

Interactive Systems Design Prof. V. Fuccella

Human-Computer Interaction

Chapter 3
Interaction Elements

An Empirical Research Perspective

I. Scott MacKenzie

Human Factors Model (revisited)

¹ Kantowitz, B. H., & Sorkin, R. D. (1983). *Human factors: Understanding people-system relationships*. New York. New York: Wiley.

Hard Controls, Soft Controls

- In the past, controls were physical, single-purpose devices → hard controls
- Today's graphical displays are malleable

- Interfaces created in software \rightarrow soft controls
- Soft controls rendered on a display
- Distinction blurred between soft controls and displays
- Consider controls to format <u>this</u> (see below)

GUI Malleability

- Below is a 30 cm² view into a GUI
- >20 soft controls (or are they displays?)

• Click a button and this space is morphed into a completely different set of soft controls/displays

Control-Display Relationships

- Also called *mappings*
- Relationship between operation of a control and the effect created on a display
- At least three types:
 - Spatial relationships
 - Dynamic relationships
 - Physical relationships

Spatial Relationships

Spatial congruence

Control: right Display: right

Spatial transformation

Control: forward

Display: up

Axis Labeling

Axis	Control (mouse)	Display (cursor)
X	+	+
У		+
Z	+	

Display

Third Tier

DOF	Hard Control	Soft Control	Display
х			
у		+	•
Z	+		

3D

- In 3D there are 6 degrees of freedom (DOF). DOF are the number of variables needed to represent its position in the space
 - 3 DOF for position (x, y, z)
 - 3 DOF for orientation (θ_x , θ_y , θ_z)

In aeronautics...

3D in Interactive Systems

- Usually a subset of the 6 DOF are supported
- Spatial transformations are present and must be learned
- E.g., Google StreetView

Panning in Google StreetView

- (Switch to Google StreetView and demonstrate panning with the mouse)
- Spatial transformations:

DOF	Control	Display
Х		
у		
Z		
θх		
θу		
θz		

Panning in Google StreetView

- (Switch to Google StreetView and demonstrate panning with the mouse)
- Spatial transformations:

DOF	Control	Display
Х	+ •	
у		
Z	+	
θх		+
θу		_
θz		

CD Gain

- Quantifies the amount of display movement for a given amount of controller movement
- E.g., CD gain = 2 implies 2 cm of controller movement yields 4 cm of display movement
- For non-linear gains, the term *transfer function* is used
- Typical control panel to adjust CD gain:

CD Gain and User Performance

• Tricky to adjust CD gain to optimize user performance

• Issues:

- Speed accuracy trade-off (what reduces positioning time tends to increase errors)
- Opposing relationship between gross and fine positioning times:

Latency

- Latency (aka lag) is the delay between an input action and the corresponding response on a display
- Usually negligible on interactive systems (e.g., cursor positioning, editing)
- May be "noticeable" in some settings; e.g.,
 - Remote manipulation
 - Internet access (and other "system" response situations)
 - Virtual reality (VR)
- Human performance issues appropriate for empirical research

Property Sensed, Order of Control

- Property sensed (property of control)
 - Position (graphics tablet, touchpad, touchscreen)
 - Displacement (mouse, joystick)
 - Force (joystick, pointing stick)
- Order of control (property of display)
 - Position (of cursor/object)
 - Velocity (of cursor/object)

Natural vs. Learned Relationships

- Natural relationships \rightarrow spatially congruent
- Learned relationships → spatial transformation (relationship must be learned)

Learned relationship

DOF	Control	Display
Х		
у		+
z		
θх		
θу		
θz	+	

Natural relationship

DOF	Control	Display
Х		
у	+	+
Z		
θх		
θу		
θz		

Learned Relationships

- Learned relationships seem natural if they lead to a *population stereotype* or *cultural standard*
- A control-display relationship needn't be a spatial relationship...

Is the display on or off?

Answer:

- On (in U.S., Canada)
- Off (in U.K.)

Clock Metaphor

- Numeric entry on PDA¹
- Users make straight-line strokes in direction of digit on clock face

¹ McQueen, C., MacKenzie, I. S., & Zhang, S. X. (1995). An extended study of numeric entry on penbased computers. *Proceedings of Graphics Interface '95*, 215-222, Toronto: Canadian Information Processing Society.

Clock Metaphor (2)

- Blind users carry a mobile locating device¹
- Device provides spoken audio information about nearby objects (e.g. "door at 3 o'clock")

¹ Sáenz, M., & Sánchez, J. (2009). Indoor position and orientation for the blind. *Proceedings of HCI International* 2007, 236-245, Berlin: Springer.

Modes

- A *mode* is a functioning arrangement or condition
- Modes are everywhere (and in most cases are unavoidable)
- Computer keyboards have modes
 - $\approx 100 \text{ keys} + \text{SHIFT}$, CTRL, ALT → $\approx 800 \text{ key variations}$

Mobile Phone Example

- Navi key (first introduced on Nokia 3210)
- Mode revealed by word above
- At least 15 interpretations:
 Menu, Select, Answer,
 Call, End, OK, Options,
 Assign, Send, Read, Use,
 View, List, Snooze, Yes

Contemporary LCD Monitor

- Similar to Navi key idea
- No labels for the four buttons above power button
- Function revealed on display when button pressed
- Possibilities explode

Mode Switching

- PowerPoint: Five view modes
- Switch modes by clicking soft button
- Current mode apparent by background shading
- Still problems lurk
- How to exit Slide Show mode?
 - PowerPoint \rightarrow Esc
 - Firefox \rightarrow ?

Mode Switching (2)

- Sports watch
- Single button cycles through modes

Mode Visibility

- Shneiderman: "offer information feedback"¹
- Norman: "make things visible"²
- unix *vi* editor: Classic example of no mode visibility:

¹ Shneiderman, B., & Plaisant, C. (2005). *Designing the user interface: Strategies for effective human-computer interaction*. (4th ed.). New York: Pearson.

² Norman, D. A. (1988). The design of everyday things. New York: Basic Books.

Mode Visibility (2)

- Insert vs. Overtype mode on MS/Word
- Some variation by version, but the user is in trouble most of the time

>2 Degrees of Freedom

- Examples in the HCI research literature
- 4 DOF Rockin' Mouse¹

• Three-axis trackball²

¹ Balakrishnan, R., Baudel, T., Kurtenbach, G., & Fitzmaurice, G. (1997). The Rockin'Mouse: Integral 3D manipulation on a plane. *Proc CHI* '97, 311-318, New York: ACM.

² Evans, K. B., Tanner, P. P., & Wein, M. (1981). Tablet based valuators that provide one, two, or three degrees of freedom. *Computer Graphics*, *15*(3), 91-97.

Separating the Degrees of Freedom

- More DOF is not necessarily better
- Must consider the context of use
- Etch-A-Sketch: separate 1 DOF *x* and *y* controllers:

Wheel Mouse

- Separate DOF via a wheel
- Successful introduction by Microsoft in 1996 with the *IntelliMouse* →

• Preceded by...

RollerMouse¹

¹ Venolia, D. (1993). Facile 3D manipulation. *Proc CHI '93*, 31-36, New York: ACM.

² Gillick, W. G., & Lam, C. C. (1996). U. S. Patent No. 5,530,455.

Mobile Context

- 1980s: born of mobile computing with PDAs
- 2007: launch of iPhone
- Touchscreens are the full embodiment of direct manipulation
 - No need for a cursor (cf. indirect input)
 - No control/display mappings (Spatial transformations, CD Gain, etc.)

Touch Input Challenges

- Occlusion and accuracy ("fat finger problem")
- Early research → Offset cursor¹
- Contemporary systems use variations; e.g., offset animation:

¹ Potter, R., Berman, M., & Shneiderman, B. (1988). An experimental evaluation of three touch screen strategies within a hypertext database. *Int J Human-Computer Interaction*, *1* (1), 41-52.

Multitouch

Multitouch (>2)

• Piano keyboard: pressure data available

Accelerometers

- Accelerometers enable tilt or motion as an input primitive
- Technology has matured; now common in mobile devices
- Many applications; e.g., spatially aware displays:

Connect to: http://join.quizizz.com

QUESTION TIME

Thank You

