Chapter 4 Hybrid Evolutionary Algorithm: A Case Study on Graph Coloring

<u>吕志鹏</u> 教授,博士生导师

计算科学理论研究所 常务副所长

华中科技大学 计算机科学与技术学院

Graph Coloring

* Given an undirected graph G=(V,E), the graph coloring problem (GCP) consists of assigning a color $c_i (1 \le c_i \le k)$ to each vertex such that adjacent vertices receive different colors and the number of colors used k is minimized.

Optimization or Decision?

- * GCP—Optimization Problem (NP Hard):
 - * To find the smallest number of colors k.
- * **k**-Coloring—**Decision** Problem (NP Complete):
 - * Given a **k**, we are asked whether there exists a coloring such that all the adjacent coloring constraints are satisfied.
- * The **Optimization** version of GCP can be solved by tackling a series of the **Decision** version of GCP problem with a gradually decreasing *k*.

* Thus, these two versions are equivalent to each other.

Solution Procedure

- * We starts from an initial k and solve the k-coloring problem. As soon as the k-coloring problem is solved, we decrease k by setting k to k-1 and solve again the k-coloring problem.
- * This process is repeated until no legal k-coloring can be found.
- * Smaller $k \rightarrow$ harder k-coloring problem. Thus, the solution approach just described solves thus a series of k-coloring problems of increasing difficulty.
- * We only consider the K-coloring problem in this presentation.

ILP Formulation

$$x_{v,c} = \begin{cases} 1 & \text{if vertex } v \text{ is coloured with colour } c \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{c=1}^k x_{v,c} = 1 \quad \forall \text{ vertices } v \in V$$

$$x_{u,c} + x_{v,c} \leq 1 \quad \forall \text{ colours } c \in K \quad \forall \text{ edges } \{u,v\} \in E$$

- * Given **k** colors, $x_{v,c}$ is the decision variables.
- * The first constraint requires that each vertex receives only one color.
- The second constraint denotes that adjacent vertices should receive different colors.

Assignment Representation

- * A solution of k-coloring problem can be represented as a series of colors that each vertex receives:
- * $S = \{c_1, c_2, ..., c_n\}$ where c_v denotes the color of vertex v. It is required that for any $(u, v) \in E$, $c_u \neq c_v$.
- This representation is natural, but not intuitive and essential.

Grouping Representation

* The feasible solution of k-coloring problem can also be presented as a set of independent sets, where an independent set is a set of non-adjacent vertices.

*
$$S = I_1 \cup I_2 \cup \cdots \cup I_k$$
, where

- 1. $I_i \cap I_l = \emptyset$ for any j and l
- 2. $I_1 \cup I_2 \cup \cdots \cup I_k = V$
- 3. I_i is an independent set for any j.
- * Thus, the *k*-coloring problem becomes to partition the *N* vertices into *k* independent sets.

Applications

- * Mobile radio frequency assignment
- * Timetabling: Education, transportation, sports
- Register allocation
- * Crew scheduling
- Printed circuit testing
- Air traffic flow management
- Satellite range scheduling
- Routing and wavelength assignment in WDM networks

Literature Review (1)

Constructive Greedy Algorithms

- *The first heuristic approaches to solving the graph coloring problem, which color the vertices of the graph one by one guided by a greedy function.
- *They are very fast by nature but their quality is unsatisfactory.
- *The best known algorithms in this class are:
 - * the largest saturation degree heuristic (DSATUR) (D. Brelaz, 1979)
 - * recursive largest first heuristic (RLF) (F.T. Leighton, 1979)
- *Often used to generate initial solutions for advanced algorithms

Literature Review (2)

Local Search Algorithms

- *One representative example is the so-called *Tabucol* algorithm which is the first application of Tabu Search to graph coloring (Hertz, de Werra, 1987)
- *Other local search metaheuristic methods include:
 - Simulated Annealing (Johnson et al, 1991)
 - Iterated Local Search (Chiarandini and Stutzle, 2002)
 - Reactive Partial Tabu Search (Blochliger, Zufferey, 2008)
 - GRASP (Laguna, Marti, 2001)
 - Variable Neighborhood Search (Avanthay et al, 2003)
 - Variable Space Search (Hertz et al, 2008)
 - Clustering-Guided Tabu Search (Porumbel, Hao, 2009)
- *Interested readers are referred to [Galinier, Hertz, 2006] for a comprehensive survey of the local search approaches.
- *I will describe the famous *Tabucol* algorithm in detail.

Literature Review (3)

Hybrid Evolutionary Algorithms

*One of the most recent and very promising approaches is based upon hybridization that embeds a **local search** algorithm into the framework of an **evolutionary algorithm** in order to achieve a better tradeoff between intensification and diversification, see for examples:

- * Dorne, Hao, 1998
- Galinier, Hao, 1999
- Galinier, Hertz, Zufferey, 2008
- Malaguti, Monaci, Toth, 2008
- * Porumbel, Hao, Kuntz, 2009

Initial Solution——DSATUR

- *The heuristic of DSATUR(Degree of Saturation) is to sequentially color vertices according to a DANGER-based heuristic. The main idea of DSATUR is based on least saturation degree.
- *At each phase, it consists of two steps: The first is to choose a vertex to color and the other is to choose a color for the chosen vertex.

Initial Solution——DSATUR

- * DSATUR starts by assigning color 1 to a vertex of maximal degree.
- * Suppose F is a partial coloring of the vertices of G. The degree of saturation of a vertex x, degs(x), is the number of available colors that vertex x can use.
- * The vertex to be colored next in the sequential coloring procedure of DSATUR is a vertex x with smallest degs(x), breaking ties by favoring vertex with larger uncolored degree.
- * When deciding a color for a chosen vertex the color that is least likely to be required by neighboring vertices is selected.

DSATUR

- 1. Initialization:
- *Color[N] = -1
- *Vetex_Color_Avail[N][K]=1
- *Num_Avail_Colors[N]=K
- *Vertex_Uncolored_Degree[N]=Degree[K]
- 2. Choose the vertex v1 with the largest degree, color v1 with color 1

```
Color[v1] = 1;
for v1's adjacent vertices vj
    Vetex_Color_Avail[vj][1] = 0;
    Num_Avail_Colors[vj] --;
    Vertex Uncolored Degree[vj] --;
```

DSATUR

```
for(i = 2; i \le N; i ++)
 3.1 choose a vertex vi according to:
   < Num Avail Colors[vi] (small), Vertex Uncolored Degree[vi](large)>
 3.2 choose a color ki for vertex vi:
  for each available color j for vertex vi
    calculate the number of uncolored vertices for which color j is available
  choose color ki with the smallest value of this number
 3.3 color vertex vi with color ki and updating:
  Color[vi] = ki;
   for vi's adjacent vertices vi
       Vertex Uncolored Degree[vj]--;
       if(Vetex_Color_Avail[vj][ki] == 1)
           Num Avail Colors[vj] --;
          Vetex Color Avail[vj][ki] = 0;
```

Improvements for DSATUR

- * It is possible to improve DSATUR heuristic by considering more sophisticated information.
- * For example, in case of choosing a color for the vertex, it would be better to consider the number of available colors.
- * What else heuristics can be inspired in choosing vertex and choosing color?

Local Search

TabuCol

Search Space

- * In this paper, we adapt the **k-fixed penalty strategy** which is also used by many coloring algorithms.
- * For a given graph G = (V; E), the number k of colors is fixed and the search space contains all possible (legal and illegal) k-colorings.
- * A k-coloring is represented by $S = \{V1, ..., Vk\}$ such that Vi is the set of vertices receiving color i.
- * Thus, if for all *Vi are independent sets*, then *S* is a legal *k*-coloring. Otherwise, *S* is an illegal (or conflicting) *k*-coloring.

Evaluation Function

- * The optimization objective is then to minimize the number of conflicting edges (referred to confict number hereafter) and find a legal k-coloring in the search space.
- * Given a k-coloring $S = \{V_1, ..., V_k\}$, the evaluation function f counts the conflict number induced by S such that

$$f(S) = \sum_{\{u,v\} \in E} \delta_{uv}$$

where

$$\delta_{uv} = \begin{cases} 1, & \text{if } u \in V_i, v \in V_j \text{ and } i = j, \\ 0, & \text{otherwise.} \end{cases}$$

Initial Coloring

- * The initial solution of our algorithm is randomly generated, i.e., each vertex in the graph is randomly assigned a color from 1 to k.
- * Other greedy constructive heuristics are possible, like DSATUR, RLF, DANGER, etc.
- * However, we observe that strong local search algorithms are not sensitive to the initial solutions.

Neighborhood Moves

- * A neighborhood of a given k-coloring is obtained by moving a **conflicting** vertex u from its original color class Vi to another color class Vj (denoted by <u, i, j>), called "critical one-move" neighborhood.
- * Therefore, for a k-coloring S with cost f(S), the size of this neighborhood is bounded by $O(f(S) \times k)$.

An Example

* Conflicting pairs: (1,3), (1,4), (7,8), (5,6)

* Critical One-Move: Only considers vertices 1, 3, 4, 7, 8, 5, 6. Totally 7*2=14 moves.

Neighborhood Evaluation

- * In order to evaluate the neighborhood efficiently, we employ an incremental evaluation technique.
- * The effect of each move on the objective function can be quickly calculated by a special data structure.
- * Each time a move is carried out, only the move values affected by this move are updated accordingly.

Adjacent-Color Table

Vertex	Red V1	Green V2	Blue V ₃
1	<u>2</u>	1	0
2	1	<u>o</u>	1
3	<u>1</u>	1	0
4	<u>1</u>	2	0
5	0	2	<u>1</u>
6	0	0	<u>1</u>
7	1	<u>1</u>	1
8	2	<u>1</u>	1
9	0	2	<u>0</u>

- * This matrix M[u][i] (N*k) measures the number of adjacent vertices if vertex **u** receives color **i**.
- * Thus, the incremental move value of a move <u, i, j> can be quickly calculated as: $\Delta(u,i,j) = M[u][j] M[u][i]$

Updating of Adjacent-Color Table

Vertex	Red V1	Green V2	Blue V ₃
1	2	<u>1</u>	0
2	1-1=0	<u>0+1=1</u>	1
3	<u>1-1=0</u>	1+1=2	0
4	<u>1-1=0</u>	2+1=3	0
5	0	2	<u>1</u>
6	0	0	<u>1</u>
7	1	<u>1</u>	1
8	2	<u>1</u>	1
9	0	2	<u>o</u>

- * Move (1, v1, v2):
- * Only its adjacent vertices 2, 3 and 4 are affected, and only the v1 and v2 columns need to be updated.
- All old color (v1) columns decrease by 1.
- * All new color (v2) columns increase by 1.

Simple Local Search

- 4. Generate initial solution S, Calculate f(S)
- 2. Initialize the adjacent-color table M.
- 3. While {there exist improving moves}
- 3.1 Construct the neighborhood of S, denoted by N(S)
- 3.2 Calculate the Δ values of all critical one-moves
- 3.3 Find the best move with the least Δ value
- Perform the best move: $f' = f + \Delta_{best}$
- 3.5 Update the adjacent-color table M
 End

Tabu Search Escaping from Local Optimum

- * Tabu Search incorporates a tabu list as a "recency-based" memory structure to assure that solutions visited within a certain span of iterations, called tabu tenure, will not be revisited.
- * TS then restricts consideration to moves not forbidden by the tabu list, and selects a move that produces the best move value to perform.

Tabu Search

* 1. What?

* 2. Tenure?

* 3. How to judge if a move is forbidden?

Attributes or Solution?

- * It should be noted that we generally forbid attributes of solutions, but not the solutions themselves, since it is too expensive to forbid solutions.
- * For the tabu list, once move <u, i, j> is performed, vertex u is forbidden to move back to color class Vi for the next tt iterations.

Tabu Tenure

* For the tabu list, once move <u, i, j> is performed, vertex u is forbidden to move back to color class Vi for the next tt iterations.

* Here, the tabu tenure tt is dynamically determined by

$$tt = f(S) + r(10)$$

where r(10) takes a random number in $\{1,...,10\}$.

TabuTenure Table

Vertex	Red V1	Green V2	Blue V3
1	9	0	0
2	0	10	0
3	0	0	0
4	0	0	0
5	0	0	0
6	0	0	0
7	0	0	0
8	0	0	0
9	0	0	0

- * At the begining of the search, the TabuTenure table is initialized to be zero.
- * once move <*u*, *i*, *j*> is performed, the value of Table[u][i]=TabuTenure.
- * Once the search progresses, the non-zero value of the table is decreased by one at each time.
- * In the following search, we can decide if a move <*u*, *i*, *j*> is tabu by checking if Table[u][j]>0.

Fast Implementation of TabuTenure Table

Vertex	Red V1	Green V2	Blue V3
1	1+10	0	0
2	0	2+15	0
3	0	0	0
4	0	0	3+12
5	0	0	0
6	0	0	0
7	0	4+10	0
8	0	0	0
9	0	0	5+12

- * The above Table[u][i] records the relative tabu tenure length. Why not record the absolute tabu tenure length?
- * Once move <*u*, *i*, *j*> is performed, the value of Table[u][i] = TabuTenure+Iter.
- In the following search, we can decide if a move <u, i, j> is tabu by checking if Table[u][j]>Iter.
- * In this way, the tabu tenure table can be updated in O(1).

Aspiration

- * If one move can override the best found solution found so far, it is accepted even if it is in tabu status.
- * This is because only the **attributes** but not **solutions** themselves are stored in the tabu table.

TS Algorithm

 Generate initial solution S, Calculate f(S) 2. Initialize the adjacent-color table M. 3. While {stop condition is not met} Construct the neighborhood of S, denoted by N(S) 3.1 Calculate the Δ values of all critical one-moves 3.2 Find the best tabu and non-tabu moves with the least Δ value 3.3 If {the aspiration condition is satisfied} 3.4 perform the best tabu move, else perform the best non-tabu move Update f and the adjacent-color table M 3.5 End

TS Algorithm

- * Data Structures: Sol[N], f, BestSol[N], Best_f, TabuTenure[N][K], Adjacent_Color_Table[N][K]
- * Subfunctions:
 - Initialization(): Initialize the values of the data structures.
 - * FindMove(u,vi,vj,delt): find the best non-tabu or tabu move.
 - * MakeMove(u,vi,vj,delt): update the correponding values.

* TabuSearch()

```
* { int u, vi, vj, iter = 0;

* Initialization();

* while( iter < MaxIter) {

* FindMove(u,vi,vj,delt);

* MakeMove(u,vi,vj,delt); }

* }</pre>
```

Find Move

FindMove(u,vi,vj,delt) * for(i=1:N) if(Adjacent_Color_Table[i][Sol[i]] > o) { for (k = 1: K)if(k != Sol[i]) { calculate delt value of the move <i, Sol[i], k> if (Table[i][k] < iter) update the tabu best move; else update the non-tabu best move; }}} if(the tabu best move satisfies the tabu aspiration criterion) <u, vi, vj, delt> = the tabu best move; <u, vi, vj,delt> = the non-tabu best move; else 36

Make Move

```
* MakeMove(u,vi,vj, delt)

* {

* Sol[u] = vj;

* f = f + delt;

* Table[u][vi] = iter + f + rand()%10;

* Update the Adjacent_Color_Table;

* }
```

Hybrid Evolutionary Algorithm

Main Scheme

Hybrid Evolutionary Algorithm (LS+EA)

Hybrid Evolutionary Algorithm

The hybrid coloring algorithm

```
Data: graph G = (V, E), integer k

Result: the best configuration found

begin

P=InitPopulation(|P|)

while not Stop-Condition () do

(s1,s2)=ChooseParents(P)

s=Crossover(s1,s2)

s=LocalSearch(s, L)

P=UpdatePopulation(P,s)

end
```

Crossover Operator (1)

Table 2. The crossover algorithm: an example.

parent	s_1	
parent	s_2	
offsprin	ng a	9

АВС	DEFG	HIJ
CDEG	A <u>F</u> I	внЈ

 $V_1 := \{D, E, F, G\}$ remove D,E,F and G

АВС		ніј
С	ΑI	ВНЈ
DEFG		

$$\begin{array}{l} \text{parent } s_1 \\ \text{parent } s_2 \longrightarrow \\ \text{offspring } s \end{array}$$

А <u>В</u> С		<u>H</u> I <u>J</u>
C	ΑΙ	внј
DEFG		

$V_2 :=$	$\{B,I$	$\{H,J\}$	
remove	$_{\rm B,H}$	and	J

A C		1
С	ΛI	
DEFG	BHJ	

parent
$$s_1 \rightarrow$$

parent s_2
offspring s

A C		I
<u>C</u>	<u>A</u> I	
DEFG	ВНЈ	

$$V_3 := \{A, C\}$$
 remove A and C

		I
	I	
DEFG	внј	A C

Crossover Operator (2)

- * A legal k-coloring is a collection of k independent sets.
- * With this point of view, if we could maximize the size of the independent sets by a crossover operator as far as possible, it will in turn help to push those left vertices into independent sets.
- * In other words, the more vertices are transmitted from parent individuals to the offspring within *k* steps, the less vertices are left unassigned.
- * In this way, the obtained offspring individual has more possibility to become a legal coloring.

Crossover Operator (3)

The GPX crossover algorithm

```
Data: configurations s_1 = \{V_1^1, \dots, V_k^1\} and s_2 = \{V_1^2, \dots, V_k^2\}

Result: configuration s = \{V_1, \dots, V_k\}

begin

for l(1 \le l \le k) do
```

if $l (1 \le l \le k)$ do

if l is odd, then A := 1, else A := 2choose i such that V_i^A has a maximum cardinality $V_l := V_i^A$ remove the vertices of V_l from s_1 and s_2

Assign randomly the vertices of $V - (V_1 \cup \cdots \cup V_k)$

end

HEA Algorithm Scheme

Algorithm 1 Pseudcode of the Hybrid Evolutionary Algorithm for k-Coloring

```
1: Input: Graph G
 2: Output: The best solution S^* found so far
 3: \{S_1, \ldots, S_p\} \leftarrow \text{Initial Population}
 4: for i = \{1, \dots, p\} do
 5: S_i \leftarrow \text{Tabu Search}(S_i)
 6: end for
 7: S^* = arg min\{f(S_i), i = 1, ..., p\}
 8: repeat
       Randomly choose two parent solutions \{S_{i1}, S_{i2}\}
 9:
        S_0 \leftarrow \text{Crossover\_Operator}(S_{i1}, S_{i2})
10:
      S_0 \leftarrow \text{Tabu Search}(S_0)
11:
      if f(S_0) < f(S^*) then
12:
           S^* = S_0
13:
14:
      end if
15:
        \{S_1, \ldots, S_p\} \leftarrow \text{Pool Updating}(S_0, S_1, \ldots, S_p)
16: until Stop condition met
```

Thank You!