

Crack Detection, Location, Quantification, and Visualization Using a Distributed Fiber Optic Sensor Based on Optical Frequency Domain Reflectometry

Xiao Tan, Yi Bao*

Smart Infrastructure Laboratory

Department of Civil, Environmental and Ocean Engineering

Stevens Institute of Technology

*Corresponding to Dr. Yi Bao: <u>yi.bao@stevens.edu</u>

Background problems

Cracks in metal structures

- Reduce the functionality of the structures
 - Load-carrying capacity, stiffness, and leak-resistance
- Serious consequences and capital loss

Background problems

Cracks in concrete structures

- Reduce load capacity and durability
- Monitoring early cracks
 - Improve the safety and save the costs

Objectives

 This study aims to develop a method to precisely evaluate crack widths and visualize strains and cracks in structures using distributed fiber optic sensors based on optical frequency domain reflectometry (OFDR).

Contents

- Existing methods for monitoring cracks
- Challenges of monitoring cracks
- Proposed technology
- Experimental testing and results
- Conclusion

References:

- [1] Tan, X., & Bao, Y.* (2021). Measuring crack width using a distributed fiber optic sensor based on optical frequency domain reflectometry. *Measurement*, 172, p.108945.
- [2] Tan, X., Abu-Obeidah, A., Bao, Y.*, Nassif, H., & Nasreddine, W. (2021). Measurement and visualization of strains and cracks in CFRP post-tensioned fiber reinforced concrete beams using distributed fiber optic sensors. Automation in Construction, 124, p.103604.
- [3] Yan, M., Tan, X., Mahjoubi, S., & Bao, Y.* (2022). Strain transfer effect on measurements with distributed fiber optic sensors. *Automation in Construction*, 139, p.104262.

Existing method: type 1

- Point strain sensors
 - Strain gauges, vibrating wire gauges, fiber Bragg grating sensors
 - Difficult to capture cracks (due to short gauge length)
 - Locations of cracks are hard to predict
 - Many sensors must be deployed (unrealistic in many cases)

Strain gauges

Vibrating wire gauges

Fiber Bragg grating sensors

Existing method: type 2

- Surface inspection method
 - Photogrammetry, laser-scanning, computer vision
 - Detect and quantify surface cracks
 - Cannot detect hidden (invisible cracks)
 - Accuracy is subjected to many variables

Photogrammetry

Laser scanning

Digital image correlation

Existing method: type 3

- Non-destructive techniques
 - Coda wave interferometry, ultrasonic testing, acoustic emission
 - Based on electromagnetic waves or mechanical waves
 - Spatial resolutions are limited
 - Accuracy is subjected to many variables (EMI, humidity, etc.)

Coda wave interferometry

Ultrasonic testing

Acoustic emission

Fiber optic sensors for monitoring cracks

- Capable of detecting and locating cracks
- Widening of cracks is traced by the increase of the peak

Matching between visual crack formation and fiber optic strain amplitudes

Optical fibers

- Telecommunication-grade single-mode optical fiber:
 - Core: high-purity fused silica, high refractive index
 - Cladding: high-purity fused silica, low refractive index
 - Coatings: mechanical protection

 Light wave is guided through total internal reflection at the corecladding interface

Categories of fiber optic sensors

- Categorization based on the sensing principles:
- Grating-based sensors (fiber Bragg grating or FBG, long period grating or LPG)
- Interferometer sensors (Michelson, Fabry-Perot, Mach-Zehnder)
- Distributed sensors (Brillouin scattering, Rayleigh scattering, Raman scattering)

Current challenges

- The accuracy of strain measurement compromised by the limited spatial resolution
- Accurate measurements of crack widths require higher spatial resolution

Actual strain distribution

Measured strain distribution

Current challenges

- Accuracy for crack width quantification methods:
 - Method 1: Area of the green triangle
 - Method 2: Empirical relationship between crack width and the peak strain
 - Method 1 & 2 assume that the strain distributions in the vicinity of the cracks are linear

Method 1

Proposed research

- To develop a crack width quantification method based on OFDR
- To investigate the effects of three key parameters:
 - Coating thickness
 - Spatial resolution
 - Spacing between adjacent cracks
- To monitor multiple cracks using a single distributed sensor
- To visualize cracks in typical structures for autonomous condition assessment

Optical frequency domain reflectometry

- Immunity to EMI
- High resolution (0.65 mm)
- Large strain range (~16,000 με)
- High sensitivity
- High stability
- Long durability
- Quantify the crack widths

- Crack width quantification method
 - Crack widths are calculated by the integration of strains
 - An extensometer: validate the crack widths

Special cracking specimen

Proposed method

- Crack width quantification method
 - Crack initiation: sharp peak
 - Debonding stage: peak widening with the increase of crack width
 - Slipping stage: debonding length propagating throughoutly

Crack initiation stage

Debonding stage

- Crack width quantification method
 - Linear fitting curve
 - Accuracy of crack width: 7.2 μm

Integration method

Integration results versus the measured crack widths

- Effects of coating thickness
- ➤ The measurement accuracy of the crack width is insensitive to the thickness of protective coatings

- Effects of spatial resolution
 - Three spatial resolutions (0.65 mm, 1.3 mm, and 2.6 mm)
 - When the spatial resolution is increased from 0.65 mm to 2.6 mm, the accuracy is decreased from 7.2 μm to 72 μm (Proposed method).

Effects of crack spacing

- Four-point bending
- Cracks were measured by digital crack scopes and DFOSs.

Crack mapping

Crack visualization

- Quantification of crack width
 - Crack widths are calculated by the integration of strains
 - The results from the distributed sensor and the crack scope agree well with each other

Conclusions

- Crack widths can be real-time measured with proposed method at micro to macro scales throughout the cracking process.
- The measurement accuracy of the crack width is insensitive to different types of protective coatings of optical fibers and dependent on the spatial resolution of strain distribution.
- Multiple cracks can be located and quantified using a single distributed sensor. Increasing the spacing between the cracks tends to improve the measurement accuracy of crack width.
- The distributed sensors are capable of detecting, locating, visualizing, and quantifying cracks, which is promising for timely and effective repair of the structures.

Acknowledgement

- This research was funded by U.S. Department of Transportation [project number: 693JK31950008CAAP], NJ Department of Transportation, and Stevens Institute of Technology.
- We would like to acknowledge Rutgers University for assistance in casting and loading of the beams.

Smart Infrastructure Laboratory

- The newly-upgraded Smart Infrastructure Lab is equipped for large-scale structural testing.
 - MTS high-capacity hydraulic actuator (static & fatigue tests)
 - Advanced instruments (optic cameras, fiber optic sensors, etc.)
 - > Robots for bridge condition assessment

Advanced Concrete Technology (ACT) Lab

- The newly-upgraded ACT Lab is well-equipped for large mixing, testing, and multi-scale characterization of concrete.
 - Six mixers (volumes: 340 L, 19 L, and 5L)
 - Load frames and environmental chambers (temperature & humidity)
 - Characterization instruments (isothermal calorimeter, TGA, MIP, etc.)

Q & A Thank you!

Appendix - experimental studies

- Using Rayleigh optical frequency domain reflectometry (OFDR) techniques with high resolution (0.65 mm)
- Special cracking specimen

An extensometer: validate the crack widths measured by

distributed sensors

Special cracking specimen

Test set-up

Appendix - method 2 for crack width

- Method based on peak strain
- Bi-linear fitting curve
- Accuracy of crack width: 7.3 µm

Peak strain method

Peak strains versus the measured crack widths

- Visual observation of cracks
 - Multiple densely distributed cracks occurred in crack region
 - Red lines represent crack patterns observed by the crack scope
 - ➤ 16 cracks are observed (C1 to C16)

Crack patterns determined by visual inspection

Photo of the crack C10 at the load level of 58.7 kN

- Prior to concrete cracking
 - The strain distributions measured from the distributed fiber optic sensors are in good agreement with the analytical results

- Crack initiation
 - ➤ The cracks detected by distributed sensor when P = 19.6 kN
 - ➤ The cracks detected by crack scope until P = 34.7 kN

- Cracking propagation
 - With the increase of the load, new peaks appear in the strain distributions
 - C17 to C21: found only through DFOS
 - The magnitudes of the peaks are increased with the propagation of the crack widths

