Algèbre 3 TD 2

Applications linéaires entre espaces vectoriels

Licence 2 MAE 2020-2021 Université Paris Descartes Marc Briant

Dans tout ce TD, $(\mathbb{K}, +, .)$ désigne un corps commutatif.

Des applications linéaires explicites

Exercice 1

Dans chacun des cas suivants dire (et démontrer!) si les applications sont linéaires.

- 1) $f_1: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ définie par f(x,y) = (2x 3y, x, -y).
- 2) $f_2: \mathbb{R}^3 \longrightarrow R$ définie par f(x, y, z) = x z.
- 3) $f_3: \mathbb{R}^3 \longrightarrow R^2$ définie par f(x,y,z) = (x+y+a,z+b). Il faudra discuter suivant les valeurs des réels a et b.
- 4) $f_4: \mathbb{C} \longrightarrow \mathbb{C}$ définie par $f(z) = \overline{z}$. Il faudra discuter suivant si l'on voit \mathbb{C} comme un \mathbb{R} -ev ou comme un \mathbb{C} -ev.

Exercice 2

Dans les cas suivants montrer que f est un automorphisme de \mathbb{R}^k et calculer f^{-1} .

1)
$$k = 2$$
 et $f(x, y) = (x + y, x - y)$ 2) $k = 3$ et $f(x, y, z) = (x + z, y + z, x + y)$

Exercice 3: Mixons avec de l'analyse

Dans chacun des cas suivants montrer que φ est un endomorphisme du \mathbb{R} -ev E puis déterminer son noyau, son image et dire s'il est ou non injectif ou surjectif.

- 1) $E = \mathbb{R}^{\mathbb{N}}$ et $\varphi(u) = v$ la suite définie par : $\forall n \in \mathbb{N}, v_n = u_{n+1}$.
- 2) $E = C^{\infty}(\mathbb{R}, \mathbb{R})$ et $\varphi(f) = f'$.

Exercice 4: Un exercice bien complet

Nous travaillons dans le \mathbb{R} -ev $E = C^{\infty}(\mathbb{R}, \mathbb{R})$. Nous définissons l'ensemble

$$P_{\infty} = \{ f \in E \mid \forall x \in \mathbb{R}, \ f(x+1) = f(x) \}$$

sur lequel agit l'application : $\forall f \in P_{\infty}, d(f) = f'$.

- a) Montrer que P_{∞} est un \mathbb{R} -ev et que $d \in L(P_{\infty})$.
- b) Déterminer Ker(d) et Im(d).
- c) Montrer que $P_{\infty} = \operatorname{Ker}(d) \oplus \operatorname{Im}(d)$

À propos des Images et des Noyaux

Exercice 5

Soient E un \mathbb{K} -ev et u un endomorphisme de E. Montrer les assertions suivantes

- 1) $\operatorname{Ker}(u) = \operatorname{Ker}(u^2) \Leftrightarrow \operatorname{Ker}(u) \cap \operatorname{Im}(u) = \{0_E\}.$
- 2) $\operatorname{Im}(u) = \operatorname{Im}(u^2) \Leftrightarrow E = \operatorname{Im}(u) + \operatorname{Ker}(u)$.

Exercice 6

Soient E un \mathbb{K} -ev et f et g dans L(E). Montrer que

- 1) $g \circ f = 0 \Leftrightarrow \operatorname{Im}(f) \subset \operatorname{Ker}(g)$.
- 2) Si $f \circ g = \mathrm{Id}_E$ alors $\mathrm{Ker}(g \circ f) = \mathrm{Ker}(f)$ et $\mathrm{Im}(g \circ f) = \mathrm{Im}(g)$ et enfin $E = \mathrm{Ker}(f) \oplus \mathrm{Im}(g)$.

Exercice 7: Relation polynômiale et automorphisme

Prenons E un \mathbb{K} -ev et $u \in L(E)$. Nous rappelons que $u^n = \underbrace{u \circ \cdots \circ u}_{n \text{ fois}}$.

- 1) Supposons que $u^2 = \operatorname{Id}_E$.
 - a) Montrer que u est un automorphisme et expliciter u^{-1} en fonction de u.
 - b) Montrer que $E = \text{Ker}(u \text{Id}_E) \oplus \text{Ker}(u + \text{Id}_E)$.
- 2) Supposons que $u^2 3u + 2\operatorname{Id}_E = 0$.
 - a) Montrer que u est un automorphisme et expliciter u^{-1} en fonction de u.
 - b) Montrer que $E = \text{Ker}(u \text{Id}_E) \oplus \text{Ker}(u 2\text{Id}_E)$.
- 3) Supposons que $u^2 5u + 6\operatorname{Id}_E = 0$.
 - a) Montrer que u est un automorphisme et expliciter u^{-1} en fonction de u.
 - b) Montrer que $E = \text{Ker}(u 2\text{Id}_E) \oplus \text{Ker}(u 3\text{Id}_E)$.

Projecteurs, symétries et homothéties

En réalité on ne fera que des exercices sur les projecteurs puisque si s est une symétrie alors par définition $p=\frac{1}{2}s+\frac{1}{2}Id_E$ est un projecteur et nous travaillerons avec p! Ne jamais apprendre de choses redondantes...

Exercice 8

Soit E un \mathbb{K} -ev et soient p et q deux projecteurs de L(E) dans chacun des cas suivants établir que r est un projecteur et déterminer son noyau et son image

- 1) $r = \operatorname{Id}_E p$.
- 2) Pour p et q qui commutent $r = p \circ q$.
- 3) Pour $p \circ q = 0$, $r = p + q q \circ p$. Ici Im(p) + Im(q) pourrait jouer un rôle...
- 4) Pour $\operatorname{Im}(p) \subset \operatorname{Im}(q), r = p + q p \circ q$.

Exercice 9 : Somme de projecteurs

Soient p et q deux projecteurs d'un \mathbb{K} -ev E. Nous voulons étudier p+q.

- a) Montrer que p+q est un projecteur ssi $p \circ q = q \circ p = 0$.
- b) Si p + q est un projecteur montrer que

$$\operatorname{Im}(p+q) = \operatorname{Im}(p) \oplus \operatorname{Im}(q)$$
 et $\operatorname{Ker}(p+q) = \operatorname{Ker}(p) \cap \operatorname{Ker}(q)$.

Exercice 10 : Une fois qu'on connait la liberté...

Soit E un \mathbb{K} -ev et supposons qu'il existe un endomorphisme $f \in L(E)$ tel que

$$\forall x \in E, \ \exists \lambda_x \in \mathbb{K}, \quad f(x) = \lambda_x x.$$

Montrer que f est une homothétie de E :

$$\exists \lambda \in \mathbb{K}, \ \forall x \in E, \quad f(x) = \lambda x.$$