CSE 6367 Assignment #6

Zahidur Talukder

May 2, 2021

Problem 1

 \mathbf{a}

In this Problem, I have write a MATLAB function " $get_tiny_image.m$ " that simply re-sizes an input image to a small, fixed resolution of 16×16 . The function is attached with the report.

b

In this Problem, I have write a MATLAB function "predict_knn.m" that uses a KNN classifier to predict the label of the testing data. I have tested with different value of k, and got the best result using its value as 4. The function is attached with the report.

 \mathbf{c}

In this Problem, I have write a MATLAB function "classify_knn_tiny.m" that predict the accuracy of the KNN model using the previous function. The function is attached with the report. The accuracy for predicting test images is more than 20% which is more than our requirement. The confusion matrix and classification accuracy is attached below:

Figure 1: confusion matrix and classification accuracy for KNN classifier $\,$

Problem 2

\mathbf{a}

In this Problem, I have write a MATLAB function "build_visual_dictionary.m" that builds a visual dictionary of quantized SIFT features. I have used dict size as 50. For using the SIFT features, I have installed "vlfeat-0.9.21" in my local directory. The function is attached with the report.

b

In this Problem, I have write a MATLAB function "compute_bow.m" that computes the BoW feature vector. The function is attached with the report.

 \mathbf{c}

In this Problem, I have write a MATLAB function "classify_knn_tiny.m" that that combines "build_visual_dictionary.m", "compute_bow.m" and "predict_knn.m" for scene classification given BoW features. The function is attached with the report. The accuracy for predicting test images is more than 53% which is more than our requirement. The confusion matrix and classification accuracy is attached below:

Figure 2: Confusion matrix for BoW and KNN classification Using SIFT feature