Cours d'Analyse 1

Damerdji Bouharis A.

Université des Sciences et de la Technologie Mohamed Boudiaf Faculté des Mathématiques et Informatique.

Table des matières

1				5			
2				7			
3				9			
4				11			
5	Fonctions dérivables (suite)						
	5.1 Théorèmes sur les fonctions dérivables						
		5.1.1	Théorème de Fermat	13			
		5.1.2	Théorème de Rolle	. 14			
		5.1.3	Théorème des accroissements finis	. 14			
		5.1.4	Variations d'une fonction	16			
		5.1.5	Formule de Cauchy- Accroissements finis généralisés	16			
	5.2	Formu	ıle de Taylor	. 17			
		5.2.1	Formule de Taylor avec reste de Lagrange	. 17			
		5.2.2	Formule de Taylor avec reste de Young	19			
		5.2.3	Formule de Taylor-Mac laurin-Young				
	5.3	Foncti	ions convexes	19			
		5.3.1	Paramétrage d'un segment				
		5.3.2	Point d'inflexion				
	5.4	Etude	e des branches infinies				

Chapitre 5

Fonctions dérivables (suite)

5.1 Théorèmes sur les fonctions dérivables

5.1.1 Théorème de Fermat

Définition 5.1.1 Soit f une fonction réelle définie sur un intervalle I de \mathbb{R} , $x_0 \in I$.

- On dit que f admet un maximum local au point x_0 si :

$$\exists \alpha > 0; \forall x \in I: |x - x_0| < \alpha \Rightarrow f(x) \le f(x_0)$$

- On dit que f admet un minimum local au point x_0 si :

$$\exists \alpha > 0; \forall x \in I : |x - x_0| < \alpha \Rightarrow f(x_0) \le f(x)$$

- On dit que f admet un extrêmum au point x_0 si f admet en x_0 un maximum local ou bien un minimum local.

Théorème 5.1.2 (de Fermat) Soit f une fonction réelle définie sur un intervalle]a,b[, telle que f admet en x_0 un extrêmum, si $f'(x_0)$ existe (f) est dérivable en x_0) alors $f'(x_0) = 0$.

Preuve:

On suppose que f admet en x_0 est un maximum local, alors on a :

$$\exists \alpha > 0; \forall x \in I : |x - x_0| < \alpha \Rightarrow f(x) \le f(x_0).$$

Si
$$x < x_0$$
 alors $x - x_0 < 0$ or $f(x) \le f(x_0)$ donc $\lim_{x \le x_0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$.

Si
$$x > x_0$$
 alors $x - x_0 > 0$ or $f(x) \le f(x_0)$ donc $\lim_{\substack{x \to x_0 \ x \to x_0}} \frac{f(x) - f(x_0)}{x - x_0} \le 0$.

Comme f est dérivable en x_0 alors la dérivée à gauche est égale à la dérivée à droite , par conséquent

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) = 0.$$

5.1.2 Théorème de Rolle

Théorème 5.1.3 Soit f une fonction définie de l'intervalle [a,b] dans \mathbb{R} , continue sur [a,b], dérivable sur [a,b] et telle que f (a) = f (b); alors il existe un point c dans [a,b] tel que f' (c) = 0.

Preuve:

- Si f est constante sur [a, b] alors c'est évident.
- Sinon; comme f est continue sur [a,b] alors elle est bornée sur [a,b], d'où elle est majorée donc sup f(x)=M existe, on a alors $\forall x\in]a,b[:f(x)\leq M$, on

peut supposer que M est différente de f(a) = f(b) et donc il existe c dans]a,b[tel que M = f(c), par conséquent

$$\forall x \in]a, b[: f(x) \le f(c),$$

alors c est un maximum local de f ainsi d'après le théorème de Fermat

$$f'(c) = 0.$$

Exemples 5.1.4.

- 1. Pour montrer que l'équation $4x^3 18x^2 + 22x 6 = 0$ admet une solution dans l'intervalle]1,3[; il suffit d'appliquer le Théorème de Rolle à la fonction $f(x) = x^4 6x^3 + 11x^2 6x$ sur l'intervalle]1,3[; en effet f est continue sur [1,3], dérivable sur]1,3[et on a f(1) = f(3) = 0, alors il existe $\alpha \in$]1,3[tel que $f'(\alpha) = 0$.
- 2. Etant donnée la fonction f définie sur $\left[-\frac{2}{\pi}, \frac{2}{\pi}\right]$ par :

$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

On ne peut pas appliquer le Théorème de Rolle à f sur $\left[-\frac{2}{\pi}, \frac{2}{\pi}\right]$. En effet; f n'est pas dérivable sur $\left]-\frac{2}{\pi}, \frac{2}{\pi}\right[$ car elle n'est pas dérivable en 0 car

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x \sin \frac{1}{x} - 0}{x} = \lim_{x \to 0} \sin \frac{1}{x}$$

n'existe pas.

5.1.3 Théorème des accroissements finis

Théorème 5.1.5 Soit f une fonction définie de l'intervalle [a,b] dans \mathbb{R} , continue sur [a,b] et dérivable sur [a,b]; alors il existe un point c dans [a,b] tel que :

$$f(b) - f(a) = f'(c)(b - a)$$
.

On pose $h(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$ h est continue sur [a, b] car f l'est et dérivable sur [a, b] car f l'est et on a h(a) = h(b), donc d'après le Théorème de Rolle on a :

$$\exists c \in [a, b]; h'(c) = 0,$$

or
$$h'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}$$
 ainsi $f(b) - f(a) = f'(c)(b - a)$.

Remarque: Soit h > 0, si on pose a = x, b = x + h, alors f est continue sur [x, x+h] et dérivable sur [x, x+h]; et on a

$$f(x+h) - f(x) = h.f'(c)$$

où $c = x + \theta h$ tel que $0 < \theta < 1$.

En effet;

$$x < c < x + h \Leftrightarrow 0 < \frac{c - x}{h} < 1$$

alors en posant $\frac{c-x}{h} = \theta$; on a :

$$f(b) - f(a) = (b - a) [f'(a + \theta (b - a))]$$

Application:

Si on a |f'(x)| < M; $\forall x \in [a, b]$ alors

$$|f(b) - f(a)| \le M(b - a).$$

Exemple 5.1.6 Montrer que Pour tout x > 0: $\frac{1}{x+1} < \ln\left(1+\frac{1}{x}\right) < \frac{1}{x}$

On pose $f(x) = \ln x$; sur [x, x + 1]

Pour tout x > 0; f est continue sur [x, x + 1] et dérivable sur [x, x + 1], donc d'après le théorème des accroissements finis; $\exists c \in [x, x+1]$ tel que

$$\ln(x+1) - \ln x = \frac{1}{c} \Leftrightarrow \ln\left(\frac{x+1}{x}\right) = \ln\left(1 + \frac{1}{x}\right) = \frac{1}{c}.$$

or

$$\begin{array}{ll} x < c < x+1 & \Leftrightarrow \frac{1}{x+1} < \frac{1}{c} < \frac{1}{x} \\ & \Leftrightarrow \frac{1}{x+1} < \ln\left(x+1\right) - \ln x < \frac{1}{x} \\ & \Leftrightarrow \frac{1}{x+1} < \ln\left(1+\frac{1}{x}\right) < \frac{1}{x} \end{array}$$

d'où

$$\frac{1}{x+1} < \ln\left(1 + \frac{1}{x}\right) < \frac{1}{x}; \ \forall x > 0.$$

Corollaire 5.1.7 Etant donnée f une fonction dérivable d'un intervalle I de \mathbb{R} dans \mathbb{R} et x_1, x_2 deux points quelconques de I; alors il existe un point c strictement compris entre x_1 et x_2 tel que

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$$

5.1.4 Variations d'une fonction

Théorème 5.1.8 Soit f une fonction définie de l'intervalle [a,b] dans \mathbb{R} , continue sur [a,b] et dérivable sur [a,b]; alors :

- 1. f est croissante sur [a,b] si et seulement si $\forall x \in [a,b]: f'(x) \geq 0$.
- 2. f est décroissante sur [a,b] si et seulement si $\forall x \in [a,b]: f'(x) \leq 0$.
- 3. f est constante sur [a,b] si et seulement si $\forall x \in [a,b]$: f'(x) = 0.

5.1.5 Formule de Cauchy- Accroissements finis généralisés

Théorème 5.1.9 Soient f et g deux fonctions continues sur [a, b], dérivables sur [a, b]; si $g'(x) \neq 0, \forall x \in [a, b]$ alors

$$\exists c \in]a, b[/ \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Preuve:

On pose

$$h(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g(x),$$

h est continue sur [a,b] et dérivable sur [a,b] et on remarque que

$$h(a) = h(b) = \frac{f(a) g(b) - f(b) g(a)}{g(b) - g(a)}$$

alors d'après le Théorème de Rolle; on a $\exists c \in [a, b[/ h'(c) = 0, d'où$

$$f'\left(c\right) - \frac{f\left(b\right) - f\left(a\right)}{g\left(b\right) - g\left(a\right)}g'\left(c\right) = 0 \Leftrightarrow \frac{f\left(b\right) - f\left(a\right)}{g\left(b\right) - g\left(a\right)} = \frac{f'\left(c\right)}{g'\left(c\right)}.$$

On a comme conséquence directe de ce théorème le corollaire suivant :

La règle de l'Hôpital.

Soient f et g deux fonctions continues sur [a,b], dérivables sur]a,b[; si $\frac{f'(x)}{g'(x)}$ admet une limite l au point $x_0 \in]a,b[$, telle que $\lim_{x\to x_0} \frac{f'(x)}{g'(x)} = l$; alors

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = l.$$

En effet, il suffit de prendre dans le théorème des accroissements finis généralisés $a=x_0$ et b=x d'où $c\in]x_0,x[$ et quand x tend vers x_0 alors c tend vers x_0 aussi et on a $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}=l$ d'où $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{g(x)-g(x_0)}=l$.

Cette méthode est utilisée pour enlever les indéterminations du type $\frac{0}{0}$ ou $\frac{\infty}{\infty}$.

Exemples 5.1.10 1.
$$l_1 = \lim_{x\to 0} \frac{\sin(kx)}{\sin(lx)} = \frac{k}{l}$$
, $car \lim_{x\to 0} \frac{k\cos(kx)}{l\cos(lx)} = \frac{k}{l}$.

2.
$$l_2 = \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$
, $car \lim_{x \to 0} \frac{\sin x}{2x} = \frac{1}{2}$.

5.2 Formule de Taylor

Une fonction n—fois dérivable peut être approximée dans un voisinage d'un point x_0 par un polynôme de degré n; on écrit

$$f\left(x\right) = P_n\left(x\right) + R_n\left(x\right)$$

où $P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$ est un polynôme de degré n en $(x - x_0)$ et $R_n(x)$ est l'erreur commise dans cette approximation dite reste d'ordre n qui peut avoir plusieurs évaluations entrainant plusieurs formes de la formule de Taylor.

$$f(x) = f(x_0) + \frac{(x - x_0)}{1!} f'(x_0) + \frac{(x - x_0)^2}{2!} f''(x_0) + \dots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0) + R_n(x)$$

5.2.1 Formule de Taylor avec reste de Lagrange

Soit $f:[a,b]\to\mathbb{R}$; une fonction; telle que $f\in C^{\infty}\left([a,b]\right)$, $f^{(n)}$ est dérivable sur [a,b[et soit $x_0\in[a,b]$ alors:

$$f(x) = \sum_{k=0}^{n} \frac{(x-x_0)^k}{k!} f^{(k)}(x_0) + \frac{(x-x_0)^{n+1}}{(n+1)!} f^{(n+1)}(c)$$

où c est un point compris strictement entre x et x_0 .

Remarques:

- 1. Le terme $\frac{(x-x_0)^{n+1}}{(n+1)!}f^{(n+1)}(c)$ est appelé reste de Lagrange.
- 2. Si on pose $h = x x_0$; alors

$$x_0 < c < x \Leftrightarrow x_0 < c < x_0 + h \Leftrightarrow 0 < \frac{c - x_0}{h} < 1.$$

alors en posant $\theta = \frac{c-x_0}{h}$, on a $c = \theta h + x_0$ tel que $0 < \theta < 1$ et on obtient par conséquent que pour tout $h \in \mathbb{R}$, tel que $x_0 + h \in [a, b]$, $\exists \theta \in]0, 1[$:

$$f(x_0 + h) = f(x_0) + \frac{h}{1!}f'(x_0) + \frac{h^2}{2!}f''(x_0) + \dots$$
$$\dots + \frac{h^n}{n!}f^{(n)}(x_0) + \frac{h^{n+1}}{(n+1)!}f^{(n+1)}(x_0 + \theta h)$$

Formule de Taylor-Mac laurin

Si $x_0 = 0$ alors h = x et $c = \theta x$, d'où on obtient la formule de Taylor-Mac laurin avec reste de Lagrange :

$$f\left(x\right) = f\left(0\right) + \frac{x}{1!}f'\left(0\right) + \frac{x^{2}}{2!}f''\left(0\right) + \dots + \frac{x^{n}}{n!}f^{(n)}\left(0\right) + \frac{x^{n+1}}{(n+1)!}f^{(n+1)}\left(\theta x\right); 0 < \theta < 1.$$

Exemples 5.2.1 1. On donne La formule de Taylor-Mac laurin avec reste de Lagrange de la fonction $f(x) = \sin x$ à l'ordre n = 3:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^4}{4!} \sin(\theta x); 0 < \theta < 1.$$

2. Pour l'ordre n on a besoin de la dérivée n-ième de la fonction $\sin x$; on $a \forall n \geq 1 : (\sin)^{(n)}(x) = \sin(x + n\frac{\pi}{2})$, d'où

$$(\sin)^{(n)}(0) = \sin\left(n\frac{\pi}{2}\right) = \begin{cases} (-1)^k, & \text{si } n = 2k+1\\ 0, & \text{si } n = 2k \end{cases}$$

et le reste s'écrit : $R_n(x) = \frac{x^{n+1}}{(n+1)!} (\sin)^{(n+1)} (\theta x)$, or le dernier terme non nul de la somme est de degré impair n = 2k + 1; car toutes les dérivées d'ordre pair s'annulent; d'où

$$R_n(x) = \frac{x^{2(k+1)}}{(2k+2)!} (\sin)^{(2k+2)} (\theta x)$$

et

$$(\sin)^{(2k+2)}(\theta x) = \sin\left(\theta x + 2(k+1)\frac{\pi}{2}\right)$$
$$= \sin\left(\theta x + (k+1)\pi\right)$$
$$= (-1)^{k+1}\sin\left(\theta x\right),$$

 $car \sin (\alpha + k\pi) = (-1)^k \sin \alpha; \forall k \in \mathbb{Z}$ d'où

$$\sin x = x - \frac{x^3}{3!} + \dots + (-1)^k \frac{x^{2k+1}}{(2k+1)!} + (-1)^{k+1} \frac{x^{2k+2}}{(2k+2)!} \sin(\theta x);$$

avec $0 < \theta < 1$, est le développement de Taylor-Mac laurin avec reste de Lagrange de la fonction $\sin x$ à l'ordre n = 2k + 1.

3. Pour $f(x) = \cos x$; de la même façon on a

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^k \frac{x^{2k}}{(2k)!} + (-1)^{k+1} \frac{x^{2k+1}}{(2k+1)!} \sin(\theta x);$$

$$avec \ 0 < \theta < 1.$$

4. Pour $f(x) = e^x$; de la même façon on a

$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + \frac{x^{n+1}}{(n+1)!} e^{\theta x}; \text{ avec } 0 < \theta < 1.$$

5.2.2 Formule de Taylor avec reste de Young

Dans cette formule nous allons nous passer de la dérivabilité de $f^{(n)}$, on supposera seulement son existence,

Soit $f:[a,b]\to\mathbb{R}$; une fonction et soit $x_0\in[a,b]$ tel que $f^{(n)}(x_0)$ existe alors:

$$f(x) = \sum_{k=0}^{n} \frac{(x - x_0)^k}{k!} f^{(k)}(x_0) + o(x - x_0)^n$$

le reste $R_n(x) = o(x - x_0)^n$ est tel que $\lim_{x \to x_0} \frac{R_n(x)}{(x - x_0)^n} = 0$.

Il existe une deuxième écriture de cette formule en posant $\frac{R_n(x)}{(x-x_0)^n} = \varepsilon(x)$, d'où $R_n(x) = (x-x_0)^n \varepsilon(x)$ et par suite on a

$$f(x) = \sum_{k=0}^{n} \frac{(x-x_0)^k}{k!} f^{(k)}(x_0) + (x-x_0)^n \varepsilon(x)$$
, avec $\lim_{x \to x_0} \varepsilon(x) = 0$.

5.2.3 Formule de Taylor-Mac laurin-Young

Si $x_0 = 0$ alors on a

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + o(x^n)$$

ou bien

$$f\left(x\right)=f\left(0\right)+\frac{x}{1!}f'\left(0\right)+\frac{x^{2}}{2!}f''\left(0\right)+\ldots+\frac{x^{n}}{n!}f^{\left(n\right)}\left(0\right)+x^{n}\varepsilon\left(x\right),$$
 avec
$$\lim_{x\to x_{0}}\varepsilon\left(x\right)=0.$$

Exemple 5.2.2 Le développement de Taylor-Mac laurin-Young de la fonction : $f(x) = \tan x$ à l'ordre n = 3 est donné par

$$\tan x = x + \frac{x^3}{3} + x^3 \varepsilon(x).$$

On déduit la limite suivante

$$l = \lim_{x \to x_0} \frac{\tan x - x}{x^3} = \lim_{x \to x_0} \frac{x + \frac{x^3}{3} - x}{x^3} = \frac{1}{3}.$$

5.3 Fonctions convexes

Définition 5.3.1 Une fonction f définie sur un intervalle I est dite convexe sur I; si sa courbe (Γ) est en dessous de toutes ses cordes et au dessus de toutes ses tangentes.

f est dite concave sur I si la fonction (-f) est convexe sur I.

Exemple 5.3.2 Soient $f(x) = x^2$; et $g(x) = \frac{1}{x}$; f est convexe sur tout \mathbb{R} , g est convexe sur $]0, +\infty[$ et concave sur $]-\infty, 0[$.

5.3.1 Paramétrage d'un segment

Définition 5.3.3 Soit $a, b \in \mathbb{R}$, tels que a < b; soit $x \in \mathbb{R}$ alors : $x \in [a, b] \Leftrightarrow \exists t \in [0, 1] \ / \ x = (1 - t) \ a + tb. (il suffit de poser <math>t = \frac{x - a}{b - a}).$

Remarque: Si t=0 alors x=a et si t=1 alors x=b et si $t=\frac{1}{2}$ alors $x=\frac{a+b}{2}$.

Définition 5.3.4 Soit f une fonction définie sur un intervalle I.

- On dit que f est convexe sur I si :

$$\forall x_1, x_2 \in I, \forall t \in [0, 1]: f(tx_1 + (1 - t)x_2) \le tf(x_1) + (1 - t)f(x_2)$$

- On dit que f est concave sur I si :

$$\forall x_1, x_2 \in I, \forall t \in [0, 1]: f(tx_1 + (1 - t)x_2) \ge tf(x_1) + (1 - t)f(x_2)$$

Exemple 5.3.5 La fonction f(x) = |x| est convexe sur \mathbb{R} ; en effet : pour $x_1, x_2 \in \mathbb{R}, t \in [0, 1]$ on a

$$|tx_1 + (1-t)x_2| \le t|x_1| + (1-t)|x_2|$$
.

Proposition 5.3.6 Soit f une fonction dérivable sur un intervalle I, f est convexe sur I si et seulement si sa dérivée f' est croissante sur I.

Corollaire 5.3.7 Une fonction f deux fois dérivable sur I est convexe sur I si sa deuxième dérivée f'' est positive sur I.

5.3.2 Point d'inflexion

Définition 5.3.8 Soit f une fonction dérivable sur un intervalle I de \mathbb{R} , $x_0 \in I$, soit (Γ_f) le graphe de f.

On dit que x_0 est un point d'inflexion de f si (Γ_f) change de concavité au point $M_0(x_0, f(x_0))$, i.e la courbe traverse sa tangente au point M_0 .

En conclusion on a le théorème suivant :

Théorème 5.3.9 Soit f une fonction définie sur [a,b] et dérivable en $x_0 \in]a,b[$; alors x_0 est un point d'inflexion de f si l'une des conditions suivantes est vérifiée :

- 1. f change de concavité en x_0 .
- 2. f est dérivable sur [a,b] et f' admet un extrêmum en x_0 .
- 3. f est 2-fois dérivable sur a, b et f'' s'annule en x_0 en changeant de signe.

Preuve:

On va prouver la condition 2. car 1. et 3. sont évidentes.

Supposons que f' admet un maximum en x_0 ;

$$\exists \alpha > 0, \forall x \in [x_0 - \alpha, x_0 + \alpha] \Rightarrow f'(x) \leq f'(x_0);$$

alors:

- Si $x \ge x_0$; alors d'après le théorème des accroissements finis sur $[x_0, x]$ on a :

$$f(x) - f(x_0) = f'(c)(x - x_0)$$

avec $x_0 - \alpha < x_0 < c < x < x_0 + \alpha$, d'où $f'(c) \leq f'(x_0)$ donc

$$f(x) \le f(x_0) + f'(x_0)(x - x_0)$$

par suite sa courbe (Γ_f) est en dessous de sa tangente en x_0 .

- Si $x \leq x_0$; alors d'après le théorème des accroissements finis sur $[x, x_0]$ on a :

$$f(x_0) - f(x) = f'(c)(x_0 - x)$$

avec $x_0 - \alpha < x < c < x_0 < x_0 + \alpha$, d'où $f'(c) \leq f'(x_0)$ donc

$$f(x_0) - f'(x_0)(x_0 - x) \le f(x)$$

par suite sa courbe (Γ_f) est au dessus de sa tangente en x_0 .

Théorème 5.3.10 Soit f une fonction 2—fois dérivable sur un intervalle I de \mathbb{R} , $x_0 \in I$; si f admet un point d'inflexion au point $(x_0, f(x_0))$ alors f'' s'annule en x_0 .

Exemple 5.3.11 Toute fonction polynômiale de degré 3 admet un point d'inflexion. En effet; soit $f(x) = ax^3 + bx^2 + cx + d$ tel que a > 0.

$$f'(x) = 3ax^2 + 2bx + c \text{ et } f''(x) = 6ax + 2b$$

$$f''(x) = 0 \Leftrightarrow x = \frac{-b}{3a}.$$

x	$-\infty$		$\frac{-b}{3a}$		$+\infty$
f" (x)		_	0	+	
$Variations \\ de \ f'$	$+\infty$		$f'(\frac{-b}{3a})$		$+\infty$
Convexité de f		concave		convexe	

5.4 Etude des branches infinies

Soit f une fonction définie sur un intervalle I de \mathbb{R} dans \mathbb{R} et (Γ_f) son graphe, soient a et l deux nombres réels, tels que a est l'une des extrêmités de I.

Définition 5.4.1.

On dit que f possède une branche infinie en a si $\lim_{x\to a} f(x) = l$ tel que l'un au moins des deux éléments de a ou l est égal $a + \infty$ ou $-\infty$.

- 1) Si $a \in \mathbb{R}$ et $l = \pm \infty$, alors (Γ_f) admet une asymptote verticale d'équation x = a.
- 2) Si $a = \pm \infty$ et $l \in \mathbb{R}$, alors (Γ_f) admet une asymptote horizontale d'équation y = l
- 3) Si $a = \pm \infty$ et $l = \pm \infty$, alors on doit calculer $\lim_{x \to \infty} \frac{f(x)}{x} = \alpha$:
 - i) Si $\alpha = 0$ alors (Γ_f) admet une branche parabolique dans la direction de l'axe (x'x).
 - ii) Si $\alpha \in \mathbb{R}^*$ et $\lim_{x \to \infty} [f(x) \alpha x] = \beta \in \mathbb{R}$ alors (Γ_f) admet une asymptote oblique (Δ) d'équation $y = \alpha x + \beta$.
 - iii) Si $\alpha \in \mathbb{R}^*$ et $\lim_{x \to \infty} [f(x) \alpha x] = \pm \infty$ alors (Γ_f) admet une branche parabolique dans la direction de la droite d'équation $y = \alpha x$.
 - iv) Si $\alpha = \pm \infty$ alors (Γ_f) admet une branche parabolique dans la direction de l'axe (y'y).

Remarque: Pour étudier la position du graphe (Γ_f) de la fonction f par rapport à l'asymptote oblique (Δ) ; il suffit d'étudier le signe de la différence f(x) - y:

- Si $f(x) y \le 0$ alors (Γ_f) est en dessous de (Δ) .
- Si $f(x) y \ge 0$ alors (Γ_f) est au dessus de (Δ) .

Exemples 5.4.2 1. $f(x) = \frac{5}{x-1}$; (Γ_f) admet une asymptote verticale d'équation x = 1.

- 2. $f(x) = e^{1-x^2} + 5$; (Γ_f) admet une asymptote verticale d'équation y = 5.
- 3. $f(x) = x + \frac{1}{x}$; (Γ_f) admet une asymptote oblique d'équation y = x.
- 4. $f(x) = \frac{1}{2}x + \sqrt{x} + 1$; (Γ_f) admet une branche parabolique dans la direction de la droite d'équation $y = \frac{1}{2}x$.
- 5. $f(x) = \sqrt{x}$; (Γ_f) admet une branche parabolique dans la direction de l'axe (x'x).
- 6. $f(x) = x^3$; (Γ_f) admet une branche parabolique dans la direction de l'axe (y'y).

Exercice 5.4.3 1. Etudier les variations de la fonction définie par $f(x) = \ln \frac{e^{2x} + 5}{e^x - 2}$.

- 2. Montrer que le graphe (Γ_f) de f admet une asymptote oblique (Δ) au voisinage $de +\infty$, en précisant son équation.
- 3. Etudier la position de (Γ_f) par rapport à (Δ) .

Solution.

1. On a : $D_f = [\ln 2, +\infty[$

$$f'(x) = \frac{e^x (e^x - 5) (e^x + 1)}{(e^{2x} + 5) (e^x - 2)}, \forall x \in]\ln 2, +\infty[.$$

$$f'(x) = 0 \Leftrightarrow x = \ln 5,$$

$$f'(x) < 0 \Leftrightarrow x \in]\ln 2, \ln 5[,$$

$$f'(x) > 0 \Leftrightarrow x \in]\ln 5, +\infty[.$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{1}{x} \left[\ln \frac{e^{2x} \left(1 + 5e^{-2x} \right)}{e^{x} (1 + 2e^{-x})} \right] = \lim_{x \to +\infty} \frac{1}{x} \left[x + \ln \frac{\left(1 + 5e^{-2x} \right)}{(1 + 2e^{-x})} \right] = 1,$$

$$\lim_{x \to +\infty} \left(f(x) - x \right) = \lim_{x \to +\infty} \ln \frac{\left(1 + 5e^{-2x} \right)}{(1 + 2e^{-x})} = 0.$$
Prob (T) admet an veriginary do + as two asymptote oblique (A) d

D'où (Γ_f) admet au voisinage de $+\infty$ une asymptote oblique (Δ) d'équation y = x.

3. Comme
$$f(x) - y = \ln \frac{\left(1 + 5e^{-2x}\right)}{\left(1 + 2e^{-x}\right)} > 0; \forall x > \ln 2 \text{ alors } (\Gamma_f) \text{ est au dessus de } (\Delta).$$