LTL and Past LTL on Finite Traces for Planning and Declarative Process Mining

Francesco Fuggitti

Master of Science in Engineering in Computer Science Sapienza, University of Rome

Advisor: Prof. Giuseppe De Giacomo

A.Y. 2017/2018

Outline

- 1 Introduction
- Objectives
- 3 LTL_f 2DFA

Introduction

- Classic Reinforcement Learning:
 - An agent interacts with an environment by taking actions so to maximize rewards;
 - No knowledge about the transition model, but assume Markov property (history does not matter): Markov Decision Process (MDP)
 - Solution: (Markovian) policy $\rho: S \to A$
- RL for Non-Markovian Decision Process (NMRDP):
 - Rewards depend from history, not just the last transition;
 - Specify proper behaviours by using temporal logic formulas;
 - ∘ Solution: (Non-Markovian) policy $\rho: S^* \to A$
 - Reduce the problem to MDP (with extended state space)
- In (Brafman et al. 2018) specify reward using:
 - Linear-time Temporal Logic on Finite Traces LTL_f
 - Linear-time Dynamic Logic on Finite Traces LDL_f

Objectives

- Provide an efficient technique to transform $LTL_f/PLTL$ formulas into DFAs
- Provide an approach to FOND Planning for LTL_f/PLTL goals:
 - reduce the problem standard FOND planning
 - working with FOND domains instead of automata
- Provide a generalization of the Janus approach to declarative process mining:
 - o generalization of the constraint formula

PLTL and LTL $_f$ (De Giacomo and Vardi, 2013)

- Linear Temporal Logic on finite traces: LTL_f
 - $\circ~$ exactly the same syntax of ${\tt LTL}$
 - interpreted over finite traces
 - next: Ohappy

until: reply U acknowledge

eventually: ◊rich

- always: □safe
- Past Linear Temporal Logic: PLTL
 - \circ same syntax of LTL_f, but looks into the past
 - yesterday: ⊖*happy*

- since: reply S acknowledge

- once: *♦rich*

- hystorically: ⊟*safe*

- Reasoning in LTL_f/PLTL:
 - \circ transform formulas φ into DFAs \mathcal{A}_{φ}
 - for every trace π an LTL_f/PLTL formula φ :

$$\pi \models \varphi \iff \pi \in \mathcal{L}(\mathcal{A}_{\varphi})$$