EXÁMEN ANÁLISIS NUMÉRICO

14 DE FEBRERO DE 2007

PARTE PRACTICA

(1) Sean r, x_0 dos números positivos y la función:

$$g(x) = \frac{x(x^2 + 3r)}{3x^2 + r}.$$

Se estudiará la sucesión definida por $x_{n+1} = g(x_n), n = 0, 1, \dots$

(a) Pruebe que la sucesión $\{x_n\}$ es localmente convergente, que su límite es no nulo e igual a \sqrt{r} .

(b) Pruebe que la convergencia es exactamente de orden 3.

(2) Consideremos el conjunto de funciones continuas en el intervalo [0,4]. En ese conjunto se define el producto interno:

$$(f,g) = \int_0^{\pi/2} f(x)g(x)dx.$$

Aproximar la función sin(x) en $[0, \mathbb{I}]$ mediante un polinomio lineal, utilizando como base $\{1, x\}$.

(3) Sea A una matriz con coeficientes reales, $n \times n$ e invertible. Sea B una matriz invertible de modo que $||B - A^{-1}||$ es pequeña. Sea R = I - BA. Sea X^0 igual a la matriz $n \times n$ nula. Definir

$$X^{k+1} := B + RX^k$$

- (a) Mostrar que $X^{k+1} = (I + R + \cdots + R^k)B$.

- (b) Mostrar que si ||R|| < 1, entonces la sucesión (X^k) converge.
 (c) Mostrar que si X^k converge, entonces su límite es A⁻¹.
 (d) Sean α := ||R|| < 1 y sea E^k = A⁻¹ X^k. Mostrar que ||E^k|| ≤
- (4) En una máquina de punto flotante ($\beta = 10, t = 7, L = -10, U = 12$) determinar una cota del error relativo al calcular la función f(x,y)sen(x) + cos(x)/y en $x = \pi, y = \sqrt{3}$.
- (5) Sólo para libres: Sean T y M las aproximaciones a $\int_a^b f(x)dx$ dadas por la regla del trapecio y la regla del punto medio correspondientes a la partición $p = \{a = x_0 < \cdots < x_n = b\}$. Sea τ la partición del intervalo [a, b] que se obtiene al agregar a p los puntos medios de los intervalos $[x_i, x_{i+1}], i =$ $0, \cdots, n-1$. Sea S la aproximación de $\int_a^b f(x) dx$ asociada a la partición aupor la regla de Simpson. Mostrar que $S = \frac{1}{3}T + \frac{2}{3}M$.

