

Introducing Wireless LANs

Wireless Data Technologies

Wireless Data Technologies (Cont.)

Wireless LAN (WLAN)

A WLAN is a shared network.

An access point is a shared device and functions like a shared Ethernet hub.

Data is transmitted over radio waves.

Two-way radio communications (half-duplex) are used.

The same radio frequency is used for sending and receiving (transceiver).

Internet

Wireless LAN Evolution

- Warehousing
- Retail
- Health care
- Education
- Businesses
- Home

Speed	k	860 kb	ps		1 and 2	2 Mbps	11	Mbps	54 Mbps
Network	(roprieta	Standards-Based					
Radio)	900 MI	Hz			2.4	GHz		5 GHz
							802.11 Ratified	802.11 Ratifie	a,b 802.11g ed Ratified
198	36	1988	1990	1992	1994	1996	1998	2000	2003

What Are Wireless LANs?

They are:

- Local
- In building or campus for mobile users
- Radio or infrared
- Not required to have RF licenses in most countries
- Using equipment owned by customers

They are not:

- WAN or MAN networks
- Cellular phone networks
- Packet data transmission via celluar phone networks
 - Cellular digital packet data (CDPD)
 - General packet radio service (GPRS)
 - 2.5G to 3G services

Similarities Between WLAN and LAN

A wireless LAN is an 802 LAN.

- Transmits data over the air vs. data over the wire
- Looks like a wired network to the user
- Defines physical and data link layer
- Uses MAC addresses

The same protocols/applications run over both WLANs and LANs.

- IP (network layer)
- IPSec VPNs (IP-based)
- Web, FTP, SNMP (applications)

Differences Between WLAN and LAN

WLANs use radio waves as the physical layer.

WLANs use CSMA/CA instead of CSMA/CD to access the network

Radio waves have problems that are not found on wires.

- Connectivity issues
 - Coverage problems
 - Multipath issues
 - Interference, noise
- Privacy issues

WLANs use mobile clients.

- No physical connection
- Battery-powered

WLANs must meet country-specific RF regulations.

More on CSMA/CA

CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance)

- The wireless 802.11 standard uses CSMA/CA or "collision avoidance." The method is used because the wireless stations have no way to detect collisions WHILE sending.
- Attempts to avoid collisions rather than detect them

How it works:

- Transmitting device listens to the network (senses the carrier) and waits for it to be free
- Device then waits a random period of time and transmits.
- If the receiver gets the frame intact, it sends back an ACK to the sender.
- If no ACK is received, the message is re-transmitted.
- If the channel is not clear, the node waits for a randomly chosen period of time (backoff factor), and then checks again to see if the channel is clear.

Wireless LAN Topologies

Wireless client access

- Mobile user connectivity
 Wireless bridging
- LAN-to-LAN connectivity
 Wireless mesh networking
 - Combination of bridging and user connectivity

WLAN and **LAN**

Service Set Identifier (SSID)

SSID is used to logically separate WLANs.

The SSID must match on client and access point.

Access point can broadcast SSID in beacon.

Client can be configured without SSID.

Association Process (Active Scanning)

Steps to Association:

WLAN Access Topology

Wireless Repeater Topology

Workgroup Bridge Topology

Alternative Peer-to-Peer Topology

Peer-to-Peer Configuration (Ad Hoc Mode)

Service Sets & Modes

Ad hoc mode

Independent Basic Service Set (IBSS)

Mobile clients connect directly without an intermediate AP.

Infrastructure mode

Basic Service Set (BSS)

Mobile clients use a single AP for connecting to each other or to wired network resources.

Extended Services Set (ESS)

Two or more Basic Service Sets are connected by a common distribution system (DS).

Roaming Through Wireless Cells

Client Roaming

- Maximum data retry count exceeded
- Too many beacons missed
- Data rate shifted
- Periodic intervals

 Roaming without interruption requires the same SSID on all access points.

Layer 2 vs. Layer 3 Roaming

Wireless VLAN Support

Multiple SSIDs

Multiple security
types

Support for multiple VLANs from switches

802.1Q trunking protocol

VLAN103 802.1x Security SSID: "QOS" VLAN101 Specialized User Static WEP Not Broadcasting SSID: "static"

VLAN102 Corporate User 802.1x Security SSID: "secure"

Wireless VLAN Support (Cont.)

VLANs propagate across APs.

VLAN numbers are unique.

Autonomous access points handle up to 16 VLANs.

Enterprise Voice Architecture

Autonomous or Lightweight?

Most Cisco wireless access points/bridges are available as autonomous or lightweight devices.

Lightweight APs use Lightweight Access Point Protocol (LWAPP) and must have a LAN controller to function within the network.

Autonomous APs can be configured via Cisco IOS.

Most Cisco autonomous APs can be software upgraded to function as lightweight APs.

The Cisco Networking Academy FWL course focused on autonomous APs.

Wireless Mesh Networking

In a mesh network topology, devices are connected with redundant connections between nodes.

Explaining Wireless LAN Technology & Standards

Unlicensed Frequency Bands

- ISM: Industry, Scientific, and Medical frequency band
- No license required

- No exclusive use
- Best effort
- Interference possible

Radio Frequency Transmission

Radio frequencies are radiated into the air via an antenna, creating radio waves.

Radio waves are absorbed when they are propagated through objects (e.g. walls).

Radio waves are reflected by objects (e.g. metal surfaces).

This absorption and reflection can cause areas of low signal strength or low signal quality.

Radio Frequency Transmission

Higher data rates have a shorter transmission range.

 The receiver needs more signal strength and better SNR to retrieve information.

Higher transmit power results in greater distance.

Higher frequencies allow higher data rates.

Higher frequencies have a shorter transmission range.

WLAN Regulation and Standardization

Regulatory agencies

- FCC (United States)
- ETSI (Europe)

Standardization

- IEEE 802.11
- http://standards.ieee.org/getieee802/

Certfication of equipment

- Wi-Fi Alliance certifies interoperability between products.
- Certifications include 802.11a, 802.11b, 802.11g, dual-band products, and security testing.
- Certified products can be found at <u>http://www.wi-fi.org</u>.

Standards and Implementation Process

802.11b Standard

Standard was ratified in September 1999

Operates in the 2.4-GHz band

Specifies Direct Sequence Spread Spectrum (DSSS)

Specifies four data rates up to 11 Mbps

1, 2, 5.5, 11 Mbps

Provides specifications for vendor interoperability (over the air)

Defines basic security, encryption, and authentication for the wireless link

Is the most commonly deployed wireless LAN standard

2.4-GHz Channels

Channel	Channel	Channel	Regulatory Domain			
Identifi er	Channel Center Frequency	Frequency Range [MHz]	Americas	Europe, Middle East, and Asia	Japan	
1	2412 MHz	2401 – 2423	X	X	X	
2	2417 MHz	2406 – 2428	X	X	X	
3	2422 MHz	2411 – 2433	X	X	X	
4	2427 MHz	2416 – 2438	X	X	X	
5	2432 MHz	2421 – 2443	X	X	X	
6	2437 MHz	2426 – 2448	X	X	X	
7	2442 MHz	2431 – 2453	X	X	X	
8	2447 MHz	2436 – 2458	X	X	X	
9	2452 MHz	2441 – 2463	X	X	X	
10	2457 MHz	2446 – 2468	X	X	X	
11	2462 MHz	2451 – 2473	X	X	X	
12	2467 MHz	2466 – 2478		X	X	
13	2472 MHz	2471 – 2483		X	X	
14	2484 MHz	2473 – 2495			X	

2.4-GHz Channel Use

802.11 b/g 2.4-GHz Channels

- Each channel is 22 MHz wide.
- North America: 11 channels
- Europe: 13 channels
- There are three nonoverlapping channels: 1, 6, 11.
- Using any other channels will cause interference.
- Three access points can occupy the same area.

802.11b/g (2.4 GHz) Channel Reuse

802.11b Access Point Coverage

802.11a Standard

Standard was ratified September 1999

Operates in the 5-GHz band

Uses orthogonal frequency-division multiplexing (OFDM)

Uses eight data rates of up to 54 Mbps

6, 9, 12, 18, 24, 36, 48, 54 Mbps

Has from 12 to 23 nonoverlapping channels (FCC)

Has up to 19 nonoverlapping channels (ETSI)

Regulations different across countries

 Transmit (Tx) power control and dynamic frequency selection required (802.11h)

Understanding the 5 GHz Spectrum

UNII-1: Indoor Use, Antenna Must Be Fixed to the Radio

UNII-2: Indoor/Outdoor Use, Fixed or Remote Antenna

(Must Implement 802.11h After Jul 19, 2007)

UNII-3: Indoor/Outdoor; Fixed, Pt-to-Pt Can Employ Higher Gain Antenna

Europe: Must Implement 802.11h

IEEE 802.11h Spectrum Management

Primary use of 5 GHz bands outdoors is radar in many countries.

802.11h is an addition to the 802.11 family of standards.

802.11h rules are designed to minimize interference.

Uses Dynamic Frequency Selection (DFS) and Transmit Power Control (TPC).

Radios must comply to benefit from 11 new channels.

802.11a Channel Reuse

802.11h DFS not available

Manual channel assignment required

802.11h DFS implemented

- Channel assignment done by Dynamic Frequency Selection (DFS)
- Only frequency bands can be selected

802.11g Standard

Standard was ratified June 2003

Operates in the 2.4-GHz band as 802.11b

Same three nonoverlapping channels:
 1, 6, 11

DSSS (CCK) and OFDM transmission

12 data rates of up to 54 Mbps

- 1, 2, 5.5, 11 Mbps (DSSS / 802.11b)
- 6, 9, 12, 18, 24, 36, 48, 54 Mbps (OFDM)

Full backward compatiblity to 802.11b standard

802.11g Protection Mechanism

Problem: 802.11b stations cannot decode 802.11g radio signals.

802.11b/g AP communicates with 802.11b clients with max. 11 Mbps.

802.11b/g AP communicates with 802.11g clients with max. 54 Mbps.

802.11b/g AP activates RTS/CTS to avoid collisions when 802.11b clients are present.

Additional overhead reduces throughput.

802.11 RF Comparison

		802.11b – 2.4 GHz	802.11g – 2.4 GHz	802.11a – 5 GHz
		Most commonly deployed WLAN standard	Higher throughput	Highest throughput
	Pro		 OFDM technology reduces multipath issues 	 OFDM technology reduces multipath issues
				Provides up to 23 nonoverlapping channels
	Con	 Interference and noise from other services in the 2.4-GHz band 	 Interference and noise from other services in the 2.4GHz band 	Lower market penetration
		Only 3 nonoverlapping channels	Only 3 nonoverlapping channels	
		Distance limited by multipath issues	Throughput degraded in the presence of 802.11b clients	

Comparison between 802.11b, 802.11g & 802.11a

	802.11b	802.11g		802.11a
Ratified	1999	2003		1999
Frequency band	2.4 GHz	2.4 GHz 3		5 GHz
No of non- overlapping channels	3			Up to 23
Transmission	DSSS	DSSS	OFDM	OFDM
Data rates [Mbps]	1, 2, 5.5, 11	1, 2, 5.5, 11	6, 9, 12, 18, 24, 36, 48, 54	6, 9, 12, 18, 24, 36, 48, 54
Throughput [Mbps]	Up to 6	Up to 22		Up to 28

Comparison between 802.11n & 802.11ac

Parameter	IEEE 802.11n	IEEE 802.11ac	
Frequency Band	2.4GHz and 5GHz	5GHz only	
Channel Width	20, 40 M Hz	20, 40, 80MHz or 160MHz optional	
Multi-User MIMO	No	Yes	
Spatial Streams	up to four	Maximum up to Eight	
Modulation	64-QAM	256-QAM	
Single Stream(1*1) Maximum Client Data Rate	150 M bps	450 M bps	
Three Stream(3*3) Maximum Client Data Bate	450Mbps	1.3Gbps	

802.11n MIMO

With MIMO all three signals are received and processed up the stack. This significantly improves the receiver's "ability to hear"

Spatial Multiplexing

802.11 Classic Transmitter

Spatial Multiplexing - Two Streams

Channel Bonding

Channel bonding combines two adjacent channels, which effectively doubles the amount of available bandwidth.

SU-MIMO vs MU-MIMO

Ratified IEEE 802.11 Standards

- 802.11: WLAN 1 and 2 Mbps at 2.4 GHz
- 802.11a: WLAN 54-Mbps at 5 GHz
- 802.11b: WLAN 11-Mbps at 2.4 GHz
- **802.11d: Multiple regulatory domains**
- 802.11e: Quality of Service
- 802.11f: Inter-Access Point Protocol (IAPP)
- 802.11g: WLAN 54-Mbps at 2.4 GHz
- 802.11h: Dynamic Frequency Selection (DFS)
 - **Transmit Power Control (TPC) at 5 GHz**
- **802.11i: Security**
- 802.11j: 5-GHz channels for Japan

General Office Wireless LAN Design

Eight 802.11g access points deployed

7 users per access points with no conference rooms provides 3.8 Mbps throughput per user

7 users + 1 conference room (10 users) = 17 total users, provides 1.5 Mbps throughput per user

54 Cubes—4 Conference Rooms

95 Feet

Cisco WLAN Implementation

Cisco offers 2 "flavors" of wireless solutions:

Distributed WLAN Solution Components

Autonomous access points

Network Infrastructure

Wireless Domain Services (WDS) – optional

Wireless LAN Solution Engine (WLSE) – optional

Acess Control Server (ACS) – optional

Centralized WLAN Solution Components

Lightweight access points

Network Infrastructure

Wireless LAN controller (WLC) – required

Wireless Control System (WCS) – optional

Location appliance – optional

Acess Control Server (ACS) – optional

Cisco Centralized WLAN Model

Why Lightweight APs?

A WLAN controller system is used to create and enforce policies across many different lightweight access points.

With centralized intelligence, functions essential to WLAN operations such as security, mobility, and quality of service (QoS), can be efficiently managed across an entire wireless enterprise.

 Splitting functions between the access point and the controller, simplifies management, improves performance, and increases security of large WLANs

Wireless LAN Solution Comparison

Distributed Solution	Wireless clients	Centralized Solution
Autonomous access points	Access points	Lightweight access points
Wireless Domain Services (WDS)	Control	WLAN controller
WLAN Solution Engine (WLSE)	WLAN management	WLAN Control System (WCS)
PoE switches, routers	Network infrastructure	PoE switches, routers
DHCP, DNS, AAA	Network services	DHCP, DNS, AAA

WLAN Security

Why WLAN Security?

Wide availability and low cost of IEEE 802.11 wireless equipment

802.11 standard ease of use and deployment

Availability of sniffers

Statistics on WLAN security

Media hype about hot spots, WLAN hacking, war driving

Nonoptimal implementation of encryption in standard Wired Equivalent Privacy (WEP) encryption

Authentication vulnerability

Wireless LAN Security Threats

"WAR DRIVERS"

EMPLOYEES

Find "Open" Networks; Use Them to Gain Free Internet Access

Exploit Weak Privacy Measures to View Sensitive WLAN Info and Even **Break into WLANs**

HACKERS

Plug Consumer-Grade APs/Gateways into Company **Ethernet Ports to** Create Own WLANs

WLAN Sniffing and SSID Broadcasting

Mitigating the Threats

Control and Integrity	Privacy and Confidentiality	Protection and Availability
Authentication	Encryption	Intrusion Detection System (IDS)
Ensure that legitimate clients associate with trusted APs.	Protect data as it is transmitted and received.	Track and mitigate unauthorized access and network attacks.

Evolution of Wireless LAN Security

Initial (1997)

Encryption (WEP)

No strong authentication

Static, breakable keys

Not scalable

Interim (2001)

802.1x EAP

Dynamic keys

Improved encryption

User authentication

802.1x EAP (LEAP, PEAP)

RADIUS

Interim (2003)

Wi-Fi Protected Access (WPA)

Standardized

Improved encryption

Strong, user authentication (e.g., LEAP, PEAP, EAP-FAST) **Present**

Wireless IDS

Identification and protection against attacks, DoS

IEEE 802.11i

WPA2 (2004)

AES strong encryption

Authentication

Dynamic key management

WLAN Security Summary

	WEP	WPA	WPA2	WPA3
Brief description	Ensure wired-like privacy in wireless	Based on 802.11i without requirement for new hardware	All mandatory 802.11i features and a new hardware	Announced by Wi-Fi Alliance
Encryption	RC4	TKIP + RC4	CCMP/AES	GCMP-256
Authentication	WEP-Open WEP-Shared	WPA-PSK WPA-Enterprise	WPA2-Personal WPA2- Enterprise	WPA3-Personal WPA3-Enterprise
Dataintegrity	CRC-32	MIC algorithm	Cipher Block Chaining Message Authentication Code (based on AES)	256-bit Broadcast/Multicast Integrity Protocol Galois Message Authentication Code (BIP-GMAC-256)
Key management	none	4-way handshake	4-way handshake	Elliptic Curve Diffie- Hellman (ECDH) exchange and Elliptic Curve Digital Signature Algorithm (ECDSA)

Wireless Client Association

- 1. Access points send out beacons announcing SSID, data rates and other information.
- 2. Client scans all channels.
- 3. Client listens for beacons and responses from access points.
- 4. Client associates to access point with strongest signal.
- Client will repeat scan if signal becomes low to reassociate to another access point (roaming).
- 6. During association SSID, MAC address and security settings are sent from the client to the AP and checked by the AP.

WPA and WPA2 Authentication

Supplicant for 802.1x Type: LEAP, PEAP,

EAP-FAST, etc.

802.1x Support

Server Support for 802.1x Type: LEAP, PEAP, EAP-FAST, etc.

WPA and WPA2 Encryption

Strong Encryption

Wi-Fi Protected Access

What are WPA and WPA2?

- Authentication and encryption standards for Wi-Fi clients and APs
- 802.1x authentication
- WPA uses TKIP encryption
- WPA2 uses AES block cipher encryption

Which should I use?

- Gold, for supporting NIC/OSs
- Silver, if you have legacy clients
- Lead, if you absolutely have no other choice.

Gold WPA2/802.11i

- EAP-Fast
- AES

Silver WPA

- EAP-Fast
- TKIP

Lead Dynamic WEP

- EAP-Fast/LEAP
- VLANs + ACLs

WLAN Security Summary

Open Access

No Encryption, Basic Authentication

Public "Hotspots"

Basic Security

40-bit or 128-bit Static WEP Encryption, WPA

Home Use

Enhanced Security

802.1x, TKIP Encryption, Mutual Authentication, Scalable Key Mgmt., Etc.

Enterprise

Remote Access

Virtual Private Network (VPN)

Business Traveler, Telecommuter

#