Microprocessor Lab Report

Abhiroop Mukherjee Enrl. No: 510519109

Department of Computer Science and Technology Indian Institute of Engineering Science and Technology, Shibpur

Contents

1	Find out the sum of the first 30 natural numbers	1
2	Find minimum and maximum number in 10-byte unsigned array	2
3	Delay Procedure	3
4	Move block of data from location X to location Y	4

1.1 Objective

Find out the sum of the first 30 natural numbers.

1.2 Tool/Experimental setup considered

• Jubin's 8085 Simulator

1.3 Procedure

We know that

$$1 + 2 + 3 + \dots + 29 + 30 = \frac{30 \times 29}{2} = 435 = 01D1H$$

This result is not possible to store in a single register, so we need to use register pair to store the result.

1.4 Program

```
; end result is 465, more than 255 hence we need to do extended additions

MVI D,1E; setup D, the counter as 30

MVI C,01; setup BC as 1

L1: DAD B; Double add BC to HL

INX B; extended increment BC

DCR D; decrement D

JNZ L1; if D becomes 0, Z flag becomes 0 and we break

HLT

; Ans will be in HL
```

Listing 1: assembly program to find sum of the first 30 natural numbers

1.5 Experimentation

Register	Value	7	6	5	4	3	2	1	0
Accumulator	00	0	0	0	0	0	0	0	0
Register B	00	0	0	0	0	0	0	0	0
Register C	1F	0	0	0	1	1	1	1	1
Register D	00	0	0	0	0	0	0	0	0
Register E	00	0	0	0	0	0	0	0	0
Register H	01	0	0	0	0	0	0	0	1
Register L	D1	1	1	0	1	0	0	0	1
Memory(M)	00	0	0	0	0	0	0	0	0

Figure 1: Register configuration after execution

1.6 Conclusion

We see that after the execution of program, the data stored in HL register pair is 01D1H, which is the hexadecimal value of 435.

2.1 Objective

From an array of 10-byte size integers (unsigned) find out the maximum and minimum.

2.2 Tool/Experimental setup considered

• Jubin's 8085 Simulator

2.3 Procedure

The idea is to linearly iterate through all the values of the arr, and update the register for minimum(C) and maximum(B) values.

2.4 Program

```
;Actual Program
   # ORG 5000H
   # ARR: DB 5,2,3,4,F,C,7,A,B,1
   # ORG 0000
          LXI H, ARR
          {\tt MOV} B,M \, ;B is maximum val
          MOV C,M ;C is minimum val
          MVI D,OA
   ;CMP R does (A - R) in background
10
   ; If A - R > 0 then Cy = 0, Z = 0
   ; If A - R = 0 then Cy = 0, Z = 1
11
   ;If A - R < 0 then Cy = 1, Z = 1
          MOV A,M
14
   LP:
          CMP B
           JC MIN
                    ; will Jump when Cy = 1, A - B < 0, A < B
16
          MOV B,A ;will only happen if A > B
17
18
   MIN:
          CMP C
19
          JNC SKIP ;will Jump when Cy = 0, A - C > 0, A > C
20
          MOV C,A ; will only happen if A < C
21
22
   SKIP:
          INX H
          DCR D
24
          JNZ LP
25
```

Listing 2: assembly program to find minimum and maximum number in 10-byte unsigned array

2.5 Experimentation

Register	Value	7	6	5	4	3	2	1	0	Register	Value	7	6	5	4	3	2	4	0
Accumulator	01	0	0	0	0	0	0	0	1			/	_	_		_			_
Register B	OF	0	0	0	0	1	1	1	1	Accumulator	06	0	0	0	0	0	1	1	0
		-		-	-	-	-	-	-	Register B	0F	0	0	0	0	1	1	1	1
Register C	01	0	0	0	0	0	0	0	1	Register C	06	0	0	0	0	0	1	1	0
Register D	00	0	0	0	0	0	0	0	0	Register D	00	0	0	0	0	0	0	0	0
Register E	00	0	0	0	0	0	0	0	0			_	_	-			_	_	_
Register H	50	0	1	0	1	0	0	0	0	Register E	00	0	0	0	0	0	0	0	0
Register L	0A	0	0	0	0	1	0	-	0	Register H	50	0	1	0	1	0	0	0	0
		-	-	-	-	1	_	1		Register L	0A	0	0	0	0	1	0	1	0
Memory(M)	00	0	0	0	0	0	0	0	0	Memory(M)	00	0	0	0	0	0	0	0	0
ricinory(ri) od 0 0 0 0 0 0 0																			
(a) result	for {5,2	(b) result	for {F,E	,D,	C,	В,	4,9	9,8	,7,6	3}									

Figure 2: Result for different inputs

2.6 Conclusion

We see that that after program execution, B has the maximum value of array, and C has the minimum value of the array.

3.1 Objective

Write a routine that produces a delay. The delay value must be passed to register pair DE.

3.2 Tool/Experimental setup considered

• Jubin's 8085 Simulator

3.3 Procedure

Idea is to assign DE a very big value (say FFFF), and decrement it in a loop till DE becomes 0 to produce delay in execution.

3.4 Program

```
LXI D,FFFF
          CALL DELAY
          HLT
   ;delay: this subroutine produces delay
   ;in: value in DE pair
   ;out: none
   ;destroys: A
   DELAY: DCX D
                   ;doesn't affect any flags, that's why doing OR
9
          MOV A,E
                   ; will give 0 only when both D and E 00
          ORA D
11
          JNZ DELAY
12
          RET
```

Listing 3: assembly program to produce delay

3.5 Conclusion

We see that the code runs for sometime, then completes it's execution, signifying that the delay function worked and delayed execution of CPU for some time.

4.1 Objective

Write a subroutine to move a block of bytes from location X to location Y. Note that the caller would specify

- X, the source address
- Y, the destination address
- Z, the block size

Note that X, Y and Z are 16-bit quantities.

4.2 Tool/Experimental setup considered

• Jubin's 8085 Simulator

4.3 Procedure

Start reading numbers from location X and save them to location Y, after each iteration, update address of X and Y to next byte. Do this Z times and the whole block is copied.

4.4 Program

```
;setup of data
   #ORG 2500
   #ARR: DB 4,2,6,7,8
3
   # DESTLOC EQU 4500
   #ORG 0000
6
   ;let BC = 5, X = 2500, Y = 4500
   ;hence add data from 2500 to 2504
          LXI B,0005
9
          LXI D, ARR
10
11
          LXI H, DESTLOC
          CALL MOVE
          HLT
13
   ;MOVE: move Z number of bytes from loc (X to X+Z) to loc (Y to Y+Z)
14
   ;Z store in BC
15
   ;X store in DE
   ;Y store in HL
17
18
19
          LDAX D
                    ;A = Mem[DE]
          MOV M, A ; Mem[HL] = A
20
                    ;HL++
          INX H
21
          INX D
                    ;DE++
22
          DCX B
                   ;BC--
23
   ;DCX doesn't set flags so do manual check by OR
          MOV A,B
25
26
          ORA C
          JNZ MOVE
27
```

Listing 4: assembly program to move block

4.5 Experimentation

Figure 3: Result for different inputs

4.6 Conclusion

We see that all the data from location 2500(X) to (2500 + Z) has been copied to location 4500(Y) to (4500 + Z) [Z is 5 in 3a and 10 in 3b].