Student Information

Full Name: Furkan Karaca

Id Number: 2521698

Answer 1

a)

First separate equivalence classes based on whether they are final or not. The set $\{q_0, q_1, q_3, q_4\}$ is base class for non-finals and $\{q_2, q_5\}$ is for final states. Now we try to separate them further. $\{q_0, a\}$ goes q_0 , the same class. $\{q_0, b\}$ goes the final state equivalence class. $\{q_1, a\}$ and $\{q_1, b\}$ goes the same classes with q_0 as well. This situation is valid for q_4 and q_3 , too. We can say they are all in the same equivalence class if the final states are in the same equivalence class. If we look at $\{q_2, a\}$ it goes final state eqv. class, and $\{q_2, b\}$ goes non-final equivalence class. This situation is exactly the same for q_5 . So, there are only two equivalence classes, $\{q_0, q_1, q_3, q_4\}$ and $\{q_2, q_5\}$ we can draw the minimized DFA as:

b)

For the first equivalence class:

 a^*ULba^*

For the second:

L

c) The theorem says that if there are no finite automata for a given language L, then L is not regular. And if there are no finite automata, then there are infinitely many equivalence classes. Our equation is m + n = k + 2u. For different m + n values, there are different k + 2u values. Each of different m + n values creates a new and unique equivalence class. Since m and n are natural numbers and m + n can vary 0 between ∞ there are infinitely many equivalence classes and infinitely many states for an automaton, therefore our language is not regular.

Answer 2

1.

S is the starting string and,

$$\begin{split} \mathbf{S} &= \mathbf{FS} \mid \mathbf{Bb} \mid \mathbf{SFB} \\ \mathbf{B} &= \mathbf{Bb} \mid \epsilon \end{split}$$

F = aFb | bFa | FF |
$$\epsilon$$

2.

S is the starting string and,

 $\mathbf{S} = AB$

 $A = 0A1 \mid \epsilon$

$$B = 1B2 \mid \epsilon$$

3.

S is the starting string and,

 $S = 1A \mid 0A$

 $A = 0S \mid 1S \mid \epsilon$

Answer 3

1. $\{ w \mid \text{the length of } w \text{ is not 1, first and last character of } w \text{ is the same and } w \in \{0,1\}^* \ \}$

2. {w | w has at least 2 1's and w $\in \{0,1\}^*$ }