



## Blinded Sample Size Re-estimation for Adaptive Enrichment Designs with Longitudinal Data

Roland Gerard Gera, Tim Friede

Department of Medical Statistics, University Medical Center Göttingen, Germany

Workshop: Adaptive Designs and Multiple Testing Procedures 29.04.2016 Padova, Italia

#### **Outline**



- Motivation
- ➤ Adaptive Enrichment Design
- Statistical Model
- ➤ Blinded Sample Size Re-estimation
- > Simulations
- > Discussion
- > References

#### **Motivation**





- One major goal in personalized/stratified medicine is the identification of subgroups (S)
- ➤ These subgroups might yield higher efficacy or provide a better safety profile
- ➤ A requirement for adaptive enrichment designs are identifiable subgroups within the population of interest (F) by e.g. genetic markers



### Adaptive Enrichment Design (AED)

- > Step 1: calculate sample size based on initial assumptions about nuisance parameters and recruit subjects from full-population
- Interim Analysis: based on a decision rule choose to...
  - ...continue study with...
    - ... full-population
    - ... sub-population (enrichment)
  - ...stop study for futility
  - ...based on collected data and a pre-defined selection rule
- Final analysis: test for efficacy using combination tests





### **Datatype**

> Repeated measurements



> In this setting: missingness based on MCAR dropouts

| Pat ID | Time           |       |       |       |                |       |
|--------|----------------|-------|-------|-------|----------------|-------|
|        | t <sub>0</sub> | $t_1$ | $t_2$ | $t_3$ | t <sub>4</sub> | $t_5$ |
| 1      | 2.4            | 2.8   | -     | -     | -              | -     |
| 2      | 2.6            | 2.8   | 3.0   | 3.3   | 3.5            | 3.6   |
| 3      | 2.8            | 3.1   | 3.1   | 3.2   | -              | -     |
| 4      | 2.5            | 2.8   | 2.9   | 3.1   | 3.3            | 3.4   |

#### Statistical Model



Estimation of linear trends for repeated measures

$$y_{ijk}^{\{G\}} = \beta_1^{\{G\}} + \beta_2^{\{G\}} \cdot j + \beta_3^{\{G\}} \cdot 1_{\{k = \text{Treat}\}} + \beta_4^{\{G\}} \cdot j \cdot 1_{\{k = \text{Treat}\}} + \epsilon_{ijk}^{\{G\}}$$

$$\operatorname{cor}(y_{ijk}, y_{ihk}) = \rho^{|j-h|}; \operatorname{cor}(y_{ijk}, y_{oj'k'}) = 0; \ \epsilon_{ijk} \sim N(0, \sigma^2)$$

$$i = 1, \dots, n; j = 0, \dots, t; \ k \in \{\text{Treat}; \text{Contr}\}; G \in \{F; S\}; N = 2 \cdot n$$

Possible hypotheses





 $\succ$  test null hypotheses  $H_0: \beta_4^{\{F\}} \le 0$  and  $H_0: \beta_4^{\{S\}} \le 0$  in a co-primary analysis, controlling the FWER using closed testing procedure [1]



#### **Construction of Test Statistics**

- Let **Σ** denote the covariance matrix of  $\sqrt{n}(\hat{\beta} \beta)$  with  $\Sigma(4,4) = Var(\hat{\beta}_4)^{[2,3,4]}$
- $\Sigma$  depends on model specific parameters:  $\sigma^{\{G\}^2}$ ,  $\rho$ , overall dropout, t
- $\triangleright$  Consider the normalized test statistics of  $\hat{\beta}_4$  for F and S

$$Z^{\{F\}} = \frac{\sqrt{N} \cdot \hat{\beta}_4^{\{F\}}}{\sqrt{\Sigma^{\{F\}}(4,4)}}, \qquad Z^{\{S\}} = \frac{\sqrt{N\tau} \cdot \hat{\beta}_4^{\{S\}}}{\sqrt{\Sigma^{\{S\}}(4,4)}}$$

Test intersection hypothesis assuming a bivariate normal distribution of  $(Z^{\{F\}}, Z^{\{S\}})^{'}$  [5]

$$F_{H_0} = \begin{pmatrix} Z^{\{F\}} \\ Z^{\{S\}} \end{pmatrix}^{H_0: \beta_4^{\{F \cap S\}}} \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \sqrt{\tau} \\ \sqrt{\tau} & 1 \end{pmatrix} \end{pmatrix}$$

<sup>[3]</sup> Jung and Ahn (2003)

<sup>[4]</sup> Wachtlin and Kieser (2013)



### Sample Size Estimation

ightharpoonup Distribution under  $H_1: \beta_4^{\{G\}} \ge 0$ 

$$F_{H_1} = \begin{pmatrix} Z^{\{F\}} \\ Z^{\{S\}} \end{pmatrix} \approx N \left( \begin{pmatrix} Z^F \\ Z^S \end{pmatrix} \middle| \begin{pmatrix} 1 & \sqrt{\tau} \\ \sqrt{\tau} & 1 \end{pmatrix} \right)$$

- ightharpoonup Let  $z_{\mathrm{crit}}$  denote the equicoordinated  $\left(1-\frac{\alpha}{2}\right)$  -quantile under  $H_0$
- $\triangleright$  Calculate required sample size iteratively based on  $F_{H_1}$  given  $z_{\text{crit}}$

$$N = \min\{n \mid 1 - F_{H_1}(z_{\text{crit}}) \ge Power\}$$





### AED combined with Blinded Sample Size Re-estimation





### Fixed Sample Size Design

| Simulations                                                             | 10,000 |
|-------------------------------------------------------------------------|--------|
| $\alpha$                                                                | 0.025  |
| Power                                                                   | 8.0    |
| $eta_4^{\{F\}} = eta_4^{\{S\}}$                                         | 0.1    |
| $\sigma_{F \setminus S}^{2^{	ext{init}}} = \sigma_{S}^{2^{	ext{init}}}$ | 3      |
| au                                                                      | 0.5    |
| Overall dropout <sub>init</sub>                                         | 0%     |
| $N_0$                                                                   | 744    |



> "The spirit behind **internal pilots** is simple: one uses patients in the pilot to alter the main study, but one does not discard those data from those patients. " <sup>[6]</sup>



#### Standard values for simulation studies

| Simulations                                                                   | 10,000                               |  |  |
|-------------------------------------------------------------------------------|--------------------------------------|--|--|
| $\alpha$                                                                      | 0.025                                |  |  |
| Power                                                                         | 0.8                                  |  |  |
| $ \beta_4^{\{F\}} = \beta_4^{\{S\}} $                                         | 0.1                                  |  |  |
| $\sigma_{F\backslash S}^{2^{\mathrm{init}}} = \sigma_{S}^{2^{\mathrm{init}}}$ | 3                                    |  |  |
| $\sigma_{E\backslash S}^{	ext{2true}}$                                        | 3                                    |  |  |
| $\sigma_{ m S}^{ m 2true}$                                                    | (2.0, 2.5, 3.0, 3.5, 4.0)            |  |  |
| τ                                                                             | 0.5                                  |  |  |
| Overall dropout <sub>init</sub>                                               | 0%                                   |  |  |
| Allocation ratio                                                              | 1:1                                  |  |  |
| BSSR at                                                                       | $0.4 \cdot N_0$                      |  |  |
| Interim at                                                                    | $\max(0.4 \cdot N_0, 0.5 \cdot N_1)$ |  |  |
| $N_0$                                                                         | 744                                  |  |  |



### Type-I-error rate





#### Combination of BSSR and AED











#### Discussion & Outlook

- Combination of adaptive enrichment designs and blinded samples size re-estimation provides flexible and robust designs
- Adaptive enrichment design controls type-I-error rate
- BSSR compensates for initially miss-specified nuisance parameters and dropouts in terms of power
- Further investigate and compare weighted-GEE and MI methods in MAR situations
- Extend sample size estimation for cases where sub-population was selected in interim



### For further reading

- Wittes J., Brittain E. (1990) The role of internal pilot studies in increasing the efficiency of clinical trials. Statistics in Medicine 9: 65–72.
- Liang K.Y., Zeger S.L.(1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13-22.
- Spiessens B., Debois M. (2010) Adjusted significance levels for subgroup analysis in clinical trials. Contemporary Clinical Trials 31:647–656
- Friede T., Parsons N., Stallard N (2012) A conditional error function approach for subgroup selection in adaptive clinical trials. Statistics in Medicine 31: 4309-4320
- Wachtlin D., Kieser M. (2013) Blinded Sample Size Recalculation in Longitudinal Clinical Trials Using Generalized Estimation Equations. Therapeutic Innovation & Regulatory Science 47(4): 460-467
- Jung S.-H., Ahn C. (2003) Sample size estimation for GEE method for comparing slopes in repeated measurements data. Statistics in Medicine 22:1305-1315
- Stallard N. et al. (2013) Adaptive Designs for Confirmatory Clinical Trials with Subgroup Selection. Journal of Biopharmaceutical Statistics



### For further reading

- ➤ Brannath W, Zuber E, Branson M, Bretz F, Gallo P, Posch M, Racine-Poon A (2009) Confirmatory adaptive designs with Bayesian decision tools for a targeted therapy in oncology. Statistics in Medicine 28:1445–1463
- Marcus R, Peritz E, Gabriel K. R. (1976) On closed testing procedures with special references to order analysis of variance. Biometrika 63(3):655-660



# Thank you for your attention!