$$\frac{Review}{lim} = \frac{\left|\frac{x}{x}-1\right|}{2x^{3}+x-1}$$

$$\lim_{x\to-\infty} \frac{-\frac{x}{x}+1}{2x^{2}+x-1}$$

$$\lim_{x\to-\infty} \frac{x^{2}\left(-1+\frac{1}{x^{2}}\right)}{x^{2}\left(-1+\frac{1}{x^{2}}\right)} = -\frac{1}{2}\left[\left(-\frac{1}{x^{2}}\right)^{2}\right]$$

$$\lim_{x\to-\infty} \frac{x^{2}\left(-1+\frac{1}{x^{2}}\right)}{x^{2}\left(-1+\frac{1}{x^{2}}\right)} = \lim_{x\to\frac{\pi}{4}} \frac{1}{x-\frac{\pi}{4}}$$

$$\lim_{x\to\frac{\pi}{4}} \frac{1}{x-\frac{\pi}{4}} = \lim_{x\to\frac{\pi}{4}} \frac{1}{x-\frac{\pi}{4}}$$

$$= \lim_{x\to\frac{\pi}{4}} \frac{1}{x-\frac{\pi}{4}}$$

$$= \lim_{x\to\frac{\pi}{4}} \frac{1}{x-\frac{\pi}{4}}$$

$$= \lim_{x\to\infty} \frac{1}{x}$$

$$\lim_{x\to\infty} \frac{1}{x}$$

lim + |x+al =?

(1)

if a > 0 then lim x+a = a if aco then lim -x-a = -ac Ru (1) and (2) By (1) and (2) and $f(0) = |a| = \lim_{x \to 0} f(x)$ we have ; lim f(x)= lim f(x)= f(0) 1 = a = aIn this case | a=1 |. lim f(x)= lim f(x)= f(0)
x+0 $1 = -\alpha = -\alpha$ In this cove | a=-1 When $\alpha = 1$ and $\alpha = -1$ f(x) is continuous. 4) Now that the equation 1+ cos x - 2 = 0 how a solution in the interval [0, T/2]. Let f(x)= 1+cosx - 2 sinx for x=0 =) f(0) = 1 + cos(0) - 2 = 1 + 1 - 1 = 1/1 > 0for $x=\frac{\pi}{2}=$ $f(\frac{\pi}{2})=1+cos(\frac{\pi}{2})-2^{sin(\frac{\pi}{2})}=1+0-2^{1}=-1/0$ f(x) is a continuous function on [0, 7] and 0 is a number between f(0)=1 and $f(\frac{\pi}{2})=-1$ there must exists $C \in (0, \frac{\pi}{2})$ such that f(c) = 0.

(2)

(5) Compare the derivatives of
$$f(x)$$
 in each part.

(a) $f(x) = \sin(e^{\sqrt{x}})$
 $f(x) = (\tan x)^{2}$, $x \in (0, \frac{\pi}{2})$ (that: Use laparithmic diff)

(a) $f'(x) = \cos(e^{\sqrt{x}})(e^{\sqrt{x}})' = \cos(e^{\sqrt{x}})e^{\sqrt{x}}$.

(b) $y = f(x) = (\tan x)^{2}$, $x \in (0, \frac{\pi}{2})$
 $lny = x \ln(t \cos x)$ differentiating implicitly;

 $\frac{1}{y} \cdot y' = 1 \cdot \ln(t \cos x) + x \cdot \frac{1}{t \cos x}$. $x \in 2x$
 $y' = (\tan x)^{2} \left(\ln(t \cos x) + \frac{x \sec^{2}x}{t \cos x} \right)$
 $y' = (\tan x)^{2} \left(\ln(t \cos x) + \frac{x \sec^{2}x}{t \cos x} \right)$

(b) Evaluable $\lim_{x \to 1^{+}} x^{1/(1-x)} \cdot (= 1^{\infty}) \ln determined from $\lim_{x \to 1^{+}} \log \frac{1}{1-x} \ln x$
 $\lim_{x \to 1^{+}} \log \frac{1}{1-x} \ln x = -1$

Thus, $\lim_{x \to 1^{+}} x^{1/(1-x)} = e^{-1} = \frac{1}{e}$
 $\lim_{x \to 1^{+}} \lim_{x \to 1^{+}} x^{1/(1-x)} = e^{-1} = \frac{1}{e}$$

(7) The volume of a right circular cyclinder is 60 cm³ and is increasing at 2 cm²/min at a time when the radius is 5 cm and is increasing at 1 cm/min. How fast is the height of the cyclinder changing at that time?

$$V = \pi r^2 h = 60 \qquad h = \frac{60}{\pi r^2}$$

$$\frac{dV}{dt} = T \left(2r \frac{dr}{dt} \cdot h + r^2 \cdot \frac{dh}{dt} \right)$$

$$r=5 \qquad \frac{dv}{dt} = 2 \qquad \frac{dh}{dt} = ?$$

$$2 = T(2.5.1.\frac{60}{\pi r^2} + 5^2.\frac{dh}{dt})$$

$$2 = Ti \left(\frac{600}{\pi \cdot 25} + 25 \frac{dh}{dt} \right)$$

$$\frac{dh}{dt} = -\frac{22}{25\pi} /$$

(P) f(x) = f(2-3f(4-5x)) and f(-1)=1 and $f(-1)=\frac{1}{\sqrt{3}}$.

Find the tougent line of f(x) pouring through x=1.

Find the temperate
$$f'(x) = f'(2-3f(4-5x))'$$

 $f'(x) = f'(2-3f(4-5x)) (-5)$

$$f'(x) = f(2-3f(4-5x))(-3f'(4-5x))(-5)$$

$$f'(x) = f'(2-3f(4-5x))(-3f'(4-5x))(-5)$$

$$m_{T} = f'(2-3f(4-3)) \left((-3)(-5)f(-1) \right)$$

$$m_{T} = f'(4) = f'(2-3f(-1)) \left((-3)(-5)f(-1) \right)$$

$$= f'(-1) \cdot 15 \cdot 1 = 1 \cdot 15$$

when x=1 = f(1) = f(2-3f(-1)) = f(-1) = 1Thus the point is (1,1) and the m7 = 5. Equation of tangent line is; (y-1) = 5(x-1)y= 5x-5+1 y=5x-4 yoinx = x + cosy find dy. de (y sinze) = de (23+cosy) Differentiating implicatly $\frac{dy}{dx} \sin x + y \cos x = 3x^2 + (-\sin y) \frac{dy}{dx}$ $\frac{dy}{dx} = \frac{3x - y \cos x}{\sin x + \sin y}$

5