16-350 Planning Techniques for Robotics

Search Algorithms: Uninformed A* Search

Maxim Likhachev
Robotics Institute
Carnegie Mellon University

• Once a graph is constructed (from skeletonization or cell decomposition or whatever else), we need to search it for a least-cost path

• Once a graph is constructed (from skeletonization or cell decomposition or whatever else), we need to search it for a least-cost path

- Many searches (including A*) work by computing g* values for graph vertices (states)
 - -g*(s) the cost of a least-cost path from s_{start} to s

- Many searches (including A*) work by computing g* values for graph vertices (states)
 - -g*(s) the cost of a least-cost path from s_{start} to s

- Many searches (including A*) work by computing g* values for graph vertices (states)
 - -g*(s) the cost of a least-cost path from s_{start} to s
 - g* values satisfy: $g*(s) = \min_{s'' \in pred(s)} g*(s'') + c(s'',s)$

- Many searches (including A*) work by computing g* values for graph vertices (states)
 - -g*(s) the cost of a least-cost path from s_{start} to s
 - g* values satisfy: $g*(s) = \min_{s'' \in pred(s)} g*(s'') + c(s'',s)$

- Least-cost path is a greedy path computed by backtracking:
 - start with s_{goal} and from any state s backtrack to the predecessor state s such that $s' = \arg\min_{s'' \in pred(s)} (g *(s'') + c(s'', s))$

• Example on a Grid-based Graph:

How do we compute g-values?*

8-connected grid

?	?	?	?	?	?
?	?	?	?	?	G
?	?			?	?
?	?	$\left(\mathbf{R}\right)$?	?	?

• Example on a Grid-based Graph:

How do we compute g-values?*

8-connected grid

?	?	?	?	?	?
?	?	?	?	?	G
?	?			?	?
?	?	$\left(\mathbf{R}\right)$?	?	?

Starting with the start state (marked R), always compute next the state with smallest g* value!

• Example on a Grid-based Graph:

3.8	3.4	3.8	4.2	4.4	4.8
2.8	2.4	2.8	3.8	3.4	3.8
2.4	1.4			2.4	3.4
2	1	0	1	2	3

• Example on a Grid-based Graph:

Use g* to compute the least-cost path

8-connected grid

3.8	3.4	3.8	4.2	4.4	4.8
2.8	2.4	2.8	3.8	3.4	3.8
2.4	1.4			2.4	3.4
2	1	0	1	2	3

• Example on a Grid-based Graph:

Use g* to compute the least-cost path

8-connected grid

3.8	3.4	3.8	4.2	4.4	4.8
2.8	2.4	2.8	3.8	3.4	3.8
2.4	1.4			2.4	3.4
2	1	<u>C</u>	1	2	3

• Computes g*-values for **relevant** (not all) states

at any point of time:

Computes g*-values for relevant (not all) states

Main function

 $g(s_{start}) = 0$; all other g-values are infinite; $OPEN = \{s_{start}\}$; ComputePath(); publish solution; //compute least-cost path using g-values

ComputePath function

set of candidates for expansion

while(s_{goal} is not expanded and $OPEN \neq 0$)
remove s with the smallest g(s) from OPEN;
expand s;

for every expanded state g(s) is optimal (g(s) = g*(s))

• Computes g*-values for **relevant** (not all) states

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove s with the smallest g(s) from OPEN; expand s;

Computes g*-values for relevant (not all) states

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s' of s such that s'not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

$$g(s') = g(s) + c(s,s');$$
insert s' into OPEN;

set of states that have already been expanded

tries to decrease g(s') using the found path from s_{start} to s

• Computes g*-values for **relevant** (not all) states

```
while(s_{goal} is not expanded and OPEN \neq 0)
remove s with the smallest g(s) from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

$$CLOSED = \{\}$$

 $OPEN = \{s_{start}\}$
 $next \ state \ to \ expand: \ s_{start}$

Computes g*-values for relevant (not all) states

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$)
remove s with the smallest g(s) from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s')$;
insert s' into OPEN;

$$CLOSED = \{\}$$

 $OPEN = \{s_{start}\}$
 $next\ state\ to\ expand:\ s_{start}$

Computes g*-values for relevant (not all) states

```
while(s_{goal} is not expanded and OPEN \neq 0)
remove s with the smallest g(s) from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```


Computes g*-values for relevant (not all) states

```
while(s_{goal} is not expanded and OPEN \neq 0)
remove s with the smallest g(s) from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

$$CLOSED = \{s_{start}\}$$

 $OPEN = \{s_2\}$
 $next \ state \ to \ expand: \ s_2$

Computes g*-values for relevant (not all) states

```
while (s_{goal}) is not expanded and OPEN \neq 0)
remove s with the smallest g(s) from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

$$CLOSED = \{s_{start}, s_2\}$$

 $OPEN = \{s_1, s_4\}$
 $next \ state \ to \ expand: ?$

Computes g*-values for relevant (not all) states

```
while(s_{goal} is not expanded and OPEN \neq 0)
remove s with the smallest g(s) from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

$$CLOSED = \{s_{start}, s_2\}$$

 $OPEN = \{s_1, s_4\}$
 $next \ state \ to \ expand: \ s_4$

• Computes g*-values for **relevant** (not all) states

```
while(s_{goal} is not expanded and OPEN \neq 0)
remove s with the smallest g(s) from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

$$CLOSED = \{s_{start}, s_2, s_4\}$$

 $OPEN = \{s_1, s_3\}$
 $next \ state \ to \ expand: ?$

Computes g*-values for relevant (not all) states

```
while(s_{goal} is not expanded and OPEN \neq 0)
remove s with the smallest g(s) from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

$$CLOSED = \{s_{start}, s_2, s_4\}$$

 $OPEN = \{s_1, s_3\}$
 $next \ state \ to \ expand: \ s_1$

• Computes g*-values for **relevant** (not all) states

```
while(s_{goal} is not expanded and OPEN \neq 0)
remove s with the smallest g(s) from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

$$CLOSED = \{s_{start}, s_2, s_4, s_1\}$$

 $OPEN = \{s_3, s_{goal}\}$
 $next \ state \ to \ expand: ?$

• Computes g^* -values Optional but useful optimization:

If OPEN contains multiple states with the smallest g-values and s_{goal} is one of them,

while (s_{goal}) is not expanded and OPEN contains multiple states with the smallest g-values then select s_{goal} for expansion

remove s with the smallest g(s) from OPEN;

insert s into CLOSED;

for every successor s' of s such that s'not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s')$;
insert s' into *OPEN*;

$$CLOSED = \{s_{start}, s_2, s_4, s_1\}$$

 $OPEN = \{s_3, s_{goal}\}$
 $next \ state \ to \ expand: \ s_{goal}$

Computes g*-values for relevant (not all) states

```
while(s_{goal} is not expanded and OPEN \neq 0)
remove s with the smallest g(s) from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

$$CLOSED = \{s_{start}, s_2, s_4, s_1, s_{goal}\}$$

 $OPEN = \{s_3\}$
 $done$

Computes g*-values for relevant (not all) states

ComputePath function

```
while(s_{goal} is not expanded and OPEN \neq 0)
remove s with the smallest g(s) from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

for every expanded state $g(s)=g^*(s)$ for every other state $g(s) \ge g^*(s)$ we can now compute a least-cost path

Computes g*-values for relevant (not all) states

ComputePath function

```
while(s_{goal} is not expanded and OPEN \neq 0)
remove s with the smallest g(s) from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

for every expanded state $g(s)=g^*(s)$ for every other state $g(s) \ge g^*(s)$ we can now compute a least-cost path

• Computes g*-values for **relevant** (not all) states

ComputePath function

```
while(s_{goal} is not expanded and OPEN \neq 0)
remove s with the smallest g(s) from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

for every expanded state $g(s)=g^*(s)$ g=0 g=1 g=3 g=5 g=5 for every other state $g(s) \geq g^*(s)$ why? g=2 g=5 g=5

Uninformed A* Search: Proofs

Theorem 1. For every expanded state s, it is guaranteed that g(s)=g*(s)

Sketch of proof by induction:

- consider state s getting selected for expansion and assume that all previously expanded states had their g-values equal to g*-values
- since s was selected for expansion, then g(s) min among states in OPEN
- *OPEN* is a frontier of states that separates previously expanded states from the states that have never been seen by the search
- thus, the cost of the path from s_{start} to s via any state in OPEN or any state not previously seen will be worse than g(s) (assuming positive costs)
- therefore, g(s) (the cost of the best path found so far) is already optimal

Uninformed A* Search: Proofs

Theorem 2. Once the search terminates, it is guaranteed that $g(s_{goal}) = g*(s_{goal})$

Sketch of proof:

Uninformed A* Search: Proofs

Theorem 3. Once the search terminates, the least-cost path from s_{start} to s_{goal} can be re-constructed by backtracking (start with s_{goal} and from any state s backtrack to the predecessor state s such that s'= arg min s'' $\in pred(s)$ (g(s'')+c(s'',s)))

Sketch of proof:

- every backtracking step moves to the predecessor state that continues to be on a least-cost path (because all other predecessors have g-values that are strictly larger)

Summary

• Given g*-values, one can re-construct a least-cost path

• Uninformed A* computes g*-values for relevant states efficiently

- Properties of uninformed A* search
 - g-values of expanded states are optimal (g=g*)