上节课内容回顾

Las Vegas 型随机算法

随机快速排序 随机选择 随机 *n* 后放置

Monte Carlo型随机算法

主元素测试 串相等测试 模式匹配

素数测试

- 求 x 的 m 次幂
- 求 a 的模 n 的 m 次幂
- Fermart小定理
- 测试算法分析

求x的m次幂

输入: x为实数

$$m = d_k d_{k-1} ... d_1 d_0$$
 为二进制自然数

输出: x^m

算法 Exp(x,m)

- 1. *y*←1;
- 2. for $j \leftarrow k$ downto 0 do
- 3. $y \leftarrow y^2$
- 4. if $d_i=1$ then $y \leftarrow xy$
- 5. return y

实例

$$x^{101}$$
: d_2 =1, d_1 =0, d_0 =1

$$y=1$$

$$j=2$$
 $j=1$ $j=0$

$$y=1$$
 $y=x^2$ $y=x^4$

$$y=x$$
 $y=x^5$

a模n的m次幂

输入: $a, m, n \in \mathbb{Z}^+$, $m \leq n$,

 $m = b_k b_{k-1} \dots b_1 b_0$ 为二进制自然数

输出: $a^m \pmod{n}$

算法ExpMod(a, m,n)

- 1. $c\leftarrow 1$
- 2. for $j \leftarrow k$ downto 0 do
- 3. $c \leftarrow c^2 \pmod{n}$
- 4. if $b_j=1$ then $c \leftarrow ac \pmod{n}$
- 5. return c

 $T(n)=O(k\log^2 n)=O(\log^3 n)$ 以位乘作为基本运算

Fermart小定理:测试原理

北京大学5

定理1: 如果 n为素数,则对所有的正整数 $a \neq 0 \pmod{n}$ 有 $a^{n-1} \equiv 1 \pmod{n}$

素数测试原理: 检测 $2^{n-1} \equiv 1 \pmod{n}$. 如是,输出"素数" 否则输出"合数"

算法 Ptest1(n)

输入: 奇整数 n, n > 5

输出: "prime"或者 "composite"

- 1. if ExpMod(2,n-1,n) = 1 then return prime
- 2. else return composite

问题: 算法 Ptest1只对a=2进行测试. 如果 n为合数且算法输出"素数",则称 n 为基2的伪素数. 例如341.

改进算法(一)

改进算法: 随机选取2--*n*-1中的数,进行测试. 如取a=3, 3^{340} (mod 341) = 56,341不是素数.

算法Ptest2(n)

- 1. $a \leftarrow \text{Random}(2, n-2)$
- 2. if Expmod(a, n-1, n)=1 then return prime
- 3. else return composite
- Fermat 小定理是必要条件,不是充分条件,满足该条件的也可能是合数. 对所有与 n 互素的正整数 a 都满足条件的合数 n 称为 Carmichael数,如 561,1105,1729,2465等. Carmichael数非常少,小于 10^8 的只有 255 个.
- 由初等数论可以证明:如果n为合数,但不是Carmichael数,算法Ptest2测试n为合数的概率至少为1/2.

素数的另一个必要条件

定理2 如果 n为素数,则方程 $x^2 \equiv 1 \pmod{n}$ 的根只有两个,即 x = 1, x = -1 (或 x = n-1).

证明
$$x^2 \pmod{n} \equiv 1$$

 $\Leftrightarrow x^2 - 1 \equiv 0 \pmod{n}$
 $\Leftrightarrow (x+1)(x-1) \equiv 0 \pmod{n}$
 $\Leftrightarrow x+1 \equiv 0$ 或 $x-1 \equiv 0$ (域中没有零因子)
 $\Leftrightarrow x = n-1$ 或 $x=1$
称 $x \neq \pm 1$ 的根为非平凡的.

判别方法: 如果方程有非平凡的根,则 n 为合数.

结论:由于5和7是非平凡的根,12是合数

测试方法

设 n为奇素数,存在 q, m 使得 n-1= $2^q m$, $(q \ge 1)$.

构造序列:

$$a^{m} \pmod{n}, a^{2m} \pmod{n}, a^{4m} \pmod{n}, ..., a^{2^{q} m} \pmod{n}$$

其最后一项为 a^{n-1} (mod n),而且每一项是前面一项的平方.

测试方法:

1. 对于任意 i (i = 0,1,...,q-1),判断 $a^{2^{i}m} \pmod{n}$

是否为 1 和 n-1, 且它的后一项是否为1.

- 2. 如果其后项为1,但本项不等于 1 和 n-1,则它就是非平凡的根,从而知道 n不是素数.
- 3. 随机选择 $a \in \{2, 3, ..., n-1\}$, 进行上述测试.

实例

例如 n=561, $n-1=560=2^4$ ·35, 假设 a=7, 构造的序列为

$$7^{35} \pmod{561} = 241,$$
 $7^{2^{1}35} \pmod{561} = 7^{70} \pmod{561} = 298,$
 $7^{2^{2}35} \pmod{561} = 7^{140} \pmod{561} = 166,$
 $7^{2^{3}35} \pmod{561} = 7^{280} \pmod{561} = 67,$
 $7^{2^{4}35} \pmod{561} = 7^{560} \pmod{561} = 1$

第 5 项为 1, 但是第 4 项等于 67, 它既不等于 1 也不等于 560, 是个非平凡的根,因此可以判定 n 为合数.

根据这个思想设计的计算机算法称为 Miller-Rabin 算法,它随机选择正整数 $a \in \{2,3,...,n-1\}$, 然后进行上述测试.

算法子过程(一)

算法 findq-m(n) //找 q, m 使得 $n-1=2^q m$

- 1. $q \leftarrow 0$; $m \leftarrow n-1$
- 2. repeat
- 3. $m \leftarrow m/2$
- 4. $q \leftarrow q+1$
- 5. until *m*是奇数

运行时间: $O(\log n)$

算法子过程(二)

算法 test(n, q, m) //检测序列是否存在非平凡的根

- 1. $a \leftarrow \text{Random}(2, n-1)$
- 2. $x_0 \leftarrow \text{ExpMod}(a, m, n)$ $//x_0 = a^m \pmod{n}$, $O(\log^3 n)$
- 3. for $i \leftarrow 1$ to q do $//q = O(\log n)$
- 4. $x_i \leftarrow x_{i-1}^2 \pmod{n}$ // $O(\log^2 n)$
- 5. if $x_i = 1$ and $x_{i-1} \neq 1$ and $x_{i-1} \neq n-1$
- 6. then return composite
- 7. if $x_q \ne 1$ then return composite
- 8. return prime

性能分析:

- 1 次测试运行时间 $O(\log^3 n)$
- 可证明1次测试出错的概率至多 1/2. 重复运行 k 次, 可将出 错概率降到至多2-k.

Miller-Rabin算法

令 $k=\lceil \log n \rceil$,出错的概率小于等于 $2^{-k} \le 1/n$. 即算法给出正确答案的概率为1-1/n. 换句话说,如果n为素数,则算法输出素数. 如果n为合数,则算法以1-1/n的概率输出"合数".

算法 PremalityTest(n) // n ≥ 5, 奇整数

- 1. findq-m(n)
- 2. $k \leftarrow \lceil \log n \rceil$
- 3. for i←1 to k //重复执行log n次
- 4. test(n, q, m)

时间: $T(n) = O(\log^4 n)$ // 按位乘统计

Las Vegas型与 Monte Carlo型随机算法

• Las Vegas型随机算法

- 如果得到解,总是给出正确的结果,区别只在于运行时间的长短.
- 拉斯维加斯型随机算法的运行时间本身是一个随机变量
- 期望运行时间是输入规模的多项式且总是给出正确答案的 随机算法称为有效的拉斯维加斯型算法.

• Monte Carlo型随机算法

- 这种算法有时会给出错误的答案.
- 其运行时间和出错概率都是随机变量,通常需要分析算法的出错概率.
- 多项式时间内运行且出错概率不超过1/3的随机算法称为 有效的蒙特卡洛型算法 ルミナタ13

单侧错误和双侧错误

- 弃真型单侧错误
 - 当算法宣布接受时,结果一定是对的
 - 当算法宣布拒绝时,结果有可能是错的
 - 例如主元素测试算法
- 取伪型单侧错误
 - 当算法宣布拒绝时,结果一定是对的
 - 而当算法宣布接受时,结果有可能是错的
 - 例如素数测试
- 双侧错误
 - 在所有的输入上同时出现上述两种不同的错误

随机算法的分类与局限性

- 拉斯维加斯型随机算法
 - 零错误概率多项式时间算法(有效的), ZPP
- 蒙特卡洛型随机算法
 - 错误概率有界的有效算法(多项式时间), BPP
 - 弃真型单侧错误概率有界的有效算法,RP
 - 取伪型单侧错误概率有界的有效算法,coRP
- 随机算法的局限性
 - 错误概率有界的多项式时间随机算法不太可能解决NP 完全问题

第12章 处理难解问题的策略

- 对问题施加限制 固定参数算法
- · 改进指数时间算法 3SAT、指数时间假设
- 启发式方法启发式方法、随机化策略、重启策略、模拟退火
- 平均情形的复杂性 G(n,p)、哈密顿回路、DistNP完全
- 难解算例的生成

对问题施加限制

• SAT问题

二元可满足性(2SAT)属于P

HornSAT: 输入限制为霍恩公式(析取式中正文字,即不带否定号的变量,至多出现一次),属于P

• 图的问题

问题	P	NPC
VC	$D \le 2$	$D \ge 3$
нс	2	3
顶点三着色	3	4
反馈顶点集	2	3
团	给定D	任意

固定参数算法

- 通常把优化问题转化为判定问题时,都会在输入中引入一个参数,这是固定参数算法中参数的来源之一.
- 输入中带有一个参数 k,当输入规模为 n 时运行时间为 $O(f(k) n^c)$ 的算法,这里的 f(k) 是与 n 无关的函数,c 是与 n 和 k 都无关的常数.

• 例

VC: 给定图G, 正整数 K(不超过G的顶点数),问是否存在不超过 K 的顶点覆盖?

固定常数 k,输入为(G,k). 穷举所有 k元 顶点子集,看看是否存在顶点覆盖. 算法复杂度大约是

$$O(knC_n^{k}) = O(kn^{k+1})$$

存在 $O(2^kkn)$ 的算法.

改进的指数时间算法

题北京大学19

- O^* : 表示忽略了多项式因子,如 $O^*(2^n)=O(n^{O(1)}2^n)$
- 当一个问题的蛮力算法为 $O^*(2^n)$ 时间时,对任何满足1 < c < 2的常数c,时间复杂度为 $O^*(c^n)$ 的指数时间算法称为非平凡的指数时间算法,或改进的指数时间算法.
- 可证明在 $O^*(1.8393^n)$ 时间内正确求解3SAT,截止到2010年底 最好结果: $O^*(1.321^n)$ 时间的随机算法和 $O^*(1.439^n)$ 时间的确定型算法.
- 指数时间假设:对每个正整数 k,都存在常数 $c_k>0$,使得求解 kSAT 的精确算法时间复杂性不低于 $2^{c_k n}$.
- 任意色数的图的顶点着色问题都有 $O^*(3^n)$ 的算法. 背包问题有比 $O^*(2^{n/2})$ 更好的算法. 货郎问题也有比 $O^*(2^n)$ 更好的算法.

其他处理难解问题的策略

• 启发式方法(Heuristics): 目前无法从理论上给出任何性能保证,但在实践中效果良好,就把这类方法统称为启发式方法(Heuristics).

常用的启发式方法主要包括:回溯与分支限界法、局部搜索法(随机化策略、重启策略、模拟退火)、遗传算法等.

• 平均情况下的复杂度

有些NP完全问题在平均复杂性度量下是易解的,哈密顿回路问题的平均情况下对图G(n,1/2)有 $O(n^3)$ 时间的算法.

- 难解算例生成: 确定紧的实例
- 基于统计物理的消息传递算法

- 素数检验
- 随机算法小结
- 处理难解问题的策略

