

Fakultät für Elektrotechnik, Prof. Dr. Götzmann

Klausur im Fach SYT

Semester	3 UB, 3 UBE, 3 EB, 3 EBE, 3 ELB
Prüfer	GÖT
Datum	12.7.2017
Zeit	15:45 – 17:45 Uhr

Name								
Vorname								
Matrikelnummer								
Studiengang (bitte ankreuzen)	EB	J	JВ	EBE	UBE	ELB	Sonstiges	

Allgemeines:

- 1. Bitte unbedingt nur <u>dokumentenechtes Schreibzeug</u> (Kugelschreiber, Füllfederhalter) benutzen. Bitte verwenden Sie keine rote Farbe.
- 2. Auf einer Seite jeweils nur eine Aufgabe bearbeiten.
- 3. <u>Zusatzblätter</u> mit Matrikelnummer oder Namen und der laufenden Seitenzahl (Vorder- und Rückseite nummerieren!) versehen.
- 4. Handys müssen ausgeschaltet offen sichtbar auf dem Tisch abgelegt werden.
- 5. Bei Teilaufgaben, die ein Rechenergebnis verlangen, genügt nicht die Angabe dieses Rechenergebnisses. Es muss darüber hinaus klar erkennbar sein, aus welchen Überlegungen und/oder Rechenschritten das angegebene Ergebnis resultiert.

Es sind keine Hilfsmittel erlaubt mit Ausnahme von:

- 1. Zeichenmaterial (Lineal, Geodreieck, Zirkel), Taschenrechner ohne Textspeicherfunktion
- 2. Mathematische Formelsammlung
- 3. Selbstgeschriebene Formelsammlung ohne Übungsbeispiele auf max. 1 DIN-A4-Seite
- 4. Formelsammlung incl. der Korrespondenztabellen wird mit der Klausur verteilt

Die Benutzung <u>nicht erlaubter Hilfsmittel</u> führt zum <u>sofortigen</u>

<u>Ausschluss</u> aus der Prüfung und hat automatisch das <u>Nichtbestehen</u>

zur Folge!

Matrikelnummer: Seite: 2 / 11

1. Aufg.:	Verständnisfragen	10
a)	Wann liefert die Formel $V(s) = G(s)U(s)$ den richtigen Verlauf der Ausgangsgröße?	2
b)	Sie kennen die DGL eines LZI-Systems. Wie können Sie den Frequenzgang des Systems theoretisch berechnen?	2
c)	Wie können Sie den Frequenzgang eines stabilen LZI-Systems experimentell ermitteln?	2
d)	Beweisen Sie mit den Mitteln der Laplace-Transformation, das h(t) das Integral von g(t) ist	2
e)	Was unterscheidet die gewöhnliche Differenziation von der verallgemeinerten Differenziation?	2

Matrikelnummer: Seite: 3 / 11

Matrikelnummer: Seite: 4 / 11

2. Aufg.:	Gegeben ist die nebenstehende Zeitfunktion $f(t)$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$	13				
a)	Bestimmen Sie $f(t)$!	4				
b)	Handelt es sich bei $f(t)$ um ein Energiesignal? (Begründung erforderlich)					
c)	Bestimmen Sie die Laplace-Transformierte $F(s) = L\{f(t)\}$!					
d)	Bestimmen Sie die Laplace-Transformierte der um 3 nach rechts verschobenen Zeitfunktion $f(t-3)$!	4				

Matrikelnummer: Seite: 5 / 11

Matrikelnummer: Seite: 6 / 11

3. Aufg.:	Gegeben ist die nebenstehende Schaltung: $ \begin{array}{c c} U_{C1} & i_1 \\ \hline C_1 & R \\ \hline \end{array} $	7
a)	Bestimmen Sie die Übertragungsfunktion $G(s) = \frac{I_1(s)}{U(s)}!$	3
b)	Bestimmen Sie die zugehörige DGL!	2
c)	Bestimmen Sie g(t)!	2

Matrikelnummer: Seite: 7 / 11

Matrikelnummer: Seite: 8 / 11

4. Aufg.:		Gegeben ist die Übertragungsfunktion $G(s) = \frac{10}{(s+0.5)(s+4)}$			
a	ı)	Ist das System stabil (Begründung erforderlich)!	2		
b)	Berechnen Sie die Einschwingzeit von $h(t)$!	2		
С	c)	Mit welchem Faktor wird für großes t die Amplitude der Eingangsschwingung $u(t) = \sin(10t)$ verstärkt!	4		
d	1)	Der Eingang ist nun $u(t) = (1 - e^{-t})\sigma(t)$. Berechnen Sie $U(s)$!	2		
e	e)	Bestimmen Sie $v(t)$ für den Eingang aus d)! (Anfangswerte sind 0)	6		

Matrikelnummer: Seite: 9 / 11

Ein diskretes System hat die Differenzengleichung: **14** 5. Aufg.: $v_k - 0$, $6v_{k-1} + 0$, $08v_{k-2} = u_{k-1} - 0$, $1u_{k-3}$ Geben Sie die Ordnung n und die Diskrete Totzeit d_T des Systems an! 2 a) Bestimmen Sie die Übertragungsfunktion G(z) des Systems! b) 2 Ist das System stabil? Begründen Sie Ihre Antwort! 2 c) d) Im Schritt k=0 wird der Eingang $\sigma[k]$ aufgeschaltet. Die Vergangenheitswerte sind 4 $u_{-1} = u_{-2} = u_{-3} = 0$ und $v_{-1} = 0$, $v_{-2} = -1$ Berechnen Sie den Ausgang V(z)! Berechnen Sie mit dem Ergebnis aus d) den Ausgang v[k]!4 e)

Matrikelnummer: Seite: 11 / 11