A Segmented Attractor Network for Neuromorphic Associative Learning

Alexander Jones, Rashmi Jha, Ajey P. Jacob, Cory Merkel University of Cincinnati ICONS July 22nd, 2019

Associative Memory and Attractor Networks

- Neural networks are based around association.
- "Associative memory" is specifically using memory to associate certain events, features, etc. with one another.
- Attractor networks can implement associative memory.
- Many flavors of attractor networks.

Segmented Attractor Network Setup

Memory Formation and Recall

Memory Formation and Recall

Step by Step Example

Step by Step Example

Step by Step Example

(c)

Algorithm

Increasing the Size of the Network

Increasing Size of the Network (With Lower w_{ON})

Increasing the Number of Features Per Set

Conclusions

- Magnitude of individual synaptic feedback can cap memory capacity.
- Increasing the features per set increases memory capacity.
- Memory capacity of network can surpass that of a standard Hopfield network.
- Hit rate can saturate if the number of features per set isn't increased while the number of sets increases.

Acknowledgements

- This work is supported by the National Science Foundation award numbers: ECCS 1156294 and SHF-1718428.
- Clare Thiem at the Air Force Research Laboratory (AFRL) in Rome, NY.