Exponenciális és logaritmusos feladatok

- 1) Oldja meg az alábbi egyenleteket!
 - a) $\log_3(\sqrt{x+1}+1)=2$, ahol x valós szám és x>-1 (6 pont)
 - b) $2\cos^2 x = 4 5\sin x$, ahol x tetszőleges forgásszöget jelöl (11 pont)
- 2) Mekkora x értéke, ha $\lg x = \lg 3 + \lg 25$? (2 pont)
- 3) Oldja meg a következő egyenleteket:
 - a) $9^x 2 \cdot 3^x 3 = 0$ (6 pont)
 - b) $\sin^2 x = 2\sin x + 3$ (6 pont)
- 4) Adott a következő egyenletrendszer:
 - (1) $2\lg(y+1) = \lg(x+11)$
 - (2) y = 2x
 - a) Ábrázolja derékszögű koordináta-rendszerben azokat a P(x;y) pontokat, amelyeknek koordinátái kielégítik a (2) egyenletet! (2 pont)
 - b) Milyen x, illetve y valós számokra értelmezhető mindkét egyenlet? (2 pont)
 - c) Oldja meg az egyenletrendszert a valós számpárok halmazán! (11 pont)
 - d) Jelölje meg az egyenletrendszer megoldáshalmazát az a) kérdéshez használt derékszögű koordináta-rendszerben! (2 pont)
- 5) Oldja meg a pozitív valós számok halmazán a $\log_{16} x = -\frac{1}{2}$ egyenletet! Jelölje a megadott számegyenesen az egyenlet megoldását! (3 pont)
- 6) Melyik a nagyobb: $A = \frac{\sin 7\pi}{2}$ vagy $B = \log_2 \frac{1}{4}$? (Írja a megfelelő relációs jelet a válaszmezőbe! Válaszát indokolja!) (2 pont)
- 7) Adja meg a $\lg x^2 = 2\lg x$ egyenlet megoldáshalmazát! (2 pont)
- 8)
- a) Mely pozitív egész számokra igaz a következő egyenlőtlenség? $5^{x-2} < 5^{13-2x} \tag{4 pont}$
- b) Oldja meg a valós számok halmazán az alábbi egyenlőtlenséget! $9^{\sqrt{x}} < 3^{x-3} \eqno(8 \text{ pont})$
- 9) Oldja meg a valós számok halmazán a következő egyenleteket!
 - a) $\lg(x+15)^2 \lg(3x+5) = \lg 20$ (6 pont)
 - b) $25^{\sqrt{x}} = 5 \cdot 5^{3\sqrt{x}}$ (6 pont)
- 10) Határozza meg az alábbi egyenletek valós megoldásait!
 - a) $(\log_2 x 3) \cdot (\log_2 x^2 + 6) = 0$ (7 pont)
 - b) $\sin^2\left(x \frac{\pi}{6}\right) = \frac{1}{4}$ (10 pont)
- 11) Adja meg a $\log_3 81$ kifejezés pontos értékét! (2 pont)
- 12) Mennyi az $\left(\frac{1}{5}\right)^{2x}$ kifejezés értéke, ha x = -1? (2 pont)

13) Az a, b és c tetszőleges pozitív valós számokat jelölnek. Tudjuk, hogy $\lg x = 3\lg a - \lg b + \frac{1}{2}\lg c$

Válassza ki, hogy melyik kifejezés adja meg helyesen x értékét! (3 pont)

A:
$$x = \frac{3a}{b} + \frac{1}{2}c$$

E:
$$x = a^3 - b\sqrt{c}$$

B:
$$x = a^3 - b + \sqrt{c}$$

F:
$$x = \frac{a^3 \cdot \sqrt{c}}{b}$$

C:
$$x = \frac{a^3}{b \cdot \sqrt{c}}$$

G:
$$x = \frac{a^3 \cdot \frac{1}{c}}{b}$$

D:
$$x = \frac{a^3 \cdot c^{-1}}{b}$$

14) A b, c és d pozitív számokat jelölnek. Tudjuk, hogy $\lg b = \frac{\lg c - \lg d}{3}$.

Fejezze ki az egyenlőségből b-t úgy, hogy abban c és d logaritmusa ne szerepeljen! (2 pont)

15) Melyik szám nagyobb?

$$A = \lg \frac{1}{10}$$
, vagy $B = \cos 8\pi$

(2 pont)

16) István az $x \mapsto \log_{\frac{1}{2}} x(x > 0)$ függvény grafikonját akarta

felvázolni, de ez nem sikerült neki, több hibát is elkövetett (a hibás vázlat látható a mellékelt ábrán).

Döntse el, hogy melyik igaz az alábbi állítások közül!

- b) István rajzában hiba az, hogy a vázolt függvény 2-höz 2-t rendel.
- c) István rajzában hiba az, hogy a vázolt függvény zérushelye 1. (2 pont)

17) Adja meg azokat az x valós számokat, melyekre teljesül: $\log_2 x^2 = 4$. Válaszát indokolja!

o po

18) Oldja meg az alábbi egyenleteket a valós számok halmazán!

a)
$$5^{x+1} + 5^{x+2} = 30$$

(5 pont)

b)
$$\frac{3}{x} - \frac{2}{x+2} = 1$$
, ahol $x \neq 0$ és $x \neq 2$

(7 pont)

- 19)
- a) Oldja meg a valós számok halmazán az $\frac{x+2}{3-x} \ge 0$ egyenlőtlenséget! (7 pont)
- b) Adja meg az x négy tizedesjegyre kerekített értékét, ha $4 \cdot 3^x + 3^x = 20$. (4 pont)

c) Oldja meg a $2\cos^2 x + 3\cos x - 2 = 0$ egyenletet a $[-\pi; \pi]$ alaphalmazon. (6 pont)

20) Melyik az az x természetes szám, amelyre $\log_3 81 = x$?

(2 pont)

21) Oldja meg az alábbi egyenleteket a valós számok halmazán!

(5 pont)

 $\lg(x-1) + \lg 4 = 2$

(7 pont)

-2,5 -2 -1,5 -1 -0,5 0 0,5

Adja meg az f függvény értékkészletét!

- Határozza meg az a szám értékét!
- 23) Adja meg az x értékét, ha $\log_2(x+1) = 5!$

(2 pont)

24) Úisághír: "Szeizmológusok számításai alapján a 2004. december 26-án Szumátra szigetének közelében kipattant földrengés a Richter-skála szerint 9,3-es erősségű volt; a rengést követő cunami (szökőár) halálos áldozatainak száma megközelítette a 300 ezret."

földrengés Richter-skála szerinti "erőssége" és a rengés középpontjában energia felszabaduló között fennálló összefüggés: $M = -4,42 + \frac{2}{3} \lg E$.

Ebben a képletben E a földrengés középpontjában felszabaduló energia mérőszáma (joule-ban mérve), M pedig a földrengés erősségét megadó nem negatív szám a Richter-skálán.

- Nagasakira 1945-ben ledobott atombomba felrobbanásakor a) Α felszabaduló energia 1,344·10¹⁴ joule volt. A Richter-skála szerint mekkora erősségű az a földrengés, amelynek középpontjában ekkora energia szabadul fel? (3 pont)
- A 2004. december 26-i szumátrai földrengésben mekkora volt a b) felszabadult energia? (3 pont)
- A 2007-es chilei nagy földrengés erőssége a Richter-skála szerint 2-vel nagyobb volt, mint annak a kanadai földrengésnek az erőssége, amely ugyanebben az évben következett be. Hányszor akkora energia szabadult fel a chilei földrengésben, mint a kanadaiban? (5 pont)
- Az óceánban fekvő egyik szigeten a földrengést követően kialakuló szökőár egy körszelet alakú részt tarolt le. A körszeletet határoló körív középpontja a rengés középpontja, sugara pedig 18 km. A rengés középpontja a sziget partjától 17 km távolságban volt (lásd a felülnézeti ábrán). Mekkora a szárazföldön elpusztult rész területe egész négyzetkilométerre kerekítve? (6 pont)

25)

- Mely valós számokra értelmezhető a $\log_2(3-x)$ kifejezés? (1 pont)
- Oldja meg a valós számok halmazán az alábbi egyenletet! b) $\log_{2}(3-x)=0$ (2 pont)

- 26) Egy idén megjelent iparági előrejelzés szerint egy bizonyos alkatrész iránti kereslet az elkövetkező években emelkedni fog, minden évben az előző évi kereslet 6%-ával. (A kereslet az adott termékből várhatóan eladható mennyiséget jelenti.)
 - a) Várhatóan hány százalékkal lesz magasabb a kereslet 5 év múlva, mint idén? (3 pont)

Az előrejelzés szerint ugyanezen alkatrész ára az elkövetkező években csökkenni fog, minden évben az előző évi ár 6%-ával.

- b) Várhatóan hány év múlva lesz az alkatrész ára az idei ár 65%-a? (5 pont) Egy cég az előrejelzésben szereplő alkatrész eladásából szerzi meg bevételeit. A cég vezetői az elkövetkező évek bevételeinek tervezésénél abból indulnak ki, hogy a fentiek szerint a kereslet évente 6%-kal növekszik, az ár pedig évente 6%-kal csökken.
- c) Várhatóan hány százalékkal lesz alacsonyabb az éves bevétel 8 év múlva, mint idén? (5 pont)

A kérdéses alkatrész egy forgáskúp alakú tömör test. A test alapkörének sugara 3 cm, alkotója 6 cm hosszú.

d) Számítsa ki a test térfogatát!

(4 pont)

- 27) Adja meg az alábbi állítások logikai értékét (igaz vagy hamis)!
- (2 pont)

A)
$$\sqrt{(-5)^2} = 5$$

B) Minden $x \in \mathbb{R}$ esetén $\sqrt{x^2} = x$.

C)
$$2^{\frac{5}{2}} = \sqrt{32}$$

- 28) Egy 2014 végén készült előrejelzés szerint az Indiában élő tigrisek t száma az elkövetkezendő években (az egyes évek végén) megközelítőleg a következő összefüggés szerint alakul: $t(x) = 3600 \cdot 0.854^x$, ahol x a 2014 óta eltelt évek számát jelöli.
 - a) Számítsa ki, hogy az előrejelzés alapján 2016 végére hány százalékkal csökken a tigrisek száma a 2014-es év végi adathoz képest! (4 pont)
 - b) Melyik évben várható, hogy a tigrisek száma 900 alá csökken? (4 pont) Egy állatkert a tigrisek fennmaradása érdekében tenyésztő programba kezd. Beszereznek 4 hím és 5 nőstény kölyöktigrist, melyeket egy kisebb és egy nagyobb kifutóban kívánnak elhelyezni a következő szabályok mindegyikének betartásával:
 - I) háromnál kevesebb tigris egyik kifutóban sem lehet;
 - II) a nagyobb kifutóba több tigris kerül, mint a kisebbikbe;
 - III) mindkét kifutóban hím és nőstény tigrist is el kell helyezni;
 - IV) egyik kifutóban sem lehet több hím, mint nőstény tigris.
 - c) Hányféleképpen helyezhetik el a 9 tigrist a két kifutóban? (8 pont) (A tigriseket megkülönböztetjük egymástól, és két elhelyezést eltérőnek tekintünk, ha van olyan tigris, amelyik az egyik elhelyezésben más kifutóban van, mint a másik helyezésben.)
- 29) Oldja meg a következő egyenletet a valós számok halmazán! Válaszát három tizedesjegyre kerekítve adja meg!

$$2^{x} = 10$$
 (2 pont)

- 30) A mobiltelefonok 1990 végén jelentek meg Magyarországon. Az előfizetések száma gyorsan nőtt: 2002 végén már kb. 7 millió, 2008 végén pedig kb. 12 millió előfizetés volt az országban.
 - a) Hány százalékkal nőtt a mobiltelefon előfizetések száma 2002 végétől 2008 végéig? (2 pont) 1993 és 2001 között az egyes évek végén nyilvántartott mobiltelefon-előfizetések számát ezer darabban jó közelítéssel a következő függvény adja meg: $f(x) = 51 \cdot 1,667^x$, ahol x az 1992 vége óta eltelt évek számát jelöli.
 - b) A függvény alapján hány mobiltelefon-előfizető lehetett 2000 végén? (3 pont)

A kezdeti időszakban a mobilhálózatból indított hívások száma is gyors növekedést mutatott. 1991 januárjában Magyarországon körülbelül 350 000 mobilhívást indítottak, majd ettől a hónaptól kezdve minden hónapban megközelítőleg 6,5%-kal nőtt a hívások száma az előző havi hívások számához viszonyítva (egészen 2002-ig).

c) Melyik évben volt az a hónap, amelyben az egy havi mobilhívások száma először elérte a 100 milliót? (6 pont)
A mobiltelefonok elterjedése egy idő után a vezetékestelefon-előfizetések és hívások számának csökkenését eredményezte. A vezetékestelefon-hálózatból

hívások számának csökkenését eredményezte. A vezetékestelefon-hálózatból indított hívások száma Magyarországon 2000-ben kb. 4200 millió volt, majd ez a szám évről évre kb 8%-kal csökkent.

- d) Hány hívást indítottak vezetékes hálózatból 2009-ben, és összesen hány vezetékes hívás volt a 2000 elejétől 2009 végéig terjedő tízéves időszakban? (6 pont)
- 31) Adja meg azt az x valós számot, amelyre $\log_2 x = -3$. (2 pont)
- 32) Adja meg x értékét, ha $5^{x} = (5^{2} \cdot 5 \cdot 5^{4})^{3}$. (2 pont)
- 33) Oldja meg az alábbi egyenletet a valós számok halmazán! Válaszát tizedes tört alakban adja meg!

$$4^x = 8 (2 pont)$$

34)

a) Hány olyan háromjegyű egész szám van, amelyre igaz az alábbi egyenlőtlenség?

$$\frac{x}{3} + \frac{x}{6} \ge \frac{x}{4} + 230$$
 (4 pont)

b) Oldja meg az alábbi egyenletet a valós számok halmazán! $3 \cdot 4^x + 4^{x+1} = 896$ (6 pont)

- 35) Péter elhatározza, hogy összegyűjt 3,5 millió Ft-ot egy használt elektromos autó vásárlására, mégpedig úgy, hogy havonta egyre több pénzt tesz félre a takarékszámláján. Az első hónapban 50 000 Ft-ot tesz félre, majd minden hónapban 1000 Ft-tal többet, mint az azt megelőző hónapban. (A számlán gyűjtött összeg kamatozásával Péter nem számol.)
 - a) Össze tud-e így gyűjteni Péter 4 év alatt 3,5 millió forintot? (5 pont)

A világon gyártott elektromos autók számának 2012 és 2017 közötti alakulását az alábbi táblázat mutatja.

év	2012	2013	2014	2015	2016	2017
elektromos autók száma (ezerre kerekítve)	110 000	221 000	409 000	727 000	1 186 000	1 928 000

b) Szemléltesse a táblázat adatait oszlopdiagramon!

(3 pont)

Péter az előző táblázat adatai alapján olyan matematikai modellt alkotott, amely az elektromos autók számát exponenciálisan növekedőnek tekinti. E szerint, ha a 2012 óta eltelt évek száma x, akkor az elektromos autók számát (millió darabra) megközelítőleg az $f(x) = 0.122 \cdot 2^{0.822x}$ összefüggés adja meg.

c) A modell alapján számolva melyik évben érheti el az elektromos autók száma a 25 millió darabot? (5 pont)

Egy elektromos autókat gyártó cég öt különböző típusú autót gyárt. A készülő reklámfüzet fedőlapjára az ötféle típus közül egy vagy több (akár mind az öt) autótípus képét szeretné elhelyezni a grafikus.

- d) Hány lehetőség közül választhat a tervezés során? (Két lehetőség különböző, ha az egyikben szerepel olyan autótípus, amely a másikban nem.)
 (4 pont)
- 36) A 2 hányadik hatványával egyenlő az alábbi kifejezés?

$$\frac{2^7 \cdot \left(2^3\right)^4}{2^5} \tag{2 pont}$$

37) Az alábbi számok közül melyik az, amelyik a 2^{100} szám kétszeresével egyenlő? 2^{101} ; 2^{102} ; 2^{200} ; 4^{100} . (2 pont)