Linear Algebra

Sartaj UI Hasan

Department of Mathematics Indian Institute of Technology Jammu Jammu, India - 181221

Email: sartaj.hasan@iitjammu.ac.in

Lecture 33 (Oct 25, 2019)

Linear Transformation

Similarity of Matrices

- **Definition:** An $n \times n$ matrix B is said to be similar to an $n \times n$ matrix A if there exists an invertible matrix P such that $B = PAP^{-1}$.
- **Proposition 30:** Similarity of matrices is an equivalence relation on $\mathbb{F}^{n\times n}$, i.e. the set of $n\times n$ matrices with entries taken from a field \mathbb{F} .

Proof:

- **1** Reflexive: If $A \in \mathbb{F}^{n \times n}$, then $A = IAI^{-1}$, so A is smilar to A.
- ⑤ Symmetric: Suppose B is similar to A. Then $\exists P$ s. t. $B = PAP^{-1}$. Put $Q = P^{-1}$. Thus, $QBQ^{-1} = P^{-1}(PAP^{-1})(P^{-1})^{-1} = A$. Therefore A is similar to B.
- Transitive: Suppose B is similar to A and C is similar to B. Then $B = PAP^{-1}$ and $C = QBQ^{-1}$, i.e., $C = Q(PAP^{-1})Q^{-1} = (QP)A(P^{-1})Q^{-1} = (QP)A(PQ)^{-1}$.
- **Remark:** In view of Proposition 30, if *B* is similar to *A*, then *A* is similar to *B* (*symmetry property of equivalence relations*), so we can simply say that *A* and *B* are similar matrices.

Effect of Change of Basis

Proposition 31: Suppose A and B are the matrices of the linear operator T relative to the ordered bases α and β , respectively. Then A and B are similar matrices, in fact $B=PAP^{-1}$, where $P=P_{\alpha\to\beta}$ is the change of basis matrix.

Proof: We use the fact that if P is the change of basis matrix from α to β , then P^{-1} is the change of basis matrix from β to α . Let $A = [T]_{\alpha}$. Therefore, for any $v \in V$, we have:

$$(PAP^{-1})[v]_{\beta} = (PA)P^{-1}[v]_{\beta} = (PA)[v]_{\alpha} = P(A[v]_{\alpha})$$

= $P([T]_{\alpha}[v]_{\alpha}) = P[Tv]_{\alpha} = [Tv]_{\beta}$
= $[T]_{\beta}[v]_{\beta}$

Since the above holds for all vectors $v \in V$, it follows that $PAP^{-1} = [T]_{\beta} = B$.

Note: In most of the applications, we take α as the standard basis S. However, the result holds in general.

4/8

Example on Effect of Change of Basis

Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the linear transformation given by

$$T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+2y \\ 3x+4y \end{bmatrix}$$
. Let $\alpha = \{e_1, e_2\}$ be standard basis of \mathbb{R}^2 and let

$$\beta=\{u_1,u_2\}$$
, where $u_1=\begin{bmatrix}2\\1\end{bmatrix}$ and $u_2=\begin{bmatrix}5\\3\end{bmatrix}$ another basis of \mathbb{R}^2 . Let us

first determine $A = [T]_{\alpha}$, matrix of T relative to standard basis. Now

$$T(e_1) = T \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 1e_1 + 3e_2$$
 and

$$T(e_2) = T \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = 2e_1 + 4e_2$$
. therefore,

$$[T]_{\alpha} = A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}.$$

Applying Prop 31, the matrix relative to the new basis β would be $B=PAP^{-1}$, where $P=P_{\alpha\to\beta}$, the change of basis matrix, i.e,

$$B = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} -38 & -102 \\ 16 & 43 \\ 16 & 6 \end{bmatrix}.$$

Example on Effect of Change of Basis (Cont'd)

Let us verify our calculation with an example, say
$$v = \begin{bmatrix} 1 \\ 2 \end{bmatrix}_{\alpha} = \begin{bmatrix} -7 \\ 3 \end{bmatrix}_{\beta}$$
,

Since
$$[v]_{\beta} = P_{\alpha \to \beta}[v]_{\alpha} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -7 \\ 3 \end{bmatrix}_{\beta}$$
.

Now the vector $w=Tv\in\mathbb{R}^2$ corresponding to coordinate vector $\begin{bmatrix} -40\\17\end{bmatrix}_{eta}$ is given by

$$w = -40u_1 + 17u_2 = -40\begin{bmatrix} 2 \\ 1 \end{bmatrix} + 17\begin{bmatrix} 5 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 11 \end{bmatrix} = 5e_1 + 11e_2 = \begin{bmatrix} 5 \\ 11 \end{bmatrix}_{\alpha}.$$

Thus
$$w = \begin{bmatrix} -40 \\ 17 \end{bmatrix}_{\beta} = \begin{bmatrix} 5 \\ 11 \end{bmatrix}_{\alpha}$$
.

Utility of idea of similarity in matrix computation

Suppose $B = PAP^{-1}$. Then

$$B^{k} = \underbrace{PAP^{-1}.PAP^{-1}....PAP^{-1}}_{\text{(k times)}}$$
$$= PA^{k}P^{-1}.$$

Hence, if it is easy to find the power of A, then it's easy to find power of B.

The easiest Case is when the matrix A is diagonal, i.e., $A = \text{diag}\{\lambda_1, \dots, \lambda_n\}$. Then $A^k = \text{diag}\{\lambda_1^k, \dots, \lambda_n^k\}$.

Unfortunately, not every matrix is similar to a diagonal matrix. But in many important applications they are.

The idea behind Proposition 31

Think of a matrix A as a system.

The input is a vector X given as coordinate vector with regard to a basis α , and the output is again a vector Y, also given in terms of α . Diagram:

$$[X]_{\alpha} \longrightarrow A \longrightarrow [Y]_{\alpha}$$

However, now suppose that the input is given as a coordinate vector with regard to basis β , and the output is also desired in this form.

So, we have to proceed as follows (Recall that if the change of basis matrix from α to β is P, the change of basis matrix from β to α is P^{-1}):

$$[X]_{\beta} \xrightarrow{P^{-1}} [X]_{\alpha} \longrightarrow [A] \longrightarrow [Y]_{\alpha} \xrightarrow{P} [Y]_{\beta}$$

We now express the above system diagram in matrix term. Recall that when a product of matrices is to operate (multiply)on a vector, we proceed from right to left. So

$$[T]_{\beta}[X]_{\beta} = (PAP^{-1})[X]_{\beta}$$
, i.e., $[T]_{\beta} = B = PAP^{-1}$