Term 3 Week 4 Handout Solutions

Quadratic Residues

- 1. Enumerating the squares modulo 17, the squares are 1, 4, 9, 16, 8, 2, 15, 13. Since $16 \equiv -1$ the congruence is solvable.
- 2. (a) If a and b are both nonresidues, then (a|p) = -1 and (b|p) = -1. But ab is a residue, so (ab|p) = 1 = (a|p)(b|p). If both a and b are residues, then (a|p) = 1, (b|p) = 1, and (ab|p) = 1; and again (ab|p) = (a|p)(b|p). For the last case, we may assume with loss of generality that (a|p) = -1 and (b|p) = 1; then (ab|p) = -1 = (a|p)(b|p) and the proof is complete.
 - (b) If (a|p) = 1 and $a \equiv x^2 \pmod{p}$, then it follows that $b \equiv x^2$ also if $a \equiv b$. Thus (a|p) = (b|p). If (a|p) = -1, suppose that there exists some x such that $b \equiv x^2 \pmod{p}$. But since $b \equiv a$ that would mean $a \equiv x^2$, which is a contradiction. Hence no such x exists, and so (a|p) = -1 = (b|p).
- 3. From a property of the Legendre symbol we have

$$\left(\frac{-1}{p}\right) = \left(\frac{(p-1)!}{p}\right).$$

The number (p-1)! consists of the product of all the numbers from 1 to p-1. We know that amongst those numbers exactly (p-1)/2 of them are quadratic residues and exactly (p-1)/2 of them are quadratic nonresidues. The product of the quadratic residues will give a quadratic residue, so whether (p-1)! is a residue or nonresidue depends only on whether the product of the (p-1)/2 nonresidues gives a residue or nonresidue. Recall that the product of two nonresidues gives a residue; hence if the number of nonresidues is even, the resulting product will be a residue, and if the number of nonresidues is odd, then the resulting product will be a nonresidue. When is (p-1)/2 even and when is it odd? If it is to be even, then p-1 must be a multiple of 4, and hence $p \equiv 1 \pmod{4}$. If it is to be odd, then p-1 must an odd multiple of 2, so that that (p-1)/2 is not further divisible by 2. Hence p-1=2(2k+1) from which it follows that p = 4k + 3, or $p \equiv 3 \pmod{4}$. Hence

$$\left(\frac{-1}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4}; \\ -1 & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

Observe that since (-1|p) depends on whether the number of nonresidues (p-1)/2 is even or odd, the result can be also be written more succinctly as

$$\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}.$$