# Aerodust

By Dennis Giese, Andrew Tu
@HackBeanpot 2018, Boston

#### Introduction

- developed on the HackBeanpot 2018
  - Very hacky implementation due to limited time
- Prior work:
  - Dennis Giese, Daniel Wegemer: Rooting of Xiaomi Smart Home Devices
  - Presented on Chaos Communication Congress (34C3), Recon BRX 2018 \*
- Initial idea: What to do with a rooted Vacuum Cleaning Robot?



Let's build a mobile WiFi mapping device



## Why WiFi mapping device?

- Demonstation of features of vacuum robot
- Measuring Signal strength correlated with position
  - Due Lidar based navigation: high precision
  - Automated measurement
  - Easily repeatable
  - Cleaning floor while measurement;)
- Goal: create Map of WiFi signal, map available WiFi APs/SSIDs

### Hardware: Xiaomi Vacuum Cleaning Robot



#### Overview sensors

- 2D **LIDAR** SLAM (5\*360°/s)
- Gen1 only: Ultrasonic distance sensor
- multiple IR sensors
- 3-axis **Magnetic** Sensor
- 3-axis accelerometer
- 3-axis gyroscope
- **Bump** sensors





### Rooting

#### The weapon of choice:





Exact procedure see here:

https://github.com/dgiese/dustcloud/blob/master/presentations/Recon-BRX2018/recon brx 2018-final-split.pdf

### Software

- Ubuntu 14.04.3 LTS (Kernel 3.4.xxx)
  - Mostly untouched, patched on a regular base
- Player 3.10-svn
  - Open-Source Cross-platform robot device interface & server
- Proprietary software (/opt/rockrobo)
  - AppProxy
  - RoboController
  - Miio\_Client
  - Custom adbd-version
- iptables firewall enabled
  - Blocks Port 22 (SSHd) + Port 6665 (player)



### Available data on device

#### Maps

- Created by player
- 1024px \* 1024px
- 1px = 5cm
- PPM format
- Logfiles
  - Navigation
  - Sensor Data



Northeastern University, ISEC Building, 6th floor



Genuine + Jack Morton Office, NE Side,5th floor



Genuine + Jack Morton Office, NE Side,5th floor

### Approaches

- Initial approach: compile driver into player software
  - On robot: only binary format of player available
  - Not successful as player not modular after compilation
- Second approach: usage of player client interface
  - Client interface allows subscription of sensor data
  - Problem: Position data not supported (custom plugin by Xiaomi/Rockrobo)
- Third approach: parsing of the runtime logs
  - Player Software: creation of massive logs with a lot of debug information
  - Sub-sensor "position2d" returns useful data

### Implementation

- Installation of Python3 on vacuum robot
- Python script:
  - Parsing of position2d from player logfile
     {x pos, y pos, yaw pos, x\_vel, y\_vel, yaw\_vel}
  - Retrieving WiFi information from Linux kernel {link, level, noice, SSID, BSSID)
  - Creation of CSV-File with position and signal strength
    - 100ms per entry
    - Import into Matlab
  - Future work: direct representation of signal in map

## Matlab output: Point cloud



Genuine + Jack Morton Office, NE Side,5th floor

SSID: Vaccums, Ch: 11, Tx\_PW: 20 dbm

## Matlab output: Point cloud



Not in scale

Genuine + Jack Morton Office, NE Side,5th floor

SSID: Vaccums, Ch: 11, Tx\_PW: 20 dbm

## Matlab output





Genuine + Jack Morton Office, NE Side,5th floor SSID: Vaccums, Ch: 11, Tx\_PW: 20 dbm

### Not realized while HackBeanpot

- Multiple SSIDs
- Nice GUI / Webinterface
- Realtime WiFi heatmap generation
- Correct Matlab scaling
- Automatic alignment player map <-> WiFi Heatmap