VE320 – Summer 2023

Introduction to Semiconductor Devices

Instructor: Yaping Dan (但亚平)
yaping.dan@sjtu.edu.cn

Chapter 7 The pn Junction

Outline

- 7.0 Introduction to semiconductor devices
- 7.1 Basic structure of the pn junction
- 7.2 Zero applied bias
- 7.3 Reverse applied bias

7.0 Introduction to semiconductor devices

Light emitting diodes

Cold light source

Photodetector: CMOS image sensor

7.0 Introduction to semiconductor devices

Semiconductor lasers

Solar cells

Outline

7.0 Introduction to semiconductor devices

7.1 Basic structure of the pn junction

7.2 Zero applied bias

7.3 Reverse applied bias

7.1 Basic structure of pn junction

SiO₂
Al
n+
p-

7.1 Basic structure of pn junction

7.1 Basic structure of pn junction

Outline

7.1 Basic structure of the pn junction

7.2 Zero applied bias

7.3 Reverse applied bias

Built-in potential barrier

Built-in potential barrier

$$n_{n0} = n_i \exp\left(\frac{E_F - E_i}{kT}\right) = n_i \exp\left(\frac{q\Delta_1}{kT}\right)$$

$$p_{p0} = n_i \exp\left(\frac{E_i - E_F}{kT}\right) = n_i \exp\left(\frac{q\Delta_2}{kT}\right)$$

$$\Rightarrow V_{bi} = kT ln\left(\frac{n_{n0}}{n_i}\right) + kT ln\left(\frac{P_{p0}}{n_i}\right) = kT ln\left(\frac{n_{n0}P_{p0}}{n_i^2}\right) = kT ln\left(\frac{N_a N_d}{n_i^2}\right)$$

Example:
$$N_a = 10^{17} cm^{-3}$$
, $N_d = 10^{17} cm^{-3}$, $\Rightarrow V_{bi} = 0.026/q * \ln\left(\frac{10^{17} 10^{17}}{10^{20}}\right) = 0.84V$

Charge carrier distribution

$$n = n_i \exp\left(\frac{E_F - E_i(x)}{kT}\right) = N_d exp\left(-\frac{0.1eV}{0.026eV}\right) \approx \frac{N_d}{50}$$

$$p = n_i \exp\left(\frac{E_i(x) - E_F}{kT}\right) = N_a exp\left(-\frac{0.1eV}{0.026eV}\right) \approx \frac{N_a}{50}$$

$$\Delta_{1} - \Delta_{1}' = 0.1eV \qquad \Delta_{2} - \Delta_{2}' = 0.1eV$$

$$E_{r} = \frac{QV_{bi}}{\Delta_{1}' - \Delta_{2}' - \Delta_{2}' - \Delta_{2}'}$$

$$E_{r} = \frac{E_{c}}{E_{i}(x)}$$

Potential profile

Energy band diagram

Check your understanding

Problem Example #1

Two pieces of p-type silicon are in contact. The doping concentrations are 10¹⁶ cm⁻³ and 10¹⁸ cm⁻³. Calculate the built-in potential between these two pieces of silicon and plot the energy band bending diagram.

Poisson's equation

$$\frac{d^{2}V(x)}{dx^{2}} = -\frac{\rho(x)}{\varepsilon}
= -\frac{q}{\varepsilon} [N_{d}(x) - N_{a}(x) + p(x) - n(x)]
= -\frac{q}{\varepsilon} [N_{d}(x) - N_{a}(x) + n_{i} \exp(\frac{E_{i}(x) - E_{F}}{kT}) - n_{i} \exp(\frac{E_{F} - E_{i}(x)}{kT})]
= -\frac{q}{\varepsilon} [N_{d}(x) - N_{a}(x) + n_{i} \exp(\frac{-qV(x) - E_{F}}{kT}) - n_{i} \exp(\frac{E_{F} + qV(x)}{kT})]$$

Poisson's equation

$$\frac{d^2V(x)}{dx^2} = -\frac{\rho(x)}{\varepsilon}$$

$$= -\frac{q}{\varepsilon} [N_d(x) - N_a(x) + p(x) - n(x)]$$

$$= -\frac{q}{\varepsilon} [N_d(x)] \text{ is produced by } \left[e + \frac{1}{h} \left(\frac{E_i(x) - E_F}{kT} \right) - n_i \exp(\frac{E_F - E_i(x)}{kT}) \right]$$

$$= -\frac{q}{\varepsilon} [N_d(x)] \text{ is produced by } \left[e + \frac{1}{h} \left(\frac{-qV(x) - E_F}{kT} \right) - n_i \exp(\frac{E_F + qV(x)}{kT}) \right]$$

Poisson's equation

Third time approximation

$$\frac{d^2V(x)}{dx^2} = -\frac{\rho(x)}{\varepsilon}$$

$$= -\frac{q}{\varepsilon} [N_d(x) - N_a(x) + p(x) - n(x)]$$

$$= -\frac{q}{\varepsilon} [N_d(x) - N_a(x) + n_i \exp(\frac{E_i(x) - E_F}{kT}) - n_i \exp(\frac{E_F - E_i(x)}{kT})]$$

$$-x_n \le x \le x_p = -\frac{q}{\varepsilon} [N_d(x) - N_a(x) + n_i \exp(\frac{-qV(x) - E_F}{kT}) - n_i \exp(\frac{E_F + qV(x)}{kT})]$$

Depletion region

NO analytical solution Potential profile V_{bi} $\emptyset = 0$ -X_n $E_i(x)$

Poisson's equation

$$\frac{d^2V(x)}{dx^2} = -\frac{\rho(x)}{\varepsilon}$$

$$= -\frac{q}{\varepsilon} [N_d(x) - N_a(x) + p(x) - n(x)]$$

$$= -\frac{q}{\varepsilon} [N_d(x) - N_a(x) + n_i \exp(\frac{E_i(x) - E_F}{kT}) - n_i \exp(\frac{E_F - E_i(x)}{kT})]$$

$$-x_n \le x \le x_p$$

$$-\frac{q}{\varepsilon} [N_d(x) - N_a(x)] = \begin{cases} \frac{q}{\varepsilon} N_a & 0 \le x \le x_p \\ -\frac{q}{\varepsilon} N_d & -x_n \le x < 0 \end{cases}$$
Depletion region

Potential profile

$$\frac{d^2V(x)}{dx^2} = \begin{cases} \frac{q}{\varepsilon} N_a & 0 \le x \le x_p \\ -\frac{q}{\varepsilon} N_d & -x_p \le x < 0 \end{cases}$$

$$E = -\frac{dV(x)}{dx} = \begin{cases} -\frac{q}{\varepsilon} N_a \ x + A_1 & 0 \le x \le x_p \\ \frac{q}{\varepsilon} N_d \ x + A_2 & -x_n \le x < 0 \end{cases} \qquad E(x = x_p) = 0$$

Boundary condition:

$$E(x=x_p)=0$$

$$E(x=-x_n)=0$$

$$\frac{d^2V(x)}{dx^2} = \begin{cases} \frac{q}{\varepsilon} N_a & 0 \le x \le x_p \\ -\frac{q}{\varepsilon} N_d & -x_n \le x < 0 \end{cases}$$

$$E = -\frac{dV(x)}{dx} = \begin{cases} -\frac{q}{\varepsilon} N_a \ x + A_1 & 0 \le x \le x_p \\ \frac{q}{\varepsilon} N_d \ x + A_2 & -x_n \le x < 0 \end{cases} \qquad E(x = x_p) = 0$$

$$E = -\frac{dV(x)}{dx} = \begin{cases} -\frac{q}{\varepsilon} N_a \ x + \frac{q}{\varepsilon} N_a \ x_p & 0 \le x \le x_p \\ \frac{q}{\varepsilon} N_d \ x + \frac{q}{\varepsilon} N_d \ x_n & -x_n \le x < 0 \end{cases} \quad x = 0 \Rightarrow N_a \ x_p = N_d \ x_n$$

Boundary condition:

$$E(x=x_p)=0$$

$$E(x=-x_n)=0$$

$$x = 0 \Rightarrow N_a x_p = N_d x_n$$

$$E = -\frac{dV(x)}{dx} = \begin{cases} -\frac{q}{\varepsilon} N_a \ x + \frac{q}{\varepsilon} N_a \ x_p & 0 \le x \le x_p \\ \frac{q}{\varepsilon} N_d \ x + \frac{q}{\varepsilon} N_d \ x_n & -x_n \le x < 0 \end{cases}$$

$$V(x) = \begin{cases} \frac{q}{\varepsilon} N_a & (\frac{1}{2}x^2 - x_p x + C_1) & 0 \le x \le x_p \\ -\frac{q}{\varepsilon} N_d & (\frac{1}{2}x^2 + x_n x + C_2) & -x_n \le x < 0 \end{cases} \begin{vmatrix} V(x = x_p) = 0 \Rightarrow C_1 = \frac{x_p^2}{2} \\ V(x = 0) & \text{is continuous} \end{vmatrix}$$

$$V(x) = \begin{cases} \frac{q}{\varepsilon} N_a & (\frac{1}{2}x^2 - x_p x + \frac{x_p^2}{2}) & 0 \le x \le x_p \\ -\frac{q}{\varepsilon} N_d & (\frac{1}{2}x^2 + x_n x - \frac{N_a}{N_d} \frac{x_p^2}{2}) & -x_n \le x < 0 \end{cases}$$

$$V(x) = \begin{cases} \frac{q}{\varepsilon} N_a \left(\frac{1}{2} x^2 - x_p x + \frac{x_p^2}{2} \right) & 0 \le x \le x_p \\ -\frac{q}{\varepsilon} N_d \left(\frac{1}{2} x^2 + x_n x - \frac{N_a}{N_d} \frac{x_p^2}{2} \right) & -x_n \le x < 0 \end{cases}$$

$$x = 0 \Rightarrow N_d \ x_n = N_a \ x_p$$

$$x = 0 \Rightarrow N_d \ x_n = N_a \ x_p$$

$$V(x = x_n) = V_{bi} = \frac{kT}{q} ln(\frac{N_d \ N_a}{n_i^2})$$

$$V(x) = \begin{cases} \frac{q}{\varepsilon} N_a \ (\frac{1}{2}x^2 - x_p x + \frac{x_p^2}{2}) & 0 \le x \le x_p \\ -\frac{q}{\varepsilon} N_d \ (\frac{1}{2}x^2 + x_n x - \frac{N_a}{N_d} \frac{x_p^2}{2}) & -x_n \le x < 0 \end{cases}$$

$$\frac{q}{\varepsilon}N_d\left(\frac{1}{2}x_n^2 + \frac{N_a}{2N_d}x_p^2\right) = V_{bi}$$

$$x_{p} = \sqrt{\frac{2\varepsilon V_{bi}}{q} \frac{N_{d}}{N_{a}} \frac{1}{N_{a} + N_{d}}}$$

$$N_d x_n = N_a x_p \Rightarrow x_n = \sqrt{\frac{2\varepsilon V_{bi}}{q} \frac{N_a}{N_d} \frac{1}{N_a + N_d}}$$

$$x_p = \sqrt{\frac{2\varepsilon V_{bi}}{q} \frac{N_d}{N_a} \frac{1}{N_a + N_d}}$$

$$x_p = \sqrt{\frac{2\varepsilon V_{bi}}{q} \frac{N_d}{N_a} \frac{1}{N_a + N_d}} \qquad N_d \ x_n = N_a \ x_p \Rightarrow x_n = \sqrt{\frac{2\varepsilon V_{bi}}{q} \frac{N_a}{N_d} \frac{1}{N_a + N_d}}$$

$$x_p = \sqrt{\frac{2\varepsilon V_{bi}}{q} \frac{N_d}{N_a} \frac{1}{N_a + N_d}}$$

$$x_p = \sqrt{\frac{2\varepsilon V_{bi}}{q} \frac{N_d}{N_a} \frac{1}{N_a + N_d}} \qquad N_d \ x_n = N_a \ x_p \Rightarrow x_n = \sqrt{\frac{2\varepsilon V_{bi}}{q} \frac{N_a}{N_d} \frac{1}{N_a + N_d}}$$

$$E = -\frac{dV(x)}{dx} = \begin{cases} -\frac{q}{\varepsilon} N_a \ x + \frac{q}{\varepsilon} N_a \ x_p & 0 \le x \le x_p \\ \frac{q}{\varepsilon} N_d \ x + \frac{q}{\varepsilon} N_d \ x_n & -x_n \le x < 0 \end{cases}$$

Check your understanding

Problem Example #2

A silicon pn junction at T=300K with zero applied bias has doping concentration of $N_d = 5 \times 10^{16} \text{ cm}^{-3}$ and $N_a = 5 \times 10^{15} \text{ cm}^{-3}$. Determine x_n , x_p , W and $|E_{max}|$.

Outline

- 7.1 Basic structure of the pn junction
- 7.2 Zero applied bias
- 7.3 Reverse applied bias

Space charge width and electric field

$$V_{ ext{total}} = |oldsymbol{\phi}_{Fn}| + |oldsymbol{\phi}_{Fp}| + V_R$$

Space charge width and electric field

$$x_{p} = \sqrt{\frac{2\varepsilon(V_{bi} + V_{R})}{q} \frac{N_{d}}{N_{a}} \frac{1}{N_{a} + N_{d}}}$$

$$x_{p} = \sqrt{\frac{2\varepsilon(V_{bi} + V_{R})}{q} \frac{N_{d}}{N_{a}} \frac{1}{N_{a} + N_{d}}} \qquad N_{a}^{-} x_{n} = N_{d}^{+} x_{p} \Rightarrow x_{n} = \sqrt{\frac{2\varepsilon(V_{bi} + V_{R})}{q} \frac{N_{a}}{N_{d}} \frac{1}{N_{a} + N_{d}}}$$

$$W = \sqrt{\frac{2\varepsilon(V_{bi} + V_R)}{q} \frac{N_d + N_a}{N_a N_d}}$$

$$W = \sqrt{\frac{2\varepsilon(V_{bi} + V_R)}{q} \frac{N_d + N_a}{N_a N_d}}$$

$$E = -\frac{dV(x)}{dx} = \begin{cases} -\frac{q}{\varepsilon} N_a x + \frac{q}{\varepsilon} N_a x_p & 0 \le x \le x_p \\ \frac{q}{\varepsilon} N_d x + \frac{q}{\varepsilon} N_d x_n & -x_n \le x < 0 \end{cases}$$

$$E_{\text{max}} = \left\{ \frac{2e(V_{bi} + V_R)}{\epsilon_s} \left(\frac{N_a N_d}{N_a + N_d} \right) \right\}^{1/2} \qquad E_{\text{max}} = \frac{2(V_{bi} + V_R)}{W}$$

$$E_{\text{max}} = \frac{2(V_{bi} + V_R)}{W}$$

Junction capacitance

$$C' = \frac{dQ'}{dV_R}$$

$$dQ' = eN_d dx_n = eN_a dx_p$$

$$x_n = \left\{ \frac{2\epsilon_s(V_{bi} + V_R)}{e} \left[\frac{N_a}{N_d} \right] \left[\frac{1}{N_a + N_d} \right] \right\}^{1/2}$$

$$C' = \frac{dQ}{dV_{\rm R}}|_{V_{R} = V_{R_0}} = qN_{d}\frac{db}{dV_{R}}|_{V_{R} = V_{R_0}} = \sqrt{\frac{q\varepsilon}{2(V_{bi} + V_{R_0})} \frac{N_{d}N_{a}}{N_{a} + N_{d}}} = \frac{\varepsilon}{W}$$

Check your understanding

Problem Example #3

Consider a GaAs pn junction at T = 300K doped to N_a = 5 x 10¹⁵ cm⁻³ and N_d = 2 x 10¹⁶ cm⁻³. (a) Calculate V_{bi} . (b) Determine the junction capacitance C' for V_R =4V.

One-sided junction

$$W = \sqrt{\frac{2\varepsilon(V_{bi} + V_R)}{q} \frac{N_d + N_a}{N_a N_d}}$$

$$\int N_a \to \infty$$

$$W = \sqrt{\frac{2\varepsilon(V_{bi} + V_R)}{q}} \frac{1}{N_d} \approx x_n$$

$$C' = \frac{\varepsilon}{W} = \sqrt{\frac{q\varepsilon N_d}{2(V_{bi} + V_R)}}$$

One-sided junction

$$C' = \frac{\varepsilon}{W} = \sqrt{\frac{q\varepsilon N_d}{2(V_{bi} + V_R)}}$$

$$\frac{1}{C'^2} = \frac{2 (V_{bi} + V_R)}{q \varepsilon N_d}$$

Check your understanding

Problem Example #4

Control sample: Au is in contact with a uniform doped n-type Si substrate forming a device similar to pn junction.

SAMM-doped sample: Au is in contact with Si that is doped with SAMM

ARTICLE

DOI: 10.1038/s41467-017-02564-3

OPEN

Deep level transient spectroscopic investigation of phosphorus-doped silicon by self-assembled molecular monolayers

Xuejiao Gao 1, Bin Guan 1, Abdelmadjid Mesli², Kaixiang Chen & Yaping Dan 1

