AS 1 - ENSAE - DAKAR Contrôle 1 de Théorie des Probabilités ¹ Durée : 4h

Exercice 1 Une municipalité a lancé une étude concernant les problèmes liés au transport. Sur une ligne de bus, une enquête a permis de révéler que le retard (ou l'avance) sur l'horaire officiel du bus à une station donnée, peut être représenté (e) par une variable aléatoire réelle, notée X, exprimée en minutes, qui suit une loi normale $\mathcal{N}(m, \sigma^2)$.

On admet de plus que la probabilité que le retard soit inférieur à 7 minutes est égale à p=0.8413 et que l'espérance de X est de 5 minutes.

- 1. Déterminer la valeur de σ .
- 2. Quelle est la probabilité que le retard soit supérieur à 9 minutes ?
- 3. Sachant que le retard est supérieur à 3 minutes, quelle est la probabilité que le retard soit inférieur à 7 minutes?
- 4. Monsieur Baldé fréquente cette ligne de bus tous les jours pendant 10 jours. On suppose que les retards journaliers sont indépendants.
 - a) Ou désigue par Y la v.a.r. égale au nombre de jours où Monsieur Baldé a attendu moins de 7 minutes. Déterminer la loi de Y, donner sans calcul, son espérance et sa variance.
 - b) On définit par Z la v.a.r. discrète réelle indiquant le rang k du jour où pour la première fois Monsieur Baldé attend plus de 7 minutes si cet événement se produit. Dans le cas contraire si le temps d'attente est inférieur à 7 minutes pendant les dix jours, Z prend la valeur 0.

Déterminer en fonction de p la probabilité des événements [Z=0], puis [Z=k] pour $1 \le k \le 10$.

- 5. Lassé des retards de son bus, Monsieur AW décide de prendre le bus ou le Ter selon le protocole suivant :
 - le premier jour, il prend le bus.
 - si le jour $n \in \mathbb{N}$) il attend plus de 7 minutes pour prendre le bus, le jour n+1 il prend le Ter, sinon il prend de nouveau le bus.

si le journ il prend le Ter, le jour n+1 il prend le Ter ou le bus de façon équiprobable.

On note pu la probabilité de l'événement A_n : "Monsieur Aw prend le bus le jour n".

- a) Justifier que pour $n \in \mathbb{N}^*$: $p_{n+1} = (p \frac{1}{2})p_n + \frac{1}{2}$.
- b) Soit α le réel vérifiant : $\alpha = (p \frac{1}{2})\alpha + \frac{1}{2}$ Déterminer α en fonction de p, puis montrer que, pour tout entier naturel n non nul : $p_n = (p \frac{1}{2})^{n-1}(1 \alpha) + \alpha$.
- c) La suite (p_n) est-elle convergente? Si oui quelle est sa limite?

Annexe : Si $Z \sim N(0,1)$, on donne :

$$F_Z(2) = 0,9772;$$
 $\tilde{F}_Z(1) = 0,8413;$ $F_Z(0.44) = 0,67;$ $F_Z(0) = \frac{1}{2}.$

Exercice 2 Soit f la fonction définie sur \mathbb{R} par $\forall t \in \mathbb{R}$, $f(t) = \frac{1}{\pi(1+t^2)}$

- 1. Montrer que f est une densité de probabilité.
- 2. Soit X une variable aléatoire de densité f. La variable X admet-elle une espérance?
- 3. Soit $Y = \frac{1}{X}$. Déterminer la fonction de répartition de Y et ensuite une densité de Y. Y admet-elle une espérance?
- 4. Soit $Z=X^2$. Déterminer la fonction de répartition de Z et ensuite une densité de Z

Exercice 3 Soit $\theta > 0$ un nombre réel fixé et Z = (X, Y) un vecteur aléatoire dont la densité f est définie sur \mathbb{R}^2 par

$$f(x,y) = K \exp(-\theta y) \mathbf{1}_{\{0 \le x \le y\}}, \quad (x,y) \in \mathbb{R}^2.$$

- 1. Déterminer la valeur de K
- 2. Déterminer les lois marginales de Z ainsi que $\mathbb{E}[X]$ et $\mathbb{V}ar[X]$. Les variables aléatoires X et Y sont-elles indépendantes?
- 3. On pose U = X et V = Y X
 - (a) Déterminer la loi du couple (U.V).
 - (b) Les variables aléatoires U et V sont-elles indépendantes?
- 4. Calculer $\mathbb{C}ov[X,Y]$. En déduire $\mathbb{V}ar[Y]$.
- 5. Calculer $\mathbb{E}[Y/X]$. En déduire $\mathbb{E}[Y]$.
- 6. Calculer deux façons différentes $\mathbb{P}[Y > X^2]$.

¹ Cours Dr Y. CISS

Exercice 4 Soit (X,Y)' un vecteur gaussien centré (d'espérance (0,0)') et de matrice de variance-covariance

$$\Sigma = \begin{pmatrix} 1 & u \\ u & 4 \end{pmatrix}$$

- 1. Déterminer le coefficient de corrélation linéaire $\rho(X,Y)$ de X et Y en fonction de u. En déduire les valeurs de u pour lesquelles $|(X,Y)| \leq 1$.
- 2. Pour quelle(s) valeurs de u, les variables marginales sont-elles indépendantes?
- 3. Pour quelle(s) valeurs de u, le vecteur gaussien (X,Y)' admet-il une densité?
- 4. On suppose maintenant que u = 1.
 - (a) Donner la densité conjointe du vecteur gaussien (X,Y)'.
 - (b) Calculer la densité conditionnelle de Y sachant X = x et en déduire la loi de Y/(X = x).
 - (c) Exprimer $\mathbb{E}[Y/X]$ en fonction de X et en déduire la loi de $\mathbb{E}[Y/X]$.
 - (d) Quelle est la loi du couple aléatoire (U, V)' = (-X, X + 2Y)'? Les variables aléatoires -X et X + 2Y sont elles indépendantes?

GOOD LUCK