Sample Size Determination

Dr. Wan Nor Arifin

Unit of Biostatistics and Research Methodology, Universiti Sains Malaysia.

Outlines

- Estimation One Mean/Percentage
- Hypothesis testing Comparing Two Means (Independent/Paired)/Percentages

Software used

Sample Size Calculator (web)

https://wnarifin.github.io/ssc_web.html

1. One mean

• Estimate mean of numerical variable in population e.g. blood pressure, BMI etc.

- Conduct a study to estimate mean systolic blood pressure (SBP) among USM medical students. How many medical students should you measure? All of them?
- Sample! Need to calculate minimum number of students to measure → get precise estimation.

- What you need:
 - Standard deviation of SBP from other studies.
 - Set your precision (in unit of measurement, e.g. 1mmHg, 2mmHg, ...).
 - Set Confidence level (90%, <u>95%</u>, 99%).
 - Dropout % % of your participants that run away from study.

- Let say:
 - SD of SBP = 15mmHg.
 - Precision = 2mmHg
 - 95% Confidence level
 - 20% dropout

• Means → Single Mean → 1 mean – Estimation

Sample Size Calculator (web)

• You have to sample 272 medical students to estimate mean SBP among USM medical students, with mean SBP ± 2mmHg.

2. One percentage/proportion

• Estimate % of of categorical variable in population e.g. obesity status, HIV, diabetes etc.

• Conduct a study to estimate % of obesity among USM medical students. How many medical students should you sample?

- What you need:
 - % of obesity among medical students from other studies.
 - Set your precision (in percentage, 1%, 2%, 5%...)
 - Set Confidence level (90%, <u>95%</u>, 99%).
 - Dropout % % of your participants that run away from study.

- Let say:
 - % of obesity = 25% = 0.25 (in proportion).
 - Precision = $\pm 5\%$ = 0.05 (in proportion).
 - 95% Confidence level.
 - 10% dropout (i.e. those who won't let you know their BMI).

Proportions → Single proportion → 1 proportion –
Estimation

Sample Size Calculator (web)

• You have to sample 322 medical students to estimate % of obesity among USM medical students, with % obesity ± 5%.

3. Comparing two means of two populations

 Testing hypothesis that means of a continuous variable for two different populations are actually different → Using independent t-test.

• Conduct a study to compare mean BMI of Year 5 with Year 2 medical students. How many medical students should you sample from each population?

- What you need:
 - SD of BMI of medical students from other studies (preferably Year 5/Year 2, take the largest you could find).
 - Set Expected difference in BMI between the two populations.
 - Determine Significance level = **0.05**, 0.01, 0.001.
 - Power of the test usually 80%.
 - Dropout %.

- Let say:
 - Largest SD you could find from literature = 1.5
 - Expected Difference = 1 unit.
 - Significance level = 5% (0.05)
 - Leave Power = 80% default value.
 - 30% dropout (i.e. as some weight themselves while only one foot was on the scale...).

 Means → Two-mean comparison (independent) → 2 means – Hypothesis Testing

Sample Size Calculator (web)

2 means - Hypothesis Testing		
Standard deviation (σ):	1.5	
Expected difference:	1	
Significance level (α):	0.05	Two-tailed
Power (1 - β):	80	9%
Expected dropout rate:	30	9%
Calculate Reset		
Sample size, n =	36	
Sample size (with 30% dropout), n _{drop} =	52	

• You have to sample 52 Year 5 students and 52 Year 2 students to make the comparison, expecting a difference of 1 unit BMI between the two.

4. Comparing percentages of two populations

 Testing hypothesis that percentages of a categorical variable for two different populations are actually different → Using Chisquared test.

• Conduct a study to compare % of obesity among Year 2 with Year 5 medical students. How many medical students should you sample from each population?

- What you need:
 - % of obesity of Year 2 medical students (as control, p_0) from other studies (or Year 5 as control, you decide).
 - Set expected % of obesity of Year 5 students (as case, p₁).
 - Determine Significance level = $\underline{0.05}$, 0.01, 0.001
 - Power of the test usually 80%.
 - Dropout %.

• Let say:

- $p_0 = 35\% = 0.35$ (in proportion) \rightarrow Year 2/medical students in general as control.
- $p_1 = 50\% = 0.5$ (in proportion) \rightarrow If you think this could be the % for Year 5 students.
- Significance level = 5% (0.05)
- Power = 80% (0.8)
- 10% dropout.

 Proportions → Two-proportion comparison (independent) → 2 proportions – Hypothesis Testing

Sample Size Calculator (web)

2 proportions - Hypothesis Testing		
Proportion in control (p ₀):	.35	
Proportion in case (p ₁):	.5	
Significance level (α):	0.05	Two-tailed
Power (1 - β):	80	%
Expected dropout rate:	10	%
Calculate Reset		
Sample size, n =	170	
Sample size (with 10% dropout), n _{drop} =	189	

• You have to sample 189 Year 2 students and 189 Year 5 students to make the comparison, expecting a difference of 15% for % of obesity between the two.

References

Arifin, W. N. (2013). Introduction to sample size calculation. Education in Medicine Journal, 5(2), e89-e96.

Arifin, W. N. (2017). Sample size calculator (web). Retrieved from http://wnarifin.github.io

Lemeshow, S., Hosmer Jr, D. W., Klar, J., Lwanga, S. K. (1990). *Adequacy of sample size in health studies*. England: John Wiley & Sons Ltd.

Naing, N. N. (2011). A practical guide on determination of sample size in health sciences research. Kelantan: Pustaka Aman Press.