Rectas y planos

Unidad 2

FE DE ERRATAS

Errata 1. Pág. 74

N. Capitelli, R. M. Escayola, X. Fernández, G. Rossi

precisamente el punto medio entre (1,1,0) y su simétrico Q=(x,y,z) podemos plantear $\frac{Q}{2}=\frac{p+R}{2}$; es decir:

$$\begin{cases} \frac{1+x}{2} = \frac{2}{3} \\ \frac{1+y}{2} = \frac{2}{3} \\ \frac{z}{2} = -\frac{1}{2}, \end{cases}$$

de donde $x=\frac{1}{3}$, $y=\frac{1}{3}$ y $z=-\frac{2}{3}$. Luego, el simétrico de P respecto de Π es el punto $Q=(\frac{1}{3},\frac{1}{3},-\frac{2}{3})$.

Donde dice: Q y R

Debe decir: R y Q, es decir

$$R = \frac{P + Q}{2}$$

Errata 2. Pág. 77

■ Ejemplos 37

1. Calculemos la proyección ortogonal del punto P=(1,-3) sobre la recta $L=\{X\in\mathbb{R}^2:X=t(2,-3)+(0,5),\,t\in\mathbb{R}\}$. Buscamos primero la recta L' que es perpendicular a L y que pasa por el punto P: una ecuación vectorial para L' es s(3,-2)+(1,-3). La proyección ortogonal de P sobre L será, entonces, $Q=L\cap L'$. Buscamos esta intersección. En segundo lugar, planteamos (2t,-3t+5)=(3s+1,-2s-3); es decir:

$$\begin{cases}
2t = 3s + 1 \\
-3t + 5 = -2s - 3
\end{cases}$$

Resolviendo este sistema de ecuaciones simultáneas, hallamos que $s=\frac{13}{5}$ y que $t=\frac{22}{5}$. Reemplazando por este valor de s en s(3,-2)+(1,-3), obtenemos $Q=\left(\frac{44}{5},-\frac{41}{5}\right)$ (el mismo resultado al que llegamos si reemplazamos $t=\frac{22}{5}$ en t(2,-3)+(0,5)).

Donde dice: L': X = s(3; -2) + (1; -3)Debe decir: L': X = s(3; 2) + (1; -3)

Errata 3. Pág. 241 - Experimento 18 de la pág. 71

Para encontrar una ecuación de Π perpendicular a L_2 , tomamos el vector director de esta recta como la normal al elemento.

 $1 \cdot x + 0 \cdot y + 2 \cdot z + d = 0$. Luego reemplazamos por el punto P = (1; 2; -3) y obtenemos d:

 $1+2(-3)+d=0 \rightarrow d=5.$ Entonces: $\Pi:x+2z+5=0.$

Para encontrar Q, reemplazamos las ecuaciones paramétricas de L_1 en Π : $(k) + 2(2k - 5) + 5 = 0 \rightarrow k = 1 \rightarrow Q = (1; 1; -3)$

Solo nos resta hallar d(P;Q), que es la distancia entre las rectas paralelas. Pero como P=Q; son el mismo punto!, dicha distancia vale 0 (cero).

Donde dice: P = Q

Debe decir: Pero como P=Q, entonces la distancia entre P y Q se calcula como

$$d(P,Q) = \sqrt{(0-1)^2 + (2-1)^2 + (-3+5)^2} = \sqrt{1+14} = \sqrt{6}$$

Errata 4. Pág. 242 - Experimento 20 de la pág. 71

3. Para encontrar la distancia entre los planos, primero buscamos la recta perpendicular a Π_2 que pasa por

Para esto encontramos la normal al plano:
$$\begin{vmatrix} i & j & k \\ 3 & 2 & 1 \\ 2 & -3 & 0 \end{vmatrix} = (3, 2, -13)$$

Entonces la ecuación de la recta buscada es $\alpha(3, 2, -13) + (0, 0, -1)$.

La intersección de esta recta con el plano Π_1 es el punto (42, 28, -183).

Entonces $d(\Pi_1, \Pi_2) = d((0, 0, 1), (42, 28, -183)) = 14\sqrt{182}$.

Donde dice: (42, 28, -183)Debe decir: $(\frac{15}{182}, \frac{5}{91}, -\frac{19}{14})$ es decir

$$d(\Pi_1, \Pi_2) = d\left[(0, 0, 1), \left(\frac{15}{182}, \frac{5}{91}, -\frac{19}{14} \right) \right]$$

$$d(\Pi_1, \Pi_2) = \sqrt{\left(\frac{15}{182} - 0\right)^2 + \left(\frac{5}{91} - 0\right)^2 + \left(-\frac{19}{14} - 1\right)^2} \to d(\Pi_1, \Pi_2) = \frac{\sqrt{184366}}{182}$$