

- 1. Integrate the following.
 - a. $\int_C Re(z)dz$, where C is the shortest path from 1+i to 3+2i.
 - b. $\int_C \bar{z} dz$, where C from 0 along the parabola $y = x^2$ to 1 + i.
 - c. $\int_C z e^{z^2} dz$, where C is from 1 along the axes to i.
 - d. $\int_C sec^2zdz$, where C is any path from $\frac{\pi i}{4}$ to $\frac{\pi}{4}$ in the unit disk.
- 2. If f(z) is analytic in a simply connected doman D. Prove that $\int_a^b f(z)dz$ is independent of the path in D joining any two points a and b in D.
- 3. Integrate $\oint_C \frac{4z^2+z+5}{z-3.5}dz$, where C is the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$.
- 4. Integrate $\oint_C \frac{z^3 + \sin z}{(z-i)^3} dz$, where C is the boundary of the square with vertices
- 5. Integrate $\oint_C \frac{2z^3-3}{z(z-1-i)^2} dz$, where

$$C: \begin{cases} |z| = 2 \text{ anticlockwise} \\ |z| = 1 \text{ clockwise} \end{cases}$$

- 6. Evaluate $\oint_C \frac{3z^2+z}{z^2-1} dz$, where C is the circle |z-1|=1.
- 7. Evaluate $\oint_C \frac{e^{zt}}{(z^2+1)^2} dz$, if t>0 and C is the circle |z|=3.
- 8. Let C denote the right hand half of the circle |z|=2 in the counterclockwise direction. Show that the two parametric representation for C are

a.
$$z = r(\theta) = 2e^{i\theta}, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$

a.
$$z = r(\theta) = 2e^{i\theta}, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2},$$

b. $z = \sqrt{4 - y^2} + iy, -2 \le y \le 2.$

Find the value of the integral

$$I = \int_C \bar{z} dz$$

using both the parametric representation.

- 9. Evaluate $\int_C (z+1)^2 dz$, where C is the boundary of the rectangle in anticlockwise direction with vertices at points a + ib, -1 + ib, -1 - ib, a - ib. Do not use the Cauchy's integral theorem.
- 10. Evaluate the integral $\oint_C \frac{1}{z^2+4} dz$, where (i) C: |z-2i| = 1, (ii) C: |z+2i| = 11, (iii) C: |z| = 4.

11. Let Γ be a smooth curve. Suppose $\Gamma=[a,b].$ Prove that for any integrable function $f:[a,b]\to C$

$$\overline{\int_a^b f(t)dt} = \int_a^b \overline{f(t)}dt$$

What can you deduce about the integrability of \bar{f} if f is integrable?