Importando libs

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import recall_score
from sklearn.metrics import precision_score
from sklearn.model_selection import cross_val_score, cross_val_predict
from sklearn.model_selection import KFold
```

Importação de dados e primeiras infos

In [2]:

```
df = pd.read_excel('https://github.com/silvacaio/Desafio_DataScience/raw/main/teste_sma
rkio_lbs.xls', sheet_name = 'Análise_ML')
df.head()
```

Out[2]:

	Pred_class	probabilidade	status	True_class
0	2	0.079892	approved	0.0
1	2	0.379377	approved	74.0
2	2	0.379377	approved	74.0
3	2	0.420930	approved	74.0
4	2	0.607437	approved	NaN

In [3]:

```
#conhecendo a estrutura do dataset
df.shape
```

Out[3]:

(643, 4)

In [4]:

```
#tipo das colunas
df.dtypes
```

Out[4]:

Pred_class int64 probabilidade float64 status object True_class float64

dtype: object

In [5]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 643 entries, 0 to 642
Data columns (total 4 columns):

Column Non-Null Count Dtype ---------0 Pred class 643 non-null int64 1 probabilidade 643 non-null float64 2 status 643 non-null object True_class 181 non-null float64 dtypes: float64(2), int64(1), object(1) memory usage: 20.2+ KB

Possível observar que a coluna 'True class' contém muitos valores faltantes

In [6]:

```
df.describe()
```

Out[6]:

	Pred_class	probabilidade	True_class
count	643.000000	643.000000	181.000000
mean	52.712286	0.622436	38.574586
std	37.602068	0.266811	39.581017
min	2.000000	0.043858	0.000000
25%	12.000000	0.408017	0.000000
50%	59.000000	0.616809	24.000000
75%	81.000000	0.870083	74.000000
max	118.000000	1.000000	117.000000

Através da estatistica descritiva, acima, já é possível observar uma "inconsistencia" nestes dados uma vez que os valores limites (min e max) da coluna 'Pred_class' não existem na coluna 'True_class'

```
In [7]:
```

```
#confirmando que somente a coluna 'True_class' contém missing values
df.columns[df.isnull().any()]
```

Out[7]:

```
Index(['True_class'], dtype='object')
```

In [8]:

```
qtdTotal = len(df)
qtdWithClassification = len(df[df.True_class.isnull() == False])
qtdWithoutClassification = len(df[df.True_class.isnull() == True])
qtdCorrectPredicted = len(df[df.True_class == df.Pred_class])
percWithoutClassification = round(qtdWithoutClassification * 100 / qtdTotal, 2)
print(f'Quantidade de itens: {qtdTotal}')
print(f'Quantidade de itens classificados: {qtdWithClassification}')
print(f'Quantidade de itens sem classificação: {percWithoutClassification}')
print(f'% de itens sem classificação: {qtdWithoutClassification}')
print(f'Quantidade de itens preditos corretamente: {qtdCorrectPredicted}')
```

```
Quantidade de itens: 643
Quantidade de itens classificados: 181
Quantidade de itens sem classificação: 71.85%
% de itens sem classificação: 462
Quantidade de itens preditos corretamente: 0
```

Destaca-se nesta análise inicial que dos itens que contém a "classe verdadeira" (True_class) NENHUM foi classificado corretamente.

```
In [9]:
```

```
df_withClass = df[df.True_class.isnull() == False]
```

In [10]:

```
len(df_withClass[df_withClass['status'] == 'revision'])
```

Out[10]:

0

In [11]:

```
accuracy_score(df_withClass['True_class'], df_withClass['Pred_class'])
```

Out[11]:

0.0

É possível observar e confirmar que a acurácia dos itens com a "classe verdadeira" (True class) é de 0%

```
In [12]:
```

```
df_withoutClass = df[df.True_class.isnull()]
```

```
In [13]:
```

43

```
len(df_withoutClass[df_withoutClass['status'] == 'revision'])
Out[13]:
```

Outro fator observado nesta análise inicial é de que TODOS os registros com status igual a revision estão SEM valor na coluna "True_class". por isso, após a etapa de popular os registros faltantes com os valores da coluna "Pred_class", TODOS os dados ficarão com o dado exatamente igual em ambas as colunas. Isto pode ser um fator de enviesamento, na etapa de criação de uma novo modelo.

EDA - Exploratory Data Analysis

```
In [14]:

df_ajusted = df.copy()
```

In [15]:

```
#conforme orientações do teste, quando a 'True_class' for nula ela deve assumir o valor
da coluna 'Pred_class'
df_ajusted['True_class'] = df_ajusted['True_class'].fillna(df['Pred_class'])
```

In [16]:

```
#confirmando que não tem mais colunas com valores nulls
df_ajusted.columns[df_ajusted.isnull().any()]
```

Out[16]:

Index([], dtype='object')

In [17]:

```
qtdRealClass = df_ajusted.True_class.nunique()
qtdPredictedClass = df_ajusted.Pred_class.nunique()

print(f'Quantidade de classes (reais): {qtdRealClass}')
print(f'Quantidade de classes (preditas): {qtdPredictedClass}')

print(f'Este modelo realizou a predição de {qtdPredictedClass} classes, porém é possíve l observar que só existem {qtdRealClass}. Ou seja, o modelo fez a predição de {qtdPredictedClass} - qtdRealClass} que não existem.' )
```

```
Quantidade de classes (reais): 73
Quantidade de classes (preditas): 80
Este modelo realizou a predição de 80 classes, porém é possível observar q
ue só existem 73. Ou seja, o modelo fez a predição de 7 que não existem.
```

In [18]:

```
predictNotExist = []
realClasses = df_ajusted.True_class.unique()
for pred in df.Pred_class.unique():
   if pred not in realClasses:
      predictNotExist.append(pred)

print(f'As seguintes classes foram preditas, porém não existem:{predictNotExist}')
```

As seguintes classes foram preditas, porém não existem:[33, 50, 64, 109, 49, 31, 21, 95, 105]

In [19]:

```
#visualização da quantidade de classes preditas e classes reais
plt.figure(figsize=(20, 6))
df_ajusted['Pred_class'].value_counts().plot.bar()
plt.show()
plt.figure(figsize=(20, 6))
df_ajusted['True_class'].value_counts().plot.bar(color='green')
plt.show()
```



```
In [20]:
```

```
print(f"""Top 5 Pred_class:
{df_ajusted['Pred_class'].value_counts().head(5)}""")
print(f"""Top 5 True_class:
{df_ajusted['True_class'].value_counts().head(5)}""")
Top 5 Pred_class:
3
      63
2
      61
74
      59
60
      31
77
      31
Name: Pred_class, dtype: int64
Top 5 True_class:
74.0
        78
2.0
        61
3.0
        60
0.0
        54
        29
77.0
Name: True_class, dtype: int64
In [21]:
```

```
len(df_ajusted['Pred_class'] == 0])
```

Out[21]:

0

In [22]:

```
df_ajusted[df_ajusted['True_class'] == 0]['Pred_class'].value_counts()
Out[22]:
52
       14
32
        4
        3
110
        3
59
86
         2
         2
2
         2
50
3
         2
         2
109
         2
99
         1
60
19
         1
74
         1
         1
77
11
         1
22
        1
         1
21
        1
31
90
         1
92
         1
30
         1
         1
33
39
        1
104
         1
43
        1
48
         1
85
        1
64
Name: Pred_class, dtype: int64
```

Podemos observar que dos top 5 de classes reais 'True_class', a única que não apareceu com um número próximo de classes preditas foi o classe 0. A classe 0 é uma classe muito presente no 'True_class', porém não exista na coluna 'Pred_class'.

Não é possível inferir algo significativo do gráfico de correlações destes dados.

In [23]:

```
sns.countplot(x = df_ajusted.status)
plt.title('Contagem de status')
```

Out[23]:

Text(0.5, 1.0, 'Contagem de status')

Possível observar um grande desbalanceamento entre estes itens, podendo ter um impacto negativo na criação de uma novo modelo de classificação. Uma possível solução, seria a aplicação das técnicas de oversampling or undersampling.

In [24]:

Out[24]:

Text(0.5, 1.0, 'Distribuição do status')

In [25]:

```
df_ajusted[df_ajusted['status'] == 'approved'].describe().T
```

Out[25]:

	count	mean	std	min	25%	50%	75%	max
Pred_class	600.0	53.545000	37.796944	2.000000	12.000000	60.000000	82.000000	118.0
probabilidade	600.0	0.629549	0.270583	0.043858	0.411801	0.635104	0.881497	1.0
True_class	600.0	48.765000	38.881651	0.000000	3.000000	60.000000	77.000000	118.0
4								

In [26]:

```
df_ajusted[df_ajusted['status'] == 'revision'].describe().T
```

Out[26]:

	count	mean	std	min	25%	50%	75%	
Pred_class	43.0	41.093023	33.013571	2.000000	14.500000	32.000000	60.000000	114.00
probabilidade	43.0	0.523184	0.182102	0.278516	0.345885	0.511118	0.654347	0.90
True_class	43.0	41.093023	33.013571	2.000000	14.500000	32.000000	60.000000	114.00
4								•

Através do gráfico de boxplot podemos observar a distribuições dos dados dentro dos percentis.

- Para o status 'approved' os dados de probabilidade se concentram na faixa entre 0.411801 e 0.881497.
- Para o status 'revision' os dados de probabilidade se concentram na faixa entre 0.345885 e 0.654347.

Validação do modelo original (métricas)

In [27]:

```
confusion_matrix(df_ajusted.Pred_class, df_ajusted.True_class)
```

Out[27]:

```
array([[ 0, 0, 0, ...,
                        0,
                               0],
      [ 2, 47, 1, ...,
                               0],
                        0,
                            0,
      [ 2, 0, 50, ...,
                       0,
      [ 0,
           0, 0, ...,
                            0,
                               0],
                        2,
      [ 0,
          0, 0, ..., 0, 0,
                               0],
      [ 0, 0, 0, ..., 0, 0,
                               2]])
```

In [28]:

```
plt.figure(figsize = (15, 8))
sns.heatmap(confusion_matrix(df_ajusted.Pred_class, df_ajusted.True_class))
plt.title('Matriz de Confusão')
```

Out[28]:

Text(0.5, 1.0, 'Matriz de Confusão')

Através da matriz de confusão, podemos observar a diagonal principal onde os pontos mais claros representam a quantidade de acertos do modelo para determinada classe. Ou seja, quanto mais claro estiver o ponto, na diagonal principal, melhor qualidade do nosso modelo.

No início desta análise observamos que inicialmente, com os valores nulos, não existia nenhuma classe predita corretamente. Conforme orientações do teste, assumimos que o valor da coluna 'Pred_class' estava correto. Desta maneira, podemos inferir que a porcentagem de registros que INICIALMENTE estavam sem classificação, 71.85%, representa também a acurácia deste modelo. Podemos confirmar isso com a aplicação da função abaixo:

In [29]:

```
print(f'Percentual de registros inicialmente sem classificação: {percWithoutClassificat
ion}')
print(f"Acurácia do modelo: {round(accuracy_score(df_ajusted['True_class'], df_ajusted
['Pred_class']) * 100, 2)}")
```

Percentual de registros inicialmente sem classificação: 71.85 Acurácia do modelo: 71.85

Utilizamos o recall como forma de avaliar o quão bom este modelo é em identificar os possíveis casos positivos:

In [30]:

```
recall_score(df_ajusted['True_class'], df_ajusted['Pred_class'], average='macro', zero_
division=0)
```

Out[30]:

0.6997739858971228

Na "precision" os falsos positivos são utilizados como conforma de "punição", a fim de apresentar dentro do que foi classificado como positivo, o que de fato é positivo.

In [31]:

```
\label{lem:precision_score} precision\_score(df\_ajusted['True\_class'], \ df\_ajusted['Pred\_class'], \ average='macro', \ zero\_division=0)
```

Out[31]:

0.6286648904994168

Report com as métricas para cada uma das classes:

In [32]:

print(classification_report(df_ajusted['True_class'], df_ajusted['Pred_class'], zero_di
vision=0))

				Desallo_1
	precision	recall	f1-score	support
0.0	0.00	0.00	0.00	54
2.0	0.77	0.77	0.77	61
3.0	0.79	0.83	0.81	60
4.0	0.78	0.86	0.82	21
11.0	0.44	1.00	0.62	4
12.0	0.83	0.71	0.77	7
15.0	0.67	0.67	0.67	3
17.0	0.86	0.75	0.80	8
19.0	0.40	0.40	0.40	5
21.0	0.00	0.00	0.00	0
22.0	0.67	0.91	0.77	11
24.0	0.71	0.62	0.67	16
25.0	0.83	1.00	0.91	10
26.0	0.33	0.50	0.40	2
28.0	0.50	1.00	0.67	1
29.0	1.00	1.00	1.00	7
30.0	0.60	1.00	0.75	3
31.0	0.00	0.00	0.00	0
32.0	0.25	0.50	0.33	4
33.0	0.00	0.00	0.00	0
36.0	1.00	1.00	1.00	1
39.0	0.67	1.00	0.80	4
40.0	1.00	0.78	0.88	9
43.0	0.50	1.00	0.67	3
46.0	1.00	1.00	1.00	1
48.0	0.50	0.25	0.33	4
49.0	0.00	0.00	0.00	0
50.0	0.00	0.00	0.00 0.46	0
52.0 54.0	0.30 1.00	1.00 1.00	1.00	6 2
55.0	0.82	0.93	0.87	15
56.0	1.00	1.00	1.00	3
58.0	1.00	0.50	0.67	2
59.0	0.25	1.00	0.40	1
60.0	0.81	0.89	0.85	28
62.0	0.75	0.60	0.67	5
63.0	1.00	1.00	1.00	2
64.0	0.00	0.00	0.00	0
65.0	0.33	0.50	0.40	2
66.0	0.00	0.00	0.00	1
68.0	0.67	1.00	0.80	2
69.0	1.00	1.00	1.00	1
70.0	1.00	0.75	0.86	4
73.0	0.50	0.50	0.50	2
74.0	0.95	0.72	0.82	78
76.0	1.00	0.80	0.89	10
77.0	0.77	0.83	0.80	29
78.0	1.00	1.00	1.00	3
79.0	1.00	0.43	0.60	7
81.0	0.60	0.33	0.43	9
82.0	1.00	1.00	1.00	5
84.0	1.00	1.00	1.00	1
85.0 86.0	0.43	0.60 0.20	0.50 0.25	10
86.0 87.0	0.33 1.00	0.20 0.67	0.25 0.80	5 6
88.0	1.00	1.00	1.00	3
90.0	0.67	1.00	0.80	2
92.0	0.20	0.50	0.29	2
93.0	1.00	1.00	1.00	1
23.0	1.00	1.00	1.00	-

01/03/2021					Desafio_1
9	94.0	1.00	1.00	1.00	1
9	95.0	0.00	0.00	0.00	0
9	96.0	0.90	0.90	0.90	21
9	98.0	1.00	0.71	0.83	7
9	99.0	0.57	0.80	0.67	10
16	0.0	1.00	1.00	1.00	1
16	02.0	1.00	0.62	0.77	8
16	03.0	0.67	1.00	0.80	6
16	04.0	0.25	1.00	0.40	1
16	95.0	0.00	0.00	0.00	0
16	96.0	0.25	1.00	0.40	1
16	97.0	1.00	1.00	1.00	1
16	08.0	0.69	0.90	0.78	10
16	99.0	0.00	0.00	0.00	0
11	10.0	0.69	1.00	0.81	11
11	L1.0	0.33	1.00	0.50	1
13	12.0	0.50	0.67	0.57	3
13	13.0	1.00	1.00	1.00	1
11	L4.0	1.00	1.00	1.00	1
13	L5.0	0.80	0.80	0.80	5
13	16.0	1.00	0.67	0.80	3
13	L7.0	0.00	0.00	0.00	3
11	18.0	0.40	1.00	0.57	2
				0.73	643
accur	-	0.63	0.70	0.72	643
macro	•	0.63	0.70	0.64	643
weighted	avg	0.72	0.72	0.70	643

Criação de novo modelo

Conforme as orientações:

- Dados com status "approved" serão utilizados para treinamento
- Dados com status "revision" serão os dados a ser previstos

In [33]:

```
#separar os dados em revision e approved
df_new_model = df_ajusted.copy()
```

In [34]:

```
df_new_model['Ok'] = (df_new_model['Pred_class'] == df_new_model['True_class']).astype(
int)
```

In [35]:

```
df_approved = df_new_model[df_new_model['status'] == 'approved']
df_approved.tail(5)
```

Out[35]:

	Pred_class	probabilidade	status	True_class	Ok
595	74	0.432421	approved	74.0	1
596	82	0.590576	approved	82.0	1
597	92	0.915543	approved	92.0	1
598	96	0.334495	approved	96.0	1
599	99	0.373226	approved	22.0	0

In [36]:

```
len(df_approved)
```

Out[36]:

600

In [37]:

```
df_revision = df_new_model[df_new_model['status'] == 'revision']
df_revision.tail(5)
```

Out[37]:

	Pred_class	probabilidade	status	True_class	Ok
638	60	0.543772	revision	60.0	1
639	60	0.553846	revision	60.0	1
640	77	0.606065	revision	77.0	1
641	84	0.561842	revision	84.0	1
642	96	0.340740	revision	96.0	1

In [38]:

```
len(df_revision)
```

Out[38]:

43

In [39]:

```
qtdCorrectRevisionBefore = len(df_revision[df_revision['Ok'] == 1])
```

testando algoritmos de classificação

In [40]:

```
X = df_approved[['Pred_class', 'probabilidade']]
target = df_approved['Ok']
```

In [41]:

```
def scores_model(model, X, y, folds):
# # # prepare cross validation
accuracies = []
 precisions = []
 recalls = []
kfold = KFold(folds)
# # # # enumerate splits
for train_index, test_index in kfold.split(X):
       X_train, X_test, y_train, y_test = X.values[train_index], X.values[test_index],
y.values[train_index], y.values[test_index]
       model.fit(X_train, y_train)
       predictions = model.predict(X_test)
       accuracies.append(accuracy_score(y_test, predictions))
       precisions.append(precision_score(y_test, predictions))
       recalls.append(recall_score(y_test, predictions))
 print('Mean Accuracy score:', np.mean(accuracies))
 print('Mean Precision score:',np.mean(precisions))
 print('Mean Recall score:', np.mean(recalls))
```

In [42]:

```
from sklearn.naive_bayes import GaussianNB
modelNaiveBayes = GaussianNB()
scores_model(modelNaiveBayes, X, target, 6)
```

Mean Accuracy score: 0.71

Mean Precision score: 0.7860282541218083 Mean Recall score: 0.8110341909742793

In [43]:

```
from sklearn.ensemble import RandomForestClassifier

random = RandomForestClassifier(n_estimators=100)
scores_model(random, X, target, 6)
```

Mean Accuracy score: 0.7733333333333334 Mean Precision score: 0.8189255504128666 Mean Recall score: 0.8683689338907965

In [44]:

```
from sklearn.tree import DecisionTreeClassifier

tree = DecisionTreeClassifier()
scores_model(tree, X, target, 6)
```

Mean Accuracy score: 0.7483333333333334 Mean Precision score: 0.8212694541726068 Mean Recall score: 0.8184406074620495

Executando o algoritmo escolhido

In [45]:

```
#criando o modelo
random.fit(X, target)
```

Out[45]:

```
RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=None, max_features='aut o',

max_leaf_nodes=None, max_samples=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=None, oob_score=False, random_state=None, verbose=0, warm_start=False)
```

In [46]:

```
#executando o modelo
XPredict = df_revision[['Pred_class', 'probabilidade']]
predict = random.predict(XPredict)
```

In [47]:

```
del df_revision['Ok']
```

In [48]:

```
df_revision = df_revision.assign(Ok=predict)
```

In [49]:

print(f'Antes de executar o modelo de predição, {qtdCorrectRevisionBefore} registros er am considerados corretos.') print(f'Após a execução do modelo de predição, {len(df_revision[df_revision["Ok"] == 1])} registros foram classificados como corretos.')

Antes de executar o modelo de predição, 43 registros eram considerados cor retos.

Após a execução do modelo de predição, 33 registros foram classificados co mo corretos.

Não é possível afirmar a verecidade desta primeira afirmação! Como demonst rado no início desta análise, TODOS os registros com status igual a revisi on estavam SEM valor na coluna "True_class". por isso, após a etapa de pop ular os registros faltantes com os valores da coluna "Pred_class", TODOS o s dados ficaram com o dado exatamente igual.

Não é possível afirmar a verecidade desta primeira afirmação! Como demonstrado no início desta análise, TODOS os registros com status igual a revision estavam SEM valor na coluna "True_class". por isso, após a etapa de popular os registros faltantes com os valores da coluna "Pred_class", TODOS os dados ficaram com o dado exatamente igual.