

ML Solutions to Stock Price Prediction

GROUP 9, BRIAN HSU & JASON JI

AGENDA

- Motivation
- Existing Works
- Data Source
- Preprocessing and Analysis
- Models & Results
- Next Steps
- Q&A

MOTIVATOIN

Recent studies found that machine learning models such as the long short-term memory (LSTM) model are good at capturing time series data such as stock price. We want to look deeper at using models we learned in class to predict stock prices and compare their accuracies against LSTM.

Stock Market Crashes Since 1950			
Dates	% Price Decline	Length in Days	
8/2/1956-10/22/1957	-21.63	446	
12/12/1961-6/26/1962	-27.97	196	
2/9/1966-10/7/1966	-22.18	240	
11/29/1968-5/26/1970	-36.06	543	
1/11/1973-10/3/1974	-48.2	630	
11/28/1980-8/12/1982	-27.11	622	
8/25/1987-12/4/1987	-33.51	101	
3/24/2000-9/21/2001	-36.77	546	
1/4/2002-10/9/2002	-33.75	278	
10/9/2007-11/20/2008	-51.93	408	
1/6/2009-3/9/2009	-27.62	62	
2/19/2020-3/23/2020	-33.92	33	
Average	-33.38%	342	

EXISTING WORKS

Linear Regression

Stock price prediction using machine learning on least-squares linear regression basis

https://iopscience.iop.org/article/10.1088/1742 -6596/1734/1/012058/pdf

a root mean squared error of 0.512.

Random Forest

Stock Closing Price Prediction using Machine Learning Techniques.

RF			
RMSE	MAPE	MBE	
1.29	1.14%	-0.0521	
3.40	1.01%	0.0761	
1.41	0.93%	-0.0313	
1.53	0.75%	-0.0138	
0.43	0.8%	-0.0155	

LSTM

Deep Learning-Based Stock Price Prediction Using LSTM and Bi-Directional LSTM Model

https://ieeexplore.ieee.org/stamp/stamp.jsp? tp=&arnumber=9257950

NO. of	LSTM RMSE	Time	BI-LSTM RMSE	Time
Epochs		(min)		(min)
10	0.0011000	3	0.0007167	8
20	0.0007250	6	0.0006459	15
50	0.0004933	15	0.0004219	40
100	0.0004928	30	0.0004127	70
250	0.0031980	75	0.0003568	200

Our model differentiates by incorporating additional important features : competitor stock's performance

DATA SOURCE

We will get the company stock dataset (APPLE) from Yahoo Finance using yfinance library with a range from 1980/12/12 to 2022/12/31.

Features include daily high, low, open, close, volume, moving average, index (ex. S&P500), and competitors/supplier's stock stats. Used next-day adjusted price as y to take dividends and splits into account.

10603 samples, 107 attributes.

D-+-	ORCL_Volume	MA_5	MA_21	MA_50	MA_100
Date 1980-12-12	NaN	NaN	NaN	NaN	NaN
1980-12-15	NaN	NaN	NaN	NaN	NaN
1980-12-16	NaN	NaN	NaN	NaN	NaN
1980-12-17	NaN	NaN	NaN	NaN	NaN
1980-12-18	NaN	NaN	NaN	NaN	NaN
	4400400				450 545600
2022-12-23	4129100.0	132.841998	141.015714	144.131800	150.515600
2022-12-27	4290700.0	132.373999	140.154762	143.964799	150.157800
2022-12-28	3794000.0	131.121999	139.289048	143.637399	149.764699
2022-12-29 2022-12-30	3867800.0	129.953999	138.738572	143.354599	149.412100
2022-12-30	5375700.0	NaN	NaN	NaN	NaN
	MA_252				
Date					
1980-12-12	NaN				
1980-12-15	NaN				
1980-12-16	NaN				
1980-12-17	NaN				
1980-12-18	NaN				
2022 12 22	155 735330				
2022-12-23 2022-12-27	155.725238 155.525635				
2022-12-27	155.323033				
2022-12-29	155.116825				
2022-12-30	NaN				
[10603 rows	x 107 column	s]			
Size of the	DataFrame: (10603, 107)			
Number of r	ows: 10603				

DATA PREPROCESSING

1.Null Values / Missing Entries

2. Pearson
Correlation

3. Colinearity

4. Standard Scaler

Because competitor company has different IPO time, our initial dataframe contains a substantial amount of null values. Only kept attributes with high correlation.

Removed predictors that are highly correlated with others.

Normalizing the data is important for the model performance.

Solution: removal/replace with average.

correlation_threshold = 0.8

c.shape), k=1).astype(bool))
[upper_triangle[column] > correlation_threshold)

 $X_{new} = \frac{X_i - X_{mean}}{S_{tandard Deviation}}$

108 features --> 30 features

MODEL EVALUATION METRICS

All continuous numerical features

Mean Absolute Error (MAE)

The average of the absolute errors between the predicted values and the actual values.

$$ext{MAE} = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y}_i|$$
 ,

Root Mean Squared Error (RMSE)

The square root of the average of the squared differences between the predicted values and the actual values.

Penalize larger errors more.

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}.$$

MODELS

Linear Regression

Random Forest

Moving Average

Ensemble Methods

RESULT

Actual Stock Prices vs Model Predictions

COMPARISON TO EXISTING WORKS

a root mean squared error of 0.512.

RF			
RMSE	MAPE	MBE	
1.29	1.14%	-0.0521	
3.40	1.01%	0.0761	
1.41	0.93%	-0.0313	
1.53	0.75%	-0.0138	
0.43	0.8%	-0.0155	

NEXT STEPS

Principle Component Analysis

Hyperparameter Tunning

LSTM

Further dimensionality reduction. Simpler model (variance reduction).
Improve Performance.

Grid Search.

For the best-performing model.

Ex: Random Forest (Best criterion and max_depth)

Using our dataset that contains additional competitor features.

Thank you!

ANY QUESTIONS?