

TEORIA OBLICZALNOŚCI

Marcin Piątkowski

Wykład 9

Czasowa złożoność obliczeniowa

Podział problemów obliczeniowych

Przy założeniu nieograniczoności dostępnych zasobów (czas oraz pamięć) wszystkie poznane do tej pory modele obliczeń są równoważne.

$$\begin{cases} h(\overline{x}, 0) = f(\overline{x}) \\ h(\overline{x}, y + 1) = g(\overline{x}, y, h(\overline{x}, y)) \end{cases}$$

Poziom szczegółowości algorytmu

Problem

$$PATH = \left\{ \left(G, v_1, v_2 \right) \colon \text{ graf } G \text{ zawiera ścieżkę } v_1 \leadsto v_2 \right\}$$

Poziom szczegółowości algorytmu

Problem

$$PATH = \left\{ (G, v_1, v_2) : \text{ graf } G \text{ zawiera ścieżkę } v_1 \leadsto v_2 \right\}$$

Poziom szczegółowości algorytmu

Problem

$$PATH = \left\{ (G, v_1, v_2) : \text{ graf } G \text{ zawiera ścieżkę } v_1 \leadsto v_2 \right\}$$

```
Input: (G, v_1, v_2)
kolejka.dodaj(v_1)
while (kolejka \neq \emptyset)
     v \rightarrow kolejka.usun()
     foreach (s - nieodwiedzony sąsiad v)
          if (s == v_2)
                return true
           zaznacz s jako odwiedzony
           kolejka.dodaj(s)
return false
```

Czasowa złożoność obliczeniowa

Złożoność czasowa

Złożonością czasową (czasem działania) **deterministycznej** maszyny Turinga M nazywamy funkcję $f: \mathbb{N} \longrightarrow \mathbb{N}$, gdzie f(n) jest równa **największej** liczbie kroków wykonywanych przez maszynę M dla **dowolnego** słowa długości n

Asymptotyczne ograniczenie górne

Niech $f,g: \mathbb{N} \longrightarrow \mathbb{R}^+$. Powiemy, że f(n) = O(g(n)) jeśli istnieją dodatnie stałe c oraz n_0 takie, że $\forall_{n \geq n_0} f(n) \leq c \cdot g(n)$.

Asymptotyczne ograniczenie górne

Niech $f,g: \mathbb{N} \longrightarrow \mathbb{R}^+$. Powiemy, że f(n) = O(g(n)) jeśli istnieją dodatnie stałe c oraz n_0 takie, że $\forall_{n \geq n_0} f(n) \leq c \cdot g(n)$.

$$f(n) = 2n^2 + 2n - 1 \quad \text{jest} \quad O(n^2) \quad \text{ale nie jest} \quad O(n)$$

$$f(n) = 2n - 1 \quad \text{jest} \quad O(n^2), \ O(n) \quad \text{ale nie} \quad O(\log n)$$

$$f(n) = \log_2 n \quad \text{jest} \quad O(n), \ O(\log n)$$

$$f(n) = 4 \quad \text{jest} \quad O(1)$$

Asymptotyczne ograniczenie górne

Niech $f,g: \mathbb{N} \longrightarrow \mathbb{R}^+$. Powiemy, że f(n) = O(g(n)) jeśli istnieją dodatnie stałe c oraz n_0 takie, że $\forall_{n \geq n_0} f(n) \leq c \cdot g(n)$.

$$f(n) = 2n^2 + 2n - 1$$
 jest $O(n^2)$ ale nie jest $O(n)$

$$f(n) = 2n - 1$$
 jest $O(n^2)$, $O(n)$ ale nie $O(\log n)$

$$F(n) = \log_2 n \quad \text{jest} \quad O(n), O(\log n)$$

For
$$f(n) = 4$$
 jest $O(1)$

$$\log_a \mathbf{x} = \frac{1}{\log_b a} \cdot \log_b \mathbf{x}$$

Asymptotyczne ograniczenie górne

Niech
$$f,g: \mathbb{N} \longrightarrow \mathbb{R}^+$$
. Powiemy, że $f(n) = o(g(n))$ jeśli

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

Równoważnie

$$\forall_{c>0} \exists_{n_0} \forall_{n\geq n_0} f(n) \leq c \cdot g(n)$$

$$f(n) = n^2 \quad \text{jest} \quad o(n^3)$$

For
$$f(n) = \sqrt{n}$$
 jest $o(n)$

For
$$f(n) = 3n$$
 nie jest $o(n)$

Problem

$$L = \left\{ a^k b^k : \ k \ge 0 \right\}$$

P lle operacji musi wykonać maszyna Turinga rozstrzygająca język *L*?

Rozwiązanie I

Maszyna z jedną taśmą

- 1 Zweryfikuj czy dane na taśmie są postaci a...ab...b
- 2 Usuwaj naprzemiennie a z początku oraz b z końca słowa
- 3 Zaakceptuj jeśli taśma jest pusta
- Odrzuć jeśli taśma zawiera wyłącznie a lub wyłącznie b

Rozwiązanie I

Maszyna z jedną taśmą

- Tweryfikuj czy dane na taśmie są postaci $a \dots ab \dots b$ O(n)
- Usuwaj naprzemiennie a z początku oraz b z końca słowa $O(n^2)$
- **Zaakceptuj** jeśli taśma jest pusta
- 4 Odrzuć jeśli taśma zawiera wyłącznie a lub wyłącznie b

Całkowity czas działania: $O(n) + O(n^2) = O(n^2)$

Rozwiązanie II

Maszyna z jedną taśmą

- 1 Zweryfikuj czy dane na taśmie są postaci a...ab...b
- Dopóki taśma nie jest pusta:
 - Zweryfikuj czy liczba znaków na taśmie jest parzysta
 - Usuń co drugie wystąpienie a oraz co drugie wystąpienie b
- **Zaakceptuj** jeśli taśma jest pusta

Maszyna z jedną taśmą

- Zweryfikuj czy dane na taśmie są postaci a...ab...b
- Dopóki taśma nie jest pusta:
 - Zweryfikuj czy liczba znaków na taśmie jest parzysta
 Usuń co drugie wystąpienie a oraz co drugie wystąpienie b
- Zaakceptuj jeśli taśma jest pusta

Całkowity czas działania: $O(n) + O(n \log n) = O(n \log n)$

Rozwiązanie III

Maszyna z dwoma taśmami

- Skopiuj początkowe wystąpienia a na drugą taśmę
- 2 Dla każdego *b* na pierwszej taśmie usuwaj *a* z drugiej
- Zaakceptuj jeśli po osiągnięciu prawego końca słowa wejściowego taśma druga jest pusta
- 4 Odrzuć jeśli:
 - po osiągnięciu końca słowa na pierwszej taśmie druga nie jest pusta
 - druga taśma będzie pusta przed osiągnięciem końca słowa na pierwszej taśmie
 - ► za ostatnim *b* znajduje się *a*

Rozwiązanie III

Maszyna z dwoma taśmami

- 1 Skopiuj początkowe wystąpienia a na drugą taśmę
- 2 Dla każdego *b* na pierwszej taśmie usuwaj *a* z drugiej

O(n)

- Zaakceptuj jeśli po osiągnięciu prawego końca słowa wejściowego taśma druga jest pusta
- 4 Odrzuć jeśli:
 - po osiągnięciu końca słowa na pierwszej taśmie druga nie jest pusta
 - druga taśma będzie pusta przed osiągnięciem końca słowa na pierwszej taśmie
 - ► za ostatnim *b* znajduje się *a*

Całkowity czas działania: O(n)

Złożoność algorytmu vs złożoność problemu

Złożoność algorytmu

Złożoność problemu

Maszyny wielotaśmowe

Twierdzenie

Niech $f: \mathbb{N} \to \mathbb{R}$ będzie funkcją spełniającą warunek $f(n) \geq n$. Wówczas dla dowolnej k-taśmowej maszyny Turinga M_1 o złożoności czasowej O(f(n)) istnieje **równoważna jej** jednotaśmowa maszyna M_2 działająca w czasie $O(f^2(n))$.

Maszyny wielotaśmowe

Maszyny wielotaśmowe

- Założenie Maszyna M_1 działa w czasie O(f(n))
- \mathbb{G} W czasie Oig(f(n)ig) maszyna M_1 może zapisać co najwyżej Oig(f(n)ig) komórek taśmy
- Symulacja pojedynczego kroku $M_1 \implies O(f(n))$
- Symulacja $M_1 \implies O(f(n))$ kroków do wykonania

Wniosek Maszyna M_2 działa w czasie $O(f^2(n))$

Maszyna (k+2)-taśmowa

Wielomianowa równoważność

?

Uzasadnij wielomianową równoważność maszyn Turinga oraz maszyn licznikowych

Niedeterministyczna złożoność czasowa

Niedeterministyczna złożoność czasowa

Złożonością czasową (czasem działania) **niedeterministycznej** maszyny Turinga M nazywamy funkcję $f: \mathbb{N} \longrightarrow \mathbb{N}$, gdzie f(n) jest równa **największej** liczbie kroków wykonywanych przez maszynę M na **dowolnej** ścieżce obliczeń dla **dowolnego** słowa długości n

Determinizm vs niedeterminizm

Twierdzenie

Niech $f: \mathbb{N} \longrightarrow \mathbb{R}$ będzie funkcją spełniającą warunek $f(n) \ge n$. Wówczas dla każdej jednotaśmowej **niedeterministycznej** maszyny Turinga M_1 o złożoności czasowej O(f(n)) istnieje **równoważna jej** jednotaśmowa **deterministyczna** maszyna Turinga M_2 działająca w czasie $2^{O(f(n))}$.

Determinizm vs niedeterminizm

Założenie Maszyna M_1 działa w czasie O(f(n))

Symulacja działania $M_1 \Longrightarrow \operatorname{przeglądanie}$ (wszerz) jej drzewa obliczeń

 $^{f arphi}$ Każda ścieżka w drzewie obliczeń M_1 ma długość co najwyżej $\mathit{O}(\mathit{f}(\mathit{n}))$

oxtimes Każdy węzeł w drzewie obliczeń M_1 ma co najwyżej b potomków

 $^{f oldsymbol{arphi}}$ Maksymalna liczba węzłów w drzewie obliczeń M_1 jest rzędu $Oig(b^{f(n)}ig)$

Wniosek Maszyna M_2 działa w czasie $O(f(n)) \cdot O(b^{f(n)}) = 2^{O(f(n))}$

Determinizm vs niedeterminizm

Wniosek Maszyna M_2 działa w czasie $O(f(n)) \cdot O(b^{f(n)}) = 2^{O(f(n))}$

Klasy czasowej złożoności obliczeniowej

 $\mathsf{DTIME}(\mathsf{f}(\mathsf{n}))$ — zbiór wszystkich problemów rozstrzyganych w czasie O(f(n)) przez **deterministyczne** maszyny Turinga

 $\mathsf{NTIME}(\mathsf{f}(\mathsf{n}))$ — zbiór wszystkich problemów rozstrzyganych w czasie O(f(n)) przez **niedeterministyczne** maszyne Turinga

Klasa PTIME

PTIME (P)

$$P = \bigcup_{k} DTIME(n^{k})$$

$$PATH = \left\{ (G, v_1, v_2) : G \text{ zawiera ścieżkę } v_1 \leadsto v_2 \right\}$$

Klasa PTIME

Klasa EXPTIME

EXPTIME

$$EXPTIME = \bigcup_{k} DTIME(2^{n^{k}})$$

 $\mathit{HALT}_{\mathit{K}} = \left\{ (\mathit{M}, \mathit{k}) : \ \forall_{\mathit{w}} \ \mathit{M} \ \mathrm{zatrzymuje} \ \mathrm{sie} \ \mathrm{po} \ \mathrm{co} \ \mathrm{najwyżej} \ \mathit{k} \ \mathrm{krokach} \right\}$

EXPTIME

$$EXPTIME = \bigcup_{k} DTIME(2^{n^{k}})$$

 $\mathit{HALT}_{\mathit{K}} = \Big\{ (\mathit{M}, \mathit{k}) : \ \forall_{\mathit{w}} \ \mathit{M} \ \mathrm{zatrzymuje} \ \mathrm{sie} \ \mathrm{po} \ \mathrm{co} \ \mathrm{najwyżej} \ \mathit{k} \ \mathrm{krokach} \Big\}$

Maszyna M przeczytać tylko k początkowych komórek taśmy

Symulacja działania M na każdym możliwym wejściu długości k

Wieże Hanoi

Wieże Hanoi

Wieże Hanoi

Klasa NPTIME

Nondeterministic Polynomial

NPTIME (NP)

$$NP = \bigcup_{k} NTIME(n^{k})$$

 $HAMPATH = \left\{ (G, v_1, v_2) : G \text{ zawiera ścieżkę Hamiltona } v_1 \leadsto v_2 \right\}$

Klasa NPTIME

Nondeterministic Polynomial

NPTIME (NP)

NP jest klasą problemów posiadających wielomianowe algorytmy weryfikujące

$$HAMPATH = \left\{ (G, v_1, v_2) : G \text{ zawiera ścieżkę Hamiltona } v_1 \leadsto v_2 \right\}$$

P oraz NP

I P Klasa problemów, które mogą być efektywnie rozwiązane (czas wielomianowy).

! NP Klasa problemów, których rozwiązania mogą być efektywnie zweryfikowane (czas wielomianowy).

- **1** P vs NP (1971)
- Wymierną liniową kombinacją cykli algebraicznych?
 Wymierną liniową kombinacją cykli algebraicznych?
- Hipoteza Poincaré (1904)

 Każda trójwymiarowa zwarta i jednospójna rozmaitość topologiczna bez brzegu jest homeomorficzna ze sfera trójwymiarowa.
- Hipoteza Riemanna (1859)
 Część rzeczywista każdego nietrywialnego zera funkcji dzeta jest równa ½.
- ▼ Teoria Yanga-Millsa (1954) Próba jednym formalizmem matematycznym oddziaływania słabego, silnego i elektromagnetycznego.
- Równania Naviera-Stokesa (1822) Rozwiązania tych równań dla najbardziej skomplikowanych zjawisk hydrodynamicznych.
- Hipoteza Bircha i Swinnertona-Dyera (1960)
 Związana z przewidywaniem rozwiązywalności każdego równania diofantycznego.

- **1** P vs NP (1971)
- Wymierną liniową kombinacją cykli algebraicznych?
 Wymierną liniową kombinacją cykli algebraicznych?
- Hipoteza Poincaré (1904) (2003)

 Każda trójwymiarowa zwarta i jednospójna rozmaitość topologiczna bez brzegu jest homeomorficzna ze sfera trójwym rowa.

Grigorij Perelman

- Hipoteza Riemanna (1859) Część rzeczywista każdego nietrywialnego ze
- Teoria Yanga-Millsa (1954) Próba jednym formalizmem matematycznym silnego i elektromagnetycznego.
- Równania Naviera-Stokesa (1822) Rozwiązania tych równań dla najbardziej sko hydrodynamicznych.
- ❷ Hipoteza Bircha i Swinnertona-Dyera (1960)
 Związana z przewidywaniem rozwiązywalności każdego równania diofantycznego.

2 Hipoteza Hodge'a (1950):

Czy na algaba cznych rozmaitościach rzutowych każdy cykl Hodge'a jest wymi Donald Knuth

4 Hipo Każd. brzeg

brzeg

Hipo
Część
Teori
Próba

topologiczna bez

zeta jest równa $\frac{1}{2}$.

Próba silnego i elektromagnetycznego.

ania słabego,

- Równania Naviera-Stokesa (1822) Rozwiązania tych równań dla najbardziej skomplikowanych zjawisk hydrodynamicznych.
- ❷ Hipoteza Bircha i Swinnertona-Dyera (1960)
 Związana z przewidywaniem rozwiązywalności każdego równania diofantycznego.

