CHAPTER 2

Unsupervised Learning (Probabilistic clustering via EM algorithm)

Content

- Introduction to Unsupervised Learning
- K-means clustering
- Probabilistic clustering via EM algorithm
- Hierarchical clustering
- Unsupervised Learning with Python
- Unsupervised Learning with SAS EM
- Determine Number of Clusters with Python
- Density-based Spatial Clustering of Applications with Noise (DBSCAN)

PROBABILISTIC CLUSTERING

Probabilistic Clustering

- Formulate the clustering problem via probability distribution.
- Introduce the concept called maximum likelihood estimator (MLE).
- Introduce the concept mixture model.

Probabilistic Clustering

- To introduce the probabilistic approach, we have to first review K-means clustering.
- The probabilistic approach is closely related to K-means clustering.

Review: K-means clustering

Minimize the following objective function:

$$\min_{I_{ik}, c_k} J(I_{ik}, c_k), where J(I_{ik}, c_k) = \sum_{i=1}^{n} \sum_{k=1}^{c} I_{ik} ||x_i - c_k||^2$$

Step 1: Updating Assignment

- Assign each sample to the closest centroid
- That is,

$$I_{ik} = 1 \text{ if } \left| |x_i - c_k| \right|^2 \le \left| |x_i - c_j| \right|^2, \text{ for j=1,...c}$$
 $I_{ik} = 0 \text{ otherwise}$

Step 2: Updating Centroid

Compute the centroids by the following formula

$$c_k = \frac{\sum_{i=1}^n I_{ik} x_i}{\sum_{i=1}^n I_{ik}}$$

Probabilistic Clustering

- In K-means clustering, the binary indicator $I_{ik} = \{0,1\}$ is used. It also indicates which sample point belongs to which cluster.
- The probabilistic approach changes the binary indicator $I_{ik} = \{0,1\}$ to be a probability z_{ik} with $\sum_{k=1}^{\infty} z_{ik} = 1$.
- Questions: Why we have to do this? What is the advantage of employing probabilistic approach?
- **Answer**: It can introduce a way to guess the number of clusters, which is not solvable by K-means clustering.

Question: Given the following data

1	2	3	11	12	13
'	_		''	12	10

• Partition the data into two groups using the probabilistic clustering method with initial guesses $c_1 = 1$ and $c_2 = 11$.

• Remark: We can clearly see that there are two groups in the data. The first group is {1,2,3} while the second group is {11,12,13}. Surely, we can use K-means clustering to solve the problem. The purpose of this example is to illustrate the use of a probabilistic clustering method.

- Answer: First, we solve the problem using K-means clustering algorithm. Then, we will introduce the probabilistic clustering approach.
- Initial guess: $c_1 = 1$ and $c_2 = 11$
- Step 1: Update the assignment

Original Data	1	2	3	11	12	13
Distance to cluster c_1	0	1	2 ²	10 ²	11 ²	12 ²
Distance to cluster c_2	10 ²	9 ²	8 ²	0	1	2 ²
Assignment	c_1	c_1	c_1	c_2	c_2	c_2

Step 2: Compute the Centroid:

$$c_1 = \frac{1+2+3}{3} = 2$$
 and $c_2 = \frac{11+12+13}{3} = 12$

- Since the cluster centers are not the same, we have to apply the whole procedure again
- Previous cluster centers: $c_1 = 2$ and $c_2 = 12$
- Step 1: Update the assignment

Original Data	1	2	3	11	12	13
Distance to cluster c_1	1	0	1 ²	9 ²	10 ²	10 ²
Distance to cluster c_2	11 ²	10 ²	9 ²	1	0	1 ²
Assignment	c_1	c_1	c_1	c_2	c_2	c_2

Step 2: Compute the Centroid:

$$c_1 = \frac{1+2+3}{3}$$
 and $c_2 = \frac{11+12+13}{3} = 12$

**No change in c_1 and c_2 . We can output the results.

- Now, we introduce the probabilistic approach.
- We assume that the two groups follow two normal distributions with means c_1 and c_2 . Both have unit standard derivation.
- The followings are the key steps:
 - Step 1: Compute the probabilities (Assignment step)
 - Step 2: Compute the centroid.
- Similar to K-means clustering, this approach still has the assignment step and the centroid step.

- Initial guess: $c_1 = 1$ and $c_2 = 11$
- Step 1: Compute the probabilities
- Since we assume that both clusters follow normal distributions with means c_1 and c_2 , we can compute the probabilistic assignments z_{i1} and z_{i2} as below

$$z_{i1} = \frac{Probability (ith pt) c_1}{Probability (ith pt) c_1 + Probability (ith pt) c_2}$$

$$z_{i2} = \frac{Probability (ith pt) c_1 + Probability (ith pt) c_2}{Probability (ith pt) c_1 + Probability (ith pt) c_2}$$

• If $z_{i1} > z_{i2}$, it means the ith point is more likely to belong to c_1 . Otherwise, it is c_2 .

Graphically illustration

 To find these two probabilities, we need to compute the following:

Probability (ith pt)
$$c_1 = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_1)^2}{2}\right)$$

Probability (ith pt) $c_2 = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_2)^2}{2}\right)$

So, the two probabilistic labels are

$$z_{i1} = \frac{\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_1)^2}{2}\right)}{\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_1)^2}{2}\right) + \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_2)^2}{2}\right)}$$

$$z_{i2} = \frac{\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_1)^2}{2}\right)}{\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_1)^2}{2}\right) + \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_2)^2}{2}\right)}$$

Step 1: Compute the two probabilities

Original Data	1	2	3	11	12	13
z_{i1}	1	1	1	0	0	0
z_{i2}	0	0	0	1	1	1
Assignment	c_1	c_1	c_1	c_2	c_2	c_2

Step 2: Compute the Centroids:

$$c_1 = \frac{\sum_{i=1}^n z_{i1} x_i}{\sum_{i=1}^n z_{i1}} = 2 \text{ and } c_2 = \frac{\sum_{i=1}^n z_{i2} x_i}{\sum_{i=1}^n z_{i2}} = 12$$

Since the cluster centers are not the same, we have to apply the whole procedure again

- $c_1 = 2$ and $c_2 = 12$
- Step 1: Compute the two probabilities
- By applying the two formulae:

$$z_{i1} = \frac{\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_1)^2}{2}\right)}{\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_1)^2}{2}\right) + \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_2)^2}{2}\right)}$$

$$z_{i2} = \frac{\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_2)^2}{2}\right)}{\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_1)^2}{2}\right) + \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_2)^2}{2}\right)}$$

Step 1: Compute the two probabilities

Original Data	1	2	3	11	12	13
z_{i1}	1	1	1	0	0	0
z_{i2}	0	0	0	1	1	1
Assignment	c_1	c_1	c_1	c_2	c_2	c_2

Step 2: Compute the Centroids:

$$c_1 = \frac{\sum_{i=1}^n z_{i1} x_i}{\sum_{i=1}^n z_{i1}} = 2$$
 and $c_2 = \frac{\sum_{i=1}^n z_{i2} x_i}{\sum_{i=1}^n z_{i2}} = 12$

Since the cluster centers are the same as the previous ones, we can stop and output the solutions.

Principle of Probabilistic Clustering

Step 1: Compute the two probabilities

$$z_{i1} = \frac{Probability (ith pt) c_1}{Probability (ith pt) c_1 + Probability (ith pt) c_2}$$

$$z_{i2} = \frac{Probability (ith pt) c_1 + Probability (ith pt) c_2}{Probability (ith pt) c_1 + Probability (ith pt) c_2}$$

Step 2: Compute the Centroids:

$$c_1 = \frac{\sum_{i=1}^n z_{i1} x_i}{\sum_{i=1}^n z_{i1}}$$
 and $c_2 = \frac{\sum_{i=1}^n z_{i2} x_i}{\sum_{i=1}^n z_{i2}}$

 Remark: It is noted that we may assume different distributions for the data samples. We will discuss this later.

Question: Given the following data

1	2	3	3	4	5
_	_			<u>-</u>	

- Partition the data into two groups using the probabilistic clustering method with initial guesses $c_1 = 1$ and $c_2 = 5$.
- Assume the two groups follow normal distributions with means c_1 and c_2 . Both have unit standard deviation.

- Answer:
- Step 1: Compute the two probabilities
- By applying the two formulae:

$$z_{i1} = \frac{\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_1)^2}{2}\right)}{\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_1)^2}{2}\right) + \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_2)^2}{2}\right)}$$

$$z_{i2} = \frac{\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_2)^2}{2}\right)}{\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_1)^2}{2}\right) + \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_2)^2}{2}\right)}$$

- initial guesses $c_1 = 1$ and $c_2 = 5$
- Step 1: Compute the two probabilities

Original Data	1	2	3	3	4	5
z_{i1}	0.9997	0.9820	0.5	0.5	0.018	0.0003
z_{i2}	0.0003	0.0180	0.5	0.5	0.9820	0.9997
Assignment	c_1	c_1	c_1	c_2	c_2	c_2

Step 2: Compute the Centroids:

$$c_1 = \frac{\sum_{i=1}^n z_{i1} x_i}{\sum_{i=1}^n z_{i1}} = 2.0124 \text{ and } c_2 = \frac{\sum_{i=1}^n z_{i2} x_i}{\sum_{i=1}^n z_{i2}} = 3.9876$$

Since the cluster centers are not the same as the previous ones, we have to apply the whole procedure again.

- initial guesses $c_1 = 2.0124$ and $c_2 = 3.9876$
- Step 1: Compute the two probabilities

Original Data	1	2	3	3	4	5
z_{i1}	0.9811	0.8782	0.5	0.5	0.1218	0.0189
z_{i2}	0.0189	0.1218	0.5	0.5	0.8782	0.9811
Assignment	c_1	c_1	c_1	c_2	c_2	c_2

Step 2: Compute the Centroids:

$$c_1 = \frac{\sum_{i=1}^n z_{i1} x_i}{\sum_{i=1}^n z_{i1}} = 2.10641 \text{ and } c_2 = \frac{\sum_{i=1}^n z_{i2} x_i}{\sum_{i=1}^n z_{i2}} = 3.8936$$

Since the cluster centers are not the same as the previous ones, we have to apply the two steps again. However, we have to repeat many times.

- In this example, we can see the difference between K-means clustering and probabilistic clustering approaches.
- For K-means clustering, we must assign a data sample to a cluster center.
- However, a data sample may belong to more than one cluster centers.
- In this example, we can see that the data samples {3,3} belong to both cluster centers.

Remark on Probabilistic Clustering

- Assume each cluster follows a normal distribution. Thus, each has two distribution parameters, namely mean c and variance σ^2 .
- So, the probabilistic clustering has the following settings:

Setting A:

Clusters have different means and difference variances.

That is, Cluster 1 c_1 , σ_1^2 ; Cluster 2 c_2 , σ_2^2 ;

Setting B:

Clusters have different means but same variances. That is, Cluster 1 c_1 , σ^2 ; Cluster 2 c_2 , σ^2 ;

Remark on Probabilistic Clustering

However, the following setting is not useful.

Setting C:

Clusters have same mean but different variances. That is, Cluster 1 c, σ_1^2 ; Cluster 2 c, σ_2^2 ;

Because the two clusters are overlapped, the samples in the yellow region must below to cluster 1. Cluster 2 is then useless.

Covariance Matrix

Covariance setting in sklearn

covariance_type : {'full', 'tied', 'diag', 'spherical'}, default='full'
String describing the type of covariance parameters to use. Must be one of:

- 'full': each component has its own general covariance matrix.
- 'tied': all components share the same general covariance matrix.
- 'diag': each component has its own diagonal covariance matrix.
- 'spherical': each component has its own single variance.

Covariance Matrix

• Full

Shapes of the two clusters can be very different.

Tier

Covariance Matrix

diag

The two clusters can have different variances along the major directions.

Covariance matrix:
$$\begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix}$$

Two different clusters can have different σ_{11} and σ_{22} .

 σ_{11} is the variance in the x-direction.

 σ_{22} is the variance in the y-direction.

Spherical

Cluster 1 and Cluster 2

Both clusters have the spherical shape.

Origin of Probabilistic Clustering

- In this probabilistic approach, we actually employ a method to solve the problem.
- It is called **Expectation and Maximization** (EM) algorithm.
- It consists of two steps: Expectation step (E-step) and Maximization step (M-step).

Principle of Probabilistic Clustering

• E-Step (Step 1): Compute the two probabilities

$$z_{i1} = \frac{Probability (ith pt) c_1}{Probability (ith pt) c_1 + Probability (ith pt) c_2}$$

$$z_{i2} = \frac{Probability (ith pt) c_1 + Probability (ith pt) c_2}{Probability (ith pt) c_1 + Probability (ith pt) c_2}$$

M-Step (Step 2): Compute the Centroids:

$$c_1 = \frac{\sum_{i=1}^n z_{i1} x_i}{\sum_{i=1}^n z_{i1}}$$
 and $c_2 = \frac{\sum_{i=1}^n z_{i2} x_i}{\sum_{i=1}^n z_{i2}}$

E-step

- In EM algorithm, the E-step is to partition the data into groups.
- The general formula is

$$z_{ik} = \frac{Probability (ith pt) c_k}{\sum_{k} Probability (ith pt) c_k}$$

Obviously,

$$\sum_{k=1} z_{ik} = 1 \quad \text{with } 0 \le z_{ik} \le 1$$

- For each point, the largest value of z_{ik} indicates which group the point belongs to.
- Remark: the probability density function is defined by user. If it is assumed to be a normal, we have to use normal density. If assumed to be an exponential distribution, we have to use exponential density.

M-step (objective function)

 In the above clustering problems, the M-step is to solve the following log probability function.

$$\max_{c_k} \sum_{i,k} z_{ik} \log(p_{ik})$$

where
$$p_{ik} = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x_i - c_k)^2}{2}\right)$$

After some simplifications, the above model becomes

$$\max_{c_k} \sum_{i,k} z_{ik} \left(-\frac{1}{2} \log(2\pi) - \frac{(x_i - c_k)^2}{2} \right)$$

M-step

• Since $\sum_k z_{ik} = 1$ and $-\frac{1}{2}\log(2\pi)$ is a constant, the optimization problem can be simplified to

$$\min_{c_k} \sum_{i,k} z_{ik} (x_i - c_k)^2$$

- This is very similar to the K-means clustering problem except that the assignment term z_{ik} .
- Of course, the above situation only consider the normality case. Different probability function gives different objective function.

M-step and Likelihood Function

- The role of M-step is to guess the unknown parameters, say the centers c_1 and c_2 by a maximization procedure called maximum likelihood estimation (MLE).
- We first introduce the likelihood function.
- Then, we explain the procedure that can maximize the likelihood function.

What is likelihood? Example 1

Example: Suppose we have the following data

- In this case it is reasonable to guess the data follow the Bernoulli distribution.
- The remaining question is how can we find the parameter p? i.e.,

$$P(X = x) = p^{x}(1-p)^{1-x}$$

This can be achieved by

$$argmax_p P(Data|B(p))$$

What is likelihood? Example 2

Example: Suppose the following are marks in a course 55.5, 67, 87, 48, 63

- We may have to do some guess works. Marks may follow a Normal distribution.
- The remaining question is how can we find the parameter μ,σ i.e.

$$N(\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma}(x-\mu)^2}$$
 • This can be achieved by

$$argmax_{\mu,\sigma}p(Data|\mu,\sigma)$$

Maximum Likelihood Estimation

- A likelihood function is usually denoted as L(p). p is the parameter to be estimated.
- We want to select a parameter p which will maximize the probability that the data was generated from the model with the parameter p plugged-in.
- The parameter **p** is called the maximum likelihood estimator.
- The maximum of the function can be obtained by setting the derivative of the function ==0 and solving for p.

Two Important Facts

Fact 1: If A₁,...,A_n are independent then

$$P(A_1,...,A_n) = \prod_{i=1}^n P(A_i)$$

- Fact 2: The log function is monotonically increasing. x · y !
 Log(x) · Log(y)
- Therefore if a function f(x) >= 0, achieves a maximum at x1, then log(f(x)) also achieves a maximum at x1.

Example of MLE (Recall: Example 1)

Example: Suppose we have the following data

- In this case it is reasonable to guess the data follow the Bernoulli distribution.
- The remaining question is how can we find the parameter p? i.e.,

$$P(X = x) = p^x (1 - p)^{1-x}$$

This can be achieved by

$$\operatorname{argmax}_{p}P(Data|B(p))$$

Example of MLE (Recall: Example 1)

• Answer:
$$L(p) = P(0, 1, 1, 0, 0, 1, 0, 1|p)$$

 $= P(0|p)P(1|p) \dots P(1|p)$
 $= (1-p)p \dots p$
 $= p^4(1-p)^4$

 Now, choose p which maximizes L(p). Instead we will maximize I(p)= LogL(p)

$$\frac{\ell(p)}{dp} = \frac{\log L(p) = 4\log(p) + 4\log(1-p)}{\frac{d\ell(p)}{dp}} = \frac{4}{p} - \frac{4}{1-p} \equiv 0$$

$$\rightarrow p = \frac{1}{2}$$

Example of MLE (Recall: Example 1)

• If we replace the Bernoulli variables by $x_i = \{0,1\}$, we have that the proportion p is the sample proportion. That is,

$$p = \frac{\sum_{i=1}^{n} x_i}{n}$$

where $x_i = \{0,1\}.$

• In this example, $x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 0, x_5 = 0, x_6 = 1, x_7 = 0, x_8 = 1.$ $p = \frac{0+1+1+0+0+1+0+1}{8} = \frac{4}{8}$

• Suppose the weights of randomly selected American female college students are normally distributed with unknown mean μ and standard deviation σ . A random sample of 10 American female college students yielded the following weights (in pounds):

115 122 130 127 149 160 152 138 149 180

• Assume the data follow a normal distribution. Identify the likelihood function and the maximum likelihood estimator of μ of all American female college students. Using the given sample, find a maximum likelihood estimate of μ as well.

Answer:

The probability density function is

$$f(x_i; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x_i - \mu)^2}{2\sigma^2}\right]$$

The likelihood function is

$$L(\mu, \sigma) = \sigma^{-n} (2\pi)^{-\frac{n}{2}} \exp \left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 \right]$$

 Now, we take logarithm to the likelihood function and it is given as below

$$l(\mu, \sigma) = \log(L(\mu, \sigma)) = -n\log(\sigma) - \frac{n}{2}\log(2\pi) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - \mu)^2$$

• By taking the first derivative of $l(\mu, \sigma)$ with respect to μ and setting it to be zero, we have the estimated $\hat{\mu}$

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

- That is, the maximum likelihood estimator of μ is the sample mean of the data.
- So,

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{10} (115 + \dots + 180) = 142.2$$

- Let X_1 , X_2 ,..., X_n be a random sample from a normal distribution with unknown mean μ and variance σ^2 .
- Find maximum likelihood estimators of mean μ and variance σ^2 .

Answer:

Again, we have the likelihood function as below

$$L(\mu, \sigma) = \sigma^{-n} (2\pi)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2\right]$$

Taking logarithm to the likelihood function, we have

$$l(\mu, \sigma) = \log(L(\mu, \sigma)) = -n\log(\sigma) - \frac{n}{2}\log(2\pi) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

• By taking the first derivative of $l(\mu, \sigma)$ with respect to μ and setting it to be zero, we have the estimated $\hat{\mu}$

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• By taking the first derivative of $l(\mu, \sigma)$ with respect to σ and setting it to be zero, we have

$$-\frac{n}{\sigma} + \frac{2}{2\sigma^3} \sum_{i=1}^{n} (x_i - \mu)^2 = 0$$

• the estimated $\hat{\sigma}$ is

$$\hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2}$$

Which is the sample standard derivation.

Reference Notes

- The following slides are for reference only.
- It introduces another probabilistic clustering technique that can cluster textural data.
- The method assumes each cluster follows a Bernoulli distribution. Then, use EM algorithm to update the probabilities and the distribution parameter.

- We are given two set of coin tosses. Each coin was tosses 10 times.
- Their mixture is modelled by the following equation

$$\max_{\theta_k} \sum_{k=1}^{2} \sum_{i=1}^{5} z_{ik} \log(p_{ik})$$

where $p_{ik} = \Pi_{j=1}^{10} \theta_k^{x_i^j} (1 - \theta_k)^{\left(1 - x_i^j\right)}$. Assume z_{ik} are some known functions.

- Index *i*: ith set, i = 1, 2, ... 5
- Index *j*: jth toss , j = 1,2, ... 10
- Index k: kth coin, k = 1,2

If i=1 and k=1, $p_{ik}=\Pi_{j=1}^{10}\theta_k^{\ x_i^j}(1-\theta_k)^{\left(1-x_i^j\right)} \text{ represents}$ the 1st set and assumed to be 1st coin.

• Objective function:

$$\max_{\theta_k} \sum_{k=1}^{2} \sum_{i=1}^{5} z_{ik} \log(p_{ik})$$

- This objective function partitions the data into two clusters.
- Each cluster is labelled by z_{ik} with centroid θ_k
- Find θ_k

• Answer: By taking differentiation w.r.t. θ_k and setting to zero, the MLE estimate of θ_k is

$$\theta_k = \frac{\sum_{i=1}^{5} z_{ik} \left(\frac{1}{10} \sum_{j=1}^{10} x_i^j \right)}{\sum_{i=1}^{5} z_{ik}}$$

This estimate will used in the M-step of the EM algorithm. This is shown in next section.

Main Results of MLE

The likelihood function for the normal variables is

$$\sigma^{-n}(2\pi)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right]$$

If σ is given, the MLE estimate of μ is

$$\mu = \frac{1}{n} \sum_{i=1}^{n} X_i$$

If σ is not known, the MLE estimates of μ and σ are

$$\mu = \frac{1}{n} \sum_{i=1}^{n} X_i \text{ and } \sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2}$$

Main Results of MLE

The likelihood function for the Bernoulli variables is

$$\prod_{i=1}^{n} p^{x_i} (1-p)^{(1-x_i)}$$

The MLE estimate of p is

$$p = \frac{\sum_{i=1}^{n} x_i}{n}$$

The likelihood function for the mixture of Bernoulli variables is

$$\max_{\theta_k} \sum_{k=1}^{2} \sum_{i=1}^{n} z_{ik} \log(p_{ik})$$

The MLE estimate of θ_k is

$$\theta_{k} = \frac{\sum_{i=1}^{n} z_{ik} \left(\frac{1}{m} \sum_{j=1}^{m} x_{i}^{j} \right)}{\sum_{i=1}^{n} z_{ik}}$$

Summary of MLE

- Steps to perform the estimate
- 1. Take the product of the probability density functions.
- 2. Take logarithm to the product.
- 3. Take the first derivative of the log function and set it to be zero.

- Assume that we have two coins, C1 and C2.
- Assume the bias of C1 is θ_1 (i.e. probability of getting heads with C1, it may not be a fair coin)
- Assume the bias of C2 is θ_2 (i.e. probability of getting heads with C2, it may not be a fair coin)

We have two coins. We toss each of them 10 times.

Question: Find θ_1 and θ_2 if we know the identities of the coins. (i.e. We can find these two parameters separately!)

MLE Problem - Example 1

- Answer: Again, we discuss the MLE problem first and then EM problem.
- For a coin tossing problem, it follows a Bernoulli distribution.
 So, the probability distribution function is

$$\theta_k^{x}(1-\theta_k)^{1-x}$$

- Here $x = \{0,1\}$ is a Bernoulli variable.
- By "Example of MLE (Recall: Example 1)", we know that the estimates θ_1 and θ_2 can be obtained by the following formula

$$\theta_1 = \frac{number\ of\ heads\ using\ C1}{total\ number\ of\ flips\ using\ C1}$$

and

$$\theta_2 = \frac{number\ of\ heads\ using\ C2}{total\ number\ of\ flips\ using\ C2}$$

MLE Problem - Example 1

HHHHTHHHH

HTHHHHTHH

HTHTTTHHTT

Coin A	Coin B
	5H, 5T
9H, 1T	
8H, 2T	
	4H, 6T
7H, 3T	

Total:

24H, 6T	9H. 11T
2 4 11, 01	311, 111

$$\theta_1 = \frac{24}{24+6} = 0.8$$
 and $\theta_2 = \frac{9}{9+11} = 0.45$

- Now, we modify the problem.
- We do not know the identities of the coins used for each set of tosses (we treat them as hidden variables)
 Assume the two unknown identities as $z_1(i)$ and $z_2(i)$
- We have to cluster the data into two groups.

- Assume the two probability assignments as $z_1(i)$ and $z_2(i)$ with $z_1(i)+z_2(i)=1$
- The index i in $z_1(i)$ and $z_2(i)$ refers to the ith sample point (i.e. ith set in this example).
- If $z_1(i) > z_2(i)$, the ith set is more likely to belong set 1. Otherwise, it belongs to set 2.

- Question: There are two objectives in this single question.
- Use EM Algorithm to find the probability assignment "labels" $z_1(i)$ and $z_2(i)$ of the set of tosses.
- Estimate the Bernoulli parameters (i.e. θ_1 and θ_2) of the two distributions.

Answer: Following the principle, we have the following two steps:

• E-Step (Step 1): Compute the two probabilities $z_{i1} = \frac{Probability (ith pt) c_1}{Probability (ith pt) c_1 + Probability (ith pt) c_2}$ $z_{i2} = \frac{Probability (ith pt) c_1 + Probability (ith pt) c_2}{Probability (ith pt) c_1 + Probability (ith pt) c_2}$

M-Step (Step 2): Compute the Centroids:

• Initial guess for the two Bernoulli parameters θ_1 and θ_2 as $\theta_1=0.6$ and $\theta_2=0.5$

Step 1: (E-Step)

$$z_{1}(i) = \frac{Probability (ith set) \theta_{1}}{Probability (ith set) \theta_{1} + Probability (ith set) \theta_{2}}$$

$$z_{2}(i) = \frac{Probability (ith set) \theta_{1} + Probability (ith set) \theta_{2}}{Probability (ith set) \theta_{1} + Probability (ith set) \theta_{2}}$$

- Probability (ith set) θ_1 : $\Pi_{j=1}^{10} \theta_1^{x_i^J} (1 \theta_1)^{1-x_i^J}$;
- Probability (ith set) θ_2 : $\Pi_{j=1}^{10} \theta_2^{x_i^j} (1 \theta_2)^{1-x_i^j}$;

$$\begin{split} z_1(i) &= \frac{\Pi_{j=1}^{10} \theta_1^{x_i^j} (1 - \theta_1)^{1 - x_i^j}}{\Pi_{j=1}^{10} \theta_1^{x_i^j} (1 - \theta_1)^{1 - x_i^j} + \Pi_{j=1}^{10} \theta_2^{x_i^j} (1 - \theta_2)^{1 - x_i^j}} \\ z_2(i) &= \frac{\Pi_{j=1}^{10} \theta_2^{x_i^j} (1 - \theta_2)^{1 - x_i^j}}{\Pi_{j=1}^{10} \theta_1^{x_i^j} (1 - \theta_1)^{1 - x_i^j} + \Pi_{j=1}^{10} \theta_2^{x_i^j} (1 - \theta_2)^{1 - x_i^j}} \end{split}$$

It is noted that $z_1(i) + z_2(i) = 1$.

• Probability (ith set) for θ_1 :

Note: $x_i^j = 1$ if the toss j at set i is a head. $x_i^j = 0$ if the toss j at set i is a tail.

		$x_i^* = 0$ if the toss j at set its a tall.
ith set	Prob	
1	$\Pi_{j=1}^{10} \theta_1^{x_1^j} (1 - \theta_1)^{1 - x_1^j}$	→ H T T T H H T H T H
2	$\Pi_{j=1}^{10} \theta_1^{x_2^j} (1 - \theta_1)^{1 - x_2^j}$	НННТНННН
3	$\Pi_{j=1}^{10} \theta_1^{x_3^j} (1 - \theta_1)^{1 - x_3^j}$	HTHHHHTHH
4	$\Pi_{j=1}^{10} \theta_1^{x_4^j} (1 - \theta_1)^{1 - x_4^j}$	— НТНТТТННТТ
5	$\Pi_{j=1}^{10} \theta_1^{x_5^j} (1 - \theta_1)^{1 - x_5^j}$	тнннтннтн

• Computing $z_1(i)$, we have

Note: $x_i^j = 1$ if the toss j at set i is a head. $x_i^j = 0$ if the toss j at set i is a tail.

$$H \rightarrow 1$$
 and $T \rightarrow 0$

$$\Pi_{j=1}^{10} \theta_1^{x_i^j} (1 - \theta_1)^{1 - x_i^j}$$

$$= (0.6^0 \times 0.4^1)(0.6^1 \times 0.4^0) \dots (0.6^1 \times 0.4^0)$$

• Probability (ith set) for θ_2 : Note: $x_i^j = 1$ if the toss j at set i is a head. $x_i^j = 0$ if the toss j at set i is a tail.

ith set	Prob	
1	$\Pi_{j=1}^{10} \theta_2^{x_1^j} (1 - \theta_2)^{1-x_1^j} \leftarrow H T T T H H T H T H$	4
2	$\Pi_{j=1}^{10} \theta_2^{x_2^j} (1-\theta_2)^{1-x_2^j}$ HHHHHHH	4
3	$\Pi_{j=1}^{10} \theta_2^{x_3^j} (1-\theta_2)^{1-x_3^j}$ H T H H H H H T H F	4
4	$\Pi_{j=1}^{10} \theta_2^{x_4^j} (1 - \theta_2)^{1-x_4^j} \longleftarrow H T H T T T H H T T$	Γ
5	$\Pi_{j=1}^{10} \theta_2^{x_5^j} (1 - \theta_2)^{1-x_5^j}$ T H H H T H H T F	4

• Computing $z_2(i)$, we have

Note: $x_i^j = 1$ if the toss j at set i is a head. $x_i^j = 0$ if the toss j at set i is a tail.

$$H \rightarrow 1$$
 and $T \rightarrow 0$

H T T T H H T H T H T H
$$\frac{\Pi_{j=1}^{10}\theta_{2}^{x_{i}^{j}}(1-\theta_{2})^{1-x_{i}^{j}}}{\Pi_{j=1}^{10}\theta_{2}^{x_{i}^{j}}(1-\theta_{2})^{1-x_{i}^{j}}}$$

$$= (0.5^{1} \times 0.5^{0})(0.5^{0} \times 0.5^{1})...(0.5^{1} \times 0.5^{0})$$

$$\Pi_{j=1}^{10} \theta_2^{x_i^j} (1 - \theta_2)^{1 - x_i^j}$$

$$= (0.5^0 \times 0.5^1)(0.5^1 \times 0.5^0) \dots (0.5^1 \times 0.5^0)$$

 The results are 						
			$oldsymbol{z_1}(i)$	$z_2(i)$		
HTTTHHTHL		1	0.4491	0.5509		
HHHHTHHHH	>	2	0.8050	0.1950		
нтннннтнн_	→	3	0.7335	0.2665		
HTHTTTHHTT-	→	4	0.3522	0.6478		
T	→	5	0.6472	0.3528		

 The results are $z_1(i)$ $z_2(i)$ $\mathsf{H} \mathsf{T} \mathsf{T} \mathsf{T} \mathsf{H} \mathsf{H} \mathsf{T} \mathsf{H} \mathsf{T} \mathsf{H}$ 0.4491 0.5509 More likely to be coin 2 0.1950 More likely 0.8050 to be coin 1 HTHHHHHTHH0.7335 0.2665 More likely to be coin 1 0.3522 0.6478 More likely HTHTTTHHT to be coin 2 0.6472 0.3528 More likely HHHTHHHTHto be coin 1

- M-Step (Step 2): Compute the Centroids:
- In this example, x_i is a sequence (e.g. HTTHHTT..), which follows a Bernoulli distribution. We have to use the following strategy.

Refer to "Main Results of MLE".

The objective function is

$$\max_{\theta_k} \sum_{i,k} z_{ik} \log(p_{ik})$$

 p_{ik} is the probability of the ith sample and it is

$$p_{ik} = \prod_{j=1}^{10} \theta_k^{x_i^j} (1 - \theta_k)^{(1 - x_i^j)}$$

By taking differentiation w.r.t. θ_k and setting to zero, the MLE estimate of θ_k is

$$\theta_k = \frac{\sum_{i=1}^5 z_{ik} \left(\frac{1}{10} \sum_{j=1}^{10} x_i^j \right)}{\sum_{i=1}^5 z_{ik}}$$

• Conclusion of M-step: Updating the Bernoulli parameters θ_1 and θ_2 .

$$\theta_1 = \frac{\sum_{i=1}^5 z_{i1} \left(\frac{1}{10} \sum_{j=1}^{10} x_i^j\right)}{\sum_{i=1}^5 z_{i1}} \text{ and } \theta_2 = \frac{\sum_{i=1}^5 z_{i2} \left(\frac{1}{10} \sum_{j=1}^{10} x_i^j\right)}{\sum_{i=1}^5 z_{i2}}$$

So, we have

$$\theta_1 = 0.7130$$
 and $\theta_2 = 0.5813$

Key Steps of EM Algorithm

- Review of the two steps:
- E-step:

$$z_{1}(i) = \frac{Probability (ith set) \theta_{1}}{Probability(ith set) \theta_{1} + Probability(ith set) \theta_{2}}$$

$$z_{2}(i) = \frac{Probability(ith set) \theta_{1} + Probability(ith set) \theta_{2}}{Probability(ith set) \theta_{1} + Probability(ith set) \theta_{2}}$$

M-step:

$$\theta_1 = \frac{\sum_{i=1}^5 z_{i1} \left(\frac{1}{10} \sum_{j=1}^{10} x_i^j\right)}{\sum_{i=1}^5 z_{i1}} \text{ and } \theta_2 = \frac{\sum_{i=1}^5 z_{i2} \left(\frac{1}{10} \sum_{j=1}^{10} x_i^j\right)}{\sum_{i=1}^5 z_{i2}}$$

Example 1 (EM Algorithm)

- In the mid-term test, if you are asked a question about EM algorithm, it will only be about Bernoulli variables with two hidden set of variables (i.e. z_{i1} and z_{i2}).
- Next, we apply the two steps of EM algorithm and find the solution.

- Given $\theta_1 = 0.7130$ and $\theta_2 = 0.5813$
- E-step:

$$z_{1}(i) = \frac{Probability (ith set) \theta_{1}}{Probability (ith set) \theta_{1} + Probability (ith set) \theta_{2}}$$

$$z_{2}(i) = \frac{Probability (ith set) \theta_{1} + Probability (ith set) \theta_{2}}{Probability (ith set) \theta_{1} + Probability (ith set) \theta_{2}}$$

• Probability (ith set) for $\theta_1 = 0.7130$:

Note: $x_i^j = 1$ if the toss j at set i is a head.

ith set	Prob	$x_i^J = 0$ if the toss j at set i is a tail.
1	$\Pi_{j=1}^{10} \theta_1^{x_1^j} (1 - \theta_1)^{1 - x_1^j}$	
2	$\Pi_{j=1}^{10} \theta_1^{x_2^j} (1 - \theta_1)^{1 - x_2^j}$	НННТНННН
3	$\Pi_{j=1}^{10}\theta_1^{x_3^j}(1-\theta_1)^{1-x_3^j}$	нтннннтнн
4	$\Pi_{j=1}^{10} \theta_1^{x_4^j} (1 - \theta_1)^{1 - x_4^j} \blacktriangleleft$	НТНТТННТТ
5	$\Pi_{j=1}^{10}\theta_1^{x_5^j}(1-\theta_1)^{1-x_5^j}$	тнннтннтн

• Probability (ith set) for θ_2 =0.5813:

Note: $x_i^j = 1$ if the toss j at set i is a head.

ith set	Prob	$x_i^J = 0$ if the toss j at set i is a tail.
1	$\Pi_{j=1}^{10} \theta_2^{x_1^j} (1 - \theta_2)^{1 - x_1^j}$	- Н ТТТННТН
2	$\Pi_{j=1}^{10} \theta_2^{x_2^j} (1 - \theta_2)^{1 - x_2^j}$	—ННННТНННН
3	$\Pi_{j=1}^{10} \theta_2^{x_3^j} (1 - \theta_2)^{1 - x_3^j}$	НТННННТНН
4	$\Pi_{j=1}^{10} \theta_2^{x_4^j} (1 - \theta_2)^{1 - x_4^j}$	—H T H T T H H T T
5	$\Pi_{j=1}^{10}\theta_2^{x_5^j}(1-\theta_2)^{1-x_5^j}$	тнннтннтн

- Probability (ith set) θ_1 : $\Pi_{j=1}^{10} \theta_1^{x_i^j} (1 \theta_1)^{1-x_i^j}$;
- Probability (ith set) θ_2 : $\Pi_{j=1}^{10} \theta_2^{x_i^j} (1 \theta_2)^{1-x_i^j}$;

$$\begin{split} z_1(i) &= \frac{\Pi_{j=1}^{10} \theta_1^{x_i^j} (1 - \theta_1)^{1 - x_i^j}}{\Pi_{j=1}^{10} \theta_1^{x_i^j} (1 - \theta_1)^{1 - x_i^j} + \Pi_{j=1}^{10} \theta_2^{x_i^j} (1 - \theta_2)^{1 - x_i^j}} \\ z_2(i) &= \frac{\Pi_{j=1}^{10} \theta_2^{x_i^j} (1 - \theta_2)^{1 - x_i^j}}{\Pi_{j=1}^{10} \theta_1^{x_i^j} (1 - \theta_1)^{1 - x_i^j} + \Pi_{j=1}^{10} \theta_2^{x_i^j} (1 - \theta_2)^{1 - x_i^j}} \end{split}$$

It is noted that $z_1(i) + z_2(i) = 1$.

 The results are 				
			$oldsymbol{z_1}(i)$	$z_2(i)$
HTTTHHTHL	→	1	0.2958	0.7042
HHHHTHHHH <u></u>	→	2	0.8115	0.1885
нтннннтнн_	\rightarrow	3	0.7064	0.2936
HTHTTTHHTT-	→	4	0.1901	0.8099
тнннтннтн	→	5	0.5735	0.4265

- Updating the Bernoulli parameters θ_1 and θ_2 .
- We have to use the weighted mean of the MLE of the estimate

$$\theta_1 = \frac{\sum_{i=1}^5 z_{i1} \left(\frac{1}{10} \sum_{j=1}^{10} x_i^j\right)}{\sum_{i=1}^5 z_{i1}} \text{ and } \theta_2 = \frac{\sum_{i=1}^5 z_{i2} \left(\frac{1}{10} \sum_{j=1}^{10} x_i^j\right)}{\sum_{i=1}^5 z_{i2}}$$

So, we have

$$\theta_1 = 0.7453$$
 and $\theta_2 = 0.5693$

Example 1 (EM Algorithm)

Compare the two unknown parameters before and after the iteration

- Previous iteration: $\theta_1 = 0.7130$ and $\theta_2 = 0.5813$
- This iteration: $\theta_1 = 0.7453$ and $\theta_2 = 0.5693$

They are not the same. So, we have to apply the two updates again.

- Given $\theta_1 = 0.7453$ and $\theta_2 = 0.5693$
- E-step:

$$z_{1}(i) = \frac{Probability (ith set) \theta_{1}}{Probability (ith set) \theta_{1} + Probability (ith set) \theta_{2}}$$

$$z_{2}(i) = \frac{Probability (ith set) \theta_{1} + Probability (ith set) \theta_{2}}{Probability (ith set) \theta_{1} + Probability (ith set) \theta_{2}}$$

• Probability (ith set) for $\theta_1 = 0.7453$:

Note: $x_i^j = 1$ if the toss j at set i is a head.

ith set	Prob	$x_i^J = 0$ if the toss j at set i is a tail.
1	$\Pi_{j=1}^{10} \theta_1^{x_1^j} (1 - \theta_1)^{1 - x_1^j}$. н тттннтн
2	$\Pi_{j=1}^{10} \theta_1^{x_2^j} (1 - \theta_1)^{1 - x_2^j}$	
3	$\Pi_{j=1}^{10}\theta_1^{x_3^j}(1-\theta_1)^{1-x_3^j}$	нтннннтнн
4	$\Pi_{j=1}^{10} \theta_1^{x_4^j} (1 - \theta_1)^{1 - x_4^j}$	—НТНТТТННТТ
5	$\Pi_{j=1}^{10}\theta_1^{x_5^j}(1-\theta_1)^{1-x_5^j}$	тнннтннтн

• Probability (ith set) for θ_2 =0.5693:

Note: $x_i^j = 1$ if the toss j at set i is a head.

	T	$x_i^J = 0$ if the toss j at set i is a tail.
ith set	Prob	
1	$\pi^{10} \circ^{x_1^j} (1 \circ 1) = x_2^j$	- Н ТТТННТН
	$\prod_{j=1}^{n_{j}=1}\theta_{2}^{-1}(1-\theta_{2})^{-n_{1}}$	
2	$\Pi_{i=1}^{10}\theta_{2}^{x_{2}^{j}}(1-\theta_{2})^{1-x_{2}^{j}}$	
3	$\begin{bmatrix} \pi^{10} & 0^{x_3^j} & 0 & 1-x_2^j \end{bmatrix}$	HTHHHHTHH
	$\prod_{j=1}^{n_{j}=1} \sigma_2 (1-\sigma_2)$	
4	10 x ^j	<u>ытытттыытт</u>
'	$\prod_{j=1}^{10} \theta_2^{x_4} (1 - \theta_2)^{1 - x_4^2}$	HTHTTHHTT
	i	
5	$\Pi_{i=1}^{10}\theta_{2}^{x_{5}^{j}}(1-\theta_{2})^{1-x_{5}^{j}}$	THHHTHHTH
	J-1-2 (-2)	

- Probability (ith set) θ_1 : $\Pi_{j=1}^{10} \theta_1^{x_i^J} (1 \theta_1)^{1-x_i^J}$;
- Probability (ith set) θ_2 : $\Pi_{j=1}^{10} \theta_2^{x_i^j} (1 \theta_2)^{1-x_i^j}$;

$$\begin{split} z_1(i) &= \frac{\Pi_{j=1}^{10} \theta_1^{x_i^j} (1 - \theta_1)^{1 - x_i^j}}{\Pi_{j=1}^{10} \theta_1^{x_i^j} (1 - \theta_1)^{1 - x_i^j} + \Pi_{j=1}^{10} \theta_2^{x_i^j} (1 - \theta_2)^{1 - x_i^j}} \\ z_2(i) &= \frac{\Pi_{j=1}^{10} \theta_2^{x_i^j} (1 - \theta_2)^{1 - x_i^j}}{\Pi_{j=1}^{10} \theta_1^{x_i^j} (1 - \theta_1)^{1 - x_i^j} + \Pi_{j=1}^{10} \theta_2^{x_i^j} (1 - \theta_2)^{1 - x_i^j}} \end{split}$$

It is noted that $z_1(i) + z_2(i) = 1$.

 The results are 				
			$oldsymbol{z_1}(i)$	$z_2(i)$
HTTTHHTHL	→	1	0.2176	0.7824
нннтнннн <u></u>		2	0.8698	0.1302
нтннннтнн <u></u>	→	3	0.7512	0.2488
нтнтттннтт-	→	4	0.1116	0.8884
тнннтннтн		5	0.5769	0.4231

- Updating the Bernoulli parameters θ_1 and θ_2 .
- We have to use the weighted mean of the MLE of the estimate

$$\theta_1 = \frac{\sum_{i=1}^5 z_{i1} \left(\frac{1}{10} \sum_{j=1}^{10} x_i^j\right)}{\sum_{i=1}^5 z_{i1}} \text{ and } \theta_2 = \frac{\sum_{i=1}^5 z_{i2} \left(\frac{1}{10} \sum_{j=1}^{10} x_i^j\right)}{\sum_{i=1}^5 z_{i2}}$$

So, we have

$$\theta_1 = 0.7681$$
 and $\theta_2 = 0.5495$

Example 1 (EM Algorithm)

Compare the two unknown parameters before and after the iteration

- Previous iteration: $\theta_1 = 0.7453$ and $\theta_2 = 0.5693$
- This iteration: $\theta_1 = 0.7681$ and $\theta_2 = 0.5495$

They are not the same. So, we have to apply the two updates again.

- Given $\theta_1 = 0.7681$ and $\theta_2 = 0.5495$
- E-step:

$$z_{1}(i) = \frac{Probability (ith set) \theta_{1}}{Probability (ith set) \theta_{1} + Probability (ith set) \theta_{2}}$$

$$z_{2}(i) = \frac{Probability (ith set) \theta_{1} + Probability (ith set) \theta_{2}}{Probability (ith set) \theta_{1} + Probability (ith set) \theta_{2}}$$

• Probability (ith set) for $\theta_1 = 0.7681$:

Note: $x_i^j = 1$ if the toss j at set i is a head.

ith set	Prob	$x_i^J = 0$ if the toss j at set i is a tail.
1	$\Pi_{j=1}^{10} \theta_1^{x_1^j} (1 - \theta_1)^{1 - x_1^j}$	• н тттннтн
2	$\Pi_{j=1}^{10} \theta_1^{x_2^j} (1 - \theta_1)^{1 - x_2^j}$	—H
3	$\Pi_{j=1}^{10} \theta_1^{x_3^j} (1 - \theta_1)^{1 - x_3^j}$	НТННННТНН
4	$\Pi_{j=1}^{10} \theta_1^{x_4^j} (1 - \theta_1)^{1 - x_4^j} \blacktriangleleft$	
5	$\Pi_{j=1}^{10} \theta_1^{x_5^j} (1 - \theta_1)^{1 - x_5^j}$	тнннтннтн

• Probability (ith set) for θ_2 =0.5495:

Note: $x_i^j = 1$ if the toss j at set i is a head.

ith set	Prob	$x_i^J = 0$ if the toss j at set i is a tail.
1	$\Pi_{j=1}^{10} \theta_2^{x_1^j} (1 - \theta_2)^{1 - x_1^j}$	\leftarrow H T T T H H T H T H
2	$\Pi_{j=1}^{10} \theta_2^{x_2^j} (1 - \theta_2)^{1 - x_2^j}$	НННТНННН
3	$\Pi_{j=1}^{10} \theta_2^{x_3^j} (1 - \theta_2)^{1 - x_3^j}$	нтннннтнн
4	$\Pi_{j=1}^{10} \theta_2^{x_4^j} (1 - \theta_2)^{1 - x_4^j}$	
5	$\Pi_{j=1}^{10} \theta_2^{x_5^j} (1 - \theta_2)^{1 - x_5^j}$	тнннтннтн

- Probability (ith set) θ_1 : $\Pi_{j=1}^{10} \theta_1^{x_i^j} (1 \theta_1)^{1-x_i^j}$;
- Probability (ith set) θ_2 : $\Pi_{j=1}^{10} \theta_2^{x_i^j} (1 \theta_2)^{1-x_i^j}$;

$$\begin{split} z_1(i) &= \frac{\Pi_{j=1}^{10} \theta_1^{x_i^j} (1 - \theta_1)^{1 - x_i^j}}{\Pi_{j=1}^{10} \theta_1^{x_i^j} (1 - \theta_1)^{1 - x_i^j} + \Pi_{j=1}^{10} \theta_2^{x_i^j} (1 - \theta_2)^{1 - x_i^j}} \\ z_2(i) &= \frac{\Pi_{j=1}^{10} \theta_2^{x_i^j} (1 - \theta_2)^{1 - x_i^j}}{\Pi_{j=1}^{10} \theta_1^{x_i^j} (1 - \theta_1)^{1 - x_i^j} + \Pi_{j=1}^{10} \theta_2^{x_i^j} (1 - \theta_2)^{1 - x_i^j}} \end{split}$$

It is noted that $z_1(i) + z_2(i) = 1$.

 The results are 				
			$oldsymbol{z_1}(i)$	$z_2(i)$
HTTTHHTHL	→	1	0.1617	0.8303
HHHHTHHHH		2	0.9129	0.0871
нтннннтнн_	→	3	0.7943	0.2057
HTHTTTHHTT-	>	4	0.0663	0.9337
тнннтннтн	→	5	0.5871	0.4129

- Updating the Bernoulli parameters θ_1 and θ_2 .
- We have to use the weighted mean of the MLE of the estimate

$$\theta_1 = \frac{\sum_{i=1}^5 z_{i1} \left(\frac{1}{10} \sum_{j=1}^{10} x_i^j\right)}{\sum_{i=1}^5 z_{i1}} \text{ and } \theta_2 = \frac{\sum_{i=1}^5 z_{i2} \left(\frac{1}{10} \sum_{j=1}^{10} x_i^j\right)}{\sum_{i=1}^5 z_{i2}}$$

So, we have

$$\theta_1 = 0.7832$$
 and $\theta_2 = 0.5346$

Example 1 (EM Algorithm)

Compare the two unknown parameters before and after the iteration

- Previous iteration: $\theta_1 = 0.7681$ and $\theta_2 = 0.5495$
- This iteration: $\theta_1 = 0.7832$ and $\theta_2 = 0.5346$

They are not the same.

We can keep applying the procedure.

Example 1 (EM Algorithm)

Eventually, we will get the solution as

$$\theta_1 = 0.7968$$
 and $\theta_2 = 0.5196$

The results show that the set seems to be classified

correctly.

correctly.		$z_1(i)$	$oldsymbol{z_2}(i)$
HTTTHHTHL (Coin 2)	<u> </u>	0.1031	0.8969
HHHHHHHHH (Coin 1)	2	0.9519	0.0481
H T H H H H T H H Coin 1)	3	0.8454	0.1546
H T H T T T H H T T-	4	0.0307	0.9693
T H H H T H H H T H	5	0.6014	0.3986

Remark for EM Algorithm

- In the mid-term test, if you are asked a question, you only need to write down the following two steps.
- E-step:

	$z_1(i)$	$z_2(i)$
1	0.1617	0.8303
2	0.9129	0.0871
3	0.7943	0.2057
4	0.0663	0.9337
5	0.5871	0.4129

- M-step: $\theta_1 = 0.7832$ and $\theta_2 = 0.5346$
- (You may add some equations in your calculations.)

Remark for EM Algorithm

 In this module, you only need to know the following two different centroids:

$$\theta_k = \frac{\sum_{i=1}^n z_{ik} x_i}{\sum_{i=1}^n z_{ik}}$$

(use when the distribution is normal) and

$$\theta_{k} = \frac{\sum_{i=1}^{n} z_{ik} \left(\frac{1}{m} \sum_{j=1}^{m} x_{i}^{j} \right)}{\sum_{i=1}^{n} z_{ik}}$$

(use when the distribution is Bernoulli) n is the number of samples and m is the length of the sequence.

EM ALGORITHM FOR MISSING DATA PROBLEM

- In this example, we first consider the MLE problem. Then, we will modify it to be EM problem.
- Let events be "grades in a class"

Guess Distribution	Collected Sample
a = Gets an A	$P(A) = \frac{1}{2}$
b = Gets a B	$P(B) = \mu$
c = Gets a C	$P(C) = 2\mu$
d = Gets a D	$P(D) = \frac{1}{2} - 3\mu$

• What is the maximum likelihood estimate of μ ? Express the estimate of μ in terms of a,b,c & d

- It is noted that the guess distribution is similar to the assuming Gaussian distribution for the data in Examples 2 and 3.
- It is also noted that the collected samples are the $X_1, ... X_n$ in Examples 2 and 3.
- Remark: P(A) + P(B) + P(C) + P(D) = 1.

- Answer:
- The likelihood function is

$$L(\mu) = \left(\frac{1}{2}\right)^{a} (\mu)^{b} (2\mu)^{c} \left(\frac{1}{2} - 3\mu\right)^{d}$$

The log-likelihood function is

$$l(\mu) = \log(L(\mu))$$

$$= alog\left(\frac{1}{2}\right) + blog(\mu) + clog(2\mu) + dlog\left(\frac{1}{2} - 3\mu\right)$$

• By taking the first derivative of the log function with respect to μ , we have

$$\frac{b}{\mu} + \frac{2c}{2\mu} - \frac{3d}{\frac{1}{2} - 3\mu} = 0$$

So, the estimate is

$$\mu = \frac{b+c}{6(b+c+d)}$$

Let events be "grades in a class"

Guess Distribution	Collected Sample	
a = Gets an A	$P(A) = \frac{1}{2}$	
b = Gets a B	$P(B) = \mu$	
c = Gets a C	$P(C) = 2\mu$	
d = Gets a D	$P(D) = \frac{1}{2} - 3\mu$	

• Somehow, the statistical forms of a and b are not known. They can be treated as "missing data". But we know that a+b=h

- We also know the statistical forms of c and d
- What is the maximum likelihood estimate of μ ?

- So, we have the missing data problem.
- The forms of a and b are not known. But their relationship is known.
- Intuitively, the problem can be solved as below Expectation:

The expected value of a and b can be computed as

$$a = \frac{P(A)}{P(A) + P(B)} h = \frac{\frac{1}{2}}{\frac{1}{2} + \mu} h \text{ and } b = \frac{P(B)}{P(A) + P(B)} = \frac{\mu}{\frac{1}{2} + \mu} h$$

The uses of $\frac{P(A)}{P(A)+P(B)}$ and $\frac{P(B)}{P(A)+P(B)}$ are intuitive guesses.

- As μ is not known, we have to use the MLE as in "EM Algorithm Example 1"
- We have the following alternatively updating scheme: Expectation:

The expected value of a and b can be computed as

$$a = \frac{\frac{1}{2}}{\frac{1}{2} + \mu} h$$
 and $b = \frac{\mu}{\frac{1}{2} + \mu} h$

We must have a + b = h

However, μ is not known.

Maximization:

As the value of μ is not known, we can compute the value of μ by

$$\mu = \frac{b+c}{6(b+c+d)}$$

- The technique to solve this type of problem is called <u>Expectation and Maximization (EM) Algorithm</u>.
- Similar to K-means clustering algorithm, we alternatively apply the two updating equations until there is no change in the value of μ .

Go back to our problem.

We begin with a guess for μ

• Define $\mu(t)$ the estimate of μ at the t-th iteration b(t) the estimate of b at the t-th iteration

At start, we have $\mu(0)$ = initial guess

Expectation step (E-step):
$$b(t) = \frac{\mu(t)h}{\frac{1}{2} + \mu(t)}$$
 and $a(t) = h - b(t)$

Maximization step (M-step):
$$\mu(t+1) = \frac{b(t)+c}{6(b(t)+c+d)}$$

Alternatively applying these two steps until no change (converge)

In our example, suppose we have

$$h = 20$$

$$c = 10$$

$$d = 10$$

$$\mu(0) = 0$$

t	$\mu(t)$	b(t)
0	0	0
1	0.0833	2.857
2	0.0937	3.158
3	0.0947	3.185
4	0.0948	3.187
5	0.0948	3.187
6	0.0948	3.187

Stop as no change

Example 1: Summary of EM Algorithm

Expectation Step (E-Step):

As we require a + b = h, we have

$$a = \frac{P(A)}{P(A) + P(B)} h \text{ and } b = \frac{P(B)}{P(A) + P(B)}$$

Maximization Step (M-Step):

We use MLE to estimate the unknown parameter μ . This is given by

$$\mu = \frac{b+c}{6(b+c+d)}$$

AIC and BIC

- Akaike information criterion (AIC) and Bayesian information criterion (BIC) can be used to infer the total number of clusters.
- The number of clusters is the one with minimum values of AIC and BIC.
- AIC:

$$AIC = 2k - 2\ln(L)$$

BIC:

$$BIC = \ln(n) k - 2\ln(L)$$

where L is the maximized value of the likelihood function of the model M

n is the sample size and k is the number of clusters.

AIC and BIC

- That is, we have to apply the EM algorithm with different number of clusters $k=1,2,3\dots$
- The one with minimum values of AIC and BIC is the number of clusters.