Fakultät Informatik – Institut SMT – Professur Computergraphik und Visualisierung

Aufgabenkomplex Rasterisierung

- HA 1. Nennen Sie zwei Vor- und zwei Nachteile von Vektordisplays
- (HA) 2. Berechnen Sie die Normale zu der Linie, welche durch die Punkte \underline{p} und \underline{q} gegeben ist und normieren Sie das Ergebnis.

a)
$$\underline{p} = (-1,2)^T, \underline{q} = (3,5)^T$$
, Lösung: $\hat{n} = \frac{1}{5}(-3,4)^T$

HA b)
$$\underline{p} = (-5,1)^T, \underline{q} = (10,9)^T, \text{Lösung: } \hat{n} = \frac{1}{17}(-8,15)^T$$

HA c)
$$\underline{p} = (3, -7)^T, \underline{q} = (8,5)^T$$
, Lösung: $\hat{n} = \frac{1}{13}(-12,5)^T$

(HA) 3. Berechnen Sie den vorzeichenbehafteten Abstand $d(\underline{x})$ des Punktes \underline{x} von der Geraden $g = \underline{p} + t \cdot \vec{v}$, die durch den Punkt p in Richtung \vec{v} verläuft:

a)
$$\underline{x} = (-3.8)^T$$
, $p = (-1, -3)^T$, $\vec{v} = (4.3)^T$, Lösung: 10

HA b)
$$\underline{x} = (-5.9)^T$$
, $p = (2, -8)^T$, $\vec{v} = (5.12)^T$, Lösung: 13

HA c)
$$\underline{x} = (1,16)^T$$
, $p = (-16,-15)^T$, $\vec{v} = (24,7)^T$, Lösung: 25

- 4. Geben Sie Pseudocode für den rekursiven Floodfill-Algorithmus mit einer 4-er-/8-er-Nachbarschaft an. Welches potenzielle Problem hat dieser Algorithmus bei großen zu füllenden Flächen? Wie kann man das Problem lösen?
- 5. Erklären Sie den aus der Vorlesung bekannten Pixellaufalgorithmus zum Füllen von Polygonen.
- HA 6. Erklären Sie anhand einer Skizze, wie die inkrementellen Linienrasterisierungsalgorithmen "Bresenham" bzw. "Mittelpunkt" entscheiden, welcher Pixel als nächstes gezeichnet werden muss!
- (HA) 7. Schraffieren Sie im Polygon, welche Bereiche durch die Paritätsregel als "innen" deklariert werden.

HA 8. Erklären Sie jeweils das Vorgehen, wenn das Innere von Polygonen nach der Non-Zero-Regel bzw. der Even-Odd-Regel deklariert wird.

Fakultät Informatik – Institut SMT – Professur Computergraphik und Visualisierung

- HA 9. Wie kann man prinzipiell vorgehen, um beim Rasterisieren von Dreiecken zu vermeiden, dass Pixel von aneinander angrenzenden Dreiecken mehrfach gezeichnet werden?
- HA 10. Erklären Sie den in der Vorlesung besprochenen Standardfall bei der Rasterisierung von Linien hinsichtlich der Positionen von Start- und Endpunkt.
- HA 11. Welche Transformationen sind grundsätzlich möglich, um eine beliebige Konstellation von Start- und Endpunkt auf den Standardfall zurückzuführen?
 - 12. In der folgenden Skizze sind der Start- und der Endpunkt eines zu rasterisierenden Geradensegments eingetragen. Füllen Sie die verbleibenden Pixel, sodass das Ergebnis identisch mit dem des Bresenham-Algorithmus' ist. *Hinweis: Hier brauchen Sie nicht rechnen*.

Lösung: (2, 2), (3, 2), (4, 3), (5,3), (6,3), (7,4), (8, 4), (9,4), (10,5), (11,5)

13. Ein Polygon soll mit dem Sweep-Line-Algorithmus gefüllt werden. Als Datenstruktur wird eine Liste von Schnittintervallen mitgeführt. Zeichnen Sie in der Skizze diejenigen horizontalen Linien ein, bei denen der Sweep-Line-Algorithmus den Inhalt seiner Datenstruktur ändert. Nummerieren Sie die Linien von oben nach unten und beschreiben Sie die jeweils durchgeführte Operation.

