Introducción a los Sistemas Operativos

Anexo – Arquitectura de Computadoras

1.5.0.

- ✓ Versión: Agosto 2024
- Palabras Claves: Sistemas Operativos, Harware, Interrupciones, Registros

Los temas vistos en estas diapositivas han sido mayormente extraídos del libro de William Stallings (Sistemas Operativos: Aspectos internos y principios de diseño) y y Conceptos de sistemas operativos (Silberschatz, Galvin, Gagne)

Objetivo de la presentación

✓ Incluye los conceptos vistos en asignatura/s previa/s y que son necesarios tener presentes para conceptos que se verán durante la cursada.

Elementos Básicos de una computadora

- Procesador
- Memoria Principal
 - ✓ Volátil
 - ✓ Se refiere como memoria real o primaria
- ☑ Componentes de E/S
 - ✓ Dispositivos de memoria secundaria
 - Equipamiento de comunicación
 - ✓ Monitor / teclado / mouse
- ☑ Bus Sistema
 - ✓ comunicación entre procesadores, memoria, dispositivos de E/S

Fuente: Operating System Concepts. Silberschatz, Galvin, Gagne

Componentes de alto nivel

Registros del Procesador

- ✓ Visibles por el usuario
 - ✓ Registros que pueden ser usados por las aplicaciones
- ☑ De Control y estado
 - ✓ Para control operativo del procesador
 - ✓ Usados por rutinas privilegiadas del SO para controlar la ejecución de procesos

Registros Visibles por el usuario

- ✓ Pueden ser referenciados por lenguaje de máquina
- ☑Disponible para programas/aplicaciones
- - ✓ Datos
 - ✓ Direcciones
 - Index
 - Segment pointer
 - Stack pointer

Registros de Control y Estado

- ✓ Program Counter (PC)
 - ✓ Contiene la dirección de la proxima instrucción a ser ejecutada
- ✓ Instruction Register (IR)
 - ✓ Contiene la instrucción a ser ejecutada
- ✓ Program Status Word (PSW)
 - ✓ Contiene códigos de resultado de operaciones
 - ✓ habilita/deshabilita Interrupciones
 - ✓ Indica el modo de ejecución (Supervisor/usuario)

Ciclo Ejecución de Instrucción

✓ Dos pasos

- ✓ Procesador lee la instrucción desde la memoria
- ✓ Procesador ejecuta la instrucción

Ciclo Instrucción

Instrucción: Fetch y Execute

☑El procesador busca (fetch) la instrucción en la memoria

$$-(PC) \rightarrow IR$$

☑El PC se incrementa después de cada fetch para apuntar a la próxima instrucción

$$-PC = PC + 4$$

IR - Instruction Register

- ✓ La instrucción referenciada por el PC se almacena en el IR y se ejecuta
- ☑ Categorías de instrucciones
 - ✓ Procesador Memoria
 - Transfiere datos entre procesador y memoria
 - ✓ Procesador E/S
 - Transfiere datos a/o desde periféricos
 - ✓ Procesamiento de Datos
 - Operaciones aritméticas o lógicas sobre datos
 - ✓ Control
 - Alterar secuencia de ejecución

Características de una máquina hipotética

Figure 1.3 Characteristics of a Hypothetical Machine

Ej. de una ejecución de programa

Interrupciones

- ✓Interrumpen el secuenciamiento del procesador durante la ejecución de un proceso
- ☑Dispositivos de E/S más lentos que el procesador
 - Procesador debe esperar al dispositivo

Necesidades del SO

- ✓Postergar el manejo de una interrupción en momentos críticos
- ☑Atender en forma eficiente: la rutina de atención adecuada según el dispositivo
- Tener varios niveles de interrupción para que el SO pueda distinguir entre interrupciones de alta prioridad y de baja prioridad y responder adecuadamente

Clases de Interrupciones

Table 1.1 Classes of Interrupts

Program Generated by some condition that occurs as a result of an instruction

execution, such as arithmetic overflow, division by zero, attempt to execute

an illegal machine instruction, and reference outside a user's allowed

memory space.

Timer Generated by a timer within the processor. This allows the operating system

to perform certain functions on a regular basis.

I/O Generated by an I/O controller, to signal normal completion of an operation

or to signal a variety of error conditions.

Hardware failure Generated by a failure, such as power failure or memory parity error.

Flujo de control SIN interrupciones

Flujo de control CON interrupciones

Interrupt Handler

- ✓ Programa (o rutina) que determina la naturaleza de una interrupción y realiza lo necesario para atenderla
 - ✓ Por ejemplo, para un dispositivo particular de E/S
- ☑ Generalemente es parte del SO

Interrupciones

Suspende la secuencia normal de ejecución

User program

Interrup

Ciclo de interrupción

Ciclo de interrupción

- ☑El procesador chequea la existencia de interrupciones.
- ☑Si no existen interrupciones, la próxima instrucción del programa es ejecutada
- Si hay pendiente alguna interrupción, se suspende la ejecución del progama actual y se ejecuta la rutina de manejo de interrupciones.

Procesamiento simple de una interrupción

Interrupciones no enmascarables y enmascarables

- La mayoría de las CPUs tienen dos líneas de requerimiento de interrupciones: la de no enmascarables y las enmascarables.
- ☑La de no enmascarables se reservan para eventos tales como errores de memoria no recuperables.
- ✓ La de enmascarables puede ser "apagada" por la CPU si en ese momento se está ejecutando una secuencia crítica de instrucciones. Estas son las que usan los controladores de dispositivo cuando

Multiples Interrupciones

☑ Deshabilitar las interrupciones mientras una interrupción está siendo procesada.

Multiples Interrupciones

☑ Definir prioridades a las interrupciones

Multiples Interrupciones

Descripción de número en el vector de interrupciones de procesador Intel:

vector number	description
0	divide error
1	debug exception
2	null interrupt
3	breakpoint
4	INTO-detected overflow
5	bound range exception
6	invalid opcode
7	device not available
8	double fault
9	coprocessor segment overrun (reserved)
10	invalid task state segment
11	segment not present
12	stack fault
13	general protection
14	page fault
15	(Intel reserved, do not use)
16	floating-point error
17	alignment check
18	machine check
19–31	(Intel reserved, do not use)
32–255	maskable interrupts

- De 1 a 31: no enmascarables, por ejemplo, errores de condición
- 32 a 255,
 enmascarables,
 usadas para
 interrupciones
 generadas por
 dispostivos

