Kodavimo teorija

Vilius Stakėnas

2010 metų ruduo

Maksimalaus atstumo kodai	2
Maksimalus kodas	 3
Singletono įvertis	
Maksimalaus atstumo kodai	 5
Maksimalaus atstumo kodai	 6
Maksimalaus atstumo kodai	 7
Trivialūs maksimalaus atstumo kodai	 8
Maksimalaus atstumo kodai	 9
Įrodymas	 0
Įrodymas	 1
Maksimalaus atstumo kodų parametrai	 2
Vandermondo determinantas	 3
Reedo-Solomono kodai	 4
Reedo-Solomono kodai	 5
Reedo-Solomono kodai	 6
Reedo-Solomono kodai	 7

Maksimalus kodas

Priminimas:

Apibrėžimas. Kodą \mathbf{C} iš \mathbb{F}_q^n žodžių, kurio minimalus atstumas d, vadinamas maksimaliu, jeigu nėra tą patį minimalų atstumą ir daugiau žodžių turinčio kodo $\mathbf{C}^* \subset \mathbb{F}_q^n$.

Maksimalaus kodo parametrai: $(n, A_q(n, d), d)$.

3 / 17

Singletono įvertis

Singletono įvertis pateikia viršutinį $A_q(n,d)$ rėžį:

$$A_q(n,d) \le q^{n-d+1}.$$

4 / 17

Maksimalaus atstumo kodai

Tegu dabar \mathbb{L} yra tiesinis [n,k] kodas iš abėcėlės \mathbb{F}_q žodžių; tada jo žodžių skaičius lygus q^k . Iš Singletono įverčio gauname

$$q^k \le q^{n-d+1}$$
 arba $d \le n - k + 1$.

Jeigu galioja lygybės, tai kodas $\mathbb L$ yra maksimalus.

Apibrėžimas. Tiesinį [n, k] kodą \mathbb{L} vadinsime maksimalaus atstumo kodu, jei jo minimaliam atstumui d galioja lygybė d = n - k + 1.

Angliškoje literatūroje - Maximum distance separable, arba MDS kodas.

Maksimalaus atstumo kodai

Teorema. Tegu \mathbb{L} yra tiesinis [n,k] kodas, o H – jo kontrolinė matrica. Tada \mathbb{L} yra maksimalaus atstumo kodas tuo ir tik tuo atveju, kai bet kurie n-k matricos H stulpeliai yra tiesiškai nepriklausomi.

6 / 17

Maksimalaus atstumo kodai

Teorema. Tegu $\mathbb L$ yra maksimalaus atstumo kodas. Tada ir $\mathbb L^\perp$ yra taip pat maksimalaus atstumo kodas.

Išvada. Jei [n,k] kodo $\mathbb L$ generuojanti matrica yra G, tai $\mathbb L$ yra maksimalaus atstumo kodas tada ir tik tada, kai bet kurie k matricos G stulpeliai yra tiesiškai nepriklausomi.

7/17

Trivialūs maksimalaus atstumo kodai

Egzistuoja [n, n, 1], [n, 1, n] ir [n, n - 1, 2] kodai iš abėcėlės \mathbb{F}_q žodžių. Visi jie yra maksimalaus atstumo kodai, juos vadinsime tiesiog **trivialiais**.

8 / 17

Maksimalaus atstumo kodai

Ištirsime netrivialių maksimalaus atstumo kodų egzistavimo sąlygas.

Teorema. Maksimalaus atstumo [n, k] kodų, tenkinančių sąlygą $1 < k \le n - q$, nėra.

Irodymas

Tarkime priešingai: yra maksimalaus atstumo [n,k] kodas \mathbb{L} , tenkinantis nelygybę $1 < k \le n-q$.

Tegu $G = (I_k, A)$ yra šio kodo standartinio pavidalo generuojanti matrica.

Įrodysime, jog egzistuoja tam tikra elementariųjų pertvarkių seka, kurios rezultatas – matrica, atitinkanti nemaksimalaus atstumo kodą.

10 / 17

Įrodymas

Kadangi yra maksimalaus atstumo kodas, tai bet kurie k matricos G stulpeliai sudaro tiesiškai nepriklausomą sistemą.

Todė nei vienas matricos A elementas nelygus nuliui.

Padauginę matricos A stulpelius iš atitinkamų nenulinių \mathbb{F}_q elementų, galime pasiekti, kad gautoji matrica būtų tokia:

$$G' = (I_k, A'), \quad A' = \begin{pmatrix} 1 & 1 & \dots & 1 \\ a'_{21} & a'_{22} & \dots & a'_{2,n-k} \\ \vdots & \vdots & \ddots & \vdots \\ a'_{k1} & a'_{k2} & \dots & a'_{k,n-k} \end{pmatrix}.$$

Kadangi $q \leq n-k$, tai antroje A' eilutėje bent du elementai bus vienodi. Dauginkime antrąją G' eilutę iš $-a'_{21}$ ir pridėkime prie pirmosios. Gautoje eilutėje bus k nulių!

11 / 17

Maksimalaus atstumo kodų parametrai

Teorema. Jei \mathbb{L} yra netrivialus maksimalaus atstumo [n, k] kodas, tai

$$n - q + 1 \le k \le q - 1.$$

Iš šio teiginio gauname, jog dvinaris kodas (q=2) yra maksimalaus atstumo kodas tada ir tik tada, kai jis trivialus. Tačiau kitoms q reikšmėms netrivialūs maksimalaus atstumo kodai egzistuoja.

Vandermondo determinantas

Tegu $\alpha_1, \ldots, \alpha_s$ yra skirtingi ir nelygūs nuliui kūno \mathbb{F}_q elementai. Sudarykime Vandermondo determinantą:

$$V(\alpha_1, \alpha_2, \dots, \alpha_s) = \det \begin{pmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_s \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_s^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{s-1} & \alpha_2^{s-1} & \dots & \alpha_s^{s-1} \end{pmatrix},$$

$$V(\alpha_1, \alpha_2, \dots, \alpha_s) = \prod_{1 \le i < j \le s} (\alpha_j - \alpha_i).$$

13 / 17

Reedo-Solomono kodai

Apibrėžimas. Tegu $\mathbb{F}_q=\{\alpha_1,\alpha_2,\dots,\alpha_q\}$ (apibrėžtumo dėlei tarkime, $\alpha_q=0),$ o $1\leq k\leq q$ yra natūralusis skaičius. Tiesinį kodą, kurio generuojanti matrica yra

$$G_{k} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ \alpha_{1} & \alpha_{2} & \dots & \alpha_{q} \\ \alpha_{1}^{2} & \alpha_{2}^{2} & \dots & \alpha_{q}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{1}^{k-1} & \alpha_{2}^{k-1} & \dots & \alpha_{q}^{k-1} \end{pmatrix},$$

vadinsime Reedo-Solomono kodu ir žymėsime $\mathbf{RS}_{q,k}$.

14 / 17

Reedo-Solomono kodai

Teorema. Visi $\mathbf{RS}_{q,k}$ kodai yra maksimalaus atstumo kodai. Jei $1 \le k_1 < k_2 \le q$, tai $\mathbf{RS}_{q,k_1} \subset \mathbf{RS}_{q,k_2}$. Su visomis k reikšmėmis teisinga lygybė $\mathbf{RS}_{q,k}^{\perp} = \mathbf{RS}_{q,q-k}$.

Reedo-Solomono kodai

Generuojančią kodo $\mathbf{RS}_{q,k}$ matricą G_k (paskutinį jos stulpelį sudaro elementai $1, 0, 0, \dots, 0$) papildykime dar vienu stulpeliu:

$$G_k^* = \begin{pmatrix} 1 & 1 & \dots & 1 & 0 \\ \alpha_1 & \alpha_2 & \dots & 0 & 0 \\ \alpha_1^2 & \alpha_2^2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \dots & 0 & 1 \end{pmatrix}.$$

16 / 17

Reedo-Solomono kodai

Pasinaudoję Vandermondo determinantu, galime įsitikinti, kad bet kurie k stulpeliai yra tiesiškai nepriklausomi. Taigi G_k^* taip pat yra maksimalaus atstumo kodo generuojanti matrica.

Šio kodo parametrai yra [q+1,k,q-k+2]. Pažymėkime šį kodą $\mathbf{RS}^*_{q+1,k}$. Jeigu q yra nelyginis pirminis arba jo laipsnis, o $k=\frac{q+1}{2},$ galima įrodyti, kad

$$\mathbf{RS}_{q+1,k}^*^{\perp} = \mathbf{RS}_{q+1,k}^*.$$

Taigi radome dar vieną savidualių kodų šeimą.