Dimensionality Reduction

Part I

Dimensionality Reduction: Part I

Dimensionality Reduction: Part II

In MNIST, a digit is 28 x 28 dims.

o Most 28 x 28 dim vectors are not digits

Distributed Representation

Feature selection

• Principle component analysis (PCA)

$$z = Wx$$

Data Compression: Part I

Reduce data from 2D to 1D

Data Compression: Part II

Data Compression: Part III

Data Compression: Part IV

Reduce data from 3D to 2D

Data Visualization: Part I

						Mean	
		Per capita			Poverty	household	
	GDP	GDP	Human		Index	income	
	(trillions of	(thousands	Develop-	Life	(Gini as	(thousands	
Country	US\$)	of intl. \$)	ment Index	expectancy	percentage)	of US\$)	
Canada	1.577	39.17	0.908	80.7	32.6	67.293	
China	5.878	7.54	0.687	73	46.9	10.22	
India	1.632	3.41	0.547	64.7	36.8	0.735	
Russia	1.48	19.84	0.755	65.5	39.9	0.72	
Singapore	0.223	56.69	0.866	80	42.5	67.1	
USA	14.527	46.86	0.91	78.3	40.8	84.3	

[resources from en.wikipedia.org]

Data Visualization: Part II

Country	z_1	z_2	
Canada	1.6	1.2	
China	1.7	0.3	
India	1.6	0.2	
Russia	1.4	0.5	
Singapore	0.5	1.7	
USA	2	1.5	
•••	•••	•••	

Data Visualization: Part III

PCA: Part I

$$z = Wx$$

Reduce to 1-D:

$$z_1 = w^1 \cdot x$$

Project all the data points x onto w^1 , and obtain a set of z_1

We want the variance of z_1 as large as possible

$$Var(z_1) = \frac{1}{N} \sum_{z_1} (z_1 - \bar{z_1})^2 ||w^1||_2 = 1$$

PCA: Part II

$$z = Wx$$

Reduce to 1-D:

$$z_1 = w^1 \cdot x$$

$$z_2 = w^2 \cdot x$$

$$W = \begin{bmatrix} (w^1)^T \\ (w^2)^T \\ \vdots \end{bmatrix}$$

Orthogonal matrix

Project all the data points x onto w^1 , and obtain a set of z_1

We want the variance of z_1 as large as possible

$$Var(z_1) = \frac{1}{N} \sum_{z_1} (z_1 - \overline{z_1})^2 ||w^1||_2 = 1$$

We want the variance of z_2 as large as possible

$$Var(z_2) = \frac{1}{N} \sum_{z_2} (z_2 - \bar{z_2})^2 \|w^2\|_2 = 1$$
$$w^1 \cdot w^2 = 0$$

PCA: Part III

PCA: Part IV

