CURSO DE CIÊNCIA DA COMPUTAÇÃO – TCC						
(X) PRÉ-PROJETO () PROJETO	ANO/SEMESTRE: 2023/2					

GRADE: AMBIENTE GRÁFICO DE DESENVOLVIMENTO PARA ENSINO DE COMPUTAÇÃO GRÁFICA

Natália Sens Weise

Prof. Dalton Solano dos Reis - Orientador

1 INTRODUÇÃO

Conforme dito por Manssour e Cohen (2006, p. 1), a Computação Gráfica (CG) "é uma área da Ciência da Computação que se dedica ao estudo e desenvolvimento de técnicas e algoritmos para a geração (síntese) de imagens através do computador". Para realizar as devidas transformações nas imagens, é preciso fazer uso da matriz de transformação, que é responsável por proporcionar escala, rotação e translação aos objetos gráficos da cena. Também é necessário o conhecimento de outros assuntos dentro dessa temática, sendo eles: grafo de cena, objetos gráficos, transformações geométricas homogêneas (matriz de transformação), câmera sintética e iluminação. Contudo, ainda é preciso que se tenha uma boa fundamentação teórica em geometria, visto que os conceitos de CG se baseiam nessa área da matemática.

Com o passar dos anos, alguns projetos desenvolveram ferramentas para auxiliar os alunos a compreenderem os assuntos abordados em diversas áreas do conhecimento. Como será visto posteriormente na seção de Trabalhos Correlatos, através dessas ferramentas verificou-se que o método de material de apoio continua garantindo o aumento do aprendizado por parte dos alunos, tendo resultados satisfatórios.

Um destes trabalhos, presente na seção Software Atual, é o VisEdu-CG, construído com o objetivo de auxiliar os alunos no entendimento dos assuntos abordados na disciplina de CG. O projeto apresenta uma tela dividida em quatro seções: a Fábrica de Peças, onde-o usuário pega os blocos para programar; Renderer, onde o usuário deposita as peças que coletou na fábrica; o Ambiente Gráfico, onde é possível visualizar os eixos, grade e objetos colocados em cena; e o Visualizador, que mostra o resultado da execução do que foi projetado pelo usuário. Todavia, nem todos os objetivos específicos foram concluídos. Algumas funcionalidades propostas, os objetos Polígono e Spline, e algumas propriedades da câmera não foram implementadas. Bem como o tutorial desenvolvido que ficou limitado a poucas funções básicas.

Como Settimy e Bairral (2020) observaram, os alunos possuem dificuldade na abstração do espaço 3D pelo fato do ensino básico não abordar a geometria de forma mais clara e aprofundada. Segundo Settimy e Bairral (2020, p. 3), "a Geometria é um campo fértil para perceber e entender as formas geométricas presentes em nosso cotidiano, sendo possível desenvolver habilidades importantes como a experimentação, representação, descrição e argumentação", sendo fundamental para o entendimento de CG.

Sendo assim, esse projeto visa auxiliar os alunos de CG a entenderem os assuntos abordados em aula continuando com o antigo VisEdu-CG, implementando as funcionalidades faltantes e trazendo novas, como a interface com mudança de tema (claro e escuro) para o usuário escolher o que mais lhe agrada à vista, além de exercícios para fixação do conteúdo.

1.1 OBJETIVOS

O objetivo principal deste trabalho é disponibilizar uma nova versão do VisEdu-CG, agora chamado de ambiente GRÁfico de Desenvolvimento para Ensino de computação gráfica (GRADE), para ser utilizado na disciplina de Computação Gráfica na forma de material de apoio para auxiliar o entendimento dos assuntos abordados em aula.

Os objetivos específicos são:

- a) refatorar o código desenvolvido na versão anterior (VisEdu-CG);
- b) implementar funcionalidades que faltaram na versão anterior (VisEdu-CG);
- c) desenvolver interface com mudança de tema (claro ou escuro);
- d) trazer exercícios de treinamento sobre o conteúdo de Computação Gráfica.

2 TRABALHOS CORRELATOS

Essa seção expõe três trabalhos selecionados com características em comum ao que se pretende desenvolver. O primeiro é um jogo desplugado para ensinar pensamento computacional às crianças, proposto por Rodrigues, Gomes e Carneiro (2022). O segundo é o jogo GeNiAl desenvolvido por Barros, Sousa e Viana (2022),

que busca ensinar a tabela periódica para estudantes do ensino superior. O terceiro é uma plataforma com jogos que ensinam astronomia projetada por Siedler *et al.* (2022).

2.1 SCRATCHIM: UMA ABORDAGEM PARA O ENSINO DO PENSAMENTO COMPUTACIONAL PARA CRIANCAS DE FORMA REMOTA E DESPLUGADA

Perante o cenário pandêmico vivido mundialmente e a falta de acesso à internet e equipamentos eletrônicos sofridos por algumas escolas, Rodrigues, Gomes e Carneiro (2022) sugeriram a utilização da computação desplugada para promover o aprendizado do Pensamento Computacional (PC) de forma remota.

Para isso, o já conhecido Scratch, recurso tecnológico para o ensino de PC, foi trazido para o meio físico: a equipe do projeto desenvolveu os blocos para programação com materiais acessíveis e coloridos (Figura 1), este último para despertar o interesse das crianças. Além disso, foram gravadas aulas para auxiliar os alunos e disponibilizadas apostilas com maiores explicações sobre o kit (RODRIGUES; GOMES; CARNEIRO, 2022).

Figura 1 - Blocos para programação desplugada

Para realizar os exercícios e praticar o conhecimento, os estudantes tinham que encaixar os blocos conforme necessário para atingir o objetivo da tarefa. Com base nos resultados obtidos, notou-se que os alunos conseguiram concluir as atividades e adquiriram o conhecimento desejado. Contudo, os alunos levaram mais tempo por não terem apoio presencial dos professores para tirar dúvidas (RODRIGUES; GOMES; CARNEIRO, 2022).

Fonte: Rodrigues, Gomes e Carneiro (2022).

2.2 JORNADA QUÍMICA GENIAL

Barros, Sousa e Viana (2022) propuseram uma aplicação com o foco em ajudar estudantes de ensino superior, que estejam na área das ciências ou que apenas tenham interesse no assunto, a aprender sobre a tabela periódica. A necessidade foi observada ao notar como o assunto era abordado de forma cansativa e desgastante nas aulas, desmotivando o aluno no momento do aprendizado. Com isso, buscou-se trazer uma solução divertida e estimulante para os entusiastas de química-

O jogo foi desenvolvido para web em Next.js e React,js. Nele, existe um quiz e mais três trilhas para treinar diferentes conhecimentos da área, sendo que cada uma delas está ligada a um objetivo proposto (Figura 2): Ge (Germânio), com exercícios de agilidade para memorizar nome, símbolo e número atômico do elemento; Ni (Níquel), um minijogo da memória com o objetivo de relacionar elementos químicos com artigos do cotidiano; e Al (Alumínio), com atividades de lógica que buscam relacionar a posição do elemento na tabela com suas características (BARROS; SOUSA; VIANA, 2022).

Figura 2 - Telas do jogo GeNiAl

Fonte: Barros, Sousa e Viana (2022).

Através de formulários de pesquisa feitos com os voluntários do projeto, verificou-se a eficácia da aplicação em fortalecer e aprimorar os saberes dos alunos, visto o alto desempenho dos pesquisados e seu sentimento de satisfação ao concluir as tarefas pré-estabelecidas (BARROS; SOUSA; VIANA, 2022).

2.3 ORBITANDO: UMA PLATAFORMA PARA ENSINO DE ASTRONOMIA DE OUTRO MUNDO

Visando o aprimoramento das técnicas de ensino sobre astronomia em sala de aula, Siedler *et al.* (2022) criaram uma plataforma com jogos para auxiliar os professores a ensinarem o tema de forma mais interessante aos alunos, promovendo engajamento.

Ao entrevistar os professores, foi requisitado que a plataforma OrbitAndo fosse multiplataforma, funcionasse em diversos aparelhos e de forma off-line, além de imergir o aluno em temas voltados ao Sistema Solar. A partir disso, também foram criados três jogos para compor o ambiente proposto: Astro, Jogo: Uma Volta pelo Sistema Solar e Orbit A.R. (SIEDLER et al., 2022).

O primeiro jogo (Figura 3) foi desenvolvido utilizando HTML5, JavaScript, NodeJS e MongoDB e apresenta dois módulos: Professor e Aluno. Em Professor, o docente pode inserir mais informações sobre o tema, aplicar questionários, coletar dados de desempenho dos discentes, entre outras funcionalidades. No modo Aluno, o estudante pode visualizar as informações postadas clicando em cada um dos planetas alinhados na tela, além de realizar questionários e salvar em arquivo no formato PDF tanto o conteúdo sobre planetas quanto as questões com suas respostas registradas (SIEDLER-et al., 2022).

Figura 3 - Jogo Astro

Fonte: Siedler et al. (2022).

O segundo jogo (Figura 4), desenvolvido no motor de jogos Unity, possui a dinâmica de fases: o usuário viaja em um foguete de planeta em planeta, a partir do Sol. Para alcançar ao próximo astro, o aluno deve completar tarefas e ao chegar no destino pode acessar informações sobre aquele planeta (SIEDLER et al., 2022).

Figura 4 - Jogo: Uma Volta pelo Sistema Solar

Fonte: Siedler et al. (2022).

O terceiro jogo (Figura 5) faz uso do Unity e Vuforia para trazer uma experiência mais imersiva. Nele, o usuário lê com a câmera do smartphone com sistema Android cartas que funcionam como marcadores. Ao ler a imagem, o aplicativo projeta o respectivo astro em 3D na tela. Caso o usuário não possua os cartões, pode visualizar as imagens em 2D (sem a experiência de Realidade Aumentada) (SIEDLER et al., 2022).

ORBIT TERRAL TER

Figura 5 - Jogo Orbit A.R.

Fonte: Siedler et al. (2022).

Ao testar com alunos do quinto ano, notou-se maior interesse e aprendizado do conteúdo. Além disso, as crianças fizeram uso de trabalho em equipe no segundo jogo, como estratégia para passar de fase (SIEDLER et al., 2022).

3 SOFTWARE ATUAL

Ao longo dos anos o VisEdu-CG já passou por diversas versões: tendo as duas primeiras em C++, as quatro seguintes em Three.js e a atual em Unity, cuja tecnologia se manterá nessa nova versão proposta. Inicialmente chamado de Adubo e posteriormente de VisEdu-CG, a ferramenta surgiu com o objetivo de auxiliar os alunos da disciplina de Computação Gráfica do curso de Ciência da Computação da Fundação Universidade Regional de Blumenau (FURB) a compreender melhor os temas abordados em aula, sendo eles: grafo de cena, objetos gráficos, transformações geométricas homogêneas, câmera sintética e iluminação-

Buttenberg (2020) projetou a última versão do antigo nomeado VisEdu-CG em Unity, na versão 2018.2.6f1, a fim de aprimorar para uma ferramenta mais popular. Ao inicializá-la, o usuário pode optar por um tutorial de sete passos para aprender a usar a ferramenta. Nesta ferramenta são apresentadas quatro seções de tela distintas: a Fábrica de Peças (Figura 6a), onde o usuário pega os blocos para programar; Renderer (Figura 6b), onde o usuário deposita as peças que coletou na fábrica; o Ambiente Gráfico (Figura 6c), onde é possível visualizar os eixos, grade e objetos colocados em cena; e o Visualizador (Figura 6d), que mostra o resultado da execução do que foi projetado pelo usuário.

Figura 6 - Tela inicial do VisEdu-CG

Fonte: Buttenberg (2020).

A Fábrica de Peças apresenta nove diferentes tipos de objetos e componentes de cena, sendo eles: Câmera, Objeto Gráfico, Cubo, Polígono, Spline, Transladar, Rotacionar, Escalar e Iluminação. O Objeto Gráfico, Cubo, Polígono e Spline são formas geométricas para dispor no espaço gráfico. Os objetos Transladar, Rotacionar e Escalar são responsáveis pela matriz geométrica (transformações geométricas homogêneas), podendo mudar a posição, orientação e o tamanho no espaço do objeto em que forem aplicados. A Câmera e Iluminação são fundamentais para o funcionamento da aplicação, visto que a Câmera possibilitará a visualização do resultado e a Iluminação permitirá que os objetos sejam vistos em cena (BUTTENBERG, 2020).

Ao selecionar o bloco desejado, o usuário deve arrastá-lo até o Renderer, encaixando conforme formato da peça. Ao inserir um objeto geométrico, é possível adicionar tanto a iluminação quanto os objetos da matriz geométrica. Ao selecioná-los, é possível excluir o objeto ou editar suas propriedades, que aparecerem no canto superior esquerdo. Enquanto o aluno vai adicionando blocos, é possível pré-visualizar o resultado na tela de Ambiente Gráfico, podendo fazer alterações nos valores de Transladar, Rotacionar e Escalar para obter o resultado desejado, que é apresentado na tela Visualizador (BUTTENBERG, 2020).

Ao concluir o projeto, Buttenberg (2020) demonstra que os objetivos específicos foram parcialmente cumpridos, visto que algumas funcionalidades propostas, os objetos Polígono e Spline e algumas propriedades da câmera, não foram implementados. Bem como o tutorial desenvolvido, que ficou limitado a poucas funções básicas. Além de não possuir a funcionalidade de se fazer exercícios de treinamento do conteúdo relacionado a Computação Gráfica.

4 PROPOSTA DA FERRAMENTA

Nesta seção será apresentada a justificativa do projeto que será desenvolvido, bem como seus principais requisitos e metodologia que será utilizada.

4.1 JUSTIFICATIVA

Os alunos de computação apresentam certa dificuldade com a disciplina de Computação Gráfica (CG) em comparação com as outras disciplinas do curso. Isso se dá pelo fato de que, além de abstrair o espaço 3D, também é necessário entender o conceito de matriz de transformação homogênea e aplicá-la a objetos gráficos da cena, sendo necessário conhecimentos da área da geometria (SETTIMY; BAIRRAL, 2020).

Visando contribuir com o aprendizado de CG, esse projeto propõe continuar com o antigo VisEdu-CG, implementando as funcionalidades faltantes e trazendo novas, como a interface com mudança de tema (claro e escuro) para o usuário escolher o que mais lhe agrada à vista, além de exercícios para fixação do conteúdo. Através desse projeto, busca-se auxiliar o entendimento dos alunos sobre os assuntos abordados durante as aulas de CG. Para tanto, foram observadas as principais características e funcionalidades dos trabalhos correlatos e da última versão do projeto, a fim de extrair os pontos mais importantes para a próxima versão. A seguir, é apresentado o

Quadro 1, onde-cada coluna é um trabalho examinado e cada linha uma característica, e sua existência é verificada por um x no respectivo trabalho, seguido por uma explicação.

Quadro 1 - Comparativo dos trabalhos correlatos e última versão do projeto

Quadro 1 - Comparativo dos trabamos concratos e artima versão do projeto											
Taballas Casalstan	Scratchim	GeNiAl									
Trabalhos Correlatos	(RODRIGUES;	(BARROS;	OrbitAndo	VisEdu-CG 5.0							
Características	GOMES;	SOUSA;	(SIEDLER et	(BUTTENBER							
	CARNEIRO,	VIANA,	al., 2022)	G, 2020)							
	2022)	2022)									
Existe interação por meio de peças	X			X							
É um software educacional		X	X	X							
Apresenta exercícios para validação	X	X	X								
Apresenta tutorial explicando o seu uso	X			(+/-)							
Apresenta conteúdos teóricos	X		X								
Possui acesso off-line	X		X								
Foi desenvolvido em Unity			Dois dos três jogos	X							
Disponibilidade	Físico	Web	Multiplataforma	Web							

Fonte: elaborado pelo autor.

Com base nas informações apresentadas no

Quadro 1, tanto o VisEdu-CG quanto o Scratchim apresentam programação por blocos, o primeiro de forma digital e o segundo de forma desplugada. Apesar deste último ser do âmbito educacional, ele não se enquadra na categoria software; portanto, não possui a segunda característica. Em relação a possuir exercícios para validação do aprendizado, todos os trabalhos correlatos validam esse tópico, menos o VisEdu-CG. Já sobre os tutoriais, apenas o primeiro correlato e a última versão do VisEdu-CG (de forma limitada) entram nesta categoria. Sobre os conteúdos teóricos, Scratchim os apresenta por meio da apostila que acompanha o kit e o OrbitAndo apresenta tanto no primeiro quanto no segundo jogo de sua plataforma. Além disso, ambos podem ser utilizados de maneira off-line, junto com o VisEdu-CG. Quanto a ser desenvolvido em Unity, o VisEdu-CG e a plataforma de astronomia preenchem os requisitos, este último apresentando dois jogos feitos nesse mesmo motor de jogos. Por fim, o jogo desplugado foi disponibilizado apenas em um modelo físico, enquanto o jogo GeNiAl, o VisEdu-CG são web, e o OrbitAndo é multiplataforma.

4.2 REQUISITOS PRINCIPAIS DO PROBLEMA A SER TRABALHADO

Os requisitos do projeto são:

- a) permitir que o usuário possa seguir um tutorial para auxiliar o entendimento da ferramenta (Requisito Funcional – RF);
- b) permitir que o usuário possa arrastar os blocos e editar suas informações conforme for desejado (RF);
- c) permitir que o usuário possa mexer no tema da aplicação (modo claro ou modo escuro) conforme melhor lhe agradar (RF);
- d) desenvolver os blocos Spline e Polígono e disponibilizá-los na Fábrica de Peças (RF);
- e) desenvolver-a câmera com todas as suas propriedades para que funcione (RF);
- f) permitir que o usuário possa realizar atividades pré-definidas, a fim de treinar seus conhecimentos adquiridos (RF);
- g) o sistema informará se o usuário acertou a atividade de treinamento ou não, e mostrará uma explicação do porquê do erro (RF);
- h) utilizar a ferramenta Unity em conjunto com a IDE Visual Studio (Requisito Não Funcional RNF);
- i) utilizar a linguagem de programação C# para implementação (RNF);
- j) desenvolver a aplicação para plataforma Windows e web (RNF).

4.3 METODOLOGIA

O trabalho será desenvolvido observando as seguintes etapas:

- a) elicitação de requisitos: rever os requisitos e, se necessário, adicionar novos;
- b) modelagem de diagramas: diagramar modelos Unified Modeling Language (UML) requisitados para o desenvolvimento do projeto com a ferramenta Astah;
- c) atualizar projeto: refatorar o projeto anterior para uma versão mais recente do Unity;
- d) aprimorar funcionalidades do projeto: implementar as funcionalidades que não puderam ser realizadas no projeto anterior, e outras cuja necessidade surgir durante o desenvolvimento, através do Unity e Visual Studio, por meio da linguagem de programação C#;
- e) aprimorar aparência do projeto: desenvolver funcionalidade da escolhe de tema (claro ou escuro);
- f) adicionar exercícios: implementar fase de exercícios para treinamento do assunto, usando as mesmas ferramentas e linguagem do item (d);
- g) teste das funcionalidades: realizar testes necessários para garantir bom funcionamento da ferramenta;
- h) teste com usuários: testar o uso da ferramenta pelos alunos durante uma aula da disciplina de CG;
- i) implementar melhorias: implementar o que for apontado no teste com usuários.

As etapas serão realizadas nos períodos relacionados no Quadro 2.

Quadro 2 - Cronograma

	2024									
	fe	fev.		mar.		abr.		maio		n.
etapas / quinzenas	1	2	1	2	1	2	1	2	1	2
elicitação de requisitos										
modelagem de diagramas										
atualizar projeto										
aprimorar funcionalidades do projeto										
aprimorar aparência do projeto										
adicionar exercícios										
teste das funcionalidades										
teste com usuários										
implementar melhorias										

Fonte: elaborado pelo autor.

5 REVISÃO BIBLIOGRÁFICA

Nessa seção serão descritos os principais conceitos que servirão como base para esse projeto: abstração do espaço 3D e computação gráfica.

Como Settimy e Bairral (2020) observaram, os alunos possuem dificuldade na abstração do espaço 3D pelo fato do ensino básico não abordar a geometria de forma mais clara e aprofundada. Segundo Settimy e Bairral (2020, p. 3), "a Geometria é um campo fértil para perceber e entender as formas geométricas presentes em nosso cotidiano, sendo possível desenvolver habilidades importantes como a experimentação, representação, descrição e argumentação", sendo fundamental para o entendimento de Computação Gráfica.

Conforme dito por Manssour e Cohen (2006, p. 1), computação gráfica "é uma área da Ciência da Computação que se dedica ao estudo e desenvolvimento de técnicas e algoritmos para a geração (síntese) de imagens através do computador". Para maior entendimento do assunto, é necessário o conhecimento de outros assuntos dentro dessa temática, sendo eles: grafo de cena, objetos gráficos, transformações geométricas homogêneas, câmera sintética e iluminação.

REFERÊNCIAS

BARROS, Gabriel C.; SOUSA, Janyeid K. C.; VIANA, Davi. Jornada Química GeNiAl: um jogo sério para o ensino da tabela periódica e seus elementos. In: Congresso Brasileiro de Informática na Educação, XI, 2022, Manaus. **Anais ...** Manaus: Publication chair, 2022. p. 1 – 12.

BUTTENBERG, Peterson B. **VisEdu-CG 5.0 – Visualizador de material educacional**. 2020. 19f. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) - Centro de Ciências Exatas e Naturais, Universidade Regional de Blumenau, Blumenau.

MANSSOUR, Isabel H.; COHEN, Marcelo. Introdução à computação gráfica. Revista de Informática Teórica e Aplicada, Rio Grande do Sul, v. 13, n. 2, p. 1 - 25, 2006. Disponível em: https://www.inf.pucrs.br/manssour/Publicacoes/TutorialSib2006.pdf. Acesso em: 01 out. 2023.

RODRIGUES, Amanda K. M.; GOMES, Kamily C. O.; CARNEIRO, Murillo G. Scratchim: uma abordagem para o ensino do Pensamento Computacional para crianças de forma remota e desplugada. In: Congresso Brasileiro de Informática na Educação, XI, 2022, Manaus. Anais ... Manaus: Publication chair, 2022. p. 1 – 12.

SETTIMY, Thaís Fernanda de Oliveira; BARRAL, Marcelo Almeida. Dificuldades envolvendo a visualização em geometria espacial. VIDYA revista eletrônica, v. 40, n. 1, p. 177-195, jan./jun., 2020 - Santa Maria, 2020. ISSN 2176-4603. Disponível em: https://www.researchgate.net/publication/343556166_DIFICULDADES_ENVOLVENDO A VISUALIZAÇÃO EM GEOMETRIA ESPACIAL. Acesso em: 01 out. 2023.

SIEDLER, Marcelo S.; CARDOSO, Rafael C.; RITTA, Anderson S.; TAVARES, Tatiana A.; SOUZA, Mariana C.; JUNIOR, Fernando J. OrbitAndo: uma plataforma para ensino de Astronomia de outro mundo. In: Congresso Brasileiro de Informática na Educação, XI, 2022, Manaus. **Anais ...** Manaus: Publication chair, 2022. p. 1 – 11.

FORMULÁRIO DE AVALIAÇÃO BCC – PROFESSOR AVALIADOR – PRÉ-PROJETO

Avaliador(a):

Atenção: quando o avaliador marcar algum item como atende parcialmente ou não atende, deve obrigatoriamente indicar os motivos no texto, para que o aluno saiba o porquê da avaliação.

		ASPECTOS AVALIADOS	Atende	atende parcialmente	não atende
	1.	INTRODUÇÃO O tema de pesquisa está devidamente contextualizado/delimitado?		F	
İ		O problema está claramente formulado?			
	2.	OBJETIVOS O objetivo principal está claramente definido e é passível de ser alcançado?	F		
		Os objetivos específicos são coerentes com o objetivo principal?		Ę.	
SO	3.	TRABALHOS CORRELATOS São apresentados trabalhos correlatos, bem como descritas as principais funcionalidades e os pontos fortes e fracos?	F		
ASPECTOS TÉCNICOS	4.	JUSTIFICATIVA Foi apresentado e discutido um quadro relacionando os trabalhos correlatos e suas principais funcionalidades com a proposta apresentada?		F	
TOS		São apresentados argumentos científicos, técnicos ou metodológicos que justificam a proposta?	F		
EC		São apresentadas as contribuições teóricas, práticas ou sociais que justificam a proposta?			ا جا
ASF	5.	REQUISITOS PRINCIPAIS DO PROBLEMA A SER TRABALHADO Os requisitos funcionais e não funcionais foram claramente descritos?	F		
	6.	METODOLOGIA Foram relacionadas todas as etapas necessárias para o desenvolvimento do TCC?		F	
		Os métodos, recursos e o cronograma estão devidamente apresentados e são compatíveis com a metodologia proposta?	F		
	7.	REVISÃO BIBLIOGRÁFICA Os assuntos apresentados são suficientes e têm relação com o tema do TCC?			F
		As referências contemplam adequadamente os assuntos abordados (são indicadas obras atualizadas e as mais importantes da área)?			
ASPECTOS METODOLÓ GICOS	8.	LINGUAGEM USADA (redação) O texto completo é coerente e redigido corretamente em língua portuguesa, usando linguagem formal/científica?	F		
ASP] MET		A exposição do assunto é ordenada (as ideias estão bem encadeadas e a linguagem utilizada é clara)?		F	

CURSO DE CIÊNCIA DA COMPUTAÇÃO – TCC						
(X) PRÉ-PROJETO () PROJETO	ANO/SEMESTRE: 2023/2					

GRADE: AMBIENTE GRÁFICO DE DESENVOLVIMENTO PARA ENSINO DE COMPUTAÇÃO GRÁFICA

Natália Sens Weise

Prof. Dalton Solano dos Reis - Orientador

1 INTRODUÇÃO

Conforme dito por Manssour e Cohen (2006, p. 1), a Computação Gráfica (CG) "é uma área da Ciência da Computação que se dedica ao estudo e desenvolvimento de técnicas e algoritmos para a geração (síntese) de imagens através do computador". Para realizar as devidas transformações nas imagens, é preciso fazer uso da matriz de transformação, que é responsável por proporcionar escala, rotação e translação aos objetos gráficos da cena. Também é necessário o conhecimento de outros assuntos dentro dessa temática, sendo eles: grafo de cena, objetos gráficos, transformações geométricas homogêneas (matriz de transformação), câmera sintética e iluminação. Contudo, ainda é preciso que se tenha uma boa fundamentação teórica em geometria, visto que os conceitos de CG se baseiam nessa área da matemática.

Com o passar dos anos, alguns projetos desenvolveram ferramentas para auxiliar os alunos a compreenderem os assuntos abordados em diversas áreas do conhecimento. Como será visto posteriormente na seção de Trabalhos Correlatos, através dessas ferramentas verificou-se que o método de material de apoio continua garantindo o aumento do aprendizado por parte dos alunos, tendo resultados satisfatórios.

Um destes trabalhos, presente na seção Software Atual, é o VisEdu-CG, construído com o objetivo de auxiliar os alunos no entendimento dos assuntos abordados na disciplina de CG. O projeto apresenta uma tela dividida em quatro seções: a Fábrica de Peças, onde o usuário pega os blocos para programar; Renderer, onde o usuário deposita as peças que coletou na fábrica; o Ambiente Gráfico, onde é possível visualizar os eixos, grade e objetos colocados em cena; e o Visualizador, que mostra o resultado da execução do que foi projetado pelo usuário. Todavia, nem todos os objetivos específicos foram concluídos. Algumas funcionalidades propostas, os objetos Polígono e Spline, e algumas propriedades da câmera não foram implementadas. Bem como o tutorial desenvolvido que ficou limitado a poucas funções básicas.

Como Settimy e Bairral (2020) observaram, os alunos possuem dificuldade na abstração do espaço 3D pelo fato do ensino básico não abordar a geometria de forma mais clara e aprofundada. Segundo Settimy e Bairral (2020, p. 3), "a Geometria é um campo fértil para perceber e entender as formas geométricas presentes em nosso cotidiano, sendo possível desenvolver habilidades importantes como a experimentação, representação, descrição e argumentação", sendo fundamental para o entendimento de CG.

Sendo assim, esse projeto visa auxiliar os alunos de CG a entenderem os assuntos abordados em aula continuando com o antigo VisEdu-CG, implementando as funcionalidades faltantes e trazendo novas, como a interface com mudança de tema (claro e escuro) para o usuário escolher o que mais lhe agrada à vista, além de exercícios para fixação do conteúdo.

1.1 OBJETIVOS

O objetivo principal deste trabalho é disponibilizar uma nova versão do VisEdu-CG, agora chamado de ambiente GRÁfico de Desenvolvimento para Ensino de computação gráfica (GRADE), para ser utilizado na disciplina de Computação Gráfica na forma de material de apoio para auxiliar o entendimento dos assuntos abordados em aula.

Os objetivos específicos são:

- a) refatorar o código desenvolvido na versão anterior (VisEdu-CG);
- b) implementar funcionalidades que faltaram na versão anterior (VisEdu-CG);
- c) desenvolver interface com mudança de tema (claro ou escuro);
- d) trazer exercícios de treinamento sobre o conteúdo de Computação Gráfica.

2 TRABALHOS CORRELATOS

Essa seção expõe três trabalhos selecionados com características em comum ao que se pretende desenvolver. O primeiro é um jogo desplugado para ensinar pensamento computacional às crianças, proposto por Rodrigues, Gomes e Carneiro (2022). O segundo é o jogo GeNiAl desenvolvido por Barros, Sousa e Viana (2022),

que busca ensinar a tabela periódica para estudantes do ensino superior. O terceiro é uma plataforma com jogos que ensinam astronomia projetada por Siedler *et al.* (2022).

2.1 SCRATCHIM: UMA ABORDAGEM PARA O ENSINO DO PENSAMENTO COMPUTACIONAL PARA CRIANCAS DE FORMA REMOTA E DESPLUGADA

Perante o cenário pandêmico vivido mundialmente e a falta de acesso à internet e equipamentos eletrônicos sofridos por algumas escolas, Rodrigues, Gomes e Carneiro (2022) sugeriram a utilização da computação desplugada para promover o aprendizado do Pensamento Computacional (PC) de forma remota.

Para isso, o já conhecido Scratch, recurso tecnológico para o ensino de PC, foi trazido para o meio físico: a equipe do projeto desenvolveu os blocos para programação com materiais acessíveis e coloridos (Figura 1), este último para despertar o interesse das crianças. Além disso, foram gravadas aulas para auxiliar os alunos e disponibilizadas apostilas com maiores explicações sobre o kit (RODRIGUES; GOMES; CARNEIRO, 2022).

Figura 1 - Blocos para programação desplugada

The state of the s

Fonte: Rodrigues, Gomes e Carneiro (2022).

Para realizar os exercícios e praticar o conhecimento, os estudantes tinham que encaixar os blocos conforme necessário para atingir o objetivo da tarefa. Com base nos resultados obtidos, notou-se que os alunos conseguiram concluir as atividades e adquiriram o conhecimento desejado. Contudo, os alunos levaram mais tempo por não terem apoio presencial dos professores para tirar dúvidas (RODRIGUES; GOMES; CARNEIRO, 2022).

2.2 JORNADA QUÍMICA GENIAL

Barros, Sousa e Viana (2022) propuseram uma aplicação com o foco em ajudar estudantes de ensino superior, que estejam na área das ciências ou que apenas tenham interesse no assunto, a aprender sobre a tabela periódica. A necessidade foi observada ao notar como o assunto era abordado de forma cansativa e desgastante nas aulas, desmotivando o aluno no momento do aprendizado. Com isso, buscou-se trazer uma solução divertida e estimulante para os entusiastas de química.

O jogo foi desenvolvido para web em Next.js e React,js. Nele, existe um quiz e mais três trilhas para treinar diferentes conhecimentos da área, sendo que cada uma delas está ligada a um objetivo proposto (Figura 2): Ge (Germânio), com exercícios de agilidade para memorizar nome, símbolo e número atômico do elemento; Ni (Níquel), um minijogo da memória com o objetivo de relacionar elementos químicos com artigos do cotidiano; e Al (Alumínio), com atividades de lógica que buscam relacionar a posição do elemento na tabela com suas características (BARROS; SOUSA; VIANA, 2022).

Figura 2 - Telas do jogo GeNiAl

Fonte: Barros, Sousa e Viana (2022).

Através de formulários de pesquisa feitos com os voluntários do projeto, verificou-se a eficácia da aplicação em fortalecer e aprimorar os saberes dos alunos, visto o alto desempenho dos pesquisados e seu sentimento de satisfação ao concluir as tarefas pré-estabelecidas (BARROS; SOUSA; VIANA, 2022).

2.3 ORBITANDO: UMA PLATAFORMA PARA ENSINO DE ASTRONOMIA DE OUTRO MUNDO

Visando o aprimoramento das técnicas de ensino sobre astronomia em sala de aula, Siedler *et al.* (2022) criaram uma plataforma com jogos para auxiliar os professores a ensinarem o tema de forma mais interessante aos alunos, promovendo engajamento.

Ao entrevistar os professores, foi requisitado que a plataforma OrbitAndo fosse multiplataforma, funcionasse em diversos aparelhos e de forma off-line, além de imergir o aluno em temas voltados ao Sistema Solar. A partir disso, também foram criados três jogos para compor o ambiente proposto: Astro, Jogo: Uma Volta pelo Sistema Solar e Orbit A.R. (SIEDLER *et al.*, 2022).

O primeiro jogo (Figura 3) foi desenvolvido utilizando HTML5, JavaScript, NodeJS e MongoDB e apresenta dois módulos: Professor e Aluno. Em Professor, o docente pode inserir mais informações sobre o tema, aplicar questionários, coletar dados de desempenho dos discentes, entre outras funcionalidades. No modo Aluno, o estudante pode visualizar as informações postadas clicando em cada um dos planetas alinhados na tela, além de realizar questionários e salvar em arquivo no formato PDF tanto o conteúdo sobre planetas quanto as questões com suas respostas registradas (SIEDLER *et al.*, 2022).

ASTRO Ver planetas Sobre Quiz Material

Fonte: Siedler et al. (2022).

O segundo jogo (Figura 4), desenvolvido no motor de jogos Unity, possui a dinâmica de fases: o usuário viaja em um foguete de planeta em planeta, a partir do Sol. Para alcançar ao próximo astro, o aluno deve completar tarefas e ao chegar no destino pode acessar informações sobre aquele planeta (SIEDLER *et al.*, 2022).

Figura 4 - Jogo: Uma Volta pelo Sistema Solar

Fonte: Siedler et al. (2022).

O terceiro jogo (Figura 5) faz uso do Unity e Vuforia para trazer uma experiência mais imersiva. Nele, o usuário lê com a câmera do smartphone com sistema Android cartas que funcionam como marcadores. Ao ler a imagem, o aplicativo projeta o respectivo astro em 3D na tela. Caso o usuário não possua os cartões, pode visualizar as imagens em 2D (sem a experiência de Realidade Aumentada) (SIEDLER *et al.*, 2022).

Figura 5 - Jogo Orbit A.R.

Fonte: Siedler et al. (2022).

Ao testar com alunos do quinto ano, notou-se maior interesse e aprendizado do conteúdo. Além disso, as crianças fizeram uso de trabalho em equipe no segundo jogo, como estratégia para passar de fase (SIEDLER *et al.*, 2022).

3 SOFTWARE ATUAL

Ao longo dos anos o VisEdu-CG já passou por diversas versões: tendo as duas primeiras em C++, as quatro seguintes em Three.js e a atual em Unity, cuja tecnologia se manterá nessa nova versão proposta. Inicialmente chamado de Adubo e posteriormente de VisI CG, a ferramenta surgiu com o objetivo de auxiliar os alunos da disciplina de Computação Gráfica do curso de Ciência da Computação da Fundação Universidade Regional de Blumenau (FURB) a compreender melhor os temas abordados em aula, sendo eles: grafo de cena, objetos gráficos, transformações geométricas homogêneas, câmera sintética e iluminação.

Buttenberg (2020) projetou a última versão do antigo nomeado VisEdu-CG em Unity, na versão 2018.2.6f1, a fim de aprimorar para uma ferramenta mais popular. Ao inicializá-la, o usuário pode optar por um tutorial de sete passos para aprender a usar a ferramenta. Nesta ferramenta são apresentadas quatro seções de tela distintas: a Fábrica de Peças (Figura 6a), onde o usuário pega os blocos para programar; Renderer (Figura 6b), onde o usuário deposita as peças que coletou na fábrica; o Ambiente Gráfico (Figura 6c), onde é possível visualizar os eixos, grade e objetos colocados em cena; e o Visualizador (Figura 6d), que mostra o resultado da execução do que foi projetado pelo usuário.

Figura 6 - Tela inicial do VisEdu-CG

Fonte: Buttenberg (2020).

A Fábrica de Peças apresenta nove diferentes tipos de objetos e componentes de cena, sendo eles: Câmera, Objeto Gráfico, Cubo, Polígono, Spline, Transladar, Rotacionar, Escalar e Iluminação. O Objeto Gráfico, Cubo, Polígono e Spline são formas geométricas para dispor no espaço gráfico. Os objetos Transladar, Rotacionar e Escalar são responsáveis pela matriz geométrica (transformações geométricas homogêneas), podendo mudar a posição, orientação e o tamanho no espaço do objeto em que forem aplicados. A Câmera e Iluminação são fundamentais para o funcionamento da aplicação, visto que a Câmera possibilitará a visualização do resultado e a Iluminação permitirá que os objetos sejam vistos em cena (BUTTENBERG, 2020).

Ao selecionar o bloco desejado, o usuário deve arrastá-lo até o Renderer, encaixando conforme formato da peça. Ao inserir um objeto geométrico, é possível adicionar tanto a iluminação quanto os objetos da matriz geométrica. Ao selecioná-los, é possível excluir o objeto ou editar suas propriedades, que aparecerem no canto superior esquerdo. Enquanto o aluno vai adicionando blocos, é possível pré-visualizar o resultado na tela de Ambiente Gráfico, podendo fazer alterações nos valores de Transladar, Rotacionar e Escalar para obter o resultado desejado, que é apresentado na tela Visualizador (BUTTENBERG, 2020).

Ao concluir o projeto, Buttenberg (2020) demonstra que os objetivos específicos foram parcialmente cumpridos, visto que algumas funcionalidades propostas, os objetos Polígono e Spline e algumas propriedades da câmera, não foram implementados. Bem como o tutorial desenvolvido, que ficou limitado a poucas funções básicas. Além de não possuir a funcionalidade de se fazer exercícios de treinamento do conteúdo relacionado a Computação Gráfica.

4 PROPOSTA DA FERRAMENTA

Nesta seção será apresentada a justificativa do projeto que será desenvolvido, bem como seus principais requisitos e metodologia que será utilizada.

4.1 JUSTIFICATIVA

Os alunos de computação apresentam certa dificuldade com a disciplina de Computação Gráfica (CG) em comparação com as outras disciplinas do curso. Isso se dá pelo fato de que, além de abstrair o espaço 3D, também é necessário entender o conceito de matriz de transformação homogênea e aplicá-la a objetos gráficos da cena, sendo necessário conhecimentos da área da geometria (SETTIMY; BAIRRAL, 2020).

Visando contribuir com o aprendizado de CG, esse projeto propõe continuar com o antigo VisEdu-CG, implementando as funcionalidades faltantes e trazendo novas, como a interface com mudança de tema (claro e escuro) para o usuário escolher o que mais lhe agrada à vista, além de exercícios para fixação do conteúdo. Através desse projeto, busca-se auxiliar o entendimento dos alunos sobre os assuntos abordados durante as aulas de CG. Para tanto, foram observadas as principais características e funcionalidades dos trabalhos correlatos e da última versão do projeto, a fim de extrair os pontos mais importantes para a próxima versão. A seguir, é apresentado o

Quadro 1, onde cada coluna é um trabalho examinado e cada linha uma característica, e sua existência é verificada por um x no respectivo trabalho, seguido por uma explicação.

Quadro 1 - Comparativo dos trabalhos correlatos e última versão do projeto

Quadro 1 - Comparativo dos trabamos concratos e unima versão do projeto											
	Scratchim	GeNiAl									
Trabalhos Correlatos	(RODRIGUES;	(BARROS;	OrbitAndo	VisEdu-CG 5.0							
Características	GOMES;	SOUSA;	(SIEDLER et	(BUTTENBER							
	CARNEIRO,	VIANA,	al., 2022)	G, 2020)							
	2022)	2022)									
Existe interação por meio de peças	X			X							
É um software educacional		X	X	X							
Apresenta exercícios para validação	X	X	X								
Apresenta tutorial explicando o seu uso	X			(+/-)							
Apresenta conteúdos teóricos	X		X								
Possui acesso off-line	X		X								
Foi desenvolvido em Unity			Dois dos três jogos	X							
Disponibilidade	Físico	Web	Multiplataforma	Web							

Fonte: elaborado pelo autor.

Com base nas informações apresentadas no

Quadro 1, tanto o VisEdu-CG quanto o Scratchim apresentam programação por blocos, o primeiro de forma digital e o segundo de forma desplugada. Apesar deste último ser do âmbito educacional, ele não se enquadra na categoria software; portanto, não possui a segunda característica. Em relação a possuir exercícios para validação do aprendizado, todos os trabalhos correlatos validam esse tópico, menos o VisEdu-CG. Já sobre os tutoriais, apenas o primeiro correlatos e a última versão do VisEdu-CG (de forma limitada) entram nesta categoria. Sobre os conteúdos teóricos, Scratchim os apresenta por meio da apostila que acompanha o kit e o OrbitAndo apresenta tanto no primeiro quanto no segundo jogo de sua plataforma. Além disso, ambos podem ser utilizados de maneira off-line, junto com o VisEdu-CG. Quanto a ser desenvolvido em Unity, o VisEdu-CG e a plataforma de astronomia preenchem os requisitos, este último apresentando dois jogos feitos nesse mesmo motor de jogos. Por fim, o jogo desplugado foi disponibilizado apenas em um modelo físico, enquanto o jogo GeNiAl, o VisEdu-CG são web, e o OrbitAndo é multiplataforma.

4.2 REQUISITOS PRINCIPAIS DO PROBLEMA A SER TRABALHADO

Os requisitos do projeto são:

- a) permitir que o usuário possa seguir um tutorial para auxiliar o entendimento da ferramenta (Requisito Funcional – RF);
- b) permitir que o usuário possa arrastar os blocos e editar suas informações conforme for desejado (RF);
- c) permitir que o usuário possa mexer no tema da aplicação (modo claro ou modo escuro) conforme melhor lhe agradar (RF);
- d) desenvolver os blocos Spline e Polígono e disponibilizá-los na Fábrica de Peças (RF);
- e) desenvolver a câmera com todas as suas propriedades para que funcione (RF);
- f) permitir que o usuário possa realizar atividades pré-definidas, a fim de treinar seus conhecimentos adquiridos (RF);
- g) o sistema informará se o usuário acertou a atividade de treinamento ou não, e mostrará uma explicação do porquê do erro (RF);
- h) utilizar a ferramenta Unity em conjunto com a IDE Visual Studio (Requisito Não Funcional RNF);
- i) utilizar a linguagem de programação C# para implementação (RNF);
- j) desenvolver a aplicação para plataforma Windows e web (RNF).

4.3 METODOLOGIA

O trabalho será desenvolvido observando as seguintes etapas:

- a) elicitação de requisitos: rever os requisitos e, se necessário, adicionar novos;
- b) delagem de diagramas: diagramar modelos Unified Modeling Language (UML) requisitados para o desenvolvimento do projeto com a ferramenta Astah;
- c) atualizar projeto: refatorar o projeto anterior para uma versão mais recente do Unity;
- d) aprimorar funcionalidades do projeto: implementar as funcionalidades que não puderam ser realizadas no projeto anterior, e outras cuja necessidade surgir durante o desenvolvimento, através do Unity e Visual Studio, por meio da linguagem de programação C#;
- e) aprimorar aparência do projeto: desenvolver funcionalidade da escolhe de tema (claro ou escuro);
- f) adicionar exercícios: implementar fase de exercícios para treinamento do assunto, usando as mesmas ferramentas e linguagem do item (d);
- g) teste das funcionalidades: realizar testes necessários para garantir bom funcionamento da ferramenta;
- h) teste com usuários: testar o uso da ferramenta pelos alunos durante uma aula da disciplina de CG;
- i) implementar melhorias: implementar o que for apontado no teste com usuários.

As etapas serão realizadas nos períodos relacionados no Quadro 2.

Quadro 2 - Cronograma

	2024									
	fe	fev.		mar.		abr.		maio		n.
etapas / quinzenas	1	2	1	2	1	2	1	2	1	2
elicitação de requisitos										
modelagem de diagramas										
atualizar projeto										
aprimorar funcionalidades do projeto										
aprimorar aparência do projeto										
adicionar exercícios										
teste das funcionalidades										
teste com usuários										
implementar melhorias										

Fonte: elaborado pelo autor.

5 REVISÃO BIBLIOGRÁFICA

Nessa seção serão descritos os principais conceitos que servirão como base para esse projeto: abstração do espaço 3D e computação gráfica.

Como Settimy irral (2020) observaram, os alunos possuem dificuldade na abstração do espaço 3D pelo fato do ensino básico nao abordar a geometria de forma mais clara e aprofundada. Segundo Settimy e Bairral (2020, p. 3), "a Geometria é um campo fértil para perceber e entender as formas geométricas presentes em nosso cotidiano, sendo possível desenvolver habilidades importantes como a experimentação, representação, descrição e argumentação", sendo fundamental para o entendimento de Computação Gráfica.

Conforme dito por Manssour e Cohen (2006, p. 1), computação gráfica "é uma área da Ciência da Computação que se dedica ao estudo e desenvolvimento de técnicas e algoritmos per geração (síntese) de imagens através do putador". Para maior entendimento do assunto, é necessário o conhecimento de outros assuntos dentro dessa temática, sendo eles: grafo de cena, objetos gráficos, transformações geométricas homogêneas, câmera sintética e iluminação.

REFERÊNCIAS

BARROS, Gabriel C.; SOUSA, Janyeid K. C.; VIANA, Davi. Jornada Química GeNiAl: um jogo sério para o ensino da tabela periódica e seus elementos. In: Congresso Brasileiro de Informática na Educação, XI, 2022, Manaus. **Anais ...** Manaus: Publication chair, 2022. p. 1 – 12.

BUTTENBERG, Peterson B. **VisEdu-CG 5.0 – Visualizador de material educacional**. 2020. 19f. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) - Centro de Ciências Exatas e Naturais, Universidade Regional de Blumenau, Blumenau.

MANSSOUR, Isabel H.; COHEN, Marcelo. Introdução à computação gráfica. Revista de Informática Teórica e Aplicada, Rio Grande do Sul, v. 13, n. 2, p. 1 - 25, 2006. Disponível em: https://www.inf.pucrs.br/manssour/Publicacoes/TutorialSib2006.pdf. Acesso em: 01 out. 2023.

RODRIGUES, Amanda K. M.; GOMES, Kamily C. O.; CARNEIRO, Murillo G. Scratchim: uma abordagem para o ensino do Pensamento Computacional para crianças de forma remota e desplugada. In: Congresso Brasileiro de Informática na

Educação, XI, 2022, Manaus. **Anais ...** Manaus: Publication chair, 2022. p. 1 – 12.

SETTIMY, Thaís Fernanda de Oliveira; BARRAL, Marcelo Almeida. Dificuldades envolvendo a visualização em geometria espacial. VIDYA revista eletrônica, v. 40, n. 1, p. 177-195, jan./jun., 2020 - Santa Maria, 2020. ISSN 2176-4603. Disponível em: https://www.researchgate.net/publication/343556166_DIFICULDADES_ENVOLVENDO

_A_VISUALIZACAO_EM_GEOMETRIA_ESPACIAL. Acesso em: 01 out. 2023.

SIEDLER, Marcelo S.; CARDOSO, Rafael C.; RITTA, Anderson S.; TAVARES, Tatiana A.; SOUZA, Mariana C.; JUNIOR, Fernando J. OrbitAndo: uma plataforma para ensino de Astronomia de outro mundo. In: Congresso Brasileiro de Informática na Educação, XI, 2022, Manaus. **Anais ...** Manaus: Publication chair, 2022. p. 1-11.

FORMULÁRIO DE AVALIAÇÃO BCC – PROFESSOR TCC I – PRÉ-PROJETO

Avaliador(a): Luciana Pereira de Araújo Kohler

		ASPECTOS AVALIADOS	atende	atende parcialmente	não atende
	1.	INTRODUÇÃO O tema de pesquisa está devidamente contextualizado/delimitado?	X		
		O problema está claramente formulado?		X	
	2.	OBJETIVOS		/1	
SO	۷٠.	O objetivo principal está claramente definido e é passível de ser alcançado?	X		
		Os objetivos específicos são coerentes com o objetivo principal?		X	
ÉC]	3.	JUSTIFICATIVA		71	
ASPECTOS TÉCNICOS		São apresentados argumentos científicos, técnicos ou metodológicos que justificam a proposta?		X	
C C		São apresentadas as contribuições teóricas, práticas ou sociais que justificam a proposta?			X
SPI	4.	METODOLOGIA		X	
A		Foram relacionadas todas as etapas necessárias para o desenvolvimento do TCC?		Λ	
		Os métodos, recursos e o cronograma estão devidamente apresentados?		X	
	5.	REVISÃO BIBLIOGRÁFICA Veja que se trata também das demais partes do texto não referenciados		X	
		Os assuntos apresentados são suficientes e têm relação com o tema do TCC?		Λ	
SO	6.	LINGUAGEM USADA (redação) O texto completo é coerente e redigido corretamente em língua portuguesa, usando linguagem formal/científica?	X		
OZIDO		A exposição do assunto é ordenada (as ideias estão bem encadeadas e a linguagem utilizada é clara)?		X	
ASPECTOS METODOLÓGICOS	7.	ORGANIZAÇÃO E APRESENTAÇÃO GRÁFICA DO TEXTO A organização e apresentação dos capítulos, seções, subseções e parágrafos estão de acordo com o modelo estabelecido?	X		
Æ	8.	ILUSTRAÇÕES (figuras, quadros, tabelas)	X		
S		As ilustrações são legíveis e obedecem às normas da ABNT?	11		
TC	9.	REFERÊNCIAS E CITAÇÕES	X		
EC		As referências obedecem às normas da ABNT?	Λ		
ASF		As citações obedecem às normas da ABNT?	X		
		Todos os documentos citados foram referenciados e vice-versa, isto é, as citações e referências são consistentes?	X		