Recall:

Vector equations are equivalent to systems of linear equations:

$$x_{1} \begin{bmatrix} 2 \\ 3 \end{bmatrix} + x_{2} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 7 \\ 3 \end{bmatrix}$$

$$vector$$

$$equation$$

$$\begin{cases} 2x_{1} + 4x_{2} = 7 \\ 3x_{1} + 2x_{2} = 3 \end{cases}$$

$$system of$$

$$linear equations$$

Upshot. A vector equation can have either:

- no solutions
- exactly one solution
- infinitely many solutions

Next:

- When does a vector equation have a solution?
- When does it have exactly one solution?

Definition

A vector $\mathbf{w} \in \mathbb{R}^n$ is a *linear combination* of vectors $\mathbf{v}_1, \dots \mathbf{v}_p \in \mathbb{R}^n$ if there exists scalars c_1, \dots, c_p such that

$$w = c_1 v_1 + \ldots + c_p v_p$$

Equivalently: A vector \mathbf{w} is a linear combination of vectors $\mathbf{v}_1, \dots \mathbf{v}_p$ is the vector equation

$$x_1\mathbf{v}_1 + \ldots + x_p\mathbf{v}_p = \mathbf{w}$$

has a solution.

Example.

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} \quad \mathbf{v}_3 = \begin{bmatrix} 5 \\ 0 \\ 3 \end{bmatrix}$$

Some linear combinations of $\sqrt{1}, \sqrt{2}, \sqrt{3}$: $2\sqrt{1} + \sqrt{2} - \sqrt{3} = 2 \cdot \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 5 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 5 \\ 1 \end{bmatrix}$ $\sqrt{1} - \sqrt{3} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} - \begin{bmatrix} 5 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} -4 \\ 2 \\ -2 \end{bmatrix}$ $\sqrt{1} + \sqrt{2} + \sqrt{2} + \sqrt{2} = 2$ $\sqrt{1} + \sqrt{2} + \sqrt{2} = 2$ $\sqrt{2} + \sqrt{2} = 2$ $\sqrt{2} + \sqrt{2} + \sqrt{2} = 2$

Example. Let

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
 $\mathbf{v}_2 = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$ $\mathbf{v}_3 = \begin{bmatrix} 5 \\ 0 \\ 3 \end{bmatrix}$ $\mathbf{w} = \begin{bmatrix} 9 \\ 3 \\ 6 \end{bmatrix}$

Express w as a linear combination of v_1, v_2, v_3 or show that this is not possible.

Solution

We need to solve the equation

augmented matrix:

$$[v, v_2 \ v_3 \ | w] = \begin{bmatrix} 1 & 3 & 5 & 9 \\ 2 & 1 & 0 & 3 \\ 1 & 2 & 3 & 6 \end{bmatrix}$$

$$\downarrow \text{ now red.}$$

$$\begin{bmatrix} x_1 & x_2 & x_3 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{cases} x_1 = x_3 \\ x_2 = 3 - 2x_3 \\ x_3 = \text{free} \end{cases}$$

So:
$$w$$
 is a linear combination of v_1 , v_2 , v_3 .
e.g. if $x_3 = 2$ then $w = 2v_1 + (-1)v_2 + 2v_3$
 $x_3 = 1$ then $w = v_1 + v_2 + v_3$

Example. Let

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$

Express w as a linear combination of v_1 , v_2 or show that this is not possible.

Solution:

Linear combinations of v, , v2 are vectors of the form:

$$C_1V_1 + C_2V_2 = C_1\begin{bmatrix} 1\\0\\0 \end{bmatrix} + C_2\begin{bmatrix} 0\\1\\0 \end{bmatrix} = \begin{bmatrix} C_1\\c_2\\0 \end{bmatrix}$$

Coordinate is O.

not a linear combination of V1, Vz.

Geometric picture of the last example

Definition

If $\mathsf{v}_1,\ldots,\mathsf{v}_p$ are vectors in \mathbb{R}^n then

$$Span(v_1, ..., v_p) = \begin{cases} the set of all \\ linear combinations \\ c_1v_1 + ... + c_pv_p \end{cases}$$

Example.

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Span
$$(v_1, v_2) = \left\{ \text{the set of all vectors } C_1 v_1 + C_2 v_2 \right\}$$

$$= \left\{ \text{the set of all vectors } \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} \right\}$$

$$\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}
\begin{bmatrix}
-3 \\
4 \\
0
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\in Span(v_1, v_2)$$

$$v_1 + 2v_2 \quad -3v_1 + 4v_2 \quad 0v_1 + 0v_2$$

$$\begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 7 \\ 0 \\ 1 \end{bmatrix} \notin Span(v_1, v_2)$$

Proposition

A vector \mathbf{w} is in $\mathrm{Span}(\mathbf{v}_1,\ldots,\mathbf{v}_p)$ if and only if the vector equation

$$x_1\mathbf{v}_1 + \ldots + x_p\mathbf{v}_p = \mathbf{w}$$

has a solution.

Geometric interpretation of Span

Proposition

For arbitrary vectors $\mathbf{v}_1, \dots, \mathbf{v}_p \in \mathbb{R}^n$ the zero vector $\mathbf{0} \in \mathbb{R}^n$ is in Span $(\mathbf{v}_1, \dots, \mathbf{v}_p)$.

