SZAKDOLGOZAT

Falak közé zárt kvantum részecske homogén térben: "Schrödinger macskája dobozban"

KÜRTI ZOLTÁN
Fizika BSc., fizikus szakirány

Témavezetők:

DR. CSERTI JÓZSEF egyetemi tanár

DR. GYÖRGYI GÉZA egyetemi docens

Eötvös Loránd Tudományegyetem Komplex Rendszerek Fizikája Tanszék 2021

Kivonat

Kvantummechanikai iskolapélda a homogén térbe helyezett egydimenziós részecske. Ezt három dimenzióra kiterjesztve és két fal közé zárva keressük az energia sajátállapotokat. Annyi előrelátható, hogy a nyílt vagy félig nyílt esetekben használható, reguláris Airy függvény itt nem elegendő a megoldáshoz, ennyiben túlmegyünk a tankönyvi feladaton. Az aszimptotikus függvényalakok segítségével előállítjuk a magasan gerjesztett állapotok energiáit és hullámfüggvényeit, s ezeket összehasonlítjuk a közvetlenül a Bohr–Sommerfeld-módszerrel kapott eredménnyel. Numerikusan szemléltetjük fizikailag érdekes kezdőállapotok időfejlődését. Vizsgáljuk a rezolvenst és az állapotsűrűséget, továbbá a sokrészecske rendszerekre való általánosítás lehetőségét.

Egydimenziós, m tömegű, lineáris Fx potenciálban mozgó kvantumos részecskét zárjunk L hosszú, merev falú dobozba (ekvivalens a padló és mennyezet között függőlegesen pattogó kvantum labdával). A stacionárius Schrödinger-egyenletből kiindulva, a határfeltételek figyelembe vételével, írjuk fel az energia sajátértékeket meghatározó szekuláris egyenletet, melyet oldjunk meg numerikusan. Ábrázoljuk az alacsonyabb nívókat a doboz méretének változtatása mellett, és szemléltessük grafikusan a stacionárius hullámfüggvényeket. A szekuláris egyenletben fellépő függvények aszimptotikáinak ismeretében a magasabb nívókra próbáljunk egyszerűbb implicit formulát adni. Végezzük el a szemiklasszikus kvantálást is, hasonlítsuk össze az előző közelítő eredménnyel, és numerikusan néhány, az egzakt egyenletből kapott nívóval.

További kérdések: (a) Számítsuk ki a nívókat expliciten, kicsiny L-ek mellett. (b) Mely paraméterek mellett esik egybe FL éppen az alapállapoti energiával? (Ilyenkor a klasszikus labda éppen eléri a mennyezetet.) (c) Mutassuk meg, hogy e határesetnél kisebb L belméret mellett minden nívó FL fölé esik. (d) Írjuk fel a szemiklasszikus stacionárius hullámfüggvényeket, s grafikusan hasonlítsuk össze őket az egzaktakkal – mikor jó a közelítés? (e) Írjuk fel a kicsiny L melletti hullámfüggvényeket expliciten, ezeket szintén hasonlítsuk össze a valódiakkal.

- -Miért nem Rodnik osztályba tartozik
- -fx, fy = 0 külön tárgyalás
- -program leírása

Köszönetnyilvánítás

Tartalomjegyzék

1.	Bevezetés		
	1.1.	Probléma leírása	1
	1.2.	Airy függvények	1
	1.3.	Szemiklasszika	1
	1.4.	Green-függvények	1
	1.5.	Schrödinger-egyenlet animáció	1
2.	A d	obozba zárt részecske homogén térben	1
	2.1.	Három dimenzióban	1
	2.2.	Egy dimenzióban	3
		2.2.1. $F = 0$ eset	3
		2.2.2. Airy függvények	3
		2.2.3. Véges F eset	6
		2.2.4. Falak nélküli eset	8
3.	Szemiklasszikus közelítés		
	3.1.	Szemiklasszikus energiaszintek	10
	3.2.	Összehasonlítás az egzakt eredménnyel	13
	3.3.	Airy függvények aszimptotikája	14
4.	Hon	nogén tér Green-függvénye	15
	4.1.	Egzakt Green-függvény	17
	4.2.	Green-függvény határesetei	20
	4.3.	Állapotsűrűség	23
	4.4.	Perturbáció számítás	24
Α.	Szal	oad részecske gyorsuló koordinátarendszerben	26
в.	Nur	nerikus számítások	27
	B.1.	Momentumok időfejlődése	27
	B.2.	Hullámfüggvény időfejlődése	27
		B.2.1. 1D	27
		B 2 2 2D	27

Hivatkozások				
brák jegyzéke	iggvények			
2.1. Airy-függvények	5			
2.2. Egzakt energiaszintek	7			
2.3. Sajátállapotok	8			
3.1. Szemiklasszikus energiaszintek	11			
3.2. Szemiklasszikus állapotszám	12			
3.3. Végtelen potenciálgödör energiaszintjei	13			
4.1. Egy dimenziós Green-függvény	19			
4.2. Két dimenziós Green-függvény	20			
4.3. Állapotsűrűség	23			
4.4. Állapotok száma	24			
4.5. Green-függvény perturbációs sorának konvergenciája	26			
B.1. Várható értékek és szórások időfejlődése	27			

Táblázatok jegyzéke

1. Bevezetés

1.1. Probléma leírása

nem méréselmélet, gyakorlati jelentőség, eddigi tárgyalások, Bi hiánya

1.2. Airy függvények

egyéb helyen felbukkan a fizikában

1.3. Szemiklasszika

gyakorlati jelentősége, kvantummechanika klasszikus mechanika közötti pedagógiai kapcsolat

1.4. Green-függvények

gyakorlati jelentőség, perturbáció megválasztható

1.5. Schrödinger-egyenlet animáció

kóddal vizualizáció

2. A dobozba zárt részecske homogén térben

2.1. Három dimenzióban

A rendszer egy téglatest alakú dobozba zárt részecske. A doboz mérete L_x , L_y és L_z . A dobozban homogén erőtér hat a részecskére, azaz $\boldsymbol{F}=\mathrm{const.}$ A potenciál így $V(x,y,z)=-F_xx-F_yy-F_zz$. A rendszer időfüggő Schrödinger-egyenlete

$$i\hbar \frac{\partial \psi(x,y,z,t)}{\partial t} = -\frac{\hbar^2}{2m} \Delta \psi(x,y,z,t) + V(x,y,z)\psi(x,y,z,t). \tag{2.1}$$

Az egyenlet kezdőfeltétele egy kezdeti állapot t_0 -ban, $\psi(x,y,z,t_0)=\psi_0(x,y,z)$, az egyenlet határfeltételei pedig a hullámfüggvény határokon való eltűnése, $0=\psi|_{x=0}=\psi|_{x=L_x}=0$

 $\psi|_{y=0}=\psi|_{y=L_y}=\psi|_{z=0}=\psi|_{z=L_z}.$ Mivel ez a potenciál lineáris $x,\ y$ és z-ben, a Schrödinger-egyenlet szeparálható a

$$\psi_{klm}(x, y, z, t) = e^{-\frac{iE_{klm}}{\hbar}t} \psi_k^{(x)}(x) \psi_l^{(y)}(y) \psi_m^{(z)}(z)$$
(2.2)

próbafüggvénnyel. A $\psi_n^{(i)}$ (i=x,y,z) függvényekre így az egy dimenziós stacionárius Schrödinger-egyenlet vonatkozik. A $\psi^{(x)}$ -re vonatkozó egyenlet

$$-\frac{\hbar^2}{2m}\frac{d^2\psi_k^{(x)}(x)}{dx^2} + F_x x \psi_k^{(x)}(x) = E_k^{(x)}\psi_k^{(x)}(x), \tag{2.3}$$

a határfeltételek $0=\left.\psi_k^{(x)}\right|_{x=0}=\left.\psi_k^{(x)}\right|_{x=L_x}$. $\psi_l^{(y)}$ és $\psi_m^{(z)}$ -re vonatkozó egyenletek hasonlóak. Az E_{klm} energia a három egy dimenziós stacionárius Schrödinger-egyenlet sajátenergiáinak összege,

$$E_{klm} = E_k^{(x)} + E_l^{(y)} + E_m^{(z)}. (2.4)$$

A (2.1) egyenlet általános megoldása a (2.2) próbafüggvények kezdőfeltételhez illesztett lineáris kombinációja,

$$\psi(x, y, z, t) = \sum_{klm} C_{klm} \psi_{klm}(x, y, z, t). \tag{2.5}$$

 C_{klm} együtthatók meghatározásához a szokásos hely reprezentáció beli skalárszorzást kell használni,

$$C_{klm} = \frac{1}{N_{klm}} \int_0^{L_x} dx \int_0^{L_y} dy \int_0^{L_z} dz \, \psi_{klm}(x, y, z, t = 0)^* \psi_0(x, y, z), \tag{2.6}$$

$$N_{klm} = \int_0^{L_x} dx \int_0^{L_y} dy \int_0^{L_z} dz \, |\psi_{klm}(x, y, z, t = 0)|^2.$$
 (2.7)

A (2.6) egyenlet nem egyszerűsíthető tovább általános ψ_0 esetén, viszont a (2.7) igen. Mivel ψ_{klm} szorzat alakú, nem kell a tripla integrált elvégezni, elég csak három egyszeres integrál szorzatát kiszámítani. Ez numerikus számításokban jelentős.

$$N_{klm} = N_k^{(x)} N_l^{(y)} N_m^{(z)}, (2.8)$$

ahol az egyes N tagok az egy dimenziós sajátfüggvények normájaként vannak definiálva.

$$N_k^{(x)} = \int_0^{L_x} dx \, \left| \psi_k^{(x)}(x) \right|^2, \tag{2.9}$$

 $N_l^{(y)}$ -re és $N_m^{(z)}$ -re hasonló képletek vonatkoznak.

2.2. Egy dimenzióban

Az egy dimenziós probléma tárgyalásának két esete van aszerint, hogy \boldsymbol{F} megfelelő komponense 0-e. Amennyiben a komponens 0, a feladat a szabad részecske utáni legelemibb probléma megoldása: a végtelen potenciálgödör. Amennyiben \boldsymbol{F} komponense nem 0, a megoldandó egyenlet az Airy-egyenletre [1] hasonlít, és az Airy függvények rövid vizsgálata után az energia sajátfüggvényeket megadjuk az Airy függvények kombinációjaként.

2.2.1. F = 0 eset

Az F=0 eset megoldása egyszerű, az egyik legalapvetőbb példa egyszerű kvantummechanikai rendszerekre. A sajátfüggvények

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right),\tag{2.10}$$

 $(n=1,2,\dots)$, a normálási faktorok

$$N_n = 1. (2.11)$$

Minden sajátfüggvény egyre normált szinusz függvény, melyek n-1 helyen veszik fel a 0 értéket x=0 és x=L között. Sajátenergiáik

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}. (2.12)$$

Ezek az energiaszintek hasznosak lesznek a numerikus számításokban az $F \neq 0$ eseten is.

2.2.2. Airy függvények

Az Airy egyenlet

$$\frac{d^2y}{dx^2} - xy = 0, (2.13)$$

ennek az egyenletnek a megfelelő kezdőfeltételekhez illesztett megoldásai az úgynevezett Airy-függvények, Ai(x) és Bi(x).

Az Airy-függvények szorosan kapcsolódnak a Bessel-függvényekhez. Ez jelentős mind az aszimptotikus alakjuk meghatározásához, mind a függvények numerikus kiértékeléséhez. A megoldást

$$y(x) = x^{\frac{1}{2}}v\left(\frac{2}{3}x^{\frac{3}{2}}\right) \tag{2.14}$$

alakban keresve a $x \ge 0$ tartományban a v(x)-re vonatkozó egyenlet a módosított Besselegyenlet $t = \frac{2}{3}x^{\frac{3}{2}}$ bevezetésével.

$$t^{2}\frac{d^{2}v(t)}{dt^{2}} + t\frac{dv(t)}{dt} - \left(t^{2} + \frac{1}{9}\right)v(t) = 0$$
 (2.15)

Leolvasható, hogy $\nu^2=\frac{1}{9}$, azaz a v(x)-re vonatkozó egyenlet megoldásai az $I_{\frac{1}{3}}(x)$ és $I_{-\frac{1}{3}}(x)$ módosított Bessel-függvények lineáris kombinációi. A két hagyományosan választott lineáris kombinációk a következőek:

$$Ai(x) = \frac{\sqrt{x}}{3} \left(I_{-\frac{1}{3}} \left(\frac{2}{3} x^{\frac{3}{2}} \right) - I_{\frac{1}{3}} \left(\frac{2}{3} x^{\frac{3}{2}} \right) \right)$$
 (2.16)

$$Bi(x) = \sqrt{\frac{x}{3}} \left(I_{-\frac{1}{3}} \left(\frac{2}{3} x^{\frac{3}{2}} \right) + I_{\frac{1}{3}} \left(\frac{2}{3} x^{\frac{3}{2}} \right) \right). \tag{2.17}$$

 $x \leq 0$ tartományban

$$y(x) = (-x)^{\frac{1}{2}}v\left(\frac{2}{3}(-x)^{\frac{3}{2}}\right)$$
 (2.18)

alakban keresve a megoldást a v(x)-re kapott egyenlet a Bessel-egyenlet, megint $\nu^2 = \frac{1}{9}$.

$$t^{2}\frac{d^{2}v(t)}{dt^{2}} + t\frac{dv(t)}{dt} + \left(t^{2} - \frac{1}{9}\right)v(t) = 0$$
 (2.19)

Az x=0pontban megkövetelt analitikusságnak megfelelően $x\geq 0$ esetén

$$Ai(-x) = \frac{\sqrt{x}}{3} \left(J_{-\frac{1}{3}} \left(\frac{2}{3} x^{\frac{3}{2}} \right) - J_{\frac{1}{3}} \left(\frac{2}{3} x^{\frac{3}{2}} \right) \right)$$
 (2.20)

$$Bi(-x) = \sqrt{\frac{x}{3}} \left(J_{-\frac{1}{3}} \left(\frac{2}{3} x^{\frac{3}{2}} \right) + J_{\frac{1}{3}} \left(\frac{2}{3} x^{\frac{3}{2}} \right) \right), \tag{2.21}$$

ahol $J_{\nu}(x)$ a Bessel-függvények. Érdemes definiálni a

$$Ti(x) = \frac{Ai(x)}{Bi(x)}$$
 (2.22)

függvényt.

Az $x \to \infty$ aszimptotikus alakok megkaphatóak a Bessel-függvények aszimptotikus alakjából:

Ai
$$(-x) = \frac{1}{\sqrt{\pi}x^{1/4}}\cos\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) + \mathcal{O}\left(x^{-5/4}\right),$$
 (2.23)

Bi
$$(-x) = -\frac{1}{\sqrt{\pi}x^{1/4}}\sin\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) + \mathcal{O}\left(x^{-5/4}\right),$$
 (2.24)

2.1. ábra. Ai(x) és Bi(x) grafikonja.

$$Ai(x) = \frac{1}{2\sqrt{\pi}x^{1/4}}e^{-\frac{2}{3}x^{\frac{3}{2}}} + \mathcal{O}\left(x^{-5/4}\right), \tag{2.25}$$

$$Bi(x) = \frac{1}{\sqrt{\pi}x^{1/4}}e^{\frac{2}{3}x^{\frac{3}{2}}} + \mathcal{O}\left(x^{-5/4}\right). \tag{2.26}$$

A Ti(x) definíciójába behelyettesítve (2.23) és (2.24) egyenleteket,

$$\operatorname{Ti}(-x) = -\cot\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) + \mathcal{O}\left(x^{-5/4}\right).$$
 (2.27)

Az állapotok normájának kiszámításához szükség van az Airy-függvények szorzatának integráljára. [2] (A.16) szerint

$$\int y^2 \, dx = xy^2 - {y'}^2,\tag{2.28}$$

ahol y az Airy egyenlet tetszőleges megoldása. Ezen egyenlet segítségével tetszőleges kötött állapot normája meghatározható, azonban az esetleges szórási állapottok normálásához a Dirac-delta függvénnyel kapcsolatos relációra lesz szükség [3] (3.108),

$$\frac{1}{\alpha^2} \int_{-\infty}^{\infty} \operatorname{Ai}\left(\frac{x+a}{\alpha}\right) \operatorname{Ai}\left(\frac{x+b}{\alpha}\right) dx = \delta(a-b) \tag{2.29}$$

A Green-függvény meghatározása közben felmerül a Wronski-determinánsa az Airy-függvényeknek, ez [4] (9.2.7) szerint

$$\mathcal{W}\{\operatorname{Ai}(x),\operatorname{Bi}(x)\} = \operatorname{Ai}(x)\operatorname{Bi}'(x) - \operatorname{Bi}(x)\operatorname{Ai}'(x) = \frac{1}{\pi}.$$
 (2.30)

2.2.3. Véges F eset

A (2.13) egyenlet (2.3) alakúra hozható a

$$x = ax' - bE, (2.31)$$

$$y(x) = y(ax' - bE) \tag{2.32}$$

helyettesítés
ekkel. A helyettesítés után $\frac{d}{dx}=\frac{1}{a}\frac{d}{dx'},$ és a (2.13) alakja

$$\frac{d^2y(ax - bE)}{dx'^2} - (a^3x - a^2bE)y(ax - bE) = 0.$$
 (2.33)

Ezt az egyenletet összevetve (2.3) egyenlettel a és b értéke leolvasható,

$$a = \sqrt[3]{\frac{2mF}{\hbar^2}},\tag{2.34}$$

$$b = \sqrt[3]{\frac{2m}{\hbar^2 F^2}}. (2.35)$$

Az egy dimenziós időfüggetlen Schrödinger-egyenlet megoldása

$$\psi(x) = c_1 \operatorname{Ai}(ax - bE) + c_2 \operatorname{Bi}(ax - bE), \tag{2.36}$$

melyet a határfeltételekhez kell illeszteni,

$$\psi(0) = \psi(L) = 0. \tag{2.37}$$

A $\psi(0) = 0$ feltételből következik, hogy $\psi \propto \text{Bi}(-bE) \, \text{Ai}(ax - bE) - \text{Ai}(-bE) \, \text{Bi}(ax - bE)$. A második határfeltétel pedig meghatározza a lehetséges energiákat,

$$0 = \psi(L) = \operatorname{Bi}(-bE)\operatorname{Ai}(aL - bE) - \operatorname{Ai}(-bE)\operatorname{Bi}(aL - bE). \tag{2.38}$$

Felhasználva a Ti(x) függvényt, az egyenlet kompakt és jól közelíthető alakra hozható,

$$Ti(aL - bE) - Ti(-bE) = 0. (2.39)$$

2.2. ábra. Egzakt energia szintek, bE és aL közötti relációval ábrázolva. Az ába jobb alsó sarkán látható, hogy $E \ll FL$ esetén az energiaszintek L-től függetlenek lesznek, mivel a félvégtelen tér beli homogén tér energiaszintjeit közelítik.

Amikor $FL \ll \frac{\pi^2 \hbar^2}{2mL^2}$, a potenciál jól közelíthető konstans potenciállal, mivel az alapállapot energiájához képest is elhanyagolható a lineáris potenciál eltérése a konstans potenciáltól. Eben a esetben $E \propto n^2$. $E \ll FL$ esetben az energiaszintek jó közelítéssel konstanssá válnak. Ennek az oka, hogy $\lim_{L\to\infty} \psi(x) = \alpha \operatorname{Ai}(ax-b)$, mert a $\operatorname{Bi}(x)$ exponenciálisan növekszik nagy x-ek esetén. Ebben az eseten az energiaszinteket a $\operatorname{Ai}(-bE) = 0$ egyenlet határozza meg. Ezeket az aszimptotikus viselkedéseket a 2.2. ábra jól mutatja, később a Szemiklasszikus közelítés vizsgálata során részletesebben tárgyaljuk.

$$\psi_k(x) = \operatorname{Bi}(-bE_k)\operatorname{Ai}(ax - bE_k) - \operatorname{Ai}(-bE_k)\operatorname{Bi}(ax - bE_k)$$
(2.40)

sajátállapotokhoz tartozó normálás analitikusan meghatározható. Mivel ψ_k sajátállapotok valós értékűek, $|\psi_k(x)|^2 = \psi_k(x)^2$, így a (2.28) egyenlet közvetlenül alkalmazható,

$$N_{k} = \int_{0}^{L} dx |\psi_{k}(x)|^{2}$$

$$= \left(x - \frac{bE_{k}}{a}\right) \psi_{k}(x)^{2} - \frac{1}{a^{3}} \psi'_{k}(x)^{2} \Big|_{x=0}^{x=L}$$

$$= \frac{1}{a\pi^{2}} - \frac{1}{a} \left(\text{Bi}(-bE) \,\text{Ai}'(aL - bE) - \text{Ai}(-bE) \,\text{Bi}'(aL - bE)\right)^{2}.$$
(2.41)

A ψ_k -t tartalmazó tagok kiesnek a határokon, mert a határfeltételeknek megfelelően $\psi_k = 0$ x = 0 és x = L-ben. A maradék tag x = 0-beli értéke $\frac{1}{\pi^2}$ az Airy-függvények Wronskideterminánsa (2.30) miatt. A 2.3. ábra az első néhány sajátállapotot szemlélteti, 1-re normálva az N_k együtthatók segítségével.

2.3. ábra. Az első 4 energia sajátállapot aL=8 hosszúságú doboz esetén, 1-re normálva, azaz $\frac{1}{\sqrt{N_n}}\psi_n(x)$ függvényeket ábrázolja. (n=0,1,2,3)

2.2.4. Falak nélküli eset

Falak hiányában a Schrödinger-egyenlet továbbra is (2.3), azonban a határfeltételek különböznek. A fizikai kép az, hogy V(x) = Fx potenciál esetén az $x \to \infty$ -ből nem jönnek részecskék, és nem is tartózkodnak ott. Ezek problémás állapotok lennének, végtelen energiával rendelkeznének. Tehát a szórásállapotokra vonatkozó feltétel, hogy

$$\lim_{x \to \infty} \psi(x) = 0. \tag{2.42}$$

Mivel itt folytonos spektrumról van szó, az eddigi normálás helyett az állapotokat Diracdeltára kell normálni. Ebben a feladatban az energia és energia sajátállapot között egy az egyhez megfeleltetés van, ellenben a jól ismert szabad részecske esetével. Ennek oka, hogy itt $x \to \infty$ -ből nem jönnek részecskék. Ennek következtében az a sajátállapotokat $|E\rangle$ egyértelmen jelöli. A (2.42) feltétel azt jelenti, hogy az Airy-függvények közül a Bi(ax-bE) nem szerepel a lineáris kominációban, a megoldás tisztán az Ai(ax - bE) függvény lesz,

$$\langle x \mid E \rangle = N \operatorname{Ai}(ax - bE).$$
 (2.43)

A szórásállapotokra vonatkozó normálási feltétel

$$\langle E \mid E' \rangle = \delta(E - E'). \tag{2.44}$$

Ez alapján N meghatározható (2.29) azonosság felhasználásával,

$$\delta(E - E') = N^2 \int_{-\infty}^{\infty} \operatorname{Ai}(ax - bE) \operatorname{Ai}(ax - bE') dx$$

$$= N^2 \frac{1}{ab} \delta(E - E').$$
(2.45)

Ez alapján $N=\sqrt{ab}=\sqrt[3]{\frac{2m}{\hbar^2\sqrt{F}}},$ és

$$\langle x \mid E \rangle = \psi_E(x) = \sqrt{ab} \operatorname{Ai}(ax - bE).$$
 (2.46)

A teljességi reláció is leellenőrizhető a (2.29) egyenlet alapján,

$$\int_{-\infty}^{\infty} dE |E\rangle \langle E| = ab \int_{-\infty}^{\infty} dE \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy \operatorname{Ai}(ax - bE) \operatorname{Ai}(ay - bE) |x\rangle \langle y|$$

$$= \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy \, \delta(x - y) |x\rangle \langle y|$$

$$= \hat{I}$$
(2.47)

A (2.45) egyenlet a \hat{H} operátor hermitikusságából következik, hiszen a hermitikus operátorok sajátállapotai ortogonálisak egymásra. A (2.47) teljességi reláció is arra utal, hogy az összes fizikai sajátállapotot megtaláltuk a csupán Ai(x) függvényt tartalmazó állapotok keresésével. Ha hiányozna valamely fizikai állapot, akkor nem lehetne a megtalált sajátfüggvények lineáris kombinációjaként tetszőleges hullámfüggvényt előállítani, és így a teljességi reláció nem teljesülne.

Érdemes a fizikai intuícióval összevetni az Airy-függvény Fourier-transzformáltját. Az Airy-függény Fourier transzformáltja

$$\int_{-\infty}^{\infty} \operatorname{Ai}(x)e^{-ikx} dx = e^{ik^3/3}.$$
 (2.48)

Ez azt jelenti, hogy az impulzus térben a hullámfüggvény

$$\psi_E(p) = \frac{1}{\sqrt{2\pi F\hbar}} \exp\left(i\left(\frac{1}{3}\left(\frac{p}{a\hbar}\right)^3 - \frac{pE}{F\hbar}\right)\right),\tag{2.49}$$

$$|\psi_E(p)|^2 = \frac{1}{2\pi F\hbar}.$$
 (2.50)

Az impulzus hullámfüggvény amplitúdója nem függ az impulzustól! Ez nem meglepő, mert a klasszikus esetben az impulzus időfejlődése

$$p(t) = -Ft + p_0, (2.51)$$

tehát minden részecske egy kis dp tartományban dp/F időt tölt, adott impulzushoz tartozó részecskesűrűség értéke független az impulzustól. Ennek a klasszikus fizika beli megállapításnak a megfelelője, hogy $|\psi_E(p)|^2$ p-től független.

3. Szemiklasszikus közelítés

3.1. Szemiklasszikus energiaszintek

A dobozba zárt részecske esetében két esetet kell vizsgálni a szemiklasszikus energiaszintek meghatározásához. Az első eset, amikor az energia E < FL, tehát a fordulópont a második fal elérése előtt van. Ebben az esetben a Maslov index $\frac{3}{4}$ [5] (2.4.1 fejezet). Az x=0 fordulópontban a szemiklasszikus hullámfüggvény $\frac{\pi}{4}$ fázist vesz fel, az x=E/F fordulópontban pedig $\frac{\pi}{2}$ fázist vesz fel,

$$\left(n + \frac{3}{4}\right)h = \oint p \, dq = 2 \int_0^{E/F} \sqrt{2m \left(E - Fx\right)} \, dx = \frac{4\sqrt{2m}}{3F} E^{3/2}.$$
 (3.1)

A második eset amikor E > FL, ekkor a fordulópontok 0-ban és L-ben vannak, és a Maslov index 1. Mind az x = 0, mind az x = L fordulópontban $\frac{\pi}{2}$ fázis vesz fel a szemiklasszikus hullámfüggvény,

$$(n+1) h = \oint p \, dq = 2 \int_0^L \sqrt{2m \left(E - Fx\right)} \, dx = \frac{4\sqrt{2m}}{3F} \left(E^{3/2} - \left(E - FL\right)^{3/2}\right). \quad (3.2)$$

3.1. ábra. Az ábra a szemiklasszikus energiaszinteket hasonlítja össze az egzakt energiaszintekkel. Ez az ábra is a bE és aL közötti relációt ábrázolja. A szemiklasszikus közelítés nagy kvantumszámok illetve $E\gg FL$ esetén pontos. Utóbbi oka, hogy ebben az esetben a potenciál elhanyagolható, és a potenciál nélküli végtelen potenciálgödör energiaszintjeit pedig a szemiklasszikus közelítés egzaktul megadja.

Előfordulhat, hogy valamely n-re egyszerre van (3.1) és (3.2) egyszerre van megoldása, ahol E a megfelelő tartományba esik. Ez azt jelenti, hogy a szemiklasszikus közelítés hibáján belül nem lehet meghatározni, hogy a valódi energiszint FL felett, vagy alatt van. A 3.1. ábra az E-L diagrammon szemlélteti a szemiklasszikus közelítés pontosságát. Két különböző esetben is pontos a szemiklasszikus közelítés. Nagy kvantumszámok esetében általánosságban is igaz, hogy pontos a szemiklasszikus közelítés. Ezen felül $E\gg FL$ esetében is pontos, ennek oka, hogy ilyenkor a lineáris potenciál elhanyagolható, viszont az így kapott problémát, a végtelen potenciálgödröt, a szemiklasszikus közelítés egzaktul írja le. A 3.2. ábra szemlélteti a szemiklasszikus és egzakt állapotszámok viszonyát. A szemiklasszikus energiaszintekre vonatkozó egyenleteket minden esetben kézenfekvő az állapotok számának meghatározására használni, hiszen az egyenlet alapból n-re van rendezve a Maslov-indextől eltekintve.

3.2. ábra. A szemiklasszikus és egzakt energiaszintek összevetése. A kék vonal az egzakt energiák által meghatározott állapotszám. A narancssárga vonal pedig a (3.1) és a (3.2) egyenletekből kifejezett n az energia függvényében, E és FL relációjának megfelelően.

Amennyiben $E\gg FL$ a (3.2) egyenleten a különbség az $E^{3/2}$ függvény deriváltjának segítségével helyettesíthető,

$$(n+1)h \approx FL \frac{d}{dE} \left(\frac{4\sqrt{2m}}{3F} E^{3/2} \right) = 2\sqrt{2m} E^{1/2} L.$$
 (3.3)

Átrendezve az egyenletet energiára a megszokott végtelen potenciálgödör energiaszintjeit kapjuk,

$$E_n \approx \frac{(n+1)^2 h^2}{8mL^2}. (3.4)$$

Ezeket az energiaszinteket a 3.3. ábra összeveti az E-L diagrammon az egzakt energiaszintekkel.

3.3. ábra. Az ábrán a végtelen potenciálgödör és az egzakt energiaszintek összehasonlítása látható. Ez csak az $E\gg FL$ esetben jó közelítés, a szemiklasszikus energiaszintek jóval pontosabbak.

3.2. Összehasonlítás az egzakt eredménnyel

A (2.39) egyenletet nagy bE illetve nagy bE-aL esetén a (2.27) közelítés alkalmazható,

$$\cot\left(\frac{2}{3}(bE - aL)^{3/2} - \frac{\pi}{4}\right) - \cot\left(\frac{2}{3}(bE)^{3/2} - \frac{\pi}{4}\right) = 0.$$
 (3.5)

A $\cot(x)$ függvény π -ben periodikus. Mivel a $(0,\pi)$ intervallumban szigorúan monoton csökken, a (3.5) egyenletnek csak akkor van megoldása, ha a $\cot(x)$ függvények argumentumainak különbsége $n\pi$. Azaz

$$\frac{2}{3} (bE)^{3/2} - \frac{2}{3} (bE - aL)^{3/2} = n\pi.$$
 (3.6)

Az a és b állandók behelyettesítésével ez az egyenlet ekvivalens a (3.2) egyenlettel. Az n értéke ugyan különbözik 1-gyel a két egyenletben, viszont mivel n egész, ugyan azokat az energiaszinteket határozzák meg. Ennek nem feltétlenül kéne így lennie, viszont ebben az esetben a szemiklasszikus illetve az Airy-függvények aszimptotikus alakjából kapott köelítések megegyeznek.

Amennyiben bE - aL negatív, a Ti(bE - aL) gyorsan lecseng, a (3.5) egyenlet bal oldalának első tagja elhanyagolható. Ennek a tagnak az elhanyagolásával a (3.1) egyenletet

kapjuk vissza. Ez a képlet felel meg az $L \to \infty$ határesetnek, ami a féltérben pattogó labdát írja le.

3.3. Airy függvények aszimptotikája

Klasszikus mechanikai megfontolások alapján meghatározhatóak az Airy-függvények aszimptotikus alakjai, a pontos fázistól eltekintve. Ez nem meglepő, mert a hullámfüggvény amplitúdója a megtalálási valószínűséggel van kapcsolatban. A hullámfüggvény lokális közelítése egy síkhullámmal, vagyis a fázis deriváltja az impulzussal van kapcsolatban. Így a klasszikus mechanika alapján lehet a hullámfüggvény amplitúdójára és fázisára következtetni.

A 2.2.4. fejezetben leírt rendszert vizsgáljuk, E=0 választásával, azaz a klasszikus esetben a fordulópont x=0-ban van. Kvantum mechanika szerint a megtalálási valószínűség $|\psi|$ -tel arányos, klasszikus mechanikában pedig a dx tartományon való áthaladás idejével, $\frac{dx}{v}$ -vel arányos. Mivel a kérdéses állapot szórásállapot, nem normálható. Ezért a valószínűségsknél csak arányosságról beszélhetünk, egy részecske rendszerre vonatkozó valószínűségsűrűségként nem értelmezhető. Egy lehetséges interpretáció a szórásállapotok esetében $|\psi|^2$ -re, hogy nem kölcsönható részecske áramról van szó, és a részecskék sűrűsége $|\psi|^2$ -tel arányos. A klasszikus esetben hasonló a helyzet, a $\frac{dx}{v}$ a részecskesűrűséggel arányos. A két módon kapott részecskesűrűség egyenlőségének feltételezésével a hullámfüggvény amplitúdójának viselkedését kapjuk,

$$\frac{dx}{v} = \sqrt{-\frac{m}{2Fx}} dx \propto |\psi(x)|^2 dx,\tag{3.7}$$

a klasszikus mechanikából ismert energia megmaradás szerint. Átrendezve

$$\psi(x) \propto \frac{1}{\sqrt[4]{-x}}.\tag{3.8}$$

A hullámfüggvény fázisának meghatározása a de Broglie hullámhossz, $p = \hbar k$, és a klasszikus impulzus alapján történik. Abban az esetben, ha az amplitúdó ami közelítőleg megkapható az előző egyenletből, kicsit változik a de Broglie hullámhossz alatt,

$$\psi(x) \propto \exp\left(\pm i \int_{x_0}^x k(x') dx'\right),$$
 (3.9)

Attól függően, hogy a részecske +x vagy -x irányban halad. A klasszikus energia megmaradás meghatározza az impulzust, ami alapján a de Broglie hullámszám

$$k = \frac{\sqrt{2mF}}{\hbar}\sqrt{-x}. (3.10)$$

A k integrálja könnyen kiszámítható,

$$\int \frac{\sqrt{2mF}}{\hbar} \sqrt{-x} \, dx = \frac{2}{3} \left(-ax \right)^{3/2}. \tag{3.11}$$

A részecskeáram klasszikusan mindenhol 0, ebben a potenciálban minden részecske visszaesik. Ez a feltétel ekvivalens azzal a feltétellel, hogy ψ valós, azaz a (3.9) egyenletnek csak bizonyos kombinációi léphetnek fel. Ezt írja le az exponenciális függvény helyettesítése a szinusz függvénnyel, és a ϕ_0 fázistolás,

$$\psi(x) \propto \text{Ai}(ax) \approx \frac{1}{\sqrt[4]{-ax}} \sin\left(\frac{2}{3} (-ax)^{3/2} + \phi_0\right).$$
 (3.12)

Ez az egyenlet kombinálja a fázisra és az amplitúdóra vonatkozó feltételeket, és egyezik a (2.23) és a (2.24) aszimptotikus alakokkal.

Pozitív x esetén a kinetikus energia negatív lenne, ami formálisan képzetes de Broglie hullámhossznak felel meg. Ezen formális összefüggés alapján az aszimptotikus alak polinomiális részét leszámítva az aszimptotikus alakok

$$\operatorname{Ai}(x) \approx \exp\left(-\frac{2}{3}x^{3/2}\right),\tag{3.13}$$

$$\operatorname{Bi}(x) \approx \exp\left(\frac{2}{3}x^{3/2}\right).$$
 (3.14)

A polinomiális részt leszámítva ez egyezik a (2.25) és a (2.26) egyenletekkel.

4. Homogén tér Green-függvénye

A Green-függvény a szilárdtest fizika egyik legtöbbet használt eszköze. A mérhető és egyéb jelentős egyensúlyi mennyiségek gyakran egyszerűen kifejezhetőek a Greenfüggvénnyel, mint például a (lokális) állapotsűrűség, imaginárius idő használatával pedig termodinamikai mennyiségek: egy részecske operátorok egyensúlyi várható értéke, bizonyos esetekben még két részecske operátorok várható értéke is.

A frekvenciatér beli Green-függvény a Hamilton operátor rezolvenseként definiálható. A rezolvens, avagy a Green operátor

$$\hat{G}(E) = (E - \hat{H})^{-1} = \frac{1}{E - \hat{H}},$$
 (4.1)

és ezen operátorhoz tartozó magfüggvény, a Green függvény

$$G(x, y; E) = \langle x | \hat{G}(E) | y \rangle. \tag{4.2}$$

A projektor felbontással rendelkező operátorok függvényei felírhatóak összeg alakban is, ez a Green-operátor esetében

$$\hat{G}(E) = \sum_{n} \frac{|n\rangle \langle n|}{E - E_n}.$$
(4.3)

Több féle időfüggő Green-függvény van, ezek mind az időfüggő Schrödinger-egyenlet differenciálegyenletek elméletéből ismert Green-függvények, csupán a határfeltételekben különböznek. Amennyiben a Hamilton-operátor időfüggetlen,

$$G(x,y,t) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dE G(x,y;E) e^{-\frac{i}{\hbar}Et}.$$
 (4.4)

Mivel G(x,y;E)-nek valós E mentén pólusai vannak, az integrál elvégzéséhez további előírásokra van szükség. A pólusok kerülési iránya határozza meg, hogy retardált vagy avanzsált Green-függvényt kapunk. A pólusok kerülési irányában különböző Green-függvények közötti különbség előállíthatóak a $\hat{G}(E)e^{-\frac{i}{\hbar}Et}$ pólusai körül vett komplex E kontúrintegrálokkal. Ezen kontúrintegráloknak az eredménye a reziduumtétel szerint viszont nem más, mint a hullámfüggvénynek a pólushoz tartozó sajátállapotra vett projekciójának időfejlesztő operátora,

$$\frac{1}{2\pi\hbar i} \oint_{C_n} \hat{G}(E) e^{-\frac{i}{\hbar}Et} = |n\rangle \langle n| e^{-\frac{i}{\hbar}E_n t}, \tag{4.5}$$

ahol C_n pozitív irányítású ϵ sugarú kör az n. pólus, azaz az n. sajátenergia körül. Ez tetszőleges állapotra hattatva megoldja az időfüggő Schrödinger-egyenletet, ezért lehet különböző kerülési irányokkal előírt Fourier szerű integrál időfüggő Green-függvény.

A retardált Green függvény kontúrra a pólusokat felülről, a pozitív képzetes résszel rendelkező irányban kerüli meg. Másképpen fogalmazva a kontúr a valós tengely, viszont a sajátenergiákat módosítva kell elvégezni az integrált, $E_n \to E_n - i\epsilon$, majd a számítás végén az $\epsilon \to 0^+$ határesetet venni. Ez fizikailag annak felel meg, hogy a sajátállapotoknak van időbeli lecsengése, ϵ időállandóval.

$$G_R(x,y,t) = \frac{1}{2\pi\hbar} \lim_{\epsilon \to 0^+} \int_{-\infty}^{\infty} dE G(x,y;E+i\epsilon) e^{-\frac{i}{\hbar}Et}, \tag{4.6}$$

ez a típusú Green-függvény a múltban 0 az időbeli lecsengés miatt. Egy másik nevezetes Green-függvény az avanzsált Green-függvény,

$$G_A(x,y,t) = \frac{1}{2\pi\hbar} \lim_{\epsilon \to 0^+} \int_{-\infty}^{\infty} dE G(x,y;E - i\epsilon) e^{-\frac{i}{\hbar}Et}, \tag{4.7}$$

ez a Green-függvény az előzőhöz hasonló logika alapján t > 0 esetén 0. A (4.5) egyenlet alapján e két Green-függvény különbsége előállítja az időfejlesztő operátor magját,

$$\hat{G}_{A}(t) - \hat{G}_{R}(t) = \sum_{n} \frac{1}{2\pi\hbar} \oint_{C_{n}} \hat{G}(E) e^{-\frac{i}{\hbar}Et} = i \sum_{n} |n\rangle \langle n| e^{-\frac{i}{\hbar}E_{n}t} = i\hat{U}(t).$$
 (4.8)

A továbbiakban az egy dimenziós homogén tér Green-függvényével foglalkozunk.

4.1. Egzakt Green-függvény

A Green-függvény név indokolt: a teljességi reláció beszúrásával látható, hogy a kvantummechanikai Green-függény megegyezik a differenciálegyenletek elméletéből ismert Greenfüggvénnyel.

$$\left(E - \hat{H}\right)\hat{G}\left(E\right) = \hat{I},\tag{4.9}$$

azaz

$$\int dx' \langle x| \left(E - \hat{H}\right) | x' \rangle \langle x'| \, \hat{G}(E) | y \rangle = \langle x| \, \hat{I} | y \rangle = \delta \left(x - y\right). \tag{4.10}$$

A $\langle x|\left(E-\hat{H}\right)|x'\rangle$ maggal vett konvolúció az $E-\hat{H}$ operátor hatása, ezért

$$\left(E - \hat{H}_x\right)G\left(x, y; E\right) = \delta\left(x - y\right),\tag{4.11}$$

amely a differenciálegyenletek elméletéből ismert Green-függvény definíciója. Ebben a konkrét esetben

$$\left(E + \frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} - Fx\right) G(x, y; E) = \delta(x - y),$$
(4.12)

amely azt jelenti, hogy az x < y tartományban, illetve y < x tartományban a Greenfüggvény a homogén egyenlet megoldása. A homogén megoldások illesztését az eredeti differenciálegyenlet határfeltételei, valamint az x = y pontban a (4.12) egyenlet y körüli integrálásából kapott feltételek határozzák meg. A doboz falára vonatkozó határfeltételek

$$G(x, y; E)|_{x=0} = 0,$$
 (4.13)

$$G(x, y; E)|_{x=L} = 0.$$
 (4.14)

A 4.12. egyenlet xszerinti integrálja ykörüli ϵ sugarú környezetében az $\epsilon \to 0^+$ határesetben

$$\lim_{\epsilon \to 0^{+}} \frac{\partial}{\partial x} G(x, y; E) \Big|_{x=y-\epsilon}^{x=y+\epsilon} = \frac{2m}{\hbar^{2}}.$$
 (4.15)

Itt a jobb oldal integrálja $\theta\left(x-y\right)|_{x=y-\epsilon}^{x=y+\epsilon}=1$ az előírt határesetben. Mivel G(x,y;E)-ről feltesszük, hogy folytonos, a bal oldal integrálja is folytonos, leszámítva a deriváltakat tartalmazó tagokat. A határeset elvégzése közben a deriváltakat nem tartalmazó tagok így kiesnek. A 4.12. egyenlet $\int_{y-\epsilon}^{y+\epsilon} dx' \int_{y-\epsilon}^{x'} dx$ integrálja az $\epsilon \to 0^+$ határesetben

$$\lim_{\epsilon \to 0^+} G(x, y; E)|_{x=y-\epsilon}^{x=y+\epsilon} = 0 \tag{4.16}$$

folytonossági feltételt adja. A jobb oldal integrálja $(x-y)\theta(x-y)|_{x=y-\epsilon}^{x=y+\epsilon}$, ami a határesetben 0. Az (Fx-E)G(x,y;E) integrálja is 0 a határesetben, az előző integrálhoz hasonló módon.

Valós energiákra $G(x,y;E) = G(y,x;E)^*$. Ezt a szimmetria tulajdonságot fel lehet használni a Green-függvényre adott ansatz pontosítására az x < y és y < x x-y csere szimmetriájának megkövetelésével. Ez automatikusan kielégíti a (4.16) egyenletet. A tartomány peremén a homogén megoldás eltűnését megkövetelve a (4.13) és a (4.14) teljesül. Érdemes bevezetni a

$$u = ax - bE, v = ay - bE \tag{4.17}$$

jelöléseket. A fent leírt három kritériumot és szimmetria tulajdonságot teljesítő ansatz a

$$G(x, y; E) = C_0(E) \times \begin{cases} \left(\operatorname{Ti}(aL - bE) \operatorname{Bi}(v) - \operatorname{Ai}(v) \right) \times \\ \left(\operatorname{Ti}(-bE) \operatorname{Bi}(u) - \operatorname{Ai}(u) \right) \\ \left(\operatorname{Ti}(aL - bE) \operatorname{Bi}(u) - \operatorname{Ai}(u) \right) \times \\ \left(\operatorname{Ti}(-bE) \operatorname{Bi}(v) - \operatorname{Ai}(v) \right) \end{cases} \quad x \le y$$

$$\left(\operatorname{Ti}(-bE) \operatorname{Bi}(v) - \operatorname{Ai}(v) \right)$$

A $C_0(E)$ együtthatót úgy kell megválasztani, hogy a (4.15) egyenlet teljesüljön. A (4.15) egyenletbe behelyettesítve a (4.18) egyenlet, és osztva $C_0(E)$ -vel,

$$\frac{1}{C_0(E)} \frac{2m}{\hbar^2} = \frac{1}{C_0(E)} \lim_{\epsilon \to 0^+} \frac{\partial G(x, y; E)}{\partial x} \Big|_{x=y-\epsilon}^{x=y+\epsilon}$$

$$= a \lim_{\epsilon \to 0^+} \left(-\operatorname{Ti}(aL - bE) \operatorname{Bi}'(u) \operatorname{Ai}(v) - \operatorname{Ti}(-bE) \operatorname{Ai}'(u) \operatorname{Bi}(v) + \operatorname{Ti}(aL - bE) \operatorname{Bi}(v) \operatorname{Ai}'(u) + \operatorname{Ti}(-bE) \operatorname{Ai}(v) \operatorname{Bi}'(u) \right)$$

$$= a \left(\operatorname{Ti}(-bE) - \operatorname{Ti}(aL - bE) \right) \left(\operatorname{Ai}(v) \operatorname{Bi}'(v) - \operatorname{Ai}'(v) \operatorname{Bi}(v) \right)$$

$$= a \frac{\operatorname{Ti}(-bE) - \operatorname{Ti}(aL - bE)}{\pi}.$$
(4.19)

A második egyenlőségnél kihasználtuk, hogy a Bi(v) Bi'(u)-t és Ai(v) Ai'(u)-t tartalmazó tagok kiesnek. A harmadik egyenlőségnél a határérérték kiértékelhető, az $\epsilon \to 0^+$

határesetben $u \to v$, így szorzat alakba írható az összeg. Végül a negyedik sorban a Wronski-determinánst használtuk fel, (2.30) egyenletnek megfelelően. Az a definíciója szerint $\frac{2m}{\hbar^2} = \frac{a^3}{F}$, így (4.19) átrendezésével

$$C_0(E) = \frac{a^2}{F} \frac{\pi}{\text{Ti}(-bE) - \text{Ti}(aL - bE)}.$$
 (4.20)

Összesítve az eredményeket, a rendszer energiafüggő Green-függvénye

$$G(x, y; E) = \frac{a^{2}}{F} \frac{\pi}{\text{Ti}(-bE) - \text{Ti}(aL - bE)} \times \begin{cases} \left(\text{Ti}(aL - bE) \operatorname{Bi}(v) - \operatorname{Ai}(v)\right) \times \\ \left(\text{Ti}(-bE) \operatorname{Bi}(u) - \operatorname{Ai}(u)\right) \\ \left(\text{Ti}(aL - bE) \operatorname{Bi}(u) - \operatorname{Ai}(u)\right) \times \\ \left(\text{Ti}(-bE) \operatorname{Bi}(v) - \operatorname{Ai}(v)\right) \end{cases} \quad x \leq y$$

$$(4.21)$$

A 4.1. és a 4.2. ábra a (4.21) Green-függvényt ábrázolja. A doboz mérete aL=10, és az energia, ahol a Green-függvény ki van értékelve bE=5.

4.1. ábra.

4.2. ábra.

A (4.3) egyenletnek megfelelően a Green-függvénynek pólusai vannak $E=E_n$ -ben. Ezt a (4.21) egyértelmen mutatja, mivel a nevezőjében a (2.39) 0-ra rendezett egyenlet bal oldala szerepel. Ennek az egyenletnek a gykei határozták meg az E_k sajátenergiákat.

Egy érdekes matematikai következmény, hogy a Green-függvényre vonatkozó differenciál egyenlet megoldásával elvégeztük a 4.3. egyenlet összegzését. Ez az összeg az Airy függvények szorzatának összege lenne, osztva $E - E_k$ -val és a megfelelő N_k normálási faktorral ahol E_k -t a (2.39) transzcendens egyenlet határoz meg. A Green-függvényre vonatkozó differenciálegyenlet ismerete nélkül az összeg elvégzése reménytelennek látszana.

4.2. Green-függvény határesetei

A két falú doboz Green-függvényéből megfelelő határesetekben előállítható más fizikai rendszerek Green-függvénye is. Például az $L\to\infty$ határeset visszaadja a felül nyitott

doboz Green-függvényét, avagy a földön pattogó kvantum részecske ("quantum bouncer") Green-függvényét. Egy következő transzformáció határeseteként megkaphatjuk a falak nélküli végtelen lineáris potenciálban mozgó részecske Green-függvényét. Ehhez mind a helykoordinátát, mind az energiát meg kell változtatni: $x \to x' = x + d$, $y \to y' = y + d$ és $E \to E' = E + Fd$, végül a $d \to \infty$ határesetet kell venni.

Az $L\to\infty$ határeset könnyen elvégezhető. A (2.25) és a (2.26) egyenletek szerint ${\rm Ti}(aL-bE)$ gyorsan 0-hoz tart. Ezt az eredményt felhasználva az x=0-ban fallal bezárt részecske Green-függvénye = Fx potenciálban

$$G_{egyfal}(x, y; E) = -\frac{a^2}{F} \frac{\pi}{\text{Ti}(-bE)} \times \begin{cases} \text{Ai}(v) \Big(\text{Ti}(-bE) \, \text{Bi}(u) - \text{Ai}(u) \Big) & x \leq y \\ \text{Ai}(u) \Big(\text{Ti}(-bE) \, \text{Bi}(v) - \text{Ai}(v) \Big) & x \geq y \end{cases}$$
(4.22)

A következő határesetet valamivel nehezebb kiszámítani. Ezt előre lehet sejteni, mert az eddigi Green-függvények olyan rendszereket írtak le, ahol minden állapot kötött állapot. A falak nélküli lineáris potenciálhoz nem tartoznak kötött állapotok, csak szórásállapotok vannak. Ez a változás megmutatkozik a Green-függvény pólusszerkezetében, utalva arra, hogy ez a határeset jelentősen megváltoztatja a Green-függvényt matematikai értelemben is. A feljebb említett átmenet,

$$x' = x + d$$

$$y' = y + d$$

$$E' = E + Fd$$

$$d \to \infty$$

$$(4.23)$$

E az átmenet eltolja a helykoordinátát, miközben a részecske kinetikus energiáját, változatlanul tartja. Az u v változók értéke (4.17) egyenlet szerint változatlan marad, a $d \to \infty$ határérték nem változtatja az alakjukat. Mivel a falak nélküli rendszernek az egész valós energiatengely a spektruma, a Green-függvényt az $E' = E + Fd \pm i\epsilon$ energiában vizsgáljuk, a Ti(-bE') viselkedését kell meghatározni nagy E' esetén. Felhasználva a (2.27)

egyenletet

$$Ti(-x - i\epsilon) \approx -\frac{\cos\left(\frac{2}{3}(x + i\epsilon)^{3/2} - \frac{\pi}{4}\right)}{\sin\left(x + i\epsilon\right)^{3/2} - \frac{\pi}{4}}$$

$$\approx -\frac{\cos\left(\frac{2}{3}x^{3/2} + i\sqrt{x}\epsilon - \frac{\pi}{4}\right)}{\sin\left(\frac{2}{3}x^{3/2} + i\sqrt{x}\epsilon - \frac{\pi}{4}\right)}$$

$$= -\frac{\cos\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right)\cosh\left(\sqrt{x}\epsilon\right) - i\sin\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right)\sinh\left(\sqrt{x}\epsilon\right)}{\sin\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right)\cosh\left(\sqrt{x}\epsilon\right) + i\cos\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right)\sinh\left(\sqrt{x}\epsilon\right)}$$

$$= -\frac{\cos\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) - i\sin\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right)\tanh\left(\sqrt{x}\epsilon\right)}{\sin\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) + i\cos\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right)\tanh\left(\sqrt{x}\epsilon\right)}$$

$$\approx -\frac{\cos\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) - i\sin\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right)\tanh\left(\sqrt{x}\epsilon\right)}{\sin\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) + i\cos\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right)\operatorname{sgn}(\epsilon)}.$$
(4.24)

A sorok közötti lépésekhez felhasználtuk a $(x+a)^{\alpha} \approx x^{\alpha} + \alpha x^{\alpha-1}a$ közelítést, a trigonometrikus addíciós képleteket, a képzetes argumentumú trigonometrikus függvények és hiperbolikus függvények kapcsolatát, valamint az előel függvény közelítését a tanh függvénnyel. Ezek a közelítések egzaktak az $x \to \infty$ határesetben, ezért

$$\lim_{x \to \infty} \text{Ti}(-x - i\epsilon) = \begin{cases} i & \epsilon > 0 \\ -i & \epsilon < 0 \end{cases}$$
 (4.25)

Ez az eredmény kellett ahhoz, hogy a (4.23) átmenet alapján meghatározzuk a fal nélküli lineáris V=Fx potenciálhoz tartozó Green-függényt. Ha Im(E)>0

$$G_{nincsfal}(x, y; E) = \lim_{d \to \infty} G_{egyfal}(x + d, y + d; E + Fd)$$

$$= \frac{\pi a^2}{F} \times \begin{cases} \operatorname{Ai}(v) \left(\operatorname{Bi}(u) - i \operatorname{Ai}(u) \right) & x \le y \\ \operatorname{Ai}(u) \left(\operatorname{Bi}(v) - i \operatorname{Ai}(v) \right) & x \ge y \end{cases}$$

$$(4.26)$$

Ha Im(E) < 0, akkor a (4.25) egyenlet -i a limeszben, így

$$G_{nincsfal}(x, y; E) = \lim_{d \to \infty} G_{egyfal}(x + d, y + d; E + Fd)$$

$$= \frac{\pi a^2}{F} \times \begin{cases} \operatorname{Ai}(v) \left(\operatorname{Bi}(u) + i \operatorname{Ai}(u) \right) & x \le y \\ \operatorname{Ai}(u) \left(\operatorname{Bi}(v) + i \operatorname{Ai}(v) \right) & x \ge y \end{cases}, \tag{4.27}$$

ez a kifejezés csak az i előjelében különbözik az előzőtől.

4.3. Állapotsűrűség

$$\rho(E) = \frac{1}{\pi} \lim_{\epsilon \to 0^{+}} \operatorname{Im} \operatorname{Tr} \hat{G}(E + i\epsilon)$$
(4.28)

4.3. ábra. A 4.28. képlet alapján számolt állapotsűrűség. A kék függvényt $\epsilon=10^{-3}/b$, a narancssárga görbét pedig $\epsilon=10^{-2}/b$ helyettesítéssel kaptuk. Látható, hogy ϵ csökkentésével a tüskék egyre keskenyebbek, és egyre magasabbak lesznek.

4.4. ábra. A 4.3. ábrán bemutatott függvények integrálja látható ezen az ábrán. Mind a két függvény ugrása közelítőleg 1, ami at jelenti, hogy a 4.3. ábrán látható tüskék alatti terület jó közelítéssel 1. Az ϵ csökkentése a lépcsőfüggvényhez közelíti az integrált függvényt, ami egyezik az elvárásokkal.

4.4. Perturbáció számítás

A perturbációszámításhoz a Hamilton operátort két részre bontom fel:

$$\hat{H} = \hat{H}_0 + \hat{V} \tag{4.29}$$

A \hat{H}_0 operátorhoz tartozó rezolvens $\hat{G}_0(E)$. \hat{H} és \hat{H}_0 kifejezhetőek a rezolvenseikkel. Ha a kifejezéseket behelyettesítjük a fenti egyenletbe, implicit egyenletet kapunk opG(E)-renézve, melyet fel lehet használni perturbációszámításra. Az egyenletet balról $\hat{G}_0^{-1}(E)$ -vel, jobbról $\hat{G}^{-1}(E)$ -vel szorzunk.

$$\hat{G}^{-1}(E) + E = \hat{G}_0^{-1}(E) + E + \hat{V}$$
(4.30)

$$\hat{G}(E) = \hat{G}_0(E) - \hat{G}_0(E) \hat{V} \hat{G}(E)$$
(4.31)

Az alábbi módon definiálva $\hat{G}_n(E)$ operátort, a 4.31. egyenlethez hasonló rekurziós összefüggés áll fent:

$$\hat{G}_{n}(E) = \hat{G}_{0}(E) \sum_{k=0}^{n} \left(-\hat{V}\hat{G}_{0}(E) \right)^{k}$$
(4.32)

$$\hat{G}_{n+1}(E) = \hat{G}_0(E) - \hat{G}_0(E) \hat{V} \hat{G}_n(E)$$
(4.33)

Ha $\|\hat{V}\hat{G}_0(E)\| < 1$ akkor a \hat{G}_n sorozat konvergál, és kielégíti a 4.31. egyenletet. Ezért konvergencia esetén:

$$\hat{G}(E) = \hat{G}_0(E) \sum_{n=0}^{\infty} \left(-\hat{V}\hat{G}_0(E) \right)^n$$
 (4.34)

A perturbbálatlan operátornak a lineáris potenciál nélküli dobozba zárt részecske Hamilton operátorát választom, $\hat{H}_0 = \frac{1}{2m}\hat{p}^2$, így a lineáris potenciál marad a perturbáció $\hat{V} = F\hat{x}$. A perturbálatlan $\hat{G}_0(E)$ Green-függvényt is a ??-??, ??. és a ??. egyenletek alapján határozom meg.

$$G_{0}(x, y; E) = \begin{cases} -\frac{2m}{k\hbar^{2}} \frac{1}{\sin(kL)} \sin(k(y - L)) \sin(kx) & x \leq y \\ -\frac{2m}{k\hbar^{2}} \frac{1}{\sin(kL)} \sin(k(x - L)) \sin(ky) & x > y \end{cases}$$
(4.35)

, ahol $k = \frac{\sqrt{2mE}}{\hbar}$.

4.5. ábra. Ez az ábra a két perturbációs sor konvergenciáját hasonlítja össze a komplex energia síkon. A felső ábra a V = Fx perturbáló potenciálnak, míg az alsó a V = Fx - FL/2 perturbáció szerinti sornak felel meg. A fekete tartományok divergenciát jelölnek, míg a többi szín a sorfejtés tagjainak csökkenési sebességét jellemzik, a norma harmadolásához szükséges lépések számát megadva. A piros körökön kívüli tartomány a ?? formula által garantált konvergencia tartományát jelöli. A piros x-ek a \hat{G}_0 pólusait, a sárga x-ek pedig az egzakt \hat{G} operátor pólusait jelölik.

A. Szabad részecske gyorsuló koordinátarendszerben

Pozitív x irányban

B. Numerikus számítások

B.1. Momentumok időfejlődése

B.1. ábra. Várható értékek és szórások időfejlődése

B.2. Hullámfüggvény időfejlődése

B.2.1. 1D

B.2.2. 2D

Hivatkozások

- [1] Richard Beals and Roderick Wong. Special Functions: A Graduate Text. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2010
- [2] J R Albright. *Integrals of products of airy functions*. Journal of Physics A: Mathematical and General, 10(4):485–490, 1977
- [3] Olivier Vallée and Manuel Soares. Airy Functions and Applications to Physics. Imperial College Press, London, second edition, 2010. ISBN 978-1-84816-548-9; 1-84816-548-X
- [4] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.1 of 2021-03-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
- [5] Matthias Brack and Rajat Bhaduri. Semiclassical Physics. Addison-Wesley Publishing Company, Inc., 1997