Computing Methods for Experimental Physics and Data Analysis

Introduction

L. Baldini, F. A. Di Bello, G. Lamanna, F. Lizzi, A. Manfreda, A. Retico, A. Rizzi

Università and INFN-Pisa

Goals and prerequisites

- - ▷ Collaborative code development and best practices
 - > Python basics, standard library and scientific ecosystem
 - Algorithms and data structures

 - ▷ Specific tools for high-energy physics or medical physics
- ▷ This is not so much about Python or C++—it is about how to write code for effective data analysis
- ▶ Will I be a professional data scientist at the end of the semester?
 - > No, but hopefully you'll be able to poke around and find the right tool for the job at hand
- > Pre-requisites

 - ▷ If you have ever programmed before that would be great!
 - We shall ask you to fill a form next week to gauge your background and expectations

Basic structure of the course

- ▷ Changes with respect to previous years:

 - > 9 CFU refactored into three optional modules (ML, HEP, Medical)
 - Note HEP and Medical run in parallel
 - For PhD students we suggest to start from the second part of the Advanced module (more info on e-learning)

Basic module

L. Baldini, A. Manfreda

- - > Version control, development workflow
 - ▶ Unit testing, continuous integration, static analysis, documentation
- > Python basics
 - ▷ Coding conventions, structuring a package
 - ∨ Variables, native types, functions
 - ▷ The Python standard library
- ▷ Algorithms and data structures

 - > Python data structures and native algorithms
- - ▷ Classes, inheritance, composition
 - ▷ Operator overload and emulation of Python builtin types
- > The Python computing ecosystem
 - > numpy: arrays, functions, broadcasting, vectorization
 - scipy and pandas

Advanced module

F. A. Di Bello, G. Lamanna, F. Lizzi, A. Rizzi

- ▷ Advanced numpy
- ▷ Parallel computing
 - ▷ Computer architectures, memory, scaling laws, CPUs and GPUs
 - Parallel programming: concurrency and parallelism, threading in Python
- > Introduction to machine learning
 - Classification and regression: boosted decision trees and multilayer perceptrons
 - Deep learning: neural networks, the keras library
 - ▷ Supervised and unsupervised training, reinforcement learning

Machine Learning F. A. Di Bello, F. Lizzi, A. Rizzi

- Modern Deep Networks architectures
- The PyTorch library
- Generative Models
- Graph Networks
- > Attention and Transformers

High-Energy Physics

A. Rizzi

- - ▷ Coding style and organization, declaration of interfaces
 - Classes: constructors, virtual functions, private and public, abstract classes, inheritance
 - References, pointers, dynamic memory allocation, memory ownership, smart pointers
 - ▷ Templates, standard template library
- > The ROOT data analysis framework
 - > ROOT toolkit
 - ▷ PyROOT, root-numpy, RDataFrame

Medical Physics

A. Retico

- → Medical data processing and feature extraction (python/MATLAB)
 - ▷ Tools for handling standard-format medical data (DICOM)
 - Data anonymization and visualization
 - ▷ Deriving features form images, image segmentation
 - Data quality control pipelines: outlier removal, dimensionality reduction
- ▷ Data analysis and classification (python/MATLAB)
 - Performance evaluations: figures of merit, cross-validation schemes, permutation test
 - Machine-learning and deep-learning tools for segmentation and classification
 - Data augmentation, transfer learning, retrieving localization information.

Logistics

Timetable and final exam

- ▶ e-learning: https://elearning.df.unipi.it/course/view.php?id=344
- ▷ Timetable: 5 hours a week

 - ▷ If everybody agrees: start at *:30 sharp(-ish), one 15-minutes break, finish 15 minutes early
- - Development of a specific, reasonable-sized software project
 - We have a list of suggestions on e-learning, but encourage everybody to come up with original projects—if you do so reach out to us well in advance to make sure the project is appropriate
 - ▷ Projects can be done individually or in groups of two
 - ightharpoonup Two-page description of the project and source code made available ~ 1 week in advance
 - We expect a well-structure repository
 - ▷ Oral exam starts with a presentation of the project
 - Aim at 10 slides for 15–20 minutes
 - > A few questions on the course material from a pre-compiled list
 - ▷ List from last vear on e-learning, to be updated
 - > We expect the answers to the questions to be thorough and in-depth

Schedule: 2025

	Orario I	Modulo	Topic		
Tuesday, September 16, 2025	8:30-11:30	1	COLLABORATION & PYBASIC		SIS
Friday, September 19, 2025	14:30-16:30	1	COLLABORATION & PYBASIC		Ë
Tuesday, September 23, 2025	8:30-11:30	1	COLLABORATION & PYBASIC	⋖.	ANALYSIS
Friday, September 26, 2025	14:30-16:30	1	CONTAINERS CLASS ALGO	1	ě
Tuesday, September 30, 2025	8:30-11:30	1	CONTAINERS CLASS ALGO	FOR	ΙĀ
Friday, October 3, 2025	14:30-16:30	1	CONTAINERS CLASS ALGO	SF	AND DATA
Tuesday, October 7, 2025	8:30-11:30	1	ADVANCED PYTHON	METHODS	¥
Friday, October 10, 2025	14:30-16:30		UNIPI ORIENTA EVENT	E	PHYS
Tuesday, October 14, 2025	8:30-11:30	1	ADVANCED PYTHON	Σ	ā
Friday, October 17, 2025	14:30-16:30	1	SCIENTIFIC PYTHON, NUMPY	COMPUTING	EXP
Tuesday, October 21, 2025	8:30-11:30	1	SCIENTIFIC PYTHON, NUMPY	Ž	FOR
Friday, October 24, 2025	14:30-16:30	2	PARALLELISM & HETER. COMPUTING	Ž	L S
Tuesday, October 28, 2025	8:30-11:30	2	PARALLELISM & HETER. COMPUTING	8	8
Friday, October 31, 2025	14:30-16:30	2	PARALLELISM & HETER. COMPUTING		Ē
Tuesday, November 4, 2025	8:30-11:30	2	PARALLELISM & HETER. COMPUTING	CFU)	×
Friday, November 7, 2025	14:30-16:30	2	PARALLELISM & HETER. COMPUTING	Ö	2
Tuesday, November 11, 2025	8:30-11:30	2	MACHINE LEARNING INTRO (PHD START)	B (6	COMPUTING METHODS
Friday, November 14, 2025	14:30-16:30	2	MACHINE LEARNING INTRO	365BB	ξ
Tuesday, November 18, 2025	8:30-11:30	2	MACHINE LEARNING INTRO	Ř	8
Friday, November 21, 2025	14:30-16:30	2	MACHINE LEARNING INTRO		
Tuesday, November 25, 2025	8:30-11:30	2	MACHINE LEARNING INTRO		CFU)
Friday, November 28, 2025	14:30-16:30	3	MACHINE LEARNING ADVANCED		, P
Tuesday, December 2, 2025	8:30-11:30	3	MACHINE LEARNING ADVANCED		9 (9
Friday, December 5, 2025	14:30-16:30	3	MACHINE LEARNING ADVANCED		360BB
Tuesday, December 9, 2025	8:30-11:30	3	MACHINE LEARNING ADVANCED		36
Friday, December 12, 2025	14:30-16:30	3	MACHINE LEARNING ADVANCED		