Método de Euler: Ejemplo Detallado con Problema Aplicado

Introducción al Método de Euler

El método de Euler es una técnica numérica fundamental utilizada para obtener soluciones aproximadas de ecuaciones diferenciales ordinarias (EDO) de primer orden. A partir de una condición inicial, se avanza paso a paso utilizando la pendiente dada por la derivada.

La fórmula del método de Euler es:

$$y_{n+1} = y_n + h \cdot f(x_n, y_n)$$

donde:

- y_n es el valor actual de la variable dependiente.
- x_n es el valor actual de la variable independiente.
- h es el tamaño del paso.
- $f(x_n, y_n)$ es la derivada evaluada en (x_n, y_n) .
- y_{n+1} es el valor siguiente aproximado.

Problema:

Un tanque de agua se está llenando, pero también tiene una fuga. La velocidad de cambio del volumen de agua en el tanque está dada por la ecuación diferencial:

$$dv/dt = 5 - 0.1v$$

donde v es el volumen en litros en el tiempo t (en minutos), 5 representa el flujo constante de entrada en litros por minuto, y 0.1v representa la fuga proporcional al volumen presente.

Supongamos que inicialmente (t = 0), el volumen es v = 20 litros. Utiliza el método de Euler con h = 1 minuto para aproximar el volumen del agua en los primeros 5 minutos.

Cálculos paso a paso:

1	1	23.00	5 - 0.1×23.00 = 2.70	$23.00 + 1 \times 2.70$ = 25.70
2	2	25.70	5 - 0.1×25.70 = 2.43	25.70 + 1×2.43 = 28.13
3	3	28.13	5 - 0.1×28.13 = 2.19	28.13 + 1×2.19 = 30.32
4	4	30.32	5 - 0.1×30.32 = 1.97	30.32 + 1×1.97 = 32.29

Gráfico de la evolución del volumen en el tanque:

