Exercise 2.18

We can also use maximum likelihood to determine the variance parameter σ^2 . Maximizing (2.66) with respect to σ^2 gives

$$\sigma_{\text{ML}}^2 = \frac{1}{N} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}_{\text{ML}}) - t_n \right\}^2.$$
 (2.68)

Note that we can first determine the parameter vector \mathbf{w}_{ML} governing the mean, and subsequently use this to find the variance σ_{ML}^2 as was the case for the simple Gaussian distribution.

Having determined the parameters \mathbf{w} and σ^2 , we can now make predictions for new values of x. Because we now have a probabilistic model, these are expressed in terms of the *predictive distribution* that gives the probability distribution over t, rather than simply a point estimate, and is obtained by substituting the maximum likelihood parameters into (2.64) to give

$$p(t|x, \mathbf{w}_{\mathrm{ML}}, \sigma_{\mathrm{ML}}^2) = \mathcal{N}\left(t|y(x, \mathbf{w}_{\mathrm{ML}}), \sigma_{\mathrm{ML}}^2\right). \tag{2.69}$$

2.4. Transformation of Densities

Chapter 18

We turn now to a discussion of how a probability density transforms under a nonlinear change of variable. This property will play a crucial role when we discuss a class of generative models called *normalizing flows*. It also highlights that a probability density has a different behaviour than a simple function under such transformations.

Consider a single variable x and suppose we make a change of variables x = g(y), then a function f(x) becomes a new function $\widetilde{f}(y)$ defined by

$$\widetilde{f}(y) = f(g(y)). \tag{2.70}$$

Now consider a probability density $p_x(x)$, and again change variables using x=g(y), giving rise to a density $p_y(y)$ with respect to the new variable y, where the suffixes denote that $p_x(x)$ and $p_y(y)$ are different densities. Observations falling in the range $(x,x+\delta x)$ will, for small values of δx , be transformed into the range $(y,y+\delta y)$, where x=g(y), and $p_x(x)\delta x\simeq p_y(y)\delta y$. Hence, if we take the limit $\delta x\to 0$, we obtain

$$p_{y}(y) = p_{x}(x) \left| \frac{\mathrm{d}x}{\mathrm{d}y} \right|$$

$$= p_{x}(g(y)) \left| \frac{\mathrm{d}g}{\mathrm{d}y} \right|. \tag{2.71}$$

Here the modulus $|\cdot|$ arises because the derivative dy/dx could be negative, whereas the density is scaled by the ratio of lengths, which is always positive.