

JBR Interns 2020

Поиск путей в графе с КС ограничениями через произведение Кронекера

Семен Григорьев, Рустам Азимов, Екатерина Шеметова, Егор Орачев, Илья Эпельбаум

JetBrains Research, Лаборатория языковых инструментов Санкт-Петербургский Государственный университет

31 Августа 2020

Context-Free Path Querying

Навигация в графе

- Находятся ли вершины A и B на одном уровне иерархии?
- Существует ли путь вида $Up^n Down^n$?
- Найти все такие пути
 Upⁿ Downⁿ, которые
 начинаются в вершине А

CFPQ: Семантика запросов

- ullet $\mathbb{G}=(\Sigma, N, P)$ контекстно-свободная грамматика
 - ▶ Σ конечное множество терминалов
 - N конечное множество нетерминалов
 - Р конечное множество правил вывода
 - $L(\mathbb{G}, A) = \{ \omega \mid A \Rightarrow^* \omega \}, A \in N$
- G = (V, E, L) ориентированный граф с метками
 - $v \xrightarrow{l} u \in E$
 - L ⊆ Σ
- $\omega(\pi) = \omega(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \cdots \xrightarrow{l_{n-2}} v_{n-1} \xrightarrow{l_{n-1}} v_n) = l_0 l_1 \cdots l_{n-1}$
- ullet $R_A=\{(n,m)\mid \exists n\pi m$, такой что $\omega(\pi)\in L(\mathbb{G},A)\}, A\in N$

Существующие решения

- Решения, основанные на различных техниках парсинга (СҮК, LL, LR, etc.)
- Решения, основанные на операциях над матрицами
- Все существующие решения работают только с КС грамматикой в нормальной форме (Нормальная форма Хомского)
- Трансформация требует дополнительного времени на обработку и приводит к *существенному* разрастанию грамматики

Рекурсивные автоматы

- Представляется набором конечных автоматов (компонент) с дополнительными рекурсивными вызовами
- Любая КС грамматика может быть представлена рекурсивным автоматом с одной компонентой на каждый нетерминал

Компонента S

Рис.: Рекурсивный автомат для грамматики вида $S o aSb \mid ab$

Идея алгоритма

- Представить грамматику в виде рекурсивного автомата
- Пересечь рекурсивный автомат и граф используя идею классического алгоритма пересечения двух конечных автоматов, описанного в книге Д.Хопкрофта
- Использовать транзитивное замыкание, чтобы определить, какие пути выводятся по каким компонентам
- Добавить найденные ребра с нетерминальными метками в граф
- ⑤ Повторять шаги 2 4, пока граф меняется

Первая итерация алгоритма

Вторая итерация алгоритма

Произведение Кронекера

- Пересечение рекурсивного автомата и графа можно выразить через произведение Кронекера
- В качесве операндов используются матрицы смежности автомата и графа

$$\begin{pmatrix} \cdot & \{a\} & \cdot & \cdot \\ \cdot & \cdot & \{S\} & \{b\} \\ \cdot & \cdot & \cdot & \{b\} \end{pmatrix} \otimes \begin{pmatrix} \cdot & \{a\} & \cdot & \cdot \\ \cdot & \cdot & \{a\} & \cdot \\ \{a\} & \cdot & \cdot & \{b\} & \cdot \end{pmatrix} =$$

[(0,0)(0,1)(0,2)(0,3) (1,0)(1,1)(1,2)(1,3) (2,0)(2,1)(2,2)(2,3) (3,0)(3,1)(3,2)(3,3)]																
(0,0)	<i>(</i> .					{a}			.				.			.)
(0,1)							{a}									.]
(0,2)					$\{a\}$											
(0,3)																
(1,0)																.
(1,1)				•						•						<u> </u>
(1,2)																{b}
(1,3)															{ <i>b</i> }	.
(2,0)																
(2,1)									١.				١.			. · . I
(2,2)																{ <i>b</i> }
(2,3)													١.		{ <i>b</i> }	.
(2,0)																.
(2,1)													١.			. 1
(2,2)	١.												١.			.]
(2,3)	١.												١.			. /

Извлечение путей

- В результате работы алгоритма вычисляется матрица транзитивного замыкания, так называемый *индекс*
- Данная матрица индекса может быть использована для извлечения всех путей в графе, которые удовлетворяют достижимости выбранных двух вершин
- Поскольку путей потенциально бесконечное количество, фильтрация и правильная нумерация существенны для извлечения

Динамическое транзитивное замыкание

- *Наивная* версия алгоритма предполагает вычисление транзитивного замыкания на каждой итерации
- Транзитивное замыкание наиболее сложная часть алгоритма с точки зрения вычислений
- Поскольку транзитивное замыкание дистрибутивно слева, мы можем разбить матрицу смежности графа на две части:
 - А добавленные ребра
 - ▶ В матрица смежности с прошлой итерации
 - $M_G = A + B$
 - $M_{RSM} \otimes M_G = M_{RSM} \otimes A + M_{RSM} \otimes B$

Реализация

- Наивная версия алгоритма без динамического транзитивного замыкания на основе библиотеки PyGraphBLAS¹
- Извлечение путей из *индекса* на основе **PyGraphBLAS**, параметризованное максимальными числом путей для извлечения

¹PyGraphBLAS — python-обертка для SuiteSparse C — реализации GraphBLAS API для работы с графами в терминах операций линейной алгебры

Замеры

Заключение

- CFQP можно свести к операциям линейной алгебры без трансформации грамматики
- Алгоритм применим для RPQ без значительного overhead
- Индекс, построенный в результате работы алгоритма может быть использован для извлечения всех путей
- ullet Транзитивное замыкание можно поддерживать за $O(n^3/\log\ n)$

Дальнейшие исследования

- Исследование проблемы извлечения всех путей (правильная нумерация путей, временные ограничения)
- Детальное сравнение с классическим матричным алгоритмом
- Исследование вычислительной сложности динамического транзитивного замыкания (возможно ли получить субкубическую сложность)
- Реализация алгоритма на GPGPU с использованием разреженных булевых матриц
- Модификация алгоритма для распределенного вычисления
- Интеграция алгоритма с графовой базой данных (RedisGraph)

Контакты

- Семен Григорьев:
 - s.v.grigoriev@spbu.ru
 - ► Semen.Grigorev@jetbrains.com
- Рустам Азимов:
 - rustam.azimov19021995@gmail.com
 - Rustam.Azimov@jetbrains.com
- Екатерина Шеметова: katyacyfra@gmail.com
- Егор Орачев: egor.orachev@gmail.com
- Илья Эпельбаум: iliyepelbaun@gmail.com
- Датасет: https://github.com/JetBrains-Research/CFPQ_Data
- Реализация алгоритма: https://github.com/YaccConstructor/RedisGraph