Verifying an Arbiter Circuit

Chao Yan & Mark Greenstreet

University of British Columbia

Outline

- Circuit-Level Verification
 - Why verify at the circuit level?
 - Why verify an arbiter?
 - A specification for an arbiter.
- Coho
 - Overview
 - Enhancements
- Verifying the Arbiter Circuit
 - Arbiter Circuit
 - Properties Verified
- Conclusion and Future Work

Circuit-Level Verification

- What is circuit-level verification?
 - Analog circuit verification: verify stability, gain, noise-figure, etc.
 - Mixed-signal circuit verification: verify interactions between analog and digital circuits.
 - Digital circuit verification: Show that a circuit in an analog-model implements the desired discrete behavior.
- Properties that we verify:
 - Show correct operation for all valid input waveforms.
 - Use real, industry standard circuit and device models.
- Properties that we would like to verify:
 - Show correct operation for all process parameters.
 - Include crosstalk, power supply noise, etc. in our circuit models.

Why do Circuit-Level Verification?

- Digital design has become relatively low error:
 - Systematic design flows.
 - Lots of simulation.
 - Equivalence checking.
 - Model checking.
- Circuit-level bugs remain a problem:
 - SPICE is still the main validation tool, and it doesn't scale.
 - Deep-submicron circuit effects undermine digital abstractions.
 - Hard/impossible to simulate bugs.

Related Work

- Kurshan & McMillan (IEEE TCAD 1991) verified an nMOS arbiter.
 - Assumed inputs make instantaneous transitions.
 - This assumption greatly reduces the size of the reachable space.
- Many have formulated proof with various similar assumptions that no perfect arbiters can be built:
 - Hurtado 1975, Marino 1981, Chapiro 1984, Mendler & Stroup 1993.
- We are aware of no previous verification of an arbiter or any other multi-input, digital circuit with state that
 - uses a realistic model for the inputs applied;
 - uses realistic device models.
- We present such a verification in the current work.

Arbiters

Specification

- Initially: $\neg r_1 \wedge \neg r_2 \wedge \neg g_1 \wedge \neg g_2$.
- Assume: $\Box r_i U g_i$, $\Box \neg r_i U \neg g_i$.
- Guarantee:
 - Handshake: $\Box \neg g_i U r_i$, $\Box g_i U r_i$.
 - Mutual Exclusion: $\Box \neg (g_1 \land g_2)$.
 - Liveness: $\Box(r_1 \oplus r_2) \Rightarrow \Diamond(g_1 \oplus g_2) \vee (r_1 \wedge r_2), \Box \neg r_i \Rightarrow \Diamond \neg g_i$. Note: because metastability is unavoidable, no arbiter can guarantee $\Box(r_1 \wedge r_2) \Rightarrow \Diamond(g_1 \vee g_2)$.

Why Verify an Arbiter?

- Exercise in modeling concurrent events from the environment.
- Requires handling a non-trivial circuit behavior: metastability.

Specifying an Arbiter

- Specifying signal behavior Brockett's annulus.
- Specifying an arbiter.

Specifying an Arbiter

- Specifying signal behavior Brockett's annulus:
 - Region 1 represents a logical low signal. The signal may wander in a small interval.
 - Region 2 represents a monotonically rising signal.
 - Region 3 represents a logical high signal.
 - Region 4 represents a monotonically falling signal.
 - Brockett's annulus allows entire families of signals to be specified.

Specifying an Arbiter

- Specifying signal behavior Brockett's annulus...
- Specifying an arbiter.
 - Handshake:

Discrete: $\Box \neg g_i \quad U \ r_i \quad \land \quad \Box g_i \quad U \ r_i$ Continuous: $\Box g_i \in B_1 \ U \ r_i \in B_{23}) \quad \land \quad \Box g_i \in B_3 \ U \ r_i \in (B_{14})$

Mutual Exclusion:

 $Discrete: \Box \neg (g_1 \land g_2)$

Continuous: $\Box \neg ((g_1 \in B_{23}) \land (g_2 \in B_{23}))$

Liveness:

 $\land \quad \Box(r_1 \oplus r_2) \quad \Rightarrow \Diamond(g_1 \oplus g_2) \lor (r_1 \land r_2)$

Continuous: $\Box (r_i \in B_{14}) \Rightarrow \Diamond (g_i \in B_{14})$

 $\land \quad \Box (r_1 \in B_{23}) \oplus (r_2 \in B_{23}) \quad \Rightarrow \quad$

 $\Diamond \qquad (g_1 \in B_{23}) \oplus (g_2 \in B_{23})$

 $\lor \quad (r_1 \in B_{23}) \land (r_2 \in B_{23})$

Verification by Reachability

- For all input (i.e. request) waveforms that satisfy:
 - Handshake protocol
 - Brockett annulus specification
- Find an invariant set that contains all trajectories, and
- Verify that everywhere in this set, the outputs (i.e. grants) satisfy:
 - Handshake protocol
 - Mutual exclusion
 - Liveness (for uncontested requests)
 - Brockett annulus specification

Coho: Reachability Using Projections

- Coho represents the reachable space by its projection onto two dimensional subspaces.
 - Provides a tractable representation.
 - Exploits extensive algorithms for 2D computational geometry.
- Coho models circuits using linear differential inclusions.
 - Inclusions computed for neighborhood of each projectagon.
 - Each inclusion of the form: $\dot{v} = Av + b \pm u$, where u is an error term.
- All approximations overapproximate the reachable space:
 - Coho is sound for verifying safety properties.
 - False negatives are possible.
 - Not useful for verifying unbounded liveness properties, but that doesn't seem to be an issue for circuit-level verification.

from: http://pond.dnr.cornell.edu/

nyfish/Salmonidae/coho_salmon.jpg

Projectagons

- Coho projects high dimensional polyhedron onto two-dimensional subspaces.
- A projectagon is the intersection of a collection of prisms, back-projected from the projection polygons.
- Coho computes reachable sets by integrating over a series of timesteps:

- A bounding projectagon is obtained by moving each face forward in time.
- Projectagon faces correspond to projection polygon edges; thus, Coho works on one edge at a time.

Circuit Model

- Transistors models as voltage controlled current sources.
- The I_{ds} function is obtained by tabulated data from HSPICE simulations.

- At each time step, and for each projection polygon edge, Coho:
 - computes a bounding box for node voltages of each transistor.
 - computes a model of the form $i_1 = A_1v + b_1 \pm u_1$ where u_1 is an error bound. Likewise for i_2 .
 - bounds $i_c = (A_2 + A_2)v + (b_1 + b_2) \pm (u_1 + u_2)$. This produces a worst-case error bound.
- Approximate the ODEs by linear differential inclusions:

Arbiter Circuit

Gate-level schematic of the arbiter circuit.

Transistor-level schematic of the arbiter circuit.

Metastable Operation

- Metastable operation leads to a highly non-convex reachable set.
- Coho can represent non-convex objects because projection polygons can be arbitrary, simple polygons.
- But, we had to improve some of Coho's approximations to get acceptable bounds on the reachable set.

Coho Improvements

- Polygon Simplification.
- Interval Closure.

Coho Improvements

- Polygon Simplification:
 - Simplify convex hull and full polygon separately.
 - This allows more detailed projection polygons and slightly faster computation.

Coho Improvements

- Interval Closure (new):
 - Convex hull may badly overapproximate a projection polygon.
 - Starting from an edge of a projection polygon, compute the "interval closure" of all variable:
 - Use bounds from edge to restrict other polygons and find bounds for other variables.
 - Continue until no further improvement realised.
 - Example:
 - · Edge for x y polygon gives interval bounds for x and y.
 - · Using y bounds with y z polygon provides an interval bound for z.
 - · Using z bounds with w-z polygon provides an interval bound for w.
 - · Using x bounds with w-x polygon provides another interval bound for w use the intersection.

٠ ...

The paper includes a proof of soundness for the algorithm.

- Modeling concurrent input transitions.
- Use Brocket annulus to represent request signals.
- Divide the verfication into three phases.

- Modeling concurrent input transitions:
 - Rising transistions of the two request signals can occur concurrently.
 - Requests can start at different times and have different rise-time.
 - Verification must account for all transitions allowed by handshake protocol and the Brockett annuli.
- Use Brocket annulus to represent request signals.
- Divide the verfication into three phases.

- Modeling concurrent input transitions...
- Use Brocket annulus to represent request signals:
 - Sub-divide the annulus to reduce over approximation
 - B_2 (request rising) and B_4 (falling request) are divided into seven regions.
 - Subdivision needed, but the degree of subdivision isn't critical.
 - Reduce the number of reachability problems by exploiting the symmetry of arbiter:
 - If both requests are asserted, only consider states with $r_1 > r_2$.
 - Note that this can still lead to a grant of client 2!
- Divide the verfication into three phases.

- Modeling concurrent input transitions...
- Use Brocket annulus to represent request signals...
- Divide the verfication into three phases:
 - Asserting requests: $(r_1, r_2 \in B_1) \to (r_1 \in B_3) \land (r_2 \in B_{123})$
 - Falling phase, uncontested request: $(r_1 \in B_3) \land (r_2 \in B_1) \rightarrow (r_1 \in B_1) \land (r_2 \in B_{123})$
 - Falling phase, contested requests: $(r_1, r_2 \in B3) \rightarrow (r_1, r_2 \in B1)$
 - Use assume-guarantee reasoning
 - For each phase, assume an initial hyperrectangle, guarantee a final hyperrectangle.
 - Inclusion of final ⊂ initial across all phases establishes invariant set.—p.15/18

- Safety Properties
 - Mutual Exclusion
 - Handshake Protocol
 - Brockett Annuli
- Liveness Properties

Mutual Exclusion

- Safety Properties
 - Mutual Exclusion
 - Handshake Protocol
 - Brockett Annuli
- Liveness Properties

Handshake

- Safety Properties
 - Mutual Exclusion
 - Handshake Protocol
 - Brockett Annuli
- Liveness Properties

- Safety Properties
 - Mutual Exclusion
 - Handshake Protocol
 - Brockett Annuli

Handshake

- Liveness Properties:
 - Initialization: stable within 200ps
 - Uncontested Requests: grant the client within 350ps
 - Contested Requests: metastability within hyper-rectangle

$$r_1 \in B_3$$
 $x_1 \in [0.55, 1.3]$ $g_1 \in B_1$
 $r_2 \in B_3$ $x_2 \in [0.55, 1.3]$ $g_2 \in B_1$

- Reset: withdraw grants within 270ps
- Fairness: grant the other client within 420ps

But we're not completely satisfied

- Internal nodes u_1 and u_2 have much smaller capacitances
- Produce a stiff system
 - Large time steps results in large linearization over approximation
 - Small time steps lead to large number of projection operations
- Ignore the capacitance
 - Create a model for the nMOS tetrode
 - Use similar method to compute linear differential inclusion

Conclusion and Future Work

Conclusion

- Verify safety and liveness properties of an arbiter circuit.
- Improved Coho to verify more complicated circuits.
- The metastability filter transforms Brocket annuli.

Future Work

- Solve the stiffness problem.
- Verify more properties and more circuits.
- Formally describes the specification and translate it automatically.
- Combine simulation and formal verification.

Conclusion and Future Work

- Conclusion
 - Verify safety and liveness properties of an arbiter circuit.
 - Improved Coho to verify more complicated circuits.
 - The metastability filter transforms Brocket annuli.
- Future Work
 - Solve the stiffness problem.
 - Verify more properties and more circuits.
 - Formally describes the specification and translate it automatically.
 - Combine simulation and formal verification.
- Questions?

Thank You!