

IMPLEMENT EDF SCHEDULAR

By: Nader Abd Elhalim | Advanced embedded

• Tasks table

Task Name	Periodicity	Deadline	Execution Time	Repetition in Hyper period
Button_1_Monitor	50ms	50ms	0.022	2
Button_2_Monitor	50ms	50ms	0.022	2
Task_Transmitter	100ms	100ms	0.028	1
Uart_Receiver	20ms	20ms	0.027	5
Load_1_Simulation	10ms	10ms	5	10
Load_2_Simulation	100ms	100ms	12	1

• System hyperperiod :

From the table we can see that the LCM between the tasks is 100ms

So the hyperperiod = LCM (50, 50, 100, 20, 10, 100) = 100ms

• CPU Load:

$$CPU LOAD = \frac{Total Time}{HyperPeriod} *100$$

$$\textit{Total Time} = \sum_{i=1}^{6} \text{ExecutionTime}_{i}^{*} \text{Num of Calls In HyperPeriod}_{i}$$

Total Time =
$$0.022 * 2 + 0.022 * 2 + 0.028*1 + 0.027 * 5 + 5 * 10 + 12*1$$

CPU LOAD = $62.138132*100 / 100 = 62.138132\%$

• Schedulability of the system:

1- Using Rate Monotonic Utilization:

```
 \begin{array}{l} Urm = n[\ 2^{(1/n)} - 1\ ] \ \ \mbox{where } n = number \ of tasks \\ Urm = 6[\ 2^{(1/2)} - 1\ ] \\ Urm = 0.73477 \\ If \ CPU \ LOAD \ < \ Urm \ (\ 0.62138 < 0.73477\ ) \ . \end{array}
```

Then the system is guaranteed schedulable.

2- Using Time Demand Analysis:

Tasks are organized by lowest periodicity which is highest priority.

Load_1_Simulation => Uart_Receiver => Button_1_Monitor => Button_2_Monitor => Task_Transmitter=> Load_2_Simulation

Load_1_Simulation (E: 5ms, P: 10ms, D: 10ms) :

W(10) = 5m + 0 = 5, W(10) = 5 < 10 So Load 1 is schedulable

• Uart_Receiver (E: 0.027ms, P: 20ms, D: 20ms):

$$W(20) = 0.027 + (20/10) * 5 = 10.027 ms$$

 $W(20) = 10.027 < D = 20 ms$
So Uart_Receiver is schedulable

Button_1_Monitor (E: 0.022ms, P: 50ms, D: 50ms) :

```
W(50) = 0.022 + (50/10)*5 + (50/20)*0.027 = 25.2875 ms Since D = 50 ms , then W(50) < D So Button 1 Monitor is schedulable
```

Button_2_Monitor (E: 0.022ms, P: 50ms, D: 50ms) :

```
W(50) = 0.022 + (50/10)*5 + (50/20)*0.027 + (50/50)*0.022 = 25.1115ms
Since D = 50ms and W(50) = 25.1115ms
W(50) < D, Button_2_Monitor is schedulable.
```

Task_Transmitter

```
W(100) = 0.028 + (100/50)*0.022 + (100/50)*0.022 + (100/10)*5 + (100/20)*0.027
= 50.251ms
Since D = 100 ms and W(100) = 50.251ms
W(100) < D Task 3 is schedulable.
```

■ Load_2_Simulation

W(100) = 12 + (100/100)*0.028 + (100/50)*0.022 + (100/50)*0.022 + (100/10)*5 + (100/20)*0.027 = 62.251ms

Since D = 100 ms and W(100) = 62.251 ms

W(100) < D Task 6 is schedulable.

• Offline simulator (SIMSO)

• Keil simulation

Load_1_Simulator	PIN 22	RED
Uart_Receiver	PIN 20	BLUE
Button_1_Monitor	PIN 17	GREEN
Button_2_Monitor	PIN 18	LIGHT GREEN
Task_Transmitter	PIN 19	LIGHT BLUE
Load_2_Simulator	PIN 23	BROWN
Tick Hook	PIN 16	BLACK
Idle Hook	PIN 21	PINK