$((P \land Q) \lor R) = \text{true}$ $(R \lor S) = \text{false}$

4. For the implication $((P \land Q) \lor R) \implies (R \lor S)$ to be false, then

From the latter, both R and S must be false, so

$$(P \wedge Q) = \text{true}$$

This is only the case when both are true, thus

$$P = Q = \text{true}$$

 $R = S = \text{false}$