Divisibilidad en Z

Alexey Beshenov (cadadr@gmail.com)

Universidad de El Salvador. 2018

El propósito de esta nota es revisar algunas nociones básicas de la teoría de números elemental.

1 Subgrupos de \mathbb{Z}

Un **subgrupo** $A \subset \mathbb{Z}$ es un subconjunto de números enteros que satisface las siguientes condiciones:

- 1) $0 \in A$,
- 2) para cualesquiera $a, b \in A$ tenemos $a + b \in A$,
- 3) para cualquier $a \in A$ tenemos $-a \in A$.
- **1.1. Observación.** Si A y B son dos subgrupos de \mathbb{Z} , entonces su intersección $A \cap B$ es también un subgrupo.

Para $a_1,...,a_n \in \mathbb{Z}$ el **subgrupo generado** por $a_1,...,a_n$ es el subconjunto $\langle a_1,...,a_n \rangle \subseteq \mathbb{Z}$ que satisface una de las siguientes condiciones equivalentes.

- 1) $\langle a_1, ..., a_n \rangle$ es el mínimo subgrupo de \mathbb{Z} que contiene todos los números $a_1, ..., a_n$,
- 2) $\langle a_1, ..., a_n \rangle$ es el conjunto de las combinaciones \mathbb{Z} -lineales de $a_1, ..., a_n$:

$$\langle a_1,\ldots,a_n\rangle = \left\{\sum_i n_i a_i \mid n_i \in \mathbb{Z}\right\}.$$

Nos van a interesar dos casos particulares: los subgrupos generados por un número $d \in \mathbb{Z}$:

$$\langle d \rangle = \{ md \mid m \in \mathbb{Z} \}$$

y subgrupos generados por dos números:

$$\langle a, b \rangle = \{ ma + nb \mid m, n \in \mathbb{Z} \}.$$

2 División con resto

2.1. Teorema (Euclides). Sean $a, b \in \mathbb{Z}$ dos números enteros, con $b \neq 0$. Entonces, existen $q, r \in \mathbb{Z}$ tales que

$$a = qb + r$$
, $0 \le r < |b|$.

Demostración. Para el conjunto

$$\{a - xb \mid x \in \mathbb{Z}\}\$$

sea

$$r = a - qb$$

su mínimo elemento tal que $r \ge 0$ (este existe, puesto que $b \ne 0$). Supongamos que $r \ge |b|$. Si b > 0, tenemos

$$0 \le r - b = a - qb - b = a - (q + 1)b < r$$
.

De la misma manera, si b < 0, entonces

$$0 \le r + b = a - qb + b = a - (q - 1)b < r$$
.

En ambos casos se produce un elemento $a-(q\pm 1)b$, lo que contradice nuestra elección de r. Podemos concluir que r < |b|.

El resultado que acabamos de describir se llama la **división con resto** de *a* por *b*. He aquí una de sus consecuencias importantes.

- **2.2. Proposición.** Todo subgrupo de \mathbb{Z} es de la forma $\langle d \rangle$ para algún $d \in \mathbb{Z}$. En particular, para cualesquiera $a, b \in \mathbb{Z}$ se tiene
 - 1) $\langle a, b \rangle = \langle d \rangle$ para algún $d \in \mathbb{Z}$,
 - 2) $\langle a \rangle \cap \langle b \rangle = \langle d \rangle$ para algún $d \in \mathbb{Z}$.

Demostración. Sea $A \subseteq \mathbb{Z}$ un subgrupo. Si A = 0, entonces $A = \langle 0 \rangle$ y enunciado es trivial. Luego, si $A \neq 0$, entonces A contiene números no nulos. Para cada $x \in A$ también $-x \in A$, así que A contiene números positivos. Sea entonces

$$d := \min\{x \in A \mid x > 0\}.$$

Está claro que $\langle d \rangle \subseteq A$. Para ver la otra inclusión, consideremos un elemento arbitrario $c \in A$. La división con resto por d nos da

$$c = qd + r, \quad 0 \le r < d.$$

Luego, puesto que $c, d \in A$, tenemos también $r = c - qd \in A$. Por nuestra elección de d, podemos descartar el caso 0 < r < d. Entonces, r = 0 y $c = qd \in \langle d \rangle$.

3 Divisibilidad y los números primos

3.1. Definición. Para dos números enteros $d, n \in \mathbb{Z}$ se dice que d divide a n y se escribe " $d \mid n$ " si n = mx para algún $m \in \mathbb{Z}$. En este caso también se dice que d es un divisor de n o que n es divisible por d. Cuando d no divide a n, se escribe " $d \nmid n$ ".

Notamos que en términos de subgrupos de Z,

$$d \mid n \iff \langle n \rangle \subseteq \langle d \rangle.$$

El lector puede comprobar las siguientes propiedades de la relación de divisibilidad.

- 0) $a \mid 0$ para todo $a \in \mathbb{Z}$. Esto caracteriza a 0 de modo único. Tenemos $a \mid a = 0$.
- 1) $a \mid a \neq 1 \mid a$ para todo $a \in \mathbb{Z}$.
- 2) Si $a \mid b \vee b \mid a$, entonces $a = \pm b$.
- 3) Si $a \mid b$ y $b \mid c$, entonces $a \mid c$.

^{*}Algunas fuentes insisten que $0 \nmid 0$, pero la relación $0 \mid 0$ no tiene nada de malo. De hecho $0 \in \langle d \rangle$ para cualquier $d \in \mathbb{Z}$, en particular para d = 0.

- 4) Si $a \mid b$, entonces $a \mid bc$ para cualquier $c \in \mathbb{Z}$.
- 5) Si $a \mid b$ y $a \mid c$, entonces $a \mid (b+c)$.
- **3.2. Definición.** Se dice que un número entero positivo p > 0 es **primo** si $p \ne 1$ y los únicos divisores de p son ± 1 y $\pm p$.

En otras palabras, p es primo si y solamente si para m, n > 0, si tenemos p = mn, entonces o bien m = p, n = 1 o bien m = 1, n = p. Los primeros números primos son

Por ejemplo, $57 = 3 \cdot 19$ no es primo.

3.3. Proposición. Todo entero no nulo puede ser expresado como

$$n = \pm p_1^{k_1} p_2^{k_2} \cdots p_\ell^{k_\ell}$$

donde p_i son primos diferentes.

Demostración. Sin pérdida de generalidad, podemos considerar el caso de n > 0. Sería suficiente ver que n es un producto de primos y juntando múltiplos iguales, se obtiene la expresión de arriba.

Para n = 1 tenemos $n = p^0$ para cualquier primo p. Luego, se puede proceder por inducción. Supongamos que el resultado se cumple para todos los números positivos < n. Si n es primo, no hay que demostrar nada. Si n no es primo, entonces n = ab donde a < n y b < n. Por la hipótesis de inducción, a y b son productos de números primos, y por lo tanto n lo es.

En este caso la palabra "primo" es un sinónimo de "primero" y refiere precisamente al hecho de que todo número entero sea un producto de primos. No se trata de ninguna relación de parentesco entre los números.

3.4. Teorema (Euclides). *Hay un número infinito de primos.*

Demostración. Consideremos los primeros *n* números primos

$$p_1 = 2$$
, $p_2 = 3$, $p_3 = 5$, $p_4 = 7$, $p_5 = 11$, ..., p_n .

Luego, el número

$$N := p_1 p_2 \cdots p_n + 1$$

no es divisible por ningún primo entre $p_1, ..., p_n$. Sin embargo, N tiene que ser un producto de primos, así que es necesariamente divisible por algún primo p tal que $p_n .$

4 El máximo común divisor

- **4.1. Definición.** Para dos números enteros $a, b \in \mathbb{Z}$ su **máximo común divisor**notacion]mcd (**mcd**) es un número d := mcd(a, b) caracterizado por las siguientes propiedades:
 - 1) $d \mid a y d \mid b$,
 - 2) si d' es otro número tal que $d' \mid a \vee d' \mid b$, entonces $d' \mid d$.

Las condiciones de arriba pueden ser escritas como

- 1) $\langle a \rangle \subseteq \langle d \rangle$ y $\langle b \rangle \subseteq \langle d \rangle$,
- 2) si $\langle a \rangle \subseteq \langle d' \rangle$ y $\langle b \rangle \subseteq \langle d' \rangle$, entonces $\langle d \rangle \subseteq \langle d' \rangle$.

El subgrupo mínimo de \mathbb{Z} que contiene a $\langle a \rangle$ y $\langle b \rangle$ es $\langle a, b \rangle$. Gracias a 2.2, sabemos que $\langle a, b \rangle = \langle d \rangle$ para algún $d \in \mathbb{Z}$.

Esto nos lleva al siguiente resultado.

4.2. Proposición. *El mcd siempre existe: tenemos*

$$\langle a, b \rangle = \langle d \rangle$$
 donde $d = \operatorname{mcd}(a, b)$.

En particular, se cumple

$$ax + by = mcd(a, b)$$
 para algunos $x, y \in \mathbb{Z}$

y mcd(a, b) es el mínimo número posible que puede ser representado como una combinación \mathbb{Z} -lineal de a y b.

La última expresión se conoce como la **identidad de Bézout**. Aquí los coeficientes x e y no son únicos. Por ejemplo,

$$2 \cdot (-1) + 3 \cdot 1 = 2 \cdot (-4) + 3 \cdot 3 = 2 \cdot 2 + 3 \cdot (-1) = \dots = 1.$$

He aquí algunas observaciones respecto a mcd(a, b).

- 1) La definición de d := mcd(a, b) caracteriza a d salvo signo. De hecho, si d y d' satisfacen las condiciones de mcd(a, b), entonces $d \mid d'$ y $d' \mid d$ (o la condición equivalente $\langle d \rangle = \langle d' \rangle$) implica que $d' = \pm d$. Normalmente se escoge d > 0, pero estrictamente hablando, todas las identidades con mcd(a, b) pueden ser interpretadas salvo signo.
- 2) La definición de mcd(a, b) es visiblemente simétrica en a y b, así que

$$mcd(a, b) = mcd(b, a)$$
.

3) Para todo $a \in \mathbb{Z}$ se tiene

$$mcd(a, 0) = a$$
.

En particular*,

$$mcd(0,0) = 0.$$

Esto nada más significa que cualquier número divide a 0, o de manera equivalente, que $\langle 0 \rangle \subseteq \langle a \rangle$ para todo $a \in \mathbb{Z}$, y también para a = 0.

4.3. Definición. Si mcd(a, b) = 1, se dice que a y b son **coprimos**.

Si a y b son coprimos, entonces $\langle a, b \rangle = \langle 1 \rangle = \mathbb{Z}$, y en particular tenemos

$$ax + by = 1$$
 para algunos $x, y \in \mathbb{Z}$.

4.4. Observación. Si $a \mid bc$ donde a y b son coprimos, entonces $a \mid c$.

Demostración. Tenemos

$$ax + by = 1$$

para algunos $x, y \in \mathbb{Z}$. Luego,

$$axc + byc = c$$
,

y la expresión a la izquierda es divisible por a.

^{*}Algunas fuentes insisten que mcd(0,0) no está definido, pero como vemos, es lógico poner mcd(0,0) = 0.

4.5. Corolario. Si p es primo y $p \mid bc$, entonces $p \mid b$ o $p \mid c$.

Muy a menudo se usa el contrapuesto: si $p \nmid b$ y $p \nmid c$, entonces $p \nmid bc$.

Demostración. Ya que los únicos divisores de p son ± 1 y $\pm p$, tenemos dos casos posibles. En el primer caso, mcd(p,b) = 1 y luego $p \mid c$ por el resultado precedente. En el segundo caso, mcd(p,b) = p, lo que significa que $p \mid b$.

5 El mínimo común múltiplo

- **5.1. Definición.** Para dos números enteros $a, b \in \mathbb{Z}$ su **mínimo común múltiplo (mcm)**notacion]mcm es un número m := mcm(a, b) caracterizado por las siguientes propiedades:
 - 1) $a \mid m \vee b \mid m$,
 - 2) si m' es otro número tal que $a \mid m'$ y $b \mid m'$, entonces $m \mid m'$.

Las condiciones de arriba pueden ser escritas como

- 1) $\langle m \rangle \subseteq \langle a \rangle$ y $\langle m \rangle \subseteq \langle b \rangle$,
- 2) si m' es otro número tal que $\langle m' \rangle \subseteq \langle a \rangle$ y $\langle m' \rangle \subseteq \langle b \rangle$, entonces $\langle m' \rangle \subseteq \langle m \rangle$.

El subgrupo máximo de \mathbb{Z} que contiene a $\langle a \rangle$ y $\langle b \rangle$ es su intersección $\langle a \rangle \cap \langle b \rangle$. Gracias a 2.2 sabemos que es también de la forma $\langle m \rangle$ para algún $m \in \mathbb{Z}$.

5.2. Proposición. *El mcm siempre existe: tenemos*

$$\langle a \rangle \cap \langle b \rangle = \langle m \rangle$$
 donde $m = \text{mcm}(a, b)$.

Tenemos las siguientes propiedades.

- 1) La definición caracteriza a mcm(a, b) de modo único salvo signo.
- 2) Para cualesquiera $a, b \in \mathbb{Z}$ se tiene

$$mcm(a, b) = mcm(b, a)$$
.

3) Para todo *a* se cumple

$$mcm(a, 0) = a$$
.

En particular,

$$mcm(0,0) = 0.$$

(De hecho, $0 \mid m$ implica que m = 0.)

5.3. Proposición. Para cualesquiera $a, b \in \mathbb{Z}$ tenemos

$$mcm(a, b) \cdot mcd(a, b) = ab$$
.

En particular,

mcm(a, b) = ab si y solamente si a y b son coprimos.

Primera demostración. El caso de a = b = 0 es trivial y podemos descartarlo. Sea d := mcd(a, b) y m := ab/d. Vamos a ver que m = mcm(a, b).

Primero, puesto que $d \mid a \lor d \mid b$, podemos escribir

$$a = da'$$
, $b = db'$.

Luego,

$$m = da'b' = ab' = ba'$$
,

así que $a \mid m \lor b \mid m$.

Ahora notemos que

$$d = \operatorname{mcd}(a, b) = \operatorname{mcd}(da', db') = d \cdot \operatorname{mcd}(a', b'),$$

así que

$$mcd(a', b') = 1$$

y los números a' y b' son coprimos.

Sea m' otro número tal que $a \mid m'$ y $b \mid m'$. Queremos ver que $m \mid m'$. Escribamos

$$m' = ax = by$$
.

Luego,

$$m'b' = ab'x = mx$$
, $m'a' = ba'y = my$,

lo que nos da $m \mid m'b'$ y $m \mid m'a'$ y por lo tanto

$$m \mid \operatorname{mcd}(m'b', m'a') = m' \cdot \operatorname{mcd}(a', b') = m'.$$

Segunda demostración, usando la teoría de grupos. Consideremos los subgrupos $m\mathbb{Z}$ y $n\mathbb{Z}$ en \mathbb{Z} . Luego, el segundo teorema de isomorfía nos dice que

$$a\mathbb{Z}/(a\mathbb{Z} \cap b\mathbb{Z}) \cong (a\mathbb{Z} + b\mathbb{Z})/b\mathbb{Z}.$$

Tenemos $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$ donde m = mcm(a, b) y $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$ donde d = mcd(a, b). Entonces,

$$a\mathbb{Z}/m\mathbb{Z} \cong d\mathbb{Z}/b\mathbb{Z}$$
.

Lo que nos da la identidad a/m = d/b.

Note que la última proposición nos dice básicamente que la existencia de mcd(a, b) es equivalente a la existencia de mcm(a, b).

También se pueden definir mcd y mcm de n números. El lector puede generalizar de manera evidente las definiciones 4.1 y 5.1 y ver que estas generalizaciones son equivalentes a

- 1) $\langle a_1, \ldots, a_n \rangle = \langle d \rangle$ para $d = \operatorname{mcd}(a_1, \ldots, a_n)$,
- 2) $\langle a_1 \rangle \cap \cdots \cap \langle a_n \rangle = \langle m \rangle$ para $m = \text{mcm}(a_1, \dots, a_n)$.

Por ejemplo, tenemos la siguiente generalización de la identidad de Bézout: existen $x_1,...,x_n \in \mathbb{Z}$ tales que

$$x_1 a_1 + \cdots + x_n a_n = \operatorname{mcd}(a_1, \dots, a_n).$$

Además, se puede ver que las operaciones mcd(-,-) y mcm(-,-) son asociativas y por lo tanto la definición generalizada se reduce al caso binario:

- 1) $\operatorname{mcd}(\operatorname{mcd}(a, b), c) = \operatorname{mcd}(a, \operatorname{mcd}(b, c)) = \operatorname{mcd}(a, b, c)$,
- 2) $\operatorname{mcm}(\operatorname{mcm}(a, b), c) = \operatorname{mcm}(a, \operatorname{mcm}(b, c)) = \operatorname{mcm}(a, b, c)$.

6 El teorema fundamental de la aritmética

6.1. Definición. Sea p un número primo fijo. Para un número entero no nulo n su **valuación** p-ádica es el número natural máximo k tal que p^k divide a n:

$$v_p(n) := \max\{k \mid p^k \mid n\}.$$

(Para n=0 normalmente se pone $v_p(0):=+\infty$, pero no vamos a necesitar esta convención.) Notamos que $v_p(n)=0$ si y solamente si $p\nmid n$. La valuación p-ádica se caracteriza por

$$n=p^{\nu_p(n)}\,n',$$

donde $p \nmid n'$ (véase 4.5).

6.2. Lema. Para cualesquiera $m, n \in \mathbb{Z}$ se cumple

$$v_p(mn) = v_p(m) + v_p(n).$$

Demostración. Tenemos

$$m = p^{\nu_p(m)} m', \quad n = p^{\nu_p(n)} n',$$

donde $p \nmid m'$ y $p \nmid n'$. Luego,

$$mn = p^{v_p(m) + v_p(n)} m'n',$$

donde $p \nmid (m'n')$, así que $v_p(mn) = v_p(m) + v_p(n)$.

6.3. Teorema. Todo número entero entero no nulo puede ser representado de modo único como

$$n = \pm p_1^{k_1} p_2^{k_2} \cdots p_\ell^{k_\ell}$$

donde p_i son algunos primos diferentes. A saber, tenemos $k_i = v_{p_i}(n)$.

(La unicidad se entiende salvo permutaciones de los factores $p_i^{k_i}$.)

Demostración. Ya hemos notado en 3.3 que todo entero no nulo es un producto de primos; la parte interesante es la unicidad. Dada una expresión

$$n=\pm p_1^{k_1} p_2^{k_2} \cdots p_\ell^{k_\ell},$$

para todo primo p podemos calcular la valuación p-ádica correspondiente:

$$v_p(n) = v_p(p_1^{k_1}) + v_p(p_2^{k_2}) + \cdots + v_p(p_\ell^{k_\ell}).$$

Aquí

$$v_p(p_i^{k_i}) = \begin{cases} k_i, & p = p_i, \\ 0, & p \neq p_i. \end{cases}$$

Entonces, $k_i = v_{p_i}(n)$.

Entonces, podemos escribir

$$n = \pm \prod_{p \text{ primo}} p^{\nu_p(n)},$$

donde el producto es sobre todos los números primos, pero $v_p(n) \neq 0$ solamente para un número finito de p. El último resultado se conoce como el **teorema fundamental de la aritmética**. Su primera demostración completa fue publicada por Gauss en el tratado "Disquisitiones Arithmeticae".

Notamos que
$$\mathrm{mcd}(m,n)=\prod_{p \text{ primo}} p^{\min\{v_p(m),v_p(n)\}}$$
 y
$$\mathrm{mcm}(m,n)=\prod_{p \text{ primo}} p^{\max\{v_p(m),v_p(n)\}}.$$

Estas fórmulas no ayudan mucho para grandes valores de m y n. En práctica se usa el **algoritmo de Euclides** basado en la división con resto repetida (es algo parecido a nuestra demostración de 2.2).

7 Generalizaciones

Las definiciones 4.1 y 5.1 de mcd y mcm tienen sentido en cualquier dominio de integridad A. En este caso mcm(a,b) y mcd(a,b) están definidos salvo un múltiplo $u \in A^{\times}$. Para $A = \mathbb{Z}$ tenemos $\mathbb{Z}^{\times} = \{\pm 1\}$. Sin embargo, la existencia de mcm(a,b) y mcd(a,b) no está garantizada en general.

Un dominio de integridad donde se puede definir un análogo de la división con resto se llama un **dominio euclidiano**; en este caso mcd y mcm siempre existen gracias a los mismos argumentos que vimos arriba (solo hay que reemplazar los subgrupos $A \subseteq \mathbb{Z}$ por **ideales** $\mathfrak{a} \subseteq A$). Un ejemplo típico de dominios euclidianos, excepto \mathbb{Z} , es el anillo de polinomios k[X] sobre un cuerpo k: para $f,g \in k[X]$, $g \neq 0$ existen $q,r \in k[X]$ tales que f = qg + r donde $-\infty \le \deg r < \deg g$.

Un dominio de integridad donde se cumple un análogo del teorema fundamental de la aritmética se llama un **dominio factorización única**. Un típico ejemplo es el anillo de polinomios $k[X_1,...,X_n]$ en n variables sobre un cuerpo k. Todos los dominios euclidianos son dominios de factorización única.