

Where can I find this shirt?

Fatma Moalla & Mohamed Karroumi & Niraj Srinivas & François Le Roux

Visual Computing Final Project

Visual Search
05/03/2020

Project Motivation

- Year 2000
- Jennifer Lopez and Versace
- "Jennifer Lopez's green dress", the most popular search query
- The demand for more than just text
- Birth of Google Image Search
- Fastrack to 2017, Google Lens launched

Where can I find this shirt?

- Growing Mobile and E-Commerce segments in Fashion Industry
- Multiple choices and offers
- But Personalisation = Survival
- Styles, colors, textures and types of dresses contain more information on user's preference than just a few words
- Recommend products based on users' preferences and history of product search.

Model Pipeline

Histogram Of Gradients (HOG)

Main objective: Converts the image to a feature vector → Important for object recognition

Keys steps

- Image preprocessing: patches and cells creation
- 2 Gradient (Sobel): magnitude + direction
- Histogram: assign a bin (angle) to each cell
- 4 16 x 16 Block Normalization
 - Concatenate blocks: a single feature vector (block_size x number of positions)

HOG results on the Deep Fashion dataset

Scale-Invariant Feature Transform (SIFT)

Main objective: building scale invariant image descriptors

Keys steps

- 1 Key point detection: LoG
- **Feature point localization:** Difference of Gaussian (DoG)
- Orientation assignment: uses Histogram of Orientation

4 Feature descriptor generation

Lowe 2004

SIFT results on the Deep Fashion dataset

Speeded Up Robust Features (SURF)

Inspired by SIFT, but designed to be faster

Keys steps

- Key point detection: Integral image, box filters to approximate Hessian determinant
 - **Selection:** box filters of different sizes for scale, non-max suppression
- Orientation assignment: Haar wavelet response on sliding windows of size $\pi/3$
- Feature descriptor generation: Haar wavelet responses weighted by Gaussian

SURF results on the Deep Fashion dataset

- Cosine similarity = 94.6%!

- Visual Matching

- → Biased dataset or too small images (80 x 80)
- → Not optimal matching method

Convolutional Neural Networks

Pretrained model: ResNet_18

Convolutional Neural Networks: Approach

- We take a pretrained model: ResNet_18
- We fine tune the weights of the model to perform Classification on Deep Fashion Dataset.
- For each image extract the second-last layer as a Feature map of the image.
- Use LSHashing on feature maps to find the nearest neighbor.

CNN results on the Deep Fashion dataset

More Results

Final results comparison

Approach	HOG	SIFT	SURF	CNN
Average Cosine Similarity	96.3%	93.4%	94.6%	98.11%
Visual Matching	Good	Very Bad	Medium	Perfect

Final discussion and Conclusion

- Challenges: scalability to the whole dataset, accuracy of features for small images
- **Take home messages**: HOG works about as well as CNN for this type of application, SIFT and SURF have some difficulties
- **Next steps**: Try on harder images (non uniform background, more varied situations depicted), try on a larger dataset

Thank you for your attention

