Design & Analysis of Algorithms -I

Dynamic Programming

Dynamic Programming

- An algorithm design technique (like divide and conquer)
- Divide and conquer
 - Partition the problem into independent/disjoint subproblems
 - Solve the subproblems recursively
 - Combine the solutions to solve the original problem

DP - Two key ingredients

 Two key ingredients for an optimization problem to be suitable for a dynamic-programming solution:

1. optimal substructures

Each substructure is optimal.

(Principle of optimality)

2. overlapping subproblems

Subproblems are dependent.

(otherwise, a divide-andconquer approach is the choice.)

Three basic components

- The development of a dynamic-programming algorithm has three basic components:
 - The recurrence relation (for defining the value of an optimal solution);
 - The tabular computation (for computing the value of an optimal solution);
 - The traceback (for delivering an optimal solution).

Fibonacci numbers

The *Fibonacci numbers* are defined by the following recurrence:

$$F_0 = 0$$

 $F_1 = 1$
 $F_i = F_{i-1} + F_{i-2}$ for $i > 1$.

How to compute F_{10} ?

Dynamic Programming

- Applicable when subproblems are not independent
 - Subproblems share sub-subproblems

E.g.: Fibonacci numbers:

- Recurrence: F(n) = F(n-1) + F(n-2)
- Boundary conditions: F(1) = 0, F(2) = 1
- Compute: F(5) = 3, F(3) = 1, F(4) = 2
- A divide and conquer approach would **repeatedly** solve the common subproblems
- Dynamic programming solves every subproblem just once and stores the answer in a table

Tabular computation

The tabular computation can avoid recomputation.

F_0	$ F_1 $	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9	F_{10}
0	1	1	2	3	5	8	13	21	34	55

Result

The DP Methodology

We typically apply dynamic programming to *optimization problems*. Such problems can have many possible solutions. Each solution has a value, and we wish to find a solution with the optimal (minimum or maximum) value. We call such a solution *an* optimal solution to the problem, as opposed to *the* optimal solution, since there may be several solutions that achieve the optimal value.

- 1. Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal solution
- 3. Compute the value of an optimal solution in a bottom-up fashion
- 4. Construct an optimal solution from computed information
- Steps 1–3 form the basis of a dynamic-programming solution to a problem.
- For the value of an optimal solution, and not the solution itself, then we can
 omit step 4.
- When we do perform step 4, we sometimes maintain additional information during step 3 so that we can easily construct an optimal solution.

The Knapsack Problem

The 0-1 knapsack problem

- A thief robbing a store finds n items: the i-th item is worth v_i dollars and weights w_i pounds (v_i, w_i integers)
- The thief can only carry W pounds in his knapsack
- Items must be taken entirely or left behind
- Which items should the thief take to maximize the value of his load?

The fractional knapsack problem

- Similar to above
- The thief can take fractions of items

The 0-1 Knapsack Problem

- Thief has a knapsack of capacity W
- There are n items: for i-th item value v_i and weight w_i
- Goal:
 - find x_i such that for all $x_i = \{0, 1\}$, i = 1, 2, ..., n
 - $\sum w_i x_i \leq W$ and
 - $\sum x_i v_i$ is maximum

0-1 Knapsack - Greedy Strategy

\$6/pound \$5/pound \$4/pound

- None of the solutions involving the greedy choice (item 1) leads to an optimal solution
 - The greedy choice property does not hold

0-1 Knapsack - Dynamic Programming

- P(i, w) the maximum profit that can be obtained from items 1 to i, if the knapsack has size w
- Case 1: thief takes item i

$$P(i, w) = v_i + P(i - 1, w - w_i)$$

Case 2: thief does not take item i

$$P(i, w) = P(i - 1, w)$$

0-1 Knapsack - Dynamic Programming

Example:

 $\mathbf{0}$

Item	Weight	Value		
1	2	12		
2	1	10		

$$P(i, w) = \max\{v_i + P(i - 1, w - w_i), P(i - 1, w)\}$$

0	1	2	3	4	5
0 *	/ 0 /	0 🗸	0_	0	0
0	0	12 🔻	12,	12	12
0	10+	12 ∢	22	22	22

$$P(1, 1) = P(0, 1) = 0$$

$$P(1, 2) = max\{12+0, 0\} = 12$$

$$P(1, 3) = max\{12+0, 0\} = 12$$

$$P(1, 4) = max\{12+0, 0\} = 12$$

$$P(1, 5) = max\{12+0, 0\} = 12$$

$$P(2, 1) = max\{10+0, 0\} = 10$$

110 ⋅

$$P(3, 1)=P(2,1)=10$$

$$P(4, 1) = P(3,1) = 10$$

$$P(2, 2) = max\{10+0, 12\} = 12$$

$$P(3, 2) = P(2,2) = 12$$

 $P(4, 2) = max\{15+0, 12\} = 15$

$$P(2, 3) = max\{10+12, 12\} = 22$$
 $P(3, 3) = max\{20+0, 22\} = 22$ $P(4, 3) = max\{15+10, 22\} = 25$

$$P(2, 4) = max\{10+12, 12\} = 22$$
 $P(3, 4) = max\{20+10,22\}=30$ $P(4, 4) = max\{15+12, 30\}=30$

$$P(4, 5) = max\{15+22, 32\}=37$$

$$P(2, 5) = max\{10+12, 12\} = 22$$
 $P(3, 5) = max\{20+12,22\} = 32$ $P(4, 5) = max\{15+22, 32\} = 37$

Reconstructing the Optimal Solution

- Item 4
- Item 2
- Item 1

- Start at P(n, W)
- When you go left-up ⇒ item i has been taken
- When you go straight up ⇒ item i has not been taken

Overlapping Subproblems

 \mathcal{E} .g.: all the subproblems shown in grey may depend on P(i-1, w)

Longest Common Subsequence (LCS)

- Application: comparison of two DNA strings
- Ex: $X = \{A B C B D A B \}, Y = \{B D C A B A\}$
- Longest Common Subsequence:
- X = A B C B D A B
- Y = BDCABA
- Brute force algorithm would compare each subsequence of X with the symbols in Y

Longest Common Subsequence

Given two sequences

$$X = \langle x_1, x_2, ..., x_m \rangle$$
$$Y = \langle y_1, y_2, ..., y_n \rangle$$

find a maximum length common subsequence (LCS) of X and Y

• *E.g.*:

$$X = \langle A, B, C, B, D, A, B \rangle$$

- Subsequences of X:
 - A subset of elements in the sequence taken in order
 (A, B, D), (B, C, D, B), etc.

Example

$$X = \langle A, B, C, B, D, A, B \rangle$$
 $X = \langle A, B, C, B, D, A, B \rangle$
 $Y = \langle B, D, C, A, B, A \rangle$ $Y = \langle B, D, C, A, B, A \rangle$

- (B, C, B, A) and (B, D, A, B) are longest common subsequences of X and Y (length = 4)
- (B, C, A), however is not a LCS of X and Y

Brute-Force Solution

- For every subsequence of X, check whether it's a subsequence of Y
- There are 2^m subsequences of X to check
- Each subsequence takes Θ(n) time to check
 - scan Y for first letter, from there scan for second, and so on
- Running time: ⊕(n2^m)

LCS Algorithm

$$X = \langle x_1, x_2, \dots, x_m \rangle$$
 and $Y = \langle y_1, y_2, \dots, y_n \rangle$.

sequence $X = \langle x_1, x_2, \dots, x_m \rangle$, we define the *i*th *prefix* of X, for $i = 0, 1, \dots, m$, as $X_i = \langle x_1, x_2, \dots, x_i \rangle$. For example, if $X = \langle A, B, C, B, D, A, B \rangle$, then $X_4 = \langle A, B, C, B \rangle$ and X_0 is the empty sequence.

- Define c[i,j] to be the length of LCS of X_i and Y_j
- Then the length of LCS of X and Y will be c[m,n]

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1, j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\ \max(c[i, j-1], c[i-1, j]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

LCS-LENGTH(X, Y) $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ $x_i = X$. length $x_i =$

for
$$i = 1$$
 to m

$$c[i, 0] = 0$$

$$for j = 0 \text{ to } n$$

$$c[0, j] = 0$$

$$c[0, j] = 0$$

$$for i = 1 \text{ to } m$$

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1, j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\ max(c[i, j-1], c[i-1, j]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

for
$$i = 1$$
 to m
for $j = 1$ to n
if $x_i == y_j$
 $c[i, j] = c[i - 1, j - 1] + 1$

11
$$c[i, j] = c[i - 1, j - 1] + 1$$

12 $b[i, j] = \text{``} \text{``}$
13 **elseif** $c[i - 1, j] \ge c[i, j - 1]$

14
$$c[i, j] = c[i - 1, j]$$

15 $b[i, j] = \text{``\tau'}$
16 **else** $c[i, j] = c[i, j - 1]$
17 $b[i, j] = \text{``\tau'}$

return c and b

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- We start with i = j = 0 (empty substrings of x and y)
- Since X_0 and Y_0 are empty strings, their LCS is always empty (i.e. c[0,0]=0)
- LCS of empty string and any other string is empty, so for every i and j: c[0, j] = c[i, 0] = 0

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- When we calculate c[i,j], we consider two cases:
- First case: x[i]=y[j]:
 - one more symbol in strings X and Y matches, so the length of LCS X_i and Y_j equals to the length of LCS of smaller strings X_{i-1} and Y_{i-1} , plus 1

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- Second case: x[i] != y[j]
 - As symbols don't match, our solution is not improved, and the length of $LCS(X_i, Y_j)$ is the same as before (i.e. maximum of $LCS(X_i, Y_{j-1})$ and $LCS(X_{i-1}, Y_j)$

Why not just take the length of LCS(X_{i-1}, Y_{j-1})?

3. Computing the Length of the LCS

Additional Information

$$c[i, j] = \begin{cases} 0 & \text{if } i, j = 0 \\ c[i-1, j-1] + 1 & \text{if } x_i = y_j \\ \max(c[i, j-1], c[i-1, j]) & \text{if } x_i \neq y_j \end{cases}$$

$$b \& c: \begin{cases} 0 & 1 & 2 & 3 & n \\ v & A & C & D & F \end{cases}$$

		7 J:					
0	×i	0	0	0	0	0	0
1	Α	0					
2	В	0			c[i-1,j]		
3	С	0		▼ c[i,j-1]			
		0					

A matrix b[i, j]:

- For a subproblem [i, j] it tells us what choice was made to obtain the optimal value
- If $x_i = y_j$ b[i, j] = "\"
- Else, if
 c[i 1, j] ≥ c[i, j-1]
 b[i, j] = "↑"
 else

$$b[i, j] = " \leftarrow "$$

LCS-LENGTH(X, Y, m, n)

```
1. for i \leftarrow 1 to m
         do c[i, 0] \leftarrow 0
                                      The length of the LCS if one of the sequences
   for j \leftarrow 0 to n
                                      is empty is zero
        do c[0, j] \leftarrow 0
5. for i \leftarrow 1 to m
          do for j \leftarrow 1 to n
6.
                   do if x_i = y_j
7.
                                                                         Case 1: x_i = y_i
                          then c[i, j] \leftarrow c[i-1, j-1] + 1
8.
                                  b[i, j ] ← " \ "
9.
10.
                          else if c[i - 1, j] \ge c[i, j - 1]
                                    then c[i, j] \leftarrow c[i - 1, j]
11.
                                           b[i, j] \leftarrow "\uparrow"
12.
                                                                         Case 2: x_i \neq y_i
                                    else c[i, j] \leftarrow c[i, j - 1]
13.
                                          b[i, j] \leftarrow "\leftarrow"
14.
15.return c and b
                                                            Running time: \Theta(mn)
```

Example

$$\begin{array}{c} X = \langle A, B, C, B, D, A \rangle \\ Y = \langle B, D, C, A, B, A \rangle \end{array} \\ c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1,j-1]+1 & \text{if } x_i = y_j \\ \max(c[i,j-1],c[i-1,j]) & \text{if } x_i \neq y_j \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ y_j & B & D & C & A & B & A \\ b[i,j] = " & " & 0 & x_i & 0 & 0 & 0 & 0 & 0 \\ Else & if & 1 & A & 0 & 0 & 0 & 0 & 0 & 0 \\ c[i-1,j-1] \geq c[i,j-1] \geq B & 0 & 1 & +1 & +1 & 1 & 2 & +2 \\ b[i,j] = " \uparrow " & 3 & C & 0 & 1 & 1 & 2 & 2 & 2 & 2 \\ else & 4 & B & 0 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\ else & 4 & B & 0 & 1 & 1 & 2 & 2 & 3 & 4 & 3 \\ b[i,j] = " \leftarrow " & 5 & D & 0 & 1 & 2 & 2 & 2 & 3 & 3 & 4 \\ 7 & B & 0 & 1 & 2 & 2 & 2 & 3 & 3 & 4 & 4 & 4 \\ \end{array}$$

4. Constructing a LCS

- Start at b[m, n] and follow the arrows
- When we encounter a "

 ^{*}

 ^{*}

 in b[i, j] ⇒ x_i = y_j is an element of the LCS

		0	1	2	3	4	5	6
		Υi	В	D	С	Α	В	Α
0	X i	0	0	0	0	0	0	0
1	Α	0	← 0	← 0	← 0	× 1	←1	1
2	В	0	1	(1)	←1	1	~ 2	←2
3	С	0	1		2	€(2)	↑ 2	↑ 2
4	В	0	1	1	2→((3)	← 3
5	D	0	↑ 1	× 2	← 2	← 2	(∞	← 3
6	Α	0	1	← 2	← 2	× α)←ო	4
7	В	0	1	↑ 2	↑ 2	← ფ	× 4	4

PRINT-LCS(b, X, i, j)

```
1. if i = 0 or j = 0
                                 Running time: \Theta(m + n)
     then return
3. if b[i, j] = " \setminus "
      then PRINT-LCS(b, X, i - 1, j - 1)
            print x;
5.
   elseif b[i, j] = "↑"
7.
            then PRINT-LCS(b, X, i - 1, j)
            else PRINT-LCS(b, X, i, j - 1)
8.
```

Initial call: PRINT-LCS(b, X, length[X], length[Y])

Improving the Code

- If we only need the length of the LCS
 - LCS-LENGTH works only on two rows of c at a time
 - The row being computed and the previous row
 - We can reduce the asymptotic space requirements by storing only these two rows

LCS Algorithm Running Time

- LCS algorithm calculates the values of each entry of the array c[m,n]
- So what is the running time?

O(m*n)

since each c[i,j] is calculated in constant time, and there are m*n elements in the array