

Introduction to Data Management

Query Cost Estimation

Alyssa Pittman

Based on slides by Jonathan Leang, Shana Hutchinson, Dan Suciu, et al

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

Announcements

HW5 out

- You know how to write the SQL queries, but it's a lot of code!
- Transactions can be hard to debug.

Midterm results

- Scores released today via Gradescope
- Solutions on the website
- Regrade requests open until February 26
 - Please be specific/descriptive when asking for a question to be regraded

Goals for Today

- Move to a short unit on RDBMS optimization
- Learn how an RDMS translates a logical query plan to a physical query plan and executes it

Outline

- Query execution
- Cost estimation ideas and assumptions
- Join algorithm analyses
- Basic cardinality estimation

Query Optimization

- So you wrote a SQL query...
 - SQL only tells the computer what you want
 - RDBMS needs to find a good way to actually do it

Logical vs Physical Plans

- SQL is translated into RA
- RA (logical plan) does not fully describe execution
- RA with algorithms (physical plan) is needed

Logical vs Physical Plans

- SQL is translated into RA
- RA (logical plan) does not fully describe execution
- RA with algorithms (physical plan) is needed

Disclaimer

- Cost estimation is an active research topic
- Equations and methods discussed in this class form a foundation of concepts, but usually cannot compare to a commercialized solution

RDBMs optimize by selecting the least cost plan

- SQL □ RA
- ■RA □ Set of eq. RA
- Set of eq. RA □ Set of physical plans
- Set of physical plans

 The least cost plan

...Execute!

RDBMS

SQL
SELECT *
FROM T, R, S
WHERE ...

Assumptions

For this class we make a lot of assumptions

- Disk-based storage
 - HDD not SDD
- Row-based storage
 - Tuples are stored contiguously
- IO cost (reading from disk) only considered
 - Comprehensive cost estimation involves many factors
 - Network, disk, and CPU cost
 - Cache (main mem., L1 cache, L2 cache, disk cache, ...)
 - Reading from disk is usually the biggest component
 - One IO access is ~100000x more expensive than one main memory access
- -Cold cache (no data preloaded)

Disk Storage

- Mechanical hard drive
- Smallest unit of memory that can be read at once is a **block**
 - Usually 512B to 4kB
- DBMS will attempt to store table files in contiguous chunks of memory on disk

Sequential disk reads are faster than random

ones

Disk Storage

Numbers Everyone Sho	uld Know
L1 cache reference	0.5 ns
Branch mispredict	5 ns
L2 cache reference	7 ns
Mutex lock/unlock	100 ns
Main memory reference	100 ns
Compress 1K bytes with Zippy	10,000 ns
Send 2K bytes over 1 Gbps network	20,000 ns
Read 1 MB sequentially from memory	250,000 ns
Round trip within same datacenter	500,000 ns
Disk seek	10,000,000 ns
Read 1 MB sequentially from network	10,000,000 ns
Read 1 MB sequentially from disk	30,000,000 ns
Send packet CA->Netherlands->CA	150,000,000 ns

Jeff Dean's "Numbers Everyone Should Know"

Disk Storage

- Tables are stored as files
 - **Heap file** □ Unsorted tuples (this lecture)
 - **Sequential file** \square Sorted tuples (next lecture)
 - Attribute(s) sorted on is called a <u>key</u> (because that term isn't overloaded...)

Making Cost Estimations

- RDBMS keeps statistics about our tables
 - B(R) = # of blocks in relation R
 - T(R) = # of tuples in relation R
 - V(attr, R) = # of distinct values of attr in R
- We only discuss join algorithms because they are usually the most expensive part of a query
- We only discuss nested-loop and single-pass join algorithms because cost equations get complex

Join Algorithm Summary

- Nested-Loop Join
 - Versatile
- Hash Join (single pass)
 - Fast
 - Needs at least one input to be small
- Sort-Merge Join (single pass)
 - Fast
 - Sorts data at the same time!
 - Needs both inputs to be small

Join Algorithm Summary

Nested-Loop Join

- Versatile
- Hash Join (single pass)
 - Fast
 - Needs at least one input to be small
- Sort-Merge Join (single pass)
 - Fast
 - Sorts data at the same time!
 - Needs both inputs to be small

 Similar execution logic as nested-loop semantics

```
for each tuple t1 in R:

for each tuple t2 in S:

if t1 and t2 can join:

output (t1,t2)
```

 Similar execution logic as nested-loop semantics

```
for each tuple t1 in R:
for each tuple t2 in S:
if t1 and t2 can join:
output (t1,t2)
```

To save time, we'll read tuples from disk to memory in blocks. For fixed-size tuples, each block will have the same number of tuples.

Example equijoin SELECT * FROM R, S WHERE R.attr = S.attr Where R.attr = S.attr

Block-at-a-time nested loop join:

```
for each block bR in R:
   for each block bS in S:
     for each tuple tR in bR:
        for each tuple tS in bS:
        if tR and tS can join:
              output (tR,tS)
```

Example equijoin

```
SELECT *
  FROM R, S
WHERE R.attr = S.attr
```

Block-at-a-time nested loop join:

Example equijoin SELECT * FROM R, S WHERE R.attr = S.attr Where R.attr = S.attr

Block-at-a-time nested loop join:

```
for each block bR in R:
    for each block bS in S:
        for each tuple tR in bR:
            for each tuple tS in bS:
                if tR and tS can join:
                      output (tR,tS)

Blocks are joined in memory
```

Example equijoin

```
SELECT *
  FROM R, S
WHERE R.attr = S.attr
```


Main Memory

Example equijoin SELECT * FROM R, S WHERE R.attr = S.attr Where R.attr = S.attr

x A tuple where x is the join attribute value

Example equijoin

```
SELECT *

FROM R, S

WHERE R.attr = S.attr

(block-at-a-time nested loop join)

R.attr=S.attr
```


Example equijoin

```
SELECT *

FROM R, S

WHERE R.attr = S.attr

(block-at-a-time nested loop join)

R.attr=S.attr
```


Example equijoin

```
SELECT *

FROM R, S

WHERE R.attr = S.attr

(block-at-a-time nested loop join)

R.attr=S.attr
```



```
Example equijoin

SELECT *

FROM R, S

R.attr=S.attr

R.attr=S.attr
```

x A tuple where x is the join attribute value

WHERE R.attr = S.attr

Example equijoin

```
SELECT *

FROM R, S

WHERE R.attr = S.attr

(block-at-a-time nested loop join)

R.attr=S.attr
```


Example equijoin

```
SELECT *

FROM R, S

WHERE R.attr = S.attr

(block-at-a-time nested loop join)

R.attr=S.attr
```


Example equijoin

```
SELECT *
  FROM R, S
WHERE R.attr = S.attr
```


 1
 1

 3
 3

 3
 3

Block-at-a-time nested loop join Cost = B(R)+B(R)*B(S)

Reading all of R...

... for each block of R read all of S

Example equijoin

```
SELECT *

FROM R, S

WHERE R.attr = S.attr
```

Can I do it faster?

Example equijoin

```
SELECT *

FROM R, S

WHERE R.attr = S.attr
```

Can I do it faster? Yeah... if you're willing to use more memory

Algorithms 101: Time complexity vs space complexity tradeoff

Example equijoin

```
SELECT *

FROM R, S

WHERE R.attr = S.attr

Where R.attr = S.attr
```

Optimized block-nested-loop join:

```
for each group of N blocks bR in R:
   for each block bS in S:
      for each tuple tR in bR:
        for each tuple tS in bS:
        if tR and tS can join:
            output (tR,tS)
```

Example equijoin

N = 2 blocks

Example equijoin

```
SELECT *

FROM R, S

WHERE R.attr = S.attr

| R.attr=S.attr |
| R.
```

N = 2 blocks

Example equijoin

```
SELECT *

FROM R, S

WHERE R.attr = S.attr

| R.attr=S.attr |
| R.
```

N = 2 blocks

Example equijoin

N = 2 blocks

Example equijoin

```
SELECT *

FROM R, S

WHERE R.attr = S.attr

| R.attr=S.attr |
| R.
```

N = 2 blocks

Join Algorithm Summary

- Nested-Loop Join
 - Versatile
- Hash Join (single pass)
 - Fast
 - Needs at least one input to be small
- Sort-Merge Join (single pass)
 - Fast
 - Sorts data at the same time!
 - Needs both inputs to be small

Hash Tables 101

A naive hash function:

$$h(x) = x \mod 10$$

Operations:

Separate chaining:

Hash Tables 101

- insert(k, v) inserts key k with value v
- Many values for one key
 - Duplicates are ok for our bag semantics
- find(k) returns a list of all values associated with the key

Separate chaining:

- Make a lookup/hash table from the smaller table
 - Smaller table has to be smaller than total main memory available (B(R) < M or B(S) < M)
- For each block of the larger table, join using the lookup/hash table

Example equijoin

```
SELECT *

FROM R, S

WHERE R.attr = S.attr

(hash join)

R.attr=S.attr
```

M = 10 blocks, $hash(x) = x \mod 5$

Example equijoin

```
SELECT *

FROM R, S

WHERE R.attr = S.attr

(hash join)

R.attr=S.attr
```

M = 10 blocks, $hash(x) = x \mod 5$

Example equijoin

```
SELECT *

FROM R, S

WHERE R.attr = S.attr

(hash join)

R.attr=S.attr
```

M = 10 blocks, $hash(x) = x \mod 5$

Example equijoin equijoin

M = 10 blocks, $hash(x) = x \mod 5$

Isn't this the same as block-nested-loop join where B(R)=N?

Cost = B(R)+B(R)/N*B(S)

Isn't this the same as block-nested-loop join where B(R)=N?

Cost = B(R)+B(R)/N*B(S)

Yes! It's the optimal "one-pass" join!

Join Algorithm Summary

- Nested-Loop Join
 - Versatile
- Hash Join (single pass)
 - Fast
 - Needs at least one input to be small
- Sort-Merge Join (single pass)
 - Fast
 - Sorts data at the same time!
 - Needs both inputs to be small

- Sort both tables into lists in memory
 - Since the sorted lists must contain all tuples, both tables together must fit in memory (B(R)+B(S) < M)
- Merge the lists in memory to join
 - Preserves order!

Example equijoin

```
SELECT *

FROM R, S

WHERE R.attr = S.attr

(sort merge join)

R.attr=S.attr
```

M = 10 blocks

Example equijoin

```
SELECT *

FROM R, S

WHERE R.attr = S.attr

(sort merge join)

R.attr=S.attr
```

M = 10 blocks

Example equijoin

```
SELECT *

FROM R, S

WHERE R.attr = S.attr

(sort merge join)

R.attr=S.attr

R S
```

M = 10 blocks

Cardinality Estimation

- Another building block when estimating the overall cost of a plan
- If we have an RA tree, we need to estimate the output cardinality of the "lower" operations since it's the input to "upper" operations

how many tuples here??

Least Cost

Plan

Cardinality Estimation

- Estimate the number of tuples in the output of each RA operator
 - err, without actually computing the output
- Let's go grocery shop!
 - Safeway(id, name, category, price)
 - QFC(<u>id</u>, name, category, price)
- Let's use store stats to estimate the cardinality of some queries

Cardinality Estimation

Underline = primary key

- Safeway(id, name, category, price)
 - T = 1000

of tuples

• V(name) = 900

of distinct values

- V(category) = 10
- V(price) = 200
- Range(price) = [1,50) range of values

- QFC(id, name, category, price)
 - T = 2000
 - V(name) = 1900
 - V(category) = 12
 - V(price) = 500

Cardinality Estimation: SELECT

Safeway(id, name, category, price) T = 1000

How many tuples do we expect this query to output?

Cardinality Estimation: SELECT

Safeway(id, name, category, price) T = 1000

```
SELECT name

FROM Safeway
```


How many tuples do we expect this query to output? ANSWER: 1000 (no change)

Cardinality Estimation: DISTINCT

How many tuples do we expect this query to output?

Cardinality Estimation: DISTINCT

SELECT DISTINCT name
FROM Safeway

How many tuples do we expect this query to output? ANSWER: 900 (set to distinct values)

Safeway(id, name, category, price) T = 1000

How many tuples do we expect this query to output? ASSUME: that '45' exists in the distinct values of id

Answer is 0 otherwise...

ANSWER: 1

Safeway(<u>id</u>, name, category, price) T = 1000 V(name) = 900

```
SELECT *
FROM Safeway
WHERE name = 'Milk'
```

 $\sigma_{name="Milk"}$

ASSUME: distinct values uniformly distributed

Without assumptions, estimation is impossible...

ANSWER: 1000 / 900 ≈ 1.11 tuples

Safeway(<u>id</u>, name, category, price) T = 1000 V(name) = 900

```
SELECT *
FROM Safeway
WHERE name = 'Milk'
```

 $\sigma_{name="Milk"}$ |
|
| Safeway

Select Value: $\frac{T(op)}{V(op, attr)}$

ASSUME: distinct values uniformly distributed

Without assumptions, estimation is impossible...

ANSWER: 1000 / 900 ≈ 1.11 tuples

The **selectivity factor**

```
SELECT *
FROM Safeway
WHERE price < 20</pre>
```

$$\sigma_{price < 20} \ | \$$
Safeway

ASSUME: distinct values uniformly distributed & continuous

Without assumptions, estimation is impossible...

ANSWER: $1000 * (20 - 1) / (50 - 1) \approx 387.8 \text{ tuples}$

```
SELECT *
FROM Safeway
WHERE price < 20
Select Range: T(op) * \frac{(Val-Min)}{(Max-Min)}
```

ASSUME: distinct values uniformly distributed & continuous

Without assumptions, estimation is impossible...

ANSWER:
$$1000 * (20 - 1) / (50 - 1) * 387.0 The selectivity factor$$

```
Safeway(<u>id</u>, name, category, price) T = 1000
V(name) = 900 V(price) = 200 Range(price) = [1,50)
```

```
SELECT * FROM Safeway \sigma_{price < 20~AND~name = "Milk"} WHERE price < 20 AND name = 'Milk' Safeway
```

```
Safeway(<u>id</u>, name, category, price) T = 1000
V(name) = 900 V(price) = 200 Range(price) = [1,50)
```

```
SELECT *
FROM Safeway
WHERE price < 20
AND name = 'Milk'</pre>
```

Hard to say

e.g. no milk costs < 20

e.g. milk & price independent

If conditions disjoint, 0 tuples result

e.g. all milk costs < 20

If conditions independent, multiply estimo

If conditions fully overlap, take **minimum** of estimates

ASSUME independent unless you know for sure

```
SELECT *
FROM Safeway
WHERE price < 20
AND name = 'Milk'</pre>
```

ANSWER:

assuming independence

0.431 tuples

AND / INTERSECT

Assume independence: T(op) * cond1 * cond2unless full overlap: $T(op) * min\{cond1, cond2\}$ unless disjoint: 0

ANSWER:

assuming independence

The **selectivity factor**

0.431 tuples

Cardinality Estimation: JOIN

- Read 16.4.4 in the book for cardinality estimation of JOINs
- We'll use this later!

Takeaways

- Nested-Loop Joins
 - Block-at-a-time □ B(R)+B(R)*B(S)
 - Nested-block-loop □ B(R)+B(R)/N*B(S)
- Hash Join and Sort-Merge Join

 B(R)+B(S)
- Cardinality estimation helps give us inputs for more complex RA trees.