Paper Title*

1st Given Name Surname

dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address

2nd Given Name Surname dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address

Abstract— Index Terms—

I. Introduction

II. SYSTEM MODEL

A. Graph Model

C is set of cloud nodes. F is set of fog nodes. E is set of edge nodes. S is set of sensor nodes. R is set of resources in each computational node(cloud, fog or edge node).

$$C = \{v_1^c, v_2^c, ..., v_{|C|}^c\}, c \in C \tag{1a} \label{eq:1a}$$

$$F = \{v_1^f, v_2^f, ..., v_{|F|}^f\}, f \in F$$
 (1b)

$$E = \{v_1^e, v_2^e, ..., v_{|E|}^e\}, e \in E$$
 (1c)

$$S = \{v_1^s, v_2^s, ..., v_{|S|}^s\}, s \in S$$
 (1d)

$$R = \{CPU, RAM, Storage\}, r \in R \tag{1e}$$

 σ_c^r is total capacity of resource $r \in R$ on node $c \in C$, and also σ_f^r and σ_e^r are total capcity of resource $r \in R$ on nodes $f \in F$ and $e \in E$ respectively.

T is set of tasks.

$$T = \{t_1, t_2, ..., t_{|T|}\}\tag{2a}$$

Each task expresses as follows:

$$t \in T \Longrightarrow t = (w_t, \delta_t, N_t, f_t^r(\lambda_t)) \tag{3}$$

 w_t shows computation workload of the task. δ_t is completion deadline of the task and N_t determines the maximum number of instaces of task $t \in T$.

 π_c is unit price of processing in node $c \in C$ and also π_f and π_e are the ralated prices in nodes $f \in F$ and $e \in E$ respectively.

Transmition delays that show required time for trasmiting packets from sensors to each computational node are defined as follows:

$$au^{tr}_{s,c}$$
 = trasmition delay between node $s \in S$ and $c \in C$ $au^{tr}_{s,f}$ = trasmition delay between node $s \in S$ and $f \in F$ $au^{tr}_{s,e}$ = trasmition delay between node $s \in S$ and $e \in E$

B. Variables

We define three integer variables for allocating tasks between nodes.

$$x_{t,c} = \begin{cases} 1 & \text{task } t \in T \text{ is allocated to node } c \in C \\ 0 & \text{o.w.} \end{cases}$$
 (4a)

$$x_{t,f} = \begin{cases} 1 & \text{task } t \in T \text{ is allocated to node } f \in F \\ 0 & \text{o.w.} \end{cases}$$
 (4b)

$$x_{t,e} = \begin{cases} 1 & \text{task } t \in T \text{ is allocated to node } e \in E \\ 0 & \text{o.w.} \end{cases}$$
 (4c)

there are two continouse variables:

$$\lambda_{t,s} = \text{poisson rate of task } t \in T \text{ generated by node } s \in S$$
 (5a)

$$0 \le \beta_{t,s,c} \le \lambda_{t,s} \quad \forall t \in T, \forall s \in S, \forall c \in C$$
 (5b)

$$0 \le \beta_{t,s,f} \le \lambda_{t,s} \quad \forall t \in T, \forall s \in S, \forall f \in F$$
 (5c)

$$0 \le \beta_{t,s,e} \le \lambda_{t,s} \quad \forall t \in T, \forall s \in S, \forall e \in E$$
 (5d)

 $\beta_{t,s,c} = \text{size of flow of task } t \in T \text{ from node } s \in S \text{ to node } c \in C$

$$\gamma_{t,s,c} = \begin{cases} 1 & \text{flow of task } t \in T \text{ from node } s \in S \text{ to node } c \in C \text{ exist} \\ \text{o.w.} \end{cases}$$

(5f)

flow of task $t \in T$ from node $s \in S$ to node $f \in F$ exist $\gamma_{t,s,f} = \begin{cases} 1 \\ \text{o.w.} \end{cases}$ (5g)

$$\gamma_{t,s,e} = \begin{cases} 1 & \text{flow of task } t \in T \text{ from node } s \in S \text{ to node } e \in E \text{ exist} \\ \text{o.w.} \end{cases}$$
 (5h)

$$\lambda_{t,c} = \sum_{c \in S} \beta_{t,s,c} \quad \forall t \in T, \forall s \in S, \forall c \in C$$
 (6a)

$$\lambda_{t,f} = \sum_{s \in S} \beta_{t,s,f} \quad \forall t \in T, \forall s \in S, \forall f \in F$$
 (6b)

$$\lambda_{t,e} = \sum_{s \in S} \beta_{t,s,e} \quad \forall t \in T, \forall s \in S, \forall e \in E$$
 (6c)

$$\gamma_{t,s,c} \le x_{t,c} \quad \forall t \in T, \forall s \in S, \forall c \in C$$
 (7a)

$$\gamma_{t,s,f} \le x_{t,f} \quad \forall t \in T, \forall s \in S, \forall f \in F$$
 (7b)

$$\gamma_{t,s,e} \le x_{t,e} \quad \forall t \in T, \forall s \in S, \forall e \in E$$
 (7c)

$$\gamma_{t,s,c} - 1 + \epsilon \le \beta_{t,s,c} \le \gamma_{t,s,c} \lambda_{t,s} \quad \forall t \in T, \forall s \in S, \forall c \in C$$
(8a)

$$\gamma_{t,s,f} - 1 + \epsilon \le \beta_{t,s,f} \le \gamma_{t,s,f} \lambda_{t,s} \quad \forall t \in T, \forall s \in S, \forall f \in F$$

$$\gamma_{t,s,e} - 1 + \epsilon \le \beta_{t,s,e} \le \gamma_{t,s,e} \lambda_{t,s} \quad \forall t \in T, \forall s \in S, \forall e \in E$$
(8c)

$$\lambda_{t,s} = \sum_{e \in E} \beta_{t,s,e} + \sum_{f \in F} \beta_{t,s,f} + \sum_{c \in C} \beta_{t,s,c} \quad \forall t \in T, \forall s \in S$$

$$\sum_{t=0}^{\infty} x_{t,c} f_t^r(\lambda_{t,c}) \le \sigma_c^r \quad \forall r \in R, \forall c \in C$$
 (10a)

$$x_{t,c}f_t^r(\lambda_{t,c}) = k_1^r x_{t,c} \lambda_{t,c} + k_2^r x_{t,c}$$
(10b)

$$\psi_{t,c} \triangleq x_{t,c} \lambda_{t,c} \Rightarrow 0 \le \psi_{t,c} \le \lambda_{t,c}$$
 (10c)

$$Q(x_{t,c} - 1) + \lambda_{t,c} \le \psi_{t,c} \le x_{t,c}Q \tag{10d}$$

$$Q = \max_{t \ inT, c \in C} \lambda_{t,c}$$

$$= \max_{t \ inT, c \in C} \sum_{s \in S} \beta_{t, s, c}$$

$$= \sum_{s \in S} \max_{t \ inT, c \in C} \beta_{t,s,c}$$

$$= \sum_{s \in S} \lambda_{t,s} \tag{10e}$$

$$0 \le \psi_{t,c} \le \lambda_{t,c} \tag{11a}$$

$$Q(x_{t,c}-1) + \lambda_{t,c} \le \psi_{t,c} \le x_{t,c}Q \quad \forall t \in T, \forall c \in C \quad (11b)$$

$$0 \le \psi_{t,f} \le \lambda_{t,f} \tag{11c}$$

$$Q(x_{t,f} - 1) + \lambda_{t,f} \le \psi_{t,f} \le x_{t,f}Q \quad \forall t \in T, \forall f \in F$$
(11d)

$$0 \le \psi_{t,e} \le \lambda_{t,e} \tag{11e}$$

$$Q(x_{t,e} - 1) + \lambda_{t,e} \le \psi_{t,e} \le x_{t,e}Q \quad \forall t \in T, \forall e \in E \quad (11f)$$

$$\sum_{t \in T} k_1^r \psi_{t,c} + k_2^r x_{t,c} \le \sigma_c^r \quad \forall r \in R, \forall c \in C$$
 (12a)

$$\sum_{t \in T} k_1^r \psi_{t,f} + k_2^r x_{t,f} \le \sigma_f^r \quad \forall r \in R, \forall f \in F$$
 (12b)

$$\sum_{t \in T} k_1^r \psi_{t,e} + k_2^r x_{t,e} \leq \sigma_e^r \quad \forall r \in R, \forall e \in E \tag{12c} \label{eq:12c}$$

$$\tau_{t,c} = \tau_{t,s,c}^{tr} + \frac{1}{\mu_{t,c} - \lambda_{t,c}}$$
 (13a)

We have:

(9a)

$$\frac{1}{\mu_{t,c}} = \frac{w_t}{f_t^{cpu}(\lambda_{t,c})} \tag{13b}$$

$$f_t^{cpu}(\lambda_{t,c}) = k_1^{cpu} \lambda_{t,c} + k_2^{cpu}$$
(13c)

$$\Rightarrow \gamma_{t,s,c}\tau_{t,c} = \gamma_{t,s,c}(\tau_{t,s,c}^{tr} + \frac{w_t}{(k_1^{cpu} - w_t)\lambda_{t,c} + k_2^{cpu}})$$

$$\leq \delta_t \quad \forall t \in T, \forall s \in S, \forall c \in C \tag{13d}$$

$$\begin{split} &\gamma_{t,s,c}\lambda_{t,c}(k_1^{cpu}-w_t)\tau_{t,s,c}^{tr}+\\ &\gamma_{t,s,c}k_2^{cpu}\tau_{t,s,c}^{tr}+w_t\gamma_{t,s,c}-k_2^{cpu}\delta_t\\ &-(k_1^{cpu}-w_t)\delta_t\lambda_{t,c}\leq 0 \quad \forall t\in T, \forall s\in S, \forall c\in C \quad (13e) \end{split}$$

$$\phi_{t,s,c} = \gamma_{t,s,c} \lambda_{t,c} \tag{13f}$$

$$0 \le \phi_{t,s,c} \le \lambda_{t,c} \tag{13g}$$

$$Q(\gamma_{t,s,c} - 1) + \lambda_{t,c} \le \phi_{t,s,c} \le \gamma_{t,s,c} Q \tag{13h}$$

$$\phi_{t,s,c}(k_1^{cpu} - w_t)\tau_{t,s,c}^{tr} +
\gamma_{t,s,c}k_2^{cpu}\tau_{t,s,c}^{tr} + w_t\gamma_{t,s,c} - k_2^{cpu}\delta_t
- (k_1^{cpu} - w_t)\delta_t\lambda_{t,c} \le 0$$
(14a)

$$0 \le \phi_{t,s,c} \le \lambda_{t,c} \tag{14b}$$

$$Q(\gamma_{t,s,c} - 1) + \lambda_{t,c} \le \phi_{t,s,c} \le \gamma_{t,s,c} Q \quad \forall t \in T, \forall s \in S, \forall c \in C$$
(14c)

$$\phi_{t,s,f}(k_1^{cpu} - w_t)\tau_{t,s,f}^{tr} +
\gamma_{t,s,f}k_2^{cpu}\tau_{t,s,f}^{tr} + w_t\gamma_{t,s,f} - k_2^{cpu}\delta_t
- (k_1^{cpu} - w_t)\delta_t\lambda_{t,f} \le 0$$
(14d)
$$0 \le \phi_{t,s,f} \le \lambda_{t,c}$$
(14e)

$$Q(\gamma_{t,s,f} - 1) + \lambda_{t,f} \le \phi_{t,s,f} \le \gamma_{t,s,f} Q \quad \forall t \in T, \forall s \in S, \forall f \in F$$
(14f)

$$\phi_{t,s,e}(k_1^{cpu} - w_t)\tau_{t,s,e}^{tr} +
\gamma_{t,s,e}k_2^{cpu}\tau_{t,s,e}^{tr} + w_t\gamma_{t,s,e} - k_2^{cpu}\delta_t
- (k_1^{cpu} - w_t)\delta_t\lambda_{t,e} \le 0$$
(14g)

$$0 \le \phi_{t,s,e} \le \lambda_{t,e} \tag{14h}$$

$$Q(\gamma_{t,s,e} - 1) + \lambda_{t,e} \le \phi_{t,s,e} \le \gamma_{t,s,e} Q \quad \forall t \in T, \forall s \in S, \forall e \in E$$
(14i)

$$1 \le \sum_{e \in E} x_{t,e} + \sum_{f \in F} x_{t,f} + \sum_{c \in C} x_{t,c} \le N_t \quad \forall t \in T \quad (15a)$$

$$x_{t,c}(\lambda_{t,c} < \mu_{t,c}) => x_{t,c}(\lambda_{t,c} + \epsilon \le \mu_{t,c})$$
(16a)

$$x_{t,c}\lambda_{t,c} = \lambda_{t,c} \tag{16b}$$

$$=> \epsilon x_{t,c} - k_1^{cpu} \lambda_{t,c} - k_2^{cpu} + w_t \lambda_{t,c} \le 0 \quad \forall t \in T, \forall c \in C$$
(16c)

$$\epsilon x_{t,f} - k_1^{cpu} \lambda_{t,f} - k_2^{cpu} + w_t \lambda_{t,f} \le 0 \quad \forall t \in T, \forall f \in F$$

$$\epsilon x_{t,e} - k_1^{cpu} \lambda_{t,e} - k_2^{cpu} + w_t \lambda_{t,e} \le 0 \quad \forall t \in T, \forall e \in E$$

$$\epsilon x_{t,e} - k_1^{cpu} \lambda_{t,e} - k_2^{cpu} + w_t \lambda_{t,e} \le 0 \quad \forall t \in T, \forall e \in E$$
(16e)

$$\min \sum_{t \in T} \sum_{e \in E} (x_{t,e} \pi_e \sum_{r \in R} f_t^r(\lambda_{t,e}))$$

$$+ \sum_{t \in T} \sum_{f \in F} (x_{t,f} \pi_f \sum_{r \in R} f_t^r(\lambda_{t,f}))$$

$$+ \sum_{t \in T} \sum_{c \in C} (x_{t,c} \pi_c \sum_{r \in R} f_t^r(\lambda_{t,c}))$$
(17a)

$$\min \sum_{t \in T} \sum_{e \in E} x_{t,e} \Gamma_{t,e}$$

$$+ \sum_{t \in T} \sum_{f \in F} x_{t,f} \Gamma_{t,f}$$

$$+ \sum_{t \in T} \sum_{c \in C} x_{t,c} \Gamma_{t,c}$$

$$\Gamma_{t,e} = \pi_e((k_1^{cpu} + k_1^{ram} + k_1^{storage})\lambda_{t,e} + k_2^{cpu} + k_2^{ram} + k_2^{storage})$$
$$= \pi_e(K_1\lambda_{t,e} + K_2)$$

$$x_{t,e}\Gamma_{t,e} = K_1\pi_e x_{t,e}\lambda_{t,e} + K_2\pi_e x_{t,e}$$

= $K_1\pi_e \psi_{t,e} + K_2\pi_e x_{t,e}$

$$\min \sum_{t \in T} \sum_{e \in E} K_1 \pi_e \psi_{t,e} + K_2 \pi_e x_{t,e}$$

$$\sum_{t \in T} \sum_{f \in F} K_1 \pi_f \psi_{t,f} + K_2 \pi_f x_{t,f}$$

$$\sum_{t \in T} \sum_{e \in C} K_1 \pi_e \psi_{t,e} + K_2 \pi_e x_{t,e}$$
(18a)

$$L(\underline{\underline{x}}, \underline{\underline{\beta}}, \underline{\underline{\gamma}}, \underline{\eta_1}, \underline{\eta_2}, \underline{\underline{\nu}}) = \sum_{t \in T} \sum_{e \in E} x_{t,e} \Gamma_{t,e}$$

$$+ \sum_{t \in T} \sum_{f \in F} x_{t,f} \Gamma_{t,f} + \sum_{t \in T} \sum_{c \in C} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in T} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in T} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in T} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in T} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in T} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in T} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in T} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in T} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in T} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in T} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in T} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in T} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in C} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in C} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in C} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in C} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in C} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in C} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in C} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in C} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in C} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in C} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in C} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in C} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in C} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in C} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in C} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in C} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in C} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in C} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} \sum_{t \in C} x_{t,c} \Gamma_{t,c} + \sum_{c \in C} x_{t,c} + \sum_{c \in C} x_{t,c}$$

$$p_{k} = \sum_{i=1}^{l_{e}} x_{k,i}^{e} C(v_{i}^{e}, t_{k})$$

$$+ \sum_{j=1}^{l_{f}} x_{k,j}^{f} C(v_{j}^{f}, t_{k})$$

$$+ \sum_{h=1}^{l_{c}} x_{k,h}^{c} C(v_{h}^{c}, t_{k})$$

$$(20a)$$

$$\min \sum_{k=1}^{l_t} p_k$$
 (21a) subject to: 9

E. Solution

(16d)

We can reshape main problem as following:

$$\min\left(\sum_{i=1}^{l_e} \sum_{k=1}^{l_t} x_{k,i}^e C_{k,i}^e + \sum_{j=1}^{l_f} \sum_{k=1}^{l_t} x_{k,j}^f C_{k,j}^f + \sum_{h=1}^{l_c} \sum_{k=1}^{l_t} x_{k,h}^c C_{k,h}^c\right)$$
(22a)

(17b)
$$\sum_{i=1}^{l_e} x_{k,i}^e \tau_{k,i}^e + \sum_{j=1}^{l_f} x_{k,j}^f \tau_{k,j}^f + \sum_{h=1}^{l_c} x_{k,h}^c \tau_{k,h}^c \le \delta_k \quad \forall k \in \{1, ..., l_t\}$$

$$\sum_{k=1}^{l_t} x_{k,h}^c w_k \le c_h^c \qquad \forall h \in \{1, 2, ..., l_c\}$$

$$\sum_{k=1}^{l_t} x_{k,j}^f w_k \le c_j^f \qquad \forall j \in \{1, 2, ..., l_f\}$$

$$\sum_{k=1}^{l_t} x_{k,i}^e w_k \le c_i^e \qquad \forall i \in \{1, 2, ..., l_e\}$$

(17d)
$$\sum_{i=1}^{l_e} x_{k,i}^e + \sum_{i=1}^{l_f} x_{k,j}^f + \sum_{h=1}^{l_c} x_{k,h}^c = 1 \qquad \forall k \in \{1, 2, ..., l_t\}$$

We define u^m for each computational agent m, that is a matrix with size $l_t * (l_e + l_f + l_c)$. It is the local copy of all variables in agent m. i.e. $u_{k,i}^{e,m}$ is the copy of variable $x_{k,i}^{e}$ in agent m for $m = 1, ..., (l_m = l_e + l_f + l_c)$. So we should add new constraint $u^m = z \quad \forall m$ to main problem. We will use admm on this new constraint so:

$$L_{p} = \sum_{i=1}^{l_{e}} \sum_{k=1}^{l_{t}} x_{k,i}^{e} C_{k,i}^{e} + \sum_{j=1}^{l_{f}} \sum_{k=1}^{l_{t}} x_{k,j}^{f} C_{k,j}^{f} + \sum_{h=1}^{l_{c}} \sum_{k=1}^{l_{t}} x_{k,h}^{c} C_{k,h}^{c}$$
(23a)

(19a)
$$+\sum_{m=1}^{l_m} \nu^m * (u^m - z) + \sum_{m=1}^{l_m} \frac{\rho}{2} ||u^m - z||^2$$

We can seperate augmented lagrangian for each computational agent \boldsymbol{m} then:

$$L_p^m = \sum_{k=1}^{l_t} u_{k,m}^m C_{k,m} + \nu^m * (u^m - z) + \frac{\rho}{2} ||u^m - z||^2$$

$$\forall m \in \{1, 2, ..., l_m\}$$
(24a)

So we can write the algorithm as following:

1.
$$u^{m,(k+1)} = arg \min L_p^m(u^m, z^{(k)}, \nu^{m,(k)}) =$$

$$\sum_{k=1}^{l_t} u_{k,m}^m C_{k,m} + \nu^{m,(k)} * (u^m - z^{(k)}) + \frac{\rho}{2} ||u^m - z^{(k)}||^2$$

subject to:

$$\sum_{k=1}^{l_t} u_{k,m}^m w_k \le c^m$$

$$\sum_{i=1}^{l_e} u_{k,i}^{e,m} + \sum_{i=1}^{l_f} u_{k,j}^{f,m} + \sum_{h=1}^{l_c} u_{k,h}^{c,m} = 1 \qquad \forall k \in \{1, 2, ..., l_t\}$$

$$\sum_{i=1}^{l_e} u_{k,i}^{e,m} \tau_{k,i}^e + \sum_{j=1}^{l_f} u_{k,j}^{f,m} \tau_{k,j}^f + \sum_{h=1}^{l_c} u_{k,h}^{c,m} \tau_{k,h}^c \le \delta_k \qquad \forall k \in \{1,2,...,l_t\}$$

2.
$$z^{(k+1)} = \bar{u}^{(k+1)} + \frac{1}{\rho}\bar{\nu}^{(k)}$$

3.
$$\nu^{m,(k+1)} = \nu^{m,(k)} + \rho(u^{m,(k+1)} - z^{(k+1)})$$

Algorithm 1

while not converged do end while

REFERENCES