Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

- 1-62. (Cancelled)
- 63. (Previously presented) A Josephson junction structure comprising: a substrate; and
- a plurality of Josephson junction devices of claim 1 formed on the substrate, each of the Josephson junction devices comprising:

an electrode formed on and epitaxial to the substrate, the electrode comprising a first superconductive oxide;

a barrier comprising a non-superconducting, ion-modified surface layer of the first superconductive oxide; and

a counter-electrode formed directly on and epitaxial to the barrier, the counter-electrode comprising a second superconductive oxide, whereby a Josephson junction is formed between the electrode and the counter-electrode,

and the plurality of Josephson junction devices having respective I_c values with a 1- δ value within about 7.8% of each other, and respective R_n values with a 1- δ value within about 3.5% of each other, at 4.2 K.

- 64. (Currently amended) The Josephson junction structure of claim 63, wherein the plurality of Josephson junctions comprise at least 10 Josephson junction devices-of claim 1 and having respective I_c values with a 1- δ value within about 7.8%-of each other, and respective R_n values with a 1- δ value within about 3.5%-of each other, at 4.2 K.
- 65. (Currently amended) The Josephson junction device of claim 59<u>A</u>

 Josephson junction device, comprising:

a first layer comprising an oxide high-temperature superconductor;

a second layer comprising an oxide high-temperature superconductor; and
a third layer connecting the first and second layers and comprising a nonsuperconductor,

the first and third layers being formed from a starting oxide high-temperature superconductor layer of an oxide high-temperature superconductor, the third layer being an ion-modified portion of the starting oxide high-temperature superconductor layer, the first layer being an unmodified portion of the starting oxide high-temperature superconductor layer,

the device having an R_nA value of about 1×10^{-9} to about $3\times10^{-7}~\Omega$ -cm² at 4.2_K.

- 66. (Currently amended) The Josephson junction device of claim 65[2], wherein the first layer comprises an YBCO superconducting oxide having an R_nA value of about 1×10^{-9} to about $3\times10^{-7}\Omega$ cm² at 4.2K.
- 67. (Currently amended) The device of claim 1 An electronic device comprising:

a crystalline substrate;

an electrode formed on and epitaxial to the substrate, the electrode comprising a first superconductive oxide;

<u>a barrier comprising a non-superconducting, ion-modified surface layer of the</u>
<u>first superconductive oxide; and</u>

a counter-electrode formed directly on and epitaxial to the barrier, the counter-electrode comprising a second superconductive oxide, whereby a Josephson junction is formed between the electrode and the counter-electrode, having an R_nA value of about 1×10^{-9} to about $3\times10^{-7}~\Omega$ -cm² at 4.2_K.

68. (Currently amended) The device of claim $\underline{67}$, wherein the first and second superconductive oxides are YBCO having an R_nA value of about 1×10^{-9} to about 3×10^{-7} Ω -cm²-at 4.2K.

- 69. (Currently amended) The device of claim $\underline{6715}$, having an R_nA value of at least about $6\times10^{-9} \Omega$ -cm² at 40 K.
- 70. (Currently amended) The device of claim <u>6821</u>, having an R_nA value of at least about $6\times10^{-9} \Omega$ -cm² at 40_L K.
- 71. (Currently amended) The Josephson junction device of claim 59A Josephson junction device, comprising:

a first layer comprising an oxide high-temperature superconductor;

a second layer comprising an oxide high-temperature superconductor; and
a third layer connecting the first and second layers and comprising a nonsuperconductor,

the first and third layers being formed from a starting oxide high-temperature superconductor layer of an oxide high-temperature superconductor, the third layer being an ion-modified portion of the starting oxide high-temperature superconductor layer, the first layer being an unmodified portion of the starting oxide high-temperature superconductor layer,

the device having a J_c value of about 1×10^3 to about 5×10^6 A/cm² at 4.2_K.

- 72. (Currently amended) The Josephson junction device of claim 7162 wherein the first layer comprises an YBCO superconducting oxide, having a J_e value of about 1×10^3 to about 5×10^6 A/cm² at 4.2K.
- 73. (Currently amended) The Josephson junction device of claim 1An electronic device comprising:

a crystalline substrate;

an electrode formed on and epitaxial to the substrate, the electrode comprising a first superconductive oxide;

a barrier comprising a non-superconducting, ion-modified surface layer of the first superconductive oxide; and

a counter-electrode formed directly on and epitaxial to the barrier, the counterelectrode comprising a second superconductive oxide, whereby a Josephson junction is formed between the electrode and the counter-electrode,

the device having a J_c value of about 1×10^3 to about 5×10^6 A/cm² at 4.2K.

- 74. (Currently amended) The Josephson junction device of claim 73[7], wherein the first and second superconductive oxides are YBCO having a J_e value of about 1×10^3 to about 5×10^6 A/cm² at 4.2K.
- 75. (New) The Josephson junction device of claim 65, wherein the third layer is substantially uniform.
- 76. (New) A Josephson junction device, comprising:
 a first layer comprising an oxide high-temperature superconductor;
 a second layer comprising an oxide high-temperature superconductor; and
 a third layer connecting the first and second layers and consisting essentially of a
 non-superconductor,

the first and third layers being formed from a starting oxide high-temperature superconductor layer of an oxide high-temperature superconductor, the third layer being an ion-modified portion of the starting oxide high-temperature superconductor layer, the first layer being an unmodified portion of the starting oxide high-temperature superconductor layer,

the device having an R_nA value of about 1×10^{-9} to about 3×10^{-7} Ω -cm² at 4.2 K.