

Université Abdelmalek Essaadi Faculté Polydisciplinaire de Larache Département d'Informatique

Filière: SMI-S6

Année universitaire: 2022 - 2023

Module: Réseaux II

Chapitre 2 : Les réseaux VLAN et commutation

Prof. Essaid EL HAJI

Commutation (Switching)

Qu'est ce qu'un commutateur?

- Un commutateur réseau (en anglais Switch) est un équipement agissant au niveau 2 du modèle OSI, permettant de relier plusieurs segments dans un réseau LAN.
- Contrairement à un concentrateur, un commutateur analyse les trames arrivant sur ses ports d'entrée et filtre les données afin de les aiguiller uniquement sur les ports adéquats (on parle de commutation ou de réseaux commutés).
- Un commutateur se base sur les adresses MAC et non les adresses IP pour diriger les données.
- Les commutateurs de niveau 2 forment des réseaux de niveau 2 (Ethernet). Ces réseaux sont reliés entre eux par des routeurs (ou des commutateurs de niveau 3) pour former des réseaux de niveau 3 (IP).

Composants d'un commutateur (LED du Commutateur)

LED du commutateur Catalyst 2960			
1	LED système	5	LED de vitesse de port
2	LED RPS (si le commutateur prend en charge le système RPS)	6	LED PoE (si le commutateur prend en charge le PoE)
3	LED état port (il s'agit du mode par défaut)	7	Bouton Mode
4	LED de bidirectionnalité du port	8	LED du port

Composants d'un commutateur (Ports du Commutateur)

Configuration de base d'un commutateur

- Lors de la configuration d'un Commutateur, certaines tâches de base sont effectuées:
 - Nommer le Commutateur
 - Configurer une bannière MOTD
 - Définition des mots de passe
 - Vérifier la configuration de base du commutateur
 - □ Enregistrer les fichiers de configuration dans la mémoire NVRAM

Configuration de base d'un commutateur

Configuration du nom du Commutateur & une bannière MOTD :

Commandes	Explications
\$1>	Mode EXEC utilisateur
S1>enable	Passer au mode EXEC privilégié
S1#conf t (configure terminal)	Passer au monde configuration globale
S1(config)# hostname DMI	Donner le nom DMI pour notre Commutateur
DMI(config)# banner motd # /Message/#	Configurer une bannière MOTD

Affichage et sauvegarde de la configuration courante

S1# show running-config	Afficher la configuration en cours
S1# copy running-config startup-config	Sauvegarde la configuration en NVRAM

Configuration de base d'un commutateur

Configuration des mots de passe :

Commandes	Explications
S1(config)# enable password admin2	Définir le mot de passe « admin2 » pour le mode privilégié
S1(config)# line console 0 S1(config-line)#password admin3 S1(config-line)#login S1(config-line)#exit	Configurer le mot de passe « admin3» pour le mode console
S1(config)# service password-encryption	Crypter les mots de passe

Protocole ARP Principe

A veut Communiquer avec B

Il faut 2 adresse pour que cette communication soit établie : MAC et IP

- ✓ Si A connait l'adresse MAC de B il va directement entamer la communication
- ✓ Si A ne connait pas l'adresse MAC de B, elle va utiliser le protocole ARP

Protocole ARP Principe

■ Le protocole ARP (Address Résolution Protocol) est un protocole indispensable pour la transmission de données dans les réseaux Ethernet.

C'est un protocole qui fonctionne entre la couche réseau et la couche liaison du modèle OSI en faisant la correspondance entre l'adresse IP et l'adresse MAC

Donc, il permet de déterminer l'adresse physique (adresse MAC) à partir de l'adresse logique (Adresse IP) puisque les trames Ethernet ne peuvent être envoyées aux hôtes cibles souhaités qu'à l'aide de l'adresse matérielle.

transport

ARP NDP

réseau

liaison
de données

physique

Protocole ARP Principe

 Pour comprendre le rôle du protocole ARP au sein des réseaux, il est important de se rappeler la façon dont sont faites les entêtes des trames Ethernet (couche 2 du modèle OSI):

- On voit donc ici les positions des adresses MAC source et destination dans les trames Ethernet ce qui explique qu'on doive résoudre l'adresse MAC à partir de l'IP
- Les trames Ethernet ont besoin de connaitre l'adresse MAC de l'émetteur et celle du destinataire pour se former.

Protocole ARP Table ARP

- La table ARP, plus souvent appelée cache ARP est une table de couples adresse IP - adresse MAC contenue dans la mémoire d'un ordinateur qui utilise le protocole ARP.
- Les entrées dans cette table ont une durée de vie limitée, quand une entrée vient à expiration, une nouvelle requête ARP devra être initiée pour déterminer déterminer l'adresse MAC d'un autre ordinateur sur le même segment.

La table ARP permet de fluidifier et d'accélérer les prochains échanges avec les émetteurs enregistrés dans la table en évitant de reproduire une requête

ARP à chaque échange.

Affichage de la cache ARP sous Windows avec la commande **arp -a**

```
C:\Users\Neaj>arp −a
Interface : 192.168.1.21 --- 0x4
  Adresse Internet
                         Adresse physique
                                                Type
                                                dynamique
  192.168.1.30
                         70-9e-29-4a-d0-81
 192.168.1.31
                        84-a6-c8-36-ef-8e
                                                dynamique
  192.168.1.254
                         c8-cd-72-5a-db-bd
                                                dynamique
  192.168.1.255
                         ff-ff-ff-ff-ff-ff
                                                statique
  224.0.0.2
                         01-00-5e-00-00-02
                                                statique
  224.0.0.22
                         01-00-5e-00-00-16
                                                statique
  224.0.0.251
                         01-00-5e-00-00-fb
                                                statique
                         01-00-5e-00-00-fc
  224.0.0.252
                                                statique
                         01-00-5e-01-01-01
                                                statique
  226.178.217.5
                         01-00-5e-32-d9-05
                                                statique
                         01-00-5e-7f-ff-fa
                                                statique
  255.255.255.255
                         ff-ff-ff-ff-ff-ff
                                                statique
```

Protocole ARP

Fonctionnement

- ✓ PCA envoie une requête ARP (message de diffusion)
- ✓ Tous les machines sur le réseau reçoivent le message mais seulement la machine concerné répond.
- ✓ PCB ajoute l'adresse MAC de PCA sur la table de correspondance.
- ✓ PCB répond à la requête
- ✓ PCA reçoit la requête et ajoute l'adresse MAC de PCB sur sa table ARP

Vue d'ensemble d'un VLAN

Définition des VLAN

- Les VLAN (Virtual Local Area Network) sont des moyens pour regrouper des périphériques dans un LAN. Un groupe de périphériques dans un VLAN communiquent comme s'ils étaient reliés au même câble. Les VLAN reposent sur des connexions logiques, et non des connexions physiques.
- Un réseau local virtuel (VLAN) peut être créé sur un commutateur de couche 2 pour réduire la taille des domaine de diffusion
- Les VLAN permettent à un administrateur de segmenter les réseaux en fonction de facteurs tels que la fonction, l'équipe de projet ou l'application, quel que soit l'emplacement physique de l'utilisateur ou du périphérique.

Avantages des VLAN

- Sécurité: les groupes contenant des données sensibles sont séparés du reste du réseau, ce qui diminue les risques de violation de confidentialité.
- Réduction des coûts : des économies sont réalisées grâce à une diminution des mises à niveau onéreuses du réseau et à l'utilisation plus efficace de la bande passante et des liaisons montantes existantes.
- Meilleures performances : réduit la quantité de trafic inutile sur le réseau et augmente les performances.
- Réduction des domaines de diffusion : la division d'un réseau en VLAN réduit le nombre de périphériques dans le domaine de diffusion.
- Efficacité accrue du personnel informatique : les VLAN facilitent la gestion du réseau, car les utilisateurs ayant des besoins réseau similaires partagent le même VLAN.

Avantages des VLAN

En résumé :

- Sécurité Optimisée
- Réduction des coûts
- Meilleures performances
- Réduction des domaines de diffusion
- Efficacité de gestion

- VLAN de données (VLAN Utilisateur): Un VLAN de données est un réseau local virtuel configuré pour transmettre le trafic généré par l'utilisateur. Les VLAN de données sont utilisés pour diviser un réseau en groupes d'utilisateurs ou de périphériques.
- VLAN par défaut (VLAN 1): Tous les ports de commutateur font partie du VLAN par défaut après le démarrage initial d'un commutateur chargeant la configuration par défaut.
- VLAN natif (trunk): Un réseau local virtuel natif est affecté à un port trunk 802.1Q. Les ports trunk sont les liaisons entre les commutateurs qui prennent en charge la transmission du trafic associée à plusieurs VLAN.

Attribution des équipements

Trois méthodes sont généralement utilisées pour attribuer un équipement à un réseau VLAN :

- **Niveau 1**: Les réseaux VLAN basés sur les ports
- Niveau 2 : Les réseaux VLAN basés sur les adresses MAC
- Niveau 3 : Les réseaux VLAN basés sur les protocoles / Adresse IP

Attribution des équipements (Niveau 1)

Niveau 1 : Les réseaux VLAN basés sur les ports

- Un VLAN de niveau 1 (aussi appelés VLAN par port, en anglais (Port-Based VLAN) définit un réseau virtuel en fonction des ports de raccordement sur le Switch ou commutateur.
- Dans le cadre des réseaux VLAN basés sur les ports, l'appartenance de chaque port du commutateur à tel ou tel réseau VLAN est configurée manuellement

Attribution des équipements (Niveau 2)

Niveau 2 : Les réseaux VLAN basés sur les adresses MAC

- Un VLAN de niveau 2 (également appelé VLAN MAC, VLAN par adresse IEEE ou en anglais MAC Address-Based VLAN) consiste à définir un réseau virtuel en fonction des adresses MAC des stations. Ce type de VLAN est beaucoup plus souple que le VLAN par port car le réseau est indépendant de la localisation de la station.
- Malheureusement, la corrélation entre les adresses MAC et le numéro VLAN prend pas mal de temps et donc ce type de réseau VLAN est rarement utilisé.

Attribution des équipements (Niveau 3)

Niveau 3 : Les réseaux VLAN basés sur les Protocoles / Adresses IP

- Le VLAN par sous-réseau (en anglais Network Address-Based VLAN) associe des sous-réseaux selon **l'adresse IP** source des datagrammes.
- Le VLAN par protocole (en anglais Protocol-Based VLAN) permet de créer un réseau virtuel **par type de protocole** (par exemple TCP/IP, IPX, AppleTalk, etc.), regroupant ainsi toutes les machines utilisant le même protocole au sein d'un même réseau.
- Cette méthode peut fonctionner dans un environnement où figurent plusieurs protocoles, mais n'est pas très pratique sur un réseau à prédominance IP.

VLAN dans un environnement a commutateur multiples

- Un trunk est une liaison point à point entre deux périphériques réseau qui transporte plusieurs VLAN, Un trunk de VLAN permet d'étendre les VLAN à l'ensemble d'un réseau(transmettre le trafic entre les VLAN).
- Cisco prend en charge la norme IEEE 802.1Q pour la coordination des trunks sur les interfaces Fast Ethernet, Gigabit Ethernet et 10 Gigabit Ethernet
- Sans trunks de VLAN, les VLAN ne serviraient pas à grand-chose. Les trunks de VLAN permettent à tout le trafic VLAN de se propager entre les commutateurs.
- Un trunk de VLAN n'appartient pas à un VLAN spécifique, mais constitue plutôt un conduit pour plusieurs VLAN entre les commutateurs et les routeurs.

Lorsque nous configurons des VLAN sur un réseau composé de plusieurs switches nous devons configurer les interfaces qui relient les différents switches en mode trunk, pour permettre de propager le trafic de tous les VLAN sur un seul lien physique.

Etiquetage des trames VLAN Protocoles de Trunking

Il existe 2 protocoles permettant le trunking, le protocole ISL et le protocole IEEE 802.1Q :

- Le protocole ISL est un protocole propriétaire Cisco (il ne peut être utilisé que entre équipements Cisco), qui date d'avant la création du protocole IEE 802.1Q. ISL encapsule complètement la trame Ethernet en ajoutant un en-tête et un en-queue, en laissant la trame initiale intacte. L'en-tête ISL contient un identifient du VLAN.
- Le protocole IEEE 802.1Q est un protocole normalisé par L'IEEE (il fonctionne sur tous les équipements.). Il est de nos jours le protocole le plus utilisé pour faire du Trunking. Le protocole IEEE 802.1Q insère un en-tête à l'intérieur de la trame original.

Etiquetage des trames VLAN Protocole IEEE 802.1Q

- On utilise des étiquettes VLAN pour indiquer l'appartenance à tel réseau
 VLAN d'une trame en circulation.
- Lorsque le commutateur reçoit une trame sur un port configuré en mode d'accès et associé à un VLAN, il insère une étiquette VLAN dans l'en-tête de trame.

TPID	ID de protocole d'étiquette
User Priority	Définit 8 niveaux de services d'un VLAN par rapport un autre
CFI	Servant à garantir la compatibilité entre les trames ethernet et token-ring (0 pour une trame ethernet).
VLAN ID	Numéro d'identification VLAN

Création d'un VLAN

Commande IOS de commutateur Cisco	
Passez en mode de configuration globale	S1 # Configure terminal
Créer un VLAN avec un numéro d'identité valide	S1 (config)# vlan vlan-id
Indiquez un nom unique pour identifier le VLAN	S1 (config-vlan)# name vlan-name
Repassez en mode privilégié	S1 (config)# end

Affectation des ports

Commande IOS de commutateur Cisco	
Passez en mode de configuration globale	S1 # Configure terminal
Passez en mode de configuration d'interface SVI	S1 (config)# interface interface -id
Définissez le port en mode accès	S1 (config-if)# switchport mode access
Affectez le port à un VLAN	S1 (config-if)# switchport access vlan vlan-id
Repassez en mode pivilégié	S1 (config)# end

Affichage de vlan

show vlan [brief | id numéro de vlan | name { nom de vlan } | summary]

Détails de la Commande :	
brief	Afficher une ligne pour chaque VLAN comportant le nom du VLAN, son état et ses ports
name { nom de vlan }	Afficher les informations sur un VLAN unique identifié par un nom de VLAN.
id { numéro de vlan }	Afficher les informations sur un VLAN unique identifié par un numéro de VLAN.
summary	Afficher un résumé sur les VLAN

S1 (cc	onfig-if)# no swit c onfig-if)# end show vlan brief	aport ac	
VLAN	Name	Status	Ports
1	default	active	Fa0/1, Fa0/2, Fa0/3, Fa0/4 Fa0/5, Fa0/6, Fa0/7, Fa0/8 Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24 Gi0/1, Gi0/2
20	student	active	
1002	fddi-default	act/uns	up
1003	token-ring-default	act/uns	up
1004	fddinet-default	act/uns	up
1005 S1#	trnet-default	act/uns	up

Configuration des liaisons trunk IEEE 802.1Q

- Un trunk de VLAN est une liaison OSI de couche 2 entre deux commutateurs qui acheminent le trafic pour tous les VLAN
- Pour activer les liaisons trunk, configurez les ports sur chaque extrémité de la liaison physique avec des ensembles parallèles de commandes.

Commande IOS de commutateur Cisco	
Passez en mode de configuration globale	S1 # Configure terminal
Passez en mode de configuration d'interface SVI	S1 (config)# interface interface -id
Forcer la liaison à devenir une liaison trunk	S1 (config-if)# switchport mode trunk
Indiquer un VLAN natif pour les trunks 802.1Q non étiquetés	S1 (config-if)# switchport trunk native vlan vlan-id
Indiquer la liste des VLAN autorisés sur la liaison trunk	S1 (config-if)# switchport trunk allowed vlan vlan-list
Repasser en mode d'éxécution privilégié	S1 (config-if)# end

Configuration des liaisons trunk IEEE 802.1Q

Réinitialisation du Trunk à l'état par défaut

Commande IOS de commuta	teur Cisco
Passez en mode de	S1 # Configure
configuration globale	terminal
Passez en mode de	S1 (config)# interface
configuration d'interface SVI	interface -id
Définir le truck de sortie qu'il	S1 (config-if)# no
autorise tous les VLAN	switchport mode trunk
Redéfinir le VLAN natif sur les paramètres par défaut	S1 (config-if)# no
	switchport mode trunk
	native vlan
Repasser en mode	
'	S1 (config-if)# end

```
S1(config) # interface f0/1
S1(config-if) # no switchport trunk allowed vlan
S1(config-if) # no switchport trunk native vlan
S1(config-if)# end
S1# show interfaces f0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dotlg
Operational Trunking Encapsulation: dotlg
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
<output omitted>
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
<output omitted>
```

Vérification de la configuration du trunk

La configuration du trunk est vérifiée à l'aide de la commande : show interfaces interface-ID switchport

```
S1(config)# interface f0/1
S1(config-if)# switchport mode trunk
S1(config-if)# switchport trunk native vlan 99
S1(config-if)# end
S1# show interfaces f0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 99 (VLAN0099)
Administrative Native VLAN tagging: enabled
```

Problèmes d'adressage IP avec VLAN

Détecter le problème ? Pourquoi le PC1 ne peux pas se connecter au serveur WEB / TFTP ? Proposer une solution à ce problème.

Problèmes d'adressage IP avec VLAN

■ La solution est de changer l'adresse IP de PC1, pour qu'il soit dans le même réseau 172.17.10.X (exception X = 30 et 24)

Dépannage des trunks

Problème de communication, déterminer le problème ?

Dépannage des trunks

- Détecter le problème : taper la commande // show interfaces trunk
 ⇒ Pour savoir les interfaces qui sont configurés autant que mode trunk.
- Le résultat de cette commande : le port fa0/3 n'est pas configuré comme mode trunk
- La solution : Configurer le port fa0/3 sur les deux commutateurs comme mode trunk.

Résultats du commutateur S1

```
S1# show interfaces trunk

Port Mode Encapsulation Status Native vlan

Fa0/1 on 802.1q trunking 99

Port Vlans allowed on trunk

Fa0/1 10,99

Port Vlans allowed and active in management domain

Fa0/1 10,99

Port Vlans in spanning tree forwarding state and not pruned

Fa0/1 10,99

S1# show interface f0/3 switchport

Name: Fa0/3

Switchport: Enabled

Administrative Mode: dynamic auto
```

Résultats du commutateur S3 S3# show interfaces trunk S3# S3# show interface f0/3 switchport Name: Fa0/3 Switchport: Enabled Administrative Mode: dynamic auto ...

Dépannage des trunks

Résultats du commutateur S1

Configuration du port fa0/3 sur le commutateurs S1 en mode trunk.

Résultats du commutateur S3

Configuration du port fa0/3 sur le commutateurs S3 en mode trunk.

Résultats de l'ordinateur PC4

```
PC4> ping 172.17.10.30
Pinging 172.17.10.30 with 32 bytes of data:
Reply from 172.17.10.30: bytes=32 time=147ms TTL=128
...
```

Obtenir une réponse de Serveur WEB

Liste de VLAN incorrecte

Pour détecter le la liste des VLAN incorrecte on va utiliser la commande // show interfaces trunk // pour les commutateurs S1 et S3

Liste de VLAN incorrecte

Résultats du commutateur S1

```
S1# show interfaces trunk
                 Encapsulation
           Mode
                               Status
                                         Native vlan
Port
                  802.1q
                                trunking
                                             99
Fa0/1
           on
Fa0/3
                  802.1a
                               trunking
                                             99
           on
     Vlans allowed on trunk
Port
       10,99
Fa0/1
Fa0/3
          10,99
S1#
```

Sur le commutateur S1 on remarque que les interfaces Fa0/3 et Fa0/1 n'ont pas été configurées pour autoriser le VLAN 20!

Résultats du commutateur S3

```
S3# show interfaces trunk

Port Mode Encapsulation Status Native vlan

Fa0/3 on 802.1q trunking 99

Port Vlans allowed on trunk

Fa0/3 10,20,99

Port Vlans allowed and active in management domain

Fa0/3 10,20,99

Port Vlans in spanning tree forwarding state and not pruned

Fa0/3 10,20,99
```

Liste de VLAN incorrecte

Résultats du commutateur S1

```
S1# config terminal
S1(config) # interface f0/1
S1(config-if) # switchport trunk allowed vlan 10,20,99
S1(config-if) # interface f0/3
S1(config-if) # switchport trunk allowed vlan 10,20,99
S1# show interfaces trunk
Port
           Mode
                  Encapsulation Status
                                           Native vlan
                     802.1q
                                 trunking
Fa0/1
                                               99
           on
                     802.1q
                                 trunking
Fa0/3
                                               99
           on
        Vlans allowed on trunk
Port
Fa0/1
          10,20,99
Fa0/3
          10,20,99
```

Sur le commutateur S1, les interfaces Fa0/3 et Fa0/1 ont été configurées pour autoriser les VLAN 10, 20 et 99

Résultats de l'ordinateur PC5

```
PC5> ping 172.17.20.10
Pinging 172.17.20.10 with 32 bytes of data:
Reply from 172.17.20.10: bytes=32 time=147ms TTL=128
...
```

Obtenir une réponse de Serveur de messagerie