勤奋求学 诚信考试

昆明理工大学试卷(A卷)

考试科目: 大学物理BII 考试日期: 2020年1月3日 命题教师:

Ι	题号	选择题	填空题	计算题			总分
	, _ ,			1	2	3	_ ,,
	评分						
2	阅卷人				_		

物理基本常量

真空的磁导率: $\mu_0 = 4 \pi \times 10^{-7} \text{H/m}$; 真空的电容率: $\varepsilon_0 = 8.85 \times 10^{-12} \text{F/m}$; 电子静止质量: $m_e = 9.11 \times 10^{-31}$ kg; $1 \text{nm} = 10^{-9} \text{m}$; $1 \text{ eV} = 1.602 \times 10^{-19}$ J; 基本电荷: $e = 1.602 \times 10^{-19}$ C; 普朗克常数: $h = 6.63 \times 10^{-34}$ J·s; $1 \text{ atm} = 1.013 \times 10^5 \text{Pa}$; 玻尔兹曼常数: $k = 1.38 \times 10^{-23} \text{J/K}$

总分:

ſ

躢

财

卹

 κ

尺

徙

計

小

考试座位号

一、选择题(共11题,每题3分,共33分)答案请填在"[]"中

]1、关于温度的意义,下列说法不正确的是

- (A) 气体的温度是大量气体分子热运动的集体表现,具有统计意义
- (B) 气体的温度是分子平均平动动能大小的量度
- (C) 温度的高低反映物质内部分子热运动剧烈程度的不同
- (D) 从微观上看,气体的温度表示每个气体分子的冷热程度

[]2、如图所示,左图为质量一定的某种气体在温度分别为 T_1 、 T_2 的速率分布曲线,右图为温度一定的某两种气体的速率分布曲线,则可判断

- (A) $T_1 > T_2$, $m_1 > m_2$
- (B) $T_1 > T_2$, $m_1 < m_2$
- (C) $T_1 < T_2$, $m_1 < m_2$
- (D) $T_1 < T_2$, $m_1 > m_2$

[]3、试判断右图中两卡诺循环的效率关系

- (A) $\eta_1 = \eta_2$
- (B) $\eta_1 > \eta_2$
- (C) $\eta_1 < \eta_2$
- (D) 无法确定

倒

第1页共6页

[]4、一个质点作简谐振动,振幅为 A,在起始时刻质点的位移为-A/2,且向 x 轴的正方向 运动,代表此简谐振动的旋转矢量图为下图中哪一图?

]5、一平面简谐波在空间中传播,如图所示,已知 P 点的振动规律为 $y = A\cos w(t + \varphi)$, 就图中给定的坐标, 其波动表达式为

(A)
$$y = A\cos[w(t + \frac{x-l}{u}) + \varphi]$$

(B)
$$y = A\cos[w(t - \frac{x}{u}) + \varphi]$$

(C)
$$y = A\cos[w(t + \frac{x+l}{u}) + \varphi]$$

(D)
$$y = A\cos[w(t - \frac{x-l}{u}) + \varphi]$$

16、单色光从空气射入水中,问频率、波长、波速是否改变,且如何改变?

- (A)频率、波长和波速都变小 (B)频率不变,波长和波速都变大
- (C)频率不变,波长和波速都变小 (D)频率、波长和波速都不变

17、波长为 λ 的平行光照亮一宽度为 α 的狭缝,在 $\varphi = 30^{\circ}$ 处出现第一级极小,则 α 的 大小为

(A)
$$\frac{\lambda}{2}$$
 (B) λ (C) 2λ (D) 3λ

18、自然光以60°的入射角照射到某两介质交界面时,反射光为完全偏振光,由此可知 折射光为:[]

- (A) 完全偏振光, 且折射角是 30°;
- (B) 部分偏振光,且只在该光由真空入射到折射率为 $\sqrt{3}$ 的介质时,折射角是 30°;
- (C) 部分偏振光,但须知两种介质的折射率才能确定折射角;
- (D) 部分偏振光, 且折射角是 30°。
- 19、光电效应中光电子的最大初动能与入射光的关系是
 - (A) 与入射光的频率成正比
- (B) 与入射光的强度成正比

[] 10 、关于不确定关系 $\Delta x \cdot \Delta p_x \ge h$ 有以下几种理解,正确的是						
(1) 粒子的动量不可能确定						
(2) 粒子的坐标不可能确定						
(3) 粒子的动量和坐标不可能同时确定						
(4) 不确定关系不仅适用于电子和光子,也适用于其它粒子						
(A) (1), (2) (B) (3), (4) (C) (2), (4) (D) (1), (4)						
[]11、设氢原子的动能等于氢原子处于温度为 T 的热平衡状态时的平均动能,氢原子的质						
量为 m, 那么此氢原子的德布罗意波长为						
(A) $\lambda = \frac{h}{\sqrt{3mkT}}$ (B) $\lambda = \frac{h}{\sqrt{5mkT}}$ (C) $\lambda = \frac{\sqrt{3mkT}}{h}$ (D) $\lambda = \frac{\sqrt{5mkT}}{h}$						
总分: 二、填空题(共12题,每题3分,共37分)						
1、今有质量为 m ,摩尔质量为 M 的双原子分子(刚性)理想气体处于温度为 T 的平衡						
态,则每个分子在每个自由度上的平均动能为						
m/M摩尔气体的内能为。						
2、对一定质量的理想气体进行等温压缩。若初始时每立方米体积内气体分子数为						
1.96×10 ²⁴ , 当压强升高到初始值的两倍时,每立方米体积内气体分子数应为。						
3、理想气体绝热地向真空自由膨胀,其内能,						
熵。(填写增加,或减少,或不变)						
4、有一个和轻弹簧相联的小球,沿 x 轴作振幅为 A 的简谐振动,其运动方程用余弦函						
数表示,在 $t=0$ 时,小球的运动状态:						
(1) $x_0 = -A$, 小球的振动初位相为						
(2) $x_0 = 0$, 小球向 x 轴正方向运动,其初位相为;						

(C)与入射光的频率成线性关系 (D) 与入射光的强度成线性关系

三、计算题(共3题,每题10分,共30分)

1、有 25mol 的单原子分子气体,作图示循环过程 (ac 为等温过程),

 $P_1 = 4.15 \times 10^5 P_a$, $V_1 = 2.0 \times 10^{-2} m^3$, $V_2 = 3.0 \times 10^{-2} m^3$,

- 求: (1) 气体在各过程中所传递的热量、内能以及所做的功; (Ln1.5=0.4055)
 - (2) 循环效率。

2、一振幅为 10 cm,波长为 200 cm 的平面简谐波,沿 x 轴正向传播,波速为 100 cm/s, t=0 时原点处质点在平衡位置向正位移方向运动。求:

- (1) 原点处质点的振动方程;
- (2) 该平面简谐波的波函数;
- (3) 在 x=150cm 处质点的振动方程。

- 3、使一束波长为 $\lambda=600$ nm 的水平激光垂直照射到一双缝上。在缝后 1.0m 处的墙上观察到中央明纹和第一级明纹的间距为 10cm。
 - (1) 写出双缝干涉产生明纹和暗纹的条件;
 - (2) 求两缝的间距;
- (3) 在中央条纹以上还能看到几条明纹。