Custom data loading and data manipulation

Standard deviation and data normalization

- \bullet avg $(x) = \mathbf{1}^T x/n$
- de-meaned vector is $\tilde{x} = x \operatorname{avg}(x)\mathbf{1}$ (so $\operatorname{avg}(\tilde{x}) = 0$)
- \bullet standard deviation of x

$$\operatorname{std}(x) = \operatorname{rms}(\tilde{x}) = \frac{\|x - (\mathbf{1}^T x/n)\mathbf{1}\|}{\sqrt{n}}$$

- std(x) gives "typical amount" x_i vary from avg(x)
- std(x) = 0 only if $x = \alpha 1$ for some α
- a basic formula

$$rms(x)^2 = avg(x)^2 + std(x)^2$$

• standardization ($\mu = 0$, $\sigma = 1$, z-scores)

$$z = \frac{1}{\operatorname{std}(x)}(x - \operatorname{avg}(x)\mathbf{1})$$

Datasets and Dataloaders

- code for processing data samples can get messy and hard to maintain
- we ideally want our dataset code to be decoupled from our model training code for better readability and modularity
- PyTorch provides two data primitives:
 - torch.utils.data.DataLoader
 - torch.utils.data.Dataset

that allow us to use pre-loaded datasets as well as our own data

- Dataset stores the samples and their corresponding labels
- DataLoader wraps an iterable around the Dataset to enable easy access to the samples.

Data sets and data loaders

Using our own data

suppose we want to build an arabic digit classification system

- data is give to us in, say, two spreadsheets
 - images spreadsheet with columns containing uint8 data
 - labels spreadsheet containing a single column of int data

Inheriting from the Dataset class

```
import pandas as pd
from torch.utils.data import Dataset
class AMNIST(Dataset):
    def __init__(self, imagesfile, labelsfile):
        super().__init__()
        df_x = pd.read_csv(imagesfile, header=None)
        df_y = pd.read_csv(labelsfile, header=None)
        self.X = df_x.iloc[:, :].to_numpy().reshape(-1,28,28) / 255.0
        self.y = df y.iloc[:, 0].to numpy()
    def len (self):
       return len(self.y)
    def __getitem__(self, idx):
        image = self.X[idx]
        image = torch.tensor(np.expand_dims(image, axis=0))
        label = torch.tensor(self.y[idx])
        return image, label
```

Data transformations

```
from torchvision import transforms
2
   transform_train = transforms.Compose([
                          transforms.RandomCrop(28, padding=4),
                          transforms.ToTensor(),
                      1)
   # Training dataset
   train_data = MNIST(root='./datasets', train=True, download=True,
    train_loader = torch.utils.data.DataLoader(train_data,
10
      batch size=batch sz, shuffle=True, pin memory=True)
   Guess what this does:
```

Three exercices

- use DataLoader for MNIST in training an FNN
- build a custom DataLoader for (a subset of) MNIST data, where data is given as a folder of jpg images and labels are given in a seprate csv file
- build a DataLoader for an Arabic MNIST dataset
 - data is given as cvs files
 - but images have to to be presented to the training routines as batches of 28×28 images, i.e., each batch of training data X_b has the shape [bsize, 28, 28]

Saving and loading models

```
# saving/loading models
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
net = Net()
net.load_state_dict(torch.load(PATH))
```

Example of finetuning an existing network