Tidyverse

How do you clean a Messy Dataset?

Data Tidying

 "Tidy datasets are all alike but every messy dataset is messy in its own way." – Hadley Wickham

Data Structure

	treatmenta	treatmentb
John Smith	_	2
Jane Doe	16	11
Mary Johnson	3	1

	John Smith	Jane Doe	Mary Johnson
treatmenta	_	16	3
${\it treatment} b$	2	11	1

Table 1: Typical presentation dataset.

Table 2: The same data as in Table 1 but structured differently.

Source: Wickham, Hadley. "Tidy data." Journal of Statistical Software 59, no. 10

Data Semantics

- A dataset is a collection of values, usually either numbers (if quantitative) or strings (if qualitative). Values are organized in two ways.
- Every value belongs to a variable and an observation.
- A variable contains all values that measure the same underlying attribute (like height, temperature, duration) across units.
- An observation contains all values measured on the same unit (like a person, or a day, or a race) across attributes.

The same data as in Table 1 and 2 but with variables in columns and observations in rows.

	treatmenta	treatmentb
John Smith	_	2
Jane Doe	16	11
Mary Johnson	3	1

	John Smith	Jane Doe	Mary Johnson
treatmenta	-	16	3
treatmentb	2	11	1

Table 2: The same data as in Table 1 but structured differently.

name	trt	result
John Smith	a	
Jane Doe	\mathbf{a}	16
Mary Johnson	\mathbf{a}	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

Source: Wickham, Hadley. "Tidy data." Journal of Statistical Software 59, no. 10

Your data will be easier to work with in R if it follows three rules

- 1. Each variable in the data set is placed in its own column
- 2. Each observation is placed in its own row
- 3. Each value is placed in its own cell*

Data that satisfies these rules is known as tidy data.

Messy Data is any other arrangement of data.

- Tidy data works well with R because R is a vectorized programming language.
- Data structures in R are built from vectors and R's operations are optimized to work with vectors.
- Tidy data takes advantage of both of these traits.

Source: Wickham, Hadley. "Tidy data." Journal of Statistical Software 59, no. 10

Tidying messy datasets – Common problems

- Column headers are values, not variable names.
- Multiple variables are stored in one column.
- Variables are stored in both rows and columns.
- Multiple types of observational units are stored in the same table

Source: Wickham, Hadley. "Tidy data." *Journal of Statistical Software* 59, no. 10 (2014): 1-23.

Column headers are values, not variable names

religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k
Agnostic	27	34	60	81	76	137
Atheist	12	27	37	52	35	70
Buddhist	27	21	30	34	33	58
Catholic	418	617	732	670	638	1116
Don't know/refused	15	14	15	11	10	35
Evangelical Prot	575	869	1064	982	881	1486
Hindu	1	9	7	9	11	34
Historically Black Prot	228	244	236	238	197	223
Jehovah's Witness	20	27	24	24	21	30
Jewish	19	19	25	25	30	95

religion	income	freq
Agnostic	<\$10k	27
Agnostic	\$10-20k	34
Agnostic	\$20-30k	60
Agnostic	\$30-40k	81
Agnostic	\$40-50k	76
Agnostic	\$50-75k	137
Agnostic	\$75-100k	122
Agnostic	\$100-150k	109
Agnostic	> 150 k	84
Agnostic	Don't know/refused	96

Source: Wickham, Hadley. "Tidy data." Journal of Statistical Software 59, no. 10

Multiple variables stored in one column

country	year	m014	m1524	m2534	m3544	m4554	m5564	m65	mu	f014
AD	2000	0	0	1	0	0	0	0	_	_
AE	2000	2	4	4	6	5	12	10	_	3
AF	2000	52	228	183	149	129	94	80	_	93
AG	2000	0	0	0	0	0	0	1	_	1
AL	2000	2	19	21	14	24	19	16	_	3
AM	2000	2	152	130	131	63	26	21	_	1
AN	2000	0	0	1	2	0	0	0	_	0
AO	2000	186	999	1003	912	482	312	194	_	247
AR	2000	97	278	594	402	419	368	330	_	121
AS	2000	_	_	_	_	1	1	_	_	_

country	year	sex	age	cases
AD	2000	m	0-14	0
AD	2000	\mathbf{m}	15-24	0
AD	2000	\mathbf{m}	25 - 34	1
AD	2000	\mathbf{m}	35-44	0
AD	2000	\mathbf{m}	45-54	0
AD	2000	\mathbf{m}	55-64	0
AD	2000	\mathbf{m}	65 +	0
\mathbf{AE}	2000	\mathbf{m}	0 - 14	2
\mathbf{AE}	2000	\mathbf{m}	15-24	4
\mathbf{AE}	2000	\mathbf{m}	25 - 34	4
\mathbf{AE}	2000	\mathbf{m}	35-44	6
\mathbf{AE}	2000	\mathbf{m}	45-54	5
\mathbf{AE}	2000	\mathbf{m}	55-64	12
\mathbf{AE}	2000	\mathbf{m}	65 +	10
\mathbf{AE}	2000	\mathbf{f}	0-14	3

Source: Wickham, Hadley. "Tidy data." Journal of Statistical Software 59, no. 10

Variables are stored in both rows and columns

id	year	month	element	d1	d2	d3	d4	d5	d6	d7	d8
MX17004	2010	1	tmax	_	_	_	_	_	_	_	_
MX17004	2010	1	tmin	_	_	_	_	_	_	_	_
MX17004	2010	2	tmax	_	27.3	24.1	_	_	_	_	_
MX17004	2010	2	tmin	_	14.4	14.4	_	_	_	_	_
MX17004	2010	3	tmax	_	_	_	_	32.1	_	_	_
MX17004	2010	3	tmin	_	_	_	_	14.2	_	_	_
MX17004	2010	4	tmax	_	_	_	_	_	_	_	_
MX17004	2010	4	tmin	_	_	_	_	_	_	_	_
MX17004	2010	5	tmax	_	_	_	_	_	_	_	_
MX17004	2010	5	tmin	_	_	_	_	_	_	_	_

id	date	tmax	tmin
MX17004	2010-01-30	27.8	14.5
MX17004	2010-02-02	27.3	14.4
MX17004	2010-02-03	24.1	14.4
MX17004	2010-02-11	29.7	13.4
MX17004	2010-02-23	29.9	10.7
MX17004	2010-03-05	32.1	14.2
MX17004	2010-03-10	34.5	16.8
MX17004	2010-03-16	31.1	17.6
MX17004	2010-04-27	36.3	16.7
MX17004	2010-05-27	33.2	18.2

Source: Wickham, Hadley. "Tidy data." *Journal of Statistical Software* 59, no. 10 (2014): 1-23.

Multiple types in one table

year	artist	time	track	date	week	rank
2000	2 Pac	4:22	Baby Don't Cry	2000-02-26	1	87
2000	2 Pac	4:22	Baby Don't Cry	2000-03-04	2	82
2000	2 Pac	4:22	Baby Don't Cry	2000-03-11	3	72
2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
2000	2 Pac	4:22	Baby Don't Cry	2000-03-25	5	87
2000	2 Pac	4:22	Baby Don't Cry	2000-04-01	6	94
2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
2000	2Ge+her	3:15	The Hardest Part Of \dots	2000-09-02	1	91
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-09	2	87
2000	2Ge+her	3:15	The Hardest Part Of \dots	2000-09-16	3	92
2000	3 Doors Down	3:53	Kryptonite	2000-04-08	1	81
2000	3 Doors Down	3:53	Kryptonite	2000-04-15	2	70
2000	3 Doors Down	3:53	Kryptonite	2000-04-22	3	68
2000	3 Doors Down	3:53	Kryptonite	2000-04-29	4	67
2000	3 Doors Down	3:53	Kryptonite	2000-05-06	5	66

id	artist	track	time	id	date	rank
1	2 Pac	Baby Don't Cry	4:22	1	2000-02-26	87
2	2Ge+her	The Hardest Part Of \dots	3:15	1	2000-03-04	82
3	3 Doors Down	Kryptonite	3:53	1	2000-03-11	72
4	3 Doors Down	Loser	4:24	1	2000-03-18	77
5	504 Boyz	Wobble Wobble	3:35	1	2000 - 03 - 25	87
6	98^0	Give Me Just One Nig	3:24	1	2000-04-01	94
7	A*Teens	Dancing Queen	3:44	1	2000-04-08	99
8	Aaliyah	I Don't Wanna	4:15	2	2000-09-02	91
9	Aaliyah	Try Again	4:03	2	2000-09-09	87
10	Adams, Yolanda	Open My Heart	5:30	2	2000-09-16	92
11	Adkins, Trace	More	3:05	3	2000-04-08	81
12	Aguilera, Christina	Come On Over Baby	3:38	3	2000-04-15	70
13	Aguilera, Christina	I Turn To You	4:00	3	2000-04-22	68
14	Aguilera, Christina	What A Girl Wants	3:18	3	2000-04-29	67
15	Alice Deejay	Better Off Alone	6:50	3	2000-05-06	66
_				_		

Table 13: Normalised billboard dataset split up into song dataset (left) and rank dataset (right). First 15 rows of each dataset shown; genre omitted from song dataset, week omitted from rank dataset.

Source: Wickham, Hadley. "Tidy data." *Journal of Statistical Software* 59, no. 10 (2014): 1-23.

Case study to understand Tidy data

- Assume that in these data sets, cases refers to the number of people diagnosed with TB per country per year. To calculate the rate of TB cases per country per year (i.e, the number of people per 10,000 diagnosed with TB), you will need to do four operations with the data. You will need to:
- 1. Extract the number of TB cases per country per year
- 2. Extract the population per country per year (in the same order as above)
- 3. Divide cases by population
- 4. Multiply by 10000

Table 1

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

		population
1300	45	18:57071
2000	2666	20 95360
1999	37737	172006362
2000	80488	174:04898
1999	212258	1272915272
2 0	21 66	1280 28583
	1999	2000 2666 1999 37737 2000 80488 1999 212258

table1

variables observations

country	year	key	value
Afghanistan	1999	cases	745
Afghanistan	1999	population	19987071
Afghanistan	2000	cases	2666
Afghanistan	2000	population	20595360
Brazil	1999	cases	37737
Brazil	1999	population	172006362
Brazil	2000	cases	80488
Brazil	2000	population	174504898
China	1999	cases	212258
China	1999	population	1272915272
China	2000	cases	213766
China	2000	population	1280428583

country	year	key	value
Afghaistan	1229	cases	745
Afghanistan	1999	population	987071
Afghanistan	2000	cases	2.56
Afghanistan	2000	population	595360
Brazil	1999	cases	37 37
Brazil	1999	population	1, 2006362
Brazil	2000	cases	80.28
Brazil	2000	population	1 504898
China	1999	cases	212.58
China	1999	population	127 915272
China	2000	cases	213.56
China	20	population	1286428583

country	year	key	value
		Cases	
Afghanistan	1995	Julation	19987071
Afghaniat	2000	oacoo	2666
Afghanistan	2000	Dulation	20595360
Brazil	1000	00000	37737
Brazil	1005	. Deliation	37737
Brazil	0000		80488
Brazil	2008	- Suidilon	80488
China	1000		212258
China	1008	-	1272915272
China	2000	00000	213766
China	2002	-	1200428583

table2 variables observations

Fix the issue

Data set two

case_rows <- c(1, 3, 5, 7, 9, 11, 13, 15, 17) pop_rows <- c(2, 4, 6, 8, 10, 12, 14, 16, 18) table2\$value[case_rows] / table2\$value[pop_rows] * 10000

country	year	key	value
Afghanistan	1999	cases	745
Afghanistan	1999	population	19987071
Afghanistan	2000	cases	2666
Afghanistan	2000	population	20595360
Brazil	1999	cases	37737
Brazil	1999	population	172006362
Brazil	2000	cases	80488
Brazil	2000	population	174504898
China	1999	cases	212258
China	1999	population	1272915272
China	2000	cases	213766
China	2000	population	1280428583

table2

variables

observations

country	year	population
Afghanistan	1999	745 / 19987071
Afghanistan	2000	2666 / 20595360
Brazil	1999	37737 / 172006362
Brazil	2000	80488 / 174504898
China	1999	212258 / 1272915272
China	2000	213766 / 1280428583

country	year	population
Afghanstan	1300	x45 / 1980 7071
Afghanistan	2000	2666 / 2059 5360
Brazil	1999	37 / 37 / 1720 6362
Brazil	2000	80 -88 / 17450 4898
China	1999	212268 / 12729 5272
China	200	213 6 / 12804 3583

country	year	population
Afglanstan	99)	7(5/19)87071
Afg an stan		2666/20595360
Bratil	99)	3773 (172)06362
Bravil		80486/174504898
China	99)	212258 (1272)15272
Chila	0	213766/1280128583

table3 variables values

country	1999	2000
Afghanistan	745	2666
Brazil	37737	80488
China	212258	213766

country		\longrightarrow
Afghaistan	710	2666
Brazi	37737	804 8
Chin	212256	213766

table4

country	1999	2000
Afghanistan	19987071	20595360
Brazil	172006362	174504898
China	1272915272	1280428583

table5

variables

Spread

country	year	key	value
Afghanistan	1999	cases	745
Afghanistan	1999	population	19987071
Afghanistan	2000	cases	2666
Afghanistan	2000	population	20595360
Brazil	1999	cases	37737
Brazil	1999	population	172006362
Brazil	2000	cases	80488
Brazil	2000	population	174504898
China	1999	cases	212258
China	1999	population	1272915272
China	2000	cases	213766
China	2000	population	1280428583

gather

country	year	cases	country	1999	2000
Afghanistan	1999	745	Mghanistan	7/15	2666
Afghanistan	2000	2666	Brazil	37737	80488
Brazil	1999	37737	China	212258	213766
Brazil	2000	80488			
China	1999	212258			
China	2000	213766		table4	

Pivot_longer

pivot_longer(data, cols = c("a1", "a2", "a3"), names_to = "key", values_to = "value")

