ÁLGEBRA LINEAL (GRADOS EN INFORMÁTICA) ENERO 2015

Apellidos: Nombre:

Ejercicio 1. (3 ptos.) Se consideran en el espacio vectorial R⁴ los siguientes subespacios:

$$V_1 = \{(a, b, b, -a) : a, b \in \mathbb{R}\},$$
 $V_2 = \{(x, y, z, t) : x + y - z = 0, 3x + 2y - 2z = 0\}$

- a) Halla dimensión, base, ecuaciones paramétricas y ecuaciones implícitas de $V_1, V_2, V_1 \cap V_2$ y de $V_1 + V_2$.
 - b) Justica que V₁, V₂ son efectivamente subespacios vectoriales.
 - c) Da la interpretación geométrica de los subespacios del apartado a).
 - d) Determina si es directa la suma $V_1 + V_2$.

Ejecicio 2. (3 ptos.) Sea $f : \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ una aplicación lineal tal que:

$$f(1,0,0) = (1,0,2,1)$$

 $f(0,1,0) = (1,-1,1,0)$
 $f(0,0,1) = (0,1,1,1)$

- a) Halla una base, dimensión, ecuaciones paramétricas y ecuaciones implícitas de la imagen. ¿Es sobreyectiva?
- b)Halla una base, dimensión, ecuaciones paramétricas y ecuaciones implícitas del núcleo. ¿Es inyectiva?. ¿Es isomorfismo?
- c) Indicar la matriz de la aplicación anterior respecto de la base canónica de R³ y B = {(1,0,0,1), (0,1,0,1), (0,0,1,1), (0,0,0,1)}.
- Ejecicio 3. (1.5 ptos) Sea $f : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ una aplicación lineal tal que: f(x, y, z) = (3x, x, x). Calcula los autovalores y autovectores de la matriz asociada a esta aplicación. Estudia si es diagonalizable y en tal caso dar la matriz diagonal D y la matriz P tal que $P^{-1}AP = D$, donde A es la matriz de esta aplicación.

Ejercicio 4. (0.75 ptos) Da la definición de producto escalar y espacio eucídeo.

NOTA: TODAS LAS ELIMINACIONES DE PARÂMETROS Y TODOS LOS SIS-TEMAS HAY QUE RESOLVERLOS POR MATRICES.