Knowledge Representation and Reasoning

Part 2: Propositional Languages

Ivan Varzinczak

LIASD, Université Paris 8, France https://www.ijv.ovh

Agents, systems, and the agents' goals

Agent

- Agent
- Atomic proposition

- Agent
- Atomic proposition
- Candidate state

- Agent
- Atomic proposition
- Candidate state
- Connective

- Agent
- Atomic proposition
- Candidate state
- Connective
- Default rule

- Agent
- Atomic proposition
- Candidate state
- Connective
- Default rule
- Evidence

- Agent
- Atomic proposition
- Candidate state
- Connective
- Default rule
- Evidence
- Fixed information

Agents, systems, and the agents' goals

Agent

Iconic representation

- Atomic proposition
- Candidate state
- Connective
- Default rule
- Evidence
- Fixed information

- Agent
- Atomic proposition
- Candidate state
- Connective
- Default rule
- Evidence
- Fixed information

- Iconic representation
- Information

- Agent
- Atomic proposition
- Candidate state
- Connective
- Default rule
- Evidence
- Fixed information

- Iconic representation
- Information
- Semantics

- Agent
- Atomic proposition
- Candidate state
- Connective
- Default rule
- Evidence
- Fixed information

- Iconic representation
- Information
- Semantics
- State

- Agent
- Atomic proposition
- Candidate state
- Connective
- Default rule
- Evidence
- Fixed information

- Iconic representation
- Information
- Semantics
- State
- Symbolic representation

- Agent
- Atomic proposition
- Candidate state
- Connective
- Default rule
- Evidence
- Fixed information

- Iconic representation
- Information
- Semantics
- State
- Symbolic representation
- System

- Agent
- Atomic proposition
- Candidate state
- Connective
- Default rule
- Evidence
- Fixed information

- Iconic representation
- Information
- Semantics
- State
- Symbolic representation
- System
- Truth value

Outline

Opaque propositional languages

Semantics

Outline

Opaque propositional languages

Semantics

Formal languages

- A formal language is defined recursively
- But, what does this mean?
- Start with basic building blocs and a set of connectives (operators)
- Apply combination rules to build longer, more complex sentences
- Important: only a finite number of applications of the combination rules

Formal languages

- A formal language is defined recursively
- But, what does this mean?
- Start with basic building blocs and a set of connectives (operators)
- Apply combination rules to build longer, more complex sentences
- Important: only a finite number of applications of the combination rules

Practical questions

How big is a language?

Formal languages

- A formal language is defined recursively
- But, what does this mean?
- Start with basic building blocs and a set of connectives (operators)
- Apply combination rules to build longer, more complex sentences
- Important: only a finite number of applications of the combination rules

Practical questions

- How big is a language?
- How to handle a possibly infinite language?

Formal languages

- A formal language is defined recursively
- But, what does this mean?
- Start with basic building blocs and a set of connectives (operators)
- Apply combination rules to build longer, more complex sentences
- Important: only a finite number of applications of the combination rules

Practical questions

- How big is a language?
- How to handle a possibly infinite language?
- Infinity can often be described finitely

Formal languages

- A formal language is defined recursively
- But, what does this mean?
- Start with basic building blocs and a set of connectives (operators)
- Apply combination rules to build longer, more complex sentences
- Important: only a finite number of applications of the combination rules

Practical questions

- How big is a language?
- How to handle a possibly infinite language?
- Infinity can often be described finitely
- In the case of formal languages, we specify a (finite) grammar

Definition (Propositional Sentence)

Let $\mathcal{P} \subseteq \{p_0, p_1, \ldots\}$ be a set of propositional atoms, and $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$. We say that α is a sentence over \mathcal{P} if one of the following is the case:

- $\alpha = p$ for some $p \in \mathcal{P}$ (note we use p, q, \ldots as meta-variables)
- $\alpha = (\neg \beta)$ for some previously constructed sentence β over \mathcal{P}
- $\alpha = (\beta * \gamma)$ where β and γ are previously constructed sentences over \mathcal{P}

Definition (Propositional Sentence)

Let $\mathcal{P} \subseteq \{p_0, p_1, \ldots\}$ be a set of propositional atoms, and $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$. We say that α is a sentence over \mathcal{P} if one of the following is the case:

- $\alpha = p$ for some $p \in \mathcal{P}$ (note we use p, q, \ldots as meta-variables)
- $\alpha = (\neg \beta)$ for some previously constructed sentence β over ${\mathcal P}$
- $\alpha = (\beta * \gamma)$ where β and γ are previously constructed sentences over ${\mathcal P}$

Definition (Language)

The set of all sentences over $\mathcal P$ is the language $\mathcal L_{\mathcal P}$ generated by $\mathcal P$ and $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$ through a finite number of steps as above. If $\mathcal P$ is finite, we say $\mathcal L_{\mathcal P}$ is finitely generated.

Example

Let $\mathcal{P} = \{p_0, p_1, \dots, p_{113}\}$

- p_{17} is a sentence over \mathcal{P} , $(\neg p_{17})$ is a sentence over \mathcal{P}
- $(p_{22} \wedge (\neg p_{17}))$ is a sentence over \mathcal{P}
- p_{222} is **not** a sentence over \mathcal{P} (it contains an atom not in \mathcal{P})
- $(\neg(\neg \cdots (\neg p_1)\cdots))$ is **not** a sentence over \mathcal{P} (infinite symbols)

Example

Let $\mathcal{P} = \{p_0, p_1, \dots, p_{113}\}$

- p_{17} is a sentence over \mathcal{P} , $(\neg p_{17})$ is a sentence over \mathcal{P}
- $(p_{22} \wedge (\neg p_{17}))$ is a sentence over \mathcal{P}
- p_{222} is **not** a sentence over \mathcal{P} (it contains an atom not in \mathcal{P})
- $(\neg(\neg \cdots (\neg p_1)\cdots))$ is **not** a sentence over \mathcal{P} (infinite symbols)

Notation

- We can write $\neg \alpha$ instead of $(\neg \alpha)$
- We drop parentheses to write $(\alpha * \beta)$ as $\alpha * \beta$ for all $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$
- Order of precedence: \neg , \wedge , \vee , \rightarrow , \leftrightarrow
- E.g. $p \lor q \land \neg r \to s$ is short for $(p \lor (q \land (\neg r))) \to s)$

Outline

Opaque propositional languages

Semantics

What we mean by 'meaning'

Motivation

- Semantics is concerned with the meaning of words and sentences
- A language without meaning is useless
- Agents build up iconic representations which stand for sentences
- Meaning: the relationship between symbolic and iconic representations

What we mean by 'meaning'

Motivation

- Semantics is concerned with the meaning of words and sentences
- A language without meaning is useless
- Agents build up iconic representations which stand for sentences
- Meaning: the relationship between symbolic and iconic representations

Truth values

- Indicate the fit between sentences and iconic representations
- A sentence is true if it is faithful to the state; it is false otherwise

What we mean by 'meaning'

Motivation

- Semantics is concerned with the meaning of words and sentences
- A language without meaning is useless
- Agents build up iconic representations which stand for sentences
- Meaning: the relationship between symbolic and iconic representations

Truth values

- Indicate the fit between sentences and iconic representations
- A sentence is true if it is faithful to the state; it is false otherwise

Valuations

- A valuation records the match between sentences and a state
- Each valuation is linked to the iconic representation of a state

Definition (Propositional Valuation)

Let \mathcal{P} be a set of atoms. A valuation over \mathcal{P} is a function $v: \mathcal{P} \longrightarrow \{0,1\}$. The set of all valuations over \mathcal{P} is denoted $\mathcal{U}_{\mathcal{P}}$.

Definition (Propositional Valuation)

Let \mathcal{P} be a set of atoms. A valuation over \mathcal{P} is a function $v: \mathcal{P} \longrightarrow \{0,1\}$. The set of all valuations over \mathcal{P} is denoted $\mathcal{U}_{\mathcal{P}}$.

Example (Light-fan system)

- $S = \{00, 01, 10, 11\}$ (shorthand for the iconic representations) $\mathcal{P} = \{p, q\}$ (shorthand for 'the light is on' and 'the fan is on')
 - State 11 corresponds to the valuation v given by v(p) = 1 = v(q)
 - State 10 corresponds to the valuation v^\prime given by $v^\prime(p)=1$ and $v^\prime(q)=0$
 - State 01 corresponds to v'' given by v''(p) = 0 and v''(q) = 1
 - State 00 corresponds to v''' given by v'''(p) = v'''(q) = 0

Definition (Propositional Valuation)

Let \mathcal{P} be a set of atoms. A valuation over \mathcal{P} is a function $v: \mathcal{P} \longrightarrow \{0,1\}$. The set of all valuations over \mathcal{P} is denoted $\mathcal{U}_{\mathcal{P}}$.

Example (Light-fan system)

```
S = \{00, 01, 10, 11\} (shorthand for the iconic representations) \mathcal{P} = \{p, q\} (shorthand for 'the light is on' and 'the fan is on')
```

- State 11 corresponds to the valuation v given by v(p) = 1 = v(q)
- State 10 corresponds to the valuation v^\prime given by $v^\prime(p)=1$ and $v^\prime(q)=0$
- State 01 corresponds to v'' given by v''(p) = 0 and v''(q) = 1
- State 00 corresponds to v''' given by v'''(p) = v'''(q) = 0

Question: Given \mathcal{P} , how many valuations are there in $\mathcal{U}_{\mathcal{P}}$?

Notation

Let $\mathcal{P} = \{p_0, p_1, \dots, p_n\}$. It is convenient to abbreviate each valuation $v : \mathcal{P} \longrightarrow \{0, 1\}$ as $v(p_0)v(p_1)\dots v(p_n)$.

Notation

Let $\mathcal{P} = \{p_0, p_1, \dots, p_n\}$. It is convenient to abbreviate each valuation $v : \mathcal{P} \longrightarrow \{0, 1\}$ as $v(p_0)v(p_1)\dots v(p_n)$.

Example

Let $\mathcal{P} = \{p_0, p_1, \dots, p_{113}\}$

- Let $v: \mathcal{P} \longrightarrow \{0,1\}$ be s.t. $v(p_i) = 1$ if i is even, otherwise $v(p_i) = 0$
- We can abbreviate v by the binary string 101010...10

Notation

Let $\mathcal{P} = \{p_0, p_1, \dots, p_n\}$. It is convenient to abbreviate each valuation $v : \mathcal{P} \longrightarrow \{0, 1\}$ as $v(p_0)v(p_1)\dots v(p_n)$.

Example

Let $\mathcal{P} = \{p_0, p_1, \dots, p_{113}\}$

- Let $v: \mathcal{P} \longrightarrow \{0,1\}$ be s.t. $v(p_i) = 1$ if i is even, otherwise $v(p_i) = 0$
- We can abbreviate v by the binary string 101010...10

Let
$$\mathcal{P}' = \{p_0, p_1, \ldots\}$$

- Let $v: \mathcal{P} \longrightarrow \{0,1\}$ be s.t. $v(p_i) = 1$ if i is even, otherwise $v(p_i) = 0$
- We can abbreviate v by the binary string 101010...

Valuations

Notation

Let $\mathcal{P} = \{p_0, p_1, \dots, p_n\}$. It is convenient to abbreviate each valuation $v : \mathcal{P} \longrightarrow \{0, 1\}$ as $v(p_0)v(p_1)\dots v(p_n)$.

Example

Let $\mathcal{P} = \{p_0, p_1, \dots, p_{113}\}$

- Let $v:\mathcal{P}\longrightarrow\{0,1\}$ be s.t. $v(p_i)=1$ if i is even, otherwise $v(p_i)=0$
- We can abbreviate v by the binary string 101010...10

Let
$$\mathcal{P}' = \{p_0, p_1, \ldots\}$$

- Let $v: \mathcal{P} \longrightarrow \{0,1\}$ be s.t. $v(p_i) = 1$ if i is even, otherwise $v(p_i) = 0$
- We can abbreviate v by the binary string 101010...

Question: Is there any difference between a state and a valuation?

Example (The 3-card system)

Assume we have 3 players. Each player is dealt one of 3 cards coloured red, green or blue. A given deal corresponds to a state of the system.

• Let $\mathcal{P} = \{r_1, r_2, r_3, g_1, g_2, g_3, b_1, b_2, b_3\}$

Example (The 3-card system)

- Let $\mathcal{P} = \{r_1, r_2, r_3, g_1, g_2, g_3, b_1, b_2, b_3\}$
- Hence $|\mathcal{U}_{\mathcal{P}}| = 2^9 = 512$ possible valuations

Example (The 3-card system)

- Let $\mathcal{P} = \{r_1, r_2, r_3, g_1, g_2, g_3, b_1, b_2, b_3\}$
- Hence $|\mathcal{U}_{\mathcal{P}}| = 2^9 = 512$ possible valuations
- How many states of the system are there?

Example (The 3-card system)

- Let $\mathcal{P} = \{r_1, r_2, r_3, g_1, g_2, g_3, b_1, b_2, b_3\}$
- Hence $|\mathcal{U}_{\mathcal{P}}| = 2^9 = 512$ possible valuations
- How many states of the system are there? Only $3 \cdot 2 \cdot 1 = 6$

Example (The 3-card system)

- Let $\mathcal{P} = \{r_1, r_2, r_3, g_1, g_2, g_3, b_1, b_2, b_3\}$
- Hence $|\mathcal{U}_{\mathcal{P}}| = 2^9 = 512$ possible valuations
- How many states of the system are there? Only $3 \cdot 2 \cdot 1 = 6$
- Indeed, $S = \{ rgb, rbg, grb, gbr, brg, bgr \}$

Example (The 3-card system)

Assume we have 3 players. Each player is dealt one of 3 cards coloured red, green or blue. A given deal corresponds to a state of the system.

- Let $\mathcal{P} = \{r_1, r_2, r_3, g_1, g_2, g_3, b_1, b_2, b_3\}$
- Hence $|\mathcal{U}_{\mathcal{P}}| = 2^9 = 512$ possible valuations
- How many states of the system are there? Only $3 \cdot 2 \cdot 1 = 6$
- Indeed, $S = \{rgb, rbg, grb, gbr, brg, bgr\}$

As a result

- ullet There are reasons for having a set of states ${\cal S}$ different from ${\cal U}_{\cal P}$
- There may be valuations corresponding to no possible state of the system

Example (The 3-card system)

Assume we have 3 players. Each player is dealt one of 3 cards coloured red, green or blue. A given deal corresponds to a state of the system.

- Let $\mathcal{P} = \{r_1, r_2, r_3, g_1, g_2, g_3, b_1, b_2, b_3\}$
- Hence $|\mathcal{U}_{\mathcal{P}}| = 2^9 = 512$ possible valuations
- How many states of the system are there? Only $3 \cdot 2 \cdot 1 = 6$
- Indeed, $S = \{ rgb, rbg, grb, gbr, brg, bgr \}$

As a result

- ullet There are reasons for having a set of states ${\cal S}$ different from ${\cal U}_{\cal P}$
- There may be valuations corresponding to no possible state of the system

Question: Can there be a state with no valuation associated to it?

Ontologies

Definition (Ontology for $\mathcal{L}_{\mathcal{P}}$)

Assume a system with states S, propositional atoms \mathcal{P} , and valuations $\mathcal{U}_{\mathcal{P}}$, and let $\mathcal{V}: S \longrightarrow \mathcal{U}_{\mathcal{P}}$ denote a labelling function. We call the pair (S, \mathcal{V}) an ontology for the language $\mathcal{L}_{\mathcal{P}}$.

Ontologies

Definition (Ontology for $\mathcal{L}_{\mathcal{P}}$)

Assume a system with states S, propositional atoms \mathcal{P} , and valuations $\mathcal{U}_{\mathcal{P}}$, and let $\mathcal{V}: \mathcal{S} \longrightarrow \mathcal{U}_{\mathcal{P}}$ denote a labelling function. We call the pair $(\mathcal{S}, \mathcal{V})$ an ontology for the language $\mathcal{L}_{\mathcal{P}}$.

Example (Light-fan system)

 $\mathcal{S} = \{00, 01, 10, 11\}, \ \mathcal{P} = \{p, q\}, \ \text{and} \ \mathcal{U}_{\mathcal{P}} = \{00, 01, 10, 11\}, \ \text{and let} \ \mathcal{V}(\cdot) \ \text{be} \\ \text{s.t.} \ \mathcal{V}(00) = 00, \ \mathcal{V}(01) = 01, \ \mathcal{V}(10) = 10, \ \mathcal{V}(11) = 11. \ \text{Then} \ (\mathcal{S}, \mathcal{V}) \ \text{is an ontology for} \ \mathcal{L}_{\mathcal{P}}.$

Ontologies

Definition (Ontology for $\mathcal{L}_{\mathcal{P}}$)

Assume a system with states S, propositional atoms \mathcal{P} , and valuations $\mathcal{U}_{\mathcal{P}}$, and let $\mathcal{V}: \mathcal{S} \longrightarrow \mathcal{U}_{\mathcal{P}}$ denote a labelling function. We call the pair $(\mathcal{S}, \mathcal{V})$ an ontology for the language $\mathcal{L}_{\mathcal{P}}$.

Example (Light-fan system)

 $\mathcal{S} = \{00, 01, 10, 11\}, \ \mathcal{P} = \{p, q\}, \ \text{and} \ \mathcal{U}_{\mathcal{P}} = \{00, 01, 10, 11\}, \ \text{and let} \ \mathcal{V}(\cdot) \ \text{be s.t.} \ \mathcal{V}(00) = 00, \ \mathcal{V}(01) = 01, \ \mathcal{V}(10) = 10, \ \mathcal{V}(11) = 11. \ \text{Then} \ (\mathcal{S}, \mathcal{V}) \ \text{is an ontology for} \ \mathcal{L}_{\mathcal{P}}.$

Example (The 3-card system)

 $\mathcal{S} = \{ \text{rgb, rbg, grb, gbr, brg, bgr} \}, \ \mathcal{P} = \{ r_1, r_2, r_3, g_1, g_2, g_3, b_1, b_2, b_3 \}, \ \text{and} \ \mathcal{U}_{\mathcal{P}} = \{ 0000000000, 000000001, \dots, 111111111 \}. \ \text{Define an appropriate } \mathcal{V}(\cdot).$

Definition (Satisfaction)

Let $\alpha \in \mathcal{L}_{\mathcal{P}}$ and $v \in \mathcal{U}_{\mathcal{P}}$. We say v satisfies α , denoted $v \Vdash \alpha$, if one of the following is the case:

- $\alpha = p$ for some $p \in \mathcal{P}$ and v(p) = 1
- $\alpha = \neg \beta$ and $v \not \Vdash \beta$
- $\alpha = \beta \wedge \gamma$ and both $v \Vdash \beta$ and $v \Vdash \gamma$
- $\alpha = \beta \vee \gamma$ and either $v \Vdash \beta$ or $v \Vdash \gamma$ or both
- $\bullet \ \alpha = \beta \to \gamma \text{ and either } v \Vdash \gamma \text{ or } v \not \Vdash \beta \text{ or both}$
- $\bullet \ \alpha = \beta \leftrightarrow \gamma \ \text{and either} \ \big(v \Vdash \beta \ \text{and} \ v \Vdash \gamma \big) \ \text{or} \ \big(v \not\Vdash \beta \ \text{and} \ v \not\Vdash \gamma \big)$

If $v \Vdash \alpha$, we say α is true relative to v, and false (relative to v) otherwise

Definition (Satisfaction)

Let $\alpha \in \mathcal{L}_{\mathcal{P}}$ and $v \in \mathcal{U}_{\mathcal{P}}$. We say v satisfies α , denoted $v \Vdash \alpha$, if one of the following is the case:

- $\alpha = p$ for some $p \in \mathcal{P}$ and v(p) = 1
- $\alpha = \neg \beta$ and $v \not\Vdash \beta$
- $\alpha = \beta \wedge \gamma$ and both $v \Vdash \beta$ and $v \Vdash \gamma$
- $\alpha = \beta \vee \gamma$ and either $v \Vdash \beta$ or $v \Vdash \gamma$ or both
- $\bullet \ \alpha = \beta \to \gamma \text{ and either } v \Vdash \gamma \text{ or } v \not \Vdash \beta \text{ or both}$
- $\alpha = \beta \leftrightarrow \gamma$ and either $(v \Vdash \beta \text{ and } v \Vdash \gamma)$ or $(v \not\models \beta \text{ and } v \not\models \gamma)$

If $v \Vdash \alpha$, we say α is true relative to v, and false (relative to v) otherwise

For every α and every $v\text{, }\alpha$ is either true or false relative to v

Definition (Models, Nonmodels, and Spurious Models)

- A state $s \in \mathcal{S}$ satisfies $\alpha \in \mathcal{L}_{\mathcal{P}}$, denoted $s \Vdash \alpha$, if $\mathcal{V}(s) \Vdash \alpha$
- If $s \Vdash \alpha$, we say s is a model of α

Definition (Models, Nonmodels, and Spurious Models)

- A state $s \in \mathcal{S}$ satisfies $\alpha \in \mathcal{L}_{\mathcal{P}}$, denoted $s \Vdash \alpha$, if $\mathcal{V}(s) \Vdash \alpha$
- If $s \Vdash \alpha$, we say s is a model of α
- With $\mathcal{M}(\alpha) \subseteq \mathcal{S}$ we denote the set of all models of α

Definition (Models, Nonmodels, and Spurious Models)

- A state $s \in \mathcal{S}$ satisfies $\alpha \in \mathcal{L}_{\mathcal{P}}$, denoted $s \Vdash \alpha$, if $\mathcal{V}(s) \Vdash \alpha$
- If $s \Vdash \alpha$, we say s is a model of α
- With $\mathcal{M}(\alpha) \subseteq \mathcal{S}$ we denote the set of all models of α
- With $\mathcal{N}(\alpha) \stackrel{\text{def}}{=} \overline{\mathcal{M}(\alpha)}$ we denote the set of nonmodels of α

Definition (Models, Nonmodels, and Spurious Models)

- A state $s \in \mathcal{S}$ satisfies $\alpha \in \mathcal{L}_{\mathcal{P}}$, denoted $s \Vdash \alpha$, if $\mathcal{V}(s) \Vdash \alpha$
- If $s \Vdash \alpha$, we say s is a model of α
- With $\mathcal{M}(\alpha) \subseteq \mathcal{S}$ we denote the set of all models of α
- With $\mathcal{N}(\alpha) \stackrel{\text{def}}{=} \overline{\mathcal{M}(\alpha)}$ we denote the set of nonmodels of α
- If $v \Vdash \alpha$ but $v \neq \mathcal{V}(s)$ for any s, then v is a spurious model of α

Definition (Models, Nonmodels, and Spurious Models)

- A state $s \in \mathcal{S}$ satisfies $\alpha \in \mathcal{L}_{\mathcal{P}}$, denoted $s \Vdash \alpha$, if $\mathcal{V}(s) \Vdash \alpha$
- If $s \Vdash \alpha$, we say s is a model of α
- With $\mathcal{M}(\alpha) \subseteq \mathcal{S}$ we denote the set of all models of α
- With $\mathcal{N}(\alpha) \stackrel{\text{def}}{=} \overline{\mathcal{M}(\alpha)}$ we denote the set of nonmodels of α
- If $v \Vdash \alpha$ but $v \neq \mathcal{V}(s)$ for any s, then v is a spurious model of α
- If $X \subseteq \mathcal{L}_{\mathcal{P}}$, then $s \Vdash X$ if $s \Vdash \alpha$ for every $\alpha \in X$

Definition (Models, Nonmodels, and Spurious Models)

- A state $s \in \mathcal{S}$ satisfies $\alpha \in \mathcal{L}_{\mathcal{P}}$, denoted $s \Vdash \alpha$, if $\mathcal{V}(s) \Vdash \alpha$
- If $s \Vdash \alpha$, we say s is a model of α
- With $\mathcal{M}(\alpha) \subseteq \mathcal{S}$ we denote the set of all models of α
- With $\mathcal{N}(\alpha) \stackrel{\text{def}}{=} \overline{\mathcal{M}(\alpha)}$ we denote the set of nonmodels of α
- If $v \Vdash \alpha$ but $v \neq \mathcal{V}(s)$ for any s, then v is a spurious model of α
- If $X \subseteq \mathcal{L}_{\mathcal{P}}$, then $s \Vdash X$ if $s \Vdash \alpha$ for every $\alpha \in X$
- If $X \subseteq \mathcal{L}_{\mathcal{P}}$, then $\mathcal{M}(X) \stackrel{\text{def}}{=} \bigcap_{\alpha \in X} \mathcal{M}(\alpha)$

Example (Light-fan system)

- Take $\alpha = p$
- Then we have $\mathcal{M}(\alpha) = \{11, 10\}$ and $\mathcal{N}(\alpha) = \{00, 01\}$

Example (Light-fan system)

- Take $\alpha = p$
- Then we have $\mathcal{M}(\alpha) = \{11, 10\}$ and $\mathcal{N}(\alpha) = \{00, 01\}$

Example (Light-fan system)

- Take α = p
- Then we have $\mathcal{M}(lpha)=\{11,10\}$ and $\mathcal{N}(lpha)=\{00,01\}$
- Take $\alpha = p \to q$. $\mathcal{M}(\alpha) = ?$

Example (Light-fan system)

- Take α = p
- Then we have $\mathcal{M}(\alpha) = \{11, 10\}$ and $\mathcal{N}(\alpha) = \{00, 01\}$
- Take $\alpha = p \to q$. $\mathcal{M}(\alpha) = \{00, 01, 11\}$

Example

Assume $\mathcal{P}=\{p_0,p_1,\ldots,p_{113}\}$. Let s be a state s.t. $\mathcal{V}(s)=v$ and $v(p_i)=1$ if i is even, otherwise $v(p_i)=0$.

- $s \Vdash p_{22}$, because $\mathcal{V}(s) = v$ and $v(p_{22}) = 1$
- $s \not\Vdash p_{23}$, because $\mathcal{V}(s) = v$ and $v(p_{23}) = 0$
- $s \Vdash p_{23} \to p_1$, because $\mathcal{V}(s) = v$ and $v \not \Vdash p_{23}$
- $s \not\Vdash p_{23} \leftrightarrow \neg p_1$, because $s \not\Vdash p_{23}$ but $s \Vdash \neg p_1$

Example

Assume $\mathcal{P}=\{p_0,p_1,\ldots,p_{113}\}$. Let s be a state s.t. $\mathcal{V}(s)=v$ and $v(p_i)=1$ if i is even, otherwise $v(p_i)=0$.

- $s \Vdash p_{22}$, because $\mathcal{V}(s) = v$ and $v(p_{22}) = 1$
- $s \not\Vdash p_{23}$, because $\mathcal{V}(s) = v$ and $v(p_{23}) = 0$
- $s \Vdash p_{23} \to p_1$, because $\mathcal{V}(s) = v$ and $v \not\Vdash p_{23}$
- $s \not\Vdash p_{23} \leftrightarrow \neg p_1$, because $s \not\Vdash p_{23}$ but $s \Vdash \neg p_1$
- Thus $s \in \mathcal{M}(p_{22})$, $s \notin \mathcal{M}(p_{23})$ so that $s \in \mathcal{N}(p_{23})$

Example

Assume $\mathcal{P}=\{p_0,p_1,\ldots,p_{113}\}$. Let s be a state s.t. $\mathcal{V}(s)=v$ and $v(p_i)=1$ if i is even, otherwise $v(p_i)=0$.

- $s \Vdash p_{22}$, because $\mathcal{V}(s) = v$ and $v(p_{22}) = 1$
- $s \not\Vdash p_{23}$, because $\mathcal{V}(s) = v$ and $v(p_{23}) = 0$
- $s \Vdash p_{23} \to p_1$, because $\mathcal{V}(s) = v$ and $v \not\Vdash p_{23}$
- $s \not\Vdash p_{23} \leftrightarrow \neg p_1$, because $s \not\Vdash p_{23}$ but $s \Vdash \neg p_1$
- Thus $s \in \mathcal{M}(p_{22})$, $s \notin \mathcal{M}(p_{23})$ so that $s \in \mathcal{N}(p_{23})$
- $s \in \mathcal{M}(p_{23} \to p_1)$, and $s \notin \mathcal{M}(p_{23} \leftrightarrow \neg p_1)$ so that $s \in \mathcal{N}(p_{23} \leftrightarrow \neg p_1)$

Definition (Classes of sentences)

Let $\alpha \in \mathcal{L}_{\mathcal{P}}$.

- If α has at least one model, we say α is satisfiable
- If α has no model, we say α is unsatisfiable
- If α is satisfied by all states in S, we say α is valid
- If α is satisfied by all valuations in $\mathcal{U}_{\mathcal{P}}$, we say α is a tautology
- ullet If lpha is satisfied by some states but not by others, we say lpha is contingent

Definition (Classes of sentences)

Let $\alpha \in \mathcal{L}_{\mathcal{P}}$.

- If α has at least one model, we say α is satisfiable
- If α has no model, we say α is unsatisfiable
- If α is satisfied by all states in \mathcal{S} , we say α is valid
- If α is satisfied by all valuations in $\mathcal{U}_{\mathcal{P}}$, we say α is a tautology
- ullet If lpha is satisfied by some states but not by others, we say lpha is contingent

The problem of deciding whether a propositional sentence is satisfiable is known as the satisfiability problem (SAT)

Definition (Information)

The information about the system possessed by an agent is reflected by the selection of a set \overline{X} of excluded states inside \mathcal{S} , leaving a complementary set X of included states. We say α expresses the agent's information if $\mathcal{M}(\alpha) = X$. We say $\mathcal{N}(\alpha) = \overline{X}$ is the information content of α .

Definition (Information)

The information about the system possessed by an agent is reflected by the selection of a set \overline{X} of excluded states inside \mathcal{S} , leaving a complementary set X of included states. We say α expresses the agent's information if $\mathcal{M}(\alpha) = X$. We say $\mathcal{N}(\alpha) = \overline{X}$ is the information content of α .

Definition (Equivalence)

We say $\alpha, \beta \in \mathcal{L}_{\mathcal{P}}$ are equivalent, denoted $\alpha \equiv \beta$, if $\mathcal{M}(\alpha) = \mathcal{M}(\beta)$

Definition (Information)

The information about the system possessed by an agent is reflected by the selection of a set \overline{X} of excluded states inside \mathcal{S} , leaving a complementary set X of included states. We say α expresses the agent's information if $\mathcal{M}(\alpha) = X$. We say $\mathcal{N}(\alpha) = \overline{X}$ is the information content of α .

Definition (Equivalence)

We say $\alpha, \beta \in \mathcal{L}_{\mathcal{P}}$ are equivalent, denoted $\alpha \equiv \beta$, if $\mathcal{M}(\alpha) = \mathcal{M}(\beta)$

Example (Light-fan system)

$$p \to q \equiv \neg p \lor q \qquad p \equiv p \land p \qquad p \land q \equiv \neg (\neg p \lor \neg q) \qquad \neg \neg p \equiv p$$

Definition (Information)

The information about the system possessed by an agent is reflected by the selection of a set \overline{X} of excluded states inside S, leaving a complementary set X of included states. We say α expresses the agent's information if $\mathcal{M}(\alpha) = X$. We say $\mathcal{N}(\alpha) = \overline{X}$ is the information content of α .

Definition (Equivalence)

We say $\alpha, \beta \in \mathcal{L}_{\mathcal{P}}$ are equivalent, denoted $\alpha \equiv \beta$, if $\mathcal{M}(\alpha) = \mathcal{M}(\beta)$

Example (Light-fan system)

$$p \to q \equiv \neg p \lor q \qquad p \equiv p \land p \qquad p$$

$$p \equiv p \wedge p$$

$$p \land q \equiv \neg(\neg p \lor \neg q)$$

$$\neg\neg p \equiv p$$

Note that \equiv is not a connective! $\alpha \equiv \beta$ is not a sentence of $\mathcal{L}_{\mathcal{P}}$! The symbol \equiv belongs to the metalanguage

The most important relationship between sentences in logic

- ullet Suppose an agent learns that lpha is the case
- What is the agent now entitled to believe?
- ullet The sentences that somehow follow from lpha are called consequences of lpha

The most important relationship between sentences in logic

- ullet Suppose an agent learns that lpha is the case
- What is the agent now entitled to believe?
- ullet The sentences that somehow follow from lpha are called consequences of lpha

Definition (Classical Entailment)

We say α classically entails β , denoted $\alpha \models \beta$, if $\mathcal{M}(\alpha) \subseteq \mathcal{M}(\beta)$. With $Cn(\alpha) \stackrel{\text{def}}{=} \{\beta \mid \alpha \models \beta\}$ we denote the set of all classical consequences of α .

The most important relationship between sentences in logic

- Suppose an agent learns that lpha is the case
- What is the agent now entitled to believe?
- ullet The sentences that somehow follow from lpha are called consequences of lpha

Definition (Classical Entailment)

We say α classically entails β , denoted $\alpha \models \beta$, if $\mathcal{M}(\alpha) \subseteq \mathcal{M}(\beta)$. With $\mathit{Cn}(\alpha) \stackrel{\text{def}}{=} \{\beta \mid \alpha \models \beta\}$ we denote the set of all classical consequences of α .

Example (Light-fan system)

$$p \wedge q \models p \text{ since } \mathcal{M}(p \wedge q) = \{11\} \subseteq \mathcal{M}(p) = \{11, 10\}$$

The most important relationship between sentences in logic

- ullet Suppose an agent learns that lpha is the case
- What is the agent now entitled to believe?
- ullet The sentences that somehow follow from lpha are called consequences of lpha

Definition (Classical Entailment)

We say α classically entails β , denoted $\alpha \models \beta$, if $\mathcal{M}(\alpha) \subseteq \mathcal{M}(\beta)$. With $\mathit{Cn}(\alpha) \stackrel{\text{def}}{=} \{\beta \mid \alpha \models \beta\}$ we denote the set of all classical consequences of α .

Example (Light-fan system)

$$p \land q \models p \text{ since } \mathcal{M}(p \land q) = \{11\} \subseteq \mathcal{M}(p) = \{11, 10\}$$

Generalisation to $X \subseteq \mathcal{L}_{\mathcal{P}}$

- $X \models \alpha$ if $\mathcal{M}(X) \subseteq \mathcal{M}(\alpha)$
- $Cn(X) \stackrel{\text{def}}{=} \{ \alpha \mid X \models \alpha \}$

Two views of entailment

Information content

- If $\alpha \models \beta$, then $\mathcal{M}(\alpha) \subseteq \mathcal{M}(\beta)$, and therefore $\mathcal{N}(\beta) \subseteq \mathcal{N}(\alpha)$
- ullet eta expresses part of the information expressed by lpha
- E.g. in $p \land q \models p$, $\mathcal{N}(p) = \{01,00\} \subseteq \mathcal{N}(p \land q) = \{10,01,00\}$

Two views of entailment

Information content

- If $\alpha \models \beta$, then $\mathcal{M}(\alpha) \subseteq \mathcal{M}(\beta)$, and therefore $\mathcal{N}(\beta) \subseteq \mathcal{N}(\alpha)$
- ullet eta expresses part of the information expressed by lpha
- E.g. in $p \land q \models p$, $\mathcal{N}(p) = \{01,00\} \subseteq \mathcal{N}(p \land q) = \{10,01,00\}$

Conditioning

- In $\alpha \models \beta$, α 'picks out' a subset of \mathcal{S} : $\mathcal{M}(\alpha)$
- So $\alpha \models \beta$ means that if we focus on $\mathcal{M}(\alpha)$, β is guaranteed to hold
- The sentence α 'conditions' the question of whether β is true

Epilogue

Summary

- An 'opaque' knowledge representation language: propositional logic
- Semantics: states v. valuations
- Notion of satisfaction of a sentence
- Notions of model and nonmodel
- The foundation of reasoning: entailment

Epilogue

Summary

- An 'opaque' knowledge representation language: propositional logic
- Semantics: states v. valuations
- Notion of satisfaction of a sentence
- Notions of model and nonmodel
- The foundation of reasoning: entailment

What next?

- The expressiveness of languages
- A note on meta-languages