Санкт-Петербургский Политехнический университет Петра Великого

Отчет по лабораторным работам №1-2 по дисциплине "Математическая статистика"

Студент: Скворцов Владимир Сергеевич

Преподаватель: Баженов Александр Николаевич

Группа: 5030102/10201

Санкт-Петербург 2024

Содержание

1	Постановка задачи	2
	1.1 Описательная статистика	2
	1.2 Точечное оценивание характеристик положения и рассеяния	
2	Теоретическое обоснование	2
	2.1 Функции распределения	2
	2.2 Характеристики положения и рассеяния	3
3	Описание работы	3
4	Результаты	4
	4.1 Гистограммы и графики плотности распределения	4
	4.2 Характеристики положения и рассеяния	
5	Выводы	7

1 Постановка задачи

1.1 Описательная статистика

Для 5 распределений:

- Нормальное распределение N(x, 0, 1)
- ullet распределение Коши C(x,0,1)
- Распределение Стьюдента t(x,0,3) с тремя степенями свободы
- Распределение Пуассона P(k, 10)
- Равномерное распределение $U(x, -\sqrt{3}, \sqrt{3})$

Сгенерировать выборки размером 10, 50, 1000 элементов.

Построить на одном рисунке гистограмму и график плотности распределения.

1.2 Точечное оценивание характеристик положения и рассеяния

Сгенерировать выборки размером 10, 50, 1000 элементов.

Для каждой выборки вычислить следующие статистические характеристики положения данных: \bar{x} , $med\ x$, z_Q , z_R , z_{tr} . Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов: $E(z) = \bar{z}$. Вычислить оценку дисперсии по формуле $D(z) = \bar{z}^2 - \bar{z}^2$.

2 Теоретическое обоснование

2.1 Функции распределения

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}} \tag{1}$$

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{2}$$

• Распределение Стьюдента t(x,0,3) с тремя степенями свободы

$$t(x,0,3) = \frac{6\sqrt{3}}{\pi(3+t^2)^2} \tag{3}$$

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{4}$$

• Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & \text{при } |x| \le \sqrt{3} \\ 0 & \text{при } |x| > \sqrt{3} \end{cases}$$
 (5)

2.2 Характеристики положения и рассеяния

• Выборочное среднее

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{6}$$

• Выборочная медиана

$$med \ x = \begin{cases} x_{(l+1)} & \text{при} \quad n = 2l+1 \\ \frac{x_{(l)} + x_{(l+1)}}{2} & \text{при} \quad n = 2l \end{cases}$$
 (7)

• Полусумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(n)}}{2} \tag{8}$$

• Полусумма квартилей Выборочная квартиль z_p порядка p определяется формулой

$$z_p = \begin{cases} x_{([np]+1)} & \text{при} & np \text{ дробном} \\ x_{(np)} & \text{при} & np \text{ целом} \end{cases}$$
 (9)

Полусумма квартилей

$$z_Q = \frac{z_{1/4} + z_{3/4}}{2} \tag{10}$$

• Усечённое среднее

$$z_{tr} = \frac{1}{n-2r} \sum_{i=r+1}^{n-r} x_{(i)}, \ r \approx \frac{n}{4}$$
 (11)

• Среднее характеристики

$$E(z) = \overline{z} \tag{12}$$

• Оценка дисперсии

$$D(z) = \overline{z^2} - \overline{z}^2 \tag{13}$$

3 Описание работы

Лабораторные работы выполнены с использованием Python и его сторонних библиотек numpy, pandas, matplotlib, seaborn были построены гистограммы распределений и посчитаны характеристики пложения.

 ${\it Cc}$ Ссылка на GitHub репозиторий: https://github.com/vladimir-skvortsov/spbstu-mathematical-statistics

4 Результаты

4.1 Гистограммы и графики плотности распределения

Рис. 1: Нормальное распределение (1)

Рис. 2: Распределение Коши (2)

Рис. 3: Распределение Стьюдента (3)

Рис. 4: Распределение Пуассона (4)

Рис. 5: Равномерное распределение (5)

4.2 Характеристики положения и рассеяния

n = 10					
	\overline{x} (6)	$med \ x \ (7)$	z_R (8)	$z_Q (10)$	$z_{tr} (11)$
E(z) (12)	-0.007982	-0.004386	-0.020996	-0.005516	-0.006624
D(z) (13)	0.098372	0.143342	0.163284	0.113910	0.163167
n = 50					
	\overline{x} (6)	$med \ x \ (7)$	z_R (8)	$z_Q (10)$	$z_{tr} (11)$
E(z) (12)	0.003888	0.006077	-0.000529	0.002100	0.005262
D(z) (13)	0.010963	0.016229	0.092033	0.013306	0.019508
n = 1000					
	\overline{x} (6)	$med \ x \ (7)$	z_R (8)	$z_Q (10)$	$z_{tr} (11)$
E(z) (12)	0.000841	0.001757	0.002664	0.000549	0.001120
D(z) (13)	0.001003	0.001594	0.056454	0.001218	0.002025

Таблица 1: Нормальное распределение

n = 10					
	\overline{x} (6)	$med \ x \ (7)$	z_R (8)	$z_Q (10)$	$z_{tr} (11)$
E(z) (12)	0.031223	0.000157	0.091224	0.010353	0.026922
D(z) (13)	0.593557	0.276924	3.039111	0.431265	1.018721
n = 50					
	\overline{x} (6)	$med \ x \ (7)$	z_R (8)	$z_Q (10)$	$z_{tr} \ (11)$
E(z) (12)	-0.009060	-0.001960	-0.009758	-0.005885	-0.001198
D(z) (13)	0.059867	0.024296	1.246451	0.039833	0.119172
n = 1000					
	\overline{x} (6)	$med \ x \ (7)$	z_R (8)	$z_Q (10)$	$z_{tr} (11)$
E(z) (12)	0.000632	-0.000889	0.005623	-0.001120	0.000454
D(z) (13)	0.006238	0.002337	0.038649	0.004053	0.012341

Таблица 2: Распределение Коши

n = 10					
	\overline{x} (6)	$med \ x \ (7)$	z_R (8)	$z_Q (10)$	$z_{tr} \ (11)$
E(z) (12)	-0.008120	0.003401	-0.051670	0.006376	-0.006949
D(z) (13)	0.226164	0.168610	1.170873	0.181303	0.391251
n = 50					
	\overline{x} (6)	med x (7)	z_R (8)	$z_Q (10)$	$z_{tr} \ (11)$
E(z) (12)	0.001555	-0.003052	0.021573	-0.002192	0.007673
D(z) (13)	0.023879	0.018483	1.416933	0.018728	0.048591
n = 1000					
	\overline{x} (6)	med x (7)	$z_R \ (8)$	$z_Q \ (10)$	$z_{tr} \ (11)$
E(z) (12)	0.002647	0.000765	0.005358	0.000688	0.000826
D(z) (13)	0.002287	0.001833	0.584625	0.001828	0.004626

Таблица 3: Распределение Стьюдента

n = 10					
	\overline{x} (6)	$med \ x \ (7)$	z_R (8)	$z_Q (10)$	$z_{tr} (11)$
E(z) (12)	10.060200	9.9315	10.343	9.97575	10.0495
D(z) (13)	1.022076	1.364558	1.958351	1.159037	1.690466
n = 50					
	\overline{x} (6)	$med \ x \ (7)$	z_R (8)	$z_Q \ (10)$	$z_{tr} (11)$
E(z) (12)	9.997760	9.856500	10.961500	9.904125	9.990620
D(z) (13)	0.101923	0.209158	0.990268	0.147511	0.205333
n = 1000					
	\overline{x} (6)	$med \ x \ (7)$	z_R (8)	$z_Q (10)$	$z_{tr} (11)$
E(z) (12)	10.001017	9.998000	11.683000	9.995250	10.006934
D(z) (13)	0.010374	0.001996	0.741011	0.003759	0.020079

Таблица 4: Распределение Пуассона

5 Выводы

В процессе выполнения лабораторной работы был проведен анализ пяти уникальных распределений: нормальное, Коши, Стьюдента, Пуассона и равномерное. Были сгенери-

n = 10					
	\overline{x} (6)	$med \ x \ (7)$	z_R (8)	$z_Q (10)$	$z_{tr} (11)$
E(z) (12)	0.002619	0.013534	-0.007382	0.001860	0.003422
D(z) (13)	0.096635	0.220092	0.046032	0.133492	0.163799
n = 50					
	\overline{x} (6)	$med \ x \ (7)$	z_R (8)	$z_Q (10)$	$z_{tr} (11)$
E(z) (12)	0.001636	5.804625-05	-0.000114	0.002965	0.004812
D(z) (13)	0.009758	0.029210	0.000521	0.014602	0.018929
n = 1000					
	\overline{x} (6)	$med \ x \ (7)$	z_R (8)	$z_Q (10)$	$z_{tr} (11)$
E(z) (12)	-0.000112	-0.000167	-1.956639-05	0.000345	-0.001010
D(z) (13)	0.000967	0.002844	5.856189-06	0.001470	0.001981

Таблица 5: Равномерное распределение

рованы выборки разных объемов для каждого из них - 10, 50 и 1000 элементов. Были созданы гистограммы каждого распределения и нанесены на них графики плотности соответствующих распределений, что облегчило наглядное сопоставление формы распределения выборок с их теоретическими аналогами. Были также рассчитаны разные показатели положения и рассеяния для каждой выборки, включая выборочную среднюю величину, медиану, полусумму крайних элементов выборки, полусумму квартилей и усеченное среднее. Использовалась стандартная формула для оценки дисперсии.

На основании полученных данных были сделаны следующие выводы:

- 1. В случае нормального распределения, оценки показателей положения и рассеяния становятся ближе к их теоретическим значениям по мере увеличения размера выборки.
- 2. Для распределения Коши показатели положения и рассеяния менее стабильны и могут сильно отличаться от теоретических даже при больших размерах выборки.
- 3. Распределение Стьюдента при небольших размерах выборки также демонстрирует определенную нестабильность оценок, однако с увеличением размера выборки результаты становятся более точными.
- 4. Для распределения Пуассона и равномерного распределения, оценки показателей положения и рассеяния кажутся стабильными при любом объеме выборки.