

Analysis für Informatik MA0902

Josef Schönberger

21. Februar 2021

Inhaltsverzeichnis

1.	Meng	genterminologie	5
	1.1.	Teilmenge	5
	1.2.	Injektiv / Surjektiv	5
	1.3.	Auswahl-Axiom	5
	1.4.	Exklusivität des Vergleichs der Kardinalität	5
	1.5.	Cantor-Bernstein	5
	1.6.	Abzählbarkeit	5
2.	Reelle	e Zahlen und Vektoren	6
	2.1.	Körper und Anordnung	6
	2.2.	Obere / Untere Schranke	6
	2.3.	Maximum / Minimum	6
	2.4.	Supremum / Infimum	6
	2.5.	Definition Vollständigkeit	7
	2.6.	Vollständigkeitsaxiom	7
	2.7.	Rechenregeln	7
	2.8.	Umgebung	7
	2.9.	Offenheit einer Menge	7
	2.10.	Abgeschlossenheit einer Menge	7
	2.11.	Zeitgleich offen und abgeschlossen	7
	2.12.	Cauchy-Schwarz-Ungleichung	8
	2.13.	Dreiecksungleichung	8
	2.14.	Ungleichung geom. und arithm. Mittel	8
3.	Folge	n	10
	3.1.	Definition Folge	10
	3.2.	Definition (streng) monoton	10
	9 9	,	10

	3.4.	Eindeutigkeit eines Grenzwerts	10		
	3.5.	Beschränkung des Grenzwerts	10		
	3.6.	Einschließung	10		
	3.7.	Definition Beschränktheit	10		
	3.8.	Beschränktheit durch Grenzwert	11		
	3.9.	Rechenregeln	11		
	3.10.	Konvergenz gegen Supremum / Infimum	11		
	3.11.	Häufungspunkt	11		
	3.12.	Bolzano-Weierstrass	11		
	3.13.	Cauchys Kriterium für Konvergenz	12		
4.	Reihen 13				
	4.1.	Definition Reihe	13		
	4.2.	Nullfolgenkriterium	13		
	4.3.	Konvergenz ⇔ Beschränktheit bei positiven Gliedern	13		
		eichskriterien für Konvergenz	14		
	4.4.	Definition Majorante / Minorante	14		
	4.5.	Majorantenkriterium / Minorantenkriterium	14		
	4.6.	Divergenz	14		
	4.7.	Quotientenkriterium	14		
		nierende Reihen	15		
	4.8.	Leibnitzkriterium	15		
	4.9.	Absolute Konvergenz	15		
		Umordnungssatz	15		
	4.11.	Doppelreihensatz	16		
	4.12.	Exponentialfunktion	16		
		Rechenregeln der Exponentialfunktion	16		
5	Gran	zwerte von Funktionen und Stetigkeit	18		
J .	5.1.	Definition Isolierter Punkt	18		
	5.2.	Grenzwert einer Funktion	18		
	5.3.	Definition Stetigkeit	18		
	5.4.	Alternative Definition für Grenzwert	18		
	5.5.				
	5.6.	Stetigkeit von exp	18		
	5.7.	Komposition stetiger Funktionen	19		
	5.8.	Definition linksseitiger/rechtsseitiger Grenzwert/Stetigkeit	19		
		Inktiteration	19		
	тіхро		19		
6.	-	Komplexe Zahlen und trigonometrische Funktionen			
	6.1.	Definition Sinus / Cosinus	20		
	6.2.	Sinus / Cosinus periodisch, Definition Pi	20		
		enregeln für Sinus und Cosinus	20		
	Reche	enregeln für komplexe Exponentialfunktion	20		

	Defin	ition Tangens / Kotangens	21
	6.3.	Konvergenz bei Multiplikation	21
	Polar	koordinaten	21
		iche Rechenregeln	21
7.	Kons	equenzen der Stetigkeit	22
	7.1.	Unvollständigkeit des Ergebnisraums einer beliebigen Funktion	22
	7.2.	Zwischenwertsatz	22
	7.3.	Maximum / Minimum	22
	7.5.	Maximum/Minimum einer stetigen Funktion	22
	7.6.	Definition Konvergenz & Stetigkeit im mehrdimensionalen Raum	22
	mehro	limensionale Offenheit / Geschlossenheit	22
	7.7.	Definition Kompaktheit	23
	7.8.	stetig von Kompakter Menge abbilden \rightarrow Maxi- und Minimum	23
	7.9.	mehrdimensionale Beschränktheit	23
	7.10.	komponentenweise Konvergenz	23
	7.11.	$Kompakt \leftrightarrow abgeschlossen \& beschränkt \dots \dots \dots \dots \dots$	23
	7.12.	Kompaktheit steter Bilder kompakter Mengen	23
	7.13.	Definition Umkehrabbildung & -funktion	23
	7.14.	Umkehrfunktionen von stetigen, streng monoton wachsenden Funktionen	24
		Definition natürlicher Logarithmus	24
	Reche	enregeln des Logarithmus	24
		Definition Potenzieren auf \mathbb{R} , Wurzelrechnung	24
	7.17.	Definition Logarithmus zu Basen	24
		hrfunktionen der trigonometrischen Funktionen	
R	Diffe	rentiation	26
Ο.	8.1.	Definition \mathcal{O} und o	26
	8.3.	Definition innerer Punkt	
	8.4.	Definition Differenzierbarkeit einer Stelle & Ableitung	26
	8.5.	Definition Differenzierbarkeit einer Funktion	
	8.8.	Differenzierbarkeit → Stetigkeit	
		Definition rechts- & linksseitige Ableitung	
		Produktregel	27
	8.17.	Quotientenregel	28
	8.19.	Kettenregel	28
	8.20.	Ableitung der Potenzierung	28
	8.23.		28
	8.27.	Umkehrregel	28
		Differenzierbarkeit & Ableitung von Funktionsfolgen	28 29
	0.20.	Differenzierbarken & Abientung von Funktionsloigen	<i>29</i>
9.	Anwe	ndungen der Ableitung	30
	9.1.	Definition Extrema einer Funktion	30
	0.2	Ablaitung an Extrama	30

	Bestin	mmung von Extrema	30
	9.6.	Satz von Rolle	30
	9.7.	(erweiterter) Mittelwertsatz	31
	9.8.	Monotonie und Ableitung	31
	9.11.	Kriterium für Extrema	31
	9.12.	Regel von l'Hospital	31
			32
	9.15.	Definition zweimal und stetig differenzierbar	32
			32
	9.18.	monoton wachsende Ableitung \leftrightarrow konvex	32
	9.20.	zweite Ableitung \rightarrow Konvexität	32
	9.21.	Ungleichung auf Folge der Konvexität	33
	Jense	n'sche Ungleichung	33
10	.Integ	ration	34
	10.2.	Definition bestimmtes Integral	34
	10.3.	Integrierbarkeit stetiger Funktionen	34
			34
	10.6.	Alternative Definition Integrierbarkeit	34
			35
	10.8.	Eigenschaften und Rechenregeln des Integrals	35
	10.9.	Integral mit "verdrehtem" Intervall	35
	10.10.	. Hauptsatz der Differential- und Integralrechnung	35
	10.11.	. Definition Stammfunktion / unbestimmtes Integral	36
	10.12.	. Zusammenhang bestimmtes Integral und Stammfunktion	36
	10.16.	. Partielle Integration	36
	10.19.	. Substitutionsregel	36
			36
Α.	Flowe	chart zur Bestimmung der Konvergenz bei Reihen	39

1. Mengenterminologie

1.1. Teilmenge

 $B \subseteq A$ gdw. $\forall x \in B$ gilt auch, dass $x \in A$.

1.2. Injektiv / Surjektiv

 $f:A\to B$ ist

- injektiv, falls $\forall x, y \in A \text{ mit } x \neq y \text{ gilt: } f(x) \neq f(y)$
- surjektiv, falls $\forall y \in B$ gilt: $\exists x \in A$, sodass f(x) = y
- bijektiv, falls sowohl injektiv und surjektiv

1.3. Auswahl-Axiom

 \exists Surjektion von Anach Bgdw. \exists Injektion von Bnach A

1.4. Exklusivität des Vergleichs der Kardinalität

 $\forall A, B \text{ Mengen: Entweder } |A| \leq |B| \text{ oder } |A| \geq |B|$

1.5. Cantor-Bernstein

Falls Injektionen $f:A\to B$ und $g:B\to A$ existieren, so gibt es eine Bijektion zwischen A und B.

1.6. Abzählbarkeit

Menge A heißt abzählbar, falls $|A| = |\mathbb{N}|$. $\aleph_0 = |\mathbb{N}|$

2. Reelle Zahlen und Vektoren

2.1. Körper und Anordnung

Ein Körper $(F, +, \cdot)$ ist eine Menge F mit den Operationen + und \cdot , wobei:

- 1. Addition assoziativ
- 2. Addition kommutativ
- 3. Es existiert ein zur Addition neutrales Element 0
- 4. Es existiert stets ein zur Addition inverses Element
- 5. Multiplikation assoziativ
- 6. Multiplikation kommutativ
- 7. Es existiert ein zur Multiplikation neutrales Element 1
- 8. Es existiert stets ein zur Multiplikation inverses Element
- 9. Es gilt das Distributionsgesetz

Ein Körper heißt angeordnet, falls eine Relation < existiert, sodass $\forall x, y \in F$:

- 1. Entweder x < y oder x = y oder x > y
- 2. Falls x, y > 0, dann $x + y, x \cdot y > 0$
- 3. x > y gdw. x y > 0

2.2. Obere / Untere Schranke

 $x \in \mathbb{R}$ ist eine obere Schranke von $M \subseteq \mathbb{R}$, falls $\forall y \in M$ gilt: $y \leq x$.

Falls ein solches x existiert, so heißt M nach oben beschränkt, sonst nach oben unbeschränkt.

Vergleichbar ist die untere Schranke.

2.3. Maximum / Minimum

 $x \in \mathbb{R}$ ist das Maximum von $M \subseteq \mathbb{R}$, falls x obere Schranke von M und $x \in M$. Vergleichbar ist das Minimum.

2.4. Supremum / Infimum

Das Supremum $\sup(M)$ ist die niedrigste obere Schranke von $M \subseteq \mathbb{R}$. Falls nicht existent, so schreiben wir $\sup(M) = \infty$.

Das Infimum $\inf(M)$ ist die höchste untere Schranke von $M \subseteq \mathbb{R}$. Falls nicht existent, so schreiben wir $\inf(M) = -\infty$.

2.5. Definition Vollständigkeit

Ein angeordneter Körper K ist vollständig, falls $\forall M \subseteq K$ nach oben beschränkte Teilmenge mit $M \neq \emptyset$ ein Supremum besitzt.

2.6. Vollständigkeitsaxiom

 \mathbb{R} ist vollständig.

2.7. Rechenregeln

Sein $A, B \subseteq \mathbb{R}$ mit $\sup(A), \sup(B) \in \mathbb{R}$.

- 1. $\sup(A + B) = \sup(A) + \sup(B)^1$
- 2. $\forall \lambda \geq 0 : \sup(\lambda \cdot A) = \lambda \cdot \sup(A)^2$
- 3. Falls $A, B \subseteq [0, \infty)$: $\sup(A \cdot B) = \sup(A) \cdot \sup(B)^3$
- 4. $A \subseteq B \Rightarrow \sup(A) \le \sup(B)$

Selbiges für das Infimum (wobei bei Punkt 4 das '≤' durch ein '≥' zu ersetzen ist)

2.8. Umgebung

Ein offenes Intervall (a, b) ist eine Umgebung von x, falls $x \in (a, b)$.

2.9. Offenheit einer Menge

 $A \subseteq \mathbb{R}$ ist offen, falls $\forall x \in A$ gilt: $\exists I_x$ Umgebung von x, sodass $I_x \subseteq A$

2.10. Abgeschlossenheit einer Menge

 $A \subseteq \mathbb{R}$ ist abgeschlossen, falls $\mathbb{R} \backslash A$ offen ist.

2.11. Zeitgleich offen und abgeschlossen

Nur \mathbb{R} und \emptyset sind offen und abgeschlossen.

 $^{{}^{1}}A + B = \{a + b \mid a \in A, b \in B\}$ ${}^{2}\lambda \cdot A = \{\lambda \cdot a \mid a \in A\}$ ${}^{3}A \cdot B = \{a \cdot b \mid a \in A, b \in B\}$

Skalarprodukt

$$\cdot : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

$$\overline{x} \cdot \overline{y} \mapsto \sum_{k=1}^n x_k y_k$$

Seien $\overline{x}, \overline{y}, \overline{z} \in \mathbb{R}^n$ und $\alpha \in \mathbb{R}$:

- 1. $\overline{x} \cdot \overline{y} = \overline{y} \cdot \overline{x}$
- 2. $(\alpha \overline{x}) \cdot \overline{y} = \overline{x} \cdot (\alpha \overline{y}) = \alpha (\overline{x} \cdot \overline{y})$
- 3. $(\overline{x} + \overline{y}) \cdot \overline{z} = \overline{x} \cdot \overline{z} + \overline{y} \cdot \overline{z}$
- 4. $\overline{x} \cdot \overline{x} > 0$

Euklidische Norm

$$||(x_1,\ldots,x_n)|| := \sqrt{(x_1,\ldots,x_n)\cdot(x_1,\ldots,x_n)} = \sqrt{\sum_{k=1}^n x_k^2}$$

2.12. Cauchy-Schwarz-Ungleichung

 $\forall \overline{x}, \overline{y} \in \mathbb{R}^n$:

$$|\langle \overline{x}, \overline{y} \rangle| \le ||\overline{x}|| \cdot ||\overline{y}||^4$$

Gleichheit gilt gdw. \overline{x} und \overline{y} linear abhängig sind.

2.13. Dreiecksungleichung

 $\forall \overline{x}, \overline{y} \in \mathbb{R}^n$:

$$||\overline{x} + \overline{y}|| \le ||\overline{x}|| + ||\overline{y}||$$

2.14. Ungleichung geom. und arithm. Mittel

Seien $x, y \ge 0$.

$$\sqrt{xy} \le \frac{x+y}{2}$$

 $[\]overline{{}^4\langle \overline{x}, \overline{y}\rangle}$ beschreibt das Skalarprodukt von \overline{x} und \overline{y}

Komplexe Zahlen

$$\begin{split} i &\coloneqq \sqrt{-1}.\\ \mathbb{C} &\coloneqq \{x + yi \mid x, y \in \mathbb{R}\} \end{split}$$

Seien $z_1=x_1+y_2i, z_2=x_2+y_2i\in\mathbb{C}$ komplexe Zahlen. Wir definieren:

- die Addition: $z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)i$
- die Subtraktion: $z_1 z_2 = (x_1 x_2) + (y_1 y_2)i$
- die Multiplikation: $z_1 \cdot z_2 = x_1x_2 y_1y_2 + (x_1y_2 + x_2y_1)i$
- die Konjugierte: $\overline{z_1} = x_1 y_1 i$
- den Betrag: $|z_1| = \sqrt{x_1^2 + y_1^2}$

3. Folgen

3.1. Definition Folge

Eine Folge mit Werten ist eine Abbildung $\mathbb{N}^+ \to M$, wobei M eine beliebige Menge. Wir schreiben x_1, x_2, \dots

Alternativ kann eine Folge auch mit \mathbb{N}_0 definiert sein.

3.2. Definition (streng) monoton

Eine Folge $(x_n)_n$ heißt monoton wachsend, falls $\forall n : x_n \leq x_{n+1}$. Eine Folge $(x_n)_n$ heißt streng monoton wachsend, falls $\forall n : x_n < x_{n+1}$.

Vergleichbar definiert ist (streng) monoton fallend.

3.3. Definition Grenzwert einer Folge

 $x \in \mathbb{R}$ heißt Grenzwert / Limes einer Folge $(x_n)_n$, falls:

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n \ge N : |x_n - x| < \varepsilon$$

Man schreibt:

$$x_n \xrightarrow[n \to \infty]{} x$$
 oder $x = \lim_{n \to \infty} x_n$

 x_n heißt konvergent gdw. ein Grenzwert existiert.

3.4. Eindeutigkeit eines Grenzwerts

Jede reelle Folge hat max. einen Grenzwert.

3.5. Beschränkung des Grenzwerts

Falls $(x_n)_n \to x$ und $(y_n)_n \to y$ beschränkte Folgen mit $\forall n : x_n \leq y_n$, so gilt $x \leq y$.

3.6. Einschließung

Falls $(x_n)_n \to x$ und $(y_n)_n \to x$ beschränkte Folgen mit $\forall n: x_n \leq y_n$. Für jede weitere Folge (w_n) mit $\forall n: x_n \leq w_n \leq y_n$ gilt dann: $w_n \to x$

3.7. Definition Beschränktheit

 (x_n) geht gegen $+\infty$, falls

$$\forall C > 0: \exists N \in \mathbb{N}: \forall n \geq N: x_n \geq C$$

Vergleichbar geht (x_n) gegen $-\infty$.

 (x_n) heißt hingegen beschränkt, falls $\exists K > 0$, sodass $\forall n : |x_n| \leq K$

3.8. Beschränktheit durch Grenzwert

Jede konvergente Folge ist beschränkt.

3.9. Rechenregeln

Seien (x_n) und (y_n) Folgen mit $x_n \to a$ und $y_n \to b$. Dann gilt:

- $\bullet \ x_n + y_n \to a + b$
- \bullet $x_n y_n \rightarrow a + b$
- $\bullet \ x_n \cdot y_n \to a \cdot b$
- $x_n/y_n \to a/b$, falls $b \neq 0$

3.10. Konvergenz gegen Supremum / Infimum

Jede monoton wachsende, beschränkte Folge konvergiert gegen ihr Supremum:

$$x = \lim_{n \to \infty} x_n = \sup_n(x_n) := \sup(M) \text{ mit } M := \{x_n \mid x \in \mathbb{N}\}$$

Ebenso konvergiert jede monoton fallende, beschränkte Folge gegen ihr Infimum.

Definition Limes superior und Limes inferior

Sei (x_n) beschränkt. Dann ist definiert:

$$\limsup_{n \to \infty} x_n := \lim_{n \to \infty} (\sup_{k \ge n} x_k)$$

$$\liminf_{n \to \infty} x_n := \lim_{n \to \infty} (\inf_{k \ge n} n_k)$$

Es folgt: $\liminf_{n\to\infty} x_n \le \limsup_{n\to\infty} x_n$

3.11. Häufungspunkt

Sei (x_n) eine reellwertige Folge.

Seien $n_1 < n_2 < ... < n_k \in \mathbb{N}$ gegeben, so heißt (x_{n_k}) Teilfolge von (x_n) . $x \in \mathbb{R}$ heißt Häufungspunkt, falls es eine Teilfolge mit $\lim_{k \to \infty} x_{n_k} = x$ gibt.

3.12. Bolzano-Weierstrass

Falls (x_n) reellwertig und beschränkt:

$$\lim_{n\to\infty} x_n = x \text{ gdw. } \liminf_{n\to\infty} x_n = \limsup_{n\to\infty} x_n = \lim_{n\to\infty} x_n$$

Letztere Gleichung besagt, dass $\limsup_{n\to\infty} x_n$ und $\liminf_{n\to\infty} x_n$ zugleich maximaler und minimaler Häufungspunkt sind.

Diese Aussage ist äquivalent zu: Jede beschränkte Folge hat mindestens eine konvergente Teilfolge (da besagter Wert, auf den konvergiert wird, ein Häufungspunkt ist).

3.13. Cauchys Kriterium für Konvergenz

 (x_n) konvergiert gdw.

$$\forall \varepsilon > 0: \ \exists N: \ \forall m, n > N: \ |x_n - x_m| < \varepsilon$$

4. Reihen

4.1. Definition Reihe

Sei a_n eine (komplexe) Folge. Die Folge

$$s_n \coloneqq a_0 + \dots + a_n = \sum_{k=0}^n a_k$$

heißt unendliche Reihe (kurz: Reihe) mit den Gliedern a_n und den Partialsummen s_n .

Falls s_n konvergent:

$$s = \lim_{n \to \infty} s_n := \sum_{k=0}^{\infty} a_k$$

s heißt die Summe oder der Wert der Reihe.

Falls s_n reell und geht gegen $+\infty$, so schreiben wir:

$$\sum_{k=0}^{\infty} a_k = \infty$$

Gleiches gilt auch für $-\infty$.

Hinweis:
$$\sum_{k=0}^{\infty} a_k = \pm \infty$$
 gdw. $\exists n \in \mathbb{N} : \sum_{k=n}^{\infty} a_k = \pm \infty$

Nennenwerte Beispiele für Reihen:

- geometrische Reihe $s_n = \sum_{k=0}^n z^k$. Konvergiert (gegen $\frac{1}{1-z}$) gdw. |z| < 1.
- harmonische Reihe $s_n = \sum_{k=1}^n \frac{1}{k}$. Divergiert.

4.2. Nullfolgenkriterium

Falls die Reihe $\sum_{k=0}^{n} a_k$ konvergent, so gilt: $\lim_{n\to\infty} a_n = 0$.

4.3. Konvergenz ⇔ Beschränktheit bei positiven Gliedern

Eine reelle Reihe s_n mit positiven Gliedern ist beschränkt gdw. konvergent.

Vergleichskriterien für Konvergenz

4.4. Definition Majorante / Minorante

Sei s_n eine Reihe mit den komplexen Gliedern a_k . Eine Reihe $\sum_{k=0}^n b_k$ heißt Majorante von s_n , wenn $|a_k| \leq b_k$. Sie heißt Minorante von s_n , wenn $b_k \leq |a_k|$.

4.5. Majorantenkriterium / Minorantenkriterium

Sei (s_n) eine Reihe mit den komplexen Gliedern a_k und einer konvergenten Majorante mit den Gliedern b_n . Dann ist (s_n) konvergent. Es gilt:

$$\left|\sum_{k=0}^{\infty}a_k\right|\leq\sum_{k=0}^{\infty}|a_k|\leq\sum_{k=0}^{\infty}b_k$$

Falls eine Reihe (s_n) hingegen eine divergente Minorante hat, so ist auch (s_n) divergent.

4.6. Divergenz

Eine Reihe heißt divergent, wenn sie nicht konvergent ist.

4.7. Quotientenkriterium

Eine Reihe $\sum_{k=0}^{\infty} a_k$ konvergiert absolut, falls

$$\exists q \in \mathbb{R} \text{ mit } q < 1: \exists n_0 \ge 0: \forall k \ge n_0: \frac{|a_{k+1}|}{|a_k|} \le q$$

Wobei q fest sein muss, also $\frac{|a_{k+1}|}{|a_k|} < 1$ reicht nicht aus! Gilt hingegen $\frac{|a_{k+1}|}{|a_k|} \ge 1$ in der Formel oben, so divergiert die Reihe.

Alternierende Reihen

Eine Reihe mit den Gliedern a_k heißt alternierend, falls die Glieder abwechselnd verschiedene Vorzeichen haben. Wir schreiben: $a_0 - a_1 + a_2 - a_3 + a_4 + \dots$ Wir nehmen an: $a_0 > 0$.

4.8. Leibnitzkriterium

Sei $(a_n)_{n\geq 0}$ eine monoton fallende Folge in \mathbb{R} mit $a\xrightarrow[n\to\infty]{}0$ und sei $S_n=\sum_{k=0}^n(-1)^ka_k$.

Dann konvergiert die Reihe $\sum_{k=0}^{\infty} (-1)^k a_k$.

Es gilt $\forall n \in \mathbb{N}$:

$$\left| \sum_{k=0}^{\infty} (-1)^k a_k - S_n \right| = \left| \sum_{k=n+1}^{\infty} (-1)^k a_k \right| \le a_{n+1}$$

4.9. Absolute Konvergenz

 $\sum\limits_{k=0}^{n}a_{k}$ mit $a_{k}\in\mathbb{C}$ heißt absolut konvergent, falls $\sum\limits_{k=0}^{n}|a_{k}|$ konvergent. Eine Reihe, die konvergiert, aber nicht absolut konvergiert, heißt bedingt konvergent.

Beispiel: Die alternierende harmonische Reihe $\sum_{k=0}^{\infty} (-1)^k \frac{1}{k} = \ln(2)$ ist bedingt konvergent.

4.10. Umordnungssatz

Sei a_k eine Folge mit $a_k \in \mathbb{C}$.

$$\sum_{k=1}^n a_k \text{ konvergiert absolut gdw. } \forall \sigma: \mathbb{N} \to \mathbb{N} : \sum_{k=1}^\infty a_{\sigma(k)} = \sum_{k=1}^\infty a_k \neq \infty$$

15

Beliebigkeit der Ergebnisse bei Änderung der Summationsreihenfolge

Sei $\sum_{n=1}^{\infty} a_n$ eine bedingt konvergente Reihe.

Dann existiert je eine Permutation σ , sodass

•
$$\forall x \in \mathbb{R} : \sum_{n=1}^{\infty} a_{\sigma(n)} = x$$

•
$$\sum_{n=1}^{\infty} a_{\sigma(n)} = -\infty$$
 oder $\sum_{n=1}^{\infty} a_{\sigma(n)} = \infty$

•
$$\limsup \sum_{k=1}^{n} a_{\sigma(k)} \neq \liminf \sum_{k=1}^{n} a_{\sigma(k)}$$

4.11. Doppelreihensatz

Seien $a_{i,j} \in \mathbb{C}$ mit $i, j \in \mathbb{N}$. Falls $\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} |a_{i,j}| < \infty$, dann konvergiert $\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{i,j}$ und

$$\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{i,j} = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} a_{i,j}$$
$$= \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_{k,(n-k)}$$

Es folgt:

Seien $a_n, b_n \in \mathbb{R}$ reelle Folgen. Dann gilt:

$$\sum_{k=0}^{\infty} a_k \sum_{j=0}^{\infty} b_j = \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} a_k b_j$$

$$= \sum_{m=0}^{\infty} \sum_{k,j,k+j=m}^{\infty} a_k b_j$$

$$= \sum_{m=0}^{\infty} c_m$$

wobei $c_m = \sum_{k=0}^m a_k b_{m-k}$ die Definition des Cauchy-Produkts.

4.12. Exponentialfunktion

$$\exp(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!} \qquad \forall z \in \mathbb{C}$$

Dabei gilt: $\exp(z) = e^z$ mit e die Eulersche Zahl $\forall z \in \mathbb{C}$.

4.13. Rechenregeln der Exponentialfunktion

Seien $z \in \mathbb{C}$, $x \in \mathbb{R}$ und $n \in \mathbb{N}$. Dann gelten:

$$1. \exp(-z) = \frac{1}{\exp(z)}$$

2.
$$\exp(z) \neq 0 + 0i$$

3.
$$\exp(x) > 0$$

4.
$$\overline{\exp(z)} = \exp \overline{z}$$

5. $\exp(x)$ ist monoton wachsend

6.
$$|\exp(z)| \le \exp(|z|)$$

Überblick über alle Kriterien

Kriterien:

- \bullet Majorantenkriterium
- Minoratenkriterium
- $\bullet \ \ {\bf Quotientenkriterium}$
- $\bullet \ \ Wurzelkriterium*$
- $\bullet \ \ Nullfolgenkriterium$
- Leibnizkriterium

Exkurs: Wurzelkriterium

Sei $(a_n)_n$ eine Folge in \mathbb{R} . Dann:

$$\exists q \in \mathbb{R} \text{ mit } q < 1: \exists n_0 \in \mathbb{N}_0: \forall n \geq n_0: \sqrt[n]{|a_n|} \leq q$$

dann ist $\sum_{n=0}^{\infty} a_n$ absolut konvergent.

Gilt in der Formel stattdessen jedoch $\sqrt[n]{|a_n|} \ge 1$, so divergiert die Reihe.

^{*} Wurde nicht angesprochen

5. Grenzwerte von Funktionen und Stetigkeit

Sämtliche Sätze gelten auch auf \mathbb{C} , auch wenn sie nur auf \mathbb{R} angegeben sind.

5.1. Definition Isolierter Punkt

Sei $D \subseteq \mathbb{R}$ und $x_0 \in D$. x_0 heißt isoliert in D wenn:

$$\nexists (a_n)_{n\in\mathbb{N}} \text{ mit } a_n \in D \setminus \{x_0\} : \lim a_n = x_0$$

5.2. Grenzwert einer Funktion

Sei $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$ und $x_0 \in D$. a heißt Grenzwert von f in x_0 (Schreibweise: $a = \lim_{x \to x_0} f(x)$), falls

a. x_0 nicht isoliert und

b.
$$\forall (a_n)_{n \in \mathbb{N}} \text{ mit } a_n \in D \text{ und } \lim_{n \to \infty} a_n = x_0 \text{ gilt: } \lim_{n \to \infty} f(a_n) = a$$

5.3. Definition Stetigkeit

Sei $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$ und $x_0 \in D$. f heißt stetig in x_0 , falls x_0 isoliert oder $\lim_{x \to x_0} f(x) = f(x_0)$. f heißt stetig in D, falls $\forall x \in D$ f stetig in x.

5.4. Alternative Definition für Grenzwert

Sei $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$ und $x_0 \in D$ nicht isoliert.

$$\lim_{x\to x_0} f(x) = a \text{ gdw. } \forall \varepsilon > 0: \ \exists \delta > 0: \ \forall x \in (x_0 - \delta, x_0 + \delta) \cap (D \setminus \{x_0\}): \ |f(x) - a| < \varepsilon$$

5.5. Rechenregeln beim Grenzwert

Sei $D \subseteq \mathbb{R}$ und seien $f, g: D \to \mathbb{R}$. Dann gilt: $\forall x \in D$ mit f und g stetig in x: $f + g, f - g, f \cdot g$ stetig in x. Zudem $\frac{f}{g}$ stetig in x, falls $g(x) \neq 0$.

Damit sind endliche Polynome (und Brüche daraus) auf ihrem Definitionsbereich stetig.

5.6. Stetigkeit von exp

Die Exponentialfunktion exp ist stetig auf \mathbb{C} .

5.7. Komposition stetiger Funktionen

Seien $f: D_f \to R, g: D_g \to \mathbb{R}$ und $f(D_f) \subseteq D_g$ ⁵. $\forall x \in D_f$: Wenn f stetig in x und g stetig in f(x), so ist auch $g \circ f$ stetig in x.

5.8. Definition linksseitiger/rechtsseitiger Grenzwert/Stetigkeit

Seien $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$ und $a \in D$ nicht isoliert. $c \in \mathbb{R}$ heißt linksseitiger Grenzwert von f im Punkt a (Schreibweise: lim f(x) = c)⁶, falls $\forall (x_n)_{n \in \mathbb{N}}$ mit $x_n \in D$, $\forall n \in \mathbb{N} : x_n < a$ und $x_n \to c$ gilt: $\lim_{n \to \infty} f(x_n) = c$. f heißt linksseitig stetig in a, falls $\lim_{x \to a} f(x) = f(a)$.

Analog ist der rechtsseitige Grenzwert definiert: $\lim_{x \to a^+} f(x)$

Fixpunktiteration

Sei $f: \mathbb{R} \to \mathbb{R}$. $x \in \mathbb{R}$ heißt Fixpunkt von f, falls f(x) = x. Iterativer Lösungsansatz: $x_{n+1} = f(x_n)$. Dann gilt: Falls f stetig in $D, f(D) \subseteq D$ und $x_0 \in D$, so ist $\lim_{n \to \infty} x_n$ ein Fixpunkt.

6. Komplexe Zahlen und trigonometrische Funktionen

Wir rechnen in Bogenmaßen. Der Einheitskreis ist definiert als $\{z \mid |z| = 1\}$.

6.1. Definition Sinus / Cosinus

$$\sin x := \frac{\exp(ix) - \exp(-ix)}{2i} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
$$\cos x := \frac{\exp(ix) + \exp(-ix)}{2} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

Es folgt: $\sin 0 = 0$ und $\cos 0 = 1$

Diese Definition ist im reellen Raum äquivalent zur geometrischen Definition am rechtwinkligen Dreieck.

6.2. Sinus / Cosinus periodisch, Definition Pi

sin und cos sind periodisch, d.h. $\exists \pi \in \mathbb{R} : \forall z \in \mathbb{C} : \sin z + 2\pi = \sin z, \cos z + 2\pi = \cos z.$ $\pi \approx 3,14159265412.$

Rechenregeln für Sinus und Cosinus

Es gilt $\forall x \in \mathbb{C}$:

$$\sin -x = -\sin x$$
 Punktsymmetrie
$$\cos -x = \cos x$$
 Achsensymmetrie
$$\sin (x + \pi/2) = \cos x$$
 Verschiebung
$$\cos (x + \pi/2) = -\sin x$$

Zudem folgt aus dem Satz des Pythagoras:

$$\sin^2 x + \cos^2 x = 1$$

Rechenregeln für komplexe Exponentialfunktion

Sei $x \in \mathbb{R}$ und $z := \exp ix = e^{ix}$.

$$|e^{ix}| = e^{ix} \overline{e^{ix}}$$

$$= e^{ix} e^{\overline{ix}}$$

$$= e^{ix} e^{-ix}$$

$$= e^{0}$$

$$= 1$$

Also ist e^{ix} der Einheitskreis auf der komplexen Ebene:

$$e^{ix} = \cos x + i \sin x$$

Insbesondere gilt also:

$$e^{i\frac{\pi}{2}} = i \qquad \qquad e^{i\pi} = -1$$

Folgerung:

$$e^{-ix} = \cos x - i \cdot \sin x$$

Definition Tangens / Kotangens

$$\tan x := \frac{\sin x}{\cos x}$$
$$\cot x := \frac{\cos x}{\sin x} = \tan^{-1} x$$

Hinweis: $\tan x$ und $\cot x$ sind periodisch (Periode π). $\tan \frac{\pi}{2}$ und $\cot 0$ sind nicht definiert.

6.3. Konvergenz bei Multiplikation

Seien $d \in \mathbb{N}$, $D \subseteq \mathbb{R}^d$, $a \in D$ und $f, g : D \to \mathbb{R}$ und g auf D beschränkt sowie $\lim_{x \to a} f(x) = 0$. Dann folgt: $\lim_{x \to a} f(x) \cdot g(x) = 0$.

Polarkoordinaten

Sei $z \in \mathbb{C} \setminus \{0\}$. Dann gibt es $r, \phi \in \mathbb{R}$, sodass r = |z| und $e^{i\phi} = \frac{z}{r}$ (da $|\frac{z}{r}| = 1$). r und ϕ heißen Polarkoordinaten von z: r ist der Abstand von z zum Nullpunkt, ϕ der Winkel zur reellen Achse. Die Abbildung Polarkoordinaten \leftrightarrow Real- und Imaginärteil ist bijektiv

Die Multiplikation in Polarkoordinaten⁷: $z_1 = r_1 \angle \phi_1$, $z_2 = r_2 \angle \phi_2$. Es folgt: $z_1 \cdot z_2 = (r_1 \cdot r_2) \angle (\phi_1 + \phi_2)$

Nützliche Rechenregeln

- $\sin 2\alpha = 2\sin \alpha\cos \alpha$
- $\cos 2\alpha = \cos^2 \alpha \sin^2 \alpha = 2\cos^2 \alpha 1$
- $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ $\sin(\alpha \beta) = \sin \alpha \cos \beta \cos \alpha \sin \beta$ $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$

⁷Ich (Josef) schreibe: $r \angle \phi$ für $r \cdot e^{i\phi}$

7. Konsequenzen der Stetigkeit

7.1. Unvollständigkeit des Ergebnisraums einer beliebigen Funktion

Sei $f:[a,b]\to\mathbb{R}$.

Es muss $\forall y \in [f(a), f(b)]$ nicht unbedingt auch ein x mit f(x) = y geben.

7.2. Zwischenwertsatz

 $f:[a,b]\to\mathbb{R}.$

Wenn f stetig, so $\forall y \in [f(a), f(b)] : \exists x : f(x) = y$.

7.3. Maximum / Minimum

Sei $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$.

 $x \in \mathbb{R}$ heißt Maximum von f, wenn $\forall z \in D : f(x) \geq f(z)$.

 $x \in \mathbb{R}$ heißt Minimum von f, wenn $\forall z \in D : f(x) \leq f(z)$.

Hinweis: Maximum und Minimum sind nicht unbedingt eindeutig. Nicht jede Funktion hat ein Maximum und/oder Minimum.

7.5. Maximum/Minimum einer stetigen Funktion

Jede stetige Funktion $f:[a,b]\to\mathbb{R}$ hat ein Maximum und ein Minimum.

7.6. Definition Konvergenz & Stetigkeit im mehrdimensionalen Raum

Sei $d \in \mathbb{N}$, $(x_n)_n \in \mathbb{N}$ eine Folge in \mathbb{R}^d und $x \in \mathbb{R}^d$.

 x_n konvergiert gegen x falls $\lim_{n\to\infty} ||x_n-x|| = 0$. (Schreibweise: $\lim_{n\to\infty} x_n = x$ oder $x_n \xrightarrow[n\to\infty]{} x$) Alternativ komponentenweise: $\forall i \in \{1,...,d\} : \lim_{n\to\infty} x_{ni} = x_i$.

Sei $d \in \mathbb{N}$, $D \subseteq \mathbb{R}^d$, $x \in D$ und $f : D \to \mathbb{R}^m$ mit $m \in \mathbb{N}$.

f heißt stetig in $x \in D$, falls $\forall (x_n)$ in D mit $x_n \xrightarrow[n \to \infty]{} x$ gilt: $\lim_{n \to \infty} = f(x)$.

f heißt stetig, falls $\forall x \in D$ gilt: f stetig in x.

mehrdimensionale Offenheit / (Ab-)Geschlossenheit

Eine Menge $A \subseteq \mathbb{R}^n$ heißt offen, wenn $\forall x_0 \in A : \exists \varepsilon > 0 : \{x \mid ||x - x_0|| < \varepsilon\} \subseteq A$.

A heißt geschlossen, wenn $\mathbb{R}^n \backslash A$ offen.

A ist (ab-)geschlossen gdw. $\forall (a_n)$ mit $a_n \in A$ und $\lim_{n \to \infty} a_n = a$ gilt: $a \in A$

Anmerkung: Nur \mathbb{R}^n und \emptyset sind zugleich offen und geschlossen.

7.7. Definition Kompaktheit

Sei $n \in \mathbb{N}$ und $A \subseteq \mathbb{C}^n$.

A heißt kompakt, falls $\forall (a_n)$ mit $a_n \in A$ gilt: $\exists (a_{n_k})$ Teilfolge von (a_n) , sodass $\lim_{k \to \infty} a_{n_k} \in A$.

7.8. stetig von Kompakter Menge abbilden → Maxi- und Minimum

Sei A kompakt und $f: A \to \mathbb{R}$.

Wenn A stetig, so hat f sowohl ein Maximum als auch ein Minimum.

7.9. mehrdimensionale Beschränktheit

 $M \subseteq \mathbb{R}^d$ heißt beschränkt, wenn $\exists K \in \mathbb{R} : \forall x \in M : ||x|| < K$.

Eine Folge $(x_n) \in \mathbb{R}^n$ heißt beschränkt, wenn die Menge aller ihrer Glieder beschränkt ist. Wir schreiben die Glieder $\forall n : x_n = (x_{n,1}, ..., x_{n,d})$ mit $x_{n,k} \in \mathbb{R}$ und $1 \le k \le d$.

7.10. komponentenweise Konvergenz

Eine Folge (x_n) in \mathbb{R}^d konvergiert gdw. alle ihre Komponenten konvergieren:

$$\lim_{n \to \infty} x_n = x \qquad \qquad \text{gdw.} \qquad \forall k \in \{1, ..., d\} : \lim_{n \to \infty} x_{n,k} = x_k$$

7.11. Kompakt ↔ abgeschlossen & beschränkt

 $A \subseteq \mathbb{R}^n$ ist kompakt gdw. A ist abgeschlossen und beschränkt.

7.12. Kompaktheit steter Bilder kompakter Mengen

Sei $D \subseteq \mathbb{R}^d$ kompakt und $f : \mathbb{R}^d \to \mathbb{R}^m$ stetig. Dann ist f(D) kompakt.⁸

7.13. Definition Umkehrabbildung & -funktion

Sei $f: A \to B$ bijektiv⁹.

 $\exists f^{-1}: B \to A \text{ Umkehrabbildung, sodass } \forall y \in B: f(f^{-1}(y)) = y.$

Wenn $A, B \subseteq \mathbb{R}^d$, so heißt f^{-1} Umkehrfunktion.

Hinweis: f^{-1} ist bijektiv. Man erhält den Graphen von f^{-1} durch Spiegelung des Graphen von f an der Geraden y = x, wenn $A, B \subseteq \mathbb{R}$.

Injektiv: auf jedes Element wird max. 1x abgebildet Surjektiv: auf jedes Element wird min. 1x abgebildet

 $^{^{8}}f(D) = \{f(x) \mid x \in D\}$

⁹bijektiv heißt injektiv und surjektiv:

7.14. Umkehrfunktionen von stetigen, streng monoton wachsenden Funktionen

Sei $I \subseteq \mathbb{R}$ ein Intervall, $f: I \to \mathbb{R}$ stetig und streng monoton wachsen. f ist bijektiv, f^{-1} ist auch stetig und streng monoton wachsend.

7.15. Definition natürlicher Logarithmus

$$\ln := \exp^{-1} \text{ mit } \exp : \mathbb{R} \to (0, \infty)$$

heißt (natürlicher) Logarithmus.

Rechenregeln des Logarithmus

Seien $x, y \in \mathbb{R}, k \in \mathbb{Z}$.

$$\ln(1) = 0$$

$$\ln(e) = 1$$

$$\ln(x) + \ln(y) = \ln(x \cdot y)$$

$$\ln(x^k) = k \cdot \ln(x) \text{ falls } x > 0$$

7.16. Definition Potenzieren auf R, Wurzelrechnung

Sei $x, a \in \mathbb{R}$ mit x > 0.

$$x^a := \exp(a \cdot \ln(x))$$

Es gilt:
$$x^{a+b} = \exp((a+b) \cdot \ln(x)) = \exp(a\ln(x)) \cdot \exp(b\ln(x)) = x^a x^b$$
.

Wir schreiben: $\sqrt[n]{x} := x^{\frac{1}{n}}$.

Hinweis: Potenzfunktionen sind im Allgemeinen nicht bijektiv, Wurzelfunktion sind daher oft keine vollständige Umkehrfunktion!

7.17. Definition Logarithmus zu Basen

Sei $x, b \in \mathbb{R}$ mit b > 1.

$$\log_b(x) \coloneqq \frac{\ln(x)}{\ln(n)}$$

ist die Umkehrfunktion von b^x und heißt Logarithmus zur Basis b.

Umkehrfunktionen der trigonometrischen Funktionen

Die trigonometrischen Funktionen sind im allgemein nur in einem gewissen Bereich umkehrbar, da sie im allgemeinen nicht bijektiv sind.

Tangens

Die Umkehrfunktion von $\tan x$ für $x \in \left(-\frac{\pi}{2},\frac{\pi}{2}\right)$:

$$\arctan: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

heißt Arcustangens.

Sinus

Die Umkehrfunktion von $\sin x$ für $x \in \left(-\frac{\pi}{2},\frac{\pi}{2}\right)$:

$$\arcsin: [-1,1] \to \left(-\frac{\pi}{2},\frac{\pi}{2}\right)$$

heißt Arcussinus.

Cosinus

Die Umkehrfunktion von $\cos x$ für $x \in (0, \pi)$:

$$\arccos: [-1,1] \to (0,\pi)$$

heißt Arcuscosinus.

8. Differentiation

8.1. Definition \mathcal{O} und o

Seien $f, g : \mathbb{C} \to \mathbb{C}$ und $a \in \mathbb{R} \cup \{-\infty, \infty\}$.

Wir schreiben: $f(x) = \mathcal{O}(g(x))$ für $x \to a$ falls:

$$\exists c > 0 : \forall (x_n) \in \mathbb{C} \text{ mit } x_n \to a : |f(x_n)| \le c \cdot |g(x_n)|$$

für alle bis auf endlich viele n.

Wir schreiben: f(x) = o(g(x)) für $x \to a$ falls

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0$$

Sprich: "f ist gegenüber g asymptotisch vernachlässigbar für $x \to a$."

8.3. Definition innerer Punkt

Sei $D \subseteq \mathbb{R}$. $x_0 \in D$ heißt innerer Punkt von D, falls:

$$\exists \varepsilon > 0 : (x_0 - \varepsilon, x_0 + \varepsilon) \subseteq D$$

Hinweis: D ist offen falls alle $x_0 \in D$ innere Punkte von D sind.

8.4. Definition Differenzierbarkeit einer Stelle & Ableitung

Sei $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$ und x_0 innerer Punkt in D.

f heißt Differenzierbar in x_0 , wenn:

$$\exists f'(x_0) : x \in D \text{ mit } \lim_{n \to \infty} x = x_0^{10} : f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$$

f'(x) heißt die Ableitung von f und beschreibt die Steigung der Tangenten an f(x). Ausgeschrieben lautet die Definition:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Nennenswerte Beispiele: $a^{x'} = a^x \ln(a)$, $\log_a'(x) = \frac{1}{x \ln(a)}$.

8.5. Definition Differenzierbarkeit einer Funktion

Sei $D \subseteq \mathbb{R}$ offen, $f: D \to \mathbb{R}$.

f heißt differenzierbar in D, falls f differenzierbar in $x, \forall x \in D$.

 $^{^{10}}$ lim $x=x_0$ heißt: x ist unendlich nahe an $x_0.$

8.8. Differenzierbarkeit → Stetigkeit

Sei $D \subseteq \mathbb{R}$, $x_0 \in D$ und $f: D \to \mathbb{R}$ differenzierbar in x_0 . Dann ist f stetig in x_0 .

Wichtig: Die Umkehrung gilt nicht, d.h. Stetigkeit lässt nicht auf Differenzierbarkeit schließen! Bsp: f(x) = |x| an x = 0

8.10. Definition rechts- & linksseitige Ableitung

Sei $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$ und x_0 innerer Punkt in D.

$$f'_{+}(x_0) = \lim_{\substack{h \to 0 \\ h > 0}} \frac{f(x_0 + h) - f(x_0)}{h}$$

heißt rechtsseitige Ableitung von f in x_0 .

$$f'_{-}(x_0) = \lim_{\substack{h \to 0 \\ h < 0}} \frac{f(x_0 + h) - f(x_0)}{h}$$

heißt linksseitige Ableitung von f in x_0 .

Bekanntes Beispiel: $|x|'_{-} = -1$ und $|x|'_{+} = 1$.

Notation der Ableitung

Die Schreibweise $f'(x_0)$ für die Ableitung von f heißt Lagrange-Notation. Bekannt ist auch die Leibniz-Notation $\frac{\mathrm{d}f}{\mathrm{d}x}(x_0)$.

Definition Differentialoperator

Sei I ein offenes Intervall.

 $D: f \mapsto f'$ ordnet jeder in I differenzierbaren Funktion f ihre Ableitung f' zu.

D ist linear, d.h. $(af)'(x) = a \cdot f'(x)$ und (f+g)'(x) = f'(x) + g'(x).

Ableitung der trigonometrischen Funktionen

$$\sin' = \cos$$
$$\cos' = -\sin$$

8.15. Produktregel

Sei $x \in \mathbb{R}$ und seien $f, g : \mathbb{R} \to \mathbb{R}$ differenzierbar in x.

$$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Daraus folgt auch: $(x^n)' = n \cdot x^{n-1}$.

8.17. Quotientenregel

Sei $x \in \mathbb{R}$ und seien $f, g : \mathbb{R} \to \mathbb{R}$ differenzierbar in x, wobei $g(x) \neq 0$.

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

8.19. Kettenregel

Seien $I, J \subseteq \mathbb{R}, f : I \to \mathbb{R}$ mit $f(I) \subseteq J, g : J \to \mathbb{R}, x_0 \in I$ innerer Punkt von I und $f(x_0)$ innerer Punkt von J.

 $g \circ f$ ist in x_0 differenzierbar, wenn f in x_0 und g in $g(x_0)$ differenzierbar. Es gilt:

$$(g \circ f)'(x) = g'(f(x_0)) \cdot f'(x_0)$$

8.20. Ableitung der Potenzierung

Sei a > 0 und $h(x) = a^x$ mit $D = \mathbb{R}$. Dann gilt:

$$h'(x) = a^x \cdot \ln(a)$$

8.23. Umkehrregel

Sei $f:[a,b]\to [c,d]$ bijektiv und sei $y\in [a,b]$ in f differenzierbar (mit $f'(y)\neq 0$). Es folgt: f^{-1} ist in x=f(y) differenzierbar und:

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

8.27. Definition Konvergenz von Funktionsfolgen

Sei $I \subseteq \mathbb{R}^n$ und f_k mit $\forall k \in \mathbb{N} : f_k : I \to \mathbb{R}$. Wir definieren den Grenzwert $f : I \to \mathbb{R}$:

punktweise Konvergenz: $\forall \varepsilon > 0 : \forall x \in I : \exists N \in \mathbb{N} : \forall n \geq N : |f_n(x) - f(x)| < \varepsilon$ gleichmäßige Konvergenz: $\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall x \in I : \forall n \geq N : |f_n(x) - f(x)| < \varepsilon$

Gleichmäßige Konvergenz impliziert damit punktweise Konvergenz. (Aber nicht anders herum, vgl. $f_k(x) = x \ge k$? 1 : 0 mit f(x) = 0)

Diese Konvergenzbegriffe lassen sich auch auf Reihen anwenden, dann ist f(x) der Grenzwert der Reihe $\sum_{k=0}^{\infty} f_k(x)$.

8.28. Differenzierbarkeit & Ableitung von Funktionsfolgen

Sei $I \subseteq R$ offen und f_k eine Funktionsfolge von $I \to \mathbb{R}$. Wenn f_k punktweise und f'_k gleichmäßig konvergiert, so ist f' differenzierbar in I und $f'(x) = \lim_{k \to \infty} f'_k$.

Für Reihen: Wenn $\sum_{k=0}^{\infty} f_k$ punktweise und $\sum_{k=0}^{\infty} f_k'$ gleichmäßig konvergieren, so ist f'(x)= $\sum_{k=0}^{\infty} f'_k(x).$

9. Anwendungen der Ableitung

9.1. Definition Extrema einer Funktion

Sei I = [a, b] und $f : I \to \mathbb{R}$.

globale Extrema

Sofern existent, heißen das Maximum und Minimum von f auf I globale Extrema.

lokale Extrema

f hat in x_0 ein lokales Maximum, falls ein $\varepsilon > 0$ existiert, sodass $\forall x \in (x_0 - \varepsilon, x_0 + \varepsilon) \cap I$ gilt: $f(x) \leq f(x_0)$.

f hat in x_0 ein strikt lokales Maximum, falls ein $\varepsilon > 0$ existiert, sodass $\forall x \in (x_0 - \varepsilon, x_0 + \varepsilon) \cap I$ mit $x \neq x_0$ gilt: $f(x) < f(x_0)$.

Analog das (strikt) lokale Minimum.

Jedes globale Extremum ist auch ein entsprechend lokales Extremum.

9.2. Ableitung an Extrema

Sei $f:[a,b] \to \mathbb{R}$ in (a,b) differenzierbar und $x_0 \in (a,b)$ sei lokales Extremum in f. Dann gilt: $f'(x_0) = 0$.

Hinweis: Aus f'(x) = 0 folgt nicht sofort ein lokales Extremum in x.

Bestimmung von Extrema

Voraussetzung: Bei allen (inneren) Extrema ist f(x) differenzierbar.

- 1. Bestimme Nullstellen von f' in (a, b)
- 2. Filtere lokale Extrema heraus
- 3. Untersuche Verhalten von f in den Randpunkten
- 4. Bestimme größtes/kleinstes Extrema als jeweils globales Maximum/Minimum

9.6. Satz von Rolle

Sei $f:[a,b] \to \mathbb{R}$ stetig und differenzierbar in (a,b). Falls f(a) = f(b), so $\exists z \in (a,b)$ mit f'(z) = 0.

9.7. (erweiterter) Mittelwertsatz

Seien $f, g: [a, b] \to \mathbb{R}$ stetig auf [a, b] und differenzierbar in (a, b), wobei $\forall x \in (a, b): g'(x) \neq 0$.

Dann gilt: $g(a) \neq g(b)$ und $\exists z \in (a,b)$ mit $g'(z) \cdot (f(b) - f(a)) = f'(z) \cdot (g(b) - g(a))$ bzw. $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(z)}{g'(z)}$.

Spezialfall g(x) = x: $\exists z \in (a, b)$ mit $\frac{f(b) - f(a)}{b - a} = f'(z)$.

Zwischenwertsatz für Ableitungen

Sei $f:[a,b] \to \mathbb{R}$ differenzierbar. Dann gilt: $\forall c \in [f'(a), f'(b)] : \exists x \in [a,b] : f'(x) = c$.

9.8. Monotonie und Ableitung

Sei $f:[a,b]\to\mathbb{R}$ differenzierbar in (a,b). Dann gilt:

- 1. f' > 0 in $(a, b) \Rightarrow f$ in (a, b) streng monoton wachsend
- 2. f' < 0 in $(a, b) \Rightarrow f$ in (a, b) streng monoton fallend
- 3. $f' \ge 0$ in $(a, b) \Rightarrow f$ in (a, b) monoton wachsend
- 4. $f' \leq 0$ in $(a, b) \Rightarrow f$ in (a, b) monoton fallend
- 5. f' = 0 in $(a, b) \Rightarrow f$ in (a, b) konstant

Falls f in a oder b stetig, so können diese Randpunkte jeweils hinzugenommen werden.

9.11. Kriterium für Extrema

Sei f differenzierbar in (a, b) und $x_0 \in (a, b)$ mit $f'(x_0) = 0$. Dann gilt:

- 1. $f' \ge 0$ in (a, x_0) und $f' \le 0$ in $(x_0, b) \Rightarrow x_0$ lokales Maximum in f
- 2. $f' \leq 0$ in (a, x_0) und $f' \geq 0$ in $(x_0, b) \Rightarrow x_0$ lokales Minimum in f

9.12. Regel von l'Hospital

Seien $f, g:(a, b) \to \mathbb{R}$ differenzierbar (wobei $a = -\infty$ und/oder $b = \infty$ erlaubt) mit $\forall x \in (a, b) : g'(x) \neq 0$ und sei $x_0 \in \{a, b\}$.

• $\lim_{x \to x_0} f(x) = 0$ und $\lim_{x \to x_0} g(x) = 0$ oder

• $\lim_{x \to x_0} f(x) = \infty$ und $\lim_{x \to x_0} g(x) = \infty$,

und falls $\exists \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$, so gilt:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Konvexität und Jensen'sche Ungleichung

9.15. Definition zweimal und stetig differenzierbar

Sei f eine Funktion. Wir sagen, f ist:

- zweimal differenzierbar, falls f und f' differenzierbar
- $stetig\ differenzierbar$, falls f differenzierbar und f' stetig
- \bullet zweimal stetig differenzierbar, falls fzweimal differenzierbar und f'' stetig

9.19. Definition Konvexität

Sei I ein Interval und $f: I \to \mathbb{R}$. Wenn $\forall x, y \in I$ und $\forall \alpha \in [0, 1]$ gilt:

- konvex, falls $f(\alpha x + (1 \alpha)y) \le \alpha f(x) + (1 \alpha)f(y)$
- streng konvex, falls $f(\alpha x + (1 \alpha)y) < \alpha f(x) + (1 \alpha)f(y)$
- konkav, falls $f(\alpha x + (1 \alpha)y) \ge \alpha f(x) + (1 \alpha)f(y)$
- streng konkav, falls $f(\alpha x + (1 \alpha)y) > \alpha f(x) + (1 \alpha)f(y)$

9.18. monoton wachsende Ableitung ↔ konvex

Sei $f:(a,b)\to\mathbb{R}$ in (a,b) differenzierbar. f' ist in (a,b) monoton wachsend gdw. f konvex in (a,b).

9.20. zweite Ableitung \rightarrow Konvexität

Sei $f:(a,b)\to\mathbb{R}$ zweimal differenzierbar. Dann folgt:

- f'' nicht negativ $\to f$ ist konvex
- f'' positiv $\to f$ ist streng konvex
- f'' nicht positiv $\to f$ ist konkav
- f'' negativ $\to f$ ist streng konkav

9.21. Ungleichung auf Folge der Konvexität

Sei $f:(a,b)\to\mathbb{R}$ in (a,b) differenzierbar. Dann gilt $\forall x_0,x_1\in(a,b)$:

• Falls f konvex:

$$f(x_0) + f'(x_0) \cdot (x_1 - x_0) \le f(x_1)$$

• Falls f konkav:

$$f(x_0) + f'(x_0) \cdot (x_1 - x_0) \ge f(x_1)$$

• Wenn f darüber hinaus streng konvex / streng konkav, so gilt:

$$f(x_0) + f'(x_0) \cdot (x_1 - x_0) = f(x_1)$$
 gdw. $x_0 = x_1$

Jensen'sche Ungleichung

Sei $f:(a,b)\to\mathbb{R},\ n\geq 2$, seien $x_1,...,x_n\in(a,b)$ und seien $p_1,...,p_n>0$ mit $\sum p_i=1$. Dann gilt:

 \bullet Falls f konvex:

$$f\left(\sum_{k=1}^{n} p_k x_k\right) \le \sum_{j=1}^{n} p_k f(x_k)$$

• Falls f konkav:

$$f\left(\sum_{k=1}^{n} p_k x_k\right) \ge \sum_{j=1}^{n} p_k f(x_k)$$

• Wenn f streng konvex / streng konkav, so gilt:

$$f\left(\sum_{k=1}^{n} p_k x_k\right) = \sum_{j=1}^{n} p_k f(x_k) \text{ gdw. } x_1 = x_2 = \dots = x_n$$

Ungleichung zwischen arithmetischem und geometrischem Mittel

Seien $x_1,...,x_n > 0$ und seien $p_1,...,p_n > 0$ mit $\sum p_i = 1$. Dann gilt:

$$\prod_{k=1}^{n} (x_k)^{p_k} \le \sum_{k=1}^{n} p_k x_k$$

10. Integration

Definition Unter- und Oberintegral

Sei $f:[a,b]\to\mathbb{R}$ beschränkt.

Sei $Z := \{x_0, x_1, ..., x_n\}$ eine Zerlegung von [a, b] mit den Grenzen x_i , wobei $x_0 < ... < x_n$.

Sei
$$m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$$
 und $M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$.

Definition Untersumme $U_Z(f)$ und Obersumme $O_Z(f)$:

$$U_Z(f) \coloneqq \int_a^b \varphi(x) \, \mathrm{d}x \qquad \qquad \mathrm{mit} \ \varphi(x) = m_i \ \mathrm{für} \ x \in (x_{i-1}, x_i)$$

$$O_Z(f) \coloneqq \int_a^b \psi(x) \, \mathrm{d}x \qquad \qquad \mathrm{mit} \ \psi(x) = M_i \ \mathrm{für} \ x \in (x_{i-1}, x_i)$$

Wobei hier das Integral stufenweise berechnet werden kann, indem für jeden Teil der Zerlegung der Flächeninhalt des Rechtecks betrachtet wird.

Definition Unterintegral U(f) und Oberintegral O(f):

$$U(f) := \sup \{U_Z(f) : Z \text{ ist Zerlegung von } [a, b]\}$$

 $O(f) := \inf \{O_Z(f) : Z \text{ ist Zerlegung von } [a, b]\}$

10.2. Definition bestimmtes Integral

Sei $f:[a,b]\to\mathbb{R}$ beschränkt.

Falls U(f) = O(f), so heißt f integrierbar und es wird definiert:

$$\int_{a}^{b} f(x) \, \mathrm{d}x = U(f) = O(f)$$

10.3. Integrierbarkeit stetiger Funktionen

Jede stetige Funktion $f:[a,b]\to\mathbb{R}$ ist integrierbar.

10.4. Integrierbarkeit monotoner Funktionen

Jede monotone Funktion $f:[a,b]\to\mathbb{R}$ ist integrierbar.

10.6. Alternative Definition Integrierbarkeit

Sei $f:[a,b]\to\mathbb{R}$ beschränkt.

f ist integrierbar gdw. $\forall \varepsilon > 0 : \exists Z$ Zerlegung, sodass:

$$O_Z(f) - U_Z(f) < \varepsilon$$

10.7. gleichmäßige Stetigkeit

Sei $f:[a,b]\to\mathbb{R}$ stetig. Es gilt:

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x, y \in [a, b] \text{ mit } |x - y| < \delta : |f(x) - f(y)| < \varepsilon$$

10.8. Eigenschaften und Rechenregeln des Integrals

1. Linearität

Seien $f,g:[a,b]\to\mathbb{R}$ integrierbar und $\alpha,\beta\in\mathbb{R}.$

Dann ist auch $\alpha f + \beta g$ integrierbar und

$$\int_{a}^{b} \alpha f(x) + \beta g(x) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

2 Monotonie

Seien $f, g : [a, b] \to \mathbb{R}$ integrierbar mit $\forall x \in [a, b] : f(x) \le g(x)$. Dann gilt:

Dann gnt.

$$\int_{a}^{b} f(x) \, \mathrm{d}x \le \int_{a}^{b} g(x) \, \mathrm{d}x$$

3. Zerlegbarkeit

Sei a < c < b und $f : [a, b] \to \mathbb{R}$.

f ist integrierbar auf [a,b] gdw. f auf [a,c] und auf [c,b] integrierbar.

Es gilt dann:

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

10.9. Integral mit "verdrehtem" Intervall

Sei $a \leq b$ und $f: [a, b] \to \mathbb{R}$. Dann definieren wir:

$$\int_{b}^{a} f(x) dx := -\int_{a}^{b} f(x) dx$$

Damit gilt die Zerlegbarkeit auch für alle $a, b, c \in \mathbb{R}$.

Aus der Definition folgt:

$$\int_{a}^{a} f(x) \, \mathrm{d}x = 0$$

10.10. Hauptsatz der Differential- und Integralrechnung

Sei $f:[a,b]\to\mathbb{R}$ stetig und sei $c\in[a,b]$. Dann ist

$$F(x) = \int_{0}^{x} f(t) dt =: \int f(x) dx$$

differenzierbar und $\forall x \in (a, b)$ gilt: F'(x) = f(x).

10.11. Definition Stammfunktion / unbestimmtes Integral

Das F aus Satz 10.10 heißt Stammfunktion von f.

Hinweis: Für jedes f kann es mehrere Stammfunktionen F geben, die sich je um einen konstanten Faktor $c \in \mathbb{R}$ unterscheiden.

10.12. Zusammenhang bestimmtes Integral und Stammfunktion

Sei $f:[a,b]\to\mathbb{R}$ stetig und sei $F:[a,b]\to\mathbb{R}$ eine Stammfunktion von f. Dann gilt:

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a)$$

Man schreibt daher auch:

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = F\Big|_{a}^{b} = F(x)\Big|_{x=a}^{x=b} = [F(x)]_{a}^{b}$$

10.16. Partielle Integration

Seien f und g stetig und differenzierbar. Dann gilt:

$$\int_a^b f(x)g'(x) dx = \left[f(x)g(x) \right]_a^b - \int_a^b f'(x)g(x) dx$$

10.19. Substitutionsregel

Seien $I \subseteq \mathbb{R}$ ein Intervall, $f: I \to \mathbb{R}$ stetig, $g: [a, b] \to I$ stetig und differenzierbar und sei F eine Stammfunktion von f. Dann gilt:

$$\int_a^b f(g(t)) \cdot g'(t) dt = \int_{g(a)}^{g(b)} f(t) dt$$

Definition uneigentliches Integral

Ein uneigentliches Integral ist ein bestimmtes Integral mit einer Grenze am Rand des Definitionsbereichs, dessen Wert aber endlich ist.

Seien $a, b \in \mathbb{R} \cup \{-\infty, \infty\}$ mit a < b, sei $(a, b) \subseteq I \subseteq \mathbb{R}$ und sei $f(x) : I \to \mathbb{R}$ in I integrierbar. Wir betrachten:

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

Es gibt drei Formen eines uneigentlichen Integrals:

• $a \notin I$ und $b \in I$.

$$\int_{a}^{b} f(x) dx := \lim_{M \to a} \int_{M}^{b} f(x) dx$$

• $a \in I$ und $b \notin I$.

$$\int_{a}^{b} f(x) dx := \lim_{M \to b} \int_{a}^{M} f(x) dx$$

• $a \notin I$ und $b \notin I$. Dann wähle ein $c \in (a,b)$:

$$\int_a^b f(x) dx := \int_a^c f(x) dx + \int_c^b f(x) dx$$

Wobei es sich dabei wirklich nur dann um ein uneigentliches Integral handelt, wenn die jeweiligen Limes existieren.

A. Flowchart zur Bestimmung der Konvergenz bei Reihen

