Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Московский институт электронной техники».

Институт микроприборов и систем управления им. Л. Н. Преснухина

Отчёт по лабораторной работе №1

по курсу «Преобразователи информации и датчики физических величин»

на тему

«Моделирование интегрального тензомоста»

Вариант №6

Выполнила бригада студентов группы ИВТ – 32:

Голев Андрей Дмитриевич Жигалов Даниил Владиславович Лазарева Мария Викторовна

Преподаватель:

Страчилов Максим Васильевич

І. Расчёт параметров принципиальной схемы модели

Таблица 1. Исходные данные для моделирования

Вариант	$\gamma(\%C^{-1})$	$\alpha(\%C^{-1})$	±Δ T (°C)	R ₀ (кОм)	$\pm x_{max}$ (%)	$g(\frac{\kappa O M}{B})$	E (B)	R_k
6	0,21	-0,92	±45	1,0	0,32	0,82	9	1,1

Таблица 2. Что-то

a_1	a_2	a_3	a_4	a_5
1	1	1	1	0,25

1. Устанавливаем номинальные сопротивления плеч моста R_0 :

$$U_0 = -\frac{R_0}{g \cdot a_1} = -\frac{10^3}{0.82 \cdot 10^3 \cdot 1} \approx -1.22 \text{ B}$$

2. Вычисляем амплитуду входного воздействия $U_{\rm д}$ по рассчитанному U_0 и выбранным значениям a_1 и a_2 :

$$U_{\rm A}=\pm x_{max}\cdot U_0\cdot \frac{a_2}{a_1}=\mp 0,32\cdot 10^{-2}\cdot 1,22\cdot \frac{1}{1}=\mp 3,9~{
m MB}$$

3. Вычисляем синфазную (температурную) составляющую в сигнале управления:

$$E_c = \frac{\gamma \cdot R_0 \cdot \Delta T}{a_4 \cdot g} = \frac{0.21 \cdot 10^{-2} \cdot 10^3 \cdot (\pm 45)}{1 \cdot 0.82 \cdot 10^3} = \pm 0.115 \text{ B}$$

4. Вычисляем номинальное сопротивление терморезистора при заданном α :

$$R_{T_0} = -\frac{\gamma \cdot R_0}{\alpha} = -\frac{0.21 \cdot 10^{-2} \cdot 10^3}{-0.92 \cdot 10^{-2}} \approx 228 \text{ Om}$$

5. Устанавливаем номинальное сопротивление терморезистора R_{T_0} :

$$U_{\text{cm}} = \frac{R_{T_0}}{g \cdot a_5} = \frac{228}{0.82 \cdot 10^3 \cdot 0.25} \approx 1.11 \text{ B}$$

Таблица 3. Расчётные параметры модели

U_0 , B	$U_{\mathrm{д}}(x)$, мВ	$U_{\scriptscriptstyle{ exttt{CM}}}$, B	E_c , B
-1,22	∓3,9	1,11	±0,115

II. Корректировка параметров базовой схемы тензомоста

Рисунок 1. Схема моделирования тензомоста с изменёнными параметрами

Рисунок 2. Что-то

III. Моделирование тензомоста при разных температурных условиях

1. При 0 мВ:

Рисунок 2. Моделирование при 0 мВ и без компенсации

Рисунок 3. Моделирование при 0 мВ и с компенсацией $R_{\rm K}=1$,1 кОм

Рисунок 4. Моделирование при 0 мВ и с компенсацией $R_{\rm K}=$ 2,2 кОм

Рисунок 5. Моделирование при 0 мВ и с компенсацией $R_{T_0}=228~\mathrm{Om}$

2. При -115 мВ:

Рисунок 6. Моделирование при -115 мВ и без компенсации

Рисунок 7. Моделирование при -115 мВ и с компенсацией $R_{\rm K}=$ 1,1 кОм

Рисунок 8. Моделирование при -115 мВ и с компенсацией $R_{\rm K}=$ 2,2 кОм

Рисунок 9. Моделирование при -115 мВ и с компенсацией $R_{T_0}=228~{\rm Om}$

3. При 115 мВ:

Рисунок 10. Моделирование при 115 мВ и без компенсации

Рисунок 11. Моделирование при 115 мВ и с компенсацией $R_{\rm K}=$ 1,1 кОм

Рисунок 12. Моделирование при 115 мВ и с компенсацией $R_{\rm K}=$ 2,2 кОм

Рисунок 13. Моделирование при 115 мВ и с компенсацией $R_{T_0}=228~{\rm Om}$

Таблица 4. Результаты моделирования тензомоста

Вариа	НТ		Результаты моделирования							Оценка результатов моделирования				
6		$T = T_0$, $(Ec(T)=0 \text{ MB})$		$T = T_1$ (T_{\min})		$T = T_2$ (T_{max})		$\Delta U_1 = U_{ m Beix1}$ - $U_{ m Beix0}$ (MB)	$U_{\mathtt{Bbix}0}$	ит 3C ⁻¹⁾ .	ит кВС ⁻¹⁾ .	Moc- 3/%)		
												(M		
			(Ec(T)=-115			(22(2) 222		MB) - IXIII	BbIX2-	'вств (мкЕ	/вств ая (м	T-Tb. $\vec{r} = T_{\theta}$		
		$U_{ m BbIX0}$ (MB)	$U_{\mathrm{T}}\left(\mathrm{MB}\right)$	$U_{ m Bbix1}$ (MB)	$U_{ m T} \left({}_{ m MB} ight)$	U _{BBIX2} (MB)	$U_{\mathrm{T}}\left(\mathrm{_{M}B}\right)$	$\Delta U_1 = U_1$	$\Delta U_2 = U_{\rm BLIX2} - U_{\rm BLIX0}$	Термочувствит средняя (мкВС ⁻¹).	Термочувствит расчетная (мкВС ⁻¹).	Чувствит-ть. моста при $T=T_0$ (мВ/%)		
	%	285,3		315,4		260,7		30,1	-24,6	60,8		89,2		
сации	x= 0,32%													
мпен	2%	-285,4		-316,0		-260,8		-30,6	24,6	-61,3		-89,2		
Без компенсации	x=- 0,32%													
В	x=0,32%	136,0		142,5		130,2		6,5	-5,8	13,7		42,5		
ісация «Ом	%	-136,1		-142,6		-130,2			5,9	-13,8		-42,5		
Компенсация R _K =1,1кОм	x=- 0,32%		278		393		163	-6,5						
	%	89,3		92,0		86,7			-2,6	5,9		27,9		
RI	x = 0,32%							2,7						
нсаци Ом	5%	-89,4		-92,1		-86,8			2,6	-5,9		-27,9		
Компенсация R _K =2кОм	x=- 0,32%							-2,7						
J.F.	%	232,6		232,8		232,5			-0,1	0,3		72,7		
Компенс ация	x= 0,32%							0,2						

2%	-232,6	-232,8	-232,5	-0,2	-0,1	60,8	71,9
0,329							
×=							