

Paul MacNeilage, Psychology Eelke Folmer, Computer Science

Homework: dive into VR

Your task is to get familiar with VR by choosing 3 VR apps / experiencer riting about how they exploit the strengths of VR as a new media form. P' ss each of the following:

a movie or video

- 1) What is it about the app that would not be possible game on a screen?
- 2) What level of presence did you feel in ear'
- 3) What factors do you think contribute on the consider discussing tracking, grap on the consider discussing tracking of the constant of the const
- 4) Discuss some strengths and wasing the system. How do you think this might compare to othere?
- 5) What would impro ance?
- 6) Finally, discuse ampact of each app (societal, economic, psycholog)

Please writ, one paragraph for each app and feel free to compare and contrast between the open you are reviewing. Your writeup must be uploaded as a PDF.

Access to VR

- Check out Oculus Quest 2
- One per group
 - At least 1 CS and 1 PSY/NS student per group
- Contact TA: mobara@unr.edu

 Book a time slot in AtReality in the knowledge center: https://library.unr.edu/specialty-rooms/at-reality

Light and optics: why do we care?

Human-machine Interaction

Light and optics: why do we care?

Screen

Lenses

Eye

Outline

- Behavior and properties of light
- Lenses
- Aberrations
- Human eye
- Cameras

Light and Optics

- Describing light:
 - Particles how much light received
 - Waves wavelength > describe color
 - Rays describing lenses

How light interacts with surfaces?

Figure 4.3: As light energy hits the boundary of a different medium, there are three possibilities: transmission, absorption, and reflection.

How light interacts with surfaces

Figure 4.4: Two extreme modes of reflection are shown. Specular reflection means that all rays reflect at the same angle at which they approached. Diffuse reflection means that the rays scatter in a way that could be independent of their approach angle. Specular reflection is common for a polished surface, such as a mirror, whereas diffuse reflection corresponds to a rough surface.

Wavelength & Color

Figure 4.5: Visible light spectrum corresponds to the range of electromagnetic waves that have wavelengths between $400\mathrm{nm}$ and $700\mathrm{nm}$. (Figure by David Eccles for Wikipedia.)

Outline

- Behavior and properties of light
- Lenses
- Aberrations
- Human eye
- Cameras

Light and optics: why do we care?

Screen

Lenses

Eye

Lenses bend light

Refractive index

$$n=rac{\mathcal{C}}{S}$$
 Speed of light in vacuum Speed of light in medium

- $c = 3 \times 10^8 \text{ m/s}^2$
- Air: n = 1.000293
- Water: n = 1.33

Snell's law

Figure 4.9: Propagating wavefronts from a medium with low refractive index (such as air) to one with a higher index (such as glass). (a) The effect of slower propagation on the wavefronts is shown as they enter the lower medium. (b) This shows the resulting bending of a light ray, which is always perpendicular to the wavefronts. Snell's Law relates the refractive indices and angles as $n_1 \sin \theta_1 = n_2 \sin \theta_2$.

(b)

$$n_1 sin\theta_1 = n_2 sin\theta_2$$

$$\theta_2 = \sin^{-1}(\frac{n_1 \sin \theta_1}{n_2})$$

Lenses bend light

Prism

Convex Lens

Lenses bend light

 Non-perpendicular rays converge off the optical axis -> defines the focal plane

и

Determining Focal Length

 How do you make a lens of a given optical power?

Lensmaker's Equation:

$$(n_2 - n_1) \left(\frac{1}{r_1} + \frac{1}{r_2}\right) = \boxed{\frac{1}{f}}$$
 Optical power

и

Diopters and Multiple Lenses

• Diopter (optical power): D = 1/f

Magnification of the system – add diopters

Real Image – s₁>f

- f=focal depth
- s₁=object distance
- s₂=image distance

Real image in focus

$$\frac{1}{s_1} + \frac{1}{s_2} = \frac{1}{f}$$

Figure 4.13: In the real world, an object is not infinitely far away. When placed at distance s_1 from the lens, a real image forms in a focal plane at distance $s_2 > f$ behind the lens, as calculated using (4.6).

Virtual Image − s₁<f

- f=focal depth
- s₁=object distance
- s₂=image distance

Magnification

$$\frac{1}{s_1} + \frac{1}{s_2} = \frac{1}{f}$$

Outline

- Behavior and properties of light
- Lenses
- Aberrations
- Human eye
- Cameras

Aberrations

- Scenes viewed through lenses have artifacts
- Types of aberration:
 - Chromatic
 - Spherical
 - Optical distortion
 - Astigmatism
 - Coma
 - Flare

Chromatic Aberration

Prism separates light

Figure 4.17: Chromatic aberration is caused by longer wavelengths traveling more quickly through the lens. The unfortunate result is a different focal plane for each wavelength or color.

Spherical Aberration

Figure 4.19: Spherical aberration causes imperfect focus because rays away from the optical axis are refracted more

Optical Distortion

Optical Distortion

Barrel distortion corrected in HMDs

Astigmatism

Different horizontal and vertical convergence

Coma and Flare

Coma

Flare

Light coming in at steep angle

Scattering of especially bright light

Outline

- Behavior and properties of light
- Lenses
- Aberrations
- Human eye
- Cameras

Optics of the Human Eye

How does the human eye change focus?

- 1. $n_1 = 1.009$ (air)
- 2. $n_2 = 1.376$ (cornea)
- 3. $n_3 = 1.336$ (aqueous fluid)
- 4. $n_4 = 1.413$ (lens)
- 5. $n_5 = 1.337$ (vitreous fluid)

Accommodation

Changing the thickness of the lens

Figure 4.27: A closer object yields diverging rays, but with a relaxed lens, the image is blurry on the retina.

Figure 4.28: The process of accommodation: The eye muscles pull on the lens, causing it to increase the total optical power and focus the image on the retina.

Presbyopia

Stiffness of the lens - inability to focus near

Figure 4.28: The process of accommodation: The eye muscles pull on the lens, causing it to increase the total optical power and focus the image on the retina.

Figure 4.29: Placing a convex lens in front of the eye is another way to increase the optical power so that nearby objects can be brought into focus by the eye. This is the principle of reading glasses.

Near- or Far-sighted?

Lens focuses image off the retina

Lenses for VR

Screen appears to be at infinity

Figure 4.30: In VR headsets, the lens is placed so that the screen appears to be infinitely far away.

What is the accommodative state of the lens?

Alignment of eyes for VR

Screen

Lenses

Eye

Outline

- Behavior and properties of light
- Lenses
- Aberrations
- Human eye
- Cameras

Pinhole camera (camera obscura)

Figure 4.31: A pinhole camera that is recommended for viewing a solar eclipse.
(Figure from TimeAndDate.com.)

Pinhole viewing of eclipse

Aid for drawing and painting

Burning man – pinhole project

Aperture and Depth of Field

Camera Aperture and Shutter Speed

Figure 4.34: A spectrum of aperture settings, which control the amount of light that enters the lens. The values shown are called the *focal ratio* or *f-stop*.

Shutter Speed and Blur

Digital Cameras

- RGB sensors
- Rolling shutter

Recap

- Behavior and properties of light
- Lenses
- Aberrations
- Human eye
- Cameras

Next week: Physiology of human vision