

Machine Learning with Edge Systems

Hong-Linh Truong
Department of Computer Science
linh.truong@aalto.fi, https://rdsea.github.io

Our focus in this course

Content

- Edge computing
- Why would ML in the edge be our focus?
- Some open areas
 - MLOps for edge systems
 - Transfer learning
 - Federated learning
 - Elastic serving/inferencing

IoT-Edge-Cloud

Edge computing

- Edge computing paradigm focuses on distributed computing at the edge
 - "Edge" is an abstraction
 - Distributed large number of low-end devices as well as very limited high-end devices
 - Common technologies like in the cloud and specific ones
 - *E.g.*, *virtualized machines, message brokers, storage, Web services*
- Computation/Analytics at the edge
 - Where data is generated, close to the data sources
 - Next to IoT devices and sensing equipment, E.g., in the shopping centre, in the car
 - Near real-time processing is needed

Predictive maintenance

Predictive maintenance

Industrial Internet of Things

Figures source: http://www.windpowerengineering.com/design/electrical/controls/wind-farm-networks/talking-turbines-internet-things/

Video analytics at the edge

Use Case 3: Video Analytics

Figure 4: Example of video analytics

Figure source:

https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf

Why do we have to support ML at the edge?

Why do we have to support machine learning/big data in the edge

- Close to data sources → "data locality" benefits
 - Security & privacy
 - Performance
 - Customization
- Many applications (Al is specific application anyway)
 - Inferencing/classification in mobile devices
 - Realtime ML (autonomous cars, speech recognition, fraud detection)
 - Manufacturing (Industrial Internet of Things)
 - Anomaly detection

What do we need to consider when supporting ML in the edge?

- Network problems
 - Low latency, low-bandwidth, unreliable connectivity
- Computation capabilities
 - Constrained power, a lot of specific chips and accelerators
 - Limited memory
- Storage is not enough for big data
- Data
 - Opportunistic data, unlabeled data, time series data
 - Streaming data

Imagine you work on ML in the edge systems (and you know ML in clouds already)

Pervasive embedded Edge devices

- Raspberry PI4
- Google Coral
- Jetson Nano
- Xilinx
- A huge number of MCUs (MicroController Units)

Software systems for ML in the edge

What are key features for ML runtime and programming frameworks?

 What are key features for resource management for running ML?

Suitable ML and Runtime for the edge: Key requirements

- Energy consumption
- Resource constraints
 - less computation capabilities
- Latency and uncertainty
- Interfaces with different networks capabilities
- Support accelerators
 - E.g., FPGA, AI Accelerators (e.g. Intel® Movidius Myriad X VPU)
- Trade-offs between generic versus specific features

Examples of ML frameworks and Runtime for the edge

- TF-lite
 - https://www.tensorflow.org/lite
- https://microsoft.github.io/ELL/
- https://github.com/Microsoft/EdgeML
- uTensor: https://github.com/uTensor/uTensor
- Androi NN
- CoreML 3
- PyTorch mobile
- Snapdragon Neural Processing Engine SDK
 - https://developer.qualcomm.com/docs/snpe/overview.html

Changes in MLOps

MLOps (ML DevOps)

- DevOps principles for ML
- In ML engineering processes: key artefacts are ML models, data and runtime libs
- New areas, still a lot of ongoing research work

Changes in ML with edge systems

- DevOps and DataOps centered around models and data
- Optimization and training activities
- Tests and benchmarks
- Monitoring

Example of Google PL

https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

Is it the same in the edge?

What would be MLOps for ML in the edge?

MLOps in edge systems

Training in cloud and inference in the edge

https://blogs.gartner.com/paul-debeasi/files/2019/01/Train-versus-Inference.png

Can you guess some issues that you need to deal with in the MLOps for the edge?

Examples

https://developer.qualcomm.com/docs/snpe/overview.html

Selected problems: transfer learning

Transfer learning

- Repurpose a model trained for a task for another task
- Basically it is an optimization of an existing model for a new task

Transfer learning for the edge

- Convert typical models to edge models
- Need model selection, reuse and model retraining
- Combine with other optimization techniques

Selected problems: model selection and conversion

- Model management and selection
 - Precision and time tradeoffs with computational requirements
 - Work with accelerators
- Conversion
 - A model can be supported by different frameworks
- How will these issues affect Robustness and Reliability?

Selected problems: model optimization

Pruning

 Prune graphs for training, remove features in ML models which are not significant

Quantization

- Reduce precision representation, storage, bandwidth
- Conditional computation/Regularization
 - Activate certain units of the model
- How will these issues affect Robustness, Reliability and Elasticity?

Selected problems: federated training with edges

Machine learning is decentralized with a distributed set of devices holding data and carrying out (sub) training/inferencing

- What about Reliability and Resilience?
 - Consensus in updates, secured aggregation protocols, dynamicity and elasticity

Selected problems: ML Serving

ML Serving (and R3E)

Which types of dynamic service models we could have?

How to distribute tasks in model serving?

How to partition ML tasks in both edge and cloud?

Study log

- No study log but read papers to start working on ML for edge systems
- You can pickup some points mentioned as the topic for your individual project
 - Or incorporate some ideas into your individual project
- We expect ML with edge systems will be the main focuses soon in our advanced software systems course!
 - Good areas for master theses/research projects.

Thanks!

Hong-Linh Truong
Department of Computer Science

rdsea.github.io

