ET4254 – Communications and Networking 1

Topic 10:- Local Area Network Overview

<u> Aims:-</u>

- LAN topologies and media
- LAN protocol architecture
- bridges, hubs, layer 2 & 3 switches

LAN Applications (1)

- personal computer LANs
 - low cost
 - limited data rate
- back end networks
 - interconnecting large systems (mainframes and large storage devices)
 - high data rate
 - high speed interface
 - distributed access
 - limited distance
 - limited number of devices

LAN Applications (2)

- storage area networks (SANs)
 - separate network handling storage needs
 - detaches storage tasks from specific servers
 - shared storage facility
 - eg. hard disks, tape libraries, CD arrays
 - accessed using a high-speed network
 - eg. Fibre Channel
 - improved client-server storage access
 - direct storage to storage communication for backup

Storage Area Networks

LAN Applications (3)

- high speed office networks
 - desktop image processing
 - high capacity local storage
- backbone LANs
 - interconnect low speed local LANs
 - reliability
 - capacity
 - cost

LAN Architecture

- topologies
- transmission medium
- layout
- medium access control

LAN Topologies

Bus and Tree

- used with multipoint medium
- transmission propagates throughout medium
- heard by all stations
- full duplex connection between station and tap
 - allows for transmission and reception
- need to regulate transmission
 - to avoid collisions and hogging
- terminator absorbs frames at end of medium
- tree a generalization of bus
- headend connected to branching cables

Frame Transmission on Bus LAN

Ring Topology

- a closed loop of repeaters joined by point to point links
- receive data on one link & retransmit on another
 - links unidirectional
 - stations attach to repeaters
- data in frames
 - circulate past all stations
 - destination recognizes address and copies frame
 - frame circulates back to source where it is removed
- media access control determines when a station can insert frame

Frame Transmission Ring LAN

Star Topology

- each station connects to central node
 - usually via two point to point links
- either central node can broadcast
 - physical star, logical bus
 - only one station can transmit at a time
- or central node can act as frame switch

Choice of Topology

- reliability
- expandability
- performance
- needs considering in context of:
 - medium
 - wiring layout
 - access control

<u>Bus LAN</u> <u>Transmission Media (1)</u>

- twisted pair
 - early LANs used voice grade cable
 - didn't scale for fast LANs
 - not used in bus LANs now
- baseband coaxial cable
 - uses digital signalling
 - original Ethernet

<u>Bus LAN</u> <u>Transmission Media (2)</u>

- broadband coaxial cable
 - as in cable TV systems
 - analog signals at radio frequencies
 - expensive, hard to install and maintain
 - no longer used in LANs
- optical fiber
 - expensive taps
 - better alternatives available
 - not used in bus LANs
- less convenient compared to star topology twisted pair
- coaxial baseband still used but not often in new installations

Ring and Star Usage

- ring
 - very high speed links over long distances
 - single link or repeater failure disables network
- star
 - uses natural layout of wiring in building
 - best for short distances
 - high data rates for small number of devices

Choice of Medium

- constrained by LAN topology
- capacity
- reliability
- types of data supported
- environmental scope

Media Available

- Voice grade unshielded twisted pair (UTP)
 - Cat 3 phone, cheap, low data rates
- Shielded twisted pair / baseband coaxial
 - more expensive, higher data rates
- Broadband cable
 - even more expensive, higher data rate
- High performance UTP
 - Cat 5+, very high data rates, witched star topology
- Optical fibre
 - security, high capacity, small size, high cost

LAN Protocol Architecture

IEEE 802 Layers (1)

- Physical
 - encoding/decoding of signals
 - preamble generation/removal
 - bit transmission/reception
 - transmission medium and topology

IEEE 802 Layers (2)

- Logical Link Control
 - interface to higher levels
 - flow and error control
- Media Access Control
 - on transmit assemble data into frame
 - on receive disassemble frame
 - govern access to transmission medium
 - for same LLC, may have several MAC options

LAN Protocols in Context

Logical Link Control

- transmission of link level PDUs between stations
- must support multiaccess, shared medium
- but MAC layer handles link access details
- addressing involves specifying source and destination LLC users
 - referred to as service access points (SAP)
 - typically higher level protocol

LLC Services

- based on HDLC
- unacknowledged connectionless service
- connection mode service
- acknowledged connectionless service

LLC Protocol

- modeled after HDLC
- asynchronous balanced mode
 - connection mode (type 2) LLC service
- unacknowledged connectionless service
 - using unnumbered information PDUs (type 1)
- acknowledged connectionless service
 - using 2 new unnumbered PDUs (type 3)
- permits multiplexing using LSAPs

MAC Frame Format

Media Access Control

- where
 - central
 - greater control, single point of failure
 - distributed
 - more complex, but more redundant
- how
 - synchronous
 - capacity dedicated to connection, not optimal
 - asynchronous
 - in response to demand

Asynchronous Systems

- round robin
 - each station given turn to transmit data
- reservation
 - divide medium into slots
 - good for stream traffic
- contention
 - all stations contend for time
 - good for bursty traffic
 - simple to implement
 - tends to collapse under heavy load

MAC Frame Handling

- MAC layer receives data from LLC layer
- fields
 - MAC control
 - destination MAC address
 - source MAC address
 - LLC
 - CRC
- MAC layer detects errors and discards frames
- LLC optionally retransmits unsuccessful frames

Bridges

- connects similar LANs
- identical physical / link layer protocols
- minimal processing
- can map between MAC formats
- reasons for use
 - reliability
 - performance
 - security
 - geography

Bridge Function

Bridge Design Aspects

- no modification to frame content or format
- no encapsulation
- exact bitwise copy of frame
- minimal buffering to meet peak demand
- contains routing and address intelligence
- may connect more than two LANs
- bridging is transparent to stations

Bridge Protocol Architecture

- IEEE 802.1D
- MAC level
- bridge does not need LLC layer
- can pass frame over external comms system
 - capture frame
 - encapsulate it
 - forward it across link
 - remove encapsulation and forward over LAN link
 - e.g. WAN link

Connection of Two LANs

Bridges and LANs with Alternative Routes

Fixed Routing

- complex large LANs need alternative routes
 - for load balancing and fault tolerance
- bridge must decide whether to forward frame
- bridge must decide LAN to forward frame to
- can use fixed routing for each source-destination pair of LANs
 - done in configuration
 - usually least hop route
 - only changed when topology changes
 - widely used but limited flexibility

Spanning Tree

- bridge automatically develops routing table
- automatically updates routing table in response to changes
- three mechanisms:
 - frame forwarding
 - address learning
 - loop resolution

Frame Forwarding

- maintain forwarding database for each port
 - lists station addresses reached through each port
- for a frame arriving on port X:
 - search forwarding database to see if MAC address is listed for any port except X
 - if address not found, forward to all ports except X
 - if address listed for port Y, check port Y for blocking or forwarding state
 - if not blocked, transmit frame through port Y

Address Learning

- can preload forwarding database
- when frame arrives at port X, it has come form the LAN attached to port X
- use source address to update forwarding database for port X to include that address
- have a timer on each entry in database
- if timer expires, entry is removed
- each time frame arrives, source address checked against forwarding database
 - if present timer is reset and direction recorded
 - if not present entry is created and timer set

Spanning Tree Algorithm

- address learning works for tree layout
- in general graph have loops
- for any connected graph there is a spanning tree maintaining connectivity with no closed loops
- IEEE 802.1 Spanning Tree Algorithm finds this
 - each bridge assigned unique identifier
 - exchange info between bridges to find spanning tree
 - automatically updated whenever topology changes

Loop of Bridges

Interconnecting LANs - Hubs

- active central element of star layout
- each station connected to hub by two UTP lines
- hub acts as a repeater
- limited to about 100 m by UTP properties
- optical fiber may be used out to 500m
- physically star, logically bus
- transmission from a station seen by all others
- if two stations transmit at the same time have a collision

Two Level Hub Topology

Buses, Hubs and Switches

- bus configuration
 - all stations share capacity of bus (e.g. 10Mbps)
 - only one station transmitting at a time
- hub uses star wiring to attach stations
 - transmission from any station received by hub and retransmitted on all outgoing lines
 - only one station can transmit at a time
 - total capacity of LAN is 10 Mbps
- can improve performance using a layer 2 switch
 - can switch multiple frames between separate ports
 - multiplying capacity of LAN

<u>Shared Medium</u> <u>Bus and Hub</u>

Layer 2 Switch Benefits

- no change to attached devices to convert bus LAN or hub LAN to switched LAN
 - e.g. Ethernet LANs use Ethernet MAC protocol
- have dedicated capacity equal to original LAN
 - assuming switch has sufficient capacity to keep up with all devices
- scales easily
 - additional devices attached to switch by increasing capacity of layer 2

Types of Layer 2 Switch

- store-and-forward switch
 - accepts frame on input line, buffers briefly, routes to destination port
 - see delay between sender and receiver
 - better integrity
- cut-through switch
 - use destination address at beginning of frame
 - switch begins repeating frame onto output line as soon as destination address recognized
 - highest possible throughput
 - risk of propagating bad frames

Layer 2 Switch vs Bridge

- Layer 2 switch can be viewed as full-duplex hub
- incorporates logic to function as multiport bridge
- differences between switches & bridges:
 - bridge frame handling done in software
 - switch performs frame forwarding in hardware
 - bridge analyzes and forwards one frame at a time
 - switch can handle multiple frames at a time
 - bridge uses store-and-forward operation
 - switch can have cut-through operation
- hence bridge have suffered commercially

Layer 2 Switch Problems

- broadcast overload
 - users share common MAC broadcast address
 - broadcast frames are delivered to all devices connected by layer
 2 switches and/or bridges
 - broadcast frames can create big overhead
 - broadcast storm from malfunctioning devices
- lack of multiple links
 - limits performance & reliability

Router Problems

- typically use subnetworks connected by routers
 - limits broadcasts to single subnet
 - supports multiple paths between subnet
- routers do all IP-level processing in software
 - high-speed LANs and high-performance layer 2 switches pump millions of packets per second
 - software-based router only able to handle well under a million packets per second

Layer 3 Switches

- Solution: layer 3 switches
 - implement packet-forwarding logic of router in hardware
- two categories
 - packet by packet
 - flow based

Packet by Packet or Flow Based

- packet by packet
 - operates like a traditional router
 - order of magnitude increase in performance compared to software-based router
- flow-based switch
 - enhances performance by identifying flows of IP packets with same source and destination
 - by observing ongoing traffic or using a special flow label in packet header (IPv6)
 - a predefined route is used for identified flows

Typical
Large
LAN
Organization
Diagram

Summary

- LAN topologies and media
- LAN protocol architecture
- bridges, hubs, layer 2 & 3 switches