Exercise 2.1

Perhatikan dua rangkaian perangkat keras berurutan berikut:

Dapatkan sistem transisi dari kedua rangkaian perangkat tersebut.

Solusi:

Pertama kita definisikan $\lambda_{y_1}, \lambda_{y_2}$ sebagai fungsi output dan $\delta_{r_1}, \delta_{r_2}$ sebagai fungsi transisi. Kemudian berdasarkan gambar di atas, karena rangkaian saling terpisahkan maka akan ditinjau masing-masing rangkaian.

(1) Rangkaian pertama bergantung pada input x_1 dan r_1 dengan fungsi output λ_{y_1} dan fungsi transisi δ_{r_1} . Berdasarkan gambar, kita dapatkan informasi sebagai berikut:

$$\lambda_{y_1} := x_1 \vee \neg r_1$$
$$\delta_{r_1} := x_1 \wedge r_1$$

Kemudian state awal untuk sistem transisi kita dapat didefinisikan

$$I := \{ \langle x_1 = 0, r_1 = 1 \rangle, \langle x_1 = 1, r_1 = 1 \rangle \}$$

dan untuk setiap kemungkinan dapat diperoleh hasil-hasilnya sebagai berikut:

$$\langle x_1 = 0, r_1 = 1 \rangle \longrightarrow \langle x_1 = 0, r_1 = 0 \rangle$$

$$\langle x_1 = 0, r_1 = 1 \rangle \longrightarrow \langle x_1 = 1, r_1 = 0 \rangle$$

$$\langle x_1 = 1, r_1 = 1 \rangle \longrightarrow \langle x_1 = 0, r_1 = 1 \rangle$$

$$\langle x_1 = 1, r_1 = 1 \rangle \longrightarrow \langle x_1 = 1, r_1 = 1 \rangle$$

$$\langle x_1 = 0, r_1 = 0 \rangle \longrightarrow \langle x_1 = 0, r_1 = 0 \rangle$$

$$\langle x_1 = 0, r_1 = 0 \rangle \longrightarrow \langle x_1 = 1, r_1 = 0 \rangle$$

$$\langle x_1 = 1, r_1 = 0 \rangle \longrightarrow \langle x_1 = 1, r_1 = 0 \rangle$$

$$\langle x_1 = 1, r_1 = 0 \rangle \longrightarrow \langle x_1 = 1, r_1 = 0 \rangle$$

Disisi lain tabel kebenaran untuk λ_{y_1} adalah

x_1	r_1	λ_{y_1}
0	0	1
0	1	0
1	0	1
1	1	1

Sehingga sistem transisi dari rangkaian pertama dapat direpresentasikan sebagai berikut:

(2) Rangkaian kedua bergantung pada input x_2 dan r_2 dengan fungsi output λ_{y_2} dan fungsi transisi δ_{r_2} . Berdasarkan gambar, kita dapatkan informasi sebagai berikut:

$$\lambda_{y_2} := x_2 \wedge r_2$$
$$\delta_{r_2} := x_2 \vee r_2$$

Kemudian state awal untuk sistem transisi kita dapat didefinisikan

$$I := \{ \langle x_2 = 0, r_2 = 0 \rangle, \langle x_2 = 1, r_2 = 0 \rangle \}$$

dan untuk setiap kemungkinan dapat diperoleh hasil-hasilnya sebagai berikut:

$$\langle x_2 = 0, r_2 = 0 \rangle \longrightarrow \langle x_2 = 0, r_2 = 0 \rangle$$

$$\langle x_2 = 0, r_2 = 0 \rangle \longrightarrow \langle x_2 = 1, r_2 = 0 \rangle$$

$$\langle x_2 = 1, r_2 = 0 \rangle \longrightarrow \langle x_2 = 0, r_2 = 1 \rangle$$

$$\langle x_2 = 1, r_2 = 0 \rangle \longrightarrow \langle x_2 = 1, r_2 = 1 \rangle$$

$$\langle x_2 = 0, r_2 = 1 \rangle \longrightarrow \langle x_2 = 0, r_2 = 1 \rangle$$

$$\langle x_2 = 0, r_2 = 1 \rangle \longrightarrow \langle x_2 = 1, r_2 = 1 \rangle$$

$$\langle x_2 = 1, r_2 = 1 \rangle \longrightarrow \langle x_2 = 0, r_2 = 1 \rangle$$

$$\langle x_2 = 1, r_2 = 1 \rangle \longrightarrow \langle x_2 = 1, r_2 = 1 \rangle .$$

$$\langle x_2 = 1, r_2 = 1 \rangle \longrightarrow \langle x_2 = 1, r_2 = 1 \rangle .$$

Disisi lain tabel kebenaran untuk λ_{y_2} adalah

x_2	r_2	λ_{y_2}
0	0	0
0	1	0
1	0	0
1	1	1

Sehingga sistem transisi dari rangkaian kedua dapat direpresentasikan sebagai berikut:

