

Carga horária semanal: 4 horas-aula; Número de créditos: 4; Coord.: Profa. Natalia dos Santo Renato, <u>natalia.renato@ufv.br</u> AULAS PROGRAMADAS

	RUGRA				
Datas	Aulas	Conteúdo			
08/08	01	Exposição das diretrizes da matéria			
12/08	02	Cap.1 - Introdução à mecânica dos fluidos			
15/08	03	Cap.2 - Conceitos Fundamentais			
19/08	04	Cap.2 - Conceitos Fundamentais			
22/08	05	Cap.3- Estática dos fluidos			
26/08	06	Exercícios (teste)			
29/08	07	Cap.3- Estática dos fluidos			
02/09	08	Cap.3 - Estática dos fluidos			
05/09	09	Avaliação 01 (30%)			
09/09	10	Cap.4 - Equações básicas na forma integral para um volume de controle			
12/09	11	Cap.4 - Equações básicas na forma integral para um volume de controle			
16/09	12	Cap.4 - Equações básicas na forma integral para um volume de controle			
19/09	13	Cap.6 - Escoamento incompressível de fluidos não viscosos			
23/09	14	Exercícios (teste)			
26/09	15	Cap.6 - Escoamento incompressível de fluidos não viscosos			
30/09		Feriado			
03/10	16	Cap.8 - Escoamento interno viscoso e incompressível			
07/10		Recesso			
10/10		Recesso			
14/10	17	Cap.8 - Escoamento interno viscoso e incompressível			
17/10	18	Avaliação 02 (30%)			
21/10	19	Cap.1 - Introdução geral a transferência de calor			
24/10	20	Cap.1 - Introdução geral a transferência de calor			
28/10	22	Cap.2 - Introdução a condução			
31/11	23	Cap.2 - Introdução a condução			
04/11	24	Cap.3 - Condução unidimensional			
07/11	25	Cap.3 - Condução unidimensional			
11/11	26	Exercícios (teste			
14/11	27	Cap.3 - Condução unidimensional			
18/11	28	Cap.5 - Condução transiente			
21/11	29	Cap.5 - Condução transiente			
25/11	30	Avaliação 03 (30%)			
28/11		Segunda chamada			
??		Prova final			

AVALIAÇÃO DA DISCIPLINA

Avaliações: 90%. Segunda chamada somente para os casos previstos no regimento.

Exercícios: 10%.

BIBLIOGRAFIA BÁSICA

FOX, R. W., McDONALD, A. T., PRITCHARD, P. J. Introdução à mecânica dos fluidos. 7. Ed. Rio de Janeiro: LTC, 2011. 710p. 532 F793i 1981 (BBT)

INCROPERA, F. P., DEWITT, D. P., BERGMAN, T. L., LAVINE, A. S. Fundamentos de transferência de calor e de massa. Rio de Janeiro: LTC, 2008. 621.4022F981 (BBT)

Capítulo 3- Condução de calor unidirecional e em regime estacionário

Condução Unidimensional em Regime Estacionário

Um regime estacionário ou permanente é aquele em que a temperatura em cada ponto é independente do tempo. O fato de ser unidimensional significa que basta apenas uma coordenada para descrever a variação espacial das variáveis dependentes. Assim, o gradiente de temperatura existe ao longo apenas de uma direção, e a transferência e calor ocorre exclusivamente nessa direção.

One-dimensional heat conduction through a volume element in a long cylinder.

Condução Unidimensional em Regime Estacionário

Parede Plana

Condições fronteira:

A distribuição de temperaturas pode ser obtida resolvendo a Equação Geral usando, para tal, as condições fronteira adequadas.

Da Equação Geral:
$$\frac{d}{dx} \left(k \frac{dT}{dx} \right) = 0$$

 $T(x) = C_1 x + C_2$ Integrando:

 $\begin{cases} T(0) = T_{s,l} \\ T(L) = T_{s,l} \end{cases} \text{ vem: } \begin{cases} C_l = \frac{T_{s,2} - T_{s,l}}{L} \\ C_2 = T_{s,l} \end{cases}$

Substituindo verifica-se que a distribuição de temperaturas é linear:

$$T(x) = \left(T_{s,2} - T_{s,I}\right)\frac{x}{L} + T_{s,I}$$

É, agora, possível obter a taxa de Calor:

$$\dot{Q}_x = -kA\frac{dT}{dx} = \frac{kA}{L}(T_{s,1} - T_{s,2})$$

Simplificações Consideradas: Condução Unidimensional

- Regime Estacionário Sem Geração de Calor

Resistência Térmica

• Diferença de potencial elétrico GERA Fluxo de Energia Elétrica (\dot{I})

Lei de Ohm
$$\dot{I} = \frac{\Delta V}{R}$$
 Resistência Elétrica

Diferença de temperatura GERA Transferência de Calor Q

$$\dot{Q} = \frac{\Delta T}{R_T}$$
 Resistência Térmica

Equações formalmente idênticas —— Leis das resistências elétricas válidas para as resistências térmicas.

- > Resistências em série ----- Somam-se
- Resistências em paralelo $\longrightarrow \frac{I}{R} = \sum_{i} \frac{I}{R_{i}}$

Resistência Térmica

RESISTÊNCIA TÉRMICA

É a razão entre o potencial motriz e a taxa de transferência de calor

$$R_T = \frac{\Delta T}{\dot{Q}} \qquad [K/W]$$

Condução	Convecção	Radiação
$\dot{Q} = \frac{k}{L} A \Delta T$	$\dot{Q} = h \; A \; \Delta T$	$\dot{Q} = h_r \; A \; \Delta T$
$R_T = \frac{L}{kA}$	$R_T = \frac{1}{hA}$	$R_T = \frac{1}{h_r A}$

Qual a resistência total da parede ?

Parede Composta em Série - Coeficiente Global

Considere a parede plana que separa dois fluidos, um quente e o outro frio, a temperaturas $t_{\infty 1}$ e $t_{\infty 2}$, respectivamente. Usando balanços de energia nas superfícies x=0 e x=L como condições de contorno, obtenha a distribuição de temperatura no interior da parede e o fluxo térmico em termos de $t_{\infty 1}$, $t_{\infty 2}$, h_1 , h_2 , K e L.

O Vidro traseiro de um automóvel é desembaçado pela passagem de ar quente sobre a sua superfície interna. Se o ar quente está a $t_{\infty,i}$ =40°C e o coeficiente de transferência de calor por convecção correspondente é de h_i =30(W/m².K), quais são as temperaturas das superfícies interna e externa do vidro, que tem 4mm de espessura, se a temperatura ambiente externo for $t_{\infty,e}$ =-10°Ce o coeficiente convectivo associado h_e =65(W/m².K)?

As paredes de uma geladeira são tipicamente construídas com uma camada de isolante entre dois painéis de folhas de metal. Considere uma parede feita com isolante de fibra de vidro, com condutividade térmica k_i=0,046 W/(mK) e espessura L_i=50mm, e painéis de aço, cada um com condutividade térmica k_p=60W/(mK) e espessura L_p=3mm. Com a parede separando ar refrigerado a $T_{\infty,i}=4^{\circ}C$ do ar ambiente a $T_{\infty,e}=25^{\circ}C$ determine o ganho de calor por unidade de área superficial. Os coeficientes associados à convecção natural nas superfícies interna e externa podem ser aproximados por $h_i = h_e = 5W/(m^2K)$.

Sistemas Radiais

Regime estacionário Sem geração de calor – energia térmica – – > Análise feita pela eq. de calor

Coordenada cilíndrica:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(kr\frac{\partial T}{\partial r}\right) + \frac{1}{r^2}\frac{\partial}{\partial \phi}\left(k\frac{\partial T}{\partial \phi}\right) + \frac{\partial}{\partial z}\left(k\frac{\partial T}{\partial z}\right) + \dot{q} = \rho c_p \frac{\partial T}{\partial t}$$

Considerando k constate temos:

Distribuição de temperatura

$$T = C_1 \ln(r) + C_2$$

$$T = \frac{T_{s1} - T_{s2}}{\ln(r_1 / r_2)} \ln\left(\frac{r}{r_2}\right) + T_{s2}$$

Condições de contorno

CC1
$$\longrightarrow$$
 r=r₁, T=T_{s,1}
CC2 \longrightarrow r=r₂, T=T_{s,2}

$$CC2 \rightarrow r=r_2, T=T_{s,2}$$

A distribuição de temperatura associada a condução radial de uma parede cilíndrica é logarítima e não linear, como na parede plana

$$T = \frac{T_{s1} - T_{s2}}{\ln(r_1 / r_2)} \ln\left(\frac{r}{r_2}\right) + T_{s2}$$

$$\frac{dT}{dr} = \frac{T_{s1} - T_{s2}}{\ln(r_1/r_2)} \cdot \frac{1}{r}$$

$$q_r = -kA\frac{dT}{dr} = -k2\pi rL\frac{dT}{dr} = 2\pi Lk\frac{T_{s1} - T_{s2}}{\ln(r_2/r_1)}$$

Resistência térmica

$$R_{t,cond} = \frac{\ln(r_2/r_1)}{2\pi Lk}$$

Convecção

$$\dot{Q} = h \; A \; \Delta T$$

$$R_T = \frac{l}{hA}$$

$$R_{t,conv} = \frac{1}{2\pi r Lh}$$

Resistência Térmica

RESISTÊNCIA TÉRMICA

É a razão entre o potencial motriz e a taxa de transferência de calor

$$R_T = \frac{\Delta T}{\dot{Q}} \qquad [K/W]$$

Condução	Convecção	Radiação
$\dot{Q} = \frac{k}{L} A \Delta T$	$\dot{Q} = h \; A \; \Delta T$	$\dot{Q} = h_r \; A \; \Delta T$
$R_T = \frac{L}{kA}$	$R_T = \frac{1}{hA}$	$R_T = \frac{1}{h_r A}$

Qual a resistência total da parede ?

Portanto:

Sistema composto

✓ Taxa de Transferência de Calor

$$q_r = \frac{T_{\infty,1} - T_{\infty,4}}{\left(\frac{1}{2\pi r_1 L h_1}\right) + \left[\frac{\ln(r_2/r_1)}{2\pi L k_A}\right] + \left[\frac{\ln(r_3/r_2)}{2\pi L k_B}\right] + \left[\frac{\ln(r_4/r_3)}{2\pi L k_C}\right] + \left(\frac{1}{2\pi r_4 L h_4}\right)}$$

✓ Coeficiente Global de Transferência de Calor

$$q_r = \frac{T_{\infty,1} - T_{\infty,4}}{R_{tot}} = UA(T_{\infty,1} - T_{\infty,4})$$

$$U_1 A_1 = U_2 A_2 = U_3 A_3 = U_4 A_4 = \left(\sum R_t\right)^T$$

Em sistema compostos é conveniente $q_r = \frac{T_{\infty,1} - T_{\infty,4}}{R_{tot}} = UA \left(T_{\infty,1} - T_{\infty,4}\right)$ Em sistema compostos e conveniente trabalhar com o Coeficiente Global de Transferência de Calor (U) $\dot{Q}_x = U \cdot A \cdot \Delta T$ $U_1 A_1 = U_2 A_2 = U_3 A_3 = U_4 A_4 = \left(\sum R_t\right)^{-1}$ $R_T = \frac{\Delta T}{\dot{Q}_x} \qquad R_T = \frac{1}{UA} \qquad U = \frac{1}{R_T A}$

$$\dot{Q}_x = U \cdot A \cdot \Delta T$$

$$R_T = \frac{\Delta T}{\dot{Q}_x}$$
 $R_T = \frac{1}{UA}$ $U = \frac{1}{R_T A}$

A possível existência de uma espessura ótima para a camada de isolamento térmico em sistemas radiais é sugerida pela presença de efeitos concorrentes associados ao aumento dessa espessura. Em particular, embora a resistência à condução de calor aumente com a adição de isolamento térmico, a resistência térmica à convecção de calor diminui devido ao aumento da área superficial externa. Dessa forma, deve existir uma espessura da camada de isolamento térmico que minimize a perda de calor pela maximização da resistência total à transferência de calor. Resolva esse problema levando em consideração o seguinte sistema.

 Considere um tubo delgado de cobre com raio ri cuja superfície se encontra a uma temperatura Ti menor do que a temperatura do ambiente T∞ ao redor do tubo. Existe uma espessura ótima associada à aplicação de uma camada de isolamento térmico sobre o tubo? 2. Confirme o resultado acima calculando a resistência térmica total, por unidade de comprimento do tubo em um tubo com 10 mm de diâmetro que possui as seguintes espessuras de isolamento térmico: 0, 2, 5, 10, 20 e 40 mm. O isolamento é composto por vidro celular, e o coeficiente de transferência de calor por convecção em sua superfície externa é de 5W/m2 K.

Um aquecedor elétrico delgado está inserido entre um longo bastão circular e um tubo concêntrico, com raios interno e externo iguais a 20 e 40 mm, respectivamente. O bastão (A) possui uma condutividade térmica de $k_{\rm A}=0.15~{\rm W/(m\cdot K)}$ e o tubo (B) $k_{\rm B}=1.5~{\rm W/(m\cdot K)}$. A superfície externa do tubo está sujeita à convecção com um fluido à temperatura $T_{\infty}=-15~{\rm C}$ e um coeficiente de transferência de calor de 50 W/(m² · K). As resistências térmicas de contato entre as superfícies do bastão e do tubo, e as superfícies do aquecedor, são desprezíveis.

- (a) Determine a potência elétrica, por unidade de comprimento dos cilindros (W/m), necessária para manter a superfície externa do cilindro B a 5°C.
- (b) Qual é a temperatura no centro do cilindro A?

Distribuição de temperatura:

$$\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(kr^{2}\frac{\partial T}{\partial r}\right) + \frac{1}{r^{2}sen\theta}\frac{\partial}{\partial \phi}\left(k\frac{\partial T}{\partial \phi}\right) + \frac{1}{r^{2}sen\theta}\frac{\partial}{\partial \theta}\left(ksen\theta\frac{\partial T}{\partial \theta}\right)...$$

$$...+\dot{q}=\rho c \int \frac{\partial T}{\partial t}$$

Regime estacionário

Condução unidirecional em x

Sem geração de energia térmica

Proriedades constantes

$$T(r) = (T_{s,2} - T_{s,1}) \left[\frac{1 - (r_1/r)}{1 - (r_1/r_2)} \right] + T_{s,1}$$

Coordenada esférica – análise alternativa

$$q_r = -kA\frac{dT}{dr} = -k(4\pi r^2)\frac{dT}{dr}$$
 ---- $q_r = \frac{4\pi k(T_{s,1} - T_{s,2})}{(1/r_1) - (1/r_2)}$

Resistência Térmica:

$$R_{t, cond} = \frac{1}{4\pi k} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

OBS.: esferas compostas podem ser tratadas da mesma forma que as paredes e os cilindros compostos.

TABLE 3.3 One-dimensional, steady-state solutions to the heat equation with no generation

	Plane Wall	Cylindrical Wall ^a	Spherical Wall ^a
Heat equation	$\frac{d^2T}{dx^2} = 0$	$\frac{1}{r}\frac{d}{dr}\bigg(r\frac{dT}{dr}\bigg) = 0$	$\frac{1}{r^2}\frac{d}{dr}\bigg(r^2\frac{dT}{dr}\bigg) = 0$
Temperature distribution	$T_{s,1} - \Delta T \frac{x}{L}$	$T_{s,2} + \Delta T \frac{\ln{(r/r_2)}}{\ln{(r_1/r_2)}}$	$T_{s,1} - \Delta T \left[\frac{1 - (r_1/r)}{1 - (r_1/r_2)} \right]$
Heat flux (q'')	$k\frac{\Delta T}{L}$	$\frac{k\Delta T}{r\ln(r_2/r_1)}$	$\frac{k\Delta T}{r^2[(1/r_1) - (1/r_2)]}$
Heat rate (q)	$kA\frac{\Delta T}{L}$	$\frac{2\pi Lk \Delta T}{\ln\left(r_2/r_1\right)}$	$\frac{4\pi k \Delta T}{(1/r_1) - (1/r_2)}$
Thermal resistance ($R_{t,cond}$)	$\frac{L}{kA}$	$\frac{\ln\left(r_2/r_1\right)}{2\pi Lk}$	$\frac{(1/r_1) - (1/r_2)}{4\pi k}$

^aThe critical radius of insulation is $r_{cr} = k/h$ for the cylinder and $r_{cr} = 2k/h$ for the sphere.

$$\Delta T = T_{s,1} - T_{s,2}$$