Méthode des éléments finis

Ibrahim ALAME

ESTP

05/02/2024

Rappel: 3 Points alignés

$$\lambda x + \mu y + \nu = 0$$

$$\left\{ \begin{array}{l} \lambda x_1 + \mu y_1 + \nu = 0 \\ \lambda x_2 + \mu y_2 + \nu = 0 \\ \lambda x_3 + \mu y_3 + \nu = 0 \end{array} \right. \Longleftrightarrow \left(\begin{array}{ll} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{array} \right) \left(\begin{array}{l} \lambda \\ \mu \\ \nu \end{array} \right) = \left(\begin{array}{l} 0 \\ 0 \\ 0 \end{array} \right)$$

Trois points alignés
$$\iff \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$$

Rappel: 4 Points coplanaires

$$ax + by + cz + d = 0$$

$$\begin{cases} ax_1 + by_1 + bz_1 + d = 0 \\ ax_2 + by_2 + bz_2 + d = 0 \\ ax_3 + by_3 + bz_3 + d = 0 \\ ax_4 + by_4 + bz_4 + d = 0 \end{cases} \iff \begin{pmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Quatre points coplanaires
$$\iff \begin{vmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{vmatrix} = 0$$

Rappel: Coordonnées barycentriques

$$M-B=x(A-B) \implies M=xA+(1-x)B$$

 (λ,μ) Coordonnées barycentriques de M dans le système $\{A,B\}$ ssi

$$M = \lambda A + \mu B$$
 où $\lambda + \mu = 1$

Rappel : Coordonnées barycentriques

$$\overrightarrow{CM} = x\overrightarrow{CA} + y\overrightarrow{CB}$$

$$M-C=x(A-C)+y(B-C) \implies M=xA+yB+(1-x-y)C$$

 (λ,μ,ν) Coordonnées barycentriques de M dans le système $\{A,B,C\}$ ssi

$$M = \lambda A + \mu B + \nu C$$
 où $\lambda + \mu + \nu = 1$

Rappel: Interpolation linéaire

$$M = \lambda M_1 + \mu M_2$$
$$f(M) = \lambda f(M_1) + \mu f(M_2)$$
$$y = \lambda y_1 + \mu y_2$$

Rappel: Interpolation linéaire

$$M = \lambda M_1 + \mu M_2 + \nu M_3$$
$$f(M) = \lambda f(M_1) + \mu f(M_2) + \nu f(M_3)$$
$$z = \lambda z_1 + \mu z_2 + \nu z_3$$

Rappel: Interpolation de Lagrange

Théorème

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue et $x_0 < x_1 < \cdots < x_n$, n+1 points distincts de [a,b]. Il existe un unique $P \in \mathbb{R}_n[X]$ tel que $P(x_i) = f(x_i)$ pour i=0,1,...,n. De plus, P est donné par :

$$P(x) = \sum_{i=0}^{n} f(x_i) L_i(x)$$

où les polynômes L_i sont définis par : $L_i(x) = \prod_{j=0, j \neq i}^n \frac{x-x_j}{x_i-x_j}$

• |n=1| deux points de discrétisation $x_0=0$ et $x_1=1$. On a alors :

$$P(x) = \sum_{i=0}^{1} f(x_i) L_i(x) = y_0 \cdot L_0(x) + y_1 \cdot L_1(x)$$

• Exemple : Équation de la droite passant par les deux points (0,1) et (1,3) :

$$y = 1 \cdot (1 - x) + 3 \cdot x \implies y = 2x + 1$$

Éléments finis de Lagrange

On se donne:

- une partie compacte K de \mathbb{R}^n , connexe et d'intérieur non vide;
- ② un ensemble fini $\Sigma = \{a_j\}_{j=1}^N$ de N points distincts de K;
- **3** un espace vectoriel \mathbb{P} de dimension finie et composé de fonctions définies sur K à valeurs réelles.
 - On dit que l'ensemble Σ est \mathbb{P} -unisolvant si et seulement si, étant donné N scalaires réels quelconques α_j , $1 \leq j \leq N$, il existe une fonction p de l'espace \mathbb{P} et une seule telle que

$$p(a_j) = \alpha_j, \qquad 1 \le j \le N \tag{1}$$

Lorsque l'ensemble Σ est \mathbb{P} -unisolvant, le triplet (K, \mathbb{P}, Σ) est appelé élément fini de Lagrange.

• Une condition nécessaire évidente pour que l'ensemble Σ soit \mathbb{P} -unisolvant est que $\dim(\mathbb{P}) = \operatorname{card}(\Sigma) = N$

Éléments finis de Lagrange

• il existe pour tout entier i, $1 \le i \le N$, une fonction $\varphi_i \in \mathbb{P}$ et une seule telle que

$$\varphi_i(a_j) = \delta_{ij}, \qquad 1 \le j \le N \tag{2}$$

Les *N* fonctions $(\varphi_i)_{1 \le i \le N}$ forment une base de \mathbb{P} .

• pour toute fonction v définie sur K à valeurs réelles, il existe une fonction $p \in \mathbb{P}$ et une seule qui interpole v sur Σ :

$$p(a_j) = v(a_j), \qquad 1 \le j \le N \tag{3}$$

• L'opérateur de P-interpolation de Lagrange sur Σ noté Π est définie par

$$\Pi v = \sum_{i=1}^{N} v(a_i) \varphi_i, \tag{4}$$

Éléments finis de Lagrange

• On suppose l'application F injective. Alors si $(\widehat{K},\widehat{\mathbb{P}},\widehat{\Sigma})$ est un élément fini de Lagrange, le triplet (K,\mathbb{P},Σ) , où $K=F(\widehat{K})$ et où on a posé

$$\mathbb{P} = \{ p : K \to \mathbb{R}; \ p \circ F \in \widehat{\mathbb{P}} \}, \quad \text{ et } \quad \Sigma = F(\widehat{\Sigma}) \},$$
 (5)

est un élément fini de Lagrange.

• Deux éléments finis de Lagrange $(\widehat{K}, \widehat{P}, \widehat{\Sigma})$ et (K, P, Σ) sont dits affine-équivalents s'il existe une bijection F de \widehat{K} sur K vérifiant (5);

Éléments finis simpliciaux

On considère n+1 points $a_j=(a_{ij})_{i=1}^n\in\mathbb{R}^n$, $1\leq j\leq n+1$, non situés dans un même hyperplan, c'est-à-dire tels que la matrice d'ordre n+1

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1,n+1} \\ a_{21} & a_{22} & \cdots & a_{2,n+1} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{n,n+1} \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$
 (6)

soit inversible. On appelle *n*-simplexe K de sommets a_j , $1 \le j \le n+1$, l'enveloppe convexe des points a_j ;

Coordonnées barycentriques

Tout point x de \mathbb{R}^n , de coordonnées cartésiennes x_i , $1 \leq i \leq n$, est caractérisé par la donnée des n+1 scalaires , $\lambda_j = \lambda_j(x)$, $1 \leq j \leq n+1$, définis comme solution du système linéaire

$$\begin{cases} x = \sum_{j=1}^{n+1} \lambda_j(x) a_j \\ \sum_{j=1}^{n+1} \lambda_j = 1 \end{cases} \iff \begin{cases} \sum_{j=1}^{n+1} a_{ij} \lambda_j = x_i, & 1 \le i \le n \\ \sum_{j=1}^{n+1} \lambda_j = 1 \end{cases}$$
 (7)

Ces scalaires $\lambda_j(x)$ sont appelés les coordonnées barycentriques du point x par rapport aux n+1 points a_j , $1 \leq j \leq n+1$. D'après (7), chacune de ces fonctions coordonnées barycentriques est une fonction affine de \mathbb{R}^n dans \mathbb{R}

Polynôme d'interpolation en dimension *n*

Le *n*-simplexe K de sommets a_j , $1 \le j \le n+1$, est caractérisé par

$$K = \{ x \in \mathbb{R}^n; \ 0 \le \lambda_j(x) \le 1, \ 1 \le j \le n+1 \}$$
 (8)

Pour tout entier $k \geq 0$, on désigne par $\mathbb{P}_k^{(n)}$ l'espace des (fonctions) polynômes de \mathbb{R}^n dans \mathbb{R} de degré inférieur ou égal à k:

$$\forall x \in \mathbb{R}^{n}, \quad p(x) = \sum_{\substack{i_{1} \geq 0, \dots, i_{n} \geq 0 \\ i_{1} + \dots + i_{n} \leq k}} \alpha_{i_{1}, \dots, i_{n}} x_{1}^{i_{1}} \dots x_{n}^{i_{n}}, \tag{9}$$

où les α_{i_1,\dots,i_n} sont des scalaires réels.

L'espace des polynômes à n variables homogènes de degré k est de dimension $\binom{n+k-1}{k}$, nombre de combinaisons avec répétitions de longueur k formées à partir des éléments d'un ensemble de cardinal n. Par conséquent, la dimension de l'espace $\mathbb{P}_k^{(n)}$ est

$$\dim(\mathbb{P}_{k}^{(n)}) = \sum_{l=0}^{k} \binom{n+l-1}{l} = \binom{n+k}{k} = \frac{(n+k)!}{k!}$$

$$(10)$$

Ibrahim ALAME (ESTP)

Polynôme d'interpolation en dimension 1

• n = 1

$$\forall x \in \mathbb{R}, \quad p(x) = \sum_{i=0}^k \alpha_i x^i,$$

$$\mathbb{P}_k^{(1)} = vect\{1, x, x^2, \dots, x^k\}, \quad \dim \mathbb{P}_k^{(1)} = k + 1$$

En particuler

$$\mathbb{P}_0^{(1)} = \textit{vect}\{1\} = \mathbb{R}, \quad \dim \mathbb{P}_0^{(1)} = 1$$

$$\mathbb{P}_1^{(1)}=\{\mathit{ax}+\mathit{b};\mathit{a}\in\mathbb{R}\ \mathsf{et}\ \mathit{b}\in\mathbb{R}\},\quad \dim\mathbb{P}_1^{(1)}=2$$

$$\mathbb{P}_2^{(1)} = \{ax^2 + bx + c; a, b, c \in \mathbb{R}\}, \quad \dim \mathbb{P}_1^{(1)} = 3$$

Polynôme d'interpolation en dimension 2

• n = 2

$$\forall (x,y) \in \mathbb{R}, \quad p(x,y) = \sum_{0 \le i+j \le k} \alpha_{ij} x^i y^j,$$

$$\mathbb{P}_k^{(2)} = vect\{x^i y^j; \ 0 \le i + j \le k\}, \quad \dim \mathbb{P}_k^{(2)} = \frac{(k+1)(k+2)}{2}$$

En particuler

$$\mathbb{P}_0^{(2)} = vect\{1\} = \mathbb{R}, \quad \dim \mathbb{P}_0^{(2)} = 1$$

$$\mathbb{P}_1^{(2)} = vect\{1, x, y\}, \quad \dim \mathbb{P}_1^{(2)} = 3$$

$$\mathbb{P}_2^{(2)} = vect\{1, x, x^2, y, y^2, xy\}, \quad \dim \mathbb{P}_2^{(2)} = 6$$

Polynôme d'interpolation en dimension 3

• n = 3

$$\forall (x, y, z) \in \mathbb{R}, \quad p(x, y, z) = \sum_{0 \le p+q+r \le k} \alpha_{pqr} x^p y^q z^r,$$

$$\mathbb{P}_{k}^{(3)} = vect\{x^{p}y^{q}z^{r}; 0 \le p+q+r \le k\}, \dim \mathbb{P}_{k}^{(3)} = \frac{(k+1)(k+2)(k+3)}{6}$$

En particuler

$$\begin{split} \mathbb{P}_0^{(3)} &= \textit{vect}\{1\} = \mathbb{R}, \quad \dim \mathbb{P}_0^{(3)} = 1 \\ \mathbb{P}_1^{(3)} &= \textit{vect}\{1, x, y, z\}, \quad \dim \mathbb{P}_1^{(3)} = 4 \\ \mathbb{P}_2^{(3)} &= \textit{vect}\{1, x, x^2, y, y^2, z, z^2, xy, xz, yz\}, \quad \dim \mathbb{P}_2^{(3)} = 10 \end{split}$$

Espace de polynômes d'interpolation

- $\mathbb{P}_k^{(1)} = vect\{1, x, x^2, \cdots, x^k\}, \dim \mathbb{P}_k^{(1)} = k + 1.$
- $\mathbb{P}_k^{(2)} = vect\{x^i y^j; \ 0 \le i + j \le k\}, \ \dim \mathbb{P}_k^{(2)} = \frac{(k+1)(k+2)}{2}.$
- $\mathbb{P}_k^{(3)} = vect\{x^i y^j x^k; \ 0 \le i + j + k \le k\}, \ \dim \mathbb{P}_k^{(2)} = \frac{(k+1)(k+2)(k+3)}{6}.$
- $\mathbb{Q}_k^{(1)} = \mathbb{P}_k^{(1)}$.
- $\mathbb{Q}_k^{(2)} = vect\{x^i y^j; \ 0 \le i, j \le k\}, \ \dim \mathbb{Q}_k^{(2)} = (k+1)^2.$
- $\mathbb{Q}_k^{(3)} = vect\{x^i y^j x^k; \ 0 \le i, j, k \le k\}, \ \dim \mathbb{Q}_k^{(2)} = (k+1)^3.$

Treillis principal d'ordre k

On définit enfin, pour tout entier k le treillis d'ordre k du n-simplexe K comme étant l'ensemble de points de \mathbb{R}^n défini par

$$\Sigma_k^{(n)} = \left\{ x \in \mathbb{R}^n; \ \lambda_j(x) \in \{0, \frac{1}{k}, \cdots, \frac{k-1}{k}, 1\}, \ 1 \le j \le n+1 \right\}$$
 (11)

$$\Sigma_0^{(n)} = \left\{ x \in \mathbb{R}^n; \ \lambda_j(x) = \frac{1}{n+1}, \ 1 \le j \le n+1 \right\}$$
 (12)

En tenant compte de $\lambda_{n+1}=1-\sum_{j=1}^n\lambda_j$, on vérifie que le cardinal de l'ensemble $\Sigma_k^{(n)}$ est le nombre de combinaisons avec répétitions de longueur k formées à partir des éléments de $\{0,\cdots,n\}$ d'où

$$\operatorname{card}(\Sigma_k^{(n)}) = \binom{(n+1)+k-1}{k} = \binom{n+k}{k} = \frac{(n+k)!}{n!k!}$$
(13)

Treillis principal d'ordre k en dimension 1

$$\Sigma_k^{(1)} = \left\{ x \in \mathbb{R}; \ \lambda_j(x) \in \{0, \frac{1}{k}, \cdots, \frac{k-1}{k}, 1\}, \ 1 \le j \le 2 \right\}$$
 (14)

$$\Sigma_{0}^{(1)} = \left\{ x \in \mathbb{R}; \ \lambda_{1}(x) = \lambda_{2}(x) = \frac{1}{2} \right\} = \left\{ x = \frac{a_{1} + a_{2}}{2} = a_{0} \right\}$$

$$\xrightarrow{k=0} k=1$$

$$k=2$$

$$k=2$$

$$(15)$$

En particulier

$$\Sigma_1^{(1)} = \{ x = \lambda_1 a_1 + \lambda_2 a_2; \ \lambda_j \in \{0, 1\} \} = \{ a_1, a_2 \}$$
 (16)

$$\Sigma_2^{(1)} = \left\{ x = \lambda_1 a_1 + \lambda_2 a_2; \ \lambda_j \in \{0, \frac{1}{2}, 1\} \right\} = \{a_1, a_2, a_0\}$$
 (17)

$$\Sigma_3^{(1)} = \left\{ x = \lambda_1 a_1 + \lambda_2 a_2; \ \lambda_j \in \{0, \frac{1}{3}, \frac{2}{3}, 1\} \right\} = \left\{ a_1, a_2, a_{112}, a_{122} \right\}$$
 (18)

Treillis principal d'ordre k en dimension 2

$$\Sigma_k^{(2)} = \left\{ x \in \mathbb{R}^2; \ \lambda_j(x) \in \{0, \frac{1}{k}, \cdots, \frac{k-1}{k}, 1\}, \ 1 \le j \le 3 \right\}$$
 (19)

$$\Sigma_0^{(2)} = \left\{ x \in \mathbb{R}^2; \ \lambda_1 = \lambda_2 = \lambda_3 = \frac{1}{3} \right\} = \left\{ x = \frac{a_1 + a_2 + a_3}{3} = a_0 \right\}$$
 (20)

$$\Sigma_1^{(2)} = \{ x = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3; \ \lambda_j \in \{0, 1\} \} = \{ a_1, a_2, a_3 \}$$
 (21)

$$\Sigma_2^{(2)} = \left\{ x = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3; \ \lambda_j \in \{0, \frac{1}{2}, 1\} \right\} = \{a_1, a_2, a_3, a_{12}, a_{13}, a_{23}\}$$

$$\Sigma_3^{(2)} = \left\{ x = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3; \ \lambda_j \in \{0, \frac{1}{3}, \frac{2}{3}, 1\} \right\}$$
$$= \left\{ a_1, a_2, a_3, a_{112}, a_{122}, a_{113}, a_{133}, a_{223}, a_{233}, a_0 \right\}$$

Treillis principal d'ordre k en dimension 3

$$\Sigma_k^{(3)} = \left\{ x \in \mathbb{R}^3; \ \lambda_j(x) \in \{0, \frac{1}{k}, \cdots, \frac{k-1}{k}, 1\}, \ 1 \le j \le 4 \right\}$$

$$\Sigma_0^{(3)} = \left\{ x \in \mathbb{R}^3; \ \lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \frac{1}{4} \right\} = \left\{ \frac{a_1 + a_2 + a_3 + a_4}{4} = a_0 \right\}$$

$$\Sigma_{1}^{(3)} = \{x = \lambda_{1}a_{1} + \lambda_{2}a_{2} + \lambda_{3}a_{3} + \lambda_{4}a_{4}; \ \lambda_{j} \in \{0, 1\}\} = \{a_{1}, a_{2}, a_{3}, a_{4}\}$$

$$\Sigma_{2}^{(3)} = \left\{x = \lambda_{1}a_{1} + \lambda_{2}a_{2} + \lambda_{3}a_{3} + \lambda_{4}a_{4}; \ \lambda_{j} \in \{0, \frac{1}{2}, 1\}\right\}$$

$$= \{a_{1}, a_{2}, a_{3}, a_{12}, a_{13}, a_{14}, a_{23}, a_{24}, a_{34}, a_{0}\}$$

Élément fini *n*-simplexe

- Pour tout entier $k \ge 0$, l'ensemble $\Sigma_k^{(n)}$, est $P_k^{(n)}$ -unisolvant.
- Pour tout *n*-simplexe $K^{(n)}$ de \mathbb{R}^n et pour tout entier $k \geq 0$, l'élément fini $(K^{(n)}, P_k^{(n)}, \Sigma_k^{(n)})$, où $\Sigma_k^{(n)}$ est le treillis principal d'ordre k de $K^{(n)}$, est appelé *n*-simplexe de type (k).
- Pour tout entier $k \ge 0$, deux éléments finis n-simplexes de type (k) sont affine-équivalents.

Il suffira donc d'étudier les propriétés d'un n-simplexe de type (k) particulier $(\widehat{K}_k^{(n)}, \widehat{P}_k^{(n)}, \widehat{\Sigma}_k^{(n)})$ appelé n-simplexe de référence.

Elément fini *n*-simplexe de référence

On choisit pour \widehat{K} le n-simplexe unité de sommets $\widehat{a}_1=(1,0,\cdots,0)$, $\hat{a}_2 = (0, 1, 0, \dots, 0), \dots \hat{a}_n = (0, \dots, 0, 1), \hat{a}_{n+1} = (0, 0, \dots, 0).$ Dans ce cas, les coordonnées barycentriques sont

$$\hat{\lambda}_i(\hat{x}) = \hat{x}_i, \ 1 \le i \le n; \quad \hat{\lambda}_{n+1} = 1 - \sum_{i=1}^n \hat{\lambda}_i,$$
 (22)

Considérons un peu plus en détail les éléments finis (K, P, Σ) *n*-simplexes de type (k) les plus couramment utilisés en pratique. On pose

$$a_0 = \frac{1}{2}(a_1 + a_2),$$
 milieu du segment $a_0 = \frac{1}{n+1}\sum_{i=1}^{n+1}a_i,$ centre de gravité $a_{iij} = \frac{1}{3}(2a_i + a_j),$ au tiers du segment $a_{ijj} = \frac{1}{3}(a_i + 2a_j),$ au deux-tiers du segment

Élément fini segment

• n = 1, k = 0 Le segment de type (0) correspond à

$$(K, P, \Sigma) = ([0, 1], \ \mathbb{P}_0^{(1)} = \mathbb{R}, \ \Sigma_0^{(1)} = \{a_0\})$$

La fonction de base est $\varphi(\xi)=1$

• n = 1, k = 1 Le segment de type (1) correspond à

$$(K, P, \Sigma) = ([0, 1], \mathbb{P}_1^{(1)} = \mathbb{R}_1[X], \Sigma_1^{(1)} = \{a_1 = 1, a_2 = 0\})$$

Les fonctions de base sont les fonctions coordonnées barycentriques :

$$\varphi_1 = \lambda_1 = \xi, \quad \varphi_2 = \lambda_2 = 1 - \xi$$

 $\varphi_2(\xi)=1-\xi$

 $\varphi_1(\xi) = \xi$

Élément fini segment

• n = 1, k = 1, le segment de type (2) correspond à

$$\mathbb{P} = \mathbb{P}_2, \quad \Sigma = \Sigma_2 = \{a_1, a_{12}, a_2\}$$

Les fonctions de base sont les fonctions

$$\begin{cases} \varphi_i = \lambda_i (2\lambda_i - 1), & i = 1, 2 \\ \varphi_{12} = 4\lambda_1 \lambda_2 \end{cases}$$

$$\varphi_1(\xi) = \xi(2\xi - 1), \quad \varphi_2(\xi) = (1 - \xi)(2(1 - \xi) - 1) = (1 - \xi)(1 - 2\xi)$$

$$\varphi_{12}=4\xi(1-\xi)$$
 $\varphi_{2}=(1-\xi)(1-2\xi)$

Éléments finis triangles (n = 2)

• Lorsque n = 2, K est le triangle de sommets a_1 , a_2 et a_3 . On pose

$$\begin{array}{ll} a_0 = \frac{1}{3}(a_1 + a_2 + a_3) & \text{centre de gravit\'e de } K \\ a_{ij} = \frac{1}{2}(a_i + a_j), & \text{milieu du c\^ot\'e } [a_i, a_j] \\ a_{iij} = \frac{1}{3}(2a_i + a_j), & a_{iij} \text{ et } a_{jji} \text{ aux tiers et deux-tiers du c\^ot\'e } [a_i a_j]. \end{array}$$

Éléments finis triangles de type (0)

• Pour k = 0, le triangle de type (0) correspond à

$$\mathbb{P} = \mathbb{P}_0^{(2)} = \mathbb{R}, \quad \Sigma = \Sigma_0^{(2)} = \{a_0\}$$

La fonction de base est la fonction constante définie par

$$\forall x \in K, \quad \varphi_0(x) = 1$$

Éléments finis triangles de type (1)

• Pour k = 1, le triangle de type (1) est obtenu pour

$$\mathbb{P} = \mathbb{P}_1^{(2)} = \{ax + by + c; (a, b, c) \in \mathbb{R}^3\}, \quad \Sigma = \Sigma_1^{(2)} = \{a_i\}_{1 \le i \le 3}$$

Les fonctions de base sont les fonctions coordonnées barycentriques par rapport à (a_1, a_2, a_3) , i.e.

$$\varphi_i = \lambda_i, \quad 1 \le i \le 3$$

Éléments finis triangles de type (2)

• Pour k = 2, le triangle de type (2) correspond à

$$\mathbb{P} = \mathbb{P}_2^2, \quad \Sigma = \Sigma_2^2 = \{a_1, a_2, a_3\} \cup \{a_{23}, a_{13}, a_{12}\}$$

Les fonctions de base sont les fonctions

$$\varphi_i = \lambda_i (2\lambda_i - 1), \quad 1 \le i \le 3,$$

et

$$\varphi_{ij} = 4\lambda_i \lambda_j, \quad 1 \leq i < j \leq 3,$$

Éléments finis triangles de type (2)

$$\varphi_{1}(\xi, \eta) = \xi(2\xi - 1)
\varphi_{2}(\xi, \eta) = \eta(2\eta - 1)
\varphi_{3}(\xi, \eta) = (1 - \xi - \eta)(1 - 2\xi - 2\eta)
\varphi_{12}(\xi, \eta) = 4\xi\eta
\varphi_{13}(\xi, \eta) = 4\xi(1 - \xi - \eta)
\varphi_{23}(\xi, \eta) = 4\eta(1 - \xi - \eta)$$

Éléments finis triangles de type (3)

• Pour k = 3, le triangle de type (3) est obtenu pour

$$\mathbb{P} = \mathbb{P}_3^2, \quad \Sigma = \Sigma_3^2 = \{a_1, a_2, a_3\} \cup \{a_{112}, a_{113}, a_{221}, a_{223}, a_{331}, a_{332}\} \cup \{a_0\}$$

Les fonctions de base sont les fonctions

$$\varphi_i = \frac{1}{2}\lambda_i(3\lambda_i - 1)(3\lambda_i - 2), \quad 1 \le i \le 3,$$

$$\varphi_{iij} = \frac{9}{4}\lambda_i\lambda_j(3\lambda_i - 1) \quad 1 \le i, j \le 3, i \ne j$$

et

$$\varphi_0 = 27\lambda_1\lambda_2\lambda_3$$

Éléments finis tétraèdre (n = 3)

K est le tétraèdre de sommets a_1 , a_2 , a_3 et a_4 . On pose

• Pour k = 0, le tétraèdre de type (0) correspond à

$$\mathbb{P} = \mathbb{P}_0^3 = \mathbb{R} = vect(\varphi = 1), \quad \Sigma = \Sigma_0^3 = \{a_0\}$$

• Pour k = 1, le tétraèdre de type (1) est obtenu pour

$$\mathbb{P} = \mathbb{P}_1^3 = \mathbb{R}_1[X, Y] = \textit{vect}(\varphi_i = \lambda_i, 1 \le i \le 4), \quad \Sigma = \Sigma_1^3 = \{a_i\}_{1 \le i \le 4}$$

• Pour k = 2, le tétraèdre de type (2) est obtenu pour

$$\mathbb{P} = \mathbb{P}_{2}^{(3)} = vect(1, \xi, \eta, \nu, \xi^{2}, \eta^{2}, \nu^{2}, \xi\eta, \xi\nu, \eta\nu)$$

$$= vect(\varphi_{i} = \lambda_{i}(2\lambda_{i} - 1), \varphi_{ij} = 4\lambda_{i}\lambda_{j})$$

$$\Sigma = \Sigma_{2} = \{a_{i}\}_{1 \leq i \leq 4} \cup \{a_{ij}\}_{1 \leq i < j \leq 4}$$

Les expressions des fonctions de base relatives à ces exemples de tétraèdre de type (k) sont formellement identiques à celles donnant les fonctions de base de triangle de type (k).

Éléments finis parallélotopes

L'enveloppe convexe K de 2^n points a_i , est un n-parallèlotope si et seulement si il existe une application affine inversible F telle que

$$a_j = F(\hat{a}_j), \quad 1 \le j \le 2^n, \tag{23}$$

où les points \hat{a}_j , $1 \leq j \leq 2^n$, sont les sommets de \widehat{K} , hypercube unité $[0,1]^n$ de \mathbb{R}^n ;

- pour n = 2, K est un parallélogramme.
- pour n = 3, K est un parallélépipède.

Éléments finis parallélotopes

Soit $\mathbb{Q}_k^{(n)}$ l'espace des (fonctions) polynômes de degré inférieur ou égal à k par rapport à chaque variable :

$$\forall x \in \mathbb{R}^n, \quad p(x) = \sum_{0 \le i_1 \le k, \dots, 0 \le i_n \le k} \alpha_{i_1, \dots, i_n} x_1^{\alpha_1} \dots x_n^{\alpha_n}$$

$$\dim(\mathbb{Q}_k) = (k+1)^n$$
(24)

- $\mathbb{Q}_0^{(n)} = \mathbb{R}$.
- $\mathbb{Q}_{k}^{(1)} = \mathbb{P}_{k}^{(1)}$.
- $\mathbb{Q}_{k}^{(2)} = vect\{x^{i}y^{j}; \ 0 \leq i, j \leq k\}, \ \dim \mathbb{Q}_{k}^{(2)} = (k+1)^{2}.$ En particulier :
 - $\mathbb{Q}_{1}^{(2)} = \{a + bx + cy + dxy; \ a, b, c, d \in \mathbb{R}\}, \ \dim \mathbb{Q}_{1}^{(2)} = 4.$
 - $\mathbb{Q}_{2}^{(2)} = vect\{1, x, x^{2}, y, y^{2}, xy, xy^{2}, x^{2}y, x^{2}y^{2}\}, \dim \mathbb{Q}_{2}^{(2)} = 9.$
- $\mathbb{Q}_k^{(3)} = vect\{x^p y^q z^r; \ 0 \le p, q, r \le k\}, \dim \mathbb{Q}_k^{(2)} = (k+1)^3$. Et donc :
 - $\mathbb{Q}_{1}^{(3)} = vect\{1, x, y, z, xy, xz, yz, xyz\}, \dim \mathbb{Q}_{1}^{(2)} = 8.$
 - $\mathbb{Q}_{1}^{(3)} = vect \{1, x, x^{2}, y, y^{2}, z, z^{2}, xy, xz, yz, xyz, x^{2}y, x^{2}z, x^{2}yz, xy^{2}, y^{2}z, xy^{2}z, xz^{2}, yz^{2}, xyz^{2}, x^{2}z^{2}, x^{2}z^{2}, x^{2}y^{2}z, x^{2}yz^{2}, xy^{2}z^{2}, x^{2}y^{2}z^{2}, x^{2}z^{2}, x^{2}z^{2},$

On prend alors pour domaine \widehat{K} l'hypercube unité $[0,1]^n$ de \mathbb{R}^n et on définit pour tout entier $k \geq 1$ l'ensemble de points de \widehat{K}

$$\widehat{\Xi}_{k}^{(n)} = \left\{ \hat{x} = (\hat{x}_{i})_{1 \le i \le n}; \ \hat{x}_{i} \in \left\{ 0, \frac{1}{k}, ..., \frac{k-1}{k}, 1 \right\}, \ 1 \le i \le n \right\}$$
 (26)

Pour k = 0, on posera

$$\widehat{\Xi}_{0}^{(n)} = \left\{ \left(\frac{1}{n+1}, ..., \frac{1}{n+1} \right) \in \mathbb{R}^{n} \right\}$$
 (27)

On a ainsi pour tout entier $k \ge 1$

$$\operatorname{card}(\widehat{\Xi}_k) = (k+1)^n$$

Éléments finis parallélotopes en dimension 1

 $\widehat{\mathcal{K}}$ est le segment [0,1]

$$\begin{split} \widehat{\Xi}_0^{(1)} &= \left\{\frac{1}{2}\right\}, \quad \text{pour } k \geq 1, \ \widehat{\Xi}_k^{(1)} &= \left\{0, \frac{1}{k}, ..., \frac{k-1}{k}, 1\right\} \\ &\quad \operatorname{card}(\widehat{\Xi}_k) = k+1 \end{split}$$

En particulier

$$\bullet \ \ \widehat{\Xi}_1^{(1)}=\{0,1\}, \ \mathsf{Card}\widehat{\Xi}_1^{(1)}=2$$

•
$$\widehat{\Xi}_2^{(1)}=\left\{0,\frac{1}{2},1\right\}$$
, $\mathsf{Card}\widehat{\Xi}_2^{(1)}=3$

$$ullet$$
 $\widehat{\Xi}_3^{(1)}=\left\{0,rac{1}{3},rac{2}{3},1
ight\}$, $\mathsf{Card}\widehat{\Xi}_3^{(1)}=4$

Éléments finis parallélotopes en dimension 2

 \widehat{K} est le carré $[0,1]^2$. On pose $\hat{a}_1=(0,0)$, $\hat{a}_2=(1,0)$, $\hat{a}_3=(1,1)$, $\hat{a}_4=(0,1)$,

$$\begin{split} \widehat{\Xi}_0^{(2)} &= \left\{ (\frac{1}{2}, \frac{1}{2}) \right\}, \text{ pour } k \geq 1, \ \widehat{\Xi}_k^{(2)} = \left\{ (\hat{x}_1, \hat{x}_2); \ \hat{x}_i \in \left\{ 0, \frac{1}{k}, ..., \frac{k-1}{k}, 1 \right\} \right\} \\ & \text{card}(\widehat{\Xi}_k) = (k+1)^2 \end{split}$$

- $\widehat{\Xi}_{1}^{(2)} = \{(\hat{x}_{1}, \hat{x}_{2}); \ \hat{x}_{i} \in \{0, 1\}\} = \{\hat{a}_{1}, \hat{a}_{2}, \hat{a}_{3}, \hat{a}_{4}\}, \ \mathsf{Card}\widehat{\Xi}_{2}^{(1)} = 4$
- $\widehat{\Xi}_{2}^{(1)} = \{(\hat{x}_{1}, \hat{x}_{2}); \ \hat{x}_{i} \in \{0, \frac{1}{2}, 1\}\} = \{\hat{a}_{0}, \hat{a}_{1}, \hat{a}_{2}, \hat{a}_{3}, \hat{a}_{4}, \hat{a}_{12}, \hat{a}_{13}, \hat{a}_{14}, \hat{a}_{23}, \hat{a}_{24}, \hat{a}_{34}\}, \ \mathsf{Card}\widehat{\Xi}_{2}^{(1)} = 9$
- $\widehat{\Xi}_3^{(2)} = \{(\hat{x}_1, \hat{x}_2); \ \hat{x}_i \in \{0, \frac{1}{3}, \frac{2}{3}, 1\}\}, \ \mathsf{Card}\widehat{\Xi}_3^{(2)} = 16$

Éléments finis parallélotopes en dimension 3

$$\begin{split} \widehat{\mathcal{K}} \text{ est le cube } &[0,1]^3. \text{ On pose } \hat{a}_1 = (0,0,0), \ \hat{a}_2 = (1,0,0), \ \hat{a}_3 = (1,1,0), \\ \hat{a}_4 = (0,1,0), \ \hat{a}_5 = (0,0,1), \ \hat{a}_6 = (1,0,1), \ \hat{a}_7 = (1,1,1), \ \hat{a}_8 = (0,1,1), \\ &\widehat{\Xi}_0^{(3)} = \left\{ (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \right\}, \ \ \widehat{\Xi}_k^{(3)} = \left\{ (\hat{x}_1, \hat{x}_2, \hat{x}_3); \ \hat{x}_i \in \left\{ 0, \frac{1}{k}, ..., \frac{k-1}{k}, 1 \right\} \right\} \end{split}$$

$$\operatorname{card}(\widehat{\Xi}_k) = (k+1)^3$$

- $\widehat{\Xi}_{1}^{(3)} = \{(\hat{x}_{1}, \hat{x}_{2}, \hat{x}_{3}); \ \hat{x}_{i} \in \{0, 1\}\} = \{\hat{a}_{1}, \hat{a}_{2}, \hat{a}_{3}, \hat{a}_{4}, \hat{a}_{5}, \hat{a}_{6}, \hat{a}_{7}, \hat{a}_{8}\},$ Card= 8
- $\widehat{\Xi}_2^{(3)} = \{(\hat{x}_1, \hat{x}_2, \hat{x}_3)); \ \hat{x}_i \in \{0, \frac{1}{2}, 1\}\}, \ \mathsf{Card} \widehat{\Xi}_2^{(3)} = 27$

- Théorème : Pour tout entier $k \ge 0$, l'ensemble $\widehat{\Xi}_k$ est \mathbb{Q}_k -unisolvant.
- Définition : On appelle n-hypercube unité de type (k), l'élément fini $(K, \mathbb{Q}_k, \widehat{\Xi}_k)$. On appelle n-parallèlotope de type (k) tout élément fini (K, P, Σ) affine-équivalent au n-hypercube unité de. type (k).
- le n-hypercube unité de type (k) est un carré unité de type (k) lorsque n=2,
- et cube unité de type (k) lorsque n=3

Dire que (K, P, Σ) est un *n*-parallèlotope de type (k) signifie donc qu'il existe une application affine inversible F de \mathbb{R}^n sur \mathbb{R}^n telle que

$$K = F(\widehat{K}), \quad \mathbb{P} = \{p : \mathbb{R}^n \to \mathbb{R}^n; \ p \circ F \in \mathbb{Q}_k\}, \quad \Sigma = F(\widehat{\Xi}_k).$$
 (28)

Supposons n = 2 pour simplifier un peu l'exposé :

- **1** K est un parallélogramme de \mathbb{R}^n ;
- ② pour k=0, Σ est le centre du parallélogramme K; pour k=1, Σ est l'ensemble des sommets; pour k=2, Σ est l'ensemble constitué des sommets de K, des milieux des côtés de K et du centre de K, etc.
- ullet l'espace ${\mathbb P}$ est un espace de polynômes tel que

$$\mathbb{P}_k \subset \mathbb{P} \subset \mathbb{P}_{2k}$$

cet espace \mathbb{P} ne coïncide avec l'espace \mathbb{Q}_k que dans le cas particulier où K est un rectangle de côtés parallèles aux axes.

Dans le cas n=2; \widehat{K} est le carré unité de \mathbb{R}^2 . Nous noterons (\hat{x}_1,\hat{x}_2) les coordonnées cartésiennes du point courant \hat{x} de \widehat{K} , de sommets

$$\hat{a}_1 = (0,0), \quad \hat{a}_2 = (1,0), \quad \hat{a}_3 = (1,1), \quad \hat{a}_4 = (0,1)$$
 (29)

Il sera commode de poser

$$\hat{x}_3 = 1 - \hat{x}_1, \quad \hat{x}_4 = 1 - \hat{x}_2 \tag{30}$$

et d'associer à tout entier i l'entier \bar{i} congru à i modulo 4 et compris entre 1 et 4. En particulier, un sommet \hat{a}_i , $1 \leq i \leq$ 4, est alors défini par les relations

$$\hat{x}_{\overline{i}} = \hat{x}_{\overline{i+1}} = 0$$

Explicitons les fonctions de base de l'élément fini $(\widehat{K}, \widehat{\mathbb{P}}, \widehat{\Sigma})$ carré unité de type (k), pour les premières valeurs de k.

• Pour k = 0, le carré unité de type (0) est obtenu pour

$$\widehat{\mathbb{P}}=\mathbb{Q}_0,=P_0,\quad \widehat{\Sigma}=\widehat{\Xi}_0=\{\hat{a}_0\}$$

où \hat{a}_0 est le centre du carré, $\hat{a}_0 = \frac{1}{4}(\hat{a}_1 + \hat{a}_2 + \hat{a}_3 + \hat{a}_4)$. La fonction de base $\widehat{\varphi}_0$, est la fonction constante égale à 1.

Le carré de type (1) ou (2)

• Pour k=1, le carré de type (1) correspond à

$$\widehat{\mathbb{P}} = \mathbb{Q}_1, \quad \widehat{\Sigma} = \widehat{\Xi}_1^{(2)} = \{\hat{a}_i\}_{1 \leq i \leq 4}$$

Les fonctions de base s'écrivent

$$\widehat{\varphi}_i(\hat{x}) = \hat{x}_{\overline{i+2}} \hat{x}_{\overline{i+3}}, \quad 1 \le i \le 4$$

• Pour k=2, le carré de type (2) est obtenu pour

$$\widehat{\mathbb{P}} = \mathbb{Q}_2, = P_0, \quad \widehat{\Sigma} = \widehat{\Xi}_2^{(2)} = \{\hat{a}_i\}_{1 \leq i \leq 9}$$

où les points \hat{a}_i , $5 \le i \le 8$, sont les milieux des côtés $[\hat{a}_i \hat{a}_{i+1}]$ et le point \hat{a}_{9} est le centre du carré. Les fonctions de base sont

$$\widehat{\varphi}_{i}(\widehat{x}) = \widehat{x}_{\overline{i+2}}(2\widehat{x}_{\overline{i+2}} - 1)\widehat{x}_{\overline{i+3}}(2\widehat{x}_{\overline{i+3}} - 1), \quad 1 \le i \le 4,
\widehat{\varphi}_{i}(\widehat{x}) = -4\widehat{x}_{\overline{i+2}}(\widehat{x}_{\overline{i+2}} - 1)\widehat{x}_{\overline{i+3}}(2\widehat{x}_{\overline{i+3}} - 1), \quad 5 \le i \le 8,
\widehat{\varphi}_{9}(\widehat{x}) = 16\widehat{x}_{1}\widehat{x}_{2}\widehat{x}_{3}\widehat{x}_{4}.$$
(31)

05/02/2024

A partir des deux derniers exemples de carré unité, on peut construire des éléments fini qui seront de mise en œuvre informatique plus simple sans que cela nuise à la précision. l'élément fini $(\widehat{K},\widehat{\mathbb{P}},\widehat{\Sigma})$ obtenu vérifiera

$$\widehat{\Sigma} = \widehat{\Xi}_2 \cap \partial \widehat{\mathcal{K}} \quad \text{ et } \quad \mathbb{P}_2 \subset \widehat{\mathbb{P}} \subset \widehat{\mathbb{Q}}_2$$

On pose

$$\begin{cases}
\widehat{\Sigma} = \widehat{\Xi}_2^{\star} = \{\widehat{a}_i\}_{1 \leq i \leq 8} \\
\widehat{\mathbb{P}} = \widehat{\mathbb{Q}}_2^{\star} = \{q(x) + \alpha_1 x_1^2 x_2 + \alpha_2 x_1 x_2^2, \quad q \in \mathbb{P}_2, \quad (\alpha_1, \alpha_2) \in \mathbb{R}^2\}
\end{cases}$$
(32)

On remarque que l'espace $\mathbb{Q}_2 = \mathbb{Q}_2^{\star} \oplus \textit{vect}\{x_1^2 x_2^2\}$

- L'ensemble $\widehat{\Xi}_2^{\star}$ est \mathbb{Q}_2^{\star} -unisolvant.
- on vérifie que les fonctions

$$\hat{\varphi}_{i}(\hat{x}) = \hat{x}_{i+2}\hat{x}_{i+3}(2\hat{x}_{i+2} + 2\hat{x}_{i+3} - 3), \quad 1 \le i \le 4, \hat{\varphi}_{i}(\hat{x}) = -4\hat{x}_{i+2}(\hat{x}_{i+2} - 1)\hat{x}_{i+3}, \quad 5 \le i \le 8.$$
(33)

sont les fonctions de base de $(\widehat{K}, \mathbb{Q}_2^{\star}, \widehat{\Sigma}_2^{\star})$.

En dimension n=3, on vous laisse le soin de décrire en détail l'élément fini $(\widehat{K},\widehat{\mathbb{P}},\widehat{\Sigma})$ cube unité de type (k), pour les valeurs k=0,1,2. Par exemple, pour k=1, l'ensemble $\widehat{\Sigma}$ est constitué par les 8 sommets du cube. Pour k=2, on préfère utiliser le cube unité de type $(2)^*$ où l'ensemble Σ est constitué par les 8 sommets du cube et les milieux des 12 arêtes de ce cube.

Éléments finis d'Hermite

 φ_i des éléments finis de Lagrange est construite pour être continue d'un élément à l'autre, mais pas sa dérivée...

Un élément fini d'Hermite est un triplet (K, Σ, P) tel que :

- K est un élément géométrique de \mathbb{R}^n , compact, connexe, et d'intérieur non vide ;
- $\Sigma = \{\sigma_1, \dots, \sigma_N\}$ un ensemble de N formes linéaires sur l'espace des fonctions définies sur K, ou sur un sous-espace plus régulier contenant P;
- P est un espace vectoriel de dimension finie de fonctions réelles définies sur K, et tel que Σ soit P-unisolvant.

Opérateur de *P*—interpolation

• Un opérateur de P-interpolation sur Σ est un opérateur Π qui à toute fonction v définie sur K associe la fonction Πv de P définie par :

$$\Pi v = \sum_{i=1}^{N} \sigma_i(v) \varphi_i$$

• Πv est l'unique élément de P qui prend les mêmes valeurs que v sur les points de Σ .

•

$$\sigma_j(\varphi_i) = \delta_{ij}, \quad 1 \le i, j \le N$$

• Suivant les éléments utilisés, ces fonctions de base pourront être de classe C^1 ou même plus, et il en sera donc de même pour la solution approchée u_h .

Éléments unidimensionnels

Élément	cubique	quintique
K	segment $[a;b]$	segment [a; b]
$oldsymbol{\Sigma}$	$\{p(a), p'(a), p(b), p'(b)\}\$	${p(a), p'(a), p''(a), p(b), p'(b), p''(b)}$
P	P_3	P_3
Régularité	C^1 et H^2	C^2 et H^3

Élément	
K	triangle de sommets $\{a_1, a_2, a_3\}$
$oldsymbol{\Sigma}$	$\left\{p(a_i), \frac{\partial p}{\partial x}(a_i), i = 1, 2, 3\right\} \cup \{p(a_0)\}$
P	P_3
Régularité	C^0 , mais pas C^1

Élément triangle

Élément	
K	triangle de sommets $\{a_1, a_2, a_3\}$
Σ	$\left\{p(a_i), \frac{\partial p}{\partial x}(a_i), i = 1, 2, 3\right\} \cup \left\{p(a_0)\right\}$
P	P_3
Régularité	C^0 , mais pas C^1

Éléments bidimensionnels

Élément	
K	triangle de sommets $\{a_1, a_2, a_3\}$
Σ	$\left\{p(a_i), \frac{\partial p}{\partial x}(a_i), \frac{\partial p}{\partial y}(a_i), \frac{\partial^2 p}{\partial x^2}(a_i), \frac{\partial^2 p}{\partial y^2}(a_i), \frac{\partial^2 p}{\partial x \partial y}(a_i), i = 1, 2, 3\right\} \cup \left\{\frac{\partial p}{\partial n}(a_{ij}), 1 \leqslant i < j \leqslant 3\right\}$
\boldsymbol{P}	P_5
Régularité	C^1

Élément	Q_3	
K	rectangle de sommets $\{a_1, a_2, a_3, a_4\}$ de côtés parallèles aux axes	
Σ	$\left\{p(a_i), \frac{\partial p}{\partial x}(a_i), \frac{\partial p}{\partial y}(a_i), \frac{\partial^2 p}{\partial x \partial y}(a_i), i = 1, \dots, 4\right\}$	
P	P_3	
Régularité	C^1	

Les fonctions de base

- $\Phi_i(x)$ les fonctions de base associées aux valeurs nodales de la fonction v_i .
- $\Psi_i(x)$ les fonctions de base associées aux valeurs nodales de la dérivée $(\frac{dv}{dx})_i$,

$$\Pi v(x) = \sum_{i=1}^{n} v_i \Phi_i(x) + \sum_{i=1}^{n} \left(\frac{dv}{dx}\right)_i \Psi_i(x)$$

Sur un élément $[x_1, x_2]$, cette approximation s'écrit :

$$v^h(x) = v_1 \Phi_1(x) + (\frac{dv}{dx})_1 \Psi_1(x) + v_2 \Phi_2(x) + (\frac{dv}{dx})_2 \Psi_2(x)$$

 Φ_i et Ψ_i vérifient les conditions :

$$\begin{cases} \Phi_i(x_j) = \delta_{ij} & \Phi'_i(x_j) = 0 \\ \Psi_i(x_j) = 0 & \Psi'_i(x_j) = \delta_{ij} \end{cases}$$

Les fonctions de base

$$\begin{cases} \Phi_i(x) = [1 - 2(x - x_i)\lambda_i'(x_i)] \lambda_i^2(x) \\ \Psi_i(x) = (x - x_i)\lambda_i^2(x) \end{cases}$$

- élément de référence de longueur $h: x_1 = 0$ et $x_2 = h$,
- $\lambda_1(x) = 1 \frac{x}{h}$ et $\lambda_2(x) = \frac{x}{h}$. On pose $\xi = \frac{x}{h}$:

$$\begin{cases} \Phi_1(x) = (1+2\xi)(1-\xi)^2 \\ \Phi_2(x) = (3-2\xi)\xi^2 \\ \Psi_1(x) = h\xi(1-\xi)^2 \\ \Psi_2(x) = h(\xi-1)\xi^2 \end{cases}$$

Erreur d'interpolation

Soit (K, \mathbb{P}, Σ) un élément fini *n*-simplexe ou *n*-palallélotope de type (k). On suppose

$$n \le 3$$
 et $k \ge 1$

Alors il existe une constante C qui ne dépend que de n et de k telle que pour tout entier m, $0 \le m \le k$, on a

$$\forall v \in H^{k+1}(K), \quad |v - \Pi v|_{m,k} \le \frac{h_K^{k+1}}{\rho_K^m} |v|_{k+1,K}$$

Intégration numérique

$$a(\varphi_j, \varphi_i) = \sum_{l,m}^{2} \left(a_{lm} \sum_{K \in \mathscr{T}_h} \int_{K} \frac{\partial \varphi_j}{\partial x_m} \frac{\partial \varphi_i}{\partial x_l} dx \right)$$

- Les fonctions de base appartiennent à \mathbb{P}_k donc le produit $\frac{\partial \varphi_j}{\partial x_m} \frac{\partial \varphi_i}{\partial x_l}$ coïncide avec un polynôme de \mathbb{P}_{2k-2} .
- Soit $F_K : \hat{x} \mapsto F_K(\hat{x}) = B_K \hat{x} + b$ une bijection affine du triangle unité \hat{K} sur le triangle K; $\det(B_K) > 0$.

Alors on a pour toute function $\varphi = \widehat{\varphi} \circ F_K$ continue sur K:

$$\int_{\mathcal{K}} \psi(x) \mathrm{d}x = \mathsf{d\acute{e}t}(B_{\mathcal{K}}) \int_{\widehat{\mathcal{K}}} \widehat{\psi}(\hat{x}) \mathrm{d}\hat{x}$$

Intégration de $a(\varphi_j, \varphi_i)$

On a

$$dét(B_K) = \frac{\operatorname{mes}(K)}{\operatorname{mes}(\widehat{K})} = 2\operatorname{mes}(K)$$

On prend $\psi = \frac{\partial \varphi_j}{\partial x_m} \frac{\partial \varphi_i}{\partial x_l} \in \mathbb{P}_{2k-2}$. On se ramène à $\widehat{\psi} \in \mathbb{P}_{2k-2}$ sur le triangle unité. Or pour tout monôme $\widehat{x}_1^{k_1} \widehat{x}_2^{k_2}$:

$$\int_{\widehat{K}} \hat{x}_1^{k_1} \hat{x}_2^{k_2} \mathrm{d}\hat{x} = \frac{k_1! k_2!}{(k_1 + k_2 + 2)!}$$

plus généralement

$$\int_{\widehat{K}} \hat{x}_1^{k_1} \hat{x}_2^{k_2} (1 - \hat{x}_1 - \hat{x}_2)^{k_3} d\hat{x} = \frac{k_1! k_2! k_3!}{(k_1 + k_2 + k_3 + 2)!}$$

En coordonnées barycentriques

$$\int_{\widehat{K}} \lambda_1^{k_1} \lambda_2^{k_2} \lambda_3^{k_3} \mathrm{d}\hat{x} = 2\mathsf{mes}(K) \frac{k_1! k_2! k_3!}{(k_1 + k_2 + k_3 + 2)!}$$

Intégration de $\ell(\varphi_i)$

$$\ell(\varphi_i) = \sum_{K \in \mathscr{T}_h} \int_K f \varphi_i \, \mathrm{d} x$$

Formule de quadrature : $\int_K f \psi(x) dx \simeq \sum_{i=1}^N \omega_{l,K} \psi(b_{i,K})$

• k = 0:

$$\int_{K} \psi(x) \, \mathrm{d}x \simeq \mathsf{mes}(K) \psi(a_{0,K})$$

• k = 1:

$$\int_{K} \psi(x) \, \mathrm{d}x \simeq \frac{1}{3} \mathsf{mes}(K) \sum_{i=1}^{3} \psi(a_{i,K})$$

• k = 2:

$$\int_{\mathcal{K}} \psi(x) \, \mathrm{d}x \simeq \frac{1}{3} \mathsf{mes}(\mathcal{K}) \sum_{i=4}^{6} \psi(a_{i,\mathcal{K}})$$

Intégration de $\ell(\varphi_i)$

$$\ell(\varphi_i) = \sum_{K \in \mathscr{T}_h} \int_K f \varphi_i \, \mathrm{d} x$$

Formule de quadrature : $\int_K f \psi(x) dx \simeq \sum_{i=1}^N \omega_{I,K} \psi(b_{i,K})$

• k = 0:

$$\int_{K} \psi(x) \, \mathrm{d}x \simeq \mathsf{mes}(K) \psi(a_{0,K})$$

• k = 1 :

$$\int_{K} \psi(x) \, \mathrm{d}x \simeq \frac{1}{3} \mathsf{mes}(K) \sum_{i=1}^{3} \psi(a_{i,K})$$

• k = 2:

$$\int_{\mathcal{K}} \psi(x) \, \mathrm{d}x \simeq \frac{1}{3} \mathsf{mes}(\mathcal{K}) \sum_{i=4}^{6} \psi(a_{i,\mathcal{K}})$$

Maillage

• Un maillage (ou triangulation) de Ω est la donnée de N_{el} triangles $\{K_1,...,K_{Nel}\}$ (fermés par convention) formant une partition de Ω .

$$\overline{\Omega} = \bigcup_{i=1}^{N_{el}} K_i, \quad \mathring{K}_i \cap \mathring{K}_j = \emptyset, \ \forall i \neq j$$

- Le maillage est admissible si pour tout $K_i \neq K_j$, l'ensemble $K_i \cap K_j$ est
 - soit vide
 - 2 soit un sommet commun K_i et K_j
 - \odot soit une arête commune K_i et K_j

Relations d'Euler

- On note
 - N_{el} le nombre d'éléments
 - N_{ar} le nombre d'arêtes
 - N_{so}^{int} le nombre de sommets intérieurs
 - Next le nombre de sommets extérieurs
 - $N_{so} = N_{so}^{int} + N_{so}^{ext}$ le nombre total de sommets
- Pour tout maillage admissible, on a (relations d'Euler)

$$N_{el} = N_{so} + N_{so}^{int} - 2(1 - J)$$
 $N_{ar} = 2N_{so} + N_{so}^{int} - 3$

 $(J : nombre de trous dans \Omega)$

ullet Dans la limite pratique $N_{so}^{ext} << N_{so}$ et $N_{so}^{int} \sim N_{so}$, il vient

$$N_{el} \sim 2N_{so}^{int}$$
 $N_{ar} \sim 3N_{so}^{int}$

Échelles de longueur (1)

- On introduit pour chaque maille K_i deux échelles de longueur
 - son diamètre hi
 - le diamètre de son cercle inscrit ρ_i
- On a $h_i/\rho_i \ge 1$ et $h_i/\rho_i >> 1$ lorsque le triangle K_i est très aplati

• On a $h_i/
ho_i \leq \frac{2}{\sin \theta_i} \; \theta_i$ est le plus petit angle du triangle K_i

Échelles de longueur (2)

- On introduit pour chaque maille K_i deux échelles de longueur
 - son diamètre hi
 - le diamètre de son cercle inscrit ρ_i
- On a $h_i/\rho_i \ge 1$ et $h_i/\rho_i >> 1$ lorsque le triangle K_i est très aplati

• On a $h_i/
ho_i \leq \frac{2}{\sin \theta_i} \; \theta_i$ est le plus petit angle du triangle K_i

Échelles de longueur (2)

ullet Pour un maillage $\{K_1...,K_{N_{el}}\}$, on introduit les paramètres globaux

$$h = \max_{1 \le i \le N_{el}} h_i$$
 $\sigma = \max_{1 \le i \le N_{el}} \frac{h_i}{\rho_i}$

- Pour un maillage quasi-uniforme, $\sigma \gtrsim 1$ et $h_i \sim h$
- Pour un maillage quasi-uniforme, on a $h \sim (N_{el})^{-1/2}$
 - en 1D, $h \sim (N_{el})^{-1}$
 - 2 en dimension d, $h \sim (N_{el})^{-1/d}$
 - 3 à h fixé, plus d est grand, plus il faut de mailles!
- Exemple de maillage avec raffinement local

