RISC-V Summit China 2023

RISC-V Vector Support on Valgrind

Wu Fei < fei2.wu@intel.com>
System Software Architect

Legal Notices and Disclaimers

Statements in this document that refer to future plans or expectations are forward-looking statements. These statements are based on current expectations and involve many risks and uncertainties that could cause actual results to differ materially from those expressed or implied in such statements. For more information on the factors that could cause actual results to differ materially, see our most recent earnings release and SEC filings at www.intc.com.

All product plans and roadmaps are subject to change without notice. Any forecasts of goods and services needed for Intel's operations are provided for discussion purposes only. Intel will have no liability to make any purchase in connection with forecasts published in this document. Code names are often used by Intel to identify products, technologies, or services that are in development and usage may change over time. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others. This document contains information on products and/or processes in development.

RISC-V Summit China 2023 intel.

Background

- Valgrind currently lacks support for the RISC-V Vector ISA, while it has already been enabled for RV64GC.
- There is no existing support on Valgrind for variable length vector instructions, a new design is required.
- Here is a simplified flow of how Valgrind works:

intel

Design Choices

Method for RVV	Pro	Cons
Scalar emulation	Leverage existing scalar IRs	IR explosionHard to optimize
Dirty helper	 Easy for basic binary translation, e.g. tool=none 	 Deviate from the design principle of Valgrind Deal with the instrumentation tools such as Memcheck directly
Vector IR	Standard way to extend IRGeneric design across different vector ISAs	Requires brand new design

- The preferred way in descending order to enable new instruction on Valgrind
 - Using existing lops, creating new lops, clean helper, dirty helper

RISC-V Summit China 2023 intel.

Challenges

- Generic framework and IRs for different vector ISA
- RVV LMUL and backend register allocation
 - No register group allocation yet
- Mask instruction efficiency
 - Inefficient to handle it element by element

intel

Current Status

- A generic vector IR encoding mechanism
- A working prototype to run simple RVV testcases
 - A few instructions uses the new vector IR
 - Memcheck runs well on the prototype
 - Framework enhancement such as adding CPU state to TB
- The Vector IR design is still in review
- RVV Intel public repository:
 - https://github.com/intel/valgrind-rvv/tree/poc-rvv
- RV64GC repository:
 - https://github.com/petrpavlu/valgrind-riscv64.git

RISC-V Summit China 2023 intel

Next Step

- Get the vector IR design reviewed
- Design the code pattern for common features such as LMUL, mask
- Complete the full RVV support

intel.

- https://riseproject.dev

RISE is focused on positive and transparent collaborations with upstream projects to deliver commercial-ready software for various use cases

How: Align on highest priorities & avoid (accidental) duplication of work

Goal: Accelerate open source SW for RISC-V architecture

https://www.intel.com/content/www/us/en/developer/articles/community/rising-to-the-challenge-risc-v-software-readiness.html

Finding more interesting topics from Intel on RISC-V summit China 2023

Topic	When
RISC-V Vector Support on Valgrind	August 25 6pm
Best practice to optimize SW with vectorization on RISC-V	Poster
RISC-V firmware solution	August 24 4:30pm
Enhance UEFI on RISC-V	August 24 4:20pm
Enabling compliance test for RISC-V BRS	August 24 3pm
The ACRN/RISC-V project: embedded hypervisor design and status update	August 24 5pm

RISC-V Summit China 2023 intel.

#