

Varianta 060

Subjectul I

$$\mathbf{a)} \quad \left| \frac{4+5i}{6+7i} \right| = \frac{\sqrt{41} \cdot \sqrt{85}}{85}.$$

b)
$$d = \frac{11\sqrt{3}}{3}$$
.

c)
$$A(2,3)$$
.

d) Punctele L, M, N sunt coliniare, deoarece $\overrightarrow{LN} = 2 \cdot \overrightarrow{LM}$.

e)
$$V_{ABCD} = \frac{7}{3}$$
.

f)
$$a = \frac{39}{61}$$
 și $b = \frac{2}{61}$.

Subjectul II

1

a) În mulțimea
$$\mathbf{Z}_7$$
, $\hat{2}^{2007} = \hat{1}$.

b)
$$C_3^0 \cdot C_3^1 \cdot C_3^2 \cdot C_3^3 = 9$$
.

c)
$$g(3)=1$$
.

d)
$$x = 2$$
.

e)
$$x_1 \cdot x_2 \cdot x_3 \cdot x_4 = 1$$
.

2

a)
$$f'(x) = 3^x \ln 3 + 1$$
, $\forall x \in \mathbf{R}$.

b)
$$\int_{0}^{1} f(x) dx = \frac{4 + \ln 3}{2 \cdot \ln 3}$$
.

c)
$$f'(x) > 0$$
, $\forall x \in \mathbf{R}$, deci f este strict crescătoare pe \mathbf{R} .

d)
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = 3 \cdot \ln 3 + 1$$
.

e)
$$\int_{0}^{1} \frac{x^{3}}{x^{4} + 10} dx = \frac{1}{4} \cdot \ln \frac{11}{10}.$$

Subjectul III

a) Evident.

b)
$$\det(A) = 40$$
.

c) De exemplu, dacă
$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 și $Q = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, rang $(P) = 1$ și rang $(Q) = 2$.

d) Considerăm matricea $A = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} \in M$. Avem $\det(A) \in \mathbf{Z}$.

$$\det(A) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \stackrel{c_2 \leftarrow c_2 - c_1}{=} \begin{vmatrix} a_1 & d_1 & e_1 \\ a_2 & d_2 & e_2 \\ a_3 & d_3 & e_3 \end{vmatrix}, \text{ cu } d_i = b_i - a_i \text{ si } e_i = c_i - a_i \text{ numere}$$

întregi pare, pentru orice $i \in \{1, 2, 3\}$, de unde rezultă că det(A) este divizibil cu 4.

e) Dacă $B \in M$ este o matrice inversabilă, atunci $det(B) \neq 0$ și este divizibil cu 4.

Dacă
$$B^{-1} \in M$$
, rezultă că $\det(B^{-1}) \in \mathbf{Z}$. Dar $\det(B^{-1}) = \frac{1}{\det(B)} \notin \mathbf{Z}$, contradicție.

- **f**) Se demonstrează prin inducție că pentru orice $n \in \mathbb{N}^*$, matricea A^n are toate elementele numere naturale nenule, așadar matricea A^{2007} are aceeași proprietate.
- **g**) Numărul elementelor mulțimii M este egal cu 3^9 .

Subjectul IV

- **a)** $f'(x) = a \cdot x^{a-1}, \forall x > 0.$
- **b**) Pentru a > 1, $f''(x) = a(a-1) \cdot x^{a-2} > 0$, $\forall x > 0$, deci f este convexă pe $(0, \infty)$.
- c) Funcția f este funcție Rolle pe fiecare dintre intervalele [3,4] și [5,6] și conform teoremei lui Lagrange, există $c(a) \in (3,4)$ și $d(a) \in (5,6)$, astfel încât $\frac{f(4)-f(3)}{4-3}=f'(c(a))$ și $\frac{f(6)-f(5)}{6-5}=f'(d(a))$, de unde rezultă concluzia.
- **d**) Ecuația din enunț are, evident, soluțiile x = 0 și x = 1.

Pentru x > 1, avem $(g(x))^{x-1} < 4^{x-1} < 5^{x-1} < (h(x))^{x-1}$, deci nu există soluții, iar pentru x < 1, $x \ne 0$, rezultă analog că nu avem soluții.

- e) Pentru $x \in \mathbf{R}$ şi funcţia $f:(0,\infty) \to \mathbf{R}$, $f(t) = t^x$, din c) deducem că există $c(x) \in (3,4)$ şi $d(x) \in (5,6)$, astfel încât $4^x 3^x = x(c(x))^{x-1}$ şi $6^x 5^x = x(d(x))^{x-1}$.
- și din **d**) obținem că singurele soluții ale ecuației din enunț sunt x = 0 și x = 1. **f**) Se demonstrează prin calcul direct, ridicând la pătrat inegalitățile, sau alegând

 $x = \frac{1}{2}$ și apoi x = 2 și raționând ca în demonstrația punctului **d**).

g) Pentru $x \in \mathbf{R}$ şi funcţia $f:(0,\infty) \to \mathbf{R}$, $f(t)=t^x$, folosind c) deducem că pentru $x \in [1,2]$ avem $4^x + 5^x \le 3^x + 6^x$, şi integrând această inegalitate pe intervalul [1,2] rezultă concluzia.