1-D Scalar Wave Equation with Finite Differences

Alexis Guevara

Background and Motivation

The 1-D scalar wave equation is given by

$$\frac{\partial^2 u}{\partial t^2}(x,t) - \alpha^2 \frac{\partial^2 u}{\partial x^2}(x,t) = 0$$
 IC: $u(x,0) = f(x)$ $\frac{\partial u}{\partial t}(x,0) = g(x)$ BC: $u(0,t) = u(L,t) = 0$ for $t > 0$

- Insights into complex systems
- Testing numerical methods

The second order nature of the scalar wave equation is crucial for several reasons:

- Harmonic oscillator analogy
- Numerical stability and convergence

Theory

- Finite Difference Method
- Taylor Series Expansion
- Discretization and the Mesh
- Von Neumann Stability Analysis
- Limitations
- Examples

Numerical Method: Finite Difference Approximations

- Finite Difference Approximation
 - Numerical Solution
 - Discretization of PDE
- Mesh of Numerical Method
 - Spatial Grid & Temporal Grid
 - Spatial-Temporal Grid
 - Step sizes : h and Δt
 - $N_x + 1$ Nodes
 - N_t Time steps

Spatial Grid:

$$x_i = x_l + i * h$$
, $i = 0,1,...,N_x$
with $N_x = \frac{x_r - x_l}{h}$ for $x \in [x_l, x_r]$

Temporal Grid:

$$t_n=t_0+n*\Delta t$$
 , $n=0,1,...,N_t$ with $N_t=\frac{t_f-t_0}{\Delta t}$ for $t\in[t_0,t_f]$

Numerical Method: Forward and Centered Finite Differences

- Approximation of Derivatives
 - Main Idea
 - Finite Difference Formulas
 - Continuous PDE → Discrete PDE
 - Recursive Formula
 - Absolute Error of Method
 - Error = | True Approximate |

Forward FD:
$$\frac{d}{dx}u(x_i) \approx \frac{u(x_{i+1}) - u(x_i)}{x_{i+1} - x_i} = \frac{u(x_{i+1}) - u(x_i)}{h}$$

Centered FD:
$$\frac{d}{dx}u(x_i) \approx \frac{u(x_{i+1}) - u(x_{i-1})}{x_{i+1} - x_{i-1}} = \frac{u(x_{i+1}) - u(x_{i-1})}{2h}$$

Numerical Method: Forward and Centered Finite Differences

- Approximation of Derivatives
 - Main Idea
 - Finite Difference Formulas
 - Continuous PDE → Discrete PDE
 - Recursive Formula
 - Absolute Error of Method
 - Error = | True Approximate |

$$\frac{d}{dx}u(x) = f(x) \rightarrow \frac{d}{dx}u(x_i) = f(x_i)$$

Numerical Method: Forward and Centered Finite Differences

- Approximation of Derivatives
 - Main Idea
 - Finite Difference Formulas
 - Continuous PDE → Discrete PDE
 - Recursive Formula
 - Absolute Error of Method
 - Error = | True Approximate |

Forward FD:
$$\frac{d}{dx}u(x_i) = f(x_i) \approx \frac{u(x_{i+1}) - u(x_i)}{h}$$

 $u(x_{i+1}) \approx u(x_i) + h * f(x_i)$

Centered FD:
$$\frac{d}{dx}u(x_i) = f(x_i) \approx \frac{u(x_{i+1}) - u(x_{i-1})}{2h}$$
$$u(x_{i+1}) \approx u(x_{i-1}) + 2h * f(x_i)$$

Approximation of 2nd Order Centered Finite Differences

2nd Order Forward FD:
$$\frac{\partial^2 u}{\partial x^2}(x_i) \approx \frac{u(x_{i+2}) - 2u(x_{i+1}) + u(x_i)}{h^2}$$

2nd Order Centered FD:
$$\frac{\partial^2 u}{\partial x^2}(x_i) \approx \frac{u(x_{i+1}) - 2u(x_i) + u(x_{i-1})}{h^2}$$

- Approach to 1-D Scalar Wave Equation
 - Mesh
 - Finite Difference Approximations of Derivatives
 - PDE Discretization
 - Recursive Formula

Spatial Grid:
$$x_i = x_l + i * h , i = 0,1,...,N_x$$
 with $N_x = \frac{x_r - x_l}{h}$ for $x \in [x_l, x_r]$
$$t_n = t_0 + n * \Delta t , n = 0,1,...,N_t$$
 with $N_t = \frac{t_f - t_0}{\Delta t}$ for $t \in [t_0, t_f]$

- Approach to 1-D Scalar Wave Equation
 - Mesh
 - Finite Difference Approximations of Derivatives
 - PDE Discretization
 - Recursive Formula

$$\frac{\partial^2 u}{\partial t^2}(x_i, t_j) \approx \frac{u(x_i, t_{j+1}) - 2u(x_i, t_j) + u(x_i, t_{j-1})}{\Delta t^2}$$

$$\frac{\partial^2 u}{\partial x^2}(x_i, t_j) \approx \frac{u(x_{i+1}, t_j) - 2u(x_i, t_j) + u(x_{i-1}, t_j)}{h^2}$$

- Approach to 1-D Scalar Wave Equation
 - Mesh
 - Finite Difference Approximations of Derivatives
 - PDE Discretization
 - Recursive Formula

$$\frac{\partial^2 u}{\partial t^2}(x,t) - \alpha^2 \frac{\partial^2 u}{\partial x^2}(x,t) = 0 \rightarrow \frac{\partial^2 u}{\partial t^2}(x_i,t_j) - \alpha^2 \frac{\partial^2 u}{\partial x^2}(x_i,t_j) = 0$$

- Approach to 1-D Scalar Wave Equation
 - Mesh
 - Finite Difference Approximations of Derivatives
 - PDE Discretization
 - Recursive Formula

$$\frac{u(x_i, t_{j+1}) - 2u(x_i, t_j) + u(x_i, t_{j-1})}{\Delta t^2} - \alpha^2 \frac{u(x_{i+1}, t_j) - 2u(x_i, t_j) + u(x_{i-1}, t_j)}{h^2} = 0$$

$$u(x_i, t_{j+1}) = 2(1 - \lambda^2) u(x_i, t_j) + \lambda^2 \left(u(x_{i+1}, t_j) + u(x_{i-1}, t_j) \right) - u(x_i, t_{j-1}) \text{ where } \lambda = \frac{\alpha \Delta t}{h}$$

- Issue Encountered
 - First time step
- Approach
 - Method 1: Initial Velocity
 - Forward Finite Difference
 - Method 2: Initial Displacement & Velocity
 - Centered Finite Difference

$$u(x_i, t_{j+1}) = 2(1 - \lambda^2) u(x_i, t_j) + \lambda^2 \left(u(x_{i+1}, t_j) + u(x_{i-1}, t_j) \right) - u(x_i, t_{j-1}) \text{ where } \lambda = \frac{\alpha \Delta t}{h}$$

- Issue Encountered
 - First time step
- Approach
 - Method 1: Initial Velocity
 - Forward Finite Difference
 - Method 2: Initial Displacement & Velocity
 - Centered Finite Difference

$$\frac{\partial u}{\partial t}(x,0) = g(x) \rightarrow \frac{\partial u}{\partial t}(x_i,0) = g(x_i)$$

$$\frac{\partial u}{\partial t}(x_i,0) \approx \frac{u(x_i,t_1) - u(x_i,0)}{\Delta t} \rightarrow u(x_i,t_1) \approx u(x_i,0) + \Delta t * g(x_i)$$

- Issue Encountered
 - First time step
- Approach
 - Method 1: Initial Velocity
 - Forward Finite Difference
 - Method 2: Initial Displacement & Velocity
 - Centered Finite Difference

$$u(x_i, t_1) \approx u(x_i, 0) + \Delta t * g(x_i) + \frac{\Delta t^2}{2} \frac{\partial^2 u}{\partial t^2} (x_i, \mu_i) \text{ for some } \mu_i \in (0, t_1)$$

$$\underline{\text{Note:}} \frac{\partial^2 u}{\partial t^2} (x_i, 0) = \alpha^2 \frac{\partial^2 u}{\partial x^2} (x_i, 0) = \alpha^2 \frac{d^2 f}{dx^2} (x_i) = \alpha^2 f''(x_i)$$

- Issue Encountered
 - First time step
- Approach
 - Method 1: Initial Velocity
 - Forward Finite Difference
 - Method 2: Initial Displacement & Velocity
 - Centered Finite Difference

$$u(x_i, t_1) \approx u(x_i, 0) + \Delta t * g(x_i) + \frac{\alpha^2 \Delta t^2}{2} f''(x_i)$$
 if f'' exists

$$u(x_i, t_1) \approx (1 - \lambda^2) f(x_i) + \frac{\lambda^2}{2} (f(x_{i+1}) + f(x_{i-1})) + \Delta t * g(x_i) \text{ where } \lambda = \frac{\alpha \Delta t}{h}$$

- Issue Encountered
 - First time step
- Approach
 - Method 1: Initial Velocity
 - Forward Finite Difference
 - Method 2: Initial Displacement & Velocity
 - Centered Finite Difference

Method 1: $u(x_i, t_1) \approx u(x_i, 0) + \Delta t * g(x_i)$

Method 2:
$$u(x_i, t_1) \approx (1 - \lambda^2) f(x_i) + \frac{\lambda^2}{2} (f(x_{i+1}) + f(x_{i-1})) - \Delta t * g(x_i)$$
 where $\lambda = \frac{\alpha \Delta t}{h}$

Stencil of Method

- 1-D Scalar Wave Equation Function
 - Inputs
 - Tasks
 - Outputs

- 1-D Scalar Wave Equation Function
 - Inputs
 - Spatial Step Size h
 - CFL condition λ
 - Wave Speed α
 - Length of domain L
 - Final Time T
 - Initial Displacement Function f(x)
 - Initial Velocity Function g(x)
 - Whether to animate solution *is_movie*
 - Tasks
 - Outputs

$$\lambda = \frac{\alpha \Delta t}{h}$$

B.C:
$$u(0,t) = u(L,t) = 0$$
 for $t > 0$

I.C.:
$$u(x,0) = f(x)$$

$$\frac{\partial u}{\partial t}(x,0) = g(x) \text{ for } 0 \le x \le L$$

- 1-D Scalar Wave Equation Function
 - Inputs
 - Tasks
 - Define Δt
 - Define Number of Spatial & Time Grid Points
 - Initialize Spatial Grid, Time Grid, & Approximate Solutions
 - Define Boundary Conditions & Initial Conditions
 - Compute First Time Step using <u>Method 1</u> or <u>Method 2</u>
 - Compute 2nd to Last Time Steps
 - Animate Approximate Solutions of u
 - Outputs

- 1-D Scalar Wave Equation Function
 - Inputs
 - Tasks
 - Outputs
 - Approximate Solution Δt
 - Spatial Grid *x*
 - Temporal Grid t

Verification

- Study Case 1
 - Inputs

•
$$h = 2^{-k}$$
 for $k = 4, ..., 12$

- $\lambda = 1$
- $\alpha = 2$
- L = 1
- T = 1
- $f(x) = \sin(\pi x)$
- g(x) = 0
- Exact Solution
 - $u(x,t) = \sin(\pi x)\cos(2\pi t)$

Verification

- Study Case 2
 - Inputs
 - $h = 2^{-k}$ for k = 4, ..., 12
 - $\lambda = 1$
 - $\alpha = \frac{1}{4\pi}$
 - L = 0.5
 - T = 0.5
 - f(x) = 0
 - $g(x) = \sin(4\pi x)$
 - Exact Solution
 - $u(x,t) = \sin(t)\sin(4\pi x)$

Verification

- Study Case 3
 - Inputs

•
$$h = 2^{-k}$$
 for $k = 4, ..., 13$

•
$$\lambda = \frac{0.5}{\pi}$$

•
$$\alpha = 1$$

•
$$L=\pi$$

•
$$T = 0.5$$

•
$$f(x) = \sin(x)$$

•
$$g(x) = 0$$

- Exact Solution
 - $u(x,t) = \cos(t)\sin(x)$

Conclusion

Von Neumann Multi-Step Method

- Strengths
 - Simple to implement
 - Easy to obtain higher-order approximations
- Weaknesses
 - Not able to handle discontinuities & shocks

References

- Burden, R.L., Faires, J.D., Burden A.M (2016) *Numerical Analysis*. 10th Edition, Cengage Learning, Boston, 757-765.
- Strang, G. (2007). *Computational science and engineering*. 1st Edition, Wellesley-Cambridge Press, 485-489.