CDR

Omar Areiqat
CompE
Budget Lead
Movement and Power

Jina Song EE PCB Lead Design

Vedatman Soham Basu CompE Software Lead Sensors

Redwan Rahman
CompE
Logistic Lead
Positioning

William Leonard Advisor

The Team

Problem Statement

Some people struggle with mundane actions in life, such as passing dishes on a large table.

Lazy Susans are nice, but only work on round tables and requires user to have reach.

What if there was a small, portable device that can move dishes across any table of arbitrary shape?

Our Solution

"Lazy Bob": A moving coaster that approaches the user when called.

- 1. Stably transport items around a table to different users
- 1. Provide a simple way to interface with all coasters
- 1. Adapt to the environment

Functional and Design Specification

System Specifications: Functional

Test Plan

- Mostly full container of liquid doesn't spill when moving
- 1. Transport items without the items falling off
- Detect the edges of the table and avoid falling off
- Avoid objects that are in the coaster's moving path
- Arrive at the caller to an accuracy of 10 cm from the edge of the coaster
- Support up to 3 lbs.

- Place an 80% full glass/bowl of water and visibly check that the moving coaster doesn't spill
- Put objects on moving coaster and watch if object falls
- 1. Watch if the moving coaster falls off when caller is away from the table
- 1. Put objects in path and check if moving coaster bumps into object
- Use a tape measure to check the distance from destination
- 1. Place an object that weighs 3 lbs and check if system is stable while moving

System Specifications: Design

Test Plan

7. System supports at least 2 callers at the same time

7. Press both callers and see if the coaster follows first-in, first-out sequence

8. Coaster diameter is within 30 cm

8. Use tape measure to check coaster size

9. Be able to use the moving coaster regardless of table shape

9. Find and put on irregular shaped tables and check if they fall off

10. If no path to caller is available, indicate to caller

 Line up objects to allow no path to caller, see if system notifies caller

Block Diagrams

Hardware Block Diagram

Software Block Diagram

System Hardware

Coaster

Coaster: MDR

Coaster: CDR

Coaster: FPR PCB

Caller

Subsystem: Caller PCB

Sensors

Subsystem: Collision and Cliff Detection

Ultrasonic

- Collision detection (CDR)
- Has not changed from before

Light ToF

- Edge Detection (CDR)
- Collision Detection (FPR)
- Easy to implement many at a time

Positioning and Rerouting

Subsystem: Positioning

Ultra Wideband Sensor


```
dwm> Lep
dwm> POS,0,8312,-0.16,0.65,0.08,87,x00
POS,0,C404,0.16,-0.12,0.10,96,x0B
POS,0,8312,-0.18,0.67,0.02,90,x00
POS,0,C404,0.15,-0.15,0.11,87,x0B
POS,0,8312,-0.18,0.68,-0.05,88,x00
POS,0,C404,nan,nan,nan,0,x0B
POS,0,8312,-0.18,0.67,-0.10,88,x00
POS,0,C404,nan,nan,nan,0,x0B
```


Rerouting Block Diagram

Subsystem: Algorithm

Current Iteration:

Brute Force Avoidance - Lazy Bob will back up, make a step to a side, then move forward again and check whether it has cleared the object. This will repeat if not TRUE.

Future Iteration:

Lazy Bob will fix two distances and trace its way around an object prioritizing the side with the most severe angle.

FPR Deliverables

1. Improved consistency on movement

 a. Move movement controls to the coaster itself for better consistency

1. Better Rerouting Algorithm

a. Using more sensors, implement a better way to navigate

4. Chassis for Coaster

a. 3D print chassis for each part of the system

5. PCB Plans

- a. Motion Further optimizations
- b. User input Add 5V and LED

1. 2nd Caller

Design: Chassis (FPR)

Design: Chassis (FPR)

Design: Chassis (FPR)

SDP Budget Used

Purchasing List		
Item Name	Link	Price \$ (w/Tax & Ship)
UWB DIY Starter Kit	<u>Tindie</u>	74.98
2 x Pico W	Digikey	12
Gina PCB1	JLC	22.05
Gina PCBs 2	JLC	15.44
Omar PCB1	JLC	6.5
Omar PCB2	JLC	6.76
6 Dof Sensors	Amazon	15.95
10x HC05	Amazon	37.98
3D Filament	Amazon	38.99
New Wheels	Adafruit	28.17
	\$258.82	_

Development Cost - per set of Brains, 1 Coaster, and 2 Callers

Coaster List		
Item Name	Source	Price \$ (with tax and shipping)
Qorvo UWB Kit	Qorvo	170
3 x Pico W	Wouter	18
PCBs	JLCPCB	10
Sensors	M5	25
Sensors	M5	25
8x RCR132a	Amazon	27
Motors and Wheels	Amazon	50
Raspberry Pi 4	M5	100
Misc. Hardware	Misc	30
Lipo	M5	20
\$475.00		

Gantt Chart

Videos

Straight Shot:

https://drive.google.com/file/d/141u86p3lzujfCnul5bPtXzJ-QYSLi3L_/view?usp=sharing

Obstacle Avoidance:

https://drive.google.com/file/d/14BBHoazjFHobzXkXQCEPxUCetjSHFlHe/view?usp=sharing

QUESTIONS & ANSWERS

University of Massachusetts

Amherst