Estimação

Wagner H. Bonat Fernando P. Mayer Elias T. Krainski

Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação

27/04/2018

Sumário

Introdução

Inferência estatística

Seja X uma variável aleatória com função densidade (ou de probabilidade) denotada por $f(x,\theta)$, em que θ é um parâmetro desconhecido. Chamamos de **inferência estatística** o problema que consiste em especificar um ou mais valores para θ , baseado em um conjunto de valores X.

A inferência pode ser feita de duas formas:

- estimativa pontual
- estimativa intervalar

Redução de dados

Um experimentador usa as informações em uma amostra aleatória X_1, \ldots, X_n para se fazer inferências sobre θ .

Normalmente n é grande e fica inviável tirar conclusões baseadas em uma longa **lista** de números.

Por isso, um dos objetivos da inferência estatística é **resumir** as informações de uma amostra, da maneira mais **compacta** possível, mas que ao mesmo tempo seja também **informativa**.

Normalmente esse resumo é feito por meio de **estatísticas**, por exemplo, a média amostral e a variância amostral.

População e amostra

O conjunto de valores de uma característica associada a uma coleção de indivíduos ou objetos de interesse é dito ser uma população.

Uma sequência X_1, \ldots, X_n de n variáveis aleatórias independentes e identicamente distribuídas (iid) com função densidade (ou de probabilidade) $f(x,\theta)$ é dita ser uma amostra aleatória de tamanho n da distribuição de X.

Como normalmente n > 1, então temos que a fdp ou fp conjunta será

$$f(\mathbf{x}, \boldsymbol{\theta}) = f(x_1, \dots, x_n, \boldsymbol{\theta}) = \prod_{i=1}^n f(x_i, \boldsymbol{\theta}).$$

População e amostra

Parâmetro e Estatística

População \rightarrow censo \rightarrow parâmetro

Uma medida numérica que descreve alguma característica da **população**, usualmente representada por letras gregas: θ , μ , σ , . . .

Exemplo: média populacional = μ

População \rightarrow amostra \rightarrow estatística

Uma medida numérica que descreve alguma característica da **amostra**, usualmente denotada pela letra grega do respectivo parâmetro com um acento circunflexo: $\hat{\theta}$, $\hat{\mu}$, $\hat{\sigma}$, ..., ou por letras do alfabeto comum: \bar{x} , s, ...

Exemplo: média amostral = \bar{x}

Parâmetros

É importante notar que um parâmetro não é restrito aos modelos de probabilidade. Por exemplo:

- $X \sim N(\mu, \sigma^2) \Rightarrow \text{parâmetros: } \mu, \sigma^2$
- $Y \sim \mathsf{Poisson}(\lambda) \Rightarrow \mathsf{parâmetro}: \lambda$
- $Y = \beta_0 + \beta_1 X \Rightarrow$ parâmetros: β_0 , β_1
- $L_t = L_{\infty}[1 e^{-k(t-t_0)}] \Rightarrow \text{parâmetros}$: L_{∞} , k, t_0

Estatística

Qualquer função da amostra que não depende de parâmetros desconhecidos é denominada uma estatística, denotada por $T(\mathbf{X}) = T(X_1, X_2, \dots, X_n)$

Exemplos:

•
$$T_1(X) = \sum_{i=1}^n X_i = X_1 + X_2 + \cdots + X_n$$

•
$$T_2(\mathbf{X}) = \prod_{i=1}^n X_i = X_1 \cdot X_2 \cdots X_n$$

•
$$T_3(\mathbf{X}) = X_{(1)}$$

•
$$T_4(\mathbf{X}) = \sum_{i=1}^{n} (X_i - \mu)^2$$

Estatística

Qualquer função da amostra que não depende de parâmetros desconhecidos é denominada uma estatística, denotada por $T(\mathbf{X}) = T(X_1, X_2, \dots, X_n)$

Exemplos:

•
$$T_1(X) = \sum_{i=1}^n X_i = X_1 + X_2 + \cdots + X_n$$

•
$$T_2(\mathbf{X}) = \prod_{i=1}^n X_i = X_1 \cdot X_2 \cdots X_n$$

•
$$T_3(X) = X_{(1)}$$

•
$$T_4(\mathbf{X}) = \sum_{i=1}^{n} (X_i - \mu)^2$$

Verificamos que T_1 , T_2 , T_3 são estatísticas, mas T_4 não.

Como é uma função da amostra, então uma estatística também é uma variável aleatória \rightarrow distribuições amostrais

Estimador

Espaço paramétrico

O conjunto Θ em que θ pode assumir seus valores é chamado de **espaço** paramétrico

Estimador

Qualquer estatística que assume valores em Θ é um estimador para θ .

Estimador pontual

Dessa forma, um **estimador pontual** para θ é qualquer estatística que possa ser usada para estimar esse parâmetro, ou seja,

$$\hat{\theta} = T(X)$$

Estimador

Observações:

- Todo estimador é uma estatística, mas nem toda estatística é um estimador.
- O valor assumido pelo estimador pontual é chamado de estimativa pontual,

$$T(\mathbf{X}) = T(X_1, \dots, X_n) = t$$

ou seja, o estimador é uma **função** da amostra, e a estimativa é o **valor observado** de um estimador (um número) de uma amostra particular.