Exploratory data analysis-1

```
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(stringr)
library(data.table)
## data.table + dplyr code now lives in dtplyr.
## Please library(dtplyr)!
##
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
##
       between, first, last
library(reshape2)
##
## Attaching package: 'reshape2'
## The following objects are masked from 'package:data.table':
##
##
       dcast, melt
Added columns: genP full generation probability weighted by VJ usage for our data (aging); ageing_occur -
number of occurrences in aging dataset, should be normalized by 29,989,055 - total number of rearrangements
in aging data.
TOTAL_REARRANGEMENTS_AGING = 29989055
df = read.table("VDJDB_fullP.txt", header=T, sep="\t")
# Fix issue with SLYNTVATL epitope labelled as CMV in 1555537 -> should put an issue in vdjdb-db!
# which is actually HIV
df$antigen.species = as.factor(ifelse(df$antigen.epitope == "SLYNTVATL", "HIV-1", as.character(df$antig
df$obsP = df$ageing_occur / TOTAL_REARRANGEMENTS_AGING
```

Only intercept (constant) bias is present (from plot):

```
ggplot(df, aes(x=obsP, y=genP)) +
  geom_point(shape=21)+
  geom_smooth(method="lm") +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "red") +
  scale_x_log10(limits = c(1e-13, 1e-3)) +
  scale_y_log10(limits = c(1e-13, 1e-3)) +
  theme_bw()
```

Warning: Transformation introduced infinite values in continuous x-axis
Warning: Transformation introduced infinite values in continuous y-axis
Warning: Transformation introduced infinite values in continuous x-axis
Warning: Transformation introduced infinite values in continuous y-axis
Warning: Removed 3632 rows containing non-finite values (stat_smooth).


```
# Not quite obvious from ANOVA..

lmP = lm(log10(obsP) ~ log10(genP), subset(df, obsP > 0 & genP > 0))
summary(lmP)

##
## Call:
## lm(formula = log10(obsP) ~ log10(genP), data = subset(df, obsP >
## 0 & genP > 0))
##
## Residuals:
```

```
1Q Median
                                  3Q
## -1.50718 -0.30004 0.00176 0.28453 2.19940
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.500653
                        0.069658 -21.54
                                           <2e-16 ***
## log10(genP) 0.647065
                          0.008907
                                   72.65
                                            <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4461 on 2873 degrees of freedom
## Multiple R-squared: 0.6475, Adjusted R-squared: 0.6474
## F-statistic: 5278 on 1 and 2873 DF, p-value: < 2.2e-16
anova(lmP)
## Analysis of Variance Table
## Response: log10(obsP)
                Df Sum Sq Mean Sq F value
                 1 1050.23 1050.2 5277.5 < 2.2e-16 ***
## log10(genP)
              2873 571.73
## Residuals
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Lets try GLM
glmP = glm(obsP * TOTAL_REARRANGEMENTS_AGING ~ genP, data = df, family = poisson)
summary(glmP)
##
## Call:
## glm(formula = obsP * TOTAL_REARRANGEMENTS_AGING ~ genP, family = poisson,
      data = df
##
## Deviance Residuals:
                     Median
                                         Max
      Min
              1Q
                                 3Q
## -73.017
          -5.567
                     -5.567
                             -3.180 121.239
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.741e+00 3.083e-03
                                   888.9
                                            <2e-16 ***
              1.268e+06 1.795e+03
                                    706.7
                                            <2e-16 ***
## genP
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 622590 on 6506 degrees of freedom
## Residual deviance: 430074 on 6505 degrees of freedom
## AIC: 441862
## Number of Fisher Scoring iterations: 7
```

Comparing genP across epitopes

Filter epitopes with few representative TCRs, remove everything with 0 generation prob

```
df.tcr.per.epitope = df %>%
  filter(genP > 0) %>%
  group_by(antigen.epitope) %>%
  dplyr::summarise(count = n(), genP_med = median(genP)) %>%
  filter(count >= 30)
```

Compare rearrangement prob across epitopes and their parent species

```
df.1 = subset(df, antigen.epitope %in% df.tcr.per.epitope$antigen.epitope & genP > 0)
df.1$antigen.epitope = factor(df.1$antigen.epitope, levels = df.tcr.per.epitope$antigen.epitope[order(d

ggplot(df.1, aes(x=antigen.epitope, group = antigen.epitope, y=genP, fill = antigen.species)) +
    geom_violin() + stat_summary(fun.y=median, geom="point", shape=21, fill = "white", color="black") +
    scale_y_log10() +
    coord_flip() +
    scale_fill_brewer(palette = "Set3") +
    theme_bw()
```



```
ggplot(df.1, aes(x=antigen.species, group = antigen.species, y=genP)) +
  geom_violin() + stat_summary(fun.y=median, geom="point", shape=21, fill = "red", color="white") +
  geom_hline(yintercept = median(df.1$genP), linetype = "dashed", color = "red") +
  scale_y_log10() +
  coord_flip() +
  theme_bw()
```



```
a1 = aov(log10(genP) ~ antigen.epitope, df.1)
summary(a1)
##
                    Df Sum Sq Mean Sq F value Pr(>F)
                                        4.959 2.4e-16 ***
## antigen.epitope
                    28
                          230
                                8.197
## Residuals
                  4564
                         7544
                                1.653
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
a2 = aov(log10(genP) ~ antigen.species, df.1)
summary(a2)
##
                    Df Sum Sq Mean Sq F value
                                                Pr(>F)
## antigen.species
                     6
                           40
                                6.692
                                        3.968 0.000578 ***
## Residuals
                  4586
                                1.686
                         7734
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TukeyHSD(a2, "antigen.species")
    Tukey multiple comparisons of means
##
##
      95% family-wise confidence level
##
## Fit: aov(formula = log10(genP) ~ antigen.species, data = df.1)
## $antigen.species
```

lwr

0.043890929 -0.15589589 0.2436777 0.9951538 0.049775136 -0.24522150 0.3447718 0.9988914

upr

diff

##

EBV-CMV

HCV-CMV

```
0.172112230 -0.01339119 0.3576157 0.0895409
## HIV-1-CMV
## HomoSapiens-CMV
                              0.120723624 -0.07063342 0.3120807 0.5066893
                              ## InfluenzaA-CMV
## YellowFeverVirus-CMV
                              0.186990017 -0.30935016 0.6833302 0.9249008
## HCV-EBV
                              0.005884207 -0.28680542 0.2985738 1.0000000
                              0.128221301 -0.05359102 0.3100336 0.3646205
## HIV-1-EBV
## HomoSapiens-EBV
                              0.076832695 -0.11094834 0.2646137 0.8917625
                              ## InfluenzaA-EBV
## YellowFeverVirus-EBV
                              0.143099088 -0.35187341 0.6380716 0.9791885
## HIV-1-HCV
                              0.122337094 -0.16079532 0.4054695 0.8637450
## HomoSapiens-HCV
                              0.070948488 -0.21605319 0.3579502 0.9908239
## InfluenzaA-HCV
                              0.229203315 -0.05994720 0.5183538 0.2260047
## YellowFeverVirus-HCV
                              0.137214881 -0.40325345 0.6776832 0.9894256
## HomoSapiens-HIV-1
                             -0.051388606 -0.22389503 0.1211178 0.9757661
## InfluenzaA-HIV-1
                              0.106866221 -0.06919208 0.2829245 0.5546221
## YellowFeverVirus-HIV-1
                              0.014877787 -0.47450399 0.5042596 1.0000000
## InfluenzaA-HomoSapiens
                              0.158254827 - 0.02396077 \ 0.3404704 \ 0.1381275
## YellowFeverVirus-HomoSapiens 0.066266393 -0.42536408 0.5578969 0.9996950
## YellowFeverVirus-InfluenzaA -0.091988434 -0.58487643 0.4008996 0.9980396
```

Comparing selection prob

Pre-filter

```
df.tcr.per.epitope.2 = df %>%
 filter(genP > 0 \& obsP > 0) %>%
  group_by(antigen.epitope) %>%
  dplyr::summarise(count = n(), logOddsSel_med = median(log10(obsP) - log10(genP))) %>%
  filter(count >= 30)
df.2 = subset(df, antigen.epitope %in% df.tcr.per.epitope.2$antigen.epitope & genP > 0 & obsP > 0)
df.2$logOddsSel = with(df.2, log10(obsP) - log10(genP))
df.2$antigen.epitope = factor(df.2$antigen.epitope, levels = df.tcr.per.epitope.2$antigen.epitope[order
med log odds = median(df.2$logOddsSel)
```

Compare selection factors

```
ggplot(df.2, aes(x=antigen.epitope, group = antigen.epitope, y=logOddsSel, fill = antigen.species)) +
 geom_violin() + stat_summary(fun.y=median, geom="point", shape=21, fill = "white", color="black") +
  geom_hline(yintercept = med_log_odds, linetype = "dashed", color = "black") +
  coord_flip() +
  scale_fill_brewer(palette = "Set3") +
  theme_bw()
```



```
ggplot(df.2, aes(x=antigen.species, group = antigen.species, y=logOddsSel)) +
  geom_violin() + stat_summary(fun.y=median, geom="point", shape=21, fill = "red", color="white") +
  geom_hline(yintercept = med_log_odds, linetype = "dashed", color = "red") +
  coord_flip() +
  theme_bw()
```



```
a1 = aov(logOddsSel ~ antigen.epitope, df.2)
summary(a1)
##
                    Df Sum Sq Mean Sq F value
                                               Pr(>F)
                           34 2.0029
                                       6.628 1.02e-15 ***
## antigen.epitope
                    17
## Residuals
                  2333
                          705 0.3022
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
a2 = aov(logOddsSel ~ antigen.species, df.2)
summary(a2)
##
                    Df Sum Sq Mean Sq F value
                                               Pr(>F)
## antigen.species
                     6
                        15.9 2.6429
                                      8.566 3.13e-09 ***
                  2344 723.2 0.3085
## Residuals
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TukeyHSD(a2, "antigen.species")
    Tukey multiple comparisons of means
##
##
      95% family-wise confidence level
##
## Fit: aov(formula = logOddsSel ~ antigen.species, data = df.2)
## $antigen.species
```

lwr

0.07615086 -0.04581397 0.1981156819 -0.17590525 -0.36754090 0.0157303872

diff

##

EBV-CMV

HCV-CMV

```
## HIV-1-CMV
                                 -0.11772431 -0.23591821
                                                          0.0004695923
                                -0.10193062 -0.21729323
## HomoSapiens-CMV
                                                          0.0134319894
## InfluenzaA-CMV
                                -0.14566815 -0.26133593 -0.0300003714
## YellowFeverVirus-CMV
                                 -0.14197351 -0.43720897
                                                          0.1532619512
## HCV-EBV
                                 -0.25205611 -0.43998231 -0.0641299075
## HIV-1-EBV
                                -0.19387516 -0.30595476 -0.0817955644
## HomoSapiens-EBV
                                 -0.17808148 -0.28717121 -0.0689917412
## InfluenzaA-EBV
                                 -0.22181900 -0.33123140 -0.1124066047
## YellowFeverVirus-EBV
                                 -0.21812436 -0.51096564
                                                          0.0747169155
## HIV-1-HCV
                                 0.05818095 -0.12732010
                                                          0.2436819901
## HomoSapiens-HCV
                                 0.07397463 -0.10973539
                                                          0.2576846521
## InfluenzaA-HCV
                                  0.03023711 -0.15366470
                                                          0.2141389106
## YellowFeverVirus-HCV
                                 0.03393175 -0.29409998
                                                          0.3619634758
                                                          0.1206504922
## HomoSapiens-HIV-1
                                 0.01579369 -0.08906312
## InfluenzaA-HIV-1
                                 -0.02794384 -0.13313629
                                                          0.0772486135
## YellowFeverVirus-HIV-1
                                 -0.02424920 -0.31554011
                                                          0.2670417095
                                 -0.04373753 -0.14573844
## InfluenzaA-HomoSapiens
                                                          0.0582633861
## YellowFeverVirus-HomoSapiens -0.04004289 -0.33019652
                                                          0.2501107415
## YellowFeverVirus-InfluenzaA
                                 0.00369464 -0.28658046
                                                          0.2939697353
##
                                    p adj
## EBV-CMV
                                0.5192687
## HCV-CMV
                                0.0964773
## HIV-1-CMV
                                0.0517068
## HomoSapiens-CMV
                                0.1241213
## InfluenzaA-CMV
                                0.0038930
## YellowFeverVirus-CMV
                                0.7916860
## HCV-EBV
                                0.0015125
## HIV-1-EBV
                                0.0000074
## HomoSapiens-EBV
                                0.0000319
## InfluenzaA-EBV
                                0.000001
## YellowFeverVirus-EBV
                                0.2968490
## HIV-1-HCV
                                0.9685425
## HomoSapiens-HCV
                                0.8987796
## InfluenzaA-HCV
                                0.9990400
## YellowFeverVirus-HCV
                                0.9999348
## HomoSapiens-HIV-1
                                0.9994188
## InfluenzaA-HIV-1
                                0.9865313
## YellowFeverVirus-HIV-1
                                0.9999819
## InfluenzaA-HomoSapiens
                                0.8677225
## YellowFeverVirus-HomoSapiens 0.9996491
## YellowFeverVirus-InfluenzaA
```

Summary so far

- There is a difference in both rearrangement prob and selection prob across epitopes
- There is large difference in selection prob across species, no such difference for rearrangement prob
- Difference in selection prob shows that EBV and CMV are favored compared to other species. This can be due to clonal expansions, but: 1) no such difference for Flu 2) we don't account for clonal size, only counting unique rearrangements 3) A02-NLVP is not the top favoured epitope

Features

Epitope len for MHCI

Its more likely to generate TCR recognizing longer epitope, however the observed occurrence frequency is independent of the length of cognate epitope => differences in selection.

```
df.epi = df %>% filter(mhc.class=="MHCI" & genP > 0 & obsP > 0)
df.epi$epi.len = nchar(as.character(df.epi$antigen.epitope))
df.epi.s = df.epi %>%
  group_by(epi.len) %>%
  dplyr::summarise(count = n()) %>%
  arrange(-count)
print(df.epi.s)
## # A tibble: 7 × 2
##
     epi.len count
       <int> <int>
##
          9 1533
## 1
## 2
          10
              805
## 3
          11
               142
## 4
          8
               125
## 5
          12
                 2
## 6
          13
                 2
          15
## 7
                 1
df.epi = df.epi %>% filter(epi.len < 12)</pre>
ggplot(df.epi, aes(x=epi.len, group=epi.len, y=genP)) +
  geom_violin() + geom_boxplot(color="red", width=0.2) +
  scale_y_log10() +
  theme_bw()
```


summary(lm(log10(genP) ~ epi.len, df.epi))

```
##
## Call:
## lm(formula = log10(genP) ~ epi.len, data = df.epi)
##
## Residuals:
##
      Min
               1Q Median
                               ЗQ
                                      Max
## -4.1111 -0.6086 0.0077 0.6617 2.4467
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.8034 0.2611 -33.713 < 2e-16 ***
                           0.0278 4.035 5.61e-05 ***
                0.1122
## epi.len
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9391 on 2603 degrees of freedom
## Multiple R-squared: 0.006217, Adjusted R-squared: 0.005835
## F-statistic: 16.28 on 1 and 2603 DF, p-value: 5.61e-05
ggplot(df.epi, aes(x=epi.len, group=epi.len, y=obsP)) +
 geom_violin() + geom_boxplot(color="red", width=0.2) +
 scale_y_log10() +
theme_bw()
```


summary(lm(log10(obsP) ~ epi.len, df.epi))

```
##
## Call:
## lm(formula = log10(obsP) ~ epi.len, data = df.epi)
##
## Residuals:
##
       Min
                 1Q
                     Median
                                           Max
                                   3Q
  -0.98982 -0.65729 -0.07098 0.54683 2.43085
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.66039 0.20994 -31.725
                                            <2e-16 ***
                                             0.481
               0.01575
                          0.02235 0.705
## epi.len
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.755 on 2603 degrees of freedom
## Multiple R-squared: 0.0001907, Adjusted R-squared: -0.0001934
## F-statistic: 0.4966 on 1 and 2603 DF, p-value: 0.4811
ggplot(df.epi, aes(x=epi.len, group=epi.len, y=log10(obsP)-log10(genP))) +
 geom_violin() + geom_boxplot(color="red", width=0.2) +
theme_bw()
```


summary(lm(log10(obsP)-log10(genP) ~ epi.len, df.epi))

```
##
## Call:
## lm(formula = log10(obsP) - log10(genP) ~ epi.len, data = df.epi)
##
## Residuals:
##
       Min
                    Median
                 1Q
                                  3Q
                                          Max
## -1.74844 -0.34320 -0.04468 0.29191 3.15282
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 2.14298 0.15415 13.902 < 2e-16 ***
                       0.01641 -5.876 4.73e-09 ***
## epi.len
              -0.09643
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.5544 on 2603 degrees of freedom
## Multiple R-squared: 0.01309, Adjusted R-squared: 0.01271
## F-statistic: 34.53 on 1 and 2603 DF, p-value: 4.732e-09
```

Basic CDR3 features

Load annotations produced by VDJdb/Annotate

```
# some dummy stuff
df.ann = read.table("ann.aging_annot_0.txt", header = T, sep = "\t") %>%
```

```
merge(df) %>%
filter(obsP > 0 & genP > 0) %>%
mutate(logOddsSel = log10(obsP) - log10(genP))
```

The only effect comes from length..

```
ggplot(df.ann, aes(x=base.cdr3length / 3, y=log0ddsSel)) +
  geom_violin(aes(group = base.cdr3length / 3)) +
  geom_boxplot(aes(group = base.cdr3length / 3), color="red", width=0.2) +
  geom_smooth() +
  theme_bw()
```

`geom_smooth()` using method = 'gam'


```
ggplot(df.ann, aes(x=aaprop.strength, y=logOddsSel)) +
  geom_violin(aes(group = aaprop.strength)) +
  geom_boxplot(aes(group = aaprop.strength), color="red", width=0.2) +
  geom_smooth() +
  theme_bw()
```

```
## `geom_smooth()` using method = 'gam'
## Warning: Computation failed in `stat_smooth()`:
## x has insufficient unique values to support 10 knots: reduce k.
```



```
ggplot(df.ann, aes(x=aaprop.polarity, y=logOddsSel)) +
  geom_violin(aes(group = aaprop.polarity)) +
  geom_boxplot(aes(group = aaprop.polarity), color="red", width=0.2) +
  geom_smooth() +
  theme_bw()
```

`geom_smooth()` using method = 'gam'


```
ggplot(df.ann, aes(x=aaprop.charge, y=log0ddsSel)) +
  geom_violin(aes(group = aaprop.charge)) +
  geom_boxplot(aes(group = aaprop.charge), color="red", width=0.2) +
  geom_smooth() +
  theme_bw()
```

```
## `geom_smooth()` using method = 'gam'
## Warning: Computation failed in `stat_smooth()`:
## x has insufficient unique values to support 10 knots: reduce k.
```



```
ggplot(df.ann, aes(x=round(aaprop.hydropathy), y=logOddsSel)) +
  geom_violin(aes(group = round(aaprop.hydropathy))) +
  geom_boxplot(aes(group = round(aaprop.hydropathy)), color="red", width=0.2) +
  geom_smooth() +
  theme_bw()
```

`geom_smooth()` using method = 'gam'

Note no effect from the number of strongly-interacting amino acids.

Kidera factor sums for epitope and CDR3

```
Lets try Kidera factors
  kidera = t(data.frame(lapply(strsplit("A,-1.56,-1.67,-0.97,-0.27,-0.93,-0.78,-0.2,-0.08,0.21,-0.48;R,0.78,-0.27,-0.93,-0.78,-0.27,-0.88,0.21,-0.48;R,0.78,-0.27,-0.88,0.21,-0.48;R,0.78,-0.27,-0.88,0.21,-0.88,0.21,-0.48;R,0.78,-0.27,-0.88,0.21,-0.88,0.21,-0.48;R,0.78,-0.27,-0.88,0.21,-0.88,0.21,-0.48;R,0.78,-0.27,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0.88,0.21,-0
kideraLen = 1
kidera = melt(kidera)
## Using aa as id variables
make_df = function(cdr3_splt) {
       data.frame(cdr3 = paste(cdr3_splt, collapse=''), aa=cdr3_splt)
df.cdr3.bases = rbindlist(lapply(strsplit(as.character(unique(df$cdr3)), split = ""), make_df))
df.cdr3.bases$aa = as.character(df.cdr3.bases$aa)
df.cdr3.bases = as.data.frame(df.cdr3.bases)
df.cdr3.kidera = merge(df.cdr3.bases, kidera) %>%
       group_by(cdr3, variable) %>%
       dplyr::summarise(value = sum(value))
df.cdr3.kidera.1 = merge(df.cdr3.kidera, df %>% dplyr::select(cdr3,
       mhc.class, antigen.epitope, antigen.species, genP, obsP)) %>%
      filter(genP > 0 & obsP > 0)
```

```
plot and compute correlation
```

```
df.cdr3.kidera.1$logOddsSel = with(df.cdr3.kidera.1,
                                     log10(obsP/genP))
ggplot(df.cdr3.kidera.1, aes(x=value, y=logOddsSel)) +
  geom_density2d() +
  #geom_point(shape=21, alpha=0.1) +
  geom_smooth(method="lm") +
  facet_wrap(~variable, scales = "free_x") +
  theme_bw()
               f1
                                     f2
                                                           f3
                                                                                 f4
   2
   1
                        12-15
                               -10
               f5
                                     f6
                                                           f7
                                                                                 f8
logOddsSel
                       5
                                 -5
                                                     -5
                                                                 5
                                                                       -10
          -5
                                                           0
               f9
                                    f10
                                                          Len
   2 ·
   1
                                             5 7.5 10.0 12.5 15.0 17.5
          -5
                          -10
    -10
                      5
                                 -5
                                       0
                                              value
for (fac in unique(df.cdr3.kidera.1$variable)) {
  print(fac)
  .df = subset(df.cdr3.kidera.1, variable == fac)
  print(cor.test(.df$logOddsSel,.df$value, method = "spearman"))
}
## [1] "f1"
## Warning in cor.test.default(.df$logOddsSel, .df$value, method =
## "spearman"): Cannot compute exact p-value with ties
##
    Spearman's rank correlation rho
##
##
## data: .df$logOddsSel and .df$value
## S = 3474100000, p-value = 3.881e-11
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
```

```
rho
## 0.1228365
##
## [1] "f2"
## Warning in cor.test.default(.df$logOddsSel, .df$value, method =
## "spearman"): Cannot compute exact p-value with ties
##
   Spearman's rank correlation rho
##
## data: .df$logOddsSel and .df$value
## S = 5010600000, p-value < 2.2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
         rho
## -0.265099
##
## [1] "f3"
## Warning in cor.test.default(.df$logOddsSel, .df$value, method =
## "spearman"): Cannot compute exact p-value with ties
##
   Spearman's rank correlation rho
## data: .df$logOddsSel and .df$value
## S = 4076700000, p-value = 0.1161
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##
          rho
## -0.0293084
##
## [1] "f4"
## Warning in cor.test.default(.df$logOddsSel, .df$value, method =
## "spearman"): Cannot compute exact p-value with ties
##
   Spearman's rank correlation rho
##
## data: .df$logOddsSel and .df$value
## S = 4259600000, p-value = 5.098e-05
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
           rho
## -0.07547858
## [1] "f5"
## Warning in cor.test.default(.df$logOddsSel, .df$value, method =
## "spearman"): Cannot compute exact p-value with ties
##
   Spearman's rank correlation rho
## data: .df$logOddsSel and .df$value
## S = 3.83e+09, p-value = 0.07707
```

```
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##
         rho
## 0.03297723
## [1] "f6"
## Warning in cor.test.default(.df$logOddsSel, .df$value, method =
## "spearman"): Cannot compute exact p-value with ties
##
   Spearman's rank correlation rho
##
## data: .df$logOddsSel and .df$value
## S = 4148800000, p-value = 0.01084
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##
           rho
## -0.04751158
##
## [1] "f7"
## Warning in cor.test.default(.df$logOddsSel, .df$value, method =
## "spearman"): Cannot compute exact p-value with ties
##
   Spearman's rank correlation rho
## data: .df$logOddsSel and .df$value
## S = 3.356e+09, p-value < 2.2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##
         rho
## 0.1526633
##
## [1] "f8"
## Warning in cor.test.default(.df$logOddsSel, .df$value, method =
## "spearman"): Cannot compute exact p-value with ties
##
   Spearman's rank correlation rho
##
## data: .df$logOddsSel and .df$value
## S = 3398600000, p-value = 2.107e-14
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
         rho
## 0.1418996
## [1] "f9"
## Warning in cor.test.default(.df$logOddsSel, .df$value, method =
## "spearman"): Cannot compute exact p-value with ties
##
   Spearman's rank correlation rho
##
```

```
## data: .df$logOddsSel and .df$value
## S = 4583500000, p-value < 2.2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## -0.1572717
##
## [1] "f10"
## Warning in cor.test.default(.df$logOddsSel, .df$value, method =
## "spearman"): Cannot compute exact p-value with ties
##
   Spearman's rank correlation rho
##
## data: .df$logOddsSel and .df$value
## S = 3736200000, p-value = 0.002372
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##
         rho
## 0.05666078
##
## [1] "Len"
## Warning in cor.test.default(.df$logOddsSel, .df$value, method =
## "spearman"): Cannot compute exact p-value with ties
##
   Spearman's rank correlation rho
## data: .df$logOddsSel and .df$value
## S = 2.816e+09, p-value < 2.2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##
         rho
## 0.2890089
```

V segments

```
df.v = df %>% filter(obsP > 0 & genP) %>%
    mutate(logOddsSel = log10(obsP / genP)) %>%
    dplyr::select(v.segm, mhc.class, logOddsSel)
df.v$v.segm = str_split_fixed(as.character(df.v$v.segm), fixed("*"), 10)[,1]
df.v$v.family = str_split_fixed(as.character(df.v$v.segm), fixed("-"), 10)[,1]

df.v.count = df.v %>%
    group_by(v.segm) %>%
    dplyr::summarise(cdrs = n())

df.v = merge(df.v, df.v.count)

ggplot(df.v %>% filter(cdrs > 30), aes(x=v.segm, y=logOddsSel, color=v.family)) +
    geom_violin() +
    stat_summary(fun.y=median, geom="point", color = "black") +
```

```
coord_flip() +
  theme_bw()
                                                                               TRBV10
     TRBV9
   TRBV7-9
                                                                               TRBV11
   TRBV7-8
   TRBV7-6
                                                                               TRBV12
   TRBV7-3
                                                                               TRBV14
   TRBV7-2
   TRBV6-5
                                                                               TRBV15
   TRBV6-2
   TRBV6-1
                                                                               TRBV19
   TRBV5-6-
                                                                               TRBV2
   TRBV5-1
   TRBV4-3 -
                                                                               TRBV20
   TRBV4-2 -
   TRBV4-1
                                                                               TRBV25
   TRBV3-1
                                                                               TRBV27
  TRBV29-1
    TRBV28
                                                                               TRBV28
    TRBV27 -
  TRBV25-1-
                                                                               TRBV29
  TRBV20-1
     TRBV2-
                                                                               TRBV3
    TRBV19 -
                                                                               TRBV4
    TRBV15
    TRBV14 -
                                                                               TRBV5
  TRBV12-4-
  TRBV12-3
                                                                               TRBV6
  TRBV11-2
                                                                               TRBV7
  TRBV10-3-
                                                                               TRBV9
                                    logOddsSel
a1 = aov(logOddsSel ~ v.segm, df.v %>% filter(cdrs > 30))
summary(a1)
##
                Df Sum Sq Mean Sq F value Pr(>F)
## v.segm
                27 101.4
                            3.755
                                   14.07 <2e-16 ***
## Residuals
              2615 697.9
                            0.267
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
a2 = aov(logOddsSel ~ v.family, df.v %>% filter(cdrs > 30))
summary(a2)
                Df Sum Sq Mean Sq F value Pr(>F)
##
                            5.736
                                    21.46 <2e-16 ***
## v.family
                17
                     97.5
## Residuals
              2625 701.8
                            0.267
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(a2, "v.family")
     Tukey multiple comparisons of means
##
      95% family-wise confidence level
##
##
## Fit: aov(formula = logOddsSel ~ v.family, data = df.v %>% filter(cdrs > 30))
##
```

```
## $v.family
##
                        diff
                                       lwr
                                                    upr
                                                            p adj
## TRBV11-TRBV10 -0.387327284 -7.821079e-01
                                           0.007453352 0.0615995
## TRBV12-TRBV10 -0.599708298 -9.309224e-01 -0.268494236 0.0000000
  TRBV14-TRBV10 -0.363176197 -7.645198e-01 0.038167379 0.1334242
## TRBV15-TRBV10 -0.189800337 -6.128268e-01 0.233226110 0.9852361
  TRBV19-TRBV10 -0.795254147 -1.124696e+00 -0.465812551 0.0000000
## TRBV2-TRBV10 -0.442303028 -7.751337e-01 -0.109472339 0.0005155
  TRBV20-TRBV10 -0.054354264 -4.015583e-01 0.292849775 1.0000000
  TRBV25-TRBV10 -0.698062993 -1.136185e+00 -0.259940678 0.0000044
  TRBV27-TRBV10 -0.497357294 -8.354754e-01 -0.159239186 0.0000443
## TRBV28-TRBV10 -0.518791603 -8.607725e-01 -0.176810722 0.0000189
  TRBV29-TRBV10 0.110292297 -2.405128e-01 0.461097386 0.9997982
## TRBV3-TRBV10 -0.419715999 -8.210596e-01 -0.018372423 0.0293530
                -0.418365495 -7.440811e-01 -0.092649890 0.0010515
## TRBV4-TRBV10
  TRBV5-TRBV10
                -0.444076592 -7.899952e-01 -0.098158023 0.0010630
                -0.494937241 -8.225471e-01 -0.167327424 0.0000213
  TRBV6-TRBV10
  TRBV7-TRBV10
                -0.438353961 -7.530064e-01 -0.123701493 0.0001757
               -0.342898576 -6.918288e-01 0.006031654 0.0605397
## TRBV9-TRBV10
## TRBV12-TRBV11 -0.212381015 -4.938929e-01
                                           0.069130912 0.4279874
  TRBV14-TRBV11 0.024151087 -3.372668e-01 0.385568955 1.0000000
  TRBV15-TRBV11 0.197526947 -1.878269e-01 0.582880790 0.9467840
## TRBV19-TRBV11 -0.407926864 -6.873512e-01 -0.128502500 0.0000542
  TRBV2-TRBV11 -0.054975744 -3.383879e-01 0.228436460 0.9999998
## TRBV20-TRBV11 0.332973020 3.281164e-02 0.633134400 0.0132012
  TRBV25-TRBV11 -0.310735710 -7.126031e-01 0.091131648 0.3805428
## TRBV27-TRBV11 -0.110030010 -3.996333e-01
                                            0.179573278 0.9977264
  TRBV28-TRBV11 -0.131464320 -4.255683e-01
                                            0.162639630 0.9857998
## TRBV29-TRBV11 0.497619581 1.933000e-01
                                           0.801939183 0.0000019
## TRBV3-TRBV11
                -0.032388715 -3.938066e-01
                                           0.329029153 1.0000000
## TRBV4-TRBV11
                -0.031038212 -3.060598e-01
                                            0.243983360 1.0000000
  TRBV5-TRBV11
                -0.056749309 -3.554228e-01
                                           0.241924202 0.9999999
  TRBV6-TRBV11
                -0.107609957 -3.848723e-01
                                            0.169652377 0.9970674
                -0.051026678 -3.128518e-01
## TRBV7-TRBV11
                                            0.210798428 0.9999998
## TRBV9-TRBV11
                 0.044428708 -2.577277e-01
                                            0.346585149 1.0000000
## TRBV14-TRBV12 0.236532102 -5.411180e-02
                                           0.527176007 0.2870798
## TRBV15-TRBV12 0.409907962 8.998830e-02
                                           0.729827622 0.0011051
## TRBV19-TRBV12 -0.195545849 -3.742327e-01 -0.016859029 0.0160315
  TRBV2-TRBV12
                  0.157405271 -2.745544e-02 0.342265980 0.2137465
  TRBV20-TRBV12 0.545354035 3.357166e-01 0.754991480 0.0000000
  TRBV25-TRBV12 -0.098354695 -4.379845e-01
                                           0.241275071 0.9999347
## TRBV27-TRBV12
                 0.102351005 -9.186812e-02
                                           0.296570130 0.9323913
## TRBV28-TRBV12
                 0.080916695 -1.199518e-01
                                           0.281785154 0.9954708
## TRBV29-TRBV12
                 0.710000596 4.944515e-01
                                           0.925549719 0.0000000
## TRBV3-TRBV12
                 0.179992300 -1.106516e-01
                                            0.470636205 0.7782078
## TRBV4-TRBV12
                 0.181342803 9.622480e-03
                                            0.353063127 0.0259192
  TRBV5-TRBV12
                 0.155631706 -5.186979e-02
                                            0.363133201 0.4393967
## TRBV6-TRBV12
                 0.104771058 -7.051558e-02
                                            0.280057698 0.8237392
                 0.161354337
## TRBV7-TRBV12
                              1.167672e-02
                                            0.311031958 0.0197355
## TRBV9-TRBV12
                 0.256809722
                             4.432556e-02
                                            0.469293885 0.0033267
                 0.173375860 -2.186987e-01
## TRBV15-TRBV14
                                           0.565450469 0.9873210
## TRBV19-TRBV14 -0.432077951 -7.207004e-01 -0.143455550 0.0000275
## TRBV2-TRBV14 -0.079126831 -3.716117e-01 0.213358027 0.9999751
## TRBV20-TRBV14 0.308821933 7.969626e-05 0.617564170 0.0498553
```

```
## TRBV25-TRBV14 -0.334886796 -7.432032e-01 0.073429610 0.2737719
## TRBV27-TRBV14 -0.134181097 -4.326689e-01 0.164306724 0.9849382
  TRBV28-TRBV14 -0.155615407 -4.584719e-01 0.147241075 0.9456404
  TRBV29-TRBV14 0.473468494 1.606821e-01
                                            0.786254899 0.0000201
  TRBV3-TRBV14
                -0.056539802 -4.251152e-01
                                            0.312035550 1.0000000
                -0.055189298 -3.395514e-01
  TRBV4-TRBV14
                                            0.229172759 0.9999998
                -0.080900396 -3.881963e-01
  TRBV5-TRBV14
                                            0.226395522 0.9999832
  TRBV6-TRBV14
                -0.131761044 -4.182908e-01
                                            0.154768739 0.9809942
  TRBV7-TRBV14
                -0.075177765 -3.467975e-01
                                            0.196442008 0.9999655
  TRBV9-TRBV14
                  0.020277621 -2.904046e-01
                                            0.330959822 1.0000000
  TRBV19-TRBV15 -0.605453810 -9.235381e-01 -0.287369546 0.0000000
  TRBV2-TRBV15
                -0.252502691 -5.740958e-01
                                            0.069090377 0.3516760
  TRBV20-TRBV15 0.135446073 -2.010008e-01
                                            0.471892916 0.9955039
  TRBV25-TRBV15 -0.508262656 -9.379102e-01 -0.078615129 0.0048174
  TRBV27-TRBV15 -0.307556957 -6.346192e-01
                                            0.019505252 0.0944548
  TRBV28-TRBV15 -0.328991266 -6.600453e-01
                                             0.002062743 0.0536030
  TRBV29-TRBV15
                0.300092634 -4.006916e-02
                                            0.640254426 0.1642060
  TRBV3-TRBV15
                -0.229915662 -6.219903e-01
                                            0.162158948 0.8454058
                -0.228565158 -5.427888e-01
  TRBV4-TRBV15
                                            0.085658471 0.4993639
  TRBV5-TRBV15
                 -0.254276255 -5.893964e-01
                                            0.080843858 0.4168649
  TRBV6-TRBV15
                -0.305136904 -6.213236e-01
                                            0.011049791 0.0731829
                 -0.248553625 -5.512945e-01
  TRBV7-TRBV15
                                            0.054187205 0.2720251
  TRBV9-TRBV15
                 -0.153098239 -4.913262e-01
                                            0.185129701 0.9838246
  TRBV2-TRBV19
                  0.352951120
                              1.712852e-01
                                             0.534617000 0.0000000
  TRBV20-TRBV19
                 0.740899884
                              5.340742e-01
                                            0.947725580 0.0000000
  TRBV25-TRBV19
                  0.097191154 -2.407103e-01
                                            0.435092602 0.9999406
  TRBV27-TRBV19
                              1.067161e-01
                                             0.489077604 0.0000087
                  0.297896853
  TRBV28-TRBV19
                  0.276462544
                              7.853036e-02
                                            0.474394725 0.0001651
  TRBV29-TRBV19
                  0.905546445
                               6.927309e-01
                                            1.118361940 0.0000000
  TRBV3-TRBV19
                  0.375538148
                               8.691575e-02
                                            0.664160549 0.0008073
  TRBV4-TRBV19
                  0.376888652
                               2.086125e-01
                                             0.545164854 0.0000000
  TRBV5-TRBV19
                  0.351177555
                               1.465172e-01
                                             0.555837959 0.0000004
  TRBV6-TRBV19
                  0.300316907
                               1.284029e-01
                                            0.472230887 0.0000002
## TRBV7-TRBV19
                  0.356900186
                              2.111868e-01
                                            0.502613606 0.0000000
  TRBV9-TRBV19
                               2.426450e-01
                                            0.662066157 0.0000000
                  0.452355571
## TRBV20-TRBV2
                  0.387948764
                              1.757664e-01
                                            0.600131164 0.0000000
## TRBV25-TRBV2
                 -0.255759965 -5.969665e-01
                                            0.085446556 0.4405726
## TRBV27-TRBV2
                 -0.055054266 -2.520177e-01
                                            0.141909135 0.9999603
  TRBV28-TRBV2
                 -0.076488576 -2.800117e-01
                                             0.127034519 0.9980065
  TRBV29-TRBV2
                  0.552595325 3.345702e-01
                                            0.770620409 0.0000000
  TRBV3-TRBV2
                  0.022587029 -2.698978e-01
                                            0.315071887 1.0000000
                  0.023937533 -1.508806e-01
                                            0.198755672 1.0000000
  TRBV4-TRBV2
  TRBV5-TRBV2
                 -0.001773565 -2.118459e-01 0.208298763 1.0000000
  TRBV6-TRBV2
                 -0.052634213 -2.309567e-01
                                            0.125688300 0.9999149
  TRBV7-TRBV2
                  0.003949066 -1.492727e-01
                                            0.157170810 1.0000000
                  0.099404452 -1.155910e-01 0.314399875 0.9799229
  TRBV9-TRBV2
  TRBV25-TRBV20 -0.643708729 -9.989499e-01 -0.288467591 0.0000000
  TRBV27-TRBV20 -0.443003030 -6.633867e-01 -0.222619370 0.0000000
  TRBV28-TRBV20 -0.464437340 -6.907027e-01 -0.238171950 0.0000000
  TRBV29-TRBV20
                 0.164646561 -7.474708e-02 0.404040198 0.6065981
                -0.365361735 -6.741040e-01 -0.056619498 0.0047893
  TRBV3-TRBV20
## TRBV4-TRBV20
                -0.364011231 -5.648489e-01 -0.163173589 0.0000000
## TRBV5-TRBV20
                -0.389722329 -6.218963e-01 -0.157548343 0.0000008
## TRBV6-TRBV20 -0.440582977 -6.444783e-01 -0.236687672 0.0000000
```

```
## TRBV7-TRBV20
                 -0.383999698 -5.663490e-01 -0.201650365 0.0000000
                 -0.288544312 -5.251820e-01 -0.051906597 0.0028402
  TRBV9-TRBV20
                  0.200705699 -1.456604e-01
  TRBV27-TRBV25
                                              0.547071802 0.8579278
  TRBV28-TRBV25
                  0.179271390 -1.708665e-01
                                              0.529409285 0.9473163
  TRBV29-TRBV25
                  0.808355290
                               4.495938e-01
                                              1.167116817 0.0000000
                                              0.686663401 0.6228803
  TRBV3-TRBV25
                  0.278346994 -1.299694e-01
  TRBV4-TRBV25
                  0.279697498 -5.457227e-02
                                              0.613967266 0.2408062
## TRBV5-TRBV25
                  0.253986401 -9.999846e-02
                                              0.607971258 0.5260517
  TRBV6-TRBV25
                  0.203125752 -1.329900e-01
                                              0.539241528 0.8103336
  TRBV7-TRBV25
                  0.259709032 -6.379027e-02
                                              0.583208334 0.3110510
  TRBV9-TRBV25
                  0.355164417 -1.764046e-03
                                              0.712092880 0.0528403
                 -0.021434309 -2.334938e-01
  TRBV28-TRBV27
                                              0.190625204 1.0000000
  TRBV29-TRBV27
                  0.607649591
                               3.816352e-01
                                              0.833664025 0.0000000
## TRBV3-TRBV27
                  0.077641295 -2.208465e-01
                                              0.376129116 0.9999859
## TRBV4-TRBV27
                  0.078991799 -1.056943e-01
                                              0.263677935 0.9911339
  TRBV5-TRBV27
                  0.053280702 -1.650722e-01
                                              0.271633558 0.9999945
  TRBV6-TRBV27
                  0.002420053 -1.855866e-01
                                              0.190426718 1.0000000
  TRBV7-TRBV27
                  0.059003332 -1.053879e-01
                                              0.223394603 0.9988695
  TRBV9-TRBV27
                  0.154458718 -6.863458e-02
                                              0.377552015 0.5942373
  TRBV29-TRBV28
                  0.629083901
                               3.973306e-01
                                              0.860837203 0.0000000
  TRBV3-TRBV28
                  0.099075604 -2.037809e-01
                                              0.401932086 0.9996572
  TRBV4-TRBV28
                  0.100426108 -9.124037e-02
                                              0.292092584 0.9356183
  TRBV5-TRBV28
                  0.074715011 -1.495728e-01
                                              0.299002859 0.9995650
                  0.023854363 -1.710137e-01
  TRBV6-TRBV28
                                              0.218722458 1.0000000
## TRBV7-TRBV28
                  0.080437642 -9.175864e-02
                                             0.252633922 0.9777511
  TRBV9-TRBV28
                  0.175893027 -5.301239e-02
                                             0.404798440 0.3924935
  TRBV3-TRBV29
                 -0.530008296 -8.427947e-01 -0.217221891 0.0000006
  TRBV4-TRBV29
                 -0.528657792 -7.356586e-01 -0.321657008 0.0000000
  TRBV5-TRBV29
                 -0.554368890 -7.918943e-01 -0.316843468 0.0000000
## TRBV6-TRBV29
                 -0.605229538 -8.151983e-01 -0.395260822 0.0000000
  TRBV7-TRBV29
                 -0.548646259 -7.377622e-01 -0.359530300 0.0000000
  TRBV9-TRBV29
                 -0.453190873 -6.950813e-01 -0.211300454 0.0000000
  TRBV4-TRBV3
                  0.001350504 -2.830116e-01
                                             0.285712562 1.0000000
  TRBV5-TRBV3
                 -0.024360594 -3.316565e-01
                                             0.282935324 1.0000000
  TRBV6-TRBV3
                 -0.075221242 -3.617510e-01
                                              0.211308542 0.9999838
  TRBV7-TRBV3
                 -0.018637963 -2.902577e-01
                                             0.252981810 1.0000000
## TRBV9-TRBV3
                  0.076817423 -2.338648e-01
                                              0.387499624 0.9999933
## TRBV5-TRBV4
                 -0.025711097 -2.243182e-01
                                              0.172895979 1.0000000
  TRBV6-TRBV4
                 -0.076571745 -2.412329e-01
                                              0.088089441 0.9787293
## TRBV7-TRBV4
                 -0.019988466 -1.570698e-01
                                              0.117092862 1.0000000
                  0.075466919 -1.283404e-01
  TRBV9-TRBV4
                                              0.279274229 0.9983366
## TRBV6-TRBV5
                 -0.050860648 -2.525592e-01
                                              0.150837908 0.9999910
  TRBV7-TRBV5
                  0.005722631 -1.741670e-01
                                              0.185612296 1.0000000
## TRBV9-TRBV5
                  0.101178016 -1.335696e-01
                                              0.335925584 0.9903615
## TRBV7-TRBV6
                  0.056583279 -8.493996e-02
                                              0.198106518 0.9958473
## TRBV9-TRBV6
                  0.152038665 -5.478241e-02
                                              0.358859738 0.4786828
## TRBV9-TRBV7
                  0.095455385 -9.015965e-02
                                             0.281070418 0.9452305
```

Further work

Need to annotate Robins data. Check HLA-mediated effect. Can we consistently rule out clonal expansions.. well we can show effect both in CMV+ and CMV- patients for specific clonotypes