

Universidade de Aveiro

DEPARTAMENTO DE ELECTRÓNICA, TELECOMUNICAÇÕES E INFORMÁTICA

47064- DESEMPENHO E DIMENSIONAMENTO DE REDES

Network Traffic Engineering

8240 - MESTRADO INTEGRADO EM ENGENHARIA DE COMPUTADORES E TELEMÁTICA

António Rafael da Costa Ferreira NMec: 67405 Rodrigo Lopes da Cunha NMec: 67800

Docentes: Paulo Salvador, Susana Sargento

> Maio de 2016 2015-2016

Conteúdos

1	Virtua	l-Circuit Switched Network	2
	1.1	Exercício 1	2
	1.2	Exercício 2, 3 e 4	2

1 Virtual-Circuit Switched Network

1.1 Exercício 1

Para iniciar este trabalho foi-nos dado vários ficheiros de base. O ficheiro NetGen.py é responsável por gerar uma rede, com vários nós que inclui o nome e localização geográfica, e as ligações inter-nó, matrizes de tráfego que define os fluxos de tráfego entre todas as cidades/ nós.

A localização geográfica (pos) é obtida dinamicamente a partir do nome do no (nome da cidade) usando a API do Google Maps, ficheiro getGeo.py.

A matriz de tráfego (TM) é gerado aleatóriamente. É possível também guardar o resultado num ficheiro .dat e passando como argumento o parâmetro -f, net.dat.

Figura 1: Rede pequena de teste e rede grande

1.2 Exercício 2, 3 e 4

No exercício 2 é usado o caminho mais curto como escolha para o caminho entre pontos, sendo que isto é dado pela soma das conexões e usando o algoritmo Greedy.

No exercício 3, foi calculado o "average one-way delay" e a carga em todas as direções em todos os links.

Para isso, para calcular o "average one-way delay", foi usada a seguinte fórmula baseada na aproximação Kleinrock:

 $\mu = 1\mathrm{e}9$ / 8000 , é igual ao link speed em pkts/sec (1Gbps)

$$W = 1e6 \times \left[\frac{1}{(\mu - atraso)} \right]$$

Para calcular o atraso, teve de se criar um ciclo de forma a percorrer todos os links e criar uma lista com os atrasos.

for pair in allpairs:

Rafael Ferreira nmec: 67405 Rodrigo Cunha nmec: 67800

```
path = sol[pair]
for i in range(0, len(path) - 1):
    ws_delay[pair] = 1e6 / (mu - \
    net[path[i]][path[i + 1]]['load'])
```

Após isso foi possível apresentar a seguinte tabela para a rede pequena:

Origem	Destino	Saltos	Carga (pkts/sec)	
Lisboa	Viseu	Lisboa, Viseu	31271	10.67
Porto	Lisboa	Porto, Aveiro, Lisboa	Indisponível	15.95
Viseu	Porto	Viseu, Porto	31401	10.68
Lisboa	Aveiro	Lisboa, Aveiro	62675	16.04
Aveiro	Viseu	Aveiro, Viseu	31199	10.66
Viseu	Aveiro	Viseu, Aveiro	31378	10.68
Aveiro	Porto	Aveiro, Porto	63050	16.14
Porto	Viseu	Porto, Viseu	31396	10.68
Porto	Aveiro	Porto, Aveiro	62129	15.91
Lisboa	Porto	Lisboa, Aveiro, Porto	Indisponível	16.14
Viseu	Lisboa	Viseu, Lisboa	31171	10.66
Aveiro	Lisboa	Aveiro, Lisboa	62304	15.95

Tabela 1: Solução obtida, carga nos links e atraso

Analisando a tabela obtida conseguimos perceber que o link Aveiro-Porto tem o máximo delay de 16.14 micro segundos e a carga máxima está de Aveiro ao Porto com 63050 pacotes/ segundo.

Maximum one-way delay flow	Maximum one-way delay	Mean one-way delay
Aveiro-Porto	16.1420500404	13.3475508848

Tabela 2: Atraso

Max load flow	Maximum one-way load	Mean one-way load
Aveiro-Porto	$63050.00 \; \mathrm{pkts/sec}$	43797.40 pkts/sec

Tabela 3: Carga

Rafael Ferreira nmec: 67405 Rodrigo Cunha nmec: 67800