Les Tables de Hachage

NICOD JEAN-MARC

Licence 3 Informatique Université de Franche-Comté UFR des Sciences et Techniques

septembre 2007

Référence

 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest et Clifford Stein. Introduction à l'algorithmique, 2^e édition, Dunod, 2002.

Sommaire

- 1 Tables à adressage directe
- 2 Les Tables de Hachage
- 3 Fonctions de hachage
- Adressage ouvert

Généralités

- Opérations sur les ensembles de clés dynamiques :
 - table des symboles: insérer, rechercher, supprimer (les clés sont des chaînes de caractères)
 - Difficulté d'effectuer des accès directs
 - pas une case pour chaque clé
- Mise en œuvre efficace des dictionnaires
 - O(n) dans le pire des cas et O(1) en moyenne
- Il s'agit d'une généralisation des tableaux classiques
- Ici les données à stocker ont des clés qui permettent de calculer un indice dans la table et non des clés qui sont les indices
- Gestion des collisions : ≠ clés k → un même indice i

Adressage ouvert

Sommaire

- 1 Tables à adressage directe
 - Définitions
 - Exemple
 - Opérations sur cette table
- 2 Les Tables de Hachage
- 3 Fonctions de hachage
- Adressage ouvert

Tables à adressage direct cas idéal théorique

cas ideal theorique

définitions

Technique simple si l'univers des clés U est petit

Soit
$$U = \{0, 1, \dots, m-1\}$$
 avec m petit

> 2 éléments ne peuvent avoir la même clé

Soit K un sous ensemble dynamique dans lequel chaque élément possède une clé dans U

- Représentation de cet ensemble par une table à adressage directe T[○...m − 1]
- Chaque indice de T correspond à une clé dans l'univers U
- Impossible en pratique

Exemple d'adressage direct

Opérations en adressage direct

- o rechercherAdressageDirect(T,k)
 - retour T[k]
- insérerAdressageDirect(T,k)
 - \blacksquare T[clé[x]] \leftarrow x
- supprimerAdressageDirect(T,x)
 - \blacksquare T[clé[x]] \leftarrow null
- Chaque opération est en O(1)
- Modif: stockage de l'élément directement dans T si la clé n'est pas toujours indispensable dans l'objet x

péfinitions fonction de hachage Sestion des collisions tésolution des collisions par chaînage Opérations avec le chaînage

Sommaire

- 1 Tables à adressage directe
- 2 Les Tables de Hachage
 - Définitions
 - Fonction de hachage
 - Gestion des collisions
 - Résolution des collisions par chaînage
 - Opérations avec le chaînage
- 3 Fonctions de hachage
- 4 Adressage ouvert

 $=(a^2-5^2)$

Définitions

Fonction de hachage Gestion des collisions Résolution des collisions par chaînag:

Les Tables de Hachage

cas pratique

définitions

Si *U* est grand, T ne tient pas en mémoire

- limitation du gaspillage de la mémoire
- \bigcirc si $|K| \ll |U|$ une table de hachage occupe moins de place
- l'accès en O(1) seulement en moyenne alors que O(1) dans le pire cas en adressage direct

Où stocke-t-on la clé k?

- adressage direct : T[k]
- table de hachage : T[h(k)] avec h une fonction de hachage

Fonction de hachage

définition

Soit h une fonction de hachage :

$$h: U \to \{0, 1, \dots, m-1\}$$

h(k) est la valeur de hachage de la clé k

- ▶ h établit une correspondance entre U et les cases de T, la table de hachage
- le but de la fonction de hachage est de réduire l'intervalle des indices du tableau à gérer
 - → on gère m valeurs au lieu de |U|

Gestion des collisions

les collisions

Comme $|U| \gg m$ il y aura des collisions, c'est à dire :

$$\exists\,\mathtt{k}\,\,\text{et}\,\,\mathtt{k}'\in\textit{U}\mid\mathtt{h}(\mathtt{k})=\mathtt{h}(\mathtt{k}')\,\,\text{avec}\,\,\mathtt{k}\neq\mathtt{k}'$$

L'idée est de trouver une fonction h qui semble aléatoire afin de limiter le nombre de collisions

Attention : h est une fonction déterministe sinon on ne pourrait pas retrouver nos données

C'est pourquoi on parle de fonction de hachage

Exemple d'une collision

- Même s'il est possible de limiter le nombre de collisions, elles sont inévitables par construction
- Il existe des techniques pour gérer ces collisions

Définitions
Fonction de hachage
Gestion des collisions
Résolution des collisions par chaînage
Opérations avec le chaînage

Résolution des collisions par chaînage

solution par chaînage

- Tous les éléments hachés vers la même case sont placés dans une liste chaînée
- La case T[i] contient le pointeur vers la liste des éléments de clés k tels que h(k)=i
- Si T[i] ne désigne rien, alors il pointe sur null

Definitions
Fonction de hachage
Gestion des collisions
Résolution des collisions par chaînage

Exemple

mise en œuvre du chaînage sur l'exemple précédent П k4 k9 k2 k1 k5. k6 k7 m-1

Opérations avec le chaînage

Les opérations sur T sont faciles à mettre en œuvre avec le chaînage :

- insérerHachageChaîné(T,x):
 - insertion de x en tête de la liste T[h(clé(x))]
- rechercherHachageChaîné(T,k):
 - recherche de l'élément de clé k dans T[h(k)]
- supprimerHachageChaîné(T,x):
 - supprime x de la liste T[h(clé(x))]

Voir le cours sur les listes chaînées pour connaître la complexité de ces opérations.

- Comportement très mauvais dans le pire cas.
- ➤ Sa performance dépend de la performance de h

Sommaire

- 1 Tables à adressage directe
- 2 Les Tables de Hachage
- Fonctions de hachage
 - Définition
 - Méthode de la division
 - Méthode de la multiplication
 - Hachage universel
- Adressage ouvert

 $=(a^2-5)^2$

Définition

une bonne fonction de hachage ou hachage uniforme simple

- But : chaque clé a autant de chance d'être hachée vers l'une quelconque des m cases de T (impossible à vérifier en pratique)
- Condition d'existence : les clés k sont issues d'une distribution uniforme aléatoire

exemple : $0 \le k \le 1$ avec $h(k) = \lfloor km \rfloor$

En pratique on recherche une fonction de hachage permettant, par exemple, à 2 clés ayant des motifs très voisins d'avoir des valeurs de hachage très différentes

Méthode de la division Méthode de la multiplication

Définition (suite)

clés et fonction de hachage

- Les clés sont des entiers, le plus souvent
- Sinon trouver un moyen de les voir comme tel
- Exemple:
 - une chaîne de caractères peut être convertie dans une certaine base (ici, base 128) :
 - la chaîne "pt" (caractères ascii 112 et 116) donne 14452 en base 128 : 112 × 128 + 116 = 14452

Dans la suite du cours, on suppose que les clés sont des entiers naturels $\mathbb N$

Méthode de la division

principe

$$h(k) = k \mod m$$

- Méthode très rapide
- 2 clés proches peuvent avoir des clés très différentes
- Attention à la valeur choisie pour m :
 - $= 2^p \operatorname{car} h(k)$ serait les p bits de poids faible de k. Tous les bits de la clé ne sont pas utilisés
 - $m \neq 2^p 1$ si k est une chaîne de caractères en base 2^p car une permutation des caractères ne modifie pas h(k)
 - m est un nombre premier éloigné d'une puissance de 2, exemple :
 - 2000 chaînes de caractères 8 bits avec m = 701
 - 3 échecs en moyenne, ce qui est un bon rapport

Méthode de la multiplication

principe

$$h(k) = |m(kA \mod 1)| \text{ avec } 0 < A < 1$$

$$kA \mod 1 = kA - |kA|$$
 (partie décimale de kA)

- o ici m n'est plus une valeur critique
 - m est le plus souvent une puissance de 2
 - fonctionne mieux avec certaines valeurs de A comme le nombre d'or (cf [Knuth 73] : "The art of Computer Programming"): $A \simeq \frac{\sqrt{5}-1}{2}$

Hachage universel

mise en échec d'une fonction de hachage figée

- Il est possible de trouver n clés hachées vers la même case de T
 - acte de malveillance ou mauvais choix des identifiants pour une table des symboles (?)
 - ightharpoonup temps de recherche en O(n) en moyenne
 - choix aléatoire d'une fonction de hachage pour sortir du cas défavorable
- Cela définit le hachage universel
 - bonnes performances en moyenne à cause du caractère aléatoire du choix de la fonction de hachage

Hachage universel (suite)

collection finie de fonctions de hachage

- Soit $\mathcal H$ une collection finie de fonctions de hachage $h:\ \textbf{\textit{U}} \to \{0,\dots,m-1\}$
 - • H est universelle si ∀1, k ∈ U avec 1 ≠ k, le nombre de fonctions h ∈ H telles que h(1) = h(k) vaut au plus |H|/m
- Probabilité de collision : 1/m

Conception d'une classe universelle de fct de hachage

exemple

- Conception d'une classe universelle avec les paramètres :
 - soit p un grand nombre premier tel que toute clé k est plus petite que p
 - soit m la taille de la table de hachage (p > m)
 - soit $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ et $\mathbb{Z}_p^* = \{1, \dots, p-1\}$
 - soit $h_{a,b}(k)$ une fonction de hachage pour tout $a \in \mathbb{Z}_p^*$ et tout $b \in \mathbb{Z}_p$:

$$h_{a,b}(k) = ((ak + b) \bmod p) \bmod m$$

ightharpoonup la classe $\mathcal{H}_{p,m}$ est universelle :

$$\mathcal{H}_{p,m} = \{\mathtt{h}_{a,b} : a \in \mathbb{Z}_p^* \ \mathsf{et} \ b \in \mathbb{Z}_p \}$$

- ullet il y a p(p-1) fonctions de hachage différentes dans $\mathcal{H}_{p,m}$
- la probabilité de collision est 1/m

Sommaire

- Tables à adressage directe
- 2 Les Tables de Hachage
- 3 Fonctions de hachage
- Adressage ouvert
 - Sondage linéaire
 - Sondage quadratique
 - Double hachage

Adressage ouvert

principe

- Les éléments de l'ensemble dynamiques sont dans T
- ightharpoonup T peut donc se remplir complètement, m < |U|
- La recherche d'une valeur se fait :
 - En suivant une chaîne de valeurs d'indices de T plutôt que suivant une liste chaînée
- L'insertion se fait en sondant la table de hachage T jusqu'à trouver une case vide

Adressage ouvert

séquence de sondages

- La fonction de hachage est étendue pour inclure le nombre de sondages, ainsi :
 - h : $U \times \{0, 1, \dots, m-1\} \rightarrow \{0, 1, \dots, m-1\}$
- La séquence de valeurs pour les sondages est :

$$\langle h(k,0), h(k,1), h(k,2), ..., k(k,m-1) \rangle$$

qui est une permutation de $\langle 0,1,2,\dots,m-1 \rangle$ pour que toutes les cases puissent être visitées

insertion en adressage ouvert

Algorithme de insertionHacahge(T,k)

```
début

| i ← 0
| répéter
| j ← h(k,i)
| si T[j] = null alors
| retourner j
| sinon
| L i ← i + 1
| jusqu'à i = m
| erreur
| fin
```

■ idem pour la recherche, mais attention à la suppression

Sondage linéaire

principe

- Soit $h': U \to \{0, \dots, m-1\}$ une fonction de hachage auxiliaire
- Soit la fonction de hachage linéaire h :

$$h(\mathtt{k},\mathtt{i}) = (h'(\mathtt{k}) + \mathtt{i}) \, \mathsf{mod} \, \mathtt{m} \quad \mathsf{avec} \quad \mathtt{i} = 0, 1, \dots, \mathtt{m} - 1$$

- première case sondée : T[h'(k)]
- puis T[h'(k)+1],...

Attention : problème de grappes

- longue chaîne de cases occupées
- si i cases pleines précèdent une case vide, la proba qu'elle soit la prochaine à être remplie est (i+1)/m au lieu de 1/m

Sondage quadratique

principe

$$\mathbf{h}(\mathbf{k},\mathbf{i}) = (\mathbf{h}'(\mathbf{k}) + c_1\mathbf{i} + c_2\mathbf{i}^2) \,\mathsf{mod}\,\mathbf{m}$$

avec h' la fonction de hachage auxiliaire

$$i = 0, 1, ..., m-1, c_1 \text{ et } c_2 \neq 0$$

- première case sondée : T[k'(k)]
- les accès suivants sont décalés suivant le numéro du sondage
 - mieux que le sondage linéaire
 - pour utiliser la table en entier, les valeurs de c₁, c₂ et m sont imposées
 - si $h(k_1, 0) = h(k_2, 0)$ alors $h(k_1, i) = h(k_2, i) \forall i$
 - grappe secondaire

Double hachage

principe

Meilleure méthode que l'adressage ouvert

$$h(k,i) = (h_1(k) + i \times h_2(k)) \, \mathsf{mod} \, m$$

avec h_1 et h_2 des fonctions de hachage auxiliaire $i = 0, 1, ..., m-1, c_1$ et $c_2 \neq 0$

- première case sondée : T[h₁(k)]
- les accès suivants sont décalés de h₂(k) mod m
 - mieux que le sondage précédent
 - $sih(k_1,0) = h(k_2,0)$ alors $h(k_1,i) \neq h(k_2,i) \forall i$
 - le décalage varie en fonction de la clé

Exemple

fonction de double hachage

$$h(k, \mathtt{i}) = (h_1(k) + \mathtt{i} \times h_2(k)) \, \mathsf{mod} \, \mathtt{m}$$

• m = 13, $h_1(k) = k \mod 13$ et $h_2(k) = 1 + (k \mod 11)$

			22	1	5							
79			69	98		72		14		50		
0 1	2	3	4	5	6	7	8	9	10	11	12	

insertion de la clé 14

- $14 \equiv 1 \mod 13$ et $14 \equiv 3 \mod 11$
 - $h(14,0) = h_1(14) = 1$ case occupée
 - $h(14, 1) = (h_1(14) + h_2(14)) \mod 13 = 5$ case occupée
 - $h(14,2) = (h_1(14) + 2 \times h_2(14)) \mod 13 = 9$ case libre
- Insertion en case 9

Paramètres du double hachage

- h₂(k) doit être premier avec m pour que T soit parcouru en totalité
 - exemple 1 : m une puissance de 2 et h₂ tjs impair
 - exemple 2 : m premier et h₂ telle que h soit positive inférieure à m
 - h₁(k) = k mod m
 - $h_2(k) = 1 + (k \mod m')$ avec m' légèrement < a m
 - exemple : k = 123456 avec m = 701, m' = 700 on a $h_1(k) = 80$ et $h_2(k) = 257$
- On a m² séquences de sondages
- Schéma proche du hachage uniforme

Compléments

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest et Clifford Stein. Introduction à l'algorithmique, 2^e édition, Dunod, 2002.
- Openald E. Knuth. Sorting and Searching, volume 3 de The Art of Computer Programming. Addison-Wesley, 1973.