

АКАДЕМИЯ НАУК ТАДЖИКСКОЙ ССР

БЮЛЛЕТЕНЬ
СТАЛИНАБАДСКОЙ
АСТРОНОМИЧЕСКОЙ
ОБСЕРВАТОРИИ

№ 18

ИЗДАТЕЛЬСТВО АКАДЕМИИ НАУК ТАДЖИКСКОЙ ССР
СТАЛИНАБАД
1956

STAT

АКАДЕМИЯ НАУК ТАДЖИКСКОЙ ССР

БЮЛЛЕТЕНЬ

СТАЛИНАБАДСКОЙ АСТРОНОМИЧЕСКОЙ
ОБСЕРВАТОРИИ

№ 18

ИЗДАТЕЛЬСТВО АКАДЕМИИ НАУК ТАДЖИКСКОЙ ССР
СТАЛИНАБАД
1956

П. Б. БАБАДЖАНОВ

**ОБ ОДНОМ ФОТОГРАФИЧЕСКОМ МЕТЕОРЕ
δ — АКВАРИД**

Фотографическими методами метеорный поток δ—Акварид изучен пока очень мало. Лишь сравнительно недавно Ф. Райтом, Л. Яккия и Ф. Уипплом [1] были опубликованы результаты обработки корреспондирующих фотографий пяти метеоров этого потока, полученные на Гарвардской обсерватории.

Очень малое перигелийное расстояние орбиты является характерным для этого потока, которое по фотографическим данным составляет в среднем 0.06 а. е., в то время как для всех до сего времени сфотографированных метеоров $q > 0,09$ а. е. На расстоянии 0.06 а. е. от Солнца температура достигает 1000—1100°К, что должно сказаться на природе метеорных тел потока δ—Акварид. Интересным является и то, что, как отмечают авторы вышеуказанной работы [1], эффект Пойнティングа-Робертсона не является активным в рассеянии метеорных тел потока δ—Акварид. Поэтому дальнейшее изучение этого потока фотографическим методом, как наиболее точным в настоящее время, представляется необходимым.

В 1952 г. на Сталинабадской обсерватории камерами „Индустар-7“ ($D = 3$ см, $D:F = 1/3,5$) были получены корреспондирующие фотографии одного метеора δ—Акварид. Как было указано нами [2], точность определения радианта по методу больших кругов обратно пропорциональна углу сближения Q метеора. Вследствие того, что в 1952 году базис был небольшим (4.234 км) угол сближения Q метеора получился маленьким. Поэтому ранее полученные значения координат радианта [3] содержали ошибку, находящуюся в пределах возможных ошибок вычисления полюса большого круга по двум удаленным точкам изображения метеора [2]. А некоторые угловые элементы орбиты были подобны элементам потока δ—Акварид. Это побудило нас произвести более тщательную обработку фотографий этого метеора. Изображение метеора на фотоплёнке слабое и имеет всего два перерыва, пригодные для измерения и последующего вычисления скорости. Полученные два значения скорости не могли быть использованы для вычисления торможения метеора в атмосфере Земли и поэтому полученная средняя величина из двух значений наблюденной скорости метеора приравнивалась величине его внеатмосферной скорости.

Значение большой полуоси орбиты метеора получилось несколько выше значения, найденного Райтом и другими, тогда как остальные элементы орбиты находятся в хорошем согласии.

Ниже приведены результаты вычисления орбиты метеора. Все данные относятся к равноденствию 1950.0.

Год и месяц	1952 июль	ω	150. ⁰ 6
Мировое время	31. 8921	Ω	308. ⁵
Долгота Солнца	124. ⁵⁷	i	24. ⁰
Видимый радиант α	340. ⁰	$\pi(\omega + \Omega)$	99. ¹
δ	-15. ²	$a(a. e.)$	5.53
Исправл. радиант α	339. ⁵	e	0.983
δ	-15. 2	$q(a. e.)$	0.072
$\cos Z_R$	0. 59		
$\sin Q$	0. 012		
Элонгация E	63. 8		
H_1 —высота начала пути (км)	93. 8		
H_2 —высота конца пути (км)	90. 0		
V_∞ —скорость вне атмосф. (км/сек)	44.27		
V_G —геоцентрическая скорость (км/сек)	42.86		
V_H —гелиоцентрическая скорость (км/сек)	39.82		

Л И Т Е Р А Т У Р А

1. F. Wright, L. Jacchia and Whipple, AJ 59, № 1222, p. 400, 1954.
2. П. Бабаджанов, Бюллетень CAO № 17, стр. 3, 1956.
3. А. К. Соснова и Л. А. Катасёв, Бюллетень CAO, № 11, стр. 7, 1954, метеор № 10.

O. B. ДОБРОВОЛЬСКИЙ

О ТОЧНОСТИ ОПРЕДЕЛЕНИЯ УСКОРЕНИЙ В ХВОСТАХ КОМЕТ 1 ТИПА И ВОЗМОЖНОСТИ ОБНАРУЖЕНИЯ ИХ СИСТЕМАТИЧЕСКИХ ИЗМЕНЕНИЙ

Вопрос о точности определения ускорений в хвостах комет важен для оценки степени достоверности вычисляемых орбит облачных образований. Особое значение приобретает он в связи с другим важным вопросом—о существовании систематических изменений в ускорениях облачных образований ионизированных хвостов.

В частности, применительно к кометам Морхауза, Галлея, Уиппла-Федтке-Тевзадзе ряд исследователей высказывал мысль о существовании систематических изменений ускорения, связанных с изменением солнечной активности [1], а также формы и поверхностной яркости облачных образований [2].

Могут быть предложены по крайней мере два различных метода исследования систематических изменений ускорения: 1) изучение изменения ускорения отдельного облачного образования со временем; 2) статистическое сопоставление ускорений различных образований, наблюдавшихся одновременно.

Рассмотрим сначала, что может дать первый метод.

Обратимся в первую очередь к наиболее точным определениям ускорения, произведенным С. В. Орловым [3] в 1944 г. по 9 снимкам кометы Морхауза, выполненным в Гриничской Обсерватории 3 октября 1908 г. „По точности ведения и по удивительной резкости деталей гриничские снимки (рефлектор $D=76,4$ см)—отмечает С. В. Орлов [3]—лучшие, из виденных мною снимков комет“. Это позволило измерять положение деталей с большой точностью. Отношение μ результирующего ускорения к ускорению силы тяжести на единичном расстоянии от Солнца было определено по формуле:

$$k^2\mu = R''_o (R''_o - \Omega'_o R_o) \quad (*)$$

где R_o —радиус-вектор облачного образования в некоторый средний момент наблюдения M_o ;

R''_o —его вторая производная в момент M_o ;

Ω'_o —первая производная истинной аномалии облачного образования в момент M_o .

и k^2 —постоянная Гаусса.

Способ оценки погрешности в определении начальной скорости, ускорения и элементов орбиты облачного образования по невязкам эфемериды был разработан Егерманом [10]. Однако, формулы Егермана, ввиду их чрезвычайной громоздкости, не получили практического приложения за исключением одного примера, рассчитанного самим Егерманом.

Поэтому изберем другой, более прямой путь.

Для определения погрешности μ воспользуемся указаниями С. В. Орлова [3] о том, что: а) второй член в правой части (*) всегда в несколько десятков раз меньше первого и что поэтому ошибка в μ в основном определяется ошибкой, с какой известна R''_o ; б) ошибка в R''_o , возникающая вследствие возможного отклонения орбиты облачного образования от плоскости кометной орбиты, невелика.

На основании этих указаний С. В. Орлова примем, что относительная ошибка μ равна относительной ошибке R''_o , прописывающей от неточности измерений негатива.

Производная R''_o была найдена в [3] т. наз. методом средней кривой. На основании наблюдённых знаний радиуса-вектора R образования (изгиба в одном из лучей хвоста около головы) была построена плавная кривая, представляющая изменение R со временем M . С кривой сняты координаты её начала (R_1, M_1), середины (R_o, M_o) и конца (R_2, M_2). Затем образованы первые разности $R_1 - R_o$ и $R_o - R_2$ и вторая разность $\Delta = R_1 - R_o - (R_o - R_2) = R_1 + R_2 - 2R_o$. Производная R''_o найдена как отношение $\frac{\Delta}{W^2}$, где $W = M_1 - M_o = M_o - M_2$. Пренебрегая ошибками определения времени M , получаем, что относительная ошибка R''_o равна относительной ошибке второй разности Δ .

Погрешность единичного определения положения облачного образования по гриницким снимкам была порядка $10''$ [4]. Расстояние ρ кометы от наблюдателя $1,11 \text{ a. e.}$ Поэтому ошибка в определении R была не менее $5 \cdot 10^{-5} \text{ a. e.}$ Отсюда ошибка одной точки средней кривой, построенной по 9 единичным определениям $\frac{5}{3} \cdot 10^{-5} \text{ a. e.}$; ошибка первых разностей $\frac{5}{3}\sqrt{2} \cdot 10^{-5} \text{ a. e.}$ и ошибка вторых разностей $\frac{10}{3} \cdot 10^{-5} \text{ a. e.}$ Численное значение второй разности Δ было $33 \cdot 10^{-5} \text{ a. e.}$ Таким образом, относительная ошибка Δ составляет 10% . Такова же и относительная ошибка μ :

$$\mu = 199 \pm 20$$

В действительности ошибка μ даже несколько больше, чем найденная здесь из-за влияния условий проектирования радиуса вектора R на плоскость фотонегатива и возможного отклонения орбиты частиц хвоста от плоскости орбиты ядра кометы.

Найденное значение погрешности μ превосходит ожидаемое систематическое изменение μ . Последнее должно быть весьма мало из-за малого срока наблюдений, за который образование успело сместиться менее чем на треть миллиона км относительно ядра кометы. Например, по данным табл. 5 на таком отрезке пути вблизи от ядра систематическое падение составляет $3,1 \text{ см/сек}$ или $5,3 \text{ относительных единиц}$, в которых измеряется μ .

Для выявления систематических изменений μ естественно обратиться к более длительным рядам наблюдений облачных образований. Однако, при длительных наблюдениях в течение нескольких суток

затрудняется правильное отождествление, вследствие деформации и расплывания деталей, что значительно снижает точность измерений.

Например, в комете Галлея 1910 II по семи наблюдениям за 5—7 июня 1910 г. было найдено методом средней кривой численное значение $\Delta = 0,0110 \text{ a. e.}$ и $\mu = 69,5$ [4]. Погрешность единичного измерения могла достигать $3'$ [4]. Принимая погрешность индивидуального измерения $1',5$, получим при $\rho \approx 0,7 \text{ a. e.}$ с учётом условий проектирования погрешность определения R равную $1,1 \cdot 10^{-3} \text{ a. e.}$ Отсюда абсолютная погрешность второй разности $\frac{2}{\sqrt{7}} \cdot 1,1 \cdot 10^{-3} \text{ a. e.}$ или $0,83 \cdot 10^{-3} \text{ a. e.}$ и относительная погрешность $7,6\%$.

Следовательно

$$\mu = 69,5 \pm 5,3 \quad (**)$$

Таким образом, среднее ускорение за длительный интервал времени определяется увереннее, чем ускорение на небольшом интервале.

Однако систематический ход ускорения остаётся и здесь неопределенным, т. к. третья разности R , снимаемые со средней кривой, от которых зависит скорость изменения μ , оказываются сравнимы по величине с ошибками изменений.

Незначительно изменения в пределах ошибок наблюдения найденные R , можно получить любой наперед заданный ход μ . Например, достаточно применить приводимую в первой колонке табл. 1 систему поправок δR к упомянутым наблюдениям 5—7 июня 1910 г., чтобы получить ускорение μ , монотонно убывающее с расстоянием от ядра (последняя колонка табл. 1). Другая система поправок может дать монотонно возрастающие μ и т. д. Постоянным сохраняется только среднее значение μ , даваемое равенством (**).

Таблица 1

$\delta R \cdot 10^3$	R	ΔR	M	ΔM	$R' = \frac{\Delta R}{\Delta M}$	M	ΔM	$\frac{\Delta^2 R}{\Delta M}$	$R'' = \frac{\Delta^2 R}{\Delta M^2}$	$R^2 R''$	$\mu = \frac{R^2_0 R''}{k^2}$
1	2	3	4	5	6	7	8	9	10	11	12
	1,1342	0,0085	5,8146	0,2535	0,0336	5,9413					
+ 0,8	1,1427	0,0173	6,0681	0,4312	0,0401	6,2837	0,3424	0,0065	0,0190	0,0248	83,7
- 1	1,1600	0,0072	6,4993	0,1583	0,0455	6,5785	0,2948	0,0054	0,0183	0,0246	83,1
- 1	1,1672	0,0088	6,6576	0,1785	0,0493	6,7968	0,2183	0,0038	0,0174	0,0237	80,0
+ 1	1,1760	0,0239	6,8361	0,4542	0,0527	7,0632	0,2664	0,0034	0,0128	0,0178	60,1
+ 1	1,1999	0,0122	7,2903	0,2187	0,0553	7,4000	0,3367	0,0031	0,0092	0,0132	44,7
- 1	1,2121		7,5090								

Еще один пример. По снимкам 5—9 июня 1910 г. для той же кометы Галлея Н. Ф. Бобровников определил 26 индивидуальных значений R , на основе которых С. В. Орлов нашел $\mu = 65,5$ [4]. Ошибки в измеренных положениях облака часто достигали величины $2'-5'$ и редко сходились в пределах $1'$. Среднее квадратичное отклонение наблюдённых R от вычисленной С. В. Орловым эфемериды было $0,0044 \text{ a. e.}$ Повидимому, средняя ошибка измерений была близка к этой величине.

При $\mu=65,5$, $R=1,20$ а. е. и $W=1^d,63$ получаем, отпуская малый член высшего порядка, вторую разность

$$\Delta = \frac{W^2 k^2 \mu}{R^2} = 0,036 \text{ а. е.}$$

Её относительная ошибка составляет $\frac{0,0044}{0,036} \cdot \frac{2}{\sqrt{26}} = 0,048$ или 4,8%. Отсюда

$$\mu = 65,5 \pm 3,1$$

Таким образом, среднее для всего интервала наблюдений значение μ определяется достаточно уверенно. Однако, и здесь о ходе μ сказать ничего нельзя. Как убедительно показал С. В. Орлов [4], группируя по разному наблюдённые точки, можно, оставаясь в пределах погрешности наблюдений, получить самые разнообразные значения μ на отдельных участках кривой и получать самый различный ход μ .

Отметим еще, что в упомянутом примере Егермана [10] при сравнительно большой точности измерений (ошибка от 13" до 54") и больших интервалах между снимками отождествить облачное образование удалось только на трёх снимках, чего недостаточно для определения хода μ . Попытка отождествить облачное образование еще на 2 снимках не дала желательных результатов, т. к. отклонение измеренного положения от эфемериды Егермана оказалось на порядок выше ошибки измерения [10].

Итак, приходим к выводу, что по движению отдельных облачных образований в настоящее время не представляется возможным получить сведения об изменчивости или постоянстве отталкивателной силы Солнца; может быть определено только некоторое среднее значение ускорения для всего интервала наблюдений.

Рассмотрим теперь возможности метода систематического сопоставления ускорений различных образований наблюдаемых одновременно.

Применение этого метода покажем на примере кометы Морхауза. М. Вольфом [5] было измерено более 100 скоростей облачных образований за период со 2 октября по 16 ноября 1908 г. На основе этих скоростей были вычислены соответствующие ускорения [4, 6] в предположении равномерноускоренного движения. Исследуем зависимость найденных ускорений от геомагнитной активности и расстояния детали от ядра кометы. Относящиеся сюда геомагнитные данные (умноженные на 10 магнитные суточные характеристические числа [7]) приводятся в таблице 2.

Редукционные величины Δt для приведения к центру кометы приводятся в табл. 3. Они вычислены по формуле:

$$\Delta t = \frac{1}{\omega_{\odot}} \left\{ A - \varpi + \operatorname{arc} \operatorname{tg} [\operatorname{tg}(\varphi + \omega) \cos i] \pm 180^\circ \right\} + \frac{r - r_{\odot}}{v}$$

где $\omega_{\odot} = 13,4 \frac{\text{град}}{\text{сут}}$ — скорость вращения Солнца;

A — долгота Солнца;

r_{\odot} — радиус-вектор Земли;

r — радиус-вектор кометы;

v — скорость геоактивных корпускул, равная по Рихтеру [8]

$$7 \cdot 10^7 \frac{\text{см}}{\text{сек}}$$

$$\varphi = \operatorname{arc} \cos \left(\frac{2q}{r} - 1 \right).$$

Элементы орбиты кометы q , ϖ , ω и i приняты по Кобольду [9].

Таблица 2

№ оборота Солнца	1908 г.	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	
		сент.	окт.	ноябр.	дек.	янв.	фев.	март	апр.	май	июн.	июл.	авг.	сент.	окт.	ноябр.	дек.	янв.	фев.	март	апр.	май	июн.	июл.	авг.	сент.	окт.	ноябр.	дек.
1037	сент.	9	11	12	18	20	8	5	4	13	11	6	6	2	1	4	5	8	7	3	5	14	20	19	11	4	8	9	13
1038	окт.	6	12	6	2	0	1	1	13	13	10	3	3	5	10	2	1	2	1	1	2	2	5	5	0	2	4	14	11
1039	ноябр.	2	8	6	1	0	1	6	18	13	11	9	6	3	9	5	2	17	10	5	3	3	1	1	5	3	4	4	10

Таблица 3

Дата 1908 г.	Δt
Октябрь 1	-2 ^d ,4
16	± 0 ,0
31	+2 ,4
Ноябрь 15	+5 ,2

Сопоставляя данные таблиц 2 и 3 приходим к выводу, что датам наблюдения кометы соответствуют следующие характеристические числа магнитной активности (табл. 4).

Таблица 4

Дата 1908 г.	Магнитное характеристич- ское число
Октябрь 2	19
15	3
16	3
21	1
27	2
29	14
Ноябрь 10	9
11	5
16	3

Таким образом, 2 октября следует ожидать при прочих равных условиях значительно больших ускорений, чем в остальные дни. Поэтому наблюдения 2 октября выделены в отдельную группу, а остальные наблюдения рассматривались совместно. Всего было использовано тоже, что и Вольфом количество наблюдений (126). Для изучения зависимости ускорения a от расстояния s до ядра кометы наблюдения были разбиты на группы в порядке возрастающих s и образованы средние. Разбивка на группы производилась таким же образом, как и Вольфом (см. табл. 5). Численности VI и VII группы на единицу отличаются от принятых Вольфом из-за несущественной погрешности, допущенной Вольфом при разбивке наблюдений на группы. Численность X группы уменьшена втрое по сравнению с принятой Вольфом за счёт выделения наблюдений 2 октября.

Средние значения a и их средние квадратичные отклонения, содержащиеся в последней колонке таблицы 5, были образованы по числовым данным работы [6]. (Кстати отметим опечатку в списке s и a , приводимом в [6]: предпоследнее значение s следует читать 2,76, а не 22,76).

Как видим, имеется систематический ход a с s , выходящий за пределы случайных ошибок определения a .

Таблица 5

№	n	Среднее s миллионы км	$a \frac{см}{сек^2}$
I	7	0,38	$62,9 \pm 10,9$
II	15	0,87	$65,8 \quad 6,9$
III	12	1,32	$67,0 \quad 11,8$
IV	11	1,89	$45,5 \quad 8,5$
V	18	2,83	$42,4 \quad 5,4$
VI	11	3,56	$37,8 \quad 4,0$
VII	16	4,75	$33,0 \quad 4,0$
VIII	16	7,24	$41,3 \quad 4,6$
IX	11	13,84	$44,8 \quad 10,2$
X	3	23,33	$22,7 \pm 10,4$

Таблица 6

s миллионы км	$a \frac{см}{сек^2}$
17,5	244
19,8	118
20,2	130
20,2	122
29,7	6
37,3	8

Обращаясь теперь к наблюдениям 2 октября, приводимым в табл. 6, видим, что они:

- 1) полностью соответствуют найденному ходу a с s ;
- 2) дают ускорения, значительно большие, чем таблица 5 при тех же значениях s , притом лежащие далеко за пределами случайных отклонений, что находится в соответствии с магнитными характеристическими числами.

Таким образом, статистический метод, благодаря большему обилию используемого наблюдательного материала, позволяет выявлять некоторые систематические изменения ускорения, превышающие случайные ошибки определения.

В заключение выражаем благодарность проф. С. В. Орлову за критические замечания, стимулировавшие нашу работу.

Л И Т Е Р А Т У Р А

1. L. Biermann, Zs. f. Ap. 29, 274, 1951; Zs. f. Naturforschung 7 a, 127, 1952.
2. О. В. Добровольский, Бюлл. САО № 10, 1954.
3. С. В. Орлов, А. Ж. XXI, 205, 1944.
4. С. В. Орлов, Кометы ОНТИ, 1935.
5. M. Wolf, AN, 180, 1, 1909.
6. О. В. Добровольский, Бюлл. САО № 12, 1955.
7. S. Chapman, Geomagnetism, Vol II, Oxford, 1940.
8. N. Richter, AN, 281, 241, 1954.
9. H. Kobold, AN, 179, 273, 1909.
10. R. Jaegermann, AN, 176, 269, 1907.

Н. М. ШАХОВСКОЙ

ЭЛЕМЕНТЫ И КРИВАЯ БЛЕСКА V 748 ЛЕБЕДЯ

Переменность блеска V 748 *Syg* (СПЗ 880 = КЗП 5266) открыла А. Паренаго [1] в 1938 г. П. П. Паренаго [1] просмотрел её на московских пластинках и отнёс к затменным, обнаружив 2 минимума блеска. В 1952 г. В. Венцел [2] опубликовал моменты еще 3-х минимумов, найденных на Зонненбергских пластинках.

Блеск V 748 *Syg* оценивался на 341 пластинке Службы неба Сталинабадской обсерватории, полученных в 1940—1954 г.г. Использовались звёзды сравнения Венцела [2]. Так как переменная близка к пределу использовавшихся пластинок ($12^m - 12^m.5$), значительная часть оценок неуверенна. На 54 пластинках в области минимумов переменная независимо оценивалась Г. Е. Ерлековой.

Было обнаружено 8 уверенных минимумов блеска. Комбинацией их с опубликованными [1, 2] моментами был найден период, равный $10^d.490$. Далее это значение было уточнено по всем наблюдениям в минимуме и вблизи него. В результате были получены элементы:

$$\text{Min} = J. D. 2430145.545 + 10^d.49018 \cdot E.$$

Представление этими элементами всех уверенно наблюдавшихся минимумов приведено в таблице 1.

Таблица 1

$J. D.$	J_{pg}	E	$O-C$	$J. D.$	J_{pg}	E	$O-C$
2428750.38	$12^m.7$	—133	$+0^d.03$	2431383.209	$12^m.3$	+118	$-0^d.177$
29117.542	12 .6	— 98	$+0 .035$	32065.346	12 .2	+183	$+0 .098$
159.415	12 .4	— 94	$-0 .053$	768.196	12 .4	+250	$+0 .096$
30145.465	12 .4	0	$-0 .080$	33114.471	12 .3	+283	$+0 .205$
974.323	12 .2	+ 79	$+0 .054$	156.201	12 .2	+287	$-0 .026$
995.122	12 .1	+ 81	$-0 .128$	177.240	12 .2	+289	$+0 .037$

Первый минимум таблицы определён Паренаго, а 3 следующих — Венцелом.

С найденными элементами была построена средняя кривая, которая даётся в таблице 2 и изображена на рис. 1.

Рис. 1.

Таблица 2

<i>f</i>	<i>J_{pg}</i>	<i>n</i>	<i>f</i>	<i>J_{pg}</i>	<i>n</i>	<i>f</i>	<i>J_{pg}</i>	<i>n</i>
0 ^p .010	12 ^m .22	3	0 ^p .386	11 ^m .86	15	0 ^p .729	11 ^m .86	15
0 .021	11 .98	4	0 .422	11 .89	15	0 .762	11 .83	15
0 .050	11 .80	15	0 .465	11 .84	15	0 .807	11 .78	15
0 .107	11 .84	15	0 .508	11 .84	15	0 .853	11 .82	15
0 .153	11 .85	15	0 .550	11 .79	15	0 .910	11 .86	15
0 .217	11 .81	15	0 .584	11 .82	15	0 .943	11 .87	15
0 .280	11 .78	15	0 .626	11 .78	15	0 .972	11 .94	4
0 .339	11 .86	15	0 .687	11 .85	15	0 .998	12 .16	4

Из наших наблюдений можно вывести:

$$\text{Max} \approx 11^m.8; \quad \text{Min} \geq 12^m.4; \quad D \approx 0^p.045$$

Вторичный минимум не обнаружен,

Ниже публикуются все наши наблюдения *V 748 Cygni*.

Знаком ! отмечены средние значения из оценок Ерлексовой и моих в тех случаях, когда расхождение между ними не превышало 0^m.1.

Таблица 3

<i>J. D.</i>	<i>J_{pg}</i>	<i>J. D.</i>	<i>J_{pg}</i>	<i>J. D.</i>	<i>J_{pg}</i>
2429...		2430...		2430...	
548.285	12 ^m .04;	257.160	11 ^m .73	520.382	11 ^m .84
2430..		259.201	11 .77	531.324	11 .81
197.330	11 .84;	279.135	11 .81;	545.281	11 .84
.354	11 .871	491.393	11 .94	590.254	11 .81
202.338	11 .88	518.358	11 .81	604.163	11 .71
256.219	11 .81	519.290	11 .78;	606.153	11 .91

<i>J. D.</i>	<i>J_{pg}</i>	<i>J. D.</i>	<i>J_{pg}</i>	<i>J. D.</i>	<i>J_{pg}</i>
2430...		2431...		2432...	
618.288	12 ^m .17!	259.302	11 ^m .92	061.376	11 ^m .96
643.292	11 .88:	262.246	11 .96	063.376	11 .57
646.278	11 .88	.407	11 .81	065.346	12 .24!
663.191	11 .81	265.292	11 .92:	066.351	11 .96
696.142	11 .88:	266.375	11 .88:	067.384	11 .96
854.367	11 .79	269.294	12 .04	443.198	11 .79!
898.283	11 .96	281.238	11 .88	444.246	11 .96
901.281	11 .85!	284.226	11 .96	703.308	11 .57
903.316	11 .96:	287.270	11 .84	704.319	11 .88
906.308	11 .96	.340	11 .73:	709.406	11 .88
926.222	11 .96	289.258	11 .96	710.324	11 .84
933.246	11 .88!	290.288	11 .96:	711.304	11 .57
956.213	11 .57:	292.238	11 .88	712.312	11 .96:
957.172	11 .49	.299	11 .92:	713.273	11 .81:
.208	11 .65	310.171	11 .96:	715.335	12 .14!
959.321	11 .57	383.209	12 .25!	718.410	11 .92
.246	11 .73:	563.464	11 .45	719.427	11 .81
960.266	11 .73:	586.361	11 .81	727.225	11 .88
961.187	11 .96:	587.349	12 .04!	728.231	11 .81
.219	11 .77	615.302	12 .08:	730.228	12 .00
966.207	11 .84	620.323	11 .81	731.242	11 .96:
967.183	11 .73:	637.264	11 .73	732.332	11 .92
969.156	11 .84	639.243	11 .96	733.260	11 .81:
970.192	11 .49	643.257	11 .88	734.281	11 .77
.230	11 .73:	649.243	12 .04	737.238	11 .70!
971.198	11 .73	665.218	11 .73:	738.235	11 .41
974.323	12 .17!	726.227	11 .88	.365	11 .96
991.140	11 .57	918.451	11 .73	739.213	11 .77
.167	11 .81:	922.479	12 .00:	741.240	11 .77
995.122	12 .12:	936.405	11 .73:	.340	11 .81:
2431...		977.330	11 .73	742.226	11 .84
000.337	11 .84	986.278	11 .73	743.325	11 .81:
001.121	11 .81	992.313	11 .64	744.288	11 .92
021.251	11 .81	999.340	11 .81	.317	11 .96
047.175	11 .96!	2432...		760.208	11 .57
051.102	11 .96	023.229	11 .88	761.260	11 .81
054.138	11 .69:	027.212	11 .81:	762.181	11 .81:
057.204	11 .88!	033.254	11 .98!	766.300	11 .84
058.144	11 .81	041.446	11 .77	767.262	11 .84!
232.320	11 .84	056.295	11 .92	.293	11 .79!
253.291	11 .84	058.431	11 .88	768.196	12 .35!
257.265	11 .88:	059.158	11 .96	769.238	11 .73

<i>J. D.</i>	<i>J_{pg}</i>	<i>J. D.</i>	<i>J_{pg}</i>	<i>J. D.</i>	<i>J_{pg}</i>
2432...		2432...		2433...	
771.269	11 ^m .65	888.115	11 ^m .84	183.320	11 ^m .81
772.258	11 .96	2433...		184.289	11 .88
.319	11 .96:	062.371	11 .72	186.285	11 .77
773.326	11 .92	067.333	11 .81	.354	11 .84
787.163	11 .84	.360	11 .88	238.139	11 .96:
788.165	11 .80	070.358	11 .81	416.358	1 .57
789.183	12 .08:	071.380	11 .81:	417.390	11 .87!
791.227	11 .96:	087.353	11 .81	.413	11 .90!
793.225	11 .88:	088.287	11 .57	424.383	11 .77
794.251	11 .57:	095.277	11 .81	445.335	11 .81
796.269	11 .86:	096.391	11 .77	.361	11 .45
797.228	11 .88:	098.309	11 .77	.386	11 .81
800.217	11 .88:	101.316	11 .84	455.333	11 .81
801.280	11 .84:	114.471	12 .28	.382	11 .96:
807.380	11 .73:	115.278	11 .81	598.118	11 .73
823.163	11 .96:	117.362	11 .65	825.365	11 .96
824.260	11 .96:	120.269	11 .57:	826.393	11 .86:
825.172	11 .92	121.297	11 .73	832.344	11 .88
826.227	11 .88	124.271	11 .72	843.433	11 .84
827.169	12 .00	.336	11 .83!	852.232	11 .84
829.175	11 .57:	125.261	11 .80!	853.290	11 .92
830.247	11 .84!	130.283	11 .88	856.250	11 .81
.302	11 .73:	132.362	11 .96	857.331	11 .92
831.215	11 .88!	.419	11 .92	858.282	11 .94!
832.188	11 .96	.446	11 .81	.305	11 .94!
833.207	11 .81:	14.398	11 .96	859.329	11 .82!
834.259	11 .77	153.306	11 .84	860.351	11 .77
836.335	11 .92	155.207	11 .81!	.374	11 .92
847.124	11 .81	156.201	12 .16	.397	11 .88
849.099	11 .96	157.351	11 .84	862.286	11 .84
.124	11 .96:	160.325	11 .92	863.303	11 .88:
850.111	11 .73	161.328	11 .84	.326	11 .92
857.113	11 .92	.357	11 .96	865.304	11 .88
859.134	12 .04	175.249	11 .92	866.310	11 .88
860.194	11 .69	176.226	11 .73	.333	11 .88
877.118	11 .92	.260	11 .81	868.383	11 .76!
881.118	11 .73	177.240	12 .21!	881.206	11 .84
883.156	12 .04!	179.236	11 .73	883.254	11 .77
884.111	11 .60!	.292	11 .77	885.240	11 .88
.187	11 .57:	.320	11 .92	890.270	11 .78
886.104	11 .73	181.324	11 .81	892.285	11 .88
887.124	11 .84	.352	12 .00:	896.245	11 .96

<i>J. D.</i>	<i>J_{pg}</i>	<i>J. D.</i>	<i>J_{pg}</i>	<i>J. D.</i>	<i>J_{pg}</i>
2433...		2434...		2434...	
896.269	12 ^m .00	264.169	11 ^m .88	650.171	11 ^m .88
399.314	11 .81	271.224	11 .84	654.193	11 .81
.336	11 .77	274.204	11 .73	658.135	11 .92
915.222	11 .84	.238	11 .92	659.175	11 .84
.245	12 .00	278.241	12 .01!	738.078	11 .86
916.218	11 .84	281.193	11 .84	920.361	11 .86
.245	11 .57:	.221	11 .88	925.353	11 .94
919.246	11 .81	281.327	11 .81	930.365	11 .94
.269	11 .84	295.254	11 .92	958.326	11 .86
940.172	11 .78	299.188	11 .86!	961.314	11 .82
2434...		.191	11 .92!	977.253	11 .86
149.353	11 .77	568.290	11 .88	979.257	11 .78
151.397	11 .85!	574.366	11 .81:	984.215	11 .86:
153.414	11 .76!	576.374	11 .81:	986.284	11 .82
181.395	11 .81	578.367	11 .73:	992.287	11 .79!
182.331	11 .84	600.362	11 .81:	2435...	
183.397	11 .93:	603.293	11 .81	008.172	11 .74
189.403	11 .81	623.226	11 .81:	012.182	11 .86
211.328	12 .00	625.187	11 .75	014.186	11 .86
.356	11 .88	631.206	11 .88	037.150	11 .74
214.365	11 .88!	631.208	11 .94!	038.181	11 .78

Л И Т Е Р А Т У Р А

1. *И. П. Паренаго, П. З. В.*, 206, 1938.
 2. *W. Wenzel, A. N.*, 281, 179, 1953.

Г. Е. ЕРЛЕКСОВА

НОВАЯ ДОЛГОПЕРИОДИЧЕСКАЯ ЦЕФЕИДА КЗП 4952

Неременность этой звезды была обнаружена Хоффмейстером, который причислил её к типу алголя. По пластинкам Сталинабадской службы неба было сделано 103 оценки блеска КЗП 4952 по пасенсибилизированным и 22 по напхроматическим пластинкам.

Звездами сравнения служили звёзды, обозначенные на рис. 1.

Рис. 1.

Звездные величины получены привязкой Stand of magn of astrophot Cat [20° - 23°30'] по 6 пластинкам с помощью микрофотометра МФ-2, они выравнены стенной шкалой и приведены к интернациональной системе.

Оказалось, что КЗП 4952 не алголь, а долгопериодическая цефеида с элементами

$$\text{Max} = 9435365.19 + 30^d 46^m$$

По 103 оценкам была построена средняя кривая блеска, которая приведена в таблице 1 и изображена на рис. 2.

Таблица 1

Фаза	m_{pg}	n									
0.004	11.03	2	0.249	11.61	10	0.467	11.81	12	0.754	>11.85	7
.037	11.08	4	.326	11.70	12	.554	11.91	10	.855	11.79	9
.074	11.23	5	.374	11.75	12	.649	11.92	9	.962	11.24	5
.190	11.48	6									

Средняя кривая блеска дает $M = 11^m.0$, $m = 11.9$, $M - m = 0^p.4$, нормальный максимум $JD\ 2433811.73$ $E = -51$.

Рис. 2.

Оценки на панхроматических пластинах не противоречат найденным элементам, но построить среднюю кривую не представляется возможным, так как оценок всего 22 и приходятся они, главным образом, на минимальные фазы. Наблюдения по панхроматическим пластинкам приведены в таблице 3, они даны в степенях. В таблице 2 приведены наблюдения по несенсибилизированным пластинкам.

Таблица 2

$J. D..$	m_{pg}	$J. D.$	m_{pg}	$J. D.$	m_{pg}
24...		24...		24...	
32737.340	(11.75	790.240	11.66:	086.342	11.23:
738.331	.99	847.126	.61:	098.412	.88
742.326	.98:	33067.390	.95	099.373	.88:
773.290	.88	070.419	.82	117.309	.48

<i>J. D.</i>	<i>m_{pg}</i>	<i>J. D.</i>	<i>m_{pg}</i>	<i>J. D.</i>	<i>m_{pg}</i>
24...		24...		24...	
120.326	11.75:	.405	11.75:	911.17+	11.82
125.290	.63	836.326	.80	913.209	.75
132.335	12.28	.376	.50:	34215.307	.38
149.222	11.62	837.327	.98	.330	.75
.247	.70	.354	.85	217.318	.71
155.200	.98	840.319	.14	219.372	.75
.290	.89	842.405	10.98	237.252	.38
157.231	.88	843.396	11.10	244.297	.02
173.184	.02	856.345	11.98	245.221	.33
174.167	.33	857.283	11.62	.316	.33:
178.167	.75	.358	12.10	248.234	.75
179.182	.70	858.251	11.98	.281	.54
180.157	.82	.323	.94:	249.218	.61
181.193	.80	859.332	.95	.267	.95:
183.222	.75:	860.314	12.13	270.153	.38
184.151	.98	861.320	11.98	.200	.16
.181	.98	862.312	.98:	272.206	.02
186.214	.75:	864.254	(.75	279.145	.43
187.199	.98	.299	.90	.190	.54
207.126	.80:	865.317	12.00	280.225	.70
212.093	.98	866.242	(11.75	660.158	.85
214.123	.85	.292	.87	35360.212	.75::
447.406	.03:	883.201	.65	362.228	.47
456.377	.64	.236	.52	364.195	.23
.401	.75	884.205	.75	365.190	.08
825.365	.57	.229	.62	366.224	.18
826.364	(.75	886.246	.94	368.192	.28
829.354	.78	888.254	.88	371.201	.62
.406	.75	891.233	.75	373.261	.65
832.326	.84	892.276	.95	394.133	.13
				395.153	.33:

Таблица 3

<i>J. D.</i>	<i>st</i>						
24...		24...		24...		24...	
34921.362	6.9	34985.187	5.2:	35007.181	5.8	35032.099	-1.0
923.394	10.8	.264	(7.8	008.172	(7.8	034.112	5.0
954.319	7.8	988.249	6.8	014.171	5.0:	035.115	0.0:
958.289	4.3:	989.169	7.8	015.174	4.4	036.125	3.9
959.285	6.2	990.219	7.8:	016.160	7.8	037.126	(7.8
961.280	7.8	35004.168	11.5::				

Л И Т Е Р А Т У Р А

1. Hoffmeister, Erg AN 12 № 1. 1949.

О. Н. ВАСИЛЬЯНОВСКАЯ

ПРЯМЫЕ МЕТОДЫ ИЗУЧЕНИЯ КОЭФФИЦИЕНТА ПРОЗРАЧНОСТИ АТМОСФЕРЫ В ДНЕВНОЕ ВРЕМЯ

Как известно, любые фотометрические наблюдения небесных светил, прежде чем сравниваться между собой или применяться для каких-либо расчётов, должны быть освобождены от ослабляющего влияния земной атмосферы. Возрастающая точность фотометрических приборов, несомненно, требует всё более точного учёта экстинкции. Последняя ставит предел точности современным фотометрическим наблюдениям. Поэтому имеющиеся методы определения коэффициента прозрачности не могут в достаточной мере удовлетворить наблюдателя-астронома. Они или очень сильно растянуты по времени или включают в себя ошибки каталогных величин звёзд. Иногда приходится пользоваться специальными таблицами ослабления света, построенным по тем или иным средним значениям экстинкции. Например, к этому прибегают при наблюдениях переменных звёзд, когда обрабатываются наблюдения за прошлые годы. Это вносит в обработку наблюдений значительные погрешности, так как прозрачность атмосферы в действительности постоянно меняется. Таким образом, определение коэффициента прозрачности атмосферы составляет необходимый элемент фотометрического наблюдения и недостаточная разработанность используемых для этого методов является самым слабым и самым больным местом астрофотометрии.

Особенно остро встает этот вопрос при наблюдениях в дневное время, когда единственным доступным наблюдателю светилом является Солнце. Между тем измерения прозрачности атмосферы днём имеют очень важное теоретическое и практическое значение для астрофотометрии, для геофизики и для светотехники. Из области астрофотометрии основными задачами, в которых нужно знать коэффициент прозрачности атмосферы в дневное время, являются следующие.

1. Сравнение света Солнца со светом звезд, которое даёт нам важнейшую для звёздной астрономии постоянную — звёздную величину Солнца.

2. Сравнение света Солнца со светом Луны, позволяющее находить сферическое альбедо Луны.

3. Сравнение света Солнца с единицей лабораторной освещённости — люксом, дающее так называемую световую солнечную постоянную.

4. Стандартизация в области поверхностной фотометрии планет и спутников по солнечному свету, преследующая цель определения коэффициента яркости или других характеристик отражательной способности поверхностей этих небесных тел.

б. Фотометрия солнечной короны, где учёт дневного атмосферного ослабления представляет особые трудности. Эти трудности создаются, во-первых тем, что здесь нет возможности отбирать для наблюдений для с хорошими атмосферными условиями и потому приходится вести наблюдения при всяких условиях, даже в небольшие просветы облаков. Во-вторых, и в случае устойчиво ясной погоды всегда остается сомнение относительно возможности временного изменения прозрачности около полной фазы, вызванное самим явлением затмения. Для учёта таких изменений были предложены разные методы, однако, на практике они почти не применяются.

В дневное время и в лунные ночи из прямых методов могут быть применены только два — классический „долгий“ метод Бугера (1), заключающийся в сравнении света одного светила при разных зенитных расстояниях, и „короткий“ метод одного измерения при известном заатмосферном значении освещённости от светила. В первом методе не требуется знания истинной яркости светила или освещённости, создаваемой светилом на плоскости, расположенной вне атмосферы. Наблюдаемые нами объекты — Солнце и Луна дают достаточно интенсивный свет, чтобы созданную ими освещённость можно было наблюдать при помощи обычного визуального фотометра — иллюминатора, снабжённого рассеивающим приёмным экраном, что представляет собой большое преимущество, ибо допускает применение поверхностных фотометров, дающих значительно большую точность, чем визуальная точечная фотометрия.

В целях изучения различных методов определения коэффициента прозрачности атмосферы на Сталинабадской А.О в 1950—1951 г.г. проводились наблюдения с помощью универсального клинового фотометра системы В. В. Шаронова (2) (новая модель), изготовленного механическими мастерскими института математики и механики Ленинградского Государственного Университета в 1949—1950 г.г.

Для получения коэффициента прозрачности прямая солнечная освещённость измерялась при помощи имеющейся для этой цели специальной насадки, приёмным экраном в которой служило молочное стекло. Измерения проводились через интервалы времени, соответствующие изменению воздушной массы на 0.5. Перед окуляром фотометра при этом был установлен специальный зелёный светофильтр, назначение которого состоит в том, чтобы устранять различия в цвете сравниваемых полей, сопровождающие изменение зенитного расстояния Солнца и неизбежные при постоянной окраске поля сравнения, определяемой неизменным значением отсчёта на шкале синего клина фотометра.

Устраняя систематические погрешности, связанные со сравнением полей разной окраски, светофильтр в то же время изменяет участок спектра, в котором ведется измерение. Поэтому остановимся несколько подробнее на фотометрической системе, к которой относятся наши измерения и которая определяется кривой спектральной чувствительности приёмника лучистой энергии. В нашем случае таким приёмником является глаз в соединении с зеленым светофильтром. Значения спектрального коэффициента пропускания зелёного светофильтра были определены в научно-исследовательском физическом институте ЛГУ

на спектрометре Бекмана. Как известно, спектральная чувствительность установки, состоящей из приёмника и селективно-поглощающего светофильтра, пропорциональна произведению $s(\lambda) t(\lambda)$ спектральной чувствительности приёмника $s(\lambda)$ и спектральной прозрачности фильтра $t(\lambda)$. Выполняя умножение значений $s(\lambda) = v(\lambda)$ для нормального глаза (3) при дневных яркостях (так называемая видность лучистой энергии) на полученные значения $t_{\text{эфф}}(\lambda)$ и относя результат к максимуму, как к единице, мы получим значения $s_a(\lambda)$ спектральной чувствительности приёмника глаз + фильтр (таблица 1). Приведённая кривая видности относится только к условиям работы дневного зрительного аппарата (наблюдения яркого света). При переходе к ночному зрению её вид несколько меняется. Рассматривая полученную кривую спектральной чувствительности, мы видим, что измерения производились в довольно узком участке спектра.

Таблица 1

λ	$s_a(\lambda)$	λ	$s_a(\lambda)$	λ	$s_a(\lambda)$
380	0.0000	530	0.7034	680	0.0014
390	0.0000	540	0.8777	690	0.0009
400	0.0002	550	0.9950	700	0.0005
410	0.0004	560	0.9552	710	0.0004
420	0.0009	570	0.7656	720	0.0002
430	0.0015	580	0.4350	730	0.0002
440	0.0020	590	0.1968	740	0.0001
450	0.0030	600	0.1262	750	0.0000
460	0.0055	610	0.0664	760	0.0001
470	0.0127	620	0.0411	770	0.0000
480	0.0306	630	0.0064		
490	0.0668	640	0.0035		
500	0.1792	650	0.0043		
510	0.2917	660	0.0029		
520	0.5055	670	0.0020		

Это является некоторым преимуществом, так как основные формулы экстинкции полностью справедливы лишь для монохроматического пучка света. Эффективная длина волны $\lambda_{\text{эфф}}$ для употребляемой нами системы была получена по известной формуле

$$\lambda_{\text{эфф}} = \frac{\int_0^{\infty} \lambda s(\lambda) d\lambda}{\int_0^{\infty} s(\lambda) d\lambda}$$

путём численного интегрирования. Для дневного зрения получено $\lambda_{\text{эфф}} = 549 \text{ м}\mu$. Таким образом эффективная длина волны нашей системы близка к эффективной длине волны нормальной визуальной системы, которая, как известно, характеризуется значением $\lambda_{\text{эфф}} = 560 \text{ м}\mu$.

Обработка наблюдений проводилась по обычной формуле

$$\log E = \log E^o + M(z) \log p \quad (1),$$

где E — значение прямой освещённости от светила на плоскости, расположенной перпендикулярно падающим лучам в месте наблюдения, E^o — значение освещённости от светила на плоскости, расположенной перпендикулярно падающим лучам вне атмосферы, $M(z)$ — воздушная масса при зенитном расстоянии z , p — коэффициент прозрачности атмосферы.

Поскольку в нашем случае абсолютные значения освещённости E интереса не представляли, обработку наблюдений было удобновести непосредственно в отсчётах клина x , не переходя к значениям освещённости E . Как известно, для клинового фотометра соотношение между отсчётами x и логарифмами освещённостей имеет вид

$$\log E - \log E^o = g(x - x_o)$$

где x_o представляет отсчёт по шкале рабочего клина, соответствующий значению освещённости от светила вне атмосферы, и является вторым неизвестным нашей системы уравнений, g — константа рабочего клина фотометра.

Это позволяет переписать формулу (1) в следующем виде

$$x - x_o + \frac{1}{g} M(z) \log p \quad (2)$$

Таким образом можно строить бугоровский график откладывая по оси абсцисс воздушную массу $M(z)$, а по оси ординат прямо отсчёт клина x . Угловой коэффициент полученной прямой, по умножении на константу клина, даст искомое значение логарифма коэффициента прозрачности p .

Константа рабочего клина, расположенного против окуляра, была определена в фотометрической лаборатории АО ЛГУ посредством поляризационного фотометра Розенберга. Для приближения условий измерений к условиям практики исследуемый клин не вынимался из клиновой коробки универсального фотометра. Окулярная часть универсального фотометра удалялась и фотометр устанавливался так, чтобы внутреннее поле фотометра Розенберга заполнялось исключительно светом лампы универсального фотометра, помещаемой перед измеряемым клином. Патрубок перед другим клином закрывался светонепроницаемым колпачком. Приёмными экранами в обоих фотометрах служили матовые стёкла. Внешнее поле фотометра Розенберга заполнялось светом лампы однотипной с лампой универсального фотометра, освещённость последнего изменялась с помощью поляризационной системы. Обе лампы, включённые в сеть параллельно, питались городским током от понижающего трансформатора. Колебания тока регулировались реостатами и контролировались вольтметром. Измерения велись через зелёный фильтр глазной диафрагмы универсального фотометра. Плотность рабочего клина универсального фотометра измерялась через каждый миллиметр шкалы на протяжении 40 мм дважды в прямом и обратном порядке. Дополнительно были проведены измерения студентами ЛГУ Кухаренко и Ивницкой. В результате обработки наблюдений по способу наименьших квадратов для постоянной рабочего клина универсального фотометра было получено следующее значение

$$g = 0.0549 \pm 0.0004.$$

При использованной методике измерений постоянство силы света лампы сравнения требуется лишь на протяжении одной серии наблюдений, то-есть в течение 6–10 часов.

Опыт параллельной обработки по способу наименьших квадратов показал, что различие между результатами, полученными обоими способами, незначительно.

Дни наблюдений, когда точки ложатся по кривой линии или дают слишком большой разброс, не принимались в расчёт. Наблюдения велись только в безоблачные дни. Как исключение допускалась небольшая облачность по горизонту, не превышающая 0,5 балла. Но даже при таком отборе условий наблюдения из 91 дня наблюдений только 75 дней дают возможность определить коэффициент прозрачности.

Кроме случаев, когда неустойчивость коэффициента прозрачности с течением времени обнаруживается самим методом Бугера (изгиб, сильный разброс точек), возможно такое изменение прозрачности, при котором бугеровская линия сохраняет форму прямой, изменения только наклон. О возможности постепенного изменения коэффициента прозрачности, к которому метод Бугера оказывается нечувствительным, говорит Аббот (4), отказываясь от своего „долгого“ метода определения солнечной постоянной. Более подробно разбирают этот вопрос Ружье (5) и Никонов (6). Подобные примеры можно найти и в работах других авторов, а также и в наших наблюдениях. Из сказанного следует, что без дополнительных критериев долгий метод Бугера дать уверенное значение коэффициента прозрачности не может.

Критерием, используемым для контроля доброкачественности полученного результата, естественно выбрать значение внеатмосферной освещённости от светила, причём в нашем случае вполне достаточно знать соответствующий ей отсчёт по шкале рабочего клина x_o . Если мы имеем достоверное значение x_o для данного прибора, то реальность коэффициента прозрачности определяется совпадением в пределах погрешностей полученного для данного дня x_o с его истинным значением. Таким образом, прежде чем применять способ Бугера, необходимо тщательно определить x_o , что в свою очередь требует предварительных суждений о том, что прозрачность в те дни, когда это было сделано, была постоянной.

Выход из этого круга затруднений можно найти в следующем. Будем при отборе достоверных значений x_o руководствоваться такими признаками неизменности прозрачности:

1) Утренняя и вечерняя ветви графика Бугера дают одинаковое значение r и x_o . Это не исключает возможности изменения r , но требует, чтобы такое изменение происходило совершенно симметрично относительно полудня, что возможно только в исключительных случаях.

2) Ночной график Бугера по лунной освещённости и следующий за ним дневной график Бугера по солнечной освещённости дают одинаковое значение коэффициента прозрачности r (симметричное изменение прозрачности днём и ночью мало вероятно).

3) Совпадение коэффициента прозрачности по четырем последовательным графикам Бугера: ночной + 2 дневных + ночной или дневной + 2очных + дневной. В этом случае непрерывная симметрия изменения прозрачности совершенно невероятна.

4) Совпадение дневных коэффициентов прозрачности с соответствующими ночных, определёнными по методу Никонова (6, 7). Правда, в Сталинабаде визуальные наблюдения по методу Никонова не ставились.

Рассматривая наши наблюдения можно сказать, что совпадение коэффициентов прозрачности для утренней и вечерней серии наблюдений, а также ночных и дневных серий наблюдений, бывало редко. Однако, последнее не может служить препятствием для определения уверенного значения x_o вообще, ибо можно выбрать местность с относительно постоянной прозрачностью атмосферы и, выехав туда на некоторое время, провести там тщательное определение x_o для данного прибора. Определённое таким образом x_o будет служить критерием постоянства прозрачности в любом другом месте наблюдения.

Необходимо отметить, что введение критерия x_o требует сохранения постоянства силы света лампы сравнения в течение длительного промежутка времени. Как известно, сила света всякой лампы (8) за время работы меняется, причём особенно сильно меняется в первые часы работы, поэтому перед установкой в фотометр лампа должна подвергаться предварительному обжигу на протяжении 5—6 часов. Кроме того, лампа сравнительно быстро изнашивается и требует замены, что приводит к необходимости частых повторных градуировок, которые отнимают много времени и следовательно не могут проводиться достаточно часто. Нами дополнительно отградуированы 5 ламп, которые служили временными переносными стандартами для хранения световой системы фотометра в промежутках между градуировками.

Сравнение рабочей лампы с такими стандартами проводилось непосредственно в условиях наблюдений (в большинстве случаев в промежутках между наблюдениями). Для этого выбирался день с хорошими атмосферными условиями и в точке неба достаточно удалённой от Солнца промерялась яркость последовательно со всеми лампами в прямом и обратном порядке. Если соотношение между отсчётами для определённых ламп сохранялось таким же, как при градуировке, то считалось, что сила света лампы сравнения не изменилась. В противном случае сравнение проводилось более тщательно, а затем вводилась соответствующая поправка в результаты измерений. Подобные сравнения показали достаточное постоянство силы света применяемой лампы сравнения во время довольно длительного промежутка наблюдений.

Чтобы оценить наивысшую возможную точность долгого метода Бугера нами были отобраны дни с наиболее прямолинейным расположением точек на графике Бугера и проведена обработка их по способу наименьших квадратов. Результаты приведены в таблице 2.

Таблица 2

Д а т а	Число серий наблюдений	p	$\frac{\varepsilon_p}{\pm}$	x_o м м	ε_{x_o} м м \pm
1950 г.					
Август 7	13	0.492	0.005	50.30	0.54
Август 8	10	0.598	0.005	50.92	0.48
Октябрь 5	14	0.608	0.004	50.81	0.42
Октябрь 18	8	0.873	0.005	49.60	0.37
Октябрь 23	8	0.779	0.005	51.55	0.26

На основании вычисленных погрешностей можно считать, что при визуальных наблюдениях долгий метод Бугера в наилучшем случае позволяет определить коэффициент прозрачности с точностью до ± 0.005 и x_o с точностью до ± 0.3 мм.

Итак, исследование долгого метода Бугера показало, что метод не может быть применён к исследованию прозрачности атмосферы без дополнительного критерия, в качестве которого для дневного времени суток мы выбрали значение отсчёта клина x_o при интерполяции полученной прямой логарифма солнечной освещённости за пределы атмосферы.

Имея тщательно определённое значение x_o , по формуле (2) можно легко определить коэффициент прозрачности по одному измерению освещённости от Солнца, то-есть для любого интересующего нас момента времени. Достоверность и точность такого "метода одного наблюдения" определяется, прежде всего, точностью основной его постоянной x_o . Пользуясь критериями, указанными выше, то-есть отбирая дни не только по прямолинейному ходу на графике, но и по совпадению коэффициентов прозрачности для соседних отрезков времени, мы получили как вероятнейшее значение x_o для основной серии наблюдений 48.46 ± 0.65 мм шкалы клина.

Изменение ошибки p в зависимости от систематической ошибки, вносимой в вычисления постоянной x_o при различных значениях воздушной массы $M(z)$, рассматривалось исходя из следующей формулы, вытекающей из равенства (2)

$$\frac{\Delta p}{p} = \frac{g / \Delta x_o /}{M(z) \log e}.$$

Для Δx_o принималось значение 0.65, как наиболее возможное отклонение от найденного нами значения x_o . В результате получены нижеследующие значения относительной погрешности p , выраженной в процентах.

$M(z)$	$\frac{\Delta p}{p}$ в %
1.5	5.5
2.0	4.1
2.5	3.3
3.0	2.7
3.5	2.3
4.0	2.0
4.5	1.8
5.0	1.6

Как мы видим, с увеличением воздушной массы, при которой проводились наблюдения, возрастает точность определения коэффициента прозрачности p . Аналогично будет меняться и ошибка, вызываемая случайной погрешностью данного наблюдения. Однако, не следует забывать, что формальное повышение точности определения p при очень больших воздушных массах становится фиктивным из-за несовершенства теории экстинкции и ряда других причин.

Остановимся более подробно на случайных погрешностях самих наблюдений.

Подсчёт средних квадратичных погрешностей отсчётов клина по отклонениям последних от средних значений показывает, что значения таких погрешностей для средник по 5 отсчётам обычно лежат в пределах $\pm 0.03 - \pm 0.06$ мм, а в среднем можно принять ± 0.05 мм. Эти данные характеризуют лишь внутреннюю сходимость отсчётов, а потому дают нижний предел погрешности величины p . С другой сто-

роны при определении точности метода можно исходить из отклонений коэффициентов прозрачности, вычисленных этим методом, от коэффициентов прозрачности, вычисленных долгим методом Бугера по способу наименьших квадратов. Однако, в этом случае, кроме погрешностей данного наблюдения, на результат будет влиять действительное изменение прозрачности атмосферы в момент наблюдения. Следовательно, таким образом мы можем оценить лишь верхнюю границу погрешности p .

Подсчёты, выполненные двумя путями и представляющие верхний и нижний пределы погрешности получаемого результата таковы:

$$\frac{\Delta p}{p} \text{ в \% по отклонениям точек по прямой } 2\%,$$

по отклонениям отсчётов клина от среднего 0.2%.

Итак, случайная ошибка метода одного наблюдения заключается в пределах от 0.2 до 2%, а систематическая ошибка зависит от точности определения x_o и даёт в нашем случае 3%, если воздушная масса при определении p была больше 2.0.

Прямой метод одного наблюдения несомненно даёт удовлетворительную точность при наличии достаточно точного значения x_o . В пользу такого заключения говорит обширная практика актинометрии, где коэффициент прозрачности обычно определяется из одиночных измерений прямой солнечной радиации по известному значению солнечной постоянной. Распространение такой методики на любые виды фотометрических наблюдений, если и встречает известные затруднения, то только технического, а отнюдь не принципиального характера. Можно даже сказать, что в случае фотометрии принципиально дело обстоит проще, чем в актинометрии, поскольку используемый участок спектра не широк и потому эффект Форбса либо совсем отсутствует, либо мал. На основании своего опыта я считаю, что в визуальной фотометрии применение метода одного наблюдения может быть легко осуществлено, так как выдвигаемое им требование постоянства градуировки прибора легко выполнимо при надлежащем состоянии аппаратуры. Применение этого метода к фотоэлектрической и фотографической фотометрии также вполне возможно при условии стандартизации с помощью источника света постоянной интенсивности.

ЛИТЕРАТУРА

1. *Бугер П.* Оптический трактат о градации света. Изд. АН СССР, 1950.
2. *Шаронов В. В.* Усовершенствованная модель универсального клинового фотометра. Журнал Светодиодника 5, 12—14, 1955.
3. *Шаронов В. В.* Видимость далёких предметов и огней. Военмориздат, 1944.
4. *Аввот S. G.* Detailed discussion of the measurement of solar radiation. Ann. obs. Smiths. 6, 43—83, 1942.
5. *Rouquier G.* Photométrie photoélectrique globale de la Lune. Ann. obs. Strassb. 2, fsc. 3, 1—339, 1933.
6. *Никонов В. Б.* Опыт построения фундаментального каталога фотоэлектрических цветовых эквивалентов звёзд спектральных типов B8 и B9. Бюлл. Абастум. астрофиз. обсерв., 14, 1—231, 1953.
7. *Никонов В. Б.* Об учёте атмосферной экстинкции при электроколориметрических наблюдениях звёзд. ДАН, 45, 151—154, 1944.
8. *Шаронов В. В.* Клиновой фотометр для дневного света. Журнал геофизики, 4, 181—190, 1934.

Н. М. ШАХОВСКОЙ
ЗАТМЕННАЯ ПЕРЕМЕННАЯ ВВ ЦЕФЕЯ*)

Переменность *VV Сер* была обнаружена и исследована К. Хоффмайстером [1]. По 6 минимумам он отнёс звезду к типу Алголя с амплитудой $12^m.1 - 12^m.9$ и элементами

$$\text{Min} = J. D. 2427327.5 + 30^d.185 \times E; \quad D = 0^h.09 \quad d = 0^m.05.$$

Блеск *VV Сер* оценивался на 80 пластинках стеклянной библиотеки ГАИШ (*J. D.* 2414784 — 33362). На каждой пластинке звезда оценивалась дважды.

Звездные величины звёзд сравнения (рис. 1) определялись путём глазомерных привязок к Stand. of. Magn. for Astrogr. Cat. 22^h00^m ; $+64^{\circ}30'$ [2] и выравнивались степенной шкалой. Выравненные значения приведены ниже.

Таблица 1

*	<i>J_{pg}</i>
<i>a</i>	$11^m.80$
<i>b</i>	$12^m.44$
<i>c</i>	$12^m.83$
<i>d</i>	$13^m.43$

Рис. 1.

Немногочисленные оценки на пластинках с несколько иной спектральной чувствительностью (Agfa-Astro) были редуцированы к основной шкале звездных величин. Наблюдения показали, что большую

*) Работа выполнена на кафедре звёздной астрономии Московского Государственного Университета им. М. В. Ломоносова в 1953 г.

часть времени звезда имеет максимальный блеск, равный $11^m.9$. Лишь на 11 пластинках наблюдалось значительное ослабление блеска. Из них 5 приходится на 1 минимум (2 на нисходящей и 3 на восходящей ветви). Момент этого минимума определен очень уверенно — $J. D. 2428081.83$ и был принят за исходный.

Данный Хоффмайстером период ($30^d.185$) очень хорошо согла-
суется с моими наблюдениями. Небольшие изменения его значительно
ухудшают кривую блеска при сведении всех наблюдений к одному
периоду. Начальная же эпоха Хоффмайстера требует поправки, равной
 $-0^d.30$. Таким образом, исправленные элементы *BB Cep* будут:

$$\text{Min} = J. D. 2428081.83 + 30^d.1850 \times E.$$

Построенная с этими элементами средняя кривая приводится в та-
блице 2 и изображена на рис. 2.

Таблица 2

Фаза	J_{pg}	n	Фаза	J_{pg}	n	Фаза	J_{pg}	n
0 ^p .013	13 ^m .29	3	0.204	11 ^m .93	7	0.838	11 ^m .89	7
.016	13 .04	2	.299	11 .95	7	.898	11 .90	7
.026	12 .88	2	.408	11 .93	7	.934	11 .83	7
.069	11 .89	6	.573	11 .93	7	.970	12 .58	2
.136	11 .89	7	.767	11 .89	7	.984	13 .21	2

Из этой кривой, а также из рассмотрения всех наблюдений в ми-
нимуме и вблизи него можно вывести $D = 0^p.085$ и $d \ll 0^p.025$.

Рис. 2.

Обращает внимание резкое расхождение последней величины с опре-
делением Хоффмайстера ($d = 0.05$). Сопоставляя это с различием
амплитуд ($0^m.8$ и более $1^m.5$ соответственно), можно заключить, что
Хоффмайстеру не удалось проследить минимум до конца. Однако, и
наши наблюдения не дают возможности найти полную глубину ми-

нимума. Наименьший наблюдавшийся блеск звезды равен $13^m.4$ (3 наблюдения).

Наличие или отсутствие вторичного минимума продолжает оставаться под вопросом, т. к. на этих фазах почти нет оценок.

В таблице 3 приведены все наши наблюдения *BB Сер* на московских пластинках.

Таблица 3

<i>J. D.</i>	<i>J_{pg}</i>	<i>J. D.</i>	<i>J_{pg}</i>	<i>J. D.</i>	<i>J_{pg}</i>
24...		24...		24...	
14784.31	$12^m.18$	045.42	$11^m.80$	165.41	$11^m.80$
989.10	11 .96	.46	11 .90	29167.36	11 .86
15254.44	11 .96	081.31	$13^m.43$	172.38	11 .97
291.35	11 .80	.35	13 .16	229.30	13 .21
612.48	11 .80	082.29	13 .07	491.41	12 .06
16375.36	11 .98	.34	13 .03	496.48	11 .80
708.36	11 .80	.43	12 .90	519.34	11 .99
711.37	11 .93	408.41	11 .86	521.44	11 .80
736.38	11 .93	426.45	11 .88	526.33	11 .80
17469.36	12 .28	427.39	11 .86	547.38	11 .80
562.24	11 .80	539.19	11 .86	962.14	12 .12
18235.24	11 .96	.24	11 .94	30587.42	13 .43
238.39	11 .96	573.20	11 .93	589.35	11 .93
27397.24	11 .80	576.22	11 .83	608.35	12 .18:
722.28	11 .86	593.21	11 .85	614.42	12 .88
750.23	13 .35	597.24	11 .86	.45	12 .06
751.38	11 .86	759.48	11 .80	674.28	11 .86
775.15	12 .09	760.45	11 .80	.31	12 .18:
.20	11 .99	775.36	11 .80	675.32	11 .80
.25	11 .80	781.39	12 .01	32169.31	11 .80
779.18	12 .86	786.34	12 .00	33178.40	11 .93
784.14	11 .80	.36	11 .89	214.25	12 .85
.18	11 .99	805.32	12 .31	217.28	11 .84
813.12	11 .93	29146.45	11 .80	219.31	12 .00
869.23	11 .80	147.46	12 .12	361.49	11 .80
28043.39	11 .86	161.42	11 .93	362.49	11 .93
.48	11 .80	162.35	11 .75		

ЛИТЕРАТУРА

1. C. Hoffmeister, KVBB, 24, 115, 1941.
2. H. S. Leavitt, H. A. 85, № 1, 7, 1930.

С О Д Е Р Ж А Н И Е

	Стр.
<i>П. Б. Бабаджанов.</i> Об одном фотографическом метеоре δ—Акварид	3
<i>О. В. Добровольский.</i> О точности определения ускорений в хвостах комет 1 типа и возможности обнаружения их систематических изменений	5
<i>Н. М. Шаховской.</i> Элементы и кривая блеска V 748 Лебедя . .	12
<i>Г. Е. Ерлексова.</i> Новая долгопериодическая цефеида КЗП 4952 . .	17
<i>О. П. Васильевская.</i> Прямые методы изучения коэффициента прозрачности атмосферы в дневное время	20
<i>Н. М. Шаховской.</i> Затменная перемена BB Цефея	28

*Печатается по постановлению
редакционно-издательского совета
Академии наук Таджикской ССР*

Редколлегия: А. В. Соловьев (отв. редактор), Л. А. Катасев,
О. В. Добровольский, П. Б. Бабаджанов, А. М. Бахарев
(отв. секретарь редколлегии).

Техн. редактор П. М. Фролов.

Корректор Л. Д. Полисская.

Кл 00063. Подписано к печати 20/II-1957 г. 1,825 уч. изд. л., печ. 2
Формат бум. 70 × 108. Заказ № 4991. Тираж 600. БЕСПЛАТНО.

Сталинабад, Полиграфкомбинат.

STAT

Page Denied