Encryption Question

A symmetric encryption system consists of three main components: A key generator K, An encryption algorithm E and a decryption algorithm D.

For two users Alice and Bob, the generator K generates a shared secret key K_{ab} . Then one of the two users takes a plaintext message P and with the use of this shared key produces an encrypted ciphertext message $C = E(K_{ab}, P)$. The message can now be sent over an insecure channel. The recipient can retrieve the original message $P = D(K_{ab}, C)$.

What are the three basic requirements to make the system secure?

- 1- Without knowledge of the key it is computationally infeasible to compute P from C.
- 2- Even with many ciphertexts exchanged by Alice and Bob it is computationally infeasible to infer the key.
- 3- Alice and Bob must store the key K_{ab} securely.

Modes of Operation Problem

An AES encryption system uses a 128-bit key K to encrypt a message M that consists of n 128-bit blocks (M_1 , M_2 , M_n) and produces n 128-bit blocks of ciphertext (C_1 , C_2 , C_n)

The encryption process is as follows.

The sender first chooses a random 128-bit string to be used as C_0

Then for all i>0, the ith cipher text block is given as

$$Ci = C_{i-1} EXOR E(K, M_i)$$

The ciphertext would then be the concatenation of $C_1 || C_2 || \dots C_n$

a- Draw a sketch of this mode of operation showing M_1 , M_2 , M_n and their corresponding ciphertext blocks.

b- What is the purpose of using C_0 ?

 C_0 is an *initialization vector* IV and is intended to ensure that identical blocks of M_i do not produce identical block of C_i

c- Is this mode of operation secure? If so why so and if not give a reason.

No, it is not secure. Since the eavesdropper has all C_i then the inverse property of the EXOR enables them to acquire all values of $E(K, M_i)$. This is in essence equivalent to the ECB mode of operation.

d- What change would you make to this scheme to improve security?

Replace the given Ci with Ci = $E(K, C_{i-1} EXOR M_i)$ Which is in essence CBC.