Spatial SPDE approach overview

Elias Teixeira Krainski¹

October 2025

¹King Abdullah University of Science and Technology (KAUST)

Initial ideas

Interpolation problem

Interpolation problem

- predict temperature at 1, 2 and 3: t_1 , t_2 and t_3 .
 - naive approach

$$t_1 = \frac{3.3 + 5.9 + 5.7 + 0.8}{4}$$

$$t_2 = \frac{8.4 + 4.2 + 9.1 + 7.3}{4}$$
$$t_3 = 8.8$$

Interpolation problem

- predict temperature at 1, 2 and 3: t_1 , t_2 and t_3 .
 - naive approach

$$t_1 = \frac{3.3 + 5.9 + 5.7 + 0.8}{4}$$

$$t_2 = \frac{8.4 + 4.2 + 9.1 + 7.3}{4}$$
$$t_3 = 8.8$$

statistical approach

$$p(\text{new}|\text{obs.}) = \frac{p(\text{new}, \text{obs.})}{p(\text{obs.})}$$

Ideas and assumptions

Nearby observations may be similar

- Smaller variance between nearby observations
- Bigger variance between far apart observations

- Prediction
 - ▶ Closest observations → bigger weights
 - ► Variance is inversely proportional to weights

Multivariate Gaussian distribution

► Consider the joint distribution of $\mathbf{x}^T = \{\mathbf{x}_{\Delta}^T, \mathbf{x}_{R}^T\}^T$

$$\begin{pmatrix} \mathbf{x}_{A} \\ \mathbf{x}_{B} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \boldsymbol{\mu}_{A} \\ \boldsymbol{\mu}_{B} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{AA} & \boldsymbol{\Sigma}_{AB} \\ \boldsymbol{\Sigma}_{BA} & \boldsymbol{\Sigma}_{BB} \end{pmatrix} = \begin{pmatrix} \boldsymbol{Q}_{AA} & \boldsymbol{Q}_{AB} \\ \boldsymbol{Q}_{BA} & \boldsymbol{Q}_{BB} \end{pmatrix}^{-1} \end{pmatrix}$$

Multivariate Gaussian distribution

► Consider the joint distribution of $\mathbf{x}^T = \{\mathbf{x}_A^T, \mathbf{x}_B^T\}^T$

$$\begin{pmatrix} \mathbf{x}_A \\ \mathbf{x}_B \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \boldsymbol{\mu}_A \\ \boldsymbol{\mu}_B \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{AA} & \boldsymbol{\Sigma}_{AB} \\ \boldsymbol{\Sigma}_{BA} & \boldsymbol{\Sigma}_{BB} \end{pmatrix} = \begin{pmatrix} \boldsymbol{Q}_{AA} & \boldsymbol{Q}_{AB} \\ \boldsymbol{Q}_{BA} & \boldsymbol{Q}_{BB} \end{pmatrix}^{-1} \end{pmatrix}$$

 \triangleright The conditional distribution of \mathbf{x}_B is

$$\mathbf{x}_{B}|\mathbf{x}_{A} \sim N(\mathbf{m}, \mathbf{V})$$
 where

$$m = \mu_B - \Sigma_{BA} \Sigma_{AA}^{-1} (\mathbf{x}_A - \mu_A)$$

$$= \mu_B - \mathbf{Q}_{BB}^{-1} \mathbf{Q}_{BA} (\mathbf{x}_A - \mu_A)$$

$$\mathbf{V} = \Sigma_{BB} - \Sigma_{BB} \Sigma_{AB}^{-1} \Sigma_{AB} = \mathbf{Q}$$

$$\mathbf{V} = \Sigma_{BB} - \Sigma_{BA} \Sigma_{AA}^{-1} \Sigma_{AB} = \mathbf{Q}_{BB}^{-1}$$

Multivariate Gaussian distribution

► Consider the joint distribution of $\mathbf{x}^T = \{\mathbf{x}_A^T, \mathbf{x}_B^T\}^T$

$$\begin{pmatrix} \mathbf{x}_{A} \\ \mathbf{x}_{B} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \boldsymbol{\mu}_{A} \\ \boldsymbol{\mu}_{B} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{AA} & \boldsymbol{\Sigma}_{AB} \\ \boldsymbol{\Sigma}_{BA} & \boldsymbol{\Sigma}_{BB} \end{pmatrix} = \begin{pmatrix} \boldsymbol{Q}_{AA} & \boldsymbol{Q}_{AB} \\ \boldsymbol{Q}_{BA} & \boldsymbol{Q}_{BB} \end{pmatrix}^{-1} \end{pmatrix}$$

▶ The conditional distribution of \mathbf{x}_B is

$$\mathbf{x}_{B}|\mathbf{x}_{A} \sim \mathcal{N}(\mathbf{m}, \mathbf{V})$$
 where
$$\mathbf{m} = \mathbf{\mu}_{B} - \Sigma_{BA} \Sigma_{AA}^{-1} (\mathbf{x}_{A} - \mathbf{\mu}_{A})$$

$$= \mu_B - \mathbf{Q}_{BB}^{-1} \mathbf{Q}_{BA} (\mathbf{x}_A - \mu_A)$$

$$\mathbf{V} = \Sigma_{BB} - \Sigma_{BA} \Sigma_{AA}^{-1} \Sigma_{AB} = \mathbf{Q}_{BB}^{-1}$$

- \triangleright Kriging: Let \mathbf{x}_A observations and \mathbf{x}_B to be predicted
 - prediction: a weighted average

• weights:
$$-\Sigma_{BA}\Sigma_{AA}^{-1} = \boldsymbol{Q}_{BB}^{-1}\boldsymbol{Q}_{BA}$$

Example with some locations

Exponential spatial correlation:

$$\rho(h) = \mathrm{e}^{-\frac{h}{\phi}}$$

▶ Kriginig weights, for $\phi = \{3\}$:

1	2	3	4	5	6
	0.4278			•	
0.0009	-0.0479	0.2724	0.1942	0.0657	0.4172

The Matérn covariance, Matérn (1960)

$$\Sigma_{ij} = \sigma^2 \frac{2^{1-\nu} K_{\nu}(\kappa \| \mathbf{s}_i - \mathbf{s}_j \|)}{\Gamma(\nu)(\kappa \| \mathbf{s}_i - \mathbf{s}_j \|)^{-\nu}}, \ \nu = 1: \ \text{Whittle (1954)}$$

$$\frac{1.0}{0.8}$$

$$0.8$$

$$0.8$$

$$0.9$$

$$0.9$$

$$0.0$$

$$0.0$$

$$0.13$$

Simulations, 1D, $\sigma^2 = 1$

SPDE framework

SPDE framework

- It avoids specifying covariance!
 - ► Simpson, Lindgren, and Rue (2011)
 - ► Simpson, Lindgren, and Rue (2012)

The Matérn's SPDE

- ▶ Whittle (1954), Whittle (1963):
 - ► Fields with Matérn covariance are solutions to the following Stochastic Partial Differential Equation (SPDE)

$$\tau(\kappa^2 - \Delta)^{\alpha/2}u(\mathbf{s}) = \mathcal{W}(\mathbf{s})$$

- $ightharpoonup \kappa > 0$: scale parameter
- $\sim \alpha = \nu + d/2$: smoothness
- $ightharpoonup \Delta$ is the Laplacian

$$\Delta = \sum_{i=1}^{d} \frac{\partial^2}{\partial s_i^2}$$

- Discretization
 - sparse precision matrix:
 - $\mathbf{Q}_{\alpha}(\tau,\kappa)$, for $\alpha \in \{1,2,...\}$.

- Discretization
 - sparse precision matrix:
 - $ightharpoonup \mathbf{Q}_{\alpha}(\tau,\kappa)$, for $\alpha \in \{1,2,...\}$.
- $\sim \alpha$

- Discretization
 - sparse precision matrix:
 - $ightharpoonup \mathbf{Q}_{\alpha}(\tau,\kappa)$, for $\alpha \in \{1,2,...\}$.
- \sim α

- $\qquad \qquad \alpha = 2, 3, 4, ...: \ \tau \mathbf{K}_1(\kappa) \mathbf{C}^{-1} \mathbf{K}_{\alpha 2}(\kappa) \mathbf{C}^{-1} \mathbf{K}_1(\kappa)$

- Discretization
 - sparse precision matrix:
 - **Q** $_{\alpha}(\tau,\kappa)$, for $\alpha \in \{1,2,...\}$.
- **▶** 0

- $\alpha = 2, 3, 4, ...$: $\tau \mathbf{K}_1(\kappa) \mathbf{C}^{-1} \mathbf{K}_{\alpha 2}(\kappa) \mathbf{C}^{-1} \mathbf{K}_1(\kappa)$
- ▶ Equivalent models (discretized): Whittle (1954), Besag (1974), Besag (1981), Besag and Kooperberg (1995) and Besag and Mondal (2005).

$\mathbf{Q}_{\alpha}(au,\kappa)$: grid and piecewise linear basis

•
$$\alpha = 1$$
: $\tau \mathbf{K}_1(\kappa) = \tau(\kappa^2 \mathbf{C} + \mathbf{G})$
• $d=1, u_1, u_2, ..., u_n$, two neighbours

$$au^2 egin{bmatrix} 1+\kappa^2 & -1 & & & & \ -1 & 2+\kappa^2 & -1 & & & \ & & \ddots & & \ & & -1 & 2+\kappa^2 & -1 \ & & & & -1 & 1+\kappa^2 \end{bmatrix}$$

$\mathbf{Q}_{\alpha}(\tau,\kappa)$: grid and piecewise linear basis

$$\alpha = 1: \ \tau \mathbf{K}_1(\kappa) = \tau(\kappa^2 \mathbf{C} + \mathbf{G})$$

$$\mathbf{d} = 1, \ u_1, u_2, ..., u_n, \text{ two neighbours}$$

$$\tau^2 \begin{bmatrix} 1+\kappa^2 & -1 \\ -1 & 2+\kappa^2 & -1 \\ & \ddots & \\ & -1 & 2+\kappa^2 & -1 \\ & & -1 & 1+\kappa^2 \end{bmatrix}$$

ightharpoonup d=2, $m {f C}={f I}$, $m {f G}={f Laplacian}$ (4 neighbours)

Piecewise linear basis, Finite Element Method (FEM): 1d

Piecewise linear basis, Finite Element Method (FEM): 1d

- $\mathbf{v}(\mathbf{s}) \approx \sum_{k=1}^{m} \psi_k(\mathbf{s}) u_k = \mathbf{A}(\mathbf{s}, \mathbf{s}_0) u(\mathbf{s}_0),$
 - ψ_k : basis functions evaluated at data locations **s**
 - \triangleright u_k : the process at the discretization points \mathbf{s}_0

Piecewise linear basis, Finite Element Method: 2d

- $\mathbf{v}(\mathbf{s}) \approx \sum_{k=1}^{m} \psi_k(\mathbf{s}) u_k = \mathbf{A}(\mathbf{s}, \mathbf{s}_0) u(\mathbf{s}_0),$
 - ψ_k : basis functions evaluated at data locations **s**
 - \triangleright u_k : the process at the discretization points \mathbf{s}_0

Piecewise linear basis, Finite Element Method: 2d

- $\mathbf{v}(\mathbf{s}) \approx \sum_{k=1}^m \psi_k(\mathbf{s}) u_k = \mathbf{A}(\mathbf{s}, \mathbf{s}_0) u(\mathbf{s}_0),$
 - $\blacktriangleright \psi_k$: basis functions evaluated at data locations **s**
 - \triangleright u_k : the process at the discretization points \mathbf{s}_0

Piecewise linear basis, FEM matrices

Piecewise linear basis, FEM matrices

References

- Besag, J. 1974. "Spatial Interaction and the Statistical Analysis of Lattice Systems." JRSS-B 36 (2): 192-236.
- ——. 1981. "On a System of Two-Dimensional Recurrence Equations." JRSS-B 43 (3): 302–9.
- Besag, J., and C. Kooperberg. 1995. "On Conditional and Intrinsic Autoregression." Biometrika 82 (4): 733-46.
- Besag, J., and D. Mondal. 2005. "First-Order Intrinsic Autoregressions and the de Wijs Process." Biometrika 92 (4): 909–20.
- Lindgren, F., H. Rue, and J. Lindström. 2011. "An Explicit Link Between Gaussian Fields and Gaussian Markov Random Fields: The Stochastic Partial Differential Equation Approach (with Discussion)." JRSS-B 73 (4): 423–98.
- Matérn, B. 1960. "Spatial Variation-Stochastic Models and Their Application to Some Problems in Forest Surveys and Other Sampling Investigations. Meddelanden Fran Statens Skogsforskningsintitut, Almaenna Foerlaget, Stockholm. (1986), 49 (5)." Springer, Berlin.
- Simpson, D., F. Lindgren, and H. Rue. 2011. "In Order to Make Spatial Statistics Computationally Feasible, We Need to Forget about the Covariance Function." *Environmetrics*, no. 23: 65–74. https://doi.org/ https://doi.org/10.1002/env.1137.
- 2012. "Think Continuous: Markovian Gaussian Models in Spatial Statistics." Spatial Statistics 1: 16–29. https://doi.org/http://dx.doi.org/10.1016/j.spasta.2012.02.003.
- Whittle, P. 1954. "On Stationary Processes in the Plane." Biometrika 41 (3/4): 434-49.
- ——. 1963. "Stochastic-Processes in Several Dimensions." Bulletin of the International Statistical Institute 40 (2): 974–94.