Statistika 1 - definicije, trditve in izreki

Oskar Vavtar po predavanjih profesorja Jaka Smrekarja

2021/22

Kazalo

1 Zadostnost in sorodne teme

3

1 Zadostnost in sorodne teme

Definicija 1.1. Statistični model je množica dopustnih porazdelitvenih zakonov za slučajni vektor X. Označimo jo \mathscr{P} . Zanjo a priori privzamemo, da velja $\mathbb{P}_X \in \mathscr{P}$. Tu je \mathbb{P}_X porazdelitveni zakon slučajnega vektorja X, torej verjetnostna mera definirana s predpisom

$$\mathbb{P}_X(B) = \mathbb{P}(X \in B)$$

za $B \in \mathscr{B}(\mathbb{R}^n)$. Torej je \mathscr{P} množica verjetnostnih mer na $(\mathbb{R}^n, \mathscr{B}(\mathbb{R}^n))$.

Opomba. Če so X_i n.e.p., torej $X_i \stackrel{\text{NEP}}{\sim} X_1$, je \mathbb{P}_X produktna verjetnost

$$\mathbb{P}_{X} = \mathbb{P}_{X_1} \times \mathbb{P}_{X_2} \times \ldots \times \mathbb{P}_{X_n}$$
$$= \mathbb{P}_{X_1} \times \mathbb{P}_{X_1} \times \ldots \times \mathbb{P}_{X_1},$$

in \mathcal{P} lahko nadomestimo z množico dopustnih porazdelitev za X_1 .

Definicija 1.2. Model ${\mathscr P}$ je parametričen, če ga je mogoče parametrizirati kot

$$\mathscr{P} = \{ \mathbb{P}_{\vartheta} \mid \vartheta \in \Theta \},$$

kjer je Θ podmnožica nekega \mathbb{R}^d za primerno število $d.^1$ Običajno na Θ zahtevamo dodatne pogoje, kot npr. da je diskretna, ali da je odprta ali, splošneje, da je gladka podmnogoterost brez roba. Množici Θ pravimo prostor parametrov. Če model ni parametričen, je neparametričen.

Definicija 1.3 (?). Naj bo $\mathscr{P} = \{\mathbb{P}_{\vartheta} \mid \vartheta \in \Theta\}$ model, kjer je Θ neka indeksna množica, in naj bo ν neka fiksna σ -končna mera na $(\mathbb{R}^n, \mathscr{B}(\mathbb{R}^n))$. Če za $\forall \vartheta \in \Theta$ velja $\mathbb{P}_{\vartheta} \ll \nu$, pravimo, da je \mathscr{P} dominiran z ν . Tedaj model označimo z gostotami

$$f(\cdot;\vartheta) = \frac{d\mathbb{P}_{\vartheta}}{d\nu}.$$

Tedaj velja

$$\mathbb{P}_{\vartheta}(B) = \mathbb{P}_{\vartheta}(X \in B) = \int_{B} f(x; \vartheta) \, d\nu(x).$$

 $^{^{1}}$ Tedaj je vsaka dopustna porazdelitev določena z d realnoštevilskimi parametri.