Fall 2015

Homework # 2

(Due Monday, October 12)

Problem 1. Let (X, d) be a metric space, with $d(x, y) = 1 - \delta_{x,y}$, for all $x, y \in X$. Prove that X is compact if and only if X is a finite set.

Problem 2. Give an example of a continuous function $f: \mathbb{R} \to \mathbb{R}$, such that there is a non-empty closed set $F \subset \mathbb{R}$, with f(F) open.

Problem 3. Let (X, d) be a metric space and F and K two non-empty subsets of X. Assume F is closed and K is compact. Define

$$d(K, F) = \inf\{d(x, y) \mid x \in K, y \in F\}.$$

Prove that d(K, F) > 0 if and only if $K \cap F = \emptyset$.

Problem 4. Consider the space X of all bounded real-valued functions defined on the interval $[0,1] \subset \mathbb{R}$. For all $f,g \in X$, define d(f,g) by

$$d(f,g) = \sup\{|f(x) - g(x)| \mid x \in [0,1]\}.$$

- a) Prove that d is a metric on X.
- b) Prove that the metric space (X, d) is not separable.

Problem 5. Let (X,d) be a metric space and, for each $i=1,\ldots,n$, let $K_i\subset X$ be compact.

- a) Prove that $\bigcap_{i=1}^{n} K_i$ is compact.
- **b)** Prove that $\bigcup_{i=1}^n K_i$ is compact.
- c) Are the union and intersection of an arbitrary family of compact subsets also compact? Why (not)?

Problem 6. Let $f \in C([0,1])$ be such that $\int_0^1 x^n f(x) dx = 0$ for all integers $n \ge 0$. Prove that f(x) = 0, for all $x \in [0,1]$.

Problem 7. Let (p_n) be a sequence of real-valued polynomial functions defined on the interval [0,1] with bounded degree, i.e., there exists $0 \leq D \in \mathbb{Z}$, and sequences of real numbers $(a_n(k))_{n=1}^{\infty}$, $k = 0, \ldots, D$, such that

$$p_n(x) = a_n(0) + a_n(1)x + \dots + a_n(D)x^D, \quad x \in [0, 1].$$

- a) Prove that if $||p_n||_{\infty} \to 0$, then $\lim_{n\to\infty} \max_{0\le k\le D} a_n(k) = 0$ (Hint: try induction on D).
- **b)** Show that the assumption of a uniform bound on the degree of p_n is essential for the implication in part a) to hold. Specifically, find a sequence of polynomials $p_n(x) = \sum_{k=0}^{D_n} a_n(k) x^k$, such that $||p_n||_{\infty} \to 0$ and

$$\limsup_{n} \max_{0 \le k \le D_n} |a_n(k)| = 1$$