SurvMeth 640 Assignment 2-Revised

Cheng, Chia Wen

2023-03-13

Setup

```
library(glmnet)
library(caret)
library(repr)
library(plyr)
library(readr)
library(dplyr)
library(ggplot2)
```

Data

For this exercise we use the Communities and Crime data from the UCI ML repository, which includes information about communities in the US. "The data combines socio-economic data from the 1990 US Census, law enforcement data from the 1990 US LEMAS survey, and crime data from the 1995 FBI UCR"

Source: https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime

First, some data prep.

```
crime <- read.csv("communities.data", header = FALSE, na.strings = "?")
varnames <- read.delim("communities.txt", header = FALSE)</pre>
```

Clean name vector and use as variable names.

```
varnames <- as.character(varnames$V1)
varnames <- gsub("@attribute ", "", varnames)
varnames <- gsub(" numeric", "", varnames)
varnames <- gsub(" string", "", varnames)
names(crime) <- varnames</pre>
```

To make things easier, drop columns with missing values.

```
crime <- crime[, colSums(is.na(crime)) == 0]</pre>
```

Check whats left.

str(crime)

```
1994 obs. of
                                  103 variables:
  'data.frame':
##
   $ state
                            : int
                                  8 53 24 34 42 6 44 6 21 29 ...
##
   $ communityname
                                  "Lakewoodcity" "Tukwilacity" "Aberdeentown" "Willingborotownship" ...
##
   $ fold
                                  1 1 1 1 1 1 1 1 1 1 ...
                            : int
##
                                  0.19 0 0 0.04 0.01 0.02 0.01 0.01 0.03 0.01 ...
   $ population
                            : num
                                  0.33 0.16 0.42 0.77 0.55 0.28 0.39 0.74 0.34 0.4 ...
##
   $ householdsize
                            : num
##
                                  0.02 0.12 0.49 1 0.02 0.06 0 0.03 0.2 0.06 ...
   $ racepctblack
                            : num
                                  0.9 0.74 0.56 0.08 0.95 0.54 0.98 0.46 0.84 0.87 ...
   $ racePctWhite
                           : num
##
   $ racePctAsian
                                  0.12 0.45 0.17 0.12 0.09 1 0.06 0.2 0.02 0.3 ...
                            : num
                                  0.17 0.07 0.04 0.1 0.05 0.25 0.02 1 0 0.03 ...
##
   $ racePctHisp
                           : num
##
   $ agePct12t21
                            : num
                                  0.34 0.26 0.39 0.51 0.38 0.31 0.3 0.52 0.38 0.9 ...
   $ agePct12t29
                            : num
                                  0.47 0.59 0.47 0.5 0.38 0.48 0.37 0.55 0.45 0.82 ...
##
   $ agePct16t24
                            : num
                                  0.29 0.35 0.28 0.34 0.23 0.27 0.23 0.36 0.28 0.8 ...
##
   $ agePct65up
                                  0.32\ 0.27\ 0.32\ 0.21\ 0.36\ 0.37\ 0.6\ 0.35\ 0.48\ 0.39\ \dots
                           : num
##
                                  0.2 0.02 0 0.06 0.02 0.04 0.02 0 0.04 0.02 ...
   $ numbUrban
                           : num
##
   $ pctUrban
                                  1 1 0 1 0.9 1 0.81 0 1 1 ...
                           : num
                                  0.37 0.31 0.3 0.58 0.5 0.52 0.42 0.16 0.17 0.54 ...
##
   $ medIncome
                           : num
##
   $ pctWWage
                           : num
                                  0.72 0.72 0.58 0.89 0.72 0.68 0.5 0.44 0.47 0.59 ...
##
   $ pctWFarmSelf
                                  0.34 0.11 0.19 0.21 0.16 0.2 0.23 1 0.36 0.22 ...
                           : num
##
                                   \hbox{0.6 0.45 0.39 0.43 0.68 0.61 0.68 0.23 0.34 0.86 } \dots \\
   $ pctWInvInc
                           : num
##
   $ pctWSocSec
                                  0.29 0.25 0.38 0.36 0.44 0.28 0.61 0.53 0.55 0.42 ...
                           : num
##
   $ pctWPubAsst
                                  0.15 0.29 0.4 0.2 0.11 0.15 0.21 0.97 0.48 0.02 ...
                           : num
##
   $ pctWRetire
                           : num
                                  0.43 0.39 0.84 0.82 0.71 0.25 0.54 0.41 0.43 0.31 ...
##
   $ medFamInc
                                  0.39 0.29 0.28 0.51 0.46 0.62 0.43 0.15 0.21 0.85 ...
                           : num
   $ perCapInc
                                  0.4 0.37 0.27 0.36 0.43 0.72 0.47 0.1 0.23 0.89 ...
##
                           : num
##
   $ whitePerCap
                                  0.39 0.38 0.29 0.4 0.41 0.76 0.44 0.12 0.23 0.94 ...
                            : num
                                  0.32 0.33 0.27 0.39 0.28 0.77 0.4 0.08 0.19 0.11 ...
   $ blackPerCap
                           : num
                                  0.27 0.16 0.07 0.16 0 0.28 0.24 0.17 0.1 0.09 ...
##
   $ indianPerCap
                           : num
##
   $ AsianPerCap
                           : num
                                  0.27 0.3 0.29 0.25 0.74 0.52 0.86 0.27 0.26 0.33 ...
##
   $ HispPerCap
                                  0.41 0.35 0.39 0.44 0.48 0.6 0.36 0.21 0.22 0.8 ...
                           : num
##
   $ NumUnderPov
                                  0.08 0.01 0.01 0.01 0 0.01 0.01 0.03 0.04 0 ...
                           : num
##
   $ PctPopUnderPov
                           : num
                                  0.19 0.24 0.27 0.1 0.06 0.12 0.11 0.64 0.45 0.11 ...
##
   $ PctLess9thGrade
                                  0.1 0.14 0.27 0.09 0.25 0.13 0.29 0.96 0.52 0.04 ...
                           : num
##
  $ PctNotHSGrad
                           : num
                                  0.18 0.24 0.43 0.25 0.3 0.12 0.41 0.82 0.59 0.03 ...
##
   $ PctBSorMore
                           : num
                                  0.48 0.3 0.19 0.31 0.33 0.8 0.36 0.12 0.17 1 ...
##
   $ PctUnemployed
                                  0.27 0.27 0.36 0.33 0.12 0.1 0.28 1 0.55 0.11 ...
                           : num
##
   $ PctEmploy
                                  0.68 0.73 0.58 0.71 0.65 0.65 0.54 0.26 0.43 0.44 ...
                           : num
##
   $ PctEmplManu
                                  0.23 0.57 0.32 0.36 0.67 0.19 0.44 0.43 0.59 0.2 ...
                           : num
##
   $ PctEmplProfServ
                                  0.41 0.15 0.29 0.45 0.38 0.77 0.53 0.34 0.36 1 ...
                            : num
##
   $ PctOccupManu
                                  0.25 0.42 0.49 0.37 0.42 0.06 0.33 0.71 0.64 0.02 ...
                           : num
##
   $ PctOccupMgmtProf
                                  0.52 0.36 0.32 0.39 0.46 0.91 0.49 0.18 0.29 0.96 ...
                            : num
                                  0.68 1 0.63 0.34 0.22 0.49 0.25 0.38 0.62 0.3 ...
   $ MalePctDivorce
                            : num
   $ MalePctNevMarr
                                  0.4 0.63 0.41 0.45 0.27 0.57 0.34 0.47 0.26 0.85 ...
##
                            : num
                                  0.75 0.91 0.71 0.49 0.2 0.61 0.28 0.59 0.66 0.39 ...
##
   $ FemalePctDiv
                           : num
##
   $ TotalPctDiv
                                 0.75 1 0.7 0.44 0.21 0.58 0.28 0.52 0.67 0.36 ...
                            : num
   $ PersPerFam
                            : num
                                  0.35 0.29 0.45 0.75 0.51 0.44 0.42 0.78 0.37 0.31 ...
   $ PctFam2Par
                                  0.55 0.43 0.42 0.65 0.91 0.62 0.77 0.45 0.51 0.65 ...
##
                            : num
   $ PctKids2Par
##
                                 0.59 0.47 0.44 0.54 0.91 0.69 0.81 0.43 0.55 0.73 ...
                           : num
                                  0.61 0.6 0.43 0.83 0.89 0.87 0.79 0.34 0.58 0.78 ...
##
   $ PctYoungKids2Par
                            : num
##
   $ PctTeen2Par
                           : num 0.56 0.39 0.43 0.65 0.85 0.53 0.74 0.34 0.47 0.67 ...
   $ PctWorkMomYoungKids : num 0.74 0.46 0.71 0.85 0.4 0.3 0.57 0.29 0.65 0.72 ...
```

```
0.76 0.53 0.67 0.86 0.6 0.43 0.62 0.27 0.64 0.71 ...
   $ PctWorkMom
##
   $ NumIlleg
                                  0.04 0 0.01 0.03 0 0 0 0.02 0.02 0 ...
                           : num
##
   $ PctIlleg
                           : num
                                  0.14 0.24 0.46 0.33 0.06 0.11 0.13 0.5 0.29 0.07 ...
                                  0.03 0.01 0 0.02 0 0.04 0.01 0.02 0 0.01 ...
##
   $ NumImmig
                           : num
##
   $ PctImmigRecent
                           : num
                                  0.24 0.52 0.07 0.11 0.03 0.3 0 0.5 0.12 0.41 ...
##
                                  0.27 0.62 0.06 0.2 0.07 0.35 0.02 0.59 0.09 0.44 ...
   $ PctImmigRec5
                           : num
                                  0.37 0.64 0.15 0.3 0.2 0.43 0.02 0.65 0.07 0.52 ...
   $ PctImmigRec8
                           : num
                                  0.39 0.63 0.19 0.31 0.27 0.47 0.1 0.59 0.13 0.48 ...
##
   $ PctImmigRec10
                           : num
##
   $ PctRecentImmig
                           : num
                                  0.07 0.25 0.02 0.05 0.01 0.5 0 0.69 0 0.22 ...
##
   $ PctRecImmig5
                           : num
                                  0.07 0.27 0.02 0.08 0.02 0.5 0.01 0.72 0 0.21 ...
   $ PctRecImmig8
                                  0.08 0.25 0.04 0.11 0.04 0.56 0.01 0.71 0 0.22 ...
                           : num
##
                                  0.08 0.23 0.05 0.11 0.05 0.57 0.03 0.6 0 0.19 ...
   $ PctRecImmig10
                           : num
##
   $ PctSpeakEnglOnly
                                  0.89 0.84 0.88 0.81 0.88 0.45 0.73 0.12 0.99 0.85 ...
                           : num
##
   $ PctNotSpeakEnglWell
                           : num
                                  0.06 0.1 0.04 0.08 0.05 0.28 0.05 0.93 0.01 0.03 ...
##
    $ PctLargHouseFam
                                  0.14 0.16 0.2 0.56 0.16 0.25 0.12 0.74 0.12 0.09 ...
                           : num
##
    $ PctLargHouseOccup
                           : num
                                  0.13 0.1 0.2 0.62 0.19 0.19 0.13 0.75 0.12 0.06 ...
##
                                  0.33 0.17 0.46 0.85 0.59 0.29 0.42 0.8 0.35 0.15 ...
   $ PersPerOccupHous
                           : num
##
   $ PersPerOwnOccHous
                                  0.39 0.29 0.52 0.77 0.6 0.53 0.54 0.68 0.38 0.34 ...
                           : num
                                  0.28 0.17 0.43 1 0.37 0.18 0.24 0.92 0.33 0.05 ...
##
   $ PersPerRentOccHous
                           : num
##
   $ PctPersOwnOccup
                           : num
                                  0.55 0.26 0.42 0.94 0.89 0.39 0.65 0.39 0.5 0.48 ...
##
   $ PctPersDenseHous
                           : num
                                  0.09 0.2 0.15 0.12 0.02 0.26 0.03 0.89 0.1 0.03 ...
##
   $ PctHousLess3BR
                                  0.51 0.82 0.51 0.01 0.19 0.73 0.46 0.66 0.64 0.58 ...
                           : num
   $ MedNumBR
##
                                  0.5 0 0.5 0.5 0.5 0 0.5 0 0 0 ...
                           : num
   $ HousVacant
                                  ##
                           : num
                                  0.71 0.79 0.86 0.97 0.89 0.84 0.89 0.91 0.72 0.72 ...
##
   $ PctHousOccup
                           : num
   $ PctHousOwnOcc
                           : num
                                  0.52 0.24 0.41 0.96 0.87 0.3 0.57 0.46 0.49 0.38 ...
##
   $ PctVacantBoarded
                                  0.05 0.02 0.29 0.6 0.04 0.16 0.09 0.22 0.05 0.07 ...
                           : num
   $ PctVacMore6Mos
                                  0.26 0.25 0.3 0.47 0.55 0.28 0.49 0.37 0.49 0.47 ...
                           : num
##
   $ MedYrHousBuilt
                                  0.65 0.65 0.52 0.52 0.73 0.25 0.38 0.6 0.5 0.04 ...
                           : num
   $ PctHousNoPhone
                                  0.14 0.16 0.47 0.11 0.05 0.02 0.05 0.28 0.57 0.01 ...
                           : num
##
   $ PctWOFullPlumb
                           : num
                                  0.06 0 0.45 0.11 0.14 0.05 0.05 0.23 0.22 0 ...
##
   $ OwnOccLowQuart
                           : num
                                  0.22 0.21 0.18 0.24 0.31 0.94 0.37 0.15 0.07 0.63 ...
##
   $ OwnOccMedVal
                                  0.19 0.2 0.17 0.21 0.31 1 0.38 0.13 0.07 0.71 ...
                           : num
   $ OwnOccHiQuart
##
                                  0.18 0.21 0.16 0.19 0.3 1 0.39 0.13 0.08 0.79 ...
                           : num
##
   $ RentLowQ
                                  0.36 0.42 0.27 0.75 0.4 0.67 0.26 0.21 0.14 0.44 ...
                           : num
   $ RentMedian
##
                                  0.35 0.38 0.29 0.7 0.36 0.63 0.35 0.24 0.17 0.42 ...
                           : num
##
   $ RentHighQ
                           : num
                                  0.38 0.4 0.27 0.77 0.38 0.68 0.42 0.25 0.16 0.47 ...
##
   $ MedRent
                                  0.34 0.37 0.31 0.89 0.38 0.62 0.35 0.24 0.15 0.41 ...
                           : num
##
   $ MedRentPctHousInc
                                  0.38 0.29 0.48 0.63 0.22 0.47 0.46 0.64 0.38 0.23 ...
                           : num
##
                                  0.46 0.32 0.39 0.51 0.51 0.59 0.44 0.59 0.13 0.27 ...
   $ MedOwnCostPctInc
                           : num
                                  0.25 0.18 0.28 0.47 0.21 0.11 0.31 0.28 0.36 0.28 ...
   $ MedOwnCostPctIncNoMtg: num
##
   $ NumInShelters
                                  0.04 0 0 0 0 0 0 0 0.01 0 ...
                           : num
##
   $ NumStreet
                           : num
                                  0 0 0 0 0 0 0 0 0 0 ...
##
   $ PctForeignBorn
                                  0.12 0.21 0.14 0.19 0.11 0.7 0.15 0.59 0.01 0.22 ...
                           : num
                                  0.42 0.5 0.49 0.3 0.72 0.42 0.81 0.58 0.78 0.42 ...
   $ PctBornSameState
                           : num
##
   $ PctSameHouse85
                                  0.5\ 0.34\ 0.54\ 0.73\ 0.64\ 0.49\ 0.77\ 0.52\ 0.48\ 0.34\ \dots
                           : num
##
    $ PctSameCity85
                           : num
                                  0.51 0.6 0.67 0.64 0.61 0.73 0.91 0.79 0.79 0.23 ...
##
                                  0.64 0.52 0.56 0.65 0.53 0.64 0.84 0.78 0.75 0.09 ...
   $ PctSameState85
##
   $ LandArea
                             num
                                  0.12 0.02 0.01 0.02 0.04 0.01 0.05 0.01 0.04 0 ...
##
     [list output truncated]
```

Train and test set

Next, we want to split the data into a training (75%) and a test (25%) part. This can be done by random sampling with sample. Note that there is a fold variable in the data set, but here we want to follow our own train/test procedure.

```
set.seed(3940)

train <- sample(1:nrow(crime), 0.75*nrow(crime))
crime_train <- crime[train,]
crime_test <- crime[-train,]</pre>
```

Now, prepare the training data for running regularized regression models via glmnet. Our prediction outcome is ViolentCrimesPerPop. As X, use all variables except state, communityname, and fold.

```
# Regularized Regression
X <- model.matrix(ViolentCrimesPerPop ~ . - state - communityname - fold, data = crime_train)[, -1]
y <- crime_train$ViolentCrimesPerPop</pre>
```

Check whether X looks ok.

```
dim(X) # 1495; 99
```

```
## [1] 1495 99
```

Lasso

Estimate a sequence of Lasso models using glmnet. You can stick with the defaults for choosing a range of lambdas.

```
mod_lasso <- glmnet(X, y, alpha = 1)</pre>
```

Here we want to display lambda and the coefficients of the first Lasso model.

```
mod_lasso$lambda[1]
```

```
## [1] 0.173677
```

```
mod_lasso$beta[,1]
```

##	population	householdsize	racepctblack
##	0	0	0
##	${\tt racePctWhite}$	racePctAsian	${\tt racePctHisp}$
##	0	0	0
##	agePct12t21	agePct12t29	agePct16t24
##	0	0	0
##	agePct65up	numbUrban	pctUrban
##	0	0	0
##	medIncome	pctWWage	${ t pctWFarmSelf}$

	•	•	•
##	0	0	0
##	pctWInvInc	pctWSocSec	pctWPubAsst
##	0	0	0
##	pctWRetire	medFamInc	perCapInc
##	0	0	0
##	whitePerCap	blackPerCap	indianPerCap
##	0	0	0
##	AsianPerCap	HispPerCap	NumUnderPov
##	0	0	0
##	PctPopUnderPov	PctLess9thGrade	PctNotHSGrad
##	0	0	0
##	PctBSorMore	PctUnemployed	PctEmploy
##	0	0	0
##	PctEmplManu	PctEmplProfServ	PctOccupManu
##	0	0	0
##	PctOccupMgmtProf	MalePctDivorce	MalePctNevMarr
##	0	0	0
##	FemalePctDiv	TotalPctDiv	PersPerFam
##	0	0	0
##	PctFam2Par	PctKids2Par	PctYoungKids2Par
##	0	0	0
##	PctTeen2Par	PctWorkMomYoungKids	PctWorkMom
##	0	0	0
##	NumIlleg	PctIlleg	NumImmig
##	0	0	0
##	${\tt PctImmigRecent}$	PctImmigRec5	PctImmigRec8
##	0	0	0
##	PctImmigRec10	PctRecentImmig	PctRecImmig5
##	0	0	0
##	PctRecImmig8	PctRecImmig10	PctSpeakEnglOnly
##	0	0	0
##	${\tt PctNotSpeakEnglWell}$	${\tt PctLargHouseFam}$	PctLargHouseOccup
##	0	0	0
##	PersPerOccupHous	PersPerOwnOccHous	PersPerRentOccHous
##	0	0	0
##	PctPersOwnOccup	PctPersDenseHous	PctHousLess3BR
##	0	0	0
##	${\tt MedNumBR}$	HousVacant	PctHousOccup
##	0	0	0
##	PctHousOwnOcc	PctVacantBoarded	PctVacMore6Mos
##	0	0	0
##	MedYrHousBuilt	PctHousNoPhone	PctWOFullPlumb
##	0	0	0
##	OwnOccLowQuart	OwnOccMedVal	OwnOccHiQuart
##	0	0	0
##	$\mathtt{RentLowQ}$	RentMedian	RentHighQ
##	0	0	0
##	MedRent	${ t MedRentPctHousInc}$	MedOwnCostPctInc
##	0	0	0
##	MedOwnCostPctIncNoMtg	NumInShelters	NumStreet
##	0	0	0
##	PctForeignBorn	PctBornSameState	PctSameHouse85
##	0	0	0
##	PctSameCity85	PctSameState85	LandArea

##	0	0	0
##	PopDens	${\tt PctUsePubTrans}$	${\tt LemasPctOfficDrugUn}$
##	0	0	0

Same for the last Lasso model.

mod_lasso\$lambda[ncol(mod_lasso\$beta)]

[1] 7.694969e-05

mod_lasso\$beta[,ncol(mod_lasso\$beta)]

##	population	householdsize	racepctblack
##	0.000000000	-0.0467119436	0.1405420386
##	racePctWhite	racePctAsian	racePctHisp
##	-0.0784110189	0.0033650951	0.0377839699
##	agePct12t21	agePct12t29	agePct16t24
##	0.0547096664	-0.2420116460	-0.0794665694
##	agePct65up	numbUrban	pctUrban
##	0.0734592372	-0.1057359055	0.0462646090
##	medIncome	pctWWage	pctWFarmSelf
##	-0.1068622443	-0.2727411674	0.0361572030
##	pctWInvInc	pctWSocSec	pctWPubAsst
##	-0.1206884786	0.000000000	-0.0457339641
##	pctWRetire	${\tt medFamInc}$	perCapInc
##	-0.0987426653	0.1883069483	0.000000000
##	${ t whitePerCap}$	blackPerCap	indianPerCap
##	-0.2237584263	-0.0085220184	-0.0269119338
##	${\tt AsianPerCap}$	HispPerCap	NumUnderPov
##	0.0109334338	0.0715714495	-0.0387939791
##	${\tt PctPopUnderPov}$	PctLess9thGrade	PctNotHSGrad
##	-0.1885192255	-0.1390510982	0.1619277742
##	${ t PctBSorMore}$	${\tt PctUnemployed}$	PctEmploy
##	0.0841713604	0.000000000	0.2321456493
##	${\tt PctEmplManu}$	${\tt PctEmplProfServ}$	PctOccupManu
##	-0.0747049577	-0.0158531222	0.0783355017
##	${ t PctOccupMgmtProf}$	${ t MalePctDivorce}$	${ t MalePctNevMarr}$
##	0.0835359850	0.3437189719	0.2186017045
##	${\tt FemalePctDiv}$	${ t TotalPctDiv}$	PersPerFam
##	0.000000000	-0.3410677185	-0.0232508743
##	PctFam2Par	PctKids2Par	PctYoungKids2Par
##	-0.0304917818	-0.3636826150	0.0011372497
##	PctTeen2Par	PctWorkMomYoungKids	PctWorkMom
##	-0.0056646002	0.0456618960	-0.1759819996
##	NumIlleg	PctIlleg	NumImmig
##	-0.0354110249	0.1521929130	-0.1364410471
##	${\tt PctImmigRecent}$	PctImmigRec5	PctImmigRec8
##	0.0318542348	-0.0156197365	-0.0011773428
##	PctImmigRec10	PctRecentImmig	PctRecImmig5
##	0.0004034034	-0.0317792184	0.000000000
##	PctRecImmig8	PctRecImmig10	PctSpeakEnglOnly
##	0.0228000793	0.000000000	-0.0194631398
##	PctNotSpeakEnglWell	${\tt PctLargHouseFam}$	PctLargHouseOccup

##	-0.1057176919	-0.1438440982	0.000000000
##	PersPerOccupHous	PersPerOwnOccHous	PersPerRentOccHous
##	0.6418167155	-0.1458678685	-0.1602083407
##	PctPersOwnOccup	PctPersDenseHous	PctHousLess3BR
##	-0.3014884104	0.1766640078	0.0889800426
##	MedNumBR	HousVacant	PctHousOccup
##	0.0021261371	0.2634342568	-0.0462776596
##	PctHousOwnOcc	PctVacantBoarded	PctVacMore6Mos
##	0.1578368435	0.0296965895	-0.0629292133
##	${ t MedYrHousBuilt}$	PctHousNoPhone	PctWOFullPlumb
##	-0.0240986976	0.0248413661	-0.0153998620
##	${\tt OwnOccLowQuart}$	OwnOccMedVal	${\tt OwnOccHiQuart}$
##	-0.1145319372	0.000000000	0.0710877960
##	${\tt RentLowQ}$	RentMedian	${\tt RentHighQ}$
##	-0.2191923978	0.000000000	-0.0063219422
##	MedRent	${\tt MedRentPctHousInc}$	${\tt MedOwnCostPctInc}$
##	0.2636057732	0.0485788475	-0.0604851199
##	${\tt MedOwnCostPctIncNoMtg}$	${\tt NumInShelters}$	NumStreet
##	-0.0824573364	0.0594862269	0.2214652393
##	${\tt PctForeignBorn}$	${\tt PctBornSameState}$	PctSameHouse85
##	0.0747635213	0.0037892268	-0.0423618597
##	PctSameCity85	PctSameState85	LandArea
##	0.0072765065	0.0455436207	-0.0176181733
##	PopDens	PctUsePubTrans	${\tt LemasPctOfficDrugUn}$
##	-0.0321320775	-0.0601713493	0.0376963355

Now, plot the coefficient paths.

```
plot(mod_lasso, label=T, xvar = "lambda")
```


Next, we need to decide which Lasso model to pick for prediction. Use Cross-Validation for this purpose.

And plot the Cross-validation results.

plot(mod_cv)

In your own words, briefly describe the CV plot. (1) What is plotted here, (2) what can you infer about the relation between the number of variables and prediction accuracy?

We are looking for the amount of penalty, λ , by cross-validation. The CV plot is resulted from (repeated) K-fold cross-validation. It plots the cross-validation curve and the upper and lower standard deviation curves as a function of the λ values used.

In this CV plot, the numbers across the top of it decrease as λ increases. This indicates the numbers of non-zero coefficients at each λ . The y-axis is mean-square error, which tells us how much error happens across all the tested values. The lower it is, the better the predictive accuracy of our model. The verticle dotted lines are the values of λ with minimum MSE, and 1-standard-error away from the minimum λ , which uses less coefficients and is not too far away from the best predictive model. We would like an optimal λ that gives us the least error in prediction.

From this cross-validation plot, we see that a full model with all features may not lead to the best model in terms of prediction performance. And thus the selection will be based on further examination.

end

Now, store the lambda value of the model with the smallest CV error as bestlam1.

coef(mod_cv, s = "lambda.min")

```
## 100 x 1 sparse Matrix of class "dgCMatrix"
                                 s1
## (Intercept)
                      0.5761237089
## population
                      -0.0463935587
## householdsize
## racepctblack
                      0.1122987422
## racePctWhite
                       -0.0769206090
## racePctAsian
## racePctHisp
## agePct12t21
                       -0.1331217266
## agePct12t29
## agePct16t24
## agePct65up
                       0.0415925212
## numbUrban
## pctUrban
                      0.0374199639
## medIncome
## pctWWage
                     -0.1234524257
## pctWFarmSelf
                      0.0108349501
## pctWInvInc
                      -0.0798595942
## pctWSocSec
## pctWPubAsst
                      -0.0001217331
## pctWRetire
                      -0.0851883413
## medFamInc
## perCapInc
                     -0.0246831075
## whitePerCap
## blackPerCap
                     -0.0205006621
## indianPerCap
## AsianPerCap
                      0.0090574630
## HispPerCap
                      0.0544635459
                    -0.0154561265
## NumUnderPov
## PctPopUnderPov
                     -0.1205616310
## PctLess9thGrade
                      -0.0137631006
## PctNotHSGrad
## PctBSorMore
## PctUnemployed
                   -0.0188906868
## PctEmploy
                      0.0793996251
## PctEmplManu
                      -0.0279877994
## PctEmplProfServ
## PctOccupManu
                       0.0120857630
## PctOccupMgmtProf
## MalePctDivorce
                       0.1028742830
## MalePctNevMarr
                        0.0793974927
## FemalePctDiv
                       -0.0600825339
## TotalPctDiv
## PersPerFam
## PctFam2Par
## PctKids2Par
                      -0.3281005407
## PctYoungKids2Par
## PctTeen2Par
## PctWorkMomYoungKids
## PctWorkMom
              -0.1018552897
```

```
## PctIlleg
                        0.1929311510
## NumImmig
                        -0.1254243135
## PctImmigRecent
                         0.0021537391
## PctImmigRec5
## PctImmigRec8
## PctImmigRec10
## PctRecentImmig
## PctRecImmig5
## PctRecImmig8
## PctRecImmig10
## PctSpeakEnglOnly
## PctNotSpeakEnglWell
## PctLargHouseFam
                        -0.0191730165
## PctLargHouseOccup
## PersPerOccupHous
                         0.1327899132
## PersPerOwnOccHous
## PersPerRentOccHous
## PctPersOwnOccup
                        -0.0452059194
## PctPersDenseHous
                         0.1046996609
## PctHousLess3BR
                        0.0496753648
## MedNumBR
                       -0.0084225528
## HousVacant
                        0.1870282212
## PctHousOccup
                        -0.0601281059
## PctHousOwnOcc
## PctVacantBoarded
                        0.0206533004
## PctVacMore6Mos
                        -0.0336155725
## MedYrHousBuilt
                       -0.0100651303
## PctHousNoPhone
                        0.0185578354
## PctWOFullPlumb
                        -0.0050402768
## OwnOccLowQuart
## OwnOccMedVal
## OwnOccHiQuart
## RentLowQ
                        -0.1461080051
## RentMedian
## RentHighQ
## MedRent
                        0.1454834738
## MedRentPctHousInc
                        0.0527676913
## MedOwnCostPctInc -0.0252975151
## MedOwnCostPctIncNoMtg -0.0814868980
## NumInShelters
## NumStreet
                         0.2079504206
## PctForeignBorn
                         0.0072449166
## PctBornSameState
## PctSameHouse85
## PctSameCity85
                         0.0052332875
## PctSameState85
                         0.0158747779
## LandArea
## PopDens
                        -0.0071951375
## PctUsePubTrans
                        -0.0318339905
## LemasPctOfficDrugUn
                         0.0308895305
bestlam1 <- mod_cv$lambda.min</pre>
bestlam1
```

NumIlleg

[1] 0.000787604

Create bestlam2 as the lambda according to the 1-standard error rule.

```
coef(mod_cv, s = "lambda.1se")
```

```
## 100 x 1 sparse Matrix of class "dgCMatrix"
##
                                 s1
## S1
## (Intercept) 0.49770740
## population
## householdsize
## racepctblack
                    -0.16688548
## racePctWhite
## racePctAsian
## racePctHisp
## agePct12t21
## agePct12t29
## agePct16t24
## agePct65up
## numbUrban
## pctUrban
                        0.01010712
## medIncome
## pctWWage
## pctWFarmSelf
## pctWInvInc
## pctWSocSec
## pctWPubAsst
## pctWRetire
## medFamInc
## perCapInc
## whitePerCap
## blackPerCap
## indianPerCap
## AsianPerCap
## HispPerCap
## NumUnderPov
## PctPopUnderPov
## PctLess9thGrade
## PctNotHSGrad
## PctBSorMore
## PctUnemployed
## PctEmploy
## PctEmplManu
## PctEmplProfServ
## PctOccupManu
## PctOccupMgmtProf
## MalePctDivorce
                         0.04890553
## MalePctNevMarr
## FemalePctDiv
## TotalPctDiv
## PersPerFam
## PctFam2Par
## PctKids2Par -0.34473856
```

```
## PctYoungKids2Par
## PctTeen2Par
## PctWorkMomYoungKids
## PctWorkMom -0.02009211
## NumIlleg
## PctIlleg
                        0.18965431
## NumImmig
## PctImmigRecent
## PctImmigRec5
## PctImmigRec8
## PctImmigRec10
## PctRecentImmig
## PctRecImmig5
## PctRecImmig8
## PctRecImmig10
## PctSpeakEnglOnly
## PctNotSpeakEnglWell
## PctLargHouseFam
## PctLargHouseOccup
## PersPerOccupHous
## PersPerOwnOccHous
## PersPerRentOccHous
## PctPersOwnOccup
## PctPersDenseHous
                         0.05683368
## PctHousLess3BR
## MedNumBR
## HousVacant
                        0.15601070
## PctHousOccup
                        -0.01293629
## PctHousOwnOcc
## PctVacantBoarded
## PctVacMore6Mos
## MedYrHousBuilt
## PctHousNoPhone
## PctWOFullPlumb
## OwnOccLowQuart
## OwnOccMedVal
## OwnOccHiQuart
## RentLowQ
## RentMedian
## RentHighQ
## MedRent
## MedRentPctHousInc
## MedOwnCostPctInc
## MedOwnCostPctIncNoMtg
## NumInShelters
                          0.04731944
## NumStreet
## PctForeignBorn
## PctBornSameState
## PctSameHouse85
## PctSameCity85
## PctSameState85
## LandArea
## PopDens
## PctUsePubTrans
```

```
## LemasPctOfficDrugUn
```

```
bestlam2 <- mod_cv$lambda.1se
bestlam2</pre>
```

[1] 0.01546099

Prediction in test set

Finally, we investigate the performance of our models in the test set. For this task, construct a X matrix from the test set.

```
Xt <- model.matrix(ViolentCrimesPerPop ~ . - state - communityname - fold, data = crime_test)[,-1]</pre>
```

Use the predict function to generate predicted values for both models (i.e., both lambdas stored earlier).

```
p_lasso_min <- predict(mod_lasso, s = bestlam1, newx = Xt)
p_lasso_1se <- predict(mod_lasso, s = bestlam2, newx = Xt)</pre>
```

Compute the test MSE of our models.

```
MSE_lasso_min <- mean((p_lasso_min - crime_test$ViolentCrimesPerPop)^2)
MSE_lasso_min ## 0.01856262
```

[1] 0.01856262

```
MSE_lasso_1se <- mean((p_lasso_1se - crime_test$ViolentCrimesPerPop)^2)
MSE_lasso_1se ## 0.01970093
```

[1] 0.01970093

In addition, use another performance metric and compute the corresponding values for both models.

```
# Compute R^2 from true and predicted values
eval_results <- function(true, predicted, df) {
    SSE <- sum((predicted - true)^2)
    SST <- sum((true - mean(true))^2)
    R_squared <- 1 - SSE / SST
    RMSE = sqrt(SSE/nrow(df))

# Model performance metrics
data.frame(
    RMSE = RMSE,
    Rsquared = R_squared
)

# predictions_1 <- predict(mod_lasso, s = bestlam1, newx = Xt)</pre>
```

```
# length(crime_test)
# eval_results(y, predictions_1, crime_test) ## RMSE: 0.2260244 ; R-squared: 0.6890346
# predictions_2 <- predict(mod_lasso, s = bestlam2, newx = Xt)
# eval_results(y, predictions_2, crime_test) ## RMSE: 0.2421906; R-squared: 0.6429609
r2_1 = cor(p_lasso_min, crime_test$ViolentCrimesPerPop)^2 # 0.648
r2_2 = cor(p_lasso_1se, crime_test$ViolentCrimesPerPop)^2 # 0.627
# coefs <- as.matrix(mod_lasso$beta)
# par(mfrow=c(3,5), mar=c(1,1,1,1))
# for (i in 1:nrow(coefs))
# plot(coefs[i,], type = "l")</pre>
```

Which model is better? Does it depend on the performance measure that is used?

According to the first prediction performance validating by computing MSE, the second model using "lambda.1se" is better with a slightly lower MSE of 0.08268388. The second prediction performance metric composed of RMSE and R-squared, contrarily, shows a better performance of the first model with "lambda.min" comparing to the second model using "lambda.1se," as a smaller RMSE and a higher R-squared are shown. Based on the performance metric I choose and the assigned one, the results depend on the performance measure that is used.

end

Revised-the first model is better with a greater R-squared and a smaller MSE