А. ГАЙШТУТ

МАГИЧЕСКИЕ КВАДРАТЫ В ШКОЛЕ

МАГИЧЕСКИЕ КВАДРАТЫ В ШКОЛЕ

ВЫПОЛНЕНО ДЛЯ САЙТА

4-6 КЛАСС

МАГИЧЕСКИЕ КВАДРАТЫ

Магический, или волшебный квадрат — это квадратная таблица, заполненная числами таким образом, что сумма чисел в каждой строке, каждом столбце и на обеих диагоналях одинакова.

Сумма чисел в каждой строке, столбце и на диагоналях, называется магической константой, М.

Наименьшая магическая константа волшебного квадрата 3x3 равна 15, квадрата 4x4 равна 34, квадрата 5x5 равна 65,

Если в квадрате равны суммы чисел только в строках и столбцах, то он называется полумагическим.

Построение магического квадрата 3 x 3 с наименьшей магической константой

Найдём наименьшую магическую константу квадрата 3х3 и числа, расположенного посередине этого квадрата.

1 способ

$$1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = (1+9) + (2+8) + (3+7) + (4+6) + 5 = 45$$

M = 15.

Число, записанное посередине 15:3 = 5

Определили, что посередине, записано число 5.

2 способ

Можно рассчитать магическую константу по формуле, где n – число строк

$$\frac{n(n^2+1)}{2}$$

$$n = 3$$
 $\frac{n(n^2 + 1)}{2} = \frac{3(9 + 1)}{2} = 15$

Если можешь построить один магический квадрат, то нетрудно построить их любое количество. Поэтому запомним приёмы построения магического квадрата 3x3 с константой 15.

Построение. Расставь сначала по углам чётные числа 2,4,8,6 и посередине 5. Остальной процесс простая арифметика

2	9	4
7	5	3
6	1	8

$$15 - 6 = 9$$
; $15 - 14 = 1$

15 - 8 = 7; 15 - 12 = 3

Используя найденный магический квадрат с константой 15, можно задавать множество разноплановых заданий:

Пример. Построить новые различные магические квадраты 3 x 3 **Решение.**

Сложив каждое число магического квадрата, или умножив его на одно и тоже число, получим новый магический квадрат.

Пример 1. Построить магический квадрат 3 х 3, у которого число,

расположенное посередине, равно 13.

Решение.

Построим знакомый магический квадрат с константой 15 и в середине. которого записано число 5.

Найдём число, на которое надо увеличить каждое число искомого квадрата

13 – 5 = 8.

К каждому числу магического квадрата прибавим по 8.

Пример 2. Заполнить клетки магических квадратов, зная магическую константу. M = 42

Решение. Найдём число, записанное в центре искомого магическогои квадрата

42:3=14

Каждое число искомого квадрата увеличим на 14 - 5 = 9.

2	9	4
7	5	3
6	1	8

10	17	12
15	13	11
14	9	16

14	

11	18	13
16	14	12
1	15	22

3)

задания для самостоятельного решения

Примеры. 1. Найди магическую константу квадратов.

2)

10	9	14
15	11	7
8	13	12

1	3	8
5	7	9
6	1	4

15	16	11
10	14	18
17	12	13

3. Заполнить клетки магичесхих квадратов, зная их константу

Построение магичного квадрата 4 х 4 с наименьшей константой

Найдём наименьшую магическую константу квадрата 4x4 и числа, расположенного в центре этого квадрата.

1 способ

 $1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 = (1+16)+(2+15)+(3+14)+(4+13)+(5+12)+ (6+11)+ (7+10)+(8+9) = 17 \times 8 = 136$ 136: 4= 34.

2 способ

Можно рассчитать магическую константу по формуле,

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

где n – число строк n = 4.

$$\frac{n(n^2+1)}{2} = \frac{4(16+1)}{2} = 34.$$

Сумма чисел на любой горизонтали, вертикали и диагонали равна 34. Эта сумма также встречается во всех угловых квадратах 2×2, в центральном квадрате (10+11+6+7), в квадрате из угловых клеток (16+13+4+1).

Для построения любых магических квадратов 4х4 надо: построить один с константой 34.

Пример. Построить новые различные магические квадраты 4 х 4.

Решение.

Сложив каждое число найденного волшебного квадрата 4 x 4 или умножив его на одно и тоже число, получим новый волшебный квадрат.

Пример. Построить магический квадрат 4 x 4, у которого константа равна 46.

Решение. Построили знакомый волшебный квадрат с константой 34.

$$46 - 34 = 12$$
. $12:4 = 3$

К каждому числу волшебного квадрата прибавим по 3.

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

19	6	5	16
8	13	14	11
12	9	10	15
7	18	17	4

Прежде чем приступить к решению более сложных примеров на магическихх квадратах 4 х 4 ещё раз проверь свойства, которыми он обладает, если М=34.

1) Сумма чисел на любой горизонтали, вертикали и диагонали равна 34.

2) Эта сумма также встречается во всех угловых квадратах 2×2,

3) в центральном квадрате (10+11+6+7),

4) в квадрате из угловых клеток (16+13+4+1)

а+г+п+т

Познакомься с магическими квадратами 5х5 и 6х6

1	15	24	8	17
9	18	2	11	25
12	21	10	19	3
20	4	13	22	6
23	7	16	5	14

27	29	2	4	13	36
9	11	20	22	31	18
32	25	7	3	21	23
14	16	34	30	12	5
28	6	15	17	26	19
1	24	33	35	8	10

$$M = \frac{n(n^2 + 1)}{2} = \frac{5(25 + 1)}{2} = 65. \quad M = \frac{n(n^2 + 1)}{2} = \frac{6(36 + 1)}{2} = 111.$$

$$M = 65$$

$$M = 111$$