UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

TEORÍA DE COLAS (ejemplo)

HORAS A LA SEMANA/SEMESTRE

SEMESTRE: Séptimo u octavo

CLAVE: **0944**

TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Estadística I, Investigación de Opera-

ciones.

SERIACIÓN INDICATIVA SUBSECUENTE: Ninguna.

OBJETIVO(S): Conocer las situaciones típicas en que se puede aplicar la teoría de colas, así como las limitaciones inherentes a los modelos. Desarrollar la capacidad de construir modelos simples que puedan servir para el análisis de diferentes situaciones donde existen filas de espera, y junto con este análisis proponer soluciones adecuadas.

7
UNIDADES TEMÁTICAS
1. Introducción y aplicaciones
2. Procesos estocásticos
2.1 Cadenas de Markov.
2.2 Procesos de nacimiento y muerte.
3. Líneas de espera
3.1 Llegadas.
3.2 Servicios.
3.3 Clasificación.
4. Modelos M/M/l
4.1 Hipótesis.
4.2 Distribución de llegadas y salidas.
4.3 Ecuaciones en el estado estacionario.
4.4 Determinación de características.
5. Modelos M/M/k
5.1 Hipótesis.
5.2 Distribución de llegadas y salidas.
5.3 Ecuaciones en el estado estacionario.
5.4 Determinación de características.

10	6. Otros modelos y consideraciones
	6.1 M/G/l.
	$6.2 \mathrm{M/G/k}.$
	6.3 Estimación de parámetros para llegadas y servicios.
	6.4 Consideración de costos.
	6.5 Simulación de sistemas de colas.

BIBLIOGRAFÍA BÁSICA:

- 1. Gross, D., Harris, C. M., Fundamentals of Queuing Theory, New York: Ed. Wiley, series in probability and statistics, 2003.
- 2. Saaty, T. L., *Elements of Queuing Theory with Applications*, New York: Ed. Dover Publications, 1983.

BIBLIOGRAFÍA COMPLEMENTARIA:

1. Kaufmann, A., Cruon, R., Les phénomenes d'attente. Théorie et applications, Paris: Ed. Dunod, 1964.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.