CIS 678 - Machine Learning

Predictive modeling: Classification

• Essentially, we are learning some relationship among variables.

• Essentially, we are learning some relationship among variables.

f(y=diabetes-score|X='bmi')

• Essentially, we are learning some relationship among variables.

f(y|X)

The difference is with the variable, **y**

Regression problems

$$y \in R$$

- Insurance cost : y ∈ R
- House price: $y \in R$
- Weather prediction: **Y** ∈ **R**
- Energy consumption: $y \in R$
- Sales forecasting: $y \in R$

We have learned about regression (not complete; will continue ..)

$$y \in R$$

- Insurance cost : y ∈ R
- House price: $y \in R$
- Weather prediction: **Y** ∈ **R**
- Energy consumption: $y \in R$
- Sales forecasting: y ∈ R

We have learned about regression (not complete; will continue ..)

$$y \in \{....\}$$

- Cat vs dog: $y \in \{cat, dog\}$
- Spam filter: $y \in \{\text{spam, not-spam}\}$
- Digit classification: $y \in \{0,1,....9\}$
- Sentiment classification: y ∈ {happy, sad, confused, angry ...}

note: has to be from a closed set

We are starting today

Classification Modeling

- We have some overweight and underweight people

- We have some overweight and underweight people
- We need to learn a classifier

 $y \in \{underweight(\boxed{0}), overweight(\boxed{1})\}$

- We have some overweight and underweight people
- We need to learn a classifier
- Can we do it using a straight line?

- We have some overweight and underweight people
- We need to learn a classifier
- Can we do it using a straight line?
- Yes; how ..

- We have some overweight and underweight people
- We need to learn a classifie
- Can we do it using a straight line?
- Yes; how ..

Straight Line as the Separator

$$y = \beta_0 + \beta_1 x$$

Straight Line as the Separator

$$y = \beta_0 + \beta_1 x$$

Straight Line as the Separator

$$y = \beta_0 + \beta_1 x$$

$$y - (\beta_0 + \beta_1 x) = 0$$

Straight Line as the Separator

$$y = \beta_0 + \beta_1 x$$

$$y - (\beta_0 + \beta_1 x) = 0$$

Classification Rule

$$\hat{y} = \begin{cases} 1, & \text{if} \quad y - (\beta_0 + \beta_1 x) > 0 \\ 0, & \text{otherwise} \end{cases}$$

Classification Models

- Logistic Regression
- k-NN
- Decision Tree
- Random Forest Classifier
- Support Vector Machines (SVMs)
- Boosting Classifiers
- Naive Bayes

Decision Tree

Probabilistic classifier

Sigmoid function characteristic

$$p(x)=rac{1}{1+e^{-(eta_0+eta_1x)}}$$

• Sigmoid function

• Probabilistic classifier

$$p(x) = rac{1}{1 + e^{-(w_0 + w_1 x)}}$$

• Sigmoid function

Logistic Regression to Neural Networks (NNs)

Neural Networks (Node)

Concept of neural network nodes

Neural Networks (Node)

Concept of neural network nodes

QA