A Search and Learning Model of Export Dynamics*

Jonathan Eaton^{a,e}, Marcela Eslava^b, David Jinkins^c, C. J. Krizan^d, and James Tybout^{c,e} (first draft: February, 2014)

September 10, 2020

Abstract

We develop a model of firm-level export dynamics that features costly customer search, endogenous terminations of buyer-seller relationships, and learning on both sides of the market. Specifically, firms update their beliefs about their products products' popularity with each potential customer they meet, and potential customers update their awareness of a firm's products with each successful buyer-seller match the firm establishes.

We fit this model to customs records describing U.S. manufactured imports from Colombia. Identification comes from several key assumptions: buyer-seller meetings that generate only one shipment reflect unsuccessful encounters (rejected samples), multi-shipment pairings reflect successful buyer-seller relationships, and, for a given firm, the time gap between its new meetings with potential buyers reflects its search intensity (up to a random shock).

Qualitatively, the model replicates a large set of patterns in the customs regards regarding exporter maturation, transitions across states, and the distribution of partner counts across firms. It also provides a basis for assessing the value of business relationships, the importance of both types of learning, the role of luck in market penetration, and post-shock sources of fluctuation in aggregate export dynamics.

^{*}We gratefully acknowledge support from the National Science Foundation (Grant SES-0922358), the United States Census Bureau, and Banco de la República de Colombia. We also thank Monica Hernández, Gustavo Caballero and Camilo Acosta for excellent research assistance, as well as Enrique Montes for expert data advice. This paper was written in part by Census Bureau staff. It has undergone a more limited review than official Census Bureau publications. All results were reviewed to ensure confidentiality. Any views, findings and opinions in the paper reflect the views of the authors and do not reflect the views of the U.S. Census Bureau.

1 Introduction

What drives firm-level export dynamics? In recent years, various papers have explored the effects of market entry costs, learning, search frictions, and reputation-building. We take this literature one step further by developing a dynamic model that simultaneously incorporates all of these elements and quantifies their individual effects on exporters' behavior. Further, we do so by focusing on the formation and maturation of exporters' relationships with individual foreign buyers. Fit to customs records, our model allows us to quantify the various exporting costs faced by different types of firms, as well as the value of the intangible capital they have amassed by building their portfolios of foreign clients. It also allows us to characterize the effects of informational and matching frictions on aggregate export dynamics.

We recognize and separately quantify three types of trade frictions in our analysis. The first type is standard: exporters must engage in costly search to identify potential clients abroad. Since search costs are convex in match rates, this forces firms to gradually build their portfolio of foreign buyers. The second type of friction arises from sellers' limited knowledge of foreign buyers' tastes. Potential exporters are unsure about the appeal of their products in foreign markets, but they gradually learn about this as they meet potential customers. Therefore, exporters with appealing products intensify their marketing efforts as they receive positive reinforcement, and they expand relatively quickly. The final type of friction has to do with buyers learning about sellers. Exporters that have already established a large number of business relationships are relatively visible to other buyers, so for a given level of spending on search, they meet relatively more potential customers. Thus, other things equal, new exporters add clients relatively slowly, and the per unit cost of replacing failing business relationships are relatively small at well-established firms.

We base our analysis on the cross-sectional and temporal variation in shipment-level customs records describing U.S. manufactured imports from Colombia. We begin by summarizing the main patterns in these data that we want our model to explain, including the dynamics of seller matching patterns and the life-cycle revenue trajectories generated by individual matches. Then we develop a dynamic search and matching model in which firms expand by adding to their client base at home and in foreign markets. Finally, we fit this model to our customs data and explore its implications.

When bringing our model to data, we rely on a simple identification strategy. Specifically, we define a buyer-seller match to have occurred whenever we observe an initial shipment between a particular exporting firm and a particular importing firm. But if the exporter makes no further shipments to the importer, we say the match was a failure. That is, we view the first shipment as a sample, and we define *successful* matches to be those that result

in at least one additional shipment. These assumptions are consistent with the large number of one-off shipments we observe between sellers and buyers, and they render several key variables in our model observable for each exporter at each point in time, namely, its match arrival rate, its cumulative number of matches, and its success rate.

The model qualitatively replicates a large set of patterns in the data regarding exporter maturation, transitions across states, and the distribution of partner counts across firms. It also delivers a variety of implications regarding exporter behavior. First, the aggregate value of foreign business connections amounts to roughly US\$28 billion dollars for Colombian manufacturers, with firm-specific values heavily dependent on productivity, product appeal, and portfolio of clients. Second, there is some scope for luck in the establishment of a new exporting firm, since a few successful matches early in its market exploration encourages it to search more intensely and thereby to improve its visibility. Third, as new exporters meet potential customers, the knowledge they acquire about their product's appeal is more valuable to them than the heightened visibility they acheive by expanding their client base. Fourth, because of the various trade frictions in our model, aggregate export responses to permanent exchange rate shocks are more muted and gradual in our model than in other treatments. Finally, because of learning on both sides of the market, the long run elasticity of aggregate exports with respect to permanent exchange rate shocks is higher for devaluations than for revaluations.

1.1 Relation to literature

Calibrated GE models: Broadly speaking, our paper concerns firm dynamics in open economies. As such, it connects to a number of strands of the trade literature. The first uses calibrated general equilibrium models with productivity shocks that move firms through the size distribution. These include Alessandria and Choi (2007, 2014), Ruhl (2008), Atkeson and Burstein (2010), Burstein and Melitz (2013), Impullitti et al. (2013), Drozd and Nozal (2012), and Arkolakis (2015). We depart from all of these papers by focusing on the market knowledge and visibility that firms reap by investing in business relationships with new clients.

Our model does, however, share some features with these papers. Among them, Arkolakis (2015) is perhaps closest to ours, in that he uses convex market penetration costs to generate a number of stylized facts, including the age-dependence of export growth rates. However, since the exporting decision is static in his model and learning is absent, it does not explain the irreversibilities observed in firms' exporting behavior, nor does it speak to the duration of matches. Drozd and Nozal (2012) are also relatively close to us in the sense that they treat firms as building their foreign market shares gradually through a costly search and matching

process. However, they do this using a representative agent RBC model that abstracts from firm heterogeneity, thereby missing most of the patterns in the firm-level data we focus upon.

Single-agent models with a customer margin: Another strand of the trade literature uses single-agent models to explore foreign customer accumulation in more detail. Like ours, the models in these papers are econometrically estimated using customs records. Fitzgerald et al. (2019) exploit Irish records to investigate whether firms build their customer base through non-price marketing efforts versus price discounts to establish a market presence. They find little role for discounting, but an important role for the customer base. Similarly, Pivetau (forthcoming) uses French data to investigate the importance of discounts versus non-price efforts as mechanisms for building a foreign customer base. Unlike Fitzgerald et al. (2019), he finds a tendency for firms to discount their goods when they are new to a market, but he confirms that a large existing customer base improves product awareness in the remainder of the population and conveys an important advantage. Our model is perhaps closest to these papers, in that it is also a single-agent model fit to customs records. But we differ from them in that we study the joint evolution of home and foreign sales for each firm, allowing for endogenous entry and exit in both markets, learning effects, and search frictions. Also we characterize the life-cycle of successful matches, including their endogenous dissolution.¹

Market equilibria models with matching Addional papers with a foreign consumer margin shut down dynamics in order to analyze assortative matching patterns between exporters and importers in particular markets. Blum et al. (2010, 2013), Bernard et al. (2018) and Sugita et al. (2019) explore the buyer-seller matching patterns that emerge in a full-information world with productivity heterogeneity on both sides of the market, fixed matching costs, and (in some cases) production complementarities.²

Eaton et al. (2016) also model market equilibria with 2-sided matching, but in a dynamic context. Their formulation lacks a mechanism for assortative matching, but it treats both buyers and sellers as building client portfolios by searching for each other, subject to matching frictions.³ Fit to data on U.S. apparel trade, this model confirms an important role for existing business relationships as determinants of market visibility. In this respect, and because it is a search model with a customer margin, it resembles the present paper. But like the static models, it does not allow for learning effects, nor does it characterize the life cycle of matches once they have been formed.

¹From a very different perspective, Chaney (2014) uses customs records to model the emergence of international trading networks as a contagion penomhenon, with exporters tending to break into markets that are geographically close to those that are they already service. The contagion processes are not based on optimizing behavior, however.

²Bernard and Moxnes (2018) provide a useful summary of the literature on networks and trade.

³An appendix shows how assortative matching can be added.

Search and trade Matching and/or screening frictions appear in a number of other trade models that are too abstract to bring directly to data, but are supported by reducedform evidence. In Rauch and Watson (2003), importers experiment with foreign suppliers by placing trial orders with them, and they gain access to a supplier network if they establish a successful business relationship. We take the assumption that importers evaluate a sample shipment before forming business relationships from this formulation. In Albornoz et al (2012), firms choose to experiment in markets with low entry costs in order to learn about their product's appeal elsewhere. Similarly, in Nguyen (2012), firms learn about idiosyncratic demands for their products by "testing" a subset of markets, each of which generates a noisy signal about unexplored markets. Although we focus on a single destination market, our model resembles these in that exporters learn about their products' through early shipments, and when new exporters survive, their sales tend to grow rapidly. Aeberhardt et al. (2014) and Araujo et al. (2016) explain the small scale and high exit rate of new exporters (inter alia) by assuming that exporters are initially uncertain about the reliability of their new buyers, whom they find through a random matching process. The learning mechanisms built into these models are different from ours, but they too are designed to capture some of the same patterns that we target.

Learning models: Other learning models of export dynamics are designed for structural estimation. Timoshenko (2015) adds age as a profit shifter to a standard sunk-cost model of exporter behavior. She then demonstrates that this variable helps explain exporter persistence in differentiated (but not homogeneous) product industries and interprets this to imply that learning effects are important. Drawing from Jovanovic (1982), Arkolakis, et al. (2018) characterize firms as learning their types by observing their sales histories. This allows them to explain the relatively rapid expansion of new exporters. This paper resembles ours in that firms learn about their products' appeal in export markets from their match histories. It differs in that it is a calibrated equilibrium model with a representative consumer and no matching frictions or network effects. Li (2018) adds time variation to the idiosyncratic productivity shocks in Eaton et al (2014), replaces endogenous search efforts with a Markov process on the number of foreign orders firms receive, and treats firms as learning about their demand per order in each destination market. With these adjustments, he then quantifies the effects of priors, productivity, and learning on export market participation. Finally, without developing a complete model, Berman et al. (2019) use a simple decomposition to isolate residual fluctuation in foreign demand that they attribute to learning. Like the other studies mentioned here, they find learning plays an important role.⁵

⁴This paper is not strictly structural in the sense that it uses a reduced-form approximation to exporters' value functions.

⁵Ruhl and Willis (2017) also note this pattern in plant-level export data and show that market entry costs are insufficient to explain it.

Valuing of export relationships: Our counterfactural experiments contribute to a small literature that measures the value of exporting relationships at the firm level. Perhaps the best-known paper is Machiavello et al. (2015), which uses institutional features of the global flower market, combined with a contracting model, to place lower bounds on Keynan flower growers' international business relationships. Monarch and Schmidt-Eisenlohr (2018) take an approach closer to ours in that they also use a structural model to calculate relationship values. However, they treat the value of established relationships as coming from the trust between buyers and sellers that builds up over time rather than the search costs associated with replacing relationships that fail. Also, they treat match failure rates as determined by a combination of exogenous match effects and match age rather than optimizing behavior.

Micro-founded models of aggregate trade fluctuations: Finally, our model allows us to explore the microfoundations of aggregate export dynamics in the presence of several types of frictions. Alessandria and Choi (2014), Alessandria et al. (2014), and Alessandria et al. (2018) use foreign market entry costs to induce forward-looking behavior, with the last paper adding endogenous variable exporting costs. Ruhl and Willis (2017) extend the standard sunk cost model by assuming that firm-specific foreign demand grows with years of export market experience. This allows them to explain the fact that exporters typically start small, reduces estimates of sunk entry costs, and dampens simulated export responses to an exchange rate shock over medium-term horizons. Piveteau (forthoming) also explores these relationships using his model of export dynamics (discussed above). Our model can be thought of as providing a particular micro foundation for the dependence of exporting volumes on years in the market.

2 Firm-Level Trade: Stylized Facts

Over the past fifteen years, a robust set of stylized facts has emerged regarding the foreign market entry and evolution of exporting firms.⁶ The model we develop is designed to explain these facts as they manifest themselves in Colombian shipments to the United States. Accordingly, we begin by summarizing the patterns of interest in these transactions.

2.1 Data

We base our analysis on a comprehensive data set that describes all imports by buyers in the United States from Colombian exporters during the period 1992-2009. It is an extract from the U.S. Census Bureau's Longitudinal Foreign Trade Transactions Database (LFTTD),

⁶Early contributions include Brooks (2006), Besedes (2008), and Eaton et al. (2008). The interested reader can find many of the more recent studies mentioned in Bernard et al. (2017).

which covers all commercial shipments into and out of the United States. Each record includes a date, the US dollar value of the product shipped, a 6-digit harmonized system product code, a quantity index, and, critically, ID codes for both sellers and buyers. These IDs allow us to identify the formation and dissolution of business relationships between individual buyers in the U.S. and sellers in Colombia, hereafter referred to as "matches." ⁷

To identify foreign exporters, the U.S. import transactions records include a manufacturer's identification code.⁸ This field is an amalgamation of the manufacturer's country, company name, street address, and city. Anecdotal information from customs brokers indicates that commonly used software constructs it automatically as the name and address information is entered in other fields. So this variable is sensitive to differences in the way exporters' names and addresses are recorded as they pass through customs, and shipments from the same exporter can appear to originate from distinct Colombian firms. To gauge the importance of this problem, we have conducted various checks on the matches that are based on this variable; these are explained in Appendix B.

For present purposes, we define a match between a U.S. buyer and a Colombian exporter to begin in the year that it logs its first shipment, and we define it to end when it goes an entire calendar year without generating any shipments. Similarly, we define an exporter to be present in the U.S. market so long as it makes at least one shipment to the U.S. during the calendar year. These definitions make the statistics we report in this section consistent with earlier studies, but we will find it useful to adjust them when we implement our empirical model, as discussed in Section 5 below.

We limit our analysis to transactions between non-affiliated trade partners, and we consider only imports of manufactured goods. The latter restriction notably excludes oil and coffee exports, which constitute the bulk of trade between the two countries and are dominated by a few Colombian sellers. Our final data set of manufacturing transactions spans the years 1992-2009. It contains 26,625 unique Colombian exporters, 12,921 unique U.S. importers, and 42,767 unique trading pairs. Value data have been deflated to 1992 prices using the U.S. CPI. Since we exclude a number of large HS codes from our data, as well as affiliated trade, and because we also lose information due to disclosure restrictions, the total

⁷There are two ways to track U.S. importers in the LFTTD: Employment Identification Numbers (EINs) and the firm identifiers in the Longitudinal Business Database ("alphas"). Though an EIN does not necessarily identify a complete firm, it is unique to a firm, and there is one associated with every import transaction. Alphas map to entire firms, but the match rate between trade transactions and alphas is only about 80 percent (Bernard, Jensen, and Schott, 2009). To maximize the coverage of our sample, we use Employment Identification Numbers (EIN) to identify U.S. buyers.

⁸This variable is based on Block 13 of CBP form 7501, the import declaration form and customs brokers are required to input the data.

⁹Colombian commercialization of coffee is centralized to an important degree by the National Federation of Coffee Growers. A few players also dominate oil exports.

value covered by our data is not comparable to total Colombian exports to the U.S. Table 18 in Appendix B compares patterns in our sample to patterns in official aggregates from both the U.S. and Colombia.

In addition to U.S. customs records, we use establishment level survey data from Colombia's national statistics agency (Departmento Administrativo Nacional de Estadistica, or DANE). These data provide annual information on the sales volumes, exports, and other characteristics of all Colombian manufacturing plants with at least 10 workers. Because they have been widely analyzed, we do not discuss summary statistics for this data set herein. Later, however, when estimating our search and learning model, we use such statistics to characterize the size distribution of Colombian firms, the fraction of Colombian plants that export and, among these firms, the relationship between exports and domestic sales.

2.2 Exporter cohort maturation

Following Brooks (2006), we begin with Table 1, which summarizes the typical cohort maturation process for Colombian exporters of manufactured goods to the United States. It is based on observed evolution patterns among cohorts of firms that entered the market each year between 1993 and 1999, and it exploits U.S. customs records from 1992 through 2009.

To interpret the figures in this table, imagine for a moment that they describe a particular cohort, say, those firms that first entered the U.S. market in 1993. Then the second row of the Table would imply that only 29 percent of these firms continued exporting though 1994 (column 1), yet these survivors generated 11 percent more export revenue in 1994 than the entire cohort did in 1993 (column 2) because sales per surviving cohort member were 3.77 times as large in 1994 as sales per cohort member in 1993 (column 3). Other rows would have analogous interpretations, each normalized relative to the cohort's entry year.

The actual interpretation for Table 1 differs from this one only in that it is an average of all of the cohort-specific tables we can construct using cohorts observed for at least 10 years.¹⁰ Taking averages saves space but does not affect the basic message, since maturation patterns vary little across cohorts (Appendix tables A.1-A.3).

Column 1 of Table 1 shows the rate of decline in cohort membership is especially high between the first and second year, with more than 70 percent of firms dropping out. But conditional on making it to the second year, the survival probability is much higher, with an attrition rate around 40 percent the second year, and further declines occur thereafter. Thus, in terms of numbers, the most recent cohort is always larger than any previous one, and exporters with more than 15 years of market tenure are rare. For example, firms that

¹⁰Similar tables for Colombian exports of all goods and to all destinations appear in Eaton, et al (2008).

Table 1: Average aggregates by cohort age

Actual data							
Cohort age	Exporters	Total Exports	Average Exports				
1 year	1	1	1				
2 years	0.29	1.11	3.77				
3 years	0.18	0.93	5.03				
4 years	0.14	0.67	4.66				
5 years	0.12	0.63	5.18				
6 years	0.10	0.51	4.99				
7 years	0.08	0.50	5.72				
8 years	0.08	0.45	5.91				
9 years	0.07	0.39	5.58				
10 years	0.06	0.40	6.58				

Notes: Figures for cohorts aged 2-10 are expressed relative to corresponding figures for one-year-old cohorts.

were exporting to the United States in 1992 account for less than five percent of the firms exporting to the United States towards the end of the sample.

Column 2 shows that the rapid initial decline in cohort membership is not accompanied by a similar collapse in total cohort sales. The relative stability of total sales means that sales per firm are growing substantially. Indeed, as can been seen in column 3, sales per surviving exporter more than triple from the first to the second year, increase again in the cohort's third year, and show no strong tendency to grow further or shrink thereafter.

2.3 Patterns of buyer-seller matches

We next use the data to characterize the buyer-seller matches that took place during 1992-2009.

2.3.1 Monogamous and polygamous matches

The number of Colombian exporters appearing in our sample grew from 2,232 in 1992 to 3,300 in 2009, a growth of 2 percent per annum, while the number of U.S. importing firms grew by 3 percent per annum (Appendix A, Table 17). The number of Colombian exporter-U.S. importer pairs (representing at least one transaction between them in a year) also grew at an annual rate of 2 percent. Roughly 80 percent of matches are monogamous in the sense that the buyer deals with only one Colombian exporter and the exporter ships to only one buyer in the United States. However, since the remainder of the matches are polygamous, the average Colombian exporter was involved in relationships with around 1.3 U.S. firms while the average U.S. buyer was involved with around 2.3 Colombian firms. Both figures

declined slightly over the period.

6-10

11+

2.3.2 Transition Probabilities

Like firms' exporting stints (Table 1), most of their buyer-seller matches are short-lived. Of the 3,087 matches that existed at the beginning of the period, 70 percent didn't make it to 1993. But, of those that made it into the next year, almost 50 percent made it into the next year. Similarly, of the relationships that existed in 2005, 57 percent started that year but of those that started before, 37 percent had been around at least three years before. Of the 3,210 matches identified in 1992, less than 25 are present every year throughout the period.

 $t \ \ t+1$ Out Dormant 2 3 4 5 6-10 11 +Out 0.932 0.001 0.0550.0090.0020.0010.000Dormant 0.8760.1000.0150.008 0.0001 0.5390.0800.3210.0480.010 0.0020.001 2 0.194 0.077 0.3750.241 0.0240.009 0.0043 0.090 0.0420.2200.2710.2100.0920.0274 0.0590.1290.216 0.2150.1840.0830.0955 0.0950.1840.1810.1810.1260.178

0.073

0.000

0.089

0.123

0.157

0.419

0.432

0.073

0.526

0.039

0.000

0.000

Table 2: Transition Probabilities, Number of Clients

Table 2 reports the probability with which a Colombian firm participating in certain number of relationships with buyers transits into a different number of relationships the following year. (Confidentiality restrictions prevent us from reporting numbers for cells that are too sparsely populated.) This table reports the annual average for 1992-2009 across all industries. A firm that stops exporting but re-appears as an exporter sometime later in our sample period is considered to have gone "dormant", while those exporters that drop to zero foreign sales for the extent of our sample are considered to have gone "out" of exporting. Those that have never been observed to export constitute the pool of potential entrants.

Among first-time exporters, 93.2 percent sell to only one firm. Of these, 62 percent don't export the next year, and only about six percent go on to establish a larger number of relationships. For firms with three relationships in a year, about twelve percent enter into a larger number of relationships the next year. Hence there is an enormous amount of churning at the lower end. Even for firms with a large number of relationships the most likely outcome is to have fewer the next year.

2.3.3 Ergodic degree distribution

We can ask what this pattern of entry and growth implies about the ergodic distribution of relationships. If we assume that entrants in a year replace exiting firms, the ergodic distribution implied by this transition matrix is given by Table 3.

Table 3: Ergodic Client Distribution Implied by Transitions

	1	2	3	4	5	6-10	11+
Erg Distribution						0.022	0.016
Data	0.778	0.116	0.043	0.021	0.011		

For purposes of comparison, the year-specific average share of Colombian firms in each group is reported as well. Note that the ergodic distribution implied by the transition matrix is very close to the cross-sectional distribution in the data, suggesting that over the period we observe the process has been quite stationary. Interestingly, both distributions are very nearly Pareto, reflecting the coexistence of many small scale exporters with a few "super-exporters."

2.3.4 Match maturation

The survival probability of new matches increases with initial sales volume. Table 4 sorts observations on matches according to their size in their first year of existence and reports year-to-year separation rates. In addition to the very low survival rates, two patterns stand out. First, those matches that begin with sales in the top quartile among all new matches are more likely to survive than matches that begin with smaller sales volumes. Second, survival probabilities improve after the initial year.

Table 4: Separation Rates, by Age of Match and Initial Sales

	1 year	2 years	3 years	4 years	5+ years
Quartile 1 Quartile 2	82.9	63.2	57.3	55.0	49.7
	75.6	58.4	49.4	46.8	43.7
Quartile 3	67.7	52.1	44.6	40.8	37.6
Quartile 4	52.1	44.5	40.3	39.2	36.7

Further features of the match maturation process are evident in Figure 1, which shows average annual sales per match, broken down by initial size quartile. For each size quartile,

Figure 1: Average annual sales per match, by initial size quartile

matches are further distinguished according to their total life span: less than one year (life=0), 1 to 2 years (life=1), and so forth. And for each cluster of bars, the left-most bar corresponds to sales in the initial year of the match's existence, the next bar corresponds to sales during the second year of the match's existence, and so forth.

The first message of these graphs is that initial sales are a good predictor of sales in subsequent years, conditioning on survival. Those matches with first-year sales in the smallest quartile systematically generated the lowest annual sales in subsequent years, and more generally, first-year sales are monotonically related to annual sales in subsequent years. (Note the different scales of the vertical axes in different panels of Figure 1.) Second, sales tend to jump from the first to the second year, in large part because observations on a match's first year correspond to less than a full calendar year. (There is an analogous effect at work in the final year of a match's life.) Looking at complete-year observations reveals a tendency for annual sales to grow among matches that start small and survive, but no such tendency among matches that start in the largest quartile. Finally, looking across matches with different life spans, those that survive more years tend to have higher sales in all (full) years than matches that fail relatively quickly. This pattern is robust across matches in the different quartiles for initial sales.

2.4 Interviews

What motivates exporters to behave as described above? To get a preliminary sense for the answer to this question, and to inform our modeling exercise, some of the co-authors of the present paper conducted interviews with seven plastics manufacturers who had tried to export and had met with varying degrees of success. These suggested that costly search, matching and learning process were primary considerations. All interviewees with successful exporting episodes reported having made important investments to meet potential buyers abroad, having started and failed at least one relationship, and having learned from that experience about both their ability to satisfy that costumer and additional investments needed to successfully export. Both idiosyncratic exporter characteristics and luck played a role in explaining success and failure. The most successful exporters were also the larger producers. One interviewee experienced a weather shock that ruined his merchandise while on transit; another met with a buyer whom he suspected cheating on him to obtain a refund. More details about these interviews can be found in Domínguez et al (2013).

3 A Model of Exporting at the Transactions Level

We now develop a model of exporter behavior consistent with the patterns reviewed above. Buyer-seller relationships form and disband at irregular intervals. Similarly, export shipments are discrete events distributed unevenly through time. To capture these features of the data, and to allow agents to update their behavior each time their circumstances change, we formulate our model in continuous time, treating all of the exogenous time series in our model as Markov jump processes.

Explaining the evolution of a firm's exports and domestic sales requires modeling both its sales to existing buyers and the evolution of its portfolio of clients. We can treat these two components sequentially. We first consider the relationship between a seller and an individual buyer. Having characterized the seller's profits from a relationship with an individual buyer, we then turn to her learning about the popularity of her product, i.e., the chance that a potential buyers likes her product. Finally, we characterize her search for buyers.

3.1 A Seller-Buyer Relationship

This section characterizes the profit streams that sellers generate from successful business relationships. The expressions we develop here describe relationships between domestic firms and foreign buyers, but with appropriate relabelling of market-wide variables they apply equally to relationships between domestic firms and domestic buyers.

3.1.1 Profits from a single shipment

Several features of our model are standard. First, at any time t seller j can hire workers at a wage w_t in real local currency units, each of whom can produce $\varphi_j \in \{\varphi^1, ..., \varphi^{N_{\varphi}}\}$ units of output.¹¹ Hence seller j's unit cost in local currency is w_t/φ_j . If she sells at price p_{jt} in foreign currency her unit profit in local currency is

$$p_{jt}/e_t - w_t/\varphi_j, \tag{1}$$

where e_t is the exchange rate. Second, goods markets are monopolistically competitive and each producer supplies a unique differentiated product.

Once buyer i has agreed to form a business relationship with seller j, he periodically places sales orders with j. For j, an order from i that arrives at time t generates revenue:

$$X_{ijt} = \left(\frac{p_{jt}}{P_t}\right)^{1-\eta} y_{ijt} \overline{X}_t, \tag{2}$$

where $\eta > 1$ is buyers' elasticity of demand, p_{jt} is the price of seller j's product, \overline{X}_t is the average spending level among all potential foreign buyers, P_t is the relevant price index for all competing products in the foreign market, and $y_{ijt} \in \{y^1, ..., y^{Ny}\}$ is a time-varying demand shifter idiosyncratic to the ij relationship.¹²

For simplicity, and to keep the analysis as close as possible to other heterogenous firm models, we assume that the seller posts a non-negotiable price, charging the optimal markup over unit cost:¹³

$$p_{jt} = \frac{\eta}{(\eta - 1)} \frac{e_t w_t}{\varphi_j} \tag{3}$$

By (1), (2), and (3), an order from buyer i at time t therefore generates the following profits for seller j:

$$\pi_{ijt} = \frac{1}{\eta} \frac{\overline{X}_t}{e_t} \left(\frac{e_t w_t \eta / (\eta - 1)}{\varphi_j P_t} \right)^{1 - \eta} y_{ijt}.$$

We can combine all the macroeconomic variables affecting the profit of any seller from

¹¹We treat φ as time-invariant to facilitate model identification. Other sources of idiosyncratic temporal variation in sales will be discussed shortly.

¹²Not all buyers necessarily face the same range of goods and hence the same aggregate price index P. We treat idiosyncratic components of the price index as P as reflected in y_{ijt} .

 $^{^{13}}$ An alternative specification would introduce bilateral bargaining between buyer and seller.

this source selling in this destination, along with constants, as:

$$x_t = \frac{1}{\eta} \frac{\overline{X}_t}{e_t} \left(\frac{e_t w_t \eta / (\eta - 1)}{P_t} \right)^{1 - \eta},$$

where $x \in \{x^1, ..., x^{N_x}\}$ is general to all potential buyers in the foreign market. Suppressing subscripts on state variables, this allows us to write the profits from a sale as:

$$\pi_{\varphi}(x,y) = x\varphi^{\eta-1}y,\tag{4}$$

In what follows, (4) is all we take from our specification of preferences and pricing behavior into the dynamic analysis. Any set of assumptions that deliver this simple multiplicative expression for a firm's profit from a sale would serve us equally well.

3.1.2 Relationship dynamics

At any point in time, each seller maintains business relationships with an endogenous number of buyers. These relationships form as a consequence of a search process that will be characterized in the following section, and they dissolve for several reasons. First, there is a constant exogenous hazard δ that any particular relationship will terminate, which could be due to the demise of the buyer or the buyer no longer finding the seller's product useful. Second, after each sale to a particular buyer, the seller evaluates whether it is worth sustaining her relationship with him. Doing so keeps the possibility of future sales to him alive, but it also means paying the fixed costs F of maintaining the account, providing technical support, and maintaining client-specific product adjustments.¹⁴

When deciding whether to maintain a particular business relationship, the seller knows her own type, φ , the macro state, x and profits from the current sale, $\pi_{\varphi}(x,y)$ to the buyer in question. She can therefore infer this buyer's current y value and calculate the value of her relationship with him to be:

$$\widetilde{\pi}_{\varphi}(x,y) = \pi_{\varphi}(x,y) + \max \left\{ \widehat{\pi}_{\varphi}(x,y) - F, 0 \right\}.$$

Here $\widehat{\pi}_{\varphi}(x,y)$ is the expected value of continuing a relationship that is currently in state (x,y). Clearly the seller terminates this relationship if $\widehat{\pi}_{\varphi}(x,y) < F$.

If a seller pays F to keep a relationship active, and if the relationship does not end anyway for exogenous reasons, one of several events will next affect it: with hazard λ^b the

¹⁴For instance, Colombian producers of construction materials interviewed for a related project (Domínguez et al, 2013) referred that it is frequent for foreign buyers to request adjustments in the specifications of products or packages. In turn, these require adjustments in the production process that are costly to maintain.

buyer will place another order, with hazard $q_{xx'}^X$ x will jump to some new marketwide state $x' \neq x$, or with hazard $q_{yy'}^Y$ y will jump to some new buyer-specific shock $y' \neq y$.¹⁵ Let τ_b be the random time that elapses until one of these events occurs. Given that x and y are Markov jump processes, τ_b is distributed exponentially with parameter $\lambda^b + \lambda_x^X + \lambda_y^Y$, where

$$\lambda_x^X = \sum_{x' \neq x} q_{xx'}^X \tag{5}$$

and

$$\lambda_y^Y = \sum_{y' \neq y} q_{yy'}^Y,\tag{6}$$

are the hazards of transiting from x to any $x' \neq x$, and from y to any $y' \neq y$, respectively. Then assuming the seller has a discount factor ρ , the continuation value $\widehat{\pi}_{\varphi}(x,y)$ solves the Bellman equation:

$$\widehat{\pi}_{\varphi}(x,y) = \mathbf{E}_{\tau_{b}} \left[e^{-(\rho+\delta)\tau_{b}} \frac{1}{\lambda^{b} + \lambda_{x}^{X} + \lambda_{y}^{Y}} \left(\sum_{x' \neq x} q_{xx'}^{X} \widehat{\pi}_{\varphi}(x',y) + \sum_{y' \neq y} q_{yy'}^{Y} \widehat{\pi}_{\varphi}(x,y') + \lambda^{b} \widetilde{\pi}_{\varphi}(x,y) \right) \right]$$

$$= \frac{1}{\rho + \delta + \lambda^{b} + \lambda_{x}^{X} + \lambda_{y}^{Y}} \left(\sum_{x' \neq x} q_{xx'}^{X} \widehat{\pi}_{\varphi}(x',y) + \sum_{y' \neq y} q_{yy'}^{Y} \widehat{\pi}_{\varphi}(x,y') + \lambda^{b} \widetilde{\pi}_{\varphi}(x,y) \right)$$

Before a seller has met her next buyer, she does not know what state y this buyer will happen to be in. So when choosing her search intensity for new business relationships, she must base her decisions on the ex ante expected pay-off to forming a new business relationship. Given the market state x, a type- φ seller calculates this expected value as:

$$\widetilde{\pi}_{\varphi}(x) = \sum_{s} \Pr(y^{s}) \widetilde{\pi}_{\varphi}(x, y).$$

where $Pr(y^s)$ is the probability that a randomly selected buyer is currently in state $y^s \in \{y^1, ..., y^{Ny}\}$. 16

For the purposes of the search model that follows, all that matters about an individual relationship is $\tilde{\pi}_{\varphi}(x)$, and this object can be estimated directly from data on the revenue streams generated by matches. Nonetheless, the history of a seller's interactions with a given buyer affects its overall sales trajectory and hence matters for our characterization of

¹⁵Since sales in the data are discrete events rather than flows, we model the buyer's purchases accordingly. We think of the buyer not as making use of the products continually but in discrete spurts. For example, the buyer might be a producer of a product that it makes in batches. At the completion of each batch it buys inputs for the next batch.

¹⁶Here we take the probabilities $Pr(y^m)$ to be the ergodic distribution of y implied by the transition hazards $q_{yy'}^Y$. We could assume that the distribution at the time of the first purchase is different from the ergodic one.

aggregate export dynamics.

Hereafter, we will denote the expected value of a relationship with a foreign buyer by $\widetilde{\pi}_{\varphi}^{f}(x)$ and the expected value of a relationship with a home market buyer by $\widetilde{\pi}_{\varphi}^{h}(x)$. These two objects are calculated in the same way, but since expenditure levels (\overline{X}_{t}) and price indices (P_{t}) differ across markets, and no exchange rate factor e is necessary for domestic profit calculations, each has its own process for the market-wide state variable, x. These market-wide demand shifters are denoted x^{f} and x^{h} below.

3.2 Learning about Product Appeal

In each market, sellers conduct market-specific searches for buyers. When searching in market $m \in \{h, f\}$, each recognizes that some fraction $\theta^m \in [0, 1]$ of the potential buyers she meets there will be willing to do business with her. An encounter with one of these willing buyers generates an expected profit stream worth $\widetilde{\pi}_{\varphi,x}^m$, while an encounter with any of the remaining potential buyers does not generate a sale then or subsequently.

Each seller's θ^h and θ^f values are drawn before she has met any clients. These draws remain fixed through time, inducing permanent cross-market differences in her product's popularity. All θ^m draws are independently beta-distributed across sellers and markets:

$$b(\theta^m | \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} (\theta^m)^{\alpha - 1} (1 - \theta^m)^{\beta - 1}, \ m \in \{h, f\},$$

where $\Gamma(\phi) = \int_0^\infty z^{\phi-1} e^{-z} dz$ is the gamma function (needed to ensure that the distribution has the proper limits). However, the independence of θ^h and θ^f does not mean sellers' domestic and foreign sales are likewise independent. Rather, cross-market correlation in sales will be induced by the firm type φ , which can be viewed as capturing aspects of product appeal that are common to both markets.¹⁷

Benchmark model: Sellers are presumed to have already met many potential customers in the domestic market, and thus to have learned their θ^h draws. But sellers typically have far less experience abroad, so in the benchmark version of our model, we allow them to still be learning about their θ^f draws. Specifically, each seller recognizes that for any given θ^f , the probability a random sample of n potential foreign buyers will yield a customers is

¹⁷The firm effect is similarly interpreted to reflect both productive efficiency and product appeal in Melitz (2003) and many other papers based on CES demand systems. However in the present context, the global aspects of product appeal captured by φ are qualitatively distinct from the market-specific product appeal effects captured by θ . The former determines the amount of a product each buyer purchases, given that he is interested, while the latter determines what fraction of potential buyers are willing to place orders with the seller, should they happen to meet her.

binomially distributed:

$$q\left[a|n,\theta^f\right] = \binom{n}{a} \left[\theta^f\right]^a \left[1 - \theta^f\right]^{n-a}.$$

So after she has met n^f potential buyers abroad, a^f of whom were willing to buy her product, a seller's posterior beliefs about her θ^f draw are distributed:

$$p(\theta^f|a^f, n^f) \propto q \left[a^f|n^f, \theta^f\right] \cdot b(\theta^f|\alpha, \beta)$$

where the factor of proportionality is the inverse of the integral of the right-hand side over the support of θ^f . Since the beta distribution is the conjugate prior for the binomial, a firm's expected success rate after a successes in n trials has a convenient closed-form representation:

$$\overline{\theta}_{a,n}^f = E\left[\theta^f | a^f, n^f\right] = \int_0^1 \theta p(\theta | a^f, n^f) d\theta = \frac{a^f + \alpha}{n^f + \alpha + \beta}.$$
 (7)

This posterior mean converges to $p \lim_{h \to \infty} \left(\frac{a^f}{n^f} \right) = \theta^f$ as n gets large.

Note that exporters learn something about their foreign demand with each new match—successful or otherwise. In this regard we depart from other models with learning effects, which have generally presumed that the number of signals per period is either zero or one, depending upon firms' foreign market participation (Fitzgerald et al., 2019; Arkolakis et al., 2018; Timoshenko, 2015). Does it matter? Our formulation creates an extra incentive for inexperienced exporters to search intensively, which we will quantify in Section 6 below.

known- θ^f **model:** As an alternative to our benchmark model, we consider the possibility that sellers already know their product's popularity in *both* markets, so that $p(\theta^f|a^f, n^f)$ is a degenerate distribution and $\overline{\theta}_{a,n}^f = \theta^f$. In this version of the model, sellers' matching histories only affect their search intensities by affecting their visibility in each market, as we will discuss shortly. Our known- θ^f model is not nested by the benchmark model, it is simply a different characterization of the role of information in driving search policies.¹⁸

3.3 Searching for Buyers

To complete our characterization of firms' behavior, we now consider sellers' search intensities in each market. Each seller continuously chooses the market-specific hazard s^m , $m \in \{h, f\}$, with which she encounters a potential buyer, recognizing that this involves the instantaneous

¹⁸In order for the learning model to nest the no learning model, each firm would have to have its own Beta distribution parameters, α and β .

flow cost $c^m(s^m, a^m)$, where $c^m(s^m, a^m)$ is increasing and convex in s^m .¹⁹ Whether $c^m(s^m, a^m)$ increases or decreases in the number of successful matches, a^m , depends upon the relative strength of several forces and will be left for the data to determine. Costs might fall with a^m because encounters with interested buyers increase the seller's visibility and enhance her opportunities to meet additional potential buyers. Alternatively, costs might rise if the pool of easy-to-reach buyers becomes "fished out," as in Arkolakis (2010).

We can now describe optimal search behavior, beginning with the foreign market. Recall that when the foreign market state is x^f , a type- φ seller expects the value of a new business relationship will be $\tilde{\pi}_{\varphi}^f(x^f)$. Further, she believes the next match will yield such a relationship with probability $\bar{\theta}_{a,n}^f$. Combined with search cost function $c^f(s^f, a^f)$ and the jump process for x^f , these objects imply sellers' optimal search policy abroad.

To characterize this policy, let τ_s^f be the random time interval until the next foreign search event, which could be either a change in the marketwide state x^f or an encounter with a potential buyer. Then, suppressing market superscripts, the optimal search intensity s for a type- φ firm with foreign market search history (a, n) solves the following the Bellman equation:

$$V_{\varphi}(a, n, x) = \max_{s} \mathbf{E}_{\tau_{s}} \left[-c(s, a) \int_{0}^{\tau_{s}} e^{-\rho t} dt + \frac{e^{-\rho \tau_{s}}}{s + \lambda_{x}^{X}} \cdot \left(\sum_{x' \neq x} q_{xx'}^{X} V_{\varphi,}(a, n, x') + s \left[\overline{\theta}_{a, n} (\widetilde{\pi}_{\varphi}(x) + V_{\varphi}(a + 1, n + 1, x) + (1 - \overline{\theta}_{a, n}) V_{\varphi}(a, n + 1, x) \right] \right) \right]$$

(Recall that λ_x^X is given by (5).) Taking expectations over τ_s yields:

$$V_{\varphi}(a, n, x) = \max_{s} \frac{1}{\rho + s + \lambda_{x}^{X}} \left[-c(s, a) + \sum_{x' \neq x} q_{xx'}^{X} V_{\varphi,}(a, n, x') + s \left\{ \overline{\theta}_{a, n} \left[\widetilde{\pi}_{\varphi}(x) + V_{\varphi}(a + 1, n + 1, x) \right] + (1 - \overline{\theta}_{a, n}) V_{\varphi}(a, n + 1, x) \right\} \right]$$
(8)

Applying the multiplication rule for differentiation and using expression (8) for $V_{\varphi}(a, n, x)$,

¹⁹Interviews conducted with Colombian exporters revealed a variety of activities firms pursue to meet potential buyers abroad (Domínguez, et al, 2013). Ranked roughly in terms of decreasing cost, these included maintaining a foreign sales office; paying the exports promotion office to organize visits with prospective clients abroad, and sending their sales representatives to those visits; sending sales representatives abroad to visit potential clients on their own; attending trade fairs; paying a researcher to search the web for foreign firms that purchase products similar to their own; paying browsers to ensure that their site appear near the top of a search for their product type; maintaining a web site in English. Interviewees also reported that relatively low-cost activities, such as traveling to trade fairs, or translating their websites to English, led to relationships with one or two clients every few years. Establishing a larger network of clients required much more costly activities.

the optimal search intensity s^* satisfies:

$$\frac{\partial c(s^*, a)}{\partial s} = \overline{\theta}_{a,n} \left[\widetilde{\pi}_{\varphi}(x) + V_{\varphi}(a+1, n+1, x) \right] + (1 - \overline{\theta}_{a,n}) V_{\varphi}(a, n+1, x) - V_{\varphi}(a, n, x) \tag{9}$$

That is, the marginal cost of search must equal the expected marginal benefit of a match, which includes the expected value of the associated profit stream, $\bar{\theta}_{a,n}\tilde{\pi}_{\varphi}(x)$, and the expected value of the information generated.

Now consider the home market. Since we assume sellers have already learned their true success rates at home, θ_j^h , new encounters do not influence expectations, and we need not condition the value function or the expected success rate on search histories. Again suppressing market superscripts, the Bellman equation collapses to:

$$V_{\varphi}(x,a) = \max_{s} \frac{1}{\rho + \lambda_{x}^{X}} \left[-c(s,a) + \sum_{x' \neq x} q_{xx'}^{X} V_{\varphi}(x',a) + s \left\{ \theta_{j}^{h} \left[\widetilde{\pi}_{\varphi}(x) + V_{\varphi}(a+1,x) \right] + (1-\theta_{j}^{h}) V_{\varphi}(a,x) \right\} \right]$$
(10)

and the first-order condition is simply:

$$\frac{\partial c(s^*, a)}{\partial s} = \theta_j^h \left[\widetilde{\pi}_{\varphi}(x) + V_{\varphi}(a+1, x) - V_{\varphi}(a, x) \right].$$

The marginal cost of search equals the expected profit from a successful relationship times the probability of success. Of course, this condition also describes foreign market search in the known- θ^f version of the model.

4 An empirical version of the model

4.1 The search cost function

To implement our model empirically, we impose additional structure in several respects. First, we specify a functional form for our search cost function. Generalizing Arkolakis (2010) to allow for network effects, we write these costs as:

$$c^{m}(s^{m}, a^{m}) = \kappa_{0}^{m} \frac{\left[(1 + s^{m}) \right]^{\kappa_{1}} - 1}{\kappa_{1} \left[1 + \ln(1 + a^{m}) \right]^{\gamma}}.$$
(11)

where $m \in \{h, f\}$. Several properties of this function merit note. First, marginal costs fall at a rate determined by γ with the number of successful matches a seller has already made,

so $\gamma > 0$ implies "network" effects and $\gamma < 0$ implies "congestion" effects.²⁰ Second, a seller who is not searching in a particular market incurs no search cost: $c^m(0, a^m) = 0$. Third, given the cumulative number of successful matches, a, the marginal cost of search increases with s at a rate determined by $\kappa_1 : \frac{\partial c^m(s^m, a^m)}{\partial s^m} = \kappa_0^m (1 + s^m)^{\kappa_1 - 1} / [1 + \ln(1 + a)]^{\gamma}$. Fourth, we allow the cost function scalar to vary across markets, since the cost of maintaining any given level of visibility is likely to be higher in foreign markets. Finally, since a^m is the cumulative number of successes in market m, network effects endure, even if a firm is not actively searching.

4.2 Processes for exogenous state variables

Next we impose more structure on the exogenous state variables, φ , x^h , x^f , y^h and y^f . All are assumed to have zero means in logs, and the net effect of these normalizations is undone by introducing scalars Π^h and Π^f into the home and foreign profit functions, respectively:

$$\pi_{\varphi}^{f}(x^{f}, y^{f}) = \Pi^{f} x^{f} \varphi^{\eta - 1} y^{f}, \tag{12}$$

$$\pi^h_{\varphi}(x^h, y^h) = \Pi^h x^h \varphi^{\eta - 1} y^h \tag{13}$$

More substantively, we impose that the cross-firm distribution of φ is log normal with variance parameter σ_{φ} , and we treat all of the Markov jump processes (x^h, y^h, x^f, y^f) as independent Ehrenfest diffusion processes. The idiosyncratic match shocks, y^f and y^h , are assumed to share the same distribution, but we allow the x^f and x^h processes to differ. Among other things, the latter accommodates the fact that the exchange rate affects aggregate demand and price indices in the two markets differently.

Any variable z generated by an Ehrenfest process can be discretized into 2g+1 possible values, $g \in I^+: z \in \{-g\Delta, -(g-1)\Delta, ..., 0, ..., (g-1)\Delta, g\Delta\}$. Further, it jumps to a new value with hazard λ_z , and given that a jump occurs, it goes to z' according to:

$$z' = \begin{cases} z + \Delta \\ z - \Delta \text{ with probability } \begin{cases} \frac{1}{2} \left(1 - \frac{z}{g\Delta} \right) \\ \frac{1}{2} \left(1 + \frac{z}{g\Delta} \right) \end{cases} .$$

Thus, given a grid size g, the intensity matrices $Q^X = \left\{q_{ij}^X\right\}_{i,j=1,N^X}$ and $Q^Y = \left\{q_{ij}^Y\right\}_{i,j=1,N^Y}$ that were introduced in section 3.1 are each block-diagonal and characterized by a single parameter, Δ .

 $[\]overline{}^{20}$ To contain the dimensionality of the computational problem we solve, we assume that firms with more than a^* buyers have (i) exhausted their learning effects, and (ii) reap no additional network effects at the margin from further matches. We choose a^* to exceed the observed maximum a for 99 percent of sellers in the foreign (United States) market. Also, we set $a=a^*$ for all sellers in their home (Colombian) market.

Table 5: Market-wide Demand Shifters

	Parameter	value
home macro state jump hazard	λ^{x_h}	1.200
foreign macro state jump hazard	λ^{x_f}	1.215
home macro state jump size	Δ^{x_h}	0.003
foreign macro state jump size	Δ^{x_f}	0.053

5 Estimation

5.1 Stage 1: estimating observable jump processes

Shimer (2005) shows that if z follows a continuous time Ehrenfest diffusion process, it asymptotes to an Ornstein-Uhlenbeck process with mean zero as the fineness of the grid increases:²¹

$$dz = -\mu z dt + \sigma dW.$$

Here $\mu = \lambda_z/g$, $\sigma = \sqrt{\lambda_z}\Delta$, and W follows a Weiner process. Accordingly, since it is possible to observe proxies for x^f and x^h , these can be viewed as discrete time observations on underlying Ornstein-Uhlenbeck processes, and the parameters of these processes can be econometrically estimated. Then, given μ and σ , estimates of Δ and λ for these processes can be inferred.

Measuring x^f as real expenditures on manufacturing goods in the U.S., and measuring x^h as real expenditures on manufacturing goods in Colombia, we obtain the results reported in Table 5.²² They imply that x^f and x^h both jump 1.2 times per year, on average. However, jumps in the U.S. market tend to be much larger, essentially because they reflect movements in the real exchange rate as well as movement in dollar-denominated expenditures.

5.2 Stage 2: Indirect inference

Our data are relatively uninformative about the rate of time discount ρ and the demand elasticity η , so we do not attempt to estimate either one. For the former we follow convention

²¹Specifically, replacing the parameter vector (λ, g, Δ) with $(\lambda/\epsilon, g/\epsilon, \Delta\sqrt{\epsilon})$, $\epsilon > 0$, leaves the autocorrelation parameter μ and the instantaneous variance parameter σ unchanged. But as $\epsilon \to 0$, the innovation dW approaches normal.

²²Our foreign market size mesaure is the OECD time series on American GDP in 'Industry, including energy' adding imports and subtracting net exports of manufactures. Our home market size measure is real Colombian expenditures on manufacturing goods, taken from DANE. We converted all of the data used for the estimation into real 1992 US dollars, deflating nominal US dollars with the consumer price index available on the US Bureau of Labor Statistic website. We used an official Colombian Peso - US Dollar exchange rate time series downloaded from the Central Bank of Colombia to convert Pesos to nominal US Dollars

and assume an annualized value of $\rho = 0.05$. For the latter, following many previous trade papers, we fix the demand elasticity at $\eta = 5$. Also, to limit the size of the estimated parameter vector, we take the exogenous match failure rate to be the observed match failure rate among matches at least 5 years old ($\delta = 0.326$), we take the search cost function to be quadratic in search intensity ($\kappa_1 = 2$), and we assume that the hazard rate for the buyer is once per quarter ($\lambda_y = 4$).²³

All of the remaining parameters we estimate jointly using the transactions data summarized in Section 2 above. These parameters include the market size scalars (Π^h , $\Pi^{f\cdot}$), the fixed costs of maintaining a match (F^h , F^f), the parameters of the product appeal distributions (α,β), the dispersion of the productivity distribution (σ_{φ}), the jump size for the idiosyncratic buyer shocks (Δ_y), the hazard rate for shipments (Δ_b), the network/congestion parameter (γ), and the market-specific cost function scaling parameters (κ_0^h , κ_0^f). For notational convenience we collect these parameters in the vector Λ :

$$\Lambda = \left(\Pi^h, \Pi^{f}, F^h, F^f, \alpha, \beta, \sigma_{\varphi}, \Delta_y, \lambda_b, \gamma, \kappa_0^h, \kappa_0^f\right)$$

We construct our estimator for Λ using the method of indirect inference (Gouriéroux and Monfort, 1996). That is, for each candidate Λ vector, we use the model to simulate the foreign and domestic transactions of an artificial sample of producers. Then, using these simulated data, we estimate a set of reduced-form regressions that summarize the relationships we want our model to capture. Finally, looking across candidate Λ vectors, we choose the one that makes the regression coefficients from simulated data correspond as closely as possible to the corresponding regression coefficients based on sample data. Algebraically, our estimator is

$$\hat{\Lambda} = \min_{\Lambda} \left[\bar{m} - m(\Lambda) \right]' W \left[\bar{m} - m(\Lambda) \right],$$

where \bar{m} is a column vector of regression coefficients obtained from sample data, $m(\Lambda)$ is the analogous vector of regression coefficients based on data simulated at Λ , and W is a compatible non-singular weighting matrix. Setting $W^{-1} = var(\bar{m} - m(\Lambda))$ maximizes the efficiency of this estimator, but any non-singular W will yield consistent estimates. We use a block-diagonal version of $var(\bar{m} - m(\Lambda))$, with each block corresponding to the moments from a particular regression.

The regressions themselves are reported in Tables 6, 7 and 8. In each table, the databased regression estimates are reported, and their standard errors are reported below them in parentheses. To facilitate comparisons between the sample and the simulated data, and with no loss of information, we have replaced the intercept of each regression with the mean

²³These last three parameters could in principle be estimated, and in earlier drafts we have done so. However, they have not appeared to be well-identified.

value of the dependent variable in cases where that was possible.²⁴ We now briefly describe these regressions and our reasoning in choosing them.

Search policy. The first regression in Table 6 summarizes the effects of firms' market experiences on their search intensity (s). Roughly speaking, this equation can be viewed as a second order approximation to the foreign market policy function (9)–a central object in our model. The dependent variable is a proxy for a firm's foreign market search intensity after n successful matches, namely, the inverse of the time interval between firm j's n^{th} and $n + 1^{st}$ match. And the right-hand side is a second-order translog function of this firm's cumulative number of successes (a) and cumulative success rate $(\frac{a}{n})$. To deal with firms that have had no successes, we add 1 to a and to $\frac{a}{n}$ before taking logs.

The unit of observation here is an exporter-specific new match, and we define a new match to occur whenever an exporter makes a shipment to a buyer it has not dealt with before. We view this first shipment as a sample of the exporter's merchandise, so we only consider this match to be successful if it results in at least one additional shipment. This interpetation of the data means we can use customs records to directly infer the cumulative number of successes for each firm j (a_{nj}) after each of its $n \in \{1, ..., N_j\}$ matches, and the associated cumulative success rates $(\frac{a}{n})_{nj}$.

Interpreting the coefficient estimates for this regression is problematic, both because it includes second order terms and because we have not controlled for the highly nonlinear firm effects generated by φ and θ^f . But evaluation of this equation on a grid of success rates and cumulative successes gives us a crude sense for the relationships implied by our estimates. The results (available upon request) show that search intensity is sensitivity to success rates, but it strongly increases with cumulative successes.

Separation policy. Equation (ii) captures a second basic feature of firms' exporting behavior: match termination policies. Here the unit of observation is seller j's i^{th} match in year t, and the dependent variable, $D^{exit\ match}$, takes a value of unity when this match is in its final year.²⁵ Our model implies that matches are more likely to terminate when the idiosyncratic demand shock z_{ijt} and/or the firm's productivity level φ_j is low. Neither variable is directly observable, so we use several of their correlates as explanatory variables: current match sales, X_{ijt}^f , age of the match, Age_{ijt} , and export market tenure, $Tenure_{jt}$. All variables are expressed in logs and, given the patterns revealed by Table 4, we allow firms in their first year of exporting $(D^{new\ to\ mkt} = 1)$ to experience particularly high failure rates.²⁶

²⁴Several regressions were done in real pesos within the Colombian national statistical agency (DANE). We are not confident that they can be expressed in units that are strictly comparable to the real dollar units in which U.S. customs records were expressed.

²⁵Only active matches are included in the sample.

²⁶Note, however, that in Table 7, matches that die after a single shipment are treated as having existed for less than one year, while our model-based estimates treat these cases of single shipments as unsuccessful meetings that did not lead to business relationships.

Equation (ii) helps to identify the fixed costs of maintaining an established foreign match, F^f . That is, conditioning on sales, X_{ijt}^f , matches are more likely to survive when fixed costs are low. Failure rates are also affected by the volatility of z_{ijt} , which is governed by the jump size, λ_y .

Not surprisingly, estimates of equation (ii) reflect the same patterns that we noted in connection with Table 4. Matches in their first year are relatively likely to fail, as are matches that start with relatively small sales volumes. The results also show that exporters with more experience in foreign markets tend to have longer-lived relationships, a feature of the data that our model captures with cross-firm variation in productivity levels, φ .

Match success rates The remaining regressions in Table 4 concern the distribution of success rates, θ . Equation (iii) summarizes the average success rate among active exporters and its relation to the cumulative number of meetings an exporter has had (n). Accordingly it is informative about $\alpha/(\alpha + \beta)$ and selection due to learning. Equation (iv) describes dispersion in success rates—i.e., the squared residuals from equation (iii)—among exporters with different experience (n) levels. Both regressions suggest that selection takes place as firms acquire market tenure, since success rates are higher among experienced (high-n) firms, and the dispersion in success rates among such firms is lower.

Client distributions and shipment frequencies. The next set of regressions appears in Table 7. Equation (v) summarizes the information on client distributions in Table 3. Specifically, letting $\Phi(\ell)$ be the fraction of exporters with no more than ℓ active clients, column (v) reports the regression of $\ln(1 - \Phi(\ell))$ on $\ln \ell$ and $(\ln \ell)^2$.²⁷ We choose this functional form because earlier studies have found that exporters' foreign client distributions are approximately Pareto, implying that the relationship between $\ln(1 - \Phi(\ell))$ and $\ln \ell$ is approximately linear. Note that our data confirm a nearly-Pareto client distribution, as the coefficient on the quadratic term is quite small (-0.055).

Equation (v) helps to identify the cost function parameters $(\kappa_0^h, \kappa_0^f, \gamma)$ because the client distribution largely reflects firms' search intensities. In particular, the network effects captured by the parameter γ determine how much of a search cost discount large (big a) firms enjoy, and thus the "fatness" of the right-hand tail of the client distribution $\Phi(\cdot)$.

Equation (vi), the other regression in Table 7, simply establishes the mean log number of shipments per year per continuing match. It serves as a target for the shipment arrival hazard and obviously helps to identify λ_b .

Match- and firm-level sales Regressions that characterize the time series properties of firms' exports, cross-firm dispersion in exports, and patterns of correlation between exports and domestic sales are collected in Table 8. These equations are particularly informative about the parameters $(\Pi^h, \Pi^f, F^h, F^f, \sigma_{\varphi}, \Delta_y)$. Equation (vii) is an AR1 in log match rev-

²⁷By construction, the intercept of the (non-parametric version of) this regression line must be zero.

enues, conditioned on match age and a dummy to control for first-year effects. By the logic reviewed in section 5.1 above, the root (0.826) and root mean square error (1.208) in this AR1 identify the jump size, Δ_y and the cross-firm variance in productivity, σ_{φ} , up to selection effects. Also, together with equation (ii), the mean log annual revenue per match (10.67) essentially pins down the profit function scalar and the fixed cost of maintaining a foreign match (Π_f , F^f).

The last four equations in Table 8 involve domestic sales. Since we don't observe firms' individual matches in the domestic market, these regressions describe establishment-level panel data merged with Colombian customs records.²⁸ Equations (viii) is an AR1 for home sales, and is thus informative about the extent to which firms adjust their domestic connections and their associated match specific sales in response to idiosyncratic shocks. Accordingly, the coefficients in this equation are particularly helpful in identifying κ_0^h and F^h , and the mean squared error helps identify σ_{φ} and $\alpha/(\alpha+\beta)$. Equation (ix) is a simple projection of firm level exports on firm-level domestic sales. It serves to distinguish market-specific variation in revenues from variation in revenues that is common to both markets. Thus the estimated parameters of this equation, including its mean squared error, are informative about the variance of productivity shocks (σ_{φ}^2), which are common to both markets, relative to the variance of market-specific appeal draws, θ^h and θ^f .²⁹

 $^{^{28}}$ More precisely, regressions (viii) through (x) in Table 8 are done using a combination of the Colombian Annual Manufacturing Survey (AMS) and Colombian administrative records of exports transactions. The data used cover 1993-2007. Exports are merged into the AMS using firm identifiers. This is done because the AMS has no export information for 1993-1999, and because the dynamics of aggregate exports reported in the EAM starting in 2004 differ substantially from aggregate reports from other sources.

²⁹Given the average success rate, $\alpha/(\alpha+\beta)$, the variances of θ^h and θ^f depend only on $\alpha+\beta$.

Table 6: Match hazards, success rates, and endurance

	(i)	(ii)	$(iii) \atop a_{ij}$	(iv)	
	$\ln(\lambda_{ij})$	$D_{ijt}^{exit\ match}$	$rac{a_{ij}}{n_{ij}}$	$u_{a_{ij}/n_{ij}}^{2}$	
mean, dep. variable	-0.719	0.395	0.413	0.091	
mean, dep. variable	(0.621e-2)	(0.319e-2)	(0.153e-2)	(0.26e-3)	
$\ln(1+n_{ij})$	_	_	0.093	-0.056	
$m(1 + n_{ij})$			(0.003)	(0.000)	
$\ln(1+a_{ij})$	-0.818	_			
$m(1+a_{ij})$	(0.113)				
$\ln(1+a_{ij})^2$	0.312	_	_	_	
$m(1+a_{ij})$	(0.017)				
$\ln(1+\frac{a_{ij}}{n_{ij}})$	-1.132	_	_	_	
$m(1 + n_{ij})$	(0.296)				
$\left[\ln\left(1+\frac{a}{n}\right)\right]^2$	2.451	_		_	
$\lfloor \ln(1+\frac{1}{n}) \rfloor$	(0.396)				
$\ln(1+a_{ij})\cdot\ln(1+\frac{a_{ij}}{n_{ij}})$	-0.708	_	_	_	
$\ln(1+a_{ij})\cdot \ln(1+rac{n_{ij}}{n_{ij}})$	(0.134)				
$D_{ijt}^{new\ to\ mkt}$	_	0.034	_	_	
D_{ijt}		(0.011)			
$\ln X_{ijt}^f$		-0.031			
$^{ m III}$ $^{ m A}$ $_{ijt}$		(0.002)			
$\ln Age_{ijt}$		-0.054			
$m_A g e_{ijt}$	_	(0.009)	_	_	
In Tonumo.		-0.028			
$\ln Tenure_{jt}$	_	(0.007)	_	_	
observations (rounded)	38,500	23,500	35,800	35,800	

Notes: Intercepts were included in all regressions. They were not targetted so they are not reported. Unit of observation, columns i, iii and iv: seller j's i^{th} match. Unit of observation, column ii: seller j's i^{th} match in its t^{th} year. $\lambda_{ij} =$ inverse of time interval between commencement of match i and commencement of the next one for exporter j $D_{ijt}^{exitmatch} = 1$ if exporter j's ith match dies in year t. $a_{ij} =$ cumulative number of successes for exporter j at time of match i. $D_{ijt}^{newtomkt} = 1$ if exporter j's ith match is in its first year. In $Age_{ijt} = \log$ age of exporter j's ith match. In $Tenure_{jt} = \log$ age of exporter j in year t. $X_{ijt}^f = \text{foreign}$ sales volume generated by exporter j's ith match.

Table 7: Client distribution and shipment frequency

	(v)	(vi)
	$\ln(1 - \Phi(\ell))$	$\ln(s_{ijt})$
maan dan rariabla	-5.973	0.971
mean, dep. variable	(2.173)	(0.004)
$l_{n}(\theta)$	-1.8813	
$\ln(\ell)$	(0.1123)	-
(1 0)2	-0.0545	
$(\ln \ell)^2$	(0.0211)	_
sample restrictions	$\ell > 0$	$s_{ijt} > 0$
observations	43	87,000

Notes: Intercepts were included in all regressions. They were not targetted so they are not reported. ℓ : number of active clients; $\Phi()$ = cumulative distribution of exporters in terms of ℓ ; s_{ijt} = number of shipments per year to client i by exporter j in year t

Table 8: Home and foreign sales regressions

	(vii)	(viii)	(ix)	(x)	(xi)
	$\ln X_{ijt}^f$	$\ln X_{jt}^h$	$\ln X_{jt}^f$	D^f_{jt}	$\frac{X_{jt}^f}{X_{jt}^f + X_{jt}^h}$
mean, dep. variable	10.665	_	_	0.102	0.127
mean, dep. variable	(0.002)			(0.003)	(0.002)
$R \cdots$	0.328				
R_{ijt-1}	(0.018)	_	_	_	_
$\ln X_{ijt-1}^f$	0.826	_	_	_	_
111 11 1 $ijt-1$	(0.004)	_	_	_	_
$\ln X_{jt-1}^h$	_	0.976	_	_	_
iii ji jt-1		(0.029)			
$\ln X_{it}^h$	_	_	0.323	_	_
iii jt			(0.110)		
$\ln Tenure_t$	0.063	_	_	_	_
mr crowr c _t	(0.014)				
root mse	1.2079	0.4621	2.1665	0.303	0.243
sample restrictions	$X_{ijt}^f, X_{ijt-1}^f > 0$	$X_{jt}^h, X_{jt-1}^h > 0$	$X_{jt}^f, X_{jt}^h > 0$	$X_{jt}^h > 0$	$X_{jt}^f, X_{jt}^h > 0$
observations	25,400	99,300	11,600	119,800	12,500

Notes: Intercepts were included in all regressions. They were not targetted so they are not reported. $R_{ijt}=1$ if exporter j's i^{th} match is in its first year. $\ln Tenure_{jt}=\log$ age of exporter j. $X_{ijt}^f=$ foreign sales volume generated by exporter j's i^{th} match. $X_{jt}^f=$ total foreign sales volume generated by firm j. $X_{jt}^h=$ total home sales volume generated by firm j. $D_{jt}^f=1$ if firm j is an exporter.

Finally, equations (x) and (xi) describe the relative importance of home versus foreign sales. The former gives the share of firms that participate in the foreign market and thereby speaks to the relative return to maintaining foreign versus domestic business connections, that is (Π^f, F^f, κ_0^f) versus (Π^h, F^h, κ_0^h) . The latter gives the average share of exports to the U.S. in total sales of exporting firms. Accordingly, it largely reflects the number of clients in each market, and thus responds especially to differences between κ_0^f and κ_0^h .

Sensitivity analysis As suggested by Andrews et al. (2017), we check which moments are important using the sample analog to the matrix $(G'WG)^{-1}G'W$ where $G = \frac{-\partial [m(\Lambda)]}{\partial \Lambda'}$ is the Jacobian for the vector of simulated moments. "Intuitively, this matrix is a local approximation to the mapping from moments to estimated parameters." (Andrews, et al., 2017, p. 1555) Evaluated at our benchmark estimates (to be discussed), we obtain the results reported in detail in Appendix C. Here we summarize the patterns that emerge.

First, most parameters respond to many moments rather than one or several. Limiting our attention to elasticities with absolute value greater than 0.1, most parameters show significant responses to at least 5 moments, and several (F^f, F^h, γ) respond to more than 15. All parameters respond to at least 2. The moments that affect the most parameters are those generated by the match sales autogression (equation vii), the shipping rate regression (equation vii), the domestic sales autoregression (equation viii), the regression explaining the variance in success rates (equation iv), and the fraction of firms that export (equation x).

5.3 Parameter estimates

Table 9 reports estimates of the structural parameter vector Λ for both the benchmark and the known- θ^f model. Although our estimator exploits month-to-month transitions in the customs records, all hazards are normalized so that the unit of time is one year. Thus, for example, our estimate of δ implies that on average, matches last roughly 4 months (one-third of a year) before separating for exogenous reasons. Most parameter estimates are similar for both models, though, as we'll argue below, the benchmark model fits the data better. We therefore focus our discussion on the results for this model, turning later to the main distinguishing features of the known- θ^f results.

Benchmark parameter estimates Active matches generate an average of $\lambda_b = 15.43$ shipments per year, and the profits associated with these shipments vary widely across firms and macro conditions. Evaluating the gross profit-per-shipment functions (12) and (13) at our estimated values for Π^h , Π^f and the parameters governing realizations for φ , x, and y, we find that gross profits per shipment (before fixed costs) for a firm at the median productivity level matched to a median buyer are essentially zero. Accordingly, these firms are not active.

On the other hand, a firm with productivity 1.9 standard deviations above the mean earns gross profits per shipment ranging from US4toUS42, dependinguponwhatstateitsbuyerisin.Inthedomest US45 to US405. Further, a firm with the highest productivity matched to the best possible buyer in the most favorable macro state earns US31, US3

These seemingly small magnitude of these figures reflects several factors. First, the productivity distribution for exporting firms come from the right-hand tail of the unconditional productivity distribution. Thus those firms with productivity 1.9 standard deviations above the mean unconditional mean of φ are actually the smaller exporters. Second, since revenues per shipment are $\eta = 5$ times profits per shipment, and since an average of $\lambda_b = 15.43$ shipment occur per year, expected annual revenues from a match that survives the entire year are $\eta \cdot \lambda_b = 77.15$ times as large as profits per shipment for that match.

Turning to the fixed cost estimates, note that both are quite small (F^f =\$US 0.30, F^h =\$US 0.03). These costs thus have no affect on major exporters. Nonetheless, they affect the fraction of exporting firms by keeping fringe players that would otherwise sell tiny amounts out of foreign markets.

The profit and cost function scalars are much more important. The model assigns lower search costs to the home market ($\kappa_0^h = 859.0$ versus $\kappa_0^f = 3,079.7$) and much larger profits per sale ($\Pi^h/\Pi^f = \exp{(-3.88-6.16)} = 9.77$). Both patterns help explain the small amount of output exported to the U.S. among these firms (Table 8, regression xi). And the two sets of scalars are separately identified by their different effects on match arrival rates (Table 4, regression i) and revenues from ongoing matches (Table 8, regressions vii and viii). The benchmark model also implies that search costs fall significantly as firms acquire market visibility through successful matches ($\gamma = 0.383$). As mentioned earlier, identification of this visibility effect comes largely from the shape of the client distribution (Table 7, regression v).

So what are the costs of making new matches? For a firm with no prior successful matches in the foreign market, a search intensity sufficient to yield an average of one new match per year costs $c^f(1,0) = \$\text{US } 1,539$, but an expected yield of four new matches—about one successful match for a firm with average product appeal—costs $c^f(4,0) = \$\text{US } 24,637$. The analogous figures in the home market are $c^h(1,0) = \$\text{US } 428$ and $c^h(4,0) = \$\text{US } 6,848$. But having an established reputation is helpful. A firm that has already made 2 successful foreign matches could expect to pay only $c^f(4,2) = \$\text{US } 20,142$ for the next one—roughly 20 percent less than the cost of the first one. Similarly, a firm that has already made two

Table 9: Structural parameter estimates

		Benchmark model		Know	$n-\theta^f \text{ model}$
	Parameter	value	$std.\ error$	value	$std.\ error$
log of domestic profit scalar	$\ln \Pi^h$	-3.879	(0.1364)	-3.460	(0.0725)
log of foreign profit scalar	$\ln \Pi^f$	-6.135	(0.1993)	-6.273	(0.0759)
fixed cost, domestic	F^h	0.027	(0.0047)	0.037	(0.0064)
fixed cost, foreign	F^f	0.296	(0.0428)	0.301	(0.0359)
First θ distribution parameter	α	0.571	(0.0454)	0.581	(0.0703)
Second θ distribution parameter	β	1.894	(0.2320)	4.661	(0.2107)
demand shock jump size	Δ^y	1.882	(0.2222)	1.951	(0.1810)
shipment order arrival hazard	λ_b	15.426	(0.1991)	15.431	(0.1428)
std. deviation, log firm type	σ_{arphi}	1.386	(0.0095)	1.401	(0.0051)
network effect parameter	γ	0.383	(0.0485)	0.508	(0.0479)
log of home search cost scalar	$\ln \kappa_0^h$	11.722	(0.1486)	12.480	(0.0850)
log of foreign search cost scalar	$\ln \kappa_0^{\check f}$	13.002	(0.0095)	13.666	(0.1373)
log of fit metric	$\ln(\Lambda)$	10.	806	11	.346

successful home market matches could expect to pay $c^h(4,2) = \text{$US$} 5,598$ for the third. These reputation effects are nontrivial, and other things equal, they create a cost advantage for well-established firms.

Given match payoffs and search costs, firms' search intensity is determined by their expected success rates. Their (unobserved) actual rates are drawn from a beta distribution, which we estimate to have mean $\alpha/(\alpha+\beta)=0.23$ and standard deviation $\sqrt{\alpha\beta/\left[(\alpha+\beta)^2(\alpha+\beta+1)\right]}=0.23$. Hence, before they acquire export market experience, firms expect that roughly 1 in 4 new encounters with potential buyers will lead to business relationships. And since new exporters are uncertain about their θ^f draws, they expect to learn a good deal from the outcomes of their early matches.

Known- θ^f **parameter estimates** Recall that our known θ^f model differs from the benchmark model in that it presumes each firm j already knows the fraction of the foreign population of buyers that is willing to do business with it, θ_j^f . This assumption implies that low-appeal firms never bother to invest much in foreign market searches. Further, compared to firms that learn their θ_j^f draws through experience, fully-informed firms have less incentive to search intensively when they are new to export markets. That is, for these firms their is no information value to matches.

The last two columns of Table 9 present parameter estimates based on this version of the model. Most parameters are similar, but for the known- θ^f model the estimate of the network effect is larger ($\gamma = 0.50$ versus $\gamma = 0.38$) and the estimates of search costs are higher ($\kappa_0^h = 859$ and $\kappa_0^f = 3,079$ versus $\kappa_0^h = 1,826$ and $\kappa_0^f = 5,982$). Higher search cost scalars and larger network effects appear to help the known θ^f model explain the observed

pattern of small entry, gradual growth, and eventual dominance by high- θ entrants without relying on learning effects. However, the known- θ^f version of the model does substantially worse than the benchmark version according to Rivers and Vuong's (2002) test statistic for non-nested comparisons.³⁰

6 Analysis of results

6.1 Model fit

Appendix D juxtaposes the data-based moments, \bar{m} , with their simulated counterparts, $m(\Lambda)$, from the benchmark model. Generally, the patterns in the data are replicated by our model, though not all of the model-based equation estimates correspond closely to their data-based analogs. In particular, average exporting rates, match-specific sales dynamics, and the client distribution are well-captured by the model, as are most mean values of dependent variables. However the model fails to generate the association between success rates and firms' search intensities that we observe in the data. This relationship is relatively weak—note the large standard errors for the coefficients on $\ln(1 + \frac{a}{n})$ and $\left[\ln(1 + \frac{a}{n})\right]^2$ in column 1 of Table 6—so it doesn't receive much weight in the fit metric. A more detailed summary of the fit can be found in Appendix D.

How well does the model replicate the patterns in Section 2? Direct comparisons to these data are problematic, since the results in this section follow the literature in presuming that any transaction between a buyer and a seller constitutes a match. (Recall that our parameter estimates exploit the assumption that successful matches generate at least two shipments.)³¹ Nonetheless, we note that the Section 2 are qualitatively replicated by our model. Tables 10, 12 and 11 below provide details. Here, as in Section 2, the values of each aggregate for 2-year olds, 3-year olds, and so on are expressed as fractions of the corresponding values for 1-year olds.

³⁰The Rivers and Voung (2002) statistic takes the form $T_n = \frac{\sqrt{n}}{\hat{\sigma}_n} \left[\hat{\Lambda}^1 - \hat{\Lambda}^2 \right]$, where $\hat{\Lambda}^1$ and $\hat{\Lambda}^2$ are the MSM fit metrics for the two models, and $\hat{\sigma}_n^2$ approximates $var \left[\hat{\Lambda}^1 - \hat{\Lambda}^2 \right]$. This statistic has a standard normal distribution under the null $E(\hat{\Lambda}^1) = E(\hat{\Lambda}^2)$. Applying it to our context, and treating the weighting matrix W as non-stochastic when calculating $\hat{\sigma}_n^2$, we get $T_n = -1,583.2$. Two caveats apply. First, it is not obvious what the right sample size n is in our context, given that some of our moments are constructed using firm-year level data, some are constructed using shipment-level, and some are constructed using match level. We used a very conservative approximation to the number of firms we base our inferences on (n = 1000), but clearly, the test statistic would have been highly significant at much smaller values. Second, this test statistic does not recognize randomness in the fit statistics due to the simulation draws we use. Time and hardware limitations prevented us from using samples so large that this was negligible, though we used common seeds for both sets of results.

³¹Restrictions on data access have thus far prevented us from re-doing these tables in a fully compatible way.

Table 10: Cohort evolutions (simulated data)

Cohort age	Exporters	Total exports	Average exports
1 year	1.00	1.00	1.00
2 year	0.61	1.73	2.84
3 years	0.35	1.34	3.81
4 years	0.19	1.81	9.50
5 years	0.10	2.29	22.74
6 years	0.06	2.12	34.43
7 years	0.05	1.89	39.69
8 years	0.04	1.69	43.23
9 years	0.03	1.89	63.69
10 years	0.02	1.46	65.17

Notes: Figures for cohorts aged 2-10 are expressed relative to corresponding figures for one-year-old cohorts.

Table 11: Exporter distribution by number of buyers (simulated data)

Number of buyers	Share of exporters
1	0.77
2	0.10
3	0.05
4	0.03
5	0.02
6-10	0.03
11+	0.01

Notes: Figures give the ergodic distribution of current buyer counts across exporting firms.

Table 10 redoes Table 1 using model-simulated data. Qualitatively, the patterns in the actual and the simulated data match up in several respects. For both data sets, the largest drops in the number of exporters occur during the first two years, thereafter cohort size drops gradually. Likewise, total exports rise early in cohort's life, and decline thereafter. Finally, exports per surviving firm grow rapidly over time, reflecting both the exit of small-scale firms and client accumulation among survivors. It should be noted, however, that the "average exports" and "total exports" series based on actual data vary less dramatically with cohort age than the simulated data. Also, in the data-based figures, the drop in cohort membership is more dramatic during the first year.

Table 11 reports the simulated version of distribution of client counts across exporters in the actual versus simulated data. Overall this distribution matches Table 3 very well, though the actual data contain more exporters with two clients (and fewer with more than two clients) than the model predicts.

Finally, Table 12 reports the model-based version of Table 4. Here match death rates

Table 12: Match separation rates (simulated data)

Match age	Quartile 1	Quartile 2	Quartile 3	Quartile 4
1 year	0.60	0.88	0.89	0.63
2 years	0.27	0.29	0.31	0.27
3 years	0.30	0.32	0.33	0.30
4 years	0.31	0.28	0.20	0.32
5+ years	0.28	0.30	0.36	0.36

Notes: Figrures are percentages of the exporters in each age-initial size category that do not export during the following year.

are broken down by match age, and by the size of the match's first-year sales. Note that the relatively high failure rates among first-year matches are replicated by the model, as is the tendency for matches that begin from the largest sales quartile to fail less frequently than others. However, the high failure rates are concentrated among one-year-old matches in the simulated data, while they decline more more gradually with age in the actual data. Also, unlike the actual data, the exporters that begin in the smallest size quartile exhibit failure rates as low as those of the largest exporters.

6.2 The value of relationships

6.2.1 The value of clients

In addition to convex search costs, two forces in our model make exporting decisions forward looking. First, each successful business relationship improves an exporter's visibility and reduces its cost of finding additional potential clients. We call this the "network effect." Second, each match—successful or unsuccessful—conveys information about the scope of the market for the exporter's product. We call this the "learning effect." With Bayesian updating (equation 7), it means that early matches generate particularly valuable signals and may be worth pursuing even if they are not expected to generate significant earnings. It also means that two firms, ex ante identical, may have very different long term experiences in export markets, depending upon whether their early matches happened to yield successful business relationships.

To get some sense for the combined importance of the network effect and the learning effect, Figure 2 shows the perceived change in the firm's value with each additional meeting. These changes are exclusive of the profits generated by the new matches, so they describe the impact of each new match on continuation values solely through these two effects. We plot the continuation values for firms of three productivity types, taken from the 10th, 50th, and 90th productivity percentiles among simulated exporters.³² These values depend upon

³²Of course, low-productivity firms do not export, so these are percentiles of a truncated distribution.

Figure 2: Log continuation value of firms conditional on match history

Notes: Continuation value trajectories for firms with productivity in the 10th, 50th, and 90th percentiles of the simulated productivity distribution of exporters. Each blimp-shaped triad corresponds to a given productivity level. Within a cluster, the top line plots values for an unbroken string of successful matches, the middle line plots values for alternating successes and failures, and the bottom plots values for an unbroken string of failures.

firms' priors concerning their popularity $(\bar{\theta}^f)$, which in turn depend upon the number of meetings (n) they have already experienced at the of time each increment to a. (They do not depend upon firms' true success rates, θ^f , as these are unobservable.) We demonstrate this dependence of perceived continuation values on match histories by considering several extreme cases: an unbroken string of successful matches (n = a) and an unbroken string of failures (n = 0). To provide a benchmark, we also graph the evolution of firms' values when they experience a strictly alternating succession of successes and failures $(n \approx 2a)$.

Initial continuation values of the three productivity types of exporters vary widely. The foreign operations of the highest productivity type of firm are valued at US\$ 53,800 before its first foreign match, while the median productivity firm's foreign operations are valued at only US\$ 452 before its first match, and the foreign operations of the lowest productivity firm are initially worth only US\$ 5.

The first match has the biggest impact on continuation values, and most of the impact of additional information has dissipated by the twentieth match. For example, if its first match is a success, the highest productivity firm's value jumps to US\$ 165,000. On the other hand, failures quickly erase firm value. The continuation value of the median productivity firm with four successful matches is almost the same as the value of the high productivity firm with four failed matches, at US\$ 5,669.

In addition to continuation values, match histories affect the intensity with which firms

Figure 3: Evolution of success probability belief

Notes: Beliefs of a firm with productivity in the 90th percentile of exporters over success probability. Top line is five success followed by five failures. Bottom line is five failures followed by five successes.

search for new clients. We explore this dependence in Figure 3, which plots beliefs regarding θ^f over time for a firm in the 90th percentile of productivity. Here we assume that if a firm is searching with intensity λ , it meets its next match at exactly the mean waiting time $1/\lambda$. There are two lines on the plot, both containing five successes and five failures. The only difference is that in the top line, the successes come first, while in the bottom line the failures come first. Before any meetings, the beliefs are the same, and after all 10 meetings they are the same as well because at this point both histories contain 5 successes.

The key message of Figure 3 is that if the successes come first, it takes 10.5 years to get 10 matches. But if the failures come first, it takes more than 43 years. Thus, simply because of luck, it takes four times longer for the failure-first firm to get to 10 meetings and it searches far less intensively along the way.

6.2.2 Value dynamics when θ^f is known

The patterns we have depicted thus far reflect both the network effect and the learning effect. To gauge their relative importance, we now redo Figure 2 under the assumption that firms know their true θ^f realizations from the start. More precisely, using our estimates of the "known- θ^f " policy function (see Table 9), we simulate the continuation values of firms at the 10th, 50th, and 90th productivity percentiles. And as in Figure 2 we consider three alternative match histories: only successes, only failures, and alternating successes and failures. Also, since true success rates now affect behavior, we give all firms a success probability of $\theta^f = 0.43$. This number corresponds to the 65th percentile of success probabilities among active exporters in our simulated data. (We chose this particular value because it is close to

Figure 4: Log continuation value of firms conditional on match history, no learning

Notes: Continuation value trajectories for firms with productivity in the 10th, 50th, and 90th percentiles of the simulated productivity distribution of exporters in the learning version of the model. For each productivity type, we plot values for all successful matches, alternating success and failure, and all failures.

50%, and it is one of the discritized points on the grid we use for estimation.)

The results appear in Figure 4. Overall, continuation values move much less as firms acquire experience, implying that the new exporter dynamics in Figure 2 were mainly due to firms learning their types. Continuation values do still rise a bit when firms make successful matches because these matches make is easier to meet additional buyers (the "network effect"). However, unsuccessful matches now have no effect on these values.

We can also examine how match arrival times depend on successes and failures in the known- θ^f model. Since firms know their success probabilities in this model, the known- θ^f version of Figure 3 (not pictured) is simply two horizontal lines with height θ^f . But the lengths of these lines still depends upon match histories because of the network effect. To demonstrate this dependence, Figure 5 plots the expected time to ten meetings, when five consecutive meetings are successful and the others failures. The x-axis is the number of meetings that take place before the first success occurs. If it is one, then the first five meetings are successes, and the next five failures. If it is 6, then the first five meetings are failures, and the last five meetings successes.

To facilitate comparison, Figure 5 presents results for both the baseline model (panel a) and the known- θ^f model (panel b). All plots are for a firm in the 90th percentile of productivity among exporters, and, in the case of the known- θ^f model, the success probability is set to $\theta^f = 0.43$. As we saw in Figure 3, the time it takes a learning firm to reach ten meetings depends heavily on the placement of the successes (panel a). If the successes come

Figure 5: Time to ten meetings by placement of five consecutive successes

at the beginning of the ten meetings, it takes 12 years for this type of firm to reach ten meetings. If the failures come first, it takes 45 years. But for known- θ^f firms (panel b), time to ten meetings depends much less on the placement of successes. If the successes come first, it takes 27 years to reach ten meetings. If they come last, it takes 32 years.³³ So here again we see that learning effects and network effects both matter, but the former are more important.

6.3 Macroeconomic adjustment dynamics

If there were no sources of friction in our model, and if the effects of idiosyncratic shocks were ignorable by the law of large numbers, aggregate exports would be static functions of the aggregate shocks that affect all firms' export revenues (x^f) . We conclude our analysis by asking how much our model's predictions for aggregate export trajectories deviate from this hypothetical reference case, and why.³⁴

To do so, we simulate permanent (but unanticipated) Colombian peso exchange rate shocks to total export trajectories under two alternative scenarios: a 20% Colombian peso devaluation, and a 20% Colombian peso appreciation. To remove the effect of the unrelated

³³The reason it takes so long is that this type of firm expects that only around half of its meetings will be successes. This corresponds to the ultimate 50% success rate we are simulating, but it also means that the firms are not searching very hard. If we were to make the firm believe that it has a close to 100% success rate, it would only take a few years to reach 10 meetings.

³⁴Since we are using a single-agent model, we caution that these simulations miss interactions between exporters in the foreign market. However, they may be a reasonable approximation to the aggregate exports responses of a small country shipping to a large one, where its products constitute a small fraction of total supply.

- (a) Mean value of experience
- (b) Median value of experience

Figure 6: Value of exporter experience

random sequences of aggregate shocks, in each scenario, we simulate the model 500 times with sequences of randomly-generated aggregate shocks, and then report means across these series. The exchange rate shocks are modeled as simply increasing or decreasing the value of the random aggregate shocks by 20% after a particular date, which will be year 25 in the plots below.³⁵

6.3.1 The value of connections

In Figure 6 we plot the average and median value of firms' exporting experience during preand post-shock periods.³⁶ At each point in time, these series indicate how much a typical exporter would lose if we returned it to the state it was in before it began meeting foreign clients. Thus they represent the value of the information it has learned about its success rate θ^f , plus the value of the market visibility it has built through previous matches, plus the expected profits yet to be generated by its current portfolio of clients. These series were calculated under the presumption that firms are free to re-enter export markets after their exporting histories are wiped out, so they substantially understate the capital losses that would result from a permanent move to autarky.

As the productivity distribution is right-skewed, it is not surprising that the means are significantly higher than the medians. Before the exchange rate shock, the mean is around 1.7 million dollars, while the median is only 80,000 dollars. After the shock, the values ultimately converge to around 20 percent higher or lower than before the shock, but the change in value on impact is larger. For the positive shock, this pattern reflects the lagged entry of marginally productive firms that were induced to search for clients more intensively. For the negative shock, the pattern reflects the eventual termination of all matches at some

³⁵We additionally let the firms burn in for 25 years before the plots start.

³⁶Both the means (panel a) and the medians (panel b) are averages across 500 simulations.

marginally productive firms.

For a back-of-the-envelope calculation of the total (pre-shock) value of Colombian manufacturers' exporting experience, we multiply 1.7 million dollars by the approximately 3000 Colombian exporters we observe each year, obtaining a figure of roughly 5.1 billion dollars. This is about 18 percent of the total value of being able to export, 28.3 billion dollars.

6.3.2 Margins of adjustment

Earlier we discussed the processes through which new cohorts mature. Some members ramp up to their desired size by expanding their client portfolio, while others lose market share and/or exit by failing to replace their expiring business relationships. Figure 7 summarizes these processes for a simulated cohort that enters simultaneously with a permanent exchange shock. The panels in the left-hand column correspond to a permanent 20 percent peso devaluation and the panels in the right-hand column correspond to a 20 percent peso appreciation, each occurring in period 25.

The shaded ares in these figures break down the total value of an export aggregate—sales, matches, or exporters—into the contribution from (1) buyer-seller relationships that existed at or before the time of the shock (yellow), (2) new relationships with exporters that were already in the market at the time of shock (orange), and relationships with exporters that were not in the market at the time of the shock (blue). Each panel also includes a set of thin lines that show how the boundaries between the shaded areas would have been different if there had been no permanent shock.³⁷

Consider first Panels (a) and (b) of Figure 7, which plot the decomposition of total export sales. Focusing first on the thin lines, we note that in absence of a permanant exchange rate shock, relationships with incumbent importers are relatively short-lived: as time progresses, both new importers and new firms become more and more important. Nonetheless, incumbents retain more than 50 percent of the market after 25 years by replenishing their client portfolio. These patterns reflect high match death hazard rates, combined with persistent firm-level productivity and product appeal.

Now consider the effects of permanent exchange rate shocks on these decompositions. Because other margins of adjustment are sluggish, valuation effects account for almost all of the movement in aggregate exports during the first post-shock year. That is, the immediate effect of a 20 percent peso depreciation (Panel (a)) is to increase the peso-denominated revenue flow from existing clients by 20 percent, and the immediate effect of a 20 percent peso appreciation is to decrease these revenues 20 percent (Panel (b)). However, as time

³⁷These figures are inspired by similar graphs in Piveteau (forthcoming), but to highlight the role of learning and endogenous match separations, we use a decompostion that distinguishes matches to new exporters from others. (Piveteau (2020) distinguishes the consumer margin, the extensive margin, and an aggregative valuation effect.)

Figure 7: Response to a 20% shock to the Colombian Peso: Market level outcomes

Figure 8: Response to a 20% shock to the Colombian Peso: Composition

progresses the total effect of the exchange rate shock grows. This reflects upward (downward) adjustments in the client bases of incumbent exporters and net entry (exit) when the exchange rate permanently depreciates (appreciates).

A similar pattern can be seen in Panels (c) and (d) of Figure 7, which track the number of active matches. Here the valuation effect plays no role, so there is only a small change in the first year after the shock. Panels (e) and (f) show the mean number of firms per simulation. New firms quickly displace around 15 percent of incumbent firms, and then the displacement grows more slowly over time. This is because marginally profitable exporters enter and exit frequently, while solidly profitable exporters only exit when they are exogenously killed.

Do these adjustments reflect a proportionate scaling of all margins we study? To address this question we plot the percentage contribution of each type of export to aggregate exports in Figure 8. Note that when the exchange rate shock is favorable, all types of exports maintain their relative importance. But with an unfavorable shock, new exporters gain market share relative to incumbents. Why? With the unfavorable shock, both groups immediately terminate their marginal matches, cleansing the market of low-profitability relationships (Panel d, Figure 7).³⁸ However, inexperienced exporters are less inclined than experienced exporters to cut back on search because there is information content in each match they make, and because they have not yet established their visibility.³⁹ [JT: we still need to check this explanation.] Accordingly, compared to the benchmark (no-shock) scenario, new exporters gain market share and the importance of relationhips formed in the post-shock period grows over time (Panels b and d of figure 7). Thus our model suggests that relatively more turnover and experimentation takes place in destination markets that are difficult to penetrate.

6.3.3 Trade elasticities

Finally, we present short and long-run simulated trade elasticities in Table 13, with cross-simulation standard deviations in parentheses. Based on the point estimates alone, total sales react more to the favorable exchange rate shock. The 25 year elasticity of sales to the favorable exchange rate shock is 2.22, while the 25 year elasticity of sales to the unfavorable exchange rate shock is 1.62. The elasticities for matches are around one unit smaller than those for sales, since there is no mechanical change in matches from the exchange rate shock. These patterns reflect the relatively small downside adjustments by new exporters that we discussed in the previous section.

³⁸This pattern is consistent with the rapid, large-scale destruction of low-value importer-exporter matches during Argentina's 2001-2002 exchange rate crisis (Gopinath and Neiman, 2014).

³⁹This lack of visibility makes their search costs fall more rapidly as they scale back their search intensities–refer to equation 11.

Table 13: Simulated Trade Elasticities

	Favorable shock								
Time since shock	1 year	5 years	25 years						
Sales	1.18	1.75	2.22						
	(0.07)	(0.09)	(0.08)						
Matches	0.26	0.75	1.05						
	(0.05)	(0.05)	(0.05)						
Exporters	0.15	0.48	0.57						
	(0.03)	(0.03)	(0.03)						
	Unfa	avorable	shock						
Time since shock	1 year	5 years	25 years						
Sales	1.16	1.55	1.62						
	(0.08)	(0.08)	(0.08)						
Matches	0.25	0.76	0.92						
	(0.05)	(0.05)	(0.05)						
Exporters	0.13	0.50	0.69						
	(0.03)	(0.03)	(0.03)						

Notes: All elasticities are based on 500 simulations of favorable and unfavorable 20% Colombian peso exchange rate fluctuations. Delta-method standard errors are in parentheses.

Several features of these estimates merit comment. First, while our long run elasticity estimate for favorable shocks resembles Piveteau's (forthcoming), we find a much longer transition period. This is likely due to the frictions in our model that derive from convex search costs and learning effects. Second, for similar reasons, and because ours is a single agent model, our figures are substantially lower than the long run elasticities typically generated by calibrated general equilibrium models (e.g., Alessandria and Choi, 2014; Alessandria, et al., 2018).⁴⁰ Finally, the asymmetry between responses to favorable and unfavorable shocks is significant. This most likely reflects learning effects and convex search costs, as discussed above.⁴¹

⁴⁰Alessandria and Choi (2014) use a symmetric 2-country dynamic model with endogenous firm creation, capital accumulation, fixed exporting costs, and iceberg costs but no other trade frictions or factor adjustment costs. Analyzing movement from a global 8 percent tariff to free trade, they find the trade elasticity rises from about 5 in the short run to 8 in the long run, which is reached in 5-8 years. In a similar model, but with firms' exporting costs depending upon their incumbency, Alessandria et al. (2018) estimate a short-run trade elasticity of 4 and a long-run elasticity of 11.55. This model generates transition dynamics over a period of 10-15 years.

⁴¹An early literature noted the phenomenon of export hystersis, and attributed it sunk market entry costs (Dixit, 1989; Baldwin and Krugman, 1989). While search costs are sunk, that explanation does not explain the differences in long run elasticities our model generates. The reason is that matches are short-lived, and search costs must be continuously incurred.

7 Summary

A robust set of stylized facts regarding firm-to-firm trade dynamics has emerged from more than a decade of research on customs records. First, most exporters are inexperienced, ship small quantities, and have few foreign clients. Second, the typical buyer-seller relationship lasts only year or two, so business connections evolve rapidly, and it is common to see firms with only a few clients cease exporting entirely, giving way to the next entering cohort of inexperienced exporters. Third, however, each new cohort contains a small number of firms that survive and grow many times faster than aggregate exports. They do so not by selling increasing amounts to the same clients, but by expanding their customer base abroad.

After confirming these patterns for Colombian manufacturers shipping to the United States, we develop a continuous time model that explains them. Firms wishing to export must engage in costly search to identify potential buyers abroad. The buyers they encounter either reject their products or form finite-lived business relationships with them. Buyer who form business relationships with exporters send them favorable signals about the appeal of their products, and in doing so, encourage them to search more intensively for additional buyers. Successful business relationships also reduce search costs by improving sellers' visibility (network effects). Finally, sellers' search intensities depend upon their permanent idiosyncratic characteristics and marketwide conditions.

Fit using the method of simulated moments, the model replicates the patterns in customs records described above and allows us quantify several types of trade costs, including the search costs of identifying potential clients and the costs of maintaining business relationships with existing clients. It also allows us to estimate the network effect of previous exporting successes on the costs of meeting new clients, and to characterize the cumulative effects of learning on firms's earch intensities and intangible capital stocks. Both the learning effect and the network effect prove to be quantitatively important. Finally, our model provides a lens through which to view the seemingly unpredictable responses of export flows to exchange rate fluctuations.

References

- Aeberhardt, R., I. Buono, and H. Fadinger (2014) "Learning, incomplete contracts and export dynamics: theory and evidence from French firms." *European Economic Review* 68: 219–249
- Albornoz, Facundo, Hector Calvo Pardo, Gregory Corcos, and Emanuel Ornelas (2012) "Sequential Exporting." *Journal of International Economics* 88: 17-31.
- Alessandria, George and Horag Choi (2007) "Do Sunk Costs of Exporting Matter for Net Export Dynamics?" Quarterly Journal of Economics 122(1): 289-336.
- Alessandria, George and Horag Choi (2014) "Establishment heterogeneity, exporter dynamics, and the effects of trade liberalization." *Journal of International Economics* 94: 207-233.
- Alessandria, George, Sangeeta Pratap, and Vivian Yue (2014) "Export Dynamics in Large Devaluations." Working Paper, Federal Reserve Bank of Philadelphia.
- Alessandria, George, Horag Choi, and Kim Ruhl (2018) "Trade Adjustment Dynamics and the Welfare Gains from Trade." Working Paper, The University of Rochester.
- Andrews, Isiah, Matthew Gentzkow, and Jesse Shapiro (2017) "Measuring the Sensitivity of Estimated Parameters to Estimation Moments." Quarterly Journal of Economics 132(4): 1151-1199.
- Araujo, Luis, Emanuel Ornelas and Giordano Mion (2016) "Institutions and Export Dynamics." *Journal of International Economics* 98: 2-20.
- Arkolakis, Konstantinos (2010) "Market Access Costs and the New Consumers Margin in International Trade." *Journal of Political Economy* 118(6): 1151-1199.
- Arkolakis, Konstantinos (2015) "A Unified Theory of Firm Selection and Growth." Quarterly Journal of Economics 131(1): 89-155.
- Arkolakis, Konstantinos, Theodore Papageorgiou and Olga Timoshenko (2018) "Firm Learning and Growth." Review of Economic Dynamics 27: 146-168.
- Atkeson, Andrew and Ariel Burstein (2010) "Innovation, Firm Dynamics, and International Trade." *Journal of Political Economy* 118(3): 433-484.
- Baldwin, Richard and Paul Krugman (1989) "Trade Effects if Karge Exchange Rate Shocks." Quarterly Journal of Economics 104(4): 635-654.

- Berman, N., V. Rebeyrol, and V. Vicard (2019) "Demand Learning and Firm dynamics: Evidence from Exporters." *Review of Economics and Statistics* 101(1): 91-106.
- Bernard, Andrew, J. Bradford Jensen, J. Stephen J. Reading, and Peter K. Schott (2007) "Firms in International Trade." *Journal of Economic Perspectives* 21(3): 105-130.
- Bernard, Andrew, J. Bradford Jensen, and Peter K. Schott (2009) "Importers, Exporters, and Multinationals: A Portrait of Firms in the U.S. that Trade Goods," in Timothy Dunne, J. Bradford Jensen and Mark J. Roberts eds. *Producer Dynamics*, University of Chicago Press.
- Bernard, Andrew, Esther Ann Boler, Renzo Massari, Jose-Daniel Reyes, and Daria Taglioni (2017) "Exporter Dynamics and Partial-Year Effects." *American Economic Review* 107(10): 3211-3228.
- Bernard, Andrew, Andreas Moxnes and Karen Helene Ulltveit-Moe (2018) "Two-Sided Heterogeneity and Trade." *Review of Economics and Statistics* 100(3): 424-439.
- Bernard, Andrew and Andreas Moxnes (2018) "Networks and Trade." Annual Review of Economics 10(65): 65-85.
- Besedes, Tibor (2008) "A Search Cost Perspective on the Formation and Duration of Trade." Review of International Economics 16(5): 835-849.
- Burstein, Ariel and Marc Melitz (2013) "Trade Liberalization and Firm Dynamics," in *Advances in Economics and Econometrics Tenth World Congress*. Applied Economics, Econometric Society Monographs. Vol. 2. Cambridge, UK: Cambridge University Press.
- Blum, Bernardo S., Sebastian Claro, and Ignatius Horstmann (2010) "Facts and Figures on Intermediated Trade." *American Economic Review, Papers and Proceedings* 100(2): 419-423.
- Blum, Bernardo S., Sebastian Claro, and Ignatius Horstmann (2013) "Occasional and Perennial Exports." *Journal of International Economics* 90(1): 65-74.
- Brooks, Eileen (2006) "Why don't firms export more? Product Quality and Colombian Plants." Journal of Development Economics 80: 160-178.
- Chaney, Thomas (2014) "The Network Structure of International Trade." American Economic Review 104(11): 3600–3634.

- Dixit, Avinish (1989) "Hysteresis, Import Penetration, and Exchange Rate Pass-Through." Quarterly Journal of Economics 104: 205-228.
- Domínguez, Juan Camilo, Jonathan Eaton, Marcela Eslava, and James Tybout. (2013) "Search and Learning in Export Markets: Case Studies for Colombia." Pennsylvania State University, Working Paper.
- Drozd, Lukasz A. and Jaromir B. Nosal (2012) "Understanding International Prices: Customers as Capital." *American Economic Review* 102(1): 364-395.
- Eaton, Jonathan, Marcela Eslava, Maurice Kugler and James Tybout (2008) "Export Dynamics in Colombia: Firm-Level Evidence," in Elhanan Helpman, Dalia Marin and Thierry Verdier, eds., *The Organization of Firms in a Global Economy*, Cambridge, MA: Harvard U. Press.
- Eaton, Jonathan, Marcela Eslava, David Jinkins, C.J. Krizan, and James Tybout (2014). "A Search and Learning Model of Export Dynamics." Working paper, Pennsylvania State U.
- Eaton, Jonathan, David Jinkins, James Tybout, and Daniel Xu (2016) "Two-sided Search in International Markets." Working paper, Pennsylvania State U.
- Fitzgerald, Doireann, Stefanie Hallerz, and Yaniv Yedid-Levi (2019) "How Exporters Grow." Working Paper, Federal Reserve Bank of Minneapolis.
- Gopinath, Gita and Brent Neiman (2014) "Trade Adjustment and Productivity in Large Crises." American Economic Review 104(3): 793-831.
- Gouriéroux and Monfort (1996) Simulation-Based Econometric Methods. New York: Oxford U. Press.
- Impullitti, Giammario, Alfonso Irarrazabal, and Luca Opromolla (2013) "A Theory of Entry into and Exit From Export Markets." *Journal of International Economics* 90: 75-90.
- Jovanovic, Boyan (1982) "Selection and the Evolution of Industry." *Econometrica* 50: 649-670.
- Li, Shengyu (2018) "A structural model of productivity, uncertain demand, and export dynamics." *Journal of International Economics* 115: 1-15.
- Macchiavello, Rocco, and Ameet Morjaria (2015) "The Value of Relationships: Evidence from a Supply Shock to Kenyan Rose Exports." *American Economic Review* 105(9): 2911-2945

- Melitz, Marc (2003) "The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity." *Econometrica* 71: 1695-1725.
- Monarch, Ryan and Tim Schmidt-Eisenlohr (2018) "Longevity and the Value of Trade Relationships." Working Paper, Federal Reserve Board.
- Nguyen, Daniel (2012) "Demand Uncertainty, Exporting Delays and Exporting Failures." Journal of International Economics 86: 336-344.
- Piveteau, Paul (forthcoming) "An Empirical Dynamic Model of Trade with Consumer Accumulation." American Economic Journal: Macroeconomics.
- Rauch, James and Joel Watson (2003) "Starting Small in an Unfamiliar Environment." International Journal of Industrial Organization 21: 1021-1042.
- Rivers, Douglas and Quang Vuong (2002) "Model Selection for Nonlinear Dynamic Models." Econometrics Journal 5: 1-19.
- Ruhl, Kim (2008) "The International Elasticity Puzzle." Working Paper, The University of Wisconsin.
- Ruhl, Kim and Jonathan Willis (2017) "New Exporter Dynamics." *International Economic Review* 58(3): 703-725.
- Shimer, Robert (2005) "The Cyclical Behavior of Equilibrium Unemployment and Vacancies." The American Economic Review 95(1): 25-49.
- Sugita, Yoichi, Kensuke Teshima, and Enrique Seira (2019) "Assortative Matching of Exporters and Importers." Working paper, Hitotsubashi University.
- Timoshenko, O. A. (2015) "Learning versus sunk costs explanations of export persistence." European Economic Review 79: 113–128

A data tables

total	2,232	2,058	2,073	1,945	1,867	1,877	1,930	2,110	2,583	2,609	2,824	3,346	3,745	4,130	4,175	3,984	3,565	3,300
2009																		1,378
2008																	1,455	386
2007																1,681	447	248
2006															1,896	548	331	230
2002														1,902	564	365	230	157
2004													1,768	661	410	305	198	175
2003												1,719	616	398	308	240	184	145
2002											1,373	440	327	235	168	156	130	26
2001										1,251	399	301	223	196	157	132	117	88
2000									1,372	389	242	185	164	145	131	101	90	72
1999								1,026	344	229	171	140	132	115	110	91	74	09
1998							893	262	170	145	112	98	80	69	65	48	45	39
1997						877	256	187	136	109	88	22	92	22	71	52	20	40
1996					899	248	153	117	103	82	89	62	63	54	44	42	38	28
1995				953	255	170	132	114	91	79	72	62	53	39	39	31	24	24
1994			1,160	339	178	133	124	87	79	65	62	28	41	47	44	39	30	28
1993		1,235	330	213	163	128	104	82	82	20	64	51	52	52	46	37	29	25
1992	2,232	823	583	440	372	321	268	232	203	187	173	165	150	140	122	113	93	80
year	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009

Table 14: Number of Exporting Firms, by Entry Cohort

total	469	435	510	549	484	581	290	739	662	229	538	702	855	855	838	689	591	485
2009																		64
2008																	22	36
2007																62	53	37
2006															78	29	42	39
2005														84	112	99	54	25
2004													90	75	52	33	37	41
2003												28	107	81	51	35	31	22
2002											40	20	09	58	32	22	20	14
2001										111	83	107	106	80	42	64	34	16
2000									109	101	65	71	28	28	61	28	26	16
1999								81	158	80	45	37	42	43	38	30	33	23
1998							63	74	53	36	23	22	23	23	17	19	17	10
1997						119	131	197	102	57	28	24	21	18	43	58	37	24
1996					09	48	45	39	51	28	27	42	57	52	64	29	33	13
1995				58	40	41	36	41	37	41	34	31	19	17	14	11	∞	9
1994			92	102	62	43	42	49	52	51	47	51	53	75	52	18	6	7
1993		83	83	75	29	84	49	51	53	22	23	42	43	22	31	7	9	22
1992	469	352	336	313	256	247	225	207	180	150	124	147	156	150	117	103	92	89
year	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009

Table 15: Value of Exports, by Entry Cohort (millions of \$US)

pooled	210	211	246	282	259	310	306	350	309	260	191	210	228	207	201	173	166	147
2009																		47
2008																	39	93
2007																37	120	151
2006															41	123	125	169
2002														44	198	181	236	162
2004													51	113	126	108	186	235
2003												46	174	204	165	145	166	152
2002											29	114	183	248	188	140	153	143
2001										88	207	355	476	408	505	481	287	176
2000									80	259	268	385	478	535	464	278	289	221
1999								79	460	350	260	260	318	375	341	327	443	389
1998							71	281	313	251	207	257	291	326	256	391	379	255
1997						136	510	1,054	750	521	318	315	281	231	605	1,048	747	209
1996					29	192	297	336	496	329	399	229	006	296	1,448	1,606	860	478
1995				61	158	241	569	361	407	519	473	493	358	444	356	357	341	566
1994			79	300	346	321	339	561	269	783	757	870	1,281	1,593	1,177	466	283	262
1993		29	251	353	411	652	468	601	623	316	353	827	828	413	675	175	208	864
1992	210	428	249	712	289	771	839	893	885	801	716	891	1,039	1,071	958	915	1,023	855
year	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009

Table 16: Exports per Firm, by Entry Cohort (thousands of \$US)

Year	Colombian Sellers	U.S. Importers	Pairs
		1	
1992	2,232	1,190	3,087
1993	2,058	1,183	2,824
1994	2,073	1,212	2,810
1995	1,945	1,173	2,588
1996	1,867	1,191	2,490
1997	1,877	1,208	2,480
1998	1,930	1,191	2,495
1999	2,110	1,386	2,793
2000	2,583	1,661	3,411
2001	2,609	1,698	3,483
2002	2,824	1,826	3,733
2003	3,346	2,110	4,483
2004	3,745	2,296	5,071
2005	4,130	2,457	5,552
2006	4,175	2,471	5,607
2007	3,984	2,343	5,307
2008	3,565	2,221	4,751
2009	3,300	2,079	4,467

Table 17: Exporters and importers by year

B Data checks

To investigate the quality of the exporter id (manuf_id) in the U.S. import records, we ran a series of robustness checks. The Colombian and U.S. data overlap for the years 2000-2008 and both contain measures of the value of exports as well as the number of exporting firms. If the manuf_id variable is error-prone and noisy, we would expect the U.S. data to overreport the number of Colombian firms exporting to the U.S. That is, each time a customs broker wrongly enters the data in the field, a new firm would be created. Table 18 below summarizes the total value of exports to the U.S. and the number of Colombian firms, by year, for each data set.

The datasets align much more closely on value than they do on firm counts. The difference in value is never more than 10% while the firm count difference ranges from 18% to 74%. The differences are stable over time.

To look more closely at the cause of the difference in firm counts, we compared the number of firms across sources by HS2 categories. The counts in the LFTTD were higher than the Colombian data in only 28 of the 82 codes and by far the biggest differences are in HS codes 61 and 62: textiles. In these two product classes the U.S. data identifies 4025 more firms than the Colombian data. If we remove these two sectors from the list, the difference in firm counts flips and the Colombian data contain 1001 more firms than the LFTTD.

Interestingly, Title 19 of U.S. code specifically requires that the manufid variable for textile products represent the manufacturer of the textile products, not an intermediary. That is, for this sector in particular the manufacturer, not an intermediary must be reported on the CBP 7501 form. By contrast, prior work by several authors of this paper has shown (Marcela's 8/9/13 e-mail referenced this) that the Colombian data reports the exporter, which may or may not be the manufacturer. Given that revious research (Tybout, 2000 JEL) has shown that developing countries tend to have a disproportionately large share of

	Cole	ombia	United S	States	% differen		
Year	# exporters	value	# exporters	value	# exporters	value	
2000	1775	1038	2721	1140	53%	10%	
2001	2026	995	2744	1019	35%	2%	
2002	2230	870	2986	855	34%	-2%	
2003	2800	1113	3579	1119	28%	1%	
2004	3035	1379	4002	1415	32%	3%	
2005	2861	1554	4288	1438	50%	-7%	
2006	2689	1665	4361	1552	62%	-7%	
2007	2420	1540	4175	1496	73%	-3%	
2008	2161	1570	3758	1474	74%	-6%	

Table 18: Colombian versus U.S. Customs Records

small manufacturing firms, it is reasonable to assume that a large part of the reason why the U.S. data report so many more firms in the textile sector is that due to administrative reasons the U.S. data count many small manufacturers and the Colombian data are, in many cases, reporting aggregators and intermediaries.

As a final check of the integrity of the manuf_id variable - and the robustness of our main results - we experimented with a "fuzzy" version of the manuf_id variable that did not contain any street numbers in the string (a likely source of input errors). The effect of this is to reduce the number of Colombian firms in the data, an approximation of fixing any extraneous noise from data entry errors. Next we re-ran Table 4 with the fuzzy data and compared the results to the original version.

One of the key findings from Table 4 is the high match separation rates ranging from about 40% to 66%. Using the fuzzy version did not reduce the separation rates substantially and left the patterns intact. The fuzzy separation rates ranged from 26% to 62%, a drop of 6% on average. It does not appear that our results are sensitive to a modest reduction in data entry errors.

C Identification

Table 19: Sensitivity matrix

	$\ln \Pi^h$	F^h	F^f	$\ln \Pi^f$	α	β	Δ_y	λ_b	γ	$\ln \kappa_0^h$	$\ln \kappa_0^f$	σ_{φ}
avg. mat death	-0.112	0.007	0.011	-0.111	-0.019	0.127	0.006	0.068	-0.045	-0.097	-0.119	0.000
new to mkt	-0.841	-0.034	0.420	-0.656	-0.283	0.772	1.199	-0.325	-0.482	0.329	0.131	0.040
current sales	-2.164	0.294	2.080	2.905	0.003	0.454	11.016	4.386	-2.072	-12.437	-3.520	-0.326
exporter age	1.027	0.092	-0.745	1.029	0.411	-1.124	-1.216	1.074	0.586	-0.966	-0.726	-0.089
match age	-0.876	0.117	-0.216	-0.557	0.068	0.868	-0.389	1.422	-0.136	-2.108	-1.579	-0.045
avg. match sales	0.190	-0.012	-0.042	0.075	0.040	-0.045	-0.228	-0.176	0.072	0.256	0.214	0.011
1st yr dummy	1.616	-0.096	0.462	5.391	0.419	-4.141	6.635	1.058	0.501	-2.377	2.464	-0.175
match sales, t-1	-0.683	0.058	-0.097	-1.127	-0.183	1.293	0.170	0.742	-0.469	-0.082	-1.077	0.012
exporter age	0.428	-0.047	0.196	1.050	0.169	-1.178	-0.081	-0.493	0.410	-0.419	0.891	-0.018
MSE, match AR1	-0.349	0.015	-0.132	-0.122	-0.043	0.105	0.091	-0.045	-0.017	-0.019	-0.204	-0.003
degree dist. slope	0.033	-0.002	0.001	0.136	0.071	0.757	-0.020	-0.502	-0.038	0.237	-0.142	-0.016
degree dist. curv.	0.509	-0.016	0.059	0.830	0.287	1.327	0.246	-0.858	0.006	0.377	-0.403	-0.068
avg. ln #shipments	0.206	-0.020	0.237	0.177	0.046	-0.063	-0.803	10.713	-0.144	0.359	-0.001	-0.021
export/dom coef.	-0.442	0.021	0.069	0.714	0.009	-0.302	1.730	0.672	-0.067	-1.311	-0.135	-0.045
dom. sales AR1	2.835	0.051	-4.213	-2.908	-0.602	3.213	1.311	-1.069	-1.155	14.694	-0.998	0.174
avg. match hazard	-0.002	0.007	0.205	0.005	-0.006	0.037	0.055	-0.083	-0.223	-0.418	0.013	0.105
ln(1+a)	-0.040	0.002	0.004	-0.071	-0.003	0.093	-0.044	0.003	-0.016	-0.033	-0.037	0.002
$ln(1+a)^2$	-0.066	-0.003	0.212	0.770	0.035	-0.790	0.746	0.402	0.081	-0.890	0.169	-0.039
$\ln(1 + \frac{1}{n})$	0.018	-0.001	-0.003	0.029	0.000	-0.036	0.024	-0.002	0.004	0.025	0.016	-0.001
$\ln(1+\frac{1}{n})^2$	-0.027	0.001	0.008	-0.027	-0.001	0.037	-0.013	0.011	-0.007	-0.043	-0.020	0.000
$\ln(1+\frac{1}{n})\cdot\ln(1+a)$	0.089	-0.003	-0.035	0.041	0.006	-0.063	-0.003	-0.065	0.020	0.164	0.057	0.001
avg. succ. rate, $\frac{a}{n}$	-0.181	-0.035	-0.547	-2.688	1.697	-0.361	1.759	-2.682	-0.563	1.323	0.037	0.095
coef., ln n	-1.121	0.020	2.076	-3.493	-0.655	-2.049	-7.981	-0.494	0.032	-0.423	-2.017	0.023
$var(\frac{a}{n} n)$	14.085	-0.180	5.673	33.822	8.725	-29.932	-12.829	-3.497	-5.688	-1.592	15.193	-1.119
coef., ln n	11.610	-0.994	9.961	17.641	-2.014	-42.636	19.778	9.299	7.756	-4.401	9.615	-0.933
$\frac{foreign\ sales}{total\ sales}$	-9.785	-0.068	1.997	1.591	0.443	-2.183	-1.189	2.443	1.057	-10.317	1.247	-0.052
$\frac{\#exporters}{\#firms}$	-3.256	0.110	-3.178	-2.103	-1.139	0.187	3.049	2.308	-0.959	9.688	-2.247	0.034

Table 20: Sensitivity matrix, elasticity form

	$\ln \Pi^h$	F^h	F^f	$\ln \Pi^f$	α	β	Δ_y	λ_b	γ	$\ln \kappa_0^h$	$\ln \kappa_0^f$	σ_{φ}
avg. mat death	0.008	0.064	0.010	0.005	-0.009	0.018	0.001	0.001	-0.031	-0.002	-0.002	0.000
new to mkt	-0.029	0.167	-0.189	-0.014	0.066	-0.054	-0.085	0.003	0.168	-0.004	-0.001	-0.004
current sales	-0.019	-0.360	-0.234	0.016	0.000	-0.008	-0.195	-0.009	0.180	0.035	0.009	0.008
exporter age	0.020	-0.259	0.193	0.013	-0.055	0.046	0.050	-0.005	-0.118	0.006	0.004	0.005
match age	0.005	0.086	-0.015	0.002	0.002	0.009	-0.004	0.002	-0.007	-0.004	-0.002	-0.001
avg. match sales	-0.536	-4.896	-1.569	-0.134	0.762	-0.259	-1.329	-0.125	2.067	0.239	0.181	0.084
1st yr dummy	-0.353	-2.996	1.325	-0.745	0.622	-1.855	2.991	0.058	1.111	-0.172	0.161	-0.107
match sales, t-1	0.107	1.303	-0.200	0.112	-0.194	0.414	0.055	0.029	-0.745	-0.004	-0.050	0.005
exporter age	-0.007	-0.105	0.040	-0.010	0.018	-0.038	-0.003	-0.002	0.065	-0.002	0.004	-0.001
MSE, match AR1	0.065	0.392	-0.325	0.014	-0.054	0.040	0.035	-0.002	-0.033	-0.001	-0.011	-0.002
degree dist. slope	0.010	0.091	-0.004	0.027	-0.150	-0.479	0.013	0.039	0.120	-0.024	0.013	0.014
degree dist. curv.	0.020	0.094	-0.031	0.021	-0.078	-0.109	-0.020	0.009	-0.003	-0.005	0.005	0.008
avg. ln #shipments	-0.079	-1.086	1.195	-0.043	0.120	-0.050	-0.636	1.034	-0.560	0.046	0.000	-0.023
export/dom coef.	0.079	0.546	0.163	-0.081	0.011	-0.111	0.639	0.030	-0.122	-0.078	-0.007	-0.023
dom. sales AR1	-0.705	1.813	-13.736	0.457	-1.018	1.636	0.672	-0.067	-2.912	1.209	-0.074	0.121
avg. match hazard	0.000	-0.245	-0.663	0.001	0.010	-0.019	-0.028	0.005	0.558	0.034	-0.001	-0.073
$\ln(1+a)$	-0.004	-0.025	-0.005	-0.004	0.002	-0.018	0.009	0.000	0.015	0.001	0.001	-0.001
$\ln(1+a)^2$	0.000	-0.003	0.017	-0.003	0.001	-0.010	0.010	0.001	0.005	-0.002	0.000	-0.001
$\ln(1+\frac{1}{n})$	-0.018	-0.107	-0.037	-0.018	-0.002	-0.072	0.048	0.000	0.035	0.008	0.005	-0.002
$\ln(1+\frac{1}{n})^2$	-0.039	-0.216	-0.149	-0.024	0.009	-0.108	0.039	-0.004	0.097	0.020	0.009	-0.002
$\ln(1+\frac{1}{n})\cdot\ln(1+a)$	-0.013	-0.069	-0.067	-0.004	0.006	-0.019	-0.001	-0.002	0.030	0.008	0.002	0.000
avg. $\frac{a}{n}$	0.022	-0.603	-0.870	0.206	1.399	-0.090	0.440	-0.082	-0.693	0.053	0.001	0.032
coef., ln n	-0.003	-0.006	-0.061	-0.005	0.010	0.009	0.037	0.000	-0.001	0.000	0.001	0.000
$var(\frac{a}{n} n)$	-0.238	-0.435	1.257	-0.361	1.001	-1.035	-0.447	-0.015	-0.974	-0.009	0.077	-0.053
$coef., \ln n$	0.100	1.217	-1.121	0.096	0.117	0.749	-0.350	-0.020	-0.675	0.012	-0.025	0.022
$\begin{array}{c} \textit{foreign sales} \\ \textit{total sales} \\ \textit{\#exporters} \end{array}$	0.157	-0.155	0.419	-0.016	0.048	-0.072	-0.039	0.010	0.172	-0.055	0.006	-0.002
#exporters #firms	0.118	0.572	-1.517	0.048	-0.282	0.014	0.229	0.021	-0.354	0.117	-0.024	0.003

D Model Fit

Each table in this appendix reports model-based based moments below their data-based counterparts, which are repeated from Tables 6, 7 and 8. Standard errors for the data-based estimates appear in parentheses below each pair of figures; these too are repeated from Tables 6, 7 and 8.

Looking first at table 21, column 1, we see the model understates monthly log match hazards. The quadratic relationship between match hazards and cumulative successes in the data is also present in the model-based simulations, albeit somewhat dampened. And the relation between success rates and match hazards changes curvature. Column 2 shows that the model under-predicts match death rates a bit, though it picks up their negative relationship to match sales and age. (The first year effect seems to be entirely absorbed by this age variable.) As for success rates, the model comes reasonably close to the data. It misses the positive association between this variable and number of matches, but does replicate the reduction in success rate dispersion as the cumulative number of matches grows.

Turning to table 22, we see that model gets the nearly-Pareto distribution of client counts across firms, as the coefficient on $\ln(\ell)^2$ is negative but close to zero, just as in the data. However, the slope of regression v is less negative in the simulated data than in the actual data, implying that the model predicts relative more exporters have high-client counts. As for equation (vi), the estimated model generates more shipments per month among active matches than we find in the data.

Finally, table 23 shows that the model does a good job of explaining match-level sales dynamics (equation vii), including the dependence of sales on exporters' market tenure, Δ . It also gets the persistence in home market sales almost exactly right (equation viii). It is less successful at explaining the weak correlation between domestic and foreign sales, perhaps because the dependent variable is exports destined for the U.S. alone, and exports to other destinations—which are not in our model—are not really independently determined.

Table 21: Match hazards, success rates, and endurance: Model vs. Data

	(<i>i</i>)	(ii)	(iii)	(iv)
	$\ln(\lambda_{ij})$	$D_{ijt}^{exit\ match}$	$rac{a_{ij}}{n_{ij}}$	$u_{a_{ij}/n_{ij}}^2$
	-0.719	0.395	0.413	0.091
mean, dep. variable	1.527	0.267	0.470	0.066
	(0.621 E-2)	(0.319 E-2)	(0.153 E-2)	(0.265 E-3)
		· · · · · · · · · · · · · · · · · · ·	0.093	-0.060
$\ln(1+a_{ij})$	_	_	-0.009	-0.033
•			(0.003)	(0.000)
	-0.818			
$\ln(1+a_{ij})$	-0.371	_	_	_
•	(0.113)			
	0.312			
$[\ln(1+a_{ij})]^2$	0.024	_	_	_
	(0.017)			
	-1.132			
$\ln(1+\frac{a_{ij}}{n_{ij}})$	3.774	_	_	_
· · · · · ·	(0.296)			
r 12	2.451			
$\left[\ln(1+\frac{a_{ij}}{n_{ij}})\right]^2$	-5.555	_	_	_
[(0.396)			
	-0.708			
$\ln(1+a_{ij})\cdot\ln(1+\frac{a_{ij}}{n_{ij}})$	0.564	_	_	_
1,5	(0.134)			
		0.034		
$D_{ijt}^{new\ to\ mkt}$	_	-0.133	_	_
v		(0.012)		
P		-0.032		
$\ln X_{ijt}^f$	_	-0.033	_	_
V		(0.002)		
		-0.054		
$\ln A_{ijt}$	_	-0.077	_	_
		(0.009)		
		-0.028		
$\ln \Delta_{jt}$	_	0.020	_	_
		(0.007)		

Notes: Unit of observation, columns i, iii and iv: seller j's i^{th} match. Unit of observation, column ii: seller j's i^{th} match in its t^{th} year. $\lambda_{ij} = \text{inverse}$ of time interval between commencement of match i and commencement of the next one for exporter j $D_{ijt}^{exitmatch} = 1$ if exporter j's i^{th} match dies in year t. $a_{ij} = \text{cumulative number of successes for exporter } j$ at time of match i. $D_{ijt}^{newtomkt} = 1$ if exporter j's i^{th} match is in its first year. $\ln A_{ijt} = \log$ age of exporter j's i^{th} match. $\ln \Delta_{jt} = \log$ age of exporter j in year t. $X_{ijt}^f = \text{foreign sales}$ volume generated by exporter j's i^{th} match.

Table 22: Client distribution and shipment frequency, model vs. data

	(v)	(vi)
	$\ln(1-\Phi(\ell))$	$\ln(\lambda_b)$
		0.971
mean, dep. variable	_	1.489
		()
	-1.881	
$\ln(\ell)$	-1.199	-
	(0.112)	
	-0.056	
$(\ln \ell)^2$	-0.115	-
	(0.021)	
sample restrictions	$\ell > 0$	$\lambda_b > 0$
observations	43	87,000

Notes: ℓ : number of active clients; $\Phi()=$ cumulative distribution of exporters in terms of ℓ ; $s_{ijt}=$ number of shipments per year to client i by exporter j in year t

Table 23: Home and foreign sales regressions

	(vii)	(viii)	(ix)	(x)	(xi)
	$\ln X_{ijt}^f$	$\ln X_{jt}^h$	$\ln X_{jt}^f$	D_{jt}^f	$\frac{X_{jt}^f}{X_{jt}^h + X_{jt}^f}$
	10.665			0.102	0.127
mean, dep. variable	10.957	-	-	0.141	0.062
	(0.002)			(0.003)	(0.002)
	0.328				
R_{ijt-1}	0.607	-	-		
	(0.018)				
	0.826				
$ \ln X_{ijt-1}^f $	0.848	-	-		
v	(0.004)				
		0.976			
$\ln X_{jt-1}^h$	-	0.964	-		
v		(0.001)			
			0.323		
$\ln X_{jt}^h$	-	-	0.811		
v			(0.012)		
	0.063				
$\ln \Delta_{jt}$	0.060	-	-		
	(0.014)				
aamanla maatnisti	$X_{ijt}^f > 0$ $X_{ijt-1}^f > 0$	$X_{jt}^h > 0$ $X_{jt-1}^h > 0$	$X_{jt}^f > 0$ $X_{jt}^h > 0$	vh > 0	$\mathbf{v}^f \mathbf{v}^h > 0$
sample restrictions	$X_{iit-1}^{f} > 0$	$X_{it-1}^{h'} > 0$	$X_{it}^{h} > 0$	$\Lambda_{jt} > 0$	$X_{jt}^f, X_{jt}^h > 0$
observatiaons	25,400	99,300	11,600	119,800	12,500

Notes: $R_{ijt} = 1$ if exporter j's i^{th} match is in its first year. $\ln \Delta jt = \log$ age of exporter j. $X_{ijt}^f = \text{foreign sales volume generated by exporter } j's$ i^{th} match. $X_{jt}^f = \text{total foreign sales}$ volume generated by firm j. $X_{jt}^h = \text{total home sales volume generated by firm } j$. $D_{jt}^f = 1$ if firm j is an exporter.