Category Theory (ITI9200) – Exercise Sheet 2

Outline. Complete as many of the exercises below as you are able. Each exercise has a number of tasks. Each task has an assigned number of points in square brackets, e.g. [1]. Points may be awarded for answers that demonstrate effort, even if the answer is not entirely correct. There are **25** total points (3 are points for overachievers, the exercise is marked as $[3]^*$). The exercise sheet is expected to take around 2-4 hours.

Submission. Email your work to Fosco Loregian at

fosco.loregian@taltech.ee

or hand in your work to one of the lecturers or teaching assistants at the start of end of a lecture. Deadline:

23:59 on April 18, 2024.

Exercise 1

Let **Set** be the category of sets and total functions. Define the morphism part, and verify that the following correspondences given at the level of objects define functors $\mathbf{Set} \to \mathbf{Set}$ (show that the functor laws are satisfied):

• fix a set A; send a set X to
$$A + (X \times A)$$
 [1]

• send a set X to $PX \times \{0,1\}$ where PX is the set of subsets of X, and $\{0,1\}$ is a set of Boolean values. [1]

Define the morphism part, and verify that the following correspondences define functors (show that the functor laws are satisfied):

- Let \mathcal{C} be the category where objects are pairs (X,R): X is a set, $R \subseteq X \times X$ a relation on X. Morphisms in $\mathcal{C}((X,R),(Y,S))$ are the functions $f:X\to Y$ such that if $(x,x')\in R$ then $(fx,fx')\in S$. Define a functor $\Gamma:\mathcal{C}\to\mathbf{Graph}$ sending an object (X,R) of \mathcal{C} to the graph having X as set of vertices, and an edge $x\leadsto x'$ if and only if $(x,x')\in R$.
- Let **Graph** be the category of graphs and graph homomorphisms. If \mathcal{G} is a graph, define the set $Sub(\mathcal{G})$ as the set of *subgraphs* of $\mathcal{G} = (\mathcal{G}_1 \overset{s}{\underset{\rightarrow}{\to}} \mathcal{G}_0)$, i.e. the graphs \mathcal{H} such that
 - $-\mathcal{H}_0$ (the vertices of \mathcal{H}) is a subset of \mathcal{G}_0 , and \mathcal{H}_1 (the edges of \mathcal{H}) is a subset of \mathcal{G}_1 ;
 - for every $e \in \mathcal{H}_1$, s(e), $t(e) \in \mathcal{H}_0$.

Sending \mathcal{G} to the set of all its subgraphs $\mathcal{H} \subseteq \mathcal{G}$ is a functor $Sub : \mathbf{Graph}^{\mathrm{op}} \to \mathbf{Set}$. [2]

(Trying to engage with this last question is totally optional, but if you try and get it wrong, there will be no negative repercussion. Do your best!)

Find a graph \mathcal{W} such that $Sub(\mathcal{G})$ is parametrically isomorphic to the set $Graph(\mathcal{G}, \mathcal{W})$. [3]*

Exercise 2

Let A, B, C be sets.

Define functions in opposite directions:

$$A\times (B+C) \stackrel{p}{-\!-\!-\!-\!-} A\times B + A\times C \qquad \qquad A\times B + A\times C \stackrel{q}{-\!-\!-\!-\!-\!-\!-} A\times (B+C)$$

that are inverse to each other: $q \circ p = 1_{A \times (B+C)}$ and $p \circ q = 1_{A \times B+A \times C}$ (verify that these identities hold after defining p,q).

In any category C with products and sums, it is possible to define a morphism

$$A \times B + A \times C \rightarrow A \times (B + C)$$

for each triple of objects $A, B, C \in \mathcal{C}_0$. \mathcal{C} is called **distributive** if this morphism is an isomorphism for all $A, B, C \in \mathcal{C}_0$. Verify that in a distributive category \mathcal{C} that admits an initial object \varnothing , the product $A \times \varnothing$ is an initial object (verify that $A \times \varnothing$ has the universal property of an initial object).

Exercise 3

Let **Set** be the category of sets and total functions, and E a fixed set (a set of 'errors').

- Recalling that $\mathbf{Maybe}(A) = 1 + A$ denotes the sum of the sets A and $1 = \{\star\}$, use distributivity to expand the definition of the correspondence $\epsilon : \mathbf{Set} \to \mathbf{Set}$ sending a set X of 'states' to the set $\mathbf{Maybe}(X \times \mathbf{Maybe}(E))$.
- Verify in detail that ϵ is a functor. [1]
- An ' ϵ -algebra' is a function

$$\epsilon(X) \xrightarrow{a} X.$$

Give an intuition for what a ϵ -algebra might represent.

It's a function sending an input in ϵX to...

[2]

Prove that the set $(1+E)^* = \mathbf{List}(\mathbf{Maybe}(E))$ has a structure of ϵ -algebra $\xi : \epsilon(1+E)^* \to (1+E)^*$, and that for every other ϵ -algebra (X, a) there exists a unique $h : (1+E)^* \to X$ such that

$$\begin{array}{ccc} \epsilon(1+E)^* & \xrightarrow{\epsilon h} & \epsilon(X) \\ \xi \downarrow & & \downarrow a \\ (1+E)^* & \xrightarrow{h} & X \end{array}$$

is a commutative square of functions.

[2]

Exercise 4

Let **Dyn** be the category having

- objects the triples (X, x_0, f) where X is a set, $x_0 \in X$ is an element, and $f: X \to X$ is a function;
- a morphism $(X, x_0, f) \to (Y, y_0, g)$ is a function $h: X \to Y$ such that
 - $-h(x_0) = y_0;$
 - $-h \circ f = g \circ h$ (which means, the two composed functions coincide input-wise);
- composition and identities are defined as composition of functions in **Set**, as expected.

The category **Dyn** has an initial object (N, s, z) where N is the set of natural numbers $\{0, 1, 2, ...\}$. Describe it in detail.

Verify that the category \mathbf{Dyn} is the category of algebras for the functor $\mathbf{Maybe}(-): X \mapsto \mathbf{Maybe}(X) = 1 + X$.

Show that the initial object (N, z, s) of **Dyn** carries operations of sum and product, coinciding with the usual arithmetic operations, using only the universal property that defines (N, z, s). [3]