Combinational Circuits Combinational Circuits

Full Adder

Truth table

X	y	Z	c	S
Ø	0	0	0	0
0	0		0	1
6		0	0	1
ь	1	l	1	0
1	6	Ø	0	1
(O	(1	0
1	(О	1	0
\	\	1	1	1

s = x x or y x or z

c = xy+yz+xz

c = x(y+z)+yz

E	BC 00	01	11	10
0	0	0		0
1	0	1	1	1

Sir method

S

C

4 Bit half adder

Questions

1. Design a 4 bit binary adder using full adder

A = 1101

B = 0101

Addition: A + B

Subtraction:

A - B

A + (-B)

A + 2's comp(B)

A+B'+1

HW

2. Draw a 4 bit subtractor circuit using full adder

3. Design a 4 bit binary decrementer

$$A-1$$

$$A_3A_2A_1A_0 + 1110 + 1$$

$$A_3A_2A_1A_0 + 1111$$

4. Design a circuit that can add and subtract two 4 bit binary numbers. Circuit uses a control signal C as per the following table:

С	Output
0	A+B
1	A-B

ans

If we want to flip bit when input is 1 and not flip when input is 0 we will use XOR

Multiplexer

Multiple inputs and single output

How will input be selected?

Through select lines

2 Variables

S1	S2	Υ
0	0	10
0	1	I1
1	0	12

S1	S2	Y
1	1	13

3 Variables

S1	S2	S3	Y
0	0	0	10
0	0	1	11
0	1	0	12
0	1	1	13
1	0	0	14
1	0	1	15
1	1	0	16
1	1	1	17

Logic Diagram

