

Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

Problem

Gegeben sind n Objekte O₁,..., O_n mit zugehörigen Schlüsseln s(O_i)

Operationen

- Suche(x); Ausgabe O mit Schlüssel s(O) =x;
 nil, falls kein Objekt mit Schlüssel x in Datenbank
- Einfügen(O); Einfügen von Objekt O in Datenbank
- Löschen(O); Löschen von Objekt O mit aus der Datenbank

AVL-Bäume

- Balanzierte Binärbäume
- Suchen, Einfügen, Löschen, Min, Max, Nachfolger in O(log n) Zeit

Frage

Gibt es effizientere Datenstruktur für das Datenbank Problem als AVL-Bäume?

Felder mit direkter Addressierung

Operationen

DirectAddressSearch(k)

1. return T[k]

DirectAddressInsert(x)

1. $T[key[x]] \leftarrow x$

DirectAddressDelete(k)

1. $T[k] \leftarrow nil$

Operationen

DirectAddressSearch(k)

1. return T[k]

DirectAddressInsert(x)

1. $T[\text{key}[x]] \leftarrow x$

DirectAddressDelete(k)

1. $T[k] \leftarrow nil$

Laufzeiten: O(1)

Zusammenfassung (direkte Addressierung)

- Einfügen, Löschen, Suchen in O(1)
- Min, Max O(|U|)
- Speicherbedarf O(|U|)
- Schlecht, wenn Universum groß ist (normaler Fall)

Hashing

- Ziel: Speicherbedarf soll unabhängig von Universumsgröße sein
- Wollen nur die Suchzeit optimieren
- (Insert und Delete werden auch unter bestimmten Annahmen effizient sein)

Eingabe

n Schlüssel aus Universum U={0,..,m-1}

Aufgabe

Finde Datenstruktur mit O(n) Speicherbedarf, die Suche in O(1) Zeit erlaubt

Erste Idee

 Fasse Blöcke von r Elementen zusammen und bilde sie auf dieselbe Addresse ab

Erste Idee

 Fasse Blöcke von r Elementen zusammen und bilde sie auf dieselbe Addresse ab

Beispiel

Schlüsselmenge aus Universum {0,..,69}8, 13, 15, 30, 41, 56, 58

Erste Idee

 Fasse Blöcke von r Elementen zusammen und bilde sie auf dieselbe Addresse ab

	i	Feld T
	0-9	
 Beispiel Schlüsselmenge aus Universum {0,,69} 8, 13, 15, 30, 41, 56, 58 	10-19	
	20-29	
	30-39	
Problem	40-49	
 13, 15 und 56, 58 liegen im selben Bereich 	50-59	
	60-69	

Erste Idee

 Fasse Blöcke von r Elementen zusammen und bilde sie auf dieselbe Addresse ab

		Feld T
	0-9	→ 8
Beispiel Coblüca almanga qua Universum (0, 60)	10-19	→ 13 → 15
 Schlüsselmenge aus Universum {0,,69} 8, 13, 15, 30, 41, 56, 58 	20-29	nil
	30-39	→ 30
Problem	40-49	→ 41
 13, 15 und 56, 58 liegen im selben Bereich 	50-59	→ 56 → 58
 Auflösen durch Listen 	60-69	nil

Insert(x)

- 1. $p \leftarrow \lfloor \text{key}[x]/r \rfloor$
- ListInsert(T[p],x)

Laufzeit

• O(1)

y ist Referenz auf das zu löschende Listenelemente

Delete(y)

ListDelete(y)

Laufzeit

• O(1)

Blocksuche(k)

- 1. $p \leftarrow \lfloor k/r \rfloor$
- ListItem ← head[T[p]]
- 3. while ListItem≠ nil and key[ListItem]≠k do
- 4. ListItem ← next[ListItem]
- return ListItem

Blocksuche(k)

- 1. $p \leftarrow \lfloor k/r \rfloor$
- ListItem ← head[T[p]]
- 3. while ListItem≠ nil and key[ListItem]≠k do
- 4. ListItem ← next[ListItem]
- 5. return ListItem

Beispiel

Blocksuche(k)

- 1. $p \leftarrow \lfloor k/r \rfloor$
- ListItem ← head[T[p]]
- 3. while ListItem≠ nil and key[ListItem]≠k do
- 4. ListItem ← next[ListItem]
- 5. return ListItem

Beispiel

Blocksuche(k)

- 1. $p \leftarrow \lfloor k/r \rfloor$
- ListItem ← head[T[p]]
- 3. while ListItem≠ nil and key[ListItem]≠k do
- 4. ListItem ← next[ListItem]
- 5. return ListItem

Beispiel

Blocksuche(k)

- 1. $p \leftarrow \lfloor k/r \rfloor$
- ListItem ← head[T[p]]
- 3. while ListItem≠ nil and key[ListItem]≠k do
- 4. ListItem ← next[ListItem]
- 5. **return** ListItem

Beispiel

Blocksuche(k)

- 1. $p \leftarrow \lfloor k/r \rfloor$
- ListItem ← head[T[p]]
- 3. while ListItem≠ nil and key[ListItem]≠k do
- 4. ListItem ← next[ListItem]
- 5. return ListItem

Beispiel

Blocksuche(k)

- 1. $p \leftarrow \lfloor k/r \rfloor$
- ListItem ← head[T[p]]
- 3. while ListItem≠ nil and key[ListItem]≠k do
- ListItem ← next[ListItem]
- 5. return ListItem

Beispiel

Blocksuche(k)

- 1. $p \leftarrow \lfloor k/r \rfloor$
- ListItem ← head[T[p]]
- 3. while ListItem≠ nil and key[ListItem]≠k do
- 4. ListItem ← next[ListItem]
- 5. **return** ListItem

Beispiel

Analyse

Wollen Suchzeit für festen Schlüssel k analysieren

Worst-Case

- Alle Schlüssel aus demselben Block sind in Schlüsselmenge
- Suchzeit: O(min{r,n})
- Ist r>n, so ist dies O(n)

0-9	_	\rightarrow	8			
10-19	-	\rightarrow	13	\longrightarrow	15	
20-29	nil					
30-39		\rightarrow	30			
40-49	_	\rightarrow	41			
50-59	_	\rightarrow	56	\longrightarrow	58	
60-69	nil			_		_

Analyse

Wollen Suchzeit für festen Schlüssel k analysieren

Worst-Case

 Alle Schlüssel aus demselben Block sind 	0-9	→ 8	}
in Schlüsselmenge	10-19	\rightarrow 1	l3 → 15
Suchzeit: O(min{r,n})Ist r>n, so ist dies O(n)	20-29	nil	
	30-39	\longrightarrow 3	30
Diskussion	40-49	\longrightarrow \angle	41
Ist das wirklich, was wir erwarten?	50-59	\longrightarrow ξ	56 → 58
Nein! Das eine sehr spezielle Eingabe	60-69	nil	

Normalerweise, sollte das besser funktionieren

Analyse

Wollen Suchzeit für festen Schlüssel k analysieren

Average-Case

 Durchschnittliche Laufzeit über alle möglichen Schlüsselmengen

0-9

$$\rightarrow$$
 8

 10-19
 \rightarrow 13
 \rightarrow 15

 20-29
 nil

 30-39
 \rightarrow 30

 40-49
 \rightarrow 41

 50-59
 \rightarrow 56
 \rightarrow 58

 60-69
 nil

Analyse

Wollen Suchzeit für festen Schlüssel k analysieren

- Durchschnittliche Laufzeit über alle möglichen Schlüsselmengen
- Durchschnittliche Länge β jeder Liste ist $\beta = r \cdot n/m$

Analyse

Wollen Suchzeit für festen Schlüssel k analysieren

- Durchschnittliche Laufzeit über alle möglichen Schlüsselmengen
- Durchschnittliche Länge β jeder Liste ist $\beta = r \cdot n/m$
- Durchschnittliche Suchzeit O(1+β)

Analyse

Wollen Suchzeit für festen Schlüssel k analysieren

- Durchschnittliche Laufzeit über alle möglichen Schlüsselmengen
- Durchschnittliche Länge β jeder Liste ist
 β = r·n/m
- Durchschnittliche Suchzeit O(1+β)
- Speicherplatz O(m/r+n)

Analyse

Wollen Suchzeit für festen Schlüssel k analysieren

- Durchschnittliche Laufzeit über alle möglichen Schlüsselmengen
- Durchschnittliche Länge β jeder Liste ist $\beta = r \cdot n/m$
- Durchschnittliche Suchzeit O(1+β)
- Speicherplatz O(m/r+n)
- Setze r=m/n

0-9	_	\rightarrow	8		
10-19	_	\rightarrow	13	\rightarrow	15
20-29	nil				
30-39	_	\rightarrow	30		
40-49	_	\rightarrow	41		
50-59	_	\rightarrow	56	\longrightarrow	58
60-69	nil				

Analyse

Wollen Suchzeit für festen Schlüssel k analysieren

٠	Durchschnittliche Laufzeit über alle	0-9	_	\rightarrow	8			
	möglichen Schlüsselmengen	10-19	_	\rightarrow	13	\longrightarrow	15	
•	Durchschnittliche Länge β jeder Liste ist $\beta = r \cdot n/m$	20-29	nil					
•	Durchschnittliche Suchzeit O(1+β)	30-39	_	\rightarrow	30			
•	Speicherplatz O(m/r+n)	40-49	_	\rightarrow	41			
•	Setze r=m/n	50-59	_	\rightarrow	56	\longrightarrow	58	
•	⇒ O(1) durchs. Suchzeit und O(n) Speicher	60-69	nil					

Analyse

Wollen Suchzeit für festen Schlüssel k analysieren

•	Durchschnittliche Laufzeit über alle	0-9	_	→ 8	
	möglichen Schlüsselmengen	10-19	_	→ 13	→ 15
•	Durchschnittliche Länge β jeder Liste ist $\beta = r \cdot n/m$	20-29	nil		
	Durchschnittliche Suchzeit O(1+β)	30-39	_	→ 30	
	Speicherplatz O(m/r+n)	40-49	_	→ 41	
•	Setze r=m/n	50-59	_	→ 56	→ 58
•	\Rightarrow O(1) durchs. Such zeit und O(n) Speicher	60-69	nil		

Satz

Sei U={0,...,m-1} eine Grundmenge von Schlüsseln (Universum). Sei T ein Feld mit m/r Einträgen und jeder Eintrag von T entspreche einem Block von r Werten aus U. Dann gilt, dass die durchschnittliche Suchzeit nach einem beliebigen, aber festen Schlüssel k durch O(1+β) beschränkt ist, wobei β= r·n/m und der Durchschnitt über alle n-elementigen Teilmengen von U gebildet wird.

Diskussion

- Ist Durchschnitt das richtige Maß für eine Laufzeitanalyse?
- Durchschnitt ≠ Durchschnitt
 (unsere Durchschnittsbildung nimmt an, dass jede Teilmenge
 gleichwahrscheinlich auftritt; dies ist vermutlich nicht realistisch)

Beispiel

- Universum ist die Menge der long ints
- Schlüssel sind Kundennummern
- Häufig starten Kundennummern bei einem bestimmten Wert und steigen von dort an (z.B. 1 bis 5323)
- "Durchschnittsannahme" nicht richtig

Problem

- Wir kennen die "typische" Datenverteilung nicht
- Diese kann insbesondere von der Anwendung abhängen
- Um eine gute Vorhersage der Laufzeit zu machen, müssten wir bei der Durchschnittsbildung aber die typische Datenverteilung berücksichtigen

Abhilfe

Wir werden die Aufteilung zufällig machen

36

Datenstrukturen

Hashing

Schlüsselmenge

- Universum U={0,..,m-1}
- Hash Tabelle T[0,..,t-1]

37

Datenstrukturen

Hashing

Schlüsselmenge

- Universum U={0,..,m-1}
- Hash Tabelle T[0,..,t-1]

Hashing mit Verkettung

- Universum U={0,..,m-1}
- Hash Tabelle T[0,..,t-1]
- Hash Funktion h: U → {0,..,t-1}
 Speichere Element mit Schlüssel k in h(k)
 Löse Kollisionen durch Listen auf (wie vorhin)
 1 nil

Beispiel

- Wenn wir h: U \rightarrow {0,..,t-1} durch h(x) = $\lfloor x \cdot t/m \rfloor$ definieren, so haben wir die auf Blockbildung basierende Datenstruktur (mit Blockgröße r=m/t)
- Dieses ist also ein Spezialfall des Hashing-Szenarios
- Die Hauptschwierigkeit beim Hashing ist die Frage, wie man h geschickt wählt

Operationen

Einfügen(x)

Füge neuen Schlüssel k am Ende der Liste T[h(key[x])] ein

Löschen(x)

Lösche Element x aus Liste T[h(key[x])]

Suche(k)

Suche nach k in Liste T[h(k)]

Wie sieht eine gute Hashfunktion aus?

- Benutzte Schlüssel sollten möglichst gleichmäßig auf Tabelle verteilt werden
- Guter Kandidat wäre eine zufällige Funktion
 (die natürlich nur einmal zu Beginn zufällig gewählt wird und dann fest ist)
- Sobald h festliegt, gibt es immer eine schlechte Eingabe für h mit Worst-Case Suchzeit O(n) bei n Elementen in der Datenstruktur
- Wir suchen aber f
 ür gegebene Schl
 üsselmenge eine gute Funktion h

Last Faktor α

• Durchschnittliche Länge einer Kollisionsliste, d.h. α =n/t

Idee

Wähle h zufällig (aus einer Menge von geeigneten Kandidaten H)

Idee

Wähle h zufällig (aus einer Menge von geeigneten Kandidaten H)

Annahme(einfaches gleichverteiltes Hashing)

- Jedes k aus U wird mit Wahrscheinlichkeit 1/t auf i∈{0,..,t-1} abgebildet
- Diese Wahrscheinlichkeit ist komplett unabhängig vom Bild aller anderen Elemente

Idee

Wähle h zufällig (aus einer Menge von geeigneten Kandidaten H)

Annahme(einfaches gleichverteiltes Hashing)

- Jedes k aus U wird mit Wahrscheinlichkeit 1/t auf i∈{0,..,t-1} abgebildet
- Diese Wahrscheinlichkeit ist komplett unabhängig vom Bild aller anderen Elemente

Auswahlprozess für h

- Für jede k∈U würfele einen Wert w zwischen 0 und t-1 und setze h[k]=w
- H: Menge aller Funktionen von U nach {0,...,t-1}

Idee

Wähle h zufällig (aus einer Menge von geeigneten Kandidaten H)

Annahme(einfaches gleichverteiltes Hashing)

- Jedes k aus U wird mit Wahrscheinlichkeit 1/t auf i∈{0,..,t-1} abgebildet
- Diese Wahrscheinlichkeit ist komplett unabhängig vom Bild aller anderen Elemente

Weitere Annahme

h(k) kann in O(1) Zeit berechnet werden

Satz

Sei M⊆U eine beliebige Teilmenge von n Schlüsseln und sei h eine Hashfunktion, die zufällig unter der Annahme des einfachen gleichverteilten Hashings ausgewählt wurde. Werden die Kollisionen die unter h auftreten durch Verkettung aufgelöst, so benötigt eine Suche nach Schlüssel k∉M eine durchschnittliche Laufzeit von O(1+α).

Satz

 Sei M⊆U eine beliebige Teilmenge von n Schlüsseln und sei h eine Hashfunktion, die zufällig unter der Annahme des einfachen gleichverteilten Hashings ausgewählt wurde. Werden die Kollisionen die unter h auftreten durch Verkettung aufgelöst, so benötigt eine Suche nach Schlüssel k∉M eine durchschnittliche Laufzeit von O(1+α).

Beweis

Jeder Schlüssel k wird unter der Annahme des einfachen gleichverteilten Hashings auf jede Position in T mit derselben Wahrscheinlichkeit abgebildet. Also ist die durchschnittliche Suchzeit nach k gerade die durchschnittliche Suchzeit bis zum Ende der t Listen. Die durchschnittliche Suchzeit bis Listenende ist aber $O(1+\alpha)$ (α ist durchschn. Listenlänge). Damit ergibt sich inklusive Berechnung von h(k) eine Suchzeit von $O(1+\alpha)$.

Satz

Sei M⊆U eine beliebige Teilmenge von n Schlüsseln und sei h eine Hashfunktion, die zufällig unter der Annahme des einfachen gleichverteilten Hashings ausgewählt wurde. Werden die Kollisionen Feld T die unter h auftreten durch Verkettung aufgelöst, so

benötigt eine Suche nach Schlüssel k∈M eine durchschnittliche Laufzeit von O(1+α). Dabei wird der Durchschnitt über die Auswahl von h *und* den Schlüssel k∈M gebildet. 0 nil
1 nil
2 \longrightarrow k_6 nil
nil \longrightarrow k_3 \longrightarrow k_4 \longrightarrow k_8 7 nil

Satz

 Sei M⊆U eine beliebige Teilmenge von n Schlüsseln und sei h eine Hashfunktion, die zufällig unter der Annahme des einfachen gleichverteilten Hashings ausgewählt wurde. Werden die Kollisionen Feld T

die unter h auftreten durch Verkettung aufgelöst, so benötigt eine Suche nach Schlüssel $k \in M$ eine durchschnittliche Laufzeit von $O(1+\alpha)$. Dabei wird der Durchschnitt über die Auswahl von h *und* den Schlüssel $k \in M$ gebildet.

Schwierigkeit

- Die Suchzeit hängt von Position des gesuchten Elements in Kollisionsliste ab
- Suchzeit hängt von Einfügereihenfolge und Implementierung ab

Beweis

Annahme: Einfügen am Ende der Listen

- Annahme: Einfügen am Ende der Listen
- Betrachte Elemente in Einfügereihenfolge

- Annahme: Einfügen am Ende der Listen
- Betrachte Elemente in Einfügereihenfolge
- Zunächst: Durchschn. Suchzeit für i-tes Element

- Annahme: Einfügen am Ende der Listen
- Betrachte Elemente in Einfügereihenfolge
- Zunächst: Durchschn. Suchzeit für i-tes Element
- Situation vor Einfügen von i:
- i-1 Elemente eingefügt

- Annahme: Einfügen am Ende der Listen
- Betrachte Elemente in Einfügereihenfolge
- Zunächst: Durchschn. Suchzeit für i-tes Element
- Situation vor Einfügen von i:
- i-1 Elemente eingefügt
- Durchschn. Listenlänge (i-1)/t

- Annahme: Einfügen am Ende der Listen
- Betrachte Elemente in Einfügereihenfolge
- Zunächst: Durchschn. Suchzeit für i-tes Element
- Situation vor Einfügen von i:
- i-1 Elemente eingefügt
- Durchschn. Listenlänge (i-1)/t
- h(i) ist zufällig aus {0,..,t-1}

- Annahme: Einfügen am Ende der Listen
- Betrachte Elemente in Einfügereihenfolge
- Zunächst: Durchschn. Suchzeit für i-tes Element
- Situation vor Einfügen von i:
- i-1 Elemente eingefügt
- Durchschn. Listenlänge (i-1)/t
- h(i) ist zufällig aus {0,..,t-1}
- Damit durchschn. Länge der Liste, in der i ist:
- 1+(i-1)/t

- Annahme: Einfügen am Ende der Listen
- Betrachte Elemente in Einfügereihenfolge
- Zunächst: Durchschn. Suchzeit für i-tes Element
- Situation vor Einfügen von i:
- i-1 Elemente eingefügt
- Durchschn. Listenlänge (i-1)/t
- h(i) ist zufällig aus {0,..,t-1}
- Damit durchschn. Länge der Liste, in der i ist:
- 1+(i-1)/t
- Durchschn. Suchzeit für i-tes Element:
- O(1+(i-1)/t)

- Annahme: Einfügen am Ende der Listen
- Betrachte Elemente in Einfügereihenfolge
- Zunächst: Durchschn. Suchzeit für i-tes Element
- Situation vor Einfügen von i:
- i-1 Elemente eingefügt
- Durchschn. Listenlänge (i-1)/t
- h(i) ist zufällig aus {0,..,t-1}
- Damit durchschn. Länge der Liste, in der i ist:
- 1+(i-1)/t
- Durchschn. Suchzeit für i-tes Element:
- O(1+(i-1)/t)

Beweis

Durchschnitt über alle n Elemente aus M:

$$\frac{1}{n}\sum_{i=1}^{n} (1 + \frac{i-1}{t}) = 1 + \frac{1}{nt}\sum_{i=1}^{n} (i-1)$$

Beweis

Durchschnitt über alle n Elemente aus M:

$$\frac{1}{n} \sum_{i=1}^{n} (1 + \frac{i-1}{t}) = 1 + \frac{1}{nt} \sum_{i=1}^{n} (i-1)$$
$$= 1 + (\frac{1}{nt})(\frac{(n-1)n}{2}) = 1 + \frac{\alpha}{2} - \frac{1}{2t}$$

Beweis

Durchschnitt über alle n Elemente aus M:

$$\frac{1}{n} \sum_{i=1}^{n} (1 + \frac{i-1}{t}) = 1 + \frac{1}{nt} \sum_{i=1}^{n} (i-1)$$

$$= 1 + (\frac{1}{nt})(\frac{(n-1)n}{2}) = 1 + \frac{\alpha}{2} + \frac{1}{2t}$$

$$= O(1 + \alpha)$$

Feld T

0 nil

1 nil

2
$$\longrightarrow$$
 k_6

nil

nil

 \longrightarrow k_3
 \longrightarrow k_4 \longrightarrow k_8

7 nil

Interpretation

 Ist die Größe der Hash-Tabelle proportional zur Anzahl gespeicherter Elemente, dann ist die durchschn. Suchzeit O(1)

Frage

Wie realistisch ist Annahme des einfachen gleichverteilten Hashing

Interpretation

 Ist die Größe der Hash-Tabelle proportional zur Anzahl gespeicherter Elemente, dann ist die durchschn. Suchzeit O(1)

Frage

- Wie realistisch ist Annahme des einfachen gleichverteilten Hashing
- Die Menge H aller Funktionen von U nach {0,..,t-1} erfüllt Anforderung

Interpretation

 Ist die Größe der Hash-Tabelle proportional zur Anzahl gespeicherter Elemente, dann ist die durchschn. Suchzeit O(1)

Frage

- Wie realistisch ist Annahme des einfachen gleichverteilten Hashing
- Die Menge H aller Funktionen von U nach {0,..,t-1} erfüllt Anforderung
- Kann man eine Funktion aus H effizient abspeichern?

Kann man eine Funktion aus H effizient abspeichern?

- Wenn es |H| unterschiedliche Funktionen gibt, dann benötigen wir mindestens log |H| viele Bits, um jede Funktion aus H beschreiben zu können
- Argument:
 - Man muss mindestens so viele unterschiedliche Bitstrings haben wie Funktionen in H
 - Die Anzahl unterschiedlicher Bitstrings der Länge k ist 2^k

- Argument:
 - Man muss mindestens so viele unterschiedliche Bitstrings haben wie Funktionen in H
 - Die Anzahl unterschiedlicher Bitstrings der Länge k ist 2^k
- Jedes Element von U kann auf t unterschiedliche Werte abgebildet werden

- Wenn es |H| unterschiedliche Funktionen gibt, dann benötigen wir mindestens log |H| viele Bits, um jede Funktion aus H beschreiben zu können
- Argument:
 - Man muss mindestens so viele unterschiedliche Bitstrings haben wie Funktionen in H
 - Die Anzahl unterschiedlicher Bitstrings der Länge k ist 2^k
- Jedes Element von U kann auf t unterschiedliche Werte abgebildet werden
- Es gibt als t^{|U|} unterschiedliche Funktionen in H

- Argument:
 - Man muss mindestens so viele unterschiedliche Bitstrings haben wie Funktionen in H
 - Die Anzahl unterschiedlicher Bitstrings der Länge k ist 2^k
- Jedes Element von U kann auf t unterschiedliche Werte abgebildet werden
- Es gibt als t^{|U|} unterschiedliche Funktionen in H
- Wir benötigen also mindestens |U| log t Bits, um Funktionen aus H abspeichern zu können

- Wenn es |H| unterschiedliche Funktionen gibt, dann benötigen wir mindestens log |H| viele Bits, um jede Funktion aus H beschreiben zu können
- Argument:
 - Man muss mindestens so viele unterschiedliche Bitstrings haben wie Funktionen in H
 - Die Anzahl unterschiedlicher Bitstrings der Länge k ist 2^k
- Jedes Element von U kann auf t unterschiedliche Werte abgebildet werden
- Es gibt als t^{|U|} unterschiedliche Funktionen in H
- Wir benötigen also mindestens |U| log t Bits, um Funktionen aus H abspeichern zu können

Kurzes Fazit: Was ist eine gute Hashfunktion?

- Eine Funktion die eine gute Verteilung der Daten auf die Tabelle gewährleistet
- Problem: Wir kennen die Daten a priori nicht
- Oft kennen wir auch die Verteilung der Daten nicht
- Eine zufällige Funktion wäre gut, aber die können wir nicht speichern

Die Divisionsmethode

- k wird abgebildet auf den Rest von k durch t
- Es gilt also h(k) = k mod t

Beispiel

- t=12 und k=100
- Dann gilt 8t+4 = 100 und somit h(100) = 4

Die Divisionsmethode

- k wird abgebildet auf den Rest von k durch t
- Es gilt also h(k) = k mod t

Was sind gute Werte für m (ohne Beweis bzw. empirisch)?

- Ist t Zweierpotenz, dann "zählen" nur die niedrigwertigen Bits (meistens schlecht)
- Gute Wert sind normalerweise Primzahlen, die nicht zu nah an Zweierpotenzen liegen