

▼ Исходные данные

Коэф. запаса: safety = 1.3

Степень двухконтурности: m2 = 6

РТ: Воздух

compressor = "КВД"

Число Maxa: M = 0

Геометрическая высота работы (м):

 $H_{\omega} = 0$

Массовый расход (кг/с):

Полная температура на входе в К (К):

$$T^*_{K1} = \begin{vmatrix} 418.2 & \text{if compressor} = "КВД" = 418.2 \\ 288.2 & \text{otherwise} \end{vmatrix}$$

Полное давление на входе в К (Па):

$$P*_{K1} = \begin{vmatrix} 316.2 \cdot 10^3 & \text{if compressor} = "КВД" = 316.2 \cdot 10^3 \\ 101325 & \text{otherwise} \end{vmatrix}$$

Степень повышения давления КВД:

$$\pi^*_K = \begin{vmatrix} 1.6 & \text{if compressor} = \text{"Вл"} & = 9.000 \\ \frac{3.2}{1.6} & \text{if compressor} = \text{"КНД"} \\ 9 & \text{if compressor} = \text{"КВД"} \end{vmatrix}$$

Ожидаемый адиабатический КПД ОК:

$$\eta^*_{\rm K} = \begin{vmatrix} 0.86 & \text{if compressor} = "Вл" & = 88.00 \cdot \% \\ 0.87 & \text{if compressor} = "КНД" \\ 0.88 & \text{if compressor} = "КВД" \end{vmatrix}$$

Частота вращения ротора (c^{-1}) :

$$\omega = \begin{bmatrix} 1570.8 & \text{if compressor} = \text{"КВД"} \end{bmatrix} = 1570.8$$

Относ. диаметр корня 1ой ступени [14, с.7]:

$$\overline{d}_1 = \begin{vmatrix} 0.40 & \text{if compressor} = "Вл" = 0.65 \\ 0.75 & \text{if compressor} = "КНД" \\ 0.65 & \text{if compressor} = "КВД" \end{vmatrix}$$

 $0.3 \le \overline{d}_1 \le 0.6 = 0$

Частота вращения ротора (об/мин):
$$n = \frac{60 \cdot \omega}{2 \cdot \pi} = 15000$$

Закон профилирования проточной части (ЗППЧ):

Относ. параметры по относительным ступеням:

$$\begin{pmatrix} z_{\sim} \\ R_{L \sim cp} \\ K_{\sim H} \\ \eta^*_{\sim} \\ \overline{c}_{\sim a1} \\ \overline{H}^{\sim}_{T} \end{pmatrix} = \begin{pmatrix} (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8)^{T} \\ (0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5)^{T} \\ (0.99 \ 0.98 \ 0.97 \ 0.96 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95)^{T} \\ (0.88 \ 0.89 \ 0.905 \ 0.91 \ 0.91 \ 0.905 \ 0.89 \ 0.88)^{T} \\ (0.435 \ 0.425 \ 0.415 \ 0.405 \ 0.395 \ 0.385 \ 0.375 \ 0.365)^{T} \\ (0.25 \ 0.29 \ 0.32 \ 0.33 \ 0.35 \ 0.32 \ 0.29 \ 0.27)^{T}$$

Тип компрессора			I	Номер ступс	ени и $\overline{L}_{CT.i}$			
тип компрессора	I	II	III	IV	Z_{CP}	z - 2	z - 1	Z
Дозвуковой	0,18-0,20	0,24-0,25	0,24-0,25	0,29-0,30	0,30-0,32	0,28-0,29	0,27-0,28	0,26-0,27
Трансзвуковой	0,19-0,22	0,27-0,29	0,30-0,32	0,32-0,33	0,33-0,35	0,31-0,32	0,27-0,28	0,26-0,27
С одной св/зв ступенью	0,23-0,25	0,27-0,29	0,30-0,32	0,32-0,33	0,33-0,35	0,31-0,32	0,27-0,28	0,26-0,27
С 2-мя св/зв ступенями	0,23-0,25	0,27-0,29	0,30-0,32	0,32-0,33	0,33-0,35	0,31-0,32	0,27-0,28	0,26-0,27
С 3-мя св/зв ступенями	0,23-0,25	0,27-0,29	0,30-0,32	0,32-0,33	0,33-0,35	0,31-0,32	0,27-0,28	0,25-0,26

[16, c. 60]

[18, c. 24]

Уточнение параметров:

$$\overline{c}_{\sim a1} = \overline{c}_{\sim a1} -$$
 0.10 if compressor = "Вл" 0.141 if compressor = "КНД" 0.213 if compressor = "КВД"

увеличение несущественно увеличивает π

$$\eta^*_{\sim} = \eta^*_{\sim} + \begin{vmatrix} -0.020 & \text{if compressor} = "Вл" \\ -0.028 & \text{if compressor} = "КНД" \\ -0.017 & \text{if compressor} = "КВД" \end{vmatrix}$$

понижение существенно увеличивает π

$$\overline{H}_{T} = \overline{H}_{T} + \begin{cases} 0.0145 & \text{if compressor} = "Вл" \\ 0.0164 & \text{if compressor} = "КНД" \\ 0.0183 & \text{if compressor} = "КВД" \end{cases}$$
 [16, c. 234]

увеличение несущественно увеличивает π

увеличение существенно увеличивает
$$\pi$$

$$\operatorname{stack}\left(R_{L\sim cp}^{T},K_{\sim H}^{T},\eta^*_{}^{T},\overline{c}_{\sim a1}^{T},\overline{H}_{\sim T}^{T}\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 \\ 2 & 0.990 & 0.980 & 0.970 & 0.960 & 0.950 & 0.950 & 0.950 \\ 3 & 0.863 & 0.873 & 0.888 & 0.893 & 0.893 & 0.888 & 0.873 & 0.863 \\ 4 & 0.222 & 0.212 & 0.202 & 0.192 & 0.182 & 0.172 & 0.162 & 0.152 \\ 5 & 0.268 & 0.308 & 0.338 & 0.348 & 0.368 & 0.338 & 0.308 & 0.288 \end{bmatrix}$$

$$0.18 \le \overline{H} \sim_{T}^{T} = (1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1)$$
 $\overline{H} \sim_{T}^{T} \le 0.35 = (1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1)$

$$ext{Коэф. теор. напора "средней" ступени [14, c.11]:} \qquad \overline{H}_{Tcp} = rac{\displaystyle\sum_{i=1}^{rows \left(z_{\sim}
ight)}}{rows \left(z_{\sim}
ight)} = 0.3208$$

 $0.25 \le \overline{H}_{Ten} \le 0.32 = 0$

▼ Распределение основных параметров ОК по ступеням

Кинематическая степень реактивности:
$$R_{L\sim cp}(i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, R_{L\sim cp} \right), \frac{z_{\sim}}{rows(z_{\sim})}, R_{L\sim cp}, i \right)$$
 Коэф. уменьшения теор. напора:
$$K_{\sim H}(i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, K_{\sim H} \right), \frac{z_{\sim}}{rows(z_{\sim})}, K_{\sim H}, i \right)$$
 Изоэнтропический КПД:
$$\prod_{m=0}^{\infty} (i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \eta^*_{\sim} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \eta^*_{\sim}, i \right)$$
 Коэф. расхода:
$$\overline{c}_{max}(i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \overline{c}_{\sim a1} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{c}_{\sim a1}, i \right)$$
 Коэф. напора:
$$\overline{H}_{\sim T}(i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \overline{H}_{\sim T} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{H}_{\sim T}, i \right)$$

$$\begin{pmatrix} R_{L,cp} \\ K_{,H} \\ \eta^*, \\ \overline{c}_{a,1} \\ \overline{H}_{,T} \end{pmatrix} = \begin{pmatrix} R_{L,cp}(Z,i) = \left| R_{L\sim cp} \left(\frac{1}{\operatorname{rows}(z_{\sim})} \right) \text{ if } i < 1 \right. \\ \left. R_{L\sim cp} \left(\frac{i}{Z} \right) \text{ otherwise} \right. \\ \left. K_{,H}(Z,i) = \left| K_{\sim H} \left(\frac{1}{\operatorname{rows}(z_{\sim})} \right) \text{ if } i < 1 \right. \\ \left. K_{\sim H} \left(\frac{i}{Z} \right) \text{ otherwise} \right. \\ \left. \eta^*_{,(Z,i)} = \left| \eta^*_{,(Z,i)} \left(\frac{1}{\operatorname{rows}(z_{\sim})} \right) \right. \text{ if } i < 1 \right. \\ \left. \eta^*_{,(Z,i)} = \left| \frac{1}{\operatorname{rows}(z_{\sim})} \right| \text{ if } i < 1 \right. \\ \left. \eta^*_{,(Z,i)} = \left| \frac{1}{\operatorname{rows}(z_{\sim})} \right| \text{ if } i < 1 \right. \\ \left. \eta^*_{,(Z,i)} = \left| \frac{1}{\operatorname{rows}(z_{\sim})} \right| \text{ if } i < 1 \right. \\ \left. \frac{1}{\operatorname{rows}(z_{\sim})} \right| \text{ if } i < 1 \right. \\ \left. \frac{1}{\operatorname{rows}(z_{\sim})} \right| \text{ if } i < 1 \right. \\ \left. \frac{1}{\operatorname{rows}(z_{\sim})} \right| \text{ if } i < 1 \right. \\ \left. \frac{1}{\operatorname{rows}(z_{\sim})} \right| \text{ if } i < 1 \right. \\ \left. \frac{1}{\operatorname{rows}(z_{\sim})} \right| \text{ if } i < 1 \right. \\ \left. \frac{1}{\operatorname{rows}(z_{\sim})} \right| \text{ if } i > 2 \right. \\ \left. \frac{1}{\operatorname{rows}(z_{\sim})} \right| \text{ if } i < 1 \right. \\ \left. \frac{1}{\operatorname{rows}(z_{\sim})} \right| \text{ if } i > 2 \right. \\ \left. \frac{1}{\operatorname{rows}(z_{\sim})} \right| \text{ if } i > 2 \right. \\ \left. \frac{1}{\operatorname{rows}(z_{\sim})} \right| \text{ otherwise} \right. \\ \left. \left(R_{L,cp} \mid K_{,H} \mid \eta^*_{,-1} \mid \overline{c}_{a,1} \mid \overline{H}_{,T} \right)^T \right.$$

$$\begin{pmatrix} Z_{temp} \\ i_{temp} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} R_{L.cp}(Z_{temp}, i_{temp}) \\ K_{.H}(Z_{temp}, i_{temp}) \\ \eta^*.(Z_{temp}, i_{temp}) \\ \overline{c}_{.a1}(Z_{temp}, i_{temp}) \\ \overline{H}_{.T}(Z_{temp}, i_{temp}) \end{pmatrix} = \begin{pmatrix} 0.700 \\ 0.950 \\ 0.863 \\ 0.152 \\ 0.288 \end{pmatrix}$$

Показатель адиаьаты перед К []: $k_{K1} = k_{ad} \left(Cp_{BO3dyx} \left(P^*_{K1}, T^*_{K1} \right), R_B \right) = 1.394$

Полное давление после К [Па]: $P^*_{K3} = \pi^*_{K} \cdot P^*_{K1} = 2846 \cdot 10^3$

Количество итераций []: iteration₃ = 2

Полная температура после K[K]: $T*_{K3} = 805.9$

Показатель адиаьаты после К []: $k_{K3} = 1.354$

Полная плотность перед и после К [кг/м³]: $\begin{pmatrix} \rho^* K1 \\ \rho^* K3 \end{pmatrix} = \frac{1}{R_B} \cdot \begin{pmatrix} \frac{P^* K1}{T^* K1} \\ \frac{P^* K3}{T^* K3} \end{pmatrix} = \begin{pmatrix} 2.633 \\ 12.297 \end{pmatrix}$

Критические скорости перед и после К [м/с]: $\begin{pmatrix} a^*_{\mathbf{c}.\mathbf{BX}} \\ a^*_{\mathbf{c}.\mathbf{BMX}} \end{pmatrix} = \begin{pmatrix} a_{\mathbf{K}p} \big(\mathbf{k}_{\mathbf{K}1} \,, \mathbf{R}_{\mathbf{B}} \,, \mathbf{T}^*_{\mathbf{K}1} \big) \\ a_{\mathbf{K}p} \big(\mathbf{k}_{\mathbf{K}3} \,, \mathbf{R}_{\mathbf{B}} \,, \mathbf{T}^*_{\mathbf{K}3} \big) \end{pmatrix} = \begin{pmatrix} 373.9 \\ 515.9 \end{pmatrix}$

Ср. показатель адиабаты К []: $k_{cp} = k_{ad} \left(Cp_{Bo3dyx.cp} \left(P^*_{K1}, P^*_{K3}, T^*_{K1}, T^*_{K3} \right), R_B \right) = 1.374$

Теоретический напор [Дж/кг]: $H_{TK} = \frac{Cp_{\text{воздух.cp}}\left(P^*_{K1}, P^*_{K3}, T^*_{K1}, T^*_{K3}\right) \cdot T^*_{K1} \cdot \left(\frac{\frac{k_{cp}-1}{k_{cp}}}{\pi^*_{K}} - 1\right)}{\eta^*_{K}} = 410.3 \cdot 10^3$

```
iteration<sub>u</sub>
     <sup>u</sup>1пер
Z_{recomend}
                             = | iteration<sub>u</sub> = 0
       c_{BX}
                                     \rho_{K1} = \rho^*_{K1}
                                       while 0 < 1
       \rho_{K1}
                                           iteration_u = iteration_u + 1
                                             | trace(concat("iteration.u = ", num2str(iteration_u))) |
                                          u_{1 \text{mep}} = \sqrt[3]{\frac{\pi \cdot G \cdot n^2}{900 \cdot \overline{c}_{.a1}(1,0) \cdot \rho_{K1} \cdot \left[1 - \left(\overline{d}_1\right)^2\right]}}
                                          Z_{recomend} = max \left( round \left( \frac{H_{TK}}{\overline{H}_{Tcp} \cdot u_{1 \pi ep}} \right), 1 \right)
                                           c_{\text{BX}} = \overline{c}_{.a1}(Z_{\text{recomend}}, 0) \cdot u_{1 \pi ep}
                                          \lambda_{\rm BX} = \frac{c_{\rm BX}}{a_{\rm c.BX}^*}

ho'_{K1} = 
ho*_{K1} \cdot \Gamma \mathcal{I} \Phi \left( "
ho", \lambda_{BX}, k_{K1} \right)
                                          \left| \text{ if } \left| \text{eps} \big( \text{"rel"} \,, \rho'_{K1} \,, \rho_{K1} \big) \right| \, \leq \, \text{epsilon} \right|

\rho_{K1} = \rho'_{K1}

                                           \rho_{K1} = \rho'_{K1}
                                         iterationu
                                            <sup>u</sup>1пер
                                        Z_{recomend} \\
                                                c_{BX}
                                                \lambda_{BX}
                                                \rho_{K1}
```

Количество итераций []: iteration = 2

Окружная скорость на перифкрии перед K [м/c]: $u_{1\text{пер}} = 436.7$

Рекомендуемое количество ступеней []: $Z_{recomend} = 7$

Абс. скорость перед K [м/с]: $c_{BX} = 96.9$

Приведенная скорость перед К []: $\lambda_{\rm BX} = 0.2592$

Плотность перед К [кг/м^3]: $\rho_{K1} = 2.560$

Кольцевая площадь перед К [м²]:
$$F_{BX} = \frac{G \cdot \sqrt{R_B \cdot T^*_{K1}}}{m_q(k_{K1}) \cdot P^*_{K1} \cdot \Gamma \angle \Phi \left(\text{"G"} , \lambda_{BX}, k_{K1} \right)} = 0.1403$$

$$D'_{\text{nep1}} = \frac{2 \cdot u_{1\text{nep}}}{\omega} = 556 \cdot 10^{-3}$$

Диамтеры перед К [м]: $D'_{cp1} = \overline{r}_{cp} (\overline{d}_1) \cdot D'_{nep1} = 468.9 \cdot 10^{-3}$

$$D'_{\text{kop1}} = \overline{d}_{1} \cdot D'_{\text{nep1}} = 361.4 \cdot 10^{-3}$$

$$\varphi = 0, \frac{2 \cdot \pi}{360} .. 2 \cdot \pi$$

Рекомендуемое количество ступеней []:

Количество ступеней []:
$$Z = \begin{bmatrix} 1 & \text{if compressor} = "Вл" \end{bmatrix} = 9$$

3 if compressor = "КНД" 9 if compressor = "КВД"

▲ Нулевые приближения

```
BHA = \begin{bmatrix} 1 & \text{if compressor} = "КВД" = 1 \\ 0 & \text{otherwise} \end{bmatrix}
```

▼ Расчет ВН

```
\alpha_{1BHA}
                   \alpha_{3BHA}
 \sigma_{\mathrm{BHA}}
                    \sigma_{
m BHA}
                 d<sub>3BHA</sub>
d<sub>1BHA</sub>
T*<sub>1BHA</sub> T*<sub>3BHA</sub>
P*<sub>1BHA</sub> P*<sub>3BHA</sub>
\rho^*_{1BHA} \rho^*_{3BHA}
k<sub>1BHA</sub> k<sub>3BHA</sub>
<sup>а</sup>кр1ВНА <sup>а</sup>кр3ВНА
                                              for r \in av(N_r)
c<sub>a1BHA</sub> c<sub>a3BHA</sub>
                                                 \alpha_{1BHA_r} = 90^{\circ}
c<sub>u1BHA</sub> c<sub>u3BHA</sub>
                                                  \overline{d}_{1BHA} = \overline{d}_{1}
ca1BHA ca3BHA
                                                  \overline{d}_{3BHA} = \overline{d}_{1BHA}
cu1BHA cu3BHA
                                                   T^*_{1BHA_r} = T^*_{K1}
 c<sub>1BHA</sub>
                   c<sub>3BHA</sub>
                                                  T^*_{3BHA_r} = T^*_{1BHA_r}
\lambda_{1BHA}
                   \lambda_{3BHA}
F<sub>1BHA</sub>
                   F<sub>3</sub>BHA
                                                  P^*_{1BHA_r} = P^*_{K1}
                    \epsilon_{
m BHA}
 \varepsilon_{
m BHA}
                                                  k_{1BHA_r} = k_{ad}(Cp_{BO3dyx}(P^*_{1BHA_r}, T^*_{1BHA_r}), R_B)
                                                  a_{\text{Kp1BHA}_r} = a_{\text{Kp}}(k_{1BHA_r}, R_B, T^*_{1BHA_r})
                                                  \overline{c}_{a1BHA_r} = \overline{c}_{.a1}(Z,0)
                                                  \overline{c}_{u1BHA_r} = \overline{r}_{cp}(\overline{d}_{1BHA}) \cdot (1 - R_{L.cp}(Z, 0)) - \frac{\overline{H}_{.T}(Z, 0)}{2 \cdot \overline{r}_{cp}(\overline{d}_{1BHA})} \text{ if BHA} = 1
                                                    c_{a1BHA_r} = c_{a1BHA_r} \cdot u_{1\pi ep}
```

$$\begin{split} &\sigma_{BHA}=0.9983\\ &\operatorname{submatrix}\left(\epsilon_{BHA},\operatorname{av}\left(N_r\right),\operatorname{av}\left(N_r\right),1,1\right)=(22.94)\cdot\operatorname{deg}\\ &\operatorname{submatrix}\left(\alpha_{1BHA},\operatorname{av}\left(N_r\right),\operatorname{av}\left(N_r\right),1,1\right)=(90.00)\cdot\operatorname{deg}\\ &\operatorname{submatrix}\left(\alpha_{3BHA},\operatorname{av}\left(N_r\right),\operatorname{av}\left(N_r\right),1,1\right)=(67.06)\cdot\operatorname{deg}\\ &\left(\overline{d}_{1BHA}\atop\overline{d}_{3BHA}\right)=\begin{pmatrix}0.6500\\0.6500\end{pmatrix} & \begin{pmatrix}F_{1BHA}\\F_{3BHA}\end{pmatrix}=\begin{pmatrix}0.1403\\0.1564\end{pmatrix} \end{split}$$

$$\begin{split} c_{u1BHA_r} &= \frac{c_{a1BHA_r}}{\sin(\alpha_{1BHA_r})} \\ c_{1BHA_r} &= \frac{c_{a1BHA_r}}{\sin(\alpha_{1BHA_r})} \\ \lambda_{1BHA_r} &= \frac{c_{1BHA_r}}{a_{p1BHA_r}} \\ \sigma_{BHA} &= \begin{bmatrix} 1 + \max(0.03, 0.06) \cdot \Gamma \mathcal{U} \Phi \left({}^*\rho^*, \lambda_{1BHA_r}, k_{1BHA_r} \right) & \frac{k_{1BHA_r}}{k_{1BHA_r} + 1} \left(\lambda_{1BHA_r} \right)^2 \end{bmatrix}^{-1} & \text{if } BHA = 1 \\ 1 & \text{otherwise} \\ P^*_{3BHA_r} &= P^*_{1BHA_r}, \sigma_{BHA} \\ \rho^*_{3BHA_r} &= R_n T^*_{3BHA_r} \\ k_{3BHA_r} &= R_n T^*_{3BHA_r} \\ k_{3BHA_r} &= k_{aa} \left(C_{PoolagyA} \left(P^*_{3BHA_r}, T^*_{3BHA_r} \right), R_B \right) \\ a_{ap3BHA_r} &= a_{ap} \left(k_{3BHA_r}, R_n, T^*_{3BHA_r} \right) \\ \overline{c}_{a3BHA_r} &= \overline{c}_{a1} (Z, 1) \\ \overline{c}_{a3BHA_r} &= \overline{c}_{a1} (Z, 1) \\ 0 & \text{otherwise} \\ \alpha_{3BHA_r} &= \left(\frac{\overline{c}_{a1BHA_r}}{\overline{c}_{a1BHA_r}} \right) & \text{if } BHA = 1 \\ 0 & \text{otherwise} \\ c_{a3BHA_r} &= c_{a1BHA_r} - \left(\frac{10}{6} \text{ if } BHA = 1 \\ 0 & \text{otherwise} \\ c_{a3BHA_r} &= \frac{c_{a3BHA_r}}{\overline{c}_{a1BHA_r}} \right) & \text{otherwise} \\ c_{a3BHA_r} &= \frac{c_{a3BHA_r}}{\overline{c}_{a1BHA_r}} - \frac{10}{6} & \text{otherwise} \\ c_{a3BHA_r} &= \frac{c_{a3BHA_r}}{\overline{c}_{a1BHA_r}} \\ - \frac{c_{a3BHA_r}}{\overline{c}_{a1BHA_r}} &= \frac{c_{a3BHA_r}}{\overline{c}_{a1BHA_r}} \\ c_{a3BHA_r} &= \frac{c_{a3BHA_r}}{\overline{c}_{a1BHA_r}} \\ \end{array}$$

$$\begin{split} & \text{submatrix} \left(T^*_{1BHA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (418.2) \\ & \text{submatrix} \left(T^*_{3BHA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (418.2) \\ & \text{submatrix} \left(P^*_{1BHA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (316.2) \cdot 10^3 \\ & \text{submatrix} \left(P^*_{3BHA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (315.7) \cdot 10^3 \\ & \text{submatrix} \left(\rho^*_{1BHA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (2.633) \\ & \text{submatrix} \left(\rho^*_{3BHA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (2.629) \\ & \text{submatrix} \left(k_{1BHA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (1.394) \\ & \text{submatrix} \left(k_{3BHA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (1.394) \end{split}$$

$$\begin{split} & \text{submatrix} \Big(a_{KP1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (373.9) \\ & \text{submatrix} \Big(a_{KP3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (373.9) \\ & \text{submatrix} \Big(\overline{c}_{a1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.222) \\ & \text{submatrix} \Big(\overline{c}_{a3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.223) \\ & \text{submatrix} \Big(\overline{c}_{a3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.094) \\ & \text{submatrix} \Big(\overline{c}_{a3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.097) \\ & \text{submatrix} \Big(c_{a1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (96.9) \\ & \text{submatrix} \Big(c_{a3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.0) \\ & \text{submatrix} \Big(c_{u3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (36.8) \\ & \text{submatrix} \Big(c_{1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (96.9) \\ & \text{submatrix} \Big(c_{3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (94.4) \\ & \text{submatrix} \Big(\lambda_{1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.259) \\ & \text{submatrix} \Big(\lambda_{3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.252) \\ \end{aligned}$$

$R_{\rm L}$ π^*	
K_{H} η^*	
Cp k	
\overline{H}_{T} H_{T}	
L* L	
T* T	
P* P	
ρ* ρ	
a* _c a _{3B}	
$\lambda_{\rm c}$ $\lambda_{\rm c}$	La con(NI)
E F	=
D R	$T^*_{st(1,1),r} = T^*_{3BHA_r}$
d h − −	$P^*_{st(1,1),r} = P^*_{3BHA_r}$
$\begin{bmatrix} \overline{c}_a & \overline{c}_u \end{bmatrix}$	$\rho^*_{st(1,1),r} = \rho^*_{3BHA_r}$
c_a c_u	$Cp_{st(1,1),r} = Cp_{BO3ДYX}(P*_{st(1,1),r}, T*_{st(1,1),r})$
u w _u	
c w	$k_{st(1,1),r} = k_{a\mu}(Cp_{st(1,1),r}, R_{B})$
M_c M_w	$a_{c_{st(1,1),r}}^* = a_{kp}(k_{st(1,1),r}, R_B, T_{st(1,1),r}^*)$
α β	$\overline{c}_{a_{st(1,1),r}} = \overline{c}_{a3BHA_r}$
$\varepsilon_{\text{rotor}} \varepsilon_{\text{stator}}$	$a^*c_{st(1,1),r} = a_{Kp}(k_{st(1,1),r}, R_B, T^*st(1,1),r)$ $\overline{c}_{a_{st(1,1),r}} = \overline{c}_{a3BHA_r}$ $\overline{c}_{u_{st(1,1),r}} = \overline{c}_{u3BHA_r}$ $c_{a_{st(1,1),r}} = c_{a3BHA_r}$ $u_{st(1,1),r} = u_{1\pi ep}$
	$c_{a_{st(1,1),r}} = c_{a3BHA_r}$
	$u_{st(1,1),N_r} = u_{1\pi ep}$
	$\alpha_{\text{st}(1,1),r} = \alpha_{3\text{BHA}_r}$
	$c_{st(1,1),r} = \frac{c_{a_{st(1,1),r}}}{\sin(\alpha_{st(1,1),r})}$ $\lambda_{c_{st(1,1),r}} = \frac{c_{st(1,1),r}}{a^*c_{st(1,1),r}}$ $F_{st(1,1)} = \frac{G \cdot \sqrt{R_B \cdot T^*st(1,1),r}}{m(k_{st(1,1),r}) \cdot (\log k_{st(1,1),r})}$
	$\lambda_{c_{st(1,1),r}} = \frac{c_{st(1,1),r}}{a_{c_{st(1,1),r}}^*}$
	$G \cdot \sqrt{R_B \cdot T^*_{st(1,1),r}}$
	$\Gamma_{\text{St}(1,1)} = \frac{1}{m \left(\frac{1}{2} + \frac{1}{2} \right) \cdot \Gamma_{\text{H}} \Phi \left(\frac{1}{2} + \frac{1}{2} \right$

$$\begin{split} & \text{miq}(\mathbf{v} \otimes \mathbf{x}(1,1), r)^{-r} \wedge \mathbf{v} \in \mathbf{x}(1,1), r^{-r} \otimes \mathbf{x}(1,1), r) \otimes \mathbf{w}(\mathbf{v} \otimes \mathbf{x}(1,1), r) \\ & D_{\mathbf{x}(1,1), r} = \frac{1}{r_0} \left(\frac{D_{\mathbf{x}(1,1), r}}{D_{\mathbf{x}(1,1), r}} \right) D_{\mathbf{x}(1,1), r_0} \\ & \overline{\mathbf{d}}_{\mathbf{x}(1,1)} = \frac{D_{\mathbf{x}(1,1), 1}}{D_{\mathbf{x}(1,1), r_0}} \right) D_{\mathbf{x}(1,1), r_0} \\ & \overline{\mathbf{d}}_{\mathbf{x}(1,1)} = \frac{D_{\mathbf{x}(1,1), r}}{D_{\mathbf{x}(1,1), r_0}} \\ & \mathbf{f}_{\mathbf{T}_1} = \frac{\mathbf{f}_{\mathbf{T}_1}(\mathbf{J}_{\mathbf{x}(1,1)})}{\mathbf{f}_{\mathbf{x}(1,1), r_0}} \\ & \mathbf{g}_{\mathbf{x}_1, r_0} = \mathbf{g}_{\mathbf{x}_1, r_0} \\ & \mathbf{g}_{\mathbf{x}_1, r_0} = \mathbf{g$$

```
Cp_{st(i,2),r} = Cp_{BO3JJYX}(P^*_{st(i,2),r},T^*_{st(i,2),r})
      k'_{2} = k_{a,I}(Cp_{st(i,2),r},R_{B})
     if \left| \text{eps}\left(\text{"rel"}, k_{\text{st}(i,2),r}, k'_2\right) \right| < \text{epsilon}
         k_{st(i,2),r} = k'_2
      k_{st(i,2),r} = k'_2
a_{c_{st(i,2),r}}^* = a_{Kp}(k_{st(i,2),r}, R_B, T_{st(i,2),r})
 T^*_{st(i,3),r} = T^*_{st(i,2),r}
 P*_{st(i,3),r} = P*_{st(i,2),r}
 Cp_{st(i,3),r} = Cp_{BO3ДYX}(P^*_{st(i,3),r}, T^*_{st(i,3),r})
k_{st(i,3),r} = k_{a,I}(Cp_{st(i,3),r},R_B)
a_{c_{st(i,3),r}}^* = a_{kp}(k_{st(i,3),r}, R_B, T_{st(i,3),r}^*)
 \overline{c}_{a_{st(i,3),r}} = \overline{c}_{.a1}(Z,i+1)
 iteration_3 = 0
F_{st(i,3)} = \frac{F_{st(i,1)} \cdot m_q \Big(k_{st(i,1),r} \Big) \cdot \Gamma \square \Phi \Big( \text{"G"} , \lambda_{c_{st(i,1),r}}, k_{st(i,1),r} \Big) \cdot \sin \Big(\alpha_{st(i,1),r} \Big) \cdot P^*_{st(i,1),r} \cdot \sqrt{T^*_{st(i,3),r}}}{m_q \Big(k_{st(i,3),r} \Big) \cdot \Gamma \square \Phi \Big( \text{"G"} , \lambda_{c_{st(i,3),r}}, k_{st(i,3),r} \Big) \cdot \sin \Big(\alpha_{st(i,3),r} \Big) \cdot P^*_{st(i,3),r} \sqrt{T^*_{st(i,1),r}}}
  while 0 < 1
       iteration_3 = iteration_3 + 1
       trace(concat(" iteration.3 = ", num2str(iteration_3)))
       if (3\Pi\Pi\Pi_i \neq "пер") \land (3\Pi\Pi\Pi_i \neq "кор") \land (3\Pi\Pi\Pi_i \neq "ср")
        D_{st(i,3),N_r} = D_{st(i,1),N_r} \cdot str2num(3\Pi\Pi H_i)
D_{st(i,3),1} = \sqrt{(D_{st(i,3),N_r})^2 - \frac{4F_{st(i,3)}}{\pi}}
         if 3\Pi\Pi H_i = "nep"
```

$$\begin{vmatrix} D_{st(i,3),N_f} &= D_{st(i,1),N_f} \\ D_{st(i,3),1} &= \sqrt{\left(D_{st(i,3),N_f}\right)^2 - \frac{4F_{st(i,3)}}{\pi}} \\ if 3HHH_i &= "kop" \\ \begin{vmatrix} D_{st(i,3),1} &= D_{st(i,1),1} \\ D_{st(i,3),N_f} &= \sqrt{\left(D_{st(i,1),t}\right)^2 + \frac{4F_{st(i,3)}}{\pi}} \\ \end{vmatrix} \\ b_{st(i,3),N_f} &= \sqrt{\left(D_{st(i,1),t}\right)^2 + \frac{2F_{st(i,3)}}{\pi}} \\ \begin{vmatrix} D_{st(i,3),N_f} &= \sqrt{\left(D_{st(i,1),t}\right)^2 + \frac{2F_{st(i,3)}}{\pi}} \\ b_{st(i,3),1} &= \sqrt{\left(D_{st(i,1),t}\right)^2 + \frac{2F_{st(i,3)}}{\pi}} \\ \end{vmatrix} \\ b_{st(i,3),r} &= \frac{D_{st(i,3),1}}{D_{st(i,3),N_f}} \\ b_{st(i,3),r} &= \overline{c_{cp}(\overline{d}_{st(i,3)}) \cdot D_{st(i,3),N_f}} \\ \hline c_{u_{st(i,3),r}} &= \overline{c_{cp}(\overline{d}_{st(i,3)}) \cdot D_{st(i,3),N_f}} \\ \hline c_{u_{st(i,3),r}} &= \overline{c_{cp}(\overline{d}_{st(i,3),r}) \cdot \left(1 - R_{L,cp}(Z,i+1)\right) - \frac{\overline{H}_{cp}(Z,i+1)}{\overline{c_{u_{st(i,3),r}}}} \\ o_{st(i,3),r} &= \overline{c_{a_{st(i,3),r}}} \\ \hline c_{u_{st(i,3),r}} &= \overline{c_{a_{st(i,3),r}}} \\ \\ atan \begin{pmatrix} \overline{c_{u_{st(i,3),r}}} \\ \overline{c_{u_{st(i,3),r}}} \\ - \overline{c_{u_{st(i,3),r}}} \\ \\ c_{u_{st(i,3),r}} &= \overline{c_{u_{st(i,3),r}}} \\ \\ c_{u_{st(i,3),r}} &= \overline{c_{u_{st(i,3),r}}} \\ \\ c_{u_{st(i,3),r}} &= \overline{c_{u_{st(i,3),r}}} \\ \\ c_{st(i,3),r} &= \frac{\overline{c_{u_{st(i,3),r}}}}{\overline{a^2_{ct(i,3),r}}} \\ \\ \lambda_{c_{st(i,3),r}} &= \frac{\overline{c_{u_{st(i,3),r}}}}{\overline{a^2_{ct(i,3),r}}} \\ \\ c_{st(i,3),r} &= \frac{\overline{c_{u_{st(i,3),r}}}}{\overline{a^2_{ct(i,3),r}}}} \\ \\ b_{reak} & \text{ if } \left(|\exp("rel", F_{3}, F_{st(i,3)}, r - rel - rel$$

```
| \text{tieration}_3 = -1 \text{ if } (|\text{eps}(\text{rei}^+, \text{rej}_3, \text{rst}(i,3))| < \text{epsilon})
      F_{st(i,3)} = F'_3
\overline{c}_{a_{st(i,2),r}} = mean(\overline{c}_{a_{st(i,1),r}}, \overline{c}_{a_{st(i,3),r}})
 iteration_2 = 0
 F_{st(i,2)} = mean(F_{st(i,1)},F_{st(i,3)})
  while 0 < 1
      iteration_2 = iteration_2 + 1
       trace(concat(" iteration.2 = ", num2str(iteration_2)))
       if (3\Pi\Pi H_i \neq "nep") \land (3\Pi\Pi H_i \neq "kop") \land (3\Pi\Pi H_i \neq "cp")
            D_{st(i,2),N_r} = mean(D_{st(i,1),N_r},D_{st(i,3),N_r})
            \overline{d}_{st(i,2)} = \sqrt{2 \cdot \text{mean}(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
            D_{st(i,2),r} = D_{st(i,2),N_r} \overline{\cdot r_{cp}} (\overline{d}_{st(i,2)})
            D_{st(i,2),1} = \overline{d}_{st(i,2)} \cdot D_{st(i,2),N_r}
        if 3ППЧ<sub>i</sub> = "пер"
           D_{st(i,2),N_r} = D_{st(i,1),N_r}
            \overline{d}_{st(i,2)} = \sqrt{2 \cdot mean(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
             D_{st(i,2),r} = D_{st(i,2),N_r} \overline{\cdot r_{cp}} (\overline{d}_{st(i,2)})
            D_{st(i,2),1} = \overline{d}_{st(i,2)} \cdot D_{st(i,2),N_r}
       if ЗППЧ<sub>i</sub> = "кор"
            D_{st(i,2),1} = D_{st(i,1),1}
            \overline{d}_{st(i,2)} = \sqrt{2 \cdot \text{mean}(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
             D_{st(i,2),N_r} = \frac{D_{st(i,2),1}}{\overline{d}_{st(i,2)}}
            D_{st(i,2),r} = D_{st(i,2),N_r} \overline{\cdot} r_{cp} (\overline{d}_{st(i,2)})
        if 3\Pi\Pi\Pi_i = "cp"
            D_{st(i,2),r} = D_{st(i,1),r}
            \overline{d}_{st(i,2)} = \sqrt{2 \cdot mean(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
            D_{st(i,2),N_r} = \frac{D_{st(i,2),r}}{\overline{r_{cp}}(\overline{d}_{st(i,2)})}
```

$$\begin{vmatrix} w_{u_{st(i,a),r}} = w_{st(i,a),r} \cos(\beta_{st(i,a),r}) \\ c_{u_{st(i,a),r}} = c_{st(i,a),r} \cos(\alpha_{st(i,a),r}) \\ M_{w_{st(i,a),r}} = \frac{c_{st(i,a),r}}{a_{3B_{st(i,a),r}}} \\ M_{c_{st(i,a),r}} = \frac{w_{st(i,a),r}}{a_{3B_{st(i,a),r}}} \\ M_{c_{st(i,a),r}} = \frac{c_{st(i,a),r}}{a_{3B_{st(i,a),r}}} \\ h_{st(i,a)} = 0.5 \cdot \left(D_{st(i,a),N_r} - D_{st(i,a),1}\right) \\ for radius \in 1 ... N_r \\ u_{st(i,a),radius} = \omega \cdot \frac{D_{st(i,a),radius}}{2} \\ \begin{pmatrix} \varepsilon_{rotor_{i,av}(N_r)} \\ \varepsilon_{stator_{i,av}(N_r)} \\ \varepsilon_{stator_{i,av}(N_r)} \end{pmatrix} = \begin{pmatrix} \beta_{st(i,2),av}(N_r) - \beta_{st(i,1),av}(N_r) \\ \alpha_{st(i,3),av}(N_r) - \alpha_{st(i,2),av}(N_r) \end{pmatrix} \\ for \ i \in 1 ... Z \\ for \ a \in 1 ... 3 \\ for \ r \in 1 ... N_r \\ R_{st(i,a),r} = 0.5 \cdot D_{st(i,a),r} \\ R_{st(i,a),r} = 0.5 \cdot D_{st(i,a),r} \\ \begin{pmatrix} R_L \ K_H \ Cp \ \overline{H}_T \ L^* \ T^* \ P^* \ \rho^* \ a^*_c \ \lambda_c \ F \ D \ \overline{d} \ \overline{c}_a \ c_a \ u \ c \ M_c \ \alpha \ \varepsilon_{rotor} \\ \pi^* \ \eta^* \ k \ H_T \ L \ T \ P \ \rho \ a_{3B} \ \lambda_c \ F \ R \ h \ \overline{c}_u \ c_u \ w_u \ w \ M_w \ \beta \ \varepsilon_{stator} \end{pmatrix}^T$$

$$\begin{pmatrix} H_{T} \\ R_{L} \end{pmatrix} = \begin{vmatrix} \text{for } i \in 1...Z \\ \\ H_{T.}(r) = \text{interp} \end{vmatrix} \text{pspline} \\ \begin{pmatrix} 1 \\ av(N_{r}) \\ N_{r} \end{pmatrix}, \begin{pmatrix} H_{T_{i,av}(N_{r})} - \frac{\Delta H_{T}(\overline{d}_{st(i,2)})}{2} \\ H_{T_{i,av}(N_{r})} - \frac{\Delta H_{T}(\overline{d}_{st(i,$$

```
CA = \begin{bmatrix} 1 & \text{if compressor} = "КВД" = 1 \\ 0 & \text{otherwise} \end{bmatrix}
```

▼ Расчет СА

```
α<sub>1CA</sub>
              \alpha_{3CA}
\sigma_{CA}
               \sigma_{CA}
              d<sub>3CA</sub>
T^*_{1CA} T^*_{3CA}
P*<sub>1CA</sub> P*<sub>3CA</sub>
\rho^*_{1CA} \rho^*_{3CA}
k<sub>1CA</sub> k<sub>3CA</sub>
<sup>а</sup>кр1СА <sup>а</sup>кр3СА
                                   for r \in av(N_r)
\overline{c}_{a1CA} \overline{c}_{a3CA}
                                         \alpha_{1CA_r} = \alpha_{st(Z,3),r}
\frac{1}{c}u1CA \frac{1}{c}u3CA
ca1CA ca3CA
                                                           \alpha_{1CA_r} otherwise
cu1CA cu3CA
                                          \overline{d}_{1CA} = \overline{d}_{st(Z,3)}
              c<sub>3CA</sub>
c<sub>1CA</sub>
                                          \overline{d}_{3CA} = \overline{d}_{1CA}
              \lambda_{3CA}
\lambda_{1CA}
                                          T^*_{1CA_r} = T^*_{st(Z,3),r}
              F<sub>3CA</sub>
F<sub>1CA</sub>
                                          T^*_{3CA_r} = T^*_{1CA_r}
 \varepsilon_{\mathrm{CA}}
               \epsilon_{	ext{CA}}
                                          P^*_{1CA_r} = P^*_{st(Z,3),r}
                                          iterarion_{CA} = 0
                                          \sigma_{\text{CA}} = 1
                                           while 0 < 1
                                              iterarion_{CA} = iterarion_{CA} + 1
                                               trace(concat("iterarion.CA = ", num2str(iterarion_{CA})))
                                               P^*_{3CA_r} = P^*_{1CA_r} \cdot \sigma_{CA}
```

$$\begin{split} &\sigma_{CA} = 0.9984 \\ &\operatorname{submatrix} \left(\varepsilon_{CA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (37.78) \cdot \operatorname{deg} \\ &\operatorname{submatrix} \left(\alpha_{1CA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (52.22) \cdot \operatorname{deg} \\ &\operatorname{submatrix} \left(\alpha_{3CA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (90.00) \cdot \operatorname{deg} \\ &\left(\overline{d}_{1CA} \right) = \begin{pmatrix} 0.8253 \\ \overline{d}_{3CA} \end{pmatrix} = \begin{pmatrix} 0.8253 \\ 0.8253 \end{pmatrix} \qquad \begin{pmatrix} F_{1CA} \\ F_{3CA} \end{pmatrix} = \begin{pmatrix} 0.0532 \\ 0.0648 \end{pmatrix} \end{split}$$

$$\begin{vmatrix} \rho^*_{3CA_r} \end{vmatrix} = \frac{1}{R_B} \begin{vmatrix} \frac{P^*_{3CA_r}}{T^*_{3CA_r}} \\ \frac{1}{R_B} \begin{vmatrix} \frac{P^*_{3CA_r}}{T^*_{3CA_r}} \end{vmatrix}$$

$$\begin{vmatrix} k_{1CA_r} \\ k_{3CA_r} \end{vmatrix} = \begin{pmatrix} k_{an}(C_{Paoanyx}(P^*_{1CA_r}, T^*_{1CA_r}), R_n) \\ k_{an}(C_{Paoanyx}(P^*_{3CA_r}, T^*_{3CA_r}), R_n) \end{pmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp3CA_r}} \end{vmatrix} = \begin{pmatrix} \frac{a_{kp}(k_{1CA_r}, R_B, T^*_{3CA_r})}{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})} \\ \frac{a_{kp3CA_r}}{a_{kp3CA_r}} \end{vmatrix} = \begin{pmatrix} \frac{a_{kp}(k_{1CA_r}, R_B, T^*_{3CA_r})}{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})} \\ \frac{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})}{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp1CA_r}} - \frac{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})}{a_{kp1CA_r}} \\ \frac{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})}{a_{kp1CA_r}} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp1CA_r}} - \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} - \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{$$

$$\begin{split} & \text{submatrix} \big(T^*_{1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (827.2) \\ & \text{submatrix} \big(T^*_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (827.2) \\ & \text{submatrix} \big(P^*_{1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (2847.9) \cdot 10^3 \\ & \text{submatrix} \big(P^*_{1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (2843.3) \cdot 10^3 \\ & \text{submatrix} \big(P^*_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (11.990) \\ & \text{submatrix} \big(\rho^*_{1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (11.971) \\ & \text{submatrix} \big(k_{1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (1.352) \\ & \text{submatrix} \big(k_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (1.352) \\ & \text{submatrix} \big(k_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (522.5) \\ & \text{submatrix} \big(c_{a1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (0.152) \\ & \text{submatrix} \big(c_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (0.118) \\ & \text{submatrix} \big(c_{a1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (0.000) \\ & \text{submatrix} \big(c_{a1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (55.0) \\ & \text{submatrix} \big(c_{a1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (45.0) \\ & \text{submatrix} \big(c_{u1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (69.6) \\ & \text{submatrix} \big(c_{1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (69.6) \\ & \text{submatrix} \big(c_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (45.0) \\ & \text{submatrix} \big(c_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (69.6) \\ & \text{submatrix} \big(c_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (0.036) \\ & \text{submatrix} \big(c_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (0.036) \\ & \text{submatrix} \big(c_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (0.086) \\ & \text{submatrix} \big(c_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (0.086) \\ & \text{submatrix} \big(c_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (0.086) \\ & \text{submatrix} \big(c_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \big) = (0.086) \\ \\ & \text{submatrix} \big(c_{3CA}, \text{av} \big(N_r \big), \text{av}$$

```
1 otherwise
         break if (|eps("rel", \sigma'_{CA}, \sigma_{CA})| < epsilon) \land (iterarion_{CA} = 0)
        | \text{iterarion}_{CA} = -1 \text{ if } (| \text{eps}(\text{"rel"}, \sigma'_{CA}, \sigma_{CA}) | < \text{epsilon}) 
        \sigma_{CA} = \sigma'_{CA}
                                                                        F_{st(Z,3)}
     (F<sub>1CA</sub>)
                                                                   G \cdot \sqrt{R_B \cdot T^*_{3CA_r}}
    (F_{3CA})
                          \boxed{ m_q(k_{3CA_r}) \cdot P^*_{3CA_r} \cdot \Gamma Д\Phi("G", \lambda_{3CA_r}, k_{3CA_r}) \cdot \sin(\alpha_{3CA_r}) }
    \varepsilon_{\text{CA}_{r}} = \alpha_{3\text{CA}_{r}} - \alpha_{1\text{CA}_{r}}
 \alpha_{1CA} \alpha_{3CA}
 \sigma_{\text{CA}}
                \sigma_{\text{CA}}
 \overline{d}_{1CA} \overline{d}_{3CA}
T*<sub>1CA</sub> T*<sub>3CA</sub>
P*<sub>1CA</sub> P*<sub>3CA</sub>
\rho^*_{1CA} \rho^*_{3CA}
k<sub>1CA</sub> k<sub>3CA</sub>
<sup>а</sup>кр1СА <sup>а</sup>кр3СА
\frac{1}{c_{a1CA}} \frac{1}{c_{a3CA}}
\frac{1}{c_{u1CA}} \frac{1}{c_{u3CA}}
ca1CA ca3CA
cu1CA cu3CA
 c<sub>1CA</sub> c<sub>3CA</sub>
 \lambda_{1CA} \lambda_{3CA}
 F<sub>1CA</sub> F<sub>3CA</sub>
  \varepsilon_{\mathrm{CA}} \varepsilon_{\mathrm{CA}}
```

▼ Результаты поступенчатого расчета по ср. ЛТ

Относ. погрешность расчета по массовому расходу (кг/с):

$\overline{\Delta}G =$	for $i \in 1Z$
	for a ∈ 13
	$\overline{\Delta}G_{st(i,a)} = \left eps\left("rel", G, \rho_{st(i,a),av(N_r)} \cdot c_{a_{st(i,a),av(N_r)}} \cdot F_{st(i,a)} \right) \right $
	$ar{\Delta}\mathrm{G}$

$\overline{\Delta}G^{T} = \Box$	1	2	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	.%
1	0.0	0 0	.00	0.07	0.00	0.03	0.00	0.1	0.00	0.13	0.00	0.09	0.00	0.07	0.00	0.04	0.00	0.03	0.00	0.04	
$\overline{\Delta}G^{T} < 1\%$		1	2	3	4	5	6	7 8	9	10 1	1 12	13	14 1	5 16	17	18	19				

Количество ступеней ОК: Z = 9

Дискритизация сечений: ii = 1..2Z + 1

Дискритизация ступеней: i = 1..Z

_																
_ * T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\pi^* = 1$		_			•		•	•	•					0		-0
	1	1.406	1.379	1.364	1.317	1.285	1.251	1.202	1.169	1.147						

Полученная степень повышения полного давления []:

Степень повышения давления в ЛА: $\pi^*_{\text{ЛА}} = \frac{P^*_{3\text{CA}_{av(N_r)}}}{P^*_{1\text{BHA}_{av(N_r)}}} = 8.992$

 $\pi^*_{\Lambda A} \ge \pi^*_{K} = 0$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
$H_{\mathbf{T}}^{T} =$	1	50.29	52.83	56.05	54.46	54.19	52.44	46.15	41.77	38.78							.10
11	2	50.29	52.83	56.05	54.46	54.19	52.44	46.15	41.77	38.78							
	3	50.29	52.83	56.05	54.46	54.19	52.44	46.15	41.77	38.78							

Действительная работа К (Дж/кг):
$$L_{K} = \sum_{i=1}^{Z} L_{i} = 430.7 \cdot 10^{-10}$$

Действительная работа К (Дж/кг):
$$L_K = \sum_{i=1}^Z L_i = 430.7 \cdot 10^3$$
 Адиабатная работа К [Дж/кг]:
$$L^*_K = \sum_{i=1}^Z L^*_i = 379 \cdot 10^3$$

Адиабатная КПД К []:
$$n_{K}^{*} = \frac{L_{K}^{*}}{L_{K}} = 88.00 \cdot \%$$

Мощность K (Вт):
$$N_K = G \cdot L_K = 14.99 \cdot 10^6$$

submatrix $(Cp, 1, 2Z + 1, av(N_r), av(N_r))$	$T = \boxed{1}$	1 1016.2	2 1024.	3 5 1024.5	4 1034.3	5 1034.3	6 1045.4	7 1045.4	8 1056.6	9 1056.6	10 5 1067	.8 1067.	12 8 1078.6	13 1078.6	14 1088.0	15 1088.0	16 1096.3	17 1096.3	18 1103.9	19 1103.9
submatrix $(k, 1, 2Z + 1, av(N_r), av(N_r))^T$	= 1	1 1.394	2 1.389	3 2 1.389 1.	5 384 1.3	6 34 1.379	7 1.379	8 1.373	9 1.373	10 1.368	11 1.368		13 14 1.363 1.3		16 1.355	17 1.355	18 1.352	19 1.352	20 2	1
$submatrix(T^*, 1, 2Z + 1, av(N_r), av(N_r))$	$T = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	1 418.2	2 467.3	3 467.3	4 5 517.9 5	6 17.9 570	7	8 6 620.9	9 620.9	10 669.9	11 669.9	12 716.5		4 15 57.1 757.	16 1 793.6	17 5 793.6	18 827.2	19 827.2	20	21
submatrix $(T, 1, 2Z + 1, av(N_r), av(N_r))^T$		1 413.8	2	3 4	1 5	i		8	9 618.1	10	11 667.4	12	13 14 714.1 74	15	16	17	18 814.4	19 825	20	21
submatrix $(P^*, 1, 2Z + 1, av(N_r), av(N_r))$		1	2	<u>'</u>		5 612.3	6 835.1	7	8	651.8	10	11	12	13	14	15	16	17	18	1.10^3
		315.7	2	3	612.3	612.3	835.1	835.1	1099.7	1099.7	10	.8 1412.9	1767.6	13	2124.9	2124.9	2483.1	2483.1	18	103
submatrix $(P, 1, 2Z + 1, av(N_r), av(N_r))^T$	_ <u> </u>	304.1	378.3	428.7	533.0	595.9	733.2	817.6	982.1	1081.4	1276.3	1393.5	1614.7	1745.7	1969.1	2100.4	2323.7	2456.5		·10 ³
submatrix $\left(\rho^*, 1, 2Z + 1, av(N_r), av(N_r)\right)$	= 1	2.629	3.308	3 3.308	4.117	5 4.117	6 5.096	5.096	6.168	9 6.168	10 3 7.34	11 45 7.34	12 5 8.592	8.592	9.774	9.774	16 10.897	17 10.897	18 11.99	19 11.99
submatrix $(\rho, 1, 2Z + 1, av(N_r), av(N_r))^T$	= 1	1 2.559	2.949	3 3.227	4 3.725	5 4.037	6 4.637	7 5.019	5.68	9 6.094	10 6.819	11 7.272	12 8.04	13 8.514	14 9.241	15 9.691	16 10.376	17 10.811	18 11.468	19 11.9

 $k_{\text{ад}} = k_{\text{ад}} \left(\text{Cp}_{\text{BO3ДУХ.cp}} \left(P^*_{\text{st}(1,1),\text{av}(N_r)}, P^*_{\text{st}(Z,3),\text{av}(N_r)}, T^*_{\text{st}(1,1),\text{av}(N_r)}, T^*_{\text{st}(Z,3),\text{av}(N_r)} \right), R_B \right) = 1.373$

$F^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	1.10^{-6}
	1	156448	126088	119848	107191	102019	92315	88485	81173	78356	72576	70421	65929	64381	61296	60381	58246	57741	54818	53166			
																							_

$\overline{\mathbf{d}}^{\mathrm{T}} = [$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	1	0.5963	0.6405	0.6827	0.7045	0.7258	0.7378	0.7497	0.7595	0.7692	0.7774	0.7856	0.7922	0.7988	0.8034	0.8080	0.8111	0.8142	0.8197	0.8253				

 $\overline{d}_{st(Z,3)} = 0.8253$ $\overline{d}_{st(Z,3)} \le 0.9 = 1$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
$\mathbf{D}^{\mathrm{T}} =$	1	331.5	349.2	365.0	372.8	380.2	380.2	380.2	380.2	380.2	380.2	380.2	380.2	380.2	380.2	380.2	380.2	380.2	380.2	380.2			$\cdot 10^{-3}$
D	2	457.7	457.7	457.7	457.7	457.7	452.9	448.2	444.5	441.0	438.0	435.2	432.9	430.8	429.3	427.8	426.8	425.8	424.1	422.4			10
	3	556.0	545.1	534.6	529.2	523.9	515.4	507.2	500.6	494.3	489.1	484.0	479.9	476.0	473.2	470.6	468.8	467.0	463.8	460.7			

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	l
$R^{T} =$	1	165.8	174.6	182.5	186.4	190.1	190.1	190.1	190.1	190.1	190.1	190.1	190.1	190.1	190.1	190.1	190.1	190.1	190.1	190.1							$\cdot 10^{-3}$
11	2	228.9	228.9	228.9	228.9	228.9	226.4	224.1	222.3	220.5	219.0	217.6	216.5	215.4	214.6	213.9	213.4	212.9	212.0	211.2							
	3	278.0	272.5	267.3	264.6	261.9	257.7	253.6	250.3	247.1	244.5	242.0	240.0	238.0	236.6	235.3	234.4	233.5	231.9	230.4							l

$h^{T} = \Box$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	$\cdot 10^{-3}$
1	112	2 98.0	84.8	78.2	71.8	67.6	63.5	60.2	57.0	54.4	51.9	49.9	47.9	46.5	45.2	44.3	43.4	41.8	40.2							

$submatrix \left(a*_{c}, 1, 2Z+1, av(N_{r}), av(N_{r})\right)^{T} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9 10 11 12 13 14 15 16 17 18 19 20 21
$\frac{1}{373.9} \frac{395.0}{395.0} \frac{395.0}{415.5} \frac{415.5}{415.5} \frac{435.8}{435.8} \frac{454.2}{454.2}$	454.2 471.4 471.4 487.2 487.2 500.5 500.5 512.1 512.1 522.5 522.5
T	
$submatrix \left(a_{3B}, 1, 2Z+1, av \left(N_r\right), av \left(N_r\right)\right)^T = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9 10 11 12 13 14 15 16 17 18 19 20 21
1 40/ 422.2 429./ 445.1 452 466.9 4/3.9 487.2	493.7 506 512 523.2 528.6 538 542.6 550.8 554.9 562.2 565.8
(() T	0 10 11 12 14 15 16 17 19 10 20 21
$submatrix\Big(c,1,2Z+1,av\Big(N_{r}\Big),av\Big(N_{r}\Big)\Big)^{T} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9 10 11 12 13 14 15 16 17 18 19 20 21 77.2 196.4 72.7 191.8 71.7 181 70.9 173.2 70 168.3 69.6
1 31.1 201.7 30.3 201.2 03.0 201.0 03.2 133.3	77.2 156.1 72.7 151.6 71.7 161 76.5 175.2 76 166.5 65.6
submatrix $(w \ 1 \ 2Z \ av(N)) \ av(N))^T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$	10 11 12 13 14 15 16 17 18 19 20 21
$submatrix \left(w, 1, 2Z, av\left(N_{r}\right), av\left(N_{r}\right)\right)^{T} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
1 2 3 4 5 6 7 8 9 10 11 12 13	14
$u^{T} = 1$ 260.4 274.2 286.7 292.8 298.6 298.6 298.6 298.6 298.6 298.6 298.6 298.6 298.6 298.6	298.6 298.6 298.6 298.6 298.6 298.6
2 359.5 359.5 359.5 359.5 359.5 359.5 355.7 352.0 349.1 346.3 344.0 341.8 340.0 338.3	337.1 336.0 335.2 334.4 333.1 331.7
3 436.7 428.1 419.9 415.6 411.5 404.8 398.3 393.2 388.2 384.1 380.1 376.9 373.8	371.7 369.6 368.2 366.8 364.3 361.8
$\mathbf{c_{a_{st(Z,3),av(N_r)}}} = 55.00$ $\mathbf{c_{a_{st(Z,3),av(N_r)}}} \le 130 = 1$ Для КС	
submatrix $(c \ 1 \ 2Z + 1 \ av(N) \ av(N))^T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 3 \end{bmatrix}$	10 11 12 13 14 15 16 17 18 19 20 21
	70.3 67.9 65.7 63.5 61.5 59.5 57.6 55.7 55.4 55
$submatrix \left(c_{u}, 1, 2Z + 1, av \left(N_{r} \right), av \left(N_{r} \right) \right)^{T} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9 10 11 12 13 14 15 16 17 18 19 20 21
$\frac{1}{1} \frac{36.8}{36.8} \frac{182.1}{34.4} \frac{34.4}{181.3} \frac{181.3}{29.9} \frac{29.9}{187.8} \frac{184.5}{28.3}$	25.7 183.4 25.8 180.2 33.3 170.3 38.6 163.3 42.3 159 42.6
T	
$submatrix \left(w_u, 1, 2Z + 1, av \left(N_r \right), av \left(N_r \right) \right)^T = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9 10 11 12 13 14 15 16 17 18 19 20 21 320.7 160.7 316 159.8 305 166.9 297.3 171.9 292.1 174.1 289.1
1 283.2 1/7.4 325.1 178.2 329.6 167.9 323.8 164.6	320.7 160.7 316 159.8 305 166.9 297.3 171.9 292.1 174.1 289.1
$\Delta c_{\perp} = (c_{\perp} - c_{\perp})$	
$\Delta c_{a_{i,av(N_r)}} = \left(c_{a_{st(i,2),av(N_r)}} - c_{a_{st(i,1),av(N_r)}}\right)$	
$submatrix \left(\Delta c_{a}, 1, Z, av(N_{r}), av(N_{r})\right)^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 6.67 & -2.76 & -3.18 & -2.76 & -2.48 & -2.24 & -2.01 & -1.86 & -0.38 \end{bmatrix}$	10 11 12 13 14 15 16 17 18 19 20 21
$\frac{1}{1} = \frac{6.67}{6.67} - \frac{2.76}{2.76} - \frac{3.18}{2.76} - \frac{2.48}{2.24} - \frac{2.01}{2.01} - \frac{1.86}{2.38} - \frac{2.38}{2.24} - \frac{2.01}{2.01} - \frac{2.86}{2.38} - \frac{2.88}{2.24} - \frac{2.01}{2.01} - \frac{2.88}{2.24} - \frac{2.01}{2.24} - \frac{2.88}{2.24} - \frac{2.01}{2.24} - \frac{2.88}{2.24} - \frac{2.01}{2.24} - \frac{2.88}{2.24} - $	
$submatrix \left(\Delta c_{a}, 1, Z, av(N_{r}), av(N_{r})\right)^{T} \geq -12 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

submatrix $(\alpha, 1, 2 \cdot Z + 1, av(N_r), av(N_r))^T$	=	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	۰.
('', ', ' ', ' ('I)', ' ('I)')	1	67.06	27.21	69.09	25.68	70.51	23.41	70.14	22.26	70.59	20.99	69.18	20.02	62.32	19.84	56.98	19.43	52.78	19.20	52.22]
														_	1								_
submatrix $(\beta, 1, 2 \cdot Z + 1, av(N_r), av(N_r))^T$	= _	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	.°
	1	17.07	27.82	15.46	26.08	14.38	25.84	13.59	24.63	12.79	23.64	12.13	22.33	11.75	20.22	11.31	18.53	10.81	17.64	10.77			
submatrix $\left(\varepsilon_{\text{rotor}}, 1, Z, \text{av}(N_r), \text{av}(N_r)\right)^T$	=	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	.0
(-rotor, ,, (r), (r))	1	10.75	10.61	11.47	11.04	10.85	10.2	8.46	7.22	6.84													
$submatrix \left(\varepsilon_{stator}, 1, Z, av(N_r), av(N_r)\right)^T$	=	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	.0
(stator, 1,2, w (1'r), w (1'r))	1	41.88	44.83	46.73	48.33	48.19	42.29	37.14	33.35	33.02													j

19 7 8 9 10 11 12 13 14 15 16 17 18 0.4696 0.1909 0.4388 0.1700 0.3617 0.3382 0.1367 0.3221 0.4166 0.1541 0.3937 0.1471 0.1417 0.1332

14 7 8 9 10 11 12 13 15 16 17 18 19 0.7528 0.3995 0.7028 0.3718 0.6661 0.3467 0.6313 0.3303 0.5894 0.3305 0.5588 0.3291 0.5359 0.325

11 8 9 10 12 13 14 15 18 19 0.4383 0.1756 0.4091 0.1307 0.1564 0.3881 0.1419 0.3666 0.1356 0.3365 0.3144 0.1262 0.2994 0.1230

Вывод результатов поступенчатого расчета по ср. ЛТ ОК в ЕХСЕL:

▼ Расчет параметров потока по высоте Л

Относ. диаметр корня при увеличении которого меняется з-н профилирования Π с промежуточного на Π = const:

с R = const на промежуточный:

[16, c.94-99]

$$m_i = \begin{bmatrix} 0.4 & \text{if compressor} = "B\pi" \\ m_i & \text{otherwise} \end{bmatrix}$$

$$\begin{aligned} & \Lambda_{\text{st}(1,3),r} = \left(\frac{1 - \aleph_{1_{1,20}(\mathbb{N}_{1})}}{2 - \omega} \right)^{2} & \mathbb{E}_{\text{st}(1,3),r} = \left(\frac{1 - \aleph_{1_{1,20}(\mathbb{N}_{1})}}{2 - \omega} \right)^{2} & \mathbb{E}_{\text{st}(1,3),r} = \left(\frac{1 - \aleph_{1_{1,20}(\mathbb{N}_{1})}}{2 - \omega} \right)^{2} & \mathbb{E}_{\text{st}(1,3),r} = \left(\frac{1 - \aleph_{1_{1,20}(\mathbb{N}_{1})}}{2 - \omega} \right)^{2} & \mathbb{E}_{\text{st}(1,3),r} = \left(\frac{1 - \aleph_{1_{1,20}(\mathbb{N}_{1})}}{2 - \omega} \right)^{2} & \mathbb{E}_{\text{st}(1,3),r} = \frac{1 - \aleph_{1_{1,20}(\mathbb{N}_{1})}}{2 - (\aleph_{\text{st}(1,20),r})^{2}} & \mathbb{E}_{\text{st}(1,20),r} = \frac{1 - \aleph_{1_{1,20}(\mathbb{N}_{1})}}{2 - (\aleph_{\text{st}(1,20),r})^{2}} & \mathbb{E}_{\text{st}(1,20),r} \right)^{2} & \mathbb{E}_{\text{st}(1,20),r} & \mathbb{E}_{\text{st}(1,20),r} \\ & \mathbb{E}_{\text{st}(1,20),r} = \mathbb{E}_{\text{st}(1,20),r} & \mathbb{E}_{\text{st}(1,20),r} & \mathbb{E}_{\text{st}(1,20),r} \\ & \mathbb{E}_{\text{st}(1,20),r} & \mathbb{E}_{\text{st}(1,20),r} \\ & \mathbb{E}_{\text{st}(1,20),r} & \mathbb{E}_{\text{st}(1,20),r} & \mathbb{E}_{\text{st}(1,20),r} \\ & \mathbb{E}_{\text{st}(1,20),r} & \mathbb{E}_{\text{st}(1,20),r} \\ & \mathbb{E}_{\text{st}(1,20),r} & \mathbb{E}_{\text{st}(1,20),r} & \mathbb{E}_{\text{st}(1,20),r} \\ & \mathbb{E}_{\text{st}(1,20),r} & \mathbb{E}_{\text{st}(1,20),r} & \mathbb{E}_{\text{st}(1,20),r} \\ & \mathbb{E}_{\text{st}(1,20),$$

 $A_{st(i,a),r} = \frac{1}{\left(R_{st(i,a),av(N_r)}\right)^2 - \left(R_{st(i,a),av(N_r)}\right)^2} \cdot \left(1 - R_{L_{i,av(N_r)}}\right) - \omega \cdot \left(R_{st(i,a),1}\right)^2 \cdot \left(1 - R_{L_{i,1}}\right) + \frac{H_{T_{i,1}} - H_{T_{i,av(N_r)}}}{2 \cdot \omega}$

$$\begin{split} & B_{Bd(i,a),r} = \frac{(s_{Bd(i,a),r}) \left\{ R_{Bd(i,a),r} \left(N_{ij} \right) \right\} \left\{ R_{Bd(i,a),r} \left(N_{ij} \right) \right\}}{\left\{ R_{Bd(i,a),r} \left(N_{ij} \right) \right\} \left\{ R_{Bd(i,a),r} \left(N_{ij} \right) \right\}} \left[\omega R_{Bd(i,a),r} \left(N_{ij} \right) \left\{ R_{Bd(i,a),r} \left(N_{ij} \right) \right\} \right\} \left\{ R_{Bd(i,a),r} \left(N_{ij} \right) \right\} \left\{ R_{Bd(i,a),r} \left(N_$$

 $| \beta_{st(i,a),r} = triangle \left(c_{a_{st(i,a),r}}, u_{st(i,a),r} - c_{u_{st(i,a),r}} \right)$

 $w_{st(i,a),r} = \frac{c_{a_{st(i,a),r}}}{\sin(\beta_{st(i,a),r})}$

$$\left(\begin{array}{c} w_{st(i,a),r} = w_{st(1,a),r} \cos(\rho_{st(i,a),r}) \\ w_{st(i,a),r} = \frac{1}{a_{3B_{st(i,a),r}}} \begin{pmatrix} w_{st(i,a),r} \\ c_{st(i,a),r} \end{pmatrix} \right)$$

$$for \ r \in 1 ... N_r$$

$$\left(\begin{array}{c} R_{L_{i,r}} = 1 - \frac{c_{u_{st(i,1),r}} + c_{u_{st(i,2),r}}}{u_{st(i,1),r} + u_{st(i,2),r}} \\ \varepsilon_{rotor_{i,r}} \\ \varepsilon_{stator_{i,r}} \end{array} \right) = \begin{pmatrix} \beta_{st(i,2),r} - \beta_{st(i,1),r} \\ \alpha_{st(i,3),r} - \alpha_{st(i,2),r} \end{pmatrix}$$

$$\left(\begin{array}{c} T^* \ P^* \ \rho^* \ Cp \ a^*_c \ c_u \ \alpha \ c \ \lambda_c \ M_w \ R_L \ \varepsilon_{rotor} \\ T \ P \ \rho \ k \ a_{3B} \ c_a \ \beta \ w \ w_u \ M_c \ R_L \ \varepsilon_{stator} \end{pmatrix}^T$$

$$\begin{pmatrix} c_{01BHA} & c_{03BHA} \\ c_{a1BHA} & c_{a3BHA} \\ c_{BHA} & c_{BHA} \end{pmatrix} = \begin{bmatrix} \text{for i } \in 1 \\ \text{for r } \in 1..N_r \end{bmatrix} & \text{if BHA } = 1 \\ \begin{pmatrix} c_{01BHA} & c_{a3CA} \\ c_{01CA} & c_{a3CA} \\ c_{CA} & c_{CA} \end{pmatrix} = \begin{bmatrix} \text{for i } \in Z \\ \text{for r } \in 1..N_r \end{bmatrix} & \text{if CA } = 1 \\ \begin{pmatrix} c_{01BHA} \\ c_{03BHA} \\$$

$$c_{u1BHA} = \begin{pmatrix} 0.00 \\ 0.00 \\ 0.00 \end{pmatrix}$$

$$c_{u3BHA} = \begin{pmatrix} 36.79 \\ 36.79 \\ 36.79 \end{pmatrix}$$

$$c_{a1BHA} = \begin{pmatrix} 96.94 \\ 96.94 \\ 96.94 \end{pmatrix}$$

$$c_{a3BHA} = \begin{pmatrix} 86.94 \\ 86.94 \\ 86.94 \end{pmatrix}$$

$$\alpha_{1BHA} = \begin{pmatrix} 90.00 \\ 90.00 \\ 90.00 \end{pmatrix}.$$

$$\alpha_{3BHA} = \begin{pmatrix} 67.06 \\ 67.06 \\ 67.06 \end{pmatrix} \cdot \circ$$

$$\begin{pmatrix} 22.94 \\ \end{pmatrix}$$

$$\varepsilon_{\text{BHA}} = \begin{pmatrix} 22.94 \\ 22.94 \\ 22.94 \end{pmatrix} \cdot \circ$$

$$c_{u1CA} = \begin{pmatrix} 45.62 \\ 41.07 \\ 37.65 \end{pmatrix}$$

$$c_{u3CA} = \begin{pmatrix} 0.00 \\ 0.00 \\ 0.00 \end{pmatrix}$$

$$c_{a1CA} = \begin{pmatrix} 55.00 \\ 55.00 \\ 55.00 \end{pmatrix}$$

$$c_{a3CA} = \begin{pmatrix} 45.00 \\ 45.00 \\ 45.00 \end{pmatrix}$$

$$\alpha_{1\text{CA}} = \begin{pmatrix} 50.32 \\ 53.25 \\ 55.61 \end{pmatrix} \cdot \circ$$

$$\alpha_{3CA} = \begin{pmatrix} 90.00 \\ 90.00 \\ 90.00 \end{pmatrix} \cdot \circ$$

$$\varepsilon_{\text{CA}} = \begin{pmatrix} 39.68 \\ 36.75 \\ 34.39 \end{pmatrix} \cdot \circ$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
T^{*T}	_ 1	418.2	467.3	467.3	517.9	517.9	570.	6 570.	620.9	620.9	669.9	669.9	716.5	716.5	757.	1 757.1	793.6	793.6	827.2	827.2						
-	2	418.2	467.3	467.3	517.9	517.9	570.	6 570.	620.9	620.9	669.9	669.9	716.5	716.5	757.	1 757.1	793.6	793.6	827.2	827.2						
	3	418.2	467.3	467.3	517.9	517.9	570.	6 570.0	620.9	620.9	669.9	669.9	716.5	716.5	757.	1 757.1	793.6	793.6	827.2	827.2						
							Τ																			
т		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$T^{1} =$	1	413.8	436.0	464.0	490.3	513.9	544.1	567.4	596.6	618.1	647.0	667.5	695.2	714.3	738.6	755.0	776.8	791.5	811.7	824.9						
	3	413.8 413.8	446.2 449.6	464.0 464.0	498.3 502.3	513.9 513.9	551.0 554.8	567.4 567.4	602.4 605.7	618.1 618.1	652.0 655.1	667.5 667.5	699.6 702.4	714.3 714.3	742.2 744.5	755.0 755.0	780.0 782.1	791.5 791.5	814.5 816.4	825.1 825.2						
	٦	713.0	773.0	тот.о	302.3	313.9	337.0	307.4	003.7	010.1	055.1	007.5	702.4	/17.3	7	/33.0	702.1	791.5	010.4	023.2						
		1	2	3	4		5	6	7	8	9	10	11	1	2	13	14	15	16	17	18	19	20)	21	
\mathbf{p}^{T} .	_ 1	315.7	443.	9 443	3.9 6	12.3	612.3	835.1	835.1	1099.7	1099.7	7 1412.	8 141	2.8 17	67.6	1767.6	2124.9	2124.9	2483.1	2483.1	2847.9	2847.	9			$\cdot 10^3$
1 .	2	315.7	443.	9 443	3.9 6	12.3	612.3	835.1	835.1	1099.7	1099.7	7 1412.	8 141	2.8 17	67.6	1767.6	2124.9	2124.9	2483.1	2483.1	2847.9	2847.	9			10
	3	315.7	443.	9 443	3.9 6	12.3	612.3	835.1	835.1	1099.7	1099.7	7 1412.	8 141	2.8 17	67.6	1767.6	2124.9	2124.9	2483.1	2483.1	2847.9	2847.	9			
т		1	2	3	4		5	6	7	8	9	10	11	12		13	14	15	16	17	18	19	20	2		2
$P^{T} =$	1	304.1	346.8	432.	_		595.5	702.3	817.9	949.5	1081.5	1241.4	1394	_				2102.6	2288.9	2458.5	2648.4	2817.4			·	10 ³
	3	304.1 304.1	376.5 386.9	432. 432.			595.5 595.5	735.2 753.6	817.9 817.9	983.9 1004.1	1081.5 1081.5	1278.0 1300.5	1394. 1394.	-				2102.6 2102.6	2324.4	2458.5 2458.5	2683.2 2706.8	2819.7 2821.3				
	3	304.1	360.9	432.	9 34	5.5	393.3	755.0	617.9	1004.1	1001.5	1300.5	1394	0 104	0.4 1	.747.9	1993.9	2102.0	2340.1	2436.3	2700.8	2021.3				
		1	2	3	4		5	6	7	8	9	10	11	1	2	13	14	15	16	17	18	19	20)	21	
ρ^*^T	_ 1	2.629			08 4	.117	4.117	5.096	5.096	6.168	6.168				.592	8.592	9.774	9.774	10.897	10.897	11.990					
μ.	2	2.629	+			.117	4.117	5.096	5.096	6.168	6.168	_	_	45 8	.592	8.592	9.774	9.774	10.897	10.897	11.990					
	3	2.629	3.30	8 3.3	08 4	.117	4.117	5.096	5.096	6.168	6.168	7.34	5 7.3	45 8	.592	8.592	9.774	9.774	10.897	10.897	11.990	11.99	0			
т		1	2	3	4		5	6	7	8	9	10	11	12		13	14	15	16	17	18	19	20	2	1	
$\rho^1 =$	1	2.559	2.770	3.24	_		4.035	4.495	5.020	5.543	6.094	6.683	7.27			8.522	9.119	9.698	10.261	10.817	11.362	11.895				
	3	2.559 2.559	2.939 2.997	3.24 3.24			4.035 4.035	4.647 4.731	5.020 5.020	5.688 5.773	6.094	6.826 6.914		_		8.522 8.522	9.245 9.327	9.698	10.378	10.817 10.817	11.473 11.547	11.902 11.907				
		2.339	2.337	3.27	3.0	802 4	1.033	7./31	3.020	3.773	0.034	0.314	7.27	7 0.1	134	0.322	9.327	9.698	10.456	10.017	11.57/	11.907				
		1	2	3	4	5	6	7	8 9	10	11	12	13	14	15	16	17	18	19 2	20 21	. 22	23	24	25		
Cp^{T}	_ 1	1016	1025	1025	1034	1034	1045		1057 10					1088	1088		1096		1104							
Ср	2	1016	1025	1025	1034	1034				57 106			1	1088	1088		1096		1104							
	3	1016	1025	1025	1034	1034	1045	1045	1057 10	57 106	58 106	8 1079	1079	1088	1088	1096	1096	1104	1104							
т		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21 2	22	23	24	25
$k^{T} =$	1	1.394	1.389	1.389	1.384	1.384	1.379	1.379	1.373	1.373	1.368	1.368	1.363	1.363	1.359	1.359	1.355	1.355	1.352	1.352						
	2	1.394	1.389	1.389	1.384	1.384	1.379	1.379	1.373	1.373	1.368	1.368	1.363	1.363	1.359	1.359	1.355	1.355	1.352	1.352						
	3	1.394	1.389	1.389	1.384	1.384	1.379	1.379	1.373	1.373	1.368	1.368	1.363	1.363	1.359	1.359	1.355	1.355	1.352	1.352						

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
a^*c^T	= 1	373.9		395.0	415.5	+		435.8	454.2	454.2	471.4	471.4	487.2	487.2	500.5	500.5		512.1	522.5	522.5						
C	2	373.9		395.0	415.5			_	454.2	454.2	471.4	471.4	+	487.2	500.5	500.5	_	512.1	522.5	522.5						
	3	373.9	395.0	395.0	415.5	415.5	435.8	435.8	454.2	454.2	471.4	471.4	487.2	487.2	500.5	500.5	512.1	512.1	522.5	522.5						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Т	1	407.0		430.2	441.5	452.0	-	473.9	485.0	493.7	504.1	512.0	521.6	528.7	536.8	542.7	549.7	554.9	561.3	565.8	20	21	22	23	24	23
a_{3B}	= 1	407.0	-	430.2	445.0	452.0	_	473.9	487.4	493.7	506.1	512.0	523.2	528.7	538.1	542.7	550.9	554.9	562.2	565.9						
	3	407.0		430.2	446.8	452.0	-	+	488.7	493.7	507.2	512.0	524.3	528.7	538.9	542.7	551.6	554.9	562.9	565.9						
			1	•	•	•	1	•	'			•	•			•	•	•			•	•	•	1	•	·
_		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$c^{T} =$	1	94.4	252.9	81.9	238.9	90.7	235.4	82.5	226.6	77.1	221.1	71.8	214.3	67.8	201.1	67.6	191.7	67.4	184.9	71.5						
	2	94.4	207.8	81.9	201.4	90.7	202.5	82.5	197.7	77.1	195.1	71.8	190.8	67.8	180.4	67.6	172.7	67.4	167.6	68.6						
	3	94.4	190.2	81.9	179.8	90.7	182.2	82.5	178.9	77.1	177.5	71.8	174.4	67.8	165.6	67.6	159.1	67.4	154.8	66.7						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$\mathbf{w}^{T} =$	1	239.9	146.6	259.1	117.4	277.3	112.5	283.6	113.7	282.9	113.4	283.6	115.2	281.9	123.5	273.1	129.3	266.6	134.2	258.9						
w =	2	334.2	211.2	329.7	198.6	335.8	188.6	335.3	182.7	329.2	176.7	325.7	173.8	320.7	178.5	309.6	181.7	301.7	183.5	295.8						
	3	409.2	290.3	388.8	271.5	386.3	255.1	380.5	243.0	370.2	232.0	363.3	225.1	355.5	226.4	342.7	227.3	333.6	226.6	328.8						
т		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$u^{T} =$	2	260.4	274.2	286.7	292.8	298.6	298.6	298.6		298.6	298.6	298.6	298.6	298.6	298.6	298.6	298.6	298.6	298.6	298.6		+	+			
	3	359.5 436.7	359.5 428.1	359.5 419.9	359.5 415.6	359.5 411.5	355.7 404.8	352.0 398.3	349.1 393.2	346.3 388.2	344.0 384.1	341.8 380.1	340.0 376.9	338.3 373.8	337.1 371.7	336.0 369.6	335.2 368.2	334.4 366.8	333.1 364.3	331.7 361.8						
	<u> </u>	150.7	120.1	113.5	113.0	111.5	10 1.0	330.3	333.2	300.2	30 1.1	300.1	370.5	3/3.0	371.7	303.0	300.2	300.0	30 1.3	301.0						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$c_a^T =$	1	86.9	133.9	72.6	92.4	84.0	81.3	78.3	75.5	72.8	70.3	67.9	65.7	63.5	61.5	59.5	57.6	55.7	55.4	55.0						
a	2	86.9	107.6	72.6	87.7	84.0	81.3	78.3	75.5	72.8	70.3	67.9	65.7	63.5	61.5	59.5	57.6	55.7	55.4	55.0						
	3	86.9	106.1	72.6	85.7	84.0	81.3	78.3	75.5	72.8	70.3	67.9	65.7	63.5	61.5	59.5	57.6	55.7	55.4	55.0						
		4		2 1	4	F		- T		0	10	44	10	12	14	4.5	10	47	10	10	20	24	22	22	24	25
Т	1	36.8	2 214.6	3 37.9	220.3	5 34.4	6 220.9	7 26.0	8 213.6	9 25.3	10 209.6	23.3	12 204.0	13 24.0	14 191.5	15 32.1	16 182.8	17 37.9	18 176.4	19 45.6	20	21	22	23	24	25
$c_{\mathbf{u}}$	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	36.8	177.8	37.9	181.3	34.4	185.5	26.0	182.7	25.3	182.0	23.3	179.1	24.0	169.6	32.1	162.9	37.9	158.1	41.1						
	3	36.8	157.9	37.9	158.0	34.4	163.0	26.0	162.2	25.3	163.0	23.3	161.6	24.0	153.8	32.1	148.3	37.9	144.6	37.7						
							1								I				I				I		l	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$\mathbf{w}_{\mathbf{u}}^{\mathrm{T}}$	_ 1	223.6		248.8	72.5		+	272.6	85.0	273.3	89.0	275.4	 	274.6	107.2	266.5	+	260.7	122.2	253.0						
и	2	322.7		321.6	178.2		170.2	326.0	166.4	321.0	162.1	318.5		314.3	167.6	303.9		296.6	174.9	290.7						
	3	399.9	270.2	382.0	257.6	377.1	241.8	372.3	230.9	362.9	221.1	356.8	215.3	349.8	217.9	337.5	219.9	328.9	219.7	324.2				<u> </u>		

$$\begin{array}{c|c} \Delta c_a = & \text{for } i \in 1..Z \\ & \text{for } a \in 2..3 \\ & \text{for } r \in 1..N_r \\ & \Delta c_{a_{st(i,a),r}} = c_{a_{st(i,a),r}} - c_{a_{st(i,a-1),r}} \\ & \Delta c_a \end{array}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\Delta c_0^T =$	1	0.00	46.94	-61.29	19.79	-8.40	-2.67	-3.06	-2.76	-2.68	-2.48	-2.42	-2.24	-2.20	-2.01	-1.99	-1.86	-1.85	-0.38	-0.37		
— °a	2	0.00	20.70	-35.05	15.09	-3.70	-2.67	-3.06	-2.76	-2.68	-2.48	-2.42	-2.24	-2.20	-2.01	-1.99	-1.86	-1.85	-0.38	-0.37		
	3	0.00	19.19	-33.55	13.11	-1.72	-2.67	-3.06	-2.76	-2.68	-2.48	-2.42	-2.24	-2.20	-2.01	-1.99	-1.86	-1.85	-0.38	-0.37		

			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
[16, c. 81]	$\Delta c_0^T \ge -25 =$	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
[,]	— a — — =	2	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
		3	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		

		1	2	3	4	5	6	7	8	9	10	11	12
$R_{\tau}^{T} =$	1	0.5298	0.5544	0.5725	0.5988	0.6066	0.6195	0.6393	0.6401	0.6412			
T'L	2	0.7015	0.6951	0.6926	0.7023	0.6998	0.7032	0.7134	0.7095	0.7063			
	3	0.7749	0.7655	0.7582	0.7622	0.7562	0.7558	0.7615	0.7555	0.7504			

		1	2	3	4	5	6	7	8	9	10	11	12
$R_{\tau}^{T} > 0 =$	1	1	1	1	1	1	1	1	1	1			
LL = 0	2	1	1	1	1	1	1	1	1	1			
	3	1	1	1	1	1	1	1	1	1			

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	ł
$\alpha^{T} =$	1	67.06	31.96	62.43	22.75	67.74	20.21	71.62	19.46	70.85	18.55	71.09	17.85	69.30	17.80	61.62	17.49	55.80	17.43	50.32							٠.
30	2	67.06	31.19	62.43	25.81	67.74	23.67	71.62	22.45	70.85	21.13	71.09	20.13	69.30	19.92	61.62	19.48	55.80	19.30	53.25							İ
	3	67.06	33.91	62.43	28.47	67.74	26.51	71.62	24.95	70.85	23.34	71.09	22.12	69.30	21.78	61.62	21.23	55.80	20.95	55.61							İ
																										_	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21					
$\beta^{T} =$	1	21.25	65.98	16.27	51.88	17.63	46.30	16.02	41.61	14.92	38.33	13.85	34.75	13.01	29.83	12.58	26.45	12.07	24.37	12.26			.0				
١	2	15.08	30.64	12.72	26.20	14.48	25.54	13.50	24.40	12.78	23.46	12.04	22.20	11.42	20.14	11.07	18.48	10.65	17.56	10.71							
	3	12.27	21.44	10.76	18.40	12.55	18.59	11.87	18.10	11.34	17.64	10.78	16.96	10.28	15.75	9.99	14.68	9.62	14.15	9.63							

12

13

10

11

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\beta^{T} < 91.^{\circ} =$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		

16.82

35.61

40.97

12.58

28.67

47.12

25.60

47.84

23.41

49.54

20.90

49.00

β.2>91 => поменять з-н профилирования

	_	15.50	13.40	11.00	10.91	10.00	10.17	0.75	7.71	0.92							
	3	9.18	7.64	6.03	6.23	6.30	6.18	5.47	4.69	4.53							
_																	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
ε $T =$	1	35.61	42.38	48.40	48.60	50.04	48.97	40.91	35.24	32.90							.0
e _{stator} –	2	31.24	41.94	47.95	48.40	49.96	49.16	41.70	36.32	33.95							

42.07

13.87

36.99

12.30

34.65

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$\lambda_{c}^{T} =$	1	0.2524	0.6403	0.2073	0.5749	0.2184	0.5402	0.1892	0.4988	0.1697	0.4691	0.1523	0.4399	0.1393	0.4018	0.1350	0.3743	0.1316	0.3538	0.1368				
··c	2	0.2524	0.5262	0.2073	0.4847	0.2184	0.4647	0.1892	0.4353	0.1697	0.4139	0.1523	0.3916	0.1393	0.3604	0.1350	0.3374	0.1316	0.3207	0.1314				
	3	0.2524	0.4816	0.2073	0.4326	0.2184	0.4180	0.1892	0.3940	0.1697	0.3766	0.1523	0.3581	0.1393	0.3310	0.1350	0.3107	0.1316	0.2963	0.1276				
-	·		•	•	•	·	·	•	•	•	•	•	·	•			•	•	•					
				1 1	2 3	4 5	6 7	' 8	9 10	11 12	13	14 15	16 17	18 1	19									
[16, c. 87	71	$\lambda_{\perp}^{T} < 0$	0.85 = 1	. 1	1 1	1 1	. 1	1 1	1 1	1	1 1	1 1	1	1 1	1									
L-0, 0.	,	· ·c – ·	2	2 1	1 1	1 1	. 1	1 1	1 1	1	1 1	1 1	1	1 1	1									
			3	1	1 1	1 1	. 1	1 1	1 1	1	1 1	1 1	1	1 1	1									
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$M_c^T =$	1	0.2320	0.6064	0.1903	0.5411	0.2008	0.5072	0.1740	0.4672	0.1561	0.4387	0.1402	0.4108	0.1283	0.3746	0.1245	0.3487	0.1215	0.3294	0.1263				
	2	0.2320	0.4926	0.1903	0.4526	0.2008	0.4336	0.1740	0.4057	0.1561	0.3855	0.1402	0.3646	0.1283	0.3352	0.1245	0.3136	0.1215	0.2980	0.1213				
	3	0.2320	0.4492	0.1903	0.4023	0.2008	0.3887	0.1740	0.3662	0.1561	0.3500	0.1402	0.3327	0.1283	0.3074	0.1245	0.2884	0.1215	0.2751	0.1178				
	_	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$M_{\mathbf{w}}^{T} =$	1	0.5895	0.3514	0.6023	0.2660	0.6135	0.2423	0.5985	0.2344	0.5730	0.2250	0.5539	0.2209	0.5331	0.2302	0.5031	0.2353	0.4805	0.2391	0.4576				

0.6361

0.7095

0.3322

0.4294

0.6065

0.6725

0.3317

0.4200

0.5705

0.6314

0.3299

0.4121

0.5438

0.6011

0.3264

0.4025

0.5228

0.5811

0.8212 0.5006

0.6855

1.0055

0.7663

0.9037

0.4462

0.6076

0.7430

0.8548

0.4038

0.5443

0.7075

0.8028

0.3749

0.4972

0.6669

0.7498

0.3491

0.4575

Вывод результатов расчета параметров потока по высоте Л

Рассматриваемая ступень:
$$j=1$$
 $j=1$ $j=$

▼ Построение треугольников скоростей в 3х сечениях

$$\begin{split} \Delta_c(v,i,j,r) &= \left| \begin{array}{l} \tan(\alpha_{st(i,j),r}) \cdot v \ \ \mathrm{if} \ \left(\tan(\alpha_{st(i,j),r}) \geq 0 \wedge - \left| c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r}) \right| \leq v \leq 0 \right) \\ & \tan(\alpha_{st(i,j),r}) \cdot v \ \ \mathrm{if} \ \left(\tan(\alpha_{st(i,j),r}) < 0 \wedge 0 \leq v \leq \left| c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r}) \right| \right) \\ \Delta_W(v,i,j,r) &= \left| -\tan(\beta_{st(i,j),r}) \cdot v \ \ \mathrm{if} \ \left(-\tan(\beta_{st(i,j),r}) \geq 0 \right) \wedge \left(-\left| w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r}) \right| \leq v \leq 0 \right) \wedge (j \neq 3) \\ & -\tan(\beta_{st(i,j),r}) \cdot v \ \ \mathrm{if} \ \left(-\tan(\beta_{st(i,j),r}) < 0 \right) \wedge \left(0 \leq v \leq \left| w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r}) \right| \right) \wedge (j \neq 3) \\ \Delta_U(v,i,j,r) &= \left| -c_{a_{st(i,j),r}} \quad \mathrm{if} \ \left(-c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r}) \right) \leq v \leq w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r}) \right) \wedge (j \neq 3) \\ \mathrm{NaN} \quad \mathrm{otherwise} \end{split}$$

$$v_{lim} = ceil \left(\frac{max(c, w, u)}{10^2}\right) \cdot 10^2 = 500$$

Дискретизация скорости: $v = -v_{lim}, -v_{lim} + \frac{v_{lim}}{3000} ... v_{lim}$

 $r = av(N_r)$

▲ Построение треугольников скоростей в 3х сечениях

$$\begin{pmatrix} F_1 & F_{II} \\ D2 & R2 \end{pmatrix} = \begin{cases} \text{for } i \in 1..Z \\ \text{for } a \in 1..3 \end{cases} \\ \begin{cases} \rho_{\cdot}(z) &= \text{interp} \Big(\text{Ispline} \Big(\text{submatrix} \Big(R, \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, \text{submatrix} \Big(\rho_{\cdot} \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,a), \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, z \Big) \\ c_{a.}(z) &= \text{interp} \Big(\text{Ispline} \Big(\text{submatrix} \Big(R, \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, \text{submatrix} \Big(c_a, \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, \text{submatrix} \Big(c_a, \text{st}(i,a), \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, \text{submatrix} \Big(c_a, \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, \text{submatrix} \Big(c_a, \text{st}(i,a), \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, \text{submatrix} \Big(c_a, \text{st}(i,a), \text{$$

Кольцевые площади (м^2):

Радиус и диаметр двухконтурности (м):

$$\begin{pmatrix} \pi^* \Pi \\ \pi^* I \end{pmatrix} = \begin{cases} \text{for i = 1..Z} \\ \text{for a = 1} \end{cases} \\ \begin{pmatrix} C_{D}(z) = \text{interp} \Big(\text{Ispline} \Big(\text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(C_{D}, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), 1, N_f$$

. (. T . T)		1	2	3	4	5	6	7	8	9	10	11	12
$\operatorname{stack}(\pi^*_{I}, \pi^*_{II}) =$	1	1.406	1.379	1.364	1.317	1.285	1.251	1.202	1.169	1.147			
,	2	1.406	1.379	1.364	1.317	1.285	1.251	1.202	1.169	1.147			

$$\prod_{i=1}^{Z} \pi^*_{\text{II}_i} = 9.022$$

Относ. толщины ЛРК и СА:

$$\overline{c}_{rotor.}(r) = interp \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 13 + \begin{vmatrix} 3 & \text{if compressor} = "B\pi" \\ -3 & \text{if compressor} = "KHД" \\ 0 & \text{otherwise} \\ 5 + \begin{vmatrix} 1 & \text{if compressor} = "B\pi" \\ -1 & \text{if compressor} = "KHД" \\ 0 & \text{otherwise} \end{bmatrix}, \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 13 + \begin{vmatrix} 3 & \text{if compressor} = "B\pi" \\ -3 & \text{if compressor} = "KHД" \\ 0 & \text{otherwise} \end{bmatrix}, \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 1 \\ 0 & \text{otherwise} \\ -1 & \text{if compressor} = "KHД" \\ 0 & \text{otherwise} \\ 3 \end{bmatrix}$$

$$\overline{c}_{stator.}(r) = interp \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{pmatrix} 4 \\ 6 \\ 8 \end{pmatrix}, \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{pmatrix} 4 \\ 6 \\ 8 \end{pmatrix}, r$$

$$r = ORIGIN, ORIGIN + \frac{N_r - ORIGIN}{N_{dis}} .. N_r$$

$$\overline{c}_{BHA} = \begin{bmatrix} \text{for } r \in 1..N_r \\ \overline{c}_{BHA} = \overline{c}_{stator.}(r) \end{bmatrix}$$

$$\overline{c}_{BHA} = \begin{bmatrix} & & 1 & \\ & 1 & 4.00 \\ & 2 & 6.00 \\ & 3 & 8.00 \end{bmatrix} .\%$$

$$\begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor}
\end{bmatrix} = \begin{cases}
for i \in 1..Z \\
for r \in 1..N_r
\end{cases}$$

$$\begin{bmatrix}
\overline{c}_{stator}_{i,r} \\
\overline{c}_{rotor}_{i,r}
\end{bmatrix} = \begin{bmatrix}
\overline{c}_{stator.(r)} \\
\overline{c}_{rotor.(r)}
\end{bmatrix}$$

$$\begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor}
\end{bmatrix}$$

$$\overline{c}_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 4.00 & 4.00 & 4.00 & 4.00 & 4.00 & 4.00 & 4.00 & 4.00 & 4.00 & 4.00 \\ 2 & 6.00 & 6.00 & 6.00 & 6.00 & 6.00 & 6.00 & 6.00 & 6.00 & 6.00 \\ 3 & 8.00 & 8.00 & 8.00 & 8.00 & 8.00 & 8.00 & 8.00 & 8.00 & 8.00 \\ \end{bmatrix} .\%$$

$$\overline{c}_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 13.00 & 13.00 & 13.00 & 13.00 & 13.00 & 13.00 & 13.00 & 13.00 & 13.00 \\ 2 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 \\ 3 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 \\ \end{bmatrix} .$$

$$\overline{c}_{CA} = \begin{vmatrix} for & r \in 1 ... N_r \\ \overline{c}_{CA_r} & = \overline{c}_{stator.}(r) \\ \overline{c}_{CA} \end{vmatrix}$$

$$\overline{c}_{CA} = \begin{bmatrix} & 1 & \\ 1 & 4.00 \\ 2 & 6.00 \\ \hline 3 & 8.00 \end{bmatrix} .\%$$

$$\frac{1}{\text{r_inlet}_{BHA}} = \begin{vmatrix}
 & 1 \\
 & 1 & 0.800 \\
 & 2 & 1.200 \\
 & 3 & 1.600
\end{vmatrix} .\%$$

$$\overline{r}_{outlet} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.400 & 0.400 & 0.400 & 0.400 & 0.400 & 0.400 & 0.400 & 0.400 & 0.400 \\ 2 & 0.600 & 0.600 & 0.600 & 0.600 & 0.600 & 0.600 & 0.600 & 0.600 & 0.600 \\ 3 & 0.800 & 0.800 & 0.800 & 0.800 & 0.800 & 0.800 & 0.800 & 0.800 & 0.800 \\ \end{bmatrix} .\%$$

$$\frac{1}{\text{r_outlet}_{BHA}} = \begin{bmatrix} & 1 & \\ 1 & 0.400 \\ 2 & 0.600 \\ \hline 3 & 0.800 \end{bmatrix} .\%$$

$$\underline{r}_{inlet_{CA}} =
\begin{vmatrix}
 & 1 & \\
 & 1 & 0.800 \\
 & 2 & 1.200 \\
 & 3 & 1.600
\end{vmatrix}$$
.%

$$\overline{r}_{outlet} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ & 1 & 1.300 & 1.300 & 1.300 & 1.300 & 1.300 & 1.300 & 1.300 & 1.300 & 1.300 \\ & 2 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 \\ & 3 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 \\ \end{bmatrix} .\%$$

Относ. удлинение ЛРК и НА:

[16, c. 244]

$$\overline{h}_{rotor}(Z,i) = \begin{vmatrix} \overline{h}_{\sim rotor} \left(\frac{1}{rows(z_{\sim})} \right) & \text{if } i < 1 \\ \overline{h}_{\sim rotor}(1) & \text{if } i > Z \end{vmatrix} \begin{vmatrix} \overline{h}_{\sim stator} \left(\frac{1}{rows(z_{\sim})} \right) & \text{if } i < 1 \\ \overline{h}_{\sim stator}(1) & \text{if } i > Z \end{vmatrix}$$
$$\overline{h}_{\sim rotor} \left(\frac{i}{Z} \right) & \text{otherwise} \end{vmatrix}$$

$$\overline{\underline{h}}_{\sim}(i) = interp \left(cspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim}rotor \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim}rotor, i \right)$$

$$\overline{\underline{h}}_{\text{constator}}(i) = interp \left(cspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim stator} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim stator}, i \right)$$

Для компрессора газогенератора

$$\frac{h_{PK}}{S_{PK}}$$
=2,5...4,5 – для первой дозвуковой ступени;

$$\frac{h_{PK}}{S_{PK}}$$
=2,0...3,5 – для первой околозвуковой ступени;

$$\frac{h_{PK}}{S_{PK}}$$
=1,7...3,0 – для первой сверхзвуковой ступени;

$$\frac{h_{PK}}{S_{PK}}$$
=1,0...2,5 – для последней ступени.

[16, c. 83-84]

▼ Расчет длин хорд по высоте Л

$$\begin{array}{ll} \mathsf{chord}_{BHA} = & & \mathsf{for} \ i \in I & & \mathsf{if} \ \mathsf{BHA} = I \\ \\ \mathsf{chord}_{BHA}_{av(N_r)} = & & \frac{b_{st(i,1)}}{\overline{h}_{stator}(Z,0)} \\ \mathsf{sail} = & & \frac{R_{st(1,1),N_r} - R_{st(1,1),1}}{R_{st(1,1),av(N_r)} - R_{st(1,1),1}} \\ \mathsf{for} \ \ \mathsf{r} \in I \ldots N_r \\ \\ \mathsf{b}_{BHA\kappaop} = & & \frac{\mathsf{chord}_{BHA}_{av(N_r)} \cdot \mathsf{sail}}{\mathsf{sail}_{stator} - 1 + \mathsf{sail}} \\ \mathsf{b}_{BHAnep} = & & b_{BHA\kappaop} \cdot \mathsf{sail}_{stator} \\ \mathsf{b}_{BHA,(7)} = & & \mathsf{interp} \left[\mathsf{cspline} \left[\begin{pmatrix} R_{st(i,1),1} \\ R_{st(i,1),N_r} \end{pmatrix}, \begin{pmatrix} b_{BHA\kappaop} \\ \mathsf{chord}_{BHA}_{av(N_r)} \\ R_{st(i,1),N_r} \end{pmatrix}, \begin{pmatrix} R_{st(i,1),1} \\ R_{st(i,1),N_r} \end{pmatrix}, \begin{pmatrix} b_{BHA\kappaop} \\ R_{st(i,1),N_r} \end{pmatrix}, \begin{pmatrix} b_{BHAnep} \\ R_{st(i,1),N_r} \end{pmatrix}, \begin{pmatrix} b_{BHAnep} \\ \mathsf{chord}_{BHA}_{av(N_r)} \end{pmatrix}, \mathsf{z} \\ \mathsf{chord}_{BHA} = & b_{BHA,(R_{st(i,1),r})} \end{pmatrix}$$

$$\left(\begin{array}{c} \mathsf{chord}_{\mathsf{rotor}_{i}} \cdot \mathsf{av}(\mathsf{N}_{r}) \\ \mathsf{chord}_{\mathsf{rotor}_{i}} \cdot \mathsf{av}(\mathsf{N}_{r}) \\ \mathsf{chord}_{\mathsf{stator}_{i}} \cdot \mathsf{av}(\mathsf{N}_{r}) \\ \mathsf{chord}_{\mathsf{stator}_{i}} \cdot \mathsf{av}(\mathsf{N}_{r}) \\ \mathsf{sail} = \frac{R_{\mathsf{st}(i,2)}, \mathsf{N}_{r}}{R_{\mathsf{st}(i,2)}, \mathsf{av}(\mathsf{N}_{i})} - R_{\mathsf{st}(i,2),1} \\ \mathsf{for} \ \mathsf{re} \ \mathsf{1...N}_{r} \\ \mathsf{b}_{\mathsf{PK} \mathsf{kop}} = \frac{\mathsf{chord}_{\mathsf{rotor}_{i,3}}(\mathsf{N}_{i}) - R_{\mathsf{st}(i,2),1}}{\mathsf{sail}} \\ \mathsf{b}_{\mathsf{PK} \mathsf{kop}} = \frac{\mathsf{chord}_{\mathsf{rotor}_{i,3}}(\mathsf{N}_{i})^{-\mathsf{sail}}}{\mathsf{sail}_{\mathsf{rotor}} - 1 + \mathsf{sail}} \\ \mathsf{b}_{\mathsf{HA} \mathsf{kop}} = \frac{\mathsf{chord}_{\mathsf{stator}_{i,3}}(\mathsf{N}_{i})^{-\mathsf{sail}}}{\mathsf{sail}_{\mathsf{stator}} - 1 + \mathsf{sail}} \\ \mathsf{b}_{\mathsf{HA} \mathsf{kop}} = \frac{\mathsf{chord}_{\mathsf{stator}_{i,3}}(\mathsf{N}_{i})^{-\mathsf{sail}}}{\mathsf{sail}_{\mathsf{stator}} - 1 + \mathsf{sail}} \\ \mathsf{b}_{\mathsf{HA} \mathsf{hop}} = \left(\frac{\mathsf{b}_{\mathsf{PK} \mathsf{kop}} \cdot \mathsf{sail}}{\mathsf{b}_{\mathsf{HA} \mathsf{hop}} - \mathsf{bhord}_{\mathsf{stator}_{i,3}}(\mathsf{N}_{i})} \right) = \left(\frac{\mathsf{b}_{\mathsf{PK} \mathsf{kop}} \cdot \mathsf{sail}}{\mathsf{b}_{\mathsf{HA} \mathsf{hop}}} \right) \\ \mathsf{chord}_{\mathsf{rotor}_{i,3}}(\mathsf{v}) = \left(\frac{\mathsf{b}_{\mathsf{PK} \mathsf{kop}} \cdot \mathsf{sail}}{\mathsf{b}_{\mathsf{HA} \mathsf{kop}} \cdot \mathsf{bhord}_{\mathsf{rotor}_{i,3}}(\mathsf{v})} \right) \\ \mathsf{chord}_{\mathsf{rotor}_{i,2}}(\mathsf{v}) = \inf_{\mathsf{b}_{\mathsf{HA} \mathsf{hop}}} \left(\frac{\mathsf{R}_{\mathsf{st}(i,2),\mathsf{N}_{r}}}{\mathsf{R}_{\mathsf{st}(i,2),\mathsf{N}_{r}}} \right) \\ \mathsf{chord}_{\mathsf{stator}_{i,r}} = \mathsf{chord}_{\mathsf{stator}_{i,r}}(\mathsf{N}_{i}) \\ \mathsf{chord}_{\mathsf{rotor}_{i,r}} = \mathsf{chord}_{\mathsf{stator}_{i,r}}(\mathsf{R}_{\mathsf{st}(i,2),r}) \\ \mathsf{chord}_{\mathsf{stator}_{i,r}} = \mathsf{chord}_{\mathsf{stator}_{i,r}}(\mathsf{R}_{\mathsf{st}(i,2),r}) \\ \mathsf{chord}_{\mathsf{stator}_{i,r}} = \mathsf{chord}_{\mathsf{stator}_{i,r}}(\mathsf{R}_{\mathsf{st}(i,2),r}) \\ \mathsf{chord}_{\mathsf{stator}_{i,r}} = \mathsf{chord}_{\mathsf{stator}}(\mathsf{R}_{\mathsf{st}(i,2),r}) \\ \mathsf{chord}_{\mathsf{stator}_{i,r}} = \mathsf{chord}_{\mathsf{stator}_{i,r}} \\ \mathsf{$$

$$\begin{split} & \mathsf{chord}_{CA} = & & \mathsf{for} \ i \in Z \\ & & \mathsf{chord}_{CA_{av}(N_r)} = \frac{h_{st(i,3)}}{h_{stator}(Z,Z+1)} \\ & \mathsf{sail} = \frac{R_{st(1,1),N_r} - R_{st(1,1),1}}{R_{st(1,1),av}(N_r) - R_{st(1,1),1}} \\ & \mathsf{for} \ r \in 1..N_r \\ & & \mathsf{b}_{CA\kappa op} = \frac{\mathsf{chord}_{CA_{av}(N_r)} \cdot \mathsf{sail}}{\mathsf{sail}_{stator} - 1 + \mathsf{sail}} \\ & \mathsf{b}_{CA\pi cp} = b_{CA\kappa op} \cdot \mathsf{sail}_{stator} \\ & & \mathsf{b}_{CA}(z) = \mathsf{interp} \left[\mathsf{cspline} \left[\begin{pmatrix} R_{st(i,1),av}(N_r) \\ R_{st(i,1),av}(N_r) \\ R_{st(i,1),N_r} \end{pmatrix}, \begin{pmatrix} \mathsf{b}_{CA\kappa op} \\ \mathsf{chord}_{CA_{av}(N_r)} \\ \mathsf{b}_{CAnep} \end{pmatrix} \right], \begin{pmatrix} \mathsf{b}_{CA\kappa op} \\ \mathsf{chord}_{CA_{av}(N_r)} \\ \mathsf{chord}_{CA} \end{pmatrix}, \\ & \mathsf{chord}_{CA} = \mathsf{b}_{CA}(R_{st(i,1),r}) \\ & \mathsf{chord}_{CA} \end{pmatrix}$$

▼ Определение количества Л РК и Ни

$$\begin{array}{c} \left(\frac{\varepsilon}{B}HA(b^*)=1}{Z_{BHA}} \\ r_{-inlet}BHA \\ r_{-inlet}BHA \\ \bar{r}_{BHA} \\$$


```
Z<sub>rotor</sub>
                                   Z<sub>stator</sub>
r_inlet<sub>rotor</sub> r_inlet<sub>stator</sub>
r_outlet<sub>rotor</sub> r_outlet<sub>stator</sub>
       trotor
                                    tstator
                                   istator
       <sup>1</sup>rotor
                                  m<sub>stator</sub>
     m<sub>rotor</sub>
                                  \boldsymbol{\theta}_{stator}
      \theta_{\text{rotor}}
                                  \delta_{\text{stator}}
      \delta_{\text{rotor}}
                                                              = \int for i \in 1...Z
                                                                              for r \in av(N_r)
                                   \chi_{\text{stator}}
      \chi_{rotor}
     v_{
m rotor}
                                   v_{
m stator}
  R_{\text{СЛ.rotor}}
                               R<sub>СЛ.stator</sub>
                                  K_{stator}
     K<sub>rotor</sub>
                                  \mathbf{D}_{\text{stator}}
     D_{rotor}
                                  \zeta_{\text{stator}}
      \zeta_{\rm rotor}
                             quality<sub>stator</sub>
{\it quality}_{rotor}
                                  \eta_{stage}
     \eta_{stage}
                                                                                                                        chord<sub>rotor</sub>i, r
                                                                                                                            b/t<sub>PK</sub>i,r
                                                                                      (trotor<sub>i,r</sub>
                                                                                      (tstator<sub>i,r</sub>)
                                                                                      \left(t_{\text{rotor}_{i,r}}\right)
                                                                                                                            \left(\operatorname{chord}_{\operatorname{rotor}_{i,r}}\cdot\operatorname{cos}\left(\beta_{\operatorname{st}(i,1),r}\right)\right)
                                                                                                               = \frac{2}{3} \left[ \frac{\text{chord}_{\text{rotor}_{i,r}}}{\text{chord}_{\text{stator}_{i,r}}} \cos(\alpha_{\text{st}(i,2),r}) \right]
                                                                                                                               \left(\frac{\pi \cdot \text{mean}\left(D_{st(i,2),r},D_{st(i,3),r}\right)}{t_{stator_{i,r}}}\right) \text{ if } \text{mod}\left(\text{round}\left(\frac{\pi \cdot \text{mean}\left(D_{st(i,2),r},D_{st(i,3),r}\right)}{t_{stator_{i,r}}}\right), 2\right) = 0
```

 $\varepsilon_{PK(b/t)=1}$

 $\varepsilon_{\text{HA}(b/t)=1}$

$$\begin{vmatrix} \text{while } \gcd\left(Z_{\text{rotor}_{i}}, Z_{\text{stator}_{i}}\right) \neq 1 \\ Z_{\text{rotor}_{i}} = Z_{\text{rotor}_{i}} + 1 \end{vmatrix}$$
 for $r \in 1...N_{r}$
$$\begin{vmatrix} r \text{ inlet}_{\text{stator}_{i,r}} & r \text{ outlet}_{\text{stator}_{i,r}} \\ r_{\text{inlet}|\text{rotor}_{i,r}} & r_{\text{outlet}|\text{rotor}_{i,r}} \end{vmatrix} = \begin{pmatrix} r \text{ inlet}_{\text{stator}_{i,r}} & r \text{ outlet}_{\text{stator}_{i,r}} \\ r_{\text{inlet}|\text{rotor}_{i,r}} & r_{\text{outlet}|\text{rotor}_{i,r}} \end{pmatrix} = \begin{pmatrix} r \text{ inlet}_{\text{stator}_{i,r}} & r \text{ outlet}_{\text{stator}_{i,r}} \\ r_{\text{inlet}|\text{rotor}_{i,r}} & r_{\text{outlet}|\text{rotor}_{i,r}} \\ r_{\text{stator}_{i,r}} & r_{\text{outlet}|\text{rotor}_{i,r}} \end{pmatrix} = \pi \begin{pmatrix} \frac{m \text{can}\left(D_{\text{st}(i,1),r}, D_{\text{st}(i,2),r}\right)}{Z_{\text{rotor}_{i,r}}} \\ \frac{i \text{rotor}_{i,r}}{l \text{stator}_{i,r}} \end{pmatrix} = 2.5 \cdot \begin{pmatrix} \frac{c \text{hord}_{\text{rotor}_{i,r}}}{r_{\text{rotor}_{i,r}}} - 1 \\ \frac{c \text{hord}_{\text{stator}_{i,r}}}{r_{\text{stator}_{i,r}}} - 2 \end{pmatrix} \\ \frac{r_{\text{rotor}_{i,r}}}{m_{\text{stator}_{i,r}}} \end{pmatrix} = 0.23 \cdot \left(2 \cdot \overline{x_{f}}\right)^{2} + 0.18 - \frac{0.002}{deg} \cdot \begin{pmatrix} \beta_{\text{st}(i,2),r} \\ \alpha_{\text{st}(i,3),r} \end{pmatrix} \\ \begin{pmatrix} \theta_{\text{rotor}_{i,r}} \\ \theta_{\text{stator}_{i,r}} \end{pmatrix} = \begin{pmatrix} \frac{c \text{rotor}_{i,r}}{r_{\text{rotor}_{i,r}}} & \frac{1}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{stator}_{i,r}}{r_{\text{rotor}_{i,r}}} & \frac{1}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{stator}_{i,r}}}{r_{\text{rotor}_{i,r}}} & \frac{1}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{stator}_{i,r}}}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{rotor}_{i,r}}}{r_{\text{rotor}_{i,r}}} & \frac{1}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{rotor}_{i,r}}}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{rotor}_{i,r}}}{r_{\text{rotor}_{i,r}}} & \frac{1}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{rotor}_{i,r}}}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{ro$$

$$\begin{bmatrix} R_{c} T_{c} tator_{i,\tau} \\ R_{c} T_{c} T_{c} T_{c} T_{c} T_{c} T_{c} T_{c} T_{c} \\ R_{c} T_{c} T_{c} T_{c} T_{c} T_{c} T_{c} T_{c} \\ R_{c} T_{c} T_$$

$\eta_{\text{stage}_{\hat{i}, r}} = 1 - \left[\frac{\left(\frac{c_{\text{a}st(i, 1), r}}{u_{\text{st}(i, 1), r}}\right)^{2} + \left(R_{L_{i, r}}\right)^{2}}{\left(\frac{c_{\text{a}st(i, 1), r}}{u_{\text{st}(i, 1), r}}\right)^{2} + R_{L_{i, r}}} + \frac{\left(\frac{c_{\text{a}st(i, 2), r}}{u_{\text{st}(i, 2), r}}\right)^{2} + \left(1 - R_{L_{i, r}}\right)^{2}}{\left(\frac{c_{\text{a}st(i, 2), r}}{u_{\text{st}(i, 1), r}} + R_{L_{i, r}}\right)} + \frac{\left(\frac{c_{\text{a}st(i, 2), r}}{u_{\text{st}(i, 2), r}}\right)^{2} + \left(1 - R_{L_{i, r}}\right)^{2}}{\left(\frac{c_{\text{a}st(i, 2), r}}{u_{\text{st}(i, 2), r}} + \left(1 - R_{L_{i, r}}\right)\right)}$
$\left[\left(\varepsilon_{\text{PK}(b/t)=1} Z_{\text{rotor}} r_{\text{inlet}}_{\text{rotor}} r_{\text{outlet}}_{\text{rotor}} t_{\text{rotor}} i_{\text{rotor}} m_{\text{rotor}} \theta_{\text{rotor}} \delta_{\text{rotor}} \chi_{\text{rotor}} v_{\text{rotor}} R_{\text{CJI.rotor}} K_{\text{rotor}} D_{\text{rotor}} \zeta_{\text{rotor}} quality_{\text{rotor}} \eta_{\text{stage}}\right]^{T}$
$\left \left(\varepsilon_{\text{HA}(\text{b/t})=1} \ \ Z_{\text{stator}} \ \ r_{\text{inlet}}^{\text{stator}} \ \ r_{\text{outlet}}^{\text{stator}} \ \ t_{\text{stator}} \ \ i_{\text{stator}} \ \ m_{\text{stator}} \ \ \theta_{\text{stator}} \ \delta_{\text{stator}} \ \chi_{\text{stator}} \ \ v_{\text{stator}} \ \ R_{\text{C.I.stator}} \ \ K_{\text{stator}} \ \ C_{\text{stator}} \ \ \zeta_{\text{stator}} \ \ quality_{\text{stator}} \ \eta_{\text{stage}} \right) \right $

```
\epsilonCA(b/t)=1
    Z_{CA}
r_inlet<sub>CA</sub>
r_{
m Ca}outlet_{
m CA}
     t_{CA}
     iCA
    m_{CA}
                                    if CA = 1
    \theta_{\text{CA}}
                                             for r \in av(N_r)
    \delta_{\text{CA}}
                                                     \left| \varepsilon_{CA(b/t)=1_r} = \varepsilon_{(b/t)=1} \left( \alpha_{3CA_r} \right) \right|
    \chi_{\text{CA}}
    v_{\mathrm{CA}}
RСЛ.СА
    K_{CA}
    D_{CA}
                                                    Z_{CA} = \left[ \text{round} \left( \frac{\pi \cdot D_{st(Z,3),r}}{t_{CA_r}} \right) \text{ if } \text{mod} \left( \text{round} \left( \frac{\pi \cdot D_{st(Z,3),r}}{t_{CA_r}} \right), 2 \right) = 0 \right]
                                                            round \left(\frac{\pi \cdot D_{st(Z,3),r}}{t_{CA_r}}\right) + 1 otherwise
                                                    \left| \left( r_{-} \text{inlet}_{CA_r} \quad r_{-} \text{outlet}_{CA_r} \right) \right| = \text{chord}_{CA_r} \cdot \left( \overline{r_{-}} \text{inlet}_{CA_r} \quad \overline{r_{-}} \text{outlet}_{CA_r} \right)
                                                   m_{\text{CA}_{r}} = 0.23 \cdot (2 \cdot \overline{x}_{f})^{2} + 0.18 - \frac{0.002}{\text{deg}} \cdot (\alpha_{3\text{CA}_{r}})^{2}
```

$$\begin{split} \delta_{\text{CA}_r} &= {^{\text{th}}}_{\text{CA}_r} \cdot \theta_{\text{CA}_r} \cdot \sqrt{\frac{{^{\text{t}}}_{\text{CA}_r}}{\text{chord}}_{\text{CA}_r}}} \\ \chi_{\text{CA}_r} &= \theta_{\text{CA}_r} \cdot \frac{1 + 2 \cdot \left(1 - 2 \cdot \overline{x}_f\right)}{2} \\ v_{\text{CA}_r} &= \chi_{\text{CA}_r} + \alpha_{1\text{CA}_r} + i_{\text{CA}_r} \\ R_{\text{CJI.CA}_r} &= \frac{\text{chord}}{2 \cdot \sin\left(0.5 \cdot \theta_{\text{CA}_r}\right)} \\ K_{\text{CA}_r} &= \frac{c_{\text{a3}\text{CA}_r}}{c_{\text{a1}\text{CA}_r}} \\ D_{\text{CA}_r} &= \left(1 - K_{\text{CA}_r} \cdot \frac{\sin\left(\alpha_{1\text{CA}_r}\right)}{\sin\left(\alpha_{3\text{CA}_r}\right)}\right) + \left(\frac{1}{\tan\left(\alpha_{1\text{CA}_r}\right)} - K_{\text{CA}_r} \cdot \frac{1}{\tan\left(\alpha_{3\text{CA}_r}\right)}\right) \cdot \frac{\sin\left(\alpha_{1\text{CA}_r}\right)}{c_{\text{chord}\text{CA}_r}} \\ \left(\varepsilon_{\text{CA}(b/t)=1} \quad Z_{\text{CA}} \quad r_{\text{-inlet}\text{CA}} \quad r_{\text{-outlet}\text{CA}} \quad t_{\text{CA}} \quad t_{\text{CA}} \quad \theta_{\text{CA}} \quad \delta_{\text{CA}} \quad \chi_{\text{CA}} \quad \chi_{\text{CA}} \quad R_{\text{CJI.CA}} \quad K_{\text{CA}} \quad D_{\text{CA}}\right)^T \end{split}$$

$$chord_{BHA} = \begin{bmatrix} & & 1 & \\ & 1 & 30.57 \\ & 2 & 34.01 \\ & 3 & 36.68 \end{bmatrix} \cdot 10^{-3}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
chordT =	1	61.43	51.32	45.64	41.88	39.16	37.10	35.78	35.30	35.05							$\cdot 10^{-3}$
chord _{rotor} =	2	71.64	59.68	53.00	48.59	45.40	42.98	41.44	40.87	40.57							
	3	79.86	66.72	59.34	54.44	50.91	48.23	46.51	45.89	45.57							

Длина хорды Л (м):

$$chord_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ & 1 & 24.31 & 23.51 & 22.54 & 21.94 & 21.96 & 22.47 & 23.78 & 26.05 & 28.56 & & & & & & & & \\ & 2 & 27.00 & 26.06 & 24.96 & 24.29 & 24.29 & 24.84 & 26.28 & 28.80 & 31.56 & & & & & & & & & \\ & 3 & 29.17 & 28.21 & 27.04 & 26.33 & 26.35 & 26.96 & 28.53 & 31.27 & 34.27 & & & & & & & & & & & \\ \end{bmatrix} \cdot 10^{-3}$$

$$chord_{CA} = \begin{array}{|c|c|c|}\hline & 1 \\ \hline 1 & 27.83 \\ \hline 2 & 30.96 \\ \hline 3 & 33.40 \\ \hline \end{array} \cdot 10^{-3}$$

$$r_inlet_{BHA} = \begin{bmatrix} & & 1 & & \\ & 1 & 0.24 & \\ & 2 & 0.41 & \\ & 3 & 0.59 & \end{bmatrix} \cdot 10^{-3} \quad r_outlet_{BHA} = \begin{bmatrix} & & 1 & \\ & 1 & 0.12 & \\ & 2 & 0.20 & \\ & 3 & 0.29 & \end{bmatrix} \cdot 10^{-3}$$

$$r_inlet_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.19 & 0.19 & 0.18 & 0.18 & 0.18 & 0.18 & 0.19 & 0.21 & 0.23 \\ 2 & 0.32 & 0.31 & 0.30 & 0.29 & 0.29 & 0.30 & 0.32 & 0.35 & 0.38 \\ 3 & 0.47 & 0.45 & 0.43 & 0.42 & 0.42 & 0.43 & 0.46 & 0.50 & 0.55 \\ \end{bmatrix}$$

$$r_inlet_{CA} = \begin{bmatrix} 1 & 1 \\ 1 & 0.22 \\ 2 & 0.37 \\ \hline 3 & 0.53 \end{bmatrix} \cdot 10^{-3} \qquad r_outlet_{CA} = \begin{bmatrix} 1 \\ 1 & 0.11 \\ \hline 2 & 0.19 \\ \hline 3 & 0.27 \end{bmatrix} \cdot 10^{-3}$$

Радисы входных и выходных кромок профилей Л (мм):

$$r_outlet_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.80 & 0.67 & 0.59 & 0.54 & 0.51 & 0.48 & 0.47 & 0.46 & 0.46 \\ 2 & 0.36 & 0.30 & 0.27 & 0.24 & 0.23 & 0.21 & 0.21 & 0.20 & 0.20 \\ 3 & 0.24 & 0.20 & 0.18 & 0.16 & 0.15 & 0.14 & 0.14 & 0.14 & 0.14 \end{bmatrix} \cdot 10^{-1}$$

$$r_outlet_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.10 & 0.09 & 0.09 & 0.09 & 0.09 & 0.09 & 0.10 & 0.10 & 0.11 \\ 2 & 0.16 & 0.16 & 0.15 & 0.15 & 0.15 & 0.15 & 0.16 & 0.17 & 0.19 \\ 3 & 0.23 & 0.23 & 0.22 & 0.21 & 0.21 & 0.22 & 0.23 & 0.25 & 0.27 \end{bmatrix} \cdot 10^{-1}$$

$$\varepsilon_{\text{BHA}(b/t)=1_{\text{av}(N_r)}} = 23.31.^{\circ}$$

 $\operatorname{submatrix} \left(\varepsilon_{PK(b/t)=1}, 1, Z, \operatorname{av}(N_r), \operatorname{av}(N_r) \right)^T =$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	.0
1	8.16	7.12	6.98	6.76	6.58	6.35	6.02	5.78	5.66							

Угол поворота потока:

$$\varepsilon_{\text{CA(b/t)}=1_{\text{av(N_r)}}} = 33.67 \cdot ^{\circ}$$

$$\frac{\text{chord}_{BHA}}{t_{BHA}} = \begin{vmatrix} & & 1 \\ 1 & 3.873 \\ 2 & 3.120 \\ 3 & 2.771 \end{vmatrix}$$

(chord	Γ [1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(chord _{rotor})	=[1	1.781	1.639	1.643	1.578	1.541	1.522	1.528	1.507	1.555						
\ t _{rotor} \		2	1.544	1.536	1.593	1.559	1.545	1.544	1.564	1.553	1.611						
/		3	1.431	1.477	1.563	1.548	1.549	1.561	1.591	1.586	1.652						

Густота решетки:

$$\frac{\text{chord}_{\text{CA}}}{t_{\text{CA}}} = \boxed{ \begin{array}{c|c} & 1 \\ 1 & 3.660 \\ \hline 2 & 3.665 \\ \hline 3 & 3.625 \\ \end{array} }$$

$$Z_{BHA} = 42$$

Количество Л:

$$Z_{CA} = 50$$

Значения округляются до целого в большую сторону так, чтобы при разъемном корпусе количество Л НА было четным, а количества Л РК и НА были взаимно простыми

$$t_{BHA} = \begin{array}{|c|c|c|}\hline & 1 & \\ \hline 1 & 7.89 \\ \hline 2 & 10.90 \\ \hline 3 & 13.24 \\ \hline \end{array} \cdot 10^{-3}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
t T =	1	34.49	31.32	27.78	26.54	25.41	24.38	23.42	23.42	22.54							$\cdot 10^{-3}$
rotor –	2	46.39	38.86	33.26	31.16	29.38	27.83	26.49	26.32	25.19							
	3	55.79	45.16	37.96	35.18	32.87	30.90	29.24	28.93	27.59							

Шаг решетки (м):

$$t_{CA} = \begin{bmatrix} 1 & 1 \\ 1 & 7.60 \\ 2 & 8.45 \\ \hline 3 & 9.21 \end{bmatrix} \cdot 10^{-3}$$

$$i_{BHA} = \begin{vmatrix} & & 1 \\ 1 & 4.682 \\ 2 & 2.801 \\ \hline 3 & 1.928 \end{vmatrix}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
i T	1	1.953	1.596	1.608	1.444	1.352	1.304	1.319	1.268	1.388							.0
rotor –	2	1.361	1.339	1.484	1.398	1.363	1.361	1.411	1.382	1.526							
	3	1.078	1.193	1.408	1.369	1.372	1.402	1.478	1.465	1.629							

Угол атаки:

$$i_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 1 & 0.092 & -0.429 & -0.566 & -0.683 & -0.772 & -0.862 & -0.919 & -0.965 & -0.935 & & & & & & \\ 2 & -0.587 & -0.831 & -0.856 & -0.897 & -0.927 & -0.972 & -0.998 & -1.022 & -0.965 & & & & & & & & \\ 3 & -0.958 & -1.077 & -1.043 & -1.041 & -1.035 & -1.050 & -1.055 & -1.065 & -0.988 & & & & & & & & & & & \\ \end{bmatrix}$$

$$i_{CA} = \begin{bmatrix} & 1 & \\ 1 & 4.150 \\ 2 & 4.162 \\ \hline 3 & 4.061 \end{bmatrix}$$

$$m_{BHA} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & 0.2759 \\ 2 & 0.2759 \\ \hline 3 & 0.2759 \\ \hline \end{array}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\mathbf{m} , \mathbf{T} =	1	0.2780	0.3062	0.3174	0.3268	0.3333	0.3405	0.3503	0.3571	0.3613						
m _{rotor} =	2	0.3487	0.3576	0.3589	0.3612	0.3631	0.3656	0.3697	0.3730	0.3749						
	3	0.3671	0.3732	0.3728	0.3738	0.3747	0.3761	0.3785	0.3806	0.3817						

Коэф. формы ср. линии профиля по Ховеллу:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\mathbf{m} , \mathbf{T}	1	0.2851	0.2745	0.2668	0.2683	0.2678	0.2714	0.2868	0.2984	0.3094						
m _{stator} =	2	0.2851	0.2745	0.2668	0.2683	0.2678	0.2714	0.2868	0.2984	0.3035						
	3	0.2851	0.2745	0.2668	0.2683	0.2678	0.2714	0.2868	0.2984	0.2988						

$$m_{CA} = \begin{bmatrix} & 1\\ 1 & 0.2300\\ 2 & 0.2300\\ 3 & 0.2300 \end{bmatrix}$$

$$\theta_{BHA} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & 21.23 \\ \hline 2 & 23.86 \\ \hline 3 & 25.18 \\ \hline \end{array} \; .$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
θ , $T =$	1	54.04	44.71	35.97	32.65	30.16	27.06	21.63	17.77	15.36							.0
orotor –	2	19.74	17.07	13.38	13.38	13.16	12.47	10.38	8.60	7.65]
	3	11.68	9.30	6.59	6.95	7.05	6.84	5.70	4.61	4.12							

Угол изгиба ср. линии профиля:

$$\theta_{\text{stator}}^{\text{T}} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 1 & 44.38 & 53.71 & 61.24 & 61.93 & 64.00 & 63.16 & 53.94 & 47.31 & 44.67 & & & & & & & \\ 2 & 40.53 & 54.31 & 61.56 & 62.36 & 64.40 & 63.77 & 55.21 & 48.92 & 45.88 & & & & & & & & & \\ 3 & 17.45 & 53.84 & 61.13 & 62.12 & 64.23 & 63.83 & 55.88 & 49.93 & 46.64 & & & & & & & & & & & \\ \end{bmatrix}$$

$$\theta_{\rm CA} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & 40.38 \\ \hline 2 & 37.04 \\ \hline 3 & 34.50 \\ \hline \end{array}.$$

$$\delta_{\rm BHA} = \begin{bmatrix} & 1 \\ 1 & 2.976 \\ 2 & 3.726 \\ \hline 3 & 4.173 \end{bmatrix} \,.$$

		1	2	3	4	5	6	7	8	
$\delta_{\cdots} = T$	1	11.259	10.697	8.907	8.493	8.098	7.470	6.131	5.168	
orotor –	2	5.540	4.926	3.803	3.870	3.845	3.670	3.069	2.575	
	3	3.585	2.857	1.966	2.089	2.123	2.060	1.711		

Угол отставания:

$$\delta_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 8.867 & 10.904 & 12.266 & 12.645 & 13.179 & 13.325 & 12.107 & 11.113 \\ 2 & 8.698 & 11.546 & 12.755 & 13.060 & 13.512 & 13.634 & 12.513 & 11.572 \\ 3 & 3.914 & 11.800 & 12.961 & 13.244 & 13.659 & 13.783 & 12.755 & \dots \end{bmatrix}$$

$$\delta_{\rm CA} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & 4.855 \\ \hline 2 & 4.450 \\ \hline 3 & 4.168 \\ \hline \end{array}.$$

$$v_{BHA} = \begin{vmatrix} & & 1\\ 1 & 105.30\\ 2 & 104.73\\ \hline 3 & 104.52 \end{vmatrix} .$$

		1	2	3	4	5	6	7	8	9]
$v_{rotor}^{T} =$	1	50.22	40.22	37.22	33.78	31.35	28.69	25.15	22.73	21.14	
rotor	2	26.31	22.59	22.65	21.58	20.72	19.63	18.02	16.75	16.00	
	3	19.19	16.60	17.26	16.71	16.24	15.60	14.61	13.77	13.31	1

Угол установки Л:

$$\upsilon_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 54.24 & 49.18 & 50.26 & 49.74 & 49.77 & 48.56 & 43.85 & 40.18 & 38.83 \\ 2 & 50.87 & 52.13 & 53.59 & 52.73 & 52.40 & 51.05 & 46.53 & 42.91 & 41.27 \\ 3 & 41.68 & 54.32 & 56.03 & 54.97 & 54.42 & 52.98 & 48.66 & 45.13 & 43.29 \\ \end{bmatrix} . \circ$$

$$v_{CA} = \begin{bmatrix} & 1\\ & 1 & 74.66\\ \hline 2 & 75.93\\ & 3 & 76.92 \end{bmatrix} . \circ$$

$$R_{\text{СЛ.BHA}} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 3 \\ 84.14 \end{bmatrix} \cdot 10^{-3}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
$R_{CR} = T$	1	67.61	67.46	73.91	74.50	75.27	79.27	95.34	114.29	131.10							1.10^{-3}
R _{CЛ.rotor} =	2	208.94	201.06	227.57	208.56	198.03	197.82	228.97	272.52	304.04							
	3	392.29	411.33	515.94	448.88	413.91	404.06	467.54	569.97	633.85							

Радиус дуги ср. линии (м):

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$R_{CJI.stator}^{T} =$	1	32.18	26.02	22.12	21.32	20.72	21.45	26.21	32.47	37.58						
*CJI.stator	2	38.98	28.55	24.39	23.45	22.79	23.52	28.36	34.77	40.49						
	3	96.12	31.15	26.59	25.52	24.78	25.50	30.45	37.04	43.29						

$$R_{\text{СЛ.CA}} = \begin{bmatrix} & 1 & \\ 1 & 40.32 \\ 2 & 48.74 \\ \hline 3 & 56.31 \end{bmatrix} \cdot 10^{-3}$$

$$K_{BHA} = \begin{array}{|c|c|}\hline & 1 \\ \hline 1 & 0.8968 \\ \hline 2 & 0.8968 \\ \hline 3 & 0.8968 \\ \hline \end{array}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$K_{\cdots} = \begin{bmatrix} T \\ T \end{bmatrix}$	1	1.5399	1.2726	0.9682	0.9648	0.9660	0.9670	0.9683	0.9687	0.9932						
rotor –	2	1.2381	1.2079	0.9682	0.9648	0.9660	0.9670	0.9683	0.9687	0.9932						
	3	1.2208	1.1806	0.9682	0.9648	0.9660	0.9670	0.9683	0.9687	0.9932						

Фактор диффузорности решетки:

$$K_{CA} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & 0.8182 \\ \hline 2 & 0.8182 \\ \hline 3 & 0.8182 \\ \hline \end{array}$$

$$D_{BHA} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & -0.0228 \\ \hline 2 & -0.0346 \\ \hline 3 & -0.0423 \\ \end{array}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$D \cdot T =$	1	0.5809	0.7545	0.7991	0.8088	0.8105	0.8031	0.7562	0.7094	0.6637						
rotor –	2	0.5047	0.5393	0.5831	0.6077	0.6196	0.6231	0.5897	0.5499	0.5170						
	3	0.4012	0.4100	0.4518	0.4815	0.4968	0.5051	0.4799	0.4448	0.4199						

Диффузорность решетки:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$D \cdot \cdot T =$	1	0.8477	0.8330	0.8832	0.9005	0.9245	0.9371	0.9066	0.8826	0.8310						
D _{stator} –	2	0.7967	0.7683	0.8304	0.8527	0.8817	0.8967	0.8633	0.8372	0.8068						
	3	0.7647	0.7144	0.7849	0.8109	0.8437	0.8607	0.8248	0.7967	0.7847						

$$D_{CA} = \begin{vmatrix} 1 \\ 1 & 0.4575 \\ 2 & 0.4260 \\ 3 & 0.4028 \end{vmatrix}$$

		1	
D _{BHA} ≤ 0.6 =	1	1	
BHA = o.o	2	1	
	3	1	

		1	2	3	4	5	6	7	8	9
$D_{mator} \stackrel{T}{\leq} 0.6 =$	1	1	0	0	0	0	0	0	0	0
rotor = 0.0 -	2	1	1	1	0	0	0	1	1	1
	3	1	1	1	1	1	1	1	1	1

[18, c. 71]

		1	2	3	4	5	6	7	8	9
$D_{\text{stator}} \stackrel{T}{\leq} 0.6 =$	1	0	0	0	0	0	0	0	0	0
stator = 0.0 =	2	0	0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0	0

		1	
$D_{CA} \le 0.6 =$	1	1	
DCA = 0.0 -	2	1	
	3	1	

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$C \cdot T =$	1	0.1018	0.1956	0.2457	0.2647	0.2783	0.2923	0.2900	0.2745	0.2623						
Srotor –	2	0.1203	0.1564	0.1944	0.2164	0.2321	0.2474	0.2446	0.2289	0.2215						
	3	0.1071	0.1320	0.1607	0.1817	0.1971	0.2127	0.2127	0.2000	0.1975						

Коэф. потерь полного давления:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
C_{-1}	1	0.2881	0.2370	0.2602	0.2677	0.2804	0.2875	0.2765	0.2713	0.2519						
Stator –	2	0.2137	0.1768	0.2079	0.2212	0.2388	0.2495	0.2390	0.2337	0.2230						
	3	0.1769	0.1398	0.1725	0.1880	0.2077	0.2201	0.2098	0.2042	0.2010						

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$quality_{rotor}^{T} =$	1	18.423	10.287	6.380	6.152	6.033	5.911	6.067	6.463	7.099						
rotor	2	18.537	15.659	8.148	7.619	7.336	7.070	7.192	7.624	8.341						
	3	23.595	19.909	9.319	8.688	8.334	7.961	7.905	8.157	8.854						

.%

Качество профилей решеток РК и НА:

10 11 12 13 15 5 6 7 8 14 КПД элементарной ступени: $\eta_{stage}^{T} = \boxed{\frac{1}{2}}$ 75.23 69.85 66.92 65.19 66.79 70.55 68.36 65.53 65.46 78.87 71.57 65.94 79.44 69.45 67.76 66.08 65.60 67.02 81.09 80.88 71.43 69.30 67.65 65.87 65.00 64.98 65.85

▶ Результаты расчета количества Л и параметров решеток РК и НА

Вывод параметров решеток —

▼ Подключение симметричного профиля

 $X/B_{subsonic} = submatrix(EXCEL_{AIRFOIL.subsonic}, 2, rows(EXCEL_{AIRFOIL.subsonic}), ORIGIN + 0, ORIGIN + 0)$

 $Y/B_{subsonic} = submatrix(EXCEL_{AIRFOIL.subsonic}, 2, rows(EXCEL_{AIRFOIL.subsonic}), ORIGIN + 1, ORIGIN + 1)$

EXCEL_{AIRFOIL}.supersonic = ...\Емин сверхзв

 $X/B_{supersonic} = submatrix (EXCEL_{AIRFOIL.supersonic}, 2, rows (EXCEL_{AIRFOIL.supersonic}), ORIGIN + 0, ORIGIN + 0)$

Y/B_{supersonic} = submatrix(EXCEL_{AIRFOIL.supersonic}, 2, rows(EXCEL_{AIRFOIL.supersonic}), ORIGIN + 1, ORIGIN + 1)

 $augment \left(X/B_{subsonic}, Y/B_{subsonic} \right)^{T} = \boxed{\frac{1}{2}}$ 5 8 10 11 12 13 14 15 16 17 18 19 20 0.000 0.010 0.015 0.025 0.050 0.075 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.500 0.600 0.700 0.800 0.900 0.950 1.000 0.114 0.143 0.185 0.255 0.309 0.352 0.416 0.455 0.479 0.493 0.494 0.500 0.486 0.444 0.378 0.285 0.172 0.100 0.000

15 $augment(X/B_{supersonic}, Y/B_{supersonic})^{T} =$ 0.050 0.000 0.100 0.200 0.150 0.300 0.400 0.500 0.600 0.700 0.800 0.850 0.900 0.950 1.000 0.045 0.132 0.208 0.282 0.342 0.430 0.482 0.500 0.482 0.430 0.342 0.282 0.208 0.132 0.045


```
\begin{aligned} \text{AIRFOIL}_{\text{subsonic}}(x, \text{line}, \overline{c}, \theta) &= & \text{if } 0 \leq x \leq 1 \\ & \text{interp}\big(\text{cspline}\big(X/B_{\text{subsonic}}, y/b_{\text{cp.}\Pi}\big(X/B_{\text{subsonic}}, \theta\big) + Y/B_{\text{subsonic}}, y/b_{\text{cp.}\Pi}\big(X/B_{\text{subsonic}}, ```

$$\begin{aligned} \text{AIRFOIL}_{\text{supersonic}}(\textbf{x}, \text{line}, \overline{\textbf{c}}, \theta) &= & \text{if } 0 \leq \textbf{x} \leq 1 \\ & \text{interp}\big(\text{cspline}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \Pi}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \theta\big) + \textbf{Y}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \Pi}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \theta\big) + \textbf{Y}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \Pi}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \theta\big) + \textbf{Y}/\textbf{B}_{\text{supersonic}}, \theta\big) + \textbf{Y}/\textbf{$$

$$x = 0,0.005..1$$
  $y = 1$ 





▶ Определение относительных геометрических характеристик сечений Л





1.95

2.17

2.14

2.22

2.25

2.03

1.95

2.00

|                                 |     |           |       |            |       | _        |       |       |          |       |            |                  |       | _    |      | $\neg$               |
|---------------------------------|-----|-----------|-------|------------|-------|----------|-------|-------|----------|-------|------------|------------------|-------|------|------|----------------------|
| ٦                               | Г   |           | 1     | 2          | 24 6  | 3        | 4     |       | 5        |       | 6          | 7                |       | 3    | 9    | 2                    |
| 1_upper <sub>stator</sub>       | ' = | 1         | 24.96 | 24.        |       | 23.53    |       |       | 22.9     | _     | 3.47       | 24.5             | _     | 6.75 | 29.  | ·10                  |
|                                 |     | 2         | 27.76 | 27.        | _     | 26.23    | _     |       | 25.6     | _     | 6.16       | 27.3             | _     | 9.78 | 32.  |                      |
|                                 |     | 3         | 29.63 | 29.        | 5/ 4  | 28.6     | 1 2/  | .88   | 27.9     | 18 2  | 8.60       | 29.9             | 5 3.  | 2.59 | 35.  | 62                   |
|                                 |     |           | 1     | 2          |       | 3        | 4     |       | 5        |       | 6          | 7                | 9     | 3    | 9    |                      |
| , ,                             | Γ   | 1         | 24.53 | 23.        |       | 22.99    |       |       | 22.4     |       | 2.93       | 24.0             |       | 6.29 | 28.  | 78 ·10 <sup>-3</sup> |
| 1_lower <sub>stator</sub>       | =   | 2         | 27.14 | 26.        |       | 25.36    |       |       | 24.7     | _     | 5.27       | 26.5             |       | 9.02 | 31.  | 76                   |
|                                 |     | 3         | 29.27 | 28.        | _     | 27.39    |       |       | 26.7     | _     | 7.34       | 28.8             |       | 1.48 | 34.  |                      |
|                                 |     |           |       |            |       |          |       |       |          |       |            |                  |       |      |      |                      |
|                                 |     | 1         | 2     | 2          | 3     |          | 4     | 5     |          | 6     | 7          |                  | 8     |      | 9    |                      |
| $area_{stator}^{T} =$           | 1   | 17.2      | 28 1  | 6.17       | 14.8  | 6        | 14.08 | 14.1  | .1       | 14.77 | ' 16       | 5.54             | 19.86 | 2    | 3.87 | $\cdot 10^{-6}$      |
| Stator                          | 2   | 31.9      | 99 2  | 9.81       | 27.3  | 4        | 25.88 | 25.8  | 39       | 27.08 | 30         | .32              | 36.39 | 4    | 3.71 | - •                  |
|                                 | 3   | 49.7      | 78 4  | 6.57       | 42.8  | 0        | 40.56 | 40.6  | 53       | 42.52 | 47         | '.63             | 57.20 | 6    | 8.73 |                      |
| _                               |     |           | _     |            |       |          |       |       |          |       |            |                  |       |      |      |                      |
|                                 |     | 1         | 2     |            | 3     |          | 4     | 5     |          | 6     | 7          |                  | 8     | 9    |      | 0                    |
| $Sx_{stator}^{T} = $            | 1   | 25.2      |       | 7.3        | 27.6  | -        | 25.6  | 26.4  | +        | 27.7  | 27         |                  | 30.7  |      | 7.7  | ·10 <sup>-9</sup>    |
| 5                               | 2   | 45.3      |       | 5.1        | 55.6  | <b>-</b> | 51.8  | 53.5  | -        | 56.3  | 56         | _                | 64.1  |      | 8.8  |                      |
|                                 | 3   | 30.4      | 1 9   | 1.0        | 92.7  |          | 86.9  | 90.3  |          | 95.6  | 96         | ./  1            | 11.5  | 13.  | 7.4  |                      |
| Г                               |     | - 1       |       | ,          | 2     |          | 4     |       | _        |       |            |                  |       | 0    |      |                      |
| т                               | 1   | 1<br>189. |       | 2<br>.71.7 | 3     | 1.3      | 139   | ) 6   | 5<br>139 | 0     | 6<br>149.8 | 7                | 77.6  | 8    | 3.7  | _ 0                  |
| $Sy_{stator}^{T} = $            | 2   | 390.      |       | 350.9      |       | 8.2      | 283   |       | 284      |       | 303.8      | 1                | 9.9   |      | 3.2  | ·10 <sup>-9</sup>    |
| -                               | 3   | 655.      | _     | 93.3       |       | 2.7      | 482   |       | 483      | _     | 517.7      | ļ                | 3.8   | 17   |      |                      |
| L                               |     |           |       | 75.5       |       | ,        |       | ···   | .00      |       | 01/1/      |                  |       |      | •••  |                      |
| Γ                               |     | 1         | 2     |            | 3     |          | 4     | 5     |          | 6     | 7          |                  | 8     | 9    |      |                      |
| $\mathbf{v}_0$ $\mathbf{T}_{-}$ | 1   | 10.98     | 10.   | 62         | 10.18 |          | 9.91  | 9.92  | 1        | 10.15 | 10.7       | <sup>'</sup> 4 1 | 1.77  | 12.  | 90   | $10^{-3}$            |
| $x0_{stator}^{1} = $            | 2   | 12.19     | 11.   | 77         | 11.27 | 1        | 0.97  | 10.97 | 1        | 11.22 | 11.8       | 37 1             | 3.01  | 14.  | .25  | 10                   |
|                                 | 3   | 13.17     | 12.   | 74         | 12.21 | 1        | 1.89  | 11.90 | 1        | 12.18 | 12.8       | 39 1             | 4.12  | 15.  | 48   |                      |
| _                               |     |           |       |            |       |          |       |       |          |       |            |                  |       |      |      |                      |
| _ [                             |     | 1         | 2     | 3          |       | 4        | 5     | 6     |          | 7     | 8          | 9                |       |      |      |                      |
| $y0_{stator}^{T} = $            | 1   | 1.46      | 1.69  | +          |       | 1.81     | 1.87  |       |          | 1.64  | 1.5        |                  | .58   | 10   | 3    |                      |
| - statoi                        | 2   | 1.42      | 1.85  | 2.         | 04 2  | 2.00     | 2.07  | 7 2.0 | 08       | 1.85  | 1.7        | 6 1              | .80   |      |      |                      |

|                            |     | 1                   | 2                   | 3          | 4       | 5          | 6          | 7                   | 8          | 9     |  |
|----------------------------|-----|---------------------|---------------------|------------|---------|------------|------------|---------------------|------------|-------|--|
| 1 upper T =                | 1   | 66.11               | 54.44               | 47.94      | 43.81   | 40.85      | 38.59      | 37.04               | 36.43      | -     |  |
| l_upper <sub>rotor</sub> = | 2   | 72.43               | 60.26               | 53.44      | 48.98   | 45.76      | 43.31      | 41.72               | 41.12      | 40.81 |  |
|                            | 3   | 80.10               | 66.94               | 59.50      | 54.60   | 51.05      | 48.36      | 46.63               | 46.00      | 45.67 |  |
|                            |     | •                   |                     | -          | -       | -          | -          | -                   |            |       |  |
|                            |     |                     |                     |            |         |            |            |                     |            |       |  |
|                            |     | 1                   | 2                   | 3          | 4       | 5          | 6          | 7                   | 8          | 9     |  |
| 1 lower T =                | 1   | 1 62.02             | 2<br>51.71          | 3<br>45.99 | 4 42.21 | 5<br>39.48 | 6<br>37.42 | 7<br>36.14          | 8<br>35.70 | -     |  |
| $l\_lower_{rotor}^{T} =$   | 1 2 | 1<br>62.02<br>71.74 | 2<br>51.71<br>59.76 |            |         | -          | -          | 7<br>36.14<br>41.50 | -          | -     |  |

|                         |   |        |        |        |        |        |        |        |        | _               |
|-------------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|-----------------|
|                         |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      |                 |
| area T                  | 1 | 358.79 | 250.43 | 198.09 | 166.75 | 145.80 | 130.84 | 121.72 | 118.48 | $\cdot 10^{-6}$ |
| area <sub>rotor</sub> = | 2 | 187.69 | 130.26 | 102.74 | 86.33  | 75.37  | 67.56  | 62.80  | 61.08  |                 |
|                         | 3 | 134.04 | 97.67  | 77.25  | 65.03  | 56.86  | 51.03  | 47.47  |        |                 |

$$Sy_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 9953.9 & 5804.7 & 4083.4 & 3153.9 & 2578.4 & 2192.1 & 1966.9 & 1888.8 \\ 2 & 6072.8 & 3511.1 & 2459.4 & 1894.5 & 1545.4 & 1311.5 & 1175.2 & 1127.5 \\ 3 & 5352.0 & 2943.0 & 2070.3 & 1599.1 & 1307.3 & 1111.4 & 997.2 & ... \end{bmatrix} \cdot 10^{-9}$$

$$y0_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 4.66 & 3.08 & 2.19 & 1.79 & 1.53 & 1.30 & 1.00 & 0.82 & 0.72 \\ 2 & 1.86 & 1.34 & 0.98 & 0.88 & 0.81 & 0.73 & 0.60 & 0.50 & 0.47 \\ 3 & 1.25 & 0.85 & 0.60 & 0.56 & 0.53 & 0.50 & 0.42 & 0.36 & 0.34 \end{bmatrix} \cdot 10^{-3}$$

|          |   | 1  | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   |                  |
|----------|---|----|-----|-----|-----|-----|-----|-----|-----|-----|------------------|
| Jx = T = | 1 | 41 | 51  | 57  | 51  | 55  | 57  | 50  | 53  | 67  | $\cdot 10^{-12}$ |
| stator – | 2 | 76 | 116 | 128 | 117 | 125 | 132 | 119 | 131 | 165 | 10               |
|          | 3 | 37 | 209 | 232 | 215 | 231 | 248 | 231 | 260 | 333 |                  |

$$Jy_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2665 & 2332 & 1970 & 1769 & 1775 & 1945 & 2440 & 3518 \\ 2 & 6086 & 5284 & 4445 & 3983 & 3987 & 4361 & 5465 & 7874 \\ 3 & 11052 & 9672 & 8169 & 7339 & 7361 & 8065 & 10119 & ... \end{bmatrix} \cdot 10^{-12}$$

$$Jxy_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 287 & 301 & 292 & 263 & 272 & 292 & 304 & 375 & 505 \\ 2 & 574 & 674 & 652 & 590 & 610 & 656 & 693 & 867 & 1167 \\ 3 & 417 & 1205 & 1176 & 1074 & 1117 & 1210 & 1296 & 1636 & 2210 \end{bmatrix} \cdot 10^{-12}$$

$$Jx0_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 4.58 & 5.32 & 5.64 & 5.11 & 5.39 & 5.69 & 5.25 & 5.95 & 7.73 \\ 2 & 11.41 & 14.31 & 14.60 & 13.27 & 13.92 & 14.87 & 14.69 & 17.64 & 23.43 \\ 3 & 18.34 & 31.65 & 31.45 & 28.79 & 30.17 & 32.60 & 34.10 & 42.96 & 58.29 \end{bmatrix} \cdot 10^{-12}$$

$$Jy0_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 582 & 509 & 430 & 386 & 388 & 425 & 533 & 768 & 1109 \\ 2 & 1329 & 1154 & 971 & 870 & 871 & 952 & 1193 & 1719 & 2480 \\ 3 & 2414 & 2112 & 1784 & 1603 & 1608 & 1761 & 2210 & 3187 & 4602 \end{bmatrix} \cdot 10^{-12}$$

$$Jxy0_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 10.93 & 11.39 & 11.00 & 9.92 & 10.25 & 10.99 & 11.50 & 14.28 & 19.24 \\ 2 & 21.89 & 25.54 & 24.59 & 22.24 & 22.95 & 24.74 & 26.27 & 32.94 & 44.41 \\ 3 & 15.98 & 45.59 & 44.33 & 40.43 & 42.01 & 45.52 & 48.99 & 62.16 & 84.08 \end{bmatrix} \cdot 10^{-12}$$

$$\alpha\_{major_{stator}}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1.08 & 1.29 & 1.48 & 1.49 & 1.54 & 1.50 & 1.25 & 1.07 & 1.00 \\ 2 & 0.95 & 1.28 & 1.47 & 1.49 & 1.53 & 1.51 & 1.28 & 1.11 & 1.04 \\ 3 & 0.38 & 1.25 & 1.45 & 1.47 & 1.52 & 1.51 & 1.29 & 1.13 & 1.06 \\ \end{bmatrix} . \circ$$

|                       |   | 1    | 2    | 3    | 4   | 5   | 6   | 7   | 8   | 9   |                  |
|-----------------------|---|------|------|------|-----|-----|-----|-----|-----|-----|------------------|
| $Jx \cdot T =$        | 1 | 9935 | 3282 | 1472 | 891 | 606 | 426 | 295 | 238 | 214 | $\cdot 10^{-12}$ |
| Jx <sub>rotor</sub> = | 2 | 860  | 328  | 152  | 105 | 78  | 58  | 41  | 33  | 30  | 10               |
|                       | 3 | 273  | 101  | 45   | 33  | 26  | 20  | 15  | 12  | 11  |                  |

$$Jy_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 353315 & 172137 & 107695 & 76321 & 58341 & 46989 & 40665 \\ 2 & 251377 & 121079 & 75321 & 53185 & 40537 & 32571 & 28138 \\ 3 & 260264 & 113452 & 70979 & 50301 & 38451 & 30969 & \dots \end{bmatrix} \cdot 10^{-12}$$

$$Jy0_{rotor}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 77161 & 37593 & 23520 & 16668 & 12741 & 10262 & 8881 & 8414 \\ 2 & 54892 & 26439 & 16447 & 11614 & 8852 & 7112 & 6144 & 5814 \\ 3 & 46564 & 24774 & 15499 & 10984 & 8396 & 6763 & 5852 & \dots \end{bmatrix} \cdot 10^{-12}$$

$$Jxy0_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 1819.57 & 704.88 & 354.80 & 224.39 & 156.84 & 112.93 & 78.63 \\ 2 & 449.80 & 187.67 & 95.72 & 66.67 & 49.77 & 38.06 & 28.22 \\ 3 & -0.02 & 99.62 & 49.22 & 36.03 & 27.84 & 22.01 & ... \end{bmatrix} \cdot 10^{-12}$$

$$\alpha_{major_{rotor}}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1.39 & 1.10 & 0.88 & 0.79 & 0.72 & 0.64 & 0.52 & 0.43 & 0.38 \\ 2 & 0.47 & 0.41 & 0.33 & 0.33 & 0.32 & 0.31 & 0.26 & 0.22 & 0.21 \\ 3 & -0.00 & 0.23 & 0.18 & 0.19 & 0.19 & 0.19 & 0.17 & 0.14 & 0.14 \end{bmatrix}.$$

|                        |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |                  |
|------------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------------|
| $Ju \cdot T =$         | 1 | 4.37  | 5.06  | 5.36  | 4.85  | 5.12  | 5.40  | 5.00  | 5.68  | 7.39  | $\cdot 10^{-12}$ |
| Ju <sub>stator</sub> = | 2 | 11.05 | 13.74 | 13.97 | 12.69 | 13.31 | 14.22 | 14.10 | 17.00 | 22.63 | 10               |
|                        | 3 | 18.23 | 30.65 | 30.33 | 27.75 | 29.06 | 31.41 | 33.00 | 41.73 | 56.73 |                  |

$$Jv_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 582 & 510 & 430 & 387 & 388 & 425 & 533 & 769 & 1110 \\ 2 & 1329 & 1154 & 971 & 870 & 871 & 953 & 1194 & 1720 & 2481 \\ 3 & 2414 & 2113 & 1785 & 1604 & 1609 & 1763 & 2211 & 3188 & 4603 \end{bmatrix} \cdot 10^{-12}$$

$$Jp_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 586 & 515 & 436 & 391 & 393 & 430 & 538 & 774 & 1117 \\ 2 & 1340 & 1168 & 985 & 883 & 885 & 967 & 1208 & 1737 & 2504 \\ 3 & 2432 & 2144 & 1815 & 1631 & 1638 & 1794 & 2244 & 3230 & 4660 \end{bmatrix} \cdot 10^{-12}$$

$$Wp_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 43.7 & 39.6 & 34.9 & 32.2 & 32.2 & 34.5 & 40.9 & 53.9 & 71.0 \\ 2 & 90.1 & 81.1 & 71.2 & 65.6 & 65.6 & 70.2 & 83.1 & 109.3 & 143.9 \\ 3 & 151.9 & 137.5 & 121.1 & 111.8 & 112.0 & 120.0 & 142.2 & 187.2 & 246.5 \end{bmatrix} \cdot 10^{-9}$$

$$stiffness_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3.97 & 3.48 & 2.94 & 2.64 & 2.65 & 2.90 & 3.64 & 5.25 \\ 2 & 20.42 & 17.73 & 14.92 & 13.37 & 13.38 & 14.63 & 18.34 & 26.42 \\ 3 & 65.93 & 57.70 & 48.73 & 43.78 & 43.91 & 48.11 & 60.37 & ... \end{bmatrix} \cdot 10^{-12}$$

|                    |   | 1       | 2      | 3      | 4      | 5      | 6      | 7      |                  |
|--------------------|---|---------|--------|--------|--------|--------|--------|--------|------------------|
| $Ju_{rotor}^{T} =$ | 1 | 2098.02 | 895.81 | 512.42 | 350.40 | 261.68 | 205.56 | 171.64 | $\cdot 10^{-12}$ |
| rotor              | 2 | 207.27  | 92.52  | 53.07  | 37.30  | 28.23  | 22.33  | 18.54  | 10               |
|                    | 3 | 62.65   | 30.41  | 17.47  | 12.50  | 9.59   | 7.68   |        |                  |

|                    |   | 1     | 2     | 3     | 4     | 5     | 6     | 7    | 8    |                  |
|--------------------|---|-------|-------|-------|-------|-------|-------|------|------|------------------|
| $Jv_{rotor}^{T} =$ | 1 | 77205 | 37607 | 23525 | 16671 | 12743 | 10263 | 8882 | 8414 | $\cdot 10^{-12}$ |
| rotor              | 2 | 54895 | 26440 | 16448 | 11614 | 8852  | 7113  | 6144 | 5814 | 10               |
|                    | 3 | 46564 | 24774 | 15499 | 10984 | 8396  | 6763  | 5853 |      |                  |

|                     |   | 1     | 2     | 3     | 4    | 5    | 6    | 7     | 8    | 9     |                  |
|---------------------|---|-------|-------|-------|------|------|------|-------|------|-------|------------------|
| $Juv_{rotor}^{T} =$ | 1 | 0.00  | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | -0.00 | $\cdot 10^{-12}$ |
| rotor               | 2 | -0.00 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | -0.00 | 0.00 | 0.00  | 10               |
|                     | 3 | 0.00  | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00  |                  |

$$Jp_{rotor}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 79303 & 38503 & 24038 & 17021 & 13005 & 10469 & 9053 & 8573 \\ 2 & 55103 & 26533 & 16501 & 11651 & 8880 & 7135 & 6163 & 5831 \\ 3 & 46626 & 24804 & 15517 & 10997 & 8406 & 6770 & 5859 & ... \end{bmatrix} \cdot 10^{-12}$$

$$Wp_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2332.0 & 1360.0 & 956.7 & 738.9 & 604.1 & 513.6 & 460.8 & 442.5 \\ 2 & 1401.0 & 810.0 & 567.4 & 437.1 & 356.5 & 302.6 & 271.1 & 260.1 \\ 3 & 1167.2 & 677.8 & 476.8 & 368.3 & 301.1 & 256.0 & 229.7 & ... \end{bmatrix} \cdot 10^{-1}$$

|                           |   | 1       | 2       | 3       | 4       | 5      | 6      | 7      |                  |
|---------------------------|---|---------|---------|---------|---------|--------|--------|--------|------------------|
| $stiffness_{rotor}^{T} =$ | 1 | 5565.78 | 2711.68 | 1696.52 | 1202.28 | 919.04 | 740.21 | 640.60 | $\cdot 10^{-12}$ |
| rotor                     | 2 | 585.81  | 282.16  | 175.53  | 123.94  | 94.47  | 75.90  | 65.57  |                  |
|                           | 3 | 177.61  | 95.18   | 59.55   | 42.20   | 32.26  | 25.98  |        |                  |

|                      |   | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8      |                 |                     |   | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        |                   |
|----------------------|---|----------|----------|----------|----------|----------|----------|----------|--------|-----------------|---------------------|---|----------|----------|----------|----------|----------|----------|----------|----------|-------------------|
| $CPx_{stator}^{T} =$ | 1 | 8.507    | 8.228    | 7.888    | 7.680    | 7.685    | 7.863    | 8.322    | 9.119  | $\cdot 10^{-3}$ | $CPx_{rotor}^{T} =$ | 1 | 21.500   | 17.963   | 15.975   | 14.658   | 13.706   | 12.984   | 12.523   | 12.355   | $\cdot 10^{-3}$   |
| Stator               | 2 | 9.450    | 9.122    | 8.736    | 8.500    | 8.502    | 8.695    | 9.199    | 10.079 | 10              | rotor               | 2 | 25.074   | 20.889   | 18.551   | 17.006   | 15.890   | 15.044   | 14.504   | 14.305   | 10                |
|                      | 3 | 10.209   | 9.874    | 9.466    | 9.216    | 9.223    | 9.436    | 9.986    |        |                 |                     | 3 | 27.950   | 23.352   | 20.768   | 19.055   | 17.817   | 16.879   | 16.280   |          |                   |
|                      |   |          |          |          |          |          |          |          |        |                 |                     |   |          |          |          |          |          |          |          |          |                   |
|                      |   |          | •        | •        |          |          |          |          |        |                 |                     |   |          |          |          |          |          |          |          |          |                   |
|                      |   | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8      |                 |                     |   | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        |                   |
| $CPy_{stator}^{T} =$ | 1 | 1 0.0000 | 2 0.0000 | 3 0.0000 | 4 0.0000 | 5 0.0000 | 6 0.0000 | 7 0.0000 | 8      | $\cdot 10^{-3}$ | $CPy_{rotor}^{T} =$ | 1 | 1 0.0000 | 2 0.0000 | 3 0.0000 | 4 0.0000 | 5 0.0000 | 6 0.0000 | 7 0.0000 | 8 0.0000 | .10 <sup>-3</sup> |

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Результат расчета абсолютных геометрических характеристик сечений Л

0.0000

0.0000

0.0000

0.0000

Вывод результатов расчета геометрических хар-к сечений Л

## Абс. координаты профиля:

$$\begin{aligned} & \text{Airfoil}(\mathsf{type}, x, \mathsf{line}, \mathsf{i}, \mathsf{r}) = & \text{if } \mathsf{type} = "\mathsf{BHA"} \\ & & \text{AIRFOIL}_{\mathsf{subsonic}} \Big( x, \mathsf{line}, \overline{\mathsf{c}}_{\mathsf{BHA}_{\mathsf{r}}}, \varepsilon_{\mathsf{BHA}_{\mathsf{r}}} \Big) & \text{if } \mathsf{M}_{\mathsf{c}_{\mathsf{st}(1,1)},\mathsf{r}} < 1 \\ & & \text{AIRFOIL}_{\mathsf{supersonic}} \Big( x, \mathsf{line}, \overline{\mathsf{c}}_{\mathsf{BHA}_{\mathsf{r}}}, \varepsilon_{\mathsf{BHA}_{\mathsf{r}}} \Big) & \text{otherwise} \\ & & \text{if } \mathsf{type} = "\mathsf{rotor"} \\ & & \text{AIRFOIL}_{\mathsf{subsonic}} \Big( x, \mathsf{line}, \overline{\mathsf{c}}_{\mathsf{rotor}_{\mathsf{i},\mathsf{r}}}, \varepsilon_{\mathsf{rotor}_{\mathsf{i},\mathsf{r}}} \Big) & \text{if } \mathsf{M}_{\mathsf{w}_{\mathsf{st}(\mathsf{i},1)},\mathsf{r}} < 1 \\ & & \text{AIRFOIL}_{\mathsf{supersonic}} \Big( x, \mathsf{line}, \overline{\mathsf{c}}_{\mathsf{rotor}_{\mathsf{i},\mathsf{r}}}, \varepsilon_{\mathsf{rotor}_{\mathsf{i},\mathsf{r}}} \Big) & \text{otherwise} \\ & \text{if } \mathsf{type} = "\mathsf{stator"} \\ & & \text{AIRFOIL}_{\mathsf{subsonic}} \Big( x, \mathsf{line}, \overline{\mathsf{c}}_{\mathsf{stator}_{\mathsf{i},\mathsf{r}}}, \varepsilon_{\mathsf{stator}_{\mathsf{i},\mathsf{r}}} \Big) & \text{otherwise} \\ & \text{if } \mathsf{type} = "\mathsf{CA"} \\ & & \text{AIRFOIL}_{\mathsf{subsonic}} \Big( x, \mathsf{line}, \overline{\mathsf{c}}_{\mathsf{CA}_{\mathsf{r}}}, \varepsilon_{\mathsf{CA}_{\mathsf{r}}} \Big) & \text{if } \mathsf{M}_{\mathsf{c}_{\mathsf{st}(\mathsf{Z},3),\mathsf{r}}} < 1 \\ & \text{AIRFOIL}_{\mathsf{supersonic}} \Big( x, \mathsf{line}, \overline{\mathsf{c}}_{\mathsf{CA}_{\mathsf{r}}}, \varepsilon_{\mathsf{CA}_{\mathsf{r}}} \Big) & \text{otherwise} \\ \end{aligned}$$

Рассматриваемая ступень:

$$j_w = \begin{cases} j = 1 \end{cases}$$
 = 1  $j = 1$   $j = 1$  "Такой ступени не существует!" if  $(j < 1) \lor (j > Z)$   $j$  otherwise

## ▼ Построение профилей Л РК и НА

$$\begin{aligned} \text{AXLEO(type}, x, i, r) &= & \frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \tan\left(\alpha_{-}\text{major}_{rotor_{i,r}}\right) \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}}\right) & \text{if type} = \text{"rotor"} \\ & \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \tan\left(\alpha_{-}\text{major}_{stator_{i,r}}\right) \cdot \left(x - \frac{x0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) & \text{if type} = \text{"stator"} \\ & \text{NaN otherwise} \end{aligned}$$

$$\begin{aligned} \text{AXLE90(type}, x, i, r) &= \left| \frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \tan \left( \alpha_{\text{major}_{rotor_{i,r}}} + \frac{\pi}{2} \right) \cdot \left( x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} \right) & \text{if (type = "rotor")} \land \left| \alpha_{\text{major}_{rotor_{i,r}}} \right| \ge 1 \cdot \circ \\ & \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \tan \left( \alpha_{\text{major}_{stator_{i,r}}} + \frac{\pi}{2} \right) \cdot \left( x - \frac{x0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} \right) & \text{if (type = "stator")} \land \left| \alpha_{\text{major}_{stator_{i,r}}} \right| \ge 1 \cdot \circ \\ & \text{NaN otherwise} \end{aligned}$$

$$b_{lim} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{rotor_{j,N_r}}, \text{chord}_{stator_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 80 \cdot 10^{-3}$$





 $r = av(N_r)$ 





 $r = N_r$ 











## $r = av(N_r)$











Построение профилей Л РК и НА

Рассматриваемая ступень: 
$$j = j = 1$$

$$j_{w} =$$
  $\begin{vmatrix} j = 1 \\ j = \end{vmatrix}$  "Такой ступени не существует!" if  $(j < 1) \lor (j > Z)$   $j$  otherwise

$$b_{\text{line}} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{\text{rotor}_{j,N_r}}, \text{chord}_{\text{stator}_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 80 \cdot 10^{-3}$$

▼ Построение плоских решеток профилей Л РК и НА (+ ВНА и СА) на треугольниках скоростей

r = 1



 $r = av(N_r)$ 







 $r = av(N_r)$ 







■ Построение плоских решеток профилей Л РК и НА (+ ВНА и СА) на треугольниках скоростей

D. Buston zament no nocrocouso npodutes di rotor in stator se appronumente outpocresi

## ▼ Радиальные и осевые зазоры и длина К

Радиальный зазор (м) [с.64 казаджан]:

$$\overline{\Delta}$$
r = 0.0025

 $0.0015 \le \overline{\Delta}r \le 0.0035 = 1$ 

$$\Delta_{\mathbf{r}_{i}} = \overline{\Delta}\mathbf{r} \cdot \mathbf{D}_{\mathrm{st}(i,2), N_{\mathbf{r}}}$$

Относительный осевой зазор () [16, с. 245]:

 $\overline{\Delta}a = 0.17$ 

 $0.1 \le \overline{\Delta}a \le 0.2 = 1$ 

Осевой зазор (м):  $\Delta a_i = \overline{\Delta} a \cdot \text{chord}_{rotor_{i,av(N_r)}}$ 

Односторонний осевой зазор (м):

Длина ОК (м):

$$\begin{aligned} \text{Length} &= \begin{bmatrix} \Delta a_1 + \left| \text{chord}_{BHA_{av\left(N_r\right)}} \cdot \sin\left(\upsilon_{BHA_{av\left(N_r\right)}}\right) & \text{if } BHA = 1 & \dots \\ 0 & \text{otherwise} \\ + \sum_{i \, = \, 1}^{Z} \left( \text{chord}_{rotor_{i}, \, av\left(N_r\right)} \cdot \sin\left(\upsilon_{rotor_{i}, \, av\left(N_r\right)}\right) \right) + 2 \cdot \sum_{i \, = \, 1}^{Z} \Delta a_i + \sum_{i \, = \, 1}^{Z} \left( \text{chord}_{stator_{i}, \, av\left(N_r\right)} \cdot \sin\left(\upsilon_{stator_{i}, \, av\left(N_r\right)}\right) \right) \\ + \left| \begin{array}{c} \text{chord}_{CA_{av\left(N_r\right)}} \cdot \sin\left(\upsilon_{CA_{av\left(N_r\right)}}\right) & \text{if } CA = 1 & + \Delta a_Z \\ 0 & \text{otherwise} \\ \end{bmatrix} \end{aligned} \end{aligned}$$

▼ Проточная часть

$$\begin{pmatrix} x_{\Pi H} \\ y_{\Pi H nep} \\ y_{\Pi H cp} \\ y_{\Pi H nep} \\ y_{\Pi H nep} \\ y_{\Pi I nep} \end{pmatrix} = \begin{vmatrix} c = 1 \\ x_{\Pi H_c} = \begin{vmatrix} c \operatorname{chord}_{BHA_{av(N_r)}} \cdot \sin(\upsilon_{BHA_{av(N_r)}}) & \text{if } BHA = 1 \\ 0 & \operatorname{otherwise} \\ y_{\Pi I nep_c} = R_{st(c,1),N_r} \\ y_{\Pi I nep_c} = R_{st(c,1),av(N_r)} \\ y_{\Pi H cop_c} = R_{st(c,1),av(N_r)} \\ \begin{pmatrix} v_{\Pi H cop_c} \\ y_{\Pi H cop_c} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,2),N_r} \\ R_{st(i,2),av(N_r)} \\ R_{st(i,2),av(N_r)} \\ \end{pmatrix} \\ y_{\Pi nep_c} = y_{\Pi H nep_c} - \Delta_{r_i} \\ c = c + 1 \\ x_{\Pi H_c} = x_{\Pi H_{c-1}} + 0.5 \cdot \Delta a_i + \operatorname{chord}_{stator_{i,av(N_r)}} \cdot \sin(\upsilon_{stator_{i,av(N_r)}}) + 0.5 \cdot \Delta a_i \\ \begin{pmatrix} y_{\Pi H nep_c} \\ y_{\Pi H cop_c} \\ y_{\Pi H cop_c} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,3),N_r} \\ R_{st(i,3),av(N_r)} \\ \end{pmatrix} \\ y_{\Pi nep_c} = y_{\Pi H nep_c} - \Delta_{r_i} \\ \end{pmatrix} \\ \begin{pmatrix} y_{\Pi H nep_c} \\ y_{\Pi H cop_c} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,3),av(N_r)} \\ R_{st(i,3),av(N_r)} \\ \end{pmatrix} \\ y_{\Pi nep_c} = y_{\Pi H nep_c} - \Delta_{r_i} \\ \end{pmatrix} \\ \begin{pmatrix} v_{\Pi H nep_c} \\ y_{\Pi H cop_c} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,3),av(N_r)} \\ R_{st(i,3),av(N_r)} \\ \end{pmatrix} \\ y_{\Pi nep_c} = y_{\Pi H nep_c} - \Delta_{r_i} \\ \end{pmatrix} \\ \begin{pmatrix} v_{\Pi H nep_c} \\ v_{\Pi H nep_c} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,3),av(N_r)} \\ R_{st(i,3),av(N_r)} \\ \end{pmatrix} \\ y_{\Pi nep_c} = y_{\Pi H nep_c} - \Delta_{r_i} \\ \end{pmatrix} \\ \begin{pmatrix} v_{\Pi H nep_c} \\ v_{\Pi H nep_c} \\ v_{\Pi H nep_c} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,3),av(N_r)} \\ R_{st(i,3),av(N_r)} \\ \end{pmatrix}$$

```
\begin{aligned} y_{\Pi \Pi nep}(l) &= interp \Big(cspline \Big(x_{\Pi \Pi}, y_{\Pi \Pi nep} \Big), x_{\Pi \Pi}, y_{\Pi \Pi nep}, l \Big) \\ y_{\Pi \Pi cp}(l) &= interp \Big(cspline \Big(x_{\Pi \Pi}, y_{\Pi \Pi cp} \Big), x_{\Pi \Pi}, y_{\Pi \Pi cp}, l \Big) \\ y_{\Pi \Pi kop}(l) &= interp \Big(cspline \Big(x_{\Pi \Pi}, y_{\Pi \Pi kop} \Big), x_{\Pi \Pi}, y_{\Pi \Pi kop}, l \Big) \\ y_{\Pi nep}(l) &= interp \Big(cspline \Big(x_{\Pi \Pi}, y_{\Pi nep} \Big), x_{\Pi \Pi}, y_{\Pi nep}, l \Big) \end{aligned}
```



▲ Проточная часть

$$j = 1$$
 = 1  $j = 1$  = 1  $j = 1$  Taкой ступени не существует!" if  $(j < 1) \lor (j > Z)$   $j$  otherwise

## ▼ Поперечная часть ступени

$$\mathbf{r} = \min(\mathbf{D}), \min(\mathbf{D}) + \frac{\max(\mathbf{D}) - \min(\mathbf{D})}{N_{\text{dis}}} ... \max(\mathbf{D})$$

$$\mathbf{i}_{\text{rotor}} = 1 ... Z_{\text{rotor}_{j}}$$

$$\mathbf{i}_{\text{stator}} = 1 ... Z_{\text{stator}_{j}}$$

$$\Pi_{\text{HA}}(r,j) = \begin{cases}
\frac{2 \cdot \pi}{Z_{\text{stator}_{j}}} & \text{if } D_{\text{st}(j,2),1} < r < D_{\text{st}(j,2),N_{r}} \\
NaN & \text{otherwise}
\end{cases}$$



Запас по температуре (К):

$$\Delta T_{\text{safety}} = 50$$

Выбранный материал Л:

$$\begin{split} \text{material\_blade}_i &= & \text{"$\mathbb{K}$C-6$K"} \quad \text{if } 1123 \leq T^*_{st(i,2),\,av\left(N_r\right)} + \Delta T_{safety} \\ & \text{"$BT41"} \quad \text{if } 873 \leq T^*_{st(i,2),\,av\left(N_r\right)} + \Delta T_{safety} < 1123 \\ & \text{"$BT25"} \quad \text{if } 753 \leq T^*_{st(i,2),\,av\left(N_r\right)} + \Delta T_{safety} < 873 \\ & \text{"$BT9"} \quad \text{otherwise} \end{split}$$

Плотность материала Л (кг/м^3):

$$\rho\_blade_i = \begin{bmatrix} 8393 & if material\_blade_i = "KC-6K" \\ 7900 & if material\_blade_i = "BT41" \\ 4500 & if material\_blade_i = "BT25" \\ 4570 & if material\_blade_i = "BT23" \\ 4510 & if material\_blade_i = "BT9" \\ 4430 & if material\_blade_i = "BT6" \\ NaN & otherwise \\ \end{bmatrix}$$

Предел длительной прочности ЛРК (Па):

$$\sigma\_blade\_long_i = 10^6. \begin{tabular}{llll} 125 & if material\_blade_i = "KC-6K" \\ 123 & if material\_blade_i = "BT41" \\ 150 & if material\_blade_i = "BT25" \\ 230 & if material\_blade_i = "BT23" \\ 200 & if material\_blade_i = "BT9" \\ 210 & if material\_blade_i = "BT6" \\ NaN & otherwise \\ \end{tabular}$$

material bla

| lade <sup>T</sup> | = |   | 1     | 2     | 3     | 4     | 5     | 6      | 7      | 8      | 9      |
|-------------------|---|---|-------|-------|-------|-------|-------|--------|--------|--------|--------|
|                   |   | 1 | "BT9" | "BT9" | "BT9" | "BT9" | "BT9" | "BT25" | "BT25" | "BT25" | "BT41" |
|                   |   |   |       | _     |       |       | _     | _      |        | -      |        |

 $\rho_{\text{blade}}^{\text{T}}$ 

| Γ = |   | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
|-----|---|------|------|------|------|------|------|------|------|------|
|     | 1 | 4510 | 4510 | 4510 | 4510 | 4510 | 4500 | 4500 | 4500 | 7900 |

 $\sigma_{\text{blade\_long}}^{\text{T}}$ 

|   |   |       |       |       |       |       |       |       |       |       | _            |
|---|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------------|
| = |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | $\cdot 10^6$ |
|   | 1 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 150.0 | 150.0 | 150.0 | 123.0 |              |

material\_blade
$$_{i}$$
 = "BT23" if compressor = "Вл" "BT6" if compressor = "КНД" material\_blade $_{i}$  otherwise

Коэф. формы: 
$$\frac{k_n}{k_n} = 6.8$$

Модуль Юнга Ірода материала Л (Па):

E blade = 
$$210 \cdot 10^9$$

Коэф. Пуассона материала Л():

 $\mu$  steel = 0.3

```
\nu 0_{\text{изг.stator}}
 \nu 0_{\text{изг.rotor}}
 \nu 0_{y_{\Gamma \Pi}.stator}
 \nu_{\rm VII.rotor}
 for i \in 1...Z
 for r \in av(N_r)
(\nu^0угл.stator_bondage \nu^0угл.rotor_bondage
 for mode \in 1..6
 \nu 0_{\text{M3}\Gamma.\text{stator}_{\hat{1},\,\text{mode}}} = \nu 0_{\text{M3}\Gamma\text{M5}} \Big(\text{mode}\,, \text{mean} \Big(h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big)\,, \\ E_\text{blade}\,, \rho_\text{blade}_{\hat{1}}\,, \text{area}_{\text{stator}_{\hat{1},\,r}}\,, \\ Ju_{\text{stator}_{\hat{1},\,r}} \Big) \Big(h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big) \Big(h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big) \Big(h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big) \Big(h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big) \Big(h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big) \Big(h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big) \Big(h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big) \Big(h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big) \Big(h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big) \Big(h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big) \Big(h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big) \Big(h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big) \Big(h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big(h_{\text{st}(\hat{1},\,3)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big) \Big(h_{\text{st}(\hat{1},\,3)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big(h_{\text{st}(\hat{1},\,3)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big(h_{\text{st}(\hat{1},\,3)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big(h_{\text{st}(\hat{1},\,3)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big(h_{\text{st}(\hat{1},\,3)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big(h_{\text{st}(\hat{1},\,3)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big(h_{\text{st}(\hat{1},\,3)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big(h_{\text{st}(\hat{1},\,3)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big(h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}(\hat{1},\,3)} \Big) \Big(h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}(\hat{1},\,3)} \Big) \Big(h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}(\hat{1},\,3)} \Big) \Big(h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}
 \nu 0_{\text{M3}\Gamma.\text{rotor}_{\hat{i}\,,\,\text{mode}}} = \nu 0_{\text{M3}\Gamma\text{M}} \left(\text{mode}\,, \text{mean} \left(h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E_blade}\,, \rho_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left(\text{mode}\,, \text{mean} \left(h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E_blade}\,, \rho_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left(\text{mode}\,, \text{mean} \left(h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E_blade}\,, \rho_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left(\text{mode}\,, \text{mean} \left(h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E_blade}\,, \rho_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left(\text{mode}\,, \text{mean} \left(h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E_blade}\,, \rho_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left(\text{mode}\,, \text{mean} \left(h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E_blade}\,, \rho_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left(\text{mode}\,, \text{mean} \left(h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E_blade}\,, \rho_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left(\text{mode}\,, \text{mean} \left(h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E_blade}\,, \rho_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left(\text{mode}\,, \text{mean} \left(h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E_blade}\,, \rho_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left(\text{mode}\,, \text{mean} \left(h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E_blade}\,, \rho_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left(\text{mode}\,, \text{mean} \left(h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E_blade}\,, \rho_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left(\text{mode}\,, \text{mean} \left(h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E_blade}\,, \rho_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left(\text{mode}\,, \text{mean} \left(h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E_blade}\,, \rho_\text{blade}\,, \rho_\text{blade
 \nu 0_{\text{yrn.stator}_{i,\,mode}} = \nu 0_{\text{yrn}} \Big(\text{mode}\,, 0\,, \text{mean} \Big(h_{st(i,\,2)}\,, h_{st(i,\,3)} \Big) \,, \\ \text{Jung}(2\,, \mu_\text{steel}\,, E_\text{blade}) \,, \rho_\text{blade}_i\,, \\ \text{stiffness}_{stator}_{i,\,r}\,, \\ \text{Jp}_{stator}_{i,\,r} \,, \\ \text{Jp}_{st
 \nu 0_{\text{yr.i.rotor}_{i, \, mode}} = \nu 0_{\text{yr.ii}} \left(\text{mode}, 0, \text{mean} \left(h_{\text{st(i,1)}}, h_{\text{st(i,2)}} \right), \text{Jung}(2, \mu_{\text{steel}}, E_{\text{blade}}), \rho_{\text{blade}_{i}}, \text{stiffness}_{\text{rotor}_{i,r}}, \text{Jp}_{\text{rotor}_{i,r}} \right) \right)
 \nu 0_{y_{\Gamma JI}.stator_bondage_{\hat{1},\,mode}} = \nu 0_{y_{\Gamma JI}} \Big(mode, 1, mean \Big(h_{st(\hat{1},\,2)}, h_{st(\hat{1},\,3)} \Big), \\ Jung(2, \mu_steel, E_blade), \rho_blade_{\hat{1},\,stiffness} \\ stator_{\hat{1},\,r}, Jp_{stator_{\hat{1},\,r}}, Jp_{stator_{\hat{1},\,r}}, Jp_{stator_{\hat{1},\,r}} \Big) \\ + \frac{1}{2} \left(mode + \frac{1}{2} \left(mo
 \nu 0_{\text{yrst.rotor_bondage}_{i, \, mode}} = \nu 0_{\text{yrst}} \left(\text{mode}, 1, \text{mean} \left(h_{\text{st}(i, 1)}, h_{\text{st}(i, 2)} \right), \text{Jung}(2, \mu_\text{steel}, E_\text{blade}), \rho_\text{blade}_i, \text{stiffness}_{\text{rotor}_{i, r}}, \text{Jp}_{\text{rotor}_{i, \nu 0_{\text{изг.stator}}
 \nu 0_{\text{изг.rotor}}
 ν0_{VГЛ.rotor}
 \nu_{\rm V\Gamma J. stator}
 (\nu^0угл.stator_bondage \nu^0угл.rotor_bondage
```

Частота собственных изгибных колебаний (Гц) [9, с.240]:

|                                                 |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    |
|-------------------------------------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                                                 | 1 | 1429  | 1738  | 1987  | 2220  | 2448  | 2666  | 2846  | 2980  | 2404  | 1038  | 1339  | 1565  | 1764  | 1958  | 2148  | 2315  | 2443  | 1936  |
| , T                                             | 2 | 4287  | 5213  | 5960  | 6661  | 7344  | 7999  | 8539  | 8940  | 7212  | 3114  | 4016  | 4696  | 5293  | 5874  | 6443  | 6945  | 7328  | 5808  |
| stack $(ν0_{yγπ.stator}, ν0_{yγπ.rotor})^{T} =$ | 3 | 7145  | 8688  | 9934  | 11102 | 12241 | 13332 | 14232 | 14901 | 12020 | 5190  | 6693  | 7827  | 8822  | 9790  | 10739 | 11575 | 12213 | 9679  |
| · · · · · · · · · · · · · · · · · · ·           | 4 | 10003 | 12163 | 13907 | 15543 | 17137 | 18665 | 19924 | 20861 | 16828 | 7266  | 9370  | 10958 | 12351 | 13706 | 15034 | 16205 | 17098 | 13551 |
|                                                 | 5 | 12861 | 15638 | 17881 | 19983 | 22033 | 23998 | 25617 | 26821 | 21637 | 9342  | 12047 | 14089 | 15880 | 17621 | 19330 | 20835 | 21983 | 17423 |
|                                                 | 6 | 15719 | 19113 | 21854 | 24424 | 26929 | 29331 | 31309 | 32781 | 26445 | 11418 | 14724 | 17220 | 19409 | 21537 | 23625 | 25464 | 26868 | 21294 |

Частота собственных угловых колебаний (Гц) [9, с.243] без и с бандажом:

|                                                                                                           |   | 1     | 2     | 3     | 4     | 5     | 6     | 7      | 8      | 9      | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    |
|-----------------------------------------------------------------------------------------------------------|---|-------|-------|-------|-------|-------|-------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                                                                                                           | 1 | 269   | 461   | 636   | 778   | 969   | 1160  | 1240   | 1360   | 1233   | 363   | 484   | 565   | 656   | 752   | 849   | 932   | 1007  | 827   |
| , T                                                                                                       | 2 | 1684  | 2887  | 3984  | 4876  | 6072  | 7271  | 7772   | 8522   | 7729   | 2277  | 3036  | 3540  | 4113  | 4715  | 5324  | 5844  | 6311  | 5185  |
| $\operatorname{stack}(\nu 0_{\text{M3}\Gamma.\text{stator}}, \nu 0_{\text{M3}\Gamma.\text{rotor}})^{T} =$ | 3 | 4714  | 8083  | 11156 | 13655 | 17004 | 20362 | 21765  | 23864  | 21645  | 6376  | 8501  | 9913  | 11517 | 13204 | 14908 | 16364 | 17674 | 14519 |
|                                                                                                           | 4 | 9245  | 15852 | 21879 | 26778 | 33347 | 39932 | 42683  | 46799  | 42447  | 12503 | 16670 | 19440 | 22585 | 25894 | 29236 | 32091 | 34659 | 28473 |
|                                                                                                           | 5 | 15277 | 26193 | 36152 | 44249 | 55102 | 65983 | 70529  | 77331  | 70139  | 20660 | 27546 | 32123 | 37319 | 42787 | 48310 | 53026 | 57270 | 47049 |
|                                                                                                           | 6 | 22815 | 39118 | 53991 | 66083 | 82292 | 98542 | 105332 | 115490 | 104749 | 30854 | 41138 | 47973 | 55734 | 63900 | 72148 | 79192 | 85530 | 70265 |

|                                                                 |   | 1     | 2     | 3     | 4     | 5     | 6     | /     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 1/    | 18    |
|-----------------------------------------------------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                                                                 | 1 | 2858  | 3475  | 3973  | 4441  | 4896  | 5333  | 5693  | 5960  | 4808  | 2076  | 2677  | 3131  | 3529  | 3916  | 4295  | 4630  | 4885  | 3872  |
| , T                                                             | 2 | 5716  | 6950  | 7947  | 8881  | 9793  | 10666 | 11385 | 11920 | 9616  | 4152  | 5354  | 6262  | 7058  | 7832  | 8591  | 9260  | 9770  | 7743  |
| stack $(ν_{yгл.stator\_bondage}, ν_{yгл.rotor\_bondage})^{T} =$ | 3 | 8574  | 10425 | 11920 | 13322 | 14689 | 15999 | 17078 | 17881 | 14424 | 6228  | 8031  | 9393  | 10587 | 11748 | 12886 | 13890 | 14655 | 11615 |
|                                                                 | 4 | 11432 | 13900 | 15894 | 17763 | 19585 | 21331 | 22771 | 23841 | 19233 | 8304  | 10708 | 12524 | 14116 | 15664 | 17182 | 18520 | 19540 | 15487 |
|                                                                 | 5 | 14290 | 17376 | 19867 | 22204 | 24481 | 26664 | 28463 | 29801 | 24041 | 10380 | 13386 | 15655 | 17645 | 19579 | 21477 | 23150 | 24425 | 19359 |
|                                                                 | 6 | 17148 | 20851 | 23841 | 26644 | 29378 | 31997 | 34156 | 35761 | 28849 | 12456 | 16063 | 18786 | 21173 | 23495 | 25773 | 27779 | 29311 | 23230 |

▶ Расчет собственных частот колебаний Л

№ Вывод результатов расчета собственных частот колебаний Л-

Pасчетный узел: type = "compressor"

Объем бандажной полки ( $M^3$ ):  $V_{\overline{0}\Pi} = 0$ 

Радиус положения ЦМ бандажной полки (м):  $R_{6\Pi} = 0$ 

▼ Расчет Л на прочность

```
\begin{aligned} & \text{area0}_{rotor}(i,z) = \text{area}_{rotor_{i},N_{r}} \cdot \begin{bmatrix} e^{\left(\overrightarrow{\sigma 0}_{rotor.max}(i,z) \cdot \int_{Z} & z \, dz \right)} & \text{if } z \leq R0_{rotor}(i,z) \\ & 1 \quad \text{otherwise} \\ & \text{N0}_{rotor}(i,z) = \rho_\text{blade}_{i} \cdot \omega^{2} \cdot \begin{bmatrix} \int_{Z}^{mean\left(R_{st(i,1),N_{r}},R_{st(i,2),N_{r}}\right)} & \text{area0}_{rotor}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \end{bmatrix} & \text{if type} = \text{"compressor"} \\ & \left(\int_{Z}^{mean\left(R_{st(i,2),N_{r}},R_{st(i,3),N_{r}}\right)} & \text{area0}_{rotor}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \right) & \text{if type} = \text{"turbine"} \end{aligned} \right) \end{aligned}
 \sigma_{0_{rotor}(i,z)} = \frac{N0_{rotor}(i,z)}{area0_{rotor}(i,z)}
 area_{rotor.}(i,z) = interp\Big(pspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(area_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(area_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
 area_{stator.}(i,z) = interp \left(pspline \left(submatrix \left(R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left(area_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left(R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left(area_{stator}, i, i, 1, N_r \right)^T, submatrix \left(area_{stato
 \begin{aligned} N_{rotor}(i,z) &= \rho_{blade}_{i} \cdot \omega^{2} \cdot \\ & \int_{z}^{mean \left(R_{st(i,1),N_{r}}, R_{st(i,2),N_{r}}\right)} \operatorname{area}_{rotor.}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \end{aligned} \quad \text{if type = "compressor"} \\ & \left(\int_{z}^{mean \left(R_{st(i,2),N_{r}}, R_{st(i,3),N_{r}}\right)} \operatorname{area}_{rotor.}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \right) \quad \text{if type = "turbine"} \end{aligned}
 \sigma_{z_{rotor}(i,z)} = \frac{N_{rotor}(i,z)}{area_{rotor}(i,z)}
 \rho_{1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,1),st(i,1),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,1),st(
 \rho_{2}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,2),st(i,2),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,2),st(i,2),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,2),st(i,2
 \rho_{3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,3),st(i,3),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,3),st(i,3
 P_{1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),
 P_2(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(P,st(i,2),st(i,2),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(P,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(P,st(i,2),st(i
 P_{3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,3),st(i,3),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,3),st(
 c_{a1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_a,st(i,1),st(i,1),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_a,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_a,st(i,1),
 c_{a2}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(c_a,st(i,2),st(i,2),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(c_a,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(c_a,st(i,2),
 c_{a3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(c_a,st(i,3),st(i,3),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(c_a,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(c_a,st(i,3),
 c_{u1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_{u},st(i,1),st(i,1),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_{u},st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(s_{u},st(i,1),st
```

```
c_{u2}(i,z) = interp\Big(lspline\Big(submatrix(R,st(i,2),st(i,2),1,N_r)^1,submatrix(c_u,st(i,2),st(i,2),1,N_r)^1\Big),submatrix(R,st(i,2),st(i,2),1,N_r)^1,submatrix(c_u,st(i,2),st(i,2),1,N_r)^1,submatrix(c_u,st(i,2),st(i,
 c_{u3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T,submatrix\Big(c_u,st(i,3),st(i,3),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T,submatrix\Big(c_u,st(i,3),st(i
 w_{u1}(i,z) = interp \Big(lspline \Big(submatrix \Big(R \,, st(i,1) \,, st(i,1) \,, 1 \,, N_r \Big)^T \,, submatrix \Big(w_u \,, st(i,1) \,, st(i,1) \,, 1 \,, N_r \Big)^T \Big), submatrix \Big(R \,, st(i,1) \,, st(i
 w_{u2}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(w_u,st(i,2),st(i,2),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(w_u,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(w_u,st(i,2),st(
 w_{u3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T,submatrix\Big(w_u,st(i,3),st(i,3),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T,submatrix\Big(w_u,st(i,3),st(i
 qx_{rotor}(i,z) = -\frac{2\pi z}{Z_{rotor_i}} \cdot \begin{bmatrix} \left[\left(P_2(i,z) - P_1(i,z) \right) + \rho_1(i,z) \cdot c_{a1}(i,z) \cdot \left(c_{a2}(i,z) - c_{a1}(i,z) \right) \right] & \text{if type = "compressor"} \\ \left[\left(P_3(i,z) - P_2(i,z) \right) + \rho_2(i,z) \cdot c_{a2}(i,z) \cdot \left(c_{a3}(i,z) - c_{a2}(i,z) \right) \right] & \text{if type = "turbine"} \end{aligned}
 \begin{vmatrix} q y_{rotor}(i,z) &= \frac{2\pi\,z}{Z_{rotor_i}} \cdot \\ \begin{bmatrix} \rho_1(i,z) \cdot c_{a1}(i,z) \cdot \left(w_{u2}(i,z) - w_{u1}(i,z)\right) \end{bmatrix} & \text{if type = "compressor"} \\ \left[\rho_2(i,z) \cdot c_{a2}(i,z) \cdot \left(w_{u3}(i,z) - w_{u2}(i,z)\right) \right] & \text{if type = "turbine"} \\ \end{vmatrix}
 | \text{qy}_{\text{stator}}(i,z) = -\frac{2\pi z}{Z_{\text{stator}_i}} \cdot \left[\begin{bmatrix} \rho_2(i,z) \cdot c_{a2}(i,z) \cdot \left(c_{u3}(i,z) - c_{u2}(i,z) \right) \end{bmatrix} \text{ if type = "compressor"} \\ \left[\rho_1(i,z) \cdot c_{a1}(i,z) \cdot \left(c_{u2}(i,z) - c_{u1}(i,z) \right) \right] \text{ if type = "turbine"}
qy_{rotor}(i,z1)\cdot(z1-z) dz1
 mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="compressor"
 \bigcap \mathsf{lmean} \big(\mathsf{R}_{\mathsf{st}(i,1),1}, \mathsf{R}_{\mathsf{st}(i,2),1} \big) \text{ if type="turbine"}
 qy_{stator}(i,z1)\cdot(z1-z)dz1
 qx_{rotor}(i,z1)\cdot(z1-z) dz1
 mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="compressor"
 \max(R_{st(i,1),1},R_{st(i,2),1}) if type="turbine"
 qx_{stator}(i,z1)\cdot(z1-z) dz1
 \left(\begin{array}{c} \operatorname{mean} \left({{R_{st(i,1),N_r}},{R_{st(i,2),N_r}}} \right) & \text{if type="compressor"} \\ \operatorname{mean} \left({{R_{st(i,2),N_r}},{R_{st(i,3),N_r}}} \right) & \text{if type="turbine"} \end{array} \right)
```

```
q_{rotor}(1, z) uz
shift_x_{rotor}(i, z) =
 N_{rotor}(i,z)
 mean(R_{st(i,1),1}, R_{st(i,2),1}) if type="compressor"
 mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="turbine"
 mean \left(R_{st(i,1),N_r}, R_{st(i,2),N_r}\right) if type="compressor"
 (qy_{rotor}(i,z)\cdot z) dz
shift_y_{rotor}(i, z) = z
 N_{rotor}(i,z) \cdot z^2
 mean(R_{st(i,1),1}, R_{st(i,2),1}) if type="compressor"
 mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="turbine"
 x0_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(x0_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(x0_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(R,st(i,2),st(i,
 x0_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(x0_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(x0_{stator},i,i,1,N_r\Big)^T,submatrix\Big(x0_{stator},i,i,1,N_r\Big)^T\Big)
y0_{\text{rotor.}}(i,z) = \text{interp}\Big(\text{lspline}\Big(\text{submatrix}\Big(R,\text{st}(i,2),\text{st}(i,2),1,N_r\Big)^T, \text{submatrix}\Big(y0_{\text{rotor.}}i,i,1,N_r\Big)^T\Big), \text{submatrix}\Big(R,\text{st}(i,2),\text{st}(i,2),1,N_r\Big)^T, \text{submatrix}\Big(y0_{\text{rotor.}}i,i,1,N_r\Big)^T, \text{submatrix}\Big(R,\text{st}(i,2),\text{st}(i,2),1,N_r\Big)^T,
y0_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(y0_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(y0_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
\alpha_{major_{rotor.}(i,z)} = interp \left(lspline \left(submatrix \left(R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left(\alpha_{major_{rotor},i,i,1,N_r \right)^T \right), submatrix \left(R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left(\alpha_{major_{rotor},i,i,1,N_r \right)^T \right), submatrix \left(\alpha_{major_{rotor},i,i,1,N_r \right)^T, submatrix \left(\alpha_{major_{rotor},i,i,1,N_r \right)^T \right)
\alpha_{\text{major}_{\text{stator.}}(i,z)} = \text{interp} \Big(\text{lspline} \Big(\text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big), \text{submatrix} \Big(\alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big), \text{submatrix} \Big(\alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big) \Big)
Ju_{rotor.}(i,z) = interp \left(lspline \left(submatrix \left(R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left(Ju_{rotor}, i, i, 1, N_r \right)^T \right), submatrix \left(R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left(Ju_{rotor}, i, i, 1, N_r \right)^T, submatrix \left(Ju
Ju_{stator.}(i,z) = interp \left(lspline \left(submatrix \left(R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left(Ju_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left(R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left(Ju_{stator}, i, i, 1, N_r \right)^T, submatrix \left(Ju_
Jv_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Jv_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Jv_{rotor},i,i,1,N_r\Big)^T, su
Jv_{stator.}(i,z) = interp \left(lspline \left(submatrix \left(R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left(Jv_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left(R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left(Jv_{stator}, i, i, 1, N_r \right)^T, submatrix \left(Jv_
CPx_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPx_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPx_{rotor},i,i,1,N_r\Big)^T, submatrix\Big(CPx_{rotor},i,i,1,N_r\Big)^T\Big)
CPx_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPx_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPx_{stator},i,i,1,N_r\Big)^T, Py_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{rotor},i,i,1,N_r\Big)^T, submatrix\Big(CPy_{rotor},i,i,1,N_r\Big)^T\Big)
 CPy_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
 CPx_{rotor.axis}(i,z) = axis_{X} \Big(CPx_{rotor.}(i,z), CPy_{rotor.}(i,z), x0_{rotor.}(i,z), y0_{rotor.}(i,z), \alpha_{major_{rotor.}}(i,z), 1 \Big)
 CPx_{stator.axis}(i,z) = axis_{x} \left(CPx_{stator.}(i,z), CPy_{stator.}(i,z), x0_{stator.}(i,z), y0_{stator.}(i,z), \alpha_{stator.}(i,z), \alpha_{
 CPy_{rotor.axis}(i,z) = axis_{y} \left(CPx_{rotor.}(i,z), CPy_{rotor.}(i,z), x0_{rotor.}(i,z), y0_{rotor.}(i,z), \alpha_{major_{rotor.}}(i,z), 1 \right)
CPy_{stator.axis}(i,z) = axis_{v} \Big(CPx_{stator.}(i,z), CPy_{stator.}(i,z), x0_{stator.}(i,z), y0_{stator.}(i,z), \alpha_{major_{stator.}}(i,z), 1 \Big)
```

```
Wp_{rotor.}(i,z) = interp \left(lspline \left(submatrix \left(R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left(Wp_{rotor}, i, i, 1, N_r \right)^T \right), submatrix \left(R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left(Wp_{rotor}, i, i, 1, N_r \right)^T, submatrix \left(R, st(i,2), st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left(R, st(i,2),
 Wp_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Wp_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Wp_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
 \left(qx_{rotor}(i,z1) \cdot CPy_{rotor.axis}(i,z1) - qy_{rotor}(i,z1) \cdot CPx_{rotor.axis}(i,z1)\right) dz1
 \left(qx_{stator}(i,z1)\cdot CPy_{stator.axis}(i,z1) - qy_{stator}(i,z1)\cdot CPx_{stator.axis}(i,z1)\right) dz1
 \varphi_{\text{uv}_{\text{rotor}}(i,z)} = \text{interp} \left[\text{lspline} \left[\text{submatrix} \left(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{submatrix} \left(\frac{\pi}{2} - \upsilon_{\text{rotor}}, i, i, 1, N_r \right)^T \right] \right], \text{submatrix} \left(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{submatrix} \left(\frac{\pi}{2} - \upsilon_{\text{rotor}}, i, i, 1, N_r \right)^T, \text{submatrix} \left(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{st}(i,2), \text
 \left| \phi_{_} u v_{stator}(i,z) \right| = interp \left(lspline \left(submatrix \left(R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left(R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left(\frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, sub
 Mu_{rotor}(i,z) = axis_{x}(Mx_{rotor}(i,z), My_{rotor}(i,z), 0, 0, \phi_{uv_{rotor}(i,z), 1})
 Mu_{stator}(i,z) = axis_{x}(Mx_{stator}(i,z), My_{stator}(i,z), 0, 0, \varphi_{uv_{stator}}(i,z), 1)
 Mv_{rotor}(i,z) = axis_{y}(Mx_{rotor}(i,z), My_{rotor}(i,z), 0, 0, \phi_{uv_{rotor}(i,z), 1})
 Mv_{stator}(i,z) = axis_{v}(Mx_{stator}(i,z), My_{stator}(i,z), 0, 0, \varphi_{uv_{stator}}(i,z), 1)
```

| 10.01                                     | 10.01                               |
|-------------------------------------------|-------------------------------------|
| $P_1$                                     | $\rho_1$                            |
| P <sub>2</sub>                            | $\rho_2$                            |
| P <sub>3</sub>                            | $\rho_3$                            |
| c <sub>a1</sub>                           | $c_{u1}$                            |
| c <sub>a2</sub>                           | $c_{u2}$                            |
| c <sub>a3</sub>                           | $c_{u3}$                            |
| qx <sub>rotor</sub>                       | qx <sub>stator</sub>                |
| qy <sub>rotor</sub>                       | qy <sub>stator</sub>                |
| Mx <sub>rotor</sub>                       | Mx <sub>stator</sub>                |
| My <sub>rotor</sub>                       | My <sub>stator</sub>                |
| shift_x <sub>rotor</sub>                  | shift_y <sub>rotor</sub>            |
| x0 <sub>rotor</sub> .                     | x0 <sub>stator</sub> .              |
| y0 <sub>rotor</sub> .                     | y0 <sub>stator</sub> .              |
| $\alpha$ _major <sub>rotor</sub> .        | $\alpha$ _major <sub>stator</sub> . |
| Ju <sub>rotor</sub> .                     | Ju <sub>stator</sub> .              |
| Jv <sub>rotor</sub> .                     | Jv <sub>stator</sub> .              |
| CPx <sub>rotor</sub> .                    | CPx <sub>stator</sub> .             |
| CPy <sub>rotor</sub> .                    | CPy <sub>stator</sub> .             |
| CPx <sub>rotor.axis</sub>                 | CPx <sub>stator.axis</sub>          |
| CPy <sub>rotor.axis</sub>                 | CPy <sub>stator.axis</sub>          |
| Wp <sub>rotor</sub> .                     | Wp <sub>stator</sub> .              |
| Mτ <sub>rotor</sub>                       | $M\tau_{stator}$                    |
| τ <sub>rotor</sub>                        | $\tau_{ m stator}$                  |
| φ_uv <sub>rotor</sub>                     | $\phi_{-}^{uv}_{stator}$            |
| Mu <sub>rotor</sub>                       | Mu <sub>stator</sub>                |
| Mv <sub>rotor</sub>                       | Mv <sub>stator</sub>                |
| $\varphi_{\text{neutral}_{\text{rotor}}}$ | φ_neutral <sub>stator</sub>         |

$$\text{neutral\_line(type, x, i, r)} = \begin{vmatrix} y0_{rotor_{i, r}} \\ \frac{y0_{rotor_{i, r}}}{\text{chord}_{rotor_{i, r}}} + \tan\left(\left(\alpha_{major_{rotor_{i, r}}} + \phi_{neutral_{rotor}}(i, R_{st(i, 2), r})\right)\right) \cdot \left(x - \frac{x0_{rotor_{i, r}}}{\text{chord}_{rotor_{i, r}}}\right) \text{ if type} = "rotor"$$

$$\frac{y0_{stator_{i, r}}}{\text{chord}_{stator_{i, r}}} + \tan\left(\left(\alpha_{major_{stator_{i, r}}} + \phi_{neutral_{stator}}(i, R_{st(i, 2), r})\right)\right) \cdot \left(x - \frac{x0_{stator_{i, r}}}{\text{chord}_{stator_{i, r}}}\right) \text{ if type} = "stator"$$

$$\frac{y0_{rotor_{i, r}}}{\text{chord}_{stator_{i, r}}} + \frac{-1}{(x_{major_{stator_{i, r}}})} = \frac{y0_{rotor_{i, r}}}{(x_{major_{stator_{i, r}}})} = \frac{y0_{rotor_{i, r}}}{(x_{ma$$

$$\begin{aligned} & \text{epure(type,x,i,r)} = \boxed{\frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \frac{-1}{\text{tan}\left(\alpha\_\text{major}_{rotor_{i,r}} + \varphi\_\text{neutral}_{rotor}\left(i,R_{st(i,2),r}\right) - \frac{\pi}{4}\right)} \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}}\right) \text{ if type = "rotor"} \\ & \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \frac{-1}{\text{tan}\left(\alpha\_\text{major}_{stator_{i,r}} + \varphi\_\text{neutral}_{stator}\left(i,R_{st(i,2),r}\right) - \frac{\pi}{4}\right)} \cdot \left(x - \frac{x0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) \text{ if type = "stator"} \end{aligned}$$



## Наиболее удаленные точки от НЛ (мм):

| 2 -0.805 -0.811 -1.531 -1.532 -1.533 -1.535 -1.538 -1.538  |                                               |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 1   |
|------------------------------------------------------------|-----------------------------------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----|
| 2 -0.805 -0.811 -1.531 -1.532 -1.533 -1.535 -1.538 -1.538  | $\mathbf{u}  \mathbf{u}_{\dots} = \mathbf{u}$ | 1 | -3.247 | -2.277 | -2.328 | -2.361 | -2.386 | -2.408 | -2.434 | -2.454 | -2.465 | ·10 |
| 2 0.001 0.022 0.022 0.022 0.022 1.722 1.722                | - rotor                                       | 2 | -0.805 | -0.811 | -1.531 | -1.531 | -1.532 | -1.533 | -1.535 | -1.538 | -1.538 |     |
| [3] 0.001 -0.922 -0.923 -0.923 -0.923 -1.722 -1.723 -1.723 |                                               | 3 | 0.001  | -0.922 | -0.923 | -0.923 | -0.923 | -0.923 | -1.722 | -1.723 | -1.723 | ī   |

 $\cdot 10^{-3}$ 

 $\cdot 10^{-3}$ 

|                     |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |                 |
|---------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------------|
| $v_u_{rotor}^T = 0$ | 1 | 5.471 | 5.107 | 4.899 | 4.801 | 4.730 | 4.652 | 4.528 | 4.437 | 4.389 | $\cdot 10^{-3}$ |
| - rotor             | 2 | 2.340 | 2.266 | 2.181 | 2.176 | 2.168 | 2.149 | 2.099 | 2.053 | 2.035 | 10              |
|                     | 3 | 1.546 | 1.497 | 1.434 | 1.442 | 1.445 | 1.440 | 1.412 | 1.381 | 1.375 |                 |

|           |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |                 |
|-----------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----------------|
| $v_1 = T$ | 1 | -8.057 | -5.547 | -4.547 | -4.056 | -3.722 | -3.473 | -3.516 | -3.574 | -3.611 | $\cdot 10^{-3}$ |
| '-rotor - | 2 | -2.329 | -1.994 | -1.752 | -1.748 | -1.743 | -1.728 | -1.691 | -1.669 | -1.665 | 10              |
|           | 3 | -1.399 | -1.248 | -1.170 | -1.178 | -1.181 | -1.177 | -1.152 | -1.133 | -1.130 |                 |

|                    |   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |
|--------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| $u_u_{stator}^T =$ | 1 | 0.222  | 0.229  | -1.717 | -1.724 | -1.778 | -1.738 | -1.441 | -1.236 | -1.152 |
| -stator            | 2 | -0.023 | -0.009 | 0.001  | 0.002  | 0.004  | 0.003  | -0.009 | -0.016 | -0.018 |
|                    | 3 | -0.331 | -0.001 | 0.011  | 0.013  | 0.016  | 0.015  | 0.001  | -0.007 | -0.303 |

$$v\_u_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.912 & 0.993 & 11.026 & 11.026 & 11.029 & 11.027 & 11.012 & 11.003 & 10.999 \\ 2 & 1.224 & 1.366 & 1.445 & 1.450 & 1.471 & 1.460 & 1.363 & 1.292 & 1.260 \\ 3 & 1.345 & 1.752 & 1.839 & 1.849 & 1.873 & 1.865 & 1.767 & 1.695 & 1.662 \end{bmatrix} \cdot 10^{-1}$$

|             |   | 1      | 2      | 3       | 4       | 5       | 6       | 7       | 8       | 9       |     |
|-------------|---|--------|--------|---------|---------|---------|---------|---------|---------|---------|-----|
| v = 1       | 1 | -1.724 | -2.079 | -13.273 | -13.272 | -13.269 | -13.271 | -13.289 | -13.300 | -13.304 | .10 |
| v_istator – | 2 | -1.675 | -2.299 | -2.660  | -2.687  | -2.781  | -2.734  | -2.289  | -1.978  | -1.844  | 1 - |
|             | 3 | -1.120 | -2.444 | -2.846  | -2.891  | -3.003  | -2.968  | -2.517  | -2.197  | -2.052  |     |

$$\begin{pmatrix} \sigma_{-Protor} & \sigma_{-n}rotor \\ \sigma_{-Dstator} $

$$\begin{pmatrix} \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \end{pmatrix} = \begin{bmatrix} \text{for } i \in 1 ... Z \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \end{bmatrix} = \begin{bmatrix} \text{for } i \in 1 ... Z \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} &$$

|                      |   | 1      | 2      | 3       | 4       | 5       | 6       | 7       | 8       | 9       |
|----------------------|---|--------|--------|---------|---------|---------|---------|---------|---------|---------|
| $\sigma p_{max} = T$ | 1 | -19.14 | -46.15 | -70.23  | -94.47  | -119.79 | -140.76 | -141.73 | -139.24 | -130.15 |
| $\sigma_p_{rotor} =$ | 2 | -40.62 | -68.40 | -102.67 | -127.72 | -153.92 | -173.51 | -168.19 | -161.83 | -152.70 |
|                      | 3 | -0.38  | -0.22  | -0.98   | -0.88   | -0.82   | -0.65   | -0.32   | -0.15   | -0.48   |

|                                    |   | 1      | 2      | 3      | 4      | 5      | 6      | /      | 8      | 9     | ĺ   |
|------------------------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|-------|-----|
| $\cdot 10^6 \sigma_p_{stator}^T =$ | 1 | 1.71   | 0.45   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00  | .10 |
| - Stator                           | 2 | 144.22 | 104.51 | 106.02 | 104.07 | 94.86  | 84.60  | 74.31  | 58.82  | 41.71 |     |
|                                    | 3 | 328.37 | 203.51 | 206.83 | 204.98 | 189.27 | 169.01 | 142.95 | 109.54 | 77.43 |     |
|                                    |   |        |        |        |        |        |        |        |        |       |     |

|                                           |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|-------------------------------------------|---|---|---|---|---|---|---|---|---|---|
| $\sigma_{protor}^{T} \le 70 \cdot 10^6 =$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| -Protor = 70 To =                         | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|                                           | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

|                                    |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|------------------------------------|---|---|---|---|---|---|---|---|---|---|
| $\sigma p_{atoton} \leq 70.10^6 =$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| -Pstator = 70 10 -                 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
|                                    | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

$$\sigma_{-n_{rotor}}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 35.52 & 60.11 & 79.05 & 95.69 & 111.86 & 94.07 & 102.57 & 106.16 & 101.94 \\ 2 & 42.92 & 63.29 & 79.38 & 98.92 & 119.55 & 135.12 & 131.72 & 128.45 & 122.24 \\ 3 & 0.35 & 0.18 & 0.78 & 0.71 & 0.66 & 0.52 & 0.26 & 0.12 & 0.39 \end{bmatrix} \cdot 10^{6}$$

|                             |   | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9      |     |
|-----------------------------|---|---------|---------|---------|---------|---------|---------|---------|---------|--------|-----|
| $\sigma n_{-+-+} =$         | 1 | -3.27   | -0.96   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00   | .10 |
| $\sigma_{\text{nstator}} =$ | 2 | -198.81 | -179.97 | -200.95 | -198.54 | -185.04 | -163.29 | -127.85 | -91.88  | -62.18 |     |
|                             | 3 | -274.20 | -292.60 | -332.03 | -332.61 | -315.42 | -279.36 | -210.23 | -146.02 | -98.10 |     |

|                                     |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|-------------------------------------|---|---|---|---|---|---|---|---|---|---|
| $\sigma n_{rotor}^T \leq 70.10^6 =$ | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| -rotor = 70 10 -                    | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|                                     | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

|                                                 |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|-------------------------------------------------|---|---|---|---|---|---|---|---|---|---|
| $\sigma n_{\text{stator}}^{T} \leq 70.10^{6} =$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| -nstator = 70 10 -                              | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|                                                 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

$$\begin{pmatrix} \sigma_{rotor} \\ \sigma_{stator} \end{pmatrix} = \begin{cases} \text{for } i \in 1 ... Z \\ \text{for } r \in 1 ... N_r \end{cases}$$
 
$$\begin{pmatrix} \sigma_{rotor}_{i,r} = \sqrt{\left(\sigma_{-}z_{rotor}(i,R_{st(i,2),r}) + \max\left(\sigma_{-}p_{rotor}_{i,r},\sigma_{-}n_{rotor}_{i,r}\right)\right)^2 + \tau_{rotor}(i,R_{st(i,2),r})^2}$$
 
$$\sigma_{stator}_{i,r} = \sqrt{\left(0 + \max\left(\sigma_{-}p_{stator}_{i,r},\sigma_{-}n_{stator}_{i,r}\right)\right)^2 + \tau_{stator}(i,R_{st(i,2),r})^2}$$
 
$$\begin{pmatrix} \sigma_{rotor} \\ \sigma_{stator} \end{pmatrix}$$

$$\begin{pmatrix} \sigma_{rotor.} \\ \sigma_{stator.} \end{pmatrix} = \begin{cases} \text{for } i \in 1..Z \\ \\ \sigma_{rotor.}(i,z) = \text{interp} \Big( \text{lspline} \Big( \text{submatrix} \Big( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big( \sigma_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big( \sigma_{rotor}, i, i, 1, N_r \Big)^T, \text{submatrix} \Big( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big( \sigma_{rotor}, i, i, 1, N_r \Big)^T, \text{submatrix} \Big($$

·10<sup>6</sup>

0.00

41.74

0.00

74.34

0.00

84.64

0.00

104.11

0.00

94.90

189.30

0.00

$$\left(\begin{array}{c} \text{safety}_{rotor} \\ \text{safety}_{stator} \end{array}\right) = \left|\begin{array}{c} \text{for } i \in 1..Z \\ \text{for } r \in 1..N_r \end{array}\right|$$
 
$$\left|\begin{array}{c} \text{safety}_{rotor}_{i,\,r} = \left| \frac{\sigma\_\text{blade\_long}_i}{\sigma_{rotor}_{i,\,r}} \text{ if } \sigma_{rotor}_{i,\,r} \neq 0 \right. \\ \left| \infty \text{ otherwise} \right. \\ \left| \text{safety}_{stator}_{i,\,r} = \left| \frac{\sigma\_\text{blade\_long}_i}{\sigma_{stator}_{i,\,r}} \text{ if } \sigma_{stator}_{i,\,r} \neq 0 \right. \\ \left| \infty \text{ otherwise} \right. \\ \left( \text{safety}_{rotor} \right) \\ \left| \text{safety}_{stator} \right. \right|$$

|                               |   | 1    | 2     | 3     | 4     | 5     | 6     | 7     | 8      | 9     |
|-------------------------------|---|------|-------|-------|-------|-------|-------|-------|--------|-------|
| safety <sub>rotor</sub> $T =$ | 1 | 1.12 | 1.14  | 1.12  | 1.1   | 1.06  | 0.92  | 0.9   | 0.9    | 0.61  |
| rotor –                       | 2 | 1.34 | 1.35  | 1.3   | 1.22  | 1.13  | 0.8   | 0.84  | 0.87   | 0.63  |
|                               | 3 | 23.2 | 47.93 | 28.84 | 37.81 | 47.25 | 46.46 | 73.35 | 115.57 | 30.93 |

|                                   |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|-----------------------------------|---|---|---|---|---|---|---|---|---|---|
| $safety_{rotor}^{T} \ge safety =$ | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| rotor – salety                    | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|                                   | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

|                                                    |   | 1      | 2      | 3                                       | 4                                       | 5                                       |
|----------------------------------------------------|---|--------|--------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| safety, $T = \begin{bmatrix} T \\ T \end{bmatrix}$ | 1 | 115.24 | 412.98 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |
| salety stator -                                    | 2 | 1.39   | 1.91   | 1.89                                    | 1.92                                    | 2.11                                    |
|                                                    | 3 | 0.61   | 0.98   | 0.97                                    | 0.98                                    |                                         |

|                                                |   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|------------------------------------------------|---|---|---|---|---|---|---|---|---|---|
| $safety_{stator} \xrightarrow{T} \ge safety =$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| salety stator = salety =                       | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|                                                | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

Рассматриваемая ступень:

$$j = \begin{vmatrix} j = 1 & \text{if type} = \text{"compressor"} \\ Z & \text{if type} = \text{"turbine"} \end{vmatrix}$$
 = 1  $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$   $= 1$ 

$$\mathbf{b_{iinn}} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{rotor_{j,N_r}}, \text{chord}_{stator_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 80 \cdot 10^{-3}$$

Расстояния от оси ЛМ до рассматриваемой ступени (м):

$$Rj = submatrix (R, 2 \cdot j - 1, 2 \cdot j + 1, 1, N_r) = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 165.8 & 228.9 & 278.0 \\ 2 & 174.6 & 228.9 & 272.5 \\ 3 & 182.5 & 228.9 & 267.3 \end{vmatrix} \cdot 10^{-3}$$

Дискретизация по высоте Л:

$$z = \min(Rj), \min(Rj) + \frac{\max(Rj) - \min(Rj)}{100} ... \max(Rj)$$

$$z_{rotor} = \begin{bmatrix} mean(Rj_{1,1},Rj_{2,1}), mean(Rj_{1,1},Rj_{2,1}) + \frac{mean(Rj_{1,N_r},Rj_{2,N_r}) - mean(Rj_{1,1},Rj_{2,1})}{100} ... mean(Rj_{1,N_r},Rj_{2,N_r}) & \text{if type} = "compressor" \\ mean(Rj_{2,1},Rj_{3,1}), mean(Rj_{2,1},Rj_{3,1}) + \frac{mean(Rj_{2,N_r},Rj_{3,N_r}) - mean(Rj_{2,1},Rj_{3,1})}{100} ... mean(Rj_{2,N_r},Rj_{3,N_r}) & \text{if type} = "turbine" \\ \end{bmatrix}$$

▼ Результаты расчета на прочность Л

























$$\begin{pmatrix} blade \\ r \end{pmatrix} = \begin{pmatrix} "rotor" \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} v\_p \\ v\_n \end{pmatrix} = \begin{pmatrix} v\_u_{rotor_{j},r} \\ v\_l_{rotor_{j},r} \\ v\_l_{stator_{j},r} \end{pmatrix} \text{ if blade = "rotor"} = \begin{bmatrix} 1 \\ 1 \\ 5.471 \\ 2 \\ -8.057 \end{bmatrix} \cdot 10^{-3} \qquad \begin{pmatrix} x0 \\ y0 \end{pmatrix} = \begin{pmatrix} x0_{rotor_{j},r} \\ y0_{rotor_{j},r} \end{pmatrix} \text{ if blade = "rotor"} = \begin{bmatrix} 1 \\ 1 \\ 27.743 \\ 2 \\ 4.660 \end{bmatrix} \cdot 10^{-3}$$
 
$$\begin{pmatrix} v\_u_{stator_{j},r} \\ v\_l_{stator_{j},r} \end{pmatrix} \text{ otherwise}$$
 
$$\begin{pmatrix} x0_{stator_{j},r} \\ v\_l_{stator_{j},r} \end{pmatrix} \text{ otherwise}$$
 
$$\begin{pmatrix} x0_{stator_{j},r} \\ y0_{stator_{j},r} \end{pmatrix} \text{ otherwise}$$

chord = 
$$\begin{vmatrix} \text{chord}_{\text{rotor}_{j,r}} & \text{if blade} = \text{"rotor"} \\ \text{chord}_{\text{stator}_{j,r}} & \text{if blade} = \text{"stator"} \end{vmatrix} = 61 \cdot 10^{-3}$$



Наиболее удаленные точки от НЛ (мм):

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}u_{rotor_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}u_{rotor_{j},r} & v_{-}u_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}u_{rotor_{j},r} & v_{-}u_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \end{pmatrix} = \begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \end{pmatrix} = \begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \end{pmatrix} = \begin{pmatrix} u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \\ u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \end{pmatrix} = \begin{pmatrix} u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \\ u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \end{pmatrix} = \begin{pmatrix} u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \\ u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \end{pmatrix} = \begin{pmatrix} u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \\ u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \end{pmatrix} = \begin{pmatrix} u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \\ u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \end{pmatrix} = \begin{pmatrix} u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \\ u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \end{pmatrix} = \begin{pmatrix} u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \\ u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \end{pmatrix} = \begin{pmatrix} u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \\ u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \end{pmatrix} = \begin{pmatrix} u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \\ u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \end{pmatrix} = \begin{pmatrix} u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \\ u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \end{pmatrix} = \begin{pmatrix} u_{-}u_{rotor_{j},r} & u_{-}u_{rotor_{j},r} \\ u_{-}u_{rotor_{j},r} & u_{-$$

Вывод результатов расчета Л на прочность

## ▼ Выбор материала Д

Запас по температуре (K):  $\Delta T_{\text{safety}} = 0$ 

Выбранный материал Д:  $material\_disk_i = \begin{subarray}{ll} "BT23" & if compressor = "Вл" \\ "BT6" & if compressor = "КНД" \\ \end{subarray}$ 

"ВТ9" if compressor = "КВД"

Плотность материала Д (кг/м^3):

Предел длительной прочности Д (Па):

 $\rho\_disk_i = \begin{bmatrix} 8266 & if material\_disk_i = "BЖ175" \\ 8320 & if material\_disk_i = "ЭП742" \\ 8393 & if material\_disk_i = "ЖС-6К" \\ 7900 & if material\_disk_i = "BT41" \\ 4500 & if material\_disk_i = "BT25" \\ 4570 & if material\_disk_i = "BT23" \\ 4510 & if material\_disk_i = "BT9" \\ 4430 & if material\_disk_i = "BT6" \\ NaN & otherwise \\ \end{bmatrix}$ 

 $\sigma_{disk\_long_i} = 10^6 \cdot \begin{vmatrix} 620 & \text{if material\_disk}_i = "B\%175" \\ 680 & \text{if material\_disk}_i = "ЭП742" \\ 125 & \text{if material\_disk}_i = "ЖС-6К" \\ 123 & \text{if material\_disk}_i = "BT41" \\ 150 & \text{if material\_disk}_i = "BT25" \\ 230 & \text{if material\_disk}_i = "BT23" \\ 200 & \text{if material\_disk}_i = "BT9" \\ 210 & \text{if material\_disk}_i = "BT6" \\ NaN & \text{otherwise} \end{vmatrix}$ 

| $\rho \operatorname{disk}^{\mathrm{T}} =$ |   | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
|-------------------------------------------|---|------|------|------|------|------|------|------|------|------|
| F                                         | 1 | 4510 | 4510 | 4510 | 4510 | 4510 | 4510 | 4510 | 4510 | 4510 |

Рассматриваемая ступень: 
$$j = 1$$

$$j_w = \begin{bmatrix} j = 1 \\ j = \end{bmatrix}$$
 "Такой ступени не существует!" if  $(j < 1) \lor (j > Z)$   $j$  otherwise

## ▼ Профилирование равнопрочного Д без центрального отв.

$$h(i,z) = \begin{pmatrix} \frac{\rho_{-} \text{disk}_{i} \cdot \omega^{2}}{2} \cdot \frac{1}{\sigma_{-} z_{rotor}(i,R_{st(i,2),ORIGIN})} \cdot \left[ \left(R_{st(i,2),ORIGIN}\right)^{2} - z^{2} \right] \\ \text{or} \quad \text{if } z \leq R_{st(i,2),ORIGIN} \end{pmatrix}$$

$$\text{NaN otherwise}$$

$$z = 0, \frac{R_{st(j,2),ORIGIN}}{N_{dis}} .. R_{st(j,2),ORIGIN}$$



Мах разница теор. напора ступени и реактивности от периферии к корню по высоте Л (Дж/кг) [16, с.118-119]:

$$\Delta H_{Tmax} = 0.10^{3}$$
$$\Delta R_{Lmax} = 0.0$$

$$\Delta H_{T}(\overline{d}) = -\Delta H_{Tmax} \cdot \overline{d} + \Delta H_{Tmax}$$

$$\Delta R_{L}(\overline{d}) = -\Delta R_{Lmax} \cdot \overline{d} + \Delta R_{Lmax}$$



$$\frac{t(i,a),av(N_{r})) - \left(R_{st(i,a),r}\right)^{m_{i}} \cdot \left(R_{st(i,a),av(N_{r})}\right)^{2 \cdot m_{i}+1} + A_{st(i,a),r} \cdot m_{i} \cdot \left[\left(R_{st(i,a),r}\right)^{2 \cdot m_{i}+1} \cdot \left(R_{st(i,a),av(N_{r})}\right) - \left(R_{st(i,a),av(N_{r})}\right) \cdot \left(R_{st(i,a),av(N_{r})}\right)^{2 \cdot m_{i}+1} \right]}{t(i,a),av(N_{r})} if (a = 2 \cdot x_{st(i,a),av(N_{r})}) - \left(R_{st(i,a),r}\right)^{m_{i}} \cdot \left(R_{st(i,a),av(N_{r})}\right)^{2 \cdot m_{i}+1} + A_{st(i,a),r} \cdot m_{i} \cdot \left[\left(R_{st(i,a),r}\right)^{2 \cdot m_{i}+1} \cdot \left(R_{st(i,a),av(N_{r})}\right) - \left(R_{st(i,a),av(N_{r})}\right)^{2 \cdot m_{i}+1} \right]}{t(a = 2 \cdot x_{st(i,a),av(N_{r})})^{2 \cdot m_{i}+1}} if (a = 2 \cdot x_{st(i,a),av(N_{r})})^{2 \cdot m_{i}+1} if (a = 2 \cdot x_{st$$

$$\frac{\operatorname{st(i,a),av(N_r)}}{(i,a),\operatorname{av(N_r)}} - 2 \cdot \left[ 2 \cdot A_{\operatorname{st(i,a),r}} \cdot \left( B_{\operatorname{st(i,a),r}} + \frac{b_{HT}}{\omega} \right) + \frac{k_{HT}^2}{\omega^2} \right] \cdot \ln \left( \frac{R_{\operatorname{st(i,a),r}}}{R_{\operatorname{st(i,a),av(N_r)}}} \right) \quad \text{if } (a = 2)$$

$$\begin{pmatrix} c_{st(j,1),r} \\ c_{st(j,2),r} \\ c_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 94.4 \\ 252.9 \\ 81.9 \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{st(j,1),r} \\ \alpha_{st(j,2),r} \\ \alpha_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 67.06 \\ 31.96 \\ 62.43 \end{pmatrix} \cdot \circ$$

$$\varepsilon_{\text{stator}_{j,r}} = 35.61^{\circ}$$

$$\begin{pmatrix} c_{a_{st(j,1),r}} \\ c_{a_{st(j,2),r}} \\ c_{a_{st(j,3),r}} \end{pmatrix} = \begin{pmatrix} 86.9 \\ 133.9 \\ 72.6 \end{pmatrix}$$

$$\begin{pmatrix} u_{st(j,1),r} \\ u_{st(j,2),r} \\ u_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 260.4 \\ 274.2 \\ 286.7 \end{pmatrix}$$

$$\begin{pmatrix} W_{st(j,1),r} \\ W_{st(j,2),r} \\ W_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 239.9 \\ 146.6 \\ 259.1 \end{pmatrix}$$

$$\begin{pmatrix} \beta_{st(j,1),r} \\ \beta_{st(j,2),r} \\ \beta_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 21.25 \\ 65.98 \\ 16.27 \end{pmatrix} \cdot ^{\circ}$$

$$\varepsilon_{\mathrm{rotor}_{\mathrm{j,r}}} = 44.74.^{\circ}$$

$$\begin{pmatrix} c_{st(j,1),r} \\ c_{st(j,2),r} \\ c_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 94.4 \\ 207.8 \\ 81.9 \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{st(j,1),r} \\ \alpha_{st(j,2),r} \\ \alpha_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 67.06 \\ 31.19 \\ 62.43 \end{pmatrix}.$$

$$\varepsilon_{\text{stator}_{j,r}} = 31.24^{\circ}$$

$$\begin{pmatrix} c_{a_{st(j,1),r}} \\ c_{a_{st(j,2),r}} \\ c_{a_{st(j,3),r}} \end{pmatrix} = \begin{pmatrix} 86.9 \\ 107.6 \\ 72.6 \end{pmatrix}$$

$$\begin{pmatrix} u_{st(j,1),r} \\ u_{st(j,2),r} \\ u_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 359.5 \\ 359.5 \\ 359.5 \end{pmatrix}$$

$$\begin{pmatrix} w_{st(j,1),r} \\ w_{st(j,2),r} \\ w_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 334.2 \\ 211.2 \\ 329.7 \end{pmatrix}$$

$$\begin{pmatrix} \beta_{st(j,1),r} \\ \beta_{st(j,2),r} \\ \beta_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 15.08 \\ 30.64 \\ 12.72 \end{pmatrix}.$$

$$\varepsilon_{\text{rotor}_{j,r}} = 15.56^{\circ}$$

$$\begin{pmatrix} c_{st(j,1),r} \\ c_{st(j,2),r} \\ c_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 94.4 \\ 190.2 \\ 81.9 \end{pmatrix}$$

$$\begin{pmatrix} c_{a_{st(j,1),r}} \\ c_{a_{st(j,2),r}} \\ c_{a_{st(j,3),r}} \end{pmatrix} = \begin{pmatrix} 86.9 \\ 106.1 \\ 72.6 \end{pmatrix}$$

$$\begin{pmatrix} w_{st(j,1),r} \\ w_{st(j,2),r} \\ w_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 409.2 \\ 290.3 \\ 388.8 \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{st(j,1),r} \\ \alpha_{st(j,2),r} \\ \alpha_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 67.06 \\ 33.91 \\ 62.43 \end{pmatrix} \cdot \circ$$

$$\begin{pmatrix} u_{st(j,1),r} \\ u_{st(j,2),r} \\ u_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 436.7 \\ 428.1 \\ 419.9 \end{pmatrix}$$

$$\begin{pmatrix} \beta_{st(j,1),r} \\ \beta_{st(j,2),r} \\ \beta_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 12.27 \\ 21.44 \\ 10.76 \end{pmatrix}$$

$$\varepsilon_{\text{stator}_{j,r}} = 12.58^{\circ}$$

$$\varepsilon_{\text{rotor}_{j,r}} = 9.18^{\circ}$$







