COURSE 12

Dimension

Let $(K, +, \cdot)$ be a field and let V be a vector space over K.

- An *n*-tuple $B = (v_1, \dots, v_n) \in V^n$ is a basis of V if $\underline{\langle B \rangle} = V$ and \underline{B} is linearly independent in V.
- Let V be a vector space over K. A list $B = (v_1, \dots, v_n)$ of vectors in V is a basis of V if and only if each vector $v \in V$ can be uniquely written as a linear combination of the vectors v_1, \ldots, v_n i.e.

$$\forall v \in V, \ \exists k_1, \dots, k_n \in K: \ v = k_1v_1 + \dots + k_nv_n.$$
 Theorem 1. Every vector space has a basis.

Remarks 2. (1) We have proved the existence of a basis of a vector space. We saw in a previous example that a space may have more than one basis.

(2) In the proof of Theorem 1 we saw that if B is an n-elements set which generates V one can successively eliminate elements from B in order to find a basis for V. It follows that any basis of V has at most n vectors. Later we will prove even a stronger result, namely if a vector space has a basis of n elements, then all its bases have n elements.

Theorem 3. i) Let $f: V \to V'$ be a K-linear map and let $B = (v_1, \ldots, v_n)$ be a basis of V. Then f is determined by its values on the vectors of the basis B.

ii) Let $f, g: V \to V'$ be K-linear maps and let $B = (v_1, \ldots, v_n)$ be a basis of V. If $f(v_i) = g(v_i)$, for any $i \in \{1, \ldots, n\}$, then f = g.

Proof. i) B band for
$$V \Rightarrow \forall v \in V$$
, $\exists k_1, ..., k_n \in K$ using usly determined

s.t. $v = k_1 v_1 + ... + k_n v_n$ (*)

$$\Rightarrow f(\sigma) = f(k_1 v_1 + \dots + k_n v_n) = k_1 f(v_1) + \dots + k_n f(v_n)$$

Remark 4. From the previous theorem one deduces that given two K-vector spaces V, V', a basis B of V and a function $f': B \to V'$, there exists a unique linear map $f: V \to V'$ which extends f' (i.e. $f|_B = f'$ or, equivalently, $f(x_i) = f'(x_i)$, i = 1, ..., n), result also known as universal property of vector spaces.

- **Theorem 5.** Let $f: V \to V'$ be a K-linear map. Then:
 - (i) f is injective if and only if for any X linearly independent in V, f(X) is linearly independent in V'.
 - (ii) \underline{f} is surjective if and only if for any \underline{X} system of generators for \underline{V} , $\underline{f}(\underline{X})$ is a system of generators for \underline{V}' .
- (i) + (ii) \Rightarrow (iii) f is bijective if and only if for any X basis of V, f(X) is a basis of V'.

P. ((ADM.)

(i) = f injective, $X = (x_1, ..., x_n) + indy. (hence mutually different)$ $f(X) = (f(x_1), ..., f(x_n)) + indy. (?) \quad \text{det } k_1, ..., k_n \in K. \text{ arbitrary.}$ $\frac{k_1 f(x_1) + ... + k_n f(x_n) = 0}{k_1 x_1 + ... + k_n x_n} = 0 = f(x_n) + ... + k_n f(x_n) = 0$ $\Rightarrow k_1 x_1 + ... + k_n x_n = 0 \quad \text{(in V)} \Rightarrow k_1 = ... = k_n = 0.$

The day.

Let $x, y \in V$, $x \neq y \Rightarrow x - y \neq 0 \Leftrightarrow x - y \neq 0$ independently $\Rightarrow f(x - y) \neq 0$ independently.

Hence f injective.

Also states f(x) = f(x) + f

(ii) $X = (x_1, ..., x_n)$ as list of (untually different) orders from V which $\langle f(x) \rangle = f(\langle x \rangle) = f(V)$.

If sujective $\Longrightarrow f(V) = V' \Longleftrightarrow \langle f(x) \rangle = V'$.

(iii) is obvious.

Let us now discuss a key theorem for proving that any two bases of a vector space have the same number of elements. But it is worth mentioning that it has a much broader importance in Linear Algebra.

Theorem 6. (Steinitz, The Exchange Theorem) Let V be a K-vector space, $X = (x_1, \ldots, x_m)$ be a linearly independent list of vectors of V and $Y = (y_1, \ldots, y_n)$ a system of generators of V $(m, n \in \mathbb{N}^*)$. Then $m \leq n$ and m vectors of Y can be replaced by the vectors of X in order to obtain a system of generators for V.

Proof. We prove this result by way of induction on m. Let us take m=1. Then clearly $m \leq n$. Since Y is a system of generators for V, we have $x_1 = \sum_{i=1}^n k_i y_i$ for some $k_1, \ldots, k_n \in K$. The list $X = \{x_1\}$ is linearly independent, hence $x_1 \neq 0$. It follows that there exists $j \in \{1, \ldots, n\}$ such that $k_j \neq 0$. Then

$$y_j = k_j^{-1} x_1 - \sum_{\substack{i=1\\i\neq j}}^n k_j^{-1} k_i y_i$$

that is, y_j is a linear combination of the vectors $y_1, \ldots, y_{j-1}, x_1, y_{j+1}, \ldots, y_n$. Hence, in any linear combination of y_1, \ldots, y_n , the vector y_j can be expressed as a linear combination of the other vectors and x_1 . Therefore, we have

$$V = \langle y_1, \dots, y_n \rangle = \langle y_1, \dots, y_{j-1}, x_1, y_{j+1}, \dots, y_n \rangle.$$

Thus, we have obtained again a system of n generators for V containing x_1 .

Let us assume that the statement holds for a list with m-1 linearly independent vectors of V $(m \in \mathbb{N}, m \ge 2)$ and let us prove it for the linearly independent list $X = (x_1, \ldots, x_m)$. Then (x_1, \ldots, x_{m-1}) is also linearly independent in V. By the induction step hypothesis, we have $m-1 \le n$. If necessary, we can reindex the elements of Y and we have

$$V \stackrel{\triangleright}{=} \langle x_1, \dots, x_{m-1}, y_m, \dots, y_n \rangle$$
.

Assume by contradiction that m-1=n. Then from $V=\langle x_1,\ldots,x_{m-1}\rangle$ it follows that $x_m\in \langle x_1,\ldots,x_{m-1}\rangle$, which is absurd since X is linearly independent in V. Thus m-1< n or, equivalently, $m\leq n$.

We have $x_m \in V = \langle x_1, \dots, x_{m-1}, \underline{y_m, \dots, y_n} \rangle$, hence

$$x_m = \sum_{i=1}^{m-1} k_i x_i + \sum_{i=m}^n k_i y_i$$

for some $k_1, \ldots, k_n \in K$. The list X being linearly independent in V, it follows that there exists $m \leq j \leq n$ such that $k_j \neq 0$ (otherwise, $x_m = \sum_{i=1}^{m-1} k_i x_i$ and the list X would be linearly dependent in V). For simplicity of writing, assume that j = m. It follows that

$$y_m = k_m^{-1} \underline{x}_m - \sum_{i=1}^{m-1} k_m^{-1} k_i \underline{x}_i - \sum_{i=m+1}^n k_m^{-1} k_i \underline{y}_i.$$

Thus, $y_m \in \langle x_1, \dots, x_m, y_{m+1}, \dots, y_n \rangle$. Therefore, we have

$$V = \langle x_1, \dots, x_{m-1}, \underline{y_m, \dots, y_n} \rangle = \langle x_1, \dots, x_m, \underline{y_{m+1}, \dots, y_n} \rangle.$$

Thus, we have obtained again a system of generators for V, where m vectors of the list Y have been replaced by the vectors of the list X. This completes the proof.

Theorem 7. Any two bases of a vector space have the same number of elements.

Proof. Let B_1 , B_2 beams for V, $|B_1| = u$, $|B_2| = n$, u, $n \in \mathbb{N}^* \square$ B_1 L. indep. set $| \frac{76}{3} > u \le n$ $B_2 = 0$ indep. set $| \frac{76}{3} > n \le n$ $B_3 = 0$ indep. set $| \frac{76}{3} > n \le n$ $B_4 = 0$ $B_4 = 0$ $B_5 = 0$ B_5 $\langle \mathcal{B}_i \rangle = V$

 \longrightarrow **Definition 8.** Let V be a vector space over K. Then the number of elements of any of its bases is called the **dimension of** V and is denoted by $\dim_K V$ or simply by $\dim V$.

Examples 9. Using the bases given in the previous course examples, one can easily determine the dimension of those vector spaces.

- \rightarrow (a) If $V = \{0\}$, V has the basis \emptyset and dim V = 0.

 - (b) Let K be a field and $n \in \mathbb{N}^*$. Then $\dim_K K^n = n$. In particular, $\dim_{\mathbb{C}} \mathbb{C} = 1$. (c) $\dim_{\mathbb{R}} \mathbb{C} = 2$. $\forall z \in \mathbb{C}, \overline{z} ! \alpha, \delta \in \mathbb{R}$ A.t. $z = \alpha \cdot l + \delta \cdot i$ $\exists z \in \mathbb{C}$.
- (d) $S = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ and $T = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}$ are subspaces of \mathbb{R}^3 with dim S=2 and dim T=1. More general, the subspaces of \mathbb{R}^3 are $\{(0,0,0)\}$, any line containing the origin, any plane containing the origin and \mathbb{R}^3 . Their dimensions are 0, 1, 2 and 3, respectively.
- \rightarrow (e) Let K be a field and $n \in \mathbb{N}$. Then dim $K_n[X] = n + 1$.
- \rightarrow (f) If V_1 and V_2 are K-vector spaces and $B_1=(x_1,\ldots,x_m)$ and $B_2=(y_1,\ldots,y_n)$ are bases for V_1 and V_2 , respectively, then $\dim(V_1 \times V_2) = m + n = \dim V_1 + \dim V_2$.
- \rightarrow Theorem 10. Let V be a vector space over K. Then the following statements are equivalent:
 - (i) $\dim V = n$;
 - (ii) The maximum number of linearly independent vectors in V is n;
 - (iii) The minimum number of generators for V is n.

Proof. (i) \Rightarrow (ii) Assume $\underline{\dim V} = \underline{n}$. Let $B = (v_1, \dots, v_n)$ be a basis of V. Since B is a system of generators for V, any linearly independent list in V must have at most n elements by Theorem 6. (ii) \Rightarrow (i) Let $B = (v_1, \ldots, v_m)$ be a basis of V and let (u_1, \ldots, u_n) be a linearly independent list in V. Since B is linearly independent, we have $m \leq n$ by hypothesis. Since B is a system of generators for V, we have $n \leq m$ by Theorem 6. Hence m = n and consequently dim V = n. (i) \Rightarrow (iii) Assume dim $V = \overline{n}$. Let $B = (v_1, \dots, v_n)$ be a basis of V. Since B is a linearly independent list in V, any system of generators for V must have at <u>least</u> n elements by Theorem 6. (iii) \Rightarrow (i) Let $B = (v_1, \dots, v_m)$ be a basis of V and let (u_1, \dots, u_n) be a system of generators for V. Since B is a system of generators for V, we have $n \leq m$ by hypothesis. Since B is linearly independent, we have $m \leq n$ by Theorem 6. Hence m = n and consequently dim V = n.

Theorem 11. Let V be a vector space over K with dim V = n and $X = (u_1, \ldots, u_n)$ a list of vectors in V. Then X is linearly independent in V if and only if X is a system of generators for V.

Proof. Let $B = (v_1, \ldots, v_n)$ be a basis of V.

Let us assume that X is linearly independent. Since B is a system of generators for V, we know by Theorem 6 that n vectors of B, i.e., all the vectors of B, can be replaced by the vectors of X and we get another system of generators for V. Hence $\langle X \rangle = V$. Thus, X is a system of generators for V.

Conversely, let us suppose that X is a system of generators for V. Assume by contradiction that X is linearly dependent. Then there exists $j \in \{1, ..., n\}$ such that

$$\underline{u_j} = \sum_{\substack{i=1\\i\neq j}}^n k_i \underline{u_i}$$

for some $k_i \in K$. It follows that $V = \langle X \rangle = \langle u_1, \dots, u_{j-1}, u_{j+1}, \dots, u_n \rangle$. This contradicts the fact that the minimum number of generators for V is n (see Theorem 10). Thus our assumption must have been false. So X is linearly independent.

Theorem 12. Any linearly independent list of vectors in a vector space can be completed to a basis of the vector space.

Proof. Let V be a K-vector space, let $B=(v_1,\ldots,v_n)$ be a basis of V and (u_1,\ldots,u_m) be a linearly independent list in V. Since B is a system of generators for V, we know by Theorem 6 that $m \leq n$ and m vectors of B can be replaced by the vectors (u_1,\ldots,u_m) obtaining again a system of generators for V, say $(u_1,\ldots,u_m,v_{m+1},\ldots,v_n)$. But by Theorem 11, this is also linearly independent in V and consequently a basis of V.

Remark 13. The completion of a linearly independent list to a basis of the vector space is not unique. For instance, the vector (1,0) can be completed either with (0,1) or with (1,1) to a basis of \mathbb{R}^2 (see Example 12 (c) of the previous course).

Corollary 14. Let V be a vector space over K and $S \leq_K V$. Then:

- (i) Any basis of S is a part of some basis of V.
- \longrightarrow (ii) dim $S \leq \dim V$.
 - (iii) $\dim S = \dim V \Leftrightarrow S = V$.

Proof. (i) Let $(\underline{u_1, \ldots, u_m})$ be a basis of S. Since the list is linearly independent, it can be completed to a basis $(u_1, \ldots, u_m, v_{m+1}, \ldots, v_n)$ of V by Theorem 12.

- (ii) follows from (i).
 - (iii) Assume that $\dim S = \dim V = n$. Let (u_1, \ldots, u_n) be a basis of S. Then it is linearly independent in V, hence it is a basis of V by Theorem 11. Thus, if $v \in V$, then $v = k_1 u_1 + \cdots + k_n u_n$ for some $k_1, \ldots, k_n \in K$, hence $v \in S$. Therefore, S = V.

Remark 15. For the equivalence (iii) from the previous corollary the fact that we are working in a finitely generated space is essential.

Theorem 16. Let V and V' be vector spaces over K. Then

$$V \simeq V' \Leftrightarrow \dim V = \dim V'$$
.

Proof. \Rightarrow . Let $f: V \to V'$ be a K-isomorphism. If (v_1, \ldots, v_n) is a basis of V, then by Theorem 5, $(f(v_1), \ldots, f(v_n))$ is a basis of V'. Hence dim $V = \dim V'$.

 \Leftarrow . Assume that $\dim V = \dim V' = n$. Let $B = (v_1, \ldots, v_n)$ and $B' = (v'_1, \ldots, v'_n)$ be bases of V and V' respectively. We know by Theorem 3 that a K-linear map $f: V \to V'$ is determined by its values on the vectors of the basis B. Define $f(v_i) = v'_i$, for any $i \in \{1, \ldots, n\}$. Then it is easy to check that f is a K-isomorphism.

Corollary 17. Any vector space V over K with $\dim V = n \in \mathbb{N}^*$ is isomorphic to the canonical vector space K^n over K.

Remarks 18. Corollary 17 is a very important structure result, saying that, up to an isomorphism, any finite dimensional vector space over K is, actually, the canonical vector space K^n over K. Thus, we have an explanation why we have used so often this kind of vector spaces: not only because the operations are very nice and easily defined, but they are, up to an isomorphism, the only types of finite dimensional vector spaces.

Let courider $f: K^u \rightarrow V$ the K-isomorphism $\Rightarrow f: V \rightarrow K^u$ and for any $f \in V$ which is represented as $V = X_ib_1 + \dots + X_u b_n$, $X_1, \dots, X_u \in K$ \leftarrow the coord of f in B.

Let $V = (X_1, \dots, X_u) \in K^u$.

Primarks: a) Let V be a $K - V \cdot A$, $V_1, \dots, V_u \in V$.

The maximum number of the maximum number of f indep vectors taken from f in f in

We end this section with some important formulas involving vector space dimension.

Theorem 19. Let $f: V \to V'$ be a K-linear map. Then $\dim V = \dim(\operatorname{Ker} f) + \dim(\operatorname{Im} f).$

Proof. (optional) Let (u_1, \ldots, u_m) be a basis of the subspace Ker f of V. Then by Corollary 14, it can be completed to a basis $B = (u_1, \ldots, u_m, v_{m+1}, \ldots, v_n)$ of V. We are going to prove that $B' = (f(v_{m+1}), \ldots, f(v_n))$ is a basis of Im f.

First, we prove that B' is linearly independent in $\mathrm{Im} f$. Let us take $k_{m+1}, \ldots, k_n \in K$. By the K-linearity of f we have:

$$\sum_{i=m+1}^{n} k_i f(v_i) = 0 \Rightarrow f\left(\sum_{i=m+1}^{n} k_i v_i\right) = 0 \Rightarrow \sum_{i=m+1}^{n} k_i v_i \in \text{Ker } f.$$

Since (u_1, \ldots, u_m) is a basis of Kerf, there exist $k_1, \ldots, k_m \in K$ such that

$$\sum_{i=m+1}^{n} k_i v_i = \sum_{i=1}^{m} k_i u_i \iff \sum_{i=1}^{m} k_i u_i - \sum_{i=m+1}^{n} k_i v_i = 0.$$

But $B = (u_1, \ldots, u_m, v_{m+1}, \ldots, v_n)$ is a basis of V, hence it follows that $k_i = 0$, for any $i \in \{1, \ldots, n\}$. Therefore, B' is linearly independent in Im f.

Let us now show that B' is a system of generators for $\mathrm{Im} f$. Let $v' \in \mathrm{Im} f$. Then v' = f(v) for some $v \in V$. Since B is a basis of V, there exist $k_1, \ldots, k_n \in K$ such that

$$v = \sum_{i=1}^{m} k_i u_i + \sum_{i=m+1}^{n} k_i v_i.$$

By the K-linearity of f and the fact that $u_1, \ldots, u_m \in \text{Ker} f$, it follows that

$$v' = f(v) = f\left(\sum_{i=1}^{m} k_i u_i + \sum_{i=m+1}^{n} k_i v_i\right) = \sum_{i=1}^{m} k_i f(u_i) + \sum_{i=m+1}^{n} k_i f(v_i) = \sum_{i=m+1}^{n} k_i f(v_i).$$

Hence B' is a system of generators for Im f.

Therefore, B' is a basis of $\operatorname{Im} f$ and consequently,

$$\dim V = n = m + (n - m) = \dim(\operatorname{Ker} f) + \dim(\operatorname{Im} f).$$

Corollary 20. a) Let V be a K-vector space and let S, T be subspaces of V. Then

$$\dim S + \dim T = \dim(S \cap T) + \dim(S + T).$$

Indeed, $f: S \times T \to S + T$, f(x,y) = x - y is a surjective linear map with the kernel $\ker f = \{(x,x) \mid x \in S \cap T\}$. Hence,

$$\dim(S \times T) = \dim(\operatorname{Ker} f) + \dim(S + T).$$

Since $g: S \cap T \to \operatorname{Ker} f$, g(x) = (x, x) is an isomorphism, we have

$$\dim(\operatorname{Ker} f) = \dim(S \cap T),$$

and by Example 9 g) we have $\dim(S \times T) = \dim S + \dim T$, which completes the proof of the statement.

b) If V is a K-vector space and $S, T \leq_K V$, then

$$\dim(S+T) = \dim S + \dim T \Leftrightarrow S+T = S \oplus T.$$

 \rightarrow c) Let V be a K-vector space and $f \in End_K(V)$. The following statements are equivalent:

(i) f is injective;

dim V = dim Ker f + dim Juf.

(ii) f is surjective;

(iii) f is bijective.

Of course, it is enough to show that (i) \Leftrightarrow (ii).

(i) \Rightarrow (ii) If f is injective, then $\operatorname{Ker} f = \{0\}$, hence $\dim(\operatorname{Ker} f) = 0$. By Theorem 19, it follows that $\dim(\operatorname{Im} f) = \dim V$. But $\operatorname{Im} f \leq_K V$, so $\operatorname{\underline{Im}} f = V$ by Corollary 14.

(ii) \Rightarrow (i) Let us assume that f is surjective. Since Im f = V, it follows by Theorem 19 that $\dim(\text{Ker} f) = 0$, hence $\text{Ker} f = \{0\}$. Thus f is injective.