5. Уравнения плоскости, прямой в пространстве

5.1. Плоскость в пространстве

Пусть дана плоскость α в пространстве, в котором фиксирована некоторая аффинная система координат $\overrightarrow{Oe_1e_2e_3}$.

На плоскости любые два неколлинеарных вектора образуют базис множества всех векторов плоскости, а значит и множества всех векторов пространства, параллельных этой плоскости. Т.о. любой вектор, параллельный этой плоскости, является линейной комбинацией векторов базиса.

5.2. Уравнение плоскости

Возьмем некоторую точку $M_0(x_0,y_0,z_0)\in \alpha$ и пару ненулевые неколлинеарные векторов $\overrightarrow{a}(a_1,a_2,a_3)$ и $\overrightarrow{b}(b_1,b_2,b_3)$, параллельных α . Векторы $\overrightarrow{a},\overrightarrow{b}$ называется **направляющими** для α .

Teop 1. Точка M(x,y,z) принадлежит плоскости α тогда и только тогда, когда

$$\begin{cases} x-x_0=a_1t_1+b_1t_2\\ y-y_0=a_2t_1+b_2t_2\\ z-z_0=a_3t_1+b_3t_2 \end{cases}$$
 (параметрические уравнения плоскости) (1)

для некоторого $t \in \mathbb{R}$.

Док-во. Для любой точки $M(x,y,z)\in \alpha$ вектор $\overrightarrow{M_0M}$ параллелен α . Поэтому векторы $\overrightarrow{M_0M}$, \overrightarrow{a} и \overrightarrow{b} компланарны и по Теореме 1 они линейно зависимы, а значит $\overrightarrow{M_0M}=t_1$ $\overrightarrow{a}+t_2$ \overrightarrow{b} для некоторых t_1,t_2 , т.е. верны (1).

Допустим верны равенства (1). Тогда $\overrightarrow{M_0M}=t_1\overrightarrow{a}+t_2\overrightarrow{b}$, а значит векторы $\overrightarrow{M_0M},\overrightarrow{a}$ и \overrightarrow{b} компланарны по Теореме 1. Поэтому $M\in\alpha$.

Получим некоторые другие виды уравнений.

$$(1) \Rightarrow$$

$$\begin{vmatrix} x - x_0 & a_1 & b_1 \\ y - y_0 & a_2 & b_2 \\ z - z_0 & a_3 & b_3 \end{vmatrix} = 0$$
 (2)

Действительно, для любой точки $M(x,y,z)\in\alpha$ разрешима относительно t_1,t_2 система (1), поэтому ранг расширенной матрицы такой системы меньше 3, что и означает (2).

- $(2)\Rightarrow (1)$: такое равенство означает, что существует ненулевое решение $lpha,t_1,t_2$ системы (эквивалентной равенству) $lpha\overrightarrow{M_0M}+t_1\overrightarrow{a}+t_2\overrightarrow{b}=0$, т.е. векторы $\overrightarrow{M_0M},\overrightarrow{a}$ и \overrightarrow{b} компланарны, отсюда $M\inlpha$.
- $(2) \Rightarrow A(x-x_0) + B(y-y_0) + C(z-z_0) = 0, \mbox{где}\,A, B, C \mbox{соответствующие}$ алгебраические дополнения, что можно записать так

$$Ax + By + Cz + D = 0$$
 (общее уравнение плоскости) (3)

с $D=(-Ax_0-By_0-Cz_0)$, причем A,B,C одновременно не могут быть равны нулю, т.к. $[\overrightarrow{a},\overrightarrow{b}]\neq\overrightarrow{0}$.

(3) \Rightarrow (2): Скажем, $A \neq 0$, тогда общее решение (3) можно записать $x = \frac{-By-Cz-D}{A}$, $y = t_1$, $z = t_2$. Составим уравнение плоскости (2), взяв точку $M_0(-\frac{D}{A},0,0)$, которая удовлетворяет (3), а в качестве (линейно независимых) направляющих векторов возьмем пару решений уравнения Ax+By+Cz=0

(см. Утв. 2):
$$\overrightarrow{a}(-\frac{B}{A},1,0)$$
 и $\overrightarrow{b}(-\frac{C}{A},0,1)$. Получаем $\begin{vmatrix} x+\frac{D}{A} & -\frac{B}{A} & -\frac{C}{A} \\ y & 1 & 0 \\ z & 0 & 1 \end{vmatrix} = 0$, что

можно переписать, разложив по строке, $x+\frac{D}{A}+\frac{B}{A}y+\frac{C}{A}z=0$ и домножить на $A\neq 0$. Видим, что составленное уравнение эквивалентно изначально взятому (3). Аналогично, если $B\neq 0$ или $C\neq 0$ получаем уравнения, эквивалентные уравнению (2).

Если точки $M_1(x_1,y_1,z_1)$, $M_2(x_2,y_2,z_2)$ и $M_3(x_3,y_3,z_3)$ принадлежат α и не лежат на одной прямой, то возьмем в качестве направляющих векторов $\overrightarrow{M_1M_2}$ и $\overrightarrow{M_1M_3}$, а точку M_1 — в качестве точки, принадлежащей α , и составим уравнение (2):

$$\begin{vmatrix} x-x_1 & x_2-x_1 & x_3-x_1 \\ y-y_1 & y_2-y_1 & y_3-y_1 \\ z-z_1 & z_2-z_1 & z_3-z_1 \end{vmatrix}=0 \quad \text{(уравнение плоскости через три точки)} \quad \text{(4)}$$

Если в декартовой системе координат задана точка $M_0(x_0,y_0,z_0)\in \alpha$ и вектор $\overrightarrow{n}(A,B,C)\neq \overrightarrow{0}$, перпендикулярный плоскости α , то \overrightarrow{n} перпенди-

кулярен вектору $\overrightarrow{M_0M}$ для любой точки $M\in\alpha$. Поэтому для всякой точки $M\in\alpha$ можно записать $\overrightarrow{M_0M}\cdot\overrightarrow{n}=0$ или

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0 \label{eq:continuous}$$
 (уравнение по точке и нормальному вектору) (5)

Но это уравнение уже было получено выше из (2), а из него получалось (3). Так как из общего уравнения (3) можно очевидно получить уравнение вида (5), подставив координаты некоторой точки $M_0 \in \alpha$ и вычислив D, то отсюда получаем смысл коэффициентов общего уравнения плоскости:

Утв 1. В декартовой системе координат вектор $\vec{n}(A, B, C)$ перпендикулярен плоскости Ax + By + Cz + D = 0.

Ненулевой вектор, перпендикулярный плоскости называется **нормальным вектором** данной плоскости.

Утв 2. Вектор $\overrightarrow{a}(a_1,a_2,a_3)$ параллелен плоскости Ax+By+Cz+D=0 тогда и только тогда, когда $Aa_1+Ba_2+Ca_3=0$.

Док-во. Пусть \overrightarrow{a} параллелен плоскости. Отложим его от произвольной точки плоскости: имеем $\overrightarrow{a}=\overrightarrow{AB}$ для некоторых точек $A(x_1,y_1,z_1), B(x_2,y_2,z_2)$ принадлежащих плоскости. Координаты удовлетворяют уравнениям, поэтому $Ax_1+By_1+Cz_1+D=0$ и $Ax_2+By_2+Cz_2+D=0$. Вычитая, получаем $A(x_2-x_1)+B(y_2-y_1)+C(z_2-z_1)+D=0$. Но $x_2-x_1=a_1,y_2-y_1=a_2$ и $z_2-z_1=a_3$.

Обратно. Отложив \overrightarrow{a} от произвольной точки $A(x_1,y_1,z_1)$ на плоскости, получим точку $B(x_2,y_2,z_2)$. По условию, координаты \overrightarrow{a} удовлетворяют уравнению, $A(x_2-x_1)+B(y_2-y_1)+C(z_2-z_1)+D=0$. Но $Ax_1+By_1+Cz_1+D=0$, т.к. A принадлежит плоскости. Сложив равенства видим, что B принадлежит плоскости, т.е. $\overrightarrow{a}=\overrightarrow{AB}$ параллелен плоскости.

5.3. Взаимное расположение плоскостей

Множество общих точек плоскостей
$$A_1x+B_1y+C_1z+D_1=0$$
 и $A_2x+B_2y+C_2z+D_2=0$ — решения системы
$$\begin{cases} A_1x+B_1y+C_1z+D_1=0\\ A_2x+B_2y+C_2z+D_2=0 \end{cases}$$

Возможны следующие случаи:

1. нет решений — плоскости параллельны:

$$\operatorname{rank}\begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix} = 1, \quad \operatorname{rank}\begin{pmatrix} A_1 & B_1 & C_1 & D_1 \\ A_2 & B_2 & C_2 & D_2 \end{pmatrix} = 2, \quad \text{что значит}$$

$$egin{array}{c|c} A_1 & B_1 \\ A_2 & B_2 \\ \hline \end{array} = 0, \quad egin{array}{c|c} A_1 & C_1 \\ A_2 & C_2 \\ \hline \end{array} = 0, \quad egin{array}{c|c} B_1 & C_1 \\ B_2 & C_2 \\ \hline \end{array} = 0, \quad \mathbf{u}$$

один из
$$\begin{vmatrix} A_1 & D_1 \\ A_2 & D_2 \end{vmatrix}$$
, $\begin{vmatrix} B_1 & D_1 \\ B_2 & D_2 \end{vmatrix}$, $\begin{vmatrix} C_1 & D_1 \\ C_2 & D_2 \end{vmatrix}$ отличен от нуля,

поэтому
$$A_1B_2=A_2B_1$$
, $A_1C_2=A_2C_1$, $B_1C_2=B_2C_1$,

среди A_1,B_1,C_1 есть отличный от нуля, скажем, $A_1\neq 0$, тогда $A_2=\lambda A_1$ для некоторого λ и $B_2=\lambda B_1,C_2=\lambda C_1$, поэтому

$$A_2=\lambda A_1,\quad B_2=\lambda B_1,\quad C_2=\lambda C_1,\quad D_2\neq\lambda D_1;$$

2. бесконечно много решений, ранг равен 1 — плоскости совпадают:

$${\rm rank} \begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix} = {\rm rank} \begin{pmatrix} A_1 & B_1 & C_1 & D_1 \\ A_2 & B_2 & C_2 & D_2 \end{pmatrix} = 1, \quad {\rm что \ значит}$$

$$A_2 = \lambda A_1, \quad B_2 = \lambda B_1, \quad C_2 = \lambda C_1, \quad D_2 = \lambda D_1;$$

3. бесконечно много решений, ранг равен 2 — плоскости пересекаются по прямой:

$$\operatorname{rank} egin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix} = 2, \quad$$
что означает

не существует такого числа λ чтобы выполнялись равенства $A_2=\lambda A_1$, $B_2=\lambda B_1$ и $C_2=\lambda C_1$.

5.4. Расстояние от точки до плоскости

Опр. *Расстоянием от точки до плоскости* называется длина перпендикуляра, опущенного из точки на эту плоскость.

Опр. Вектор называется **перпендикулярным** плоскости, если он перпендикулярен любой прямой на данной плоскости.

Утв 3. Расстояние от точки $M(x_1,y_1,z_1)$ до плоскости Ax+By+Cz+D=0, заданных в декартовой системе координат, вычисляется по формуле

$$\frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

Док-во. Пусть M- точка, не лежащая на плоскости $\alpha:Ax+By+Cz+D=0$, а M_0M- перпендикуляр из M к α , где $M_0(x_0,y_0,z_0)\in \alpha$. Тогда для нормального вектора $\overrightarrow{n}(A,B,C)$ имеем $\overrightarrow{n}M_0M=|\overrightarrow{n}||\overrightarrow{M_0M}|\cos(\overrightarrow{n},\overrightarrow{M_0M})=A(x_1-x_0)+B(y_1-y_0)+C(z_1-z_0)$. Выражаем $|\overrightarrow{M_0M}|=\pm\frac{Ax_1+By_1+Cz_1-Ax_0-By_0-Cz_0}{\sqrt{A^2+B^2+C^2}}=\pm\frac{Ax_1+By_1+Cz_1+D}{\sqrt{A^2+B^2+C^2}}$, отсюда расстояние равно $\frac{|Ax_1+By_1+Cz_1|}{\sqrt{A^2+B^2+C^2}}$.

5.5. Угол между плоскостями

Опр. Углом между двумя пересекающимися плоскостями σ_1 и σ_2 называется угол между прямыми, образованными пересечением плоскостей σ_1 и σ_2 с плоскостью, перпендикулярной прямой пересечения σ_1 и σ_2 .

Величина угла между пересекающимися плоскостями σ_1 : $A_1x+B_1y+C_1z+D_1=0$ и σ_2 : $A_2x+B_2y+C_2z+D_2=0$ может быть вычислена через угол между их нормальными векторами $\overrightarrow{n_1}(A_1,B_1,C_1)$ и $\overrightarrow{n_2}(A_2,B_2,C_2)$.

Пусть прямые $l_1\subset \sigma_1$ и $l_2\subset \sigma_2$ образуют линейный угол α , который нужно найти, и лежат в плоскости γ , перпендикулярной σ_1 и σ_2 . Тогда вектор $\overrightarrow{n_1}$ перпендикулярен l_1 и $\overrightarrow{n_2}$ перпендикулярен l_2 , причем $\overrightarrow{n_1}$, $\overrightarrow{n_2}$ параллельны γ . Угол $(\overrightarrow{n_1},\overrightarrow{n_2})$ равен углу между направляющими векторами прямых l_1 и l_2 (рассматриваем их как прямые на плоскости γ). Так же как и для угла между прямыми, если $\cos(\overrightarrow{n_1},\overrightarrow{n_2})>0$, то это $\cos\alpha$, а если $\cos(\overrightarrow{n_1},\overrightarrow{n_2})<0$, то это $\cos(\pi-\alpha)=-\cos\alpha$. На интервале $[0,\frac{\pi}{2}]$ функция соѕ обратима, поэтому можно однозначно найти значение угла α .

Если уравнения заданы в декартовой системе координат, то угол между нормальными векторами вычисляется через скалярное произведение, т.е. $\cos(\overrightarrow{n_1},\overrightarrow{n_2}) = \frac{A_1A_2 + B_1B_2 + C_1C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2}\sqrt{A_2^2 + B_2^2 + C_2^2}},$ из этого получаем значение α .

5.6. Уравнение прямой в пространстве

Пусть дана прямая l в пространстве, на которой фиксирована некоторая аффинная система координат $O\overrightarrow{e_1}\overrightarrow{e_2}\overrightarrow{e_3}$.

Возьмем точку $M_0(x_0,y_0,z_0)\in l$ и ненулевой вектор $\overrightarrow{a}(a_1,a_2,a_3)$, параллельный l.

Теор 2. Точка M(x,y,z) принадлежит прямой l тогда и только тогда, когда

$$\begin{cases} x-x_0=a_1t\\ y-y_0=a_2t & \textbf{(параметрические уравнения прямой)}\\ z-z_0=a_3t \end{cases} \tag{6}$$

для некоторого $t \in \mathbb{R}$.

Если
$$a_1,a_2,a_3\neq 0$$
, то (6) \Rightarrow

$$\frac{x-x_0}{a_1} = \frac{y-y_0}{a_2} = \frac{z-z_0}{a_3}$$
 (каноническое уравнение прямой) (7)

если $a_1=0,\quad a_2=0$ или $a_3=0,$ то соответственно $x-x_0=0,\quad y-y_0=0$ или $z-z_0=0.$

Выражая в одном из уравнений (6) параметр t и подставляя в другие два уравнения, получаем:

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

(общие уравнения прямой) (8)

где ранг матрицы системы (8) равен 2.

На уравнения (8) можно смотреть как на уравнение прямой, являющейся пересечением двух плоскостей.

Коэффициенты в уравнениях (8) являются координатами направляющих векторов плоскости, которая перпендикулярна данной прямой.

Утв 4. Если прямая задана уравнениями
$$\begin{cases} A_1x+B_1y+C_1z+D_1=0\\ A_2x+B_2y+C_2z+D_2=0 \end{cases},$$
 то век-

$$mop \overrightarrow{p} \left(\begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix}, \begin{vmatrix} C_1 & A_1 \\ C_2 & A_2 \end{vmatrix}, \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} \right)$$
 параллелен данной прямой.

Док-во. По Утверждению 2 вектор \overrightarrow{p} параллелен обеим плоскостям, задаваемым уравнениями. Поэтому он параллелен и прямой, по которой эти плоскости пересекаются.

5.7. Взаимное расположение прямых

Пусть даны две прямые l_1 и l_2 в пространстве. Возьмем точки $M_1\in l_1, M_2\in l_2$ и направляющие векторы $\overrightarrow{a_1}$ для прямой l_1 , $\overrightarrow{a_2}$ для прямой l_2 .

Две прямые l_1 и l_2 в пространстве могут совпадать, пересекаться, быть параллельными, скрещиваться. В первых трех случаях l_1 и l_2 лежат в одной плоскости, в последнем — не лежат.

Определить взаимное расположение прямых l_1 и l_2 можно рассматривая векторы $\overrightarrow{a_1}, \overrightarrow{a_2}$ и $\overrightarrow{M_1M_2}$:

- 1. если векторы $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{M_1M_2}$ компланарны (прямые l_1 и l_2 лежат в одной плоскости) и:
 - (a) векторы $\overrightarrow{a_1}, \overrightarrow{a_2}$ и $\overrightarrow{M_1M_2}$ попарно коллинеарны, то **прямые совпа**дают;
 - (b) векторы $\overrightarrow{a_1}$, $\overrightarrow{a_2}$ коллинеарны, а векторы $\overrightarrow{M_1M_2}$, $\overrightarrow{a_1}$ не коллинеарны, то **прямые параллельны**;
 - (c) векторы $\overrightarrow{a_1}$, $\overrightarrow{a_2}$ не коллинеарны, то **прямые пересекаются**;
- 2. если векторы $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, $\overrightarrow{M_1M_2}$ не компланарны, то прямые не лежат в одной плоскости, поэтому они **скрещиваются**.

5.8. Расстояние от точки до прямой

Утв 5. Расстояние от точки M до прямой, заданной точкой M_0 и направляющим вектором \overrightarrow{a} , вычисляется по формуле

$$\frac{|[\overrightarrow{M_0M},\overrightarrow{a}]|}{|\overrightarrow{a}|}.$$

Док-во. Пусть P- точка пересечения перпендикуляра из M к прямой l, $P\in l$. Если $\overrightarrow{a}\neq \overrightarrow{0}$ параллелен l, то площадь параллелограмма, построенного на векторах $\overrightarrow{M_0M}$ и \overrightarrow{a} можно вычислить как $|\overrightarrow{PM}||\overrightarrow{a}|$ или как $|[\overrightarrow{M_0M},\overrightarrow{a}]|$, отсюда искомое расстояние равно $|\overrightarrow{PM}|=\frac{|[\overrightarrow{M_0M},\overrightarrow{a}]|}{|\overrightarrow{a}|}$.

5.9. Углы, расстояния

Опр. Углом между двумя скрещивающимися прямыми называется угол между проходящими через общую точку прямыми, параллельными данным.

Опр. Углом между прямой и плоскостью называется угол между данной прямой и ее ортогональной проекцией на данную плоскость, если прямая не перпендикулярна плоскости, и $\frac{\pi}{2}$, если прямая перпендикулярна плоскости.

Утв 6. Для угла φ между двумя прямыми с направляющими векторами $\overrightarrow{a}(a_1,a_2,a_3)$ и $\overrightarrow{b}(b_1,b_2,b_3)$, заданными в декартовой системе координат,

$$\cos \varphi = \frac{|a_1b_1 + a_2b_2 + a_3b_3|}{\sqrt{a_1^2 + a_2^2 + a_3^2}\sqrt{b_1^2 + b_2^2 + b_3^2}}.$$

Док-во. Рассуждения аналогичны тем, что сделаны для угла между прямыми на плоскости. □

Утв 7. Для угла φ между прямой с направляющим вектором $\overrightarrow{a}(a_1,a_2,a_3)$ и плоскостью Ax+By+Cz+D=0, заданными в декартовой системе координат,

$$\sin \varphi = \frac{|Aa_1 + Ba_2 + Ca_3|}{\sqrt{A^2 + B^2 + C^2} \sqrt{a_1^2 + a_2^2 + a_3^2}}.$$

Док-во. Нужный угол φ можно найти через угол между \overrightarrow{a} и нормальным вектором плоскости $\overrightarrow{n}(A,B,C)$.

Косинус угла между данной прямой и прямой, перпендикулярной данной плоскости, вычисляется $\frac{|Aa_1+Ba_2+Ca_3|}{\sqrt{A^2+B^2+C^2}\sqrt{a_1^2+a_2^2+a_3^2}}$ согласно Утверждению 6, но этот угол есть $\frac{\pi}{2}-\varphi$. По формуле приведения получаем нужное равенство.

Если прямая перпендикулярная плоскости, то синус искомого угла φ должен быть равен $\sin\frac{\pi}{2}=0$. Так как в правой части доказываемой формулы стоит косинус угла между данной прямой и прямой, перпендикулярной данной плоскости, который равен $\cos 0=1$, то и в этом случае формула выполняется.

Утв 8. Расстояние между двумя скрещивающимися прямыми l_1 , заданной направляющим вектором $\overrightarrow{a_1}$ и точкой M_1 , и l_2 , с направляющим вектором $\overrightarrow{a_2}$ и точкой M_2 , равно

$$\frac{|\overrightarrow{a_1}\overrightarrow{a_2}\overrightarrow{M_1}\overrightarrow{M_2}|}{|[\overrightarrow{a_1},\overrightarrow{a_2}]|}.$$

Док-во. Векторное произведение $[\overrightarrow{a_1},\overrightarrow{a_2}]$ перпендикулярно $\overrightarrow{a_1}$ и $\overrightarrow{a_2}$, поэтому оно коллинеарно с общим перпендикуляром к прямым l_1 и l_2 , длина которого равна расстоянию между прямыми.

Пусть \overline{AB} — общий перпендикуляр к l_1 и l_2 , где $A \in l_1$, $B \in l_2$. Как сказали, $\overline{AB} = \gamma[\overrightarrow{a_1}, \overrightarrow{a_2}]$ для некоторого числа γ . Так как $\overline{AM_1}$ коллинеарен $\overrightarrow{a_1}$, а $\overline{M_2B}$ коллинеарен $\overrightarrow{a_2}$, то также можно записать $\overline{AB} = \alpha \overrightarrow{a_1} + \overline{M_1M_2} + \beta \overrightarrow{a_2}$ для некоторых чисел α , β . Теперь домножим скалярно на $[\overrightarrow{a_1}, \overrightarrow{a_2}]$ и получим $[\overrightarrow{a_1}, \overrightarrow{a_2}] \overrightarrow{AB} = \gamma[\overrightarrow{a_1}, \overrightarrow{a_2}]^2 = \alpha \overrightarrow{a_1} \overrightarrow{a_2} \overrightarrow{a_1} + \overrightarrow{a_1} \overrightarrow{a_2} \overrightarrow{M_1M_2} + \beta \overrightarrow{a_1} \overrightarrow{a_2} \overrightarrow{a_2} = \overrightarrow{a_1} \overrightarrow{a_2} \overrightarrow{M_1M_2}$.

Учитывая, что искомая длина равна $|\overrightarrow{AB}|=|\gamma||[\overrightarrow{a_1},\overrightarrow{a_2}]|$, выражаем из последнего равенства $|\overrightarrow{AB}|=\frac{|\overrightarrow{a_1}\overrightarrow{a_2}\overrightarrow{M_1}\overrightarrow{M_2}|}{|[\overrightarrow{a_1},\overrightarrow{a_2}]|}$.