Algorytmy ewolucyjne

 $ES(\mu, \lambda, \rho, \kappa)$

Piotr Lipiński

lipinski@ii.uni.wroc.pl

Algorytm $ES(\mu, \lambda, \kappa, \rho)$

W $ES(\mu, \lambda, \rho, \kappa)$ populacja złożona z μ osobników generuje λ potomków. Każdy potomek jest generowany przez ρ rodziców. Kolejne populacje są wybierane z sumy mnogościowej populacji rodziców i populacji potomków, jednak z wyłączeniem osobników, które osiągnęły wiek κ , czyli przetrwały κ iteracji algorytmu.

W $ES(\mu, \lambda, \rho, \kappa)$, podobnie jak w dwóch poprzednich algorytmach, mechanizm autoadaptacji oparty jest na kodowaniu parametrów operatorów ewolucyjnych w osobniku.

Algorytm $ES(\mu, \lambda, \kappa, \rho)$

Każdy osobnik $\hat{\mathbf{x}}$ składa się z chromosomu $\mathbf{x} \in \mathbb{R}^d$, wieku $\kappa \in \mathbb{R}$ oraz dodatkowych parametrów $\alpha \in \mathbb{R}^{\frac{d(d+1)}{2}}$ i $\sigma \in \mathbb{R}^d$ wykorzystywanych podczas mutacji

$$\hat{\mathbf{x}} = (\mathbf{x}, \kappa, \alpha, \sigma),$$

gdzie

$$\mathbf{x} = (x_1, x_2, \dots, x_d),$$

$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_{\frac{d(d+1)}{2}}),$$

$$\sigma = (\sigma_1, \sigma_2, \dots, \sigma_d).$$

Algorytm $ES(\mu, \lambda, \kappa, \rho)$

```
Evolution-Strategy(F, N, M, n, \beta, \tau, \tau_0)

1 \mathcal{P} \leftarrow \text{Random-Population}(N);

2 Population-Evaluation(\mathcal{P}, F);

3 while not Termination-Condition(\mathcal{P})

4 do

5 \mathcal{P}^{(C)} = \text{Reproduction}(\mathcal{P}, M, n, \beta, \tau, \tau_0);

6 Replacement(\mathcal{P}, \mathcal{P}^{(C)});

7 Population-Evaluation(\mathcal{P}, F);
```

$ES(\mu, \lambda, \kappa, \rho)$: Reproduction

```
Reproduction (\mathcal{P}, M, n, \beta, \tau, \overline{\tau_0})
 1 \mathcal{P}^{(C)} \leftarrow \emptyset:
 2 for k=1 to M
 3
        do
                 \{\hat{\mathbf{x}}_1^{(P)}, \hat{\mathbf{x}}_2^{(P)}, \dots, \hat{\mathbf{x}}_n^{(P)}\} \leftarrow \text{Parent-Selection}(\mathcal{P}, n);
 \hat{\mathbf{x}}^{(C)} \leftarrow \text{Crossover}(\hat{\mathbf{x}}_1^{(P)}, \hat{\mathbf{x}}_2^{(P)}, \dots, \hat{\mathbf{x}}_n^{(P)});
        Mutation(\hat{\mathbf{x}}^{(C)}, \beta, \tau, \tau_0);
          \mathcal{P}^{(C)} \leftarrow \mathcal{P}^{(C)} \cup \{\hat{\mathbf{x}}^{(C)}\};
          return \mathcal{P}^{(C)}
```

$ES(\mu, \lambda, \kappa, \rho)$: Reproduction

Z bieżącej populacji \mathcal{P} algorytm tworzy nową populacje $\mathcal{P}^{(C)} = \{ \breve{\mathbf{x}}_1^{(C)}, \breve{\mathbf{x}}_2^{(C)}, \dots, \breve{\mathbf{x}}_M^{(C)} \}$, zwaną populacją potomków lub populacją dzieci.

Reprodukcja składa się z trzech faz:

- parent selection,
- crossover,
- mutation, powtarzanych M razy. W każdej iteracji tworzony jest jeden potomek.

Parent Selection

Z bieżącej populacji \mathcal{P} wybieranych jest n osobników $\breve{\mathbf{x}}_1^{(P)}, \breve{\mathbf{x}}_2^{(P)}, \dots, \breve{\mathbf{x}}_n^{(P)}.$

Osobniki są wybierane losowo w taki sposób; że prawdop odobieństwo wyboru osobnika $\check{\mathbf{x}}_i$ jest równe wartości jego przystosowania $f(\check{\mathbf{x}}_i)$ (metoda ruletki).

Krzyżowanie

n osobników $\mathbf{x}_1^{(P)}, \mathbf{x}_2^{(P)}, \ldots, \mathbf{x}_n^{(P)}$ tworzy jednego potomka $\mathbf{x}^{(C)}$. Każda składowa potomka, tzn. $\mathbf{x}^{(C)}, \alpha^{(C)}$ i $\sigma^{(C)}$, jest tworzona niezależnie przez zastosowanie jednego z operatorów rekombinacji. Naturalnie, do tworzenia różnych składowych mogą być użyte różne operatory.

Zazwyzaj używanych jest kilka operatorów rekombinacji: random selection, global intermediary recombination, local intermediary recombination oraz uniform crossover.

Po utowrzeniu, wiek potomka $\kappa^{(C)}$ jest ustawiany na zero.

Krzyżowanie

random selection: algorytm wybiera losowo liczbę całkowitą k taką że $1 \le k \le n$; potomek dziedziczy cały chromosom od rodzica $\mathbf{x}_k^{(P)}$

$$x_j^{(C)} = x_{kj}^{(P)}, \quad \text{dla } j = 1, 2, \dots, d.$$

global intermediary recombination: chromosom potomka jest tworzony jako średnia arytmetyczna chromosomów jego wszystkich rodziców

$$x_j^{(C)} = \frac{1}{n} \sum_{k=1}^n x_{kj}^{(P)}, \quad \text{dla } j = 1, 2, \dots, d.$$

Krzyżowanie

local intermediary recombination: algorytm wybiera losowo liczbę rzeczywistą $u \in (0,1)$ oraz dwie liczby całkowite k_1 i k_2 takie że $1 \le k_1, k_2 \le n$; chromosom potomka jest tworzony jako kombinacja chromosomów dwóch jego rodziców $\breve{\mathbf{x}}_{k_1}^{(P)}$ i $\breve{\mathbf{x}}_{k_2}^{(P)}$

$$x_j^{(C)} = u \cdot x_{k_1 j}^{(P)} + (1 - u) \cdot x_{k_2 j}^{(P)}, \quad \text{dla } j = 1, 2, \dots, d.$$

uniform crossover: podobnie jak w SSGA, potomek dziedziczt każdy gen od losowo wybranego rodzica.

Mutacja jest najważniejszym operatorem ewolucyjnym ES (inaczej niż w algorytmach genetycznych).

Potomek $\check{\mathbf{x}}^{(C)}$ jest modyfikowany przez dodanie pewnego losowego zaburzenia. Każdy potomek jest modyfikowany oddzielnie przy użyciu zakodowanych w nim parametrów mutacji α i σ .

Początkowo algorytm modyfikuje zakodowany w osobniku parametr $\alpha^{(C)}$

$$\alpha_j = \alpha_j + \epsilon_j, \quad \text{dla } j = 1, 2, \dots, d,$$

gdzie ϵ_j jest liczbą rzeczywistą wygenerowaną losowo z rozkładem normalnym o średniej 0 i wariancji β^2 , zaś β jest parametrem algorytmu.

Następnie, modyfikowany jest parametr $\sigma^{(C)}$

$$\sigma_j = \sigma_j \cdot e^{\epsilon_j + \epsilon_0}, \quad \text{dla } j = 1, 2, \dots, d,$$

gdzie ϵ_j jest liczbą rzeczywistą wygenerowaną losowo z rozkładem normalnym o średniej 0 i wariancji τ^2 , gdzie τ jest parametrem algorytmu, zaś ϵ_0 jest liczbą rzeczywistą wygenerowaną losowo z rozkładem normalnym o średniej 0 i wariancji τ_0^2 , gdzie τ_0 jest parametrem algorytmu.

Ostatecznie, algorithm modyfikuje chromosom $\mathbf{x}^{(C)}$ używając dwóch parametrów mutacji $\alpha^{(C)}$ i $\sigma^{(C)}$ zawartych w potomku i zmodyfikowanych wcześniej.

Początkowo, generowany jest losowo wektor liczb rzeczywistych $\mathbf{z} = (z_1, z_2, \dots, z_d)^T$ w taki sposób, że każda wspólrzędna z_i jest generowana losowo z rozkładem normalnym o średniej 0 i wariancji $(\sigma_i^{(C)})^2$.

Następnie, tworzona jest macierz T

$$\mathbf{T} = \prod_{p=1}^{d} \prod_{q=p+1}^{d} \mathbf{T}_{pq}(\alpha_j^{(C)}),$$

gdzie
$$j = \frac{1}{2}(2N - p)(p + 1) - 2N + q$$
 oraz

```
0
                                                                                                          -\sin \alpha
                                                               \cos \alpha
\mathbf{T}_{pq}(\alpha) =
                                                               \sin \alpha
                                                                                                           \cos \alpha
```

tzn. $T_{pq}(\alpha) = \{t_{ij}\}, i, j = 1, 2, ..., d$, gdzie $t_{ij} = \cos \alpha$ dla i = p i $j = p, t_{ij} = -\sin \alpha$ dla i = p i $j = q, t_{ij} = \sin \alpha$ dla i = q i j = p, $t_{ij} = \cos \alpha$ dla i = q i j = q, w pozostałych przypadkach $t_{ij} = 1$ dla i = j i $t_{ij} = 0$ dla $i \neq j$.

Następnie, modyfikowany jest chromosom $\mathbf{x}^{(C)}$

$$\mathbf{x}^{(C)} = \mathbf{x}^{(C)} + \epsilon^T,$$

gdzie

$$\epsilon = \mathbf{Tz}.$$

Replacement

Osobniki z populacji potomków $\mathcal{P}^{(C)}$ zastępują osobników w bieżącej populacji \mathcal{P} w taki sposób, że rozmiar populacji nie zmienia się.

Zazwyczaj używa się kilku metod:

- $-(\mu,\lambda),$
- $-(\mu + \lambda),$
- selekcja deterministyczna,
- selekcja turniejowa.