Please check the examination details bel	ow before ente	ering your candidate information
Candidate surname		Other names
Centre Number Candidate N	umber	
Pearson Edexcel Inter	nation	al Advanced Level
Time 1 hour 30 minutes	Paper reference	WCH11/01
Chemistry		
International Advanced Su	ubsidiar	v/Advanced Level
UNIT 1: Structure, Bondir	,	·
1	iy allu li	
Organic Chemistry		J
You must have:		(T. 114.1)
Scientific calculator, ruler		Total Marks
Scientific calculator, fuler		

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P71886A ©2023 Pearson Education Ltd.

SECTION A

Answer ALL the questions in this section.

You should aim to spend no more than 20 minutes on this section.

For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 Which compound contains 2.35×10^{22} molecules in 2.50 g?

 M_r values: CO = 28.0 CO₂ = 44.0 SO₂ = 64.1 SO₃ = 80.1]

[Avogadro constant $L = 6.02 \times 10^{23} \,\mathrm{mol}^{-1}$

- B CO₂
- C SO₂
- \square **D** SO₃

(Total for Question 1 = 1 mark)

What is the concentration of hydroxide ions in a solution containing 5.00 g of Ba(OH)₂ in 250 cm³?

$$[M_r \text{ Ba(OH)}_2 = 171.3]$$

- A 0.0292 mol dm⁻³
- **B** 0.0584 mol dm⁻³
- 0.2335 mol dm⁻³

(Total for Question 2 = 1 mark)

3 A sample of 15.0 g of vanadium reacted completely with 7.07 g of oxygen.

What is the formula of the oxide?

[
$$A_r$$
 values: $V = 50.9$ $O = 16.0$]

- A VO
- \square **B** V_2O_3
- \square C VO₂
- \square **D** V_2O_5

(Total for Question 3 = 1 mark)

4 What is the pressure when 5.00 mol of nitrogen in a container with a volume of 1.50 m³ is heated to 500 K?

$$[pV = nRT \quad R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}]$$

- B 6290 Pa
- ☑ D 31 200 Pa

(Total for Question 4 = 1 mark)

5 Which is the equation for the reaction of magnesium chloride solution with sodium hydroxide solution?

- \square **A** Mg⁺(aq) + OH⁻(aq) \rightarrow MgOH(s)
- \square **B** Mg²⁺(aq) + 2OH⁻(aq) \rightarrow Mg(OH)₂(s)
- \square **C** MgCl(aq) + NaOH(aq) \rightarrow MgOH(aq) + NaCl(aq)
- \square **D** MgCl₂(aq) + 2NaOH(aq) \rightarrow Mg(OH)₂(aq) + 2NaCl(aq)

(Total for Question 5 = 1 mark)

6 How many neutrons and electrons are there in $^{190}_{79}$ Au²⁺?

		Neutrons	Electrons
X	Α	111	77
X	В	111	81
X	C	190	79
X	D	190	77

(Total for Question 6 = 1 mark)

7 The mass spectrum of an element is shown.

What is the relative atomic mass of this element?

- A 90.0
- **■ B** 90.9
- **■ C** 91.2
- **D** 92.8

(Total for Question 7 = 1 mark)

- **8** Which is the equation for the **second** ionisation of element J?
 - \square **A** $J(g) \rightarrow J^{2+}(g) + 2e^{-}$
 - \square **B** $J^+(g) \rightarrow J^{2+}(g) + e^-$
 - \square **C** $J^+(g) \rightarrow J^{3+}(g) + 2e^-$
 - \square **D** $J^{2+}(g) \rightarrow J^{3+}(g) + e^-$

(Total for Question 8 = 1 mark)

- **9** Which is a reason why fluorine has a higher first ionisation energy than oxygen?
 - A a fluorine atom has fewer unpaired electrons
 - **B** a fluorine atom has fewer shells of electrons
 - **C** a fluorine atom has more electrons
 - **D** a fluorine atom has more protons

(Total for Question 9 = 1 mark)

- **10** Which is the electronic configuration of chromium?
 - \square **A** [Ar] $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$ $\uparrow \downarrow \uparrow \downarrow$
 - \square **B** [Ar] \uparrow \uparrow \uparrow \uparrow
 - C [Ar] ↑ ↑ ↑ ↑ ↑
 - \square **D** [Ar] \uparrow \uparrow \uparrow \uparrow

(Total for Question 10 = 1 mark)

11			combination of ions would be expected to form the compound with the t melting temperature?
	×	Α	Li ⁺ and Br ⁻
	×	В	Mg^{2+} and O^{2-}
	×	C	Sr^{2+} and S^{2-}
	X	D	Rb ⁺ and Cl [−]
			(Total for Question 11 = 1 mark)
12	W/bi	ich i	s a use of graphene based on its electrical properties?
	×VIII		drill tips
	X		pencils
	X		touch screens
	X		
		D	body armour
			(Total for Question 12 = 1 mark)
13	Whi	ich r	molecule has the largest bond angle?
	X	A	BCI ₃
	X	В	CO ₂
	X	C	H ₂ O
	X	D	NH_3
			(Total for Question 13 = 1 mark)
14	Whi	ich r	molecule is polar?
	X	Α	1,1-dibromopropane
	X	В	E-1,2-dibromoethene
	×	c	hexafluoroethane
	×	D	tetrachloromethane
			(Total for Question 14 = 1 mark)

15 Prop-2-en-1-ol is flammable, toxic and an environmental hazard.

Which hazard symbols should be shown on its container?

×

(Total for Question 15 = 1 mark)

16 Which is the skeletal structure for 3,4-dichloro-2,2-dimethylpentane?

(Total for Question 16 = 1 mark)

17 What is the name of a series such as the one shown?

- A addition
- B heterolytic
- C homologous
- **D** homolytic

(Total for Question 17 = 1 mark)

- **18** Which is **not** a step in the reaction of chlorine with propane in ultraviolet radiation?
 - \square A $C_3H_7^{\bullet}$ + CI^{\bullet} \rightarrow C_3H_7CI
 - \blacksquare **B** $C_3H_7^{\bullet} + C_3H_7^{\bullet} \rightarrow C_6H_{14}$

 - \square **D** $C_3H_7^{\bullet}$ + HCI \rightarrow C_3H_7CI + H $^{\bullet}$

(Total for Question 18 = 1 mark)

- 19 Why does free radical substitution have limited use in industrial chemistry?
 - A the reactions only occur in the upper atmosphere
 - **B** initiation requires ultraviolet radiation
 - ☑ C further substitution products are formed
 - **D** termination reactions produce unwanted products

(Total for Question 19 = 1 mark)

- **20** Which molecule can exist as *E-Z* isomers?
 - A 2-chloro-4-ethylhex-3-ene
 - **B** 3-chloro-2-methylhex-2-ene
 - **C** 2,3-dimethylhex-2-ene
 - **D** 2,5-dichlorohex-3-ene

(Total for Question 20 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

21 The structure of a compound **X** is shown. **X** is present in petrol.

(a) (i) Give the molecular formula and IUPAC name for X.

(2)

(ii) Name the industrial process used to produce **X** from the straight-chain isomer.

(1)

- (b) Heptane is also present in petrol.
 - (i) Write an equation for the **complete** combustion of heptane. Include state symbols.

(2)

(ii) Identify, by name or formula, a pollutant that may result from the **incomplete** combustion of heptane.

(1)

	(Total for Question 21 = 8 mai	ks)
		(-)
	Give two environmental benefits of using electric cars. Justify your answers.	(2)
(c)	Recently, sales of electric cars have increased.	

- **22** This question is about propene and some related compounds.
 - (a) Some reactions of propene are shown.

(i) Identify, by name or formula, the catalyst needed for Reaction 1.

(1)

(ii) Name product A.

(1)

(iii) Identify, by name or formula, the substances needed for Reaction 2.

(2)

(iv) Draw the $\mbox{\bf displayed}$ formula of product B.

(1)

(b)	(i)	Propene can undergo addition polymerisation.	
		Write the equation for the polymerisation of propene.	
			(2)
	(ii)	Over 70 million tonnes of poly(propene) are produced each year.	
		State two problems with the disposal of polymers such as poly(propene).	
			(2)

- (c) Hydrogen bromide reacts with 3-bromopropene to form 1,2-dibromopropane as the major product.
 - (i) Complete the mechanism to show this reaction. Include curly arrows, and any relevant lone pairs and dipoles.

(4)

(ii) Explain why 1,2-dibromopropane is the major product instead of 1,3-dibromopropane.

(2)

(Total for Question 22 = 15 marks)

- **23** Oxygen is vital in the treatment of respiratory diseases. Oxygen is traditionally produced by the fractional distillation of air.
 - (a) Suggest **one** difference between the fractional distillation of air and of crude oil.

(1)

(b) Hospital patients sometimes need to breathe air with a higher than normal concentration of oxygen.

The oxygen concentration can be increased to 90% by passing dry air through a tube filled with zeolite which adsorbs most of the nitrogen.

(i) Dry air contains 21.0 % oxygen by volume. The average human breath has a volume of 500 cm³.

Calculate the volume of air, in dm³, that would have to pass over the zeolite to obtain 500 cm³ of gas containing 90 % oxygen by volume.

(2)

(ii) Nitrogen molecules bind to zeolite using their outer electrons.

Draw a dot-and-cross diagram of the bonding in a nitrogen molecule. Show outer electrons only.

(2)

- (c) Liquid oxygen is transported across the world. Liquid oxygen has a density of 1140 g dm⁻³.
 - (i) Calculate the volume of gas, **in m³**, measured at room temperature and pressure (r.t.p.) that can be obtained from a bottle containing 13.9 dm³ of liquid oxygen.

[Molar volume at r.t.p. = $24.0 \,\mathrm{dm^3 \,mol^{-1}}$]

(4)

(ii) The total mass of the bottle is 80.0 kg when it is full of oxygen.

Calculate the mass of an empty bottle, using your working from (c)(i). Give your answer to an appropriate number of significant figures.

(1)

(iii) Explain why the container needs to have such a large mass.

(2)

(Total for Question 23 = 12 marks)

24 The radii of ions of some successive elements in the Periodic Table are shown.

lon	N ³⁻	O ²⁻	F-	Na⁺	Mg ²⁺	Al ³⁺
Ionic radius / pm	171	140	133	102		54

(a) (i) Plot a graph of the data.

(2)

(ii) Predict the radius of the magnesium ion using a straight line of best fit on your graph.	(2)
(iii) Explain the trend in the ionic radii from the nitride ion to the aluminium ion.	(3)
(b) Sodium and fluorine react to form a compound.(i) State the structure and bonding of sodium fluoride.	
	(1)

(ii) Explain how the electrical conductivity of sodiutor for the existence of ions.	um fluoride provides evidence (3)
	(3)
(iii) Explain why the fluoride ion is difficult to polar	ise. (2)
	(2)
	Total for Question 24 = 13 marks)

- **25** This question is about aluminium and its compounds.
 - (a) (i) State the shape of a molecule of aluminium trichloride, AICI₃.

(1)

(ii) Aluminium chloride can exist as a dimer formed from two molecules of aluminium trichloride.

Draw a diagram of this dimer, showing the bonding between the two molecules.

(2)

(b) Aluminium trichloride reacts vigorously with water to produce hydrogen chloride and aluminium hydroxide, AI(OH)₃.

Write the equation for this reaction. State symbols are not required.

(1)

(c) Aluminium trichloride also reacts with sodium hydroxide.

$$\mathsf{AICI}_3(g) \ + \ 3\mathsf{NaOH}(aq) \ \rightarrow \ \mathsf{AI}(\mathsf{OH})_3(s) \ + \ 3\mathsf{NaCI}(aq)$$

Calculate the maximum mass of aluminium hydroxide precipitated when excess aluminium trichloride reacts with 150 cm³ of 1.5 mol dm⁻³ sodium hydroxide.

(3)

(d)) (i)	Describe the metallic bonding in aluminium.	(2)
			(3)
	(ii)	Explain how metallic bonding leads to the properties of electrical conductivity and malleability shown by aluminium.	/
			(2)
		(Total for Question 25 = 12 ma	arks)
		TOTAL FOR SECTION R = 60 MA	RKS

TOTAL FOR SECTION B = 60 MARKS
TOTAL FOR PAPER = 80 MARKS

BLANK PAGE

ted	Rn radon 86	X xenon 54	83.8 Kr krypton 36	39.9 Ar argon 18	20.2 Ne neon 10	4.0 He helium 2	0 (8)
ееп герог	At astatine 85	I fodine 53	79.9 Br bromine 35	35.5 CI chlorine 17	19.0 F fluorine 9	(17)	1
116 have b	Po polonium 84	Te tellurium 52	79.0 Se selenium 34	32.1 S sulfur 16	16.0 O oxygen 8	(16)	۰
Elements with atomic numbers 112-116 have been reported but not fully authenticated	Bi bismuth 83	Sb antimony 51	74.9 As arsenic 33	31.0 Phosphorus	14.0 N nitrogen 7	(15)	ĸ
atomic nur but not fi	Pb tead 82	S 8 8	72.6 Ge germanium 32	- 76.7	12.0 C carbon 6	(14)	4
ents with	TI thaillium 81	In indium 49	69.7 Ga gallium 31	27.0 Al alumínium 13	10.8 B boron 5	(13)	m
Elem	Hg mercury 80	Cadmium 48	55.4 Zn zinc 30	(12)			ents
[272] Rg roentgenium	Au gold 79	Ag silver 47	63.5 Cu copper 29	(11)			Elem
	Pt platinum 78	Pd palladium 46	58.7 Ni nickel 28	(01)			The Periodic Table of Elements
Mt Ds meitnerium damstadtum	Ir iridium 77	Rh rhodium 45	58.9 Co cobalt 27	(6)			labl
Hs Hassium r	Os osmium 76	Ru uthenium 44	55.8 Fe iron 26	(8)		1.0 Hydrogen	Dibor
[264] Bh bohrium	Re rhenium 75	Tc echnetium 43	Mn Annanganese 25	(2)			e Pe
[266] Sg seaborgium	W tungsten 74	Mo Tc molybdenum technetium 42 43	S2.0 54.9 Cr Mn chromium manganese 24 25	(9)	nass iol		
[262] Db dubnium s	Ta tantalum 73	Miobium 41	50.9 V vanadium 23	(5)	relative atomic mass atomic symbol name atomic (proton) number	Key	
[261] Rf nutherfordlum	Hf hafmium 72	Zr zirconium 40	47.9 Ti titanium 22	(4)	relativ ator	- 9	
Ac*	La* lanthanum 57	yttrium 39	45.0 Sc scandium 21	(3)			
Ra Ra radium	Ba barium ta 56	Sr strontium 38	-	24.3 Mg magnesium 12	9.0 Be beryttium 4	(2)	2
[223] Fr francium 87	Cs caesium 55		39.1 K potassium 19	23.0 Na sodium 11	6.9 Li lithium	<i>(u</i>)	-

140	141	144		150		157	159	163	165	167	169	173	
S	4	PX	Pm	Sm	Ξ	В	4	ò	운	ы	Ę	χ	3
cerium	praseodymium	neodymium	E	samarium		gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	_
28	59	09		62		64	65	99	. 67	89	69	70	
232	[231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[256]	[254]	[25
£	Pa	>	å	Pu	Am	5	æ	ຽ	ES	Fm	PW	2 N	ב
thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawren
06	16	92	93	8	95	96	46	86	66	100	101	102	10

* Lanthanide series Actinide series