EE 523: TAKE HOME FINAL

ANIL A. AKSU

a. Compare the code with the formulation given in Lecture 10. Verify that the formulation we have discussed in class can be converted to the calculations carried out in the code.

Solution:

The TM_z wave given as $\bar{E}_{inc}(\bar{r}) = e^{-j\bar{k}\cdot\bar{r}}\hat{a}_z$ can be written in polar coordinates as:

(1)
$$\bar{k} = k(\cos\phi_i, \sin\phi_i)$$
 $\bar{r} = \rho(\cos\phi, \sin\phi)$

(2)
$$\bar{E}_{inc}(\bar{r}) = e^{-jk\rho(\cos\phi\cos\phi_i + \sin\phi\sin\phi_i)} \hat{a}_z = e^{-jk\rho\cos(\phi - \phi_i)} \hat{a}_z$$

Therefore, in series form, it can be given as:

(3)
$$e^{-jk\rho\cos(\phi-\phi_i)} = \sum_{n=-\infty}^{\infty} j^{-n} J_n(k\rho) e^{jn(\phi-\phi_i)}.$$

Also note that $J_{-n} = (-1)^n J_n$, As a result the series solution given in equation 3 can be expressed as:

(4)
$$e^{-jk\rho\cos(\phi-\phi_i)} = J_0(k\rho) + 2\sum_{n=1}^{\infty} j^{-n} J_n(k\rho)\cos n(\phi - \phi_i).$$

Moreover, the scattered field can be given as:

(5)
$$\bar{E}_{scat}(\bar{r}) = a_0 H_0^{(2)}(k\rho) + \sum_{n=1}^{\infty} a_n j^{-n} H_n^{(2)}(k\rho) \cos n(\phi - \phi_i)$$

The sum of \bar{E}_{inc} and \bar{E}_{scat} must satisfy the boundary condition $\bar{E}_{scat} + \bar{E}_{inc} = 0$ at $\rho = a$, therefore,

(6)
$$a_0 H_0^{(2)}(ka) + J_0(ka) = 0,$$

(7)
$$a_n H_n^{(2)}(ka) + 2J_n(ka) = 0$$

As result, $a_0 = -J_0(ka)/H_0^{(2)}(ka)$ and $a_n = -2J_n(ka)/H_n^{(2)}(ka)$. Finally, the total electric field can be given as:

(8)

$$\bar{E}_{tot}(\bar{r}) = J_0(k\rho) - \frac{J_0(ka)}{H_0^{(2)}(ka)} H_0^{(2)}(k\rho) + 2\sum_{n=1}^{\infty} j^{-n} (J_n(k\rho) - \frac{J_n(ka)}{H_n^{(2)}(ka)} H_n^{(2)}(k\rho)) \cos n(\phi - \phi_i)$$

It is the same electric field given in the code.

Date: January 23, 2018.

- **b.** In the code, the summation approximating the series expansion contains 50 terms. Perform numerical experiments to verify that for a successful approximation, the number of terms in the summation must increase as ka (i.e. the electrical size of the cross section) increases. Approximately, how many terms are required for:
 - (1) ka = 0.1
 - (2) ka = 1
 - (3) ka = 10
 - (4) ka = 100

Solution:

The convergence of the series is tested based on the relative error defined by

(9)
$$error_{relative} = \left\| \frac{\bar{E}_{tot}(\bar{a})}{\bar{E}_{inc}(\bar{a})} \right\|.$$

This relative error is calculate exactly at $\rho = a$ where the total electric field is supposed be zero.

FIGURE 1. The relative error calculated at $\rho = a$ for ka = 0.1, 1, 10, 100 at each order of Bessel function expansion.

Based on the relative error plotted in figure 1, for ka = 0.1 and ka = 1 roughly 10 terms is enough to compute the scattered field with a good accuracy, for ka = 10 around 40 terms required and finally for ka = 100 around 150 terms required.

c. Plot (in MATLAB) the bistatic radar cross section of the cylinder for the four ka values given in (b). That is, plot RCS/λ (in dB) versus φ .

Solution:

RCS in the far field is defined as:

(10)
$$\sigma = \lim_{k\rho \to \infty} 2\pi \rho \frac{\left| \bar{E}_{scat} \right|^2}{\left| \bar{E}_{inc} \right|^2} = \frac{16}{k} \left| \sum_{n=1}^{\infty} \frac{J_n(ka)}{H_n^{(2)}(ka)} \cos n(\phi - \phi_i) \right|^2$$

FIGURE 2. RCS Plots

- **d.** For this configuration and for the same incident field $E_{inc}(x) = e^{jkx}\hat{a}_z$, evaluate the scattered far-field by the Physical Optics (PO) approach . If you are unable to evaluate the PO integral analytically, use MATLAB to evaluate the integral numerically by $-\frac{\pi}{2} < \varphi' < \frac{\pi}{2}$ (the illuminated part of the cylinder). After obtaining the far-field expression of the scattered field $E_z(\bar{r})$ and the bistatic radar cross section of the cylinder with respect to $-\frac{\pi}{2} < \varphi' < \frac{\pi}{2}$ in dB scale for the following cases:
 - ka = 10
 - ka = 100

Compare your results with those obtained by the analytical solution (i.e. the Mie series).

Solution:

The incident TM_x mode electric field inside the wave guide is given as:

(11)
$$\bar{E}_{inc}(\bar{r}) = e^{-jk\rho\cos(\phi - \phi_i)}\hat{a}_z$$

Corresponding magnetic field can be found by using the relation $\nabla \times \bar{E} = -j\omega \bar{H}/\mu_0$, the magnetic field can be found as: (12)

$$\bar{H}_{inc}(\bar{r}) = \frac{\omega k \sin(\phi - \phi_i)}{\mu_0} e^{-jk\rho\cos(\phi - \phi_i)} \hat{a}_{\rho} - \frac{\omega k \cos(\phi - \phi_i)}{\mu_0} e^{-jk\rho\cos(\phi - \phi_i)} \hat{a}_{\phi}$$

By using the equivalence theorem, the equivalent surface electric current can be calculated as:

(13)
$$\bar{J}_s \approx 2\hat{a}_{\rho} \times \bar{H}_{inc}(\bar{a}).$$

As a result, the equivalent electric current at PEC surface is found as:

(14)
$$\bar{J}_s \approx \frac{2\omega k \cos(\phi - \phi_i)}{\mu_0} e^{-jk\rho\cos(\phi - \phi_i)} \hat{a}_z$$

The scattered electric field at the far field can be computed as:

(15)

$$\bar{E}_{scat}(\bar{r}) = -\frac{k\eta}{4} \int \bar{J}_s(\bar{r}') H_0^{(2)}(k \left| \bar{r} - \bar{r}' \right|) a d\phi \approx -\frac{k\eta}{4} \sqrt{\frac{2j}{\pi k r}} \int \bar{J}_s(\bar{r}') e^{-jk|\bar{r} - \bar{r}'|} a d\phi.$$

The integral in equation 15 can be explicitly given as:

(16)

$$\bar{E}_{scat}(r,\phi) \approx -\frac{a\omega k^2 \eta}{2\mu_0} \sqrt{\frac{2j}{\pi kr}} \int_{-\pi/2}^{\pi/2} \cos(\phi' - \phi_i) e^{-jka\cos(\phi' - \phi_i)} e^{-jk\sqrt{(r\cos\phi - a\cos\phi')^2 + (r\sin\phi - a\sin\phi')^2}} d\phi'.$$

The integral 16 is taken numerically by trapezoidal rule for $-\pi/2 < \phi' < \pi/2$. The resultant electric field is compared with the electric field obtained by the series solution.

FIGURE 3. RCS Plots

APPENDIX A. MATLAB CODES

LISTING 1. Take Home Final Main Script

```
1 % created by Anil Aksu
2\, % this routine is generated to compute the scattered \dots
      electric field by
3 % circular PEC
5 clear all
6 format long
8 phii = pi/4; % the angle of incidence
9 phio = pi/2; % the angle of observation
         = 2.*pi;
                    % Hz, frequency
11 c0
         = 3*1e8;
                     % m/sec, velocity of light in free space
12 lambda = c0/(freq*1e6); % meter, wavelength
        = 2*pi/lambda; % 1/meter, wavenumber
13 k
14 a=100/k; % the radius of PEC
15 r=a; % the distance
16 %n_up= 5; % the upper limit of the series
17
19 % the error convergence
20 for n_up=1:400
22 a=0.1/k; % the radius of PEC
23 % the incident field
24 E_inc=exp(-i*k*a*cos(phio-phii));
25 % the scattered electric field
26 [Escat_1] = fun_cylinder_PEC(freq, a, phii, phio, a,n_up);
27 % the percent error
28 err(n_up,1) = abs(real(E_inc+Escat_1)/real(E_inc));
31 a=10.*a; % the radius of PEC
32 % the incident field
33 E_inc=exp(-i*k*a*cos(phio-phii));
34 % the scattered electric field
35 [Escat_2] = fun_cylinder_PEC(freq, a, phii, phio, a, n_up);
36 % the percent error
37 err(n_up,2) = abs(real(E_inc+Escat_2)/real(E_inc));
39 a=10.*a; % the radius of PEC
40 % the incident field
41 E_inc=exp(-i*k*a*cos(phio-phii));
42 % the scattered electric field
43 [Escat_3] = fun_cylinder_PEC(freq, a, phii, phio, a, n_up);
44 % the percent error
45 err(n_up,3) = abs(real(E_inc+Escat_3)/real(E_inc));
47 a=10.*a; % the radius of PEC
```

```
48 % the incident field
49 E_inc=exp(-i*k*a*cos(phio-phii));
50 % the scattered electric field
51 [Escat_4] = fun_cylinder_PEC(freq, a, phii, phio, a, n_up);
52 % the percent error
53 err(n_up, 4) = abs(real(E_inc+Escat_4)/real(E_inc));
54
55 end
56
57 figure(1)
58
59 semilogy(err(:,1),'LineWidth',2)
60 hold on
61 semilogy(err(:,2),'r','LineWidth',2)
62 hold on
63 semilogy(err(:,3),'m','LineWidth',2)
64 hold on
65 semilogy(err(:,4),'c','LineWidth',2)
67 ylabel('the relative error')
68 xlabel('n number of terms')
69 title('The relative error for ka=0.1,1,10,100')
70 legend('ka=0.1','ka=1','ka=10','ka=100')
```

LISTING 2. Bessel Junction Series Matlab Code

```
1 function [Escat] = fun_cylinder_PEC(freq, a, phii, phio, ...
     r,n_up)
2 % ...
      ********************
3 % Scattered field computation for a PEC circular cylinder \dots
     (series solution)
4 % by Dr. Ozlem Ozgun & Dr. Mustafa Kuzuoglu
5 % ...
      **********************
7 % INPUTS:
8 % freq: frequency in MHz
9 % a : radius of the cylinder (m)
10 % phii: Angle of incidence (radian)
11 % phio: Angle of observation point (radian)
12 % r : Radius of observation point (distance) (m)
13
14 % OUTPUT:
15 % Escat: scattered field
16
17 freq = freq*1e6; % Hz, frequency
18 c0 = 3*1e8; % m/sec, velocity of light in free space
19 lambda = c0/freq; % meter, wavelength
20 k = 2*pi/lambda; % 1/meter, wavenumber
22 phii = phii-pi;
```

```
23
24 ka = k*a;
25 kr = k*r;
26
27 E0 = besselj(0,ka)*besselh(0,2,kr)/besselh(0,2,ka);
28 n = 1:n_up; % terms in the summation
29 E = ...

sum(2*((-1j).^n).*cos(n*(phio-phii)).*besselj(n,ka).*besselh(n,2,kr)./besselh(n,2,kr).
30
31 Escat = -(E0+E); % scattered field
32
33 end
```

LISTING 3. RCS Plot Script

```
1 % created by Anil Aksu
2 % this routine is generated to RCS plot by circular PEC
4 clear all
5 format long
7 phii = 0; % the angle of incidence
8 phio = linspace(0,2*pi);; % the angle of observation
9 freq = 2.*pi; % Hz, frequency
10 c0
         = 3*1e8;
                     % m/sec, velocity of light in free space
                             % meter, wavelength
11 lambda = c0/(freq*1e6);
        = 2*pi/lambda; % 1/meter, wavenumber
13 a=100/k; % the radius of PEC
14 r=a; % the distance
15 n_up=400; % the upper limit of the series
17 for i=1:length(phio)
18
19 % the RCS value
20 RCS_1(i) = getRCS( freq, a, phii, phio(i), n_up )/lambda;
21
22 end
24 figure(1)
25 polarplot (phio, RCS_1)
27 title('RCS Plot \sigma/\lambda for ka=100')
```

LISTING 4. RCS Matlab Code

```
5 % INPUTS:
6 % freq: frequency in MHz
7 % a : radius of the cylinder (m)
8 % phii: Angle of incidence (radian)
9 % phio: Angle of observation point (radian)
10 % r : Radius of observation point (distance) (m)
12 % OUTPUT:
13 % sigma: scattered field
15 freq = freq*1e6; % Hz, frequency
                     % m/sec, velocity of light in free space
% meter, wavelength
         = 3*1e8;
16 c0
17 lambda = c0/freq;
         = 2*pi/lambda; % 1/meter, wavenumber
20 phii = phii-pi;
21
22 ka = k*a;
23
24 E0 = besselj(0,ka)/besselh(0,2,ka);
25 n = 1:n_up; % terms in the summation
26 E = ...
       abs(sum(2*cos(n*(phio-phii)).*besselj(n,ka)./besselh(n,2,ka)));
27
28 % RCS value
29 sigma = (4/k) *E^2;
31 end
```

LISTING 5. Asymptotic Electric Field Matlab Code

```
1 % created by Anil Aksu
2 % this routine is generated to compute the scattered \dots
      electric field by
3 % circular PEC
5 clear all
6 format long
8 phii = pi; % the angle of incidence
9 phio = linspace(-0.5*pi,.5*pi); % the angle of observation
10 freq = 2.*pi;
                   % Hz, frequency
         = 3*1e8;
                     % m/sec, velocity of light in free space
11 c0
12 lambda = c0/(freq*1e6); % meter, wavelength
13 k
        = 2*pi/lambda; % 1/meter, wavenumber
14 a=100/k; % the radius of PEC
15 r=10.*a; % the distance
16 n_up=200; % the upper limit of the series
17 %eta=
18
19 for i=1:length(phio)
20
```

```
21 % the scattered electric field given as series
22 [Escat_series(i)] = fun_cylinder_PEC(freq, a, phii, ...
      phio(i), r,n_up);
23 [ E_asym(i) ] = getAysmptoticElectric(freq, a, phii, ...
      phio(i), r);
24 end
25
26 figure(1)
27 polarplot (phio, abs (Escat_series), 'r', 'LineWidth', 2)
28 hold on
29 polarplot (phio, abs (E_asym), 'LineWidth', 2)
30 title('Absolute Value of Scattered Electric Field for ...
      ka=100 at r=10a')
31 legend('Series Solution', 'Asymptotic Solution')
33 figure(2)
34 polarplot(phio, 2.*pi*abs(Escat_series).^2, 'r', 'LineWidth', 2)
35 hold on
36 polarplot (phio, 2.*pi*abs(E_asym).^2, 'LineWidth', 2)
37 title('RCS for ka=100 at r=10a')
38 legend('Series Solution', 'Asymptotic Solution')
```

LISTING 6. Asymptotic Electric Field Integration Matlab Code

```
1 function [ E_asym ] = getAysmptoticElectric(freq, a, phii, ...
      phio, r)
\mathbf{2} %This function computes the asymptotic integral given in EE ...
       523 final
4 phid = linspace(-0.5*pi,.5*pi,100); % the angle of integral
5 dphi=pi/100.; % the step size of the integral
6 freq = freq*1e6; % Hz, frequency
7 c0
         = 3*1e8;
                         % m/sec, velocity of light in free space
8 \quad lambda = c0/freq;
                        % meter, wavelength
         = 2*pi/lambda; % 1/meter, wavenumber
10 phii = phii-pi;
11
12 ka = k*a;
13 % the integral
14 int=0.;
15
16 for i=1: (length (phid)-1)
       f(1) = getIntFunc( phid(i), k, a, phii, phio, r);
17
       f(2) = getIntFunc( phid(i+1), k, a, phii, phio, r);
18
      % the trapezoidal rule integral
19
      int=int+0.5*(f(1)+f(2))*dphi;
20
21 end
22 % the other terms multiplication
23 alpha=0.82046;
24 % the asymptotic electric field
25 E_asym=-0.5*alpha*a*(k^2)*int*sqrt(2*i/(pi*k*r));
26 end
```

LISTING 7. Function Inside Integration Matlab Code

```
1 function [ f ] = getIntFunc( phid, k, a, phii, phio, r)
2 % this function calculates the function inside the ...
        asymptotic integral
3
4 f=cos(phid-phii)*exp(-i*k*a*cos(phid-phii))*exp(-i*k*sqrt((r*cos(phio)-a*cos(phid))^2+(5))
6 end
```