A summary of Projective Geometric Algebra

PATROLIN

September 30, 2022

Abstract

Information on Geometric Algebra is scattered and scarce. This is an explanation of how to calculate PGA, but not necessarily why it works - for that you can try sudgylacmoe on youtube and Eric Lengyel's cheatsheet for point-based PGA (though he goes mad with power). I would also point you to bivector.net, but their dual calculations are whack, the ganja.js ones are presumably correct, since their demos seem to work.

I. Geometric numbers

$$1 + x^2 = 0$$
$$x = ?$$

x is not a real number; but if it's not real, why should the other numbers be real?

$$(e_1)^2 + (e_2)^2 = (e_0)^2$$

 $(e_1)^2 = 1$; $(e_2)^2 = -1$; $(e_0)^2 = 0$

In fact, we can define as many of these as we want, the simplest examples being:

$$a+be_1$$
 // hyperbolic numbers $a+be_2$ // complex numbers $a+be_0$ // dual numbers

We can multiply these numbers together using the geometric product:

$$e_i e_i = \{1, -1, 0\}$$
$$e_i e_j = -e_j e_i$$

This product is neither commutative nor anticommutative, but it is distributive and associative:

$$AB \neq BA$$

 $AB \neq -BA$
 $A(B+C) = AB + AC$
 $(AB)C = A(BC)$
 $aB = Ba; a \in \mathbb{R}$

Thus the product of two complex numbers:

$$(A_1 + A_2e_2)(B_1 + B_2e_2)$$

$$= A_1B_1 + A_1B_2e_2 + A_2e_2B_1 + A_2e_2B_2e_2$$

$$= A_1B_1 + A_1B_2e_2 + A_2B_1e_2 + A_2B_2$$

$$= (A_1B_1 + A_2B_2) + (A_1B_2 + A_2B_1)e_2$$

II. ROTATIONS

A multivector with n basis vectors consists of 2ⁿ blades:

- scalar = 0-vector = 1
- vector = 1-vector
- bivector = 2-vector
- trivector = 3-vector
- ..
- (n-1)-vector = pseudovector
- n-vector = pseudoscalar = 1

Where a k-vector has $\binom{n}{k}$ blades, for example:

$$A = A_1$$

$$+ A_2e_0 + A_3e_1 + A_4e_2$$

$$+ A_5e_{01} + A_6e_{02} + A_7e_{12}$$

$$+ A_8e_{012}$$

We can abbreviate blades like e_1e_2 as e_{12} .

Multiplying two multivectors gives you another multivector, we can use the taylor series expansion of the exponential function to find a rotation e^A :

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

$$e^{ae_{2}} = 1 + ae_{2} - \frac{a^{2}}{2} - \frac{a^{3}}{3}e_{2} + \dots$$

$$= (1 - \frac{a^{2}}{2} + \dots) + (a - \frac{a^{3}}{3} + \dots)e_{2}$$

$$= \cos(a) + \sin(a)e_{2}$$

Similarly you can find

$$e^{e_i} = \begin{cases} \cos(a) + \sin(a)e_i & ((e_i)^2 = -1) \\ \cosh(a) + \sinh(a)e_i & ((e_i)^2 = 1) \\ 1 + e_i & ((e_i)^2 = 0) \end{cases}$$

This gives us rotations, hyperbolic rotations and translations (rotations through infinity) respectively.

Then for a multivector we would have:

$$e^A = e^{A_1} e^{A_2 e_0} e^{A_3 e_1} \dots e^{A_n e_I}$$

III. UNARY OPERATORS

For the i-th blade in a multivector

$$X_i \in \text{k-vector}$$

we can define some operations, like reversing the order of basis vectors in the blade, that amount to flipping some signs:

$$egin{aligned} ilde{X}_i &= (-1)^{\lfloor k/2
floor} X_i \ // \ ext{reverse} \ X_i^\dagger &= (-1)^{\lfloor k
floor} X_i \ // \ ext{involute} \ &ar{X}_i &= (-1)^{\lfloor k+k/2
floor} X_i \ // \ ext{conjugate} \ &f(A) &= \sum_i f(X_i) \end{aligned}$$

Poincaré duality states that maps between k-vectors and (n-k)-vectors exist.

$$X_i dual(X_i) = \pm 1$$

 $dual(X_i) = \pm X_{2^n - i + 1}$
 $dual(A) = \sum_i dual(X_i)$

For example:

$$rac{X_i}{X_i} X_i = 1$$
 // left complement $X_i \overline{X_i} = 1$ // right complement

$$X_i X_i^\star = sign(X_i^{ND} \widetilde{X_i^{ND}}) \, \mathbb{1}$$
 // hodge dual

Where X_i^{ND} is X_i without degenerate basis vectors, e.g.

$$X_i = e_{012}; X_i^{ND} = e_{12}$$

Let $\mathbb{G}_{a,b,c}$ be a geometric algebra with a positive, b negative and c zero basis vectors.

Then for $\mathbb{G}_{a,0,c}$:

$$\overline{X_i} = X_i^*$$

And if that wasn't confusing enough, applying a dual twice changes the signs, so we also want the inverses of these duals:

$$(X_i^{\star})^{\star^{-1}} = X_i$$
$$\overline{X_i} = X_i$$
$$\underline{X_i} = X_i$$

In 2D and 3D PGA, we can simplify implementation by swapping two basis vectors in some blades such that $\overline{X_i}$ does not flip signs, e.g.

$$A = A_1 + A_2e_0 + A_3e_1 + A_4e_2$$

$$+ A_5e_{01} + A_6e_{20} + A_7e_{12} + A_8e_{012}$$

$$\bar{A} = \overline{A} = A_8 + A_7e_0 + A_6e_1 + A_5e_2$$

$$+ A_4e_{01} + A_3e_{20} + A_2e_{12} + A_1e_{012}$$

IV. SHAPES AND SIZES

Let $\mathbb{G}_{d,0,1}$ be a d-dimensional PGA:

$$(e_0)^2 = 0$$
; $(e_i)^2 = 1$

Now we have a choice to make:

- 1. Point-based PGA
 - vectors are points
 - (n-1)-vectors are hyperplanes
- 2. Plane-based PGA
 - vectors are hyperplanes
 - (n-1)-vectors are points

Both of these are equally valid and many operations make use of computing in the dual algebra via $\overline{\overline{A}}$ op $\overline{\overline{B}}$.

$$point = e_0 + xe_1 + ye_2 + \dots + we_d$$
$$hyperplane = \overline{e_0 + xe_1 + ye_2 + \dots + we_d}$$

hyperplane =
$$e_0 + xe_1 + ye_2 + ... + we_d$$

point = $e_0 + xe_1 + ye_2 + ... + we_d$

We will denote Plane-based operations inside boxes whenever they differ.

Let $\langle A \rangle_k$ be the grade selection operator:

$$\langle A \rangle_k = \sum_i \langle X_i \rangle_k$$
$$\langle X_i \rangle_k = \begin{cases} X_i & (X_i \in \text{k-vector}) \\ 0 & (X_i \notin \text{k-vector}) \end{cases}$$

Then we can start defining binary operators:

$$A \wedge B = \sum_{j,k} \left< \left< A \right>_j \left< B \right>_k \right>_{j+k} \text{// wedge product}$$

$$A \vee B = \overline{\overline{A}} \, \overline{\wedge} \, \overline{\overline{B}} \, \text{// antiwedge product}$$

These operators retain distributivity and associativity.

We can join points into lines, planes, ...

$$A$$
 join $B = A \wedge B$

$$A join B = A \vee B$$

In fact this works with any two geometric objects, operators that don't have this property aren't really worth your time.

And we can meet two objects:

$$A$$
 meet $B = A \vee B$

$$A$$
 meet $B = A \wedge B$

If you meet two parallel lines, you get a point at infinity = an infinite point:

$$line_1$$
 meet $line_1 = xe_1 + ye_2 + ... + we_d$

$$line_1 meet line_1 = \overline{xe_1 + ye_2 + ... + we_d}$$

All objects in GA have an orientation, so if you flip the direction of one of the lines, you get an infinite point in the other direction

TODO: distance of line to A -> raytraced graphing calculator distance of point to A -> raymarched graphing calculator

TODO: something about sizes of line segments / volumes

TODO: projection to camera plane + depth buffer Projection: $P = (A \cdot B^{-1})B$?

V. Motors

Taking $e^{bivector}$ gives us a motor (motion operator), we can apply motors via $MA\tilde{M}$:

$$rotor = e^{bivector^{ND}}$$

 $motor = e^{bivector}$
 $rotor \in motor$

In 3D, rotors are quaternions.

Where bivector blades are rotations. For example $\frac{\theta}{2}e_{12}$ is an xy rotation by θ degrees and $\frac{d}{2}e_{01}$ is a translation by d:

$$e^{\frac{\theta}{2}e_{12}} = \cos\frac{\theta}{2} + \left(\sin\frac{\theta}{2}\right)e_{12}$$
$$e^{\frac{d}{2}e_{01}} = 1 + \frac{d}{2}e_{01}$$

We can interpolate motors with nlerp or slerp, where BA^{-1} is a transformation that brings A to B:

$$\begin{split} nlerp(t,A,B) &= \frac{lerp(t,A,B)}{\|lerp(t,A,B)\|} \\ lerp(t,A,B) &= (1-t)A + tB \\ slerp(t,A,B) &= (BA^{-1})^t A \\ A^{-1} &= \frac{A}{\|A\|^2} \\ \|A\| &= \sqrt{\sum_i |(A_i X_i)^2|} = \sqrt{\sum_i (A_i^{ND})^2} \end{split}$$

nlerp does not allow for unnormalized motors, but we will be normalizing them in the physics simulation anyways.

While we're at it we might as well define other norms:

$$||A||_{D} = \sqrt{\sum_{i} (A_{i}^{D})^{2}}$$

 $||A||_{F} = \sqrt{\sum_{i} (A_{i})^{2}}$

Where A^D is A with only degenerate basis vectors.

TODO: line forces per https://enki.ws/ganja.js/examples/coffeeshop.html#sUwbwu9vR and https://bivector.net/PGADYN.html