PARTE A

1. Il polinomio di Taylor di grado 2 in $x_0 = \frac{\pi}{2}$ della funzione $\cos(x)$ vale

A:
$$-1 + (x - \pi/2)^2/2$$
 B: $1 - x^2/2!$ C: $1 - x + x^2/2$ D: N.A. E: $\pi/2 + x$

2. L'integrale

$$\int_{1/2}^{1} \frac{x^2}{x^2 + 1} \, dx$$

vale

A: 0 B: 1 C:
$$\frac{1}{2} + \frac{\pi}{4} - \arctan(1)$$
 D: N.A. E: $\frac{1}{2} - \frac{\pi}{4} + \arctan(\frac{1}{2})$

3. L'integrale

$$\int_{-1}^{1} |x^5| dx$$

vale

4. Il limite

$$\lim_{x \to +\infty} \frac{x \log(x)}{\log|\log(x)|}$$

vale

A: 0 B: N.E. C: N.A. D:
$$+\infty$$
 E: $1/2$

5. Il limite

$$\lim_{x \to +\infty} \frac{\sin([x]!)}{\log(\sqrt{x})}$$

vale

A: N.E. B:
$$+\infty$$
 C: N.A. D: e E: 0

6. Dire per quali $\alpha, \beta > 0$ converge la serie

$$\sum_{n=1}^{+\infty} \frac{1+n^{\alpha}}{1+n^{\beta}}$$

A: $\alpha-\beta>1$ B: $\beta-\alpha>1$ C: α e β maggiori di uno D: N.A. E: $\beta+\alpha>2$

7. Sia yla soluzione di $y^{\prime\prime}(x)+y(x)=0$ con $y(0)=\pi,\,y^{\prime}(0)=1$ allora $y^{\prime\prime\prime}(0)$ vale

A:
$$-1$$
 B: $\sin(0)$ C: N.A. D: $1 + \pi$ E: 1

8. Il minimo della funzione $f(x) = |x^4 - 2x^2 + 1|$ per $x \in \mathbb{R}$ vale

A: -1 B: N.E C:
$$\sqrt{2}$$
 D: N.A. E: 1

9. Sia z = i allora la parte reale di $(z^3\overline{z})^2$ vale

10. Data $f(x) = \arcsin(\sqrt{x-1})$, allora f'(3/2) vale

A: 0 B:
$$-1$$
 C: $1/2$ D: N.A. E: 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

6 giugno 2017

(Cognome)									(Nome)							(Numero di matricola)														

ABCDE

0	0	0	•	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	•
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	•	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	•
0	•	\bigcirc	\bigcirc	\bigcirc
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	0	\bigcirc	•	\bigcirc
0	\bigcirc	•	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

6 giugno 2017

PARTE B

1. Si consideri, per $k \neq 0$ la funzione

$$f(x) = kx^3 - (2k+1) \int_0^x \frac{1}{1+t^2} dt$$

- i) Si determini il campo di esistenza di f;
- ii) Si dica se f è pari, dispari, o nessuna delle due;
- iii) Si trovi per quali k la funzione ammette almeno tre radici reali.

Soluzione. i) Risolvendo l'integrale si può scrivere $f(x) = kx^3 - (2k+1)\arctan(x)$. Il campo di esistenza della funzione è quindi \mathbb{R} . (Questo punto si sarebbe potuto risolvere senza calcolare esplicitamente l'integrale ma semplicemente notando che $\frac{1}{1+t^2}$ è integrabile in senso improprio su \mathbb{R})

ii) la funzione è dispari, infatti sia x^3 che $\arctan(x)$ lo sono. In alternativa si può dimostrare che

$$f(-x) = k(-x)^3 - (2k+1) \int_0^{-x} \frac{1}{1+t^2} dt = -kx^3 + (2k+1) \int_0^x \frac{1}{1+t^2} dt = -f(x)$$

sfruttando che $\frac{1}{1+t^2}$ è pari.

iii) La derivata risulta

$$f'(x) = 3kx^2 - (2k+1)\frac{1}{1+x^2}.$$

Per k>0 risulta anche 2k+1>0 e quindi f'(0)=-(2k+1)<0. Inoltre f(0)=0, quindi per x positive e piccole la funzione sarà negativa. Si ottiene poi che $\lim_{x\to 0} f(x)=+\infty$, quindi oltre a x=0 ci sarà almeno una radice positiva (e per simmetria una negativa). Stessa cosa quando k<0 e 2k+1<0 ovvero per $k<-\frac{1}{2}$. Per $-\frac{1}{2}\leq k<0$ invece abbiamo f'(x)<0 per $x\neq 0$, quindi l'unica radice si trova in x=0.

Figura 1: grafico approssimativo di f(x) per k > 0

Figura 2: grafico approssimativo di f(x) per k < 1/2

2. Si consideri l'equazione differenziale

$$\begin{cases} y''(x) - y'(x) - 2y(x) = 12e^{2x} \\ y(0) + y'(0) = 18 \end{cases}$$

Si scrivano la soluzioni di tale equazione.

Tra tutte le soluzioni, ne esistono tali che $\lim_{x \to -\infty} y(x) = 0$.

Soluzione. Il polinomio caratteristico dell'equazione è $\lambda^2 - \lambda - 2 = 0$ che ha come soluzioni $\lambda_1 = -1, \ \lambda_2 = 2$. La soluzione generale dell'omogenea quindi

$$y_0 = Ae^{-x} + Be^{2x}.$$

Il termine noto e^{2x} è in risonanza con una delle soluzioni, quindi bisogna cercare una soluzione particolare del tipo $y_1 = \alpha x e^{2x}$. Abbiamo che

$$y_1''(x) - y_1'(x) - 2y_1(x) = 3\alpha e^{2x},$$

quindi scegliedo $\alpha=4$ abbiamo la soluzione particolare cercata. La soluzione generale dell'equazione quindi è

$$y(x) = Ae^{-x} + Be^{2x} + 4xe^{2x}.$$

Abbiamo quindi

$$y(0) = A + B$$

$$y'(0) = -A + 2B + 4.$$

e dunque y(0) + y'(0) = 3B + 4 = 18 quindi B = 14/3. La soluzione cercata è quindi

$$y(x) = Ae^{-x} + \frac{14}{3}e^{2x} + 4e^{2x}.$$

Figura 3: grafico approssimativo di f(x) per $-1/2 \le k < 0$

Se fra queste scegliamo quella con A=0 abbiamo immediatamente che $\lim_{x\to -\infty}y(x)=0$.

3. Si dica

- i) per quali $a \ge 0$ l'integrale $\int_1^{+\infty} \frac{e^{ax} \cos(x)}{x^a} dx$ risulti convergente
- ii) per quali $a \geq 0$ l'integrale $\int_0^\pi \frac{e^{ax} \cos(x)}{x^a} dx$ risulti convergente.

Soluzione. i) Per a > 0 abbiamo che

$$\lim_{x \to +\infty} \frac{e^{ax} - \cos(x)}{x^a} = \lim_{x \to +\infty} \frac{e^{ax}}{x^a} = +\infty$$

quindi l'integrale sicuramente diverge. Per a=0 invece abbiamo

$$\int_{1}^{+\infty} \frac{1 - \cos(x)}{1} dx$$

che non converge. Quindi non esiste nessun $a \ge 0$ per cui l'integrale sia convergente.

ii) Per a=0 abbiamo $\int_0^{\pi} (1-\cos(x))dx$ che non presenta nessun problema di integrabilità.

Per a>0 non è detto che l'integrando sia limitato vicino a zero, per capirlo, sviluppiamo il denominatore al primo ordine, ottenendo

$$\frac{e^{ax} - \cos(x)}{x^a} = \frac{1 - ax + o(x) - 1 + o(x)}{x^a} = -a\frac{x + o(x)}{x^a} \sim \frac{1}{x^{a-1}}.$$

Questo converge per a-1<1 ovvero per a<2 e diverge per $a\geq 2$.

Riassumendo l'integrale converge per $0 \le a < 2$.

- 4. Si consideri $f(x) = (1 x^2) \int_0^x e^{-t^2} dt$.
 - i) Si determini il dominio di f, e si studi il segno di f su \mathbb{R}^+
 - ii) | Si scriva lo sviluppo di Taylor per f di ordine 2 centrato in x=0
 - iii) Si calcolino $\lim_{x\to +\infty} f(x)$ e $\lim_{x\to -\infty} f(x)$

Soluzione. i) La funzione e^{-t^2} è integrabile su tutto \mathbb{R} , quindi anche il dominio di f sarà \mathbb{R} . Visto che e^{-t^2} ovunque positiva, $\int_0^x e^{-t^2} dt \ge 0$ per $x \ge 0$ (e vale zero in x = 0), il segno di f coincide con il segno di $1 - x^2$. Quindi f = 0 in x = 0 e x = 1, f > 0 per $x \in (0, 1)$ e f < 0 per x > 1.

ii) Calcoliamo le derivate di f. Abbiamo

$$f'(x) = -2x \int_0^x e^{-t^2} dt + (1 - x^2)e^{-x^2}$$

$$f''(x) = -2 \int_0^x e^{-t^2} dt - 4xe^{-x^2} - 2x(1 - x^2)e^{-x^2}$$

$$= -2 \int_0^x e^{-t^2} dt - 6xe^{-x^2} + 2x^3e^{-x^2}$$

quindi in x=0 abbiamo $f(0)=0,\,f'(0)=1,\,f''(0)=0.$ Lo sviluppo di Taylor al secondo ordine è

$$f(x) = x + o(x^2).$$

iii) Si ha che $\lim_{x\to +\infty}\int_0^x e^{-t^2}dt=L>0$ e che $\lim_{x\to -\infty}\int_0^x e^{-t^2}dt=-L<0$ quindi abbiamo immediatamente

$$\lim_{x \to +\infty} f(x) = -\infty; \ \lim_{x \to -\infty} f(x) = +\infty.$$