Часть 1. Тест.

В регрессии с константой сумма квадратов остатков равна 162, а число наблюдений равно 31. Точечная оценка дисперсии случайной составляющей равна

- |A|7
- B 8
- $C \sqrt{6}$

- $|E| \sqrt{8}$

Если для регрессора используется преобразование Бокса-Кокса с параметром $\theta = -1$, а для зависимой переменной — с параметром $\lambda = 1$, то регрессионное уравнение представимо в виде

- $\boxed{\mathbf{A}} \ln Y_i = \beta_1 + \beta_2 X_i + u_i$ $\boxed{\mathbf{D}} \ln Y_i = \beta_1 \beta_2 \ln X_i + u_i$ $\boxed{\mathbf{G}}$ Нет верного ответа.

|G| Нет верного ответа.

Вопрос 3 \clubsuit Известно, что регрессоры X и Z ортогональны, а истинная зависимость описывается уравнением $Y_i = \alpha_1 + \alpha_2 X_i + \alpha_3 Z_i + u_i$. Исследователь оценивает с помощью МНК две регрессии: $\hat{Y}_i = \hat{eta}_1 + \hat{eta}_2 X_i$ и $\hat{Y}_i = \hat{\gamma}_1 + \hat{\gamma}_2 Z_i$. При этом

- $oxed{A}$ \hat{eta}_2 смещённая оценка для $lpha_2$; $\hat{\gamma}_2$ смещённая оценка для $lpha_3$
- $oxed{B}$ \hat{eta}_2 несмещённая оценка для $lpha_2$; $\hat{\gamma}_2$ смещённая оценка для $lpha_3$
- |C| \hat{eta}_2 смещённая оценка для $lpha_2$; $\hat{\gamma}_2$ несмещённая оценка для $lpha_3$
- \hat{eta}_2 несмещённая оценка для $lpha_2;\hat{\gamma}_2$ несмещённая оценка для $lpha_3$
- $oxed{\mathsf{E}}$ \hat{eta}_2 эффективная оценка для α_2 ; $\hat{\gamma}_2$ эффективная оценка для α_3
- | F | *Нет верного ответа.*

Гипотеза о том, что одновременно $\beta_1 + \beta_2 = 1$ и $\beta_3 = 0$ в множественной линейной регрессии построенной по n наблюдениям проверяется с помощью статистики, имеющей распределение

 $|A| t_{n-2}$

- D Демешева-Мамонтова
- |G| Нет верного ответа.

- $\boxed{\mathbf{B}} t_{n-k}$
- $C t_n$

- |F| N(0;1)

Вопрос 5 🌲 Элеонора исследует зависимость цены номера в отеле от звёздности отеля, star, (от 1 до 3 звёзд) и расстояния до моря, dist. Элеонора хочет оценить модель вида $price_i = \beta_1 +$ $\beta_2 star_i + \beta_3 dist_i + u_i$. Чтобы считаться богиней эконометрики Элеоноре стоит

- А использовать МНК для оценки данной модели
- $|\,{
 m B}\,|$ добавить в модель переменную z_i $star_i^2$, так как эффект звёздности наверняка нелинейный
- $|\mathsf{C}|$ добавить в модель переменную z_i $star_i \cdot dist_i$
- $\lceil \mathbf{D}
 ceil$ добавить дамми-переменные one_i, two_i и $three_i$, равные 1 для отелей с одной, двумя и тремя звёздами соответственно
- заменить переменную $star_i$ на даммипеременные one_i и two_i , равные 1 для отелей с одной и двумя звёздами соответственно
- заменить переменную $star_i$ на даммипеременные one_i , two_i и $three_i$, равные 1 для отелей с одной, двумя и тремя звёздами соответственно
- |G| Нет верного ответа.

Вопрос 6 \clubsuit Показатель R^2_{adi} можно вычислить по формуле

$$\boxed{\mathbf{D}} \ R_{adj}^2 = \frac{k}{n-k} + R^2 \cdot \frac{n-1}{n-k}$$

$$R_{adi}^2 = \frac{k-1}{n-k} + R^2 \cdot \frac{n-1}{n-k}$$

$$\boxed{\mathbf{C}} \ \ R_{adj}^2 = \frac{k-1}{n-k} - R^2 \cdot \frac{n-1}{n-k} \qquad \qquad \boxed{\mathbf{F}} \ \ R_{adj}^2 = \frac{k-1}{n-k} + R^2 \cdot \frac{n-k}{n-1}$$

$$F$$
 $R_{adj}^2 = \frac{k-1}{n-k} + R^2 \cdot \frac{n-k}{n-1}$

Вопрос 7 \clubsuit Если гипотеза $\beta_2+\beta_3=1$ верна, то модель $\ln Y_i=\beta_1+\beta_2\ln X_i+\beta_3\ln Z_i+u_i$ совпадает с моделью

$$\boxed{\mathbf{A}} \ln Y_i = \beta_1 + \beta_2 \ln(X_i/Z_i) + u_i$$

$$\boxed{\mathbf{B}} \ln(Y_i/Z_i) = \beta_1 + \beta_2 \ln(Y_i/Z_i) + u_i$$

$$\boxed{\mathsf{C}} \ln(Y_i/Z_i) = \beta_1 + \beta_2 \ln(Y_i/X_i) + u_i$$

$$\ln(Y_i/Z_i) = \beta_1 + \beta_2 \ln(X_i/Z_i) + u_i$$

$$\boxed{\mathbf{E}} \ln Y_i = \beta_1 + \beta_2 \ln(Z_i/Y_i) + u_i$$

F | *Нет верного ответа.*

Гипотеза о неадекватности множественной регрессии проверяется с помощью статистики равной

$$\boxed{\mathbf{A}} \quad \frac{\hat{\beta} - \beta}{se(\hat{\beta})}$$

$$\boxed{\mathbf{D}} \ \frac{TSS/(n-1)}{RSS/(n-k)}$$

$$\frac{ESS}{TSS}$$

$$\frac{ESS/(k-1)}{RSS/(n-k)}$$

$$\boxed{\mathbf{D}} \frac{TSS/(n-1)}{RSS/(n-k)}$$

$$E$$
 $\frac{RSS}{TSS}$

$$F \frac{TSS/(n-1)}{ESS/(k-1)}$$

Вопрос 9 \clubsuit Исследователь выполнил второй шаг в РЕ-тесте МакКиннона. В регрессии $\ln Y_i$ на исходные регрессоры и $Z_i = \hat{Y}_i - \exp(\widehat{\ln Y}_i)$ коэффициент при Z_i оказался значимым. А в регрессии Y_i на исходные регрессоры и $W_i = \ln \hat{Y}_i - \widehat{\ln Y}_i$ коэффициент при W_i оказался незначимым. Из результатов следует сделать вывод, что

- А тесты противоречат друг другу, ни одна из моделей не предпочитается
- С следует предпочесть полулогарифмеческую модель
- следует предпочесть линейную модель

- $\boxed{\mathrm{B}}$ в исходной модели пропущен регрессор W_i
- $\boxed{\mathrm{D}}$ в исходной модели пропущен регрессор Z_i
- [F] следует предпочесть логарифмическую модель
- G Нет верного ответа.

- $\boxed{\mathbf{A}}$ оценка \hat{eta}_2 является несмещённой, а оценка $\hat{\gamma}_2$ смещённой
- $\boxed{\mathrm{D}}$ оценка \hat{eta}_2 является смещённой, а оценка $\hat{\gamma}_2$ несмещённой
- оценки \hat{eta}_2 и $\hat{\gamma}_2$ являются несмещёнными
- $oxed{\mathbb{E}}$ оценки \hat{eta}_2 и $\hat{\gamma}_2$ являются неэффективными
- $\boxed{\mathsf{C}}$ оценки \hat{eta}_2 и $\hat{\gamma}_2$ являются эффективными
- **F** Нет верного ответа.

Часть 2. Задачи.

1. На основании опроса 200 человек была оценена следующая модель:

$$\ln(wage_i) = \beta_1 + \beta_2 exper_i + \beta_3 exper_i^2 + \beta_4 sex_i + \varepsilon_i$$

где:

- $wage_i$ величина заработной платы в долларах
- $exper_i$ опыт работы в годах
- $exper_i^2$ опыт работы в годах
- $sex_i пол (1 мужской, 0 женский)$

Показатель	Значение
R^2	0.911
Скорректированный \mathbb{R}^2	B 7
Стандартная ошибка регрессии	B6
Количество наблюдений	B2

Результаты дисперсионного анализа:

	df	сумма квадратов	F	Р-значение
Регрессия	3	В9	B 5	0.000
Остаток	B 1	830.1		
Итого	B3	B4		

	Оценка	Ст. ошибка	t-статистика	Р-Значение
Константа	3.6869	1.1960	3.08	0.0023
exper	B8	0.3525	16.45	0.0000
$exper^2$	-0.1916	0.0254	-7.54	0.0000
sex	1.5745	0.2937	B10	0.0000

- а) Найдите пропущенные числа В1-В10.
- б) Как изменятся результаты оценки регрессии, если переменную sex_i переопределить так, чтобы 0 соответствовал мужчинам, 1 женщинам?

Ответ округляйте до 2-х знаков после запятой. Кратко поясняйте, например, формулой, как были получены результаты.

- 2. Исследовательница Глафира изучает спрос на молоко. В её распоряжении есть следующие переменные:
 - price цена молока в рублях за литр
 - income ежемесячный доход семьи в тысячах рублей
 - milk расходы семьи на молоко за последние семь дней в рублях

В данных указано, проживает ли семья в сельской или городской местности. Поэтому Глафира оценила три регрессии: (All) — по всем данным, (Urban) — по городским семьям, (Rural) — по сельским семьям.

	(All)	(Urban)	(Rural)
(Intercept)	1.479	-0.797	4.598
	(4.480)	(7.808)	(5.121)
income	0.252^{***}	0.204*	0.262***
	(0.049)	(0.092)	(0.053)
price	-0.335^{*}	0.001	-0.567**
	(0.165)	(0.272)	(0.194)
R-squared	0.2	0.1	0.4
adj. R-squared	0.2	0.1	0.4
sigma	4.7	5.0	4.2
F	14.5	2.5	15.3
P-value	0.0	0.1	0.0
RSS	2123.0	1115.7	865.1
n observations	100	47	53

- а) Проверьте значимость в целом регрессии (All) на 5%-ом уровне значимости.
- б) На 5%-ом уровне значимости проверьте гипотезу, что зависимость спроса на молоко является единой для городской и сельской местности.

- 3. Исследовательница Глафира продолжает изучать спрос на молоко. В её распоряжении попрежнему данные по трём переменным:
 - price цена молока в рублях за литр
 - income ежемесячный доход семьи в тысячах рублей
 - milk расходы семьи на молоко за последние семь дней в рублях

Имеются результаты оценивания модели $milk_i = \beta_1 + \beta_2 income_i + \beta_3 price_i + u_i$ по 100 наблюдениям:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.4791	4.4796	0.33	0.7420
income	0.2524	0.0486	5.19	0.0000
price	-0.3354	0.1649	-2.03	0.0447

Коэффициент детерминации \mathbb{R}^2 оказался равен 0.23.

Глафира рассчитала оценку ковариационной матрицы исходных переменных:

	price	income	milk
price	8.26	3.48	-1.89
income	3.48	95.09	22.83
milk	-1.89	22.83	27.84

- а) Постройте точечный прогноз расходов на молоко семьи с доходом 100 тысяч рублей при цене на молоко 30 рублей за литр.
- б) Найдите выборочную корреляцию между фактическими расходами на молоко и их прогнозами.
- в) Разложите коэффициент детерминации R^2 в модели в сумму эффектов переменных income и price.

4. По квартальным данным 1958-1976 годов была оценена модель с тремя объясняющими факторами:

$$\hat{Y}_i = 2.2 + 0.104X_i - 3.48Z_i + 0.34W_i, ESS = 100, RSS = 20$$

- а) Какую модель необходимо оценить исследователю, если он считает, что в различные сезоны среднее значение зависимой переменной помимо зависимости от трёх регрессоров может отличаться на константу?
- б) При оценивании модели, допускающей сезонные эффекты, оказалось, что значение ESS увеличилось до 160. На уровне значимости 5% проверьте гипотезу о наличии сезонности.
- 5. По 24 наблюдениям была оценена модель:

$$\widehat{Y}_i = 15 - 4Z_i + 3W_i$$

Известно, что случайные ошибки нормально распределены, RSS=180, и

$$(X'X)^{-1} = \begin{pmatrix} 0.365 & -0.218 & -0.084 \\ -0.218 & 0.184 & 0.027 \\ -0.084 & 0.027 & 0.046 \end{pmatrix}$$

- а) Проверьте гипотезу $H_0: \beta_Z = 0$ против $H_a: \beta_Z \neq 0$ на уровне значимости 5%.
- б) Проверьте гипотезу $H_0: \beta_Z + \beta_W = 0$ против $H_a: \beta_Z + \beta_W \neq 0$ на уровне значимости 5%.
- в) Выпишите использованные при проверке гипотез предпосылки о случайных ошиб-ках модели.