Federated Nearest Neighbor Classification with a Colony of Fruit-Flies

Parikshit Ram (IBM Research AI), Kaushik Sinha (Wichita State University & IFML)

Nearest Neighbor Classifier

Distributed Nearest Neighbor Classifier

Federated Nearest Neighbor Classifier

Fruit-Fly Inspired Data-Structures

REPORT f ⊌ ii

A neural algorithm for a fundamental computing problem

SANJOY DASGUPTA 6, CHARLES F. STEVENS 6, AND, SAKET NAVLAKHA 6 Authors Info & Affiliations

SCIENCE • 10 Nov 2017 • Vol 358, Issue 6364 • pp. 793-796 • DOI: 10.1126/science.aam9868

REPORT

A neural algorithm for a fundamental computing problem

Authors Info & Affiliations SANJOY DASGUPTA 📵 , CHARLES F. STEVENS 📵 , AND , SAKET NAVLAKHA 📵

SCIENCE • 10 Nov 2017 • Vol 358, Issue 6364 • pp. 793-796 • DOI: 10.1126/science.aam9868

A neural data structure for novelty detection

Sanjoy Dasgupta^a, Timothy C. Sheehan^b, Charles F. Stevens^{c,d,1}, and Saket Navlakha^{e,1}

*Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093; bNeurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093; 'Kayli Institute for Brain & Mind, University of California, San Diego, La Jolla, CA 92093; dMolecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037; and "Integrative Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037

Contributed by Charles F. Stevens, October 30, 2018 (sent for review August 22, 2018; reviewed by Piotr Indyk and Glenn Turner)

isms must solve to determine whether a given stimulus departs input from the KCs and perform many different functions (11from those previously experienced in computer science this prob-

Novelty detection is a fundamental biological problem that organ-by 34 mushroom body output neurons (MBONs) that receive 13) Here we are concerned with one such MRON called

FlyNN Classifier

Sample $M \in \{0,1\}^{m \times d}$ with seed RInitialize $\boldsymbol{w}_1,\dots,\boldsymbol{w}_L \leftarrow \boldsymbol{1}_m \in (0,1)^m$ for $(\boldsymbol{x},y)\in S$ do $\mathbf{h} \leftarrow \Gamma_{\rho}(\mathsf{M}\boldsymbol{x})$ $\boldsymbol{w}_y[i] \leftarrow \gamma \cdot \boldsymbol{w}_y[i] \ \forall i \in [m] \colon \mathbf{h}[i] = 1$ return $(M, \{\boldsymbol{w}_l, l \in [L]\})$

end

 $\begin{aligned} \mathbf{h} &\leftarrow \Gamma_{\rho}\left(\mathbf{M}\boldsymbol{x}\right) \\ \mathbf{return} & \operatorname{argmin}_{l \in [L]} \boldsymbol{w}_{l}^{\top} \mathbf{h} \end{aligned}$

Theorem 3. Fix s, ρ, m and k. Given a training set S of size n and a test example $\mathbf{x} \in \mathbb{R}^d$ sampled from a permutation invariant distribution, let \mathbf{x}_* be its $(\lceil k+1/2 \rceil)^{th}$ nearest neighbor from S measured using ℓ_{∞} metric. If $\|\mathbf{x} - \mathbf{x}_*\|_{\infty} \leq \min\{\eta/2, O(1/s)\}$ then, $\hat{y}_{\text{Flynn}} = \hat{y}_{k\text{NNC}}$ with probability $\geq 1 - \left(O(\rho n/m) + e^{-O(\rho)}\right)$, where \hat{y}_{Flynn} and $\hat{y}_{k\text{NNC}}$ are respectively the predictions of Flynn and kNNC.

FIYNN-FL:

Federated Nearest Neighbor Classifier

Theorem 4 (Non-private Federated training parity). Given training sets $S_t \subset \mathbb{R}^d \times [L]$ on each party $V_t, t \in [\tau]$, and a Flynn configured as in Lemma 1, if the boolean variable IS_DP is False, then the per-party final Flynn $\{\hat{w}_l, l \in [L]\}$ (Alg. 2, line 9) output by TrainFlynnFLDP ($\{S_t, t \in [\tau]\}, m, s, \rho, \gamma, \text{IS}_DP, \epsilon, T$) with random seed R in Algorithm 2 is equal to the Flynn $\{w_l, l \in [L]\}$ (Alg. 1, line 8) output by TrainFlynn $\{S_t, m, s, \rho, c, R\}$ subroutine in Algorithm 1 with the pooled training set $S = \bigcup_{t \in [\tau]} S_t$.

Theorem 4 (Non-private Federated training parity). Given training sets $S_t \subset \mathbb{R}^d \times [L]$ on each party $V_t, t \in [\tau]$, and a Flynn configured as in Lemma 1, if the boolean variable IS_DP is False, then the per-party final Flynn $\{\hat{w}_l, l \in [L]\}$ (Alg. 2, line 9) output by TrainFlynnFLDP ($\{S_t, t \in [\tau]\}, m, s, \rho, \gamma, \text{IS}_DP, \epsilon, T$) with random seed R in Algorithm 2 is equal to the Flynn $\{w_l, l \in [L]\}$ (Alg. 1, line 8) output by TrainFlynn $\{S_t, m, s, \rho, c, R\}$ subroutine in Algorithm 1 with the pooled training set $S = \bigcup_{t \in [\tau]} S_t$.

Experiments

МЕТНОО	(i) FRAC.	(ii) W/T/L	(iii) IMP.	(iv) TT	(v) WSRT
kNNC	0.55	39/2/30	0.35%	5.30E-2	7.63E-2
1NNC	0.66	47/2/22	2.36%	1.55E-5	2.81E-5

МЕТНОО	(i) FRAC.	(ii) W/T/L	(iii) IMP.	(iv) TT	(v) WSRT
kNNC	0.55	39/2/30	0.35%	5.30E-2	7.63E-2
1NNC	0.66	47/2/22	2.36%	1.55E-5	2.81E-5

МЕТНОО	(i) FRAC.	(ii) W/T/L	(iii) IMP.	(iv) TT	(v) WSRT
kNNC	0.55	39/2/30	0.35%	5.30E-2	7.63E-2
1NNC	0.66	47/2/22	2.36%	1.55E-5	2.81E-5

Additional results

- → Hyper-parameter dependence
- → Ablation and comparison to other methods
- → Extensive evaluation on synthetic data

github.com/rithram/flynn

p.ram@acm.org

