Exercise Sheet 7 due: 2022-06-23 23:59

Stochastic Optimization

Exercise T7.1: Simulated Annealing and Mean-Field Annealing (tutorial)

- (a) What is the Exploration-Exploitation tradeoff?
- (b) How does simulated (stochastic) annealing optimize discrete variables?
- (c) How do the stationary distribution, the transition probability, the cost function change with the inverse temperature?
- (d) How does Mean-field (deterministic) annealing optimize discrete variables?

Exercise H7.1: Simulated Annealing

(homework, 5 points)

Simulated annealing can be used to optimize a cost function $E: \underline{\mathbf{s}} \to \mathbb{R}$ where the state $\underline{\mathbf{s}}$ is a set of discrete state variables $s_i \in \{-1, +1\}, \ i = 1, \dots, N$. For an all-to-all connected "network" with N = 6 binary nodes, this means that $\underline{\mathbf{s}} \in \{-1, +1\}^6$. Our cost ("energy") is defined as follows:

$$E(\underline{\mathbf{s}}) = -\frac{1}{2} \sum_{i,j=1}^{N} w_{ij} s_i s_j,$$

where $w_{ij} = w_{ji} \in \mathbb{R}$, and $w_{ii} = 0$.

The probability that the network is in a specific state \underline{s} with energy $E(\underline{s})$ is given by

$$P(\underline{\mathbf{s}}) = \frac{1}{Z} \exp(-\beta E(\underline{\mathbf{s}})),$$

where the *partition function* Z guarantees $P(\underline{\mathbf{s}})$ to be a valid probability mass function and is given as the sum over all possible configurations, i.e. $Z = \sum_{\mathbf{s}} \exp(-\beta E(\underline{\mathbf{s}}))$.

Write a program that finds the optimal configuration $\underline{\mathbf{s}}^*$ for a given set of weights $\underline{\mathbf{W}}$ as follows

A: Initialization:

- 1. Set both $\beta_0, \tau > 1$ (and that both are close to 1)¹, and $t_{max} > 150$. Try both M = 1 and M = 20.
- 2. Set the initial state $\underline{\mathbf{s}}$ randomly;
- 3. Set $\underline{\mathbf{W}}$ arbitrarily, e.g. $w_{ij} \in [-1, 1]$ uniformly random, but force (also during optimization) $\underline{\mathbf{W}}$ to be symmetric and have a zero diagonal.

B: Optimization: for each iteration $t = 0, \dots, t_{max}$

- 1. Repeat the following M times (state update loop):
 - (i) Select node i randomly

¹By setting $\beta > 1$ we will have actually already skipped the exploration phase. We recommend setting it slightly above 1, e.g. $\beta_0, \tau = 1.01$.

(ii) Determine the energies for the two options for flipping s_i and compute their difference

$$E_{s_i} = -\frac{1}{2} \sum_{j \in \mathcal{N}_i} w_{ij} s_i s_j \quad \to \quad \Delta E = E_{-s_i} - E_{s_i} = -2E_{s_i}$$

where \mathcal{N}_i is the set of neighbors of node i. Since we have all-to-all connections the set of neighbors is effectively **all other** nodes.

- (iii) flip state s_i with probability $P(s_i \rightarrow -s_i) = \frac{1}{(1+e^{\beta_t \Delta E})}$
- 2. Increase β using $\beta_{t+1} = \tau \beta_t$ before iterating over the state update loop another M times.

C: Visualization: For both M=1 and M=20 in the same figure.

- 1. Plot the temperature $T_t = \frac{1}{\beta_t}$ and the energy $E(\underline{\mathbf{s}})$ over the iterations $t = 0, \dots, t_{max}$.
- 2. Show the energy $E(\underline{\mathbf{s}})$ for all possible 2^6 states using a bar plot. The order of the states is not relevant. Additionally, plot the probabilities $P(\underline{\mathbf{s}})$ for different β as a bar plot. There is no need to do this for all values of β , simply choose $\{\beta\}$ in a way, that the probability distributions differ sufficiently to illustrate the effect of β on $P(\underline{\mathbf{s}})$ (e.g. β changes by one order of magnitude).

Exercise H7.2: Mean-Field Annealing

(homework, 5 points)

Mean-field annealing is a deterministic approximation of simulated annealing. During optimization each node s_i corresponds to the first moment of the original i-th binary variable and thus takes continuous values. The states s_i represent the mean with respect to the factorized distribution $Q(\mathbf{s}) \approx P(\mathbf{s})$.

Consider again an all-to-all connected network with ${\cal N}=6$ nodes. The cost (energy) function remains the same:

$$E(\underline{\mathbf{s}}) = -\frac{1}{2} \sum_{i,j=1}^{N} w_{ij} s_i s_j,$$

where the components $w_{ij} \in \mathbb{R}$ are symmetric, and $w_{ii} = 0$. The approximated probability of a state \underline{s} is now given by

$$Q(\underline{\mathbf{s}}) = \frac{1}{Z_Q} \exp\left(-\beta \sum_j e_j s_j\right).$$

Write a program that finds the optimal configuration $\underline{\mathbf{s}}^*$ of the network for given weights $\underline{\mathbf{W}}$. It should execute the following steps:

A: Initialization:

- 1. β_0 small enough but close to 1, $\tau>1$ and close to 1, ε small enough, set t_{max} ,
- 2. Set the initial values of the first moments $\langle \underline{\mathbf{s}} \rangle_0$ with non-zero values chosen randomly.
- 3. Choose the same **W** used in the exercise above.

B: Optimization: for each iteration $t = 0, ..., t_{max}$

- 1. repeat the following until convergence, i.e., $|e_k^{\text{new}} e_k^{\text{old}}| < \varepsilon$, $k = 1, \dots, N$
 - for k = 1, ..., N:
 - a) compute mean-field

$$e_k = -\sum_{i \in \mathcal{N}_k} w_{ik} s_i = -\sum_{\substack{i=1 \ i \neq k}} w_{ik} \langle s_i \rangle_Q$$

where \mathcal{N}_k is the set of neighbors of node k. In the case of all-to-all connections it is effectively the set of **all other** nodes.

- b) update the first moment using $\langle s_k \rangle_Q = \tanh(-\beta e_k)$
- 2. Increase β using $\beta_{t+1} = \tau \beta_t$.

C: Visualization:

1. Plot the temperature $T_t = \frac{1}{\beta_t}$ and the energy $E(\underline{\mathbf{s}})$ over the iterations $t = 0, \dots, t_{max}$.

Total 10 points.