Linear Algebra I: Homework 6

Due Friday, September 29, 2017

1. Using a formula called **Jacobi's formula**, we can deduce that for any square matrix A,

$$\det(\exp(A)) = e^{\operatorname{tr}(A)},$$

where $\exp(A)$ is the matrix exponential discussed in homework 5. Suppose that a matrix M is not invertible. Is $\exp(M)$ invertible?

- 2. Suppose $ad bc \neq 0$. Let $\vec{u} = \begin{pmatrix} a \\ c \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} b \\ d \end{pmatrix}$.
 - a. Can \vec{v} be a multiple of \vec{u} ? Explain your answer.
 - b. Let \vec{x} be a vector in \mathbb{R}^2 . How many ways are there to write \vec{x} as a linear combination of \vec{u} and \vec{v} ? Explain your answer.
- 3. Let $B = (\vec{e_1}, \vec{e_2})$ be the standard basis for the vector space \mathbb{R}^2 . Suppose

$$L: \mathbb{R}^2 \to \mathbb{R}^2$$

is a linear transformation and that $L(\vec{e_1}) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $L(\vec{e_2}) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

- a. Compute the matrix of L using the basis B.
- b. Compute the trace of your matrix from (a).
- c. If $ad bc \neq 0$, then

$$B' = \left(\begin{pmatrix} a \\ c \end{pmatrix}, \begin{pmatrix} b \\ d \end{pmatrix} \right)$$

is a basis for \mathbb{R}^2 . Compute the matrix of L using the basis B'.

- d. Compute the trace of your matrix from (c).
- 4. Find the value of a for which

$$\vec{v} = \begin{pmatrix} 6 \\ a \\ -16 \\ -4 \end{pmatrix}$$

is in the set

$$H = \operatorname{span} \left\{ \begin{pmatrix} -3\\2\\5\\3 \end{pmatrix}, \begin{pmatrix} 0\\-1\\-2\\-3 \end{pmatrix}, \begin{pmatrix} 0\\0\\-5\\-2 \end{pmatrix} \right\}.$$