第十章部分课后习题参考答案

- 4. 判断下列集合对所给的二元运算是否封闭:
 - (1) 整数集合 Z 和普通的减法运算。
 - 封闭,不满足交换律和结合律,无零元和单位元
 - (2) 非零整数集合Z·和普通的除法运算。**不封闭**
 - (3) 全体 $n \times n$ 实矩阵集合 M_n (R)和矩阵加法及乘法运算,其中 $n \ge 2$ 。

封闭 均满足交换律,结合律,乘法对加法满足分配律;

加法单位元是零矩阵, 无零元;

乘法单位元是单位矩阵,零元是零矩阵;

- (4) 全体 $n \times n$ 实可逆矩阵集合关于矩阵加法及乘法运算,其中 $n \ge 2$ 。不封闭
- (5) 正实数集合R+和°运算,其中°运算定义为:

 $\forall a, b \in \mathbb{R}^+, a^*b = ab - a - b$

不封闭 因为 1∘1=1×1-1-1=-1 ∉ R⁺

(6) $n \in \mathbb{Z}^+$, $n\mathbb{Z} = \{nz \mid z \in \mathbb{Z}\}$. $n\mathbb{Z}$ 关于普通的加法和乘法运算。

封闭,均满足交换律,结合律,乘法对加法满足分配律加法单位元是 **0**,无零元:

乘法无单位元 (n>1),零元是 0; n=1单位元是 1

(7) A = { a_1, a_2, \dots, a_n } n≥ 2.° 运算定义如下:

 $\forall a, b \in A, a^{\circ}b = b$

封闭 不满足交换律,满足结合律,

(8) $S = \{2x - 1 | x ∈ Z^+\}$ 关于普通的加法和乘法运算。

封闭 均满足交换律,结合律,乘法对加法满足分配律

(9) $S = \{0,1\}, S$ 是关于普通的加法和乘法运算。

加法不封闭,乘法封闭;乘法满足交换律,结合律

(10) $S = \{x \mid x = 2^n, n \in Z^+\}$, S 关于普通的加法和乘法运算。

加法不封闭,乘法封闭,乘法满足交换律,结合律

5. 对于上题中封闭的二元运算判断是否适合交换律,结合律,分配律。

见上题

7. 设 * 为 Z^+ 上的二元运算 $\forall x, v \in Z^+$,

X * Y = min(x, y),即x和y之中较小的数.

(1) 求 4 * 6, 7 * 3。

4, 3

(2)* 在 Z^{+} 上是否适合交换律,结合律,和幂等律?

满足交换律,结合律,和幂等律

(3) 求*运算的单位元,零元及 Z^{+} 中所有可逆元素的逆元。

单位元无,零元1, 所有元素无逆元

8. $S = Q \times Q$ Q为有理数集,*为 S上的二元运算, $\forall \langle a, b \rangle, \langle x, y \rangle \in S$ 有

$$< a, b>* =$$

(1)*运算在S上是否可交换,可结合?是否为幂等的?

不可交换: $\langle x,y \rangle^* \langle a,b \rangle = \langle xa, xb+y \rangle \neq \langle a, b \rangle^* \langle x, y \rangle$ 可结合: $(\langle a,b \rangle^* \langle x,y \rangle)^* \langle c,d \rangle = \langle ax, ay+b \rangle^* \langle c,d \rangle = \langle axc, axd+(ay+b) \rangle$ $\langle a,b \rangle^* \langle (\langle x,y \rangle^* \langle c,d \rangle) = \langle a,b \rangle^* \langle (\langle x,y \rangle^* \langle c,d \rangle)$ $\langle (\langle a,b \rangle^* \langle x,y \rangle)^* \langle c,d \rangle = \langle a,b \rangle^* \langle (\langle x,y \rangle^* \langle c,d \rangle)$

不是幂等的

设<a,b>是零元, \forall <x,y> \in S ,<a,b>*<x,y>=<x,y>*<a,b>=<a,b>
则<ax,ay+b>=<xa,xb+y>=<a,b>,无解。即无零元。 \forall <x,y> \in S,设<a,b>是它的逆元<a,b>*<x,y>=<x,y>*<a,b>=<1,0> <ax,ay+b>=<xa,xb+y>=<1,0> a=1/x,b=-y/x所以当 x \neq 0 时,<x, $y>^{-1}=\left\langle \frac{1}{x},-\frac{y}{x}\right\rangle$

10. 令 S={a, b}, S 上有四个运算: *, °, ·和□分别有表 10.8 确定。

*	a	b	0	a	b	•	a	b		a	b
a	a	a	a	a	b	a b	b	a	a	a	b
b	a	a	b	b	a	b	a	a	b	a	b
(a)			(b)			(c)		(d)			

- (1)这4个运算中哪些运算满足交换律,结合律,幂等律?
 - (a) 交换律,结合律,幂等律都满足,零元为 a,没有单位元;
 - (b)满足交换律和结合律,不满足幂等律,单位元为 a,没有零元

$$a^{-1} = a, b^{-1} = b$$

(c)满足交换律,不满足幂等律,不满足结合律

$$a \circ (b \circ b) = a \circ a = b, \quad (a \circ b) \circ b = a \circ b = a$$

 $a \circ (b \circ b) \neq (a \circ b) \circ b$

没有单位元,没有零元

(d) 不满足交换律,满足结合律和幂等律

没有单位元,没有零元

(2) 求每个运算的单位元,零元以及每一个可逆元素的逆元。

见上

- 16. 设 V= 〈 N, + , · 〉,其中+ , · 分别代表普通加法与乘法,对下面给定的每个集合确定它是否构成 V 的子代数,为什么?
 - (1) S_1 ={2n | n ∈ Z} **Æ**
 - (2) S₂={2n+1|n∈Z} 不是 加法不封闭
 - (3) $S_3 = \{-1, 0, 1\}$ 不是,加法不封闭

第十一章部分课后习题参考答案

8. 设 S={0, 1, 2, 3}, ⊗为模 4 乘法,即

"
$$\forall x, y \in S$$
, $x \otimes y = (xy) \mod 4$

问〈S, ❷〉是否构成群?为什么?

解: (1) $\forall x, y \in S$, $x \otimes y = (xy) \mod 4 \in S$, \otimes 是 S 上的代数运算。

(2) \forall x, y, z ∈ S, \forall xy=4k+r $0 \le r \le 3$

 $(x \otimes y) \otimes z = ((xy) \mod 4) \otimes z = r \otimes z = (rz) \mod 4$

 $=(4kz+rz) \mod 4 = ((4k+r)z) \mod 4 = (xvz) \mod 4$

同理 $x \otimes (y \otimes z) = (xyz) \mod 4$

所以, $(x \otimes y) \otimes z = x \otimes (y \otimes z)$, 结合律成立。

- (3) $\forall x \in S$, $(x \otimes 1) = (1 \otimes x) = x$, 所以 1 是单位元。
- $(4) 1^{-1} = 1$, $3^{-1} = 3$, 0 和 2 没有逆元

所以, ⟨S, ❷⟩ 不构成群

9. 设 Z 为整数集合, 在 Z 上定义二元运算。如下:

"
$$\forall x, y \in \mathbb{Z}$$
, $xoy = x+y-2$

问 Z 关于 o 运算能否构成群? 为什么?

 \mathbf{M} : (1) $\forall x, y \in \mathbb{Z}$, $xoy=x+y-2 \in \mathbb{Z}$, o 是 \mathbb{Z} 上的代数运算。

(2) $\forall x, y, z \in Z$,

$$(xoy)$$
 oz = $(x+y-2)$ oz= $(x+y-2)+z-2=x+y+z-4$ 同理 (xoy) oz= $xo(yoz)$,结合律成立。

- (3) 设 e 是单位元, $\forall x \in Z$, xo e = eox = x, 即 x + e 2 = e + x 2 = x, e = 2
- (4) \forall x ∈ Z , 设 x 的逆元是 y, xoy= yox= e, 即 x+y-2=y+x-2=2,

所以,
$$x^{-1} = y = 4 - x$$

所以〈Z,o〉构成群

11. 设
$$G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$$
,证明 G 关于矩阵乘法构成一个群.

 \mathbf{M} : (1) $\forall x, y \in G$, 易知 $xy \in G$, 乘法是 Z 上的代数运算。

- (2) 矩阵乘法满足结合律
- (3)设 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 是单位元,
- (4)每个矩阵的逆元都是自己。

所以 G 关于矩阵乘法构成一个群.

14. 设 G 为群, 且存在 a ∈ G, 使得

$$G = \{a^k \mid k \in Z\}$$

证明: G是交换群。

证明: $\forall x, y \in G$, 设 $x = a^k$, $y = a^l$, 则 $xy = a^k a^l = a^{k+l} == a^{l+k} = a^l a^k = yx$ 所以, G 是交换群

17. 设 G 为群,证明 e 为 G 中唯一的幂等元。

证明: 设 $e_0 \in G$ 也是幂等元,则 $e_0^2 = e_0$,即 $e_0^2 = e_0 e$,由消去律知 $e_0 = e$

18. 设 G 为群, a, b, c ∈ G, 证明

证明: 先证设 $(abc)^k = e \Leftrightarrow (bca)^k = e$

设
$$(abc)^k = e$$
,则 $(abc)(abc)(abc)\cdots(abc) = e$,

即
$$a(bca)(bca)(bca)\cdots(bca)a^{-1}=e$$

左边同乘 a^{-1} ,右边同乘a得

$$(bca)(bca)(bca)\cdots(bca) = (bac)^k = a^{-1}ea = e$$

反过来,设 $(bac)^k = e$,则 $(abc)^k = e$.

由元素阶的定义知, | abc | = | bca | , 同理 | bca | = | cab |

19. 证明: 偶数阶群 G 必含 2 阶元。

证明: 设群 G 不含 2 阶元, $\forall a \in G$, 当 a = e时, a是一阶元, 当 $a \neq e$ 时, a至少是 3 阶元,因为群 G 时有限阶的,所以 a是有限阶的,设 a是 k 阶的,则 a^{-1} 也是 k 阶的,所以 高于 3 阶的元成对出现的, G 不含 2 阶元, G 含唯一的 1 阶元 e,这与群 G 是偶数阶的矛盾。 所以, 偶数阶群 G 必含 2 阶元

20. 设 G 为非 Abel 群,证明 G 中存在非单位元 a 和 b, a≠b,且 ab=ba.

证明: 先证明 G 含至少含 3 阶元。

若 G 只含 1 阶元,则 G={e}, G 为 Abel 群矛盾;

若 G 除了 1 阶元 e 外, 其余元 a均为 2 阶元, 则 $a^2 = e$, $a^{-1} = a$

 $\forall a,b \in G, a^{-1} = a,b^{-1} = b,(ab)^{-1} = ab, \text{fill } ab = a^{-1}b^{-1} = (ba)^{-1} = ba$,

与G为Abel群矛盾;

所以, G含至少含一个3阶元, 设为a, 则 $a \neq a^2$, 且 $a^2a = aa^2$ 。

- 21. 设 G 是 M_n(R)上的加法群, n≥2,判断下述子集是否构成子群。
 - (1) 全体对称矩阵 **是子群**
 - (2) 全体对角矩阵 是子群
 - (3) 全体行列式大于等于 0 的矩阵. 不是子群
 - (4) 全体上(下) 三角矩阵。 是子群
- 22. 设 G 为群, a 是 G 中给定元素, a 的正规化子 N (a) 表示 G 中与 a 可交换的元素构成的集合,即

$$N(a) = \{x \mid x \in G \land xa = ax\}$$

证明 N(a)构成 G的子群。

证明: ea=ae, $e \in N(a) \neq \phi$

$$\forall x, y \in N(a), \quad \emptyset \quad ax = xa, ay = ya$$

$$a(xy) = (ax)y = (xa)y = x(ay) = x(ya) = (xy)a, \quad \emptyset \quad xy \in N(a)$$

由
$$ax = xa$$
,得 $x^{-1}axx^{-1} = x^{-1}xax^{-1}$, $x^{-1}ae = eax^{-1}$, 即 $x^{-1}a = ax^{-1}$, 所以 $x^{-1} \in N(a)$

所以 N(a)构成 G的子群

31. 设 φ_1 是群 G_1 到 G_2 的同态, φ_2 是 G_2 到 G_3 的同态,证明 $\varphi_1 \circ \varphi_2$ 是 G_1 到 G_3 的同态。

证明:有已知 φ_1 是 G_1 到 G_2 的函数, φ_2 是 G_2 到 G_3 的函数,则 $\varphi_1 \cdot \varphi_2$ 是 G_1 到 G_3 的函数。

$$\forall a,b \in G_1, \ (\varphi_1 \circ \varphi_2)(ab) = \varphi_2(\varphi_1(ab)) = \varphi_2(\varphi_1(a)\varphi_1(b))$$
$$= (\varphi_2(\varphi_1(a)))(\varphi_2(\varphi_1(b))) = (\varphi_1 \circ \varphi_2)(a)(\varphi_1 \circ \varphi_2)(b)$$

所以: $\varphi_1 \bullet \varphi_2$ 是 G_1 到 G_3 的同态。

33. 证明循环群一定是阿贝尔群,说明阿贝尔群是否一定为循环群,并证明你的结论。

证明: 设 G 是循环群, 令 G=〈a〉, $\forall x, y \in G$, 令 $x = a^k$, $y = a^l$, 那么

$$xy = a^k a^l = a^{k+l} = a^{l+k} = a^l a^k = yx$$
, G 是阿贝尔群

克莱因四元群, $G = \{e, a, b, c\}$

是交换群, 但不是循环群, 因为 e 是一阶元, a,b,c 是二阶元。

36. 设 σ , τ 是5元置换,且

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{pmatrix}, \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 1 & 2 \end{pmatrix}$$

- (1) 计算 $\sigma\tau$, $\tau\sigma$, τ^{-1} , σ^{-1} , $\sigma^{-1}\tau\sigma$;
- (2)将 $\tau\sigma$, τ^{-1} , $\sigma^{-1}\tau\sigma$ 表成不交的轮换之积。
- (3)将(2)中的置换表示成对换之积,并说明哪些为奇置换,哪些为偶置换。

$$\mathbf{\widetilde{H}}: (1) \quad \tau \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 2 & 1 \end{pmatrix} \quad \sigma \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix} \quad \tau^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 2 & 3 \end{pmatrix}$$

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 3 & 4 \end{pmatrix} \quad \sigma^{-1} \tau \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 3 & 2 \end{pmatrix}$$

(2)
$$\tau \sigma = (1425)$$
 $\tau^{-1} = (14253)$ $\sigma^{-1} \tau \sigma = (143)(25)$
(3) $\tau \sigma = (14)(12)(15)$ 奇置换,

$$\tau^{-1} = (14)(12)(15)(13)$$
 偶置换

$$\sigma^{-1}\tau\sigma = (14)(13)(25)$$
 奇置换