CLAIMS:

What is claimed is:

	_	A .4 4	
1	1	A method	comprising
ı	Ι.	11 incuiou	COMPRISING

- receiving content for transmission from a plurality of transmit antennae; and
- generating a rate-one, space-frequency code matrix from the received content for
- transmission via the plurality of transmit antennae.
- A method according to claim 1, wherein the received content is a vector of input symbols
- (s) of size $Nc \times 1$, wherein Nc is the number of subcarriers of the multicarrier wireless
- 3 communication channel.
- 1 3. A method according to claim 2, the element of generating a rate-one space frequency
- 2 code matrix comprising:
- \mathcal{G} dividing the vector of input symbols into a number \mathcal{G} of groups to generate subgroups;
- *₄* and

1

ļ

- multiplying at least a subset of the subgroups by a constellation rotation precoder to
- δ produce a number G of pre-coded vectors (v_g) .
- 1 4. A method according to claim 3, further comprising:
- dividing each of the pre-coded vectors into a number of $LM \times 1$ subvectors; and
- creating an $M \times M$ diagonal matrix $D_{\mathbf{s}_{\mathbf{g}},k} = diag\{\Theta_{M\times(k-1)+1}^T \mathbf{s}_g, \dots, \Theta_{M\times k}^T \mathbf{s}_g\}$, where k=1...L
- 4 from the subvectors.

1

1

1	5.	A method according to claim 4, further comprising:			
2		interleaving the L submatrices from the G groups to generate an $M \times Nc$ space-frequency			
3	matrix	•·			
1					
1	6.	A method according to claim 5, wherein the space-frequency matrix provides MNL			
2	channe	el diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M ,			
3	receive	e antenna(s) N and channel tap(s) L .			
1					
1	7.	A method according to claim 1, wherein the space-frequency matrix provides MNL			
2	channe	el diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M,			
3	receive	e antenna(s) N and channel tap(s) L .			
1					
<i>I</i>	8.	A storage medium comprising content which, when executed by an accessing			
2	comm	unications device causes the communications device to implement a method according to			
3	claim	1.			
1					
1	9.	An apparatus comprising:			
2		a diversity agent to receive content for transmission via a multicarrier wireless			
3	comm	unication channel, and to generate a rate-one, space-frequency code matrix from the			
4	receive	received content for transmission on the multicarrier wireless communication channel from a			
5	plurali	plurality of transmit antennae.			

1

- 10. An apparatus according to claim 9, wherein the received content is a vector of input
- symbols (s) of size $Nc \times 1$, wherein Nc is the number of subcarriers of the multicarrier wireless
- 3 communication channel.

1

1

I

1

1

- 1 11. An apparatus according to claim 10, the diversity agent further comprising:
- a pre-coder element, to divide the vector of input symbols into a number G of groups to
- 3 generate subgroups, and to multiply at least a subset of the subgroups by a constellation rotation
- φ pre-coder to produce a number G of pre-coded vectors (v_g) .
- 1 12. An apparatus according to claim 11, the diversity agent further comprising:
- a space-frequency encoding element, responsive to the pre-coder element, to divide each
- of the pre-coded vectors into a number of $LM \times I$ subvectors, and to create an $M \times M$ diagonal
- matrix $D_{\mathbf{s}_{a,k}} = diag\{\Theta_{M\times(k-1)+1}^T\mathbf{s}_g, \dots, \Theta_{M\times k}^T\mathbf{s}_g\}$, where k=1...L from the subvectors.
- 1 13. An apparatus according to claim 12, wherein the space-frequency encoding element
- interleaves the L submatrices from the G groups to generate an $M \times Nc$ space-frequency matrix.
- 14. An apparatus according to claim 13, wherein the space-frequency matrix provides MNL
- channel diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M,
- receive antenna(s) N and channel tap(s) L.

P16330 26 Shao, et al.

An apparatus according to claim 9, wherein the space-frequency matrix provides MNL 15. channel diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M, 2 receive antenna(s) N and channel tap(s) L. 3 1 16. A system comprising: 1 a number M of omnidirectional antennas; and 2 a diversity agent, to receive content for transmission via a multicarrier wireless 3 communication channel, and to generate a rate-one, space-frequency code matrix from the 4 received content for transmission on the multicarrier wireless communication channel from at 5 least a subset of the M omnidirectional antennas. 6 I A system according to claim 16, wherein the received content is a vector of input 17. Ţ symbols (s) of size Nc x 1, wherein Nc is the number of subcarriers of the multicarrier wireless 2 communication channel. 3 1 18. A system according to claim 17, the diversity agent further comprising: 1 a pre-coder element, to divide the vector of input symbols into a number G of groups to 2 generate subgroups, and to multiply at least a subset of the subgroups by a constellation rotation 3

19. A system according to claim 18, the diversity agent further comprising:

pre-coder to produce a number G of pre-coded vectors (v_g) .

4

1

1

P16330 27 Shao, et al.

- a space-frequency encoding element, responsive to the pre-coder element, to divide each
- of the pre-coded vectors into a number of $LM \times I$ subvectors, and to create an $M \times M$ diagonal
- matrix $D_{s_{s,k}} = diag\{\Theta_{M \times (k-1)+1}^T \mathbf{s}_g, \dots, \Theta_{M \times k}^T \mathbf{s}_g\}$, where k=1...L from the subvectors.
- 1 20. A system according to claim 19, wherein the space-frequency encoding element
- interleaves the L submatrices from the G groups to generate an $M \times Nc$ space-frequency matrix.
- 1 21. A system according to claim 20, wherein the space-frequency matrix provides MNL
- channel diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M,
- receive antenna(s) N and channel tap(s) L.

1

1

1

22. A system according to claim 16, wherein the space-frequency matrix provides MNL channel diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M, receive antenna(s) N and channel tap(s) L.

P16330 28 Shao, et al.