- 1. As a row operation, P(i,k) permutes row i and row k.
- 2. As a column operation, P(i,k) permutes column i and column k.
- 3. The inverse of P(i,k) is P(i,k) itself.
- 4. As a row operation, $E_{i,j;\beta}$ adds β times row j to row i.
- 5. As a column operation, $E_{i,j;\beta}$ adds β times column i to column j (note the switch in the indices).
- 6. The inverse of $E_{i,j;\beta}$ is $E_{i,j;-\beta}$.
- 7. As a row operation, $E_{i,\lambda}$ multiplies row i by λ .
- 8. As a column operation, $E_{i,\lambda}$ multiplies column i by λ .
- 9. The inverse of $E_{i,\lambda}$ is $E_{i,\lambda^{-1}}$.

We can define the notion of a reduced column echelon matrix and show that every matrix can be reduced to a unique reduced column echelon form. Now given any $m \times n$ matrix A, if we first convert A to its reduced row echelon form R, it is easy to see that we can apply elementary column operations that will reduce R to a matrix of the form

$$\begin{pmatrix} I_r & 0_{r,n-r} \\ 0_{m-r,r} & 0_{m-r,n-r} \end{pmatrix},\,$$

where r is the number of pivots (obtained during the row reduction). Therefore, for every $m \times n$ matrix A, there exist two sequences of elementary matrices E_1, \ldots, E_p and F_1, \ldots, F_q , such that

$$E_p \cdots E_1 A F_1 \cdots F_q = \begin{pmatrix} I_r & 0_{r,n-r} \\ 0_{m-r,r} & 0_{m-r,n-r} \end{pmatrix}.$$

The matrix on the right-hand side is called the rank normal form of A. Clearly, r is the rank of A. As a corollary we obtain the following important result whose proof is immediate.

Proposition 8.21. A matrix A and its transpose A^{\top} have the same rank.

8.15 Transvections and Dilatations *

In this section we characterize the linear isomorphisms of a vector space E that leave every vector in some hyperplane fixed. These maps turn out to be the linear maps that are represented in some suitable basis by elementary matrices of the form $E_{i,j;\beta}$ (transvections) or $E_{i,\lambda}$ (dilatations). Furthermore, the transvections generate the group $\mathbf{SL}(E)$, and the dilatations generate the group $\mathbf{GL}(E)$.