VIETNAM NATIONAL UNIVERSITY HO CHI MINH CITY HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY DEPARTMENTOFELECTRONICS

HOMEWORK REPORT

Chapter 1 - Amplifiers and Pulse Circuits

SUPERVISOR: Nguyễn Trung Hiếu

SUBJECT: Applied Electronics (EE3129)

GROUP: 02

List of Members

STT	MSSV	Họ Và Tên	Lớp
1		Đoàn Ngọc Sang	L02
2	2210780	Nguyễn Đại Đồng	L02
3		Trần Nguyễn Trâm Ánh	L02

Ho Chi Minh, ../../20..

Mục lục

Câu 4																							1
a)							 								 							•	1
b)							 								 								4
c) .			•				 								 								9
Câu 5																							13
a)							 						•	•	 							•	13
b)							 								 								14

Câu 4

Cho mạch khuếch đại tín hiệu như hình vẽ. Giả sử các tụ có giá trị rất lớn. BJT có $\beta=100$ và $V_A=\infty$.

a) Tìm điểm hoạt động ${\bf Q}$ của BJT

Xét hoạt động chế độ DC cho toàn mạch.

- Tìm giá trị V_{BE} của BJT trong Multisim

Hình 1: Tìm giá trị V_{BE} của mạch.

Ta sử dụng một chế độ DC Sweep để tìm giá trị V_{BE} dẫn của mạch. Sau khi chạy tool ta có kết quả như sau,

Hình 2: Kết quả sau khi chạy DC Sweep để tìm V_{BE} .

Nhìn vậy hình ta thấy được điện áp V_{BE} của BJT dẫn rơi vào tầm $\approx 0.774\,\mathrm{mA}$. Từ đó, nhóm em chọn $V_{BE}=0.774\,\mathrm{mA}$ cho câu 4.

- Tìm giá trị I_{CQ}

Thevenin ta có:

$$R_{th} = R_3 + R_1 / / R_2 = 10 + \frac{20 \times 20}{20 + 20} = 20k\Omega$$
$$V_{th} = \frac{R_2}{R_1 + R_2} V_{cc} = \frac{20}{20 + 20} \times 9 = 4.5V$$

Áp dụng KCL cho vòng (1):

$$-V_{th} + I_B R_{th} + V_{BE} + I_E R_E = 0$$

Ta có: $I_E = (\beta + 1)I_B$

$$\Rightarrow I_B = \frac{V_{th} - V_{BE}}{R_{th} + (\beta + 1)R_E} = \frac{4.5 - 0.774}{20 + (100 + 1) \times 2} = 0.0168 \,\text{mA}$$

Ta có: $I_C = \beta I_B = 100 \times 0.0168 \,\mathrm{mA} = 1.68 \,\mathrm{mA}.$

- Tìm giá trị V_{CEQ}

Áp dụng KCL cho vòng (2):

$$-V_{cc} + V_{CE} + I_E R_E = 0$$

Ta có:
$$I_C = \frac{\beta}{\beta + 1} I_E = \alpha I_E \approx I_E$$

$$\Rightarrow V_{CE} = V_{cc} - I_C R_E = 9 - 1.71 \times 2 = 5.64V$$

Vậy điểm làm việc Q của tâng 2 là : $(I_{CQ}, V_{CEQ}) = (1.68 \text{ mA}, 5.64 \text{ V})$

- Kiểm chứng kết quả:

Hình 3: Kết quả điểm Q của bài 4.

b) Đặt $v_s=V_s\sin{(\omega t)}$ vào mạch. Ngõ ra nối với tải $R_L=1k\Omega$. Tìm A_{vo} , G_v , R_i , R_o của mạch.

Xét hoạt động chế độ AC cho toàn mạch.

Ta có,

$$\begin{split} &+ \ R_E' = R_E / / R_1 / / R_2 \approx 1.6667 \, \mathrm{k}\Omega \\ &+ \ g_m = \frac{I_C}{V_T} = \frac{1.68 \, \mathrm{m}}{25 \, \mathrm{m}} = 67.2 mS \\ &+ \ r_e = \frac{V_T}{I_E} = \frac{V_T}{I_C / \alpha} = \frac{25 \, \mathrm{mV}}{1.68 \, \mathrm{mA} / \frac{100}{100 + 1}} \approx 14.7336 \, \Omega \\ &+ \ r_\pi = \beta \frac{V_T}{I_C} = 100 \times \frac{25 \, \mathrm{m}}{1.68 \, \mathrm{m}} = 1.4881 \, \mathrm{k}\Omega \end{split}$$

- Tính giá trị R_{in}

Ta có,
$$R_{in} = \frac{v_i}{i_i}|_{i_o=0}$$
, đầu tiên ta xét
$$+ i_i = i_3 + i_e - \alpha i_e$$
 Trong đó, $i_3 = \frac{i_e r_e}{R_3}$
$$\Rightarrow i_i = \frac{i_e r_e}{R_3} + i_e (1 - \alpha)$$

$$+ v_{i} = v_{be} + v_{o}$$

$$\text{Trong $d\acute{o}$, $v_{o} = R'_{E}(i_{3} + i_{e}) = R'_{E}\left(\frac{i_{e}r_{e}}{R_{3}} + i_{e}\right)$}$$

$$\Rightarrow R_{in} = \frac{R'_{E}\left(\frac{i_{e}r_{e}}{R_{3}} + i_{e}\right) + i_{e}r_{e}}{\frac{i_{e}r_{e}}{R_{3}} + i_{e}(1 - \alpha)} = \frac{R'_{E}\left(\frac{r_{e}}{R_{3}} + 1\right) + r_{e}}{\frac{r_{e}}{R_{3}} + (1 - \alpha)} \approx 148.0428 \,\mathrm{k}\Omega.$$

$$\Rightarrow R_{in} = 148.0428 \,\mathrm{k}\Omega \,.$$

- Tính giá trị R_{out}

Ta có,
$$R_{out} = \frac{v_o}{i_o}|_{v_i=0}$$

$$\Rightarrow R_{out} = R'_E//r_e//\frac{R_3}{\beta+1} = 12.7272 \Omega.$$

$$\Rightarrow R_{out} = 12.7272 \Omega.$$

- Tính giá trị A_{vo}

Ta có,
$$A_{vo} = \frac{v_o}{v_i}|_{R_L = \infty} = \frac{R_E' \left(\frac{r_e}{R_3} + 1\right)}{R_E' \left(\frac{r_e}{R_3} + 1\right) + r_e} \approx 0.9913 \,\text{V/V}.$$

$$\Rightarrow A_{vo} = 0.9913 \,\mathrm{V/V}$$
.

- Tính giá trị G_v

ta có,
$$G_v = \frac{v_o}{v_s} = \frac{R_{in}}{R_{in} + R_s} A_v = \frac{148.0428}{148.0428 + 10} \times 0.9914 \approx 0.9287 \,\text{V/V}.$$

$$\Rightarrow G_v = 0.9287 \, \text{V/V}$$

- Kiểm tra kết quả

Hình 4: Coi dạng sóng ngõ vào và ngõ ra của mạch.

Hình 5: Tiến hành đo $A_{vo}=-0.079dB\approx 0.9909.$

Hình 6: Tiến hành đo $G_v = -0.65 dB \approx 0.9279.$

c) Bỏ tụ C_B ra khỏi mạch. Lập lại câu a và b
. Từ đó, nêu vai trò của tụ C_B .

Ta có,

$$\begin{split} &+ \ R_B' = R_3 + R_1 / / R_2 = 20 \, \mathrm{k}\Omega \\ &+ \ g_m = \frac{I_C}{V_T} = \frac{1.68 \, \mathrm{m}}{25 \, \mathrm{m}} = 67.2 mS \\ &+ \ r_e = \frac{V_T}{I_E} = \frac{V_T}{I_C / \alpha} = \frac{25 \, \mathrm{mV}}{1.68 \, \mathrm{mA} / \frac{100}{100 + 1}} \approx 14.7336 \, \Omega \\ &+ \ r_\pi = \beta \frac{V_T}{I_C} = 100 \times \frac{25 \, \mathrm{m}}{1.68 \, \mathrm{m}} = 1.4881 \, \mathrm{k}\Omega \end{split}$$

- Tính giá trị R_{in} Ta có, $R_{in} = \frac{v_i}{i_i}|_{i_o=0}$

$$\rightarrow R_{in} = R'_B //(\beta + 1)(r_e + R_E) \approx 18.2102 \,\mathrm{k}\Omega$$

$$\Rightarrow R_{in} = 18.2102 \,\mathrm{k}\Omega$$

- Tính giá trị R_{out}

Ta có,
$$R_{out} = \frac{v_o}{i_o}|_{v_i=0}$$

$$\rightarrow R_{out} = R_E//r_e = 14.6259\,\Omega$$

$$\Rightarrow$$
 $R_{out} = 14.6259 \,\Omega$

- Tính giá trị A_{vo}

Ta có,
$$A_{vo} = \frac{v_o}{v_i}|_{R_L = \infty} = \frac{R_E}{R_E + r_e} \approx 0.9927 \,\text{V/V}.$$

$$\Rightarrow A_{vo} \approx 0.9927 \,\mathrm{V/V}$$

- Tính giá trị G_v

ta có,
$$G_v = \frac{v_o}{v_s} = \frac{R_{in}}{R_{in} + R_s} A_v = \frac{18.2102}{18.2102 + 10} \times 0.9927 \approx 0.6408 \, \text{V/V}.$$

$$\Rightarrow G_v = 0.6408 \, \text{V/V}$$

- Kiểm tra kết quả

Hình 7: Coi dạng sóng ngõ vào và ngõ ra của mạch.

Hình 8: Tiến hành đo $A_{vo}=-0.066dB\approx 0.9924.$

Hình 9: Tiến hành đo $G_v = -3.868 dB \approx 0.6406.$

Nhận xét

Từ các kết quả trên, tụ ${\cal C}_B$

Câu 5

Cho mạch khuếch đại tín hiệu được ghép liên tầng như hình vẽ. Trong đó, Q_1 là BJT có $\beta=100$ và mã 2SC1815, và Q_2 có $\beta=80$ có mã là 2N2907.

a) Sử dụng phần mềm mô phỏng, vẽ VTC của mạch (ngõ vào V_i và ngõ ra là V_o).

Sử dụng chế độ DC Sweep trong Multisim để khảo sát VTC,

Hình 10: VTC của mạch với ngõ vào V_i và ngõ ra là V_o .

b) Lựa chọn điểm phân cực của cả mạch trên VTC và thiết kế mạch ghép vào phía trước VTC để có được điểm phân cực đó.

Quan sát VTC của mạch, để tín hiệu ngõ ra không bị méo dạng thì ta chọn điểm Q với $V_i=1.0998\,\mathrm{V}.$

Hình 11: Điểm hoạt động của toàn mạch rơi vào tầm $V_i=1.0998\,\mathrm{V}$ để tín hiệu V_o không méo dạng.

Với $V_i = 1.0998 \,\mathrm{V}$, ta chọn được hai điểm:

$$- Q_1 = (I_{CQ1}, V_{CEQ1}) = (1.3706 \,\mathrm{mA}, 8.3640 \,\mathrm{V})$$

$$- Q_2 = (I_{CQ2}, V_{CEQ2}) = (0.7354 \,\mathrm{mA}, -2.6943 \,\mathrm{V})$$