P1Q2.

This csv file contains nine set of variables, which is recorded from 0:03 of 1st January 2015 until 23:33 of 31st Dec 2015. It took data every half hours during all year and data index starts from 32933 and ends to 49267.

From the histogram graph, the fourth set demonstrated a right-skewed distribution from 26 to 49150 with mean 34670. The fifth, sixth and seventh set of data all demonstrate as a normal distribution, whose mean and standard deviation are 7.846 with 0.142, 92.423 with 12.206, 6.838 with 0.89 respectively. Whereas the last two graph are left-skewed distribution, which concentrate on minimum value 0.1 and -1.2 respectively.

From the visualization part, we are trying to find the relationship between those data set.

- The dataset 1 (Timeline) and dataset 2 (Index) has a clearly positive linear distribution.
- The dataset 3 (30.46) and dataset 1 (Time)/dataset 2 (Index) are demonstrate a normal distribution. It initially increasing with time increasing, all the way until mid-year reach the maximum number, and then decreasing to the end of the year.
- The dataset 6 (88.5) and dataset 7 (5.7) are demonstrated to be a positive correlation. As visualizing shows, increasing number of dataset6 will results to an increasing number of dataset 7.

```
P1Q6.
function out = reverse(x, y)
  out = zeros(numel(x),1);
  if mod(numel(x), y) == 0
    loop_num = numel(x)/y;
    loop_count = 0;
    while(loop_num > 0)
      for i = 1 : y
        out(i + loop\_count*y) = x(numel(x) + i - (loop\_count+1)*y);
      end
      loop_count = loop_count+1;
      loop_num = loop_num - 1;
    end
  else
    loop_num = uint8(mod(numel(x), y)) - 1;
    loop_count = 0;
    while(loop_num > 0)
      for i = 1 : y
        out(i + loop\_count*y) = x(numel(x) + i - (loop\_count+1)*y);
      end
      loop_count = loop_count+1;
      loop_num = loop_num - 1;
    end
    for i = 1:mod(numel(x),y)
      out(((loop\_count)*y) + i) = x(i);
    end
  end
end
```

P2Q1.

(Figure: y=2sin(1.5x) and 20 random points with 0.1 variance)

Data training with 1 degree:

SSE: 34.83

R-square 0.1765

Adjusted R-square: 0.1308

RMSE 1.391

Data Training with Degree 3.

SSE: 2.255

R-square: 0.9467

Adjusted R-square: 0.9367

RMSE: 0.3754

Data Training with Degree 5.

SSE: 0.1852

R-square: 0.9956

Adjusted R-square: 0.9941

Data Training with Degree 9.

SSE: 0.1571

R-square: 0.9963

Adjusted R-square: 0.9929

Figure: SSE Value vs Approximation Degree under 0.1 Variance

(Figure: y=2sin(1.5x) and 20 random points with 0.1 variance)

Data training with Degree 1

SSE: 17.52

R-Square: 0.2914

Adjusted R-square: 0.2521

Data training with Degree 3

SSE: 3.558

R-Square: 0.8561

Adjusted R-Square: 0.8291

RMSE: 0.4715

Data training with Degree 5

SSE: 1.708

R-Square: 0.9309

Adjusted R-Square: 0.9062

Data training with Degree 9

SSE: 1.371

R-Square: 0.9445

Adjusted R-Square: 0.8946

Figure: SSE Value vs Approximation Degree under 0.5 Variance

P2Q4.

Figure: Maximum Likelihoods of Reduced Iris data.

Figure: Class posteriors for Reduced Iris Data

```
Matlab Code:
iris = readtable('iris.txt', 'ReadVariableNames', false);
iris = table2cell(iris);
for i = 1:100
  if i <51
    x1(i) = iris(i,1);
  else
    x2(i - 50) = iris(i,1);
  end
end
x1 = x1.';
x2 = x2.';
x1 = cell2mat(x1);
x2 = cell2mat(x2);
mle1 = mle(x1);
mle2 = mle(x2);
x_array = [-10:.001:10];
figure(1);
y1 = normpdf(x_array, mle1(1), mle1(2));
plot(x_array, y1)
hold on
y2 = normpdf(x_array, mle2(1), mle2(2));
plot(x_array, y2, 'g')
hold off
figure(2);
```

```
for i = 1:20001
    y3(i) = y1(i)/(y1(i)+y2(i));
    y4(i) = y2(i)/(y1(i)+y2(i));
end
plot(x_array, y3)
hold on
plot(x_array, y4, 'g')
```

```
P3Q1
```

(a).

Running Matlab code, the number of error we get is 127. Therefore, training classification error is Number of Errors / Number of Point = 127 / 500 = 25.4%

Related Code:

```
DataSet = readtable('pima_indians_diabetes.csv', 'ReadVariableNames', false);
DataSet = table2cell(DataSet);
counter1 = 1;
counter2 = 1;
for i = 1:500
  if (strcmp(DataSet(i,9), 'pos') == 1)
    c1(counter1,1:8) = DataSet(i,1:8);
    counter1 = counter1+1;
  else
    c2(counter2,1:8) = DataSet(i,1:8);
    counter2 = counter2+1;
  end
end
valid_interator = 1;
for i = 1:500
  valid(valid_interator, 1:8) = DataSet(i,1:8);
  valid_interator = valid_interator+1;
end
c1 = cell2mat(c1);
c2 = cell2mat(c2);
valid = cell2mat(valid);
cov1 = cov(c1);
cov2 = cov(c2);
mean1 = mean(c1);
```

```
mean2 = mean(c2);
y1 = mvnpdf(valid, mean1, cov1);
y2 = mvnpdf(valid, mean2, cov2);
error = 0;
predict_value = cell(500,1);
for i = 1:500
  if (y1(i) < y2(i))
    predict_value(i) = cellstr('neg');
  else
    predict_value(i) = cellstr('pos');
  end
  if (strcmp(predict_value(i),DataSet(i,9)) == 0)
    error = error+1;
  end
end
(b).
Running Matlab code for test classification, the number of error we get is 66. Therefore, test
classification error is
        Number of Errors / Number of Point = 66 / 268 = 24.6%
Matlab Code
DataSet = readtable('pima_indians_diabetes.csv', 'ReadVariableNames', false);
DataSet = table2cell(DataSet);
valid_iterator = 1;
for i = 501:768
  valid(valid_iterator, 1:8) = DataSet(i,1:8);
  valid_iterator = valid_iterator+1;
end
valid = cell2mat(valid);
z1 = mvnpdf(valid, mean1, cov1);
```

```
z2 = mvnpdf(valid, mean2, cov2);
error = 0;
predict_value = cell(268,1);
for i = 1:268
 if (z1(i) < z2(i))
    predict_value(i) = cellstr('neg');
 else
    predict_value(i) = cellstr('pos');
 end
 if (strcmp(predict value(i),DataSet(i + 500,9)) == 0)
    error = error+1;
 end
end
(c).
Mean 1.
    4.7802
              140.4890
                                      21.7143
                                                 102.4286
                                                              35.3231
                                                                           0.5672
                                                                                     36.2692
                           69.7253
Mean 2.
    3.2358
              110.0283
                           67.9748
                                      19.8711
                                                  67.5409
                                                              29.9921
                                                                           0.4590
                                                                                     31.1855
Cov1.
                                                                                     19.1895
    8.6603
                11.4097
                            6.1763
                                       -3.9380
                                                  -33.8882
                                                                1.1000
                                                                          -0.1219
   11.4097
              806.5008
                           93.3982
                                        1.7450 1.0654e+03
                                                              46.5349
                                                                          -1.2391
                                                                                    105.4868
                                                                          -1.2598
    6.1763
                93.3982
                          324.8890
                                       53.4794
                                                  152.3638
                                                              61.4594
                                                                                     42.1466
   -3.9380
                 1.7450
                           53.4794
                                     218.3146
                                                  611.6599
                                                              56.4678
                                                                           0.0052
                                                                                    -23.8814
  -33.8882 1.0654e+03
                          152.3638
                                     611.6599 1.0826e+04
                                                             247.3216
                                                                           7.4645 -164.6149
                46.5349
                                                                          -0.3639
    1.1000
                           61.4594
                                       56.4678
                                                  247.3216
                                                              65.4896
                                                                                      8.7567
```

0.0052

-23.8814

-0.1219

19.1895

-1.2391

105.4868

-1.2598

42.1466

-0.3639

8.7567

0.2281

-0.2483

-0.2483

139.8740

7.4645

-164.6149

Cov2.

14.1503	7.6937	10.5415	-4.5880	-29.2644	-3.5087	-0.1273	18.3634
7.6937	968.3728	39.5992	2.7427	1.1351e+03	6.0058	0.7466	60.0168
10.5415	39.5992	494.0015	78.4515	270.3394	7.4423	-0.1845	59.7263
-4.5880	2.7427	78.4515	296.9234	1.2392e+03	35.2939	1.7236	-30.5470
-29.2644	1.1351e+03	270.3394	1.2392e+03	1.9763e+04	30.7702	5.3007	162.4475
-3.5087	6.0058	7.4423	35.2939	30.7702	56.3220	0.3371	-17.0913
-0.1273	0.7466	-0.1845	1.7236	5.3007	0.3371	0.1555	-0.3581
18.3634	60.0168	59.7263	-30.5470	162.4475	-17.0913	-0.3581	114.5514

P3Q5.

M and H1 Value:

-169.769126255560	-169.769126255560	-153.987061905532	-153.987061905532	-
134.671376212291	-109.769126255560	Inf -14.671376212	22905 Inf -	
74.6713762122905	-109.769126255560	-153.987061905532	-134.671376212291	-
169.769126255560	-109.769126255560	-109.769126255560	-74.6713762122905	Inf-
14.6713762122905	-14.6713762122905			

M and K1 Value:

694.932323934640	662.732703004150	631.621908886040	601.596535275394
572.653049197447	544.787786823609	517.996948880953	492.276595495771
467.622640256742	444.030843211791	421.496802420375	400.015943563853
379.583506963508	360.194531159384	341.843831951819	324.525975486758
308.235243557651	292.965588778855	278.710576631234	265.463310558606
253.216335267740	241.961512115841	231.689858919299	222.391344655224
214.054627343051	206.666720921067	200.212574287935	194.674543120838
190.031733105538	186.259192689460	183.326935829359	181.198782674900
179.831021952489	179.170927351365	179.155206650030	179.708531501912
180.742389522574	182.154612391893	183.830042752956	185.642865017160
187.461073425890	189.153308990186	190.597821450905	191.692652337506
192.365478282509	192.581196960218	192.345548734539	191.703892562162
190.735427999510	189.544211278481	188.248855405650	186.972716712011
185.835828611042	184.949152576538	184.411131260420	184.306167523733
184.704512294726	185.663057529421	187.226623027147	189.429440923842
192.296647156948	195.845672012320	200.087480427544	205.027650707899
210.667302848118	217.003899481812	224.031947271700	231.743626861874
240.129376977209	249.178453864154	258.879481612308	269.221002376203
280.192028495233	291.782591418975	303.984275732635	316.790721091659
330.198071192257	344.205347611058	358.814727797436	374.031710701231
389.865160061081	406.327223474907	423.433133971073	441.200908766725

459.650966241466	478.805686180156	498.688939763663	519.325614736672
540.741158112279	562.961154338331	586.010951759107	609.915345100391
634.698317081999	660.382838435870	686.990722722914	714.542530399731
743.057515490450	772.553607817864	803.047423870824	834.554299867354

M and K2 Value

682.398756308608 636.029981737874 592.011872283877 550.321605057753 510.934125197960 473.822002250326 438.955295775757 406.301434875496 375.825116902666 347.488231217678 321.249814485490 297.066044766966 274.890282589117 254.673168316788 236.362786411479 219.904908272007 205.243325725184 192.320285919873 181.077034073381 171.454461765110 163.393844059325 156.837628322031 151.730212373865 148.018622781879 145.652980651262 144.586627938675 144.775786318725 146.178633015037 148.753697034641 152.457490261243 157.241269391662 163.046752757879 169.800473226423 177.406241184336 185.734984166711 194.611204078624 203.795841702185 212.967145417325 221.705055962300 229.490822413291 235.739437626780 239.880169709137 241.479787175608 240.366597055864 236.691078191613 230.885165148683 223.543807053551 215.291976328774 206.688464918496 198.180915465286 190.100159522958 182.675373515471 176.056102339778 170.333680252830 165.559158728495 161.757214536351 158.936429487834 157.096539765476 156.233197322903 156.340687776887 157.412989267352 159.443543215386 162.424116985576 166.343139089153 171.183856170174 176.922588559044 183.527254379289 190.956211575168 199.157364266154 208.067433625515 217.611344792461 227.701860417412 238.239896691160 249.116326124965 260.216351201536 271.427485335865 282.651550002214 293.819801099163 304.908635394184 315.952062987999 327.047166487992 338.350474896097 350.065927181620 362.427542970892 375.680930513383 390.067162438721 405.811011585625 423.113950676746 442.151240588265 463.071973600700 486.000936156639 511.041382660536 538.278095267913 567.780352802729 599.604614209090 633.796840420339 670.394447667143 709.427920843689 750.922130424768 794.897399579461

Matlab Code

```
x = [randn(30,1); 5+randn(30,1)];
H = hist(x, 20);
figure(2);
[K1, xi1, bw] = ksdensity(x);
plot(xi1, K1,'--');
hold on;
[K2, xi2] = ksdensity(x, 'width', bw/2);
plot(xi2, K2)

M = normpdf(x)

Klmh = sum(M.*log2(M)-log2(H))

Klmk1 = sum(M.*log2(M)-log2(K1))

Klmk2 = sum(M.*log2(M)-log2(K2))
```