

GA6_Hardware Specifications_V1.04

Document Name:	GA6 Hardware Design Manual
Version: Date:	1.04
Status: Document	2017-1-18
Control Number:	release
	GA6_HD_CN_V1.04

foreword

Thanks for using the GA6 module provided by Guoyun. This product is a GPRS module. With standard AT command interface, it can provide GSM voice,

TTS, short message and TCP/IP data transmission. Please read the user manual carefully before use, you will appreciate its perfect functions and concise operation methods.

This module is mainly used for voice or data communication. The company does not assume the responsibility for property loss or personal injury caused by the user's abnormal operation.

appoint. Users are requested to develop corresponding products according to the technical specifications and reference designs in the manual. Also pay attention to the use of mobile products, especially GSM products

General safety considerations that should be addressed.

Before making a statement, the company has the right to modify the contents of this manual according to the needs of technological development.

Copyright Notice

The copyright of this manual belongs to Jinxun, and anyone who reproduces, cites or modifies this manual without the written consent of our company will bear legal responsibility.

深圳市果云科技有限公司

content

Preface	2
Table of Contents	3
Version History	7 1
Introduction	8
1.1 Related Documents	
8 1.2 Terminology and Interpretation	
9 1.3 Safety Warnings	11 2 GA6
Overview	11 2.1 GA6
main features	12 2.2
GA6 functional block diagram	14 3
Application Interfaces	15 3.1
GA6 Pin Description	
15 3.3 Power supply	
16 3.3.1 Power supply pins	
18 3.4 Power on and off	
18 3.4.1 GA6 booting up	
18 3.4.2 GA6 Shutdown	19 3.5
Module sleep wake-up function	
SLEEP model	20 3.5.2 Module SLEEP
current	
current	
	20
wakes up the master when it receives a phone call or SMS	20
wakes up the master when it receives a phone call or SMS	
wakes up the master when it receives a phone call or SMS	21
wakes up the master when it receives a phone call or SMS	
wakes up the master when it receives a phone call or SMS	
wakes up the master when it receives a phone call or SMS	
wakes up the master when it receives a phone call or SMS. 3.6 GPIO, INT, UART and other interactive design points. 21 3.7 Serial port. 3.7.1 Serial port function. Audio Interface Receiver interface circuit Earpiece output interface circuit.	
wakes up the master when it receives a phone call or SMS	
wakes up the master when it receives a phone call or SMS. 3.6 GPIO, INT, UART and other interactive design points. 21 3.7 Serial port. 3.7.1 Serial port function. Audio Interface Receiver interface circuit Earpiece output interface circuit. 3.8.3 Headphone receiver interface circuit SIM card interface.	
wakes up the master when it receives a phone call or SMS	
wakes up the master when it receives a phone call or SMS. 3.6 GPIO, INT, UART and other interactive design points. 21 3.7 Serial port. 3.7.1 Serial port function. Audio Interface Receiver interface circuit Earpiece output interface circuit. 3.8.3 Headphone receiver interface circuit SIM card interface. Application 27 3.9.2 SIM card holder selection	
wakes up the master when it receives a phone call or SMS	
wakes up the master when it receives a phone call or SMS. 3.6 GPIO, INT, UART and other interactive design points. 21 3.7 Serial port. 3.7.1 Serial port function. Audio Interface Receiver interface circuit Earpiece output interface circuit. 3.8.3 Headphone receiver interface circuit SIM card interface. Application 27 3.9.2 SIM card holder selection 28 3.10 External reset input Antenna connector.	
wakes up the master when it receives a phone call or SMS. 3.6 GPIO, INT, UART and other interactive design points. 21 3.7 Serial port. 3.7.1 Serial port function. Audio Interface Receiver interface circuit Earpiece output interface circuit. 3.8.3 Headphone receiver interface circuit SIM card interface. Application 27 3.9.2 SIM card holder selection 28 3.10 External reset input Antenna connector. 4.1 Module RF output power	
wakes up the master when it receives a phone call or SMS	

Machine Translated by Google

	5.2 Operating temperature		
	34 5.3 Power Ratings	35	
	5.4 Current consumption	36	
	5.5 ESD Protection	37 6	
Mech	nanical Dimensions		38
	6.1 Recommended Land Pattern for GA6		
	38 6.2 GA6 Pin Assignment	. 39 6.3 GA6	
	Recommended Soldering Furnace Temperature Curve	4	40

Table Index

Table 1: Related Documents	8
Table 2: Terms and Explanations	9
Table 3: GA6 Key Features	12 Table
4: Encoding Formats and Maximum Networks Data Rates	13
Table 5: Pin Descriptions	15
Table 6: Logic levels of the serial port	
22 Table 7: SIM card interface pin definition	27
Table 8: Pin Descriptions (Amphenol SIM Card Holder)	29 Table 9:
Pinouts Description (Molex SIM Card Holder)	30 Table 10:
GA6 Conducted RF Output Power	33 Table 11:
GA6 Conducted RF Receive Sensitivity.	33 Table 12:
GA6 Operating Frequency Bands	33 Table
13: Absolute Maximum Values	34 Table
14: GA6 operating temperature	
34 Table 15: GA6 Power Supply Ratings	
35 Table 16: GA6 current consumption	
36 Table 17: Pin assignments	40

Image Index

Figure 1: VBAT Bypass Capacitor Reference Circuit	
17 Figure 2: Power supply input reference design circuit	17
Figure 3: Drop of VBAT during burst	
Minimum VBAT drop Voltage	18 Figure 5: Booting
with PWRKEY	19 Figure 6: Power-on timing diagram
using PWRKEY	19 Figure 7: SMS wake up the master, RI
pin waveform	
the master, the waveform of the RI pin	21 Figure 9: Data Wake
up the master, RI pin waveform	21 Figure 10: Serial
Connection Diagram	22 Figure 11: 5V to
3.0V Level Shifter Reference Design	23 Figure 12: RS232 Level
Conversion Circuit	
Interface Circuit	25 Figure 14: REC handset output
connector	26 Figure 14: Headphone
Output Connector	27 Figure 15:
Recommended circuit for the interface of 8-pin SIM card holder	27
Figure 16: Recommended circuit for the interface of the 6-pin SIM card	
holder	28 Figure 17: Amphenol C707 10M006 5122 SIM Card
Holder Dimensions picture	29 Figure 18: Molex 91228 SIM Card Holder Dimensional
Drawing	30 Figure 19: Reset Timing
Diagram	31 Figure 20: Reset Reference
Design Circuit	
Land Pattern	
(top view)	

Version history

Date Version 0	Change Desc	ription 1.01	author
2016-08-3	First Relea	se	Bao
1			
2016-11-1	Version 1.	02, update NETLIGHT pin, DTR pin, RING pin information,	Bao
7		Update 3.4.2 Shutdown method	
2016-12-1	Version 1.	03, add audio interface	Bao
7			
2017-1-18 1.04	3rd edition,	add audio reference circuit	Bao

1 Introduction

1.1 Related documents

This document describes the hardware application interface of GA6, including circuit connection and radio frequency interface in related applications. The application of GA6 is very Broadly speaking, this document will detail all the features of the GA6.

This document can help users to quickly understand the detailed information of GA6 interface definition, electrical performance and structure size. In conjunction with this document and For other GA6 application documents, users can quickly use GA6 to design mobile communication applications.

Table 1: Related Documentation

Serial number document		Notes	
name[1]	ITU-T Draft new	Serial asynchronous automatic dialing and control	
	recommendation V.25ter:		
[2]	GSM 07.07:	Digital cellular telecommunications (Phase 2+); AT command	
		set for GSM Mobile Equipment (ME)	
[3]	GSM 07.10:	Support GSM 07.10 multiplexing protocol	
[4]	GSM 07.05:	Digital cellular telecommunications (Phase 2+); Use of Data	
		Terminal Equipment – Data Circuit terminating Equipment	
		(DTE – DCE) interface for Short Message Service (SMS) and	
		Cell Broadcast Service (CBS)	
[5]	GSM 11.14:	Digital cellular telecommunications system (Phase	2+);
		Specification of the SIM Application Toolkit for the	
		Subscriber Identity Module – Mobile Equipment (SIM – ME)	
		interface	
[6]	GSM 11.11:	Digital cellular telecommunications system (Phase	2+);
		Specification of the Subscriber Identity Module – Mobile	
		Equipment (SIM – ME) interface	
[7]	GSM 03.38:	Digital cellular telecommunications system (Phase 2+);	
		Alphabets and language-specific information	
[8]	GSM 11.10	Digital cellular telecommunications system (Phase 2)	;
		Mobile Station (MS) conformance specification; Part 1:	
		Conformance specification	
[9]	AN_Serial Port	AN_Serial Port	

1.2 Terms and explanations

Table 2: Terms and Explanations

the terms	ovalsia
ADC	explain
	Analog-to-Digital Converter
AMR	Adaptive Multi-Rate
ARP	Antenna Reference Point
ASIC	Application Specific Integrated Circuit
BER	Bit Error Rate
BTS	Base Transceiver Station
СНАР	Challenge Handshake Authentication Protocol
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear to Send
DAC	Digital-to-Analog Converter
DRX	Discontinuous Reception
DSP	Digital Signal Processor
DTE	Data Terminal Equipment (typically computer, terminal, printer)
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
EFR	Enhanced Full Rate
EGSM	Enhanced GSM
EMC	Electromagnetic Compatibility
ESD	Electrostatic Discharge
ETS	European Telecommunication Standard
FCC	Federal Communications Commission (US)
FDMA	Frequency Division Multiple Access
FR	Full Rate
GMSK	Gaussian Minimum Shift Keying
GPRS	General Packet Radio Service
GSM	Global Standard for Mobile Communications
HR	Half Rate
I/O	Input/Output
IC	Integrated Circuit
IMEI	International Mobile Equipment Identity
kbps	Kilo bits per second
	1

the term	explain
led	Light Emitting Diode

MO	
0	Mobile Originated
MS	Mobile Station (GSM engine), also referred to as TE
MT	Mobile Terminated
PAP	Password Authentication Protocol
PBCCH	Packet Switched Broadcast Control Channel
PCB	Printed Circuit Board
PCS	Personal Communication System, also referred to as GSM 1900
PDU	Protocol Data Unit
PPP	Point-to-point protocol
RF	Radio Frequency
RMS	Root Mean Square (value)
RTC	Real Time Clock
RX	Receive Direction
SIM	Subscriber Identification Module
SMS	Short Message Service
TDMA	Time Division Multiple Access
TE	Terminal Equipment, also referred to as DTE
TX	Transmit Direction
UART	Universal Asynchronous Receiver & Transmitter
URC	Unsolicited Result Code
USSD	Unstructured Supplementary Service Data
VSWR	Voltage Standing Wave Ratio
Vmax	Maximum Voltage Value
Vnorm	Normal Voltage Value
Vmin	Minimum Voltage Value
VIHmax	Maximum Input High Level Voltage Value
VIHmin	Minimum Input High Level Voltage Value
VILmax	Maximum Input Low Level Voltage Value
VILmin	Minimum Input Low Level Voltage Value
VImax	Absolute Maximum Input Voltage Value
VImin	Absolute Minimum Input Voltage Value
VOHmax	Maximum Output High Level Voltage Value
VOHmin	Minimum Output High Level Voltage Value
VOLmax	Maximum Output Low Level Voltage Value
VOLmin	Minimum Output Low Level Voltage Value

the term	explain
Inorm	Normal Current
Imax	Maximum Load Current
Phonebook	

abbreviations	
FD	SIM fix dialing phonebook
LD	SIM last dialing phonebook (list of numbers most recently dialed)
MC	Mobile Equipment list of unanswered MT calls (missed calls)
ON	SIM (or ME) own numbers (MSISDNs) list
RC	Mobile Equipment list of received calls
SM	SIM phonebook
NC	Not connect

1.3 Safety Warning

Pay attention to the following safety precautions when using or servicing any terminal or mobile phone that contains a GA6 module. terminal device should When informing users of the following safety information. Otherwise, Jinxun will not be responsible for any consequences arising from the user's failure to follow these warnings.

2 GA6 Overview

GA6 is a 4-band GSM/GPRS module, the working frequency is: EGSM 900MHz, GSM850MHz and DCS 1800, PCS1900. GA6 supports GPRS multi-slot class 10/ class 8 (optional) and GPRS coding formats CS-1, CS-2, CS-3 and CS-4.

The size of the module is only 22.8mm x 16.8mm x 2.2 mm, which can meet the space size requirements in almost all user applications, such as M2M, data transmission system, etc.

The physical interface between the module and the user's mobile application is 42 SMD pad pins, which provide all the hardware interfaces of the application module.

GA6 is designed with power saving technology, so the minimum current consumption in SLEEP mode is only 0.9mA $\,\,\cdot\,\,$

GA6 is embedded with TCP/IP protocol, and the extended TCP/IP AT command makes it convenient for users to use TCP/IP protocol, which is very important for users to do data transmission. Very useful when applying.

Note: Please contact us if you need TTS.

2.1 Main Features of GA6

Table 3: GA6 Key Features

Feature	instruction						
power supply	Single Voltage: 3.5V – 4.2V						
power saving	Current consumption in SLEEP mode is 0.9mA						
frequency band	ÿQuad frequency: GSM850, EGSM 900 and DCS 1800, PCS1900 can automatically search						
	four frequency bands.						
	ÿCompliant with GSM Phase 2/2+						
GSM type	small mobile station						
transmit power	ÿ Class 4 (2W): EGSM 900 / GSM850						
	ÿ Class 1 (1W): DCS 1800 / PCS1900						
GPRS connection features i	GPRS multi-slot class 10 (default)						
	ÿ GPRS multi-slot class 8 (optional)						
temperature range	ÿNormal operating temperature: -30°C +80°C						
	ÿRestricted operating temperature: -30°C and +80°C +85°C*						
	-40°C ÿStorage temperature: -45°C +90°C						

characteristic	instruction					
GPRS data characteristics	ÿ GPRS data downlink transmission: maximum 85.6 kbps					
	ÿ GPRS data upstream transmission: maximum 42.8 kbps					
Circuit Switched (CSD)	ÿEncoding formats: CS-1, CS-2, CS-3 and CS-4					
	ÿSupports the PAP (Password Authentication Protocol) protocol commonly used for PPP connections					
	ÿ Embedded TCP/IP protocol					
	ÿSupport Packet Broadcast Control Channel (PBCCH)					
	ÿ CSD transfer rate: 2.4, 4.8, 9.6, 14.4 kbps					
	ÿSupport Unstructured Supplementary Data Service (USSD)-					
Short Message (SMS)	ÿ MT, MO, CB, Text and PDU modes					
	ÿShort message (SMS) storage device: SIM card					
SIM card interface	Supported SIM Cards: 1.8V, 3V					
antenna interface	GSM antenna pins					
serial port and debugging port seri	al port:					
	ÿSupport 4-wire serial port					
	ÿTransmission rate support from 2400bps to 115200bps					
	ÿCan send AT commands and data through the serial port					
	ÿSupport RTS/CTS hardware flow control, and can open or close the flow control function through software					
	can					
	ÿSupport serial port multiplexing function in accordance with GSM 07.10 protocol					
	ÿSupport 115200bps automatic baud rate detection function					
	Debug port:					
	ÿFor debugging and software upgrade					
Contacts	Support types: SM, FD, LD, ON,.					
Management SIM Application Tool	kit supports SAT class 3, GSM 11.14 Release 99					
Real Time Clock (RTC) support						
Timing function is set by AT comm	and					
Mechanical Dimensions Dimension	s: 22.8mm x 16.8mm x 2.2 mm					
Weight: 7g						
Software upgrade Upgrade software thr	pugh the debug port					

^{*} GA6 will work, but some RF performance may exceed GSM specifications.

Table 4: Encoding Formats and Maximum Network Data Rates

Feature	instruction
encoding format	1 Timeslot 2 Timeslot 4 Timeslot
CS-1:	9.05kbps 18.1kbps 36.2kbps
CS-2:	13.4kbps 26.8kbps 53.6kbps
CS-3:	15.6kbps 31.2kbps 62.4kbps
CS-4:	21.4kbps 42.8kbps 85.6kbps

2.2 GA6 functional block diagram

The following figure lists the main functional parts of the module: ÿ GSM baseband ÿ GSM radio frequency ÿ Antenna interface ÿ Other interfaces

3 Application interface

The GA6 is connected to the mobile application platform via 42 SMD pins. The following sections describe each interface function in detail:

ÿPower supply (please refer to 3.3)

ÿSerial port (please refer to 3.7)

ÿ SIM card interface (please refer to 3.8)

Please refer to Chapter 5 for electrical characteristics and mechanical dimensions

3.1 GA6 pin description

Table 5: Pin Descriptions

power supply					
pin name	Serial I/O D	escription	Module	DC characteristics	Remark
VBAT	41,42	I source p	operates on a single power supply Power through 2 VBAT power Vi pin power supply, voltage range Vn Range: 3.5V-4.2V, electrical Vno Flow > 2A	nax= 4.2V nin=3.5V	
VDD_EXT	37	0	After the module is powered on, it will Provide this 3V power output; Power supply capability is 100mA		
	13,18,22,				
GND	25,28,34, ground				
	36,39,40,				
Power on and off					
PWR_EN	8	I can be o	Power-on button, >1.9V and above It can be turned on after 2s; After booting, the foot keeps breaking open; this pin only needs to provide voltage, not		Inside the module 10K pulldown, so provide on demand certain drive ability.
serial port	10	0	ear I send	3.0V	
AT_UART_CTS AT_UART_RTS	11	request	lear i seriu	3.0V	
AT_UART_RXD	31		out O send output	3.0V	
AT_UART_TXD	30		out o don't dupat	3.0V	
AT_UART_DTR	9	l Data Te	rminal Ready 3.0V		
AT_UART_RING	7	O Ringing	gindication	3.0V	
SIM card interface					
SIM_VDD	16	0	SIM card power		SIM card
SIM_RST	14	0	SIM card reset signal		all signals
SIM_CLK	15	0	SIM card clock signal		line should be connected

SIM_DATA	17	I/O SIM	l card data signal		
Indicator light interface					
NETLIGHT	6	O Netw	ork indicator	When not registered: on for 100MS and off Register to the network: on for 100MS 1900MS; Connect to the server	off
External reset				OIT 100MS	
RST	12	I	External reset input (low power effective)		appears in the module In exceptional circumstances. Pull down to put Module shutdown Internally already 2.8V pull-up, Pay attention to the voltage domain Different to divide the pressure design
Antenna interface	1				
GSM_RF	35		GSM antenna interface		
debug serial port HST_RXD	32	I debug	serial input 3.0V		
HST_TXD	33	O Debu	g serial port output 3.0V		
audio interface					
EAR_L	Swelly Stree	O Head	phone left channel		
EAR_R	twenty four	O Headp	hone right channel		
REC+	26	O spea	ker positive		
REC-	27	O Spea	ker negative		
MIC-	19	I	MIC negative		
MIC+	20	I	MIC positive		
reserved					
Reserved	1, 2, 3, 4 , 5 2,1 29, , 38,				

3.3 Power supply

The GA6 is powered by a single power supply, the voltage input range of VBAT is from 3.5V to 4.2V, and the recommended voltage is 4.0V. The burst transmitted by the module will lead to When the voltage drops, the peak value of the current will reach up to 2A. Therefore, the current supply capacity of the power supply cannot be less than 2A.

A bypass capacitor close to VBAT is recommended, a 100 µF, low ESR capacitor is recommended. It is also possible to use a 100 µF tantalum capacitor (low ESR) in parallel with a (1µF 10µF) ceramic capacitor expansion and the very second control of the very second capacitor should be placed as close as possible to the VBAT pin of the module during PCB layout. The recommended circuit

Figure 1: VBAT Bypass Capacitor Reference Circuit

The following figure is a reference design circuit with a DC input voltage of +5V. Because the output of the design is 4V, it can be implemented with a linear regulator. If the voltage difference between input and output (VBAT) is large, a switching regulator should be used. Especially when the current reaches 2A when the module bursts, the efficiency advantage of the switching regulator is obvious. The module can be powered directly by a 3.6V lithium-ion battery, or by a nickel-cadmium or nickel-manganese battery, but please note that the maximum voltage cannot exceed the maximum voltage of the module, otherwise the module will be damaged.

Figure 2: Power supply input reference design

circuit The figure below shows the drop of VBAT when VBAT is equal to 4V and the maximum transmit power. Test Conditions: The maximum output current of VBAT is equal to 4V and the maximum transmit power. Test Conditions: The maximum output current of VBAT is equal to 4V and the maximum transmit power. Test Conditions: The maximum output current of VBAT is equal to 4V and the maximum transmit power. Test Conditions: The maximum output current of VBAT is equal to 4V and the maximum transmit power. Test Conditions: The maximum output current of VBAT is equal to 4V and the maximum transmit power. Test Conditions: The maximum output current of VBAT is equal to 4V and the maximum transmit power. Test Conditions: The maximum output current of 4V and 4V and

Figure 3: Drop of VBAT during burst

3.3.1 Power pins

Two VBAT pins are used for power input, and 9 GND pins are used for grounding. In the user's design, please pay special attention to the design of the power supply part to ensure that even when the current consumption of the module reaches 2A, the drop of VBAT will not be lower than 3.3V. If the voltage drops below 3.3V, the module may shut down. The PCB trace from the VBAT pin to the power supply should be wide enough to reduce voltage drops during transmission burst mode.

Figure 4: Minimum voltage at which VBAT drops

3.4 Power on and off

Do not turn on the module when the temperature and voltage limits described in Section 3.4.2 are exceeded. The module shuts down as soon as it detects these unsuitable conditions.

In extreme cases such operations can lead to permanent damage to the module.

3.4.1 GA6 boot

The following chapters describe how to boot the GA6:

ÿUse the PWRKEY pin

Using the PWRKEY pin to turn on the module (Power On) The

user powers on by pulling the PWRKEY signal high for at least 2 seconds and then releasing it. This pin has been pulled down to GND internally in the module. The recommended circuit is as follows:

Figure 5: Using the PWRKEY button to power on

Figure 6: Boot sequence diagram using PWRKEY

3.4.2 GA6 shutdown

The following are several ways to shut down the GA6:

ÿUse PWRKEY pin to shut down

The user can turn off the module by pulling PWRKEY high for 2S and then releasing it. The shutdown circuit can refer to the design of the power-on circuit. after shutdown The AT serial port will report: "POWEROFOK"

ÿUsing AT command to shut down the user can

To shut down by AT command. shutdown The AT command is AT+CPOF

" After shutdown, it will be reported on the AT serial port:" +CPOF: MSOF OK

3.5 Module sleep wake-up function

3.5.1 Module SLEEP Mode

 $Put the system into SLEEP mode by pulling the {\color{red}DTR} pin low, wake up the system by pulling the {\color{red}DTR} pin high$

3.5.2 Module SLEEP current

	3. GSM real network Sleep current consumption (unit: mA)							
	no card MOVE Unicom							
Minimum current	0.9	0.98	0.97					
average current	3.1	3.3	3.4					

3.5.3 The module wakes up the master when it receives a call or SMS

The module wakes up the master through the RI pin;

1) SMS wake up the master, RI pin will pull 3 low pulses of 100ms, RI pin waveform is as follows:

Figure 7: SMS wake up the master, RI pin waveform

1) The phone wakes up the master, and the RI pin will continue to pull a low pulse of 250ms and a high pulse of 3750ms until the phone hangs up or is connected, and the RI pin pulses

The shape is as follows:

Figure 8: The phone wakes up the master, RI pin waveform

Figure 9: Data wake-up master, RI pin waveform

3.6 GPIO, INT, UART and other interactive design points

Because the module uses a 3.0 V IO power supply system, the maximum input limit voltage of all IO ports cannot exceed 3.3 V, otherwise

The IO port of the module may be damaged. The output voltage of the IO port under the 3.3V power supply system, due to the incompleteness of signal integrity design and other aspects

Good, the output voltage of the IO port is likely to cause the IO output to actually exceed 3.3V due to overshoot, and sometimes even

When it reaches 3.5V, the 3.3V IO signal at this time is directly connected to the IO of the 3.0V system of the module, which may damage the IO pins of the module. This

When it is necessary to increase the series resistance and parallel capacitance and other design measure

pin name pin number		I/O fun	ction	Voltage Domain I	Notes
PWRKEY	8	I AP_	PWR_ON_OFF_BP		Module power on
RST	12	I AP_	PWR_OFF_BP	3.0V	Module reset
TXD	30	O dat	a sending	3.0V	data sending
RXD	31	I data	reception	3.0V	data reception

Auxiliary Enhancement Control Signal

In order to enhance the more reliable communication between the AP and the module, it is recommended that when the AP has redundant GPIO or interface resources, add the

on these interfaces.

Pin name	Pin No. I/O Function	n 11		Voltage Domain I	Notes
RTS		I UAF	T_RTS	3.0V	Hardware flow control for UART
CTS	10	O UA	RT_CTS	3.0V	Hardware flow control for UART

3.7 Serial port

serial port					
RXD	31	l data	a reception	3.0V	

TXD	30	O data sending	3.0V	
RTS	11	I send request	3.0V	
CTS	10	O send clear	3.0V	0

Table 6: Serial Port Pin Definitions

Figure 10: Serial connection diagram

 $\ddot{\text{y}}$ TXD: Send data to the RXD signal line of the DTE device.

ÿ RXD: Receive data from the TXD signal line of the DTE device.

The serial port logic levels are described in the table below

Table 6: Logic Levels for Serial Ports

parameter	minimum	maximum	unit
VIL	0	0.7	V
VIH	2.1	3.3	V
VOL	0	0.4	V
VOH	2.4	-	V

When the level of the host serial port is 5V, the level conversion needs to be performed when connecting with the module serial port. It is recommended to use the level conversion of FAIRCHILD company, Chip NC7WZ07, the following is the reference design circuit diagram.

深圳市果云科技有限公司

Figure 11: 5V to 3.0V level conversion circuit reference design When

using the UART port of the GA6 module to communicate with a PC or MCU, please pay attention to the TX and RX directions, especially the GA6 UART port only supports 3.0V voltage, so For external UARTs other than 3.0V, level shifting is required, and the usual practice is to use diodes or triodes to achieve level shifting. It can also be implemented using level shift chips. As shown in the figure, the transistor and the resistor realize 1.8V/3.0V level conversion. The resistance in the figure is only for illustration. Please recalculate it according to the actual needs when designing.

3.7.1 Serial port function

serial port

ÿSupport Modem devices

ÿContains data signal lines TXD and RXD, and status signal lines RTS and CTS. ÿThe

serial port can be used for GPRS service, receiving AT command control module. It can also be used for serial port multiplexing.

ÿ GA6 only supports basic multiplexing mode.

The communication baud rates supported by the serial port are as follows:

2400, 4800, 9600, 14400, 19200, 38400, 57600, 115200bps.

The serial port does not support RS232 level, only CMOS level. See Table 9 for level information. A must be added between DCE and DTE level shifting IC. If you are connecting to a computer, please refer to the image below.

Figure 12: RS232 level conversion circuit

3.8 Audio Interface

audio port				
EAR_L	Switch Street	O Head	phone left channel	
EAR_R	twinty four	O Headp	hone right channel	
REC+	26	O speal	ker positive	
REC-	27	O Spea	ker negative	
MIC-	19	I	MIC negative	
MIC+	20	I	MIC positive	

The module provides 1 analog audio input channel which can be used to connect a microphone. When using a microphone for the audio input, an electret microphone is recommended. The audio output is used to connect the receiver, and it can only drive the maximum 32 ohm receiver. It is recommended that the user choose the following circuit according to the actual application to get a better sound effect. Note that the REC+/REC- audio signal line is a differential signal, which needs to be fully considered during PCB layout. As shown below. If you need to choose audio amplifier circuit, it is recommended to use LM4890 from National Company. In addition, the module also provides a headphone earpiece audio port

3.8.1 Receiver interface circuit

Figure 13: Receiver MIC interface circuit

3.8.2 Earpiece output interface circuit

Figure 14: REC handset output interface

3.8.3 Headphone receiver interface circuit

Figure 15: Headphone handset output interface

3.9 SIM card interface

3.9.1 SIM Application

The SIM card interface of the module supports the GSM Phase 1 specification, as well as the new GSM Phase 2+ specification and the FAST 64 kbps SIM card (with in SIM Application Toolkit).

1.8V and 3.0V SIM cards are supported.

The interface power supply of the SIM card is provided by the voltage regulator inside the module, the normal voltage is 2.8V or

1.8V Table 7: SIM card interface pin definition

Pin Name	pin number	Features	
SIM_DATA	17	SIM card data I/O	
SIM_CLK	15	SIM card clock	
SIM_RST	14	SIM card reset	
SIM_VDD	16	SIM power supply, automatically select output according to the type of SIM	
		voltage, can be 3.0V±10%	
		Or at 1.8V±10%, the output current is about 10mA.	

The following figure is the recommended interface circuit of SIM card. To protect the SIM card, it is recommended to use ST (www.st.com) ESDA6V1W5 or ON SEMI (www.onsemi.com) SMF05C for ESD protection. In the figure below, the 22ÿ resistor in the IO port line is used to match the module and SIM card

The impedance between the data signal line SIM_DATA has been pulled up inside the module. Devices of the peripheral circuit of the SIM card should be close to the SIM card holder.

The recommended circuit of the 8-pin card holder is as follows

Figure 16: Recommended circuit for interface of 8-pin SIM card holder

SIM_PRESENCE is floating.

The interface circuit of the 6 -pin SIM card holder is as follows:

Figure 17: Recommended circuit for interface of 6-pin SIM card holder

Hardware design

suggestion: Independent TVS tube can be used here, and it can be used as appropriate according to the actual ESD

test situation. If the ESD is good and the TVS tube is not needed, please use a 22pF~33pF decoupling capacitor for the TVS position to improve the anti-RF interference capability of the SIM card. If the ESD test comes down, the TVS tube is indispensable, please use the TVS tube with the capacitance value not exceeding 50pF. The 22R resistor can be added or removed as appropriate according to the actual test situation. The following figure shows a concise reference design for verification

3.9.2 Selection of SIM Card Holder

For a 6-pin SIM card holder, Amphenol C707 10M006 5122 is recommended. Please visit http://www.amphenol.com/webpage

to know more information!

Figure 18: Dimensions of Amphenol C707 10M006 5122 SIM card holder

Table 8: Pin Description (Amphenol SIM Card Holder)

Pin Name Signal Description		
C1	SIM_VDD	SIM power supply, the output voltage is automatically selected according to the type of SIM card.
		Think 3.0V±10% or
		is 1.8V±10%, and the output current is about 10mA.
C2	SIM_RST	SIM card reset
C3	SIM_CLK	SIM card clock
C5	GND	ground
C6	VPP	not connected
C7	SIM_DATA	SIM card data I/O

8-pin SIM card holder, Molex 91228 is recommended. Please visit http://www.molex.com for more information.

Figure 19: Molex 91228 SIM Card Holder Dimensions

Table 9: Pin Description (Molex SIM Card Holder)

Pin Name Signal Desc	ription	
C1	SIM_VDD	SIM power supply, the output voltage is automatically selected according to the type of SIM card, which can be 3.0V±10% Or at 1.8V±10%, the output current is about 10mA.
C2	SIM_RST	SIM card reset
C3	SIM_CLK	SIM card clock
C4	GND	ground
C5	GND	ground
C6	VPP	not connected
C7	SIM_DATA	SIM card data I/O
C8	SIM_PRESENCE	SIM card insertion and removal detection (floating)

3.10 External reset input

The device can be put into reset state through the external reset pin NRESET. This signal is only used for emergency reset, such as the module cannot respond to AT command, or a graceful shutdown is not possible. The module will be reset when the NRESET pin is low, this pin has been pulled up internally. should be in A decoupling capacitor is connected to the NRESET pin in parallel to prevent interference. After RESET, you need to press the power button again to restart the module.

NRESET

MIN:20us

TYP:50us

Pulldown>2s

Pulldown>2s

STATUS

Figure 20: Reset Timing Diagram

Reset recommended design circuit:

Figure 21: Reset reference design circuit

4 Antenna ports

The module provides an antenna interface pin. The antenna on the user's motherboard should be connected to the module's antenna pin using a microstrip line or other types of RF traces (the impedance should be controlled to be 50 ohms). In order to facilitate antenna debugging and certification testing, an RF connector and antenna matching network should be added. The recommended circuit diagram is as follows: It is recommended to reserve a PI type matching circuit for the GSM_ANT of the module.

4.1 Module RF output power

Table 10: GA6 Conducted RF Output Power

frequency band	maximum	minimum
EGSM900 / GSM850	33dBm ±2dB	5dBm± 5dB
DCS1800 / PCS1900	30dBm ±2dB	0dBm± 5dB

4.2 Module RF Receive Sensitivity

Table 11: GA6 Conducted RF Receive Sensitivity

frequency band	Receive Sensitivity (Typical) Receive \$ensitivity (Maximum)		
EGSM900/GSM850	< -109dBm	< -107dBm	
DCS1800/PCS1900	< -109dBm	< -107dBm	

4.3 Module operating frequency

Table 12: GA6 operating frequency bands

frequency band	take over	emission
EGSM900/GSM850	925ÿ960MHz	880ÿ915MHz
DCS1800/PCS1900	1805ÿ1880MHz	1710ÿ1785MHz

5 Electrical, reliability and RF characteristics

5.1 Absolute Maximum

parameter	minimum	maximum	unit
VBAT	-	4.2	V
Peak current of power supply	0	3.0	A
Voltage at digit pins*	-0.3	3.3	V
li*	-	10	mA
lo*	-	10	mA

^{*} Suitable for digital interfaces such as: GPIO, I2C, UART, LCD.

5.2 Operating temperature

The following table shows the operating temperature range of the module:

Table 14: GA6 Operating Temperature

	minimum	typical	maximum	unit
Parameters	-30	+25	+80	°C
Operating Temperature Limited Operating	ating Temperature* -40		+80 to +85 ÿ	
to -30 Storage Temperature	-45		+90	°C

^{*} GA6 will work, but some RF performance may exceed GSM specifications.

5.3 Power Ratings

Table 15: GA6 Power Supply Ratings

Parameter D	escription	The	Minimur	n Typical	Maximum	Unit
	Supply Voltage	conditional voltage must be between the maximum and minimum values, including	g 3.5 4.0	4.2 V		
		Sudden momentary drops and ripples		8		
	Transmit moment voltage	Typical conditions, maximum RF output power			300mV	
	fall					
	Voltage ripple	Typical conditions, maximum RF output power			502 mV	
VBAT		@f<200kHz				
VD/(I		@f>200kHz				
	peak current	Power control at maximum output power		2.0		Α

深圳市果云科技有限公司

5.4 Current consumption

Please refer to the current values in the table below.

Table 16: GA6 current consumption

1. Power consumption test under different RF power (wake state)

900 Power				
GSM900 Power				
Consumption (mA)				
247.6				
234				
190.1				
177.3				
154.3				
138.3				
124.2				
114				
105.1				
98.1				
93				
88.4				
85.7				
83.2				
80.8				

DCS1800 power consumption				
ARFCN	Power consumption (mA)			
0	195			
1	172.6			
2	146			
3	130			
4	117.6			
5	108			
6	100.4			
7	94			
8	89.8			
9	85.7			
10	83			
11	81.3			
12	79.5			
13	78.6			
14	77.8			
15	77.3			

2. Turn-on current of different voltages (under the maximum power of CMU, TALK mode (mA))

Voltage 1# o	current consumption	2# current consumption	3# current consumption	4# Current consumption
3.8	247.1	245.3	248.5	247.7
4	242.9	239.7	244.2	243.8
4.2	249.5	248.6	249.4	248.7
AVG	246.5	244.5333333	247.3666667	246.7333333

3. GSM real network Sleep current consumption (unit: mA)

	1# Current consumption (no card)	2# Current consumption (mobile)	3# Current consumption (Unicom)
Minimum current	0.9	0.98	0.97
average current 3.1		3.3	3.4

4. GPRS current consumption in different modes when connected to CMU (unit: mA)

3Rx 2Tx						
	GSM(P5,C62)		DCS(P0,C698)			
	Voltage	current consumption	Voltage	current consumption		
1	3.6	280.5	3.6	211.2		
2	3.8	278.3	3.8	218.4		
AVR		279.4		214.8		
4Rx 1Tx						
	GSM(P5,C62)		DCS(P0,C698)			
	Voltage	current consumption	Voltage	current consumption		
1	3.6	285.3	3.6	210.2		
2	3.8	276.5	3.8	219.4		
AVR		280.9		214.8		

5.5 ESD Protection

The modules are not specifically protected against electrostatic discharge. Therefore, users need to take some appropriate protective measures for the module in use. in production, assembly and Proper electrostatic protection must be observed when handling the module.

深圳市果云科技有限公司

6 Mechanical Dimensions

This chapter describes the mechanical dimensions of the GA6

6.1 Recommended Land Map for GA6

Figure 22: GA6 Recommended Land Map

6.2 GA6 pin assignment

深圳市果云科技有限公司

Table 17: Pin Assignments

pin number	pin name	pin number	pin name
	RESERVED	22	GND
12	RESERVED	23	EAR_L
3	NC	swinty four	EAR_R
4	NC	25	GND
5	NC	26	REC+
6	NETLIGHT	27	REC
7	RING	28	GND
8	PWRKEY	29	NC
9	DTR	30	TXD
10	CTS	31	RXD
11	RTS	32	HST_RXD
12	RST	33	HST_TXD
13	GND	34	GND
14	SIM_RST	35	GSM_RF
15	SIM_CLK	36	GND
16	SIM_VDD	37	VDD_EXT
17	SIM_DATA	38	NC
18	GND	39	GND
19	MIC-	40	GND
20	MIC+	41	VBAT
seeny one	NC	42	VBAT

6.3 GA6 Recommended Soldering Furnace Temperature Curve

Figure 24: Recommended soldering furnace temperature curve for GA6

深圳市果云科技有限公司