Méthodes de Partionnement et d'apprentissage non supervisé Classification Hiérarchique et Kmeans

Anne Badel et Frédéric Guyon

2019-02-19

Partionnement et apprentissage

- On a une **représentation** des données
 - sous forme de valeurs réelles=vecteur de
 - sous forme de catégories
- Clustering: on cherche a priori des groupes dans les données
- Apprentissage:
 - on connait le partitionnement sur un jeu de données
 - on cherche le groupe (la classe) de nouvelles données

Partionnement=Clustering

Partionnement=Clustering

Apprentissage

Apprentissage: Séparation linéaire

Méthodes

Trois grands principes de méthodes basées sur:

- La géométrie
- Les probabilités (statistique)
- Les graphes

En fait, trois façons de voir les mêmes algorithmes

Géométrie et distances

On considère les données comme des points de R^n :

- géométrie donnée par distances
- distances = dissimilaritées imposées par le problème
- dissimilarités permettent visualisation de l'ensemble des points
- Détermination visuelle des groupes

Géométrie et distances

Sur la base d'une distance (souvent euclidienne)

- Partionnement:
 - Moyennes mobiles ou K-means : séparation optimale des groupes connaissant le nombre de groupe
 - Méthode agglomérative ouhierarchical clustering
- Classification:
 - attribution K plus proches voisins (K Nearest Neighbor)
 - séparation linéaire ou non linéaire

Distances

Définition d'une distance : fonction positive de deux variables

- **1.** $d(x,y) \ge 0$
- **2.** d(x,y)=d(y,x)
- 3. $d(x,y)=0 \iff x=y$
- **4.** inégalité triangulaire: $d(x,z) \le d(x,y) + d(y,z)$

Si 1,2,3 : dissimilarité

Distances utilisées dans R

- ▶ distance euclidienne ou distance l_2 : $d(x,y) = \sqrt{\sum_i (x_i y_i)^2}$
- distance de manahattan ou distance l_1 : $d(x,y) = \sum_i |x_i y_i|$
- lacktriangle distance du maximum ou l-infini, I_{∞} : $d(x,y) = \max_i |x_i y_i|$

distance euclidienne

Distances utilisées dans R

ightharpoonup distance de Minkowski I_p :

$$d(x,y) = \sqrt[p]{\sum_{i}(|x_i - y_i|^p)}$$

distance de Canberra (x et y valeurs positives):

$$d(x,y) = \sum_{i} \frac{x_i - y_i}{x_i + y_i}$$

distance binaire ou distance de Jaccard ou Tanimoto: proportion de propriétés communes

Autres distances non géométriques (pour information)

Utilisées en bio-informatique:

 Distance de Levenshtein: nombre de subsitutions, insertions, deletions entre deux chaînes de caractères

$$d("BONJOUR", "BONSOIR") = 2$$

- Distance d'alignements: distances de Levenshtein avec poids (par ex. matrices BLOSSUM)
- Distances d'arbre (Neighbor Joining)
- Distances ultra-métriques (phylogénie UPGMA)

Distances entre groupes

Single linkage

$$D(C_1, C_2) = \min_{i \in C_1, i \in C_2} D(x_i, x_i)$$

► Complete linkage

$$D(C_1, C_2) = \max_{i \in C_1, j \in C_2} D(x_i, x_j)$$

► Group average

$$D(C_1, C_2) = \frac{1}{N_1 N_2} \sum_{i \in C_1, j \in C_2} D(x_i, x_j)$$

Ward

$$d^{2}(C_{i}, C_{j}) = I_{intra}(C_{i} \cup C_{j}) - I_{intra}(C_{i}) - I_{intra}(C_{j})$$
$$D(C_{1}, C_{2}) = \sqrt{\frac{N_{1}N_{2}}{N_{1}+N_{2}}} \|m_{1} - m_{2}\|$$

Distances entre groupes

Les données

Ces données sont un classique des méthodes d'apprentissage

Dans un premier temps, regardons les données

```
dim(mes.iris)
```

head(mes.iris)

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2
4	4.6	3.1	1.5	0.2
5	5.0	3.6	1.4	0.2
6	5.4	3.9	1.7	0.4

```
str(mes.iris)
```

```
'data.frame': 150 obs. of 4 variables:
```

\$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 \$ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.5

summary(mes.iris)

Sepal.Length		Length	${ t Sepal.Width}$		Petal.Length		Petal.Wid	
	Min.	:4.300	Min.	:2.000	Min.	:1.000	Min.	:0
	1st Qu.	:5.100	1st Qu.	:2.800	1st Qu.	:1.600	1st Qu.	:0
	Median	:5.800	Median	:3.000	Median	:4.350	Median	:1
	Mean	:5.843	Mean	:3.057	Mean	:3.758	Mean	:1

 3rd Qu.:6.400
 3rd Qu.:3.300
 3rd Qu.:5.100
 3rd Qu.:1

 Max.
 :7.900
 Max.
 :4.400
 Max.
 :6.900
 Max.
 :2

Visualisation des données

On peut ensuite essayer de visualiser les données

▶ par un plot

plot(mes.iris)

▶ par une image

image(t(as.matrix(mes.iris)))

Nettoyage des données (1)

Avant de commencer à travailler, il est nécessaire de commencer par vérifier que :

▶ il n'y a pas de données manquantes

```
sum(is.na(mes.iris))
```

[1] 0

Nettoyage des données (2)

aucune variable n'est constante

```
iris.var <- apply(mes.iris, 2, var)
kable(iris.var, digits = 3)</pre>
```

	Х
Sepal.Length	0.686
Sepal.Width	0.190
Petal.Length	3.116
Petal.Width	0.581

```
sum(apply(mes.iris, 2, var) == 0)
```

Normalisation

Afin de pouvoir considérer que toutes les variables sont à la même échelle, il est parfois nécessaire de normaliser les données.

- soit
 - en centrant (moyenne "0")

```
mes.iris.centre <- scale(mes.iris, center=TRUE, scale=FALS)
```

- soit
 - en centrant (moyenne "0")
 - et réduisant (variance "1")

mes.iris.scaled <- scale(mes.iris, center=TRUE, scale=TRUE)</pre>

On peut visuellement regarder l'effet de la normalisation :

par un plot des données

```
par(mfrow=c(1,2))
plot(mes.iris)
```


par une image

```
par(mfrow=c(1,2))
image(t(as.matrix(mes.iris)), main="données brutes")
image(t(as.matrix(mes.iris.scaled)), main="données normalis")
```


par une projection sur une ACP

```
par(mfrow=c(1,2))
biplot(prcomp(mes.iris), main="données non normalisées")
biplot(prcomp(mes.iris, scale.=T), main="données normalisées")
```


La matrice de distance

Nous utilisons la distance euclidienne

```
iris.euc <- dist(mes.iris)
iris.scale.euc <- dist(mes.iris.scaled)</pre>
```

```
par(mfrow=c(1,2))
image(t(as.matrix(iris.euc)), main="données brutes")
image(t(as.matrix(iris.scale.euc)), main="données normalise")
```


La classification hiérarchique

Principe

- classification hiérarchique : mettre en évidence des liens hiérachiques entre les individus
- classification hiérarchique ascendante : partir des individus pour arriver à des classes / cluster
- classification hiérarchique descendante : partir d'un groupe qu'on subdivise en sous-groupes /cluster jusqu'à arriver à des individus.

Notion importante, cf distances

- ressemblance entre individus = distance
- ressemblance entre groupes d'invidus = critère d'aggrégation
 - ▶ lien complet
 - lien moyen
 - critère de Ward

L'algorithme

étape 1:

- départ : n individus = n clusters distincts
- calcul des distances entre tous les individus
 - choix de la métrique à utiliser en fonction du type de données
- ▶ regroupement des 2 individus les plus proches => (n-1) clusters

au départ

identification des individus les plus proches

étape j:

- calcul des dissemblances entre chaque groupe obtenu à l'étape (j-1)
- regroupement des deux groupes les plus proches => (n-j) clusters

calcul des nouveaux représentants BE et CD

calcul des distances de l'individu restant A aux points moyens

A est plus proche de ...

deuxième partition : (BE), (CDA)

ECDA

В

pour finir

→ à l'étape (n-1), tous les individus sont regroupés dans un même cluster

dendrogramme final

Je ne fais pas attention à ce que je fais

```
iris.hclust <- hclust(iris.euc)
plot(iris.hclust, hang=-1, cex=0.5)</pre>
```

Cluster Dendrogram

Sur données normalisées

```
iris.scale.hclust <- hclust(iris.scale.euc)
plot(iris.scale.hclust, hang=-1, cex=0.5)</pre>
```

Cluster Dendrogram


```
par(mfrow=c(1,2))
plot(iris.hclust, hang=-1, cex=0.5)
plot(iris.scale.hclust, hang=-1, cex=0.5)
```


En utilisant une autre métrique

```
iris.scale.max <- dist(mes.iris.scaled, method="max")
iris.scale.hclust.max <- hclust(iris.scale.max)
par(mfrow=c(1,2))
plot(iris.scale.hclust, hang=-1, cex=0.5)
plot(iris.scale.hclust.max, hang=-1, cex=0.5)</pre>
```


En utilisant un autre critère d'aggrégation

```
iris.scale.hclust.ward <- hclust(iris.scale.euc, method="wa
par(mfrow=c(1,2))
plot(iris.scale.hclust, hang=-1, cex=0.5)
plot(iris.scale.hclust.ward, hang=-1, cex=0.5)</pre>
```


Les k-means

Les individus dans le plan

L'algorithme

étape 1:

- k centres provisoires tirés au hasard
- k clusters créés à partir des centres en regroupant les individus les plus proches de chaque centre
- obtention de la partition P0

choix des centres provisoires

combien de cluster ? les deux centres initiaux (G_1 et G_2) sont choisis au hasard

calcul des distances aux centres provisoires

• calcul des distances de chaque point aux centres G₁ et G₂,

et affectation à un cluster

calcul des nouveaux centres de classes

étape j :

- construction des centres de gravité des k clusters construits à l'étape (j-1)
- ▶ k nouveaux clusters créés à partir des nouveaux centres suivant la même règle qu'à l'étape 0 obtention de la partition Pj

fin:

▶ l'algorithme converge vers une partition stable

arret:

lorsque la partition reste la même, ou lorsque la variance intra-cluster ne décroit plus, ou lorsque le nombre maximal d'itérations est atteint.

Un premier k-means en 5 groupes

```
iris.scale.kmeans5 <- kmeans(mes.iris.scaled, center=5)
iris.scale.kmeans5</pre>
```

K-means clustering with 5 clusters of sizes 8, 38, 19, 23,

Cluster means:

```
      1
      -0.33083333
      0.94266667
      -2.2830000
      -0.9243333

      2
      1.00666667
      0.01635088
      1.9841053
      0.8717193

      3
      -1.16438596
      0.02687719
      -2.3790526
      -0.9993333

      4
      -0.74333333
      0.45571014
      -2.2319130
      -0.9254203

      5
      0.05827957
      -0.30894624
      0.6355484
      0.2345376
```

Sepal.Length Sepal.Width Petal.Length Petal.Width

Clustering vector:

iris.scale.kmeans5\$cluster

table(iris.scale.kmeans5\$cluster)

1 2 3 4 5 8 38 19 23 62

Visualisation des clusters

plot(iris.scaled.acp, col.ind=iris.scale.kmeans5\$cluster,

Individuals factor map (PCA)

Combien de clusters?

Quand une partition est-elle bonne?

- ▶ si les individus d'un même cluster sont proches
 - homogénéité maximale à l'intérieur de chaque cluster
- si les individus de 2 clusters différents sont éloignés
 - hétérogénéité maximale entre chaque cluster

Classification hiérarchique

La coupure de l'arbre à un niveau donné construit une partition. la coupure doit se faire :

- après les agrégations correspondant à des valeurs peu élevées de l'indice
- avant les agrégations correspondant à des niveaux élevés de l'indice, qui dissocient les groupes bien distincts dans la population.

plot(iris.scale.hclust.ward, hang=-1, cex=0.5)

Cluster Dendrogram

iris.scale.euc hclust (*, "ward.D2")

K-means

```
I.intra = numeric(length=10)
I.intra[1] = kmeans(mes.iris.scaled, centers=2)$totss
for (i in 2:10) {
   kmi <- kmeans(mes.iris.scaled, centers=i)
   I.intra[i] <- kmi$tot.withinss
}</pre>
```

plot(1:10, I.intra, type="l")

iris.scale.kmeans3 <- kmeans(mes.iris.scaled, center=3)
plot(iris.scaled.acp, col.ind=iris.scale.kmeans3\$cluster,</pre>

Individuals factor map (PCA)

Heatmap

heatmap(mes.iris.scaled)


```
my_group=as.numeric(as.factor(substr(variete, 1 , 2)))
my_col=brewer.pal(3, "Set1")[my_group]
heatmap(mes.iris.scaled, RowSideColors=my_col)
```


Comparaison de clustering: Rand Index

Mesure de similarité entre deux clustering

à partir du nombre de fois que les classifications sont d'accord

$$R = \frac{m+s}{t}$$

- m=nombre de paires dans la même classe dans les deux classifications
- s=nombre de paires séparées dans les deux classifications
- ► t=nombre de paires totales

Comparaison de clustering: Adjusted Rand Index

$$ARI = \frac{RI - ExpectedRI}{MaxRI - ExpectedRI}$$

- ▶ ARI=RI normalisé
- Prend en compte la taille des classes
- ► ARI=1 pour classification identique
- ▶ ARI \simeq 0 pour classification aléatoire (peut être <0)
- Adapté pour nombre de classe différent entre les deux classifications et taille de classe différente

Comparaison des résultats des deux classifications

par une table de confusion

```
cluster.kmeans3 <- iris.scale.kmeans3$cluster
cluster.hclust5 <- cutree(iris.scale.hclust.ward, k=5)
table(cluster.hclust5, cluster.kmeans3)</pre>
```

par une visualisation

```
par(mfrow=c(1,2))
plot(iris.scaled.acp, col.ind=cluster.kmeans3, choix="ind"
plot(iris.scaled.acp, col.ind=cluster.hclust5, choix="ind"
```


Comparaison avec la réalité

50

La réalité

```
variete <- iris[,5]
table(variete)

variete
   setosa versicolor virginica</pre>
```

50

50

plot(iris.scaled.acp, col.ind=variete, choix="ind")

Individuals factor map (PCA)

Comparer k-means avec la réalité

conf.kmeans <- table(variete, cluster.kmeans3)
kable(conf.kmeans)</pre>

	1	2	3
setosa	0	50	0
versicolor	48	0	2
virginica	14	0	36

Setosa vs !Setosa

Visualisation

```
variete2 <- rep("notSetosa", 150)
variete2[variete=="setosa"] <- "setosa"
variete2 = factor(variete2)
table(variete2)</pre>
```

```
variete2
notSetosa setosa
100 50
```

```
par(mfrow=c(1,2))
plot(iris.scaled.acp, col.ind=variete2, title="variétés obscluster.kmeans2 <- kmeans(mes.iris.scaled, center=2)$cluster
plot(iris.scaled.acp, col.ind=cluster.kmeans2, title="kmeans2")</pre>
```


Table de confusion et calcul de performances

conf.kmeans <- table(variete2, cluster.kmeans2)
kable(conf.kmeans)</pre>

	1	2
notSetosa	97	3
setosa	0	50

▶ table de confusion, taux de bien prédits, spécificité, sensibilité,

```
TP \leftarrow conf.kmeans[1,1]
FP \leftarrow conf.kmeans[1,2]
FN \leftarrow conf.kmeans[2,1]
TN \leftarrow conf.kmeans[2,2]
P <- TP + FN # nb positif dans la réalité
N <- TN + FP # nb négatif dans la réalité
FPrate <- FP / N # = false alarm rate
Spe \leftarrow TN / N # = spécificité
Sens <- recall <- TPrate <- TP / P # = hit rate ou re
PPV <- precision <- TP / (TP + FP)
accuracy \leftarrow (TP + TN) / (P + N)
F.measure <- 2 / (1/precision + 1/recall)
performance <- c(FPrate, TPrate, precision, recall, accuracy
names(performance) <- c("FPrate", "TPrate", "precision", ";</pre>
```

kable(performance, digits=3)

	х
FPrate	0.057
TPrate	1.000
precision	0.970
recall	1.000
accuracy	0.980
F.measure	0.985
Spe	0.943
PPV	0.970

rand index et adjusted rand index

clues::adjustedRand(as.numeric(variete2), cluster.kmeans2)

Rand HA MA FM Jaccard 0.9605369 0.9204051 0.9208432 0.9639434 0.9302767

Versicolor vs !Versicolor

Visualisation

```
variete2 <- rep("notVersicolor", 150)
variete2[variete=="versicolor"] <- "versicolor"
variete2 = factor(variete2)
table(variete2)</pre>
```

```
par(mfrow=c(1,2))
plot(iris.scaled.acp, col.ind=variete2)
cluster.kmeans2 <- kmeans(mes.iris.scaled, center=2)$cluste
plot(iris.scaled.acp, col.ind=cluster.kmeans2)</pre>
```

Table de confusion et calcul de performances

conf.kmeans <- table(variete2, cluster.kmeans2)
kable(conf.kmeans)</pre>

	1	2
notVersicolor	50	50
versicolor	3	47

```
TP <- conf.kmeans[1,1]
FP <- conf.kmeans[1,2]
FN <- conf.kmeans[2,1]
TN <- conf.kmeans[2,2]
P <- TP + FN  # nb positif dans la réalité
N <- TN + FP  # nb négatif dans la réalité
FPrate <- FP / N  # = false alarm rate
Spe <- TN / N  # = spécificité
Sens <- recall <- TPrate <- TP / P  # = hit rate ou re
```

kable(performance, digits=3)

	X
FPrate	0.515
TPrate	0.943
precision	0.500
recall	0.943
accuracy	0.647
F.measure	0.654
Spe	0.485
PPV	0.500

clues::adjustedRand(as.numeric(variete2), cluster.kmeans2)

Rand HA MA FM Jaccard 0.53995526 0.07211421 0.07722223 0.57895580 0.40737752

 $Contact:\ anne.badel @univ-paris-diderot.fr$