Uebungsblatt 05

Truong (Hoang Tung Truong), Testfran (Minh Kien Nguyen), Hamdash

Aufgabe 1

a. $((a^+ + b^+ a^*)(b + bba^+)^*)$? b. $a^*(ba^* + bb^+ a)^*$ c. $(b^*ab^*ab^*ab^*ab^*ab^*)^*$

Aufgabe 2

a. Behauptung: L_1 ist nicht regulär, also

 $L_1 = \{a^m \mid m > 0 \text{ ist ein Quadratzahl }\}$ ist nicht durch einen determinitischen endlichen Automaten erkennbar.

- Angenommen, L_1 wäre regulär. Dann gäbe es ein k wie im Pumping Lemma. Jeder k-große $(|w| \ge k)$ Wort $w \in L_1$ hätte im k-vorderen Bereich $(|xy| \le k)$ ein nicht leeres Teilwort y, das sich "aufpumpen" lässt.
- Mit dem k von oben betrachten wir jetzt das Wort $w = (a^k)^k$
- 1. Es ist in L_1
- 2. Es ist k-gross $(|w| = k^2 \ge k)$
- Es musst im k-vorderen Bereich ein Teilwort geben, das sich aufpumpen lässt. Aber wenn wir einen nichtleeren Teil y aufpumpen bekommen wir ein neues Wort $w^{'}$, dessen Länge $|w^{'}|$ keine Quadratzahl ist.

Genauer zu sagen: $|w| = k^2$

Das näschste Wort mit der kleinsten Länge, die aber noch größer als k^2 ist, ist $w_0 = (a^{(k+1)})^{k+1}$ mit $|w_0| = (k+1)^2 = k^2 + 2k + 1$

Da $0 < |y| \le k$ gilt $|w'| = k^2 + |y| \le k^2 + k < k^2 + 2k + 1$, also $w' \notin L_1$. Widerspruch!

Es gibt daher keinen endlichen Automaten A mit $L_1 = L(A)$.

Daraus folgt: L_1 ist nicht regulär. \square

b.
$$L = \{a^n b^n | n \in \mathbb{N} \land n > 0\}$$

Äquivalenzklassen von $L_2 = \{a^n b^n | n \in \mathbb{N} \land n > 0\}$

- $[\epsilon] = {\epsilon}, [a] = {a}, [aa] = {aa}, ..., [a^k] = {a^k}(k \in \mathbb{N}), ...$
- $[ab] = \{ab, a^2b^2, \ldots\}, [a^2b] = \{a^2b, a^3b^2, a^4b^3, \ldots\}, [a^3b] = \{a^3b, a^4b^2, a^5b^3, \ldots\}, \ldots, [a^kb] = \{a^{k+i-1}b^i|i \ge 1\}(k \in \mathbb{N}), \ldots$
- $\Sigma^* L_2 = \{bx, a^n b^m, xbay \mid x, y \in \Sigma^* \land n, m \in \mathbb{N} \land m > n\}$ mit $\Sigma = \{a, b\}$, also diese Äquivalenzklasse enthält alle Wörte, die nicht in L_2 sind.

Aufgabe 3

a.

- Automat A hat keine nicht erreichbaren Zustände.
- $\Sigma_A=\{a,b\}, F=\{q_2,q_5,q_6\}, Q-F=\{q_0,q_1,q_3,q_4\}$ Wir beginnen damit, in der Tabelle die Paare zu markieren, bei denen einer in F ist und der andere

	q_0	q_1	q_2	q_3	q_4	q_5	q_6
q_0	\		X			X	X
q_1	\	/	X			X	X
q_2	\	/	/	X	X		
q_3	_	/	_	_		x	X
q_4	_			_	_	X	X
q_5							
q_6							

• Als nächstes wählen wir $e := a \in \Sigma_A$ und markieren alle (q_i, q_j) (i < j) für die $(\delta(q_i, e), \delta(q_j, e))$ schon markiert ist

	q_0	q_1	q_2	q_3	q_4	q_5	q_6
q_0	_		X			x	X
q_1	_	/	X			X	X
q_2	_	/	_	X	X	X	X
q_3	_	/	/	/		X	X
q_4	/	/	/	/	/	X	X
q_5	/	/	/	/	/	/	
q_6	_	_	_	_	_	_	/

• Wir wiederholen das gleiche mit e := b

	q_0	q_1	q_2	q_3	q_4	q_5	q_6
q_0	/	X	X		X	X	X
$\overline{q_1}$		_	X	X	X	X	X
q_2	_		_	X	X	X	X
q_3	_		_	_	X	X	X
q_4	_	_	_	_	_	X	X
q_5	_			_			X
q_6							

• Erneute Versuche mit e := a und e := b bringen eine neue Tabelle, in der alle Feldern markiert sind.

	q_0	q_1	q_2	q_3	q_4	q_5	q_6
q_0	_	X	X	X	X	X	X
q_1	/	/	X	X	X	X	X
q_2	/	/	/	X	X	X	X
q_3	/	/	/	/	X	X	X
q_4	/	/	/	/	/	X	X
q_5	/	/	/	/	/	/	X
q_6	_	_	_	_	_	_	_

• Die nicht markierten Position in der oberen tabelle zeigen, welche Zustände äquivalent sind (Es gibt aber keine). Hier bestehen die Äquivalenzklassen von \sim aus $\{q_0\}, \{q_1\}, \{q_2\}, \{q_3\}, \{q_4\}, \{q_5\}, \{q_6\}$. Das Automat A ist schon minimal.

b. Z.z. Der Minimalautomat A/\sim besitzt eine minimale Anzahl an Zuständen

- Sei L die Sprache, die der Automat A erkennt. Nach Nerode-Lemma, da A ein DFA ist, gibt es eine minimale endliche Menge von n Worten, die paarweise L-trennbar sind, und daraus folgt, jeder Automat, der L erkennt, hat mindesten n Zustände (inklusiv A/\sim)
- n ist aber auch die Anzahl der Äquivalenzklassen($|R_L|$ der Index der Sprache L) von L, denn diese n Worte sind paarweise L-trennbar. Zwei Worte $u, v \in \Sigma^*$ sind in derselben Äquivalenzklasse von L (u R_L v) bzgl. L-Trennbarkeit, genau dann wenn $\forall w \in \Sigma^* : (uw \in L \Leftrightarrow vw \in L)$
- Der Minimalautomat A/\sim wird als der Faktorautomat ohne die nicht erreichbaren Zustände $A/\sim:=(Q/\sim,\Sigma,\delta_\sim,[q_0]_\sim,F_\sim)$ mit $Q/\sim:=\{[q]_\sim\mid q\in Q\}$ aus $A=(Q,\Sigma,\delta,q_0,F)$ definiert, indem man verhaltensgleiche Zustände identifiziert. Da A/\sim auch L erkennt, und aus der Eigenschaft: in A/\sim sind je zwei verschiedene Zustände trennbar, muss es gelten: die Anzahl der Zuständen in A/\sim ist gleich der Anzahl der Äquivalenzklassen von L, also $|Q/\sim|=n$. D.h der Minimalautomat A/\sim besitzt eine minimale Anzahl an Zuständen.

Aufgabe 4

Z.z:
$$\forall w \in \Sigma^* : \delta_{A \times B}^*((p,q), w) = (\delta_A^*(p, w), \delta_B^*(q, w))$$

Induktionbeweis:

IA:
$$w = \epsilon$$

$$LHS=\delta_{A\times B}^*((p,q),\epsilon)=(p,q)$$
//Ausdehnung von δ auf Worte, 1. Fall in Definition von δ^*

$$RHS = (\delta_A^*(p,\epsilon), \delta_B^*(q,\epsilon)) = (p,q)$$
 // 1. Fall in Definition von δ^*

IV:
$$\forall u \in \Sigma^* : \delta_{A \times B}^*((p,q), u) = (\delta_A^*(p, u), \delta_B^*(q, u))$$

$$\textbf{IS} \text{: Z.z: } \forall a \in \Sigma, \forall u \in \Sigma^* \text{: } \delta^*_{A \times B}((p,q),a.u) = (\delta^*_A(p,a.u), \delta^*_B(q,a.u))$$

$$LHS = \delta_{A \times B}^*((p,q), a.u)$$

=
$$\delta_{A\times B}^*(\delta_{A\times B}((p,q),a),u)$$
 // 2. Fall in Definition von δ^*

=
$$\delta_{A\times B}^*((\delta_A(p,a),\delta_B(q,a)),u)$$
 // Definition von $\delta_{A\times B}((p,q),a)$ Folie 43 Kap 4

=
$$(\delta_A^*(\delta_A(p,a), u), (\delta_B^*(\delta_B(q,a), u) // \text{ IV})$$

$$=(\delta_A^*(p,a.u),\delta_B^*(p,a.u))$$
 // 2. Fall in Definition von δ^*

$$= RHS.$$

Also
$$\forall w \in \Sigma^* : \delta_{A \times B}^*((p,q),w) = (\delta_A^*(p,w),\delta_B^*(q,w))$$
 \square