

ggplot2

Enhanced Graphics Package

About ggplot2

- Package ggplot2 provides a method of creating innovative graphs based on graphical grammar
- There are four graphic systems in R currently.

Four Graphics Systems in R

- 1. The base Graphics System written by the Ross Ihaka included by default in every R installation
- 2. The grid graphics system written by Paul Murrell (2011)
- 3. The lattice graphics system written by Deepayan Sarkar (2008)
- 4. The ggplot2 graphics system written by Hadley Wickham (2009)

Base Graphics

- We have already covered it in the previous sessions
- Composed of functions like plot(), boxplot(), barplot() etc.

Grid Graphics

- Implemented by package grid
- Offers a low level alternative to the standard graphics system
- But the grid package doesn't provide functions for producing statistical graphics or complete plots

Lattice Graphics

- Implements trellis graphs with package lattice
- Provides a comprehensive system for creating statistical graphics
- Built using package grid

Ggplot2 Graphics

The package ggplot2 has been written by Hadley Wickham

 Provides a system for creating graphs based on the grammar of graphics described by Wilkinson and

expanded by Wickham

Function qplot

- Before we look into the ggplot function, let us first have a look at the function qplot() (Quick Plot), which is a basic plotting function in package ggplot2.
- The function qplot() hides what goes on underneath (inside)

Syntax : qplot(x , y , data , ...)

Where

x : variable to be considered on X-axis

y: variable to be considered on Y-axis (If not specified scatter plot won't be drawn)

data: data frame object

Example

 We consider here the dataset Salaries in the package car.

qplot(yrs.service , salary , data=Salaries)

STATE Endering Colours: Categorical

qplot(yrs.service , salary , data=Salaries , color = rank)

Rendering Shapes: Categorical

qplot(yrs.service , salary , data=Salaries , shape = rank)

Bubble Plot

Academy of Starkendering Colours: Continuous

qplot(yrs.service , salary , data=Salaries , color = yrs.since.phd)

Adding Smoothened Line

qplot(yrs.service , salary , data=Salaries , geom=c("point","smooth"),method="lm")

Histogram with qplot()

qplot(yrs.service , data=Salaries , binwidth = 3)

qplot(yrs.service , data=Salaries , binwidth = 3 , fill=rank)

Density Plots

qplot(yrs.service , data=Salaries ,geom = "density")

qplot(yrs.service , data=Salaries ,geom = "density" , color=rank)

Boxplot

qplot(rank,yrs.service , data=Salaries ,geom = c("boxplot"))

Boxplot with Jittering

qplot(rank,yrs.service , data=Salaries ,geom = c("boxplot","jitter"))

Facets

- Sometimes, the relationship become clearer if the graphs are shown side by side
- These are also called trellis graphs

Syntax	Effect
facets = . ~ var	Separate plots for each level of var into n columns
facets = var ~ .	Separate plots for each level of var into n rows
facets = var1 ~ var2	Separate plots for each combination with var1 in rows and var2 in columns

Facets Example

qplot(yrs.service , data=Salaries ,geom = "density" , facets = .~rank)

Facets Example

qplot(yrs.service , salary , data=Salaries , facets = discipline~rank)

Function ggplot

 With ggplot function, the plots are created by putting together functions in a chain-like manner using plus (+) sign

```
Syntax:
```

```
ggplot(data,aes(x=,y=,...)) + geom function(s)
```

Where

data: data frame object

aes(): a function for specifying the role of variables

Basic Components of ggplot()

- Data Frame
- Aesthetic mappings: data mapping by color, shape etc.
- Geoms: Geometric object like points, shapes etc.
- Facets: Trellis plotting
- **Stats**: Statistical Transforms
- Scales: scale used by aesthetic map
- Coordinate System

Building Plots in ggplot()

- Plots are built up in layers
 - Plotting the data
 - Overlaying the summary
 - Annotating the graph
- Let us have a simple example of displaying the scatter plot with yrs.service as X-axis and salary as Y-axis

Plotting by ggplot()

 We will find here that just specifying the dataset and the axes is not sufficient for generating graph.

```
p <- ggplot(Salaries,aes(yrs.service,salary))
print(p)</pre>
```


geom_*() functions

Geom	Graph Type
geom_point()	Scatter Plot
geom_line()	Line Graph
geom_histogram()	Histogram
geom_density()	Density Plot
geom_smooth()	Regression Line
geom_boxplot()	Boxplot
geom_bar()	Bar PLot

Scatter Plot

Scatter plot can be generated with geom_point() function

Grouping in Scatter Plot

ggplot(Salaries,aes(yrs.service,salary,color=rank,shape=discipline))+
 geom_point()

Smoothening

- By default, the smoothening happens with loess method.
- We need to specify Im method if we want linear regression line

```
> p+geom_point()+geom_smooth()
geom_smooth: method="auto" and size of largest group is <1000, so using loess.
Use 'method = x' to change the smoothing method.</pre>
```


Smoothening

p+geom_point()+geom_smooth(method="lm")

Customizing the smooth

Boxplot

ggplot(Salaries, aes(x=rank,y=salary))+
 geom_boxplot(fill=c("red","green","blue"))

Boxplot with Jitter

```
ggplot(Salaries, aes(x=rank,y=salary))+
  geom_boxplot(fill=c("red","green","blue"))+geom_jitter()
```


Histogram

```
ggplot(Salaries,aes(x=salary)) +
  geom_histogram(bins=20,fill="pink",color="red")
```


Histogram

```
\begin{array}{lll} ggplot(Salaries,aes(x=salary)) \ + \\ geom\_histogram(binwidth = 25000,fill="lightskyblue2",color="blue") \end{array}
```


Density Plot

ggplot(Salaries, aes(x=salary))+geom_density()

Barplot

ggplot(Salaries, aes(rank))+geom_bar(fill="steelblue4")

Barplot

ggplot(Salaries, aes(rank,fill=discipline))+geom_bar()

Plotting Summarized Values

Facets

- Sometimes, the relationship become clearer if the graphs are shown side by side
- These are also called trellis graphs
- Faceted graphs can be created using facet_grid() and facet_wrap() functions

Syntax	Effect
facet_wrap(~ var, ncol=n)	Separate plots of each category in var into n columns
facet_wrap(~ var, nrow=n)	Separate plots of each category in var into n rows
facet_grid(rowvar ~ colvar)	Separate plots for each combination of rowvar and colvar in grid form
facet_grid(rowvar ~ .)	Separate plots of each category in rowvar into a single column
facet_grid(. ~ colvar)	Separate plots of each category in colvar into a single row

Facet Examples

p+geom_point()+geom_smooth(method="lm")+facet_grid(.~rank)

Facet Examples

p+geom_point()+geom_smooth(method="lm")+facet_grid(discipline~rank)

Facet Examples

p+geom_point()+geom_smooth(method="lm")+facet_wrap(~rank,nrow = 2)

Annotating Graph

- Labels can be given by functions xlab(), ylab(), labs(), ggtitle()
- For overall effects, use theme()
- By default, we have theme_gray()
- We can set background colourless by theme_bw()

Examples

p+geom_point(color="blue", size=3, alpha=1/4)

Boxplot

 $ggplot(Salaries, aes(x=salary,fill=rank))+geom_density(alpha=0.4)$

Examples

p+geom_point(aes(color=rank), size=2, alpha=3/4)

Rendering labels

> p+geom_point(aes(color=rank), size=2, alpha=3/4)+labs(title="Plot by Rank")
+labs(x="Years in Service",y="Salary")

Changing the Theme

```
p+geom_point(aes(color=rank), size=2, alpha=3/4)+
  labs(title="Plot by Rank")+
  labs(x="Years in Service",y="Salary")+
  theme_bw()
```

