

Probabilidade e Estatística Estatística Descritiva

Prof. Fermín Alfredo Tang Montané

Medidas de dispersão

- As medidas de tendência central, por si só, não são suficientes para caracterizar um conjunto de dados.
- ▶ Em particular, se comparamos dois conjuntos de dados as medidas de tendência central não fornecem qualquer informação referente a distribuição dos mesmos.

Exemplo:

- Dois candidatos à emprego fizeram 5 provas e desejamos comparar seus rendimentos com base na media aritmética.
 - Candidato A: 70, 71, 69, 70, 70 Média = 70
 - Candidato B: 40, 80, 98, 62, 70 Média = 70
- Com base somente na média aritmética diríamos que os dois candidatos apresentaram o mesmorendimento. Porém, como podemos observar o candidato A apresentou notas mais uniformes.

Medidas de dispersão

- Permitem avaliar quantitativamente o grau de variabilidade ou dispersão dos valores de um conjunto de números em torno do valor médio.
- As principais estatísticas de dispersão são:
 - Amplitude total
 - Desvio médio
 - Variância
 - Desvio-padrão
 - Coeficiente de variação

Amplitude Total

Amplitude total é a diferença entre o maior e o menor valor dos dados.

Exemplo I:

A tabela abaixo apresenta o rendimento diário (em %) de três empregados:

Empregado			Dia			Média	Máx.	Mín.	Amplitude
	I	2	3	4	5		1 100240		Total
Α	92	80	85	70	87	82,8	92	70	22
В	90	87	78	72	87	82,8	90	72	18
C	85	81	87	82	79	82,8	87	79	8

Os dados mostram que embora os três empregados possuem a mesma média, os seus desempenhos são diferentes.

Amplitude Total

No entanto, a medida de Amplitude total pode não ser sempre a mais adequada para medir a dispersão dos dados.

Exemplo 2:

A tabela abaixo apresenta o rendimento diário (em %) de três empregados:

Empregado	I	2	Dia 3	4	5	Média	Máx.	Mín.	Amplitude Total
Α	82	70	65	60	73	70	82	60	22
В	60	78	68	62	82	70	82	60	22
С	53	72	75	75	75	70	75	53	22

Embora os desempenhos sejam diferentes, nem a média aritmética nem a amplitude total mostram qualquer variação.

Desvio Médio

▶ O desvio médio de um conjunto de n valores x₁, x₂, x₃, ..., x_n é definido pela expressão:

$$d = \frac{\sum_{i=1}^{n} \left| x_i - \overline{x} \right|}{n}$$

▶ No caso de dados agrupados em intervalos de classe:

$$d = \frac{\sum_{i=1}^{k} f_i . |x_i - \overline{x}|}{n}$$

- onde, k é o número de classes.
- Esta medida de dispersão considera todos os valores do conjunto de dados, e não apenas os valores extremos.

Desvio Médio

Exemplo:

A tabela abaixo apresenta o rendimento diário (em %) de três empregados:

Empregado			Dia			Média	Desvio Médio	Amplitude
Limpicgado	I	2	3	4	5	Fiedia	(d)	Total
Α	92	80	85	70	87	82,8	6,24	22
В	90	87	78	72	87	82,8	6,24	18
C	85	81	87	82	79	82,8	2,56	8

▶ Com objetivo ilustrativo mostram-se os valores dos desvios.

9,2	2,8	2,2	12,8	4,2
7,2	4,2	4,8	10,8	4,2
2,2	1,8	4,2	0,8	3,8

Variância amostral (s²)

A variância de um conjunto de n valores $x_1, x_2, x_3, ..., x_n$ (que representam uma amostra) é definido pela expressão:

$$s^2 = \frac{\sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2}{n-1}$$

▶ No caso de dados agrupados em intervalos de classe:

$$s^{2} = \frac{\sum_{i=1}^{k} f_{i} \cdot \left(x_{i} - \overline{x}\right)^{2}}{n-1}$$

- onde, k é o número de classes.
- Esta medida de dispersão intensifica o valor dos desvios ao considerar o termo quadrático. Magnifica desvios muito grandes.

Variância amostral (s²)

Exemplo:

A tabela abaixo apresenta o rendimento diário (em %) de três empregados:

Empregado			Dia			Média	Desvio Médio	Variância Amostral		
Limpi egado	I	2	3	4 5	(d)	Amostral				
Α	92	80	85	70	87	82,8	6,24	69,7		
В	90	87	78	72	87	82,8	6,24	56,7		
С	85	81	87	82	79	82,8	2,56	10,2		

Os valores dos quadrados dos desvios são os seguintes.

84,64	7,84	4,84	163,84	17,64
51,84	17,64	23,04	116,64	17,64
4,84	3,24	17,64	0,64	14,44

Desvio Padrão Amostral (s)

- ▶ O desvio padrão amostral é a raiz quadrada da variância amostral.
- Para dados não agrupados é definido pela expressão:

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

No caso de dados agrupados em intervalos de classe:

$$s = \sqrt{\frac{\sum_{i=1}^{k} f_i \cdot (x_i - \overline{x})^2}{n-1}}$$

onde, k é o número de classes.

Coeficiente de variação (CV)

O coeficiente de variação é a razão entre o desvio-padrão e a média aritmética, em porcentagem. Definido pela seguinte expressão:

$$CV = \frac{s}{\overline{x}}.100$$

Variância amostral (s²), Desvio Padrão Amostral (s), Coeficiente de variação (CV)

b) Para dados agrupados em classes discretas.

Idade (X _i)	Número de Alunos (f _i)	x _i f _i	$(x_i - \overline{x})^2$	$f_i.(x_i - \overline{x})$	$(\overline{x})^2$ $\overline{x} = \frac{830}{35} = 23,714$
20	ı	20	13,80	13,80	101 14
21	3	63	7,37	22,10	$s^2 = \frac{101,14}{34} = 2,9747$
22	4	88	2,94	11,76	34
23	7	161	0,51	3,57	$s = \sqrt{2,9747} = 1,724$
24	9	216	0,08	0,73	s = 1,72 anos
25	6	150	1,65	9,92	2 -, 33_ 3
26	4	104	5,22	20,90	1 7247
27	0	0	10,80	0,00	$CV = \frac{1,7247}{23,714}.100$
28	l	28	18,37	18,37	23,714
Total	35	830		101,14	=7,2729%

Variância amostral (s²), Desvio Padrão Amostral (s), Coeficiente de variação (CV)

▶ O desvio padrão aumenta para dados com maior dispersão.

$$\overline{x} = 23,76$$
$$s = 1,15$$

$$\overline{x} = 23,62$$
$$s = 2,05$$

$$\bar{x} = 23,42$$

 $s = 3,07$

Variância amostral (s²), Desvio Padrão Amostral (s), Coeficiente de variação (CV)

b) Para dados agrupados em intervalos de classes.

	Interv Cla Altura	sse	,	Número Alunos	de (f _i)	Xi	f _i x _i	$(x_i - \overline{x})^2$	$f_i.(x_i - \bar{x})$
[1,45	1,49	>	4		1,47	5,88	0,009216	0,03686
[1,49	1,53	>	8		1,51	12,08	0,003136	0,02509
[1,53	1,57	>	4		1,55	6,20	0,000256	0,00102
[1,57	1,61	>	5		1,59	7,95	0,000576	0,00288
[1,61	1,65	>	4		1,63	6,52	0,004096	0,01638
[1,65	1,69	>	5		1,67	8,35	0,010816	0,05408
	Total			30			46,98		0,13632

$$\overline{x} = \frac{46,98}{30} = 1,566$$
 $s^2 = \frac{0,1362}{30} = 0,00454$ $CV = \frac{0,06737}{1,566}.100$ $s = \sqrt{0,00454} = 0,06737$ $= 4,3020\%$

s = 0,07 metros

Medidas de Posição ou Separatrizes

- São medidas que dividem um conjunto de valores em um certo número de partes iguais.
- A mediana, por exemplo, divide um conjunto de dados em duas partes iguais.
- Outras medidas de posição importantes são:
 - Quartis
 - Decis
 - Centis ou Percentis

- ▶ O quartil divide um conjunto de valores ordenado em quatro partes iguais.
 - O primeiro quartil (Q_1) é o valor que antecede 25% da freqüência abaixo dele e sucede 75%,
 - \triangleright O segundo quartil (Q_2) é igual ao valor da mediana e
 - O terceiro quartil (Q_3) é o valor que antecede 75% da freqüência abaixo dele e sucede 25%.

- a) O cálculo do quartil i-êsimo é semelhante ao cálculo da mediana para dados não agrupados.
- **Exemplo:** Determine o 3° quartil das idades dos 35 alunos (Impar).
- A definição do quartil Q_i, depende da existência de um número par ou impar de elementos.

$$P_1 = 9$$

$$P_2 = 18$$

$$P_3 = 27$$

$$Q_1 = 23$$

$$Q_2 = 24$$

$$Q_3 = 25$$

No caso ímpar, a posição P_i do quartil Q_i existe:

$$P_i = \left| \frac{i.n}{4} \right| + 1, \quad \forall i = 1, 2, 3.$$

$$P_{1} = \left\lfloor \frac{1(35)}{4} \right\rfloor + 1$$
$$= \left\lfloor 8,75 \right\rfloor + 1 = 9$$

$$P_{1} = \left\lfloor \frac{1(35)}{4} \right\rfloor + 1$$

$$= \left\lfloor 8,75 \right\rfloor + 1 = 9$$

$$P_{2} = \left\lfloor \frac{2(35)}{4} \right\rfloor + 1$$

$$= \left\lfloor 17,5 \right\rfloor + 1 = 18$$

$$P_3 = \left\lfloor \frac{3(35)}{4} \right\rfloor + 1$$
$$= \left\lfloor 26, 25 \right\rfloor + 1 = 27$$

- a) O cálculo do quartil i-êsimo é semelhante ao cálculo da mediana para dados não agrupados.
- **Exemplo:** Determine o 3° quartil das idades dos 34 alunos (Par).
- A definição do quartil Q_i, depende da existência de um número par ou impar de elementos.

No caso par, o valor do quartil Q_i é calculado como a média dos valores de duas posições. Não existe uma formula clara para as posições P_i.

Exemplo: Determine o 3° quartil das idades dos 35 alunos:

Idade (x _i)	Número de Alunos (f _i)	f _{ac}
20	ĺ	
21	3	4
22	4	8
23	7	15
24	9	24
25	6	30
26	4	34
27	0	34
28	1	35
Total	35	

A posição do Q₃:

$$P_i = \left| \frac{i.n}{4} \right| + 1$$
, para i=1, 2, 3.

$$P_3 = \left| \frac{3(35)}{4} \right| + 1 = \left[26, 25 \right] + 1 = 27$$

O quartil Q₃ se encontra na posição 27.

$$Q_3 = 25 \text{ anos.}$$

b) Para dados agrupados em intervalos de classe a expressão para o cálculo do quartil i-êsimo é uma generalização da expressão para o cálculo da mediana.

$$Q_i = LI_i + \left(\frac{P_i - f'_{ac}}{f_{Q_i}}\right).h$$
, para i=1, 2, 3.
 $P_i = \frac{i.n}{4}$, para i=1, 2, 3.

onde:

$$P_i = \frac{i.n}{4}$$
, para i=1, 2, 3

- LI: limite inferior da classe Q;
- ▶ P_i: posição do quartil i-êsimo;
- f'_{ac} : frequência acumulada da classe anterior a classe Q_i ;
- f_{Oi} : frequência da classe Q_i ;
- h: amplitude do intervalo de classe.

Decis

- ▶ O decil divide um conjunto de valores ordenados em dez partes iguais e são representados por $D_1, D_2, ..., D_9$.
- Sendo que o 5° decil é a mediana.

Decis

b) Para dados agrupados em intervalos de classes a expressão para o cálculo do decil i-êsimo é o seguinte:

$$D_i = LI_i + \left(\frac{P_i - f'_{ac}}{f_{D_i}}\right).h, \text{ para i=1, ..., 9.}$$

$$P_i = \frac{i.n}{10}$$
, para i=1, ..., 9.

onde:

- LI_i : limite inferior da classe D_i ;
- ▶ P_i: posição do decil i-êsimo;
- f'_{ac} : frequência acumulada da classe anterior a classe D_i ;
- f_{Di} : frequência da classe D_i ;
- h: amplitude do intervalo de classe.

Centis ou Percentis

- ▶ O centil ou percentil divide um conjunto de valores ordenados em 100 partes iguais;
- ▶ São representados por $C_1, C_2, ..., C_{99}$.
 - → o 50° centil é a mediana e
 - o 25° e 75° centis correspondem ao 1° e ao 3° quartis, respectivamente.

Centis ou Percentis

b) Para dados agrupados em intervalos de classes a expressão para o cálculo do decil i-êsimo é o seguinte:

$$C_i = LI_i + \left(\frac{P_i - f'_{ac}}{f_{C_i}}\right).h$$
, para i=1, ..., 99.

onde:

$$P_i = \frac{i.n}{100}$$
, para i=1, ..., 99.

- LI_i : limite inferior da classe C_i ;
- ▶ P_i: posição do centil i-êsimo;
- f'_{ac} : frequência acumulada da classe anterior a classe C_i ;
- ▶ f_{Ci}: frequência da classe C_i;
- h: amplitude do intervalo de classe.

Exemplo - Quartil

▶ No exemplo das alturas dos 30 alunos determine o 3° quartil.

C	rvalo de Classe ıras (m)		Número de alunos f _i	f ac
[1,45	5 1,49	>	4	4
[1,49	1,53	>	8	12
[1,53	1,57	>	4	16
[1,57	7 1,61	>	5	21
[1,6	1,65	>	4	25
[1,65	5 1,69	>	> 5	30
Tota	al		30	

Posição do 3º Quartil:

$$P_3 = \frac{3(30)}{4} = 22,5$$

Calculo do 3º Quartil:

$$Q_i = LI_i + \left(\frac{P_i - f'_{ac}}{f_{Q_i}}\right).h, i=1,...,3.$$

$$Q_3 = 1,61 + \left(\frac{22,5-21}{4}\right).0,04$$

= 1,61+0,015 = 1,625 metros

Exemplo - Decil

No exemplo das alturas dos 30 alunos determine o 6° decil.

_	Cla	alo de sse as (m)		Número de alunos f _i	f ac
[1,45	1,49	>	4	4
	1,49	1,53	>	8	12
	1,53	1,57	>	4	16
[1,57	1,61	>	5	21
	1,61	1,65	>	4	25
[1,65 1,69				5	30
	Total			30	

Posição do 6º Decil:

$$P_6 = \frac{6(30)}{10} = 18$$

Calculo do 6º Decil:

$$D_i = LI_i + \left(\frac{P_i - f'_{ac}}{f_{D_i}}\right).h, i=1,...,9.$$

$$D_6 = 1,57 + \left(\frac{18 - 16}{5}\right).0,04$$
$$= 1,57 + 0,016 = 1,586 \text{ metros}$$

Exemplo - Centil

No exemplo das alturas dos 30 alunos determine o 20° centil.

_	Interv Cla Altura			Número de alunos f _i	f ac
[1,45	1,49	>	4	4
[1,49	1,53	>	8	12
[1,53	1,57	>	4	16
[1,57	1,61	>	5	21
[1,61	1,65	>	4	25
[1,65	1,69	>	5	30
-	Total			30	

Posição do 20° Centil:

$$P_{20} = \frac{20(30)}{100} = 6$$

Calculo do 20° Centil:

$$C_i = LI_i + \left(\frac{P_i - f'_{ac}}{f_{C_i}}\right) h, i=1, ..., 99$$

$$C_{20} = 1,49 + \left(\frac{6-4}{8}\right).0,04$$

= 1,49 + 0,01 = 1,5 metros

Medidas de Assimetria

As medidas de assimetria procuram caracterizar o quanto o histograma de uma distribuição de freqüência se afasta da condição de simetria em relação à uma medida de tendência central.

Distribuição assimétrica positiva

Distribuição assimétrica negativa

Coeficiente de Assimetria de Pearson (A)

▶ O grau de assimetria de uma distribuição de frequência pode ser avaliada utilizando o coeficiente de Pearson:

$$A = \frac{\overline{x} - M_o}{s}$$

- onde:
 - ▶ |A| < 0,15 : distribuição praticamente simétrica;
 - ▶ 0,15 < |A| < 1 : distribuição assimétrica moderada;
 - ▶ |A| > I : distribuição fortemente assimétrica.

Medidas de Curtose

As medidas de curtose caracterizam uma distribuição simétrica ou aproximadamente simétrica quanto ao seu achatamento, tomando como referência uma distribuição normal, que será objeto de estudo mais adiante.

Mesocúrtica (normal)

Platicúrtica

Leptocúrtica

Coeficiente Percentílico de Curtose (C)

O grau de achatamento com relação a distribuição normal de uma distribuição de frequência pode ser avaliado através do coeficiente percentílico:

$$C = \frac{C_{75} - C_{25}}{2(C_{90} - C_{10})}$$

- ▶ Onde, C₁₀, C₂₅, C₇₅ e C₉₀ são os 10°, 25°, 75° e 90° centis (ou percentis)
- Sendo que:
 - Se C = 0,263: distribuição é mesocúrtica (normal)
 - Se C < 0,263: distribuição leptocúrtica (alongada)
 - Se C > 0,263: distribuição platicúrtica (achatada)

Exemplo - Assimetria

No exemplo das alturas dos 30 alunos classifique a distribuição quanto a assimetria.

Intervalo de Classe Alturas (m)			Número de alunos f _i		f ac
[1,45	1,49	>	4	4
[1,49	1,53	>	8	12
[1,53	1,57	>	4	16
	1,57	1,61	>	5	21
[1,61	1,65	>	4	25
[1,65	1,69	>	5	30
Total			·	30	

Coeficiente de Assimetria de Pearson:

$$A = \frac{\overline{x} - M_o}{s}$$

$$A = \frac{1,566 - 1,51}{0,07} = 0,8$$

Distribuição com assimetria moderada.

Exemplo - Curtose

No exemplo das alturas dos 30 alunos classifique a distribuição quanto a curtose.

Intervalo de Classe Alturas (m)		Número de alunos f _i	f ac	$P_{10} = \frac{10(30)}{100} = 3 \qquad P_{25} = \frac{25(30)}{100} = 7,5$ $P_{75} = \frac{75(30)}{100} = 22,5 P_{90} = \frac{90(30)}{100} = 27$ Calcula-se, C ₁₀ , C ₂₅ ,C ₇₅ e C ₉₀ :	
[1,45 1,4	9 >	4	4	- $(3-0)$	
[1,49 1,5	3 >	8	12	$C_{10} = 1,45 + \left(\frac{3-0}{4}\right).0,04 = 1,48$	
[1,53 1,5	57 >	4	16	$C_{-1.40}$ $(7,5-4)$ $0.04-1.5075$	
[1,57 1,6	5 >	5	21	$C_{25} = 1,49 + \left(\frac{7,5-4}{8}\right).0,04 = 1,5075$	
[1,61 1,6	55 >	4	25	$C_{75} = 1,61 + \left(\frac{22,5-21}{4}\right).0,04 = 1,625$	
[1,65 1,6	59 >	5	30	· ·	
Total		30		$C_{90} = 1,65 + \left(\frac{27 - 25}{5}\right).0,04 = 1,666$	

Exemplo - Curtose

No exemplo das alturas dos 30 alunos classifique a distribuição quanto a curtose.

Calcula-se o coeficiente de curtose:

Intervalo de Classe Alturas (m)			Número de alunos f _i	f ac
[1,45	1,49	>	4	4
[1,49	1,53	>	8	12
[1,53	1,57	>	4	16
[1,57	1,61	>	5	21
[1,61	1,65	>	4	25
[1,65	1,69	>	5	30
Total			30	

$$C = \frac{C_{75} - C_{25}}{2(C_{90} - C_{10})}$$
$$= \frac{1,625 - 1,5075}{2(1,666 - 1,48)}$$
$$= 0,3159$$

Como C > 0,263, a distribuição é platicúrtica.