Дослідження операцій Домашня робота №3

Демедюк Віталій 6 жовтня 2020 р.

Зміст

1	33 J	$\Pi\Pi ightarrow$	КЗЛП
	1.1	ЗЗЛП	
	1.2	ЗЗЛП	$\mathbb{I} \to \mathrm{C3Л\Pi}$
	1.3	СЗЛП	$I \to KЗЛП$ (М-задача)
_			
2	Mo	дифіко	ований симплекс-метод
	2.1	Розв'я	нзок М-задачі модифікованим симплекс-методом
		2.1.1	Допоміжна таблиця
		2.1.2	Основна таблиця. Крок №1
		2.1.3	Основна таблиця. Крок №2
		2.1.4	Основна таблиця. Крок №3
		2.1.5	Основна таблиця. Крок №4
		2.1.6	Основна таблиця. Крок №5
		2.1.7	Відповідь

1 $33Л\Pi \rightarrow K3Л\Pi$

1.1 ЗЗЛП

Цільова функція:

$$L = 2x_1 + x_2 \rightarrow \max$$

Обмеження:

$$\begin{cases} x_1 + 2x_2 \le 7, \\ 5x_1 + 7x_2 \ge 4, \\ 3x_1 - 2x_2 \le 10, \\ x_1 > 0, x_2 > 0. \end{cases}$$

1.2 $33Л\Pi \rightarrow C3Л\Pi$

Цільова функція:

$$L = -2x_1 - x_2 + 0x_3 + 0x_4 + 0x_5 \to \min$$

Обмеження:

$$\begin{cases} x_1 + 2x_2 + x_3 & = 7, \\ 5x_1 + 7x_2 & -x_4 & = 4, \\ 3x_1 - 2x_2 & +x_5 & = 10. \end{cases}$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

1.3 СЗЛП ightarrow КЗЛП (М-задача)

Запишемо СЗЛП у векторній формі

$$\overline{x} = (x_1, x_2, x_3, x_4, x_5)^T$$
 – вектор-стовпець змінних

 $\overline{c} = (c_1, c_2, c_3, c_4, c_5) = (-2, -1, 0, 0, 0)$ – вектор коефіці
ентів у фунції L

$$L = \overline{cx} \to \min$$

А – матриця коефіціентів системи обмежень

$$A = ||a_{ij}|| = \begin{pmatrix} 1 & 2 & 1 & 0 & 0 \\ 5 & 7 & 0 & -1 & 0 \\ 3 & -2 & 0 & 0 & 1 \end{pmatrix}$$

 \overline{b} – вектор, що $A\overline{x}=\overline{b}$

$$\bar{b} = (7, 4, 10)^T$$

В КЗЛП повинні виконуватися наступні умови: $\bar{b}\geqslant \bar{0},\, \bar{x}\geqslant \bar{0},\, A\bar{x}=\bar{b},\, A$ — містить одиничну підматрицю

Можемо побачити, що у нас не виконується остання умова, тому скористаємся М-методом, щоб добавити штучний базис та отримати М-задачу з початковим базисним роз'язком

$$L' = -2x_1 - x_2 + 0x_3 + 0x_4 + 0x_5 + M(y_1) \to \min$$

$$\begin{cases} x_1 + 2x_2 + x_3 & = 7, \\ 5x_1 + 7x_2 & -x_4 + y_1 = 4, \\ 3x_1 - 2x_2 & +x_5 & = 10. \end{cases}$$

Векторна форма

$$\overline{x'} = (x_1, x_2, x_3, x_4, x_5, y_1)^T$$

$$\overline{c'} = (c_1, c_2, c_3, c_4, c_5, c_6) = (-2, -1, 0, 0, 0, M)$$

$$L' = \overline{c'x'} \to \min$$

$$A' = ||a_{ij}|| = \begin{pmatrix} 1 & 2 & 1 & 0 & 0 & 0 \\ 5 & 7 & 0 & -1 & 0 & 1 \\ 3 & -2 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\overline{b} = (7, 4, 10)^T$$

$$A'\overline{x'} = \overline{b}$$

2 Модифікований симплекс-метод

2.1 Розв'язок М-задачі модифікованим симплекс-методом

2.1.1 Допоміжна таблиця

	c_1	c_2	c_3	c_4	c_5	c_6					
	-2	-1	0	0	0	M					
b	A_1	A_2	A_3	A_4	A_5	A_6	U^0	U^1	U^2	U^3	U^4
7	1	2	1	0	0	0	0	0	0	0	-7/8
4	5	7	0	-1	0	1	M	-1/7	-2/5	0	0
10	3	-2	0	0	1	0	0	0	0	-2/3	-3/8
Δ_j^0	-2-5M	-1-7M	0	M	0	0					
Δ_j^1	-9/7	0	0	-1/7	0	-1/7					
Δ_j^2	0	9/5	0	-3	0	3					
Δ_j^3	0	-7/3	0	0	2/3	0					
Δ_j^4	0	0	7/8	0	3/8	M					

2.1.2 Основна таблиця. Крок №1

c_{6}	X_{6}	b	$B_1^{-1}(0)$	$B_2^{-1}(0)$	$B_3^{-1}(0)$	A_2	α_2^0	Θ_0
0	x_3	7	1	0	0	2	2	7/2
M	x_6	4	0	1	0	7	7	4/7
0	x_5	10	0	0	1	-2	-2	
		U^0	0	M	0			

$$U^{0} = c_{6}^{T}B^{-1}(0)$$

$$\Delta_{j}^{0} = c_{j} - U^{0}A_{j}$$

$$\Delta_{k}^{0} = \min_{j=1\dots6} \Delta_{j}^{0} = \Delta_{2}^{0} = -1 - 7M$$

$$\alpha_{2}^{0} = B^{-1}(0)A_{k}$$

$$\Theta_{t}^{0} = \min_{i:\Theta_{i}^{0}\geqslant 0} \Theta_{i}^{0} = \Theta_{2}^{0} = \frac{4}{7}$$

$$\Theta_{t}^{0} = \frac{b_{t}}{c_{\text{bt}}} = \frac{b_{t}}{c_{l}} = \frac{b_{2}}{c_{\text{b2}}} = \frac{b_{2}}{c_{6}}$$

t=2 - ведучий рядок

k=2 - ведучий стовпець

 $a_{tk}=a_{22}$ - ведучий елемент

l = 6

l-у змінну виводимо з базису і вводимо k-у.

2.1.3 Основна таблиця. Крок №2

c_{6}	X_{6}	b	$B_1^{-1}(1)$	$B_2^{-1}(1)$	$B_3^{-1}(1)$	A_1	α_1^1	Θ^1
0	x_3	41/7	1	-2/7	0	1	-3/7	
-1	x_2	4/7	0	1/7	0	5	5/7	4/5
0	x_5	78/7	0	2/7	1	3	31/7	78/31
		U^1	0	-1/7	0			

$$U^1 = c_6^T B^{-1}(1)$$

$$\Delta_j^1 = c_j - U^1 A_j$$

$$\Delta_k^1 = \min_{j=1\dots 6} \Delta_j^1 = \Delta_1^1 = -\frac{9}{7}$$

$$\alpha_1^1 = B^{-1}(1)A_k$$

$$\Theta_t^1 = \min_{i:\Theta_i^1 \geqslant 0} \Theta_i^1 = \Theta_2^1 = \frac{4}{5}$$

$$\Theta_t^1 = \frac{b_t}{c_{\mathrm{bt}}} = \frac{b_t}{c_l} = \frac{b_2}{c_{\mathrm{b2}}} = \frac{b_2}{c_2}$$

t=2 - ведучий рядок

k=1 - ведучий стовпець

 $a_{tk}=a_{21}$ - ведучий елемент

l=2

l-у змінну виводимо з базису і вводимо k-у.

2.1.4 Основна таблиця. Крок №3

c_6	X_{6}	b	$B_1^{-1}(2)$	$B_2^{-1}(2)$	$B_3^{-1}(2)$	A_4	α_4^2	Θ^2
0	x_3	31/5	1	-1/5	0	0	1/5	31
-2	x_1	4/5	0	1/5	0	-1	-1/5	
0	x_5	38/5	0	-3/5	1	0	3/5	38/3
		U^2	0	-2/5	0			

$$U^{2} = c_{6}^{T}B^{-1}(2)$$

$$\Delta_{j}^{2} = c_{j} - U^{2}A_{j}$$

$$\Delta_{k}^{2} = \min_{j=1\dots6} \Delta_{j}^{2} = \Delta_{4}^{2} = -3$$

$$\alpha_{4}^{2} = B^{-1}(2)A_{4}$$

$$\Theta_{t}^{2} = \min_{i:\Theta_{i}^{2} \geqslant 0} \Theta_{i}^{2} = \Theta_{3}^{2} = \frac{38}{3}$$

$$\Theta_{t}^{2} = \frac{b_{t}}{c_{\text{bt}}} = \frac{b_{t}}{c_{l}} = \frac{b_{3}}{c_{\text{b3}}} = \frac{b_{3}}{c_{5}}$$

t=3 - ведучий рядок

k=4 - ведучий стовпець

 $a_{tk}=a_{34}$ - ведучий елемент

1 = 5

l-у змінну виводимо з базису і вводимо k-у.

2.1.5 Основна таблиця. Крок №4

c_{6}	X_6	b	$B_1^{-1}(3)$	$B_2^{-1}(3)$	$B_3^{-1}(3)$	A_2	α_2^3	Θ^3
0	x_3	11/3	1	0	-1/3	2	8/3	11/8
-2	x_1	10/3	0	0	1/3	7	-2/3	
0	x_4	38/3	0	-1	5/3	-2	-31/3	
		U^3	0	0	-2/3			

$$U^3 = c_6^T B^{-1}(3)$$

$$\Delta_j^3 = c_j - U^3 A_j$$

$$\Delta_k^3 = \min_{j=1\dots 6} \Delta_j^3 = \Delta_2^3 = -\frac{7}{3}$$

$$\alpha_2^3 = B^{-1}(3)A_2$$

$$\Theta_t^3 = \min_{i:\Theta_i^3 \geqslant 0} \Theta_i^3 = \Theta_3^3 = \frac{11}{8}$$

$$\Theta_t^3 = \frac{b_t}{c_{\text{bt}}} = \frac{b_t}{c_l} = \frac{b_1}{c_{\text{b1}}} = \frac{b_1}{c_3}$$

t=1 - ведучий рядок

k=2 - ведучий стовпець

 $a_{tk}=a_{12}$ - ведучий елемент

l=3

l-у змінну виводимо з базису і вводимо k-у.

2.1.6 Основна таблиця. Крок №5

c_{6}	X_{6}	b	$B_1^{-1}(4)$	$B_2^{-1}(4)$	$B_3^{-1}(4)$
-1	x_2	11/8	3/8	0	-1/8
-2	x_1	17/4	1/4	0	1/4
0	x_4	215/8	31/8	-1	3/8
		U^4	-7/8	0	-3/8

$$U^4 = c_6^T B^{-1}(4)$$

$$\Delta_j^4 = c_j - U^4 A_j$$

$$\Delta_k^4 = \min_{j=1...6} \Delta_j^4 = \Delta_2^4 = -\frac{7}{3}$$

Оскільки $\min_{j=1...6} \Delta_j^4 \geqslant 0$, ми можемо завершити симплекс-метод

2.1.7 Відповідь

При
$$\overline{x'}=(x_1,x_2,x_3,x_4,x_5,y_1)=\left(\frac{17}{4},\frac{11}{8},0,\frac{215}{8},0,0\right)$$

функція
$$L' = -2x_1 - x_2 + 0x_3 + 0x_4 + 0x_5 + M(y_1) \rightarrow \min$$
,

отже
$$L=-2x_1-x_2 o \min$$
 , при $x_1=\frac{17}{4}, x_2=\frac{11}{8}$