

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Робототехники и комплексной автоматизации» КАФЕДРА «Системы автоматизированного проектирования (РК-6)»

ОТЧЕТ О ВЫПОЛНЕНИИ ДОМАШНЕГО ЗАДАНИЯ

по дисциплине «Вычислительная математика»

Студент:	Антоненко Григорий Андреевич			
Группа:	PK6-53B			
Тип задания:	домашнее задание			
Тема:	Интерполяция сплайнами. Числен-			
	ное дифференцирование			

Студент	подпись, дата	A нтоненко $\Gamma.A$ Фамилия, И.О.
Преподаватель	подпись, дата	Фамилия ИО

Содержание

Интерполяция сплайнами. Численное дифференцирование	3
Задание	3
1 Решение	
 Зак почение 	Δ

Интерполяция сплайнами. Численное дифференцирование

Задание

Требуется найти оптимальный шаг дифференцирования для функции $f(x) = sinx - e^x$, учитывая, что используется центральная формула численного дифференцирования второго порядка точности для нахождения первой производной в некоторой точке $x \in (-\infty; \pi/2]$.

Предполагается, что вычислительные погрешности ограничены машинным эпсилон $\epsilon = 10^{-16}$

1 Решение

Центральная формула численного дифференцирования:

$$f'(x_i) = \frac{f(x_i + h) - f(x_i - h)}{2h} - \frac{h^2}{6}f^{(3)}(\xi)$$

Числа $f(x_i+h)$ и $f(x_i-h)$ сохраняются в памяти компьютера с точностью до 16-ого знака, т.е. возникает погрешность округления. Введем обозначения $e(x_i+h)$ и $e(x_i-h)$, отображающие эту погрешность. Тогда истинные значения выглядят следующим образом:

$$f(x_i + h) = \tilde{f}(x_i + h) + e(x_i + h),$$

 $f(x_i - h) = \tilde{f}(x_i - h) + e(x_i - h)$

Полная погрешность E определяется как

$$E = \left| f'(x_i) - \frac{\tilde{f}(x_i + h) - \tilde{f}(x_i - h)}{2h} \right| = \left| \frac{e(x_i + h) + e(x_i - h)}{2h} - \frac{h^2}{6} f^{(3)}(\xi) \right|$$

Оценка верхней границы E:

$$E = \left| \frac{e(x_i + h) - e(x_i - h)}{2h} - \frac{h^2}{6} f^{(3)}(\xi) \right| \le \frac{|e(x_i + h)| - |e(x_i - h)|}{2h} + \frac{h^2}{6} |f^{(3)}(\xi)|$$

Сделаем два допущения:

- 1. $|e(x_i)| \le \epsilon$
- 2. $|f^{(3)(\xi)}| \le M$

M выбирается из условия M = max|f'(x)|

Тогда справедлива следующая оценка E сверху:

 $f'(x) = cosx - e^x$ принимает максимальное значение, если $f''(x) = -sinx - e^x = 0$ При малых $x e^x \to 0$, так что M = max|f'(x)| = 1

Подставивив M в (1) получим оптимальный шаг

$$h_{opt} = \sqrt[3]{3 \cdot 10^{-16}} = 6.69433 \cdot 10^{-6}$$

2 Заключение

- 1. Исходя из оценки погрешности, можно сделать вывод, что есть предел уменьшения шага дифференцирования, перейдя который точность дифференцирования начинает снижаться.
- 2. Оптимальный шаг диффренцирования h_{opt} = $6.69433 \cdot 10^{-6}$