프로세스와스레드

목차

- 프로세스 란?

- 프로세스의 상태

- Process Control Block(PCB)

- 스레드 란?

- 스레드의 장점

프로세스 란?

- 실행 중인 프로그램
- 프로그램의 인스턴스
- 프로그램은 파일 시스템에 존재하는 실행 파일
- 예시) 한글.exe 프로그램을 실행시키면 한글 창 프로세스가 생성된다.

프로세스의 상태

- 프로세스는 상태가 변경되면서 수행된다.
- Running: CPU를 잡고 수행 중인 상태
- Ready: 모든 준비를 다 갖추고 CPU를 기다리는 상태
- Blocked: CPU를 주어도 당장 수행할 수 없는 상태
- 프로세스 자신이 요청한 event가 즉시 만족되지 않아 이를 기다리는 상태
- Event가 완료되면 Ready 상태로 변화
- New: 프로세스가 생성 중인 상태
- Terminated: 수행이 끝난 상태

프로세스의 상태

Process Control Block(PCB)

- 운영체제가 각 프로세스를 관리하기 위해 프로세 스당 유지하는 정보
- (1) OS가 관리상 사용하는 정보
- (2) CPU 수행 관련 하드웨어 값
- (3) 메모리 관련
- (4) 파일 관련

Process Control Block

프로세스의 특징

• 완벽히 독립적이기 때문에 메모리 영역을 다른 프로세스와 공유하지 않음

• 최소 1개의 스레드를 가짐

스레드란?

•프로세스 내에서 실제로 작업을 수행하는 주체

•스레드는 동료 스레드와 프로세스 내부의 자원을 공유한다.

멀티스레드의장점

- Responsiveness
 - 사용자 입장에서 응답이 빠름
 - 응답성을 향상 시킬 수 있음
- Resource Sharing
 - 자원을 공유해서 효율적으로 사용할 수 있음
- Economy
 - 스레드를 추가하는 것은 프로세스를 추가하는 것보다 overhead가 작음
 - Overhead: 어떤 처리를 하기 위해 들어가는 간접적인 처리 시간, 메모리 등을 말함
- Utilization of MP Architectures
 - 서로 다른 CPU에서 병렬적으로 일할 수 있음

멀티 스레드의 단점

• 스레드 간 자원을 공유하기 때문에, 하나의 스레드만 오류로 종료되어도 전체 스레드가 종료될 수 있음

• 스레드 간에는 전역 변수를 공유하므로 함께 사용할 때 충돌이 발생할 수 있음

정리

- 1) 프로세스 란?
- 2) 프로세스의 특징

- 3) 스레드(Thread)란?
- 4) 멀티 스레드의 장점
- 5) 프로세스와 스레드의 차이

정리

1) 프로세스 란?

컴퓨터에서 실행되고 있는 프로그램을 프로세스라고 한다.

2) 프로세스의 특징

완벽히 독립적이기 때문에 메모리 영역을 다른 프로세스와 공유하지 않는다. 최소 1개의 스레드를 갖는다.

정리

3) 스레드(Thread)란?

프로세스 내에서 실제로 작업을 수행하는 주체

4) 스레드의 장점

응답성, 자원 공유성, 경제성

5) 프로세스와 스레드의 차이

프로세스는 실행 중인 프로그램을 말하며, 독립적이기 때문에 메모리 영역을 공유하지 않습니다.

스레드는 프로세스 내에서 Stack만 따로 할당 받고, 그 이외의 메모리영역을 공유합니다. 스레드는 프로세스 내에 존재하며 프로세스가 할당 받은 자원 을 이용하여 실행됩니다.