Wydział Informatyki i Telekomunikacji Wykład z Fizyki dla Informatyków

Raport z projektu

Tytuł		Rok akademicki
Tomografia stanu kwantowego kubitu		2019/2020
Data wykonania obliczeń	Data oddania projektu	Kierunek
20-29.08.2020	01.09.2020	Informatyka
Skład grupy projektowej 1. Dawid Królak 2. Michał Matuszak 3. Adam Zacharczuk	Rok, semestr, grupa Rok 1, semestr 2, grupa I2.1	

1. Wykaz prac wykonanych przez poszczególnych członków zespołu.

Dawid Królak:

- opracowanie programu implementującego operację u1.u3.|k1> w notatniku Jupyter
- implementacja pomiarów X, Y, Z w tymże programie
- wykonanie zrzutów ekranu prezentujących działanie programu

Michał Matuszak:

- wykonanie obliczeń w programie Wolfram Mathematica, zgodnie z procedurą opisaną w punkcie IV opracowania "FI_Zdanie_programistyczne_2_QI_2019_2020.pdf"

Adam Zacharczuk:

- wykonanie obliczeń *a priori* w notatniku Mathematica
- wyznaczenie błędu względnego pomiędzy wynikiem *a priori* i *a posteriori* na końcu ninejszego raportu

2. Procentowy udział poszczególnych członków zespołu w realizacji projektu.

3. Wykaz przesłanych plików.

- OperacjeKwantoweAPriori.pdf wyznaczenie teoretycznego wyniku operacji u1.u3.|k1>
- *OperacjeKwantoweAPosterioriJupyter.pdf* kod programu wykonanego w notatniku Jupyter na platformie IBM
- *OperacjeKwantoweAPosteriori.pdf* obliczenia na podstawie wyników uzyskanych dzięki programowi
- Folder ZrzutyEkranu zawierający zrzuty ekranu prezentujące działanie programu

4. Stan kwantowy wyznaczony *a priori* i *a posteriori* oraz błąd względny pomiędzy tymi pomiarami.

Wynik a priori:

$$\begin{vmatrix}
 \frac{1}{\sqrt{2}} \\
 \frac{1}{\sqrt{2}}
 \end{vmatrix}$$

Wynik a posteriori:

$$\begin{pmatrix} 0,717626 \\ 0,696116 - 0,0208835 i \end{pmatrix}$$

$$\frac{1}{\sqrt{2}}\approx 0,707107$$

Błąd względny między wynikami wynosi:

$$\frac{|0.707107 - 0.717626|}{0.707107} = 0.01487 \approx 1.5\%$$

W wyniku *a priori* część urojona liczby w dolnym wierszu jest równa zero, nie można więc wyznaczyć błędu względnego pomiędzy nią a liczbą w wyniku *a posteriori*. Ze względu na małą wartość części urojonej w wyniku *a posteriori* zostanie ona pominięta.

$$\frac{|0.707107 - 0.696116|}{0.707107} = 0.01554 \approx 1.5\%$$

Wnioskujemy, że różnica między wynikami wynosi około 1,5%.

5. Wykaz bibliotek użytych do napisania programu.

- Moduły *QuantumCircuit, ClassicalRegister, QuantumRegister, execute, Aer, IBMQ z* biblioteki *qiskit,*
- Moduły transpile, assemble z biblioteki giskit.compiler

- Biblioteki qiskit.tools.jupyter, qiskit.visualization
- Moduł *pi* z biblioteki *math*