Funzioni:

Iniettiva: $x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2)$

Verificare iniettività

o Confronto $f(x_1) = f(x_2)$ e vedo se $x_1 = x_2$

 $\circ \qquad \text{Se } \exists f(x)' \to f(x)' \neq 0 \ \forall x \in D$

Suriettiva: Im(f(x)) = Codominio

Inversa: $f(x)^{-1}$: $C \to D \ t.c. \ f^{-1}(f(x)) = x$

- Proprietà

○ Se $\exists f(x)^{-1} \rightarrow l'inversa è unica!$

Ogni funzione iniettiva è invertibile sulla sua immagine

- Verificare invertibilità

 \circ Verifico se f(x) è iniettiva, se lo è la funzione è sicuramente invertibile sulla sua immagine

Ricaviamo la funzione in y

o La funzione inversa perciò sarà definita su tutti gli elementi dell'immagine meno eventuali punti di discontinuità

Funz. Composta: $f: A \to B$ e $g: B \to C$ t.c. $g \circ f: A \to C$ e $g \circ f = g(f(x))$ \circ $g \circ f$ si legge "g dopo f"

Funz. Pari: f(-x) = f(x)

Funz. Dispari: f(-x) = -f(x)

- Proprietà:

- Somma di funzioni pari/dispari è pari/dispari
- Il prodotto o il quoziente tra funzioni pari/dispari è pari/dispari
 - Tra una funzione pari ed una dispari invece è dispari
- o La composizione di funzioni è:
 - Pari: se almeno una funzione è pari
 - Dispari: se tutte le funzioni sono dispari
- o L'inversa dispari (se esiste) è sempre dispari
 - Per le funzioni pari questo non vale perché per renderla invertibile bisogna ridurre il dominio

Operazioni sul dominio

 $Dom(f+g) = Dom(f) \cap Dom(g)$

 $Dom(f - g) = Dom(f) \cap Dom(g)$

 $Dom(f * g) = Dom(f) \cap Dom(g)$

 $Dom\left(\frac{f}{g}\right) = \left(Dom(f) \cap Dom(g)\right) - \{x \in Dom(g) \ t.c. \ g(x) = 0\}$ (meno eventuali punti di discontinuità)

Monotonia

Crescente e Strettamente crescente: $x_1 < x_2 \rightarrow f(x_1) \le f(x_2)$, $x_1 < x_2 \rightarrow f(x_1) < f(x_2)$ Decrescente e Strettamente decrescente: $x_1 < x_2 \rightarrow f(x_1) \ge f(x_2)$, $x_1 < x_2 \rightarrow f(x_1) > f(x_2)$

Proprietà

- o se f(x) strettamente monotona $\rightarrow f(x)^{-1}$ strettamente monotona
- o la somma di funzioni crescenti/decrescenti è crescente/decrescente
- o se f e g sono monotone $\rightarrow g \circ f$ è monotona
 - crescente: se il numero di fuzioni decrescenti che la compongono è pari o nullo
 - decrescente: se il numero di funzioni decrescenti che la compongono è dispari

Funz. Limitate, estremo superiore/inferiore, massimo e minimo

Limitata Superiormente: $se \exists l \in C : f(x) \leq l \ \forall x \in D$

Limitata Inferiormente: $se \exists l \in C : l \leq f(x) \ \forall x \in D$

Limitata: $se \exists l \in C : -l \le f(x) \le l \text{ oppure } |f(x)| \le l \text{ (con } l > 0) \forall x \in D$

Massimo: $M \ge f(x) \ \forall x \in D \ e \ \exists x_M : f(x_M) = M$

Minimo: $m \le f(x) \ \forall x \in D \ e \ \exists x_m : f(x_m) = m$

Sup f(x): $S \ge f(x) \ \forall x \in D$ se f(x) non è limitata superiormente $Sup(f(x)) = +\infty$ altrimenti M = S

 $\inf f(x)$: $I \le f(x) \ \forall x \in D$ se f(x) non è limitata inferiormente $Inf(f(x)) = -\infty$ altrimenti m = I

Proprietà:

- 0 $\sup(f + g) \le \sup f + \sup g$
- $\inf(f+g) \ge \inf f + \inf g$ 0
- $\sup(k \cdot f) = \begin{cases} k \cdot \sup f & se \ k > 0 \\ k \cdot \inf f & se \ k < 0 \end{cases}$ $\inf(k \cdot f) = \begin{cases} k \cdot \inf f & se \ k > 0 \\ k \cdot \inf f & se \ k < 0 \end{cases}$
- Verificare se f(x) limitata, ha massimo/minimo e sup/inf
 - Vediamo se il dominio ha discontinuità, lì la funzione inversa ovviamente non esiste
 - Calcoliamo la funzione nel codominio ricavandomi x 0
 - Studiamo il codominio e vediamo dove la funzione esiste, ovvero il "dominio" della funzione calcolata
 - Altri metodi: 0
 - Calcolo f(x)' = 0 o vedo dove $\nexists f(x)'$ e sostituisco la x trovata in f(x) e confronto i vari risultati siccome si tratta di un massimo e minimo locali devo trovare quello assoluto
 - Attraverso il comportamento asintotico posso vedere che si comporta come una funzione simile e prendo il codominio di quella simile

Funzioni Elementari

Potenze e Radici:

- Esponente Dispari: funzioni dispari, strettamente crescenti e suriettive su tutto ℝ quindi invertibili
- Esponente Pari: funzioni pari, non iniettive e non invertibili, ma riducendo il dominio a [0, +∞) esse risultano strettamente crescenti e quindi invertibili
- Proprietà:
 - se n < m si ha $x^n > x^m$ se $x \in (0,1)$ 0
 - $se n < m si ha x^n < x^m se x > 1$

 \rightarrow Dominio: $(-\infty,0) \cup (0,+\infty)$ e Codominio: $(-\infty,0) \cup (0,+\infty)$

- E' una funzione dispari, iniettiva ma non monotona
- La funzione è invertibile: $f(x)^{-1} = \frac{1}{x^2}$

 $x se x \ge 0$ Valore Assoluto: $|x| = \begin{cases} x \text{ se } x \ge 0 \\ -x \text{ se } x \le 0 \end{cases}$, è una funzione pari: |-x| = |x|, l'inversa è sé stessa perché il modulo coincide con la funzione identica

- - $|x\cdot x'|=|x|\cdot |x'|\ \forall x\in\mathbb{R}$
 - $\left|\frac{x}{|x'|}\right| = \frac{|x|}{|x'|} \ \forall x \in \mathbb{R}, \ x' \neq 0$
 - $|x + x'| \le |x| + |x'| *$ 0
 - $|x x'| \ge ||x| |x'||$ (distanza) 0
 - $|x| < a \leftrightarrow -a < x < a \ (con \ a > 0)$ 0
 - 0 $|x| > a \leftrightarrow x < -a \lor x > a \ (con \ a > 0)$
 - 0
 - $\left|\sum_{k=1}^{n} x_{k}\right| \leq \sum_{k=1}^{n} \left|x_{k}\right|$ conseguenza di
 - $g(x) \le f(x) \ \forall x \rightarrow |g(x)| \le |f(x)|$

Esponenziale:

- Se a>1 è strettamente crescente
- Se 0 < a < 1 è strettamente decrescente (se a = 1 è una funzione costante y = 1)

$$\circ \qquad Se \ a \ \neq 1, \exists f(x)^{-1} = log_a(x)$$

- eggi di cancellazione:
 - $o \quad log_a(a^x) = x \ (\forall x \in \mathbb{R}) \ e \ a^{log_a(x)} = x \ (\forall x > 0)$
- Proprietà:

 - $a^x = b^{x \cdot log_b(a)} \ con \ b > 0, b \neq 1$ (cambiamento di base) $\left(\frac{a}{b}\right)^n = \left(\frac{b}{a}\right)^{-n}$ (potenze, utile per nepero)

Logaritmo:

- *Dominio*: $(0, +\infty)$ *Codominio*: \mathbb{R}
- Se a>1 strettamente crescente
- Se 0<a<1 strettamente decrescente

- Se 0 < a < 1 strettamente decrescente - Proprietà: $(\forall x, x' > 0, b \in \mathbb{R})$ $\circ log_a(x \cdot x') = log_a(x) + log_a(x')$ $\circ log_a\left(\frac{|x|}{|x'|}\right) = log_a(x) - log_a(x')$ $\circ log_a(x^b) = b \cdot log_a(x)$ $\circ log_b(x) = \frac{log_a(x)}{log_a(b)} con \ a > 0, a \neq 1$ (cambiamento di base) NB: $log_a(x^2) \neq 2log_a(x)$ perché bisogna mantenere la proprietà di x^2 perciò: $log_a(x^2) = 2log_a(|x|)$ bisogna mettere il valore assoluto!

Funzione parte intera: [x] = quell'intero n tale che $n \le x \le n + 1$

- Se $x \ge 0$ si prende la cifra prima della virgola
- Se $x \le 0$ si prende il massimo intero $\le x$
 - Tranne nel caso in cui x sia già intero

Funzioni Goniometriche

Seno: è una funzione dispari, limitata $-1 \le \sin(x) \le 1$ e strettamente crescente nell'intervallo $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ e perciò in questo intervallo ammette inversa

- $sin: \left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \to [-1,1]$ $arcsin: [-1,1] \to \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

Coseno: è una funzione pari, limitata $-1 \le \cos(x) \le 1$ e strettamente decrescente nell'intervallo $[0, \pi]$ e perciò in questo intervallo ammette inversa $\circ cos: [0, \pi] \to [-1, 1]$

- $arccos: [-1,1] \rightarrow [0,\pi]$

Tangente: è una funzione dispari e strettamente crescente nell'intervallo $\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$ e non è definita nei punti del tipo $\frac{\pi}{2}+k\pi$ ($con\ k\in\mathbb{Z}$)

O Quindi la sua inversa sarà anch'essa dispari e strettamente crescente

o $tan: \left(\frac{-\pi}{2},\frac{\pi}{2}\right) \to \mathbb{R}$ $tan\ x = \frac{\sin x}{\cos x}$ o $arctan: \mathbb{R} \to \left(\frac{-\pi}{2},\frac{\pi}{2}\right)$

Cotangente: è una funzione dispari e strettamente decrescente nell'intervallo $(0,\pi)$ e non è definita nei punti del tipo $k\pi$ $(con\ k\in\mathbb{Z})$

- Quindi la sua inversa sarà anch'essa dispari e strettamente decrescente $cot: (0,\pi) \to \mathbb{R} \quad \cot x = \frac{\cos x}{\sin x}$
- $arccot: \mathbb{R} \to (0,\pi)$

Principali relazioni tra le funzioni goniometriche

$\sin(x) = \frac{1}{\csc(x)} = \pm \sqrt{1 - \cos^2 x}$	$\tan(x) = \frac{1}{\cot(x)} = \frac{\sin(x)}{\cos(x)} = \pm \sqrt{\sec^2 x - 1}$	$\sec(x) = \pm \sqrt{\tan^2 x + 1}$	$\sin^2(x) + \cos^2(x) = 1$
$\cos(x) = \frac{1}{\sec(x)} = \pm \sqrt{1 - \sin^2 x}$	$\cot(x) = \frac{1}{\tan(x)} \frac{\cos(x)}{\sin(x)} = \pm \sqrt{\csc^2 x - 1}$	$\csc(x) = \pm \sqrt{\cot^2 x + 1}$	

Il segno davanti alla radice dipende dal quadrante in cui si trova x

Funzioni di angoli negativi

$\sin(-x) = -\sin(x)$	$\cos(-x) = \cos(x)$	tan(-x) = -tan(x)	$\csc(-x) = -\csc(x)$	$\sec(-x) = \sec(x)$	$\cot(-x) = -\cot(x)$

Formule di Addizione

$\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)$	$\tan(a \pm b) = \frac{\tan(a) + \tan(b)}{1 \pm \tan(a) \cdot \tan(b)}$	$\sin(a+b)\cdot\sin(a-b) = \sin^2 a - \sin^2 b = \cos^2(b) - \cos^2(b)$
$cos(a \pm b) = cos(a) cos(b) \mp sin(a) sin(b)$	$cot(a \pm b) = \frac{\cot(a) \cdot \cot(b) \mp 1}{\cot(a) + \cot(b)}$	$\cos(a+b)\cdot\cos(a-b) = \cos^2 a - \sin^2 b = \cos^2(b) - \sin^2(a)$

Formule di Bisezione

Potenze di funzioni goniometriche

$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$	$\sin^3 x = \frac{1}{4}(3\sin(x) - \sin 3x)$	$\sin^4 x = \frac{1}{8}(3 - 4\cos(2x) + \cos(4x))$	$\tan^2 x = \frac{1 - \cos 2x}{1 + \cos 2x}$
$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$	$\cos^3 x = \frac{1}{4}(3\cos(x) + \cos 3x)$	$\cos^4 x = \frac{1}{8}(3 + 4\cos(2x) + \cos(4x))$	$\cot^2 x = \frac{1 + \cos 2x}{1 - \cos 2x}$

Relazioni tra funzioni goniometriche inverse

$\arcsin(x) + \arccos(x) = \frac{\pi}{2}$	$\arcsin(-x) = -\arcsin(x)$	$\arccos(-x) = \pi - \arccos(x)$
$\arctan(x) + \operatorname{arccot}(x) = \frac{\pi}{2}$	arctan(-x) = -arctan(x)	$\operatorname{arccot}(-x) = \pi - \operatorname{arccot}(x)$

Somma, differenza, prodotto di funzioni goniometriche

	9000	
$\sin a + \sin b = 2 \sin \frac{1}{2} (a+b) \cdot \cos \frac{1}{2} (a-b)$	$\sin a \cdot \sin b = \frac{1}{2} \{\cos(a-b) - \cos(a+b)\}$	$\tan a + \tan b = \frac{\sin (a+b)}{\cos a \cdot \cos b}$
$\sin a - \sin b = 2\cos\frac{1}{2}(a+b) \cdot \sin\frac{1}{2}(a-b)$	$\cos a \cdot \cos b = \frac{1}{2} \{\cos(a-b) + \cos(a+b)\}$	$\tan a - \tan b = \frac{\sin (a - b)}{\cos a \cdot \cos b}$
$\cos a + \cos b = 2\cos\frac{1}{2}(a+b)\cdot\cos\frac{1}{2}(a-b)$	$\sin a \cdot \cos b = \frac{1}{2} \{ \sin(a-b) + \sin(a+b) \}$	$\cot a + \cot b = \frac{\sin (a+b)}{\sin a \cdot \sin b}$
$\cos a - \cos b = 2 \sin \frac{1}{2} (a+b) \cdot \sin \frac{1}{2} (b-a)$	$\cos a \cdot \sin b = \frac{1}{2} \{ \sin(a+b) - \sin(a-b) \}$	$\cot a - \cot b = \frac{\sin (b - a)}{\sin a \cdot \sin b}$

Operazioni con i grafici di funzioni

Traslazioni:

- $f(x) + k \rightarrow$ si ottiene traslando il grafico di f(x) di un vettore di lunghezza k
 - \circ se k > 0 verso l'alto
 - o se k < 0 verso il basso
- f(x+k) si ottiene traslando il grafico di f(x) di un vettore di lunghezza k
 - $\circ \qquad \textit{se } k > 0 \ \ \text{verso sinistra}$
 - o se k < 0 verso destra

Riscalamenti:

- $kf(x) \rightarrow$ si ottiene mediante una dilatazione/contrazione del grafico di f(x) di un fattore k nella direzione dell'asse y
 - o se k > 1 dilatazione
 - o se k < 1 contrazione
- f(kx) si ottiene mediante una dilatazione/contrazione del grafico di f(x) di un fattore k nella direzione dell'asse x
 - \circ se k > 1 contrazione
 - o se k < 1 dilatazione

Simmetrie:

- $-f(x) \rightarrow$ è simmetrico rispetto al grafico di f(x) rispetto all'asse x
- $f(-x) \rightarrow$ è simmetrico rispetto al grafico di f(x) rispetto all'asse y

Simmetrie Parziali:

- |f(x)|
 - o dove $f(x) \ge 0$ coincide con quello di f(x)
 - o dove f(x) < 0 è simmetrico del grafico di f(x) rispetto all'asse y
- f(|x|)
- dove $x \ge 0$ coincide con quello di f(x)
- o dove x < 0 è simmetrico del grafico di f(x) rispetto all'asse y

Successioni

Limitata, Limitata Sup, Limitata Inf: valgono le stesse regole per le funzioni, però le successioni sono definite in N → R con indice n $\{a_n\}$

Definitivamente: Una successione $\{a_n\}$ possiede o (acquista) definitivamente una certa proprietà se $\exists N\in\mathbb{N}:\ a_n\;$ soddisfa quella proprietà $orall n\geq N$

Successioni Convergenti: $\{a_n\}$ è convergente $\leftrightarrow \exists l \in \mathbb{R}: |a_n-l| < \mathcal{E}$ oppure $l-\mathcal{E} < a_n < l+\mathcal{E}$ definitivamente, con $\mathcal{E} > 0$ \circ NB: l deve essere unico!

Successioni Divergenti: $\{a_n\}$ è divergente $\leftrightarrow \lim_{n \to +\infty} a_n = +\infty$ oppure $\lim_{n \to +\infty} a_n = -\infty$

Successioni Irregolari: Se non sono n'è convergenti e n'è divergenti → il loro limite non esiste (es: oscillanti)

<u>Criterio di Convergenza di Cauchy</u>: $\{a_n\}$ convergente ovvero ha limite finito $\leftrightarrow \forall \mathcal{E} > 0 \ \exists N : |a_n - a_m| < \mathcal{E} \ \text{oppure} - \mathcal{E} + \ a_m < a_n < \mathcal{E} + \ a_m \ \forall n,m > N$ \circ Vale anche se abbiamo due successioni: $|a_n - b_m| < \mathcal{E} \ \text{oppure} - \mathcal{E} < a_n - b_m < \mathcal{E} \ \text{oppure} - \mathcal{E} + \ b_m < a_n < \mathcal{E} + \ b_m$

Nel caso di due successioni significa che sono asintotiche e convergenti

Infinitesima: Quando una successione $\{a_n\}$ tende a zero all'infinito

Crescente e Strettamente crescente: $a_n \leq a_{n+1}$, $a_n < a_{n+1}$

Decrescente e Strettamente decrescente: $a_n \ge a_{n+1}$, $a_n > a_{n+1}$

Teorema di Monotonia:

- $\{a_n\}$ monotona crescente e superiormente limitata \rightarrow è convergente ed il suo limite è uguale a sup $\{a_n\}$
- $\{a_n\}$ monotona decrescente e inferiormente limitata \rightarrow è convergente ed il suo limite è uguale a inf $\{a_n\}$
 - o Corollario
 - se $\{a_n\}$ successione monotona, converge o diverge sempre ed il suo limite esiste

Algebra dei limiti: Se $a_n \to a \ e \ b_n \to b$

$a_n \pm b_n \rightarrow a \pm b$	$a_n \cdot b_m \to ab$	$\frac{a_n}{b_n} \to \frac{a}{b}$	$a_n^{b_n} \to a^b \ (a_n, a > 0)$
-----------------------------------	------------------------	-----------------------------------	------------------------------------

Teorema di Permanenza del segno:

- $\frac{1^{\circ}}{1^{\circ}}$ Se $a_n \rightarrow a$ e a > 0 allora $a_n > 0$ definitvamente oppure se a < 0 allora $a_n < 0$ definitvamente
- 2° forma: Se $a_n \to a$, $b_n \to b$ e $a_n \ge b_n$ definitivamente, allora $a \ge b$

Teorema del Confronto: Se $a_n \le b_n \le c_n$ definitivamente e $a_n \to l$, $c_n \to l$ allora anche $b_n \to l$ $(l \in \mathbb{R})$

- Se $|b_n| \le c_n \ ovvero \ -c_n \le b_n \le c_n \ definitivamente \ e \ c_n \to 0 \ allora \ anche \ b_n \to 0$ 0
- Se $c_n \to 0$ e b_n è limitata (ma non necessariamente convergente) allora $c_n b_n \to 0$

Regola dei segni:

- se $a_n \to a > 0$ e $b_n \to 0^+$ allora $\frac{a_n}{b_n} \to +\infty$ se $a_n \to a < 0$ o $b_n \to 0^-$ allora $\frac{a_n}{b_n} \to -\infty$

Forme Indeterminate:

F.I. di tipo moltiplicativo	F.I. di tipo esponenziale	F.I. di tipo Additivo
$0\cdot\infty$	1 ^{±∞}	+∞ − ∞
$\frac{0}{0}$	00	
<u>~</u>	$(\infty)^0$	

Techiche Risolutive:				
somma e sottrai	Raccogli chi comanda	Moltiplica e dividi	Moltiplica, dividi e razionalizza (insieme)	F.I. Esponenziali: $a_n^{b_n} = e^{\log(a_n^{b_n})} = e^{\ln \log(a_n)}$

Numero di Nepero: Sia a_n una successione divergente allora esiste $\lim_{n \to \infty} \left(1 + \frac{1}{a_n}\right)^{a_n} = e$

Confronti e stime Asintotiche: se abbiamo $\lim_{n \to +\infty} \frac{a_n}{b_n} \to 1$, allora le due successioni sono asintotiche e si definisce: $a_n \sim b_n$

- Proprietà:
 - Se $a_n \sim b_n$ allora convergono allo stesso limite o divergono entrambe a $\pm \infty$ o entrambe non hanno limite
 - Si possono scrivere come catene di funzioni asintotiche: se $a_n \sim b_n \sim ... \sim c_n \rightarrow a_n \sim c_n$
 - Un'espressione può essere stimata fattore per fattore: se $a_n \sim b_n$, $c_n \sim d_n$, $e_n \sim f_n$ allora $\frac{a_n c_n}{c_n} \sim \frac{b_n d_n}{f_n}$
 - NB: non vale per la somma o per l'esponenziale

Criterio del rapporto: Sia a_n una succ. positiva t.c. $a_n>0 \ \forall n$, se esiste $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}=l$

- Se l < 1 $a_n \to 0$ (monotona decrescente $a_n > a_{n+1}$) Se l > 1 $a_n \to +\infty$ (monotona crescente $a_{n+1} > a_n$)

Gerarchia infiniti: (+lento → +veloce)

$$\ln(\ln(x)) \rightarrow \log(x), \log_k(x) \rightarrow \log^a(x) \rightarrow x^{\frac{1}{3}} \rightarrow x^{\frac{1}{2}} \rightarrow x, 2x \rightarrow x^2 \rightarrow x^n \rightarrow 2^x \rightarrow 3^x \rightarrow n! \rightarrow n^n$$

Gerarchia infinitesimi: (+veloce → +lento verso 0)

$$\ln(\ln(x)) \to \log(x), \log_k(x) \to \log^a(x) \to x^{\frac{1}{3}} \to x^{\frac{1}{2}} \to x, 2x \to x^2 \to x^n \to 2^x \to 3^x \to n! \to n^n$$

Limiti

Punto di Accumulazione: $\forall \varepsilon > 0 \ (x_0 - \varepsilon, x_0 + \varepsilon) \cap D - \{x_0\} \neq \emptyset$

- significa che posso avvicinarmi quanto voglio a x_0 e troverò sempre dei valori abbastanza vicini ad x_0 senza che siano x_0 (insieme denso)
 - il limite ha senso di esistere solo se l'insieme è denso, altrimenti non mi potrei avvicinare quanto voglio ad un certo valore

Teorema di unicità del limite: Se esiste $\lim_{x \to a} f(x) = l$ tale limite l è unico

- $\exists \lim_{x \to x_-} f(x) \leftrightarrow \lim_{x \to x_-} f(x) = \lim_{x \to x_-} f(x)$ Però può succedere che i due limiti siano diversi o solo uno dei due esista
- $\exists \lim_{x \to \infty} f(x) \leftrightarrow \lim_{x \to +\infty} a_n = \lim_{x \to +\infty} b_n = x_0 : a_n, b_n \neq x_0 \ \forall n \in \mathbb{N} \ e \ f(a_n) = f(b_n) \ \text{(esistenza del limite con limiti di successioni)}$

Limiti delle funzioni elementari:

- Potenze: $\lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{se } n \text{ è pari} \\ -\infty & \text{se è } n \text{ è dispari} \end{cases}$
- unzioni Goniometriche

$\lim_{x \to x_0} \sin x = \sin x_0$		$ \exists \lim_{x \to +\infty} \cos x $	$\lim_{\substack{x \to \frac{\pi}{2}}} \tan x = +\infty$	$\lim_{x \to x_0} \tan x = \tan x_0 \ \forall x_0 \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$
$\lim_{x \to x_0} \cos x = \cos x_0$	$ \lim_{x \to -\infty} \sin x $	$ \lim_{x \to -\infty} \cos x $	$\lim_{x \to -\frac{\pi^+}{2}} \tan x = -\infty$	$\lim_{x \to x_0} \arcsin x = \arcsin x_0 \ \forall x_0 \in [-1,1]$
$ \lim_{x \to x_0} \arctan x = \arctan x_0 $	lim arc	$\tan x = \frac{\pi}{2}$	$\lim_{x \to -\infty} \arctan x = \frac{-\pi}{2}$	$\lim_{x \to x_0} \arccos x = \arccos x_0 \ \forall x_0 \in [-1,1]$

- Modulo: $\lim_{x \to x_0} |x| = |x_0| \quad \lim_{x \to +\infty} |x| = +\infty$
- Parte Intera: $\lim_{x \to x_0} [x] = [x_0] \ \forall x_0 \notin \mathbb{Z} \quad \lim_{x \to n^+} [x] = n \quad \lim_{x \to n^-} [x] = n 1 \ \forall n \in \mathbb{Z}$

Teorema del confronto: Se $\exists \lim_{x \to a} f(x) = \lim_{x \to a} h(x) = l$ e $f(x) \le g(x) \le h(x)$ definitivamente per $x \to c$, allora $\exists \lim_{x \to a} g(x) = l$ $(c, l \in \mathbb{R} \cap \{\pm \infty\})$

- Corollario:
 - 1. Se $\exists \lim_{x \to c} g(x) = 0$ e $|h(x)| \le g(x)$ oppure $-g(x) \le h(x) \le g(x)$ definitivamente per $x \to c$, allora $\exists \lim_{x \to c} h(x) = 0$
 - 2. Se $\exists \lim_{x\to c} f(x) = 0$ e g(x) limitata definitivamente per $x \to c$, allora $\exists \lim_{x\to c} f(x)g(x) = 0$

Teorema di Permanenza del segno:

- 1° forma: Se $\exists \lim_{x \to c} f(x) = l \ e \ l \ge 0$, allora $f(x) \ge 0$ definitivamente per $x \to c$ (vale anche solo >)
- 2° forma: Se $\exists \lim_{x \to c} f(x) = l_1$ e $\exists \lim_{x \to c} g(x) = l_2$ $(l_1, l_2 \ finiti \ o \ infiniti)$ e $l_1 \le l_2 \to f(x) \le g(x)$ definitivamente per $x \to c$ (vale anche viceversa)

Teorema cambio di variabile o delle funz. Composte:

- Se $\exists \lim_{x \to x_0} f(x) = l$ e $\exists \lim_{t \to l} g(t) = \lambda$ $\to \exists \lim_{x \to x_0} g(f(x)) = \lambda$ \circ Con $f(x) \neq l$ definitivamente per $x \to x_0$ (per evitare punti di discontinuità)

Teorema cambio di variabile in altri casi:

- Se ho $\lim_{x \to x_0} f(x)g(x) = F.I.$ e $\exists \lim_{x \to x_0} f(x) = l \ e \ \exists \lim_{x \to x_0} g(x) = \lambda$ allora:
 - $\circ \quad t = a(x) \text{ , calcolo } \lim_{x \to x_0} t = l \text{ , ricavo } x \text{ da } t = a(x) \text{ ed ottengo } a(t) \text{ e quindi } \lim_{t \to l} f \Big(a(t) \Big) g \Big(a(t) \Big) = \lambda$

Teorema criterio del rapporto:

Limiti con parametro: studiare i casi del parametro $\alpha > 0$, $\alpha = 0$, $\alpha < 0$

Limiti Notevoli

ATTITUTE TO COVOID							
$\lim_{x \to 0} \frac{\sin x}{x} = 1$	$\lim_{x \to 0} \frac{\log_a(x+1)}{x} = \frac{1}{\log a}$	$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$	$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$	$\lim_{x \to +\infty} a^{-x} \cdot x^b = 0 \ (\forall b > 0, a > 1)$			
$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$	$\lim_{x \to 0} \frac{(x+1)^{\alpha} - 1}{x} = \alpha$	$\lim_{x \to 0} \frac{\tan x}{x} = 1$	$\lim_{x \to 0} \frac{\cosh x - 1}{x^2} = \frac{1}{2}$	$\lim_{x \to +\infty} \frac{x^b}{\log_a x} = +\infty \ (\forall b > 0, a > 1)$			
$\lim_{x \to 0} \frac{a^x - 1}{x} = \log a$	$\lim_{x \to 0} \frac{\sqrt[\alpha]{(x+1)} - 1}{x} = \alpha$	$\lim_{x \to 0} \frac{\arctan x}{x} = 1$	$\lim_{x \to 0^+} x^a \cdot \log_b x = 0 \ (\forall a > 0, b > 1)$	$\lim_{x \to \pm \infty} \left(1 + \frac{\alpha}{x} \right)^x = e^{\alpha} \ (\forall \alpha \in \mathbb{R})$			

Limiti asintotici: $(x \to 0)$ al posto di x posso anche avere f(x)

$\sin x \sim x$	$(1-\cos x)\sim \frac{1}{2}x^2$	$(e^x - 1) \sim x$	$\log(x+1) \sim x$	$[(1+x)^{\alpha}-1]\sim \alpha x$	$\arcsin x \sim x$	$\arctan x \sim x$	$\arccos x - \frac{\pi}{2} \sim -1$
	2"		18(11)	[(' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '			2

Studio di funzione

Asintoto Verticale: $\lim_{x \to c} f(x) = \pm \infty$ oppure $\lim_{x \to c^{\pm}} f(x) = \pm \infty$ $(c \in \mathbb{R})$ Equazione: x = c

Asintoto Orizzontale: $\lim_{x \to +\infty} f(x) = l$ oppure $\lim_{x \to -\infty} f(x) = l$ con $l \in \mathbb{R}$ Equazione: y = l

Asintoto Obliquo: Quando $\lim_{x \to +\infty} f(x) = \pm \infty$ possiamo verificare se:

- 1. Esiste finito: $\lim_{x \to +\infty} \frac{f(x)}{x} = m \neq 0$
- 2. Esiste finito: $\lim_{x \to +\infty} [f(x) mx] = q$ t.c. $\lim_{x \to +\infty} [f(x) (mx + q)] = 0 \to f(x) \sim mx + q$ Equazione = y = mx + q

Teoria applicata agli Esercizi

Limiti

Utilizzo del Teorema dei due carabinieri:

Verificare se un limite esiste: Che cosa ci potrebbe dare problemi per la non esistenza del limite?

- Funzioni oscillanti → ovvero non determinate all'infinito
- Discontinuità sul dominio o non definite in un punto/intorno \rightarrow siccome $\exists \lim_{x \to x_0} f(x) \leftrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x)$
 - O Potrebbe però esistere solo $\lim_{x \to x_0^+} f(x)$ (da sx) oppure $\lim_{x \to x_0^-} f(x)$ (da dx)

Che cosa possiamo utilizzare?

- Teorema dei due carabinieri ed il suo corollario
- Teorema del cambio di variabile o delle funz. Composte
 - Utile per verificare se esiste il limite di una funzione composta

NB: basta che non esista un limite per una funzione ed il limite totale non esiste → per le operazioni tra limiti