1.5 Relationen

Es seien M und N Mengen.

Definition

- ► Eine *Relation zwischen M und N* ist eine Teilmenge $R \subseteq M \times N$.
- ▶ Im Fall M = N sagen wir: R ist Relation auf M.

Terminologie und Notation

Es sei $R \subseteq M \times N$ eine Relation zwischen M und N. Für $(x,y) \in R$ schreiben wir auch

und sagen

x steht bzgl. R in Relation zu y.

Relationen (Forts.)

Beispiele

- ► < auf N
- ► *M* Menge ⊂ auf Pot(*M*)
- ► M Menge
- = auf *M* ► *M* Menge
 - $M \times M$ auf M
- $\qquad \qquad \bullet \ \{(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)\} \ \mathsf{auf} \ \{1,2,3\}$
- ▶ M, N, Mengen, $f: M \to N$ Abbildung. $\{(x, f(x)) \mid x \in M\}$.

Relationen (Forts.)

Beispiele

- ► A: Einwohner von Aachen
 - für $a, b \in A$: $a \ N \ b$: $a \ \text{ist Nachkomme von } b$
- ▶ D: Studierende von *Diskrete Strukturen*
 - für $s, t \in D$: s E t: s hat die gleichen Eltern wie t für $s, t \in D$: s G t: s hat den gleichen Geburtstag wie t
- ► *P*: farbige Glasperlen in einer Dose
 - für $p, q \in P$: p F q: p hat die gleiche Farbe wie q

Eigenschaften

Definition

M Menge, R Relation auf M. Dann heißt R:

(V) vollständig: für $x, y \in M$:

(R) reflexiv: für
$$x \in M$$
: $x \in X$

(S) symmetrisch: für
$$x, y \in M$$
: $x R y \Rightarrow y R x$

(A) antisymmetrisch: für
$$x, y \in M$$
: $x \in X$ und $y \in X$ $x \Rightarrow x = y$

(T) transitiv: für
$$x, y, z \in M$$
: $x R y$ und $y R z \Rightarrow x R z$

x R y oder y R x

Eigenschaften (Forts.)

Beispiel

- < auf \mathbb{N} :
 - ▶ transitiv
 - ► nicht reflexiv
 - ▶ nicht symmetrisch
 - antisymmetrisch
 - nicht vollständig

Eigenschaften (Forts.)

Beispiel

- ▶ R auf $\{1\}$ gegeben durch $R = \{(1,1)\}$
 - R reflexiv
- ▶ R auf $\{1,2\}$ gegeben durch $R = \{(1,1)\}$

R nicht reflexiv

Abschlüsse

Definition

M Menge, R Relation auf M

- ► transitiver Abschluss von R: Relation S auf M mit
 - S transitiv und $R \subseteq S$
 - ▶ für jede Relation T auf M: T transitiv und $R \subseteq T \Rightarrow S \subseteq T$
- ► reflexiver Abschluss von R: Relation S auf M mit
 - ► S reflexiv und $R \subseteq S$
 - ▶ für jede Relation T auf M: T reflexiv und $R \subseteq T \Rightarrow S \subseteq T$
- ▶ symmetrischer Abschluss von R: Relation S auf M mit
 - S symmetrisch und $R \subseteq S$
 - ▶ für jede Relation T auf M: T symmetrisch und $R \subseteq T \Rightarrow S \subseteq T$

Abschlüsse (Forts.)

Beispiel

R Relation auf $\{1,2,3\}$ gegeben durch $R = \{(1,2),(2,3)\}$

▶ ein transitiver Abschluss von *R*:

$$S =$$

▶ ein reflexiver Abschluss von *R*:

$$S =$$

▶ ein symmetrischer Abschluss von *R*:

$$S =$$

Abschlüsse (Forts.)

Proposition

M Menge, R Relation auf M

▶ es gibt genau einen transitiven Abschluss S von R für $x, y \in M$: $x \in S$ $y \Leftrightarrow$ es gibt $n \in \mathbb{N}, x_0, \dots, x_n \in M$:

$$x = x_0 R x_1 R \dots R x_n = y$$

- ▶ es gibt genau einen reflexiven Abschluss S von R für $x, y \in M$: $x S y \Leftrightarrow x R y$ oder x = y
- ▶ es gibt genau einen symmetrischen Abschluss S von R für $x, y \in M$: $x S y \Leftrightarrow x R y$ oder y R x

Äquivalenzrelationen und Ordnungen

Es sei M eine Menge und R eine Relation auf M.

Definition

► R heißt Äquivalenzrelation auf M, falls R

erfüllt.

► R heißt (partielle) Ordnung auf M, falls R

erfüllt.

► *R* heißt *Totalordnung* auf *M*, falls *R* eine Ordnung ist und falls *R* vollständig ist.

Äquivalenzrelationen und Ordnungen (Forts.)

Es sei M eine Menge.

Beispiele

- ▶ $, \leq$ "auf \mathbb{R} ist Totalordnung.
- ightharpoonup ,, <" auf $\mathbb R$ ist antisymmetrisch und transistiv, aber weder reflexiv noch symmetrisch.
- ▶ "⊆" auf Pot(M) ist Ordnung. Keine Totalordnung, falls $|M| \ge 2$.
- ▶ $M = \mathbb{Z}$ oder $M = \mathbb{N}$. Definiere *Teilbarkeitsrelation* "|" durch

$$x \mid y :\Leftrightarrow \mathsf{Es} \ \mathsf{existiert} \ z \in M \ \mathsf{mit} \ xz = y.$$

Dann ist "|" reflexiv und transitiv.

"|" ist Ordnung auf $\mathbb N$ aber keine Totalordnung.

"|" ist keine Ordnung auf \mathbb{Z} .

Äquivalenzrelationen und Ordnungen (Forts.)

Es sei *M* eine Menge.

Beispiele

- ▶ Gleichheit "=" ist eine Äquivalenzrelation auf M.
- ► Es sei N eine Menge und $f: M \to N$ Abbildung. Die *Bildgleichheit* " R_f " auf M ist definiert durch:

$$xR_fx':\Leftrightarrow f(x)=f(x').$$

 R_f ist Äquivalenzrelation auf M.

▶ $M = \mathbb{Z}$. Die *Paritätsrelation* " \equiv_2 " ist definiert durch

$$x \equiv_2 y :\Leftrightarrow x - y$$
 gerade.

 $_{,,}\equiv_{2}$ " ist eine Äquivalenzrelation auf \mathbb{Z} .

Weitere Beispiele

- ► C auf \mathbb{R} : für $x, y \in \mathbb{R}$: $x \in C$ $y :\Leftrightarrow x = y$ oder x = -y
- ► C auf {1,2,3,4}

$$C = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (1,4), (4,1), \\ (2,4), (4,2)\}$$

► *D*: Studierende von *Diskrete Strukturen*

```
für s, t \in D: s E t: s hat die gleichen Eltern wie t für s, t \in D: s G t: s hat den gleichen Geburtstag wie t
```

► *P*: farbige Glasperlen in einer Dose

 $\text{für } p,q\in P\text{:}\quad p \text{ } F \text{ } q\text{:}\quad p \text{ hat die gleiche Farbe wie } q$

Definition

M Menge, C Äquivalenzrelation auf M, $x \in M$

 \ddot{A} quivalenzklasse von x in M bzgl. C:

$$[x] = [x]_C := \{ \tilde{x} \in M \mid \tilde{x} \ C \ x \}$$

Terminologie:

► Repräsentant von $[x]_C$: x auch: jedes $x' \in M$ mit

Beispiele

► C auf \mathbb{R} : für $x, y \in \mathbb{R}$: $x \in C$ $y :\Leftrightarrow x = y$ oder x = -yfür $x \in \mathbb{R}$: $[x]_C =$

Repräsentanten für $[x]_C$:

► \equiv_2 auf \mathbb{Z} : für $x, y \in \mathbb{Z}$: $x \equiv_2 y \Leftrightarrow x - y$ gerade.

 $[0]_{\equiv_2} =$

Repräsentanten für $[0]_{\equiv_2}$:

Beispiele

```
C \text{ auf } \{1,2,3,4\}
C = \{(1,1),(2,2),(3,3),(4,4),(1,2),(2,1),(1,4),(4,1),(2,4),(4,2)\}
```

$$[1]_{C} =$$

►
$$M$$
 Menge, = auf M

$$f \ddot{u} r \ x \in M : \quad [x]_{=} =$$

Proposition

M Menge, C Äquivalenzrelation auf M

- ▶ Für $x \in M$ gilt: $x \in [x]_C$.
- ▶ Für $x, y \in M$ sind äquivalent:

 - $[x]_C \subseteq [y]_C$
 - ► x C y

Definition

M Menge, C Äquivalenzrelation auf M

Quotientenmenge von M modulo C:

$$M/C := \{ [x]_C \mid x \in M \}$$

Terminologie und Notation:

► Quotientenabbildung von M/C:

$$\kappa: M \to M/C, \quad x \mapsto [x]_C$$

Quotientenmengen (Forts.)

Beispiel

```
C auf \{1,2,3,4\} c = \{(1,1),(2,2),(3,3),(4,4),(1,2),(2,1),(1,4),(4,1), (2,4),(4,2)\}
```

$$\{1,2,3,4\}/C =$$