W21 — Тише, мыши...

A1 $^{5.00}$ Найдите максимально возможное начальное расстояние L_{max} между мышами и Леопольдом.

Предисловие: Последняя "перестрелка" Леопольда и мышей произошла в 2002 году, с тех пор мыши кота не беспокоили. Спустя 18 лет, в 2020 году, нашлись новые подводные камушки для легендарной рогатки и мыши решили "тряхнуть стариной". Примечание: в ходе перестрелки никто из животных не пострадал.

Рис. 1:

В системе отсчёта Леопольда камень движется прямолинейно с постоянной скоростью $v_{\text{отн}}$. Расстояние от Леопольда до камня минимально, когда соединяющий их отрезок перпендикулярен вектору относительной скорости (см. рис.). Из подобия треугольников определим перемещение камня относительно Леопольда:

откуда

$$S_{\text{oth}} = L \frac{v_1}{v_{\text{oth}}} = v_{\text{oth}} t$$

$$L = \frac{v_{\text{oth}}^2 t}{v_1}$$

Рис. 2:

Найдем максимально возможное время, через которое скорости камня и Леопольда вновь станут перпендикулярны. Построим треугольники скоростей камня и Леопольда для максимального сближения, объединив их в один четырёхугольник. Заметим, что этот четырёхугольник можно вписать в окружность, поскольку сумма противоположных углов равна 180°. Диаметр окружности фиксирован и равен

страница 1 из 5 ∞

 $v_{\text{отн}}$. Поскольку L максимально при максимальном значении t, необходимо, чтобы вторая диагональ четырёхугольника, равная gt, также была максимальна. Это достигается если gt – диаметр данной окружности. Таким образом,

$$t_{max} = \frac{v_{\text{OTH}}}{g}$$

и окончательно:

$$L_{max} = \frac{v_{\text{oth}}^3}{gv_1} = \frac{\left(v_1^2 + v_2^2\right)^{\frac{3}{2}}}{gv_1}$$

Второе решение

Рис. 3:

Введём систему координат, как показано на рисунке. Пусть угол, под которым брошен камень к горизонту, равен α . Получим зависимости координат, проекций скоростей и расстояния между камнем и Леопольдом от времени.

$$x_{K} = v_{1}t \cos \alpha; y_{K} = v_{1}t \sin \alpha - \frac{gt^{2}}{2}$$

$$v_{yK} = v_{1} \sin \alpha - gt; v_{XK} = v_{1} \cos \alpha$$

$$x_{M} = L \cos \alpha - v_{2}t \sin \alpha; y_{M} = L \sin \alpha + v_{2}t \cos \alpha - \frac{gt^{2}}{2}$$

$$v_{yM} = v_{1} \cos \alpha - gt; v_{XM} = -v_{1} \sin \alpha$$

Расстояние между Леопольдом и камнем назовём *l*.

$$l^{2} = (x_{K} - x_{J})^{2} + (y_{K} - y_{J})^{2}$$

$$l^{2} = (L\cos\alpha - (v_{1}\cos\alpha + v_{2}\sin\alpha)t)^{2} + (L\sin\alpha - (v_{1}\sin\alpha - v_{2}\cos\alpha)t)^{2}$$

$$l^{2} = L^{2} - 2v_{1}Lt + (v_{1}^{2} + v_{2}^{2})t^{2}$$

Минимальное значение l достигается в вершине параболы в момент времени

$$\tau = L \nu_1 / (\nu_1^2 + \nu_2^2)$$

Для нахождения максимально возможного значения L необходимо найти максимально возможное значение τ . Пусть в момент времени τ скорость камня направлена под углом β к горизонту. Поскольку в данный момент времени скорости Леопольда и камня перпендикулярны, скорость Леопольда направлена под углом $90 - \beta$ к горизонту. Значит, для этого момента времени можно записать

$$v_{y_{\rm K}}/v_{x_{
m K}}=-v_{x_{
m M}}/v_{y_{
m M}}$$
 $(v_1\sinlpha-g au)(v_2\coslpha-g au)-v_1v_2\sinlpha\coslpha=0$ \sim Страница 2 из 5 \sim

Из последнего соотношения находим au

$$\tau = \frac{v_1 \sin \alpha + v_2 \cos \alpha}{g}$$

Комбинируя два способа получения au, получим зависимость расстояния от угла броска камня

$$L = \frac{(v_1^2 + v_2^2)(v_1 \sin \alpha + v_2 \cos \alpha)}{gv_1}$$

Для нахождения максимума L необходимо найти максимум величины $v' = (v_1 \sin \alpha + v_2 \cos \alpha)$

$$(v' - v_1 \sin \alpha)^2 = v_2^2 (1 - \sin^2 \alpha)$$
$$(v_1^2 + v_2^2) \sin^2 \alpha - 2v'v_1 \sin \alpha + v^{2'} - v_2^2 = 0$$

Найдём дискриминант квадратного уравнения относительно $\sin \alpha$

$$D = 4v^{2'}v_1^2 - 4(v_1^2 + v_2^2)(v^{2'} - v_2^2)$$
$$D = 4v_2^2(v_1^2 + v_2^2) - v^{2'})$$

Максимальное значение v' достигается при нулевом дискриминанте и равно

$$v'=\sqrt{v_1^2+v_2^2}$$

Таким образом

Ответ:

$$L_{max} = \frac{(v_1^2 + v_2^2)^{\frac{3}{2}}}{gv_1}$$

A2^{5.00} Найдите значения скоростей v_1 и v_2 . Ускорение свободного падения g=9,8м/с 2 .

Рис. 4:

Заметим, что вектор средней скорости камня в момент фотографии равен $\frac{\vec{v_{oTH}}}{2}$, в вектор средней скорости Леопольда $-\frac{\vec{v_{oTH}}}{2}$. Это значит, что перемещения камня и Леопольда равны по модулю и противоположны по направлению. Пусть D - середина отрезка AC. Тогда из условия равенства перемещений по модулю следует, что $BD = \frac{L}{2}$, а также, что треугольник DCB - прямоугольный, причём $\frac{v_2}{v_1} = \frac{CD}{BC}$. Измеряя BC, BD и CD, получим

$$v_2 = \frac{CD}{BC}v_1$$
 $BD = \sqrt{BC^2 + CD^2} = \frac{(v_1^2 + v_2^2)^{\frac{3}{2}}}{2gv_1} = \frac{(BC^2 + CD^2)^{\frac{3}{2}}}{BC^3} \frac{v_1^2}{2g}$ \Longrightarrow Страница **3** из **5**

Рис. 5:

$$v_1 = \sqrt{\frac{2gBC}{BC^2 + CD^2}}BC = 10,8\text{m/c}$$
 $v_2 = \sqrt{\frac{2gBC}{BC^2 + CD^2}}CD = 2,7\text{m/c}$

Ответ:

$$v_1 = \sqrt{\frac{2gBC}{BC^2 + CD^2}}BC = 10,8\text{m/c}$$
 $v_2 = \sqrt{\frac{2gBC}{BC^2 + CD^2}}CD = 2,7\text{m/c}$

Второе решение

Выражение для $\sin \alpha$ из решения предыдущего пункта

$$\sin \alpha = \frac{v_1}{\sqrt{v_1^2 + v_2^2}}$$

Найдём координаты камня и расстояние между ним и Леопольдом в момент времени au

$$x_{K} = v_{1}\tau \cos \alpha = \frac{v_{1}v_{2}}{g}$$

$$y_{K} = v_{1}\tau \sin \alpha - \frac{g\tau^{2}}{2} = \frac{v_{1}^{2}}{g} - \frac{v_{1}^{2} + v_{2}^{2}}{2g} = \frac{v_{1}^{2} - v_{2}^{2}}{2g}$$

$$l = \frac{(v_{1}^{2} + v_{2}^{2})v_{2}}{gv_{1}}$$

Таким образом, перемещение камня

$$S_{K} = \frac{v_1^2 + v_2^2}{2g}$$

Измеряя перемещение камня, а также расстояние между ним и Леопольдом, мы получим систему из двух уравнений с двумя неизвестными. Выразим начальные скорости через l и S_k

$$rac{S_k}{l} = rac{v_1}{2v_2}$$
 $v_2 = rac{l}{2S_k}v_1$
 $S_k = rac{1 + rac{l^2}{4S_k^2}}{2g}v_1^2$
 \Longrightarrow Страница **4** из **5**

$$v_1 = \sqrt{\frac{8gS_k}{l^2 + 4S_k^2}} S_k = 10,8$$
m/c

$$v_2 = \sqrt{\frac{2gS_k}{l^2 + 4S_k^2}}l = 2.7\text{m/c}$$