Devoir surveillé n°04

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

Supposons que A > 0, X \ge 0 et X \neq 0. Il existe donc $i_0 \in [[1, n]]$ tel que $X_{i_0} > 0$. Alors, pour tout $i \in [[1, n]]$,

$$(AX)_i = \sum_{i=1}^n A_{i,j} X_j \ge A_{i,i_0} X_{i_0} > 0$$

Soit $(i, j) \in [1, n]^2$. Alors, par inégalité triangulaire,

$$|(AB)_{i,j}| = \left|\sum_{k=1}^{n} A_{i,k} B_{k,j}\right| \le \sum_{k=1}^{n} |A_{i,k}| |B_{k,j}| = (|A||B|)_{i,j}$$

On en déduit que $|AB| \le |A||B|$.

2 Pour le produit scalaire canonique de $\mathcal{M}_{n,1}(\mathbb{R})$, l'inégalité de Cauchy-Schwarz est $|(X,Y)| \leq ||X|| ||Y||$. En prenant $X = (|z_1|, \dots, |z_n|)^T$ et $Y = (|w_1|, \dots, |w_n|)^T$, on obtient bien l'inégalité voulue.

3 On a alors $|1+z|^2=(1+|z|)^2$ ou encore $(1+z)(1+\overline{z})=1+2|z|+|z|^2$. Sachant que $z\overline{z}=|z|^2$, on obtient $\operatorname{Re}(z)=|z|\geq 0$. De plus, $|z|^2=\operatorname{Re}(z)^2+\operatorname{Im}(z)^2$ donc $\operatorname{Im}(z)=0$. Ceci signifie que $z\in\mathbb{R}_+$. Supposons maintenant que |z+z'|=|z|+|z'|. En divisant par |z|>0 et en posant $\alpha=z'/z$, on obtient $|1+\alpha|=1+|\alpha|$. D'après ce qui précède, $\alpha\in\mathbb{R}_+$.

Comme les z_i ne sont pas tous nuls, on peut quitte à les réordonner, supposer que $z_1 \neq 0$. Notons alors θ un argument de z_1 . On a donc alors $z_1 = e^{i\theta}|z_1|$. Soit $k \in [2, n]$. Par inégalité triangulaire,

$$\left| \sum_{j=1}^{n} z_j \right| \le |z_1 + z_k| + \sum_{j=1, j \ne k}^{n} |z_j| \le \sum_{j=1}^{n} |z_j|$$

Or, par hypothèse, $\left|\sum_{i=1}^{n} z_{i}\right| = \sum_{i=1}^{n} |z_{i}|$ donc

$$|z_1 + z_k| + \sum_{j=1, j \neq k}^{n} |z_j| = \sum_{j=1}^{n} |z_j|$$

puis $|z_1 + z_k| = |z_1| + |z_k|$. Il existe donc $\alpha \in \mathbb{R}_+$ tel que $z_k = \alpha z_1$ d'après la question précédente. On a alors $|z_k| = \alpha |z_1|$ de sorte que

$$z_k = \alpha z_1 = \alpha e^{i\theta} |z_1| = e^{i\theta} |z_k|$$

5 II est clair que $\chi_A = X^2 - (a+d)X + (ad-bc)$. On en déduit que

$$\Delta = (a+d)^2 - 4(ad-bc) = a^2 + d^2 - 2ad + 4bc = (a-d)^2 + 4bc$$

6 D'après la question précédente, $\Delta \ge 4bc > 0$. χ_A possède donc deux racines réelles distinctes λ et μ . On peut supposer que $\lambda < \mu$. Ainsi A possède deux valeurs propres distinctes λ et μ : elle est donc diagonalisable et semblable à $\begin{pmatrix} \mu & 0 \\ 0 & \lambda \end{pmatrix}$.

1

The Remarquous que $\lambda = \frac{1}{2}(a+d-\sqrt{\Delta})$ et $\mu = \frac{1}{2}(a+d+\sqrt{\Delta})$. Comme $\Delta > 0, -\sqrt{\Delta} < \sqrt{\Delta}$ et $\lambda < \mu$. Par ailleurs, $\lambda + \mu = a+d > 0$ donc $-\lambda < \mu$. Ainsi $|\lambda| < \mu$.

Posons $D = \begin{pmatrix} \mu & 0 \\ 0 & \lambda \end{pmatrix}$. Il existe alors $P \in GL_2(\mathbb{R})$ telle que $A = PDP^{-1}$. On a alors $A^k = PD^kP^{-1}$ et $D^k = P^{-1}A^kP$ pour tout $k \in \mathbb{N}$. Les applications $M \in \mathcal{M}_2(\mathbb{R}) \mapsto PMP^{-1}$ et $M \in \mathcal{M}_2(\mathbb{R}) \mapsto P^{-1}MP$ sont linéaires donc continues $(\mathcal{M}_2(\mathbb{R}))$ est de dimension finie). On en déduit que la suite (A^k) converge si et seulement si la suite D^k converge.

La suite (A^k) converge si et seulement si $\mu \in]-1,1]$ et $\lambda \in]-1,1]$. Mais comme $|\lambda| < \mu$, si $\mu < 1$, la suite (A^k) converge vers la matrice nulle. On en déduit que (A^k) converge vers une matrice non nulle si et seulement si $\mu = 1$ et dans ce cas,

elle converge vers $L = P \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} P^{-1}$. Par invariance du rang par similitude, rg(L) = 1. De plus, $L^2 = L$ donc L est une matrice de projecteur.

9 Dans ce cas,

$$\chi_B = X^2 - (2 - \alpha - \beta)X + (1 - \alpha)(1 - \beta) - \alpha\beta = X^2 - (2 - \alpha - \beta)X + 1 - \alpha - \beta = (X - 1)(X - (1 - \alpha - \beta))$$

$$\label{eq:comme} \begin{split} & \text{Comme } \alpha+\beta>0, \chi_B \text{ possède deux racines distinctes, à savoir } 1 \text{ et } 1-\alpha-\beta \text{ : elle est donc diagonalisable et semblable} \\ & \text{à la matrice} \begin{pmatrix} 1 & 0 \\ 0 & 1-\alpha-\beta \end{pmatrix}. \text{ Or } \text{Ker}(B-I_2) = \text{vect} \begin{pmatrix} \beta \\ \alpha \end{pmatrix} \text{ et } \text{Ker}(B-(1-\alpha-\beta)I_2) = \text{vect} \begin{pmatrix} -1 \\ 1 \end{pmatrix} \text{). On peut donc} \\ & \text{choisir } S = \begin{pmatrix} \beta & -1 \\ \alpha & 1 \end{pmatrix}. \end{split}$$

Comme B est à coefficients strictement positifs, ce qui précède montre que la suite (B^k) converge vers la matrice

$$\Lambda = S \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} S^{-1} = \frac{1}{\alpha + \beta} \begin{pmatrix} \beta & -1 \\ \alpha & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -\alpha & \beta \end{pmatrix} = \frac{1}{\alpha + \beta} \begin{pmatrix} \beta & \beta \\ \alpha & \alpha \end{pmatrix}$$

11 Tout d'abord, $\|\cdot\|_{\infty}$ est bien à valeurs dans \mathbb{R}_+ .

Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $||A||_{\infty} = 0$. Alors, pour tout $i \in [[1, n]]$, $\sum_{j=1}^n |A_{i,j}| = 0$. Comme tous les termes de ces sommes sont positifs, ils sont nuls. On en déduit que A = 0.

Soient maintenant $\lambda \in \mathbb{C}$ et $A \in \mathcal{M}_n(\mathbb{C})$. Alors, comme $|\lambda| \geq 0$,

$$\|\lambda\mathbf{A}\|_{\infty} = \max_{1 \leq i \leq n} \left(\sum_{j=1}^{n} |\lambda| |\mathbf{A}_{i,j}| \right) = \max_{1 \leq i \leq n} |\left(|\lambda| \sum_{j=1}^{n} |\mathbf{A}_{i,j}| \right) = |\lambda| \max_{1 \leq i \leq n} |\left(\sum_{j=1}^{n} |\mathbf{A}_{i,j}| \right) = |\lambda| \|\mathbf{A}\|_{\infty}$$

Soit $i \in [1, n]$. Par inégalité triangulaire,

$$\sum_{i=1}^{n} |\mathbf{A}_{i,j} + \mathbf{B}_{i,j}| \le \sum_{i=1}^{n} |\mathbf{A}_{i,j}| + \sum_{i=1}^{n} |\mathbf{B}_{i,j}| \le ||\mathbf{A}||_{\infty} + ||\mathbf{B}||_{\infty}$$

On en déduit que

$$\|\mathbf{A} + \mathbf{B}\|_{\infty} = \max_{1 \le i \le n} \sum_{i=1}^{n} |\mathbf{A}_{i,j} + \mathbf{B}_{i,j}| \le \|\mathbf{A}\|_{\infty} + \|\mathbf{B}\|_{\infty}$$

On a bien prouvé que $\|\cdot\|_{\infty}$ était une norme.

Soit $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$. Soit $i \in [1, n]$.

$$\begin{split} \sum_{j=1}^{n} |(AB)_{i,j}| &= \sum_{j=1}^{n} \left| \sum_{k=1}^{n} A_{i,k} B_{k,j} \right| \\ &\leq \sum_{j=1}^{n} \sum_{k=1}^{n} |A_{i,k}| |B_{k,j}| \quad \text{par inégalité triangulaire} \\ &= \sum_{k=1}^{n} \sum_{j=1}^{n} |A_{i,k}| |B_{k,j}| \\ &= \sum_{k=1}^{n} |A_{i,k}| \left(\sum_{j=1}^{n} |B_{k,j}| \right) \\ &\leq \sum_{k=1}^{n} |A_{i,k}| \|B\|_{\infty} \\ &= \|B\|_{\infty} \sum_{k=1}^{n} |A_{i,k}| \leq \|B\|_{\infty} \|A\|_{\infty} \end{split}$$

Par conséquent, $\|AB\|_{\infty} \leq \|A\|_{\infty} \|B\|_{\infty}$. La norme $\|\cdot\|_{\infty}$ est donc sous-multiplicative.

12 Soit $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$. Soit $(i, j) \in [1, n]^2$. Par inégalité triangulaire et en utilisant la question 2,

$$|(AB)_{i,j}| = \left| \sum_{k=1}^{n} A_{i,k} B_{k,j} \right| \le \left(\sum_{k=1}^{n} |A_{i,k}|^2 \right)^{1/2} \left(\sum_{k=1}^{n} |B_{k,j}|^2 \right)^{1/2}$$

On en déduit que

$$\|\mathbf{A}\mathbf{B}\|_{2}^{2} = \sum_{1 \leq i, j \leq n} |(\mathbf{A}\mathbf{B})_{i, j}|^{2} \leq \sum_{1 \leq i, j \leq n} \left(\sum_{k=1}^{n} |\mathbf{A}_{i, k}|^{2}\right) \left(\sum_{k=1}^{n} |\mathbf{B}_{k, j}|^{2}\right) = \left(\sum_{i=1}^{n} \sum_{k=1}^{n} |\mathbf{A}_{i, k}|^{2}\right) \left(\sum_{j=1}^{n} \sum_{k=1}^{n} |\mathbf{B}_{k, j}|^{2}\right) = \|\mathbf{A}\|_{2}^{2} \|\mathbf{B}\|_{2}^{2}$$

Puis $||AB||_2 \le ||A||_2 ||B||_2$.

Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $\nu(A) = 0$. Comme N est une norme $S^{-1}AS = 0$ puis A = 0. Soit $(\lambda, A) \in \mathbb{C} \times \mathcal{M}_n(\mathbb{C})$. Alors $\nu(\lambda A) = N(\lambda S^{-1}AS) = |\lambda|N(S^{-1}AS) = |\lambda|\nu(A)$. Soit $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$. Alors

$$\nu(A + B) = N(S^{-1}AS + S^{-1}BS) < N(S^{-1}AS) + N(S^{-1}BS) = \nu(A) + \nu(B)$$

Enfin,

$$\nu(AB) = N((S^{-1}AS)(S^{-1}BS)) < N(S^{-1}AS)N(S^{-1}BS) = \nu(A)\nu(B)$$

Donc ν est également une norme sous-multiplicative sur $\mathcal{M}_n(\mathbb{C})$.

14 Les matrices A et S⁻¹AS sont semblables donc possèdent le même spectre. Ainsi $\rho(A) = \rho(S^{-1}AS)$.

15 χ_A est scindé sur $\mathbb C$ donc A est trigonalisable. A est trigonalisable donc est semblable à une matrice triangulaire T dont on note $\lambda_1, \ldots, \lambda_n$ les coefficients diagonaux. Pour $k \in \mathbb N^*$, A^k est alors semblable à la matrice triangulaire T^k dont les coefficients diagonaux sont $\lambda_1^k, \ldots, \lambda_n^k$. La question précédente permet d'affirmer que

$$\rho(A^k) = \rho(T^k) = \max_{1 \leq i \leq n} |\lambda_i^k| = \left(\max_{1 \leq i \leq n} |\lambda_i|\right)^k = \rho(T)^k = \rho(A)^k$$

De même, αA est semblable à αT donc

$$\rho(\alpha A) = \rho(\alpha T) = \max_{1 \le i \le n} |\alpha \lambda_i| = \|\alpha| \max_{1 \le i \le n} |\lambda_i| = |\alpha| \rho(T) = |\alpha| \rho(A)$$

Soit λ une valeur propre de A. Notons X un vecteur propre associé et H la matrice de $\mathcal{M}_n(\mathbb{C})$ dont toutes les colonnes sont égales à H. Comme X \neq 0, H \neq 0. De plus, AH = λ H. On en déduit que

$$|\lambda|N(H) = N(\lambda H) = N(AH) \le N(A)N(H)$$

Comme N(H) > 0, $|\lambda| \neq N(A)$. Par conséquent,

$$\rho(A) = \max_{\lambda \in Sp(A)} |\lambda| \le N(A)$$

17 On peut déjà dire que $D_{\tau}^{-1}TD_{\tau}$ est triangulaire supérieure comme produit de telles matrices. Ainsi

$$\forall (i, j) \in [1, n]^2, i > j \implies (D_{\tau}^{-1}TD)_{i,j} = 0$$

De plus, pour $(i, j) \in [1, n]^2$ tel que $i \le j$,

$$(\mathbf{D}_{\tau}^{-1}\mathbf{T}\mathbf{D})_{i,j} = \sum_{k=1}^{n} \sum_{\ell=1}^{n} (\mathbf{D}_{\tau}^{-1})_{i,k} \mathbf{T}_{k,\ell} (\mathbf{D}_{\tau})_{k,\ell} = (\mathbf{D}_{\tau}^{-1})_{i,i} \mathbf{T}_{i,j} (\mathbf{D}_{\tau})_{j,j} = \tau^{j-i} \mathbf{T}_{i,j}$$

18 D'après la question précédente, pour tout $(i, j) \in [1, n]^2$, $i \neq j \implies \lim_{\tau \to 0} (D_{\tau}^{-1}TD)_{i,j} = 0$ et $(D_{\tau}^{-1}TD)_{i,i} = T_{i,i}$. On en déduit que $\lim_{\tau \to 0} D_{\tau}^{-1}TD_{\tau} = \operatorname{diag}(T_{1,1}, \dots, T_{n,n}) = L$. De plus, pour tout $\tau \in \mathbb{R}^*$, on a par inégalité triangulaire

$$\|\|D_{\tau}^{-1}TD_{\tau}\|_{\infty} - \|L\|_{\infty}\| \le \|D_{\tau}^{-1}TD_{\tau} - L\|_{\infty}$$

donc

$$\lim_{\tau \to 0} \|D_\tau^{-1}TD_\tau\|_\infty = \|L\|_\infty = \max_{1 \le i \le n} |T_{i,i}| = \rho(T)$$

Par définition de le limite, il existe donc $\delta > 0$ tel que

$$\forall \tau \in \mathbb{R}, \ |\tau| \leq \delta \implies \|D_{\tau}^{-1}TD_{\tau}\|_{\infty} \leq \rho(T) + \epsilon$$

[19] Soit A ∈ $\mathcal{M}_n(\mathbb{C})$. Alors A est semblable à une matrice triangulaire T. On choisit alors $\tau \in \mathbb{R}^*$ tel que $|\tau| \le \delta$ où δ est défini dans la question précédente. On pose enfin N(M) = $\|D_{\tau}^{-1}MD_{\tau}\|_{\infty}$ pour M ∈ $\mathcal{M}_n(\mathbb{C})$. La norme $\|\cdot\|_{\infty}$ est sous-multiplicative d'après la question 11 donc N est également une norme sous-multiplicative d'après la question 13. La question précédente et la question 14 montrent alors que

$$N(A) = \|D_\tau^{-1}TD_\tau\|_\infty \leq \rho(T) + \epsilon = \rho(A) + \epsilon$$

20 Supposons que $\rho(A) < 1$. Soit alors $\epsilon > 0$ tel que $\rho(A) + \epsilon < 1$ (on peut par exemple prendre $\epsilon = \frac{1 - \rho(A)}{2}$). On choisit alors la norme N telle que précédemment. Par sous-multiplicativité,

$$\forall k \in \mathbb{N}^*, \ \mathrm{N}(\mathrm{A}^k) < \mathrm{N}(\mathrm{A})^k < (\rho(\mathrm{A}) + \varepsilon)^k$$

Puisque $0 \le \rho(A) + \epsilon < 1$, $\lim_{k \to +\infty} (\rho(A) + \epsilon)^k$ puis $\lim_{k \to +\infty} N(A^k) = 0$ i.e. (A^k) converge vers la matrice nulle.

Réciproquement supposons que (A^k) converge vers la matrice nulle. On se donne N une norme sous-multiplicative sur $\mathcal{M}_n(\mathbb{C})$ (par exemple la norme $\|\cdot\|_{\infty}$). D'après la question **16**

$$\forall k \in \mathbb{N}, \ 0 < \rho(A^k) < N(A^k)$$

On en déduit avec la question 15 que

$$\lim_{k \to +\infty} \rho(A)^k = \lim_{k \to +\infty} \rho(A^k) = 0$$

Ceci implique que $\rho(A) < 1$.

21 La matrice A étant symétrique réelle, elle est diagonalisable et ses sous-espaces propres sont orthogonaux.

Supposons que r = 0. Alors 0 est l'unique valeur propre de A. A étant diagonalisable, A est semblable à la matrice nulle : A est donc nulle. On en déduit par l'absurde que r > 0.

23 Comme A est symétrique réelle, il existe une base orthonormée $(X_1, ..., X_n)$ de $\mathcal{M}_{n,1}(\mathbb{R})$ formée de vecteurs propres

de A. On note alors λ_k la valeur propre associée au vecteur propre X_k . Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$ unitaire. Alors $X = \sum_{k=1}^{n} (X_k \mid X) X_k$. Comme (X_1, \dots, X_n) est orthonormée,

$$X^{\mathsf{T}}AX = \sum_{k=1}^{n} \lambda_k (X_k \mid X)^2 \le \sum_{k=1}^{n} \mu (X_k \mid X)^2 = \mu \|X\|_2^2 = \mu$$

24 Supposons qu'on ait égalité dans l'inégalité précédente. Alors

$$\sum_{k=1}^{n} (\mu - \lambda_k)(X \mid X_k)^2 = 0$$

Les termes de cette somme étant positifs, $(\mu - \lambda_k)(X \mid X_k)^2 = 0$ pour tout $k \in [1, n]$. On en déduit que $(\mu - \lambda_k)(X \mid X_k) = 0$ pour tout $k \in [1, n]$. Alors

$$AX = \sum_{k=1}^{n} \lambda_{k}(X \mid X_{k})X_{k} = \sum_{k=1}^{n} \mu(X \mid X_{k})X_{k} = \mu X$$

Soit $X \in \mathcal{M}_n(\mathbb{R})$ unitaire. Alors

$$|X \mathsf{T} A X| \le |X^\mathsf{T}| |A| |X| = |X|^\mathsf{T} A |X|$$

car A est positive. De plus,

$$\||\mathbf{X}|\|_2^2 = \sum_{k=1}^n |\mathbf{X}_k|^2 = \sum_{k=1}^n \mathbf{X}_k^2 = \|\mathbf{X}\|_2^2 = 1$$

donc |X| est également unitaire. D'après la question précédente, $|X|^TA|X| \leq \mu$.

26 Soit λ une valeur propre de A. Notons X un vecteur propre unitaire associé à λ. D'après la question précédente,

$$|\lambda| = |X^T A X| < \mu$$

De plus, la question précédente montre aussi que $\mu \ge 0$. Ainsi, pour tout $\lambda \in Sp(A)$, $|\lambda| \le \mu = |\mu|$. On en déduit que $r = \mu$.

27 Soit X un vecteur propre de A unitaire associé à la valeur propre r. D'après la question 25 et la question précédente,

$$r = |r| = |\mathbf{X}^{\mathsf{T}} \mathbf{A} \mathbf{X}| \le |\mathbf{X}|^{\mathsf{T}} \mathbf{A} |\mathbf{X}| \le \mu = r$$

On en déduit notamment que $|X|^T A |X| = r = \mu$. D'après la question 24, |X| est donc un vecteur propre associé à la valeur propre r.

Comme A > 0 et $|X| \ge 0$, la question 1 montre que A|X| = r|X| > 0. On en déduit que |X| > 0.

28 On a de plus, |AX| = |rX| = r|X| = A|X|. Soit $i \in [1, n]$. On a donc

$$\left| \sum_{i=1}^{n} A_{i,j} X_{j} \right| = \sum_{i=1}^{n} A_{i,j} |X_{j}| = \sum_{i=1}^{n} |A_{i,j}| X_{j}|$$

D'après la quetsion 4,

$$\exists \theta \in \mathbb{R}, \ \forall j \in \llbracket 1, n \rrbracket, \ \mathbf{A}_{i,j} \mathbf{X}_j = e^{i\theta} | \mathbf{A}_{i,j} \mathbf{X}_j | = e^{i\theta} \mathbf{A}_{i,j} \mathbf{X}_j$$

Comme A > 0, les $A_{i,j}$ ne sont jamais nuls. Ainsi

$$\forall j \in \llbracket 1, r \rrbracket, \ X_j = e^{i\theta} |X_j|$$

Notamment, $e^{i\theta} = \frac{X_1}{|X_1|} = \pm 1$. On en déduit que $X = \pm |X|$.

29 Supposons que dim $Ker(A - rI_n) > 1$. On peut donc trouver deux vecteurs non nuls orthogonaux X et Y dans $Ker(A - rI_n)$. Les deux questions précédentes montrent que les coefficients de X sont tous strictement positifs ou tous strictement négatifs, de même que ceux de Y. On en déduit que $(X \mid Y) = \sum_{k=1}^{n} X_k Y_k \neq 0$, ce qui contredit le fait que X et Y sont orthogonaux. Ainsi dim $Ker(A - rI_n) = 1$.

30 Comme A est diagonalisable, la multiplicité de r est égale à la dimension du sous-espace propre $Ker(A - rI_n)$, à savoir 1

Supposons que $-r \in \operatorname{Sp}(A)$. Soit alors un vecteur X unitaire tel que AX = -rX. Alors $X^TAX = -r$ puis $|X^TAX| = r$. De plus, d'après la question **25**, on a $|X|^TA|X| = r$ et, comme X est encore unitaire, |X| est un vecteur propre de A associé à la valeur propre r d'après la question **24**. Comme $X \notin \operatorname{Ker}(A - rI_n), X \neq |X|$ i.e. $|X| - X \neq 0$. De plus, $|X| - X \geq 0$ et A > 0 donc A(|X| - X) > 0 d'après la question **1**. Ainsi r(|X| + X) > 0 i.e. |X| + X > 0. Ainsi, pour tout $k \in [1, n]$, $X_k + |X_k| > 0$, ce qui entraîne $X_k > 0$. On en déduit que $X = -|X| \in \operatorname{Ker}(A - rI_n)$ ce qui est absurde.

Remarque. Je ne vois pas l'intérêt de parler de la multiplicité au début de la question mais peut-être ai-je raté quelque chose.

$$\boxed{\textbf{31}} \text{ Considérons } A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{. Alors } \chi_A = X^2 - 1 \text{ donc } Sp(A) = \{-1, 1\}.$$

 $\boxed{\textbf{32}} \quad r^p \text{ est la plus grande valeur propre de } A^p \text{ et } A^p \text{ est strictement positive donc } \operatorname{Ker}(A^p - r^p I_n) \text{ est de dimension 1,} \\ \text{engendré par un vecteur strictement positif d'après les questions } \textbf{28} \text{ et } \textbf{29}. \text{ Comme A et } I_n \text{ commutent } A^p - r^p I_n = \operatorname{B}(A - r I_n) \\ \text{avec } B = \sum_{k=0}^{p-1} r^{p-1-k} A^k. \text{ Ainsi } \operatorname{Ker}(A - r I_n) \subset \operatorname{Ker}(A^p - r^p I_n). \text{ Comme Ker}(A - r I_n) \text{ n'est pas nul, ces deux noyaux sont } \\ \text{égaux.}$

Supposons p impair. Si -r était valeur propre de A, alors $(-r)^p = -r^p$ serait valeur propre de A^p , ce qui contredirait le fait que r^p est la seule valeur propre de A^p de module égal à r^p . Ainsi -r n'est pas valeur propre de A. Si p est pair, -r et r sont deux racines distinctes de $X^p - r^p$ donc (X - r)(X + r) divise $X^p - r^p$. De plus, X - r et X + r sont premiers entre eux donc, d'après le lemme des noyaux,

$$Ker(A - rI_n) \oplus Ker(A + rI_n) \subset Ker(A^p - r^pI_n)$$

Comme $Ker(A - rI_n)$ et $Ker(A^p - r^pI_n)$ sont de dimension 1, $\dim Ker(A + rI_n) = 0$ i.e. -r n'est pas valeur propre de A. Quel que soit le cas de figure, r est l'unique valeur propre de A de module égal à r.

Soit $\lambda \in \operatorname{Sp}(A)$. Il existe donc $X \in \mathcal{M}_{n,1}(\mathbb{C})$ non nul tel que $AX = \lambda X$. Soit $i \in [[1,n]]$ tel que $|X_i| = ||X||_{\infty}$. Alors

$$\sum_{i=1}^{n} A_{i,j} X_j = \lambda X_i$$

ou encore

$$(\lambda - A_{i,i})X_i = \sum_{j=1, j\neq i}^n A_{i,j}X_j$$

Par inégalité triangulaire

$$|\lambda - A_{i,i}||X_i| \le \sum_{j=1,j\neq i}^n |A_{i,j}||X_j|$$

Par définition de i,

$$|\lambda - \mathbf{A}_{i,i}| \|\mathbf{X}\|_{\infty} \leq \sum_{j=1, j \neq i}^{n} |\mathbf{A}_{i,j}| \|\mathbf{X}\|_{\infty}$$

Comme $X \neq 0$, $||X||_{\infty} > 0$ de sorte que

$$|\lambda - \mathbf{A}_{i,i}| \le \sum_{j=1, j \ne i}^{n} |\mathbf{A}_{i,j}|$$

ce qui conclut.

35 On procède comme indiqué dans l'énoncé. Soit $\lambda \in \operatorname{Sp}(A) = \operatorname{Sp}(D^{-1}AD)$. Posons $C = D^{-1}AD$. Alors $C_{i,j} = X_i^{-1}A_{i,j}X_j$ pour tout $(i,j) \in [1,n]^2$. On applique alors la question précédente à C. Il existe donc $i \in [1,n]$ tel que

$$|\lambda - C_{i,i}| \le \sum_{j=1, j \ne i}^{n} |C_{i,j}|$$

Ceci s'écrit encore

$$|\lambda - A_{i,i}| \le \sum_{j=1,j\neq i}^{n} X_i^{-1} |A_{i,j}| X_j$$

On en déduit que

$$|\lambda - \mathbf{A}_{i,i}| \le \mathbf{X}_i^{-1} \sum_{j=1, j \ne i}^n \mathbf{B}_{i,j} \mathbf{X}_j$$

Or $BX = \rho(B)X$ donc, en particulier,

$$\sum_{j=1}^{n} B_{i,j} X_j = \rho(B) X_i$$

ou encore

$$\sum_{j=1,j\neq i}^{n} \mathbf{B}_{i,j} \mathbf{X}_{j} = (\rho(\mathbf{B}) - \mathbf{B}_{i,i}) \mathbf{X}_{i}$$

En reportant dans la dernière inégalité,

$$|\lambda - A_{i,i}| \le \rho(B) - B_{i,i}$$

ce qui conclut.