

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	A1	(11) International Publication Number:	WO 99/30610
A61B 5/00		(43) International Publication Date:	24 June 1999 (24.06.99)
(21) International Application Number:	(PCT/IL98/00608)		
(22) International Filing Date:	15 December 1998 (15.12.98)		
(30) Priority Data:	122602 15 December 1997 (15.12.97) IL		
(71) Applicant (for all designated States except US):	GIVEN IMAGING LTD. [IL/IL]; Building 7b, 20692 Yokneam Ilite (IL).		
(72) Inventors; and			
(75) Inventors/Applicants (for US only):	GAVRIEL, J., Iddan [IL/IL]; Einstein Street 44A, 34602 Haifa (IL). GAVRIEL, Meron [IL/IL]; Weizmann Street 21B, 49556 Petach Tikva (IL).		
(74) Agent:	EITAN, PEARL, LATZER & COHEN-ZEDEK; Gav Yam Center 2, Shenkar Street 7, 46725 Herzlia (IL).		
(54) Title:	ENERGY MANAGEMENT OF A VIDEO CAPSULE		

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(57) Abstract

An energy saving device for acquiring *in vivo* images of the gastro-intestinal tract is provided. The device, such as an autonomous capsule (10), includes at least one imaging unit (12), a control unit (14) connected to the imaging unit, and a power supply (24) connected to the control unit. The control unit includes a switching unit (18, 20), and an axial motion detector (22) connected to the switching unit. The axial motion detector detects the axial movement of the device and if the axial acceleration is below a pre-determined threshold, disconnects the power supply thereby preventing the acquisition of redundant images.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

ENERGY MANAGEMENT OF A VIDEO CAPSULE

FIELD OF THE INVENTION

The present invention concerns a management system for controlling the energy expenditure of autonomous video capsules. More specifically, the invention
5 is in the field of internal medical inspection of the gastro-intestinal tract.

BACKGROUND OF THE INVENTION

Endoscopic inspection is a common practice in the medical diagnosis of gastro-intestinal (G.I.) diseases. The video camera used for identifying observable irregularities of the internal lining of the G.I. tract is installed within an endoscope
10 and progressive scenes are observed by pushing the endoscope inside the tract. The endoscope is a tubular device typically containing either a camera with the associated electric circuits or a fiber-optic image guide. It also includes a light source or a light guide, and an electrical conductor for accepting signals and/or supplying energy. Because the movement of the endoscope head along the G.I.
15 tract is brought about by a pushing action, the mechanical impact associated with such application of force become especially adverse as soon as the head of the endoscope enters a bend. In such bends, the movement of the endoscope is greatly impeded, risking the G.I. tract walls, which are susceptible to perforation,
20 and limiting the method of endoscopic inspection to non-convoluted regions of the G.I. tract.

An *in-vivo* autonomous video capsule, described in US Patent 5,604,531 whose disclosure is incorporated herein by reference, moves along the G.I. tract by virtue of the natural squeezing action of the tract's walls, thus overcoming the

risk of the pushing action, and, in addition, offering a more convenient method of administering the camera. An additional benefit of the capsule is avoiding the cumbersome aspects of connecting the intestines of the patient to external appliances. Via the autonomous capsule, images of the gastro-intestinal tract are obtained without physical connections being made to an energy source or an information drain. An internal power supply energizes the capsule and supports the illumination, image acquisition and radio transmission of the information to an external receiver. Because of the considerable length of the G.I. tract, many images have to be acquired in order to cover the entire length of the tract, this amount of data may be augmented by redundant images of the same site which are acquired when the capsule stops moving or is only barely doing so. Such a task consumes a substantial amount of energy, thus potentially becoming a limiting factor in respect of quality and quantity of the set of images collected in a single inspection. An additional drawback connected with redundancy of images of a G.I. tract is the effectivity of analysis stage. Once the entire sequence of images is presented to the analyzing physician, a lengthy process of finding the potential sites of interest ensues. Any redundancy existing in such a sequence of images poses a disturbance to analysis procedure.

SUMMARY OF THE PRESENT INVENTION

It is an object of the present invention to provide a device to be incorporated in an autonomous capsule, used for the inspection of the G.I. tract, which minimizes energy expenditure of the imaging unit of the capsule.

5 In accordance with a preferred embodiment of the invention, the capsule which obtains *in vivo* images of the G.I. tract internally, includes at least one imaging unit; a control unit connected to the imaging unit and a power supply connected to the control unit. The control unit includes a switching unit and an axial motion detector connected to the switching unit. The axial motion detector
10 detects the axial movement of the device and if the axial acceleration is below a pre-determined threshold, disconnects the power supply thereby preventing the acquisition of redundant images.

Furthermore, in accordance with a preferred embodiment of the invention, the axial motion detector includes an accelerometer, an amplifier connected to the
15 accelerometer, for amplifying the signal from the accelerometer and an analyzer connected to the amplifier, for analyzing the amplified signal. The analyzer includes a comparator for comparing the analyzed signal with a pre-determined threshold.

In addition, in accordance with a preferred embodiment of the invention, a
20 method for reducing redundant image acquisition of the internal gastro-intestinal tract by an imaging unit residing within a capsule within the tract is provided. The method includes the steps of:

detecting the axial motion of the capsule; and

if the detected motion is below a pre-determined threshold, disconnecting the imaging unit.

Furthermore, in accordance with a preferred embodiment of the invention, the method further include a the step of reconnecting the imaging unit if the
5 detected motion is above the pre-determined threshold.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood and appreciated more fully from the following detailed description taken in conjunction with the appended drawings in which:

5 Fig. 1 is a schematic block diagram illustration of the structure of a motile video camera residing inside an autonomous capsule.

Fig. 2 is a schematic block diagram illustration showing with details the imaging and the control unit which regulates its power consumption.

10 Fig. 3 is a block diagram illustration showing in detail the components of the motion detector which initiates the sequence of events leading the changes in the switching status of the energy supply.

Fig. 4 is an illustration showing the positioning of the autonomous capsule within the G.I. tract.

DETAILED DESCRIPTION OF THE INVENTION

Reference is now made to Fig. 1, which shows the schematic structure of an autonomous capsule 10 containing a control unit 14 for controlling energy flow from a power supply 24 to the major power consumer in the capsule which is an imaging unit 12. Minor power consumers 13 are not subjected to the intervention of unit 14. The power supply 24 of the autonomous capsule, is therefore connected to the imaging unit 12 indirectly, thus subjecting the flow of energy to the control exerted by the control unit 14. The autonomous capsule, containing its own limited supply of energy, travels the entire length of the G.I. tract acquiring a potentially large amount of images on the entire length of the tract. Therefore the present invention minimizes the amount of energy consumed consistent with the acquisition of as much valuable information as possible.

Fig. 2, to which reference is now made, shows among other units, the details of the control unit 14 and imaging unit 12. Other embodiments, providing the same energy economizing effect, are included in the present invention.

Unit 14 comprises an axial motion detector 22, a switch driver 20, and an on/of switch 18. The axial motion detector 22 detects the movement changes of the capsule and extracts the axial movement component of the capsule. If the conditions of a prescribed decision rule have been met, an actuation command is sent to switch driver 20. That is, the switching unit 18 either connects or disconnects the power supply 24. The imaging unit comprises three major power consumers, namely radio transmitter 27, illuminator (light emitter) 26, and camera assembly 25. Power distributor 16 controls the supply to these consumers.

Fig. 3, to which reference is now being made, is a detailed schematic illustration of the axial motion detector 22. The detector 22 comprises an axial accelerometer 30, which is connected to an amplifier 32 for amplifying the signal. The enhanced signal is processed by an axial acceleration analyzer 34. The value 5 provided by this analyzer is sent to a threshold acceleration comparator 36 which passes information to the switch driver 20.

The linear accelerometer 30 is selectively sensitive to accelerations in the axial direction of the body of the accelerometer. It therefore has to be physically aligned with the motion axis of the capsule.

10 The procedure may be described as follows: The output signal from the accelerometer 30 is first amplified by unit 32, and then provided to analyzer 34 which determines the actual axial acceleration. Comparator 36 compares the acceleration value to a predetermined threshold value and decides whether to change the switch. Thus, upon deceleration of the capsule relative to the G.I. tract, 15 the axial accelerometer would indicate a negative acceleration. The magnitude of the signal is analyzed by unit 34 and a threshold comparison is performed by comparator 36. If the input is above the threshold value, the power supply is disconnected via a command from driver 20.

Similarly, if a dormant capsule suddenly starts moving, the signal provided 20 by the accelerometer 30 is analyzed and compared to the threshold figure. If the value indicates, the power supply is reconnected to re-activate the imaging unit 12.

The alignment of the motion axis of the capsule is illustrated in Fig. 4, which shows some of the structures of the capsule 10. The capsule 10 moves along the contracted void 52 of the G.I. tract 56 by the squeezing action

of the walls 50 of the G.I. tract. This causes the longitudinal axis (referenced 54) of the capsule to align along the local axis 60 of the G.I. tract. In order for the axial accelerometer 30 to detect the progressive motion within the G.I. tract, its longitudinal axis, referenced 56, must be aligned in parallel with the longitudinally overlapping axes (54, 60) of the capsule and the G.I. tract, respectively.

False alarms arising from body movements having a component in the axial direction of the capsule could also actuate an otherwise dormant capsule, if the signal amplitude is above a predefined threshold occurs. In an alternative embodiment, in order to detect such body movements, an external detector can be employed in addition to the internal accelerometer of the capsule.

It will be appreciated by persons skilled in the art that the present invention is not limited by what has been particularly shown and described herein above. Rather the scope of the invention is defined by the claims which follow:

CLAIMS

1. A device for acquiring *in vivo* images of the gastro-intestinal tract, said images forming a sequence of electronic scenes, said device comprising:

at least one imaging unit;

5 a control unit connected to said at least one imaging unit, said control unit comprising:

a switching unit; and

an axial motion detector connected to said switching unit; and

a power supply connected to said control unit;

10 wherein said axial motion detector detects the axial movement of the device and if the axial acceleration is below a pre-determined threshold, disconnects said power supply thereby preventing the acquisition of redundant images.

2. A device according to claim 1 wherein said axial motion detector

15 comprises:

an accelerometer;

an amplifier connected to said accelerometer, for amplifying said signal from said accelerometer;

20 an analyzer connected to said amplifier, for analyzing said amplified signal.

3. A device according to claim 2 wherein said analyzer comprises a comparator for comparing said analyzed signal with said pre-determined threshold.

4. A method for reducing redundant image acquisition of the internal gastro-intestinal tract by an imaging unit residing within a capsule within said tract, the method comprising the steps of:

5 detecting the axial motion of said capsule; and

 if said detected motion is below a pre-determined threshold,
 disconnecting said imaging unit.

5. A method according to claim 4 further comprising the step of
reconnecting said imaging unit if said detected motion is above said
10 pre-determined threshold.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

INTERNATIONAL SEARCH REPORT

International application No.

PCT/IL98/00608

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : A61B 5/00

US CL : 455/66, 100; 348/76; 600/109, 407, 476

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 600/109, 407, 476; 348/76; 455/66, 95, 100

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A, P	US 5,819,736 A (AVNY et al) 13 October 1998, entire document.	1, 4

 Further documents are listed in the continuation of Box C. See patent family annex.

-	Special categories of cited documents	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A"	document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E"	earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason as specified	"&"	document member of the same patent family
"O"	document referring to an oral disclosure, use, exhibition or other means		
"P"	document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

Date of mailing of the international search report

22 APRIL 1999

20 MAY 1999

Name and mailing address of the ISA, US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

RUTH S. SMITH

Telephone No. (703) 308-3063