Math 111C HW4

Zih-Yu Hsieh

May 5, 2025

1

Question 1 Let F be a field and $f \in F[x]$ be an irreducible polynomial. Prove that all roots of f(x) in \overline{F} have the same multiplicity.

Pf:

Given $f(x) \in F[x]$ an irreducible polynomial, which WLOG, can assume f is monic (by dividing the nonzero leading coefficient). Then, for any root α of f in some field extension of F, since f is monic and irreducible, it is in fact a minimal polynomial of α .

Hence, the following forms a well-defined field isomorphism that fixes F:

$$\phi_{\alpha}: F[x]/(f(x)) \tilde{\rightarrow} F(\alpha), \quad \forall c_0, c_1, ..., c_n \in F, \quad \phi_{\alpha}(c_0 + c_1 \overline{x} + ... + c_n \overline{x}^n) = c_0 + c_1 \alpha + ... + c_n \alpha^n$$

Whih, given α, β two roots of f, the following map is a well-defined field isomorphism that fixes F also:

$$\psi = \phi_{\beta} \circ \phi_{\alpha}^{-1} : F(\alpha) \tilde{\rightarrow} F(\beta), \quad \forall c_0, c_1, ..., c_n \in F$$

$$\psi(c_0 + c_1 \alpha + \dots + c_n \alpha^n) = \phi_{\beta} \circ \phi_{\alpha}^{-1}(c_0 + c_1 \alpha + \dots + c_n \alpha^n) = \phi_{\beta}(c_0 + c_1 \overline{x} + \dots + c_n \overline{x}^n) = c_0 + c_1 \beta + \dots + c_n \beta^n$$

Notice that such field isomorphism ψ can be extended to a ring isomorphism $\overline{\psi}: F(\alpha)[x] \tilde{\to} F(\beta)[x]$, given as:

$$\forall a_0, a_1, ..., a_n \in F(\alpha), \quad \overline{\psi}(a_0 + a_1 x + ... + a_n x^n) = \psi(a_0) + \psi(a_1) x + ... + \psi(a_n) x^n$$

So, $\overline{\psi}\mid_{F(\alpha)} = \psi$. Which, because $f(x) \in F[x]$, it has all the coefficients being in F, then $\overline{\psi}(f(x)) = f(x) \in F(\beta)[x]$.

Now, given that α has multiplicity k, and β has multiplicity l, this implies that $(x-\alpha)^k \mid f(x)$ over $F(\alpha)$ (with any n > k fails to satisfy this condition), while $(x-\beta)^l \mid f(x)$ over $F(\beta)$ (with any m > l fails to satisfy this condition).

Then, since $f(x) = (x - \alpha)^k p_1(x)$ for some $p_1(x) \in F(\alpha)[x]$, we have the following:

$$f(x) = \overline{\psi}(f(x)) = \overline{\psi}((x-\alpha)^k)\overline{\psi}(p_1(x)) = (x-\beta)^k\overline{\psi}(p_1(x))$$

(Note: since $\overline{\psi}(x-\alpha) = x - \psi(\alpha) = x - \beta$, the above equality holds).

Which, the above equation shows that $(x - \beta)^k \mid f(x)$, hence $k \leq l$; on the other hand, if consider $\overline{\psi}^{-1}$, since $f(x) = (x - \beta)^l p_2(x)$ for some $p_2(x) \in F(\beta)[x]$, we have the following:

$$f(x) = \overline{\psi}^{-1}(f(x)) = \overline{\psi}^{-1}((x-\beta)^l)\overline{\psi}^{-1}(p_2(x)) = (x-\alpha)^l\overline{\psi}^{-1}(p_2(x))$$

Hence, $(x - \alpha)^l \mid f(x)$, showing that $l \leq k$. Which, we can conclude that l = k, so α, β have the same multiplicity.

Question 2

- (a) Let $\zeta_6 \in \mathbb{C}$ be a primitive 6^{th} root of unity. Find $m_{\zeta_6,\mathbb{Q}}(x)$.
- (b) Let $m, n \in \mathbb{N}$ such that $m \equiv 2 \mod 6$ and $n \equiv 4 \mod 6$. Prove that $f(x) = x^m + x^n + 1$ is not irreducible over \mathbb{Q} .

Pf:

(a) Since ζ_6 satisfies $(\zeta_6)^6 - 1 = 0$, then ζ_6 is a root of the polynomial $x^6 - 1 \in \mathbb{Q}[x]$.

Notice that $x^6 - 1$ has the following factorization in \mathbb{Q} :

$$x^{6} - 1 = (x^{3} - 1)(x^{3} + 1) = (x - 1)(x^{2} + x + 1)(x + 1)(x^{2} - x + 1)$$

(Note: the two above quadratic polynomials are irreducible over \mathbb{Q} , since the only possible rational roots are ± 1 , while none of them are actually the root of the quadratic polynomials).

Which, ζ_6 cannot be the root of (x-1) or (x+1) (since $\zeta_6 \notin \mathbb{Q}$), and ζ_6 cannot be a root of $x^2 + x + 1$ either: Suppose the contrary that ζ_6 is a root of $x^2 + x + 1$, then it implies that $0 = (\zeta_6 - 1) \cdot 0 = (\zeta_6 - 1)((\zeta_6)^2 + \zeta_6 + 1) = (\zeta_6)^3 - 1$. So, $\zeta_6 \in \mu_3$ (where μ_3 is the multiplicative group of the 3^{rd} roots of unity). Then, the multiplicative group of the 6^{th} roots of unity, $\mu_6 = \langle \zeta_6 \rangle \subseteq \mu_3$, which is a contradiction (since μ_6 contains more elements than μ_3), hence the assumption is false, ζ_6 cannot be a root of $x^2 + x + 1$.

Then, since ζ_6 is a root of $x^6 - 1$, while not a root for (x - 1), (x + 1), and $(x^2 + x + 1)$, then it must be a root of $x^2 - x + 1$.

Since $(x^2 - x + 1)$ is irreducible (since it has no roots over \mathbb{Q} , and has degree 2) while being monic, then it must be the minimal polynomial of ζ_6 . So:

$$m_{\zeta_6,\mathbb{O}}(x) = x^2 - x + 1$$

(b) Given that m = 6k + 2 and n = 6l + 4 for some $k, l \in \mathbb{Z}$. Notice that since $(\zeta_6)^6 = ((\zeta_6)^2)^3 = 1$, then $(\zeta_6)^2 \neq 1$ is in fact a 3^{rd} root of unity. Then, plug ζ_6 into the polynomial $x^m + x^n + 1$, we get:

$$(\zeta_6)^m + (\zeta_6)^n + 1 = (\zeta_6)^{6k+2} + (\zeta_6)^{6l+4} + 1 = (\zeta_6)^2 + (\zeta_6)^4 + 1 = ((\zeta_6)^2)^2 + (\zeta_6)^2 + 1$$

(Note: $(\zeta_6)^{6k} = 1$ for all $k \in \mathbb{Z}$).

Which, from the relation $(\zeta_6)^6 - 1 = 0$, we get:

$$0 = ((\zeta_6)^2)^3 - 1 = ((\zeta_6)^2 - 1)(((\zeta_6)^2)^2 + (\zeta_6)^2 + 1)$$

And, since $(\zeta_6)^2 \neq 1$, the first linear term is not zero. Therefore, for the above expression to be 0, we need:

$$((\zeta_6)^2)^2 + (\zeta_6)^2 + 1 = 0$$

Hence, ζ_6 is a root of $x^m + x^n + 1$, showing that $m_{\zeta_6,\mathbb{Q}}(x) \mid (x^m + x^n + 1)$. Also, because both $m, n \in \mathbb{N}$, then $m \equiv 2 \mod 6$ enforces $m \ge 2$, and $n \equiv 4 \mod 6$ enforces $n \ge 4$, so $\deg(x^m + x^n + 1) \ge 4$, while $\deg(m_{\zeta_6,\mathbb{Q}}) = 2$ (given in **part (a)**), so $m_{\zeta_6,\mathbb{Q}} \ne x^m + x^n + 1$. Hence, $x^m + x^n + 1$ is reducible over \mathbb{Q} (since $m_{\zeta_6,\mathbb{Q}}$ is a proper factor of it).

Question 3 Prove that if F is an infinite field, then its multiplicative group F^{\times} is never cyclic.

Pf:

Suppose the contrary, that F is infinite while F^{\times} is cyclic, then there exists $a \in F^{\times}$, such that $F^{\times} = \langle a \rangle$ (under multiplication). There are two cases to consider:

Characteristic 0 Field:

Given that $\operatorname{char}(F) = 0$, then $-1 \neq 1$ (since if -1 = 1 in F, then 1 + 1 = 0, showing that 1 has order 2 under addition, or $\operatorname{char}(F) = 2$). So, since $-1 \in F^{\times}$, then there exists $l \in \mathbb{Z}$, such that $a^{l} = -1$.

Yet, this implies that $a^{2l} = (-1)^2 = 1$, so $|a| \le 2l$, which further implies that $|\langle a \rangle| \le 2l$, so $F^{\times} = \langle a \rangle$ is in fact finite. And, this is a contradiction.

Characteristic p > 0 field:

For all such field F, the prime subfield is \mathbb{F}_p . Hence, can view F as a field extension of \mathbb{F}_p .

First, notice that $a \neq -1$ (since $(-1)^2 = 1$, if a = -1, then $|\langle a \rangle| = |a| \leq 2$, showing that F^{\times} is again finite, which is a contradiction). So, it implies that $a + 1 \neq 0$, hence $a + 1 \in F^{\times}$.

Then, there exists $l \in \mathbb{Z}$, such that $a^l = a + 1$, or $a^l - a - 1 = 0$. Which, there are several situations:

- Suppose l = 0, then $a^0 = 1$, so a + 1 = 1, or a = 0, which contradicts the fact that $a \neq 0$, so we don't need to consider this case.
- Suppose l > 0, then a is a root of the polynomial $x^l x 1 \in \mathbb{F}_p[x]$.
- Else if l < 0, then (-l) > 0. So, $a^{(-l)}(a^l a 1) = 1 a^{1-l} a^{-l} = 0$, showing that a is a root of the polynomial $1 x^{1-l} x^{-l} \in \mathbb{F}_p[x]$.

So, in either cases, there exists a polynomial $p(x) \in \mathbb{F}_p[x]$, such that p(a) = 0, hence $a \in F/\mathbb{F}_p$ is algebraic, its minimal polynomial $m_{a,\mathbb{F}_p}(x) \in \mathbb{F}_p[x]$ exists.

Then, $\mathbb{F}_p(a) \cong \mathbb{F}_p[x]/(m_{a,\mathbb{F}_p}(x))$ is a finite extension, which further implies that $\mathbb{F}_p(a)$ is finite (finite extension of a finite field is finite).

However, for all $b \in F$, if b = 0, $b \in \mathbb{F}_p(a)$; on the other hand, if $b \neq 0$, since $b \in F^{\times} = \langle a \rangle$, then $b = a^l \in \mathbb{F}_p(a)$ for some $l \in \mathbb{Z}$. Hence, $F \subseteq \mathbb{F}_p(a)$, while $\mathbb{F}_p(a) \subseteq F$, showing that $F = \mathbb{F}_p(a)$. This implies that F is finite, which again contradicts the assumption that F is an infinite field.

Since in all cases, F^{\times} being cyclic would lead to a contradiction, then if F is infinite, F^{\times} cannot be cyclic.

(Note: The proof for char(F) = p is designed for p = 2 specifically, since in that case -1 = 1, the proof used for char(F) = 0 cannot work. If p > 2, the proof for char(F) = 0 works perfectly fine, since $-1 \neq 1$).

Question 4 Let K/F be a field extension and $m, n \in \mathbb{N}$. Let $\alpha, \beta \in K$ with $[F(\alpha) : F] = m$ and $[F(\beta) : F] = n$.

- (a) Show that $[F(\alpha, \beta) : F] \leq mn$.
- (b) If gcd(m, n) = 1, show that $[F(\alpha, \beta) : F] = mn$.

Pf:

Given that $[F(\alpha): F] = m$ and $[F(\beta): F] = n$ with $m, n \in \mathbb{N}$, since $F(\alpha), F(\beta)$ are both finite extensions of F, then α, β are algebraic over F. Also, with the degree given, we know $m = \deg(m_{\alpha,F})$, while $n = \deg(m_{\beta,F})$.

(a) Given $F \subseteq F(\alpha) \subseteq F(\alpha, \beta)$, we have the following relation:

$$[F(\alpha, \beta) : F(\alpha)] \cdot [F(\alpha) : F] = [F(\alpha, \beta) : F]$$

Which, since $m_{\beta,F}(x) \in F[x] \subseteq F(\alpha)[x]$, then β is also algebraic over $F(\alpha)$. Hence, $m_{\beta,F(\alpha)}(x) \in F(\alpha)[x]$ exists, while $m_{\beta,F(\alpha)}(x) \mid m_{\beta,F}(x)$ (since $m_{\beta,F}(\beta) = 0$ by definition). This implies that $\deg(m_{\beta,F(\alpha)}) \le \deg(m_{\beta,F}) = n$.

Which, since $F(\alpha, \beta) = F(\alpha)(\beta)$, then $[F(\alpha, \beta) : F(\alpha)] = \deg(m_{\beta, F(\alpha)}) \le n$, hence we get the following inequality:

$$[F(\alpha, \beta) : F] = [F(\alpha, \beta) : F(\alpha)] \cdot [F(\alpha) : F] \le mn$$

(b) Now suppose gcd(m, n) = 1, then lcm(m, n) = mn. Which, notice that both $F(\alpha)$, $F(\beta)$ are subfields of $F(\alpha, \beta)$, hence the following two equality holds:

$$[F(\alpha, \beta) : F] = [F(\alpha, \beta) : F(\alpha)] \cdot [F(\alpha) : F] = [F(\alpha, \beta) : F(\alpha)] \cdot m$$

$$[F(\alpha, \beta) : F] = [F(\alpha, \beta) : F(\beta)] \cdot [F(\beta) : F] = [F(\alpha, \beta) : F(\beta)] \cdot n$$

Hence, since $m \mid [F(\alpha, \beta) : F]$ and $n \mid [F(\alpha, \beta) : F]$, then lcm(m, n) = mn divides $[F(\alpha, \beta) : F]$; on the other hand, since in **part** (a) we've shown that $[F(\alpha, \beta) : F] \leq mn$, then $[F(\alpha, \beta) : F] = mn$.

5

Question 5 Let K be a finite field. Show that K is not algebraically closed.

Pf:

Suppose the contrary that some finite field K is algebraically closed, it implies that all polynomial in K[x] has a root in K. Hence, the goal is to find a polynomial with no roots in K.

Consider the following example:

$$f(x) = \left(1 + \prod_{k \in K} (x - k)\right) \in K[x]$$

Since K is finite, the above polynomial is well-defined. Also, for any $a \in K$, if plug into f(x), we get:

$$f(a) = 1 + (a - a) \prod_{\substack{k \in K \\ k \neq a}} (a - k) = 1 + 0 \cdot \prod_{\substack{k \in K \\ k \neq a}} (a - k) = 1$$

This shows that none of the element $a \in K$ is a root of $f(x) \in K[x]$, which contradicts the assumption that K is algebraically closed.

Hence, the assumption is false, any finite field K is not algebraically closed.