МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ П. О. СУХОГО

Кафедра

«Нефтегазоразработка и гидропневмоавтоматика»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К курсовому проекту По дисциплине: «Скважинная добыча нефти и газа»

на тему «Одновременная эксплуатация нескольких нефтяных пластов»

	Выполнил:	студент гр. ЗНР-51
		Часник А.А.
	Руководитель:	ст.преподаватель
		Атвиновская Т.В.
	Дата проверки:	
	Оценка работы:	
Подписи членов комиссии		
по защите курсовой работы:		

СОДЕРЖАНИЕ

1. Одновременная эксплуатация нескольких нефтяных пластов	3
2. Расчет кривых распределения давления в колонне подъемных труб	7
3.Расчет эксплуатации установки электроцентробежных насосов	14
4. Расчет эксплуатации скважины установкой штанговых глубинных насосог	в .18
5. Расчет гидравлического разрыва пласта	23
ЛИТЕРАТУРА	27

1. Одновременная эксплуатация нескольких нефтяных пластов

Скважина несовершенная по характеру вскрытия, одновременно эксплуатирующая 4 нефтеносных пропластка, исследована методом установившихся отборов. Скважина совершена по степени вскрытия.

Определить коэффициенты несовершенства скважины по характеру вскрытия, суммарный дебит пропластков, при соответствующем давлении, коэффициенты проницаемости и гидропроводности пропластков, характеристику перетоков жидкости после остановки скважины, минимальный дебит, при котором не происходит поглощение жидкости. Расчет провести графически и аналитическим способом.

Исходные данные

	Р _{заб} Мпа	Q ₁ T/cyT	Q ₂ T/cyT	Q ₃ T/cyT	Q ₄ T/cyT	h ₁ , м	h ₂ , м	h ₃ , м	h ₄ , м
Р _{заб1} Мп	20	15	19	11	18	2	o	7	4
Р _{заб2} Мп	25	3	15	2	10	3	0	/	4

$$\begin{array}{llll} r_c = & 0.15 & \text{M} \\ R\kappa = & 400 & \text{M} \\ \rho_{\text{H}\text{A}} = & 750 & \kappa \Gamma / \text{M}^{2} \\ \mu_{\text{H}} = & 3 & \text{M}\Pi a \cdot c \\ b_{\text{H}} = & 2 \\ n = & 15 \\ d = & 10 & \text{M} \\ L = & 10 & \text{M} \end{array}$$

1.1 Переведем дебит скважины из т в м3

$$Q = \frac{Q_{\rm H}}{\rho_{{\scriptscriptstyle {
m H}} {\rm J}}}, {\rm m}^3/{\rm cyr}$$
 $Q_1 = \frac{15000}{750} = 20.0 {\rm m}^3/{\rm cyr}$

и т.д.

где: Qн – дебит скважины в массовых единицах, кг/сут гнд – плотность дегазированной нефти, кг/м3 Отсюда результаты исследований получим в виде

	Рзаб МПа	Q ₁ м ³ /сут	Q ₂ м ³ /сут	Q ₃ м ³ /сут	Q ₄ м ³ /сут
	IVIIIa	M /CyT	M /CyT	M /Cyr	M /Cyr
Рзаб1	20	20.00	25.33	14.67	24.00
Мпа	20	20.00	23.55	11.07	21.00
Рзаб2	25	4.00	20.00	2.67	12.22
Мпа	25	4.00	20.00	2.67	13.33

1.2. По данным исследования строим индикаторные линии первого (1), второго (2), третьего (3) и четвертого (4) пластов и общую суммарную индикаторную линию. Индикаторные линии прямые, поэтому точки пересечения их с осью давлений позволяют определить пластовые давления для каждого пласта и давление в остановленной скважине:

Установившееся давление $P_{\text{пл}\Sigma}$ определяется графически. Для этого строим индикаторные прямые поглощения для пласта 3 (3¹) — зеркальное отображение прямой. Отрезок от точки пересечения прямой 3¹ и верхнего пласта до оси ординат соответствует дебиту перетока жидкости из пласта второго в третий. $Q_{\text{пер}} = 12.75 \text{ м3/сут}$.

При $P_{3a6} = P_{пл3}$ пласт номер 3 прекратит работать и суммарный дебит первого, второго и четвертого пластов определяет min дебит в отсутствии поглощения Q_{min} , который графически определяется абсциссой точки пересечения линии суммарного пластового давления $P_{пл\Sigma}$ с зеркальной осью. $Q_{min} = 30.27$ м3/сут

1.3. Расчет можно вести и аналитическим. Зная пластовые давления и дебиты при Рзаб = 20 МПа определим коэффициент продуктивности пластов и суммарный коэффициент

$$k1 = \frac{Q_1}{(P_{\Pi\Pi}^{-1} - 3_{3a6})} = \frac{20.00}{(26.25 - 20)} = 3.2 \quad \text{m}^{3}/\text{cyt} \cdot \text{M}\Pi \text{a}$$

$$k2 = \frac{Q_1}{(P_{\Pi\Pi}^{2} - 3_{3a6})} = \frac{25.33}{(43.75 - 20)} = 1.07 \quad \text{m}^{3}/\text{cyt} \cdot \text{M}\Pi \text{a}$$

$$k3 = \frac{Q_1}{(P_{\Pi\Pi}^{3} - 3_{3a6})} = \frac{14.67}{(26.11 - 20)} = 2.4 \quad \text{m}^{3}/\text{cyt} \cdot \text{M}\Pi \text{a}$$

$$k4 = \frac{Q_1}{(P_{\Pi\Pi}^{4} - 3_{3a6})} = \frac{24.00}{(31.25 - 20)} = 2.13 \quad \text{m}^{3}/\text{cyt} \cdot \text{M}\Pi \text{a}$$

$$k\sum = \frac{Q_{\Sigma}}{(P_{\Pi\Pi}^{2} - 3_{3a6})} = \frac{84.00}{(29.54 - 20)} = 8.8 \quad \text{m}^{3}/\text{cyt} \cdot \text{M}\Pi \text{a}$$

По расчетам

$$\kappa \Sigma = \kappa 1 + \kappa 2 + \kappa 3 + \kappa 4 = 3.20 + 1.07 + 2.40 + 8.81 = 8.80 \text{ m}3/\text{cyt}\cdot\text{M}\Pi\text{a}$$

1.4.При Рзаб = Рпл Σ производительность второго и первого пластов равны поглощению третьего и четвертого:

$$Q^{1}=k_{2}\cdot(P_{\text{mn2}}-P_{\text{mn}\Sigma})+k_{1}\cdot(P_{\text{mn1}}-P_{\text{mn}\Sigma})=1.07\cdot(43.8-29.5)+3.20\cdot(26.25-29.5)=\\ =4.7 \quad \text{m}^{3}/\text{cyt}$$

1.5.Минимальный дебит, при котором не происходит поглощения жидкости можно получить при забойном давлении равном пластовому давлению $P_{\text{заб}} = P_{\text{пл3}}$ $Q_{\text{min}} = k_1 \cdot (P_{\text{пл1}} - P_{\text{пл4}}) + k_2 \cdot (P_{\text{пл2}} - P_{\text{пл4}}) + k_3 \cdot (P_{\text{пл3}} - P_{\text{пл4}}) = 3.20 \cdot (26.25 - 26.11) + 1.07 \cdot (43.75 - 26.11) 2.13 \cdot (31.25 - 26.11) = 30.27 \text{ m}^3/\text{cyt}$

1.6.Для определения коэффициентов гидропроводности и проницаемости пластов воспользуемся формулой Дюпюи.

 C_2 – параметр несовершенства скважины по характеру вскрытия.

Параметр С2 находим по графику В.И. Щурова

$$l=L/2 \cdot r_c = 0.01 /(2 \cdot 0.15) = 0.033$$

$$\alpha = d/2 \cdot r_c = 0.01 /(2 \cdot 0.15) = 0.03$$

$$n \cdot D = 15 \cdot 2 \cdot 0.15) = 4.5$$

$$C_2 = 4.5$$

$$(\frac{k \cdot h}{\mu})_1 = \frac{k_1 \cdot b_{_H} \cdot (\ln(R_k/r_c) + C_2)}{2 \cdot \pi} = \frac{3.2 \cdot 2 \cdot (\ln(400 / 0.15) + 5)}{86400 \cdot 10^{-6} \cdot 2 \cdot 3.14}) = 14.6 \cdot 10^{-11} \, \text{m} \, 3/\Pi a \cdot c$$

$$k_1 = 14.6 \cdot 10^{-11} \cdot \frac{3 \cdot 10^{-3}}{3} = 14.61 \cdot 10^{-14} \, \text{m} \, 2$$

$$(\frac{k \cdot h}{\mu})_2 = \frac{k_2 \cdot b_{_H} \cdot (\ln(R_k/r_c) + C_2)}{2 \cdot \pi} = \frac{1.07 \cdot 2 \cdot (\ln(400 / 0.15) + 5)}{86400 \cdot 10^{-6} \cdot 2 \cdot 3.14}) = 4.89 \cdot 10^{-11} \, \text{m}_3/\Pi_a \cdot c$$

$$k_2 = 4.89 \cdot 10^{-11} \cdot \frac{3 \cdot 10^{-3}}{8} = 1.83 \cdot 10^{-14} \, \text{m}_2$$

$$(\frac{k \cdot h}{\mu})_3 = \frac{k_3 \cdot b_{_H} \cdot (\ln(R_k/r_c) + C_2)}{2 \cdot \pi} = \frac{2.4 \cdot 2 \cdot (\ln(400 / 0.15) + 5)}{86400 \cdot 10^6 \cdot 2 \cdot 3.14}) = 11 \cdot 10^{-11} \, \text{m}_3/\Pi_a \cdot c$$

$$k_3 = 11 \cdot 10^{-11} \cdot \frac{3 \cdot 10^{-3}}{7} = 4.70 \cdot 10^{-14} \, \text{m}_2$$

$$(\frac{k \cdot h}{\mu})_4 = \frac{k_4 \cdot b_{_H} \cdot (\ln(R_k/r_c) + C_2)}{2 \cdot \pi} = \frac{2.13 \cdot 2 \cdot (\ln(400 / 0.15) + 5)}{86400 \cdot 10^6 \cdot 2 \cdot 3.14}) = 9.73 \cdot 10^{-11} \,_{M3/\Pi a \cdot c}$$

$$k_4 = 9.73 \cdot 10^{-11} \cdot \frac{3 \cdot 10^{-3}}{4} = 7.29 \cdot 10^{-14} \,_{M2}$$

2. Расчет кривых распределения давления в колонне подъемных труб

Построить кривую распределения давления в колонне подъемных труб и соответствующий ее дебит для первого пласта для вертикальной скважины глубиной равной $H_{\text{скв}} = 0.5 P_{\text{пл1}} / \rho_{\text{н}} \cdot \text{g}$, давлении насыщения $P_{\text{нас}} = 0.7 P_{\text{пл1}}$, функции изменения истинной объемной доли газа в потоке в зависимости от давления $\phi_{\text{г}} = P_{\text{n}} / P_{\text{нас}}$, текущий дебит по газу $Q_{\text{г}} = \phi_{\text{г}} \cdot Q$, диаметр подъемных труб D = 63 мм, забойное давление $P_{\text{заб}} = 0.85 P_{\text{пл1}}$.

$$\begin{split} H_{\text{ckb}} = \frac{0.5 \cdot P_{\text{пл}}}{\rho_{\text{нд}} \cdot g} = \frac{0.5 \cdot 26.25 \cdot 10^6}{750 \cdot 9.81} = & 1784 \text{ м} \\ P_{\text{наc}} = & 0.7 \cdot P_{\text{пл}1} = 0.7 \cdot 26.25 = & 18.4 \text{ Мпа} \\ P_{\text{3a6}} = & 0.85 \cdot P_{\text{пл}1} = & 0.85 \cdot 26.25 = & 22.3 \text{ Мпа} \end{split}$$

2.1.Определим дебит скважины для коэффициента продуктивности первого пласта и заданных пластового и забойного давлений:

$$Q = k \times (P_{n\pi} - P_{3a\delta})$$

$$Q = 3.20 \cdot (26.3 - 22.3) = 12.6 \text{ m}^3/\text{cyt} = 13 \cdot 10^{-5} \text{ m}^3/\text{c}$$

2.2.Определяем глубину безгазового течения

$$H_{\delta\varepsilon} = H_{c\kappa\theta} - \frac{P_{3a\delta} - P_{hac}}{g \times \rho_{H} + \lambda \times \rho_{H} \times \frac{8}{D} \times (\frac{Q}{\pi \times D^{2}})^{2}}$$

Для этого определяем число Ренольдса потока:

Re= $(\upsilon \cdot D) / \upsilon$, а так как $\upsilon = (4 \cdot Q) / (\pi \cdot D^2)$ и $\upsilon = \mu / \rho$, то

$$Re = \frac{4 \cdot Q \cdot \rho}{\pi \cdot D \cdot \mu}$$

$$Re = \frac{4 \cdot 12.6 \cdot 10^{-5} \cdot 750}{3.14 \cdot 63 \cdot 10^{-3} \cdot 3 \cdot 10^{-3}} = 637$$

Коэффициент гидравлического трения находим по формуле

$$\lambda = \frac{64}{\text{Re}}$$

$$\lambda = \frac{64}{637} = 0.1$$

Тогда глубина безгазового течения

$$H_{\text{fr}} = 1784 - \frac{(22.3 - 18.4) \cdot 10^{3}}{9.81 \cdot 750 + 0.100 \cdot 750 \cdot \frac{8}{63 \cdot 10^{-3}} \cdot (\frac{13 \cdot 10^{-5}}{3.14 \cdot (63 \cdot 10^{-3})^{2}})^{2}} = \frac{1743}{\text{M}}$$

Интервал течения смеси со свободным газом будет равен

$$H_{rx} = H_{ckb} - H_{6r} = 1784 - 1743 = 40.8 \text{ m}$$

2.3. Рассчитаем распределение давления в колонне подъемных труб

Для этого интервал течения газожидкостной смеси разделим на 9 участков с $\Delta P = 1 \ \mathrm{M}\Pi a$.

Найдем значение давлений на каждом участке:

$$P_1$$
= 18.4 - 1·1 = 17.4 Мпа P_2 = 18.4 - 2·1 = 16.4 Мпа P_3 = 18.4 - 3·1 = 15.4 Мпа P_4 = 18.4 - 4·1 = 14.4 Мпа P_5 = 18.4 - 5·1 = 13.4 Мпа P_6 = 18.4 - 6·1 = 12.4 Мпа P_7 = 18.4 - 7·1 = 11.4 Мпа P_8 = 18.4 - 8·1 = 10.4 Мпа P_9 = 18.4 - 9·1 = 9.38 Мпа

2.4. Найдем значение истинной объемной доли нефти и газа в потоке.

$$\varphi_{c} = \frac{P_{hac} - P_{n}}{P_{hac}}$$

$$\varphi_{r1} = \frac{18.4 - 17.4}{18.38} = 0.05$$

$$\varphi_{r2} = \frac{18.4 - 16.4}{18.38} = 0.11$$

$$\varphi_{r3} = \frac{18.4 - 15.4}{18.38} = 0.16$$

$$\varphi_{r4} = \frac{18.4 - 14.4}{18.38} = 0.22$$

$$\varphi_{r5} = \frac{18.4 - 13.4}{18.38} = 0.27$$

$$\varphi_{r6} = \frac{18.4 - 12.4}{18.38} = 0.33$$

$$\varphi_{r7} = \frac{18.4 - 11.4}{18.38} = 0.38$$

$$\varphi_{r8} = \frac{18.4 - 10.4}{18.38} = 0.44$$

$$\varphi_{r9} = \frac{18.4 - 9.38}{18.38} = 0.49$$

$$\phi_{H} = 1 - \phi_{2}$$

$$\phi_{H1} = 1 - 0.05 = 0.95$$

$$\phi_{H2} = 1 - 0.11 = 0.89$$

$$\phi_{H3} = 1 - 0.16 = 0.84$$

$$\phi_{H4} = 1 - 0.22 = 0.78$$

$$\phi_{H5} = 1 - 0.27 = 0.73$$

$$\phi_{H6} = 1 - 0.33 = 0.67$$

$$\phi_{H7} = 1 - 0.38 = 0.62$$

$$\phi_{H8} = 1 - 0.44 = 0.56$$

$$\phi_{H9} = 1 - 0.49 = 0.51$$

2.5.Определим значение дебита нефти и газа на каждом интервале ступени:

$$Q c = \varphi_{c} \times Q$$

$$Q_{r1} = 0.05 \cdot 12.6 \cdot 10^{-5} = 6.86 \cdot 10^{-6} \text{ m}^{3}/\text{c}$$

$$Q_{r2} = 0.11 \cdot 12.6 \cdot 10^{-5} = 13.7 \cdot 10^{-6} \text{ m}^{3}/\text{c}$$

$$Q_{r3} = 0.16 \cdot 12.6 \cdot 10^{-5} = 20.6 \cdot 10^{-6} \text{ m}^{3}/\text{c}$$

$$Q_{r4} = 0.22 \cdot 12.6 \cdot 10^{-5} = 27.4 \cdot 10^{-6} \text{ m}^{3}/\text{c}$$

$$Q_{r5} = 0.27 \cdot 12.6 \cdot 10^{-5} = 34.3 \cdot 10^{-6} \text{ m}^{3}/\text{c}$$

$$Q_{r6} = 0.33 \cdot 12.6 \cdot 10^{-5} = 41.1 \cdot 10^{-6} \text{ m}^{3}/\text{c}$$

$$Q_{r7} = 0.38 \cdot 12.6 \cdot 10^{-5} = 48 \cdot 10^{-6} \text{ m}^{3}/\text{c}$$

$$Q_{r8} = 0.44 \cdot 12.6 \cdot 10^{-5} = 54.9 \cdot 10^{-6} \text{ m}^{3}/\text{c}$$

$$Q_{r9} = 0.49 \cdot 12.6 \cdot 10^{-5} = 61.7 \cdot 10^{-6} \text{ m}^{3}/\text{c}$$

$$Q H = \varphi_{H} \times Q$$

2.6.Определим приведенные скорости нефти и газа в потоке

$$\varpi_{nz} = \frac{Qz}{S}$$

где:
$$S = \frac{\pi \times D^2}{4} = \frac{3.14 \times (63 \times 10^{-3})^2}{4} = 3.12 \times 10^{-3} \, \text{м}^2$$
 $\varpi_{nel} = \frac{6.86 \cdot 10^{-6}}{3,12 \cdot 10^{-3}} = 0.0022 \, \text{м/c}$
 $\varpi_{ne2} = \frac{13.7 \cdot 10^{-6}}{3,12 \cdot 10^{-3}} = 0.0044 \, \text{м/c}$
 $\varpi_{ne3} = \frac{20.6 \cdot 10^{-6}}{3,12 \cdot 10^{-3}} = 0.00659 \, \text{м/c}$
 $\varpi_{ne4} = \frac{27.4 \cdot 10^{-6}}{3,12 \cdot 10^{-3}} = 0.00879 \, \text{м/c}$
 $\varpi_{ne5} = \frac{34.3 \cdot 10^{-6}}{3,12 \cdot 10^{-3}} = 0.01099 \, \text{м/c}$
 $\varpi_{ne6} = \frac{41.1 \cdot 10^{-6}}{3,12 \cdot 10^{-3}} = 0.01319 \, \text{m/c}$
 $\varpi_{ne7} = \frac{48 \cdot 10^{-6}}{3,12 \cdot 10^{-3}} = 0.01538 \, \text{m/c}$
 $\varpi_{ne8} = \frac{54.9 \cdot 10^{-6}}{3,12 \cdot 10^{-3}} = 0.01758 \, \text{m/c}$
 $\varpi_{ne9} = \frac{61.7 \cdot 10^{-6}}{3,12 \cdot 10^{-3}} = 0.01978 \, \text{m/c}$
 $\varpi_{ne} = \frac{QH}{S}$

$$\varpi_{nH4} = \frac{98.6 \cdot 10^{-3}}{3,12 \cdot 10^{-3}} = 0.31593 \text{ m/c}$$

 $\varpi_{\text{nH2}} = \frac{112 \cdot 10^{-5}}{3.12 \cdot 10^{-3}} = 0.35989 \text{ m/c}$

 $\varpi_{nH3} = \frac{105 \cdot 10^{-5}}{3.12 \cdot 10^{-3}} = 0.33791 \text{ m/c}$

$$\varpi_{\text{nH5}} = \frac{91.7 \cdot 10^{-5}}{3,12 \cdot 10^{-3}} = 0.29396 \text{ m/c}$$

$$\varpi_{\text{nH6}} = \frac{84.9 \cdot 10^{-5}}{3,12 \cdot 10^{-3}} = 0.27198 \text{ m/c}$$

$$\varpi_{\text{nH7}} = \frac{78 \cdot 10^{-5}}{3,12 \cdot 10^{-3}} = 0.25 \text{ m/c}$$

$$\varpi_{\text{nH8}} = \frac{71.1 \cdot 10^{-5}}{3,12 \cdot 10^{-3}} = 0.22802 \text{ m/c}$$

$$\varpi_{\text{nH9}} = \frac{64.3 \cdot 10^{-5}}{3,12 \cdot 10^{-3}} = 0.20604 \text{ m/c}$$

2.7.Определим распределение давления в колонне подъемных труб при движении газожидкостной смеси по формуле:

$$\Delta L := \frac{10^{6}}{9.81 \cdot \left[\left(\rho_{\Gamma} \right) \cdot \phi_{\Gamma} + \rho_{H} \cdot \left(1 - \phi_{\Gamma} \right) \right] + \frac{\lambda}{2 \cdot D} \cdot \left(\frac{\rho_{\Gamma}}{\phi_{\Gamma}} \cdot \omega_{\Gamma}^{2} + \frac{\rho_{H}}{1 - \phi_{\Gamma}} \cdot \omega_{H}^{2} \right)}$$

$$\Delta L_{I} = \frac{10^{6}}{9.81 \cdot (0.91 \cdot 0.05 + 750 \cdot (1 - 0.05)) + \frac{0.100}{2 \cdot 63 \cdot 10^{-3}} \cdot (\frac{0.91}{0.05} \cdot 0.0022^{2} + \frac{750}{1 - 0.05} \cdot 0.382^{2})} = 141 \text{ M}$$

$$\Delta L_{2} = \frac{10^{6}}{9.81 \cdot (0.91 \cdot 0.11 + 750 \cdot (1 - 0.11)) + \frac{0.100}{2 \cdot 63 \cdot 10^{-3}} \cdot (\frac{0.91}{0.11} \cdot 0.0044^{2} + \frac{750}{1 - 0.11} \cdot 0.36^{2})} = 150 \text{ M}$$

$$\Delta L_{3} = \frac{10^{6}}{9.81 \cdot (0.91 \cdot 0.16 + 750 \cdot (1 - 0.16)) + \frac{0.100}{2 \cdot 63 \cdot 10^{-3}} \cdot (\frac{0.91}{0.16} \cdot 0.00659^{2} + \frac{750}{1 - 0.16} \cdot 0.338^{2})} = 160 \text{ M}$$

$$\Delta L_{4} = \frac{10^{6}}{9.81 \cdot (0.91 \cdot 0.22 + 750 \cdot (1 - 0.22)) + \frac{0.100}{2 \cdot 63 \cdot 10^{-3}} \cdot (\frac{0.91}{0.22} \cdot 0.00879^{2} + \frac{750}{1 - 0.22} \cdot 0.316^{2})} = 171 \text{ } M$$

$$\Delta L_{5} = 9.81 \cdot (0.91 \cdot 0.27 + 750 \cdot (1 - 0.27)) + \frac{0.100}{2 \cdot 63 \cdot 10^{-3}} \cdot (\frac{0.91}{0.27} \cdot 0.01099^{2} + \frac{750}{1 - 0.27} \cdot 0.294^{2})$$

$$\Delta L_6 = 9.81 \cdot (0.91 \cdot 0.33 + 750 \cdot (1 - 0.33)) + \frac{0.100}{2 \cdot 63 \cdot 10^{-3}} \cdot (\frac{0.91}{0.33} \cdot 0.01319^{2} + \frac{750}{1 - 0.33} \cdot 0.272^{2}) = 198 \text{ } M$$

$$\Delta L_7 = 9.81 \cdot (0.91 \cdot 0.38 + 750 \cdot (1 - 0.38)) + \frac{0.100}{2 \cdot 63 \cdot 10^{-3}} \cdot (\frac{0.91}{0.38} \cdot 0.01538^{2} + \frac{750}{1 - 0.38} \cdot 0.25^{2})$$

$$\Delta L_8 = 9.81 \cdot (0.91 \cdot 0.44 + 750 \cdot (1 - 0.44)) + \frac{0.100}{2 \cdot 63 \cdot 10^{-3}} \cdot (\frac{0.91}{0.44} \cdot 0.01758^{2} + \frac{750}{1 - 0.44} \cdot 0.228^{2})$$

$$\Delta L_{9} = 9.81 \cdot (0.91 \cdot 0.49 + 750 \cdot (1 - 0.49)) + \frac{0.100}{2 \cdot 63 \cdot 10^{-3}} \cdot (\frac{0.91}{0.49} \cdot 0.01978^{2} + \frac{750}{1 - 0.49} \cdot 0.206^{2})$$

Строим кривую распределения давления, кривые распределения дебитов нефти и газа по колонне подъемных труб $(Q_{_H}(L))$ и $Q_{_{\mathcal{E}}}(L)$.

По кривой распределения давления находим P_y

$$P_{y} = 9.17 \, \text{M}\Pi a$$

3. Расчет эксплуатации установки электроцентробежных насосов

Рассчитать Q для первого пласта полученного в задание №2 параметры эксплуатации ЭЦН для следующих условий: текущее пластовое давление для эксплуатации P_{nn} УЭЦН = 0,45 P_{nn1} , обводненность продукции скважины β_B =n%, то есть β_B = 46%, функции изменения объемной расходной доли газа в потоке в зависимости от давления β_Γ = ϕ_Γ (ϕ_Γ — функция распределения истинной доли газа в потоке в зависимости от давления рассчитанная в задании №2), забойное давление, коэффициент продуктивности пласта остается неизменным. Давление на устье P_y =1МПа. Нарисовать установке центробежного насоса с обозначением всех составных частей. Нарисовать в масштабе скважину с указанием всех рассчитанных уровней (отсчет вести от устья).

3.1. Принимая, что истинная и расходная доля фазы и среды равны между собой зная плотности нефти, газа и воды, определим плотность смеси:

$$\rho_{\mathcal{H}} = \rho_{\mathcal{H}} + \beta_{\mathcal{G}} \times (\rho_{\mathcal{G}} - \rho_{\mathcal{H}})$$

$$\rho_{\mathcal{H}} = 750 + 0.46 \cdot (1000 - 750) = 865 \quad \kappa 2/M^{3}$$

$$\rho_{\mathcal{CM}} = \rho_{\mathcal{H}} - \rho_{\mathcal{E}} \times (\rho_{\mathcal{H}} - \rho_{\mathcal{E}})$$

$$\rho_{\mathcal{CM}} = 865 - 0.49 \cdot (865 - 0.91) = 442 \quad \kappa 2/M^{3}$$

$$P_{\mathcal{H}} = \frac{0.45 \times P_{\mathcal{H}} \times \rho_{\mathcal{E}}}{\rho_{\mathcal{H}}}$$

$$P_{\mathcal{H}} = \frac{0.45 \cdot 26.3 \cdot 442}{750} = 6.96$$

3.2.Для заданного $P_{\text{плУЭЦ}}H$ и рассчитанной плотности смеси определим статический уровень $H_{\text{ст}}$ в неработающей скважине.

$$H_{cm} = H_{cke} - \frac{P_{nnV} \rightarrow UH}{\rho_{cm} \times g}$$

$$H_{cm} = 1784 - \frac{6.96 \cdot 10^6}{442 \cdot 9.81} = 178 \text{ M}$$

3.3.3ная дебит Q и коэффициент продуктивности первого пласта находим забойное давление $P_{\rm 3a6}$:

$$P_{3a\delta} = P_{nnV \ni UH} - \frac{Q}{\kappa}$$
 $P_{3a\delta} = 6.96 - \frac{12.6}{3.2} = 3.02 \ M\Pi a$

3.4.Для рассчитанного $P_{\text{заб}}$ и плотности смеси найдем динамический уровень в скважине при установленном отборе Q.

$$H_{\partial uH} = H_{ck6} - \frac{P_{3a\delta}}{\rho_{cm} \times g}$$

$$H_{\partial uH} = 1784 - \frac{3.02 \cdot 10^6}{442 \cdot 9.81} = 1087 \text{ M}$$

3.5.Глубину спуска УЭЦН определяем на 300 метров глубже динамического уровня

$$H_{y \ni IJH} = H_{дин} + 300$$
 $H_{y \ni IJH} = 1087 + 300 = 1387$ м

3.6.Определяем давление на уровне установки насоса:

$$P_{\mathit{V}\!\mathcal{I}\!\mathit{U}\!\mathit{H}}=300\! imes\!
ho_{\mathit{c}\!\mathit{M}}\! imes\!g$$
 $P_{\mathit{V}\!\mathcal{I}\!\mathit{U}\!\mathit{H}}=300\cdot 442\cdot 9.81=1.3$ МПа

3.7.Для давления, соответствующего глубине спуска насоса определяем объемную расходную долю газа:

$$\beta_{\text{гУЭЦН}} = \frac{(P_{\text{нас}} - P_{\text{УЭЦН}})}{P_{\text{нас}}}$$

$$\beta_{\text{УЭЦН}} = \frac{(18.4 - 1.3)}{18.38} = 0.93$$

- 3.8.Определяем необходимость газосепаратора: Так как $\beta \Gamma = 0.93 > 0.2$, то газосепаратор требуется
- 3.9.Определяем для данного дебита Q: 12.6 $\,$ м3/сут по графику для ступени рабочий напор $\rm H_o$: $\rm H_o = 7~M$

3.10.Определяем количество ступеней насоса:

$$N_{cm} = \frac{1,15 \times (H_{\partial uh} + \frac{Py}{\rho_{cM} \times g})}{H_o}$$

$$N_{cm} = \frac{1.15 \cdot (1087 + \frac{10^6}{441.8 \cdot 9.81})}{7} = 216 \text{ um}$$

3.11.Определяем потребляемую мощность ПЭД

$$N = 1.3 \times N_{cm} \times H_o \times \rho_{cM} \times g \times Q$$

$$N = 1.3 \cdot 216 \cdot 7 \cdot 442 \cdot 9.81 \cdot 12.6 = 1.07 \kappa Bm$$

3.12. Подбираем по прилагаемой таблице ПЭД - ЭДБ12-117В5

Рис. 1. Установка глубинного центробежного насоса:

1 — электродвигатель; 2 — узел гидрозащиты; 3 — насос; 4, 7 — плоский икруглый кабель соответственно; 5 — спускной клапан; 6 — хомут для крепления кабеля; 8 — насосно-компрессорные трубы; 9— оборудование устья скважины; 10 — автотрансформатор; 11 — станция управления

Рис.2. Расчетные уровни в скважине, оборудованной УЭЦН

Расчет эксплуатации скважины установкой штанговых глубинных насосс

Рассчитать Q для первого пласта полученного в задание №2 параметры эксплуатации ШГН для следующих условий: текущее пластовое давление для эксплуатации $P_{\text{плуШГН}} = 0.35 \ P_{\text{пл}1}$, обводненность продукции скважины β в=n , функции изменения объемной расходной доли газа в потоке в зависимости от давления β г = ϕ г (ϕ г — функция распределения истинной доли газа в потоке в зависимости от давления рассчитанная в задании №2), забойное давление , коэффициент продуктивности пласта остается неизменным. Давление на устье Pу=1МПа. Нарисовать установку штангового глубинного насоса с обозначением всех составных частей. Нарисовать в масштабе скважину с указанием всех рассчитанных уровней (отсчет вести от устья).

4.1. Принимая, что истинная и расходная доля фазы и среды между собой зная плотности нефти, газа и воды, определим плотность смеси:

$$\rho_{\mathcal{H}} = \rho_{\mathcal{H}} + \beta_{\mathcal{G}} \times (\rho_{\mathcal{G}} - \rho_{\mathcal{H}})$$

$$\rho_{\mathcal{H}} = 750 + 0.46 \cdot (1000 - 750) = 865.0 \text{ kg/m}^3$$

$$\rho_{\mathcal{CM}} = \rho_{\mathcal{H}} - \rho_{\mathcal{E}} \times (\rho_{\mathcal{H}} - \rho_{\mathcal{E}})$$

$$\rho_{\mathcal{CM}} = 865.0 - 0.49 \cdot (865.0 - 0.91) = 441.8 \text{ kg/m}^3$$

$$P_{nnVIIITH} = \frac{0.35 \times P_{nn1} \times \rho_{\mathcal{CM}}}{\rho_{\mathcal{H}}}$$

$$P_{nnVIIITH} = \frac{0.35 \cdot 26.25 \cdot 441.8}{750} = 5.41$$

4.2.Для заданного $P_{\text{плУЭЦН}}$ и рассчитанной плотности смеси определим статический уровень $H_{\text{ст}}$ в неработающей скважине.

$$H_{cm} = H_{cm} - \frac{P_{nnVIIITH}}{\rho_{cm} \times g}$$

$$H_{cm} = 1784 - \frac{5.41 \cdot 10^{6}}{441.8 \cdot 9.81} = 536 \text{ M}$$

4.3.Зная дебит Q и коэффициент продуктивности первого пласта находим забойное давление $P_{\text{заб}}$:

$$P_{3a6} = P_{nnVIIIITH} - \frac{Q}{\kappa}$$

$$P_{3a6} = 5.41 - \frac{12.60}{3.20} = 1.47 \ M\Pi a$$

4.4.Для рассчитанного $P_{\text{заб}}$ и плотности смеси найдем динамический уровень в скважине при установленном отборе Q.

$$H_{\partial uH} = H_{ck6} - \frac{P_{3a6}}{\rho_{cM} \times g}$$

$$H_{\partial uH} = 1784 - \frac{1.47 \cdot 10^{6}}{441.8 \cdot 9.81} = 1444 \text{ M}$$

4.5.Глубину спуска УШГН определяем на 50 метров глубже уровня соответствующего $P_{\text{нас}}$ (точка начала разгазирования)

$$H_{Y\!I\!I\!I\!I\!I\!H} = H_{\partial u_H} + 50$$

$$H_{Y\!H\!I\!\Gamma\!H} = 1444 + 50 = 1494 \text{ M}$$

4.6.Определяем давление на устье установки насоса:

$$P_{VIIIITH} = 50 \cdot \rho_{cm} \cdot g = 50 \cdot 441.8 \cdot 9.81 = 0.22 \ M\Pi a$$

- 4.7.По диаграмме Адонина для заданных глубин спуска и дебита скважины подбираем насос и тип станка-качалки. Для глубин спуска менее 1000 м применяется невставной насос. Для глубин спуска более 1000 метров применяется вставной насос.
- 5СК = 6 = 1,5 = 1600 с диаметром насоса: d = 28 мм и число качаний в минуту 15 4.8.По таблице 1.1. для полученного типоразмера насоса и станка-качалки подбираем НКТ и штанги. Количество штанг определяем исходя из глубины спуска насоса с учетом длины одной штанги равной 8 м

ШН - 22 х 19

Трубы - 60 х 51 мм

Количесвто штанг

$$n_{um} = \frac{H_{yIIIIH}}{l_{uu}} = \frac{1494}{8} = 187 \text{ } um$$

4.9.Определяем число качаний по формуле

$$n_1 = \frac{Q \cdot n_{max}}{Q_{max}} = \frac{12.6 \cdot 15}{17.5} = 10.8 = 11$$

где: nmax –максимальное число качаний установленное для станка-качалки Qmax – максимальная добыча, соответствующая верхней границе поля заданного насоса, м3/сут

Q – заданная добыча, м3/сут

4.10. Рассчитываем максимальную нагрузку на головку балансира (при ходе вверх) и максимальное удлинение колонны штанг по расчетной модели изображенной на рисунке (стержень с распределением по длине массы т соответствующей массе колонны штанг и силой действующей на нижнюю часть от давления жидкости, масса одной штанги 24,5 кг).

Максимальная нагрузка на головку балансира:

$$T_{\text{max}} = (1 - \frac{\rho_{\mathcal{M}}}{\rho_{uu}}) \times T_{uu} + \frac{T_{uu}}{g} \times \frac{S_{\varepsilon\delta}}{2} \times \varpi^2$$

 $T_{\it uu}$ — чистый вес колонны штанг в воздухе

$$T_{max} = (1 - \frac{865.0}{7850}) \cdot (24.5 \cdot 187) \cdot 9.81 + \frac{24.5 \cdot 187}{9.81} \cdot \frac{0.75}{2} \cdot (\frac{3}{60})^2 \cdot 9.81 =$$

$$= 40.00 \ \kappa H$$

Максимальное удлинение колонны штанг:

$$\Delta L = \frac{Fg \times L_{cn}}{E \times A}$$

где: Fg – вес колонны штанг, H

Lc – глубина спуска УШГН, м

E- модуль упругости для стали = 2 х 105 МПа

А – площадь поперечного сечения штанги, м2

$$A = \frac{\pi \times D^{2}}{4} = \frac{3.14 \times 0.022^{2}}{4} = 3,78 \times 10^{-4} \text{ m}^{2}$$

Тогда:

$$\Delta L = \frac{39996 \cdot 1494}{10^6 \cdot 2 \cdot 10^5 \cdot 3,78 \cdot 10^{-4}} = 0.79 \text{ M}$$

Рис. 3. Штанговая глубиннонасосная установка: 1 — фундамент; 2 — рама; 3 — электродвигатель; 4 — цилиндр; 5 — кривошип; 6 — груз; 7 — шатун; 8 — груз; 9 — стойка; 10 — балансир; 11 — механизм фиксации головки балансира; 12 — головка балансира; 13 — канатная подвеска; 14 — полированная штанга; 15 — оборудование устья скважины; 16 — обсадная колонна; 19 — глубинный насос; 20 — газовый якорь

Рис.4. Расчетные уровни в скважине, оборудованной УШГН

5. Расчет гидравлического разрыва пласта

Составить план проведения гидроразрыва пласта №3, выбрать рабочие жидкости и оценить показатели процесса для следующих условий:

Показатель	Обозначение	Величина	Размерность
Глубина скважины	L	1784	M
Средняя проницаемость	k	$2,011 \cdot 10^{-14}$	м ²
Модуль упругости пород	Е	$2 \cdot 10^{10}$	Па
Коэфициент Пуассона	V	0.25	
Средняя плотность пород над продуктивным	$ ho_{\pi}$	2385.2	KГ/M ³
Вязкость жидкости разрыва	μ	0.3	Пас
Концентрация песка	С	1400	кг/м3
Темп закачки	Q	$1.8 \cdot 10^{-2}$	M^3/c
Диаметр по долоту	D	0.3	M
Вскрытая толщина пласта	h	9	M
Плотность жидкости разрыв	$ ho_{\scriptscriptstyle \mathrm{H}}$	900	кг/м3

5.1.Вертикальная составляющая горного давления

$$P_{\it 28} = \rho_{\it n} \times g \times L$$

$$P_{\it 28} = 2385 \cdot 9.81 \cdot 1784 = 41.74 \ \rm M\Pi a$$

5.2. Горизонтальная составляющая горного давления

$$Pz = \frac{P_{zB} \times v}{(1 - v)}$$

$$P_z = \frac{41.7 \cdot 0.25}{(1 - 0.25)} = 13.9 \text{ M}\Pi a$$

В подобных условиях при ГРП следует ожидать образование вертикальной трещины. Запроектируем гидроразрыв нефильтрующейся жидкостью. В качестве жидкости разрыва и жидкости песконосителя используем загущенную нефть с добавкой асфальтена, плотность и вязкость даны в таблице.

Содержание песка принимаем с=1400 кг/м3, для расклинивания трещины запланируем подачу примерно 5 т кварцевого песка фракции 08-1,2 мм, темп закачки приведен в таблице: $Q = 1,8 \times 10-2 \text{ м3/c}$, что значительно больше минимального допустимого при создании вертикальных трещин.

При ГРП непрерывно закачивают жидкость песконосителя в объеме 7,6 м3, которая одновременно является и жидкостью разрыва.

Для определения параметров трещины используем формулы, вытекающие из упрощенной методики Ю.П. Желтова.

5.3.Определяем давление на забое скважины в конце гидроразрыва

$$\frac{P_{3a6}}{P_{c}} \times \left(\frac{P_{3a6}}{P_{c}} - 1\right)^{3} = \frac{5,25 \times E^{2} \times Q \times \mu}{(1 - v^{2})^{2} \times P_{c}^{3} \times V \mathcal{H}}$$

$$\frac{P_{3a6}}{P_{\Gamma}} \cdot \left(\frac{P_{3a6}}{P_{\Gamma}} - 1\right)^{3} = \frac{5,25 \cdot (2 \cdot 10^{10})^{2} \cdot 1,8 \cdot 10^{-2} \cdot 0,3}{(1 - 0,25^{2})^{2} \cdot (13.9 \cdot 10^{6})^{3} \cdot 7,6} = 6.3 \cdot 10^{-4}$$

$$P_{3a6} = 14.83 \text{ M}\Pi a$$

5.4.Определим длину трещины:

$$l = \left(\frac{V \mathcal{H} \times E}{5,6 \times (1 - v^2) \times h \times (P_{3a\delta} - P_z)}\right)^{1/2}$$

$$l = \left(\frac{7,6 \cdot 2 \cdot 10^{10}}{5,6 \cdot (1 - 0,25^2) \cdot 9 \cdot (14.83 - 13.9) \cdot 10^6}\right)^{\frac{1}{2}} = 59.28 \quad \text{M}$$

5.5.Определяем ширину (раскрытость) трещины:

$$\varpi = \frac{4 \times (1 - v^{2}) \times l \times (P_{3a6} - P_{2})}{E}$$

$$\varpi = \frac{4 \cdot (1 - 0.25^{2}) \cdot 59.28 \cdot (14.83 - 13.9) \cdot 10^{6}}{2 \cdot 10^{10}}$$

5.6.Определяем распространение жидкости-песконосителя в трещине:

$$l_I = 0.9 \cdot l$$

 $l_I = 0.9 \cdot 59.3 = 53.3 \text{ } M$

5.7.Определяем остаточную ширину трещины, принимая пористость песка после ее закрытия m=0,2.

$$\varpi_1 = \frac{\varpi \times n_0}{(1-m)}$$

где $n_0 = 0.107$,

тогда

$$\varpi_I = \frac{1 \cdot 0.11}{(1 - 0.2)} = 0.13$$
 cm

5.8.Определяем проницаемость трещин такой ширины

$$\kappa_m = \frac{\varpi_1^2}{12}$$

$$\kappa_m = \frac{(0.001)^2}{12} = 1.49 \cdot 10^{-7} \text{ m}^2$$

Гидроразрыв будем проводить через НКТ с внутренним диаметром d = 0,076 м, изолируя продуктивный пласт пакером с гидравлическим якорем. Определим параметры ГРП

Потери давления на трение при движении жидкости-песконосителя по

$$\rho_{\mathcal{H}} = \rho_{\mathcal{H}} \times (1 - n_0) + \rho_{nec} \times n_0$$

$$\rho_{\mathcal{H}} = 750 \cdot (1 - 0.32) + 2500 \cdot 0.32) = 1317_{KZ/M}^3$$

Число Рейнольдса:

$$Re = \frac{4 \times Q \times \rho_{\mathcal{H}}}{\pi \times d \times \mu_{\mathcal{H}}}$$

$$Re = \frac{4 \cdot 1.8 \cdot 10 - 2 \cdot 1317}{3.14 \cdot 0.076 \cdot 0.56} = 710$$

Коэффициент гидравлического сопротивления:

$$\lambda = \frac{64}{Re} = \frac{64}{710} = 0.09$$

По Ю.В. Желтову, при наличии песка в жидкости при Re>200 происходит ранняя турбулизация потока, и потери на трение при Re = 516.9 и $n_0 = 0.324$ возрастают в 1.52 раза.

$$Pm = \frac{1,52 \times \lambda \times 16 \times Q^2 \times L}{2 \times \pi^2 \times d^5} \times \rho_{\mathcal{M}}$$

$$Pm = \frac{1.52 \cdot 0.09 \cdot 16 \cdot (1.8 \cdot 10^{-2})^2 \cdot 1784}{2 \cdot 3.14^2 \cdot 0.076^5} \cdot 1317 = 33.4 \text{ M}\Pi \text{a}$$

Давление, которое нужно создать на устье при гидроразрыве пласта:

$$Py = P_{3a6} - \rho_{w} \cdot g \cdot L + Pm$$

$$P_{y} = 14.8 - 1317 \cdot 9.81 \cdot 1784 \cdot 10^{6} + 33.4 = 25.2 \text{ M}\Pi a$$

Рабочие жидкости гидроразрыва в скважину закачивают насосными агрегатами 4АН-700.

Технические характеристики:

Скорость	Подача, л/с	Давление, Мпа
1	6	70
2	8.3	51
3	11.6	36
4	14.6	29

Необходимое число насосных агрегатов:

$$N = \frac{Py \times Q}{Pa \times Qa \times \kappa_{mc}} + 1$$

где: Ра – рабочее давление агрегата

Qa – подача агрегата при этом давлении

ктс — коэффициент технического состояния агрегата в зависимости от срока службы, = 0.5 - 0.8.

Принимаем ktc = 0.8, тогда

$$N = \frac{25.2 \cdot 18}{29 \cdot 14,6 \cdot 0,8} + 1 = 2$$

Определяем объем жидкости для продавки жидкости-песконосителя:

$$V_{\Pi} = 0.785 \cdot d^2 \cdot L = 0.785 \cdot 0.076^2 \cdot 1784 = 8.1 \text{ m}^3$$

Определяем продолжительность гидроразрыва пласта:

$$t = \frac{V \mathcal{H} + V n}{Q a}$$

$$t = \frac{7.6 + 8.1}{14.6 \cdot 10^{-3} \cdot 60} = 17.9 \text{ мин}$$

Список литературы

- 1. Щуров В.И. Технология и техника добычи нефти М.: Недра, 1983 510 с.
- 2. Справочное пособие по газлифтному способу эксплуатации скважины /Ю.В. Зайцев./ М.: Недра, 1984 359с
- 3. Чичеров Л.Г. Нефтепромысловые машины и механизмы. — М.: Недра, 1983 — 308с.
- 4. Гиматудинов Ш.К. Справочное руководство по проектированию и эксплуатации нефтяных месторождений. Добыча нефти. М.: Недра, 1983 562с.
- 5. Эксплуатация и технология разработки нефтяных и газовых месторождений / И.Д. Амелин/ М.: Недра, 1978 356с.
- 6.Ляпков П.Д. Об относительной скорости движения газовой фазы в стволе скважины перед входом в глубинный насос. РНТС «Нефтепромысловое дело». 1973 №8-с.6-10.
- 7. Сборник задач по технологии и технике нефтедобычи / И.Т. Мищенко / М.: Недра, $1984-270~{\rm c}$.