TABLES ----

1>	Ferrous	Ammonium	Sulphat	e vs	std.	K2Cr207.
		()	Pilot Tit	ration)		

Sr. No.	Volume of K2Cr2O7	EMF
	m1	mV
1.	0	310
2.	1	325
3.	2	344
4.	3	356
5.	4	369
6.	5	383
7.	6	399
8.	7	417
٩.	8	507
10.	9	632
11.	10	639
12.	u	654
13.	12	660
14.	13	663
15.	14	666
16.	15	670

²⁷ Ferrous Ammonium Sulphate vs std. K2Cr2O7.

(Fair Titration)

Expt. No.	4	
1		

Page No. _

ESTIMATION	OF	IRON	BY	POTENTIOMETER
	TITE	ATTON		

AIM ->

To estimate the amount of Fe^{2+} ions present in the given solution.

APPARATUS REQUIRED ====>

Potentiometer assembly, 25 ml burette, 10ml pipette, 250 ml beakers, standard flask, calomel and platinum electrodes.

REAGENTS ----

- 1) Ferrous Ammonium Sulphate (FAS).
- 2) dil. Sulphuric Acid (H2SO4).
- 3) std. Potassium Dichromate (K2Cr2O1).

PRINCIPLE ====

Measurement of EMF of an electrochemical cell using potentiometer and change in EMF due to the chemical (redoxe) reaction is monitored. In this potentiometer titration, setup an indicator electrode to

Fe³⁺

Fe²⁺ is oxidised to Fe³⁺ as $K_2Cr_2O_7$ progressively added. Platinum electrode which is kept in contant with a mixture of Fe²⁺ and Fe³⁺ ions acts as a redox electrode. During the titration of Fe²⁺ in H_2SO_4 medium with $K_2Cr_2O_7$, this ratio varies to

a little extent at the beginning and suddenly

Teacher's Signature

Sr. No.	Volume of K2Cr2O7	EMF	ΔΕ	ΔV	DEIDA
	m1	mV	mV	ml	
1.	7.0	433	-	northe at	ovio -o at
2.	7.2	441	8	0.2	40
3.	7.4	452	11	0.2	55
4.	7.6	464	12	0.2	60
5.	7.8	516	52	0.2	260
6.	8.0	599	83	0.2	415
٦.	8.2	622	23	0.2	115
8.	8.4	632	10	0.2	50
٩.	8.6	640	8	0.2	40
10.	8.8	645	5	0.2	25
II.	9.0	649	- 9 40 monds	0.2	20
12.	9.2	652	3	0.2	15
13.	9.4	655	3	0.2	15
14.	9.6	658	3	0.2	15
15.	9.8	660	2	0.2	10
16.	10.0	662	2	0.2	10

CALCULATIONS ----

V1 = Volume of pipette (10 m2)

N, = Normality of FAS

V2 = Volume of K2Cr2O7 (from graph)

N2 = Normality of K2Cr2O7 (0.1 N)

 $N_1 = \frac{V_2 \times N_2}{V_1} = \frac{8 \times 0.1}{10} = 0.08 \text{ N}$

Exp	rt. No Page No
	near the endpoint. This causes a sudden increase in the EMF of two cells at equivalent point.
	PROCEDURE
	· PILOT TITRATION:
1}	The given Fe2+ (Ferrous iron solution) is made up of known volume (say 100 ml) in a standard volumetric flask follow-
2}	ing a standard procedure with usual precautions. Exactly 10ml of made up Fe2+ solution is pipetted out into a clean 250ml beaker. About 10ml of dil.
	H2SO4 and 100ml of distilled water are added to it.
3}	A platinum electrode is dipped into this solution and coupled with the standard calomel electrode. The resultant cell is then incorporated into the potentiometric circuit.
4}	Standard K2Cr207 solution which is taken in a burette
	and the cell EMF is measured after each addition by proper mixing.
5}	
6}	The volume of K2Cr2O7 solution required for complete
	oxeidation of Fe2+ solution is noted from the plot of
	EMF versus the volume of standard K2Cr2O7 solution added. The range at which the endpoint lies may
	be evaluated.
	Teacher's Signature

now, amount of Fe^{2+} = eq. weight × Normality of Fe^{2+} ∴ Amount of Fe^{2+} in 100ml = $\frac{N \text{ of } Fe^{2+} \times 55.85}{10}$ = $\frac{0.08 \times 55.85}{10}$ = $\frac{4.468}{10}$ = 0.4468 Nq.

Exp	Page No
	· FAIR TITRATION:
1>	Step 2 and 3 (of pilot titration) are repeated as above and the burette is Filled upto Oml mark.
2}	· · · · · · · · · · · · · · · · · · ·
	0.2 ml portions of standard K2Cr2O7 solution close to
	the endpoint (2ml on either side of abrupt change
	in EMF) and the EMF corresponding to each addition
٥١	is recorded.
37	The exeact endpoint can be determined from the
	plot of $\Delta E/\Delta V$ versus volume of standard K ₂ Cr ₂ O ₇ solution.
4}	The normality of given Fe2+ solution is calculated
	using the formula: VINI = V2N2.
	RESULT ==>
	The weight of Iron present in the given
	solution = 0:4468 g.
	Teacher's Signature

