Lecture 1.2: Vector Spaces

Optimization and Computational Linear Algebra for Data Science

Contents

1. Introduction: vectors

Back to high-school

2. Vector spaces

Definition and examples

3. Subspaces

Vector spaces inside other vector spaces

Introduction

Introduction

So far, « Vectors = arrows »

Two fundamental operations:

1. Add two vectors \vec{u} and \vec{v} to obtain another vector $\vec{u} + \vec{v}$

2. Multiply a vector \vec{u} by a «scalar» (= a real number) λ to get another vector $\lambda \cdot \vec{u}$

ntroduction 2/13

Coordinate representation

- One can represent vectors using coordinates
- 2D vectors in the plane $\vec{u} = (u_1, u_2) \in \mathbb{R}^2$
- 3D vectors in space $\vec{u} = (u_1, u_2, u_3) \in \mathbb{R}^3$
- n-dimensional vectors $\vec{u} = (u_1, u_2, \dots, u_n) \in \mathbb{R}^n$

$$u + v = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$

$$\lambda \cdot \vec{u} = (\lambda u_1, \lambda u_2, \dots, \lambda u_n)$$

3/13

Vector Spaces

Vector Spaces 4/13

Abstract definition

Definition (simplified)

A vector space consists of a set V (whose elements are called vectors) and two operations + and \cdot such that

- The sum of two vectors is a vector: for $\vec{x}, \vec{y} \in V$, the sum $\vec{x} + \vec{y}$ is a vector, i.e. $\vec{x} + \vec{y} \in V$.
- Multiplying a vector $\vec{x} \in V$ by a scalar $\lambda \in \mathbb{R}$ gives a vector $\lambda \cdot \vec{x} \in V$.
- The operations + and · are "nice and compatible".

Vector Spaces 5/

« Nice and compatible »?

1. The vector sum is commutative and associative. For all $\vec{x}, \vec{y}, \vec{z} \in V$:

$$\vec{x} + \vec{y} = \vec{y} + \vec{x}$$
 and $\vec{x} + (\vec{y} + \vec{z}) = (\vec{x} + \vec{y}) + \vec{z}$.

- 2. There exists a zero vector $\vec{0} \in V$ that verifies $\vec{x} + \vec{0} = \vec{x}$ for all $\vec{x} \in V$.
- 3. For all $\vec{x} \in V$, there exists $\vec{y} \in V$ such that $\vec{x} + \vec{y} = \vec{0}$. Such \vec{y} is called the additive inverse of \vec{x} and is written $-\vec{x}$.
- 4. Identity element for scalar multiplication: $1 \cdot \vec{x} = \vec{x}$ for all $\vec{x} \in V$.
- 5. Distributivity: for all $\alpha, \beta \in \mathbb{R}$ and all $\vec{x}, \vec{y} \in V$,

$$(\alpha + \beta) \cdot \vec{x} = \alpha \cdot \vec{x} + \beta \cdot \vec{y}$$
 and $\alpha \cdot (\vec{x} + \vec{y}) = \alpha \cdot \vec{x} + \alpha \cdot \vec{y}$.

6. Compatibility between scalar multiplication and the usual multiplication: for all $\alpha, \beta \in \mathbb{R}$ and all $\vec{x} \in V$, we have

$$\alpha \cdot (\beta \cdot \vec{x}) = (\alpha \beta) \cdot \vec{x}.$$

Vector Spaces 6/1

Example 1: \mathbb{R}^n

The set $V = \mathbb{R}^n$ endowed with the usual vector addition +

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$

and the usual scalar multiplication.

$$\alpha \cdot (x_1, \dots, x_n) = (\alpha x_1, \dots, \alpha x_n)$$

is a vector space.

We will work in \mathbb{R}^n 99% ot the time!

Vector Spaces 7

Example 2: functions

The set $V \stackrel{\mathrm{def}}{=} \{f \mid f : \mathbb{R} \to \mathbb{R}\}$ of all functions from \mathbb{R} to itself endowed with the addition + and the scalar multiplication \cdot defined by

Vector Spaces 8/13

Example 3: random variables

The set of random variables on a given probability space Ω is a vector space:

If X and Y are two random variables and $\alpha \in \mathbb{R}, X + Y$ and αX are also random variables.

Important to have this in mind when doing stats/probabilities!

Vector Spaces 9/13

Why do we need all this?

Get geometric intuition.

We will see for instance that the notion of length in \mathbb{R}^n is deeply connected to the notion of variance of random variables.

Save time.

A theorem that applies to vector spaces will in particular be true for all the examples we listed before.

Vector Spaces 10/13

Subspaces

Subspaces 11/13

Definition

Definition

We say that a non-empty subset S of a vector space V is a subspace if it is closed under addition and multiplication by a scalar, that is if

- 1. for all $x, y \in S$ we have $x + y \in S$,
- 2. for all $x \in S$ and all $\alpha \in \mathbb{R}$ we have $\alpha x \in S$.

S is a sobspace of V=R3

Remark: a subspace is a also vector space.

Subspaces 12/13

Examples

- $ightharpoonup \mathbb{R}^n$ is a subspace of \mathbb{R}^n .
- obvious

- Any line that contains the origin is subspace of \mathbb{R}^2 .

Subspaces 13/13