Exercise 1

Given the differential equation:

$$a\frac{d^2u}{dx^2} + b\frac{du}{dx} + cu = f(x), \quad x \in (0,1)$$

Depending on the first letter of your last name choose a,b,c,f.

Αρχικό γράμμα επωνύμου	а	b	С	f(x)	Συνοριακές συνθήκες	Ακριβής λύση
A – Z	1	1	$\pi^2 - \pi$	$\pi(\cos\pi x - \sin\pi x) - 1$	u(0) = 0, u(1) = -1	$\sin \pi x - x$
H – M	1	-1	4	$1-2(2x+\cos 2x)$	$u(0) = 0, u(1) = \sin 2 - 1$	$\sin 2x - x$
Ν – Σ	1	6	7	$30\left(1-x^2\right)e^{-3x}$	$u(0) = 0, u(1) = 15e^{-3}$	$u\left(x\right) = 15x^2e^{-3x}$
Τ – Ω	1	4	6	$3(1+x^2)e^{-2x}$	$u(0) = 0, u(1) = (3/2)e^{-2}$	$u(x) = (3/2)x^2e^{-2x}$

Solve the given boundary value problem with:

- a) 1D Linear Finite Elements
- b) 1D Quadratic Finite Elements
- 1) Find the approximate solution and its derivative.
- 2) Compare the approximate solution with the exact.