Amendments to the Claims:

Claim 1 (withdrawn)

An internal combustion engine exhaust catalytic converter, comprising;

a casing having an inlet port at one end and an exhaust port at the other end; and a coil of overlapping woven metal fabric catalytic substrate held in compression within into said casing, said metal fabric being the only catalytic element.

Claim 2 (withdrawn)

The catalytic converter of claim 1, wherein said metal fabric is woven from either single or multiple strands.

Claim 3 (withdrawn)

The catalytic converter of claim 1 further described in that the strand size of said fabric is .011 to .25 inches.

Claim 4 (withdrawn)

The catalytic converter of claim 1 further described in that said substrate is firmly held within said casing only by the resilient compressibility of its rolled form.

Claim 5 (withdrawn)

The catalytic converter of claim 1 wherein said metal fabric is coated with a catalytic material.

Claim 6 (withdrawn)

The catalytic converter of claim 1 further including a plurality of indentations in said fabric having staggered spacing therebetween such that said indentations space apart overlapping surfaces of said fabric.

Claim 7 (withdrawn)

The catalytic converter of claim 7, wherein said indentations are irregularly shaped.

Claim 8 (withdrawn)

Catalytic converter of claim 1 further including an inner sleeve surrounding said coil of metal fabric compressibly holding said coil.

Claim 9 (original)

The method of manufacturing a catalytic converter for an internal combustion engine exhaust comprising the steps of:

providing a length of metal fabric;
roll stamping indentations into the surface of said metal fabric;
heating and quenching the surface of said fabric;

etching said fabric by shot-blast etching;

coating said fabric with a liquid ceramic material;

spooling said coated fabric into individual cartridges;

oven-firing said cartridges;

impregnating said ceramic material with a catalytic precious metal; and oven-firing said cartridges a second time.

Claim 10 (currently amended)

The method of manufacturing the catalytic converter of claim 10 9 further including the final step of pressing said coiled coated substrate fabric into an outer metal casing.

Claim 11 (currently amended)

The method of manufacturing the catalytic converter of claim 10 9 further described in that said ceramic material is from the group of gama alumina, zirconia or zeolite.

Claim 12 (currently amended)

The method of manufacturing the catalytic converter of Claim 10 9 wherein said precious metal is from the group of platinum, palladium or rhodium.

Claim 13 (currently amended)

The method of manufacturing the catalytic converter of Claim 10 9 wherein said step of coating said fabric with a ceramic material comprises first passing said fabric through a bath of liquid ceramic material to coat said fabric, and then blowing off an excess of said ceramic material from said fabric with pressurized air.

Claim 14 (currently amended)

The method of manufacturing the catalytic converter of claim 10 9 wherein said step of etching said fabric further described as moving said fabric beneath two blast guns and applying a 1800 twist to said fabric at a point between said blast guns, one blast gun being upstream of said twist and a second blast gun being downstream of said twist, whereby said blast guns etch both sides of said fabric with an abrasive blast.