CS344: Design and Analysis of Computer Algorithms

Homework 2

Group Members: Stephen Kuo, Derek Mui

1.11) Is $4^{1536} - 9^{4824}$ divisible by 35?

Answer:

$$4^{1536} = (4^3)^{512} = 64^{512} = (35 + 29)^{512}$$

Since 35 is divisible by 35, we can continue with 29^{512}
 $29^{512} = (29^2)^{256} = 841^{256} = (840 + 1)^{256}$

Since 840 is divisible by 35, we are left with 1^{256} mod 35

$$9^4824 = (9^2)^{2412} = 81^{2412} = (70+11)^{2412}$$

Since 70 is divisible by 35, we can continue with 11^{2412} (11^3) $^{804} = 1331^{804} = (1330+1)^{804}$
Since 1330 is divisible by 35, we are left with 1^{804} mod 35

blice 1990 is divisible by 90, we are left with 1 mod 99

 $(1^{256} \bmod 35) - (1^{804} \bmod 35) = 0$. Thus, yes it is divisible by 35.

1.12) What is $2^{2^{2006}} \mod 3$

Answer:

$$2^{2^{2006}} = 4^{2006} = 4^{2^{1003}} = 16^{1003} = (15+1)^{1003}$$
 We know 15 is divisible by 3, so that leaves us with 1^{1003} . Thus, the answer is 1

1.13) Is the difference of $5^{30,000}$ and $6^{123,456}$ a multiple of 31? **Answer:**

temp

1.25) calculate $2^{125} \mod 127$ using any method you choose

Answer: temp

1.33) Give an efficient algorithm to compute the least common multiple of two n-bit numbers x and y, that is, the smallest number divisible by both x and y. What is the running tie of your algorithm as a function of n?

Answer: temp $1.39) \mbox{ Give a polynomial-time algorithm for computing a^{b^c} mod p, given a, b, c, and prime p.} \\ \mbox{ Answer: } \\ \mbox{ temp} \\ \mbox{Problem)} \\ \mbox{ Answer: } \\ \mbox{ Answer: } \\ \mbox{ Answer: } \\ \mbox{ Problem)} \\ \mbox{ Answer: } \\ \mbox{ Answer: } \\ \mbox{ The problem of the proble$

 temp