HotGauge: A Methodology for Characterizing Advanced Hotspots in Modern and Next Generation Processors

Alexander Hankin^{1*}, David Werner^{1*}, Julien Sebot², Kaushik Vaidyanathan³, Maziar Amiraski¹, Mark Hempstead¹

¹Tufts University, ²Intel, ³Google *co-authors

2021 IEEE International Symposium on Workload Characterization

November 7, 2021

Introduction

- System design trends have exacerbated thermal hotspots and have created "advanced" hotspots
 - Exponential power density
 - Cramming additional logic
- Advanced hotspots are a critical design concern and will continue to get worse without proper mitigation
- We have built the necessary tools for studying advanced hotspots and developing mitigation techniques

How bad are they?

Advanced hotspot in a 7nm client processor similar to Intel Skylake

How bad are they?

Higher temperature deltas in 7nm.

Distribution of temperature deltas over 200 µs intervals

How bad are they?

Wider distribution of temperature deltas within 200µs.

Distribution of temperature deltas over 200 µs intervals

Background and Motivation

- Power density is localized, application-dependant, and rapidly increasing
 - standard thermal controllers won't work
- Lack of a hotspot definition
- Existing simulation methodologies are limited

Project Goal

TODO: sell the project

- Novel metrics and analysis techniques
- End-to-end simulation infrastructure
- Demonstrate using case studies

HotGauge

Perf:Power:Therm Simulation

- HotGauge takes as input the system models and workloads to be evaluated for hotspots
- First major task, Perf-power-therm co-simulation, integrates performance, power, and thermal models to perform rapid end-to-end thermal simulation

Hotspot Characterization

- Rigorous definition of a hotspot
- Automated method for detecting them
- Quantitative metric to compare hotspot severity between floorplans, or other model changes

Hotspot Definition and Detection

- Goal: capture all phenomena which will cause either performance loss or reliability problems
 - absolute temperature
 - maximum localized temperature differential (MLTD)

Hotspot Severity Metric

- Hotspot Severity accounts for both MLTD and temperature
- Comprised of multiple parameterized sigmoid functions, each dealing with a different concern

$$\sigma(x_o, y_o, s, a) = \frac{a}{1 + e^{-s(x - x_o)}} + y_o$$

$$sev(x, y) = \sigma_{df}(T_{x,y}) + \sigma_{M}(MLTD_{x,y}) * \sigma_{T}(T_{x,y})$$
where:
$$\sigma_{df} = \sigma(115, 0, 0.2, 2)$$

$$\sigma_{M} = \sigma(15, -0.25, 0.2, 1.25)$$

$$\sigma_{T} = \sigma(60, 0.35, 0.05, 0.65)$$

Case Study - Skylake Proxy

CPU Microarchitecture Parameters				
Process node [nm]	14, 10, 7			
Cores	7			
Core area [mm ²]	5, 2.5, 1.25			
Frequency	5 GHz			
SMT	2			
ROB entries	224			
LQ entries	72			
SQ entries	56			
Scheduler entries	97			
L1I \$	Private, 32 KiB			
L1D \$	Private, 32 KiB			
L2 \$	Private, 512 KiB			
L3 \$	Shared ring, 16 MiB			

Layer	Thermal Conductivity [W/µm K]	Volumetric Heat Capacity [J/µm³ K]	height [μm]
Thermal grease	0.04e-4	3.376e-12	30
Copper (heat spreader)	3.9e-4	3.376e-12	3e3
Solder TIM	0.25e-4	1.628e-12	200
Silicon (IC wafer)	1.20e-4	1.651e-12	380

Evaluation and Case Study

Using HotGauge, we aim to...

- Quantify how bad the problem is
- How much worse will the problem be in next generation processors
- Evaluating mitigations

Results - Temperature Distribution vs Time

MLTD vs. Tech Node

Higher
MLTD in
newer
7nm node

MLTD varies more from core to core

Results -- TUH vs tech node

Results -- TUH vs warmup

Time Until Hotspot

Hotspot behaviour across benchmarks varies considerably

Some benchmarks are more affected by core-placement

Hotspot Locations

Some areas are prone to hotspots

Some areas have infrequent hotspots

Case Study *Single Unit Mitigation*

Goal : decrease hotspots caused by *problematic* units

Baseline: make 7nm unit no worse than 14nm unit (using hotspot-severity)

Method: scale area of problematic units (thereby decreasing power-density)

Unit Scaling

Floating Point Instruction Window

Effectiveness of unit scaling varies from benchmark to benchmark

Unit Scaling

Different Units for milc

Effectiveness of unit scaling varies from benchmark to benchmark

Scaling Register Access Tables

- Hotspot severity of 1.0:
 - 14nm: few workloads
 - 7nm: most workloads
- Varied impact of scaling RATs across workloads

Other Contributions

- Model validation
 - Thermal stack
 - Power Model
- Modified Sniper/MCPAT for new nodes
- Case Study: Scaling the entire IC

Conclusion

- In this work we introduce HotGauge, a holistic methodology for characterizing hotspots in modern and next generation processors
- HotGauge details new methods and metrics for characterizing and comparing hotspot severity across any next generation processors.
- This will allow the architecture community to develop architecture level mitigations to work alongside traditional thermal regulation techniques to solve the advanced thermal hotspots which are occurring in modern and next generation processors.

Electrical and Computer Engineering

HotGauge FrameWork

Publicly available on GitHub!

☐ TuftsCompArchLab / HotGauge Public

https://github.com/TuftsCompArchLab/HotGauge

Includes Docker container to run thermal-simulations and perform analysis

HotGauge: A Methodology for Characterizing Advanced Hotspots in Modern and Next Generation Processors

Alexander Hankin^{1*}, David Werner^{1*}, Julien Sebot², Kaushik Vaidyanathan³, Maziar Amiraski¹, Mark Hempstead¹

¹Tufts University, ²Intel, ³Google *co-authors

https://github.com/TuftsCompArchLab/HotGauge

Validation

	\mathbf{C}_{dyn} [nF]					
	14nm Si	model	error	10nm Si	model	error
bzip2	1.33	1.36	+2%	1.32	1.17	-11%
gcc	1.51	1.30	-14%	1.80	1.13	-37%
omnetpp	1.16	1.33	+15%	0.99	1.16	+17%
povray	1.87	1.62	-13%	1.87	1.36	-27%
hmmer	1.52	1.65	+9%	1.49	1.38	-7%
abs. avg.	55.00 E	k a	11%		-	20%

	Process Node [nm]			
	14	10	7	
Ψ [°C/W]	0.96	1.13	1.40	
TDP [W]	63	53	43	