Résolution

La résolution en calcul propositionnel

John Alan Robinson : philosophe, mathématicien, informaticien anglais/américain (1928 -)

Delia Kesner (Université Paris Diderot)

Logiaue

016 1 / 19 Delia Kesner (Université Paris Diderot)

Logiqu

2016 2 / 19

Résolution

On écrira $\Delta \vdash_R A$ ssi la formule A se déduit à partir de l'ensemble de formules Δ par la méthode de résolution, résumée ainsi :

 $\Delta \vdash_R A \text{ ssi } \Delta \cup \{\neg A\} \text{ est insatisfaisable ssi } \Delta \cup \{\neg A\} \text{ est réfutable}$

On introduira donc une méthode pour réfuter un ensemble de formules.

Forme Normale Conjonctive (FNC)

Définition :

- Un littéral est une formule de la forme p ou $\neg p$, où p est une lettre propositionnelle quelconque.
- Une clause est une formule de la forme $l_1 \vee ... \vee l_n$, $n \geq 0$, où chaque l_i est un littéral.
- Une formule est en forme normal conjonctive ssi elle est de la forme $D_1 \wedge \ldots \wedge D_k$, $k \geq 0$, où chaque D_i est une clause.

Remarque:

- La clause vide (n = 0) s'écrit False.
- Un littéral est une clause.
- La forme normal conjonctive vide (k = 0) s'écrit True.
- Une clause est une FNC.
- Un littéral est une FNC.
- False est une FNC.

Algorithme pour calculer une FNC - Rappel

Exemples

On applique les règles suivantes aussi longtemps que possible :

$$\begin{array}{ccccc} X \to Y & \leadsto & \neg X \lor Y \\ \neg \neg X & \leadsto & X \\ \neg (X \lor Y) & \leadsto & \neg X \land \neg Y \\ \neg (X \land Y) & \leadsto & \neg X \lor \neg Y \\ X \lor (Y \land Z) & \leadsto & (X \lor Y) \land (X \lor Z) \\ (X \land Y) \lor Z & \leadsto & (X \lor Z) \land (Y \lor Z) \\ (X \land Y) \land Z & \leadsto & X \land (Y \land Z) \\ (X \lor Y) \lor Z & \leadsto & X \lor (Y \lor Z) \end{array}$$

Les formules suivantes sont des FNC :

$$\texttt{True}, \texttt{False}, \rho, \rho \vee \neg q, \big(\rho \vee \neg q\big) \wedge \big(\neg \rho\big)$$

Exercice: Mettre la formule $p_1 \vee (\neg (q_1 \wedge q_2) \vee \neg \neg (z_1 \wedge z_2))$ en FNC.

Delia Kesner (Université Paris Diderot)

Logique

2016 5 / 19 Delia Kesner (Université Paris Diderot)

Logiqu

2016 6 / 19

Forme Normale Disjonctive (FND)

Définition:

- Une conjonction élémentaire est une formule de la forme $l_1 \wedge \ldots \wedge l_n$, $n \geq 0$, où chaque l_i est un littéral.
- Une formule est en forme normal disjonctive ssi elle est de la forme $C_1 \vee \ldots \vee C_k$, $k \geq 0$, où chaque C_i est une conjonction élémentaire.

Remarque

- La conjonction élémentaire vide (n = 0) s'écrit True.
- Un littéral est une conjonction élémentaire.
- La forme normal disjonctive (k = 0) s'écrit False.
- Une conjonction élémentaire est une FND.
- Un littéral est une END.
- True est une FND.

Algorithme pour calculer une FND - Rappel

On applique les règles suivantes aussi longtemps que possible :

$$\begin{array}{ccccc} X \to Y & \leadsto & \neg X \lor Y \\ \neg \neg X & \leadsto & X \\ \neg (X \lor Y) & \leadsto & \neg X \land \neg Y \\ \neg (X \land Y) & \leadsto & \neg X \lor \neg Y \\ X \land (Y \lor Z) & \leadsto & (X \land Y) \lor (X \land Z) \\ (X \lor Y) \land Z & \leadsto & (X \land Z) \lor (Y \land Z) \\ (X \land Y) \land Z & \leadsto & X \land (Y \land Z) \\ (X \lor Y) \lor Z & \leadsto & X \lor (Y \lor Z) \end{array}$$

Exemples

Existence de la FND et de la FNC

Les formules suivantes sont des FND :

True, False,
$$p, p \land \neg q, (p \land \neg q) \lor (\neg p)$$

Exercice: Mettre la formule $p_1 \wedge (\neg (q_1 \vee q_2) \wedge \neg \neg (z_1 \vee z_2))$ en FND.

Théorème : Soit A une formule

- Il existe une formule A_1 en FND telle que $A_1 \equiv A$.
- Il existe une formule A_2 en FNC telle que $A_2 \equiv A$.

Preuve: Cours 1er semestre.

Remarque: Une formule ne possède pas une unique FND (resp. FNC).

Delia Kesner (Université Paris Diderot)

Delia Kesner (Université Paris Diderot)

2016 10 / 19

Observation : formes normales et tables de vérité

V F F V V F F

$$A \equiv (p \wedge q \wedge \neg r) \vee (p \wedge \neg q \wedge r) \vee (\neg p \wedge q \wedge r) \vee (\neg p \wedge \neg q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge r)$$

Construction d'un ensemble de clauses

Construction d'un ensemble de clauses C_{Δ} à partir d'un ensemble de formules Δ :

Soit $\Delta = \{A_1, \dots, A_n\}$ un ensemble de formules. Soit $FNC_{\Delta} = \{E_1, \dots, E_n\}$ un ensemble de FNC, où chaque E_i est une FNC de la formule A_i , pour tout $1 \le i \le n$. Pour chaque E_i de la forme $D^i_{j_1} \wedge \ldots \wedge D^i_{j_k}$ on construit $C_{E_i} = \{D^i_{j_1}, \ldots, D^i_{j_k}\}$. On calcule ensuite l'union de tous ces ensembles : $C_{\Delta} = \bigcup_{1 < i < n} C_{E_i}$.

Lemme: Soit $\Delta = \{A_1, \ldots, A_n\}$ un ensemble de formules et soit C_{Δ} son ensemble de clauses associé (comme décrit ci-dessus). Alors Δ est satisfaisable ssi C_{Δ} est satisfaisable.

Règles de la résolution

Soit Δ un ensemble de clauses.

Axiomes:

$$\frac{1}{C}$$
 $(C \in \Delta)$

Règles d'inférence :

(D et C sont des clauses)

$$\frac{D \lor p \quad C \lor \neg p}{D \lor C} \quad (coupure)$$

$$\frac{D \lor p \lor p}{D \lor p} \quad (factorisation) \quad \frac{D \lor \neg p \lor \neg p}{D \lor \neg p} \quad (factorisation)$$

Cas particulier de la coupure : $\frac{p}{\text{False}}$

Dérivation par résolution

Exemple: Soit $\Delta = \{p \lor r \lor s, r \lor \neg s, \neg r\}$. Montrer que la clause ps'obtient à partir de Δ par résolution, *i.e.* que

$$\{p \lor r \lor s, r \lor \neg s, \neg r\} \vdash_R p$$

Preuve

$$\frac{\frac{p \vee r \vee s}{p \vee r \vee s} (ax) \frac{}{r \vee \neg s} (ax)}{\frac{p \vee r \vee r}{p \vee r} (c)} (c)$$

$$\frac{}{p \vee r} (c)$$

Delia Kesner (Université Paris Diderot)

2016 13 / 19 Delia Kesner (Université Paris Diderot)

2016 14 / 19

Réfutation

Définition: Un ensemble de clauses Δ est réfutable ssi $\Delta \vdash_R$ False.

Exemple: Soit $\Delta = \{p \lor r \lor s, r \lor \neg s, \neg r, \neg p\}$.

$$\frac{\frac{\overline{p \vee r \vee s}}{p \vee r \vee s} (ax) \qquad \overline{r \vee \neg s}}{p \vee r \qquad (c)} (c)$$

$$\frac{\overline{p \vee r \vee r}}{p \vee r} (f) \qquad \overline{\neg r} (ax)$$

$$\overline{p} \qquad (c) \qquad \overline{\neg p} (ax)$$
False

On a $\{p \lor r \lor s, r \lor \neg s, \neg r, \neg p\} \vdash_R \text{False}$.

Application de la méthode

Exemple: Montrer que la règle d'élimination de l'implication de la déduction naturelle est correcte.

Ceci équivaut a montrer que la formule $A = ((p \to q) \land p) \to q$ est valide.

- La formule A est valide ssi $\neg A$ est insatisfaisable ssi $\neg A$ est réfutable par la méthode de résolution.
- ② On calcule une FNC de $\neg A$. Ca donne $\Delta = \{(\neg p \lor q) \land p \land (\neg q)\}$.
- **3** On calcule son ensemble de clauses associé $C_{\Delta} = \{ \neg p \lor q, p, \neg q \}$.
- **4** On applique la résolution à l'ensemble C_{Δ} :

$$\frac{\frac{-p \vee q}{p} (ax) - (ax)}{q} \frac{-(c)}{q}$$
False

ullet L'ensemble C_{Δ} étant réfutable, on conclut que Δ est insatisfaisable, et donc que la formule A est valide.

Application de la méthode

Exemple: Montrer que le raisonnement suivante est correct :

• Hypothèse 1 : Si on fait du sport (s), alors on est en bonne santé (t)

- Hypothèse 2 : On fait du sport
- Conclusion : On fait du sport et on est en bonne santé

Il faut montrer qu'on peut dériver la conclusion à partir des hypothèses, i.e. il faut montrer $\{s \to t, s\} \vdash_R s \land t$.

- ② On calcule l'ensemble de FNC associé à $\{s \to t, s, \neg(s \land t)\}$. Ca donne $\Delta = \{ \neg s \lor t, s, \neg s \lor \neg t \}$. Son ensemble de clauses associé est $C_{\Delta} = \{ \neg s \lor t, s, \neg s \lor \neg t \}.$
- **3** On applique la résolution à l'ensemble C_{Δ} pour le réfuter :

$$\frac{\frac{}{\neg s \lor t} (ax) \qquad -(ax)}{t} (c) \qquad \frac{\frac{}{\neg s \lor \neg t} (ax) \qquad -(ax)}{s} (c)$$
False

Delia Kesner (Université Paris Diderot)

 $\Delta \vdash_R \mathsf{False}$.

Propriétés de la résolution

 $\Delta \vdash_R$ False, alors Δ est insatisfaisable.

Théorème: La résolution est correcte, i.e. si $\Delta \vdash_R A$, alors $\Delta \models A$ et si

Théorème: La résolution est complète, i.e. si Δ est insatisfaisable, alors

2016

18 / 19

Propriétés de la résolution

Delia Kesner (Université Paris Diderot)

Remarque: La résolution sans la règle de factorisation n'est pas complète.

Exemple: Appliquer la résolution sans factorisation à la formule $(p \lor p) \land (\neg p \lor \neg p)$. Que se passe-t-il?

Delia Kesner (Université Paris Diderot)