

## WHAT IS HASKELL?

#### Purely functional language

No side-effects

#### Statically typed

 Types of expressions are checked before the program runs and do not change during execution

#### **Higher-order Functions**

 Can take in other functions as parameters and return functions

#### Lazy Evaluation

Expressions not evaluated until needed



12/8/2024

# History of Haskell

- Named after mathematician Haskell Brooks Curry
- In 1987 a committee was formed to create a common functional programming language
- Haskell 98 released and a standard library was published
- In 2006 work on a successor to Haskell 98 began
- Haskell 2010 is released
- GHC Haskell is the implementation widely used today

#### 1987

#### FPCA'87 CONFERENCE

Haskell development committee was organized there.

#### 1990

#### THE FIRST HASKELL REPORT

Document, which describes the motivation for creating the language, the nature of the language and the process of its creation, for which the committee is responsible.

#### 1992

#### **GLASGOW HASKELL COMPILER**

The creation of GHC – opensource and the most commonly-used native code compiler for Haskell language

#### 1994

#### HASKELL.ORG

The main information page about Haskell basics was created.

#### 1996

#### THE HASKELL VER. 1.3 REPORT

In terms of technical changes it was the most significant release of Haskell after 1.0.

#### 2005

#### HASKELL WORKSHOP

First ideas on how the new standard should be designed.

#### 2010

#### THE HASKELL 2010 RELEASE

The most important point in the modern history of Haskell development and also it is the current standard for most Haskell developers.

## WHERE IT'S USED







Pure Functional

Strong Type System

Parallel Programming

Reasoning

**Efficiency** 

#### TEACHING

- Good for learning programming concepts.
- RESEARCH
  - Strength in reasoning, useful for statistics.
  - Ability to handle large datasets.
- INDUSTRY
  - Used in areas like aerospace, finance, and healthcare.
  - Good at handling real-time data streams.

# Monads



### $\frac{\mathsf{RETURN}}{\mathsf{RETURN}} :: \mathsf{A} \longrightarrow \mathsf{M} \mathsf{A}$

$$(>>=) :: M A \rightarrow (A \rightarrow M B) \rightarrow M B$$

$$\frac{\mathsf{THEN}}{\mathsf{(>>)}} :: \mathsf{M} \mathsf{A} \to \mathsf{M} \mathsf{B} \to \mathsf{M}$$

### 

```
class Monad m where

(>>=) :: m a \rightarrow ( a \rightarrow m b) \rightarrow m b

(>>) :: m a \rightarrow m b \rightarrow m b

return :: a \rightarrow m a
```

- m monadic type constructor (Maybe, IO, Reader, etc.).
- a, b type variables— a is the type input to the monad, b is the type input you get out of the monad

Return: Wraps a value in a monad

<u>Bind:</u> Allows for chaining together monadic operations

<u>Then:</u> Similar to bind, but ignores the result of the first monadic operation



### **TYPECLASSES**

- Define a set of methods that are shared between multiple types
  - Only able to accept certain types for a function
- Compile-time type restraints
  - Types are checked before running
- Have set operations so that they behave consistently
- Inheritance allows for creating more specific types
- Polymorphism









# **Demonstration**

8

# SOURCES

https://cs.lmu.edu/~ray/notes/introhaskell/

https://scrapingrobot.com/blog/haskell-programing-language/#programming-in-haskell

https://serokell.io/blog/haskell-history

https://medium.com/sourcescribes/what-is-haskell-853b6949a800

https://wiki.haskell.org/Monad



12/8/2024