

CS-E4640 Big Data Platforms

Taste of Big Data Platforms

Rohit Raj (rohit.raj@aalto.fi)
Master student of SECCLO

Purpose and Content

- My experiences about the design of a real world big-data platform and how it changed my perception.
- About this presentation:
 - Goals with which I started
 - My first design choices
 - Changes in the design and perception

Goal of GPON Big Data platform

- My generic goals were:
 - Do stuff at a large scale: data ingestion, management and analytics
- My goals for the GPON monitoring infrastructure were:
 - Reliably monitoring a large-scale GPON infrastructure
 - Build a resilient and elastic big data infrastructure for network operations
 - With fast analytics (results) provided to GPON maintainers

A Real-Life Example: GPON Monitoring Infrastructure

https://version.aalto.fi/gitlab/bigdataplatforms/cs-e4640/-/tree/master/tutorials/netopanalytics

Initial design aims

- Everyone has a different role in developing and operating a BDP
 - Developer, System Engineer, Data Scientist, Manager etc
- My focus while creating the design:
 - Major aims as a developer
 - Focus on faster ingestion
 - Fault can occur at a variable rate so be prepared for that
 - Providing faster aggregation queries: let the maintainers know ASAP
 - Use most popular products like MongoDB and Mosquitto MQTT broker
 - Minor aim as a system engineer:
 - Deploy and scale the monitoring infrastructure

Initial Design

- So, I created an initial design for the monitoring infrastructure
 - It was similar to the figure on slide 4 except for the database
- I initially went with MongoDB as database choice
 - Easy to use NoSQL document store DB with huge community support on internet
 - "Looked good enough" for this use-case

Design changes while development

- I did some design changes while development
- I changed the choice of database from:
 - MongoDB -> Cassandra
 - Columnar oriented DBs are faster for analytical queries
 - Availability & Partition Tolerance (AP) thorough Consistent Hashing is important for high availability*
 - Support for eventual consistency

^{*} Read more at: https://www.ibm.com/cloud/learn/cap-theorem

Design changes while deployment

- One of the design changes while 1st test deployment
- I changed the choice of edge sub-system broker
 - Mosquitto -> VerneMQ
 - Easier to scale horizontally
 - Inbuild support for JMX and Prometheus exports

Changing perceptions about BDP

- I felt it's difficult predict everything in advance
 - I had to re-evaluate choices as perceptions changed
 - Example: going from MongoDB to Cassandra
- I had to develop the mindset to select based on use-case
 - Example: MongoDB would have been better if we were doing long-term warehousing due to better consistency support
- I feel it is we should build the ecosystem around the platform
 - Thinking about the systems' integration rather than the technology
 - Ex: Better monitoring through just a change in broker flavour

Changing Perceptions – II

- For me as a developer, the new technologies sounded daunting
 - For example, during my first experience on Kafka, the official documentation was unnecessarily complex
- I felt that databases can be hard depending on use case
 - Getting Cassandra up and running was difficult
- However, I think that Apache Spark turned out much easier to use
 - I just had to develop an idea about RDD and dataframe APIs
 - Spark maybe difficult for other products or use-cases but not this one ©

Sum up

Different roles may have different approach

Define you own role (developer and system person in my case)

Ever evolving platform

- We might need to change our approach with time (broker change)
- Might be tradeoffs (MongoDB vs Cassandra)

A big data platform is more than bunch of technologies

- Rather a complete ecosystem
- And it is important to have a very deep understanding of the solution

First impression/taste will be vastly different and will change

- My perception changed from technology to system
- I felt that learning technology is easier but more important is design mindset
 - For example: Like when to use MongoDB and when to use Cassandra

Thank You

Questions?