아이템 기반 협업 필터링 영화 추천

데이터 셋

• MovieLens 100K Dataset

• url : https://grouplens.org/datasets/movielens/100k/ (https://grouplens.org/datasets/movielens/100k/)

• u.data

■ user_id : 유저 정보 ■ item_id : 영화 정보 ■ ratings : 평점 정보 ■ timestamp : 시간 정보

In [6]: ▶

```
import pandas as pd
import numpy as np
import sklearn
from sklearn.decomposition import TruncatedSVD
from IPython.display import display, Image
```

데이터 불러오기

In [7]:

display(Image(filename='data_u_data.png'))

u.dat	a ×		
196	242	3	881250949√
186	302	3	891717742√
22	377	1	878887116√
244	51	2	880606923√
166	346	1	886397596√
298	474	4	884182806√
115	265	2	881171488√
253	465	5	891628467√
305	451	3	886324817↓
6	86	3	883603013↓
62	257	2	879372434√
286	1014	5	879781125↓

In [5]:

```
columns = ['user_id', 'item_id', 'rating', 'timestamp']
df = pd.read_csv('../data/ml-100k/u.data', sep='\text{\text{\text{W}}t'}, names=columns)
print(df.shape)
df.head()
```

(100000, 4)

Out[5]:

	user_id	item_id	rating	timestamp
0	196	242	3	881250949
1	186	302	3	891717742
2	22	377	1	878887116
3	244	51	2	880606923
4	166	346	1	886397596

데이터 불러오기

데이터 정보

• 파일명 : u.u_item

■ item_id : 영화 정보 ■ movie title : 영화 제목 ■ release date : 출시일

■ video release date : 비디오 출시일 ■ IMDb URL : IMDb URL 정보

■ unkonwn, ... : 기타 장르 정보

In [8]:
▶

```
display(Image(filename='data_u_item.png'))
```

In [11]:

(100000, 5)

Out[11]:

	user_id	item_id	rating	timestamp	movie title
0	196	242	3	881250949	Kolya (1996)
1	63	242	3	875747190	Kolya (1996)
2	226	242	5	883888671	Kolya (1996)
3	154	242	3	879138235	Kolya (1996)
4	306	242	5	876503793	Kolya (1996)

사용자-아이템 표 만들기

- 우리의 데이터에 대해 pivot를 사용해본다.
- 빈 값은 0으로 채우기

In [12]:

Out[12]:

movie title	'Til There Was You (1997)	1-900 (1994)	101 Dalmatians (1996)	12 Angry Men (1957)	187 (1997)	Days in the Valley (1996)	20,000 Leagues Under the Sea (1954)	2001: A Space Odyssey (1968)	3 Ninjas: High Noon At Mega Mountain (1998)	39 Steps The (1935)
user_id										
1	0	0	2	5	0	0	3	4	0	С
2	0	0	0	0	0	0	0	0	1	С
3	0	0	0	0	2	0	0	0	0	С
4	0	0	0	0	0	0	0	0	0	С
5	0	0	2	0	0	0	0	4	0	С

5 rows × 1664 columns

아이템 기반 협업 필터링을 위해 행열 바꾸기

In [14]:

```
X = rating_crosstab.T
print(X.shape)
```

(1664, 943)

SVD

- 사이킷런을 활용하여 SVD를 할수 있다.
- truncated SVD를 사용하여 차원 축소

In [15]:

```
SVD = TruncatedSVD(n_components=12, random_state=5)
resultant_matrix = SVD.fit_transform(X)
resultant_matrix.shape
```

Out[15]:

(1664, 12)

• 1664개 행과 잠재변수 12개의 열를 갖는 행렬 생성

Correlation Pearson

- 피어슨 상관계수, 코사인 유사성과 같은 다양한 유사성 측정 지표를 사용할 수 있다.
- 피어슨 상관계수를 이용하여 상관 행렬을 만들어봄.

```
In [19]:
                                                                                             H
### correlation matrix
corr_mat = np.corrcoef(resultant_matrix)
print( corr_mat.shape )
corr_mat
(1664, 1664)
Out[19]:
array([[ 1.
             , -0.11573577, 0.51362284, ..., 0.38310045,
        0.20193733, 0.5065142],
      [-0.11573577, 1.
                                 0.05820808, ..., 0.15805829,
        0.51795357, 0.27104818],
      [ 0.51362284, 0.05820808, 1.
                                        , ..., 0.76575655,
        0.43824619. 0.195071391.
      [ 0.38310045, 0.15805829, 0.76575655, ..., 1.
        0.18043708, 0.12115972],
      [0.20193733, 0.51795357, 0.43824619, ..., 0.18043708,
             , 0.20126072],
      [0.5065142, 0.27104818, 0.19507139, ..., 0.12115972,
        0.20126072, 1.
                             11)
```

유사 영화를 찾기

Similar Movies to Star Wars (1977)

```
In [21]:

rating_crosstab.columns.get_loc("Star Wars (1977)")

Out[21]:

1398

In [22]:

col_idx = rating_crosstab.columns.get_loc("Star Wars (1977)")

corr_specific = corr_mat[col_idx] # Star Wars (1977)의 위치 행 획득

print(corr_specific.shape)
```

(1664,)

In [23]:

```
result = pd.DataFrame({'corr_specific':corr_specific, 'Movies': rating_crosstab.columns})
print(result.shape)
result.head()
```

(1664, 2)

Out[23]:

	corr_specific	Movies
0	0.357238	'Til There Was You (1997)
1	0.421507	1-900 (1994)
2	0.593815	101 Dalmatians (1996)
3	0.722361	12 Angry Men (1957)
4	0.325221	187 (1997)

10개의 영화 추천

In [24]: ▶

```
result.sort_values('corr_specific', ascending=False).head(10)
```

Out [24]:

Movies	corr_specific	
Star Wars (1977)	1.000000	1398
Return of the Jedi (1983)	0.988052	1234
Terminator 2: Judgment Day (1991)	0.942655	1460
Toy Story (1995)	0.933978	1523
Terminator, The (1984)	0.931701	1461
Raiders of the Lost Ark (1981)	0.925185	1205
Empire Strikes Back, The (1980)	0.923562	456
Fugitive, The (1993)	0.915965	570
Die Hard (1988)	0.914299	414
Aliens (1986)	0.892894	44

(실습) Godfather, The (1972)에 대한 10개의 영화 추천해 보기

In [27]:

```
col_idx = rating_crosstab.columns.get_loc("Godfather, The (1972)")
corr_specific = corr_mat[col_idx] # Godfather, The (1972)의 위치 행 획득
print(corr_specific.shape)
```

(1664,)

In [28]:

```
result = pd.DataFrame({'corr_specific':corr_specific, 'Movies': rating_crosstab.columns})
result.sort_values('corr_specific', ascending=False).head(10)
```

Out [28]:

Movies	corr_specific	
Godfather, The (1972)	1.000000	612
Godfather: Part II, The (1974)	0.921444	613
Fargo (1996)	0.921420	498
GoodFellas (1990)	0.900758	623
Bronx Tale, A (1993)	0.865385	237
Star Wars (1977)	0.865148	1398
Boot, Das (1981)	0.864269	209
Dead Man Walking (1995)	0.857308	389
Good, The Bad and The Ugly, The (1966)	0.845558	622
Pulp Fiction (1994)	0.842705	1190

- 우리는 Godfather의 영화를 좋아하는 사람이 있다면 Godfather: Part II, Star Wars (1977)를 볼 것을 제안할수 있다.
- 역으로 Godfather의 영화를 피하는 사람이라면 Godfather: Part II, Star Wars (1977) 를 피할 것을 제안할 수 있다.

실습해 보기

• Pulp Fiction (1994) 에 대한 유사 영화 10개를 추천해 보자.

History

• 2021-10 ver 01