Probability and Statistics Review

Christos Alexopoulos and Dave Goldsman

Georgia Tech

6 Feb. 2020

Outline

- Preliminaries
- 2 Expectation
- Functions of a Random Variable
- Multivariate Distributions
 - Covariance and Correlation
- 5 Common Probability Distributions
 - Discrete Distributions
 - Continuous Distributions
 - Poisson Processes
 - Continuous Distributions (cont'd)
- 6 Limit Theorems
- Statistics Tidbits

Preliminaries

Will assume that you know about sample spaces, events, and the definition of probability.

Definition: If P(B) > 0, then $P(A|B) \equiv P(A \cap B)/P(B)$ is the conditional probability of A given B.

Example: Toss a fair die. Let $A = \{1, 2, 3\}$ and $B = \{3, 4, 5, 6\}$. Then

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{1/6}{4/6} = 1/4.$$

Definition: If $P(A \cap B) = P(A)P(B)$, then A and B are independent events.

Theorem: If A and B are independent, then P(A|B) = P(A).

Example: Toss two fair dice. Let A = "Sum is 7" and B = "First die is 4". Then

$$P(A) = 1/6$$
, $P(B) = 1/6$, and

$$P(A \cap B) = P((4,3)) = 1/36 = P(A)P(B).$$

Thus A and B are independent.

Definition: A random variable (RV) X is a function from the sample space Ω to the real line \mathbb{R} , i.e., $X:\Omega\to\mathbb{R}$.

Example: Let X be the sum of two dice rolls. Then X((4,6)) = 10. In addition,

$$P(X = x) = \begin{cases} 1/36 & \text{if } x = 2\\ 2/36 & \text{if } x = 3\\ \vdots\\ 1/36 & \text{if } x = 12\\ 0 & \text{otherwise.} \end{cases}$$

Definition: If the number of possible values of a RV X is finite or countably infinite, then X is a *discrete* RV. Its *probability mass function* (pmf) is $f(x) \equiv P(X = x)$. Note that $\sum_{x} f(x) = 1$.

Example: Flip 2 coins. Let X be the number of heads.

$$f(x) = \begin{cases} 1/4 & \text{if } x = 0 \text{ or } 2\\ 1/2 & \text{if } x = 1\\ 0 & \text{otherwise.} \end{cases}$$

Examples: Here are some well-known discrete RVs that you may know: Bernoulli(p), binomial(n, p), geometric(p), negative binomial, Poisson(λ), etc.

Definition: A continuous RV is one with probability zero at every individual point. A RV is continuous if there exists a probability density function (pdf) f(x) such that $P(X \in A) = \int_A f(x) \, dx$ for every set A. Note that $\int_{\mathbb{R}} f(x) \, dx = 1$.

Example: Pick a random number between 3 and 7. Then

$$f(x) = \begin{cases} 1/4 & \text{if } 3 \le x \le 7\\ 0 & \text{otherwise.} \end{cases}$$

Examples: Here are some well-known continuous RV's: Uniform(a, b), exponential (λ) , Normal (μ, σ^2) , etc.

Definition: For any RV X (discrete or continuous), the *cumulative* distribution function (cdf) is defined as

$$F(x) \equiv P(X \le x) = \begin{cases} \sum_{y \le x} f(y) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{x} f(y) \, dy & \text{if } X \text{ is continuous.} \end{cases}$$

Note that $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$.

Example: Flip two fair coins. Let X be the number of heads.

$$F(x) = \begin{cases} 0 & \text{if } x < 0\\ 1/4 & \text{if } 0 \le x < 1\\ 3/4 & \text{if } 1 \le x < 2\\ 1 & \text{if } x \ge 2. \end{cases}$$

Example: Suppose $X \sim \exp(\lambda)$ (i.e., X has the exponential distribution with parameter $\lambda > 0$). Then $f(x) = \lambda e^{-\lambda x}$, $x \ge 0$, and the cdf is $F(x) = 1 - e^{-\lambda x}$, $x \ge 0$.

Outline

- Preliminaries
- 2 Expectation
- Functions of a Random Variable
- Multivariate Distributions
 - Covariance and Correlation
- Common Probability Distributions
 - Discrete Distributions
 - Continuous Distributions
 - Poisson Processes
 - Continuous Distributions (cont'd)
- 6 Limit Theorems
- Statistics Tidbits

Expected Value

Definition: The *expected value* (or *mean*) of a RV X is

$$\mu \equiv \mathsf{E}[X] \equiv \begin{cases} \sum_{x} x P(X=x) & \text{if } X \text{ is discrete} \\ \int_{\mathbb{R}} x f(x) \, dx & \text{if } X \text{ is continuous.} \end{cases}$$

Example: Suppose that $X \sim \text{Bernoulli}(p)$. Then

$$X = \begin{cases} 1 & \text{w.p. } p \\ 0 & \text{w.p. } 1 - p \ (= q) \end{cases}$$

and we have $E[X] = \sum_{x} x f(x) = p$.

Example: Suppose that $X \sim U(a, b)$. Then

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b \\ 0 & \text{otherwise} \end{cases}$$

and we have $E[X] = \int_{-\infty}^{\infty} x f(x) dx = (a+b)/2$.

"Law of the Unconscious Statistician": Suppose that g(X) is a proper function of the RV X. Then

$$\mathsf{E}[g(X)] = \begin{cases} \sum_{x} g(x) f(x) & \text{if } X \text{ is discrete} \\ \int_{\mathbb{R}} g(x) f(x) \, dx & \text{if } X \text{ is continuous.} \end{cases}$$

Example: The discrete RV *X* has the following pmf:

Then
$$E[X^3] = \sum_x x^3 f(x) = 8(0.3) + 27(0.6) + 64(0.1) = 25.$$

Example: Suppose $X \sim U(0,2)$. Then

$$\mathsf{E}[X^n] = \int_{\mathbb{D}} x^n f(x) \, dx = 2^n / (n+1).$$

Definitions: The *n*th moment of X is $E[X^n]$ and the *n*th central moment of X is $E[(X - E[X])^n]$. The variance of X is the second central moment:

$$\sigma_X^2 \equiv \mathsf{Var}(X) \equiv \mathsf{E}[(X - \mathsf{E}[X])^2] = \mathsf{E}[X^2] - (\mathsf{E}[X])^2.$$

Example: Suppose $X \sim \text{Bernoulli}(p)$. Recall that E[X] = p. Then

$$E[X^2] = \sum_{x} x^2 f(x) = p \quad \text{and} \quad$$

$$Var(X) = E[X^2] - (E[X])^2 = p(1-p) = pq.$$

Example: Suppose $X \sim \mathsf{U}(0,2)$. By previous examples, $\mathsf{E}[X] = 1$ and $\mathsf{E}[X^2] = 4/3$. So

$$Var(X) = E[X^2] - (E[X])^2 = 1/3.$$

Theorem: E[aX + b] = aE[X] + b and $Var(aX + b) = a^2Var(X)$.

Definitions: The standard deviation of a RV X is the square root of its variance, that is $\sigma_X \equiv \sqrt{\text{Var}(X)}$.

The coefficient of variation (or relative variation) of X is the ratio $\mathsf{CV}(X) \equiv \sigma_X/\mu$ of the standard deviation to the mean.

It is a *unitless* measure of the relative dispersion of X and is not affected by scaling as CV(aX) = CV(X).

Outline

- Preliminaries
- 2 Expectation
- Second State

 Second Stat
- 4 Multivariate Distributions
 - Covariance and Correlation
- Common Probability Distributions
 - Discrete Distributions
 - Continuous Distributions
 - Poisson Processes
 - Continuous Distributions (cont'd)
- 6 Limit Theorems
- Statistics Tidbits

Functions of Random Variables

Problem: Suppose X is a RV with pdf/pmf f(x), and let Y = h(X).

Find g(y), the pdf/pmf of Y.

Example: Let X denote the number of H's from two coin tosses. Find the pmf for $Y = X^2 - X$.

This implies that g(0) = P(Y = 0) = P(X = 0 or 1) = 3/4 and g(2) = P(Y = 2) = 1/4. In other words,

$$g(y) = \begin{cases} 3/4 & \text{if } y = 0\\ 1/4 & \text{if } y = 2. \end{cases}$$

Example: Suppose X has pdf $f(x) = |x|, -1 \le x \le 1$. Find the pdf of $Y = X^2$.

First of all, the cdf of Y is

$$G(y) = P(Y \le y)$$

$$= P(X^{2} \le y)$$

$$= P(-\sqrt{y} \le X \le \sqrt{y})$$

$$= \int_{-\sqrt{y}}^{\sqrt{y}} |x| dx = y, \quad 0 < y < 1.$$

Thus, the pdf of Y is g(y) = G'(y) = 1, 0 < y < 1, indicating that $Y \sim U(0, 1)$.

Inverse Transform Theorem: Suppose X is a continuous random variable having cdf F(x). Then, amazingly, $F(X) \sim \text{uniform}(0,1)$.

Proof: Assume that F(x) is monotone, and let Y = F(X). Then the cdf of Y is

$$P(Y \le y) = P(F(X) \le y)$$

= $P(X \le F^{-1}(y))$
= $F(F^{-1}(y)) = y$,

which is the cdf of the U(0, 1) distribution.

This result is of fundamental importance when it comes to generating random variates during a simulation.

Example: Suppose $X \sim \exp(\lambda)$, so that its cdf is $F(x) = 1 - e^{-\lambda x}$, $x \ge 0$.

Then the Inverse Transform Theorem implies that

$$F(X) = 1 - e^{-\lambda X} \sim U(0, 1).$$

Now let $U \sim \mathsf{U}(0,1)$ and solve F(X) = U to obtain $X = -\frac{1}{\lambda} \ln(1-U)$.

After a little algebra, we can also verify that

$$X = -\frac{1}{\lambda} \ln(U) \sim \exp(\lambda).$$

This is how we can generate realizations from the exponential distribution.

Outline

- Preliminaries
- 2 Expectation
- Functions of a Random Variable
- Multivariate Distributions
 - Covariance and Correlation
- Common Probability Distributions
 - Discrete Distributions
 - Continuous Distributions
 - Poisson Processes
 - Continuous Distributions (cont'd)
- 6 Limit Theorems
- Statistics Tidbits

Joint Distributions

Consider two random variables interacting together, e.g., height and weight.

Definition: The *joint cdf* of X and Y is

$$F(x, y) \equiv P(X \le x, Y \le y)$$
, for all x, y .

Remark: The marginal cdf of X is $F_X(x) = F(x, \infty)$. (We use the X subscript to remind us that it's just the cdf of X all by itself.) Similarly, the marginal cdf of Y is $F_Y(y) = F(\infty, y)$.

Definition: If X and Y are discrete, then the *joint pmf* of X and Y is $f(x,y) \equiv P(X=x,Y=y)$. Note that $\sum_{x} \sum_{y} f(x,y) = 1$.

Remark: The *marginal pmf* of X is

$$f_X(x) = P(X = x) = \sum_{y} f(x, y)$$

while the $marginal\ pmf$ of Y is

$$f_Y(y) = P(Y = y) = \sum_x f(x, y).$$

Example: The following table gives the joint pmf f(x, y), along with the respective marginals.

	X=2	X = 3	X = 4	$f_{Y}(y)$
Y=4	0.3	0.2	0.1	0.6
Y = 6	0.1	0.2	0.1	0.4
$f_X(x)$	0.4	0.4	0.2	1

Definition: If X and Y are continuous, then the *joint pdf* of X and Y is $f(x,y) \equiv \frac{\partial^2}{\partial x \partial y} F(x,y)$. Note that $\int_{\mathbb{R}} \int_{\mathbb{R}} f(x,y) \, dx \, dy = 1$.

Remark: The marginal pdf's of X and Y are

$$f_X(x) = \int_{\mathbb{R}} f(x, y) dy$$
 and $f_Y(y) = \int_{\mathbb{R}} f(x, y) dx$.

Example: Suppose the joint pdf is

$$f(x, y) = \frac{21}{4}x^2y, \quad x^2 \le y \le 1.$$

Then the marginal pdf's are:

$$f_X(x) = \int_{\mathbb{R}} f(x, y) \, dy = \int_{x^2}^1 \frac{21}{4} x^2 y \, dy = \frac{21}{8} x^2 (1 - x^4), \quad -1 \le x \le 1$$

and

$$f_Y(y) = \int_{\mathbb{R}} f(x, y) \, dx = \int_{-\sqrt{y}}^{\sqrt{y}} \frac{21}{4} x^2 y \, dx = \frac{7}{2} y^{5/2}, \quad 0 \le y \le 1.$$

Definition: X and Y are independent RV's if

$$f(x, y) = f_X(x) f_Y(y)$$
 for all x, y .

Theorem: X and Y are independent if we can express their joint pdf/pmf as f(x, y) = a(x)b(y) for some functions a(x) and b(y), and the ranges of x and y where f(x, y) > 0 do not depend on each other.

Examples: If f(x, y) = cxy for $0 \le x \le 2$, $0 \le y \le 3$, then X and Y are independent.

If $f(x, y) = \frac{21}{4}x^2y$ for $x^2 \le y \le 1$, then X and Y are *not* independent.

If f(x, y) = c/(x + y) for $1 \le x \le 2$, $1 \le y \le 3$, then X and Y are not independent.

Definition: The *conditional pdf* (or *pmf*) of Y given X = x is $f(y|x) \equiv f(x,y)/f_X(x)$.

Example: Suppose $f(x, y) = \frac{21}{4}x^2y$ for $x^2 \le y \le 1$. Then

$$f(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{\frac{21}{4}x^2y}{\frac{21}{8}x^2(1-x^4)} = \frac{2y}{1-x^4}, \quad x^2 \le y \le 1.$$

Theorem: If X and Y are independent, then $f(y|x) = f_Y(y)$ for all x, y.

"(Multivariate) Law of the Unconscious Statistician": Suppose that h(X,Y) is a function of the RVs X and Y. Then

$$\mathsf{E}[h(X,Y)] = \begin{cases} \sum_{x} \sum_{y} h(x,y) \, f(x,y) & \text{if } (X,Y) \text{ is discrete} \\ \int_{\mathsf{R}} \int_{\mathsf{R}} h(x,y) \, f(x,y) \, dx \, dy & \text{if } (X,Y) \text{ is continuous} \end{cases}$$

Theorem: Whether or not X and Y are independent, we have $\mathsf{E}[X+Y]=\mathsf{E}[X]+\mathsf{E}[Y].$

Theorem: If X and Y are independent, then E[XY] = E[X]E[Y] and Var(X + Y) = Var(X) + Var(Y).

(Stay tuned for dependent RVs)

Definition: X_1, \ldots, X_n form a random sample from f(x) if (i) X_1, \ldots, X_n are independent, and (ii) each X_i has the same pdf/pmf f(x).

Notation: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x)$. (The term "iid" reads independent and identically distributed.)

Example: If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x)$ and the sample mean $\overline{X}_n \equiv \sum_{i=1}^n X_i/n$, then $\mathsf{E}[\overline{X}_n] = \mathsf{E}[X_i]$ and $\mathsf{Var}(\overline{X}_n) = \mathsf{Var}(X_i)/n$. Thus, the variance decreases at rate 1/n as n increases.

Covariance and Correlation

Definition: The *covariance* between X and Y is

$$\mathsf{Cov}(X,Y) \equiv \mathsf{E}[(X - \mathsf{E}[X])(Y - \mathsf{E}[Y])] = \mathsf{E}[XY] - \mathsf{E}[X]\mathsf{E}[Y].$$

Note that Var(X) = Cov(X, X).

Theorem: If X and Y are independent RVs, then Cov(X,Y) = 0.

Remark: Cov(X, Y) = 0 doesn't mean X and Y are independent!

Example: Suppose $X \sim \operatorname{uniform}(-1,1)$ and $Y = X^2$. Then X and Y are clearly dependent. However,

$$Cov(X, Y) = E[X^3] - E[X]E[X^2] = E[X^3] = \int_{-1}^{1} \frac{x^3}{2} dx = 0.$$

Theorem: Cov(aX, bY) = abCov(X, Y).

Theorem: We have

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

and

$$Var(X - Y) = Var(X) + Var(Y) - 2Cov(X, Y).$$

Definition: The *correlation* between X and Y is

$$\rho \equiv \frac{\mathsf{Cov}(X,Y)}{\sqrt{\mathsf{Var}(X)\mathsf{Var}(Y)}}.$$

Theorem: $-1 \le \rho \le 1$.

Example: Consider the following joint pmf.

$$f(x, y)$$
 $X = 2$
 $X = 3$
 $X = 4$
 $f_Y(y)$
 $Y = 40$
 0.00
 0.20
 0.10
 0.3

 $Y = 50$
 0.15
 0.10
 0.05
 0.3

 $Y = 60$
 0.30
 0.00
 0.10
 0.4

 $f_X(x)$
 0.45
 0.30
 0.25
 1

We have
$$E[X] = 2.8$$
, $Var(X) = 0.66$, $E[Y] = 51$, $Var(Y) = 69$,

$$\mathsf{E}[XY] = \sum_{x} \sum_{y} xy f(x, y) = 140,$$

and

$$\rho = \frac{\mathsf{E}[XY] - \mathsf{E}[X]\mathsf{E}[Y]}{\sqrt{\mathsf{Var}(X)\mathsf{Var}(Y)}} = -0.415.$$

Outline

- Preliminaries
- 2 Expectation
- Functions of a Random Variable
- 4 Multivariate Distributions
 - Covariance and Correlation
- 5 Common Probability Distributions
 - Discrete Distributions
 - Continuous Distributions
 - Poisson Processes
 - Continuous Distributions (cont'd)
- 6 Limit Theorems
- Statistics Tidbits

Bernoulli and Binomial Distributions

A Bernoulli(p) RV X has pmf

$$f(x) = \begin{cases} p & \text{if } x = 1\\ 1 - p \ (= q) & \text{if } x = 0. \end{cases}$$

Then E[X] = p and Var(X) = pq.

 $Y \sim \text{binomial}(n, p)$ if it counts is the number of successes in n independent Bernoulli(p) trials. Its pmf is

$$f(y) = \binom{n}{y} p^y q^{n-y}, \quad y = 0, 1, \dots, n.$$

Further, E[Y] = np and Var(Y) = npq.

Alternatively, $Y = \sum_{i=1}^{n} X_i$, where $X_1, X_2, \dots, X_n \stackrel{\text{iid}}{\sim} \mathsf{Bernoulli}(p)$.

Geometric Distribution

 $X \sim \mathsf{Geometric}(p)$ if it counts independent Bernoulli(p) trials until the first success occurs. For example, the outcome "FFFS" implies that X=4. Clearly,

$$f(x) = q^{x-1}p, \quad x = 1, 2, \dots$$

It turns out that E[X] = 1/p and $Var(X) = q/p^2$.

Remark: The random variable Y=X-1 also has the geometric distribution with pmf

$$f(y) = q^y p, \quad y = 0, 1, \dots,$$

 $\mathsf{E}[Y] = q/p$ and $\mathsf{Var}(Y) = q/p^2$.

Fact: The geometric is the only discrete distribution with the "memoryless" property.

Negative Binomial Distribution

A negative binomial random variable Y is the sum of r iid geometric(p) RVs, i.e., the number of Bernoulli trials until the rth success occurs. For example, the outcome "FFFSSFS" implies that Y=7. Since there are r-1 successes in the first y-1 trials, the pmf of Y is

$$f(y) = {y-1 \choose r-1} q^{y-r} p^r, \quad y = r, r+1, \dots$$

Further, E[Y] = r/p and $Var(Y) = rq/p^2$. Notice that the number of trials between consecutive successes is geometric(p).

Remark: The random variable Z=Y-r that counts the number of failures until the rth success also has the negative binomial distribution with pmf

$$f(z) = {r + z - 1 \choose r - 1} q^z p^r, \quad z = 0, 1, \dots,$$

E[Z] = rq/p, and $Var(Z) = rq/p^2$.

A More Flexible Negative Binomial Distribution

A more flexible negative binomial distribution, frequently used to model demand sizes, allows the parameter r>0 to be noninteger. The pmf of Z is given by

$$f(z) = \frac{\Gamma(r+z)}{\Gamma(r)z!} q^z p^r, \quad z = 0, 1, \dots,$$

where $\Gamma(\alpha) \equiv \int_0^\infty e^{-t} t^{\alpha-1} dt$, $\alpha > 0$ is the gamma function.

It turns out that $\mathsf{E}[Z] = rq/p$ and $\mathsf{Var}(Z) = rq/p^2$. When p is small, the coefficient of variation of Z

$$CV(Z) = \frac{\sqrt{Var(Z)}}{E[Z]} = \frac{1}{\sqrt{rq}}$$

can be larger than 1 when r < 1/q.

Fact: The gamma function satisfies the recursion $\Gamma(\alpha)=(\alpha-1)\Gamma(\alpha-1)$, for $\alpha>1$. If $\alpha=$ integer, then $\Gamma(\alpha)=(\alpha-1)!$.

The Poisson Distribution

The $\mathsf{Poisson}(\lambda)$ distribution $(\lambda > 0)$ models counts events in a time interval (or space) when the occurrence of an event is independent of the time elapsed since the previous event.

Examples are the number of arrivals in a given time interval, the number of accidents in a power plant during a certain time window, etc.

The pmf of $X \sim \mathsf{Poisson}(\lambda)$ is

$$f(x) = \frac{e^{-\lambda} \lambda^x}{x!}, \quad x = 0, 1, \dots$$

After some algebra we can show that $E[X] = \lambda = Var(X)$.

Uniform and Triangular Distributions

We proceed with some continuous distributions. . .

The U(a, b) distribution has density

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b \\ 0 & \text{otherwise,} \end{cases}$$

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx = (a+b)/2 \text{ and } Var(X) = (b-a)^2/12.$$

Further,

$$X \sim U(a,b) \iff (X-a)/(b-a) \sim U(0,1).$$

The triangular(a, b, c) distribution is a reasonable model in the presence of limited data. a is the smallest possible value, b is the "most likely" value (mode), and c is the largest possible value. The density function is

$$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & \text{if } a < x \le b \\ \frac{2(c-x)}{(c-b)(c-a)} & \text{if } b < x \le c \\ 0 & \text{otherwise.} \end{cases}$$

After some algebra, we can show that $\mathrm{E}[X]=(a+b+c)/3$ and $\mathrm{Var}(X)=(a^2+b^2+c^2-ab-bc-ac)/18$.

Fact: Did you know that the sum of two iid U(0, 1) RVs has the triangular(0, 1, 2) distribution?

Beta Distribution

A more flexible model than the triangular distribution is the beta (α, β) model with density

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, \quad 0 < x < 1,$$

where $\alpha > 0$ and $\beta > 0$ are "shape" parameters.

It turns out that

$$E[X] = \frac{\alpha}{\alpha + \beta}$$
 and $Var(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$.

Mirror image property: $X \sim \text{beta}(\alpha, \beta) \Leftrightarrow 1 - X \sim \text{beta}(\beta, \alpha)$.

The $\operatorname{Pert}(a,b,c)$ distribution used in Simio (also denoted as beta-Pert) with minimum value a>0, most likely value b, and maximum value c is obtained from the following transformation (the value in <> is omitted):

$$X \sim \mathrm{beta}\bigg(1 + 4\frac{b-a}{c-a}, 1 + 4\frac{c-b}{c-a}\bigg) \Longleftrightarrow a + (c-a)X \sim \mathrm{Pert}(a,b,c, \textcolor{red}{<4} \gt).$$

Figure: Plots of beta densities

Exponential Distribution

The $\exp(\lambda)$ distribution has density

$$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0,$$

cdf

$$F(x) = 1 - e^{-\lambda x}, \quad x > 0,$$

 $\mathsf{E}[X] = 1/\lambda$, and $\mathsf{Var}(X) = 1/\lambda^2$.

Theorem: The exponential distribution is the only continuous distribution with the memoryless property:

$$P(X > s + t | X > s) = P(X > t)$$
 for $s, t > 0$.

Example: Suppose $X \sim \exp(\lambda = 1/100)$. Then

$$P(X > 200|X > 50) = P(X > 150) = e^{-\lambda t} = e^{-150/100} = e^{-1.5} = 0.223.$$

Gamma Distribution

The gamma(α, λ) distribution with shape parameter $\alpha > 0$ and scale parameter $\lambda > 0$ has density function

$$f(x) = \frac{\lambda(\lambda x)^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)}, \quad x \ge 0,$$

where the gamma function was defined earlier.

It turns out that $\mathsf{E}[X] = \alpha/\lambda$ and $\mathsf{Var}(X) = \alpha/\lambda^2$; hence $\mathsf{CV}(X) = 1/\sqrt{\alpha}$.

Gamma Distribution (cont'd)

Facts:

- When $\alpha = 1$, the gamma (α, λ) distribution reduces to $\exp(\lambda)$.
- $X \sim \text{gamma}(\alpha, \lambda) \iff \lambda X \sim \text{gamma}(\alpha, 1)$.
- Excel and Simio use the notation gamma(α, β) with $\beta = 1/\lambda$.
- If $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \exp(\lambda)$, then $X \equiv \sum_{i=1}^n X_i \sim \operatorname{gamma}(n, \lambda)$. The gamma (n, λ) distribution is also denoted as $\operatorname{Erlang}(n, \lambda)$ and has cdf

$$F(x) = 1 - e^{-\lambda x} \sum_{j=0}^{n-1} \frac{(\lambda x)^j}{j!}, \quad x \ge 0.$$

(Stay tuned for the proof...)

Gamma Distribution (cont'd)

Figure: Plots of gamma densities with $\lambda = 1$

Poisson Process (PP)

The (stationary) Poisson process counts events (e.g., entity arrivals) in time intervals.

Let N(t) tally the number of events observed in [0, t].

Definition: We say that $\{N(t): t \geq 0\}$ is a Poisson process with rate λ if the times between successive events are iid $\exp(\lambda)$. Equivalently,

- (a) events occur one-at-a-time at rate λ ;
- (b) the increments N(s+t)-N(s) for $s,t\geq 0$ are independent, i.e., the event counts in disjoint time intervals are independent;
- (c) the increments are stationary, i.e., the distribution of the number of events in [s, s + t] only depends on t.

Under these assumptions we can show that

$$N(s+t) - N(s) \sim \mathsf{Poisson}(\lambda t);$$

hence the expected rate of events is $E[N(s+t)-N(s)]/t = \lambda$ (constant).

Poisson Process (cont'd)

Let X_i between events i and i+1, and let $S_n = \sum_{i=1}^n X_i$.

Facts:

- $X_i \stackrel{\text{iid}}{\sim} \exp(\lambda)$.
- $S_n \sim \operatorname{gamma}(n, \lambda)$ and

$$P(S_n \le t) = P\{\text{at least } n \text{ events in } [0, t]\}$$

$$= 1 - P\{\text{at most } n - 1 \text{ events in } [0, t]\}$$

$$= 1 - P\{N(t) \le n - 1\}$$

$$= 1 - \sum_{j=0}^{n-1} e^{-\lambda t} \frac{(\lambda t)^j}{j!}$$

$$= 1 - e^{-\lambda t} \sum_{j=0}^{n-1} \frac{(\lambda t)^j}{j!}.$$

Example

At a nuclear plant, (minor) accidents occur according to a Poisson process with a rate of one every two years.

- What is the probability that the time between successive accidents is greater than two years?
 - Answer: The rate of accidents is $\lambda = 1/2$ per year. Hence the requested probability is $e^{-(1/2)2} = e^{-1} = 0.368$.
- What is the probability that 4 or more accidents will occur in a two-year interval?
 - Answer: $N(2) \sim \text{Poisson}(1)$ and

$$P\{(N(2) \ge 4) = 1 - e^{-1}(1 + 1 + 1/2 + 1/6) = 0.019.$$

- What is the mean number of accidents in ten years?
 - Answer: (1/2)10 = 5.
- Suppose that a year has passed since the last accident. What is the probability that the next accident will occur at least three years from now?

Answer: By the memoryless property, the answer is $e^{-(1/2)3}=0.223$.

Nonstationary Poisson Process (NPP)

Such processes have independent but nonstationary increments. There is a rate function $\lambda(t) \geq 0$ with a cumulative function $\Lambda(t) = \int_0^t \lambda(s) \, ds$ such that the increments have the Poisson distribution with a mean that depends on the location and length of the respective time interval:

$$N(s+t) - N(s) \sim \mathsf{Poisson}\bigg(\int_s^{s+t} \lambda(u) \, du\bigg) = \mathsf{Poisson}[\Lambda(s+t) - \Lambda(s)].$$

Connection Between PPs and NPPs:

- Let $T_1 < T_2 < \cdots$ be the event times in an NPP with rate function $\lambda(t)$. Then the $\tau_i \equiv \Lambda(T_i)$ are event times in a PP with rate 1.
- Conversely, let $\tau_1 < \tau_2 < \cdots$ be the event times in a PP with rate 1. Then $\Lambda^{-1}(\tau_i)$ are event times in a NPP with rate function $\lambda(t)$.

Example

Customers arrive at a Post Office as an NPP with rates of 2 per minute between 8 a.m. and 12 p.m., and then 0.5 per minute until 4 p.m. Let t=0 correspond to 8 a.m.. The NPP $\{N(t)\}$ has rate function

$$\lambda(t) = \begin{cases} 2 & \text{for } 0 \le t < 4\\ 0.5 & \text{for } 4 \le t \le 8. \end{cases}$$

The expected number of arrivals by time t is given by the cumulative rate function

$$\Lambda(t) = \begin{cases} 2t, & \text{for } 0 \le t < 4\\ \int_0^4 2 \, du + \int_4^t 0.5 \, du = \frac{t}{2} + 6 & \text{for } 4 \le t \le 8. \end{cases}$$

The distribution of the number of arrivals between 11 a.m. and 2 p.m. is Poisson with mean $\Lambda(6) - \Lambda(3) = 3$.

Weibull Distribution

The Weibull (α, λ) distribution with shape parameter $\alpha > 0$ and scale parameter $\lambda > 0$ has density function

$$f(x) = \alpha \lambda (\lambda x)^{\alpha - 1} e^{-(\lambda x)^{\alpha}}, \quad x > 0$$

and cdf

$$F(x) = 1 - e^{-(\lambda x)^{\alpha}}, \quad x > 0.$$

It turns out that $\mathsf{E}[X] = \frac{1}{\lambda}\Gamma(1+\frac{1}{\alpha}).$

Facts:

- When $\alpha = 1$, the Weibull (α, λ) distribution reduces to $\exp(\lambda)$.
- $X \sim \text{Weibull}(\alpha, \lambda) \Leftrightarrow \lambda X \sim \text{Weibull}(\alpha, 1)$.
- Excel and Simio use the notation Weibull(α, β) with $\beta = 1/\lambda$.

Weibull Distribution (cont'd)

Figure: Plots of Weibull densities with $\lambda = 1$

Normal Distribution

The $N(\mu, \sigma^2)$ is the most important distribution in probability and statistics. It has density

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right], \quad x \in \mathbb{R},$$

 $\mathsf{E}[X] = \mu$, and $\mathsf{Var}(X) = \sigma^2$.

Theorem: If $X \sim N(\mu, \sigma^2)$, then $aX + b \sim N(a\mu + b, a^2\sigma^2)$. It follows that if $X \sim N(\mu, \sigma^2)$, then $Z \equiv \frac{X - \mu}{\sigma} \sim N(0, 1)$, the standard normal distribution, with cdf $\Phi(z)$, which is tabulated. E.g., $\Phi(1.96) \doteq 0.975$.

Theorem: If X_1 and X_2 are independent with $X_i \sim N(\mu_i, \sigma_i^2)$, i = 1, 2, then $X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

Example: Suppose $X \sim N(3,4)$, $Y \sim N(4,6)$, and X and Y are independent. Then $2X - 3Y + 1 \sim N(-5,70)$.

Sampling Distributions

There are a number of distributions (including the normal) that come up in statistical sampling problems. Here are a few:

Definitions: If Z_1, Z_2, \ldots, Z_k are iid N(0,1), then $Y = \sum_{i=1}^k Z_i^2$ has the chi square distribution with k degrees of freedom (df). We write $Y \sim \chi_k^2$. Note that E[Y] = k and Var(Y) = 2k.

If $Z \sim N(0,1)$ and $Y \sim \chi_k^2$ are independent, then $T = Z/\sqrt{Y/k}$ has Student's t distribution with k df. We write $T \sim t_k$.

If $Y_1 \sim \chi_m^2$ and $Y_2 \sim \chi_n^2$ are independent, then $F = (Y_1/m)/(Y_2/n)$ has the F distribution with m and n df. We write $F \sim F_{m,n}$.

Outline

- Preliminaries
- 2 Expectation
- Functions of a Random Variable
- Multivariate Distributions
 - Covariance and Correlation
- Common Probability Distributions
 - Discrete Distributions
 - Continuous Distributions
 - Poisson Processes
 - Continuous Distributions (cont'd)
- 6 Limit Theorems
- Statistics Tidbits

Limit Theorems

Corollary (of theorem from previous section): If X_1, \ldots, X_n are iid $N(\mu, \sigma^2)$, then the sample mean $\bar{X}_n \sim N(\mu, \sigma^2/n)$.

This is a special case of the Law of Large Numbers, which says that \bar{X}_n converges to μ in probability as $n \to \infty$.

Definition: A sequence of RVs $\{X_1, X_2, \ldots\}$ with respective cdf's $F_{X_1}(x), F_{X_2}(x), \ldots$ converges in distribution to the RV X having cdf $F_X(x)$ if $\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$ for all x where the limiting cdf $F_X(x)$ is continuous. We write $X_n \stackrel{d}{\longrightarrow} X$.

Idea: If $X_n \stackrel{d}{\longrightarrow} X$ and n is large, then we ought to be able to approximate the distribution of X_n by the limiting distribution of X.

Central Limit Theorem: If $X_1, X_2, ..., X_n$ are iid with mean μ and variance $\sigma^2 < \infty$, then

$$Z_n \equiv \frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n}\sigma} = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \xrightarrow{d} \mathsf{N}(0, 1).$$

Thus, the cdf of Z_n approaches $\Phi(z)$ as n increases. The CLT usually works well if the pdf/pmf is fairly symmetric and $n \ge 20$.

Example: Suppose $X_1, X_2, \dots, X_{100} \stackrel{\text{iid}}{\sim} \exp(1)$ (so $\mu = \sigma^2 = 1$).

$$P\left(90 \le \sum_{i=1}^{100} X_i \le 110\right) = P\left(\frac{90 - 100}{\sqrt{100}} \le Z_{100} \le \frac{110 - 100}{\sqrt{100}}\right)$$

$$\approx P(-1 \le N(0, 1) \le 1)$$

$$= 2\Phi(1) - 1 = 0.683.$$

Outline

- Preliminaries
- 2 Expectation
- Functions of a Random Variable
- 4 Multivariate Distributions
 - Covariance and Correlation
- Common Probability Distributions
 - Discrete Distributions
 - Continuous Distributions
 - Poisson Processes
 - Continuous Distributions (cont'd)
- 6 Limit Theorems
- Statistics Tidbits

Statistics Tidbits

For now, suppose that X_1, X_2, \ldots, X_n are iid from some distribution with finite mean μ and finite variance σ^2 .

In this case, we have already seen that $\mathsf{E}[\bar{X}_n] = \mu$, i.e., \bar{X}_n is unbiased for μ .

Definition: The sample variance is $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$.

Theorem: If X_1, X_2, \ldots, X_n are iid with variance σ^2 , then $\mathsf{E}[S_n^2] = \sigma^2$, i.e., S_n^2 is unbiased for σ^2 .

In particular, when the X_i are $N(\mu, \sigma^2)$, then $\bar{X}_n \sim N(\mu, \sigma^2/n)$, $S_n^2 \sim \frac{\sigma^2 \chi_{n-1}^2}{n-1}$, and \bar{X}_n and S_n^2 are independent.

These facts can be used to construct *confidence intervals* (CIs) for μ and σ^2 under a variety of assumptions.

A $100(1-\alpha)\%$ two-sided CI for an unknown parameter θ is a random interval [L,U] such that $P(L \le \theta \le U) = 1-\alpha$.

Here are some results, all of which assume that the X_i are iid normal...

Example: If σ^2 is *known*, then a $100(1-\alpha)\%$ CI for μ is

$$\bar{X}_n - z_{1-\alpha/2} \sqrt{\frac{\sigma^2}{n}} \leq \mu \leq \bar{X}_n + z_{1-\alpha/2} \sqrt{\frac{\sigma^2}{n}},$$

where $z_{1-\gamma}$ is the $1-\gamma$ quantile of the standard normal distribution, i.e., $z_{1-\gamma} \equiv \Phi^{-1}(1-\gamma)$.

Example: If σ^2 is *unknown*, then a $100(1-\alpha)\%$ CI for μ is

$$\bar{X}_n - t_{1-\alpha/2,n-1} \sqrt{\frac{S_n^2}{n}} \le \mu \le \bar{X}_n + t_{1-\alpha/2,n-1} \sqrt{\frac{S_n^2}{n}},$$

where $t_{\nu,1-\gamma}$ is the $1-\gamma$ quantile of the t_{ν} distribution.

Meaning of this CI: If we repeat this sampling experiment many times, each time with n data points, the fraction of the CIs that contain the true mean μ will be close to $1-\alpha$.

Example: A $100(1-\alpha)\%$ CI for σ^2 is

$$\frac{(n-1)S_n^2}{\chi_{n-1,1-\alpha/2}^2} \le \sigma^2 \le \frac{(n-1)S_n^2}{\chi_{n-1,\alpha/2}^2},$$

where $\chi^2_{\nu,1-\nu}$ is the $1-\gamma$ quantile of the χ^2_{ν} distribution.