- 3 (a) (i) Find all the continuous function $f: \mathbb{R} \to \mathbb{R}$ such that f(x) + f(2x) = 0. [2]
 - (ii) Find all the continuous function $f:(0,1)\to\mathbb{R}$ such that $f(x)^2-f(x)=6,\ \forall x\in(0,1)$ and $f(\frac{1}{2})>0.$
 - (b) Let $f, g : A \to \mathbb{R}$ be two continuous functions such that $f(x) < g(x), \ \forall x \in A$. Answer the following, by proving it in case the answer is in affirmative or produce a counter example.
 - (i) Suppose A = (0, 1). Can we say that there exists $\lambda > 0$ such that $f(x) < \lambda g(x), \ \forall x \in (0, 1)$.
 - (ii) Suppose A = [0, 1]. Can we say that there exists $\lambda > 0$ such that $f(x) < \lambda g(x), \ \forall x \in (0, 1)$.
 - (c) Let S be a bounded set in \mathbb{R} and $f: S \to \mathbb{R}$ be continuous on S. Will f always be bounded? If f is uniformly continuous will f be bounded? Justify your answers. [5]