

Лекция 12

Алгебраические кривые. Эллипс

Содержание лекции:

Мы приступаем к изучению кривых сторого порядка - геометрических мест точек на плоскости, которые обладают рядом интересных свойств. В это лекции мы обсудим понятие алгебрической линии и приведем пример аналитического исследования эллипса.

Ключевые слова:

Уравнение линии, алгебраическая линия, порядок алгебраической линии, эллипс, каноническая система координат, каноническое уравнение эллипса, рациональные уравнения эллипса, полярное уравнение эллипса, касательная к эллипсу, директриса эллипса.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы: mathdep.ifmo.ru/geolin

12.1 Уравнения линий на плоскости

Nota bene Строго говоря, начать следовало бы с определения линии, однако автору данного конспекта не известно "хорошего" определения, не содержащего непонятных на данном этапе обучения слов, а "плохое" определение хуже, чем интуитивное представление о непрерывной линии, которым мы и будем пользоваться.

Уравнением линии мы будем называть произвольное соотношение между координатами x и y, выполняющееся тогда и только тогда, когда точка M(x,y) с этими координатами принадлежит линии.

Nota bene Способы задания линии:

1. Уравнение, разрешенное относительно одной из координат:

$$y = f(x), \quad x = g(y).$$

2. Неявное уравнение:

$$F(x,y) = 0$$

3. Уравнение, заданное параметрически:

$$x = x(t), \quad y = y(t).$$

Nota bene Контрпримеры: ГМТ, не являющиеся линиями

- 1. единственная точка: $x^2 + y^2 = 0$;
- 2. пустое множество: $x^2 + y^2 = -1$;
- 3. пара линий: xy = 0.

Функция F(x,y) называется **целым алгебраическим полиномом**, если:

$$F(x,y) = \alpha_1 x^{m_1} y^{n_1} + \alpha_2 x^{m_2} y^{n_2} + \ldots + \alpha_2 x^{m_k} y^{n_k}, \quad m_i, n_i \in \{\mathbb{N}, 0\}.$$

Порядком алгебраического полинома F(x, y) называется число:

$$p = \deg F = \max_{i=1, k} \{m_i + n_i\}.$$

Линия называется **алгебраической**, если ее уравнением является целый алгебраический полином, при этом **порядком линии** называется степень соответствующего алгебраического полинома.

Теорема 12.1. Свойство линии быть алгебраической не зависит от способа выбора прямолинейной системы координат и порядок линии во всех системах координат сохраняется.

Доказательство данного утверждения будет предоставлено очень скоро.

12.2 Определения

Эллипсом называется геометрическое место точек плоскости, сумма расстояний от каждой из которых до двух заданных точек плоскости есть величина постоянная.

Nota bene Обозначим соответствующие точки через F_1 и F_2 , тогда условие, сформулированное в определении для произвольно точки M эллипса можно записать следующим образом:

$$|F_1M| + |F_2M| = const.$$

Вводя краткие обозначения

$$|F_1M| = r_1, \quad |F_2M| = r_2, \quad |F_1F_2| = 2c, \quad const = 2a, \quad a > 0.$$

получаем

$$r_1 + r_2 = 2a, \quad c < a$$

Канонической системой координат для эллипса называется декартова прямоугольная система координат, центр которой является серединой отрезка, заключеного между точками F_1 и F_2 , которые лежат на оси Ox.

Лемма 12.1. Уравнение эллипса в канонической системе координат имеет вид:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, (12.1)$$

и называется каноническим уравнением эллипса.

▶

Подставим в определение эллипса выражения для r_1 и r_2 :

$$r_1 = \sqrt{(x+c)^2 + y^2}, \quad r_2 = \sqrt{(c-x)^2 + y^2}.$$

Будем иметь:

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(c-x)^2 + y^2} = 2a$$

$$(x+c)^2 + y^2 = 4a^2 - 4a\sqrt{(c-x)^2 + y^2} + (c-x)^2 + y^2$$

$$4xc = 4a^2 - 4a\sqrt{(c-x)^2 + y^2}$$

$$a^2 - xc = a\sqrt{(c-x)^2 + y^2}$$

$$x^2(a^2 - c^2) + a^2y^2 = a^2(a^2 - c^2)$$

$$\frac{x^2}{a^2} + \frac{y^2}{(a^2 - c^2)} = 1$$

Заметим, что $b^2 = a^2 - c^2 > 0$, откуда получаем искомое уравнение. \blacktriangleleft

АЛГЕБРАИЧЕСКИЕ КРИВЫЕ. ЭЛЛИПС

Лемма 12.2. Всякое уравнение вида (12.1) определяет эллипс.

Покажем, что из канонического уравнения эллипса следуют геометрические соотношения, лежащие в основе его определения. Имеем

$$y^{2} = b^{2} \left(1 - \frac{x^{2}}{a^{2}} \right),$$

$$r_{1,2} = \sqrt{(x \pm c)^{2} + b^{2} - \frac{b^{2}}{a^{2}} x^{2}} = \sqrt{\left(1 - \frac{b^{2}}{a^{2}} \right) x^{2} \pm 2xc + a^{2}} =$$

$$= \sqrt{\left(\frac{c}{a} x \pm a \right)^{2}} = \left| \frac{c}{a} x \pm a \right|,$$

откуда получаем:

$$r_1 = a + \varepsilon x$$
, $r_2 = a - \varepsilon x$, $\varepsilon = \frac{c}{a}$,

и тогда

$$r_1 + r_2 = 2a.$$

•

Рациональными уравнениями эллипса называются уравнения вида:

$$r_1 = a + \varepsilon x$$
, $r_2 = a - \varepsilon x$, $\varepsilon = \frac{c}{a}$,

Nota bene Из определения следует, что эллипс - ограниченная кривая:

$$\frac{x^2}{a^2} = 1 - \frac{y^2}{b^2} \quad \Rightarrow \quad \left| \frac{x}{a} \right| \le 1 \quad \Rightarrow \quad |x| \le a, \quad x = \pm a \quad y = 0,$$

$$\frac{y^2}{b^2} = 1 - \frac{x^2}{a^2} \quad \Rightarrow \quad \left| \frac{y}{b} \right| \le 1 \quad \Rightarrow \quad |y| \le b, \quad y = \pm b \quad x = 0,$$

Nota bene Симметрии эллипса: осевая и центральная

$$M(x,y) \in E \quad \Rightarrow \quad M_1(x,-y) \in E, \quad M_2(-x,y) \in E, \quad M_3(-x,-y) \in E.$$

Nota bene Точки пересечения эллипса с осями координат:

$$A_1(-a,0), A_2(a,0), B_1(0,-b), B_2(0,b).$$

Введем ряд определений:

- ullet точки F_1 и F_2 называются фокусами эллипса;
- расстояние $c = |F_1 F_2|/2$ называется фокусным расстоянием;
- точки A_1, A_2, B_1, B_2 называются **вершинами** эллипса;
- отрезок A_1A_2 (B_1B_2) называется **большой (малой) осью** эллипса;
- величина 2a (2b) называется **длиной большой (малой)** оси;
- величина $\varepsilon = c/a$ называется **эксцентриситетом** эллипса;

АЛГЕБРАИЧЕСКИЕ КРИВЫЕ. ЭЛЛИПС

Nota bene Эксцентриситет ε :

$$a>c\quad \Rightarrow \quad \varepsilon=c/a\quad \Rightarrow \quad \varepsilon\in[0,1).$$

Частные случаи:

1.
$$\varepsilon = 0 \implies c = 0 \implies F_1 = F_2 \implies r_1 = r_2 = a = R$$
 - окружность.

2.
$$\varepsilon=1$$
 \Rightarrow $b=0$ \Rightarrow $|F_1F_2|=2a$ \Rightarrow F_1F_2 - отрезок

Полярным уравнением эллипса называется уравнение вида

$$\rho = \frac{p}{1 - \varepsilon \cos \varphi}, \quad p = a - \varepsilon c,$$

где (ρ,φ) - полярные координаты на плоскости, F_1 - полюс и Ox - полярная ось.

Лемма 12.3. Полярное уравнение эллипса задает эллипс.

Из определения следует, что $r_1 = \rho$. С другой стороны:

$$r_2^2 = (2a - r_1)^2 = 4a^2 - 4ar_1 + r_1^2,$$

 $r_2^2 = r_1^2 + 4c^2 - 4r_1c\cos\varphi,$

откуда после исключения r_2 находим:

$$r_1 = \frac{a^2 - c^2}{a - c\cos\varphi} \quad \Rightarrow \quad \rho = \frac{a - \varepsilon c}{1 - \varepsilon\cos\varphi}.$$

Параметрическими уравнениями эллипса называются уравнения вида

$$x(t) = a \cdot \cos t, \quad y(t) = b \cdot \sin t$$

Лемма 12.4. Параметрические уравнения эллипса задают эллипс.

Имеет место следующее тождество:

$$\frac{x(t)^2}{a^2} + \frac{y(t)^2}{b^2} = \cos^2 t + \sin^2 t = 1.$$

12.3 Специальные прямые

Касательной к эллипсу называется прямая, имеющая с ним одну общую точку.

Лемма 12.5. Уравнение касательной к эллипсу в точке $M(x_0, y_0)$ имеет вид

$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1,$$

Будем искать уравнение касательной в параметрической форме:

$$\begin{cases} x = x_0 + \alpha t, \\ y = y_0 + \beta t. \end{cases}$$

Подставляя в уравнение эллипса будем иметь:

$$\frac{(x_0 + \alpha t)^2}{a^2} + \frac{(y_0 + \beta t)^2}{b^2} = 1.$$

Точка $M(x_0, y_0)$ является общей точкой искомой прямой и эллипса, поэтому:

$$\frac{2x_0\alpha t + \alpha^2 t^2}{a^2} + \frac{2y_0\beta t + \beta^2 t^2}{b^2} = 0, \quad \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1.$$

Далее будем иметь

$$t\left(\frac{2x_0\alpha + \alpha^2 t}{a^2} + \frac{2y_0\beta + \beta^2 t}{b^2}\right) = 0.$$

При t=0 получаем точку $M(x_0,y_0)$, рассмотрим выражение, стоящее в скобках:

$$2x_0\alpha b^2 + \alpha^2 b^2 t + 2y_0\beta a^2 + \beta^2 a^2 t = 0,$$

$$t = -2\frac{x_0\alpha b^2 + y_0\beta a^2}{\alpha^2 b^2 + \beta^2 a^2}.$$

Так как общая точка у эллипса и искомой прямой единственная, то t из последнего выражения также должен быть равен нулю:

$$\frac{x_0 \alpha b^2 + y_0 \beta a^2}{\alpha^2 b^2 + \beta^2 a^2} = 0,$$

$$x_0 \alpha b^2 + y_0 \beta a^2 = 0 \quad \Rightarrow \quad \frac{\beta}{\alpha} = -\frac{x_0 b^2}{y_0 a^2}.$$

Переписывая уравнение касательной в общем виде будем иметь

$$y - y_0 = \frac{\beta}{\alpha}(x - x_0) = -\frac{x_0 b^2}{y_0 a^2}(x - x_0),$$

$$y_0 a^2(y - y_0) = -x_0 b^2(x - x_0), \quad \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1,$$

$$\frac{x x_0}{a^2} + \frac{y y_0}{b^2} = 1.$$

АЛГЕБРАИЧЕСКИЕ КРИВЫЕ. ЭЛЛИПС

Директрисами эллипса называются прямые, параллельные малой оси эллипса и проходящие от нее на расстоянии a/ε .

Лемма 12.6. Директориальное свойство: отношение расстояний от каждой точки эллипса до фокуса и до соответствующей директрисы постоянно и не зависит от выбора точки:

$$\frac{r_1}{d_1} = \frac{r_2}{d_2} = \varepsilon. \tag{12.2}$$

▶

Из определения директрисы следует:

$$d_1 = \left| x + \frac{a}{\varepsilon} \right| = \left| \frac{\varepsilon x + a}{\varepsilon} \right| = \frac{r_1}{\varepsilon}, \quad d_2 = \left| x - \frac{a}{\varepsilon} \right| = \left| \frac{\varepsilon x - a}{\varepsilon} \right| = \frac{r_2}{\varepsilon},$$

4

Лемма 12.7. Всякое геометрическое место точек, удовлетворяющее условию (12.2) есть эллипс.

▶

Из равенств

$$r_{1,2} = \sqrt{(x \pm c)^2 + y^2} = \varepsilon \left| x \pm \frac{a}{\varepsilon} \right|,$$

следует

$$(x \pm c)^2 + y^2 = (\varepsilon x \pm a)^2,$$

и поэтому

$$(1 - \varepsilon^2)x^2 + y^2 = a^2 - c^2 \quad \Leftrightarrow \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

◂