Heures (Hebdo)	4.0
Cours	2.0
Exercices	2.0
Pratique	0.0
Total	56.0

Langue	français
Semestre	Automne
Mode d'évaluation	Examen écrit
Session	Janvier
Format de l'enseignment	Cours, exercices

Cursus	Туре	ECTS
Baccalauréat universitaire en mathématiques	N/A	6.0
Baccalauréat universitaire en mathématiques, informatique et sciences numériques	N/A	6.0
Maîtrise universitaire en mathématiques	N/A	6.0
Maîtrise universitaire en mathématiques, informatique et sciences numériques	N/A	6.0

Objectifs

Description

Possible topics include harmonic analysis, partial differential equations, and geometrical measure theory.

In this course, I will present the general theory of Gaussian measures and introduce the fundamental tools in their study: integration by parts, Cameron-Martin space and theorem, Wick ordering, Wiener chaos decompositions, etc...

I will illustrate these concepts on fundamental examples like Brownian motion and the 2d Gaussian Free Field.