1 Points de Fermat

Soient (ABC) un triangle dont les angles sont chacun strictement inférieurs $\tilde{A} = \frac{2\pi}{3}$. On souhaite minimiser sur \mathbb{R}^2 de la fonction :

$$f(M) = MA + MB + MC$$

- 1. Montrer que f admet au moins un minimum global sur \mathbb{R}^2 .
- 2. Montrer que ce minimum est atteint pour un point P distinct de A, B, C. Indication : On pourra choisir le nom des sommets de telle sorte que \widehat{BCA} et \widehat{ABC} soient des angles aigus et on considérera :
 - -H le pied de la hauteur issue de A.
 - M un point proche de A sur la bissectrice de l'angle \widehat{BAC} .
- 3. Calculer la différentielle de f. En déduire une équation vérifiée par le (les) minimum (minima) de f.
- 4. Montrer que les angles \widehat{APB} , \widehat{BPC} , \widehat{CPA} sont égaux \widetilde{A} $\frac{2\pi}{3}$ pour P minimisant f. En déduire que le minimum de f est unique.

2 Fonctionnelles quadratiques

2.1

Soit E un espace vectoriel normé. Soit J: $\begin{cases} E \to \mathbb{R} \\ x \mapsto \frac{1}{2}B(x,x) - L(x) \end{cases}$, avec B est une forme bilinéaire symétrique continue et L une forme linéaire continue.

- 1. Quelle équation vérifient les points critiques de J?
- 2. Montrer que si E est un espace de Hilbert et que si existe $\alpha > 0$ telle que $B(u, u) \ge \alpha ||u||^2$, alors la fonctionnelle J admet un unique minimum.

Indication : Soit x_n une suite telle que $\lim_{n\to\infty} J(x_n) = \inf_E J$. En utilisant le fait que $\frac{1}{2}B(x_n - x_m, x_n - x_m) = 2(J(x_n) + J(x_m)) - 4J(\frac{x_n + x_m}{2})$, montrer que cette suite est de Cauchy.

3. Montrer que si E est de dimension finie et que si $\lim_{\|x\|\to\infty} J(x) = +\infty$, alors J admet un unique minimum.

2.2 Moindres carrés

- 1. Soient n points du plan (x_i, y_i) avec des x_i qui ne soient pas tous égaux entre eux. Montrer qu'il existe un unique $(\lambda, \mu) \in \mathbb{R}^2$ tel que $\sum_{i=1}^n (\lambda x_i + \mu y_i)^2$ soit minimal. La droite d'équation $y = \lambda x + \mu$ est appelé droite des moindres carrés.
- 2. Soient $x_1, x_2, \dots x_m$ tels que n+1 d'entre eux soient 2 \tilde{A} 2 distincts.

Montrer que la fonction $f: \begin{cases} \mathbb{R}_n[X] \to \mathbb{R} \\ P \to \sum_{i=1}^m (P(x_i) - y_i)^2 \end{cases}$ admet un unique maximum.

3 Principe du maximum.

1. Pour une fonction satisfaisant une inégalité stricte.

Soit u une fonction telle que $\mathcal{L}u = \sum_{1 \leq i,j \leq n} a_{i,j}(x) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{1 \leq i \leq n} b_j(x) \frac{\partial u}{\partial x_i} > 0$ avec $A = (a_{i,j})_{1 \leq i,j \leq n}$ symétrique positive sur un ouvert Ω .

Montrer que u ne peut admettre un maximum local.

Indication : Pour deux matrices A, B symétriques positives, montrer que

 $\sum_{1 \leq i,j \leq n} A_{i,j} B_{i,j} \geq 0$ et on pourra utiliser le fait que pour C une matrice symétrique positive, il existe une matrice symétrique positive \sqrt{C} tel que $\sqrt{C}^2 = C$.

2. Pour une fonction satisfaisant une inégalité non stricte sur un domaine borné.

Soit Ω un ouvert borné.

Soit u une fonction telle que $\mathcal{L}u = \sum_{1 \leq i,j \leq n} a_{i,j}(x) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{1 \leq i \leq n} b_j(x) \frac{\partial u}{\partial x_i} \geq 0$ avec $A = (a_{i,j})_{1 \leq i,j \leq n}$ et $(b_i)_{1 \le i \le n}$ continus sur $\overline{\Omega}$ et A positive telle que il existe i_0 et $c_0 > 0$ tels que $a_{i_0,i_0} \ge c_0$ sur $\overline{\Omega}$.

3. Montrer que $\sup_{x\in\partial\Omega}u=\sup_{x\in\Omega}u.$ Indication : Considérer $u_{\varepsilon} = u + \varepsilon e^{\lambda x_{i_0}}$.

4. Soit L défini comme \tilde{A} la question précédente. Montrer que le problème de Dirichlet $\begin{cases} \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{1 \leq i \leq n} b_j(x) \frac{\partial u}{\partial x_i} = 0 \\ u(x) = f(y) \text{ sur } \partial \Omega \end{cases}$ admet une unique solution.

Montrer que l'équation de la chaleur peut se ramener A un problème de Dirichlet.

5. Soit $P \in \mathbb{C}[X]$. Montrer que $u: z \to \frac{1}{|P(z)|^2}$ vérifie $\Delta u = |\frac{P'}{P^2}|^2$.

En déduire que si P n'admet pas de zéro, alors P est un polynà me constant. Indication : On pose $\frac{\partial}{\partial z} = \frac{\partial}{\partial x} + \mathrm{i} \frac{\partial}{\partial y}$ et $\frac{\partial}{\partial \overline{z}} = \frac{\partial}{\partial x} - \mathrm{i} \frac{\partial}{\partial y}$. On a alors $\frac{\partial}{\partial z} \frac{\partial}{\partial \overline{z}} = \Delta$. Montrer que $\frac{\partial}{\partial \overline{z}} P = 0$ et $\frac{\partial}{\partial z}P = P'$.

Extremas liés : cas d'une contrainte linéaire 4

Soit E un espace de Banach.

Soit (f_1, \ldots, f_p) une famille libre de formes linéaires continues et $g: E \to \mathbb{R}$ une fonction C^1 .

1. On suppose qu'il existe x_0 tel que

$$g(x_0) = \inf_{f_1(x) = f_2(x) = \dots = f_p(x) = 0} g(x).$$

Montrer qu'il existe $\lambda_1, \ldots, \lambda_p \in \mathbb{R}$ tels que :

$$Dg(x_0) = \sum_{i=1}^{p} \lambda_i f_i$$

Note : les λ_i sont appelés les multiplicateurs de Lagrange.

2. On suppose qu'il existe x_0 tel que

$$g(x_0) = \inf_{f_1(x) \le 0, f_2(x) \le 0, \dots, f_p(x) \le 0} g(x).$$

Soit $I = \{1 \le i \le q | f_i(x) = 0\}.$

Montrer qu'il existe $\lambda_i, i \in I$ tels que :

$$Dg(x_0) = \sum_{i \in I} \lambda_i f_i$$

Montrer que de plus $\lambda_i \geq 0$.

Note : les λ_i sont appelés les multiplicateurs de Kuhn-Tucker.

5 Équations d'Euler-Lagrange

$$\text{Soit } \mathcal{F}: \begin{cases} C_0^1([0,1]) \to \mathbb{R} \\ x \mapsto \int_0^1 l(x(t),x'(t),t) \mathrm{d}t \end{cases} \quad \text{avec } l \text{ de classe } C^1.$$

- 1. Montrer que f est C^1 et sa différentielle est : $\mathrm{d}\mathcal{F}_x(h) = \int_0^1 h(t) \frac{\partial l}{\partial x} l(x(t), x'(t), t) + h'(t) \frac{\partial l}{\partial x'} l(x(t), x'(t), t) \mathrm{d}t$
- 2. Soit F continue sur un [a,b] telle que pour h C^1 nulle aux bords, $\int_a^b F(x)h'(x)\mathrm{d}x=0$. Montrer que F est constante.
- 3. Soit x un point critique de \mathcal{F} .

 Montrer que $t\mapsto \frac{\partial l}{\partial x'}l(x(t),x'(t),t)$ est de classe C^1 . (On pourra introduire la primitive de $t\mapsto \frac{\partial l}{\partial x}(x(t),x'(t),t)$)

 Montrer que :

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial l}{\partial x'}(x(t), x'(t), t) + \frac{\partial l}{\partial x}(x(t), x'(t), t) = 0$$

4. On choisit $l(x, x', t) = x'^2 - x$. Étudier les minima de \mathcal{F} .