|a-x_m| < 2arepsilon \Rightarrow x_n$$
 – фундаментальна

2. x_n – фундаментальна

$$\begin{split} \forall \varepsilon > 0 \ \exists N : \forall n, m \geq N \ |x_n - x_m| < \varepsilon \\ \varepsilon = 1 \ \exists N : \forall n, m \geq N \ |x_n - x_m| < 1 \\ \forall n \ |x_n - x_N| < 1 \\ |x_n| - |x_N| \leq |x_n - x_N| < 1 \\ \forall n \geq N \ |x_n| \leq 1 + |x_N| \end{split}$$

Значит НСНМ ограничена $\in [-(1+|x_N|); 1+|x_n|]$

До N конечное число, их можем просто сравнить с текущей границей, т.е.

$$x_n \le \max\{x_1, x_2 \dots x_{N-1}, 1 + |x_n|\}$$

$$x_n \ge \min\{x_1, x_2 \dots x_{N-1}, -(1 + |x_n|)\}$$

3. $fix \varepsilon > 0$

$$\exists K : \forall k \geq K \ |x_{n_k} - a| < \varepsilon$$

$$\exists N : \forall m, n \geq N \ |x_n - x_m| < \varepsilon$$

$$k \geq \max\{N; K\}$$

$$|x_n - a| = |x_n - x_{n_k} + x_{n_k} - a| \leq |x_n - x_{n_k}| + |x_{n_k} - a|$$

$$k \geq N \Rightarrow n_k \geq k \geq N \Rightarrow |x_n - x_{n_k}| + |x_{n_k} - a| < 2\varepsilon \Rightarrow \lim x_n = a$$

Критерий Коши: x_n – сходится $\Leftrightarrow x_n$ – фундаментальна

Доказательство

- ⇒ уже доказано
- $\Leftarrow x_n$ фундаментальна $\Rightarrow x_n$ ограничена \Rightarrow существует сходящаяся подпоследовательность $\Rightarrow x_n$ сходится

Th.

- 1. x_n монотонная и не ограниченная сверху $\Rightarrow \lim x_n = +\infty$ x_n монотонная и не ограниченная снизу $\Rightarrow \lim x_n = -\infty$
- 2. x_n неограниченная сверху $\Rightarrow \exists x_{n_k} : \lim x_{n_k} = +\infty$
- 3. x_n неограниченная снизу $\Rightarrow \exists x_{n_k} : \lim x_{n_k} = -\infty$

Доказательство

1.
$$\begin{cases} x_n \text{ возрастает монотонно} \\ x_n \text{ неограничена сверху} \Leftrightarrow \forall M \ \exists N : x_N > M \end{cases} \Rightarrow \forall n \geq N \ x_n > M$$
$$\forall M \ \exists N : \forall n \geq N \ x_n > M \Leftrightarrow \lim x_n = +\infty$$

2. x_n неограничена сверху

$$\begin{split} &\exists n_1: x_{n_1} > 1 \\ &\exists n_2: x_{n_2} > 2 + x_{n_1}; \ n_2 > n_1 \\ &\exists n_3: x_{n_3} > 2 + x_{n_2}; \ n_3 > n_2 \\ & \cdots \\ &\forall k \ \exists x_{n_{k+1}} > 2 + x_{n_k} \\ & x_{n_1} > 1 \Rightarrow \forall k \ x_{n_k} > k \\ & \lim x_{n_k} = +\infty \end{split}$$

3. Аналогично второму пункту

Def. $a \in \overline{R}$; a – частичный предел последовательности x_n , если $\exists x_{n_k} : \lim x_{n_k} = a$

Th. a — частичный предел $x_n \Leftrightarrow$ в любой окрестности точки a содержится бесконечное число членов последовательности

Доказательство

- $\Rightarrow a$ частичный предел $\Leftrightarrow \exists x_{n_k} \to a \Leftrightarrow \forall \varepsilon > 0$ в $(a \varepsilon; a + \varepsilon)$ содержится бесконечное количество членов x_{n_k}
- \Leftarrow Возьмем (a-1;a+1), возьмем $x_{n_1}:a-1 < x_{n_1} < a+1$ Возьмем $(a-\frac{1}{2};a+\frac{1}{2})$, возьмем $x_{n_2}:a-\frac{1}{2} < x_{n_2} < a+\frac{1}{2}$ и $n_2 > n_1$. . .

$$\forall k \ \exists x_{n_k} : n_k > n_{k-1}$$
и
 $a - \frac{1}{k} < x_{n_k} < a + \frac{1}{k} \Rightarrow \lim x_{n_k} = a$

Def. x_n – последовательность

 $\underline{\lim} x_n$ – нижний предел последовательности x_n

$$\underline{\lim} x_n = \lim (\inf\{x_k, x_{k+1} \dots\})$$

Def. x_n – последовательность

 $\overline{\lim} x_n$ – верхний предел последовательности x_n

$$\overline{\lim} x_n = \lim(\sup x_k) = \lim\sup \{x_k, x_{k+1} \dots\}$$

Договор: $\lim \pm \infty = \pm \infty$

$$\begin{cases} y_n = \inf x_k \text{— монотонно возрастает} \\ z_n = \sup x_k \text{— монотонно убывает} \end{cases} \Rightarrow \begin{cases} \exists \lim y_n = \underline{\lim} x_n \\ \exists \lim z_n = \overline{\lim} x_n \end{cases}$$

- 1. $\forall x_n \; \exists \overline{lim} x_n \; \text{и} \; lim x_n \; \text{в} \; \overline{R}$
- 2. $\underline{lim}x_n \leq \overline{lim}x_n$

Доказательство

- 1. $y_n \uparrow ; z_n \downarrow$
- 2. $\forall n \ y_n \leq z_n \Rightarrow \lim x_n \leq \overline{\lim} x_n$

Th.

- 1. $limx_n$ наименьший из частичных пределов
- 2. $\overline{lim}x_n$ наибольший из частичных пределов

Rem. $\forall x_n$ множество частичных пределов непустое

3.
$$\lim x_n = \overline{\lim} x_n \Leftrightarrow \exists \lim x_n = \lim x_n = \overline{\lim} x_n$$

2.
$$x_n \to z = \sup x_k; \ z_n \downarrow$$
 $\overline{\lim} x_n = \lim z_n = a$ z_n бежит к a справа \mathbf{X} отим $x_{n_k}: \lim x_{n_k} = a$ $(a-1)$ не является верхней границей для $x_n \Rightarrow \exists x_{n_1} > a-1$ $(a-\frac{1}{2})$ не является верхней границей для $\{x_{n_1}+1,x_{n_1}+2\ldots\} \Rightarrow \exists x_{n_2} > a-\frac{1}{2}$ \ldots $\forall k \ \exists x_{n_k} > a-\frac{1}{k}, \ \text{т.к.} \ a-\frac{1}{k} \ \text{не может быть верхней граничей для } \{x_{n_{k-1}}+1,x_{n_{k-1}}+2\ldots\}$ $a-\frac{1}{k} < x_{n_k} \leq z_{n_k} \Rightarrow \lim x_{n_k} = a \Rightarrow \overline{\lim} x_n - \text{частичный предел}$ Пусть $x_{n_m} \to b$

$$x_{n_m} \le z_{n_m} \Rightarrow \lim x_{n_m} \le \lim z_{n_m} \Rightarrow b \le a$$

Если $a=+\infty \Rightarrow x_n$ – не ограничена свреху $\Rightarrow \exists x_{n_k} \to +\infty$

$$x_{n_m} \le z_{n_m}$$

$$b \le +\infty$$

1. $\lim x_n = \overline{\lim} x_n \Leftrightarrow \exists \lim x_n$

$$\Leftarrow \exists \lim x_n = a \Rightarrow \forall x_{n_k} \to a$$

$$\Rightarrow \forall n \ y_n \le x_n \le z_n \Rightarrow \exists \lim x_n = \lim y_n = \lim z_n$$

Th. Характеристика верхнего и нижнего пределов на языке ε, N

$$a = \underline{\lim} x_n \Leftrightarrow \begin{cases} \forall \varepsilon > 0 \ \exists N : \forall n \ge N \ x_n > a - \varepsilon \\ \forall \varepsilon > 0 \ \exists N : \forall n \ge N \ x_n < a + \varepsilon \end{cases}$$
$$b = \overline{\lim} x_n \Leftrightarrow \begin{cases} \forall \varepsilon > 0 \ \exists N : \forall n \ge N \ x_n < b + \varepsilon \\ \forall \varepsilon > 0 \ \exists N : \forall n \ge N \ x_n < b + \varepsilon \end{cases}$$

Доказательство

$$b = \lim z_n$$

$$z_n = \sup\{x_n, x_{n+1} \dots\}$$

$$\Leftarrow$$
 1. $\forall \varepsilon > 0 \; \exists N : \forall n \geq N \; z_n \leq b + \varepsilon$

2. В любом хвосте есть элемент больший, чем $b-\varepsilon \Rightarrow \forall n \ z_n > b+\varepsilon$

Тогда НСНМ
$$b - \varepsilon < z_n \le b + \varepsilon \Rightarrow \lim z_n = b$$

$$\Rightarrow \forall \varepsilon > 0 \ \exists N : \forall n \ge N \ b - \varepsilon < z_n < b + \varepsilon$$
$$x_n < z_n \Rightarrow \exists x_N : x_N > b - \varepsilon$$

§4. Ряды

 $\mathbf{Def.}\ \sum a_n$ — ряд (числовой ряд); $a_n\in R$ $\mathbf{Def.}\ S_n=\sum a_k$ — частичная сумма ряда

$$S_n = a_1 + a_2 + \ldots + a_n$$

 $\{S_n\}$ – последовательность частичных сумм

Если $\exists \lim S_n = S \in \overline{R}$, то S – суммы ряда

Def. $\sum a_n$ – ряд – сходящийся, если $S \in R$. Т.е. если $S = \pm \infty$ или $\not \exists \lim S_n$, то $\sum a_n$ – расходящийся ряд

Тh. Необходимый признак сходимости числового ряда

$$\sum a_n$$
 – сходится $\Rightarrow a_n \to 0$

Доказательство

$$\sum a_n$$
 сходится $\Leftrightarrow \exists \lim S_n = S \in R$ $a_n = S_n - S_{n-1} \Rightarrow 0 = S - S$

Действия с числовыми рядами:

$$1. \begin{cases} \sum a_n - \text{сходится к } S \\ \sum b_n - \text{сходится к } \tilde{S} \end{cases} \Rightarrow \sum (a_n + b_n) - \text{сходится к } S + \tilde{S}$$

$$2. \begin{cases} \sum a_n - \text{сходится к } S \\ c \in R \end{cases} \Rightarrow \sum c \cdot a_n - \text{сходится к } c \cdot S$$

2.
$$\begin{cases} \sum a_n - \text{сходится к } S \\ c \in R \end{cases} \Rightarrow \sum c \cdot a_n - \text{сходится к } c \cdot S$$

- 3. Сумма ряда, если существует, то удинственная
- 4. $\sum a_n$ сходится к S

$$\begin{cases} (a_1 + a_2) + (a_3) + (a_4 + a_5 + \ldots) \\ b_1 + b_2 + b_3 \end{cases} \Rightarrow \sum b_n - \text{сходится к } S$$

5. Изменение (добавление, отбрасывание) конечного числа членов ряда не меняет сходимость, но может изменить сумму

Глава 3. Непрерывные функции

§1. Предел функции

Def.

• $a \in R$; U_a – окрестность точки a

 $U_a = (a - \varepsilon; a + \varepsilon)$ для некоторого $\varepsilon > 0$

 $\mathring{U_a}$ – проколотая окрестность точки a

 $\mathring{U_a} = (a-arepsilon;a) igcup (a;a+arepsilon)$ для некоторого arepsilon > 0

• $a = +\infty \Rightarrow$ окрестность – луч $(\varepsilon; +\infty)$

• $a = -\infty \Rightarrow$ окрестность – луч $(-\infty; \varepsilon)$

Def. $E \subset R$; $a \in R$

a – предельная точка множества E, если $\forall \mathbb{U}_{\mathbb{A}} \cap E \neq \emptyset,$ т.е. в любой проколотой окрестности a есть элемент из E

Тh. Следующие условия равносильны:

- 1. a предельная точка E
- 2. В любой окрестности точки a содержится бесконечное количество элементов множества E

3.
$$\exists x_n : \frac{x_n \neq a}{x_n \in E} \lim x_n = a$$

Более того, можно сделать так, что $|x_n - a|$ строго монотонно убывает

Доказательство

- 2 ⇒ 1 очев
- $3 \Rightarrow 2$

$$\exists x_n : \lim x_n = a$$

$$\forall x_n \neq a \\ x_n \in E$$

$$\forall \varepsilon > 0 \ \exists N : \forall n \ge N \ |x_n - a| < \varepsilon \Rightarrow \forall n \ge N \ \frac{x_n \in U_a}{x_n \in E}$$

Возьмем
$$b_1 = (a-1; a+1) \setminus \{a\}$$
 и $x_1 \in b_1$

Потом
$$\varepsilon_2 = min(\frac{1}{2}; |x_1 - a|), b_2 = (a - \varepsilon_2; a + \varepsilon_2) \setminus \{a\}$$
 и $x_2 \in b_2$ итд

Знаем:

1.
$$x_n \neq a$$

2.
$$|x_{n-1} - a| > |x_n - a|$$

$$3. |x_n - a| < \frac{1}{n}$$
$$\lim x_n = a$$

$$\mathbf{Def.}\ f: E \to R; a$$
 – предельная точка E $A = \lim f(x) \Leftrightarrow$

1.
$$\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x \in E : 0 < |x-a| < \delta \Rightarrow |f(x)-A| < \varepsilon$$
 – определение предела по Коши

21

2.
$$\forall$$
 окрестности U_A $\exists U_a: f(\mathring{U_a} \cap E) \subset U_A$ – на языке окрестностей

3.
$$\forall \{x_n\}: \begin{cases} x_n \in E \\ x_n \neq a \\ \lim x_n = a \end{cases} \Rightarrow \lim f(x_n) = A$$
 — по Гейне

$$1\Leftrightarrow 2$$
 $x\in (a-\delta;a)\bigcup (a;a+\delta)=\mathring{U}_a$ $U_A=(A-\varepsilon;A+\varepsilon)$ Дальше по определению

Rem.

- 1. Значение функции f(x) в точке a в окрестности не участвует
- 2. Предел в точке локальное свойство
- 3. В определении по Гейне: если все последовательности $f(x_n)$ имеют предел $\forall x_n: \begin{cases} x_n \neq a \\ x_n \in E \end{cases}$, то все последовательности $\{f(x_n)\}$ имеют равные пределы

Доказательство

$$\begin{cases} x_n \to a; y_n \to a \\ f(x_n) \to A; f(y_n) \to B \end{cases}$$

$$z_n = x_1, y_1, x_2, y_2 \dots$$

$$z_n \to a \Rightarrow f(z_n) \to C \Rightarrow \begin{cases} A = C \\ B = C \end{cases} \Rightarrow A = B$$

Тh. Определение предела по Коши и по Гейне равносильны

Доказательство

$$\begin{split} \mathbf{K} \Rightarrow \Gamma. \ x_n : \begin{cases} x_n \neq a \\ x_n \in E \\ x_n \to a \end{cases} \\ \text{Хотим } f(x_n) \to A \\ \text{Знаем: } \forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in E \ 0 < |x-a| < \delta \Rightarrow |f(x)-A| < \varepsilon \\ fix \ \varepsilon > 0, \ \text{подбираем для нее } \delta \\ \delta \to \exists N : \forall n \geq N \ 0 < |x_n-a| < \delta \ \text{и} \ x_n \in E \Rightarrow |f(x_n)-A| < \varepsilon \Leftrightarrow \lim f(x_n) = A \end{split}$$

$$\Gamma \Rightarrow$$
 К. Надо: $\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in E \ 0 < |x-a| < \delta \Rightarrow |f(x)-A| < \varepsilon$

От противного

Пусть есть $\varepsilon > 0$ для которого любая δ не подходит

$$\varepsilon \leftarrow \delta = 1 \; \exists x_1 : \begin{cases} 0 < |x_1 - a| < 1 \\ x_1 \in E \\ |f(x_1) - A| \ge \varepsilon \end{cases}$$

$$\varepsilon \leftarrow \delta = \frac{1}{2} \; \exists x_2 : \begin{cases} 0 < |x_1 - a| < \frac{1}{2} \\ x_2 \in E \\ |f(x_2) - A| \ge \varepsilon \end{cases}$$
 Ha n -м шаге $\delta = \frac{1}{n} \; \exists x_n : \begin{cases} 0 < |x_n - a| < \frac{1}{n} \\ x_n \in E \\ |f(x_n) - A| \ge \varepsilon \end{cases}$

Получили последовательность
$$x_n: \forall n \begin{cases} x_n \in E \\ x_n \neq a \\ |x_n - a| < \frac{1}{n} \end{cases} \Rightarrow \begin{cases} x_n \in E \\ x_n \neq a \\ \lim x_n = a \end{cases} \Rightarrow \lim f(x_n) = A ?!$$

Th. Свойства пределов:

1. Единственность пределов

Пусть
$$\lim_{x\to a} f(x) = A$$
 и $\lim_{x\to a} f(x) = B$

Гейне:
$$\begin{cases} x_n \to a \\ x_n \neq a \\ x_n \in E \end{cases} \Rightarrow \begin{cases} \lim_{n \to +\infty} f(x_n) = A \\ \lim_{n \to +\infty} f(x_n) = B \end{cases}$$

У последовательности предел единственный $\Rightarrow A = B$

2. Локальная ограниченность

$$\lim_{x\to a} f(x) = A \in R$$
, то $\exists U_a : f(x)$ ограничена при $x\in U_a$

Определение через окрестность:

$$U_A = (A-1; A+1) \rightarrow \exists U_a : f(E \cap \mathring{U_a}) \subset U_A$$

$$A-1 < f(x) < A+1 \ \forall x \in E \cap \mathring{U}_a$$

Rem. Глобальной ограниченности нет

$$f(x) = \frac{1}{x}$$

3. Стабилизация знака

$$\lim_{x \to a} f(x) = A \neq 0 \Rightarrow \exists U_a : \forall x \in E \cap \mathring{U}_a \ f(x) \cdot A > 0$$

$$\forall \varepsilon > 0 \ \exists \delta : \forall x \in E \ 0 < |x - a| < \delta \Rightarrow |f(x) - A| < \varepsilon$$

Берем
$$A>0; \varepsilon=\frac{A}{2}$$
 – победа

Def.
$$\lim_{x \to a} f(x) = +\infty \Leftrightarrow \forall M > 0 \; \exists \delta > 0 : \forall x \in E \; 0 < |x - a| < \delta \Rightarrow f(x) > M$$

Def.
$$\lim_{x \to a} f(x) = +\infty \Leftrightarrow \forall M > 0 \; \exists \delta > 0 : \forall x \in E \; 0 < |x - a| < \delta \Rightarrow f(x) > M$$
Def. $\lim_{x \to +\infty} f(x) = A \in R \Leftrightarrow \forall \varepsilon > 0 \; \exists \delta > 0 : \begin{cases} x \in E \\ x > \delta \end{cases} \Rightarrow |f(x) - A| < \varepsilon$

Тh. Арифметические действия с пределам:

f,g:E o R;a – предельная точка E

$$\lim_{x \to a} f(x) = A; \lim_{x \to a} g(x) = B; A, B \in R \Rightarrow$$

1.
$$\lim_{x \to a} f(x) \pm g(x) = A \pm B$$

$$2. \lim_{x \to a} f(x) \cdot g(x) = A \cdot B$$

3.
$$\lim_{x \to a} |f(x)| = |A|$$

4.
$$B \neq 0 \Rightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$$

Доказательство

Пункт 1 по Гейне:

$$\begin{cases} \{x_n\} \begin{cases} x_n \in E \\ x_n \neq a \\ x_n \to a \end{cases} \Rightarrow \lim_{n \to +\infty} f(x_n) = A \\ \lim_{x \to a} f(x) = A \\ \text{Аналогично} \lim_{n \to +\infty} g(x_n) = B \end{cases}$$

$$\Rightarrow \lim_{n \to +\infty} f(x_n) + g(x_n) = A + B$$

Аналогично доказываются все пункты

Th. Предельный переход в неравенстве

 $f,g:E\to R;a$ – предельная точка E

В некоторой
$$\mathring{U_a}$$
 $f(x) \leq g(x)$;
$$\begin{cases} \lim_{x \to a} f(x) = A \\ \lim_{x \to a} g(x) = B \end{cases} \Rightarrow A \leq B$$

Доказательство

По Гейне:
$$\{x_n\}$$

$$\begin{cases} x_n \neq a \\ x_n \in E \\ x_n \to a \end{cases} \Rightarrow \begin{cases} \lim f(x_n) = A \\ \lim g(x_n) = B \end{cases}$$

 $x_n \to a \Rightarrow$ в какой-то момент $\forall n \geq N : x_n \in \mathring{U_a} \Rightarrow f(x_n) \leq g(x_n) \Rightarrow A \leq B$

Th. Теорема о двух миллиционерах

 $f,g,h:E\to R;a$ – предельная точка E

В некоторой
$$\mathring{U}_a$$
 $f(x) \leq g(x) \leq h(x) \ (\forall x \in \mathring{U}_a)$ $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = A \in R \Rightarrow \exists \lim_{x \to a} g(x) = A$

Доказательство

$$\{x_n\} \begin{cases} x_n \neq a \\ x_n \in E \\ x_n \to a \end{cases} \Rightarrow \begin{cases} f(x_n) \to A \\ h(x_n) \to A \end{cases}$$

$$\exists N : \forall n \ge N \ x_n \in \mathring{U}_a \Rightarrow f(x_n) \le g(x_n) \le h(x_n) \Rightarrow \lim_{x \to a} g(x) = A$$

Критерий Коши (для функции):

f:E o R;a – предельная точка Е

$$\exists \lim_{x \to a} f(x) \in R \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 : \forall x, y \in \mathring{U}_{\delta(a)} \bigcap E \Rightarrow |f(x) - f(y)| < \varepsilon$$

Доказательство

$$\Rightarrow \lim_{x \to a} f(x) = A \in R \Leftrightarrow \forall \varepsilon > 0 \; \exists \delta > 0 : \begin{cases} \forall x \in E \; 0 < |x - a| < \delta \Rightarrow |f(x) - A| < \varepsilon \\ \forall y \in E \; 0 < |y - a| < \delta \Rightarrow |f(y) - A| < \varepsilon \end{cases} \Rightarrow |f(x) - f(y)| = |f(x) - A| + |f(y) - A| < \varepsilon + \varepsilon = 2\varepsilon$$

$$\iff \forall \varepsilon > 0 \ \exists \delta > 0 : \forall x,y \in \mathring{U_a} \bigcap E \Rightarrow |f(x) - f(y)| < \varepsilon$$

Гейне:

$$\begin{cases} x_n \neq a \\ x_n \in E \\ x_n \to a \end{cases}$$

 $fix \varepsilon > 0$, подбираем δ

$$\exists N : \forall n \geq N \ |x_n - a| < \delta \Rightarrow x_n \in \mathring{U}_a \cap E$$

Возьмем
$$x_n, x_m : n, m \ge N \Rightarrow |f(x_n) - f(x_m)| < \varepsilon$$

Получили $\forall \varepsilon > 0 \; \exists N : \forall m, n \geq N \; |f(x_n) - f(x_m)| < \varepsilon \Rightarrow \{f(x_n)\} \; - \; \text{фундаментальная} \; \Leftrightarrow \exists \lim f(x_n) \in \mathcal{S}$ $R \Rightarrow \exists \lim_{x \to a} f(x)$

Def. $f: E \to R; E_1 = E \cap (-\infty; a)$

a – предельная точка E_1

 $f_1=f|_{E_1}$. Тогда если существует $\lim_{x\to a}f_1(x)$, то он называется пределом слева для f(x) в точке a

$$\lim_{x \to a} f_1(x) = \lim_{x \to a_-} f(x) = \lim_{x \to a_{-0}} f(x)$$

Def. $f: E \to R; E_2 = E \cap (a; +\infty)$

 $f_2=f|_{E_2}$. Тогда если существует $\lim_{x\to a}f_2(x)$, то он называется пределом справа для f(x) в точке a

$$\lim_{x \to a} f_2(x) = \lim_{x \to a_+} f(x) = \lim_{x \to a_{+0}} f(x)$$

Это односторонние пределы

Rem. $\exists \lim_{x \to a} f(x) \Leftrightarrow \lim_{x \to a_{-}} f(x) = \lim_{x \to a_{+}} f(x)$

$$\lim_{x \to a_{-}} f(x) = A \in R \Leftrightarrow \forall \varepsilon > 0 \; \exists \delta > 0 : \forall x \in E \; a - \delta < x < a \Rightarrow |f(x) - A| < \varepsilon$$

Def. $f: E \to R$

f – монотонно возрастает $\Leftrightarrow \forall x, y \in E : x < y \Rightarrow f(x) \le f(y)$

f – строго монотонно возрастает $\Leftrightarrow \forall x, y \in E : x < y \Rightarrow f(x) < f(y)$

f – монотонно убывает $\Leftrightarrow \forall x, y \in E : x < y \Rightarrow f(x) \ge f(y)$

f – строго монотонно убывает $\Leftrightarrow \forall x, y \in E : x < y \Rightarrow f(x) > f(y)$

$$\mathbf{Th.}f: E \to R; E_1 = (-\infty; a) \cap E; a$$
 – предельная точка $E_1 \Rightarrow$

1. Если f монотонно возрастает и ограничена сверху, то $\exists \lim_{x \to a_-} f(x) \in R$

Th.
$$f: E \to R; E_2 = (a; +\infty) \cap E; a$$
 – предельная точка $E_2 \Rightarrow$

1. Если f монотонно убывает и ограничена снизу, то $\exists \lim_{x \to a_{\perp}} f(x) \in R$

Доказательство

1. f – ограничена сверху $\Rightarrow \exists sup(f(x)) = A$

Хотим доказать $\lim_{x \to a} f(x) = A$

 $fix \varepsilon > 0$

$$A-\varepsilon$$
 – не верхняя граница $\Rightarrow \exists y \in E_1 : f(y) > A-\varepsilon \Rightarrow \forall x > y \ f(x) > f(y) > A-\varepsilon$

$$\begin{cases} x < a \\ y < a \end{cases} \Rightarrow \forall x : a > x > y \ A + \varepsilon > A \ge f(x) > A - \varepsilon \Rightarrow |f(x) - A| < \varepsilon \Rightarrow \lim_{x \to a_{-}} f(x) = A$$

§2. Непрерывность

Def. $f: E \to R, a \in E$

f называется непрерывной в точке a, если

- 1. a не является предельной точкой E
- 2. a предельная точка $E\Rightarrow \lim_{x\to a}f(x)=f(a)$
- 1. $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall \in E \; |x a| < \delta \Rightarrow |f(x) f(a)| < \varepsilon$
- 2. $\forall U_{f(a)} \exists U_a : f(U_a \cap E) \subset U_{f(a)}$

3.
$$\forall x_n : \begin{cases} x_n \in E \\ x_n \to a \end{cases} \Rightarrow \lim f(x_n) = f(a)$$

 $\mathbf{E}\mathbf{x}$:

•
$$f(x) = C \Rightarrow \lim_{x \to a} f(x) = C$$

•
$$f(x) = x \Rightarrow \lim_{x \to a} f(x) = a = f(a)$$

• f(x) = sign(x)

Для f(0) неверно, значит не непрерывна

Th. $f(x) = \exp(x)$ непрерывна на R

Доказательство

1. $\exp(x)$ непрерывна в 0

$$\lim_{x \to 0} \exp(x) = \exp(0) = 1$$

$$\frac{1}{1-x} \ge \exp(x) \ge 1 + x$$

По двум милиционерам $1 \geq \lim_{x \to 0} \exp(x) \geq 1 \Rightarrow \lim_{x \to 0} \exp(x) = 1$

2. $x = a \neq 0$

Хотим $\lim_{x \to a} \exp(x) = \exp(a)$

 $\exp(x) = \exp((x-a) + a) = \exp(x-a) \cdot \exp(a)$. Первое стремится к 1 по первому пункту, второе – константа $\Rightarrow \exp(x) \to 1 \cdot \exp(a)$

Тһ. Арифметика непрерывных функций

 $f, g: E \to R; a \in E$

f, g – непрерывные в $a \Rightarrow$

- 1. $f \pm g$ непрерывно в a
- 2. $f \cdot g$ непрерывно в a
- 3. |f| непрерывно в a
- 4. $g(a) \neq 0 \Rightarrow \frac{f}{g}$ непрерывно в a

Доказательство

1. a не является предельной точкой $E \Rightarrow$ очев, т.к. в ней все непрерывно

2.
$$a$$
 – предельная точка $E\Rightarrow\begin{cases}\exists\lim_{x\to a}f(x)=f(a)\\ \exists\lim_{x\to a}g(x)=g(a)\end{cases}$ \Rightarrow зовем теорему про арифметику пределов

Th. О стабилизации знака

 $f:E \to R$, непрерывна в $a;a \in E$ и $f(a) \neq 0 \Rightarrow \exists U_a: \forall x \in U_a \ f(x) \cdot f(a) > 0$

Доказательство

- 1. a не является предельной \Rightarrow можем выбрать окрестность, в которой будет только a
- 2. a предельная точка $\Rightarrow \lim_{x\to a} f(x) = f(a) \Rightarrow$ смотри теорему о стабилизации знака для предела функции

Th. О пределе композиции

$$f: D \to R; g: E \to R; f(D) \subset E$$

a – предельная точка $D; \lim_{x \to a} f(x) = b; b \in E$ Если g(x) непрерывна в b, то $\lim_{x \to a} g(f(x)) = g(b)$

Доказательство

gнепрерывна в $b\Rightarrow \forall \varepsilon>0\ \exists \delta>0: \forall y\in E: |y-b|<\delta\Rightarrow |g(y)-g(b)|<\varepsilon$

Для этой
$$\delta > 0$$
 $\exists \gamma > 0: \forall x \in D: 0 < |x-a| < \gamma \Rightarrow |f(x)-b| < \delta$

$$\forall \varepsilon > 0 \ \exists \gamma > 0 : \forall x \in D \ 0 < |x - a| < \gamma \Rightarrow |g(f(x)) - g(b)| < \varepsilon \Leftrightarrow \lim_{x \to a} g(f(x)) = b$$

Следствие: $f:D \to R; g:E \to R; f(D) \subset E; a \in D; f(a) = b \in E$

Если f непрерывна в a, а g непрерывна в b, то композиция g(f(x)) непрерывна в a

Th. $0 < x < \frac{\pi}{2} \Rightarrow \sin x < x < tgx$

 $S_{\triangle AOB} < S_{\text{cektop AOB}} < S_{\triangle COB}$

$$\begin{split} S_{\triangle AOB} &= \tfrac{1}{2} \cdot 1 \cdot 1 \cdot \sin x \\ S_{\text{сектор AOB}} &= \tfrac{1}{2} \cdot 1^2 \cdot x \\ S_{\triangle COB} &= \tfrac{1}{2} \cdot 1 \cdot tgx \\ \sin x &< x < tgx \end{split}$$

Следствие:

- 1. $x \in R; \ |\sin x| \le |x|,$ причем равенство только при x=0 $x \in (0; \frac{\pi}{2})$ доказано $x \in (-\frac{\pi}{2}; 0) \ x \to -x$ $|x| > \frac{\pi}{2} > \frac{3}{2} > 1 \Rightarrow |\sin x| \le 1 < |x|$
- $2. \ |\sin x siny| \leq |x y|; \ |\cos x cosy| \leq |x y|$ $|\sin x siny| = |2sin\frac{x y}{2} \cdot cos\frac{x + y}{2}| = 2 \cdot |sin\frac{x y}{2}| \cdot |cos\frac{x + y}{2}| \leq 2 \cdot |\frac{x y}{2}| \cdot 1 = |x y|$ $\cos x cosy = -2sin\frac{x y}{2} \cdot sin\frac{x + y}{2} \text{аналогично}$

Th.

- 1. $f(x) = \sin x$; $g(x) = \cos x$ непрерывны на R
- 2. tgx, ctgx непрерывны на своей области определения

Доказательство

- $1. \lim_{x\to a}\sin x=\sin a$ $0\leq |\sin x-\sin a|\leq |x-a|\to 0\Rightarrow \lim_{x\to a}\sin x-\sin a=0\Rightarrow \lim_{x\to a}\sin x=\sin a\Leftrightarrow \sin x \text{ непрерывна в } a$ $\cos x=\sin(\tfrac{\pi}{2}-x)\text{ внутренняя и внешняя непрерывны }\Rightarrow \text{ непрерывен }\cos x$
- 2. $tgx = \frac{\sin x}{\cos x}$ отношение двух непрерывных функций $\Rightarrow tgx$ непрерывен во всех точках, где $\cos x \neq 0$, т.е. на своей области определения $\left(x \neq \frac{\pi}{2} + \pi k\right)$ ctgx аналогично

Th. Первый замечательный предел
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

Доказательство

$$x \in (0; \frac{\pi}{2}) \Rightarrow sinx < x < tgx \Rightarrow \frac{sinx}{x} < 1$$
 $x < \frac{sinx}{cosx} \Leftrightarrow cosx < \frac{sinx}{x}$ $cosx < \frac{sinx}{x} < 1$ — все функции четные $\Rightarrow 0 < |x| < \frac{\pi}{2}: \ 1 \leftarrow cosx < \frac{sinx}{x} < 1 \rightarrow 1 \Rightarrow \lim_{x \rightarrow 0} \frac{sinx}{x} = 1$

Th. Теорема Вейерштрасса

 $f:[a;b] \to R; \ f$ – непрерывна на [a;b], тогда

- 1. f ограничена на [a; b]
- 2. f достигает своего наибольшего и наименьшего значения на [a;b]

1. От противного. Пусть f не является ограниченной $\Rightarrow \forall n \in N \ \exists x_n \in [a;b] : |f(x_n)| > n$ $\{x_n\}$; $\forall n \ a < x_n < b \Rightarrow \exists x_{n_k}$ – подпоследовательность $\lim x_{n_k} = c \in R; \ a < x_{n_k} < b \Rightarrow c \in [a; b]$

$$\begin{cases} f\text{- непрерывна} \\ x_{n_k} \to c \end{cases} \Rightarrow \lim f(x_{n_k}) = f(c) \in R$$

Знаем: $|f(x_{n_k})| > n_k \ge k \to +\infty$

2. f – ограничена на $[a;b] \Rightarrow \exists M = supf(x); \ m = inff(x); \ m, M \in R$. Докажем, что $\exists c: f(c) = M$ От противного. Пусть $\forall x \in [a;b] \ f(x) \neq M \Rightarrow \forall x \in [a;b] \ f(x) < M$ $g(x)=rac{1}{M-f(x)(
eq 0)}$ – непрерывна на [a;b] как отношение двух непрерывных; $g(x)>0\Rightarrow g(x)$ – ограничена $\exists \tilde{M} : 0 < q(x) < \tilde{M}$ $\frac{1}{M - f(x)} < \tilde{M} \Leftrightarrow M - f(x) > \frac{1}{\tilde{M}} \Leftrightarrow f(x) < M - \frac{1}{M} \Rightarrow M \neq supf(x) ??$ Для inf используем $h(x) = \frac{1}{f(x)-m}$

Rem.

1. Непрерывность нужна везде

$$f(x) = \begin{cases} \frac{1}{x}, x \in (0;1] \\ 0, x = 0 \end{cases}$$
 $\Rightarrow f(x)$ непрерывна везде, кроме $x = 0$, но f уже не ограничена

2. Отрезок важен

$$f(x) = \frac{1}{x}, x \in (0; 1]$$

Тh. Теорема Больцано-Коши (о промежуточном значении) f – непрерывна на [a;b], тогда:

1. Если
$$f(a) \cdot f(b) < 0 \Rightarrow \exists c \in (a,b) : f(c) = 0$$

2.
$$f(x)$$
 принимает все значения между $f(a)$ и $f(b)$

Доказательство

1. HYO
$$f(a) < 0$$
; $f(b) > 0$
 $a_0 = a$; $b_0 = b$; $c = \frac{a_0 + b_0}{2}$:

•
$$f(c) = 0 - победа$$

•
$$f(c) < 0 \rightarrow a_1 = c; \ b_1 = b_0; \ c = \frac{a_1 + b_1}{2}$$

•
$$f(c) > 0 \rightarrow a_1 = a_0$$
; $b_1 = c$; $c = \frac{a_1 + b_1}{2}$

Если продолжается бесконечно:

$$[a_0;b_0]\supset [a_1;b_1]\supset\ldots$$

$$|b_n-a_n|=rac{1}{2^n}\cdot |b_0-a_0|$$
. Стягивающиеся отрезки $\Rightarrow \exists !c: rac{a_n\leq c\leq b_n}{\lim a_n=\lim b_n=c}$

$$\begin{cases} \lim a_n = c \\ f \text{- непрерывна} \end{cases} \Rightarrow \begin{cases} \lim f(a_n) = f(c) \\ f(a_n) < 0 \end{cases} \Rightarrow f(c) \le 0$$

$$\begin{cases} \lim b_n = c \\ f \text{- непрерывна} \end{cases} \Rightarrow \begin{cases} \lim f(b_n) = f(c) \\ f(b_n) > 0 \end{cases} \Rightarrow f(c) \ge 0$$
Значит
$$\begin{cases} f(c) \ge 0 \\ f(c) \le 0 \end{cases} \Rightarrow f(c) = 0$$

Значит
$$\begin{cases} f(c) \geq 0 \\ f(c) \leq 0 \end{cases} \Rightarrow f(c) = 0$$

2.
$$\forall y$$
 между $f(a)$ и $f(b)$ $\exists c \in (a;b): f(c) = y$
НУО $f(a) < y < f(b)$
 $g(x) = f(x) - y$ – непрерывна
 $g(a) = f(a) - y < 0; \ g(b) = f(b) - y > 0 \Rightarrow \exists c \in (a;b): g(c) = 0 \Rightarrow f(c) - y = 0 \Rightarrow f(c) = y$

Rem.

1. Непрерывность нужна везде

$$f(x) = \begin{cases} -1, x \in [-1;0) \\ 1, x \in [0;1] \end{cases}$$
 $f(1) \cdot f(-1) < 0$, но $\not\exists c : f(c) = 0$

2. Бывают не непрерывные функции, удовлетворяющие теореме Больцано-Коши

$$f(x) = \begin{cases} 0, x = 0\\ \sin\frac{1}{x}, (0; 1] \end{cases}$$

Если $0 < a < b \le 1$, то очевидно выполняются (условия соблюдены)

Интересно $0 = a < b \le 1$. Возьмем k такую, что в [a;b] влезет $[\frac{1}{2\pi(k+1)};\frac{1}{2\pi k}] \Rightarrow \frac{1}{x} \in [2\pi k;2\pi(k+1)]$

Тһ. Непрерывный образ отрезка – отрезок

Доказательство

 $f:[a;b] \to R; \ f$ – непрерывна f([a;b]) – отрезок По теореме Вейерштрасса $M = maxf(x); \ m = minf(x); \ \exists p \in [a;b]: f(p) = M$ и $\exists q \in [a;b]: f(q) = m \Rightarrow f([a;b]) \subset [m;M]$ $? \forall y \ m < y < M \ \exists c: f(c) = y \Rightarrow f([a;b]) = [m;M]$ f(p) = M Рассмотрим [p;q] $f(q) = m \Rightarrow \exists c \in (p;q): f(c) = y$ f – непрерывна на[p;q]

Def. $\langle a; b \rangle$ – промежуток. $a, b \in \overline{R}$ $\langle a; b \rangle$ – множество одно из 4 видов:

- \bullet (a;b)
- (a; b]
- [a; b)
- [a; b]

Тh. Непрерывный образ промежутка – промежуток (может быть другого типа)

$$\begin{array}{l} f: \langle a;b \rangle \to R; \ f - \text{непрерывна на } \langle a;b \rangle \\ m = \inf f(x); \ M = \sup f(x); \ m,M \in \overline{R} \\ \text{Знаем } f(\langle a;b \rangle) \subset [m;M] \\ \text{Хотим: } (m;M) \subset f(\langle a;b \rangle) \\ y \in (m;M) \Rightarrow m < y < M \\ \begin{cases} m = \inf f(x) \\ m < y \end{cases} \Rightarrow \exists p \in \langle a;b \rangle : f(p) < y \text{ (иначе } \forall p \in \langle a;b \rangle \ f(p) \geq y) \end{array}$$

$$\begin{cases} M = sup f(x) \\ y < M \end{cases} \Rightarrow \exists q \in \langle a; b \rangle : f(q) > y \text{ (иначе } \forall q \in \langle a; b \rangle \ f(q) \leq y) \\ \begin{cases} [p;q] \subset \langle a; b \rangle \\ f - \text{ непрерывна на } \langle a; b \rangle \Rightarrow f - \text{ непрерывна на } [p;q] \end{cases} \Rightarrow \exists c \in [p;q] \subset \langle a; b \rangle : f(c) = y \\ f(p) < y < f(q) \end{cases}$$

Def. Обратная функция:

 $E \subset R; \ f: E \to R$ – инъективна

$$f: E \to f(E)$$
 – биекция (взаимно однозначное соответствие)

$$g: f(E) \to E$$

$$g(f(x)) = x \; \forall x \in E \quad \Rightarrow g$$
 – обратная к f функция $(g(x) = f^{-1}(x))$

 $f(g(y)) = y \ \forall y \in E$

Th. $f:\langle a;b\rangle \to R;\ f$ – непрерывна и строго монотонна

 $m=inff(x);\; M=supf(x);\; m,M\in\overline{R}.$ Тогда

- 1. f обратима и $f^{-1} : \langle m; M \rangle \rightarrow \langle a; b \rangle$
- 2. f^{-1} строго монотонна (характер монотонности сохраняется)
- 3. f^{-1} непрерывна на < m; M >

Доказательство

- 1. Строго монотонная ⇒ инъективная ⇒ обратима
- 2. HYO $f(x) \nearrow \text{crporo} : x > y \Leftrightarrow f(x) > f(y)$

$$f^{-1} : \langle m; M \rangle \rightarrow \langle a; b \rangle$$

$$\forall u, v \in \langle m; M \rangle$$

$$u > v \Leftrightarrow f^{-1}(u) > f^{-1}(v)$$
, т.к. если

$$f(x) = v; \ x = f^{-1}(v); \ f(y) = u; \ y = f^{-1}(u)$$

$$f^{-1}(v) > f^{-1}(u) \Leftrightarrow v > u$$

3. $y_0 \in < m; M >$. Хотим доказать, что f^{-1} непрерывна в y

$$\lim_{y \to y_0} f^{-1}(y) = f^{-1}(y_0)$$

$$\operatorname{Ha} < m; y_0) \ f^{-1} \nearrow \Rightarrow f^{-1}(y_0) \ge f^{-1}(y) \ \forall y \in < m; y_0] \Rightarrow \exists \lim_{y \to y_0^-} f^{-1}(y) = A = \sup_{< m; y_0)} f^{-1}(y) \le f^{-1}(y_0)$$

$$\text{Ha } (y_0; M > f^{-1} \nearrow \Rightarrow f^{-1}(y_0) \le f^{-1}(y) \forall y \in [y_0; M > \Rightarrow \exists \lim_{y \to y_0^+} f^{-1}(y) = B = \inf_{(y_0; M > f^{-1}(y))} f^{-1}(y) \ge f^{-1}(y_0)$$

$$\lim_{y \to y_0^-} f^{-1}(y) = A \le f^{-1}(y_0) \le B = \lim_{y \to y_0^+} f^{-1}(y)$$

Если
$$A = B$$
 – победа

Что знаем: $A \leq B$, хотим отбросить часть A < B

Пусть A < B

$$f^{-1} : \langle m; M \rangle \rightarrow \langle a; b \rangle$$

$$\begin{cases} f^{-1}(< m; M >) = \langle a; b \rangle \\ f^{-1}(< m; M >) \subset (-\infty; A] \bigcup \{f^{-1}(y_0)\} \bigcup [B; +\infty] \end{cases} \Rightarrow \text{emae} \dots \Rightarrow A = B \Rightarrow \lim_{y \to y_0^-} f^{-1}(y) = f^{-1}(y_0) = \lim_{y \to y_0^+} f^{-1}(y) \Rightarrow f^{-1} \text{ непрерывна в } y_0$$

§3. Элементарные функции

 $\begin{array}{l} \sin: [-\frac{\pi}{2};\frac{\pi}{2}] \to [-1;1] - \text{непрерывен и строго возрастает} \\ arcsin = \sin^{-1}: [-1;1] \to [-\frac{\pi}{2};\frac{\pi}{2}] - \text{непрерывен и строго возрастает} \\ \cos: [0;\pi] \to [-1;1] - \text{непрерывен и строго убывает} \\ arccos = \cos^{-1}: [-1;1] \to [0;\pi] - \text{непрерывен и строго убывает} \\ \operatorname{tg}: (-\frac{\pi}{2};\frac{\pi}{2}) \to R - \text{непрерывен и строго возрастает} \\ arctg = \operatorname{tg}^{-1}: R \to (-\frac{\pi}{2};\frac{\pi}{2}) - \text{непрерывен и строго возрастает} \\ \operatorname{ctg}: (0;\pi) \to R - \text{непрерывен и строго убывает} \\ arcctg = \operatorname{ctg}^{-1}: R \to (0;\pi) - \text{непрерывен и строго убывает} \\ \end{array}$

Def. $\exp: R \to (0; +\infty)$ – непрерывна и строго возрастает $\exp^{-1} = \ln: (0; +\infty) \to R$ – непрерывен и строго возрастает

Свойства:

- $\begin{aligned} 1. & \lim_{x \to 0_+} \ln x = -\infty \\ & \lim_{x \to +\infty} \ln x = +\infty \end{aligned}$
- 2. $\forall x > -1 \quad \ln(1+x) \le x$ $y = \ln(1+x) \Leftrightarrow 1+x = \exp(y) \ge 1+y \Rightarrow x \ge y \Rightarrow x \ge \ln(1+x)$
- 3. $\forall x \in (-1;1) \quad \ln(1+x) \ge 1 \frac{1}{1+x}$ $y = \ln(1+x) \Leftrightarrow 1+x = \exp(y) \le \frac{1}{1-y} \ (y < 1)$ $1+x \le \frac{1}{1-y} \Leftrightarrow 1-y \le \frac{1}{1+x} \Leftrightarrow y \ge 1 \frac{1}{1+x}$ $\ln(1+x) \ge 1 \frac{1}{1+x}$

Условие из $\ln (1+x) < 1 = \ln e \Leftrightarrow 1+x < e \Leftrightarrow x < e-1$

- 4. $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$ $\frac{x}{x+1} = 1 \frac{1}{1+x} \le \ln(1+x) \le x; -1 < x < 1$
 - $x\in(0;1)$ $\frac{1}{x+1}\leq\frac{\ln{(1+x)}}{x}\leq1$ По двум милиционерам $\lim_{x\to0_{\perp}}\frac{\ln{(1+x)}}{x}=1$
 - $x \in (-1;0)$ $\frac{1}{x+1} \ge \frac{\ln{(1+x)}}{x} \ge 1$ По двум милиционерам $\lim_{x \to 0} \frac{\ln{(1+x)}}{x} = 1$

Односторонние пределы равны $\Rightarrow \lim_{x \to 0} \frac{\ln{(1+x)}}{x} = 1$

5.
$$\ln(ab) = \ln a + \ln b$$

$$\begin{cases} \ln a = x \Rightarrow a = \exp(x) \\ \ln b = y \Rightarrow b = \exp(y) \end{cases}$$

$$ab = \exp(x) \cdot \exp(y) = \exp(x+y) \Leftrightarrow \ln(ab) = x + y = \ln a + \ln b$$

Свойства:

1.
$$b \in N$$
; $b = n, n \in N$
 $a^n = \exp(n \cdot \ln a) = \exp(\ln a + \ln a + \dots + \ln a) = \exp(\ln a) \cdot \dots \cdot \exp(\ln a) = a \cdot \dots \cdot a$

2.
$$b \in Z$$
; $b = -n, n \in N$
 $a^{-n} = \exp(-n \cdot \ln a) = \frac{1}{\exp(n \cdot \ln a)} = \frac{1}{a^n}$

3.
$$a^0 = 1$$
, т.к. $\exp(0) = 1$

4.
$$b \in Q$$
; $b = \frac{m}{n}, n \in N$
 $m \in Z$

$$a^{\frac{m}{n}} = \exp(\frac{m}{n} \cdot \ln a)$$

$$\left(a^{\frac{m}{n}}\right)^n = \left(\exp\left(\frac{m}{n} \cdot \ln a\right)\right)^n = \exp\left(n \cdot \frac{m}{n} \cdot \ln a\right) = \exp(m \cdot \ln a) = a^m$$

Th.
$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

 $\lim_{x \to +\infty} (1+\frac{1}{x})^x = \lim_{x \to -\infty} (1+\frac{1}{x})^x = e$

1.
$$(1+x)^{\frac{1}{x}} = exp(\frac{1}{x} \cdot \ln(1+x))$$

$$\frac{\ln{(1+x)}}{x} \to 1$$

$$\lim_{x \to 0} exp(\frac{1}{x} \cdot \ln(1+x)) = exp(\lim_{x \to 0} \frac{\ln(1+x)}{x} = exp(1) = e$$

2.
$$y = \frac{1}{x}$$
; $x \to +\infty \Rightarrow y \to 0_+$

A если
$$x \to -\infty \Rightarrow y \to 0_-$$

$$(1+\frac{1}{x})^x = (1+y)^{\frac{1}{y}} = e$$

Def. Показательная функция:

$$a > 0; \ a \neq 1; \ x \in R$$

$$a^x = exp(x \cdot \ln a)$$

Свойства:

1.
$$a^x: R \to (0; +\infty)$$

2.
$$a > 1$$
; $a^x \nearrow$ строго и непрерывна

$$0 < a < 1; \ a^x \searrow$$
 строго и непрерывна

3.
$$a^x \ge 1 + x \cdot \ln a$$
, $\forall x$

$$a^x = exp(x \cdot \ln a) \ge 1 + x \cdot \ln a$$

Th.
$$\lim_{x\to 0} \frac{a^x - 1}{x} = \ln a; \ \forall a > 0, a \neq 1$$

Доказательство

$$a^x \ge 1 + x \ln a \Rightarrow a^x - 1 \ge x \cdot \ln a$$

$$a^{-x} \ge 1 - x \cdot \ln a$$

В окрестности нуля
$$a^x \le \frac{1}{1-x\ln a} \Rightarrow a^x - 1 \le \frac{1}{1-x\ln a} - 1 = \frac{x\ln a}{1-x\ln a}$$
 $x\ln a \le a^x - 1 \le \frac{x\ln a}{1-x\ln a}$

•
$$x > 0$$

$$\ln a \le \frac{a^x - 1}{x} \le \frac{\ln a}{1 - x \ln a}$$

По двум милиционерам $\lim_{x\to 0_+}\frac{a^x-1}{x}=\ln a$

• *x* < 0

$$\ln a \ge \frac{a^x - 1}{x} \ge \frac{\ln a}{1 - x \ln a}$$

По двум милиционерам $\lim_{x\to 0} \frac{a^x-1}{x} = \ln a$

Односторонние пределы равны $\Rightarrow \lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$

Def. Степенная функция

$$x \in (0; +\infty); p \in R$$

 $x^p = exp(p \cdot \ln x)$
 $x^p : (0 + \infty) \to (0; +\infty)$

- 1. Непрерывная
- 2. $p > 0 \Rightarrow x^p \nearrow$ crporo
 - $p < 0 \Rightarrow x^p \setminus \text{строго}$

Th.
$$\lim_{x\to 0} \frac{(1+x)^p - 1}{x} = p$$

Доказательство

$$\begin{array}{l} (1+x)^p = \exp(p \cdot \ln{(1+x)}) \\ \frac{(1+x)^p - 1}{x} = \frac{\exp(p \cdot \ln{(1+x)}) - 1}{x} = \frac{(\exp(p \cdot \ln{(1+x)}) - 1) \cdot p \cdot \ln{(1+x)}}{p \cdot \ln{(1+x)} \cdot x} \\ x \to 0 \Rightarrow 1 + x \to 1 \Rightarrow \ln{(1+x)} \to 0 \\ \frac{e^t - 1}{t} \to 1 \text{ при } t \to 0 \text{ знаем} \\ \frac{\exp(p \cdot \ln{(1+x)}) - 1}{p \cdot \ln{(1+x)}} \to 1 \\ \frac{\ln{(1+x)}}{x} \to 1 \end{array}$$

Значит исходное стремится к $1 \cdot p \cdot 1$

§4. Сравнение функций

 $\mathbf{Def.}\ f,g:E\Rightarrow R;\ a$ – предельная точка E

Если
$$\exists \varphi: E \Rightarrow R$$
 такая что $f(x) = \varphi(x) \cdot g(x)$ при $x \in \mathring{U_a} \cap E$ и

1.
$$\varphi(x)$$
 – ограниченная $\Rightarrow f(x) = O(g(x)), \ x \to a$

2.
$$\lim_{x\to a} \varphi(x) = 0$$
, to $f(x) = o(g(x)), \ x\to a$

3.
$$\lim_{x \to a} \varphi(x) = 1$$
, to $f(x) \sim g(x)$, $x \to a$

O, o – символы Ландау

Rem.

1.
$$f(x) = O(g(x)), \ x \to a \Leftrightarrow |f(x)| \leq c \cdot |g(x)|$$
в некоторой $\mathring{U_a}$

2.
$$f(x) = o(g(x)), x \to a \Leftrightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = 0$$
, но соглашение $\frac{0}{0} = 0$

3.
$$f(x) \sim g(x), \ x \to a \Leftrightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = 1$$
, но соглашение $\frac{0}{0} = 1$

Def.
$$f = O(g)$$
 ha $E \Leftrightarrow \exists c > 0 : |f(x)| \le c \cdot |g(x)| \ \forall x \in E$

Свойства:

1. \sim — отношение эквивалентности

- Рефлексивность: $f \sim f$, т.к. $f(x) = 1 \cdot f(x)$
- Симметричность: $f \sim g \stackrel{?}{\Rightarrow} g \sim f$

$$f \sim g \Rightarrow \begin{cases} f(x) = \varphi(x) \cdot g(x) \\ \varphi(x) \to 1, \ x \to a \end{cases} \Rightarrow g(x) = \frac{1}{\varphi(x)} \cdot f(x)$$

$$\bullet \ \begin{cases} f \sim g & \stackrel{?}{\Rightarrow} f \sim h \\ g \sim h & \end{cases}$$

$$\hat{f}(x) = \varphi(x) \cdot g(x)$$

$$g(x) = \psi(x) \cdot h(x)$$

$$f(x) = \varphi(x) \cdot \psi(x) \cdot h(x)$$

2.
$$\begin{cases} f_1 \sim g_1 \\ f_2 \sim g_2 \end{cases} \Rightarrow f_1 \cdot f_2 \sim g_1 \cdot g_2, \ x \to a$$

$$f_1 = \varphi_1 \cdot g_1; \ f_2 = \varphi_2 \cdot g_2; \ \varphi_1, \varphi_2 \to 1$$

$$\Rightarrow f_1 \cdot g_2 = (\varphi_1 \cdot \varphi_2) \cdot g_1 \cdot g_2 \Rightarrow f_1 \cdot f_2 \sim g_1 \cdot g_2$$

3.
$$\begin{cases} f_1 \sim g_1 \\ f_2 \sim g_2 \\ x \to a \\ f_2, g_2 \neq 0 \text{ B } \mathring{U_a} \end{cases} \Rightarrow \frac{f_1}{f_2} \sim \frac{g_1}{g_2}$$

$$\begin{cases} f_1 = \varphi_1 \cdot g_1 \\ f_2 = \varphi_2 \cdot g_2 \varphi_1 \cdot \varphi_2 \to 1 \end{cases} \Rightarrow \frac{f_1}{f_2} = \frac{\varphi_1 \cdot g_1}{\varphi_2 \cdot g_2} = \frac{\varphi_1}{\varphi_2} \cdot \frac{g_1}{g_2}$$

4.
$$f \sim g$$
, $x \to a \Rightarrow \begin{cases} f = g + o(g) \\ g = f + o(f) \end{cases}$

$$f \sim g \Rightarrow \exists \varphi \rightarrow 1 : f(x) = \varphi(x) \cdot g(x) \Rightarrow f(x) = g(x) + (\varphi(x) - 1) \cdot g(x)$$

$$(\varphi(x) - 1) \cdot g(x) = \psi(x) \cdot g(x), \ \psi(x) \to 0, \ x \to a \Rightarrow \psi(x) \cdot g(x) = o(g(x))$$

$$f(x) = g(x) + o(g(x))$$

5.
$$f \sim g \Rightarrow f = O(g), \ x \to a$$

$$f(x)=arphi(x)\cdot g(x),\ arphi(x) o 1$$
 – ограничена в $\mathring{U_a}$

$$f = o(g) \Rightarrow f = O(g)$$

$$f(x) = arphi(x) \cdot g(x), arphi(x) o 0$$
 – ограничена в $\mathring{U_a}$

$$6. \ o(f)+o(f)=o(f), \ x\to a$$

$$\begin{cases} \varphi(x)\cdot f(x) = o(f) \\ \psi(x)\cdot f(x) = o(f) \end{cases} \Rightarrow$$
 одностороннее свойство

$$o(f) + o(f) = o(f)$$

$$\begin{cases} h(x) = \varphi(x) \cdot f(x), \varphi(x) \to 0 \\ g(x) = \psi(x) \cdot f(x), \psi(x) \to 0 \end{cases} \Rightarrow h(x) + g(x) = (\varphi(x) + \psi(x)) \cdot f(x)$$

Ho
$$\varphi(x) + \psi(x) \to 0 \Rightarrow h(x) + g(x) \in o(f)$$

6.5:
$$O(f) + O(f) = O(f)$$

$$\begin{cases} h=\varphi\cdot f\\ g=\psi\cdot f\\ \varphi,\psi - \text{ограничены} \end{cases} \Rightarrow h+g=(\varphi+\psi)\cdot \Rightarrow h+g=O(f)$$

7.
$$f \cdot o(g) = o(fg), x \to a$$

 $h \in o(g) \Rightarrow h = \varphi \cdot g, \varphi \to 0$
 $f \cdot h = f \cdot \varphi \cdot g = \varphi \cdot (fg) \Rightarrow fh = o(fg)$
 $k \in o(fg) \Rightarrow k(x) = \varphi(x) \cdot f(x) \cdot g(x), \varphi \to 0$
 $k(x) = f(x) \cdot (\varphi(x) \cdot g(x)) = f(x) \cdot o(g(x))$
8. $\lim_{x \to a} f(x) = b \Leftrightarrow f(x) = b + o(1), x \to a$
? $o(1)$
 $h \in o(1) \Rightarrow h(x) = \varphi(x) \cdot 1, \varphi(x) \to 0$
 $h(x) = o(1) \Leftrightarrow h(x) - 6/M$
 $\lim_{x \to a} f(x) = b \Leftrightarrow \lim_{x \to a} f(x) - b = 0 \Leftrightarrow f(x) - b = \varphi(x), \varphi(x) \to 0$
 $f(x) = b + \varphi(x) = b + o(1)$

E.g.

1.
$$\frac{\sin x}{x} \to 1 \Leftrightarrow \sin x \sim x, \ x \to 0$$

2.
$$\frac{\ln{(1+x)}}{x} \to 1 \Leftrightarrow \ln{(1+x)} \sim x, \ x \to 0$$

3.
$$\frac{\operatorname{tg} x}{x} \to 1 \Leftrightarrow \operatorname{tg} x \sim x, \ x \to 0$$

Или

1.
$$\frac{\sin x}{x} = 1 + o(1)$$
$$\sin x = x + x \cdot o(1)$$
$$\sin x = x + o(x), x \to 0$$

2.
$$\ln(1+x) = x + o(x)$$

3.
$$tg x = x + o(x)$$

4.
$$\frac{e^x - 1}{x} \to 1$$

 $\frac{e^x - 1}{x} = 1 + o(1)$
 $e^x - 1 = x + o(x)$
 $e^x = 1 + x + o(x), x \to 1$

5.
$$\frac{(1+x)^p - 1}{x} \to p$$

 $(1+x)^p = 1 + px + o(x)$

Глава 4. Дифференциальное исчисление

Def. $f:\langle a;b\rangle\to R;\ x_0\in\langle a;b\rangle$

$$f$$
 – дифференцируема в $x_0 \Leftrightarrow \exists k \in R : f(x) = f(x_0) + k(x - x_0) + o(x - x_0), \ x \to x_0$

Def.
$$f: \langle a; b \rangle \to R; \ x_0 \in \langle a; b \rangle$$

Производная функции f(x) в точке x_0 : $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$ при условии существования этого предела

Тh. Критерий дифференцируемости

$$f: \langle a; b \rangle \to R; \ x_0 \in \langle a; b \rangle$$

Следующие условия равносильны

- 1. f дифференцируема в точке x_0
- 2. \exists конечная производная в точке x_0 ($f'(x_0) \in R$)

3.
$$\exists \varphi : \langle a; b \rangle \to R$$
 $f(x) - f(x_0) = \varphi(x) \cdot (x - x_0), \ \forall x; \ \varphi(x)$ – непрерывна в x_0

Rem. Если все утверждения верны, то $k = f'(x_0) = \varphi(x_0)$

Доказательство

$$1 \Rightarrow 2 \ f(x) = f(x_0) + k(x - x_0) + o(x - x_0)$$
$$\frac{f(x) - f(x_0)}{x - x_0} = k + \frac{o(x - x_0)}{x - x_0}$$
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \left(k + \frac{o(x - x_0)}{x - x_0}\right) = k \in R$$

$$2 \Rightarrow 3 \ \varphi(x) = \begin{cases} \frac{f(x) - f(x_0)}{x - x_0}, & x \neq x_0 \\ f'(x_0), & x = x_0 \end{cases}$$
$$f(x) - f(x_0) = \varphi(x)(x - x_0)$$

 φ непрерывна в x_0 и $\varphi(x_0) = f'(x_0)$

$$3 \Rightarrow 1 \ f(x) - f(x_0) = \varphi(x)(x - x_0)$$

$$f(x) = f(x_0) + \varphi(x_0)(x - x_0) - \varphi(x_0)(x - x_0) + \varphi(x)(x - x_0) = f(x_0) + \varphi(x_0)(x - x_0) + (\varphi(x) - \varphi(x_0))(x - x_0)$$
 Знаем, что $\varphi(x) - \varphi(x_0) \to 0 \Rightarrow (\varphi(x) - \varphi(x_0))(x - x_0) = o(x - x_0)$
$$f(x) = f(x_0) + k(x - x_0) + o(x - x_0)$$

Def. Бесконечная производная

$$f(x) = \sqrt[3]{x}; \ x_0 = 0$$

$$f'(x_0) = f'(0) = \lim_{h \to 0} \frac{\sqrt[9]{0 + h} - \sqrt[3]{0}}{h} = \lim_{h \to 0} \frac{\sqrt[3]{h}}{h} = \lim_{h \to 0} \frac{1}{\sqrt[3]{h^2}} = +\infty$$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
Def O where a power was a proportion of the second state of the second s

Def. Односторонние производные
$$f'_{+}(x_0) = \lim_{h \to 0_{+}} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_{0_{+}}} \frac{f(x) - f(x_0)}{x - x_0}$$
 $f'_{-}(x_0) = \lim_{h \to 0_{-}} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{x \to x_{0_{-}}} \frac{f(x) - f(x_0)}{x - x_0}$

Ex.
$$f(x) = |x|, x_0 = 0$$

 $f'_{+}(0) = \lim_{x \to 0_{+}} \frac{|x| - 0}{x} = 1$
 $f'_{-}(0) = \lim_{x \to 0_{-}} \frac{|x| - 0}{x} = -1$

Rem. $\exists f'(x_0) \Leftrightarrow \exists f'_+(x_0) = f'_-(x_0)$

Def. Касательная – предельное положение секущей

Утверждение f – дифференцируема в $x_0 \Rightarrow$ прямая $y = f(x_0) + f'(x_0)(x - x_0)$ – касательная к графику функции f(x) в точке x_0

Доказательство

$$f$$
 – дифференцируема в u $\frac{f(v)-f(u)}{v-u}(x-u)+f(u)=y\ (x=u\to f(u);\ x=v\to f(v))$ $x_0\leftrightarrow u$ $\lim_{v\to u} \frac{f(v)-f(u)}{v-u}=f'(u)$ $y=f(u)+f'(u)(x-u)=f(x_0)+f'(x_0)(x-x_0)$

Def. Дифференциал функции – линейная часть приращения функции (для дифференцируемых функций) f – дифференцируема в $x_0 \Leftrightarrow \exists k \in R$

$$f(x) = f(x_0) + k(x - x_0) + o(x - x_0), x \to x_0$$

 $f(x) - f(x_0) = k(x - x_0) + o(x - x_0)$. Слева от равно приращение функции, справа – линейная часть + о малое

$$df_{x_0}: R \to R. \ df_{x_0} = kx$$

 $f(x) = f(x_0) + df_{x_0}(x - x_0) + o(x - x_0)$

Утверждение f(x) дифференцируема в x_0 , то f непрерывна в x_0

Доказательство

$$f$$
 — дифференцируема в $x_0 \Rightarrow \exists \varphi(x): f(x) = f(x_0) + \varphi(x)(x - x_0)$, причем $\varphi(x)$ непрерывна в $x_0 \lim_{x \to x_0} f(x) = \lim_{x \to x_0} (f(x_0) + \varphi(x)(x - x_0)) = f(x_0) + \varphi(x_0) \cdot 0 = f(x_0) \Rightarrow f$ непрерывна в x_0

Тh. Про арифметические действия с производной

 $f,g:\langle a;b\rangle\to R;\;x_0\in\langle a;b\rangle;\;f,g$ – дифференцируемы в x_0 , тогда

- 1. $f \pm g$ дифференцируема в x_0 и $(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0)$
- 2. $f \cdot g$ дифференцируема в x_0 и $(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$
- 3. Если $g(x_0) \neq 0$, то $\frac{f}{g}$ дифференцируема в x_0 и $(\frac{f}{g})'(x_0) = \frac{f'(x_0) \cdot g(x_0) f(x_0) \cdot g'(x_0)}{g^2(x_0)}$

Доказательство

1. f – дифференцируема в $x_0 \Leftrightarrow \exists \varphi(x) : \langle a; b \rangle \to R, \ \varphi(x)$ непрерывна в x_0

$$f(x) = f(x_0) + \varphi(x)(x - x_0) \ (\forall x \in \langle a; b \rangle))$$

g – дифференцируема в $x_0 \Leftrightarrow \exists \psi(x) : \langle a; b \rangle \to R, \, \psi(x)$ непрерывна в x_0

$$g(x) = g(x_0) + \psi(x)(x - x_0) \ (\forall x \in \langle a; b \rangle)$$

$$f(x) \pm g(x) = (f(x_0) \pm g(x_0)) + (\varphi(x) \pm \psi(x))(x - x_0)$$

$$\xi(x) = \varphi(x) \pm \psi(x)$$
 – непрерывна в x_0

$$\Rightarrow f(x)\pm g(x)$$
 – дифференцируема в x_0 и $(f(x)\pm g(x))'(x_0)=\xi(x_0)=\varphi(x_0)\pm \psi(x_0)=f'(x_0)\pm g'(x_0)$

2. $f(x) \cdot g(x) = (f(x_0) + \varphi(x) \cdot (x - x_0)) \cdot (g(x_0) + \psi(x) \cdot (x - x_0)) =$

$$= f(x_0) \cdot g(x_0) + f(x_0) \cdot \psi(x) \cdot (x - x_0) + g(x_0) \cdot \varphi(x) \cdot (x - x_0) + \varphi(x) \cdot \psi(x) \cdot (x - x_0)^2 = f(x_0) \cdot g(x_0) + f(x_0) \cdot \psi(x) \cdot (x - x_0) + g(x_0) \cdot \varphi(x) \cdot (x - x_0) + g(x_0) \cdot (x$$

$$= f(x_0) \cdot g(x_0) + (f(x_0) \cdot \psi(x) + g(x_0) \cdot \varphi(x) + \varphi(x) \cdot \psi(x) \cdot (x - x_0)) \cdot (x - x_0)$$

Большая скобка = $\xi(x)$: $\langle a;b\rangle \to R,\ \xi(x)$ непрерывна в x_0

$$f(x) \cdot g(x) = f(x_0) \cdot g(x_0) + \xi(x) \cdot (x - x_0) \Rightarrow f \cdot g - \text{дифференцируема в } x_0 \text{ и } (f \cdot g)'(x_0) = \xi(x_0) = f'(x_0) \cdot \psi(x_0) + g(x_0) \cdot \varphi(x_0) + 0 = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$$

3. $(\frac{f}{g})' = (f \cdot \frac{1}{g})'$

$$\left(\frac{1}{g}\right)'(x_0) = \lim_{x \to x_0} \frac{\frac{1}{g(x)} - \frac{1}{g(x_0)}}{x - x_0} = \lim_{x \to x_0} \frac{g(x_0) - g(x)}{g(x) \cdot g(x_0) \cdot (x - x_0)} = \frac{-g'(x_0)}{g^2(x_0)}$$

$$(f \cdot \frac{1}{g})'(x_0) = f'(x_0) \cdot \frac{1}{g(x_0)} - f(x_0) \cdot \frac{g'(x_0)}{g^2(x_0)} = \frac{f'(x_0) \cdot g(x_0) - f(x_0) \cdot g'(x_0)}{g^2(x_0)}$$

Тh. Дифференцируемость композиции

$$f: \langle a; b \rangle \to R; \ g: \langle c; d \rangle \to \langle a; b \rangle$$

$$x_0 \in \langle c; d \rangle; \ y_0 = g(x_0) \in \langle a; b \rangle$$

g — дифференцируема в x_0 и f — дифференцируема в $y_0 = g(x_0)$. Тогда $f \circ g$ — дифференцируема в x_0 и $(f \circ g)'(x_0) = f'(g(x_0)) \cdot g'(x_0) = f'(y_0) \cdot g'(x_0)$

g — дифференцируема в $x_0 \Leftrightarrow \exists \psi(x): g(x) = g(x_0) + \psi(x)(x - x_0); \ \psi$ — непрерывна в x_0 f — дифференцируема в $y_0 \Leftrightarrow \exists \varphi(y): f(y) = f(y_0) + \varphi(y)(y - y_0); \ \varphi$ — непрерывна в y_0 $f(g(x)) = f(g(x_0)) + \varphi(g(x))(g(x) - g(x_0)) = f(g(x_0)) + \varphi(g(x))\psi(x)(x - x_0); \ \xi(x) = \varphi(g(x))\psi(x)$ $f(g(x)) = f(g(x_0)) + \xi(x)(x - x_0)$ $\xi(x)$ — непрерывна в x_0 ? ψ — непрерывна в x_0 ? ψ — непрерывна в x_0 Значит f(g(x)) — дифференцируема в x_0 $(f \circ g)'(x_0) = \xi(x_0) = \varphi(g(x_0))\psi(x_0) = f'(g(x_0)) \cdot g'(x_0) = f'(y_0) \cdot g'(x_0)$

Тh. Дифференцируемость обратной функции

 $f:\langle a;b\rangle\to < m, M>$ — строго монотонная и непрерывная $x_0\in \langle a;b\rangle: f'(x_0)\neq 0$ (f — дифференцируема в x_0) Тогда f^{-1} — дифференцируема в $y_0=f(x_0)$ и $(f^{-1})'(y_0)=\frac{1}{f'(x_0)}$

Доказательство

 $\exists f^{-1},$ более того f^{-1} – непрерывная f – дифференцируема в $x_0 \Rightarrow \exists \varphi(x): f(x) = f(x_0) + \varphi(x)(x-x_0); \ \varphi(x)$ – непрерывна в x_0 $y = f(x) \Rightarrow x = f^{-1}(y)$ $y_0 = f(x_0) \Rightarrow x_0 = f^{-1}(y_0)$ $y = y_0 + \varphi(f^{-1}(y))(f^{-1}(y) - f^{-1}(y_0)) \Rightarrow y - y_0 = \varphi(f^{-1}(y))(f^{-1}(y) - f^{-1}(y_0))$ $f^{-1}(y) - f^{-1}(y_0) = \frac{1}{\varphi(f^{-1}(y))}(y-y_0)$ $\varphi(f^{-1}(y)) = \varphi(x); \ \varphi(x_0) = f'(x_0) \neq 0$ и φ – непрерывна в x_0 В окрестности $x_0 \ \varphi(x) \neq 0$ $\varphi(f^{-1}(y))$ непрерывна по непрерывности композиции f^{-1} – дифференцируема в y_0 и $(f^{-1})'(y_0) = \frac{1}{\varphi(f^{-1}(y_0))} = \frac{1}{f'(x_0)}$

Rem.
$$(f^{-1})(y_0) = \frac{1}{f'(f^{-1}(y_0))}$$

Def. Производные элементарных функций

1.
$$c \in R$$
; $(c)' = 0$

2.
$$(x^p)' = p \cdot x^{p-1}$$

3.
$$(a^x)' = a^x \ln a$$
$$(e^x)' = e^x$$

4.
$$(\ln x)' = \frac{1}{x}$$

$$5. (\sin x)' = \cos x$$

$$6. (\cos x)' = -\sin x$$

7.
$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$$

8.
$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$$

9.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

10.
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

11.
$$(\operatorname{arctg} x)' = \frac{1}{1+x^2}$$

12.
$$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$$

2.
$$\lim_{h \to 0} \frac{(x+h)^p - x^p}{h} = \lim_{h \to 0} \frac{x^p ((1+\frac{h}{p})^p - 1)}{h}$$
$$\frac{(x+1)^p - 1}{x} \to p, \ x \to 0 \Rightarrow (1+x)^p - 1 \sim px, \ x \to 0$$
$$= \lim_{h \to 0} \frac{x^p \cdot p \cdot \frac{h}{x}}{h} = p \cdot x^{p-1}$$

3.
$$\lim_{h\to 0} \frac{a^{x+h}-a^x}{h} = a^x \lim_{h\to 0} \frac{a^h-1}{h} = a^x \ln a$$

4.
$$(\ln x)' = \lim_{h \to 0} \frac{\ln (x+h) - \ln x}{h} = \lim_{h \to 0} \frac{\ln (\frac{x+h}{x})}{h} = \lim_{h \to 0} \frac{\ln (1 + \frac{h}{x})}{h} = \frac{1}{x}$$

5.
$$(\sin x)' = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \lim_{h \to 0} \frac{2\sin\frac{h}{2}\cos(x+\frac{h}{2})}{h} = \lim_{h \to 0} \frac{\sin\frac{h}{2}}{h}\cos(x+\frac{h}{2}) = 1 \cdot \cos x = \cos x$$

7.
$$(\operatorname{tg} x)' = (\frac{\sin x}{\cos x})' = \frac{(\sin x)' \cdot \cos x - \sin x \cdot (\cos x)'}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$$

9.
$$(\arcsin(x))' = (\sin^{-1})'(x) = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1-\sin^2(\arcsin x)}} = \frac{1}{\sqrt{1-x^2}}$$

11.
$$(\operatorname{arctg} x)' = (\operatorname{tg}^{-1})'(x) = \frac{1}{\frac{1}{\cos^2(\operatorname{arctg} x)}} = \cos^2(\operatorname{arctg} x) = \frac{1}{1 + \operatorname{tg}^2(\operatorname{arctg} x)} = \frac{1}{1 + x^2}$$

§1. Теорема о среднем

Th. Теорема Ферма. $f: \langle a; b \rangle \to R; \ x_0 \in (a, b)$

f — дифференцируема в $x_0.$ $f(x_0)$ — наибольшее/наименьшее значение функции f(x) на $\langle a;b\rangle.$ Тогда $f'(x_0)=0$

Доказательство

HVO
$$f(x_0) \ge f(x), \ \forall x \in \langle a; b \rangle$$

 $f'_+(x_0) = \lim_{x \to x_{0_+}} \frac{f(x) - f(x_0)}{x - x_0} \Rightarrow f'(x_0) \le 0$
 $f'_-(x_0) = \lim_{x \to x_{0_-}} \frac{f(x) - f(x_0)}{x - x_0} \Rightarrow f'(x_0) \ge 0$
Ho $f'_+(x_0) = f'_-(x_0) = f'(x_0) \Rightarrow f'(x_0) = 0$

- 1. Важна дифференцируемость. $f(x) = -|x|; x_0 = 0$
- 2. Теорема не работает на концах. f(x) = x, определена на [-1; 1]

Rem. $f(x_0)$ – наибольшее/наименьшее значение $\Rightarrow f'(x_0) = 0 \Rightarrow$ касательная горизонтальна

Тh. Теорема Ролля. $f:[a,b] \to R; \ f$ – непрерывна на [a,b] и дифференцируема на (a,b). f(a)=f(b) Тогда $\exists c \in (a,b): f'(c)=0$

f(x) непрерывна на $[a,b]\Rightarrow f$ – достигает наибольшего и наименьшего значения (по Вейерштрассу) $\exists p,q\in [a;b]: f(p)\leq f(x)\leq f(q),\ \forall x\in [a;b]$

- Если $p \in (a; b)$ или $q \in (a; b)$, то по теореме Ферма все хорошо
- Если p и q концы отрезка $\Rightarrow f(p) = f(q) \Rightarrow f(x) = const \Rightarrow f'(x) = 0; \ \forall x \in [a;b]$

Rem.

- 1. Дифференцируемость важна везде. f(x) = |x| на [-1; 1]
- 2. Геометрический смысл теоремы Ролля: если график функции f(x) проходит через две точки на одной горизонтальной прямой, то существует точка, в которой касательная горизонтальна

Тh. Теорема Лагранжа (теорема о конечном приращении) $f:[a,b]\to R$, непрерывна на [a,b], дифференцируема на (a,b)Тогда $\exists c \in (a,b): f(b)-f(a)=f'(c)\cdot (b-a)$ (или $\frac{f(b)-f(a)}{b-a}=f'(c)$)

Доказательство

$$g(x)=f(x)-kx,\ k$$
 – подбираем так, чтобы $g(a)=g(b)$ $g(a)-f(a)-ka=g(b)=f(b)-kb$ $k=rac{f(b)-f(a)}{b-a}\ (b
eq a)$

g(a)-f(a)-ka=g(b)=f(b)-kb $k=rac{f(b)-f(a)}{b-a}\;(b
eq a)$ g:[a;b] o R, непрерывна на [a,b], дифференцируема на $(a,b),\,g(b)=g(a)$ \Rightarrow по теореме Ролля $\exists c\in(a,b):$

$$g'(x)=(f(x)-kx)'=f'(x)-k\Rightarrow 0=g'(c)=f'(c)-k\Rightarrow f'(c)=k$$
, а k мы задали ранее

Th. Теорема Коши (о среднем)

 $f,g:[a,b]\to R$, непрерывны на [a,b] и дифференцируемы на (a,b) $g'(x) \neq 0, \ \forall x \in (a, b)$

Тогда $\exists c \in (a,b)$: $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$

Доказательство

 $h(x) = f(x) - k \cdot g(x)$. k подбираем так, чтобы h(a) = h(b)

 $f(a)-k\cdot g(a)=f(b)-k\cdot g(b)\Leftrightarrow k=rac{f(b)-f(a)}{g(b)-g(a)}$ (знаменатель не ноль, т.к. иначе производная не везде ноль по теореме Ролля)

$$h(x)$$
 непрерывна на $[a,b]$, дифференцируема на $(a,b),\ h(a)=h(b)\Rightarrow \exists c\in (a,b): h'(c)=0$

$$h'(x)=f'(x)-k\cdot g'(x);\;h'(c)=0\Rightarrow f'(c)-k\cdot g'(c)=0\Rightarrow rac{f'(c)}{g'(c)}=k,$$
 а k мы задали ранее

Rem. Геометрический смысл: k — угловой коэффициент наклона хорды; $\exists c: f'(c) = k$ — есть точка, в которой касательная параллельна хорде

Rem2. Физический смысл: тело движества по плоскости (q(t), f(t)) – координаты тела в момент времени t. Опять нарисуем хорду, тогда $tg(\alpha) = \frac{f(b) - f(a)}{g(b) - g(a)}$, а $\frac{f'(c)}{g'(c)}$ – крутая штука. Вектор мгновенной скорости в точке c параллелен хорде

Тh. Следствия из теоремы Лагранжа $f:\langle a;b\rangle\to R$

1. f – непрерывна на $\langle a;b\rangle$ и дифференцируема на (a,b) и $\forall x\in(a,b) |f'(x)|\leq M \ (\exists M>0)$

Тогда
$$|f(x) - f(y)| \le M \cdot |x - y| \ \forall x, y \in \langle a; b \rangle$$

$$[x;y] |f(y) - f(x)| = |f'(c)| \cdot |y - x| \le M \cdot |x - y|$$

Def. $f: E \Rightarrow R$; f – липшицева с константой M, если $\forall x, y \in E \mid f(x) - f(y) \mid \leq M \cdot \mid x - y \mid$

2. f непрерывна на $\langle a;b\rangle$ и дифференцируема на (a,b)

Тогда $f'(x) \ge 0 \Leftrightarrow f(x)$ монотонно возрастает на $\langle a; b \rangle$

Доказательство

$$\Rightarrow x < y; \ x, y \in (a, b)$$

$$[x; y] - Лагранж$$

$$f(y) - f(x) = f'(c) \cdot (y - x) \ge 0 \Rightarrow f(x) \le f(y)$$

$$\Leftarrow x_0 \in (a, b); \ f'(x_0) = f'_+(x_0) = \lim_{h \to 0_+} \frac{f(x_0 + h) - f(x_0)}{h} \ge 0$$

3. f непрерывна на $\langle a;b\rangle$ и дифференцируема на (a,b)

$$f'(x) > 0 \ \forall x \in (a,b) \Rightarrow f(x)$$
 строго возрастает на $\langle a;b \rangle$

$$x, y \in (a, b); x < y$$

На [x,y] теорема Лагранжа

$$f(y) - f(x) = f'(c) \cdot (y - x) > 0 \Rightarrow f(x) < f(y)$$

- 4. $f'(x) \leq 0$ на $(a,b) \Leftrightarrow f(x)$ монотонно убывает на $\langle a;b \rangle$
- 5. f'(x) < 0 на $(a,b) \Rightarrow f(x)$ строго убывает на $\langle a;b \rangle$
- 6. f непрерывна на $\langle a;b\rangle$ и дифференцируема на (a,b) $\forall x\in (a,b)\ f'(x)=0\Rightarrow f(x)$ постоянная на $\langle a;b\rangle$

Доказательство

$$x, y \in qa, b; \ x < y$$

$$[x;y]$$
 – Лагранж

$$f(x) - f(y) = f'(c) \cdot (x - y) = 0 \Rightarrow f(x) = f(y)$$

Th. Теорема Дарбу

 $f:[a;b] o R; \ f$ – дифференцируема на $[a;b]. \ M$ лежит между f'(a) и f'(b)

Тогда $\exists c \in (a;b) : f'(c) = M$

Доказательство

1. M = 0

$$f'(c) = M$$
. HyO $f'(a) < 0 < f'(b)$

Хочу:
$$\exists c \in (a; b) : f'(c) = 0$$

 $f:[a;b]\to R;\ f$ — дифференцируема на $[a;b]\Rightarrow f$ — непрерывна на $[a;b]\Rightarrow$ по теореме Вейерштрасса $\exists p,q\in [a;b]: f(p)\leq f(x)\leq f(q),\ \forall x\in [a;b]$

Если p или q внутри (a;b), то по теореме Ферма f'(p)=0 или f'(q)=0

- (a) p=a $f'(a)=f'_+(a)=\lim_{h\to 0_+}\frac{f(a+h)-f(a)}{h}\geq 0, \text{ но y нас } f'(a)<0\Rightarrow \text{противоречиe}$
- (b) p=b $f'(b)=f'_-(b)=\lim_{h\to 0_-}\frac{f(b+h)-f(b)}{h}\leq 0,$ но у нас $f'(b)>0\Rightarrow$ противоречие

Значит $p \in (a; b)$; Ферма f'(p) = 0

2. $M \neq 0$

$$g(x) = f(x) - Mx$$

g(x) дифференцируема на [a;b]

$$g'(x) = f'(x) - M \Rightarrow \begin{cases} g'(a) = f'(a) - M < 0 \\ g'(b) = f'(b) - M > 0 \end{cases}$$

По пункту
$$1 \Rightarrow \exists c : g'(c) = 0 \Rightarrow f'(c) - M = 0 \Rightarrow f'(c) = M$$

Th. Следствие из теоремы Дарбу

 $f:\langle a;b\rangle\to R,\, f$ – дифференцируема на $\langle a;b\rangle$ и $f'(x)\neq 0 \forall x\in\langle a;b\rangle$

Тогда f(x) строго монотонна на $\langle a;b\rangle$

f'(x) > 0 на $\langle a; b \rangle$ или f'(x) < 0 на $\langle a; b \rangle$ Если не так, то $\exists x \in \langle a; b \rangle : f'(x) < 0$ и $\exists y \in \langle a; b \rangle : f'(y) > 0$ На [x;y] по теореме Дарбу $\exists c: f'(c) = 0$ – противоречие

Th. Правило Лопиталя

$$-\infty \le a < b \le +\infty; \ f,g:(a;b) \to R; \ f,g$$
 — дифференцируемы на $(a;b)$ $g'(x) \ne 0$ на $(a;b); \lim_{x \to a_+} f(x) = \lim_{x \to a_+} g(x) = 0$ Тогда, если $\exists \lim_{x \to a_+} \frac{f'(x)}{g'(x)} = l \in \overline{R}$, то $\exists \lim_{x \to a_+} \frac{f(x)}{g(x)} = l$

Доказательство

Зовем Гейне:
$$\{x_n\}: \begin{cases} x_n \neq a \\ x_n \to a \\ x_n \searrow \end{cases}$$

Хочу: $\lim_{n \to +\infty} \frac{f(x_n)}{g(x_n)} = l$

Хочу:
$$\lim_{n \to +\infty} \frac{f(x_n)}{g(x_n)} = l$$

Зовем Штольца (почуяли кровь):
$$\lim_{n\to +\infty} f(x_n) = \lim_{n\to +\infty} g(x_n) = 0$$

g(x) строго монотонная (т.к. производная не зануляется и следствие из Дарбу), x_n монотонная по заданию $\Rightarrow g(x_n)$ монотонная

$$\lim_{n \to +\infty} \frac{f(x_{n+1}) - f(x_n)}{g(x_{n+1}) - g(x_n)} = l?$$
 проверяем

По теореме Коши
$$\frac{f(x_{n+1})-f(x_n)}{g(x_{n+1})-g(x_n)} = \frac{f'(c_n)}{g'(c_n)} \ (\exists c_n \in (x_{n+1}; x_n))$$

По теореме Коши $\frac{f(x_{n+1})-f(x_n)}{g(x_{n+1})-g(x_n)}=\frac{f'(c_n)}{g'(c_n)}$ ($\exists c_n\in(x_{n+1};x_n)$) Родили последовательность c_n , которую по двум милиционерам устремили к a

$$\lim_{n \to +\infty} \frac{f(x_{n+1}) - f(x_n)}{g(x_{n+1}) - g(x_n)} = \lim_{n \to +\infty} \frac{f'(c_n)}{g'(c_n)} = l$$

Th. Правило Лопиталя

$$-\infty \leq a < b \leq +\infty; \ f,g:(a;b) \to R; \ f,g$$
 – дифференцируемы на $(a;b)$ $g'(x) \neq 0$ на $(a;b); \lim_{x \to a_+} g(x) = +\infty$ Тогда если $\exists \lim_{x \to a_+} \frac{f'(x)}{g'(x)} = l \in \overline{R},$ то $\exists \lim_{x \to a_+} \frac{f(x)}{g(x)} = l$

Тогда если
$$\exists \lim_{x \to a_+} \frac{f'(x)}{g'(x)} = l \in \overline{R}$$
, то $\exists \lim_{x \to a_+} \frac{f(x)}{g(x)} = l$

Доказательство

Штольц для $\frac{\infty}{\infty}$

$\mathbf{E}\mathbf{x}$.

1.
$$\lim_{x \to 0_{+}} x^{x} = \lim_{x \to 0_{+}} e^{x \ln x}$$
$$\lim_{x \to 0_{+}} x \ln x = \lim_{x \to 0_{+}} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0_{+}} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}} = \lim_{x \to 0_{+}} -x = 0$$
$$\Rightarrow \lim_{x \to 0_{+}} x^{x} = e^{0} = 1$$

$$2. \lim_{x \to +\infty} \frac{\ln x}{x^p} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{px^{p-1}} = \lim_{x \to +\infty} \frac{1}{px^p} = 0$$

§2. Производные высших порядков

Def. $f:\langle a;b\rangle\to R;\ x_0\in\langle a;b\rangle,\ f$ – дифференцируема в окрестности x_0

Тогда если f'(x) дифференцируема в x_0 , то f(x) – дважды дифференцируема в x_0 и $f''(x_0) = (f')'(x_0)$

Аналогично f – трижды дифференцируема в x_0 , если f дважды дифференцируема в окрестности x_0 и f''(x) дифференцируема в x_0 и $f'''(x) = (f'')'(x_0)$

Def. $f:\langle a;b\rangle\to R;\ f$ – дифференцируема на $\langle a;b\rangle$ и f' – непрерывна на $\langle a;b\rangle$

Тогда говорят, что f – непрерывно дифференцируема на $\langle a;b\rangle$

Обозначения

1. $f: E \to R$

 $f \in C(E) \Leftrightarrow f$ – непрерывна на E

2. $f:\langle a;b\rangle\to R$

 $f \in C^n(\langle a;b \rangle) \Leftrightarrow \begin{cases} f-n \text{ раз дифференцируема на } \langle a;b \rangle \\ \text{все производные непрерывны} \end{cases}$

3. $f:\langle a;b\rangle\to R$

 $f \in C^{\infty}(\langle a; b \rangle) \Leftrightarrow \forall n \in N \ f \in C^{n}(\langle a; b \rangle)$

Rem. $C(\langle a;b\rangle)\supset C^1(\langle a;b\rangle)\supset C^2(\langle a;b\rangle)\supset ...\supset C^\infty(\langle a;b\rangle)$ Все вложения строгие, т.к. $f_n(x)=x^{n+\frac{1}{3}};\ f_n(x)=x^n\cdot \sqrt[3]{x}$ $f_n(x)\in C^n(R);\ f_n(x)\not\in C^{n+1}(R)$ $(f_n(x))'=(n+\frac{1}{3})x^{(n-1)+\frac{1}{3}};\ (f_n(x))''=(n+\frac{1}{3})((n-1)+\frac{1}{3})x^{(n-2)+\frac{1}{3}}$ $(f_n(x))^{(n)}=(n+\frac{1}{3})((n-1)+\frac{1}{3})...(\frac{1}{3})x^{\frac{1}{3}}=k\cdot x^{\frac{1}{3}}$ $g(x)=x^{\frac{1}{3}}$ не является дифференцируемой в x=0

Тh. Теорема об арифметических действиях

 $f,g:\langle a;b
angle
ightarrow R;\ x_0\in\langle a;b
angle;\ f,g$
 раз дифференцируемы в x_0

- 1. $\alpha f + \beta g n$ раз дифференцируема в x_0 и $(\alpha f + \beta g)^{(n)}(x_0) = \alpha f^{(n)}(x_0) + \beta g^{(n)}(x_0)$
- 2. $f \cdot g n$ раз дифференцируема в x_0 и $(f \cdot g)^{(n)}(x_0) = \sum_{k=0}^n C_n^k f^{(k)}(x_0) \cdot g^{(n-k)}(x_0)$ формула Лейбница
- 3. $f(\alpha x + \beta) n$ раз дифференцируема в x_0 и $(f(\alpha x + \beta))^{(n)} = \alpha^n \cdot f^{(n)}(\alpha x_0 + \beta)$

Доказательство

1. По индукции. База n=1 – теорема о производной суммы

Переход $n \to n+1$

$$(\alpha f + \beta g)^{(n+1)}(x_0) = ((\alpha f + \beta g)^{(n)})'(x_0) = (\alpha f^{(n)}(x_0) + \beta g^{(n)})'(x_0) = \alpha f^{(n+1)}(x_0) + \beta g^{(n+1)}(x_0)$$

2. ММИ. База n=1 – теорема о производной произведения

$$(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0) = \sum_{k=0}^{1} C_1^k f^{(k)}(x_0) \cdot g^{(1-k)}(x_0)$$

Переход $n \to n+1$

$$(f \cdot g)^{(n+1)}(x_0) = ((f \cdot g)^{(n)})'(x_0) = (\sum_{k=0}^n C_n^k f^{(k)}(x_0) \cdot g^{(n-k)}(x_0))' = \sum_{k=0}^n C_n^k (f^{(k)}(x_0) \cdot g^{(n-k)})'(x_0) = ((f \cdot g)^{(n)})'(x_0) =$$

$$\sum_{k=0}^{n} C_n^k (f^{(k+1)}(x_0) \cdot g^{(n-k)}(x_0) + f^{(k)}(x_0) \cdot g^{(n-k+1)}(x_0)) = \sum_{k=0}^{n} C_n^k f^{(k+1)}(x_0) \cdot g^{(n-k)}(x_0) + \sum_{k=0}^{n} C_n^k f^{(k)}(x_0) \cdot g^{(n-k+1)}(x_0) = \sum_{k=0}^{n} C_n^k f^{(k+1)}(x_0) \cdot g^{(n-k)}(x_0) + \sum_{k=0}^{n} C_n^k f^{(k)}(x_0) \cdot g^{(n-k)}(x_0) = \sum_{k=0}^{n} C_n^k f^{(k+1)}(x_0) \cdot g^{(n-k)}(x_0) + \sum_{k=0}^{n} C_n^k f^{(k)}(x_0) \cdot g^{(n-k)}(x_0) = \sum_{k=0}^{n} C_n^k f^{(k+1)}(x_0) \cdot g^{(n-k)}(x_0) + \sum_{k=0}^{n} C_n^k f^{(k)}(x_0) \cdot g^{(n-k)}(x_0) = \sum_{k=0}^{n} C_n^k f^{(k+1)}(x_0) \cdot g^{(n-k)}(x_0) + \sum_{k=0}^{n} C_n^k f^{(k)}(x_0) \cdot g^{(n-k)}(x_0) = \sum_{k=0}^{n} C_n^k f^{(k+1)}(x_0) \cdot g^{(n-k)}(x_0) + \sum_{k=0}^{n} C_n^k f^{(k)}(x_0) \cdot g^{(n-k)}(x_0) = \sum_{k=0}^{n} C_n^k f^{(k)}(x_0) \cdot g^{(n-k)}(x_0) + \sum_{k=0}^{n} C_n^k f^{(k)}(x_0) \cdot g^{(n-k)}(x_0) = \sum_{k=0}^{n} C_n^k f^{(k)}(x_0) \cdot g^{(n-k)}(x_0) + \sum_{k=0}^{n} C_n^k f^{(k)}(x_0) \cdot g^{(n-k)}(x_0) = \sum_{k=0}^{n} C_n^k f^{(k)}(x_0) = \sum_{k=0}^{n} C_n^k f^{(k)}(x_0) \cdot g^{(n-k)}(x_0) = \sum_{k=0}^{$$

$$=\sum_{m=1}^{n+1}C_n^{m-1}f^{(m)}(x_0)\cdot g^{(n+1-m)}(x_0)+\sum_{m=0}^{n}C_n^mf^{(m)}(x_0)\cdot g^{(n+1-m)}(x_0)=f(x_0)\cdot g^{(n+1)}(x_0)+\sum_{m=1}^{n}C_{n+1}^m\cdot f^{(m)}(x_0)\cdot g^{(n+1-m)}(x_0)=f(x_0)\cdot g^{(n+1-m)}(x_0)+\sum_{m=1}^{n}C_{m+1}^m\cdot f^{(m)}(x_0)\cdot g^{(n+1-m)}(x_0)=f(x_0)\cdot g^{(n+1-m)}(x_0)+\sum_{m=1}^{n}C_{m+1}^m\cdot f^{(m)}(x_0)\cdot g^{(n+1-m)}(x_0)=f(x_0)\cdot g^{(n+1-m)}(x_0)+\sum_{m=1}^{n}C_{m+1}^m\cdot f^{(m)}(x_0)\cdot g^{(n+1-m)}(x_0)=f(x_0)\cdot g^{(n+1-m)}(x_0)+\sum_{m=1}^{n}C_{m+1}^m\cdot f^{(m)}(x_0)+\sum_{m=1}^{n}C_{m+1}^m\cdot f^{(m)}(x_0)+\sum_{m=1}^{n}C_{m+1}^m$$

$$= \sum_{m=0}^{n+1} C_{n+1}^m \cdot f^{(m)}(x_0) \cdot g^{(n+1-m)}(x_0)$$

3. на экзамене писать, что это упражнение

 $\mathbf{E}\mathbf{x}$.

1.
$$(x^p)^{(n)} = p(p-1)...(p-n+1)x^{p-n}$$

2.
$$\left(\frac{1}{x}\right)^{(n)} = (-1)(-2)(-3)...(-n)\frac{1}{x^{n+1}} = \frac{n!}{x^{n+1}}$$

3.
$$(\ln x)^{(n)} = ((\ln x)')^{(n-1)} = (\frac{1}{x})^{(n-1)} = \frac{(n-1)!(-1)^{n-1}}{x^n}$$

4.
$$(a^x)^{(n)} = (\ln a \cdot a^x)^{(n-1)} = (\ln a)^n \cdot a^x$$

 $(e^x)^{(n)} = e^x$

5.
$$(\sin x)^{(n)} = \sin (x + \frac{\pi}{2}n)$$

 $(\cos x)^{(n)} = \cos (x + \frac{\pi}{2}n)$

Th. Формула Тейлора для многочлена

$$T(x)$$
 – многочлен степени n , тогда $T(x) = \sum_{k=0}^{n} \frac{T^{(k)}(x_0)}{k!} (x - x_0)^k$

Lm. 1
$$T(x) = \sum_{k=0}^{n} a_k x^k$$
, то его можно представить в виде $T(x) = \sum_{k=0}^{n} c_k (x - x_0)^k$

$$T(x) = \sum_{k=0}^{n} a_k x^k = \sum_{k=0}^{n} a_k (x - x_0 + x_0)^k = \sum_{k=0}^{n} a_k (t + x_0)^k$$
 – раскроем скобки по биному
$$= \sum_{k=0}^{n} c_k \cdot t^k = \sum_{k=0}^{n} c_k (x - x_0)^k$$

Lm. 2
$$f(x) = (x - x_0)^k$$
, To $f^{(m)}(x_0) = \begin{cases} m!, & m = k \\ 0, & m \neq k \end{cases}$

$$f^{(m)}(x) = k(k-1)\dots(k-m+1)\cdot(x-x_0)^{k-m}$$

Если k > m, то степень у $x - x_0$ будет больше нуля $\Rightarrow f^{(m)}(x_0) = 0$

Если k < m, то при дифференцировании вылезет 0 в множителе $\Rightarrow f^{(m)}(x) = 0 \ \forall x$

Доказываем теорему:

$$T(x) \stackrel{L=1}{=} \sum_{k=0}^{n} c_k (x - x_0)^k$$

$$T^{(m)}(x_0) = (\sum_{k=0}^{n} c_k (x - x_0)^k)^{(m)}|_{x=x_0} \stackrel{L=2}{=} c_m \cdot m!$$

$$c_m = \frac{T^{(m)}(x_0)}{n!}$$

$$T(x) = \sum_{k=0}^{n}$$

Def. f(x) n раз дифференцируема в точке x_0 , тогда

$$T_{n,x_0}f(x)=\sum_{k=0}^nrac{f^{(k)}(x_0)}{k!}(x-x_0)^k$$
 – многочлен Тейлора степени n для функции $f(x)$ в точке x_0

$$f(x) - T_{n,x_0} f(x) = R_{n,x_0} f(x)$$
 – остаток в формуле Тейлора (будем записывать в разной форме) $f(x) = T_{n,x_0} f(x) + R_{n,x_0} f(x)$ – формула Тейлора для $f(x)$ в точке x_0

$$f(x) = T_{n,x_0}f(x) + R_{n,x_0}f(x)$$
 – формула Тейлора для $f(x)$ в точке x_0

Иногда
$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_{n,x_0} f(x)$$

Lm. g(x) - n раз дифференцируема в точке x_0 и $g(x_0) = g'(x_0) = g''(x_0) = \ldots = g^{(n)}(x_0) = 0$ Тогда $g(x) = o((x - x_0)^n), x \to x_0$

$$g(x) = o((x - x_0)^n) \Leftrightarrow \lim_{x \to x_0} \frac{g(x)}{(x - x_0)^n} = 0$$

$$\lim_{x\to x_0}\frac{g(x)}{(x-x_0)^n}\stackrel{\left\{\frac{0}{0}\right\}}{=}\lim_{x\to x_0}\frac{g'(x)}{n(x-x_0)^{n-1}}=\lim_{x\to x_0}\frac{g''(x)}{n(n-1)(x-x_0)^{n-2}}=\ldots=\lim_{x\to x_0}\frac{g^{(n-1)}(x)}{n(n-1)\dots 2(x-x_0)}=\lim_{x\to x_0}\frac{o(x-x_0)}{n!(x-x_0)}=0$$

$$g^{(n-1)}(x)-$$
 дифференцируема в точке $x_0\Leftrightarrow g^{(n-1)}(x)=g^{(n-1)}(x_0)+g^{(n)}(x_0)(x-x_0)+o(x-x_0)$

Th. Формула Тейлора с остатком в форме Пеано

f-n раз дифференцируема в точке x_0 , тогда

$$f(x) = T_{n,x_0} f(x) + o((x - x_0)^n) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n), \ x \to x_0$$

Доказательство

$$f(x)-T_{n,x_0}f(x)=g(x)$$
 – дифференцируема в точке x_0 n раз $g^{(m)}(x_0)=f^{(m)}(x_0)-(T_{n,x_0}f(x))^{(m)}|_{x=x_0}=f^{(m)}(x_0)-rac{f^{(m)}(x_0)}{m!}\cdot m!=0$ $g(x_0)=T_{n,x_0}f(x_0)-f(x_0)=0$ $orall 0\le m\le n$ $g^{(m)}(x_0)=0\stackrel{Lm}{\Longrightarrow}g(x)=o((x-x_0)^n),\; x\to x_0$

Следствие Единственность многочлена Тейлора

f-n раз дифференцируема в точке $x_0;\ P(x)$ – многочлен степени $\leq n;\ f(x)=P(x)+o((x-x_0)^n),\ x\to x_0$ Тогда $P(x)=T_{n,x_0}f(x)$

Доказательство

$$\begin{cases} P(x) - T_{n,x_0} f(x) = o(x-x_0)^n \\ P(x) - T_{n,x_0} f(x) = \sum\limits_{k=0}^n a_k (x-x_0)^k \\ \Pi \text{усть } a_m \neq 0, \ m$$
— наименьший номер

$$\sum_{k=0}^{n} a_k (x - x_0)^k = \sum_{k=m}^{n} a_k (x - x_0)^k = o(x - x_0)^n, \ x \to x_0 \Leftrightarrow \begin{cases} \lim_{x \to x_0} \frac{o(x - x_0)^n}{x - x_0}^m = 0\\ \sum_{x \to x_0}^n \frac{a_k (x - x_0)^k}{x - x_0}^m = 0\\ \lim_{x \to x_0} \frac{\sum_{k=m}^n a_k (x - x_0)^k}{x - x_0}^m = a_m \end{cases} ?!$$

Тh. Формула Тейлора с остатком в форме Лагранжа

 $f:\langle a;b\rangle \to R$ f-n раз дифференцируема на $\langle a;b\rangle;\ x,x_0\in\langle a;b\rangle$

Тогда
$$\exists c$$
 между x и $x_0: f(x) = T_{n,x_0}f(x) + \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1} = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!}(x-x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$

Доказательство

$$fix\ x\in\langle a;b\rangle\\ f(x)=T_{n,x_0}f(x)+M(x-x_0)^{n+1}\\ \text{Найдем такое }M,\ \text{что выполняется равенство.}\ \text{Хотим }M=\frac{f^{(n+1)}(c)}{(n+1)!}\\ g(t)=f(t)-T_{n,x_0}f(t)-M(t-x_0)^{n+1}\\ g(t)-(n+1)\ \text{раз дифференцируема на }\langle a;b\rangle\\ g(x)=0;\ g(x_0)=g'(x_0)=g''(x_0)=\ldots=g^{(n)}(x_0)=0\\ f^{(m)}(x_0)=(T_{n,x_0}f(t))_{t=x_0}^{(m)}\\ \text{На }[x;x_0]\ \text{ зовем теорему Ролля для }g(t)\\ g(x)=g(x_0)=0\Rightarrow\exists c_1\in[x;x_0]:g'(c)=0\\ \begin{cases} [c_1;x_0]\ g'(t)\\ g'(c_1)=0&\xrightarrow{\text{т. Ролля}}\\ g'(x_0)=0 \end{cases}\\ g^{(n)}(c_n)=0\\ g^{(n)}(x_0)=0&\\ g^{(n+1)}(t)=f^{(n+1)}(t)+0-M(n+1)!\\ 0=g^{(n+1)}(c)=f^{(n+1)}(c)-M(n+1)!\\ \end{cases}$$

Следствие

1.
$$\forall t \in \langle a; b \rangle | f^{(n+1)}(t) \leq k$$
, тогда $R_{n,x_0} f(x) = O((x-x_0)^{n+1})$

$$|R_{n,x_0} f(x)| = |\frac{f^{n+1}(c)}{(n+1)!} (x-x_0)^{n+1}| \leq \frac{k}{(n+1)!} \cdot |x-x_0|^{n+1} \Rightarrow R_{n,x_0} f(x) = O((x-x_0)^{n+1})$$

2.
$$\forall n \in N |f^{(n)}(t)| \leq k \ \forall t \in \langle a; b \rangle$$
, to $\lim_{n \to +\infty} T_{n,x_0} f(x) = f(x) \ \forall x \in \langle a; b \rangle$
 $\exists \text{To} \Leftrightarrow \lim_{n \to +\infty} (f(x) - T_{n,x_0} f(x)) = 0$
 $|\frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^n| \leq \frac{k(x - x_0)^n}{(n+1)!} \xrightarrow[n \to +\infty]{} 0$

Формулы Тейлора для элементарных функций $(x_0=0)$

1.
$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n)$$

 $\forall k \ f^{(k)}(0) = 1 \Rightarrow (e^x)^{(k)} = e^x \ e^0 = 1$

2.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

 $(\sin x)^{(k)} = \sin(x + \frac{\pi}{2}k)|_{x=0} f^{(k)}(0) = \sin(\frac{\pi}{2}k)$
 $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^n x^{2n}}{(2n)!} + o(x^{2n})$
 $f^{(k)}(0) = \cos(\frac{\pi}{2}k)$

3.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{(-1)^n x^n}{n} + o(x^n)$$

$$f^{(k)}(x) = \frac{(-1)^{k-1} (k-1)!}{(1+x)^k} f^{(k)}(0) = (-1)^{k-1} \cdot (k-1)!$$

4.
$$(1+x)^p = 1 + px + \frac{p(p-1)x^2}{2!} + \frac{p(p-1)(p-2)x^3}{3!} + \ldots + \frac{p(p-1)\dots(p-n+1)x^n}{n!} + o(x^n)$$

Ряды Тейлора для $\sin x/\cos x/exp(x)$

1. $\sin x / \cos x$

$$\forall n \mid \sin^{(n)}(x)| = |\sin(x + \frac{\pi}{2}n)| \le 1 \xrightarrow{\text{След.}} \lim_{n \to +\infty} (T_{n,x_0}f(x)) = \sin x \ \forall x$$

$$\lim_{n \to +\infty} (\sum_{k=0}^{+\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}) = \sin x$$

Частичная сумма ряда
$$\sum_{n=0}^n \frac{(-1)^k x^{2k+1}}{(2k+1)!} \Rightarrow \sin x = \sum_{k=0}^{+\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!} \ \forall x \in R$$

То есть можем $o(x^{2n+1}) \to o(x^{2n+2})$

 $C \cos x$ аналогично

2.
$$f(x) = e^x$$

Рассмотрим
$$x \leq b \ e^x = \sum_{k=0}^{+\infty} \frac{x^n}{n!}$$

$$(e^x)^{(n)} = e^x$$

$$|e^x| \le e^b = k \xrightarrow{\text{След.}} T_{n,x_0} f(x) \xrightarrow[n \to +\infty]{} e^x$$

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^{k}}{k!} = e^{x} \ \forall x \le b$$

Частичная сумма ряда
$$\Rightarrow e^x = \sum_{k=0}^{+\infty} \frac{x^k}{k!}$$

Th. Число e – иррациональное

Пусть $e = \frac{m}{n}; \ m,n \in N; \ n \geq 2,$ т.к. 2 < e < 3 $e^x = \sum_{k=0}^n \frac{x^k}{k!} + \frac{e^c}{(n+1)!} x^{n+1}$ $\frac{m}{n} = e = 1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!} + \frac{e^c}{(n+1)!},$ где 0 < c < 1 $m(n-1)! = n! + n! + \frac{n!}{2!} + \frac{n!}{3!} + \ldots + \frac{n!}{n!} + \frac{e^c n!}{(n+1)!}$

Слева натуральное, справа сумма факториалов точно натуральна $\Rightarrow \frac{e^c}{n+1}$ – натуральное $\Rightarrow \frac{e^c}{n+1} \geq 1$ $\frac{e^c}{n+1} < \frac{e}{n+1} < \frac{e}{n+1} \Rightarrow n+1 \geq 3 \Rightarrow \frac{e^c}{n+1} \leq 1$?!

§3. Экстремум функций

Точки экстремума:

 $f: E \to R; \ a \in E$

1. **Def.** Точка a – точка локального минимума для f(x), если существует окрестность U точки a такая, что

 $\forall x \in U \cap E \ f(x) \ge f(a)$

- 2. **Def.** Точка a точка локального максимума, если $\exists U$ окрестность точки a такая, что $\forall x \in U \cap E \ f(x) \leq f(a)$
- 3. **Def.** Точка a точка строгого локального минимума (максимума), если $\exists U$ окрестность точки a такая $\forall x \in \mathring{U}(a) \cap E \ f(x) > f(a) \ (f(x) < f(a))$

Тh. Необходимые условия экстремума

 $f:\langle a;b\rangle \to R;\ f$ – дифференцируема в точке $x_0;\ x_0\in (a;b)$ Если x_0 – точка экстремума, то $f'(x_0)=0$

Доказательство

НУО x_0 – локальный минимум

$$\exists \delta \ \forall x \in (x_0 - \delta; x_0 + \delta) \ f(x) \ge f(x_0)$$

Рассмотрим $f: U \to R$

Точка x_0 – глобальный минимум на U. x_0 – внутренняя точка $U \xrightarrow{\mathrm{т. \Phiepma}} f'(x_0) = 0$

Rem.

- 1. $\neq f(x) = x^3$ f'(0) = 0, но x = 0 не экстремум
- 2. Экстремумы бывают в точках, в которых нет дифференцируемости f(x) = |x|
- 3. Экстремумы бывают на концах $x:[0;1] \to R$

Th. Достаточные условия экстремума в терминах первой производной $x_0 \in (a,b); \ f: \langle a;b \rangle \to R; \ f$ – непрерывна в x_0 и f – дифференцируема на $(x_0 - \delta; x_0) \bigcup (x_0; x_0 + \delta)$ Тогда если

- 1. f'(x) < 0 на $(x_0 \delta; x_0)$ и f'(x) > 0 на $(x_0; x_0 + \delta)$, то x_0 строгий локальный минимум
- 2. f'(x) > 0 на $(x_0 \delta; x_0)$ и f'(x) < 0 на $(x_0; x_0 + \delta)$, то x_0 строгий локальный максимум
- 3. f'(x) не меняет знак в точке x_0 , то точка x_0 не экстремум

Доказательство

1. На $[x_0 - \frac{\delta}{2}; x_0]$ непрерывность $+ x_0 - \frac{\delta}{2}; x_0$ дифференцируемость + f'(x) < 0 на $(x_0 - \frac{\delta}{2}; x_0)$ $\xrightarrow{\text{Сл. т. Лагранжа}} f(x)$ строго убывает на $[x_0 - \frac{\delta}{2}; x_0] \Rightarrow \forall x \in [x_0 - \frac{\delta}{2}; x_0) \ f(x) > f(x_0)$

На $[x_0; x_0 + \frac{\delta}{2}]$ непрерывна + дифференцируема внутри + f'(x) > 0

 $\xrightarrow{\text{Сл. т. Лагранжа}} f(x)$ строго возрастает на $[x_0; x_0 + \frac{\delta}{2}] \Rightarrow \forall x \in (x_0; x_0 + \frac{\delta}{2}]$ $f(x) > f(x_0)$

Th. Достаточное условие экстремума в терминах второй производной $f:\langle a;b\rangle\to R;\;x_0\in(a;b);\;f$ – дважды дифференцируема в точке x_0 и $f'(x_0)=0.$ Тогда

- 1. Если $f''(x_0) > 0$, то x_0 строгий локальный минимум
- 2. Если $f''(x_0) < 0$, то x_0 строгий локальный максимум

Th. Достаточное условие экстремума в терминах n-ой производной

 $f:\langle a;b \rangle \to R; \ x \in (a;b); \ f-n$ раз дифференцируема в точке $x_0.\ f'(x_0)=f''(x_0)=\ldots=f^{(n-1)}(x_0)=0.$ Тогда

- 1. Если n:2; $f^{(n)}(x_0) > 0$, то x_0 строгий локальный минимум
- 2. Если n : 2; $f^{(n)}(x_0) < 0$, то x_0 строгий локальный максимум
- 3. Если $n \not 2$ и $f^{(n)}(x_0) \neq 0$, то x_0 не экстремум

Доказательство

Тейлор + Пеано

$$f(x) = f(x_0) + \sum_{k=1}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n) = f(x_0) + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + o((x - x_0)^n)$$
$$f(x) - f(x_0) = (x - x_0)^n (\frac{f^{(n)}(x_0)}{n!} + o(1))$$

§4. Выпуклые функции

Def. $f: \langle a; b \rangle \to R$; f – выпуклая на $\langle a; b \rangle$, если $\forall x, y \in \langle a; b \rangle$, $\forall \lambda \in [0; 1]$

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Если знак < − строго выпуклая. Если знак ≥ − вогнутая. Если знак > − строго вогнутая Rem.

- 1. Выпуклая ⇔ выпуклая вниз
- 2. Вогнутая ⇔ выпуклая вверх

Ех. $y = x^2$ – выпуклая (проверим по определению)

$$\forall \lambda \in [0;1] \ \forall x,y \ (\lambda x + (1-\lambda)y)^2 \le \lambda x^2 + (1-\lambda)y^2$$

$$2\lambda(1-\lambda)xy \le x^{2}(\lambda-\lambda^{2}) + y^{2}((1-\lambda)-(1-\lambda)^{2})$$

$$2\lambda(1-\lambda)xy \le x^{2}(\lambda-\lambda^{2}) + y^{2}((1-\lambda)-(1-\lambda)^{2})$$

$$2\lambda(1-\lambda)xy \le \lambda(1-\lambda)x^{2} + (1-\lambda)\lambda y^{2}$$

$$2xy \le x^{2} + y^{2}$$

$$2\lambda(1-\lambda)xy \le \lambda(1-\lambda)x^2 + (1-\lambda)\lambda y^2$$

$$2xy \le x^2 + y^2$$

Геометрический смысл

$$z = \lambda x + (1 - \lambda)y$$
. НУО $x < y$

$$x < \lambda x + (1 - \lambda)x < z < \lambda y + (1 - \lambda)y < y \Rightarrow z \in (x; y)$$

$$\lambda(y-x) = y-z \Leftrightarrow z = y-\lambda(y-x) = \lambda x + (1-\lambda)y$$

Проведем хорду по двум точка u и w:

$$y = \frac{f(w) - f(u)}{w - u} \cdot (x - u) + f(u)$$

Возьмем произвольную $v \in (u, w)$

$$\frac{f(w)-f(u)}{w-u}\cdot(v-u)+f(u)=f(w)\cdot\frac{v-u}{w-u}+f(u)\cdot(1-\frac{v-u}{w-u})=f(u)\cdot\frac{w-v}{w-u}+f(w)\cdot\frac{v-u}{w-u}$$
 Если возьмем $\lambda=\frac{w-v}{w-u}\Leftrightarrow 1-\lambda=\frac{v-u}{w-u},$ то получим

f – выпуклая \Leftrightarrow график f(x) лежит под хордой

Переформулировка определения. $x \to u; \ \lambda x + (1-\lambda)y \to v; \ y \to w$

$$\lambda = \frac{w-v}{1}$$
: $1 - \lambda = \frac{v-u}{1}$

$$\begin{array}{l} \lambda = \frac{w-v}{w-u}; \ 1-\lambda = \frac{v-u}{w-u} \\ f(v) \leq \frac{w-v}{w-u} \cdot f(u) + \frac{v-u}{w-u} \cdot f(w) \mid \cdot (w-u) \\ (w-u)f(v) \leq (w-v)f(u) + (v-u)f(w) \end{array}$$

$$(w-u)\tilde{f}(v) \le (w-v)\tilde{f}(u) + (v-u)f(w)$$

Если это выполняется $\forall u, v, w \in \langle a; b \rangle : u < v < w$, то f – выпуклая

Свойства выпуклой функции: $(f,g:\langle a;b\rangle \to R)$

- 1. f, g выпуклые $\Rightarrow f + g$ выпуклая
- 2. $\alpha > 0$; f выпуклая $\Rightarrow \alpha f$ выпуклая
- 3. f выпуклая \Rightarrow (-f) вогнутая

Lm. Лемма о трех хордах

 $f:\langle a;b
angle o R$ — выпуклая, тогда $\forall u,v,w\in\langle a;b
angle: u< v< w$ $\frac{f(v)-f(u)}{v-u}\leq \frac{f(w)-f(u)}{w-u}\leq \frac{f(w)-f(v)}{w-v}$, причем каждое из трех неравенств равносильно выпуклости **Rem.** Если неравенства строгие, то f — строго выпуклая

Доказательство

$$1. \ \frac{f(v)-f(u)}{v-u} \leq \frac{f(w)-f(u)}{w-u} \Leftrightarrow (w-u)(f(v)-f(u)) \leq (v-u)(f(w)-f(u)) \Leftrightarrow \\ \Leftrightarrow f(v)(w-u) \leq f(u)(v-u-w+u) + f(w)(v-u) \Leftrightarrow f(v)(w-u) \leq f(u)(v-w) + f(w)(v-u) \Leftrightarrow \\ \Leftrightarrow f - \text{выпуклая}$$

$$(w-v)(f(w)-f(u)) \leq (w-u)(f(w)-f(v)) \Leftrightarrow (w-u)f(v) \leq (w-v)f(u) + (v-u)f(w) \Leftrightarrow f$$
 – выпуклая

3. Упражнение

Итого: $f'_{-}(x) \leq f'_{+}(x)$

Th. $f:\langle a;b\rangle\to R$ – выпуклая, тогда $\forall x_0\in\langle a;b\rangle$ существуют конечные $f'_+(x_0)$ и $f'_-(x_0)$, причем $f'_+(x_0)\geq f'_-(x_0)$

Доказательство

 $\begin{array}{l} fix \; x; \; u,v,w \; \text{из определения} \; (u < v < w; \; u < x < v) \\ \frac{f(v)-f(x)}{v-x} \; - \; \text{возрастает по} \; v \\ \frac{f(v)-f(w)}{v-u} \leq \frac{f(v)-f(x)}{v-x} \; \text{по лемме о трех хордах} \\ \lim_{v \to x_+} \frac{f(v)-f(x)}{v-x} = f'_+(x) \; \text{если существует} \\ \frac{f(v)-f(x)}{v-x} \; \text{убывает при} \; v \to x_+ \; + \; \text{есть ограниченность снизу, т.к.} \; \frac{f(x)-f(u)}{x-u} \leq \frac{f(v)-f(x)}{v-x} \\ 3\text{начит} \; \exists \lim_{v \to x_+} \frac{f(v)-f(x)}{v-x} = f'_+(x) \geq \frac{f(x)-f(u)}{x-u} \\ \exists \text{ начит} \; \exists \lim_{v \to x_-} \frac{f(x)-f(u)}{x-u} = \lim_{u \to x_-} \frac{f(u)-f(x)}{u-x} = f'_-(x) \\ \exists \text{ начит} \; \exists \lim_{v \to x_-} \frac{f(x)-f(u)}{x-u} = \lim_{u \to x_-} \frac{f(u)-f(x)}{u-x} = f'_-(x) \\ \end{array}$

Следствие. $f:\langle a;b\rangle\to R$ – выпуклая, то f – непрерывная на (a;b)

Доказательство

Выпуклая $\Rightarrow \forall x_0 \in (a;b)$ $\begin{cases} \exists f'_+(x_0) \in R \Rightarrow f(x) - \text{ непрерывная в точке } x_0 \text{ справа} \\ \exists f'_-(x_0) \in R \Rightarrow f(x) - \text{ непрерывная в точке } x_0 \text{ слева} \end{cases} \Rightarrow f(x)$ — непрерывная в точке x_0 **Rem.** Про концы ничего сказать нельзя

Th. $f:\langle a;b\rangle\to R$ – дифференцируема, тогда f – выпуклая $\Leftrightarrow f(x)\geq f(x_0)+f'(x_0)(x-x_0)\ \forall x,x_0\in\langle a;b\rangle$ (т.е. график функции лежит над касательной)

Доказательство

$$\Leftarrow u < v < w \ (x_0 \leftrightarrow v)$$

$$f(u) \ge f(v) + f'(v)(u - v) \mid (w - v) > 0$$

$$f(w) \ge f(v) + f'(v)(w - v) \mid (v - u) > 0$$

$$f(u)(w-v) + f(w)(v-u) \ge f(v)(w-u)$$

$$\Rightarrow$$
 Хотим: $\forall x \ f(x) \ge f(x_0) + f'(x_0)(x - x_0)$. HУО $x > x_0$

$$\Leftrightarrow \frac{f(x) - f(x_0)}{x - x_0} \ge f'(x_0) = f'_+(x_0) = \lim_{y \to x_0^+} \frac{f(y) - f(x_0)}{y - x_0}$$

По лемме о трех хордах:
$$\frac{f(x)-f(x_0)}{x-x_0} \ge \frac{f(y)-f(x_0)}{y-x_0} \xrightarrow{y \to x_0^+} f'_+(x_0)$$

Критерий выпуклости

- 1. $f:\langle a;b\rangle\to R$, непрерывна на $\langle a;b\rangle$ и дифференцируема на (a;b), тогда f-(строго) выпуклая $\Leftrightarrow f'(x)$ (строго) монотонно возрастает на (a;b)
- 2. $f:\langle a;b\rangle\to R$, непрерывна на $\langle a;b\rangle$ и дважды дифференцируема на (a;b), тогда
- f выпуклая $\Leftrightarrow f''(x) \ge 0$

Доказательство

Rem. $1 \Rightarrow 2$

$$\Rightarrow u < v$$

$$f'(u) \leq \frac{f(v)-f(u)}{v-u} \leq f'(v) \Rightarrow f'(x)$$
 – возрастает

$$\Leftarrow \frac{f(v)-f(u)}{v-u}$$
 и $\frac{f(w)-f(v)}{w-v}$. Хотим $(1) \leq (2)$

$$\frac{f(v)-f(u)}{v-u} \stackrel{\text{Лагранж}}{=} f'(\xi_1)$$

$$\frac{f(w)-f(v)}{w-v} \stackrel{\text{Лагранж}}{=} f'(\xi_2)$$

Получаем $u < \xi_1 < v < \xi_2 < w$

$$f'(\xi_1) \leq f'(\xi_2)$$
, т.к. f' – возрастает, тогда $\frac{f(v)-f(u)}{v-u} \leq \frac{f(w)-f(v)}{w-v} \xrightarrow{\text{Лемма о трех хордах}} f$ – выпуклая

$\mathbf{E}\mathbf{x}$.

1. a^x – строго выпуклая $(a \neq 1)$

$$(a^x)'' = a^x \ln^2 a > 0$$

 $2. \ln x$ – строго вогнутый

$$(\ln x)'' = -\frac{1}{x^2} < 0$$

3. $x^p, x > 0$

$$(x^p)'' = p(p-1)x^{p-2}$$

При $p \in (0;1)$ – строго вогнутая, при p>1 и p<0 – строго выпуклая

§6. Классические неравенства

Неравенство Йенсена

$$f$$
 – выпуклая на $\langle a;b \rangle;\ x_1,x_2,\dots,x_n \in \langle a;b \rangle;\ \lambda_1,\lambda_2,\dots,\lambda_n>0$ и $\sum\limits_{i=1}^n \lambda_i=1.$ Тогда $f(\sum\limits_{i=1}^n \lambda_i x_i) \leq \sum\limits_{i=1}^n \lambda_i f(x_i)$

Доказательство

ММИ. База
$$n=2$$
 – определение выпуклости $n=2$ $f(\lambda_1x_1+\lambda_2x_2)\leq \lambda_1f(x_1)+\lambda_2f(x_2)$ и $\lambda_1+\lambda_2=1$ Переход: $n\to n+1$ Пусть $\lambda_1+\ldots+\lambda_n=\lambda$, тогда $\lambda+\lambda_{n+1}=1$ $\lambda_1x_1+\ldots+\lambda_nx_n=\lambda x$ $(\exists x)$ $f(\lambda_1x_1+\ldots+\lambda_nx_n+\lambda_{n+1}x_{n+1})=f(\lambda x+\lambda_{n+1}x_{n+1})\leq \lambda f(x)+\lambda_{n+1}f(x_{n+1})$ Это $\lambda f(\frac{\lambda_1}{\lambda}x_1+\ldots+\frac{\lambda_n}{\lambda}x_n)+\lambda_{n+1}f(x_{n+1})\leq \lambda(\frac{\lambda_1}{\lambda}f(x_1)+\ldots+\frac{\lambda_n}{\lambda}f(x_n))+\lambda_{n+1}f(x_{n+1})=\sum_{i=0}^{n+1}\lambda_if(x_i)$

Неравенство о средних (неравенство Коши)

$$\begin{array}{l} x_1,x_2\dots x_n\geq 0,\, \text{тогда}\\ \sqrt[n]{x_1x_2\dots x_n}\leq \frac{x_1+x_2+\dots+x_n}{n} \end{array}$$

Доказательство

НУО
$$x_1, x_2 \dots x_n > 0$$
 $f(x) = -\ln x$ – выпуклая; $\lambda_1 = \lambda_2 = \dots = \lambda_n = \frac{1}{n}$ Йенсен: $-\ln \frac{x_1}{n} + \dots + \frac{x_n}{n} \leq \frac{1}{n} (-\ln x_1) + \dots + \frac{1}{n} (-\ln x_n)$ $\ln \frac{x_1 + \dots + x_n}{n} \geq \frac{1}{n} (\ln x_1 + \dots + \ln x_n) = \ln (x_1 x_2 \dots x_n)^{\frac{1}{n}}$ Т.к. $\ln x \nearrow$, то $\frac{x_1 + \dots + x_n}{n} \geq \sqrt[n]{x_1 x_2 \dots x_n}$

Неравенство между средними степенными

$$x_1, x_2 \dots x_n > 0; \ p \in R$$
 $\left(\frac{x_1^p + \dots + x_n^p}{n}\right)^{\frac{1}{p}}$ — среднее степенное Например, при $p = 2$ — среднее квадратическое А при $p = -1$ — среднее гармоническое $x_1, x_2 \dots x_n > 0; \ p < q$ $\left(\frac{x_1^p + \dots + x_n^p}{n}\right)^{\frac{1}{p}} \leq \left(\frac{x_1^q + \dots + x_n^q}{n}\right)^{\frac{1}{q}}$

1.
$$p=1 < q; \ f(x)=x^q$$
 – выпуклая $\lambda_1=\lambda_2=\ldots=\lambda_n=\frac{1}{n}$ $\xrightarrow{\text{Йенсен}} f(\lambda_1x_1+\ldots+\lambda_nx_n)=(\frac{x_1+x_2+\ldots+x_n}{n})^q \leq \frac{x_1^q+x_2^q+\ldots+x_n^q}{n}=\lambda_1f(x_1)+\ldots+\lambda_nf(x_n).$ Возведем в степень $\frac{1}{q}$ $\frac{x_1+x_2+\ldots+x_n}{n} \leq (\frac{x_1^q+x_2^q+\ldots+x_n^q}{n})^{\frac{1}{q}}$ 2. $0 1$ $\xrightarrow{\frac{1}{p}+\ldots+x_n^p}{n}=\frac{y_1+\ldots+y_n}{n}\leq (\frac{y_1^r+\ldots+y_n^r}{n})^{\frac{1}{r}}=(\frac{x_1^q+\ldots+x_n^q}{n})^{\frac{p}{q}}$ Возводим в степень $\frac{1}{p}$

3.
$$p < q < 0$$
; $y_k = x_k^q$; $r = \frac{p}{q} > 1$
$$\xrightarrow{\frac{1}{n}} \frac{x_1^q + \ldots + x_n^q}{n} = \frac{y_1 + \ldots + y_n}{n} \le \left(\frac{y_1^r + \ldots + y_n^r}{n}\right)^{\frac{1}{r}} = \left(\frac{x_1^p + \ldots + x_n^p}{n}\right)^{\frac{q}{p}}$$
 Возводим в степень $\frac{1}{q} < 0$ (поменяли знак)
$$\left(\frac{x_1^q + \ldots + x_n^q}{n}\right)^{\frac{1}{q}} \ge \left(\frac{x_1^p + \ldots + x_n^p}{n}\right)^{\frac{1}{p}}$$

4.
$$p < 0 < q$$

$$\frac{x_1^q + \dots + x_n^q}{n} \ge \sqrt[n]{x_1^q \dots x_n^q} \xrightarrow[B \text{ степень } \frac{1}{q}]{q} (\frac{x_1^q + \dots + x_n^q}{n})^{\frac{1}{q}} \ge \sqrt[n]{x_1 \dots x_n}$$

$$\frac{x_1^p + \dots + x_n^p}{n} \ge \sqrt[n]{x_1^p \dots x_n^p} \xrightarrow[B \text{ степень } \frac{1}{q}]{q} (\frac{x_1^p + \dots + x_n^p}{n})^{\frac{1}{p}} \le \sqrt[n]{x_1 \dots x_n}$$

Неравенство Гёльдера

$$a_k, b_k \ge 0; \ \frac{1}{p} + \frac{1}{q} = 1; \ p, q > 1.$$
 Тогда

(*)
$$\sum_{k=1}^{n} a_k b_k \le \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} \cdot \left(\sum_{k=1}^{n} b_k^q\right)^{\frac{1}{q}}$$

Доказательство

Пусть
$$B = (\sum_{k=1}^n b_k^q)^{\frac{1}{q}} > 0$$
 $(*) \Leftrightarrow \sum_{k=1}^n a_k \frac{b_k}{B} \le (\sum_{k=1}^n a_k^p)^{\frac{1}{p}} \Leftrightarrow (\sum_{k=1}^n a_k \frac{b_k}{B})^p \le \sum_{k=1}^n a_k^p$
 $f(x) = x^p$ – выпуклая $\Rightarrow \sum_{k=1}^n (\lambda_k x_k)^p \le \sum_{k=1}^n \lambda_k x_k^p$

Хотим: $\begin{cases} \lambda_k x_k = a_k \frac{b_k}{B} \\ \lambda_k x_k^p = a_k^p \end{cases} \quad x_k^{p-1} = \frac{a_k^{p-1} B}{b_k}; \quad x_k = \frac{a_k B^{\frac{1}{p-1}}}{b_k^{\frac{1}{p-1}}}$
 $\frac{1}{p} + \frac{1}{q} = 1 \Rightarrow \frac{1}{q} = 1 - \frac{1}{p} = \frac{p-1}{p} \Rightarrow q = \frac{p}{p-1}.$ Тогда $x_k^p = \frac{a_k^p B^{\frac{p}{p-1}}}{b_k^{\frac{p}{p-1}}} = \frac{a_k^p B^q}{b_k^q} \Rightarrow \lambda_k = \frac{b_k^q}{B^q}$
 $\sum_{k=1}^n \lambda_k = \sum_{k=1}^n \frac{b_k^q}{B^q} = 1$ по заданию

Неравенство Коши-Буняковского

$$(x_1^2 + \ldots + x_n^2)(y_1^2 + \ldots + y_n^2) \ge (x_1y_1 + \ldots + x_ny_n)^2$$

Доказательство

$$\begin{cases} p=q=2\ (\frac{1}{2}+\frac{1}{2}=1) \\ a_k=|x_k|;\ b_k=|y_k| \end{cases}$$
 Гёльдер
$$(\sum_{k=1}^n|x_k|^2)^{\frac{1}{2}}\cdot (\sum_{k=1}^n|y_k|^2)^{\frac{1}{2}}\geq \sum_{k=1}^n|x_k||y_k|\geq \sum_{k=1}^nx_ky_k + \text{возведем в квадрат}$$

Неравенство Минковского

$$p \geq 1; \ a_k, b_k \geq 0.$$
 Тогда $\left(\sum_{k=1}^n (a_k + b_k)^p\right)^{\frac{1}{p}} \leq \left(\sum_{k=1}^n a_k^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^n b_k^p\right)^{\frac{1}{p}}$

$$\begin{split} p > 1 &\Rightarrow \exists q > 1 : \frac{1}{p} + \frac{1}{q} = 1 \Leftrightarrow p + q = pq \\ \sum_{k=1}^{n} (a_k + b_k)^p &= \sum_{k=1}^{n} a_k \cdot (a_k + b_k)^{p-1} + \sum_{k=1}^{n} b_k \cdot (a_k + b_k)^{p-1} \\ \sum_{k=1}^{n} a_k \cdot (a_k + b_k)^{p-1} &\leq \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} \cdot \left(\sum_{k=1}^{n} ((a_k + b_k)^{p-1})^q\right)^{\frac{1}{q}} = (*) \\ (p-1)q &= pq - q = p \\ (*) &= \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} \cdot \left(\sum_{k=1}^{n} (a_k + b_k)^p\right)^{\frac{1}{q}} \\ \sum_{k=1}^{n} (a_k + b_k)^p &\leq \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} \cdot \left(\sum_{k=1}^{n} (a_k + b_k)^p\right)^{\frac{1}{q}} + \left(\sum_{k=1}^{n} b_k^p\right)^{\frac{1}{p}} \cdot \left(\sum_{k=1}^{n} (a_k + b_k)^p\right)^{\frac{1}{q}} = \left(\sum_{k=1}^{n} (a_k + b_k)^p\right)^{\frac{1}{q}} \cdot \left(\left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} b_k^p\right)^{\frac{1}{p}} \right) \\ \left(\sum_{k=1}^{n} (a_k + b_k)^p\right)^{\frac{1}{p}} &= \left(\sum_{k=1}^{n} (a_k + b_k)^p\right)^{1 - \frac{1}{q}} \leq \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} b_k^p\right)^{\frac{1}{p}} \\ \left(\sum_{k=1}^{n} (a_k + b_k)^p\right)^{\frac{1}{p}} &= \left(\sum_{k=1}^{n} (a_k + b_k)^p\right)^{1 - \frac{1}{q}} \leq \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} b_k^p\right)^{\frac{1}{p}} \end{split}$$