21. Pohjoismainen matematiikkakilpailu

29. maaliskuuta 2007

Tehtävien ratkaisuja

Tehtävä 1.

Etsi yksi yhtälön

$$x^2 - 2x - 2007y^2 = 0$$

positiivinen kokonaislukuratkaisu.

Ratkaisu. Yhtälö on sama kuin

$$x(x-2) = 223 \cdot (3y)^2.$$

Kokeilemalla todetaan, että 223 on alkuluku. Jotta yhtälöllä olisi kokonaislukuratkaisu, on joko luvun x tai luvun x-2 tekijänä oltava 223. Kokeillaan x-2=223. Silloin $x=225=15^2$ ja $x(x-2)=223\cdot(3\cdot5)^2$. Saadaan siis ratkaisu (x,y)=(5,225).

Tehtävä 2.

On annettu kolmio, suora ja kolme suorakaidetta, joiden yksi sivu on annetun suoran suuntainen, niin, että suorakaiteet peittävät kokonaan kolmion sivut. Todista, että suorakaiteet peittävät kokonaan kolmion sisäosan.

Ratkaisu. Valitaan mileivaltainen kolmion sisäpiste P. Piirretään P:n kautta annetun suoran suuntainen suora ja annettua suoraa vastaan kohtisuora suora. Ne leikkaavat kolmion sivut pisteissä A, B, C ja D. Koska nämä neljä pistettä kukin kuuluvat johonkin tehtävän kolmesta suorakaiteesta, ainakin yksi suorakaiteista, erimerkiksi R, sisältää pisteistä kaksi, esimerkiksi pisteet A ja B. Jos A, B ja P ovat samalla suoralla, jana AB kuuluu kokonaan suorakaiteeseen R ja siten myös piste P kuuluu R:ään. Jos $\angle APB$ on suora kulma, niin murtoviiva APB, jonka sivut ovat R:n sivujen suuntaisia, kuuluu kokonaan suorakaiteeseen R. Siis P kuuluu R:ään.

Tehtävä 3.

Taululle on kirjoitettu luku 10^{2007} . Anne ja Berit pelaavat peliä, jossa pelaaja tekevät vuorotellen yhden seuraavista operaatioista:

- (i) Pelaaja korvaa taululla olevan luvun x kahdella ykköstä suuremmalla kokonaisluvulla a ja b niin, että x=ab.
- (ii) Pelaaja poistaa taululla olevista kahdesta samasta luvusta toisen tai molemmat.

Se pelaaja, joka ei voi tehdä kumpaakaan näistä vuorollaan, häviää pelin. Kummalla pelaajalla on voittostrategia, jos Anne aloittaa pelin?

Ratkaisu. Anne voi ensimmäiseksi siirrokseen korvata 10^{2007} luvuilla 2^{2007} ja 5^{2007} . Induktiolla nähdään, että Anne voi pelata niin, että hänen siirtonsa jälkeen taululla ovat luvut 2^{α_1} , 2^{α_2} , ..., 2^{α_k} ja 5^{α_1} , 5^{α_2} , ..., 5^{α_k} . Ensimmäisen siirron jälkeen näin on. Jos asetelma on tällainen, Berit voi poistaa luvun p^{α_j} tai kirjoittaa luvun p^{α_j} paikalle luvut $p^{\alpha'_j}$ ja $p^{\alpha_j-\alpha'_j}$. Silloin Anne voi aina tehdä joko siirron, jossa $(7-p)^{\alpha_j}$ poistetaan tai

 $(7-p)^{\alpha_j}$ korvataan luvuilla $(7-p)^{\alpha'_j}$ ja $(7-p)^{\alpha_j-\alpha'_j}$. Annen siirron jälkeen tilanne on jälleen samanlainen kuin ennen Beritin ja Annen siirtoja. Anne ei siis voi hävitä. Että Anne myös varmasti voittaa, nähdään siitä, että jokainen luvun poisto pienentää taululla olevien lukujen summaa, ja koska (a-1)(b-1)=ab-(a+b)+1, niin ab>a+b paitsi jos a=b=2. Jokaisessa Annen ja Beritin siirtoparissa taululla olevien lukujen summa pienenee, joten, peli ei voi jatkua mielivaltaisen pitkään. Annella on siis voittostrategia.

Tehtävä 4.

Pisteen A kautta kulkeva suora leikkaa ympyrän kahdessa pisteessä B ja C niin, että B on A:n ja C:n välissä. Pisteestä A piirretään ympyrälle kaksi tangenttia, jotka sivuavat ympyrää pisteissä S ja T. Olkoon P suorien AC ja ST leikkauspiste. Osoita, että $AP/PC = 2 \cdot AB/BC$.

Ratkaisu. Osoitetaan, että pisteen P sijainti ei riipu tehtävässä olevan ympyrän valinnasta. Olkoot siis Γ_1 ja Γ_2 pisteiden B ja C kautta kulkevia ympyröitä ja olkoot S_i ja T_i pisteestä A ympyröille Γ_1 ja Γ_2 piirrettyjen tangenttien sivuamispisteet sekä P_1 ja P_2 pisteet, jossa janat S_1T_1 ja S_2T_2 leikkaavat suoran ABC. Lasketaan pisteen A potenssi ympyröiden Γ_1 ja Γ_2 suhteen. Se on kummankin ympyrän suhteen $AB \cdot AD$, mutta myös AS_1^2 , AT_1^2 ja AS_2^2 sekä AT_2^2 . Mutta tämä merkitsee, että $AS_1 = AT_1 = AS_2 = AT_2$, joten S_1 , T_1 , S_2 ja T_2 ovat samalla A-keskisellä ympyrällä Γ . Olkoon Q suorien S_1T_1 ja S_2T_2 leikkauspiste. Pisteen Q potenssi ympyrän Γ suhteen on $QS_1 \cdot QT_1 = QS_2 \cdot QT_2$. Mutta tämä merkitsee, että Q:lla on sama potenssi ympyröiden Γ_1 ja Γ_2 suhteen. Nyt niiden pisteiden joukko, joilla on sama potenssi kahden toisensa leikkaavan ympyrän suhteen on ympyröiden leikkauspisteiden kautta kulkeva suora [sitä kutsutaan ympyröiden T_1 ja T_2 suhteen vadikaaliakseliksi; on triviaalia, että suoran pisteillä on tämä ominaisuus, ja jos suoran ulkopuolisen pisteen kautta piirretään ympyröiden toisen leikkauspisteen kautta kulkeva suora, nähdään, että piteellä ei ole sama potenssi molempien ympyröiden suhteen]. Tästä seuraa, että Q on suoralla AB joten $P_1 = P_2 = Q$.

Edellä sanotusta seuraa, että riittää, kun tehtävä ratkaistaan tapauksessa, jossa AB on ympyrän halkaisija. Olkoon ympyrän keskipiste O, säde r ja olkoon AO=a ja PO=b. Yhdenmuotoisista suorakulmaisista kolmioista AOS ja OSP saadaan

eli $ab = r^2$.

Nyt

$$\frac{AP}{PC} = \frac{a-b}{b+r} = \frac{a^2 - ab}{ab+ar} = \frac{a^2 - r^2}{r^2 + ar} = \frac{a-r}{r} = \frac{AB}{\frac{BC}{2}} = 2\frac{AB}{BC}.$$