Experimental Notes for the Underwater Acoustic Metamaterial Project

Jiaxin Zhong

March 8, 2023

1 Introduction

Experiments were conducted to validate the enhanced transmission through an underwater acoustic metamaterial (AMM).

1.1 General settings

Table 1: Comparison of retrieved parameters.

Name	Symbol	Value	Comments
Emitter radius	_	1 inch	_
Metamaterial dimensions	_	$29\mathrm{mm} \times 29\mathrm{mm}$	_
Center frequency	$f_{ m c}$	$445~\mathrm{kHz}$	_
Wavelength	$\lambda_{ m c}$	3.3 mm	_
Critical distance	$D_{\rm c} = a^2/\lambda_{\rm c}$	68.2 mm	_

2 Experimental logs

Equipment settings are:

- Oscilloscope
 - y division 1 V
 - x division 5 MHz
- Function generator
 - Vpp is 5 V
 - $-\,$ Burst mode, 1 ms period, 5 cycles

2.1 Exp230223B

- DDate: Feb 23, 2023
- Measurement of the transmitted sound field without AMM

$2.2 \quad \text{Exp230227B}$

Specific settings

- Date: Feb 27, 2023
- Measurement of the transmitted sound field with AMM

2.3 Exp230228A

- AMM
- Transmistted sound field over the plane $y=46\,\mathrm{mm}$.

2.4 Exp230228F

- AMM
- Transmistted sound field over the plane $y=45.75\,\mathrm{mm}.$

2.5 Exp230301D

- AMM
- Transmistted sound field over the plane $y=45.5\,\mathrm{mm}$.

2.6 Exp230302A

- Without AMM
- Transmistted sound field over the plane $y=46\,\mathrm{mm}$.

2.7 Exp230302B

- Without AMM
- Transmisted sound field over the plane $y=45.75\,\mathrm{mm}$.

2.8 Exp230302G

- Without AMM
- Transmistted sound field over the plane $y=45.5\,\mathrm{mm}$.

2.9 Exp230303A

- With plate
- Horizontal plane

$2.10 \quad Exp230306A$

- With plate
- Vertifical plane at $y = 46 \,\mathrm{mm}$

2.11 Exp230307A

- With plate
- Vertifical plane at $y = 46 \,\mathrm{mm}$

2.12 Exp230307B

- With plate
- Vertifical plane at $y = 45.75 \,\mathrm{mm}$

3 Results and discussions

Figure 1 shows the results of someting.

Figure 1: 2D experimental results at 445 kHz. Top row, without AMM (see Sec. 2.1); bottom row, with AMM (see Sec. 2.2). Left column, emitting signal which was fed into the source; middle column, signal received by the hydrophone; right column, calibrated signal of the middle column. To calibrate, the values in the middle column are divided by those in the left column.

Appendix A TBD

References

Figure 2: (a) Calibrated acoustic power, approximated by a summation of the squared pressure along the line parallel to x axis, with and without AMM. (b) The ratio of the power with AMM to that without AMM

Figure 3: 2D pressure distribution at 445 kHz without (left) and with (right) the acoustic metamatrial (AMM). The region is located at 45 mm away from the transducer.

Figure 4: Sound power (left) without and (middle) with the AMM. (Right) Power transmission coefficient. The region is located at 45 mm away from the transducer.