The present invention relates to a process for amplifying and detecting at least case specific nucleic acid sequence in a sample containing a nucleic acid or a mixture of nucleic acids at least one of which is suspected of containing said sequence, which process comprises:

a) amplifying the nucleic acid sequence to be detected by means of a chain extension reaction utilizing a first oligonucleotide primer of the general formula

$$X - Pc - L - Pp \tag{1}$$

wherein Pp is an oligonucleotide sequence substantially complementary to a part of one strand of the nucleic acid sequence to be detected, Pc is an oligonucleotide sequence substantially complementary to the sequence Pp, L is a non-nucleotidylic linker group elected so as to allow efficient backfolding between the sequence Pc and the primer extension sequence of Pp-and-to-avoid amplification of the backfolding part Pc, and X is an energy donor or acceptor, and a second oligonucleotide primer substantially complementary to a part of the other strand of the nucleic acid sequence to be detected;

b) separating after the last amplification cycle the primer extension products from their complementary sequences to produce single-stranded molecules:

c) treating said single-stranded molecules containing the primer of formula I above with an oligonucleotide probe of the general formula

wherein Y is an energy acceptor, when X in the primer of formula I is an energy donor, or an energy donor, when X in the primer of formula I is an energy acceptor, and Pr is an oligonucleotide sequence complementary to a part of the amplified single-stranded molecules containing the primer of formula I above and selected so as to guarantee a short distance between X and Y after backfolding of the sequence Pc and hybridization of the sequence Pr to said single-stranded molecules such that an energy transfer can take place, under conditions allowing hybridization of the sequences Pc by backfolding of Pr to said single-stranded molecules; and

3ev7 3.2.93

10

15

25

30 .

d) determining whether an energy transfer takes place.

10

The present invention also relates to a primer of the general formula

X - Pc - L - Pp

(I)

wherein Pp is an oligonucleotide sequence substantially complementary to a part of one strand of the nucleic acid sequence to be elected. F is an oligonucleotide sequence substantially complementary to the sequence Pp, L is a non-nucleotidylic linker group selected so as to allow efficient backfolding between the sequence Pc and the primer extension sequence of Pp obtained by amplification by means of a polymerase chain reaction and to avoid amplification of the backfolding part Pc, and X is an energy donor or acceptor.

detecting at least one specific nucleic acid sequence in a sample containing a nucleic acid or a mixture of nucleic acids at least one of which is suspected of containing said sequence, which kit comprises a first container containing a primer of formula I as defined above and a second container containing a probe of formula II as defined above and means and reagents for amplification by means of a polymerase chain reaction and for detection.

The polymerase chain reaction (PCR) is a very powerful method for the specific amplification of DNA or RNA stretches. The methodology is described in European Patent Applications, Pub. Nos. 201.184, 200.362 and 258.017. One application of this technology is in DNA probe technology to bring up DNA present in low copy numbers to a detectable level. Numerous diagnostic and scientific applications of this method have been described by H.A. Erlich (Ed.) in PCR Technology-Principles and Applications for DNA Amplification, Stockton Press, USA, 1989 and by M.A. Inis (Ed.) in PCR Protocols, Academic Press, San Diego, USA, 1990.

A desirable goal would be the direct detection of the amplified DNA without time-consuming separations or transfer steps by a so-called homogeneous assay format. At the same time the aim is also to replace radioactive labels still mainly utilized in DNA diagnostics by nonradioactive reporter systems thereby extending the applications of this technology. Such a homogeneous detection system applying intercalating chemiluminescent acridinium esters has been reported by Arnold et al. in Clinical Chemistry 35, 1588 (1989).

Further variations of the homogeneous DNA detection assays are described in a topology by 5.7 Peckman in Nachr. Chem. Tech. Lab. 37, 692-702 (1989).

The use of bathophenanthroline-Ru II complexes as nonradioactive label molecules which can be measured with high sensitivity by time-resolved 5 Huorometi, has been described by W. Bannwarth et al. in Helv. Chim. Acta 71, 2085-2099 (1988). These complexes can be part of an interactive pair of label molecules allowing energy transfers from suitable donor molecules onto the Ru complex. Since the efficiency of the energy transfer is highly dependent on the distance between donor and acceptor such systems can be applied in investigations of molecule interactions. As a suitable class of donor molecules for the Ru complexes lumazine chromophores have been identified. The possible applicability of this uo...., are pairs in the detection of e.g. DNA molecules in homogeneous assay have been described in European Patent Appucation, Publ. No. 439 036, and in Helvetica Chimica Acta 74, 1991-1999 (1991) and 7, 2000-2008 (1991) by W. Bannwarth and F. Müller With such a combination energy transfers were detected within oligodeoxynucleotides labeled at the 5'-end with a Ru bathophenanthroline complex and possessing lumazine chromophores at different distances from the Ru complex within the oligonucleotide. Furthermore it was demonstrated that this pair of 20 interactive labels can also be applied to detect a target DNA sequence in a hybridization process wherein one processequence is equipped with the donor and the outer with the acceptor.

An alternative approach using a terbium complex as an energy acceptor and salicylate as an energy donor in a homogeneous DNA detection system has been described by A. Oser and G. Valet in Angewandte Chemie 102, 1197-1200 (1990).

The processes known for the detection of oligonucleotides in a homogeneous test format employing energy transfers for the subsequent detection make use of at least two labeled oligonucleotides which hybridize specifically side by side to the complementary DNA sequence thereby positioning the two labels next to each other.

The basic principles of the present invention are outlined in Fig.1.

35

Figure 1: Shows the steps involved in an assay for amplified DNA applying interactive labels and a backfolding primer of the general formula I and a probe of the general formula II. The

complementary strand of the double strand is omitted for simplification.

In the present invention the amplification may be carried out by a combination of two primers of which at least one is a primer of the general formulade also named backfolding primer due to the ability of its subsequence. Pc to fold back to the primer part Pp yielding a short double strand....

It is known in the art that relfcomplementary parts in oligonucleotides may cause problems in hybridization steps with a second oligonucleotide, especially if the first oligonucleotide is intended for use as a primer in a chain extension reaction preferably with an enzyme (polymerase). Therefore, it is usually recommended for a clean reaction to optimize these primers and also probes in such a manner that they do not contain such self complementary parts.

It has now unexpectedly been found that oligonucleotides containing
selfcomplementary regions may be advantageously used in a polymerase chain
reaction-and-ad-detection-step.

In case of the primer with formula I the primer part Pp from the 3'-end up to the nonnucleotidylic linker group represents a standard primer for the amplification of the target DNA sequence to be detected. At the temperature of denaturation and subsequent utilization of a polymerase at least part of the backfolding primer exists in the open form and can thus prime specifically its template-dependent extension in the presence of adequate amounts of the four deoxyribónucleoside triphosphates (dATP, dGTP, dTTP and dCTP) or analogs. Known DNA polymerases include, for example, E. coli DNA polymerase I or its Klenow fragment, T4 DNA polymerase, Taq DNA polymerase, Tth DNA polymerase from Thermus thermophilus and DNA polymerase from Thermococcus litoralis. The reaction conditions for catalyzing DNA synthesis with these DNA polymerases are well known in the art.

Any amplification method based on a chain extension reaction may be employed which allows the incorporation of the primer I in the amplification product. Amplification by the polymerase chain reaction (PCR) has already been mentioned. The primer of formula I may also be used in alternate methods of producing amplified target sequences. For example, the primer I may be used together with a second oligonucleotide which are both complementary to a DNA template and are directly adjacent to one another

with their 3- and 5-ends. Amplification occurs through repeated denaturation, primer annealing and ligation of the 3- and 5-ends. The so called ligase chain reaction (LCR) or ligase amplification reaction (LAR) is further described by Wu and Wallace in Genomics 4, 560-569 (1988). The amplification products containing the labeled primer of formula I may then be detected by hybridizing a labeled probe of formula II near to the backfolded piece Pc as described in the next paragraphs. Amplification by PCR is the preferred method.

The denaturation temperature is about 90° - 100° C whereas the temperature for the polymerase reaction is usually lower and depends on the polymerase used. In case of the Taq polymerase the temperature is usually between 70° - 80° C which is high enough to prevent complete internal backfolding of the short sequence Pc to Pp in primer I which othe-wise may innibit the primer activity. After amplification and at low temperature the 19915 - incorporated primer especially its part Pc can fold back. With a probe of formula II (detection oligonucleotide) hybridizing to the amplified region and equippe 1 at its 3'-end with one or more energy donor molecules (if X in the primer of formula I is an energy acceptor) or an energy acceptor molecule (if X in the primer of formula I is an energy donor molecule) the backfolding guarantees a short distance between the donor or the acceptor at the 5'-end of the backfolding primer allowing in such a situation an energy transfer (Figure 1, step b)). If the target sequence is not present and therefore has not been amplified by primer I, this energy transfer is not possible since there is no primer extension product to which the detection oligomer could hybridize. Therefore a clearcut distinction between the presence of the amplified target or its absence is possible. Thus a test could be carried out directly after amplification in a homogeneous fashion without having to perform separation steps and an energy transfer indicates the presence of the amplified target sequence.

Primer I may be of any length suitable for amplification and detection. Primer region Pp has preferably a length of about 10 - 30 nucleotides but may be shorter or longer, depending on the sequence to be detected. Parameters for designing sequence and temperature specific PCR primers are known in the art taking into account the stability of the individual base pairings of the nucleotide bases.

differently labeled primers, single strand amplification or RNA amplification instead of DNA.

Alternatively one can also place one or more of the donor molecules at the 5'-end of the backfolding oligomer and the acceptor molecules at the 3'-end of the detection oligomer as shown schematically in Figure 1, step c). Preferably the primer will be labeled with the energy donor at the 5'-end. This may be advantageous due to the background fluorescence of the energy acceptor resulting from direct excitation. In PCR the primers are applied in large excess. Thus, if the primer is labeled with the energy acceptor (e.g. the Ru complex), this fluorescence caused by direct excitation may become important.

The detection of the energy transfer between the donor and the acceptor by fluorescence measurements may be performed by methods known in the art. The methodology of the time-resolved fluorescence technique is described, for example in the German Offenlegungsschrift No. 2628158 and in the European Pater Capplication, Publ. No. 178 450.

interactive molecules may be used in any combination in the present invention, provided that they are chemically bonded or complexed to the primer or the probe without affecting the optical properties of these molecules and that they are clearly detectable in the presence of DNA. Suitable interactive increases are glucose oxidase/peroxuase; munescein/muamin and salicylate/terbium complex. The donor/acceptor combination lumazine chromophore/bathophenanthroline-ruthenium-II-complex is preferred.

The backfolding primer also contains a nonnucleotidylic group L which allows a base pairing of the complementary bases in Pc and Pp, thereby
25 avoiding loop formation. This nonnucleotidylic group leads also to a stop of the polymerase at this position during the amplification process.

The nonnucleotidylic group L is selected so as to allow efficient backfulding between the sequence Pp and its complementary sequence Pc. This group L may consist of any kind of nonnucleotidylic linkers which allow defined backfolding of Pc to Pp without loop formation. Preferably the nonnucleotidylic linker is derived from propanediol. More preferably the linker group L consists of two propanediol units linked together by a phosphate group and attached via phosphate groups to the oligonucleotide sequences Pc and Pp. The most preferred linker group L has the following formula:

 $-O-P(O)_2^-O-(CH_2)_3-O-P(O)_2^-O-(CH_2)_3-O-P(O)_2^-O-(CH_2)_3$

Linker group L

This nonnucleotidylic linker has been found unexpectedly to allow efficient backfolding of Pc to Pp and additionally to avoid amplification of the backfolding part Pc.

The following description serves to illustrate some of the steps involved in the preparation of the labeled primers and probes and performing the process of the present invention.

The oligonucleotides which act as normal primers in the polymerase reaction or the oligonucleotides which are parts of the modified primers or probes can be synthesized by methods known in the art (M.J. Gait (Ed.), DNA-Synthesis - A Practical Approach, IRL-Press, 1984). Solid phase synthesis using β-cyanoethyl phosphoramidites as described by N.D. Sinha et al., in Nucleic Acids Research 12, 4539-4557 (1984) is preferred.

The group L may be inserted in the course of the solid phase synthesis of the primer part Pp with the phosphoramidite 5 or analogs thereof. The synthesis of 5 is described by F. Seela in Nucleic Acids Research 15, 3113 (1987).

Adding two of these amidites 5 to the oligonucleotide Pp during the synthesis yields the most preferred linker which will be further elongated during the synthesis with the appropriate nucleoside phosphoramidites to add the backfolding part Pc of the primer of formula I.

The labels selected for coupling at the 3'- or 5'-OH group at the end of the primer or probe may be coupled either directly or after modification of these hydroxy groups into a -NH2, -COOH, -SH or any other suitable group with methods known in the art. The attachment of the labels may be done both if the digonucleotide is still bended to the support or if it is already cleaved off. The abels may also be introduced in one or more of the nucleotide bases of the primers or probes prior to their attachment to the growing oligonucleotide chain in form of, for example, nucleoside amidites. In case of Ru complex/lumazine labels the lumazine group may be introduced at the 5'-end of the backfolding primer or at the 5'-/ 3'-end of the probe using the phosphoramidite 7 of the 6,7-dimethyl lumazine-2'-deoxyriboside. Other

lumazine derivatives or coupling reagents for the introduction of the phosphate group may also be used.

One or more of these molecules bearing the lumazine chromophore may be introduced in the oligonucleotide to enhance the energy transfer. Preferred are one to four consecutive lumazine chromophores. The synthesis and introduction of the lumazine ribosides either at the 3'- or 5'-end of an oligon deotide is described in the European Patent Application, Publ. No. 439 036.

Various Ru complexes as energy acceptors together with different spacers between the complex and the DNA molecule may be used as described in the European Patent Applications, Publ. Nos. 340 605 and 178 450. For the attachment of the Ru complex at the 5'-end of the backfolding primer a phoshoramidite of structure 6a or a reagent of structure 6b may be used as an example. Preferably the derivative 6b may be employed for the introduction at the 3'-end.

6a

The reagent 6a can be used without further modifications for coupling to 5 e.g. a hydroxy or amino group in the course of the solid phase synthesis of the oligonucleotide.

Coupling of reagent 6b at the 3'-end may be performed after some modifications of the solid support used for the synthesis. The general scheme is outlined below (Scheme 1) starting with compound 8 which is described by Nelson et al. in Nucleic Acids Research 17, 7179 (1989). For further details including the attachment of the Ru complex derivative 6b to the modified support 10 see Example 2.

The invention will be further illustrated by the following examples without limiting it to them.

Example 1

Synthesis of Lumazine and Ru complex phosphoramidites

The phosphoramidite of the 6,7-dimethyl-lumazine-2'-deoxyriboside was prepared as described in European Patent Application, Publication No. 439 036 (July 31, 1991). The phosphoramidite 6a of the Ru complex was prepared in situ as described by W. Bannwarth and D. Schmidt in Tetrahedron Letters 30, 1513-1516 (1989).

The Ru complex derivative 6b was prepared by coupling the Ru complex with activated N-hydroxysuccinimide as described in European Patent

Application, Publ. No. 340 505 or by W. Bannwarth et al., in Helvetica Chimica Acta 21 2085-2099 (1988). N,N,N',N'-tetramethyl (succinimido) uronium tetrafluore: orate (TSTU) was used as an activating agent. The synthesis and use of TSTU is described by R. Knorr et al., in Tetrahedron Letters 30, 1927-1930 (1989) and W. Bannwarth in Tetrahedron Letters 32, 1157-1160 (1991).

Synthesis of 1-O-(4,4'-dimethoxytrityl)-3-O-((N,N-diisopropylamino)-β-cvanoethoxy-phosphino)-1,3-propanediol 5

This reagent was prepared in a two step procedure as described by F. Seela and K. Kaiser in Nucleic Acids Research 15, 3113-3129 (1987) starting from 1,3-propanediol which was first protected by a 4,4'-dimethoxytrityl group. This was followed by a phosphinylation with (β-cyanoethoxy) bis (diisopropylamino) phosphine in the presence of diisopropylammonium tetrazolide to yield 5.

Example 2

Synthesis of 3'-Ru complex modified DNA

The synthesis of the modified CPG support for the solid phase synthesis of 3-modified oligonucleotides was done as outlined in Scheme 1 (supra).

Compound 8 was prepared according to procedures described by Nelson et al., in Nucleic Acids Research 17, 7179-7186 and 7187-7194 (1989).

In the ne step compound 8 (10mmol, 6.16 g) was evaporated three times from anh. pyridine. Then it was dissolved in 60 ml of anh. pyridine and 25 mmol (2.50 g) of succinic acid anhydride and 10 mmol (1.22 g) of 4-dimethylaminopyridin (DMAP) were added and stirred under argon. After 4 h the reaction was finished (TLC). The reaction mixture was taken up in 200 ml of diethylether and extracted four times with sat. brine. The organic layer was dried over Na₂SO₄ and evaporated, which yielded 6 g of an oil. Purification by short column chromatography (CC) on 150 g of silica gel (0,003-0,040 nm (Merck)) with 1000 ml of a mixture CH2Cl2/MeOH/pyridine (94:5:1; v/v), 500 ml of CH₂Cl₂/MeOH/pyridine (92:7:1) and 500 ml of CH₂Cl₂/MeOH/pyridine (89:10:1). Pure fractions were collected and 25 precipitated from n-pentane yielding 2.3 g of pure 9. M.p. 87-89 °C. Anal. calculated for C₄₃H₄₁NO₉ · 0.2 n-pentane: C 72.37, H 5.99, N 1.92; found: C 72.60, H 6.14, N 1.94. ¹H-NMR (CDCl₃): 2.64 (s, OCCH₂CH₂CO); 3.03-3.50 (2m, CH₂-CH-CH₂); 3.50-3.65 (m, CH₂-CH-CH₂); 3.74 (s, 2 OCH₃); 4.19 (t, CH₂-CH); 4.34 (d, CH₂-CH); 6.81 (d, 4 arcm. H, C6H4); 7.15-7.37 (m, 9 arom. H, C6H5,C614); 7.39 (t, 30 fluorenyl); 7.51 (d, fluorenyl); 7.76 (d, fluorenyl).

Preparation of the functionalized support 10: The CPG-support (Pierce) was evaporated frem anh. pyridine. Then it was dissolved in 10 ml of anh. pyridine and 0.60 mmol (430 mg) of 9 as well as 3 mmol (880 mg) of 1 (mesitylen-2-sulfonyl)-3-nitro-1H-1,2,4-triazole (MSNT) and 0.3 ml of

77

N-m hyl imidatole (NMI) were added, and the suspension was allowed to reach at room tomperature with occasional shaking. After 2 h it was filtered off and transhed successively with pyridine, DMF and ether. To the support 10 ml of artixture of Ac2O/pyridine (1/10; v/v) containing 1% DMAP was added. After 1 hit was filtered off and the support washed with pyridine, DMF, ethanol and ether. The degree of functionalization of 10 was determined by photometric determination of the dimethoxytrityl cation (30.5 mmol/g) and after cleavage of the fluorenylmethoxycarbonyl (Fmoc) group followed by photometric determination at 300nm (30.1 mmol/g).

Preparation of the 3'-amino modified DNA on support 10: The synthesis was arried out on a synthesizer starting with 1.5 mmol of support 10. A tenfold excess of the corresponding phosphoramidites was applied during each cycle. After synthesis the support was washed with acetonitril and ether, and dried. Then 20 mg of the support were treated with 700 µl of conc. ammonia 15—for 1.5 h at 670°C in a tightly-closed-Eppendorf-tube. The suspension was filtered and the filtrate taken to dryness. The pellet obtained was dissolved in 300 µl of 80 % acetic acid and after 2 h 700 µl of ether were added to precipitate the DNA. After centrifuging, the pellet was dissolved in water and after addition of 500 mmol of KCl it was dialysed against 2 l of water (excl. MW 1000). UV absorbancy indicated a yield of 53 OD units of amino modified DNA, which was used as such for the coupling to the Ru complex.

OD units of the 3'-amino modified DNA: In an Eppendorf tube 27.5

OD units of the 3'-amino modified DNA and 4 mmol (3mg) of 6b were reacted in a minuture of 200 µl of DMF, 200 µl of dioxane, 200 µl of water and 5 µl of

Hüni base. The mixture was allowed to react for 16 h with shaking in the darie it has taken to dryness in a speed vac concentrator and dissolved in 500 µl of water. The solution was extracted 3 times with 500 µl of CHCl3 to remove the except of the complex. The purification was performed by polyacrylamide gei electrophoresis followed by electroclution.

Example 3

30

Synthesis of the oligonucleotides with a nonnucleotidylic linker and/or 3' or 5' modifications.

Olige nucleotides without modifications were prepared on controlled pore glass (CPG, Pierce) and applying β -cyanoethyl phosphoramidites of the appropriate building blocks. 3'-Lumazine modified oligonucleotides were

 $M_{\rm H}^{\rm A}$

prepared by Bongation of lumazine-2'-deoxyriboside modified CPG-support as described in European Patent Application, Publ. No. 439 036. This application describes methods and reagents for use in the synthesis of 5'- lumazine and 5'-Ru complex-modified oligonucleotides.

The nonnucleotidyl linker group consisting of two propanediol units separated by a phosphate group was inserted in the course of the solid phase synthesis with the corresponding phosphoramidite 5. Coupling of this amidite was performed twice, using a 10 fold excess and about 3 minutes coupling time together with tetrazole as activating agent.

The addition of the Ru complex at the 3'-end was performed with the Ru complex derivative 6b after the synthesis and deprotection of the converted as described in Example 2.

Example 4

Polymerase chain reaction with a primer of the general formula I.

Several oligonucleotides were synthesized and tested for their ability to act as primers in the polymerase chain reaction. The DNA fragment selected for amplification is part of the gag region of HIV-1. Conventional primers with (16) or without (14,15) a Ru complex at the 5'-end as well as modified primers of the general formula I (17,18) were synthesized with methods already described.

The primers had the following specific sequences:

£.

(1)75), using the radio labeled probe 5' ATC CTG GGA TTA A3'. The hybridizations were all carried out in a phosphate-buffered saline solution (10 mM inorganic phosphate; 1M NaCl, pH 7.0) with the oligonucleotides in equimolar ratio. Even the shortest backfolding primer equipped at the 5'-end with a Ru complex leads to a specific amplification comparable in efficiency with a standard nonmodified primer.

Example 5

Detection of elongated backfolding primers via hybridization and energy transfer

It was determined whether a backfolding primer of the general formula I after its elongation in a polymerase chain reaction is able to serve as a template subsequent detection with an oligonucleotide probe of the general formula II J-R: to implex-labeled oligonucleotide I serves as a synthetic model compound for an elongated primer of structure I which acts as a template for 3-

lumazine-labeled probes 2a, 2b and 2d and negative probe 2c.

(: nonnucleotidylic linker

Hybridizations were all carried out in a phosphate-buffered saline solution (10 mM inorganic phosphate; 1 M NaCl, pH 7.0) with oligonucleotides in equinclar ratio.

Fluorescence measurements were performed on a SLM Model 4048 S spectroilluorometer. Excitation and emission wavelengths were set at 337 nm

and 620 nm, respectively. The concentrations of the hybrids were 1.3 • 10-6 M for a sample volume of 400 μl

Table 1 shows the results of the energy transfer measurements. As ected, the results were positive in case of probes 2a and 2b and negative in case of probes 2c and 2d.

	Hybrid	IF/IF ₂
•	1/2a	2.1
	1/2b	2.1
	1/2c	1.0
10	1/2d	1.2

Table 1

30 Bu

The fluorescence resulting from the energy transfer (IF3) was defined as being in difference between the measured fluorescence at 620 nm (IF) minus the fluorescence of the Ru complex through direct excitation (IF2) and the fluorescence of the lumazine chromophore at 620 nm (IF1), which can be neglected. Therefore the formula for the intensity of the energy transfer reduces to: IF3=IF-IF2. For the sake of simplicity we have shown in Table 1 only the ratio of the measured fluorescence intensity IF at 620 nm in relation to the fluorescence intensity of the Ru complex due to direct excitation (IF2).

The reversed energy transfer system utilizing a 5'-lumazine-labeled primer and a 3'-Ru complex-labeled probe was investigated with the model compounds 11, 12 and 13.

A-T-A-G-G-G-T-C-A-T-Lu₆

Ru-T-A-A-A-T-A-T-T-T-T-C-T-A-C-C-T-A-T-T⁵ 12

energy transfer

Ru-T-A-A-T-A-T-T-T-C-T-A-C-C-T-A-T-T^{S'} 12 no energy transfer

The results obtained with the primer/probe systems 11/12 (showing energy transfer) and 13/12 as a negative control with no energy transfer confirmed the utility of this combination although the efficiency for the energy transfer was a bit lower (data not shown).

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

*

1. A process for amplifying and detecting at least one specific nucleic acid sequence in a sample containing a nucleic acid or a mixture of nucleic acids at least one of which is suspected of containing said sequence, which process

a) amplifying the nucleic acid sequence to be detected by means of a chain extension reaction utilizing a first oligonucleotide primer of the general formula

$$X - Pc - L - Pp$$
 (I)

wherein Pp is an oligonucleotide sequence substantially complementary to a part of one strand of the nucleic acid sequence to be detected, Pc is an oligonucleotide sequence substantially complementary to the sequence Pp, L is a non-nucleotidylic linker group selected so as to allow efficient backfolding between the sequence Pc and the primer extension sequence of Pp and to avoid amplification of the backfolding part Pc, and X is an energy donor or acceptor, and a second oligonucleotide primer substantially complementary to a part of the other strand of the nucleic acid sequence to be detected;

b) separa ag after the last amplification cycle the primer extension products from their complementary sequences to produce single-stranded molecules;

c) treating said single-stranded molecules containing the primer of formula I above with an oligonucleotide probe of the general formula

wherein Y is an energy acceptor, when X in the primer of formula I is an energy donor, or an energy donor, when X in the primer of formula I is an energy acceptor, and Pr is an oligonucleotide sequence complementary to a part of the amplified single-stranded molecules containing the primer of formula I above and selected so as to guarantee a short distance between X and Y after backfolding of the sequence Pc and hybridization of the sequence Pr to said single-stranded molecules such that an energy transfer can take place,

under conditions allowing hybridization of the sequences Pc by backfolding and of Pr to said single-stranded molecules; and

d) determining whether an energy transfer takes place.

2. A process according to claim 1, wherein X is an energy donor and Y is an energy acceptor.

- $3.\ A$ process according to claim 1, wherein X is an energy acceptor and Y is an energy donor.
- 4. A process according to any one of claims 1 to 3, wherein the energy donor is a lumazine chromophore and the energy acceptor is a bathophenanthroline-ruthenium-II-complex.
- 5. A process according to any one of claims 1 to 4, wherein L consists of two prepanediol units linked together by a phosphate group and attached via phosphate groups to the oligonucleotide sequences Pc and Pp.
- 6. A process according to any one of claims 1-5, wherein the chain extension reaction is a polymerase chain reaction.
 - 7. A primer of the general formula

$$X - Pc - L - Pp$$
 (I)

wherein Pp is an oligonucleotide sequence substantially complementary to a part of one strand of a nucleic acid sequence to be detected, Pc is an oligonucleotide sequence substantially complementary to the sequence Pp, L is a non-nucleotidylic linker group selected so as to allow efficient backfolding between the sequence Pc and a primer extension sequence of Pp obtained by amplification using a polymerase chain reaction and to avoid amplification of the backfolding part Pc, and X is an energy donor or acceptor.

- 8. A primer according to claim 7, wherein X is an energy donor.
- 9. A primer according to claim 7, wherein X is an energy acceptor.
- 10. A primer according to claim 7 or 8, wherein X is a lumazine chromophore.

11., A primer according to claim 7 or 9, wherein X is a bathophemanthroline-ruthenium-II-complex.

primer according to any one of claims 7 to 11, wherein L consists of two propaged of units linked together by a phosphate group and attached via phosphate groups to the oligonucleotide sequences Pc and Pp.

13. A diagnostic kit for amplifying and detecting at least one specific nucleic acid sequence in a sample containing a nucleic acid or a mixture of nucleic acids at least one of which is suspected of containing said sequence, which kit comprises a primer of the formula (I)

$$X - PC - L - Pp$$

wherein Pp is an oligonucleotide sequence substantially complementary to a part of one strand of the nucleic acid sequence to be detected, Pc is an oligonucleotide sequence substantially complementary to the sequence Pp, I is a non-nucleotidylic linker group selected so as to allow efficient backfolding between the sequence Pc and the primer extension sequence of Pp and to avoid amplification of the backfolding part Pc, and X is an energy donor or acceptor, and, a probe of formula II as defined in claim 1 and means and reagents for amplification and detection of said sequence using a polymerase chain reaction.

- 14. A nonnucleotidylic linker group derived from propanediol and containing P(O);
- 15. A nonnucleotidylic linker group of claim 14 characterized by the formula

 $-\text{O-P(O)}_2^-\text{O-(CH}_2)_3-\text{O-P(O)}_2^-\text{O-(CH}_2)_3-\text{O-P(O)}_2^-\text{O-}$

- 16. A diagnostic kit for use in the amplification and detection of at least one specific nucleic acid sequence in a sample containing a nucleic acid or a mixture of nucleic ucids at least one of which is suspected of containing said sequence, said kit comprising a primer of formula I as defined in any one of claims 7 to 12.
- 17. A diagnostic kit for use in the amplification and detection of at least one specific nucleic acid sequence in a sample containing a nucleic acid or a mixture of nucleic acids at least one of which is suspected of containing said sequence, said kit comprising:
- a: least one of a primer of formula I as defined in any one of claims 7 to 12; and
 - a probe of the general formula

Y-Pr

wherein Y is one of an energy acceptor, when X in the primer of formula I is an energy donor, and an energy donor, when Xin the primer is an energy acceptor, and Pr is an oligonucleotide sequence complementary to a part of an amplified single-stranded molecule containing the primer of formula I and selected so as to guarantee a short distance between X and Y after backfolding of the sequence Rc and hybridization of the sequence Pr to said single stranded molecule such that an energy transfer can take place.

Figure 1

b) Detection (low temperature)

Fort & Sylan

2030904

Abstract

A process for the detection of a nucleic acid sequence in a homogeneous essay format using an energy transfer system is disclosed. This process utilizes 5 labeled primer containing a selfcomplementary sequence in an amplification process together with a subsequent detection step using a 3 abeled probe for the amplified region. The labels will be close together in space after hybridizing the probe close to the short piece of double-stranded DNA resulting from backfolding of the selfcomplementary region of the primer which has been incorporated into the amplified product. The new primer for the in this process is also disclosed.