Math 523H-Homework 10

1. Assume that $f:(a,b)\to \mathbf{R}$ is twice continuously differentiable on (a,b), that is f'(x) and f''(x) exists and are continuous for all $x\in(a,b)$. Show that for $x\in(a,b)$ we have

$$\lim_{h \to 0} \frac{f(x + \frac{h}{2}) - f(x - \frac{h}{2})}{h} = f'(x),$$

and

$$\lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} = f''(x).$$

Hint: Use the mean value theorem (Lagrange Theorem).

- 2. Show that if f is differentiable on (a, b) and f'(x) is bounded on (a, b) then f is bounded on (a, b).
- 3. Let $f:[a,b] \to \mathbb{R}$ be continuous and n times differentiable on (a,b). Show that if f(x) has n+1 zeros in [a,b] then there exists $\xi \in (a,b)$ such that $f^{(n)}(\xi) = 0$. Hint: Apply Rolle's theorem several times.
- 4. Show that the following functions are differentiable and compute their derivatives.

(a)
$$f(x) = \int_0^{\sin(x)} \sqrt{1+t^2} dt$$
, (b) $g(x) = \int_{x^2}^x e^{-t^2} dt$.

5. (Logarithms and exponentials). Let ln(x) be the function defined for x > 0 by

$$\ln(x) = \int_{1}^{x} \frac{1}{t} dt$$

Invoking appropriate theorems from class (you will need quite a few of them) show the following

- (a) Show that ln(x) is a strictly increasing differentiable function with derivative ln'(x) = 1/x.
- (b) Show that $\ln(ab) = \ln(a) + \ln(b)$, $\ln(1/a) = -\ln(a)$ and $\ln(a^r) = r\ln(a)$ (r a rational number).
- (c) Show that $\lim_{x\to\infty} \ln(x) = +\infty$ and $\lim_{x\to 0} \ln(x) = -\infty$ so that $\ln(x)$ has range $(-\infty, \infty)$.
- (d) Show that the inverse function $g = \ln^{-1}$ of \ln is a strictly increasing differentiable function with domain $(-\infty, \infty)$ and we have g'(y) = g(y).
- (e) Show that $g(y_1 + y_2) = g(y_1)g(y_2)$, g(-y) = 1/g(y) and $g(ry) = g(y)^r$ for any rational number.

- (f) Show that there is a unique number e > 0 such that f(e) = 1 and that $g(r) = e^r$ for any rational numbers.
- 6. Compute the following limits
 - (a) $\lim_{x\to 0} (1+2x)^{1/x}$
 - (b) $\lim_{x\to 0} \frac{e^{2x} \cos(x)}{x}$
 - (c) $\lim_{x\to 0} \left[\frac{1}{\sin(x)} \frac{1}{x} \right]$
 - (d) $\lim_{x\to 0} \cos(x)^{1/x^2}$
 - (e) $\lim_{x\to 0} \frac{1-\cos(2x)-2x^2}{x^4}$.