Chapitre 19

Table des matières

Ι	Premières propriétés	2
II	Noyau et image	5
III	Théorème du rang	7
IV	Formes linéaires	10
\mathbf{V}	Projections et symétries	14

Première partie Premières propriétés

Definition

Soient E et F deux \mathbb{K} -espaces vectoriels et $f:E\to F.$ On dit que f est <u>linéaire</u> si

$$\forall (x,y) \in E^2, \forall (\alpha,\beta) \in \mathbb{K}^2, f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

Definition

On dit qu'un problème est linéaire s'il se présente sous la forme :

Résoudre
$$\varphi(x) = y$$

où l'inconnue est $x \in E$, y est un paramètre de F avec $\varphi : E \to F$ linéaire.

Remarque

Notation

Soient E et F deux \mathbb{K} -espaces vectoriels.

L'ensemble des applications linéaires de E dans F est $\mathcal{L}(E,F)$. Si F=E, alors on note plus simplement $\mathcal{L}(E)$ à la place de $\mathcal{L}(E,E)$. Les éléments de $\mathcal{L}(E)$ sont appelés endomorphismes (linéaires) de E.

Proposition

Soit
$$f \in \mathcal{L}(E, F)$$
, $g \in \mathcal{L}(F, G)$. Alors $g \circ f \in \mathcal{L}(E, G)$.

Proposition

 $\mathcal{L}(E,F)$ est un sous-espace vectoriel de F^E .

Proposition

 $(\mathscr{L}(E), +, \circ, \cdot)$ est une K-algèbre (non commutative en général).

Corollaire

Soit $P \in \mathbb{K}[X]$ et $u \in \mathcal{L}(E)$. On peut former $P(u) \in \mathcal{L}(X)$: on dit que P(u) est un polynôme d'endomorphisme.

Proposition

Soit
$$f \in \mathcal{L}(E, F)$$
 bijective. Alors $f^{-1} \in \mathcal{L}(F, E)$.

Remarque

Notation

On note GL(E) l'ensemble des endomorphismes de E bijectifs, GL(E, F) l'ensemble des applications linéaires de E dans F bijectives. Les éléments de GL(E) sont appelés automorphismes (linéaires) de E. Corollaire

 $\mathrm{GL}(E)$ est un sous-groupe de $\big(S(E),\circ\big)$

Definition

 $\mathrm{GL}(E)$ est dit " le groupe linéaire de E "

Deuxième partie

Noyau et image

Proposition

Soit $f \in \mathcal{L}(E,F), U$ un sous-espace vectoriel de E et V un sous-espace vectoriel de F.

- 1. f(U) est un sous-espace vectoriel de F.
- 2. $f^{-1}(V)$ est un sous-espace vectoriel de E.

${\bf Corollaire}$

Soit $f \in \mathcal{L}(E, F)$.

- 1. $\operatorname{Ker}(f) = f^{-1}(\{0_F\}) = \{x \in E \mid f(x) = 0_E\}$ est un sous-espace vectoriel de E.
- 2. $\operatorname{Im}(f) = f(E) = \{f(u) \mid u \in E\}$ est un sous-espace vectoriel de E.

Remarque

Rappel

Soit $f \in \mathcal{L}(E, F)$

$$f$$
 injective \iff $\operatorname{Ker}(f) = \{0_E\}$
 f surjective \iff $\operatorname{Im}(f) = F$

Troisième partie Théorème du rang

Proposition Dans ce paragraphe, *E* est un K-espace vectoriel de dimension finie.

Soit $f: E \to F$ un isomorphisme (i.e. une application linéaire bijective). Alors, $\dim(E) = \dim(F)$

La première partie de la preuve précédente justifie le résultat suivant.

Proposition

Soit $f \in \mathcal{L}(E,F)$ injective. $\mathcal{L} = (e_1,\ldots,e_p)$ une famille libre de E. Alors $(f(e_1), \ldots, f(e_n))$ est une famille libre de F. En particulier, $\dim(F) \geqslant \dim(E)$.

La deuxième partie de la preuve prouve :

Proposition

Soit $f \in \mathcal{L}(E,F)$ surjective et $\mathscr{G} = (e_1,\ldots,e_p)$ une famille génératrice de E. Alors $(f(e_1), \ldots, f(e_p))$ est une famille génératrice de F. En particulier,

$$\dim(F) \leqslant \dim(E)$$

Théorème

Théorème du rang

Soit $f \in \mathcal{L}(E, F)$.

$$\dim(E) = \dim\left(\operatorname{Ker}(f)\right) + \dim\left(\operatorname{Im}(f)\right)$$

Remarque

Soit E un \mathbb{K} -espace vectoriel de dimension finie, et F un sous-espace vectoriel $\mathrm{de}\;E.$

<u>Cas 1</u> $F = \{0_E\}$, alors E est un supplémentaire de F.

<u>Cas 2</u> $F \neq \{0_E\}$. Soit $\mathscr{B} = (e_1, \ldots, e_p)$ une base de F. Alors \mathscr{B} est une famille libre de E. On complète \mathscr{B} en une base $(e_1, \ldots, e_p, e_{p+1}, \ldots, e_n)$ de E. On pose $G = \text{Vect}(e_{p+1}, \dots, e_n)$. On démontre que

$$F \oplus G = E$$

Corollaire

Soient E et F deux \mathbb{K} -espaces vectoriels de <u>même dimension finie</u> et $f \in \mathcal{L}(E, F)$.

$$f$$
 injective $\iff f$ surjective $\iff f$ bijective

III

 ${\bf Corollaire}$

Soit $f \in \mathcal{L}(E)$ avec E de dimension finie. Alors,

$$f \in \mathrm{GL}(E) \iff f \text{ injective } \iff f \text{ surjective}$$

Remarque

Soit $f \in \mathcal{L}(E, F)$, $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. Alors

$$\boxed{\operatorname{Im}(f) = \operatorname{Vect}\left(f(e_1), \dots, f(e_n)\right)}$$

$$\dim (\operatorname{Im}(f)) = \operatorname{rg} (f(e_1), \dots, f(e_n))$$

Definition

Soit $f \in \mathcal{L}(E, F)$. Le rang de f est

$$rg(f) = dim (Im(f))$$

Quatrième partie

Formes linéaires

Definition

Soit E un \mathbb{K} -espace vectoriel. Une <u>forme linéaire</u> sur E est une application linéaire de E dans \mathbb{K} .

L'ensemble des formes linéaires est noté $E^* = \mathcal{L}(E, \mathbb{K})$. E^* est appelé <u>espace dual</u> de E.

Proposition

Toute forme linéaire est soit nulle, soit surjective.

Proposition

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et $f \in E^* \setminus \{0\}$. Alors $\operatorname{Ker}(f)$ est de dimension n-1.

Proposition

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et H un sous-espace vectoriel de E de dimension n-1. Alors,

$$\exists f \in E^*, \operatorname{Ker}(f) = H$$

Proposition

Avec les notations précédentes,

 $\{f\in E^*\mid {\rm Ker}(f)=H\}$ est une droite de E^* privée de l'application nulle. En d'autres termes, les équations de H sont 2 à 2 proportionelles.

Definition

Soit E un \mathbb{K} -espace vectoriel et H un sous-espace vectoriel de E. On dit que H

est un hyperplan de E s'il existe une droite D de E telle que

$$H \oplus D = E$$

En reprenant les démonstrations précédentes, on a encore les résultats suivants :

Proposition

Soit H un hyperplan de E. Alors, $\{f \in E^* \mid \text{Ker}(f) = H\}$ est une droite de E^* privée de l'application nulle. \Box

Proposition

Soit $f \in E^*$ non nulle. Alors $\operatorname{Ker}(f)$ est un hyperplan de E.

HORS-PROGRAMME

 $\mathbb{P}^3(\mathbb{K}) = \{D \setminus \{0\} \mid D \text{ droite vectorielle de } \mathbb{K}^3\}$

Une <u>droite</u> projective de $\mathbb{P}^3(\mathbb{K})$ est un plan vectoriel de \mathbb{K}^3 privé de 0. À faire : schéma A

À faire : schémas B et C

Cinquième partie Projections et symétries

Definition

Soit E un \mathbb{K} -espace vectoriel, F et G deux sous-espaces de E supplémentaires :

$$E = F \oplus G$$

Soit $x \in E$.

$$\exists ! (a,b) \in F \times G, x = a+b$$

Le vecteur a est appelé projeté de x sur G parallèlement à G. Le vecteur b est appelé projeté de x sur G parallèlement à F. La projection sur G parallèlement à G est l'application qui à $x \in E$ associe son projeté sur F parallèlement à G.

Proposition

Soient F et G deux sous-espaces vectoriels de E supplémentaires et p la projection sur F parallèlement à G.

1.
$$p \in \mathcal{L}(E)$$

2.
$$p_{|F} = id_F \text{ et } p_{|G} = 0$$

3.
$$p \circ p = p$$

4. $id_E - p$ est la projection sur G parallèlement à F.

Definition

Soit $f \in \mathcal{L}(E)$. On dit que f est un projecteur si $f \circ f = f$

Proposition

Soit f un projecteur de E. Alors f est la projection sur Im(f) parallèlement à Ker(f). En particulier,

$$\operatorname{Im}(f) \oplus \operatorname{Ker}(f) = E$$

Definition

Soient F et G supplémentaires dans $E:E=F\oplus G$

Soit $x \in E$. On décompose x:

$$x = a + b \text{ avec } \begin{cases} a \in F \\ b \in G \end{cases}$$

et on forme

$$y = a - b$$

On dit que y est le symétrique de x par rapport à F parallèlement à G La symétrie par rapport à F parallèlement à G est l'application qui à tout $x \in E$ associe son symétrique parallèlement à G par rapport à F.

Proposition

Soient F et G supplémentaires dans E, $\mathfrak b$ la symétrie par rapport à F parallèlement à G.

- 1. $\delta \in \mathcal{L}(E)$
- 2. $\delta_{|E} = \mathrm{id}_F$ et $\delta_{|G} = -\mathrm{id}_G$
- 3. $\delta \circ \delta = \mathrm{id}_E$

Definition

Soit $f \in \mathcal{L}(E)$. On dit que f est involutive si $f \circ f = \mathrm{id}_E$

Proposition

Soit $f \in \mathcal{L}(E)$ involutif. Alors f est la symétrie par rapport à $\mathrm{Ker}(f - \mathrm{id}_E)$ parallèlement à $\mathrm{Ker}(f + \mathrm{id}_E)$. En particulier,

$$\operatorname{Ker}(f - \operatorname{id}_E) \oplus \operatorname{Ker}(f + \operatorname{id}_E) = E$$

Proposition

 $\underline{\text{ANALYSE}} \text{ Soit } x \in E. \text{ On suppose que } x = a + b \text{ avec } \begin{cases} a \in \operatorname{Ker}(f - \operatorname{id}_E) \\ b \in \operatorname{Ker}(f + \operatorname{id}_E) \end{cases}$

$$a \in \operatorname{Ker}(f - \operatorname{id}_E) \iff (f - \operatorname{id}_E)(a) = 0$$

 $\iff f(a) - a = 0$
 $\iff a = f(a)$

$$b \in \operatorname{Ker}(f + \operatorname{id}_E) \iff f + \operatorname{id}_E)(b) = 0$$

 $\iff f(b) + b = 0$
 $\iff f(b) = -b$

On sait que x = a + b et f(x) = f(a) + f(b) = a - bD'où,

$$a = \frac{1}{2} (x + f(x))$$
$$b = \frac{1}{2} (x - f(x))$$

Synthèse Soit $x \in E$. On pose

$$a = \frac{1}{2}(x + f(x))$$
$$b = \frac{1}{2}(x - f(x))$$

Alors a + b = x

$$f(a) = f\left(\frac{1}{2}(x+f(x))\right)$$
$$= \frac{1}{2}(f(x)+f(f(x)))$$
$$= \frac{1}{2}(f(x)+x)$$
$$= a$$

Donc $a \in \text{Ker}(f - \text{id}_E)$

$$f(b) = f\left(\frac{1}{2}(x - f(x))\right)$$
$$= \frac{1}{2}(f(x) - f(f(x)))$$
$$= \frac{1}{2}(f(x) - x)$$
$$= -b$$

donc $b \in \text{Ker}(f + \text{id}_E)$ Ainsi,

$$\operatorname{Ker}(f - \operatorname{id}_E) \oplus \operatorname{Ker}(f + \operatorname{id}_E) = E$$

Soit s la symétrie par rapport à $\mathrm{Ker}(f-\mathrm{id}_E)$ parallèlement à $\mathrm{Ker}(f+\mathrm{id}_E)$. Soit $x\in E$. On a vu que

$$x = \underbrace{\frac{1}{2}(x + f(x))}_{\in \text{Ker}(f - \text{id}_E)} + \underbrace{\frac{1}{2}(x - f(x))}_{\in \text{Ker}(f + \text{id}_E)}$$

Donc,

$$b(x) = \frac{1}{2}(x + f(x)) - \frac{1}{2}(x - f(x)) = f(x)$$

Donc $\mathfrak{s}=f$