EnsembleCAM: Unified Visualization for Explainable Cervical Cancer Identification

International Conference on Smart Computing & Systems Engineering 2024

NISHAANTHINI GNANAVEL

Introduction

Cervical cancer ranks as the

4th

most prevalent cancer among women [1].

In 2020, an estimated

341,831

women worldwide died

from cervical cancer [1].

Incidence rates of cervical cancer dropped by more than

50%

from the mid-1970s
to the mid-2000s
due in part to an increase in
screening [1.]

Background

- Conventional Screening Methods:
 - ☐ Pap Smear Test
 - ☐ Liquid Based Cytology
- Limitations:
 - ☐ Time-consuming and laborious.
 - Prone to subjectivity causing unclear target boundaries [2].
 - A chance of 1 case to be missed in every 10 to 15 positive cases [3].

Motivation - Why XAI?

Motivation - Why EnsembleCAM?

Novelty

• EnsembleCAM, a median-based ensemble method that combines five existing CAMs applied on a cervical cell classification model.

• Qualitative evaluation of heatmaps generated by the individual CAMs and EnsembleCAM.

Systematic quantitative evaluation of CAM methods and EnsembleCAM.

Related Studies - CAMs

Related Studies - GradCAM & GradCAM++

• GradCAM [4]

Related Studies - LayerCAM & Eigen-CAM

• LayerCAM [7]

• Eigen-CAM [8]

Related Studies - ScoreCAM

• ScoreCAM [9]

Related Studies - Augmenting / Combining CAMs

Study	Base CAM Methods	Augmentation / Combination Technique
Gao et a. [10]	GradCAM++	 Combined activation maps of geometrically augmented images. Bilinear interpolation to enhance saliency map resolution.
Ornek et al. [11]	-	Novel method using PCA to select main convolutions in the last convolutional layer.
Ornek et al. [12]	GradCAM GradCAM++ LayerCAM Eigen-CAM	 Normalized outputs from the base CAMs are summed. Values greater than the fixed threshold of 2 are retained.
Kaczmarek [13]	GradCAM GradCAM++ LayerCAM and 8 more	 Extensive experimentation to select the best CAMs. Normalized outputs from the selected CAMs are summed. Adaptive thresholding based on ROAD.

Methodology

Process Overview Data Preprocessing Image Preprocessing Median filter **Input Data** Histogram equalization and **Supervised Binary** normalization Herlev Dataset [14] Classification **Image Augmentation** XceptionNet [15] **Affine Transformations Noise Additions** Color Shuffling **Evaluation** GradCAM++ **Eigen-CAM ScoreCAM** LayerCAM **GradCAM** Pixel Flipping Performance Metric [16] **EnsembleCAM**

Dataset

- The dataset used for the study is Herlev dataset.
- It originally consists of 7 classes.
- For the scope of the study, we reclassified the dataset into 2 classes.
 - Normal class Images without cancer cells
 - Abnormal class Images with cancer cells

Normal Class

Abnormal Class

Image Preprocessing

- All images are resized to same size which is 224x224 pixels.
- Used median filter for noise reduction in images.
- Used histogram equalization and normalization to enhance the contrast [17].

Image Augmentation

Original	.0	Optical distortion, Grid distortion, Elastic transformations	.0	Addition of gaussian noise , gaussian blur	.0
Translation, Scaling, Rescaling of a random part	(i	CLAHE, image histogram equalization		Conversion to grayscale, shuffling color channel, addition of color jitter, shifting RGB intensities	.0
Vertical flip, Horizontal flip, Rotation by a random angle from 0 to 180 degrees	0.	Random modification of brightness, contrast of the image		Sharpening the image	

Classification Model

Baseline	Hyperparameters				
Daseille	Batchsize	Learning Rate	Epochs		
XceptionNet	16	0.001	20		

Performance of Classification Model

Baseline	Accuracy	Precision	Recall	F1 Score
XceptionNet	0.89	0.90	0.89	0.88

Ensemble Explanation Generation

Mean Based Ensemble

Mean Based Ensemble

Weighted Mean Based Ensemble

$$\frac{1}{e_G} + \frac{1}{e_{GP}} + \frac{1}{e_S} + \frac{1}{e_E} + \frac{1}{e_L}$$

Weighted Mean Based Ensemble

EnsembleCAM: Median Based Ensemble

Evaluation metrics

Classification Models

Precision
Recall
F1 score

XAI methods

Pixel flipping performance metric

Performance of EnsembleCAM

Qualitative Evaluation

No.	Original Image	GradCAM	GradCAM++	ScoreCAM	Eigen-CAM	LayerCAM	EnsembleCAM
Normal							
Abnormal	0				6		

Quantitative Evaluation

Conclusion

- Trained an XceptionNet model to classify cervical cell images into normal and abnormal categories.
- Applied five different CAM methods to generate activation maps for explaining model decisions.
- Exhibited higher activation values concentrated around crucial regions, such as the nucleus, indicative of cervical malignancy.
- Proposed a new ensemble visual explanation method named EnsembleCAM.
- EnsembleCAM outperformed individual CAM methods in explaining the decisions of the classification model.

- [1] Cancer.net, "Cervical Cancer Statistics," Cancer.net, Jun. 26, 2012. https://www.cancer.net/cancer-types/cervical-cancer/statistics
- [2] "Cervical cancer: Symptoms, causes, stages, and treatment," www.medicalnewstoday.com, Sep. 27, 2021. https://www.medicalnewstoday.com/articles/what-you-need-to-know-about-cervical-cancer
- [3] Y. Fan, Z. Tao, J. Lin, and H. Chen, "An encoder-decoder network for automatic clinical target volume target segmentation of cervical cancer in ct images," *International Journal of Crowd Science*, vol. 6, no. 3, pp.111–116, 2022
- [4] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, "Learning deep features for discriminative localization," in *Proceedings of the IEEE conference on computer vision and pattern recognition*, Las Vegas, USA, 2016, pp. 2921–2929.
- [5] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, "Grad-CAM: Visual explanations from deep networks via gradient-based localization," in *Proceedings of the IEEE international conference on computer vision*, Venice, Italy, 2017, pp. 618–626.

- [6] A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian, "Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks," in IEEE winter conference on applications of computer vision (WACV). Lake Tahoe, USA: IEEE, 2018, pp. 839–847.
- [7] P.-T. Jiang, C.-B. Zhang, Q. Hou, M.-M. Cheng, and Y. Wei, "LayerCAM: Exploring hierarchical class activation maps for localization," IEEE Transactions on Image Processing, vol. 30, pp. 5875–5888, 2021.
- [8] M. B. Muhammad and M. Yeasin, "Eigen-CAM: Class activation map using principal components," in International joint conference on neural networks (IJCNN). Glasgow, United Kingdom: IEEE, 2020, pp. 1–7.
- [9] H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, and X. Hu, "Score-CAM: Score-weighted visual explanations for convolutional neural networks," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, Seattle, USA., 2020, pp. 24–25
- [10] Y. Gao, J. Liu, W. Li, M. Hou, Y. Li, and H. Zhao, "Augmented GradCAM++: Super-resolution saliency maps for visual interpretation of deep neural network," Electronics, vol. 12, no. 23, p. 4846, 2023.

- [11] A. H. Ornek and M. Ceylan, "HayCAM: A novel visual explanation" for deep convolutional neural networks," Traitement du Signal, vol. 39, no. 5, pp. 1711–1719, 2022.
- [12] A. H. Ornek and M. Ceylan, "CodCAM: A new ensemble visual explanation for classification of medical thermal images," Quantitative InfraRed Thermography Journal, pp. 1–25, 2023.
- [13] E. Kaczmarek, O. X. Miguel, A. C. Bowie, R. Ducharme, A. L. Dingwall-Harvey, S. Hawken, C. M. Armour, M. C. Walker, and K. Dick, "MetaCAM: Ensemble-based class activation map," arXiv preprint arXiv:2307.16863, 2023.
- [14] J. Jantzen, J. Norup, G. Dounias, and B. Bjerregaard, "Pap-smear benchmark data for pattern classification," Nature inspired smart information systems (NiSIS 2005), pp. 1–9, 2005.
- [15] F. Chollet, "Xception: Deep learning with depthwise separable convolutions," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1251–1258.

[16] J. Kauffmann, K.-R. M'uller, and G. Montavon, "Towards explaining anomalies: a deep taylor decomposition of one-class models," Pattern Recognition, vol. 101, p. 107198, 2020.

[17] H. Alquran, M. Alsalatie, W. A. Mustafa, R. A. Abdi, and A. R. Ismail, "Cervical net: A novel cervical cancer classification using feature fusion," Bioengineering, vol. 9, no. 10, p. 578, 2022.