Topic 5: Boolean Algebra

Ch12.1 Boolean Functions

Identities of Boolean Algebra

See Appendix E-1 for Boolean Identities table.

• The **dual** of a Boolean expression is obtained by interchanging + and \cdot and interchanging 0s and 1s.

Huntington's postulates

• Axioms: Closure, Identity, Commutativity, Distributivity, Complement, and Distinct Elements.

Ch12.2 Representing Boolean Functions

Sum-of-Products or **Disjunctive normal form:** i.e. xy + yx + xz

Product-of-sums expansion or **Conjunctive normal form:** i.e. (x + y)(x + z)(y + z)

• Can be found from sum-of-product expansions by taking duals.

Ch12.3 Logic Gates

Adders

Ch12.4 Minimization of Circuits

Karnaugh Maps (K-maps)

- 1 is placed in the cell representing a minterm
- Cells are said to be **adjacent** if the minterms that they represent differ in exactly one literal

Topic 5: Boolean Algebra