Paper / Subject Code: 51123 / Digital Electronics

SE Sem III (R 2019 C scheme) "ECS" May 2023 2015/2023

Time: 3 Hrs

Marks: 80

NB: (1) Question No. 1 is Compulsory.

(2) Attempt any three questions out of remaining five.

(3) Each question carries 20 marks and sub-question carry equal marks. (4) Assume suitable data if required.

O.1 Answer any four

Ž	
a) Convert the decimal number (123)10 to their octal, hexadecimal, BCD and	5M
b) Explain characteristics of logic families	5M
c) Design and implement full adder circuit	5M
d) Write a short note on Hamming code.	5M
e) Explain the working of a two –inputs CMOS NOP, gots with post diagram	5M
f) Explain the structural VHDL description of 2 to 4 decoder in detail.	5M
Q.2 a) Draw the circuit diagram of TTL NAND gate with totem pole output and explain working with the help of a truth table. Q.2 b) Design and implement the following expression using a single 8:1multiplexer	its 10M
$F(A,B,C,D) = \sum m(0,1,3,4,8,9,15).$	10M
Q.3 a) Design and implement D FF using JK FF and T FF using SR FF	10M
Q.3 b) Explain the working of 3 bit asynchronous counter with proper timing diagram	10M
Q.4 a) What is shift register? Explain any one type of shift register. Give its application.	10M

Q.4 b) Reduce the following state table using partitioning method of state reduction. 10M								
PS	Next State		Output					
	X=0	X=1		X=1				
S0	S1	S2	0	0				
S1	S3	S4	0	0				
S2	S5	S6	0.	0	,			
S3	S0	S0	0	0				
S4	S0	S0	1	0				
S5	S0	S0	0	0				
S6	S0	S0	1	0				

Q.5 a) Implement following function using PLA.	10M
$F1 = \sum m = (0,1,3,4)$ and $F2 = \sum m = (1,2,3,4,5)$	
Q.5 b) Design 2 bit comparator and implement using logic gates.	10M
Q.6 a) Implement and explain 4 bit BCD adder using IC 7483	10M

10M Q.6 b) Write a Verilog code for 8:1 multiplexer using data flow modelling. 10M