Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	6
1.2 Описание выходных данных	6
2 МЕТОД РЕШЕНИЯ	7
3 ОПИСАНИЕ АЛГОРИТМОВ	8
3.0 Алгоритм функции main	8
3.1 Алгоритм конструктора класса cl	9
3.2 Алгоритм метода f1 класса cl	9
3.3 Алгоритм метода f2 класса cl	10
3.4 Алгоритм метода f3 класса cl	10
3.5 Алгоритм метода f4 класса cl	10
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	12
5 КОД ПРОГРАММЫ	17
5.0 Файл main.cpp	17
6 ТЕСТИРОВАНИЕ	19
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	20

1 ПОСТАНОВКА ЗАДАЧИ

Спроектировать объект, в котором есть доступные и скрытые элементы (свойства и методы). Есть одно доступное свойство целого типа и одно скрытое свойство целого типа.

У объекта есть параметризированный конструктор с параметром целого типа. В конструкторе доступному свойству присваивается значение параметра, а скрытому свойству утроенное значение параметра.

У объекта есть доступные методы со следующим функционалом:

- метод изменения значения доступного и скрытого свойства. Доступному свойству добавляется 4, скрытому свойству добавляется 1;
 - метод вызова закрытого метода;
- метод вывода состояния, выводит значение доступного и скрытого свойства.

У объекта есть один скрытый метод со следующим функционалом:

- метод доступному свойству добавляется 7, скрытому свойству добавляется 5.

Написать программу, которая состоит из описания класса выше представленного объекта и основной функции, в которой реализован следующий алгоритм:

- 1. Ввод целочисленного значения переменной i_data.
- 2. Создание объекта посредством оператора функции new и использованием указателя на объект, параметризированному конструктору в качестве аргумента передается переменная i_data.
 - 3. Вывод исходного состояния объекта.
 - 4. Вызов метода изменения значений свойств объекта.

- 5. Вывод текущего состояния объекта.
- 6. Ввод целочисленного значения переменной i_data.
- 7. Если значение i_data больше, чем значение доступного свойства объекта, то
- 7.1. Непосредственное изменение доступного свойства объекта посредством значения выражения i_data * 8 и переход к пункту 9.
 - 8. Иначе
 - 8.1. Переход к пункту 9.
 - 9. Вывод текущего состояния объекта.
 - 10. Вызов метода объекта, который вызывает скрытый метод объекта.
 - 11. Вывод текущего состояния объекта.

1.1 Описание входных данных

Первая строка

«Целочисленное значение»

Вторая строка

«Целочисленное значение»

1.2 Описание выходных данных

Метод вывода состояния, первый вывод делает в первой строке, а далее с новой. Шаблон вывода:

Value of the available property «значение доступного свойства»; Value of a hidden property «значение закрытого свойства»

2 МЕТОД РЕШЕНИЯ

Для решения задачи понадобится: используется измененный класс из задачи 2.2.1 условный оператор if используется операторы функции new

Класс cl:

Поля:

доступный элемент i_data_open

скрытый элемент i_data_close Методы

открытые:

f1() - действия над элементами

f2() - вызов метода f4()

f3() - вывод надписи на экран

закрытые

f4() - действия над элементами

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.0 Алгоритм функции main

Функционал: главный метод программы.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм функции представлен в таблице 1.

Таблица 1 – Алгоритм функции таіп

No	Предикат	Действия	
			перехода
1		Ввод целочисленного значения переменной i_data.	2
2		Создание объекта посредством оператора функции	
		new и использованием указателя на объект,	
		параметризированному конструктору в качестве	
		аргумента передается переменная i_data.	
3		Вывод исходного состояния объекта.	4
4		Вызов метода изменения значений свойств объекта.	5
5		Вывод текущего состояния объекта.	6
6		Ввод целочисленного значения переменной i_data.	
7	значение i_data больше, чем	Непосредственное изменение доступного свойства	
	значение доступного	упного объекта посредством значения выражения i_data *	
	свойства объекта	8	
			8
8		Вывод текущего состояния объекта.	
9		Вызов метода объекта, который вызывает скрытый	

No	Предикат	Действия	No
			перехода
		метод объекта.	
1		Вывод текущего состояния объекта	Ø
0			

3.1 Алгоритм конструктора класса cl

Функционал: действия над доступным и скрытым элементами.

Параметры: int i_data.

Алгоритм конструктора представлен в таблице 2.

Таблица 2 – Алгоритм конструктора класса cl

N	Предикат	Действия	No
			перехода
1		доступный элемент присваивается значение параметра	2
2		скрытый элемент утроенное значение параметра	Ø

3.2 Алгоритм метода f1 класса cl

Функционал: действия над доступным и скрытым элементами.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода f1 класса cl

No	Предикат	Действия	No
			перехода
1		доступный элемент добавляется 4	2
2		скрытый элемент добавляется 1	Ø

3.3 Алгоритм метода f2 класса cl

Функционал: вызов скрытого метода.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 4.

Таблица 4 – Алгоритм метода f2 класса cl

[-	No	Предикат	Действия	No
				перехода
	1		вызов скрытого метода	Ø

3.4 Алгоритм метода f3 класса cl

Функционал: вывод значение доступного и скрытого элемента.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 5.

Таблица 5 – Алгоритм метода f3 класса cl

No	Предикат	Предикат Действия	
			перехода
1		объявление счетчика	2
2	счетчик меньше 3	выводим значения на экран с переносом	Ø
		выводим значения на экран без переноса	Ø

3.5 Алгоритм метода f4 класса cl

Функционал: действия над доступным и скрытым элементами.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 6.

Таблица 6 – Алгоритм метода f4 класса cl

No	Предикат	Действия	N₂
			перехода
1		к доступному элементу добавляется 7	2
2		к скрытому элементу добавляется 5	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-5.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

Рисунок 4 – Блок-схема алгоритма

Рисунок 5 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.0 Файл таіп.срр

Листинг 1 – таіп.срр

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
using namespace std;
class cl
private:
      int i_data;
      int i_data_close;
      void f4();
      int counter = 0;
public:
      cl(int i_data);
      void f1();
      void f2();
      void f3();
      int i_data_open;
};
cl::cl(int i_data)
      i_data_open = i_data;
      i_data_close = i_data * 3;
}
void cl::f1()
{
      i_data_open += 4;
      i_data_close += 1;
}
void cl::f2()
{
      f4();
}
void cl::f3()
{
      if (counter < 3)
```

```
cout << "Value of the available property " << i_data_open << "; Value</pre>
of a hidden property " << i_data_close;
            cout << endl;</pre>
      }
      else
      {
            cout << "Value of the available property " << i_data_open << "; Value</pre>
of a hidden property " << i_data_close;
      counter++;
      //cout << "Value of the available property " << i_data_open << "; Value of a
hidden property " << i_data_close;</pre>
      //cout << endl;</pre>
}
void cl::f4()
      i_data_open += 7;
      i_data_close += 5;
}
int main()
      int i_data(0);
      cin >> i_data;
      cl* object = new cl(i_data);
      object -> f3();
      object -> f1();
      object -> f3();
      cin >> i_data;
      if (i_data > object -> i_data_open)
      {
            object -> i_data_open = i_data * 8;
      }
      object -> f3();
      object -> f2();
      object -> f3();
      return(0);
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 7.

Таблица 7 – Результат тестирования программы

Входные данные	Ожидаемые выходные	Фактические выходные
	данные	данные
2	Value of the available	Value of the available
2	property 2; Value of a	property 2; Value of a
	hidden property 6	hidden property 6
	Value of the available	Value of the available
	property 6; Value of a	property 6; Value of a
	hidden property 7	hidden property 7
	Value of the available	Value of the available
	property 6; Value of a	property 6; Value of a
	hidden property 7	hidden property 7
	Value of the available	Value of the available
	property 13; Value of a	property 13; Value of a
	hidden property 12	hidden property 12

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).