EDS 223: Geospatial Analysis & Remote Sensing Week 9

Image classification

bands

classes/categories

Image classification

bands

classes/categories

reflectance spectra

finite number of classes

Source: USGS

Source: USGS

Classification scales

Level I: Global

AVHRR

MODIS

resolution: 250 m to 1.1 km

Level II: Continental

AVHRR

MODIS

Landsat Multispectral Scanner Landsat Thematic Mapper

resolution: 80 m to 1.1 km

Level III: Biome

Landsat Multispectral Scanner Landsat Thematic Mapper Plus Synthetic Aperture Radar

resolution: 30 m to 80 m

Level IV: Region

Landsat Thematic Mapper SPOT

High Altitude Aerial Photography Synthetic Aperture Radar resolution: 3 to 30 m

Level V: Plot

Stereoscopic Aerial Photography **IKONOS**

QuickBird resolution: 0.25 to 3 m

Level VI: In situ Measurement

Surface Measurements and Observations

Source: Jensen 2007

bands

classes/categories

reflectance spectra

finite number of classes

bands

reflectance spectra

finite number of classes

or

Land cover	Land use

Land cover	Land use
Refers to the type of natural and artificial materials present on a landscape	Refers to the human use of landscapes

Land use
Refers to the human use of landscapes
E.g. protected area, industrial, residential

Land cover	Land use
Refers to the type of natural and artificial materials present on a landscape	Refers to the human use of landscapes
E.g. forest, sand, water, cement	E.g. protected area, industrial, residential
Able to observe	Abstract/intangible, requires deductive reasoning

Land cover

Land use

Refers to the type of natural and artificial materials present on a landscape

E.g. forest, sand, water, cement

Able to observe

Refers to the human use of landscapes

E.g. protected area, industrial, residential

Abstract/intangible, requires deductive reasoning

bands

reflectance spectra

finite number of classes

Geographic space Feature space Points are pixels water Band 2 forest soil Band 1

Geographic space Feature space Points are pixels water Band 2 forest soil Band 1

Geographic space Feature space Points are pixels water Band 2 forest soil Band 1

Geographic space

Lots of ways to assign pixels to groups!

Feature space

• Pick a number of groups

or

or

Pick a number of groups

Make a guess about where those groups are in feature space

• Pick a number of groups

or

or

 Make a guess about where those groups are in feature space

Band 2

- Make a guess about where those groups are in feature space
- Assign each point to the $^{\sim}$ closest group

- Make a guess about where those groups are in feature space
- Assign each point to the $^{\sim}$ closest group

- Make a guess about where those groups are in feature space
- Assign each point to the $^{\circ}$ closest group
- Move group centers to better represent groups

Pick a number of groups

or

or

- Make a guess about where those groups are in feature space
- Assign each point to the
 Closest group
 ⊆
- Move group centers to better represent groups
 - Use the mean!

Pick a number of groups

or

or

- Make a guess about where those groups are in feature space
- Assign each point to the
 Closest group
 ⊆
- Move group centers to better represent groups
 - Use the mean!

- Make a guess about where those groups are in feature space
- Assign each point to the $^{\circ}$ closest group
- Move group centers to better represent groups
 - Use the mean!

- Make a guess about where those groups are in feature space
- Assign each point to the $^{\circ}$ closest group
- Move group centers to better represent groups
 - Use the mean!
- Update groups

Pick a number of groups

or

or

- Make a guess about where those groups are in feature space
- Assign each point to the
 Closest group ⊆
- Move group centers to better represent groups
 - Use the mean!
- Update groups
- Keep going until distances are minimized

- Make a quess about where those groups are in feature space
- Assign each point to the $^{\circ}$ closest group
- Move group centers to better represent groups
 - Use the mean!
- Update groups
- Keep going until distances are minimized
- Figure out what the groups are

k-means clustering

- Make a guess about where those groups are in feature space
- Assign each point to the $^{\circ}$ closest group
- Move group centers to better represent groups
 - Use the mean!
- Update groups
- Keep going until distances are minimized
- Figure out what the groups are

Pick a number of groups

- Make a quess about where those groups are in feature space
- Assign each point to the $^{\circ}$ closest group
- Move group centers to better represent groups
 - Use the mean!
- Update groups
- Keep going until distances are minimized
- Figure out what the groups are

Geographic space

Feature space

Pick a number of groups

- Make a guess about where those groups are in feature space
- Assign each point to the $^{\circ}$ closest group
- Move group centers to better represent groups
 - Use the mean!
- Update groups
- Keep going until distances are minimized
- Figure out what the groups are

Pick a number of groups

- Make a quess about where those groups are in feature space
- Assign each point to the ablaclosest group
- Move group centers to better represent groups Use the mean!
- Update groups
- Keep going until distances are minimized
- Figure out what the groups are

Pros

- Only needed remote sensing data
- Explored how similar different areas are

- Clusters might not always work out this well
- Number of groups was arbitrary
- Starting guess on clusters might impact results
- Needed to figure out what the clusters meant

Pick a number of groups

- Make a quess about where those groups are in feature space
- Assign each point to the ablaclosest group
- Move group centers to better represent groups Use the mean!
- Update groups
- Keep going until distances are minimized
- Figure out what the groups are

Pros

- Only needed remote sensing data
- Explored how similar different areas are

- Clusters might not always work out this well
- Number of groups was arbitrary
- Starting guess on clusters might impact results
- Needed to figure out what the clusters meant

Pick a number of groups

- Make a quess about where those groups are in feature space
- Assign each point to the ablaclosest group
- Move group centers to better represent groups Use the mean!
- Update groups
- Keep going until distances are minimized
- Figure out what the groups are

Pros

- Only needed remote sensing data
- Explored how similar different areas are

- Clusters might not always work out this well
- Number of groups was arbitrary
- Starting guess on clusters might impact results
- Needed to figure out what the clusters meant

Image classification

Image classification

Image classification

 Find means for each group based on known points

- Find means for each group based on known points
- Assign each point to the closest group

Minimum distance to mean algorithm

- Find means for each group based on known points
- Assign each point to the closest group

Pros

fast/easy

Cons

 only uses means, not other statistical differences between classes

Minimum distance to mean algorithm

- Find means for each group based on known points
- Assign each point to the closest group

 Find means and standard deviations for each group based on known points

 Find means and standard deviations for each group based on known points

- Find means and standard deviations for each group based on known points
- Assign points to groups

Parallelipiped

- Find means and standard deviations for each group based on known points
- Assign points to groups

Pros

- fast/easy
- More realistic than just using the mean

- Unclassified pixels
- Overlapping classes

Unknown pixels:

Known pixels:

Unknown pixels:

Known pixels:

Unknown pixels:

minimum distance to mean

Known pixels:

Unknown pixels:

parallelipiped

Known pixels:

Unknown pixels:

Known pixels:

Unknown pixels:

Band 1

Known pixels:

Unknown pixels:

Band 1

Known pixels:

Unknown pixels:

Known pixels:

Unknown pixels:

Band 1

Known pixels:

Unknown pixels:

Band 1

Known pixels:

Unknown pixels:

Known pixels:

Unknown pixels:

Maximum likelihood

Known pixels:

Unknown pixels:

maximum likelihood

Maximum likelihood

Maximum likelihood

(un)supervised classification

(un)supervised classification

Classification approaches

Consupervised	Supervised

Consupervised	Supervised
 Algorithm identifies groups of pixels with similar spectra User assigns meaning to resulting classes 	 Algorithm identifies groups of pixels with similar spectra User provides examples for desired groupings

Consupervised Unsupervised

- Algorithm identifies groups of pixels with similar spectra
- User assigns meaning to resulting classes
- Bulk of analyst's work comes after the classification process

- Algorithm identifies groups of pixels with similar spectra
- User provides examples for desired groupings
- Bulk of analyst's work comes before the classification process

Unsupervised

- Algorithm identifies groups of pixels with similar spectra
- User assigns meaning to resulting classes
- Bulk of analyst's work comes after the classification process
- Pros:
 - No prior knowledge of area required
 - Human error is minimized
 - Relatively fast/easy
 - Unique spectral classes are produced
- Cons:
 - Spectral classes may not represent features on the ground
 - Does not consider spatial relationships
 - o Can be time-consuming to interpret
 - Spectral properties may vary over time/images

- Algorithm identifies groups of pixels with similar spectra
- User provides examples for desired groupings
- Bulk of analyst's work comes before the classification process

Consupervised Unsupervised

- Algorithm identifies groups of pixels with similar spectra
- User assigns meaning to resulting classes
- Bulk of analyst's work comes after the classification process
- Pros:
 - No prior knowledge of area required
 - Human error is minimized
 - Relatively fast/easy
 - Unique spectral classes are produced
- Cons:
 - Spectral classes may not represent features on the ground
 - Does not consider spatial relationships
 - Can be time-consuming to interpret
 - Spectral properties may vary over time/images

- Algorithm identifies groups of pixels with similar spectra
- User provides examples for desired groupings
- Bulk of analyst's work comes before the classification process
- Pros:
 - Spectral classes represent features on the ground
 - Training areas are reusable
- Cons:
 - Information classes may not match spectral classes
 - Difficulty and coast of selecting training sites

Consupervised Unsupervised

- Algorithm identifies groups of pixels with similar spectra
- User assigns meaning to resulting classes
- Bulk of analyst's work comes after the classification process
- Pros:
 - No prior knowledge of area required
 - Human error is minimized
 - Relatively fast/easy
 - Unique spectral classes are produced
- Cons:
 - Spectral classes may not represent features on the ground
 - Does not consider spatial relationships
 - o Can be time-consuming to interpret
 - Spectral properties may vary over time/images

- Algorithm identifies groups of pixels with similar spectra
- User provides examples for desired groupings
- Bulk of analyst's work comes before the classification process
- Pros:
 - Spectral classes represent features on the ground
 - Training areas are reusable
- Cons:
 - Information classes may not match spectral classes
 - Difficulty and coast of selecting training sites

Maximum likelihood

Known pixels:

Unknown pixels:

maximum likelihood

Supervised classification: training data

Supervised classification: training data

Does the resolution match your scheme? (spatial/temporal/spectral/radiometric)

Supervised classification: training data

Does the resolution match your scheme? (spatial/temporal/spectral/radiometric)

Does your training data capture the heterogeneity of each class?

How accurate is this map?

How accurate is this map?

Our guess based on remote sensing data

	forest	soil	water
forest			
soil			
water			

How accurate is this map?

Our guess based on remote sensing data

	forest	soil	water
forest	25	0	0
soil			
water			

How accurate is this map?

Our guess based on remote sensing data

	forest	soil	water
forest	25	0	0
soil	0	12	0
water	0	0	18

How accurate is this map?

Our guess based on remote sensing data

	forest	soil	water
forest	25	0	0
soil	0	12	0
water	0	0	18

"True answer"

Accuracy = sum of correct matches \div total number of cells

How accurate is this map?

Our guess based on remote sensing data

	forest	soil	water
forest	25	0	0
soil	0	12	0
water	0	0	18

"True answer"

Accuracy = sum of correct matches ÷ total number of cells

√ training:

√) training:

(X)testing:

Our guess based on remote sensing data

	forest	soil	water
forest			
soil			
water			

Our guess based on remote sensing data

testing:

	forest	soil	water
forest			
soil			
water			

Cross-validation

Our guess based on remote sensing data

testing:

	forest	soil	water
forest			
soil			
water			

Big ask!

ESCIs due December 2