Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

21 de março de 2025

Prof. Flaviano W. Fernandes

Sumário

- Introdução
- Vazão ou fluxo
- Lei de conservação da massa
 - Equação da continuidade
- Equação de Bernoulli
- **Aplicações**
- **Apêndice**

Prof. Flaviano W. Fernandes IFPR-Irati

O que é hidrodinâmica?

Dinâmica dos fluidos

Estudo dos fluidos em movimento

Sustentação da aeronave devido ao empuxo.

Chama de uma vela.

Escoamento laminar.

Prof. Flaviano W. Fernandes IFPR-Irati

IFPR-Irati

Viscosidade e escoamento

Escoamento

Do ponto de vista da dificuldade de escoamento do fluido, podemos citar os escoamentos

Laminar: A velocidade das partículas em cada ponto não muda com o tempo.

Turbulento: A velocidade das partículas em cada ponto varia com o tempo.

Viscosidade

Dificuldade de escoamento do fluido

Exemplos de escoamentos laminar e turbulento.

Prof. Flaviano W. Fernandes

Definição de vazão ou fluxo

Fluxo

Volume de fluido que atravessa uma seção transversal do tubo de corrente por unidade de tempo.

$$Z = \frac{\textit{Volume}}{\Delta t}$$

Corollary

Pela definição de fluxo, percebe-se que a sua unidade no SI é metro cúbico por segundo (m³/s).

Vazão de um fluido que sai da abertura de um cano e enche uma piscina.

Prof. Flaviano W. Fernandes IFPR-Irati

Equação da continuidade baseada na Lei da conservação da matéria

Supondo uma quantidade de fluido que percorre uma distância S_1 de área A_1 no intervalo de tempo Δt , o volume ocupado por esse fluido é

$$V = \Delta S_1 A_1$$
.

Mas sabendo que $\Delta S_1 = v_1 \Delta t$, onde v_1 é a velocidade das moléculas do fluido que percorre esse espaço, temos

$$V = v_1 A_1 \Delta t$$
.

Fluxo que atravessa duas seções transversais.

Equação da continuidade como Lei da conservação da matéria (continuação)

O mesmo raciocínio vale se ele atravessar a área A₂ no mesmo intervalo de tempo Δt .

$$V = v_2 A_2 \Delta t$$
.

Supondo um fluido incompressível a massa é conservada e o volume se mantém. Sabendo que $V = Z\Delta t$ temos

$$Z\Delta t = v_1 A_1 \Delta t = v_2 A_2 \Delta t,$$

 $Z = v_1 A_1 = v_2 A_2.$

$$V = A_1 v_1 \Delta t = A_2 v_2 \Delta t$$

Fluido que atravessa um volume V no tempo Δt .

Pressão, velocidade e altura de um fluido em duas regiões distintas (continuação)

Supondo um fluido de volume V e massa m que atravessa a região 1 no intervalo de tempo Δt . O trabalho necessário para deslocá-lo a uma distância s₁ é dado por

$$au_1 = P_1 \underbrace{V_1 \Delta t}_{V_1} \cdot \underbrace{S_1}_{V_1} \cdot \underbrace{V_1 \Delta t}_{V_1} \cdot \underbrace{T_1 = P_1 V_1}_{V_1} \cdot \underbrace{V_1 \Delta t}_{V_1} \cdot \underbrace{V_1 \Delta t}_{V_1}$$

Fluxo que atravessa a região 1

Pressão, velocidade e altura de um fluido em duas regiões distintas (continuação)

O fluido a direita empurra o restante no sentido contrário impedindo o seu deslocamento, isso produz um trabalho negativo, ou seja,

$$au_2 = -rac{oldsymbol{p_2A_2}}{oldsymbol{F_2}}rac{oldsymbol{s_2}}{oldsymbol{v_2}}
onumber \ au_2 = -oldsymbol{p_2A_2} oldsymbol{s_2}
onumber \ au_2 = -oldsymbol{p_2V}.$$

Fluxo que atravessa as regiões 1 e 2.

Corollary

A mesma quantidade de fluido irá atravessar as regiões 1 e 2 nos intervalos ∆t.

Pressão, velocidade e altura de um fluido em duas regiões distintas (continuação)

A força da gravidade é conservativa, de modo que as energias potenciais do fluido nas regiões 1 e 2.

$$E_{p_1} = mgh_1$$

 $E_{p_2} = mgh_2$.

As energias cinéticas que estão associadas ao movimento nas regiões 1 e 2 são

$$E_{c_1} = \frac{1}{2} m v_1^2,$$

$$E_{c_2} = \frac{1}{2} m v_2^2.$$

Fluxo que atravessa as regiões 1 e 2.

Se não houver perdas de energia, a energia mecânica do fluido permanece inalterada, de modo que o trabalho total realizado deve ser igual a variação das energias cinéticas e potenciais,

$$\tau_1 + \tau_2 = \Delta E_m = \Delta E_c + \Delta E_p$$

mas

$$\Delta E_c = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2,$$

$$\Delta E_D = mgh_2 - mgh_1,$$

Substituindo ΔE_m e ΔE_p chegaremos na equação abaixo, onde podemos perceber que a soma dos termos abaixo é invariante para qualquer região do tubo. A dedução abaixo exige muita dedução algébrica, portanto deixaremos a sua deducão no Apêndice B.

$$\frac{p_1}{\rho} + \frac{v_1^2}{2} + gh_1 = \frac{p_2}{\rho} + \frac{v_2^2}{2} + gh_2.$$

Equação de Bernoulli

Pressão, velocidade e altura de um fluido em duas regiões distintas (continuação)

Equação de Bernoulli

Para um fluido não viscoso com escoamento laminar a soma das parcelas hidrostáticas e hidrodinâmicas é a mesma em cada ponto do fluido, no qual vale a equação

$$\frac{p_1}{\rho} + gh_1 + \frac{v_1^2}{2} = \frac{p_2}{\rho} + gh_2 + \frac{v_2^2}{2} = \cdots,$$
 $\frac{p}{\rho} + gh + \frac{v^2}{2} = \text{constante}.$

Corollary

A equação de Bernoulli corresponde na hidrodinâmica à Lei de conservação da energia na mecânica.

Analisando os termos da equação de Bernoulli

Supondo a densidade constante ao longo de todo o fluido, podemos multiplicar todos os termos da equação por ρ e obter a relação

$$\frac{\rho}{\rho} + \rho g h + \rho \frac{v^2}{2} = \text{constante}.$$
 Lei de Stevin

Corollary

Parcela hidrostática ($p + \rho gh$): Corresponde a pressão hidrostática no fluido; Parcela fluidodinâmica ($\rho \frac{v^2}{2}$): Corresponde a pressão hidrodinâmica;

Se o fluido está em repouso $\frac{\rho v^2}{2} = 0$ temos a Lei de Stevin.

Venturímetro

Supondo um escoamento horizontal ($h_1 = h_2$) temos pela equação de Bernoulli

$$p_1 + \rho g h_1 + \frac{\rho v_1^2}{2} = p_2 + \rho g h_2 + \frac{\rho v_2^2}{2},$$

$$p_1 - p_2 = \frac{\rho v_2^2}{2} - \frac{\rho v_1^2}{2}.$$

Pela Lei de Stevin podemos dizer que a variação de pressão entre as regiões 1 e 2 vale

$$p_1 - p_2 = \rho_{Ha}gh$$

Tubo de Venturi.

Venturímetro (continuação)

Pela equação da continuidade temos

$$v_2 = \left(\frac{A_1}{A_2}\right) v_1.$$

Substituindo temos

$$otag egin{align*} rac{A_1}{A_2} v_1 \ \hline p_1 - p_2 &= rac{
ho}{2} rac{v_2^2}{2} - rac{
ho v_1^2}{2}, \ \hline v_1^2 &= 2ghrac{
ho_{Hg}}{
ho} rac{A_2^2}{A_1^2 - A_2^2}. \end{bmatrix}$$

Tubo de Venturi.

Apêndice A. Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	Ε	ϵ , ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	θ
lota	1	ι
Capa	Κ	κ
Lambda	Λ	λ
Mi	Μ	μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	Ρ	ρ
Sigma	Σ	σ
Tau	T	au
Ípsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	X	χ
Psi	Ψ	ψ
Ômega	Ω	ω

Apêndice B. Dedução da equação de Bernoulli

Substituindo ΔE_c e ΔE_p e separando os termos da região 1 da região 2 temos a equação

$$au_1 + rac{1}{2}mv_1^2 + mgh_1 = - au_2 + rac{1}{2}mv_2^2 + \ + mgh_2.$$

Mas mostramos que

$$\tau_1 = p_1 V,$$

$$\tau_2 = -p_2 V.$$

Substituindo na equação acima temos

$$p_1 V + \frac{1}{2} m v_1^2 + mgh_1 = -(-p_2 V) +$$

$$+ \frac{1}{2} m v_2^2 + mgh_2,$$

mas sabemos que $V = \frac{m}{a}$,

$$p_1 \frac{m}{\rho} + \frac{1}{2} m v_1^2 + mgh_1 = p_2 \frac{m}{\rho} + \frac{1}{2} m v_2^2 + mgh_2,$$
 $\frac{p_1}{\rho} + \frac{v_1^2}{2} + gh_1 = \frac{p_2}{\rho} + \frac{v_2^2}{2} + gh_2.$

Referências e observações¹

A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.1, 2.ed., São Paulo, Scipione (2016)

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

Prof. Flaviano W. Fernandes

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.