Impromptu fuel subsidy reform decreases effort by tuna longliners in the Gulf of Mexico

GCFI - Name of session here

Aubriana Rhodes & Juan Carlos Villaseñor-Derbez

2025-10-27

▶ Motivation & Goals

- ▶ Motivation & Goals
- ▶ What are fuel subsidies?

- ▶ Motivation & Goals
- ▶ What are fuel subsidies?
- Previous work

- ► Motivation & Goals
- ▶ What are fuel subsidies?
- Previous work
- ► Relevant policy reform

- ► Motivation & Goals
- ▶ What are fuel subsidies?
- Previous work
- ► Relevant policy reform
- Methods

- ► Motivation & Goals
- What are fuel subsidies?
- Previous work
- ► Relevant policy reform
- Methods
- ► Results & discussion

Motivation

▶ More than 35% of global fish stocks are being overfished

Motivation

- ▶ More than 35% of global fish stocks are being overfished
- Subsidies that encourage overfishing are a key driver of overcapacity in the fishing industry

Motivation

- ▶ More than 35% of global fish stocks are being overfished
- Subsidies that encourage overfishing are a key driver of overcapacity in the fishing industry
- Subsidization is economically inefficient

Goals

▶ Understand how fishing behavior changes in response to policy

Goals

- Understand how fishing behavior changes in response to policy
- Provide a reference for actions that decrease fishing effort

What are fuel subsidies?

▶ Capacity-enhancing subsidies that directly incentivize increased effort

What are fuel subsidies?

- ▶ Capacity-enhancing subsidies that directly incentivize increased effort
- Financial contributions awarded from the government on fuel that can partially determine profitability

What are fuel subsidies?

- ▶ Capacity-enhancing subsidies that directly incentivize increased effort
- Financial contributions awarded from the government on fuel that can partially determine profitability

What are fuel subsidies?

- ▶ Capacity-enhancing subsidies that directly incentivize increased effort
- ▶ Financial contributions awarded from the government on fuel that can partially determine profitability

Why should we care?

➤ Subsidies increase fishing effort, leading to over 60% of Mexican fishery stocks being at unsustainable levels

What are fuel subsidies?

- ▶ Capacity-enhancing subsidies that directly incentivize increased effort
- ► Financial contributions awarded from the government on fuel that can partially determine profitability

Why should we care?

- ➤ Subsidies increase fishing effort, leading to over 60% of Mexican fishery stocks being at unsustainable levels
- Many fisheries are not profitable without subsidies

Previous Work

Revollo-Fernández et al. (2024) estimated economic and marginal product value to establish a direct relationship between subsidies and extraction

Previous Work

- Revollo-Fernández et al. (2024) estimated economic and marginal product value to establish a direct relationship between subsidies and extraction
- ➤ Sumaila et al. (2019) establishes the bulk of global subsidies to still be within the category of "capacity-enhancing" subsidies

Relevant Policy Reform

Mexico provided fuel subsidies to its fisheries since 2006

- Mexico provided fuel subsidies to its fisheries since 2006
- ▶ In 2020, it eliminated fuel subsidies for the fishing sector

- Mexico provided fuel subsidies to its fisheries since 2006
- ▶ In 2020, it eliminated fuel subsidies for the fishing sector
- ► The vessels referenced in this study recieved an average of \$40,000 USD in subsidies annually prior to reform

- Mexico provided fuel subsidies to its fisheries since 2006
- ▶ In 2020, it eliminated fuel subsidies for the fishing sector
- ► The vessels referenced in this study recieved an average of \$40,000 USD in subsidies annually prior to reform

- Mexico provided fuel subsidies to its fisheries since 2006
- In 2020, it eliminated fuel subsidies for the fishing sector
- ► The vessels referenced in this study recieved an average of \$40,000 USD in subsidies annually prior to reform

Specific Objectives

Understand how Mexico's subsidy reform has caused a shift in effort, landings, and catch-per-unit-effort

- ▶ Mexico provided fuel subsidies to its fisheries since 2006
- In 2020, it eliminated fuel subsidies for the fishing sector
- ► The vessels referenced in this study recieved an average of \$40,000 USD in subsidies annually prior to reform

Specific Objectives

- Understand how Mexico's subsidy reform has caused a shift in effort, landings, and catch-per-unit-effort
- Focus: tuna longline fleet in the Gulf of Mexico, heavily subsidized prior to 2020

Subsidy data

CausaNautra provides subsidy allocations by economic unit from 2011-2019

Subsidy data

- ► CausaNautra provides subsidy allocations by economic unit from 2011-2019
- ▶ Allows us to identify who received a subsidy before the reform

Subsidy data

- ► CausaNautra provides subsidy allocations by economic unit from 2011-2019
- ▶ Allows us to identify who received a subsidy before the reform

Subsidy data

- ► CausaNautra provides subsidy allocations by economic unit from 2011-2019
- Allows us to identify who received a subsidy before the reform

Vessel Montioring System

► From Mexico's Satelite Monitoring of Fishing Vessels System

Subsidy data

- ► CausaNautra provides subsidy allocations by economic unit from 2011-2019
- Allows us to identify who received a subsidy before the reform

Vessel Montioring System

- From Mexico's Satelite Monitoring of Fishing Vessels System
- provides vessel location, identity, and time

Subsidy data

- ► CausaNautra provides subsidy allocations by economic unit from 2011-2019
- Allows us to identify who received a subsidy before the reform

Vessel Montioring System

- From Mexico's Satelite Monitoring of Fishing Vessels System
- provides vessel location, identity, and time
- ▶ 2007 present

Subsidy data

- ► CausaNautra provides subsidy allocations by economic unit from 2011-2019
- Allows us to identify who received a subsidy before the reform

Vessel Montioring System

- From Mexico's Satelite Monitoring of Fishing Vessels System
- provides vessel location, identity, and time
- ▶ 2007 present

Subsidy data

- CausaNautra provides subsidy allocations by economic unit from 2011-2019
- Allows us to identify who received a subsidy before the reform

Vessel Montioring System

- From Mexico's Satelite Monitoring of Fishing Vessels System
- provides vessel location, identity, and time
- ▶ 2007 present

Vessel-level landings

► From National Commission of Aquaculture and Fisheries (CONAPESCA)

Subsidy data

- CausaNautra provides subsidy allocations by economic unit from 2011-2019
- Allows us to identify who received a subsidy before the reform

Vessel Montioring System

- From Mexico's Satelite Monitoring of Fishing Vessels System
- provides vessel location, identity, and time
- ▶ 2007 present

Vessel-level landings

- From National Commission of Aquaculture and Fisheries (CONAPESCA)
- ► Target species and annual weight of live catch (kg)

Subsidy data

- CausaNautra provides subsidy allocations by economic unit from 2011-2019
- Allows us to identify who received a subsidy before the reform

Vessel Montioring System

- From Mexico's Satelite Monitoring of Fishing Vessels System
- provides vessel location, identity, and time
- ▶ 2007 present

Vessel-level landings

- From National Commission of Aquaculture and Fisheries (CONAPESCA)
- ► Target species and annual weight of live catch (kg)
- ≥ 2000-present

Vessel status data

Mexican vessel registry including vessel characteristics, gear type, and home port

Focus Area

► VMS filtering

- VMS filtering
 - ▶ 26 longline vessels (81.3% of total fleet)

- ► VMS filtering
 - ▶ 26 longline vessels (81.3% of total fleet)
 - **2016-2024**

- ► VMS filtering
 - ▶ 26 longline vessels (81.3% of total fleet)
 - 2016-2024
 - ▶ Depth > 50m, Distance from shore > 500m

- ► VMS filtering
 - ▶ 26 longline vessels (81.3% of total fleet)
 - 2016-2024
 - ▶ Depth > 50m, Distance from shore > 500m
- Merged with subsidy and landings data

- VMS filtering
 - ▶ 26 longline vessels (81.3% of total fleet)
 - 2016-2024
 - ▶ Depth > 50m, Distance from shore > 500m
- Merged with subsidy and landings data
- Calculated annual effort (hours), total catch (kg) and catch-per-unit-effort (kg/hr) by vessel

$$y_{it} = \beta S_{it} + \omega_i + \varepsilon_{it}$$

 $ightharpoonup y_{it}$: Outcome variable for vessel i at year t

$$y_{it} = \beta S_{it} + \omega_i + \varepsilon_{it}$$

- $\triangleright y_{it}$: Outcome variable for vessel i at year t
- $lackbox{ } S_{it}$: Variable for subsidy period (0 = pre reform, 1 = post reform)

$$y_{it} = \beta S_{it} + \omega_i + \varepsilon_{it}$$

- $\triangleright y_{it}$: Outcome variable for vessel i at year t
- $ightharpoonup S_{it}$: Variable for subsidy period (0 = pre reform, 1 = post reform)
- $ightharpoonup \omega_i$: Fixed effect for vessel i

$$y_{it} = \beta S_{it} + \omega_i + \varepsilon_{it}$$

- $\triangleright y_{it}$: Outcome variable for vessel i at year t
- $lackbox{ } S_{it}$: Variable for subsidy period (0 = pre reform, 1 = post reform)
- $\blacktriangleright \ \omega_i$: Fixed effect for vessel i
- $\triangleright \varepsilon_{it}$: Error term

$$y_{it} = \beta S_{it} + \omega_i + \varepsilon_{it}$$

- $\triangleright y_{it}$: Outcome variable for vessel i at year t
- $lackbox{ } S_{it}$: Variable for subsidy period (0 = pre reform, 1 = post reform)
- $\triangleright \omega_i$: Fixed effect for vessel i
- ε_{it} : Error term
- \triangleright β : Effect of subsidy reform on outcome variable

▶ We used a linear regression model to analyze the differences in effort, catch, and catch-per-unit-effort before and after subsidy reform

- ▶ We used a linear regression model to analyze the differences in effort, catch, and catch-per-unit-effort before and after subsidy reform
- ▶ This allows for an understanding of vessel-level differences in fishing behavior and productivity

Patterns- effort

Patterns- effort, catch, and catch-per-unit-effort

Results

Table 1: Impact of Subsidy Reform on effort, catch, and catch-per-unit-effort (cpue)

Dependent Variables:	effort (hours)	catch (kg)	cpue (kg/hr)
Subsidized period	5,079.47	52,678.63	10.35
No subsidy period	-1,361.4***	-8,540.4***	2.19***
Standard Error	(190.9)	(2,285.2)	(0.617)
Observations	187	187	187
R^2	0.311	0.422	0.345
*** p<0.01			

▶ 26% decrease in effort

Results

Table 1: Impact of Subsidy Reform on effort, catch, and catch-per-unit-effort (cpue)

Dependent Variables:	effort (hours)	catch (kg)	cpue (kg/hr)
Subsidized period	5,079.47	52,678.63	10.35
No subsidy period	-1,361.4***	-8,540.4***	2.19***
Standard Error	(190.9)	(2,285.2)	(0.617)
Observations	187	187	187
R^2	0.311	0.422	0.345
*** p<0.01			

- ▶ 26% decrease in effort
- ▶ 16% decrease in catch

Results

Table 1: Impact of Subsidy Reform on effort, catch, and catch-per-unit-effort (cpue)

Dependent Variables:	effort (hours)	catch (kg)	cpue (kg/hr)
Subsidized period	5,079.47	52,678.63	10.35
No subsidy period	-1,361.4***	-8,540.4***	2.19***
Standard Error	(190.9)	(2,285.2)	(0.617)
Observations	187	187	187
R^2	0.311	0.422	0.345
*** p<0.01			

- ▶ 26% decrease in effort
- ▶ 16% decrease in catch
- ≥ 20% **increase** in catch-per-unit-effort

▶ Fuel-subsidy removal can substantially curb fishing effort and reduce total catch

- Fuel-subsidy removal can substantially curb fishing effort and reduce total catch
- ▶ Efficiency of the fishery increases when marginal vessels are no longer subsidized

- Fuel-subsidy removal can substantially curb fishing effort and reduce total catch
- ▶ Efficiency of the fishery increases when marginal vessels are no longer subsidized
- ► First vessel-level estimates of the consequences of capacity-reducing reforms in the Gulf of Mexico tuna longline fishery

- Fuel-subsidy removal can substantially curb fishing effort and reduce total catch
- ▶ Efficiency of the fishery increases when marginal vessels are no longer subsidized
- First vessel-level estimates of the consequences of capacity-reducing reforms in the Gulf of Mexico tuna longline fishery
- Long-term impacts of reforms require further investigation to ensure sustainable fisheries management

- Fuel-subsidy removal can substantially curb fishing effort and reduce total catch
- ▶ Efficiency of the fishery increases when marginal vessels are no longer subsidized
- First vessel-level estimates of the consequences of capacity-reducing reforms in the Gulf of Mexico tuna longline fishery
- Long-term impacts of reforms require further investigation to ensure sustainable fisheries management

- Fuel-subsidy removal can substantially curb fishing effort and reduce total catch
- ▶ Efficiency of the fishery increases when marginal vessels are no longer subsidized
- First vessel-level estimates of the consequences of capacity-reducing reforms in the Gulf of Mexico tuna longline fishery
- ▶ Long-term impacts of reforms require further investigation to ensure sustainable fisheries management

Next steps

Compare patterns of behavior to an unsubsidized fleet as a control group

Thank you

Aubriana Rhodes | abl141@miami.edu

Scatter plots

Catch efficiency of Mexican tuna longlining

Box Plots

Effort box plots

Before and after subsidy removal

