

Lara Zlokapa Mechanical Engineering Design Portfolio

Mechanical Engineering, B.S., Class of 2020 University of California, Berkeley I am passionate about

INNOVATIVE MECHANICAL DESIGN

achieved though

CREATIVE PROBLEM SOLVING

that

IMPROVES OUR QUALITY OF LIFE

Project Highlights

Tensegrity Robot End Caps

Aerodynamic Tricycle Fairing Shell

Mechanical Gripper for Quadriplegics

Berkeley Emergent Space Tensegrities (BEST) Lab

Summer 2017

My objective

Design and build new end caps for each rod of the 6-bar tensegrity robot, minimizing friction while increasing durability and mobility.

About the robot

BEST Lab's versatile 6-bar tensegrity robot is intended for use in search and rescue and as a rover for Jupiter's moon Titan. The robot moves by adjusting the tension of cables running from inside a given bar to the end of an adjacent bar, causing the robot to change shape, shift its center of mass, tip, and roll over.

My project

The end caps a former graduate student developed for his master's thesis were ultimately too complicated to implement and employ. I designed new end caps for the robot and completed all designs independently, working with tensegrity team members to ensure that my creations complemented the functionality of their components and discussing ideas with my Ph.D. student mentors for feedback.

Finished end cap

6-bar tensegrity robot with end caps at the end of each rod

Design parameters

- · Opening for cables to spool into and out of the rod
- Minimal wear and tangling of cables (two cables run through the rod)
- Frictionless cable movement with ±30° range of motion on all axes
- No debris able to enter the rod and impede cable movement
- Efficient assembly and removal (for robot repair)
- Easily machined in the campus machine shop

Berkeley Emergent Space Tensegrities (BEST) Lab

Summer 2017

End Cap: Intermediate Version

From initial prototyping (in Fusion 360 and 3D printing) and group feedback, I learned that the end cap tip must be round so as not to impede robot motion and that a cover attached to the end cap with tiny screws or bolts was difficult to accurately machine. I designed this intermediate version to solve those problems. Because preventing the cables inside the rod from tangling was an important design factor, the inner (right) piece of the end cap was press fitted onto the rod and contained two holes to separate the cables. The outer (left) piece would then be screwed on.

Design highlights

- Rounded tip, enabling the robot to roll in any direction
- Hole on top of outer piece to prevent tangling during assembly
- Large holes for wide range of cable motion
- Easy assembly

Prototype drawbacks

 Difficult to machine threads and rounded edges of holes on inner part

Berkeley Emergent Space Tensegrities (BEST) Lab

Summer 2017

End Cap: Final Version

This design, which originated with graduate student Alan Zhang, was ultimately selected because of its simplicity, ease of manufacturing, and ease of assembly. I learned that these three components are key in handmade projects, almost as important as optimizing design functionality.

I conceptualized, modeled, and prototyped all aspects of all previous designs. For this final design, I modified the holes and placement of the spring pins so that the cable had a wider range of motion and touched only the spring pins for minimal wear.

- Eye bolts through the bottom holes to securely attach end cap to rod
- Decreased cable wear by running cable over spring pins
- Large cable exit holes to prevent cable from touching end cap
- Easy to machine

Side View. Autodesk Fusion 360.

Final end cap attached to rod with cables attached (but not taut)

Berkeley Emergent Space Tensegrities (BEST) Lab

Summer 2017

Autodesk Fusion 360 and 3D printed models of end caps from different stages of the design process

Delta-Leaning Recumbent Tricycle

Human Powered Vehicles Club, UC Berkeley

Sept. 2017 - Mar. 2018

My objective

Design (1) an aerodynamic fairing shell to increase vehicle speed and (2) a "grocery" basket to carry a carton of eggs. Assist with carbon fiber frame layups, bike part machining, and bike assembly.

About the vehicle

For the ASME (American Society of Mechanical Engineers) E-Fest West Human Powered Vehicles 2018 Competition, we built a leaning tricycle. The bike was designed to allow the vehicle chassis and rider to lean into the turn while keeping all three wheels on the ground. Our vehicle also included an ABS designed by our electrical team and a rear fairing. The competition evaluates the

vehicles based on their design, innovation, and performance both in the sprint event and in the 2.5 hour endurance relay event involving slalom, speed bumps, and the ability to carry eggs without breaking them.

Riding in a straight line

SUPERGYRO

Our leaning tricycle at the competition

Awards:

- 3rd place overall
- 2nd place Design Award
- Craftsmanship Award

Leaning into the turn

Delta-Leaning Recumbent Tricycle

Human Powered Vehicles Club, UC Berkeley

Sept. 2017 - Mar. 2018

The Fairing

I worked in a team of four to design the fairing. We selected a rear fairing since the bike would be racing at approximately 20 mph, so a lighter rear fairing outweighed the

aerodynamic advantage of a full fairing. I used SolidWorks and ANSYS to create 3D models, simulate fluid flow, and perform FEA testing to determine the optimal length of the fairing. I also participated in all stages of the manufacturing process, creating the fairing from carbon fiber fabric and layering the fabric in a foam mold to create the final fairing.

During the competition, we found that the bike raced faster without the fairing and removed it. Our fairing design did, however, help earn us the design award.

- Lightweight carbon fiber fairing
- Height and width match exact dimensions of the rider and frame to reduce drag
- · Shorter length for lighter fairing

Sample fairing parameter model

Graph of drag force vs fairing length

Completed fairing

Fairing model
Autodesk Fusion 360

Delta-Leaning Recumbent Tricycle

Human Powered Vehicles Club, UC Berkeley

Sept. 2017 - Mar. 2018

The Basket

The endurance event in the competition involved carrying surprise "groceries" for four laps over speed bumps and slalom stretches. Since the grocery items were only revealed on the day of the race, the grocery basket had to be built to carry fragile or heavy items that fit within the given size and weight constraints. The groceries were four cartons of eggs, and only one egg broke.

I independently designed and built the grocery basket. It consisted of a box held by a laser-cut wooden frame mounted to two aluminum flat bars (that I shaped and bent by hand), which were bolted to the acrylic flags on the side of the bike (where the yellow number 7 is). The entire grocery basket was spray painted black.

Laser cut basket frame

Finished grocery basket

Design parameters

- 13" x 8" x 15" maximum grocery size
- 5.5 kg maximum grocery weight

- Mounting points, location, and orientation selected to to minimize shaking and help transport fragile items
- Padding inside box for safe transportation of fragile groceries
- Box opening designed for speedy loading and unloading
- Materials selected to minimize weight, maximizing speed
- Three-bolt basket mounting to ensure quick removal during the race

Mechanical Gripper for Quadriplegics

UC Berkeley Spring 2018

My objective

Design and build a durable, easy-to-use gripper device for a quadriplegic person in a wheelchair to pick items from the floor and table.

About the gripper

Our quadriplegic need-knower needed a device to reach objects that were out of her reach. She wanted a purely mechanical device that could pick up a diverse array of items while still being relatively simple mechanically. I worked in an interdisciplinary team of five in the assistive technology club EnableTech to develop this gripper for her. We ultimately decided to use a string attached to a reel at the end of the rod to open and close the claw.

Design parameters

- Must pick up paper, coins, and pens from the ground.
- Must pick up cans from shelves.
- Must pick up Tupperware and frozen food from refrigerator/freezer.
- Can be used in the grocery store.
- Must be completely mechanical (no electronics).
- Must be simple to repair.
- Must be cost-effective to produce.
- Must be manufacturable within UC Berkeley Jacobs Hall resources (3D printer, laser cutter, wood shop, water jet).

Intermediate claw and reel prototypes

Final prototype

Mechanical Gripper for Quadriplegics

UC Berkeley Spring 2018

The Claw

The claw was laser cut and attached to the PVC pipe arm of the gripper with wood glue, nuts, and bolts. I was responsible for the claw point angle and notch (tested and optimized for picking up coins paper from the ground), the string configuration to close the claw (run through the rod from the claw pivot to an axle attached to the reel on the other end), and the two versus three claw finger arrangement.

- Two versus three finger claw to safely and effectively grasp objects.
- Notch at claw tips to pick up coins.
- Thin claw tip to pick up paper.
- Rubber bands to add grip.
- String inside PVC pipe for minimal interference with grasping.
- Spring between claw end and point to automatically re-open claw.
- 1/4" wood for durability when lifting heavy objects.

Mechanical Gripper for Quadriplegics

UC Berkeley Spring 2018

The Reel

Similar to a dial telephone, the need-knower would use her finger to reel in the string attached to the claw, closing the claw. A pawl and ratchet system was used to ensure that the string would not unwind, opening up the claw. To open the claw, the pawl is simply lifted, and the object is released. I designed the reel and pawl to be more user friendly, fitting the shape of the need-knower's arm and hand (she cannot fully open her hands). I also designed and 3D modeled the red hand grip in the picture in SolidWorks. Finally, I originated the idea to place the reel under her elbow to counterbalance any heavy weights the claw grips and reduce the apparent weight lifted by the device.

- Laser cut acrylic reel for reduced friction (resources had an option of wood or acrylic for laser cutting).
- User-friendly pawl, ratchet, and elbow rest.
- 3D printed ergonomic hand holder (measured and sculpted to need-knower's hand).
- Spring-loaded pawl for ease of object release.
- · Foam lined arm rest for comfort.
- Lightweight, durable PVC pipe arm extension.

About Me

Since learning how to laser cut, I have created countless presents for my family and friends.

I enjoy connecting with people outside the U.S. and speak French, German, and Serbo-Croatian (the language of the Balkan countries) at a nearly conversational level.

When I'm not working on my latest design project, you can find me swing dancing, tango dancing, playing violin in the UC Berkeley Chamber Orchestra, playing classical piano, baking bread, or swimming.

A few of my laser cut gifts at top: trick box with hidden locking mechanism (3 photos), trinket box with living hinge, clock.

Lara Zlokapa

Email <u>lara.z@berkeley.edu</u>

Phone (925) – 791 – 9231

LinkedIn <u>www.linkedin.com/in/lara-zlokapa</u>