A1
Abstract This (online only) document contains full proofs and derivations of all of the theorems for the soundness of PEC semantics. It is not intended to have the same polish as the dissertation.
This (online only) document contains full proofs and derivations of all of the theorems for the sound-
This (online only) document contains full proofs and derivations of all of the theorems for the sound-
This (online only) document contains full proofs and derivations of all of the theorems for the sound-
This (online only) document contains full proofs and derivations of all of the theorems for the sound-
This (online only) document contains full proofs and derivations of all of the theorems for the sound-

Contents

1	Lan	guage Definition	6
	1.1	Terms	6
	1.2	Type System	6
		1.2.1 Ground Effects	6
		1.2.2 Effect Po-Monoid Under an Effect Environment	6
		1.2.3 Types	7
		1.2.4 Type and Effect Environments	7
		1.2.5 Subtyping	8
		1.2.6 Type Rules	9
		1.2.7 Ok Lemma	9
2	Pre	liminaries 1	١0
	2.1	Base Category Requirements	10
	2.2	Wellformedness	10
	2.3	Substitution and Weakening of the Effect Environment	11
		2.3.1 Denotations	11
	2.4	Fibre Categories	11
	2.5	Re-Indexing Functors	11
		2.5.1 Preserves Ground Types	11
		2.5.2 f* Preserves Products	12
		2.5.3 f^* Preserves Terminal Object	12
		2.5.4 f^* Preserves Exponentials	12
		2.5.5 f^* Preserves Co-product on Terminal	12
		2.5.6 f^* Preserves Graded Monad	12
		2.5.7 f^* Preserves Tensor Strength	12
		2.5.8 f^* Preserves Ground Constants	13
		2.5.9 f^* Preserves Ground Subeffecting	13
		2.5.10 f^* Preserves Ground Subtyping	13
	2.6	The \forall_I functor	
		2.6.1 Beck Chevalley Condition	13

	2.7	Naturality Corollaries	14
		2.7.1 Naturality	14
		2.7.2 $\overline{(-)}$ and Re-indexing Functors	14
		2.7.3 $(\hat{-})$ and Re-Indexing Functors	14
		2.7.4 Pushing Morphisms into f^*	15
3	Wea	akenings and Substitutions	16
	3.1	Effect-Environment Weakenings	16
		3.1.1 Relation	16
		3.1.2 Weakening Properties	16
		3.1.3 Domain Lemma	17
	3.2	Effect-Environment Substitutions	17
		3.2.1 Snoc Lists	17
		3.2.2 Wellformedness	17
		3.2.3 Actions	17
		3.2.4 Properties	19
	3.3	Typing-Environment Weakenings	19
	3.4	Typing-Environment Substitutions	19
		3.4.1 Snoc Lists	19
		3.4.2 Wellformedness	20
		3.4.3 Action on Terms	20
		3.4.4 Properties	20
4	Der	notations	21
	4.1	Effects	21
	4.2	Types	21
	4.3	Effect Substitution	21
	4.4	Effect Weakening	22
	4.5	Subtyping	22
	4.6	Type-Environments	22
	4.7	Terms	22
	4.8	Term Weakening	23
	4.9	Term Substitutions	23
5	Effe	ect Substitution Theorem	24
	5.1	Substitution Preserves the Wellformedness of Effects	24
	5.2	Effect Substitution preserves the subeffect relation	24
	5.3	Effects	25
	5.4	Types	26
		5.4.1 Substitution preserves wellformedness of Types	26

		5.4.2 Substitution of effects preserves Subtyping Relation	26
	5.5	Substitution of effects preserves Subtyping Relation	27
	5.6	Type Environments	29
		5.6.1 Substitution preserves wellformedness of Type Environments	29
	5.7	Terms	30
		5.7.1 Effect-Substitution Preserves the Typing Relation	30
6	Effe	ct Weakening Theorem	37
	6.1	Effects	37
	6.2	Effect Weakening Definition	
		6.2.1 Weakening Preserves Effect Wellformedness	
	6.3	Types	
		6.3.1 Weakening Preserves Type-Wellformedness	
		6.3.2 Corollary	
	6.4	Subtyping	
	6.5	Type Environments	
		6.5.1 Effect Weakening Preserves wellformedness of Typing Environments	
	6.6	Terms	
		6.6.1 Effect Weakening preserves Type Relations	
	6.7	Term-Substitution	
	6.8	Term-Weakening	48
7	Teri	m Substitution Theorem	50
	7.1	Term-Term Substitutions	50
		7.1.1 Substitutions as SNOC lists	50
		7.1.2 Trivial Properties of substitutions	
		7.1.3 Wellformedness	50
		7.1.4 Substitution Theorem	51
8	Тур	e-Environment Weakening Theorem	57
9	Uni	que Denotation Theorem	64
	9.1	Reduced Type Derivation	64
	9.2	Reduced Type Derivations are Unique	64
	9.3	Each type derivation has a reduced equivalent with the same denotation	68
	9.4	Denotations are Equivalent	75
10	Equ	ational-Equivalence Theorem (Soundness)	76
		Equational Equivalence Relation	76
	10.2	Soundness	77
		10.2.1 Equivalence Relation	77

10.2.2	Reduction Co	onversions	 		 	•		•				 •					78
10.2.3	Congruences		 		 												83

Chapter 1

Language Definition

1.1 Terms

$$\begin{array}{l} v \colon := x \\ & \mid \lambda x \colon A.v \\ & \mid \mathsf{C}^A \\ & \mid () \\ & \mid \mathsf{true} \mid \mathsf{false} \\ & \mid \Lambda \alpha.v \\ & \mid v \in \\ & \mid \mathsf{if}_A \ v \ \mathsf{then} \ v_1 \ \mathsf{else} \ v_2 \\ & \mid v_1 \ v_2 \\ & \mid \mathsf{do} \ x \leftarrow v_1 \ \mathsf{in} \ v_2 \\ & \mid \mathsf{return} \ v \end{array} \tag{1.1}$$

1.2 Type System

1.2.1 Ground Effects

The effects should form a monotonous, pre-ordered monoid $(E, \cdot, 1, \leq)$ with ground elements e.

1.2.2 Effect Po-Monoid Under an Effect Environment

Derive a new Po-Monoid for each Φ :

$$(E_{\Phi}, \cdot_{\Phi}, \mathbf{1}, \leq_{\Phi}) \tag{1.2}$$

Where meta-variables, ϵ , range over E_{Φ} Where

$$E_{\Phi} = E \cup \{ \alpha \mid \alpha \in \Phi \} \tag{1.3}$$

And

$$\frac{\epsilon_3 = \epsilon_1 \cdot \epsilon_2}{\epsilon_3 = \epsilon_1 \cdot_{\Phi} \epsilon_2} \tag{1.4}$$

Otherwise, \cdot_{Φ} is symbolic in nature.

$$\epsilon_1 \leq_{\Phi} \epsilon_2 \Leftrightarrow \forall \sigma \downarrow .\epsilon_1 [\sigma \downarrow] \leq \epsilon_2 [\sigma \downarrow]$$
 (1.5)

Where $\sigma \downarrow$ denotes any ground-substitution of Φ . That is any substitution of all effect-variables in Φ to ground effects. Where it is obvious from the context, I shall use \leq instead of \leq_{Φ} .

1.2.3 Types

Ground Types There exists a set γ of ground types, including Unit, Bool

Term Types

$$A, B, C ::= \gamma \mid A \rightarrow B \mid M_{\epsilon}A \mid \forall \alpha.A$$

1.2.4 Type and Effect Environments

A type environment is a snoc-list of term-variable, type pairs, $G := \diamond \mid \Gamma, x : A$. An effect environment is a snoc-list of effect-variables.

$$\Phi : := \diamond \mid \Phi, \alpha$$

Domain Function on Type Environments

- $dom(\diamond) = \emptyset$
- $dom(\Gamma, x: A) = dom(\Gamma) \cup \{x\}$

Membership of Effect Environments Informally, $\alpha \in \Phi$ if α appears in the list represented by Φ .

Ok Predicate On Effect Environments

- $\bullet \ (A) \frac{\Phi \ \mathtt{Ok}}{\Phi, \alpha \ \mathtt{Ok}} (\mathrm{if} \ \alpha \notin \Phi)$

Wellformedness of effects We define a relation $\Phi \vdash \epsilon$.

- (Ground) $\frac{\Phi}{\Phi \vdash e}$
- $(Var) \frac{\Phi, \alpha \ Ok}{\Phi, \alpha \vdash \alpha}$
- (Weaken) $\frac{\Phi \vdash \alpha}{\Phi, \beta \vdash \alpha}$ (if $\alpha \neq \beta, b \notin \Phi$)
- (Monoid Op) $\frac{\Phi \vdash \epsilon_1 \qquad \Phi \vdash \epsilon_2}{\Phi \vdash \epsilon_1 \cdot \epsilon_2}$

Wellformedness of Types We define a relation $\Phi \vdash A$ on types.

• (Ground)
$$\frac{1}{\Phi \vdash \gamma}$$

• (Lambda)
$$\frac{\Phi \vdash A \qquad \Phi \vdash B}{\Phi \vdash A \to B}$$

• (Computation)
$$\frac{\Phi \vdash A \qquad \Phi \vdash \epsilon}{\Phi \vdash \mathsf{M}_{\epsilon}A}$$

• (For-All)
$$\frac{\Phi, \alpha \vdash A}{\Phi \vdash \forall \alpha. A}$$

Ok Predicate on Type Environments We now define a predicate on type environments and effect environments: $\Phi \vdash \Gamma$ Ok

•
$$(Nil)_{\overline{\Phi} \vdash \Diamond Ok}$$

$$\bullet \ (\mathrm{Var}) \frac{\Phi \vdash \Gamma \ \mathtt{Ok} \qquad x \not\in \mathtt{dom}(\Gamma) \qquad \Phi \vdash A}{\Phi \vdash \Gamma, x \colon A \ \mathtt{Ok}}$$

1.2.5 Subtyping

There exists a subtyping pre-order relation $\leq :_{\gamma}$ over ground types that is:

• (Reflexive)
$$\frac{}{A \leq :_{\gamma} A}$$

$$\bullet \ \mbox{(Transitive)} \frac{A \leq :_{\gamma} B \qquad B \leq :_{\gamma} C}{A \leq :_{\gamma} C}$$

We extend this relation with the function and effect-lambda subtyping rules to yield the full subtyping relation under an effect environment, Φ , \leq : $_{\Phi}$

8

• (ground)
$$\frac{A \leq :_{\gamma} B}{A \leq :_{\Phi} B}$$

• (Fn)
$$\frac{A \leq :_{\Phi} A'}{A' \to B' \leq :_{\Phi} A \to B}$$

• (All)
$$\frac{A \leq :_{\Phi} A'}{\forall \alpha. A \leq :_{\Phi} \forall a. A'}$$

$$\bullet \ (\text{Effect}) \frac{A \leq :_{\Phi} B \qquad \epsilon_1 \leq_{\Phi} \epsilon_2}{\texttt{M}_{\epsilon_1} A \leq :_{\Phi} \texttt{M}_{\epsilon_2} B}$$

1.2.6 Type Rules

•
$$(Const) \frac{\Phi \vdash \Gamma \text{ Ok} \qquad \Phi \vdash A}{\Phi \mid \Gamma \vdash \mathbf{C}^A : A}$$

•
$$(Unit) \frac{\Phi \vdash \Gamma \text{ Ok}}{\Phi \mid \Gamma \vdash () : Unit}$$

• (True)
$$\frac{\Phi \vdash \Gamma \text{ Ok}}{\Phi \mid \Gamma \vdash \text{true: Bool}}$$

• (False)
$$\frac{\Phi \vdash \Gamma \text{ Ok}}{\Phi \mid \Gamma \vdash \text{false: Bool}}$$

•
$$(Var) \frac{\Phi \vdash \Gamma, x : A \quad Ok}{\Phi \mid \Gamma, x : A \vdash x : A}$$

• (Weaken)
$$\frac{\Phi \mid \Gamma \vdash x : A \qquad \Phi \vdash B}{\Phi \mid \Gamma, y : B \vdash x : A}$$
 (if $x \neq y, y \notin \text{dom}(\Gamma)$)

• (Fn)
$$\frac{\Phi \mid \Gamma, x: A \vdash v: B}{\Phi \mid \Gamma \vdash \lambda x: A.v: A \to B}$$

• (Sub)
$$\frac{\Phi \mid \Gamma \vdash v : A \qquad A \leq :_{\Phi} B}{\Phi \mid \Gamma \vdash v : B}$$

• (Effect-Gen)
$$\frac{\Phi, \alpha \mid \Gamma \vdash v : A}{\Phi \mid \Gamma \vdash \Lambda \alpha . v : \forall \alpha . A}$$

• (Effect-Spec)
$$\frac{\Phi \mid \Gamma \vdash v : \forall \alpha. A \qquad \Phi \vdash \epsilon}{\Phi \mid \Gamma \vdash v \in A \left[\epsilon/\alpha\right]}$$

• (Return)
$$\frac{\Phi \mid \Gamma \vdash v : A}{\Phi \mid \Gamma \vdash \mathsf{return} \ v : \mathsf{M}_1 A}$$

• (Apply)
$$\frac{\Phi \mid \Gamma \vdash v_1 : A \to \mathsf{M}_{\epsilon}B \qquad \Phi \mid \Gamma \vdash v_2 : A}{\Phi \mid \Gamma \vdash v_1 \mid v_2 : \mathsf{M}_{\epsilon}B}$$

$$\bullet \ (\mathrm{If}) \frac{\Phi \mid \Gamma \vdash v \colon \mathtt{Bool} \qquad \Phi \mid \Gamma \vdash v_1 \colon A \qquad \Phi \mid \Gamma \vdash v_2 \colon A}{\Phi \mid \Gamma \vdash \mathsf{if}_A \ v \ \mathsf{then} \ v_1 \ \mathsf{else} \ v_2 \colon A}$$

$$\bullet \ \ (\mathrm{Do}) \frac{\Phi \mid \Gamma \vdash v_1 \colon \mathtt{M}_{\epsilon_1} A \qquad \Phi \mid \Gamma, x \colon A \vdash v_2 \colon \mathtt{M}_{\epsilon_2} B}{\Phi \mid \Gamma \vdash \mathtt{do} \ x \leftarrow v_1 \ \mathtt{in} \ v_2 \colon \mathtt{M}_{\epsilon_1 \cdot \epsilon_2} B}$$

1.2.7 Ok Lemma

If $\Phi \mid \Gamma \vdash v : A$ then $\Phi \vdash \Gamma$ Ok.

Proof If $\Gamma, x: A$ Ok then by inversion Γ Ok. Only the type rule Weaken adds terms to the environment from its preconditions to its post-condition and it does so in an Ok preserving way. Any type derivation tree has at least one leaf. All leaves are axioms which require $\Phi \vdash \Gamma$ Ok. And all non axiom derivations preserve the Ok property.

Chapter 2

Preliminaries

2.1 Base Category Requirements

There are 2 distinct objects in the base category, \mathbb{C} :

- $\bullet \ U$ The kind of Effect
- 1 A terminal object

And we have finite products on U.

- $U^0 = 1$
- $\bullet \ U^{n+1} = U^n \times U$

We also have the following natural operations on morphisms in \mathbb{C} . Let $I=U^n$.

• Mul : $\mathbb{C}(I,U) \times \mathbb{C}(I,U) \to \mathbb{C}(I,U)$ - Generates multiplication of effects.

With naturality conditions which mean, for $\theta: U^m \to U^n(I' \to I)$,

 $\bullet \ \operatorname{Mul}(\phi,\psi) \circ \theta = \operatorname{Mul}(\phi \circ \theta, \psi \circ \theta)$

2.2 Wellformedness

Each instance of the wellformedness relation on effects, $\Phi \vdash \epsilon$ has a denotation in \mathbb{C} :

$$\llbracket \Phi \vdash \epsilon \colon \mathsf{Effect} \rrbracket : I \to U \tag{2.1}$$

It should also be the case that

$$\mathtt{Mul}(\llbracket\Phi \vdash \epsilon_1 \colon \mathtt{Effect}\rrbracket, \llbracket\Phi \vdash \epsilon_2 \colon \mathtt{Effect}\rrbracket) = \llbracket\Phi \vdash \epsilon_1 \cdot \epsilon_2 \colon \mathtt{Effect}\rrbracket \in \mathbb{C}(I, U) \tag{2.2}$$

That is, Mul should be have identity $\llbracket \Phi \vdash 1 : \texttt{Effect} \rrbracket$ and be associative.

2.3 Substitution and Weakening of the Effect Environment

2.3.1 Denotations

For each instance of the wellformedness relation on substitution of effects $\Phi' \vdash \sigma : \Phi$, there exists a denotation in \mathbb{C} :

$$\llbracket \Phi' \vdash \sigma : \Phi \rrbracket : I' \to I \tag{2.3}$$

For each instance of the well formed weakening relation on effect-variable environments, $\omega: \Phi' \triangleright \Phi$ there exists a denotation in \mathbb{C} :

$$\llbracket \omega \colon \Phi' \triangleright \Phi \rrbracket \colon I' \to I \tag{2.4}$$

.

2.4 Fibre Categories

Each set of morphisms $\mathbb{C}(I)$ corresponds to a semantic-closed (S-closed) category. That is, a category satisfying all the properties needed for the non-polymorphic language:

- Cartesian Closed
- \bullet Co-product of the terminal object with itself (1+1)
- Ground morphisms for each ground constant $(C^A : 1 \to A)$
- Partial order morphisms on ground types ($[A \leq :_{\gamma}]B$)
- A strong, monad, graded by the po-monoid $(\mathbb{C}(I,U), \text{Mul}, \leq_{\Phi}, [1])$.

2.5 Re-Indexing Functors

TODO: Use this section for the S-Preservation definition appendix For each morphism $f: I' \to I$ in \mathbb{C} , there should be a co-variant, re-indexing functor $f^*: \mathbb{C}(I) \to \mathbb{C}(I')$, which is S-closed. That is, it preserves the S-closed properties of $\mathbb{C}(I)$. (See below).

 $(-)^*$ should be a contra-variant functor in its $\mathbb C$ argument and co-variant in its right argument.

- $(g \circ f)^*(a) = f^*(\gamma^*(a))$
- $\operatorname{Id}_I^*(a) = a$
- $f^*(\operatorname{Id}_A) = \operatorname{Id}_{f^*(A)}$
- $f^*(a \circ b) = f^*(a) \circ f^*(b)$

2.5.1 Preserves Ground Types

If
$$[\![\gamma]\!] \in \text{obj } \mathbb{C}(I) \text{ then } f^*[\![\gamma]\!] = [\![\gamma]\!] \in \text{obj } \mathbb{C}(I')$$

2.5.2 f^* Preserves Products

If $\langle g, h \rangle : \mathbb{C}(I)(Z, X \times Y)$ Then

$$f^*(X \times Y) = f^*(X) \times f^*(Y)$$

$$f^*(\langle g, h \rangle) = \langle f^*(g), f^*h \rangle \qquad : \mathbb{C}(I')(f^*Z, f^*(X) \times f^*(Y))$$

$$f^*(\pi_1) = \pi_1 \qquad : \mathbb{C}(I')(f^*(X) \times f^*(Y), f^*(X))$$

$$f^*(\pi_2) = \pi_2 \qquad : \mathbb{C}(I')(f^*(X) \times f^*(Y), f^*(Y))$$

2.5.3 f^* Preserves Terminal Object

If $\mathrm{Id}_A:\mathbb{C}(I)(A,\mathbf{1})$ Then

$$\begin{split} f^*(\mathbf{1}) &= \mathbf{1} \\ f^*(\langle \rangle_A) &= \langle \rangle_{f^*(A)} \\ &: \mathbb{C}(I')(f^*A, \mathbf{1}) \end{split}$$

2.5.4 f^* Preserves Exponentials

$$\begin{split} f^*(Z^X) &= (f^*(Z))^{(f^*(X))} \\ f^*(\mathsf{app}) &= \mathsf{app} \\ f^*(\mathsf{cur}(g)) &= \mathsf{cur}(f^*(g)) \\ \end{split} : \mathbb{C}(I')(f^*(Z^X) \times f^*(X), f^*(Z)) \\ : \mathbb{C}(I')(f^*(Y) \times f^*(X), f^*(Z))^{f^*(X)}) \end{split}$$

2.5.5 f^* Preserves Co-product on Terminal

$$\begin{split} f^*(1+1) &= 1+1 \\ f^*(\texttt{inl}) &= \texttt{inl} \\ f^*(\texttt{inr}) &= \texttt{inr} \\ f^*([g,h]) &= [f^*(g),f^*(h)] \\ &: \mathbb{C}(I')(1,1+1) \\ &: \mathbb{C}(I')(1+1,f^*(Z)) \end{split}$$

2.5.6 f^* Preserves Graded Monad

$$f^*(T_{\epsilon}A) = T_{f^*(\epsilon)}f^*(A) \qquad : \mathbb{C}(I')$$

$$f^*(1) = 1 \quad \text{The unit effect}$$

$$f^*(\eta_A) = \eta_{f^*(A)} \qquad : \mathbb{C}(I')(f^*(A), f^*(T_1A))$$

$$f^*(\mu_{\epsilon_1, \epsilon_2, A}) = \mu_{f^*(\epsilon_1), f^*(\epsilon_2), f^*(A)} \qquad : \mathbb{C}(I')(f^*(T_{\epsilon_1}T_{\epsilon_2}A), f^*(T_{\epsilon_1 \cdot \epsilon_2}A))$$

$$f^*(\epsilon_1 \cdot \epsilon_2) = f^*(\epsilon_1) \cdot f^*(\epsilon_2)$$

2.5.7 f^* Preserves Tensor Strength

$$f^*(\mathsf{t}_{\epsilon,A,B}) = \mathsf{t}_{f^*(\epsilon),f^*(A),f^*(B)} \qquad : \mathbb{C}(I')(f^*(A \times T_{\epsilon}B), f^*(T_{\epsilon}(A \times B)))$$

2.5.8 f* Preserves Ground Constants

For each ground constant $[C^A]$ in C(I),

$$f^*(\llbracket \mathbf{C}^A \rrbracket) = \mathbf{C}^{f^*(A)} : \mathbb{C}(I')(\mathbf{1}, f^*(A))$$

2.5.9 f^* Preserves Ground Subeffecting

For ground effects e_1, e_2 such that $e_1 \leq e_2$

$$f^*(e) = e : \mathbb{C}(I')$$

$$f^*[\![\epsilon_1 \le e_2]\!]_A = [\![e_1 \le e_2]\!]_{f^*(A)} : \mathbb{C}(I')f^*(T_{e_1}A), f^*(T_{e_2}A)$$

2.5.10 f^* Preserves Ground Subtyping

For ground types γ_1, γ_2 such that $\gamma_1 \leq :_{\gamma} \gamma_2$

$$f^*\gamma = \gamma : \mathbb{C}(I')(1,\gamma)$$

$$f^*(\llbracket \gamma_1 \le :_{\gamma} \gamma_2 \rrbracket) = \llbracket \gamma_1 \le :_{\gamma} \gamma_2 \rrbracket$$

$$: \mathbb{C}(I')(\gamma_1, \gamma_2)$$

2.6 The \forall_I functor

We expand $\forall_I : \mathbb{C}(I \times U) \to \mathbb{C}(I)$ to be a functor which is right adjoint to the re-indexing functor π_1^* .

$$\overline{(_)} : \mathbb{C}(I \times U)(\pi_1^* A, B) \leftrightarrow \mathbb{C}(I)(A, \forall_I B) : \widehat{(_)}$$
(2.5)

For $A \in \text{obj } \mathbb{C}(I), B \in \text{obj } \mathbb{C}(I \times U).$

Hence the action of \forall_I on a morphism $l:A\to A'$ is as follows:

$$\forall_I(l) = \overline{l \circ \epsilon_A} \tag{2.6}$$

Where $\epsilon_A : \mathbb{C}(I \times U)(\pi_1^* \forall_I A \to A)$ is the co-unit of the adjunction.

2.6.1 Beck Chevalley Condition

We need to be able to commute the \forall_I functor with re-indexing functors. A natural way to do this is:

$$\theta^* \circ \forall_I = \forall_{I'} \circ (\theta \times \mathrm{Id}_{II})^*$$

We shall also require that the canonical natural-transformation between these functors is the identity.

That is,
$$\overline{(\theta \times \mathrm{Id}_U)^*(\epsilon)} = \mathrm{Id} : \theta^* \circ \forall_I \to \forall_{I'} \circ (\theta \times \mathrm{Id}_U)^* \in \mathbb{C}(I')$$

This shall be called the Beck-Chevalley condition.

2.7 Naturality Corollaries

Here are some simple corollaries of the adjunction between π_1^* and \forall_I .

2.7.1 Naturality

By the definition of an adjunction:

$$\overline{f \circ \pi_1^*(n)} = \overline{f} \circ n \tag{2.7}$$

2.7.2 $\overline{(-)}$ and Re-indexing Functors

By assuming the Beck-Chevalley condition that:

$$\overline{(\theta \times \operatorname{Id}_{U})^{*}(\epsilon)} = \operatorname{Id}: \theta^{*} \circ \forall_{I} \to \forall_{I'} \circ (\theta \times \operatorname{Id}_{U})^{*}$$
(2.8)

We then have:

$$\begin{split} \theta^* \eta_A : & \quad \theta^* A \to \theta^* \circ \forall_I \circ \pi_1^* A \\ \theta^* \eta = & \overline{(\theta \times \operatorname{Id}_U)^*}(\boldsymbol{\epsilon}_{\pi_1^*}) \circ \theta^* \eta \\ = & \quad (\forall_{I'} \circ (\theta \times \operatorname{Id}_U)^*)(\boldsymbol{\epsilon}_{\pi_1^*}) \circ \boldsymbol{\eta}_{(\forall_{I'} \circ (\theta \times \operatorname{Id}_U)^*) \circ \pi_1^*} \circ \theta^* \eta \\ = & \quad (\forall_{I'} \circ (\theta \times \operatorname{Id}_U)^*)(\boldsymbol{\epsilon}_{\pi_1^*}) \circ \boldsymbol{\eta}_{\theta^* \circ \forall_I \circ \pi_1^*} \circ \theta^* \eta \\ = & \quad (\forall_{I'} \circ (\theta \times \operatorname{Id}_U)^*)(\boldsymbol{\epsilon}_{\pi_1^*}) \circ (\theta^* \circ \forall_I \circ \pi_1^*) \boldsymbol{\eta} \circ \boldsymbol{\eta}_{(\theta \times \operatorname{Id}_U)^*} \\ = & \quad (\theta^* \circ \forall_I)(\boldsymbol{\epsilon}_{\pi_1^*} \circ \pi_1^* \boldsymbol{\eta}) \circ \boldsymbol{\eta}_{(\theta \times \operatorname{Id}_U)^*} \\ = & \quad (\theta^* \circ \forall_I)(\operatorname{Id}) \circ \boldsymbol{\eta}_{(\theta \times \operatorname{Id}_U)^*} \\ = & \quad \boldsymbol{\eta}_{(\theta \times \operatorname{Id}_U)^*} \end{split}$$

$$\theta^*(\overline{f}) = \theta^*(\forall_I(f) \circ \eta_A) \\ = & \quad \theta^*(\forall_{I'} \circ (\theta \times \operatorname{Id}_U)^*) f \circ \boldsymbol{\eta}_{(\theta \times \operatorname{Id}_U)^*A} \\ = & \quad (\forall_{I'} \circ (\theta \times \operatorname{Id}_U)^*) f \circ \boldsymbol{\eta}_{(\theta \times \operatorname{Id}_U)^*A} \\ = & \quad \overline{(\theta \times \operatorname{Id}_U)^* f} \end{split}$$

2.7.3 $(\hat{-})$ and Re-Indexing Functors

$$\begin{split} \theta^*(\langle \operatorname{Id}_I, \rho \rangle^*(\widehat{m})) &= (\langle \operatorname{Id}_I, \rho \rangle \circ \theta)^*(\widehat{m}) \\ &= ((\theta \times \operatorname{Id}_U) \circ \langle \operatorname{Id}_I, \rho \rangle)^*(\widehat{m}) \\ &= \langle \operatorname{Id}_I, \rho \circ \theta \rangle^*(\theta \times \operatorname{Id}_U)^*(\widehat{m}) \\ &= \langle \operatorname{Id}_I, \theta^* \rho \rangle^*(\theta^*(\widehat{m})) \end{split}$$

2.7.4 Pushing Morphisms into f^*

$$\begin{split} \langle \operatorname{Id}_I, \rho \rangle^*(\widehat{m}) \circ n &= \langle \operatorname{Id}_I, \rho \rangle^*(\widehat{m}) \circ \langle \operatorname{Id}_I, \rho \rangle^* \pi_1^*(n) \\ &= \langle \operatorname{Id}_I, \rho \rangle^*(\widehat{m} \circ \pi_1^*(n)) \\ &= \langle \operatorname{Id}_I, \rho \rangle^*(\widehat{m} \circ n) \end{split}$$

Chapter 3

Weakenings and Substitutions

3.1 Effect-Environment Weakenings

Introduce a relation $\omega: \Phi' \triangleright \Phi$ relating effect-variable environments.

3.1.1 Relation

- $(Id) \frac{\Phi \ 0k}{\iota : \Phi \triangleright \Phi}$
- (Project) $\frac{\omega \colon \Phi' \triangleright \Phi}{\omega \pi \colon (\Phi', \alpha) \triangleright \Phi}$
- (Extend) $\frac{\omega : \Phi' \triangleright \Phi}{\omega \times : (\Phi', \alpha) \triangleright (\Phi, \alpha)}$

3.1.2 Weakening Properties

Property 3.1.1 (Weakening Preserves Ok).

$$\omega: \Phi' \triangleright \Phi \land \Phi \quad \mathcal{O}\mathbf{k} \Rightarrow \Phi' \quad \mathcal{O}\mathbf{k} \tag{3.1}$$

Proof:

Case: ι

$$\Phi$$
 Ok $\wedge \iota : \Phi \triangleright \Phi \Rightarrow \Phi$ Ok

Case: $\omega \pi$ By inversion,

$$\omega : \Phi' \triangleright \Phi \wedge \alpha \notin \Phi' \tag{3.2}$$

So, by induction, Φ' Ok and hence (Φ', α) Ok

Case: $\omega \times$ By inversion,

$$\omega \colon \Phi' \triangleright \Phi \land \alpha \notin \Phi' \tag{3.3}$$

So

$$\begin{array}{ll} (\Phi,\alpha) & {\rm Ok} \Rightarrow \Phi & {\rm Ok} \\ & \Rightarrow \Phi' & {\rm Ok} \\ & \Rightarrow (\Phi',\alpha) & {\rm Ok} \end{array}$$

Property 3.1.2 (Domain Lemma). 3.1.3 Domain Lemma

$$\omega : \Phi' \triangleright \Phi \Rightarrow (\alpha \notin \Phi' \Rightarrow \alpha \notin \Phi)$$

Proof: By trivial Induction.

3.2 Effect-Environment Substitutions

3.2.1 Snoc Lists

Effect-Environment substitutions may be represented as a snoc-list of variable-effect pairs.

$$\sigma ::= \diamond \mid \sigma, \alpha := \epsilon$$

3.2.2 Wellformedness

For any two effect-variable environments, and a substitution, define the wellformedness relation:

$$\Phi' \vdash \sigma : \Phi \tag{3.4}$$

• $(Nil) \frac{\Phi' \ Ok}{\Phi' \vdash \diamond : \diamond}$

$$\bullet \ (\text{Extend}) \frac{\Phi' \vdash \sigma \colon \Phi \qquad \Phi' \vdash \epsilon \qquad \alpha \not \in \Phi}{\Phi' \vdash \sigma, \alpha \colon = \epsilon \colon (\Phi, \alpha)}$$

3.2.3 Actions

On Effects

Define the action of applying an effect substitution to an effect symbol:

$$\sigma(\epsilon) \tag{3.5}$$

$$\sigma(e) = e$$

$$\sigma(\epsilon_1 \cdot \epsilon_2) = (\sigma(\epsilon_1)) \cdot (\sigma(\epsilon_2))$$

$$\diamond(\alpha) = \alpha$$

$$(\sigma, \beta := \epsilon)(\alpha) = \sigma(\alpha)$$

$$(\sigma, \alpha := \epsilon)(\alpha) = \epsilon$$

On Types

Define the action of applying an effect substitution, σ to a type A as:

 $A\left[\sigma\right]$

Defined as so

$$\begin{split} \gamma\left[\sigma\right] &= \gamma \\ (A \to B)\left[\sigma\right] &= (A\left[\sigma\right]) \to (B\left[\sigma\right]) \\ (\mathsf{M}_{\epsilon}A)\left[\sigma\right] &= \mathsf{M}_{\sigma(\epsilon)}(A\left[\sigma\right]) \\ (\forall \alpha.A)\left[\sigma\right] &= \forall \alpha.(A\left[\sigma\right]) \quad \text{If } \alpha \# \sigma \end{split}$$

On Typing Environments

Define the action of effect substitution on type environments:

 $\Gamma\left[\sigma\right]$

Defined as so:

$$\diamond \left[\sigma\right] = \diamond$$

$$(\Gamma, x \colon A) \left[\sigma\right] = (\Gamma \left[\sigma\right], x \colon (A \left[\sigma\right]))$$

On Terms

Define the action of effect-substitution on terms:

$$\begin{split} x\left[\sigma\right] &= x \\ \mathbf{C}^A\left[\sigma\right] &= \mathbf{C}^{(A[\sigma])} \\ \left(\lambda x{:}\,A.v\right)\left[\sigma\right] &= \lambda x{:}\left(A\left[\sigma\right]\right).(v\left[\sigma\right]) \\ \left(\text{if}_A\ v\ \text{then}\ v_1\ \text{else}\ v_2\right)\left[\sigma\right] &= \text{if}_{\left(A[\sigma]\right)}\ v\left[\sigma\right]\ \text{then}\ v_1\left[\sigma\right]\ \text{else}\ v_2\left[\sigma\right] \\ \left(v_1\ v_2\right)\left[\sigma\right] &= \left(v_1\left[\sigma\right]\right)\ v_2\left[\sigma\right] \\ \left(\text{do}\ x \leftarrow v_1\ \text{in}\ v_2\right)\left[\sigma\right] &= \text{do}\ x \leftarrow \left(v_1\left[\sigma\right]\right)\ \text{in}\ \left(v_2\left[\sigma\right]\right) \\ \left(\Lambda\alpha.v\right)\left[\sigma\right] &= \Lambda\alpha.(v\left[\sigma\right]) \quad \text{If}\ \alpha\#\sigma \\ \left(v\ \epsilon\right)\left[\sigma\right] &= \left(v\left[\sigma\right]\right)\sigma\left(\epsilon\right) \end{split}$$

3.2.4 Properties

Property 3.2.1 (Wellformedness). If $\Phi' \vdash \sigma : \Phi$ then Φ' Ok (By the Nil case) and Φ Ok Since each use of the extend case preserves Ok.

Property 3.2.2 (Weakening). If $\Phi' \vdash \sigma : \Phi$ then $\omega : \Phi' \triangleright \Phi' \implies \Phi'' \vdash \sigma : \Phi$ since $\Phi' \vdash \epsilon \implies \Phi'' \vdash \epsilon$ and $\Phi' \cap Ok \implies \Phi'' \cap Ok$

Property 3.2.3 (Extension). If $\Phi' \vdash \sigma : \Phi$ then

$$\alpha \notin \Phi \land \alpha \notin \Phi' \implies (\Phi', \alpha) \vdash (\sigma, \alpha := \alpha) : (\Phi, \alpha)$$

$$(3.6)$$

Since $\iota \pi : \Phi', \alpha \triangleright \Phi'$ so $\Phi', \alpha \vdash \sigma : \Phi$ and $\Phi', \alpha \vdash \alpha$

3.3 Typing-Environment Weakenings

Type environment weakenings are inductively defined with respect to an effect environment.

$$(\operatorname{Id}) \frac{\Phi \vdash \Gamma \ \, 0k}{\Phi \vdash \iota \colon \Gamma \triangleright \Gamma} \quad (\operatorname{Project}) \frac{\Phi \vdash \omega \colon \Gamma' \triangleright \Gamma}{\Phi \vdash \omega \pi \colon \Gamma, \, x : A \triangleright \Gamma} (\operatorname{if} \, x \notin \operatorname{dom}(\Gamma'))$$

$$(\operatorname{Extend}) \frac{\Phi \vdash \omega \colon \Gamma' \triangleright \Gamma \qquad A \leq : B}{\Phi \vdash \omega \times \colon \Gamma', \, x : A \triangleright \Gamma, \, x : B} (\operatorname{if} \, x \notin \operatorname{dom}(\Gamma'))$$

3.4 Typing-Environment Substitutions

3.4.1 Snoc Lists

Typing-Environment substitutions may be represented as a snoc-list of variable-term pairs.

$$\sigma : := \diamond \mid \sigma, x := v$$

3.4.2 Wellformedness

The relation instance $\Phi' \vdash \sigma : \Phi$ means that σ is a substitution from Φ' to Φ . It is defined inductively using the following rules.

$$(\mathrm{Nil})\frac{\Phi' \ \mathtt{0k}}{\Phi' \vdash \diamond : \diamond} \qquad (\mathrm{Extend})\frac{\Phi' \vdash \sigma : \Phi \qquad \Phi' \vdash \epsilon}{\Phi' \vdash \sigma, \alpha := \epsilon : (\Phi, \alpha)} (\mathrm{if} \ \alpha \not \in \Phi)$$

3.4.3 Action on Terms

We define the action of applying a term substitution σ as

$$v\left[\sigma\right]$$

$$\begin{split} x\left[\diamond\right] = x \\ x\left[\sigma, x := v\right] = v \\ x\left[\sigma, x' := v'\right] = x\left[\sigma\right] \quad \text{If } x \neq x' \\ \mathbf{C}^A\left[\sigma\right] = \mathbf{C}^A \\ \left(\lambda x : A.v\right)\left[\sigma\right] = \lambda x : A.(v\left[\sigma\right]) \quad \text{If } x \# \sigma \\ \left(\text{if}_A \ v \ \text{then } v_1 \ \text{else } v_2\right)\left[\sigma\right] = \text{if}_A \ v\left[\sigma\right] \ \text{then } v_1\left[\sigma\right] \ \text{else } v_2\left[\sigma\right] \\ \left(v_1 \ v_2\right)\left[\sigma\right] = \left(v_1\left[\sigma\right]\right) \ v_2\left[\sigma\right] \\ \left(\text{do } x \leftarrow v_1 \ \text{in } v_2\right) = \text{do } x \leftarrow \left(v_1\left[\sigma\right]\right) \ \text{in } \left(v_2\left[\sigma\right]\right) \quad \text{If } x \# \sigma \\ \left(\Lambda \alpha.v\right)\left[\sigma\right] = \Lambda \alpha.(v\left[\sigma\right]) \\ \left(v \ \epsilon\right)\left[\sigma\right] = \left(v\left[\sigma\right]\right) \epsilon \end{split}$$

3.4.4 Properties

Property 3.4.1 (Wellformedness). If $\Phi \mid \Gamma' \vdash \sigma : \Gamma$ then $\Phi \vdash \Gamma$ Ok and $\Phi \vdash \Gamma'$ Ok. Since $\Phi \vdash \Gamma'$ Ok holds by the Nil axiom. $\Phi \vdash \Gamma$ Ok holds by induction on the wellformedness relation.

Property 3.4.2 (Weakening). If $\Phi \mid \Gamma' \vdash \sigma : \Gamma$ then $\omega : \Gamma'' \triangleright \Gamma'$ implies $\Phi \mid \Gamma'' \vdash \sigma : \Gamma$. By induction over wellformedness relation. For each x := v in σ , $\Phi \mid \Gamma'' \vdash v : A$ holds if $\Phi \mid \Gamma' \vdash v : A$ holds.

Property 3.4.3 (Extension). If $\Phi \mid \Gamma' \vdash \sigma : \Gamma$ then $x \notin (\operatorname{dom}(\Gamma) \cup \operatorname{dom}(\Gamma''))$ implies $\Phi \mid (\Gamma', x : A) \vdash (\sigma, x : x) : (\Gamma, x : A)$. Since $\iota \pi : \Gamma', x : A \triangleright \Gamma'$, so by property 3.4.2,

$$\Phi \mid \Gamma', x : A \vdash \sigma : \Gamma$$

In addition, $\Phi \mid \Gamma', x : A \vdash x : A$ trivially, so by the rule **Extend**, wellformedness holds for

$$\Phi \mid (\Gamma', x : A) \vdash (\sigma, x := v) : (\Gamma, x : A) \tag{3.7}$$

Chapter 4

Denotations

4.1 Effects

For each instance of the wellformedness relation on effects, we define a morphism $\llbracket \Phi \vdash \epsilon \colon \texttt{Effect} \rrbracket : \mathbb{C}(I,U)$

```
\bullet \ \ \llbracket \Phi \vdash e \text{:} \mathbf{Effect} \rrbracket = \llbracket \epsilon \rrbracket \circ \langle \rangle_I : \to U
```

- $\llbracket \Phi, \alpha \vdash \alpha \colon \mathtt{Effect} \rrbracket = \pi_2 : I \times U \to U$
- $\bullet \ \ \llbracket \Phi, \beta \vdash \alpha \text{:} \ \texttt{Effect} \rrbracket = \llbracket \Phi \vdash \alpha \text{:} \ \texttt{Effect} \rrbracket \circ \pi_1 : I \times U \to U$
- $\bullet \ \ \llbracket \Phi \vdash \epsilon_1 \cdot \epsilon_2 \colon \mathtt{Effect} \rrbracket = \mathtt{Mul}(\llbracket \Phi \vdash \epsilon_2 \colon \mathtt{Effect} \rrbracket, \llbracket \Phi \vdash \epsilon_1 \colon \mathtt{Effect} \rrbracket) : I \to U$

4.2 Types

For each instance of the wellformedness relation on types, we derive an object $\llbracket \Phi \vdash A : \mathsf{Type} \rrbracket \in \mathsf{obj} \ \mathbb{C}(I)$.

Since the fibre category $\mathbb{C}(I)$ is S-Closed, it has objects for all ground types, a terminal object, graded monad T, exponentials, products, and co-product over 1 + 1.

```
• \llbracket \Phi \vdash \mathtt{Unit} : \mathtt{Type} \rrbracket = 1
```

- $\llbracket \Phi \vdash \mathsf{Bool} \colon \mathsf{Type} \rrbracket = 1 + 1$
- $\llbracket \Phi \vdash \gamma : \mathsf{Type} \rrbracket = \llbracket \gamma \rrbracket$
- $\llbracket \Phi \vdash A \to B : \mathsf{Type} \rrbracket = (\llbracket \Phi \vdash B : \mathsf{Type} \rrbracket)^{(\llbracket \Phi \vdash A : \mathsf{Type} \rrbracket)}$
- $\bullet \ \ \llbracket \Phi \vdash \mathsf{M}_{\epsilon}A \text{:} \, \mathsf{Type} \rrbracket = T_{\llbracket \Phi \vdash \epsilon : \mathsf{Effect} \rrbracket} \llbracket \Phi \vdash A \text{:} \, \mathsf{Type} \rrbracket$
- $\llbracket \Phi \vdash \forall \alpha.A : \mathsf{Type} \rrbracket = \forall_I (\llbracket \Phi, \alpha \vdash A : \mathsf{Type} \rrbracket)$

4.3 Effect Substitution

For each effect-substitution wellformedness-relation, define a denotation morphism, $\llbracket \Phi' \vdash \sigma : \Phi \rrbracket : \mathbb{C}(I', I)$

```
• \llbracket \Phi' \vdash \diamond : \diamond \rrbracket = \langle \rangle_I : \mathbb{C}(I', 1)
```

•
$$\llbracket \Phi' \vdash (\sigma, \alpha := \epsilon) : \Phi, \alpha \rrbracket = \langle \llbracket \Phi' \vdash \sigma : \Phi \rrbracket, \llbracket \Phi \vdash \epsilon : \texttt{Effect} \rrbracket \rangle : \mathbb{C}(I', I \times U)$$

4.4 Effect Weakening

For each instance of the effect-environment weakening relation, define a denotation morphism: $[\![\omega:\Phi'\triangleright P]\!]:\mathbb{C}(I',I)$

- $\bullet \ \llbracket \iota \colon \Phi \rhd \Phi \rrbracket = \operatorname{Id}_I : I \to I$
- $\llbracket w\pi : \Phi', \alpha \triangleright \Phi \rrbracket = \llbracket \omega : \Phi' \triangleright \Phi \rrbracket \circ \pi_1 : I' \times U \to I$
- $\llbracket w \times : \Phi', \alpha \triangleright \Phi, \alpha \rrbracket = (\llbracket \omega : \Phi' \triangleright \Phi \rrbracket \times \mathrm{Id}_U) : I' \times U \to I \times U$

4.5 Subtyping

For each instance of the subtyping relation with respect to an effect environment, there exists a denotation, $[\![A \leq :_{\Phi} B]\!] : \mathbb{C}(I)(A, B)$.

- $[\gamma_1 \leq :_{\Phi} \gamma_2] = [\gamma_1 \leq :_{\gamma} \gamma_2] : \mathbb{C}(I)(\gamma_1, \gamma_2)$
- $\bullet \ \llbracket A \to B \leq :_{\Phi} A' \to B' \rrbracket = \llbracket B \leq :_{\Phi} B' \rrbracket^{A'} \circ B^{\llbracket A' \leq :_{\Phi} A \rrbracket}$
- $\bullet \ \llbracket \mathsf{M}_{\epsilon_1} A \leq :_{\Phi} \mathsf{M}_{\epsilon_2} B \rrbracket = \llbracket \epsilon_1 \leq_{\Phi} \epsilon_2 \rrbracket \circ T_{\epsilon_1} \llbracket A \leq :_{\Phi} B \rrbracket$
- $\llbracket \forall \alpha. A \leq :_{\Phi} \forall \alpha. B \rrbracket = \forall_I \llbracket A \leq :_{\Phi,\alpha} B \rrbracket$

4.6 Type-Environments

For each instance of the well formed relation on type environments, define an object $\llbracket \Phi \vdash \Gamma \ \mathsf{Ok} \rrbracket \in \mathsf{obj} \ \mathbb{C}(I)$.

- $\llbracket \Phi \vdash \diamond \mathsf{Ok} \rrbracket = \mathsf{1} : \mathbb{C}(I)$
- $\llbracket \Phi \vdash \Gamma, x : A \ \mathsf{Ok} \rrbracket = (\llbracket \Phi \vdash \Gamma \ \mathsf{Ok} \rrbracket \times \llbracket \Phi \vdash A : \mathsf{Type} \rrbracket)$

4.7 Terms

For each instance of the typing relation, define a denotation morphism: $\llbracket \Phi \mid \Gamma \vdash v : A \rrbracket : \mathbb{C}(I)(\Gamma_I, A_I)$. Writing Γ_I and A_I for $\llbracket \Phi \vdash \Gamma$ $\mathsf{Ok} \rrbracket$ and $\llbracket \Phi \vdash A : \mathsf{Type} \rrbracket$.

For each ground constant, \mathbb{C}^A , there exists $c: \mathbb{1} \to A_I$ in $\mathbb{C}(I)$.

$$\bullet \ (\mathrm{Unit}) \frac{\Phi \vdash \Gamma \ \mathsf{Ok}}{\llbracket \Phi \mid \Gamma \vdash () \colon \mathsf{Unit} \rrbracket = \left\langle \right\rangle_{\Gamma} \colon \Gamma_I \to \mathsf{1} }$$

$$\bullet \ \ (\mathrm{Const}) \frac{\Phi \vdash \Gamma \ \ \mathtt{Ok}}{\llbracket \Phi \mid \Gamma \vdash \mathtt{C}^A \colon A \rrbracket = \llbracket \mathtt{C}^A \rrbracket \circ \langle \rangle_{\Gamma} \colon \Gamma \to \llbracket A \rrbracket}$$

$$\bullet \ (\mathrm{True}) \frac{\Phi \vdash \Gamma \ \mathtt{0k}}{\llbracket \Phi \mid \Gamma \vdash \mathtt{true} : \mathtt{Bool} \rrbracket = \mathtt{inl} \circ \langle \rangle_{\Gamma} : \Gamma \to \llbracket \mathtt{Bool} \rrbracket = \mathtt{1} + \mathtt{1}}$$

$$\bullet \ (\mathrm{False}) \frac{\Phi \vdash \Gamma \ \mathtt{Ok}}{\llbracket \Phi \mid \Gamma \vdash \mathtt{false} : \mathtt{Bool} \rrbracket = \mathtt{inr} \circ \left\langle \right\rangle_{\Gamma} : \Gamma \to \llbracket \mathtt{Bool} \rrbracket = \mathtt{1} + \mathtt{1}}$$

•
$$(Var) \frac{\Phi \vdash \Gamma \text{ Ok}}{\llbracket \Phi \mid \Gamma, x: A \vdash x: A \rrbracket = \pi_2 : \Gamma \times A \to A}$$

$$\bullet \ \mbox{(Weaken)} \frac{f = \llbracket \Phi \mid \Gamma \vdash x \hbox{:} A \rrbracket \hbox{:} \Gamma \to A}{\llbracket \Phi \mid \Gamma, y \hbox{:} B \vdash x \hbox{:} A \rrbracket = f \circ \pi_1 \hbox{:} \Gamma \times B \to A}$$

• (Lambda)
$$\frac{f = \llbracket \Phi \mid \Gamma, x : A \vdash v : B \rrbracket : \Gamma \times A \to B}{\llbracket \Phi \mid \Gamma \vdash \lambda x : A . v : A \to B \rrbracket = \operatorname{cur}(f) : \Gamma \to (B)^A}$$

• (Subtype)
$$\frac{f = \llbracket \Phi \mid \Gamma \vdash v : A \rrbracket : \Gamma \to A \qquad g = \llbracket A \leq :_{\Phi} B \rrbracket}{\llbracket \Phi \mid \Gamma \vdash v : B \rrbracket = g \circ f : \Gamma \to B}$$

• (Return)
$$\frac{f = \llbracket \Phi \mid \Gamma \vdash v : A \rrbracket}{\llbracket \Phi \mid \Gamma \vdash \mathsf{return} \ v : \mathsf{M}_1 A \rrbracket = \eta_A \circ f}$$

$$\bullet \ \ (\mathrm{If}) \frac{f = \llbracket \Phi \mid \Gamma \vdash v \colon \mathtt{Bool} \rrbracket : \Gamma \to \mathtt{1} + \mathtt{1} \qquad g = \llbracket \Phi \mid \Gamma \vdash v_1 \colon \mathtt{M}_{\epsilon} A \rrbracket \qquad h = \llbracket \Phi \mid \Gamma \vdash v_2 \colon \mathtt{M}_{\epsilon} A \rrbracket}{\llbracket \Phi \mid \Gamma \vdash \mathsf{if}_{\epsilon,A} \ v \ \mathsf{then} \ v_1 \ \mathsf{else} \ v_2 \colon \mathtt{M}_{\epsilon} A \rrbracket = \mathsf{app} \circ (([\mathsf{cur}(g \circ \pi_2), \mathsf{cur}(h \circ \pi_2)] \circ f) \times \mathsf{Id}_{\Gamma}) \circ \delta_{\Gamma} \colon \Gamma \to T_{\epsilon} A \rrbracket}$$

$$\bullet \ \ (\mathrm{Bind}) \frac{f = \llbracket \Phi \mid \Gamma \vdash v_1 \colon \mathtt{M}_{\epsilon_1}A \colon \Gamma \to T_{\epsilon_1}A \rrbracket}{\llbracket \Phi \mid \Gamma \vdash \mathsf{do} \ x \leftarrow v_1 \ \text{in} \ v_2 \colon \mathtt{M}_{\epsilon_1}B \rrbracket = \mu_{\epsilon_1,\epsilon_2,B} \circ T_{\epsilon_1}g \circ \mathtt{t}_{\Gamma,A,\epsilon_1} \circ \langle \mathtt{Id}_{\Gamma},f \rangle \colon \Gamma \to T_{\epsilon_1\cdot\epsilon_2}B \rrbracket} = \mu_{\epsilon_1,\epsilon_2,B} \circ T_{\epsilon_1}g \circ \mathtt{t}_{\Gamma,A,\epsilon_1} \circ \langle \mathtt{Id}_{\Gamma},f \rangle \colon \Gamma \to T_{\epsilon_1\cdot\epsilon_2}B$$

• (Apply)
$$\frac{f = \llbracket \Phi \mid \Gamma \vdash v_1 : A \to B \rrbracket : \Gamma \to (B)^A \qquad g = \llbracket \Phi \mid \Gamma \vdash v_2 : A \rrbracket : \Gamma \to A}{\llbracket \Phi \mid \Gamma \vdash v_1 \ v_2 : B \rrbracket = \operatorname{app} \circ \langle f, g \rangle : \Gamma \to B}$$

• (Effect-Gen)
$$\frac{f = \llbracket \Phi, \alpha \mid \Gamma \vdash v : A \rrbracket : \mathbb{C}(I \times U, W)(\Gamma, A)}{\llbracket \Phi \mid \Gamma \vdash \Lambda \alpha. A : \forall \epsilon. A \rrbracket = \overline{f} : \mathbb{C}(I)(\Gamma, \forall_I(A))}$$

$$\bullet \ \ (\text{Effect-Spec}) \\ \frac{g = \llbracket \Phi \mid \Gamma \vdash v \colon \forall \alpha.A \rrbracket \colon \mathbb{C}(I)(\Gamma, \forall_I(A)) \qquad h = \llbracket \Phi \vdash \epsilon \colon \mathsf{Effect} \rrbracket \colon \mathbb{C}(I,U)}{\llbracket \Phi \mid \Gamma \vdash v \in A \upharpoonright \{\epsilon/\alpha\} \rrbracket = \langle \mathsf{Id}_I, h \rangle^* (\epsilon_{\llbracket \Phi, \beta \vdash A \lceil \beta/\alpha \rceil \colon \mathsf{Type} \rrbracket}) \circ g \colon \mathbb{C}(I)(\Gamma, A \lceil \epsilon/\alpha \rceil)}$$

4.8 Term Weakening

$$\llbracket \Phi \vdash \omega \times : \Gamma', x : A \rhd \Gamma, x : B \rrbracket = \llbracket \Phi \vdash \omega : \Gamma' \rhd \Gamma \rrbracket \times \llbracket A \leq :_{\Phi} B \rrbracket : \Gamma' \times A \to \Gamma \times B$$

For each instance of the type-environment weakening relation, define a morphism $\llbracket \Phi \vdash \omega \colon \Gamma' \rhd \Gamma \rrbracket \colon \Gamma' \to \Gamma \in \mathbb{C}(I)$

- $\bullet \ \llbracket \Phi \vdash \iota \colon \Gamma \rhd \Gamma \rrbracket = \mathrm{Id}_{\Gamma} \colon \Gamma \to \Gamma \in \mathbb{C}(I)$
- $\bullet \ \ \llbracket \Phi \vdash \omega \pi \colon \Gamma', ax \rhd \Gamma \rrbracket = \llbracket \Phi \vdash \omega \colon \Gamma' \rhd \Gamma \rrbracket \circ \pi_1 \colon \Gamma' \times A \to \Gamma$
- $\bullet \ \ \llbracket \Phi \vdash \omega \times : \Gamma', x : A \rhd \Gamma, x : B \rrbracket = \llbracket \Phi \vdash \omega : \Gamma' \rhd \Gamma \rrbracket \times \llbracket A \leq :_{\Phi} B \rrbracket : \Gamma' \times A \to \Gamma \times B$

4.9 Term Substitutions

For each instance of the effect-environment substitution relation, define a denotation morphism: $\llbracket \Phi \mid \Gamma' \vdash \sigma \colon \Gamma \rrbracket \colon \Gamma' \to \Gamma \in \mathbb{C}(I)$

- $\llbracket \Phi \mid \Gamma' \vdash \diamond : \diamond \rrbracket = \langle \rangle_{\Gamma'} : \Gamma' \to \mathbf{1}$
- $\bullet \ \llbracket \Phi \mid \Gamma' \vdash (\sigma, x := v) \colon \Gamma, x \colon A \rrbracket = \langle \llbracket \Phi \mid \Gamma' \vdash \Gamma \colon \rrbracket, \llbracket \Phi \mid \Gamma' \vdash v \colon A \rrbracket \rangle \colon \Gamma' \to \Gamma \times \mathbf{1}$

Chapter 5

Effect Substitution Theorem

In this section, we state and prove a theorem that the action of a simultaneous effect-variable substitution upon a structure in the language has a consistent effect upon the denotation of the language. More formally, for the denotation morphism Δ of some relation, the denotation of the substituted relation, $\Delta' = \sigma^*(\Delta)$.

5.1 Substitution Preserves the Wellformedness of Effects

I.e.

$$\Phi \vdash \epsilon \land \Phi' \vdash \iota : \Phi \implies \Phi' \vdash \sigma(\epsilon)$$
 (5.1)

Proof:

Case Ground: $\sigma(e) = e$, so $\Phi' \vdash \sigma(\epsilon)$ holds.

Case Multiply: By inversion, $\Phi \vdash \epsilon_1$ and $\Phi \vdash \epsilon_2$ so $\Phi' \vdash \sigma(\epsilon_1)$ and $\Phi' \vdash \sigma(\epsilon_2)$ by induction and hence $\Phi' \vdash \sigma(\epsilon_1 \cdot \epsilon_2)$

Case Var: By inversion, $\Phi = \Phi'', \alpha$ and Φ'', α Ok. Hence by case splitting on ι , we see that $\sigma = \sigma', \alpha := \epsilon$.

So by inversion, $\sigma \vdash \epsilon$ so $\Phi' \vdash \sigma(\alpha) = \epsilon$

Case Weaken: By inversion $\Phi = \Phi'', \beta$ and $\Phi'' \vdash \alpha$, so $\sigma = \sigma'\beta := \epsilon$.

So $\Phi' \vdash \sigma' : \Phi''$.

hence by induction, $\Phi' \vdash \sigma'(a)$, so $\Phi' \vdash \sigma(\alpha)$ since $\alpha \neq \beta$)

5.2 Effect Substitution preserves the subeffect relation

If $\Phi' \vdash \sigma : \Phi$ and $\epsilon_1 \leq_{\Phi} \epsilon_2$, then $\epsilon_1 [\sigma] \leq_{\Phi'} \epsilon_2 [\sigma]$.

Proof: For any ground substitution σ' of Φ' , then $\sigma\sigma'$ (the substitution σ' applied after σ) is also a ground substitution.

```
So \epsilon_1 [\sigma] [\sigma'] \le \epsilon_2 [\sigma] [\sigma'].
So \epsilon_1 [\sigma] \le_{\Phi'} \epsilon_2 [\sigma].
```

5.3 Effects

```
\text{If } \sigma = \llbracket \Phi' \vdash \sigma \colon \Phi \rrbracket \text{ then } \llbracket \Phi' \vdash \sigma(\epsilon) \colon \texttt{Effect} \rrbracket = \sigma^* \llbracket \Phi \vdash \epsilon \colon \texttt{Effect} \rrbracket = \llbracket \Phi \vdash \epsilon \colon \texttt{Effect} \rrbracket \circ \sigma.
```

Proof: By induction on the derivation on $\llbracket \Phi \vdash \epsilon : \texttt{Effect} \rrbracket$

Case Ground:

$$\begin{split} \llbracket \Phi \vdash e \text{:} \, \mathsf{Effect} \rrbracket \circ \sigma &= \llbracket e \rrbracket \circ \langle \rangle_I \circ \sigma \\ &= \llbracket e \rrbracket \circ \langle \rangle_{I'} \\ &= \llbracket \Phi' \vdash e \text{:} \, \mathsf{Type} \rrbracket \end{split}$$

Case Var:

$$\llbracket \Phi, \alpha \vdash \alpha \colon \mathsf{Effect} \rrbracket \circ \sigma' = \pi_2 \circ \langle \sigma, \llbracket \Phi' \vdash \epsilon \colon \mathsf{Effect} \rrbracket \rangle \quad \text{By inversion, } \sigma' = (\sigma, \alpha \colon = \epsilon)$$

$$= \llbracket \Phi' \vdash \epsilon \colon \mathsf{Effect} \rrbracket$$

$$= \llbracket \Phi' \vdash \sigma'(\alpha) \colon \mathsf{Effect} \rrbracket$$

Case Weaken:

```
\llbracket \Phi, \beta \vdash \alpha : \mathsf{Type} \rrbracket \circ \sigma' = \llbracket \Phi \vdash \alpha : \mathsf{Type} \rrbracket \circ \pi_1 \circ \langle \sigma, \llbracket \Phi' \vdash \epsilon : \mathsf{Effect} \rrbracket \rangle \quad \text{By inversion, } \sigma' = (\sigma, \beta := \epsilon)
= \llbracket \Phi \vdash \alpha : \mathsf{Type} \rrbracket \circ \sigma
= \llbracket \Phi' \vdash \sigma(\alpha) : \mathsf{Type} \rrbracket
= \llbracket \Phi' \vdash \sigma'(\alpha) : \mathsf{Type} \rrbracket
```

Case Multiply:

```
\begin{split} \llbracket \Phi \vdash \epsilon_1 \cdot \epsilon_2 \colon \mathsf{Type} \rrbracket \circ \sigma &= \mathsf{Mul} ( \llbracket \Phi \vdash \epsilon_1 \colon \mathsf{Effect} \rrbracket, \llbracket \Phi \vdash \epsilon_2 \colon \mathsf{Effect} \rrbracket) \circ \sigma \\ &= \mathsf{Mul} ( \llbracket \Phi \vdash \epsilon_1 \colon \mathsf{Effect} \rrbracket \circ \sigma, \llbracket \Phi \vdash \epsilon_2 \colon \mathsf{Effect} \rrbracket \circ \sigma) \quad \mathsf{By \ Naturality} \\ &= \mathsf{Mul} ( \llbracket \Phi' \vdash \sigma(\epsilon_1) \colon \mathsf{Effect} \rrbracket, \llbracket \Phi \vdash \sigma(\epsilon_2) \colon \mathsf{Effect} \rrbracket) \\ &= \llbracket \Phi' \vdash \sigma(\epsilon_1) \cdot \sigma(\epsilon_2) \colon \mathsf{Effect} \rrbracket \\ &= \llbracket \Phi' \vdash \sigma(\epsilon_1 \cdot \epsilon_2) \colon \mathsf{Effect} \rrbracket \end{split}
```

5.4 Types

5.4.1 Substitution preserves wellformedness of Types

$$\Phi' \vdash \sigma : \Phi \land \Phi \vdash A \implies \Phi' \vdash A [\sigma]$$
 (5.2)

Proof:

Case Ground: Φ' 0k so $\Phi' \vdash \gamma$ and $\gamma[\sigma] = \gamma$.

Hence $\Phi' \vdash \gamma [\sigma]$.

Case Lambda: By inversion $\Phi \vdash A$ and $\Phi \vdash B$.

So by induction, $\Phi' \vdash A[\sigma]$ and $\Phi' \vdash B[\sigma]$.

So

$$\Phi' \vdash (A[\sigma]) \to (B[\sigma]) \tag{5.3}$$

So

$$\Phi' \vdash (A \to B) [\sigma] \tag{5.4}$$

Case Computation: By inversion, $\Phi \vdash \epsilon$ and $\Phi \vdash A$ so by induction and substitution of effect preserving effect-wellformedness,

$$\Phi' \vdash \sigma(\epsilon) \text{ and } \Phi' \vdash A\left[\sigma\right] \text{ so } \Phi \vdash \mathtt{M}_{\sigma(\epsilon)} A\left[\sigma\right] \text{ so } \Phi' \vdash (\mathtt{M}_{\epsilon} A)\left[\sigma\right]$$

Case For All: By inversion, $\Phi, \alpha \vdash A$. So by picking $\alpha \notin \Phi \land \alpha \notin \Phi'$ using α -equivalence, we have $(\Phi', \alpha) \vdash (\sigma \alpha := \alpha) : (\Phi, \alpha)$.

So by induction $(\Phi, \alpha) \vdash A [\sigma, \alpha := \alpha]$

So $(\Phi', \alpha) \vdash A[\sigma]$

So $\Phi' \vdash (\forall \alpha.A) [\sigma]$

5.4.2 Substitution of effects preserves Subtyping Relation

If $\Phi' \vdash \sigma : \Phi$ and $A \leq :_{\Phi} B$ then $A[\sigma] \leq :_{\Phi'} B[\sigma]$

Proof: By induction on the subtyping relation

Case Ground: By inversion, $A \leq :_{\gamma} B$, so A, B are ground types. Hence $A[\sigma] = A$ and $B[\sigma] = B$. So $A[\sigma] \leq :_{\Phi'} B[\sigma]$

Case Fn: By inversion, $A' \leq :_{\Phi} A$ and $B \leq :_{\Phi} B'$.

So by induction, $A'[\sigma] \leq_{\Phi'} A[\sigma]$ and $B[\sigma] \leq_{\Phi'} B'[\sigma]$.

So
$$(A[\sigma]) \to (B[\sigma]) \leq :_{\Phi'} (A'[\sigma]) \to (B'[\sigma])$$

So $(A \to B) [\sigma] \leq :_{\Phi'} (A' \to B') [\sigma]$

Case Computation: By inversion, $A \leq :_{\Phi} B$, $\epsilon_1 \leq_{\Phi} \epsilon_2$.

So by induction and substitution preserving the subeffect relation,

$$\begin{split} &A\left[\sigma\right]\leq:_{\Phi'}B\left[\sigma\right] \text{ and } \sigma(\epsilon_1)\leq_{\Phi'}\sigma(\epsilon_2)\\ &\text{So } \mathtt{M}_{\sigma(\epsilon_1)}(A\left[\sigma\right])\leq:_{\Phi'}\mathtt{M}_{\sigma(\epsilon_2)}(B\left[\sigma\right])\\ &\text{So } (\mathtt{M}_{\epsilon_1}A)\left[\sigma\right]\leq:_{\Phi'}(\mathtt{M}_{\epsilon_2}B)\left[\sigma\right]\\ &\text{If } \sigma=\llbracket\Phi'\vdash\sigma:\Phi\rrbracket \text{ then } \llbracket\Phi'\vdash A\left[\sigma\right]:\texttt{Type}\rrbracket=\sigma^*\llbracket\Phi\vdash A:\texttt{Type}\rrbracket. \end{split}$$

Proof: By induction on the derivation on $\llbracket \Phi \vdash A : \mathsf{Type} \rrbracket$. Making use of the S-Closure of the re-indexing functor.

Case Ground:

$$\begin{split} \sigma^* \llbracket \Phi \vdash \gamma \text{:} \mathsf{Type} \rrbracket &= \sigma^* \llbracket \gamma \rrbracket \\ &= \llbracket \gamma \rrbracket \quad \text{By S-Closure} \\ &= \llbracket \Phi' \vdash \gamma \left[\sigma \right] \text{:} \mathsf{Type} \rrbracket \end{split}$$

Case Monad:

$$\begin{split} \sigma^* \llbracket \Phi \vdash \mathsf{M}_{\epsilon} A : \mathsf{Type} \rrbracket &= \sigma^* (T_{\llbracket \Phi \vdash \epsilon : \mathsf{Effect} \rrbracket} \llbracket \Phi \vdash A : \mathsf{Type} \rrbracket) \\ &= T_{\sigma^* (\llbracket \Phi \vdash \epsilon : \mathsf{Effect} \rrbracket)} \sigma^* (\llbracket \Phi \vdash A : \mathsf{Type} \rrbracket) \\ &= \llbracket \Phi' \vdash (\mathsf{M}_{\epsilon} A) \, [\sigma] : \mathsf{Type} \rrbracket \end{split}$$

Case Quantification:

$$\begin{split} \sigma^* \llbracket \Phi \vdash \forall \alpha.A \text{: Type} \rrbracket &= \sigma^* (\forall_I (\llbracket \Phi, \alpha \vdash A \text{: Type} \rrbracket)) \\ &= \forall_I ((\sigma \times \mathtt{Id}_U)^* \llbracket \Phi, \alpha \vdash A \text{: Type} \rrbracket) \quad \text{By Beck-Chevalley} \\ &= \forall_I (\llbracket \Phi', \alpha \vdash A \, [\sigma, \alpha \text{:} = \alpha] \text{: Type} \rrbracket) \\ &= \forall_I (\llbracket \Phi', \alpha \vdash A \, [\sigma] \text{: Type} \rrbracket) \\ &= \llbracket \Phi' \vdash \forall \alpha.A \, [\sigma] \text{: Type} \rrbracket \\ &= \llbracket \Phi' \vdash (\forall \alpha.A) \, [\sigma] \text{: Type} \rrbracket \end{split}$$

Case Function:

$$\begin{split} \sigma^* \llbracket \Phi \vdash A \to B \text{: Type} \rrbracket &= \sigma^* (\llbracket \Phi \vdash B \text{: Type} \rrbracket^{\llbracket \Phi \vdash A \text{: Type} \rrbracket}) \\ &= \sigma^* (\llbracket \Phi \vdash B \text{: Type} \rrbracket)^{\sigma^* (\llbracket \Phi \vdash A \text{: Type} \rrbracket)} \\ &= \llbracket \Phi' \vdash B \left[\sigma \right] \text{: Type} \rrbracket^{\llbracket \Phi' \vdash A \left[\sigma \right] \text{: Type} \rrbracket} \\ &= \llbracket \Phi' \vdash (A \left[\sigma \right]) \to (B \left[\sigma \right]) \text{: Type} \rrbracket \\ &= \llbracket \Phi' \vdash (A \to B) \left[\sigma \right] \text{: Type} \rrbracket \end{split}$$

5.5 Substitution of effects preserves Subtyping Relation

If $\Phi' \vdash \sigma : \Phi$ and $A \leq :_{\Phi} B$ then $A[\sigma] \leq :_{\Phi'} B[\sigma]$

Proof: By induction on the subtyping relation

Case Ground: By inversion, $A \leq :_{\gamma} B$, so A, B are ground types. Hence $A[\sigma] = A$ and $B[\sigma] = B$. So $A[\sigma] \leq :_{\Phi'} B[\sigma]$

Case Fn: By inversion, $A' \leq :_{\Phi} A$ and $B \leq :_{\Phi} B'$.

So by induction, $A'[\sigma] \leq :_{\Phi'} A[\sigma]$ and $B[\sigma] \leq :_{\Phi'} B'[\sigma]$.

So
$$(A[\sigma]) \to (B[\sigma]) \leq :_{\Phi'} (A'[\sigma]) \to (B'[\sigma])$$

So
$$(A \to B) [\sigma] \leq :_{\Phi'} (A' \to B') [\sigma]$$

Case Computation: By inversion, $A \leq :_{\Phi} B$, $\epsilon_1 \leq_{\Phi} \epsilon_2$.

So by induction and substitution preserving the subeffect relation,

$$A[\sigma] \leq :_{\Phi'} B[\sigma] \text{ and } \sigma(\epsilon_1) \leq_{\Phi'} \sigma(\epsilon_2)$$

So
$$M_{\sigma(\epsilon_1)}(A[\sigma]) \leq :_{\Phi'} M_{\sigma(\epsilon_2)}(B[\sigma])$$

So
$$(M_{\epsilon_1}A)[\sigma] \leq :_{\Phi'} (M_{\epsilon_2}B)[\sigma]$$

П

If
$$\sigma = \llbracket \Phi' \vdash \sigma : \Phi \rrbracket$$
 then $\llbracket A [\sigma] \leq :_{\Phi'} B [\sigma] \rrbracket = \sigma^* \llbracket A \leq :_{\Phi} B \rrbracket : \mathbb{C}(I')(A, B)$.

Proof: By induction on the derivation on $[A \leq :_{\Phi} B]$. Using S-closure of σ^*

Case Ground:

$$\sigma^*(\gamma_1 \leq :_{\gamma} \gamma_2) = (\gamma_1 \leq :_{\gamma} \gamma_2)$$

Since σ^* is s-closed.

Case Monad:

$$\begin{split} \sigma^*[\![\mathsf{M}_{\epsilon_1}A\leq:_\Phi \mathsf{M}_{\epsilon_2}B]\!] &= \sigma^*([\![\epsilon_1\leq_\Phi \epsilon_2]\!]) \circ \sigma^*(T_{\epsilon_1}([\![A\leq:_\Phi B]\!])) \\ &= [\![\sigma(\epsilon_1)\leq_{\Phi'}\sigma(\epsilon_2)]\!] \circ T_{\sigma(\epsilon_1)}[\![A\,[\sigma]\leq:_{\Phi'}B\,[\sigma]\,]\!] \quad \text{By S-Closure} \\ &= [\![\mathsf{M}_{\sigma(\epsilon_1)}A\,[\sigma]\leq:_{\Phi'} \mathsf{M}_{\sigma(\epsilon_2)}B\,[\sigma]]\!] \\ &= [\![(\mathsf{M}_{\epsilon_1}A)\,[\sigma]\leq:_{\Phi'} \mathsf{M}_{\epsilon_2}B\,[\sigma]\,]\!] \end{split}$$

Case For All:

$$\begin{split} \sigma^* \llbracket \forall \alpha. A \leq :_{\Phi} \forall \alpha. B \rrbracket &= \sigma^* (\forall_I (\llbracket A \leq :_{\Phi, \alpha} B \rrbracket)) \\ &= \forall_{I'} ((\sigma \times \mathtt{Id}_U)^* (\llbracket A \leq :_{\Phi, \alpha} B \rrbracket)) \\ &= \forall_{I'} (\llbracket A \left[\sigma, \alpha := \alpha\right] \leq :_{\Phi', \alpha} B \left[\sigma, \alpha := \alpha\right] \rrbracket) \\ &= \llbracket (\forall \alpha. A) \left[\sigma\right] \leq :_{\Phi'} (\forall \alpha. B) \left[\sigma\right] \rrbracket \end{split}$$

Case Fn:

```
\begin{split} \sigma^* \llbracket (A \to B) \leq :_\Phi A' \to B' \rrbracket &= \sigma^* (\llbracket B \leq :_\Phi B' \rrbracket^{A'} \circ B^{\llbracket A' \leq :_\Phi A \rrbracket}) \\ &= \sigma^* (\operatorname{cur} (\llbracket B \leq :_\Phi B' \rrbracket \circ \operatorname{app})) \circ \sigma^* (\operatorname{cur} (\operatorname{app} \circ (\operatorname{Id}_B \times \llbracket A' \leq :_\Phi A \rrbracket))) \\ &= \operatorname{cur} (\sigma^* (\llbracket B \leq :_\Phi B' \rrbracket) \circ \operatorname{app}) \circ \operatorname{cur} (\operatorname{app} \circ (\operatorname{Id}_B \times \sigma^* (\llbracket A' \leq :_\Phi A \rrbracket))) \\ &= \operatorname{cur} (\llbracket B \llbracket \sigma \rrbracket \leq :_{\Phi'} B' \llbracket \sigma \rrbracket] \circ \operatorname{app}) \circ \operatorname{cur} (\operatorname{app} \circ (\operatorname{Id}_{B\llbracket \sigma \rrbracket} \times \llbracket A' \llbracket \sigma \rrbracket \leq :_{\Phi'} A \llbracket \sigma \rrbracket \rrbracket)) \\ &= \llbracket (A \llbracket \sigma \rrbracket) \to (B \llbracket \sigma \rrbracket) \leq :_{\Phi'} (A' \llbracket \sigma \rrbracket) \to (B' \llbracket \sigma \rrbracket) \rrbracket \\ &= \llbracket (A \to B) \llbracket \sigma \rrbracket \leq :_{\Phi'} (A' \to B') \llbracket \sigma \rrbracket \rrbracket \end{split}
```

5.6 Type Environments

5.6.1 Substitution preserves wellformedness of Type Environments

```
If \Phi \vdash \Gamma Ok and \Phi' \vdash \sigma : \Phi then \Phi' \vdash \Gamma[\sigma] Ok
```

Proof:

Case Nil: Φ Ok $\Longrightarrow \Phi'$ Ok so $\Phi' \vdash \diamond$ Ok and $\diamond [\sigma] = \diamond$

Case Var: By inversion, $\Phi \vdash \Gamma$ Ok and $\Phi \vdash A$.

By induction and substitution preserving well formedness of types, $\Phi' \vdash \Gamma'[\sigma]$ 0k and $\Phi' \vdash A[\sigma]$.

So $\Phi' \vdash (\Gamma' [\sigma], x : A [\sigma])$ Ok.

Hence $\Phi' \vdash \Gamma, x : A[\sigma]$ Ok.

If $\sigma = \llbracket \Phi' \vdash \sigma : \Phi \rrbracket$ then $\llbracket \Phi' \vdash \Gamma \llbracket \sigma \rrbracket$ $\mathsf{Ok} \rrbracket = \sigma^* \llbracket \Phi \vdash \Gamma \mathsf{Ok} \rrbracket \in \mathsf{obj} \ \mathbb{C}(I')$.

Proof: By induction on the derivation on $\llbracket \Phi \vdash \Gamma \ \mathsf{Ok} \rrbracket$. Using the S-Closure of the re-indexing functor.

Case Nil:

$$\begin{split} \sigma^* \llbracket \Phi \vdash \diamond \ \mathtt{Ok} \rrbracket &= \sigma^* \mathtt{1} \\ &= \mathtt{1} \quad \text{By S-closure} \\ &= \llbracket \Phi' \vdash \diamond \ \mathtt{Ok} \rrbracket \\ &= \llbracket \Phi' \vdash \diamond \llbracket \sigma \rrbracket \ \mathtt{Ok} \rrbracket \end{split}$$

Case Var:

$$\begin{split} \sigma^* \llbracket \Phi \vdash \Gamma, x : A & \text{Ok} \rrbracket = \sigma^* (\llbracket \Phi \vdash \Gamma & \text{Ok} \rrbracket \times \llbracket \Phi \vdash A : \texttt{Type} \rrbracket) \\ &= (\sigma^* \llbracket \Phi \vdash \Gamma & \text{Ok} \rrbracket \times \sigma^* \llbracket \Phi \vdash A : \texttt{Type} \rrbracket) \\ &= (\llbracket \Phi' \vdash \Gamma \llbracket \sigma \rrbracket & \text{Ok} \rrbracket \times \llbracket \Phi' \vdash A \llbracket \sigma \rrbracket : \texttt{Type} \rrbracket) \\ &= \llbracket \Phi' \vdash \Gamma \llbracket \sigma \rrbracket, x : A \llbracket \sigma \rrbracket & \text{Ok} \rrbracket \\ &= \llbracket \Phi' \vdash (\Gamma, x : A) \llbracket \sigma \rrbracket & \text{Ok} \rrbracket \end{split}$$

5.7 Terms

5.7.1 Effect-Substitution Preserves the Typing Relation

```
If \Phi' \vdash \sigma : \Phi and \Phi \mid \Gamma \vdash v : A, then \Phi' \mid \Gamma[\sigma] \vdash v[\sigma] : A[\sigma]
```

Proof:

Case Const: By inversion, $\Phi \vdash \Gamma$ Ok.

```
So \Phi' \vdash \Gamma Ok
```

So
$$\Phi' \mid \Gamma[\sigma] \vdash \mathbf{C}^{A[\sigma]} : A[\sigma]$$

Case True, False, Unit: The logic is the same for each of these cases, so we look at the case true only.

By inversion, $\Phi \vdash \Gamma$ Ok.

So $\Phi' \vdash \Gamma$ Ok

So $\Phi' \mid \Gamma[\sigma] \vdash \mathsf{true} : \mathsf{Bool}$

Since true $[\sigma]$ = true and Bool $[\sigma]$ = Bool.

Case Var: By inversion $\Gamma = \Gamma', x : A$ and $\Phi \vdash \Gamma', x : A$ Ok.

So since substitution preserves wellformedness of type environments, $\Phi' \vdash \Gamma'[\sigma], x : A[\sigma]$ 0k

So
$$\Phi' \mid \Gamma[\sigma] \vdash x: A[\sigma]$$

Since
$$x[\sigma] = x$$

Case Weaken: By inversion $\Gamma = \Gamma', y : B, \Phi \vdash B$, and $\Phi \mid \Gamma' \vdash x : A. x \neq y$

By induction and the theorem that effect-substitution preserves type wellformedness, we have: $\Phi' \mid \Gamma' [\sigma] \vdash x: A [\sigma]$ and $\Phi' \vdash B [\sigma]$

So
$$\Phi' \mid \Gamma[\sigma] \vdash x[\sigma] : A[\sigma]$$

Since
$$x[\sigma] = x$$
, $\Gamma[\sigma] = (\Gamma'[\sigma], y : B[\sigma])$

Case Lambda: By inversion $\Phi \mid \Gamma, x: A \vdash v: B$.

So, by induction
$$\Phi' \mid (\Gamma, x: A) [\sigma] \vdash v [\sigma] : B [\sigma]$$
.

So,
$$\Phi \mid \Gamma[\sigma], x : A[\sigma] \vdash v[\sigma] : B[\sigma]$$
.

Hence by the lambda type rule,

$$\Phi' \mid \Gamma[\sigma] \vdash \lambda x : A[\sigma] . v[\sigma] : (A[\sigma]) \to (B[\sigma])$$

So

$$\Phi' \mid \Gamma [\sigma] \vdash (\lambda x : A.v) [\sigma] : (A \rightarrow B) [\sigma])$$

Case Apply: By inversion, $\Phi \mid \Gamma \vdash v_1: A \to B$, $\Phi \mid \Gamma \vdash V_2: A$.

So by induction, $\Phi' \mid \Gamma[\sigma] \vdash v_1[\sigma] : (A[\sigma]) \to (B[\sigma])$.

So
$$\Phi' \mid \Gamma[\sigma] \vdash (v_1[\sigma]) (v_2[\sigma]) : B[\sigma]$$
.

So
$$\Phi' \mid \Gamma[\sigma] \vdash (v_1 \ v_2) [\sigma] : (A \to B) [\sigma]$$

```
Case Subtype: By inversion, \Phi \mid \Gamma \vdash v : A and \Phi \vdash A \leq : B
```

So by induction and effect-substitution preserving subtyping, $\Phi' \mid \Gamma[\sigma] \vdash v[\sigma] : A[\sigma]$ and $\Phi' \vdash A[\sigma] \leq B[\sigma]$ So $\Phi' \mid \Gamma[\sigma] \vdash v[\sigma] : B[\sigma]$

Case Return: By inversion, $\Phi \mid \Gamma \vdash v : A$

So by induction, $\Phi' \mid \Gamma\left[\sigma\right] \vdash v\left[\sigma\right] : A\left[\sigma\right]$

So $\Phi' \mid \Gamma[\sigma] \vdash \text{return}(v[\sigma]) : M_1(A[\sigma])$

Hence $\Phi' \mid \Gamma[\sigma] \vdash (\mathtt{return} \ v \) [\sigma] : (\mathtt{M}_1 A) [\sigma]$

Case Bind: By inversion, $\Phi \mid \Gamma \vdash v_1 : M_{\epsilon_1} A$ and $\Phi \mid \Gamma, x : A \vdash v_2 : M_{\epsilon_2} B$.

So by induction: $\Phi' \mid \Gamma[\sigma] \vdash v_1[\sigma] : M_{\sigma(\epsilon_1)}(A[\sigma])$, and $\Phi' \mid \Gamma[\sigma], x : A[\sigma] \vdash v_2 : M_{\sigma(\epsilon_2)}(B[\sigma])$.

And so $\Phi' \mid \Gamma\left[\sigma\right] \vdash \mathsf{do}\ x \leftarrow (v_1\left[\sigma\right])\ \mathsf{in}\ (v_2\left[\sigma\right]) : \mathsf{M}_{\sigma\left(\epsilon_1\right) \cdot \left(\epsilon_2\left[\sigma\right]\right)} B\left[\sigma\right]$

Case If: By inversion, $\Phi \mid \Gamma \vdash v : Bool$, $\Phi \mid \Gamma \vdash v_1 : A$, and $\Phi \mid \Gamma \vdash v_2 : A$

So by induction $\Phi' \mid \Gamma[\sigma] \vdash v[\sigma] : \mathsf{Bool}, \ \Phi' \mid \Gamma[\sigma] \vdash v_1 : A[\sigma], \ \mathsf{and} \ \Phi' \mid \Gamma[\sigma] \vdash v[\sigma] : \mathsf{Bool}, \ \Phi' \mid \Gamma[\sigma] \vdash v_2 : A[\sigma].$ (Since $\mathsf{Bool}[\sigma] = \mathsf{Bool}$)

Hence:

 $\Phi' \mid \Gamma\left[\sigma\right] \vdash \mathtt{if}_{A\left[\sigma\right]} \; v\left[\sigma\right] \; \mathtt{then} \; v_1\left[\sigma\right] \; \mathtt{else} \; v_2\left[\sigma\right] : A\left[\sigma\right]$

So $\Phi' \mid \Gamma[\sigma] \vdash (\text{if}_A \ v \text{ then } v_1 \text{ else } v_2)[\sigma] : A[\sigma]$

Case Effect-Gen: By inversion, Φ , $\alpha \mid \Gamma \vdash v : A$.

So by the substitution property 3 (**TODO:** Is this correct/reference correctly), pick $\alpha \notin \Phi' \land \alpha \notin \Phi$ so we have:

$$(\Phi', \alpha) \vdash (\sigma, \alpha := \alpha) : (\Phi, \alpha)$$

So by induction, Φ' , $\alpha \mid \Gamma[\sigma, \alpha := \alpha] \vdash v[\sigma, \alpha := \alpha] : A[\sigma, \alpha := \alpha]$

So Φ' , $\alpha \mid \Gamma[\sigma] \vdash v[\sigma] : A[\sigma]$ since $\alpha \notin \Phi' \land \alpha \notin \Phi$.

So $\Phi' \mid \Gamma[\sigma] \vdash v[\sigma] : (\forall \alpha.A)[\sigma]$

Case Effect-Spec: By inversion, $\Phi \mid \Gamma \vdash v : \forall \alpha.A, \Phi \vdash \epsilon$.

So by induction and effect-substitution preserving well formedness of effects: $\Phi' \mid \Gamma[\sigma] \vdash v[\sigma] : (\forall \alpha. A) [\sigma]$ and $\Phi' \vdash \sigma(\epsilon)$

So $\Phi' \mid \Gamma[\sigma] \vdash (v[\sigma]) (\sigma(\epsilon)) : A[\sigma] [\sigma(\epsilon)/\alpha].$

Since $\alpha \# \sigma$, we can commute the applications of substitution. **TODO:** Do I need to prove this?

So, $\Phi' \mid \Gamma[\sigma] \vdash (v \epsilon) [\sigma] : A [\epsilon/\alpha] [\sigma]$

If

$$\sigma = \llbracket \Phi' \vdash \sigma : \Phi \rrbracket$$

$$\Delta = \llbracket \Phi \mid \Gamma \vdash v : A \rrbracket$$

$$\Delta' = \llbracket \Phi' \mid \Gamma \left[\sigma \right] \vdash v \left[\sigma \right] : A \left[\sigma \right] \rrbracket$$

Then

$$\Delta' = \sigma^*(\Delta) \tag{5.5}$$

Proof: By induction over the derivation of Δ . Using the S-Closure of σ^* . We use Γ_I to indicate $\llbracket \Phi \vdash \Gamma \ \mathsf{Ok} \rrbracket$, an A_I to indicate $\llbracket \Phi \vdash A : \mathsf{Type} \rrbracket$

Case Unit:

$$\Delta = \left\langle \right\rangle_{\Gamma_I} \tag{5.6}$$

So

$$\sigma^*(\Delta) = \langle \rangle_{\Gamma_I[\sigma]} = \Delta' \tag{5.7}$$

Case True, False: Giving the case for true as false is the same but using inr

$$\Delta = \operatorname{inl} \circ \langle \rangle_{\Gamma_I} \tag{5.8}$$

So

$$\sigma^*(\Delta) = \operatorname{inl} \circ \langle \rangle_{\Gamma_I[\sigma]} = \Delta' \tag{5.9}$$

Since σ^* is S-closed.

Case Constant:

$$\Delta = [\![\mathbf{C}^A]\!] \circ \langle \rangle_{\Gamma_I} \tag{5.10}$$

So

$$\sigma^*(\Delta) = \sigma^* \llbracket \mathbf{C}^A \rrbracket \circ \langle \rangle_{\Gamma_I[\sigma]} = \llbracket \mathbf{C}^{A[\sigma]} \rrbracket \circ \langle \rangle_{\Gamma_I[\sigma]} = \Delta'$$

$$(5.11)$$

Since σ^* is S-closed.

Case Subtype: Let

$$\Delta_1 = \llbracket \Phi \mid \Gamma \vdash v : A \rrbracket \tag{5.12}$$

Then

$$\Delta = [A \le :_{\Phi} B] \circ \Delta_1 \tag{5.13}$$

So

$$\begin{split} \sigma^*(\Delta) &= \sigma^* \llbracket A \leq :_{\Phi} B \rrbracket \circ \sigma^* \Delta_1 \\ &= \llbracket A \left[\sigma \right] \leq :_{\Phi'} B \left[\sigma \right] \rrbracket \circ \Delta_1' \quad \text{By induction} \\ &= D' \end{split}$$

Case Lambda: Let

$$\Delta_1 = \llbracket \Phi \mid \Gamma, x : A \vdash v : B \rrbracket \tag{5.14}$$

Then

$$\Delta = \operatorname{cur}(()\Delta_1) \tag{5.15}$$

So

$$\begin{split} \sigma^*(\Delta) &= \sigma^*(\operatorname{cur}(\Delta_1)) \\ &= \operatorname{cur}(\sigma^*(\Delta_1)) \quad \text{By S-closure} \\ &= \operatorname{cur}(\Delta_1') \quad \text{By induction} \\ &= \Delta' \end{split}$$

Case Application: Let

$$\Delta_1 = \llbracket \Phi \mid \Gamma \vdash v_1 \colon A \to B \rrbracket$$
$$\Delta_2 = \llbracket \Phi \mid \Gamma \vdash v_2 \colon A \rrbracket$$

Then

$$\Delta = \operatorname{app} \circ \langle \Delta_1, \Delta_2 \rangle \tag{5.16}$$

So

$$\begin{split} \sigma^*\Delta &= \sigma^*(\mathsf{app} \circ \langle \Delta_1, \Delta_2 \rangle) \\ &= \mathsf{app} \circ \langle \sigma^*(\Delta_1), \sigma^*(\Delta_2) \rangle \quad \text{By S-closure} \\ &= \mathsf{app} \circ \langle \Delta_1', \Delta_2' \rangle \quad \text{By Induction} \\ &= \Delta' \end{split}$$

Case Return: Let

$$\Delta_1 = \llbracket \Phi \mid \Gamma \vdash v : A \rrbracket \tag{5.17}$$

Then

$$\Delta = \eta_{A_I} \circ \Delta_1 \tag{5.18}$$

So

$$\begin{split} \sigma^*(\Delta) &= \sigma^*(\eta_{A_I} \circ \Delta_1) \\ &= \eta_{A_{I'}} \circ \sigma^*(\Delta_1) \quad \text{By S-closure} \\ &= \eta_{A_{I'}} \circ \Delta_1' \\ &= \Delta' \end{split}$$

Case Bind: Let

$$\begin{split} \Delta_1 &= \llbracket \Phi \mid \Gamma \vdash v_1 : \mathbf{M}_{\epsilon_1} A \rrbracket \\ \Delta_2 &= \llbracket \Phi \mid \Gamma, x : A \vdash v_2 : \mathbf{M}_{\epsilon_2} B \rrbracket \end{split}$$

Then

$$\Delta = \mathbf{M}_{\epsilon_1} \epsilon_2 A_I \circ T_{\epsilon_1} \Delta_2 \circ \mathbf{t}_{\epsilon_1, \Gamma_I, A_I} \circ \langle \mathbf{Id}_{\Gamma_I}, \Delta_1 \rangle \tag{5.19}$$

So

$$\begin{split} \sigma^*(\Delta) &= \sigma^*(\mu_{\epsilon_1,\epsilon_2,A} \circ T_{\epsilon_1} \Delta_2 \circ \mathsf{t}_{\epsilon_1,\Gamma,A} \circ \langle \mathsf{Id}_{\Gamma}, \Delta_1 \rangle) \\ &= \sigma^*(\mu_{\epsilon_1,\epsilon_2,A}) \circ \sigma^*(T_{\epsilon_1} \Delta_2) \circ \sigma^*(\mathsf{t}_{\epsilon_1,\Gamma,A}) \circ \langle \sigma^*(\mathsf{Id}_{\Gamma_I}), \sigma^*(\Delta_1) \rangle \quad \text{By S-Closure} \\ &= \mu_{\sigma(\epsilon_1),\sigma(\epsilon_2),A[\sigma]'} \circ T_{\sigma(\epsilon_1)} \sigma^*(\Delta_2) \circ \mathsf{t}_{\sigma(\epsilon_1),\Gamma[\sigma],A[\sigma]} \circ \langle \sigma^*(\mathsf{Id}_{\Gamma_I}), \sigma^*(\Delta_1) \rangle \quad \text{By S-Closure} \\ &= \mu_{\sigma(\epsilon_1),\sigma(\epsilon_2),A[\sigma]'} \circ T_{\sigma(\epsilon_1)} \Delta_2' \circ \mathsf{t}_{\sigma(\epsilon_1),\Gamma[\sigma],A[\sigma]} \circ \langle \sigma^*(\mathsf{Id}_{\Gamma_I}), \Delta_1' \rangle \quad \text{By Induction} \\ &= \Delta' \end{split}$$

Case If: Let

$$\begin{split} & \Delta_1 = \llbracket \Phi \mid \Gamma \vdash v \text{:} \, \mathsf{Bool} \rrbracket \\ & \Delta_2 = \llbracket \Phi \mid \Gamma \vdash v_1 \text{:} \, A \rrbracket \\ & \Delta_3 = \llbracket \Phi \mid \Gamma \vdash v_2 \text{:} \, A \rrbracket \end{split}$$

Then

$$\Delta = \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma}$$

$$\tag{5.20}$$

So

$$\begin{split} \sigma^*(\Delta) &= \sigma^*(\mathsf{app} \circ (([\mathsf{cur}(\Delta_2 \circ \pi_2), \mathsf{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \mathsf{Id}_\Gamma) \circ \delta_\Gamma) \\ &= \mathsf{app} \circ (([\mathsf{cur}(\sigma^*(\Delta_2) \circ \pi_2), \mathsf{cur}(\sigma^*(\Delta_3) \circ \pi_2)] \circ \sigma^*(\Delta_1)) \times \mathsf{Id}_{\Gamma[\sigma]}) \circ \delta_{\Gamma[\sigma]} \quad \mathsf{By S-Closure} \\ &= \mathsf{app} \circ (([\mathsf{cur}(\Delta_2' \circ \pi_2), \mathsf{cur}(\Delta_3' \circ \pi_2)] \circ \Delta_1') \times \mathsf{Id}_{\Gamma[\sigma]}) \circ \delta_{\Gamma[\sigma]} \quad \mathsf{By Induction} \\ &= \Delta' \end{split}$$

${\bf Case \ Effect\text{-}Gen:} \quad {\rm Let}$

$$\Delta_1 = \llbracket \Phi, \alpha \mid \Gamma \vdash v : A \rrbracket \tag{5.21}$$

Then

$$\Delta = \widehat{\Delta_1} \tag{5.22}$$

And also

$$\sigma \times \mathrm{Id} = \llbracket (\Phi', \alpha) \vdash (\sigma, \alpha := \epsilon) : (\Phi, \alpha) \rrbracket \tag{5.23}$$

So

$$\sigma^* \Delta = \sigma^* (\widehat{\Delta_1})$$

$$= (\overline{\sigma \times \mathtt{Id}_U})^* \Delta_1 \quad \text{By naturality}$$

$$= \widehat{\Delta'_1} \quad \text{By induction}$$

$$= \Delta'$$

Case Effect-Spec: Let

$$\begin{split} \Delta_1 &= \llbracket \Phi \mid \Gamma \vdash v {:} \, \forall \alpha.A \rrbracket \\ h &= \llbracket \Phi \vdash \epsilon {:} \, \texttt{Effect} \rrbracket \end{split}$$

Then

$$\Delta = \langle \operatorname{Id}_{\Gamma}, h \rangle^* (\epsilon_{\llbracket \Phi, \beta \vdash A \llbracket \beta / \alpha \rrbracket : \mathsf{Type} \rrbracket}) \circ \Delta_1 \tag{5.24}$$

So Due to the substitution theorem on effects

$$h \circ \sigma = \llbracket \Phi \vdash \epsilon : \texttt{Effect} \rrbracket \circ \sigma = \llbracket \Phi' \vdash \sigma(\epsilon) : \texttt{Effect} \rrbracket = h' \tag{5.25}$$

$$\begin{split} \sigma^* \Delta &= \sigma^* (\langle \operatorname{Id}_{\Gamma}, h \rangle^* (\epsilon_{\llbracket \Phi, \beta \vdash A[\beta/\alpha] : \operatorname{Type} \rrbracket}) \circ \Delta_1) \\ &= (\langle \operatorname{Id}_{\Gamma}, h \rangle \circ \sigma)^* (\epsilon_{\llbracket \Phi, \beta \vdash A[\beta/\alpha] : \operatorname{Type} \rrbracket}) \circ \sigma^* (\Delta_1) \\ &= ((\sigma \times \operatorname{Id}_U) \circ \langle \operatorname{Id}_{\Gamma}, h \circ \sigma \rangle)^* (\epsilon_{\llbracket \Phi, \beta \vdash A[\beta/\alpha] : \operatorname{Type} \rrbracket}) \circ \Delta_1') \\ &= (\langle \operatorname{Id}_{\Gamma}, h' \rangle)^* ((\sigma \times \operatorname{Id}_U)^* \epsilon_{\llbracket \Phi, \beta \vdash A[\beta/\alpha] : \operatorname{Type} \rrbracket}) \circ \Delta_1') \end{split}$$

Looking at the inner part of the functor application: Let

$$A = \llbracket \Phi, \beta \vdash A \left[\beta / \alpha \right] : \mathsf{Type} \rrbracket$$

$$\begin{split} (\sigma \times \operatorname{Id}_{U})^{*} \epsilon_{\llbracket \Phi, \beta \vdash A[\beta/\alpha] : \operatorname{Type} \rrbracket} &= (\sigma \times \operatorname{Id}_{U})^{*} \epsilon_{A} \\ &= (\sigma \times \operatorname{Id}_{U})^{*} (\widehat{\operatorname{Id}_{\forall_{I}(A)}}) \\ &= \overline{(\sigma \times \operatorname{Id}_{U})^{*} (\widehat{\operatorname{Id}_{\forall_{I}(A)}})} \quad \operatorname{By \ bijection} \\ &= \overline{\sigma^{*} (\widehat{\operatorname{Id}_{\forall_{I}(A)}})} \quad \operatorname{By \ naturality} \\ &= \overline{\sigma^{*} (\operatorname{Id}_{\forall_{I}(A)})} \quad \operatorname{By \ bijection} \\ &= \overline{\operatorname{Id}_{\forall_{I'}(A \circ (\sigma \times \operatorname{Id}_{U}))}} \quad \operatorname{By \ S-Closure, \ naturality} \\ &= \overline{\operatorname{Id}_{\forall_{I'}(A[\sigma,\alpha :=\alpha])}} \quad \operatorname{By \ Substitution \ theorem} \\ &= \epsilon_{A[\sigma]} \end{split}$$

Going back to the original expression:

$$\begin{split} \sigma^*\Delta &= (\langle \operatorname{Id}_{\Gamma}, h' \rangle)^*(\epsilon_{A[\sigma]}) \circ \Delta_1') \\ &= \Delta' \end{split}$$

Chapter 6

Effect Weakening Theorem

In this section, we state and prove a theorem that the action of a simultaneous effect-weakening upon a structure in the language has a consistent effect upon the denotation of the language. More formally, for the denotation morphism Δ of some relation, the denotation of the weakened relation, $\Delta' = \omega^*(\Delta)$.

6.1 Effects

6.2 Effect Weakening Definition

6.2.1 Weakening Preserves Effect Wellformedness

If $\omega: \Phi' \triangleright \Phi$ then $\Phi \vdash \epsilon \implies \Phi' \vdash \epsilon$

Proof By induction over the wellformedness of effects

Case Ground By inversion, Φ $0 \text{k} \land \epsilon \in E$. Hence by the ok-property, Φ' 0 k So $\Phi' \vdash \epsilon$

Case Var $\Phi = \Phi'', \alpha$

So either:

Case: $\Phi' = \Phi''', \alpha$ So $\omega = \omega' \times$ So $\omega' : \Phi''' \triangleright \Phi''$, and hence:

$$(\operatorname{Var}) \frac{\Phi''', \alpha \quad 0k}{\Phi''', \alpha \vdash \alpha} \tag{6.1}$$

Case: $\Phi' = \Phi''', \beta$ and $\beta \neq \alpha$

So $\omega = \omega' \pi$

By induction, $\omega' : \Phi''' \triangleright \Phi$ so

$$(\text{Weaken}) \frac{\Phi''' \vdash \alpha}{\Phi' \vdash \alpha} \tag{6.2}$$

Case Weaken By inversion, $\Phi = \Phi'', \beta$.

So $\omega = \omega' \times$

And, $\Phi' = \Phi''', \beta$ So By inversion $\omega' : \Phi''' \triangleright \pi_1'''$

So by induction

$$(\text{weak}) \frac{\Phi''' \vdash \alpha}{\Phi' \vdash \alpha} \tag{6.3}$$

Case Monoid By inversion, $\Phi \vdash \epsilon_1$ and $\Phi \vdash \epsilon_2$. So by induction, $\Phi' \vdash \epsilon_1$ and $\Phi' \vdash \epsilon_2$, and so:

$$\Phi' \vdash \epsilon_1 \cdot \epsilon_2 \tag{6.4}$$

 $\text{If } \omega = \llbracket \omega \colon \Phi' \rhd \Phi \rrbracket \text{ then } \Phi' \vdash \epsilon \colon \texttt{Effect} = \omega^* \llbracket \Phi \vdash \epsilon \colon \texttt{Effect} \rrbracket = \llbracket \Phi \vdash \epsilon \colon \texttt{Effect} \rrbracket \circ \omega$

Proof: By induction on the derivation on $\llbracket \Phi \vdash \epsilon : \texttt{Effect} \rrbracket$

Case Ground:

$$\begin{split} \llbracket \Phi \vdash e \text{:} \, \mathsf{Effect} \rrbracket \circ \omega &= \llbracket e \rrbracket \circ \langle \rangle_I \circ \omega \\ &= \llbracket e \rrbracket \circ \langle \rangle_{I'} \\ &= \llbracket \Phi' \vdash e \text{:} \, \mathsf{Type} \rrbracket \end{split}$$

Case Var: Case split on ω .

Case: $\omega = \iota$ Then $\Phi' = \Phi$ and $\omega = \text{Id}_I$. So the theorem holds trivially.

Case: $\omega = \omega' \times$ Then

$$\begin{split} \llbracket \Phi, \alpha \vdash \alpha \text{: Effect} \rrbracket \circ \omega &= \pi_2 \circ (\omega' \times \text{Id}_U) \\ &= \pi_2 \\ &= \llbracket \Phi', \alpha \vdash \alpha \text{: Effect} \rrbracket \end{split}$$

Case: $\omega = \omega' \pi_1$ Then

$$\llbracket \Phi, \alpha \vdash \alpha \colon \mathsf{Effect} \rrbracket = \pi_2 \circ \omega' \circ \pi_1 \tag{6.5}$$

Where $\Phi' = \Phi, \beta$ and $\omega' : \Phi'' \triangleright \Phi$.

So

$$\begin{split} \pi_2 \circ \omega' &= \llbracket \Phi'' \vdash \alpha \text{: Effect} \rrbracket \\ \pi_2 \circ \omega' \circ \pi_1 &= \llbracket \Phi'', \beta \vdash \alpha \text{: Effect} \rrbracket \end{split} \qquad = \llbracket \Phi' \vdash \alpha \text{: Effect} \rrbracket$$

Case Weaken:

$$\llbracket \Phi, \beta \vdash \alpha : \mathsf{Effect} \rrbracket \circ \omega = \llbracket \Phi \vdash \alpha : \mathsf{Effect} \rrbracket \circ \pi_1 \circ \omega \tag{6.6}$$

Case split of structure of w

Case: $\omega = \iota$ Then $\Phi' = \Phi, \beta$ so $\omega = \operatorname{Id}_I \operatorname{So} \llbracket \Phi, \beta \vdash \alpha : \operatorname{Effect} \rrbracket \circ \omega = \llbracket \Phi' \vdash \alpha : \operatorname{Effect} \rrbracket$

Case: $\omega = \omega' \pi_1$ Then $\Phi' = \Phi'', \gamma$ and $\omega = \omega' \circ \pi_1$ Where $\omega' : \Phi'' \triangleright \Phi, \beta$. So $\llbracket \Phi, \beta \vdash \alpha : \texttt{Effect} \rrbracket \circ \omega = \llbracket \Phi, \beta \vdash \alpha : \texttt{Effect} \rrbracket \circ \omega' \circ \pi_1$ $= \Phi'' \vdash \alpha : \texttt{Effect}$ $= \Phi'', \gamma \vdash \alpha : \texttt{Effect}$ $= \Phi' \vdash \alpha : \texttt{Effect}$

Case: $\omega = \omega' \times$ Then $\Phi' = \Phi'', \beta$ and $\omega' : \Phi' \triangleright \Phi$ So

$$\begin{split} \llbracket \Phi, \beta \vdash \alpha \text{: Effect} \rrbracket \circ \omega &= \llbracket \Phi \vdash \alpha \text{: Effect} \rrbracket \circ \pi_1 \circ (\omega' \times \text{Id}_U) \\ &= \llbracket \Phi \vdash \alpha \text{: Effect} \rrbracket \circ \omega' \circ \pi_1 \\ &= \llbracket \Phi'' \vdash \alpha \text{: Effect} \rrbracket \circ \pi_1 \\ &= \llbracket \Phi' \vdash \alpha \text{: Effect} \rrbracket \end{split}$$

Case Multiply:

$$\begin{split} \llbracket \Phi \vdash \epsilon_1 \cdot \epsilon_2 \colon \mathsf{Type} \rrbracket \circ \omega &= \mathsf{Mul}(\llbracket \Phi \vdash \epsilon_1 \colon \mathsf{Effect} \rrbracket, \llbracket \Phi \vdash \epsilon_2 \colon \mathsf{Effect} \rrbracket) \circ \omega \\ &= \mathsf{Mul}(\llbracket \Phi \vdash \epsilon_1 \colon \mathsf{Effect} \rrbracket \circ \omega, \llbracket \Phi \vdash \epsilon_2 \colon \mathsf{Effect} \rrbracket \circ \omega) \quad \mathsf{By \ Naturality} \\ &= \mathsf{Mul}(\llbracket \Phi' \vdash \epsilon_1 \colon \mathsf{Effect} \rrbracket, \llbracket \Phi \vdash \epsilon_2 \colon \mathsf{Effect} \rrbracket) \\ &= \llbracket \Phi \vdash \epsilon_1 \cdot \epsilon_2 \colon \mathsf{Effect} \rrbracket \end{split}$$

6.3 Types

6.3.1 Weakening Preserves Type-Wellformedness

If $\omega: \Phi' \triangleright \Phi$ and $\Phi \vdash A$ then $\Phi' \vdash A$.

Proof:

Case Ground: By inversion, Φ 0k, hence by property 1 of weakening, Φ' 0k. Hence $\Phi' \vdash \gamma$.

Case Function: By inversion, $\Phi \vdash A$, $\Phi \vdash B$. So by induction $\Phi' \vdash A$, $\Phi' \vdash B$, hence,

$$\Phi' \vdash A \to B$$

Case Computation: By inversion $\Phi \vdash A$, and $\Phi \vdash \epsilon$.

So by induction and the effect-wellformedness theorem,

$$\Phi' \vdash A$$
 and $\Phi' \vdash \epsilon$

So

$$\Phi' \vdash \mathtt{M}_{\epsilon}A$$

Case For All: By inversion, $\Phi, \alpha \vdash A$ Picking $\alpha \notin \Phi'$ using α -conversion.

So
$$\omega \times : (\Phi', \alpha) \triangleright (\Phi, \alpha)$$

So $(\Phi', \alpha) \vdash A$
So $\Phi \vdash \forall \alpha.A$

6.3.2 Corollary

$$\omega \colon \Phi' \rhd \Phi \land \Phi \vdash \Gamma \text{ Ok } \implies \Phi' \vdash \Gamma \text{ Ok}$$

Case Nil: By inversion Φ Ok so $\Phi \vdash \Diamond$ Ok

Case Var: By $\operatorname{inversion}\Phi \vdash \Gamma$ Ok, $x \in \operatorname{dom}(\Gamma)$, $\Phi \vdash A$ So by induction $\Phi' \vdash \Gamma$ Ok, and $\pi'_1 \vdash \Gamma$ Ok So $\Phi' \vdash (\Gamma, x : A)$ Ok If $\omega = \llbracket \Phi' \vdash \omega : \Phi \rrbracket$ then $\llbracket \Phi' \vdash A : \mathsf{Type} \rrbracket = \omega^* \llbracket \Phi \vdash A : \mathsf{Type} \rrbracket$.

Proof: By induction on the derivation on $\llbracket \Phi \vdash A : \mathsf{Type} \rrbracket$. Making use of the S-Closure of the re-indexing functor.

Case Ground:

$$\begin{split} \omega^* \llbracket \Phi \vdash \gamma \text{:} \, \mathsf{Type} \rrbracket &= \omega^* \llbracket \gamma \rrbracket \\ &= \llbracket \gamma \rrbracket \quad \text{By S-Closure} \\ &= \llbracket \Phi' \vdash \gamma \text{:} \, \mathsf{Type} \rrbracket \end{split}$$

Case Monad:

$$\begin{split} \omega^* \llbracket \Phi \vdash \mathsf{M}_{\epsilon} A \text{:} \, \mathsf{Type} \rrbracket \circ \omega &= \omega^* (T_{\llbracket \Phi \vdash \epsilon : \mathsf{Effect} \rrbracket} \llbracket \Phi \vdash A \text{:} \, \mathsf{Type} \rrbracket) \\ &= T_{\omega^* (\llbracket \Phi \vdash \epsilon : \mathsf{Effect} \rrbracket)} \omega^* (\llbracket \Phi \vdash A \text{:} \, \mathsf{Type} \rrbracket) \\ &= \llbracket \Phi' \vdash \mathsf{M}_{\epsilon} A \text{:} \, \mathsf{Type} \rrbracket \end{split}$$

Case Quantification:

$$\begin{split} \omega^* \llbracket \Phi \vdash \forall \alpha.A \text{: Type} \rrbracket &= \omega^* (\forall_I (\llbracket \Phi, \alpha \vdash A \text{: Type} \rrbracket)) \\ &= \forall_I ((\omega \times \mathtt{Id}_U)^* \llbracket \Phi, \alpha \vdash A \text{: Type} \rrbracket) \quad \text{By Beck-Chevalley} \\ &= \forall_I (\llbracket \Phi', \alpha \vdash A \text{: Type} \rrbracket) \\ &= \forall_I (\llbracket \Phi', \alpha \vdash A \text{: Type} \rrbracket) \\ &= \llbracket \Phi' \vdash \forall \alpha.A \text{: Type} \rrbracket \end{split}$$

Case Function:

$$\begin{split} \omega^* \llbracket \Phi \vdash A \to B \text{: Type} \rrbracket &= \omega^* (\llbracket \Phi \vdash B \text{: Type} \rrbracket^{\llbracket \Phi \vdash A \text{: Type} \rrbracket}) \\ &= \omega^* (\llbracket \Phi \vdash B \text{: Type} \rrbracket)^{\omega^* (\llbracket \Phi \vdash A \text{: Type} \rrbracket)} \\ &= \llbracket \Phi' \vdash B \text{: Type} \rrbracket^{\llbracket \Phi' \vdash A \text{: Type} \rrbracket} \\ &= \llbracket \Phi' \vdash A \to B \text{: Type} \rrbracket \end{split}$$

6.4 Subtyping

If
$$\omega = \llbracket \omega \colon \Phi' \triangleright \Phi \rrbracket$$
 then $\llbracket A \leq :_{\Phi'} B \rrbracket = \omega^* \llbracket A \leq :_{\Phi} B \rrbracket \colon \mathbb{C}(I')(A, B)$.

Proof: By induction on the derivation on $[A \leq :_{\Phi} B]$. Using S-closure of ω^*

Case Ground:

$$\omega^*(\gamma_1 \leq :_{\gamma} \gamma_2) = (\gamma_1 \leq :_{\gamma} \gamma_2)$$

Since ω^* is s-closed.

Case Monad:

$$\begin{split} \omega^*[\![\mathbf{M}_{\epsilon_1}A \leq :_{\Phi} \mathbf{M}_{\epsilon_2}B]\!] &= \omega^*([\![\epsilon_1 \leq_{\Phi} \epsilon_2]\!]) \circ \omega^*(T_{\epsilon_1}([\![A \leq :_{\Phi} B]\!])) \\ &= [\![\epsilon_1 \leq_{\Phi'} \epsilon_2]\!] \circ T_{\epsilon_1}[\![A \leq :_{\Phi'} B]\!] \quad \text{By S-Closure} \\ &= [\![\mathbf{M}_{\epsilon_1}A \leq :_{\Phi'} \mathbf{M}_{\epsilon_2}B]\!] \\ &= [\![(\mathbf{M}_{\epsilon_1}A) \leq :_{\Phi'} \mathbf{M}_{\epsilon_2}B]\!] \end{split}$$

Case For All: Note $\llbracket \omega \times : \Phi', \alpha \triangleright \Phi, \alpha \rrbracket = (\omega \times \text{Id}_U)$

$$\begin{split} \omega^* \llbracket \forall \alpha. A \leq :_{\Phi} \forall \alpha. B \rrbracket &= \omega^* (\forall_I (\llbracket A \leq :_{\Phi, \alpha} B \rrbracket)) \\ &= \forall_{I'} ((\omega \times \operatorname{Id}_U)^* (\llbracket A \leq :_{\Phi, \alpha} B \rrbracket)) \\ &= \forall_{I'} (\llbracket A \leq :_{\Phi', \alpha} B \rrbracket) \\ &= \llbracket (\forall \alpha. A) \leq :_{\Phi'} (\forall \alpha. B) \rrbracket \end{split}$$

Case Fn:

$$\begin{split} \omega^* \llbracket (A \to B) \leq :_\Phi A' \to B' \rrbracket &= \omega^* (\llbracket B \leq :_\Phi B' \rrbracket^{A'} \circ B^{\llbracket A' \leq :_\Phi A \rrbracket}) \\ &= \omega^* (\operatorname{cur} (\llbracket B \leq :_\Phi B' \rrbracket \circ \operatorname{app})) \circ \omega^* (\operatorname{cur} (\operatorname{app} \circ (\operatorname{Id}_B \times \llbracket A' \leq :_\Phi A \rrbracket))) \\ &= \operatorname{cur} (\omega^* (\llbracket B \leq :_\Phi B' \rrbracket) \circ \operatorname{app}) \circ \operatorname{cur} (\operatorname{app} \circ (\operatorname{Id}_B \times \omega^* (\llbracket A' \leq :_\Phi A \rrbracket))) \\ &= \operatorname{cur} (\llbracket B \leq :_{\Phi'} B' \rrbracket \circ \operatorname{app}) \circ \operatorname{cur} (\operatorname{app} \circ (\operatorname{Id}_B \times \llbracket A' \leq :_{\Phi'} A \rrbracket))) \\ &= \llbracket (A \to B) \leq :_{\Phi'} (A' \to B') \rrbracket \end{split}$$

6.5 Type Environments

6.5.1 Effect Weakening Preserves wellformedness of Typing Environments

$$\omega \colon \Phi' \rhd \Phi \land \Phi \vdash \Gamma \ \, \mathsf{Ok} \implies \Phi' \vdash \Gamma \ \, \mathsf{Ok}$$

Case Nil: By inversion Φ Ok so $\Phi \vdash \Diamond$ Ok

Case Var: By $\operatorname{inversion}\Phi \vdash \Gamma$ 0k, $x \in \operatorname{dom}(\Gamma)$, $\Phi \vdash A$ So by induction $\Phi' \vdash \Gamma$ 0k, and $\pi'_1 \vdash \Gamma$ 0k So $\Phi' \vdash (\Gamma, x : A)$ 0k If $\omega = \llbracket \Phi' \vdash \omega : \Phi \rrbracket$ then $\llbracket \Phi' \vdash \Gamma$ 0k $\rrbracket = \omega^* \llbracket \Phi \vdash \Gamma$ 0k $\rrbracket \in \operatorname{obj} \mathbb{C}(I')$.

Proof: By induction on the derivation on $\llbracket \Phi \vdash \Gamma \cap \mathbb{C} \rrbracket$. Using the S-Closure of the re-indexing functor.

Case Nil:

$$\begin{split} \omega^* \llbracket \Phi \vdash \diamond \ \mathtt{Ok} \rrbracket &= \omega^* \mathtt{1} \\ &= \mathtt{1} \quad \text{By S-closure} \\ &= \llbracket \Phi' \vdash \diamond \ \mathtt{Ok} \rrbracket \end{split}$$

Case Var:

$$\begin{split} \omega^* \llbracket \Phi \vdash \Gamma, x \colon & A \ \ \mathsf{Ok} \rrbracket = \omega^* (\llbracket \Phi \vdash \Gamma \ \ \mathsf{Ok} \rrbracket \times \llbracket \Phi \vdash A \colon \mathsf{Type} \rrbracket) \\ &= (\omega^* \llbracket \Phi \vdash \Gamma \ \ \mathsf{Ok} \rrbracket \times \omega^* \llbracket \Phi \vdash A \colon \mathsf{Type} \rrbracket) \\ &= (\llbracket \Phi' \vdash \Gamma \ \ \mathsf{Ok} \rrbracket \times \llbracket \Phi' \vdash A \colon \mathsf{Type} \rrbracket) \\ &= \llbracket \Phi' \vdash \Gamma, x \colon A \ \ \mathsf{Ok} \rrbracket \end{split}$$

6.6 Terms

6.6.1 Effect Weakening preserves Type Relations

$$\Phi \mid \Gamma \vdash v : A \land \omega : \Phi' \triangleright \Phi \implies \Phi' \mid \Gamma \vdash v : A$$

$$(6.7)$$

Proof:

Case Constants: If $\Phi \vdash \Gamma$ Ok then $\Phi' \vdash \Gamma$ Ok so:

$$(\text{Const}) \frac{\Phi' \vdash \Gamma \quad 0k}{\Phi' \mid \Gamma \vdash C^A : A}$$

$$(6.8)$$

Case Variables: If $\Phi \vdash \Gamma$ Ok then $\Phi' \vdash \Gamma$ Ok so: So, $\Phi' \mid G \vdash x : A$, if $\Phi \mid G \vdash x : A$

Case Lambda: By inversion, $\Phi \mid \Gamma, x: A \vdash v: B$, so by induction $\Phi' \mid \Gamma, x: A \vdash v: B$. So,

$$\Phi' \mid \Gamma \vdash \lambda x : A.v : A \to B \tag{6.9}$$

Case Apply: By inversion $\Phi \mid \Gamma \vdash v_1: A \to B$ and $\Phi \mid \Gamma \vdash v_2: A$.

Hence by induction, $\Phi' \mid \Gamma \vdash v_1: A \to B$ and $\Phi' \mid \Gamma \vdash v_2: A$.

So

$$\Phi' \mid \Gamma \vdash \mathsf{app} v_1 v_2 : \underline{B}$$

Case Return: By inversion $\Phi \mid \Gamma \vdash v : A$

So by induction $\Phi' \mid \Gamma \vdash v : A$

Hence $\Phi' \mid \Gamma \vdash \mathtt{return} \ v : \mathtt{M}_{\mathbf{1}} A$

Case Bind: By inversion $\Phi \mid \Gamma \vdash v_1: M_{\epsilon_1}A$ and $\Phi \mid \Gamma, x: A \vdash \epsilon_2: M_{\epsilon_2}A$.

Hence by induction $\Phi' \mid \Gamma \vdash v_1 : \mathbf{M}_{\epsilon_1} A$ and $\Phi' \mid \Gamma, x : A \vdash v_2 : \mathbf{M}_{\epsilon_2} A$.

So

$$\Phi' \mid \Gamma \vdash \text{do } x \leftarrow v_1 \text{ in } v_2 : \mathbf{M}_{\epsilon_1 \cdot \epsilon_2} B \tag{6.10}$$

Case If: By inversion $\Phi \mid \Gamma \vdash v : \mathsf{Bool}, \ \Phi \mid \Gamma \vdash v_1 : A, \ \mathsf{and} \ \Phi \mid \Gamma \vdash v_2 : A.$

Hence by induction $\Phi' \mid \Gamma \vdash v : \mathsf{Bool}, \Phi' \mid \Gamma \vdash v_1 : A$, and $\Phi' \mid \Gamma \vdash v_2 : A$.

So

$$\Phi' \mid \Gamma \vdash \mathsf{if}_A \ v \ \mathsf{then} \ v_1 \ \mathsf{else} \ v_2 : A \tag{6.11}$$

Case Subtype: By inversion $\Phi \mid \Gamma \vdash v : A$, and $A \leq : B$.

So by induction: $\Phi' \mid \Gamma \vdash v : A$, and $A \leq : B$.

So

$$\Phi' \mid \Gamma \vdash v : B \tag{6.12}$$

Case Effect-Gen: By inversion Φ , $\alpha \mid \Gamma \vdash v : A$

By picking $\alpha \notin \Phi'$ using α -conversion.

$$\omega \times : \Phi', \alpha \triangleright \Phi, \alpha \tag{6.13}$$

So by induction, Φ' , $\alpha \mid \Gamma \vdash v : A$

Hence,

$$\Phi' \mid \Gamma \vdash \Lambda \alpha. v : \forall a. A \tag{6.14}$$

Case Effect-Spec: By inversion, $\Phi \mid \Gamma \vdash v : \forall \alpha.A$, and $\Phi \vdash \epsilon$.

So by induction, $\Phi' \mid \Gamma \vdash v : \forall \alpha. A$

And by the wellformedness-theorem $\Phi' \vdash \epsilon$

Hence,

$$\Phi' \mid \Gamma \vdash v \; \epsilon : A \left[\epsilon / \alpha \right] \tag{6.15}$$

If

$$\begin{split} \omega &= \llbracket \omega \colon \Phi' \rhd \Phi \rrbracket \\ \Delta &= \llbracket \Phi \mid \Gamma \vdash v \colon A \rrbracket \\ \Delta' &= \llbracket \Phi' \mid \Gamma \vdash v \colon A \rrbracket \end{split}$$

Then

$$\Delta' = \omega^*(\Delta) \tag{6.16}$$

Proof: By induction over the derivation of Δ . Using the S-Closure of ω^* . We use Γ_I to indicate $\llbracket \Phi \vdash \Gamma \ \mathsf{Ok} \rrbracket$, an A_I to indicate $\llbracket \Phi \vdash A \colon \mathsf{Type} \rrbracket$

Case Unit:

$$\Delta = \langle \rangle_{\Gamma_I} \tag{6.17}$$

So

$$\omega^*(\Delta) = \langle \rangle_{\Gamma_{I'}} = \Delta' \tag{6.18}$$

Case True, False: Giving the case for true as false is the same but using inr

$$\Delta = \operatorname{inl} \circ \langle \rangle_{\Gamma_I} \tag{6.19}$$

So

$$\omega^*(\Delta) = \operatorname{inl} \circ \langle \rangle_{\Gamma_{I'}} = \Delta' \tag{6.20}$$

Since ω^* is S-closed.

Case Constant:

$$\Delta = [\![\mathbf{C}^A]\!] \circ \langle \rangle_{\Gamma_L} \tag{6.21}$$

So

$$\omega^*(\Delta) = \omega^* \llbracket \mathbf{C}^A \rrbracket \circ \langle \rangle_{\Gamma_{I'}} = \llbracket \mathbf{C}^{A_{I'}} \rrbracket \circ \langle \rangle_{\Gamma_{I'}} = \Delta'$$
(6.22)

Since ω^* is S-closed.

Case Subtype: Let

$$\Delta_1 = \llbracket \Phi \mid \Gamma \vdash v : A \rrbracket \tag{6.23}$$

Then

$$\Delta = [A \leq :_{\Phi} B] \circ \Delta_1 \tag{6.24}$$

So

$$\omega^*(\Delta) = \omega^* \llbracket A \leq :_{\Phi} B \rrbracket \circ \omega^* \Delta_1$$
$$= \llbracket A_{I'} \leq :_{\Phi'} B_{I'} \rrbracket \circ \Delta_1' \quad \text{By induction}$$
$$= D'$$

Case Lambda: Let

$$\Delta_1 = \llbracket \Phi \mid \Gamma, x : A \vdash v : B \rrbracket \tag{6.25}$$

Then

$$\Delta = \operatorname{cur}(\Delta_1) \tag{6.26}$$

So

$$\begin{split} \omega^*(\Delta) &= \omega^*(\operatorname{cur}(\Delta_1)) \\ &= \operatorname{cur}(\omega^*(\Delta_1)) \quad \operatorname{By S-closure} \\ &= \operatorname{cur}(\Delta_1') \quad \operatorname{By induction} \\ &= \Delta' \end{split}$$

Case Application: Let

$$\Delta_1 = \llbracket \Phi \mid \Gamma \vdash v_1 \colon A \to B \rrbracket$$
$$\Delta_2 = \llbracket \Phi \mid \Gamma \vdash v_2 \colon A \rrbracket$$

Then

$$\Delta = \operatorname{app} \circ \langle \Delta_1, \Delta_2 \rangle \tag{6.27}$$

So

$$\begin{split} \omega^* \Delta &= \omega^*(\mathsf{app} \circ \langle \Delta_1, \Delta_2 \rangle) \\ &= \mathsf{app} \circ \langle \omega^*(\Delta_1), \omega^*(\Delta_2) \rangle \quad \text{By S-closure} \\ &= \mathsf{app} \circ \langle \Delta_1', \Delta_2' \rangle \quad \text{By Induction} \\ &= \Delta' \end{split}$$

Case Return: Let

$$\Delta_1 = \llbracket \Phi \mid \Gamma \vdash v : A \rrbracket \tag{6.28}$$

Then

$$\Delta = \eta_{A_I} \circ \Delta_1 \tag{6.29}$$

So

$$\omega^*(\Delta) = \omega^*(\eta_{A_I} \circ \Delta_1)$$

$$= \eta_{A_{I'}} \circ \omega^*(\Delta_1) \quad \text{By S-closure}$$

$$= \eta_{A_{I'}} \circ \Delta_1'$$

$$= \Delta'$$

Case Bind: Let

$$\begin{split} & \Delta_1 = \llbracket \Phi \mid \Gamma \vdash v_1 \text{:} \, \mathbf{M}_{\epsilon_1} A \rrbracket \\ & \Delta_2 = \llbracket \Phi \mid \Gamma, x \text{:} \, A \vdash v_2 \text{:} \, \mathbf{M}_{\epsilon_2} B \rrbracket \end{split}$$

Then

$$\Delta = \mathtt{M}_{\epsilon_1} \epsilon_2 A_I \circ T_{\epsilon_1} \Delta_2 \circ \mathtt{t}_{\epsilon_1, \Gamma_I, A_I} \circ \langle \mathtt{Id}_{\Gamma_I}, \Delta_1 \rangle \tag{6.30}$$

So

$$\begin{split} \omega^*(\Delta) &= \omega^*(\mu_{\epsilon_1,\epsilon_2,A} \circ T_{\epsilon_1} \Delta_2 \circ \mathbf{t}_{\epsilon_1,\Gamma,A} \circ \langle \mathrm{Id}_{\Gamma}, \Delta_1 \rangle) \\ &= \omega^*(\mu_{\epsilon_1,\epsilon_2,A}) \circ \omega^*(T_{\epsilon_1} \Delta_2) \circ \omega^*(\mathbf{t}_{\epsilon_1,\Gamma,A}) \circ \langle \omega^*(\mathrm{Id}_{\Gamma_I}), \omega^*(\Delta_1) \rangle \quad \text{By S-Closure} \\ &= \mu_{\epsilon_1,\epsilon_2,A_{I'}} \circ T_{\epsilon_1} \omega^*(\Delta_2) \circ \mathbf{t}_{\epsilon_1,\Gamma_{I'},A_{I'}} \circ \langle \omega^*(\mathrm{Id}_{\Gamma_I}), \omega^*(\Delta_1) \rangle \quad \text{By S-Closure} \\ &= \mu_{\epsilon_1,\epsilon_2,A_{I'}} \circ T_{\epsilon_1} \Delta_2' \circ \mathbf{t}_{\epsilon_1,\Gamma_{I'},A_{I'}} \circ \langle \omega^*(\mathrm{Id}_{\Gamma_I}), \Delta_1' \rangle \quad \text{By Induction} \\ &= \Delta' \end{split}$$

Case If: Let

$$\begin{split} & \Delta_1 = \llbracket \Phi \mid \Gamma \vdash v \text{:} \, \mathsf{Bool} \rrbracket \\ & \Delta_2 = \llbracket \Phi \mid \Gamma \vdash v_1 \text{:} \, A \rrbracket \\ & \Delta_3 = \llbracket \Phi \mid \Gamma \vdash v_2 \text{:} \, A \rrbracket \end{split}$$

Then

$$\Delta = \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma}$$

$$\tag{6.31}$$

So

$$\begin{split} \omega^*(\Delta) &= \omega^*(\mathsf{app} \circ (([\mathsf{cur}(\Delta_2 \circ \pi_2), \mathsf{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \mathsf{Id}_{\Gamma}) \circ \delta_{\Gamma}) \\ &= \mathsf{app} \circ (([\mathsf{cur}(\omega^*(\Delta_2) \circ \pi_2), \mathsf{cur}(\omega^*(\Delta_3) \circ \pi_2)] \circ \omega^*(\Delta_1)) \times \mathsf{Id}_{\Gamma_{I'}}) \circ \delta_{\Gamma_{I'}} \quad \text{By S-Closure} \\ &= \mathsf{app} \circ (([\mathsf{cur}(\Delta_2' \circ \pi_2), \mathsf{cur}(\Delta_3' \circ \pi_2)] \circ \Delta_1') \times \mathsf{Id}_{\Gamma_{I'}}) \circ \delta_{\Gamma_{I'}} \quad \text{By Induction} \\ &= \Delta' \end{split}$$

Case Effect-Gen: Let

$$\Delta_1 = \llbracket \Phi, \alpha \mid \Gamma \vdash v : A \rrbracket \tag{6.32}$$

Then

$$\Delta = \overline{\Delta_1} \tag{6.33}$$

And also

$$\omega \times \mathrm{Id} = [\![\omega \times : (\Phi', \alpha) \triangleright (\Phi, \alpha)]\!] \tag{6.34}$$

So

$$\begin{split} \omega^* \Delta &= \omega^*(\overline{\Delta_1}) \\ &= \overline{(\omega \times \operatorname{Id}_U)^* \Delta_1} \quad \text{By naturality} \\ &= \overline{\Delta_1'} \quad \text{By induction} \\ &= \Delta' \end{split}$$

Case Effect-Spec: Let

$$\Delta_1 = \llbracket \Phi \mid \Gamma \vdash v \colon \forall \alpha. A \rrbracket$$
$$h = \llbracket \Phi \vdash \epsilon \colon \mathsf{Effect} \rrbracket$$

Then

$$\Delta = \langle \operatorname{Id}_{\Gamma}, h \rangle^* (\epsilon_{\llbracket \Phi, \beta \vdash A \llbracket \beta / \alpha \rrbracket : \mathsf{Type} \rrbracket}) \circ \Delta_1 \tag{6.35}$$

So due to the substitution theorem on effects

$$h \circ \omega = \llbracket \Phi \vdash \epsilon : \mathsf{Effect} \rrbracket \circ \omega = \llbracket \Phi' \vdash \epsilon : \mathsf{Effect} \rrbracket = h' \tag{6.36}$$

Also note $(\omega \times \text{Id}_U) = [\![\omega \times : \Phi', \alpha \triangleright \Phi \alpha]\!]$

$$\begin{split} \omega^* \Delta &= \omega^* (\langle \operatorname{Id}_{\Gamma}, h \rangle^* (\epsilon_{\llbracket \Phi, \beta \vdash A[\beta/\alpha] : \operatorname{Type} \rrbracket}) \circ \Delta_1) \\ &= (\langle \operatorname{Id}_{\Gamma}, h \rangle \circ \omega)^* (\epsilon_{\llbracket \Phi, \beta \vdash A[\beta/\alpha] : \operatorname{Type} \rrbracket}) \circ \omega^* (\Delta_1) \\ &= ((\omega \times \operatorname{Id}_U) \circ \langle \operatorname{Id}_{\Gamma}, h \circ \omega \rangle)^* (\epsilon_{\llbracket \Phi, \beta \vdash A[\beta/\alpha] : \operatorname{Type} \rrbracket}) \circ \Delta_1') \\ &= (\langle \operatorname{Id}_{\Gamma}, h' \rangle)^* ((\omega \times \operatorname{Id}_U)^* \epsilon_{\llbracket \Phi, \beta \vdash A[\beta/\alpha] : \operatorname{Type} \rrbracket}) \circ \Delta_1') \end{split}$$

Looking at the inner part of the functor application: Let

$$A = \llbracket \Phi, \beta \vdash A \left[\beta / \alpha \right] : \mathsf{Type} \rrbracket$$

$$\begin{split} (\omega \times \operatorname{Id}_{U})^{*} \epsilon_{\llbracket \Phi, \beta \vdash A[\beta/\alpha] : \operatorname{Type} \rrbracket} &= (\omega \times \operatorname{Id}_{U})^{*} \epsilon_{A} \\ &= (\omega \times \operatorname{Id}_{U})^{*} (\widehat{\operatorname{Id}_{\forall_{I}(A)}}) \\ &= \overline{(\omega \times \operatorname{Id}_{U})^{*} (\widehat{\operatorname{Id}_{\forall_{I}(A)}})} \quad \operatorname{By \ bijection} \\ &= \overline{\omega^{*} (\widehat{\operatorname{Id}_{\forall_{I}(A)}})} \quad \operatorname{By \ naturality} \\ &= \overline{\omega^{*} (\operatorname{Id}_{\forall_{I}(A)})} \quad \operatorname{By \ bijection} \\ &= \overline{\operatorname{Id}_{\forall_{I'}(A \circ (\omega \times \operatorname{Id}_{U}))}} \quad \operatorname{By \ S-Closure, \ naturality} \\ &= \widehat{\operatorname{Id}_{\forall_{I'}(A)}} \quad \operatorname{By \ Substitution \ theorem} \\ &= \epsilon_{A_{I'}} \end{split}$$

Going back to the original expression:

$$\begin{split} \omega^*\Delta &= (\langle \operatorname{Id}_{\Gamma}, h' \rangle)^*(\epsilon_{A_{I'}}) \circ \Delta_1') \\ &= \Delta' \end{split}$$

6.7 Term-Substitution

If $\omega = \llbracket \omega : \Phi' \triangleright \Phi \rrbracket$, then $\llbracket \Phi' \mid \Gamma' \vdash \sigma : \Gamma \rrbracket = \omega^* \llbracket \Phi \mid \Gamma' \vdash \sigma : \Gamma \rrbracket$.

Proof: By induction on the structure of σ , making use of the weakening of term denotations above.

Case Nil: Then $\sigma = \langle \rangle_{\Gamma'_I}$, so $\omega^*(\sigma) = \langle \rangle_{\Gamma'_{I'}} = \llbracket \Phi' \mid \Gamma' \vdash \sigma : \Gamma \rrbracket$

Case Var: Then $\sigma = (\sigma', x := v)$

$$\begin{split} \omega^*\sigma &= \omega * \langle \sigma', \llbracket \Phi \mid \Gamma \vdash v \colon A \rrbracket \rangle \\ &= \langle \omega^*\sigma', \omega^* \llbracket \Phi \mid \Gamma \vdash v \colon A \rrbracket \rangle \\ &= \langle \llbracket \Phi' \mid \Gamma' \vdash \sigma' \colon \Gamma \rrbracket, \llbracket \Gamma' \mid \Phi' \vdash v \colon A \rrbracket \rangle \\ &= \llbracket \Phi' \mid \Gamma' \vdash \sigma \colon \Gamma, x \colon A \rrbracket \end{split}$$

6.8 Term-Weakening

TODO: Prove wellformedness of weakening If $\Phi' \vdash \omega_1 : \Gamma' \triangleright \Gamma$ and $\omega = [\![\omega : \Phi' \triangleright \Phi]\!]$, then $\Phi' \vdash \omega_1 : \Gamma' \triangleright \Gamma$ and $[\![\Phi' \vdash \omega_1 : \Gamma' \triangleright \Gamma]\!] = \omega^* [\![\Phi \vdash \omega_1 : \Gamma' \triangleright \Gamma]\!]$.

Proof: By induction on the structure of ω_1 .

Case Id: Then $\omega_1 = \iota$, so its denotation is $\omega_1 = \mathrm{Id}_{\Gamma_I}$

So

$$\omega^*(\mathrm{Id}_{\Gamma_I}) = \mathrm{Id}_{\Gamma_{I'}} = \llbracket \Phi' \vdash \iota \colon \Gamma \triangleright \Gamma \rrbracket \tag{6.37}$$

Case Project: Then $\omega_1 = \omega_1' \pi$

$$(\text{Project}) \frac{\Phi \vdash \omega_{1}' \colon \Gamma' \triangleright \Gamma}{\Phi \vdash \omega_{1} \pi \colon \Gamma', x \colon A \triangleright \Gamma}$$

$$(6.38)$$

So $\omega_1 = \omega_1' \circ \pi_1$

Hence

$$\begin{split} \omega^*(\omega_1) &= \omega^*(\omega_1') \circ \omega^*(\pi_1) \\ &= \llbracket \Phi' \vdash \omega_1' \colon \Gamma' \rhd \Gamma \rrbracket \circ \pi_1 \\ &= \llbracket \Phi' \vdash \omega_1' \pi \colon \Gamma', x : A \rhd \Gamma \rrbracket \\ &= \llbracket \Phi' \vdash \omega_1 \colon \Gamma', x : A \rhd \Gamma \rrbracket \end{split}$$

Case Extend: Then $\omega_1 = \omega_1' \times$

$$(\text{Extend}) \frac{\Phi \vdash \omega_1' \colon \Gamma' \triangleright \Gamma \qquad A \leq :_{\Phi} B}{\Phi \vdash \omega_1 \times : \Gamma', x : A \triangleright \Gamma, x : B}$$

$$(6.39)$$

So $\omega_1 = \omega_1' \times \llbracket A \leq :_{\Phi} B \rrbracket$

Hence

$$\begin{split} \omega^*(\omega_1) &= (\omega^*(\omega_1') \times \omega^*(\llbracket A \leq :_{\Phi} B \rrbracket) \\ &= (\llbracket \Phi' \vdash \omega_1' \colon \Gamma' \rhd \Gamma \rrbracket \times \llbracket A \leq :_{\Phi'} B \rrbracket) \\ &= \llbracket \Phi' \vdash \omega_1 \colon \Gamma', x \colon A \rhd \Gamma, x \colon B \rrbracket \end{split}$$

Chapter 7

Term Substitution Theorem

7.1 Term-Term Substitutions

Type-environment substitutions are also derived inductively with respect to a effect environment.

$$(\mathrm{Nil}) \frac{\Phi \vdash \Gamma' \ \mathtt{Ok}}{\Phi \mid \Gamma' \vdash \diamond : \diamond} \quad (\mathrm{Extend}) \frac{\Phi \mid \Gamma' \vdash \sigma : \Gamma \qquad \Phi \mid \Gamma' \vdash v : A}{\Phi \mid \Gamma' \vdash (\sigma, x := v) : (\Gamma, x : A)} (\mathrm{if} \ x \not\in \mathtt{dom}(\Gamma'))$$

7.1.1 Substitutions as SNOC lists

$$\sigma ::= \diamond \mid \sigma, x := v \tag{7.1}$$

7.1.2 Trivial Properties of substitutions

 ${\tt fv}(\sigma)$

$$\mathbf{fv}(\diamond) = \emptyset$$

$$\mathbf{fv}(\sigma, x := v) = \mathbf{fv}(\sigma) \cup \mathbf{fv}(v)$$

 $dom(\sigma)$

$$\mathrm{dom}(\diamond) = \emptyset$$

$$\mathrm{dom}(\sigma, x := v) = \mathrm{dom}(\sigma) \cup \{x\}$$

 $x\#\sigma$

$$x \# \sigma \Leftrightarrow x \notin (\mathsf{fv}(\sigma) \cup \mathsf{dom}(\sigma')) \tag{7.2}$$

7.1.3 Wellformedness

Define the relation

$$\Phi \mid \Gamma' \vdash \sigma : \Gamma$$

by:

•
$$(Nil) \frac{\Phi \vdash \Gamma' \quad 0k}{\Phi \mid \Gamma' \vdash \diamond : \diamond}$$

$$\bullet \ \ (\text{Extend}) \frac{\Phi \mid \Gamma' \vdash \sigma \colon \Gamma \qquad x \not\in \mathtt{dom}(\Gamma) \qquad \Phi \mid \Gamma' \vdash v \colon A}{\Phi \mid \Gamma' \vdash (\sigma, x \colon = v) \colon (\Gamma, x \colon A)}$$

7.1.4 Substitution Theorem

If Δ derives $\Phi \mid \Gamma \vdash v : A$ and $\Phi \mid \Gamma' \vdash \sigma : \Gamma$ then the derivation Δ' deriving $\Phi \mid \Gamma' \vdash v \mid \sigma \mid : A$ satisfies:

$$\Delta' = \Delta \circ \llbracket \Phi \mid \Gamma' \vdash \sigma : \Gamma \rrbracket \tag{7.3}$$

This is proved by induction over the derivation of $\Phi \mid \Gamma \vdash v : A$. We shall use σ to denote $\llbracket \Phi \mid \Gamma' \vdash \sigma : \Gamma \rrbracket$ where it is clear from the context.

Case Var: By inversion, $\Gamma = \Gamma'', x : A$

$$(\operatorname{Var}) \frac{\Phi \vdash \Gamma \quad 0k}{\Phi \mid \Gamma'', x : A \vdash x : A} \tag{7.4}$$

By inversion, $\sigma = \sigma', x := v$ and $\Phi \mid \Gamma' \vdash v : A$.

Let

$$\sigma = \llbracket \Phi \mid \Gamma' \vdash \sigma : \Gamma \rrbracket = \langle \sigma', \Delta' \rangle$$

$$\Delta = \llbracket \Phi \mid \Gamma'', x : A \vdash x : A \rrbracket = \pi_2$$

$$\Delta \circ \sigma = \pi_2 \circ \langle \sigma', \Delta' \rangle$$
 By definition
= Δ' By product property

Case Weaken: By inversion, $\Gamma = \Gamma', y : B$ and $\sigma = \sigma', y := v$ and we have Δ_1 deriving:

$$(\text{Weaken}) \frac{\Delta_1}{\Phi \mid \Gamma'' \vdash x : A}$$

$$(7.5)$$

Also by inversion of the wellformedness of $\Phi \mid \Gamma' \vdash \sigma : \Gamma$, we have $\Phi \mid \Gamma' \vdash \sigma' : \Gamma''$ and

$$\llbracket \Phi \mid \Gamma' \vdash \sigma : \Gamma \rrbracket = \langle \llbracket \Phi \mid \Gamma' \vdash \sigma : \Gamma'' \rrbracket, \llbracket \Phi \mid \Gamma' \vdash v : B \rrbracket \rangle$$

$$(7.6)$$

Hence by induction on Δ_1 we have Δ_1' such that

$$\frac{\Delta_1'}{\Phi \mid \Gamma' \vdash x \left[\sigma\right] : A} \tag{7.7}$$

Hence

$$\begin{split} &\Delta' = \Delta'_1 \quad \text{By definition} \\ &= \Delta_1 \circ \sigma' \quad \text{By induction} \\ &= \Delta_1 \circ \pi_1 \circ \langle \sigma', \llbracket \Phi \mid \Gamma' \vdash v \colon \pmb{B} \rrbracket \rangle \quad \text{By product property} \\ &= \Delta_1 \circ \pi_1 \circ \sigma \quad \text{By defintion of the denotation of } \sigma \\ &= \Delta \circ \sigma \quad \text{By definition.} \end{split}$$

Case Constants: The logic for all constant terms (true, false, (), C^A) is the same. Let

$$c = [\![\mathbf{C}^A]\!] \tag{7.8}$$

$$\begin{split} \Delta' &= c \circ \langle \rangle_{\Gamma'} \quad \text{By Definition} \\ &= c \circ \langle \rangle_G \circ \sigma \quad \text{Terminal property} \\ &= \Delta \circ \sigma \quad \text{By definition} \end{split}$$

Case Lambda: By inversion, we have Δ_1 such that

$$\Delta = (\operatorname{Fn}) \frac{\Delta_1}{\Phi \mid \Gamma, x : A \vdash v : B}$$

$$\Phi \mid \Gamma \vdash \lambda x : A \cdot v : A \to B$$
(7.9)

By induction of Δ_1 we have Δ'_1 such that

$$\Delta' = (\operatorname{Fn}) \frac{\Delta'_{1}}{\Phi \mid \Gamma', x : A \vdash (v [\sigma]) : B}$$

$$\Delta' = (\operatorname{Fn}) \frac{\Phi \mid \Gamma \vdash (\lambda x : A \vdash (v [\sigma]) : B}{\Phi \mid \Gamma \vdash (\lambda x : A \cdot v) [\sigma] : A \to B}$$
(7.10)

By induction and the extension lemma, we have:

$$\Delta_1' = \Delta_1 \circ (\sigma \times Id_A) \tag{7.11}$$

Hence:

$$\Delta' = \operatorname{cur}(\Delta'_1)$$
 By definition $= \operatorname{cur}(\Delta_1 \circ (\sigma \times \operatorname{Id}_A))$ By induction and extension lemma. $= \operatorname{cur}(\Delta_1) \circ \sigma$ By the exponential property (Uniqueness) $= \Delta \circ \sigma$ By Definition

Case Subtype: By inversion, there exists derivation Δ_1 such that:

$$\Delta = (\text{Subtype}) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v : A} \qquad A \leq :_{\Phi} B$$

$$\Phi \mid \Gamma \vdash v : B \qquad (7.12)$$

By induction on Δ_1 , we find Δ_1' such that $\Delta_1' = \Delta_1 \circ \sigma$ and:

$$\Delta' = (\text{Subtype}) \frac{\Delta'_{1}}{\Phi \mid \Gamma' \vdash v \left[\sigma\right] : A} \qquad A \leq :_{\Phi} B$$

$$\Phi \mid \Gamma' \vdash v \left[\sigma\right] : B \qquad (7.13)$$

Hence,

$$\begin{split} \Delta' &= [\![A \leq :_{\Phi} B]\!] \circ \Delta_1' \quad \text{By definition} \\ &= [\![A \leq :_{\Phi} B]\!] \circ \Delta_1 \circ \sigma \quad \text{By induction} \\ &= \Delta \circ \sigma \quad \text{By definition} \end{split}$$

Case Return: By inversion, we have Δ_1 such that:

$$\Delta = (\text{Return}) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v : A}$$

$$\Phi \mid \Gamma \vdash \text{return } v : M_1 A$$
(7.14)

By induction on Δ_1 , we find Δ_1' such that $\Delta_1' = \Delta_1 \circ \sigma$ and:

$$\Delta' = (\text{Return}) \frac{\Delta'_{1}}{\Phi \mid \Gamma' \vdash v [\sigma] : A}$$

$$\Delta' = (\text{Return}) \frac{\Phi \mid \Gamma' \vdash v [\sigma] : A}{\Phi \mid \Gamma' \vdash (\text{return } v) [\sigma] : M_{1} A}$$

$$(7.15)$$

Hence,

$$\Delta' = \eta_A \circ \Delta'_1$$
 By Definition
= $\eta_A \circ \Delta_1 \circ \sigma$ By induction
= $\Delta \circ \sigma$ By Definition

Case Apply: By inversion, we find Δ_1, Δ_2 such that

$$\Delta = (\text{Apply}) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v_1 : A \to B} \frac{\Delta_2}{\Phi \mid \Gamma \vdash v_2 : A}$$

$$\Phi \mid \Gamma \vdash v_1 : v_2 : B$$
(7.16)

By induction we find Δ'_1, Δ'_2 such that

$$\Delta_1' = \Delta_1 \circ \sigma$$
$$\Delta_2' = \Delta_2 \circ \sigma$$

And

$$\Delta' = (\text{Apply}) \frac{\Delta'_{1}}{\Phi \mid \Gamma' \vdash v_{1} [\sigma] : A \to B} \frac{\Delta'_{2}}{\Phi \mid \Gamma' \vdash v_{2} [\sigma] : A}$$

$$\Phi \mid \Gamma' \vdash (v_{1} v_{2}) [\sigma] : B$$

$$(7.17)$$

Hence

$$\begin{split} \Delta' &= \mathsf{app} \circ \langle \Delta_1', \Delta_2' \rangle \quad \text{By Definition} \\ &= \mathsf{app} \circ \langle \Delta_1 \circ \sigma, \Delta_2 \circ \sigma \rangle \quad \text{By induction} \\ &= \mathsf{app} \circ \langle \Delta_1, \Delta_2 \rangle \circ \sigma \quad \text{By Product Property} \\ &= \Delta \circ \sigma \quad \text{By Definition} \end{split}$$

Case If: By inversion, we find $\Delta_1, \Delta_2, \Delta_3$ such that

$$\Delta = (\mathrm{If}) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v \colon \mathtt{Bool}} \frac{\Delta_2}{\Phi \mid \Gamma \vdash v_1 \colon A} \frac{\Delta_3}{\Phi \mid \Gamma \vdash v_2 \colon A}$$

$$\Phi \mid \Gamma \vdash \mathtt{if}_A \ v \ \mathtt{then} \ v_1 \ \mathtt{else} \ v_2 \colon A$$

$$(7.18)$$

By induction we find $\Delta'_1, \Delta'_2, \Delta'_3$ such that

$$\Delta_1' = \Delta_1 \circ \sigma$$

$$\Delta_2' = \Delta_2 \circ \sigma$$

$$\Delta_3' = \Delta_3 \circ \sigma$$

And

$$\Delta' = (\text{If}) \frac{\Delta'_{1}}{\Phi \mid \Gamma' \vdash v [\sigma] : \text{Bool}} \frac{\Delta'_{2}}{\Phi \mid \Gamma' \vdash v_{1} [\sigma] : A} \frac{\Delta'_{3}}{\Phi \mid \Gamma' \vdash v_{2} [\sigma] : A}$$

$$\Phi \mid \Gamma' \vdash (\text{if}_{A} \ v \ \text{then} \ v_{1} \ \text{else} \ v_{2}) \ [\sigma] : A$$

$$(7.19)$$

Since $\sigma: \Gamma' \to \Gamma$,

Let $(T_{\epsilon}A)^{\sigma}: T_{\epsilon}A^{\Gamma} \xrightarrow{-} T_{\epsilon}A^{\Gamma'}$ be as defined in ExSh 3 (1) That is:

$$(T_{\epsilon}A)^{\sigma} = \operatorname{cur}(\operatorname{app} \circ (\operatorname{Id}_{T_{\epsilon}A} \times w))$$

. And hence, we have:

$$\operatorname{cur}(f \circ (\operatorname{Id} \times \sigma)) = (T_{\epsilon}A)^{\sigma} \circ \operatorname{cur}(f)$$

And so:

 $=\Delta\circ\sigma$

$$\begin{split} &\Delta' = \operatorname{app} \circ (([\operatorname{cur}(\Delta_2' \circ \pi_2), \operatorname{cur}(\Delta_3' \circ \pi_2)] \circ \Delta_1') \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By Definition} \\ &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \sigma \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \sigma \circ \pi_2)] \circ \Delta_1') \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By Induction} \\ &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2 \circ (\operatorname{Id}_1 \times \sigma)), \operatorname{cur}(\Delta_3 \circ \pi_2 \circ (\operatorname{Id}_1 \times \sigma))] \circ \Delta_1 \circ \sigma) \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By product property} \\ &= \operatorname{app} \circ (([(T_\epsilon A)^\sigma \circ \operatorname{cur}(\Delta_2 \circ \pi_2), (T_\epsilon A)^\sigma \circ \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1 \circ \sigma) \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By} (T_\epsilon A)^\sigma \operatorname{property} \\ &= \operatorname{app} \circ (((T_\epsilon A)^\sigma \circ [\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1 \circ \sigma) \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{Factor out transformation} \\ &= \operatorname{app} \circ (((T_\epsilon A)^\sigma \times \operatorname{Id}_{\Gamma'}) \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma'}) \circ (\sigma \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{Factor out Identity pairs} \\ &= \operatorname{app} \circ (\operatorname{Id}_{(T_\epsilon A)} \times \sigma) \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma'}) \circ (\sigma \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By defintion of app}, (T_\epsilon A)^\sigma \\ &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma}) \circ (\sigma \times \sigma) \circ \delta_{\Gamma'} \quad \operatorname{Push through pairs} \\ &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma} \circ \sigma \quad \operatorname{By Definition of the diagonal morphism}. \end{split}$$

Case Bind: By inversion, we have Δ_1, Δ_2 such that:

$$\Delta = (\text{Bind}) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v_1 : A} \frac{\Delta_2}{\Phi \mid \Gamma, x : A \vdash v_1 : B}$$

$$\Phi \mid \Gamma \vdash \text{do } x \leftarrow v_1 \text{ in } v_2 : M_{\epsilon_1 \cdot \epsilon_2} B$$

$$(7.20)$$

By property 3,

$$\Phi \mid (\Gamma', x : A) \vdash (\sigma, x := x : (\Gamma, x : A) \tag{7.21}$$

 $^{^{1} \}rm https://www.cl.cam.ac.uk/teaching/1819/L108/exercises/L108-exercise-sheet-3.pdf$

With denotation (extension lemma)

$$\llbracket \Phi \mid (\Gamma', x : A) \vdash (\sigma, x := x : (\Gamma, x : A) \rrbracket = \sigma \times \mathrm{Id}_A \tag{7.22}$$

By induction, we derive Δ'_1, Δ'_2 such that:

$$\begin{split} &\Delta_1' = \Delta_1 \circ \sigma \\ &\Delta_2' = \Delta_2 \circ (\sigma \times \mathtt{Id}_A) \quad \text{By Extension Lemma} \end{split}$$

And:

$$\Delta' = (\text{Bind}) \frac{\Delta'_{1}}{\Phi \mid \Gamma' \vdash v_{1} [\sigma] : A} \frac{\Delta'_{2}}{\Phi \mid \Gamma', x : A \vdash v_{1} [\sigma] : B}$$

$$\Phi \mid \Gamma' \vdash (\text{do } x \leftarrow v_{1} \text{ in } v_{2}) [\sigma] : M_{\epsilon_{1} \cdot \epsilon_{2}} B$$
(7.23)

Hence:

$$\begin{split} \Delta' &= \mu_{\epsilon_1,\epsilon_2,B} \circ T_{\epsilon_1} \Delta_2' \circ \mathbf{t}_{\epsilon_1,\Gamma',A} \circ \langle \mathrm{Id}_{\Gamma'}, \Delta_1' \rangle & \text{ By Definition} \\ &= \mu_{\epsilon_1,\epsilon_2,B} \circ T_{\epsilon_1} (\Delta_2 \circ (\sigma \times \mathrm{Id}_A)) \circ \mathbf{t}_{\epsilon_1,\Gamma',A} \circ \langle \mathrm{Id}_{\Gamma'}, \Delta_1 \circ \sigma \rangle & \text{ By Induction using the extension lemma} \\ &= \mu_{\epsilon_1,\epsilon_2,B} \circ T_{\epsilon_1} (\Delta_2) \circ \mathbf{t}_{\epsilon_1,\Gamma,A} \circ (\sigma \times \mathrm{Id}_{T_{\epsilon_1}A}) \circ \langle \mathrm{Id}_{\Gamma'}, \Delta_1 \circ \sigma \rangle & \text{By Tensor Strength} \\ &= \mu_{\epsilon_1,\epsilon_2,B} \circ T_{\epsilon_1} (\Delta_2) \circ \mathbf{t}_{\epsilon_1,\Gamma,A} \circ \langle \sigma, \Delta_1 \circ \sigma \rangle & \text{By Product rule} \\ &= \mu_{\epsilon_1,\epsilon_2,B} \circ T_{\epsilon_1} (\Delta_2) \circ \mathbf{t}_{\epsilon_1,\Gamma,A} \circ \langle \mathrm{Id}_{\Gamma}, \Delta_1 \rangle \circ \sigma & \text{By Product rule} \\ &= \Delta \circ \sigma & \text{By Defintion} \end{split}$$

Case Effect-Gen: By inversion, we have Δ_1 such that

$$\Delta = (\text{Effect-Gen}) \frac{\frac{\Delta_1}{\Phi, \alpha \mid \Gamma \vdash v : A}}{\Phi \mid \Gamma \vdash \Lambda \alpha . v : \forall \epsilon . A}$$
(7.24)

By induction, we derive Δ'_1 such that

$$\Delta' = (\text{Effect-Gen}) \frac{\Delta'_{1}}{\Phi, \alpha \mid \Gamma' \vdash v \left[\sigma\right] : A}$$

$$\Phi \mid \Gamma' \vdash (\Lambda \alpha. v) \left[\sigma\right] : \forall \epsilon. A$$

$$(7.25)$$

Where

$$\Delta_1' = \Delta_1 \circ \llbracket \Phi, \alpha \mid \Gamma' \vdash \sigma : \Gamma \rrbracket$$
$$= \Delta_1 \circ \llbracket \iota \pi : \Phi, a \triangleright \Phi \rrbracket^*(\sigma)$$
$$= \Delta_1 \circ \pi_1^*(\sigma)$$

Hence

$$\Delta \circ \sigma = \overline{\Delta_1} \circ \sigma$$

$$= \overline{\Delta_1} \circ \pi_1^*(\sigma)$$

$$= \overline{\Delta_1'}$$

$$= \Delta'$$

Case Effect-Spec: By inversion, we derive Δ_1 such that

$$\Delta = (\text{Effect-Spec}) \frac{\frac{\Delta_1}{\Phi \mid \Gamma \vdash v : \forall \alpha. A} \quad \Phi \vdash \epsilon}{\Phi \mid \Gamma \vdash v \; \epsilon : A \left[\epsilon / \alpha\right]}$$
(7.26)

By induction, we derive Δ_1' such that

$$\Delta' = (\text{Effect-Spec}) \frac{\frac{\Delta'_1}{\Phi \mid \Gamma' \vdash v \left[\sigma\right] : \forall \alpha. A} \quad \Phi \vdash \epsilon}{\Phi \mid \Gamma' \vdash (v \epsilon) \left[\sigma\right] : A \left[\epsilon/\alpha\right]}$$

$$(7.27)$$

Where

$$\Delta_1' = \Delta \circ \sigma$$

Hence, if $h = \llbracket \Phi \vdash \epsilon : \texttt{Effect} \rrbracket$

$$\begin{split} \Delta \circ \sigma &= \langle \mathtt{Id}_I, h \rangle^* (\epsilon \llbracket \Phi, \beta \vdash A \left[\alpha/\beta \right] \colon \mathtt{Effect} \rrbracket) \circ \Delta_1 \circ \sigma \\ &= \langle \mathtt{Id}_I, h \rangle^* (\epsilon \llbracket \Phi, \beta \vdash A \left[\alpha/\beta \right] \colon \mathtt{Effect} \rrbracket) \circ \Delta_1' \\ &= \Delta' \end{split}$$

Chapter 8

Type-Environment Weakening Theorem

If $w = \llbracket \Phi \vdash \omega \colon \Gamma' \triangleright G \rrbracket$ and Δ derives $\Phi \mid \Gamma \vdash v \colon A$ then there exists Δ' deriving $\Phi \mid \Gamma' \vdash v \colon A$ such that $\Delta' = \Delta \circ \omega$

Proof: We induct over the structure of typing derivations of $\Phi \mid \Gamma \vdash v : A$, assuming $\Phi \vdash \omega : \Gamma' \triangleright \Gamma$ holds. In each case, we construct the new derivation Δ' from the derivation Δ giving $\Phi \mid \Gamma \vdash v : A$ and show that $\Delta \circ \llbracket \Phi \vdash \omega : \Gamma' \triangleright \Gamma \rrbracket = \Delta'$

Case Var and Weaken: We case split on the weakening ω .

If $\omega = \iota$ Then $\Gamma' = \Gamma$, and so $\Phi \mid \Gamma' \vdash x : A$ holds and the derivation Δ' is the same as Δ

$$\Delta' = \Delta = \Delta \circ \operatorname{Id}_{\Gamma} = \Delta \circ \llbracket \Phi \vdash \iota \colon \Gamma \triangleright \Gamma \rrbracket \tag{8.1}$$

If $\omega = \omega' \pi$ Then $\Gamma' = (\Gamma'', x' : A')$ and $\Phi \vdash \omega' : \Gamma'' \triangleright \Gamma$. So by induction, there is a tree, Δ_1 deriving $\Phi \mid \Gamma'' \vdash x : A$, such that

$$\Delta_1 = \Delta \circ \llbracket \Phi \vdash \omega' \colon \Gamma'' \triangleright \Gamma \rrbracket \quad \text{By Induction}$$
 (8.2)

, and hence by the weaken rule, we have

$$(\text{Weaken}) \frac{\Phi \mid \Gamma'' \vdash x : A}{\Phi \mid \Gamma'', x' : A' \vdash x : A}$$

$$(8.3)$$

This preserves denotations:

$$\begin{split} \Delta' &= \Delta_1 \circ \pi_1 \quad \text{By Definition} \\ &= \Delta \circ \llbracket \Phi \vdash \omega' \colon \Gamma'' \rhd \Gamma \rrbracket \circ \pi_1 \quad \text{By induction} \\ &= \Delta \circ \llbracket \Phi \vdash \omega' \pi_1 \colon \Gamma' \rhd \Gamma \rrbracket \quad \text{By denotation of weakening} \end{split}$$

If $\omega = \omega' \times$ Then

$$\Gamma' = \Gamma''', x' : B$$

$$\Gamma = \Gamma'', x' : A'$$

$$B \leq_{:\Phi} A$$

If x = x' Then A = A'.

Then we derive the new derivation, Δ' as so:

$$(Subtype) \frac{(\text{var}) \frac{\Phi \vdash \Gamma \quad 0k}{\Phi \mid \Gamma''', x : B \vdash x : B}}{\Phi \mid \Gamma' \vdash x : A} \qquad B \leq :_{\Phi} A$$

$$(8.4)$$

This preserves denotations:

$$\begin{split} \Delta' &= \llbracket B \leq :_{\Phi} A \rrbracket \circ \pi_2 \quad \text{By Definition} \\ &= \pi_2 \circ (\llbracket \Phi \vdash \omega' \colon \Gamma''' \rhd \Gamma'' \rrbracket \times \llbracket B \leq :_{\Phi} A \rrbracket) \quad \text{By the properties of binary products} \\ &= \Delta \circ \llbracket \Phi \vdash \omega \colon \Gamma' \rhd \Gamma \rrbracket \quad \text{By Definition} \end{split}$$

Case $x \neq x'$ Then

$$\Delta = (\text{Weaken}) \frac{\frac{\Delta_1}{\Phi \mid \Gamma'' \vdash x : A}}{\Phi \mid \Gamma \vdash x : A}$$
(8.5)

By induction with $\Phi \vdash \omega : \Gamma''' \triangleright \Gamma''$, we have a derivation Δ_1 of $\Phi \mid \Gamma''' \vdash x : A$

We have the weakened derivation:

$$\Delta' = (\text{Weaken}) \frac{\Delta'_1}{\Phi \mid \Gamma''' \vdash x : A}$$

$$\Phi \mid \Gamma' \vdash x : A$$
(8.6)

This preserves denotations:

By induction, we have

$$\Delta_1' = \Delta_1 \circ \llbracket \Phi \vdash \omega \colon \Gamma''' \triangleright \Gamma'' \rrbracket \tag{8.7}$$

So we have:

$$\begin{split} \Delta' &= \Delta_1' \circ \pi_1 \quad \text{By denotation definition} \\ &= \Delta_1 \circ \llbracket \Phi \vdash \omega' \colon \Gamma''' \rhd \Gamma'' \rrbracket \quad \text{By induction} \circ \pi_1 \\ &= \Delta_1 \circ \pi_1 \circ (\llbracket \Phi \vdash \omega' \colon \Gamma''' \rhd \Gamma'' \rrbracket \times \llbracket A' \leq \colon_{\Phi} B \rrbracket) \quad \text{By product properties} \\ &= \Delta \circ \llbracket \Phi \vdash \omega \colon \Gamma' \rhd \Gamma \rrbracket \quad \text{By definition} \end{split}$$

From this point onwards, since we no-longer case split over the weakening relations, we write the denotation $\llbracket \Phi \vdash \omega \colon \Gamma' \triangleright \Gamma' \rrbracket$, simply as ω .

Case Constant: The constant typing rules, (), true, false, C^A , all proceed by the same logic. Hence I shall only prove the theorems for the case C^A .

$$(Const) \frac{\Phi \vdash \Gamma \quad 0k}{\Phi \mid \Gamma \vdash \mathbf{C}^A : A}$$

$$(8.8)$$

By inversion, we have $\Phi \vdash \Gamma$ Ok, so we have $\Phi \vdash \Gamma'$ Ok.

Hence

$$(\text{Const}) \frac{\Phi \vdash \Gamma' \quad 0k}{\Phi \mid \Gamma' \vdash C^A : A}$$

$$(8.9)$$

Holds.

This preserves denotations:

$$\Delta' = [\![\mathbf{C}^A]\!] \circ \langle \rangle_{\Gamma'} \quad \text{By definition}$$
$$= [\![\mathbf{C}^A]\!] \circ \langle \rangle_{\Gamma} \circ \omega \quad \text{By the terminal property}$$
$$= \Delta \quad \text{By Definition}$$

Case Lambda: By inversion, we have a derivation Δ_1 giving

$$\Delta = (\operatorname{Fn}) \frac{\Delta_1}{\Phi \mid \Gamma, x : A \vdash v : B}$$

$$\Delta = (\operatorname{Fn}) \frac{\Phi \mid \Gamma, x : A \vdash v : B}{\Phi \mid \Gamma \vdash \lambda x : A \cdot v : A \to B}$$
(8.10)

Since $\Phi \vdash \omega : \Gamma' \triangleright \Gamma$, we have:

$$\Phi \vdash \omega \times : (\Gamma, x : A) \triangleright (\Gamma, x : A) \tag{8.11}$$

Hence, by induction, using $\Phi \vdash \omega \times : (\Gamma, x : A) \triangleright (\Gamma, x : A)$, we derive Δ'_1 :

$$\Delta' = (\operatorname{Fn}) \frac{\Delta'_1}{\Phi \mid \Gamma', x : A \vdash v : B}$$

$$\Delta' = (\operatorname{Fn}) \frac{\Phi \mid \Gamma', x : A \vdash \lambda x : A \vdash v : B}{\Phi \mid \Gamma', x : A \vdash \lambda x : A \cdot v : A \to B}$$
(8.12)

This preserves denotations:

$$\Delta' = \operatorname{cur}(\Delta'_1)$$
 By Definition
= $\operatorname{cur}(\Delta_1 \circ (\omega \times \operatorname{Id}_{\Gamma}))$ By the denotation of $\omega \times$
= $\operatorname{cur}(\Delta_1) \circ \omega$ By the exponential property
= $\Delta \circ \omega$ By Definition

Case Subtyping:

(Subtype)
$$\frac{\Phi \mid \Gamma \vdash v : A \qquad A \leq :_{\Phi} B}{\Phi \mid \Gamma \vdash v : B}$$
 (8.13)

by inversion, we have a derivation Δ_1

$$\frac{\Delta_1}{\Phi \mid \Gamma \vdash v : A} \tag{8.14}$$

So by induction, we have a derivation Δ_1' such that:

$$(Subtype) \frac{\Delta'_{1}}{\Phi \mid \Gamma' \vdash v : a} \qquad A \leq :_{\Phi} B$$

$$\Phi \mid \Gamma' \vdash v : B \qquad (8.15)$$

This preserves denotations:

$$\Delta' = [A \leq :_{\Phi} B] \circ \Delta'_1 \quad \text{By Definition}$$
$$= [A \leq :_{\Phi} B] \circ \Delta_1 \circ \omega \quad \text{By induction}$$
$$= \Delta \circ \omega \quad \text{By Definition}$$

Case Return: We have the Subderivation Δ_1 such that

$$\Delta = (\text{Return}) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v : A}$$

$$\Phi \mid \Gamma \vdash \text{return } v : M_1 A$$
(8.16)

Hence, by induction, with $\Phi \vdash \omega \colon \Gamma' \rhd \Gamma$, we find the derivation Δ'_1 such that:

$$\Delta' = (\text{Return}) \frac{\Delta'_1}{\Phi \mid \Gamma' \vdash v : A}$$

$$\Phi \mid \Gamma' \vdash \text{return } v : M_1 A$$
(8.17)

This preserves denotations:

$$\Delta' = \eta_A \circ \Delta'_1 \quad \text{By definition}$$

$$= \eta_A \circ \Delta_1 \circ \omega \quad \text{By induction of } \Delta_1, \Delta'_1$$

$$= \Delta \circ \omega \quad \text{By Definition}$$

Case Apply: By inversion, we have derivations Δ_1 , Δ_2 such that

$$\Delta = (\text{Apply}) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v_1 : A \to B} \frac{\Delta_2}{\Phi \mid \Gamma \vdash v_2 : A}$$

$$\Phi \mid \Gamma \vdash v_1 \ v_2 : B$$
(8.18)

By induction, this gives us the respective derivations: Δ'_1, Δ'_2 such that

$$\Delta' = (\text{Apply}) \frac{\Delta'_1}{\Phi \mid \Gamma' \vdash v_1 : A \to B} \frac{\Delta'_2}{\Phi \mid \Gamma' \vdash v_2 : A}$$

$$\Phi \mid \Gamma' \vdash v_1 : v_2 : B$$
(8.19)

This preserves denotations:

$$\begin{split} \Delta' &= \mathsf{app} \circ \langle \Delta_1', \Delta_2' \rangle \quad \text{By Definition} \\ &= \mathsf{app} \circ \langle \Delta_1 \circ \omega, \Delta_2 \circ \omega \rangle \quad \text{By induction on } \Delta_1, \Delta_2 \\ &= \mathsf{app} \circ \langle \Delta_1, \Delta_2 \rangle \circ \omega \\ &= \Delta \circ \omega \quad \text{By Definition} \end{split}$$

Case If: By inversion, we have the Subderivations $\Delta_1, \Delta_2, \Delta_3$, such that:

$$\Delta = (\text{If}) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v : \texttt{Bool}} \frac{\Delta_2}{\Phi \mid \Gamma \vdash v_1 : A} \frac{\Delta_3}{\Phi \mid \Gamma \vdash v_2 : A}$$

$$\Phi \mid \Gamma \vdash \texttt{if}_A \ v \ \texttt{then} \ v_1 \ \texttt{else} \ v_2 : A$$
(8.20)

By induction, this gives us the Subderivations $\Delta_1', \Delta_2', \Delta_3'$ such that

$$\Delta' = (\text{If}) \frac{\Delta'_1}{\Phi \mid \Gamma' \vdash v : \text{Bool}} \frac{\Delta'_2}{\Phi \mid \Gamma' \vdash v_1 : A} \frac{\Delta'_3}{\Phi \mid \Gamma' \vdash v_2 : A}$$

$$\Phi \mid \Gamma' \vdash \text{if}_A \ v \ \text{then} \ v_1 \ \text{else} \ v_2 : A$$
(8.21)

And

$$\Delta'_1 = \Delta_1 \circ \omega$$
$$\Delta'_3 = \Delta_2 \circ \omega$$
$$\Delta'_3 = \Delta_3 \circ \omega$$

This preserves denotations. Since $\omega: \Gamma' \to \Gamma$, Let $(T_{\epsilon}A)^{\omega}: T_{\epsilon}A^{\Gamma} \to T_{\epsilon}A^{\Gamma'}$ be as defined in ExSh 3 (1) That is:

$$(T_{\epsilon}A)^{\omega} = \operatorname{cur}(\operatorname{app} \circ (\operatorname{Id}_{T_{\epsilon}A} \times w))$$

. And hence, we have:

$$\operatorname{cur}(f \circ (\operatorname{Id} \times \omega)) = (T_{\epsilon}A)^{\omega} \circ \operatorname{cur}(f)$$

 $^{^{1}} https://www.cl.cam.ac.uk/teaching/1819/L108/exercises/L108-exercise-sheet-3.pdf$

```
\begin{split} &\Delta' = \operatorname{app} \circ (([\operatorname{cur}(\Delta_2' \circ \pi_2), \operatorname{cur}(\Delta_3' \circ \pi_2)] \circ \Delta_1') \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By Definition} \\ &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \omega \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \omega \circ \pi_2)] \circ \Delta_1') \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By Induction} \\ &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2 \circ (\operatorname{Id}_1 \times \omega)), \operatorname{cur}(\Delta_3 \circ \pi_2 \circ (\operatorname{Id}_1 \times \omega))] \circ \Delta_1 \circ \omega) \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By product property} \\ &= \operatorname{app} \circ (([(T_\epsilon A)^\omega \circ \operatorname{cur}(\Delta_2 \circ \pi_2), (T_\epsilon A)^\omega \circ \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1 \circ \omega) \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By } (T_\epsilon A)^\omega \text{ property} \\ &= \operatorname{app} \circ (((T_\epsilon A)^\omega \circ [\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1 \circ \omega) \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By } (T_\epsilon A)^\omega \text{ property} \\ &= \operatorname{app} \circ (((T_\epsilon A)^\omega \times \operatorname{Id}_{\Gamma'}) \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma'}) \circ (\omega \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{Factor out Identity pairs} \\ &= \operatorname{app} \circ (\operatorname{Id}_{(T_\epsilon A)} \times \omega) \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma'}) \circ (\omega \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By defintion of app}, (T_\epsilon A)^\omega \\ &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma}) \circ (\omega \times \omega) \circ \delta_{\Gamma'} \quad \operatorname{Push through pairs} \\ &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma'} \quad \operatorname{By Definition of the diagonal morphism}. \\ &= \Delta \circ \omega \end{split}
```

Case Bind: By inversion, we have derivations Δ_1, Δ_2 such that:

$$\Delta = (\text{Bind}) \frac{\Delta_1}{\Phi \mid \Gamma \vdash v_1 : \mathsf{M}_{\mathbb{E}_1} A} \frac{\Delta_2}{\Phi \mid \Gamma, x : A \vdash v_2 : \mathsf{M}_{\epsilon_2} B}$$

$$\Phi \mid \Gamma \vdash \mathsf{do} \ x \leftarrow v_1 \ \mathsf{in} \ v_2 : \mathsf{M}_{\epsilon_1, \epsilon_2} B$$
(8.22)

If $\Phi \vdash \omega : \Gamma' \triangleright \Gamma$ then $\Phi \vdash \omega \times : \Gamma', x : A \triangleright \Gamma, x : A$, so by induction, we can derive Δ'_1, Δ'_2 such that:

$$\Delta' = (\text{Bind}) \frac{\Delta'_1}{\Phi \mid \Gamma' \vdash v_1 : \mathsf{M}_{\epsilon_1} A} \frac{\Delta'_2}{\Phi \mid \Gamma', x : A \vdash v_2 : \mathsf{M}_{\epsilon_2} B}$$

$$\Phi \mid \Gamma' \vdash \mathsf{do} \ x \leftarrow v_1 \ \mathsf{in} \ v_2 : \mathsf{M}_{\epsilon_1 \cdot \epsilon_2} B$$
(8.23)

This preserves denotations:

$$\begin{split} \Delta' &= \mu_{\epsilon_1,\epsilon_2,B} \circ T_{\epsilon_1} \Delta_2' \circ \mathbf{t}_{\epsilon_1,\Gamma',A} \circ \langle \mathrm{Id}_{G'}, \Delta_1' \rangle & \text{ By definition } \\ &= \mu_{\epsilon_1,\epsilon_2,B} \circ T_{\epsilon_1} (\Delta_2 \circ (\omega \times \mathrm{Id}_A)) \circ \mathbf{t}_{\epsilon_1,\Gamma',A} \circ \langle \mathrm{Id}_{G'}, \Delta_1 \circ \omega \rangle & \text{ By induction on } \Delta_1', \Delta_2' \\ &= \mu_{\epsilon_1,\epsilon_2,B} \circ T_{\epsilon_1} \Delta_2 \circ \mathbf{t}_{\epsilon_1,\Gamma,A} \circ \langle \omega, \Delta_1 \circ \omega \rangle & \text{ By tensor strength } \\ &= \mu_{\epsilon_1,\epsilon_2,B} \circ T_{\epsilon_1} \Delta_2 \circ \mathbf{t}_{\epsilon_1,\Gamma,A} \circ \langle \mathrm{Id}_{\Gamma}, \Delta_1 \rangle \circ \omega & \text{ By product property } \\ &= \Delta & \text{ By definition } \end{split}$$

Case Effect-Gen: By inversion, we have Δ_1 such that

$$\Delta = (\text{Effect-Gen}) \frac{\Delta_1}{\Phi, \alpha \mid \Gamma \vdash v : A}$$

$$\Phi \mid \Gamma \vdash \Lambda \alpha . v : \forall \epsilon . A$$
(8.24)

By induction, we derive Δ'_1 such that

$$\Delta' = (\text{Effect-Gen}) \frac{\frac{\Delta'_1}{\Phi, \alpha \mid \Gamma' \vdash v : A}}{\Phi \mid \Gamma' \vdash (\Lambda \alpha. v) : \forall \epsilon. A}$$
(8.25)

Where

$$\Delta_1' = \Delta_1 \circ \llbracket \Phi, \alpha \vdash \omega \colon \Gamma' \triangleright \Gamma \rrbracket$$
$$= \Delta_1 \circ \llbracket \iota \pi \colon \Phi, a \triangleright \Phi \rrbracket^*(\omega)$$
$$= \Delta_1 \circ \pi_1^*(\omega)$$

Hence

$$\begin{split} \Delta \circ \omega &= \overline{\Delta_1} \circ \omega \\ &= \overline{\Delta_1} \circ \pi_1^*(\omega) \\ &= \overline{\Delta_1'} \\ &= \Delta' \end{split}$$

Case Effect-Spec: By inversion, we derive Δ_1 such that

$$\Delta = (\text{Effect-Spec}) \frac{\frac{\Delta_1}{\Phi \mid \Gamma \vdash v : \forall \alpha. A} \quad \Phi \vdash \epsilon}{\Phi \mid \Gamma \vdash v \; \epsilon : A \left[\epsilon / \alpha\right]}$$
(8.26)

By induction, we derive Δ_1' such that

$$\Delta' = (\text{Effect-Spec}) \frac{\Delta'_1}{\Phi \mid \Gamma' \vdash v : \forall \alpha. A} \qquad \Phi \vdash \epsilon$$

$$\Phi \mid \Gamma' \vdash v \in A \left[\epsilon/\alpha\right] \qquad (8.27)$$

Where

$$\Delta_1' = \Delta \circ \omega$$

Hence, if $h = \llbracket \Phi \vdash \epsilon : \texttt{Effect} \rrbracket$

$$\begin{split} \Delta \circ \omega &= \langle \mathtt{Id}_I, h \rangle^* (\epsilon \llbracket \Phi, \beta \vdash A \left[\alpha/\beta \right] \colon \mathtt{Effect} \rrbracket) \circ \Delta_1 \circ \omega \\ &= \langle \mathtt{Id}_I, h \rangle^* (\epsilon \llbracket \Phi, \beta \vdash A \left[\alpha/\beta \right] \colon \mathtt{Effect} \rrbracket) \circ \Delta_1' \\ &= \Delta' \end{split}$$

Chapter 9

Unique Denotation Theorem

9.1 Reduced Type Derivation

A reduced type derivation is one where subtype and subeffect rules must, and may only, occur at the root or directly above an **if**, or **apply** rule.

In this section, I shall prove that there is at most one reduced derivation of $\Phi \mid \Gamma \vdash v : A$. Secondly, I shall present a function for generating reduced derivations from arbitrary typing derivations, in a way that does not change the denotations. These imply that all typing derivations of a type-relation have the same denotation.

9.2 Reduced Type Derivations are Unique

For each instance of the relation $\Phi \mid \Gamma \vdash v : A$, there exists at most one reduced derivation of $\Phi \mid \Gamma \vdash v : A$. This is proved by induction over the typing rules on the bottom rule used in each derivation.

Case Variables: To find the unique derivation of $\Phi \mid \Gamma \vdash x : A$, we case split on the type-environment, Γ .

Case: $\Gamma = \Gamma', x : A'$ Then the unique reduced derivation of $\Phi \mid \Gamma \vdash x : A$ is, if $A' \leq :_{\Phi} A$, as below:

$$(Subtype) \frac{(\operatorname{Var}) \frac{\Phi \vdash \Gamma', x : A' \quad 0k}{\Phi \mid \Gamma, x : A' \vdash x : A'} \qquad A' \leq :_{\Phi} A}{\Phi \mid \Gamma', x : A' \vdash x : A}$$

$$(9.1)$$

Case: $\Gamma = \Gamma', y : B$ with $y \neq x$.

Hence, if $\Phi \mid \Gamma \vdash x : A$ holds, then so must $\Phi \mid \Gamma' \vdash x : A$.

Let

(Subtype)
$$\frac{\Delta}{\Phi \mid \Gamma' \vdash x : A'} \qquad A' \leq : A$$
$$\Phi \mid \Gamma' \vdash x : A \qquad (9.2)$$

Be the unique reduced derivation of $\Phi \mid \Gamma' \vdash x : A$.

Then the unique reduced derivation of $\Phi \mid \Gamma \vdash x : A$ is:

$$(\text{Subtype}) \frac{\frac{\Delta}{\Phi \mid \Gamma, x : A' \vdash x : A'}}{\frac{\Phi \mid \Gamma \vdash x : A'}{\Phi \mid \Gamma \vdash x : A}} \qquad A' \leq :_{\Phi} A$$

Case Constants: For each of the constants, (C^A , true, false, ()), there is exactly one possible derivation for $\Phi \mid \Gamma \vdash c : A$ for a given A. I shall give examples using the case C^A

$$(\text{Subtype}) \frac{(\text{Const}) \frac{\Gamma \text{ 0k}}{\Gamma \vdash \mathbf{C}^A : A} \qquad A \leq :_{\Phi} B}{\Phi \mid \Gamma \vdash \mathbf{C}^A : B}$$

If A = B, then the subtype relation is the identity subtype $(A \leq :_{\Phi} A)$.

Case Lambda: The reduced derivation of $\Phi \mid \Gamma \vdash \lambda x: A.v: A' \rightarrow B'$ is:

$$(Subtype) \frac{\frac{\Delta}{\Phi \mid \Gamma, x: A \vdash v: B}}{\frac{\Phi \mid \Gamma \vdash \lambda x: A.B : A \rightarrow B}{\Phi \mid \Gamma \vdash \lambda x: A.B : A \rightarrow B}} \qquad A \rightarrow B \leq :_{\Phi} A' \rightarrow B'$$

Where

(Subtype)
$$\frac{\Delta}{\Phi \mid \Gamma, x : A \vdash v : B} \qquad B \leq :_{\Phi} B'$$
$$\Phi \mid \Gamma, x : A \vdash v : B'$$

is the reduced derivation of $\Phi \mid \Gamma, x: A \vdash v: B$ if it exists.

Case Return: The reduced denotation of $\Phi \mid \Gamma \vdash \text{return } v : B$ is

$$(\text{Subtype}) \frac{\frac{\Delta}{\Phi \mid \Gamma \vdash v \colon A}}{\frac{\Phi \mid \Gamma \vdash \text{return } v \colon \texttt{M}_{1}A}{\Phi \mid \Gamma \vdash \text{return } v \colon \texttt{M}_{2}A}} \qquad (\text{Effect}) \frac{1 \leq_{\Phi} \epsilon \qquad A \leq :_{\Phi} B}{\texttt{M}_{1}A \leq :_{\Phi} \texttt{M}_{\epsilon}B}$$

Where

$$(Subtype) \frac{\Delta}{\Phi \mid \Gamma \vdash v : A} \qquad A \leq B$$

$$\Phi \mid \Gamma \vdash v : B$$

is the reduced derivation of $\Phi \mid \Gamma \vdash v : B$

Case Apply: If

(Subtype)
$$\frac{\Delta}{\Phi \mid \Gamma \vdash v_1 : A \to B} \qquad A \to B \le : A' \to B'$$
$$\Phi \mid \Gamma \vdash v_1 : A' \to B'$$

and

$$(Subtype) \frac{\Delta'}{\Phi \mid \Gamma \vdash v_2 : A''} \qquad A'' \leq : A'$$
$$\Phi \mid \Gamma \vdash v_2 : A'$$

Are the reduced type derivations of $\Phi \mid \Gamma \vdash v_1: A' \to B'$ and $\Phi \mid \Gamma \vdash v_2: A'$

Then we can construct the reduced derivation of $\Phi \mid \Gamma \vdash v_1 \ v_2 : B$ as

$$(Apply) \frac{\Delta}{\Phi \mid \Gamma \vdash v_1 : A \to B} \qquad (Subtype) \frac{\frac{\Delta'}{\Phi \mid \Gamma \vdash v : A''} \qquad A'' \leq :_{\Phi} A}{\Phi \mid \Gamma \vdash v : A}$$

$$(Subtype) \frac{\Phi \mid \Gamma \vdash v_1 \ v_2 : B}{\Phi \mid \Gamma \vdash v_1 \ v_2 : B'} \qquad B \leq :_{\Phi} B'$$

Case If: Let

$$(Subtype) \frac{\frac{\Delta}{\Phi \mid \Gamma \vdash v : B'} \quad B' \leq : Bool}{\Phi \mid \Gamma \vdash v : Bool}$$

$$(9.5)$$

$$(Subtype) \frac{\frac{\Delta'}{\Phi \mid \Gamma \vdash v_1 : A'} \qquad A' \le : A}{\Phi \mid \Gamma \vdash v_1 : A}$$

$$(9.6)$$

$$(Subtype) \frac{\frac{\Delta'}{\Phi \mid \Gamma \vdash v_2 : A''} \qquad A'' \le : A}{\Phi \mid \Gamma \vdash v_2 : A}$$

$$(9.7)$$

Be the unique reduced derivations of $\Phi \mid \Gamma \vdash v : \mathsf{Bool}, \ \Phi \mid \Gamma \vdash v_1 : A, \ \Phi \mid \Gamma \vdash v_2 : A$.

Then the only reduced derivation of $\Phi \mid \Gamma \vdash \text{if}_A v \text{ then } v_1 \text{ else } v_2 : B \text{ is:}$

TODO: Scale this properly

TODO: Scale this properly
$$\frac{\Delta}{\frac{\Delta}{\Phi \mid \Gamma \vdash v : B'}} \frac{B' \leq : \mathsf{Bool}}{B \mid \Gamma \vdash v : \mathsf{Bool}}$$

$$\frac{\Delta'}{\frac{\Phi \mid \Gamma \vdash v_1 : A'}{\Phi \mid \Gamma \vdash v_1 : A'}} \frac{A' \leq : A}{\Phi \mid \Gamma \vdash v_2 : A} \frac{\Delta'}{\frac{\Phi \mid \Gamma \vdash v_2 : A''}{\Phi \mid \Gamma \vdash v_2 : A}} \frac{A'' \leq : A}{\Phi \mid \Gamma \vdash v_2 : A}$$

$$(Subtype) \frac{(If) \frac{\Delta'}{\Phi \mid \Gamma \vdash v_1 : A}}{\Phi \mid \Gamma \vdash \mathsf{if}_A \ v \ \mathsf{then} \ v_1 \ \mathsf{else} \ v_2 : A}}{\Phi \mid \Gamma \vdash \mathsf{if}_A \ v \ \mathsf{then} \ v_1 \ \mathsf{else} \ v_2 : B}$$

$$(9.8)$$

Case Bind: Let

$$(Subtype) \frac{\Delta}{\Phi \mid \Gamma \vdash v_1 : \mathsf{M}_{\epsilon_1} A} \qquad (Computation) \frac{A \leq :_{\Phi} A' \qquad \epsilon_1 \leq_{\Phi} \epsilon'_1}{\mathsf{M}_{\epsilon_1} A \leq :_{\Phi} \mathsf{M}_{\epsilon'_1} A'} \qquad (9.9)$$

$$(Subtype) \frac{\frac{\Delta'}{\Phi \mid \Gamma, x : A \vdash v_2 : \mathsf{M}_{\epsilon_2} B} \quad (Computation) \frac{B \leq :_{\Phi} B' \quad \epsilon_2 \leq_{\Phi} \epsilon'_2}{\mathsf{M}_{\epsilon_2} B \leq :_{\Phi} \mathsf{M}_{\epsilon'_2} B'}}{\Phi \mid \Gamma, x : A \vdash v_2 : \mathsf{M}_{\epsilon'_2} B'}$$
(9.10)

Be the respective unique reduced type derivations of the subterms

By weakening, $\Phi \vdash \iota \times : \Gamma, x : A \triangleright \Gamma, x : A'$ so if there's a derivation of $\Phi \mid \Gamma, x : A' \vdash v_2 : B$, there's also one of $\Phi \mid \Gamma, x : A \vdash v_2 : B$.

$$(Subtype) \frac{\frac{\Delta''}{\Phi \mid \Gamma, x : A' \vdash v_2 : \mathsf{M}_{\epsilon_2} B} \quad (Computation) \frac{B \leq :_{\Phi} B' \quad \epsilon_2 \leq_{\Phi} \epsilon'_2}{\mathsf{M}_{\epsilon_2} B \leq :_{\Phi} \mathsf{M}_{\epsilon'_2} B'}}{\Phi \mid \Gamma, x : A' \vdash v_2 : \mathsf{M}_{\epsilon'_2} B'}$$
(9.11)

Since the effects monoid operation is monotone, if $\epsilon_1 \leq_{\Phi} \epsilon'_1$ and $\epsilon_2 \leq_{\Phi} \epsilon'_2$ then $\epsilon_1 \cdot \epsilon_2 \leq_{\Phi} \epsilon'_1 \cdot \epsilon'_2$ Hence the reduced type derivation of $\Phi \mid \Gamma \vdash \text{do } x \leftarrow v_1 \text{ in } v_2 : \texttt{M}_{\epsilon'_1 \cdot \epsilon'_2} B'$ is the following:

TODO: Make this and the other smaller

$$(Subtype) \frac{\frac{\Delta}{\Phi \mid \Gamma \vdash v_{1} : \mathsf{M}_{\epsilon_{1}} A}}{\frac{\Phi \mid \Gamma \vdash v_{1} : \mathsf{M}_{\epsilon_{1}} A}} \qquad (Computation) \frac{A \leq :_{\Phi} A' \qquad \epsilon_{1} \leq _{\Phi} \epsilon'_{1}}{\mathsf{M}_{\epsilon_{1}} A \leq :_{\Phi} \mathsf{M}_{\epsilon'_{1}} A'}}{\frac{\Phi \mid \Gamma \vdash v_{1} : \mathsf{M}_{\epsilon'_{1}} A'}{\Phi \mid \Gamma, x : A' \vdash v_{2} : \mathsf{M}_{\epsilon_{2}} B}} \qquad (Computation) \frac{B \leq :_{\Phi} B' \qquad \epsilon_{2} \leq _{\Phi} \epsilon'_{2}}{\mathsf{M}_{\epsilon_{2}} B \leq :_{\Phi} \mathsf{M}_{\epsilon'_{2}} B'}}{\frac{\Phi \mid \Gamma, x : A' \vdash v_{2} : \mathsf{M}_{\epsilon'_{2}} B'}{\Phi \mid \Gamma \vdash \mathsf{do} \ x \leftarrow v_{1} \ \mathsf{in} \ v_{2} : \mathsf{M}_{\epsilon_{1} \cdot \epsilon_{2}} B}} \qquad (Subtype) \frac{\epsilon_{1} \cdot \epsilon_{2} \leq _{\Phi} \epsilon'_{1} \cdot \epsilon'_{2} \qquad B \leq :_{\Phi} B'}{\mathsf{M}_{\epsilon'_{1} \cdot \epsilon'_{2}} B'}}{\Phi \mid \Gamma \vdash \mathsf{do} \ x \leftarrow v_{1} \ \mathsf{in} \ v_{2} : \mathsf{M}_{\epsilon'_{1} \cdot \epsilon'_{2}} B'} \qquad (9.12)$$

Case Effect-Gen: The unique reduced derivation of $\Phi \mid \Gamma \vdash \Lambda \alpha.A: \forall \alpha.B$

is

(Subtype)
$$\frac{\Delta}{\Phi, \alpha \mid \Gamma \vdash v : A}$$

$$(Subtype) - \frac{\Phi \mid \Gamma \vdash \Lambda \alpha . v : \forall \alpha . A}{\Phi \mid \Gamma \vdash \Lambda \alpha . B : \forall \alpha . B}$$

$$(9.13)$$

Where

$$(Subtype) \frac{\frac{\Delta}{\Phi, \alpha \mid \Gamma \vdash v : A}}{\Phi, \alpha \mid \Gamma \vdash v : B} \qquad A \leq :_{\Phi, \alpha} B$$

$$(9.14)$$

Is the unique reduced derivation of Φ , $\alpha \mid \Gamma \vdash v : B$

Case Effect-Spec: The unique reduced derivation of $\Phi \mid \Gamma \vdash v \ \alpha : B'$

is

(Subtype)
$$\frac{\Delta}{\frac{\Phi \mid \Gamma \vdash v : \forall \alpha.A}{\Phi \mid \Gamma \vdash v \in A \left[\epsilon/\alpha\right]}} \qquad A \left[\epsilon/\alpha\right] \leq :_{\Phi} B'$$

$$\Phi \mid \Gamma \vdash v \alpha : B'$$
(9.15)

Where $B[\epsilon/\alpha] \leq :_{\Phi} B'$ and

$$(Subtype) \frac{\frac{\Delta}{\Phi \mid \Gamma \vdash v : \forall \alpha . B}}{\Phi \mid \Gamma \vdash v : \forall \alpha . B} \qquad (Quantification) \frac{A \leq :_{\Phi, \alpha} B}{\forall \alpha . A \leq :_{\Phi} \forall \alpha . B}$$

$$(9.16)$$

9.3 Each type derivation has a reduced equivalent with the same denotation.

We introduce a function, reduce that maps each valid type derivation of $\Phi \mid \Gamma \vdash v : A$ to a reduced equivalent with the same denotation. To do this, we do case analysis over the root type rule of a derivation and prove that the denotation is not changed.

Case Constants: For the constants true, false, C^A , etc, reduce simply returns the derivation, as it is already reduced. This trivially preserves the denotation.

$$reduce((\mathrm{Const})\frac{\Gamma \ \, \mathrm{Ok}}{\Gamma \vdash \mathsf{C}^A \colon A}) = (\mathrm{Const})\frac{\Gamma \ \, \mathrm{Ok}}{\Gamma \vdash \mathsf{C}^A \colon A}$$

Case Var:

$$reduce((\operatorname{Var})\frac{\Phi \vdash \Gamma \ 0k}{\Phi \mid \Gamma, x : A \vdash x : A}) = (\operatorname{Var})\frac{\Phi \vdash \Gamma \ 0k}{\Phi \mid \Gamma, x : A \vdash x : A} \tag{9.17}$$

Preserves denotation trivially.

Case Weaken:

reduce **definition** To find:

$$reduce((\text{Weaken}) \frac{\Delta}{\Phi \mid \Gamma \vdash x : A}$$

$$\Phi \mid \Gamma, y : B \vdash x : A$$

$$(9.18)$$

Let

(Subtype)
$$\frac{\Delta'}{\Phi \mid \Gamma \vdash x : A} \qquad A' \leq :_{\Phi} A$$
$$\Phi \mid \Gamma \vdash x : A \qquad = reduce(\Delta)$$
(9.19)

In

$$(\text{Subtype}) \frac{\frac{\Delta'}{\Phi \mid \Gamma \vdash x : A'}}{\frac{\Phi \mid \Gamma, y : B \vdash x : A'}{\Phi \mid \Gamma, y : B \vdash x : A}} \qquad A' \leq :_{\Phi} A$$

Preserves Denotation Using the construction of denotations, we can find the denotation of the original derivation to be:

$$[\![\text{(Weaken)}\frac{\Delta}{\Phi \mid \Gamma \vdash x : A}]\!] = \Delta \circ \pi_1$$

$$(9.21)$$

Similarly, the denotation of the reduced denotation is:

$$\underbrace{\text{(Weaken)}} \frac{\Delta'}{\Phi \mid \Gamma \vdash x : A'} \qquad A' \leq :_{\Phi} A \\
\underbrace{\text{(Subtype)}} \frac{\Phi \mid \Gamma, y : B \vdash x : A'}{\Phi \mid \Gamma, y : B \vdash x : A} \qquad A' \leq :_{\Phi} A \\
\boxed{} = [A' \leq :_{\Phi} A] \circ \Delta' \circ \pi_{1} \qquad (9.22)$$

By induction on reduce preserving denotations and the reduction of Δ (9.19), we have:

$$\Delta = [A' \le_{\Phi} A] \circ \Delta' \tag{9.23}$$

So the denotations of the un-reduced and reduced derivations are equal.

Case Lambda:

reduce **definition** To find:

$$reduce((\operatorname{Fn})\frac{\Delta}{\Phi \mid \Gamma, x: A \vdash v: B} \over \Phi \mid \Gamma \vdash \lambda x: A.v: A \to B})$$

$$(9.24)$$

Let

(Subtype)
$$\frac{\Delta'}{\Phi \mid \Gamma, x : A \vdash v : B'} B' \leq :_{\Phi} B \qquad \Phi \mid \Gamma, x : A \vdash v : \mathbf{M}_{\epsilon_{2}} B$$
$$= reduce(\Delta)$$
(9.25)

In

(Subtype)
$$\frac{\Delta'}{\frac{\Phi \mid \Gamma, x: A \vdash v: B'}{\Phi \mid \Gamma \vdash \lambda x: A.v: A \rightarrow B'}} \qquad A \rightarrow B' \leq :_{\Phi} A \rightarrow B$$
$$\Phi \mid \Gamma \vdash \lambda x: A.v: A \rightarrow B$$
 (9.26)

Preserves Denotation Let

$$f = [\![B' \leq :_\Phi B']\!]$$

$$[\![A \to B' \leq :_\Phi A \to B]\!] = f^A = \mathrm{cur}(f \circ \mathrm{app})$$

Then

$$\begin{split} before &= \mathtt{cur}(\Delta) \quad \text{By definition} \\ &= \mathtt{cur}(f \circ \Delta') \quad \text{By reduction of } \Delta \\ &= f^A \circ \mathtt{cur}(\Delta') \quad \text{By the property of } f^X \circ \mathtt{cur}(g) = \mathtt{cur}(f \circ g) \\ &= after \quad \text{By definition} \end{split}$$

Case Subtype:

reduce **definition** To find:

$$reduce((Subtype) \frac{\frac{\Delta}{\Phi \mid \Gamma \vdash v : A} \qquad A \leq :_{\Phi} B}{\Phi \mid \Gamma \vdash v : B})$$

$$(9.27)$$

Let

$$(Subtype) \frac{\frac{\Delta'}{\Phi \mid \Gamma \vdash x : A} \qquad A' \leq :_{\Phi} A}{\Phi \mid \Gamma \vdash x : A} = reduce(\Delta)$$

$$(9.28)$$

In

$$(Subtype) \frac{\Delta'}{\Phi \mid \Gamma \vdash v : A'} \qquad A' \leq :_{\Phi} A \leq :_{\Phi} B$$

$$\Phi \mid \Gamma \vdash v : B \qquad (9.29)$$

Preserves Denotation

$$\begin{split} before &= [\![A \leq :_\Phi B]\!] \circ \Delta \\ &= [\![A \leq :_\Phi B]\!] \circ ([\![A' \leq :_\Phi A]\!] \circ \Delta') \quad \text{ by Denotation of reduction of } \Delta. \\ &= [\![A' \leq :_\Phi B]\!] \circ \Delta' \quad \text{Subtyping relations are unique} \\ &= after \end{split}$$

Case Return:

reduce **definition** To find:

$$reduce((Return) \frac{\Delta}{\Phi \mid \Gamma \vdash v : A} \over \Phi \mid \Gamma \vdash \mathsf{return} \ v : \mathsf{M}_1 A}) \tag{9.30}$$

Let

$$(Subtype) \frac{\frac{\Delta'}{\Phi \mid \Gamma \vdash v : A'} \qquad A' \leq :_{\Phi} A}{\Phi \mid \Gamma \vdash v : A} = reduce(\Delta)$$

$$(9.31)$$

In

$$(Subtype) \frac{\frac{\Delta'}{\Phi \mid \Gamma \vdash v : A}}{\frac{\Phi \mid \Gamma \vdash return \ v : M_{1}A'}{\Phi \mid \Gamma \vdash return \ v : M_{1}A'}} \qquad (Effect) \frac{1 \leq_{\Phi} 1 \qquad A' \leq_{:\Phi} A}{M_{1}A' \leq_{:\Phi} M_{1}A}$$

$$(9.32)$$

Then

$$\begin{split} before &= \eta_A \circ \Delta \quad \text{By definition} \quad \text{By definition} \\ &= \eta_A \circ \llbracket A' \leq :_\Phi A \rrbracket \circ \Delta' \quad \text{By reduction of } \Delta \\ &= T_1 \llbracket A' \leq :_\Phi A \rrbracket \circ \eta_{A'} \circ \Delta' \quad \text{By naturality of } \eta \\ &= \llbracket 1 \leq_\Phi 1 \rrbracket_{M,A} \circ T_1 \llbracket A' \leq :_\Phi A \rrbracket \circ \eta_{A'} \circ \Delta' \quad \text{Since } \llbracket 1 \leq_\Phi 1 \rrbracket \text{ is the identity Nat-Trans} \\ &= after \quad \text{By definition} \end{split}$$

Case Apply:

reduce **definition** To find:

$$reduce((Apply) \frac{\frac{\Delta_1}{\Phi \mid \Gamma \vdash v_1 : A \to B} \frac{\Delta_2}{\Phi \mid \Gamma \vdash v_2 : A}}{\Phi \mid \Gamma \vdash v_1 : v_2 : B})$$
(9.33)

Let

$$(Subtype) \frac{\frac{\Delta'_1}{\Phi \mid \Gamma \vdash v_1 \colon A' \to B'} \qquad A' \to B' \leq :_{\Phi} A \to B}{\Phi \mid \Gamma \vdash v_1 \colon A \to B} = reduce(\Delta_1)$$

$$(Subtype) \frac{\frac{\Delta'_2}{\Phi \mid \Gamma \vdash v \colon A'} \qquad A' \leq :_{\Phi} A}{\Phi \mid \Gamma \vdash v_1 \colon A} = reduce(\Delta_2)$$

In

$$(Subtype) \frac{\Delta'_{1}}{\Phi \mid \Gamma \vdash v_{1} : A' \to B'} \qquad (Subtype) \frac{\Delta'_{2}}{\Phi \mid \Gamma \vdash v_{2} : A''} \qquad A'' \leq :_{\Phi} A \leq :_{\Phi} A'}{\Phi \mid \Gamma \vdash v_{2} : A'} \qquad B' \leq :_{\Phi} B$$

$$(Subtype) \frac{\Phi \mid \Gamma \vdash v_{1} \ v_{2} : B'}{\Phi \mid \Gamma \vdash v_{1} \ v_{2} : B} \qquad (9.34)$$

Preserves Denotation Let

$$f = [A \leq :_{\Phi} A'] : A \to A'$$

$$f' = [A'' \leq :_{\Phi} A] : A'' \to A$$

$$g = [B' \leq :_{\Phi} B] : B' \to B$$

Hence

$$\begin{split} \llbracket A' \to B' \leq :_{\Phi} A \to B \rrbracket &= (g)^A \circ (B')^f \\ &= \operatorname{cur}(app \circ \operatorname{app}) \circ \operatorname{cur}(\operatorname{app} \circ (\operatorname{Id} \times f)) \\ &= \operatorname{cur}(g \circ \operatorname{app} \circ (\operatorname{Id} \times f)) \end{split}$$

Then

$$\begin{split} before &= \mathsf{app} \circ \langle \Delta_1, \Delta_2 \rangle \quad \text{By definition} \\ &= \mathsf{app} \circ \langle \mathsf{cur}(g \circ \mathsf{app} \circ (\mathsf{Id} \times f)) \circ \Delta_1', f' \circ \Delta_2' \rangle \quad \text{By reductions of } \Delta_1, \Delta_2 \\ &= \mathsf{app} \circ (\mathsf{cur}(g \circ \mathsf{app} \circ (\mathsf{Id} \times f)) \times \mathsf{Id}_A) \circ \langle \Delta_1', f' \circ \Delta_2' \rangle \quad \text{Factoring out} \\ &= g \circ \mathsf{app} \circ (\mathsf{Id} \times f) \circ \langle \Delta_1', f' \circ \Delta_2' \rangle \quad \text{By the exponential property} \\ &= g \circ \mathsf{app} \circ \langle \Delta_1', f \circ f' \circ \Delta_2' \rangle \\ &= after \quad \text{By defintion} \end{split}$$

Case If:

reduce definition

$$reduce((\mathrm{If})\frac{\Delta_{1}}{\frac{\Phi \mid \Gamma \vdash v : \mathtt{Bool}}{\Phi \mid \Gamma \vdash \mathsf{if}_{A} \ v \ \mathsf{then} \ v_{1} \ \mathsf{else} \ v_{2} : A}}{\frac{\Phi \mid \Gamma \vdash \mathsf{if}_{A} \ v \ \mathsf{then} \ v_{1} \ \mathsf{else} \ v_{2} : A}}) = (\mathrm{If})\frac{\frac{reduce(\Delta_{1})}{\Phi \mid \Gamma \vdash v : \mathtt{Bool}} \ \frac{reduce(\Delta_{2})}{\Phi \mid \Gamma \vdash v_{1} : A} \ \frac{reduce(\Delta_{3})}{\Phi \mid \Gamma \vdash v_{2} : A}}{\frac{\Phi \mid \Gamma \vdash \mathsf{if}_{A} \ v \ \mathsf{then} \ v_{1} \ \mathsf{else} \ v_{2} : A}}{(9.35)}$$

Preserves Denotation Since calling *reduce* on the Subderivations preserves their denotations, this definition trivially preserves the denotation of the derivation.

Case Bind:

reduce **definition** To find

$$reduce((Bind) \frac{\Delta_{1}}{\Phi \mid \Gamma \vdash v_{1}: M_{\epsilon_{1}} A} \frac{\Delta_{2}}{\Phi \mid \Gamma, x: A \vdash v_{2}: M_{\epsilon_{2}} B})$$

$$\Phi \mid \Gamma \vdash \text{do } x \leftarrow v_{1} \text{ in } v_{2}: M_{\epsilon_{1} \cdot \epsilon_{2}} B$$

$$(9.36)$$

Let

$$(Subtype) \frac{\Delta'_{1}}{\Phi \mid \Gamma \vdash v_{1} : \mathsf{M}_{\epsilon'_{1}} A'} \qquad (Effect) \frac{\epsilon'_{1} \leq_{\Phi} \epsilon_{1} \qquad A' \leq_{\Phi} A}{\mathsf{M}_{\epsilon'_{1}} A' \leq_{\Phi} \mathsf{M}_{\epsilon_{1}} A} = reduce(\Delta_{1})$$

$$(9.37)$$

Since $\Phi \vdash (i, \times)$: $(\Gamma, x : A') \triangleright (\Gamma, x : A)$ if $A' \leq :_{\Phi} A$, and by $\Delta_2 = \Phi \mid (\Gamma, x : A) \vdash v_2 : M_{\epsilon_2} B$, there also exists a derivation Δ_3 of $\Phi \mid (\Gamma, x : A') \vdash v_2 : M_{\epsilon_2} B$. Δ_3 is derived from Δ_2 simply by inserting a (Subtype) rule below all instances of the (Var) rule.

Let

$$(Subtype) \frac{\frac{\Delta_{3}'}{\Phi \mid \Gamma, x : A' \vdash v_{2} : \mathsf{M}_{\epsilon_{2}'}B'}}{\Phi \mid \Gamma, x : A' \vdash v_{2} : \mathsf{M}_{\epsilon_{2}'}B'} \qquad (Effect) \frac{\epsilon_{1}' \leq_{\Phi} \epsilon_{2} \quad B' \leq_{\Box_{\Phi}}B}{\mathsf{M}_{\epsilon_{1}'}B' \leq_{\Box_{\Phi}}\mathsf{M}_{\epsilon_{2}}B} = reduce(\Delta_{3})$$
(9.38)

Since the effects monoid operation is monotone, if $\epsilon_1 \leq_{\Phi} \epsilon'_1$ and $\epsilon_2 \leq_{\Phi} \epsilon'_2$ then $\epsilon_1 \cdot \epsilon_2 \leq_{\Phi} \epsilon'_1 \cdot \epsilon'_2$ Then the result of reduction of the whole bind expression is:

$$(Subtype) \frac{\Delta'_{1}}{\frac{\Phi \mid \Gamma \vdash v_{1} : \mathsf{M}_{\epsilon'_{1}}A'}{\Phi \mid \Gamma \vdash \mathsf{do} \ x \leftarrow v_{1} \ \mathsf{in} \ v_{2} : \mathsf{M}_{\epsilon'_{2}}B'}}{\Phi \mid \Gamma \vdash \mathsf{do} \ x \leftarrow v_{1} \ \mathsf{in} \ v_{2} : \mathsf{M}_{\epsilon'_{1} \cdot \epsilon'_{2}}B} \qquad (Effect) \frac{\epsilon'_{1} \cdot \epsilon'_{2} \leq_{\Phi} \epsilon_{1} \cdot \epsilon_{2}}{\mathsf{M}_{\epsilon'_{1} \cdot \epsilon'_{2}}B' \leq_{\epsilon_{\Phi}} \mathsf{M}_{\epsilon_{1} \cdot \epsilon_{2}}B}}{\Phi \mid \Gamma \vdash \mathsf{do} \ x \leftarrow v_{1} \ \mathsf{in} \ v_{2} : \mathsf{M}_{\epsilon_{1} \cdot \epsilon_{2}}B} \qquad (9.39)$$

Preserves Denotation Let

$$\begin{split} f &= \llbracket A' \leq :_{\Phi} A \rrbracket : A' \to A \\ g &= \llbracket B' \leq :_{\Phi} B \rrbracket : B' \to B \\ h_1 &= \llbracket \epsilon'_1 \leq_{\Phi} \epsilon_1 \rrbracket : T_{\epsilon'_1} \to T_{\epsilon_1} \\ h_2 &= \llbracket \epsilon'_2 \leq_{\Phi} \epsilon_2 \rrbracket : T_{\epsilon'_2} \to T_{\epsilon_2} \\ h &= \llbracket \epsilon'_1 \cdot \epsilon'_2 \leq_{\Phi} \epsilon_1 \cdot \epsilon_2 \rrbracket : T_{\epsilon'_1 \cdot \epsilon'_2} \to T_{\epsilon_1 \cdot \epsilon_2} \end{split}$$

Due to the denotation of the weakening used to derive Δ_3 from Δ_2 , we have

$$\Delta_3 = \Delta_2 \circ (\mathrm{Id}_{\Gamma} \times f) \tag{9.40}$$

And due to the reduction of Δ_3 , we have

$$\Delta_3 = h_{2,B} \circ T_{\epsilon'} g \circ \Delta_3' \tag{9.41}$$

So:

$$\begin{aligned} before &= \mu_{\epsilon_1,\epsilon_2,B} \circ T_{\epsilon_1} \Delta_2 \circ \mathbf{t}_{\epsilon_1,\Gamma,A} \circ \langle \operatorname{Id}_{\Gamma}, \Delta_1 \rangle & \text{ By definition.} \\ &= \mu_{\epsilon_1,\epsilon_2,B} \circ T_{\epsilon_1} \Delta_2 \circ \mathbf{t}_{\epsilon_1,\Gamma,A} \circ \langle \operatorname{Id}_{\Gamma}, h_{1,A} \circ T_{\epsilon_1'} f \circ \Delta_1' \rangle & \text{ By reduction of } \Delta_1. \\ &= \mu_{\epsilon_1,\epsilon_2,B} \circ T_{\epsilon_1} \Delta_2 \circ \mathbf{t}_{\epsilon_1,\Gamma,A} \circ \langle \operatorname{Id}_{\Gamma} \times h_{1,A} \rangle \circ \langle \operatorname{Id}_{\Gamma}, T_{\epsilon_1'} f \circ \Delta_1' \rangle & \text{ Factor out } h_1 \\ &= \mu_{\epsilon_1,\epsilon_2,B} \circ T_{\epsilon_1} \Delta_2 \circ h_{1,(\Gamma \times A)} \circ \mathbf{t}_{\epsilon_1',\Gamma,A} \circ \langle \operatorname{Id}_{\Gamma}, T_{\epsilon_1'} f \circ \Delta_1' \rangle & \text{ Tensor strength and subeffecting } h_1 \\ &= \mu_{\epsilon_1,\epsilon_2,B} \circ h_{1,B} \circ T_{\epsilon_1'} \Delta_2 \circ \mathbf{t}_{\epsilon_1',\Gamma,A} \circ \langle \operatorname{Id}_{\Gamma}, T_{\epsilon_1'} f \circ \Delta_1' \rangle & \text{ Naturality of } h_1 \\ &= \mu_{\epsilon_1,\epsilon_2,B} \circ h_{1,B} \circ T_{\epsilon_1'} \Delta_2 \circ \mathbf{t}_{\epsilon_1',\Gamma,A} \circ \langle \operatorname{Id}_{\Gamma} \times T_{\epsilon_1'} f \rangle \circ \langle \operatorname{Id}_{\Gamma}, \Delta_1' \rangle & \text{ Factor out pairing again } \\ &= \mu_{\epsilon_1,\epsilon_2,B} \circ h_{1,B} \circ T_{\epsilon_1'} (\Delta_2 \circ (\operatorname{Id}_{\Gamma} \times f)) \circ \mathbf{t}_{\epsilon_1',\Gamma,A'} \circ \langle \operatorname{Id}_{\Gamma}, \Delta_1' \rangle & \text{ Tensorstrength } \\ &= \mu_{\epsilon_1,\epsilon_2,B} \circ h_{1,B} \circ T_{\epsilon_1'} (\Delta_3) \circ \mathbf{t}_{\epsilon_1',\Gamma,A'} \circ \langle \operatorname{Id}_{\Gamma}, \Delta_1' \rangle & \text{ By the definition of } \Delta_3 \\ &= \mu_{\epsilon_1,\epsilon_2,B} \circ h_{1,B} \circ T_{\epsilon_1'} (h_{2,B} \circ T_{\epsilon_2'} g \circ \Delta_3') \circ \mathbf{t}_{\epsilon_1',\Gamma,A'} \circ \langle \operatorname{Id}_{\Gamma}, \Delta_1' \rangle & \text{ By the reduction of } \Delta_3 \\ &= \mu_{\epsilon_1,\epsilon_2,B} \circ h_{1,B} \circ T_{\epsilon_1'} h_{2,B} \circ T_{\epsilon_1'} T_{\epsilon_2'} g \circ T_{\epsilon_1'} \Delta_3' \circ \mathbf{t}_{\epsilon_1',\Gamma,A'} \circ \langle \operatorname{Id}_{\Gamma}, \Delta_1' \rangle & \text{ Factor out the functor } \\ &= h_B \circ \mu_{\epsilon_1',\epsilon_2',B} \circ T_{\epsilon_1'} T_{\epsilon_2'} g \circ T_{\epsilon_1'} \Delta_3' \circ \mathbf{t}_{\epsilon_1',\Gamma,A'} \circ \langle \operatorname{Id}_{\Gamma}, \Delta_1' \rangle & \text{ By the } \mu \text{ and Subtype rule} \\ &= h_B \circ T_{\epsilon_1',\epsilon_2'} g \circ \mu_{\epsilon_1',\epsilon_2',B'} \circ T_{\epsilon_1'} \Delta_3' \circ \mathbf{t}_{\epsilon_1',\Gamma,A'} \circ \langle \operatorname{Id}_{\Gamma}, \Delta_1' \rangle & \text{ By naturality of } \mu_{,,} \\ &= after & \text{ By definition} \end{aligned}$$

Case Effect-Gen:

reduce **definition** To find

$$reduce((\text{Effect-Gen})\frac{\frac{\Delta_1}{\Phi, \alpha \mid \Gamma \vdash v : A}}{\Phi \mid \Gamma \vdash \Lambda \alpha . v : \forall \alpha . A})$$

$$(9.42)$$

Let

(Subtype)
$$\frac{\Delta'_{1}}{\Phi, \alpha \mid \Gamma \vdash v : A'} \qquad A' \leq :_{\Phi} A$$
$$\Phi, \alpha \mid \Gamma \vdash v : A \qquad = reduce(\Delta_{1}) \qquad (9.43)$$

in

$$(\text{Subtype}) \frac{\frac{\Delta'_{1}}{\Phi, \alpha \mid \Gamma \vdash v : A'}}{\frac{\Phi \mid \Gamma \vdash \Lambda \alpha . v : \forall \alpha . A'}{\Phi \mid \Gamma \vdash \Lambda \alpha . v : \forall \alpha . A'}} \qquad (\text{Quantification}) \frac{A' \leq :_{\Phi, \alpha}}{\forall \alpha . A' \leq :_{\Phi} \forall \alpha . A}$$

$$\Phi \mid \Gamma \vdash \Lambda \alpha . v : \forall \alpha . A \qquad (9.44)$$

Preserves Denotation

$$\begin{split} before &= \overline{\Delta_1} \\ &= \overline{ \llbracket A' \leq :_{\Phi,\alpha} A \rrbracket \circ \Delta_1' } \quad \text{By induction} \\ &= \forall_I (\llbracket A' \leq :_{\Phi,\alpha} A \rrbracket) \circ \overline{\Delta_1'} \\ &= \llbracket \forall \alpha. A' \leq :_{\Phi} \forall \alpha. A \rrbracket \circ \overline{\Delta_1'} \quad \text{By definition} \\ &= after \quad \text{By definition} \end{split}$$

Case Effect-Spec:

reduce **definition** To find

$$reduce((\text{Effect-Spec}) \frac{\frac{\Delta_1}{\Phi \mid \Gamma \vdash v : \forall \alpha. A} \quad \Phi \vdash \epsilon}{\frac{\Phi \mid \Gamma \vdash v : \forall \alpha. A}{\Phi \mid \Gamma \vdash v \in A \left[\epsilon / \alpha\right]}})$$
(9.45)

Let

$$(\text{Subtype}) \frac{\frac{\Delta'_{1}}{\Phi \mid \Gamma \vdash v : \forall \alpha. A'} \qquad (\text{Quantification}) \frac{A' \leq :_{\Phi, \alpha} A}{\forall \alpha. A' \leq :_{\Phi} \forall \alpha. A}}{\Phi \mid \Gamma \vdash v : \forall \alpha. A} = reduce(\Delta_{1})$$
(9.46)

In

$$(\text{Subtype}) \frac{\frac{\Delta'_{1}}{\Phi \mid \Gamma \vdash v : \forall \alpha. A} \quad \Phi \vdash \epsilon}{\Phi \mid \Gamma \vdash v \; \epsilon : A \left[\epsilon / \alpha \right]} \quad A' \left[\epsilon / \alpha \right] \leq :_{\Phi} A \left[\epsilon / \alpha \right]}{\Phi \mid \Gamma \vdash v \; \epsilon : A \left[\epsilon / \alpha \right]}$$

$$(9.47)$$

Preserves Denotation Let

$$\begin{split} h &= \llbracket \Phi \vdash \epsilon \text{:} \texttt{Effect} \rrbracket \\ A &= \llbracket \Phi, \beta \vdash A \left[\beta / \alpha \right] \text{:} \texttt{Effect} \rrbracket \\ A' &= \llbracket \Phi, \beta \vdash A' \left[\beta / \alpha \right] \text{:} \texttt{Effect} \rrbracket \end{split}$$

Note that

$$\langle \operatorname{Id}_{I}, h \rangle^{*}(\pi_{1}^{*}(f)) = (\pi_{1} \circ \langle \operatorname{Id}_{I}, h \rangle)^{*}(f) = \operatorname{Id}_{I}^{*}(f) = f$$

$$(9.48)$$

And that

$$\langle \operatorname{Id}_{I}, h \rangle = \llbracket \Phi \vdash [\epsilon/\alpha] : \Phi, \alpha \rrbracket \tag{9.49}$$

With lemma:

$$\begin{split} \llbracket \forall \alpha.A' \leq :_{\Phi} \forall \alpha.A \rrbracket &= \forall_I (\llbracket A' \leq :_{\Phi,\alpha} A \rrbracket) \\ &= \langle \operatorname{Id}_I, h \rangle^* (\pi_1^* (\forall_I (\llbracket A' \leq :_{\Phi,\alpha} A \rrbracket))) \end{split}$$

 In

$$before = \langle \operatorname{Id}_{I}, h \rangle^{*}(\epsilon_{A}) \circ \Delta_{1}$$

$$= \langle \operatorname{Id}_{I}, h \rangle^{*}(\epsilon_{A}) \circ [\![\forall \alpha. A' \leq :_{\Phi} \forall \alpha. A]\!] \circ \Delta_{1}' \quad \text{By induction}$$

$$= \langle \operatorname{Id}_{I}, h \rangle^{*}(\epsilon_{A}) \circ \langle \operatorname{Id}_{I}, h \rangle^{*}(\pi_{1}^{*}(\forall_{I}([\![A' \leq :_{\Phi,\alpha} A]\!]))) \circ \Delta_{1}' \quad \text{By lemma}$$

$$= \langle \operatorname{Id}_{I}, h \rangle^{*}(\epsilon_{A} \circ \pi_{1}^{*}(\forall_{I}([\![A' \leq :_{\Phi,\alpha} A]\!]))) \circ \Delta_{1}' \quad \text{By functorality}$$

$$= \langle \operatorname{Id}_{I}, h \rangle^{*}([\![A' \leq :_{\Phi,\alpha} A]\!] \circ \epsilon_{A'}) \circ \Delta_{1}' \quad \text{By Naturality}$$

$$= \langle \operatorname{Id}_{I}, h \rangle^{*}([\![A' \leq :_{\Phi,\alpha} A]\!]) \circ \langle \operatorname{Id}_{I}, h \rangle^{*}(\epsilon_{A'}) \circ \Delta_{1}'$$

$$= [\![A' [\![\epsilon/\alpha] \leq :_{\Phi,\alpha} A [\![\epsilon/\alpha]]\!]] \circ \langle \operatorname{Id}_{I}, h \rangle^{*}(\epsilon_{A'}) \circ \Delta_{1}' \quad \text{By substitution of subtyping}$$

$$= after$$

9.4 Denotations are Equivalent

For each type relation instance $\Phi \mid \Gamma \vdash v : A$ there exists a unique reduced derivation of the relation instance. For all derivations Δ , Δ' of the type relation instance, $[\![\Delta]\!] = [\![reduce\Delta]\!] = [\![reduce\Delta']\!] = [\![\Delta']\!]$, hence the denotation $[\![\Phi \mid \Gamma \vdash v : A]\!]$ is unique.

Chapter 10

Equational-Equivalence Theorem (Soundness)

TODO: Definition of the Equational equivalence

10.1 Equational Equivalence Relation

The equational equivalence relation is a rule based relation with three main flavours of rules. These are a set of rules that model a monadic reduction system of the language, a set of congruence relation rules, and rules that extend the system into an equivalence relation.

Reduction-based rules

$$(\text{Lambda-Beta}) \frac{\Phi \mid \Gamma, x: A \vdash v_2 : B}{\Phi \mid \Gamma \vdash (\lambda x: A.v_1) \ v_2 \approx v_1 \ [v_2/x] : B} \qquad (\text{Lambda-Eta}) \frac{\Phi \mid \Gamma \vdash v: A \to B}{\Phi \mid \Gamma \vdash \lambda x: A.(v \ x) \approx v: A \to B}$$

$$(\text{Left Unit}) \frac{\Phi \mid \Gamma \vdash v_1: A}{\Phi \mid \Gamma \vdash v_1: A} \qquad \Phi \mid \Gamma, x: A \vdash v_2: M_{\epsilon}B \qquad (\text{Right Unit}) \frac{\Phi \mid \Gamma \vdash v: M_{\epsilon}A}{\Phi \mid \Gamma \vdash do \ x \leftarrow r \ \text{eturn} \ v_1 \ \text{in} \ v_2 \approx v_2 \ [v_1/x] : M_{\epsilon}B} \qquad (\text{Right Unit}) \frac{\Phi \mid \Gamma \vdash v: M_{\epsilon}A}{\Phi \mid \Gamma \vdash do \ x \leftarrow v \ \text{in} \ \text{return} \ x \approx v: M_{\epsilon}A}$$

$$(\text{Associativity}) \frac{\Phi \mid \Gamma \vdash v_1: M_{\epsilon_1}A}{\Phi \mid \Gamma \vdash v_1: M_{\epsilon_1}A} \qquad \Phi \mid \Gamma, x: A \vdash v_2: M_{\epsilon_2}B \qquad \Phi \mid \Gamma, y: B \vdash v_3: M_{\epsilon_3}C}{(U \cap v)} \frac{\Phi \mid \Gamma \vdash v_1: M_{\epsilon_1}A}{\Phi \mid \Gamma \vdash do \ x \leftarrow v_1 \ \text{in} \ (do \ y \leftarrow v_2 \ \text{in} \ v_3) \Rightarrow do \ y \leftarrow (do \ x \leftarrow v_1 \ \text{in} \ v_2) \ \text{in} \ v_3: M_{\epsilon_1 \cdot \epsilon_2 \cdot \epsilon_3}C}$$

$$(\text{Unit}) \frac{\Phi \mid \Gamma \vdash v: \text{Unit}}{\Phi \mid \Gamma \vdash if_A \ \text{true then} \ v_1 \ \text{else} \ v_2 \approx v_1: A} \qquad (\text{If-False}) \frac{\Phi \mid \Gamma \vdash v_2: A}{\Phi \mid \Gamma \vdash v_1: A \ \text{false then} \ v_1 \ \text{else} \ v_2 \approx v_2: A}$$

$$(\text{If-Eta}) \frac{\Phi \mid \Gamma \vdash v: A}{\Phi \mid \Gamma \vdash if_A \ \text{true then} \ v_1 \ \text{else} \ v_2 = v_1: A} \qquad (\text{If-Eta}) \frac{\Phi \mid \Gamma \vdash v_1: A}{\Phi \mid \Gamma \vdash if_A \ \text{true} \ \text{then} \ v_2 \ \text{[true}/x]} \ \text{else} \ v_2 \ [false/x] \approx v_2 \ [v_1/x]: A}$$

$$(\text{Effect-beta}) \frac{\Phi \vdash \epsilon \qquad \Phi, \alpha \mid \Gamma \vdash v: A}{\Phi \mid \Gamma \vdash v: A} \qquad ntreerule IEffect - eta\Phi \mid \Gamma \vdash v: \forall \alpha.A\Phi \mid \Gamma \vdash \Lambda \alpha.(v \ \alpha) \approx v: \forall \alpha.A$$

Congruence rules

$$(\text{Effect-Abs}) \frac{\Phi, \alpha \mid \Gamma \vdash v_{1} \approx v_{2} : A}{\Phi \mid \Gamma \vdash \Lambda \alpha. v_{1} \approx \Lambda \alpha. v_{2} : \forall \alpha. A} \quad (\text{Effect-Apply}) \frac{\Phi \mid \Gamma \vdash v_{1} \approx v_{2} : \forall \alpha. A \quad \Phi \vdash \epsilon}{\Phi \mid \Gamma \vdash v_{1} \epsilon \approx v_{2} \epsilon : A \left[\epsilon \middle/ \alpha\right]}$$

$$(\text{Lambda}) \frac{\Phi \mid \Gamma, x : A \vdash v_{1} \approx v_{2} : B}{\Phi \mid \Gamma \vdash \lambda x : A. v_{1} \approx \lambda x : A. v_{2} : A \to B} \quad (\text{Return}) \frac{\Phi \mid \Gamma \vdash v_{1} \approx v_{2} : A}{\Phi \mid \Gamma \vdash v_{1} \approx v_{2} : A}$$

$$(\text{Apply}) \frac{\Phi \mid \Gamma \vdash v_{1} \approx v'_{1} : A \to B \quad \Phi \mid \Gamma \vdash v_{2} \approx v'_{2} : A}{\Phi \mid \Gamma \vdash v_{1} \approx v'_{1} : B} \quad (\text{Bind}) \frac{\Phi \mid \Gamma \vdash v_{1} \approx v'_{1} : M_{\epsilon_{1}} A \quad \Phi \mid \Gamma, x : A \vdash v_{2} \approx v'_{2} : M_{\epsilon_{2}} B}{\Phi \mid \Gamma \vdash v_{1} v_{2} \approx v'_{1} : v'_{2} : B}$$

$$(\text{If}) \frac{\Phi \mid \Gamma \vdash v \approx v' : \text{Bool} \quad \Phi \mid \Gamma \vdash v_{1} \approx v'_{1} : A \quad \Phi \mid \Gamma \vdash v_{2} \approx v'_{2} : A}{\Phi \mid \Gamma \vdash v_{1} \approx v'_{1} : A \quad \Phi \mid \Gamma \vdash v_{2} \approx v'_{2} : A} \quad (\text{Subtype}) \frac{\Phi \mid \Gamma \vdash v \approx v' : A \quad A \leq :_{\Phi} B}{\Phi \mid \Gamma \vdash v \approx v' : B}$$

We extend the relation to an equivalence relation as so:

$$(\text{Reflexive}) \frac{\Phi \mid \Gamma \vdash v: A}{\Phi \mid \Gamma \vdash v \approx v: A} \quad (\text{Symmetric}) \frac{\Phi \mid \Gamma \vdash v_1 \approx v_2: A}{\Phi \mid \Gamma \vdash v_2 \approx v_1: A}$$

$$(\text{Transitive}) \frac{\Phi \mid \Gamma \vdash v_1 \approx v_2: A}{\Phi \mid \Gamma \vdash v_1 \approx v_3: A}$$

10.2 Soundness

If $eberelation\Phi vv'A$ then $\llbracket\Gamma\vdash v:A\rrbracket=\llbracket\Gamma\vdash v':A\rrbracket$

By induction over equational equivalence relation.

10.2.1 Equivalence Relation

The cases over the equivalence relation laws hold by the uniqueness of denotations and the fact that equality over morphisms is an equivalence relation.

Case Reflexive: Equality is reflexive, so if $\Phi \mid \Gamma \vdash v : A$ then $\llbracket \Phi \mid \Gamma \vdash v : A \rrbracket$ is equal to itself.

Case Symmetric: By inversion, if $\Phi \mid \Gamma \vdash v \approx v' : A$ then $\Phi \mid \Gamma \vdash v' \approx v : A$, so by induction $\llbracket \Gamma \vdash v' : A \rrbracket = \llbracket \Gamma \vdash v : A \rrbracket$ and hence $\llbracket \Gamma \vdash v : A \rrbracket = \llbracket \Gamma \vdash v' : A \rrbracket$

Case Transitive: There must exist v_2 such that $\Phi \mid \Gamma \vdash v_1 \approx v_2$: A and $\Phi \mid \Gamma \vdash v_2 \approx v_3$: A, so by induction, $\llbracket \Gamma \vdash v_1 : A \rrbracket = \llbracket \Gamma \vdash v_2 : A \rrbracket$ and $\llbracket \Gamma \vdash v_2 : A \rrbracket = \llbracket \Gamma \vdash v_3 : A \rrbracket$. Hence by transitivity of equality, $\llbracket \Gamma \vdash v_1 : A \rrbracket = \llbracket \Gamma \vdash v_3 : A \rrbracket$

10.2.2 Reduction Conversions

These cases are typically proved using the properties of a cartesian closed category with a strong graded monad.

Case Lambda: Let $f = \llbracket \Phi \mid \Gamma, x : A \vdash v_1 : B \rrbracket : (\Gamma \times A) \to B$

Let
$$g = \llbracket \Phi \mid \Gamma \vdash v_2 : A \rrbracket : \Gamma \to A$$

By the substitution denotation,

$$\llbracket \Phi \mid \Gamma \vdash [v_2/x] : \Gamma, x : A \rrbracket : \Gamma \to (\Gamma \times A) = \langle \mathrm{Id}_{\Gamma}, g \rangle$$

We have

$$\llbracket \Phi \mid \Gamma \vdash v_1 \lceil_2 v/x \rceil : \underline{B} \rrbracket = f \circ \langle \mathrm{Id}_{\Gamma}, g \rangle$$

and hence

Case Left Unit: Let $f = \llbracket \Phi \mid \Gamma, x : A \vdash v_1 : M_{\epsilon}B \rrbracket$

Let
$$g = \llbracket \Phi \mid \Gamma \vdash v_2 : A \rrbracket : \Gamma \to A$$

By the substitution denotation,

$$\llbracket \Phi \mid \Gamma \vdash [v_2/x] : \Gamma, x : A \rrbracket : \Gamma \to (\Gamma \times A) = \langle \mathrm{Id}_{\Gamma}, g \rangle$$

We have

$$\llbracket \Phi \mid \Gamma \vdash v_1 \left[v_2 / x \right] : \mathbf{M}_{\epsilon} B \rrbracket = f \circ \langle \mathbf{Id}_{\Gamma}, g \rangle$$

And hence

$$\begin{split} \llbracket \Phi \mid \Gamma \vdash \operatorname{do} x \leftarrow \operatorname{return} v_2 & \text{ in } v_1 : \mathtt{M}_{\epsilon} B \rrbracket = \mu_{1,\epsilon,B} \circ T_1 f \circ \mathtt{t}_{1,\Gamma,A} \circ \langle \operatorname{Id}_{\Gamma}, \eta_A \circ g \rangle \\ &= \mu_{1,\epsilon,B} \circ T_1 f \circ \mathtt{t}_{1,\Gamma,A} \circ (\operatorname{Id}_{\Gamma} \times \eta_A) \circ \langle \operatorname{Id}_{\Gamma}, g \rangle \\ &= \mu_{1,\epsilon,B} \circ T_1 f \circ \eta_{(\Gamma \times A)} \circ \langle \operatorname{Id}_{\Gamma}, g \rangle \quad \operatorname{By Tensor strength} + \operatorname{unit} \\ &= \mu_{1,\epsilon,B} \circ \eta_{T_{\epsilon}B} \circ f \circ \langle \operatorname{Id}_{\Gamma}, g \rangle \quad \operatorname{By Naturality of} \eta \\ &= f \circ \langle \operatorname{Id}_{\Gamma}, g \rangle \quad \operatorname{By left unit law} \\ &= \llbracket \Phi \mid \Gamma \vdash v_1 \left[v_2 / x \right] : \mathtt{M}_{\epsilon} B \rrbracket \end{split}$$

Case Right Unit: Let $f = \llbracket \Phi \mid \Gamma \vdash v : \mathtt{M}_{\epsilon} A \rrbracket$

$$\begin{split} \llbracket \Phi \mid \Gamma \vdash \operatorname{do} x \leftarrow v \text{ in return } x \ : & \operatorname{\underline{M}}_{\epsilon} A \rrbracket = \mu_{\epsilon, \mathbf{1}, A} \circ T_{\epsilon}(\eta_{A} \circ \pi_{2}) \circ \operatorname{\underline{t}}_{\epsilon, \Gamma, A} \circ \langle \operatorname{Id}_{\Gamma}, f \rangle \\ & = T_{\epsilon} \pi_{2} \circ \operatorname{\underline{t}}_{\epsilon, \Gamma, A} \circ \langle \operatorname{Id}_{\Gamma}, f \rangle \\ & = \pi_{2} \circ \langle \operatorname{Id}_{\Gamma}, f \rangle \\ & = f \end{split} \tag{10.3}$$

Case Associative: Let

$$\begin{split} f &= \llbracket \Phi \mid \Gamma \vdash v_1 : \mathbf{M}_{\epsilon_1} A \rrbracket \\ g &= \llbracket \Phi \mid \Gamma, x : A \vdash v_2 : \mathbf{M}_{\epsilon_2} B \rrbracket \\ h &= \llbracket \Phi \mid \Gamma, y : B \vdash v_3 : \mathbf{M}_{\epsilon_3} C \rrbracket \end{split}$$

We also have the weakening:

$$\Phi \vdash \iota \pi \times : \Gamma, x : A, y : B \triangleright \Gamma, y : B \tag{10.4}$$

With denotation:

$$\llbracket \Phi \vdash \iota \pi \times : \Gamma, x : A, y : B \triangleright \Gamma, y : B \rrbracket = (\pi_1 \times \mathrm{Id}_B) \tag{10.5}$$

We need to prove that the following are equal

$$\begin{split} lhs &= \llbracket \Phi \mid \Gamma \vdash \operatorname{do} x \leftarrow v_1 \text{ in } \left(\operatorname{do} y \leftarrow v_2 \text{ in } v_3 \right) : \mathtt{M}_{\epsilon_1 \cdot \epsilon_2 \cdot \epsilon_2} C \rrbracket \\ &= \mu_{\epsilon_1, \epsilon_2 \cdot \epsilon_3, C} \circ T_{\epsilon_1} (\mu_{\epsilon_2, \epsilon_3, C} \circ T_{\epsilon_2} h \circ (\pi_1 \times \operatorname{Id}_B) \circ \mathtt{t}_{\epsilon_2, (\Gamma \times A), B} \circ \langle \operatorname{Id}_{(\Gamma \times A)}, g \rangle) \circ \mathtt{t}_{\epsilon_1, \Gamma, A} \circ \langle \operatorname{Id}_{\Gamma}, f \rangle \\ &rhs &= \llbracket \Phi \mid \Gamma \vdash \operatorname{do} y \leftarrow \left(\operatorname{do} x \leftarrow v_1 \text{ in } v_2 \right) \text{ in } v_3 : \mathtt{M}_{\epsilon_1 \cdot \epsilon_2 \cdot \epsilon_2} C \rrbracket \\ &= \mu_{\epsilon_1 \cdot \epsilon_2, \epsilon_3, C} \circ T_{\epsilon_1 \cdot \epsilon_2} (h) \circ \mathtt{t}_{\epsilon_1 \cdot \epsilon_2, \Gamma, B} \circ \langle \operatorname{Id}_{\Gamma}, (\mu_{\epsilon_1, \epsilon_2, B} \circ T_{\epsilon_1} g \circ \mathtt{t}_{\epsilon_1, \Gamma, A} \circ \langle \operatorname{Id}_{\Gamma}, f \rangle) \rangle \end{split}$$

Let's look at fragment F of rhs.

$$F = \mathbf{t}_{\epsilon_1 \cdot \epsilon_2, \Gamma, B} \circ \langle \mathrm{Id}_{\Gamma}, (\mu_{\epsilon_1, \epsilon_2, B} \circ T_{\epsilon_1} g \circ \mathbf{t}_{\epsilon_1, \Gamma, A} \circ \langle \mathrm{Id}_{\Gamma}, f \rangle) \rangle$$

$$(10.6)$$

So

$$rhs = \mu_{\epsilon_1 \cdot \epsilon_2, \epsilon_3, C} \circ T_{\epsilon_1 \cdot \epsilon_2}(h) \circ F \tag{10.7}$$

$$F = \mathsf{t}_{\epsilon_{1} \cdot \epsilon_{2}, \Gamma, B} \circ (\mathsf{Id}_{\Gamma} \times \mu_{\epsilon_{1}, \epsilon_{2}, B}) \circ (\mathsf{Id}_{\Gamma} \times T_{\epsilon_{1}}g) \circ \langle \mathsf{Id}_{\Gamma}, \mathsf{t}_{\epsilon_{1}, \Gamma, A} \circ \langle \mathsf{Id}_{\Gamma}, f \rangle \rangle$$

$$= \mu_{\epsilon_{1}, \epsilon_{2}, (\Gamma \times B)} \circ T_{\epsilon_{1}} \mathsf{t}_{\epsilon_{2}, \Gamma, B} \circ \mathsf{t}_{\epsilon_{1}, \Gamma, (T_{\epsilon_{2}}B)} \circ (\mathsf{Id}_{\Gamma} \circ T_{\epsilon_{1}}g) \circ \langle \mathsf{Id}_{\Gamma}, \mathsf{t}_{\epsilon_{1}, \Gamma, A} \circ \langle \mathsf{Id}_{\Gamma}, f \rangle \rangle \quad \text{By TODO: ref: mu+tstrength}$$

$$= \mu_{\epsilon_{1}, \epsilon_{2}, (\Gamma \times B))} \circ T_{\epsilon_{1}} (\mathsf{t}_{\epsilon_{2}, \Gamma, B} \circ (\mathsf{Id}_{\Gamma} \times g)) \circ \mathsf{t}_{\epsilon_{1}, \Gamma, (\Gamma \times A)} \circ \langle \mathsf{Id}_{\Gamma}, \mathsf{t}_{\epsilon_{1}, \Gamma, A} \circ \langle \mathsf{Id}_{\Gamma}, f \rangle \rangle \quad \text{By naturality of v-strength}$$

$$(10.8)$$

Since $rhs = \mu_{\epsilon_1 \cdot \epsilon_2, \epsilon_3, C} \circ T_{\epsilon_1 \cdot \epsilon_2}(h) \circ F$,

$$rhs = \mu_{\epsilon_{1} \cdot \epsilon_{2}, \epsilon_{3}, C} \circ T_{\epsilon_{1} \cdot \epsilon_{2}}(h) \circ \mu_{\epsilon_{1}, \epsilon_{2}, (\Gamma \times B))} \circ T_{\epsilon_{1}}(\mathbf{t}_{\epsilon_{2}, \Gamma, B} \circ (\mathrm{Id}_{\Gamma} \times g)) \circ \mathbf{t}_{\epsilon_{1}, \Gamma, (\Gamma \times A)} \circ \langle \mathrm{Id}_{\Gamma}, \mathbf{t}_{\epsilon_{1}, \Gamma, A} \circ \langle \mathrm{Id}_{\Gamma}, f \rangle \rangle$$

$$= \mu_{\epsilon_{1} \cdot \epsilon_{2}, \epsilon_{3}, C} \circ \mu_{\epsilon_{1}, \epsilon_{2}, (T_{\epsilon_{3}}C)} \circ T_{\epsilon_{1}}(T_{\epsilon_{2}}(h) \circ \mathbf{t}_{\epsilon_{2}, \Gamma, B} \circ (\mathrm{Id}_{\Gamma} \times g)) \circ \mathbf{t}_{\epsilon_{1}, \Gamma, (\Gamma \times A)} \circ \langle \mathrm{Id}_{\Gamma}, \mathbf{t}_{\epsilon_{1}, \Gamma, A} \circ \langle \mathrm{Id}_{\Gamma}, f \rangle \rangle \quad \text{Naturality of } \mu$$

$$= \mu_{\epsilon_{1}, \epsilon_{2} \cdot \epsilon_{3}, C} \circ T_{\epsilon_{1}}(\mu_{\epsilon_{2}, \epsilon_{3}, C} \circ T_{\epsilon_{2}}(h) \circ \mathbf{t}_{\epsilon_{2}, \Gamma, B} \circ (\mathrm{Id}_{\Gamma} \times g)) \circ \mathbf{t}_{\epsilon_{1}, \Gamma, (\Gamma \times A)} \circ \langle \mathrm{Id}_{\Gamma}, \mathbf{t}_{\epsilon_{1}, \Gamma, A} \circ \langle \mathrm{Id}_{\Gamma}, f \rangle \rangle$$

$$(10.9)$$

Let's now look at the fragment G of rhs

$$G = T_{\epsilon_1}(\operatorname{Id}_{\Gamma} \times g) \circ \mathsf{t}_{\epsilon_1, \Gamma, (\Gamma \times A)} \circ \langle \operatorname{Id}_{\Gamma}, \mathsf{t}_{\epsilon_1, \Gamma, A} \circ \langle \operatorname{Id}_{\Gamma}, f \rangle \rangle \tag{10.10}$$

So

$$rhs = \mu_{\epsilon_1, \epsilon_2 \cdot \epsilon_3, C} \circ T_{\epsilon_1}(\mu_{\epsilon_2, \epsilon_3, C} \circ T_{\epsilon_2}(h) \circ \mathsf{t}_{\epsilon_2, \Gamma, B}) \circ G \tag{10.11}$$

By folding out the $\langle ..., ... \rangle$, we have

$$G = T_{\epsilon_1}(\operatorname{Id}_{\Gamma} \times g) \circ \mathsf{t}_{\epsilon_1, \Gamma, \Gamma \times A} \circ (\operatorname{Id}_{\Gamma} \times \mathsf{t}_{\epsilon_1, \Gamma, A}) \circ \langle \operatorname{Id}_{\Gamma}, \langle \operatorname{Id}_{\Gamma}, f \rangle \rangle \tag{10.12}$$

From the rule **TODO:** Ref showing the commutativity of tensor strength with α , the following commutes

$$\stackrel{\langle \operatorname{Id}_{\Gamma}, \langle \operatorname{Id}_{\Gamma}, f \rangle \rangle}{\Gamma} \times (\Gamma \times T_{\epsilon_{1}} A)_{\alpha_{\Gamma, \Gamma, (T_{\epsilon_{1}} A)}} (\Gamma \times \Gamma) \times T_{\epsilon_{1}} A \\ \downarrow^{\operatorname{Id}_{\Gamma} \times \operatorname{t}_{\epsilon_{1}, \Gamma, A}} \qquad \qquad \downarrow^{\operatorname{t}_{\epsilon_{1}, (\Gamma \times \Gamma), A}} \\ \Gamma \times T_{\epsilon_{1}} (\Gamma \times A) \qquad \qquad T_{\epsilon_{1}} ((\Gamma \times \Gamma) \times A) \\ \downarrow^{\operatorname{t}_{\epsilon_{1}, \Gamma, \Gamma \times A}} \qquad \qquad T_{\epsilon_{1}} (\Gamma \times (\Gamma \times A))$$

Where $\alpha: ((_ \times _) \times _) \to (_ \times (_ \times _))$ is a natural isomorphism.

$$\alpha = \langle \pi_1 \circ \pi_1, \langle \pi_2 \circ \pi_1, \pi_2 \rangle \rangle$$
$$\alpha^{-1} = \langle \langle \pi_1, \pi_1 \circ \pi_2 \rangle, \pi_2 \circ \pi_2 \rangle$$

So:

$$G = T_{\epsilon_1}((\operatorname{Id}_{\Gamma} \times g) \circ \alpha_{\Gamma,\Gamma,A}) \circ \operatorname{t}_{\epsilon_1,(\Gamma \times \Gamma),A} \circ \alpha_{\Gamma,\Gamma,(T_{\epsilon_1}A)}^{-1} \circ \langle \operatorname{Id}_{\Gamma}, \langle \operatorname{Id}_{\Gamma}, f \rangle \rangle$$

$$= T_{\epsilon_1}((\operatorname{Id}_{\Gamma} \times g) \circ \alpha_{\Gamma,\Gamma,A}) \circ \operatorname{t}_{\epsilon_1,(\Gamma \times \Gamma),A} \circ (\langle \operatorname{Id}_{\Gamma}, \operatorname{Id}_{\Gamma} \rangle \times \operatorname{Id}_{T_{\epsilon_1}A}) \circ \langle \operatorname{Id}_{\Gamma}, f \rangle \quad \text{By definition of } \alpha \text{ and products}$$

$$= T_{\epsilon_1}((\operatorname{Id}_{\Gamma} \times g) \circ \alpha_{\Gamma,\Gamma,A} \circ (\langle \operatorname{Id}_{\Gamma}, \operatorname{Id}_{\Gamma} \rangle \times \operatorname{Id}_{A})) \circ \operatorname{t}_{\epsilon_1,\Gamma,A} \circ \langle \operatorname{Id}_{\Gamma}, f \rangle \quad \text{By tensor strength's left-naturality}$$

$$= T_{\epsilon_1}((\pi_1 \times \operatorname{Id}_{T_{\epsilon_2}B}) \circ \langle \operatorname{Id}_{(\Gamma \times A)}, g \rangle) \circ \operatorname{t}_{\epsilon_1,\Gamma,A} \circ \langle \operatorname{Id}_{\Gamma}, f \rangle$$

$$(10.13)$$

Since

$$rhs = \mu_{\epsilon_1, \epsilon_2 \cdot \epsilon_3, C} \circ T_{\epsilon_1}(\mu_{\epsilon_2, \epsilon_3, C} \circ T_{\epsilon_2}(h) \circ \mathsf{t}_{\epsilon_2, \Gamma, B}) \circ G \tag{10.14}$$

We Have

$$rhs = \mu_{\epsilon_{1},\epsilon_{2}\cdot\epsilon_{3},C} \circ T_{\epsilon_{1}}(\mu_{\epsilon_{2},\epsilon_{3},C} \circ T_{\epsilon_{2}}(h) \circ \mathsf{t}_{\epsilon_{2},\Gamma,B} \circ (\pi_{1} \times \mathsf{Id}_{T_{\epsilon_{2}}B}) \circ \langle \mathsf{Id}_{(\Gamma \times A)},g \rangle) \circ \mathsf{t}_{\epsilon_{1},\Gamma,A} \circ \langle \mathsf{Id}_{\Gamma},f \rangle$$

$$= \mu_{\epsilon_{1},\epsilon_{2}\cdot\epsilon_{3},C} \circ T_{\epsilon_{1}}(\mu_{\epsilon_{2},\epsilon_{3},C} \circ T_{\epsilon_{2}}(h \circ (\pi_{1} \times \mathsf{Id}_{B})) \circ \mathsf{t}_{\epsilon_{2},(\Gamma \times A),B} \circ \langle \mathsf{Id}_{(\Gamma \times A)},g \rangle) \circ \mathsf{t}_{\epsilon_{1},\Gamma,A} \circ \langle \mathsf{Id}_{\Gamma},f \rangle \quad \text{By Left-Tensor Street}$$

$$= lhs \quad \text{Woohoo!}$$

$$(10.15)$$

Case Eta: Let

$$f = \llbracket \Phi \mid \Gamma \vdash v : A \to B \rrbracket : \Gamma \to (B)^A \tag{10.16}$$

By weakening, we have

$$\llbracket \Phi \mid \Gamma, x : A \vdash v : A \to B \rrbracket = f \circ \pi_1 : \Gamma \times A \to (B)^A$$
$$\llbracket \Phi \mid \Gamma, x : A \vdash v : B \rrbracket = \operatorname{app} \circ \langle f \circ \pi_1, \pi_2 \rangle$$

Hence, we have

Hence, by the fact that cur(f) is unique in a cartesian closed category,

$$\llbracket \Phi \mid \Gamma \vdash \lambda x : A.(v \mid x) : A \to B \rrbracket = f = \llbracket \Phi \mid \Gamma \vdash v : A \to B \rrbracket \tag{10.18}$$

Case If-True: Let

$$f = \llbracket \Phi \mid \Gamma \vdash v_1 : A \rrbracket$$
$$g = \llbracket \Phi \mid \Gamma \vdash v_2 : A \rrbracket$$

Then

$$\begin{split} \llbracket \Phi \mid \Gamma \vdash \text{if}_A \ v \ \text{then} \ v_1 \ \text{else} \ v_2 : A \rrbracket &= \operatorname{app} \circ (([\operatorname{cur}(f \circ \pi_2), \operatorname{cur}(g \circ \pi_2)] \circ \operatorname{inl} \circ \langle \rangle_{\Gamma}) \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma} \\ &= \operatorname{app} \circ ((\operatorname{cur}(f \circ \pi_2) \circ \langle \rangle_{\Gamma}) \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma} \\ &= \operatorname{app} \circ (\operatorname{cur}(f \circ \pi_2) \times \operatorname{Id}_{\Gamma}) \circ (\langle \rangle_{\Gamma} \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma} \\ &= f \circ \pi_2 \circ \langle \langle \rangle_{\Gamma}, \operatorname{Id}_{\Gamma} \rangle \\ &= f \\ &= \llbracket \Phi \mid \Gamma \vdash v_1 : A \rrbracket \end{split} \tag{10.19}$$

Case If-False: Let

$$f = \llbracket \Phi \mid \Gamma \vdash v_1 : A \rrbracket$$
$$g = \llbracket \Phi \mid \Gamma \vdash v_2 : A \rrbracket$$

Then

$$\begin{split} \llbracket \Phi \mid \Gamma \vdash \text{if}_A \ v \ \text{then} \ v_1 \ \text{else} \ v_2 : A \rrbracket &= \operatorname{app} \circ (([\operatorname{cur}(f \circ \pi_2), \operatorname{cur}(g \circ \pi_2)] \circ \operatorname{inr} \circ \langle \rangle_{\Gamma}) \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma} \\ &= \operatorname{app} \circ ((\operatorname{cur}(g \circ \pi_2) \circ \langle \rangle_{\Gamma}) \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma} \\ &= \operatorname{app} \circ (\operatorname{cur}(g \circ \pi_2) \times \operatorname{Id}_{\Gamma}) \circ (\langle \rangle_{\Gamma} \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma} \\ &= g \circ \pi_2 \circ \langle \langle \rangle_{\Gamma}, \operatorname{Id}_{\Gamma} \rangle \\ &= g \\ &= \llbracket \Phi \mid \Gamma \vdash v_2 : A \rrbracket \end{split} \tag{10.20}$$

Case If-Eta: Let

$$\begin{split} f &= \llbracket \Phi \mid \Gamma \vdash v_1 \text{:} \operatorname{Bool} \rrbracket \\ g &= \llbracket \Phi \mid \Gamma, x : \operatorname{Bool} \vdash v_2 \text{:} A \rrbracket \end{split}$$

Then by the substitution theorem,

```
 \begin{split} \llbracket \Phi \mid \Gamma \vdash v_2 \, [\mathtt{true}/x] : A \rrbracket &= g \circ \langle \mathtt{Id}_{\Gamma}, \mathtt{inl}_1 \circ \langle \rangle_{\Gamma} \rangle \\ \llbracket \Phi \mid \Gamma \vdash v_2 \, [\mathtt{false}/x] : A \rrbracket &= g \circ \langle \mathtt{Id}_{\Gamma}, \mathtt{inr}_1 \circ \langle \rangle_{\Gamma} \rangle \\ \llbracket \Phi \mid \Gamma \vdash v_2 \, [v_1/x] : A \rrbracket &= g \circ \langle \mathtt{Id}_{\Gamma}, f \rangle \end{split}
```

Hence we have (Using the diagonal and twist morphisms):

```
\llbracket \Phi \mid \Gamma \vdash \mathsf{if}_A v_1 \text{ then } v_2 [\mathsf{true}/x] \text{ else } v_2 [\mathsf{false}/x] : A 
rbracket
                           = \operatorname{\mathsf{app}} \circ (([\operatorname{\mathsf{cur}}(g \circ \langle \operatorname{\mathsf{Id}}_{\Gamma}, \operatorname{\mathsf{inl}}_1 \circ \langle \rangle_{\Gamma} \rangle \circ \pi_2), \operatorname{\mathsf{cur}}(g \circ \langle \operatorname{\mathsf{Id}}_{\Gamma}, \operatorname{\mathsf{inr}}_1 \circ \langle \rangle_{\Gamma} \rangle \circ \pi_2)] \circ f) \times \operatorname{\mathsf{Id}}_{\Gamma}) \circ \delta_{\Gamma}
                           = \operatorname{\mathsf{app}} \circ (([\operatorname{\mathsf{cur}}(g \circ \langle \pi_2, \operatorname{\mathsf{inl}}_1 \circ \langle \rangle_{\Gamma} \circ \pi_2 \rangle), \operatorname{\mathsf{cur}}(g \circ \langle \pi_2, \operatorname{\mathsf{inr}}_1 \circ \langle \rangle_{\Gamma} \circ \pi_2 \rangle)] \circ f) \times \operatorname{\mathsf{Id}}_{\Gamma}) \circ \delta_{\Gamma} \quad \operatorname{Pairing property}
                           = \operatorname{\mathsf{app}} \circ (([\operatorname{\mathsf{cur}}(g \circ \langle \pi_2, \operatorname{\mathsf{inl}}_1 \circ \langle \rangle_{\Gamma} \circ \pi_1 \rangle), \operatorname{\mathsf{cur}}(g \circ \langle \pi_2, \operatorname{\mathsf{inr}}_1 \circ \langle \rangle_{\Gamma} \circ \pi_1 \rangle)] \circ f) \times \operatorname{\mathsf{Id}}_{\Gamma}) \circ \delta_{\Gamma} \quad \text{Terminal is unique}
                           = \operatorname{\mathsf{app}} \circ ((\lceil \operatorname{\mathsf{cur}}(g \circ (\operatorname{\mathsf{Id}}_{\Gamma} \times \operatorname{\mathsf{inl}}_1) \circ \tau_{1,\Gamma}), \operatorname{\mathsf{cur}}(g \circ (\operatorname{\mathsf{Id}}_{\Gamma} \times \operatorname{\mathsf{inr}}_1) \circ \tau_{1,\Gamma}) \rceil \circ f) \times \operatorname{\mathsf{Id}}_{\Gamma}) \circ \delta_{\Gamma} \quad \operatorname{Identity} = \operatorname{\mathsf{Id}}_1
                           = \operatorname{\mathsf{app}} \circ ((\left[\operatorname{\mathsf{cur}}(g \circ \tau_{1+1,\Gamma} \circ (\operatorname{\mathsf{inl}}_1 \times \operatorname{\mathsf{Id}}_\Gamma)), \operatorname{\mathsf{cur}}(g \circ \tau_{1+1,\Gamma} \circ (\operatorname{\mathsf{inr}}_1 \times \operatorname{\mathsf{Id}}_\Gamma))\right] \circ f) \times \operatorname{\mathsf{Id}}_\Gamma) \circ \delta_\Gamma \quad \text{Twist commutivity}
                           = \operatorname{\mathsf{app}} \circ ((\lceil \operatorname{\mathsf{cur}}(g \circ \tau_{1+1,\Gamma}) \circ \operatorname{\mathsf{inl}}_1, \operatorname{\mathsf{cur}}(g \circ \tau_{1+1,\Gamma}) \circ \operatorname{\mathsf{inr}}_1 \rceil \circ f) \times \operatorname{\mathsf{Id}}_{\Gamma}) \circ \delta_{\Gamma} \quad \text{Exponential property}
                           = \operatorname{app} \circ ((\operatorname{cur}(g \circ \tau_{1+1}_{\Gamma}) \circ [\operatorname{inl}_1, \operatorname{inr}_1] \circ f) \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma} \quad \operatorname{Factoring out } \operatorname{cur}(..)
                           = \operatorname{app} \circ ((\operatorname{cur}(g \circ \tau_{1+1,\Gamma}) \circ f) \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma} \quad \operatorname{Since} \ [\operatorname{inl},\operatorname{inr}] \ is the identity
                           = \operatorname{app} \circ (\operatorname{cur}(g \circ \tau_{1+1,\Gamma}) \times \operatorname{Id}_{\Gamma}) \circ (f \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma} \quad \operatorname{Factoring}
                           =g\circ\tau_{1+1,\Gamma}\circ(f\times\operatorname{Id}_{\Gamma})\circ\delta_{\Gamma} Definition of app, \operatorname{cur}(..)
                           =g\circ (\mathrm{Id}_{\Gamma}\times f)\circ \tau_{\Gamma,\Gamma}\circ \delta_{\Gamma} Twist commutativity
                           = g \circ (\mathrm{Id}_{\Gamma} \times f) \circ \langle \mathrm{Id}_{\Gamma}, \mathrm{Id}_{\Gamma} \rangle Twist, diagonal defintions
                           = g \circ \langle \mathrm{Id}_{\Gamma}, f \rangle
                           = [\![ \Phi \mid \Gamma \vdash v_2 [v_1/x] : A]\!]
```

Case Effect-Beta: let

$$\begin{split} h &= \llbracket \Phi \vdash \epsilon \text{:} \texttt{Effect} \rrbracket \\ f &= \llbracket \Phi, \alpha \mid \Gamma \vdash v \text{:} A \rrbracket \\ A &= \llbracket \Phi, \alpha \vdash A \left[\alpha/\alpha \right] \text{:} \texttt{Type} \rrbracket \end{split}$$

Then

$$\llbracket \Phi \mid \Gamma \vdash \Lambda \alpha. v : \forall \alpha. A \rrbracket = \overline{f} \tag{10.21}$$

So

$$\begin{split} \llbracket \Phi \mid \Gamma \vdash (\Lambda \alpha. v) \; \epsilon : \forall \alpha. A \rrbracket &= \langle \operatorname{Id}_I, h \rangle^*(\epsilon_A) \circ \overline{f} \\ &= \langle \operatorname{Id}_I, h \rangle^*(\epsilon_A) \circ \langle \operatorname{Id}_I, h \rangle^*(\pi_1^*(\overline{f})) \quad \text{Identity functor} \\ &= \langle \operatorname{Id}_I, h \rangle^*(\epsilon_A \circ \pi_1^*(\overline{f})) \\ &= \langle \operatorname{Id}_I, h \rangle^*(f) \quad \text{By adjunction} \\ &= \llbracket \Phi \mid \Gamma \vdash v \; [\epsilon/\alpha] : A \; [e/\alpha] \rrbracket \quad \text{By substitution theorem} \end{split}$$

Case Effect-Eta: TODO: Use re-indexing functors rather than post composition Let

$$f = \llbracket \Phi \mid \Gamma \vdash v : \forall \alpha.A \rrbracket$$
$$A = \llbracket \Phi, \alpha \vdash A : \mathsf{Type} \rrbracket$$

 \mathbf{SO}

$$\begin{split} \llbracket \Phi \mid \Gamma \vdash \Lambda \alpha. (v \; \alpha) \colon \forall \alpha. A \rrbracket &= \overline{\llbracket \Phi, \alpha \mid \Gamma \vdash \epsilon \; \alpha \colon \forall \alpha. A \rrbracket} \\ &= \overline{\langle \operatorname{Id}_{I \times U}, \pi_2 \rangle^* (\epsilon_{\llbracket \Phi, \alpha, \beta \vdash A \llbracket \beta / \alpha \rrbracket \colon \operatorname{Type} \rrbracket}) \circ \pi_1^*(f)} \end{split}$$

Let's look at $\llbracket \Phi, \alpha, \beta \vdash A [B/\alpha] : Type \rrbracket$.

We have the weakening:

$$\iota \pi \times : \Phi, \alpha, \beta \triangleright \Phi, \beta \tag{10.22}$$

So by the weakening theorem on type denotations:

$$\begin{split} \llbracket \Phi, \alpha, \beta \vdash A \left[\beta / \alpha \right] \colon & \mathsf{Type} \rrbracket = \llbracket \Phi, \beta \vdash A \left[\beta / \alpha \right] \colon \mathsf{Type} \rrbracket \circ (\pi_1 \times \mathsf{Id}_U) \\ \forall_{I \times U} (\llbracket \Phi, \alpha, \beta \vdash A \left[\beta / \alpha \right] \colon \mathsf{Type} \rrbracket) &= \forall_I (\llbracket \Phi, \beta \vdash A \left[\beta / \alpha \right] \colon \mathsf{Type} \rrbracket) \circ \pi_1 \\ &= \pi_1^* \forall_I (\llbracket \Phi, \beta \vdash A \left[\beta / \alpha \right] \colon \mathsf{Type} \rrbracket) \\ \epsilon_{\llbracket \Phi, \alpha, \beta \vdash A \left[\beta / \alpha \right] \colon \mathsf{Type} \rrbracket} &= \overline{\mathsf{Id}}_{\pi_1^* \forall_I (\llbracket \Phi, \beta \vdash A \left[\beta / \alpha \right] \colon \mathsf{Type} \rrbracket)} \\ &= \overline{\mathsf{Id}}_{\pi_1^* \forall_I A} \\ &= \overline{\pi_1^* (\mathsf{Id}_{\forall_I A})} \\ &= \overline{\pi_1^* (\mathsf{Id}_{\forall_I A})} \\ &= \overline{(\pi_1 \times \mathsf{Id}_U)^* (\epsilon_A)} \\ &= (\pi_1 \times \mathsf{Id}_U)^* (\epsilon_A) \end{split}$$

So

$$\begin{split} \llbracket \Phi \mid \Gamma \vdash \Lambda \alpha. (v \; \alpha) \colon & \forall \alpha. A \rrbracket = \overline{\langle \operatorname{Id}_{I \times U}, \pi_2 \rangle^* (\epsilon_{\llbracket \Phi, \alpha, \beta \vdash A \llbracket \beta / \alpha \rrbracket \colon \operatorname{Type} \rrbracket)} \circ \pi_1^*(f)} \\ &= \overline{\langle \operatorname{Id}_{I \times U}, \pi_2 \rangle^* ((\pi_1 \times \operatorname{Id}_U)^*(\epsilon_A)) \circ \pi_1^*(f)} \\ &= \overline{\langle \pi_1, \pi_2 \rangle^* (\epsilon_A) \circ \pi_1^*(f)} \\ &= \overline{\operatorname{Id}_{I \times U}^* (\epsilon_A) \circ \pi_1^*(f)} \\ &= \overline{\epsilon_A \circ \pi_1^*(f)} \quad \text{By adjunction} \\ &= f \end{split}$$

10.2.3 Congruences

These cases can be proved fairly mechanically by assuming the preconditions, using induction to prove that the matching pairs of Subexpressions have equal denotations, then constructing the denotations of the expressions using the equal denotations which gives trivially equal denotations.

Case Lambda: By inversion, we have $\Phi \mid \Gamma, x: A \vdash v_1 \approx v_2: B$ By induction, we therefore have $\llbracket \Phi \mid \Gamma, x: A \vdash v_1: B \rrbracket = \llbracket \Phi \mid \Gamma, x: A \vdash v_2: B \rrbracket$

Then let

$$f = \llbracket \Phi \mid \Gamma, x : A \vdash v_1 : B \rrbracket = \llbracket \Phi \mid \Gamma, x : A \vdash v_2 : B \rrbracket$$
 (10.23)

And so

$$\llbracket \Phi \mid \Gamma \vdash \lambda x : A.v_1 : A \to B \rrbracket = \operatorname{cur}(f) = \llbracket \Phi \mid \Gamma \vdash \lambda x : A.v_2 : A \to B \rrbracket \tag{10.24}$$

Case Return: By inversion, we have $\Phi \mid \Gamma \vdash v_1 \approx v_2$: A By induction, we therefore have $\llbracket \Phi \mid \Gamma \vdash v_1 : A \rrbracket = \llbracket \Phi \mid \Gamma \vdash v_2 : A \rrbracket$

Then let

$$f = \llbracket \Phi \mid \Gamma \vdash v_1 : A \rrbracket = \llbracket \Phi \mid \Gamma \vdash v_2 : A \rrbracket \tag{10.25}$$

And so

$$\llbracket \Phi \mid \Gamma \vdash \text{return } v_1 : \mathsf{M}_1 A \rrbracket = \eta_A \circ f = \llbracket \Phi \mid \Gamma \vdash \text{return } v_2 : \mathsf{M}_1 A \rrbracket \tag{10.26}$$

Case Apply: By inversion, we have $\Phi \mid \Gamma \vdash v_1 \approx v_1' : A \to B$ and $\Phi \mid \Gamma \vdash v_2 \approx v_2' : A$ By induction, we therefore have $\llbracket \Phi \mid \Gamma \vdash v_1 : A \to B \rrbracket = \llbracket \Phi \mid \Gamma \vdash v_1' : A \to B \rrbracket$ and $\llbracket \Phi \mid \Gamma \vdash v_2 : A \rrbracket = \llbracket \Phi \mid \Gamma \vdash v_2' : A \rrbracket$

Then let

$$f = \llbracket \Phi \mid \Gamma \vdash v_1 : A \to B \rrbracket = \llbracket \Phi \mid \Gamma \vdash v_1' : A \to B \rrbracket$$
$$g = \llbracket \Phi \mid \Gamma \vdash v_2 : A \rrbracket = \llbracket \Phi \mid \Gamma \vdash v_2' : A \rrbracket$$

And so

$$\llbracket \Phi \mid \Gamma \vdash v_1 \ v_2 : B \rrbracket = \mathsf{app} \circ \langle f, g \rangle = \llbracket \Phi \mid \Gamma \vdash v_1' \ v_2' : B \rrbracket \tag{10.27}$$

Then let

$$f = \llbracket \Phi \mid \Gamma \vdash v_1 : \mathbf{M}_{\epsilon_1} A \rrbracket = \llbracket \Phi \mid \Gamma \vdash v_1' : \mathbf{M}_{\epsilon_1} A \rrbracket$$
$$g = \llbracket \Phi \mid \Gamma, x : A \vdash v_2 : \mathbf{M}_{\epsilon_2} B \rrbracket = \llbracket \Phi \mid \Gamma, x : A \vdash v_2' : \mathbf{M}_{\epsilon_2} B \rrbracket$$

And so

Case If: By inversion, we have $\Phi \mid \Gamma \vdash v \approx v'$: Bool, $\Phi \mid \Gamma \vdash v_1 \approx v'_1$: A and $\Phi \mid \Gamma \vdash v_2 \approx v'_2$: A By induction, we therefore have $\llbracket \Phi \mid \Gamma \vdash v \colon \mathsf{Bool} \rrbracket = \llbracket \Phi \mid \Gamma \vdash v' \colon \mathsf{Bool} \rrbracket$, $\llbracket \Phi \mid \Gamma \vdash v_1 \colon A \rrbracket = \llbracket \Phi \mid \Gamma \vdash v'_1 \colon A \rrbracket$ and $\llbracket \Phi \mid \Gamma, x \colon A \vdash v_2 \colon A \rrbracket = \llbracket \Phi \mid \Gamma, x \colon A \vdash v'_2 \colon A \rrbracket$

Then let

$$\begin{split} f &= \llbracket \Phi \mid \Gamma \vdash v \text{:} \operatorname{Bool} \rrbracket = \llbracket \Phi \mid \Gamma \vdash v' \text{:} \operatorname{Bool} \rrbracket \\ g &= \llbracket \Phi \mid \Gamma \vdash v_1 \text{:} A \rrbracket = \llbracket \Phi \mid \Gamma \vdash v_1' \text{:} A \rrbracket \\ h &= \llbracket \Phi \mid \Gamma, x \text{:} A \vdash v_2 \text{:} A \rrbracket = \llbracket \Phi \mid \Gamma, x \text{:} A \vdash v_2' \text{:} A \rrbracket \end{split}$$

And so

$$\llbracket \Phi \mid \Gamma \vdash \text{if}_A \ v \text{ then } v_1 \text{ else } v_2 : A \rrbracket = \operatorname{app} \circ (([\operatorname{cur}(g \circ \pi_2), \operatorname{cur}(h \circ \pi_2)] \circ f) \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma} \\
= \llbracket \Phi \mid \Gamma \vdash \operatorname{if}_A \ v' \text{ then } v_1' \text{ else } v_2' : A \rrbracket \tag{10.29}$$

Case Subtype: By inversion, we have $\Phi \mid \Gamma \vdash v_1 \approx v_2 : A$, and $A \leq :_{\Phi} B$ By induction, we therefore have $\llbracket \Phi \mid \Gamma \vdash v_1 : A \rrbracket = \llbracket \Phi \mid \Gamma \vdash v_2 : A \rrbracket$

Then let

$$f = \llbracket \Phi \mid \Gamma \vdash v_1 : A \rrbracket = \llbracket \Phi \mid \Gamma \vdash v_2 : B \rrbracket$$
$$g = \llbracket A \leq :_{\Phi} B \rrbracket$$

And so

$$\llbracket \Phi \mid \Gamma \vdash v_1 : B \rrbracket = g \circ f = \llbracket \Phi \mid \Gamma \vdash v_1 : B \rrbracket \tag{10.30}$$

Case Effect-Gen: By inversion, we have $\Phi, \alpha \mid \Gamma \vdash v_1 \approx v_2 : A$. So by induction, $\llbracket \Phi, \alpha \mid \Gamma \vdash v_1 : A \rrbracket = \llbracket \Phi, \alpha \mid \Gamma \vdash v_2 : A \rrbracket$

So

Case Effect-Spec: By inversion, we have $\Phi \mid \Gamma \vdash v_1 \approx v_2 : \forall \alpha. A \text{ and } \Phi \vdash \epsilon : \text{Effect.}$

So by induction, we have $\llbracket \Phi \mid \Gamma \vdash v_1 \colon \forall \alpha.A \rrbracket = \llbracket \Phi \mid \Gamma \vdash v_2 \colon \forall \alpha.A \rrbracket$ So

$$\begin{split} \llbracket \Phi \mid \Gamma \vdash v_1 \; \epsilon : A \left[\epsilon / \alpha \right] \rrbracket &= \langle \mathtt{Id}_I, \llbracket \Phi \vdash \epsilon : \mathtt{Effect} \rrbracket \rangle^* (\epsilon_A) \circ \llbracket \Phi \mid \Gamma \vdash v_1 \colon \forall \alpha. A \rrbracket \\ &= \langle \mathtt{Id}_I, \llbracket \Phi \vdash \epsilon : \mathtt{Effect} \rrbracket \rangle^* (\epsilon_A) \circ \llbracket \Phi \mid \Gamma \vdash v_2 \colon \forall \alpha. A \rrbracket \\ &= \llbracket \Phi \mid \Gamma \vdash v_2 \; \epsilon \colon A \left[\epsilon / \alpha \right] \rrbracket \end{split}$$