τ Triggering with Deep Learning

Hadar Cohen

7/5/2020

Supervisor: Prof. Erez Etzion

TL;DR

Using deep learning methods to significantly improve hadronic tau trigger (L1Calo) performance at ATLAS

Outline

- 1. Physics motivation
- 2. The problem
- 3. The data (ATLAS Calorimeter)
- 4. Solutions
 - a. CNN
 - b. DeepSet
- 5. Results
- 6. Summary

Why Tau?

Physics Letters B

Volume 716, Issue 1, 17 September 2012, Pages 1-29

Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC *

Cross-section measurements of the Higgs boson decaying into a pair of au-leptons in proton-proton collisions at $\sqrt{s}=13~{
m TeV}$ with

the ATLAS detector

M. Aaboud et al. (ATLAS Collaboration)

Phys. Rev. D 99, 072001 – Published 10 April 2019

Triggering efficiently on hadronic τ leptons is crucial in order to achieve the physics goals of ATLAS:

- Measurements of Higgs coupling properties
- BSM Higgs search is limited to higher than 200GeV in ATLAS

Event Topology

- Leptonic decays: hard to distinguish from prompt e/μ single track & short tau lifetime
- Identifying tau hadronic decays (65%) requires good understanding of the detector and event topology.

Provides narrower jets vs QCD wider jets but no unique enough

- Low track multiplicity
- Strong EM component due to π^0 s in tau decays.
- Very challenging in the high luminosity environment

no unique enougn	<u>paq</u>	
decay mode	fit result (%)	
$\mu^-ar{ u}_\mu u_ au$	17.3937 ± 0.0384	
$e^-ar{ u}_e u_ au$	17.8175 ± 0.0399	
$\pi^- u_ au$	10.8164 ± 0.0512	
$K^- u_ au$	0.6964 ± 0.0096	
$\pi^-\pi^0 u_ au$	25.4941 ± 0.0893	
$K^-\pi^0 u_ au$	0.4328 ± 0.0148	
$\pi^{-}2\pi^{0}\nu_{\tau} \text{ (ex. } K^{0})$	9.2595 ± 0.0964	
$K^{-}2\pi^{0}\nu_{\tau} \text{ (ex. } K^{0})$	0.0647 ± 0.0218	
$\pi^{-}3\pi^{0}\nu_{\tau} \text{ (ex. } K^{0})$	1.0429 ± 0.0707	
$K^{-}3\pi^{0}\nu_{\tau} \ (\text{ex. } K^{0}, \eta)$	0.0478 ± 0.0212	
$h^{-}4\pi^{0}\nu_{\tau} \ (\text{ex. } K^{0}, \eta)$	0.1118 ± 0.0391	
$\pi^{-}\pi^{-}\pi^{+}\nu_{\tau} \text{ (ex. } K^{0},\omega)$	8.9868 ± 0.0513	
$\pi^{-}\pi^{-}\pi^{+}\pi^{0}\nu_{\tau} \text{ (ex. } K^{0},\omega)$	2.7404 ± 0.0710	

ATLAS Trigger

LHC 40 MHz (LEVEL 1 (Hardware) 100 kHz (Software) 1 kH STORAGE

- Online selection is vital to collect the most interesting collisions out of the large data volume.
- The ATLAS experiment utilizes a trigger system that consists of a hardware L1 and a software based HLT to reduce to rate to a mangable one.

ATLAS Calorimeter System

- The ATLAS calorimeter system consists of two components, LAr and Tile calorimeters.
- Covers the barrel regions + endcaps up to |n|=4.9
- Increase of luminosity and pileup, degrade the calorimeter resolution and the isolation of single particles
- We need to explore new approaches to keep the trigger thresholds as low as possible.

L1Calo

- L1 trigger based on calorimeter data LAr and Tile systems
- Increased granularity in Run3 upgrade
- FPGA based hardware

Data

- Raw ATLAS calorimeter energy deposits E_T
- Five layers(99 cells): EMCALO + HADCALO
- MC: Z->ττ vs di-jet QCD

Coarse layers

 (3×3) :

PS, EM3, HAD

Fine layers

 (12×3) :

EM1, EM2

Benchmarks Algorithms

Predefined recipe using different shapes/window over the different layers

- Searching for hottest cell in EM1+EM2, clustering and adding from adjacent layers around it
- Try to evaluate a tau energy deposit in order to do a threshold trigger

Fake Rate Constraint

 We are strictly limited by trigger rate, meaning every decision making algorithms we design must not yield ou a higher fake rate than the current Run2 one.

ML

Why Use Machine Learning? (UAT)

x x_1 x_2 x_3 x_4 x_5 x_4 x_5 x_5 x_5 x_5 x_6 x_6 x_6 x_6 x_7 x_8 x_8

From wikipedia:

"..the universal approximation theorem (UAT) states that a feed-forward network with a single hidden layer containing a finite number of neurons can approximate continuous functions..."

If we accept most classes of problems can be reduced to functions, the UAT statement implies a neural network can, in theory, solve any problem.

All that is left for us, is to find a function that maps between the data to a probability of that data being a tau.,

Machine Learning

Deep Learning

Feature extraction + Classification

Why is Deep Learning so successful?

- The network extracts features directly from the data.
 - As opposed to feature engineering with classical machine learning.
- In our case we wish it to learn features from the geometrical structure of the data
- The input? Only raw data from the calorimeter itself

Solutions

CNN & DeepSets

Convolutional Neural Net (CNN)

What and Why?

- Convolutional Neural Nets(CNNs)
 use convolution operation to extract
 information from the data.
- Main usage Image processing
 - Go from single values to a 2D image
- Weights -> Conv filters
- Highly successful in learning complex shapes

CNN Architecture

As with any DeepLearning method it contains two parts:

- Feature learning:
 obtains meaningful
 information on
 different parts of the
 image. Different
 filters look for
 different structures
- 2. Classification: a fully connected neural net that operated on the extracted information to provide a classification.

Feature Extraction

- An image is nothing but a matrix of pixel values
- We need to construct an algorithm that can operate on such input and provide a meaningful output.
- Conv operation over a picture yields a feature map
- Over time the network learns the best conv kernel to the problem

Convolution Kernel

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Feature map

Learnable parameters of the model

- The convolution step in a any CNN architecture (there are many) is to perform a 2D Convolution over the the 3 color channels
 - \circ Meaning we take **N** 3x3x3 filters and apply them over the image.
 - These filter are the **weights** we learn over the process of training
 - Then we continue to non-lineraity and more

Image Like Representation

 A normal picture is a rank 3 tensor with a shape of Channels x Height x Width

 Grayscale images have only 1 channel while color images have 3 (RGB)

 (3×3) :

PS, EM3, HAD

Fine layers

 (12×3) :

EM1, EM2

Preprocessing

Coarse layers

 (3×3) :

PS, EM3, HAD

Fine layers

 (12×3) :

EM1, EM2

- "Stretching" coarser layers to have the same shape as finer layers
- Standard ML steps: filtering, normalizing, etc..

Image Like Representation

conv2d(3,nf) -----> conv2d(5,nf)

Intuition: if we can look at the 3D grid of energy deposits in the calorimeter as an image, we can find a pattern to distinguish between tau and a jet.

CNN

Intuition: if we can look at the 3D grid of energy deposits in the calorimeter as an image, we can find a pattern to distinguish between tau and jet events.

CNN for Tau Architecture

- Eight blocks of conv operations (each containing several + residual)
- Transforming the 5x3x12 calorimeter input into a single prediction

DeepSet

Data Structure

- CNN representation was a very sparse one, only 10% active.
- Lets try and look at the data from a different perspective:
 - as nodes in space a graph

- But, how should one define the graph's edges? What is the adjacency matrix?
 - Is the PS(EMO) connected to the Hadronic calo?
 - Are all layer nodes (cells) fully connected?
 - Do we only connect nodes between layers?

Graph → Set

- But, within a layer there is no temporal order, no single cell came before nor after a different one, there is no real meaning to some edges
 - -> Thus, an event type should not be depended on the cells order (when evaluating) but merely on their properties and their existence.

 Taking that into account, we look at our data as a SET.

Set Representation

- We define our event as follow:
 - Each cell with an energy deposit is included in the set
 - Every member of the set has the basic raw features:
 - Energy
 - Coordinates simple location in the calorimeter
 grid with the z-axis as layer number [0-4]
- But! A set is not fixed size, could be 15 or 33 cells.
- Neural nets work on a fixed size input. We need to adapt
- Our primary goal is to find a function that maps our input into a prediction
 - We need to find a set function

e	х	у	z
1.55	4	1	1
0.875	5	1	1
0.275	6	1	1
0.275	0	0	2
0.375	1	0	2
0.8	5	0	2
0.525	6	0	2
0.2	8	0	2
0.35	2	1	2
2.275	4	1	2
0.3	1	2	2

DeepSets

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a valid set function, i.e., **invariant** to the permutation of instances in X, iff it can be decomposed in the form $\rho\left(\sum_{x\in X}\phi(x)\right)$, for suitable transformations ϕ and ρ .

 Replacing φ and ρ by universal approximators (UAT) leaves matters unchanged. Then, it remains to learn these approximators

$$f(X) = \rho(\Sigma_{x \in X} \phi(x))$$

DeepSets Architecture

- Each instance $x_m \forall 1 \leq m \leq M$ is transformed (possibly by several layers) into some representation $\phi(x_m)$.
- The addition \(\sum_m \phi(x_m) \) of these representations processed using the \(\rho \) network very much in the same manner as in any deep network (e.g. fully connected layers, nonlinearities, etc).
- Optionally: If we have additional metainformation z, then the above mentioned networks could be conditioned to obtain the conditioning mapping φ(x_m|z).

Figure 5: Architecture of DeepSets: Invariant

DeepSets for Tau Trigger

Results

Training

- Both methods, CNN & DeepSet were trained over nvidia's Tesla K80 GPUs using PyTorch
- Training metric: recall with a fixed Run2 fake rate
 - We are strictly limited by the fake rate, meaning how much tolerance we have for False-Positives
 - Prior to training, we estimate the Run2 fake rate
 and set that as a limit while training
 - We maximize the number of signal events (TP)
 while keeping the same fake rate (FP)
- Our final evaluation is a Turn On Curve Efficiency vs True tau pT

Train Loss

0.52

1.0

Recall for Run2 Rate

Final Results

Selecting the highest signal efficiency with equal Run2 fake rate

Hybrid Method

- Second chance for any non triggered event higher than a certain pT, try using a the usual route
 - Pros: Safety net for misclassified higher pT events
 - o Cons:
 - Higher rate meaning we need to raise the classifier cut, thus lowering the signal efficiency
 - More calculation = higher latency

Future Prospects

Optimize solutions

- Slowly and carefully remove layers to minimize the computational cost
- Minimize representation

FPGA Implementation

ATLAS Phase I hardware is fixed with a Xilinix FPGA. Implementing such CNN/DeepSet within the latency constraints would be a significant trigger improvement

Jet Physics

 Explore the use of DeepSets within the realm of jet physics substructure

Run3 Hardware is fixed.

Best case will be for Phase-II, Run4 Using specific hardware..

Summary

- L1 upgrade will help to cope with increase in luminosity and pileup in Run3
- Significant improvement in lower pT regions
- Probably no near future implementation due to latency issues.
- Real ATLAS MC
- Terrific problem

Hope this will **trigger** you to look for solutions in the other fields

Thank you.

New Way of Triggering

