Cut-Based Tree De compositions

last week! distance-based tree decompositions [Racke 2008]

docomposition trees

 $T=(V_T, E_T)$

Stainer nodes

G=(V, E)

My: Vy -> V (one-to-one mapping between the leaves of T and V)

ME: ET = 2 E for 3ut, vt3 EET ME(3ut, vt3) = shortest path between MV(Nt) and MV(Nt)

M' : V -> V_ (maps to leaves in one-to-one manner)

M' E - 2ET for {u,v} E W' ({u,v}) -> unique path between m' (u) k m' (v)

from now ru: of (u,v,): length of corresponding path in G

Load on edge eEE for tree T
Assume that each edge ex Et is fully utilized
Assume that each edge ex Ety is fully utilized Lo Cycex) units of traffic or ex
$load_{T}(R) = \sum_{\ell \in T} C_{T}(\ell_{\ell}) \qquad \qquad$
Lo the same as when routing a multicomm. flow with r(u,v) = c(u,v)
$\Gamma(\operatorname{oad}_{\tau}(e)) := \frac{1}{C(e)} \cdot (\operatorname{oad}_{\tau}(e))$
Goal: Find a distribution over trees T s.t. max (overalle) expected Fload_(0) is uninimited.
theres T_1, \dots, T_k and $0 \le \lambda_1, \dots, \lambda_k \le 1$ s.t. $\le \lambda_i = 1$
Minimire B = Max (\(\frac{1}{2} \) \(\tau \) \(\frac{1}{2} \) \(\tau \) \(\frac{1}{2} \) \(\tau \) \(\
Cain: Given multicomm. flow f; for each T; s.t. congestion on T; is \le 1
Claim: Giren multicomm. flow f; for each T; s.t. congestion on T; is & I When mapping Shif; to G - cong. on G is & B
Proof: f: uses each ex E E; at most to its cap. CT; (Px)
fi incurs load on eEF a load of at most 1: load (e)
total load on e \le \le 1; cloud, ie) \le \zeri
1 y y y y y y y y y y y y y y y y y y y
Why is this what we need?
Multicomm. flow instance r(u,v), assume opt. cong. on G is CG flow on e & CG · c(e)
We showed that for each Ti : opt. cong. on Ti is CT = GG
flow on T; has cong. $\leq C_G$
Knownex comb. of flows on T: mapped to G = cong. < B.C. on G.

~

Finding a distribution on trees Goal: Win B s.t. Yest: \(\sum_{i} \tau_{i} \cdot r \load_{i}(e) \le \beta \) S/:31 A; 2 0 think of this as a distribution one all possible trees T; E J matrix formulation | E| × | J | matrix M | Me, T = rload (e) $\max(\vec{x}): \max \text{ component} \qquad \max(M\vec{\lambda}) \leq \beta$ replace max by a smooth approx. $l_{\max}(\vec{x}) := l_{\max}(\sum_{e \in E} e^{x_e}) \ge \max(\vec{x}) = \max_{e \in E} \{x_e\}$ replace max $(M\vec{\lambda}) \leq \beta$ by the stronger cond. $[L_{Max}(M\vec{\lambda})] \leq \beta$ Basic Idea - start with $\lambda_1 = \lambda_2 = \dots = 0$, linex $(M\vec{\lambda}) = O(\log n)$ - in each step, droose a tree T; and S; >0 and update 1:= 1; + S; luax (M) increases by at most 8; B (for 1=0(log n)) - Stop when Stiz) Implementing basic idea ned to understand how lunax changes when some h; What is $l_{\max}(\vec{x} + \vec{\epsilon}) \approx l_{\max}(\vec{x}) + \vec{\epsilon}'$. $\forall l_{\max}(\vec{x}) = l_{\max}(\vec{x}) + \leq \epsilon_e \cdot partial_{e}(\vec{x})$ $Partial_e'(\vec{x}) := \frac{\partial}{\partial x_e} luax(\vec{x}) = \frac{e^{x_e}}{\leq e^{x_e}}$

10 May 2019 For € s.t. Ee ∈[0, 1] for all e ∈E, $l_{\max}(\vec{x} + \vec{\epsilon}) \leq l_{\max}(\vec{x}) + 2 \cdot \sum_{e \in \vec{E}} \epsilon_e \cdot pointal_e(\vec{x})$ Assume, we set 1:= 1:+ 8; how does luax (Mi) charge $\frac{1}{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$ $l_{\text{max}}(M(\vec{\lambda} + \vec{\delta}))$ $= \operatorname{lmax}\left(M\tilde{k} + H\tilde{s}\right) \qquad \sqrt{10^{2}(M\tilde{k})_{e}^{2}}$ + 2 eE (M e pardale (M)) $(M\delta)_e = S_i r \log d_{T_i}(e)$ = lmax(M)+ 25; \sum_{e} rload_{(e)}. pardial (M)) S:= max rload (e) $= \operatorname{lanax}(M\tilde{\lambda}) + 2s_{i} \leq \operatorname{load}_{T_{i}}(e) = \underbrace{e^{(M\tilde{\lambda})_{e}}}_{c(e) \leq e}(H\tilde{\lambda})_{e'}$ MCCT problem < can find a Ti st. this whole things

Should ... 1 find a tree that win. this can compute sol. s.t. \(\le \) led \(\le \) $\sum_{e \in \overline{E}} \frac{e^{(H\tilde{J})_e}}{e^{(E)}} = \sum_{e \in \overline{E}} \frac{e^{(H\tilde{J})_e}}{(e) \cdot \sum_{e' \in E'} e^{(H\tilde{J})_{e'}}} = 1$ Termination / # iderations Lemma; #ite = O(IE)·logn) $\phi := \sum_{e} \{\lambda; r \log d_{T_i(e)} \rightarrow we \text{ know } \phi = O(|E| \cdot \log u) \}$ at all trues polarial diff. in one step: S:= max Hoad (e) Of grows by 3 / in each step.