$\iiint \int (\frac{1}{6} \left(2 t_{1} \mathcal{A}^{\alpha_{i}}_{\alpha} \mathcal{A}^{\theta}_{i} + 6 \mathcal{A}^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} + 6 f^{\alpha \beta} \tau (\Delta + \mathcal{K})_{\alpha \beta} - 4 t_{1} \mathcal{A}^{\theta}_{\alpha} \partial_{i} f^{\alpha_{i}} + 4 t_{1} \mathcal{A}^{\theta}_{i} \partial_{i} f^{\alpha}_{\alpha} - 2 t_{1} \partial_{i} f^{\theta}_{\alpha} \partial^{i} f^{\alpha}_{\alpha} - 2 t_{1} \partial_{i} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}}_{\alpha} + 4 t_{1} \partial^{i} f^{\alpha_{i}}_{\alpha} \partial_{\theta} f^{\alpha_{i}}_{\alpha} - 2 t_{1} \partial_{i} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}}_{\alpha} - 2 t_{1} \partial_{\theta} f^{\alpha_{i}}_{\alpha} - 2 t_{1}$ $\partial_{\theta}f_{,}^{\;\theta} + 8\,r_{.}\,\partial_{\beta}\mathcal{A}_{\alpha_{i}\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} - 4\,r_{.}\,\partial_{\beta}\mathcal{A}_{\alpha\theta_{i}}\,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 4\,r_{.}\,\partial_{\beta}\mathcal{A}_{,\theta\alpha}\,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} - 2\,r_{.}\,\partial_{i}\mathcal{A}_{\alpha\beta\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 4\,r_{.}\,\partial_{\beta}\mathcal{A}_{,\theta\alpha}\,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} - 2\,r_{.}\,\partial_{\alpha}\mathcal{A}_{\alpha\beta\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 4\,r_{.}\,\partial_{\beta}\mathcal{A}_{,\theta\alpha}\,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} - 2\,r_{.}\,\partial_{\alpha}\mathcal{A}_{\alpha\beta\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 4\,r_{.}\,\partial_{\beta}\mathcal{A}_{,\theta\alpha}\,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} - 2\,r_{.}\,\partial_{\alpha}\mathcal{A}_{\alpha\beta\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 4\,r_{.}\,\partial_{\alpha}\mathcal{A}_{\alpha\beta\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} - 2\,r_{.}\,\partial_{\alpha}\mathcal{A}_{\alpha\beta\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 2\,r_{.}\,\partial_{\alpha}\mathcal{A}_{\alpha\beta\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 2\,r_{.}\,\partial_{\alpha}\mathcal{A}_{\alpha\beta\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} - 2\,r_{.}\,\partial_{\alpha}\mathcal{A}_{\alpha\beta\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 2\,r_{.}\,\partial_{\alpha}\mathcal{A}_{\alpha\beta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 2\,r_{.}\,\partial_{\alpha}\mathcal{A}_{\alpha\beta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 2\,r_{.}\,\partial_{\alpha}\mathcal{A}_{\alpha\beta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 2\,r_{.}\,\partial_{\alpha}\mathcal{A}_{\alpha\beta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 2\,r_{.}\,\partial_{\alpha}\mathcal{A}_{\alpha\beta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta_{i}} + 2\,r_{.}\,\partial_{\alpha}\mathcal{A}^{\alpha\beta_{i}} + 2\,r_{.}\,\partial_{\alpha}\mathcal{$ $2r_{2}\partial_{\theta}\mathcal{A}_{\alpha\beta_{i}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}} - 4r_{2}\partial_{\theta}\mathcal{A}_{\alpha_{i}\beta}\partial^{\theta}\mathcal{R}^{\alpha\beta_{i}} + 6r_{5}\partial_{\iota}\mathcal{A}_{\theta}^{\kappa}{}_{\kappa}\partial^{\theta}\mathcal{R}^{\alpha_{i}}{}_{\alpha} - 6r_{5}\partial_{\theta}\mathcal{R}_{\kappa}^{\kappa}\partial^{\theta}\mathcal{R}^{\alpha_{i}}{}_{\alpha} - 6t_{1}\partial_{\alpha}f_{\iota\theta}\partial^{\theta}f^{\alpha_{i}} - 6t_{2}\partial_{\alpha}f_{\mu}\partial^{\theta}f^{\alpha_{i}} - 6t_{3}\partial_{\alpha}f_{\mu}\partial^{\theta}f^{\alpha_{i}} - 6t_{4}\partial_{\alpha}f_{\mu}\partial^{\theta}f^{\alpha_{i}} - 6t_{5}\partial_{\alpha}f_{\mu}\partial^{\theta}f^{\alpha_{i}} - 6t_{5}\partial_{\alpha}f_{\mu}\partial^{\theta}f^{\alpha_{i}} - 6t_{5}\partial_{\alpha}f_{\mu}\partial^{\theta}f^{\alpha_{i}} - 6t_{5}\partial_{\alpha}f_{\mu}\partial^{\theta}f^{\alpha_{i}} - 6t_{5}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}} - 6t_{5}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}} - 6t_{5}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}} - 6t_{5}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}} - 6t_{5}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}} - 6t_{5}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}} - 6t_{5}\partial_{\alpha}f^{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}$ $3t. \, \partial_{\alpha}f_{\theta_{i}}\partial^{\theta}f^{\alpha_{i}} + 3t. \, \partial_{i}f_{\alpha\theta}\partial^{\theta}f^{\alpha_{i}} + 3t. \, \partial_{\theta}f_{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}} + 3t. \, \partial_{\theta}f_{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}} + 3t. \, \partial_{\theta}f_{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}} + 6t. \, \mathcal{A}_{\alpha\theta_{i}} \left(\mathcal{A}^{\alpha_{i}\theta} + 2\partial^{\theta}f^{\alpha_{i}}\right) - 2d^{\alpha_{i}\theta_{i}}\partial^{\theta}f^{\alpha_{i}} + 3t. \, \partial_{\alpha}f_{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}} + 3t. \, \partial_{\alpha}f_{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}$ $6r. \frac{\partial_{\alpha}\mathcal{A}^{\alpha \imath \theta}}{5} \partial_{\kappa}\mathcal{A}_{,\ \theta}^{\ \kappa} + 12r. \frac{\partial^{\theta}\mathcal{A}^{\alpha \imath}}{5} \partial_{\kappa}\mathcal{A}_{,\ \theta}^{\ \kappa} + 6r. \frac{\partial_{\alpha}\mathcal{A}^{\alpha \imath \theta}}{5} \partial_{\kappa}\mathcal{A}_{\theta}^{\ \kappa}, -12r. \frac{\partial^{\theta}\mathcal{A}^{\alpha \imath}}{5} \partial_{\kappa}\mathcal{A}_{\theta}^{\ \kappa},))[t,\ \chi,\ y,\ z]\, dz\, dy\, dx\, dt$ Wave operator ${\stackrel{0^+}{\cdot}}\mathcal{F}^{\parallel} \stackrel{0^+}{\cdot} f^{\parallel} \stackrel{0^+}{\cdot} f^{\perp}$ ${}^{0^+}\mathcal{A}^{\parallel}$ † $0.^{+}f^{\parallel}$ † 0

0.+ f + ⁰-*'A*^{||}†

0

PSALTer results panel

	$k^2 r_{.5} - \frac{t_{.1}}{2}$	$-\frac{\iota_{\dot{1}}}{\sqrt{2}}$	-1000000000000000000000000000000000000	0	0	0	0				
$^{1,^{+}}\mathcal{A}^{\scriptscriptstyle \perp} + ^{\alpha\beta}$	$-\frac{\frac{t}{1}}{\sqrt{2}}$	0	0	0	0	0	0				
$\overset{1,^{+}}{\cdot}f^{\parallel} + ^{\alpha\beta}$	$-\frac{t}{\sqrt{2}}$ $\frac{i k t}{\sqrt{2}}$	0	0	0	0	0	0				
$\mathcal{L}^{\mathcal{A}^{\parallel}}$ \uparrow^{lpha}	0	0	0	$k^2 r_{.5} + \frac{t_{.1}}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$\frac{ikt}{3}$				
$^{1\cdot}\mathcal{A}^{\scriptscriptstyle\perp}\dagger^{^{lpha}}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	$\frac{t}{3}$	0	$\frac{1}{3} i \sqrt{2} kt.$				
$1 \cdot f^{\parallel} + \alpha$	0	0	0	0	0	0	0				
1. f. † a	0	0	0	$-\frac{1}{3} ikt.$	$-\frac{1}{3}i\sqrt{2}kt.$	0	$\frac{2 k^2 t_1}{3}$	$^{2,^{+}}\mathcal{A}^{\parallel}{}_{\alpha\beta}$	$2^+f^{\parallel}_{\alpha\beta}$	$2^{-}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$	
							$^{2^{+}}\mathcal{H}^{\parallel}$ $\dagger^{lphaeta}$	_	$-\frac{i k t}{\sqrt{2}}$	0	
							$^{2.}f^{\parallel}\uparrow^{\alpha\beta}$	٧-	$k^2 t$.	0	
							$^{2}\mathcal{H}^{\parallel}\dagger^{\alpha\beta\chi}$	0	0	$\frac{t}{2}$	
Saturated propagator											
$0.^{+}\sigma^{\parallel} 0.^{+}\tau^{\parallel} 0.^{+}\tau^{\perp} 0.^{-}\sigma^{\parallel}$											

 $^{1}\sigma^{\parallel}{}_{\alpha}$

 $-\frac{1}{\sqrt{2} (k^2 r_{5} + 2 k^4 r_{5})} \quad 0$

0

 $-\frac{i(6k^2r_{5}+t_{.})}{\sqrt{2}k(1+2k^2)^2r_{.}t_{.}} 0$

 $-\frac{1}{k r_1 + 2 k^3 r_1}$

0

 $6k^2r_1+t_1$

17

 $0 \quad \frac{i(6k^2r_1+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$

0 0

0

 $\frac{1}{2}\sigma^{\parallel} + \alpha$

 $\frac{1}{2}\sigma^{\perp} + \alpha$

 1 τ^{\parallel} \dagger^{α}

0 0 0

 $^{0,+}\sigma^{\parallel}$ † $0.^+\tau^{\parallel}$ †

 $0.^{+}\tau^{\perp}$ †

0.0 σ^{\parallel} †

0

		$e^{-\sigma^{\parallel}}$	0	0	$\frac{2}{t_1}$
Source constrai	nts				
Spin-parity form	Covariant form			Multip	licities
$0^+_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==0$			1	
0^+ $\tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$			1	
$0^+ \sigma^{\parallel} == 0$	$\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta} == 0$			1	
$2 i k 1 \sigma^{\perp \alpha} + 1 \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$			3	
1. τ" == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$			3	
$\bar{i} k 1^+_{\cdot} \sigma^{\perp}{}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta}$	==		3	
	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$				
$-2 i k 2^{+} \sigma^{\parallel^{\alpha\beta}} + 2^{+} \tau^{\parallel^{\alpha\beta}} == 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \chi} - 3 \partial_{\delta} \partial^{\alpha} \partial^$			5	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}$ - $3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}$ - $3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}$ +				
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha}+4ik^{\chi}\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta}_{\delta}{}^{\epsilon}-$				
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \beta \delta} + 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\lambda} \partial^{\alpha} \partial^{\beta} \partial^{\beta} \partial^{\alpha} \partial^{\beta} $	$\partial^\epsilon\partial_\delta\partial_\chi\sigma^{etalpha\delta}$	⁵ +		
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi\delta} - 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\phi} \partial_{\phi} \partial_{\phi} \partial^{\phi} \partial_{\phi} \partial^{\phi} \partial_{\phi} \partial^{\phi} $	$\chi \sigma^{\delta}_{\delta}^{\epsilon}) == 0$			

Massive spectrum

Total expected gauge generators:

Pole residue:	$-\frac{7}{r_{.5}}$	$\frac{2p^2}{t_1}$	$\frac{4r_5p^4}{t_1^2}$	>				
Polarisations:	2							
Initarity conditions								

Unitarity conditions r. < 0 && t. < 0 && r. < 0