Лабораторная работа №2

Выполнил: Шардт Максим

Группа: ИВТ-1.1

- 1. Тема лабораторной работы: Детерминированные циклические вычислительные процессы с управлением по аргументу
- 2. Цель лабораторной работы: Выполнить задания, указанные в документе лабораторной работы
- 3. Используемое оборудование: Ноутбук, PascalABC.NET, draw.io
- 4. Решить задания, указанные в файле лабораторной работы

Задание 1

- 4. Вычислить n!, где n вводится с клавиатуры
- 5. Математическая модель

$$n! = \prod_{k=1}^{n} k$$

6. Блок-схема:

7. Список идентификаторов

Название переменной	Тип	Назначение
n	Целый	Число, факториал которого необходимо
		найти
i	Целый	Временная переменная, счетчик
S	Целый	Для записи финального результата вычислений

8. Код программы:

```
program factorial;
var
n, i :integer;
```

```
s :biginteger;
begin
  readln(n);
  s := 1;
  for i := 1 to n do
    begin
    s *= i;
  end;
  writeln(n, '! = ', s);
end.
```

9. Результаты выполненной работы

Output Window	Output Window	Output Window
5 5! = 120	13 13! = 1932053504	0 0! = 1

10. Анализ результатов вычисления

В данной программе используется детерминированный циклический процесс с управлением по аргументу, с переменными «п», «i» и «f». Был использован цикл for, где «i» — это счетчик. В теле цикла значение «п» умножается на постоянно уменьшающуюся переменную «i», тем самым вычисляя значение факториала. Пользователь вводит число «п», затем программа выводит ответ.

Задание 2

- 4. Рассчитать значения для построения диаграммы направленности антенны в вертикальной плоскости. Q меняются в диапазоне от 0 до 90 градусов с шагом 1 градус, a = 13.5, $\lambda = 3$ см
- 5. Математическая модель

$$f(Q) = \frac{(1 + \sin(Q)) \cdot \cos\left(\frac{\pi \cdot a}{\lambda} \cdot \cos(Q)\right)}{\left(\frac{\pi}{2}\right)^2 - \left(\frac{\pi \cdot a}{\lambda} \cdot \cos(Q)\right)^2}$$

6. Блок-схема

7. Список идентификаторов

Название переменной Тип	Назначение
-------------------------	------------

temp	вещественный	Временная
		переменная для
		хранения вычислений
temp2	вещественный	Временная
		переменная для
		хранения вычислений
q	целочисленный	Градус
qRad	Вещественный	Градус в радианах
f	Вещественный	Значение всего
		выражения

8. Код программы

```
program ural;
var
q: integer;
temp, temp2, qRad, f:real;
begin
   temp := 3.14 * 13.5 / 3;
   temp2 := 3.14 / 2;
   for q := 0 to 90 do
   begin
     qRad := q * 3.14/180;
     temp *= cos(qRad);
     f := ((1 + sin(qRad)) * cos(temp)) /
     (temp2 * temp2 - temp * temp);
     writeln(q, ' ', f:1:5);
   end;
end.
```

9. Результаты выполненной работы

Output Window	Outros Mindon	
0 -0.00004	Output Window	
1 -0.00005	31 0.27413	61 0.76042
2 -0.00009	32 0.35431	62 0.76380
3 -0.00020	33 0.42590	63 0.76707
4 -0.00039	34 0.48066	64 0.77023
1	35 0.53898	65 0.77328
5 -0.00070	36 0.57662	66 0.77622
6 -0.00115		67 0.77905
7 -0.00179	37 0.60562	68 0.78176
8 -0.00262	38 0.62742	69 0.78436
9 -0.00366	39 0.64376	70 0.78684
10 -0.00487	40 0.65617	71 0.78921
11 -0.00616	41 0.66588	72 0.79146
12 -0.00730	42 0.67377	
13 -0.00797	43 0.68050	73 0.79359
14 -0.00769	44 0.68648	74 0.79560
15 -0.00597	45 0.69199	75 0.79750
16 -0.00242	46 0.69719	76 0.79927
17 0.00287	47 0.70218	77 0.80093
18 0.00902	48 0.70702	78 0.80247
19 0.01418	49 0.71174	79 0.80388
20 0.01579	50 0.71635	80 0.80518
21 0.01141	51 0.72086	81 0.80635
22 0.00013	52 0.72527	82 0.80740
23 -0.01617	53 0.72958	83 0.80833
1	54 0.73380	84 0.80914
24 -0.03230	55 0.73791	85 0.80982
25 -0.04075	56 0.74192	86 0.81038
26 -0.03380		87 0.81082
27 -0.00615	57 0.74583	88 0.81113
28 0.04329	58 0.74964	89 0.81132
29 0.11111	59 0.75334	90 0.81139
30 0.19067	60 0.75693	0.01139

10. Анализ результатов вычисления

Две временные переменные «temp» и «temp2» значительно сокращают количество необходимых вычислений внутри детерминированного циклического процесса, в котором используется цикл for с «q» от 0 до 90. Внутри тела цикла вычисляются финальные значения переменных, которые зависят от угла Q (cos(qRad), sin(qRad) и temp) и значение выражения «f». Выводятся две переменные: «q» и «f»: угол и F(Q).

Задание 2

- 4. Вычислить значение выражения, где n = 15, а x = 0.4
- 5. Математическая модель

$$y = 4x + \frac{2}{3} \sum_{k=1}^{n} \frac{1}{(2k-1)9^{k-1}}$$

6. Блок-схема:

7. Список идентификаторов

Название переменной	Тип	Назначение
n	целочисленный	Заданная переменная
y	Вещественный	Переменная для
		хранения значения
		выражения
S	вещественный	Временная
		переменная

8. Код программы:

```
program rerer3;
var
n:integer;
y,s:real;
begin
   for n:= 1 to 15 do
   begin
   s += 1/((2*n-1)*exp((n-1) * ln(9)));
   end;
   y := 1.6+2/3*s;
   writeln('y = ', y:5:5);
end.
```

9. Результаты выполненной работы

```
Output Window
y = 2.29315
```

10. Анализ результатов вычисления

В теле детерминированного циклического процесса вычисляется значение суммы, которая затем используется для вычисления результата выражения. Форматированный вывод переменной «у»: 5 знаков до запятой и 5 после.

11.Вывод

Мной были решены все задания лабораторной работы средствами PascalABC. Net с помощью детерминированных циклических процессов.