Homework 1

Michael Nelson

Problem 1

Exercise 1. For this problem, let $f_1(x) = -\sqrt{x+1}$ and let $f_2(x) = x^2 - 4x + 5$. We consider the following biobjective program:

minimize
$$[f_1(x), f_2(x)]$$

subject to $x \ge 0$

- 1. Derive the formula representing the outcome set Y in \mathbb{R}^2 for this biobjective program.
- 2. Graph the outcome set *Y*.
- 3. Identify and mark the Pareto-nondominated outcomes in Y.
- 4. Find the Pareto-efficient solutions in *X*.
- 5. Find the ideal point.

Solution 1. 1. Set $y_1 = f_1(x)$ and set $y_2 = f_2(x)$. We first write y_2 as a function of y_1 . Since $x = y_1^2 - 1$, we have

$$y_2 = x^2 - 4x + 5$$

$$= (y_1^2 - 1)^2 - 4(y_1^2 - 1) + 5$$

$$= y_1^4 - 2y_1^2 + 1 - 4y_1^2 + 4 + 5$$

$$= y_1^4 - 6y_1^2 + 10.$$

Note that if $x \ge 0$, then $y_1 \le -1$. In particular, the outcome set Y is given by

$$Y = \{(y_1, y_1^4 - 6y_1^2 + 10) \mid y_1 \le -1\} \subseteq \mathbb{R}^2$$

2. We graph the outcome set *Y* below:

where $a = (-\sqrt{3}, 1)$ and b = (-1, 5). Note that the outcome set Y consists of both the red and black segments of the curve. Also note that the red segment extends off towards infinity.

- 3. The red segment of the curve above is the set of all Pareto-nondominated outcomes in *Y*. Specifically, this is the set of all $y \in Y$ such that $y_1 \le -\sqrt{3}$.
- 4. Note that $x = y_1^2 1$ and $x \ge 0$. Thus when $y_1 \le -\sqrt{3}$, we have $x \ge 2$. Thus the efficient solutions in X is given by the interval $[2, \infty)$.
- 5. The ideal point is given by

$$c = \begin{pmatrix} \inf_{x \ge 2} f_1(x) \\ \inf_{x \ge 2} f_2(x) \end{pmatrix} = \begin{pmatrix} -\infty \\ 1 \end{pmatrix}$$

Problem 2

Exercise 2. For this problem, let $f_1(x) = x_1 - 3x_2$ and let $f_2(x) = -4x_1 + x_2$. Furthermore, let

$$g_1(x) = -x_1 + x_2 - 7/2$$

$$g_2(x) = x_1 + x_2 - 11/2$$

$$g_3(x) = 2x_1 + x_2 - 9$$

$$g_4(x) = x_1 - 4.$$

Finally let

$$X = \{x \in \mathbb{R}^2_{\geq 0} \mid g_j(x) \leq 0 \text{ all } j = 1, 2, 3, 4\}.$$

We consider the following biobjective program:

maximize
$$[f_1(x), f_2(x)]$$

subject to $x \in X$

- 1. Graph the feasible set *X* in the decision space.
- 2. Graph the outcome set Y in the objective space \mathbb{R}^2 . Explain what mathematical property you used to draw Y.
- 3. Identify and mark the Pareto-nondominated outcomes in Y.
- 4. Identify and mark the Pareto-efficient solutions in *X*.
- 5. Find and graph the ideal point.

Solution 2. 1. The feasible set *X* is the region shaded in grey below (including the edges):

where

$$a_1 = (0,0)$$

$$a_2 = (0,7/2)$$

$$a_3 = (1,9/2)$$

$$a_4 = (7/2,2)$$

$$a_5 = (4,1)$$

$$a_6 = (4,0)$$

2. The outcome set Y is the region shaded in grey below (including the edges):

where $b_i = f(a_i)$ for all $1 \le i \le 6$. Specifically:

$$b_1 = (0,0)$$

$$b_2 = (-21/2,7/2)$$

$$b_3 = (-25/2,1/2)$$

$$b_4 = (-5/2,-12)$$

$$b_5 = (1,-15)$$

$$b_6 = (4,-16)$$

Here we used the fact that f is a linear transformation. Thus it takes the convex closure of the a_i to the convex closure of the b_i .

3. The Pareto-nondominated outcomes in Y is the thick red segment in part 2. Specifically, it is given by

$$Y_N = [b_2, b_1] \cup [b_1, b_6],$$

where $[b_2, b_1]$ is the line segment in the plane from b_2 to b_1 , and where $[b_1, b_6]$ is the line segment in the plane from b_1 to b_6 .

4. The Pareto-effecient solutions in X is the thick red segment in part 1. Specifically, it is given by

$$X_E = [a_2, a_1] \cup [a_1, a_6].$$

5. The ideal point is the point

$$c = \begin{pmatrix} \sup_{x \in X_E} f_1(x) \\ \sup_{x \in X_E} f_2(x) \end{pmatrix} = \begin{pmatrix} 4 \\ 7/2 \end{pmatrix},$$

shown in the graph of part 2.

Problem 3

Exercise 3. Let C_1 and C_2 be finite cones in \mathbb{R}^p and let C_1^* and C_2^* be their dual cones, respectively. Prove the following:

- 1. If $C_1 \subseteq C_2$, then $C_2^* \subseteq C_1^*$.
- 2. $(C_1 + C_2)^* = C_1^* \cap C_2^*$.

Solution 3. 1. Let $y \in C_2^*$. Thus $\langle x, y \rangle \leq 0$ for all $x \in C_2$ (where $\langle x, y \rangle = x^\top y$). In particular, $\langle x, y \rangle \leq 0$ for all $x \in C_1$ since $C_1 \subseteq C_2$. It follows that $y \in C_1^*$. Since $y \in C_2^*$ was arbitrary, it follows that $C_2^* \subseteq C_1^*$.

2. First note that if C is a cone, then $0 \in C^*$ and $(C \cup \{0\})^* = C^*$. Thus by replacing C_1 and C_2 with $C_1 \cup \{0\}$ and $C_2 \cup \{0\}$ if necessary, we may assume that both C_1 and C_2 contain 0. In this case, observe that $C_1 \subseteq C_1 + C_2$ and $C_2 \subseteq C_1 + C_2$. Thus by part 1, we have $(C_1 + C_2)^* \subseteq C_1^*$ and $(C_1 + C_2)^* \subseteq C_2^*$. It follows that $(C_1 + C_2)^* = C_1^* \cap C_2^*$.

Problem 4

Exercise 4. Derive the formula representing the polar cone of the cone generated by

- 1. the vector v = (2,3) in \mathbb{R}^2 .
- 2. the vectors v = (4,1) and w = (4,-1) in \mathbb{R}^2 .

Solution 4. Note that if a cone C is generated by vectors v_1, \ldots, v_m in \mathbb{R}^n , then we have

$$x \in C^+ \iff \langle v, x \rangle \ge 0 \text{ for all } v \in C$$

 $\iff \langle v_i, x \rangle \ge 0 \text{ for all } 1 \le i \le m.$
 $\iff Ax > 0,$

where A is the $m \times n$ matrix whose ith row is given by v_i . Thus we can express C^+ in inequality form as:

$$C^+ = \{x \mid Ax \ge 0\}.$$

In particular, for part 1 we use the 1×2 matrix $A = \begin{pmatrix} 2 & 3 \end{pmatrix}$ and for part 2 we use the 2×2 matrix $A = \begin{pmatrix} 4 & 1 \\ 4 & -1 \end{pmatrix}$.

Problem 5

Exercise 5. Solve the following:

1. Let *C* be a polyhedral cone defined as

$$C = \{x \in \mathbb{R}^2 \mid Ax \ge 0\},\$$

where $A = \begin{pmatrix} 1 & -2 \\ -3 & 1 \end{pmatrix}$. Derive the generator form for this cone.

2. Let *C* be a polyhedral cone defined as

$$C = \{x \in \mathbb{R}^3 \mid x = B\lambda, \lambda \ge 0\},\$$

where $B = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix}$. Derive the inequality form for this cone.

Solution 5. 1. We have

$$C = \{x \in \mathbb{R}^2 \mid Ax \ge 0\}$$

$$= \{x \in \mathbb{R}^2 \mid Ax = \lambda, \ \lambda \ge 0\}$$

$$= \{x \in \mathbb{R}^2 \mid x = A^{-1}\lambda, \ \lambda \ge 0\}$$

$$= \left\{x \in \mathbb{R}^2 \mid x = \frac{1}{5} \begin{pmatrix} -1 & -2 \\ -3 & -1 \end{pmatrix} \lambda, \ \lambda \ge 0\right\}$$

$$= \left\{x \in \mathbb{R}^2 \mid x = \begin{pmatrix} -1 & -2 \\ -3 & -1 \end{pmatrix} \lambda, \ \lambda \ge 0\right\}$$

We have

$$C = \{x \in \mathbb{R}^3 \mid x = B\lambda, \lambda \ge 0\}$$

$$= \{x \in \mathbb{R}^2 \mid B^{-1}x = \lambda, \lambda \ge 0\}$$

$$= \{x \in \mathbb{R}^2 \mid B^{-1}x \ge 0\}$$

$$= \left\{x \in \mathbb{R}^2 \mid \frac{1}{2} \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} x \ge 0\right\}$$

$$= \left\{x \in \mathbb{R}^2 \mid \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} x \ge 0\right\}$$

Problem 6

Exercise 6. Graphically find A - B, where

1.
$$A = \{x \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \le 9\}$$
 and $B = \mathbb{R}^2_{\ge 0} \cup \mathbb{R}^2_{\le 0}$.

2. A is a set in \mathbb{R}^2 and has the shape of a thick letter U rotated 45 degrees to the right and $B = \mathbb{R}^2_{\geq 0}$.

Make sure your pictures are neat and accurate.

Solution 6. 1. First note that A - B = A + B in this case. We find $(A - B)^c = (A + B)^c = \mathbb{R}^2 \setminus (A + B)$ graphically below (we draw the complement $(A + B)^c$ instead A + B since it's easier to visualize).

B = blue region A = red region $(A+B)^c = green region$

2. We find $(A - B)^c$ graphically below:

