Syntactic Dependency Length Shaped by Strategic Memory Allocation

Weijie Xu, Richard Futrell

University of California, Irvine

The 6th Workshop on Research in Computational Linguistic Typology and Multilingual NLP (SIGTYP)

Nonlocal Syntactic Dependency

Nonlocal Syntactic Dependency [1-2]

The monster who stayed in the tower approached the princess...

Nonlocal Syntactic Dependency [1-2]

Dependency Locality Principle [3]

The monster approached the princess...

Dependency Locality Principle [3]

The monster approached the princess...

...a more detailed characterization of WM?

Dependency Locality Principle

...a more detailed characterization of WM?

Strategic Allocation of Working Memory

Strategic Memory Allocation

novel and unpredictable information is prioritized [4-5]

Strategic Memory Allocation

novel and unpredictable information is prioritized [4-5]

more difficult to encode, but more robust against interference

Strategic Memory Allocation

novel and unpredictable information is prioritized [4-5]

more difficult to encode, but more robust against interference

.... How does SMA influence dependency locality?

Novel information is more robust against interference

The evil monster in the tower approached...

high info load

$$L = 3$$

The cute **Monster** who stayed in the tower near the castle approached...

$$L = 8$$

Novel information is more robust against interference

The evil **monster** in the tower **approached**... L=3The cute **monster** who stayed in the tower near the castle **approached**... L=8

L positively correlates with the informativity of the antecedent

Novel information is more robust against interference

The evil monster in the tower approached...

$$L = 3$$

The cute **monster** who stayed in the tower near the castle approached...

$$L = 8$$

L positively correlates with the informativity of the antecedent

Surprisal
$$-\ln p(w_i | w_1 \dots w_{i-1})$$

L positively correlates with the informativity of the antecedent

L positively correlates with the informativity of the antecedent

Universal Dependencies (UD) [6]

L positively correlates with the informativity of the antecedent

 $-\ln p(\text{she}) - \ln p(\text{left} | \text{she}) - \ln p(\text{a} | \text{she left}) - \ln p(\text{note} | \text{she left a})$

GPT-3 Language Model [7]

L positively correlates with the informativity of the antecedent

 $-\ln p(\text{she}) - \ln p(\text{left} | \text{she}) - \ln p(\text{a} | \text{she left}) - \ln p(\text{note} | \text{she left a})$

L positively correlates with the informativity of the antecedent

 $-\ln p(\text{she}) - \ln p(\text{left} | \text{she}) - \ln p(\text{a} | \text{she left}) - \ln p(\text{note} | \text{she left a})$

L ~ antecedent surprisal

Data

Universal Dependencies (UD) [8]

	Corpus Name	Corpus Type	# Tokens	
Amharic	ATT	doc-by-doc	12,682	
Danish	DDT	sent-by-sent	80,378	
English	GUM	doc-by-doc	126,530	
German	GSD	sent-by-sent	268,404	
Italian	ISDT	doc-by-doc	294,430	
Japanese	GSD	sent-by-sent	168,333	
Korean	Kaist	doc-by-doc	296,446	
Mandarin	GSDSimp	sent-by-sent	98,616	
Russian	SynTagRus	doc-by-doc	1,206,302	
Spanish	AnCora	doc-by-doc	469,366	
Turkish	BOUN	sent-by-sent	103,627	

Preprocessing data

Original Corpus $\begin{array}{c|c} -\ln p(w \mid c) \\ \text{from GPT-3 for} \\ \text{each token} \end{array}$ Extract sents w/ $L \geq 5$ Remove puncts and tokens w/ $-\ln p(w \mid c) > 20$ Data Set 1 (full dataset)

Preprocessing data

Data Set 1

Select depends w/
deprel in {nsubj,
csubj}

Data Set 2
(subjects)

Preprocessing data

Original Corpus

 $-\ln p(w \mid c)$

from GPT-3 for

Extract sents w/

Remove puncts

and tokens w/

Data Set 1

(full dataset)

Preprocessing data

Original Corpus

 $-\ln p(w \mid c)$

from GPT-3 for

Remove puncts and tokens w/ $-\ln p(w \mid c) > 20$

Data Set 1 (full dataset)

dependencies

	Full	Subject	Object	
Amharic 4,164		643	525	
Danish 45,976		4,203	3,963	
English 89,947		7,881	7,296	
German	155,480	9,602	8,474	
Italian	208,939	10,323	11,735	
Japanese	113,771	5,005	4,018	
Korean	154,609	9,855	24,690	
Mandarin	63,456	5,538	7,576	
Russian	329,745	32,822	25,065	
Spanish	333,728	21,472	31,143	
Turkish	45,914	3,861	4,680	

Extract sents w/

 $L \geq 5$

Two measures of dependency length $\,L\,$

Two measures of dependency length $\,L\,$

The evil monster in the tower approached...

$$L=3$$

The evil monster in the tower approached...

$$L = -\left(\ln p(\text{'in'}) + \ln p(\text{'the'}) + \ln p(\text{'tower'})\right)$$

Results: Full Dataset (L as word counts)

Results: Full Dataset (L as word counts)

L ~ sent_position + sent_length + antec_postion + antec_surprisal + (1+antec_surprisal|dep-type)

Results: Full Dataset (L as word counts)

L ~ sent_position + sent_length + antec_postion + antec_surprisal + (1+antec_surprisal|dep-type)

Results: Full Dataset (L as surprisal)

L ~ sent_position + sent_length + antec_postion + antec_surprisal + (1+antec_surprisal|dep-type)

Results: Subject Relations (L as word counts)

L ~ sent position + sent length + antec postion + antec surprisal

Results: Subject Relations (L as surprisal)

Dependencies with subject relations

L ~ sent position + sent length + antec postion + antec surprisal

Results: Object Relations (L as word counts)

L ~ sent_position + sent_length + antec_postion + antec_surprisal

Results: Object Relations (L as surprisal)

Dependencies with object relations

L ~ sent position + sent length + antec postion + antec surprisal

Results

	Full Dataset		Subject	Subject Relations		Object Relations	
Language	L (words)	L (surprisal)	L (words)	L (surprisal)	L (words)	L (surprisal)	
Amharic	p = 0.175	+	+	p = 0.186		p = 0.876	
Danish	+	+	+	+	p = 0.447	+	
English	+	+	+	+	p = 0.743	+	
German	+	+					
Italian	+	+	+	+	p = 0.093	+	
Japanese	p = 0.416	p = 0.775	p = 0.088	p = 0.985	p = 0.21	p = 0.94	
Korean			p = 0.072	p = 0.156			
Mandarin	p = 0.062	p = 0.331	+	+		p = 0.359	
Russian	p = 0.395	p = 0.050	+	+		p = 0.454	
Spanish	+	+	+	+	p = 0.058	+	
Turkish	p = 0.161	p = 0.784		p = 0.59	p = 0.384	p = 0.083	

Results

	Full Dataset		Subject Relations		Object Relations	
Language	L (words)	L (surprisal)	L (words)	L (surprisal)	L (words)	L (surprisal)
Amharic	p = 0.175	+	+	p = 0.186	_	p = 0.876
Danish	+	+	+	+	p = 0.447	+
English	+	+	+	+	p = 0.743	+
German	+	+	_		_	
Italian	+	+	+	+	p = 0.093	+
Japanese	p = 0.416	p = 0.775	p = 0.088	p = 0.985	p = 0.21	p = 0.94
Korean		_	p = 0.072	p = 0.156	_	
Mandarin	p = 0.062	p = 0.331	+	+	_	p = 0.359
Russian	p = 0.395	p = 0.050	+	+	_	p = 0.454
Spanish	+	+	+	+	p = 0.058	+
Turkish	p = 0.161	p = 0.784	_	p = 0.59	p = 0.384	p = 0.083

Results

	Full Detect Subject Deletions			Ohioat I	Palations		
	Full Dataset		Subject	Subject Relations		Object Relations	
Language	L (words)	L (surprisal)	L (words)	L (surprisal)	L (words)	L (surprisal)	
Amharic	p = 0.175	+	+	p = 0.186	_	p = 0.876	
Danish	+	+	+	+	p = 0.447	+	
English	+	+	+	+	p = 0.743	+	
German	+	+			_		
Italian	+	+	+	+	p = 0.093	+	
Japanese	p = 0.416	p = 0.775	p = 0.088	p = 0.985	p = 0.21	p = 0.94	
Korean			p = 0.072	p = 0.156	_		
Mandarin	p = 0.062	p = 0.331	+	+	_	p = 0.359	
Russian	p = 0.395	p = 0.050	+	+	_	p = 0.454	
Spanish	+	+	+	+	p = 0.058	+	
Turkish	p = 0.161	p = 0.784		p = 0.59	p = 0.384	p = 0.083	

Limitations

Corpus annotation quality

Language models for understudied languages

Empirically, less predictable antecedents can tolerate longer dependency length

Empirically, less predictable antecedents can tolerate longer dependency length

Dependency locality pressure can be further modulated by informativity

Empirically, less predictable antecedents can tolerate longer dependency length

Dependency locality pressure can be further modulated by informativity

Strategic memory allocation prioritizes unexpected linguistic units for WM resources, resulting in more robust memory representation against interference

Thanks for your listening!

Selected Bibliography

- [1] Gibson, E. (1998). Linguistic complexity: Locality of syntactic dependencies. Cognition, 68(1), 1-76.
- [2] Grodner, D., & Gibson, E. (2005). Consequences of the serial nature of linguistic input for sentenial complexity. *Cognitive Science*, 29(2), 261-290.
- [3] Futrell, R., Levy, R. P., & Gibson, E. (2020). Dependency locality as an explanatory principle for word order. *Language*, 96(2), 371-412.
- [4] Hofmeister, P. (2011). Representational complexity and memory retrieval in language comprehension. *Language and Cognitive Processes*, 26(3), 376-405.
- [5] Hahn, M., Futrell, R., Levy, R., & Gibson, E. (2022). A resource-rational model of human processing of recursive linguistic structure. *Proceedings of the National Academy of Sciences*, 119(43), e2122602119.
- [6] Nivre, J., de Marneffe, M. C., Ginter, F., Hajic, J., Manning, C. D., Pyysalo, S., ... & Zeman, D. (2020, May). Universal Dependencies v2: An Evergrowing Multilingual Treebank Collection. In *Proceedings of the Twelfth Language Resources and Evaluation Conference* (pp. 4034-4043).
- [7] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. *Advances in Neural Information Processing Systems*, 33, 1877-1901.