1

Q-10.13.3.10

Yash Patil - EE22BTECH11058

Question: Eight coins are tossed together. The probability of getting exactly 3 heads is

- 1) $\frac{1}{256}$
- 2) $\frac{7}{32}$
- $\frac{3}{3}$
- 4) $\frac{3}{32}$

Solution: Defining variables:

Parameter	Value	Description
n	8	Number of coins tossed
p	0.5	probability of getting heads
$\mu = np$	4	mean of the distribution
$\sigma^2 = np(1-p)$	2	variance of the distribution
Y	0-8	denotes number of heads obtained

Binomial distribution: the probability of getting exactly 3 heads is

$$= \binom{8}{3} \times 0.5^3 \times 0.5^5 \tag{1}$$

$$= 0.21875$$
 (2)

: option 2 is correct.

Gaussian Distribution:

The gaussian distribution for Y is

$$p_Y(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$
 (3)

For getting 3 exactly heads

$$Y = 3 \tag{4}$$

Substituting in equation (3), probability for getting exactly 3 heads is

$$Y = 3 \tag{5}$$

$$p_Y(3) = \frac{1}{\sqrt{2\pi \times 2}} e^{\frac{-(3-4)^2}{2\times 2}}$$
 (6)

$$=0.35206$$
 (7)

Fig. 1. Binomial distribution vs Gaussian distribution

Using Q function:

$$Y \sim \mathcal{N}(\mu, \sigma^2)$$
 (8)

CDF of Y is given by

$$F_Y(y) = 1 - \Pr(Y > y) \tag{9}$$

$$= 1 - \Pr\left(\frac{Y - \mu}{\sigma} > \frac{y - \mu}{\sigma}\right) \tag{10}$$

As

$$\frac{Y - \mu}{\sigma} \sim \mathcal{N}(0, 1) \tag{11}$$

$$\implies F_Y(y) = 1 - Q\left(\frac{y - \mu}{\sigma}\right) \tag{12}$$

including a correction upto 0.5,

$$p_{Y}(2.5 < Y < 3.5) = F_{Y}(3.5) - F_{Y}(2.5)$$

$$= Q\left(\frac{2.5 - \mu}{\sigma}\right) - Q\left(\frac{3.5 - \mu}{\sigma}\right)$$

$$= Q(-1.0608) - Q(-0.3536)$$
(15)

$$= 0.855610 - 0.638181 \tag{16}$$

$$= 0.1974$$
 (17)