Лабораторная работа 4.3.3. Исследование разрешающей способности микроскопа методом Аббе.

Радькин Кирилл, Б01-005

7.05.22

Цель работы: изучение дифракционного предела разрешения объектива микроскопа.

В работе используются: лазер; кассета с набором сеток разного периода; линзы; щель с микрометрическим винтом; оптический стол с набором рейтеров и крепёжных винтов; экран; линейка.

Схема установки:

Рис. 1. Схема экспериментальной установки — модель проекционного микроскопа

Теоретическое введение:

• Формула для расчета периодов решёток:

$$d\sin\varphi = m\lambda$$

• Формула для расчета увеличения микроскопа:

$$\Gamma = \frac{b_1 b_2}{a_1 a_2}$$

• Формула для расчета минимального расстояния, разрешимого микроскопом:

$$d \ge \frac{\lambda}{(D/2f)}$$

Ход работы:

1. Включим в сеть блок питания лазера.

2. Закрепим кассету с решетками, пронаблюдаем дифракционные картины для разных сеток. Измерим расстояния между соседними дифракционными максимумами для каждой решетки.

Номер решетки	5	4	3	2	1
Расстояние, мм	4.71	6.25	12.75	25.75	38.33

- 3. Измерим расстояние от сетки до экрана $H=1.40\pm0.01$ м
- 4. Соберем модель проекционного микроскопа.
- 5. Определим расстояния $a_1=110\pm 10$ мм, $a_2=25$ мм, $b_1=390\pm 10$ мм, $b_2=1680\pm 10$ мм Посчитаем увеличение микроскопа $\Gamma=238\pm 22$ Измерим периоды изображений сеток на экране:

Номер решетки	3	4	5
Период, мм	4.41	8.33	11.0

6. Поместим щелевую диафрагму с микрометрическим винтом в фокальную плоскость F линзы Π_1 . Определим для каждой решётки минимальный размер диафрагмы, при котором на экране еще видно изображение сетки (при меньших размерах щели изображение выглядит как одномерная решётка).

Номер решетки	2	3	4	5
Мин. размер, мм	3.28	1.24	0.98	0.7

Обработка результатов:

1. По измерениям спектра определим дифракционные углы и рассчитаем периоды решеток.

Номер решетки	5	4	3	2	1
Дифракционный угол, 10^{-3}	3.36	4.46	9.11	18.39	27.38
Период решетки, мкм	158.13	119.17	58.42	28.93	19.43

2. По измерениям увеличенных с помощью микроскопа изображений рассчитаем периоды решеток:

Номер решетки	5	4	3
Период решетки, мкм	46.17	34.96	18.51

3. По измерениям с щелью рассчитаем период решетки:

Номер решетки	5	4	3	2
Период решетки, мкм	38.00	27.14	21.45	8.11

4. Для проверки теории Аббе построим график зависимости d = f(1/D). Периоды решеток возьмем определенные по спектру.

Рис. 2. График зависимости $d=f\left(1/D\right)$