COMS 331: Theory of Computing, Spring 2023 Homework Assignment 5

Due at 10:00PM, Wednesday, March 1, on Gradescope.

Problem 30. Prove or disprove: If A and $A \cap B$ are regular, then B is regular.

Problem 31. Prove or disprove: If A is regular and $A \cap B$ is not regular, then B is not regular.

Problem 32. Prove or disprove: If A is regular and B is not regular, then $A \cap B$ is not regular.

Problem 33. Prove that the language

$$A = \{x \in \{0,1\}^* \mid \#(0,x) = \#(1,x)\}\$$

is not regular.

Problem 34. Prove that the language

$$A = \{x \in \{0, 1\}^* \mid \#(01, x) = \#(10, x)\}\$$

is regular. (Here, for $a, b \in \{0, 1\}$, #(ab, x) is the number of a's in x that are immediately followed by b.)

Recall that the canonical equivalence relation of a language $A \subseteq \Sigma^*$ is the binary relation \equiv_A on Σ^* defined by

$$x \equiv_A y$$
 if and only if, for all $z \in \Sigma^*$, $[xz \in A \iff yz \in A]$.

Problem 35. (a) What are the equivalence classes of \equiv_A if $A = \{0^n 1^n \mid n \in \mathbb{N}\}$?

(b) Prove that your answer to (a) is correct.

(c) Explain why your answer to (a) implies that A is not regular.

Problem 36. Define Σ , top, and bottom as in Problem 19. Prove: If $A, B \subseteq \{0,1\}^*$ are regular, then the language

$$\begin{bmatrix}A\\B\end{bmatrix} = \{z \in \Sigma^* \mid top(z) \in A \text{ and } bottom(z) \in B\}$$

is regular.