Projektbericht

Team Stadt Frankfurt

Cross Innovation Class 2022

Sven Hülsen, Robin von Berg

13. Juli 2022

Inhaltsverzeichnis

			Seite
1	Einle	eitung Cross Innovation Class	
		1.1.1 Ablauf der CIC	
	1.2	Das Team	
	1.3	Unsere Praxispartner	
		1.3.1 Stadt Frankfurt am Main - Stabstelle Digitalisierung	
2	Proj	ektfindung	8
3	Proj	ektbeschreibung	10
4	Aufg	gaben	11
	4.1	Aufgabenverteilung	. 11
5	Tecl	nnische Realisation	12
	5.1	Aufgabenbereiche	
	5.2	Mikrocontroller	
	5.3	Beleuchtung	
	5.4	Animation	
	5.5	Einwurfserkennung	
	5.6	Flaschenerkennung (Working Title)	
	5.7	Kommunikation zwischen Endgeräten	
	5.8	Füllstandsmessung	
	5.9	Aufgabenbereiche	
		Stückliste	
	5.11	Zusammenführung von Modell und Technik	. 15
6	Erge		17
	6.1	Der Gerippte	. 17
	6.2	Abschlussveranstaltung	. 17
7	Fazi		18
	7.1	Was lief gut	
	7.2	Was haben wir gelernt	. 18

8	Bewertung	19

Team Stadt Frankfurt

20

Sven Hülsen, Robin von Berg

Projektbericht

Cross Innovation Class 2022

9 Zukünftige Entwicklungsmöglichkeiten

1 Einleitung

Dieser Projektbericht ist im Rahmen der Cross Innovation Class 2022 entstanden.

1.1 Cross Innovation Class

Die Cross Innovation Class, kurz CIC, ist eine von der Hamburg Kreativ Gesellschaft organisierte Veranstaltung in Kooperation mit Universitäten und Fachhochschulen des Hamburger Umlands. Idee der CIC ist es Studierende verschiedener Fachrichtungen unterschiedlicher Universitäten ein Semester lang in interdisziplinären Teams an Projekten zusammenarbeiten.

Teilnehmen konnten Studierende des Studiengangs Stadtplanung der Hafencity Universität Hamburg, der Studiengänge Produkt- und Interior-Designer der Akademie Mode & Design des Standorts Hamburg und der Studiengänge Informatik, Technische Informatik, Wirtschaftsinformatik, Smart Technology und IT-Ingenieurwesen der Fachhochschule Wedel.

Die Cross Innovation Class lief dabei dieses Jahr unter dem Thema Resilient Cities. In Bezug auf dieses Oberthema wurden fünf Partnerunternehmen ausgesucht, die jeweils eine Fragestellung mit in die CIC gebracht haben.

Resilient Cities

Resilienz, ein wichtiger Faktor in vielen Lebensbereichen. Ein Attribut das Anpassungsfähigkeit und einen standhaften Umgang mit Krisen beschreibt. Neben persönlicher und ökonomischer Resilienz übernimmt Resilienz auch eine immer wichtiger werdende Rolle im Blick auf Gemeinden und Städte. Vorallem im Bezug auf Extremwetterereignisse und dem immer weiter voranschreitenden Klimawandel braucht es neue Ideen und Konzepte.

Daher gibt es viele Bestrebungen auf globaler, europäischer und nationaler Ebene dieses Thema voranzubringen. Eine Institution ist der Urban Resilience Club, der Urbane Resilienz wie folgt definiert:

"Urban Resilience - The measurable ability of any urban system, with its inhabitants, to maintain continuity through all shocks and stresses, while positively adapting and transforming toward sustainability." a

 $[^]a$ https://urbanresiliencehub.org/what-is-urban-resilience/

Partner dieses Jahr waren die Stadt Frankfurt mit der Stabsstelle Digitalisierung, die ACO Gruppe, Hamburg Marketing, Hamburg Institute for Innovation, Climate Protection and Circular Economy (HiiCCE) und das Wald Stadt Labor Iserlohn.

Fünf Teams, jeweils bestehend aus Studierenden jeder Universität und einem Praxispartner durchliefen über knapp 12 Wochen ein Ablauf im Rahmen des Design Thinkings. Dieses Format stellt im Vergleich zu den sonst eher theoretischeren oder fachspezifischeren Veranstaltungen eine willkommene Ergänzung da.

1.1.1 Ablauf der CIC

Das Projekt wurde in drei große Phasen eingeteilt, Konzept, Entwurf und Prototyping. Neben einem KickOff zu Beginn gab es am Ende jeder Phase eine Feedback Runde mit der gesamten Class.

In der KickOff Veranstaltung haben sich die Praxispartner und ihre Fragestellung vorgestellt und wir haben unser Team kennengelernt.

Zusätzlich wurde allen Interessierten vor der Abschlussveranstaltung ein sehr lehrreiches Pitch-Training angeboten.

Wie sind die Teams enstanden, was hatten wir für (Regel)Termine, wie viel Zeit hatten wir für die unterschiedlichen Aufgaben, etc. Skizzierung des CiC-Prozesse.

Projektphasen

Termin/Phase	Bezeichnung						
8. April 2022	Kick-Off						
11. April 2022 - 21. April 2022	Analyse & Konzept Phase						
25. April 2022 - 6. Mai 2022	Entwurfsphase						
9. Mai 2022 - 23. Juni 2022	Prototyping & Modellbau Phase						
30. Juni 2022	Abschlussveranstaltung						

FH Wedel JourFixe

Analog zur AMD und HCU hatten wir ein wöchentliches internes Meeting an der FH Wedel. Ziel dieses Meetings war ein Statusbericht der jeweiligen

Gruppen & Praxispartner JourFixe

Zusätzlich haben wir uns intern jeden Donnerstag um 8:30 Uhr getroffen um offene Fragen und anstehende Aufgaben zu besprechen. Um 10 Uhr kamen daraufhin unsere Praxispartner dazu, sodass wir aufgekommene Fragen klären konnten und einen Bericht über den aktuellen Stand un die anstehende Woche geben konnten.

1.2 Das Team

Unser Team bestand aus sieben Studierenden. Drei Studierenden der Hafencity Universität des Studiengangs Stadtplanung, Celina Krug, Moritz Hillen und Florian Bucher, zwei Studierende der Akademie Mode & Design des Studiengangs Product Design und uns, Sven Hülsen und Robin von Berg, Informatikstudenten der FH Wedel.

Aus der AMD unterstützt wurden wir ebenfalls von Annika Fröhlich, da dort eine weitere interne Unterteilung in Gruppen angesetzte wurde, die gemeinsam mehrere Projekte (eins davon die CIC) bestritten haben.

Abbildung 1.1: CIC Team Stadt Frankfurt
v.l.n.r.: Maybritt Braun (AMD), Annika Fröhlich (AMD),
Robin von Berg (FHW), Lucas Below (AMD), Sven Hülsen
(FHW), Celina Krug (HCU), Moritz Hillen (HCU), Jochen
Schmitz (FES). Abwesend: Florian Bucher (HCU), Mechthild Schulze-Tenberge & Karina Mombauer (Stadt Frankfurt Stabstelle Digitalisierung)

1.3 Unsere Praxispartner

Zu Beginn der CIC hat Mechthild Schulze-Tenberge als Ansprechpartnerin der Stadt Frankfurt am Main agiert. Frau Schulze-Tenberge übernimmt die Leitung der Stabstelle Digitalisierung und war diejenige, die uns die Aufgabenstellungen der Stadt Frankfurt präsentiert hat.

Im späteren Verlauf hat Karina Mombauer, ebenfalls aus der Stabstelle Digitalisierung, ihren Platz übernommen, da Frau Schulze-Tenberge andere Projekte verfolgen musste.

Als Unterstützung und Experte zum Thema Stadtreinigung ist Jochen Schmitz zum Projekt hinzugestoßen. Als Leiter des Innovationsmanagement der FES konnte er uns Einblicke in die alltäglichen Abläufe und Erfahrungen der FES, der internen Projekte bezüglich Sensorik und Kommunikationsansätzen geben, aber zusätzlich auch eine weitere Perspektive auf die vorhandenen IT-Projekte der Stadt Frankfurt.

Zusätzlich wurden wir von Dagmar Schöne unterstützt, die Teil des Teams "#cleanFFM" war und somit die andere Seite, die Rolle der Auftraggeberin der FES übernommen hat.

1.3.1 Stadt Frankfurt am Main - Stabstelle Digitalisierung

Die Stabstelle Digitalisierung der Stadt Frankfurt am Main existiert seit 2021 und ist der Nachfolger der im Jahre 2013 gegründeten Stabstelle E-Government, die als Ziel die möglichst durchgehend elektronische Abwicklung von Verwaltungsvorgängen hatte. Bei der Umstrukturierung zur Stabstelle Digitalisierung sind weitere Themen zum Aufgabengebiet hinzugekommen. In diesem Zuge wurde eine "Gesamtstädtische Digitalisierungsstrategie" (**PDF**) entwickelt. Diese umfasst unter anderem eine "Urban Data Plattform" und den flächenüberdeckenden Ausbau eines LoRaWAN Netzes.

1.3.2 Frankfurter Entsorgungs- und Service GmbH (FES)

Die Frankfurter Entsorgungs- und Service GmbH, kurz FES, ist das Frankfurter Äquivalent zur Stadtreinigung Hamburg. Das seit 1995 bestehende Unternehmen beschäftigt circa 1900 Mitarbeiter und bietet neben Entsorgungs- und Reinigungsdienstleistungen bspw. auch Verkehrsmaßnahmen und ein Veranstaltungsservice an. Desweiteren hält die FES 50 Prozent der FFR GmbH, die das Müllheizkraftwerk Frankfurt am Main betreibt.

2 Projektfindung

Zu Beginn des Projekts wurden wir von unserem Praxispartner mit drei Fragestellungen konfrontiert, unter denen wir uns für eine wählen konnten:

Wie lässt sich der Verkehr für Einkäufe und Lieferungen reduzieren, um die Schadstoffbelastungen in der Luft zu minimieren?

Wie lässt sich die Müllentsorgung in der Innenstadt und in den Grünflächen optimieren (z.B. Roboter, automatische Mülltrennung, Füllstandsensoren etc.)?

Wie lässt sich Informations- und Kommunikationstechnik (IKT) (Rechenzentren, WLAN, Breitband) für eine umwelt- und ressourcenschonende Stadtgestaltung (z.B. Abwärme der Rechenzentren) nutzen?

Im Anschluss des KickOff-Veranstaltung haben wir uns für die zweite Frage, die das Thema Müllentsorgung thematisiert entschieden, da wir dabei die größten Freiheiten bei der Gestaltung des Prototyps gesehen haben und Lust hatten uns mit der Problematik auseinander zu setzen.

In den

Abbildung 2.1: Der Design-Thinking-Prozess¹

Abbildung 2.2: Denkmodell "Double Diamond"¹

Design Thinking

Design Thinking ist ein Prozess zur Ideenfindung und -entwicklung. Dabei steht der Mensch im Mittelpunkt der mit einem Problem konfrontiert ist.

Abbildung 2.1 zeigt die sechs Phasen die im Prozess durchlaufen werden und visualisiert den iterativen Ansatz, das mehrmalige durchlaufen in unterschiedlichen Kreisen im Laufe des Prozess.

In vielen Veranstaltungen der CIC ist uns besonders das Modell sdes "Double Diamonds" (Abbildung 2.2) begegnet, denn der Ablauf der Cross wurde in einem solchen Rahmen strukturiert. Anhand der Fragestellung wird ein breiter Problemraum geöffnet in dem möglichst viel Wissen aus verschiedenen Perspektiven zusammenfließt. Diese Problemdefinition wird nun konkretisiert, um einen Lösungsraum zu öffnen, der Lösungsansätze jeder Art zulässt. Anschließend werden auch diese im Team besprochen und am Ende entsteht ein konkreter Prototyp.

Design THinking einer aus drei, aber nicht ins Detail der anderen. Wie hat sich Skizze der Idee und der Realisierung

3 Projektbeschreibung

Eingehendere Beschreibung der Projekt-Idee untermauert mit Skizzen/Zeichnungen

Abbildung 3.1: Skizze des Entwurfs mit Rautenmuster

4 Aufgaben

4.1 Aufgabenverteilung

Darstellung der Aufgabenverteilung innerhalb des Teams Rollen waren sehr flexibel

Rolle	Person
Projektleiterin	Celina Krug
Außenkommunikation	Florian Bucher

5 Technische Realisation

5.1 Aufgabenbereiche

Welche Komponenten müssen technisch realisiert werden?

Siehe Technische Daten

Beschreibung der prototypischen Realisierung, Vorgehensweise und Beschreibung einzelner Schritte

Beschreibung der prototypischen Realisierung, Vorgehensweise und Beschreibung einzelner Schritte Verweise auf das Projekt-Repository in dem weitere Projekt-Artefakte zu finden sind (s.u.).

Abbildung 5.1: Caption

5.2 Mikrocontroller

5.2.1 Diskussion

Warum Arduino

5.2.2

C++ & PlatformIO

Abbildung 5.2: Caption

Abbildung 5.3: Zeichnung Pin Belegung der NeoPixel SK6812RGBW

5.3 Beleuchtung

- 5.3.1 Diskussion
- 5.3.2 Implementation
- 5.4 Animation
- 5 4 1 Diskussion
- 5.4.2 Implementation
- 5.5 Einwurfserkennung
- 5.5.1 Diskussion
- 5.5.2 Implementation
- 5.6 Flaschenerkennung (Working Title)
- 5.6.1 Diskussion
- 5.6.2 Implementation
- 5.7 Kommunikation zwischen Endgeräten
- 5.7.1 Diskussion
- 5.7.2 Implementation
- 5.8 Füllstandsmessung
- 5.8.1 Diskussion
- 5.8.2 Implementation
- 5.9 Aufgabenbereiche
- 5.10 Stückliste

siehe Technische Daten.

Abbildung 5.4: Caption

5.11 Zusammenführung von Modell und Technik

Der ganze technische Krams und ein bisschen Modellbau

Abbildung 5.5: Caption

6 Ergebnis

6.1 Der Gerippte

Vorstellung des realisierten Prototyps und Beschreibung seines Funktionsumfangs

6.2 Abschlussveranstaltung

7 Fazit

7.1 Was lief gut

7.2 Was haben wir gelernt

Herausforderung bei der Realisierung Herausforderungen im Projektmanagement (Zeiten, Inhalte, Aufgaben) Herausforderungen in der technischen Umsetzung (Elektronik, Mechanik, Programmierung) Herausforderungen in der interdisziplinären Zusammenarbeit

8 Bewertung

9 Zukünftige Entwicklungsmöglichkeiten

Zusammenfassende Bewertung und Blick in zukünftige

Abbildungsverzeichnis

		•	•	•	•	•	•	•	•	•	. 6
	Der Design-Thinking-Prozess 1 Denkmodell "Double Diamond" 1										
3.1	Skizze des Entwurfs mit Rautenmuster										. 10
5.2 5.3	Caption Caption Caption Zeichnung Pin Belegung der NeoPixel SK6812RGBW										. 13 . 14
	Caption										

 $^{^1\}mathrm{Quelle:}$ Design Thinking Workshop CrossInnovationClass