STAD29: Statistics for the Life and Social Sciences

Lecture notes

Time Series

Section 1

Time Series

Packages

Uses my package mkac which is on Github. Install with:

```
library(devtools)
install_github("nxskok/mkac")
```

plus these, which you might need to install first:

```
library(ggfortify)
library(forecast)
library(tidyverse)
library(mkac)
```

Time trends xxx

- Assess existence or nature of time trends with:
 - correlation
 - regression ideas.
 - (later) time series analysis

World mean temperatures

Global mean temperature every year since 1880: xxx

```
temp=read_csv("temperature.csv")
ggplot(temp, aes(x=year, y=temperature)) + geom_point() + geom_
```


Examining trend

- Temperatures increasing on average over time, but pattern very irregular.
- Find (Pearson) correlation with time, and test for significance:

```
with(temp, cor.test(temperature,year))
```

Pearson's product-moment correlation

```
## data: temperature and year
## t = 19.996, df = 129, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:</pre>
```

0.8203548 0.9059362 ## sample estimates:

cor

Lecture notes

##

##

##

Comments xxx

- Correlation, 0.8695, significantly different from zero.
- CI shows how far from zero it is.

Tests for linear trend with normal data.

Kendall correlation

Alternative, Kendall (rank) correlation, which just tests for monotone trend (anything upward, anything downward) and is resistant to outliers:

```
with(temp, cor.test(temperature,year,method="kendall"))
##
## Kendall's rank correlation tau
##
```

z = 11.776, p-value < 2.2e-16
alternative hypothesis: true tau is not equal to 0
sample estimates:</pre>

sample estimates

data: temperature and year

0.6992574

Kendall correlation usually closer to 0 for same data, but here P-values comparable. Trend again strongly significant.

Mann-Kendall

- Another way is via **Mann-Kendall**: Kendall correlation with time.
- Use my package mkac:

```
kendall_Z_adjusted(temp$temperature)
```

```
## $z
## [1] 11.77267
##
   $z_star
   [1] 4.475666
##
   $ratio
   [1] 6.918858
##
   $P value
   Γ1 0
##
   $P_value_adj
   [1] 7.617357e-06
```

Comments

P-value is very small, but adjusted one not as small as before because of autocorrelation (see later). Idea: observations close together in time are correlated with each other, so observations not independent. This is correction for that.

Examining rate of change

- Having seen that there is a change, question is "how fast is it?"
- Examine slopes:
 - regular regression slope, if you believe straight-line regression
 - Theil-Sen slope: resistant to outliers, based on medians

Ordinary regression against time xxx

```
temp.lm=lm(temperature~year, data=temp)
summary(temp.lm)
##
## Call:
## lm(formula = temperature ~ year, data = temp)
##
## Residuals:
##
       Min 10 Median
                                  30
                                          Max
## -0.32496 -0.10117 0.00575 0.08355 0.28501
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.5794197 0.5703984 4.522 1.37e-05
       0.0058631 0.0002932 19.996 < 2e-16
## year
##
```

Theil-Sen slope

also from mkac:

```
theil_sen_slope(temp$temperature)
```

[1] 0.005675676

Conclusions

- Slopes:
 - Linear regression: 0.005863
 - Theil-Sen slope: 0.005676
 - Very close.
- Correlations:
 - Pearson 0.8675
 - Kendall 0.6993
 - Kendall correlation smaller, but P-value equally significant (often the case)

Constant rate of change? xxx

Slope assumes that the rate of change is same over all years, but trend seemed to be accelerating: xxx

```
ggplot(temp, aes(x=year, y=temperature)) +
  geom_point() + geom_smooth()
```

$geom_smooth()\ using method = 'loess' and formula 'y ~ x$

Pre-1970 and post-1970: xxx

```
temp %>%
  mutate(time_period=ifelse(year<=1970, "pre-1970", "post-1970"
  nest(-time_period) %>%
  mutate(theil_sen=map_dbl(
    data, ~theil_sen_slope(.$temperature)))
```

Theil-Sen slope is very nearly four times as big since 1970 vs. before.

A tibble: 2 x 3

Actual time series: the Kings of England

Parsed with column specification:

 Age at death of Kings and Queens of England since William the Conqueror (1066):

```
kings=read_table("kings.txt", col_names=F)
```

```
## cols(
## X1 = col_double()
## )
```

Data in one long column X1, so kings is data frame with one column.

Turn into ts time series object

```
kings.ts=ts(kings)
kings.ts
## Time Series:
## Start = 1
## End = 42
## Frequency = 1
##
          X 1
##
   [1,] 60
   [2,] 43
##
##
   [3,] 67
## [4,] 50
    [5,] 56
##
##
    [6,] 42
##
    [7,] 50
##
    [8,]
.....
      Lecture notes
```

Plotting a time series

autoplot from ggfortify gives time plot:

autoplot(kings.ts)

Comments

- "Time" here is order of monarch from William the Conqueror (1st) to George VI (last).
- Looks to be slightly increasing trend of age-at-death
- but lots of irregularity.

Stationarity

A time series is stationary if:

- mean is constant over time
- variability constant over time and not changing with mean.

Kings time series seems to have:

- non-constant mean
- but constant variability
- not stationary.

Getting it stationary

• Usual fix for non-stationarity is *differencing*: new series 2nd - 1st, 3rd - 2nd etc.

In R, diff:

kings.diff.ts=diff(kings.ts)

Did differencing fix stationarity?

Looks stationary now: xxx

autoplot(kings.diff.ts)

Births per month in New York City

```
from January 1946 to December 1959:
```

```
## Parsed with column specification:
## cols(
## X1 = col_double()
## )
ny
```

ny=read_table("nybirths.txt",col_names=F)

```
## # A tibble: 168 x 1
## X1
## <dbl>
## 1 26.7
## 2 23.6
## 3 26.9
```

Lecture notes

##

Time plot

• Time plot shows extra pattern: xxx

autoplot(ny.ts)

Comments on time plot

- steady increase (after initial drop)
- repeating pattern each year (seasonal component).
- Not stationary.

Differencing the New York births

Does differencing help here? xxx

```
ny.diff.ts=diff(ny.ts)
autoplot(ny.diff.ts)
```


Decomposing a seasonal time series

Observations for NY births were every month. Are things the same every year?

A visual (using original data): xxx

decompose(ny.ts) %>% autoplot()

Decomposition of additive time series

Decomposition bits

Shows:

- original series
- a "seasonal" part: something that repeats every year
- just the trend, going steadily up (except at the start)
- random: what is left over ("remainder")

The seasonal part

Fitted seasonal part is same every year, births lowest in February and highest in July:

ny.d\$seasonal

Error in eval(expr, envir, enclos): object 'ny.d' not found

Time series basics

White noise

Independent random normal. Knowing one value tells you nothing about the next. "Random" process. xxx

```
wn=rnorm(100)
wn.ts=ts(wn)
autoplot(wn.ts)
```


Lagging a time series

This means moving a time series one (or more) steps back in time:

```
x=rnorm(5)
tibble(x) %>% mutate(x_lagged=lag(x)) -> with_lagged
with_lagged
```

Gain a missing because there is nothing before the first observation.

Lagging white noise

```
tibble(wn) %>% mutate(wn_lagged=lag(wn)) -> wn_with_lagged
ggplot(wn_with_lagged, aes(y=wn, x=wn_lagged))+geom_point()
```

Warning: Removed 1 rows containing missing values
(geom_point).

Correlation with lagged series

If you know about white noise at one time point, you know *nothing* about it at the next. This is shown by the scatterplot and the correlation.

On the other hand, this:

##

```
tibble(age=kings$X1) %>%
  mutate(age_lagged=lag(age)) -> kings_with_lagged
with(kings_with_lagged, cor.test(age, age_lagged))
```

```
## Pearson's product-moment correlation
##
## data: age and age_lagged
## t = 2.7336, df = 39, p-value = 0.00937
## alternative hypothesis: true correlation is not equal to 0
```

0.1064770 0.6308209

95 percent confidence interval:

If one value larger, the next value (a bit) more likely to be larger:

```
ggplot(kings_with_lagged, aes(x=age_lagged, y=age)) + geom_po:
```

Warning: Removed 1 rows containing missing values ## (geom_point).

Two steps back:

```
kings with lagged %>%
  mutate(age_lag_2=lag(age_lagged)) %>%
  with(., cor.test(age, age_lag_2))
##
##
    Pearson's product-moment correlation
##
## data: age and age lag 2
## t = 1.5623, df = 38, p-value = 0.1265
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.07128917 0.51757510
## sample estimates:
##
        cor
```

0.245676

Still a correlation two steps back, but smaller (and no longer significant).

Lecture notes STAD29: Statistics for the Life and Social Sc 37/126

Autocorrelation

Correlation of time series with *itself* one, two,... time steps back is useful idea, called **autocorrelation**. Make a plot of it with acf and autoplot:

White noise: xxx

Kings, differenced xxx

acf(kings.diff.ts, plot=F) %>% autoplot()

Comments on autocorrelations of kings series

Negative autocorrelation at lag 1, nothing beyond that.

- If one value of differenced series positive, next one most likely negative.
- If one king lives longer than predecessor, next one likely lives shorter.

NY births, differenced xxx

acf(ny.diff.ts, plot=F) %>% autoplot()

Lots of stuff:

- large positive autocorrelation at 1.0 years (July one year like July last year)
- large negative autocorrelation at 1 month.
- smallish but significant negative autocorrelation at 0.5 year = 6 months.
- Other stuff complicated.

Souvenir sales

Monthly sales for a beach souvenir shop in Queensland, Australia:

```
souv=read_table("souvenir.txt", col_names=F)
```

```
## Parsed with column specification:
## cols(
## X1 = col_double()
## )
```

```
souv.ts=ts(souv,frequency=12,start=1987)
souv.ts
```

##		Jan	Feb	Mar	Apr
## 1	987	1664.81	2397.53	2840.71	3547.29
## 1	988	2499.81	5198.24	7225.14	4806.03
## 1	989	4717.02	5702.63	9957.58	5304.78
## 1	990	5921.10	5814.58	12421.25	6369.77
## 1	991	4826.64	6470.23	9638.77	8821.17
Lecture notes			STAD29: Statistics for the Life and Social Sc		

43 / 126

Plot of souvenir sales xxx

autoplot(souv.ts)

Several problems:

- Mean goes up over time
- Variability gets larger as mean gets larger
- Not stationary

Problem-fixing:

Fix non-constant variability first by taking logs: xxx

```
souv.log.ts=log(souv.ts)
autoplot(souv.log.ts)
```


Mean still not constant, so try taking differences xxx

souv.log.diff.ts=diff(souv.log.ts)
autoplot(souv.log.diff.ts)

Comments

- Now stationary
- but clear seasonal effect.

Decomposing to see the seasonal effect xxx

souv.d=decompose(souv.log.diff.ts)
autoplot(souv.d)

Comments

Big drop in one month's differences. Look at seasonal component to see which:

50 / 126

souv.d\$seasonal

```
##
                 Jan
                              Feb
                                           Mar
## 1987
                      0.23293343 0.49068755
                      0.23293343 0.49068755
   1988 -1.90372141
   1989 -1.90372141
                     0.23293343
                                   0.49068755
## 1990 -1.90372141
                      0.23293343
                                   0.49068755
## 1991 -1.90372141
                      0.23293343
                                   0.49068755
## 1992 -1.90372141
                      0.23293343
                                   0.49068755
  1993 -1.90372141
                      0.23293343
                                   0.49068755
##
                 Apr
                              May
                                           Jun
                                   0.05074206
  1987 -0.39700942 0.02410429
   1988 -0.39700942 0.02410429 0.05074206
   1989 -0.39700942
                      0.02410429
                                   0.05074206
     Lecture notes
                    STAD29: Statistics for the Life and Social Sc.
```

Autocorrelations xxx

acf(souv.log.diff.ts, plot=F) %>% autoplot()

Moving average

- A particular type of time series called a moving average or MA process captures idea of autocorrelations at a few lags but not at others.
- Here's generation of MA(1) process, with autocorrelation at lag 1 but not otherwise:

```
beta=1
tibble(e=rnorm(100)) %>%
  mutate(e_lag=lag(e)) %>%
  mutate(y=e+beta*e_lag) %>%
  mutate(y=ifelse(is.na(y), 0, y)) -> ma
ma
```

```
## # A tibble: 100 x 3

## e e_lag y

## <dbl> <dbl> <dbl>
## 1 \( \Omega \text{01} \) \( \Omega \text{N} \Delta \) \( \Omega \text{N} \Delta \text{CTD29: Statistics for the Life and Social Sc} \)
```

Comments

- e contains independent "random shocks".
- Start process at 0.
- Then, each value of the time series has that time's random shock, plus a multiple of the last time's random shock.
- y[i] has shock in common with y[i-1]; should be a lag 1 autocorrelation.
- But y[i] has no shock in common with y[i-2], so no lag 2 autocorrelation (or beyond).

ACF for MA(1) process xxx

acf(ma\$y, plot=F, na.rm=T) %>% autoplot()

AR process

Another kind of time series is AR process, where each value depends on previous one, like this (loop):

```
e=rnorm(100)
x=numeric(0)
x[1]=0
alpha=0.7
for (i in 2:100)
{
    x[i]=alpha*x[i-1]+e[i]
}
x
```

```
## [1] 0.0000000 0.69150384 -0.27156693

## [4] -1.69374385 -0.04624706 -0.61289729

## [7] 0.26464756 -0.21493841 -1.31429232

## [10] 0.44277420 0.09918044 0.19080999
```

Comments

- Each random shock now only used for its own value of x
- but x[i] also depends on previous value x[i-1]
- so correlated with previous value
- but x[i] also contains multiple of x[i-2] and previous x's
- so all x's correlated, but autocorrelation dying away.

ACF for AR(1) series xxx

acf(x, plot=F) %>% autoplot()

Partial autocorrelation function

This cuts off for an AR series: xxx

PACF for an MA series decays slowly xxx

pacf(ma\$y, plot=F) %>% autoplot()

The old way of doing time series analysis

Starting from a series with constant variability (eg. transform first to get it, as for souvenirs):

- Assess stationarity.
- If not stationary, take differences as many times as needed until it is.
- Look at ACF, see if it dies off. If it does, you have MA series.
- Look at PACF, see if that dies off. If it does, have AR series.
- If neither dies off, probably have a mixed "ARMA" series.
- Fit coefficients (like regression slopes).
- Do forecasts.

The new way of doing time series analysis (in R)

- Transform series if needed to get constant variability
- Use package forecast.
- Use function auto.arima to estimate what kind of series best fits data.
- Use forecast to see what will happen in future.

Anatomy of auto.arima output

auto.arima(ma\$y)

Lecture notes

```
## Series: ma$y
## ARIMA(0,0,1) with zero mean
##
## Coefficients:
## ma1
## 0.9070
## s.e. 0.0617
##
## sigma^2 estimated as 0.9878: log likelihood=-141.64
```

• ARIMA part tells you what kind of series you are estimated to have:

STAD29: Statistics for the Life and Social Sc

- first number (first 0) is AR (autoregressive) part
- second number (second 0) is amount of differencing here
- third number (1) is MA (moving average) part

ATC=287.29 AICc=287.41 BIC=292.5

What other models were possible?

Run auto.arima with trace=T:

```
auto.arima(ma$y,trace=T)
##
##
    ARIMA(2,0,2) with non-zero mean : Inf
##
   ARIMA(0,0,0) with non-zero mean : 345.2328
##
   ARIMA(1,0,0) with non-zero mean: 313.9535
    ARIMA(0,0,1) with non-zero mean : 287.9463
##
   ARIMA(0,0,0) with zero mean : 346.0889
##
   ARIMA(1,0,1) with non-zero mean : 290.112
##
##
    ARIMA(0,0,2) with non-zero mean : 290.1128
##
    ARIMA(1,0,2) with non-zero mean : 291.7865
    ARIMA(0,0,1) with zero mean : 287.4124
##
    ARIMA(1,0,1) with zero mean : 289.4909
##
    ARIMA(0,0,2) with zero mean : 289.4993
##
##
    ARIMA(1,0,0) with zero mean : 312.7625
     Lecture notes
                   STAD29: Statistics for the Life and Social Sc.
```

Doing it all the new way: white noise

```
wn.aa=auto.arima(wn.ts)
wn.aa

## Series: wn.ts
## ARIMA(0,0,0) with zero mean
##
## sigma^2 estimated as 1.111: log likelihood=-147.16
## AIC=296.32 AICc=296.36 BIC=298.93
Best fit is white noise (no AR, no MA, no differencing).
```

Forecasts:

forecast(wn.aa)

```
##
       Point Forecast Lo 80 Hi 80 Lo 95
## 101
                    0 -1.350869 1.350869 -2.065975
                    0 -1.350869 1.350869 -2.065975
## 102
## 103
                    0 -1.350869 1.350869 -2.065975
## 104
                    0 -1.350869 1.350869 -2.065975
## 105
                    0 -1.350869 1.350869 -2.065975
## 106
                    0 -1.350869 1.350869 -2.065975
                    0 -1.350869 1.350869 -2.065975
## 107
## 108
                    0 -1.350869 1.350869 -2.065975
## 109
                    0 -1.350869 1.350869 -2.065975
## 110
                    0 -1.350869 1.350869 -2.065975
          Hi 95
##
## 101 2.065975
   102 2.065975
```

Lecture notes

MA(1)

```
y.aa=auto.arima(ma$y)
y.aa
## Series: ma$y
## ARIMA(0,0,1) with zero mean
##
## Coefficients:
##
           ma1
## 0.9070
## s.e. 0.0617
##
## sigma^2 estimated as 0.9878: log likelihood=-141.64
## ATC=287.29 ATCc=287.41 BTC=292.5
y.f=forecast(y.aa)
```

Plotting the forecasts for MA(1) xxx

autoplot(y.f)

AR(1)

```
x.aa=auto.arima(x)
x.aa
## Series: x
## ARIMA(0,1,1)
##
## Coefficients:
##
            ma1
## -0.3544
## s.e. 0.1062
##
## sigma^2 estimated as 0.979: log likelihood=-138.99
## ATC=281.97 ATCc=282.1 BTC=287.16
Oops!
```

Got it wrong! Fit right AR(1) model:

x.arima=arima(x,order=c(1,0,0))

x.arima

##

```
## Call:
## arima(x = x, order = c(1, 0, 0))
##
## Coefficients:
## ar1 intercept
## 0.7758 -0.3646
## s.e. 0.0611 0.4220
##
## sigma^2 estimated as 0.957: log likelihood = -140.16, aid
```

Forecasts for x xxx

forecast(x.arima) %>% autoplot()

NA

Kings

```
kings.aa
## Series: kings.ts
## ARIMA(0,1,1)
##
## Coefficients:
##
            ma1
## -0.7218
## s.e. 0.1208
##
## sigma^2 estimated as 236.2: log likelihood=-170.06
## AIC=344.13 AICc=344.44 BIC=347.56
```

kings.aa=auto.arima(kings.ts)

Kings forecasts:

```
kings.f=forecast(kings.aa)
kings.f
##
      Point Forecast Lo 80 Hi 80
                                       Lo 95
## 43
            67.75063 48.05479 87.44646 37.62845
## 44
            67.75063 47.30662 88.19463 36.48422
            67.75063 46.58489 88.91637 35.38042
## 45
## 46
            67.75063 45.88696 89.61429 34.31304
## 47
            67.75063 45.21064 90.29062 33.27869
## 48
            67.75063 44.55402 90.94723 32.27448
## 49
            67.75063 43.91549 91.58577 31.29793
## 50
            67.75063 43.29362 92.20763 30.34687
## 51
            67.75063 42.68718 92.81408 29.41939
## 52
            67.75063 42.09507 93.40619 28.51383
          Hi 95
##
       97.87281
   43
```

Kings forecasts, plotted xxx

autoplot(kings.f) + labs(x="index", y= "age at death")

NY births

```
ny.aa=auto.arima(ny.ts)
ny.aa
## Series: ny.ts
## ARIMA(2,1,2)(1,1,1)[12]
##
## Coefficients:
               ar2 ma1 ma2 sar1
##
          ar1
##
      0.6539 -0.4540 -0.7255 0.2532 -0.2427
## s.e. 0.3003 0.2429 0.3227 0.2878 0.0985
##
           sma1
## -0.8451
## s.e. 0.0995
##
## sigma^2 estimated as 0.4076: log likelihood=-157.45
## AIC=328.91 AICc=329.67 BIC=350.21
```

NY births forecasts

Lecture notes

Not quite same every year:

```
ny.f
```

```
##
            Point Forecast
                          Lo 80
                                       Hi 80
                  27,69056 26,87069 28,51043 26,43668
## Jan 1960
## Feb 1960
                  26.07680 24.95838 27.19522 24.36632
## Mar 1960
                  29.26544 28.01566 30.51523 27.35406
## Apr 1960
                  27,59444 26,26555 28,92333 25,56208
## May 1960
                  28.93193 27.52089 30.34298 26.77392
## Jun 1960
                  28.55379 27.04381 30.06376 26.24448
## Jul 1960
                  29.84713 28.23370 31.46056 27.37960
## Aug 1960
                  29.45347 27.74562 31.16132 26.84155
## Sep 1960
                  29.16388 27.37259 30.95517 26.42433
## Oct 1960
                  29.21343 27.34498 31.08188 26.35588
## Nov 1960
                  27.26221 25.31879 29.20563 24.29000
  Dec 1960
                  28.06863 26.05137 30.08589 24.98349
```

STAD29: Statistics for the Life and Social Sc

Plotting the forecasts xxx

level 80

95

Log-souvenir sales

```
souv.aa=auto.arima(souv.log.ts)
souv.aa
## Series: souv.log.ts
## ARIMA(2,0,0)(0,1,1)[12] with drift
##
## Coefficients:
##
                          sma1 drift
           ar1 ar2
##
      0.3470 0.3516 -0.5205 0.0238
## s.e. 0.1092 0.1115 0.1700 0.0031
##
## sigma^2 estimated as 0.02953:
                                log likelihood=24.54
## ATC=-39.09 ATCc=-38.18 BTC=-27.71
```

souv.f=forecast(souv.aa,h=27)

The forecasts

Differenced series showed low value for January (large drop). December highest, Jan and Feb lowest:

78 / 126

```
souv.f
```

```
##
            Point Forecast Lo 80 Hi 80
## Jan 1994
                9.578291 9.358036 9.798545
## Feb 1994
                9.754836 9.521700 9.987972
                 10.286195 10.030937 10.541453
## Mar 1994
## Apr 1994
                 10.028630 9.765727 10.291532
           9.950862 9.681555 10.220168
## May 1994
## Jun 1994
                 10.116930 9.844308 10.389551
                 10.369140 10.094251 10.644028
## Jul 1994
## Aug 1994
                 10.460050 10.183827 10.736274
## Sep 1994
                 10.535595 10.258513 10.812677
## Oct 1994
                 10.585995 10.308386 10.863604
## Nov 1994
                 11.017734 10.739793 11.295674
                   STAD29: Statistics for the Life and Social Sc
     Lecture notes
```

Plotting the forecasts xxx

autoplot(souv.f)

Global mean temperatures, revisited

```
temp.ts=ts(temp$temperature,start=1880)
temp.aa=auto.arima(temp.ts)
temp.aa
## Series: temp.ts
## ARIMA(1,1,3) with drift
##
## Coefficients:
##
           ar1
               ma1 ma2 ma3 drift
## -0.9374 0.5038 -0.6320 -0.2988 0.0067
## s.e. 0.0835 0.1088 0.0876 0.0844
                                        0.0025
##
  sigma^2 estimated as 0.008939:
                                log likelihood=124.34
## AIC=-236.67 AICc=-235.99 BIC=-219.47
```

Forecasts xxx

Lecture notes

```
temp.f=forecast(temp.aa)
autoplot(temp.f)+labs(x="year", y="temperature")
```


STAD29: Statistics for the Life and Social Sc

Section 2

Multiway frequency tables

Packages

library(tidyverse)

Multi-way frequency analysis

A study of gender and eyewear-wearing finds the following frequencies:

Gender	Contacts	Glasses	None
Female	121	32	129
Male	42	37	85

- Is there association between eyewear and gender?
- Normally answer this with chisquare test (based on observed and expected frequencies from null hypothesis of no association).
- Two categorical variables and a frequency.
- We assess in way that generalizes to more categorical variables.

The data file

```
gender contacts glasses none female 121 32 129 male 42 37 85
```

- This is not tidy!
- Two variables are gender and *eyewear*, and those numbers all frequencies.

my url <- "http://www.utsc.utoronto.ca/~butler/d29/eyewear.tx

```
eyewear <- read_delim(my_url, " ")
eyewear</pre>
```

```
## # A tibble: 2 x 4
## gender contacts glasses
```

<chr> <dbl> <dbl> <dbl>

Tidying the data

```
eyes <- eyewear %>%
  gather(eyewear, frequency, contacts:none)
eyes
## # A tibble: 6 \times 3
##
     gender eyewear frequency
##
     <chr> <chr>
                          <dbl>
## 1 female contacts
                            121
## 2 male contacts
                           42
                           32
## 3 female glasses
                             37
## 4 male glasses
## 5 female none
                            129
## 6 male none
                             85
xt <- xtabs(frequency ~ gender + eyewear, data = eyes)</pre>
xt
```

Modelling

- Last table on previous page is "reconstituted" contingency table, for checking.
- Predict frequency from other factors and combos. glm with poisson family.

```
eyes.1 <- glm(frequency ~ gender * eyewear,
  data = eyes,
  family = "poisson"
)</pre>
```

def

Called log-linear model.

What can we get rid of?

```
drop1(eyes.1, test = "Chisq")
## Single term deletions
##
## Model:
## frequency ~ gender * eyewear
##
                 Df Deviance AIC LRT Pr(>Chi)
                       0.000 47.958
## <none>
## gender:eyewear 2 17.829 61.787 17.829 0.0001345
##
## <none>
## gender:eyewear ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
def }
```

Conclusions

- drop1 says what we can remove at this step. Significant = must stay.
- Cannot remove anything.
- Frequency depends on gender-wear combination, cannot be simplified further.
- Gender and eyewear are associated.
- Stop here.

prop.table

```
Original table:
xt
##
          eyewear
## gender contacts glasses none
    female
##
                121
                         32 129
    male
         42
                         37 85
##
 Calculate eg. row proportions like this:
prop.table(xt, margin = 1)
##
           eyewear
```

gender contacts glasses none ## female 0.4290780 0.1134752 0.4574468 ## male 0.2560976 0.2256098 0.5182927

No association

• Suppose table had been as shown below:

```
my_url <- "http://www.utsc.utoronto.ca/~butler/d29/eyewear2.tr
eyewear2 <- read_table(my_url)
eyes2 <- eyewear2 %>% gather(eyewear, frequency, contacts:none
xt2 <- xtabs(frequency ~ gender + eyewear, data = eyes2)
xt2
## eyewear</pre>
```

```
## female 150 30 120
## male 75 16 62
prop.table(xt2, margin = 1)
```

gender contacts glasses none

```
## eyewear

## gender contacts glasses none

## female 0.5000000 0.1000000 0.4000000

Lecture notes STAD29: Statistics for the Life and Social Sc
```

Analysis for revised data

```
eyes.2 <- glm(frequency ~ gender * eyewear,
  data = eyes2,
  family = "poisson"
drop1(eyes.2, test = "Chisq")
## Single term deletions
##
## Model:
## frequency ~ gender * eyewear
```

gender:eyewear 2 0.047323 43.515 0.047323 0.9766

0.000000 47.467

No longer any association. Take out interaction.

##

<none>

Df Deviance AIC LRT Pr(>Chi)

No interaction

```
eyes.3 <- update(eyes.2, . ~ . - gender:eyewear)</pre>
drop1(eyes.3, test = "Chisq")
## Single term deletions
##
## Model:
## frequency ~ gender + eyewear
##
          Df Deviance AIC LRT Pr(>Chi)
## <none> 0.047 43.515
## gender 1 48.624 90.091 48.577 3.176e-12 ***
## eyewear 2 138.130 177.598 138.083 < 2.2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Chest pain, being overweight and being a smoker

- In a hospital emergency department, 176 subjects who attended for acute chest pain took part in a study.
- Each subject had a normal or abnormal electrocardiogram reading (ECG), were overweight (as judged by BMI) or not, and were a smoker or not.
- How are these three variables related, or not?

The data

In modelling-friendly format:

```
ecg bmi smoke count
abnormal overweight yes 47
abnormal overweight no 10
abnormal normalweight yes 8
abnormal normalweight no 6
normal overweight yes 25
normal overweight no 15
normal normalweight yes 35
normal normalweight no 30
```

First step

```
my_url <- "http://www.utsc.utoronto.ca/~butler/d29/ecg.txt"
chest <- read_delim(my_url, " ")</pre>
chest.1 <- glm(count ~ ecg * bmi * smoke,
  data = chest,
  family = "poisson"
drop1(chest.1, test = "Chisq")
## Single term deletions
##
```

```
## Model:
## count ~ ecg * bmi * smoke
                Df Deviance AIC LRT Pr(>Chi)
##
                     0.0000 53.707
## <none>
```

ecg:bmi:smoke 1 1.3885 53.096 1.3885 0.2387

Removing the 3-way interaction

```
chest.2 <- update(chest.1, . ~ . - ecg:bmi:smoke)</pre>
drop1(chest.2, test = "Chisq")
## Single term deletions
##
## Model:
## count ~ ecg + bmi + smoke + ecg:bmi + ecg:smoke + bmi:smoke
            Df Deviance AIC LRT Pr(>Chi)
##
## <none> 1.3885 53.096
## ecg:bmi 1 29.0195 78.727 27.6310 1.468e-07 ***
## ecg:smoke 1 4.8935 54.601 3.5050 0.06119 .
## bmi:smoke 1 4.4689 54.176 3.0803 0.07924 .
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

STAD29: Statistics for the Life and Social Sc

Lecture notes

At $\alpha = 0.05$, bmi:smoke comes out.

Removing bmi:smoke

```
chest.3 <- update(chest.2, . ~ . - bmi:smoke)</pre>
drop1(chest.3, test = "Chisq")
## Single term deletions
##
## Model:
## count ~ ecg + bmi + smoke + ecg:bmi + ecg:smoke
            Df Deviance ATC LRT Pr(>Chi)
##
## <none> 4.469 54.176
## ecg:bmi 1 36.562 84.270 32.094 1.469e-08 ***
## ecg:smoke 1 12.436 60.144 7.968 0.004762 **
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ecg:smoke has become significant. So we have to stop.
```

Understanding the final model

- Thinking of ecg as "response" that might depend on anything else.
- What is associated with ecg? Both bmi on its own and smoke on its own, but *not* the combination of both.
- ecg:bmi table:

```
xtabs(count ~ ecg + bmi, data = chest)
## bmi
```

```
## ecg normalweight overweight
## abnormal 14 57
## normal 65 40
```

 Most normal weight people have a normal ECG, but a majority of overweight people have an abnormal ECG. That is, knowing about BMI says something about likely ECG.

ecg:smoke

• ecg:smoke table:

```
xtabs(count ~ ecg + smoke, data = chest)
```

```
## smoke

## ecg no yes

## abnormal 16 55

## normal 45 60
```

- Most nonsmokers have a normal ECG, but smokers are about 50–50 normal and abnormal ECG.
- Don't look at smoke: bmi table since not significant.

Simpson's paradox: the airlines example

	Alaska Airlines		America West	
Airport	On time	Delayed	On time	Delayed
Los Angeles	497	62	694	117
Phoenix	221	12	4840	415
San Diego	212	20	383	65
San Francisco	503	102	320	129
Seattle	1841	305	201	61
Total	3274	501	6438	787

Use status as variable name for "on time/delayed".

- Alaska: 13.3% flights delayed (501/(3274 + 501)).
- America West: 10.9% (787/(6438 + 787)).
- America West more punctual, right?

Arranging the data

 Can only have single thing in columns, so we have to construct column names like this: \begin{small}

```
aa_ontime aa_delayed aw_ontime aw_delayed
airport
LosAngeles
             497
                            62
                                     694
                                                 117
Phoenix
             221
                            12
                                    4840
                                                 415
SanDiego
           212
                            20
                                     383
                                                  65
SanFrancisco 503
                           102
                                     320
                                                 129
                                                  61
Seattle
             1841
                          305
                                     201
\end{small}
```

 Some tidying gets us the right layout, with frequencies all in one column and the airline and delayed/on time status separated out:

```
my_url <- "http://www.utsc.utoronto.ca/~butler/d29/airlines.tx
airlines <- read_table2(my_url)</pre>
```

STAD29: Statistics for the Life and Social Sc

The data frame punctual

```
A tibble: 20 \times 4
##
                      airline status
       airport
                                          freq
                      <chr>
       <chr>
                               <chr>>
                                        <dbl>
##
##
    1 LosAngeles
                               ontime
                                           497
                      aa
##
    2 Phoenix
                                           221
                               ontime
                      aa
##
    3 SanDiego
                                           212
                               ontime
                      aa
##
      SanFrancisco
                                           503
                      aa
                               ontime
##
    5 Seattle
                                          1841
                               ontime
                      aa
##
    6 LosAngeles
                               delayed
                                            62
                      aa
                                            12
##
    7 Phoenix
                               delayed
                      ลล
##
      SanDiego
                               delayed
                                            20
                      aa
      SanFrancisco
##
                               delayed
                                           102
##
   10 Seattle
                               delayed
                                           305
                      ลล
   11 LosAngeles
                               ontime
                                           694
                      aw
   12 Phoenix
                               ontime
                                          4840
                      aw
                                           383
   13 SanDiego
                               ontime
                      aw
                      STAD29: Statistics for the Life and Social Sc.
```

Proportions delayed by airline

• Two-step process: get appropriate subtable:

```
xt <- xtabs(freq ~ airline + status, data = punctual)
xt</pre>
```

```
## airline delayed ontime
## aa 501 3274
## aw 787 6438
```

status

##

and then calculate appropriate proportions:

```
prop.table(xt, margin = 1)
```

```
## status

## airline delayed ontime

## aa 0.1327152 0.8672848

## aw 0.1089273 0.8910727
```

Proportion delayed by airport, for each airline

##

```
xt <- xtabs(freq ~ airline + status + airport, data = punctual
xp <- prop.table(xt, margin = c(1, 3))
ftable(xp,
   row.vars = c("airport", "airline"),
   col.vars = "status"
)</pre>
```

delayed

ontime

```
## airport
              airline
                                0.11091234 0.88908766
## LosAngeles
                ลล
##
                aw
                                0.14426634 0.85573366
                                0.05150215 0.94849785
## Phoenix
                ลล
##
                                0.07897241 0.92102759
                aw
                                0.08620690 0.91379310
## SanDiego
                aa
##
                                0.14508929 0.85491071
                aw
## SanFrancisco aa
                                0.16859504 0.83140496
```

status

Simpson's Paradox

Airport	Alaska	America West
Los Angeles	11.4	14.4
Phoenix	5.2	7.9
San Diego	8.6	14.5
San Francisco	16.9	28.7
Seattle	14.2	23.2
Total	13.3	10.9

- America West more punctual overall,
- but worse at every single airport!
- How is that possible?
- Log-linear analysis sheds some light.

Model 1 and output

```
punctual.1 <- glm(freq ~ airport * airline * status,</pre>
  data = punctual, family = "poisson"
drop1(punctual.1, test = "Chisq")
## Single term deletions
##
## Model:
## freq ~ airport * airline * status
                           Df Deviance AIC
##
                                                 I.R.T
## <none>
                                0.0000 183.44
## airport:airline:status 4 3.2166 178.65 3.2166
                           Pr(>Chi)
##
## <none>
## airport:airline:status 0.5223
def
```

Lecture notes

Remove 3-way interaction

```
punctual.2 <- update(punctual.1, ~ . - airport:airline:status)
drop1(punctual.2, test = "Chisq")

## Single term deletions
##
## Model:
## freq ~ airport + airline + status + airport:airline + airport
## airline:status</pre>
```

```
## airline:status

## Df Deviance AIC LRT Pr(>Chi)

## <none> 3.2 178.7

## airport:airline 4 6432.5 6599.9 6429.2 < 2.2e-16

## airport:status 4 240.1 407.5 236.9 < 2.2e-16
```

45.5 218.9 42.2 8.038e-11

<none>
airport:airline ***

airline:status

##

1

Understanding the significance

• airline:status:

```
xt <- xtabs(freq ~ airline + status, data = punctual)
prop.table(xt, margin = 1)</pre>
```

```
## status
## airline delayed ontime
## aa 0.1327152 0.8672848
## aw 0.1089273 0.8910727
```

- More of Alaska Airlines' flights delayed overall.
- Saw this before.

Understanding the significance (2)

• airport:status:

```
xt <- xtabs(freq ~ airport + status, data = punctual)
prop.table(xt, margin = 1)</pre>
```

```
##
                status
                    delayed ontime
  airport
    LosAngeles 0.13065693 0.86934307
##
    Phoenix
            0.07780612 0.92219388
##
    SanDiego 0.12500000 0.87500000
##
##
    SanFrancisco 0.21916509 0.78083491
    Seattle
                 0.15199336 0.84800664
##
```

- Flights into San Francisco (and maybe Seattle) are often late, and flights into Phoenix are usually on time.
- Considerable variation among airports.

Understanding the significance (3)

• airport:airline:

```
xt <- xtabs(freq ~ airport + airline, data = punctual)
prop.table(xt, margin = 2)</pre>
```

```
airline
##
  airport
                          aa
                                     aw
    LosAngeles 0.14807947 0.11224913
##
##
    Phoenix
             0.06172185 0.72733564
    SanDiego 0.06145695 0.06200692
##
##
    SanFrancisco 0.16026490 0.06214533
##
    Seattle
                 0.56847682 0.03626298
```

- What fraction of each airline's flights are to each airport.
- Most of Alaska Airlines' flights to Seattle and San Francisco.
- Most of America West's flights to Phoenix.

The resolution

- Most of America West's flights to Phoenix, where it is easy to be on time.
- Most of Alaska Airlines' flights to San Francisco and Seattle, where it is difficult to be on time.
- Overall comparison looks bad for Alaska because of this.
- But, comparing like with like, if you compare each airline's performance to the same airport, Alaska does better.
- Aggregating over the very different airports was a (big) mistake: that was the cause of the Simpson's paradox.
- Alaska Airlines is *more* punctual when you do the proper comparison.

Ovarian cancer: a four-way table

- Retrospective study of ovarian cancer done in 1973.
- Information about 299 women operated on for ovarian cancer 10 years previously.
- Recorded:
- stage of cancer (early or advanced)
- type of operation (radical or limited)
- X-ray treatment received (yes or no)
- 10-year survival (yes or no)
- Survival looks like response (suggests logistic regression).
- Log-linear model finds any associations at all.

The data

after tidying:

```
stage operation xray survival freq
early radical no no 10
early radical no yes 41
early radical yes no 17
early radical yes yes 64
early limited no no 1
early limited no yes 13
early limited yes no 3
early limited yes yes 9
advanced radical no no 38
advanced radical no yes 6
advanced radical yes no 64
advanced radical yes yes 11
advanced limited no no 3
advanced limited no yes 1
advanced limited yes no 13
advanced limited yes yes 5
```

Stage 1

hopefully looking familiar by now:

A tibble: 16×5

```
my_url <- "http://www.utsc.utoronto.ca/~butler/d29/cancer.txt"
cancer <- read_delim(my_url, " ")
cancer %>% print(n = 6)
```

```
##
    stage operation xray survival
                                   freq
##
  <chr> <chr> <chr> <chr>
                                  <dbl>
## 1 early radical no
                                      10
                          no
## 2 early radical no
                                     41
                          yes
## 3 early radical yes
                                     17
                          no
## 4 early radical
                                     64
                   yes
                          yes
## 5 early limited
                    no
                          no
## 6 early limited
                                      13
                    no
                          yes
## # ... with 10 more rows
```

Output 1

See what we can remove:

drop1(cancer.1, test = "Chisq")

```
## Single term deletions
##
## Model:
## freq ~ stage * operation * xray * survival
##
                                 Df Deviance ATC
## <none>
                                     0.00000 98.130
## stage:operation:xray:survival 1 0.60266 96.732
##
                                     LRT Pr(>Chi)
## <none>
## stage:operation:xray:survival 0.60266 0.4376
```

Non-significant interaction can come out.

def

Stage 2

##

<none>

Lecture notes

```
cancer.2 <- update(cancer.1, ~ .</pre>
- stage:operation:xray:survival)
drop1(cancer.2, test = "Chisq")
## Single term deletions
##
## Model:
## freq ~ stage + operation + xray + survival + stage:operation
##
       stage:xray + operation:xray + stage:survival + operation
##
       xray:survival + stage:operation:xray + stage:operation
       stage:xray:survival + operation:xray:survival
##
```

Df Deviance

0.60266 96.732

AIC

LRT

117 / 126

stage:operation:xray 1 2.35759 96.487 1.75493 ## stage:operation:survival 1 1.17730 95.307 0.57465 ## stage:xray:survival 1 0.95577 95.085 0.35311

STAD29: Statistics for the Life and Social Sc

Take out stage:xray:survival

```
cancer.3 <- update(cancer.2, . ~ . - stage:xray:survival)</pre>
drop1(cancer.3, test = "Chisq")
## Single term deletions
##
## Model:
## freq ~ stage + operation + xray + survival + stage:operation
##
       stage:xray + operation:xray + stage:survival + operation
##
       xray:survival + stage:operation:xray + stage:operation
       operation:xray:survival
##
##
                             Df Deviance ATC
                                                    I.R.T
## <none>
                                 0.95577 95.085
                              1 3.08666 95.216 2.13089
## stage:operation:xray
## stage:operation:survival 1 1.56605 93.696 0.61029
```

##

Pr(>Chi)

operation:xray:survival 1 1.55124 93.681 0.59547

Remove operation:xray:survival

Single term deletions

```
cancer.4 <- update(cancer.3, . ~ . - operation:xray:survival)
drop1(cancer.4, test = "Chisq")</pre>
```

```
##
## Model:
## freq ~ stage + operation + xray + survival + stage:operation
```

stage:xray + operation:xray + stage:survival + operation
xray:survival + stage:operation:xray + stage:operation

```
## Df Deviance AIC LRT
## <none> 1.5512 93.681
## xray:survival 1 1.6977 91.827 0.1464
```

```
## stage:operation:xray 1 6.8420 96.972 5.2907
## stage:operation:survival 1 1.9311 92.061 0.3799
## Pr(>Chi)
```

<none>

Comments

- stage:operation:xray has now become significant, so won't remove that.
- Shows value of removing terms one at a time.
- There are no higher-order interactions containing both xray and survival, so now we get to test (and remove) xray:survival.

Remove xray: survival

```
cancer.5 <- update(cancer.4, . ~ . - xray:survival)
drop1(cancer.5, test = "Chisq")

## Single term deletions
##
## Model:</pre>
```

freq ~ stage + operation + xray + survival + stage:operation
stage:xray + operation:xray + stage:survival + operation

stage:xray + operation:xray + stage:survival + operat
stage:operation:xray + stage:operation:survival
Df Deviance ATC IRT

Df Deviance AIC LRT
<none> 1.6977 91.827
stage:operation:yray 1 6.9277 95.057 5.2300

stage:operation:xray 1 6.9277 95.057 5.2300 ## stage:operation:survival 1 2.0242 90.154 0.3265 ## Pr(>Chi)

STAD29: Statistics for the Life and Social Sc

Lecture notes

Remove stage:operation:survival

```
cancer.6 <- update(cancer.5, . ~ . - stage:operation:survival)</pre>
drop1(cancer.6, test = "Chisq")
## Single term deletions
##
## Model:
## freq ~ stage + operation + xray + survival + stage:operation
##
       stage:xray + operation:xray + stage:survival + operation
##
       stage:operation:xray
                         Df Deviance
##
                                          ATC
                                                   I.R.T
```

Last step?

##

##

##

<none>

<none>

```
Remove operation:survival.
```

```
cancer.7 <- update(cancer.6, . ~ . - operation:survival)</pre>
drop1(cancer.7, test = "Chisq")
```

```
## Single term deletions
##
```

stage:survival

Pr(>Chi)

STAD29: Statistics for the Life and Social Sc.

I.RT

Conclusions

- What matters is things associated with survival (survival is "response").
- Only significant such term is stage:survival:

```
xt <- xtabs(freq ~ stage + survival, data = cancer)
prop.table(xt, margin = 1)</pre>
```

```
## survival

## stage no yes

## advanced 0.8368794 0.1631206

## early 0.1962025 0.8037975
```

- Most people in early stage of cancer survived, and most people in advanced stage did not survive.
- This true regardless of type of operation or whether or not X-ray treatment was received. These things have no impact on survival.

What about that other interaction?

stage

```
xt <- xtabs(freq ~ operation + xray + stage, data = cancer)</pre>
ftable(prop.table(xt, margin = 3))
```

advanced

early

```
## operation xray
## limited
                         0.02836879 0.08860759
             no
                         0.12765957 0.07594937
##
             yes
## radical
                         0.31205674 0.32278481
             no
##
                         0.53191489 0.51265823
             yes
```

- Out of the people at each stage of cancer (since margin=3 and stage was listed 3rd).
- The association is between stage and xray only for those who had the limited operation.
- For those who had the radical operation, there was no association between stage and xray. STAD29: Statistics for the Life and Social Sc.

##

General procedure

- Start with "complete model" including all possible interactions.
- drop1 gives highest-order interaction(s) remaining, remove least non-significant.
- Repeat as necessary until everything significant.
- Look at subtables of significant interactions.
- Main effects not usually very interesting.
- Interactions with "response" usually of most interest: show association with response.
- ## Error in FUN(X[[i]], ...): invalid 'name' argument