

STROBED HEX INVERTER/BUFFER

- 2 TTL-LOAD OUTPUT DRIVE CAPABILITY
- 3 STATE OUTPUTS
- COMMON OUTPUT DISABLE CONTROL
- INHIBIT CONTROL
- QUIESCENT CURRENT SPECIFIED UP TO 20V
- 5V, 10V AND 15V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT I_I = 100nA (MAX) AT V_{DD} = 18V T_A = 25°C
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B "STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

HCF4502B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. It consists of six inverter/buffers with 3 state outputs. A logic "1" on the OUTPUT DISABLE input produces a High Impedance State in all six outputs. This feature permits common busing of

ORDER CODES

PACKAGE	TUBE	T&R
DIP	HCF4502BEY	
SOP	HCF4502BM1	HCF4502M013TR

the outputs, thus simplifying system design. A logic "1" on the INHIBIT input switches all six outputs to logic "0" if the OUTPUT DISABLE input is a logic "0". This device is capable of driving two standard TTL loads, which is equivalent to six times the JEDEC "B" series I_{OL} standard .

PIN CONNECTION

September 2002 1/9

INPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

	PIN No	SYMBOL	NAME AND FUNCTION
	3, 6, 1, 10, 13, 15	D1 to D6	Data Inputs
5	, 7, 2, 9, 11, 14	Q1 to Q6	Data Outputs
	4	OUTPUT DISABLE	3-State Output Disable Input
	12	INHIBIT	Inhibit Input
	8	V_{SS}	Negative Supply Voltage
	16	V_{DD}	Positive Supply Voltage

TRUTH TABLE

DISABLE	INHIBIT	Dn	Qn
L	L	L	Н
L	L	Н	L
L	Н	Х	L
Н	Х	Х	Z

X : Don't Care Z : High Impedance

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
V _I	DC Input Voltage	-0.5 to V _{DD} + 0.5	V
I _I	DC Input Current	± 10	mA
P _D	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
V _I	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature	-55 to 125	°C

DC SPECIFICATIONS

			Test Con	dition					Value				
Symbol	Parameter	VI	v _o	I _O	V _{DD}	Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)	(V)	(μ A)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
ΙL	Quiescent Current	0/5			5		0.02	1		30		30	
		0/10			10		0.02	2		60		60	^
		0/15			15		0.02	4		120		120	μΑ
		0/20			20		0.04	20		600		600	
V _{OH}	High Level Output	0/5		<1	5	4.95			4.95		4.95		
	Voltage	0/10		<1	10	9.95			9.95		9.95		V
		0/15		<1	15	14.95			14.95		14.95		
V _{OL}	Low Level Output	5/0		<1	5		0.05			0.05		0.05	
	Voltage	10/0		<1	10		0.05			0.05		0.05	V
		15/0		<1	15		0.05			0.05		0.05	
V _{IH}	High Level Input		0.5/4.5	<1	5	3.5			3.5		3.5		V
	Voltage		1/9	<1	10	7			7		7		
			1.5/13.5	<1	15	11			11		11		
V _{IL}	Low Level Input		4.5/0.5	<1	5			1.5		1.5		1.5	
	Voltage		9/1	<1	10			3		3		3	V
			13.5/1.5	<1	15			4		4		4	
I _{OH}	Output Drive	0/5	2.5	<1	5	-1.36	-3.2		-1.15		-1.15		
	Current	0/5	4.6	<1	5	-0.44	-1		-0.36		-0.36		A
		0/10	9.5	<1	10	-1.1	-2.6		-0.9		-0.9		mA
		0/15	13.5	<1	15	-3.0	-6.8		-2.4		-2.4		
I _{OL}	Output Sink	0/5	0.4	<1	5	2.6	6		2.1		2.1		
	Current	0/10	0.5	<1	10	6.63	15.6		5.4		5.4		mΑ
		0/15	1.5	<1	15	17.3	40.8		14.2		14.2		
I _I	Input Leakage Current	0/18	Any In	put	18		±10 ⁻⁵	±0.1		±1		±1	μΑ
I _{OZ}	3-State Output	0/18	Any In	put	18		±10 ⁻⁴	±0.4		±12		±12	μΑ
Cı	Input Capacitance		Any In	put			5	7.5					pF

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} =5V, 2V min. with V_{DD} =10V, 2.5V min. with V_{DD} =15V

$\textbf{DYNAMIC ELECTRICAL CHARACTERISTICS} \; (\textbf{T}_{amb} = 25^{\circ} \textbf{C}, \;\; \textbf{C}_{L} = 50 \text{pF}, \; \textbf{R}_{L} = 200 \text{K}\Omega, \;\; \textbf{t}_{r} = \textbf{t}_{f} = 20 \; \text{ns})$

	-		Test Condition	,	Value (*)	Unit
Symbol	Parameter	V _{DD} (V)		Min.	Тур.	Max.	
t _{PHL}	Propagation Delay Time	5			135	270	
	(Data or Inhibit)	10			60	120	ns
		15			40	80	
t _{PLH}	Propagation Delay Time	5			190	380	
	(Data or Inhibit)	10			90	180	ns
		15			65	30	
t _{PHZ}	Disable Delay Time	5			60	120	
	(Output High to High	10			40	80	ns
	Impedance)	15			30	60	
t _{PZH}	Disable Delay Time	5			110	220	
	(High Impedance to Output	10			50	100	ns
	High)	15			40	80	
t _{PLZ}	Disable Delay Time	5			125	250	
	(Output Low to High	10			65	130	ns
	Impedance)	15			55	110	
t _{PZL}	Disable Delay Time	5			125	250	
	(High Impedance to Output	10			55	110	ns
	Low)	15			40	80	
t _{TLH}	Transition Time	5			100	200	
		10			50	100	ns
		15			40	80	
t _{THL}	Transition Time	5			60	120	
		10			30	60	ns
		15			20	40	

^(*) Typical temperature coefficent for all V_{DD} value is 0.3 %/°C.

TEST CIRCUIT

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	V_{DD}
t _{PZH} , t _{PHZ}	V _{SS}

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = 200 $K\Omega$ R_T = Z_{OUT} of pulse generator (typically 50 Ω)

WAVEFORM 1: PROPAGATION DELAY TIMES (f=1MHz; 50% duty cycle)

WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIME (f=1MHz; 50% duty cycle)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM		mm.				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
еЗ		17.78			0.700	
F			7.1			0.280
1			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

SO-16 MECHANICAL DATA

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А			1.75			0.068	
a1	0.1		0.2	0.003		0.007	
a2			1.65			0.064	
b	0.35		0.46	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.019		
c1			45°	(typ.)			
D	9.8		10	0.385		0.393	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		8.89			0.350		
F	3.8		4.0	0.149		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.019		0.050	
M			0.62			0.024	
S			8° (I	max.)		•	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

© http://www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.