Week 4 Quiz

TOTAL POINTS 7

1.	Using Image Generator, how do you label images?	1 point
	You have to manually do it	
	It's based on the directory the image is contained in	
	☐ It's based on the file name	
	TensorFlow figures it out from the contents	
2.	What method on the Image Generator is used to normalize the image?	1 point
	Rescale_image	
	onormalize_image	
	rescale	
	normalize	
3.	How did we specify the training size for the images?	1 point
	The training_size parameter on the validation generator	
	The target_size parameter on the validation generator	
	The training_size parameter on the training generator	
	The target_size parameter on the training generator	
4.	When we specify the input_shape to be (300, 300, 3), what does that mean?	1 point
	Every Image will be 300x300 pixels, with 3 bytes to define color	
	There will be 300 horses and 300 humans, loaded in batches of 3	
	Every Image will be 300x300 pixels, and there should be 3 Convolutional Layers	
	There will be 300 images, each size 300, loaded in batches of 3	

5.	If your training data is close to 1.000 accuracy, but your validation data isn't, what's the risk here?	1 paint
	You're overfitting on your training data	
	You're overfitting on your validation data	
	No risk, that's a great result	
	You're underfitting on your validation data	
6.	Convolutional Neural Networks are better for classifying images like horses and humans because:	1 paint
	In these images, the features may be in different parts of the frame	
	O There's a wide variety of horses	
	There's a wide variety of humans	
	All of the above	
6	. Convolutional Neural Networks are better for classifying images like horses and humans because:	1 paint
	☐ In these images, the features may be in different parts of the frame	
	There's a wide variety of horses	
	There's a wide variety of humans	
	All of the above	
7	. After reducing the size of the images, the training results were different. Why?	1 paint
	The training was faster	
	There was less information in the images	
	We removed some convolutions to handle the smaller images	
	There was more condensed information in the images	