

Algorithms of Numerical Linear Algebra Assignment 1

Exercise 1 (Induced Matrix Norms)

1P.

Let $\|\cdot\|$ denote both a norm on \mathbb{C}^m and the corresponding induced matrix norm (operator norm) on $\mathbb{C}^{m\times m}$. Show that for all $A\in\mathbb{C}^{m\times m}$ the spectral radius $\varrho(A)$ is bounded from above by $\|A\|$.

Note: The spectral radius and induced matrix norm are defined by

$$\varrho(A) = \max_{i=1}^m \lvert \lambda_i \rvert \quad \text{and} \quad \lVert A \rVert = \sup_{u \in \mathbb{C}^m \backslash \{0\}} \frac{\lVert Au \rVert}{\lVert u \rVert}, \quad \text{respectively}.$$

Exercise 2 (Unitary Matrices)

3P.

Let $Q \in \mathbb{C}^{m \times m}$ be unitary, i.e., $Q^* = Q^{-1}$. Give an answer together with a short proof for each of the following questions.

- (a) Let $x \in \mathbb{C}^m$. What can be said about the Euclidian norm of Qx?
- (b) What can be said about the eigenvalues of Q?
- (b) How about the determinant of Q?

Exercise 3 (Hermitian Matrices)

2P.

Give a formal proof for the following statement: A matrix $A \in \mathbb{C}^{m \times m}$ is Hermitian if an only if it is both unitary diagonalizable and all its eigenvalues are real.

Hint: Recall that every $m \times m$ matrix has a Schur decomposition $A = QUQ^*$ with unitary matrix Q and upper triangular matrix U.

Exercise 4 (Rank-one Perturbations)

8P.

For $u, v \in \mathbb{C}^m \setminus \{0\}$, the matrix $A = I + uv^*$ is known as a rank-one perturbation of the identity.

- (a) Under which conditions on u and v is A singular? Give an expression of $\operatorname{null}(A)$. Prove your answers!
- (b) Prove the following statement: If A is nonsingular, there exists $\alpha \in \mathbb{C}$, such that $A^{-1} = I + \alpha uv^*$. Give an expression for α .

It can be shown that, if this matrix A is also unitary, u and v are linearly dependent, i.e., for given $u \in \mathbb{C}^m \setminus \{0\}$ there exists $\omega \in \mathbb{C}$ s.th. $A = I + \omega u u^*$.

- (c) Find $\Omega_u \subset \mathbb{C}$ s.th. A is unitary if and only if $\omega \in \Omega_u$ (proof!). Sketch Ω_u in the complex plane.
- (d) What can be said about α in this case? Your statement should describe α as accurate as possible but independent of ω and u.

Determine SVDs of the following matrices by determining the matrix Σ and guessing the matrices U and V. Think about matrices which switch signs, swap entries and scale entries when multiplied from the left or right side. Do *not* use a computer package! This exercise should make you familiar with elementary transformations such as rotations and reflections.

$$A = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix},$$

Exercise 6 (More SVD)

Consider the matrix

$$\begin{pmatrix} -2 & 11 \\ -10 & 5 \end{pmatrix}$$

- (a) Determine a real SVD of A in the form $A = U\Sigma V^T$.
- (b) Draw a careful, labeled picture of the unit ball in \mathbb{R}^2 and its image under A. Also add the image of the right singular vectors, i.e., AV and mark the coordinates of their vertices.
- (c) What are the 1-, 2-, ∞ -, and Frobenius norms of A?
- (d) Find A^{-1} not directly, but via the SVD.