EECS 598: Reinforcement Learning, Homework 2

Abhishek Venkataraman

October 6, 2017

Problem 1. Stochastic Dyna-Q

In order to account for stochasticity, :

Converged policy for Dyna-Q:

Parameters:

Reason:

Converged policy for Dyna-Q+:

Parameters:

Reason:

Problem 2. Policy Evaluation

Policy evaluation was executed with the parameter $\gamma=0.95,\,\theta=0.0001,$ with a policy of all actions equally likely:

$$V = \begin{bmatrix} 0.00161678 & 0.00225315 & 0.00715633 & 0.00214702 \\ 0.00348862 & 0. & 0.02231404 & 0. \\ 0.01172261 & 0.04333605 & 0.0868182 & 0. \\ 0. & 0.08396291 & 0.29990939 & 0. \end{bmatrix}$$

Problem 3. Value Iteration

Policy obtained by value iteration with parameter $\gamma = 0.95$, $\theta = 0.0001$

Problem 4. Policy Iteration

Policy obtained by value iteration with parameter $\gamma = 0.95$, $\theta = 0.0001$

Problem 5. Monte Carlo Control

I get a Q table and policy similar (but not exactly the same) to what I got earlier. However, when I looked through the optimal policy returned by the method, it seems to make sense, while looking at the frozen lake map. The terminal states have a Q value of 0 for all actions.

Problem 6. Q-Learning

The final Q table after 500 episodes :

Q =	[0.04463358	0.04950337	0.05075302	0.05127952
	0.02430698	0.0145442	0.04119943	0.05007132
	0.06869312	0.05069395	0.01123521	0.03206709
	0.0063983	0.00689914	0.00972855	0.04960062
	0.05176841	0.00674974	0.00778528	0.02978962
	0.	0.	0.	0.
	0.04027403	0.00101772	0.09471334	0.
	0.	0.	0.	0.
	0.00441195	0.02145365	0.010348	0.04226591
	0.03960406	0.	0.	0.02059928
	0.09953314	0.53531923	0.	0.07445918
	0.	0.	0.	0.
	0.	0.	0.	0.
	0.	0.	0.	0.05700875
	0.23986141	0.37037029	0.80054314	0.
	0.	0.	0.	0.

The Q values of terminal states are all 0.

Problem 7. Rate of convergence

Proof. We know that the maximum reward in any step is given by,

$$V^*(s) \le \sum_{i=1}^{\infty} \gamma^i R_{max}$$

Given that the reward for all state action pair is between 0 and 1, we know that $R_{max}=1$;

$$V^*(s) \le \sum_{i=1}^{\infty} \gamma^i$$

By using summation over infite series, (since $\gamma \leq 1$),

$$V^*(s) \le \frac{1}{1 - \gamma}$$

The value function over k^{th} iteration can be written as:

$$V_k(s) = \sum_{i=1}^k \gamma^i$$
$$\therefore V_k(s) = \frac{1 - \gamma^k}{1 - \gamma}$$

Taking the difference between the optimal value and k^{th} iteration,

$$|V_k(s) - V^*(s)| \le \epsilon$$

$$|\frac{1 - \gamma^k}{1 - \gamma} - \frac{1}{1 - \gamma}| \le \epsilon$$

$$|\frac{-\gamma^k}{1 - \gamma}| \le \epsilon$$

$$\frac{\gamma^k}{1 - \gamma} \le \epsilon$$

taking logarithm on both sides,

$$\log \frac{\gamma^k}{\epsilon - \gamma} \le \log \epsilon$$
$$\log \gamma^k - \log(1 - \gamma) \le \log \epsilon$$
$$k \log \gamma \le \log \epsilon + \log(1 - \gamma)$$
$$k \le \frac{\log(\epsilon \cdot (1 - \gamma))}{\log \gamma}$$

Hence the number of steps that guarantee the absolute error to be less than ϵ is given by:

$$\frac{\log(\epsilon.(1-\gamma))}{\log\gamma}$$

Problem 8. Exact Policy Evaluation for an MDP

Proof. Value function is given by,

$$V(s) = \mathbb{E}[G_t|S_t = s]$$

where, G_t is the discounted return starting at time step t for state s

$$V(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]$$

$$V(s) = \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_t = s]$$

$$V(s) = \mathbb{E}[R_{t+1} + \gamma v S_{t+1} | S_t = s]$$

$$V(s) = R_s + \gamma \sum_{s' \in S} P_{ss'} V(s')$$

where s' is the set of next possible state.

Enumerating over s, we can write it in matrix form as

$$\begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_n \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \\ \vdots \\ R_n \end{bmatrix} + \gamma \cdot \begin{bmatrix} P_{11} & P_{12} & \cdots & P_{1n} \\ P_{21} & P_{22} & \cdots & P_{2n} \\ \vdots & \vdots & & \vdots \\ P_{n1} & P_{n2} & \cdots & P_{nn} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_n \end{bmatrix}$$

Writing in vectorized form,

$$\mathbf{V}_{\pi} = \mathbf{R}_{\pi} + \gamma . \mathbf{P}_{\pi} . \mathbf{V}_{\pi}$$
$$\therefore \mathbf{V}_{\pi} = (\mathbf{I} - \gamma \mathbf{P}_{\pi})^{-1} \mathbf{R}_{\pi}$$

Problem 9. Meta

I got a late enrollment to the class and hence I had to start the assignment really late. I worked for over 3 days and spent around 20 hours for the assignment. I had to catch up with the lectures within this period.

- Prob 1: Implementation of the function was not difficult but I was not sure about the 4 bandits function. There was ambiguity in the definition of the function and hence visualization of the results
- Prob 2: Policy evaluation was straight forward to implement. However, I took sometime to understand the **gym** environment.
- Prob 3: Value iteration was easy to implement after understanding the environment
- Prob 4: Policy iteration took some time since I was getting equivalent but slightly different answer compared to value iteration. I think I wasted a lot of time trying to reason this out and make changes to the code.
- Prob 5: I had trouble understanding the intricacies of Monte Carlo Control. I spent the maximum time in the implementation of this.
- Prob 6: Q-Learning was straight forward to implement. I did not spend much time on this
- Prob 7: I spend a moderate amount of time on this
- Prob 8: I spend a moderate amount of time on this

Did I have to learn python - **NO** Did I have to learn Open AI gym - **YES**