

Geometry

Atli FF

6. nóvember 2023

School of Computer Science Reykjavík University

Today's material

- Trigonometry
- Geometry
- Computational geometry

Trigonometry

- Before we even dive into the geometry and how to do it on a computer, let's jog your memories.
- You should all hopefully be familiar with the trigonometric functions.
- We consider a triangle to be right-angled if it has a corner that's 90°.
- For such triangles we have:

•
$$\frac{A}{L} = \cos \theta$$
.

•
$$\frac{M}{L} = \sin \theta$$
.

•
$$\frac{L}{L} = \sin \theta$$
.
• $\frac{M}{A} = \frac{M}{L} \frac{L}{A} = \frac{\sin \theta}{\cos \theta} = \tan \theta$.
• also have the pythagorean the

• We also have the pythagorean theorem $L^2 = A^2 + M^2$

More trig

• More generally we have:

•
$$\frac{\sin a}{A} = \frac{\sin b}{B} = \frac{\sin c}{C}$$
 (sine law).

- $A^2 = B^2 + C^2 2BC \cos a$ (cosine law)
- Exercise: Prove the pythagorean theorem using the cosine law.

Example: NN and the Optical Illusion

- You are given an integer n and a real number r.
- You then draw a circle of radius r.
- You then want to draw n circles of the same size tangent to the outside of this circle and such that they are tangent to their neighbours.
- What radius will the outer circles have?

N=6 image

Towards a solution

We see that the distance from the center of the circle in the middle to the center of an outer circle is r+R. We thus get an isosceles triangle.

Closer and closer

• Now we have $\theta = \frac{360^{\circ}}{n}$ and $\omega = \frac{180^{\circ} - \theta}{2}$.

Solution

Finally the law of sines gives us

$$\begin{split} \frac{2R}{\sin\theta} &= \frac{r+R}{\sin\omega} \Rightarrow 2R\sin\omega = r\sin\theta + R\sin\theta \\ &\Rightarrow 2R\sin\omega - R\sin\theta = r\sin\theta \\ &\Rightarrow R = \frac{r\sin\theta}{2\sin\omega - \sin\theta}. \end{split}$$

• Points are represented by a pair of numbers, (x, y).

- Points are represented by a pair of numbers, (x, y).
- Vectors are represented in the same way.
- Thinking of points as vectors allows us to do many things.

• Simplest operation, addition is defined as

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} + \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} x_0 + x_1 \\ y_0 + y_1 \end{pmatrix}$$

• Simplest operation, addition is defined as

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} + \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} x_0 + x_1 \\ y_0 + y_1 \end{pmatrix}$$

Simplest operation, addition is defined as

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} + \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} x_0 + x_1 \\ y_0 + y_1 \end{pmatrix}$$

• Subtraction is defined in the same manner

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} - \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} x_0 - x_1 \\ y_0 - y_1 \end{pmatrix}$$

Simplest operation, addition is defined as

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} + \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} x_0 + x_1 \\ y_0 + y_1 \end{pmatrix}$$

 Subtraction is defined in the same manner

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} - \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} x_0 - x_1 \\ y_0 - y_1 \end{pmatrix}$$

```
struct point {
    double x, y;
    point(double _x, double _y) {
       x = _x, y = _y;
    }
    point operator+(const point &oth){
        return point(x + oth.x, y + oth.y);
    }
    point operator-(const point &oth){
        return point(x - oth.x, y - oth.y);
```

...or we could use the complex<double> class.

using points = complex<double>;

 \ldots or we could use the complex
<double> class.

using points = complex<double>;

The complex class in C++ and Java has methods defined for

- Addition
- Subtraction
- Multiplication by a scalar
- Length
- Trigonometric functions
- And much more!

Complex numbers

- We define $\mathbb{C} := \mathbb{R} \times \mathbb{R}$.
- Then we define addition on $\mathbb C$ such that for $(a,b),(c,d)\in\mathbb C$ we get

$$(a,b) + (c,d) = (a+c,b+d).$$

• We also define multiplication on $\mathbb C$ such that for $(a,b),(c,d)\in\mathbb C$ we get

$$(a,b)\cdot(c,d) = (ac - bd, ad + bc).$$

- We usually denote $(0,1) \in \mathbb{C}$ by i and $(x,y) \in \mathbb{C}$ by x+yi.
- Note that $(x,y) = (x,0) + i \cdot (y,0)$ here.
- We call these numbers in \mathbb{C} complex numbers.

Complex numbers ctd.

- If $z = x + yi \in \mathbb{C}$ then
 - We call x the real part of z and y the imaginary part of z.
 - We define the *magnitude* of z by $|z| = \sqrt{x^2 + y^2}$.
 - We call x yi the *conjugate* of z, denoted by \overline{z} .
 - We call the angle (x,y) makes with the positive x-axis the argument of z and denote it by $\operatorname{Arg}(z)$.

Operations

- Let $w, z \in \mathbb{C}$.
- Then w+z will be z translated by w, as if we were adding vectors.
- If |w| = 1 then $z \cdot w$ will be z rotated around 0 by $\operatorname{Arg}(w)$ radians.
- If |z| = r and $Arg(z) = \theta$ we can write $z = re^{i\theta}$.
- If $z = r_1 e^{i\theta_1}$ and $w = r_2 e^{i\theta_2}$ then $z \cdot w = r_1 r_2 e^{i(\theta_1 + \theta_2)}$.

Using complex in C++

- Usually we do using point = complex<double>
- Then we can initialize a point with point z(x, y)
 - real(z) returns the x-coordinate
 - imag(z) returns the y-coordinate
 - abs(z) returns the magnitude |z|
 - ullet abs(z w) returns the distance from z to w
 - ullet arg(z) returns the argument of z
 - conj(z) returns the conjugate \overline{z}

Example

- Let us consider a problem.
- ullet You start at (0,0) and get a sequence of commands.
- All the commands consist of a single letter and a number. The commands are:
 - ullet ...f x you move forward x meters..
 - ullet ...b x you move backwards x meters.
 - ...r x you rotate x radians to the right.
 - ullet ...l x you rotate x radians to the left.
- How far from (0,0) do you end up after following the commands?

Solution

- If we are stood at $p \in \mathbb{C}$ and want to take a step of r meters in the direction θ we simply add $re^{i\theta}$ to p.
- What direction we are facing at the start makes no difference since it gives the same distance at the end.

Code

```
#include <bits/stdc++.h>
using namespace std;
using point = complex<double>;
int main() {
    int n; cin >> n;
    double x, r = 0.0;
    point p(0, 0);
    while (n--) {
        char c; cin >> c >> x;
        if (c == 'f')  p += x*exp(1i*r);
        else if (c == 'b') p == x*exp(1i*r);
        else if (c == 'l') r += x:
        else if (c == 'r') r == x;
        else assert(0);
        }
    cout << setprecision(15) << abs(p) << endl;</pre>
```


• Line segments are represented by a pair of points, $((x_0, y_0), (x_1, y_1)).$

• Line segments are represented by a pair of points, $((x_0, y_0), (x_1, y_1)).$

• Line segments are represented by a pair of points, $((x_0, y_0), (x_1, y_1)).$

• Line representation same as line segments.

- Line representation same as line segments.
- Treat them as lines passing through the two points.

- Line representation same as line segments.
- Treat them as lines passing through the two points.
- Or as a point and a direction vector.

$$p + t \cdot \vec{r}$$

- Line representation same as line segments.
- Treat them as lines passing through the two points.
- Or as a point and a direction vector.

$$p + t \cdot \vec{r}$$

Either way pair<point,point>

• Circles are very easy to represent.

- Circles are very easy to represent.
- Center point p = (x, y).

- Circles are very easy to represent.
- Center point p = (x, y).
- And the radius r.

- Circles are very easy to represent.
- Center point p = (x, y).
- And the radius r. pair<point,double>

Given two vectors

$$\vec{u} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \qquad \vec{v} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

the dot product of \vec{u} and \vec{v} is defined as

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = x_0 \cdot x_1 + y_0 \cdot y_1$$

Given two vectors

$$\vec{u} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \qquad \vec{v} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

the dot product of \vec{u} and \vec{v} is defined as

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = x_0 \cdot x_1 + y_0 \cdot y_1$$

Which in geometric terms is

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$$

• Allows us to calculate the angle between \vec{u} and \vec{v} .

$$\theta = \arccos\left(\frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}\right)$$

• Allows us to calculate the angle between \vec{u} and \vec{v} .

$$\theta = \arccos\left(\frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}\right)$$

• And the projection of \vec{v} onto \vec{u} .

$$\vec{v}_{\vec{u}} = \left(\frac{\vec{u} \cdot \vec{v}}{|u|^2}\right) \vec{u}$$

 \bullet The closest point on \vec{u} to p is q.

- ullet The closest point on \vec{u} to p is q.
- The distance from p to \vec{u} is the distance from p to q.

- \bullet The closest point on \vec{u} to p is q.
- The distance from p to \vec{u} is the distance from p to q.
- Unless q is outside \(\vec{u} \), then the closest point is either of the endpoints.

Rest of the code will use the complex class.

```
#define P(p) const point &p
#define L(p0, p1) P(p0), P(p1)
double dot(P(a), P(b)) {
    return real(a) * real(b) + imag(a) * imag(b);
}
double angle(P(a), P(b), P(c)) {
    return acos(dot(b - a, c - b) / abs(b - a) / abs(c - b));
point closest_point(L(a, b), P(c), bool segment = false) {
    if (segment) {
        if (dot(b - a, c - b) > 0) return b;
        if (dot(a - b, c - a) > 0) return a;
    }
    double t = dot(c - a, b - a) / norm(b - a);
    return a + t * (b - a);
```

Given two vectors

$$\vec{u} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \qquad \vec{v} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

the cross product of \vec{u} and \vec{v} is defined as

$$\left| \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \times \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \right| = x_0 \cdot y_1 - y_0 \cdot x_1$$

Given two vectors

$$\vec{u} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \qquad \vec{v} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

the cross product of \vec{u} and \vec{v} is defined as

$$\left| \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \times \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \right| = x_0 \cdot y_1 - y_0 \cdot x_1$$

Which in geometric terms is

$$|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}|\sin\theta$$

• Allows us to calculate the area of the triangle formed by \vec{u} and \vec{v} .

$ \vec{u} $	×	\vec{v}
	2	

• Allows us to calculate the area of the triangle formed by \vec{u} and \vec{v} .

$ \bar{u} $	i ×	\vec{v}
	9	

• Allows us to calculate the area of the triangle formed by \vec{u} and \vec{v} .

$$\frac{|\vec{u} \times \vec{v}|}{2}$$

• And can tell us if the angle between \vec{u} and \vec{v} is positive or negative.

$$|\vec{u} \times \vec{v}| < 0$$
 iff $\theta < \pi$
 $|\vec{u} \times \vec{v}| = 0$ iff $\theta = \pi$
 $|\vec{u} \times \vec{v}| > 0$ iff $\theta > \pi$

• Given three points A, B and C, we want to know if they form a counter-clockwise angle in that order.

 $A \to B \to C$

 Given three points A, B and C, we want to know if they form a counter-clockwise angle in that order.

$$A \to B \to C$$

 We can examine the cross product of and the area of the triangle formed by

$$\vec{u} = B - C \quad \vec{v} = B - A$$
$$\vec{u} \times \vec{v} > 0$$

• The points in the reverse order do not form a counter clockwise angle.

$$C \to B \to A$$

• In the reverse order the vectors swap places

$$\vec{u} = B - A \quad \vec{v} = B - C$$
$$\vec{u} \times \vec{v} < 0$$

 The points in the reverse order do not form a counter clockwise angle.

$$C \to B \to A$$

• In the reverse order the vectors swap places

$$\vec{u} = B - A \quad \vec{v} = B - C$$
$$\vec{u} \times \vec{v} < 0$$

• If the points A, B and C are on the same line, then the area will be 0.

```
double cross(P(a), P(b)) {
    return real(a)*imag(b) - imag(a)*real(b);
}
double ccw(P(a), P(b), P(c)) {
    return cross(b - a, c - b);
}
bool collinear(P(a), P(b), P(c)) {
```

return abs(ccw(a, b, c)) < EPS;

Very common task is to find the intersection of two lines or line segments.
SSS

Very common task is to find the intersection of two lines or line segments.

• Given a pair of points (x_0, y_0) , (x_1, y_1) , representing a line we want to start by obtaining the form Ax + By = C.

Very common task is to find the intersection of two lines or line segments.

- Given a pair of points (x_0, y_0) , (x_1, y_1) , representing a line we want to start by obtaining the form Ax + By = C.
- We can do so by setting

$$A = y_1 - y_0$$
$$B = x_0 - x_1$$

$$C = A \cdot x_0 + B \cdot y_1$$

Very common task is to find the intersection of two lines or line segments.

- Given a pair of points (x_0, y_0) , (x_1, y_1) , representing a line we want to start by obtaining the form Ax + By = C.
- We can do so by setting

$$A = y_1 - y_0$$

$$B = x_0 - x_1$$

$$C = A \cdot x_0 + B \cdot y_1$$

 If we have two lines given by such equations, we simply need to solve for the two unknowns, x and y. For two lines

$$A_0x + B_0y = C_0$$
$$A_1x + B_1y = C_1$$

The intersection point is

$$x = \frac{(B_1 \cdot C_0 - B_0 \cdot C_1)}{D}$$
$$y = \frac{(A_0 \cdot C_1 - A_1 \cdot C_0)}{D}$$

Where

$$D = A_0 \cdot B_1 - A_1 \cdot B_0$$

 Polygons are represented by a list of points in the order representing the edges.

- Polygons are represented by a list of points in the order representing the edges.
- To calculate the area

- Polygons are represented by a list of points in the order representing the edges.
- To calculate the area
 - We pick one starting point.

- Polygons are represented by a list of points in the order representing the edges.
- To calculate the area
 - We pick one starting point.
 - Go through all the other adjacent pair of points and sum the area of the triangulation.

- Polygons are represented by a list of points in the order representing the edges.
- To calculate the area
 - We pick one starting point.
 - Go through all the other adjacent pair of points and sum the area of the triangulation.

- Polygons are represented by a list of points in the order representing the edges.
- To calculate the area
 - We pick one starting point.
 - Go through all the other adjacent pair of points and sum the area of the triangulation.

- Polygons are represented by a list of points in the order representing the edges.
- To calculate the area
 - We pick one starting point.
 - Go through all the other adjacent pair of points and sum the area of the triangulation.

- Polygons are represented by a list of points in the order representing the edges.
- To calculate the area
 - We pick one starting point.
 - Go through all the other adjacent pair of points and sum the area of the triangulation.
 - Even if we sum up area outside the polygon, due to the cross product, it is subtracted later.

- Polygons are represented by a list of points in the order representing the edges.
- To calculate the area
 - We pick one starting point.
 - Go through all the other adjacent pair of points and sum the area of the triangulation.
 - Even if we sum up area outside the polygon, due to the cross product, it is subtracted later.

• Given a points.	set of points, w	e want to fin	nd the convex I	null of the

- Given a set of points, we want to find the convex hull of the points.
- The convex hull of points can be visualized as the shape formed by a rubber band around the set of points.

- Given a set of points, we want to find the convex hull of the points.
- The convex hull of points can be visualized as the shape formed by a rubber band around the set of points.

- Given a set of points, we want to find the convex hull of the points.
- The convex hull of points can be visualized as the shape formed by a rubber band around the set of points.

• Pick the point p_0 with the lowest y coordinate.

- Pick the point p_0 with the lowest y coordinate.
 - Sort all the points by polar angle with p_0 .

- Pick the point p_0 with the lowest y coordinate.
- Sort all the points by polar angle with p_0 .
- Iterate through all the points

- Pick the point p_0 with the lowest y coordinate.
- Sort all the points by polar angle with p_0 .
- Iterate through all the points
- If the current point forms a clockwise angle with the last two points, remove last point from the convex set.

- Pick the point p_0 with the lowest y coordinate.
- Sort all the points by polar angle with p_0 .
- Iterate through all the points
- If the current point forms a clockwise angle with the last two points, remove last point from the convex set.
- Otherwise, add the current point to the convex set.

- Pick the point p_0 with the lowest y coordinate.
- Sort all the points by polar angle with p_0 .
- Iterate through all the points
- If the current point forms a clockwise angle with the last two points, remove last point from the convex set.
- Otherwise, add the current point to the convex set.

Time complexity $O(N \log N)$.


```
point hull[MAXN];
bool cmp(const point &a, const point &b) {
 return abs(real(a) - real(b)) > EPS ?
    real(a) < real(b) : imag(a) < imag(b); }
int convex_hull(vector<point> p) {
    int n = size(p), 1 = 0;
    sort(p.begin(), p.end(), cmp);
   for (int i = 0; i < n; i++) {
        if (i > 0 \&\& p[i] == p[i - 1])
            continue:
        while (1 \ge 2 \&\& ccw(hull[1 - 2], hull[1 - 1], p[i]) \ge 0)
           1--;
        hull[1++] = p[i]; 
    int r = 1;
    for (int i = n - 2; i >= 0; i--) {
        if (p[i] == p[i + 1])
            continue;
        while (r - 1 \ge 1 \&\& ccw(hull[r - 2], hull[r - 1], p[i]) \ge 0)
            r--;
        hull[r++] = p[i]; }
    return 1 == 1 ? 1 : r - 1; }
```


Many other algorithms exist	
Gift wrapping aka Jarvis march.	

Gift wrapping aka Jarvis march.	
 Quick hull, similar idea to quicksort. 	

Many other algorithms exist

Many	other	algorithms	exist	

• Gift wrapping aka Jarvis march.

• Quick hull, similar idea to quicksort.

Divide and conquer.

Many other algorithms exist

• Divide and conquer.

- Gift wrapping aka Jarvis march.
- Quick hull, similar idea to quicksort.

Some can be extended to three dimensions, or higher.

 We start by calculating the area of the polygon.

- We start by calculating the area of the polygon.
- To check if our point is contained in the polygon we sum up the area of the triangles formed the point and every two adjacent points.

- We start by calculating the area of the polygon.
- To check if our point is contained in the polygon we sum up the area of the triangles formed the point and every two adjacent points.

- We start by calculating the area of the polygon.
- To check if our point is contained in the polygon we sum up the area of the triangles formed the point and every two adjacent points.

- We start by calculating the area of the polygon.
- To check if our point is contained in the polygon we sum up the area of the triangles formed the point and every two adjacent points.

- We start by calculating the area of the polygon.
- To check if our point is contained in the polygon we sum up the area of the triangles formed the point and every two adjacent points.

- We start by calculating the area of the polygon.
- To check if our point is contained in the polygon we sum up the area of the triangles formed the point and every two adjacent points.

- We start by calculating the area of the polygon.
- To check if our point is contained in the polygon we sum up the area of the triangles formed the point and every two adjacent points.

- We start by calculating the area of the polygon.
- To check if our point is contained in the polygon we sum up the area of the triangles formed the point and every two adjacent points.
- The total area of the triangles is equal to the area of the polygon iff the point is inside the polygon.

- We start by calculating the area of the polygon.
- To check if our point is contained in the polygon we sum up the area of the triangles formed the point and every two adjacent points.
- The total area of the triangles is equal to the area of the polygon iff the point is inside the polygon.

- We start by calculating the area of the polygon.
- To check if our point is contained in the polygon we sum up the area of the triangles formed the point and every two adjacent points.
- The total area of the triangles is equal to the area of the polygon iff the point is inside the polygon.

- We start by calculating the area of the polygon.
- To check if our point is contained in the polygon we sum up the area of the triangles formed the point and every two adjacent points.
- The total area of the triangles is equal to the area of the polygon iff the point is inside the polygon.

- We start by calculating the area of the polygon.
- To check if our point is contained in the polygon we sum up the area of the triangles formed the point and every two adjacent points.
- The total area of the triangles is equal to the area of the polygon iff the point is inside the polygon.

- We start by calculating the area of the polygon.
- To check if our point is contained in the polygon we sum up the area of the triangles formed the point and every two adjacent points.
- The total area of the triangles is equal to the area of the polygon iff the point is inside the polygon.

- We start by calculating the area of the polygon.
- To check if our point is contained in the polygon we sum up the area of the triangles formed the point and every two adjacent points.
- The total area of the triangles is equal to the area of the polygon iff the point is inside the polygon.

- We start by calculating the area of the polygon.
- To check if our point is contained in the polygon we sum up the area of the triangles formed the point and every two adjacent points.
- The total area of the triangles is equal to the area of the polygon iff the point is inside the polygon.

How about non convex polygon?	
• The even-odd rule algorithm.	

How about non convex polygon?	
• The <i>even-odd rule</i> algorithm.	

• We examine a ray passing through the polygon to the point.

						_
How	about	non	convex	nol	vgon	1

- The even-odd rule algorithm.
 - We examine a ray passing through the polygon to the point.
 - If the ray crosses the boundary of the polygon, then it alternately goes from outside to inside, and outside to inside.

 Ray from the outside of the polygon to the point.

- Ray from the outside of the polygon to the point.
- Count the number of intersection points.

- Ray from the outside of the polygon to the point.
 Count the number of
- intersection points.
- If odd, then the point is inside the polygon.
- If even, then the point is outside the polygon.

- Ray from the outside of the polygon to the point.
- Count the number of intersection points.
- If odd, then the point is inside the polygon.
- If even, then the point is outside the polygon.
- Does not matter which ray we pick.

- Ray from the outside of the polygon to the point.
- Count the number of intersection points.
- If odd, then the point is inside the polygon.
- If even, then the point is outside the polygon.
- Does not matter which ray we pick.

- Ray from the outside of the polygon to the point.
 Count the number of
- intersection points.
- If odd, then the point is inside the polygon.
 - If even, then the point is outside the polygon.
- Does not matter which ray we pick.

- Ray from the outside of the polygon to the point.
 Count the number of
- intersection points.
- If odd, then the point is inside the polygon.
 - If even, then the point is outside the polygon.
- Does not matter which ray we pick.

An algorithm

- Computational geometry has a lot of impressive and technical algorithms.
- The most famous one is probably Delaunay triangulation.
- But that one is a bit too hard for this course, so we will instead look at the classical closest point algorithm.
- We are given n points in the plan, find the pair of points that are closest to one another.
- We can clearly solve this in $\mathcal{O}(n^2)$ time, but can we do better?

Divide and conquer

- We sort the points by *x*-coordinate and split the list in half.
- Let x_0 be such that it's between the coordinates of the left and right halves.
- Start by solving each half recursively.
- We now have to find if there's some pair with one point in each half that does better.
- ullet We can't simply try all pairs, that's too slow. Suppose the smallest distance we found recursively was d.
- Then we can ignore all points with x-coordinte outside $[x_0-d,x_0+d]$.
- Sort the points inside of this interval by their *y*-coordinate.
- The big trick is now that we only need to consider a few neighbours for each point.

Neighbours

- Divide the area above x_i into 8 squares, each with side length d/2.
- If he distance between all points in each half is at least d, then we can have at most each point per square.
- All points outside these squares are at a distance of at least d from x_i , so we can ignore them.
- Thus we only need to look at the distance from x_i to x_j when $j-i \leq 7$.

Diagram

Diagram

Complexity

- Each recursive call is $\mathcal{O}(n \log(n))$.
- Thus by the master theorem the total complexity is $\mathcal{O}(n\log^2(n))$.
- If we sort the y values as we go using mergesort, we can actually do each call in $\mathcal{O}(n)$.
- This way the complexity is actually $\mathcal{O}(n \log(n))$.