

What is claimed is:

1. A method for use by a receiver of a wireless communication system in receiving over a communication channel a radio transmission of a number of symbols each having an in-phase and
5 a quadrature component, the method including a step (11) of receiving and sampling the radio transmission so as to provide a succession of samples, and also a step (12) of filtering the succession of samples, the method characterized in that:

the step (12) of filtering the succession of samples
10 includes a step (12b) of whitening the samples on a sample-by-sample basis by evaluating, for each sample in the succession of samples, a noise plus interference correlation matrix ($\tilde{\mathbf{R}}_{ii}$) including information about the correlation of both the in-phase and quadrature phase components of the sample.

15 2. A method as in claim 1, wherein the step (12) of filtering is further characterized by:

a step (12a) of switching on or off the step (12b) of whitening the samples, with the switching based on determining whether the communication channel is sensitivity-limited so
20 that noise is present that can be characterized as substantially white.

3. A method as in claim 1, wherein whether the communication channel is determined to be sensitivity-limited is based on a calculated value of a metric (M_{ic} , M_{ii}) and a corresponding
25 predetermined threshold (τ_{ic} , τ_{ii}).

4. A method as in claim 3, wherein the metric (M_{ic}) is based on relative values of different components of the noise plus interference correlation matrix ($\tilde{\mathbf{R}}_{ii}$).

5. A method as in claim 3, wherein the switching is based on comparing the value of a metric (M_{ii}) defined by

$$M_{ii} = \frac{R_{1ii}}{R_{0ii}}$$

where $R_{0ii} = E[\mathbf{i}_k^* \mathbf{i}_k]$ and $R_{1ii} = E[\mathbf{i}_k^* \mathbf{i}_{k+1}]$.

5 6. A method as in claim 3, wherein the switching is based on examining a second order or a higher order statistic of the noise plus interference signal (\mathbf{i}_k) related to the noise plus interference correlation matrix ($\tilde{\mathbf{R}}_{ii}$).

10 7. A method as in claim 1, further characterized in that the noise plus interference correlation matrix ($\tilde{\mathbf{R}}_{ii}$) is determined using:

$$\tilde{\mathbf{R}}_{ii} = E[\mathbf{i}_k \mathbf{i}_k^*],$$

where \mathbf{i}_k is a noise plus interference signal.

15 8. A method as in claim 7, further characterized in that each vector \mathbf{y}_k representing one symbol is whitened using:

$$\tilde{\mathbf{y}}_k = \mathbf{W} \mathbf{y}_k$$

where \mathbf{W} is defined as the inverse of a square root operation on the noise plus interference correlation matrix $\tilde{\mathbf{R}}_{ii}$, so that:

$$\mathbf{W} = \tilde{\mathbf{R}}_{ii}^{-1/2}.$$

20 9. A method as in claim 1, wherein each symbol is indicated by one or more samples, including samples from possibly different antennas.

10. A receiver used as part of or with a wireless communication

system, characterized in that it comprises means (12) for performing the steps (12a 12b) recited in claim 1.

11. A receiver as in claim 10, wherein the receiver is part of a mobile station.

5 12. A receiver as in claim 10, wherein the receiver is part of a base station of a radio access network of the wireless communication system.

10 13. A system, comprising a mobile station and a base station used as part of or with a wireless communication system, each including a receiver, characterized in that at least one of the receivers comprises means (12) for performing the steps (12a 12b) recited in claim 1.