Oppgave 2.1 a)
Førsteordens:
Når vi snakker om orden til en differensiallikning snakker vi som oftest om den høyeste ordens deriverte
av den ukjente funksjonen som forekommer i likningen. Hvis den høyeste ordens deriverte bare er
deriverte én gang er det en Første ordens differensiallikning, og om den er derivert to gang er det en
Andre ordens differensiallikning.
Initialbetingelse:
Initialbetingelse kan også kalles for en startbetingelse, og er svaret til <i>y(0)</i> i likningen.
initial betingelse kan også kalles for en startbetingelse, og er svaret til y(o) i likilingen.
Sanavah ali
Separabel:
En separabel differensiallikning er en likning som skrives på formen $\frac{dg}{df} = f(t)g(y)$. Funksjonen g i
likningen er en funksjon av variabelen y , som igjen er en funksjon av variabelen x . Da kan funksjonen g
skrives på forme $g = g(y(x))$.
Integrerende faktor:
Vet en differensiallikning på formen (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)
integrerende faktor. Hvis vi ganger begge sidene av likningen med det integrerende faktor, ser vi at vi
kan utføre produktregelen baklengs for å få likningen på formen 🕹 [عراب المراب)] = Q(+) على Da kan vi integrere
begge sidene med hensyn på t. Da får vi en likning som vi kan løse med hensyn på $y(t)$ for å få
løsningen til differensiallikningen.
Oppgave 2.1 b)
Losains ved integrerende Jaktor:
$y' \neq P(t)_y \neq Q(t)$
$P(y) = \tilde{Z}$
Q(t) = 3
sol + 2 m = 3 lateratula Aktos
$y' + 2y = 3$ Integer and factor $y' = \frac{dy}{dt}$ $g(t) = e^{SP(t) dt} = e^{S2Jt} = e^{2t}$ $C = 0$
9 21 9 7 9
dy +2y = 3
Nf (29 - 3 -)
24 24 2 24 2 24
$e^{2t} \cdot \frac{\partial y}{\partial t} + 2e^{2t} \cdot y = 3e^{kt}$
$\frac{d}{dt} \left[e^{2t} \cdot y \right] = 3e^{2t} \longrightarrow \frac{d}{dt} \left(e^{2t} \cdot y(t) \right) = 2e^{2t} \cdot y(t) + e^{2t} \cdot g'(t)$
$\int_{0}^{2} \left(\frac{1}{2} c^{2} c^{2} \right) = \int_{0}^{2} \left(\frac{1}{2} c^{2} \right) dc$
$e^{2} \cdot y = \frac{3}{2} e^{2} + C \cdot \int e^{2} f$
$y = Ce^{2f} + \frac{3}{2}$

Losning ved separabel likning:	
y' + 2y = 3 => y' = (-2y + 3) · 1	
$y' + 2y = 3 \Rightarrow y' = (-2y + 3) \cdot 7$ $y' = \frac{1}{4}$ $y' = \frac{1}{4}$ $f(t) = 1$	
$\frac{dy}{dt} = f(t)g(y) [iggs]$	
do (1) 1 Jt	
$\frac{dy}{dy} = f(t)dt = 2 \int \frac{dy}{dy} dy = 2 \int f(t) dt$	
$\int_{-25+3}^{4} dy = \int_{1}^{3} dt$	
$-\frac{1}{2} \cdot n(1-2y+31) = + + C$	
$e^{-\frac{1}{2}}\left(-\lambda_{0} \cdot 3\right) = e^{+AC}$	
$-2y+3=\frac{e^{+}}{e^{-\frac{1}{2}}}+C$	
$-2y = e^{\frac{1}{2}t} + C$, $C-3=C$ sides C bore or konstant	
$y = \frac{(e^{\frac{1}{2}} + C)}{-2}$	
<u>9 = 72</u>	
Vi loser altsi likuinsen y'+2g =3	
V: Kan løse den ved hjelp av jutegrerende faktor og få løskingen: $y = Ce^{-2t} + \frac{3}{2}$	
Dot or ossi en seperabel diff. likuly som six (osningen: $y = \frac{(c^{\frac{1}{2}t} + C)}{-2}$	
y'+2y=3 er altoo et eksempel på en differensiallikuing som Kan 18685 bode ved integrerende faktor og som en seperabel likuing:	
Li Kuingi	