MATH 4061 HW 2

David Chen, dc3451

October 1, 2020

Ch 2, Q9

\mathbf{a}

We have that any $p \in E^{\circ}$ is an interior point of E, by the definition of E° . By the definition of interior point, there is some r > 0 such that $B_r^{\circ}(p) \subset E$. Take any point q in $B_r^{\circ}(p)$, and note that we have $B_{r-d(p,q)}^{\circ}(q) \subset B_r^{\circ}(p)$, as any $x \in B_{r-d(p,q)}^{\circ}(q)$ satisfies that $d(x,q) < r - d(p,q) \implies d(x,q) + d(q,p) < r \implies d(x,p) < r \implies x \in B_r^{\circ}(p)$.

Then, we have that q is also an interior point of E, so $q \in E^{\circ}$, so $B_r^{\circ}(p) \subset E^{\circ}$ so E° is open as every point in E° is an interior point of E° .

\mathbf{b}

This is simply the definition of open sets; recall that E is defined to be open if all of its points are internal points, so we have (\Longrightarrow) immediately from the definition, as E open $\Longrightarrow \forall p \in E, p$ is interior $\Longrightarrow p \in E^{\circ}$, so $E^{\circ} \subset E$ and $E \subset E^{\circ}$, so $E = E^{\circ}$.

If $E^{\circ} = E$, then no point of E is not an interior point by definition of (E°) , so all $p \in E$ are interior points, so E is open, so we get (\Leftarrow).

\mathbf{c}

Since $G \subset E$, if $B_r^{\circ}(p) \subset G$, then $B_r^{\circ}(p) \subset E$, so any interior point of G is an interior point of E and therefore a member of E° (so $G^{\circ} \subset E^{\circ}$). But since G is open, we have by the last part that $G = G^{\circ}$, so we have $G = G^{\circ} \subset E$.

Ch 2, Q11

 $d_1(-1,1) = 2^2 > 2 = d_1(-1,0) + d_1(0,1)$, so d_1 fails the triangle inequality.

For the rest of the problems, note that

$$|x-y| = \begin{cases} -(x-y) & x-y < 0 \\ x-y & x-y > 0 \\ 0 & x-y = 0 \end{cases} \begin{cases} y-x & y-x > 0 \\ -(y-x) & y-x < 0 = |y-x| \\ 0 & y-x = 0 \end{cases}$$

This also shows |x-y| satisfies |x-y|=0 if x=y and |x-y|>0 otherwise.

This immediately gives that d_2 is symmetric, and also $d_2(x, y) > 0$ for $x \neq y$ and $d_2(x, x) = 0$. Then, we can check that the triangle inequality holds since

$$\sqrt{|x-y|} \le \sqrt{|x-r|} + \sqrt{|r-y|} \iff |x-y| \le |x-r| + |r-y| + 2\sqrt{|x-r||r-y|}$$

However, we know that $2\sqrt{|x-r||r-y|} \ge 0$, and Rudin shows that |x-y| satisfies the triangle inequality earlier in the book, so the right hand side holds, so the left hand side holds, so d_2 is a valid metric.

For d_3 , note that $d_3(1,-1) = |1^2 - (-1)^2| = 0$, so d_3 is not a metric.

For d_4 , note that $d_4(1, 1/2) = |1 - 1| = 0$, so d_4 is not a metric.

Since we know that |x-y| is symmetric, we have that $\frac{|x-y|}{1+|x-y|} = \frac{|y-x|}{1+|y-x|}$, and since |x-y| > 0 for $x \neq y$, and 1 + |x-y| > 1, $d_5(x,y) > 0$ for $x \neq y$. Similarly, we have that $d_5(x,x) = 0/1 = 0$.

The last thing to check is the triangle inequality: we have that in general, for some metric d(x, y), we have that

$$\frac{d(x,y)}{1+d(x,y)} \le \frac{d(x,r)}{1+d(x,r)} + \frac{d(r,y)}{1+d(r,y)}$$

Multiplying by (1 + d(x, y))(1 + d(x, r))(1 + d(t, y)) > 0,

$$d(x,y)(1+d(x,r))(1+d(r,y)) \leq d(x,r)(1+d(x,y))(1+d(r,y)) + d(r,y)(1+d(x,y))(1+d(x,r))$$

Expanding,

$$d(x,y) + d(x,y)d(x,r) + d(x,y)d(r,y) + d(x,y)d(x,r) + d(x,y)d(x,r) + d(x,y)d(x,r)d(r,y) + d(x,y)d(x,r)d(r,y) + d(x,y)d(x,r)d(r,y) + d(x,y)d(x,r)d(r,y) + d(x,y)d(x,r)d(x,y)d(x,r)d(x,y)$$

Which finally leaves us with

$$d(x,y) \le d(x,r) + d(r,y) + 2d(x,r)d(r,y) + 2d(x,y)d(x,r)d(r,y)$$

Since we have that $d(x,y) \leq d(x,r) + d(r,y)$ since d(x,y) is a metric, and d(x,r), d(r,y) are positive, so the last inequality holds we have that $\frac{d(x,y)}{1+d(x,y)}$ obeys the triangle inequality. In particular, taking d(x,y) = |x-y|, which was shown to be an metric earlier in the book, shows that d_5 obeys the triangle inequality and is thus a metric.

Ch 2, Q22

We can show that $\mathbb{Q}^k \subset \mathbb{R}^k$ is dense. In particular, we already know this for k = 1, and we can use that to bootstrap to k dimensions. For any r > 0 and $p = (p_1, p_2, \dots, p_k) \in \mathbb{R}^k$, we can see that for any point $q = (q_1, q_2, \dots, q_k) \in B_r^{\circ}(p)$, q satisfies the condition that

$$\left(\sum_{i=1}^{k} (p_i - q_i)^2\right)^{\frac{1}{2}} < r \iff \sum_{i=1}^{k} (p_i - q_i)^2 < r^2$$

Then, we have that we if can take q_i such that $(p_i - q_i)^2 < \frac{r^2}{k}$ for each $1 \le i \le k$, then $q \in B_r^{\circ}(p)$. However, since there is a rational between any two real numbers, as shown in chapter one, we have that $\exists q_i$ rational in the interval $(p_i - r/\sqrt{k}, p_i + r/\sqrt{k})$, which then satisfies $(p_i - q_i)^2 < \frac{r^2}{k}$, so these q_i satisfy $q \in B_r^{\circ}(p)$, and $q \in \mathbb{Q}^k$, so \mathbb{Q}^k is dense in \mathbb{R}^k .

We know that this is countable since the is the finite Cartesian product of a countable set, which was shown to be countable in class.

Ch 2, Q23

Since X is separable, we know that it contains a dense subset. Call this dense subset E. Consider the set

$$\{V_{\alpha}\}:=\{B_r^{\circ}(p)\mid r\in\mathbb{Q}\setminus\{0\}, p\in E\}$$

First, we can show that this is countable; consider the function that maps $f: \{V_{\alpha}\} \to \mathbb{Q} \setminus \{0\} \times E$ defined by $B_r^{\circ}(p) \mapsto (r,p)$. This is easily a bijection; if $f(B_r^{\circ}(p)) = f(B_{r'}^{\circ}(p')) \Longrightarrow r = r', p = p'$, then $B_r^{\circ}(p) = B_{r'}^{\circ}(p)$ as sets; similarly, every (r,p) is hit by the open set $B_r^{\circ}(p)$, so f is surjective and injective. Since $\{V_{\alpha}\}$ is bijective to the Cartesian product of countable sets, it itself is countable.

To see that it is a base, consider any open $G \subset X$. Then, pick any $x \in G$. In particular, since we have that G is open, for some real r > 0, $B_r^{\circ}(x) \subset G$ as x is an interior point. Further, since E is a dense subset of X, x is a limit point of E so by definition, $B_{r/2}^{\circ}(x)$ contains some $p \in E$. Then, since there is a rational between any two real numbers, we have some r' rational in the interval (d(x,p),r/2), so $B_{r'}^{\circ}(p)$ contains x. Then, we also have that $B_{r'}^{\circ}(p) \subset B_r^{\circ}(x)$, as for any y, $d(x,y) \leq d(x,p) + d(p,y) < r/2 + r/2 = r$. Since we have that $B_{r'}^{\circ}(p)$ is in $\{V_{\alpha}\}$, we have that $\{V_{\alpha}\}$ is a countable base for X.

Ch 2, Q24

We can construct a countable dense subset of X. First, fix some $\delta > 0$, and pick any arbitrary $x_1 \in X$. Then, given x_1, \ldots, x_j , we choose x_{j+1} such that $d(x_{j+1}, x_i) \geq \delta$ for $1 \leq i \leq j$, until

no such element exists anymore. This cannot go on forever; if it did, we would have an infinite subset of $X, X' = \{x_1, x_2, \dots\}$ such that for any $p \in X$, $B_{\delta/2}^{\circ}(p) \cap (X' \setminus \{p\})$ is either \emptyset or $\{x_i\}$ for some $i \in J$. If there are two distinct elements $x_{i,1}, x_{i,2} \in B_{\delta/2}^{\circ}(p) \cap (X' \setminus \{p\})$, then $d(x_{i,1}, x_{i,2}) \leq d(x_{i,1}, p) + d(p, x_{i,2}) < \delta$, so \Longrightarrow . In the first case that $B_{\delta/2}^{\circ}(p) \cap (X' \setminus \{p\}) = \emptyset$, then p is not a limit point of X'. In the second case that $B_{\delta/2}^{\circ}(p) \cap (X' \setminus \{p\}) = \{x_i\}$, then we have that $B_{d(p,x_i)}^{\circ}(p) \cap (X' \setminus \{p\}) = \emptyset$, which still shows that p is not a limit point of X'. Either way, no point can be a limit point of X', so the sequence cannot go on forever.

Now, for any given $\delta > 0$, denote a sequence constructed by the above process as X_{δ} , and consider the set

$$E = \bigcup_{n=1}^{\infty} X_{1/n}$$

As the countable union of finite sets, we have that E itself is countable, as shown in class. Now, given any $x \in X$ and r > 0, we have that there is some rational p/q such that 0 < p/q < r. Then, consider $X_{1/q} \subset E$. The intersection $B_r^{\circ}(x) \cap (X_{1/q} \setminus \{x\})$ must be nonempty. If it were empty, then we have that there are no elements of $X_{1/q}$ within r > 1/q of x; however, since the construction of $X_{1/q}$ only terminates once we have no choices of x_{j+1} such that $d(x_{j+1}, x_i)$ for $1 \le i \le j$, and this x would be a suitable choice of x_{j+1} , we have $\Rightarrow \Leftarrow$, and so the intersection is empty. This gives that any point of X is a limit point of E, so E is dense in X.