Package 'KraljicMatrix'

October 12, 2022

```
Type Package
Title A Quantified Implementation of the Kraljic Matrix
Version 0.2.1
Maintainer Bradley Boehmke <br/> <br/>bradleyboehmke@gmail.com>
Date 2017-11-01
Description Implements a quantified approach to the Kraljic Matrix (Kraljic, 1983, <a href="https://doi.org/10.1081/j.jcp.1983">https://doi.org/10.1081/j.jcp.1983</a>, <a hre
                 //hbr.org/1983/09/purchasing-must-become-supply-management>)
                 for strategically analyzing a firm's purchasing portfolio. It combines multi-
                 objective decision analysis to measure purchasing characteristics and
                 uses this information to place products and services within the Kraljic Matrix.
URL https://github.com/koalaverse/KraljicMatrix
BugReports https://github.com/koalaverse/KraljicMatrix/issues
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Depends R (>= 2.10)
Imports ggplot2, dplyr, tibble, magrittr
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
RoxygenNote 6.0.1
NeedsCompilation no
Author Bradley Boehmke [aut, cre],
                 Brandon Greenwell [aut],
                 Andrew McCarthy [aut],
                 Robert Montgomery [ctb]
Repository CRAN
```

Date/Publication 2018-03-06 22:49:03 UTC

geom_frontier

R topics documented:

geom_frontier	
get_frontier	3
kraljic_matrix	4
kraljic_quadrant	5
MAVF_score	
MAVF_sensitivity	7
psc	8
SAVF_plot	9
SAVF_plot_rho_error	10
SAVF_preferred_rho	11
SAVF_score	
%>%	13
	14
	- 4

geom_frontier

Plotting the Pareto Optimal Frontier

Description

The frontier geom is used to overlay the efficient frontier on a scatterplot.

Usage

Index

```
geom_frontier(mapping = NULL, data = NULL, position = "identity",
    direction = "vh", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE,
    ...)

stat_frontier(mapping = NULL, data = NULL, geom = "step",
    position = "identity", direction = "vh", na.rm = FALSE,
    show.legend = NA, inherit.aes = TRUE, quadrant = "top.right", ...)
```

Arguments

mapping	Set of aesthetic mappings created by aes or aes If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
data	The data to be displayed in this layer.
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
direction	Direction of stairs: 'vh' for vertical then horizontal, or 'hv' for horizontal then vertical.
na.rm	If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

get_frontier 3

Logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders.

Other arguments passed on to layer. These are often aesthetics, used to set an aesthetic to a fixed value, like color = "red" or size = 3. They may also be parameters to the paired geom/stat.

geom

Use to override the default connection between geom_frontier and stat_frontier.

See get_frontier.

Examples

```
## Not run:
# default will find the efficient front in top right quadrant
ggplot(mtcars, aes(mpg, wt)) +
 geom_point() +
 geom_frontier()
# change the direction of the steps
ggplot(mtcars, aes(mpg, wt)) +
 geom_point() +
 geom_frontier(direction = 'hv')
# use quadrant parameter to change how you define the efficient frontier
ggplot(airquality, aes(Ozone, Temp)) +
 geom_point() +
 geom_frontier(quadrant = 'top.left')
ggplot(airquality, aes(Ozone, Temp)) +
 geom_point() +
 geom_frontier(quadrant = 'bottom.right')
## End(Not run)
```

get_frontier

Compute the Pareto Optimal Frontier

Description

Extract the points that make up the Pareto frontier from a set of data.

Usage

```
get_frontier(data, x, y, quadrant = c("top.right", "bottom.right",
   "bottom.left", "top.left"), decreasing = TRUE)
```

4 kraljic_matrix

Arguments

data	A data frame.
x	A numeric vector.
у	A numeric vector.
quadrant	Chararacter string specifying which quadrant the frontier should appear in. Default is "top.right".
decreasing	Logical value indicating whether the data returned is in decreasing or ascending order (ordered by x and then y). Default is decreasing order.

Value

A data frame containing the data points that make up the efficient frontier.

See Also

```
geom_frontier for plotting the Pareto front
```

Examples

```
# default will find the Pareto optimal observations in top right quadrant
get_frontier(mtcars, mpg, wt)

# the output can be in descending or ascending order
get_frontier(mtcars, mpg, wt, decreasing = FALSE)

# use quadrant parameter to change how you define the efficient frontier
get_frontier(airquality, Ozone, Temp, quadrant = 'top.left')
get_frontier(airquality, Ozone, Temp, quadrant = 'bottom.right')
```

kraljic_matrix Kraljic matrix plotting function

Description

 $kraljic_matrix$ plots each product or service in the Kraljic purchasing matrix based on the attribute value score of x and y

Usage

```
kraljic_matrix(data, x, y)
```

kraljic_quadrant 5

Arguments

data	A data frame
Х	Numeric vector of values
У	Numeric vector of values with compatible dimensions to x

Value

A Kraljic purchasing matrix plot

See Also

SAVF_score for computing the exponential single attribute value score for x and y

Examples

kraljic_quadrant

Kraljic quadrant assignment function

Description

kraljic_quadrant assigns the Kraljic purchasing matrix quadrant based on the attribute value score of x and y

Usage

```
kraljic_quadrant(x, y)
```

Arguments

x Numeric vector of values

y Numeric vector of values with compatible dimensions to x

6 MAVF_score

Value

A vector of the same length as x and y with the relevant Kraljic quadrant name

See Also

SAVF_score for computing the exponential single attribute value score for x and y

Examples

MAVF_score

Multi-attribute value function

Description

MAVF_score computes the multi-attribute value score of x and y given their respective weights

Usage

```
MAVF_score(x, y, x_wt, y_wt)
```

Arguments

X	Numeric vector of values
У	Numeric vector of values with compatible dimensions to x
x_wt	Swing weight for x
y_wt	Swing weight for y

Value

A vector of the same length as x and y with the multi-attribute value scores

MAVF_sensitivity 7

See Also

MAVF_sensitivity to perform sensitivity analysis with a range of x and y swing weights SAVF_score for computing the exponential single attribute value score

Examples

```
# Given the following \code{x} and \code{y} attribute values with \code{x} and # \code{y} swing weight values of 0.65 and 0.35 respectively, we can compute # the multi-attribute utility score:

x_attribute <- c(0.92, 0.79, 1.00, 0.39, 0.68, 0.55, 0.73, 0.76, 1.00, 0.74) y_attribute <- c(0.52, 0.19, 0.62, 1.00, 0.55, 0.52, 0.53, 0.46, 0.61, 0.84)

MAVF_score(x_attribute, y_attribute, x_wt = .65, y_wt = .35)
```

MAVF_sensitivity

Multi-attribute value function sensitivity analysis

Description

MAVF_sensitivity computes summary statistics for multi-attribute value scores of x and y given a range of swing weights for each attribute

Usage

```
MAVF_sensitivity(data, x, y, x_wt_min, x_wt_max, y_wt_min, y_wt_max)
```

Arguments

data	A data frame
x	Variable from data frame to represent x attribute values
У	Variable from data frame to represent y attribute values
x_wt_min	Lower bound anchor point for x attribute swing weight
x_wt_max	Upper bound anchor point for x attribute swing weight
y_wt_min	Lower bound anchor point for y attribute swing weight
y_wt_max	Upper bound anchor point for y attribute swing weight

Details

The sensitivity analysis performs a Monte Carlo simulation with 1000 trials for each product or service (row). Each trial randomly selects a weight from a uniform distribution between the lower and upper bound weight parameters and calculates the mult-attribute utility score. From these trials, summary statistics for each product or service (row) are calculated and reported for the final output.

8 psc

Value

A data frame with added variables consisting of sensitivity analysis summary statistics for each product or service (row).

See Also

MAVF_score for computing the multi-attribute value score of x and y given their respective weights SAVF_score for computing the exponential single attribute value score

Examples

psc

Product and service contracts

Description

A dataset containing a single value score for the x attribute (i.e. supply risk) and y attribute (i.e. profit impact) of 200 product and service contracts (PSC). The variables are as follows:

Usage

psc

Format

A tibble with 200 rows and 3 variables:

PSC Contract identifier for each product and service

x_attribute x attribute score, from 1 (worst) to 5 (best) in .01 increments

y_attribute y attribute score, from 1 (worst) to 10 (best) in .01 increments

SAVF_plot 9

SAVF_plot	Plot the single attribute value curve

Description

SAVF_plot plots the single attribute value curve along with the subject matter desired values for comparison

Usage

```
SAVF_plot(desired_x, desired_v, x_low, x_high, rho)
```

Arguments

desired_x	Elicited input x value(s)
desired_v	Elicited value score related to elicited input value(s)
x_low	Lower bound anchor point (can be different than $min(x)$)
x_high	Upper bound anchor point (can be different than max(x))
rho	Exponential constant for the value function

Value

A plot that visualizes the single attribute value curve along with the subject matter desired values for comparison

See Also

```
SAVF_plot_rho_error for plotting the rho squared error terms
SAVF_score for computing the exponential single attribute value score
```

Description

SAVF_plot_rho_error plots the squared error terms for the rho search space to illustrate the preferred rho that minimizes the squared error between subject matter desired values and exponentially fitted scores

Usage

```
SAVF_plot_rho_error(desired_x, desired_v, x_low, x_high, rho_low = 0,
    rho_high = 1)
```

Arguments

desired_x	Elicited input x value(s)
desired_v	Elicited value score related to elicited input value(s)
x_low	Lower bound anchor point (can be different than min(x))
x_high	Upper bound anchor point (can be different than max(x))
rho_low	Lower bound of the exponential constant search space for a best fit value function
rho_high	Upper bound of the exponential constant search space for a best fit value function

Value

A plot that visualizes the squared error terms for the rho search space

See Also

```
SAVF_preferred_rho for identifying the preferred rho value
SAVF_score for computing the exponential single attribute value score
```

SAVF_preferred_rho 11

SAVF_preferred_rho	Identify preferred rho
--------------------	------------------------

Description

SAVF_preferred_rho computes the preferred rho that minimizes the squared error between subject matter input desired values and exponentially fitted scores

Usage

```
SAVF_preferred_rho(desired_x, desired_v, x_low, x_high, rho_low = 0,
    rho_high = 1)
```

Arguments

desired_x	Elicited input x value(s)
desired_v	Elicited value score related to elicited input value(s)
x_low	Lower bound anchor point (can be different than min(x))
x_high	Upper bound anchor point (can be different than max(x))
rho_low	Lower bound of the exponential constant search space for a best fit value function
rho_high	Upper bound of the exponential constant search space for a best fit value function

Value

A single element vector that represents the rho value that best fits the exponential utility function to the desired inputs

See Also

```
SAVF_plot_rho_error for plotting the rho squared error terms
SAVF_score for computing the exponential single attribute value score
```

SAVF_score

SAVF	ccoro
SAVE	score

Single attribute value function

Description

SAVF_score computes the exponential single attribute value score of x

Usage

```
SAVF_score(x, x_low, x_high, rho)
```

Arguments

X	Numeric vector of values to score
x_low	Lower bound anchor point (can be different than min(x))
x_high	Upper bound anchor point (can be different than max(x))
rho	Exponential constant for the value function

Value

A vector of the same length as x with the exponential single attribute value scores

See Also

```
SAVF_plot for plotting single attribute scores
SAVF_preferred_rho for identifying the preferred rho
```

```
# The single attribute x is bounded between 1 and 5 and follows an exponential
# utility curve with rho = .653

x <- runif(10, 1, 5)
x
## [1] 2.964853 1.963182 1.223949 1.562025 4.381467 2.286030 3.071066
## [8] 4.470875 3.920913 4.314907

SAVF_score(x, x_low = 1, x_high = 5, rho = .653)
## [1] 0.7800556 0.5038275 0.1468234 0.3315217 0.9605856 0.6131944 0.8001003
## [8] 0.9673124 0.9189685 0.9553165</pre>
```

%>%

%>%

Pipe functions

Description

Like dplyr, KraljicMatrix also uses the pipe function, %>% to turn function composition into a series of imperative statements.

Arguments

lhs, rhs

An R object and a function to apply to it

Index

```
* datasets
psc, 8
%>%, 13

geom_frontier, 2, 4
get_frontier, 3, 3

kraljic_matrix, 4
kraljic_quadrant, 5

MAVF_score, 6, 8
MAVF_sensitivity, 7, 7

psc, 8

SAVF_plot, 9, 12
SAVF_plot_rho_error, 9, 10, 11
SAVF_preferred_rho, 10, 11, 12
SAVF_score, 5-11, 12
stat_frontier (geom_frontier), 2
```