

Investigation of Different Types of Magnetosheath Jets and their Origin using MMS

Savvas Raptis¹, Tomas Karlsson¹, Ferdinand Plaschke², Anita Kullen¹, P-A. Lindqvist¹

¹Division of Space and Plasma Physics, KTH Royal Institute of Technology, Sweden

²Space Research Institute, Austrian Academy of Sciences, Graz, Austria

AGU 2020 14/12/2020

Magnetosheath jets

In situ classification of jets

★ Quasi-parallel jet★ Quasi-perpendicular jet

Key quantities: high energy flux, magnetic field variance, temperature anisotropy

Raptis, Karlsson, et al. (2020) | JGR Karlsson, Raptis, et al. (2020) | Ongoing

Connecting to existent mechanisms

Bow shock ripples

Faster flow $(\Delta V) \rightarrow \text{Less heated } (\Delta T)$

SLAMS penetration

Steepened wave $(\Delta B) \rightarrow Density enhancement (\Delta n)$

Summary

- Classification with MMS and Cluster using in-situ data.
- Recently published and ongoing results on statistical properties and connection to generation mechanisms

Looking forward to your questions and comments