

Continuum mechanics and fluid-structure interaction problems: mathematical modelling and numerical approximation

deal.II LAB — Error, hanging nodes, boundary conditions

Luca Heltai < luca.heltai@sissa.it >

International School for Advanced Studies (<u>www.sissa.it</u>)
Mathematical Analysis, Modeling, and Applications (<u>math.sissa.it</u>)
Master in High Performance Computing (<u>www.mhpc.it</u>)
SISSA mathLab (<u>mathlab.sissa.it</u>)
King Abdullah University of Science and Technology (<u>kaust.edu.sa</u>)

How to measure the Error?

- Method of Manufactured Solutions
 - Take the "u" you want as a solution, plug in the equations, get the boundary conditions and the right hand side that force the given "u"
 - Integrate (with a fine quadrature formula) the difference between the exact solution and the computed one (VectorTools::integrate_difference, or helper classes)
 - Possibly integrate the difference between the gradients of the exact and computed solutions

Error Estimates

Local Estimate:

$$\|u - \Pi u\|_{s,T_m} \lesssim \rho_m^{-s} h_m^{k+1} \|u\|_{k+1,T_m}$$

Global Estimate (for quasi uniform triangulations):

$$\sum_{m} \left(\left\| u - \Pi u \right\|_{s, T_{m}} \right) \lesssim h^{k+1-s} \left\| u \right\|_{k+1, \Omega}$$

Error Estimates

Local Estimate:

$$\|u - \Pi u\|_{s,T_m} \lesssim \rho_m^{-s} h_m^{k+1} \|u\|_{k+1,T_m}$$

If
$$V_h \subset H^s(\Omega)$$

$$||u - \Pi u||_{s,\Omega} \lesssim h^{k+1-s} |u|_{k+1,\Omega}$$

To Reduce the Error:

- Globally, the error is dominated by *largest* element of the mesh and the $H^{k+1}(\Omega)$ norm of the exact solution
 - Reduce the overall size of the mesh h (global refinement), when we don't know the $H^{k+1}(\Omega)$ norm of the exact solution
 - Reduce the size of the elements where the solution has large $H^{k+1}(\Omega)$ norm, or where we estimate that $H^{k+1}(\Omega)$ norm of the solution would be large (**local refinement**)

Estimate the rate of convergence

- Once you have computed the error, how do we measure if we get the correct convergence ratio?
- Consider Poisson Problem. $V := H^1(\Omega)$

$$\| u - u_h \|_{1} \lesssim \| u - \Pi u \|_{1} \lesssim h^{1} |u|_{2,\Omega}$$

$$\| u - \Pi u \|_{0} \lesssim h^{2} |u|_{2,\Omega}$$

Note: one needs to prove that we can use u_h in the last estimate!

In Estimate the rate of convergence

 Compute two successive solutions, on half the size of the mesh (i.e., after one global refinement):

Back to C++

- Today's program:
 - Poisson for general coefficients, boundary data, and rhs
 - Work on successively refined grids
 - Estimate $L^2(\Omega)$ and $H^1(\Omega)$ errors

The devil is in the details: boundary conditions and constraints??

Poisson problem revisited

Homogeneous Dirichlet case, constant coefficient equal to 1:

$$-\Delta u = f \qquad \text{in } \Omega$$

$$u = 0 \qquad \text{on } \partial \Omega$$

 $\gamma_{\Gamma}: H^1(\Omega) \mapsto H^{\frac{1}{2}}(\Gamma)$ Trace operator

$$V := H_0^1(\Omega) := \{ v \mid v \in L^2(\Omega), \nabla v \in L^2(\Omega), \gamma_{\partial\Omega} v = 0 \}$$

Weak form: given $f \in V^*$, find $u \in V$ such that

$$(\nabla u, \nabla v) = (f, v) \qquad \forall v \in V$$

Poisson problem revisited

Non-homogeneous Dirichlet case, constant coefficient equal to 1:

$$-\Delta u = f \qquad \text{in } \Omega$$

$$u = g \qquad \text{on } \partial \Omega$$

$$\begin{split} V_0 &:= H_0^1(\Omega) := \{ v \,|\, v \in L^2(\Omega), \, \nabla v \in L^2(\Omega), \, \gamma_{\partial\Omega} v = 0 \} \\ V_g &:= V_0 + u_D \quad \text{Where } \gamma_{\partial\Omega} u_D = g \end{split}$$

Weak form: given $f \in V^*$, find $u \in V_g$ such that

$$(\nabla u, \nabla v) = (f, v)$$

$$\forall v \in V_0$$

Poisson problem revisited

Mixed boundary conditions, non-constant coefficients

$$-\nabla \cdot (a \nabla u) = f$$
 in Ω $u = g_D$ on Γ_D $n \cdot (a \nabla u) = g_N$ on Γ_N

$$\begin{split} V_{0,\Gamma_D} &:= H_0^1(\Omega) := \{ v \,|\, v \in L^2(\Omega), \, \nabla v \in L^2(\Omega), \, \gamma_{\Gamma_D} v = 0 \} \\ V_{g_D,\Gamma_D} &:= V_{0,\Gamma_D} + u_D \qquad \text{Where } \gamma_{\Gamma_D} u_D = g_D \end{split}$$

Weak form: given $f \in V_{0,\Gamma_D}^*$, find $u \in V_{g_D,\Gamma_D}$ such that

$$(a \nabla u, \nabla v) = (f, v) + \int_{\Gamma_N} g_N v$$

Trial spaces VS test spaces

$$V_{0,\Gamma_D} := H_0^1(\Omega) := \{ v \mid v \in L^2(\Omega), \nabla v \in L^2(\Omega), \gamma_{\Gamma_D} v = 0 \}$$

$$V_{g_D,\Gamma_D} := V_{0,\Gamma_D} + u_D$$

$$V_{g_D,\Gamma_D}:=V_{0,\Gamma_D}+u_D$$
 Where $\gamma_{\Gamma_D}u_D=g_D$

Weak form: given $f \in V_{0,\Gamma_D}^*$, find $u \in V_{g_D,\Gamma_D}$ such that

$$(a \nabla u, \nabla v) = (f, v) + \int_{\Gamma_N} g_N v \qquad \forall v \in V_{0, \Gamma_D}$$

CANNOT apply Lax-Milgram: $V_{0,\Gamma_D} \neq V_{g_D,\Gamma_D}$

Trial spaces VS test spaces

$$\begin{split} V_{0,\Gamma_D} &:= H_0^1(\Omega) := \{ v \,|\, v \in L^2(\Omega), \, \nabla v \in L^2(\Omega), \, \gamma_{\Gamma_D} v = 0 \} \\ V_{g_D,\Gamma_D} &:= V_{0,\Gamma_D} + u_D \end{split} \qquad \text{Where } \gamma_{\Gamma_D} u_D = g_D \end{split}$$

Weak form: given $f \in V_{0,\Gamma_D}^*$, find $u_0 \in V_{0,\Gamma_D}$ such that

$$(a \nabla u_0, \nabla v) = (f, v) + \int_{\Gamma_N} (g_N - n \cdot (a \nabla u_D))v - (a \nabla u_D, \nabla v) \qquad \forall v \in V_{0, \Gamma_D}$$

Write $u = u_0 + u_D$ (now we can apply Lax-Milgram)

How to implement $V_{g_D,\Gamma_D},\,V_{0,\Gamma_D}$?

- Option 1 (not implemented in deal.II): encode in DoFHandler (n_dofs of $H^1_{0,\Gamma_D}(\Omega) <$ n_dofs of $H^1(\Omega)$) and in basis functions (i.e., $\gamma_{\Gamma_D} v_i = 0 \quad \forall v_i \in V_h$)
- Option 2 (Penalty methods, Lagrange multipliers): impose boundary conditions weakly (maybe later in this course)
- Option 3 (Algebraic approach: strong imposition): post-process Linear systems, solution vectors, and rhs vectors to set to g_D degrees of freedom with support points on Γ_D

Algebraic approach

• Main idea: assemble matrix $\tilde{A}_{ii} := (a \nabla v_i, \nabla v_i)$

$$\tilde{A}_{ij} := (a \nabla v_j, \nabla v_i)$$

and right-hand-side

$$\tilde{F}_i := (f, v_i) + \int_{\Gamma_N} g_N v_i$$

split dofs

$$u = \begin{pmatrix} u_{\Omega \cup \Gamma_N} \equiv u_O \\ u_C \end{pmatrix} \qquad \tilde{F} = \begin{pmatrix} F_O \\ F_C \end{pmatrix}$$

$$ilde{F} = egin{pmatrix} F_O \\ F_C \end{pmatrix}$$

and matrix

$$\tilde{A} = \begin{pmatrix} A_{OO} & A_{OC} \\ A_{CO} & A_{CC} \end{pmatrix}$$

where "C" stands for "constrained"

Mimic continuous approach

• compute g_D , using VectorTools::interpolate_boundary_values

eliminate row "C" from \tilde{A} , and set rhs $\tilde{F}_C \mapsto g_D$:

$$\begin{pmatrix} A_{OO} & A_{OC} \\ 0 & I_{CC} \end{pmatrix} \begin{pmatrix} u_O \\ u_D \end{pmatrix} = \begin{pmatrix} \tilde{F}_O \\ g_D \end{pmatrix}$$

"move" $A_{{\cal O}{\cal C}}$ to rhs to restore symmetry in matrix:

$$\begin{pmatrix} A_{OO} & 0 \\ 0 & I_{CC} \end{pmatrix} \begin{pmatrix} u_O \\ u_D \end{pmatrix} = \begin{pmatrix} \tilde{F}_O - A_{OC} g_D \\ g_D \end{pmatrix}$$

rescale I_{CC} for conditioning:

$$\begin{pmatrix} A_{OO} & 0 \\ 0 & \alpha I_{CC} \end{pmatrix} \begin{pmatrix} u_O \\ u_D \end{pmatrix} = \begin{pmatrix} \tilde{F}_O - A_{OC} g_D \\ \alpha g_D \end{pmatrix}$$

MatrixTools::apply_boundary_values

$$\tilde{A} \mapsto \begin{pmatrix} A_{OO} & 0 \\ 0 & \alpha I_{CC} \end{pmatrix} \qquad u \mapsto \begin{pmatrix} u_O \\ u_D \end{pmatrix} \qquad \tilde{F} \mapsto \begin{pmatrix} \tilde{F}_O - A_{OC} g_D \\ \alpha g_D \end{pmatrix}$$

$$u \mapsto \begin{pmatrix} u_O \\ u_D \end{pmatrix}$$

$$ilde{F} \mapsto \begin{pmatrix} ilde{F}_O - A_{OC} g_D \\ lpha g_D \end{pmatrix}$$

Special case of AffineConstraints

- General case: constrained dofs are a subset of all dofs $\mathcal{N}_{C} \subset \mathcal{N}$

AffineConstraints:
$$x_i = \sum_{j \in \mathcal{N} \setminus \mathcal{N}_C} C_{ij} x_j + b_i \qquad \forall i \in \mathcal{N}_C$$

- Algebraic solution can be performed efficiently as a three-step process:
 - Condense
 - Solve
 - Distribute (only needed if $C \neq 0$)

Condense-Solve-Distribute

Given,
$$\tilde{A}=\begin{pmatrix}A_{OO}&A_{OC}\\A_{CO}&A_{CC}\end{pmatrix}$$
 , $\tilde{F}=\begin{pmatrix}F_O\\F_C\end{pmatrix}$, and constraints $u_C=Cu_O+b$

- $A_{OO}u_O + A_{OC}u_C = (A_{OO} + A_{OC}C)u_O + A_{OC}b = F_O$ Take constraints into accounts in "O":
- Ignore rows "C" in matrix and rhs and solve Au = F where

$$\tilde{A} = \begin{pmatrix} A_{OO} & A_{OC} \\ A_{CO} & A_{CC} \end{pmatrix} \mapsto A = \begin{pmatrix} A_{OO} + A_{OC}C & 0 \\ 0 & \alpha I_{CC} \end{pmatrix}$$

$$\tilde{F} = \begin{pmatrix} F_O \\ F_C \end{pmatrix} \mapsto F = \begin{pmatrix} F_O - A_{OC}b \\ \alpha b \end{pmatrix}$$

Distribute constraints: $u = \begin{pmatrix} u_O \\ 1 \end{pmatrix} \mapsto u = \begin{pmatrix} u_O \\ Cu \end{pmatrix} h$

Hanging nodes

Discontinuous FE space!

Not a subspace of H^1

Bilinear forms would require special treatment as gradients are not defined everywhere $N_0(\mathbf{x})$:

 $N_2(\mathbf{x})$:

 $N_{12}(\mathbf{x})$:

Solution: introduce constraints to require continuity!

Hanging nodes

Use standard (possibly globally discontinuous) shape functions, but require continuity of their linear combination

$$\mathcal{S}^h = \{ u^h = \sum u_i N_i(\mathbf{x}) : u^h(\mathbf{x}) \in C^0 \}$$

Note, that we encounter discontinuities along edges 0-12-2 and 2-13-4.

We can make the function continuous by making it continuous at vertices 12 and 13:

$$u_{12} = \frac{1}{2}u_0 + \frac{1}{2}u_2$$

$$u_{13} = \frac{1}{2}u_2 + \frac{1}{2}u_4$$

define a subset of all DoFs to be constrained

$$\mathcal{N}_{C} \subset \mathcal{N}$$

The general form:

similar constraints arise from
boundary conditions (normal/
tangential component) of historial Centre
for Theoretical Physics
adaptive FE

Condensed shape functions

The alternative viewpoint is to construct a set of conforming shape functions:

$$\widetilde{N}_2 := N_2 + \frac{1}{2}N_{13} + \frac{1}{2}N_{12}$$

$$\mathcal{S}^h = \{ u^h = \sum_{i \in \mathcal{N}/\mathcal{N}_c} u_i \widetilde{N}_i(\mathbf{x}) \}$$

$$[\boldsymbol{K}]_{ij} = \begin{cases} a(\widetilde{N}_i, \widetilde{N}_j) & \text{if } i \in \mathcal{N} \setminus \mathcal{N}_c \text{ and } j \in \mathcal{N} \setminus \mathcal{N}_c \\ 1 & \text{if } i \equiv j \text{ and } j \in \mathcal{N}_c \\ 0 & \text{otherwise} \end{cases}$$

$$[\boldsymbol{F}]_i = \begin{cases} (f, \widetilde{N}_i) & \text{if } i \in \mathcal{N} \setminus \mathcal{N}_c \\ 0 & \text{otherwise} \end{cases}$$

The beauty of the approach is that we can assemble local matrix and RHS as usual and then obtain condensed forms in a separate step, i.e

$$\left[\mathbf{F}\right]_{i} = (f, \widetilde{N}_{i}) = (f, N_{i} + \sum_{i \in \mathcal{N}} c_{ji} N_{j}) =$$

Using constraints:

- The beauty of the FEM is that we do exactly the same thing on every cell
- In other words: assembly on cells with hanging nodes should work exactly as on cells without

Approach 1:

$$\widetilde{\mathcal{S}}^h = \{ u^h = \sum_i u_i N_i(x) \}$$

this is not a continuous space, but we may still use it as an intermediate step for matrices!

$$S^h = \{ u^h = \sum_{i} u_i N_i(x) : u^h(x) \in C^0 \}$$

Step I: Build matrix/rhs K, F with all DoFs as if there were no constraints.

Step 2: Modify \widetilde{K} , \widetilde{F} to get K, F

i.e. eliminate the rows and columns of the matrix that correspond to constrained degrees of freedom

Step 3: Solve $\mathbf{K} \cdot \mathbf{u} = \mathbf{F}$

Step 4: Fill in the constrained components of **u**to use S for evaluation of the field.

جامعة الملك عبدالله

Approach 1 (example):

$$\begin{bmatrix} u_{12} \\ u_{13} \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0 & 0.5 & 0.5 \end{bmatrix} \begin{bmatrix} u_0 \\ u_2 \\ u_4 \end{bmatrix}$$

```
13
Number of active cells: 7
Number of degrees of freedom: 14
========= constraints =========
   12 0: 0.5
   12 2: 0.5
   13 2: 0.5
   13 4: 0.5
========= un-condensed ===========
                                                                                                                                    0
========= matrix ==========
                                                                                                                     -3.333e-01 -1.667e-01
1.333e+00 -1.667e-01 -1.667e-01 -3.333e-01 0.000e+00
                                                                                                -1.667e-01
-1.667e-01 6.667e-01 -3.333e-01 -1.667e-01
-1.667e-01 -3.333e-01 2.667e+00 -3.333e-01 -1.667e-01 -3.333e-01 -3.333e-01 -3.333e-01
                                                                                                 0.000e+00 0.000e+00 -3.333e-01 -1.667e-01 -1.667e-01
-3.333e-01 -1.667e-01 -3.333e-01 1.333e+00
                                                                -3.333e-01 -1.667e-01
                                                                                                           -1.667e-01 -3.333e-01
 0.000e+00
                     -1.667e-01
                                           1.333e+00 -1.667e-01 -3.333e-01
                                                                                                                                           -1.667e-01
                     -3.333e-01
                                          -1.667e-01 6.667e-01 -1.667e-01
                     -3.333e-01 -3.333e-01 -3.333e-01 -1.667e-01 1.333e+00 -1.667e-01
                     -3.333e-01 -1.667e-01
                                                                -1.667e-01 6.667e-01
                                                                                      6.667e-01 -1.667e-01 -1.667e-01 -3.333e-01
-1.667e-01
                      0.000e+00
                                                                                     -1.667e-01 1.333e+00 -3.333e-01 -3.333e-01 -3.333e-01
                                          -1.667e-01
                      0.000e+00
                                                                                     -1.667e-01 -3.333e-01 1.333e+00 -3.333e-01
                                                                                                                                           -3.333e-01
                                          -3.333e-01
-3.333e-01
                     -3.333e-01
                                                                                     -3.333e-01 -3.333e-01 -3.333e-01 2.667e+00 -3.333e-01 -3.333e-01
-1.667e-01
                     -1.667e-01
                                                                                                -3.333e-01
                                                                                                                     -3.333e-01 1.333e+00 -3.333e-01
                     -1.667e-01
                                          -1.667e-01
                                                                                                           -3.333e-01 -3.333e-01 -3.333e-01 1.333e+00
```

	====== con	densed =======	======									
	====== ma	trix =======	======							r		
	1.500e+00 -1.667e-0	1 -8.333e-02 -3.3	333e-01 -8.333e-02					-3.333e-01		-5.000e-01	0.000e+00	!
	-1.667e-01 6.667e-0	1 -3.333e-01 -1.6	667e-01							i		i
	-8.333e-02 -3.333e-0	1 2.833e+00 -3.3	333e-01 -8.333e-02	-3.333e-01	-3.333e-01	-3.333e-01		-1.667e-01	-1.667e-01	-6.667e-01	0.000e+00	0.000e+00
	-3.333e-01 -1.667e-0	1 -3.333e-01 1.3	333e+00		-3.333e-01	-1.667e-01						i
	-8.333e-02	-8.333e-02	1.500e+00	-1.667e-01	-3.333e-01				-3.333e-01	-5.000e-01		0.000e+00
		-3.333e-01	-1.667e-01	6.667e-01	-1.667e-01					i		i
		-3.333e-01 -3.3	333e-01 -3.333e-01	-1.667e-01	1.333e+00	-1.667e-01				I		!
عبدالله		-3.333e-01 -1.6	667e-01		-1.667e-01	6.667e-01				i		i
							6.667e-01	-1.667e-01	-1.667e-01	-3.333e-01		1
،التقنية	-3.333e-01	-1.667e-01					-1.667e-01	1.333e+00	-3.333e-01	-3.333e-01	0.000e+00	/
Vina Abd		-1.667e-01	-3.333e-01				-1.667e-01	-3.333e-01	1.333e+00	-3.333e-01		0.000e+00
King Abd	-5.000e-01	-6.667e-01	-5.000e-01				-3.333e-01	-3.333e-01	-3.333e-01	2.667e+00	0.000e+00	0.000e+00
Science a	0.000e+00	0.000e+00						0.000e+00		0.000e+00	1.333e+00	0.000e+00

0.000e+00

0.000e+00

0.000e+00 0.000e+00 0.000e+00 1.333e+00

Approach 2:

$$\widetilde{\mathcal{S}}^h = \{ u^h = \sum_i u_i N_i(x) \}$$

$$S^h = \{ u^h = \sum_{i} u_i N_i(x) : u^h(x) \in C^0 \}$$

Step I: Build local matrix/rhs $\widetilde{\mathbf{K}}_K$, $\widetilde{\mathbf{F}}_K$ with all DoFs as if there were no constraints.

Step 2: Apply constraints during assembly operation (local-to-global) $\mathbf{K}_K, \mathbf{F}_K$

Step 3: Solve $\mathbf{K} \cdot \mathbf{u} = \mathbf{F}$

Step 4: Fill in the constrained components of uto use single S for evaluation of the field.

Approach 2 (example):

```
\begin{bmatrix} u_{12} \\ u_{13} \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0 & 0.5 & 0.5 \end{bmatrix} \begin{bmatrix} u_0 \\ u_2 \\ u_4 \end{bmatrix}
```

```
Number of active cells: 7
     Number of degrees of freedom: 14
      ========= constraints ==========
         12 0: 0.5
         12 2: 0.5
         13 2: 0.5
      ========= condensed ==========
      ========== matrix ===========
      1.500e+00 -1.667e-01 -8.333e-02 -3.333e-01 -8.333e-02
                                                                                                    -3.333e-01
                                                                                                                         -5.000e-01 0.000e+00
      -1.667e-01 6.667e-01 -3.333e-01 -1.667e-01
     -8.333e-02 -3.333e-01 2.833e+00 -3.333e-01 -8.333e-02 -3.333e-01 -3.333e-01 -3.333e-01
                                                                                                    -1.667e-01 -1.667e-01 -6.667e-01 0.000e+00
      -3.333e-01 -1.667e-01 -3.333e-01 1.333e+00
                                                                     -3.333e-01 -1.667e-01
                                                1.500e+00 -1.667e-01 -3.333e-01
      -8.333e-02
                           -8.333e-02
                                                                                                               -3.333e-01 -5.000e-01
                                                                                                                                               0.000e+00
                          -3.333e-01
                                               -1.667e-01 6.667e-01 -1.667e-01
                           -3.333e-01 -3.333e-01 -3.333e-01 -1.667e-01 1.333e+00 -1.667e-01
                           -3.333e-01 -1.667e-01
                                                                     -1.667e-01 6.667e-01
                                                                                           6.667e-01 -1.667e-01 -1.667e-01 -3.333e-01
-1.667e-01
                                                                                          -1.667e-01 1.333e+00 -3.333e-01 -3.333e-01 0.000e+00
                           -1.667e-01
                                                                                          -1.667e-01 -3.333e-01 1.333e+00 -3.333e-01
                                                -3.333e-01
                                                                                                                                               0.000e+00
                           -6.667e-01
                                                                                          -3.333e-01 -3.333e-01 -3.333e-01 2.667e+00 0.000e+00 0.000e+00 ol Centre
                                                -5.000e-01
King A 0.000e+00
                                                                                                                                              0.000e+00 ical Physics
                                                                                                                          0.000e+00 1.333e+00
                            0.000e+00
                                                                                                     0.000e+00
                                                0.000e+00
                                                                                                                0.000e+00 0.000e+00 0.000e+00 1.333e+00
                            0.000e+00
Scienc
```


Applying constraints: the AffineConstraints class

- This class is used for
 - Hanging nodes
 - Dirichlet and periodic constraints
 - Other constraints
- Linear constraints of the the form $u_C = Cu_O + b$

Applying constraints: the AffineConstraints class

- System setup
 - Hanging node constraints created using
 DoFTools::make_hanging_node_constraints()
 - Will also use for boundary values from now on:
 VectorTools::interpolate_boundary_values(..., constraints);
 - Need different SparsityPattern creator DoFTools::make_sparsity_pattern (..., constraints, ...)
 - Can remove constraints from linear system
 DoFTools::make_sparsity_pattern (..., constraints,
 / *keep constrained dofs = * / false)
 - Sort, rearrange, optimise constraints constraints.close()

Applying constraints: the AffineConstraints class

- Assembly
 - Assemble local matrix and vector as normal
 - Eliminate while transferring to global matrix:
 constraints.distribute_local_to_global (
 cell_matrix, cell_rhs,
 local_dof_indices,
 system_matrix, system_rhs);
 - Solve and then set all constraint values correctly: ConstraintMatrix::distribute(...)

