que pode ser simplificada para:

$$\frac{2\omega(\sigma + 0,5)}{(\sigma + 0,5)^2 - (\omega^2 - 3,1225^2)} = \frac{\omega}{\sigma}$$

ou

$$\omega(\sigma^2 - 10 + \omega^2) = 0$$

do que resulta:

$$\omega = 0$$
 ou $\sigma^2 + \omega^2 = 10$

Note que $\omega = 0$ corresponde ao eixo real. O eixo real negativo (entre s = 0 e $s = -\infty$) corresponde a $K \ge 0$ e o eixo real positivo corresponde a K < 0. A equação

$$\sigma^2 + \omega^2 = 10$$

é uma equação de uma circunferência com centro em $\sigma = 0$, $\omega = 0$ e raio igual a $\sqrt{10}$. A parte dessa circunferência que está à esquerda dos polos complexos corresponde ao lugar das raízes para K > 0. (A parte da circunferência que fica à direita dos polos complexos corresponde ao lugar das raízes para K < 0.) A Figura 6.99(b) mostra o gráfico do lugar das raízes para K > 0.

Como desejamos $\zeta = 0.7$ para os polos de malha fechada, determinamos a intersecção do ramo circular do lugar das raízes com uma reta que forma um ângulo de $45,57^{\circ}$ (note que cos $45,57^{\circ} = 0.7$) com o semieixo real negativo. A intersecção está em s = -2,214 + j2,258. O ganho K correspondente a esse ponto é 3,427. Então, o valor desejado do ganho k do ramo de realimentação de velocidade é:

$$k = \frac{K}{10} = 0.3427$$

Problemas

B.6.1 Trace o gráfico do lugar das raízes do sistema de controle de malha fechada, sendo

$$G(s) = \frac{K(s+1)}{s^2}, \quad H(s) = 1$$

B.6.2 Trace o gráfico do lugar das raízes do sistema de controle de malha fechada, sendo

$$G(s) = \frac{K}{s(s+1)(s^2+4s+5)}, \quad H(s) = 1$$

B.6.3 Trace o gráfico do lugar das raízes do sistema, sendo

$$G(s) = \frac{K}{s(s+0.5)(s^2+0.6s+10)}, \quad H(s) = 1$$

B.6.4 Trace o gráfico do lugar das raízes para um sistema de controle, sendo

$$G(s) = \frac{K(s^2 + 6s + 10)}{s^2 + 2s + 10}, \quad H(s) = 1$$

são arcos do círculo cujo centro é a origem e cujo raio é igual a $\sqrt{10}$.

B.6.5 Trace o gráfico do lugar das raízes para um sistema de controle de malha fechada, sendo

$$G(s) = \frac{K(s+0,2)}{s^2(s+3.6)}, \quad H(s) = 1$$

B.6.6 Trace o gráfico do lugar das raízes para um sistema de controle de malha fechada, sendo

$$G(s) = \frac{K(s+9)}{s(s^2+4s+11)}, \quad H(s) = 1$$

Situe os polos de malha fechada no lugar das raízes cujos polos dominantes tenham coeficiente de amortecimento igual a 0,5. Determine o valor correspondente ao ganho *K*.

B.6.7 Trace o gráfico do lugar das raízes do sistema mostrado na Figura 6.100. Determine o intervalo de valores do ganho *K* que corresponde à estabilidade.

FIGURA 6.100

Sistema de controle.

B.6.8 Considere um sistema de controle com realimentação unitária com a seguinte função de transferência de ramo direto:

$$G(s) = \frac{K}{s(s^2 + 4s + 8)}$$

Desenhe o lugar das raízes do sistema. Se o valor do ganho *K* for igual a 2, onde se situam os polos de malha fechada?

B.6.9 Considere o sistema no qual a função de transferência de malha aberta é dada por:

$$G(s)H(s) = \frac{K(s - 0,6667)}{s^4 + 3,3401s^3 + 7,0325s^2}$$

Mostre que a equação para as assíntotas é dada por

$$G_a(s)H_a(s) = \frac{K}{s^3 + 4,0068s^2 + 5,3515s + 2,3825}$$

Trace o gráfico do lugar das raízes e das assíntotas do sistema, utilizando o MATLAB.

B.6.10 Considere o sistema com realimentação unitária em que a função de transferência de ramo direto é:

$$G(s) = \frac{K}{s(s+1)}$$

O lugar de ganho constante do sistema para dado valor de K é definido pela seguinte equação:

$$\left| \frac{K}{s(s+1)} \right| = 1$$

Mostre que os lugares de ganho constante para $0 \le K \le \infty$ podem ser dados por:

$$[\sigma(\sigma + 1) + \omega^2]^2 + \omega^2 = K^2$$

Esboce os lugares de ganho constante para K = 1, 2, 5, 10 e 20 no plano s.

B.6.11 Considere o sistema mostrado na Figura 6.101. Trace o gráfico do lugar das raízes utilizando o MATLAB. Situe os polos de malha fechada para o ganho *K* for igual a 2.

FIGURA 6.101

B.6.12 Trace os gráficos do lugar das raízes para os sistemas de fase não mínima mostrados na Figura 6.102(a) e (b), respectivamente.

FIGURA 6.102

(a) e (b) Sistema de fase não mínima.

B.6.13 Considere o sistema mecânico mostrado na Figura 6.103, que consiste em uma mola e dois amortecedores. Obtenha a função de transferência do sistema. O deslocamento x_i é a entrada e o deslocamento x_o é a saída. Nesse sistema, a estrutura mecânica é de avanço de fase ou de atraso de fase?

FIGURA 6.103

Sistema mecânico.

B.6.14 Considere o sistema mostrado na Figura 6.104. Desenhe o gráfico do lugar das raízes do sistema. Determine o valor de *K* para que o coeficiente de amortecimento ζ dos polos dominantes de malha fechada seja 0,5. Em seguida, determine todos os polos de malha fechada. Trace o diagrama das curvas de resposta ao degrau unitário usando o MATLAB.

FIGURA 6.104

B.6.15 Determine os valores de K, T_1 e T_2 do sistema mostrado na Figura 6.105 para que os polos dominantes de malha fechada tenham coeficiente de amortecimento $\zeta = 0.5$ e a frequência natural não amortecida $\omega_n = 3$ rad/s.

FIGURA 6.105

Sistema de controle.

B.6.16 Considere o sistema de controle mostrado na Figura 6.106. Determine o ganho K e a constante de tempo T do controlador $G_c(s)$ tal que os polos de malha fechada estejam localizados em $s = -2 \pm j2$.

FIGURA 6.106

Sistema de controle.

B.6.17 Considere o sistema mostrado na Figura 6.107. Projete um compensador de avanço de fase que os polos dominantes estejam localizados em $s = -2 \pm j2\sqrt{3}$. Trace a curva de resposta ao degrau unitário do sistema projetado com o MATLAB.

FIGURA 6.107

Sistema de controle.

B.6.18 Considere o sistema mostrado na Figura 6.108. Projete um compensador de modo que os polos dominantes de malha fechada fiquem localizados em $s = -1 \pm j1$.

FIGURA 6.108

B.6.19 Considerando o sistema mostrado na Figura 6.109, projete um compensador cuja constante de erro estático K_v seja 20 s⁻¹ sem modificação apreciável da localização original ($s = -2 \pm j2\sqrt{3}$) do par de polos complexos conjugados de malha fechada.

FIGURA 6.109

Sistema de controle.

B.6.20 Considere o sistema de posicionamento angular mostrado na Figura 6.110. Os polos dominantes de malha fechada estão localizados em $s = -3,60 \pm j4,80$. O coeficiente de amortecimento ζ dos polos dominantes de malha fechada é 0,6. A constante de erro estático de velocidade K_{ν} é 4,1 s⁻¹, o que significa que, para uma entrada em rampa de 360°/s, o erro estático de acompanhamento da rampa é:

$$e_v = \frac{\theta_i}{K_v} = \frac{360^\circ/\text{s}}{4.1\text{s}^{-1}} = 87.8^\circ$$

Deseja-se diminuir e_v para um décimo do valor atual ou aumentar o valor da constante de erro estático de velocidade K_v para 41 s⁻¹. Deseja-se também manter o coeficiente de amortecimento ζ dos polos dominantes de malha fechada em 0,6. É permitida uma pequena modificação na frequência natural não amortecida ω_n dos polos dominantes de malha fechada. Projete um compensador por atraso de fase apropriado para aumentar a constante de erro estático de velocidade conforme desejado.

FIGURA 6.110

Sistema de posicionamento angular.

B.6.21 Considere o sistema de controle mostrado na Figura 6.111. Projete um compensador de modo que os polos dominantes de malha fechada estejam localizados em $s = -2 \pm j2\sqrt{3}$ e a constante de erro estático de velocidade K_v seja 50 s⁻¹.

FIGURA 6.111

B.6.22 Considere o sistema mostrado na Figura 6.112. Projete um compensador tal que a curva de resposta ao degrau unitário apresente um máximo sobressinal de 30% ou menos e o tempo de acomodação seja de 3 s ou menos.

FIGURA 6.112

Sistema de controle.

B.6.23 Considere o sistema de controle mostrado na Figura 6.113. Projete um compensador de modo que a curva de resposta ao degrau unitário apresente um máximo sobressinal de 25% ou menos e o tempo de acomodação seja de 5 s ou menos.

FIGURA 6.113

Sistema de controle.

- **B.6.24** Considere o sistema de controle com realimentação de velocidade mostrado na Figura 6.114. Determine os valores do ganho do amplificador K e do ganho da realimentação de velocidade K_h , de modo que sejam satisfeitas as seguintes especificações:
 - 1. Coeficiente de amortecimento dos polos de malha fechada de 0,5
 - **2.** Tempo de acomodação ≤ 2 s
 - **3.** Constante de erro estático de velocidade $K_p \ge 50 \text{ s}^{-1}$
 - **4.** $0 < K_h < 1$

FIGURA 6.114

Sistema de controle.

B.6.25 Considere o sistema mostrado na Figura 6.115. O sistema possui realimentação de velocidade. Determine o valor do ganho *K* de modo que os polos dominantes de malha fechada tenham um coeficiente de amortecimento igual a 0,5. Utilizando o ganho *K* assim determinado, obtenha a resposta ao degrau unitário do sistema.