7 Regression

- Regression is a method to find "best fit" curves to experimental data.
- If we take measurements of an experiment we can plot discrete data points of our observations.

Wind tunnel measuring force on a body vs. wind velocity

v, m/s	10	20	30	40	50	60	70	80
F, N	25	70	380	550	610	1220	830	1450

Since we cannot take measurements for every value of wind velocity but we would like to know what force will be exerted for any wind velocity we encounter, we formulate a relationship between <u>Force</u> and <u>Wind Velocity</u>.

The model equation above comes from fitting experimental data to the "best fitting" curve so that we can approximate future values of force for any velocity.

7.1 Linear Least-Squares Regression

If we suspect that the variables have a linear relationship we can try to fit a straight line to the data:

$$y = a_0 + a_1 x + e$$

y-intercept Slope Error (residual)

The error is the difference between the straight line approximation and the true data point.

$$e = y - a_0 - a_1 x$$

Each data point has an associated error. If we try to minimise the total error it can lead to a line which is not a best fit:

For
$$n$$
 data points
$$\sum_{i=1}^{n} e_i = \sum_{i=1}^{n} (y_i - a_0 - a_1 x_i)$$

Total error

Or go to www.pollev.com/jsands601

Which data point has the largest error for the fitted equation?

$$y = 3x$$

$$\begin{array}{c|ccc} x & y & e \\ \hline -1 & -3 & \\ 0 & 1 & \\ 1 & 4 & \\ 2 & 4 & \\ 3 & 10 & \\ \end{array}$$

$$egin{array}{c} x = -1 \ x = 0 \ x = 1 \ x = 2 \ x = 3 \end{array}$$

Tc :

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

For the data points on the right hand side, the best fit is the straight line joining both points.

However the dashed line also produces a total error of 0 since positive and negative error cancel out.

Therefore using total error does not produce a unique solution to the best fit problem. We can try to get around this problem by taking the absolute value of the total error:

$$\sum_{i=1}^{n} |e_i| = \sum_{i=1}^{n} |y_i - a_0 - a_1 x_i|$$

However this also results in a solution that is not unique. For the data below any straight line in between the dashed lines will minimise the absolute value of the error.

EXAMPLE 1 The best fitting linear line for the following data is y = x + 1. However, using total absolute error produces non-unique results.

$$y_1 = x + 1$$
 $y_2 = x + 2$

X	У	$ y-y_1 $	$ y-y_2 $
1	1	1	2
2	2	1	2
1	3	1	0
2	4	1	0
	TOTAL	4	4

Same (minimum) error Not a unique solution

To get a unique solution we can use the square of the error as our criterion for minimising the error:

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

- For this reason we call it least squares regression.
- In particular this is for linear graphs so it is in fact linear least squares.
- □ The reason why this produces a unique solution and the others do not become apparent once we derive the formulas for the coefficients a_0 and a_1 .

EXAMPLE 2 Using the square of the error produces a unique solution.

$$y_1 = x + 1$$
 $y_2 = x + 2$

X	У	$(y-y_1)^2$	$(y-y_2)^2$
1	1	1	4
2	2	1	4
1	3	1	0
2	4	1	0
	TOTAL	4	8

Unique solution for minimum error

- To derive the coefficients we minimise the total least squares error function using calculus techniques.
- The variables are a_0 and a_1 so to minimise we must take partial derivatives with respect to these variables and find the critical points.

$$\frac{\partial S_r}{\partial a_0} = -2\sum (y_i - a_0 - a_1 x_i)$$

$$0 = \sum y_i - \sum a_0 - \sum a_1 x_i$$

$$0 = \sum x_i y_i - \sum a_0 x_i - \sum a_1 x_i$$

$$0 = \sum x_i y_i - \sum a_0 x_i - \sum a_1 x_i^2$$

$$0 = \sum x_i y_i - \sum a_0 x_i - \sum a_1 x_i^2$$

$$0 = \sum x_i y_i - \sum a_0 x_i - \sum a_1 x_i^2$$

$$0 = \sum x_i y_i - \sum a_0 x_i - \sum a_1 x_i^2$$

$$0 = \sum x_i y_i - \sum a_0 x_i - \sum a_1 x_i^2$$

$$0 = \sum x_i y_i - \sum a_0 x_i - \sum a_1 x_i^2$$

$$0 = \sum x_i y_i - \sum a_0 x_i - \sum a_1 x_i^2$$

$$0 = \sum x_i y_i - \sum a_0 x_i - \sum a_1 x_i^2$$

$$0 = \sum x_i y_i - \sum a_0 x_i - \sum a_1 x_i^2$$

$$0 = \sum x_i y_i - \sum a_0 x_i - \sum a_1 x_i^2$$

$$0 = \sum x_i y_i - \sum a_0 x_i - \sum a_1 x_i^2$$

$$0 = \sum x_i y_i - \sum a_0 x_i - \sum a_1 x_i^2$$

$$0 = \sum x_i y_i - \sum a_0 x_i - \sum a_1 x_i^2$$

Solving these equations simultaneously gives:

$$a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$

$$a_0 = \overline{y} - a_1 \overline{x}$$
Mean of y Mean of x

Note that the critical point is unique, and that it must be a minimum since there is no maximum error.

EXAMPLE 3 Fit a straight line to the following data for drag coefficients.

i	x_i	${\cal Y}_i$	x_i^2	$x_i y_i$
1	10	25	100	250
2	20	70	400	1,400
3	30	380	900	11,400
4	40	550	1,600	22,000
5	50	610	2,500	30,500
6	60	1,220	3,600	73,200
7	70	830	4,900	58,100
8	80	1,450	6,400	116,000
\sum	360	5,135	20,400	312,850

$$\bar{x} = \frac{360}{8} = 45$$
 $\bar{y} = \frac{5,135}{8} = 641.875$

$$a_1 = \frac{8(312,850) - 360(5,135)}{8(20,400) - (360)^2} = 19.47024$$

$$a_0 = 641.875 - 19.47024(45) = -234.2857$$

$$F = -234.2857 + 19.47024v$$

EXAMPLE 4 Fit a straight line to the data.

$$y = a_0 + a_1 x$$
: $a_0 = \bar{y} - a_1 \bar{x}$ $a_1 = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$

x_i	y_i
-1	-3
0	1
1	4
2	4
3	10

Correlation Coefficient

We measure how good our linear regression fit is by comparing it with the spread about the mean value of the data:

$$S_t = \sum_{i=1}^n (y_i - \overline{y})^2$$

Spread about mean

$$S_t = \sum_{i=1}^n (y_i - \overline{y})^2 \qquad S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

Spread about straight line fit

- Evaluating about the mean gives the largest spread. If our straight line approximation is better then the data will be less spread out.
- We therefore define the correlation coefficient, r, to be:

$$r^2 = \frac{S_t - S_r}{S_t}$$
 (Relative measure)

$$r = \frac{n\sum (x_i y_i) - (\sum x_i) (\sum y_i)}{\sqrt{n\sum x_i^2 - (\sum x_i)^2} \sqrt{n\sum y_i^2 - (\sum y_i)^2}}$$

□ When r = 0 there is no improvement beyond the mean. When r = 1 the total S_r is 0 and we have a perfect fit. ■ Warning: Even if r is close to 1 it does not necessarily mean the straight line is a good fit.

EXAMPLE 5 The following 4 data sets have r = 0.67 with the same best fit line of y = 3 + 0.5x.

- So remember to plot your data to check that it looks like a good fit.
- The correlation coefficient can then be used to determine quantitatively just how good that fit is, only after establishing that the line is the right shape in the first place.

7.2 Linearisation of Nonlinear Relationships

- When fitting experimental data sometimes our best option is to assume a certain form of nonlinear relationship and fit the parameters to that equation.
- Experiments will determine how reasonable our equations are for the parameters we have fitted.

Exponential Model

$$y = \alpha_1 e^{\beta_1 x}$$

Power Equation

$$y = \alpha_2 x^{\beta_2}$$

Saturation-Growth Equation

$$y = \alpha_3 \frac{x}{\beta_3 + x}$$

- The idea is to linearise the equations and perform linear regression analysis as before in order to obtain the unknown coefficients of the equations (α, β) .
- The linearised versions are given below:

Exponential Model

$$\ln y = \ln \alpha_1 + \beta_1 x$$

Power Equation

$$\log y = \log \alpha_2 + \beta_2 \log x$$

Can take any base but base-10 is standard convention

21

Saturation-Growth Equation

$$\frac{1}{y} = \frac{1}{\alpha_3} + \frac{\beta_3}{\alpha_3} \frac{1}{x}$$

EXAMPLE 6 Fit the data from **Example 3** to a power equation.

i	x_i	y_i	$\log x_i$	$\log y_i$	$(\log x_i)^2$	$\log x_i \log y_i$
1	10	25	1.000	1.398	1.000	1.398
2	20	70	1.301	1.845	1.693	2.401
3	30	380	1.477	2.580	2.182	3.811
4	40	550	1.602	2.740	2.567	4.390
5	50	610	1.699	2.785	2.886	4.732
6	60	1220	1.778	3.086	3.162	5.488
7	70	830	1.845	2.919	3.404	5.386
8	80	1450	1.903	3.161	3.622	6.016
\sum			12.606	20.515	20.516	33.622

$$\overline{x} = \frac{12.606}{8} = 1.5757$$
 $\overline{y} = \frac{20.515}{8} = 2.5644$

$$\bar{y} = \frac{20.515}{8} = 2.5644$$

Linear regression coefficients for log variables

$$a_1 = \frac{8(33.622) - 12.606(20.515)}{8(20.516) - (12.606)^2} = 1.9842$$

$$a_0 = 2.5644 - 1.9842(1.5757) = -0.5620$$

$$\log y = -0.5620 + 1.9842 \log x$$

$$\alpha_2 = 10^{-0.5620} = 0.2741$$
 $\beta_2 = 1.9842$

$$F = 0.2741v^{1.9842}$$

24

- So which model is better? Linear fit or power equation fit?
- The answer must come from an engineering knowledge of the system you are studying.
- From first principle fluid mechanics calculations we can show under certain idealised conditions that the drag force on an object is proportional to the velocity squared.
- This indicates that our power model equation may be a more realistic mathematical model for our system.

EXAMPLE 7 Fit an exponential model to the data using linearisation.

$$y = a_0 + a_1 x$$
: $a_0 = \bar{y} - a_1 \bar{x}$ $a_1 = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$

i	x_i	y_i
1	10	25
2	20	70
3	30	380
4	40	550
5	50	610
6	60	1,220
7	70	830
8	80	1,450

7.3 Built-In Matlab Functions

The polyfit and polyval functions in Matlab can be used to do linear least-squares regression as follows:

```
>> x = [10 20 30 40 50 60 70 80];
>> y = [25 70 380 550 610 1220 830 1450];
>> a = polyfit(x,y,1)
a =
   19.4702 -234.2857
     slope y-intercept
           \longrightarrow y = -234.2857 + 19.4702x
```

```
>> plot(x,y,'or','Markersize',8,'Markerfacecolor','r')
>> hold on
>> X = linspace(10,80);
>> Y = polyval(a,X);
>> plot(X,Y,'b','Linewidth',3)
```


7.4 Matlab Graphical Method

You can also use the Matlab graphical fitting tool.

30

31

If >> a = polyfit(x,y,2) in Matlab gives a = [-3 0 2], what is the fitting equation?

$$y = -3 + 2x$$

$$y = -3x + 2$$

$$y = -3x^2 + 2$$

$$y = -3 + 2x^2$$

$$y = -3x^2 + 2x$$

$$y = -3x + 2x^2$$

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Lecture 7 **Numerical Methods** © MCGRAW HILL

If t is the independent variable, r is the dependent variable, then which command fits the data to a power equation?

```
q = polyfit(log10(r), t, 1)
q = polyfit(r, log10(t), 1)
q = polyfit(log10(r), log10(t), 1)
q = polyfit(t, log10(r), 1)
q = polyfit(log10(t), r, 1)
q = polyfit(log10(t), log10(r), 1)
```

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Lecture 7 **Numerical Methods** © MCGRAW HILL

33