Exercice 4

1. On propose:

– pour ∅ :

– pour ε :

– pour $a \in \Sigma$:

- 2. $-L(A) \cup L(B)$: on crée une copie de A et de B et on rajoute un état initial q_0 et un état final q_f . On rajoute des ε -transition depuis q_0 vers les états initiaux de A et B et des ε -transitions des états finaux de A et B vers q_f .
 - -L(A)L(B): on crée une copie de A et de B et on rajoute une ε -transition entre l'état final de A et l'état initial de B. On considère que l'état initial de l'automate est celui de A et l'état final est celui de B.
 - $L(A)^*$: on crée une copie de A et on rajoute un état initial q_0 et un état final q_f . On rajoute des ε -transition depuis q_0 vers l'état initial de A et vers q_f , et des ε -transitions de l'état final de A vers son état initial et q_f .
- 3. Voir fichier .ml
- 4. Voir fichier .ml
- 5. Le problème est l'existence d'un cycle étiqueté par ε : le backtracking tournera en boucle sur les mêmes transitions.
- 6. On remarque que le problème se produit lors qu'on calcule l'étoile d'une expression régulière dont l'interprétation contient le mot vide, car il existe alors un calcul de l'état initial à l'état final de l'automate de Thompson étiqueté par ε . On remarque que toute expression régulière e est équivalente à une expression de la forme :
 - $-e \operatorname{si} V(e) = \emptyset;$
 - $-e'|\varepsilon$ avec $\mathcal{L}(e') = \mathcal{L}(e) \setminus \{\varepsilon\}$ sinon.

On remarque notamment que si e et f sont des expressions régulières dont l'interprétation ne contient pas ε , alors :

- $-e(f|\varepsilon) \simeq ef|e, (e|\varepsilon)f \simeq ef|f, (e|\varepsilon)(f|\varepsilon) \simeq (ef|e|f)|\varepsilon;$
- $-e|(f|\varepsilon) \simeq (e|\varepsilon)|f \simeq (e|\varepsilon)|(f|\varepsilon) \simeq (e|f)|\varepsilon;$
- $(e|\varepsilon)^* \simeq ee^*|\varepsilon.$

On peut appliquer ce processus récursivement pour obtenir une expression régulière dont on est sûr qu'elle ne contient pas de cycle étiqueté par ε .

Voir fichier .ml pour l'implémentation.