PROYECTO FINAL DE INTELIGENCIA ARTIFICIAL - PUJ 2023

Alumno: Libardo Andres Carpio Sepulveda Ingeniero: Francisco Calderon PhD.

Ver. 1.0.4 Este proyecto se enfoca en desarrollar un modelo de estimación de precios para objetos usados (como ejemplo usaremos carrros / usando una base de datos de kaggle muy famosa y trabajada por su buena estructura y facilidad de entendimiento), que tenga en cuenta las características y condiciones del mismo. El objetivo final es encontrar el equilibrio entre un precio justo y la rapidez de venta del objeto, trayendo datos del mercado y así brindar a los propietarios una herramienta confiable para tomar decisiones informadas sobre el precio de su objeto en este caso, un automovil.

Primero realizamos la importación de cada una de las librerías que creemos que va # y con el proceso de desarrollo de nuestro proyecto iremos agregando las que se na # modo que cuanso acabemos, en esta sección queden todas las importaciones de libra

Base de datos: https://www.kaggle.com/datasets/danielkyrka/bmw-pricing-challenge

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2 score
from sklearn.preprocessing import StandardScaler
# Sabemos que el precio de un carro comercial se basa principalmente en el
# kilometraje y el tipo de motor que tiene, por lo que comenzamos a realizar
# una limpieza y pre-procesado de nuestros datos
# Realizamos la lectura de nuestra base de datos
BBDD = pd.read csv('bmw pricing challenge.csv')
# Vamos a comenzar la limpieza básica, donde tomaremos como primeros datos a limpia
```

```
# el motor y el kilometraje, pues debemos asegurarnos que no son numeros negativos
# Se crea una condición booleana en la variable 'Clean_Motor' que evalúa si el valc
# de la columna 'engine_power' en el DataFrame 'BBDD' es mayor que 1 (Positiva y
# teniendo en cuenta que el valor mínimo de un motor de automovil es 1000c.c.).
Clean Motor = BBDD['engine power'] > 1
datos = BBDD [Clean Motor]
# La variable 'Clean_Motor' contendrá una serie booleana con True en las posiciones
# donde se cumple la condición y False donde no.\
# Por último, se filtran los datos en el DataFrame 'BBDD' utilizando la condición
# booleana 'Clean_Motor'. La variable 'datos' contendrá únicamente las filas del
# DataFrame 'BBDD' donde la condición 'Clean_Motor' sea True, es decir, donde el
# motor tenga un valor válido. Esto se hace para eliminar los registros con motores
# inválidos del conjunto de datos y obtener un subconjunto limpio y procesado para
# su posterior análisis.
Clean_Motor = datos['mileage'] > 1
datos = datos [Clean Motor]
# Se buscan datos NULL y se suman por categorías
datos.isnull().sum()
```

maker_key	0
model_key	0
mileage	0
engine_power	0
registration_date	0
fuel	0
paint_color	0
car_type	0
feature_1	0
feature_2	0
feature_3	0
feature_4	0
feature_5	0
feature_6	0
feature_7	0
feature_8	0
price	0
sold_at	0
dtype: int64	

Text(0.5, 1.0, 'Distribución de los precios de autos Usados')

Distribución de los precios de autos Usados

Text(0.5, 1.0, 'Distribución de Kilometraje en autos Usados')

Distribución de Kilometraje en autos Usados


```
#*****************************
# Observando la grafica anterior podemos ver que la mayor parte del kilometraje de
# autos se encuentra concentrada antes de los 40.000 millas (64373.76 Km)

# Ahora generamos la grafica de como se distribuye la densidad del tipo de motor er
# todo nuestro conjunto de datos para ver si es necesario considerar algunos outlai
# como vemos, la mayor concentración de nuestros motores se encuentran entre 70 y 3
# por lo que procedemos a eliminaros.
sns.kdeplot(data=datos, x='engine_power')
plt.title('Distribution of engine power', size=20)
```

Text(0.5, 1.0, 'Distribution of engine power')


```
Max price = 60000
# creamos una condición booleana en la variable 'Band_price' que evalúa si el valor
# en el DataFrame 'datos' es menor que 'Max_price' definido anteriormente. Esto se
#los registros que tienen un precio por debajo de 60000 y marcarlos como True en la
# Los registros que no cumplen esta condición tendrán el valor False en la serie.
# En la tercera línea, se utiliza la condición booleana 'Band_price' para filtrar ε
# manteniendo solo los registros donde la condición es True. Esto eliminará los rec
# de precio superiores a 60000, eliminando los outliers superiores.
Band_price = datos['price'] < Max_price</pre>
datos = datos [Band price]
# Definimos una variable a la que le asignaremos un valor considerado detro de valo
# para colocar el tope a nuestra BBDD y poder eliminar los outliers o valores atipi
Max Km = 400000
Band Km = datos['mileage'] < Max Km # La columna de 'mileage' tomara un valor boole
# la condición o no.
datos = datos [Band Km]
# Procedemos a eliminar las filas donde no se cumpió la condición y mantenemos las
# Aplicamo filtros adicionales para eliminar outliers en los valores de potencia de
# manteniendo únicamente los registros que cumplen con los criterios establecidos.
Engine_top = 300 # Valor maximo típico de la potencia del motor
Engine min = 80 # Valor mínimo típico de la potencia del motor
Band_Engine_Top = datos['engine_power'] < Engine_top # Booleano a la fila que cumpl</pre>
datos = datos [Band Engine Top] # Dejamos solo las filas que tienen un valor iqual
Band_Engine_Bottom = datos['engine_power'] > Engine_min # Booleano a la fila que cu
datos = datos [Band_Engine_Bottom] # Dejamos solo las filas que tienen un valor igi
#filas, columnas = datos.shape
```

```
#precio_promedio = round(datos.price.mean(), 2)
# obtener el vector de precios
#precio = datos.price

#datos.describe().round(2)#count, mean, desviaacion estadndar, min, P25%, P50%, P75
```

Fin de Pre-procesado y limpieza de datos

```
#plt.figure(figsize=(12,6))
#sns.kdeplot(data=BBDD, x='price')
#plt.title('Distribution of Price', size=20)

# Ahora procedemos a obtener la correlación de nuestros datos:
correlacion = datos.corr()
# Para poder visualizar con mayor facilidad que caracteristicas de nuestros datos t
# correlación, hacemos un grafico de calor, sobre el cual esperamos poder ver dos r
# importantes, la primera, poder ver que el precio es inversamente proporcional al
# y de igual forma esperamos ver la correlación direactamente proporcional entre el
plt.figure(figsize=(8,8))
sns.heatmap(round(correlacion, 2),cmap='magma', annot=True)
```

<ipython-input-313-a8cca1b714cd>:2: FutureWarning: The default value of numeri
 correlacion = datos.corr()

<Axes: >


```
# A continuació seguimos realizando la limpieza de datos para saber su relevancia y
# Por lo que procedemos iniciando a calcular los años de uso del vehículo
# como de momento son solo texto procedemos darle formato fecha a las columnas que
datos['registration_date']= pd.to_datetime(datos['registration_date'])
datos['sold_at']= pd.to_datetime(datos['sold_at'])
# Extraemos las fechas de venta y fechas registro, para poder calcular los años de
datos['sold_year']= datos['sold_at'].dt.year
datos['registration_year']= datos['registration_date'].dt.year
datos['years_used']= datos['sold_year'] - datos['registration_year']

sns.kdeplot(data=datos, x='years_used')
plt.title('Distribución de Años de Uso', size=20)

# analizando la distribucion de los años de uso, se puede observar que arriba 15 ha
superior = 15
Filtro_outlayer_superior_years_used = datos['years_used'] < superior # filtro usado
datos = datos [Filtro_outlayer_superior_years_used]</pre>
```

Distribución de Años de Uso

Analizando la distribucion de los años de uso, se puede observar que arriba 15 ha
#superior = 15
#Filtro_outlayer_superior_years_used = datos['years_used'] < superior # filtro usac
#datos = datos [Filtro_outlayer_superior_years_used]</pre>

```
# Ahora procedemos a eliminar todas las características que ya no serán necesarias
# Procedemos la fecha de registro, fecha de venta, año de venta, marca y año de reg
del datos['registration_date']
del datos['sold_at']
del datos['registration_year']
del datos['maker_key']

# Una vez elimindas estas caracteristias, procedemos a graficar la correlación con
correlacion = datos.corr()
# Nuevamente procedemos a graficar la correlación por medio de otro mapa de calor y
sns.heatmap(round(correlacion, 2),cmap='magma', annot=True)
```

<ipython-input-316-aa25d88f2e9e>:10: FutureWarning: The default value of numer
 correlacion = datos.corr()

De nuevo procedemos a realizar limpieza de datos

```
# Realizamos una limpieza de la columna 'model_key' en el DataFrame 'datos', reempl
# y estandarizando los valores de acuerdo con las sustituciones específicas realiza
# el fin de volver numêrica nuestra base de datos.
# También se crea una nueva columna 'modelo' con los valores convertidos a tipo nun
Data engine = datos['engine power'] >= 1
marca = datos['model_key'].value_counts()
F_todos = datos['model_key'][Data_engine]
for i in F todos.index:
    datos['model key'][i] = datos['model key'][i].replace(" Gran Turismo","1")
    datos['model_key'][i] = datos['model_key'][i].replace(" Gran Coupé","2")
    datos['model_key'][i] = datos['model_key'][i].replace(" Gran Tourer","3")
    datos['model_key'][i] = datos['model_key'][i].replace(" Active Tourer","4")
    datos['model_key'][i] = datos['model_key'][i].replace("ActiveHybrid 5","5")
    datos['model_key'][i] = datos['model_key'][i].replace("M","6")
    datos['model_key'][i] = datos['model_key'][i].replace(" M","7")
    datos['model_key'][i] = datos['model_key'][i].replace("X","8")
    datos['model_key'][i] = datos['model_key'][i].replace("Z","9")
    datos['model_key'][i] = datos['model_key'][i].replace("i","10")
    datos['model_key'][i] = datos['model_key'][i].replace(" ","11")
marca = datos['model_key'].value_counts()
datos['modelo'] = pd.to numeric(datos['model key'])
del datos['model_key'] # Eliminamos la columna de model key, pues no es de valor ni
# Volvemos a realizar la correlación de nuestros datos para ver como ha mejorado nu
correlacion = datos.corr()
# Una vez más, graficamos sobre un mapa de calor
sns.heatmap(round(correlacion, 2),cmap='magma', annot=True)
    <ipython-input-317-e366f493816f>:13: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame
    See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/st">https://pandas.pydata.org/pandas-docs/st</a>
      datos['model key'][i] = datos['model key'][i].replace(" Gran Coupé","2")
    <ipython-input-317-e366f493816f>:14: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame
    See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/st">https://pandas.pydata.org/pandas-docs/st</a>
       datos['model_key'][i] = datos['model_key'][i].replace(" Gran Tourer","3")
    <ipython-input-317-e366f493816f>:15: SettingWithCopyWarning:
```

```
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/st">https://pandas.pydata.org/pandas-docs/st</a>
  datos['model key'][i] = datos['model key'][i].replace(" Active Tourer","4")
<ipython-input-317-e366f493816f>:16: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/st">https://pandas.pydata.org/pandas-docs/st</a>
  datos['model_key'][i] = datos['model_key'][i].replace("ActiveHybrid 5","5")
<ipython-input-317-e366f493816f>:17: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/st">https://pandas.pydata.org/pandas-docs/st</a>
  datos['model key'][i] = datos['model key'][i].replace("M","6")
<ipython-input-317-e366f493816f>:18: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/st">https://pandas.pydata.org/pandas-docs/st</a>
  datos['model_key'][i] = datos['model_key'][i].replace(" M","7")
<ipython-input-317-e366f493816f>:19: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
  datos['model key'][i] = datos['model key'][i].replace("X","8")
<ipython-input-317-e366f493816f>:20: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/st">https://pandas.pydata.org/pandas-docs/st</a>
  datos['model key'][i] = datos['model key'][i].replace("Z","9")
<ipython-input-317-e366f493816f>:21: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/st">https://pandas.pydata.org/pandas-docs/st</a>
  datos['model key'][i] = datos['model key'][i].replace("i","10")
<ipython-input-317-e366f493816f>:22: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
  datos['model_key'][i] = datos['model_key'][i].replace(" ","11")
<ipython-input-317-e366f493816f>:12: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
  datos['model_key'][i] = datos['model_key'][i].replace(" Gran Turismo","1")
<ipython-input-317-e366f493816f>:30: FutureWarning: The default value of numer
  correlacion = datos.corr()
<Axes: >
                                                                            - 1.0
       mileage - 1 -0.020.080.070.01-0.040.07-0.020.17-0.01-0.4 0.47-0.02
```

engine power -0.02 1 0.320 190 320 460 360 23 0


```
# Ahora procedemos a analizar la característica de combustible, como son solo 4 val
# procedemos a ver numericamente que tan lejos se encuentra el uno del otro, y así
# determinar si estan distribuidos casi por igual sobre el conjunto de datos, o se
# en algunos de ellos.
print (datos['fuel'].value counts())
# como observamos que la mayoria se concentra en "Diesel" no vale la pena analizar
# columna por lo que procedemos a eliminarla.
del datos['fuel']
# como todos los carros son de la misma marca, se elimina esta columna
# se pasan los datos booleanos a 0 o 1
datos['feature 1']=datos['feature 1'].astype('int')
datos['feature 2']=datos['feature 2'].astype('int')
datos['feature 3']=datos['feature 3'].astype('int')
datos['feature 4']=datos['feature 4'].astype('int')
datos['feature 5']=datos['feature 5'].astype('int')
datos['feature_6']=datos['feature_6'].astype('int')
datos['feature_7']=datos['feature_7'].astype('int')
datos['feature_8']=datos['feature_8'].astype('int')
```

diesel 4565
petrol 148
hybrid_petrol 3
electro 1
Name: fuel, dtype: int64

Teniendo en cuenta que nos quedan aun variables categoricas procedemos a volverla # afecten en el momento de hacer nuestra predicción datos= pd.get_dummies(datos,columns=['paint_color', 'car_type'],drop_first=True) datos= pd.get_dummies(datos,drop_first=True) datos.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 4717 entries, 0 to 4842 Data columns (total 29 columns):

#	Column	Non-N	Dtype	
0	mileage	4717	non-null	int64
1	engine_power	4717	non-null	int64
2	feature_1	4717	non-null	int64
3	feature_2	4717	non-null	int64
4	feature_3	4717	non-null	int64
5	feature_4	4717	non-null	int64
6	feature_5	4717	non-null	int64
7	feature_6	4717	non-null	int64
8	feature_7	4717	non-null	int64
9	feature_8	4717	non-null	int64
10	price	4717	non-null	int64
11	years_used	4717	non-null	int64
12	modelo	4717	non-null	int64
13	<pre>paint_color_black</pre>	4717	non-null	uint8
14	<pre>paint_color_blue</pre>	4717	non-null	uint8
15	paint_color_brown	4717	non-null	uint8
16	paint_color_green	4717	non-null	uint8
17	<pre>paint_color_grey</pre>	4717	non-null	uint8
18	<pre>paint_color_orange</pre>	4717	non-null	uint8
19	<pre>paint_color_red</pre>	4717	non-null	uint8
20	paint_color_silver	4717	non-null	uint8
21	paint_color_white	4717	non-null	uint8
22	car_type_coupe	4717	non-null	uint8
23	car_type_estate	4717	non-null	uint8
24	car_type_hatchback	4717	non-null	uint8
25	car_type_sedan	4717	non-null	uint8
26	car_type_subcompact	4717	non-null	uint8
27	car_type_suv	4717	non-null	uint8
28	car_type_van	4717	non-null	uint8
dtypes: int64(13), uint8(16)				

memory usage: 718.7 KB

Iniciamos con el modelo de predicción

```
# Comenzamos a pasarle las caracteristicas a nuestro modelo de entrenamiento,
# y de igual forma las estiquertas que corresponden
X = datos.drop('price', axis=1)
Y = datos.price

#Al ejecutar estas líneas de código, se obtendrán los conjuntos de entrenamiento
# y prueba para las características y las etiquetas, que se utilizarán posteriormer
# para entrenar y evaluar un modelo de aprendizaje automático.
X_train, X_test, Y_train, Y_test= train_test_split(X, Y, train_size=0.85, random_st
```

Utilizamos el modelos de Regresión Lineal

```
# creamos una instancia del modelo de regresión lineal.
LReg = LinearRegression()
# Se ajusta el modelo utilizando los conjuntos
LegReg = LReg.fit(X train, Y train)
# Se utiliza el modelo ajustado para hacer predicciones sobre los datos de prueba
# en X_test. Se obtiene un vector de valores predichos para la variable dependiente
Y_pred=LReg.predict(X_test)
# Se utiliza la función r2_score() de scikit-learn para calcular el coeficiente de
# determinación R^2, que indica la calidad de ajuste del modelo. Se compara los val
# reales Y_test con los valores predichos Y_pred para evaluar la capacidad de predi
# del modelo.
R2=r2_score(Y_test , Y_pred)
print ('R2:',R2.round(5))
# Lo mismo pero con escalado
X test scaled2 = StandardScaler().fit transform(X test)
X_train_scaled2 = StandardScaler().fit_transform(X_train)
LReg2=LinearRegression()
LReg2.fit(X_train_scaled2,Y_train)
Y_pred2=LReg2.predict(X_test_scaled2)
R22 = r2\_score(Y\_test , Y\_pred2)
print('R2:',R22.round(5))
# Al escalar las características antes de ajustar el modelo de regresión lineal, se
# busca asegurar una mejor interpretación de los coeficientes, mejorar el rendimier
# del modelo y reducir la influencia de valores atípicos.
```

R2: 0.72126 R2: 0.71981

denerará un dráfico de dispersión que muestra cómo se comparan los valores reales

y los valores predichos del precio. La línea diagonal de referencia ayuda a evalu
visualmente la precisión del modelo, ya que los puntos que se encuentran cerca de
línea indican una buena predicción.

plt.figure(figsize=(10,10))
sns.scatterplot(x=Y_test, y=Y_pred)
plt.xlabel('Valores de Precio Real')
plt.ylabel('Valores de Precio Predicho')
plt.xlim(0, 60000)
plt.ylim(0, 60000)
plt.plot([0, 60000], [0, 60000], color='red', linestyle='--')
plt.show()

Utilizando el modelo de Random Forest

```
# Creamos y ajustamos un modelo de regresión basado en Random Forest con los paráme
# El modelo estará listo para hacer predicciones utilizando el conjunto de prueba.
from sklearn.ensemble import RandomForestRegressor
n estimators=30
model = RandomForestRegressor(random_state=42, max_depth=7, max_features=9, n_estimate
model.fit(X_train, Y_train)
# Obtenemos el valor de R^2 para el modelo de regresión basado en Random Forest.
# Este valor indica la proporción de la varianza en los datos objetivo que puede se
# explicada por el modelo. Un valor más cercano a 1 indica un mejor ajuste del mode
model score = model.score(X train,Y train)
y_predicted = model.predict(X_test)
R2_DT = r2_score(Y_test, y_predicted)
print('R2:', R2_DT.round(3))
# generamos un gráfico de dispersión que muestra cómo se comparan los valores reale
# y los valores predichos en el modelo de regresión. Los puntos dispersos represent
# las muestras individuales y la línea diagonal proporciona una referencia de igual
plt.scatter(Y_test, y_predicted)
plt.xlabel('Valores reales')
plt.ylabel('Valores Predichos')
lims = [0, 60000]
plt.xlim(lims)
plt.ylim(lims)
_ = plt.plot(lims, lims)
```


Productos pagados de Colab - Cancela los contratos aquí

