Section 3: Expectation

ARE 210

September 12, 2017

- Introduction (10 min)
- Quick tips (5 min)
- Practice questions (35 min)

The section notes are available on the section Github at github.com/johnloeser/are210 in the "section3" folder.

1 Definitions

- Let μ be a measure over a measurable space (Ω, F)
 - $-\int \mathbf{1}_A(\omega)\mu(d\omega) = \mu(A)$, where $\mathbf{1}_A(\omega) = \mathbf{1}\{\omega \in A\}$
 - Let $f(\omega) = \sum_j a_j \mathbf{1}_{A_j}(\omega)$, then $\int f(\omega)\mu(d\omega) = \sum_j a_j \mu(A_j)$. We call functions of the form of f step functions
 - Let $f_n \to f$ be a sequence of step functions converging in the limit to f, a measurable function. $\int f(\omega)\mu(d\omega) \equiv \lim_{n\to\infty} \int f_n(\omega)\mu(d\omega)$
 - $-\int_A f(\omega)\mu(d\omega) \equiv \int f(\omega)\mathbf{1}_A(\omega)\mu(d\omega)$
 - From here on out, we'll almost always use Lebesgue measure over the Borel σ -algebra, which means Lebesgue integration is equivalent to traditional Riemann integration, and standard results hold (Fundamental Theorem of Calculus, Change of Variable, . . .)
 - * Let X be a random variable with probability measure P_X and density f, and g a function. Then $\int g(x)P_X(dx) = \int g(x)f(x)dx$
 - * Need to be careful when working with discrete or mixed random variables
 - * Need to be careful when working with infinities break integral into set when f is positive and set when f is negative, if both integrals infinite then integral undefined
- A holds almost surely $\Leftrightarrow P(A) = 1$
- $\mathbf{E}[X] \equiv \int_{\Omega} X(\omega) P[d\omega]$
 - $\mathbf{E}[aX + bY] = a\mathbf{E}[X] + b\mathbf{E}[Y]$
 - $-X \sim F \Rightarrow \mathbf{E}[X] = \int_0^\infty [1 F(t)]dt \int_{-\infty}^0 F(t)dt$
- *n*th moment of $X \equiv \mathbf{E}[X^n]$

- nth centered moment of $X \equiv \mathbf{E}[(X \mathbf{E}[X])^n]$
- $Cov(X,Y) = \mathbf{E}[(X \mathbf{E}[X])(Y \mathbf{E}[Y])^T]$
 - Can verify Cov is linear from **E** properties
- $M_X(t) = \mathbf{E}[\exp(tX)]$ is the moment generating function
 - If the MGF is defined in a neighborhood of 0 for X and Y, then X and Y have the same distribution if and only if M_X and M_Y are identical in a neighborhood of 0
- $\Psi_X(t) = \mathbf{E}[\exp(itX)]$ is the characteristic function
 - X and Y are identically distributed if and only if Ψ_X and Ψ_Y are identical
 - $-\Psi_{aX+b}(t) = \exp(itb)\Psi_X(at)$
 - $-X \perp Y \Rightarrow \Psi_{X+Y}(t) = \Psi_X(t)\Psi_Y(t)$
- Markov's Inequality: $P[|X| > b] \le \frac{\mathbf{E}[|X|]}{b}$
- Chebyshev's Inequality: $P[|X \mathbf{E}[X]| > \epsilon] \leq \frac{\mathbf{V}[X]}{\epsilon^2}$
- Jensen's Inequality: Let g be a convex function, X a random variable, then $\mathbb{E}[g(X)] \geq g(\mathbb{E}[X])$

2 Some helpful tips

- For our purposes, when taking expectations, we'll almost always be doing so with respect to a random variable with a continuous, discrete, or mixed distribution over **R**. We'll see next week that we can reduce the mixed case to the discrete and continuous case
 - Expectation of a discrete RV just involves sums
 - Expectation of a continuous RV can be done using Riemann integration
 - In some cases, we can do either using characteristic functions or MGF/Laplace transform
- (MGF:Characteristic Function)::(Taylor Series:Fourier Series)
- We've now covered material needed to answer 1-9 on PS2. You can try 10-14 however these questions are on conditional expectation. However, we can think about Y|X as a random variable just like Y we can calculate its distribution using Bayes' Rule, which means we can calculate its CDF. As a result, you have all the tools you need to answer these questions.

3 Practice questions

- 1) **Expectation practice**: Let $X \sim N(0,1)$. Calculate $\mathbf{E}[X^3]$.
- 2) Lee bounds: Let F(y) = pM(y) + (1-p)N(y), for $p \in [0,1]$, and let $G(y) = \max\left\{0, \frac{F(y)-p}{1-p}\right\}$. Show that $\int yG(dy) \geq \int yN(dy)$.
- 3) Characteristic function of the sample mean: Let $\{X_i\}_{i=1}^n \sim \text{iid}$ with mean μ and variance σ^2 . Let $\overline{X}_n \equiv \frac{1}{n} \sum_{i=1}^n X_i$. Let $Y_n \equiv \frac{\overline{X}_n \mathbf{E}[\overline{X}_n]}{\sqrt{\mathbf{V}[\overline{X}_n]}}$. Derive the characteristic function of Y_n , $\Psi_{Y_n}(t)$.

Hint: Use $\Psi_{Y_n}(t) = \mathbf{E}[\exp(itY_n)]$ and $\Psi_{aX+b}(t) = \exp(itb)\Psi_X(at)$.

- 4) Visual intuition of MGF and characteristic function: Define $M_X(t) = \mathbf{E}[\exp(tX)]$ and $\Psi_X(t) = \mathbf{E}[\exp(itX)]$.
- a) Take Taylor series expansions of M_X and Ψ_X around t=0.
- b) What's the first derivative of M_X at 0? The second derivative? What's the first derivative of Ψ_X at 0? The second derivative?
- c) Graph $\Psi_X(t)$ for a few small t for $X \sim \text{Bernoulli}(1/3)$ ($\Psi_X(t) = \frac{1}{3}[\cos t + i \sin t] + \frac{2}{3}$) and for $X \sim N(0,1)$ ($\Psi_X(t) = \exp(-t^2/2)$). Think about this and the fact that $\Psi_X(t) = \mathbf{E}[\cos[tX]] + i\mathbf{E}[\sin[tX]]$.
- 5) Chebyshev's Inequality: Prove that $P[|X \mathbf{E}[X]| > \epsilon] \leq \frac{\mathbf{V}[X]}{\epsilon^2}$. Hint: Use the trick from the proof of Markov's Inequality, that $|X| \geq b\mathbf{1}[|X| \geq b]$, and apply it to $Z = (X - \mathbf{E}[X])^2$.