Test Telematico di Calcolo Numerico

Ingegneria Informatica 29/01/2021

1) La matrice

$$A = \begin{pmatrix} 1 & \alpha & 0 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}, \qquad \alpha \in \mathbb{R},$$

è la matrice dei coefficienti di un sistema lineare.

Per quali valori reali di α risulta convergente il metodo di Gauss-Seidel?

2) Determinare i punti fissi della funzione

$$\phi(x) = \frac{3x - 2}{x^2} \,.$$

3) È data la tabella di valori

Calcolare i valori reali di α per i quali il polinomio di interpolazione risulta di grado minimo.

4) Si vuole approssimare il valore dell'integrale

$$I(x^6 f) = \int_0^1 x^6 f(x) dx$$

utilizzando la formula

$$J_1(f) = a_0 f\left(\frac{1}{2}\right) + a_1 f(1) .$$

Determinare i pesi a_0 e a_1 in modo da ottenere la formula con massimo grado di precisione. Indicare il grado di precisione ottenuto.

SOLUZIONE

1) Risulta

$$H_{GS} = \left(\begin{array}{ccc} 0 & -\alpha & 0 \\ 0 & \alpha & 1 \\ 0 & 0 & -1 \end{array} \right) .$$

Il metodo non risulta convergente poiché $\rho(H_{GS}) \geq 1$.

2) I punti fissi sono le soluzioni della equazione $x = \phi(x)$. Si ha l'equazione

$$x = \frac{3x - 2}{x^2}$$

per cui i punti fissi sono

$$\alpha_1 = \alpha_2 = 1 \qquad \alpha_3 = -2 \ .$$

3) Si imposta il quadro delle differenze divise ottenendo

x	f(x)	DD1	DD2
0	2		
2	0	-1	
-2	12	-5	1
-1	$4\alpha + 2$	-4α	$(4\alpha - 1)/3$
α	0	$-2/\alpha$	$(\alpha - 2)/(\alpha(\alpha - 2))$

L'ultima colonna risulta costante se $\alpha=1$ (il grado minimo del polinomio di interpolazione è uguale a 2).

4) Imponendo che la formula di quadratura proposta risulti esatta per f(x) = 1, x si ha

$$a_0 = \frac{1}{28}$$
, $a_1 = \frac{3}{28}$.

La formula non risulta esatta per $f(x) = x^2$ per cui il grado di precisione è m = 1.