CS711: Introduction to Game Theory and Mechanism Design

Teacher: Swaprava Nath

Elimination of Dominated Strategies, Two Player Zero Sum Games

Recap

- dominance cannot explain all reasonable outcomes
- pure strategy Nash equilibrium unilateral deviation, stability
- max-min strategy another notion of rationality risk averse players security
- What happens to stability and security when certain strategies are eliminated (today)
- Situations where stability and security coincide (if time permits)

Iterated Elimination of Dominated Strategies

Discussed this as a method to find equilibrium

1 \2	L	C	R
T	1,2	2,3	0,3
M	2,2	2,1	3,2
В	2,1	0,0	1,0

- Order: T, R, B, C, Outcome: ML, Payoff: 2,2
- Order: B, L, C, T, Outcome: MR, Payoff: 3,2
- ..

Elimination of Dominated Strategies (contd.)

- Question: does it change the set of equilibria/maxmin value?
- On maxmin value it is not affected for the player whose dominated strategy has been removed

Theorem

Consider an NFG $G=\langle N,(S_i)_{i\in N},(u_i)_{i\in N}\rangle$, let $\widehat{s}_j\in S_j$ be a dominated strategy. Let \widehat{G} be the residual game after removing the strategy \widehat{s}_j . The maxmin value of player j in \widehat{G} is equal to her maxmin value in G.

- intuition: since \widehat{s}_j is dominated, the utilities are no smaller in \widehat{G} than G for j at every s_{-j} so the max part is unaffected
- non-triviality: to show that the conclusion holds even after taking the min over s_{-j} at the strategies of j
- formal proof as follows

Proof

ullet maxmin value of j in G

$$\underline{v}_j = \max_{s_j \in S_j} \min_{s_{-j} \in S_{-j}} u_j(s_j, s_{-j})$$

ullet maxmin value of j in \widehat{G}

$$\widehat{\underline{v}}_j = \max_{s_j \in S_j \setminus \{\widehat{s}_j\}} \min_{s_{-j} \in S_{-j}} u_j(s_j, s_{-j})$$

• let t_j dominate \widehat{s}_j , clearly, $t_j \in S_j \setminus \{\widehat{s}_j\}$

$$u_j(t_j, s_{-j}) \geqslant u_j(\widehat{s}_j, s_{-j}), \ \forall s_{-j} \in S_{-j}$$

Also

$$\min_{s_{-j} \in S_{-j}} u_j(t_j, s_{-j}) = u_j(t_j, \overline{s}_{-j}) \geqslant u_j(\widehat{s}_j, \overline{s}_{-j}) \geqslant \min_{s_{-j} \in S_{-j}} u_j(\widehat{s}_j, s_{-j})$$

$$\max_{s_j \in S_j \setminus \{\widehat{s}_j\}} \min_{s_{-j} \in S_{-j}} u_j(s_j, s_{-j}) \geqslant \min_{s_{-j} \in S_{-j}} u_j(t_j, s_{-j}) \geqslant \min_{s_{-j} \in S_{-j}} u_j(\widehat{s}_j, s_{-j})$$

Proof (contd.)

We have
$$\begin{aligned} & \max_{s_j \in S_j \backslash \{\widehat{s}_j\}} \min_{s_{-j} \in S_{-j}} u_j(t_j, s_{-j}) \geqslant \min_{s_{-j} \in S_{-j}} u_j(\widehat{s}_j, s_{-j}) \\ & \text{Hence } \underline{v}_j = \max_{s_j \in S_j} \min_{s_{-j} \in S_{-j}} u_j(s_j, s_{-j}) \\ & = \max \left\{ \max_{s_j \in S_j \backslash \{\widehat{s}_j\}} \min_{s_{-j} \in S_{-j}} u_j(s_j, s_{-j}), \min_{s_{-j} \in S_{-j}} u_j(\widehat{s}_j, s_{-j}) \right\} \\ & = \max_{s_j \in S_j \backslash \{\widehat{s}_j\}} \min_{s_{-j} \in S_{-j}} u_j(s_j, s_{-j}) = \underline{\widehat{v}}_j \end{aligned}$$

This completes the proof

Exercise: elimination of dominated strategy of player j may increase the maxmin value of player $i \neq j$: find an example where it happens

Preservation of Equilibria

Equilibrium in a larger game \implies equilibrium in a smaller game

Theorem

Consider an NFG $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$, and let $\widehat{G} = \langle N, (\widehat{S}_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be the game derived from G through elimination of some strategies, i.e., $\widehat{S}_i \subseteq S_i, \ \forall i \in N$. If s^* is a PSNE in G, and if $s_i^* \in \widehat{S}_i$ for every $i \in N$, then s^* is an equilibrium in \widehat{G} .

Proof: exercise.

Question: can new equilibrium be generated due to elimination of strategies?

Answer: not if the eliminated strategies are dominated.

Theorem

Consider an NFG $G=\langle N,(S_i)_{i\in N},(u_i)_{i\in N}\rangle$. Let $\widehat{s}_j\in S_j$ be a weakly dominated strategy of player $j\in N$. Let \widehat{G} is generated from G by eliminating the strategy \widehat{s}_j . Every PSNE of \widehat{G} is a PSNE of G.

Proof

- Strategy sets in \widehat{G} : $\widehat{S}_j:=S_j\setminus\{\widehat{s}_j\}$ for j and $\widehat{S}_i:=S_i$ for all $i\neq j$
- Let $s^* = (s_j^*, s_{-j}^*)$ be a PSNE of \widehat{G}

$$u_i(s^*) \geqslant u_i(s_i, s_{-i}^*), \ \forall i \neq j, \forall s_i \in \widehat{S}_i = S_i$$

$$u_j(s^*) \geqslant u_j(s_j, s_{-j}^*), \ \forall s_j \in \widehat{S}_j$$

- \bullet to show that s^* is a PSNE of G, we need to show that there is no profitable deviation of any player in G
- for all $i \neq j$, this is clear from first set of inequalities
- for j, this is true for all the strategies except \hat{s}_i
- ullet need to show: no profitable deviation from s_j^* to \widehat{s}_j
- \widehat{s}_j is a dominated strategy, hence $\exists t_j \neq \widehat{s}_j$ (hence $t_j \in \widehat{S}_j$)

$$\begin{aligned} &u_j(t_j,s_{-j})\geqslant u_j(\widehat{s}_j,s_{-j}), \ \forall s_{-j}\in S_{-j}\\ &\Longrightarrow u_j(t_j,s_{-j}^*)\geqslant u_j(\widehat{s}_j,s_{-j}^*), \ \ \text{in particular}\\ &\Longrightarrow u_j(s_j^*,s_{-j}^*)\geqslant u_j(t_j,s_{-j}^*)\geqslant u_j(\widehat{s}_j,s_{-j}^*), \ \ \text{as} \ t_j\in \widehat{S}_j \end{aligned}$$

Summary of Elimination of Dominated Strategies

- Elimination of strictly dominated strategies have no effect on equilibria (exercise)
- Elimination of weakly dominated strategies may reduce the set of equilibria but never adds new
- The maxmin value is unaffected by the elimination of either strictly or weakly dominated strategies

Stability and Security Tension

- Two player zero sum games
 - $ightharpoonup \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$
 - $N = \{1, 2\}, u_1 + u_2 \equiv 0$
 - $u_1 = -u_2 = u$

Penalty shootout game

S∖G	L	R
L	-1,1	1,-1
R	1,-1	-1,1

1 \2	L	C	R
Т	3,-3	-5,5	-2,2
М	1,-1	4,-4	1,-1
В	6,-6	-3,3	-5,5

• The game is representable using just a matrix - matrix games

Matrix Games

- Player 2's utilities are negative of the following numbers
- Player 2's maxmin strategy in the original game is the minmax strategy of this matrix

$\mathbf{S} ackslash \mathbf{G}$	L	R	maxmin
L	-1	1	-1
R	1	-1	-1
minmax	1	1	

1 \2	L	C	RR	maxmin
Т	3	-5	-2	-5
MM	1	4	1	11
В	6	-3	-5	-5
minmax	6	4	1 1	

• What are the PSNEs of these games?

$S \setminus G$	L	R
L	-1,1	1,-1
R	1,-1	-1,1

$1 \backslash 2$	L	C	R
Τ	3,-3	-5,5	-2,2
М	1,-1	4,-4	1,-11,-1
В	6,-6	-3,3	-5,5

ullet denote the matrix by u, the utility of Player 1

PSNE and Saddle Point

- A saddle point: the value is maximum for player 1 and minimum for player 2
- PSNE?

Theorem

In a matrix game with utility matrix u, (s_1^*, s_2^*) is a saddle point if and only if it is a PSNE.

- Proof:
 - (s_1^*, s_2^*) is a saddle point \Leftrightarrow
 - ▶ $u(s_1^*, s_2^*) \geqslant u(s_1, s_2^*), \ \forall s_1 \in S_1$, and $u(s_1^*, s_2^*) \leqslant u(s_1^*, s_2), \ \forall s_2 \in S_2 \Leftrightarrow$
 - (s_1^*, s_2^*) is a PSNE
- minimum utility and maximum loss of players 1 and 2:

$$\underline{v} := \max_{s_1 \in S_1} \min_{s_2 \in S_2} u(s_1, s_2)$$
 maxmin value

$$\overline{v} := \min_{s_2 \in S_2} \max_{s_1 \in S_1} u(s_1, s_2)$$
 minmax value

Relation between maxmin and minmax

$$\begin{split} \underline{v} &:= \max_{s_1 \in S_1} \min_{s_2 \in S_2} u(s_1, s_2) \quad \text{ maxmin value} \\ \overline{v} &:= \min_{s_2 \in S_2} \max_{s_1 \in S_1} u(s_1, s_2) \quad \text{ minmax value} \end{split}$$

Lemma

For two player zero sum games, $\underline{v} \leqslant \overline{v}$

Proof:

$$\begin{split} u(s_1,s_2) \geqslant \min_{t_2 \in S_2} u(s_1,t_2), \forall s_1,s_2 \text{ by definition of } \min\\ \max_{t_1 \in S_1} u(t_1,s_2) \geqslant \max_{t_1 \in S_1} \min_{t_2 \in S_2} u(t_1,t_2), \forall s_2\\ \min_{t_2 \in S_2} \max_{t_1 \in S_1} u(t_1,t_2) \geqslant \max_{t_1 \in S_1} \min_{t_2 \in S_2} u(t_1,t_2) \end{split}$$

Maxmin and Minmax with PSNE

$\mathbf{S} ackslash \mathbf{G}$	L	R	maxmin
L	-1	1	-1
R	1	-1	-1
minmax	1	1	

1 \2	L	C	RR	maxmin
Т	3	-5	-2	-5
MM	1	4	1	1 1
В	6	-3	-5	-5
minmax	6	4	1 1	

$$\underline{v} = -1 < 1 = \overline{v}$$

$$\underline{v} = 1 = \overline{v}$$

- Seems like existence of PSNE and the values have a connection
- Define

$$s_1^* \in \operatorname*{arg\,max\ min}_{s_1 \in S_1} \min_{s_2 \in S_2} u(s_1, s_2), \ \text{maxmin\ strategy\ for\ } 1$$

 $s_2^* \in \mathop{\arg\min}_{s_2 \in S_2} \max_{s_1 \in S_1} u(s_1, s_2), \text{ minmax strategy for 2}$

A Characterization Theorem for Matrix Games

Theorem

A matrix game u has a PSNE (saddle point) if and only if $\underline{v}=\overline{v}=u(s_1^*,s_2^*),$ where s_1^* and s_2^* are maxmin strategy for player 1 and minmax strategy for 2 respectively.

Proof: (\Rightarrow) given: u has a PSNE, say (s_1^*, s_2^*)

$$u(s_{1}^{*}, s_{2}^{*}) \geqslant u(s_{1}, s_{2}^{*}), \forall s_{1} \in S_{1}$$

$$\implies u(s_{1}^{*}, s_{2}^{*}) \geqslant \max_{t_{1} \in S_{1}} u(t_{1}, s_{2}^{*})$$

$$\geqslant \min_{t_{2} \in S_{2}} \max_{t_{1} \in S_{1}} u(t_{1}, t_{2}) = \overline{v}$$

$$\geqslant \underline{v} = \max_{t_{1} \in S_{1}} \min_{t_{2} \in S_{2}} u(t_{1}, t_{2}) \geqslant u(s_{1}^{*}, s_{2}^{*})$$

The last inequality holds by applying the same argument for player 2 and the fact that (s_1^*,s_2^*) is a PSNE $\implies u(s_1^*,s_2^*)\geqslant \overline{v}\geqslant \underline{v}\geqslant u(s_1^*,s_2^*)$ $\implies u(s_1^*,s_2^*)=\overline{v}=v$

this and PSNE implies s_1^* and s_2^* are maxmin strategy for player 1 and minmax strategy for 2 respectively. (needs proof, exercise)

Characterization Theorem (contd.)

Proof (contd.):

(\Leftarrow) given: $u(s_1^*, s_2^*) = \overline{v} = \underline{v} = v$ (say), where s_1^* and s_2^* are maxmin strategy for player 1 and minmax strategy for 2 respectively.

$$\begin{split} u(s_1^*,s_2) \geqslant \min_{t_2 \in S_2} u(s_1^*,t_2), \forall s_2 \in S_2, \text{ by defn of } \min\\ &= \max_{t_1 \in S_1} \min_{t_2 \in S_2} u(t_1,t_2), \text{ by defn of } s_1^*, \forall s_2 \in S_2\\ &= v, \forall s_2 \in S_2\\ \text{similarly we can show that } u(s_1,s_2^*) \leqslant v, \forall s_1 \in S_1\\ &\Longrightarrow u(s_1^*,s_2^*) = v\\ &\Longrightarrow (s_1^*,s_2^*) \text{ is a PSNE} \end{split}$$