UBC 15Cl 344 Game Theo	ry
An Asymmetric Evolutionary G	
Rik Blok and Christoph Hau	vert
Outline: • an asymmetric game • economic solution concepts (NE, • evolution: how to handle asym	
· economic solution concepts (NE,	PO)
· evolution: how to handle asym	metry?
-> separate populations	
-> separate populations -> randomly assign roles	
An asymmetric acme:	
An asymmetric game: • we've looked at some asymmetric game.	e already
We've 100/120 at some asymmetric game.	3 arready
-> Ultimatum game	
→ Matching pennies → Sotto vs. Blotto	
→ 30 0 Vs. P 0 0	
-> Battle of the Sexes	
	1
"Ultimatum game, with simultaneous a high only (1-h,h)	decisions
high only (1-h,h)	
hyh (1-h,h)	
proposer highony (0,0) responder (1-L, L) <- SPE	0<1<4<1
proposer	
responder (1-2,2) = SPE	
· responder ignorant of proposer's strategy -	> simultaneous game

page 2 CC _ / -	
· payoff matrix	
(q) Responder (1-q) high only all preference arrows	
(p) high 1-h, he NE, PO	
Proposer 1 1 PD	
(p) high 1-h, her NE, PO Proposer (1-p) low 0,0 -> 1-l, L SNE	
· 1 N/- 2 // U 1 - 1 / 1 //	
· mixed NE? Use "endpoints shortcut"	
proposer: choose pt to make responder indifferent	
(Ires (Nigh only) = h p + ()(1-p*)	
* mixed NE! Use endpoints shortcut" • proposer: choose pt to make responder indifferent Ures (high only) = h pt + (0) (1-pt) = h pt Ures (all) = h pt + L (1-pt) Ures (high only) = Ures (all) hpt = hpt + L (1-pt) \Rightarrow pt= • responder: choose qt to make proposer indifferent Upro (high) = (1-h) qt + (1-h) (1-qt) = 1-h Upro (low) = (0) qt + (1-L) (1-qt) = (1-L) (1-qt) Upro (high) = Upro (low) $1-h = (1-L)(1-qt)$ \Rightarrow $q^{t}=1-\frac{1-h}{1-L}=\frac{h-L}{1-L}$ $0 \le q^{t} \le 1$	
$hp \neq = hp + l(1-p \neq)$	
$\rightarrow p^* = ($	
· responder: choose gt to make proposer inditterent	
$(1-h)(1-q) = (1-h)(1-q) = 1-h$ $(1-h)(1-q^*) = (1-l)(1-q^*)$	
Upro (high) = Upro (low)	
1-h = (1-l)(1-9*)	
$ \Rightarrow q^* = 1 - \frac{1 - h}{1 - l} = \frac{h - l}{1 - l} 0 \le q^* \le 1 $	
- solutions: 2 pure NEs: weak @ (high, high only) strict @ (low, all) 1 mixed NE: $(pt, qt) = (1, \frac{h-l}{l-l})$	
1 mixed NE: (n+0+) = (1. h-l)	
Evolution: how to handle asymmetry? replicator eq'n: $dx = x(1-x)(f_A - f_B)$ $dt = x(f_A - \overline{F})$	
· replicator eg'n: dx = x(1-x)(fA-fB)	
$a^{r} = x(f_{A} - \overline{F})$	
where ABB are strategies/types and X= frequency of As	

proposer pop'n: "high" or "low" types, x = frequency of "high"

responder pop'n: "high only" or "all", y = frequency of "high only"

replicator equations: dx = x(1-x)(fH-f2), dx = y(1-y)(fHo-fAII) · payoffs depend on other population "High" \rightarrow proposer: $f_H = y(1-h) + (1-y)(1-h)$ "Low" $f_{L} = y(0) + (1-y)(1-l)$ = (1-y)(1-l)"High only" \rightarrow responder: $f_{H0} = x(h) + (l-x)(0)$ $f_{AII} = x(h) + (1-x)(l)$ = l + x(h-l)" A/| " · can draw 2-d "phase plane" to find equilibria and stability

· dynamics: when many high only responders (y large) then
increase in freq. of high proposers (x increases)
- meanwhile "all" responders increases (y decreases)
- eventually low proposer can thrive and invade

· stable eq. (x,y)=(0,0) → only "low" offers and accept "all".

Randomly assign roles:
Randomly assign roles: • every player has strategies for both roles
imagina 2 agree with 2 allales each
-> imagine 2 genes with 2 alleles each -> 4 type: (necessary none: 1) = (4 40) (4 All) (1 40) (1 All)
-> 4 Types: (proposer, responder) = (H,HO), (H,All), (L,HO), (L,All)
- all 4 types play against each other
toss a coin to assign roles
o eg. sharing a lucky find
• Ultimatum game (x_1) (x_2) (x_3) (x_4) Types" (Freq) H,HO H,All L,HO L,All (I) (x_1) H,HO $= (1-h+h)= 1/2$ $= (1-h)$ $= (1-h)$ Symmetric
ypes (Freg) H, HO H, All L, HO L, All
(1) (x1) H, HO = (1-h+h)=/2 /2 = (1-h) = (1-h) Symmotric
(x_1) (x_2) (x_3) (x_4) (x_5) $(x_5$
(x ₂) H, All by \(\frac{1}{2}(1-h+l)\) \(\fr
4) (x4) L, AIII sh s(1-l+h) sh b
$X_1 + X_2 + X_3 + X_4 = ($
· replicator equations for 4 types:
* replicator equations for 4 types: $f_1 = \chi_1(\frac{1}{2}) + \chi_2(\frac{1}{2}) + \chi_3(\frac{1}{2}(1-h) + \chi_4(\frac{1}{2}(1-h))$
f., =
$\overline{f} = f_1 x_1 + f_2 x_2 + f_3 x_3 + f_4 x_4$
$\frac{dx_1}{dt} = x_1(f_1 - \overline{f})$ $\frac{dx_4}{dt} = x_4(f_4 - \overline{f})$
$\frac{\partial x_i}{\partial t} = x_i(x_i - x_j)$
dv: v (fF)
$\frac{\partial \mathcal{K}_{4}}{\partial t} = \lambda_{4}(141)$
· analysis con be difficult -> ask us if interested
analysis con be all'illuit - sask as it interested

Summary: · asymmetric games
· simultaneous Ultimatum game

-> PO, pure \$ mixed NE
· evolution: how to handle asymmetry?
· 1) separate populations • 1) separate populations

→ phase plane, equilibria, stability
• 2) randomly assign rdes

→ 4×4 symmetric game

→ may require help to solve