A-02014 FIGS. 1A-16

FIG. 1A

FIG. 1B

FIG. 1C

FIG. 2

FIG. 3A

FIG. 3B

FIG. 4

FIG. 5

FIG. 6

F1G. 7

FIG. 8

FIG. 9

FIG. 11

FIG. 12

$$\begin{array}{c|c}
M & e \\
\hline
N & \bigcirc \\
\end{array}$$

$$\begin{array}{c}
C & = C \\
\end{array}$$

$$M & e$$

FIG. 13

	·		<u> </u>			•				· .
D2/mm	0	0	0	0	5	2.5	5 0	6.0	0	0
D1/mm	0	2 0	5.0	100	2.0	2.0	2 0	2 0	-10	-30
	EXAMPLE 1-1	EXAMPLE 1-2	EXAMME 1-3	EXAMPLE 1-4	EXAMPLE 1-5	EXAMME 1-6	EXAMPLE 1-7	EXAMPLE 1-8	COHIPARATIVE EXAMPLE 1-1	COMPHERATIVE EXMIPLE 1-2

IOOSYYES OBOIOE

FIG. 14

光 70N	HALFTONE IMAGE	0	O	0	0	0	0	0	0	IRREGULAR DENSITY AT BOTTOM	IRREGULAR DENSITY FROY CENTER TO BOTTOM
IMAGE ESTIMATION	TRIMINED IMAGE	0	C	0	0	0	0	0	0	SHEAR AT TOP	SMEAR AT TOP
DEGREE SLOPE 50mm [~]	FILH THICKNESS	3.2 д ш	Э. 1 и ш	3. 5 /1 m	3.4 4 m	™ π € .0	0.2 µ m	0.3 µ m	0.3 µ m	8.2 mm	9.1 д ш
THICKNESS DISTRIBUTION		1-1 0.15 0.45 1.23 SLOPE IN AXIAL DIRECTION	SLOPE IN AXIAL DI RECTEDN	SLOPE PHAKING DIFFECTION	SLOVE IN AXIAL DIRECTION	NO SLOPE	NO SLOPE	NO SLOPE	NO SLOPE	SLOPE IN AXIAL DIRECTION	SCOPE IN AXIAL DIRECTION
R (mm) R. MIN.	50mm 170mm 290mm	1.23	0.53	0.22	∞	0.23	0, 25	0. 28	0.25	2.3	3, 1
DIFFERENCE R (LLM) BENVEEN MAX. & MIN.	170mm	0.45	0.11 0.33	0.33	0.08 0.15 0.2	0.09 0.12 0.2	0, 12 0, 19 0, 2	0. 43 0. 33	1. 29 0. 75	0.73	1, 58
DIFFE BEWE	50mm	0.15	0.11	0.09	0.08	0.09	0, 12	0.43	1.29	0.13	0, 22
	•	1-1	1-2	/-3	7-1		9-1	1-1	8-1	1	-2
		EXAMPLE	EXVIDITE	EXAMPLE	EXAMPLE	EXAMPLE 1-5	EXAMPLE 1-6	EXAMPLE	EXATPLE 1-8	COMPARATIVE -	CEMPARATIVE EXAMPLE 1-2

FIG. 15

	DI THE PETIVE	DIFFEEN CE R (MM) BETWEEN NAX. & HIN.	R(um) & HIN.	THICKNESS	DEGREE OF SLOPE	// EST/	IMAGE ESTIMATION
	DISTAA	DISTANCE FROM TOP	4 TOP	DISTRIBUTION	290		
	50mm	170mm	50mm 170mm 290mm		THICKNESS	TRINYED IMAGE	HALFTONE IMAGE
EXAMPLE 2-1	0.35	0.35 0.55	2.16	2. 16 SLOPE IN AXIAL DIRECTION	5.2 µm	0	IRREGULAR DENSITY AT BOTTOM
EXAMPLE 2-2	0.44	0.57	1.62	SLOPE IN ANAL DIRECTION	4.8 µ m	0	LIGHT I REGOLAR DENSITY AT BOTTUM
EXAMPLE 2-3	0.47	0.62	1.58	SLOPE III AKIAL DIRECTION	L	4. 6 µ m SHEAR AT TOP	LIGHT IREGULAR DENOTY AT 130TTOHY
EXAMME 2-4	0.53	0.57	1.55	SLOPE IN AXIAL DIRECTION	4.9 m	0	LIGHT IRREDIAR IBINT AT BOTTOM
EXAMPLE 2-5	0.44	0.58	1.73	No stope	2.2 и п	С	LIGHT IRREDURE DEVISIT AT BOTTOM
EXAMPLE 2-6	1.59	0.73	0.25	No 201E	2.3 山田	0	LIGHTI REGENER JEWSTY A.T. BOTTOM
EXAMILE 2-9	1,73	0, 33	0.28	NO SCOPE	1.9 μ m	0	UGHT INCOURT BENSTIFFT BOTTON
EXAMPLE 2-8	2.5	1.2	0.53	NO SLOPE	2.7 и ш	0	HEAVY IRREQUIAL DENSITY FROM TOP TO CENTER
•							

FIG. 16

:: :: _-

		<u> </u>		.	- i - i			1		٠		
	IMAGE	ESTIMATION		HACFTONE IMAGE	0	0	0	0	0	0	0	0
	141	ESTIN		TRIMMED INNGE	0	0	0	0	0	0	0	0
	DEGREE OF SLOPE	/ KO	(290m)	THICKNESS	2.9 4日	3.1 µ ш	2.8 μ ⊞	2.9µm	0.9 и ш	0.7 и ш	0.6 д ш	0.7 µ m
	THICKNESS	C. Charles V. T. Career C.	VISIN 130 MON		SLOPE IN AXIAL DIRECTION	SLOPE IN AXIAC DIRECTION	SCOPE IN AKIAL DIPECTION	SLOPE IN AXIAL DIRECTION	No scope	No scope	No stapE	No scope
	((km)		H TOP	290mm	1.23	0, 49	0.22	0.28	0, 3	0, 29	0.3	0.25
.	DIFFERENCE R (Lm) BETWEEN MAX, & MIN.		DISTANCE TROM TOP	50mm 170mm 290m	0. 13 0. 23	0.11 0.22	0. 11 0. 17		0.09 0.16	0, 1 0, 22	0.35	0.37
	DIFFER SETWEE	•	DISTAM.	50mm	0.13	0.11	0. 11	0. 12 0. 12	0.09	0, 1	0.38	0. 43 0. 37
	·				3-1	3-2	3-3	3-4	5-6	3-6	3-11	3-8
					EXAMPLE	EXAMPLE	EXAMPLE	EXAMPLE	EXAMPLE 3-5	EXAMPLE	EXAMPLE	EXAMPLE