ID: 1651 Math A4900

Proof portfolio draft, Round 1 October 4, 2020

Statement: Let G be a group. Prove that if $|x| \leq 2$ for all $x \in G$ then G is abelian.

1B Problem:

1 No. stars:

5 Proof. Suppose for $x \in G$, $|x| \le 2$, which implies $n \le 2$ for $x^n = 1$. This implies that for all $x \in G$, 6 $x^2 = xx = 1 \implies x = x^{-1}$. This means that for $x, y \in G$, $xy = (xy)^{-1} = y^{-1}x^{-1} = yx = 1$. 8 $(xy)^{-1} = y^{-1}x^{-1} = yx = 1$ by the inverse axiom. Therefore, the group is abelian since all conditions hold.

In Ine 5, you may want to write something like "which implies the smallest n EN for which

x' = 1 is n = 1 or n = 2. The way it is Mritten von implies xy # 1 4v>>>, pry it /x/=2, then x=1 as well.

Overall rice front though!

	Points Possible							
complete	0	1	2	3	4	5		
mathematically valid	0	1	2	3	4	5		
readable/fluent	0	1	2	3	4	5		
Total:	(out of 15)							

3

Statement: Let G be a group and let $x \in G$. If $|x| = n < \infty$, prove that the elements $1, x, x^2, \ldots, x^{n-1}$ are all distinct. Deduce that $|x| = |\langle x \rangle|$

Problem: 1C

No. stars:

Proof. Proof. Suppose $|x| = n < \infty \implies x^n = 1$. Suppose on the contrary that the elements

 $e, x, x^2, \ldots, x^{n-1}$ are not all distinct. Thus, there exists an $a, b \in G$ such that $x^a = x^b$. Through

operations, we can see that $x^a = x^b \implies x^a x^{-b} = x^b x^{-b} \implies x^{a-b} = 1$. If this is true, a - b = n

but this is contradiction because there does not exist two integers such that a - b = n. The max

value (a-b) can be is (n-2) which does not equal n. Therefore, the elements are distinct by

contradiction. If $G = \langle x \rangle$ where $|x| = n < \infty$, then G has n distinct elements including 1. Hence,

 $|x| = |G| = |\langle x \rangle| = n.$

8

two integers asb such that I Lasb L n-1 and a-b=n

Try to write out statements rather than using "=>". Also note that we need to assert a + b. Otherwise $x^{ab} = x^0 = 1$ could be true without having a-b=n.

	Points Possible						
complete	0	1	2	3	4	5	
mathematically valid	0	1	2	3	4	5	
readable/fluent	0	1	2	3	4	5	
Total:	(out of 15)						

10

Statement: Prove that if H and K are subgroups of G, then so is $H \cap K$. On the other hand, prove $H \cup K$ is a subgroup if and only if $H \subseteq K$ or $K \subseteq H$.

Problem: 2A

No. stars: 2

Proof. Suppose H and K are subgroups of G. This means $H \neq \emptyset$, $K \neq \emptyset$, $1 \in H$ and $1 \in K$.

Therefore, $1 \in H \cap K \implies (H \cap K) \neq \emptyset$. If 1 is the only element in $H \cap K$, then already we can

say that $H \cap K$ is a trivial subgroup of G. Since H and K are subgroups of G, we can say for all

 $a, b \in H$ and $x, y \in K$, $ab \in H$ and $xy \in K$. Thus, $ab \in (H \cap K)$ or $xy \in (H \cap K)$. If $z \in (H \cap K)$,

then $z, z^{-1} \in H$ and K since both are subgroups, meaning $z^{-1} \in (H \cap K)$. With both subgroups

closed under the same operations as G, we can conclude that $(H \cap K)$ is a subgroup of G.

7 One the other hand, we will now prove that the subgroups $H \subseteq K$ or $K \subseteq H \Longrightarrow H \cup K$ is a

subgroup. Without loss of generality, assume $H \subseteq K$. This implies that $H \cup K = K$ and since K

is a subgroup of G, $H \cup K$ is a subgroup of G. Now, if $H \cup K$ is a subgroup of G. Later G

Now we need to prove $H \cup K \implies H \subseteq K$ or $K \subseteq H$ and we can do this by proving the contrapositive

statement. We will prove $H \nsubseteq K$ and $K \nsubseteq H \Longrightarrow H \cup K$ is not a subgroup. Suppose $x \in H$, $x \notin K$

and $y \in K$, $y \notin H$. This implies that the union contains x, y. For the sake of contradiction, suppose that $H \cup K$ was a group, implying $xy \in H \cup K$. Therefore, $xy \in H$ or K. Since H is subgroup of

 $G, xy \in H \implies x^{-1}xy \in H \implies y \in H$, a contradiction. We arrive at a similar contradiction for

15 K, $x \in K$. Hence, $H \cup K$ is not a subgroup of G. By proving the contrapositive statement true, we

have proved that $(H \subseteq K \text{ or } K \subseteq H) \Longrightarrow H \cup K$ is a subgroup. [-] Wite use of Contra positive!

Lines 3-4 are not necessarily true. We could have about that about KIHNK)

You also need to show that for "xxy ECHNX), we have xx' E(HNX)

	Points Possible						
complete	0	1	2	3	4	5	
mathematically valid	0	1	2	3	4	5	
readable/fluent	0	1	2	3	4	5	
Total:	(out of 15)						

or KCH. need to prove HUKEG SHEK

Statement: Let G be a group. Show that the map

 $\varphi: G \to G$ defined by $\varphi: g \mapsto g^{-1}$

is a homomorphism if and only if G is abelian. Now, verify that

 $\psi: D_{2n} \to D_{2n}$ defined by $\psi(s) = s^{-1}$ and $\psi(r) = r^{-1}$

extends to a well-defined homomorphism, and explain why this does not contradict the first statement.

Problem: 2B

No. stars:

- may Want to Shru 1 Proof. Suppose $\varphi:G\to G$ definied by $\varphi:g\mapsto g^{-1}$ is a homomorphism. Therefore, I hose opposition
- $\varphi(gh) = \varphi(g) * \varphi(h) = g^{-1}h^{-1} \text{ and } \varphi(gh) = (gh)^{-1} = h^{-1}g^{-1} \implies h^{-1}g^{-1} = g^{-1}h^{-1}$. Through
- operations, we get that this implies that hg = gh. Since its commutative, the group G is abelian.
- Now, suppose group G is abelian. Then $\varphi(gh) = (gh)^{-1} = h^{-1}g^{-1} = g^{-1}h^{-1} = \varphi(g)\varphi(h)$, making
- 5 the map a homomorphism. [Nice
- Now, lets verify that $\psi: D_{2n} \to D_{2n}$ defined by $\psi(s) = s^{-1}$ and $\psi(r) = r^{-1}$ extends to a well
- defined homomorphism.
- 8 Since $r^i = r^{n+i}$, $s^j = s^{-j}$, $i, j \neq 0$
- 9 $\psi(r^i) = r^{-i} = r^{n-i}, \ \psi(r^{n+i}) = r^{-n-i} = r^{n-i}$
- 10 $\psi(s^j) = s^{-j} = sj = \psi(s^{-j})$
- 11 $\psi(r^i s) = (r^i s)^{-1} = (sr^{-i}) = \psi(s)\psi(r^i)$ } We may read to show that
- The homomorphism does not contradict the first statement because while D_{2n} is not abelian, both = $\psi(s)\psi(r^i), \psi(r^i)\psi(s) \in D_{2n}$ image from the pre-image $r^is, sr^i \in D_{2n}$ with a one-to-one relationship.
- Abelian groups in the original statement satisfies this requirement since the group is commutative,
- but the D_{2n} mapping satisfies the well-defined homomorphism requirement due to unique non-D in Don
- communative characteristic of $r^i s$, $s r^i$ and thier inverses.

May want to rephrose this pargraph. A bit confusing to follow 18

	Points Possible						
complete	0	1	2	3	4	5	
mathematically valid	0	1	2	3	4	5	
readable/fluent	0	1	2	3	4	5	
Total:	(out of 15)						

Statement: Let G act on a set A. Prove that the relation \sim on A defined by

Problem: 3B

1

 $a \sim b$ when $a = g \cdot b$ for some $g \in G$

No. stars:

is an equivalence relation.

Hore Proof. To prove their is an equivalence relation, we need to prove reflextivity, symmetry, and

transitivity.

For reflextivity $(a \sim a)$, a = 1 * a = a since $1 \in G$. t

For symmetry $(a \sim b \iff b \sim a)$, suppose for $a, b \in A$, there exists an $g \in G$ such that a = gb.

Using group operations, since $g^{-1} \in G$, $a = gb \implies g^{-1}a = g^{-1}gb \implies b = g^{-1}a$. Hence

6 $a \sim b \iff b \sim a$. N;

For transitivity $(a \sim b, b \sim c \implies a \sim c)$, if a = gb, b = hc for some $g, h \in G$, then a = g(hc) = (gh)c

8 using substitution. Since $gh \in G$, then $a \sim c$.

Nice work! Try to use fewer =>, Es

in your proof.

	Points Possible						
complete	0	1	2	3	4	5	
mathematically valid	0	1	2	3	4	5	
readable/fluent	0	1	2	3	4	5	
Total:	(out of 15)						