

Legacy data center networks are at a breaking point

Complex

Over

30 years

Of network design principles have kept Virtual Network Infrastructure at bay¹

**** Data Center Networking Hardware January 2013 2 Pla

Constrained

More than

80% of all traffic

In the data center's LAN to be between servers, and up to 80% of end-user traffic will move to the WAN by 2014²

Plan Now For the Huner converged Enterprise Network Gartner ID: G00232582 May 2

Manual

Human middleware

box-by-box

CLI configuration is the typical method used by todays admins to provision networks³

³ HP (ES/TS - CLI based L2/3 switch, router configuration of legacy ne

What is software-defined networking?

Definition from the Open Network Foundation

... In the SDN architecture, the control and data planes are **decoupled**, network intelligence and state are logically **centralized** and the underlying network infrastructure is abstracted from the applications ...

Source: opennetworking.org

Definitions

Software Defined Networking (SDN)

- New network architecture
- Separates the network control plane from the forwarding hardware.
- Allows the data plane to be defined by a logically centralized controller (or set of controllers).

OpenFlow

- Standard protocol used between the control and data planes.
- · Open and multivendor
- Driven by the Open Networking Foundation (ONF)
 - HP, Cisco, Juniper, Extreme, IBM, Google, Microsoft, Brodace, F5, Huawei, ZTE, Oracle, Riverbed, Intel, ...

Source: ONF Forum

Software-defined Network components

Delivering the functions of an SDN architecture

Table entry examples

Switching	Switch Port	MAC src	MAC dst	Eth type		IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
	*	*	00:1f:	*	*	*	*	*	*	*	port6
Flow	Switch	MAC	MAC	Eth	VLAN	IP	IP	IP	ТСР	ТСР	A -4:
Switching	Port	src	dst	type	ID	Src	Dst	Prot	sport	dport	Action
	port3	00:20	00:1f	0800	vlan1	1.2.3.4	5.6.7.8	4	17264	80	port6
Firewall	Switch	MAC	MAC	Eth	VLAN	IP	IP	IP	ТСР	ТСР	Forward
riiewali	Port	src	dst	type	ID	Src	Dst	Prot	sport	dport	Forward
	*	* *	·	*	*	*	*	*	*	22	drop

13 Suppright 2012 Hewitett Fackard Development Company, 2.1. The information contained herein 3 subject to change without noted

Flow Routing vs. Aggregation

Both models are possible with OpenFlow

Flow-Based

- Every flow is individually set up by controller
- Exact-match flow entries
- Flow table contains one entry per flow
- Good for fine grain control, e.g. campus networks

Aggregated

- One flow entry covers large groups of flows
- Wildcard flow entries
- Flow table contains one entry per category of flows
- Good for large number of flows, e.g. backbone

(III)

Reactive vs. Proactive

Both models are possible with OpenFlow

Reactive

- First packet of flow triggers controller to insert flow entries
- · Efficient use of flow table
- Every flow incurs small additional flow setup time
- If control connection lost, switch has limited utility

Proactive

- Controller pre-populates flow table in switch
- Zero additional flow setup time
- Loss of control connection does not disrupt traffic
- Essentially requires aggregated (wildcard) rules

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

OpenFlow isn't just a hype: Google G-Scale

Internal backbone that carries traffic between Google's data centers worldwide

- Google's OpenFlow WAN activity started 2010. Less than two years later, Google is now running the G-Scale network on OpenFlow-controlled switches. 100% of its production data center to data center traffic is now on this new SDN-powered network.
- The old network has been shut down.
- Google built their own OpenFlow switch because none were commercially available. The switch was built from merchant silicon. It has scaled to hundred of nonblocking 10GE ports.
- A key SDN benefit is the unified view of the network fabric
 higher QoS awareness and predictability.

http://www.opennetsummit.org/archives/apr12/hoelzle-tue-openflow.pdf http://www.opennetsummit.org/archives/apr12/vahdat-wed-sdnstack.pdf

Network Function Virtualization NFV

h

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

NFV - What is it?

Definition from ETSI NFV Whitepaper

Network Functions Virtualization (NFV)

By leveraging standard IT virtualization technology to consolidate many network equipment types onto industry standard high volume servers, switches and storage, which could be located in Data-Centers, Network Nodes and in the end user premises, NFV provides a model to meet the challenges around reducing CAPEX, improving manageability, increasing the time-to-market and encourages a wider eco-system.

SDN and NFV: What's the difference

- Software Defined Networking: Remove management and control planes from network device
 - Separation of control and forwarding functions
 - Centralization of control
 - Ability to program the behavior of the network using well-defined interfaces
 - Campus, data center / cloud, SP core
 - Open Networking Forum (ONF)
- Network Function Virtualization: Remove need for special hardware
 - Rapid adaptation to new standards and technologies
 - Use of commodity server hardware
 - Service provider network
 - ETSI NFV Working Group

25 © Convight 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

Introducing HP Virtual Services Router (VSR) Series

Industry's first carrier grade Network Function Virtualization (NFV) technology

VSR based on Comware 7

- Deployment flexibility across branch, data center and cloud
- · Agile services delivery for faster time to revenue
- · Virtualized router for multi-tenant, hosted public clouds
- · Extends enterprise routing policies to the cloud

10x faster time to revenue

80% OPEX

ZERU dedicated appliances

¹Compared with Cisco Nexus 1010 Virtual Services Appliance

SDN Controller Platform

Base Control Platform

- Linux / Java / OSGi software stack
- · OpenFlow Controller
- Device Discovery, Adoption, Network Topology & Domain Model services
- Device Driver Framework for out-of-band control & management of devices, VMs, etc.

Distributed Platform for High-Availability & Scalability

- Controller Teaming for Load-Balancing and Control Domain Partitioning
- Control State Synchronization for smooth & rapid Fail-Over

Extensible Platform

- Embedded Java Application Deployment
- REST APIs
- GUI

35 © Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

HP VAN SDN Controller

Technical Specifications

Required platform	 Ubuntu 12.04 LTS 64-bit (3.2 kernel) PostgreSQL 9.1 OpenJDK 7 JVM Keystone Identity
Recommended hardware	 3.0 GHz Intel® Xeon® or Intel® Core™2 Quad processor or equivalent 8 GB RAM 64 GB disk space 1-10 Gbps NIC KVM, ESXi or physical server
Performance (single controller)	 Maximum new flows per second (Cbench): 1.8 million Maximum OpenFlow ports: 80,000 Maximum OpenFlow devices: 2,000 Typical OpenFlow ports: 1,000-2,000 Typical OpenFlow devices: 100-200

 ${\tt 36} \quad @ \ Copyright \ {\tt 2012 Hewlett-Packard \, Development \, Company, L.P. \, The information \, contained \, herein \, is \, subject to \, change \, without \, notice \, and \, contained \,$

Native APIs enable VAN SDN controller to have support for:

- Partner developed applications
- Security service applications
- Wired/wireless security applications
- Flow based traffic engineering

SDN Controller application support

Application programming interfaces (API) enable applications to interact with the network

	SDN Controller Support	Applications			
Northbound APIs (RESTful APIs)	 Deployed outside the controller platform Exposes SDN Controller capabilities Standard HTTPS interface model SDK developer support 	 SDN Business Applications Ideal for applications operating at the business level Ideal for proactive interactions, such as policy enforcement 			
Native APIs	 Deployed within the controller platform Extends SDN Controller capabilities Built on Java OSGi model SDK developer support 	Network Control Applications Ideal for applications operating at the network level Ideal for fine-grained, frequent, or low-latency interactions such as handling packet-in events			

RSDoc – REST API Documentation https://<controller-ip>:8443/api RSdoc C HP VAN SDN Controller API v2.0 ▼ X-Auth-Token Explore /diag Show/Hide List Operations Expand Operations Raw /lldp Show/Hide | List Operations | Expand Operations | Raw /logs Show/Hide | List Operations | Expand Operations | Raw /forward_path Show/Hide | List Operations | Expand Operations | Raw /datapaths Show/Hide | List Operations | Expand Operations | Raw /team Show/Hide | List Operations | Expand Operations | Raw

HP SDN Ecosystem

MP.

Simple and programmable - OpenFlow and Overlays 50 switches and 10 new routers VXLAN, NVGRE VM VM VM **Overlay** Underlay Over 25 million HP OpenFlow ports **HP Routers HP Switches** 3rd Party Overlay enabled Delivering NFV · Overlay enabled OpenFlow enabled OpenFlow enabled OpenFlow enabled

