Министерство науки и высшего образования Российской Федерации Федеральное автономное образовательное учреждение высшего профессионального образования «Севастопольский государственный университет»

ПРОЕКТИРОВАНИЕ ЛОКАЛЬНЫХ КОМПЬЮТЕРНЫХ СЕТЕЙ УРОВНЯ ОРГАНИЗАЦИЙ И ПРЕДПРИЯТИЙ

Методическое пособие по курсовому проектированию

по дисциплине «Архитектура (структуры и протоколы) инфокоммуникационных систем и сетей» для студентов, обучающихся по направлению 09.03.02 «Информационные системы и технологии» очной и заочной формы обучения

УДК 004.732 (075.8)

Проектирование локальных компьютерных сетей уровня организаций и предприятий. Методическое пособие по курсовому проектированию / В.С.Чернега. — Севастополь: Изд-во СевГУ, 2020. — 103 с.

Цель пособия: помочь студентам в изучении методов проектирования структурированных кабельных систем и корпоративных компьютерных сетей, расчету основных сетевых параметров, методов обеспечения безопасности сетевых технологий, конфигурации коммуникационного оборудования и моделирования компьютерных сетей.

Методическое пособие предназначено для выполнения курсового проекта по дисциплине «Инфокоммуникационные системы и сети» для студентов очной и заочной формы обучения, обучающихся по направлениям «Информационные системы и технологии», «Прикладная информатика» и «Информатика и вычислительная техника».

Методическое пособие рассмотрено и утверждено на методическом семинаре и заседании кафедры информационных систем (протокол № 1 от 31 августа 2020 г.)

Допущено учебно-методическим центром СевГУ в качестве методического пособия.

Рецензент Апраксин Ю.К., д-р техн. наук, профессор

СОДЕРЖАНИЕ

B	ВЕДЕНИЕ	4
	ПИСОК ИСПОЛЬЗОВАННЫХ СОКРАЩЕНИЙ	
1	Цель и содержание курсового проектирования компьютерной сети предприятия	8
	1.1 Цели работы и порядок её выполнения	8
	1.2 Общие требования к проектируемой сети	8
	1.3 Характеристика объекта, исходные данные и требования к сети предприятия.	9
	1.4 Виды работ, выполняемых в процессе проектирования	11
	1.5 Перечень документов, входящих в состав проекта	12
	1.6 Содержание пояснительной записки	12
2	Выполнение разделов проекта и составление пояснительной записки	.14
	2.1 Введение	14
	2.2 Постановка задачи	14
	2.3 Определение количества и месторасположения кроссовых, серверн помещений и телекоммуникационных розеток сети	
	2.4 Разработка логической структуры сети и планирование виртуальных сетей.	20
	2.5 Выбор активного телекоммуникационного оборудования	22
	2.6 Назначение сетевых адресов коммуникационному оборудованию и подсетям.	25
	2.7 Разработка физической структуры сети	27
	2.8 Разработка политики информационной безопасности в сети предприятия.	37
	2.9 Разработка скриптов конфигурации коммуникационного оборудования сети	47
	2.10 Компьютерное моделирование функционирования сети	58
	2.11 Заключение	80
3	Требования к оформлению пояснительной записки к курсовому проекту	.81
4	Организация защиты и критерии оценивания курсового проекта	.82
Б]	ИБЛИОГРАФИЧЕСКИЙ СПИСОК	.85
П	риложение А Варианты задания на курсовой проект	.87
П	риложение Б Варианты поэтажных чертежей здания, занимаемого организацией	.92
П	риложение В Образец титульного листа на курсовой проект	.98
Π	риложение Г Образец листа задания на курсовую работу	.97
П	риложение Д Образец оформления введения	.99
П	риложение Е Образец оформления постановки задачи	100
Π	риложение Ж Пример выполнения таблицы соединений	101
П	риложение З Данные для выбора сечения кабеля	102

ВВЕДЕНИЕ

Основой информационной инфраструктуры современного предприятия является локальная вычислительная сеть (ЛВС, LAN). Качество функционирования компьютерной сети во многом определяют эффективность работы организации.

Так как локальная сеть предприятия обеспечивает работу и взаимосвязь приложений, то сбои в работе компьютерной сети оказывают негативное воздействие на все службы и всех сотрудников, использующих информационную инфраструктуру. В самом худшем случае, при выходе из строя центрального оборудования локальной сети, возможен паралич деятельности всего предприятия: сотрудники не смогут отправлять электронные сообщения, бухгалтерия не сможет работать с финансовыми документами и т.д.

Поэтому при построении или модернизации сетевой инфраструктуры предприятия необходим тщательный подход. Основными задачами при построении сетевой инфраструктуры являются:

- обеспечение обслуживания различного типа трафика: сетевая инфраструктура современного предприятия должна гарантировать возможность функционирования интегрированных приложений, реализовать пересылку помимо текстовых сообщений, передачу аудио- и видеоданных с требуемым качеством;
- экономичность: уменьшение стоимости внедрения и владения сетевой инфраструктурой. Обеспечение достаточной производительности, с учетом того, что значения пиковых нагрузок могут многократно превышать их нормальные повседневные значения. Обеспечение необходимого запаса производительности, оценив потенциальный рост потребностей предприятия;
- масштабируемость решения: в связи с тем, что в современных условиях структура предприятия оперативно меняется, необходимо, чтобы сетевая инфраструктура также быстро менялась без ущерба для бюджета и работы предприятия;
- обеспечение высокой доступности: необходимо, чтобы инфраструктура предприятия работала максимально непрерывно, а возможный отказ отдельных компонентов был либо незаметен, либо быстро устраним;
- обеспечение информационной безопасности: сетевая инфраструктура должна соответствовать существующим на предприятии требованиям безопасности по разграничению доступа, защите от внутренних и внешних атак;
- простота управления: решения, внедряемые в сетевую инфраструктуру, должны легко управляться, иметь возможность быстрого диагностирования и замены. Нужно избегать излишних административных расходов.

Помимо вышеперечисленных задач, каждое предприятие при создании инфраструктуры может поставить дополнительные в зависимости от особенностей своих бизнес процессов. Ведение современного бизнеса трудно представить без использования сети Интернет, например, для представления продукции, общения с партнерами, клиентами. Отсутствие доступа к сети Интернет может нанести предприятию почти такой же ущерб как отказ локальной сети.

Целью курсового проектирования является углубление теоретических знаний в области архитектуры компьютерных сетей и приобретение практических навыков проектирования и моделирования локальных сетей предприятий различного масштаба.

В результате проектирования, на первом этапе работы, студент должен определить количество и месторасположения активного и пассивного сетевого оборудования, разработать логическую структуру локальной компьютерной сети, произвести, по необходимости, ее сегментацию, выполнить расчет кабельной системы, произвести обоснованный выбор коммуникационного оборудования, разработать мероприятия по защите сети. На следующем этапе необходимо проверить работоспособность спроектированной сети путем моделирования ее функционирования на компьютере. Процедура моделирования включает создание топологии сети в редакторе моделирующей программы (например, Cisco Packet Tracer), конфигурацию оборудования с учетом технического задания и проверку функционирования сети.

После коррекции по результатам моделирования топологии и программы конфигурации необходимо составить и начертить электрическую схему соединений компонентов сети.

В курсовом проекте предусмотрено ряд групп вариантов компьютерных сетей различной сложности.

Первая группа — минимальная сложность. Организация размещается на одном этаже. Количество рабочих мест не более 100. Все пользователи располагаются в помещениях по функциональному признаку: бухгалтерия; кадровая служба; служба главного механика; служба информационной поддержки; отдел снабжения; управления и т.п. Информационное взаимодействие между службами минимальное.

Выход в сеть Интернет разрешен только руководству организации, руководителю кадровой службы и работникам отдела снабжения.

Вторая группа — средняя сложность. Количество этажей здания, занимаемой службами организация не более 6. Количество рабочих мест не более 300. Работники, относящиеся к одной и той же службе, размещаются в различных помещениях и на различных этажах. Информационное взаимодействие между службами минимальное.

Выход в сеть Интернет разрешен только руководству организации, руководителю кадровой службы, работникам отдела снабжения и одному сотруднику каждой из служб.

Третья группа — повышенная сложность. Предприятие имеет ряд филиалов, расположенных в различных городах. Количество этажей здания, занимаемой службами организация не более 16. Количество рабочих мест не более 1000. Работники, относящиеся к одной и той же службе, размещаются в различных помещениях и на различных этажах. Информационное взаимодействие между филиалами осуществляется по каналам глобальных сетей (ISDN, FR, ATM).

Выход в сеть Интернет разрешен только руководству организации, руководителю кадровой службы, работникам отдела снабжения и сотрудникам каждой из служб по особому списку.

При проектировании локальной вычислительной сети разработчику необходимо решить следующие задачи:

- 1. Определить, на какое количество пользователей будет рассчитана сеть и для каких прикладных задач она предназначена.
 - 2. Определить топологию сети и метод доступа для пользователей.
- 3. Выбрать подходящее активное и пассивное аппаратное обеспечение: тип коммутаторов, маршрутизаторов, распределительных шкафов, тип и количество кабеля и т.д.
- 4. Разработать схему электрических соединений компонентов компьютерной сети и рассчитать длины кабелей, входящих в ее состав.
- 5. Произвести конфигурирование оборудования, при котором обеспечивается надежное и безопасное функционирование сети в соответствии с поставленными требованиями.
- 6. Выполнить моделирование спроектированной сети в одном из пакетов моделирования (Cisco Packet Tracer, GNS3 или др.) и проверить правильность ее конфигурации.

От правильного решения этих и многих других задач зависит работоспособность сети, скорость и помехоустойчивость передачи данных, затраты на создание и эксплуатацию сети.

СПИСОК ИСПОЛЬЗОВАННЫХ СОКРАЩЕНИЙ

DMZ – Демилитаризованная зона

PMD – Поляризационная модовая дисперсия

UTP – Неэкранированная витая пара VLAN – Виртуальная локальная сеть

ИТ – Информационные технологии
 ЛВС – Локальная вычислительная сеть
 ЛКС – Локальная компьютерная сеть

РПЗ – Распределительный пункт здания

РПК – Распределительный пункт комплекса РПЭ – Распределительный пункт этажей

СВТ – Средства вычислительной техники

СКС – Структурированная кабельная система

ТЗ – Техническое задание

ТР – Телекоммуникационная розетка

ЦИТ – Центр информационных технологий

1 ЦЕЛЬ И СОДЕРЖАНИЕ КУРСОВОГО ПРОЕКТИРОВАНИЯ КОМПЬЮТЕРНОЙ СЕТИ ПРЕДПРИЯТИЯ

1.1 Цели работы и порядок её выполнения

Цели работы подразделяются на две составляющие: цель преподавателя – руководителя курсового проектирования и цель разработчика проекта — студента. Целью руководителя является углубление знаний теоретических основ построения локальных и корпоративных компьютерных сетей и привитие студентам практических навыков создания компьютерных сетей предприятий (организаций) различного масштаба. Цель курсового проекта студента — создание локальной компьютерной сети (ЛКС) предприятия (организации) с возможностью выхода в сеть Интернет, обеспечивающей ее надежное функционирование в соответствии с техническим заданием (ТЗ).

Компьютерная сеть предназначена для обеспечения возможности информационного взаимодействия между автоматизированными рабочими местами, серверами, средствами сетевой печати в здании центрального офиса и с филиалами предприятия.

Схема расположения организации определяется номером варианта задания и приведена в приложении А. Порядок и сроки выполнения проекта регламентируются календарным планом работ.

Продолжительность выполнения проекта -13 недель. Завершается процедура проектирования публичной защитой проекта.

1.2 Общие требования к проектируемой сети

На этапе проектирования компьютерных сетей организаций (предприятий) к ним предъявляется общие требования, характерные для всех видов сетей, так и частные, определяемые спецификой компьютеризируемого предприятия и требованиями технического задания. К общим требованиям относятся:

- реализация телекоммуникационного центра, размещенного в здании, на основе высокопроизводительного и перспективного оборудования;
- выбор магистральных линии и линий уровня рабочих групп необходимой пропускной способностью для устойчивой работы сети при пиковых нагрузках;
- обеспечение высокой отказоустойчивости сети при кратковременном изменении параметров электроснабжения и при атаках на компьютерную сеть;
- закладка высокоскоростного канала передачи данных необходимой пропускной способности для работы головного подразделения организации с ее отделениями и филиалами;
- обеспечение безопасной работы сотрудников предприятия с сетью Интернет;

- реализация возможности простой реконфигурации активного оборудования на логическом и физическом уровнях;
- предусмотрение возможности управления сетью унифицированным образом через web-интерфейс с учетом повышенной сложности сети;
- обеспечение возможности сбора статистики о сети (мониторинг сети) наиболее экономичным и надежным способом.

1.3 Характеристика объекта, исходные данные и требования к сети предприятия

Сеть предназначена для обслуживания рабочих групп персонала организации, которые должны быть между собою логически разделены. Каждый из пользователей рабочей группы должен иметь потенциальную возможность доступа к глобальной сети Интернет. Реальная возможность доступа к Интернет определяется списком доступа.

Тип разрабатываемой политики безопасности определяется техническим заданием на основании номера варианта (приложение A). В сети устанавливается несколько серверов, которые должны размещаться в отдельном помещении с ограниченным доступом.

Предприятие/организация располагается в L-этажном здании с размерами в плане M х N (46 × 16) м. Пример чертежа расположения офисных помещений на одном этаже показан на рисунке 1.1. Высота этажа составляет H (3,5) м, общая толщина перекрытий равна D (15) см, толщина капитальных (несущих) стен принимается равной 40 см. На всех этажах здания рабочие помещения имеют разные размеры. Во всех помещениях здания (кроме помещений цокольного этажа) имеется подвесной потолок с высотой свободного пространства P (35) см. Внутренние (не несущие) стены помещений изготовлены из обычного кирпича и покрыты штукатуркой. Общая толщина таких внутренних стен равна 20 см. Строительным проектом предусмотрен вертикальный технологический канал для прокладки кабелей, проходящий через все этажи. На каждом этаже имеются свободные служебные помещения, в которых может быть расположено коммуникационное оборудование сети общего использования (например, на рисунке В.1 приложения Б — комната 312).

Количество потенциальных пользователей сети предприятия $N_{\rm n}$ определяется площадью помещений, занимаемых этим предприятием. Количество серверов предприятия $N_{\rm cn}$ (от 2 до 4) и серверов рабочих групп $N_{\rm cpr}$ (от 4 до 6) задается техническим заданием.

Средняя и пиковая нагрузка, создаваемая пользователем сети V_n (Мбайт/с) задается техническим заданием в соответствии с заданным вариантом.

Рисунок 1.1 — Типовой чертеж этажа офисного здания организации/предприятия

Количество структурных подразделений предприятия $N_{\rm cnn}$ определяется его размерами и областью деятельности. Эти сведения выясняются разработчиком сети в процессе знакомства с предприятием и собеседованием с его руководством. В случае отсутствия таких данных предполагается, что количество структурных подразделений (рабочих групп) определяется общей площадью помещения и их количеством. В данном проекте предполагается, что в комнате площадью до 40 м^2 располагаются сотрудники одной рабочей группы, а в помещении площадью свыше 40 м^2 — две рабочие группы.

Используемые сетевые сервисы на предприятии указаны в техническом задании (WWW, FTP, E-Mail, Data Base).

Применяемый протокол маршрутизации в проектируемой сети определяется вариантом технического задания (RIP, IGRP, EGRP, OSPF).

Для связи с филиалами предприятия используется глобальная коммуникационная сеть, указанная в таблице вариантов (телефонная сеть общего пользования, выделенная линия, Frame Relay, ISDN, ATM, GEthernet).

Кабельная инфраструктура сети должна соответствовать требуемой пропускной способности с учетом перспектив развития коммуникационного оборудования. Кабельная система ЛКС должна по возможности максимально использовать пластиковые короба (кабельные каналы) существующей проводной структурированной кабельной системы (СКС) с учетом количества кабелей и норм укладки.

Необходимость резервирование серверного оборудования и маршрутизаторов указывается в техническом задании на проектирование.

В процессе проектирования следует предусмотреть возможность расширения сети при увеличении ее размеров.

Адресная схема проекта и варианты списков доступа приведены в таблице А.3 приложения А.

Тип и производитель коммуникационного оборудования выбирается в соответствии с номером варианта (Cisco, D-Link, 3Com, либо обеспечивающее минимальную стоимость сети).

1.4 Виды работ, выполняемых в процессе проектирования

В процессе проектирования разработчик локальной компьютерной сети предприятия (организации) должен выполнить следующее.

- 1. Определить количество и месторасположение серверных и кроссовых, а также телекоммуникационных розеток на планах помещений организации.
- 2. Разработать логическую структуру корпоративной сети, с разбивкой ее на виртуальные подсети, в которой компьютеры сотрудников каждого из функциональных подразделений предприятия, не зависимо от их места расположения в здании, должны быть включены в одну и ту же виртуальную подсеть. При этом должна быть обеспечена возможность взаимодействия пользователей и/или серверов локальной сети с глобальными сетями.

- 3. Выбрать активное телекоммуникационное оборудование, необходимое для построения компьютерной сети предприятия с учетом нагрузки, создаваемой пользователями сети. Распределить сетевые адреса для отдельных подсетей и телекоммуникационного оборудования.
- 4. Спроектировать структурированную кабельную систему сети, выбрать тип кабелей и необходимых соединителей, рассчитать длины кабельных сегментов и произвести расчеты геометрических размеров кабельных каналов (коробов, лотков и др.). Выбрать тип и размер коммуникационных шкафов и другого пассивного телекоммуникационного оборудования.
- 5. Разработать физическую структуру сети, составить схему (таблицу) прокладки и подключения соединительных кабелей.
- 6. Разработать политику безопасности в сети при: а) взаимодействии пользователей с Интернетом; б) управлении доступом к ресурсам сети и других условиях работы (согласно варианту ТЗ). Предусмотреть наличие демилитаризованной зоны и установку межсетевых защитных экранов и обеспечить фильтрацию пакетов в соответствии с номером варианта ТЗ.
- 7. Составить списки доступа и разработать сценарии (скрипты) конфигурации оборудования для реализации предусмотренных режимов работы и политики безопасности.
- 8. Выполнить моделирование сети в пакете Cisco Packet Tracer, GNS3 или др. на предмет ее корректного функционирования и, при необходимости, осуществить коррекцию схемы сети и конфигурации оборудования.

1.5 Перечень документов, входящих в состав проекта

В состав проекта входят следующие документы:

- 1) титульный лист (см. приложение В);
- 2) техническое задание на разработку с календарным планом выполнения проектных работ (см. приложение Γ);
 - 3) пояснительная записка с описанием технических и программных решений;
 - 4) схемы чертежей:
 - логическая структура сети;
 - схема размещения компонентов сети;
 - схема (таблица) соединений оборудования и кабельной системы сети.

1.6 Содержание пояснительной записки

Пояснительная записка содержит текстовое изложение особенностей проектируемой сети, систем телекоммуникационного заземления, администрирования и электропитания. Типовая пояснительная записка должна включать перечисленные ниже разделы. Этот перечень может быть расширен путем введения дополнительных разделов.

- 1. Введение.
- 2. Постановка задачи.
- 3. Определение количества и месторасположения кроссовых, серверных помещений и телекоммуникационных розеток сети.
 - 4. Разработка логической структуры сети.
 - 5. Обоснование и выбор активного телекоммуникационного оборудования.
- 6. Назначение сетевых адресов подсетям и телекоммуникационному оборудованию.
 - 7. Разработка структурированной кабельной системы сети.
 - 8. Разработка схемы электрических соединений.
 - 9. Политика безопасности в сети.
- 10. Списки доступа и закрепление за интерфейсами подсетей отдельных служб.
 - 11. Конфигурация коммуникационного оборудования сети.
 - 12. Компьютерное моделирование функционирования сети.
 - 13. Заключение.
 - 14. Перечень сокращений и условных обозначений
 - 15. Библиографические ссылки.

2 ВЫПОЛНЕНИЕ РАЗДЕЛОВ ПРОЕКТА И СОСТАВЛЕНИЕ ПОЯСНИТЕЛЬНОЙ ЗАПИСКИ

Ниже приведены названия разделов пояснительной записки и примерное их содержание. Во многих разделах приведены примеры описаний и расчетов, относящиеся к этим частям проекта. Примеры в тексте выделены шрифтом.

2.1 Введение

Во введении пояснительной записки коротко освещается актуальность использования сетевых технологий на предприятиях и в организациях, формулируется цель работы и задачи, которые предстоит выполнить при достижении поставленной цели, приводится структура пояснительной записки с указанием содержания каждого раздела.

Пример структуры введения, формулировки цели и задач проекта представлен в приложениях Д-Е.

Этот пример вводной части является обобщенным. В каждом конкретном варианте проекта должна быть отражена его специфика, определяемая техническим заданием на разработку.

2.2 Постановка задачи

В этом разделе следует подробно описать структуру организации, для которой проектируется компьютерная сеть: количество рабочих комнат и рабочих мест в них, расположение помещений в здании (количество этажей, комнат на этажах), наличие и месторасположение технических помещений, которые могут быть использованы для размещения коммуникационного оборудования; перечислить основные приложения, с которыми работают сотрудники, используемые операционные системы, необходимые сервисы Интернет, наличие собственных адресов Интернет, требования по доступу к информационным ресурсам предприятия.

В качестве исходного материала к этому разделу используются данных технического задания. При этом допускается введение проектировщиком по согласованию с руководителем дополнительных условий (изменение числа рабочих групп, расширение или изменение списка доступа пользователей к информационным ресурсам, количество и тип серверов, а также место их расположения, дополнительные условия фильтрации пакетов и т.п.).

Затем в постановке задачи подробное излагается, что конкретно необходимо спроектировать (с учетом варианта технического задания и введенных дополнительных требований, сформулированных в результате изучения особенностей предприятия).

В качестве примера в приложении Е приведен пример фрагмента описания ситуации на предприятии.

2.3 Определение количества и месторасположения кроссовых, серверных помещений и телекоммуникационных розеток сети

В этом разделе необходимо спланировать расположение кроссовых и серверных помещений, рассчитать количество рабочих групп и требуемое количество телекоммуникационных розеток проектируемой сети. Исходным материалом для выполнения этой работы является план размещения предприятия в здании (зданиях), количество и площадь занимаемых помещений. При расчете количества рабочих групп в данном проекте предполагается, что в комнате площадью до 40 м² располагаются сотрудники одной рабочей группы, а в помещении площадью свыше 40 м² – две. Если организация располагается в нескольких зданиях, то число рабочих групп принимается равным их количеству в здании центрального офиса.

Для того чтобы определить, сколько кроссовых должно быть в здании и где они должны располагаться, следует помнить, что максимальная длина горизонтального кабеля типа «витая пара» в локальной вычислительной сети не может превышать 90 метров.

Международный стандарт EIA/TIA-569 (EcoLAN) требует, чтобы для расположения серверов и коммутационного оборудования выделялось минимум одно специальное служебное помещение на этаж. Кроме того, он устанавливает необходимость наличия дополнительного помещения (распределительного пункта) для коммутационного оборудования на каждые 1000 квадратных метров, если обслуживаемая площадь этажа превышает 1000 квадратных метров или если протяженность горизонтальной кабельной системы больше 90 метров.

Если организация занимает не один этаж, а также если она располагается в нескольких зданиях, то выделяется специальное помещение для распределительного пункта здания, а этажные и распределительные пункты других зданий играют роль промежуточных распределительных пунктов. Распределительные пункт здания (РПЗ) и пункты этажей (РПЭ) соединяются между собой магистральной кабельной системой. При расположении организации в нескольких зданиях, в одном из них оборудуется распределительный пункт комплекса (РПК), который назначается главным коммутационным узлом сети предприятия.

Сети небольших зданий рекомендуется проектировать по принципу централизованной архитектуры. При этом, если диаметр сети не превышает 200 метров, достаточно одного пункта коммутации, а все активное оборудование целесообразно размещать в одном месте. Важным преимуществом централизованной архитектуры является то, что она позволяет установить систему кондиционирования сетевого оборудования в единственном помещении. Это снижает расходы на эксплуатацию системы.

Такую же простейшую топологию целесообразно выбрать и в случае объединения в сеть ресурсов компании, арендующей всего несколько комнат. Если пользователи находятся в удаленных помещениях или на разных этажах, то следует организовать два и более пунктов коммутации. В этом случае часть портов или панелей будет задействована для подключения магистралей, соединяющих распределительные пункты.

В случае, когда требуется просто объединить рабочие места в составе одной структурной единицы предприятия (отдела, службы и т.п.), используется простая рабочая группа компьютеров. Но если рабочей группе требуется повышенная информационная безопасность или нужно дисковое пространство, выделение которого на головном сервере предприятия представляется нецелесообразным, то в этом случае для рабочей группы следует устанавливать отдельный сервер, который выполняет также функции сервера приложений. Рабочая группа с собственным сервером является обособленной в составе сети предприятия и, как правило, выделяется в отдельный домен. Взаимоотношения с основным доменом устанавливаются исходя из целей и задач, решаемых рабочей группой.

В магистральной подсистеме целесообразно планировать не более двух уровней коммутации. Это позволит ограничить искажение сигналов в пассивном оборудовании и упростить администрирование. На пути от РП этажа до РП комплекса должен быть один распределительный пункт. Распределительные пункты магистральной кабельной системы могут располагаться в телекоммуникационных помещениях или аппаратных.

Используемые организацией серверы следует разделить на две отдельных группы: сервер(ы) предприятия (enterprise servers) и серверы рабочих групп (workgroup servers), а затем разместить их в сети согласно ожидаемому характеру потока данных пользователей и исполняемым функциям. Сервер предприятия поддерживает всех пользователей сети, предоставляя им различные службы, такие как электронная почта, служба доменных имен (DNS) и т.д. Сервер рабочей группы обслуживает определенную группу пользователей и предоставляет им такие службы, как обработка текстов или совместный доступ к файлам, то есть функции, которые могут понадобиться только некоторым группам пользователей.

Серверы предприятия целесообразно размещать на распределительном пункте комплекса – главной распределительной станции. В этом случае поток данных на серверы предприятия будет идти только к РПК, не проходя через остальные сети.

В идеальном случае серверы рабочих групп следует располагать на промежуточных распределительных станциях — РПЭ, по возможности, ближе к пользователям, использующим приложения этих серверов. Если серверы рабочих групп установить поближе к пользователям, то поток данных будет проходить по инфраструктуре сети прямо к РПЭ, не затрагивая других пользователей в этом сегменте.

При планировании расположения серверного оборудования следует учесть, что одним из случаев удобного и достаточно простого распределения

серверов являются серверы отделов. Данные устройства могут быть непосредственно подключены к блоку распределения сети, которую они обслуживают. Как правило, такие серверы подключаются непосредственно к этажному коммутатору, который обслуживает данный отдел, либо подсоединяются к коммутаторам распределительного пункт здания. В таком случае также предоставляется возможность создания небольшой серверной группы (серверной фермы) в РПЗ каждого здания. Файловые серверы и серверы печати отделов могут подключаться там, где в централизованной серверной группе могут быть расположены серверы предприятия и высокопроизводительные устройства хранения и обработки данных.

В последнее время широко применяются централизованные серверные группы (фермы). Группа серверов обычно располагаются в аппаратном помещении с контролируемыми условиями эксплуатации, т.е. это помещение имеет специальное оборудование для фильтрации колебаний силового напряжения и поддержания температуры в заданном диапазоне. Создание группы серверов позволяет сэкономить средства, поскольку некоторое оборудование (например, фильтры питания, источники бесперебойного питания и устройства архивации) могут обслуживать целое помещение, и их не нужно покупать отдельно для каждого хоста и сервера. Кроме того, расположение серверной фермы в одной комнате облегчает защиту от несанкционированного доступа. Однако следует учитывать, что такие серверные группы могут создавать повышенную нагрузку на совместно используемую среду передачи данных, поскольку скорость обработки информации в них может быть чрезвычайно высокой. Поэтому каналы, связывающие серверы и сетевое оборудование, должны быть высокоскоростными, и их следует изолировать от тех сегментов, в которых располагаются рабочие станции. Наличие скоростных каналов обеспечит полосу пропускания, достаточную для всех пользователей, обращающихся к серверам. Изолируя серверы от других сегментов, можно также обеспечить избыточность сети тем самым повысить ее надежность.

Следует принять во внимание, что в некоторых случаях в крупных организациях окажется предпочтительнее размещать серверы так, чтобы они отражали структуру отделов или подразделений. При таком подходе серверами управляют администраторы, имеющиеся в каждом подразделении, благодаря чему эксплуатация ресурсов может учитывать специфику конкретного подразделения. Однако и в таком случае серверы желательно размещать в отдельных помещениях, в частности, в распределительных пунктах этажей.

Программные продукты общего пользования и базы данных целесообразно размещать на головном сервере предприятия. Такое решение позволяет упорядочить логическую структуру сети и упростить ее администрирование и поиск данных.

Управление типовой локальной вычислительной сетью осуществляется, как минимум, группой из трех серверов, включающей:

 головной сервер (Main), отвечающий за распределение ресурсов, хранение информации и политику безопасности, с подключенным к нему дисковым массивом;

- резервный сервер (Backup), который исполняет роль вторичного контроллера домена и отвечающий за резервное копирование информации;
 - web-сервер, на котором размещается Web-сайт предприятия;
 - почтовый сервер (Mail) и служба электронной почты.

Кроме того, в группу серверов входит рабочее место администратора сети. К служебным компьютерам относятся сервер доступа, обеспечивающий защиту локальной сети от несанкционированного доступа извне.

Количество пользователей сети предприятия определяется техническим заданием на разработку, а также желанием и возможностями заказчика. С учетом возможного роста сети целесообразно увеличить количество телекоммуникационных розеток не менее чем на 10%, относительно заданного числа пользователей. При отсутствии в техническом задании количества рабочих мест пользователей общее число рабочих мест, определяется из расчета 5 м² на одно место.

Среднее рабочее место рассчитывается следующим образом: 1 розетка телекоммуникационная, 1 розетка телефонная, 2 розетки электрические. На каждое помещение дополнительно предусматривается 4 электрические розетки (2 для бытовых нужд, 1 на кондиционер и 1 на факс) и одна телефонная для подключения факсимильного аппарата.

Распределение рабочих мест по этажам целесообразно представить в форме таблицы (например, таблица 2.1).

Этаж	Наличное количество рабочих мест	Резерв на развитие	Общее количество телекоммуникационных розеток
1	30	3	33
2	28	3	31
3	47	5	52
Всего	105	11	116

Таблица 2.1 – Распределение рабочих мест по этажам

Затем следует распределить телекоммуникационные розетки (разъемы) по помещениям и определить среднюю длины кабеля от розетки до кроссового оборудования. Следует иметь в виду, что высокая плотность установки телекоммуникационных разъемов повышает гибкость сети и облегчает изменения телекоммуникационных ресурсов рабочих мест. Допускается установка розеток одиночно или группами, однако каждое рабочее место должно иметь не менее двух разъемов. На каждом рабочем месте необходимо предусмотреть, по крайней мере, один разъем, терминированный симметричным кабелем с волновым сопротивлением 100 или 120 Ом (предпочтение отдается кабелям 100 Ом). Другие разъемы можно устанавливать на симметричном либо на оптоволоконном кабеле. Симметричный кабель должен иметь две или четыре пары проводников, причем все пары должны быть подсоединены к контактам телекоммуникационной розетки.

В пояснительной записке следует обосновано и подробно описать план размещения оборудования. Пример фрагмента такого описания приведен ниже.

«Организация, занимающаяся предоставлением услуг предприятиям и населению, располагается в многоэтажном здании и занимает весь этаж (чертеж СевГУ XXX). На данном этаже имеется 10 помещений, размеры которых указаны на чертеже. Общая протяженность коридора, согласно чертежу, равна 34 м. В центре здания имеется помещение №7 площадью 13 м^2 , которое может быть использовано для технических нужд сети в качестве аппаратной.

Выполним расчет площадей помещений, на основании которого определим количество телекоммуникационных розеток (ТР), подлежащих установке в каждой из комнат, а также число рабочих групп организации. Число компьютеров в рабочей группе не должно превышать 14-ти (из расчета 4 двоичных разряда на нумерацию компьютеров в группе). Расчетные данные сведем в таблицу 2.2.

В результате анализа плана этажа и расчетных данных предлагается для размещения администратора сети и технического персонала выделить комнату №3, а помещение №7 использовать в качестве аппаратной, в которой будет установлено активное телекоммуникационное оборудование. В связи с тем, что организация занимает только один этаж, в аппаратной целесообразно установить оборудование горизонтальной и вертикальной подсистем СКС, а также серверное оборудование рабочих групп и организации.

Таблица 2.2 – Площадь помещений и распределение ТР
--

№ комнаты	Площадь помещения, м ²	Количество ТР	Номера рабочих групп	Примечания
1	15,7	3	2	Зам. директора Гл. бухгалтер
2	46,8	9	3	•
3	15,2	3	1	Администратор сети Программисты
4	38	8	4	
5	34	7	5	
6	56	11	6	
7	13	2	1	Аппаратная
8a	6	1	2	Секретарь
8б	9	2	2	Директор
9	32,5	6	5	
10 48,6		10	7	
Итого об	бщее количество:	62	7 групп	

Для защиты распределительных панелей и активного коммуникационного оборудования от влаги и электромагнитного излучения, проникновения пыли и грязи, а также для ограничения несанкционированного доступа к этим устройствам, в комнате №7 должен быть установлен один 19-дюймовый телекоммуникационный шкаф напольного исполнения.

В этом же помещении монтируется распределительный щит силового питания компьютеров и другого офисного оборудования, находящегося в

помещениях. Схема расположения телекоммуникационного шкафа и щита электропитания показана на чертеже размещения компонентов сети (чертеж СевГУ 6.050101.12.01КП).

В телекоммуникационном шкафу монтируются коммутационные панели (патч-панели) для разделки горизонтальных кабелей, а также могут быть установлены оптические распределительные полки для подключения оптоволоконных кабелей подсистемы вертикальных магистралей. Кроме этого в телекоммуникационный шкаф помещаются центральный и этажные коммутаторы, серверы приложений, а также источник бесперебойного питания».

2.4 Разработка логической структуры сети и планирование виртуальных сетей

2.4.1 Выбор и обоснование структуры сети

В данном разделе приводятся возможные различные варианты структур локальной сети предприятия, часть из которых рассмотрены в подразделе 2, анализируются их достоинства и недостатки и обосновывается логическая структура проектируемой компьютерной сети, удовлетворяющая поставленным требованиям, в частности, позволяющей масштабирование сети, обеспечивающей повышенную надежность. Здесь же должен быть представлен чертеж логической структуры и его подробное описание (состав и функционирование).

Составим схему сети предприятия для рассмотренного выше примера. В состав сети входит 62 рабочие станции, объединенные в 7 рабочих групп. Пусть сеть должна обеспечить выход в Интернет для внутренних пользователей сети в определенное время. Из внешней сети должен быть предоставлен доступ только к почтовому, FTP- и web-серверу.

В связи с предъявленными требованиями, все серверы, связанные с Интернет, выносим в отдельную подсеть – демилитаризованную зону (DMZ). В локальной сети будут находиться файловый сервер, сервер печати, сервер авторизации, DHCP-сервер и DNS-сервер локальной сети, а также все рабочие станции. Так как количество рабочих станций достаточно велико, то на уровне доступа необходимо использовать несколько коммутаторов. Для реализации возможности обмена информацией между пользователями функциональных подразделений предприятия коммутаторы уровня доступа должны соединяться через маршрутизатор или маршрутизирующий коммутатор (коммутатор третьего уровня).

Локальная сеть и демилитаризованная зона будут общаться между собой через маршрутизатор, который собственно и будет иметь выход в Интернет. На маршрутизаторе будет установлен соответствующий межсетевой защитный экран (файервол) и сервер преобразования адресов NAT, что позволит организации работать с сетью Интернет через один реальный адрес.

С учетом изложенного, структурная схема проектируемой сети имеет вид, изображенный на рисунке 2.1.

Рисунок 2.1 – Пример реализации логической структуры сети предприятия

В качестве коммутаторов уровня доступа (SW 2) применяются три однотипных коммутатора, имеющие 24 порта FastEthernet. На уровне распределения установлен маршрутизирующий коммутатор третьего уровня (SW 3). Связь с Интернет по выделенной телефонной линии обеспечивает DSL-модем со встроенным маршрутизатором, который, кроме функций маршрутизации, может исполнять роль защитного экрана и NAT-сервера.

2.4.2 Деление сети предприятия на независимые виртуальные сети

Для достижения максимальной производительности сети и повышения защищенности отдельных рабочих групп всю сеть целесообразно разделить на независимые логические сегменты. Одним из эффективных способов такого разделения (способ разделения сети на независимые логические сегменты определяется вариантом задания) является создание виртуальных логических сетей (VLAN).

В данном подразделе пояснительной записки нужно показать, каким образом рабочие станции (клиентские компьютеры) объединяются в виртуальные сети. При этом следует помнить, что в виртуальную сеть могут быть включены клиентские компьютеры, не зависимо от их пространственного положения, т.е., в виртуальную сеть могут входить компьютеры, расположенные не только в одной комнате, но и в различных комнатах одного или разных этажей. На практике вопросы включения компьютеров в ту или иную изолированную виртуальную сеть решаются на основе рекомендаций администрации или службы безопасности предприятия.

В настоящем проекте для упрощения, предполагается, что количество и состав виртуальных сетей определяются рабочими группами пользователей.

Таким образом, для рассматриваемого примера сети количество VLAN задаем равным 7. Номера виртуальных сетей в данном случае совпадают с номерами рабочих групп (таблица 2.2). В VLAN1 включим рабочие станции администратора сети, станцию, расположенную в аппаратном (серверном) помещении и компьютеры системных программистов. Во вторую виртуальную сеть VLAN2 включим компьютеры администрации предприятия: директора и его секретаря, заместителя директора и главного бухгалтера. В остальные виртуальные сети войдут компьютеры сотрудников соответствующих рабочих групп.

2.5 Выбор активного телекоммуникационного оборудования

В этом подразделе следует привести соображения, на основании которых было выбрано активное телекоммуникационное оборудование. При обосновании необходимо, кроме технических характеристик, учитывать надежность и стоимость оборудования, пожелания и финансовые возможности Заказчика.

В настоящем проекте рекомендуется в качестве активного оборудования выбирать устройства (коммутаторы и маршрутизаторы) корпорации Cisco. При выборе оборудования следует обращать внимание на новые и перспективные изделия. Следует избегать использования устройств, производство которых уже прекращено или выпуск которых прекращается в ближайшее время. Информацию о таком оборудовании можно получить на официальных сайтах производителей или дистрибьюторов. В данном пособии в примерах используется устаревшее оборудование, снятое с производства. Это сделано преднамеренно для исключения копирования студентами рассмотренных примеров. Студенты же должны использовать модели, выпускаемые взамен устаревших или включать в состав проектируемой сети современные аналоги рассмотренного оборудования.

После обоснования выбора нужно привести все технические и эксплуатационные параметры выбранных устройств. Пример обоснования и выбора активного сетевого оборудования приведен ниже.

«В локальных компьютерных сетях на уровне доступа пользователей к целесообразно использовать коммутаторы фирмы Cisco Catalyst 29xx. Коммутаторы этой серии представляют собой полнофункциональную линию коммутаторов 10/100 Ethernet с автоматическим выбором скорости передачи и с поддержкой технологии создания виртуальных сетей. Устройства этой серии обеспечивают наилучшее соотношение цена/производительность среди устройств данного класса. Коммутаторы Catalyst 29XX имеют очень высокую производительность, простоту в эксплуатации и гибкостью в использовании. Эти устройства могут применяться как для создания высокопродуктивных рабочих групп, так и для объединения групп серверов и коммутаторов предыдущего уровня, например, Catalyst 1900/2820. Коммутаторы серии Catalysl 29XX поставляются с пожизненной гарантией, которая предусматривает бесплатный заводской ремонт оборудования в течение всего времени поддержки устройства.

Для проектируемой компьютерной сети для обеспечения подключения на уровне доступа 62-х рабочих станций целесообразно использовать сетевые коммутаторы настольного типа Cisco Catalyst 2950-24. Коммутатор Catalyst 2950C-24 — это 25-х портовый коммутатор уровня доступа, предназначенный для построения малых и средних локальных сетей. Устройство рассчитано на круглосуточную работу и характеризуется высокой производительностью и широкими функциональными возможностями.

Коммутатор автоматически определяет скорость передачи на каждом порту (10/100 Мбит/с), поддерживает протокол качества обслуживания (QoS), предоставляет возможность управления группой коммутаторов и допускает соединения коммутаторов в стек. Основные технические параметры коммутатора типа Catalyst 2950 приведены в таблице 2.3.

Таблица 2.3 – Технические характеристики коммутатора доступа

_			
Параметр	Значение		
Тип сети	Fast Ethernet, Ethernet		
Количество базовых портов	24 (24 макс.)		
Буфер памяти (на один порт)	8 МБ		
Скорость передачи по UPLINK	100 Мбит/с		
	- активное соединение		
	полнодуплекс / полудуплекс		
Индикаторы	- состояние соединения		
	– уровень загрузки		
	– электропитание		
Поддерживаемые стандарты	IEEE 802.3 (Ethernet), IEEE 802.3u (Fast Ethernet)		
Размер таблицы	8192		
МАС адресов (L2)	0192		
Методы коммутации	store-and-forward		
Передология	- SNMP		
Протоколы удаленного	- Telnet		
управления	- Console		
Пропускная способность	6,8 Гбит/с		
	Ethernet 10/100BaseT		
	– категория 5 НВП		
	 скорость передачи до 100 Мбит/с 		
	 длина сегмента до 100 м 		
Среда передачи	Ethernet 100baseFX		
	– ММГ 62,5 микрон		
	 скорость передачи до 100 Мбит/с 		
	 длина сегмента до 2 км 		
11 1 0	24 × Ethernet 10/100BaseT · RJ-45 (half / full duplex mode)		
Интерфейсы	2 × Ethernet 100baseFX · MT-RJ (half / full duplex mode)		
	встроенный блок питания		
Электропитание	– 200240 В (переменный ток)		
•	 потребляемая мощность 30 Вт 		
Габариты (Высота × Ширина ×	44,5 × 4,36 × 24,18 мм, 3 кг		
× Глубина), Вес	, , - , - , -		

В качестве магистрального коммутатора в проектируемой сети целесообразно использовать коммутаторы третьего уровня типа Cisco Catalyst 3500. В состав семейства коммутаторов Catalyst 3500XL входит три модели:

- 1) WS-C3512-XL содержит 12 универсальных портов 10/100 Mbps Ethernet с автоматическим определением скорости и режима передачи, а также два порта Gigabit Ethernet;
- 2) WS-C3524-XL содержит 24 универсальных порта 10/100 Mbps Ethernet с автоматическим определением скорости и режима передачи, а также два порта Gigabit Ethernet;
- 3) WS-C3508G-XL содержит 8 портов Gigabit Ethernet. Коммутаторы семейств 2900XL, 3500XL могут объединяться в стеки (до 16 устройств) при помощи соединений Fast Ethernet, Fast EtherChannel (агрегирование Fast Ethernet по 2 или 4 канала), а также Gigabit Ethernet и Gigabit EtherChannel. Максимальное количество портов, которое может быть установлено в одном стеке равно 380. Такой стек является единым объектом сетевого управления, которое может выполняться как при помощи командного языка CLI с консоли или при помощи протокола telnet, так и при помощи специализированных систем управления типа CWSI (Cisco Works for Switched Internetworks), так и при помощи WEB-технологии с любой рабочей станции, оснащенной программами просмотра Netscape или Internet Explorer.

Для проектируемой сети, с учетом возможных расширений, достаточно установить 12-портовый маршрутизирующий коммутатор типа WS-C3512-XL. Технические характеристики этого коммутатора приведены в таблице 2.4.»

Таблица 2.4 – Технические характеристики коммутатора Catalyst WS-C3512-XL

Параметр	Значение
Тип сети	Fast Ethernet, Ethernet
Количество базовых портов	24 (24 макс.)
Производительность	10 Гбит/с
Пропускная способность	7,5 миллионов (64-х байтовых) пакетов в с
Буфер памяти (на один порт)	8 МБ
Скорость передачи по UPLINK	100 Мбит/с
Поддерживаемые стандарты	IEEE 802.3 (Ethernet), IEEE 802.3u (Fast Ethernet)
Размер таблицы МАС адресов (L2)	8192
Поддерживаемые стандарты	1) IEEE 802.3x full duplex; 2) IEEE 802.1D Spanning-Tree Protocol; 3) IEEE 802.1Q VLAN; 4) IEEE 802.3z, IEEE 802.3x;
	5) IEEE 802.3u 100BaseTX and 100BaseFX specification; 6) IEEE 802.3 10BaseT specification; 7) IEEE 802.3z, IEEE 802.3x 1000BaseX specification; 8) 1000BaseX (GBIC) – 1000BaseSX, 1000BaseLX/LH, 1000BaseZX.

2.6 Назначение сетевых адресов коммуникационному оборудованию и подсетям

В данном подразделе необходимо назначить проектируемой сети внешний IP-адрес и сетевую маску, а также присвоить адреса и сетевые маски всем виртуальным сетям и рабочим станциям. Ниже приведен пример назначения и распределения сетевых адресов в проектируемой сети.

«Внешний IP-адрес и сетевая маска выделяется провайдером Интернетуслуг по запросу предприятия. Пусть, согласно варианта, предприятию выделен в постоянное пользование один бесклассовый адрес 83.221.169.36/30.

Известно, что для внутреннего использования в локальных сетях рекомендованы следующие частные адреса (таблица 2.5).

Класс	Начальный адрес	Конечный адрес	Число сетей
A	10.0.0.1	10.255.255.255	1
В	172.16.0.0	172.31.255.255	16
C	102 169 0 0	102 169 255 255	255

Таблица 2.5 – Диапазоны частных адресов

Если предприятие располагается в нескольких многоэтажных зданиях, то для удобства администрирования в качестве адреса сети целесообразно выбрать адрес 10.Z.Y.X с сетевым префиксом длиной 24 бита (рисунок 2.5). Десятеричное значение символа Z отображает номер здания; Y – рабочей группы, а X – номер компьютера в группе. Таким образом, в рабочую группу можно объединить до 254-х компьютеров. Диапазон адресов компьютеров предприятия для рассмотренного выше примера (12 рабочих групп) представлен в таблице 2.6.

Адреса с нулевой группой целесообразно использовать для присвоения адресов портов маршрутизаторам и портам управления коммутаторов. Таким образом, адреса для коммуникационного оборудования находятся в следующих диапазонах: 10.1.0.1 – 10.1.0.254.

Таблица 2.6 – Диапазон сетевых адресов проектируемой сети

Начальный	10.	1.	0.	1
адрес	00001010	00000001	00000000	00000001
Конечный	10.	1.	254.	254
адрес	00001010	00000001	00000001	11111110

Для портов маршрутизатора выделено два частных адреса. Адрес 10.1.0.1 присвоим порту, соединенному с локальной сетью организации, а адрес 10.1.0.2 – порту, подключенному к серверу демилитаризованной зоны. Интернет-адрес 83.221.169.36 сети предприятия выделен провайдером. В связи с тем, что в соответствии с ТЗ предприятию выделен только один внешний адрес, то для обеспечения выхода пользователей сети в Интернет необходимо использовать процедуру трансляции адресов.

Далее необходимо привести таблицу с адресами всех компьютеров, расположенных в помещениях организации, для которой проектируется сеть. В этой таблице целесообразно указать номера коммутаторов/маршрутизаторов и номера портов, к которым подключаются клиентские компьютеры и серверы. Фрагмент таблицы адресов с номерами портов для рассматриваемого примера представлен в таблице 2.7.

Таблица 2.7 – Распределение адресов

N_0N_0	Номер/название	Номер ТР	Адрес	Устройство -	Примечание
комнат	рабочей группы	(компьютера)	71дрес	порт	Примечание
3	1/Инф. под-	31	10.1.1.1	Sw1-Fa0/2	Админ. сети
	держки				тідіміні. Ссти
3	1	32	10.1.1.2	Sw1-Fa0/3	
3	1	33	10.1.1.3	Sw1-Fa0/4	
7	1	71	10.1.1.4	Sw1-Fa0/5	
7	1	72	10.1.1.5	Sw1-Fa0/6	
1	2/Дирекция	11	10.1.2.1	Sw1-Fa0/7	
1	2	12	10.1.2.2	Sw1-Fa0/8	
1	2	11	10.1.2.3	Sw1-Fa0/9	
8a	2	81	10.1.2.4	Sw1-Fa0/11	Секретарь
8б	2	82	10.1.2.5	Sw1-Fa0/10	Директор
8б	2	83	10.1.2.6	Sw1-Fa0/11	
3	3/Финансовая	31	10.1.3.1	Sw2-Fa0/2	
3	3	32	10.1.3.2	Sw2-Fa0/3	
3	3	33	10.1.3.3	Sw2-Fa0/4	
3	3	34	10.1.3.4	Sw2-Fa0/5	
3	3	35	10.1.3.5	Sw2-Fa0/6	
3	3	36	10.1.3.6	Sw2-Fa0/7	
3	3	37	10.1.3.7	Sw2-Fa0/8	
3	3	38	10.1.3.8	Sw1-Fa0/9	
3	3	39	10.1.3.9	Sw1-Fa0/11	
:	:	:	:		:
7	Сервер внутр.		10.1.1.30		LAN
	:	:	:		
	Сервер внутр.		10.1.7.30		
7	Сервер внеш.		10.1.0.2		DMZ
7	Маршрут-р		83.221.169.36	S1	ISP
7	Коммутатор1		10.1.0.3		
7	Коммутатор2		10.1.0.4		
7	Коммутатор3		10.1.0.5		
7	Коммутатор4				
10	7/Маркетинг	101	10.1.7.1	Sw3-Fa0/2	
10	7	102	10.1.7.2	Sw3-Fa0/3	
:	:	:	:		:
10	7	110	10.1.7.10	Sw3-Fa0/11	

При этом следует помнить, что необходимо зарезервировать адреса для портов маршрутизатора(ов) и портов управления коммутаторов.

2.7 Разработка физической структуры сети

В этом разделе пояснительной записки проекта осуществляется разработка схемы размещения компонентов структурированной кабельной системы (СКС) сети, построение кабельных трасс, а также проводится обоснование и выбор типов кабелей для горизонтальной и вертикальной систем СКС. При этом учитываются требования и нормы международных и национальных стандартов []. Расчет кабельной системы можно выполнять вручную или использовать автоматизированную систему (рекомендуется). В настоящее время практически все локальные сети проектируются на базе медных витых пар и волоконно-оптических кабелей. Поэтому в приведенных примерах обоснования и расчета СКС рассматриваются именно эти типы кабелей.

2.7.1 Выбор типов кабелей

Обоснование и выбор типов кабелей для проектируемой компьютерной сети осуществляется на основе рекомендаций, изложенных в [16]. Схема кабельной подсистемы в целом для любой из подсистем СКС определяется типом сети и выбранной топологией.

Наиболее «подвижной» частью любой локальной сети является горизонтальная подсистема. На этом уровне добавление новых пользователей, перемещение рабочих группы происходят гораздо чаше, чем изменения в вертикальных подсистемах между этажами. Поэтому наиболее рациональным вариантом является применение медных неэкранированного кабеля UTP, так как стоимость установки оптоволокна достаточно велика (в нее входят стоимость сетевых адаптеров и сравнительно высокие затраты на монтажные работы). Оптоволоконный кабель используют в основном в подсистемах кампусов и вертикальных. Однако следует иметь в виду, что, хотя по мере развития технологий цены на кабели категорий 6 и 7 снижаются, однако параллельно дешевеют и оптоволоконные системы, и оптоволоконные кабели становятся все более конкурентоспособными по отношению к медным кабелям даже на уровне подключения рабочих станций к сети.

Медные кабели для СКС характеризуются рядом параметров, в частности:

- волновое сопротивление (Impedance);
- затухание (Attenuation);
- переходная помеха на ближнем конце NEXT (Near End Cross Talk);
- переходная помеха на дальнем конце FEXT (Far End Cross Talk);
- нормированное (приведенное к уровню полезного сигнала) значение FEXT - ELFEXT;
- характеристики взаимных помех между парами PowerSum FEXT, Power-Sum ELFEXT и PowerSum NEXT;
 - защищенность от переходных помех ACR (Attenuation to crosstalk Ratio);
 - задержка распространения сигнала (Propagation Delay);
 - неравномерность задержки распространения сигнала (Delay Skew).

В данном подразделе следует в краткой форме (целесообразно в виде таблиц) представить данные об электрических и стоимостных характеристиках современных медных кабелей 5-7 категорий и оптоволоконных одномодовых и многомодовых кабелей и обосновать выбор того или иного типа кабеля. При защите проекта студент должно хорошо представлять физическую суть этих параметров и уметь пояснить влияние их на информационные характеристики компьютерной сети.

Например, в данный подраздел можно включить следующее обоснование. «С учетом того, что на уровне доступа передача данных выполняется преимущественно со скоростью 100 Мбит/с и с учетом возможности в перспективе увеличения скорости передачи для горизонтальной подсистемы, выбираем кабель типа UTP4-C6-SOLID-GY. Это кабель 6-й категории типа неэкранированная витая пара (UTP), состоящий из 4 пар одножильных (solid) медных проводников. Кабель соответствует стандарту пожарной безопасности UL 444 и UL 1581 и имеет следующие технические характеристики:

- диаметр проводника: 0.54 ± 0.01 мм (24 AWG);
- изоляция полиэтилен повышенной плотности, минимальная толщина 0,18 мм;
 - диаметр провода в изоляции 0.99 ± 0.02 мм;
- цвет витых пар: синий-белый/синий, оранжевый-белый/оранжевый, зеленый-белый/зеленый, коричневый-белый/коричневый;
- 4 витые пары с полиэтиленовым разделителем, покрыты поливинилхлоридной оболочкой (PVC) с минимальной толщиной оболочки 0,4 мм;
 - внешний диаметр кабеля равен 6.2 ± 0.2 мм;
 - рабочая температура кабеля от -20°C до +75°C;
- радиус изгиба кабеля: $8\times\varnothing$ во время инсталляции, $6\times\varnothing$ при вертикальном каблировании и 4 диаметра при горизонтальном каблировании;
 - стандартная упаковка размером 21,5 \times 42 \times 42 см (Ш \times В \times Г) 305 м;
 - вес кабеля без упаковки 12.9 кг.

Кабель характеризуется следующими электрическими параметрами:

- максимальное сопротивление проводника при температуре 20° C равно 9,38 Ом/100 м;
 - дисбаланс сопротивления не превышает 5%;
 - $-\,$ емкостной дисбаланс пары по отношению к земле равен 330 пФ/100 м;
 - сопротивление на частоте от 0,772 до 100 М Γ ц составляет 85...115 Ом;
 - максимальная рабочая емкость равна 5,6 нФ/м;
 - неравномерность задержки 45 нс/100 м;
 - − задержка распространения <536 нс/100 м.

Частотные характеристики кабеля приведены в таблице 2.8.

Параметры передачи многомодового оптоволоконного кабеля приведены в таблице 2.9, а параметры одномодового – в таблице 2.10.

Таблица 2.8 – Частотно-зависимые характеристики передачи

Частота	Затухание	NEXT	ACR	PS NEXT	EL-FEXT	PS EL-FEXT	RL
МΓц	дБ/100 м	дБ	дБ/100м	дБ	дБ/100м	дБ/100м	дБ
31,25	11,4	45,9	34,6	42,9	33,9	30,9	23,6
62,5	16,5	41,4	25,8	38,4	27,8	24,8	21,5
100	21,3	38,3	19,0	35,3	23,8	20,8	20,1
155	27,2	35,5	10,8	32,5	19,9	16,9	18,7

Таблица 2.9 – Оптические параметры многомодового оптоволокна

	Пиххио	Затухание	Коэффициент	Даль	ность	
Тип	Длина	(среднее/	широко-	перед	ачи для	Коэффициент
волокна	волны,	максималь-	полосности,	Ethe	rnet, м	преломления
	HM	ное), дБ/км	МГц∙км	1GbE	10 GbE	
62,5/125	850	3,0/3,2	>200	275	33	1,495
OM1	1300	0,7/0,9	>600	550	_	1,490
50/125	850	2,6/2,8	>600	550	82	1,481
OM2	1300	0,6/0,9	>1200	550	_	1,476

Таблица 2.10 – Оптические параметры одномодового оптоволокна ITU-G.652B

Тип волокна	Диа- метр, мкм	Длина волны, нм	Затухание (среднее/макси- мальное), дБ/км	Дисперсия, пс/(нм·км)	PMD, пс/км ^{1/2}	Коэфф. преломле- ния
9/125	9,2±0,4	1310	0,35/0,5	< 3,5	_	1,467
9/123	125±0,5 1550	0,21/0,3	< 18	< 0,2	1,467	

Параметр РМD (поляризационная модовая дисперсия) — это дисперсия, вызываемая небольшой асимметричностью поперечного сечения волокна. Асимметричность приводит к тому, что одна из двух основных ортогональных поляризованных мод передается по оптическому каналу связи быстрее, чем другая. В связи с тем, что приемное устройство принимает комбинацию этих двух мод, то результирующий импульс становится шире входного импульса, поскольку он подвергся дисперсии, т. е. происходит расширение импульса.

Для выполнения силовой проводки используем трехжильный медный кабель типа ВВГ $3\times1,5$ (Виниловая оболочка, Виниловая изоляция, Гибкий). Сечение кабеля 1,5 мм² выбирается из расчета максимального потребляемого тока 15 A (мощность 3,3 кВт) на одну розетку».

2.7.2 Схема размещения компонентов СКС

В этом подразделе приводится обоснование и описывается схема размещения пассивного и активного телекоммуникационного оборудования проектируемой сети на территории, на которой располагается предприятие. Собственно схема размещения выполняется на чертеже формата А1 в

соответствии с требуемыми стандартами и нормативами [31, 32]. Фрагменты схемы размещения показаны на рисунках 2.2 и 2.3.

Пример обоснования и описания может иметь следующий вид.

«Схема размещения компонентов сети разрабатывается на основе поэтажных чертежей здания, в котором располагается предприятие или организация. Во всех помещениях на каждом рабочем месте устанавливаются телекоммуникационные розетки (ТР) с двумя гнездами типа RJ-45 и по три силовых розетки с напряжением 220 В. Количество ТР, рассчитанное на основании соответствующих технических норм, приведено в таблице 2. Телекоммуникационные розетки закрепляются в кабельных коробах на высоте 80 см от уровня пола. Расположение телекоммуникационных и электрических розеток и других компонентов сети в каждом из помещений предприятия с указанием установочных размеров показано на чертеже СевГУ 09.03.02.12.02.

Фрагмент схемы размещения компонентов СКС с указанием типов и параметров кабелей в помещении, в котором располагается рабочая группа организации, показан на рисунке 2.3. Все телекоммуникационные кабели прокладываются в декоративных пластмассовых кабельных каналах (коробах), которые закрепляются на стене помещения. Кабельный канал разделен на две секции. Одна служит для укладки телекоммуникационных кабелей, а вторая — для силовых кабелей. Телекоммуникационные розетки монтируются на корпусе короба, либо на стене. Силовые розетки в количестве 3 шт на каждое рабочее место закрепляются на расстоянии 0,8 м от уровня пола. На такой же высоте устанавливаются и телекоммуникационные розетки.

Вывод пучка кабелей горизонтальной подсистемы осуществляется через металлический патрубок (кондуит) диаметром 80 мм, который пропускается через стену помещения на расстоянии 0,2 м от потолка. В коридоре коммуникационные кабели укладываются в кабельный лоток, который закреплен между потолочным перекрытием и подвесным потолком.

Силовые кабели выводятся через отдельный собственный кондуит и укладываются в межпотолочном пространстве в лоток силовых кабелей.

На рисунке 2.3 изображена схема размещения компонентов и оборудования сети в техническом помещении, используемом в качестве распределительного пункта этажа (серверной). В этом помещении установлен телекоммуникационный шкаф, в котором устанавливаются распределительные (патч-) панели, коммутаторы канального и сетевого уровней, маршрутизатор, а также серверное оборудование. Здесь же располагается щит силового электропитания. Расстояние между коммуникационным шкафом и стеной помещения выбрано таким образом, чтобы обеспечить доступ к распределительным панелям при монтаже или замене кабелей. Коммуникационные кабели и силовые заводятся в помещение через раздельные кондуиты.

Примечание: Расстояние от пола до розеток 0,8 м

Рисунок 2.2 – Схема размещения компонентов компьютерной сети в помещении 301

Ввод коммуникационных кабелей в шкаф осуществляется через верхнее входное отверстие, имеющееся в его крыше. Кабели подводятся сверху в лотке и затем через верхний вводной люк водятся внутрь шкафа. При этом способе к кабелям нет доступа, и они хорошо физически защищены. Четыре кабеля силового питания типа ВВГ 3 сечением 1,5 мм² каждый и 4 телекоммуникационных кабеля, идущих от рабочих мест РМ.301.1 и РМ.301.2, подводятся к телекоммуникационному шкафу в пластмассовом коробе и вводятся в него через нижний вводной люк.

Рисунок 2.3 – Схема размещения компонентов СКС в техническом помещении

В помещении также оборудовано два рабочих места: одно для администратора сети или лица, выполняющего его функции, а второе — для инженераэлектронщика. Телекоммуникационные и силовые розетки рабочих мест закрепляются на стене, на высоте 0,8 м от уровня пола. Остальные установочные размеры показаны на чертеже. Для тестирования и ремонта оборудования установлен специальный стол монтажника.

2.7.3 Расчет величины расхода кабеля

Общая потребность кабеля для реализации сети рассчитывается по методике, изложенной в [16]. При этом учитывается, что наибольшая длина кабеля горизонтальной подсистемы не должна превышать 90 м.

Для определения минимальной L_{\min} и максимальной L_{\max} длины кабелей горизонтальной подсистемы построим профили кабельных трасс на основании планов помещений. Примеры профилей кабельных трасс изображены на рисунках 2.4 а) и б) для минимальной и максимальной длин соответственно.

Длины отдельных участков кабельных трасс взяты произвольно и не связаны с конкретным планом помещения.

Рисунок 2.4 – Примеры построения профилей кабельных трасс

Эти данные необходимы для расчета потребности в кабельной продукции. Рассчитаем количество кабеля, требуемое для прокладки горизонтальных линий связи для каждого этажа (включая цокольный) 6-этажного здания. Нужное количество кабеля рассчитывается с использованием эмпирического метода [16], основанного на предположении, что рабочие места распределены по обслуживаемой площади равномерно. Средняя длина (L_{cp}) кабельных трасс вычисляется по формуле:

$$L_{\rm cp} = (L_{\rm max} + L_{\rm min})/2,$$

где L_{\min} и L_{\max} — соответственно длины кабельной трассы от точки размещения кроссового оборудования до телекоммуникационного разъема самого близкого и самого далекого рабочего места, посчитанные с учетом технологии прокладки кабеля, всех спусков, подъемов, поворотов и особенностей здания.

При этом учтем, что при определении длины трасс необходимо прибавить технологический запас величиной 10% от $L_{\rm cp}$ и запас X для процедур разводки кабеля в распределительном узле и телекоммуникационном разъеме.

C учетом сделанных дополнений формула нахождения общей длины кабельных трасс L принимает вид:

$$L=(1,1L_{\rm cp}+X) N_{\rm p},$$

где $N_{\rm p}$ – количество розеток на этаже.

Для определения величин L_{\min} и L_{\max} по плану здания и помещений построим профили кабельных трасс для минимальной и максимальной длины кабелей (рисунок 2.4 а) и 2.4 б).

По профилям трасс находим L_{\min} и L_{\max} , которые для приведенного примера равны соответственно 29 и 45 метров. С учетом того, что к каждой телекоммуникационной розетке, снабженной двумя гнездами RJ-45, подводится два кабеля одинаковой длины, а общее количество коммуникационных розеток в проектируемой сети равно $N_{\rm p}=62$, находим

$$L_{cp} = (29+45)/2 = 37 \text{ M}$$

 $L = (1,1\times37+2) \times 2 \times 62 = 5295 \text{ M}$

Таким образом, для горизонтальной подсистемы требуется 5295 м кабеля. Известно, что в стандартной кабельной бухте содержится 305 метров кабеля. Тогда для создания горизонтальной подсистемы нужно 18(5295/305 = 17,4) бухт, или 5490 м кабеля $(18\times305 = 9455)$.

Кабели оканчиваются (терминируются) встраиваемыми в короб телекоммуникационными розетками типа RJ-45, способными подключать также телефонные коннекторы RJ-11. Для подсоединения оборудования рабочих мест СКС укомплектовывается патч-кордами.

2.7.4 Расчет габаритных размеров декоративного кабельного короба

При расчетах диаметр горизонтального кабеля категории 5е принимается равным 5,2 мм, что соответствует площади поперечного сечения кабеля $S_{\text{каб}} = 21,2\,$ мм². Коэффициент использования площади выбирается равным $k_{\text{i}} = 0,5$, а коэффициент заполнения – $k_{\text{z}} = 0,45$.

С целью уменьшения расхода декоративного короба целесообразно использовать двухсекционный короб, в котором одна секция служит для размещения коммуникационных кабелей, а вторая — для силовых. При этом требуется просчитать необходимые габариты каждой из секций.

Таким образом, требуемое сечение короба определяется по формуле

$$S_{\text{kp6}} = \left(\sum S_{i\text{Kka6}}\right) / \left(k_{i} k_{z}\right) + \left(\sum S_{j\text{Cka6}}\right) / \left(k_{i} k_{z}\right),$$

где S_{iKka6} – сечение i – го коммуникационного кабеля;

 $\mathbf{S}_{\mathsf{jCka6}}$ — сечение j—го силового кабеля.

Схему прокладки декоративных коробов, с целью более экономного их расходования, целесообразно выбрать таким образом, чтобы отдельные сегменты кабельных каналов данной разновидности использовались для прокладки кабелей к двум информационным розеткам.

Результаты расчетов габаритов короба целесообразно свести в таблицу 2.11.

Таблица 2.11 – Параметры кабельного короба

Количество обслуживаемых ТР	2	3	6	8
Количество горизонтальных кабелей	4	6	12	16
Требуемая площадь короба, мм ²	376	565	1130	1507
Габаритные размеры односекционного короба, мм	40×16	40×16	75×20	75×20

После определения суммарного сечения кабелей выбирается стандартный тип короба с сечением, не меньше рассчитанного. На практике наиболее широко используются секции короба стандартной длины 2 м и сечением 40×16 мм, 60×16 мм и 75×20 мм.

2.7.5 Выбор пассивного телекоммуникационного оборудования

Из расчетных данных следует и свидетельствуют о том, что в СКС будут использоваться короба типа NCT1050 двух типоразмеров: 60×16 мм и 75×20 мм, которые позволяют выполнять монтаж корпусов информационных и силовых розеток рядом с коробом на поверхности стены. Две секции короба будут использованы для прокладки горизонтальных информационных кабелей, а одна — двух силовых кабелей (один для системы гарантированного электропитания компьютерного оборудования, другой обеспечивает подключение розеток бытового электроснабжения). Кроме собственно короба для организации кабельных каналов требуется ряд вспомогательных элементов: заглушки, соединители и плоские уголки, соединяющие короба при их поворотах на 90^{0} . Количество уголков и соединителей рассчитывается исходя из стандартной длины секции короба, равной 2-м метрам и количества поворотов кабельных трасс. Общая потребность таких элементов приведена в таблице 2.12.

Таблица 2.12 – Спецификация комплектующих элементов кабельных каналов

Тип	Наименование компонентов	Ед. изм	Кол-во		
Кабельные каналы					
NCT1050	Короб 100×50	M	400		
NCI1050	Соединитель 100×50	ШТ	190		
NJC1050	Заглушка на шов 100×50	ШТ	190		
NAF1050	Плоский угол 100×50	ШТ	20		
NWP1050	Заглушка внутренняя 100×50	ШТ	40		
YEP4	Заглушка 40×25	ШТ	65		
YAF4	Плоский угол 40×25	ШТ	130		

В качестве коммутационного оборудования для медных кабелей выберем 24-портовые коммутационные патч-панели типа «21-R0-45H024D0-

2N1N» категории 5е для разделки кабелей горизонтальной подсистемы. Для подключения кабелей к коммутаторам и маршрутизатору через патч-панели предусмотрены соединительные шнуры (патч-корды) с разъемами «RJ45-RJ45» на обоих концах. Длина соединительных шнуров 1 м.

В качестве кросса для оптоволоконной части подсистемы внутренних магистралей выбираем оптические одномодовые распределительные полки с 8 разъемами типа «SC-AS». Для обеспечения возможности укладки избытка соединительных коммутационных шнуров под оптическими полками предусмотрены организаторы кабеля, имеющие форму пластины с держателями кабеля.

При монтаже оптоволоконной части подсистемы внутренних магистралей предполагается использовать технологию сварки, которая обеспечивает минимальные потери в точке сращивания оптических волокон и наибольшую надежность соединения.

Для размещения коммутационного оборудования СКС и активного оборудования ЛВС в здании предусмотрено техническое помещение 312. В этом помещении устанавливается 19" телекоммуникационный шкаф, в который в соответствии с логической схемой сети устанавливаются:

- 1) одна 19" оптическая панель 24×ST высотой 1U;
- 2) 3 патч-панели на 25 портов RJ-45 для терминирования кабелей горизонтальной подсети;
- 3) 3 патч-панели на 25 портов RJ-45 для терминирования кабелей телефонной связи;
 - 4) 4 горизонтальных кабельных органайзеров высотой 1U каждый;
 - 5) 2 вертикальных кабельных органайзера;
- 6) два коммутатора Cisco Catalyst 2950 на 12 портов портов 10/100 RJ-45 высотой 2U каждый;
 - 7) маршрутизирующий коммутаторСisco Catalyst 3500 высотой 2U;
 - 8) 2 сервера высотой 3U каждый;
 - 9) блок бесперебойного питания высотой 4U;
 - 10) блок электрических розеток высотой 1U;
 - 11) панель вентиляторов потолочная на 2 вентилятора высотой 1U.

В итоге для размещения оборудования в шкафе требуется высота 29U. С учетом 30-процентного запаса требуемая высота шкафа составляет 40U. На основании этого выбираем телекоммуникационный шкаф со стандартной высотой 41U (2030 мм). Для закрытия неиспользуемого пространства шкафа предусмотрим панели заглушки общей шириной 10U. Для коммутации шкаф укомплектовывается патч-кордами длиной 0,5, 1 и 1,5 м. Перечень пассивного оборудования спроектированной сети приведен в таблице 2.13.

В случае, когда компьютерная сеть разворачивается на нескольких этажах одного или группы зданий, необходимо произвести аналогичные расчеты для распределительных пунктов всех этажей и распределительного пункта здания и выбрать нужное количество и габариты коммуникационных шкафов.

Таблица 2.13 – Спецификация пассивного оборудования локальной сети

N_0N_0	Наименование компонентов	Ед. изм	Кол-во
1	EuroLAN MiNi настенная информационная розетка RJ45, кат.5е, 2-х портовая	ШТ	70
2	Кабель UTP 4PR-1583	M	5490
3	Кабель ВО 2-х жильный, 62,5/125	M	80
4	19" Патч-панель, 24×RJ45, 568B, UTP	ШТ	6
5	19" Оптическая панель 24хST	ШТ	1
6	ST-MM Оптический коннектор	ШТ	8
7	Модуль вентиляторный потолочный, 380х380 мм, 2 вент	ШТ	1
8	Шкаф напольный 41U, 2050×600×600, стеклянная дверь в стальной раме, ручка с замком с трёхточечной фиксацией	ШТ	5

2.8 Разработка политики информационной безопасности в сети предприятия

В данном разделе записки должны быть составлены тексты инструкций, в которых излагаются положения специфической политики для заданных техническим заданием типов сервисов, общие правила доступа пользователей к информационным ресурсам, а также разработаны правила доступа отдельных категорий пользователей к локальным и глобальным сетевым ресурсам.

2.8.1 Политика информационной безопасности для отдельных видов сервиса

Техническим заданием на проектирование предусмотрена разработка политики безопасности для одного из видов обслуживания:

- при удаленном доступе к ресурсам предприятия;
- при взаимодействии с Интернет;
- при получении доступа к сетевым ресурсам;
- при выборе и использовании паролей;
- при защите от вирусов.

Рассмотрим ряд примеров составления положений частных политик безопасности. Примерный текст политики удаленного доступа к ресурсам предприятия может иметь вид: [www.compdoc.ru/network/internet/politicians_of_safety/]:

- «1. Сотрудник компании несет ответственность за последствия неправильного использования удаленного доступа.
- 2. Высокоскоростной удаленный доступ через каналы сетей ISDN и Frame Relay разрешается только сотрудникам службы безопасности сети,

администратору сети, главным специалистам компании, другим специалистам компании, выезжающим в служебную командировку и менеджерам продаж.

- 3. Сотрудники, менеджеры продаж и выездные специалисты компании, обладающие удаленным доступом к корпоративной сети компании, несут такую же ответственность, как и в случае локального подключения к сети компании.
- 4. Перед осуществлением удаленного доступа к корпоративной сети следует ознакомиться по роспись в журнале учета со следующими политиками безопасности:
 - а) допустимого шифрования;
 - б) организации виртуальных частных сетей;
 - в) безопасности беспроводного доступа;
 - г) допустимого использования.
- 5. Защищенный удаленный доступ должен постоянно контролироваться. Ответственность за контроль возлагается на начальника службы безопасности.
- 6. Требуемый уровень безопасности должен обеспечивается посредством использования однократных паролей или инфраструктуры открытых ключей.
- 7. Сотрудники, имеющие привилегию удаленного доступа к корпоративной сети, не имеют права использовать адреса электронной почты компании для ведения собственного бизнеса.
- 6. Сотрудник компании несет личную ответственность за то, чтобы член его семьи не нарушил правила политик безопасности компании, не выполнил противозаконные действия и не использовал удаленный доступ для достижения собственных деловых интересов.
- 7. Сотрудникам запрещается передавать или посылать по электронной почте свой пароль на вход в систему, включая членов семьи.
- 8. Сотрудники, имеющие право удаленного доступа должны гарантировать, что их компьютеры, которые удаленно подключены к сети, не подключены в то же самое время ни в какую другую сеть, за исключением домашних сетей, которые находятся под полным управлением сотрудника.
- 9. Для членов семьи сотрудника компании доступ к Internet через сеть компании разрешается только в случае оплаты трафика самим сотрудником.
- 10. Маршрутизаторы для выделенных ISDN линий, сконфигурированные для доступа к корпоративной сети, должны использовать для аутентификации, как минимум, процедуру СНАР.
- 11. Для получения дополнительной информации относительно удаленного доступа, включения и отключения услуги, поиска неисправностей и т.д., следует обращаться на вебсайт службы организации удаленного доступа к информационным ресурсам компании».

Перечень требований данной политики может быть расширен и дополнен.

Другим примером фрагмента политики безопасности по разграничению доступа в локальную вычислительную сеть (ЛВС) является следующий [www.zahist.narod.ru/securelan4.htm].

- «1. Каждый персональный компьютер должен иметь «владельца» или «системного администратора», который является ответственным за работо-способность и безопасность компьютера, и за соблюдение всех политик и процедур, связанных с использованием данного компьютера.
- 2. Пользователи должны быть обучены и обеспечены соответствующими руководствами так, чтобы они могли корректно соблюдать все политики и процедуры безопасности.
- 3. Все механизмы защиты сервера ЛВС должны находиться под монопольным управлением местного администратора и местного персонала Администраторов ЛВС.
- 4. Программное обеспечение должно быть лицензированным и является безопасным.
- 5. За все изменения (замены) программного обеспечения и создание резервных копий данных на серверах отвечают Администраторы ЛВС.
- 6. Каждому пользователю должен быть назначен уникальный ИДЕНТИФИКАТОР ПОЛЬЗОВАТЕЛЯ и начальный пароль (или другая информация для идентификации и аутентификации), только после того, как закончено оформление надлежащей документации.
- 7. Пользователям запрещается совместно использовать назначенные им ИДЕНТИФИКАТОРЫ ПОЛЬЗОВАТЕЛЯ.
- 8. Пользователи должны аутентифицироваться в ЛВС перед обращением к ее ресурсам.
- 9. ИДЕНТИФИКАТОР ПОЛЬЗОВАТЕЛЯ должен удаляться после продолжительного периода неиспользования.
- 10. Использование аппаратных средств мониторинга ЛВС, маршрутизаторов или регистраторов трафика должно быть авторизовано и проводиться под контролем Администраторов ЛВС.
- 11. Служащие, ответственные за управление, функционирование и использование ЛВС предприятия должны пройти курс обучения в области компьютерной безопасности и правил работы на компьютере.
- 12. Отчеты о безопасности ЛВС должны готовиться и рассматриваться ежедневно».

2.8.2 Общие правила предоставления доступа к информационным ресурсам

На каждом предприятии, использующем сетевые информационные технологии, должны быть разработаны общие правила предоставления доступа к информационным ресурсам. Такие правила разрабатываются персоналом службы безопасности и являются обязательными для каждого пользователя компьютерной сети. Ниже приведены примеры правил доступа к некоторым видам ресурсов [].

1. Доступ к ресурсам

Для предоставления доступа к информационным ресурсам пользователи направляют в подразделение информационных технологий (ИТ) заявку в

установленной форме с ходатайством непосредственного руководителя заявителя и визой владельца информационного ресурса (В заявке указываются Ф.И.О. пользователя, наименование ресурсов и обоснование необходимости). В случае доступа к информационному ресурсу категории конфиденциально «К» обязательна подпись администратора информационной безопасности.

Для получения доступа к внешним информационным ресурсам, пользователь направляет в подразделение информационных технологий письмо по установленной форме, с ходатайством непосредственного руководителя, согласованное со службой сетевой безопасности. (Данное письмо необходимо для тех организаций, где доступ в Интернет и использования электронной почты требует отдельного разрешения).

- 1.1. При наличии технической возможности специалисты соответствующих подразделений ИТ производят подключение пользователя к информационному ресурсу с внесением необходимых изменений в терминальное и коммуникационное оборудование (присвоением компьютеру пользователя сетевого имени, выдача соответствующего идентификатора, имени пользователя, пароля и т.д.).
- 1.2. При работе на одном компьютере нескольких пользователей, каждый из них должен применять свою учетную запись для доступа к информационному ресурсу.
- 1.3. Каждый пользователь обязан хранить свой пароль в тайне и изменять его по мере необходимости (для информации категории «К» не реже 1 раза в месяц).
- 1.4. Заявки пользователей на создание учетных записей и на предоставление доступа к информационному ресурсу хранятся в подразделении ИТ в течение времени действия учетной записи пользователя.
- 1.5. Пользователям запрещается несанкционированно использовать информационные ресурсы, доступа к которым он не имеет. Контроль доступа обеспечивается средствами операционных систем, средствами контроля доступа специализированных приложений, сертифицированными средствами защиты от несанкционированного доступа, а также средствами сетевого мониторинга и аудита.
 - 2. Аннулирование доступа
- 2.1. В случае увольнения или перевода в другое подразделение (отдел, бюро и т.д.) сотрудника, являющегося пользователем информационного ресурса, его непосредственный руководитель обязан известить соответствующего администратора объекта информатизации для аннулирования доступа к информационному ресурсу.
- 2.2. Не информирование администратора влечет за собой дисциплинарную ответственность.
- 2.3. Сверка по увольнениям и перемещениям сотрудников должна осуществляться не реже 1 раза в месяц.
 - 3. Обслуживание информационных систем

Пользователям запрещается использовать информационные ресурсы предприятия и средства вычислительной техники (СВТ) в целях, не связанных с выполнением должностных обязанностей.

- 3.1. Установка и настройка программного обеспечения.
- 3.1.1. К установке на СВТ разрешается только программное обеспечение (ПО), включенное в реестр протестированного и разрешенного службой ИТ к применению программного обеспечения.
- 3.1.2. Подразделение ИТ составляет и обновляет реестр системного и прикладного ПО, разрешенного к установке на СВТ пользователей и пользователей сети. Реестр обновляется в соответствии с потребностями пользователей и тенденциями в развитии программного обеспечения.
- 3.1.3. Любой пользователь может быть инициатором внесения в реестр новых программных продуктов. Для внесения программного продукта в реестр пользователи направляют заявку.
- 3.1.4. Программный продукт, указанный в заявке, тестируется специалистами ИТ, после чего принимается решение о включении его в реестр.
- 3.1.5. Установку и переустановку любого общесистемного, сетевого и антивирусного программного обеспечения, а также всех информационных систем, разрабатываемых на предприятии, на СВТ пользователей и пользователей сети производят только службы ИТ в соответствии со спецификой ПО. Самостоятельно устанавливать и переустанавливать программные продукты пользователям запрещается.
- 3.1.6. Пользователям запрещается менять настройки применяемого ПО без согласования с администратором объекта информатизации. Изменение настроек общесистемного, сетевого и антивирусного ПО запрещено без согласования с администратором сети.
- 3.1.7. Допускается самостоятельная установка и переустановка прикладного ПО пользователями по согласованию с системным администратором сети.
- 3.2. Устранение сбоев в работе СВТ и неполадок в программном и аппаратном обеспечении.
- 3.2.1. При возникновении сбоев в работе автоматизированных систем и СВТ пользователи должны сообщить о неполадках диспетчеру подразделения ИТ. Диспетчер сообщает о неполадках в соответствующие службы ИТ и координирует их работу по устранению неисправностей. Устранять неполадки самостоятельно пользователям запрещается.
- 3.2.2. Ремонтно-профилактические работы на СВТ производят только специалисты ИТ. Работы должны быть организованы таким образом, чтобы исключить возможность несанкционированного доступа к конфиденциальной информации, находящейся на дисках СВТ.
- 3.2.3. Ремонт компьютера проводится либо на месте, под присмотром ответственного лица, назначенного руководителем подразделения, либо отправляется в стационарный ремонт. В случае отправки в стационарный ремонт вся конфиденциальная информация, хранящаяся на жестком магнитном диске, должна быть удалена с наложением на удаленные сектора незначащих

символов (используя специальное программное обеспечение). Допускается снятие жесткого магнитного диска с конфиденциальной информацией на хранение ответственным за безопасность информации сотрудником подразделения до получения компьютера из ремонта.

- 3.2.4. Бесконтрольный ремонт СВТ с магнитным накопителем, содержащим конфиденциальную информацию, не допускается.
 - 4. Обмен данными
- 4.1. Пользователи при обмене данными с применением внешних носителей информации обязаны производить проверку носителей на наличие вирусов перед началом работы с данными, содержащимися на них.
- 4.2. Наличие на компьютерах сетевых пользователей ресурсов общего доступа (доступ «полный», «на чтение», «определяется паролем») не допускается. Обмен информацией осуществляется посредством почтового сервера предприятия или через информационные ресурсы, расположенные на серверах предприятия. Весь почтовый обмен производится только через электронные почтовые ящики, открытые на почтовом сервере предприятия.
- 4.3. Пользователям запрещается хранить на СВТ, а также на информационных ресурсах, открытых на серверах для обмена и хранения данных, информацию и программные средства не связанные с выполнением должностных обязанностей.
- 4.4. При обмене и передачи информации, отнесенной к категории «К», должны применяться сертифицированные средства криптозащиты информации и электронная цифровая подпись.
 - 5. Обеспечение сохранности данных
 - 5.1. Резервное копирование.
- 5.1.1. Архивирование критически важных данных для обеспечения деятельности предприятия является обязательным. Для архивирования применяются специальные аппаратно-программные средства.
- 5.1.2. Ответственность за утерю, порчу и сохранность информации, хранящейся на накопителях СВТ, возлагается на пользователя. Для резервного хранения информации пользователям сети могут предоставляться специальные информационные ресурсы на серверах. Информационные ресурсы создаются по заявке, направляемой в центр информационных технологий (ЦИТ) от имени начальника подразделения. В заявке на создание информационного ресурса необходимо указать размер информационного ресурса, ответственного за ресурс, необходимость и периодичность резервного сохранения данных. В заявке на предоставление ресурса можно указать прочих пользователей, доступ для которых к данному ресурсу открыт.
- 5.1.3. Помимо информационных ресурсов для хранения на серверах сети, для резервного копирования пользователи сети могут использовать внешние носители информации.
 - 5.2. Антивирусная защита
- 5.2.1. Применение антивирусной защиты на рабочих станциях и серверах является обязательным.

- 5.2.2. Ответственность за обновление антивирусного ПО и антивирусных баз данных возлагается на системного администратора сети.
- 5.2.3. Ответственность за установку и настройку антивирусного ПО на СВТ пользователей сети возлагается на подразделения ИТ. На СВТ пользователей в обязательном порядке должна быть установлена программа антивирусной защиты, работающая в фоновом режиме, отслеживающая все операции по открытию, копированию и перемещению файлов на СВТ, а также автоматически производящая ежедневную проверку всех дисков и памяти СВТ на наличие вирусов.
- 5.2.4. Ответственность за антивирусную защиту информации на СВТ пользователей возлагается на пользователя, за которым закреплено данное СВТ. Пользователи обязаны обратиться в подразделения ИТ для получения действующего на Предприятии антивирусного ПО.
 - 5.2.5. Пользователь СВТ обязан:
- перед началом работы убедиться, что программа антивирусной защиты на его СВТ запущена;
- не допускать использования и хранения на своем рабочем месте автономных носителей информации не проверенных на наличие вирусов;
- при обнаружении вируса произвести его лечение средствами антивирусной защиты, установленными на СВТ пользователя и сообщить об обнаружении вируса системному администратору сети и администратору информационной безопасности.
- 5.2.6. Пользователям запрещается распространять, хранить и создавать вредоносные программы.
 - 5.3. Обеспечение конфиденциальности информации
- 5.3.1. Пользователи обязаны принять все возможные меры для предотвращения несанкционированного доступа со стороны посторонних лиц к хранящейся на СВТ конфиденциальной информации.
- 5.3.2. Администратор информационной безопасности при необходимости получения доступа к ресурсам СВТ, при проведении служебных проверок, обязан поставить в известность пользователя данного СВТ или руководителя подразделения пользователя.
 - 5.4. Обеспечение режима безопасности пользователями
- 5.4.1. Все пользователи обязаны принимать участие в обеспечении режима информационной безопасности при работе с информационными ресурсами Предприятия и на СВТ, а именно:
- предотвращать возможность несанкционированного доступа посторонних лиц к информации, хранящейся на информационных ресурсах и на CBT;
- выполнять требования «Инструкции о пропускном режиме» в части автономных носителей информации (дискеты, CD-R, CD-RW, DVD-RW, Flash-memory, сотовые телефоны, цифровые диктофоны, фотоаппараты и видеокамеры) и элементов компьютерной техники;
- немедленно информировать администраторов объектов информатизации о случаях нарушения режима информационной безопасности, в том числе,

связанных как с аварийными (сбойными) ситуациями при эксплуатации компьютерной техники, так и с появлением реальных каналов утечки информации путем умышленного разрушения программно-аппаратных механизмов защиты информационных ресурсов;

- магнитные диски и иные носители информации (дискеты, CD-R, CD-RW, DVD-, Flash-memory, сотовые телефоны, цифровые диктофоны, фотоаппараты и видеокамеры), получаемые от других сотрудников или других организаций, перед использованием должны быть подвергнуты обязательному входному контролю на наличие программных вирусов.
 - 5.4.2. Пользователям информационных ресурсов и СВТ запрещается:
 - производить очистку журнала аудита;
- самостоятельно изменять аппаратные конфигурации и подключать периферийные внешние устройства;
- несанкционированное копирование информации (файлов) на дискеты и другие внешние носители;
- нерегламентированный просмотр, вывод на печать и т.п. информации ограниченного распространения;
- оставлять без присмотра закрепленную за ним компьютерную технику без ее отключения или блокировки на время отсутствия пользователя, или без установки специального программного обеспечения поддержки дежурного режима (хранители экрана) с обязательной установкой пользователем произвольного пароля, неизвестного другим лицам;
- оставлять на рабочих столах в свое отсутствие автономные носители информации (дискеты, диски всех типов, магнитные ленты стримеров), содержащие данные конфиденциального характера.

Помимо представленных выше документов можно создать инструкции для пользователей и администраторов по отдельным видам деятельности. Например, по работе в Интернет, работе с почтой, архивированию данных и т.д.

2.8.3 Правила доступа персонала к информационным ресурсам

В этом подразделе формулируются конкретные права доступа к сетевым ресурсам каждого их сотрудников предприятия. На практике такие правила составляются на основании требований и пожеланий руководства организацией и ее службы безопасности. Затем эти правила оформляются в форме таблиц доступа, в которых указывается, с каких сетей разрешается доступ к другим сетям, кому и в какое время разрешается доступ к тому или иному ресурсу, а к каким ресурсам доступ запрещается. Формы таких таблиц могут иметь вид, представленный в таблице 2.14.

В этой таблице показан пример взаимодействия между рабочими группами, регулируемого на уровне телекоммуникационных устройств (маршрутизаторов и коммутаторов). Разграничение доступа на уровне серверов и клиентских компьютеров осуществляется отдельными установками. В данной таблице отмечено, что сотрудникам группы информационной поддержки разрешается доступ к компьютерам всей сети организации (предприятия). Это

объясняется необходимостью осуществления технической и программной поддержки инфраструктуры компьютерной сети. Разрешение доступа из одних сетей в другие предоставляется на основании производственной необходимости и с учетом информационной безопасности.

Таблица 2.14 – Регламентация взаимодействия между виртуальными сетями

Рабочая		Разрешен доступ к виртуальным сетям					
группа /	Админ.	Управл.	3/VLAN	4/VLAN	5/VLAN	6/VLAN	7/VLAN
VLAN	1/VLAN	2/VLAN	o, vern	17 12111	<i>57</i>	0/ 12/11 (// \ L
1/VLAN1	Да	Нет	Нет	Нет	Нет	Нет	Нет
2/VLAN2	Да	Да	Нет	Нет	Нет	Нет	Нет
3/VLAN3	Да	Да	Да	Нет	Нет	Нет	Да
4/VLAN4	Да	Да	Нет	Да	Нет	Нет	Нет
5/VLAN5	Да	Да	Нет	Нет	Да	Нет	Нет
6/VLAN6	Да	Да	Да	Нет	Нет	Да	Нет
7/VLAN7	Да	Да	Нет	Да	Да	Нет	Да

Следующим регламентируемым видом доступа является доступ сотрудников организации в Интернет. Правила доступа должны регулировать доступ к ресурсам Интернета отдельным сотрудникам, либо группам пользователей. Этими правилами могут быть установлены типы протоколов, виды данных, разрешенных к приему и передаче, разрешен или запрещен доступ к отдельным сайтам, указано время и дни недели, в которые разрешено выходить в Интернет и другие ограничения. В таблице 2.15, в качестве примера, указаны ограничение на доступ в Интернет по дням недели и времени и на виды передаваемых или принимаемых файлов.

Таблица 2.15 – Регламентация доступа к сети Интернет

Ф.И.О.	Должность	Запрещенные типы файлов	Дни доступа	Время доступа
Иванов А.Б.	Директор		1-7	6.00-24.00
Бондарь В.В.	Гл.бухгалт.	mp3; avi; exe	1-6	8.00-22.00
Гонтарь С.П.	Нач. отдела		1-5	8.00-18.00
Репин А.И.	Сет.админ.		1-7	Не ограничено
Аулова Д.С.	Бухгалтер		1-5	8.00-18.00
Янин А.П.	Менеджер		1-5	8.00-18.00
Кобзарь И.Г.	Инженер		1-5	8.00-18.00
Бадов Р.П.	Техник		1-5	8.00-18.00
Бадов Р.П.	Техник		1-5	8.00-16.00
Другие служащи	e		1-5	12.00-13.00

В таблице 2.16 внесены временные ограничения на доступ к внутренним серверам корпоративной сети.

Таблица 2.16 – Регламентация доступа к внутренним серверам

Ф.И.О.	ФИО Полимурови		зрешен/запр	Дни	Время	
Ψ.Μ.Ο.	Должность	Сервер 1	Сервер 2	Сервер 3	доступа	доступа
Иванов А.Б.	Директор	+	+	+	1-7	7.00-22.00
Бондарь В.В.	Гл. бухгалт.	+	_	+	1-7	7.00-22.00
Гонтарь С.П.	Нач. отдела	_	+	_	1-6	7.00-20.00
Репин А.И.	Админ.	+	+	+	1-7	0.00-24.00
Аулова Д.С.	Бухгалтер	_	_	+	1-5	8.00-18.00
Янин А.П.	Менеджер	_	+	_	1-5	8.00-18.00
Кобзарь И.Г.	Инженер	_	+	_	1-5	8.00-18.00
Бадов Р.П.	Техник	_	+		1-5	8.00-18.00
Другие служащи	іе	_	_	+	1-5	12.00-13.00

Таблицы доступа могут иметь другой вид и содержать иные ограничения (таблица 2.17).

Таблица 2.17 – Организация доступа к внутренним серверам

Виды ограничений Максимальный размер письма	Ограничения по входящим сообщениям 100 МБ	Ограничения по исходящим сообщениям 5 МБ	Исключения для пользователей / рабочих групп Маркетинг
Допустимость зашифрованных файлов	Да Нет	Нет Нет	– Отдел разработок
Запрещение вложенных	avi, mpg, mpeg, wav, exe, com	avi, mpg, mpeg, wav, exe, com	Отдел маркетинга
файлов	exe, com, dll	exe, com, dll	Группа ИТ
Ключевые слова	_	Конфиденциально, для служебного пользования	Директор
		Username; id; password	Группа ИТ
	CV, vitae, resume	CV, vitae, resume, резюме, поиск работы	Директор. отдел кадров
	Гороскопы. анекдоты	_	-
Ключевые слова - Отправитель	Anonymous, no one, replay.com	_	Группа ИТ
Ключевые слова - Получатель	_	Список конкурентов	-
Продолжительность сохранения письма в БД	2 года	2 года	Директор, руководители проектов, отдел кадров, бухгалтерия

2.9 Разработка скриптов конфигурации коммуникационного оборудования сети

В данном подразделе необходимо изобразить логическую схему сети с указанием типа оборудования, адресов виртуальных подсетей, интерфейсов маршрутизаторов и коммутаторов. Пример такой схемы показан на рисунке 2.5.

Рисунок 2.5 – Логическая схема сети с IP адресами

Затем приводятся полные тексты сценариев (скриптов) конфигурации оборудования, которое входит в состав разработанной компьютерной сети. Для каждого типа оборудования составляются соответствующие сценарии конфигурации с учетом применяемой в нем сетевой операционной системы (Cisco IOS или CatOS). Составление скриптов следует начинать с оборудования уровня доступа.

В начале каждого скрипта должна быть освещена суть процедуры, а затем следует соответствующий сценарий конфигурации. Все скрипты должны сопровождаться подробными комментариями.

Сценарии должны включать следующие разделы:

- начальная конфигурация устройств;
- настройка интерфейсов;
- создание подсетей или виртуальных сетей;
- обеспечения взаимодействия подсетей;
- просмотр и контроль созданной конфигурации.

При конфигурировании оборудования Cisco следует иметь в виду, что в нем отсутствует заводская установка IP адреса по умолчанию, а вся конфигурация выполняется вручную с консоли через консольный порт устройства.

Ниже приведены примеры разработки сценариев (скриптов) для гипотетической локальной сети предприятия, схема которой показана на рисунке 2.5.

2.9.1 Сценарии конфигурации коммутаторов

Конфигурация коммутатора 4.

Конфигурацию коммутаторов начнем с корневого устройства, с которым непосредственно связаны все остальные коммутаторы сети. Пусть все коммутаторы сети – устройства типа Cisco Catalyst 2950-24, содержащие 24 интерфейса (порта) FastEthernet. К коммутатору 4 посредством магистральных каналов (транков) подключены коммутаторы 1-3, а к портам FastEthernet подсоединены четыре внутренние серверы рабочих групп и сетевой маршрутизатор. Предположим, что внутренние серверы подключаются к следующим портам коммутатора: SvI-1 – Fa0/4; SvI-2 – Fa0/5; SvI-5 – Fa0/6; SvI-7 – Fa0/7. Первый коммутатор соединяется с корневым через магистральный порт Fa0/11, второй – через магистральный порт Fa0/12, третий – через магистральный порт Fa0/13, а соединение коммутатора 4 с маршрутизатором осуществляется через магистральный порт Fa0/24.

Сценарий конфигурации данного коммутатора состоит из следующих команд.

```
!-- Вход в привилегированный режим конфигурации.
Switch>enable
Switch#

!-- Задание пароля для входа в привилегированный режим.
Switch# configure terminal
Switch(config)# enable password <Пароль привилегированного режима>
!-- Установка пароля для входа по telnet по линиям 0...4.
Switch(config)# line vty 0 4
Switch(config-line)#password <Пароль для telnet>
!-- Разрешение входа по telnet.
Switch(config-line)# login
Switch(config)# exit
!-- Шифрование паролей, чтобы они не показывались в открытом виде.
```

```
Switch(config) # service password-encryption
!-- Сохранение (при необходимости) текущей конфигурации.
Switch#copy running-config startup-config
!-- Стирание (в случае необходимости) текущей стартовой конфигурации.
Switch#erase startup-config
!-- Вход в режим глобального конфигурирования.
Switch#configure terminal
Switch (config) #
!-- Присвоение имени Cat2950-4 конфигурируемому устройству.
Switch (config) #hostname Cat2950-4
Cat2950-4 (config) #
!-- Присвоение ІР-адреса для управления коммутатором.
Cat2950-4(config) # interface vlan 1
Cat2950-4(config-if) # ip address 10.1.0.4 255.255.255.0
!-- Ввод команды exit, чтобы изменения были приняты.
Cat2950-4(config-if)# exit
Cat2950-4 (config) #
!-- Создание виртуальных сетей.
!-- Переход в привилегированный режим.
Cat2950-4(config) # exit
Cat2950-4#
!-- Вход в базу данных VLAN для конфигурации виртуальных сетей.
Cat2950-4# vlan database
!-- Для облегчения задач администрирования сети применим протокол VTP.
!-- Объявление домена, на который распространяется действие протокола
Cat2950-4(vlan) # vtp domain Victoria
!-- Задание коммутатору режима "Сервер".
Cat2950-4(vlan) # vtp server
!-- Если коммутатор уже находится в режиме "сервер" и нужно, чтобы он
!-- оставался в этом режиме, эту команду можно опустить.
!-- Создание на коммутаторе-сервере всех VLAN, имеющихся в данной сети
!-- Первая виртуальная сеть уже имеется по умолчанию. Первоначально в
нее
!-- входят все (Fa0/0...Fa0/24) интерфейсы коммутатора.
!-- Создание второй виртуальной сети.
Cat2950-4(vlan) #vlan 2
!-- Аналогично задаются остальные сети.
Cat2950-4(vlan) #vlan 7
Cat2950-4 (vlan) #exit
Cat2950-4#
1 --
!-- Задание имен сетям (при желании).
Cat2950-4# configure terminal
```

```
Cat2950-4(config) #vlan 2 name buchgalteria
!-- Включение в VLAN 1 порта fa0/4 (сервера первой рабочей группы).
Cat2950-4(config) # interface fa0/4
!-- Задание порту режима коммутации (работы на канальном уровне).
Cat2950-4(config-if) # switchport mode access
!-- Включение в VLAN 2 порта fa0/5 (сервера второй рабочей группы) и
!-- задание порту режима коммутации (работы на канальном уровне).
Cat2950-4(config) # interface fa0/4
Cat2950-4(config-if) # switchport access vlan 2
!-- Аналогично включаются серверы 5-й и 7-й рабочих групп в соответ-
ствующие
!-- виртуальные сети VLAN 5 и VLAN 7.
!-- Ввод команды exit для сохранения изменений.
Cat2950-4(config-if)# exit
Cat2950-4 (config) #
!-- Перевод портов FastEthernet 0/11, 0/12, 0/13 и 0/24 на коммутаторе
4 в режим
!-- trunk.. Конфигурация порта 0/11.
Cat2950-4(config) #interface FastEthernet0/11
!-- Задание режима инкапсуляции по протоколу 802.10
Cat2950-4(config-if) #switchport trunk encapsulation dot1q
!-- Задание магистрального режима
Cat2950-4 (config-if) #switchport mode trunk
!-- Разрешение передачи кадров для всех VLAN по магистрали
Cat2950-4(config-if) #switchport trunk allowed vlan all
Cat2950-4(config-if)#exit
!-------
Cat2950-4(config)#interface FastEthernet0/24
Cat2950-4(config-if) #switchport trunk encapsulation dot1q
Cat2950-4(config-if) #switchport mode trunk
Cat2950-4(config-if) #switchport trunk allowed vlan all
Cat2950-4 (config-if) #exit
Cat2950-4 (config) #
!-- Контроль созданных VLAN и принадлежности портов
Cat2950-4(config) # exit
Cat2950-4# show vlan
```

Затем следует определить IP-адреса, которые нужно назначить на VLAN интерфейс, чтобы маршрутизатор был способен выполнять маршрутизацию между VLAN. Когда маршрутизатор принимает пакет, предназначенный для другой сети (VLAN), он просматривает свою таблицу маршрутизации чтобы определить, куда переслать пакет. В результате пакет передается на нужный VLAN интерфейс. Последний в свою очередь посылает пакет на тот порт, к которому подсоединен целевая рабочая станция. В качестве адреса для всех

VLAN выберем адрес соответствующей виртуальной сети с номером в поле хоста равным 100.

```
!-- Конфигурируем VLAN интерфейсы IP-адресами, определенными в !-- предыдущем пункте. !-- Cat2950-4#configure terminal Cat2950-4(config)#interface vlan 2 Cat2950-4(config-if)#ip address 10.1.2.100 255.255.255.0 Cat2950-4(config-if)#no shutdown Cat2950-4(config)#interface vlan 5 Cat2950-4(config-if)#ip address 10.1.5.100 255.255.255.0 Cat2950-4(config-if)#ip address 10.1.5.100 255.255.255.0 Cat2950-4(config-if)#no shutdown
```

Этот процесс нужно повторить для всех VLAN, которые используются в маршрутизации.

Конфигурация коммутатора 1.

К коммутатору 1 подключаются компьютеры трех виртуальных сетей: VLAN 1, VLAN 5 и VLAN 7. Подключение осуществляется через интерфейсы FastEthernet (fa), работающим в режиме доступа на канальном уровне. Виртуальной сети VLAN 1 выделим интерфейсы fa0/1...fa0/5, сети VLAN 5 — интерфейсы fa0/6...fa0/11, а сети VLAN 7 — fa0/12...fa0/21. Интерфейс fa0/24 настраивается на магистральный (транковый) режим.

```
!-- Сценарий конфигурации первого коммутатора состоит из следующих ко-
!-- Вход в привилегированный режим конфигурации.
Switch>enable
Switch#
!-- Задание пароля для входа в привилегированный режим.
Switch# configure terminal
Switch(config) # enable password <Пароль привилегированного режима>
!-- Установка пароля для входа по telnet.
Switch(config) # line vty 0 4
Switch(config-line) #password <Пароль для telnet>
!-- Разрешение входа по telnet.
Switch(config-line) # login
Switch(config) # exit
!-- Шифрование паролей чтобы они не показывались в открытом виде.
Switch(config)# service password-encryption
!-- Сохранение (при необходимости) текущей конфигурации.
Switch#copy running-config startup-config
!-- Вход в режим глобального конфигурирования.
Switch#configure terminal
Switch(config)#
!-- Присвоение имени Cat2950-1 конфигурируемому устройству.
Switch (config) #hostname Cat2950-1
Cat2950-1(config)#
```

```
!-- Задание режима работы с VTP протоколом.
!-- Переход в привилегированный режим.
Cat2950-1(config)# exit
Cat2950-1#
!-- Вход в базу данных VLAN.
Cat2950-1# vlan database
!-- Включение коммутатора в домен, на который распространяется действие
!-- VTP протокола.
Cat2950(vlan) # vtp domain Victoria
!-- Задание коммутатору режима "Клиент".
Cat2950-1(vlan) # vtp client
Cat2950-1 (vlan) #exit
!-- Контроль статуса коммутатора.
Cat2950-1#show vtp status
!-- Конфигурация магистрального интерфейса.
Cat2950-1#configure terminal
Cat2950-1 (config) #int fa0/24
Cat2950-1(config-if) #switchport trunk encapsulation dot1q
Cat2950-1(config-if) #switchport mode trunk
Cat2950-1(config-if) #switchport trunk allowed vlan 1-7
Cat2950-1(config-if)#exit
Cat2950-1 (config) #exit
!-- Проверка того, что информация о виртуальных сетях, созданных на
сервере,
!-- распространилась на коммутатор-клиент.
Cat2950-1#schow vlan
!-- Включение в VLAN 5 группы портов с 6-го по 11-й.
Cat2950-1(config) # interface range FastEthernet 0/6 - 11
!-- Задание портам режима коммутации (работы на канальном уровне).
Cat2950-1(config-if) # switchport mode access
!-- Включение портов в виртуальную сеть VLAN 5.
Cat2950-1(config-if) # switchport access vlan5
!-- Включение поддержки алгоритма STP.
Cat2950-1(config-if) #spanning-tree port FastEthernet
1 --
!-- Включение в VLAN 7 диапазона портов с 12-го по 21-й.
Cat2950-1(config)# interface range FastEthernet 0/12 - 21
!-- Задание портам режима коммутации.
Cat2950-1(config-if) # switchport mode access
!-- Включение портов в VLAN 7.
Cat2950-1(config-if) # switchport access vlan 7
! --
!-- Сохранение настроек и переход в режим глобальной конфигурации.
Cat2950-1(config-if)#exit
```

```
!-- Перевод порта FastEthernet0/24 на коммутаторе 1 в режим trunk.. Cat2950-1(config) #interface FastEthernet0/24 Cat2950-1(config-if) #switchport mode trunk

!-- Задание режима инкапсуляции 802.1Q.
Cat2950-1(config-if) #switchport trunk encapsulation dot1q

!-- Разрешение передачи кадров для всех VLAN по магистрали. Cat2950-1(config-if) #switchport trunk allowed vlan all Cat2950-1(config-if) #exit
!--
```

Конфигурация коммутаторов 2 и 3

Процедура конфигурации обоих коммутаторов выполняется аналогично предыдущей. Как следует из логической схемы сети предприятия (рисунок 2.5) к коммутатору 2 подключаются компьютеры виртуальных сетей VLAN 2, 5 и 6. Интерфейс fa0/24 конфигурируется в режиме магистрального.

К коммутатору 3 подключаются компьютеры виртуальных сетей VLAN 2, 3 и 4. Кроме этого, в состав VLAN 4 входит внутренний сервер рабочей группы. Интерфейс fa0/24 конфигурируются в режиме магистрального.

В пояснительной записке необходимо привести полные тексты сценариев конфигурации всех телекоммуникационных устройств.

Правильность создания и конфигурации коммутаторов осуществляется путем задания следующих команд:

show vlan; show vtp status; show interface; show running-config.

2.9.2 Сценарий минимальной конфигурации маршрутизатора

Для проектируемой сети выбран маршрутизатор типа Cisco 2621 с IOS 12.4. В данном маршрутизаторе имеется два последовательных внешних интерфейса (WAN) Serial0/0 и Serial0/1, один из которых используем для подключения к Интернет-провайдеру, а также два внутренних порта FastEthernet 0/1-0/2. К внутренним портам подключаются корневой коммутатор 4 локальной сети и внешний сервер предприятия SvO.

```
!-- Перевод маршрутизатора в привилегированный режим EXEC. Router> enable Router#

!-- Вход в режим глобального конфигурирования. Router#configure terminal Router(config)#

!-- Установка пароля входа через виртуальный терминал. Router(config)#line console 0
Router(config)#password [наш пароль]

!-- Вход в режим консоли.
```

```
Router(config) #login
Router(config) #exit
Router#wr mem
!-- Присвоение имени Cisco2621 конфигурируемому маршрутизатору.
Router(config) #hostname Cisco2621
Cisco2621 (config) #
!-- Установка пароля входа через Telnet.
!-- Задание числа разрешенных сессий равное 5-ти (с 0-й по 4-ю).
Cisco2621(config)#line vty 0 4
Cisco2621 (config) #password [наш пароль]
Cisco2621 (config) #login
!-- Разрешение функционирования SNMP, для возможности получения
!-- статистики.
Cisco2621(config) #snmp-server community community name RO
!-- Установка выданного провайдером глобального ІР-адреса.
Cisco2621(config)# interface Serial0/1
Cisco2621(config-if)# ip address 83.221.169.36 255.255.255.0
!-- Установка ІР-адреса интерфейса маршрутизатора в локальной сети
!-- (он же шлюз по умолчанию).
Cisco2621(config)# interface FastEthernet0/0
Cisco2621(config-if) # ip address 10.1.0.254 255.255.255.0
!-- Конфигурация внутреннего интерфейса FastEthernet0/0, к которому
!-- подключена вся сеть организации
Cisco2621(config) #interface FastEthernet0/0
Cisco2621(config-if)# no ip address
!-- Включение интерфейса.
Cisco2621(config-if) #no shutdown
!-- Сохранение конфигурации.
Cisco2621 (config-if) #exit
! --
!-- Создание подинтерфейса и настройка магистрали.
Cisco2621(config) #interface FastEthernet0/0.1
!-- Задание режима инкапсуляции 802.1Q.
Cisco2621(config-subif) #encapsulation dot10 1 native
!-- Присвоение подинтерфейсу fa0/0.1 IP адреса.
Cisco2621(config-subif)#ip address 10.1.1.20 255.255.255.0
Cisco2621(config-subif)# no shutdown
Cisco2621(config-subif)#exit
! --
!-- Выполнение аналогичных операции для настройки магистралей
!-- на подинтерфейсах fa0/0.2...fa0/0.7.
Cisco2621(config)#int fastEthernet 0/0.2
Cisco2621(config-subif) #encapsulation dot1Q 2
Cisco2621(config-subif)#ip address 10.1.2.20 255.255.255.0
Cisco2621(config-subif) # no shutdown
Cisco2621(config-subif)#exit
```

```
Cisco2621(config) #int fastEthernet 0/0.7
Cisco2621(config-subif) #encapsulation dot1Q 7
Cisco2621(config-subif)#ip address 10.1.7.20 255.255.255.0
Cisco2621(config-subif)# no shutdown
Cisco2621 (config-subif) #exit
!-- Контроль состояния интерфейсов
Cisco2621#show int
! --
!-- Конфигурация интерфейса для подключения внешнего сервера
!-- Задание адреса интерфейсу внешнего сервера
Cisco2621#configure terminal
Cisco2621(config)#int fa0/1
Cisco2621(config-if) #ip address 10.1.0.254 255.255.255.0
!-- Включение интерфейса
Cisco2621(config-if) #no shutdown
Cisco2621(config-if)#exit
Cisco2621 (config) #exit
Cisco2621#
!-- Конфигурация внешнего последовательного интерфейса
Cisco2621#configure terminal
Cisco2621(config)#int s0
! --
!-- Задание глобального ІР-адреса и включение интерфейса
Cisco2621(config-if) #ip address 83.221.169.36 255.255.255.0
Cisco2621(config-if) #no shutdown
Cisco2621(config-if)#exit
Cisco2621 (config) #exit
!-- Задание тактовой частоты устройству с кабельным окончанием DCE
Cisco2621#configure terminal
Cisco2621(config)#int s0
Cisco2621(config-if) #clock rate 1000000
Cisco2621(config-if)#end
Cisco2621#
```

2.9.3 Конфигурирование списков доступа

Предположим, что политикой доступа в сети данной организации определено, что пользователям сети запрещается доступ к компьютерам рабочей группы дирекции организации (директор, главный инженер, главный бухгалтер и др.), кроме персонала группы технической поддержки (администратор сети, инженеры). Согласно распределению адресов между рабочими группами (таблица 2.7), компьютеры рабочей группы дирекции входят в виртуальную сеть с адресом 10.1.2.0/24, а виртуальная сеть рабочей группы технической поддержки имеет адрес 10.1.1.0/24.

Кроме этого, политикой безопасности установлено, что к внешнему серверу организации имеет право доступа клиенты всех рабочих групп, за исключением седьмой.

Реализация данной политики доступа осуществляется путем конфигурации на маршрутизаторе списков доступа.

```
!-- Запрет доступа к компьютерам группы управления (сеть 10.1.2.0), кроме
!-- персонала группы технической поддержки (сеть 10.1.1.0)
!-- Задание расширенного списка доступа
Cisco2621#configure terminal
!-- Разрешение доступа с виртуальной сети группы поддержки
Cisco2621(config) #access-list 102 permit ip 10.1.1.0 0.0.0.255 10.1.2.0
0.0.0.255
!-- Неявный запрет для всех остальных пользователей
!-- Привязка списка доступа к подинтерфейсу vlan 2
Cisco2621 (config) #int fa0/0.2
Cisco2621(config-subif) #ip access-group 102 out
Cisco2621(config-subif)#exit
!-- Запрет доступа к внешнему серверу пользователей 7-й рабочей группы
!-- (10.1.7.0), всем остальным пользователям сети организации доступ
разрешен
Cisco2621(config) #access-list 101 permit tcp any any
Cisco2621(config)#int fa0/1
Cisco2621(config-if) #ip access-group 101 out
Cisco2621 (config-if) #exit
Cisco2621(config)#int fa0/1
Cisco2621(config-if) #no ip access-group 101 out
Cisco2621(config-if) #no access-list 101 permit tcp any any
Cisco2621(config) #no access-list 101 deny tcp 10.1.7.0 0.0.0.255
10.1.0.2 0.0.0.0
Cisco2621 (config) #exit
!-- Контроль созданного списка доступа
Cisco2621#show access-list
```

Пусть пользоваться Интернетом разрешается сотрудникам, которые находятся в сетях 10.1.5.0 и 10.1.7.0, только в рабочие дни во время перерыва на обед, начало действия данного правила – с 1 июня 2011 г, окончание – не определено. При этом разрешается прохождение только TCP-пакетов, содержащие данные протокола HTTP.

Сотрудникам сети 10.1.2.0 выход в Интернет разрешается в рабочие дни с 7:00 до 22:00 и в выходные дни с 9:00 до 15:00.

В сети 10.1.6.0 установлен сервер с адресом 10.1.6.30, доступ к которому разрешен только для пользователей этой сети по рабочим дням с 8:00 до 17:00. Данное правило должно вступить в действие сразу и закончиться к концу года.

Для защиты от атак типа DDoS предусмотреть закрытие любого TCPсеанса, если он не установлен в течение 30 с.

Сценарий конфигурации маршрутизатора для указанных условий имеет следующий вид.

```
Cisco2621#configure terminal Cisco2621(config)#ip access-list 101 permit tcp any any eq 80 time-range allow-http
```

```
!-- Разрешение прохождения ТСР пакетов, содержащих данные протокола НТТР,
!-- во всех направлениях.
Cisco2621(config) #interface FastEthernet0/0
  ip access-group 101 in
  time-range allow-http
  absolute start 00:01 1 June 2011
  periodic weekdays 13:00 to 14:00
!-- Назначение списка доступа интерфейсу FastEthernet0/0. Приведем !--
!-- пример конфигурации такого списка доступа:
interface FastEthernet0/0
 ip access-group 102 in
  time-range http-ok
 absolute end 24:00 31 December 2001
 periodic weekdays 08:00 to 17:00
ip access-list 102 permit tcp any host 140.11.12.10 eq 80 time-range
http-ok
!-- Закрытие любого ТСР-сеанса, не установленного в течение 30 секунд
!-- для защиты от flood-атаки SYN с отказом в обслуживании.
ip tcp synwait-time 30
```

2.9.4 Конфигурирование процедур трансляции адресов

Выбранный маршрутизатор типа Cisco2621 содержит два порта для подключения локальных сетей (FastEthernet0/0 и FastEthernet0/1) и один последовательный порт s0 для подключения к глобальной сети провайдера Интернетуслуг. Пусть данной организации выделен один глобальный (публичный) IPадрес (83.221.169.36/24) для внешнего сервера, а также группа глобальных IPадресов в диапазоне 83.221.169.37 — 83.221.169.40. Для преобразования частного адреса внешнего сервера в глобальный адрес маршрутизатор должен выполнять статическую трансляцию внутреннего адреса 10.1.0.30 сервера во внешний глобальный адрес 83.221.169.36/24. Предположим, что на маршрутизаторе используется протокол маршрутизации RIP.

```
!-- Задание протокола маршрутизации
Cisco2621#configure terminal
Cisco2621 (config) #Cisco2621 rip
! --
!-- Указания адреса смежной сети
Cisco2621 (config-Cisco2621) #network 83.221.169.0
Cisco2621(config-if)#exit
Cisco2621 (config) #exit
Cisco2621> enable
Cisco2621# configure terminal
Cisco2621 (config) # interface fastethernet 0/0
! --
!-- Указание на внутренний интерфейс
Cisco2621 (config-if) # ip nat inside
Cisco2621 (config-if) # exit
Cisco2621 (config) # interface serial0
```

```
!-- Задание последовательного порта в качестве внешнего интерфейса
Cisco2621 (config-if) # ip nat outside
Cisco2621 (config-if) # exit
!-- Задание соответствия локального адреса и глобального
Cisco2621 (config) # ip nat inside source static 10.1.0.2 83.221.169.36
Cisco2621 (config) # exit
! --
!-- Проверка правильности трансляции адреса осуществляется командой
Cisco2621#show ip nat translations
! --
!-- Конфигурация процедуры динамического преобразования адресов
Cisco2621#configure terminal
!--Задание пула адресов
Cisco2621(config)#ip nat pool 7 83.221.169.37 83.221.169.40 netmask
255.255.255.0
!-- Указание на преобразование адресов из списка 17 в пул адресов 7
Cisco2621(config) #ip nat inside source list 17 pool 7
!-- Создание списка доступа с номером 17, определяющий компьютеры,
!-- для которых разрешается выполнять трансляцию для внутренних адресов
Cisco2621(config) #access-list 17 permit 10.1.0.0 0.0.255.255
! --
!-- Задание последовательного порта в качестве внешнего интерфейса
Cisco2621(config)#interface s0
Cisco2621(config-if) #ip nat outside
Cisco2621(config-if)#exit
!-- Указание на внутренний интерфейс
Cisco2621(config)#interface fa0/0
Cisco2621(config-if) #ip nat inside
Cisco2621 (config) #exit
!-- Проверка правильности восприятия команд маршрутизатором
Cisco2621#show ip nat tr
Cisco2621 #Show access-list
```

Для сохранения созданной конфигурации маршрутизатора необходимо применить команду

Cisco2621# copy running-config startup-config

2.10 Компьютерное моделирование функционирования сети

2.10.1 Цели и задачи моделирования сети

Целью моделирования является проверка функционирования спроектированной компьютерной сети предприятия в соответствии с техническим задание и корректности разработанных сценариев конфигурирования телекоммуникационного оборудования.

В процессе достижения поставленной цели решались следующие задачи:

- создания топологии спроектированной сети или ее фрагмента;
- назначение портов телекоммуникационного оборудования для подключения рабочих станций и серверов;
- соединение рабочих станций и серверов сети с портами соответствующего телекоммуникационного оборудования, а также телекоммуникационного оборудования между собой;
 - создание виртуальных локальных сетей (Vlan) рабочих групп;
 - задание IP-адресов и сетевых масок рабочим станциям и серверам;
 - конфигурация коммутаторов и маршрутизатора;
- проверка доступности рабочих станций сети и степени изолированности виртуальных сетей;
- коррекция схемы сети и сценариев конфигурации (в случае необходимости) по результатам проверки функционирования спроектированной сети.

2.10.2 Создание топологии сети в пакете эмуляции Cisco Packet Tracer

В данном проекте моделирование проводится не всей спроектированной сети, изображенной на рисунке 2.5, а ее фрагмента, который отображает все принципиальные составные части сети (рисунок 2.6). Для моделирования вза-имодействия сети организации с глобальной сетью в модель введен маршрутизатор и сервер провайдера Интернет-услуг Sv-ISP. Предполагается, что для подключение локальной сети к провайдеру предоставляется выделенная цифровая линия связи.

Моделирование сети осуществляется в среде сетевого эмулятора Cisco Packet Tracer версии 6.2 и выше. Для моделирования также возможно использование эмуляторов других типов.

Построение топологии сети выполняется на основе схемы сети (рисунок 2.6) с помощью конструктора (дизайнера) сети Cisco Packet Tracer 6.2. В начале запускается Cisco Packet Tracer. При этом открывается новое рабочее окно дизайнера сети. Топология сети создается путем выбора из базы оборудования маршрутизатора соответствующего типа, нужных типов коммутаторов и рабочих станций и размещения их в рабочем поле окна конструктора. После распределения портов по локальным сетям осуществляется соединение рабочих станций с соответствующими портами коммутаторов, а также коммутаторов между собой и коммутатора с маршрутизатором.

Вид топологии сети изображен на рисунке 2.7. Данный фрагмент включает компьютеры пяти подсетей рабочих групп, каждая из которых представляет собой виртуальную локальную сеть (соответственно VLAN1, VLAN2, VLAN5, VLAN6 и VLAN7), логически отделенную от подсетей других рабочих групп. Кроме рабочих станций в сети имеется сервер рабочей группы, входящий в шестую подсеть и внешний сервер предприятия.

Рисунок 2.6 – Моделируемый фрагмент сети

Модель сети содержит два аналогичных 12-портовых сетевых коммутатора второго уровня типа Cisco Catalyst 2950 – Sw-1 и Sw-2. Все порты коммутаторов являются 100 мегабитовыми портами типа FastEthernet. В первый коммутатор включены по две рабочих станции 1-й, 5-й и 7-й виртуальных сетей. Обозначение рабочей станции содержит две буквы РС и два цифровых символа. Первый из них

отражает номер виртуальной сети, а второй – номер станции в соответствующей сети. Внутренний сервер рабочей группы обозначается символами SvI, а внешний – SvO.

Ко второму коммутатору Sw-2 подсоединены две станции сети VLAN2, две станции VLAN5 и сервер рабочей группы, входящий в эту же виртуальную сеть, а также две рабочих станции VLAN7. В состав сети входит маршрутизатор типа Cisco-2621, располагающий двумя портами FastEthernet и одним последовательным портом S0. Последовательный порт через выделенную цифровую линию соединен с последовательным портом маршрутизатора провайдера сетевых услуг аналогичного типа. К порту FastEthernet данного

маршрутизатора подключен сервер провайдера Sv-ISP. После создания топологии сети она сохраняется в файле топологии с произвольным именем и расширением *.top.

Рисунок 2.7 – Топология компьютерной сети в окне Cisco Packet Tracer

На схеме топологии моделируемой сети, для облегчения ее понимания, отмечены номера портов, через которые выполнено подключение рабочих станций, серверов, а также осуществляется связь коммуникационного оборудования между собой. Символы в обозначениях портов (fa0/1 и др.) отображают тип интерфейса (FastEthernet), номер модуля и номер порта в соответствующем модуле. Для обозначения последовательного порта маршрутизатора, служащего для соединения его с внешней сетью, используется символ s0.

Следует отметить, что обозначения портов нанесены в среде внешнего графического редактора после завершения создания топологии и ее сохранения.

2.10.3 Конфигурация и моделирование функционирования локальной сети в среде Cisco Packet Tracer

Топология конфигурируемой сети изображена на рисунке 2.7. С целью упрощения конфигурации и администрирования сети используем VTP режим. Конфигурация будет осуществлять поэтапно, начиная с создания виртуальных сетей. Что избежать ошибок периодически будет проводиться проверка созданной топологии путем использования команд show и контрольного

пингования участков создаваемой сети. Конфигурацию начнем с корневого коммутатора Sw-3.

С целью проведения промежуточного тестирования участков сети в процессе ее конфигурации следует присвоить адреса всем хостам (рабочим станциям и серверам). Для этого нужно перейти в окно eStations и выбрать конфигурируемый хост (SvI-1, PC1-1,...PC5-8 и т.д.). В появившемся окне нажать клавишу Ввод и задать устройству IP-адрес, сетевую маску и адрес шлюза по умолчанию следующими командами:

```
C:>
C:>ipconfig /ip 10.1.1.1 255.255.255.0
C:>ipconfig /dg 10.1.1.254
```

Затем нужно проверить правильность установок путем ввода команды:

```
C:>ipconfig
```

В результате на экране дожно появиться сообщение вида:

Конфигурация корневого коммутатора 3

В коммутаторе используется 4 порта в режиме доступа и три – в магистральном (транковом) режиме

```
Switch>enable
   Switch#configure terminal
   Enter configuration commands, one per line. End with CNTL/Z.
   Switch (config) #hostname Cat2950-3
   Cat2950-3 (config) #exit
   Cat2950-3#vlan database
   Cat2950-3(vlan) #vtp server
   !-- Задание имени vtp домена
   Cat2950-3(vlan) #vtp domain Victoria
   Changing VTP domain from NULL to victoria
   Cat2950-3(vlan)#exit
   APPLY completed.
   Exiting....
   ! --
   !-- Проверка статуса коммутатора и режима работы.
   Cat2950-3#show vtp status
vir version : 2
Configuration Revision : 2
Maximum VI.ANS CONTRACTOR : 2
Maximum VLANs supported lo- : 64
cally
Number of existing VLANs : 5
VTP Operating Mode : Server
```

```
VTP Domain Name : victoria
VTP Pruning Mode : Disabled
VTP V2 Mode : Disabled
VTP Traps Generation : Disabled
```

MD5 digest : 0xEE 0xB3 0xDC 0x9F 0xE2 0xE0 0x25 0xDF

Configuration last modified by 0.0.0.0 at 3-1-93 04:55:57 Local updater ID is 0.0.0.0 (no valid interface found)

Из сообщения видно, что коммутатор установлен в режим сервера и имя домена присвоено правильно.

! --

!-- Вход в базу данных VLAN для конфигурации виртуальных сетей и

!-- задание необходимого перечня виртуальных сетей

Cat2950-3#vlan database Cat2950-3(vlan)#vlan 2

VLAN 2 added:
 Name:VLAN0002

Cat2950-3(vlan)#vlan 5

VLAN 5 added:
Name:VLAN0005

Cat2950-3(vlan)#vlan 6

VLAN 6 added:
 Name:VLAN0006

Cat2950-3(vlan)#vlan 7

VLAN 7 added:
 Name:VLAN0007

Cat2950-3 (vlan) #exit

APPLY completed.

Exiting....

! — Контроль созданных виртуальных сетей $Cat2950-3\#show\ vlan$

VLAN	Name	Status	Ports
1	default		Fa0/1, Fa0/2, Fa0/3, Fa0/4, Fa0/5,
I	geraurt	active	Fa0/1, Fa0/2, Fa0/3, Fa0/4, Fa0/5, Fa0/6, Fa0/7, Fa0/8, Fa0/9, Fa0/10, Fa0/11, Fa0/12
2	VLAN0002	active	
5	VLAN0005	active	
6	VLAN0006	active	
7	VLAN0007	active	
1002	fddi-default	active	
1003	token-ring-de- fault	active	
1004	fddinet-default	active	
1005	trnet-default	active	

VLAN	Type	SAID	MTU	Parent	RingNo	BridgeNo	Stp	BrdgMode	Trans1	Trans
1	enet	100001	1500							
7	enet	100007	1500	_	_	_	_	_	0	0
5	enet	100005	1500	-	_	_	_	_	0	0
2	enet	100002	1500	_	_	_	-	_	0	0
6	enet	100006	1500	-	_	_	-	-	0	0
1002	fddi	101002	1500	-	_	_	-	-	0	0
1003	tr	101003	1500	_	_	_	_	-	0	0
1004	fdnet	101004	1500	_	_	_	ieee	-	0	0
1005	trnet	101005	1500	_	_	_	ibm	_	0	0

Из таблицы видно, что созданные виртуальные сети находятся в активном состоянии, а все порты на начальном этапе принадлежат сети vlan 1, максимально допустимый размер кадра составляет 1500 байтов.

```
!-- Задание режимов и назначение портов коммутатора
Cat2950-3#configure terminal
!-- Назначение портов доступа соответствующим vlan
Cat2950-3 (config) #interface fa0/2
Cat2950-3(config-if) #switchport access vlan 2
Cat2950-3 (config-if) #exit
Cat2950-3 (config) #interface fa0/5
Cat2950-3 (config-if) #switchport access vlan 5
Cat2950-3 (config-if) #exit
Cat2950-3(config)#interface fa0/7
Cat2950-3 (config-if) #switchport access vlan 7
Cat2950-3 (config-if) #exit
!-- Задание магистрального порта интерфейсу FastEthernet0/10
Cat2950-3 (config) #interface fa0/10
Cat2950-3(config-if) #switchport trunk encapsulation dot1q
Cat2950-3(config-if) #switchport mode trunk
Cat2950-4 (config-if) #switchport
                                   trunk
                                             allowed vlan all
Cat2950-3(config-if)#end
!-- Проверка принадлежности портов виртуальным сетям
Cat2950-3#show vlan
```

VLAN	Name	Status	Ports
1	default	active	Fa0/1, Fa0/3, Fa0/4, Fa0/6, Fa0/8, Fa0/9, Fa0/10, Fa0/11, Fa0/12
2	VLAN0002	active	Fa0/2
5	VLAN0005	active	Fa0/5
6	VLAN0006	active	
7	VLAN0007	active	Fa0/7
1002	fddi-default	active	
1003	token-ring-default	active	
1004	fddinet-default	active	
1005	trnet-default	active	

Из таблицы видно, в состав виртуальных сетей vlan2 — vlan7, vlan6 включены порты, к которым подсоединены внутренние серверы соответствующих рабочих групп.

```
!-- Задание еще двух магистральных портов
Cat2950-3#configure terminal
Cat2950-3(config)#interface fa0/11
Cat2950-3(config-if)#switchport trunk encapsulation dot1q
Cat2950-3(config-if)#switchport mode trunk
Cat2950-3(config-if)#switchport trunk allowed vlan all
Cat2950-3(config-if)#exit
Cat2950-3(config)#exit
Cat2950-3(config)#interface fa0/12
Cat2950-3(config-if)#switchport trunk encapsulation dot1q
```

```
Cat2950-3(config-if)#switchport mode trunk
Cat2950-3(config-if)#switchport trunk allowed vlan all
Cat2950-3(config-if)#exit
Cat2950-3(config)#exit
!-- Контроль состояния магистральных портов
Cat2950-3#show interface trunk
```

```
Port Mode Encapsulation Status Native vlan Fa0/10 on 802.1q trunking 1
Port Vlans allowed on trunk
Fa0/10 1-4094
Port Vlans allowed and active in management domain Fa0/10 2,5,6,7
Port Vlans in spanning tree forwarding state and not pruned Fa0/10 2,5,6,7

Port Mode Encapsulation Status Native vlan on 802.1q trunking 1
Port Vlans allowed on trunk
Fa0/11 1-4094
Port Vlans allowed and active in management domain Fa0/11 2,5,6,7
Port Vlans in spanning tree forwarding state and not pruned Fa0/11 2,5,6,7
Port Vlans allowed state forwarding state and not pruned Fa0/12 1-4094
Port Vlans allowed on trunk
Fa0/12 1-4094
Port Vlans allowed on trunk
Fa0/12 1-4094
Port Vlans allowed and active in management domain Fa0/12 1-4094
Port Vlans allowed and active in management domain Fa0/12 2,5,6,7
Port Vlans in spanning tree forwarding state and not pruned Fa0/12 2,5,6,7
Port Vlans in spanning tree forwarding state and not pruned Fa0/12 2,5,6,7
```

Из этого сообщения следует, что на коммутаторе создано три магистральных порта, они находятся во включенном состоянии и осуществляют инкапсуляцию по протоколу 802.1q.

Конфигурация коммутатора 1

Процедура конфигурации осуществляется аналогично приведенной выше, за исключением того, что коммутатор устанавливается в клиентский режим. Поэтому комментарии здесь отсутствуют.

```
Switch>enable
Switch#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) #hostname Cat2950-1
Cat2950-1(config) #exit
Cat2950-1#vlan database
Cat2950-1(vlan) #vtp client
Cat2950-1(vlan) #vtp domain Victoria
Changing VTP domain from NULL to victoria
Cat2950-1(vlan) #exit
APPLY completed.
Exiting....
!--
Cat2950-1#show vtp status
```

```
66
```

```
VTP Version
 Number of existing VLANs : 9
 VTP Operating Mode
                             : Client
 VTP Domain Name
VTP Pruning Mode
                             : victoria
                             : Disabled
                             : Disabled
 VTP V2 Mode
 VTP Traps Generation
                             : Disabled
                          : 0xEE 0xB3 0xDC 0x9F 0xE2 0xE0 0x25 0xDF
 MD5 digest
 Configuration last modified by 0.0.0.0 at 3-1-93 04:55:57
 Local updater ID is 0.0.0.0 (no valid interface found)
    Cat2950-1#configure terminal
    Enter configuration commands, one per line. End with CNTL/Z.
    Cat2950-1 (config) #interface fa0/12
    Cat2950-1(config-if) #switchport trunk encapsulation dot1q
    Cat2950-1(config-if) #switchport mode trunk
    Cat2950-1(config-if) #switchport trunk allowed vlan all
    Cat2950-1 (config-if) #exit
    Cat2950-1 (config) #interface fa0/5
    Cat2950-1(config-if) #switchport access vlan 5
    Cat2950-1(config-if) #interface fa0/6
    Cat2950-1(config-if) #switchport access vlan 5
    Cat2950-1(config-if)#exit
    Cat2950-1(config) #interface range fa0/7-8
    Cat2950-1 (config-if-range) #switchport access vlan 7
    Cat2950-1 (config-if-range) #end
    Cat2950-1#show vlan
    !—
  VLAN Name
                             Status Ports
        ______
       default
                             active Fa0/1, Fa0/2, Fa0/3, Fa0/4,
                                    Fa0/9, Fa0/10, Fa0/11, Fa0/12
        VLAN0002
                             active
        VLAN0005
                             active Fa0/5, Fa0/6
        VLAN0006
VLAN0007
                            active
active Fa0/7, Fa0/8
       fddi-default active token-ring-default active fddinet-default active active
  1002
  1003
  1004 fddinet-default
1005 trnet-default
VLAN Type SAID MTU Par- RingNo Brid- Stp BrdgMode Trans1 Trans2
                 ent geNo
```

Конфигурация коммутатора 2

Процедура конфигурации осуществляется аналогично приведенной выше.

0 0 0

0 0 0

```
Switch>enable
Switch#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch (config) #hostname Cat2950-2
Cat2950-2 (config) #exit
Cat2950-2#vlan database
Cat2950-2(vlan) #vtp client
Cat2950-2(vlan) #vtp domain Victoria
Changing VTP domain from NULL to victoria
Cat2950-2 (vlan) #exit
APPLY completed.
Exiting....
! --
Cat2950-2#show vtp status
Cat2950-2#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Cat2950-2 (config) #interface fa0/12
Cat2950-2(config-if) #switchport trunk encapsulation dot1q
Cat2950-2(config-if) #switchport mode trunk
Cat2950-2(config-if) #switchport trunk allowed vlan all
Cat2950-2(config-if)#exit ^Z
%SYS-5-CONFIG I: Configured from console by console
Cat2950-2#show vlan
```

VLAN	Name	Status	Ports			
1	default	active	Fa0/1,	Fa0/2,	Fa0/3,	Fa0/4,
			Fa0/5,	Fa0/6,	Fa0/7,	Fa0/8,
			Fa0/9,	Fa0/10,	Fa0/11,	Fa0/12
2	VLAN0002	active				
5	VLAN0005	active				
6	VLAN0006	active				
7	VLAN0007	active				
1002	fddi-default	active				
1003	token-ring-default	active				
1004	fddinet-default	active				
1005	trnet-default	active				

Из таблицы видно, что в процессе реализации протокола VTP на коммутаторе активированы все виртуальные сети, объявленные на сервере.

```
Cat2950-2#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
!--
!-- Задание диапазона портов, входящих в vlan
!--
Cat2950-2(config) #interface range fa0/2-3
Cat2950-2(config-if-range) #switchport access vlan 2
!--
!-- Coxpanenue yctanobok
Cat2950-2(config-if-range) #exit
Cat2950-2(config) #interface fa0/5
Cat2950-2(config-if) #switchport access vlan 5
Cat2950-2(config-if) #exit
Cat2950-2(config-if) #exit
Cat2950-2(config-if-range) #switchport access vlan 6
```

```
Cat2950-2(config-if-range)#end
!--
!-- Контроль созданных виртуальных сетей
Cat2950-2#show vlan
```

VLAN	Name	Status	Ports
1	default	active	Fa0/1, Fa0/4, Fa0/9, Fa0/10,
			Fa0/11, Fa0/12
2	VLAN0002	active	Fa0/2, Fa0/3
5	VLAN0005	active	Fa0/5
6	VLAN0006	active	Fa0/6, Fa0/7, Fa0/8
7	VLAN0007	active	
1002	fddi-default	active	
1003	token-ring-default	active	
1004	fddinet-default	active	
1005	trnet-default	active	

Как видно из полученного сообщения, все порты входят в виртуальные сети, которые указывались при конфигурации.

Конфигурация маршрутизатора локальной сети Rt-2621

```
Router>
! --
!-- Вход в привилегированный режим и задание имени маршрутизатору
Router>enable
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router (config) #hostname Rt-2621
! --
!-- Включение интерфейса 0/0
Rt-2621(config)#interface fa0/0
Rt-2621(config-if) #no shutdown
%LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
!-- В сообщении подтверждается, что интерфейс включен (поднят)
!-- Конфигурация подинтерфейсов с заданием вида инкапсуляции и
!-ІР-адресов
Rt-2621 (config-if) #exit
Rt-2621 (config) #interface fa0/0.2
Rt-2621(config-subif)#encapsulation dot1q 2
Rt-2621(config-subif)#ip address 10.1.2.254 255.255.255.0
Rt-2621 (config-subif) #exit
Rt-2621 (config) #interface fa0/0.5
Rt-2621(config-subif)#encapsulation dot1q 5
Rt-2621(config-subif)#ip address 10.1.5.254 255.255.255.0
Rt-2621 (config-subif) #exit
Rt-2621 (config) #interface fa0/0.6
Rt-2621(config-subif)#encapsulation dot1q 6
Rt-2621(config-subif)#ip address 10.1.6.254 255.255.255.0
Rt-2621(config-subif)#exit
Rt-2621 (config) #interface fa0/0.7
Rt-2621(config-subif) #encapsulation dot1q 7
Rt-2621(config-subif) #ip address 10.1.7.254 255.255.255.0
Rt-2621(config-subif)#exit
Rt-2621 (config) #exit
```

```
!-- Контроль состояния интерфейсов Rt-2621#show interfaces
```

Проверка доступа клиентов к серверам

Проверка доступности севера SvI-5 (IP-адрес 10.1.5.30) с клиентского компьютера PC5-8 (10.1.5.8)

```
C:>ipconfig
 Cisco Packet Tracer 6.2 IP Configuration
  Ethernet adapter Local Area Connection:
   Default Gateway . . . . . . : 10.1.5.20
C:>ping 10.1.5.30
Pinging 10.1.5.30 with 32 bytes of data:
Reply from 10.1.5.30: bytes=32 time=60ms TTL=241
Ping statistics for 10.1.5.30: Packets: Sent = 5, Received = 5,
Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
  Minimum = 50ms, Maximum = 60ms, Average = 55ms
!-- Проверка возможности связи со станцией 7-й виртуальной сети
C:>ping 10.1.7.1
Pinging 10.1.7.1 with 32 bytes of data:
Reply from 10.1.7.1: bytes=32 time=60ms TTL=241
Ping statistics for 10.1.7.1: Packets: Sent = 5, Received = 5,
Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
  Minimum = 50ms, Maximum = 60ms, Average = 55ms
```

Вывод: Контрольное пингование подтверждает правильность конфигурации участка сети на данном этапе. Подключение виртуальных сетей к маршрутизатору позволяет осуществлять обмен между хостами различных виртуальных сетей.

Аналогичным образом необходимо проверить в сконфигурированной сети достижимость всех серверов и рабочих станций. При отсутствии достижимости тщательно проверить сконфигурированные устройства и их статус, находятся ли все используемые интерфейсы во включенном состоянии.

Следует иметь в виду. что интерфейс не поднимется, если к нему не подключена рабочая станция. Для проверки сети следует использовать команды:

show vlan show interfaces show interface status show ip interface brief show running-config

(DCE) должно

Переходим к следующему этапу конфигурации.

```
! --
!-- Задание IP-адреса интерфейсу внешнего сервера
Rt-2621#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Rt-2621(config)#interface fa0/1
Rt-2621(config-if) #ip address 10.1.0.254 255.255.255.0
Rt-2621(config-if) #no shutdown
%LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
Rt-2621(config-if)#exit
Rt-2621 (config) #exit
Rt-2621#
! --
!-- Конфигурация внешнего последовательного интерфейса
Rt-2621#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Rt-2621(config)#interface s0
!-- Задание глобального ІР-адреса и включение интерфейса
Rt-2621(config-if) #ip address 83.221.169.36 255.255.255.0
Rt-2621(config-if) #no shutdown
%LINK-3-UPDOWN: Interface SerialO, changed state to up
%LINK-3-UPDOWN: Interface SerialO, changed state to down
%LINEPROTO-5-UPDOWN: Line protocol on Interface SerialO, changed
state to down
Rt-2621 (config-if) #exit
Rt-2621 (config) #exit
!-- Интерфейс переключился в состояние down потому, что не была
указана
!-- тактовая частота в звене данных DTE-DCE. Нужно определить,
какая из
!-- сторон является терминальной частью (DTE), а какая коммуника-
ционной
!-- (DCE)? Для этого применяется команда
Rt-2621#show controllers s0
HD unit 0, idb = 0x1AE828, driver structure at 0x1B4BA0
buffer size 1524 HD unit 0, V.35 DTE cable
Rt-ISP#show contr s0
HD unit 0, idb = 0x1AE828, driver structure at 0x1B4BA0
buffer size 1524 HD unit 0, V.35 DCE cable
!-- При установлении соединения точка-точка одно из устройств
```

```
!-- задавать тактовую частоту. Выясним, какие допустимые значения
этой частоты
!-- можно назначать путем задания команды clock rate?
Rt-ISP#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Rt-ISP(config) #interface s0
Rt-ISP(config-if) #clock rate ?
500000
148000
1200
2400
4800
9600
1000000
. . . . . . .
1300000
2000000
4000000
! --
!-- Задание тактовой частоты устройству с кабельным окончанием
Rt-ISP(config-if) #clock rate 1000000
Rt-ISP(config-if)#end
 O lost carrier, O no carrier
   O output buffer failures, O output buffers swapped out
!-- Проверка достижимости сервера провайдера
Rt-2621#ping 24.35.45.5
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 24.35.45.5, timeout is 2 sec-
onds:
11111
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4
Rt-2621#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Rt-2621(config) #interface fa0/1
Rt-2621(config-if) #ip nat inside source static 10.1.0.2
83.221.169.36
Rt-2621 (config-if) #exit
!-- Задание процедуры трансляции адресов
Rt-2621(config)#interface s0
Rt-2621(config-if) #ip nat outside
Rt-2621(config-if)#exit
Rt-2621 (config) #exit
! --
!-- Контроль таблицы трансляции адреса
Rt-2621#show ip nat translation
Pro
      Inside global Inside local Outside local Outside
                                                  global
      83.221.169.36 10.1.0.2
```

Конфигурация маршрутизатора Интернет-провайдера

```
Rt-ISP#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
!-- Задание протокола маршрутизации и соседних сетей
Rt-ISP(config) #router rip
Rt-ISP(config-router) #network 24.35.45.0
Rt-ISP(config-router) #network 83.221.169.0
Rt-ISP(config-router)#exit
Rt-ISP#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile,
B - BGP
    D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter
    {\tt E1} - OSPF external type 1, {\tt E2} - OSPF external type 2, {\tt E} - {\tt EGP}
    i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candi-
date default
    U - per-user static route
Gateway of last resort is not set
     83.0.0.0/24 is subnetted, 1 subnets
     83.221.169.0 is directly connected, Serial0
     24.0.0.0/24 is subnetted, 1 subnets
С
     24.35.45.0 is directly connected, FastEthernet0/0
    10.0.0.0 [120/1] via 83.221.169.36, 00:02:14, Serial0
Rt-2621#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Rt-2621 (config) #router rip
Rt-2621 (config-router) #network 83.221.169.0
Rt-2621(config-if)#exit
Rt-2621 (config) #exit
Rt-2621#ping 83.221.169.30
!-- Указания адреса смежной сети
Cisco2621 (config-Cisco2621) #network 83.221.169.0
Cisco2621 (config-if) #exit
Cisco2621 (config) #exit
!-- Процедура статического преобразования адреса внешнего сервера
! --
Cisco2621> enable
Cisco2621# configure terminal
Cisco2621 (config) # interface fa0/1
! --
!-- Указание на внутренний интерфейс
Cisco2621 (config-if) # ip nat inside
Cisco2621 (config-if) # exit
Cisco2621 (config) # interface s0
1 __
!-- Задание последовательного порта в качестве внешнего интерфейса
Cisco2621 (config-if) # ip nat outside
```

```
Cisco2621 (config-if) # exit
!--
!-- Задание соответствия локального адреса и глобального
Cisco2621 (config) # ip nat inside source static 10.1.0.2
83.221.169.36
Cisco2621 (config) # exit
!--
!-- Проверка правильности трансляции адреса осуществляется командой
Rt-2621#show ip nat tr

Pro Inside global Inside local Outside local Outside global
--- 83.221.169.36 10.1.0.2 --- ---
```

Из этого сообщения следует, что таблица статической трансляции инициализирована правильно.

```
!-- Конфигурация процедуры динамического преобразования адресов
Rt-2621#configure terminal
!--Задание пула адресов
Rt-2621(config)#ip nat pool PL7 83.221.169.37 83.221.169.40 netmask
255.255.255.0
Rt-2621(config) #ip nat inside source list 17 pool PL7
Rt-2621(config) #access-list 17 permit 10.1.0.0 0.0.255.255
Rt-2621(config)#interface s0
Rt-2621(config-if) #ip nat outside
Rt-2621(config-if)#exit
Rt-2621(config)#interface fa0/0
Rt-2621(config-if) #ip nat inside
Rt-2621 (config) #exit
!-- Контроль динамической трансляции адресов
Rt-2621#show ip nat tr
Pro Inside global
                  Inside local Outside local
                                                Outside global
icmp:9392 83.221.169.36:9392 24.35.45.5:9392
                                                24.35.45.5:9392
icmp:9393 83.221.169.36:9393 24.35.45.5:9393
                                                24.35.45.5:9393
icmp:9394 83.221.169.36:9394 24.35.45.5:9394
                                                24.35.45.5:9394
icmp: 9395 83.221.169.36: 9395 24.35.45.5: 9395
                                                24.35.45.5:9395
icmp:9396 83.221.169.36:9396 24.35.45.5:9396
                                              24.35.45.5:9396
icmp83.221.169.36:9392 10.1.0.2:9392 24.35.45.5:9392
24.35.45.5:9392
icmp83.221.169.36:9393 10.1.0.2:9393 24.35.45.5:9393
24.35.45.5:9393
icmp83.221.169.36:9394 10.1.0.2:9394
                                      24.35.45.5:9394
24.35.45.5:9394
icmp83.221.169.36:9395 10.1.0.2:9395
                                     24.35.45.5:9395
24.35.45.5:9395
24.35.45.5:9396
icmp:9392
           10.1.1.2:9392
                          24.35.45.5:9392
                                            24.35.45.5:9392
icmp:9393
                          24.35.45.5:9393
                                            24.35.45.5:9393
           10.1.1.2:9393
icmp:9394 10.1.1.2:9394 24.35.45.5:9394
                                            24.35.45.5:9394
icmp:9395 10.1.1.2:9395 24.35.45.5:9395
                                            24.35.45.5:9395
```

```
24.35.45.5:9396 24.35.45.5:9396
icmp:9396 10.1.1.2:9396
icmp83.221.169.37:9392 10.1.7.1:9392 24.35.45.5:9392
24.35.45.5:9392
icmp83.221.169.37:9393 10.1.7.1:9393
                                          24.35.45.5:9393
24.35.45.5:9393
icmp83.221.169.37:9394 10.1.7.1:9394 24.35.45.5:9394
24.35.45.5:9394
icmp83.221.169.37:9395 10.1.7.1:9395 24.35.45.5:9395
24.35.45.5:9395
icmp83.221.169.37:9396 10.1.7.1:9396 24.35.45.5:9396
24.35.45.5:9396
icmp83.221.169.37:9392 10.1.7.10:9392 24.35.45.5:9392
24.35.45.5:9392
icmp83.221.169.37:9393 10.1.7.10:9393 24.35.45.5:9393
24.35.45.5:9393
icmp83.221.169.37:9394 10.1.7.10:9394
                                            24.35.45.5:9394
24.35.45.5:9394
icmp83.221.169.37:9395 10.1.7.10:9395
                                            24.35.45.5:9395
24.35.45.5:9395
icmp83.221.169.37:9396 10.1.7.10:9396 24.35.45.5:9396
24.35.45.5:9396
icmp:9392
           10.1.5.8:9392
                             24.35.45.5:9392
                                                  24.35.45.5:9392

      icmp:9393
      10.1.5.8:9393
      24.35.45.5:9393

      icmp:9394
      10.1.5.8:9394
      24.35.45.5:9394

      icmp:9395
      10.1.5.8:9395
      24.35.45.5:9395

                                                 24.35.45.5:9393
                                                  24.35.45.5:9394
                                                  24.35.45.5:9395
icmp:9396 10.1.5.8:9396 24.35.45.5:9396
                                                 24.35.45.5:9396
icmp83.221.169.37:9392 10.1.5.13:9392 24.35.45.5:9392
24.35.45.5:9392
icmp83.221.169.37:9393 10.1.5.13:9393
                                            24.35.45.5:9393
24.35.45.5:9393
icmp83.221.169.37:9394 10.1.5.13:9394 24.35.45.5:9394
24.35.45.5:9394
icmp83.221.169.37:9395 10.1.5.13:9395 24.35.45.5:9395
24.35.45.5:9395
Конфигурация списков доступа на машрутизаторе Rt-2621
!-- Запрет доступа к компьютерам группы управления (сеть 10.1.2.0), кроме
!-- персонала группы технической поддержки (сеть 10.1.1.0)
Rt-2621#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Rt-2621(config) #access-list 102 permit ip 10.1.1.0 0.0.0.255 10.1.2.0
0.0.0.255
Rt-2621 (config) #interface fa0/0.2
Rt-2621(config-subif) #ip access-group 102 out
Rt-2621(config-subif)#exit
!-- Запрет доступа к внешнему серверу пользователей 7 рабочей группы
!-- (10.1.7.0), всем остальным пользователям сети организации доступ разрешен
```

Rt-2621(config) #access-list 101 permit tcp any any

Rt-2621(config-if) #ip access-group 101 out

Rt-2621(config) #interface fa0/1

```
Rt-2621(config-if)#exit
Rt-2621 (config) #interface fa0/1
Rt-2621(config-if) #no ip access-group 101 out
Rt-2621(config-if) #no access-list 101 permit tcp any any
Rt-2621(config) #no access-list 101 deny tcp 10.1.7.0 0.0.0.255
10.1.0.2 0.0.0.0
Rt-2621 (config) #exit
! --
Rt-2621#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Rt-2621(config) #access-list 101 deny ip 10.1.7.0 0.0.0.255 10.1.0.2
Rt-2621(config) #access-list 101 permit ip any host 10.1.0.2
Rt-2621 (config) #interface fa0/1
Rt-2621(config-if) #ip access-group 101 out
Rt-2621(config-if)#exit
Rt-2621 (config) #exit
Rt-2621#show access-list
!-- Контроль созданного списка доступа
Extended IP access list 101
  deny ip 10.1.7.0 0.0.0.255 host 10.1.0.2 (0 matches)
  permit ip any host 10.1.0.2 (0 matches)
```

Конфигурация списков доступа на машрутизаторе Rt-2621

Проверим возможность связи рабочих станций внутри виртуальных сетей, а также логическую изоляцию виртуальных сетей. Для этого воспользуемся процедурой пингования рабочих станций. Пропингуем с PC1-2 рабочие станции PC1-1, PC5-5 и PC7-2. В среде эмулятора это выглядит следующим образом:

```
C:>ping 10.1.1.1
Pinging 10.1.1.1 with 32 bytes of data:
Reply from 10.1.1.1: bytes=32 time=60ms TTL=241
Ping statistics for 10.1.1.1: Packets: Sent = 5, Received = 5,
Lost = 0
(0% loss),
Approximate round trip times in milli-seconds:
Minimum = 50ms, Maximum = 60ms, Average = 55ms
C:>ping 10.1.5.5
Pinging 10.1.5.5 with 32 bytes of data:
Request timed out.
Ping statistics for 10.1.5.5:
```

```
Packets: Sent = 5, Received = 0, Lost = 5 (100% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:>ping 10.1.7.2
Pinging 10.1.7.2 with 32 bytes of data:

Request timed out.
Ping statistics for 10.1.7.2:
   Packets: Sent = 5, Received = 0, Lost = 5 (100% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 0ms, Average = 0ms.
```

Аналогичные действия выполняем для всех рабочих станций виртуальных сетей, включенных в коммутатор.

На основании проведенных исследований можно сделать вывод, что связь между компьютерами внутри виртуальных сетей существует, а передать пакеты в станции других VLAN не возможно, так как они логически изолированы друг от друга.

Если же тестовые пакеты проходят в другие vlan, то необходимо еще раз проверить правильность назначения портов в виртуальные сети и, при наличии ошибки, скорректировать конфигурацию. Далее выполняем конфигурацию маршрутизатора.

```
! Проконтролируем состояние интерфейсов и подинтерфейсов !

Router#show ip interface
Serial0 is administratively down, line protocol is down
Internet protocol processing disabled
FastEthernet0/0 is up, line protocol is up
Internet protocol processing disabled

FastEthernet0/0.1 is up, line protocol is up
Internet address is 10.1.1.11/24
Broadcast address is 255.255.255.0
MTU 1500 bytes

.
.
.
.
FastEthernet0/0.7 is up, line protocol is up
Internet address is 10.1.7.11/24
Broadcast address is 255.255.255.0
MTU 1500 bytes
```

Проверим возможность передачи пакетов между виртуальными сетями и связь с внешним сервером SvO, в частности, связь рабочей станции PC5-5 с внешним сервером SvO и PC7-1.

```
Cisco Packet Tracer 6.2 IP Configuration
  Ethernet adapter Local Area Connection:
   Default Gateway . . . . . . . : 10.1.5.11
C:>ping 10.1.0.12
Pinging 10.1.0.12 with 32 bytes of data:
Reply from 10.1.0.12: bytes=32 time=60ms TTL=241
Ping statistics for 10.1.0.12: Packets: Sent = 5, Received = 5,
Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
  Minimum = 50ms, Maximum = 60ms, Average = 55ms
C:>ping 10.1.7.2
Pinging 10.1.7.2 with 32 bytes of data:
Reply from 10.1.7.2: bytes=32 time=60ms TTL=241
Ping statistics for 10.1.7.2: Packets: Sent = 5, Received = 5,
Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
  Minimum = 50ms, Maximum = 60ms, Average = 55ms
```

Как видно из результатов эксперимента, подключение виртуальных сетей к маршрутизатору позволяет осуществлять обмен между хостами различных виртуальных сетей.

2.10.4 Тестирование сети и коррекция схемы по результатам моделирования

Проверим функционирование спроектированной сети в целом. Для этого выполним процедуру пингования с рабочих станций, включенных в виртуальные сети, относящихся ко второму коммутатору. Проведем пингование с первой рабочей станции РС6-1 шестой vlan.

```
Pinging 10.1.6.2 with 32 bytes of data:
Reply from 10.1.6.2: bytes=32 time=60ms TTL=241
Ping statistics for 10.1.6.2: Packets: Sent = 5, Received = 5, Lost
= 0 (0% loss),
Approximate round trip times in milli-seconds:
  Minimum = 50ms, Maximum = 60ms, Average = 55ms
! Пингование интерфейса шлюза по умолчанию.
C:>ping 10.1.6.11
Pinging 10.1.6.11 with 32 bytes of data:
Reply from 10.1.6.11: bytes=32 time=60ms TTL=241
Ping statistics for 10.1.6.11: Packets: Sent = 5, Received = 5,
Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
  Minimum = 50ms, Maximum = 60ms, Average = 55ms
! Пингование внешнего сервера предприятия
C:>ping 10.1.0.12
Pinging 10.1.0.12 with 32 bytes of data:
Reply from 10.1.0.12: bytes=32 time=60ms TTL=241
```

Аналогичное тестирование следует провести со всех рабочих станций и серверов.

После проведения тестирования всех возможных интерфейсов спроектированной сети можно сделать вывод, что сеть функционирует корректно, либо необходимо провести коррекцию конфигурации или подключения рабочих станций к коммутаторам.

Конфигурация списков доступа

```
Router# Router#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Router(config) #access-list 10 permit 10.1.1.0 0.0.0.255 Router(config) #access-list 10 deny 10.1.0.0 0.0.255.255 Router(config) #interface fa0/0.2 Router(config-subif) #ip access-group 10 out
```

```
Router(config-subif)#exit
Router(config)#^Z
%SYS-5-CONFIG_I: Configured from console by console
Router#show access-list 10
Standard IP access list 10
   10 permit 10.1.1.0 0.0.0.255 (0 matches)
   10 deny 10.1.0.0 0.0.255.255 (20 matches)
```

Проверка доступа к сети 10.1.2.0

Пингование выполняется с рабочей станции РС5-1 с IP-адресом 10.1.5.1

```
C:>ping 10.1.5.5
Pinging 10.1.5.5 with 32 bytes of data:
Reply from 10.1.5.5: bytes=32 time=60ms TTL=241
Ping statistics for 10.1.5.5: Packets: Sent = 5, Received = 5,
Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
  Minimum = 50ms, Maximum = 60ms, Average = 55ms
C:>ping 10.1.1.1
Pinging 10.1.1.1 with 32 bytes of data:
Reply from 10.1.1.1: bytes=32 time=60ms TTL=241
Ping statistics for 10.1.1.1: Packets: Sent = 5, Received = 5,
Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
  Minimum = 50ms, Maximum = 60ms, Average = 55ms
C:>ping 10.1.2.1
Pinging 10.1.2.1 with 32 bytes of data:
Request timed out.
Ping statistics for 10.1.2.1:
   Packets: Sent = 5, Received = 0, Lost = 5 (100% loss),
Approximate round trip times in milli-seconds:
  Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

2.11 Заключение

В заключительной части записки отмечается, что параметры спроектированной сети полностью соответствуют техническому заданию, а результаты компьютерного моделирования функционирования сети подтверждают ее работоспособность. Отмечается также, что спроектированная сеть рассчитана на такое-то количество рабочих мест, содержит такое-то современное телекоммуникационное оборудование, которое позволит эксплуатировать сеть в течение 10 лет без существенной модернизации аппаратной части.

3 ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ ПОЯСНИТЕЛЬНОЙ ЗАПИСКИ К КУРСОВОМУ ПРОЕКТУ

Пояснительная записка оформляется согласно правилам оформления принятыми на кафедре, ГОСТам и ЕСКД [31-33]. Основные правила по оформлению отчетной документации представлены ниже.

Параметры страницы: A4 ($21\times29,7$), ориентация — книжная (допускается использовать альбомную ориентацию страницы для выполнения схем и таблиц). Поля: левое — 25 (30) мм, верхнее — 20 мм, нижнее — 20 мм, правое — 10 мм.

Нумерация страницы – вверху, по центру. Нумерация ведется с титульного листа, номер на титульном листе не ставится.

Шрифт Times New Roman, кегль 14, интервал – полуторный.

Заголовки разделов: абзацный отступ — 0, выравнивание по центру, шрифт — жирный, буквы прописные, нумерация — арабскими цифрами, точка в конце номера и названия раздела не ставиться.

Заголовки подразделов (допускается три уровня, например, 1.1, 1.1.1): абзацный отступ — 1,25 см, выравнивание по ширине, шрифт — жирный, точка в конце названия подраздела не ставиться.

Основной текст: абзацный отступ -1,25 см, выравнивание по ширине, шрифт - обычный.

Нумерация рисунков и таблиц – сквозная или внутри раздела (например, в разделе 1 – рисунок 1.1, рисунок 1.2 и т.д., или таблица 1.1, таблица 1.2 и т.д.). Рисунки помещаются после упоминания их в тексте и имеют подпись, размещаемую под рисунком без абзацного отступа и имеющую выравнивание по центру, без точки на конце названия (например, Рисунок 1.1 – Название).

Таблицы размещаются после ссылки на них в тексте. Название приводится над таблицей, без абзацного отступа с выравниванием по левому краю, без точки на конце названия (например, Таблица 2.2 – Название).

Допускается выносить рисунки и таблицы в Приложения. В этом случае ссылка должна содержать номер приложения (например, рисунок А.1 приложения А или таблица Б.1 приложения Б).

Основная часть должна содержать ссылки на используемую литературу или информационные источники, список которых приводится после раздела «Выводы» и перед приложениями. Ссылка заключается в квадратные скобки (например – [1], [5,7], [3-6].

Приложения обозначаются русскими заглавными буквами в порядке их следования (ПРИЛОЖЕНИЕ А, ПРИЛОЖЕНИЕ Б). Слово «ПРИЛОЖЕНИЕ...» выравнивается по центру без абзацного отступа и имеет жирный шрифт, прописные буквы. Название приложение располагается на следующей строке, без абзацного отступа, выравнивание по центру, шрифт – жирный, первая буква прописная, остальные – строчные.

4 ОРГАНИЗАЦИЯ ЗАЩИТЫ И КРИТЕРИИ ОЦЕНИВАНИЯ КУРСОВОГО ПРОЕКТА

Защита курсового проекта осуществляется в присутствии комиссии, в состав которой входят: ведущий преподаватель и преподаватели, осуществляющие руководство курсовыми проектами по дисциплине «Архитектура (структуры и протоколы) инфокоммуникационных систем и сетей».

К защите представляется пояснительная записка и электронная презентация, содержащая основные этапы выполнения курсового проекта (постановка задачи; описание предметной области; этапы проектирования)

К пояснительной записке прилагается электронный носитель, содержащий схему ЛКС, электронную презентацию и пояснительную записку в формате .pdf или .doc.

Защита осуществляется в форме доклада. Регламент защиты работы 5-6 минут. Для ответа на вопросы и замечания по курсовому проекту выделяется до 5 минут.

Степень усвоения теоретического материала оценивается по следующим критериям:

- 1) оценка «отлично» выставляется, если:
- последовательно, четко, связно, обоснованно и безошибочно с использованием принятой терминологии изложен ход и результаты работы, выделены главные положения, ответ подтвержден конкретными примерами, фактами;
- самостоятельно и аргументировано сделан анализ, обобщение, выводы, установлены межпредметные (на основе ранее приобретенных знаний) и внутрипредметные связи, творчески применены полученные знания в незнакомой ситуации;
- самостоятельно и рационально используются справочные материалы, учебники, дополнительная литература, первоисточники; применяется систему условных обозначений при ведении записей, сопровождающих ответ; используются для доказательства выводы из наблюдений и опытов, ответ подтверждается конкретными примерами;
- допускается не более одного недочета, который легко исправляется по требованию преподавателя.
 - 2) оценка «хорошо» ставится, если:
- представлено полное описание хода выполнения работы; допущены незначительные ошибки и недочеты при, определении понятий, неточности при использовании научных терминов или в выводах и обобщениях из наблюдений и опытов; материал излагает в определенной логической последовательности;
- самостоятельно выделены главные положения в представляемых результатах; на основании фактов и примеров проведено обобщение, сделаны выводы, установлены внутрипредметные связи.

- допущены одна негрубая ошибку или не более двух недочетов, которые исправлены самостоятельно при требовании или при небольшой помощи преподавателя.
 - 3) оценка «удовлетворительно» ставится, если:
- показана недостаточная сформированность отдельных знаний и умений; выводы и обобщения аргументируются слабо, в них допускаются ошибки;
- допущены ошибки и неточности в использовании научной терминологии, даются недостаточно четкие определения понятий; в качестве доказательства не используются выводы и обобщения из результатов работы, фактов, опытов или допущены ошибки при их изложении;
- допускаются неполные ответы на вопросы преподавателя, с допущением одной двух грубых ошибок.
 - 4) оценка «неудовлетворительно» ставится, если:
- не выполнено значительная или основная часть задания на курсовую работу;
- при ответе (на один вопрос) допускается более двух грубых ошибок, которые не могут быть исправлены даже при помощи преподавателя;
 - не даются ответы ни на один их поставленных вопросов.

Оценка сформированности практических навыков проводится по следующим критериям:

- 1) оценка «отлично» ставится, если студент:
- творчески планирует выполнение работы;
- самостоятельно и полностью использует знания программного материала;
 - правильно и аккуратно выполняет задание;
- умеет пользоваться литературой и различными информационными источниками;
- выполнил работу без ошибок и недочетов или допустил не более одного недочета
 - 2) оценка «хорошо» ставится, если студент:
 - правильно планирует выполнение работы;
 - самостоятельно использует знания программного материала;
 - в основном правильно и аккуратно выполняет задание;
- умеет пользоваться литературой и различными информационными источниками;
- выполнил работу полностью, но допустил в ней: не более одной негрубой ошибки и одного недочета или не более двух недочетов.
 - 3) оценка «удовлетворительно» ставится, если студент:
 - допускает ошибки при планировании выполнения работы;
- не может самостоятельно использовать значительную часть знаний программного материала;
 - допускает ошибки и неаккуратно выполняет задание;

- затрудняется самостоятельно использовать литературу и информационные источники;
 - правильно выполнил не менее половины работы или допустил:
 - не более двух грубых ошибок или не более одной грубой и одной негрубой ошибки и одного недочета;
 - не более двух- трех негрубых ошибок или одной негрубой ошибки и трех недочетов;
 - при отсутствии ошибок, но при наличии четырех-пяти недочетов.
 - 4) оценка «неудовлетворительно» ставится, если студент:
 - не может правильно спланировать выполнение работы;
 - не может использовать знания программного материала;
 - допускает грубые ошибки и неаккуратно выполняет задание;
- не может самостоятельно использовать литературу и информационные источники;
- допустил число ошибок недочетов, превышающее норму, при которой может быть выставлена оценка «3»;
 - если правильно выполнил менее половины работы;
 - не приступил к выполнению работы;
 - правильно выполнил не более 10% всех заданий.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Александров К.К. Электротехнические чертежи и схемы / К.К. Александров, Е.Г. Кузьмина. М.: Энергоатомиздат, 1990. 288 с.
- 2. Амато В. Основы организации сетей Cisco. Том 1: Пер. с англ./ В.Амато. М.: Изд-во «Вильямс», 2004. 512 с.
- 3. Амато В. Основы организации сетей Cisco. Том 2. : Пер. с англ. / В.Амато.— М.: Изд-во «Вильямс», 2004. 464 с.
- 4. Боллапрагада В. Структура операционной системы Cisco IOS: Пер. с англ. / В. Боллапрагада, К.Мэрфи, Р.Уайт: Пер. с англ. М.: Изд-во «Вильямс», 2002. 208 с.
- 5. Гук М. Аппаратные средства локальных сетей. Энциклопедия / М.Гук.- СПб.: Изд-во «Питер», 2000. 576 с.
- 6. Гаранин М.В. Системы и сети передачи информации / М.В. Гаранин, В.И. Журавлев, С.В. Кунегин. М.: Радио и связь, 2001. 336 с.
- 7. Кларк К. Принципы коммутации в локальных сетях Cisco: Пер. с англ. / К.Кларк, К. Гамильтон. М.: Изд-во «Вильямс», 2003. 976 с.
- 8. Контроль та керування корпоративними комп'ютерними мережами: інструментальні засоби та технології: Навчальний посібник/ А.М. Гуржій, С.Ф. Коряк, В.В. Самсонов, О.Я. Скляров.— Харків: Вид-во «Компанія СМІТ», 2004.- 544 с.
- 9. Колисниченко Д.Н. Сделай сам компьютерную сеть. Монтаж, настройка, обслуживание. СПб.: «Наука и Техника» 2004.– 400 с.
- 10. Кульгин М.В. Компьютерные сети. Практика построения. Для профессионалов / М.В. Кульгин. СПб.: Изд-во «Питер», 2003. 368 с.
- 11. Леинванд А. Конфигурирование маршрутизаторов Cisco: Пер. с англ. / А. Леинванд, Б. Пински. М.: Изд-во «Вильямс», 2001. 560 с.
- 12. Мамаев М. Технология защиты информации в Интернете. Специальный справочник / М.Мамаев, С.Петренко.- СПб.: Изд-во «Питер», 2002. 848 с.
- 13. Олифер В.Г. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов. 3-е изд. / В.Г.Олифер, Н.А.Олифер. СПб: Изд-во «Питер», 2006. 958 с.
- 14. Программа сетевой академии Cisco CCNA 1 и 2. Вспомогательное руководство: Пер. с англ. М.: Изд-во «Вильямс», 2005.– 1168 с.
- 15. Ретана А. Принципы проектирования корпоративных IP-сетей: Пер. с англ. / А. Ретана, Д. Слайс, Р. Уайт М.: Изд-во «Вильямс», 2002. 368 с.
- 16. Семенов А.Б. Структурированные кабельные системы / А.Б. Семенов, С.К. Стрижаков, И.Р. Сунчелей. М.: Изд-во «Компьютер Пресс», 1999. 387 с.
- 17. Семенов Ю.А. Телекоммуникационные технологии ГНЦ ИТЭФ. http://www.book.iter.ru
- 18. Столлингс В. Современные компьютерные сети: Пер. с англ. / В.Столлингс. СПб.: Изд-во «Питер», 2003. 783 с.

- 19. Столлингс В. Основы защиты сетей. Приложения и стандарты: Пер. с англ. / В.Столлингс.— М.: Изд-во «Вильямс», 2002. 432 с.
 - 20. Структура СКС. http://www.ecolan.ru/st_structure.htm#topology
- 21. Таненбаум Э. Компьютерные сети: Пер. с англ. / Э.Таненбаум .— СПб.: Изд-во «Питер», 2005. —672 с.
- 22. Техническая характеристика коммутаторов семейства Catalyst фирмы Cisco [http://www.bkc.com.ua/product.asp?cid=1276].
- 23. Хабракен Дж. Как работать с маршрутизаторами Cisco: Пер. с англ. / Дж. Хабракен. М.: Изд-во ДМК Пресс, 2005. 320 с.
- 24. Хелеби С. Принципы маршрутизации в Internet: Пер. с англ. / С.Хелеби, Д.Мак-Ферсон: Пер. с англ. М.: Изд-во «Вильямс», 2001. 448 с.
- 25. Хьюкаби Д. Руководство Cisco по конфигурированию коммутаторов Catalyst: Пер. с англ. / Д.Хьюкаби, С. Мак-Квери. М.: Изд-во «Вильямс», 2004. 560 с.
- 26. Чернега В.С. Компьютерные сети / В.Чернега, Б.Платтнер. Севастополь: Изд-во СевНТУ, 2006. 500 с.
- 27. Установка и настройка коммутаторов Cisco Catalyst серий 2900XL и 3500. [Электронный ресурс] http://www.network.xsp.ru.
- 28. СКС малых и домашних офисов. [Электронный ресурс] http://www.ecolan.ru/midilan.htm
- 29. Структуированные кабельные системы. [Электронный ресурс] http://www.bc-group.ru/si/service/scs.shtml
- 30. Компьютерные сети и технологии. [Электронный ресурс] http://www.xnets.ru/plugins/content/ content.php?cat.2
- 31. ГОСТ 7. 32-2001. Отчет о научно исследовательской работе. Структура и правила оформления.
 - 32. ГОСТ 2.702-69. Правила выполнения электрических схем.
- 33. ГОСТ 21.614-88. Изображения условные графические электрооборудования и проводок на планах.
- 34. Cisco Certified Internetwork Expert. Учебное руководство / Д. Шварц, Т. Леммл: Пер. с англ.— М.: Изд-во «Лори», 2002.— 758 с.
- 35. Политики безопасности компании при работе в Internet. [Электронный ресурс] www.compdoc.ru/network/internet/politicians_of_safety
- 36. Политика безопасности ЛВС. [Электронный ресурс] www.zahist.narod.ru/securelan4.htm
- 37. Инструкция пользователя компьютерной информационной сетью фирмы. [Электронный ресурс] http://www.zahist.narod.ru/instruct.htm
- 38. Пример политики доступа. [Электронный ресурс] http://www.cybercontrol.ru/resources/policy.html

ПРИЛОЖЕНИЕ А Варианты задания на курсовой проект

Номер варианта соответствует номеру студента в списке группы Замечание: студент вправе, предложить свой вариант предметной области и принять его к исполнению, после согласования и утверждения ведущим преподавателем.

Таблица А.1 – Варианты задания на курсовой проект

Исходные данные	Вари	анты							
на проектирование	1	2	3	4	5	6	7	8	9
Расстояния между зданиями	-	-	-	_	-	-	2	5	-
(0,5 - 10 км)									
Внутренних/внешних серверов в	2/1	4/1	4/2	3/2	2/2	4/1	5/2	2/3	4/3
сети									
Место подключения серверов:	Э	Э	Э	Э	Э	3	3	3	СФ
узел этажа (Э), здания (З), сервер-									
ная ферма (СФ)									
Реализация сети: свич/роутер	C	P	C	C	C	P	P	P	C
Деление на подсети: Да/Нет	Нет	Да	Нет	Нет	Нет	Да	Да	Да	Нет
Деление на VLAN	Да	Нет	Да	Да	Да	Нет	Нет	Нет	Да
Адрес шлюза по умолчанию		T			лица .	A.3			
Тип глобальной сети: DSL (D);	D	A	FR	I	D	D	A	FR	A
Frame Relay (FR); ATM (A); ISDN									
(I)									
Способ адресации: Класс/Бесклас	Б	Б	Б	Б	Б	Б	Б	Б	К
Возможность расширения:	<mark>да</mark>	<mark>да</mark>	нет	нет	<mark>нет</mark>	<mark>да</mark>	нет	<mark>да</mark>	<mark>да</mark>
Да/Нет									
Наличие резервирования	Н	Н	Н	Н	Н	Н	Н	Н	Н
Особенности сети: безопасность	Б	O	У	Б	O	У	Б	O	У
(Б);									
оказоустойчивость (О); управляе-									
мость (У)									
Внутренняя безопасность:	Н	Н	В	Н	Н	В	Н	Н	В
низкая (Н); высокая (В)									
Допустимая отказоустойчи-	600	1200	200	2000	600	600	600	1200	2000
вость,<= сек									
Наличие DMZ: Да/Нет	Нет	Нет	Да	Да	Нет	Да	Нет	Нет	Да
Виды политики безопасности:	ı	I	ı	1	ı	1	ı	1	1
удаленного доступа	+		+						
взаимодействия с Интернет		+	+	+				+	
правила предоставления доступа				+	+				+
выбора и использования паролей	+				+	+		+	
инструкция по защите от вирусов		+					+		+

Параметры					Вариа	НТЫ			
сети	10	11	12	13	14	15	16	17	18
Расстояния между зданиями (0,5 - 10 км)	-	-	-	-	-	-	-	<mark>7</mark>	1
Внутренних/внешних серверов в сети	4/1	6/3	2/3	4/2	3/1	3/2	6/4	5/2	2/2
Место подключения серверов: узел этажа (Э), здания (3), серверная ферма (СФ)	СФ	Э	Э	Э	Э	Э	Э	3	3
Реализация сети: свич/роутер	С	С	P	С	P	P	P	С	С
Деление на подсети: Да/Нет	Нет	Нет	Да	Нет	Да	Да	Да	Нет	Нет
Деление на VLAN	Да	Да	Нет	Да	Нет	Нет	Нет	Да	Да
Адрес шлюза по умолчанию				Т	аблица	A.3	•		•
Тип глобальной сети: DSL (D); Frame Relay (FR); ATM (A); ISDN (I)	FR	D	A	FR	I	D	D	A	FR
Способ адресации: Класс/Бесклас	Б	К	Б	К	К	Б	К	Б	К
Возможность расширения: Да/Нет	<mark>да</mark>	<mark>да</mark>	нет	нет	нет	<mark>да</mark>	нет	<mark>да</mark>	<mark>да</mark>
Наличие резервирования	Н	Н	Н	Н	Н	Н	Д	Д	Д
Особенности сети: безопасность (Б); отказоустойчивость (О); управляемость (У)	Б	Б	О	У	Б	0	У	Б	O
Внутренняя безопасность: низкая (Н); высокая (В)	В	Н	Н	Н	В	В	Н	В	Н
Наличие DMZ: Да/Нет	Да	Да	Нет	Нет	Да	Да	Нет	Да	Да
Виды политики безопасности:	•	•	•	•	•	•	•	•	•
удаленного доступа	+	+			+			+	
взаимодействия с Интернет			+			+			+
правила предоставления доступа		+		+			+	+	+
выбора и использования паролей			+		+		+		
инструкция по защите от вирусов	+			+		+			

Параметры	Варианты								
сети	1	9	20	21	22	23	24	25	26
Расстояния между зданиями	3	3	0.5	-	-	1	10	9	<mark>5</mark>
(0,5 - 10 км)									
Внутренних/внешних серве-	4	1/3	3/4	4/2	6/2	3/1	4/1	3/2	2/1
ров в сети									
Место подключения серве-	3	3	3	СФ	СФ	3	3	3	3
ров: узел этажа (Э), здания									
(3), серверная ферма (СФ)									
Реализация сети: свич/ро-	F	•	С	C	С	P	С	P	С
утер									
Деление на подсети: Да/Нет	Į	Įа	Нет	Нет	Нет	Да	Нет	Да	Нет
Деление на VLAN	I	Нет	Да	Да	Да	Нет	Да	Нет	Да
Адрес шлюза по умолчанию									
Тип глобальной сети: DSL	A	4	FR	D	A	FR	I	D	D
(D); Frame Relay (FR); ATM									
(A); ISDN (I)									
Способ адресации:	Е	5	Б	Б	Б	К	Б	К	К
Класс/Бесклас									
Возможность расширения:	H	<mark>ет</mark>	<mark>да</mark>	<mark>да</mark>	нет	нет	нет	<mark>да</mark>	<mark>да</mark>
Да/Нет									
Наличие резервирования		Į	Д	Н	Н	Н	Н	Н	Н
Особенности сети: безопас-	7	y	Б	О	У	Б	О	У	Б
ность (Б); оказоустойчивость									
(О); управляемость (У)									
Внутренняя безопасность:	E	3	Н	Н	Н	В	Н	В	Н
низкая (Н); высокая (В)									
Наличие DMZ: Да/Нет	Į	Įа	Нет	Да	Нет	Да	Да	Да	Нет
Виды политики безопасности:	<u> </u>				1			1	1
удаленного доступа			+	+		+		+	
взаимодействия с Интернет				+	+		+		+
правила предоставления до-	+	-					+		
ступа									
выбора и использования па-	+	-	+		+			+	
ролей									
инструкция по защите от ви-						+			+
русов									

90

Таблица А.2 – Варианты чертежей зданий (рисунки Б.1-Б.5)

		**	Чертеж 1-го здания				Черт	Чертеж 2-го здания			
Don T	Кол-во	Кол-во этажей /		Этажи					Этажи		
Вар-т	зданий	этажеи / зданий	1	2	3	4	5	1	2	3	
1	1	1/1	Б.1								
2	1	1/1	Б.2								
3	1	1/1	Б.3								
4	1	2/1	Б.1	Б.2							
5	1	2/1	Б.2	Б.3							
6	1	2/1	Б.3	Б.4							
7	1	2/1	Б.4	Б.5							
8	1	3/1	Б.1	Б.3	Б.2						
9	1	3/1	Б.1	Б.4	Б.5						
10	1	3/1	Б.2	Б.3	Б.4						
11	1	3/1	Б.3	Б.2	Б.5						
12	1	3/1	Б.1	Б.4	Б.2						
13	1	4/1	Б.1	Б.2	Б.3	Б.4					
14	1	4/1	Б.2	Б.3	Б.4	Б.5					
15	1	4/1	Б.3	Б.4	Б.5	Б.1					
16	1	4/1	Б.1	Б.5	Б.3	Б.4					
17	1	4/1	Б.4	Б.2	Б.1	Б.3					
18	1	4/1	Б.2	Б.5	Б.3	Б.4					
19	1	5/1	Б.1	Б.2	Б.3	Б.4	Б.5				
20	2	1/2	Б.2					Б.3			
21	2	1/2	Б.3					Б.5			
22	2	1/2	Б.4					Б.3			
23	2	2/2	Б.2	Б.3				Б.1	Б.4		
24	2	2/2	Б.3	Б.4				Б.2	Б.5		
25	2	2/2	Б.1	Б.3				Б.5	Б.4		
26	2	2/2	Б.5	Б.1				Б.4	Б.2		

Таблица А.3 – Варианты адресов шлюзов по умолчанию (ІР-адреса)

Вариант	ІР-адрес
1	78.25.34.238
2	89.208.181.222
3	78.234.108.44
4	125.222.126.88
5	22.78.123.80
6	80.238.104.44
7	196.243.106.8
8	15.32.132.80
9	89.208.180.43
10	113.98.234.100
11	171.106.32.111
12	140.235.100.91
13	142.2.140.100
14	79.120.90.91
15	83.221.165.30
16	30.83.222.160
17	56.187.91.20
18	86.200.43.145
19	59.180.81.94
20	109.34.55.68
21	90.91.92.93
22	23.87.63.120
23	91.180.81.96
24	156.67.82.20
25	120.20.32.160
26	21.91.25.100

ПРИЛОЖЕНИЕ Б Варианты поэтажных чертежей здания, занимаемого организацией

Рисунок B1 - Чертеж этажа здания B1

Рисунок B2 - Чертеж этажа здания B2

Рисунок В3 - Чертеж этажа здания В3

Рисунок В4 - Чертеж этажа здания В4

Рисунок B5 - Чертеж этажа здания B5

приложение в

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «СЕВАСТОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Институт информационных технологий и управления в технических системах	
(полное название института)	
кафедра «Информационные системы»	
(полное название кафедры)	

Пояснительная записка

к курсовому проекту по дисциплине «Архитектура (структуры и протоколы) инфокоммуникационных систем и сетей»

на тему	
Выполнил: студент <u>IV</u> курса, груг	ппы: ИС/б- о
Направления подготовки (специально	ости) 09.03.02
Информационные	системы и технологии
(код и наименование направл профиль (специализация)	пения подготовки (специальности))
(фамилия, имя	г, отчество студента)
Руководитель	
(фамилия, ин	нициалы, степень, звание, должность)
Защита «»	_ 20 г. Оценка
Руководитель	
	пись) (инициалы, фамилия)
Ведущий преподаватель	
	пись) (инициалы, фамилия)
	20 г

ПРИЛОЖЕНИЕ Г Образец технического задания на курсовой проект

ЗАДАНИЕ

к курсовому пр	оекту
----------------	-------

студе				
1. Te	ма работы (проекта)	иилия, имя, отч	ество)	
Рукон	водитель работы (проекта)(фами	лия, инициалы	, степень, звание,	должность)
2. Cp	оок подачи студентом работы (проекта)			
3. Bx	ходные данные к работе (проекту)			
4. Co	одержание пояснительной записки (перече	ень вопросов, к	оторые нужно раз	работать)
5. Пе	речень графического материала (с точны	м указанием об	язательных чертех	кей)
	КАЛЕНДАР	ный план	Ĭ	
№ π/π	Название этапов работы (проекта)		Срок выпол- нения этапов работы (проекта)	Примечание
6. Да	та выдачи задания			
	Студент			
	Руководитель работы (проекта)	(подпись)	фамилия и і	инициалы
		(подпись)	фамилия и 1	инициалы

приложение д

Образец оформления введения

ВВЕДЕНИЕ

Актуальность темы.

Цель и задачи работы. Целью данной работы является разработка проекта локальной сети малой (средней или крупной) организации, обеспечивающей информационные услуги ее пользователям с требуемым уровнем безопасности.

В процессе достижения поставленной цели решались следующие задачи:

- определение месторасположения серверных и кроссовых помещений и количества местоположения телекоммуникационных розеток;
 - разработка логической структуры сети;
 - выбор активного телекоммуникационного оборудования;
 - распределения сетевых адресов;
- разработка структурированной кабельной системы и выбор пассивного сетевого оборудования;
- разработка физической структуры сети и схемы электрических соединений;
- разработка политики безопасности, списков доступа к ресурсам сети и сценариев реализации политики безопасности;
- моделирование сети и коррекция схемы сети по результатам моделирования.

Предмет и объект исследования.

Структура работы. Работа состоит из пояснительной записки, включающей в себя введение, постановку задачи, четыре раздела, заключение, библиографический список, два приложения.

В первом разделе

Второй раздел посвящен проектированию и разработке

В третьем разделе описываются

ПРИЛОЖЕНИЕ Е Образец оформления постановки задачи

ПОСТАНОВКА ЗАДАЧИ

Организация располагается на одном (или нескольких, планируется расширение) этажах здания. Основные информационные технологии, используемые сотрудниками организации — обработка текстов в MS Word и таблиц в MS Excel (составление отчетов о проделанной работе), довольно частое общение с клиентами посредством электронной почты. Группа сотрудников в количестве N_1 человек работает с 1С бухгалтерией, еще одной небольшой группе сотрудников (указать количество) нужна правовая система «Консультант-плюс», одна основная группа N_2 сотрудников использует две узкоспециализированные расчетные подсистемы. Небольшая группа, состоящая из N_3 , сотрудников занимается скачиванием и рассылкой аудио- и видеофайлов в реальном времени.

Все сотрудники, в большей или меньшей степени используют Интернет. Для этого на одном из компьютеров установлен ADSL-модем и работа с Интернет возможна только через этот компьютер. Интернетом пользуются не очень активно. Основная работа - локальная.

На предприятии имеется:

- 1) 46 сотрудников, но планируется расширение приблизительно до 100 сотрудников;
- 2) 12 помещений, но предполагается еще один этаж и дополнительно 30 помещений;
- 3) программное обеспечение (которое используется в настоящее время):
 - Бухгалтерия;
 - Правовая система Консультант плюс (сетевая версия);
 - MS Word 200x;
 - MS Excel;
 - антивирус Norton Antivirus;
 - первая специализированная расчётная система;
 - вторая специализированная расчётная система;
 - Интернет браузеры Opera, FireFox, IE;
 - запись CD-дисков Nero;
 - мультимедиа MS Windows Media, WinAmp;
- MS Windows Server 2008 сетевая 1С Бухгалтерия и архивы 2-го сервера: MS Windows Server 2008, MS Terminal Server 2008, 1С Бухгалтерия лицензионная.
- MS Windows Server 2008 файловый сервер + Консультант плюс и архивы 1С бухгалтерии.
 - Консультант плюс и т.д.

101

ПРИЛОЖЕНИЕ Ж Пример выполнения таблицы соединений

Обозначение кабеля	Откуда идет	Куда поступает	Данные кабеля	Примечание
КГ303-1-1	303 – TP-1-1	312 – ПП-01-01	UTP-5е 4PR - 27 м	
КГ303-1-2	303 – TP-1-2	$312 - \Pi\Pi$ -02-01	UTP-5е 4PR - 27 м	
КГ303-2-1	303 – TP-2-1	$312 - \Pi\Pi$ -01-03	UTP-5e 4PR - 30 м	
КГ303-2-2	303 – TP-2-2	$312 - \Pi\Pi$ -02-01	UTP-5e 4PR - 30 м	
ПК303-1	303 – KK-1	303 – TP-1-1	UTP-5e RJ45 - 2 м	
ПК312-1	$312 - \Pi\Pi$ -02-01	312 - CK-02-12	UTP-5e RJ45 - 1 м	
ПК312-8	312 - CK-03-06	312 - M-01-02	UTP-5e RJ45 - 1 м	

ПРИЛОЖЕНИЕ З Данные для выбора сечения кабеля

Таблица 3.1 – Для открытой электропроводки

C	Закрытая проводка								
Сечение		Медный про	вод	Алюминиевый провод					
кабеля, мм²	Tor. A	Мощно	сть, кВт	Tore A	Мощность, кВт				
MM	Ток, А	220 B	380 B	Ток, А	220 B	380 B			
0, 5	-	-	-	-	-	-			
0, 75	-	-	-	-	-	-			
1, 0	14	3, 0	5, 3	-	-	-			
1, 5	15	3, 3	5, 7	-	-	-			
2, 0	19	4, 1	7, 2	14	3, 0	5, 3			
2, 5	21	4, 6	7, 9	16	3, 5	6, 0			
4, 0	27	5, 9	10	21	4, 6	7, 9			
6, 0	34	7, 4	12	26	5, 7	9, 8			
10	50	11	19	38	8, 3	14			
16	80	17	30	55	12	20			
25	100	22	38	65	14	24			
35	135	29	51	75	16	28			

Таблица 3.2 – Для закрытой электропроводки

	Открытая проводка								
Сечение		Медный про	вод	Алюминиевый провод					
кабеля, мм²	Tox. A	Мощно	сть, кВт	Tor. A	Мощность, кВт				
MIM	Ток, А	220 B	380 B	Ток, А	220 B	380 B			
0, 5	11	2, 4	-	_	-	-			
0, 75	15	3, 3	-	_	-	-			
1, 0	17	3, 7	6, 4	_	-	-			
1, 5	23	5, 0	8, 7	_	-	-			
2, 0	26	5, 7	9, 8	21	4, 6	7, 9			
2, 5	30	6, 6	11	24	5, 2	9, 1			
4, 0	41	9, 0	15	32	7, 0	12			
6, 0	50	11	19	39	8, 5	14			
10	80	17	30	60	13	22			
16	100	22	38	75	16	28			
25	140	30	53	105	23	39			
35	170	37	64	130	28	49			

ПРИЛОЖЕНИЕ И Значения параметров команды ping

Параметры	Значение
/?	Предоставляет справку по команде ping
-t	Повторяет запросы к удаленному компьютеру, пока программа не будет остановлена.
-a	Разрешает преобразование имени компьютера в адрес.
-п количество	Определяет количество отправляемых эхо-запросов. По умолчанию количество запросов равно 4.
-1 длина	Отправляются пакеты типа ECHO, содержащие порцию данных заданной длины. По умолчанию – 32 байта, максимум – 65525.
-f	Устанавливает в заголовке ping-пакета бит «Не фрагментировать». По умолчанию ping-пакет разрешает фрагментацию.
-i ttl	Устанавливает поле времени жизни пакетов TTL (Time To Live).
-v mun	Устанавливает поле типа службы (Type Of Service) пакетов.
-г счетчик	Записывает маршрут отправленных и возвращенных пакетов в поле записи маршрута. Record Route. Параметр счетчик задает число компьютеров в интервале от 1 до 9.
-ѕ число	Задает количество ретрансляций на маршруте, где будет делаться отметка времени.
-j список_комп	Направляет пакеты по маршруту, задаваемому параметром список_комп. Компьютеры в списке могут быть разделены промежуточными шлюзами (свободная маршрутизация). Максимальное количество, разрешаемое протоколом IP, равно 9.
-k список_комп	Направляет пакеты по маршруту, задаваемому параметром список_комп. Компьютеры в списке не могут быть разделены промежуточными шлюзами (ограниченная маршрутизация). Максимальное количество, разрешаемое протоколом IP, равно 9.
-w интервал	Указывает промежуток времени ожидания (в мс). По умолчанию значение интервала равно 1000 (период ожидания 1 с).