QCM Intelligence Artificielle

Voici un exemple d'examen QCM avec exercice basé sur le cours d'Intelligence Artificielle 2024 que tu m'as fourni. L'examen est structuré en deux parties :

EXAMEN D'INTELLIGENCE ARTIFICIELLE — BAC+2

Durée: 2h — Total: 20 points

PARTIE I — QCM (10 points)

Cochez la (ou les) bonne(s) réponse(s). Certaines questions peuvent avoir plusieurs bonnes réponses.

1. Qu'est-ce que l'intelligence artificielle ? (1 pt)
☐ Une technique de tri de données
□ Une technologie permettant de simuler l'intelligence humaine
☐ Un langage de programmation
□ Une méthode de calcul numérique
2. Le Machine Learning est : (1 pt)
□ Une branche de la statistique
□ Une technique pour que l'ordinateur apprenne à partir de données
□ Une méthode d'apprentissage supervisé uniquement
□ Un domaine indépendant de l'intelligence artificielle
3. Parmi les problèmes suivants, lequel est un problème d'optimisation combinatoire ? (1 pt)
□ Classification des emails
□ Problème du voyageur de commerce (TSP)
□ Prédiction du trafic routier
□ Détection faciale
4. Quelle est la particularité de la méthode du recuit simulé ? (1 pt)
□ Elle ne permet pas de sortir d'un minimum local

□ Elle accepte parfois des solutions moins bonnes pour explorer davantage
□ Elle se base sur une métaphore biologique
☐ Elle est utilisée uniquement pour les problèmes continus
5. Dans un algorithme génétique, l'opérateur de mutation a pour rôle : (1 pt) ☐ De conserver les meilleurs individus
☐ D'introduire de la diversité dans la population
☐ De croiser deux chromosomes
☐ De supprimer les chromosomes inutiles
6. Qu'est-ce qu'un chromosome dans un algorithme génétique ? (1 pt) ☐ Une fonction de coût ☐ Une solution codée du problème
·
□ Une boucle d'optimisation □ Un individu non sélectionné
7. Le Deep Learning se distingue du Machine Learning par : (1 pt) Sa capacité à travailler sur peu de données L'usage de réseaux de neurones profonds Son incapacité à apprendre Son application à des problèmes simples
8. L'algorithme de descente de gradient : (1 pt)
□ Trouve toujours le maximum
□ Converge vers un minimum en suivant le gradient
□ Est basé sur la dérivée de la fonction coût
□ Ne peut pas être utilisé pour l'apprentissage automatique
 9. Dans le recuit simulé, le critère de Metropolis permet : (1 pt) □ De sélectionner les meilleures solutions seulement □ D'évaluer la distance entre deux villes □ D'accepter ou non une solution selon une probabilité dépendante de la température □ D'ordonner les solutions par ordre alphabétique
10. Quelle est l'utilité de la température dans le recuit simulé ? (1 pt)
☐ Elle augmente l'énergie du système
☐ Elle détermine si une mauvaise solution peut être acceptée
☐ Elle est constante pendant tout l'algorithme
☐ Elle diminue progressivement pour stabiliser la solution

PARTIE II — EXERCICE DE PROGRAMMATION (10 points)

Sujet : Implémentation du recuit simulé pour un petit problème TSP

On souhaite résoudre le problème du voyageur de commerce (TSP) pour 4 villes situées aux coordonnées suivantes :

```
python
x = [0.4, 0.2, 0.3, 0.9]
y = [0.2, 0.5, 0.6, 0.4]
```

- 1. Écrire une fonction Python qui calcule la distance totale d'un chemin donné. Exemple de chemin : [0, 1, 2, 3] . (3 pts)
- 2. Implémenter une fonction de génération de voisin (en échangeant deux villes). (2 pts)
- 3. Écrire une fonction simple de recuit simulé qui :
 - Accepte une solution moins bonne avec une probabilité dépendant de T
 - Diminue T à chaque itération
 - Retourne le meilleur chemin trouvé. (5 pts)

Si tu veux, je peux t'écrire le code Python complet de l'exercice avec des commentaires. Tu veux ça ?