DEFINIÇÃO 3.5

Chame uma linguagem de *Turing-reconhecível* se alguma máquina de Turing a reconhece. ¹

DEFINIÇÃO 3.6

Chame uma linguagem de *Turing-decidivel* ou simplesmente *de-cidivel* se alguma máquina de Turing a decide.²

TEOREMA 3.16

Toda máquina de Turing não-determinística tem uma máquina de Turing determinística que lhe é equivalente.

COROLÁRIO 3.18

Uma linguagem é Turing-reconhecível se e somente se alguma máquina de Turing não-determinística a reconhece.

COROLÁRIO 3.19 -

Uma linguagem é decidível se e somente se alguma máquina de Turing nãodeterminística a decide.

TEOREMA 3.21

Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

 $PARA_{MT} = \{\langle M, w \rangle | M \text{ \'e uma MT e } M \text{ p\'ara sobre a entrada } w \}.$

 $V_{\mathsf{MT}} = \{ \langle M \rangle | M \text{ \'e uma MT e } L(M) = \emptyset \}.$

 $REGULAR_{MT} = \{\langle M \rangle | M \text{ \'e uma MT e } L(M) \text{ \'e uma linguagem regular} \}.$

 $EQ_{\mathsf{MT}} = \{ \langle M_1, M_2 \rangle | M_1 \in M_2 \text{ são MTs e } L(M_1) = L(M_2) \}.$

 $A_{\mathsf{ALL}} = \{ \langle M, w \rangle | \ M \ \text{\'e um ALL que aceita a cadeia } w \}.$

 $TOD_{\mathsf{GLC}} = \{ \langle G \rangle | \ G \ \text{\'e uma GLC e} \ L(G) = \Sigma^* \}.$

 $A_{\mathsf{MT}} = \{ \langle M, w \rangle | \ M \text{ \'e uma MT e } M \text{ aceita } w \}.$

TEOREMA 4.22

Uma linguagem é decidível sse ela é Turing-reconhecível e co-Turing-reconhecível.

Em outras palavras, uma linguagem é decidível exatamente quando ela e seu complemento são ambas Turing-reconhecíveis.

=======

COROLÁRIO 4.23 ----

A_{MT} não é Turing-reconhecível.

=====

DEFINIÇÃO 5.17

Uma função $f \colon \Sigma^* \longrightarrow \Sigma^*$ é uma **função computável** se alguma máquina de Turing M, sobre toda entrada w, pára com exatamente f(w) sobre sua fita.

$$TOD_{\mathsf{GLC}} = \{ \langle G \rangle | \ G \ \text{\'e uma GLC e} \ L(G) = \Sigma^* \}.$$

DEFINIÇÃO 5.20

A linguagem A é **redutível por mapeamento** à linguagem B, escrito $A \leq_{\mathrm{m}} B$, se existe uma função computável $f: \Sigma^* \longrightarrow \Sigma^*$, onde para toda w,

$$w \in A \iff f(w) \in B$$
.

A função f é denominada a redução de A para B.

TEOREMA 5.22

Se $A \leq_{\mathrm{m}} B$ e B for decidível, então A é decidível.

COROLÁRIO 5.23

Se $A \leq_m B$ e A for indecidível, então B é indecidível.

TEOREMA	5.28	
	3.20	

Se $A \leq_{\mathrm{m}} B$ e B é Turing-reconhecível, então A é Turing-reconhecível.

COROLÁRIO 5.29

Se $A \leq_{\mathrm{m}} B$ e A não é Turing-reconhecível, então B não é Turing-reconhecível.

TEOREMA 5.30

 EQ_{MT} não é nem Turing-reconhecível nem co-Turing-reconhecível.

DEFINIÇÃO 7.12

P é a classe de linguagens que são decidíveis em tempo polinomial sobre uma máquina de Turing determinística de uma-única-fita. Em outras palavras,

$$\mathbf{P} = \bigcup_k \mathrm{TIME}(n^k).$$

DEFINIÇÃO 7.19

NP é a classe de linguagens que têm verificadores de tempo polinomial.

TEOREMA 7.20 -----

Uma linguagem está em NP sse ela é decidida por alguma máquina de Turing não-determinística de tempo polinomial.

TEOREMA 7.24 TEOREMA 7.25 TEOREMA 7.25 CLIQUE está em NP. SUBSET-SUM está em NP.

DEFINIÇÃO 7.28

Uma função $f: \Sigma^* \longrightarrow \Sigma^*$ é uma função computável em tempo polinomial se alguma máquina de Turing de tempo polinomial M existe que pára com exatamente f(w) na sua fita, quando iniciada sobre qualquer entrada w.

DEFINIÇÃO 7.29

A linguagem A é redutível por mapeamento em tempo polinomial, 1 ou simplesmente redutível em tempo polinomial, 1 inguagem B, em símbolos $A \leq_P B$, se uma função computável em tempo polinomial $f: \Sigma^* \longrightarrow \Sigma^*$ existe, onde para toda w,

$$w \in A \iff f(w) \in B$$
.

A função f é chamada *redução de tempo polinomial* de A para B.

TEOREMA 7.31

Se $A \leq_{\mathrm{P}} B$ e $B \in \mathrm{P}$, então $A \in \mathrm{P}$.

DEFINIÇÃO 7.34

Uma linguagem B é NP-completa se ela satisfaz duas condições:

- 1. B está em NP, e
- 2. toda A em NP é redutível em tempo polinomial a B.

TEOREMA 7.35

Se B for NP-completa e $B \in P$, então P = NP.

TEOREMA 7.36

Se B for NP-completa e $B \leq_{\mathrm{P}} C$ para C in NP, então C é NP-completa.

 $V_{MT} = \{ \langle M \rangle \mid M \text{ \'e m\'aquina de Turing e } L(M) = \emptyset \}$

Prova:

Supondo D decisora de V_{MT} . Então pode-se construir um decisor N para A_{MT} usando D como sub-rotina.

Para isso, Monstruirá uma nova máquina de Turing a partir da entrada M. W dada. Tal máquina é como a seguir:

X = com entrada x

- 1. Se $x \neq w$, rejeite.
- 2. Se x = w, rode M com entrada w e responda o que M responder.

Temos então que

$$L(X) = \begin{cases} \{w\} & \text{se } w \in L(M) \\ \emptyset & \text{se } w \notin L(M) \end{cases}$$