

Problem Set 3 is due This Friday, Feb 7 (10pm)

Class 7: Universality and Impossibilities

University of Virginia cs3120: DMT2 Wei-Kai Lin

Recap: AND-OR-NOT Circuits

Recap: Universality (or, why care about AON)

Definition 3.20 (General straight-line programs)

Let $\mathcal{F}=\{f_0,\ldots,f_{t-1}\}$ be a finite collection of Boolean functions, such that $f_i:\{0,1\}^{k_i}\to\{0,1\}$ for some $k_i\in\mathbb{N}$. An \mathcal{F} program is a sequence of lines, each of which assigns to some variable the result of applying some $f_i\in\mathcal{F}$ to k_i other variables. As above, we use $\mathbf{x}[i]$ and $\mathbf{y}[j]$ to denote the input and output variables.

We say that \mathcal{F} is a *universal* set of operations (also known as a universal gate set) if there exists a \mathcal{F} program to compute the function NAND.

(Informal) Definition. We say a computation model is *universal* if for any finite function $f: \{0,1\}^n \to \{0,1\}^m$, there is an "instance" of the model that computes f.

Goal: Compute $f: \{0,1\}^n \to \{0,1\}^m$

- For any $n, m \ge 1$
- Compute 1-bit output for some $f_i: \{0,1\}^n \to \{0,1\}$, and repeat m times
- Represent f as a string s_f :

$$s_f = b_0 b_1 \dots b_2 n_{-1}, \qquad b_i = f(i)$$

Want circuit: LOOKUP(s, i) outputs s[i]

Array: LOOKUP_k(s, i)

- *k*: 1,2,3,...
- s: 2^k -bit string, $s = b_0 b_1 \dots b_{2^k-1}$
- i: k-bit string, representing $0, 1, ..., 2^k 1$
- LOOKUP_k(s, i) outputs s[i] = b_i

k determines len(s) and len(i)No need comma as input

Tool: IF(cond, a, b) ternary operator

Output a if cond = 1

• Output b if cond = 0 circuit

 AON circuit implements IF

cond	a	b	IF(cond, a, b)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0 /
1	0	1	0
1	1	0	1
1	$\backslash 1$	1	1
		l l	

Circuit: LOOKUP₁(s, i)

• LOOKUP₁(s, i) = LOOKUP₁(b_0b_1 , i)

return IF (i, b_1, b_0)

k: 1,2,3,... $s = b_0 b_1 ... b_{2^k-1}$ i represent $0, 1, ..., 2^k - 1$ outputs $s[i] = b_i$

Circuit: LOOKUP₂(s, i)

k: 1,2,3,... $s = b_0 b_1 \dots b_{2^k - 1}$ i represent $0, 1, \dots, 2^k - 1$ outputs $s[i] = b_i$

• LOOKUP₂(s, i) = LOOKUP₂($b_0b_1b_2b_3$, i)

Circuit: LOOKUP_k(s, i)

k: 1,2,3,... $s = b_0 b_1 \dots b_{2^k - 1}$ i represent $0, 1, \dots, 2^k - 1$ outputs $s[i] = b_i$

- LOOKUP_k(s, i) = LOOKUP_k($b_0b_1 ... b_{2^{k}-1}$, i)
- Recurse!

Circuit: LOOKUP_k(s, i)

```
k: 1,2,3,...

s = b_0 b_1 \dots b_{2^k - 1}

i represent 0, 1, ..., 2^k - 1

outputs s[i] = b_i
```

LOOKUP $_k(s, i)$:

```
first_half = LOOKUP<sub>k-1</sub>(s[0:2<sup>k-1</sup>], i[1:k])
second_half = LOOKUP<sub>k-1</sub>(s[2<sup>k-1</sup>:2<sup>k</sup>], i[1:k])
return IF(i[0], second_half, first_half)
```

Theorem:

AON circuit is universal.

A simpler proof of universality of {AND,OR,NOT}

- For $\alpha \in \{0,1\}^n$, the delta function $\delta_{\alpha}(X) = 1$ iff $x = \alpha$
- Function $\delta_{\alpha}(X)$ can be computed by a circuit of size O(n)

• To implement function f, we use the following approach:

$$f(X) = \bigvee_{\alpha \in \{0,1\}^n, f(\alpha) = 1}$$

Why do we want Universal Models?

(Informal) Definition. We say a computation model is *universal* if for any finite function $f: \{0,1\}^n \to \{0,1\}^m$, there is an "instance" of the model that computes f.

Definition: We say that a gate set G is a *universal set of operations* (also known as a universal gate set) if there exists a G program to compute the function NAND.

(Textbook, Definition 3.20)

comp NAND G Comp to Sump Lunk UP, Comp only finite func

Proving Universality

A gate set G is a *universal set of operations* (also known as a universal gate set) if there exists a G program to compute the function NAND.

How can we prove some gate set G is universal?

Proving Non-Universality

A gate set G is a *universal set of operations* (also known as a universal gate set) if there exists a G program to compute the function NAND.

How can we prove some gate set G is **not** universal? Every Grant Grant finite functions.

Non-Universality of $\{OR\}$

A gate set G is a universal set of operations (also known as a universal gate set) if there exists a G program to compute the function NAND.

$$OR: \{0, 1\}^2 \to \{0, 1\}$$
 $OR(a, b) = \begin{cases} 0, & a = b = 0 \\ 1, & otherwise \end{cases}$

$$OR: \{0,1\}^2 \to \{0,1\}$$

$$OR(a,b) = \begin{cases} 0, \ a=b=0 \\ 1, \ otherwise \end{cases}$$

$$OR(x, x) = x$$

$$OR(x, x) = x$$

$$OP(x,y) \quad monotonic$$

$$Df. \quad f(x,x,...) \quad is monotonic$$

$$if \quad \forall i \quad f(x,...,x_i...x_n) = f(x,...,x_n)$$

Circuit Complexity

Complexity: What's the cost?

Sure, we can build the circuit! But how many *gates* are needed?

Recap: The big O and friends Ω , Θ , o, ω

- O(g(n)) is a set of functions: By f(n) = O(g(n)), we mean $f(n) \in O(g(n))$
- Similarly for Ω , Θ , o, ω

• f(n) = O(g(n))There exist constants c and n_0 such that for all $n \ge n_0$, $0 \le f(n) \le cg(n)$

•
$$f(n) = O(g(n))$$
:
There exist constants c and n_0 such that for all $n \ge n_0$, $0 \le f(n) \le cg(n)$

•
$$f(n) = \Omega(g(n))$$
 is equivalent to $g(n) = O(f(n))$

• $f(n) = \Theta(g(n))$ is equivalent to f = O(f) $f(n) = \Theta(g(n))$

Quick Quiz

- f(n) = o(g(n)): For any c there exists $n_0 > 0$ such that for all $n \ge n_0$, $0 \le f(n) < cg(n)$
- $f(n) = \omega(g(n))$ is equivalent to g(n) = 0 f(n)

Quick Quiz

Suppose f(n) = o(g(n)). Which must hold? Can hold?

1.
$$g(n) = O(f(n))$$

$$\mathcal{N}$$

2.
$$g(n) = \Omega(f(n))$$

3.
$$g(n) = \Theta(f(n))$$

4.
$$g(n) = o(f(n))$$

5.
$$g(n) = \omega(f(n))$$

How many gates for 2-bit Compare? If a < b, output 0; o.w., output 1

Can we do better = less gates?

Still the main goal!

"The Intel 486, officially named i486 and also known as 80486, is a microprocessor introduced in 1989."

Wikipedia: i486

https://en.wikipedia.org/wiki/Integrated_circuit

How many gates?

k: 1,2,3,... $s = b_0 b_1 \dots b_{2^k-1}$ i represent $0, 1, \dots, 2^k - 1$ outputs $s[i] = b_i$

```
first_half = LOOKUP<sub>k-1</sub>(s[0:2<sup>k-1</sup>], i[1:k])

second_half = LOOKUP<sub>k-1</sub>(s[2<sup>k-1</sup>:2<sup>k</sup>], i[1:k])

return IF(i[0], second_half, first_half)
```

$$S(k) = 2S(k-1) + (C)$$

$$= 5(k) = c' 2^{k} = 0(2^{k})$$

How much time did you spend on PRR3?

~120 response

47: 15-30 minutes

• 68: longer than 30 minutes

1 did not answer

Charge

Universality
Any finite function
Circuit Size
Number of gates

PS3: due this Friday 10:00pm