MATH 20700: Honors Analysis in Rn I Problem Set 2

Hung Le Tran 06 Oct 2023

Textbook: Pugh's Real Mathematical Analysis

Collaborators: Lucio, Duc, Hung Pham

Problem 2.1 (2.30)

Consider a two-point set $M = \{a, b\}$ whose topology consists of the two sets, M and the empty set. Why does this topology not arise from a metric on M?

Solution

Suppose there exists a metric d that induces the topology $\mathcal{T} = \{\{a,b\},\varnothing\}$ on M. Let $\varepsilon = d(a,b)/2$, then $B_M(x,\varepsilon) = \{a\}$, so $\{a\}$ is an open set. But $\{a\} \notin \mathcal{T}, \Rightarrow \Leftarrow$

Therefore \mathcal{T} can't be a topology induced by a metric.

Problem 2.2 (2.36)

Construct a set with exactly three cluster points.

Solution

$$S = \{1 - \frac{1}{n} \mid n \in \mathbb{N}\} \cup \{3 - \frac{1}{n} \mid n \in \mathbb{N}\} \cup \{5 - \frac{1}{n} \mid n \in \mathbb{N}\}$$

S clearly has cluster points 1, 3, 5. The set of cluster points S' is a subset of $\lim S = \{1, 3, 5\}$. So it has none other than the 3 above.

Problem 2.3 (2.44)

Consider a function $f: M \to \mathbb{R}$. Its graph is the set

$$\{(p,y)\in M\times\mathbb{R}:y=fp\}$$

- (a) Prove that if f is continuous then its graph is closed (as a subset of $M \times \mathbb{R}$).
- (b) Prove that if f is continuous and M is compact then its graph is compact
- (c) Prove that if the graph of f is compact then f is continuous
- (d) What if the graph is merely closed? Give an example of a discontinuous function $f: \mathbb{R} \to \mathbb{R}$ whose graph is closed.

Solution

We freely use Pugh's Theorem 17 (Ch2.3) in this problem.

Let $G = \{(p, y) \in M \times \mathbb{R} : y = fp\}$ be the graph.

(a) Let $\{(p_n, y_n)\}\subset G$ be a sequence that converges to $(p, y)\in M\times\mathbb{R}$. WLOG, we use the metric d_{max} on $M\times\mathbb{R}$. WTS $(p, y)\in G$.

$$(p_n, y_n) \xrightarrow{n \to \infty} (p, y) \Rightarrow p_n \xrightarrow{n \to \infty} p, y_n \xrightarrow{n \to \infty} y$$
. But f is continuous, so $y_n = f(p_n) \xrightarrow{n \to \infty} f(p) \Rightarrow y = f(p) \Rightarrow (p, y) \in G$.

(b) Let $\{(p_n, y_n)\}\subset G$. WTS there exists a subsequence $\{(p_{n_j}, y_{n_j})\}$ that converges in G.

Since M is compact and $\{p_n\} \subset M$, there exists a subsequence $\{p_{n_j}\}$ such that $p_{n_j} \xrightarrow{j \to \infty} p \in M$.

f is continuous, so $f(p_{n_j}) \xrightarrow{j \to \infty} f(p) \Leftrightarrow y_{n_j} \xrightarrow{j \to \infty} f(p) =: y$. This implies

$$(p_{n_j}, y_{n_j}) \xrightarrow{j \to \infty} (p, y) \in G \quad \Box$$

(c) Let $\{p_n\} \subset M$ such that $p_n \xrightarrow{n \to \infty} p \in M$. WTS $f(p_n) \xrightarrow{n \to \infty} f(p)$.

Suppose not:

$$\neg (\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \ge N, d(f(p_n), f(p)) < \varepsilon)$$

$$\Leftrightarrow \exists \varepsilon > 0, \forall N \in \mathbb{N}, \exists n \ge N, d(f(p_n), f(p)) \ge \varepsilon$$

Then we construct another sequence q_n , defined as follows: Choose $N_0 = 1$ and choose $N_1 \geq N_0$ satisfying the conditions above. Assign $q_1 = p_{N_1}$. Inductively, choose $N_{k+1} \geq N_k$ satisfying the conditions above, and assign $q_{k+1} = p_{N_{k+1}}$.

By constructing $\{q_n\} \subset M$ (essentially a particular subsequence of $\{p_n\}$) this way,

$$\forall n \in \mathbb{N}, d(f(q_n), f(p)) \ge \varepsilon$$

Since G is compact, sequence $\{(q_n, f(q_n))\}\subset G$ has subsequence $\{(q_{n_j}, f(q_{n_j}))\}$ such that $(q_{n_j}, f(q_{n_j})) \xrightarrow{j\to\infty} (q, f(q)) \in G$, which implies $q_{n_j} \xrightarrow{j\to\infty} q, f(q_{n_j}) \xrightarrow{j\to\infty} f(q)$. But $\{q_{n_j}\}$ is simply a (sub) subsequence of $\{p_n\}$, so $q=p\Rightarrow f(q_{n_j}) \xrightarrow{j\to\infty} f(p)$.

But
$$\forall n \in \mathbb{N}, d(f(q_n), f(p)) \geq \varepsilon. \Rightarrow \Leftarrow$$

(d) Define

$$f(x) = \begin{cases} 0 & \text{for } x = 0, \\ \frac{1}{|x|} & \text{otherwise.} \end{cases}$$

then f is discontinuous at 0.

We show that G is indeed closed. Let $\{(p_n, f(p_n))\}\subset M\times\mathbb{R}$ such that $(p_n, f(p_n))\xrightarrow{n\to\infty} (p,q)\in M\times\mathbb{R}$. WTS $(p,q)\in G\Leftrightarrow q=f(p)$.

$$(p_n, f(p_n)) \xrightarrow{n \to \infty} (p, q) \Leftrightarrow p_n \xrightarrow{n \to \infty} p, f(p_n) \xrightarrow{n \to \infty} q.$$

If $p \neq 0$, let $\varepsilon = |p|/2$, then $\exists N \in \mathbb{N}$ such that $\forall n \geq N, |p|/2 < |p_n/2| < 3|p|/2$. In particular, they are non-zero. Since f is trivially continuous on $\mathbb{R}\setminus\{0\}$, it is then clear that $f(p_n) \xrightarrow{n\to\infty} f(p)$, so q = f(p).

If p=0, with $p_n \xrightarrow{n\to\infty} 0$, $f(p_n)$ diverges. In particular, given any M>0, let $\varepsilon=\frac{1}{2M}$ then there exists $N\in\mathbb{N}$ such that $\forall~n\geq N, |p_n|<\varepsilon=\frac{1}{2M}\Rightarrow f(p_N)>2M>M$. So there can't be $(p_n,f(p_n))\xrightarrow{n\to\infty} (0,q)$ in the first place.

Problem 2.4 (2.49*)

Construct a subset $A \subset \mathbb{R}$ and a continuous bijection $f: A \to A$ that is not a homeomorphism. [Hint: By Theorem 36, A must be noncompact]

Solution

Let
$$A = [0, 1) \cup [2, 3) \cup [4, 5) \cup \dots = \bigcup_{n=0}^{\infty} [2n, 2n+1)$$

And construct map f that (continuously):

- **1.** Scales and shifts [0, 1) to [0, 1/2)
- **2.** Scales and shifts [2, 3) to [1/2, 1)
- **3.** Shifts [4, 5) to [2, 3), [6, 7) to [4, 5), etc., in short shifts [2n, 2n+1) to [2n-2, 2n-1) for all $n \ge 2$

Then f trivially maintains sequential convergence (therefore is continuous) and is a bijection. So it is a continuous bijection.

However, f sends [2, 2.5) to [1/2, 3/4), an open set in A to a nonopen set in A, so f^{-1} is not continuous. It follows that f is not homeo.

Problem 2.5 (2.56)

Prove that the 2-sphere is not homeomorphic to the plane.

Solution

We want to first show that the 2-sphere is compact, by showing that it is closed and bounded in \mathbb{R}^3 .

It is clear that the (unit) 2-sphere is bounded by the $2 \times 2 \times 2$ box centered at the origin, so it is bounded.

Let $\{p_n\} \subset S^2$ such that $p_n \xrightarrow{n \to \infty} p \in \mathbb{R}^3$. We now want to show that $p \in S^2$. Recall that $S^2 = \{z \in \mathbb{R}^3 \mid d(0,z) = 1\}$

For all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $\forall n \geq N, d(p_n, p) < \varepsilon$. But $d(0, p_n) = 1 \forall n \in \mathbb{N}$. It follows that

$$1 - \varepsilon < d(0, p_N) - d(p_N, p) < d(0, p) < d(0, p_N) + d(p_N, p) < 1 + \varepsilon$$

which holds for all $\varepsilon > 0$. It follows that d(0, p) = 1, so $p \in S^2$. Therefore the 2-sphere is closed.

Since the 2-sphere is closed and bounded in \mathbb{R}^3 , it is compact (H-B).

On the other hand, \mathbb{R}^2 is unbounded in \mathbb{R}^2 , so it is not compact.

Therefore the 2-sphere (a compact set) can't be homeomorphic to the plane (a noncompact set).

Problem 2.6 (2.66)

- (a) Prove that every connected open subset of \mathbb{R}^m is path-connected.
- (b) Is the same true for open connected subsets of the circle?
- (c) What about connected nonopen subsets of the circle?

Solution

(a) Let $U \subset \mathbb{R}^m$ be connected and open. WTS U is path-connected.

We first want to show that any ball in \mathbb{R}^m is path-connected. Let $p,q\in B(x,r)\subset U$ then we can construct

$$f: [0,1] \to B(x,r), t \mapsto p + (q-p)t$$

that is a continuous path from p to q as required.

WTS for every $p, q \in U$, there exists a continuous path from p to q. Fix $p, q \in U$.

Then let A be the set of points $z \in U$ such that there exists a continuous path from p to z. We want to show that A is clopen. Note that $p \in A$, so A is non-empty.

1. Show that A is open.

Let $z \in A$ be arbitrary. Since U is open, we can draw $B_U(z,r) \subset U$.

We want to show that $B_U(z,r) \subset A$. Choose any $s \in B(z,r)$, then we can concatenate the continuous path from p_0 to z (since $z \in A$) and the continuous path from z to s (since the ball is path-connected) to get a continuous path from p_0 to s.

More concretely, if there exists continuous path $f_{p,z}:[0,1]\to U$ from p to z, and $f_{z,s}:[0,1]\to U$ from z to s then we can construct

$$f_{p,s}(t) = \begin{cases} f_{p,z}(2t) & \text{for } t < 0.5\\ f_{z,s}(2t-1) & \text{for } t \ge 0.5 \end{cases}$$

is a continuous path from p to s. So $s \in A$. It follows that $B(z,r) \subset A$. Therefore A is open.

2. Show that A is closed.

WTS A^c , the set of points $y \in U$ such that there doesn't exist a continuous path from p to y, is open.

Let $y \in A^c$ be arbitrary. Since U is open, we can draw $B_U(y,r) \subset U$.

WTS $B_U(y,r) \subset A^c$. Choose any $s \in B(y,r)$. Suppose not, that there exists a continuous path from p to s, then since the ball is path-connected, it follows that there also exists a continuous path from s to y. By concatenating these 2 paths, we can get a continuous path from p to y. $\Rightarrow \Leftarrow$

So there doesn't exist a continuous path from p to s for all $s \in B(y, r)$. It follows that $B_U(y, r) \subset A^c$, so A^c is open. Thus A is closed.

- 3. Therefore A is a nonempty clopen subset of connected U, so A = U. It follows that U is path-connected.
- (b) Yes. WLOG, use S^1 .

We now want to show that any ball $B(x,r) \subset S^1$ is path-connected. If $r \leq 2$ then B(x,r) is an arc of S^1 , while if r > 2 then $B(x,r) = S^1$. Both of which can be parameterized as $\{(\cos \theta, \sin \theta)\}$, and are therefore trivially path-connected.

Apply the same proof in (a). \Box

(c) Yes, it is path-connected.

Let V be a connected, nonopen subset of the circle, and $p \neq q$ be arbitrary points in V. p and q then partition S^1 into a major closed arc A_1 and a minor closed arc A_2 that satisfies:

$$A_1 \cup A_2 = S^1, A_1 \cap A_2 = \{p, q\}$$

Case 1: If $A_1 \subset V$ or $A_2 \subset V$, then there clearly exists a continuous path in V from p to q, namely through these continuous closed arcs (that can be easily parameterized into $\{(\cos \theta, \sin \theta)\}$ on a closed interval of θ)

Case 2: There exists $k \in A_1, l \in A_2$ such that $k, l \notin V$. Then k, l similarly partitions S^1 into 2 closed arcs A_3, A_4 such that

$$A_3 \cup A_4 = S^1, A_3 \cap A_4 = \{k, l\}$$

Now consider $A_3' := A_3 \setminus \{k, l\}, A_4' := A_4 \setminus \{k, l\}$, which are open sets in S^1 that are image sets of $(\cos \theta, \sin \theta)$ on an open interval of θ . Then

$$(V \cap A_3') \cup (V \cap A_4') = V \cap (A_3' \cup A_4') = V \cap (S^1 \setminus \{k, l\}) = V$$

However, $A_3' \cap A_4' = \emptyset$ so $(V \cap A_3') \cap (V \cap A_4') = \emptyset$. Furthermore, $V \cap A_3'$ and $V \cap A_4'$ in the subspace topology of V, as they are intersections of V with an open set in the bigger topology of S^1 . It follows that $(V \cap A_3') \sqcup (V \cap A_4')$ partitions V into 2 non-empty open sets, which are therefore proper clopen, making V disconnected, $\Rightarrow \Leftarrow$.

It follows that only case 1 is valid, and there exists a continuous path from any p to q.

Problem 2.7 (2.78)

 (p_1, \ldots, p_n) is an ε -chain in a metric space M if for each i we have $p_i \in M$ and $d(p_i, p_{i+1}) < \varepsilon$. The metric space is chain-connected if for each $\varepsilon > 0$ and each pair of points $p, q \in M$ there is an ε -chain from p to q.

- (a) Show that every connected metric space is chain-connected.
- (b) Show that if M is compact and chain-connected then it is connected.
- (c) Is $\mathbb{R}\setminus\mathbb{Z}$ chain-connected?
- (d) If M is complete and chain-connected, is it connected?

Solution

(a) Suppose not. Then there exists $\varepsilon > 0$ and $p_0, q_0 \in M$ such that there doesn't exist an ε -chain from p_0 to q_0 . We emphasize that this ε is now fixed.

Let D be the set of such points in M that have no ε -chain from p_0 . Define $C = M \setminus D$. Then $p_0 \in C$, $q_0 \in D$. WTS C, D are open.

We first consider C. Take arbitrary $c \in C$, then let its corresponding ε —chain from p_0 be (p_1, \ldots, p_n) .

Draw $B_M(c,\varepsilon)$. We show that C is open by showing that indeed we can draw for arbitrary $c, B_M(c,\varepsilon) \subset C$.

Indeed, $\forall c' \in B_M(c, \varepsilon)$, there exists an ε -chain from p_0 to c', namely (p_1, \ldots, p_n, c') , which is well-defined since $d(c', p_n) = d(c', c) < \varepsilon$.

Therefore $c' \in C$. So $B_M(c, \varepsilon) \subset C$.

We now consider D. The proof is very similar. Take arbitrary $d \in D$.

Draw $B_M(d,\varepsilon)$. We show that D is open by showing that we can draw for arbitrary d, $B_M(d,\varepsilon) \subset D$.

Indeed, $\forall d' \in B_M(d, \varepsilon)$, if there exists an ε - chain from p_0 to d', for example, (q_1, \ldots, q_n) , then one can form an ε -chain from p_0 to d, which would be (q_1, \ldots, q_n, d) , a well-defined chain since $d(d, q_n) = d(d, d') < \varepsilon$, which would be a contradiction since $d \in D$.

Therefore there doesn't exist an ε -chain from p_0 to d'. So $(d' \in B_M(d, \varepsilon) \Rightarrow d' \in D)$. D is therefore open.

In conclusion, we have

$$M = C \sqcup D$$

where C and D are both open, which make them both clopen. But $p_0 \notin D, q_0 \notin C$, so they are proper clopen subsets of M, making M disconnected. $\Rightarrow \Leftarrow$

It follows that M must be chain-connected.

(b) Let M be compact and chain-connected. WTS M is connected.

Suppose not. Then there exists $A, B \subset M$ such that

$$M = A \sqcup B$$

and $A, B \neq \emptyset$ and are clopen. Since $A, B \neq \emptyset$, $\exists a \in A, b \in B$.

We shall construct a sequence $\{t_n\} \subset A$ as follows:

Set $\varepsilon = \frac{1}{n}$, then there exists (finite) ε -chain $(p_{n,1}, p_{n,2}, \dots, p_{n,N(n)})$ from a to b, i.e. $p_{n,1} = a, p_{n,N(n)=b}$. $(N(n) \ge 2, \text{ since } a \ne b)$.

Let $T(n) = \{1 \le k \le N(n) \mid B_M(p_{n,k}, \frac{1}{n}) \subset A\}$, i.e., the set of indices of points in the chain whose ε - neighborhoods are still within A. Clearly $1 \in T(n)$ and it has an upper bound N(n), so there exists a maximum value $k(n) \in \mathbb{N}$.

Assign $t_n := p_{n,k(n)} \in A$.

Since A is a closed subset of compact M, it follows that A is also compact. Therefore, there exists a subsequence $\{t_{n_i}\}$ such that

$$t_{n_j} \xrightarrow{j \to \infty} t \in A$$

Since A is open, we can draw a ball $B_M(t,r) \subset A$.

Since $t_{n_j} \xrightarrow{j \to \infty} t$, there exists $J_1 \in \mathbb{N}$ such that $\forall j > J_1, d(t_{n_j}, t) < \frac{r}{2}$.

Choose $J = \lceil \max\{J_1, \frac{4}{r}\} \rceil + 1$. Let $L = n_J$. Then

$$\frac{1}{L} \le \frac{1}{J} < \frac{r}{4}$$

Consider the original path from a to b with $\varepsilon = \frac{1}{L}$:

$$(a = p_{L,1}; p_{L,2}; \dots; p_{L,k(L)} = t_L; p_{L,k(L)+1}; \dots; p_{L,N(L)} = b)$$

where we pay special attention to the node after t_L .

We see that

$$\begin{aligned} d(t, p_{L,k(L)+1}) &\leq d(t, t_L) + d(t_L, p_{L,k(L)+1}) \\ &< \frac{r}{2} + \frac{1}{L} \\ &< \frac{r}{2} + \frac{r}{4} = \frac{3r}{4} \end{aligned}$$

It trivially follows that $B_M(p_{L,k(L)+1},\frac{1}{L}) \subset B_M(t,r)$.

But $B_M(t,r) \subset A$, so $B_M(p_{L,k(L)+1}) \subset A$, which contradicts with k(L) being the maximum index at which the node of the path is still in $A \Rightarrow \Leftarrow$.

It follows that M must be connected.

(c) Yes.

Given $\varepsilon > 0$; $a, b \in \mathbb{R} \setminus \mathbb{Z}$. WLOG, assume $\varepsilon < 1$, since a larger ε' -chain can be composed through nodes consisting of $\lceil \frac{\varepsilon'}{\varepsilon} \rceil$ subnodes of the ε - chain.

We will recursively define an ε -chain from a to b as follows:

$$p_1 := a$$

If $b - p_n < \varepsilon, p_{n+1} := b$, else

$$p_{n+1} = \begin{cases} p_n + \varepsilon & \text{if } p_n < \lceil p_n \rceil - \varepsilon \\ p_n + \varepsilon/2 & \text{if } \lceil p_n \rceil - \varepsilon \le p_n < \lceil p_n \rceil - \varepsilon/2 \\ p_n + \varepsilon & \text{if } \lceil p_n \rceil - \varepsilon/2 \le p_n < \lceil p_n \rceil \end{cases}$$

It is firstly trivial that p_{n+1} , as constructed, is not in $\mathbb{R}\backslash\mathbb{Z}$. It is also guaranteed that after at most $\lceil \frac{b-a}{\varepsilon/2} \rceil$ terms, p_n will come within ε of b, and therefore setting $p_{n+1} = b$, completing the ε -chain from a to b.

(d) No.

Counter-example:

Define

$$A = \{(x, 1/x) \mid x > 0\}, B = \{(x, -1/x) \mid x < 0\}$$

and $M = A \sqcup B$. We show that M is complete and chain-connected, but not connected.

First, A and B are closed in the ambient metric space \mathbb{R}^2 (similar to problem 2.44d). So $M = A \sqcup B$ is also closed in \mathbb{R}^2 . \mathbb{R}^2 is complete so M is complete.

Second, M is chain-connected. Suppose we are given $\varepsilon > 0$; $p, q \in M$. If p and q are both in A or are both in B, then the chain is trivial. If $p \in A$ and $q \in B$ then we can define $x_1 = -\varepsilon/3, x_2 = \varepsilon/3$ then

$$d_E((x_1, 1/|x_1|), (x_2, 1/|x_2|)) = 2\varepsilon/3 < \varepsilon$$

so we can make and concatenate ε -chains from p to $(x_1, 1/x_1)$, from $(x_1, 1/x_1)$ to $(x_2, -1/x_2)$, and from $(x_2, -1/x_2)$ to q.

Lastly, it is not connected. $A = A \cap M$, A is closed in \mathbb{R}^2 so A is closed in M. It is also open in M because for each $p = (a, 1/a) \in A$, we can draw $B_M((a, 1/a), 1/4a) \subset A$ trivially. So A is clopen and proper.

Problem 2.8 (2.117 f)

Fold a piece of paper in half.

- (a) Is this a continuous transformation of one rectangle into another?
- **(b)** Is it injective?
- (c) Draw an open set in the target rectangle, and find its preimage in the original rectangle. Is it open?
- (d) What if the open set meets the crease?

The **baker's transformation** is a similar mapping. A rectangle of dough is stretched to twice its length and then folded back on itself. Is the transformation continuous? A formula for the baker's transformation in one variable is

$$f: [0,1] \to [0,1], f(x) = 1 - |1-2x|$$

The $\mathbf{n^{th}}$ iterate of f is $f^n = f \circ f \circ \cdots \circ f, n$ times. The **orbit** of a point x is

$$\{x, f(x), f^2(x), \dots, f^n(x), \dots\}$$

 $f^{\circ n}$ is f^n

- (e) If x is rational prove that the orbit of x is a finite set.
- **(f)** If x is irrational what is the orbit?

Solution

(a) WLOG, Let the rectangle be $[0,2] \times [0,1]$, and let the crease be at x=1. Then the transformation is

$$f(x,y) = \begin{cases} (x,y) & \text{for } x < 1\\ (2-x,y) & \text{for } x \ge 1 \end{cases}$$

which folds the rectangle $[0,2] \times [0,1]$ into the rectangle $[0,1] \times [0,1]$. The transformation is continuous, since the stepwise function on the x-coordinate is continuous and y is trivially continuous.

(b) No, it is not injective.

$$f(0.5,0) = f(1.5,0) = (0.5,0)$$

(c) Yes.

Let the open set be $U = \{(x,y)\} \subset [0,1] \times [0,1]$. Define g(x,y) = (2-x,y) then

$$f^{Pre}(U) = U \cup g(U)$$

Note that g is a homeomorphism, so g(U) is also open. $f^{Pre}(U)$ is a union of open sets and is therefore open.

- (d) It doesn't matter if the open set meets the crease. The above proof still holds. \Box
- (e) We freely use the fact that if $x \in [0, 1]$, x can be decomposed into the unique following binary representation:

$$x = \frac{a_1}{2} + \frac{a_2}{2^2} + \dots + \frac{a_n}{2^n} + \dots$$

i.e., each $x \in [0,1]$ corresponds to a unique sequence $\{a_{x,n}\}$ with $a_{x,n} \in \{0,1\}$.

Note that 0 corresponds to the zero-sequence, while 1 corresponds to the one-sequence.

Let $x \in [0,1]$. To be concise, we label $\{a_{x,n}\}$ as $\{a_n\}$. We pay attention to how the sequence changes as f is applied continually to x.

Rewriting f, we have:

$$f(x) = \begin{cases} 2x & \text{for } x < 0.5\\ 2 - 2x & \text{for } x \ge 0.5 \end{cases}$$

When x < 0.5, it is clear that $a_1 = 0$. Then we have

$$2x = 2\left(\frac{a_2}{2^2} + \cdots\right) = \frac{a_2}{2} + \frac{a_3}{2^2} + \cdots$$

which corresponds to sequence (a_2, a_3, \cdots) (sequence shifts left)

$$(a_1, a_2, \dots) \mapsto (a_2, a_3, \dots).$$

When $x \geq 0.5$, it is clear that $a_1 = 1$. We have

$$2 - 2x = \left(1 + \frac{1}{2} + \frac{1}{2^2} + \cdots\right) - \left(1 + \frac{a_2}{2} + \frac{a_3}{2^2} + \cdots\right) = \frac{1 - a_2}{2} + \frac{1 - a_3}{2} + \cdots$$

9

which corresponds to sequence $(1 - a_2, 1 - a_3, \cdots)$ (sequence shifts left then subtracted from one-sequence).

Now, we also freely use the fact that if x is rational then the sequence eventually repeats itself, i.e. there exists $N, k \in \mathbb{N}$ such that $\forall n \geq N, a_{x,n} = a_{x,n+k}$. Otherwise, the sequence doesn't.

Let x be such a rational, then there exists fixed $N, k \in \mathbb{N}$ satisfying the conditions above.

Then, after N-1 applications of f, from the only 2 possible transitions above, we either get the sequence

$$A_1 = (a_N, a_{N+1}, \cdots)$$

or

$$A_2 = (1 - a_N, 1 - a_{N+1}, \cdots)$$

WLOG, suppose we get A_1 . k steps later, we either get A_1 or A_2 .

If we get A_1 , that means we have entered a loop, and so values $f^{N-1+kj}(x)$ for all $j \in \mathbb{N}$ have already appeared as $f^{N-1+k}(x)$ in the orbit of x. Thus the orbit is finite $(\leq N-1+k)$.

If we get A_2 , k steps later, we either get A_1 or A_2 . It's trivial now that there is now a loop of either length k or length 2k. So the orbit is finite.

(f) It is clear that the orbit of x is countable. If x is irrational, then we claim that its orbit of x is a denumerable (infinite countable) subset of [0, 1].

Suppose not. Then the orbit is finite. Let N be the maximum index such that $f^N(x)$ is in the orbit of x. This implies that

$$f^{N+1}(x) = f^k(x)$$

for some $k \leq N$. Then $f^{N+2}(x) = f^{k+1}(x), \dots, f^{2N+1-k}(x) = f^{N}(x), \dots$

In short,

$$f^{k+(N+1-k)t}(x) = f^k(x)$$
 (1)

for all $t \in \mathbb{N}$.

Let $f^k(x) = (b_{k+1}, b_{k+2}, \dots)$ (b_i can either all be a_i or all be $1 - a_i$, this doesn't matter). Then by referring to the 2 possible transitions we have as represented above in part (e), after 2(N+1-k)t, $t \in \mathbb{N}$ transitions (an even number), we must reach

$$f^{k+2(N+1-k)t}(x) = (b_{k+2(N+1-k)t+1}, b_{k+2(N+1-k)t+2}, \dots)$$

or more specifically, not $(1 - b_{k+2(N+1-k)t+1}, 1 - b_{k+2(N+1-k)t+2}, \dots)$, since the number of transitions is even.

Then (1) implies that

$$b_{k+1} = b_{k+2(N+1-k)t+1}, b_{k+1} = b_{k+2(N+1-k)t+1}, \dots$$

which is to suggest that $\{b_n\}$ eventually repeats, with maximum period of 2(N+1-k).

This implies that x is rational. $\Rightarrow \Leftarrow$

So the orbit of x must be an infinite countable set (subset of [0, 1])

Problem 2.9 (2.81* (EC))

The topologist's sine curve is the set

$$\{(x,y) \mid x = 0 \text{ and } |y| \leq 1 \text{ or } 0 < x < 1 \text{ and } y = \sin(\frac{1}{x})\}$$

(It is the union of a circular arc and the topologist's sine curve.) Prove that it is path-connected but not locally path-connected. (M is **locally path-connected** if for each $p \in M$ and each neighborhood U of p there is a path-connected subneighborhood V of p.)

Solution