Clase de Repaso 2

Verónica Pastor, Martín Errázquin

Análisis Matemático para Inteligencia Artificial

27/2/2022

Estudio de Funciones

Sea $f(x) = x^3 - 2x^2 + x$ la función polinómica que queremos graficar, $f: \mathbb{R} \to \mathbb{R}$.

¿Cómo buscamos los puntos críticos? Calculamos la derivada, repasemos:

Reglas de Derivación

- Suma $f(x) = g(x) + h(x) \rightarrow f'(x) = g'(x) + h'(x)$
- Producto $f(x) = g(x).h(x) \rightarrow f'(x) = g'(x).h(x) + g(x).h'(x)$
- Cociente

$$f(x) = \frac{g(x)}{h(x)}, \forall x \in Dom(h(x)) \rightarrow f'(x) = \frac{g'(x).h(x)-g(x).h'(x)}{(h(x))^2}$$

• Composición $f(x) = h(g(x)) = (h \circ g)(x) \rightarrow f'(x) = h'(g(x)).g'(x)$

En nuestro caso, podemos pensar distintos caminos:
•
$$f(x) = f_1(x) + f_2(x) + f_3(x) = x^3 - 2x^2 + x \rightarrow f'(x) = (x^3)' - (2x^2)' + x'$$

•
$$f(x) = f_1(x).f_2(x) = x.(x^2 - 2x + 1) = x.(x - 1)^2 \rightarrow f'(x) = (x)'(x - 1)^2 + x.((x - 1)^2)' = 1.(x^2 - 2x + 1) + x.(2(x - 1))$$

2/10

En ambos casos llegamos a $f'(x) = 3x^2 - 4x + 1$.

Buscamos los números críticos: f'(x) = 0 $\rightarrow x = 1 \land x = \frac{1}{2}$

	• •			
	Intervalo (1)	$\left(-\infty,\frac{1}{3}\right)$	$(\frac{1}{3}, 1)$	$(1,\infty)$
S	$x_0 \in I$	0	$\frac{1}{2}$	2
	Signo de $f'(x_0)$	+	_	+
	Crecimiento de f	7	X	7

Pero, ¿cómo crece?

Concavidad-Convexidad

- Si para todo $x \in I$, f''(x) > 0 entonces la gráfica de f(x) es cóncava hacia arriba en I.
- Si para todo $x \in I$, f''(x) < 0 entonces la gráfica de f(x) es cóncava hacia abajo en I.

Calculamos la derivada segunda

Si
$$f'(x) = 3x^2 - 4x + 1 \rightarrow f''(x) = 6x - 4$$
. Buscamos $f''(x) = 0 \rightarrow x = \frac{2}{3}$.

Intervalo (1)	$\left(-\infty,\frac{2}{3}\right)$	$\left(\frac{2}{3},\infty\right)$
$x_0 \in I$	0	1
Signo de $f''(x_0)$	_	+
Concavidad de f	c. abajo	c. arriba

 $x = \frac{2}{3}$ se dice que es un punto de inflexión.

Recreo: Python

Aprovechemos a repasar algunas cuestiones relativas a lo visto en la clase pasada, pero ahora en Python (y un poquito de SQL):

- Producto Cartesiano
- Relaciones
- Operatoria de conjuntos

Para el que nunca utilizó SQL, lo importante es que una Tabla es algo así:

Nombre	Edad	ComidaFavorita
Pepe	20	asado
Norma	60	ensalada
Ana	34	arroz

Cada fila es un elemento, y por lo tanto una Tabla es un conjunto de filas (sin orden particular). La sentencia SELECT * FROM Tabla devuelve todos los elementos de la tabla.

Repaso de matrices

Una matriz es un arreglo rectangular de números de la forma:

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \in \mathbb{K}^{m \times n}$$
Algunas matrices cuadradas especiales:

- Nula: $O_n = (0)_{1 \le i, j \le n} \in \mathbb{K}^{n \times n}$ Identidad: $Id_n = (a_{ij}) = \begin{cases} 1, & \text{si } i = j \\ 0, & \text{si } i \ne j \end{cases} \in \mathbb{K}^{n \times n}$ Triangular Superior: $A = (a_{ij}) = \begin{cases} a_{ij}, & \text{si } i \le j \\ 0, & \text{si } i > j \end{cases} \in \mathbb{K}^{n \times n}$
- Matriz simétrica: $A = (a_{ij})_{1 \le i,j \le n} = (a_{ji})_{1 \le i,j \le n} \in \mathbb{R}^{n \times n}$, cuando $A \in \mathbb{C}^{n \times n}$ se dice que la matriz es hermítica $(a_{ij})_{1 \leq i,j \leq n} = (\bar{a}_{ji})_{1 \leq i,j \leq n}$ \setminus donde \bar{a} es el conjugado de a.
- Matriz antisimétrica: $A = (a_{ij})_{1 \le i,j \le n} = (-a_{ji})_{1 \le i,j \le n} \in \mathbb{K}^{n \times n}$

Operaciones con matrices

• Suma:
$$A, B \in \mathbb{K}^{m \times n}, A + B = (a_{ij} + b_{ij})_{1 \le i \le m, 1 \le j \le n}$$
 $\exists \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 3 \cdot 1 & 3 \cdot 2 \\ 3 \cdot 3 & 3 \cdot 4 \end{pmatrix}$ • Producto: $A \in \mathbb{K}^{m \times p}, B \in \mathcal{K}^{p \times n}, AB = (\sum_{k=1}^{p} a_{ik} b_{kj})_{1 \le i \le m, 1 \le j \le n}$

• Producto por un escalar: $\lambda \in \mathbb{K}, A \in \mathbb{K}^{m \times n}, \lambda A = (\lambda a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}$

$$\begin{pmatrix} \frac{3}{3} & 2 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 3 \cdot 1 + 2 \cdot 2 & 3 \cdot 4 + 2 \cdot (-3) \\ -1 \cdot 1 + 0 \cdot 2 & -1 \cdot 4 + 0 \cdot (-3) \end{pmatrix} = \begin{pmatrix} 7 & 6 \\ -4 & -4 \end{pmatrix}$$

Matriz Inversa: Una matriz $A \in \mathbb{K}^{n \times n}$, tiene inversa si existe $E \in \mathbb{K}^{n \times n}$ tal que: $AE = EA = Id_n$. Se nota $E = A^{-1}$.

Método de Gauss-Jordan para hallar la inversa: $\begin{bmatrix}
4 & 1 & | & 1 & 0 \\
1 & -2 & | & 0 & 1
\end{bmatrix}
\xrightarrow{\mathbf{F}_{4} = \mathbf{F}_{1}}
\begin{bmatrix}
1 & -2 & | & 0 & 1 \\
4 & 1 & | & 1 & 0
\end{bmatrix}
\xrightarrow{\mathbf{F}_{2} = \mathbf{F}_{1}}
\begin{bmatrix}
1 & -2 & | & 0 & 1 \\
4 & 1 & | & 1 & 0
\end{bmatrix}
\xrightarrow{\mathbf{F}_{2}}$

$$\begin{bmatrix} 4 & 1 & | & 1 & 0 \\ 1 & -2 & | & 0 & 1 \end{bmatrix} \xrightarrow{\mathbf{F_4 + 2T_2}} \begin{bmatrix} 1 & -2 & | & 0 & 1 \\ 4 & 1 & | & 1 & 0 \end{bmatrix} \xrightarrow{\mathbf{F_2 + 2T_2}} \begin{bmatrix} 1 & 0 & | & 2/9 & 1/9 \end{bmatrix} \xrightarrow{\mathbf{or} \mathbf{F_4 + 2T_2}} \begin{bmatrix} 1 & 0 & | & 2/9 & 1/9 \end{bmatrix}$$

 $\begin{bmatrix} 1 & -2 & | & 0 & 1 \\ 0 & \textcircled{1} & | & 1/9 & -4/9 \end{bmatrix} \xrightarrow{\blacksquare} \begin{bmatrix} 1 & 0 & | & 2/9 & 1/9 \\ 0 & 1 & | & 1/9 & -4/9 \end{bmatrix}$

7/10

¿Cómo saber si una matriz tiene inversa?

El determinante de una matriz cuadrada es una función $det : \mathbb{R}^{n \times n} \to \mathbb{R}$. Se nota det(A) = |A|.

$$|A| = \sum_{j=1}^n (-1)^{i+j} a_{ij} M_{ij}$$
 donde $M_{ij} \in \mathsf{R}^{(n-1) imes (n-1)}$

el factor $(-1)^{i+j}a_{ij}$ se llama cofactor, y M_{ij} se llama menor, es el determinante de la matriz que se forma sacando la fila i y la columna j. Para el caso de matrices euadradas es muy fácil,

Para el caso de matrices euadradas es muy facil,
$$\begin{vmatrix} 4 & 1 \\ 1 & 2 \end{vmatrix} = 4 \cdot (-2) - 1 \cdot 1 = -9 \neq 0$$

$$\begin{vmatrix} 4 & 1 \\ 1 & 2 \end{vmatrix} = 4 \cdot (-1)^3 \begin{vmatrix} 4 & 1 \\ 3 & 1 \end{vmatrix} + C \cdot (-1)^4 \begin{vmatrix} 4 & 1 \\ 3 & 1 \end{vmatrix}$$

Algunas propiedades

Sean $A, B \in \mathbb{R}^{n \times n}, k \in \mathbb{R}$

• A triangular,
$$det(A) = a_{11}.a_{22} \cdots a_{nn}$$
. En particular, $det(Id_n) = 1$

•
$$det(AB) = det(A)det(B)$$
. En particular, $det(A^p) = [det(A)]^p$

 $\begin{vmatrix} 3 & 2 \\ -4 & 0 \end{vmatrix} \cdot \begin{vmatrix} 4 & 4 \\ 2 & 3 \end{vmatrix} = \begin{bmatrix} 3 \cdot 0 - 2 \cdot (-1) \end{bmatrix} \cdot \begin{bmatrix} -3 - 8 \end{bmatrix} = 2 \cdot (-1) = -22$ • $det(kA) = k^n det(A)$ En el ejemplo si k= 3,

•
$$det(kA) = k^n det(A)$$

En el ejemplo si k= 3,

 $A = \begin{bmatrix} 41 \\ 1-2 \end{bmatrix} \rightarrow n=2$
 $A \in \mathbb{R}^{2\times 2}$

3. $A = \begin{bmatrix} 12 & 3 \\ 3 & -6 \end{bmatrix} \rightarrow det(3A) = 12(-6) = 3$
 $A = \begin{bmatrix} 41 \\ 1-2 \end{bmatrix} \rightarrow n=2$
 $A \in \mathbb{R}^{2\times 2}$

3. $A = \begin{bmatrix} 12 & 3 \\ 3 & -6 \end{bmatrix} \rightarrow det(3A) = 2(-6) = 3$
 $A = \begin{bmatrix} 41 \\ 1-2 \end{bmatrix} \rightarrow n=2$
 $A = \begin{bmatrix} 41 \\ 1-2 \end{bmatrix} \rightarrow n=2$
 $A = \begin{bmatrix} 41 \\ 1-2 \end{bmatrix} \rightarrow n=2$
 $A = \begin{bmatrix} 41 \\ 1-2 \end{bmatrix} \rightarrow det(A) = -9$

• $det(A^{-1}) = \frac{1}{det(A)}$ En el exemplo $A = \begin{bmatrix} 4 & 1 \\ 1 & -2 \end{bmatrix}$, det(A) = -9Además, $A \cdot A^{-1} = II$ $A^{-1} = \begin{bmatrix} 2/q & 1/q \\ 1/q & -4/q \end{bmatrix}$, $det(A^{-1}) = \frac{7}{9} \left(-\frac{4}{9} \right) - \frac{1}{9} \frac{1}{9} = -\frac{9}{9^2} = \frac{1}{9}$ $det(A \cdot A^{-1}) = det(Id)$ Se ventrea γ $det(A^{-1}) = \frac{1}{9} det(A^{-1}) = \frac{1}{9} det(A^{-1})$ $det(A \cdot A^{-1}) = \frac{1}{9} det(A^{-1}) = \frac{1}{9} det(A^{-1})$ det(A) det (A-1) = 1

9/10

Recreo: Python

Ahora que conocemos las operaciones básicas con matrices vamos a ver cómo replicarlas utilizando código: para esto vamos a utilizar la librería **NumPy** de Python.

Spoiler: también vamos a mostrar una aplicación muy directa a lo visto hoy!