Class Test-2, Date 07-10-2021 Reaction Engineering

Marks: 20, Time:1 hr.

- 1. A polymerization reaction at 102⁰ C is 1.5th order of A (the monomer). The monomer is to be treated by two equal sized mixed reactor in series where the product contents of A is 20%. An increase in production is contemplated by a reactor similar to those being used. By what percentage can we increase the feed rate and still obtain a product containing no more than 20% monomer if the third reactor is connected in series after second reactor, and all the reactors become in series?
- **2.** Two plug flow reactors are connected in series, Calculate the reactor volume V_1 and V_2 when $X_1 = 0.4$ and final conversion is $X_2 = 0.8$. $F_{A0} = 0.4$ mol/sec.

Reactor data:

X _A	0	0.1	0.2	0.4	0.6	0.7	0.8
$F_{A0}/-r_A$, m^3	0.89	1.08	1.33	2.05	3.54	5.06	8
							[4]

- **3.** (a)Show that at higher conversion, plug flow reactor is more advantageous than mixed reactor assuming 1st order elementary liquid phase reaction. [2]
 - (b) What are the advantages of using multiple CSTR connecting in series? [2]
 - (c) For first-order liquid phase reaction, under identical condition at what conversion the volume of mixed reactors requires twice than that of the PFR volume? [4]
 - (d) Write the expression for Damkohler number as a function of final conversion for first-order reaction when 3-reactors are connected in series. [2]