INTEGRAIS TRIPLOS

Integral triplo sobre um paralelepípedo

• Seja f(x,y,z) uma função real a três variáveis, contínua numa região paralelepipédica (fechada), Π , do espaço, dada por:

$$\Pi = \left\{ (x, y, z) \in \mathbb{R}^3 : a \le x \le b, c \le y \le d, r \le z \le s \right\} = [a, b] \times [c, d] \times [r, s]$$

Pretende-se definir o *integral triplo* de f(x, y, z) sobre Π :

$$\iiint_{\Pi} f(x, y, z) dx dy dz \tag{1}$$

Considere-se uma partição para [a,b]

$$P_1 = \{x_0, x_1, ..., x_m\}$$
, tal que $a = x_0 < x_1 < ... < x_m = b$

uma partição para [c,d]

$$P_2 = \{y_0, y_1, ..., y_n\}$$
, tal que $c = y_0 < y_1 < ... < y_n = d$

e uma *partiçã*o para [r,s]:

$$P_3 = \{z_0, z_1, ..., z_p\}$$
, tal que $r = z_0 < z_1 < ... < z_p = s$

O conjunto resultante do produto cartesiano de P_1 , P_2 e P_3

$$P = P_1 \times P_2 \times P_3 = \left\{ (x_i, y_j, z_k) \in \mathbb{R}^3 : x_i \in P_1, y_j \in P_2, z_k \in P_3 \right\}$$

chama-se partição P para a região Π .

A partição P permite definir, sobre a região Π , $m \times n \times p$ paralelepípedos elementares (que não se sobrepõem), com faces paralelas aos planos coordenados:

$$\Pi_{ijk} = \left\{ (x, y, z) \in \mathbb{R}^3 : x_{i-1} \le x \le x_i , y_{j-1} \le y \le y_j , z_{k-1} \le z \le z_k \right\} =$$

$$= [x_{i-1}, x_i] \times [y_{j-1}, y_j] \times [z_{k-1}, z_k] , (i = 1, ..., m ; j = 1, ..., n ; k = 1, ..., p)$$

- Designa-se por diâmetro da partição P para a região Π o comprimento, δ_P , da maior diagonal de entre todos os paralelepípedos elementares Π_{ijk} , para i=1,...,m, j=1,...,n e k=1,...,p.
- Seja ΔV_{ijk} o volume de cada paralelepípedo elementar Π_{ijk} , para $i=1,...,m,\ j=1,...,n$ e k=1,...,p, e seleccione-se, em cada um destes paralelepípedos, um ponto arbitrário $P_{ijk}=(x_{ijk},y_{ijk},z_{ijk})$. Considerando o valor da função f(x,y,z) em cada ponto P_{ijk} , $f(x_{ijk},y_{ijk},z_{ijk})$, formem-se as *somas triplas de Riemann* relativas à partição P:

$$\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{p} f(x_{ijk}, y_{ijk}, z_{ijk}) \Delta V_{ijk}$$
 (2)

Assim, se para toda a partição P para a região Π o limite das somas (2) existir e for finito, sendo independente da escolha de $P_{ijk} = (x_{ijk}, y_{ijk}, z_{ijk})$, esse limite é designado por *integral triplo de* f(x, y, z) sobre a região Π e escreve-se:

$$\iiint_{\Pi} f(x, y, z) dx dy dz \text{ ou } \iiint_{\Pi} f(x, y, z) dV.$$

Nestas condições, verifica-se

$$\iiint_{\Pi} f(x, y, z) dx dy dz = \lim_{\delta_P \to 0} \left(\sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^p f(x_{ijk}, y_{ijk}, z_{ijk}) \Delta V_{ijk} \right)$$
(3)

e f(x,y,z) diz-se uma função integrável em Π .

Sendo δ_P o diâmetro de uma partição P para a região Π , quando se considera em (3) o limite, quando δ_P tende para zero, está-se a admitir que a partição P é formada por um número crescente de paralelepípedos elementares, Π_{ijk} , cada um deles de volume cada vez menor, ou seja:

quando
$$\delta_P
ightarrow 0$$
 , $\Delta V_{ijk}
ightarrow 0$.

• Considerando em (3) f(x, y, z) = 1 para todo o $(x, y, z) \in \Pi$, então

$$\iiint_{\Pi} dxdydz = \lim_{\delta_P \to 0} \left(\sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^p \Delta V_{ijk} \right) = V(\Pi)$$

sendo $V(\Pi)$ o volume da região paralelepipédica Π .

• Se a função real a três variáveis f(x,y,z) é integrável numa região paralelepipédica

$$\Pi = [a,b] \times [c,d] \times [r,s]$$

então a aplicação do *método dos integrais iterados* ao intergral triplo (1) conduz a:

$$\iiint_{\Pi} f(x, y, z) dx dy dz = \int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x, y, z) dx dy dz =$$

$$= \int_{r}^{s} \int_{a}^{b} \int_{c}^{d} f(x, y, z) dy dx dz = \int_{a}^{b} \int_{r}^{s} \int_{c}^{d} f(x, y, z) dy dz dx =$$

$$= \int_{a}^{b} \int_{c}^{d} \int_{r}^{s} f(x, y, z) dz dy dx = \int_{c}^{d} \int_{a}^{b} \int_{r}^{s} f(x, y, z) dz dx dy =$$

$$= \int_{c}^{d} \int_{r}^{s} \int_{a}^{b} f(x, y, z) dx dz dy$$

Integral triplo sobre uma região limitada do espaço

• O cálculo do integral triplo

$$\iiint_{\Pi} f(x, y, z) dx dy dz \tag{4}$$

onde Π é uma qualquer região limitada do espaço, é feito usando um método similar ao utilizado no caso do integral duplo.

• Considere-se uma região paralelepipédica Π^* que contém a região Π e uma função real a três variáveis $f^*(x, y, z)$ definida por

$$f^*(x,y,z) = \begin{cases} f(x,y,z) \text{ , se } (x,y,z) \in \Pi \\ 0 \text{ , se } (x,y,z) \in \Pi^* \setminus \Pi \end{cases}$$

que resulta da extensão de f(x, y, z) à região Π^* .

A função $f^*(x,y,z)$ é limitada na região Π^* e é contínua em todos os pontos de Π^* , excepto, possivelmente, em pontos que pertencem à fronteira de Π .

Verifica-se, então, que

$$\iiint_{\Pi} f(x, y, z) dx dy dz = \iiint_{\Pi^*} f^*(x, y, z) dx dy dz$$

e diz-se que f(x,y,z) é integrável em Π se $f^*(x,y,z)$ for integrável na região paralelepipédica Π^* .

• Considerando f(x, y, z) = 1 em (4), conclui-se que o integral triplo

$$V(\Pi) = \iiint_{\Pi} dx dy dz$$

exprime o volume do sólido, $V(\Pi)$, descrito pela região Π .

Cálculo do integral triplo (região limitada do espaço)

 O cálculo do integral triplo sobre uma região fechada e limitada, Π, do espaço pode ser reduzido ao cálculo do integral sobre uma de três tipos de regiões básicas.

• Uma região do espaço, Π , diz-se do *Tipo 1*, se existir uma região Ω_{xy} do plano xOy, tal que

$$\Pi = \left\{ (x, y, z) \in \mathbb{R}^3 : (x, y) \in \Omega_{xy} , \phi_1(x, y) \le z \le \phi_2(x, y) \right\}$$

em que $\phi_1(x,y)$ e $\phi_2(x,y)$ são funções contínuas em Ω_{xy} .

A região Π define um sólido cuja projecção sobre o plano xOy é a região Ω_{xy} , sendo limitado superiormente pela superfície, S_2 , de equação $z = \phi_2(x,y)$ e inferiormente pela superfície, S_1 , de equação $z = \phi_1(x,y)$.

Neste caso, tem-se:

$$\iiint_{\Pi} f(x, y, z) dx dy dz = \iint_{\Omega_{xy}} \left(\int_{\phi_{1}(x, y)}^{\phi_{2}(x, y)} f(x, y, z) dz \right) dx dy$$
 (5)

Em primeiro lugar calcula-se

$$A(x,y) = \int_{\phi_1(x,y)}^{\phi_2(x,y)} f(x,y,z) dz$$
 (6)

integrando a função f(x,y,z) em relação à variável z entre $z=\phi_1(x,y)$ e $z=\phi_2(x,y)$. O resultado de (6) é uma função nas variáveis x e y, A(x,y), que deverá ser integrada em Ω_{xy} .

• Uma região do espaço, Π , diz-se do *Tipo 2*, se existir uma região Ω_{yz} do plano yOz, tal que

$$\Pi = \left\{ (x, y, z) \in \mathbb{R}^3 : (y, z) \in \Omega_{yz} , \psi_1(y, z) \le x \le \psi_2(y, z) \right\}$$

em que $\psi_1(y,z)$ e $\psi_2(y,z)$ são funções contínuas em Ω_{yz} .

A região Π define um sólido cuja projecção sobre o plano yOz é a região Ω_{yz} , sendo limitado superiormente pela superfície, S_2 , de equação $x = \psi_2(y,z)$ e inferiormente pela superfície, S_1 , de equação $x = \psi_1(y,z)$.

Neste caso, tem-se:

$$\iiint_{\Pi} f(x, y, z) dx dy dz = \iint_{\Omega_{yz}} \left(\int_{\psi_1(y, z)}^{\psi_2(y, z)} f(x, y, z) dx \right) dy dz$$
 (7)

Em primeiro lugar calcula-se

$$B(y,z) = \int_{\psi_1(y,z)}^{\psi_2(y,z)} f(x,y,z) dx$$
 (8)

integrando a função f(x,y,z) em relação à variável x entre $x=\psi_1(y,z)$ e $x=\psi_2(y,z)$. O resultado de (8) é uma função nas variáveis y e z, B(y,z), que deverá ser integrada em Ω_{yz} .

• Uma região do espaço, Π , diz-se do *Tipo 3*, se existir uma região Ω_{XZ} do plano xOz, tal que

$$\Pi = \left\{ (x, y, z) \in \mathbb{R}^3 : (x, z) \in \Omega_{xz} , \lambda_1(x, z) \le y \le \lambda_2(x, z) \right\}$$

em que $\lambda_1(x,z)$ e $\lambda_2(x,z)$ são funções contínuas em Ω_{xz} .

A região Π define um sólido cuja projecção sobre o plano xOz é a região Ω_{xz} , sendo limitado superiormente pela superfície, S_2 , de equação $y = \lambda_2(x,z)$ e inferiormente pela superfície, S_1 , de equação $y = \lambda_1(x,z)$.

Neste caso, tem-se:

$$\iiint_{\Pi} f(x, y, z) dx dy dz = \iint_{\Omega_{XZ}} \left(\int_{\lambda_{1}(x, z)}^{\lambda_{2}(x, z)} f(x, y, z) dy \right) dx dz$$
 (9)

Em primeiro lugar calcula-se

$$C(x,z) = \int_{\lambda_1(x,z)}^{\lambda_2(x,z)} f(x,y,z) dy$$
 (10)

integrando a função f(x,y,z) em relação à variável y entre $y = \lambda_1(x,z)$ e $y = \lambda_2(x,z)$. O resultado de (10) é uma função nas variáveis x e z, C(x,z), que deverá ser integrada em Ω_{xz} .

 Os integrais apresentados em (6), (8) e (10) são designados por integrais iterados para o integral triplo.

Propriedades do integral triplo

• Sejam f(x,y,z) e g(x,y,z) funções integráveis numa região limitada do espaço, Π , e $\alpha,\beta\in\mathbb{R}$. Verifica-se:

i)
$$\iiint_{\Pi} [\alpha f(x,y,z) + \beta g(x,y,z)] dxdydz =$$

$$= \alpha \iiint_{\Pi} f(x,y,z) dxdydz + \beta \iiint_{\Pi} g(x,y,z)] dxdydz$$

ii) Se $f(x,y,z) \ge g(x,y,z)$ para todo o $(x,y,z) \in \Pi$, então:

$$\iiint_{\Pi} f(x, y, z) dx dy dz \ge \iiint_{\Pi} g(x, y, z) dx dy dz$$

iii) Se $\Pi = \Pi_1 \cup \Pi_2$, em que Π_1 e Π_2 são regiões do espaço que não se intersectam, excepto, possivelmente, nas suas fronteiras comuns, então:

$$\iiint_{\Pi} f(x, y, z) dxdydz = \iiint_{\Pi_1} f(x, y, z) dxdydz + \iiint_{\Pi_2} f(x, y, z) dxdydz$$

iv)
$$\left| \iiint_{\Pi} f(x, y, z) dx dy dz \right| \le \iiint_{\Pi} \left| f(x, y, z) \right| dx dy dz$$

 O teorema seguinte é conhecido por teorema do valor médio para o integral triplo.

Teorema 1: Sejam f(x,y,z) e g(x,y,z) funções contínuas numa região limitada do espaço, Π . Se $g(x,y,z) \ge 0$ para todo o $(x,y,z) \in \Pi$, então existe um ponto $(x_0,y_0,z_0) \in \Pi$ tal que:

$$\iiint_{\Pi} f(x, y, z) g(x, y, z) dxdydz = f(x_0, y_0, z_0) \iiint_{\Pi} g(x, y, z) dxdydz$$

O valor $f(x_0, y_0, z_0)$ chama-se média ponderada da função f(x, y, z) em Π através da função (de peso) g(x, y, z).

Exemplo 1: Calcule o integral triplo $\iint_T xyz \ dxdydz$, onde T é o sólido situado no primeiro octante, limitado pela superfície $z=4-x^2$ (cilindro parabólico) e pelos planos z=0, y=x e y=0. Considere T como uma região do $Tipo\ 1$.

Solução:

Na figura seguinte apresenta-se um esboço do sólido T.

Projectando T sobre o plano xOy (região do Tipo 1), obtém-se

$$T = \{(x, y, z) : (x, y) \in \Omega_{xy}, 0 \le z \le 4 - x^2\}$$

onde Ω_{XV} é a região do plano xOy tal que:

$$\Omega_{xy} = \{(x, y) : 0 \le x \le 2, 0 \le y \le x\}$$

Então:

$$\iiint_{T} xyz \ dxdydz = \iint_{\Omega_{xy}} \int_{0}^{4-x^{2}} xyz \ dz \ dxdy = \iint_{\Omega_{xy}} \frac{xy}{2} \left[z^{2} \right]_{0}^{4-x^{2}} dxdy =$$

$$= \frac{1}{2} \iint_{\Omega_{xy}} xy \left(4 - x^{2} \right)^{2} dxdy = \frac{1}{2} \int_{0}^{2} \int_{0}^{x} x \left(4 - x^{2} \right)^{2} y \ dydx =$$

$$= \frac{1}{4} \int_{0}^{2} x \left(4 - x^{2} \right)^{2} \left[y^{2} \right]_{0}^{x} dx = \frac{1}{4} \int_{0}^{2} x^{3} \left(4 - x^{2} \right)^{2} dx =$$

$$= \frac{1}{4} \int_{0}^{2} \left(16x^{3} - 8x^{5} + x^{7} \right) dx = \frac{1}{4} \left[4x^{4} - \frac{4}{3}x^{6} + \frac{x^{8}}{8} \right]_{0}^{2} = \frac{8}{3}$$

Exemplo 2: Escreva o integral triplo do exemplo 1, considerando *T*:

- a) Uma região do Tipo 2.
- b) Uma região do Tipo 3.

Solução:

a) Projectando T sobre o plano yOz (região do Tipo 2), obtém-se

$$T = \left\{ (x, y, z) \ : \ (y, z) \in \Omega_{yz} \ , \ y \le x \le \sqrt{4 - z} \right\}$$

onde Ω_{yz} é a região do plano yOz tal que:

$$\Omega_{yz} = \{(y,z) : 0 \le y \le 2, 0 \le z \le 4 - y^2\}$$

J.A.T.B.

Então:

$$\iiint_T xyz \ dxdydz = \iint_{\Omega_{yz}} \int_y^{\sqrt{4-z}} xyz \ dx \ dydz = \int_0^2 \int_0^{4-y^2} \int_y^{\sqrt{4-z}} xyz \ dx \ dzdy$$

b) Projectando T sobre o plano xOz (região do Tipo 3), obtém-se

$$T = \left\{ (x, y, z) : (x, z) \in \Omega_{xz} , 0 \le y \le x \right\}$$

onde $\Omega_{\it XZ}$ é a região do plano $\it XOz$ tal que:

$$\Omega_{XZ} = \left\{ (x, z) : 0 \le x \le 2, 0 \le z \le 4 - x^2 \right\}$$

Então:

$$\iiint_T xyz \ dxdydz = \iint_{\Omega_{xz}} \int_0^x xyz \ dy \ dxdz = \int_0^2 \int_0^{4-x^2} \int_0^x xyz \ dy \ dzdx$$

Exemplo 3: Calcule o volume do tetraedro, *T*, apresentado na figura da página seguinte.

Solução:

Projectando T sobre o plano xOy (região do Tipo 1), obtém-se

$$T = \{(x, y, z) : (x, y) \in \Omega_{xy}, 0 \le z \le 1 - x - y\}$$

onde Ω_{xy} é a região do plano xOy tal que:

$$\Omega_{xy} = \{(x, y) : 0 \le x \le 1, 0 \le y \le 1 - x\}$$

Então o volume, V(T), do sólido é:

$$V(T) = \iiint_{T} dx dy dz = \iint_{\Omega_{xy}} \int_{0}^{1-x-y} dz \ dx dy =$$

$$= \iint_{\Omega_{xy}} [z]_{0}^{1-x-y} dx dy = \iint_{\Omega_{xy}} (1-x-y) dx dy =$$

$$= \int_{0}^{1} \int_{0}^{1-x} (1-x-y) dy dx = \int_{0}^{1} \left[(1-x)y - \frac{y^{2}}{2} \right]_{0}^{1-x} dx =$$

$$= \int_{0}^{1} \left((1-x)^{2} - \frac{(1-x)^{2}}{2} \right) dx = \frac{1}{2} \int_{0}^{1} (1-2x+x^{2}) dx =$$

$$= \frac{1}{2} \left[x - x^{2} + \frac{x^{3}}{3} \right]_{0}^{1} = \frac{1}{6}$$

Simetrias no integral triplo

• Seja f(x, y, z) uma função integrável numa região limitada do espaço, Π .

Admitindo que Π é simétrica em relação ao plano xOy:

i) Se f(x,y,z) é *impar na variável z*, isto é, f(x,y,z) = -f(x,y,-z), então:

$$\iiint_{\Pi} f(x, y, z) dx dy dz = 0$$

ii) Se f(x,y,z) é par na variável z, isto é, f(x,y,z) = f(x,y,-z), então:

$$\iiint_{\Pi} f(x, y, z) dx dy dz = 2 \iiint_{\Pi_1} f(x, y, z) dx dy dz$$

sendo Π_1 é uma das metades (em relação ao plano xOy) de Π .

• Seja f(x,y,z) uma função integrável numa região limitada do espaço, Π .

Admitindo que Π é simétrica em relação ao plano yOz:

i) Se f(x,y,z) é *impar na variável x*, isto é, f(x,y,z) = -f(-x,y,z), então:

$$\iiint_{\Pi} f(x, y, z) dx dy dz = 0$$

ii) Se f(x,y,z) é par na variável x, isto é, f(x,y,z) = f(-x,y,z), então:

$$\iiint_{\Pi} f(x, y, z) dx dy dz = 2 \iiint_{\Pi_1} f(x, y, z) dx dy dz$$

sendo Π_1 é uma das metades (em relação ao plano yOz) de Π .

• Seja f(x,y,z) uma função integrável numa região limitada do espaço, Π .

Admitindo que Π é simétrica em relação ao plano xOz:

i) Se f(x,y,z) é *impar na variável y*, isto é, f(x,y,z) = -f(x,-y,z), então:

$$\iiint_{\Pi} f(x, y, z) dx dy dz = 0$$

ii) Se f(x,y,z) é par na variável y, isto é, f(x,y,z) = f(x,-y,z), então:

$$\iiint_{\Pi} f(x, y, z) dx dy dz = 2 \iiint_{\Pi_1} f(x, y, z) dx dy dz$$

sendo Π_1 é uma das metades (em relação ao plano xOz) de Π .

Exemplo 4: O integral triplo

$$\iiint_V f(x,y,z) dx dy dz = \iint_{\Omega_{xy}} \int_{-1}^1 \frac{z}{\sqrt{2-x^2-y^2}} dz dx dy = 0$$

já que a região

$$V = \{(x, y, z) : (x, y) \in \Omega_{xy}, -1 \le z \le 1\}$$

é simétrica em relação ao plano xOy e a função

$$f(x, y, z) = \frac{z}{\sqrt{2 - x^2 - y^2}} = -f(x, y, -z)$$

é ímpar na variável z.

O integral triplo

$$\iiint_{V} g(x, y, z) dx dy dz = \iint_{\Omega_{xy}} \int_{-1}^{1} \frac{xyz^{2}}{\sqrt{4 - x^{2} + z^{4}}} dz dx dy =$$

$$= 2 \iint_{\Omega_{xy}} \int_{0}^{1} \frac{xyz^{2}}{\sqrt{4 - x^{2} + z^{4}}} dz dx dy$$

já que a região

$$V = \{(x, y, z) : (x, y) \in \Omega_{xy}, -1 \le z \le 1\}$$

é simétrica em relação ao plano xOy e a função

$$g(x, y, z) = \frac{xyz^2}{\sqrt{4 - x^2 + z^4}} = g(x, y, -z)$$

é par na variável z.

Integral triplo em coordenadas cilíndricas

Um ponto P do espaço, com coordenadas (x, y, z) definidas num referencial ortonormado Oxyz, pode ainda ser expresso através de um terno de números reais (r, θ, z); as duas primeiras coordenadas, r e θ, são as coordenadas polares do ponto, P₁, que é a projecção ortogonal do ponto P sobre o plano xOy, sendo a terceira coordenada a coordenada cartesiana z do ponto P.

Os números r, θ e z relacionam-se com as coordenadas cartesianas através das seguintes igualdades

$$x = r \cos \theta$$
, $y = r \sin \theta$ e $z = z$ (11)

em que $r \ge 0$ e $0 \le \theta \le 2\pi$, e definem-se como as *coordenadas cilíndricas* do ponto *P*. As expressões inversas de (11) são

$$r = \sqrt{x^2 + y^2}$$
 , $\theta = \operatorname{arctg} \frac{y}{x}$ e $z = z$

excepto para os casos em que x = 0. Os pontos onde x = 0 requerem uma atenção particular.

• Em coordenadas cartesianas, as superfícies coordenadas

$$x = x_0$$
 , $y = y_0$ e $z = z_0$

são três planos paralelos aos planos coordenados.

O ponto P com coordenadas (x_0, y_0, z_0) situa-se nos planos $x = x_0$, $y = y_0$ e $z = z_0$.

 Em coordenadas cilíndricas, as superfícies coordenadas tomam a forma:

$$r=r_0$$
 , $\theta=\theta_0$ e $z=z_0$.

A superfície $r = r_0$ é uma superfície cilíndrica circular recta de raio r_0 ; o seu eixo central é o eixo dos zz.

A superfície $\theta = \theta_0$ é um *semiplano vertical* apoiado no eixo dos *zz* e faz um ângulo θ_0 radianos com o semieixo positivo dos *xx*.

A última superfície coordenada é o *plano* $z = z_0$ (plano paralelo ao plano coordenado xOy).

O ponto P com coordenadas (r_0, θ_0, z_0) situa-se na superfície cilíndrica $r = r_0$, no semiplano vertical $\theta = \theta_0$ e no plano $z = z_0$.

 As coordenadas cilíndricas são adequadas para descrever sólidos que apresentam uma forma que se assemelha a uma cunha cilíndrica, isto é, que são formados por todos os pontos (x, y, z) do espaço com coordenadas cilíndricas (r, θ, z) definidas no conjunto

$$\Pi = \{ (r, \theta, z) : a \le r \le b, \alpha \le \theta \le \beta, c \le z \le d \}$$

em que $0 \le a < b$, $0 \le \alpha < \beta \le 2\pi$ e c < d.

As coordenadas cilíndricas podem ser usadas, de um modo mais geral, em casos onde a região de integração possui um eixo de simetria, sendo considerado o eixo dos *zz* como eixo de simetria.

Cálculo do integral triplo em coordenadas cilíndricas

• Seja f(x,y,z) uma função real a três variáveis, contínua numa região (sólido), T, do espaço. Se T é o conjunto de todos os pontos (x,y,z) com coordenadas cilíndricas (r,θ,z) definidas numa região Π , então:

$$\iiint_{T} f(x, y, z) dx dy dz = \iiint_{\Pi} f(r \cos \theta, r \sin \theta, z) r dr d\theta dz$$
 (12)

A igualdade (12) traduz, no integral triplo, a *mudança de coordenadas* cartesianas para coordenadas cilíndricas.

• Considerando f(x, y, z) = 1 em (12), conclui-se que o integral triplo

$$V(T) = \iiint_T dxdydz = \iiint_{\Pi} r \ drd\theta dz$$

exprime o volume do sólido, V(T), descrito pela região T e definido em coordenadas cilíndricas pela região Π .

Exemplo 5: Utilize coordenadas cilíndricas para calcular o integral triplo $\iiint_T (x^2 + y^2) dx dy dz$, em que T é a região do espaço definida por:

$$T = \left\{ (x, y, z) : -2 \le x \le 2, -\sqrt{4 - x^2} \le y \le \sqrt{4 - x^2}, \ 0 \le z \le 4 - x^2 - y^2 \right\}$$

Solução:

O sólido, T, é limitado superiormente pelo paraboloide de revolução de equação

$$z = f(x, y) = 4 - x^2 - y^2$$

e inferiormente pela região circular, Ω_{xy} , situada no plano xOy dada por:

$$\Omega_{xy} = \left\{ (x, y) : 0 \le x^2 + y^2 \le 4 \right\}$$

Dado que o sólido, *T*, é simétrico em relação ao eixo dos *zz*, então pode ser descrito, em coordenadas cilíndricas, pela região:

$$\Pi = \left\{ (r, \theta, z) : 0 \le r \le 2, 0 \le \theta \le 2\pi, 0 \le z \le 4 - r^2 \right\}$$

Assim, obtém-se para o integral triplo:

$$\iiint_{T} (x^{2} + y^{2}) dx dy dz = \iiint_{\Pi} r^{2} r dr d\theta dz = \int_{0}^{2} \int_{0}^{2\pi} \int_{0}^{4-r^{2}} r^{3} dz d\theta dr =
= \int_{0}^{2} \int_{0}^{2\pi} r^{3} [z]_{0}^{4-r^{2}} d\theta dr = \int_{0}^{2} \int_{0}^{2\pi} (4r^{3} - r^{5}) d\theta dr =
= \int_{0}^{2} (4r^{3} - r^{5}) [\theta]_{0}^{2\pi} dr = 2\pi \int_{0}^{2} (4r^{3} - r^{5}) dr =
= 2\pi \left[r^{4} - \frac{r^{6}}{6} \right]_{0}^{2} = 2\pi \left(16 - \frac{32}{3} \right) = \frac{32\pi}{3}$$

Exemplo 6: Recorra a coordenadas cilíndricas para determinar o volume do sólido, T, limitado superiormente pelo plano z = y (superfície S_1) e inferiormente pelo paraboloide de revolução de equação $z = x^2 + y^2$ (superfície S_2).

Solução:

Considerando a região T descrita em coordenadas cartesianas, verifica-se que as superfícies S_1 e S_2 intersectam-se na curva, C, definida por

$$C: z = y, x^2 + (y-1/2)^2 = 1/4$$

estando situada sobre a superfície cilíndrica circular de equação:

$$x^2 + (y - 1/2)^2 = 1/4$$

A projecção ortogonal de C sobre o plano xOy é a curva, C_1 , tal que

$$C_1: x^2 + (y-1/2)^2 = 1/4$$
, $z = 0$

sendo uma circunferência de raio 1/2 centrada no ponto P = (0,1/2,0). Assim, o sólido, T, é limitado superiormente pela superfície

$$S_1: z = y$$

inferiormente pela superfície

$$S_2: z = x^2 + y^2$$

e a sua projecção ortogonal sobre o plano xOy é a região circular, Ω_{xy} , definida por:

$$\Omega_{xy} = \left\{ (x, y) : 0 \le x^2 + (y - 1/2)^2 \le 1/4 \right\}$$

Considerando, em alternativa, coordenadas cilíndricas, as equações das superfícies S_1 e S_2 são:

$$S_1: z = r \operatorname{sen} \theta$$
 e $S_2: z = r^2$.

Por outro lado, as equações das curvas $C \in C_1$ são:

$$C: r = \operatorname{sen}\theta$$
, $z = \operatorname{sen}^2\theta$ e $C_1: r = \operatorname{sen}\theta$, $z = 0$.

Notando que Ω_{xy} é o conjunto de todos os pontos (x,y) que possuem coordenadas polares (r,θ) no conjunto

$$\Gamma = \{(r,\theta) : 0 \le \theta \le \pi , 0 \le r \le \operatorname{sen} \theta\}$$

o sólido, T, pode ser descrito, em coordenadas cilíndricas, pela região:

$$\Pi = \left\{ (r, \theta, z) : 0 \le \theta \le \pi , 0 \le r \le \operatorname{sen}\theta , r^2 \le z \le r \operatorname{sen}\theta \right\}$$

Então, obtém-se para o volume do sólido, V(T):

$$V(T) = \iiint_{T} dx dy dz = \iiint_{\Pi} r \ dr d\theta dz = \int_{0}^{\pi} \int_{0}^{\operatorname{sen}\theta} \int_{r^{2}}^{r \ \operatorname{sen}\theta} r \ dz dr d\theta =$$

$$= \int_{0}^{\pi} \int_{0}^{\operatorname{sen}\theta} r [z]_{r^{2}}^{r \ \operatorname{sen}\theta} dr d\theta = \int_{0}^{\pi} \int_{0}^{\operatorname{sen}\theta} (r^{2} \operatorname{sen}\theta - r^{3}) dr d\theta =$$

$$= \int_{0}^{\pi} \left[\frac{r^{3}}{3} \operatorname{sen}\theta - \frac{r^{4}}{4} \right]_{0}^{\operatorname{sen}\theta} d\theta = \frac{1}{12} \int_{0}^{\pi} \operatorname{sen}^{4}\theta \ d\theta$$

Sabendo que

$$4 \text{sen}^4 \theta = (1 - \cos(2\theta))^2 = 1 - 2\cos(2\theta) + \cos^2(2\theta) =$$

$$= 1 - 2\cos(2\theta) + \frac{1}{2} + \frac{1}{2}\cos(4\theta) = \frac{3}{2} - 2\cos(2\theta) + \frac{1}{2}\cos(4\theta)$$

obtém-se:

$$V(T) = \frac{1}{32} \int_0^{\pi} d\theta - \frac{1}{24} \int_0^{\pi} \cos(2\theta) d\theta + \frac{1}{96} \int_0^{\pi} \cos(4\theta) d\theta = \frac{\pi}{32} - 0 + 0 = \frac{\pi}{32}$$

Integral triplo em coordenadas esféricas

• Um ponto P do espaço, com coordenadas (x,y,z) definidas num referencial ortonormado Oxyz, pode também ser representado através de um terno de números reais (ρ,θ,ϕ) . A primeira coordenada, ρ , é a distância de P à origem, pelo que $\rho \geq 0$. A segunda coordenada, o ângulo θ , designada por *longitude*, corresponde à segunda coordenada das coordenadas cilíndricas e, portanto, $0 \leq \theta \leq 2\pi$. A terceira coordenada exprime o ângulo, ϕ , que o vector \overrightarrow{OP} faz com o semieixo positivo dos zz; é designada por *colatitude*, ou *ângulo polar*, e $0 \leq \phi \leq \pi$.

Os números ρ , θ e ϕ estão relacionados com as coordenadas cartesianas através das seguintes igualdades

$$x = \rho \operatorname{sen}(\phi) \cos(\theta)$$
, $y = \rho \operatorname{sen}(\phi) \operatorname{sen}(\theta)$ e $z = \rho \cos(\phi)$ (13)

e definem-se como as *coordenadas esféricas* do ponto *P*. As expressões inversas de (13) são

$$\rho = \sqrt{x^2 + y^2 + z^2}$$
, $\theta = \arctan \frac{y}{x}$ e $\phi = \arccos \frac{z}{\sqrt{x^2 + y^2 + z^2}}$

excepto para os casos em que x = 0.

 Em coordenadas esféricas, as superfícies coordenadas tomam a forma:

$$\rho=\rho_0 \ , \ \theta=\theta_0 \ \text{e} \ \phi=\phi_0 \, .$$

A superfície $\rho = \rho_0$ é uma *superfície esférica* de raio ρ_0 centrada na origem.

Tal como nas coordenadas cilíndricas, $\theta = \theta_0$ é um *semiplano vertical* apoiado no eixo dos zz e faz um ângulo de θ_0 radianos com o semieixo positivo dos xx.

Relativamente à superfície $\phi = \phi_0$ verifica-se o seguinte:

- i) Se $0 < \phi_0 < \pi/2$ ou $\pi/2 < \phi_0 < \pi$ a superfície corresponde a uma das folhas de um cone circular, que é gerado rodando, em torno do eixo dos zz, uma recta que passa na origem e faz um ângulo de ϕ_0 radianos com o semieixo positivo dos zz;
- ii) A superfície $\phi_0 = \pi / 2$ é o plano coordenado xOy;
- iii) A equação $\phi_0=0$ define o semieixo positivo dos zz e a equação $\phi_0=\pi$ define o semieixo negativo dos zz.

O ponto P com coordenadas $(\rho_0, \theta_0, \phi_0)$ situa-se na intersecção das superfícies $\rho = \rho_0$, $\theta = \theta_0$ e $\phi = \phi_0$.

• As coordenadas esféricas são adequadas para descrever sólidos que apresentam uma forma que se assemelha a uma *cunha esférica*, ou seja, que são formados por todos os pontos (x, y, z) do espaço com coordenadas esféricas (ρ, θ, ϕ) definidas no conjunto

$$\Pi = \{ (\rho, \theta, \phi) : a \le \rho \le b , \alpha \le \theta \le \beta , c \le \phi \le d \}$$

em que $0 \le a < b$, $0 \le \alpha < \beta \le 2\pi$ e $0 \le c < d \le \pi$.

As coordenadas esféricas podem ser usadas, de uma forma mais geral, em situações onde a região de integração é simétrica em relação à origem do referencial.

Cálculo do integral triplo em coordenadas esféricas

• Seja f(x,y,z) uma função real a três variáveis, contínua numa região (sólido), T, do espaço. Se T é o conjunto de todos os pontos (x,y,z) com coordenadas esféricas (ρ,θ,ϕ) definidas numa região Π , então:

$$\iiint_T f(x, y, z) dx dy dz =$$

$$= \iiint_{\Pi} f(\rho \operatorname{sen}(\phi) \cos(\theta), \rho \operatorname{sen}(\phi) \operatorname{sen}(\theta), \rho \cos(\phi)) \rho^{2} \operatorname{sen}(\phi) d\rho d\theta d\phi \quad (14)$$

A equação (14) exprime, no integral triplo, a *mudança de coordenadas* cartesianas para coordenadas esféricas.

• Considerando f(x, y, z) = 1 em (14), conclui-se que o integral triplo

$$V(T) = \iiint_T dx dy dz = \iiint_{\Pi} \rho^2 \operatorname{sen}(\phi) \ d\rho d\theta d\phi$$

traduz o volume do sólido, V(T), descrito pela região T e definido em coordenadas esféricas pela região Π .

Exemplo 7: Use coordenadas esféricas para calcular o volume do sólido, T, limitado pelo cone de equação $z^2 = x^2 + y^2$ (superfície S_1), pela superfície, S_2 , de equação $z = \sqrt{4 - x^2 - y^2}$ e pelo plano z = 0.

Solução:

Todos os pontos situados na superfície S_2 pertencem à metade da superfície esférica de raio $\rho=2$, centrada na origem e definida no semieixo positivo dos zz.

As superfícies S_1 e S_2 intersectam-se na curva, C, definida por:

$$C: x^2 + y^2 = 2$$
, $z = \sqrt{2}$

Trata-se de uma circunferência de raio $\sqrt{2}$ centrada no ponto $P = (0,0,\sqrt{2})$ e está situada sobre a superfície cilíndrica circular de equação:

$$x^2 + y^2 = 2$$

Verifica-se que $\phi = \pi / 4$ radianos para todos os pontos situados em C. O sólido, T, é limitado pela superfície

$$S_1: z = \sqrt{x^2 + y^2} \ (z \ge 0)$$

pela superfície

$$S_2: z = \sqrt{4 - x^2 - y^2}$$

e pela região circular do plano xOy, Ω_{xy} , definida por

$$\Omega_{xy} = \left\{ (x,y) \ : \ 0 \le x^2 + y^2 \le 4 \right\}$$

que corresponde à projecção ortogonal do sólido, T, sobre o plano z=0. Recorrendo a coordenadas esféricas, conclui-se que o sólido, T, é o conjunto de todos os pontos (x,y,z) que possuem coordenadas esféricas (ρ,θ,ϕ) no conjunto:

$$\Pi = \{ (\rho, \theta, \phi) : 0 \le \rho \le 2, 0 \le \theta \le 2\pi, \pi/4 \le \phi \le \pi/2 \}$$

Então, obtém-se para o volume do sólido, V(T):

$$\begin{split} V(T) &= \iiint_T dx dy dz = \iiint_\Pi \rho^2 \mathrm{sen}(\phi) \ d\rho d\theta d\phi = \\ &= \int_0^2 \int_0^{2\pi} \int_{\pi/4}^{\pi/2} \rho^2 \mathrm{sen}(\phi) \ d\phi d\theta d\rho = \int_0^2 \int_0^{2\pi} \rho^2 \left[-\cos\phi \right]_{\pi/4}^{\pi/2} d\theta d\rho = \end{split}$$

$$= \frac{\sqrt{2}}{2} \int_0^2 \int_0^{2\pi} \rho^2 d\theta d\rho = \frac{\sqrt{2}}{2} \int_0^2 \rho^2 \left[\theta\right]_0^{2\pi} d\rho = \sqrt{2\pi} \int_0^2 \rho^2 d\rho =$$

$$= \frac{\sqrt{2}}{3} \pi \left[\rho^3\right]_0^2 = \frac{8\sqrt{2}}{3} \pi$$

Outras aplicações do integral triplo

• Considere-se um sólido, T, definido no espaço e designe-se por $\lambda(x,y,z)$ o valor da densidade mássica (por unidade de volume) em cada ponto (x,y,z) de T.

Assim, a *massa* do sólido, M(T), é dada por:

$$M(T) = \iiint_T \lambda(x, y, z) \ dxdydz$$

Se a densidade for constante em cada ponto (x, y, z) de T, por exemplo, $\lambda(x, y, z) = \lambda$, então

$$M(T) = \lambda \iiint_{T} dxdydz = \lambda V(T)$$
 (15)

em que V(T) é o volume de T.

Além disso, as coordenadas do *centro de massa* do sólido, $C_M = (x_M, y_M, z_M)$, são obtidas a partir das três *médias ponderadas*, através da função (de peso) $\lambda(x, y, z)$, seguintes:

$$x_{M} = \frac{1}{M(T)} \iiint_{T} x \ \lambda(x, y, z) \ dxdydz$$

$$y_M = \frac{1}{M(T)} \iiint_T y \ \lambda(x, y, z) \ dxdydz$$

$$z_{M} = \frac{1}{M(T)} \iiint_{T} z \ \lambda(x, y, z) \ dxdydz$$

Exemplo 8: Determine a massa do sólido, T, que tem a forma de um cilindro circular recto, com raio R e altura h, sabendo que a densidade mássica (por unidade de volume), $\lambda(x,y,z)$, é, em cada ponto, directamente proporcional à distância ao eixo do cilindro.

Solução:

Admita-se que a base do cilindro está situada no plano coordenado *xOy* e que o seu eixo coincide com o eixo dos *zz*. Nestas condições, o sólido *T* corresponde, em coordenadas cartesianas, ao conjunto

$$T = \left\{ (x, y, z) : (x, y) \in \Omega_{xy} , 0 \le z \le h \right\}$$

onde Ω_{xy} é a região do plano xOy tal que:

$$\Omega_{xy} = \{(x,y) : 0 \le x^2 + y^2 \le R^2\}$$

A densidade mássica é definida, em cada ponto de T, pela função

$$\lambda(x,y,z) = k\sqrt{x^2 + y^2}$$

em que k > 0 é uma constante de proporcionalidade.

Recorrendo a coordenadas cilíndricas, o sólido T é o conjunto de todos os pontos (x, y, z) que possuem coordenadas cilíndricas (r, θ, z) no conjunto:

$$\Pi = \{ (r, \theta, z) : 0 \le r \le R, 0 \le \theta \le 2\pi, 0 \le z \le h \}$$

Então, a massa do sólido T, M(T), é:

$$M(T) = \iiint_{T} k \sqrt{x^{2} + y^{2}} \ dxdydz = \iiint_{\Pi} (kr)r \ drd\theta dz =$$

$$= k \int_{0}^{R} \int_{0}^{2\pi} \int_{0}^{h} r^{2} \ dzd\theta dr = k \int_{0}^{R} \int_{0}^{2\pi} r^{2} [z]_{0}^{h} d\theta dr =$$

$$= k h \int_{0}^{R} \int_{0}^{2\pi} r^{2} \ d\theta dr = k h \int_{0}^{R} r^{2} [\theta]_{0}^{2\pi} \ dr = 2\pi k h \int_{0}^{R} r^{2} \ dr =$$

$$=\frac{2\pi kh}{3}\left[r^2\right]_0^R=\frac{2}{3}k\pi R^3h$$

Exemplo 9: Determine a massa do sólido, T, que tem a forma de uma esfera de raio um, sabendo que a densidade mássica (por unidade de volume), $\lambda(x,y,z)$, é, em cada ponto, directamente proporcional ao quadrado da distância ao centro de T.

Solução:

Admita-se que a esfera tem o seu centro na origem do referencial, isto é:

$$T = \left\{ (x, y, z) : 0 \le x^2 + y^2 + z^2 \le 1 \right\}$$

A densidade mássica é definida, em cada ponto de T, pela função

$$\lambda(x, y, z) = k(x^2 + y^2 + z^2)$$

em que k > 0 é uma constante de proporcionalidade.

Recorrendo a coordenadas esféricas, o sólido T é o conjunto de todos os pontos (x, y, z) que possuem coordenadas esféricas (ρ, θ, ϕ) no conjunto:

$$\Pi = \left\{ (\rho, \theta, \phi) : 0 \le \rho \le 1, 0 \le \theta \le 2\pi, 0 \le \phi \le \pi \right\}$$

Então, a massa do sólido T, M(T), é:

$$M(T) = \iiint_{T} k(x^{2} + y^{2} + z^{2}) \ dxdydz = \iiint_{\Pi} (k\rho^{2}) \rho^{2} \operatorname{sen}(\phi) \ d\rho d\theta d\phi =$$

$$= k \int_{0}^{1} \int_{0}^{2\pi} \int_{0}^{\pi} \rho^{4} \operatorname{sen}(\phi) \ d\phi d\theta d\rho = k \int_{0}^{1} \int_{0}^{2\pi} \rho^{4} \left[-\cos \phi \right]_{0}^{\pi} \ d\rho d\theta =$$

$$= 2k \int_{0}^{1} \int_{0}^{2\pi} \rho^{4} \ d\rho d\theta = 2k \int_{0}^{1} \rho^{4} \left[\theta \right]_{0}^{2\pi} d\rho = 4k\pi \int_{0}^{1} \rho^{4} \ d\rho =$$

$$= \frac{4k\pi}{5} \left[\rho^{5} \right]_{0}^{1} = \frac{4}{5} k\pi$$

 Se o sólido é materialmente homogéneo (se a densidade é constante), tendo em atenção (15), obtém-se:

$$\lambda(x, y, z) = \lambda = \frac{M(T)}{V(T)}$$

Neste caso, o *centro de massa* do sólido é coincidente com o *centroide da região T*, $\overline{C} = (\overline{x}, \overline{y}, \overline{z})$, sendo as suas coordenadas dadas por:

$$\overline{x} = \frac{1}{V(T)} \iiint_T x \ dxdydz$$

$$\overline{y} = \frac{1}{V(T)} \iiint_T y \ dxdydz$$

$$\overline{z} = \frac{1}{V(T)} \iiint_T z \ dxdydz$$

Exemplo 10: Localize o centroide do sólido, T, tratado no exemplo 6.

Solução:

Verificou-se no exemplo 6 que o volume do sólido tem o valor $V(T) = \pi / 32$.

Dado que T é simétrico em relação ao plano coordenado yOz, então $\overline{x}=0$. Relativamente a \overline{y} verifica-se:

$$\bar{y} = \frac{32}{\pi} \iiint_{T} y \, dxdydz = \frac{32}{\pi} \iiint_{\Pi} (r \, \text{sen}(\theta)) r \, drd\theta dz =
= \frac{32}{\pi} \int_{0}^{\pi} \int_{0}^{\text{sen}\theta} \int_{r^{2}}^{r \, \text{sen}\theta} r^{2} \text{sen}(\theta) \, dzdrd\theta =
= \frac{32}{\pi} \int_{0}^{\pi} \int_{0}^{\text{sen}\theta} r^{2} \text{sen}(\theta) [z]_{r^{2}}^{r \, \text{sen}\theta} \, drd\theta =$$

$$= \frac{32}{\pi} \int_0^{\pi} \int_0^{\operatorname{sen}\theta} \left(r^3 \operatorname{sen}^2(\theta) - r^4 \operatorname{sen}(\theta) \right) dr d\theta =$$

$$= \frac{32}{\pi} \int_0^{\pi} \left[\frac{1}{4} r^4 \operatorname{sen}^2(\theta) - \frac{1}{5} r^5 \operatorname{sen}(\theta) \right]_0^{\operatorname{sen}\theta} d\theta =$$

$$= \frac{8}{5\pi} \int_0^{\pi} \operatorname{sen}^6(\theta) d\theta$$

Sabendo que

$$sen6\theta = \frac{1}{8} (1 - \cos(2\theta))^{3} = \frac{1}{8} (1 - 2\cos(2\theta) + \cos^{2}(2\theta)) (1 - \cos(2\theta)) =
= \frac{1}{8} (1 - 3\cos(2\theta) + 3\cos^{2}(2\theta) - \cos^{3}(2\theta)) =
= \frac{1}{8} (1 - 4\cos(2\theta) + 3\cos^{2}(2\theta) + \cos(2\theta)\sin^{2}(2\theta)) =
= \frac{1}{8} (\frac{5}{2} - \frac{5}{2}\cos(2\theta) + \cos(2\theta)\sin^{2}(2\theta)) =
= \frac{5}{16} - \frac{5}{16}\cos(2\theta) + \frac{1}{8}\cos(2\theta)\sin^{2}(2\theta)$$

obtém-se:

$$\overline{y} = \frac{8}{5\pi} \int_0^{\pi} \left(\frac{5}{16} - \frac{5}{16} \cos(2\theta) + \frac{1}{8} \cos(2\theta) \sin^2(2\theta) \right) d\theta =
= \frac{1}{2\pi} \int_0^{\pi} d\theta - \frac{1}{2\pi} \int_0^{\pi} \cos(2\theta) d\theta + \frac{1}{5\pi} \int_0^{\pi} \cos(2\theta) \sin^2(2\theta) d\theta =
= \frac{1}{2} - 0 + 0 = \frac{1}{2}$$

Relativamente a \overline{z} obtém-se:

$$\begin{split} \overline{z} &= \frac{32}{\pi} \iiint_{T} z \; dx dy dz = \frac{32}{\pi} \iiint_{\Pi} z r \; dr d\theta dz = \\ &= \frac{32}{\pi} \int_{0}^{\pi} \int_{0}^{\text{sen}\theta} \int_{r^{2}}^{r} \frac{\text{sen}\theta}{z r} \; dz dr d\theta = \frac{16}{\pi} \int_{0}^{\pi} \int_{0}^{\text{sen}\theta} r \left[z^{2} \right]_{r^{2}}^{r} \frac{\text{sen}\theta}{dr d\theta} = \\ &= \frac{16}{\pi} \int_{0}^{\pi} \int_{0}^{\text{sen}\theta} \left(r^{3} \text{sen}^{2}(\theta) - r^{5} \right) dr d\theta = \\ &= \frac{16}{\pi} \int_{0}^{\pi} \left[\frac{1}{4} r^{4} \text{sen}^{2}(\theta) - \frac{1}{6} r^{6} \right]_{0}^{\text{sen}\theta} d\theta = \frac{4}{3\pi} \int_{0}^{\pi} \text{sen}^{6}(\theta) \; d\theta = \\ &= \frac{5}{12\pi} \int_{0}^{\pi} d\theta - \frac{5}{12\pi} \int_{0}^{\pi} \cos(2\theta) d\theta + \frac{1}{6\pi} \int_{0}^{\pi} \cos(2\theta) \text{sen}^{2}(2\theta) d\theta = \\ &= \frac{5}{12} - 0 + 0 = \frac{5}{12} \end{split}$$

Concluindo, as coordenadas do centroide do sólido são:

$$\overline{C} = (\overline{x}, \overline{y}, \overline{z}) = \left(0, \frac{1}{2}, \frac{5}{12}\right)$$

 Admita-se, agora, que o sólido roda em torno de uma linha, L. O momento de inércia, I_L, do sólido em relação ao eixo de rotação L, é dado por

$$I_L = \iiint_T \lambda(x, y, z) [r(x, y, z)]^2 dxdydz$$

onde r(x,y,z) é distância de cada ponto (x,y,z) de T ao eixo de rotação. Os momentos de inércia em relação aos eixos dos xx, dos yy e dos zz são, respectivamente, designados por I_x , I_y e I_z .

Jacobianos: mudança de variáveis na integração tripla

 O processo que envolve a mudança de variáveis na integração tripla é semelhante ao que foi exposto para a integração dupla. No presente capítulo foram já referidas duas situações particulares de mudança de variáveis: a integração em coordenadas cilíndricas e a integração em coordenadas esféricas.

 Neste caso, considere-se o conceito de volume. Seja a região Π de um espaço que é representado pelo referencial *Ouvw*; neste espaço, um ponto *P* terá coordenadas (*u*,*v*,*w*), em que *u* é a *abcissa*, *v* a ordenada e *w* a cota. Admita-se que

$$x = x(u, v, w)$$
, $y = y(u, v, w)$, $z = z(u, v, w)$ (16)

são funções continuamente diferenciáveis na região Π . À medida que (u,v,w) toma valores no interior da região Π , os pontos de coordenadas $(x,y,z)=\big(x(u,v,w),y(u,v,w),z(u,v,w)\big)$ geram uma região T no espaço representado pelo referencial Oxyz. Se o mapeamento associado à transformação

$$(u,v,w) \rightarrow (x,y,z)$$

for injectivo no interior de Π e se o *Jacobiano*, J(u,v,w), definido pelo determinante de ordem 3

$$J(u,v,w) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \\ \frac{\partial x}{\partial w} & \frac{\partial y}{\partial w} & \frac{\partial z}{\partial w} \end{vmatrix} = \frac{\partial x}{\partial u} \begin{vmatrix} \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \\ \frac{\partial y}{\partial w} & \frac{\partial z}{\partial w} \end{vmatrix} - \frac{\partial y}{\partial u} \begin{vmatrix} \frac{\partial x}{\partial v} & \frac{\partial z}{\partial v} \\ \frac{\partial x}{\partial w} & \frac{\partial z}{\partial w} \end{vmatrix} + \frac{\partial z}{\partial u} \begin{vmatrix} \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \\ \frac{\partial x}{\partial w} & \frac{\partial y}{\partial w} \end{vmatrix}$$

nunca se anular no interior de Π , então o volume da região T, V(T), é dado por:

$$V(T) = \iiint_{T} dx dy dz = \iiint_{\Pi} |J(u, v, w)| du dv dw$$
 (17)

Admita-se agora que se pretende integrar uma função contínua f(x,y,z) na região T. Se o processo de cálculo se mostrar demasiado complexo, então é conveniente a aplicação de uma adequada mudança de variáveis, tal como se define em (16), de forma a torná-lo mais expedito. Assim, atendendo a (17), obtém-se:

$$\iiint_{T} f(x, y, z) dx dy dz =$$

$$= \iiint_{\Pi} f(x(u, v, w), y(u, v, w), z(u, v, w)) |J(u, v, w)| du dv dw$$
(18)

 Seja T o conjunto de todos os pontos (x, y, z) com coordenadas cilíndricas (r, θ, z) definidas numa região Π. A expressão que traduz, no integral triplo, a mudança de coordenadas cartesianas para coordenadas cilíndricas, é:

$$\iiint_{T} f(x, y, z) dx dy dz = \iiint_{\Pi} f(r \cos \theta, r \sin \theta, z) r dr d\theta dz$$
 (19)

Notando que as equações de mudança variáveis são

$$x = r \cos \theta$$
 , $y = r \sin \theta$ e $z = z$

obtém-se para o Jacobiano:

$$J(r,\theta,z) = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} & \frac{\partial z}{\partial r} \\ \frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta} & \frac{\partial z}{\partial \theta} \\ \frac{\partial x}{\partial z} & \frac{\partial y}{\partial z} & \frac{\partial z}{\partial z} \end{vmatrix} = \begin{vmatrix} \cos \theta & \sin \theta & 0 \\ -r \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = r \implies |J(r,\theta,z)| = r$$

Tendo em conta (18), confirma-se o resultado apresentado em (19).

• Seja T o conjunto de todos os pontos (x,y,z) com coordenadas esféricas (ρ,θ,ϕ) definidas numa região Π . A expressão que traduz, no integral triplo, a *mudança de coordenadas cartesianas para coordenadas esféricas*, é:

$$\iiint_{T} f(x, y, z) dx dy dz =
= \iiint_{\Pi} f(\rho \operatorname{sen}(\phi) \cos(\theta), \rho \operatorname{sen}(\phi) \operatorname{sen}(\theta), \rho \cos(\phi)) \rho^{2} \operatorname{sen}(\phi) d\rho d\theta d\phi \quad (20)$$

Notando que as equações de mudança variáveis são

$$x = \rho sen(\phi) cos(\theta)$$
, $y = \rho sen(\phi) sen(\theta)$ e $z = \rho cos(\phi)$

obtém-se para o Jacobiano:

$$J(\rho, \theta, \phi) = \begin{vmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial y}{\partial \rho} & \frac{\partial z}{\partial \rho} \\ \frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta} & \frac{\partial z}{\partial \theta} \\ \frac{\partial x}{\partial \phi} & \frac{\partial y}{\partial \phi} & \frac{\partial z}{\partial \phi} \end{vmatrix} =$$

$$= \begin{vmatrix} \operatorname{sen}(\phi) \cos(\theta) & \operatorname{sen}(\phi) \operatorname{sen}(\theta) & \cos(\phi) \\ -\rho & \operatorname{sen}(\phi) \operatorname{sen}(\theta) & \rho & \operatorname{sen}(\phi) \cos(\theta) & 0 \\ \rho & \cos(\phi) \cos(\theta) & \rho & \cos(\phi) \operatorname{sen}(\theta) & -\rho & \operatorname{sen}(\phi) \end{vmatrix} = \rho^2 \operatorname{sen}(\phi)$$

Tendo em atenção (18), confirma-se o resultado obtido em (20).