Раздел II. Электричество и магнетизм. Глава 9. Магнитное поле в веществе.

1. Физические величины, характеризующие магнитные свойства вещества.

Магнитное поле в веществе создается, как внешними (сторонними) токами \overline{B}_0 , как и внутренними (атомными, молекулярными) \overline{B}_1

$$\overline{B} = \overline{B}_0 + \overline{B}_1$$

Каждый атом – это круговой ток, создаваемый вращающимися вокруг ядра электронами.

Важнейшей характеристикой кругового тока является магнитный момент.

$$\overline{P}_m = I \cdot S \cdot \overline{n}$$
 - магнитный момент тока $S-$ площадь, охватываемая током

 \overline{n} - единичный вектор нормали, направлен по буравчику

При наложении внешнего магнитного поля происходит ориентация \overline{P}_{m} в одном направлении (по или против поля). Количественной характеристикой этого процесса является вектор намагниченности.

Вектор

$$\vec{J} = \frac{\sum \overline{P_m}}{V}$$

Намагниченности $\vec{J} = \frac{\sum \overline{P_m}}{V}$ суммарный магнитный момент единицы объема

Для характеристики магнитного поля в веществе, помимо магнитной индукции \overline{B} , вводят еще одну величину – напряженность $\overline{\underline{H}}$.

$$\boxed{\overline{H} = \frac{\overline{B}}{\mu_0} - \overline{J}} \qquad \qquad \boxed{\frac{A}{M}}$$

Для большинства веществ вектор намагниченности \vec{J} и напряженность магнитного поля \overline{H} связаны простым эмпирическим законом

$$\overline{\overline{J}}=\chi\overline{\overline{H}}$$
 χ — магнитная восприимчивость (безразмерна)

$$\overline{B} = \mu_0 \ \mu \ \overline{H}$$

 $\overline{B} = \mu_0 \; \mu \; \overline{H}$ $\mu = 1 + \chi$ - относительная магнитная проницаемость

Напряженность магнитного поля \overline{H} определяется только внешними (сторонними) токами в отличие от магнитной индукции \overline{B} .

2. Типы магнетиков.

а) Парамагнетики – вещества, атомы которых (Na, K, Al) обладают \overline{P}_m .

Во внешнем поле $\overline{P}_{\!\scriptscriptstyle m}$ ориентируются по полю.

$$\chi \sim 10^{-3} - 10^{-4}$$
 ; $\chi = \frac{c}{T}$ (закон Кюри) $\mu = 1 + \chi \lesssim 1$;

б) Диамагнетики - $\overline{P}_{m}^{am} = 0$ (H₂, N₂, NaCl, Ag)

Под влиянием магнитного поля в атомах наводятся \overline{P}_{m} , которые направлены против поля.

$$\chi \sim -(10^{-3} \div 10^{-2})$$
 $\mu = 1 + \chi \approx 1$

в) Ферромагнетики – вещества (Fe, Ni, Co...), у которых есть области (домены) спонтанной намагниченности.

Под действием внешнего поля магнитные моменты доменов ориентируются по полю.

Размеры доменов 1-10 мкм.

$$\mu_{F_e} \sim 5000$$
 ;

$$\begin{array}{c}
 79\% \ Ni \\
 5\% \ Mo \\
 16\% Fe
 \end{array}
 \right\} \mu \sim 800000$$

Явление гистерезиса у ферромагнетиков:

3. Уравнения магнитного поля в веществе.

а) Интегральная форма б)Дифференциальная форма

$$\oint_{S} \overline{B} \cdot d\overline{S} = 0 \qquad \Rightarrow \qquad div \ \overline{B} = 0$$

$$f. C$$

$$\oint_{\overline{H}} \overline{H} \cdot d\overline{l} = \int_{\overline{J}} \overline{j} \cdot d\overline{S} \qquad \Rightarrow \qquad rot \ \overline{H} = \overline{j}$$

$$\overline{B} = \mu \mu_{0} \ \overline{H} \qquad \overline{B} = \mu \mu_{0} \ \overline{H}$$

 $ar{j}$ - плотность внешних (сторонних) токов

4. Условия на границе раздела двух магнетиков.

На границе раздела сохраняется нормальная составляющая магнитной индукции

$$B_{1n} = B_{2n}$$

и тангенциальная составляющая напряженности

$$H_{1\tau} = H_{2\tau}$$

5. Применение теоремы о циркуляции (закона полного тока) для расчета магнитного поля соленоида.

$$\begin{split} \oint \overline{H} \cdot d\overline{l} &= \int\limits_{1}^{2} + \int\limits_{2}^{3} + \int\limits_{3}^{4} + \int\limits_{4}^{3} = \int\limits_{1}^{2} \overline{H} \cdot d\overline{l} + 0 + 0 + 0 = H \cdot l = \sum I = I \cdot n \cdot l \\ O(\overline{H} \perp d\overline{l}) \ O(\infty) \ O(\overline{H} \perp d\overline{l}) \\ \overline{H = n \, I} & B = \mu \, \mu_0 \, n \, I \quad n = \frac{N}{l} - \text{плотность витков} \end{split}$$

Вопросы:

- 1. Что такое магнитный момент?
- 2. Что такое вектор намагниченности?
- 3. Что такое напряженность магнитного поля?
- 4. Типы магнетиков.
- 5. Уравнения магнитостатики в интегральной форме.
- 6. Уравнения магнитостатики в дифференциальной форме.
- 7. Условия на границе раздела магнетиков.
- 8. Магнитного поле длинного соленоида.