

Variational Neural Annealing

Mohamed Hibat-Allah, Estelle M. Inack, Roeland Wiersema, Roger G. Melko, Juan Carrasquilla

Vector Institute, Perimeter Institute, University of Waterloo

Motivation

- Optimization problems have a wide range of applications in many areas of science, as well as in real-world problems.
- Optimization problems can be formulated as the task of finding the lowest-energy state of an Ising Hamiltonian:

$$H_{ ext{target}} = -\sum_{i < j} J_{ij} \sigma_i \sigma_j - \sum_{i = 1}^N h_i \sigma_i,$$

Optimal Scheduling

Simulated Annealing and Quantum Annealing

- Simulated annealing (SA) is a heuristic algorithm based on thermal jumps to find optimal minima of H_{target} .
- Quantum annealing (QA) is another heuristic inspired from quantum mechanics. It introduces quantum tunneling to overcome local minima of H_{target} .

(a) Classical annealing, (b) Quantum annealing.

Recurrent Neural Networks (RNNs)

- The inputs of the RNN are spins. The latter are fed sequencially, and can be also generated autoregressively.
- We use two-dimensional RNNs to model the equilibrium states of two-dimensional spin glasses.
- We use **Dilated RNNs** [1] to model the equilibrium states of fully-connected spin glasses.
- In this study, we use RNNs to emulate simulated annealing and quantum annealing, for the purpose of finding better solutions to optimization problems.

Variational Classical Annealing (VCA)

 We use the variational free energy as a cost function:

$$F_{\lambda}(t) = \langle \hat{H}_{\mathrm{target}} \rangle_{\lambda} - T(t)S(p_{\lambda}),$$

 We gradually decrease the temperature using a linear schedule:

$$T(t) = T_0(1-t)$$

- The probability p_{λ} is modeled by a recurrent neural network (RNN).
- At T=0, we expect the RNN to output the ground state(s) of H_{target} .
- Proof of principle of adiabaticity for the uniform Ising chain with N = 20 spins. $\hat{H}_{\text{target}} = -\sum_{i=1}^{N-1} \hat{\sigma}_i^z \hat{\sigma}_{i+1}^z$.

Variational Quantum Annealing (VQA)

 We use the variational energy as a cost function:

$$\langle \hat{H}(t)
angle_{oldsymbol{\lambda}} = \langle \hat{H}_{ ext{target}}
angle_{oldsymbol{\lambda}} + f(t) \langle \hat{H}_D
angle_{oldsymbol{\lambda}},$$

- The driving term \hat{H}_D is initially the dominant term.
- We anneal \hat{H}_D using a linear schedule:

$$f(t) = (1-t)$$

• The wave function ansatz $|\Psi_{\lambda}\rangle$ is modeled by a recurrent neural network (RNN).

Proof of principle of adiabaticity on the 1D uniform Ising chain with N=20spins and a driving term $\hat{H}_D = -\Gamma_0 \sum_x \hat{\sigma}_i^x$. **Residual energy:** $\epsilon_{\text{res}} = \langle \hat{H} \rangle_{\lambda} - E_{\text{G}}$.

Annealing for two-dimensional spin glasses

Edwards-Anderson Hamiltonian in 2D:

$$\hat{\mathcal{H}}_{ ext{EA}} = -\sum_{\langle i,j
angle} J_{ij} \hat{\sigma}^z_i \hat{\sigma}^z_j,$$

Comparing CQO, VQA, VCA (10x10) Comparing SA, SQA, VCA (40x40)

• VCA has a better scaling compared to CQO [3], VQA, SA and SQA [4].

Annealing for fully-connected spin glasses

Sherrington-Kirkpatrick Hamiltonian for N = 100 **spins:**

$$\hat{H}_{\mathsf{SK}} = -rac{1}{2} \sum_{i
eq j} rac{J_{ij}}{\sqrt{N}} \hat{\sigma}_i^z \hat{\sigma}_j^z,$$

VCA is superior compared to SA and SQA [4].

Outlooks

- Understanding why VCA performs better compared to VQA.
- Taking advantage of state-of-the-art autoregressive models, besides traditional RNNs, to improve VQA and VCA.
- Applying VQA and VCA to real-world optimization problems.

References

- Dilated Recurrent Neural Networks, NeurlPS, 2017.
- 2 Recurrent Neural Network Wave Functions, PRReasearch, 2020.
- 3 Classical Quantum Optimization with Neural Network Quantum States, 2019.
- 4 Theory of Quantum Annealing of an Ising Spin Glass, Science, 2002.