Pattern Recognition Lecture 05-1 Deep Learning Advanced

Prof. Jongwon Choi Chung-Ang University Fall 2022

This Class

- Deep Learning Advanced − 2
 - Residual Network
 - Probabilistic Deep Learning
 - Variational Auto-encoder

Residual Network

● Kaiming He et al., "Deep Residual Learning for Image Recognition", CVPR2016

Residual Network

Using a skip connection from the input of a block

Supervised Deep Learning - Architecture

Supervised Deep Learning - Training

- Gradient Descent on the remaining layers Chain Rule!!
 - Weight initialization Gaussian random (Xavier's initialization)
 - for the iterative update: $w_{L-1}^{t+1} = w_{L-1}^t \alpha^t \nabla f(w_{L-1}^t)$

Xavier's Initialization

•
$$W \sim \mathcal{N}\left(0, \sqrt{\frac{2}{\#(input) + \#(output)}}\right)$$

Supervised Deep Learning - Training

$$\bullet \nabla_{\mathbf{w}_{l}^{t}} f_{CE}(\tilde{\mathbf{y}}, \mathbf{y}, \mathbf{x}) = \frac{\partial f_{CE}}{\partial \mathbf{w}_{l}^{t}} = \frac{\partial \mathbf{x}_{l}^{t}}{\partial \mathbf{w}_{l}^{t}} \times \prod_{l=l^{o}}^{L-2} \frac{\partial \mathbf{x}_{l+1}^{t}}{\partial \mathbf{x}_{l}^{t}} \times \frac{\partial f_{CE}}{\partial \mathbf{x}_{L-1}^{t}}$$

Xavier's Initialization

$$\bullet W \sim \mathcal{N}\left(0, \sqrt{\frac{2}{\#(input) + \#(output)}}\right) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}$$

Residual Network

Using a skip connection from the input of a block

ι from the input of a block

$$\frac{E}{t} = \frac{\partial \mathbf{x}_{l}^{t}}{\partial \mathbf{w}_{l}^{t}} \times \prod_{l=l^{o}}^{L-2} \frac{\partial \mathbf{x}_{l+1}^{t}}{\partial \mathbf{x}_{l}^{t}} \times \frac{\partial f_{CE}}{\partial \mathbf{x}_{L-1}^{t}}$$

$$\frac{E}{t} = \frac{\partial \mathbf{x}_{l}^{t}}{\partial \mathbf{w}_{l}^{t}} \times \prod_{l=l^{o}}^{L-2} (\mathbf{W}_{l} + 1) \times \frac{\partial f_{CE}}{\partial \mathbf{x}_{L-1}^{t}}$$

$$\frac{E}{t} = \frac{\partial \mathbf{x}_l^t}{\partial \mathbf{w}_l^t} \times \prod_{l=l^o}^{L-2} \mathbf{W}_l \times \frac{\partial f_{CE}}{\partial \mathbf{x}_{L-1}^t}$$

becomes

instead of

Residual Network

ZFNet & Class Activation Map

- **ZFNet** "Visualizing and Understanding Convolutional Networks", ECCV2014
 - Works well for AlexNet & VGGNet (Plain CNN)
 - A little bit weak visualization for ResNet (Due to the skip connection)

ZFNet & Class Activation Map

- CAM "Learning Deep Features for Discriminative Localization", CVPR2016
 - Weak-supervised spatial attention for NN (Plain & Residual NN)
 - GAP-based model approaches (ResNet)

Probabilistic Deep Learning

- Deep network based on the probabilistic distributions
- There are various types of probabilistic DL
 - Probabilistic output
 - Probabilistic hidden vectors
 - Mixtured model

Bayesian Deep Learning

- NN with Probabilistic Output
 - "What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?", NIPS2017

Bayesian Deep Learning

- NN with Probabilistic Output
 - "What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?", NIPS2017
 - A single network to transform the input x, with its head split to predict both y as well as σ .

$$[\hat{\mathbf{y}}, \hat{\sigma}^2] = \mathbf{f}^{\widehat{\mathbf{W}}}(\mathbf{x})$$

We don't know the uncertainty! => Unsupervised learning of the uncertainty

$$\mathcal{L}_{BNN}(\theta) = \frac{1}{D} \sum_{i} \frac{1}{2} \hat{\sigma}_i^{-2} ||\mathbf{y}_i - \hat{\mathbf{y}}_i||^2 + \frac{1}{2} \log \hat{\sigma}_i^2$$

MC-DROPOUT

- Simply estimate the uncertainty by using the dropout in test phase
 - "Deep Bayesian Active Learning with Image Data", ICML2017

MC-DROPOUT

- Simply estimate the uncertainty by using the dropout in test phase
 - "Deep Bayesian Active Learning with Image Data", ICML2017
 - Dropout : Set the randomly chosen neuron to 0

MC-DROPOUT

- Simply estimate the uncertainty by using the dropout in test phase
 - "Deep Bayesian Active Learning with Image Data", ICML2017
 - Dropout : Set the randomly chosen neuron to 0
 - Increase the ratio of neuron for dropout,
 - Remain the dropout process even on the test
 - The training phase takes longer time and is sometimes unstable
 - In testing phase, we can estimate the sampling-based probabilistic distribution

Similar architecture with auto-encoder

Auto-encoder - Architecture

- When the encoded feature is smaller than the input data,
- the information of input data is compressed in the encoded feature
- because the input data should be reconstructed from that!

• Limitation of the conventional auto-encoder

Architecture

$$L = -E_{z \sim q(Z|X)}[\log p(x|z)] + D_{KL}(q(z|x)||p(z))$$

- Training Phase
 - Estimate mean & variance
 - Randomly sample a hidden variable according to the distribution
 - Reconstruct the target image

- Inference Phase
 - 1. Encoding: Obtain the probabilistic distribution by the encoder
 - 2. Resampling: Reconstruct from the random noise of normal distribution

(a) Learned Frey Face manifold

(b) Learned MNIST manifold

Mixtured Model

- Estimate the last probabilistic distribution based on the probabilistic distributions of hidden variables
- The relationship between the layers becomes very complex
- Many methods to simplify the relationship have been proposed
 - Ex. "Lightweight Probabilistic Deep Networks", CVPR2018

Summary

- Deep Learning Advanced
 - Residual Network
 - Probabilistic Deep Learning
 - Variational Auto-encoder