Machine Theory of Mind (Deep Mind)

Helmut Wahanik

Waterloo Hydrogeologic Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro - Brazil

IMPA – Rio de Janeiro

- -Research Dynamical Systems, Differential Geometry, Applied Mathematics.
- -2014 Fields Medal, Artur Avila, work in Dynamical Systems (Ten Martini Problem).

My work:

- -Mathematical Physics Fluid dynamics.
- -Riemann problems Numerical Shock Waves and Rarefactions waves in Gas Dynamics.
- -Markov Chain Monte-Carlo methods (Seismic Tomography) – SLB- U. of Cambridge.
- -Computational Geometry, U. of Calgary.

IMPA – Rio de Janeiro

- -Research Dynamical Systems, Differential Geometry, Applied Mathematics.
- -2014 Fields Medal, Artur Avila, work in Dynamical Systems (Ten Martini Problem).

My work:

- -Mathematical Physics Fluid dynamics.
- -Riemann problems Numerical Shock Waves and Rarefactions waves in Gas Dynamics.
- -Markov Chain Monte-Carlo methods (Seismic Tomography) – SLB- U. of Cambridge.
- -Computational Geometry, U. of Calgary.

Collaboration RJ-MCMC - University of Cambridge - UK (Schlumberger).

- -Travel-times built through Greens function approach and Seismic Ambient Noise.
- -Voronoi grids updated across the random walk.
- -Minimize difference of theoretical and experimental traveltimes.
- -Dimension is also variable, and adjust to complexity of the data.
- -Samples are accepted or rejected with a modified Metropolis-Hastings algorithm, guiding the samples towards regions of higher probability (e.g. Langevin MCMC MALA).

- -The 3D point-wise probability distribution across all chains is the final posterior => solution to inverse problem.
- -The uncertainty of the solution can be measured by the spread of the samples.
- -Fortran + OpenMPI + Qsub + SLB cluster.
- -Parallelization on calculation of seismic travel-times => many seismometers.
- -Mapping in GMT Generic Mapping Tools.

- -The 3D point-wise probability distribution across all chains is the final posterior => solution to inverse problem.
- -The uncertainty of the solution can be measured by the spread of the samples.
- -Fortran + OpenMPI + Qsub + SLB cluster.
- -Parallelization on calculation of seismic travel-times => many seismometers.
- -Mapping in GMT Generic Mapping Tools.

Could this be implemented in TensorFlow Probability?

ToM-Net – Theory of Mind Neural Network

Observer: Uses Meta-learning to predict behaviors of agents living in a Grid-World (models other agents).

Objective: To rapidly form predictions about new agents from limited data and behavioral traces.

Players: Agents are themselves Deep Reinforcement Learning agents.

To imitate cognitive predictive patterns of human mind.

-Passes "cognition" tests such as the Sally-Anne test.

Grid-world

partial past traj.

current state

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

-Measure of higher intelligence in primates:

3 year old child fails it.

4 year old passes it.

Sound-proof light-proof scent-proof barrier

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

-Measure of higher intelligence in primates:

3 year old child fails it.

4 year old passes it.

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

-Measure of higher intelligence in primates:

3 year old child fails it.

4 year old passes it.

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

-Measure of higher intelligence in primates:

3 year old child fails it.

4 year old passes it.

Bones!

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

-Measure of higher intelligence in primates:

3 year old child fails it.

4 year old passes it.

Remove Snoopy-proof wall!

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

-Measure of higher intelligence in primates:

3 year old child fails it.

4 year old passes it.

What does Snoopy think is inside?

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

-Measure of higher intelligence in primates:

3 year old child fails it.

4 year old passes it.

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

-Measure of higher intelligence in primates:

3 year old child fails it.

4 year old passes it.

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

-Measure of higher intelligence in primates:

3 year old child fails it.

4 year old passes it.

Repeat first 3 steps with 4 year old

What does Snoopy think is inside?

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

-Measure of higher intelligence in primates:

3 year old child fails it.

4 year old passes it.

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

3 year old child fails it.

4 year old passes it.

MDP: Augmented Markov Chain.

 (S, A, T, R, γ) such that:

- s states
- a := a(s) set of actions available at s.
- $T(s_{t+1} \mid s_t, a_t)$ prob transition if using action a_t at s_t
- $R_{a_t}(s_t, s_{t+1})$ reward given action a_t .
- $\gamma \in [0, 1]$ is a discount factor.

MDP: Augmented Markov Chain.

 (S, A, T, R, γ) such that:

- s states
- a := a(s) set of actions available at s.
- $T(s_{t+1} | s_t, a_t)$ prob transition if using action a_t at s_t
- $R_{a_t}(s_t, s_{t+1})$ reward given action a_t .
- $\gamma \in [0, 1]$ is a discount factor.

Objective: Find optimal choice (policy) π of actions at all states, maximizing the average discounted reward obtained when starting the chain at any state s.

Objective: We look for a policy $\pi: S \to A$ maximizing the discounted average rewards earned starting at state S: V(s).

Objective: We look for a policy $\pi: S \to A$ maximizing the discounted average rewards earned starting at state S: V(s).

Under policy π , the expected average reward is recursively defined through:

$$V^{\pi}(s) := R(s, \pi(s)) + \gamma \sum_{s'} T_{\pi(s)}(s, s') V^{\pi}(s')$$

Objective: We look for a policy $\pi: S \to A$ maximizing the discounted average rewards earned starting at state S: V(s).

Under policy π , the expected average reward is recursively defined through:

$$V^{\pi}(s) := R(s, \pi(s)) + \gamma \sum_{s'} T_{\pi(s)}(s, s') V^{\pi}(s')$$

The optimal policy π^* is derived from the Bellman Optimality Equation:

$$V^*(s) := max_a \{ R(s,a) + \gamma \sum_{s'} T_a(s,s') V^*(s') \}$$

Objective: We look for a policy $\pi: S \to A$ maximizing the discounted average rewards earned starting at state S: V(s).

Under policy π , the expected average reward is recursively defined through:

$$V^{\pi}(s) := R(s, \pi(s)) + \gamma \sum_{s'} T_{\pi(s)}(s, s') V^{\pi}(s')$$

The optimal policy π^* is derived from the Bellman Optimality Equation:

$$V^*(s) := \max_{a} \{ R(s,a) + \gamma \sum_{s'} T_a(s,s') V^*(s') \}$$

Argument contraction + fixed point theorem => there exists a unique solution V^* to BOE.

Partially Observable Markov Decision Process

 $(S, A, T, R, \mathbf{0}, \boldsymbol{\omega}, \gamma)$ such that:

- *O* observations, *o*
- ω conditional probability of observations, w.

Partially Observable Markov Decision Process

 $(S, A, T, R, \mathbf{0}, \boldsymbol{\omega}, \gamma)$ such that:

- O observations, o
- ω conditional probability of observations, w.

Time t+1, if $s\Rightarrow s'$ after a, we receive observation $o\in O$, with probability $w(o\mid s',a)$. Agent updates it's beliefs b about current state.

Partially Observable Markov Decision Process

 $(S, A, T, R, \mathbf{0}, \boldsymbol{\omega}, \gamma)$ such that:

- O observations, o
- ω conditional probability of observations, w.

Time t+1, if $s\Rightarrow s'$ after a, we receive observation $o\in O$, with probability $w(o\mid s',a)$. Agent updates it's beliefs b about current state.

- -The agent tries to infer the new state from observations & beliefs.
- -POMDPS ⇒ MDPs observations equal true states, probability 1.
- -For POMDPS the Meta-learning process is evident: agent must learn how to learn to read observations and how to update beliefs: parameters in the probability distributions.

The Machine Theory of Mind Architecture

Family of POMPDs $M = \bigcup_k M_k$, Mazes (11x11), walls, 4 consumable objects.

 $\bullet \quad (S_k, A_k, T_k)$

The Machine Theory of Mind Architecture

Family of POMPDs $m{M} = igcup_j M_j$, Mazes (11x11), walls, 4 consumable objects.

$$\bullet (S_k, A_k, T_k)$$

Agents:

Rewards, discount factors, conditional observation functions, and policies are associated with *Agent i*

- $(O_i, w_i, R_i, \gamma_i, \pi_i)$
- Policies might be stochastic, and non-optimal.

The Machine Theory of Mind Architecture

Family of POMPDs $m{M} = igcup_j M_j$, Mazes (11x11), walls, 4 consumable objects.

•
$$(S_k, A_k, T_k)$$

Agents:

Rewards, discount factors, conditional observation functions, and policies are associated with *Agent i*

- $(O_i, w_i, R_i, \gamma_i, \pi_i)$
- Policies might be stochastic, and non-optimal.

Observer ToMNet:

- State observation function: $w^{(obs)}$: $S \rightarrow O^{obs}$
- Action observation function $\alpha^{(obs)}$: $A \rightarrow A^{obs}$
- $w^{(obs)}(s) = s^{obs}$
- $\alpha^{(obs)}(a) = a^{obs}$

Observer's Architecture

Training:

Observes *Agent i*, and a set of past trajectories:

$$\{\tau_{ij}\}_{j=1}^{N_{past}} \rightarrow \{\tau_{ij}{}^{(obs)}\}_{j=1}^{N_{past}}, \quad \text{where} \quad \tau_{ij}{}^{(obs)} = \{(s_t^{(obs)}, a_t^{(obs)})\}_{t=0}^T$$

Observer's Architecture

Training:

Observes *Agent i*, and a set of past trajectories:

$$\{\tau_{ij}\}_{j=1}^{N_{past}} \rightarrow \{\tau_{ij}{}^{(obs)}\}_{j=1}^{N_{past}}, \quad \text{where} \quad \tau_{ij}{}^{(obs)} = \{(s_t^{(obs)}, a_t^{(obs)})\}_{t=0}^T$$

- Here $s_t^{(obs)}$ is a tensor of size 11 x 11 x K.
- K feature planes, such as walls, objects, agent.

Observer's Architecture

Training:

Observes *Agent i*, and a set of past trajectories:

$$\{\tau_{ij}\}_{j=1}^{N_{past}} \to \{\tau_{ij}^{(obs)}\}_{j=1}^{N_{past}}, \quad \text{where} \quad \tau_{ij}^{(obs)} = \{(s_t^{(obs)}, a_t^{(obs)})\}_{t=0}^{T}$$

- Here $s_t^{(obs)}$ is a tensor of size 11 x 11 x K.
- K feature planes, such as walls, objects, agent.
- Also $a_t^{(obs)}$ is a dimension 5 logit, fully characterizing the action: $[\cdot, \downarrow, \rightarrow, \uparrow, \leftarrow]$
- The trajectory $\tau_{ij}^{(obs)}$ is a tensor is of size 11x11x (K + 5).

Observer's Neural Net

Character Net: Characterizes the past $\{\tau_{ij}^{(obs)}\}_{j=1}^{N_{past}}$

$$\tau_{ij} \xrightarrow{f_{\theta}} e_{char,ij}$$
 (2D Tensor)

For all agents we add:

$$e_{char,i} = \sum_{j=1}^{N_{past}} e_{char,ij}$$

Observer's Neural Net

Character Net: Characterizes the past $\{\tau_{ij}^{(obs)}\}_{j=1}^{N_{past}}$

$$\tau_{ij} \xrightarrow{f_{\theta}} e_{char,ij}$$
 (2D Tensor)

For all agents we add:

$$e_{char,i} = \sum_{j=1}^{N_{past}} e_{char,ij}$$

Mental Net: Mentalizes about the CURRENT EPISODE

$$[\tau_{ij}]_{0:t-1}, e_{char,i} \xrightarrow{g_{\theta}} e_{mental,i}$$

Observer's Neural Net

Character Net: Characterizes the past $\{\tau_{ij}^{(obs)}\}_{j=1}^{N_{past}}$

$$\tau_{ij} \xrightarrow{f_{\theta}} e_{char,ij}$$
 (2D Tensor)

For all agents we add:

$$e_{char,i} = \sum_{j=1}^{N_{past}} e_{char,ij}$$

Mental Net: Mentalizes about the CURRENT EPISODE

$$[\tau_{ij}]_{0:t-1}, e_{char,i} \xrightarrow{g_{\theta}} e_{mental,i}$$

Prediction Net: Current state + Character + Mental to estimate:

- ullet Predicted policy: $\hat{\pi}(\ \cdot\ |\ s_t^{(obs)}$, $\ e_{char}$, $\ e_{mental}$)
- Probability of consuming an object \hat{c}

Experiments

Fully Random agents

- Species of agents.
- 5D stochastic policy vector $\pi_i(\cdot) \coloneqq \pi_i$
- $\pi_i \sim Dir(\alpha)$, Dirichlet distribution. Species can be written as $S(\alpha)$.
- For $\alpha \ll 1$, one-sided deterministic policies. $\alpha \sim 3 \Rightarrow$ uniform distribution.

Training

- Observe sample from species $S(\alpha)$, running on Grid-Worlds.
- A set of recent trajectories, with $N_{past} \sim U\{0, 10\}$.
- Length of trajectory = 1.
- Adam optimizer, $\delta = 10^{-4}$, 40K Minibatches of size 16.

Architecture

Fully Random agents:

• Character Net: T tensor for the trajectory, dim (11x11)x(K + 5)

Architecture

Fully Random agents:

• Character Net: T tensor for the trajectory, dim (11x11)x(K + 5)

- Mental State: None.
- Prediction Net:

$$au_{ij}$$
, $e_{char,i} o T o 2$ Layer 32 Convnet $\xrightarrow{Av.Pooling+Fully\ Connected}$ Logits in $R^5 \xrightarrow{Softmax} \hat{\pi}$

Random agent Training

Random agent Training

- -ToMNet estimates increase with the number of past observations of that action!
- $-D_{KL}(\pi, \hat{\pi})$ is the divergence between the true and estimated stochastic policies.

Inferring goal-directed behaviour

ToMNet learns to infer goals of reward seeking agents.

- 4 consumable objects.
- Agent A_i has a reward function: $r_{i,a} \in (0,1)$ when consuming an object.
- -0,01 for every move.
- Penalty of 0.05 for walking into walls.
- Agent finds optimal policy π_i^* through Bellman equation.

Training: ToMNet observes a single full trajectory of an agent acting on the Grid-World.

Inferring goal-directed behaviour

Observe single past MDP

Current state

ToMNet prediction of next action

Prediction of successive states

ToMNet vs Sally-Anne Test

ToMNet must pass the Sally-Anne test!

- Create POMDPs, agents 5 x 5 visibility window, where agents have false beliefs.
- We run random changes in the environment that are invisible to the agent.
 - Agent has a goal and a sub-goal.
- When obtaining the sub-goal => swap the remaining objects, with low probability.

Acting on false beliefs: Preliminaries

- Sub-goal: star. Goal: blue object.
- Dark grey => not observed.
- Light grey => observed before but NOT during goal consumption.
- Consumption => p=0.01 of *swap* event
- Observe Effect of swap in agent's policies and expected future moves.

Acting on false beliefs: Preliminaries

- Sub-goal: star. Goal: blue object.
- Dark grey => not observed.
- Light grey => observed before but NOT during goal consumption.
- Consumption => p=0.01 of *swap* event
- Observe effect of swap in agent's policies and expected future moves.
- Left: Swap event within field of view.
- Right: Swap event outside of field of view.

Running the Sally-Anne Test

- Agent has 5 x 5 window, consume star (sub-goal), prefers blue object.
- If we increase distance to swap, it may be invisible.
- Agent's policy unchanged for invisible swap.

$$\Delta \pi_L = \frac{\pi(a_L \mid no \ swap) - \pi(a_l \mid swap)}{\pi(a_L \mid no \ swap)} * 100\%$$

Running the Sally-Anne Test

Running the Sally-Anne Test \Rightarrow It passes! ToMNet \sim 4 year old IQ

Architecture

- Character Net: ConvNet + LSTM f
- Mental State: None.
- Prediction Net:
 - Three predictions, with shared Torso:

- Probability Consumption Prediction: ConvNet $c_{\theta} \Rightarrow \hat{c}$
- Sucessor Representation: ConvNet $SR_{\theta} \Rightarrow \widehat{SR}$

■ Deep RL Agents: UNREAL architecture, 100M episodes, cluster 16 CPU

- Belief Prediction Head:
 - ConvNet \Rightarrow 11x11x5 Dim Logit predicted belief objects present on map.
 - ConvNet \Rightarrow 11x11x5 Dim Logit predicted belief objects absent from map.

THANK YOU