MyElectronicProjects Documentation

Release 0.0.0

ponty

CONTENTS

1	About	2
2	Stripboard design	3
3	3.2 Schematic 3.3 Board 3.4 Partlist	4 4 5 5 6
4	4.1 Schematic 4.2 Board 4.3 Partlist 4.4 3D view 1	9 10 11 12
5	5.1 Image	15 15 16
6	6.1 Test on Ubuntu 1 6.2 Image 1 6.3 Schematic 1 6.4 Partlist 1	18 18 19
7		20
8	8.1 Images 2 8.2 Sources 2	22
9	9.1 Images	23 23 23
10	Op-amp module 2 10.1 Schematic 2 10.2 Board 2	_

		Partlist	
11	Paral	lel port monitor	30
	11.1	Images	30
	11.2	Schematic	32
	11.3	Board	33
		Partlist	34
	11.5	3D view	35
		Sources	37
12		port monitor	38
	12.1	Schematic	38
	12.2	Board	39
	12.3	Partlist	40
	12.4	3D view	40
	12.5	Images	42
13	STK	200 AVR programmer	44
10	13.1	Test on Ubuntu	44
	13.1	Image	44
	13.3	Schematic	46
		Board	47
		Partlist	48
		3D view	49
	13.7	Sources	51
14	usb1		52
	14.1	Schematic	53
	14.2	Board	54
	14.3	Partlist	55
	14.4	3D view	55
15	USR	sp AVR programmer	58
10		V-USB hardware recommendation	58
		Makefile	
	15.3	Test on Ubuntu	
		Schematic	
			61
	15.6	Partlist	62
	15.7	3D view	63
	15.8	Reset	65
	15.9	Sources	66
16	USB	LED	67
17	Wire	detector	68
1	17.1	Schematic	68
	17.1	Board	69
	17.3		69
	17.4	3D view	70 72
	1 /)	DUHLES	- 12

MyElectronicProjects

Date April 21, 2012

PDF MyElectronicProjects.pdf

CONTENTS 1

CHAPTER

ONE

ABOUT

Hobby electronic projects built by me.

Most of them are built on stripboard.

Links:

• home: https://github.com/ponty/MyElectronicProjects

• documentation: http://ponty.github.com/MyElectronicProjects

Design tool: EAGLE Light Edition

STRIPBOARD DESIGN

Stripboard design representation in eagle:

- holes: copper should be cut or drilled here
- SMD: through-hole component, legs are drawn on top layer
- top layer: wires
- lines on documentation layer: wires
- bottom layer: original parallel strips of copper, only those are drawn, which are used for connection
- via: soldering points

Some components have no 3D view in the documentation.

ALARM

Status: ?

3.1 Pins

board pin	AVR pin	Arduino pin
in	PC3	A3
speaker	PB1	D9

3.2 Schematic

3.3 Board

Normal, bottom mirrored, wires only:

3.4 Partlist

Table 3.1:

part	value	position
C3	100n	(1.45 0.4)
D1	1N4148DO35-10	(1.2 1)
IC2	MEGA8-P	(1.45 0.65)
JP1	POWER	(1.45 0.2)
JP2	IN	(1.05 1.7)
R1	10k	(1.1 0.3)
R2	100	(1.9 1.1)
SG1	F/CM12P	(1.55 1.4)

3.3. Board 5

3.5 3D view

3.5.1 Front

3.5.2 Right side

3.5.3 Left side

3.5.4 Bottom

AUDIO_AMPLIFIER

Status: under construction

It is used for ...

4.1 Schematic

4.2 Board

Normal, bottom mirrored, wires only:

4.2. Board 10

4.3 Partlist

Table 4.1:

part	value	position
C1	47n	(1.45 1.7)
C2	220u	(1.7 1.05)
C4	10u	(1.45 1.6)
C5	100n	(1.5 1.3)
C6	100n	(1.3 0.7)
C7	100n	(0.85 1)
C8	100u	(0.85 1.2)
C9	470n	(0.4 0.5)
C10	10u	(1.15 0.7)
IC1	UA741P	(0.55 1.05)
IC2	LM386N-1	(1.35 1.05)
JP1		(1.15 1.3)
JP2		(1.55 0.1)
JP3		(0.95 0.1)
JP4		(1.25 0.4)
JP5		(0.4 0.1)
JP6		(1.25 0.1)
R1	10	(1.5 1.8)
R2	1k	(0.9 0.5)
R3	22k	(0.75 0.6)
R4	22k	$(0.7\ 0.7)$
R5	1k	(0.45 0.7)
R6	470k	(0.6 1.8)

4.3. Partlist

4.4 3D view

4.4.1 Front

4.4.2 Right side

4.4.3 Left side

4.4.4 Bottom

4.5 Sources

original design

4.5. Sources 14

WIRE BENDING TOOL

Status: OK

It is used for bending wires.

5.1 Image

5.2 Board

Normal:

5.3 3D view

5.3.1 Front

5.3.2 Right side

DAPA AVR PROGRAMMER

Status: OK

It is used for programming AVR controller and Arduino compatible boards using the parallel port.

6.1 Test on Ubuntu

checking:

6.2 Image

6.3 Schematic

6.4 Partlist

Table 6.1:

part	value
R1	470
R2	220
R3	470
X1	
X2	

6.5 Sources

original design

Parallel port specification

ISP pinout

6.3. Schematic

FTDI CABLE

Status: OK Special cable.

connections:

FTDI pin	signal	color	6p4c (RJ14) pin
1	gnd	red	4
2	cts		
3	5v	green	3
4	rxd	yellow	2
5	txd	black	5
6	rts		

standard color code is reversed

7.1 Sources

RJ14 pinout

RJ14 wiring details

GARMIN ETREX DATA CABLE

Status: OK

It is used for connecting Garmin eTrex to the serial port.

connections:

DB9 pin	garmin pin
3 (TxD)	2 (In)
2 (RxD)	3 (Out)
5 (GND)	4 (GND)

8.1 Images

8.2 Sources

original design

8.2. Sources 22

SERIAL PORT LOOPBACK

Status: OK

It is used for testing the serial port.

Connected pins:

- 1-6-4
- 2-3
- 7-8

9.1 Images

9.2 Sources

original design

Serial port pinout

9.2. Sources 24

OP-AMP MODULE

Status: OK

It is used for op-amps in breadboard.

10.1 Schematic

10.2 Board

top

bottom mirrored

wires only

document

10.3 Partlist

Table 10.1:

part	value	position
C1	100n	(2.35 0.4)
C2	10u	(2.35 0.6)
C7	100n	(0.75 0.4)
C8	10u	(1.45 0.4)
IC1	TL071P	(2.05 0.55)
IC2	TL072P	(0.45 0.45)
JP1		(1.1 0.1)
JP2		(1.45 0.1)
JP3		(0.75 0.1)
JP4		(2.35 0.1)
JP5		(0.4 0.1)
JP7		(2 0.1)

10.2. Board 26

10.4 3D view

10.4.1 Front

10.4.2 Right side

10.4.3 Left side

10.4.4 Bottom

PARALLEL PORT MONITOR

Status: OK

It is used for monitoring the parallel port signals.

11.1 Images

11.1. Images 31

11.2 Schematic

11.2. Schematic 32

11.3 Board

Normal, bottom mirrored, wires only:

11.3. Board 33

11.4 Partlist

Table 11.1:

part	value	position
HIGH	LB10	(0.45 2.55)
HIGH1	LB10	(1.45 2.55)
R1	1k	(0.4 2.25)
R2	1k	(0.9 2.25)
R3	1k	(0.2 2.25)
R4	1k	(0.3 2.25)
R5	1k	(0.5 2.25)
R6	1k	(0.6 2.25)
R7	1k	(0.7 2.25)
R8	1k	(0.8 2.25)
R9	1k	(1 2.25)
R10	1k	(1.1 2.25)
R11	1k	(1.2 2.25)
R12	1k	(1.3 2.25)
R13	1k	(1.4 2.25)
R14	1k	(1.5 2.25)
R15	1k	(1.6 2.25)
R16	1k	(1.7 2.25)
R17	1k	(1.8 2.25)
SV1		(1 0.25)
X1		(2.175 1.525)
X3		(-0.175 1.525)

11.4. Partlist

11.5 3D view

11.5.1 Front

11.5. 3D view 35

11.5.2 Right side

11.5.3 Left side

11.5. 3D view 36

11.5.4 Bottom

11.6 Sources

original idea

11.6. Sources 37

SERIAL PORT MONITOR

Status: OK

On each signal there is one LED for positive and one LED for negative voltage. It is easy to change connections or connect external parts. Examples: Loop-Back, Null Modem,..

12.1 Schematic

12.2 Board

Normal, bottom mirrored, wires only:

12.2. Board 39

12.3 Partlist

Table 12.1:

part	value	position
HIGH	LB10	(0.75 1.65)
LOW	LB10	(0.75 2.15)
R1	1k	(0.4 1.25)
R2	1k	(0.3 1.25)
R3	1k	(0.5 1.25)
R4	1k	(0.6 1.25)
R5	1k	(0.8 1.25)
R6	1k	(0.9 1.25)
R7	1k	(1 1.25)
R8	1k	(1.1 1.25)
SV1		(1.7 0.65)
SV2		(1.2 0.65)
SV3		(1.45 0.65)
X2		(2.15 0.9)
XPC		(-0.15 0.9)

12.4 3D view

12.4.1 Front

12.3. Partlist 40

12.4.2 Right side

12.4.3 Left side

12.4. 3D view 41

12.4.4 Bottom

12.5 Images

12.5. Images 42

12.5. Images 43

STK200 AVR PROGRAMMER

Status: OK

It is used for programming AVR controller and Arduino compatible boards using the parallel port.

13.1 Test on Ubuntu

checking:

13.2 **Image**

13.2. Image 45

13.3 Schematic

13.3. Schematic 46

13.4 Board

Normal, bottom mirrored, wires only:

13.4. Board 47

13.5 Partlist

Table 13.1:

part	value	position
C1	100p	(2.3 0.95)
C3	100n	(2.3 1.95)
C5	100p	(3 1.8)
C6	100p	(3.4 1.1)
D1	1N4148DO35-7	(3.45 1.9)
IC1	74HC244N	(1.95 1.45)
LED1	red	(3.2 2.05)
LED2	red	(2.8 2.05)
R1	330	(1.4 1.6)
R2	150	(1.3 1.4)
R3	330	(1.2 1.55)
R4	1k	(2.7 1.8)
R5	100k	(3.2 1.45)
R6	330	(1.4 1.25)
R7	100k	(2.6 1.85)
R8	330	(1 1.55)
R9	330	(2.9 1.1)
R10	1k	(3.1 2)
R12	330	(2.5 2)
R13	100k	(1.95 2.05)
R14	330	(2.6 1.65)
R15	330	(2.4 1.85)
R16	330	(2.9 1.3)
X1		(0.2 1.4)
X2		(3.95 1.4)

13.5. Partlist 48

13.6 3D view

13.6.1 Front

13.6. 3D view 49

13.6.2 Right side

13.6.3 Left side

13.6. 3D view 50

13.6.4 Bottom

13.7 Sources

original design

Parallel port specification

ISP pinout

similar designs:

• http://www.sbprojects.com/projects/stk200/

13.7. Sources 51

CHAPTER

FOURTEEN

USB1WIRE

Status: OK

Low speed USB device which can handle multiple 1wire buses. Example program: onewire_demo.py under softusbduino

Based on V-USB hardware.

connections:

function	AVR pin	Arduino pin
1wire	PC0	A0
1wire	PC1	A1
1wire	PC2	A2
USB D-	PD0	D0
USB D+	PD2	D2

V-USB defines:

#define	USB_C	CFG_	IOPORI	<i>NAME</i>	D
#define	USB_C	$CFG_{\underline{}}$	DMINUS	S_BIT	0
#define	USB (FG	DPTJIS	BIT	2

14.1 Schematic

14.1. Schematic 53

14.2 Board

Normal, bottom mirrored, wires only:

14.2. Board 54

14.3 Partlist

Table 14.1:

part	value	position
C1	4u7	(1.4 0.85)
C3	100n	(1.7 0.85)
C4	22p	(1.5 0.75)
C5	22p	(1.6 0.7)
D1	3V6	(1.1 0.95)
D2	3V6	(1.2 0.9)
IC1		(1.95 0.85)
JP1		(2.5 0.95)
Q1	12MHz	(1.3 0.65)
R1	68	(1.4 1.2)
R2	68	(1.2 1.15)
R3	2k2	(1.3 0.95)
R4	4k7	(2.2 1.3)
R5	4k7	(2.3 1.35)
R6	10k	(1.6 1.2)
R7	4k7	(2.4 1.4)
X1		(0.8 0.95)

14.4 3D view

14.4.1 Front

14.3. Partlist 55

14.4.2 Right side

14.4.3 Left side

14.4. 3D view 56

14.4.4 Bottom

14.4. 3D view 57

USBASP AVR PROGRAMMER

Status: OK

It is used for programming AVR controller and Arduino compatible boards using the USB port.

firmware, design: http://www.fischl.de/usbasp/

USBasp is based on V-USB (http://www.obdev.at/products/vusb/index.html)

15.1 V-USB hardware recommendation

only difference to USBasp: $1.5 \text{ k}\Omega$ pull-up resistor

http://vusb.wikidot.com/hardware

"Solution B: Level conversion on D+ and D- Level conversion with Zener diodes.

Instead of reducing the AVR's power supply, we can limit the output voltage on D+ and D- with Zener diodes. We recommend 3.6 V low power types, those that look like 1N4148 (usually 500 mW or less). Low power types are required because they have less capacitance and thus cause less distortion on the data lines. And 3.6 V is better than 3.3 V because 3.3 V diodes yield only ca. 2.7 V in conjunction with an 1.5 k Ω (or more exactly 10 k Ω) pull-up resistor. With 3.3 V diodes, the device may not be detected reliably.

If you use Zener diodes for level conversion, please measure the voltage levels to make sure that the diodes you have chosen match the requirements.

Advantages of the Zener diode approach:

- Low cost.
- Easy to obtain.
- Entire design can be at 5 V.
- AVR can be clocked at high rates.

Disadvantages:

- Not a clean solution, a compromise between all parameters must be found.
- Zener diodes come with a broad range of characteristics, especially at low currents, results may not be reproducible.
- High currents when sending high-level.
- High level is different for signaling and in idle state because signaling uses high currents to drive the diodes while idle state is driven by a 1.5 k Ω pull-up resistor."

15.2 Makefile

Tested with atmega88. Makefile settings:

```
TARGET=atmega88
HFUSE=0xdd
LFUSE=0xef
```

15.3 Test on Ubuntu

```
checking:
```

```
$ lsusb |grep -i 16c0:05dc
Bus 003 Device 006: ID 16c0:05dc VOTI shared ID for use with libusb
$ ls -1 /dev/bus/usb/003/006
crw-rw-r-- 1 root root 189, 261 2011-11-05 10:31 /dev/bus/usb/003/006
$ avrdude -patmega88 -cusbasp
avrdude: Warning: cannot query manufacturer for device: error sending control message: Operation
avrdude: error: could not find USB device "USBasp" with vid=0x16c0 pid=0x5dc
The permission should be changed:
$sudo nano /etc/udev/rules.d/60-objdev.rules
add this line:
```

ATTRS{idVendor}=="16c0", ATTRS{idProduct}=="05dc", GROUP="users", MODE="0666"

update rules:

\$sudo udevadm trigger

checking again:

```
$ ls -1 /dev/bus/usb/003/006
crw-rw-rw- 1 root users 189, 261 2011-11-05 10:33 /dev/bus/usb/003/006
$ avrdude -patmega88 -cusbasp
avrdude: error: programm enable: target doesn't answer. 1
avrdude: initialization failed, rc=-1
        Double check connections and try again, or use -F to override
        this check.
avrdude done. Thank you.
```

Permission is OK now.

Testing with connected controller:

```
$ avrdude -patmega88 -cusbasp
avrdude: AVR device initialized and ready to accept instructions
avrdude: Device signature = 0x1e930a
avrdude: safemode: Fuses OK
avrdude done. Thank you.
```

15.2. Makefile 59

15.4 Schematic

15.4. Schematic 60

15.5 Board

Normal, bottom mirrored, wires only:

15.5. Board 61

15.6 Partlist

Table 15.1:

part	value	position
C1	4u7	(2.4 0.8)
C3	100n	(1.7 0.85)
C4	22p	(1.5 0.75)
C5	22p	(1.6 0.7)
D1	3V6	(1.1 0.95)
D2	3V6	(1.2 0.9)
IC1		(1.95 0.85)
JP1	Supply target	(3 1.55)
JP2	Self programming	(2.6 0.25)
JP3	Slow SCK	(2.4 1.25)
JP4	Reset	(3.1 0.15)
JP5	Connect	(2.7 1.65)
LED1	green	(3 1.15)
LED2	red	(3 0.95)
LED3	POW TARG	(3.3 1.35)
LED4	POW USB	(2.7 1.35)
Q1	12MHz	(1.3 0.65)
R1	68	(1 0.6)
R2	68	(1.2 1.15)
R3	2k2	(1.3 1.35)
R4	1k	(2.7 0.8)
R5	1k	(2.6 0.95)
R6	10k	(1.6 1.2)
R7	1k	(3.5 1.45)
R8	1k	(2.5 1.5)
X1		(0.7 0.95)
X2		(3.45 0.7)

15.6. Partlist 62

15.7 3D view

15.7.1 Front

15.7. 3D view 63

15.7.2 Right side

15.7.3 Left side

15.7. 3D view 64

15.7.4 Bottom

15.8 Reset

To reset on Ubuntu:

```
#!/usr/bin/env python
import logging
import usb.core
logging.basicConfig(level=logging.DEBUG)
import fcnt1
ID_VENDOR = 0x16c0
ID\_PRODUCT = 0x05dc
USBDEVFS_RESET = 21780
def find():
    print("searching for device (%x:%x)" % (ID_VENDOR, ID_PRODUCT))
    dev = usb.core.find(idVendor=ID_VENDOR,
                        idProduct=ID_PRODUCT,
    if not dev:
       print("device not found")
    return dev
def usbstr(i):
    s=str(i)
    s='000'[0:3-len(s)]+s
```

15.8. Reset 65

```
return s
def usbfs_filename(dev):
    return '/dev/bus/usb/%s/%s' % (usbstr(dev.bus), usbstr(dev.address))
def reset1(dev):
   fname=usbfs_filename(dev)
   print("Resetting USB device %s" % fname)
    with open(fname, 'w') as fd:
       rc = fcntl.ioctl (fd, USBDEVFS_RESET, 0)
        if (rc < 0):
            print("Error in ioctl")
    print("OK")
def reset2(dev):
   dev.reset() # not working
dev=find()
if dev:
    reset1(dev)
```

15.9 Sources

original design

ISP pinout

similar projects:

• http://lategahn.2log.de/index.php?USBASP-Stripboard-layout

15.9. Sources 66

CHAPTER SIXTEEN

USB LED

Status: OK

It is used for testing USB power.

WIRE DETECTOR

Status: OK

It is used for detecting mains wire.

Based on this design: http://www.edn.com/article/511304-Detect_live_ac_mains_lines.php

17.1 Schematic

17.2 Board

Normal, bottom mirrored, wires only:

17.3 Partlist

Table 17.1:

part	value	position
C7	100n	(0.85 1.9)
D2	1N4148	(0.85 1.3)
IC3	7414N	(1.2 1.65)
JP1	IN	(0.85 1.1)
JP3	POWER	(0.85 2)
LED1		(1.55 1.1)
R1	1k	(1.5 1.3)

17.2. Board 69

17.4 3D view

17.4.1 Front

17.4. 3D view 70

17.4.2 Right side

17.4.3 Left side

17.4. 3D view 71

17.4.4 Bottom

17.5 Sources

original design

17.5. Sources 72