Présentation MAP578

SignSGD with Majority Vote is Communication Efficient and Fault Tolerant

Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, Anima Anandkumar

Jason Akoun, Sébastien Meyer

14 décembre 2021

Sommaire

- 1. Mise en situation : Distributed Learning
- 2. Présentation des résultats du papier
- 3. Simulations
- 4. Quelle robustesse face aux byzantins?

1. Mise en situation : Distributed Learning

1 serveur

- Situation classique distribuée
 - Les données peuvent être partagées ou non entre les workers
 - Le serveur récupère les **gradients** des workers
 - Le serveur applique une règle d'agrégation
 - Fonctionnement synchrone

Dataset(s)

1. Mise en situation : Distributed Learning

Quatre points essentiels sont recherchés

D1 fast algorithmic convergence	D3 communication efficiency
D2 good generalisation performance	D4 robustness to network faults

Conditions proposées par les auteurs de l'article

Les algorithmes usuels comme SGD ne remplissent pas toutes ces conditions

- SGD est largement utilisé car vérifie **D1** et **D2**. Néanmoins il ne vérifie **D3** que dans une moindre mesure et certainement pas **D4**.
- Quel est l'objet le plus léger que vous puissiez envoyer en tant que worker?

2. L'algorithme: signSGD with Majority Vote

Présentation de l'algorithme

Algorithm 1 Stochastic-Sign SGD with majority vote

```
Input: learning rate \eta, current hypothesis vector w^{(t)}, M workers each with an independent gradient \boldsymbol{g}_m^{(t)}, the 1-bit compressor q(\cdot). on server: pull q(\boldsymbol{g}_m^{(t)}) from worker m. push \tilde{\boldsymbol{g}}^{(t)} = sign\left(\frac{1}{M}\sum_{m=1}^M q(\boldsymbol{g}_m^{(t)})\right) to all the workers. on each worker: update w^{(t+1)} = w^{(t)} - \eta \tilde{\boldsymbol{g}}^{(t)}.
```

Fig. : Algorithme signSGD with Majority Vote

	Simple	Communication Efficace	Convergence Rapide	Tolérant aux fautes
signSGD Majority Vote			?	?

Caractéristiques de l'algorithme

2. L'algorithme: signSGD with Majority Vote

Performances

Fig. : Performances de signSGD with Majority Vote quant aux 4 conditions de départ

2. L'algorithme: signSGD with Majority Vote

Vitesse de convergence théorique

Sur les hypothèses...

- Hypothèse 1. La fonction objectif est bornée.
- Hypothèse 2. La fonction objectif est L-smooth.
- Hypothèse 3. L'estimateur du gradient stochiastique est non biaisé et de variance borné.
- Hypothèse 3. L'estimateur du gradient stochiastique suit une distribution unimodale autour de la moyenne.
- Les hypothèses 1,2,3 sont classiques
- L'hypothèse 4 est plus exigeante
- L'hypothèse 4 est **vérifiée expérimentalement** sur CIFAR-10

Théorème 2. Faire tourner signSGD durant K itérations sous les Hypothèses 1 à 4 (voir article). Pour chaque worker, fixer la learning rate $\eta = \sqrt{\frac{f_0 - f^*}{||L||_1 K}}$ et la taille du mini-batch n = K, alors si $\alpha < 1/2$ représente la proportion d'adversaires,

$$\left[\frac{1}{K} \sum_{0}^{K-1} \mathbb{E}||g_k||_1\right]^2 \le \frac{4}{\sqrt{N}} \left[\frac{1}{1 - 2\alpha} \cdot \frac{||\sigma||_1}{\sqrt{M}} + \sqrt{||L||_1(f_0 - f^*)}\right]^2$$

Fig. : Majoration de la moyenne de la norme L1 du gradient

Sur le Théorème 2...

- Convergence en $\frac{1}{\sqrt[4]{N}}$ pour signSGD vs $\frac{1}{\sqrt{N}}$ pour SGD (N = nombre de calcul de gradients)
- Borne décroissante en le nombre de workers et croissante en la proportion d'adversaires
- Résistant jusqu'à 50% d'adversaires blinds

3. Simulations

Choix d'implémentation

Langage Python et bibliothèque PyTorch

- Accès à un support distribué qui permet de simuler des process
- Intégration éventuelle sur des modèles complexes grâce à l'héritage de classes
- Première version : https://github.com/sebastienmeyer2/signsgd-fault-tolerance

Estimation de l'effet d'adversaires sur l'algorithme

- Simulations de jeux de données en régressions linéaire et logistique
- Simulations de process "blind" (voir Definition 1) ou Byzantins

Definition 1 (Blind multiplicative adversary). A blind multiplicative adversary may manipulate their stochastic gradient estimate \tilde{g}_t at iteration t by element-wise multiplying \tilde{g}_t with any vector v_t of their choice. The vector v_t must be chosen before observing \tilde{g}_t , so the adversary is 'blind'. Some interesting members of this class are:

- (i) adversaries that arbitrarily rescale their stochastic gradient estimate;
- (ii) adversaries that randomise the sign of each coordinate of the stochastic gradient;
- (iii) adversaries that invert their stochastic gradient estimate.

Fig. : Définition d'un adversaire blind dans l'article

3. Simulations

Résultats (sans adversaires)

Fig.: Évolution du loss pour un SGD distribué (à gauche) avec SignSGD et Signum (à droite).

- Durée de convergence **plus longue** que pour le SGD classique ce qui est cohérent
- Convergence vers des minima similaires (ici dataset jouet)
- Si on ajoute des adversaires ?

3. Simulations

Résultats (avec adversaires "blind")

Fig. : Évolution du loss pour un SGD distribué (à gauche) avec SignSGD (au milieu) et Signum (à droite) en présence d'adversaires qui inversent systématique leur gradient.

- Comme annoncé par le Théorème 2 on converge jusqu'à 50% d'adversaires blinds
- Le vote et la réduction de l'information sur 1 bit rend l'algorithme signSGD très robuste
- Si on ajoute des adversaires Byzantins?

Notre démarche

Les adversaires blinds...

- SignSGD est très résistant jusqu'à 50% tout type de fautes blinds de par sa structure
- Résultat théorique prouvant la convergence
- Intuitivement même si les adversaires communiquent ils ne peuvent pas trop modifier le résultat du serveur car vote + 1 bit

Vers les Byzantins...

- Peut-on étendre le théorème de convergence au cas Byzantins ?
- Peut-on élaborer la « pire » stratégie Byzantine capable de casser l'algorithme ?
- Peut-on tester la convergence de signSGD face à cette stratégie ?

Victoire

Notre théorème : vitesse de convergence face aux Byzantins

Théorème 2. bis Faire tourner signSGD durant K itérations sous les Hypothèses 1 à 3 (voir article). Pour chaque worker, fixer la learning rate $\eta = \sqrt{\frac{f_0 - f^*}{||L||_1 K}}$ et la taille du mini-batch n = K, alors si $\alpha < 1 - \frac{1}{2p}$ représente la proportion d'adversaires Byzantins,

$$\left[\frac{1}{K}\sum_{0}^{K-1}\mathbb{E}||g_{k}||_{1}\right]^{2} \leq \frac{4}{\sqrt{N}}\left[\frac{1}{2\sqrt{2}}\frac{1}{p(1-\alpha)-\frac{1}{2}}\cdot\frac{||\sigma||_{1}}{\sqrt{M}}+\sqrt{||L||_{1}(f_{0}-f^{*})}\right]^{2}$$

avec
$$N = K^2$$
 et $p = \mathbb{P}\left(sgn(\widetilde{g_t}) = sgn(g_t)\right)$

Fig. : Majoration de la moyenne de la norme L1 des gradients dans le cas Byzantins

	Notre théorème	Stochastic- SignSGD	Election coding
Proportion maximale de Byzantins	$\alpha < 1 - \frac{1}{2p}$	$\bar{p}_i^{(t)} \le \frac{M - k_i}{2M}$.	$1-lpha>rac{1}{2u_{\min}^{\star}}$

Bornes du nombre de byzantins admissibles selon différents modèles

Sur le Théorème 2 bis...

- Similaire au cas blind avec une constante modifiée
- On a relâché l'hypothèse 4
- Nouvelle condition sur la proportion d'adversaires
- Si p = 1 on a la condition α < 0.5 ce qui est **cohérent**
- Si p < 0.5 on a la condition α < 0
- Notre borne est similaire à celle dans la littérature

Elaboration de notre stratégie

- Quelle stratégie pour des adversaires byzantins ?
 - Les byzantins, au nombre de **f** et **omniscients**, sont en mesure de connaître les valeurs envoyées par tous les autres workers, dont **n-f** sont honnêtes
 - Ils peuvent estimer à l'avance la règle d'agrégation
- Des stratégies différentes en fonction de la règle d'agrégation
 - Un seul byzantin suffit à casser SGD : envoyer l'opposé de la somme des gradients des autres workers
 - Dans le cas de SignSGD, il est impossible de faire exploser la valeur envoyée
- Notre idée : les byzantins peuvent essayer de "tuer" le gradient
 - La règle d'agrégation sur les workers honnêtes se situe entre -(n-f) et n-f
 - S'ils le peuvent, les byzantins peuvent l'amener à zéro puis osciller autour, sinon ils s'y opposent totalement

Simulation de notre stratégie

Fig. : Évolution du loss pour un SGD distribué (à gauche) avec SignSGD (au milieu) et Signum (à droite) en présence d'adversaires byzantins.

- Les résultats obtenus sont similaires au cas des adversaires « blind »
- Cohérent avec notre borne sur la proportion Byzantine
- Existe t-il une autre stratégie avec plus de dégâts ?

Pour aller plus loin

- Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees
 - Relâchement de l'hypothèse 4 prouvée que de manière **empirique** sur CIFAR-10
 - Preuve de convergence avec la même borne Byzantine que la nôtre (démonstration différente de la notre)
- Election Coding for Distributed Learning: Protecting SignSGD against Byzantine Attacks
 - Proposé par Jy-yong Sohn, Dong-Jun Han, Beongjun Choi, Jaekyun Moon
 - **Idée** : construire une couche intermédiaire de servers qui agrègent l'information et la retransmettent au server principal
 - Le théorème 2 prouve la convergence sous une proportion de byzantins plus fine que la notre (mais similaire asymptotiquement)

$$1 - \alpha > \frac{(\sqrt{\log(\Delta)/n} + \sqrt{\log(\Delta)/n + 4u_{\min}^{\star}})^2}{8(u_{\min}^{\star})^2}$$

Fig.: Proportion admissible de byzantins

Theorem 2 (Convergence of the Bernoulli-coded SIGNSGD-MV). Suppose that Assumptions 1, 2, 3, 4 hold and the portion of Byzantine-free nodes satisfies (3) for $\Delta > 2$. Apply the random Bernoulli codes with connection probability $p = \Theta(\sqrt{\log(n)/n})$ on SignSGD-MV, and run SignSGD-MV for T steps with an initial model \mathbf{w}_0 . Define the learning rate as $\gamma(T) = \sqrt{\frac{f(\mathbf{w}_0) - f^*}{\|\mathbf{L}\|_1 T}}$. Then, the suggested scheme converges as T increases in the sense

$$\frac{1}{T}\sum_{t=0}^{T-1}\mathbb{E}\left[\|g(\boldsymbol{w}_t)\|_1\right] \leq \frac{3\|\boldsymbol{L}\|_1}{2(1-2/\Delta)}\boldsymbol{\gamma}(T) \to 0 \quad \text{as } T \to \infty.$$

Annexes

M le nombre de workers

 α la proportion de byzantins.

 Z_t le nombre de bits corrects reçus par le serveur à l'itération t.

 Z_t^g le nombre de bits corrects reçus par le serveur à l'itération t par les workers honnêtes.

$$\begin{split} P\left(Z_t \leq \frac{M}{2}\right) &\leq P\left(Z_t^g \leq \frac{M}{2}\right) & \textit{Pire des cas} \\ &= P\left(E\left(Z_t^g\right) - Z_t^g \geq E\left(Z_t^g\right) - \frac{M}{2}\right) & E\left(Z_t^g\right) > \frac{M}{2} \\ &\leq \frac{1}{1 + \frac{\left(E\left(Z_t^g\right) - \frac{M}{2}\right)^2}{Var\left(Z_t^g\right)}} & \textit{Inégalité de Cantelli} \\ &\leq \frac{1}{2} \frac{\sqrt{Var\left(Z_t^g\right)}}{E\left(Z_t^g\right) - \frac{M}{2}} & \textit{car } 1 + x^2 \geq 2x \\ &= \frac{1}{2} \frac{\sqrt{p(1-p)(1-\alpha)}}{p(1-\alpha) - \frac{1}{2}} \frac{1}{\sqrt{M}} \\ &\leq \frac{1}{2} \frac{\sqrt{1-p}}{p(1-\alpha) - \frac{1}{2}} \frac{1}{\sqrt{M}} & p(1-\alpha) \leq 1 \end{split}$$

