### **Maximum Likelihood Estimation**

Univariate

Nipun Batra

July 19, 2023

IIT Gandhinagar

We have three courses: C1, C2, C3. Assume no student takes more than one course. The scores of students in these courses are normally distributed with the following parameters:

- C1:  $\mu_1 = 80, \sigma_1 = 10$
- C2:  $\mu_2 = 70, \sigma_2 = 10$
- C3:  $\mu_3 = 90, \sigma_3 = 5$

I randomly pick up a student and ask them their marks. They say 82. Which course do you think they are from?

Most likely C1. But why?

1

Let us plot the probability density functions of the three courses.



Let us plot the probability density functions of the three courses.



Let us say we observed a value of 20. We know it came from a normal distribution with  $\sigma=1$ . What is the most likely value of  $\mu$ ? 20. But why?

4

# Introduction

#### **Univariate Normal Distribution**

The probability density function of a univariate normal distribution is given by:

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
 (1)

Let us assume we have a dataset  $D = \{x_1, x_2, \dots, x_n\}$ , where each  $x_i$  is an independent sample from the above distribution. We want to estimate the parameters  $\theta = \{\mu, \sigma\}$  from the data.

Our likelihood function is given by:

$$P(D|\theta) = \mathcal{L}(\mu, \sigma^2) = \prod_{i=1}^n f(x_i|\mu, \sigma^2)$$
 (2)

### Log Likelihood Function

Log-likelihood function:

$$\log \mathcal{L}(\mu, \sigma^2) = \sum_{i=1}^n \log f(x_i | \mu, \sigma^2)$$
 (3)

Simplifying the above equation, we get:

$$\log \mathcal{L}(\mu, \sigma^2) = \sum_{i=1}^n \log f(x_i | \mu, \sigma^2)$$

$$= \sum_{i=1}^n \log \left( \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) \right)$$

$$= \sum_{i=1}^n \left( \log\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) + \log\left(\exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)\right) \right)$$

6

$$\log \mathcal{L}(\mu, \sigma^2) = \sum_{i=1}^n \left( \log \left( \frac{1}{\sqrt{2\pi\sigma^2}} \right) - \frac{(x_i - \mu)^2}{2\sigma^2} \right)$$
$$= \sum_{i=1}^n \left( -\frac{1}{2} \log(2\pi\sigma^2) - \frac{(x_i - \mu)^2}{2\sigma^2} \right)$$
$$= -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$

#### Log Likelihood Function for Univariate Normal Distribution

Log-likelihood function for normally distributed data is:

$$\log \mathcal{L}(\mu, \sigma^2) = -\frac{n}{2}\log(2\pi) - n\log(\sigma) - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2$$

### Maximum Likelihood Estimate for $\mu$

To find the MLE for  $\mu$ , we differentiate the log-likelihood function with respect to  $\mu$  and set it to zero:

$$\frac{\partial \log \mathcal{L}(\mu, \sigma^2)}{\partial \mu} = \frac{\partial}{\partial \mu} \left( -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 \right) = 0$$

$$\frac{\partial}{\partial \mu} \left( \sum_{i=1}^n (x_i - \mu)^2 \right) = 0$$

#### Maximum Likelihood Estimate for $\mu$

MLE of  $\mu$ , denoted as  $\hat{\mu}_{\text{MLE}}$ , is given by:

$$\hat{\mu}_{\mathsf{MLE}} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

### MLE for $\sigma$ for normally distributed data

Recall that the log-likelihood function is given by:

$$\log \mathcal{L}(\mu, \sigma^2) = \sum_{i=1}^n \log f(x_i | \mu, \sigma^2)$$
 (4)

Let us find the maximum likelihood estimate of  $\sigma^2$  now. We can do this by taking the derivative of the log-likelihood function with respect to  $\sigma^2$  and equating it to zero.

$$\frac{\partial \log \mathcal{L}(\mu, \sigma^2)}{\partial \sigma^2} = \sum_{i=1}^n \frac{\partial \log f(x_i | \mu, \sigma^2)}{\partial \sigma^2} = 0$$
 (5)

### MLE for $\sigma$ for normally distributed data

#### Log Likelihood Function for Univariate Normal Distribution

Log-likelihood function for normally distributed data is:

$$\log \mathcal{L}(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi) - n \log(\sigma) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

Now, we can differentiate the log-likelihood function with respect to  $\sigma$  and equate it to zero.

### MLE for $\sigma$ for normally distributed data

$$\frac{\partial}{\partial \sigma} \log \mathcal{L}(\mu, \sigma^2) = -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^{n} (x_i - \mu)^2 = 0$$

Multiplying through by  $\sigma^3$ , we have:

$$-n\sigma^{2} + \sum_{i=1}^{n} (x_{i} - \mu)^{2} = 0$$

#### Maximum Likelihood Estimate for $\sigma^2$

MLE of  $\sigma^2$ , denoted as  $\hat{\sigma}^2_{\rm MLE}$ , is given by:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

#### Bias of an Estimator

#### Bias of an Estimator

The bias of an estimator  $\hat{\theta}$  of a parameter  $\theta$  is defined as:

$$\mathsf{Bias}(\hat{ heta}) = \mathbb{E}(\hat{ heta}) - heta$$

where  $\mathbb{E}(\hat{\theta})$  is the expected value of the estimator  $\hat{\theta}$ .

- An estimator is said to be unbiased if  $Bias(\hat{\theta}) = 0$ .
- An estimator is said to be biased if  $Bias(\hat{\theta}) \neq 0$ .

### Bias of an Estimator: $\hat{\mu}_{MLE}$

Question: What is the expectation of  $\hat{\mu}_{MLE}$  calculated over? What is the source of randomness?

Let us assume that the true underlying distribution is  $\mathcal{N}(\mu, \sigma^2)$ .

Let  $\mathcal{D}^1 = \{x_1^1, x_2^1, \dots, x_n^1\}$  be a dataset obtained from this distribution.

The MLE of  $\mu$  based on  $\mathcal{D}^1$  is given by:

$$\hat{\mu}_{MLE}^{1} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{1}$$

If we obtained another dataset  $\mathcal{D}^2 = \{x_1^2, x_2^2, \dots, x_n^2\}$  from the same distribution, the MLE of  $\mu$  based on  $\mathcal{D}^2$  would be:

$$\hat{\mu}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n x_i^2$$

### Bias of an Estimator: $\hat{\mu}_{MLE}$

If we repeat this process and obtain datasets  $\mathcal{D}^1, \mathcal{D}^2, \dots, \mathcal{D}^k$ , we would have k different estimates of  $\mu$ .

Taking the expectation of these k estimates gives us the expected value of  $\hat{\mu}_{MLE}$ :

$$\mathbb{E}(\hat{\mu}_{MLE}) = \frac{1}{k} \sum_{i=1}^{k} \hat{\mu}_{MLE}^{i}$$

Simplifying further, we have:

$$\mathbb{E}(\hat{\mu}_{MLE}) = \frac{1}{kn} \sum_{i=1}^{k} \sum_{j=1}^{n} x_j^i$$

This expectation is calculated over multiple datasets  $\mathcal{D}^1, \mathcal{D}^2, \dots, \mathcal{D}^k$ , where each dataset represents a different realization of the random variables from the underlying distribution.

## Bias of an Estimator: $\hat{\mu}_{MLE}$

To show that the estimator  $\hat{\mu}_{MLE}$  is unbiased, we need to demonstrate that  $\mathbb{E}(\hat{\mu}_{MLE}) = \mu$ .

Recall that each  $x_j^i$  is a random variable following  $\mathcal{N}(\mu, \sigma^2)$ . Therefore, the sum  $\sum_{i=1}^k x_j^i$  follows  $\mathcal{N}(k\mu, k\sigma^2)$ .

Thus, we can write:

$$\mathbb{E}(\hat{\mu}_{MLE}) = \frac{1}{kn} \sum_{i=1}^{k} \sum_{j=1}^{n} x_j^i = \frac{1}{kn} \sum_{j=1}^{n} \left( \sum_{i=1}^{k} x_j^i \right)$$
$$= \frac{1}{kn} \sum_{i=1}^{n} (k\mu) = \frac{1}{kn} (kn\mu) = \mu$$

### Estimator $\hat{\mu}_{MLE}$ is unbiased

$$\mathbb{E}(\hat{\mu}_{MLE}) = \mu$$

# Bias of $\sigma_{MLE}^2$

The MLE of  $\sigma^2$  is given by

$$\hat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$$
 where  $\mu$  is the MLE of the mean.

$$\mathbb{E}(\hat{\sigma}_{MLE}^2) = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n (x_i - \mu)^2\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}[(x_i - \mu)^2]$$

$$= \frac{1}{n}\sum_{i=1}^n \mathbb{E}[x_i^2] - 2\mu\mathbb{E}[x_i] + \mu^2 = \frac{1}{n}\sum_{i=1}^n \sigma^2 + \mu^2 - 2\mu\mu$$

$$= \frac{n-1}{n}\sigma^2 + \mu^2 - \mu^2 = \frac{n-1}{n}\sigma^2$$

# Estimator $\hat{\sigma}_{MLE}^2$ is biased

$$\mathbb{E}(\hat{\sigma}_{MLE}^2) = \frac{n-1}{n}\sigma^2$$











