Instruction Set Architecture (ISA - Ch 2)

Dr. Rajib Ranjan Maiti (Mtech and PhD at IIT Kharagpur)
CSIS, BITS-Pilani, Hyderabad

3rd Generation: MIPS R2000

- · Several firsts:
 - First (commercial) RISC microprocessor
 - First microprocessor to provide integrated support for instruction & data cache
 - First pipelined microprocessor (sustains 1 instruction/clock)
- Implemented in 1985
 - 125,000 transistors
 - 5-8 MIPS (Million Instructions per Second)

Commercial CPUs

Commercial CPUs

AMDIA PROCESSORS

Top Industries interested in Comp Arch Specialists

Top Industries interested in Comp Arch Specialists

Computer Architecture

Ch1: Computer
Abstractions
and Technology

Ch2: Instructions:
Language of the
Computer

Ch3:
Arithmetic for
Computers

Ch4: The Processor

Ch5: Large and Fast: Exploiting

Memory Hierarchy

Teaching Policy and Logistics

- Lab Evaluation (In-Class)
 - Before Mid Sem: Best of Test 1 and Test 2 = 10%
 - After Mid Sem: Best of Test 3 and Test 4 = 10%
- Quiz Evaluation (In-Tut-Class)
 - Before Mid Sem: Best of Test 1 and Test 2 = 5%
 - After Mid Sem: Best of Test 3 and Test 4 = 5%
- MidSem Exam (08/10 1.30 3.00PM)
 - Question Pattern: Mostly numerical (will be discussed in lec class)
- Compre Exam (06/12 FN)
 - Question Pattern: Mostly numerical (will be discussed in lec class)

- Answer Key release
 - Immediately after exam
 - Key verification time: 24 hours after key release
- Make up :
 - no make up for Quiz and Lab Test
 - Prior permission required for midsem and compre

To become an efficient speaker, be strong in vocabulary of a native language

English: started learning letters and then words

To become an efficient speaker, be strong in vocabulary of a native language

English: Learn forming your own sentence and story

Language of the Computer

- To whom we need to speak?
 - Computer?
 - No, its hardware
 - So, we need to speak its language

Language of the Computer

- We choose
 - The instruction set developed by MIPS Technologies
 - Designed in the 1980s

- Other instructions sets are
 - ARMv7: similar to MIPS
 - Intel x86: used in both the PC and the cloud
 - ARMv8: extends the address size of the ARMv7 from 32 bits to 64 bits

- Parallelism primary driving force for the design of computers
 - Other considerations: energy consumption and cost reduction
- Two broad kinds of parallelism:
 - Data-level parallelism (DLP): many data items can be operated on at the same time
 - Task-level parallelism (TLP): certain tasks of a work can operate independently
- How can we exploit these parallelisms to take advantage?

- Four ways to exploit
 - Instruction-level parallelism:
 - exploits data-level parallelism, using ideas like pipelining and speculative execution
 - Vector architectures, graphic processor units (GPUs), and multimedia instruction sets:
 - exploit data-level parallelism, using ideas like applying a single instruction to a collection of data in parallel
 - Thread-level parallelism:
 - exploits either data-level parallelism or task-level parallelism, using ideas like interaction between parallel threads
 - Request-level parallelism:
 - exploits parallelism among largely decoupled tasks specified by the programmer or the operating system.

- Flynn (1966) studied the parallel computing efforts in the 1960s,
 - He found a simple classification that we follow till date
- Four categories:
 - Single instruction stream, single data stream (SISD)—
 - The standard sequential computer,
 - Yet, ILP using superscalar (more than one execution unit) and speculative execution (predicts outcome of condition check).
 - Single instruction stream, multiple data streams (SIMD)—
 - The same instruction executed by multiple processors using different data streams,
 - DLP using vector architectures, multimedia extensions to standard instruction sets, and GPUs.

- Flynn (1966) studied the parallel computing efforts in the 1960s,
 - He found a simple classification that we follow till date

Four categories:

- Single instruction stream, single data stream (SISD)—
 - The standard sequential computer,
 - Yet, ILP using superscalar (more than one execution unit) and speculative execution (predicts outcome of condition check).
- Single instruction stream, multiple data streams (SIMD)—
 - The same instruction executed by multiple processors using different data streams,
 - DLP using vector architectures, multimedia extensions to standard instruction sets, and GPUs.
- Multiple instruction streams, single data stream (MISD)—
 - No commercial multiprocessor of this type has been built to date
- Multiple instruction streams, multiple data streams (MIMD)—
 - Multiple processor and each fetches its own instructions and operates on its own data
 - exploits task-level parallelism.

Defining Computer Architecture

Designing a computer

- Tasks include
 - instruction set design, functional organization, logic design, and implementation.
- Traditionally,
 - Computer architecture ≈ only instruction set design
- But, other considerations
 - Memory organization
 - the design of CPU
- For example, two processors AMD Opteron and the Intel Core i7 use
 - the same instruction set architectures
 - (80x86 instruction set, i386, i486 and i686 architectures are grouped into x86)
 - but different organizations
 - (in terms of pipeline and cache organizations)

Seven dimensions of an ISA

- Class of ISA
 - Nearly all ISAs today are classified as general-purpose register architectures, where the
 operands are either registers or memory locations
- Memory addressing
 - Virtually all desktop and server computers use byte addressing to access memory operands
- Addressing modes
 - specify the address of a memory object, e.g., Register, Immediate, Displacement
- Types and sizes of operands
 - Supported operand sizes in bits, e.g., 8-bit, 16-bit, 32-bit, 64-bit, 80-bit (extended double)
- Operations
 - data transfer, arithmetic logical, control, and floating point
- Control flow instructions
 - support for conditional branches, unconditional jumps, procedure calls and returns
- Encoding an ISA
 - Two basic choices of encoding: fixed length and variable length

Thank You