

Algorithms and Data Structures (CSci 115)

California State University Fresno
College of Science and Mathematics
Department of Computer Science
H. Cecotti

Learning outcomes

Complexity

- ➤ How to measure the performance of an algorithm?
- > Asymptotic notations
 - Θ (Big Theta)
 - Asymptotically tight bound
 - O (Big O)
 - Asymptotic **upper** bound
 - $\circ \Omega$ (Big Omega)
 - Asymptotic lower bound
 - o o (little o)
 - Upper bound not asymptotically tight
 - ω (little omega)
 - Lower bound not asymptotically tight
- ➤ Comparison of functions

Warning

- You will find questions about the definitions corresponding to this class in:
 - **≻**Midterm 1
 - > Final
 - → DO NOT MISS THESE POINTS
 - Be precise with your answers
 - Be precise with the use of symbols: \exists , \forall , <, >, <=, >=
- Set
 - ➤ Set of numbers
 - > Set of functions

Different cases

- The **best** case:
 - > the inputs of the array were already sorted
- The **worst** case:
 - > the inputs of the array were in reverse order
- The **average** case
- Focus on the worst-case running time
 - ➤ the longest running time for *any* input of size n.

Different cases

- The worst-case running time
 - >An upper bound on the running time for any input.
 - > Knowing it provides a guarantee that the algorithm will never take any longer!
 - > Security:
 - o some educated guess about the running time and hope that it never gets much worse.
- For some algorithms
 - ➤ the worst case occurs fairly often
 - Example: in searching a database for a particular element
 - the searching algorithm's worst case will often occur when the information is not present in the database.
 - searches for absent information may be frequent.
- The average case is often roughly as bad as the worst case.

Asymptotic notations

- Defined as functions with domain: $\mathbb{N} = \{0, 1, 2, \ldots\}$.
- Worst case running time: T(n)
 - ➤ Defined on int input sizes
- Asymptotic notation
 - ➤ To characterize
 - the running times of algorithms (main focus)
 - o the amount of space they use
- Different notations
 - ➤ To characterize running times
 - Independently of the input

Symbols

- Symbols used in the next slides (reminder)
 - $\geq \exists$: there exists
 - > { a, b, c}: curly brackets = set
 - > | : such that
 - → ∀ : for each
 - \forall n≥n₀: for each n superior or equal to n₀
 - $\triangleright \epsilon$: belong
 - o a∈S:abelongs to S
 - ➤ Greek letters
 - /!\if you cannot pronounce the symbol, you cannot remember its meaning later in the definitions
 - Θ (Big Theta)
 - O (Big O)
 - Ω (Big Omega)
 - o o (little o)
 - o ω (little omega)
 - \circ α : alpha , β: beta , γ: gamma, δ: delta, λ: epsilon
 - \circ μ: mu, π : pi, ρ : rho, σ : sigma, τ : tau, ϕ : phi, ψ : psi

Θ Notation

Definition

- $\triangleright \Theta(g(n))$ the set of functions (Big Theta)
- $\triangleright \Theta(g(n)) = \{ f(n) : \exists \{c_1, c_2, n_0\} \mid 0 \le c_1, g(n) \le f(n) \le c_2, g(n) \forall n \ge n_0 \}$
- A function f(n) belongs to the set Θ(g(n))
 - \triangleright If ∃ positive constants c1 and c2 | it can be taken between c₁.g(n) and c₂.g(n), for sufficiently big n.
 - > Bounded from above **and** below
- How it is written:
 - $ightharpoonup f(n) \in \Theta(g(n))$ $\rightarrow f(n) = \Theta(g(n))$

O notation

- Goal
 - > To give an **upper bound** on a function
 - > to bound the worst case running time of an algorithm
 - Within a constant factor
 - O = 'Big O'
- Only an *asymptotic upper bound* → O notation
 - \triangleright O(g(n))={ f(n): ∃ {c,n₀} | 0≤f(n) ≤c.g(n) \forall n≥n₀ }
- f(n)=O(g(n))
 - \triangleright to indicate that a function $f(n) \in \text{the set } O(g(n))$
 - \rightarrow f (n)= $\Theta(g(n)) \rightarrow$ f (n)=O(g(n))
 - O Because Θ notation stronger notion than O notation
 - \circ n=O(n²)
- Example
 - Double nested loops
 - a=0; for (i=0;i<n;i++) for (j=0;j<n;j++) a+=i+j;
 - $\circ \rightarrow O(n^2)$

Ω Notation

Goal

- ➤ To give an lower bound on a function
 - $\circ \Omega =$ 'Big Omega'
- Definition
 - $Partial \Omega(g(n)) = \{ f(n) : \exists \{c, n_0\} \mid 0 \le c.g(n) \le f(n) \forall n \ge n_0 \}$
 - \rightarrow f(n) is **on** or **above** c.g(n)
- Relationship with O and Θ
 - ➤Theorem:
 - \circ For any 2 functions f(n) and g(n), we have f(n)= $\Theta(g(n))$ if and only if
 - f(n)=O(g(n)) and $f(n)=\Omega(g(n))$

Comparisons of the notations

■ Graphical examples of the Θ , O, and Ω notations

o notation

- Goal
 - O notation may be not tight enough
 - 2n²=O(n²) tight
 - 2n=O(n²) not tight
- Definition
 - $o(g(n))=\{f(n): \forall c>0 \exists n_0 \mid 0 \le f(n) < c.g(n) \forall n \ge n_0\}$
 - $2n^2 \neq o(n^2)$ and $2n = o(n^2)$
- Difference
 - O: there is a c $(\exists c > 0)$
 - o: for each c $(\forall c > 0)$
- Limit
 - $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

ω notation

Definition

- $\triangleright \omega(g(n)) = \{ f(n): \forall c>0 \exists n_0 \mid 0 \le c.g(n) < f(n) \forall n \ge n_0 \}$
- \succ f(n) \in ω (g(n)) if and only if g(n) \in o(f(n))
- >ω=little omega

Example

$$> n^2/2 = \omega(n)$$
 and $n^2/2 \neq \omega(n^2)$

■ Therefore we have

$$ightharpoonup f(n) = \omega(g(n)) \rightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Comparison of functions

Transitivity

```
f(n) = \Theta(g(n)) and g(n) = \Theta(h(n)) imply f(n) = \Theta(h(n))

f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n))

f(n) = \Omega(g(n)) and g(n) = \Omega(h(n)) imply f(n) = \Omega(h(n))

f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n)),

f(n) = \omega(g(n)) and g(n) = \omega(h(n)) imply f(n) = \omega(h(n)).
```

Reflexibility

$$f(n) = \Theta(f(n))$$

 $f(n) = O(f(n))$
 $f(n) = \Omega(f(n))$

Symmetry

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$

Transpose symmetry

```
f(n) = O(g(n)) if and only if g(n) = \Omega(f(n))
f(n) = o(g(n)) if and only if g(n) = \omega(f(n))
```

Analogy with numbers

- Relationships between 2 functions
 - ➤ Analogy with the order between 2 numbers
 - > f(n) asymptotically smaller/larger (or equal) then g(n)

```
f(n) = O(g(n)) is like a \le b

f(n) = \Omega(g(n)) is like a \ge b

f(n) = \Theta(g(n)) is like a = b

f(n) = o(g(n)) is like a < b

f(n) = \omega(g(n)) is like a < b
```

Relationships between f and g

- Limits
 - > Limits of f/g to asymptotic relationships between f and g

$$\lim_{n\to\infty} f(n)/g(n) \neq 0, \infty \Rightarrow f = \Theta(g) \qquad \lim_{n\to\infty} f(n)/g(n) = 1 \Rightarrow f \sim g$$

$$\lim_{n\to\infty} f(n)/g(n) \neq \infty \Rightarrow f = O(g) \qquad \lim_{n\to\infty} f(n)/g(n) = 0 \Rightarrow f = o(g)$$

$$\lim_{n\to\infty} f(n)/g(n) \neq 0 \Rightarrow f = \Omega(g) \qquad \lim_{n\to\infty} f(n)/g(n) = \infty \Rightarrow f = \omega(g)$$

$$\lim_{n \to \infty} f(n)/g(n) = 1 \quad \Rightarrow \quad f \sim g$$
$$\lim_{n \to \infty} f(n)/g(n) = 0 \quad \Rightarrow \quad f = o(g)$$
$$\lim_{n \to \infty} f(n)/g(n) = \infty \quad \Rightarrow \quad f = \omega(g)$$

Hospital rule

If
$$\lim_{n\to\infty} f(n) = \infty$$
 and $\lim_{n\to\infty} g(n) = \infty$, then $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}$.

- Simple rules
 - > Polynomial > Log functions
 - > Exponential > Polynomial

Let f(n) = 7n + 8 and g(n) = n. Is $f(n) \in O(g(n))$?

For $7n + 8 \in O(n)$, we have to find c and n_0 such that $7n + 8 \le c \cdot n$, $\forall n \ge n_0$. By inspection, it's clear that c must be larger than 7. Let c = 8.

Now we need a suitable n_0 . In this case, $f(8) = 8 \cdot g(8)$. Because the definition of O() requires that $f(n) \le c \cdot g(n)$, we can select $n_0 = 8$, or any integer above 8 – they will all work.

We have identified values for the constants c and n_0 such that 7n + 8 is $\leq c \cdot n$ for every $n \geq n_0$, so we can say that 7n + 8 is O(n).

(But how do we know that this will work for every n above 7? We can prove by induction that $7n+8 \le 8n$, $\forall n \ge 8$.

Let f(n) = 7n + 8 and g(n) = n. Is $f(n) \in o(g(n))$?

In order for that to be true, for any c, we have to be able to find an n_0 that makes $f(n) < c \cdot g(n)$ asymptotically true.

However, this doesn't seem likely to be true. Both 7n + 8 and n are linear, and o() defines loose upper-bounds. To show that it's not true, all we need is a counter–example.

Because any c > 0 must work for the claim to be true, let's try to find a c that won't work. Let c = 100. Can we find a positive n_0 such that 7n + 8 < 100n? Sure; let $n_0 = 10$. Try again!

Let's try $c = \frac{1}{100}$. Can we find a positive n_0 such that $7n + 8 < \frac{n}{100}$? No; only negative values will work. Therefore, $7n + 8 \notin o(n)$, meaning g(n) = n is not a loose upper-bound on 7n + 8.

Is $7n + 8 \in o(n^2)$?

Again, to claim this we need to be able to argue that for any c, we can find an n_0 that makes $7n+8 < c \cdot n^2$. Let's try examples again to make our point, keeping in mind that we need to show that we can find an n_0 for any c.

If c = 100, the inequality is clearly true. If $c = \frac{1}{100}$, we'll have to use a little more imagination, but we'll be able to find an n_0 . (Try $n_0 = 1000$.) From these examples, the conjecture appears to be correct.

To prove this, we need calculus. For g(n) to be a loose upper-bound on f(n), it must be the case that $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$. Here, $\lim_{n\to\infty} \frac{7n+8}{n^2} = \lim_{n\to\infty} \frac{7}{2n} = 0$ (by l'Hôpital). Thus, $7n+8 \in o(n^2)$.

- Compute Big O of
 - $T(n)=5n^3+5n^2+10$
 - $T(n)=8n*log(6n)+n^2$
 - $T(n)=10n^2*\log(n)+2n^3$
- Exercise:
 - \triangleright Show 2^n=O(n!)

Complexity

• Graphical representation:

With large value of n

The difference is **substantial**

- →worth to study Csci 115 ©
- →Big data → Large n

Complexity

Some figures related to the time

n	O(1)	$O(\log_2 n)$	O(n)	$O(n\log_2 n)$	$O(n^2)$
10^{2}	$1\mu\mathrm{sec}$	$1~\mu { m sec}$	$1\mu\mathrm{sec}$	$1\mu\mathrm{sec}$	$1~\mu { m sec}$
10^{3}	$1\mu\mathrm{sec}$	$1.5~\mu\mathrm{sec}$	$10~\mu{ m sec}$	$15~\mu\mathrm{sec}$	$100~\mu\mathrm{sec}$
10^{4}	$1\mu\mathrm{sec}$	$2~\mu { m sec}$	$100~\mu\mathrm{sec}$	$200~\mu{ m sec}$	10 msec
10^{5}	$1\mu\mathrm{sec}$	$2.5~\mu{ m sec}$	1 msec	2.5 msec	1 sec
10^{6}	$1\mu\mathrm{sec}$	$3~\mu { m sec}$	10 msec	30 msec	1.7 min
10^{7}	$1\mu\mathrm{sec}$	$3.5~\mu{ m sec}$	100 msec	350 msec	2.8 hr
10^{8}	$1\mu\mathrm{sec}$	$4~\mu { m sec}$	1 sec	4 sec	11.7 d

n	$O(n^2)$	$O(2^n)$
100	$1\mu\mathrm{sec}$	$1\mu\mathrm{sec}$
110	$1.2~\mu\mathrm{sec}$	1 msec
120	$1.4~\mu\mathrm{sec}$	1 sec
130	$1.7~\mu\mathrm{sec}$	18 min
140	$2.0~\mu\mathrm{sec}$	13 d
150	$2.3~\mu{ m sec}$	37 yr
160	$2.6~\mu\mathrm{sec}$	37,000 yr

• Know the order of growth:

 $> 1 < \log n < \text{sqrt}(n) < n < n.\log n < n^2 < n^3 < 2^n$

Conclusion

Asymptotic notation:

(n= number of elements in the data structure)

Questions?

- Attendance on Canvas
- Reading:
 - ➤ Section 1.3 in Csci115 book
 - ➤ Chapter 4: Introduction to algorithms

