4 A spring hangs vertically from a point P, as shown in Fig. 4.1.



Fig. 4.1

A mass M is attached to the lower end of the spring. The reading x from the metre rule is taken, as shown in Fig. 4.1. Fig. 4.2 shows the relationship between x and M.



Fig. 4.2

| (a) | Explain how the apparatus in Fig. 4.1 may be used to determine the load on the spring at the elastic limit. |
|-----|-------------------------------------------------------------------------------------------------------------|
|     |                                                                                                             |
|     |                                                                                                             |
|     |                                                                                                             |
|     | [2]                                                                                                         |
| (b) | State and explain whether Fig. 4.2 suggests that the spring obeys Hooke's law.                              |
|     |                                                                                                             |
|     |                                                                                                             |
|     | [2]                                                                                                         |

| (c) | Fig. 4.2 to determine the spring constant, in N m <sup>-1</sup> , of the spring. |
|-----|----------------------------------------------------------------------------------|
|     |                                                                                  |
|     |                                                                                  |
|     |                                                                                  |
|     | spring constant = N m <sup>-1</sup> [3]                                          |
|     |                                                                                  |
|     |                                                                                  |
|     |                                                                                  |
|     |                                                                                  |
|     |                                                                                  |
|     |                                                                                  |
|     |                                                                                  |
|     |                                                                                  |
|     |                                                                                  |
|     |                                                                                  |
|     |                                                                                  |
|     |                                                                                  |
|     |                                                                                  |
|     |                                                                                  |
|     |                                                                                  |
|     |                                                                                  |
|     |                                                                                  |
|     |                                                                                  |
|     |                                                                                  |
|     |                                                                                  |