Chemie Aufschriebe

TornaxO7

22. Oktober 2020

Inhaltsverzeichnis

7	\mathbf{Am}	inosäuren
	7.1	Namensbedeutungen
	7.2	Peptidbindung
8	Kur	$_{ m nststoffe}$
	8.1	Staudingers Theorie der Makromoleküle
	8.2	Thermoplaste
	8.3	Duroplaste
	8.4	Elastomere
	8.5	Polymerisation
	8.6	7.3.2 Polykondensation
		8.6.1 Beeinflussung des Kunststofftyps der Polykondensation 17

7 Aminosäuren

Allgemeine Struktur:

7.1 Namensbedeutungen

Das α steht für die Carboxylgruppe am benachbartem C—Atom.

Aminosäuren liegen als Zwitter vor.

- Durch Carboxylgruppe: Kann Sauer (Protonendonator) reagieren.
- Durch Aminogruppe: Kann Basisch (Protonenakzeptor) reagieren.

Es bildet durch die beiden Gruppen eine intramolekulare Protonenwanderung.

Kation	Zwitterion	Anion
СООН	COO-	COO-
H_3N^+ — C — H	H_3N^+-C-H	H_2N — C — H
H	 	H

Den pH—Wert, an dem die Aminosäuren hauptsächlich als Zwitterion vorliegen nennt man isoelektrischen Punk (IEP).

7.2 Peptidbindung

Bei einer Peptidbindung spalten sich ein Sauerstoff von der Carboxylgruppe und zwei Wasserstoff Atome von der Aminogruppe ab, sodass Wasser entsteht. Anschließend verbunden sie sich:

Glycin Alanin

8 Kunststoffe

8.1 Staudingers Theorie der Makromoleküle

Kunststoffe bestehen aus Makromolekülen (Polymeren), die aus Monomeren aufgebaut sind.

Eintelung der Polymere:

Naturstoffe	Umgewandelte Naturstoffe	Kunststoffe
Cullulose	Zelluloid	Silikone
Kautschuk	Schießbaumwolle	PVC (Polyvenuelchlorid)
Kautschuk		PET
Stärke		PE
Proteine		Styropor
Polysaccharide		PP
		PP
		PU
		Polyester
		Elastrat
		PTFE
		PS
		PVC

8.2 Thermoplaste

Eigenschaften:

- Werden beim erwärmen leicht oder schmelzen.
- Lösen sich teilweise in Aceton oder quellen (aufquellen).

Vorteile:

- Gute Verarbeitungsmöglichkeiten: Schmelzen, dann pressen, spritzen, gießen (und extruhieren: Form auspressen(?))
- Gute Wiederverwertbarkeit: Einschmelzen der sortenreinen Kunststoffe.

Skizze:

Erklärung:

Sie bestehen aus linearen oder wenig verzweigten Makromolekülen und beim erwärmen

Abbildung 1: Skizze von Thermoplaste

werden die Zwischenmolekularenkrüfte teilweise überwunden.

Die Ketten können aneinander vorbei gleiten.

Manche Lösungsmittel können sich zwischen den Ketten schieben \rightarrow Kunststoff quillt auf oder löst sich auf.

Eselsbrücke

Thermoplaste verformen sich bei hoher Temperatur.

8.3 Duroplaste

Eigenschaften:

- Zersetzen sich beim erwärmen, ohne zu schmelzen.
- unlöslich in Lösungsmitteln.
- Formbeständiger und widerstandsfähiger Kunststoff, aber:
 - Schwer recyclebar
 - schwer zu verarbeiten: Werkstücke müssen in der Form synthetisiert werden, anschließend nur mechanische Bearbeitung (Bohren, Sägen, Schleifen, Steckdosenabdeckung, etc.)

Skizze:

Erklärung:

- Duroplaste bestehen aus stark verzweigten Ketten, beim starkem erhitzen werden Atombindungen aufgebrochen \rightarrow Der Stoff zersetzt sich.
- Manche Lösungsmittel schieben sich in das Netz, sodass manche Duroplaste aufquellen können.

Abbildung 2: Dreidimensionales Netz

Eselsbrücke

Duroplaste haben eine gute durability (Haltbarkeit).

8.4 Elastomere

Eigenschaften:

- \bullet Biegbar/Elastisch und ist reversible (springt zurück in seine ursprüngliche Form)
- Beim erhitzen zersetzen ohne zu schmelzen.

Skizze:

Abbildung 3: Skizze Elastomere

Erklärung:

Elastomere bestehen aus weitmaschtigen Makromolekülen. (Rest ist gleich wie Duroplaste)

Eselsbrücke

Elastomere sind elastisch.

8.5 Polymerisation

Versuch: Herstellung von Polysterol

Skizze:

Beobachtung:

- Sidet beim erhitzen (auch wenn die Flamme weggenommen wird)
- Viskosität nimmt zu
- Schäumt beim siden
- aufsteigende Dämpfe, Kondensierun im Steigrohr

<u>Definition</u>: Polymerisation

Verknüpfen kleiner Molekülen mit Doppelbindung zu einem Makromoleküle unter Verlust der Doppelbindung.

Abbildung 4: Skizze Polymerisation

$\underline{\text{Gesamtreaktion:}}$

Reaktionsmechanismus:

1. Bildung von Radikalen:

Es spaltet sich auf, weil die Peroxidgruppe sehr instabil ist.

2. Startreaktion

3. Kettenreaktion/Kettenwachstum:

4. Kettenabbruch:

Verschiedene Möglickeiten, z.B. Rekombination:

Dibenzoylperoxid ist hier Starter, beziehungsweise Radikalbildner und die Zugabe von vielen Startern führt zu kürzeren Kettenlängen, da viele Ketten gestartet werden. (Die Kette von der Gesamtreaktion)

Bemerkung / Beispiele zu Polymerisation

a) Bekannte Polymerisation

Name	Monomer	Polymermolekül	Einsatzbei- spiel
Polyethen (PE)	$C \longrightarrow C$ H	$\begin{array}{ c c c c c }\hline H & H \\ & & \\ \hline & & \\ \hline & & \\ H & H \\ \end{array}$	Plastiktüten
Polypropen (PP)	$ \begin{array}{ c c c } & H & H \\ & & \\ & & \\ H & & \\ & & $	$\begin{bmatrix} H & CH_3 \\ & & \\ -C & -C \\ & & \\ H & H \end{bmatrix}_n$	Flaschende- ckel, Brotdosen
Polyvinyl- chlorid (PVC)	H C Cl)	$\begin{bmatrix} & H & \overline{C}l \\ & & \\ & & \\ & & H & \end{bmatrix}_n$	Rohrleitungen, Vinylböden, Schallplatten
Polytetra-fluorethen (PTFE)	F C F F	$\begin{bmatrix} \overline{F} & \overline{F} \\ & \\ & \\ \underline{F} & \underline{F} \end{bmatrix}_n$	Pfannenbe- schichtung (Teflon), Funktions- kleidung (Goretex)

b) Amorph Teilkristallin

- Amorphe Kunststoffe: Glasartig, transparent
- Teilkristalline Kunststoffe: Mechanisch Stabiler, nicht klar durchsichtig (milchig), wärmebeständig

c) Weichmacher

Kleine Moleküle die sich zwischen die Ketten einlagern können \rightarrow Mehr Abstand zwischen den Ketten \rightarrow Geringere zwischenmolekulare Kräfte zwischen den Ketten \rightarrow Bessere Verschiebbarkeit der Ketten gegeneinander \rightarrow Kunststoff wird weicher

$\underline{\text{Problem}} :$

- Weichmachermoleküle können wieder leicht aus den Ketten rausgehen: Weichmachermoleküle können schädlich sein für Mensch und Umwelt
- Weichmacher wird spröder, weil der Weichmacher raus ist

d) Monomere mit konjugierten Doppelbindungen

Amorph Teilkristallin Kristalling Zunahme der Erweichungstemperatur Meschanische Stabilität / Dichte

Zunahme der Lichtdurchläsigkeit und Quellbarkeit

Beispiele: Low - Density Polyethen, PPEPP

High Density Polyethen

Abbildung 5: amorph-teilkristallin-kristallin-Eigenschaften-Pfeile

Bespiel:

1,3 — Butdien

Man spricht von einer 1,4 — Verknüpfung. Es entsteht ein ungesättigtes Polymer \rightarrow Weitere Vernutzung möglich zum Elastomer oder Duroplast

06.10.2020

Das ganze ist ein Thermoplast, weil es keine Verzweigung hat.

z.B. mit Styrol (Buna):

Die Verknüpfungen könnten beliebig lang sein und dadurch ist dieser Kunststoff elastisch. Je nach vernetzungsgrad bildet sich ein Elastromer oder ein Duroplast. Naturkautschuk:

Polymer von Isopren

Durch Vulkanisieren (Vernetzung durch Schwefelketten) ensteht Gummi.

e) Legosteine bestehen aus ABS (Acrylnitril — Butadienstyrol)

Butadienstyrol

Polymere, die aus verschiedenen Monomeren aufgebaut sind, nennt man Copolymere. Sie ermöglichen vielfältige Beeinflussung der Kunststoffe.

8.6 7.3.2 Polykondensation

Kondensationsreaktion:

Verknüpfung zweier Moleküle durch Abspaltung eines weiteren Moleküls (z.B. Wasser)

Bekannte Kondensationsreaktionen:

- a) Esterbildung (Säure + Alkohol)
- b) Peptidbildung (aus Aminosäuren)

Struktureformeln zu a) und b):

a) Polyester

Möglichkeit 1: Hydroxycarbonsäure

z.B.:

Möglichkeit 2: Dicarbonsäure + Dialkohol

b)

c) Polyamid (PA)

Versuch: Herstellung von Nylon

Lösung A:

- 2,2g 1,6 Diaminohexan und
- 1g NaOH in 50ml Wasser

Lösung B:

- 1,5ml Dekansäuredichlorid
- in 50ml Heptan

Lösung A wird mit Lösung B überschichtet.

Mit einer Pinzette lässt sich Grenzschicht als Faden herausziehen.

(1. Möglichkeit) Erklärung:

Aus Diamin und Dicarbonsäure bzw. Dicarbonsäurechlorid entsteht ein Polyamid:

Hier ist eine Aminogruppe, weil dort eine Peptidbindung ist!

2. Möglichkeit der Polyamidsynthese: Aminosäuren

Technisch meist: Aminoruppe und Carboxylgruppe endständig.

Variante: Vorgelagerte intramolekulare Kondenstationsreakion.

Beispiel: Perlon

Perlon

8.6.1 Beeinflussung des Kunststofftyps der Polykondensation

• Thermoplast:

Bei Difunktionellen Monomeren entstehen lineare Ketten also eine Thermoplast.

- Variante 1: Eine Hydroxycarbonsäure
- Variante 2: Dicarbonsäure und Dialkohol

Nachteil (zur Variante 2):

Genaues abgestimmes Verhältnis erforderlich! Denn ansonsten würden nur kurze Ketten entstehen.

• Elastomer und Duroplast:

Durch Beimischung von trinofunktionellen Monomere ergibt sich eine Vernetzung und je nach Menge der trinofunktionellen Monomere ein *Elastomer* oder ein *Duroplast*.

Verwendet man zur Polykondensation ungesättigte Verbindungen (Verbindungen mit einer Doppelbindung) wie:

$$H - \overline{Q} - C = C - C$$
 $H - \overline{Q} - H$

3 – Hydroxypropensäure

so kann man den entstehenden Thermoplastischen Polyester anschließend durch Polymerisation zum Duroplast vernetzen. Sowas nennt man auch *Polyesterharz*.