Part I

FONCTIONS RATIONNELLES

Definition 1 Soient deux P et Q deux polynômes en x à coefficients dans \mathbb{R}

Une fonction rationnelle F à coefficients dans \mathbb{R} est une expression de la

forme
$$\frac{P}{Q}$$
 où P et $Q\in\mathbb{R}\left[X\right]$, $Q\neq0$

Example 2
$$F(x) = \frac{4x^3 - 3x - 2}{5x^2 + x - 1}; \quad G(x) = \frac{4}{x^2 + x - 2}$$

Remark 3 Une fonction rationnelle n'est pas un polynôme.

Une fonction rationnelle de la forme $\frac{P(x)}{Q(x)}$ est définie si $Q\left(x\right)\neq0$

Example 4
$$F(x) = \frac{x^2 + x - 6}{x^2 - 7x + 10}$$
; Domaine de définition $D_F = \mathbb{R} - \{2, 5\}$

la forme réduite de F est $F(x) = \frac{x+3}{x-5}$.

0.1 Décomposition d'une fraction rationnelle en éléments simples sur $\mathbb R$

0.1.1 Forme réduite, pôles, zéros d'une fraction rationnelle

Soient P et Q deux polynômes et soit $F\left(x\right)=\frac{P(x)}{Q(x)}$ une fraction rationnelle avec $Q\left(x\right)\neq0$

Lemma 5 Toute fraction rationnelle $\frac{P}{Q}$ admet au moins un représentant $\frac{P_0}{Q_0}$ c'est-à-dire que P_0 et Q_0 sont premiers entre eux.

Soit F une fraction rationnelle sous forme réduite si et seulement si P et Q sont premiers entre eux.

Remark 6 Les éléments qui annulent Q s'appellent les pôles de F.

Les éléments qui annulent P s'appellent les zéros de F.

Definition 7 On dit que a est un pôle d'ordre n de F si a est une racine de multiplicité n de Q.

si n=1 on dit que a est un pôle simple de F.

si n=2 on dit que a est un pôle double de F.

Example 8

$$F(x) = \frac{x^2 - 4}{(x - 1)(x - 3)^2}$$

F est définie sur $\mathbb{R}-\{1;3\}$, F est irréductible (on ne peut pas simplifier FF possède deux zéros qui sont x = 2 et x = -2.

F possède deux pôles : un pôle simple x=1 et un pôle double x=3.

Décomposition d'une fraction rationnelle en éléments simples 0.1.2

1) Partie entière d'une fraction rationnelle Soit F une fraction rationnelle tels que $F\left(x\right)=\frac{P\left(x\right)}{Q\left(x\right)}$, il existe un polynôme E et un unique polynôme P_{1} tels que $F(x) = E(x) + \frac{P_1(x)}{Q(x)}$ avec $\deg(P_1(x)) \prec \deg(Q(x))$ E(x) s'appelle partie entière de F et on note $\varepsilon(F)$

Example 9

$$F(x) = \frac{2x^4 + 3x^3 - x + 1}{x^2 - 3x + 1}$$

$$F(x) = 2x^2 + 9x + 25 + \frac{65x - 24}{x^2 - 3x + 1}$$

$$\varepsilon(F) = 2x^2 + 9x + 25 ; P_1(x) = 65x - 24 ; Q(x) = x^2 - 3x + 1$$

Theorem 10 (Décomposition en éléments simples sur R).

Soit $\frac{P}{Q}$ une fraction rationnelle avec P et Q deux polynômes en x, $\operatorname{pgcd}(P,Q) =$ 1 . Alors $\frac{P}{O}$ s'écrit de manière unique comme somme:

- d'une partie polynomiale E(x), d'éléments simples du type $\frac{a}{(x-\alpha)^k}$
- d'éléments simples du type $\frac{ax+b}{(x^2-\alpha x+\beta)^k}$

Example 11

$$\frac{1}{x^2-4} \;\; ; \frac{x^2+1}{(x-1)^2}; \frac{x}{x^3-1}; \frac{x^2+x+1}{(x-1)(x+2)^2}; \frac{2x^2-x}{(x^2+2)^2}; \frac{x^6}{(x^2+1)^2}.$$