Exercise sheet for Week 3

Exercise 1. Here are three automata over the alphabet $\Sigma = \{a, b\}$ are equivalent. Test algorithmically the equivalence of (1)–(2), and the equivalence of (1)–(3). If you obtain a negative answer, you should give a word that's accepted by one automaton but not the other.

Exercise 2. Minimize the following partial DFA, and then prove that the partial DFA you have obtained is minimal.

Exercise 3. The alphabet is $\{a,b\}$. Give a two-state partial DFA for the regex $(ab)^*$. Convert it into a DFA, then obtain a DFA for the set of all words that are **not** matched by $(ab)^*$.

Exercise 4. *Show that the set* $\mathbb{N} + \mathbb{N}$ *is countably infinite.*

Exercise 5. Consider the following language over the alphabet $\Sigma = \{a, b\}$:

 $L = \{w | w \text{ contains the same number of } a \text{ 's and } b \text{ 's} \}$

Show that L is non-regular.

Exercise 6. Are the following languages over $\Sigma = \{a, b\}$ regular? Why (not)?

- 1. $L = \{a^m b^n | m > n\}$
- 2. $L = \{a^m b^n | m < n\}$
- 3. $L = \{w | length(w) \text{ is a square number}\}$

Exercise 7. For any string $w = w_1 w_2 \dots w_n$, the **reverse of** w, written w^R , is the string w in reverse order, $w_n \dots w_2 w_1$. For any language L, let $L^R = \{w^R | w \in L\}$. Show that if L is regular, so is L^R .

Exercise 8. Let $\Sigma = \{a, b\}$.

- 1. Let $L_1 = \{a^k u a^k | k \ge 1 \text{ and } u \in \Sigma^* \}$. Show that L_1 is regular.
- 2. Let $L_2 = \{a^k bua^k | k \ge 1 \text{ and } u \in \Sigma^*\}$. Show that L_2 is not regular.