Marco Bayesiano para el análisis de datos, calibración de parámetros y modelamiento inverso

Modelamiento probabilístico

Universidad Industrial de Santander U18 Fest

Teorema de Bayes

- Objetivo: Modelar datos
- lacktriangle Si tenemos observaciones y de un observable Yy un modelo de las observaciones parametrizado por Θ , podemos calcular la distribución de los parámetros dadas las observaciones usando

$$p(\theta \mid y) = \frac{p(y \mid \theta)p(\theta)}{p(y)} = \frac{p(y \mid \theta)p(\theta)}{\int p(y \mid \theta)p(\theta) \, \mathrm{d}\theta}$$

Nomenclatura

$$p(\theta \mid y) = \frac{p(y \mid \theta)p(\theta)}{p(y)} = \frac{p(y \mid \theta)p(\theta)}{\int p(y \mid \theta)p(\theta) d\theta}$$

- **p** $(y \mid \theta)$: **Verosimilitud** El valor de la pdf de las observaciones dado el valor específico $\Theta = \theta$ de los parámetros. La verosimilitud indica qué tan posible es observar las (uh) observaciones dado θ
- **p** (θ) : **(Distribución) Anterior** Codifica la información disponible o suposiciones acerca de la distribución de probabibilidad de Θ , i.e, indica qué valores de Θ son más o menos probables de acuerdo a la información α priori

Nomenclatura

$$p(\theta \mid y) = \frac{p(y \mid \theta)p(\theta)}{p(y)} = \frac{p(y \mid \theta)p(\theta)}{\int p(y \mid \theta)p(\theta) d\theta}$$

- **p** $(\theta \mid y)$: **(Distribución) Posterior** pdf de Θ dadas las observaciones, i.e., indica qué valores de Θ son más o menos probables de acuerdo a las observaciones y la información *a priori*
- $p(y) = \int p(y \mid \theta) p(\theta) \, \mathrm{d}\theta$: **Verosimilitud marginal** Indica qué valores del observable Yson más o menos posibles dada la información α *priori* acerca de los parámetros del modelo

Nomenclatura

 \blacksquare Para calcular la distribución posterior sólo hace especificar las verosimilitud $p(y\mid\theta)$ y la distribución anterior, i.e, la distribución conjunta

$$p(y,\theta) = p(y \mid \theta) p(\theta)$$

 Ésta distribución conjunta se conoce como el modelo probabilístico

Tareas de regresión

- \blacksquare Queremos analizar la dependencia de un observable Yen una variable explanatoria X utilizando un modelo parametrizado por Θ
- \blacksquare Dadas las observaciones (x,y), podemos calcular la distribución de los parámetros:

$$p(\theta \mid y, x) = \frac{p(y \mid x, \theta)p(\theta)}{p(y \mid x)} = \frac{p(y \mid x, \theta)p(\theta)}{\int p(y \mid x, \theta)p(\theta) d\theta}$$

donde

- $lackbox{ } p(y\mid x,\theta)$: Verosimilitud
- $\blacksquare p(\theta)$: Anterior
- $\blacksquare p(\theta \mid y, x)$: Posterior

Δ

