# Climate change evidence

## Contents

| 1        | Dat | ta processing                                | 1  |
|----------|-----|----------------------------------------------|----|
|          | 1.1 | NASA/GISS data                               | 1  |
|          | 1.2 | Berkley Earth data                           | 1  |
| <b>2</b> | Des | scriptive Statistics                         | 5  |
|          | 2.1 | NASA/GISS                                    | 5  |
|          | 2.2 | Berkley Earth                                | 5  |
| 3        | Dat | ca Visualization                             | 10 |
|          | 3.1 | Global temperature                           | 10 |
|          | 3.2 | Temperature anomaly trend for each continent | 11 |
|          | 3.3 | Temperature records months and regions       | 11 |

## 1 Data processing

## 1.1 NASA/GISS data

Analyze global land-ocean data. No need of pre-processing, data already clean.

| Year | No_Smoothing | Lowess.5. |
|------|--------------|-----------|
| 1880 | -0.16        | -0.09     |
| 1881 | -0.08        | -0.12     |
| 1882 | -0.10        | -0.16     |
| 1883 | -0.17        | -0.20     |
| 1884 | -0.28        | -0.23     |
| 1885 | -0.33        | -0.26     |

## 1.2 Berkley Earth data

Have a look at different data per continent.

#### 1.2.1 Analysis of one continent file

Do the processing of one single file, i.e. data processing of one continent to have a better idea of what to do

```
# Define columns data frame
cols_month <- c("year", "month", "monthly_anomaly",</pre>
                "monthly_uncertainty", "annual_anomaly",
                "annual_uncertainty", "five_year_anomaly",
                "five_year_uncertainty", "ten_year_anomaly",
                "ten_year_uncertainty", "twenty_year_anomaly", "twenty_year_uncertainty")
path <- "data/Berkley Earth/continent_monthly_avg_temp/europe-TAVG-Trend.txt"</pre>
# Read data
df_europe_month <- read_delim(path,</pre>
                         delim = " ",
                         col_names = cols_month,
                         # Specify all columns as character otherwise error show up
                         col_types = "ccccccccccc",
                         skip = 70,
                         na = c("", "NA","NaN"))
# Only keep first 4 columns
df_europe_month <- df_europe_month[, 1:4]</pre>
# Convert all columns to numeric
df_europe_month <- data.frame(sapply(df_europe_month, as.numeric))</pre>
# Get name of zone from the path name
zone_name_path <- unlist(strsplit(path, split = "/"))[4]</pre>
# Get name of the zone as a list
zone_name <- head(unlist(strsplit(zone_name_path, split = "-")), -2)</pre>
# Collapse name into a single string
zone_name <- paste(zone_name, collapse = '_')</pre>
# Add name of the zone as a column to the dataset
df_europe_month$zone <- zone_name</pre>
# Create a single date column
df europe month$date = as.yearmon(paste(df europe month$year, df europe month$month), "%Y %m")
# Delete column year and month
df_europe_month <- subset(df_europe_month, select = -c(year,month))</pre>
dim(df_europe_month)
## [1] 3252
               4
str(df_europe_month)
## 'data.frame': 3252 obs. of 4 variables:
```

```
## $ monthly_anomaly : num 0.119 0.886 1.855 0.566 -1.065 ...
## $ monthly_uncertainty: num 1.75 2.28 2.59 1.56 1.47 ...
## $ zone : chr "europe" "europe" "europe" "europe" ...
## $ date : 'yearmon' num Jan 1750 Feb 1750 Mar 1750 Apr 1750 ...
```

kable(head(df\_europe\_month))

| monthly_anomaly | monthly_uncertainty | zone   | date                 |
|-----------------|---------------------|--------|----------------------|
| 0.119           | 1.749               | europe | Jan 1750             |
| 0.886           | 2.276               | europe | Feb 1750             |
| 1.855           | 2.588               | europe | Mar 1750             |
| 0.566           | 1.558               | europe | $\mathrm{Apr}\ 1750$ |
| -1.065          | 1.472               | europe | May 1750             |
| -0.099          | 1.525               | europe | Jun 1750             |

kable(summary(df\_europe\_month))

| monthly_anomaly                                                                                                     | monthly_uncertainty                                                                                       | zone                                                                 | date                                                                                         |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Min. :-6.3520<br>1st Qu.:-0.8530<br>Median :-0.0540<br>Mean :-0.1167<br>3rd Qu.: 0.6930<br>Max. : 5.4490<br>NA's :1 | Min.: 0.057<br>1st Qu.: 0.210<br>Median: 0.523<br>Mean: 1.237<br>3rd Qu.: 1.814<br>Max.: 10.288<br>NA's:1 | Length:3252<br>Class :character<br>Mode :character<br>NA<br>NA<br>NA | Min. :1750<br>1st Qu.:1818<br>Median :1885<br>Mean :1885<br>3rd Qu.:1953<br>Max. :2021<br>NA |

#### 1.2.2 Aggregate all data

Using a for loop, read all the files per single continent contained in the same folder and apply the necessary cleaning

```
df_year_temp <- read_delim(file,</pre>
                         delim = " ",
                         col_names = cols_month,
                         # Specify all columns as character otherwise error show up
                         col_types = "cccccccccc",
                         skip = 70,
                         na = c("", "NA", "NaN"))
  # Only keep first 4 columns
  df_year_temp <- df_year_temp[, 1:4]</pre>
  # Convert all columns to numeric
  df_year_temp <- data.frame(sapply(df_year_temp, as.numeric))</pre>
  # CALCULATE AVERAGE PER YEAR GIVEN MONTHLY DATA
  # Aggregate data per year and calculate mean
  df_year_temp <- aggregate(monthly_anomaly~year, transform(df_year_temp, year = df_year_temp$year), me
  # Change name of the column
  colnames(df_year_temp)[2] <- "yearly_anomaly"</pre>
  # Compute LOWESS smoother which uses locally-weighted polynomial regression
  line_trend <- lowess(as.numeric(df_year_temp$year), df_year_temp$yearly_anomaly, f = 1/5)</pre>
  # Add lowess to year temp dataframe as new column
  df_year_temp$lowess <- line_trend$y</pre>
  # GET ZONE NAME FOR PATH
  # Unlist path name
  zone_name_path <- unlist(strsplit(file, split = "/"))[4]</pre>
  # Get name of the zone as a list
  zone_name <- head(unlist(strsplit(zone_name_path, split = "-")), -2)</pre>
  # Collapse name into a single string
  zone_name <- paste(zone_name, collapse = '_')</pre>
  # Add name of the zone as a column to the temporary dataset
 df_year_temp$zone <- zone_name</pre>
  # Update dataset
 df_continent_avg_temp <- rbind(df_continent_avg_temp, df_year_temp)</pre>
}
```

## 2 Descriptive Statistics

## 2.1 NASA/GISS

| Year           | No_Smoothing     | Lowess.5.           |
|----------------|------------------|---------------------|
| Min. :1880     | Min. :-0.48000   | Min. :-0.41000      |
| 1st Qu.:1915   | 1st Qu.:-0.20000 | 1st Qu.:-0.22000    |
| Median $:1950$ | Median: -0.07000 | Median :- $0.04000$ |
| Mean:1950      | Mean: $0.04858$  | Mean: $0.04858$     |
| 3rd Qu.:1985   | 3rd Qu.: 0.23000 | 3rd Qu.: 0.22000    |
| Max. $:2020$   | Max. : 1.02000   | Max. : 1.01000      |

# # Get summary information about columns kable(summary(df\_temp\_anomaly))

| Year            | No_Smoothing     | Lowess.5.        |
|-----------------|------------------|------------------|
| Min. :1880      | Min. :-0.48000   | Min. :-0.41000   |
| 1st Qu.:1915    | 1st Qu.:-0.20000 | 1st Qu.:-0.22000 |
| Median : $1950$ | Median :-0.07000 | Median :-0.04000 |
| Mean : $1950$   | Mean: $0.04858$  | Mean: $0.04858$  |
| 3rd Qu.:1985    | 3rd Qu.: 0.23000 | 3rd Qu.: 0.22000 |
| Max. :2020      | Max. : $1.02000$ | Max. : 1.01000   |

#### 2.2 Berkley Earth

```
dim(df_continent_avg_temp)
```

```
## [1] 1158 4
```

#### kable(summary(df\_continent\_avg\_temp))

| year         | yearly_anomaly    | lowess            | zone                                                  |
|--------------|-------------------|-------------------|-------------------------------------------------------|
| Min. :1750   | Min. :-1.684333   | Min. :-0.769483   | Length:1158 Class :character Mode :character NA NA NA |
| 1st Qu.:1887 | 1st Qu.:-0.402314 | 1st Qu.:-0.369790 |                                                       |
| Median :1935 | Median :-0.096292 | Median :-0.120499 |                                                       |
| Mean :1928   | Mean :-0.009384   | Mean :-0.006192   |                                                       |
| 3rd Qu.:1979 | 3rd Qu.: 0.337562 | 3rd Qu.: 0.176794 |                                                       |
| Max. :2020   | Max. : 2.163750   | Max. : 1.750654   |                                                       |

#### str(df\_continent\_avg\_temp)

```
## 'data.frame': 1158 obs. of 4 variables:
## $ year : num 1880 1881 1882 1883 1884 ...
## $ yearly_anomaly: num -0.282 -0.206 -0.487 -0.497 -0.767 ...
## $ lowess : num -0.498 -0.49 -0.481 -0.472 -0.462 ...
## $ zone : chr "africa" "africa" "africa" "africa" ...
```

#### kable(head(df\_continent\_avg\_temp))

| year         | yearly_anomaly           | lowess                   | zone             |
|--------------|--------------------------|--------------------------|------------------|
| 1880         | -0.2818000               | -0.4982481               | africa           |
| 1881<br>1882 | -0.2058000<br>-0.4874167 | -0.4901990<br>-0.4814832 | africa<br>africa |
| 1883         | -0.4966364               | -0.4721923               | africa           |
| 1884<br>1885 | -0.7671429<br>-0.4330000 | -0.4624419<br>-0.4523444 | africa<br>africa |

#### kable(describe(df\_continent\_avg\_temp)[1:7])

|                | vars | n    | mean         | sd         | median       | trimmed      | mad        |
|----------------|------|------|--------------|------------|--------------|--------------|------------|
| year           | 1    | 1158 | 1927.5077720 | 62.6804564 | 1935.0000000 | 1932.4202586 | 68.1996000 |
| yearly_anomaly | 2    | 1158 | -0.0093837   | 0.6044417  | -0.0962917   | -0.0401278   | 0.5353421  |
| lowess         | 3    | 1158 | -0.0061921   | 0.4912716  | -0.1204991   | -0.0676041   | 0.4048334  |
| zone*          | 4    | 1158 | 4.1908463    | 1.8243581  | 4.0000000    | 4.2381466    | 1.4826000  |

#### kable(describe(df\_continent\_avg\_temp)[7:13])

|                | mad        | min           | max         | range      | skew       | kurtosis   | se        |
|----------------|------------|---------------|-------------|------------|------------|------------|-----------|
| year           | 68.1996000 | 1750.00000000 | 2020.000000 | 270.000000 | -0.6111347 | -0.2285290 | 1.8419501 |
| yearly_anomaly | 0.5353421  | -1.6843333    | 2.163750    | 3.848083   | 0.4930823  | 0.3923491  | 0.0177623 |
| lowess         | 0.4048334  | -0.7694827    | 1.750654    | 2.520136   | 1.1026295  | 0.7690255  | 0.0144367 |
| zone*          | 1.4826000  | 1.0000000     | 7.000000    | 6.000000   | -0.1638085 | -0.8302282 | 0.0536112 |

#### 2.2.1 Descriptitive statistics per continent

Using describeBy() function of psych package.

describeBy(df\_continent\_avg\_temp, df\_continent\_avg\_temp\$zone)

```
##
## Descriptive statistics by group
## group: africa
##
             vars n mean sd median trimmed mad
               1 141 1950.00 40.85 1950.00 1950.00 51.89 1880.00 2020.00
## year
## yearly_anomaly 2 141 0.11 0.49 0.02 0.07 0.41 -0.81
## yearry_--
## lowess 3 141
4 141
                       0.10 0.44 -0.02 0.05 0.44
                                                  -0.50
                                                         1.15
                       1.00 0.00 1.00 1.00 0.00
                                                 1.00
                                                        1.00
##
             range skew kurtosis se
## year
            140.00 0.00
                        -1.23 3.44
## yearly_anomaly 2.25 0.68
                        -0.21 0.04
## lowess 1.65 0.88 -0.29 0.04 ## zone* 0.00 NaN NaN 0.00
## -----
## group: antarctica
##
       vars n mean sd median trimmed mad
## year
             1 65 1988.00 18.91 1988.00 1988.00 23.72 1956.00 2020.00
## yearly_anomaly 2 65 0.36 0.55 0.41 0.37 0.48 -0.96 1.41
               3 65
                                                       1.16
## lowess
                    0.35 0.36 0.32 0.36 0.29 -0.39
## zone*
               4 65
                    1.00 0.00 1.00 1.00 0.00 1.00 1.00
##
            range skew kurtosis se
## year 64.00 0.00 -1.26 2.35
## yearly_anomaly 2.37 -0.12 -0.36 0.07
## lowess 1.55 0.01 -0.57 0.04 ## zone* 0.00 NaN NaN 0.00
## -----
## group: asia
                           sd median trimmed mad
             vars n mean
         1 182 1929.50 52.68 1929.50 1929.50 67.46 1839.00 2020.00
## year
## yearly_anomaly 2 182 0.00 0.61 -0.14 -0.06 0.44 -1.55 2.11
## lowess
                       0.01 0.55 -0.11 -0.07 0.34 -0.77
              3 182
                                                         1.68
## zone*
              4 182
                       1.00 0.00 1.00 1.00 0.00 1.00 1.00
##
             range skew kurtosis se
        181.00 0.00 -1.22 3.91
## year
## yearry_-----
## lowess 2.45 1.55
0.00 NaN
## yearly_anomaly 3.66 0.92 1.00 0.05
              2.45 1.35
                         1.18 0.04
                       NaN 0.00
## -----
## group: europe
             vars n mean sd median trimmed mad
                                                   min
              1 271 1885.00 78.38 1885.00 1885.00 100.82 1750.00 2020.00
## yearly_anomaly 2 271 -0.12 0.69 -0.15 -0.16 0.63 -1.63
## lowess
               3 271 -0.09 0.51 -0.31 -0.19 0.23 -0.62 1.75
               4 271
                      1.00 0.00 1.00 1.00 0.00 1.00 1.00
## zone*
##
              range skew kurtosis se
## year 270.00 0.00 -1.21 4.76
## yearly_anomaly 3.79 0.56
                         0.33 0.04
              2.37 1.77 2.72 0.03
## lowess
```

```
0.00 NaN NaN 0.00
## -----
## group: north_america
## vars n mean sd median trimmed mad min
              1 198 1921.50 57.30 1921.50 1921.50 73.39 1823.00 2020.00
## yearly_anomaly 2 198 -0.08 0.65 -0.17 -0.12 0.62 -1.68 1.94
## lowess 3 198 -0.10 0.50 -0.18 -0.17 0.00 ## zone* 4 198 1.00 0.00 1.00 1.00 0.00 1.00
              range skew kurtosis se
## year 197.00 0.00 -1.22 4.07
## yearly_anomaly 3.63 0.59
                           0.25 0.05
## lowess 1.93 1.00 0.26 0.04 ## zone* 0.00 NaN NaN 0.00
## -----
## group: oceania
## vars n mean sd median trimmed mad min max ## year 1 145 1948.00 42.00 1948.00 1948.00 53.37 1876.00 2020.00
## year
## yearly_anomaly 2 145 0.06 0.48 -0.04 0.03 0.47 -0.88
## lowess 3 145 0.06 0.39 -0.16 0.00 0.15 -0.28 1.15 ## zone* 4 145 1.00 0.00 1.00 1.00 0.00 1.00 1.00
             range skew kurtosis se
##
## year 144.00 0.00 -1.22 3.49
## yearly_anomaly 2.29 0.60 -0.17 0.04
## lowess 1.44 1.19 0.19 0.03
## zone*
               0.00 NaN
                           NaN 0.00
## -----
## group: south_america
## vars n mean sd median trimmed mad
                                                      min
             1 156 1942.07 45.91 1942.50 1942.50 57.82 1856.00 2020.00
## yearly_anomaly 2 156 -0.07 0.50 -0.13 -0.09 0.48 -1.60 1.24
## lowess 3 156 -0.08 0.45 -0.15 -0.12 0.40 -0.73 1.05 ## zone* 4 156 1.00 0.00 1.00 1.00 0.00 1.00 1.00
##
              range skew kurtosis se
         164.00 -0.05 -1.15 3.68
## year
## yearly_anomaly 2.84 0.32
                          -0.04 0.04
## lowess 1.78 0.73 -0.43 0.04 ## zone* 0.00 NaN NaN 0.00
```

Manual approach.

| continents       | $\min\_year$ | $\min\_temp\_anom$ | $max\_temp\_anom$ | $mean\_temp\_anom$ | var_temp_anom |
|------------------|--------------|--------------------|-------------------|--------------------|---------------|
| africa           | 1880         | -0.8090000         | 1.443167          | 0.1101983          | 0.2410926     |
| europe           | 1750         | -1.6291667         | 2.163750          | -0.1166967         | 0.4793055     |
| asia             | 1839         | -1.5506000         | 2.111417          | 0.0031615          | 0.3752881     |
| oceania          | 1876         | -0.8770833         | 1.416000          | 0.0612455          | 0.2329804     |
| $north\_america$ | 1823         | -1.6843333         | 1.943500          | -0.0828213         | 0.4250174     |
| $south\_america$ | 1856         | -1.6050000         | 1.237333          | -0.0720385         | 0.2505224     |
| antarctica       | 1956         | -0.9570000         | 1.409417          | 0.3600167          | 0.2979611     |

## 3 Data Visualization

## 3.1 Global temperature

## **Global Temperature**

Global land-ocean temperature index



Data source: NASA's Goddard Institute for Space Studies (GISS)

## 3.2 Temperature anomaly trend for each continent

## **Continent temperature anomaly**



Data source: Berkley Earth.

## 3.3 Temperature records months and regions

```
# Order data by yearly anomaly
df_top_year <- df_continent_avg_temp[order(-df_continent_avg_temp$yearly_anomaly), ]
kable(head(df_top_year, 10))</pre>
```

|     | year | yearly_anomaly | lowess   | zone             |
|-----|------|----------------|----------|------------------|
| 659 | 2020 | 2.163750       | 1.750654 | europe           |
| 388 | 2020 | 2.111417       | 1.676391 | asia             |
| 853 | 2016 | 1.943500       | 1.162198 | $north\_america$ |
| 658 | 2019 | 1.846000       | 1.707456 | europe           |
| 653 | 2014 | 1.817583       | 1.492195 | europe           |
| 654 | 2015 | 1.802917       | 1.535166 | europe           |
| 657 | 2018 | 1.757583       | 1.664258 | europe           |
| 847 | 2010 | 1.729000       | 1.000779 | $north\_america$ |
| 387 | 2019 | 1.688917       | 1.632638 | asia             |
| 385 | 2017 | 1.685833       | 1.545925 | asia             |

```
df_eu <- df_continent_avg_temp[df_continent_avg_temp$zone == 'europe', ]
write.csv(df_eu, "data/Berkley Earth/df_yearly_anomaly_EU.csv", row.names = TRUE)</pre>
```