0.1 H10 数学選択

⑥ L/K を有限次 galois 拡大とする。L[x] で $f(x)=g_1(x)\dots g_n(x)$ と既約元分解されるとする。f(x) の最小分解体を F で表す。 $i\neq j$ として g_i の根 α,g_j の根 β を任意にとって固定する。既約であるから g_j は β の最小多項式と同伴である。f(x) は K 上で既約であるから, $\sigma\in \mathrm{Gal}(F/K)$ で $\sigma(\alpha)=\beta$ となるものが存在する。 $\sigma(g_i)(\beta)=\sigma(g_i(\alpha))=0$ であるから $\sigma(g_i)$ は β を根にもつ。L/K が正規拡大であるから $\sigma|_L$ は L 上の K-自己同型である。よって $\sigma(g_i)$ は L[x] の既約多項式である。よって $\sigma(g_i)$ も β の最小多項式と同伴である。すなわち $\deg g_i=\deg \sigma(g_i)=\deg g_j$ である。

[7] $(1)(p,x^2+1)$ が $\mathbb{Z}[x]$ 上素イデアル $\Leftrightarrow \mathbb{Z}[x]/(p,x^2+1)$ が整域. $\Leftrightarrow (\mathbb{Z}[x]/(p))/((p,x^2+1)/(p))$ が整域. $\Leftrightarrow \mathbb{F}_p[x]/(x^2+1)$ が整域. $\Leftrightarrow x^2+1$ が $\mathbb{F}_p[x]$ 上既約. $\Leftrightarrow -1$ が \mathbb{F}_p 上平方非剰余.

次が成り立つことを示す. -1 が \mathbb{F}_p 上平方剰余 $\Leftrightarrow 4 \mid (p-1)$.

 \Rightarrow ある $x \in \mathbb{F}_p^{\times}$ が存在して $x^2 = -1$ となる. $x^4 = 1$ であるから x は位数 4 の元. よって $4 \mid (p-1)$.

 $\leftarrow 4 \mid |\mathbb{F}_p^{\times}|$ であるから sylow の定理より位数 4 以上の 2-sylow 部分群が存在する. $x^2 = 1$ をみたす $x \in \mathbb{F}_p^{\times}$ は高々 2 つであるから $x^2 = -1$ をみたす x が存在する.

以上より $(p, x^2 + 1)$ が $\mathbb{Z}[x]$ 上素イデアル $\Leftrightarrow 4 \nmid p - 1$ である.

-1 が平方剰余でないについては平方剰余の相互法則の第一補充法則 $\binom{-1}{p}=(-1)^{\frac{p-1}{2}}$ から $\frac{p-1}{2}$ が奇数であることと同値である.これは p-1 が 4 の倍数でないことと同値である.