SAPHIRE : 233 - Conversion d'énergie EXAMEN : Partie Modélisation Electro-Magnétique

La durée totale de l'examen est de 3 heures. La durée de composition de cette partie est de 1,5 heure. Aucun document autorisé.

Modélisation d'un transformateur d'alimentation

1 Questions de cours

Question 1 : Donner la définition d'une inductance et d'une mutuelle inductance (vous pouvez vous aider d'un schéma).

Question 2 : Décrivez une manière d'obtenir l'expression du couple électromagnétique dans une machine électrique.

2 Modélisation magnétique d'une machine à courant continu

Nous allons étudier la machine à courant continu élémentaire décrite sur la figure 1. Les deux bobines du stator sont en série, la stator possédant N_S spires parcourues par un courant continu I_S . Le rotor possède N_R spires parcourues par un courant i_R . La longueur totale des lignes de champ magnétique dans le stator est notée L_{CMS} et dans le rotor L_{CMSR} . La dimension de la MCC dans l'axe perpendiculaire au plan est notée L_A . L'angle entre l'axe du bobinage stator et du bobinage rotor est noté θ .

Question 3: Tracer les lignes de champ magnétique pour un courant I_S constant et un courant $i_R = 0$ (penser à définir le contour d'Ampère) pour $\theta = 0$ et $\theta = \frac{\pi}{2}$.

Question 4: Même question pour $I_S = 0$ et $i_R = I_R$ constant.

Dans la suite on va considérer que le stator et le rotor sont composés de Fer-Silicium avec une utilisation linéaire et une perméabilité relative μ_{fer} .

Toutes les variations en fonction de θ seront prises de forme sinusoïdale.

Dans la suite on va considérer que le flux total Φ_S s'écrit :

$$\Phi_S = L_S I_S + M_{SR} i_R$$

et le flux total Φ_R s'écrit :

$$\Phi_R = M_{RS}I_S + L_Ri_R$$

Question 5 : Quelles sont les grandeurs entre L_S , L_R , M_{SR} et M_{RS} qui dépendent de θ ? Dans la suite on négligera la variation de l'inductance du rotor en fonction de θ .

Question 6 : Que peut on dire sur la relation entre M_{SR} et M_{RS} ?

Question 7 : Exprimer M_{SR} en fonction de θ (la valeur maximale est notée M_0).

3 Modélisation électrique d'une machine à courant continu

Dans la suite on considère que le stator possède une résistance totale de valeur R_S et le rotor, R_R .

Question 8 : Ecrire l'équation des tensions au stator V_S et au rotor v_R .

Question 9 : A partir d'un bilan de puissances, exprimer la puissance électromécanique en fonction des différents éléments (attention que ce bilan de puissance se fait avec des courants considérés constants).

Question 10 : Que vaut cette puissance en fonction de la vitesse Ω et du couple Γ ?

ENS Paris Saclay SAPHIRE

Question 11 : Représenter graphiquement le couple/ i_R pour un I_S constant. Quelle forme doit avoir i_R pour avoir un couple de valeur moyenne positive.

Question 12 : Montrer qu'à partir d'un courant i_R alternatif de forme carrée, d'amplitude I_R , le couple s'écrit $\Gamma = kI_R$. Préciser les instants de commutation.

Question 13 : Comment est réalisée technologiquement la commutation des courants?

Question 14 : Comment diminuer l'ondulation du couple de la MCC?

ENS Paris Saclay SAPHIRE

FIGURE 1 – Schéma 2D d'une machine à courant continu. La dimension dans l'axe perpendiculaire au plan est noté L_A .