第四章 随机变量的数字特征

- 1. 数学期望
- 2. 随机变量的方差
- 3. 协方差、相关系数和矩
- 4. 多维正态随机变量

一.随机变量的方差

引 例

设X是随机变量,若 $E\{[X-E(X)]^2\}$ 存在, 称 $D(X) = E\{[X-E(X)]^2\}$ 为X的为X, 称 $\sigma(X) = \sqrt{D(X)}$ 为X的称准是或物为X,

D(X)是随机变量X的函数的数学期望:

当 X 为 离散型 时
$$D(X) = \sum_{i=1}^{+\infty} [x_i - E(X)]^2 P\{X = x_i\}$$
 当 X 为 连续型 时 $D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f_X(x) dx$

一.随机变量的方差

常用公式: $D(X) = E(X^2) - E(X)^2$

证明

1、
$$X \sim P(\lambda)$$
 则 $E(X) = \lambda$, $D(X) = \lambda$

泊松分布的方差

2、
$$X \sim B(n,p)$$
 则 $E(X) = np$, $D(X) = np(1-p)$

见例4.2.5

3、
$$X \sim N(\mu, \sigma^2)$$
 则 $E(X) = \mu$, $D(X) = \sigma^2$

正态分布的方差

一.随机变量的方差

1.
$$X \sim P(\lambda)$$
 \emptyset $E(X) = \lambda$ $D(X) = \lambda$

2.
$$X \sim B(n,p)$$
 则 $E(X) = np$ $D(X) = np(1-p)$

3.
$$X \sim N(\mu, \sigma^2)$$
 $\bigcup E(X) = \mu$ $D(X) = \sigma^2$

5.
$$X \sim E(\lambda)$$
 \emptyset $E(X) = \frac{1}{\lambda}$ $D(X) = \frac{1}{\lambda^2}$

随机变量函数的方差 | |X - Y|| 的方差 | 练习

一.方差的性质

设 X, X_1, X_2, \dots, X_n 是随机变量, c, b 是常数

1)
$$E(c) = c$$
 $D(c) = 0$

2)
$$E(cX) = cE(X) D(cX) = c^2D(X)$$

3)
$$E\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} E(X_{i})$$
 $D(cX + b) = c^{2}D(X)$

$$D\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} D(X_{i}) + 2\sum_{\substack{i=1\\j>i}}^{n} E\left\{\left[X_{i} - E(X_{i})\right]\left[X_{j} - E(X_{j})\right]\right\}$$

一.方差的性质

设 $X_1, X_1, X_2, \cdots, X_n$ 是随机变量, c, b 是常数。

若 X_1, X_2, \cdots, X_n 相互独立,则

$$D\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} D(X_{i})$$

 X_1, X_2, \cdots, X_n 相互独立,则

$$E\left(\prod_{i=1}^{n} X_{i}\right) = \prod_{i=1}^{n} E(X_{i})$$

一.方差的性质

4)
$$D(X) = 0 \Leftrightarrow P\{X = E(X)\} = 1$$

随机变量的标准化

样本均值的期望和方差

 $X^2 + Y^2$ 的期望与方差

一.方差的性质

注1: 要防止计算中常见的两个错误!

$$D(cX) = cD(X)$$
 $D(X - Y) = D(X) - D(Y)$

注2:
$$D\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} D(X_{i})$$

此式只有在诸随机变量相互独立的条件下才成立.

进一步思考:

多个随机变量的数字特征?

变量间关系如何衡量?