Solution Section 1.5 – Introduction to Proofs

Exercise

Show that the square of an even number is an even number

Solution

We can rewrite the statement as: if n is even, then n^2 is even Assume n is even, thus n = 2k for some k.

$$n^2 = (2k)^2 = 4k^2 = 2(2k^2)$$

As n^2 is 2 times an integer, n^2 is thus even

Exercise

Prove that if *n* is an integer and $n^3 + 5$ is odd, then *n* is even

Solution

By indirect proof:

Using the contrapositive: If n is odd, then $n^3 + 5$ is even

Assume *n* is odd, let show that $n^3 + 5$ is even

n = 2k + 1 for some integer k (definition of odd numbers)

$$n^3 + 5 = (2k+1)^3 + 5 = 8k^3 + 12k^2 + 6k + 6 = 2(4k^3 + 6k^2 + 3k + 3)$$

As $n^3 + 5$ is 2 times an integer, it is even

Assume that $n^3 + 5$ is odd, let show that n is odd, and Assume p is true and q is false n = 2k + 1 for some integer k (definition of odd numbers)

$$n^3 + 5 = (2k+1)^3 + 5 = 8k^3 + 12k^2 + 6k + 6 = 2(4k^3 + 6k^2 + 3k + 3)$$

As $n^3 + 5$ is 2 times an integer, it must be even. *Contradiction*!

The indirect proof proved that the contrapositive: $\neg q \rightarrow \neg p$

If *n* is odd, then $n^3 + 5$ is even

The proof by contradiction assumed that the implication was false, and showed a contradiction

- If we assume p and $\neg q$, we can show that implies q
- The contradiction is q and $\neg q$
- Note that both used similar steps, but are different means of proving the implication

Show that $m^2 = n^2$ if and only if m = n or m = -n

Solution

Rephrased:
$$m^2 = n^2 \leftrightarrow [(m = n) \lor (m = -n)]$$
. Proof by cases!

Case 1: $(m = n) \rightarrow (m^2 = n^2)$
 $(m)^2 = m^2$ and $(n)^2 = n^2$, this case is proven.

Case 1: $(m = -n) \rightarrow (m^2 = n^2)$
 $(m)^2 = m^2$ and $(-n)^2 = n^2$, this case is proven.

 $m^2 = n^2 \leftrightarrow [(m = n) \lor (m = -n)]$
 $m^2 - n^2 = n^2 - n^2$
 $m^2 - n^2 = 0 \Rightarrow (m - n)(m + n) = 0$
 $m - n = 0$ or $m + n = 0$
 $m = n$ or $m = -n$

Exercise

Use a direct proof to show that the sum of two odd integers is even.

Solution

Let m and n be two odd integers. Then there exists a and b such that n = 2a + 1 and m = 2b + 1.

$$n+m = 2a+1+2b+1$$

= 2a+2b+2
= 2(a+b+1)

Since this represents n+m as 2 times a+b+1, we conclude that n+m is even, as desired.

Exercise

Use a direct proof to show that the sum of two even integers is even.

Solution

Let m and n be two even integers. Then there exists a and b such that n = 2a and m = 2b.

$$n + m = 2a + 2b$$
$$= 2(a+b)$$

Since this represents n+m as 2 times a+b, we conclude that n+m is even, as desired.

Use a proof by contradiction to prove that the sum of an irrational number and a rational number is irrational.

Solution

Let r is a rational number an s is irrational number then t = r + s is an irrational.

Suppose that t is rational, then if $t = \frac{a}{b}$ and $r = \frac{c}{d}$ where a, b, c, and d are integers with $b \neq 0$ and

$$d \neq 0$$
. Then, $t + (-r) = \frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$ which is rational.

t + (-r) = r + s - r = s, forcing that s is rational. This contradicts the hypothesis that s is irrational.

Therefore the assumption that t was rational was incorrect, and we conclude that t is irrational.

Exercise

Prove or disprove that the product of two irrational numbers is irrational.

Solution

Let $\sqrt{2}$ be the irrational number,. If we take the product of the irrational number $\sqrt{2}$ and the irrational number $\sqrt{2}$, then we obtain the rational number 2. This counterexample refutes the proposition.

Exercise

Prove that if *x* is irrational, then $\frac{1}{x}$ is irrational.

<u>Solution</u>

The contrapositive is: if $\frac{1}{x}$ is rational, then x is rational.

Since $\frac{1}{x}$ exists, then $x \neq 0$. If $\frac{1}{x}$ is rational then by definition $\frac{1}{x} = \frac{q}{p}$ and $p \neq 0$. Since $\frac{1}{x}$ can't be zero, then we would have the contradiction $1 = x \cdot 0$.

Exercise

Prove that if x is rational and $x \neq 0$, then $\frac{1}{x}$ is rational.

Solution

if x is rational and $x \neq 0$, then by definition we can write $x = \frac{p}{q}$, where p and q are nonzero

integers. Since $\frac{1}{x} = \frac{q}{p}$ and $p \neq 0$, we can conclude that $\frac{1}{x}$ is rational.

Prove the proposition P(0), where P(n) is the proposition "If n is a positive integer greater than 1, then $n^2 > n$." What kind of proof did you use?

Solution

The proposition that we are trying to prove is If 0 is a positive integer gr2ater than 1, then $0^2 = 0$. Our proof is a vacuous one.

Since the hypothesis is false, the implication is automatically true.

Exercise

Let P(n) be the proposition "If a and b are positive real numbers, then $(a+b)^n \ge a^n + b^n$." Prove that P(1) is true. What kind of proof did you use?

Solution

Our proof is a direct one. By the definition of exponential, any real number to the power 1 is itself. Hence $(a+b)^1 = a+b = a^1+b^1$. Finally, by the addition rule, we can conclude from $(a+b)^1 = a^1+b^1$ that $(a+b)^1 \ge a^1+b^1$.

Exercise

Show that these statements about the integer x are equivalent:

i)
$$3x + 2$$
 is even ii) $x + 5$ is odd iii) x^2 is even

Solution

If x is even, then x = 2k for some integer k.

$$3x + 2 = 3 \cdot 2k + 2 = 6k + 2 = 2(3k + 1)$$
 which is even.

$$x+5=2k+4+1=2(k+2)+1$$
, so $x+5$ is odd

$$x^{2} = (2k)^{2} = 4k^{2} = 2(2k^{2})$$
, so x^{2} is odd

If x is odd, then x = 2k + 1 for some integer k.

$$3x + 2 = 3 \cdot (2k + 1) + 2 = 6k + 3 + 2 = 6k + 4 + 1 = 2(3k + 2) + 1$$
 which is odd *not* even.

$$x+5=2k+1+5=2k+6=2(k+3)$$
, so $x+5$ is even not odd.

$$x^{2} = (2k+1)^{2} = 4k^{2} + 4k + 1 = 2(2k^{2} + 2k) + 1$$
, so x^{2} is odd

Show that these statements about the real number *x* are equivalent:

i) x is irrational *ii*)
$$3x + 2$$
 is irrational *iii*) $\frac{x}{2}$ is irrational

Solution

The simplest way is to approach in indirect proof.

$$i) \rightarrow ii$$

Suppose that 3x + 2 is rational, that $3x + 2 = \frac{p}{q}$ for some integers p and q with $q \neq 0$. Then

$$3x = \frac{p}{q} - 2 = \frac{p - 2q}{q}$$
 \Rightarrow $x = \frac{p - 2q}{3q}$ where $3q \neq 0$. This shows that x is rational.

Suppose that x is rational, that $x = \frac{p}{q}$ for some integers p and q with $q \neq 0$. Then

$$3x + 2 = 3\frac{p}{q} - 2 = \frac{3p - 2q}{q}$$
 where $q \ne 0$. This shows that $3x + 2$ is rational.

$$i) \rightarrow iii)$$

Suppose that $\frac{x}{2}$ is rational, that $\frac{x}{2} = \frac{p}{q}$ for some integers p and q with $q \neq 0$. Then $x = \frac{2p}{q}$ where $q \neq 0$. This shows that x is rational.

Suppose that x is rational, that $x = \frac{p}{q}$ for some integers p and q with $q \ne 0$. Then $\frac{x}{2} = \frac{p}{2q}$ where $2q \ne 0$. This shows that $\frac{x}{2}$ is rational.

Exercise

Prove that at least one of the real numbers $a_1, a_2, ..., a_n$ is greater than or equal to the average of these numbers. What kind of proof did you use?

Solution

Using proof of contradiction, then suppose all the number a_1 , a_2 , ..., a_n are less than their

average.
$$a_1 + a_2 + \dots + a_n < nA$$

By definition:
$$A = \frac{a_1 + a_2 + \dots + a_n}{n}$$

The two displayed formulas clearly contradict each other, however: they imply that nA < nA. Thus our assumption must have been incorrect, and we conclude that at least one of the numbers a_1 is greater than or equal to their average.

34