Note that I am operating under the convention that N, n, m, i, j are natural numbers unless otherwise specified.

Exercise: Let A and B be nonempty sets that are bounded above. Suppose $\sup A < \sup B$. Prove that there is an element of B that is an upper bound for A.

Proof. Suppose A and B are nonempty sets that are bounded above. Furthur suppose $\sup A < \sup B$. Define $a = \sup A$ and $b = \sup B$. Note that a is less than the suppremum of B thus a is not a upper bound on B. Since a is not a upper bound on B there must exist at least one element of B grater than a, take one of these elements lets call it $k, k \in B$, a < k. Choose a arbitrary element $c \in A$. Since $a = \sup A$ we know that a is a upper bound on A therfore $c \le a < k$. Since we chose a arbitrary element from A and showed that it is less than k we can say that all elements in A are less then k thus k is a upper bound on A.

Exercise: In class we proved that \mathbb{N}^2 is countably infinite. Use this fact and a proof by induction to show that \mathbb{N}^n is countably infinite for every $n \in \mathbb{N}$.

Proof. We want to show that for every $n \in \mathbb{N}$, \mathbb{N}^n is countably infinite. I will procede with a proof by induction.

Base case n=1. There is a bijective map, the identity map, mapping $\mathbb{N}^1 \to \mathbb{N}$. So the statement holds in the n=1 case.

Suppose \mathbb{N}^m is countably infinite for all $m \le n$ where $n \ge 1$. There must exist a bijective map from $\mathbb{N}^n \to \mathbb{N}$, the definition of countably infinate. Note that \mathbb{N}^{n+1} can trivially be bijectively mapped to $\mathbb{N}^n \times \mathbb{N}$, by mapping the first term to \mathbb{N} and the next terms to \mathbb{N}^n . Note that there exists a bijective map from $\mathbb{N}^2 \to \mathbb{N}$ since \mathbb{N}^2 is countably infinate. Note that we can bijectively map $\mathbb{N}^{n+1} \to \mathbb{N}^n \times \mathbb{N} \to \mathbb{N} \times \mathbb{N} \to \mathbb{N}^2 \to \mathbb{N}$. Thus \mathbb{N}^{n+1} is countably infinate.

By induction we can conclude that for every $n \in \mathbb{N}$, \mathbb{N}^n is countably infinite.

Exercise: Compute

$$\lim_{n\to\infty}\frac{3^n}{n!}$$

.

Define $a_n=0,b_n=\frac{3^n}{n!},c_n=\frac{3^n}{4^{n-4}}$. Note that for $1\leq n\leq 4,\,b_n=\frac{3^n}{n!}\leq 3^n\leq \frac{3^n}{4^{n-4}}=c_n$. Note that for $n=4,\,b_n\leq c_n$. Suppose for some $n\geq 4,\,b_n\leq c_n$. Note that $b_{n+1}=\frac{3^{n+1}}{(n+1)!}=\frac{3^n}{n!}\frac{3}{n+1}=b_n\frac{3}{n+1}\leq c_n\frac{3}{n+1}\leq c_n\frac{3}{4}=\frac{3^n}{4^{n-4}}\frac{3}{4}=\frac{3^{n+1}}{4^{(n+1)-4}}=c_{n+1}$. By induction I conclude that for all $n\geq 4,\,b_n\leq c_n$. So for all $n\in\mathbb{N},\,b_n\leq c_n$. Also note that b_n is always positive and thus $a_n\leq b_n$. Note that $a_n\to 0$. Note that c_n is bounded below by 0. Also note that $c_{n+1}=\frac{3}{4}c_n\leq c_n$, so c_n is monotone decreasing and bounded below, by the MCT it must converge. Define l as the limit of c_n . Note that $c_{n+1}\to l$ also note that $c_{n+1}=\frac{3}{4}c_n\to\frac{3}{4}l$. So $l=\frac{3}{4}l$ therfore l=0. By the squeze teorem $\frac{3^n}{n!}\to 0$.

Exercise: Suppose F is a collection of open intervals such that if $I, J \in F$ and $I \neq J$, then $I \cap J = \emptyset$. Prove that F is countable.

Proof. Suppose F is a collection of open intervals such that if $I, J \in F$ and $I \neq J$, then $I \cap J = \emptyset$.

If *F* is finite then it is at most countable.

Suppose F is non-finite. Select one element of F, let's call it d (for default). Consider the mapping $f: \mathbb{Q} \to G$ where G = P(F), the power set of F, so that G is the set of all subsets of F.

$$f(q) = \begin{cases} \{f \in F : q \in f\} & \{f \in F : q \in f\} \neq \emptyset \\ \{d\} & \text{otherwise} \end{cases}$$

Suppose there existed a q such that f(q) did not have cardinality 1. Note that $f(q) \neq \emptyset$, since we map anything that would have maped to the emptyset to the set containing the default set. Thus f(q) must have at least two elements $I, J \in f(q)$. Also note that $f(q) \neq \{d\}$ since that has cardinality of one, $f(q) = \{f \in F : q \in f\}$. Note that by our above construction $I, J \in F$ and $I \neq J$ and $q \in I, q \in J$, since $f(q) \neq \{d\}$. Thus $q \in I \cap J$ so $I \cap J \neq \emptyset$. This is a contradiction since our initial upposition tells us $I \cap J = \emptyset$, we conclude the negation of our supposition, that f(q) has one element for all $q \in \mathbb{Q}$.

We can now construct a function $g : \mathbb{Q} \to F$, where g(q) is the one element in f(q), noting that $f(q) \in G$ means that $f(q) \subseteq F$ and thus the one element in f(q) is a element of F.

Choose $I \in F$. Note that by the density of the rationals there is a rational in the open interval I, select one of these elements and call it $q, q \in I$ and $q \in \mathbb{Q}$. Note that g(q) is the element in f(q), and $I \in \{f \in F : q \in f\} \neq \emptyset$ thus $f(q) = \{f \in F : q \in f\}$ and $I \in f(q)$ thus g(q) = I. Since we chose a arbitrary element in F and found a $q \in \mathbb{Q}$ that maps to it via f we can say f is onto. We know that there is a onto map $h : \mathbb{N} \to \mathbb{Q}$ since \mathbb{N} and \mathbb{Q} have the same cardinality. Consider the map $m : \mathbb{N} \to F$ where m(n) = g(h(n)). Note that m is onto. Since there is a onto map from $\mathbb{N} \to F$ we know that F is at most countably infinate. \square