Semaine 10 - Structure de groupe

Valentin De Bortoli email : valentin.debortoli@gmail.com

A moins que cela ne soit explicitement précisé on adopte la notation multiplicative pour la loi du groupe G.

1 Ordre d'un élément et commutativité

Soit G un groupe dans lequel tout élément est d'ordre 2, c'est-à-dire que $\forall g \in G, \ g^2 = 1.$

- 1 Montrer que G est abélien.
- 2 Déterminer à isomorphisme près tous les groupes de cardinal 4.

Remarque: on pourra utiliser le résultat de l'exercice 6, question 5.

2 Groupe distingué, groupe quotient

Soit G un groupe. On dit que H est un sous groupe distingué de G si H est un sous groupe de G et si $\forall (g,h) \in G \times H$, $ghg^{-1} \in H$. Soit H un tel groupe.

- 1 Montrer que tout sous groupe d'un groupe abélien est distingué.
- **2** On note $G/H = \{gH, g \in G\}$. Montrer que G/H muni de la loi (gH)(g'H) = gg'H est un groupe. On dit que G/H est le groupe quotient de G par H.
 - **3** Soit ϕ un morphisme de G dans K (un groupe). Montrer que $\ker(\phi)$ est distingué.
 - 4 Montrer que $\overline{\phi}$ qui va de $G/\ker(\phi)$ dans $\operatorname{Im}(\phi)$ défini par $\overline{\phi}(G/\ker(\phi)) = \phi(g)$ est un isomorphisme.

Remarque : cette technique est appelée dévissage et elle permet de comprendre la structure de groupe compliqués en se ramenant à des groupes plus simples (les groupes simples...). On peut dresser toute une zoologie des groupes simples. Celle-ci a été complété en 1983 par Daniel Gorenstein (et comporte des milliers de pages de preuves!).

3 Somme des images et morphisme

Soit ϕ un morphisme non constant de G dans \mathbb{C}^* .

1 Que vaut $\sum_{g \in G} \phi(g)$.

4 Un isomorphisme?

- 1 Montrer que $(\mathbb{Q}, +)$ est un groupe.
- **2** Montrer que (\mathbb{Q}^*, \times) est un groupe.
- **3** Y a-t-il isomorphisme entre ces deux groupes?

5 Un sous groupe d'un groupe abélien

Soit G un groupe abélien. Soit $H = \{g, g \in G \text{ et } \exists n \in \mathbb{N}, \ x^n = 1\}.$

1 Montrer que G est un groupe.

Remarque: cela n'est plus vrai si G n'est pas abélien.

6 Le théorème de Lagrange

Soit G un groupe fini. Soit H un sous groupe de G.

- 1 Soit $a \in G$. Montrer que le cardinal de aH est le même que celui de H.
- **2** Montrer que $aH \cap bH \neq \emptyset \Rightarrow aH = bH$.
- 3 Montrer que $G = \bigcup_{g \in G} gH$.
- 4 En déduire que le cardinal d'un sous groupe divise toujours le cardinal du groupe.
- 5 Soit $H_x = \{x^n, n \in \mathbb{N}\}$. On appelle **ordre** de x le cardinal de ce sous-groupe. Montrer que l'ordre de x divise le cardinal du groupe.

7 Le théorème de Cayley

Soit G un groupe fini. On note \mathfrak{S}_G l'ensemble des bijections de G dans G. On note τ_x $(x \in G)$ la fonction qui va de G dans G et qui est définie par $\forall g \in G, \ \tau_x(g) = xg$.

- 1 Vérifier que τ_x est un élément de \mathfrak{S}_G .
- **2** Vérifier que \mathfrak{S}_G est un groupe.
- **3** Montrer que ϕ qui va de G dans \mathfrak{S}_G définie par $\phi(x) = \tau_x$ est un morphisme de groupe injectif.
- 4 En déduire que G est isomorphe à un sous groupe de \mathfrak{S}_G .

8 Nombres réels et sous groupes

Soit G un sous groupe de $(\mathbb{R},+)$ non réduit à un élément. On note $G_+=G\cap\mathbb{R}_+^*$. On note $x_0=\inf G_+$.

- 1 Vérifier que x_0 est bien défini.
- **2** Montrer que si $x_0 = 0$ alors G est dense dans \mathbb{R} .
- **3** Montrer que si $x_0 \neq 0$ alors $x_0 = \min G_+$, c'est-à-dire $x_0 \in G_+$.
- **4** Montrer alors que $G = x_0 \mathbb{Z}$.
- **5** Conclure sur la forme des sous-groupes du groupe additif $(\mathbb{R}, +)$

9 Le groupe symétrique

Soit \mathfrak{S}_n l'ensemble des bijections de $[\![1,n]\!]$.

- 1 Montrer que \mathfrak{S}_n est un groupe. On le nomme groupe symétrique.
- **2** Soit $(a\ b)$ la bijection qui échange a et b (on la nomme permutation). Montrer que tout élément de \mathfrak{S}_n peut s'exprimer comme composition de permutations.

10 Loi de groupe et géométrie

On donne le procédé de construction suivant. Dans le plan on place A(1,0) et B(0,1). On considère également les points $M_0(x_0,y_0)$ et $M_1(x_1,y_1)$. On place P_0 de la manière suivante :

- $P_0 \in (AB)$.
- (P_0M_0) parallèle à (Ox).

On place Q_0 de la manière suivante :

- (P_0Q_0) et (M_1B) parallèles.
- $Q_0 \in (AM_1)$

On place ${\cal M}_2$ de manière à ce que ${\cal M}_0 P_0 Q_0 {\cal M}_2$ forme un parallélogramme.

- 1 Montrer que les coordonnées de Q_0 sont $(1 + x_0y_1, y_0y_1)$.
- **2** En déduire que M_2 a pour coordonnées $(x_0 + x_1y_0, y_0y_1)$.
- **3** Montrer que $\mathcal{P}' = \{M(x,y), y \neq 0\}$ est un groupe pour la loi * définie par $M_0 * M_1 = M_2$.