Universidad de Oviedo EPI Gijón Dpto. Matemáticas

SESIÓN 1: Familiarización con programas de cálculo. Curso 2021–2022

Los siguientes ejercicios deben realizarse con el programa que consideres más adecuado (o, preferiblemente, con varios y así poder comparar).

Ejercicio 1.1. Dibuja en la misma gráfica las curvas de ecuaciones: $(x^2 + y^2 - 1)^3 - x^2y^3 = 0$ e $y = 2x^2$. Calcula los puntos de intersección de ambas.

Ejercicio 1.2. Considera las funciones

$$f_1(x) := x^x x, f_2(x) := x^(x^x); f_3(x) := (x^x)^x$$

Grafícalas simultáneamente; ¿cuales son iguales?. Comprueba que el valor de las tres funciones coincide en 1 y también su derivada. Dibuja la recta tangente común en ese punto. Busca otro punto de coincidencia.

Observa que x^x^x tiene un significado distinto en Maxima y en Matlab ¿y en Phyton?

Ejercicio 1.3. Calcula la factorización prima de tu número de DNI y de tu móvil. Si los dos son primos, tienes premio. (factor)

Ejercicio 1.4. Considera la parábola $\mathscr{P}: y = x^2 + \frac{a}{9}x + \frac{a}{2}$ (donde a te lo dice el profesor) y la recta $\mathscr{R}: y = x + 5$

- ullet Calcula las dos rectas tangentes a la parábola ${\mathscr P}$ en sus puntos de corte con la recta ${\mathscr R}.$
- Calcula el punto de corte de las dos rectas tangentes del apartado anterior, resolviendo preferiblemente un sistema lineal. Serán (x_1, y_1) y (x_2, y_2) .
- Representa en una sola gráfica la parábola \mathcal{P} , la recta \mathcal{R} , las dos tangentes halladas y una recta horizontal pasando por el punto de corte de las tangentes. Para la gráfica, utiliza como rango de variación de la x el intervalo $[x_1, x_2]$.
- Haz todo lo anterior (salvo las gráficas) considerando un valor de *a* arbitrario. El punto final resultante exprésalo tras simplificar su expresión.

Ejercicio 1.5. Define la función siguiente (o ponle nombre a la expresión)

$$f(x) := \sin^2(x+1) + \sin(x)\cos^{13}(x)$$

- Calcula su derivada; llámala pepe; calcula una primitiva de pepe y compárala con f(x) (simplifica hasta encontrar que su diferencia es ...)
- Calcula una primitiva de f(x); llámala pepa; calcula la derivada de pepa y compárala con f(x) (simplifica hasta encontrar que su diferencia es ...)
- ullet Calcula f(0) con 50 cifras decimales exactas. Comprueba que la sucesión formada por estas cifras aparece registrada en La Enciclopedia On-Line de las Secuencias de Números Enteros, en adelante, **OEIS**.

Ejercicio 1.6. Se define el superfactorial de n como $\mathfrak{sf}(n) := \prod_{i=1}^n i! = 1! \cdot 2! \cdot 3! \cdot \cdots n!$. Construye la lista con los valores de los superfectoriales de los 10 primeros números naturales. Comprueba que la sucesión aparece registrada en la **OEIS**.

Universidad de Oviedo EPI Gijón Dpto. Matemáticas

COMPUTACIÓN NUMÉRICA

SESIÓN 1: Familiarización con programas de cálculo. Curso 2021–2022

Ejercicio 1.7. Construye una función M(n) que devuelva una matrix cuadrada $n \times n$ cuyos elementos son $a_{ij} := i^j$ con i, j = 1, 2, ..., n. Construye la lista para los 20 primeros valores de n y comprueba que la sucesión de sus determinantes coincide con la de los superfactoriales.

Ejercicio 1.8. Calcular

$$\sum_{i=1}^{\infty} \frac{1}{n^2}$$

Calcula los errores relativo y absoluto cometidos al considerar solamente 1000 sumandos.

Ejercicio 1.9. Muestra en pantalla la expresión completa de 999¹⁰⁰⁰. ¿Cuántas cifras tiene?. Calcula las 3 últimas cifras de movil^{DNI}. (floor, mod, power_mod, log)

Ejercicio 1.10. Dada $f(x) := sin(x^2) + sin^2(x) + sin(sin(x))$. Construye una lista con las 15 primeras derivadas evaluadas en 0. Construye el polinomio de Taylor de grado 15 en torno al cero a partir de ellas. Dibuja la gráfica de f(x) junto a la del polinomio de Taylor utilizando como rango de variación de la x el intervalo [-3,3].

Ejercicio 1.11. Construye una lista aleatoria con números naturales del intervalo [1,100]. Calcula la media aritmética de un millón de números enteros elegidos aleatoriamente en [0,100]. ¿qué habría que cambiar para que la media saliera muy cercana a 50. (random)

Ejercicio 1.12. Calcular la cifra que ocupa el lugar 100 (centésimo) de la expresión decimal del número π .