CS 229 Lecture Fifteen Weakly Supervised Learning: Graphical Models and Method of Moments

Chris Ré

May 21, 2023

Topics for Today

- We'll discuss weak supervision and method of moments.
 - ▶ Used in crowd workers, new programming models like Snorkel, used in Google, and set off the "Data-centric AI" movement.
 - Oddly, you've likely used a product that has it today!
- ▶ We'll introduce the basics of graphical models.
- ▶ We'll introduce covariance-like matrices for discrete models.

Topics for Today

- We'll discuss weak supervision and method of moments.
 - ▶ Used in crowd workers, new programming models like Snorkel, used in Google, and set off the "Data-centric AI" movement.
 - Oddly, you've likely used a product that has it today!
- ▶ We'll introduce the basics of graphical models.
- ▶ We'll introduce covariance-like matrices for discrete models.

I'm giving a minimal practical material. I have talks about that online.^a Today, we are focused on technical material. It's not an accident this comes after the midterm...

^aHere is one: https://youtu.be/k20oLegpDW8?t=4966

Simple Motivating Example

You have some data $x^{(1)}, \ldots, x^{(n)}$, and you ask for labels from the crowd $y^{(1)}, \ldots, y^{(n)}$. How do you do it?

- ▶ **Observation**. Labelers have different accuracies per task.
 - Some labelers are better, more familiar, or have expertise with the task.
 - Some labelers maybe are spammers—may be random or intentionally inaccurate.
 - Labelers don't look at all the items

Simple Motivating Example

You have some data $x^{(1)}, \ldots, x^{(n)}$, and you ask for labels from the crowd $y^{(1)}, \ldots, y^{(n)}$. How do you do it?

- ▶ **Observation**. Labelers have different accuracies per task.
 - Some labelers are better, more familiar, or have expertise with the task.
 - Some labelers maybe are spammers—may be random or intentionally inaccurate.
 - ► Labelers don't look at all the items we'll come back to this later.

Simple Motivating Example

You have some data $x^{(1)}, \ldots, x^{(n)}$, and you ask for labels from the crowd $y^{(1)}, \ldots, y^{(n)}$. How do you do it?

- ▶ **Observation**. Labelers have different accuracies per task.
 - Some labelers are better, more familiar, or have expertise with the task.
 - Some labelers maybe are spammers—may be random or intentionally inaccurate.
 - Labelers don't look at all the items we'll come back to this later.
- ▶ **Idea**: Identify the reliability of *each labeler* for the task, and use that to compute how likely their vote is correct.

This is a great framework with long history back to the (Dawid-Skene 1979). Originally done with EM!

More complex systems: Briefly

Transformer era: Majority of time was building training data—not the model: realized data preparation for AI was more like purifying a sewer. Used to clean data *to feed to* deep learning.

More complex systems: Briefly

Transformer era: Majority of time was building training data—not the model: realized data preparation for AI was more like purifying a sewer. Used to clean data *to feed to* deep learning.

Snorkel.ai pioneered (when they were students!) treating many different sources of information: crowd labels, programmatic labels, old models, etc.—and maximally purifying them.

More complex systems: Briefly

Transformer era: Majority of time was building training data—not the model: realized data preparation for AI was more like purifying a sewer. Used to clean data *to feed to* deep learning.

Snorkel.ai pioneered (when they were students!) treating many different sources of information: crowd labels, programmatic labels, old models, etc.—and maximally purifying them.

Technical Challenge: sources may have correlations!

Technical Overview in Two Stages

- Independent Labelers: A simple "method of moments" that captures the crowd.
- Correlations Labelers: We'll see the basics of graphical models.

These are *latent variable models* of the type we've seen, but we'll solve in a different way (not EM). Stronger guarantees!

Independent case, No Abstains

- ▶ **Given** Data points $x^{(1)}, \ldots, x^{(n)} \in \mathbb{R}^d$ and labeling functions $\lambda_1, \ldots, \lambda_m$ where $\lambda_j \in \mathbb{R}^d \to \{-1, 1\}$ for $j = 1, \ldots, m$.
- ▶ **Do** Find $y^{(1)}, \ldots, y^{(n)} \in \mathbb{R}$

$$P(y^{(i)} \mid \lambda_1, \dots, \lambda_m, x^{(i)})$$
 for $i = 1, \dots, n$

Independent case, No Abstains

- ▶ **Given** Data points $x^{(1)}, \ldots, x^{(n)} \in \mathbb{R}^d$ and labeling functions $\lambda_1, \ldots, \lambda_m$ where $\lambda_j \in \mathbb{R}^d \to \{-1, 1\}$ for $j = 1, \ldots, m$.
- ▶ **Do** Find $y^{(1)}, \ldots, y^{(n)} \in \mathbb{R}$

$$P(y^{(i)} | \lambda_1, ..., \lambda_m, x^{(i)}) \text{ for } i = 1, ..., n$$

► **Model** We imagine that the voter **agrees** with the ground truth, but we don't know *how often*

$$P\left(\lambda_j(x^{(i)}) = y^{(i)} \mid y^{(i)}\right) \sim \mathsf{Bernoulli}(\alpha_j).$$

The challenge is that $y^{(i)}$ is latent: we do not observe its value: we only observe voters $\lambda_i(x^{(i)})$ on points.

Let's unpack the Model

$$P\left(\lambda_j(x^{(i)}) = y^{(i)} \mid y^{(i)}\right) \sim \text{Bernoulli}(\alpha_j).$$

- ► Each labeler has a hidden accuracy $\alpha_j \neq 0.5$. We say that a labeler is **informative** if $\alpha_i \neq 0.5$.
- ▶ This means, given a data point, the labeler λ_j returns the correct label with probability α_j and flips the label with probability $1 \alpha_j$. So for a data point x and label y.

$$\lambda(x) = y$$
 with probability α_j
 $\lambda(x) = -y$ with probability $1 - \alpha_j$

A much bigger challenge is that we don't observe $y \in \{-1,1\}$ but want to estimate α_j .

Warmup: Observable y

Data	λ_1	λ_2	λ_3	 λ_m	y
$x^{(1)}$	1	1	1	 1	1
$x^{(2)}$	-1	-1	-1	 1	-1
$x^{(1)}$ $x^{(2)}$ $x^{(3)}$	-1	1	-1	 1	-1
:					
x ⁽ⁿ⁾	-1	-1	-1	 -1	-1

Suppose we saw $y^{(1)}, \ldots, y^{(n)}$, how do we estimate α_j ?

Warmup: Observable y

Suppose we saw $y^{(1)}, \ldots, y^{(n)}$, how do we estimate α_j ? Define β_j

$$\beta_j = \mathbb{E}[\lambda_j(x)y] = (1)\alpha_j + (-1)(1 - \alpha_j) = 2\alpha_j - 1$$

Note the expectation ranges over the choice of data point and the randomness in the model. That is, we can estimate β_i as

$$\mathbb{E}[\lambda_j(x)y] \approx \frac{1}{n} \sum_{i=1}^n \lambda_j(x^{(i)}) y^{(i)} \text{ so } \alpha_j = \frac{1+\beta_j}{2}$$

Warmup: Observable y

Suppose we saw $y^{(1)}, \ldots, y^{(n)}$, how do we estimate α_j ? Define β_j

$$\beta_j = \mathbb{E}[\lambda_j(x)y] = (1)\alpha_j + (-1)(1-\alpha_j) = 2\alpha_j - 1$$

Note the expectation ranges over the choice of data point and the randomness in the model. That is, we can estimate β_i as

$$\mathbb{E}[\lambda_j(x)y] \approx \frac{1}{n} \sum_{i=1}^n \lambda_j(x^{(i)}) y^{(i)} \text{ so } \alpha_j = \frac{1+\beta_j}{2}$$

But we do *not* observe y, so we cannot compute $\mathbb{E}[\lambda_i(x)y]$. What can we do?

Data	λ_1	λ_2	λ_3	 λ_m	Y
$x^{(1)}$	1	1	1	 1	1
$x^{(2)}$	-1	-1	-1	 1	-1
$x^{(1)}$ $x^{(2)}$ $x^{(3)}$	-1	1	-1	 1	-1
:					:
$\chi^{(n)}$	-1	-1	-1	 -1	-1

▶ An **EM** idea: (1) We estimate the latent values $y^{(i)}$ for i = 1, ..., n, and (2) run the previous estimation procedure.

Data	λ_1	λ_2	λ_3	 λ_m	Y
$x^{(1)}$	1	1	1	 1	1
$x^{(2)}$	-1	-1	-1	 1 1	-1
$ \begin{array}{c} \chi^{(1)} \\ \chi^{(2)} \\ \chi^{(3)} \end{array} $	-1	1	-1	 1	-1
:					:
$x^{(n)}$	-1	-1	-1	 -1	-1

- An **EM** idea: (1) We estimate the latent values $y^{(i)}$ for i = 1, ..., n, and (2) run the previous estimation procedure.
- ▶ We'll use an alternate approach—closer to (Robust) PCA.
 - Stronger guarantees and more information about the solution!

Data					
x ⁽¹⁾	1	1	1	 1 1	1
$\chi^{(2)}$	-1	-1	-1	 1	-1
$x^{(3)}$	-1	1	-1	 1	-1
÷					:
$x^{(n)}$	-1	-1	-1	 -1	-1

We do observe all the votes for $\lambda_j(x^{(i)})$. Since $\lambda_j(x) \in \{-1,1\}$:

$$\mathbb{E}[\lambda_j(x)\lambda_j(x)] = \mathbb{E}[\lambda_j(x)^2] = 1 \text{ for } j = 1, \dots, m$$

Data	λ_1	λ_2	λ_3	 λ_m	Y
$\chi^{(1)}$	1	1	1	 1	1
$x^{(2)}$	-1	-1	-1	 1	-1
$x^{(1)}$ $x^{(2)}$ $x^{(3)}$	-1	1	-1	 1	-1
:					:
$x^{(n)}$	-1	-1	-1	 -1	-1

We do observe all the votes for $\lambda_j(x^{(i)})$. Since $\lambda_j(x) \in \{-1,1\}$:

$$\mathbb{E}[\lambda_j(x)\lambda_j(x)] = \mathbb{E}[\lambda_j(x)^2] = 1 \text{ for } j = 1, \dots, m$$

In the case $j \neq k$, we have

$$\mathbb{E}[\lambda_j(x)\lambda_k(x)] = (1)\left(\alpha_j\alpha_k + (1-\alpha_j)(1-\alpha_k)\right) \qquad \text{agree on the label} \\ + (-1)\left(\alpha_j(1-\alpha_k) + (1-\alpha_j)\alpha_k\right) \qquad \text{disagree on the label}$$

Data	λ_1	λ_2	λ_3	 λ_m	Y
$x^{(1)}$	1	1	1	 1	1
$x^{(2)}$	-1	-1	-1	 1	-1
$x^{(1)}$ $x^{(2)}$ $x^{(3)}$	-1	1	-1	 1	-1
:					:
$x^{(n)}$	-1	-1	-1	 -1	-1

We do observe all the votes for $\lambda_j(x^{(i)})$. Since $\lambda_j(x) \in \{-1,1\}$:

$$\mathbb{E}[\lambda_j(x)\lambda_j(x)] = \mathbb{E}[\lambda_j(x)^2] = 1 \text{ for } j = 1, \dots, m$$

In the case $j \neq k$, we have

$$\mathbb{E}[\lambda_j(x)\lambda_k(x)] = (1)\left(\alpha_j\alpha_k + (1-\alpha_j)(1-\alpha_k)\right) \qquad \text{agree on the label} \\ + (-1)\left(\alpha_j(1-\alpha_k) + (1-\alpha_j)\alpha_k\right) \qquad \text{disagree on the label} \\ = (2\alpha_j - 1)(2\alpha_k - 1) = \beta_j\beta_k$$

Make an observed matrix

Summarizing what we just derived more succinctly

$$\mathbb{E}[\lambda_j(x)\lambda_k(x)] = \begin{cases} 1 & j = k \\ \beta_j\beta_k & \text{o.w.} \end{cases}$$

Make an observed matrix

Summarizing what we just derived more succinctly

$$\mathbb{E}[\lambda_j(x)\lambda_k(x)] = \begin{cases} 1 & j = k \\ \beta_j\beta_k & \text{o.w.} \end{cases}$$

Form the observed matrix O

$$O_{j,k} = \mathbb{E}\left[\lambda_j(x)\lambda_k(x)\right].$$

This matrix intuitively tracks the disagreements and agreements, and importantly we can estimate O from data. Recall we have:

$$O_{j,k} pprox \frac{1}{n} \sum_{i=1}^n \lambda_j(x^{(i)}) \lambda_k(x^{(i)}).$$

An Extremely Simple Algorithm

We make a very simple observation for distinct indexes j, k, m, i.e., $j \neq k, j \neq m$, and $k \neq m$:

$$O_{j,k}O_{k,m}=(\beta_j\beta_k)(\beta_k\beta_m)=\beta_j\beta_k^2\beta_m.$$

And so we can form the estimate:

$$\frac{O_{j,k}O_{k,m}}{O_{i,m}}=\beta_k^2.$$

- ▶ For any k, any distinct (j, m) form an estimate for β_k^2 .
 - ▶ They are consistent in moments (in practice, take median)

An Extremely Simple Algorithm

We make a very simple observation for distinct indexes j, k, m, i.e., $j \neq k, j \neq m$, and $k \neq m$:

$$O_{j,k}O_{k,m}=(\beta_j\beta_k)(\beta_k\beta_m)=\beta_j\beta_k^2\beta_m.$$

And so we can form the estimate:

$$\frac{O_{j,k}O_{k,m}}{O_{j,m}}=\beta_k^2.$$

- ▶ For any k, any distinct (j, m) form an estimate for β_k^2 .
 - ▶ They are consistent in moments (in practice, take median)
- **Note** We recovered the *magnitude* but not the *sign* of β_k .

Using our observation, we have formed estimates:

$$\frac{O_{j,k}O_{k,m}}{O_{j,m}}=\beta_k^2.$$

We have recovered the *magnitude* but not the *sign* of β_k . But there is structure in the signs. . .

Using our observation, we have formed estimates:

$$\frac{O_{j,k}O_{k,m}}{O_{j,m}}=\beta_k^2.$$

We have recovered the *magnitude* but not the *sign* of β_k . But there is structure in the signs. . .

▶ Suppose we knew β_j for even a single j

$$sign(O_{j,k}) = sign(\beta_j)sign(\beta_k).$$

Using our observation, we have formed estimates:

$$\frac{O_{j,k}O_{k,m}}{O_{j,m}}=\beta_k^2.$$

We have recovered the *magnitude* but not the *sign* of β_k . But there is structure in the signs. . .

▶ Suppose we knew β_i for even a single j

$$sign(O_{j,k}) = sign(\beta_j)sign(\beta_k).$$

- ▶ If β is a solution, then $-\beta$ is too—and this is a *real symmetry*.
 - ▶ Could assume $\beta_j > 0$ for j = 1, ..., m but this would mean no scammers!

Using our observation, we have formed estimates:

$$\frac{O_{j,k}O_{k,m}}{O_{j,m}}=\beta_k^2.$$

We have recovered the *magnitude* but not the *sign* of β_k . But there is structure in the signs. . .

▶ Suppose we knew β_i for even a single j

$$sign(O_{j,k}) = sign(\beta_j)sign(\beta_k).$$

- ▶ If β is a solution, then $-\beta$ is too—and this is a *real symmetry*.
 - ▶ Could assume $\beta_j > 0$ for j = 1, ..., m but this would mean no scammers!
 - ▶ Could assume we *knew* one labeler was good, e.g., $\beta_1 > 0$.

Using our observation, we have formed estimates:

$$\frac{O_{j,k}O_{k,m}}{O_{j,m}}=\beta_k^2.$$

We have recovered the *magnitude* but not the *sign* of β_k . But there is structure in the signs. . .

▶ Suppose we knew β_i for even a single j

$$sign(O_{j,k}) = sign(\beta_j)sign(\beta_k).$$

- ▶ If β is a solution, then $-\beta$ is too—and this is a *real symmetry*.
 - Could assume $\beta_j > 0$ for j = 1, ..., m but this would mean no scammers!
 - ▶ Could assume we *knew* one labeler was good, e.g., $\beta_1 > 0$.
 - Could assume $\sum_j \beta_j > 0$, "not adversarial—on average—with the ground truth."

Is it Unique?

We have a β , is it unique up to this sign?

$$\frac{O_{j,k}O_{k,m}}{O_{j,m}} = \beta_k^2$$

Assume for the moment $O_{j,k} \neq 0$. Taking log absolute value for each (j,k,m) such that j < k < m we have a non-redundant constraint:

$$\frac{1}{2}\left(\log|O_{i,k}|+\log|O_{k,m}|-\log|O_{j,m}|\right)=\log|\beta_k|$$

Is it Unique?

We have a β , is it unique up to this sign?

$$\frac{O_{j,k}O_{k,m}}{O_{j,m}} = \beta_k^2$$

Assume for the moment $O_{j,k} \neq 0$. Taking log absolute value for each (j,k,m) such that j < k < m we have a non-redundant constraint:

$$\frac{1}{2}(\log |O_{i,k}| + \log |O_{k,m}| - \log |O_{j,m}|) = \log |\beta_k|$$

We can write this as a linear system. Let's look at m = 3:

$$\frac{1}{2}\underbrace{\begin{pmatrix}1&1&-1\\1&-1&1\\-1&1&1\end{pmatrix}}_{}\underbrace{\begin{pmatrix}\log|O_{1,2}|\\\log|O_{1,3}|\\\log|O_{2,3}|\end{pmatrix}}_{}= \begin{pmatrix}\log|\beta_1|\\\log|\beta_2|\\\log|\beta_3|\end{pmatrix}$$

Note that *A* has full rank—and we can check this in higher dimensions. We need at least *three* voters—but then unique!

What does it mean if $O_{j,k} = 0$?

If $O_{j,k}=0$ then either $\beta_j=0$ or $\beta_k=0$. Say $\beta_j=0$,

$$\mathbb{E}[\lambda_j(x)Y] = 0 \implies \alpha_j = 0.5$$

That is, labeler j is not informative. That is, λ_i 's labels are noise; they are indistinguishable from flipping a coin without looking at the data.

This is sensible: Adding labelers that just flip coins without looking at the data *shouldn't* give us any information!

Summary of Independent Case

We can estimate the *accuracy* of labelers without access to *any* ground truth. Instead, we examine the agreement rates.

- ► We require at least 3 informative labelers (amazing to me that we didn't need more!)
- ▶ There was a fundamental symmetry: β and $-\beta$ are solutions.
- Nevertheless, we were able to say "this converges to the global optimal" solution (upto symmetries) cf. EM guarantees.

Correlations and Graphical Models

What if Labelers are Correlated?

- ▶ In more advanced applications, we may label our data using previous models to label the data, rule-based systems, or experts with the same or dissimilar expertise.
- ▶ The labels produced my have correlated errors.
- Let's start to get a simple example of correlations and introduce graphical models.

Nugget: Covariance Matrices and Graphs

Let's consider the a very simple model:

Notice x_2 and x_3 are correlated-not independent-but they are *conditionally* independent based on the value of x_1 .

Nugget: Covariance Matrices and Graphs

Let's consider the a very simple model:

$$egin{aligned} x_1 \sim & \mathcal{N}(0,1) \ x_2 = & x_1 + \epsilon_2 \text{ with } \epsilon_2 \sim & \mathcal{N}(0,1) \quad \text{ or } x_2 \sim & \mathcal{N}(x_1,1) \ x_3 = & x_2 + \epsilon_3 \text{ with } \epsilon_3 \sim & \mathcal{N}(0,1) \quad \text{ or } x_3 \sim & \mathcal{N}(x_1,1) \end{aligned}$$

Notice x_2 and x_3 are correlated-not independent-but they are *conditionally* independent based on the value of x_1 .

Let's compute some statistics!

$$\mathbb{E}[x_1] = 0$$
 and $\mathbb{E}[x_i] = \mathbb{E}[x_1] + \mathbb{E}[\epsilon_i] = 0$ for $j \in \{2, 3\}$

The interesting one is the covariance...

For the model above, $x_1 \sim \mathcal{N}(0,1), x_j \sim \mathcal{N}(x_1,1)$ for $j \in \{2,3\}$. The covariance, Σ has the following form:

$$\mathbb{E}[xx^T] = \Sigma = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

We record the computation:

$$\mathbb{E}[x_1^2] = 0$$

$$\mathbb{E}[x_2^2] = \mathbb{E}[(x_1 + \epsilon_2)^2] = \mathbb{E}[x_1^2] + \mathbb{E}[\epsilon_2^2] + 2\mathbb{E}[x_1\epsilon_2] = 2$$

$$\mathbb{E}[x_1x_2] = \mathbb{E}[x_1^2] + \mathbb{E}[x_1\epsilon_2] = 1$$

$$\mathbb{E}[x_2x_3] = \mathbb{E}[x_1^2] + \mathbb{E}[x_1(\epsilon_2 + \epsilon_3)] + \mathbb{E}[\epsilon_2\epsilon_3] = 1$$

For the model above, $x_1 \sim \mathcal{N}(0,1), x_j \sim \mathcal{N}(x_1,1)$ for $j \in \{2,3\}$. The covariance, Σ has the following form:

$$\mathbb{E}[xx^T] = \Sigma = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

We record the computation:

$$\mathbb{E}[x_1^2] = 0$$

$$\mathbb{E}[x_2^2] = \mathbb{E}[(x_1 + \epsilon_2)^2] = \mathbb{E}[x_1^2] + \mathbb{E}[\epsilon_2^2] + 2\mathbb{E}[x_1\epsilon_2] = 2$$

$$\mathbb{E}[x_1x_2] = \mathbb{E}[x_1^2] + \mathbb{E}[x_1\epsilon_2] = 1$$

$$\mathbb{E}[x_2x_3] = \mathbb{E}[x_1^2] + \mathbb{E}[x_1(\epsilon_2 + \epsilon_3)] + \mathbb{E}[\epsilon_2\epsilon_3] = 1$$

Pretty disappointing! Σ doesn't seem to have structure that matches the graph... huh.

The inverse reveals some structure . . .

For the model above, $x_1 \sim \mathcal{N}(0,1), x_j \sim \mathcal{N}(x_1,1)$ for $j \in \{2,3\}$.

$$\Sigma = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \text{ then } \Sigma^{-1} = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

Wow! If we draw the graph, then the lack of edges precisely matches where those 0's show up ... we need some notation to see if this generalizes.

Probability Distributions and Graphs

A probability distribution $p:\mathbb{R}^d \to [0,1]$ factors with respect to a graph G=(V,E) if

$$p(x) = c_0 \prod_{e=(x_i,x_j)\in E} p_e(x_i,x_j) \prod_{x_i\in V} p_{x_i}(x_i).$$

Suppose a Gaussian model factors via a graph G=(V,E). Let $A=\Sigma^{-1}$ just for notation then:

$$\log p(x) = \log \left(\exp \left\{ x^T \Sigma^{-1} x \right\} c_1 \right) = \log c_1 + \sum_{i,j} A_{i,j} x_i x_j$$

On the other hand, since it factors wrt G, we have an alternate expression for $\log p(x)$

$$\log p(x) = \log c_0 + \sum_{e=(x_i,x_j)\in E} \log p_e(x_i,x_j) + \sum_{x_i\in V} \log p_{x_i}(x_i).$$

Suppose a Gaussian model factors via a graph G=(V,E). Let $A=\Sigma^{-1}$ just for notation then:

$$\log p(x) = \log \left(\exp \left\{ x^T \Sigma^{-1} x \right\} c_1 \right) = \log c_1 + \sum_{i,j} A_{i,j} x_i x_j$$

On the other hand, since it factors wrt G, we have an alternate expression for $\log p(x)$

$$\log p(x) = \log c_0 + \sum_{e=(x_i,x_j)\in E} \log p_e(x_i,x_j) + \sum_{x_i\in V} \log p_{x_i}(x_i).$$

We differentiate each expression with respect to $\frac{\partial}{\partial x_i x_j}$ for $(i,j) \notin E$

► From the Gaussian form, we get $A_{i,j} + A_{j,i} = 2A_{i,j}$ since Σ^{-1} is symmetric.

Suppose a Gaussian model factors via a graph G=(V,E). Let $A=\Sigma^{-1}$ just for notation then:

$$\log p(x) = \log \left(\exp \left\{ x^T \Sigma^{-1} x \right\} c_1 \right) = \log c_1 + \sum_{i,j} A_{i,j} x_i x_j$$

On the other hand, since it factors wrt G, we have an alternate expression for $\log p(x)$

$$\log p(x) = \log c_0 + \sum_{e=(x_i,x_j)\in E} \log p_e(x_i,x_j) + \sum_{x_i\in V} \log p_{x_i}(x_i).$$

We differentiate each expression with respect to $\frac{\partial}{\partial x_i x_j}$ for $(i,j) \notin E$

- ► From the Gaussian form, we get $A_{i,j} + A_{j,i} = 2A_{i,j}$ since Σ^{-1} is symmetric.
- ► From the factorized form, if $(i,j) \notin E$ then the derivative is 0 since no term contains both x_i and x_j .

Suppose a Gaussian model factors via a graph G=(V,E). Let $A=\Sigma^{-1}$ just for notation then:

$$\log p(x) = \log \left(\exp \left\{ x^T \Sigma^{-1} x \right\} c_1 \right) = \log c_1 + \sum_{i,j} A_{i,j} x_i x_j$$

On the other hand, since it factors wrt G, we have an alternate expression for $\log p(x)$

$$\log p(x) = \log c_0 + \sum_{e=(x_i,x_j)\in E} \log p_e(x_i,x_j) + \sum_{x_i\in V} \log p_{x_i}(x_i).$$

We differentiate each expression with respect to $\frac{\partial}{\partial x_i x_j}$ for $(i,j) \notin E$

- ► From the Gaussian form, we get $A_{i,j} + A_{j,i} = 2A_{i,j}$ since Σ^{-1} is symmetric.
- ► From the factorized form, if $(i,j) \notin E$ then the derivative is 0 since no term contains both x_i and x_j .

Suppose a Gaussian model factors via a graph G=(V,E). Let $A=\Sigma^{-1}$ just for notation then:

$$\log p(x) = \log \left(\exp \left\{ x^T \Sigma^{-1} x \right\} c_1 \right) = \log c_1 + \sum_{i,j} A_{i,j} x_i x_j$$

On the other hand, since it factors wrt G, we have an alternate expression for $\log p(x)$

$$\log p(x) = \log c_0 + \sum_{e=(x_i,x_j)\in E} \log p_e(x_i,x_j) + \sum_{x_i\in V} \log p_{x_i}(x_i).$$

We differentiate each expression with respect to $\frac{\partial}{\partial x_i x_j}$ for $(i,j) \notin E$

- ► From the Gaussian form, we get $A_{i,j} + A_{j,i} = 2A_{i,j}$ since Σ^{-1} is symmetric.
- From the factorized form, if $(i,j) \notin E$ then the derivative is 0 since no term contains both x_i and x_j .

We conclude that our earlier observation is, in fact, general:

$$(i,j) \notin E$$
 then $\Sigma_{i,j}^{-1} = \Sigma_{j,i}^{-1} = 0$.

Minor twist: Discrete Graphical Models

- ▶ We want to apply to case of discrete random variables.
 - ► **Good news**. We can write discrete distribution (exponential family!) in more or less the same form.
 - ▶ Bad news. Our argument uses a derivative in the variables, so depends on the *variables* being continuous.

Minor twist: Discrete Graphical Models

- ▶ We want to apply to case of discrete random variables.
 - ► **Good news**. We can write discrete distribution (exponential family!) in more or less the same form.
 - ▶ **Bad news.** Our argument uses a derivative in the variables, so depends on the *variables* being continuous.
 - ► Happy Ending? Indeed, we need a few more technical conditions—figured out in papers Loh and Wainwright 2014 and Ratner et al. 2018—but "morally" the same story.

Back to our Problem ...

- ▶ **Informative labelers**: λ_j correlated with y for j = 1, ..., m
- Only some labelers are correlated with each other.
- We assume we are given edges of graph (but not entries in covariance matrix).

Let's examine our analog of a covariance matrix

$$u = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_m \\ y \end{pmatrix}$$
 then $\mathbb{E}[uu^T] = \Sigma = \begin{pmatrix} O & \beta \\ \beta^T & 1 \end{pmatrix}$.

Here, the blocking is: $O \in \mathbb{R}^{m \times m}$ and $\beta \in \mathbb{R}^m$

Let's examine our analog of a covariance matrix

$$u = egin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_m \\ y \end{pmatrix} ext{ then } \mathbb{E}[uu^T] = \Sigma = egin{pmatrix} O & \beta \\ \beta^T & 1 \end{pmatrix}.$$

Here, the blocking is: $O \in \mathbb{R}^{m \times m}$ and $\beta \in \mathbb{R}^m$

- ▶ If we compute $\beta_i = \mathbb{E}[\lambda_i y] \in \mathbb{R}^m$ this is the accuracy—but we can't observe y, so β isn't measurable directly.
- We can observe O, since as before these are observed votes on every data point for $j, k \in 1, ..., m$

$$O_{j,k} = \mathbb{E}[\lambda_j(x)\lambda_k(x)] \approx \frac{1}{n}\sum_{i=1}^n \lambda_j(x^{(i)})\lambda_k(x^{(i)})$$

Let's assume we know the *graph structure*—i.e., the indexes for which *zeros* in Σ^{-1} . We can use this to recover β .

We need some heavier weight identities (very similar to the block Gaussians from earlier). Let's block decompose Σ^{-1} :

$$\Sigma = \begin{pmatrix} O & \beta \\ \beta^T & 1 \end{pmatrix} \text{ and } \Sigma^{-1} = \begin{pmatrix} K & v \\ v^T & K_S \end{pmatrix}.$$

We need some heavier weight identities (very similar to the block Gaussians from earlier). Let's block decompose Σ^{-1} :

$$\Sigma = \begin{pmatrix} O & \beta \\ \beta^T & 1 \end{pmatrix} \text{ and } \Sigma^{-1} = \begin{pmatrix} K & v \\ v^T & K_S \end{pmatrix}.$$

A tool that helps us is the Matrix Inversion Lemma, which says:

$$\Sigma^{-1} = \begin{pmatrix} O^{-1} + c O^{-1} \beta \beta^T O^{-1} & -c O^{-1} \beta \\ -c \beta^T O^{-1} & c \end{pmatrix} \text{ where } c^{-1} = 1 - \beta^T O^{-1} \beta.$$

We'll use:

$$K = O^{-1} + cO^{-1}\beta\beta^T O^{-1}$$

$$\Sigma = \begin{pmatrix} O & \beta \\ \beta^T & 1 \end{pmatrix} \text{ and } \Sigma^{-1} = \begin{pmatrix} K & \nu \\ \nu^T & K_S \end{pmatrix}.$$

The matrix inversion lemma tells us:

$$K = O^{-1} + cO^{-1}etaeta^TO^{-1}$$
 in which $c = \left(1 - eta^TO^{-1}eta
ight)^{-1} \in \mathbb{R}^+$

$$\Sigma = \begin{pmatrix} O & \beta \\ \beta^T & 1 \end{pmatrix} \text{ and } \Sigma^{-1} = \begin{pmatrix} K & v \\ v^T & K_S \end{pmatrix}.$$

The matrix inversion lemma tells us:

$$K = O^{-1} + cO^{-1}etaeta^{\mathsf{T}}O^{-1}$$
 in which $c = \left(1 - eta^{\mathsf{T}}O^{-1}eta
ight)^{-1} \in \mathbb{R}^+$

Let's define some notation:

$$z = \sqrt{c}O^{-1}\beta$$
 then $K = O^{-1} + zz^{T}$

Assuming we can recover z, we show how recover β using observable quantities.

$$\Sigma = \begin{pmatrix} O & \beta \\ \beta^T & 1 \end{pmatrix} \text{ and } \Sigma^{-1} = \begin{pmatrix} K & v \\ v^T & K_S \end{pmatrix}.$$

The matrix inversion lemma tells us:

$$\mathcal{K} = \mathcal{O}^{-1} + c\mathcal{O}^{-1}etaeta^{\mathsf{T}}\mathcal{O}^{-1}$$
 in which $c = \left(1 - eta^{\mathsf{T}}\mathcal{O}^{-1}eta
ight)^{-1} \in \mathbb{R}^+$

Let's define some notation:

$$z = \sqrt{c}O^{-1}\beta$$
 then $K = O^{-1} + zz^{T}$

Assuming we can recover z, we show how recover β using observable quantities. First, we recover c. Specifically, $1 + z^T Oz = c$

$$1 + z^T O z = 1 + c \beta^T O^{-1} O O^{-1} \beta = 1 + c \beta^T O^{-1} \beta$$

On the other hand, using the definition of c

$$\frac{1}{c} = 1 - \beta^T O^{-1} \beta \iff 1 + c \beta^T O^{-1} \beta = c$$

$$\Sigma = \begin{pmatrix} O & \beta \\ \beta^T & 1 \end{pmatrix} \text{ and } \Sigma^{-1} = \begin{pmatrix} K & v \\ v^T & K_S \end{pmatrix}.$$

The matrix inversion lemma tells us:

$$K = O^{-1} + cO^{-1}etaeta^{\mathsf{T}}O^{-1}$$
 in which $c = \left(1 - eta^{\mathsf{T}}O^{-1}eta
ight)^{-1} \in \mathbb{R}^+$

Let's define some notation:

$$z = \sqrt{c}O^{-1}\beta$$
 then $K = O^{-1} + zz^{T}$

Assuming we can recover z, we show how recover β using observable quantities. First, we recover c. Specifically, $1+z^TOz=c$

$$1 + z^T O z = 1 + c \beta^T O^{-1} O O^{-1} \beta = 1 + c \beta^T O^{-1} \beta$$

On the other hand, using the definition of c

$$\frac{1}{c} = 1 - \beta^T O^{-1} \beta \iff 1 + c \beta^T O^{-1} \beta = c$$

Now set $\beta = \frac{Oz}{\sqrt{c}}$. So we just need to find z!

Our problem is to find z given this equation:

$$K = O^{-1} + zz^{T}$$

- ▶ We observe O (so can compute its inverse, O^{-1}).
- ▶ We don't know z, we have to compute it.

Our problem is to find z given this equation:

$$K = O^{-1} + zz^{T}$$

- We observe O (so can compute its inverse, O^{-1}).
- We don't know z, we have to compute it.
- We don't know the values of K, but we do know some entries where $K_{i,k} = 0$ (the graph assumption!). Define:

$$\Omega = \{(j,k) : K_{j,k} = 0\}.$$

For $(j, k) \in \Omega$ our equation reduces to:

$$O_{i,j}^{-1} = -z_j z_k$$

When is $z_j z_k$ uniquely defined?

Our problem is to find z given this equation:

$$K = O^{-1} + zz^{T}$$

- We observe O (so can compute its inverse, O^{-1}).
- ▶ We don't know z, we have to compute it.
- We don't know the values of K, but we do know some entries where $K_{i,k} = 0$ (the graph assumption!). Define:

$$\Omega = \{(j, k) : K_{j,k} = 0\}.$$

For $(j, k) \in \Omega$ our equation reduces to:

$$O_{i,j}^{-1} = -z_j z_k$$

When is $z_j z_k$ uniquely defined? Almost same as before–square and take logs let $a_{j,k} = O_{j,k}^{-1}$

$$\log a_{j,k}^2 = \log z_j^2 + \log z_k^2.$$

A linear program? only recover up to sign...

When do we have enough to complete?

$$K = O^{-1} + zz^{T}$$
 and $\Omega = \{(j, k) : K_{j,k} = 0.\}$

So when can we find enough entries that this algorithm works?

$$\log a_{j,k}^2 = \log z_j^2 + \log z_k^2.$$

Define a set of matrices $M(\Omega) \in \{0,1\}^{m \times m}$ for the set Ω

$$M(\Omega)_{j,k} \in \begin{cases} \{0,1\} & \text{if } (j,k) \in \Omega \\ \{0\} & \text{o.w. } . \end{cases}$$

For a given Ω , if there is some $M \in M(\Omega)$ that is full rank, then we can compute z_j^2 for j = 1, ..., m.

$$K = O^{-1} + zz^{T}$$
 and $\Omega = \{(j, k) : K_{j,k} = 0.\}$

Sanity check: if the labelers are independent, $\Omega = \{(j, k) : j \neq k\}$. If m = 3, the following choice of M:

$$M = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \le \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$K = O^{-1} + zz^{T}$$
 and $\Omega = \{(j, k) : K_{j,k} = 0.\}$

Sanity check: if the labelers are independent, $\Omega = \{(j, k) : j \neq k\}$. If m = 3, the following choice of M:

$$M = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \le \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

This choice of M corresponds to the following system of equations:

$$\log a_{2,1}^2 = \log z_2^2 + \log z_1^2$$
$$\log a_{3,2}^2 = \log z_3^2 + \log z_2^2$$
$$\log a_{1,3}^2 = \log z_1^2 + \log z_3^2$$

$$K = O^{-1} + zz^{T}$$
 and $\Omega = \{(j, k) : K_{j,k} = 0.\}$

Sanity check: if the labelers are independent, $\Omega = \{(j, k) : j \neq k\}$. If m = 3, the following choice of M:

$$M = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \le \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

This choice of M corresponds to the following system of equations:

$$\begin{split} \log a_{2,1}^2 &= \log z_2^2 + \log z_1^2 & \log z_2^2 &= \log a_{2,1}^2 - \log z_1^2 \\ \log a_{3,2}^2 &= \log z_3^2 + \log z_2^2 \implies & \log z_3^2 &= \log a_{3,2}^2 - \log z_1^2 \\ \log a_{1,3}^2 &= \log z_1^2 + \log z_3^2 \end{split}$$

$$K = O^{-1} + zz^{T}$$
 and $\Omega = \{(j, k) : K_{j,k} = 0.\}$

Sanity check: if the labelers are independent, $\Omega = \{(j, k) : j \neq k\}$. If m = 3, the following choice of M:

$$M = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \le \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

This choice of M corresponds to the following system of equations:

$$\begin{split} \log a_{2,1}^2 &= \log z_2^2 + \log z_1^2 & \log z_2^2 &= \log a_{2,1}^2 - \log z_1^2 \\ \log a_{3,2}^2 &= \log z_3^2 + \log z_2^2 \implies & \log z_3^2 &= \log a_{3,2}^2 - \log z_1^2 \\ \log a_{1,3}^2 &= \log z_1^2 + \log z_3^2 & \log a_{3,2}^2 &= \log a_{2,1}^2 + \log a_{3,2}^2 - 2 \log z_1^2 \end{split}$$

An Example that Should Fail!

$$K = O^{-1} + zz^{T}$$
 and $\Omega = \{(j, k) : K_{j,k} = 0.\}$

▶ Should fail What about the case of three voters: 1 and 2 are are correlated? $\Omega = \{(1,3),(2,3),(3,1),(3,2)\}$ Then, M is component-wise less than

$$M \le \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Yikes, no way to make it full rank!

More examples

$$K = O^{-1} + zz^{T}$$
 and $\Omega = \{(j, k) : K_{j,k} = 0.\}$

▶ What about with four labelers the 1 and 2 correlated:

$$M \le egin{pmatrix} 0 & 0 & 1 & 1 \ 0 & 0 & 1 & 1 \ 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 \end{pmatrix} \ \ {\sf take} \ M = egin{pmatrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \end{pmatrix}.$$

So in this case, we can recover it!

So we need *enough* independence to recover the voters. This exactly characterizes when recovery is possible.

Sign Recovery is More Complex for Correlations

Recovering the signs is more complex with correlations. Let's illustrate the problem. Consider the following example:

$$\begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

ightharpoonup Observe that there are two connected components in $M(\Omega)$ and so *four* possible solutions

$$\begin{pmatrix} \pm \beta_1 \\ \pm \beta_2 \end{pmatrix}$$
 for $\beta_i \in \mathbb{R}^3$ and $j \in \{1, 2\}$.

To solve this, assumptions are typically made per component (each one applies!)

Wrap-up: Extensions

- It turns out you can learn Σ^{-1} as well–without EM. It has a really nice interpretation as Sparse PCA.
 - We didn't do sample efficiency in this course, but with SGD this and the MLE methods you know-it's sample optimal (Chen, Sala et al, 2020). Theory fun, algorithm simple.
- For simplicity, every voter voted on every instance. This is easy to relax (and hide) in the $\mathbb E$ notation.
- More sophisticated models use information from embeddings, voters that only vote one way (or have different accuracy), and more!

Summary

- ► Today was a lot! We saw methods to recover latent variable models that used linear algebra and information about the statistics to compute them—no EM.
- ► They had stronger guarantees—exact, provable recovery up to symmetry. (cf. with EM).
- ► The weak supervision methods are now used in many places. I'm as shocked as you are.