



# Example topics related to **Information Theoretic Data Mining**

Clustering time series data by compression

Compression-based pattern mining from spatiotemporal graphs





# Dementia back in the heart of society



- 1) Visualization of human movement trajectories
- 2) Automatic extraction of interaction moments from human movement trajectories



### **Thesis** MDL-based approach

### **Research project**Data collection for validation

## A novel algorithm for p-privacy in medical data



**Privacy** very important for data publication

Develop a generalisation algorithm that optimises **p-privacy** while minimising **loss** 



## **Instance-based explanation** of predictions by machine learning models



Explainable machine learning

Use instances from data as **examplars** Model-agnostic

Formalise problem and develop new algorithm



### Optimising probabilistic rule lists using evolutionary algorithms



Probabilistic rule lists are considered interpretable machine learning models

If  $\{backbone = no\}$  then Pr(invertebr.) = 0.55

Pr(bug) = 0.45

ELSE IF  $\{breathes = no\}\$ THEN  $\Pr(fish) = 0.93$ 

Pr(reptile) = 0.07

ELSE IF  $\{feathers = yes\}$  THEN Pr(bird) = 1.00

ELSE IF  $\{milk = no\}$  THEN Pr(reptile) = 0.50

Pr(amphibian) = 0.50

ELSE THEN Pr(mammal) = 1.00

Idea: use evolutionary algorithms to find better rule lists

#### Possible interests

Exploratory data mining
Explainable machine learning
Interactive data analytics
Interpretability
Privacy

#### Your skills

Algorithmics
Data mining
Data structures
Experimentation
Programming

More information (to be completed soon):

eda.liacs.nl/for-students

