Optimization for Engineers

1. Lab Exercise

07.05.2018 Summer Term 2018 Dr. Johannes Hild Department Mathematik Friedrich-Alexander-Universität Erlangen-Nürnberg

Assignment 1: Bisection Line Search - 5 Credits

Complete the template **bisectionLineSearch.m**, for minimizing $\phi(t) = f(x_k + td_k)$ in the interval $[t_l, t_r] := [0, 1]$.

- a) Input: f, x_k , d_k ; choose $\varepsilon > 0$.
- b) Calculate $\phi_l \leftarrow f(x_k), \, \phi_r \leftarrow f(x_k + d_k).$
- c) While $|t_l t_r| > \varepsilon$ do
 - i) If $\phi_l \leq \phi_r$ set $t_r \leftarrow \frac{t_l + t_r}{2}$ and $\phi_r \leftarrow f(x_k + t_r d_k)$.
 - ii) Else set $t_l \leftarrow \frac{t_l + t_r}{2}$ and $\phi_l \leftarrow f(x_k + t_l d_k)$.
- d) If $\phi_l \leq \phi_r$ return $t_* \leftarrow t_l$, else return $t_* \leftarrow t_r$.

Hints:

- a) In Matlab use = instead of \leftarrow to overwrite a variable.
- b) Use **getValue(f_handle,x_k)** to get the function value at point x_k.
- c) Use abs(x) the get the absolute value of x.
- d) Test the algorithm with the command **sheet01Script(1)**; (autocomplete with tab key).
- e) Do not set any input arguments, this is done by the **sheet01Script**.

Assignment 2: Backtracking Line Search - 5 Credits

Complete the template **backtrackingLineSearch.m**, for minimizing $\phi(t) = f(x_k + td_k)$ in the interval (0, 1].

- a) Input: f, x_k, d_k ; choose $\sigma, \beta \in (0, 1)$.
- b) Set $t_i \leftarrow 1$. If $\nabla f(x_k)^{\top} d_k < 0$ is wrong, throw an error.
- c) While $f(x_k + t_j d_k) > f(x_k) + t_j \sigma \nabla f(x_k)^{\top} d_k$ do
 - i) $t_j \leftarrow t_j \beta$.
- d) Return $t_* \leftarrow t_j$.

Hints:

- a) Use **getGradient(f_handle,x_k)** to get the gradient vector at point x_k.
- b) Throw an error with **error('someStringDescribingTheError')**; Be creative and formulate your personal error message string!
- c) Transposition in Matlab: Use $\mathbf{d}_{-\mathbf{k}}$ ' to get d_{k}^{\top} .
- d) Consider storing the constants $f(x_k)$ and $\sigma \nabla f(x_k)^{\mathsf{T}} d_k$ in local variables.
- e) Consider defining an anonymous function like $\phi(t_i) = f(x_k + t_i d_k)$.
- f) Test the algorithm with the command **sheet01Script(2)**;

Evaluation and Upload

Hand in the following files (unzipped) to StudOn using the Exercises object again:

- a) bisectionLineSearch.m
- b) backtrackingLineSearch.m

You can review the solution, comments on your returned files and your achieved credits in one week in the **Exercises** object.