### 5. Model-free Prediction

**2019 Fall** 

Yusung Kim yskim525@skku.edu

#### Review

ullet Return is total discounted sum of rewards from time step t

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Immediate reward

Discount sum of Future rewards

\*  $v_{\pi}(s)$  is expected return from starting in state s under policy  $\pi$ 

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s]$$

•  $q_{\pi}(\mathbf{s},a)$  is expected return from starting in state  $\mathbf{s}$ , taking action a under policy  $\pi$ 

$$q_{\pi}(s,a) = \mathbb{E}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a]$$

### Model-free Reinforcement Learning

• Estimating the expected return of a particular policy without true MDP models.

MDP를 모르는데 그냥 환경이 던져짐.



### Model-free Reinforcement Learning

- Model-free prediction (evaluation)
  - Estimate the value function of an unknown MDP
  - How good is this given policy?
- Model-free control (improvement)
  - Optimize the value function of an unknown MDP
  - How can we learn a better policy?

#### What are Monte-Carlo Methods?

실제 값들을 통해서 추정하는 것. policy를 따라서 계속 해봄.

- A class of computational algorithms that rely on repeated random sampling to obtain numerical results.
- How to measure the area of an irregular shape?



### Monte-Carlo Reinforcement Learning

- MC methods learn directly from episodes of experience
- MC is model-free: no knowledge of MDP transitions / rewards
- MC learns from complete episodes: no bootstrapping
- MC uses the simplest possible idea: value == mean return
- Only for episodic MDPs (all episodes must terminate) 끝까지 해보고 return값을 구함.

그 return들의 평균을 낸 것이 value.

모든 에피소드가 끝나야만 정할 수 있음.

### Monte-Carlo Policy Evaluation

• Goal: learn  $v_\pi(s)$  from episodes of experience under policy  $\pi$ 

$$S_1, A_1, R_2, \dots, S_k \sim \pi$$

Recall that the return is the total discounted reward:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

• Recall that the value function is the expected return:

$$V_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

• Monte-Carlo policy evaluation uses empirical mean return instead of expected return

# First-Visit Monte-Carlo Policy Evaluation

처음 방문한 것만 count를 올려줌.

- To evaluate state S
  - The first time-step t that state s is visited in an episode
  - Increment counter  $N(s) \leftarrow N(s) + 1$
  - Increment total return  $S(s) \leftarrow S(s) + G_t$
  - Value is estimated by mean return  $V(s) \leftarrow S(s)/N(s)$
  - By law of large numbers,  $V(s) \to v_{\pi}(s)$  as  $N(s) \to \infty$

#### Every-Visit Monte-Carlo Policy Evaluation

- To evaluate state S
  - $^{ullet}$  Every time-step t that state s is visited in an episode
  - Increment counter  $N(s) \leftarrow N(s) + 1$  방문할 때마다 count를 올려줌.
  - Increment total return  $S(s) \leftarrow S(s) + G_t$
  - Value is estimated by mean return  $V(s) \leftarrow S(s)/N(s)$
  - Again,  $V(s) \rightarrow v_{\pi}(s)$  as  $N(s) \rightarrow \infty$

모든 state를 방문해야만 함.

## Example: Mars Rover

- We do NOT know the model such as state transition prob. p(S' | S, A)
- Policy: only "move left" in all states
- Reward: -1 every movement, +1 arriving at S1
- Discount factor  $\gamma = 0.5$



$$S_t$$
  $A_t$   $S_{t+1}$   $S_{t+1}$   $S_{t+2}$   $S_{t+2}$   $S_{t+2}$   $S_{t+3}$   $S_{t+3}$   $S_{t+3}$   $S_{t+3}$   $S_{t+3}$ 

#### Example: Mars Rover

- Case of First-Visit MC
- Sample episodes
  - S2, -1, S3, -1, S2, +1, S1



S2: 
$$N(S2) = 1$$
,  $V(S2) = \frac{(-1 + 0.5 * -1 + 0.5^2 * 1)}{1} = -1.25$ 

S3: 
$$N(S3) = 1$$
,  $V(S3) = \frac{(-1 + 0.5 * 1)}{1} = -0.5$ 

S2: 
$$N(S2) = 2$$
,  $V(S2) = \frac{(-1.25 + 1)}{2} = -0.125$ 

#### Example: Mars Rover

- Case of Every-Visit MC
- Sample episodes

• S2, +1, S1



$$S2: N(S2) = 3, V(S2) = (-1.25 + 1 + 1)/3 = 0.25$$

$$S3: N(S3) = 1, V(S3) = -0.5/1 = -0.5$$

#### Incremental Mean

• The mean  $\mu_1, \mu_2, \dots$  of a sequence  $x_{1,}x_{2,} \dots$  can be computed incrementally,

$$\mu_{k} = \frac{1}{k} \sum_{j=1}^{k} x_{j}$$

$$= \frac{1}{k} \left( x_{k} + \sum_{j=1}^{k-1} x_{j} \right)$$

$$= \frac{1}{k} \left( x_{k} + (k-1)\mu_{k-1} \right)$$

$$= \mu_{k-1} + \frac{1}{k} \left( x_{k} - \mu_{k-1} \right)$$

mean을 구하려면 에피소드마다 결과값을 저장하고 있어야 하는데 incremental mean을 사용하면 저장하고 있지 않고 그때마다 구해주면 된다.

#### Incremental Monte-Carlo Update

- Update V(s) incrementally after episode  $S_1, A_1, R_2, \dots, S_k \sim \pi$
- For each state  $S_t$  with return  $G_t$

$$N(S_t) \leftarrow N(S_t) + 1$$

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t))$$
 G-V = error error만큼 update해주는 것.

• In non-stationary problems, it can be useful to track a running mean

$$V(S_t) \leftarrow V(S_t) + \alpha \left( G_t - V(S_t) \right)$$

•  $\alpha > \frac{1}{N(s)}$ : forget older data

non-stationary problem : MDP가 조금씩 계속 바뀌는 것. 과거의 data는 잊고 최신 것들로 채움.

### Temporal-Difference Learning

- TD methods learn directly from episodes of experience
- TD is model-free: no knowledge of MDP transitions / rewards
- TD learns from incomplete episodes, by bootstrapping 에피소드가 안 끝나도 배울 수 있음.
- TD updates a guess towards a guess

"If one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly be temporal-difference (TD) learning." by Sutton and Barto 2017

#### Monte Carlo vs. Temporal Difference

- Learn  $v_\pi(s)$  from episodes of experience under policy  $\pi$
- Incremental Monte-Carlo:  $V(S_t) \leftarrow V(S_t) + \alpha \left( \frac{G_t}{I} V(S_t) \right)$  G의 방향으로 update
- Temporal-difference learning algorithm
  - Update value  $V(S_t)$  toward estimated return  $R_{t+1} + \gamma V(S_{t+1})$  한 step 더 가서 예측한 값. 한 step 더 간 것이 조금 더 정확할 것.

$$V(S_t) \leftarrow V(S_t) + \alpha \left( R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

- $R_{t+1} + \gamma V(S_{t+1})$  is called the TD target
- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$  is called the TD error 한 step 더 간 예측치로 현재의 예측치를 update.

#### **Example: TD Policy Evaluation**

- Sample episodes
  - S2, -1, S3, -1, S2, +1,



$$S2: V(S2) \leftarrow V(S2) + \alpha(-1 + \gamma V(S3) - V(S2))$$

$$S3: V(S3) \leftarrow V(S3) + \alpha(-1 + \gamma V(S2) - V(S3))$$

$$S2: V(S2) \leftarrow V(S2) + \alpha(+1 + \gamma V(S1) - V(S2))$$

# Driving Home Example

|                             | 실제 걸린 시간        | 도착 예정 시간   |               |
|-----------------------------|-----------------|------------|---------------|
|                             | $Elapsed\ Time$ | Predicted  | Predicted     |
| State                       | (minutes)       | Time to Go | $Total\ Time$ |
| leaving office, friday at 6 | 0               | 30         | 30            |
| reach car, raining          | 5               | 35         | 40            |
| exiting highway             | 20              | 15         | 35            |
| 2ndary road, behind truck   | 30              | 10         | 40            |
| entering home street        | 40              | 3          | 43            |
| arrive home                 | 43              | 0          | 43            |

## Driving Home Example



Monte Carlo Method 전부 43으로 update됨.



Temporal Difference Method

#### MC vs. TD

- MC can only learn from complete sequences
  - MC must wait until end of episode
  - MC only works for episodic (terminating) environments
- TD can learn from incomplete sequences
  - TD can learn before knowing the final outcome
  - TD can learn online after every step
  - TD works in continuing (non-terminating) environments

#### Bias/Variance Trade-Off

• The bias is an error from erroneous assumptions in the learning algorithm

• The variance is an error from sensitivity to small fluctuations in the

training set.

Bias: 얼마나 편향되어있는가

Variance: 평균으로부터 얼마나 퍼져있는가



#### Bias/Variance Trade-Off

- Return  $G_t = R_{t+1} + \gamma R_{t+2} + \dots$  is unbiased estimate of  $v_{\pi}(s_t)$ .
- True TD target is unbiased estimate of  $v_\pi(s_t)$  . 한 step사이의 random성은 적음.
- Usually, MC는 게임 끝의 값을 가지고 update하는데 게임이 끝날 때까지의 random성이 크다.  $v_{\pi}(S_t)$ .
- TD target is much lower variance than the return.

### MC vs. TD again

- MC has high variance, zero bias
  - Good convergence properties
     (even with function approximation)
  - Not very sensitive to initial value
  - Very simple to understand and use

- TD has low variance, some bias
  - Usually more efficient than MC
  - TD converges to  $v_\pi(s)$  (but not always with function approximation)
  - More sensitive to initial value

#### Batch MC and TD

- Batch (Offline) solution for finite dataset
  - Given set of K episodes
  - Repeatedly sample an episode from  $k \in [1, K]$
  - Apply MC or TD to the sampled episode
- What do MC and TD converge to?

## AB Example:

- Two states A, B with  $\gamma = 1$
- Given 8 episodes of experience:
  - A, 0, B, 0
  - B, 1
  - B, 1
  - B, 1
  - *B*, 0
  - *B*, 1
  - B, 1
  - B, 1
- What are V(A), V(B)?
   MC V(A), TD V(A): 0, 0.75



#### MC vs. TD

- In simplest TD, use (s, a, r, s') once to update V(s)
  - O(1) operation per update
  - In an episode of length L, O(L)
- In MC have to wait till episode finishes, then also  $\mathcal{O}(L)$
- TD exploits Markov structure
  - If in Markov domain, leveraging this is helpful
- MC does not exploit Markov property
  - Usually more effective in non-Markov environments

 $V(s_t) \leftarrow V(s_t) + \alpha \left( G_t - V(s_t) \right)$ 



**Monte Carlo** 

#### DP vs. MC vs. TD

#### **Dynamic Programming**

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s]$$



 $V(s_t) \leftarrow V(s_t) + \alpha \left( \mathbf{R}_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right)$ 



Temporal Difference

#### Sampling and Bootstrapping

- Sampling: gather information from episodes of experience
  - DP does NOT sample
  - MC samples
  - TD samples

- Bootstrapping: update estimates
   on the basis of other estimates
  - DP bootstraps
  - MC does NOT bootstrap
  - DP bootstraps

## Blackjack Example

- States (280 of them):
  - Current sum (  $4 \sim 21$  )
  - Dealer's showing card ( $ace \sim 10$ )
  - Do I have a "useable" ace? (yes no)
- Actions
  - stick: Stop receiving cards (and terminate)
  - hit: Take another card (no replacement)
- Transitions: automatically hit if sum of cards  $<\,12$

- Reward for stick:
  - +1 if sum of cards > sum of dealer cards
  - 0 if sum of cards == sum of dealer cards
  - -1 if sum of cards < sum of dealer cards
- Reward for hit:
  - -1 if sum of cards > 21 (and terminate)
  - 0 otherwise

#### Blackjack Value Function after Prediction



for policy that sticks only on 20 or 21

# n-Step Prediction

• Let  ${\sf TD}$  target look n steps into the future



### n-Step Return

• Consider the following n-step returns for  $n=1,2,...\infty$ :

$$n = 1 (TD) G_t^{(1)} = R_{t+1} + \gamma V(S_{t+1})$$

$$n = 2 G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+2})$$

$$\vdots \vdots$$

$$n = \infty (MC) G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

• Dene the n-step return

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} | R_{t+n} + \gamma^n V(S_{t+n}) |$$

n-step temporal-difference learning

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(n)} - V(S_t)\right)$$

### n-Step at Random Walk Example



### Averaging n-Step Returns

- $^{ullet}$  We can average n-step returns over different n
- e.g. average the 2-step and 4-step returns

$$\frac{1}{2}G^{(2)} + \frac{1}{2}G^{(4)}$$

- Combines information from two different time-steps
- Can we efficiently combine information from all time-steps?



#### λ-return

- The TD( $\lambda$ ) as one particular way of averaging n-step updates.
  - Each weighted proportionally to  $\lambda^{n-1}$  (where  $\lambda \in [0,1]$ )
  - $\lambda$ -return:  $G_t^{\lambda} \doteq (1-\lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_{t:t+n}$
  - Backup using 
     <sup>1</sup>−return:

$$V(s_t) = V(s_t) + \alpha [G_t^{\lambda} - V_t(s_t)]$$

### λ-return





#### Relation to TD and MC

- if  $\lambda = 0$ , you get one-step TD, TD(0)
- if  $\lambda = 1$ , you get MC

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

$$= (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_t^{(n)} + \lambda^{T-t-1} G_t$$

### Forward-view $TD(\lambda)$



- Update value function towards the  $\lambda$ -return
- Forward-view looks into the future to compute  $G_t^{\lambda}$
- Like MC, can only be computed from complete episodes

### Forward-View $TD(\lambda)$ on Random Walk

#### Off-line λ-return algorithm



