I) Найти неопределенные интегралы:

a)
$$\int \frac{e^x dx}{3e^x + 4}$$
;

$$\mathbf{6)} \ \int \left(3x^2 + 1\right) \operatorname{arctg} x dx \ ;$$

a)
$$\int \frac{e^x dx}{3e^x + 4}$$
; **6)** $\int (3x^2 + 1) \operatorname{arctg} x dx$; **B)** $\int \frac{4x - 3}{x^2 - 2x + 6} dx$.

II)

а) В двойном интеграле $\iint f(x,y) dx dy$ перейти к полярным координатам и

расставить пределы интегрирования по новым переменным, если:

- $D = \{ x^2 + y^2 \le 6x \}$. Сделать чертёж области интегрирования.
- б) Исследовать на сходимость несобственный интеграл и вычислить его, если он сходится: $\int_{0} \ln x dx.$
- **в)** Вычислить определенный интеграл: $\int_{-3}^{0} \frac{(x+1)dx}{\sqrt{x^2+6x+10}}$.

III)

- а) Вычисление работы силового поля. Физический смысл криволинейного интеграла по координатам. Формула Грина.
- **б)** Используя формулу Грина, найти работу поля $\mathbf{F} = (xy; -2y)$ вдоль дуги кривой Γ , если Γ : $x^2 + y^2 = 9$.
- в) Проверить результат непосредственным вычислением

IV)

- **а)** Дано пространственное тело $\Omega = \{z^2 \ge x^2 + y^2, \, 0 \le z \le 2\}$ и векторное поле $\mathbf{a} = y^2 \mathbf{i} + x^2 \mathbf{j} - z^2 \mathbf{k}$. Сделать чертеж и вычислить div \mathbf{a} .
- б) Сформулировать теорему Гаусса-Остроградского и с помощью неё найти поток векторного поля $\mathbf{a} = y^2 \mathbf{i} + x^2 \mathbf{j} - z^2 \mathbf{k}$ через всю поверхность $\Omega = \{z^2 \ge x^2 + y^2, \ 0 \le z \le 2\}$ в направлении внешней нормали.
- в) Проверить результат непосредственно, вычисляя потоки через все гладкие части поверхности.