Práctico 1

- 1. Sean $u, v : \mathbb{R} \to \mathbb{R}^3$ funciones diferenciables. Hallar $\frac{d}{dt} \langle u(t), v(t) \rangle$ en términos de u, v y sus derivadas.
- 2. (a) ¿Qué se puede decir de una curva α tal que $\alpha''(t) = 0$ para todo t?
 - (b) Hallar una curva α cuya imagen esté contenida en una recta, pero tal que $\alpha''(t) \neq 0$ para todo t.
- 3. Considerar el espiral $\alpha(t) = (e^{-t}\cos t, e^{-t}\sin t)$ con $0 \le t$.
 - (a) Hacer un buen gráfico cualitativo de la curva.
 - (b) ¿Cuál es la longitud de 4 vueltas de espiral? ¿Y de todo el espiral?
 - (c) Reparametrizar α por longitud de arco.
- 4. Decir si la curva $\alpha(t) = (\text{sen } 3t \cos t, \text{sen } 3t \text{ sen } t)$ es regular y dibujar su trayectoria.
- 5. Mostrar que la curva $\beta(t)=(t^2,t^3)$ es de clase C^1 pero no es regular, y mostrar que su imagen tiene una esquina. ¿Cómo se detecta una esquina?
- 6. Figura Ocho. Sea $\alpha : [0, 2\pi] \longrightarrow \mathbb{R}^2$ definida por $\alpha(t) = (\operatorname{sen} t, \operatorname{sen} t \cos t)$.
 - (a) Dibujar la trayectoria de α e identificar varios puntos.
 - (b) Hacer un buen gráfico cualitativo de la función curvatura.
- 7. Sea $\alpha: I \to \mathbb{R}^3$ una curva que no pasa por el origen. Si $\alpha(t_0)$ es el punto más cercano al origen y $\alpha'(t_0) \neq 0$, probar que el vector posición $\alpha(t_0)$ es ortogonal al vector $\alpha'(t_0)$ (donde t_0 está en el interior del intervalo).
- 8. Sea $\alpha: I \to \mathbb{R}^3$ una curva con $\alpha'(t) \neq 0$ para todo t. Probar que $\|\alpha(t)\|$ es constante (es decir, que el gráfico $\alpha(t)$ está contenido en una esfera de centro cero) si y sólo si $\alpha(t)$ es ortogonal a $\alpha'(t)$ para todo t.
- 9. Sea $\alpha:(a,b)\to\mathbb{R}^3$ una curva diferenciable. Suponer que existe una sucesión t_n de puntos distintos en el intervalo (a,b) tal que $\lim_{n\to\infty}t_n=t_0\in(a,b)$ y $\alpha(t_n)=p$ para todo n. Probar que α no es regular. Mostrar que esto implica que una curva regular en un intervalo cerrado y acotado puede intersecarse en un mismo punto a lo sumo una cantidad finita de veces.

EJERCICIOS EXTRAS

10. Un disco circular de radio 1 en el plano xy rueda a lo largo del eje x. La figura que describe un punto fijo de la circunferencia del disco se llama cicloide (ver dibujo).

- (a) Dar una curva $\alpha : \mathbb{R} \to \mathbb{R}^2$ cuya trayectoria sea el cicloide, y determinar sus puntos singulares (i.e. donde su derivada se anula).
- (b) Calcular la longitud de arco del cicloide correspondiente a una rotación completa del disco.

- 11. Sea $\alpha: [0, 2\pi] \to \mathbb{R}^2$ dada por $\alpha(t) = (\cos^3 t, \sin^3 t)$.
 - (a) Dibujar la trayectoria de α . Esta curva se llama astroide. ¿En qué puntos es singular?
 - (b) Mostrar que dicha curva puede ser obtenida de manera análoga al cicloide del ejercicio anterior, rotando un disco de radio 1/4 con un punto distinguido en su borde, a lo largo de otra curva de manera que resulten siempre tangentes (en el ejercicio anterior esta otra curva era el eje x; en este caso, la curva sobre la que hay que rotar es el círculo de radio 1 centrado en el origen). Dibujar la curva que se obtiene al hacer la misma construcción pero con el disco interior de radio 1/3 (deltoide). ¿Qué valores del radio interior hacen que la trayectoria resultante sea una curva cerrada?
- 12. Se coloca un botón en el punto (1,0) del plano y se le ata un hilo inextensible de longitud 1. Se toma el otro extremo del hilo y se lo desliza sobre el piso a lo largo de la semirrecta negativa del eje y, a partir del punto (0,0). El botón describe una trayectoria (llamada apropiadamente tractriz) igual al gráfico de una función $f:(0,1)\to(-\infty,0)$, creciente y biyectiva.
 - (a) Plantear una ecuación para f^{\prime} y resolverla.
 - (b) Probar que el gráfico de f coincide con la trayectoria de la curva $\alpha:(0,\pi/2)\to\mathbb{R}^2$ dada por

$$\alpha(t) = (\operatorname{sen} t, \cos t + \log(\tan(t/2))).$$