Generative Adversarial Network

Tianchu Zhao@uts.edu.au

Why GAN

- All we see so far are discriminative models
 - Given an input, predict output
- Limitation
 - Can't model the probability of input
 - Thus not able to sample from input (generate new input)

GAN Vanilla Architecture

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right) \right) \right).$$

end for

Pix2Pix

Pix2Pix (1+2)

CycleGAN

Simplified view of CycleGAN architecture

https://github.com/hindupuravinash/the-gan-zoo

3.5 Years of Progress on Faces

<2 Years of Progress on ImageNet

Odena et al 2016

Miyato et al 2017

Zhang et al 2018

(Goodfellow 2018)

Andrew et al 2018

How to learn all these?