LARGE SAMPLE TEST-1

Prof. Nandini Rai KJSCE

TEST OF SIGNIFICANCE FOR LARGE SAMPLES

- If the sample size n > 30, the sample is taken as large sample. For such sample we apply normal test.
- Under large sample test, the following are the important tests to test the significance.
- 1. Testing of significance for single mean
- 2. Testing of significance for difference of mean

TESTING THE HYPOTHESIS THAT THE POPULATION MEAN = μ

- To test whether the difference between sample mean and population mean is significant or not
- Under the null hypothesis that there is no difference between the sample mean and population mean.

- The test statistic is $z = \frac{X \mu}{\sigma / \sqrt{n}}$ where σ is the standard deviation of the population
- \bullet If σ is not known, we use the test statistic $z = \frac{\overline{X} - \mu}{s / \sqrt{n}}$, where s is the standard deviation of the Sample

CONFIDENCE LIMITS

- If the level of significance is α and z_{α} is the critical value $-z_{\alpha} < z = \frac{\bar{\mathbf{x}} \mu}{\sigma/\sqrt{n}} < z_{\alpha}$
- The limit of the population mean μ are given by $\bar{x} z_{\alpha} \left(\frac{\sigma}{\sqrt{n}} \right) < \mu < \bar{x} + z_{\alpha} \left(\frac{\sigma}{\sqrt{n}} \right)$

CONFIDENCE LIMITS

 At 5% of level of significance, 95% confidence limits are

$$\bar{x} - 1.96 \left(\frac{\sigma}{\sqrt{n}}\right) < \mu < \bar{x} + 1.96 \left(\frac{\sigma}{\sqrt{n}}\right)$$

 At 1% level of significance, 99% confidence limits are

$$\bar{x} - 2.58 \left(\frac{\sigma}{\sqrt{n}}\right) < \mu < \bar{x} + 2.58 \left(\frac{\sigma}{\sqrt{n}}\right)$$

Measurements of the weights of a random sample of 200 ball bearings made by a certain machine during one week showed a mean of 0.824 newton and a standard deviation of 0.042 newton. Find 95% confidence limits for the mean weight of all ball bearings.

- Step 1: For 95% confidence level the critical value $z_{\alpha} = 1.96$
- Step 2: Since the sample size is large and population standard deviation is not know
- The confidence interval is $\bar{x} \pm 1.96 \frac{s}{\sqrt{n}}$
- \bullet 0.824 \pm 1.96 $\frac{0.042}{\sqrt{200}}$ = (0.8182, 0.8298)

Cardiac patients were implanted pacemakers to control heartbeats. A plastic connector module mounts on top of the pacemaker. A random sample of 75 modules has an average of 0.31 inches. Assuming standard deviation of 0.0015 inches and normal distribution, find 95% confidence interval for the mean size of the connector module.

Step 1: For 95% confidence level the critical value $z_{\alpha} = 1.96$

Step 2: Since the sample is large and population S.D. is known,

The confidence interval is $\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$

The confidence interval is (0.3097, 0.3103)

A simple random sample of size 65 was drawn in the process of estimating the mean annual income of 950 families of a certain township. The mean and the standard deviation of the sample were found to be Rs. 4730 and Rs. 765 respectively. Find a 99% confidence interval for the population mean.

SOLUTION

Step 1: For 99% confidence level the critical value $z_{\alpha} = 2.58$

Step 2: since the sample is drawn from a finite population and

since n/N = 65/950 = 0.068 is greater than 0.05, we use finite population multiplier

$$\sqrt{(N-n)/(N-1)}$$

The confidence interval is $\bar{x} \pm 2.58 \left(\frac{s}{\sqrt{n}} \times \sqrt{\frac{N-n}{N-1}} \right)$

The confidence interval is (4493.59, 4966.40)

A machine is set to produce metal plates of thickness 1.5 cms with standard deviation 0.2 cm. A sample of 100 plates produced by the machine gave an average thickness of 1.52 cms. Is the machine fulfilling the purpose?

- SOLUTION:
- Null hypothesis H_0 : $\mu = 1.5$
- Alternative Hypothesis H_a : $\mu \neq 1.5$

Test statistic: Since the population standard deviation is given

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

$$z = 1$$

Level of significance: $\alpha = 0.05$

Critical value: The value of z_{α} at 5% level of significance from the table = 1.96

Decision: Since the computed value of |z| = 1 is less than the critical value $z_{\alpha} = 1.96$, the null hypothesis is accepted

The machine is fulfilling its purpose.

A random sample of 50 items gives the mean 6.2 and variance 10.24. Can it be regarded as drawn from a normal population with mean 5.4 at 10% level of significance?

SOLUTION

Null hypothesis H_0 : $\mu = 5.4$

Alternative Hypothesis H_a : $\mu \neq 5.4$

Test statistic: Since sample S.D. s is known and since sample is large

$$z = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

Level of significance: $\alpha = 0.1$

Critical value: The value of z_{α} at 10% level of significance from the table = 1.64

Decision: Since the computed value of |z| is greater than the critical value $z_{\alpha}=1.64$, the null hypothesis is rejected.

.. The sample is not drawn from the population with mean 5.4

Can it be concluded that the average life-span of an Indian is more than 70 years, if a random sample of 100 Indians has an average life span of 71.8 years with standard deviation of 8.9 years?

SOLUTION

- Null hypothesis H_0 : $\mu = 70$ years
- Alternative Hypothesis H_a : $\mu > 70$ years

- Test statistic: $z = \frac{x-\mu}{s/\sqrt{n}}$
- Since we are given standard deviation of the sample, we put $\bar{x} = 71.8, \mu = 70, s = 8.9, \ n = 100$

Level of significance: $\alpha = 0.05$

Critical value: The value of z_{α} at 5% level of significance is 1.64

Decision: Since the computed value of z=2.02 is greater than the critical value $z_{\alpha}=1.64$, the null hypothesis is rejected

It can be concluded that the average life-span of an Indian is more than 70 years