BEST AVAILABLE COPY

(12) UK Patent Application (19) GB

(11) 2 250 227₍₁₃₎A

(43) Date of A publication 03.06.1992

(21) Application No 9021833.0

(22) Date of filing 08.10.1990

(71) Applicant Formflo Limited

(Incorporated in the United Kingdom)

Lansdown Industrial Estate, Gloucester Road, Cheltenham, GL51 8PW, United Kingdom

(72) Inventor Christopher John Cole

(74) Agent and/or Address for Service Lloyd Wise, Tregear & Co Norman House, 105-109 Strand, London, WC2R 0AE, United Kingdom

(51) INT CL5 F16H 55/06, B21B 45/00, B21H 5/02

(52) UK CL (Edition K) B3M MN M15B2C M19A M3D M5 M8 F2Q Q7H4C Q7H5D U1S S2015

(56) Documents cited GB 1125952 A

(58) Field of search UK CL (Edition K) B3M MN, F2Q INT CL5 B21B, B21H, F16H

(54) Surface hardening gear wheels

(57) A gear wheel 2 is formed from a pressed and sintered powder metal blank by surface hardening the tooth, root and flank regions to establish densification in the range of 90 to 100 per cent to a depth of at least 380 microns.

The surface hardening is performed by a single or twin die rolling machine in which the gear is acted on by dies 8. The gear may be a helical or spur gear. Fig.2

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

Fig.2

GEAR WHEELS ROLLED FROM POWDER METAL BLANKS

This invention relates to a method of producing gear wheels from powder metal blanks. The invention is 5 particularly concerned with achieving a degree of surface hardness which enables such gear wheels to be sufficiently wear resistant for use in heavy duty applications. Particular applications contemplated are for power transmission such as in vehicle gear boxes 10 where high loadings and speeds must be accommodated.

Gears formed from sintered powder metal blanks are well known. British Patent Specification No. 1125952 discloses a method of producing gear wheels from powder metal blanks in which, after pressing the powder and sintering, the gear wheel is rolled to properly size the teeth and teeth root diameters. The manufacture of both spur and helical gears is contemplated.

15

20

30

A primary problem with gear wheels formed from powder metal blanks is that when compared with gears machined from bar stock, castings or forgings, powder metal gear wheels have reduced bending fatigue strength in the tooth root region, and low wear resistance on the tooth flanks due to the residual porosity in the microstructure. For these reasons, while powder metal 25 gear wheels can be used in low stress applications such as oil pumps, they were not suitable for power transmission. As power transmission applications use predominantly helical gears, there has been very little use of helical gears made from powder metal blanks in highly loaded transmission applications.

We have found that substantial improvements in the bending strength and wear resistance of gears in powder metal gear wheels can be achieved if sufficient densification of the gear surface, and to sufficient 35 depths, is established. According to the invention, a gear wheel formed from a pressed and sintered powder metal blank is surface hardened by rolling in the tooth, root and flank regions to establish densification in the

range of 90 to 100 percent to a depth of at least 380 microns. The core density; ie below the densified regions, is usually substantially uniform, typically at around 90 percent. Normally the depth of densification is in the range 380 to 500 microns. We have found that little additional benefit is achieved if the depth of densification exceeds 1000 microns. The density at the surface is substantially 100%, and remains at a density no less than 90% at least to the minimum depth specified. 10 The rate at which the density reduces with respect to depth is normally at least linear; ie, the minimum density in the hardened regions is directly inversely proportional to the depth. Usually, the density at least in regions closer to the surface will be significantly greater than this minimum value. Typically, the rate of density reduction will be very low at the surface and increase uniformly towards the maximum depth of the hardened regions. Thus the density might vary in relation to the square or a higher power of the depth.

The metal powders used in gears according to the invention will be selected according to the eventual application, and can include low alloy steel grades similar to those used in the manufacture of high performance gears from other forms of metal. The powders can be either admixed elemental iron plus alloying additions, or fully pre-alloyed powders. Typical fully pre-alloyed powders would be of a composition such as AISI 4600 and its derivatives. Admixed powders have the advantage of being more compressible, enabling higher densities to be reached at the compaction stage. In addition, the use of admixed powders enables compositions to be tailored to specific applications. For example, elemental powders may be blended together with a lubricant to produce, on sintering, low alloy gears of compositions similar to SAE 4100, SAE 4600, and SAE 8600 35 Elemental powder additions to the base iron can grades. include Carbon, Chromium, Molybdenum, Manganese, Nickel, Copper, and Vanadium. Again, quantities of the additives will vary with different applications, but will normally be no more than 5 percent by weight in each case.

A preferred admixed powder composition in gears according to the invention has the following composition 5 by weight:

0.2% Carbon 0.5% Chromium 0.5% Manganese 0.5% Molybdenum

the balance being iron and unavoidable impuritives. 10

It will be recognised that the use of Chromium, Molybdenum and Manganese in the formation of a sintered powder metal blank requires a sintering process which can minimise their oxidation. A preferred process used in this invention is to sinter at high temperature up to 1350°C in a very dry Hydrogen/Nitrogen atmosphere, for example at a dew point of -40°C. This has the additional benefit of further improving mechanical properties and reducing oxygen levels to approximately 200ppm.

The alloying addition powders used in gears according to the invention will preferably have a particle size in the range 2 to 10 microns. Generally, particle sizes in this range can be achieved by fine grinding of ferroalloys in an appropriate inert 25 atmosphere. Prevention of oxidation of readily oxidisable alloying powders at the grinding stage can be critical to the achievement of the degrees of densification referred to above.

Densification of the operative surface layer of a powder metal gear as specified above may be accomplished in a number of rolling techniques. These may employ either a single die or twin die rolling machine, and may include separate and/or simultaneous root and flank rolling. In each case, the or each rolling die is 35 normally in the form of a mating gear made from hardened In use, the die is engaged with the sintered tool steel. gear blank, and as the two are rotated their axes are brought together to compact, and roll the selected areas

15

20

of the blank surface. When a predetermined axle spacing has been reached, rotation only will usually continue for a given number of gear revolutions, or dwell time, and then the two parts will be withdrawn from one another. The predetermined axle spacing will of course depend on the size of the gear and die as well as the material of the blank and the desired densification. Typically, the respective rolled surface will be compacted by around 120 microns.

- Some rolling techniques embodying the invention will now be described by way of example, and with reference to the accompanying schematic drawings wherein:
 - Figure 1 is a partially broken side elevation of a single die rolling machine;
- 15 Figure 2 is a partially broken side elevation of a twin die rolling machine;
 - and Figures 3 to 5 are detailed views showing different die geometries used for different rolling functions.
- In the rolling machine of Figure 1 the powder metal blank 2 is showed mounted on a fixed axle 4, itself supported on a frame 6. A die 8 is rotatably mounted on an axle 10 supported on a carriage 12 which is slidably mounted on the frame 6. The carriage 12 is movable on
- the frame 6 towards and away from the axle 4 to bring the die 8 into and out of engagement with the alloy metal blank 2. Such movement is imparted to the carriage 12 by an mechanism, details of which are omitted. The carriage 12 is constrained to move relative
- on the die 8 above the axis 10. The drive mechanism may comprise a simple motor coupled to an
- appropriate wheel for engaging the teeth of the die. For reasons which will be explained below, the drive mechanism should be operable to rotate the die 8 in both senses.

In the conduct of the process according to the invention according to the machine of Figure 1, the powder metal blank is mounted on the axle 4, and the appropriate die mounted on the axle 10, and suitably 5 coupled to the drive mechanism. The carriage 12 is advanced to engage the teeth of the die to the teeth of the blank, when the drive mechanism is actuated to rotate both the die and the blank in mesh with one another. the die and blank rotate, the carriage continues to 10 advance and the teeth of the die 8 roll and densify the respective surfaces of the blank 2 with which they are in contact. The carriage advances up to a full depth position defined by the stop 14. Rolling continues at this depth for a predetermined period of time or number 15 of revolutions of the blank, and the carriage is then withdrawn still with the die and blank rotating.

During the rolling processes above described, the rotation of the die and blank may be reversed on a number of occasions. Intermittent reversal throughout the process may be appropriate, and the frequency of such reversals can be set by numbers of rotations of the die or the blank.

The machine of Figure 2 operates in a substantially similar manner to that of Figure 1, and corresponding parts are similarly identified. Essentially, the machine of Figure 2 has a pair of dies 8 operating simultaneously of the same blank 2. Advance and retraction of the carriages 12 is synchronised by means of a simple lever system 16. In other respects the same criteria may be adopted as are described above with reference to Figure 1. Additionally of course, the rotation of the dies 8 must be synchronised. Although it is possible to use only a single drive mechanism coupled to one of the dies, it is normally preferred to use two, synchronised electronically.

As noted above, in rolling a powder metal gear blank in accordance with the invention, a number of different types of rolling can be achieved depending upon the profile of the blank and die or dies, and the type of rolling required. Primarily, it is the roots and the flanks of the gear teeth that must be rolled to obtain the surface densification required to achieve the performance improvements discussed above. In Figures 3 to 5, the same blank profile is shown. A die having different teeth profiles are used to effect rolling on different portions of the surfaces of the blank teeth.

In Figure 3, flank rolling only is illustrated. As
the die and blank rotate together, the flanks of the die
teeth 18 roll and wipe against the flanks of the blank
teeth 20 as the carriage or carriages 12 advance towards
the blank axis. As a consequence, the material at the
surface of the flanks of the blank teeth 20 is compacted
to form the densified layer 22. It will be noted that at
no time does the tip of a die tooth 18 engage the root
of the blank teeth 20. This is ensured by the stop 14.
The profiles of the die teeth 18 and the blank teeth 20
are selected to ensure that no such contact is made
while nevertheless achieving the desired compaction in
the regions 22.

In Figure 4, the profile of the die teeth is altered such that rolling is effected simultaneously at the root and on the flank of the blank teeth. This results in a continuous compacted region 24 which extends between the tips of adjacent blank teeth as shown.

In Figure 5, another alternative profile for the die teeth is chosen to achieve root rolling only. In this case, the compacted region 26 is much more restricted than in either of the variants of Figures 3 and 4.

It will be appreciated from the above description of Figures 3 to 5 that different areas of compaction can be established on and between the teeth of a powder metal blank using fairly straightforward rolling techniques and selecting appropriate profiles for the die teeth. The depth of rolling can also be adjusted by means of the stop mechanism 14, and this too will be a controlling factor in the process. Further, in accordance with the

30

35

invention different die teeth profiles can be used either separately or simultaneously on the same blank to achieve the required densification and in this context it should be noted that different degrees of densification of the blank may be desired in different regions depending upon the eventual use of the manufactured gear.

Densification at the root is desirable to enhance the bending strength; ie, prevent the teeth from breaking away from the body of the gear. Densification along the flank is desirable for wear resistance.

The above discussion refers essentially to the formation of spur gears from powder metal blanks.

However, it will readily be recognised that exactly the same techniques and variations can be adopted in the manufacture of helical gears. The present invention is equally applicable to both.

CLAIMS

- 1. A gear wheel formed from a pressed and sintered powder metal blank CHARACTERISED IN THAT the wheel is surface hardened in the tooth, root and flank regions to establish densification in the range of 90 to 100 per cent to a depth of at least 380 microns.
- 2. A gear wheel according to Claim 1 wherein the density at the hardened surfaces of the wheel is substantially 100 per cent.
- 3. A gear wheel according to Claim 1 or Claim 2 wherein the rate at which the metal density reduces with respect to depth is at least linear.
- 4. A gear wheel according to Claim 3 wherein the rate of density reduction is relatively low at the surface, and increases uniformly towards the maximum depth of the hardened regions.
 - 5. A gear wheel according to any preceding Claim wherein said metal powder comprises an admixture of elemental iron and at least one alloying addition.
 - 6. A gear wheel according to Claim 5 wherein the alloying additions comprise Carbon, Chromium, Manganese, and Molybdenum.
- 7. A gear wheel according to any preceding Claim
 25 wherein the particle size of said metal powder is in the range 2 to 10 microns.
 - 8. A method of manufacturing a gear wheel CHARACTERISED BY rolling the tooth, root and flank regions of a pressed and sintered powder metal blank to establish densification in the range of 90 to 100 per cent to a depth of at least 380 microns.
 - 9. A method according to Claim 8 wherein said regions are compacted by substantially 120 microns in the rolling process.
- 35 10. A method according to Claim 8 or Claim 9 wherein the blank has been sintered in a dry Hydrogen/Nitrogen atmosphere.

a

Patents Act 1977 Examiner's report to the Comptroller under Section 17 (The Search Report)

Application number

9021833.0

Relevant Technica	l field	ds		Search Examiner
(i) UK CI (Edition	K)	B3M (MN), F2Q	
(ii) Int CI (Edition	5)	B21B, B21H, F16H	V L C PHILLIPS
Databases (see ove				Date of Search
				10 FEBRUARY 1992
(ii)				
•				

Documents considered relevant following a search in respect of claims 1-10

Category (see over)	Identity of document and relevant passages	Relevant to claim(s)
A	GB 1125952 A B.S.A. WHOLE DOCUMENT	(
		•

	10	
Category	Identity of document and relevant passages	Relevant

		*								
								•		
							-			
				·						
	į							•		
	·						•			İ
	•									
							-			
			1, .					•		
			•			•				
· · · · · · · · · · · · · · · · · · ·		N								
'										
			* .	. :						
		•								
	•									
·	•			•		•		•,	,	
								*		
					*					
				•						
		•								
									•	
		**								1
Categories of doc			<u> </u>							<u> </u>

Y: Document indicating lack of inventive step if combined with one or more other documents of the same category.

A: Document indicating technological background and/or state of the art.

present application.

E: Patent document published on or after, but with priority date earlier than, the filing date of the present application.

to claim(s)

&: Member of the same patent family, corresponding document.

Databases: The UK Patent Office database comprises classified collections of GB, EP, WO and US patent specifications as outlined periodically in the Official Journal (Patents). The on-line databases considered for search are also listed periodically in the Official Journal (Patents).

Published 1992 at The Patent Office. Concept House, Cardiff Road, Newport, Gwent NP9 1RH. Further copies may be obtained from Sales Branch, Unit 6, Nine Mile Point, Cwmfelinfach, Cross Keys, Newport, NP1 7HZ, Printed by Multiplex techniques ltd, St Mary Cray, Kent.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.