PRACTICA.R

VICTOR RAUL MAYE MAMANI

2024-05-20

```
library(TTR) # Método de Media móvil
## Warning: package 'TTR' was built under R version 4.3.3
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.1
library(forecast)
## Warning: package 'forecast' was built under R version 4.3.3
## Registered S3 method overwritten by 'quantmod':
##
     method
                       from
##
     as.zoo.data.frame zoo
library(fastDummies)
## Warning: package 'fastDummies' was built under R version 4.3.3
## Thank you for using fastDummies!
## To acknowledge our work, please cite the package:
## Kaplan, J. & Schlegel, B. (2023). fastDummies: Fast Creation of Dummy
(Binary) Columns and Rows from Categorical Variables. Version 1.7.1. URL:
https://github.com/jacobkap/fastDummies, https://jacobkap.github.io/fastD
ummies/.
library(mFilter)
## Warning: package 'mFilter' was built under R version 4.3.3
ruta archivo = 'C:\\Users\\LENOVO\\Downloads\\horastrabajadas.txt'
datos <- read.table(ruta_archivo, header = TRUE, sep = " ")</pre>
yts <- ts(datos$horastrabajadas, start = c(1976, 3), frequency = 4)
# a) Represente la serie e identifica las componentes de variación presen
tes en la misma.
plot(yts, main = "Serie Temporal de Horas Trabajadas", xlab = "Trimestres
", ylab = "Horas Trabajadas")
```

Serie Temporal de Horas Trabajadas

LOS COMPONENTES DE VARIACION SE PUEDEN OBSERVAR EN LA PREGUNTA B INDIVIDUALMENTE

b) Realice la descomposición de serie y represente de manera individual cada componente.

```
decomp = decompose(yts)
plot(decomp$x)
```


TENDENCIA plot(decomp\$trend)

ESTACIONALIDAD

plot(decomp\$seasonal)

ALEATORIO

plot(decomp\$random)


```
# c) Estima la tendencia a través del ajuste de una función cuadrática, p
romedio móvil doble, el
# método de Holt-Winters y filtro de Hodrick - Prescott. ¿Qué método ajus
ta mejor la
# tendencia?, justifique su respuesta.

# Ajuste funcion cuadratica
t <- time(yts)
Y2 <- lm(yts ~ t + I(t^2))
pron = ts(predict(Y2, t), c(1976,3), frequency = 4)
plot(yts, xlab="Trimestres", ylab="Horas")
lines(pron, type = "l", col = "red")
legend(x = "bottomright", legend = c("Yts", "Y2"), col = c('black', 'red'
), lty = c(1, 1))</pre>
```


Oservamos que la linea de ajuste de la funcion cuadratica se ajus ta bien a la seri original

```
# Promedio móvil doble
k<-4 #Periodo
Yts_ma <- SMA(yts, k)
plot(yts)
lines(Yts_ma, type="l", col="red")
legend(x = "bottomright", legend = c("Yts", "Yts_ma"), col = c("black","
red"), lty=c(1,1))</pre>
```



```
Yts_ma2 <- SMA(Yts_ma, k) # Media móvil de media móvil
a <- 2*Yts_ma - Yts_ma2
b <- (2/(k-1))*(Yts_ma - Yts_ma2)
p <- 2
Yma2 <- a + b*p
plot(yts, type='l', xlab="Meses", ylab=" ")
lines(Yma2, type='l', col = 'red')</pre>
```


El promedio movil doble tambien se ajusta, pero no podemos apreci ar claramente la tendencia como en el funcion cuadratica

```
# Holt-Winters
HORhw_m <- HoltWinters(yts, seasonal = "multiplicative")
plot(HORhw_m)
legend(x = "bottomright", legend = c("HORAS", "HORhw_m"), col = c('black', 'red'), lty = c(1, 1))</pre>
```

Holt-Winters filtering

En este caso se observa que se ajusta demasiado a la serie original lo que dificulta la estimacion de la tendencia

```
# Filtro de Hodrick

lambda_hp <- 1600
Yhp <- hpfilter(yts, type="lambda", freq=lambda_hp)
plot(Yhp)
abline(h=0, col="green")</pre>
```

Hodrick-Prescott Filter of yts

Cyclical component (deviations from trend)

d) Detecte el componente estacional haciendo uso de los métodos gráfico s. Para usted, ¿qué método gráfico es más efectivo?

ggsubseriesplot(yts, xlab = "Trimestres", ylab = "Horas")

ggseasonplot(yts, xlab = "Trimestres", ylab = "Horas")

ggAcf(yts, xlab = "Trimestres", ylab = "Horas")

```
## Warning in ggplot2::geom_segment(lineend = "butt", ...): Ignoring unkn
own
## parameters: `xlab` and `ylab`
```


#Podemos observar que en los tres metodos no hay estacionalidad

Siendo el mas efectivo el grafico de lineas ggseasonplot

```
# e) En caso de haber detectado el componente estacional, ratifique a tra
vés de la regresión de
# variables Dummy.
datos$trimestre = rep(1:4, length.out = 119)
datos$horas_1 <- lag(datos$horastrabajadas)</pre>
# Construcción de las Dummy
datos$dummy <- datos$trimestre</pre>
tabla_dummy <- dummy_columns(datos, select_columns = "dummy", remove_first_
dummy =TRUE)
head(tabla_dummy)
##
     horastrabajadas trimestre horas_1 dummy dummy_2 dummy_3 dummy_4
## 1
              47.395
                              1 47.395
                                             1
                                                     0
                                                              0
## 2
              45.730
                              2
                                 45.730
                                             2
                                                     1
                                                              0
                                                                      0
## 3
              44.647
                              3
                                 44.647
                                             3
                                                     0
                                                              1
                                                                      0
## 4
              45.087
                              4 45.087
                                                     0
                                                              0
                                                                      1
```

```
## 5
              46.100
                             1 46.100
                                           1
## 6
              45,045
                             2 45.045
                                           2
                                                   1
                                                           0
                                                                   0
# Dataframe para la regresion con Dummies
tabla_reg <- tabla_dummy[, c("horastrabajadas","horas_1","dummy_2","dummy</pre>
3","dummy 4")]
# Regresion con Dummies
reg_1 <- lm(datos$horastrabajadas~., data = tabla_reg)</pre>
summary(reg 1)
## Warning in summary.lm(reg_1): essentially perfect fit: summary may be
## unreliable
##
## Call:
## lm(formula = datos$horastrabajadas ~ ., data = tabla_reg)
##
## Residuals:
##
          Min
                      10
                             Median
                                            30
                                                      Max
## -7.611e-16 -1.307e-16 -9.800e-18 6.070e-17 4.125e-15
## Coefficients:
##
                 Estimate Std. Error
                                        t value Pr(>|t|)
## (Intercept) -1.042e-14 7.419e-16 -1.405e+01
                                                  <2e-16 ***
                                                  <2e-16 ***
## horas 1
                1.000e+00 1.779e-17 5.621e+16
## dummy_2
                2.697e-16 1.133e-16 2.381e+00
                                                  0.0189 *
## dummy 3
                5.721e-17 1.134e-16 5.050e-01
                                                  0.6147
## dummy 4
                6.170e-17 1.152e-16 5.360e-01
                                                  0.5933
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.286e-16 on 114 degrees of freedom
## Multiple R-squared:
                            1, Adjusted R-squared:
## F-statistic: 8.549e+32 on 4 and 114 DF, p-value: < 2.2e-16
# Podemos observar que no todas las variables son significativas
# f) Desestacionalice la serie con el método de media móvil central.
Yv ma <- SMA(yts, 4) # media móvil simple
Yv_mc <- ma(yts, 4) # media móvil centrada
plot(yts, xlab="Años/Trimestres", ylab="Horas")
lines(Yv_ma, type = "l", col = "red")
lines(Yv_mc, type = "1", col = "blue")
legend(x = "bottomright", legend = c("Yv", "Yv_ma", "Yv_mc"), col = c('bl
ack', 'red', 'blue'), lty=c(1,1,1))
```



```
# g) Evalúe la existencia de las variaciones cíclicas mediante el ajuste
regresión:

datos$t <- seq(1:NROW(datos))
# Construir series
cosP <- cos(2*pi/119*34*datos$t)
senP <- sin(2*pi/119*34*datos$t)
# Ajuste del modelo
ciclo <- lm(yts ~ cosP + senP)
plot(ciclo$residuals, type = "l", xlab="t", ylab="Residuos", col = "red")</pre>
```


Podemos apreciar que si hay un componente ciclico con una amplitud de a proximadamente 5 trimestres