STAT 134: Section 10

Adam Lucas

October 26, 2020

Conceptual Review

- a. What is the moment generating function of a random variable *X*?
- b. How do we get the k^{th} moment of X from the MGF of X?
- c. If X and Y are independent, how can you write the MGF of their sum, X + Y, in terms of the MGFs of X and Y?

Problem 1

Let $X \sim \text{Binom } (n, p)$

- a. Find the moment generating function of X, $M_X(t)$.
- b. Use (a) to find $\mathbb{E}(X)$.

Hint: use the binomial theorem, which states that for any $a,b,(a+b)^n=\sum_{k=0}^n\binom{n}{k}a^kb^{n-k}$

Problem 2

a. Recall that, if $X \sim N(0,1)$, then $f_X(x)=(2\pi)^{-1/2}e^{-x^2/2}$. Find the MGF $M_{X^2}(t)$ of X^2 by direct calculation.

Hint: substitute $u = x\sqrt{1-2t}$ and assume $t < \frac{1}{2}$.

b. Recall that the density of $Y \sim \operatorname{Exp}(\lambda)$ is $f_Y(y) = \lambda e^{-\lambda y}$ for $y \ge 0$ and zero otherwise. Again, by direct calculation, find $M_Y(t)$.

Hint: assume $t < \lambda$ *.*

c. Conclude that if X_1 and X_2 are i.i.d. N(0,1) random variables, then $X_1^2 + X_2^2 \sim \operatorname{Exp}(\frac{1}{2})$.