Imaginary Numbers

Warm up:

On the axes below, a sketch of $y=x^2$ is shown. Now, consider the parabola whose equation is given in function notation as $y=x^2+4$.

(a) How is the graph of $y = x^2$ shifted to produce the graph of f(x) ?

(c) What can be said about the x-intercepts of the function y = f(x)?

(d) Algebraically, show that these intercepts do not exist, in the Real Number System, by solving the quadratic $x^2 + 4 = 0$.

(b) Create a quick sketch of f(x) on the axes below.

Since we cannot solve this equation using Real Numbers, we introduce a new number, called *i*, the basis of **imaginary numbers**. Its definition allows us to now have a result when finding the square root of a negative real number. Its definition is given below.

Example 1: Simplify each in terms of i.

(a) √<u>-</u>9 **3** *i*

(b) $2\sqrt{-49}$ $2 \cdot 7i$

14i

(c) 3√-162 3 i √163 3 i √81·2 3 i ·9√2 37 i √2

COMPLEX NUMBERS

A complex number is any number that can be written in the standard form a+bi, where a and b are real numbers and i is the imaginary unit.

Complex Number: Standard $a + bi$ form	а	bi
7 + 2i	7	2i
1 - 5i	1	-5 <i>i</i>
8 <i>i</i>	0	8 <i>i</i>
$-2+3i$ _ -2 _ $3i$	-2	3i
<u> </u>	5	5

Example 2: Express in simplest a + bi form

(a) $4 + \sqrt{-36}$

(b)
$$8-\sqrt{-24}$$

$$8-i\sqrt{4}$$

$$8-i\sqrt{4}$$

$$8-ai\sqrt{6}$$
Not like terms
(we cant subtract these)

Example 3: Simplify each of the following powers of *i*.

$$i^1 = \dot{c}$$

$$i^5 =$$

$$i^2 = -$$

$$i^6 = -$$

$$i^3 = -$$

$$i^7 = -$$

$$i^4 =$$

Powers of i on your calculator:

Math > NUM 3:iPart(

6:min(7:max(

8:1cm(9\pcd(

Example 4: Determine the value of *n* in simplest form: $i^{13} + i^{18} + i^{31} + n = 0$

$$(iX) + (-i) + (-iX) + N = 0$$

 $-|+N = 0$
 $|N = 1|$

Imaginary Numbers Practice

- 1. Simplify each of the following powers of i into either -1, 1, i, or -i.
 - (a) i^{25}
 - (b) *i* ⁵⁵
- (c) i^{16} (d) i^{34}

- 2. The expression $2i^2 + 3i^3$ is equivalent to
 - (1) -2-3i 2(-1)+3(-i) (3) -2+3i(2) 2-3i -2-3i (4) 2+3i
- 3. Express in simplest form:
 - (a) $i^{100} + i^{101} + i^{102}$ (4) + (1) + (-1)

(b) $i^{8} + i^{9} + i^{10} + i^{11}$ $(\cancel{X}) + (\cancel{X}) + (\cancel{-X}) + (\cancel{-X})$

 $(d)\frac{i^3}{i^{16}} = \frac{-i}{1} = -i$

- 4. In simplest form $\sqrt{-300}$ is equivalent to
 - (1) $3i\sqrt{10}$
- 1/300

(3) $10i\sqrt{3}$

- (2) $5i\sqrt{12}$
- 10i13

(4) $12i\sqrt{5}$