

CREDIT RISK & SCORECARD MODEL

a lending company loan data issued from 2007 - 2014 with almost 75 features related to the borrowers. We want to develop a credit risk model in Python to predict the PD model and assign scorecard.

GOOD & RISKY LOANS

Our target variable is loan_status features. It contains of various values which represents by good (high values) and risky loans balance.

FEATURES SELECTION

A heat-map of these pair-wise correlations identifies two columns (out_prncp_inv and total_pymnt_inv) as highly correlated. It means that features should be removed.

WOE BY GRADE

There is a continuous increase in WoE by grades. Therefore, we do not need to combine it with any features together.

CREDIT RISK SCORECARD

For calculate an individual's credit score we used summary table train test and scaling future categories.

Score - Preliminary	Score - Calculation	Original feature name	Coefficients	Feature name
599.0	598.515609	Intercept	2.948892	Intercept
24.0	24.463996	grade	0.980200	grade:A
20.0	19.789993	grade	0.792926	grade:B
15.0	15.207145	grade	0.609305	grade:C
12.0	12.164269	grade	0.487386	grade:D
8.0	8.284354	grade	0.331929	grade:E
5.0	4.757402	grade	0.190615	grade:F
-1.0	-1.207327	home_ownership	-0.048374	home_ownership:OWN
-3.0	-2.600515	home_ownership	-0.104195	home_ownership:OTHER_NONE_RENT
-7.0	-7.023912	verification_status	-0.281427	verification_status:Source Verified
-11.0	-11.466206	verification_status	-0.459417	verification_status:Verified
-8.0	-7.876281	purpose	-0.315579	purpose:debt_consolidation
-6.0	-5.542316	purpose	-0.222064	purpose:credit_card
-12.0	-12.012820	purpose	-0.481318	purpose:educren_ensm_bmov
0.0	0.099355	purpose	0.003981	purpose:vacationhouseweddingmedoth
-2.0	-2.349118	term	-0.094122	term:36
24.0	23.845255	int_rate	0.955408	int_rate:<7.071
7.0	7.123724	int_rate	0.285426	int_rate:7.071-10.374
1.0	1.413405	int_rate	0.056631	int_rate:10.374-13.676
1.0	0.980393	int_rate	0.039281	int_rate:13.676-15.74

AUROC ON TEST SET

Based on the graph below, AUROC on test set calculated comes out to 0.866 with a Gini of 0.732, both being considered as quite acceptable evaluation scores.

