

NCEAC.FORM.001-D

COURSE DESCRIPTION FORM: Al-2002 Artificial Intelligence (Al)

COURSE DESCRIPTION FORM

FAST School of Computing, National University of Computer **INSTITUTION** and Emerging Sciences, Karachi

PROGRAM TO BE **EVALUATED**

BS-CS- Spring 2023

Course Description	on									
Course Code	Al2002 / AL2002									
Course Title	Artificial Intelligence									
Credit Hours	3+1	+1								
Prerequisites by Course(s) and Topics										
Grading Policy	Absolute grading									
Policy about missed assessment items in the course	Retake of missed assessment items (other than midterm/ final exam) will not be held. For a missed midterm/ final exam, an exam re-take/ pre-take application along with necessary evidence are required to be submitted to the department secretary. The examination assessment and retake committee will decide the exam re-take/ pre-take cases.									
Course Plagiarism Policy		Plagiarism in project or midterm/ final exam may result in F grade in the course. Plagiarism in an assignment will result in zero marks in the whole assignments category.								
Assessment Instruments with	75% Theory 25% Practical Assessment Items									
Weights (homework,	Assessment Item	Number	Weight (%)							
quizzes, midterms,	Assignments	4	10							
final, programming	Midterm Exam	2	15 each							
assignments, lab work, etc.)	Project (Theory / Lab)	1	10							
wom, otoly	Final Exam	1	50							
Course Instructors										
Lab Instructors (if any)										
Course Coordinator	Dr. Muhammad Farrukh Sha	Dr. Muhammad Farrukh Shahid								
URL (if any)										
Current Catalog Description			knowledge representation, problem solving, and n completion, students should be able to develop							

	intelligent systems by assembling solutions to concrete computational problems; understand the role of knowledge representation, problem solving, and learning in intelligent-system engineering; and appreciate the role of problem solving, vision, and language in understanding human intelligence from a computational perspective.
Textbook (or Laboratory Manual for Laboratory Courses)	Stuart Russell and Peter Norvig, Artificial Intelligence. A Modern Approach, 3rd edition, Prentice Hall, Inc., 2010.
Reference Material	

NCEAC.FORM.001-D

Course Learning Outcomes

A. Course Learning Outcomes (CLOs)

CLO	Name	Domain	Taxonomy Level	PLO	Tools
01	To recognize the notions of rational behavior and intelligent agents.	Cognitive	C2 (Understanding)	2	Α, Μ
02	To identify and relate of methods of blind as well as informed search and ability to practically apply the corresponding techniques.	Cognitive	C2 (Understanding)	2	A, M, F
03	To demonstrate understanding and ability to implement the major concepts, approaches and research in evolutionary algorithms, constraint satisfaction problems, probabilistic reasoning, supervised and unsupervised learning and other Al areas.	Cognitive	C2 (Understanding) C3 (Applying)	3	A, M, F

Tool: A = Assignment, Q = Quiz, M = Midterm, F=Final

	roon: A = Assignment, Q = Quiz, M = Midterm, F=Final	
B. Program Learn	ing Outcomes	
For each attribu	te below, indicate whether this attribute is covered in this e cell blank if the enablement is little or non-existent.	cours
1. Computing Knowledge	Apply knowledge of mathematics, natural sciences, computing fundamentals, and a computing specialization to the solution of complex computing problems.	
2. Problem Analysis	Identify, formulate, research literature, and analyze complex computing problems, reaching substantiated conclusions using first principles of mathematics, natural sciences, and computing sciences.	>
3. Design/ Develop Solutions	Design solutions for complex computing problems and design systems, components, and processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.	*
4. Investigation & Experimentation	Conduct investigation of complex computing problems using research-based knowledge and research-based methods.	
5. Modern Tool Usage	Create, select, and apply appropriate techniques, resources and modern computing tools, including prediction and modeling for complex computing problems.	
6. Society Responsibility	Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal, and cultural issues relevant to context of complex computing problems.	
7. Environment and Sustainability	Understand and evaluate sustainability and impact of professional computing work in the solution of complex computing problems.	
8. Ethics	Apply ethical principles and commit to professional ethics and responsibilities and norms of computing practice.	

9. Individual and Teamwork	Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.	
10. Communication	Communicate effectively on complex computing activities with the computing community and with society at large.	
11. Project Management and Finance	Demonstrate knowledge and understanding of management principles and economic decision making and apply these to one's own work as a member or a team.	
12. Lifelong Learning	Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological changes.	

	C. Mapping of CLOs on PLOs (CLO: Course Learning Outcome, PLOs: Program Learning Outcomes)												
			PLOs										
		1	2	3	4	5	6	7	8	9	10	11	12
	1		>										
CLOs	2		>										
	3			>									

Topics covered in
the course with
number of
lectures on each
topic (Assume 15
weeks of instruction
and 1 hour lecture
duration)

Topics to be covered									
List of Topics	Week	No. of Weeks	Contact Hours	CLO(s)					
Introduction: Introduction to AI, Foundations of AI, History of AI, AI in industry, the concept of neurons and neural networks, Basic components of AI (1 Lecture)									
Identifying AI systems, Branches of AI, <i>(1 Lecture)</i>	1	1	3	1					
Intelligent Agents Agents and Environments, sensors, actuators, (1 Lecture)									
The Concept of Rationality, Performance measures, Rationality, Rationality V/S Omniscience (1 Lecture)									
The Nature of Environment, Performance, Environment, Actuators and Sensors (PEAS), Agent Types, Properties of environments, The structure of Agents (1 Lecture)	2	1	3	1,2,3					
Problem Representation: Introduction to Trees and Graphs (1 Lecture)									
Assignment no 1 Release (Start of Week 2)									
Problem Solving by Searching: Problem Solving agents, Components of Problem, formulating problems, Searching for Solutions (2 Lecture) Measuring problem-solving performance, Uniformed Searching, (1 Lecture) Assignment no 1 Submission	3	1	3	1,2,3					
(End of Week 2) Informed Heuristic search strategies		1	3	1,2,3					

(1 Lecture)						
Local searching	g:					
(1 Lecture)		4				
Constraint Satis (1 Lecture)	sfaction Problems					
Assignment no (Start of Week						
Backtracking se Local search co problems (2 Lectures)	onstraint satisfaction	5	1	3		
The structure o	f problems		•	3		
Assignment no	o 2 Submission 5)					
WEEK 6		MID -1 Exam				
Adversarial Search, Games, Optimal decisions in Games, The minimax algorithm, Alpha beta pruning (2 Lectures)		7				
	First Order Logic, st-Order Logic		1	3	2,3	
Assignment no						
Uncertainty in A Probability, Cor Bayes Rule, Pr	ting under uncertainty, AI, Fuzzy Logic Basic nditional Probability, obabilistic Reasoning, nowledge in an Uncertain	8	1	3	2,3	
Bayesian Networks,						
(1 Lecture)						

			T		
Dynamic Bayesian Network (1 Lecture) Introduction to Model-driven and Datadriven approach and Review on Probability and Linear Algebra, Performance evaluation [ROC, Confusion Matrix]. Supervised Learning methods: Linear Regression Logistic Regression (2 Lectures)		9	1	3	2,3
Non-parametric Methods, Decision Trees (1 Lectures)					
Single Layer F Layer Feed-Fo (1 Lecture)	ks, Units in NN, eed-forward and Multi- brward NN. I Learning methods	10	1	3	
Clustering (K-r	mean)				
Week 11	-,	MID -2	2 Exam		
Reinforcemer	ment, reward, state,	12			
environment.	t learning algorithms,		1	3	2,3
Assignment r (Start of Weel					
Reinforcemer Type of Reinfo Popular model decision proce	orcement learning is of RL (Q and Markov	13	1	3	2,3

	(3 Lectures)	I Outherstand						
	Assignment no 4 (End of Week 13)))						
	Recent trends in AI and applications of AI algorithms Trends, Case study of AI systems [Anomaly Detection], (3 Lectures)		14	1	3	1,2		
	Revision	Revision		1	3			
	Week 16			Final Exam				
	Review			1	3	1,2,3		
	Total			16	48			
Laboratory Projects/Experime nts Done in the Course	Lab content is me	entioned on the page	numbei	11 of this docu	ument.			
Programming Assignments Done in the Course	All the assignment	ts would include some	program	ming/dry runs o	f AI techniqu	es.		
Class Time Spent	Theory (%)	Problem Analysi (%)	s So	olution Design (%)		and Ethical sues (%)		
(in percentage)	50	25		20		5		
Oral and Written Communications		equired to submit at lea rmat. Students will also here necessary.						

NCEAC.FORM.001-D

Al Lab Learning Outcomes

A. LAB Course Learning Outcomes (CLOs)

On successful completion of this course lab students will have to know how of:

CLO	Name	Domain	Taxonomy Level	PLO	Tools
01	To identify and implement the methods of blind as well as informed search and ability to practically apply the corresponding techniques.	Cognitive,	C2 (Understanding) C3 (Applying)	3	A, M, F
02	To demonstrate understanding and ability to implement the major concepts, approaches and research in evolutionary algorithms, constraint satisfaction problems, probabilistic reasoning, supervised and unsupervised learning and other Al areas.	Cognitive, Psychomotor	C2 (Understanding) C3 (Applying)	3	A, M, F

Tool: A = Assignment, Q = Quiz, M = Midterm, F=Final

B. Program Learning Outcomes

For each attribute below, indicate whether this attribute is covered in this course or not. Leave the cell blank if the enablement is little or non-existent.

Knowledge	computing fundamentals, and a computing specialization to the solution of complex computing problems.
2. Problem	Identify, formulate, research literature, and analyze

Analysis complex computing problems, reaching substantiated conclusions using first principles of mathematics, natural sciences, and computing sciences.

3 Design/

Design solutions for complex computing problems

3. Design/
Develop
Develop
Solutions
Design solutions for complex computing problems and design systems, components, and processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.

4. Investigation & Conduct investigation of complex computing problems using research-based knowledge and research-based methods.

5. Modern Tool Create, select, and apply appropriate techniques, resources and modern computing tools, including prediction and modeling for complex computing problems.

6. Society Apply reasoning informed by contextual knowledge

Responsibility to assess societal, health, safety, legal, and cultural issues relevant to context of complex computing problems.

7. Environment Understand and evaluate sustainability and impact

and Sustainability of professional computing work in the solution of complex computing problems.

8. Ethics Apply ethical principles and commit to professional ethics and responsibilities and norms of computing practice.

9. Individual and Teamwork	Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.	
10. Communication	Communicate effectively on complex computing activities with the computing community and with society at large.	
11. Project Management and Finance	Demonstrate knowledge and understanding of management principles and economic decision making and apply these to one's own work as a member or a team.	
12. Lifelong Learning	Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological changes.	

C. Mapping of CLOs on PLOs (CLO: Course Learning Outcome, PLOs: Program Learning Outcomes)													
						PLOs							
		1	2	3	4	5	6	7	8	9	10	11	12
CLOs	1			~									
CL	2			•									

NCEAC.FORM.001-D

Lab/ Practical Component of the course

Weeks	Contents/Topics	Assessment Items (Case Study/ Exercise Assignment/ Quiz etc.)	
Week 01	Getting familiarization to the Python- It's famous IDE and, Introduction to the AI with Practical Examples		
	Types of Agents and Environments to Implement and Revision of		
Week-02	Python concepts and relevant Libraries	Task-1	
Week-03	Searching Problem Solving by Searching – Uninformed/Blind Search Algorithms Searching Problem Solving by Searching – Informed/Heuristic Based Search	Task 2	
Week-04	Demonstration on Raspberry <i>Pi</i> and <i>Arduino board</i> (HARDWARE) Project Announcement	Task 3	
Trock or	Constraint Satisfaction Problem	- GON C	
Week-05	Project Proposal Submission	Task 4,	
Week-06	Theory MID-1 Exam	1	
Week-07	Adversarial Search Evolutionary Search Algorithms	Task 5	
Week-08	LAB MID	TI O	
Week-09	Dynamic Bayesian Networks, HMM, KF	Task 6	
Week-10	Supervised Learning Theory MID 2 Even		
Week-11	Theory MID-2 Exam	Tools 7.0	
Week-12	Un-Supervised Learning	Task 7,8	
Week-13	Reinforcement Learning	Task 9	
Week-14	Project Evaluation / Case Study Lab Final Exam	Task 10	
Week-15	Lad Final Exam	Term Project	

Practical/ Programming Work/ Tools:

1) Python / Google Colab / Jupyter Notebook

Assessment Instruments with Weights (Homework, quizzes, midterms, final, programming assignments, lab work, etc.)

Assessment Item	Number	Weight (%)
Project	1	10
Lab Tasks	10	20

NCEAC.FORM.001-D

Lab Mid Term	1	20
Final Exam	1	50

Grading Policy: Absolute