Efficient Algorithms

Ekkapot Charoenwanit

Electrical and Computer Engineering (ECE)
TGGS
KMUTNB

Lecture 15: Randomized Algorithms

- Monte Carlo
- Las Vegas

Randomized Algorithms

Randomized algorithms make use of **randomness** through a **random number generator** (**RNG**) in an attempt to improve the performance over worst-case performance of **deterministic algorithms**.

Randomized Algorithms

From the diagram, on **two occasions** where a randomized algorithm works on exactly **the same input**, the behavior of the algorithm may be **inconsistent** due to the **randomness** introduced by the **random number generator**.

Monte Carlo and Las Vegas

A randomized algorithm is a

- Monte Carlo randomized algorithm if
 - It returns a result which is probably correct
 - it always return a result
 - its running time is always deterministically bounded
- Las Vegas randomized algorithm if
 - it always returns the correct result
 - Its running is bounded in expectation

Monte Carlo

A *Monte Carlo* randomized algorithm is p-correct if and only if

$$Pr\{Correct\ Result\} \ge p$$

For decision problems,

- One-sided error algorithms only make errors in one direction
- Two-sided error algorithms make errors in both directions

Monte Carlo

We can *amplify* the correctness of a *p-correct*, *one-sided error* algorithm by *repeatedly* running the algorithm multiple times.

• This process of repeatedly running a *p-correct*, *one-sided error* randomized algorithm multiple times is known as *amplification*.

#Steps	Pr{Incorrect}	Pr{Correct}			
1	1-p	p			
2	$(1-p)^2$	$1 - (1 - p)^2$			
k	$(1 - p)^k$	$1 - (1 - p)^k$			

Majority

Given an array d of length n, determine whether there are elements that appear more than $\frac{n}{2}$ times.

<u>Case I</u>: If d has no majority, the randomized algorithm always returns the correct result: **False**

<u>Case II</u>: If d has a majority, the randomized algorithm may return the incorrect result: *False Negative*

```
1: procedure Randomized-Majority(d[1...n])

2: i = \text{Random}(1, n)

3: c = \text{Count}(d, i)

4: return (c > n/2)
```

Majority: Analysis

If there is, in fact, a majority in the array d, the probability that the algorithm

- picks a majority is at least $\frac{1}{2}$
- does not pick a majority is at most $\frac{1}{2}$

Thus, the randomized algorithm is $\frac{1}{2}$ -correct randomized algorithm.

```
1: procedure Randomized-Majority(d[1...n])

2: i = \text{Random}(1, n)

3: c = \text{Count}(d, i)

4: return (c > n/2)
```

Majority: Analysis

<u>Corollary I</u>: The randomized algorithm is a $(1-2^{-k})$ -correct algorithm if it repeats for k times. **Proof**:

The probability that one run of the randomized algorithm reports the incorrect result is **at most** $\frac{1}{2}$.

Since each run is independent of each other, if the algorithm runs for k times, the probability that the algorithm reports a false negative is **at most** 2^{-k} .

Thus, the probability that the algorithm returns the correct result is **at least** $1-2^{-k}$.

```
1: procedure Randomized-Repeated-Majority(d[1...n], k)
2: for i = 1; i <= k; i ++ do
3: if majority(d) then
4: return True
5: return False
```

2-SAT

2-SAT is a computational problem of determining whether a given **2-CNF** (**Conjunctive-Normal Form**) formular is **satisfiable**.

- A logic formular is *satisfiable* if and only if there is a *truth assignment* that makes the while formular *true*.
- **2-CNF** formular is a Boolean formular constructed by a **conjunction of clauses**, where each clause is a **disjunction of exactly two literals**.
- Literals are boolean variables or their negations.

Example: $(x_1+\bar{x}_2)(x_1+x_3)(\bar{x}_1+x_2)(\bar{x}_2+\bar{x}_3)(\bar{x}_2+\bar{x}_4)(x_1+\bar{x}_4)$

2-SAT

Given a boolean formular $\varphi(x_1, x_2, ..., x_n)$ in the **2-CNF** form

- randomly assign values to boolean variables x_1 , x_2 , x_3 , ..., x_n
 - $x[i] = Random(0,1) \ \forall i = 1,2,...,n$
- choose an arbitrary clause C that is not satisfied
- ullet choose uniformly at random one of the literals in ${\it C}$ and toggle the value of its variable
 - x[k] = 1 x[k]

Example: $\varphi = (x_1 + \bar{x}_2)(x_1 + x_3)(\bar{x}_1 + x_2)(\bar{x}_2 + \bar{x}_3)(\bar{x}_2 + \bar{x}_4)(x_1 + \bar{x}_4)$

x_1 ,	x_2 ,	x_3 ,	x_4	$(x_1-$	$+\bar{x}_2)(x_1 -$	$+ x_3)(\bar{x}_1 -$	$+ x_2)(\bar{x}_2 -$	$\vdash \bar{x}_3)(\bar{x}_2 -$	$+ \bar{x}_4)(x_1 +$	$-\bar{x}_4)$
0	1	1	0	(0	0)(0	1)(1	1)(0	0)(0	1)(0	1)
1	1	1	0	(1	0)(1	1)(0	1)(0	0)(0	1)(1	1)
	0	1	0	(1	1)(1	1)(0	0)(1	0)(1	1)(1	1)
	0	1	0	(0	1)(0	1)(1	0)(1	0)(1	1)(1	1)

Given $\varphi(x_1, x_2, ..., x_n)$ in **2-CNF** form, suppose there exists a **satisfying truth assignment** for φ :

- Let k be the number of boolean variables with the correct boolean values
- That is, $k \in \{0,1,2,...,n\}$

Observations: We shall refer to each time the algorithm changes the truth assignment as **a step**:

- If k=0 at the current step, k=1 at the next step.
 - All variables have been assigned with the incorrect values
 - Flipping the value of any variable will **always increase** k **by one**
- If k > 0 at the current step, k will either decrease or increase **by one** at the next step

The change in value of k can be thought as a **random walk** on a number line whose starting point is 0 and ending point is n.

• When k = n, a truth assignment has been found.

How long will such a random walk take to reach the ending point n? Let s_k be the number of steps required before reaching n.

- $s_n = 0$
- $s_0 = 1 + s_1$
- $s_k = 1 + \frac{1}{2}(s_{k-1} + s_{k+1}) : \forall k \in \{1, 2, ..., n-1\}$

Solving the system of linear equations, we have

$$s_k = n^2 - k^2$$

When k = 0, $s_0 = n^2 - 0^2 = n^2$.

In a worst-case scenario, when the initial truth assignment ends up with all the clauses evaluating to $\it False$, i.e., $\it k=0$

- \rightarrow The expected number of steps required before arriving at the ending point n is n^2 .
- \rightarrow The expected number of steps required before arriving at a satisfying truth assignment is n^2 .

<u>Case I:</u> If the algorithm returns <u>True</u>, there <u>certainly</u> exists a satisfying truth assignment.

<u>Case II</u>: If the algorithm returns *False*, one of the following two possibilities holds:

- There is **no** satisfying truth assignment for the given **2-CNF** formular
- There is a satisfying truth assignment but the algorithm gave up and terminated too early

<u>Theorem I</u>: If there is a satisfying truth assignment for a **2-CNF** formular $\varphi(x_1, x_2, ..., x_n)$, if the algorithm carries out a random walk for $2n^2$ steps and terminates, the probability that the algorithm returns a **false negative** result is at most $\frac{1}{2}$. That is, the algorithm is a $\frac{1}{2}$ -correct Monte Carlo algorithm.

Proof:

Markov's Inequality:
$$\Pr\{X \geq a\} \leq \frac{E[X]}{a}$$

Let X be a random variable for the number of steps in a random walk before reaching a satisfying truth assignment.

$$E[X] = n^2$$
 [Solving recurrence $S(k)$]
 $Pr\{X \ge 2n^2\} \le \frac{n^2}{2n^2}$
 $= \frac{1}{2}$

Corollary II: The randomized algorithm is a $(1-2^{-k})$ -correct algorithm if it repeats for k times.

Proof: By **Theorem I**, the algorithm is a $\frac{1}{2}$ -correct algorithm.

Each time the algorithm runs and returns false, the probability that the algorithm reports a false negative is **at most** $\frac{1}{2}$.

Since each run is independent of each other, if the algorithm runs for k times, the probability that the algorithm reports a false negative is at $most \ 2^{-k}$.

Thus, the probability that the algorithm returns the correct result is **at** least $1 - 2^{-k}$.

Freivalds' algorithm

Given three $n \times n$ matrices A B and C, determine whether

$$C = AB$$
.

The naïve deterministic algorithm takes $\Theta(n^3)$ time.

- Multiply A and B : $\Theta(n^3)$
- Compare AB and $C: \Theta(n^2)$

A more sophisticate algorithm takes $\Theta(n^{2.8074})$ time.

- Multiply A and B with **Strassen algorithm**: $\Theta(n^{2.8074})$
- Compare AB and $C: \Theta(n^2)$

```
Let D = AB - C
and r be a n \times 1 binary vector.
```

```
Thus, Dr is a n \times 1vector.
Let P = Dr.
```

Observations:

```
If D = 0, P = 0, no matter what r is.

If D \neq 0, P may be 0 or may be not. [one-sided error]
```

Freivalds' algorithm:

- Generate a 0/1 binary vector r at random
- Compute P = A(Br) Cr
- Return *True* if $P = (0,0,0...,0)^T$; *False*, otherwise

Let p denote the probability that the algorithm returns an incorrect result.

- if AB = C, p = 0, which is **independent** of the value of r
- If $AB \neq C$, we have that at least one element of D is non-zero

```
Case: AB \neq C
```

Suppose that $d_{ij} \neq 0$.

Since P = Dr, we have

$$p_{i} = \sum_{k=1}^{n} d_{ik} r_{k} = d_{ij} r_{j} + \sum_{k \neq j} d_{ik} r_{k} = d_{ij} r_{j} + y$$

where $y = \sum_{k \neq j} d_{ik} r_k$.

By Bayes' Theorem,

$$\Pr\{p_i = 0\} = \Pr\{p_i = 0 | y = 0\} \Pr\{y = 0\} + \Pr\{p_i = 0 | y \neq 0\} \Pr\{y \neq 0\}$$

Since $d_{ij} \neq 0$, $p_i = 0$ and y = 0 implies $r_j = 0$

• Since $\Pr\{r_j = 0\} = \frac{1}{2}$, $\Pr\{p_i = 0 | y = 0\} = \Pr\{r_j = 0\} = \frac{1}{2}$.

Since $d_{ij} \neq 0$, $p_i = 0$ and $y \neq 0$ implies $r_i \neq 0$, which immediately implies $r_i = 1$, and $d_{ij} = -y$

• Since $\Pr\{r_j = 1\} = \frac{1}{2}$, $\Pr\{p_i = 0 | y \neq 0\} = \Pr\{r_j = 1 \land d_{ik} = -y\} \leq \Pr\{r_j = 1\} = \frac{1}{2}$.

$$\begin{aligned} \Pr\{p_i = 0\} &\leq \frac{1}{2} \Pr\{y = 0\} + \frac{1}{2} \Pr\{y \neq 0\} \\ &= \frac{1}{2} \Pr\{y = 0\} + \frac{1}{2} (1 - \Pr\{y = 0\}) \\ &= \frac{1}{2} \end{aligned}$$

Thus,
$$\Pr\{P=0\}=\Pr\{p_1=0 \land p_2=0 \land \dots \land p_i=0 \land \dots \land p_n=0\}$$

 $\leq \Pr\{p_i=0\}$
 $=\frac{1}{2}$

That is, the probability that the algorithm returns an *incorrect YES* (*False Positive*) is *at most* $\frac{1}{2}$:

• P = 0 despite the fact that $D \neq 0$.

Thus, the probability that the algorithm produces the correct result is $at least 1 - \frac{1}{2} = \frac{1}{2}$.

Thus, Freivalds' algorithm is a $\frac{1}{2}$ --correct algorithm.

Contention Resolution

Suppose there are n agents P_1 , P_2 ,..., P_n , which are all competing for a shared resource R.

Imagine a scenario where these n agents are processes in a **distributed** system attempting to access a shared database.

Observations:

- If all processes behaved *identically*, this would lead to *no progress* as all processes would be attempting to access the shared database simultaneously at all times.
- Randomness can help break symmetry in this kind of scenarios.

Suppose that each process will attempt to access the database in each round with probability p.

Notation:

Let A[i,t] denote the event that P_i attempts to access the database in round t.

We know that each process attempts to access the database in each round with probability \boldsymbol{p} so

$$\Pr\{A[i,t]\} = p$$

For every event, there is a *complementary* event, indicating that the event did not occur.

 $\overline{A[i,t]}$ denotes the event that P_i does not attempt to access the database in round t.

$$\Pr\{\overline{A[i,t]}\} = 1 - \Pr\{A[i,t]\} = 1 - p$$

Let S[i, t] denote the event that P_i succeeds in accessing the database.

Thus, we can define S[i, t] as

$$S[i,t] = A[i,t] \cap (\bigcap_{j \neq i} \overline{A[j,t]})$$

That is, P_i attempts to access the database in round t and the others do not attempt to access the database in round t.

Therefore,

$$\Pr\{S[i,t]\} = \Pr\{A[i,t]\} \cdot \prod_{j \neq i} \Pr\{\overline{A[j,t]}\} = p(1-p)^{n-1} = f(p)$$

How do we choose p so that the success probability is maximized?

Differentiating $f(p) = p(1-p)^{n-1}$ with respect to p,

we get

$$f'(p) = (1-p)^{n-1} - (n-1)p(1-p)^{n-2}$$

There is only local maximum between 0 .

That local maximum is $p = \frac{1}{n}$.

$$\Pr\{S[i,t]\} = \frac{1}{n}(1 - \frac{1}{n})^{n-1}$$

As n increases from 2, the function $(1-\frac{1}{n})^{n-1}$ monotonically converges from $\frac{1}{2}$ upto $\frac{1}{e}$.

Hence, we can bound $Pr{S[i, t]}$ as follows:

$$\frac{1}{en} \le \Pr\{S[i, t]\} \le \frac{1}{2n}$$

Asymptotically,

$$\Pr\{S[i,t]\} = \Theta(\frac{1}{n})$$

How long does it take for any process P_i to succeed at least once? Let F[i,t] denote the failure event that P_i does not succeed in any of the rounds 1 through t.

We can define F[i,t] as the *intersection* of the complementary events S[i,r] for r=1,2,...,t.

$$F[i,t] = \bigcap_{r=1}^{t} \overline{S[i,r]}$$

Since these events $\overline{S[i,r]}$ for r=1,2,...,t are **all independent**,

$$Pr\{F[i,t]\} = Pr\left\{ \bigcap_{r=1}^{t} \overline{S[i,r]} \right\} = \prod_{r=1}^{t} Pr\{\overline{S[i,r]}\}$$

$$= (1 - \frac{1}{n}(1 - \frac{1}{n})^{n-1})^{t}$$

Recall that the probability of success is $\frac{1}{en} \leq \Pr\{S[i,t]\} \leq \frac{1}{2n}$ after one round.

Thus,

$$\Pr\{F[i,t]\} = \prod_{r=1}^{t} \Pr\{\overline{S[i,r]}\} \le (1 - \frac{1}{en})^{t}$$

Setting t = [en],

$$\Pr\{F[i,t]\} \le \left(1 - \frac{1}{en}\right)^{[en]} \le \left(1 - \frac{1}{en}\right)^{en} \le \frac{1}{e}$$

$$\lim_{m \to \infty} (1 - \frac{1}{m})^m = \frac{1}{e}$$

Therefore, the probability that any process P_i does not succeed in any of rounds 1 through t is bounded by the **constant** $\frac{1}{e}$, independent of the number of processes n.

Now if we set
$$t = [en](c(\ln n))$$
,
$$\Pr\{F[i,t]\} \le \left(1 - \frac{1}{en}\right)^t = \left(1 - \frac{1}{en}\right)^{[en]} (\ln n)$$
$$\le \frac{1}{e}^{c\ln n} = n^{-c}$$

After $\Theta(n)$ rounds, the probability that P_i has not yet succeeded is bounded by a constant.

Between then and $\Theta(n \log n)$ rounds, this probability drops to a quantity that is quite small, bounded by an *inverse of polynomial* in n.

How many rounds must elapse before there is *high probability* that all the processes have *succeeded* in accessing the database *at least once*?

We say that the protocol fails after *t* rounds if some processes have not yet succeeded.

Let F_t denote the event that the protocol fails after t rounds.

Goal: Find a reasonably small value of t for which $Pr\{F_t\}$ is small.

<u>Observation</u>: The event F_t occurs if and only if one of the events F[i,t] occurs.

$$F_t = \bigcup_{i=1}^n F[i,t]$$

Therefore,

$$\Pr\{F_t\} \le \sum_{i=1}^n \Pr\{F[i,t]\}$$
 [The Union Bound]

Setting t = 2 [en] ln n,

$$\Pr\{F_t\} \le \sum_{i=1}^n \Pr\{F[i,t]\} \le n \cdot n^{-2} = \frac{1}{n}$$

Therefore, we can conclude that with probability at least $1 - \frac{1}{n}$, all processes succeed in accessing the database at least once within t = 2 [en] ln n rounds.

Observations:

- If we choose $t = cnln \, n$ where c is a very small quantity, then we have an upper bound on $\Pr\{F[i,t]\}$ larger than $\frac{1}{n}$ and hence we have an upper bound on $\Pr\{F_t\}$ larger than 1, which is a completely useless bound.
- The algorithm is a *Las Vegas* algorithm as the running time cannot be bounded deterministically, but it will terminate with *high probability* within 2 [en] ln n rounds.
- correctness is always ensured in the sense that none of the processes can access the database simultaneously.

Summary

A randomized algorithm is a

- Monte Carlo randomized algorithm if
 - It returns a result which is probably correct
 - it always return a result
 - its running time is always deterministically bounded
- Las Vegas randomized algorithm if
 - it always returns the correct result
 - Its running is bounded in expectation