EECS 215 Equation and Procedure Sheet

First/Second Order Circuits Jamie Phillips

First Order Circuits

Source-free RC (v _s =0)	Source-free RL (v _s =0)
$R > C \longrightarrow v_C$	$R \geqslant L \geqslant \downarrow i_L$
$v_C(t) = v_C(0)e^{-t/RC} = v_C(0)e^{-t/\tau}$	$i_L(t) = i_L(0)e^{-tR/L} = i_L(0)e^{-t/\tau}$

Step response RC $(v_s=V_S u(t))$	Step response RL $(v_s=V_S u(t))$
$v_s(t)$ $+$ c v_c	$v_s(t) \stackrel{+}{\stackrel{-}{=}} L \stackrel{\circ}{\Rightarrow} \downarrow i_L$
$v_C(t) = V_S + (v_C(0) - V_S)e^{-t/RC}$	$i_L(t) = \frac{V_S}{R} + \left(i_L(0) - \frac{V_S}{R}\right)e^{-tR/L}$

General procedure for first order circuits:

- 1) Find Thevenin/Norton equivalent
- 2) Write differential equation for simple circuit variable on left side of equation and forcing function on right.
- 3) Determine natural solution (forcing function = 0). Common trial function is Ke^{st} , determine s by inserting into differential equation.
- 4) Determine forced solution. Use trial function that resembles forcing function. Insert trial function into differential equation to determine unknown constants. If the differential equation does not work, use a different trial function.
- 5) Write complete solution (natural + forced). Apply initial/boundary condition to determine unknown constant (for example, the value *K* in the natural solution)

Second Order Circuits

Source-free Series RLC (v _s =0)	Source-free Parallel RLC (v _s =0)
(or natural solution for series RLC)	(or natural solution for parallel RLC)
$R \geqslant C \xrightarrow{i}$	$R \geqslant L \geqslant C \stackrel{\downarrow}{\longrightarrow} v$
Differential Equation:	Differential Equation:
$\frac{d^{2}i}{dt^{2}} + \frac{R}{L}\frac{di}{dt} + \frac{i}{LC} = 0$ Characteristic Equation:	$\frac{d^{2}v}{dt^{2}} + \frac{1}{RC}\frac{dv}{dt} + \frac{v}{LC} = 0$ Characteristic Equation:
Characteristic Equation:	
$s^2 + s\frac{R}{L} + \frac{1}{LC} = 0$	$s^2 + s\frac{1}{RC} + \frac{1}{LC} = 0$
Roots:	Roots:
$s_{1,2} = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$	$s_{1,2} = -\frac{1}{2RC} \pm \sqrt{\left(\frac{1}{2RC}\right)^2 - \frac{1}{LC}}$
$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$	$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$
$\alpha = \frac{R}{2L} \qquad \omega_0 = \frac{1}{\sqrt{LC}}$	$\alpha = \frac{1}{2RC} \qquad \omega_0 = \frac{1}{\sqrt{LC}}$
Solutions:	Solutions:
Overdamped, $\alpha > \omega_0$	Overdamped, $\alpha > \omega_0$
$i(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$	$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$
Critically damped, $\alpha = \omega_0$	Critically damped, $\alpha = \omega_0$
$i(t) = (A_1 t + A_2)e^{-\alpha t}$	$v(t) = (A_1 t + A_2)e^{-ct}$
Underdamped, $\alpha < \omega_0$	Underdamped, $\alpha < \omega_0$
$i(t) = (B_1 \cos \omega_d t + B_2 \sin \omega_d t)e^{-\alpha t}$	$v(t) = (B_1 \cos \omega_d t + B_2 \sin \omega_d t)e^{-\alpha t}$
$\omega_d = \sqrt{\omega_0^2 - \alpha^2}$	$\omega_d = \sqrt{\omega_0^2 - \alpha^2}$

General procedure for second order circuits:

1) Determine differential equation using nodal analysis or other circuit technique. Arrange differential equation with variables on left, forcing function on right. The differential equation will look like the following

$$\frac{d^2v}{dt^2} + 2\alpha \frac{dv}{dt} + \omega_0^2 v = f(t)$$

where f(t) is the forcing function. Note that if you are solving for current, the differential equation will be in terms of i instead of v.

2) Begin determination of the natural solution (forcing function = 0) by determining coefficients in the characteristic equation. In class, we had used the trial function is Ke^{st} and determined s by inserting into differential equation, resulting in the following characteristic equation.

$$s^{2} + 2\alpha s + \omega_{0}^{2} = 0$$
$$s_{1,2} = -\alpha \pm \sqrt{\alpha^{2} - \omega_{0}^{2}}$$

Determine the value of α and ω_0 given the differential equation in 1).

3) Determine if circuit is overdamped, critically damped, or underdamped based on values of α and ω_0 . Determine the natural solution based on this result.

Overdamped, $\alpha > \omega_0$

$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

Critically damped, $\alpha = \omega_0$

$$v(t) = (A_1 t + A_2)e^{-\alpha t}$$

Underdamped, $\alpha < \omega_0$

$$v(t) = (B_1 \cos \omega_d t + B_2 \sin \omega_d t)e^{-\alpha t}, \ \omega_d = \sqrt{\omega_0^2 - \alpha^2}$$

Do not solve for unknown coefficients (A_1 , A_2 , B_1 , B_2 , etc) until you have the complete solution!

- 4) Determine forced solution. Use trial function that resembles forcing function. Insert trial function into differential equation to determine unknown constants. If the differential equation does not work, use a different trial function.
- 5) Write the complete solution (natural + forced). Apply initial/boundary conditions to determine unknown constants (A_1 , A_2 , B_1 , B_2 , etc). Note that you will need two initial/boundary values. These will typically be $v(0^+)$ and $dv(0^+)/dt$, or $v(0^+)$ and $v(\infty)$ for the case of a forcing function applied at t=0.

3