

Ecole Nationale Supérieure de l'Electronique et de ses Applications

PROJET LATÉRAL TRANSVERSAL

Tales of Kornwal

OUAZZAGHTI Reda et ZOUHDI Zakaria

Projet de troisième année supervisé par M. Granier et Prof. Gosselin

29 Septembre 2016

Version 1.1 du 29/09/16 3 novembre 2016

Table des matières

L O	bjectif
1.	l Présentation générale
1.	2 Règles du jeu
2 D	escription et conception des états du jeu
2.	1 Description des états
2.	2 Conception logicielle
2.	B Lien avec le rendu
\mathbf{S}	ratégie et conception de rendu
3.	Stratégie de rendu

Objectif

1.1 Présentation générale

By David Revoy / Blender Foundation - Own work, CC BY $3.0\,$

Tales of Kornwal est un jeu vidéo basé sur les mêmes règles de Fallout Tactics, *i.e* un jeu d'aventure doté d'un système de combat en tour par tour, permettant aux joueur de progresser et interagir avec un univers à l'allure originale à mi-chemin entre le médiéval-fantastique et le post-apocalyptique.

Les interactions seront basées sur un système de gestion d'inventaire et d'au moins une caractéristique, qui feront office de modificateurs lors d'actions enterprises par le personnage (e.g: la caractéristique "Force" influera grandement sur les dégâts infligés par un ennemi ou par le héros, ainsi que l'utilisation de telle ou telle arme).

1.2 Règles du jeu

Le jeu pourra posséder plusieurs aspects dépendant de l'étude du cahier des charges :

- Déplacement d'un personnage sur une "zone" de la mappemonde, accédant aux différentes cases nord-sud-est-ouest de la map en cliquant sur l'une des extrémités de l'écran.
- Système de combat tour par tour : lors d'une rencontre avec un ennemi, la map se vide de tous les sprites autres que le personnage joueur et ses adversaires, laissant donc place au duel entre le héros et l'ennemi. Le joueur commencera en premier (sauf modification) et disposera de deux choix possibles : se déplacer d'une case dans la zone, ou attaquer l'ennemi, faisant baisser son capital de points de vie. Le nombre de points de vie retirés dépendra de la caractéristique FORCE du personnage, ainsi que de son ARME équipée. Le tour se termine après que l'une des actions suivante a été effectuée, laissant le tour à l'ennemi (qui se déroulera de la même manière).
- Système d'interaction avec les personnages joueur ou non-joueur (discussions, interface d'échange d'objets)

Description et conception des états du jeu

2.1 Description des états

Un état du jeu est défini par les éléments suivants :

- Les élements fixes (classe StaticElement). Elle est composée de deux classes filles : d'une part, une classe "Static", correspondant aux éléments immobiles permettant de définir les zones où les personnages peuvent se déplacer (e.g herbe, sable, neige...). Ces élements peuvent être de type "CombatZone" si le personnage se trouve dans une zone d'influence ennemie, "NoCombatZone" s'il ne se trouve pas dans une telle zone, ou de type "ChangeMap" : lorsque le personnage se trouve dans cet espace, il bascule dans une nouvelle map, différente de celle où il était. D'autre part, une classe "Wall", définissant les zones infranchissables où le personnage ne peut se déplacer. IL peut s'agir d'un obstacles (arbre) ou tout simplement d'un bord de la map. (e.g mur).
- Les personnages (classe Character), éléments mobiles se déplaçant sur la grille (ou plus exactement sur les cases définies par les classes Space). Ces éléments peuvent être contrôlés soit par l'humain (Personnage joueur), soit par les IA (Personnages non joueurs). Ils possèdent tous une position définie par ses coordonnées X et Y, ainsi qu'une direction. Chaque personnage possède un certain nombre de données : niveau, expérience, force, points de vie etc .. Les personnages possèdent trois status possibles :
 - YOURTURN : Le tour du personnage. Il aura le droit de dépenser

- des points de mouvements pour se déplacer sur la map, ou des points d'actions pour endommager les adversaires.
- HISTURN : Le tour des autres personnages. Le personnage doit rester immobile et subir les actions des autres personnages jusqu'à ce que son tour arrive.
- DEAD : Le personnage ne peut plus bouger, son tour n'arrivant jamais : il est mort.

2.2 Conception logicielle

L'architecture du logiciel est composé des élements suivants :

- une classe "Elements": les classes "Character" et "Space" héritent toutes les deux d'une classe "Elements". La méthode de type bool isStatic permet de distinguer la classe d'élements statiques de celle des éléments mobiles en renvoyant true si l'objet est de type "StaticElement", false sinon.
- des conteneurs d'éléments : la classe "ElementLists" contient une liste d'éléments fixes et mobiles. La classe "Grid" hérite de la classe "ElementList" afin de disposer ces éléments sur une map, ou "grille". Le tout correspond à un état donné, qui est un objet de la classe "State".
- une "Factory" ou fabrique d'éléments : il s'agit d'une interface permettant d'instancier une liste d'éléments sans avoir à spécifier la famille d'objets.

2.3 Lien avec le rendu

Il se fait via la classe "StateObserver", qui suit le pattern design "Observer". Cette classe "observe" les changements d'états et en avertit le client via le rendu. A terme, il faudra rajouter une interface afin de distinguer les différents évènements (changement de map etc..).

Stratégie et conception de rendu

3.1 Stratégie de rendu

Le premier objectif a été de pouvoir générer une map à partir d'une tileset. Il s'agit d'une image constitué d'unités élémentaires de texture (tuiles), qui serviront de base pour la map. Nous écrivons ensuite un code qui attribue à chaque tuile un identifiant entier, puis qui stocke dans un tableau le numéro de chaque tuile que l'on veut voir apparaître. La position de la tuile dans le tableau détermine sa position dans la future map. Voici un exemple de

tileset:

Voici une map généré grâce à ce TileSet, obtenu en lançant le main :

On crée une classe Tile dans un package "rendu"; deux classes héritent de cette classe Tile, les classes StaticTile et AnimatedTile (exploitée plus tard). De la même manière que le code mentionné avant, la classe StaticTile stocke les coordonnées d'une tuile et la classe Tile stocke l'ensemble des tuiles pour un état donné. Il faudra donc associer à chaque instance d'élément une tuile, puis associer une liste d'élements et une "Grid" à un état, puis générer la map correspondant à cet état (pour l'instant statiques).

Règles de Changements d'Etats

(à cette heure, les modifications apportées ne permettent pas une implantation tel que décrite dans cette partie, du à un non-fonctionnement du Pattern Observer... La rectification sera apportée avec le prochain jalon)

4.1 Clock

Les Changements d'états se font au rythme d'une synchronisation avec la Clock (non-visible à l'oeil nu). Lors d'un mouvement (commandé par une touche du clavier), il y a changement d'état de la layer (à implanter) des personnages, et le personnage est alors déplacé vers la zone indiquée. S'il n'y a aucune autre modification à notifier, notamment au niveau de la layer "Map" (qui ne se modifie que dans le cas d'un changement de map), le reste des éléments sont rechargés via la commande clone().

4.2 Changements extérieur

La commande generateMap charge la Layer map, initialement, à partir d'un fichier .txt. L'implantation des layers de jeu (points de vie), et des layers de personnage se feront sans doute de la même manière.