	anunu	DISCI	DISCRETE DISTRIBUTIONS	NS adf	E [X]	Var [X]	maf
			f_X	F_X	<u>.</u>	[* -] ****	M_X
Bernoulli(heta)	{0,1}	$\theta \in (0,1)$	$\theta^x (1-\theta)^{1-x}$		θ	heta(1- heta)	$1-\theta+\theta e^t$
Binomial(n, heta)	$\{0,1,,n\}$	$n \in \mathbb{Z}^+, \theta \in (0,1)$	$\binom{n}{x}\theta^x(1-\theta)^{n-x}$		θu	$n\theta(1- heta)$	$(1 - \theta + \theta e^t)^n$
$Poisson(\lambda)$	$\{0,1,2,\}$	λ∈ℝ+	$\frac{e^{-\lambda}\lambda^x}{x!}$		γ	γ	$\exp\left\{\lambda\left(e^{t}-1\right)\right\}$
Geometric(heta)	$\{1,2,\}$	$\theta \in (0,1)$	$(1-\theta)^{x-1}\theta$	$1 - (1 - \theta)^x$	$\frac{1}{\overline{\theta}}$	$\frac{(1-\theta)}{\theta^2}$	$\frac{\theta e^t}{1 - e^t (1 - \theta)}$
$NegBinomial(n, \theta)$	$\{n,n+1,\ldots\}$	$n\in\mathbb{Z}^+,\theta\in(0,1)$	$\binom{x-1}{n-1}\theta^n(1-\theta)^{x-n}$		$\frac{u}{\theta}$	$\frac{n(1-\theta)}{\theta^2}$	$\left(\frac{\theta e^t}{1 - e^t(1 - \theta)}\right)^n$
Or	$\{0,1,2,\}$	$n \in \mathbb{Z}^+, \theta \in (0,1)$	$\binom{n+x-1}{x}\theta^n(1-\theta)^x$		$\frac{n(1-\theta)}{\theta}$	$\frac{n(1-\theta)}{\theta^2}$	$\left(\frac{\theta}{1-e^t(1-\theta)}\right)^n$

The location/scale transformation $Y = \mu + \sigma X$ gives

$$f_Y(y) = \frac{1}{\sigma} f_X\left(\frac{y - \mu}{\sigma}\right) \qquad F_Y(y) :$$

$$f_{Y,(+)} = e^{\mu t} M_{Y,(-\sigma^+)} \qquad \mathbb{E}[Y] = \mu + \sigma \mathbb{E}[X]$$

$$e^{\mu t} M_X(\sigma t)$$
 $E[Y] = \mu + \sigma E[X]$ $Var[Y] = \sigma^2 Var[X]$

$$M_Y(t) = e^{\mu t} M_X(\sigma t)$$
 $\mathbf{E}[Y] = \mu + \sigma \mathbf{E}[X]$

for $\boldsymbol{x} \in \mathbb{R}^K$ with $\boldsymbol{\Sigma}$ a $(K \times K)$ variance-covariance matrix and $\boldsymbol{\mu}$ a $(K \times 1)$ mean vector.

 $f_{\boldsymbol{X}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{K/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \Big\{ -\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) \Big\},$

The PDF of the multivariate normal distribution is

The gamma function is given by $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$.

	fbm	$\frac{e^{\beta t} - e^{\alpha t}}{t(\beta - \alpha)}$	$\left(\frac{\lambda}{\lambda-t}\right)$	$\left(\frac{\beta}{\beta-t}\right)^{\alpha}$		$e^{\{\mu t + \sigma^2 t^2/2\}}$			
CONTINUOUS DISTRIBUTIONS	$\operatorname{Var}[X]$	$\frac{(\beta - \alpha)^2}{12}$	$\frac{1}{\lambda^2}$	$rac{lpha}{eta^2}$	$\frac{\Gamma\left(1+\frac{2}{\alpha}\right)-\Gamma\left(1+\frac{1}{\alpha}\right)^2}{\beta^{2/\alpha}}$	σ^2	$\frac{\nu}{\nu - 2} (\text{if } \nu > 2)$	$\frac{\alpha\theta^2}{(\alpha-1)^2(\alpha-2)}$ (if $\alpha>2$)	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
	$\mathrm{E}[X]$	$\frac{(\alpha+\beta)}{2}$	7 1	arphi $arphi$	$\frac{\Gamma(1+1/\alpha)}{\beta^{1/\alpha}}$	μ	$0 (\text{if } \nu > 1)$	$\frac{\theta}{\alpha - 1}$ (if $\alpha > 1$)	$\frac{\alpha}{\alpha + \beta}$
	cdf	$\frac{x-\alpha}{\beta-\alpha}$	$1 - e^{-\lambda x}$		$1 - e^{-\beta x^{\alpha}}$			$1 - \left(\frac{\theta}{\theta + x}\right)^{\alpha}$	
	fpd	$\frac{1}{\beta-\alpha}$	$\lambda e^{-\lambda x}$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$	$lphaeta x^{lpha-1}e^{-eta x^{lpha}}$	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	$\frac{(\pi\nu)^{-\frac{1}{2}}\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\left\{1+\frac{x^2}{\nu}\right\}^{(\nu+1)/2}}$	$\frac{\alpha\theta^{\alpha}}{(\theta+x)^{\alpha+1}}$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$
	parameters	$\alpha < \beta \in \mathbb{R}$	$\lambda \in \mathbb{R}^+$	$lpha,eta\in\mathbb{R}^+$	$lpha,eta\in\mathbb{R}^+$	$\mu \in \mathbb{R}, \sigma \in \mathbb{R}^+$	+ - ₩ +	$\theta, \alpha \in \mathbb{R}^+$	$\alpha, \beta \in \mathbb{R}^+$
		(lpha,eta)	+	+	+		凶	+	(0,1)
		$Uniform(\alpha,\beta)$ (stand. model $\alpha=0,\beta=1$)	$Exponential(\lambda)$ (stand. model $\lambda = 1$)	$Gamma(\alpha,\beta)$ (stand. model $\beta=1$)	$Weibull(\alpha, \beta)$ (stand. model $\beta = 1$)	$Normal(\mu,\sigma^2)$ (stand. model $\mu=0,\sigma=1$)	Student(u)	Pareto(heta, lpha)	Beta(lpha,eta)