LINEAR REGRESSION MODELS W4315

INTRO SURVEY QUESTIONS

September 7, 2009

Instructor: Frank Wood (10:35-11:50)

1. (0 points)

- (a) What is your field of study?
- (b) What is your intended profession?
- (c) Why are you taking this course?
- (d) How do you see yourself using regression?
- (e) What would you like to learn in this course?
- 2. (0 points) Find the maximum value of x that satisfies the equation

$$-x^2 + ln(x) = a, x > 0.$$

Give a simplified algebraic answer.

- 3. (0 points)
- (a) Given an algebraic solution to the following matrix equation

$$Ax - b = 0$$

- (b) What conditions does your answer put on the matrix **A**?
- **4.** (0 points) If $X \sim \text{Poisson}(\lambda)$ and $\lambda \sim \text{Gamma}(\alpha, \beta)$ how is $X | \alpha, \beta$ distributed? Hint, remember:

$$P(a|c) = \int P(a|b)P(b|c)db$$

$$P(X|\lambda) = \frac{1}{X!}\lambda^X e^{-\lambda}$$

$$P(\lambda|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)}\lambda^{\alpha-1}e^{-\beta\lambda}$$

Don't simplify the $\Gamma()$'s in the final result.

5. (0 points)

Let $\theta_i \sim \text{Exp}(\beta)$, $1 \leq i \leq n$ be samples from an exponential distribution. Remember that for an exponential distribution $P(\theta) = \frac{1}{\beta} e^{-\frac{\theta}{\beta}}$ for $\theta > 0$. Also remember that for the exponential distribution $E(\Theta) = \beta$ and $V(\theta) = \beta^2$ where E() stands for expectation and V() for variance.

- (a) Derive the maximum likelihood estimator $\hat{\beta}$ for β given observations $\{\theta_i\}_{i=1}^n$.
- (b) Is this estimator biased or unbiased? Show work. Reminder: the definition of bias is $B(\hat{\beta}) = \beta E(\hat{\beta})$.
- (c) Derive the sample variance of the estimator. Remember $V(aX) = a^2V(X)$.
- (d) Given a set of samples $\{\theta_i\}_{i=1}^n$ as above, illustrate the small sample symmetric confidence interval for $\hat{\beta}$. Remember $T = \sqrt{n} \frac{\hat{\beta} \beta}{\hat{\sigma}} \sim T_{n-1}$ where T_{n-1} stands for a student's-T distribution with n-1 degress of freedom. The sample variance is given by $\hat{\sigma}^2 = \frac{1}{n-1} \sum_i (\theta_i \hat{\beta})^2$ but this expansion is unecessary and provided only for familiarity. What you should derive is c in this statement

$$\hat{\beta} - c < \beta < \hat{\beta} + c$$

with probability .9. A T-distribution CDF table is provided.