## Линейные отображения



### Определение



 $\phi$  – линейное отображение



 $\varphi(\alpha x + \beta y) = \alpha \varphi(x) + \beta \varphi(y)$  для всех  $x, y \in V$  и  $\alpha, \beta \in F$ 

$$x \in \mathbb{R}^3$$
,  $x = (x_1, x_2, x_3)^T$ 

$$\varphi(x) = (x_1^2, \ln x_2, x_1 x_3)^T$$

Paramompum 
$$X = (2, 1, 0)^{\dagger}, d = 3$$
  $dX = (6, 3, 0)^{\dagger}$   
Aprobepum  $Q(dX) = dQ(X)$ 

 $(36, \ln 3, 0) \neq 3. (4, \ln 1, 0)$ 

(36, ln3,0) = (12, 3ln1,0) => 4 re nui.omosp

Sammanul.

$$x \in \mathbb{R}^3$$
,  $x = (x_1, x_2, x_3)^T$ 

$$\varphi(x) = (x_1^2, \ln x_2, x_1 x_3)^T$$

$$\varphi(x) = (x_1 + 2x_2, x_1 + x_2 - x_3, 3x_2 + x_3)^T$$

$$\varphi(x) = (3x_1, 4x_2, 7x_3)^T$$

$$\varphi(x) = (x_1, x_2, x_3)^T$$
,  $id(x) = x$  – тождественное отображение

$$\varphi(x) = (x_1 + 4, x_2 - 3, x_3 + 1)^T$$

$$\chi = (\chi_1 \chi_2, \chi_3)^T \quad \text{if we num. omodif.}$$

$$\text{Typle pure} \quad \varphi(\chi + y) = (\chi_1 + \varphi(y))^T \quad \text{if } (\chi_1 + \varphi(y)$$

$$x \in \mathbb{R}^3$$
,  $x = (x_1, x_2, x_3)^T$ 

$$\varphi(x) = (x_1^2, \ln x_2, x_1 x_3)^T$$

$$\varphi(x) = (x_1 + 2x_2, x_1 + x_2 - x_3, 3x_2 + x_3)^T$$

$$\varphi(x) = (3x_1, 4x_2, 7x_3)^T$$

$$\varphi(x) = (x_1, x_2, x_3)^T$$
,  $id(x) = x$  – тождественное отображение

$$\varphi(x) = (x_1 + 4, x_2 - 3, x_3 + 1)^T$$

$$\varphi(x) = (x_1, x_2, 0)^T - \text{проектор} \left[ P^2 - P \right]$$

$$\varphi(x) = (0, 0, 0)^T$$
,  $O(x) = 0$  – нулевое отображение

## Линейный функционал



F векторное пространство над F

 $\phi$  – линейное отображение



 $\varphi(\alpha x + \beta y) = \alpha \varphi(x) + \beta \varphi(y)$  для всех  $x, y \in V$  и  $\alpha, \beta \in F$ 

$$\varphi(x) = x \cdot a$$
 — скалярное произведение  $\varphi: \mathbb{R}^n \to \mathbb{R}$ 

$$I(f) = \int_a^b f(x)dx$$
 — определённый интеграл  $I: C[a,b] \to \mathbb{R}$ 

## Линейный оператор



 $\phi$  – линейное отображение



 $\varphi(\alpha x + \beta y) = \alpha \varphi(x) + \beta \varphi(y)$  для всех  $x, y \in V$  и  $\alpha, \beta \in F$ 

- O(x) = 0 нулевой оператор
- Id(x) = x (или E(x) = x) тождественный оператор
- $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$   $\varphi(x) = (\frac{1}{2}x_1 \frac{\sqrt{3}}{2}x_2, \frac{\sqrt{3}}{2}x_1 + \frac{1}{2}x_2, x_3)^T \text{поворот на} \frac{\pi}{3}$  относительно Oz
- $\varphi: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$   $D(f) = \frac{d}{dx}f$  оператор дифференцирования





$$\varphi(x) = \varphi(x_1 e_1 + \dots + x_n e_n) = x_1 \varphi(e_1) + \dots + x_n \varphi(e_n)$$

$$\varphi(e_1) = a_{11} f_1 + \dots + a_{m1} f_m$$

$$\varphi(e_2) = a_{12} f_1 + \dots + a_{m2} f_m$$

$$\varphi(e_n) = a_{1n}f_1 + \dots + a_{mn}f_m$$



$$\varphi(x) = \varphi(x_1 e_1 + \dots + x_n e_n) = x_1 \varphi(e_1) + \dots + x_n \varphi(e_n)$$

$$\varphi(e_1) = a_{11} f_1 + \dots + a_{m1} f_m = (a_{11}, \dots, a_{m1})_f^T$$

$$\varphi(e_2) = a_{12} f_1 + \dots + a_{m2} f_m = (a_{12}, \dots, a_{m2})_f^T$$

$$\dots$$

$$\varphi(e_n) = a_{1n} f_1 + \dots + a_{mn} f_m = (a_{1n}, \dots, a_{mn})_f^T$$

$$\varphi(x) = \varphi(x_1 e_1 + \dots + x_n e_n) = x_1 \varphi(e_1) + \dots + x_n \varphi(e_n)$$

$$\varphi(e_1) = a_{11} f_1 + \dots + a_{m1} f_m = (a_{11}, \dots, a_{m1})_f^T$$

$$\varphi(e_2) = a_{12} f_1 + \dots + a_{m2} f_m = (a_{12}, \dots, a_{m2})_f^T$$

$$\dots$$

$$\varphi(e_n) = a_{1n} f_1 + \dots + a_{mn} f_m = (a_{1n}, \dots, a_{mn})_f^T$$

$$[\varphi] = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

$$\varphi(x) = \varphi(x_1 e_1 + \dots + x_n e_n) = x_1 \varphi(e_1) + \dots + x_n \varphi(e_n)$$

$$\varphi(e_1) = a_{11} f_1 + \dots + a_{m1} f_m = (a_{11}, \dots, a_{m1})_f^T$$

$$\varphi(e_2) = a_{12} f_1 + \dots + a_{m2} f_m = (a_{12}, \dots, a_{m2})_f^T$$

$$\dots$$

$$\varphi(e_n) = a_{1n} f_1 + \dots + a_{mn} f_m = (a_{1n}, \dots, a_{mn})_f^T$$

$$[\varphi] = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}$$

$$\varphi(x) = \varphi(x_1 e_1 + \dots + x_n e_n) = x_1 \varphi(e_1) + \dots + x_n \varphi(e_n)$$

$$\varphi(e_1) = a_{11}f_1 + \dots + a_{m1}f_m = (a_{11}, \dots, a_{m1})_f^T$$

$$\varphi(e_2) = a_{12}f_1 + \dots + a_{m2}f_m = (a_{12}, \dots, a_{m2})_f^T$$

• • •

$$\varphi(e_n) = a_{1n}f_1 + \dots + a_{mn}f_m = (a_{1n}, \dots, a_{mn})_f^T$$

$$[\varphi] = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

$$\varphi(x) = \varphi(x_1 e_1 + \dots + x_n e_n) = x_1 \varphi(e_1) + \dots + x_n \varphi(e_n)$$

$$\varphi(e_1) = a_{11} f_1 + \dots + a_{m1} f_m = (a_{11}, \dots, a_{m1})_f^T$$

$$\varphi(e_2) = a_{12} f_1 + \dots + a_{m2} f_m = (a_{12}, \dots, a_{m2})_f^T$$

$$\dots$$

$$\varphi(e_n) = a_{1n} f_1 + \dots + a_{mn} f_m = (a_{1n}, \dots, a_{mn})_f^T$$

$$[\varphi] = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
$$[\varphi] = (\varphi(e_1) \ \varphi(e_2) \ \dots \ \varphi(e_n))$$

$$\varphi(x) = \varphi(x_1 e_1 + \dots + x_n e_n) = x_1 \varphi(e_1) + \dots + x_n \varphi(e_n)$$

$$\varphi(e_1) = a_{11} f_1 + \dots + a_{m1} f_m = (a_{11}, \dots, a_{m1})_f^T$$

$$\varphi(e_2) = a_{12} f_1 + \dots + a_{m2} f_m = (a_{12}, \dots, a_{m2})_f^T$$

$$\dots$$

$$\varphi(e_n) = a_{1n} f_1 + \dots + a_{mn} f_m = (a_{1n}, \dots, a_{mn})_f^T$$

$$[\varphi] = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

$$[\varphi] = (\varphi(e_1) \ \varphi(e_2) \ \dots \ \varphi(e_n))$$

$$\varphi(x) = \varphi(x_1e_1 + \dots + x_ne_n) = x_1\varphi(e_1) + \dots + x_n\varphi(e_n) =$$

$$[\varphi] = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

$$[\varphi] = (\varphi(e_1) \ \varphi(e_2) \ \dots \ \varphi(e_n))$$

$$\varphi(x) = \varphi(x_1e_1 + \dots + x_ne_n) = x_1\varphi(e_1) + \dots + x_n\varphi(e_n) =$$

$$= (\varphi(e_1) \ \varphi(e_2) \ \dots \ \varphi(e_n)) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

$$\varphi(x) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$



## Контрольный вопрос



## Контрольный вопрос



$$\varphi(x) = (x_1 + 2x_2, x_1 + x_2 - x_3, 3x_2 + x_3)^T$$
$$[\varphi] = ?$$

$$\varphi(x) = (x_1 + 2x_2, x_1 + x_2 - x_3, 3x_2 + x_3)^T$$

$$[\varphi] = ?$$

$$e_1, e_2, e_3 - \text{базис}$$

$$e_1 = (1, 0, 0)^T \longrightarrow \varphi(e_1) = (1, 1, 0)^T$$

$$e_2 = (0, 1, 0)^T \longrightarrow \varphi(e_2) = (2, 1, 3)^T$$

$$e_3 = (0, 0, 1)^T \longrightarrow \varphi(e_3) = (0, -1, 1)^T$$

$$[\varphi] = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & -1 \\ 0 & 3 & 1 \end{pmatrix}$$

1446. 
$$a_1 = (2, 0, 3), b_1 = (1, 2, -1),$$
  
 $a_2 = (4, 1, 5), b_2 = (4, 5, -2),$   
 $a_3 = (3, 1, 2); b_3 = (1, -1, 1).$ 

$$\varphi(a_1) = b_1, \ \varphi(a_2) = b_2, \ \varphi(a_3) = b_3$$

$$[\varphi] = ?$$

1446. 
$$a_1 = (2, 0, 3), b_1 = (1, 2, -1),$$
  
 $a_2 = (4, 1, 5), b_2 = (4, 5, -2),$   
 $a_3 = (3, 1, 2); b_3 = (1, -1, 1).$ 

$$\varphi(a_1) = b_1, \ \varphi(a_2) = b_2, \ \varphi(a_3) = b_3$$

$$[\varphi] = ?$$

 $[\varphi](a_1\ a_2\ a_3) = (b_1\ b_2\ b_3)$  Обозначим  $A = (a_1\ a_2\ a_3),\ B = (b_1\ b_2\ b_3)$   $[\varphi]A = B$ 

 $[\varphi] = BA^{-1}$ 



 $b_1 = (1, 2, -1),$ 

$$a_{2} = (4, 1, 5), \quad b_{2} = (4, 5, -2),$$

$$a_{3} = (3, 1, 2); \quad b_{3} = (1, -1, 1).$$

$$A = \begin{pmatrix} 2 & 4 & 3 \\ 3 & 5 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 4 & 1 \\ 2 & 5 & -1 \\ -1 & -2 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} -3 & 3 & -3 \\ 7 & -5 & 2 \\ 1 & -2 & 2 \end{pmatrix} = \begin{pmatrix} -3 & 7 & 7 \\ 3 & 5 & 2 \\ -3 & 2 & 2 \end{pmatrix}$$
and an exp. gonoru. Aij =  $(-1)^{1/2}$  Mij.

1446.  $a_1 = (2, 0, 3),$ 

$$[\varphi] = BA^{-1}$$

$$-6+12-3=-3$$

$$0.1A11+0.12A12+0.5A13=$$

$$264A$$

$$14-20+6=0$$

$$2-8+6=0$$

 $[\varphi] = BA^{-1}$ 

1446. 
$$a_1 = (2, 0, 3), b_1 = (1, 2, -1),$$
  
 $a_2 = (4, 1, 5), b_2 = (4, 5, -2),$   
 $a_3 = (3, 1, 2); b_3 = (1, -1, 1).$ 

$$A = \begin{pmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 3 & 5 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 4 & 1 \\ 2 & 5 & -1 \\ -1 & -2 & 1 \end{pmatrix}$$

$$A^{-1} = \frac{1}{-3} \begin{pmatrix} -3 & 7 & 1\\ 3 & -5 & -2\\ -3 & 2 & 2 \end{pmatrix}$$

1446. 
$$a_1 = (2, 0, 3), b_1 = (1, 2, -1),$$
 $a_2 = (4, 1, 5), b_2 = (4, 5, -2),$ 
 $a_3 = (3, 1, 2); b_3 = (1, -1, 1).$ 

$$[\varphi] = BA^{-1}$$

$$[\varphi] = BA^{-1} = \begin{pmatrix} 1 & 4 & 1 \\ 2 & 5 & -1 \\ -1 & -2 & 1 \end{pmatrix} \cdot \frac{1}{-3} \begin{pmatrix} -3 & 7 & 1 \\ 3 & -5 & -2 \\ -3 & 2 & 2 \end{pmatrix} = \frac{1}{-3} \begin{pmatrix} 6 & -11 & -5 \\ 12 & -13 & -10 \\ -6 & 5 & 5 \end{pmatrix}$$



$$[\varphi]_{e,f} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$













$$e_1, \dots, e_n \xrightarrow{T} e'_1, \dots, e'_n$$

$$x = Tx'$$

$$e_1, ..., e_n \xrightarrow{T} e'_1, ..., e'_n$$
  $e_1, ..., e_n \xrightarrow{T} e'_1, ..., e'_n$   $x = Tx'$   $x = Tx'$ 



$$[\varphi]_{e'} = T^{-1}[\varphi]_e T$$

**1453.** Линейное преобразование  $\varphi$  в базисе  $e_1$ ,  $e_2$ ,  $e_3$  имеет матрицу

$$\begin{pmatrix} 15 & -11 & 5 \\ 20 & -15 & 8 \\ 8 & -7 & 6 \end{pmatrix}.$$

Найти его матрицу в базисе

$$f_1 = 2e_1 + 3e_2 + e_3$$
,  $f_2 = 3e_1 + 4e_2 + e_3$ ,  $f_3 = e_1 + 2e_2 + 2e_3$ 

**1453.** Линейное преобразование  $\varphi$  в базисе  $e_1$ ,  $e_2$ ,  $e_3$  имеет матрицу

Найти его матрицу в базисе

$$f_1 = 2e_1 + 3e_2 + e_3$$
,  $f_2 = 3e_1 + 4e_2 + e_3$ ,  $f_3 = e_1 + 2e_2 + 2e_3$ 

$$[d]t = 3$$

План:

- 1) *T*
- 2)  $T^{-1}$

3) 
$$[\varphi]_f = T^{-1}[\varphi]_e T$$

1453. Линейное преобразование  $\varphi$  в базисе  $e_1$ ,  $e_2$ ,  $e_3$  имеет матрицу

Найти его матрицу в базисе

$$f_1 = 2e_1 + 3e_2 + e_3$$
,  $f_2 = 3e_1 + 4e_2 + e_3$ ,  $f_3 = e_1 + 2e_2 + 2e_3$ 

$$T = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 9 & 2 \\ 1 & 1 & 2 \end{pmatrix} \quad T' = \frac{1}{-1} \begin{pmatrix} 6 & -5 & 2 \\ -4 & 3 & -1 \\ -1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} -6 & 5 & -2 \\ 4 & -3 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$

#### Задача З

$$[\varphi]_f = T^{-1}[\varphi]_e T = \begin{pmatrix} 6 & -5 & 2 \\ -4 & 3 & -1 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 15 & -11 & 5 \\ 20 & -15 & 8 \\ 8 & -7 & 6 \end{pmatrix} \begin{pmatrix} 2 & 3 & 1 \\ 3 & 4 & 2 \\ 1 & 1 & 2 \end{pmatrix} =$$

$$= \begin{pmatrix} -6 & 5 & -2 \\ 8 & -6 & 2 \\ 3 & -3 & 3 \end{pmatrix} \begin{pmatrix} 2 & 3 & 1 \\ 3 & 4 & 2 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

$$[\varphi]_f = T^{-1}[\varphi]_e T = \begin{pmatrix} 6 & -5 & 2 \\ -4 & 3 & -1 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 15 & -11 & 5 \\ 20 & -15 & 8 \\ 8 & -7 & 6 \end{pmatrix} \begin{pmatrix} 2 & 3 & 1 \\ 3 & 4 & 2 \\ 1 & 1 & 2 \end{pmatrix} =$$

$$= \begin{pmatrix} -6 & 5 & -2 \\ 8 & -6 & 2 \\ 3 & -3 & 3 \end{pmatrix} \begin{pmatrix} 2 & 3 & 1 \\ 3 & 4 & 2 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

#### **Задание 5** (сдать до до 8 марта) *Вариант 1*

1. Найти матрицу перехода от базиса  $\{a_1, a_2, a_3\}$  к базису  $\{b_1, b_2, b_3\}$ :

$$\mathbf{a}_1 = [1, 2, 3]^{\top}, \quad \mathbf{a}_2 = [1, 3, 4]^{\top}, \quad \mathbf{a}_3 = [1, 1, 3]^{\top};$$
  
 $\mathbf{b}_1 = [1, 0, 2]^{\top}, \quad \mathbf{b}_2 = [2, -1, -1]^{\top}, \quad \mathbf{b}_3 = [2, 1, 0]^{\top}.$ 

2. Доказать, что каждая из двух систем функций

$$\{(1+t)^3, (1-t)^3, t-t^2+t^3, 1+t+t^2+t^3\},\$$
  
 $\{t+t^2, t^3, 1-5t-t^3, (1-t)^3\}$ 

является базисом в пространстве многочленов степени не выше 3. Найти матрицу перехода от первого базиса ко второму и координаты многочлена в первом базисе, если известны его координаты во втором.

**3.** Векторы  $\mathbf{a}_k$ ,  $\mathbf{b}_k$  заданы своими координатами в базисе  $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ :

$$\mathbf{a}_1 = [2, 1, 1]^{\top}, \quad \mathbf{a}_2 = [3, 1, 2]^{\top}, \quad \mathbf{a}_3 = [4, 4, -1]^{\top};$$
  
 $\mathbf{b}_1 = [-2, 5, 6]^{\top}, \quad \mathbf{b}_2 = [-3, 2, -2]^{\top}, \quad \mathbf{b}_3 = [1, -1, 0]^{\top}.$ 

Найти матрицы линейного оператора, переводящего  $\mathbf{a}_k$  в соответствующие  $\mathbf{b}_k$ , в базисе  $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$  и в базисе  $\{\mathbf{e}_2, \mathbf{e}_3 - \mathbf{e}_2, \mathbf{e}_1 - \mathbf{e}_2 + \mathbf{e}_3\}$ .

- **4.** Пусть S, A и  $\mathcal{L}$  подпространства симметричных, кососимметричных и нижнетреугольных матриц в пространстве  $M_n(\mathbb{R})$  всех вещественных квадратных матриц порядка n.
  - (a) Доказать, что суммы подпространств S + A и A + L прямые и что эти суммы совпадают.
  - (b) Найти проекции матрицы

$$A = \left[ \begin{array}{ccccc} 1 & 2 & 2 & \dots & 2 \\ 1 & 1 & 2 & \dots & 2 \\ 1 & 1 & 1 & \dots & 2 \\ \dots & \dots & \dots & \ddots & 2 \\ 1 & 1 & 1 & \dots & 1 \end{array} \right]$$

на  $\mathcal L$  параллельно  $\mathcal A$  и на  $\mathcal A$  параллельно  $\mathcal S$ 

- **5.** Даны векторы  $\mathbf{a}, \mathbf{b}$  и  $\mathbf{n}$  трёхмерного пространства с условием  $\mathbf{a} \cdot \mathbf{n} \neq 0$ ,  $\mathbf{b} \cdot \mathbf{n} \neq 0$ , плоскость L с нормалью  $\mathbf{n}$ . Отображение  $P_a$  это проектирование на  $\langle \mathbf{a} \rangle$  параллельно L,  $P_b$  проектирование на  $\langle \mathbf{b} \rangle$  параллельно L.
  - 1) Записать формулой отображение  $P_a$ , проверить его линейность;
  - 2) Найти ядро и образ отображения  $P_a + P_b$ .

1

6. Найти базисы ядра и образа линейного оператора, заданного матрицей

$$\left[\begin{array}{cccc} 2 & 1 & 2 & 2 \\ 5 & 2 & 1 & 1 \\ 3 & 1 & 5 & -1 \\ 4 & 2 & 7 & 4 \end{array}\right].$$

7. Привести к диагональному виду матрицы

$$\begin{bmatrix} -4 & 6 & 3 \\ -6 & 8 & 3 \\ 6 & -6 & -1 \end{bmatrix}, \qquad \begin{bmatrix} 4 & -5 & 0 \\ 1 & -1 & -1 \\ -2 & 3 & 0 \end{bmatrix},$$

при необходимости пользуясь комплексными векторами.

- **8\*.** Пусть  $\mathcal{V} = \mathbb{R}[x]_{\leqslant n}$  это подпространство многочленов степени не более n в  $\mathbb{R}[x]$ .
  - (a) Доказать, что  $\frac{d}{dx}$  является линейным оператором на  $\mathcal{V}$ , что он нильпотентен и представить его матрицей в каком-нибудь базисе.
  - (b) Найти собственные числа и векторы оператора  $x\frac{d}{dx}$  на  $\mathcal{V}$ .

9\*. Доказать линейную независимость над ℝ систем функций

- (a)  $\{\sin x, \sin 2x, \dots, \sin nx\}$ ;
- (b)  $\{e^{k_1x}, e^{k_2x}, \dots, e^{k_nx}\}$ , где  $k_i \neq k_j$  при  $i \neq j$ .