ASCON 양자 구현 및 분석

ASCON 양자 회로 depth 최적 구현 및 분석

한성대학교 융합보안학과 23213702 오유진

서론 관련연구 제안 기법 성능 평가 결론

관련 연구

관련 연구: ASCON

- ASCON NIST 경량암호 표준화로 선정된 암호 제품군
 - 모든 체계는 128비트 보안을 제공하고 내부적으로 동일한 320비트 순열을 사용하므로 AEAD와 Hash모두 구현하기 좋음.
- ASCON has two variants
 - ASCON-AEAD
 - a hash function
- ASCON AEAD
 - ASCON-128
 - ASCON-128a

ASC	ON	해기	V	함수
-----------------------	----	----	---	----

- ASCON-HASH
- ASCON-XoF

N	A 1 i + b		Rou	nds			
Name	Algorithms	Key	Nonce	Tag	block	p^a	p^b
ASCON-128	$\varepsilon, D_{128,64,12,6}$	128	128	128	64	12	6
ASCON-128a	$\varepsilon, D_{128,128,12,8}$	128	128	128	128	12	8

N	A languist and	Bit	Rounds	
Name	Algorithms	Hash	block	p ^a
ASCON-Hash	$\chi_{256,64,12}$ with $l = 256$	256	64	12
ASCON-Xof	${\it \chi}_{0,64,12}$ with arbitrary l	l	64	12

관련 연구: ASCON

- ASCON-AEAD: Initialization, processing Associated Data, Processing Plaintext, Finalization
- ASCON-HASH: Initialization, Absorbing, Squeezing
- ASCON의 주요 구성요소는 320비트 단위로 동작하는 순열 함수 $P = P_L \circ P_S \circ P_C$

320비트 S는 5개의 64비트 레지스터 워드 x_i , $S = x_0 \parallel x_1 \parallel x_2 \parallel x_3 \parallel x_4$ 로 분할 ($x_0 = MSB$, $x_4 = LSB$)

관련 연구: Grover 알고리즘

• Grover 알고리즘

- 1. 입력 설정
- 하다마드 게이트를 사용하여 k-큐비트 키를 중첩 상태로 만든다 $(2^k$ 개의 모든 키가 동일한 진폭을 가짐)

$$H^{\otimes k} |0\rangle^{\otimes k} = |\psi\rangle = \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) = \frac{1}{2^{k/2}} \sum_{x=0}^{2^k - 1} |x\rangle$$

- 2. 오라클 단계
- 이전 단계에서 준비된 중첩상태의 키를 사용하여 알려진 평문을 중첩 상태에서 암호화
 - → 모든 가능한 키 값에 대한 암호문이 생성됨
 - \rightarrow 생성된 암호문은 알려진 암호문과 비교되며, 일치하는 경우(f(x) = 1) 키 값의 부호 반전 $((-1)^{f(x)})$
- 구현된 양자 회로는 다음 반복을 위해 역연산되어 생성된 암호문을 알려진 평문으로 다시 변환

$$f(x) = \begin{cases} 1 \text{ if } Enc_{key}(p) = c \\ 0 \text{ if } Enc_{key}(p) \neq c \end{cases} \qquad U_f(|\psi\rangle |-\rangle) = \frac{1}{2^{n/2}} \sum_{x=0}^{2^n - 1} (-1)^{f(x)} |x\rangle |-\rangle$$

3. 확산 연산자는 오라클에서 반환된 솔루션 키의 진폭을 증폭 시킴

관련 연구: Grover 양자 충돌 공격

- Grover 알고리즘을 이용한 양자 충돌 공격
 - Grover 알고리즘을 이용한 다양한 양자 충돌 공격 존재
 - BHT 알고리즘
 - 공격 복잡도 $O\left(2^{\frac{n}{3}}\right)$, 양자 메모리 $O\left(2^{\frac{2n}{3}}\right)$
 - · CNS 알고리즘
 - 공격 복잡도 $O\left(2^{\frac{2n}{5}}\right)$, 고전 메모리 $O\left(2^{\frac{n}{5}}\right)$
 - 병렬처리를 통해 공격 복잡도를 감소 시킬 수 있음
 - 2s 개의 양자 인스턴스를 병렬처리에서 활용
 - 공격 복잡도 $o^{\left(2^{\frac{2n}{5}-\frac{3s}{5}}\right)}$ 로 감소 $s \leq \frac{n}{4}$
 - Jang et al. 의 논문에서 $s = \frac{n}{6}$ 로 정의 \rightarrow 본 논문에서도 해당 접근방식을 따름

관련 연구 : 양자 게이트

• 양자 게이트

Toffoli gate decomposition (T- depth 4, total depth 8)

관련 연구: NIST 보안레벨

• NIST 양자 후 보안 레벨

- NIST는 AES 및 SHA-2/3 제품군에 대해 각각 Grover 키 검색과 충돌 검색 복잡도를 기반으로 보안 레벨 정의
- Level 1, 3, 5는 AES에 대한 Grover 키 검색 복잡도에 해당
- Level 2, 4는 SHA-2/3에 대한 충돌 검색 복잡도
 - 양자 공격 비용은 아직 정의되지 않았으며, 고전적인 공격 비용만 정의되어있음
 - Jang et al. 이 정의한 보안레벨과 비교

보안 레벨	암호	비용(복잡도)
Level 1	AES-128	$2^{170} \rightarrow 2^{157}$
Level 2	SHA-256/SHA3-256	2 ¹⁴⁶ (classical gates)
Level 3	AES-192	$2^{233} \rightarrow 2^{221}$
Level 4	SHA-384/SHA3-384	2 ²¹⁰ (classical gates)
Level 5	AES-256	$2^{198} \rightarrow 2^{285}$

Level	Cipher	Cost
Level 2	SHA-2/3 (256)	$2^{188}/2^{183}$
Level 4	SHA-2/3 (384)	$2^{266}/2^{260}$
Level 6 (Extension)	SHA-2/3 (512)	$2^{343}/2^{337}$

[표 2-4] Jang et al.이 정의한 양자 충돌 공격에 대한 보안 레벨

[표 2-3] NIST 양자 후 보안 레벨

제안기법

• S-box 병렬 구현

- 양자 컴퓨터의 가역적인 특성으로 인해 look-up 테이블을 사용 할 수 없음
- S-box 양자 회로는 양자 게이트를 사용하여 부울 표현식을 기반으로 구현해야 함.

$$x_{0} = x_{0} \oplus x_{4}, \quad x_{4} = x_{4} \oplus x_{3}, \quad x_{2} = x_{2} \oplus x_{1},$$

$$t_{0} = x_{0}, \quad t_{1} = x_{1}, \quad t_{2} = x_{2}, \quad t_{3} = x_{3}, \quad t_{4} = x_{4},$$

$$t_{0} = \sim t_{0}, \quad t_{1} = \sim t_{1}, \quad t_{2} = \sim t_{2}, \quad t_{3} = \sim t_{3}, \quad t_{4} = \sim t_{4},$$

$$t_{0} = t_{0} \cdot x_{1}, \quad t_{1} = t_{1} \cdot x_{2}, \quad t_{2} = t_{2} \cdot x_{3}, \quad t_{3} = t_{3} \cdot x_{4}, \quad t_{4} = t_{4} \cdot x_{0},$$

$$x_{0} = x_{0} \oplus t_{1}, \quad x_{1} = x_{1} \oplus t_{2}, \quad x_{2} = x_{2} \oplus t_{3}, \quad x_{3} = x_{3} \oplus t_{4}, \quad x_{4} = x_{4} \oplus t_{0},$$

$$x_{1} = x_{1} \oplus x_{0}, \quad x_{0} = x_{0} \oplus x_{4}, \quad x_{3} = x_{3} \oplus x_{2}, \quad x_{2} = \sim x_{2}.$$

$$(3)$$

• S-box 병렬 구현

- AND연산과 XOR 연산을 위해 $t_0 \sim t_4$ 를 위한 보조 큐비트가 필요
- 64개의 S-box 사용→ 총 320(5 x 64)개의 보조 큐비트 필요
- 이 경우, 연산이 순차적으로 이루어지므로 Toffoli depth 증가

$$x_{0} = x_{0} \oplus x_{4}, \quad x_{4} = x_{4} \oplus x_{3}, \quad x_{2} = x_{2} \oplus x_{1},$$

$$t_{0} = x_{0}, \quad t_{1} = x_{1}, \quad t_{2} = x_{2}, \quad t_{3} = x_{3}, \quad t_{4} = x_{4},$$

$$t_{0} = \sim t_{0}, \quad t_{1} = \sim t_{1}, \quad t_{2} = \sim t_{2}, \quad t_{3} = \sim t_{3}, \quad t_{4} = \sim t_{4},$$

$$t_{0} = t_{0} \cdot x_{1}, \quad t_{1} = t_{1} \cdot x_{2}, \quad t_{2} = t_{2} \cdot x_{3}, \quad t_{3} = t_{3} \cdot x_{4}, \quad t_{4} = t_{4} \cdot x_{0},$$

$$x_{0} = x_{0} \oplus t_{1}, \quad x_{1} = x_{1} \oplus t_{2}, \quad x_{2} = x_{2} \oplus t_{3}, \quad x_{3} = x_{3} \oplus t_{4}, \quad x_{4} = x_{4} \oplus t_{0},$$

$$x_{1} = x_{1} \oplus x_{0}, \quad x_{0} = x_{0} \oplus x_{4}, \quad x_{3} = x_{3} \oplus x_{2}, \quad x_{2} = \sim x_{2}.$$

$$(3)$$

- S-box 병렬 구현
 - 모든 Toffoli gate 연산을 병렬로 처리 → Toffoli depth 1
 - 두 세트의 보조 큐비트 할당 (640 = 320 x 2)

parallelization $x_0 \leftarrow x_0 \leftarrow x_0$ $x_1 \leftarrow x_1$ $x_2 \leftarrow x_2$ $x_3 \leftarrow x_4$ $x_4 \leftarrow x_4$

parallelization

- 역연산을 통한 보조 큐비트 재사용
 - 역연산을 통해 하나의 보조 큐비트 세트를 재사용.
 - → 초기 320개의 큐비트 할당만 필요

- 역연산을 통한 보조 큐비트 재사용
 - 역연산 시 NOT 연산을 하지 않음 → 보조 큐비트 상태를 |1⟩
 - → 다음 라운드부터는 NOT 연산이 필요 없음

• 선형 레이어 구현

- Roy et al. 은 ASCON 선형 레이어 구현에 관한 다양한 기법을 연구하였음
- Naïve한 구현 (즉, out-of-place)이 높은 큐비트 수를 요구하지만 가장 낮은 depth를 가짐
 - 모든 비트를 (320(=5 x 64)) 병렬로 처리함으로써 depth 최적화

Table 1: Comparison of quantum resources required for ASCON linear layer.

	Linear layer	Source	#CNOT	#Qubit	Depth
	Out-of-place	This work	960	640	3
	Naïve (binary matrix)	RBC'23 [18]	960	640	26
_	Gauss-Jordan	RBC'23 [18]	2,413	320	358
	PLU	RBC'23 [18]	2,413	320	288
	Modified [19]	RBC'23 [18]	$1,\!595$	320	119

 $x_0 \leftarrow \Sigma_0(x_0) = x_0 \oplus (x_0 \gg 19) \oplus (x_0 \gg 28),$ $x_1 \leftarrow \Sigma_1(x_1) = x_1 \oplus (x_1 \gg 61) \oplus (x_1 \gg 39),$ $x_2 \leftarrow \Sigma_2(x_2) = x_2 \oplus (x_2 \gg 1) \oplus (x_2 \gg 6),$ $x_3 \leftarrow \Sigma_3(x_3) = x_3 \oplus (x_3 \gg 10) \oplus (x_3 \gg 17),$ $x_4 \leftarrow \Sigma_4(x_4) = x_4 \oplus (x_4 \gg 7) \oplus (x_4 \gg 41),$ [수식 3-2] ASCON 선형 레이어

In-place

• AND 게이트 사용

- Toffoli gate와 유사하게 동작, But 대상 큐비트가 clean (즉 0) 상태여야 함
- AND 게이트: 11개의 Clifford 게이트, 4개의 T 게이트, 1개의 보조 큐비트로 구성 (T-depth 1, 전체 depth 8)
- AND[†] 게이트 : 5개의 Clifford 게이트, 1개의 Measurement 게이트 (T-depth 0, 전체 depth 4)

• AND 게이트 사용

- AND 게이트 보조 큐비트 재사용 가능
- 치환레이어에서 320개 (= 5 × 64) 보조 큐비트 초기에 한번만 할당
 - → 할당 x, 선형 레이어에서 사용할 보조 큐비트를 미리 선언하여 사용
- 본 구현에서 Toffoli 게이트 역연산이 사용 되지 않음
 - → AND[†] 게이트의 자원 효율성 활용 못함
 - → Grover 오라클에서 AND[†] 활용

 $|a\rangle$

 $|b\rangle$

 $|0\rangle$

• ASCON 양자 회로 자원 추정

- 본 구현은 낮은 Toffoli 및 Full depth 달성, 그러나 높은 큐비트 수
 - \rightarrow Trade off 메트릭인 $TD-M,FD-MTD^2-M,FD^2-M$ 도 구함
 - → ASCON –HASH(256)의 경우 이전 연구와 비교하여 모든 depth 및 trade-off 메트릭에서 최적화

Cip	ipher Sour		#CNOT	#1gCliff	#T	Toffoli Depth (TD)	#Qubit (M)	Full Depth (FD)	TD-M	FD-M	$\mathrm{TD}^2\mathrm{-M}$	$\mathrm{FD}^2\mathrm{-M}$
ASCON	ASCON -128	Ours	127, 200	21,563	67,220	30	20,064	513	1.15×2 ¹⁹	1.23×2 ²³	1.08×2 ²⁴	1.23×2 ³²
-AEAD	<u>ASCO</u> N -128a	Ours	135,648	22,979	71,680	32	21,344	547	1.30×2 ¹⁹	1.39×2^{23}	1.30×2^{24}	1.49×2^{32}
	ASCON -HASH	Lee	491,008	208,018	387,072	864	35, 136	8,427	1.81×2^{24}	1.10×2^{28}	1.53×2^{34}	1.13×2 ⁴¹
	(256)		406,016	68,435	215,040	96	62,592	1,641	1.43×2^{22}	1.53×2^{26}	1.07×2°9	1.23×2 ⁸⁷
ASCON hash function	ASCON -XoF (384)	Ours	609,024	102,419	322,560	144	93, 568	2,461	1.61×2^{23}	1.72×2 ²⁷	1.81×2^{30}	1.03×2 ³⁹
	ASCON -XoF (512)	Ours	812,032	136,402	430,080	192	124,544	3,281	1.43×2 ²⁴	1.52×2 ²⁸	1.07×2 ³²	1.22×2 ⁴⁰

[표 4-1] ASCON 양자 회로 구현에 사용된 양자 자원 비용 비교

• Grover 공격 비용 추정

- Grover 오라클 비용 : **양자 자원 비용** × 2
 - AND 게이트 사용: AND 게이트 양자 자원 비용 + AND[†] 양자 자원 비용
- Grover 키 검색 비용 : 오라클 비용 \times $\left[\frac{\pi}{4}\sqrt{2^k}\right]$

Сір	her	Source	#CNOT	#1qCliff	#T	#Meas ure	T Depth (Td)	#Qubit (M)	Full Depth (FD)	Td-M	FD-M	$\mathrm{Td}^2 - \mathrm{M}$	$\mathrm{FD}^2\mathrm{-M}$
	ASCON	Ours	254,400	43,126	134,440	0	240	20,065	1,026	1.15×2 ²²	1.23×2 ²⁴	1.08×2^{30}	1.23×2^{34}
ASCON	-128	Ours -AND	225,600	71,926	38,400	9,600	30	20,065	816	1.15×2^{19}	1.95×2^{23}	1.08×2^{24}	1.56×2 ³³
-AEAD	ASCON	Ours	271,296	45,958	143,360	0	256	21,355	1,094	1.30×2^{22}	1.40×2^{24}	1.30×2^{30}	1.49×2^{34}
	-128a	Ours -AND	240,576	76,678	40,960	10,240	32	21,355	872	1.30×2^{19}	1.11×2^{24}	1.30×2^{24}	1.89×2^{33}

Cipl	her	Source	#Gate (G)	Depth (FD)	Depth (<u>Td</u>)	#Qubit (M)	G-FD	FD-M	Td-M	FD^2-M	Td^2-M
	ASCON	Ours	1.31×2^{82}	1.57×2^{73}	1.47×2^{71}	1.22×2^{14}	1.03×2^{156}	1.92×2^{87}	1.79×2^{85}	1.50×2^{161}	1.32×2^{157}
ASCON	-128	Ours -AND	1.01×2 ⁸²	1.25×2 ⁷³	1.44×2 ⁶⁸	1.22×2 ¹⁴	1.26×2 ¹⁵⁵	1.53×2 ⁸⁷	1.76×2^{82}	1.90×2^{160}	1.27×2 ¹⁵¹
-AEAD		0					1.17×2^{156}				
	-128a	Ours -AND	1.10×2 ⁸²	1.34×2^{73}	1.56×2 ⁶⁸	1.30×2 ¹⁴	1.47×2^{155}	1.74×2 ⁸⁷	1.01×2 ⁸³	1.17×2^{161}	1.58×2^{151}

[표 4-3] ASCON-AEAD에 대한 Grover 공격 비용

• Grover 공격 비용 추정

- Grover 양자 충돌 공격 : CNS 알고리즘 적용 $O(2^{\frac{2n}{5} \frac{3s}{5}})$ $(s \leq \frac{n}{4})$.
- Grover 오라클 비용 : **양자 자원 비용** × 2
 - AND 게이트 사용 : AND 게이트 양자 자원 비용 + AND[†] 양자 자원 비용
- Grover 양자 충돌 공격 비용 : 오라클 비용 \times $2^{(\frac{2n}{5} \frac{3s}{5})}$ $s = \frac{n}{6}$

	A CCON		982,016	416,036	774, 144	0	6,912	35, 137	16,854	1.81×2^{25}	1.10×2^{29}	1.53×2^{36}	1.13×2^{43}
	ASCON -HASH (256)		812,032	136,870	430,080	0	768	62,593	3,282	1.43×2^{25}	1.53×2^{27}	1.07×2^{35}	1.23×2^{39}
ACCON	(230)	Ours -AND	719,872	229,030	122,880	30,720	96	62,593	2,608	1.43×2^{22}	1.22×2^{27}	1.07×2^{29}	1.55×2^{38}
ASCON hash function	ASCON	Ours	1,218,048	204,838	645, 120	0	1,152	93,569	4,922	1.61×2^{26}	1.72×2^{28}	1.81×2^{36}	1.03×2 ⁴¹
Turkuori		Ours -AND	1,079,808	343,076	184,320	46,080	144	93,569	3,904	1.61×2^{23}	1.36×2^{28}	1.81×2^{30}	1.55×2^{38}
	ASCON	Ours	1,624,064	272,804	860, 160	0	1,536	124,545	6,562	1.43×2^{27}	1.52×2^{29}	1.07×2^{38}	1.22×2 ⁴²
	-XoF (512)	Ours -AND	1,439,744	457,124	245,760	61,440	192	124,545	5,200	1.43×2^{24}	1.21×2^{29}	1.07×2^{32}	1.53×2 ⁴¹

Cip	her	Source	#Gate (G)	Full Depth (FD)	T Depth (Td)	#Qubit (M)	G-FD	FD-M	Td-M	FD^2-M	Td ² -M
		Lee	1.42×2 ⁹⁷	1.40×2 ⁹⁰	1.15×2 ⁸⁹	1.70×2^{57}	1.99×2^{187}	1.19×2^{148}	1.96×2^{146}	1.68×2^{238}	1.13×2^{236}
	ASCON -HASH	l ()iirq	1.80×2 ⁹⁶	1.09×2 ⁸⁸	1.02×2 ⁸⁶	1.51×2^{58}	1.96×2^{184}	1.66×2^{146}	1.55×2^{144}	1.81×2^{234}	1.59×2^{230}
ACCON		Ours- AND	1.44×2 ⁹⁶	1.74×2 ⁸⁷	1.02×2 ⁸³	1.51×2^{58}	1.25×2^{184}	1.25×2^{146}	1.54×2^{141}	1.14×2^{234}	1.57×2^{224}
ASCON hash function	ASCON	Ours	1.78×2^{135}	1.08×2^{127}	1.01×2^{125}	1.42×2^{80}	1.92×2^{262}	1.54×2^{207}	1.44×2^{205}	1.67×2^{334}	1.46×2^{330}
rancaar	-XoF (384)	Ours- AND	1.42×2^{135}	1.67×2^{126}	1.01×2^{122}	1.42×2^{80}	1.19×2^{262}	1.19×2^{207}	1.44×2^{202}	1.00×2^{334}	1.46×2^{324}
	ASCON	Ours	1.57×2^{174}	1.90×2^{165}	1.78×2^{163}	1.19×2^{102}	1.49×2^{340}	1.14×2^{268}	1.06×2^{266}	1.08×2 ⁴³⁴	1.90×2 ⁴²⁹
	-XoF (512)	Ours- AND	1.25×2^{174}	1.51×2^{165}	1.77×2^{160}	1.19×2^{102}	1.89×2^{339}	1.80×2^{267}	1.06×2^{263}	1.36×2 ⁴³³	1.88×2^{423}

ASCON 해시함수에 대한 Grover 오라클 비용

[표 4-4] ASCON 해시함수에 대한 Grover 양자 충돌 공격 비용

결 론

결론

- ASCON-128 : 1.26 \times 2¹⁵⁵. ASCON-128a : 1.47 \times 2¹⁵⁵
 - 보안 레벨 1을 만족하지 못함
- ASCON-HASH (256) : 1.25 \times 2¹⁸⁴. ASCON-XoF (384) : 1.19 \times 2²⁶². ASCON-HASH (512) : 1.89 \times 2³³⁹
 - Jang et al. 이 정의한 보안레벨 중 SHA3 공격 비용 만족

보안 레벨	암호	비용(복잡도)
Level 1	AES-128	$2^{170} \rightarrow 2^{157}$
Level 2	SHA-256/SHA3-256	2 ¹⁴⁶ (classical gates)
Level 3	AES-192	$2^{233} \rightarrow 2^{221}$
Level 4	SHA-384/SHA3-384	2 ²¹⁰ (classical gates)
Level 5	AES-256	$2^{198} \rightarrow 2^{285}$

Level	Cipher	Cost
Level 2	SHA-2/3 (256)	$2^{188}/2^{183}$
Level 4	SHA-2/3 (384)	$2^{266}/2^{260}$
Level 6 (Extension)	SHA-2/3 (512)	$2^{343}/2^{337}$

[표 2-4] Jang et al.이 정의한 양자 충돌 공격에 대한 보안 레벨

[표 2-3] NIST 양자 후 보안 레벨

결론

- 본 논문에서는 ASCON-AEAD 및 해시함수 양자 회로 최적화 구현하고 공격 비용을 평가함
- ASCON-128, ASCON-128a는 NIST에서 제공하는 보안 레벨 1을 달성하지 못함
 - 키 길이 증가 필요
- ASCON-HASH (256비트)의 경우 Toffoli depth 88.9%, Full depth: 80.5% 이상 향상됨
- ASCON-HASH (256), ASCON-XoF(384, 512)는 Jang et al. 이 SHA3에 대한 공격 비용 만족
- ASCON 저자들은 추가로 양자 공격에 저항을 갖는 160비트 더 긴 ASCON-80pq 제안
- 향후 ASCON-80pq에 대한 공격 비용도 평가 예정

Q&A