Max Marks: 25

NOTE: • Attempt all questions.

Time: 1 Hr.

All Notations have their usual meaning.

1. Let (LP1) denote the associated LPP of a given (AILP). Let the optimal simplex

1,(4)	2 TIS -14 8
3/(3)	
$y^{(2)}$	0 0
y ⁽¹⁾	0 1 0
x_B	$x_2 = \frac{9}{5}$ $x_1 = \frac{7}{2}$ $z(x_B) = \frac{53}{10}$

(i.) Generate Gomory's cut constraint through the variable x_2 . (ii.) Construct (LP-2) and obtain its optimal solution. (Do NOT continue any further, even if needed)

2. Consider the problem

min
$$3x_1 + 4x_2 + 2x_4 + 3x_5 + 4x_6$$
 subject to

$$x_{1} + 4x_{2} + 2x_{4} + 3x_{5} + 4x_{6}$$

 $x_{1} + x_{2} + x_{3} = 13$
 $x_{4} + x_{5} + x_{6} = 5$
 $x_{1} + x_{4} = 8$
 $x_{2} + x_{5} = 4$
 $x_{2} + x_{5} = 4$
 $x_{3} + x_{6} = 6$
 $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \ge 0$, and all variables are integers.

Solve the given optimization problem.

Solve AP(C) where C is given by

- Let AD(C) denote the dual of AP(C). Obtain an optimal solution of AD(C). 4.
- If possible, construct an example of each of the following and justify your answer. (i) a balanced TP which is not feasible.
 - (ii) an AILP whose feasible region is a convex set.
- (iii) a non-convex function whose every α -cut is a convex set.
- (iv) a function whose epigraph is a convex set.
- (v) a function $f: \mathbb{R} \to \mathbb{R}$ such that f and $\frac{1}{f}$ both are convex functions.