TÜV Rheinland Energie und Umwelt GmbH Solar Energy

Test Report

Prüfbericht

Qualification of a Solar Collector in accordance with

Qualifizierung eines Solarkollektors nach

DIN EN 12975-1: 2006; DIN EN 12975-2: 2006

TÜV Report No.: 212200633_P

Cologne, 12 December 2012

Publication or distribution of this report to third parties is only permissible in its complete and unabridged form. Publication or dissemination of extracts, appraisals or any other revision and adaptation hereof, in particular for advertising purposes, is only permissible on receipt of prior written agreement by the TÜV Rheinland Group.

The test results presented in this report refer only to the test item.

Veröffentlichung und Weitergabe an Dritte ist nur in vollständiger, ungekürzter Form zulässig. Veröffentlichung oder Verbreitung von Auszügen, Zusammenfassungen, Wertungen oder sonstigen Bearbeitungen und Umgestaltungen, insbesondere zu Werbezwecken, ist nur mit vorheriger schriftlicher Zustimmung der TÜV Rheinland Group zulässig.

Die in diesem Bericht dargestellten Prüfergebnisse beziehen sich ausschließlich auf den Prüfgegenstand.

TÜV Rheinland Energie und Umwelt GmbH

51105 Köln, Am Grauen Stein, Tel.: +49 221 806-2477, Fax: +49 221 806-1350

Report-No.: 212200633 P

on

Qualification of a Solar Collector in accordance with

Qualifizierung eines Solarkollektors nach

DIN EN 12975-1: 2006; DIN EN 12975-2: 2006

Client: Isocal HeizKühlsysteme GmbH

Kunde Donaustraße 12

88046 Friedrichshafen

Germany

TÜV Quotation No.: 435/ 1420120126

Angebotsnummer

TÜV Order No.: 21220217

Auftragsnummer

Order of: 2012-09-11

Datum der Beauftragung

Date of Receipt of Test Item: 2012-09-27

Anlieferdatum Prüfmuster

Commencement of Test: 2012-10-25

Testbeginn

TÜV Client No.: 118470

Kundennummer

Inspector: Ulrich Fritzsche

Prüfer

Business Field: Solar Energy

Geschäftsfeld

No of Pages: 19

Seitenzahl

Appendix: 15 to 19

Anhang

List of Contents

Inhaltsverzeichnis

1	Sum	mary of test results Zusammenfassung	4
2	Setti	ng of tasks; Aufgabenstellung	6
3	Basi	s of testing; Grundlagen	6
4	Sam	pling; Probenahme	7
5		cription of the collector construction; Beschreibung der ektorkonstruktion	7
6	Exec	cution and evaluation; Durchführung und Auswertung	9
	6.1	Visual inspection; Sichtprüfung	9
7	Mea	suring results of thermal performance testing; Prüfergebnisse der	
	Leis	tungsprüfung von Sonnenkollektoren	10
	7.1	Test method according to DIN EN 12975-2:2006 chapter 6.3; Prüfgrundlage	
		entsprechend DIN EN 12975-2:2006 Kapitel 6.3	10
	7.2	Test conditions; Prüfbedingungen	
8	Gen	eral remarks; Bemerkungen	13
List	of (Contents – Appendix	
Inhal	tsverz	reichnis - Anhang	
Appe	endix	1: Nomenclature	15
Appe	endix 2	2: Thermal performance test results	15
Appe	endix (3: Photo documentation	19

1 Summary of test results

Zusammenfassung

Qualification of a Solar Collector in accordance with

Qualifizierung eines Solarkollektors nach

DIN EN 12975-1: 2006; DIN EN 12975-2: 2006

: Isocal HeizKühlsysteme GmbH

Manufacturer

Hersteller

Donaustraße 12

88046 Friedrichshafen

Germany

Brand
Handelsname
Collector type : SLK-S

Kollektortyp

Basis of testing : DIN EN 12975-2:2006

Prüfgrundlage

Test	Date		Summary of main test results	
	Start	End	Zusammenfassung der Hauptergebnisse	
Thermal performance Wärmeleistung	2012-10-25	2012-10-28	No visual damages	

All above listed tests of the standard DIN EN 12975-2:2006 were passed successfully in accordance with the criteria.

Alle oben aufgeführten Tests der DIN EN 12975-2:2006 wurden entsprechend der Kriterien bestanden.

Cologne, 12 December 2012

Responsible for collector testing

Team manager
Solar Thermal Energy

Dipl.-Ing. J. Sommer

Dipl.-Ing. U. Fritzsche

Summary of collector performance test results:

Zusammenfassung der Ergebnisse der Leistungsprüfung Manufacturer Isocal Heizkühlsysteme GmbH

2012

Hersteller

Brand Isocal Handelsname

Collector type SLK-S Kollektortyp

Year of manufacture

Herstellungsjahr

Length		Absorber area	
Länge	2120 mm	Absorberfläche	2.544 m ²

Width Aperture area 1290 mm 2.544 m² Aperturfläche Breite

Height Gross area 50mm 2.560 m² Bruttofläche Höhe

Weight (empty) Mass flow

38 Kg Gewicht (leer) Massenstrom 0.014 kg/(m²s)

Heat transfer medi-Test pressure:

Prüfdruck um Water 75 kPa Prüfwärmeträger

Thermal performance

Thermische Leistungsfähigkeit

	Absorber area (x _A)	Aperture area (x _a)	Unit
Conversion factor $\eta_{0x''}$ Konversionsfaktor	0.702	0.702	[]
Collector efficiency coefficient (wind dependence) b _{ux} Kollektorwirkungsgradfaktor (windabhängig)	0.066	0.066	[m ⁻¹ s]
Heat loss coefficient at (Tm-Ta)=0 b _{1x} Kollektorwirkungsgradfaktor (Tm-Ta)=0	32.64	32.64	[Wm ⁻² K ⁻¹]
Wind dependence of heat loss coefficient b_{2x} Kollektorwirkungsgradfaktor	3.59	3.59	[Wsm ⁻³ K ⁻¹]

Output power per collector unit in W:

Ausgangsleistung pro Kollektormodul in W:

$T_m - T_a = 2 K$	400 W/m ² 700 W/m ² 1000 W/m ²			
u= 0.5 m/s	515.5	1033.5	1551.6	
u= 1.5 m/s	449.8	932.2	1414.7	
u= 3.0 m/s	351.2	780.3	1209.4	

(at normal incidence angle

(bei senkrechter Einstrahlung)

2 Setting of tasks

Aufgabenstellung

A thermal performance test in accordance with DIN EN 12975-2:2006 of the unglazed Isocal Heizkühlsysteme GmbH collector SLK-S should be performed.

Es soll eine Kollektorleistungsprüfung des unabgedeckten Isocal Heizkühlsysteme GmbH Kollektors SLK-S entsprechend DIN EN 12975-2:2006 durchgeführt werden.

3 Basis of testing

Grundlagen

DIN EN 12975-1:2006 "Thermische Solaranlagen und ihre Bauteile- Kollektoren- Teil 1: Allgemeine Anforderungen"

DIN EN 12975-1:2006 "Thermal solar systems and components - Collectors - Part 1: General requirements"

DIN EN 12975-2:2006 "Thermische Solaranlagen und ihre Bauteile- Kollektoren- Teil 2: Prüfverfahren"

DIN EN 12975-2:2006 "Thermal solar systems and components - Collectors - Part 2: Test procedure"

Solar Keymark – Specific Scheme Rules: "Specific CEN Keymark Scheme Rules for Solar Thermal Products"

Χ

Sampling Probenahme 4

Prototype samples
Prototyp
Samples from pilot production
Prüfmuster aus der Pilotfertigung
Samples from serial production
Prüfmuster aus der Serienproduktion
Selection of test samples acc. to Solar Keymark scheme rules
Prüfmusterauswahl entsprechend der Solar Keymark Regeln
Random selection of test samples acc. to SRCC scheme rules
Prüfmusterauswahl entsprechend der SRCC Regeln

Description of the collector construction Beschreibung der Kollektorkonstruktion 5

Manufacturer Hersteller	Isocal Heizkühlsysteme GmbH		
Brand name Handelsname	isocal		
Collector Type Kollektortyp	SLK-S		
Category Kategorie	Unglazed Collector		
Date of manufacture Produktionsdatum	2012		
Serial number Seriennummer	01409/ 01410		
Drawing numbers Zeichnungsnummern	No information		

Determinate by test laboratory
 reviewed manufacturer information

^③ according to manufacturer information

Collector & construction: Kollektor & Konstruktion

Gross dimensions I x w x h [mm] Bruttofläche I x b x h	2120 x 1290 x 50 ^②
Absorber dimensions I x w [mm] Absorberfläche I x b x Anzahl	2212 x 1200 ^①
Aperture dimensions I x w [mm] Aperturfläche I x b x Anzahl	2212 x 1200 ^①
Gross/ aperture/ absorber area [m²] Brutto-/ Apertur-/ Absorberfläche	2.56 ² / 2.544 ¹ / 2.544 ¹
Weight empty [kg] Leergewicht	2 x 19 (collector without mounting structure) ^③
Fluid content [I] Flüssigkeitsinhalt	2 x 22.5 ^③

Absorber:

Absorber

Construction type Bauart	PE-LD ³		
--------------------------	--------------------	--	--

Header/ connections:

Sammelleitung/ Anschlüsse

No. and dimensions of connections Anzahl und Dimension der Anschlüsse 4	28 mm ^②
--	--------------------

<u>Limit values (given by the manufacturer):</u> Grenzwerte

Max. operating temperature [°C] Maximale Betriebstemperatur	60 ③		
Maximum pressure [kPa] Maximaler Betriebsdruck	20 ³		
Heat transfer medium Wärmeträger	No information ³		
Other limitations Weitere Einschränkungen			
Collector mounting Montagearten	tilted and flat roof mounting is possible ³		

Determinate by test laboratory
 reviewed manufacturer information

^③ according to manufacturer information

6 Execution and evaluation

Durchführung und Auswertung

6.1 Visual inspection

Sichtprüfung

Date Datum	2012-09-27	Inspector Prüfer	Kämmer
---------------	------------	---------------------	--------

Internal barcode no. Interne Barcode Nummer	Serial no. Seriennummer	Description of defects Beschreibung der Schäden
20120006327	01409	No visual damages
20120006328	01410	No visual damages

Fig. 1: Visual Incoming Inspection

Measuring results of thermal performance testing; Prüfergebnisse der Leistungsprüfung von Sonnenkollektoren 7

Pressure drop test Druckverlustprüfung 7.1

Serial no. Seriennummer	01409/ 01410
Date Datum	19 November 2012
Inspector Prüfer	Fritzsche

7.1.1 Test conditions

Prüfbedingungen

Fluid used to pressurize collector Genutztes Fluid zur Druckverlustbestimmung	Water
Average fluid temperature [°C] mittlere Fluidtemperatur [°C]	14℃

7.1.2 Test results

Prüfergebnisse

Figure 2: pressure drop curve

Function of pressure drop cu	
Funktion zur Bestimmung der	$\Delta p(\dot{V}) = 4.801E-07 * \dot{V}^2 + 1.529E-03* \dot{V}$
Druckverlustkurve	

Test method according to DIN EN 12975-2:2006 chapter 6.2 Prüfgrundlage entsprechend DIN EN 12975-2:2006 Kapitel 6.2 7.2

outdoor steady state (6.2.4)

indoor steady state (6.2.5)

stationär, im freien

stationär, indoor

Serial no. Seriennummer	01409/ 01410				
Date (Start/End) Datum (Start/Ende)	25. October 2012 28. October 2012				
Inspector Prüfer	U. Fritzsche				

7.3 **Test conditions**

Prüfbedingungen

Latitude [9] Geographische Breite	indoor
Longitude [°] Geographische Länge	indoor
Collector tilt [° from horizontal] Kollektorneigung	(45°)
Collector azimuth [° from south] Kollektorazimut	indoor
Orientation of absorber or pipes Ausrichtung des Absorbers oder der Absorberröhren	vertical
Mass flow [kg/(m²s)] Massenstrom	0.014
Aperture area A _a [m²] Aperturfläche	2.544

7.3.1 Test results thermal performance Prüfergebnisse Wärmeleistung

First order fit to data

Ausgleichskurve 1. Ordnung für die Messwerte

$$\dot{Q} = A \cdot G'' \left(\eta_0 (1 - b_u u) - (b_1 + b_2 u) \frac{(t_m - t_a)}{G''} \right)$$

Conversion factor $\eta_{0a''}$ Konversionsfaktor	0.702 (based on aperture area)
Collector efficiency coefficient (wind depend-	
ence) b _{ua} Kollektorwirkungsgradfaktor (windabhängig)	0.066 (based on aperture area)
Heat loss coefficient at (Tm-Ta)=0 b _{1a} Kollektorwirkungsgradfaktor (Tm-Ta)=0	32.64(based on aperture area)
Wind dependence of heat loss coefficient b_{2a} Kollektorwirkungsgradfaktor	3.59 (based on aperture area)

Power curve per collector unit (for $G'' = 1000 \text{ W/m}^2$)

Leistungskurve pro Kollektormodul

Maximum power [W _{peak}] (G"=1000 W/m² u=0) Spitzenleistung	1786
per collector unit/ pro Kollektormodul	

Details of any damage and problems: Einzelheiten hinsichtlich vorhandener Fehler.

No visual damages

For more details about thermal performance test see annex 2.

8 General remarks

Bemerkungen

All results only refer to the test samples that were subjected to testing.

The extended total measuring uncertainty (k=2) for the indoor performance test is:

$$\eta \le \pm 2.0 \%$$

The sun simulator is working with an artificial cold sky to minimize long wave irradiation through the lamps. The resulting long wave irradiation for this test was $L_d = +41.4 \text{ W/m}^2$.

The resulting value G"(Net-Irradiation) was G"= $G_{mean} + L_d = 899 + 41.4 = 940.4 \text{ W/m}^2$.

The artificial wind generator is simulating a wind flow only parallel to aperture area.

The homogeneity of irradiance in collector plane is always better ± 5 %.

Fig. 2: Working principle of TÜV Sun Simulator

To determine the performance just related to ambient air and wind velocity, the performance at net-irradiance G"=0W/m² was detected. Because of the test set up, negative temperature differences above 2.5 K won't be possible to achieve.

Fig. 3: Power curve at 0 W/m² net irradiance

For description of the thermal performance without irradiance, there's no general equation available so far. The measured values could be taken out of Table 2, Appendix 2.

Appendix 1: Nomenclature

polidix	Homonolataro	
Symbol	Meaning	Units
a_{1}	Algebraic constant, reference to Ti*	Wm ⁻² K ⁻¹
a_2	Algebraic constant, reference to T _i *	Wm ⁻² K ⁻²
A_A	Absorber area of collector	m ²
A_a	Aperture area of collector	m ²
A_G	Gross area of collector	m ²
D	Date	MM/DD/YYYY
c_f	Specific heat capacity of heat transfer fluid	$Jkg^{-1}K^{-1}$
С	Effective thermal capacity of collector	JK ⁻¹
$G^{1)}$	Total solar irradiance	Wm ⁻²
G''	net irradiance	Wm ⁻²
G_b	Direct solar irradiance (beam irradiance)	Wm ⁻²
E_L	Longwave irradiance ($\lambda > 3\mu m$)	Wm ⁻²
LT	Local time	h
Kϑ	Incident angle modifer	-
m	Mass flowrate of heat transfer fluid	kgs ⁻¹
Q	Useful power extracted from collector	W
t	time	S
t_a	Ambient or surrounding air temperature	°C
t_e	Collector outlet (exit) temperature	°C
t_i	Collector inlet temperature	°C
t_m	Mean temperature of heat transfer fluid	°C
T_i^*	Reduced inlet temperature diffeence	m^2KW^{-1}
T_m^*	Reduced mean temperature difference	m^2KW^{-1}
T_s	Atmospheric or equivalent sky radiation temperature	K
U	Measured overall heat loss coefficient of collector with reference to Ti*	$\mathrm{Wm}^{-2}\mathrm{K}^{-1}$
\overline{U}	Measured overall heat loss coefficient of collector, with reference to Tm*	$\mathrm{Wm}^{-2}\mathrm{K}^{-1}$
U_L	Overall heat loss coefficient of a collector with uniform absorber temperature tm	$\mathrm{Wm}^{^{-2}}\mathrm{K}^{^{-1}}$
u	Surrounding air speed	ms ⁻¹
V_f	Fluid capacity of the collector	m ³
-)	Pressure difference between fluid inlet and	
Δp	outlet	Pa
Δt	Time interval	S
$ au_c$	Collector time costant	S
τ	Transmittance	-
(τα) _{en}	Product of effective transmittance \boldsymbol{x} absorptance for direct solar radiation at normal incidence	-
η_{G}	Thermal efficiency of collector (gross)	-
η_{a}	Thermal efficiency of collector (aperture)	-
η_0	Zero loss thermal efficiency	-

Appendix 2: Thermal performance test results

Table 2.1: Evaluation of steady state collector test based on aperture area and mean tempera-

ture of heat transfer fluid (multi linear regression)	ו מטופ ב.ו. בימוטמווטוו טו אופמטץ אומופ נטוופנוטו ופאו טמאפט טוו משפונטו
jid	9
nm)	מומס
lti lir	,
าear	פושוש
regre	C
essio	כ
n)	נפטנ
	ממפ
	2
	ap
	מ

		Performance results, measured and derived data $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
Date	UTC	G"	G/G _d	EL	t _a	U	ṁ	t _{in}	t _m	t _m -t _a	T*m	Q	ηα
YYYY-MM-DD	hh:mm	W/m²	%	W/m²	℃	m/s	kg/s	°C	℃	K	m²K/W	W	%
2012-09-25	17:28:42	940.		41.4	24.0	0.6	0.0353	18.45	24.01	0.03	0.0000	1640.3	0.686
2012-09-25	17:43:43	940.4		41.4	24.3	0.6	0.0353	18.45	24.05	-0.30	-0.0003	1655.8	0.692
2012-09-25	19:23:43	940.4		41.4	24.6	0.6	0.0351	38.24	39.07	14.51	0.0154	242.1	0.101
2012-09-25	19:38:43	940.4		41.4	24.7	0.6	0.0351	38.25	39.07	14.40	0.0153	241.3	0.101
2012-09-25	21:16:13	940.4		41.4	25.0	0.6	0.0350	56.05	53.13	28.10	0.0299	-855.5	0.101 0.101 -0.358 -0.355 -0.442
2012-09-25	21:31:14	940.4		41.4	25.1	0.6	0.0350	56.09	53.19	28.06	0.0298	-849.6	-0.355
2012-09-25	22:46:14	940.4		41.4	24.6	1.4	0.0350	55.99	52.39	27.84	0.0296	-1057.1	-0.442
2012-09-25	23:01:14	940.4		41.4	24.6	1.4	0.0350	55.99	52.37	27.77	0.0295	-1062.3	-0.444
2012-09-26	00:08:44	940.4		41.4	24.5	1.4	0.0351	38.24	38.54	14.02	0.0149	90.3	0.038
2012-09-26	00:23:44	940.4		41.4	24.3	1.4	0.0351	38.24	38.56	14.25	0.0152	95.0	0.040
2012-09-26	03:17:15	940.4		41.4	23.9	1.4	0.0356	18.55	23.95	0.09	0.0001	1605.3	0.671
2012-09-26	03:32:15	940.4		41.4	24.3	1.4	0.0355	18.55	23.94	-0.34	-0.0004	1603.5	0.670
2012-09-26	08:32:15	940.4		41.4	23.5	2.9	0.0355	18.59	23.42	-0.06	-0.0001	1436.1	0.600
2012-09-26	08:47:15	940.4		41.4	24.0	2.9	0.0355	18.59	23.41	-0.60	-0.0006	1430.8	0.598
2012-09-26	10:23:16	940.4		41.4	23.9	2.9	0.0352	38.21	37.47	13.56	0.0144	-217.4	-0.091
2012-09-26	10:38:16	940.4		41.4	24.3	2.9	0.0351	38.23	37.52	13.21	0.0140	-207.8	-0.087
2012-09-26	11:17:16	940.4		41.4	24.2	2.9	0.0350	55.87	50.58	26.43	0.0281	-1550.6	-0.648
2012-09-26	11:32:16	940.4		41.4	24.4	2.9	0.0350	55.91	50.91	26.56	0.0282	-1467.0	-0.613

Fig. 4: Measured efficiency points at G"=940 W/m2

Fig. 5: Measured output power at G"=0 W/m²

Table 2.2: Determination of output Power at net irradiance G"=0 W/m²:

Date	time	m dot	t_in	t_e	Dt_k	t_m	t_a	t_m-t_a	Q	u
[yyyy-mm-dd]	[hh:mm:ss]	[kg/s]	[°C]	[°C]	[K]	[K]	[°C]	[K]	[W]	[m/s]
2012-10-26	16:25:16	0.0352	14.97	17.94	2.97	16.45	18.9	-2.48	436.9	2.9
2012-10-26	16:35:16	0.0352	14.97	17.91	2.95	16.44	18.9	-2.45	433.4	2.9
2012-10-26	18:52:17	0.0351	23.92	22.45	-1.47	23.18	18.9	4.27	-215.1	2.9
2012-10-26	19:02:17	0.0351	23.92	22.46	-1.46	23.19	18.9	4.29	-214.4	2.9
2012-10-26	21:27:17	0.0353	32.90	27.61	-5.28	30.26	18.8	11.48	-778.8	2.9
2012-10-26	21:37:17	0.0353	32.92	27.65	-5.27	30.28	18.8	11.48	-777.8	2.9
2012-10-27	00:47:23	0.0353	19.31	19.03	-0.28	19.17	18.3	0.84	-41.8	2.9
2012-10-27	00:57:23	0.0353	19.30	19.02	-0.28	19.16	18.3	0.85	-41.9	2.9
2012-10-27	14:58:40	0.0350	14.79	17.08	2.29	15.93	18.0	-2.05	335.7	2.9
2012-10-27	15:08:40	0.0350	14.79	17.07	2.27	15.93	17.9	-2.00	332.6	2.9
2012-10-27	18:19:32	0.0349	14.76	16.55	1.80	15.65	17.8	-2.17	263.0	1.6
2012-10-27	18:29:32	0.0349	14.75	16.54	1.79	15.65	17.8	-2.13	261.8	1.6
2012-10-27	21:18:33	0.0351	23.74	22.22	-1.52	22.98	17.8	5.16	-222.9	1.6
2012-10-27	21:28:33	0.0351	23.74	22.20	-1.53	22.97	17.8	5.22	-225.3	1.6
2012-10-27	23:33:33	0.0353	32.82	27.77	-5.05	30.29	17.9	12.43	-745.1	1.6
2012-10-27	23:43:33	0.0353	32.79	27.78	-5.01	30.28	17.9	12.39	-739.1	1.6
2012-10-28	02:43:38	0.0353	19.12	18.74	-0.38	18.93	17.7	1.25	-56.3	1.6
2012-10-28	02:53:38	0.0353	19.13	18.73	-0.40	18.93	17.6	1.34	-58.8	1.6
2012-10-28	16:46:36	0.0350	28.14	24.69	-3.45	26.42	17.7	8.76	-504.6	1.6
2012-10-28	16:56:36	0.0350	28.14	24.69	-3.45	26.42	17.7	8.75	-504.1	1.6
2012-10-28	20:30:28	0.0348	14.68	15.91	1.23	15.30	17.3	-2.00	179.3	0.6
2012-10-28	20:40:29	0.0348	14.66	15.89	1.22	15.28	17.3	-2.00	178.4	0.6
2012-10-28	22:57:29	0.0350	23.65	22.05	-1.61	22.85	17.6	5.29	-235.3	0.6
2012-10-28	23:07:29	0.0350	23.65	22.08	-1.57	22.87	17.6	5.30	-230.2	0.6
2012-10-29	01:22:59	0.0353	32.71	27.92	-4.80	30.31	17.7	12.65	-708.0	0.6
2012-10-29	01:32:59	0.0352	32.73	27.93	-4.80	30.33	17.7	12.65	-706.4	0.6
2012-10-29	05:02:35	0.0351	19.12	18.71	-0.42	18.91	17.5	1.45	-61.1	0.6
2012-10-29	05:12:35	0.0351	19.14	18.72	-0.42	18.93	17.5	1.44	-61.6	0.6
2012-10-29	07:56:35	0.0350	28.17	24.91	-3.26	26.54	17.8	8.73	-478.1	0.6
2012-10-29	08:06:35	0.0350	28.20	24.94	-3.25	26.57	17.8	8.76	-476.6	0.6
2012-10-29	09:30:36	0.0349	16.51	16.97	0.46	16.74	17.6	-0.86	67.2	0.6
2012-10-29	09:40:36	0.0349	16.53	16.97	0.44	16.75	17.6	-0.87	64.6	0.6

Appendix 3: Photo documentation

Fig. 6: performance test

Fig. 7: internal barcode

Fig. 10: artificial wind generation