

INE011 – Métodos heurísticos para optimización

Universidad de Aysén

¿Qué son? Formalmente...

INE011 - enrique.urra@uaysen.cl

Estados del problema (o soluciones)

Tipos de CSP según sus variables

Discreto
$$X_i \longrightarrow \{ \overset{\frown}{\mathbb{Z}}, \overset{\frown}{\mathbb{Z}}, \overset{\frown}{\mathbb{Z}} \}$$

Binario $X_i \longrightarrow \{ \text{true, false } \}$

Infinito $X_i \longrightarrow \mathbb{Z} = \{ ..., -2, -1, 0, 1, 2, ... \}$

Ejemplo (clásico): Vendedor viajero

Dado un conjunto de ciudades y las distancias entre cada par de ciudades, ¿cuál es la ruta más corta posible (menos costosa) de realizar en donde se visite cada ciudad exactamente una vez y retornando a la ciudad origen?

Ejemplo (clásico): Vendedor viajero

Variables

 c_{ii} : costo de viajar desde la ciudad i a la ciudad j

c _{ij}	1	2	3	4
1	0	10	15	20
2	10	0	35	25
3	15	35	0	30
4	20	25	30	0

Ejemplo (clásico): Vendedor viajero

Variables

 x_{ij} : 1 si se viaja desde la ciudad i a la ciudad j

X _{ij}	1	2	3	4
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0

Ejemplo (clásico): Vendedor viajero

Variables

 x_{ij} : 1 si se viaja desde la ciudad i a la ciudad j

X _{ij}	1	2	3	4
1	0	0	1	0
2	0	0	0	0
3	0	0	0	1
4	1	0	0	0

Ejemplo (clásico): Vendedor viajero

Función objetivo: minimizar costos de viaje

$$\min \sum_{i} \sum_{j} C_{i,j} X_{i,j} = 15 + 30 + 20 = 65$$

¿Y la ciudad 2?

x _{ij}	1	2	3	4
1	0	0	1	0
2	0	0	0	0
3	0	0	0	1
4	1	0	0	0

Ejemplo (clásico): Vendedor viajero

Restricciones:

- Se debe **entrar** a cada ciudad **una vez**: $\sum_i x_{i,j} = 1$, para todo j
- Se debe **salir** de cada ciudad **una vez**: $\sum_{j} x_{i,j} = 1$, para todo i

X _{ij}	1	2	3	4	
1	0	0	1	0	$\sum\nolimits_{i=1}^{}=$
2	0	0	0	0	$\sum_{i=2}$ =
3	0	0	0	1	$\sum_{i=3}$ =
4	1	0	0	0	$\sum_{i=4}$ =
	$\sum_{j=1}^{\infty} = 1$	$\sum_{j=2}^{\infty} = 0$	$\sum_{j=3} = 1$	$\sum_{j=4} = 1$	

Ejemplo (clásico): Vendedor viajero

Restricciones:

- Se debe **entrar** a cada ciudad **una vez**: $\sum_i x_{i,j} = 1$, para todo j
- Se debe **salir** de cada ciudad **una vez**: $\sum_i x_{i,j} = 1$, para todo i

X _{ij}	1	2	3	4	
1	0	0	1	0	$\sum_{i:}$
2	1	0	0	0	\sum_{i}
3	0	0	0	1	$\sum_{i=1}^{n}$
4	0	1	0	0	$\sum_{i=1}^{n}$
	$\sum_{j=1}^{\infty} = 1$	$\sum_{j=2}^{\bullet} = 1$	$\sum_{j=3} = 1$	$\sum_{j=4}^{4} = 1$	•

Ejemplo (clásico): Vendedor viajero

Formulación completa

 $min \sum_{i} \sum_{i} c_{i,j} x_{i,j}$ $\sum_{i} x_{i,j} = 1, \text{ para todo } j$ $\sum_{i} x_{i,j} = 1, \text{ para todo } i$ $x_{i,j} \in \{0,1\}$ ¿Está completo?

Ejemplo (clásico): Vendedor viajero

- La siguiente solución es factible con el modelo actual (sub-rutas)
- ¿Qué restricción incorporar?

x _{ij}	1	2	3	4	
1	0	0	1	0	$\sum_{i=1}^{\infty}$
2	0	0	0	1	$\sum_{i=1}^{n}$
3	1	0	0	0	$\sum_{i=3}^{n}$
4	0	1	0	0	$\sum_{i=4}$
	$\sum_{j=1}^{\bullet} = 1$	$\sum_{j=2}^{}=1$	$\sum_{j=3} = 1$	$\sum_{j=4} = 1$	

- Ejercicio 1 (Vendedor viajero)
 - Buscar información sobre la formulación de Miller-Tucker-Zemlin (MTZ) para eliminación de sub-rutas
 - ✓ ¿Qué restricciones incorpora? Analizar y comprender
 - Desarrollar ejemplo con valores y asignaciones

- Ejercicio 2 (Vendedor viajero)
 - Revisar documentación sobre repositorio de datos (benchmark instances)
 para TSP en TSPLIB
 - Revisar <u>documentación</u> y <u>archivos</u>
 - Implementar un programa en su lenguaje favorito que permita leer desde los archivos el formato de las instancias y que guarde la información para su procesamiento:
 - Considerar una funcionalidad que permita ingresar manual o automáticamente (vía archivo de texto) una ruta, y que calcule su costo
 - Usar dicha funcionalidad para probar las rutas óptimas disponibles en el repositorio (archivos cuyo nombre dice opt.tour)

Síguenos en los canales digitales

⊕ ⊕ ⊕ #UAysen