

SRM Institute of Science and Technology College of Engineering and Technology

DEPARTMENT OF ECE

SRM Nagar, Kattankulathur - 60 U03, Chengalpattu District, Laimlnadu

Academic Year: 2022-2023 (ODD)

Cest			

Course Code & Title: 181 CL 1401 Machine Perception with Cognition

Year & Sem: W/VII

Daration: 100 minutes

Max. Marks: 50

	Later Park Control Programming											PROGRAM				
	INECNIES Applied Programming		PROGRAM OUTCOMES										OUTCOMES			
0	COURSE OUTCOMES	1	2	1	4	5	6	7	Я	9	10	11	12	1	2	3
1	Understand the fundamentals of image Processing, camera and color models	3	2											10		
2	Analyze the binary shapes, region and boundary: based image modeling.	3			2		-		-					-		
3	Blustrate the various filter banks, shape and textures for image synthesis.		-		2				-	-		-	3	-		
4	Express the objects, frames based on template relations	3	-	2	-		-	-	-	-		(2)		-		
5	Apply the concept of 2D and 3D face recognition		1.	3		2			-							1
6	Implement the concept of image processing and machine vision in real time applications	3	2			-	-			-	-			2	-	

	$Part - A (10 \times 1 = 10 \text{ marks})$					
	Answer all the Questions					
Q.	Question	Marks	BL	COPO		
No					-	
l	Identify the zero representation in binary image	.1	1	2	1	
	a. background b. foreground					
	c. true value d. false value					
2	Identify the required minimum of passes over the image space in Object	1	1	2	1	
	counting and Labeling routine.					
	a. 2N b. 2N+2					
	c. 2N-1 d. 2N+1					
3	The small objects may be eliminated by applying a of	1	1	2	1	
	a. series, shrink b. parallel, shrink					
	c. series, stretch d. parallel, stretch					
4	c. series, suciei	1	1	2	1	
7	Select the chess board distance measurement	1	•	-	'	
	a. $d = max(x_1+x_2 , y_1+y_2)$ b. $d = min(x_1+x_2 , y_1+y_2)$					
	a. $d = max(x1+x2 , y1+y2)$ b. $d = min(x1+x2 , y1+y2)$ c. $d = min(x1+x2 , y1+y2)$ d. $d = max(x1+x2 , y1+y2)$					
5	For pixels $p(x, y)$, $q(s, t)$, the Euclidean distance between p and q is defined	1	2	2	l	
	as:					
	a) D (p, q) = $[(x - s)2 + (y - t)2]1/2$					
	b) D $(p, q) = x - s + y - t $					
	c) D $(p, q) = \max (x - s + y - t)$					
	d)D (p, q) = $[(x - s)2 + (y - t)2]$			-		
6	The is defined as number of pixels in a shape	1	2	3	4	
	a. area b. perimeter					
	c. elongation d. compactness			-		
7	The minor axis length is used to predict the of the object	1	1	3	4	
	a. width b. height					
	c. length d. perimeter			-		
8	Predict the two version of LM filter banks	1	1	3	4	
	a. LMV&LMS b. LMS&LMM					
	c .LMS &LML d. LMV& LML			-		
9	The M_{∞} of the given 3 x 3 binary image is	1	2	3	4	
	1 1 0					

	1 1 1	T	1	T	
	1 0 1				
	a) 5 b) 7 c) 6 d) 3				
10	Texture analysis methods are grouped intobroad categories	1	1	3	4
	a.2 c.4 b.3 d.5				
	PART B				1
	Section B1 (2x 4 = 8 marks)		-		
-	Answer ANY 2 Questions	1			
11	With suitable example, define the boundary descriptors based on shape number and curvature	4	2	2	1
12		4	3	2	1
		11.18			
	1 1 0 1 0 1				
	0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0				
					1
13	Find the distance between two-pixels P (4,2) and Q (4,3) using city block	4	2	2	1
13		4	2	2	
	distance measurement method				
	List out different types of texture representation.				
	Section B2 ($2x 4 = 8 \text{ marks}$)				,
14	Answer ANY 2 Questions Write short notes on approaches used in Texture analysis	4	2	3	4
	Texture analysis		-		
15	Write an algorithm for LM filter bank	4	2	3	4
16	Compute the co-occurrence matrix for the following and symmetric GLCM	4	3	3	4
	0 0 1 1				
	0 0 1 1				
	0 2 2 2				
	2 2 3 3				
	PART C (2 x 12 = 24 marks)				
			2	2	-
17 (a)	Explain the procedure to have skeleton image through thinning process with example.	12	2	2	1
(a)	example.				
	(or)				
17	With suitable example, explain the regional descriptors in detail	12	2	2	1
(b)					
18	Explain with relevant example how the Gaussian and Laplacian pyramid is	12	3	3	4
(a)	applied to an image to obtain an sharpened and a smoothened image				
	(or)				
(15)	Determine the filtered image for the shaded portion using convolution	12	3	3	4
	process, given the 5 x 5 image and 3 x 3 mask				
	0 1/6 0 30 40 50 70 90				
	0 1/6 0 1/6 1/3 1/6 30 40 50 70 90 40 50 80 60 100				
	0 1/6 0 35 255 70 0 120				
	3×3 mask 30 45 80 100 130				
	40 50 90 125 140		CLES		
	5×5 image				