Atividade AA-08

Nesta tarefa deve-se (i) propôr um autômato finito determinístico **mínimo** D que reconheça as cadeias da linguagem selecionada, a partir de D construir uma gramática G_1 que gere as cadeias reconhecidas por D e a partir de G_1 , usando o algoritmo baseado em sistemas de equações, extrair uma expressão regular \mathcal{R}_1 que gere as mesmas cadeias geradas por G_1 ; (ii) propôr um autômato finito não-determinístico N que reconheça as cadeias da linguagem selecionada e, como no item (i), obter a partir de N uma gramática G_2 (não necessariamente será regular!) e, a partir desta, obter uma expressão regular \mathcal{R}_2 . O autômato N pode ser um NFA ou NFA- ε , com pelo menos uma transição não determinística ou uma transição ε . Atenção: NFA's criados a partir do simples acréscimo de transições $\delta(s_i,\varepsilon)=s_i$ (ε -laços) a um DFA não serão considerados corretos, por não permitirem uma avaliação razoável do aprendizado dos conceitos abordados nesta atividade avaliativa. (Cada aluna(o) deve consultar na descrição da atividade AA-08, na disciplina INF0333A da plataforma Turing, qual é a linguagem associada ao seu número de matrícula. A descrição da linguagem está disponível no arquivo "lista de linguagens regulares" da Seção "Coletânea de exercícios".)

Iury Alexandre Alves Bo (202103735)

- $\mathcal{L}_{36} = \{ w \mid w = |2k|, k \in \mathbb{N}, w \text{ não contém } 11 \}.$
- $ER(\mathcal{L}_{36}) = (10 \cup 0(10)^*0)^*(\varepsilon \cup 0(10)^*1.$

DFA mínimo que reconhece as cadeias de \mathcal{L}_{36}

Gramática G_1 que gera as cadeias de \mathcal{L}_{36}

$$G_{1} = (V, \Sigma, P, S) = (\{A, B, C, S\}, \{0, 1\}, P, S), \text{ com:}$$

$$P = \left\{ \begin{array}{l} S \to 0B \mid 1A \mid \varepsilon, \\ A \to 0S, \\ B \to 0S \mid 1C, \\ C \to 0B \mid \varepsilon \end{array} \right\}.$$

Extração de expressão regular \mathcal{R}_1 da gramática G, tal que $\mathcal{L}(\mathcal{R}_1) = \mathcal{L}(G_1)$

Etapa	$\mathbf{Eq}.$	Expressão	Ação
\overline{I}	1	$S = 0B \cup 1A \cup \varepsilon$	
	2	A = 0S	
	3	$B = 0S \cup 1C$	
	4	$C = 0B \cup \varepsilon$	
\overline{II}	1	$S = 0B \cup 10S \cup \varepsilon$	I.2 ightarrow I.1, Fatoração
	4	$C = 0(0S \cup 1C) \cup \varepsilon$	I.3 ightarrow I.4, Fatoração
III	1	$S = 0^*(10S \cup \varepsilon)$	II.1 ightarrow Lema de Arden
	4	$C = 00S \cup 01C \cup \varepsilon$	II.4 ightarrow Distributiva
\overline{IV}	1	$S = 0*10S \cup 0*$	$III.1 ightarrow exttt{Distributiva}$
	4	$C = (01)^*(00S \cup \varepsilon)$	III.4 ightarrow Lema de Arden
V	1	S = (0*10)*0*	IV.1 ightarrow IV.1 Lema de Arden
	4	$C = (01)^* 00S \cup (01)^*$	IV.4 ightarrow IV.4 Distributiva
VI	4	$C = (01)^*00(0^*10)^*0^* \cup (01)^*$	IV.4 ightarrow IV.1, Fatoração

NFA que reconhece as cadeias de \mathcal{L}_{36}

Gramática G_2 que gera as cadeias da linguagem \mathcal{L}_{36}

$$G_2 = (V, \Sigma, P, S) = (\{A, B, C, S\}, \{0, 1\}, P, S), \text{ com}$$

$$P = \begin{cases} S \to 1A \mid \varepsilon B, \\ A \to 0S, \\ B \to 0C \mid 1A \mid \varepsilon, \\ C \to 0B \mid 1D, \\ D \to 0A \mid \varepsilon \end{cases} = \begin{cases} S \to 1A \mid B, \\ A \to 0S, \\ B \to 0C \mid 1A \mid \varepsilon, \\ C \to 0B \mid 1D, \\ D \to 0A \mid \varepsilon \end{cases}.$$

Extração de expressão regular \mathcal{R}_2 da gramática G_2 , tal que $\mathcal{L}(\mathcal{R}_2) = \mathcal{L}(G_2)$ Expressão Ação Etapa Eq. Ι 1 $S = 1A \cup B$ A = 0S2 3 $B = 0C \cup 1A \cup \varepsilon$ 4 $C = 0B \cup 1D$ 5 $D=0A\cup\varepsilon$ II $S = 10S \cup B$ 1 $I.2 \rightarrow I.1$, Fatoração $B = 0C \cup 10S \cup \varepsilon$ $I.2 \rightarrow I.3$, Fatoração 3 $I.2 \rightarrow I.5$, Fatoração e $I.5 \rightarrow I.4$, Fatoração 4 $C = 0B \cup 100S \cup 1$ $S = (10)^* B$ III1 $II.1 ightarrow {\tt Lema}$ de Arden $B=00B\cup0100S\cup01$ 3 $II.4 \rightarrow II.3$, Fatoração IV1 $S = (10)^* B$ 3 $B = (00)*0100S \cup (00)*01$ $III.3 \rightarrow \texttt{Lema}$ de Arden V3 $B = (00)*0100(10)*B \cup (00)*01$ $IV.3 \rightarrow IV.1$, Fatoração

 $V.3
ightarrow {\it Lema}$ de Arden

VI

3

B = ((00)*0100(10)*)*(00)*01