Sparse & Functional Principal Components Analysis

Genevera I. Allen

Department of Statistics and Electrical and Computer Engineering, Rice University,
Department of Pediatrics-Neurology, Baylor College of Medicine,
Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital.

April 4, 2014

- Motivation
- 2 Background & Challenges: Regularized PCA
- Sparse & Functional PCA Model
- 4 Sparse & Functional PCA Algorithm
- Simulation Studies
- 6 Case Study: EGG Data

Structured Big-Data

Structured Data = Data associated with locations.

- Time Series, Longitudinal & Spatial Data.
- Image data & Network Data.

- Tree Data.
- Object-Oriented Data

Examples of Massive Structured Data:

Neuroimaging and Neural Recordings: MRI, fMRI, EEG, MEG, PET,
 DTI, direct neuronal recordings (spike trains), optigenetics.

Structured Big-Data

Data matrix, $\mathbf{X}_{L\times T}$, of L brain locations by T time points.

Goal: Unsupervised analysis of brain activation patterns and temporal neural activation patterns.

Principal Components Analysis:

- Exploratory Data Analysis.
- Pattern Recognition.

- Dimension Reduction.
- Data Visualization.

Review: PCA Models

- Ovariance: Leading eigenspace of Gaussian covariance.
 - ▶ Model: $\mathbf{X} \sim N(0, \mathbf{I} \otimes \mathbf{\Sigma}_{p \times p})$ and estimate leading eigenspace of $\mathbf{\Sigma}$.
 - ► Empirical Optimization Problem:

$$\underset{\mathbf{v}_k}{\text{maximize}} \quad \mathbf{v}_k^T \, \mathbf{X}^T \, \mathbf{X} \, \mathbf{v}_k \quad \text{subject to} \ \mathbf{v}_k^T \, \mathbf{v}_k = 1 \, \& \ \mathbf{v}_k^T \, \mathbf{v}_j = 0 \, \, \forall \, \, k > j.$$

- Matrix Factorization: Low-rank mean structure.
 - Model: X = M + E for mean matrix M that is low-rank and E iid additive noise.
 - Empirical Optimization Problem:

$$\underset{\mathbf{U},\mathbf{D},\mathbf{V}}{\text{minimize}} \ || \mathbf{X} - \mathbf{U} \mathbf{D} \mathbf{V}^T ||_F^2 \ \text{subject to} \ \mathbf{U}^T \mathbf{U} = \mathbf{I} \ \& \mathbf{V}^T \mathbf{V} = \mathbf{I}.$$

Solution: Singular Value Decomposition (SVD).

Review: Regularized PCA

Big-Data settings, regularize the leading eigenvalues leading to . . .

- Functional PCA.
 - ► Encourage PC factors to be smooth with respect to known data structure. (Rice & Silverman, 1991; Silverman, 1996; Ramsay, 2006; Huang et al., 2008).
 - ▶ Leads to consistent PC estimates. (Silverman, 1996)
- Sparse PCA.
 - Automatic feature / variable selection. (Jollieffe et al., 2003; Zou et al., 2006; d'Aspermont et al., 2007; Shen & Huang, 2008)
 - ► Leads to consistent PC estimates. (Johnstone & Lu, 2009; Amini & Wainwright, 2009; Shen et al., 2012, Vu & Lei, 2013)

Why Sparse & Functional PCA?

Applied Motivation (Neuroimaging):

- Improved signal recovery, feature selection, interpretation, data visualization.
- Question: Is there a general mathematical framework for regularization in the context of PCA?

Why Sparse & Functional PCA?

Applied Motivation (Neuroimaging):

Objectives

- (i) Formulate a (good) optimization framework to achieve SFPCA.
- (ii) Develop a scalable algorithm to fit SFPCA.
- (iii) Carefully study the properties of the model and algorithm from an optimization perspective.

Preview

Preview

- Motivation
- 2 Background & Challenges: Regularized PCA
- Sparse & Functional PCA Model
- 4 Sparse & Functional PCA Algorithm
- Simulation Studies
- 6 Case Study: EGG Data

Setup

Matrix Factorization: Low-Rank Mean Model.

$$\mathbf{X}_{n \times p} = \sum_{k=1}^{K} d_k \, \mathbf{u}_k \, \mathbf{v}_k^T + \epsilon$$

- Assume data, X, previously centered.
- PC Factors v and/or u are sparse and/or smooth.
- ϵ is iid noise; d_k is fixed, but unknown.
- Rows and / or columns of X arise from discretized curves or other features associated with locations.

⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩ □ ⟨○⟩

Functional PCA & Two-Way FPCA

Encouraging smoothness:

- Continuous functions: 2nd derivatives quantify curvature.
- Penalty: $\int f''(t)f''(t)dt$. Penalizes average squared curvature.
- Discrete extension: Squared second differences between adjacent variables.
- Discrete extension in matrix form:

$$\beta^T \mathbf{\Omega} \beta = \sum (\beta_{j+1} - 2\beta_j + \beta_{j-1})^2$$

 $\Omega_{p\times p}\succ 0$ is the second differences matrix.

ullet Other possible choices Ω that encourages smoothness. (Ramsay 2006).

Functional PCA & Two-Way FPCA

Functional PCA

$$\underset{\mathbf{v}}{\text{maximize}} \quad \mathbf{v}^T \mathbf{X}^T \mathbf{X} \mathbf{v} \quad \text{subject to} \quad \mathbf{v}^T (\mathbf{I} + \alpha_{\mathbf{v}} \Omega_{\mathbf{v}}) \mathbf{v} = 1.$$

Silverman (1996)

Equivalent to:

Regression Approach: (Huang et al., 2008)

$$\begin{split} \hat{\mathbf{u}} &= \operatorname{argmin}_{\mathbf{u}} \left\{ || \, \mathbf{X} \, \hat{\mathbf{v}} - \mathbf{u} \, ||_2^2 \right\}. \\ \hat{\mathbf{v}} &= \operatorname{argmin}_{\mathbf{v}} \left\{ || \, \mathbf{X}^T \, \hat{\mathbf{u}} - \mathbf{v} \, ||_2^2 + \alpha \, \mathbf{v}^T \, \Omega \, \mathbf{v} \right\}. \end{split}$$

Half-Smoothing.

Functional PCA & Two-Way FPCA

Two-Way Functional PCA

$$\underset{\mathbf{u},\mathbf{v}}{\text{maximize}} \quad \mathbf{u}^T \, \mathbf{X} \, \mathbf{v} - \frac{1}{2} \, \mathbf{u}^T \big(\mathbf{I} + \alpha_\mathbf{u} \, \Omega_\mathbf{u} \big) \, \mathbf{u} \, \mathbf{v}^T \big(\mathbf{I} + \alpha_\mathbf{v} \, \Omega_\mathbf{v} \big) \, \mathbf{v} \, .$$

Huang et al. (2009)

- Equivalent to two-way half-smoothing.
- Related to two-way ℓ_2 penalized regression.

Sparse PCA & Two-Way SPCA

Sparse PCA via Penalized Regression

$$\begin{split} \hat{\mathbf{u}} &= \operatorname{argmin}_{\mathbf{u}} \left\{ || \, \mathbf{X} \, \hat{\mathbf{v}} - \mathbf{u} \, ||_2^2 \right\}. \\ \hat{\mathbf{v}} &= \operatorname{argmin}_{\mathbf{v}} \left\{ || \, \mathbf{X}^T \, \hat{\mathbf{u}} - \mathbf{v} \, ||_2^2 + \lambda || \, \mathbf{v} \, ||_1 \right\}. \end{split}$$

Shen & Huang (2008).

Other SPCA approaches:

- Semi-definite programming.
- Covariance thresholding.

Sparse PCA & Two-Way SPCA

Two-Way Sparse PCA

maximize
$$\mathbf{u}^T \mathbf{X} \mathbf{v} - \lambda_{\mathbf{u}} || \mathbf{u} ||_1 - \lambda_{\mathbf{v}} || \mathbf{v} ||_1$$

subject to $\mathbf{u}^T \mathbf{u} \leq 1 \& \mathbf{v}^T \mathbf{v} \leq 1$.

Allen et al. (2011); Lagrangian of Witten et al. (2009); Related to Lee et al. (2010).

- SPCA of Shen & Huang (2008) a special case.
- Related to two-way penalized regression.

Two-Way Regularized PCA

Alternating Penalized Regressions

$$\begin{split} \hat{\mathbf{u}} &= \operatorname{argmin}_{\mathbf{u}} \left\{ || \mathbf{X} \, \hat{\mathbf{v}} - \mathbf{u} \, ||_2^2 + \lambda_{\mathbf{u}} P_{\mathbf{u}}(\mathbf{u}) \right\}. \\ \hat{\mathbf{v}} &= \operatorname{argmin}_{\mathbf{v}} \left\{ || \mathbf{X}^T \, \hat{\mathbf{u}} - \mathbf{v} \, ||_2^2 + \lambda_{\mathbf{v}} P_{\mathbf{v}}(\mathbf{v}) \right\}. \end{split}$$

Questions:

- **①** Are sparse AND smoothing ℓ_2 penalties permitted?
- What penalty types lead to convergent solutions?
- What optimization problem is this class of algorithms solving?

We consider . . .

Objective

Flexible combinations of smoothness and / or sparsity on the row and / or column PC factors.

Four Penalties:

- Row Sparsity: $\lambda_{\mathbf{u}} P_{\mathbf{u}}(\mathbf{u})$, for example $\lambda_{\mathbf{u}} ||\mathbf{u}||_1$.
- Row Smoothness: $\alpha_{\mathbf{u}} \mathbf{u}^{\mathsf{T}} \Omega_{\mathbf{u}} \mathbf{u}$; $\Omega_{\mathbf{u}}^{(n \times n)} \succ 0$.
- Column Sparsity: $\lambda_{\mathbf{v}} P_{\mathbf{v}}(\mathbf{v})$ for example $\lambda_{\mathbf{v}} ||\mathbf{v}||_1$.
- Column Smoothness: $\alpha_{\mathbf{v}} \mathbf{v}^{\mathsf{T}} \Omega_{\mathbf{v}} \mathbf{v}$; $\Omega_{\mathbf{v}}^{(p \times p)} \succ 0$.

Approach: Iteratively solve for the best rank-one solution in a greedy manner.

Formulating an Optimization Problem

We want ...

- To generalize existing methods for PCA, SPCA, FPCA, and two-way SPCA and FPCA.
 - These should all be special cases when regularization parameters are active.
- ② Desirable numerical properties:
 - Identifiable PC factors.
 - Non-degenerate and Well-scaled solution and PC factors
 - Balanced regularization (NO regularization masking).
 - * Regularization Masking: \exists a $\lambda, \alpha > 0$ where the solution does not depend on both λ and α .
- A computationally tractable algorithm in big-data settings.

Optimization Approaches: Natural Extensions?

Question:

• Why not add ℓ_1 and smoothing ℓ_2 penalties to the Frobenius-norm loss of the SVD problem?

$$\underset{\mathbf{u}:(\mathbf{u}^T\mathbf{u} \leq 1), \mathbf{v}(\mathbf{v}^T\mathbf{v} \leq 1)}{\operatorname{minimize}} || \mathbf{X} - (\mathbf{d}) \mathbf{u} \mathbf{v}^T ||_F^T + \lambda_{\mathbf{u}} || \mathbf{u} ||_1 + \lambda_{\mathbf{v}} || \mathbf{v} ||_1 + \alpha_{\mathbf{u}} \mathbf{u}^T \Omega_{\mathbf{u}} \mathbf{u} + \alpha_{\mathbf{v}} \mathbf{v}^T \Omega_{\mathbf{v}} \mathbf{v}.$$

Unidentifiable, degenerate, does not generalize.

② Why not add ℓ_1 penalties to the two-way FPCA optimization problem of Huang et al. (2009)?

$$\underset{\boldsymbol{\mathsf{u}}(:\boldsymbol{\mathsf{u}}^T\;\boldsymbol{\mathsf{u}}\leq 1),\boldsymbol{\mathsf{v}}(:\boldsymbol{\mathsf{v}}^T\;\boldsymbol{\mathsf{v}}\leq 1)}{\operatorname{maximize}}\boldsymbol{\mathsf{u}}^T\;\boldsymbol{\mathsf{X}}\;\boldsymbol{\mathsf{v}}-\frac{1}{2}\,\boldsymbol{\mathsf{u}}^T\big(\boldsymbol{\mathsf{I}}+\alpha_{\boldsymbol{\mathsf{u}}}\;\Omega_{\boldsymbol{\mathsf{u}}}\big)\,\boldsymbol{\mathsf{u}}\;\boldsymbol{\mathsf{v}}^T\big(\boldsymbol{\mathsf{I}}+\alpha_{\boldsymbol{\mathsf{v}}}\;\Omega_{\boldsymbol{\mathsf{v}}}\big)\,\boldsymbol{\mathsf{v}}-\lambda_{\boldsymbol{\mathsf{u}}}||\,\boldsymbol{\mathsf{u}}\,||_1-\lambda_{\boldsymbol{\mathsf{v}}}||\,\boldsymbol{\mathsf{v}}\,||_1$$

3 Why not add smoothing ℓ_2 penalties to the two-way SPCA problem of Witten et al. (2009)?

$$\underset{\mathbf{u}(:\mathbf{u}^T\mathbf{u}\leq 1), \mathbf{v}(:\mathbf{v}^T\mathbf{v}\leq 1)}{\operatorname{maximize}} \quad \mathbf{u}^T \operatorname{X} \mathbf{v} - \lambda_{\mathbf{u}} || \, \mathbf{u} \, ||_1 - \lambda_{\mathbf{v}} || \, \mathbf{v} \, ||_1 - \alpha_{\mathbf{u}} \, \mathbf{u}^T \, \Omega_{\mathbf{u}} \, \mathbf{u} - \alpha_{\mathbf{v}} \, \mathbf{v}^T \, \Omega_{\mathbf{v}} \, \mathbf{v} \, .$$

Regularization masking, computationally challenging.

- Motivation
- 2 Background & Challenges: Regularized PCA
- 3 Sparse & Functional PCA Model
- Sparse & Functional PCA Algorithm
- Simulation Studies
- 6 Case Study: EGG Data

Assumptions on Penalties

- A1 $\Omega_{\mathbf{u}} \succeq 0 \& \Omega_{\mathbf{v}} \succeq 0$.
- A2 P()'s are positive, homogeneous of order one, i.e. $P(cx) = cP(x) \forall c > 0$.
 - ▶ Sparse penalties: ℓ_1 -norm, SCAD, MC+, etc.
 - ▶ Structured sparse: group lasso, fused lasso, generalized lasso, etc.
- A3 If P()'s non-convex, then P() can be decomposed into the difference of two convex functions, $P(x) = P_1(x) P_2(x)$ for $P_1()$ and $P_2()$ convex.
 - ► Includes common non-convex penalties such as SCAD, MC+, log-concave, etc.

SFPCA Optimization Problem

Rank-one Sparse & Functional PCA the solution to:

maximize
$$\mathbf{u}^T \mathbf{X} \mathbf{v} - \lambda_{\mathbf{u}} P_{\mathbf{u}}(\mathbf{u}) - \lambda_{\mathbf{v}} P_{\mathbf{v}}(\mathbf{v})$$

subject to $\mathbf{u}^T (\mathbf{I} + \alpha_{\mathbf{u}} \Omega_{\mathbf{u}}) \mathbf{u} \le 1 \& \mathbf{v}^T (\mathbf{I} + \alpha_{\mathbf{v}} \Omega_{\mathbf{v}}) \mathbf{v} \le 1.$

• Penalty Parameters: $\lambda_{\mathbf{u}}, \lambda_{\mathbf{v}}, \alpha_{\mathbf{u}}, \alpha_{\mathbf{v}} \geq 0$.

Theorem

(i) If $\lambda_{\mathbf{u}}, \lambda_{\mathbf{v}}, \alpha_{\mathbf{u}}, \alpha_{\mathbf{v}} = 0$, then equivalent to PCA / the SVD of X.

- (i) If $\lambda_{\mathbf{u}}, \lambda_{\mathbf{v}}, \alpha_{\mathbf{u}}, \alpha_{\mathbf{v}} = 0$, then equivalent to PCA / the SVD of **X**.
- (ii) If $\lambda_{\mathbf{u}}, \alpha_{\mathbf{u}}, \alpha_{\mathbf{v}} = 0$, then equivalent to Sparse PCA (Shen & Huang, 2008).

- (i) If $\lambda_{\mathbf{u}}, \lambda_{\mathbf{v}}, \alpha_{\mathbf{u}}, \alpha_{\mathbf{v}} = 0$, then equivalent to PCA / the SVD of **X**.
- (ii) If $\lambda_{\mathbf{u}}, \alpha_{\mathbf{u}}, \alpha_{\mathbf{v}} = 0$, then equivalent to Sparse PCA (Shen & Huang, 2008).
- (iii) If $\alpha_{\bf u}$, $\alpha_{\bf v}=0$, then equivalent to a special case of the two-way Sparse PCA (Allen et al., 2011), which is the Lagrangian of (Witten et al., 2009) and closely related to that (Lee et al., 2010).

- (i) If $\lambda_{\mathbf{u}}, \lambda_{\mathbf{v}}, \alpha_{\mathbf{u}}, \alpha_{\mathbf{v}} = 0$, then equivalent to PCA / the SVD of X.
- (ii) If $\lambda_{\mathbf{u}}, \alpha_{\mathbf{u}}, \alpha_{\mathbf{v}} = 0$, then equivalent to Sparse PCA (Shen & Huang, 2008).
- (iii) If $\alpha_{\rm u}, \alpha_{\rm v}=0$, then equivalent to a special case of the two-way Sparse PCA (Allen et al., 2011), which is the Lagrangian of (Witten et al., 2009) and closely related to that (Lee et al., 2010).
- (iv) If $\lambda_{\mathbf{u}}, \lambda_{\mathbf{v}}, \alpha_{\mathbf{u}} = 0$, then equivalent to the Functional PCA solution of (Silverman, 1996) and (Huang et al., 2008).

- (i) If $\lambda_{\mathbf{u}}, \lambda_{\mathbf{v}}, \alpha_{\mathbf{u}}, \alpha_{\mathbf{v}} = 0$, then equivalent to PCA / the SVD of X.
- (ii) If $\lambda_{\mathbf{u}}, \alpha_{\mathbf{u}}, \alpha_{\mathbf{v}} = 0$, then equivalent to Sparse PCA (Shen & Huang, 2008).
- (iii) If $\alpha_{\rm u}, \alpha_{\rm v}=0$, then equivalent to a special case of the two-way Sparse PCA (Allen et al., 2011), which is the Lagrangian of (Witten et al., 2009) and closely related to that (Lee et al., 2010).
- (iv) If $\lambda_{\mathbf{u}}, \lambda_{\mathbf{v}}, \alpha_{\mathbf{u}} = 0$, then equivalent to the Functional PCA solution of (Silverman, 1996) and (Huang et al., 2008).
- (v) If $\lambda_{\mathbf{u}}, \lambda_{\mathbf{v}} = 0$, then equivalent to the two-way FPCA solution of (Huang et al., 2009).

Desirable Numerical Properties

- Identifiable (u and v) up to a sign change.
- Balanced regularization (no regularization masking):
 - ightharpoonup \exists a $\lambda_{\mathbf{u}}^{max}$ s.t. $\mathbf{u}^* = 0$.
 - (u*, v*) depend on all non-zero regularization parameters.
- 3 Well-scaled and non-degenerate.
 - Either $\mathbf{u}^{*,T}(\mathbf{I} + \alpha_{\mathbf{u}} \Omega_{\mathbf{u}}) \mathbf{u}^{*} = 1$ and $\mathbf{v}^{*,T}(\mathbf{I} + \alpha_{\mathbf{v}} \Omega_{\mathbf{v}}) \mathbf{v}^{*} = 1$,
 - or $u^* = 0$ and $v^* = 0$.

- Motivation
- 2 Background & Challenges: Regularized PCA
- Sparse & Functional PCA Model
- Sparse & Functional PCA Algorithm
- Simulation Studies
- 6 Case Study: EGG Data

SFPCA Optimization Problem

Rank-one Sparse & Functional PCA the solution to:

maximize
$$\mathbf{u}^T \mathbf{X} \mathbf{v} - \lambda_{\mathbf{u}} P_{\mathbf{u}}(\mathbf{u}) - \lambda_{\mathbf{v}} P_{\mathbf{v}}(\mathbf{v})$$

subject to $\mathbf{u}^T (\mathbf{I} + \alpha_{\mathbf{u}} \Omega_{\mathbf{u}}) \mathbf{u} \leq 1 \& \mathbf{v}^T (\mathbf{I} + \alpha_{\mathbf{v}} \Omega_{\mathbf{v}}) \mathbf{v} \leq 1.$

- Non-convex, non-differentiable, QCQP.
- P() convex \Longrightarrow bi-convex.
 - Convex in v with u fixed as well as the converse.

Idea: Alternating optimization.

Relationship to Penalized Regression

Theorem

The solution to the SFPCA problem with respect to **u** is given by:

$$\begin{split} \hat{\mathbf{u}} &= \operatorname{argmin}_{\mathbf{u}} \left\{ \frac{1}{2} || \mathbf{X} \mathbf{v} - \mathbf{u} ||_{2}^{2} + \lambda_{\mathbf{u}} P_{\mathbf{u}}(\mathbf{u}) + \frac{\alpha_{\mathbf{u}}}{2} \mathbf{u}^{T} \Omega_{\mathbf{u}} \mathbf{u} \right\} \\ \mathbf{u}^{*} &= \begin{cases} \hat{\mathbf{u}} / || \hat{\mathbf{u}}||_{\mathbf{I} + \alpha_{\mathbf{u}} \Omega_{\mathbf{u}}} & || \hat{\mathbf{u}} ||_{\mathbf{I} + \alpha_{\mathbf{u}} \Omega_{\mathbf{u}}} > 0 \\ 0 & \text{otherwise.} \end{split}$$

- Analogous to re-scaled Elastic Net problem! (Zou & Hastie, 2005).
- Result holds because of A2, order-one penalties.

Relationship to Penalized Regression

$$\underset{\mathbf{u}}{\operatorname{minimize}} \quad \frac{1}{2}||\mathbf{X}\mathbf{v} - \mathbf{u}||_2^2 + \lambda_{\mathbf{u}}P_{\mathbf{u}}(\mathbf{u}) + \frac{\alpha_{\mathbf{u}}}{2}\mathbf{u}^T \mathbf{\Omega}_{u}\mathbf{u}$$

- Can be solved by (accelerated) proximal gradient descent.
- Geometric convergence, $O(k \log k)$, for convex penalties.
- A3, difference of convex, ensures convergence for non-convex penalties.
- Closed form proximal operator for many penalties: $\operatorname{prox}_{P}(\mathbf{y}, \lambda) = \operatorname{argmin}_{\mathbf{x}} \{\frac{1}{2} ||\mathbf{x} \mathbf{y}||_{2}^{2} + \lambda P(\mathbf{x})\}.$
 - ▶ Some form of thresholding (i.e. soft-thresholding for ℓ_1 penalty).

SFPCA Algorithm

Rank-One Algorithm

- Initialize \mathbf{u} and \mathbf{v} to that of the rank-1 SVD of \mathbf{X} . Set $\mathbf{S}_{\mathbf{u}} = \mathbf{I} + \alpha_{\mathbf{u}} \Omega_{\mathbf{u}}$ and $L_{\mathbf{u}} = \lambda_{max}(\mathbf{S}_{\mathbf{u}})$; set $\mathbf{S}_{\mathbf{v}} = \mathbf{I} + \alpha_{\mathbf{v}} \Omega_{\mathbf{v}}$ and $L_{\mathbf{v}} = \lambda_{max}(\mathbf{S}_{\mathbf{v}})$.
- 2 Repeat until convergence:
 - Estimate Repeat until convergence:

$$\mathbf{u}^{(t+1)} = \operatorname{prox}_{P_{\mathbf{u}}} \left(\mathbf{u}^{(t)} + \frac{1}{L} (\mathbf{X} \mathbf{v}^* - \mathbf{S}_{\mathbf{u}} \mathbf{u}^{(t)}), \frac{\lambda_{\mathbf{u}}}{L_{\mathbf{u}}} \right).$$

$$\text{Set } \mathbf{u}^* = \begin{cases} \mathbf{\hat{u}}/||\mathbf{\hat{u}}||_{\mathbf{S}_u} & ||\mathbf{\hat{u}}||_{\mathbf{S}_u} > 0 \\ 0 & \mathrm{otherwise.} \end{cases}$$

Stimate v. Repeat until convergence:

$$\mathbf{v}^{(t+1)} = \operatorname{prox}_{P_{\mathbf{v}}} \left(\mathbf{v}^{(t)} + \frac{1}{L} (\mathbf{X}^T \mathbf{u}^* - \mathbf{S}_{\mathbf{v}} \mathbf{v}^{(t)}), \frac{\lambda_{\mathbf{v}}}{L_{\mathbf{v}}} \right).$$

$$\text{Set } \mathbf{v}^* = \begin{cases} \mathbf{\hat{v}}/||\mathbf{\hat{v}}||_{\mathbf{S}_{\mathbf{v}}} & ||\mathbf{\hat{v}}||_{\mathbf{S}_{\mathbf{v}}} > 0 \\ 0 & \text{otherwise.} \end{cases}$$

3 Return $\mathbf{u} = \mathbf{u}^* / ||\mathbf{u}^*||_2$, $\mathbf{v} = \mathbf{v}^* / ||\mathbf{v}^*||_2$, and $d = \mathbf{u}^T \mathbf{X} \mathbf{v}$.

Convergence

Theorem: Convergence of rank-one SFPCA.

For $P_{\mathbf{u}}$ and $P_{\mathbf{v}}$ convex,

- The SFPCA Algorithm convergences to a stationary point of the SFPCA problem.
- The solution is unique given an initial starting point.

Convergence

Theorem: Convergence of rank-one SFPCA.

For $P_{\mathbf{u}}$ and $P_{\mathbf{v}}$ convex,

- The SFPCA Algorithm convergences to a stationary point of the SFPCA problem.
- The solution is unique given an initial starting point.
- Multi-rank solutions can be computed in a greedy manner (power method).
- Several deflation schemes available (Mackey, 2009).
- Subtraction deflation most common:
 - ▶ Fit rank-one SFPCA to **X** to estimate 1st PC factors.
 - Subtract rank one fit, $\mathbf{X} d_1 \mathbf{u}_1 \mathbf{v}_1^T$, and apply SFPCA to estimate 2nd PC factors.

Extensions: Non-Negativity Constraints

Corollary

Replace $\operatorname{prox}_P()$ with the positive proximal operator, $\operatorname{prox}_P^+(\mathbf{y},\lambda) = \operatorname{argmin}_{\mathbf{x}:\mathbf{x}\geq 0}\{\frac{1}{2}||\mathbf{x}-\mathbf{y}||_2^2 + \lambda P(\mathbf{x})\}$.

• Same convergence guarantees hold.

Selecting Regularization Parameters

- Cross-validation (CV), Generalized CV, BIC, etc.
- Nested vs. Grid search.

Ideas:

- Select $\alpha_{\mathbf{u}}$ and $\lambda_{\mathbf{u}}$ together.
- Exploit connection to Elastic Net to compute degrees of freedom for BIC.

Example for ℓ_1 penalty:

• Let $\mathcal{A}(\mathbf{u})$ be the active set of \mathbf{u} .

$$\hat{df}(\alpha_{\mathbf{u}}, \lambda_{\mathbf{u}}) = \operatorname{trace}\left[\left(\mathbf{I}_{\mathcal{A}(\mathbf{u})} - \frac{\alpha_{\mathbf{u}}}{2} \, \mathbf{\Omega}_{\mathbf{u}}(\mathcal{A}(\mathbf{u}), \mathcal{A}(\mathbf{u}))\right)^{-1}\right].$$

- Motivation
- 2 Background & Challenges: Regularized PCA
- Sparse & Functional PCA Model
- 4 Sparse & Functional PCA Algorithm
- Simulation Studies
- 6 Case Study: EGG Data

Setup: Rank-3 Model with sparse & smooth right factors.

$$\mathbf{X}_{n \times p} = \sum_{k=1}^{K} d_k \mathbf{u}_k \mathbf{v}_k^T + \epsilon$$

- $\epsilon_{ij} \stackrel{iid}{\sim} N(0,1)$.
- \mathbf{u}_k random orthonormal vectors of length n; $D = \operatorname{diag}([n/4, n/5, n/6]^T)$.
- \mathbf{v}_k fixed signal vectors of length p = 200:

Table: n = 100 Results.

		TWFPCA	SSVD	PMD	SGPCA	SFPCA
v_1	TP	-	0.897	0.568	0.768	0.935
	FP	_	0.323	0.001	0.006	0.052
	r∠	0.153	0.625	2.220	0.726	0.189
v ₂	TP	-	0.783	0.657	0.445	0.713
	FP	_	0.320	0.106	0.002	0.047
	r∠	5.980	0.549	0.597	0.829	0.438
V 3	TP	_	0.771	0.514	0.499	0.883
	FP	_	0.316	0.066	0.004	0.054
	r∠	3.660	0.855	1.270	1.010	0.468
	rSE	0.668	0.760	1.000	0.737	0.450

Table: n = 300 Results.

		TWFPCA	SSVD	PMD	SGPCA	SFPCA
v_1	TP	-	0.973	0.509	0.921	0.987
	FP	-	0.322	0.000	0.005	0.068
	r∠	0.768	0.487	15.700	0.553	0.152
v ₂	TP	-	0.919	0.773	0.839	0.967
	FP	-	0.319	0.000	0.038	0.048
	r∠	52.300	0.428	1.310	0.488	0.320
V 3	TP	-	0.943	0.530	0.849	0.972
	FP	-	0.314	0.000	0.015	0.060
	r∠	33.100	0.545	5.940	0.631	0.131
	rSE	1.170	0.790	3.380	0.809	0.655

SFPCA also improves feature selection ...

Setup: Rank-2 Model with sparse & smooth spatial (25 \times 25 grid) and temporal (200-length vector) factors.

- Motivation
- 2 Background & Challenges: Regularized PCA
- Sparse & Functional PCA Model
- 4 Sparse & Functional PCA Algorithm
- Simulation Studies
- 6 Case Study: EGG Data

EEG Predisposition to Alcoholism

Data:

- EEG measures electrical signals in the active brain over time.
- Sampled from 64 channels at 256Hz.
- Consider 1st alcoholic subject over epochs relating to non-matching image stimuli.
- Data matrix: 57×5376 , channel location by epoch time points (21 epochs of 256 time points each).
- \bullet Ω_u weighted squared second differences matrix using spherical distances between channel locations.
- ullet squared second differences matrix between time points.

PCA Results:

Independent Component Analysis (ICA) Results:

Penalized Matrix Decomposition & Two-Way FPCA Results:

Sparse & Functional PCA Results:

Comparison:

PCA:

ICA:

SFPCA:

SEPCA Notes:

- 3.28 seconds to converge. (Software entirely in Matlab).
- BIC selected $\lambda_{\mathbf{u}} = 0$ (spatial sparsity) for first 5 components.
- BIC selected $\alpha_{\bf u}=10-12,~\alpha_{\bf v}=0.5-10,$ and $\lambda_{\bf v}=1-2.5$ for first 5 components.

Flexible, data-driven selection of appropriate amount of regularization.

Summary & Future Work

Summary

- SFPCA generalizes much of the existing literature on regularized PCA via alternating regressions.
- SFPCA has the flexibility to permit many types of regularization in a data-driven manner.
- SFPCA results in better signal recovery and more interpretable factors as well as improved feature selection.

Future Statistical Work:

- Statistical consistency, especially in high-dimensional settings.
- Extensions to other multivariate methods: CCA, PLS, LDA, Clustering, and etc.

The Bigger Picture: Modern Multivariate Analysis

Goal: Flexible, data-driven approaches for analyzing complex big-data.

Approach: Alternating penalized regressions framework and deflation for any eigenvalue or singular value problems.

Can mix and match any of the following:

- Generalizations that permit non-iid noise: Generalized PCA (Allen et al., 2013).
- Non-negativity constraints. (Today's talk; Zaas, ; Allen and Maletic-Savatic, 2011).
- Higher-order data and multi-way arrays. (Allen, 2012; Allen, 2013).
- Structured Signal: Sparsity and/or Smoothness. (Today's talk).

Acknowledgments

Funding:

National Science Foundation, Division of Mathematical Sciences 1209017 & 1264058.

Software available at:

 $\verb|http://www.stat.rice.edu/\sim| gallen/software.html|$

References

- G. I. Allen, "Sparse and Functional Principal Components Analysis", arXiv:1309.2895, 2013.
- G. I. Allen, L. Grosenick, and J. Taylor, "A Generalized Least Squares Matrix Decomposition", (To Appear) Journal of the American Statistical Association, Theory & Methods, 2014.
- G. I. Allen and M. Maletic-Savatic, "Sparse Non-negative Generalized PCA with Applications to Metabolomics", Bioinformatics, 27:21, 3029-3035, 2011.
- G. I. Allen, "Sparse Higher-Order Principal Components Analysis", In Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, 2012.
- G. I. Allen, C. Peterson, M. Vannucci, and M. Maletic-Savatic, "Regularized Partial Least Squares with an Application to NMR Spectroscopy", Statistical Analysis and Data Mining, 6:4, 302-314, 2013.
- G. I. Allen, "Multi-way Functional Principal Components Analysis", In IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2013.
- J. Huang, H. Shen and A. Buja, "The analysis of two-way functional data using two-way regularized singular value decompositions", Journal of the American Statistical Association, Theory & Methods, $104:488,\ 2009.$
- D. M. Witten, R. Tibshirani, and T. Hastie, "A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis", Biostatistics, 10:3, 515-534, 2009.