Názvosloví

Prvky, kyseliny, soli, komplexní sloučeniny

Zdeněk Moravec, hugo@chemi.muni.cz

1 H hydrogen					ľ	UPAC	Perio	dic Tal	ole of	the Ele	ement	s					18 2 He
1.008	2		Key:									13	14	15	16	17	4.0026
3 Li lithium 6.94 (8.900, 6.907)	Be berytium		Symbol name covertional atomic vistandard atomic vi	ol 								5 B boron 1081 [10.806, 10.821]	6 C carbon 12,011 [12,009, 12,012]	7 N nitrogen 14.007 [14.008, 14.008]	8 O oxygen vs.ses (15.990, 16.000)	9 F fuorine 18.998	10 Ne neon 20.190
11 Na sodium 22.990	12 Mg magnesium 24.385 [24.304, 24.307]	3	4	5	6	7	8	9	10	11	12	AI aluminium 26.992	14 Si silicon 21.08 (28.084, 28.086)	15 P phosphorus 30.974	16 S sulfur 32:06 (\$2:050, 32:076)	17 CI chlorine 35.48 (35.448, 35.457)	18 Ar argon
19 K potassium	Ca calcium	Sc scandium	Z2 Ti stanium	V Vanadium	Cr chromium	Mn manganese	Fe iron	Co cobalt	28 Ni nickel	Cu copper	Zn zino	Ga gallium	Ge germanium	As arsenic	34 Se selenium	35 Br bromine	36 Kr krypton
37 Rb rubidium	40.078(4) 38 Sr strontium	44.996 39 Y yttrium	47.867 40 Zr zirconium	90.942 41 Nb nichium	61.996 42 Mo molybdenum	43 Tc technetium	65.845(2) 44 Ru ruthenium	68.633 45 Rh rhodlum	46 Pd palladium	47 Ag silver	65.38(2) 48 Cd cadmium	69.723 49 In indium	72.630(8) 50 Sn tin	74.622 51 Sb antimony	78.971(8) 52 Te telurium	[79.901, 79.907] 53 I lodine	54 Xe xenon
55 Cs caesium	56 Ba barium	57-71 Ianthenoids	91.224(2) 72 Hf hefnium	73 Ta tantalum	95.95 74 W tungsten	75 Re	76 Os osmium	102.91 77 Ir iridium	78 Pt platinum	79 Au gold	80 Hg mercury	81 TI thallium	82 Pb lead	83 Bi bismuth	84 Po polonium	85 At astatine	131.29 86 Rn radon
87 Fr francium	137.33 88 Ra radium	89-103 actinoids	178.49(2) 104 Rf rutherfordium	105 Db dubnium	183.84 106 Sg seaborgium	18621 107 Bh bohrlum	190.23(3) 108 Hs hassium	192.22 109 Mt meltnerium	195.08 110 Ds darmstadtium	196.97 111 Rg roentgenium	200.99 112 Cn copernicium	113 Nh nihonium	207.2 114 FI flerovium	208.58 115 Mc moscowium	116 Lv Ivermorium	117 Ts tennessine	118 Og oganess

-	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
- 1	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu
- 1	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
ı	138.91	140.12	140.91	144.24		150.36(2)	151.96	157.25(3)	158.93	162.50	164.93	167.26	168.93	173.05	174.97
ı	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
- 1	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
- 1	actinium	thorium	protectinium	uranium	nepturium	plutonium	americium	ourium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
- 1		232.04	231.04	235.03											

For notes and updates to this table, see www.iupac.org. This version is dated 28 November 2016. Copyright © 2016 IUPAC, the International Union of Pura and Applied Chemistry.

Bohrium	Bh	Curium	Cm	Darmstadtium	Ds
Einsteinium	Es	Flerovium	FI	Hassium	Hs
Kalifornium	Cf	Kopernicium	Cn	Livermorium	Lv
Lutecium	Lu	Meitnerium	Mt	Promethium	Pm
Rhenium	Re	Rhodium	Rh	Roentgenium	Rg
Ruthenium	Ru	Rutherforium	Rf	Seaborgium	Sg
Tellur	Te	Thallium	TI	Thulium	Tm
Ytterbium	Yb	Yttrium	Υ	Tennessin	Ts

Nové prvky 7. periody						
Protonové číslo	Symbol	Český název	Latinský název			
113	Nh	Nihonium	Nihonium			
114	FI	Flerovium	Flerovium			
115	Мс	Moskovium	Moscovium			
116	Lv	Livermorium	Livermorium			
117	Ts	Tennessin	Tennessine			
118	Og	Oganesson	Oganesson			

Skupiny prvků

Sk	upina	Označení	Blok	Prvky
1	IA	Alkalické kovy	S	H, Li, Na, K, Rb, Cs, Fr
2	IIA	Kovy alkalických zemin	S	Be, Mg, Ca, Sr, Ba, Ra
3	IIIB		d	Sc, Y, La, Ac
4	IVB		d	Ti, Zr, Hf, Rf
5	VB		d	V, Nb, Ta, Db
6	VIB		d	Cr, Mo, W, Sg
7	VIIB		d	Mn, Tc, Re, Bh
8	VIIIB		d	Fe, Ru, Os, Hs
9	VIIIB		d	Co, Rh, Ir, Mt
10	VIIIB		d	Ni, Pd, Pt, Ds
11	IB		d	Cu, Ag, Au, Rg
12	IIB		d	Zn, Cd, Hg, Cn

Skupiny prvků

Sk	upina	Označení	Blok	Prvky
13	IIIA	Triely	р	B, Al, Ga, In, Tl, Nh
14	IVA	Tetrely	р	C, Si, Ge, Sn, Pb, Fl
15	VA	Pentely	р	N, P, As, Sb, Bi, Mc
16	VIA	Chalkogeny	р	O, S, Se, Te, Po, Lv
17	VIIA	Halogeny	р	F, Cl, Br, I, At, Ts
18	VIIIA	Vzácné plyny	р	He, Ne, Xe, Ar, Kr, Xe, Rn, Og

- ► Lanthanoidy Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu
- Aktinoidy Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr
- ► Transurany Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr, transaktinoidy
- ► Transaktinoidy Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg, Cn, Nh, Fl, Mc, Lv, Ts, Og
- Vzácné zeminy − Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu
- ► Skupina železa Fe, Co, Ni
- Lehké Pt kovy Ru, Rh, Pd
- ► Těžké Pt kovy Os, Ir, Pt

Předpony a přípony

Oxidační	Kation	Sůl	Kyselina
číslo			
I	-ný	-nan	-ná
II	-natý	-natan	-natá
III	-itý	-itan	-itá
IV	-ičitý	-ičitan	-ičitá
V	-ičný	-ičnan	-ičná
	-ečný	-ečnan	-ečná
VI	-ový	-an	-ová
VII	-istý	-istan	-istá
VIII	-ičelý	-ičelan	-ičelá

Číslovka	Předpona
$^{1}/_{2}$	hemi-
1	mono-
2	di-
3	tri-
4	tetra-
5	penta-
6	hexa-
7	hepta-
8	okta-
9	nona-
10	deka-
11	undeka-
12	dodeka-

Oxidační číslo

- Oxidační číslo je formální náboj, který by atom měl, pokud bychom všechny vazebné elektrony přisoudili elektronegativnějšímu prvku.
- Součet oxidačních čísel všech atomů molekuly je roven nule.
- Součet oxidačních čísel všech atomů iontu je roven jeho náboji (vč. znaménka).
- Vodík se ve sloučeninách vyskytuje nejčastěji v oxidačním stavu I, výjimkou jsou hydridy, kde má oxidační číslo -I. V hydridech nekovů má vodík konvenčně oxidační číslo I.
 - $ightharpoonup H_2^{\ \ \ \ \ \ } O^{\ \ \ \ \ \ \ } (-2) = 0 \text{voda (oxan)}$
 - ightharpoonup Ca $^{\rm II}$ H $_2$ $^{\rm -I}$: $2+2\times(-1)=0$ hydrid vápenatý
- **Kyslík** tvoří sloučeniny ve třech oxidačních stavech
 - \blacktriangleright Oxidy: $\mathrm{K_2}^{\mathrm{I}}\mathrm{O}^{\mathrm{-II}}$: $2\times 1 + (-2) = 0$ oxid draselný
 - Peroxidy $K_2^{\ \ \ \ \ \ \ \ \ \ \ } O_2^{\ \ \ \ \ \ \ \ \ \ } : 2\times 1 + 2\times (-1) = 0$ peroxid draselný
 - \blacktriangleright Hyperoxidy ${\rm K^IO_2}^{-1/2} \colon 1 + 2 \times (-\frac{1}{2}) = 0$ hyperoxid draselný
- $\qquad \qquad \big({\rm S^{VI}O_4}^{-{\rm II}} \big)^{2-} \colon 6 + 4 \times (-2) = -2 \text{ s\'ran}$
- $\blacktriangleright \ \, \left(\mathrm{Cl^{VII}O_4}^{-\mathrm{II}}\right)^- \colon 7 + 4 \times (-2) = -1$ chloristan

Kyseliny a soli

H ₂ SO ₄	$H_2^{I}S^{VI}O_4^{-II}$	kyselina sírová
Na_2SO_4	Na_2 $S^{VI}O_4$ $-II$	síran sodný
H_3PO_4	$H_3^I P^V O_4^{-II}$	kyselina trihydrogenfosforečná
Na_3PO_4	$Na_3^IP^VO_4^{-II}$	fosforečnan sodný
Na_2HPO_4	$Na_2^IH^IP^VO_4^{-II}$	hydrogenfosforečnan sodný
NaH_2PO_4	$Na^{I}H_{2}^{I}P^{V}O_{4}^{-II}$	dihydrogenfosforečnan sodný
CaH_2	$Ca^{II}H_2^{-I}$	hydrid vápenatý
AIH ₃	Al ^{III} H ₃ ^{-I}	alan (hydrid hlinitý)
SeH_2	Se ^{II} H ₂ ^{-I}	selan
PH_3	$P^{-III}H_3^{I}$	fosfan
PH ₅	$P^{-V}H_5^{-1}$	fosforan
H_2O_2	$H_2^{I}O_2^{-I}$	peroxid vodíku
$NaNO_2 \cdot 10H_2O$	$Na^{I}N^{III}O_{2}^{-II}\cdot 10H_{2}O$	dekahydrát dusitanu sodného
Al_2S_3	$Al_2^{III}S_3^{-II}$	sulfid hlinitý
KCN	$K^{I}C^{II}N^{-III}$	kyanid draselný

Kyseliny a soli

Podvojné soli

- Ve vzorcích podvojných solí se kationty uvádějí v pořadí rostoucích oxidačních čísel, v případě stejného oxidačního čísla v abecedním pořadí.
- ightharpoonup Víceatomové kationty, např. NH_4^+ nebo PH_4^+ se uvádějí poslední.
- V názvu se oddělují pomlčkou a pořadí je dáno pořadím ve vzorci.
- ► K₂NH₄PO₄ fosforečnan didraselno-amonný
- ► NH₄MgPO₄ fosforečnan amonno-hořečnatý
- NaNH₄SO₄ síran sodno-amonný
- Anionty se uvádějí v abecedním pořadí značek prvků, příp. centrálních atomů.
- $ightharpoonup Ca_3(CO_3)_2F_2$ bis(uhličitan)-difluorid trivápenatý
- ► Na₆CIF(SO₄)₂ chlorid-fluorid-bis(síran) hexasodný
- Podvojné oxidy je nutné pojmenovávat jako oxidy, ne jako soli. Jedinou výjimkou jsou situace, kdy je prokázáno, že sloučenina obsahuje daný anion, např. TiO₃²⁻:
- ► FeTiO₃ trioxid železnato-titaničitý
- ► NaNbO₃ trioxid sodno-niobičný

Názvy iontů

- Názvy jednoatomových kationtů mají koncovku danou oxidačním číslem kovu.
- Názvy jednoatomových aniontů mají koncovku -id.
- U víceatomových kationtů používáme koncovku -onium.
- Názvy aniontů odvozených od kyslíkatých kyselin se tvoří tak, že se v koncovce dané oxidačním číslem (např. -itý) zamění -ý za -an.

CI	chlorid	NaCl	chlorid sodný
$NH_2^ N^{3-}$	amid	$NaNH_2$	amid sodný
• •	nitrid	Hg_3N_2	nitrid rtuťnatý
C ⁴⁻	karbid	Al_4C_3	karbid hlinitý
SO_4^{2-}	síran	K_2SO_4	síran draselný
PH_4^+	fosfonium	PH ₄ Cl	chlorid fosfonia
$\mathrm{H_2NO}_3^+$	nitratacidium	$(H_2NO_3)_2SO_4$	síran nitratacidia
$[(CH_3)_3NH]^+$	trimethylamonium	[(CH ₃) ₃ NH]Br	bromid trimethylamonia

Názvy iontů

lonty odvozené od amoniaku

- Z amoniaku můžeme odvodit amonný kation, NH₄⁺.
- ► (NH₄)₂SO₄ síran amonný
- Na(NH₄)SO₄ − síran sodno-amonný
- ► (NH₄)Al(SO₄)₂ · 12 H₂O dodekahydrát síranu amonno-hlinitého
- Substitucí protonů získáme alkylamonné soli.
- $ightharpoonup (NMe_4)_2SO_4$ síran tetramethylamonný
- ► NH₂Me₂Br bromid dimethylamonný

Kationty amonný, methylamonný, dimethylamonný, trimethylamonný a tetramethylamonný

Názvy iontů

lonty odvozené od amoniaku

- Postupným odštěpováním protonů z NH₃ získáme tři anionty:
 - $ightharpoonup NH_2^-$ amid
 - \triangleright NH $^{2-}$ imid
 - $ightharpoonup N^{3-}$ nitrid

LiNH ₂	amid lithný	Si(NH ₂) ₄	amid křemičitý
Li ₂ NH	imid lithný	CaNH	imid vápenatý
Li ₃ N	nitrid lithný	$CO(NH_2)_2$	amid kyseliny uhličité
AIN	nitrid hlinitý	$SO_2(NH_2)_2$	amid kyseliny sírové
Ti ₃ N ₄	nitrid titaničitý	$SO(NH_2)_2$	amid kyseliny siřičité

Atomové skupiny

Názvy atomových skupin končí, nezávisle na jejich náboji, koncovkou -yl. Pokud existuje více skupin stejného složení, ale lišící se nábojem, rozlišujeme je uvedením náboje nebo oxidačního čísla centrálního atomu v názvu.

OH	hydroxyl	CO	karbonyl	NO	nitrosyl
NO_2	nitryl	PO	fosforyl	VO	vanadyl
SO	thionyl	SO_2	sulfuryl	SeO	seleninyl
SeO_2	selenonyl	CrO_2	chromyl	UO_2	uranyl
CIO	chlorosyl	CIO_2	chloryl	CIO_3	perchloryl

```
{\rm COCl}_2 - chlorid karbonylu {\rm SO}_2{\rm Cl}_2 - chlorid sulfurylu {\rm UO}_2({\rm NO}_3)_2 - dusičnan uranylu(2+) nebo dusičnan uranylu(VI)
```

Atomové skupiny

Názvy atomových skupin končí, nezávisle na jejich náboji, koncovkou -yl. Pokud existuje více skupin stejného složení, ale lišící se nábojem, rozlišujeme je uvedením náboje nebo oxidačního čísla centrálního atomu v názvu.

```
OH
                    CO
                                         NO
        hydroxyl
                             karbonyl
                                                 nitrosyl
NO_{2}
        nitryl
                    PO
                             fosforyl
                                        VO
                                                 vanadyl
SO
        thionyl SO<sub>2</sub>
                           sulfuryl
                                         SeO
                                                 seleninyl
SeO<sub>2</sub>
        selenonyl
                    CrO<sub>2</sub> chromyl
                                         UO_2
                                                 uranyl
CIO
        chlorosyl
                    CIO_{2}
                             chloryl
                                         CIO<sub>2</sub>
                                                 perchloryl
```

 ${\rm COCl}_2$ - chlorid karbonylu ${\rm UO}_2({\rm NO}_3)_2$ - dusičnan uranylu(2+) nebo dusičnan uranylu(VI)

Estery anorganických kyselin

Izo- a heteropolyanionty

- Izopolyanionty jsou anionty obsahující dva a více centrálních atomů téhož prvku.
- Heteropolyanionty jsou anionty obsahující dva a více centrálních atomů různých prvků.
- ► Vznikají kondenzací monomerních jednotek, např.:

- Cyklické a řetězovité struktury odlišujeme předponami cyklo-a katena-.
- U heteropolyaniontů se názvy jednotlivých složek řadí v pořadí, v jakém jsou zapsány ve vzorci a oddělují se pomlčkami. Pořadí volíme tak, abychom začínali kovem, jehož značka je v abecedním pořadí co nejblíže začátku.
 - $(O_3 CrOAsO_2 OPO_3)^{4-} anion chromano-arseničnano-fosforečnano-vý(4-)$

Koordinační sloučenina je sloučenina obsahující alespoň jednu donor-akceptorovou vazbu. Název těchto sloučenin se tvoří pojmenováním centrálního atomu a jednotlivých ligandů.

Vzorec	lon	Ligand
SO^{2-}_4	Síran	Sulfato-
$S_2O_3^{2-}$	Thiosíran	Thiosulfato-
PO^{3-}_4	Fosforečnan	Fosfato-
CH ₃ COO ⁻	Octan	Acetato-
F ⁻	Fluorid	Fluoro-
O^{2-}	Oxid	Oxido-
H ⁻	Hydrid	Hydrido-
SCN ⁻	Thiokyanatan	Thiokyanato-

Organické ligandy

Izomerie

a) Ligand se koordinuje k centrálnímu atomu různými donorovými atomy. Jev se nazývá **vazebná izomerie** a izomery rozlišujeme rozdílnými názvy ligandů

```
    -NO<sub>2</sub> nitro
    -SCN thiokyanato
    -NCS isothiokyanato
    -SeCN selenokyanato
    -NCSe isoselenokyanato
```

b) Koordinují se izomerní ligandy za vzniku **polohových izomerů**. I tento případ se vystihne rozdílným názvem ligandů

```
\begin{array}{ll} {\sf H_2NCH_2CH(NH_2)CH_3} & {\sf 1,2-diaminopropan} \\ {\sf CH_3NHCH_2CH_2NH_2} & {\sf N-methylethylendiamin} \end{array}
```

Izomerie

c) Komplex má zaměněny ionty v koordinační a iontové sféře. Tuto situaci, nazývanou **ionizační izomerie**, řeší název komplexu

$$[\text{Co(NH}_3)_5\text{SO}_4] \text{Br} \qquad \text{bromid pentaammin-sulfatokobaltit\'y} \\ [\text{Co(NH}_3)_5\text{Br}] \text{SO}_4 \qquad \text{s\'iran pentaammin-bromokobaltit\'y}$$

d) U koordinačních sloučenin s komplexním kationtem i aniontem se může měnit rozdělení ligandů mezi koordinačními sférami obou centrálních atomů (koordinační izomerie)

$$\begin{array}{ll} [Pt(NH_3)_4][CuCl_4] & tetrachloroměďnatan \ tetramminplatnatý \\ [Cu(NH_3)_4][PtCl_4] & tetrachloroplatnatan \ tetraamminměďnatý \end{array}$$

Izomerie

cis-dichloro-tetramminochromitan trans-dichloro-tetramminochromitan

