Machine Learning 1.10: Curse of Dimensionality

Tom S. F. Haines T.S.F.Haines@bath.ac.uk

Curse of Dimensionality

- Given a name by Richard Bellman ("Adaptive Control Processes: A Guided Tour", 1961)
 (Inventor of dynamic programming – next lecture)
- Short version: More dimensions ⇒ need more data (dimension = feature)

Curse of Dimensionality

- Given a name by Richard Bellman ("Adaptive Control Processes: A Guided Tour", 1961) (Inventor of dynamic programming – next lecture)
- Short version: More dimensions ⇒ need more data (dimension = feature)
- Why?
- How much more?

Combinatorics

- Imagine a problem:
 - Feature vector of length n
 - Binary answers to yes/no questions
 - Any output

Typical of surveys and psychological test.

Combinatorics

- Imagine a problem:
 - Feature vector of length *n*
 - Binary answers to yes/no questions
 - Any output

Typical of surveys and psychological test.

- There are 2^n possible inputs
- If you have 1000 unique exemplars:

n	coverage
10	100.0%
50	40.0%
100	10.0%
500	0.4%
1000	0.1%

- Machine learning is built on similarity,
 the assumption that a similar feature vector implies a similar answer
- ullet Low coverage \Longrightarrow nothing is similar

- Machine learning is built on similarity,
 the assumption that a similar feature vector implies a similar answer
- ullet Low coverage \Longrightarrow nothing is similar
- There is still something "most similar" and "least similar" however. . .

Distance in 100D Space

- 1000 points in nD space, uniform distribution, $x \in [0, 1]^n$
- How far away is everything? (Euclidean)

- 1000 points in *nD* space, uniform distribution, $x \in [0, 1]^n$
- How far away is everything? (Euclidean)
- Right: Typical values
 Red = maximum
 Blue = mean
 Green = minimum

Distance in 100D Space

- 1000 points in *nD* space, uniform distribution, $x \in [0, 1]^n$
- How far away is everything? (Euclidean)
- Right: Typical values
 Red = maximum
 Blue = mean
 Green = minimum
- Distance increases, range does not.
- maximum decreases.
- Everything starts to look the same!

Distance in 100D Space

Never Enough

- $\bullet \ \ \mathsf{Poor} \ \mathsf{coverage} = \mathsf{failing} \ \mathsf{similarity}$
- However much data you have, the curse always gets you

Never Enough

- Poor coverage = failing similarity
- However much data you have, the curse always gets you
- Consider nearest neighbours (set point to same class as nearest)
- First dimension, x[0]: $x[0] < \frac{1/3}{\Longrightarrow}$ Class 1, $x[0] > \frac{2/3}{\Longrightarrow}$ Class 2 (gap between empty)
- All further dimensions are noise, $\sim \mathsf{Normal}(0,1)$

Never Enough

- Poor coverage = failing similarity
- However much data you have, the curse always gets you
- Consider nearest neighbours (set point to same class as nearest)
- First dimension, x[0]: $x[0] < \frac{1/3}{\Longrightarrow}$ Class 1, $x[0] > \frac{2/3}{\Longrightarrow}$ Class 2 (gap between empty)
- This should be easy, but...

Not the Distributions

• It also affects probability distributions e.g. the standard multivariate Gaussian

- It also affects probability distributions e.g. the standard multivariate Gaussian
- Consider draws from the distribution
- Calculate the distribution of their distances from the mean (called a χ (chi) distribution)

Not the Distributions

- It also affects probability distributions e.g. the standard multivariate Gaussian
- Consider draws from the distribution
- Calculate the distribution of their distances from the mean (called a χ (chi) distribution)
- In high dimensions most draws are in a thin shell, nowhere near the mean!

Not the Distributions

Solutions

- Feature selection
- Feature engineering
- Problem doesn't exist for real data! (manifolds)

Feature Selection

- Select a small number of features to use, ignore rest
- Three approaches:
 - Model Selection: Train model with many subsets of the features and select best
 - Filtering: Use an estimate of feature usefulness and filter accordingly
 - Embedded: An algorithm with feature selection built in
- Poor relative of structure learning later lecture

Feature Selection: Model Selection

- Clearly the best approach, but slow
- Impractical to search exhaustively

Feature Selection: Model Selection

- Clearly the best approach, but slow
- Impractical to search exhaustively
- Typical approach:
 - 1. Start with empty set
 - 2. Consider n modifications: Adding (not in set) or removing (in set) each variable
 - 3. Select the best; usually with an extra cost on number of features used
 - 4. If best changed return to step 2, otherwise exit

Feature Selection: Model Selection

- Clearly the best approach, but slow
- Impractical to search exhaustively
- Typical approach:
 - 1. Start with empty set
 - 2. Consider n modifications: Adding (not in set) or removing (in set) each variable
 - 3. Select the best; usually with an extra cost on number of features used
 - 4. If best changed return to step 2, otherwise exit
- Stepwise regression: The above with a regression model, e.g. Logistic regression
- Possibility that considering larger "moves" would find a better solution

Feature Selection: Filtering

- Questionable approach, but fast:
 - 1. Calculate how useful every feature is
 - 2. Select set based on a threshold
 - 3. Train model

Feature Selection: Filtering

- Questionable approach, but fast:
 - 1. Calculate how useful every feature is
 - 2. Select set based on a threshold
 - 3. Train model
- Example: Threshold absolute correlation

Feature Selection: Filtering

- Questionable approach, but fast:
 - 1. Calculate how useful every feature is
 - 2. Select set based on a threshold
 - 3. Train model
- Example: Threshold absolute correlation
- "Usefulness" is dependent on other variables:
 - Two variables might contain the same information

 including both is pointless
 - A variable might be useless on it's own, but really helpful with others

There are variants that consider such relationships

Feature Selection: Embedded

- Good trade off of performance/speed
- Example: Random forests Feature/split selection is feature filtering

Feature Selection: Embedded

- Good trade off of performance/speed
- Example: Random forests Feature/split selection is feature filtering
- Random forest can have an infinite number of features!
- Example:

Kinect person tracker labels pixels – left forearm, head, background... Generates pairs of random offsets from current pixel Splits based on relative depth between pixel at offsets (perspective is factored in – offsets are in meters)

Feature Engineering

- Use domain knowledge to design new features
- Small number, based on what you think will work (use data exploration to help)

Feature Engineering

- Use domain knowledge to design new features
- Small number, based on what you think will work (use data exploration to help)
- Example: Radius trick to fit a circle with Logistic regression
- Invariance and equivariance

Data in the Real World

Consider a video of a cube falling:

• How many dimensions does each frame have?

Data in the Real World

Consider a video of a cube falling:

- How many dimensions does each frame have?
- Formally: 3145728: 1024×1024 images, 3 channels per pixel.
- Actually: 6: 3 for position of cube, 3 for orientation of cube.
 (everything else is a (complex) function of these 6 parameters)
- Real data is mostly low dimensional!

Manifolds

• A manifold is the low dimensional surface the data is actually on.

Manifolds

- A manifold is the low dimensional surface the data is actually on.
- 2D manifolds embedded in 3D space:

Dimensionality Reduction I

• Assign a coordinate system to the manifold, use that instead:

• Often used for visualisation (you used PCA previously)

Dimensionality Reduction II

• Doesn't work if you have loops however!

Principal Component Analysis

- Invented in 1901 by Karl Pearson!
 "On Lines and Planes of Closest Fit to Systems of Points in Space"
- Really simple
- Great for visualisation and dimensionality reduction
- Only handles linear manifolds (e.g. a 4D hyper-cube embedded in 12D space)
- But still useful, even for non-linear manifolds

Example

One Feature

- Imagine we have to represent a *nD* data set using one feature!
- How do we preserve the most information?

One Feature

- Imagine we have to represent a *nD* data set using one feature!
- How do we preserve the most information?
- Don't have to select one feature can take a linear combination e.g. keep $=0.2x_0-0.3x_1+0.1x_2$

One Feature

- Imagine we have to represent a *nD* data set using one feature!
- How do we preserve the most information?
- Don't have to select one feature can take a linear combination e.g. keep $=0.2x_0-0.3x_1+0.1x_2$
- Scale of linear combination does not matter, so assume keep $= \hat{d} \cdot \mathbf{x}, \ |\hat{d}| = 1$

- Imagine we have to represent a *nD* data set using one feature!
- How do we preserve the most information?
- Don't have to select one feature can take a linear combination e.g. keep $=0.2x_0-0.3x_1+0.1x_2$
- Scale of linear combination does not matter, so assume $\operatorname{keep} = \hat{d} \cdot x$, $|\hat{d}| = 1$
- The most information is preserved if we select the direction of maximum variance.

Maximum Variance

- Whiteboard!
- Note: Always passes through mean
- Obtains first principal component

More Principal Components

- Repeat process, for remaining information
- That is, each new principal component must be orthogonal to all previous
- Orthogonality means no shared information
- In practise, there is an analytic solution

Algorithm

- Subtract mean
- Calculate eigenvectors and eigenvalues of covariance matrix
- Energy is the sum of eigenvalues
- Keep the eigenvectors associated with the largest eigenvalues, to obtain 99.9% of energy (or another percentage, or 2/3 if for visualisation)
- Transform data with matrix of kept eigenvectors
- Can return to original space using transpose of kept eigenvectors

Python

```
data -= data.mean(axis = 1)[:, None]
covar = numpy.cov(data.T) # Symmetric
evals, evecs = numpy.linalg.eigh(covar)
# evals is ordered lowest to highest, with evecs[:,i] matching evals[i]
energy = numpy.cumsum(evals)
start = 0
while energy[start] < 0.001 * energy[-1]: # Keep 99.9% of energy
    start += 1
project = evecs[:, start:][:,::-1].T
projected = project.dot(data.T).T
```


Further Manifold Approaches

- Iso-map non-linear, much better than PCA for visualisation
- "Learning a Manifold as an Atlas" by N. Pitelis, C. Russell and L. Agapito non-linear by segmenting manifold into sections where PCA (linear) can be applied

Future Curse-avoiding Approaches

Approaches that will be covered latter:

- Learning features with convolutional NN next term
- Using structure (conditional independence) next lecture

Summary

- The curse of dimensionality (beware your intuitions in high dimensions)
- Feature selection
- Feature engineering
- Manifolds & dimensionality reduction

Further Reading

 "A Few Useful Things to Know about Machine Learning", by P. Domingos, https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf