A design perspective of instrumental variable method

Xinzhou Guo

HKUST

(Credited to Zhichao Jiang)

April 17, 2024

Xinzhou Guo Causal Inference April 17, 2024 1/37

DExaple: Encarrige rest trick

Define Potential Outrore on Z;

(asul Quartity; Couplier,...

Ec Yco; - Yco; I couplier)

identiability assumption; estante

Instrumental variable method

- A general approach to identify causal effects with latent confounding
 - polular in econometrics
 - 2 relies on the existence of an additional variable
 - 3 many controversial applications due to the strong assumptions

- Two perspectives
 - design perspective: encouragement design
 - econometric perspective: two-stage least squares

Xinzhou Guo Causal Inference April 17, 2024 2/37

Encouragement Design

- Often, for ethical and logistical reasons, we cannot force all experimental units to follow the randomized treatment assignment
 - 1 some in the treatment group refuse to take the treatment
 - 2 some in the control group manage to receive the treatment
- Encouragement design: randomize the encouragement to receive the treatment rather than the receipt of the treatment itself
- Can we estimate the treatment effect (effect of the actually received treatment)?

Xinzhou Guo Causal Inference April 17, 2024 3/37

Notation

- Randomized encouragement: $Z_i \in \{0, 1\}$
- SUTVA holds
- Potential treatment variables: $(D_i(1), D_i(0))$
 - **1** $D_i(z) = 1$: would receive the treatment if $Z_i = z$
 - 2 $D_i(z) = 0$: would not receive the treatment if $Z_i = z$
- Potential outcome: $Y_i(z)$ why do we define on Z instead of D?
- Observed treatment receipt indicator: $D_i = D_i(Z_i) \subset \mathcal{L}(\mathcal{L}_i)$
- Observed and potential outcomes: $Y_i = Y_i(Z_i) = Z_i \cdot \zeta_i \cdot \zeta_i + \zeta_i \cdot \zeta_i$

Xinzhou Guo Causal Inference April 17, 2024 4/37

Effect of the treatment receipt?

- Randomization: $\{Y_i(1), Y_i(0), D_i(1), D_i(0)\} \perp Z_i$
- Intention-to-treat analysis:

$$\mathbb{E}\left\{Y_{i}(1) - Y_{i}(0)\right\} = \mathbb{E}\left(Y_{i} \mid Z_{i} = 1\right) - \mathbb{E}\left(Y_{i} \mid Z_{i} = 0\right)$$

- intention to treat effect: effect of the treatment assignment (not useful)
- ITT analysis does not yield the treatment effect
- As-treated analysis: $\mathbb{E}(Y_i \mid D_i = 1) \mathbb{E}(Y_i \mid D_i = 0)$
 - comparison of the treated and untreated subjects
 - no benefit of randomization \rightsquigarrow selection bias
- Per-protocol analysis: $\mathbb{E}(Y_i \mid Z_i = 1, D_i = 1) \mathbb{E}(Y_i \mid Z_i = 0, D_i = 0)$
 - comparison of the treated and untreated subjects who follow the treatment assignment
- What's the definition of treatment effect?

Xinzhou Guo Causal Inference April 17, 2024

$$E(X_{i(i)} - Y_{i(o)} | complier)$$

$$= E(X_{i(i)} - Y_{i(o)} | V_{i(c)} = 1 - V_{i(o)} = 0)$$

$$\frac{E(Y_{i} | Z_{i=1}, |V_{i=1})}{E(Y_{i(i)} | Z_{i=1}, |V_{i(i)} = 1)}$$

$$= E(Y_{i(i)} | V_{i(i)} = 1)$$

Compliance behavior

- Four principal strata (latent types):
 - compliers $(D_i(1), D_i(0)) = (1, 0)$, • non-compliers $\begin{cases} \text{always - takers} & (D_i(1), D_i(0)) = (1, 1), \\ \text{never - takers} & (D_i(1), D_i(0)) = (0, 0), \\ \text{defiers} & (D_i(1), D_i(0)) = (0, 1) \end{cases}$
 - denote the compliance behavior $(\underline{a}, \underline{n}, \underline{c}, \underline{d})$ by $U_i \leadsto D_i$ is a function of Z_i and U_i
- Observed strata and compliance behavior:

$Z_i = 1$		$Z_i = 0$	
$D_i = 1$	Complier/Always-taker	Defier/Always-taker	
$D_i = 0$	Defier/Never-taker	Complier/Never-taker	

Xinzhou Guo Causal Inference April 17, 2024 6

Assumptions

- Randomization: $\{Y_i(1), Y_i(0), D_i(1), D_i(0)\} \perp Z_i$
- Monotonicity: $D_i(1) \ge D_i(0) \leadsto$ no defiers
- Exclusion restriction: $Y_i(1) = Y_i(0)$ for always takers and never-takers
- $\mathbb{E}\left\{D_i(1) D_i(0)\right\} > 0 \iff \text{there exists compliers}$

Xinzhou Guo Causal Inference April 17, 2024 7/37

Monotonicity: implications

• Observed strata and compliance behavior under monotonicity

 $\begin{cases} \text{pr(never-taker)} = \text{pr}\left(D_i = 0 \mid Z_i = 1\right) \\ \text{pr(always-taker)} = \text{pr}\left(D_i = 1 \mid Z_i = 0\right) \\ \text{pr(complier)} = \text{pr}\left(D_i = 1 \mid Z_i = 1\right) - \text{pr}\left(D_i = 1 \mid Z_i = 0\right) \end{cases}$

- ◀ □ ♪ ◀ ∰ ♪ ◀ 豊 ♪ ◆ 豊 · ♪ Q()

Xinzhou Guo Causal Inference April 17, 2024

Hluays- teler Ec ((1- (co) / pc1)=1/co)=1)

Exclusion restriction: implications

- ITT effect for units with different compliance behavior
 - always-taker: $\underline{ACE}_a = \mathbb{E} \{Y_i(1) Y_i(0) \mid D_i(1) = D_i(0) = 1\} = 0$
 - never-taker: $ACE_n = \mathbb{E} \{Y_i(1) Y_i(0) \mid D_i(1) = D_i(0) = 0\} = 0$
 - complier: $ACE_c = \mathbb{E} \{Y_i(1) Y_i(0) \mid D_i(1) = 1, D_i(0) = 0\}$
- ACE $_c$: Complier Average Causal Effect (CACE) or Local Average Treatment Effect (LATE)
 - for compliers: $Z_i = D_i$, ITT effect = treatment effect we can estimate.

Xinzhou Guo Causal Inference April 17, 2024

$$ACE_{p} = E(P(0) - P(0))$$

$$= E I_{SP(0)} - P(0) = 1$$

$$= P(P(0) = 1, P(0) = 0) = P(60)$$

$$= P(P(0) = 1, P(0) = 0) = P(60)$$

Complier average causal effect

• ITT effect decomposition:

$$ACE_Y = ACE_c \times pr(compliers) + ACE_a \times pr(always - takers) + ACE_n \times pr(never - takers) = ACE_c \times pr(compliers)$$

- ITT effect (why?) on $D : ACE_D = pr$ (compliers)
- $ACE_c = ACE_Y / ACE_D$

Xinzhou Guo Causal Inference April 17, 2024 10/37

Identification

- ACE_Y and ACE_D are identifiable
- Identification formula:

$$ACE_{c} = \frac{\mathbb{E}(Y_{i} \mid Z_{i} = 1) - \mathbb{E}(Y_{i} \mid Z_{i} = 0)}{\mathbb{E}(D_{i} \mid Z_{i} = 1) - \mathbb{E}(D_{i} \mid Z_{i} = 0)}$$
$$= \frac{Cov(Y_{i}, Z_{i})}{Cov(D_{i}, Z_{i})}$$

• Z acts as an IV for D – why?

Xinzhou Guo Causal Inference April 17, 2024 11/37

Complier average causal effect

- CACE = $\mathbb{E} \{Y_i(1) Y_i(0) \mid D_i(1) = 1, D_i(0) = 0\}$
 - average effect of encouragement for compliers
 - average treatment effect for compliers $(Z_i = D_i)$
- \bullet CACE \neq treatment effect unless the treatment effect for non-compliers equals CACE
- Different encouragement <u>yields</u> different compliers

Xinzhou Guo Causal Inference April 17, 2024 12/37

Alternative notation

• Potential outcome: $Y_i(z,d)$

•
$$Y_i = Y_i(Z_i) \notin Y_i(Z_i \bigcirc D_i(Z_i))$$

- Exclusion restriction: $Y_i(z,d) = Y_i(d)$
 - $ACE_Y = \mathbb{E} \{Y_i(D_i(1)) Y_i(D_i(0))\}$
 - $ACE_c = \mathbb{E} \{Y_i(d=1) Y_i(d=0) \mid U_i = c\}$

Xinzhou Guo Causal Inference April 17, 2024 13 / 37

Inference

- Wald estimator: $\widehat{CACE}_{Wald} = \frac{\widehat{ACE}_Y}{\widehat{ACE}_D}$
- Consistency: $\widehat{CACE}_{Wald} \xrightarrow{p} CACE = ACE_c$
- Asymptotic variance via the Delta method:

$$\underbrace{\operatorname{Var}\left(\widehat{\operatorname{CACE}}_{\operatorname{Wald}}\right)}_{\operatorname{Var}\left(\widehat{\operatorname{ACE}}_{D}^{4}\right)} \underbrace{\underbrace{\operatorname{ACE}_{D}^{2}\operatorname{var}\left(\widehat{\operatorname{ACE}}_{D}^{2}\right) + \operatorname{ACE}_{Y}^{2}\operatorname{var}\left(\widehat{\operatorname{ACE}}_{D}\right)}_{-2\operatorname{ACE}_{Y}\operatorname{ACE}_{D}\operatorname{cov}\left(\widehat{\operatorname{ACE}}_{Y},\widehat{\operatorname{ACE}}_{D}\right)} \cdot \underbrace{\left(\widehat{\operatorname{ACE}}_{Y},\widehat{\operatorname{ACE}}_{D}\right)}_{-2\operatorname{ACE}_{Y}\operatorname{ACE}_{D}\operatorname{cov}\left(\widehat{\operatorname{ACE}}_{Y},\widehat{\operatorname{ACE}}_{D}\right)}_{-2\operatorname{ACE}_{Y}\operatorname{ACE}_{D}\operatorname{cov}\left(\widehat{\operatorname{ACE}}_{Y},\widehat{\operatorname{ACE}}_{D}\right)}.$$

where

$$\operatorname{cov}\left(\widehat{\mathrm{ACE}}_{Y}, \widehat{\mathrm{ACE}}_{D}\right) = \underbrace{\frac{\operatorname{cov}\left(Y_{i}(1), D_{i}(1)\right)}{n_{1}} + \frac{\operatorname{Cov}\left(Y_{i}(0), D_{i}(0)\right)}{n_{0}}}_{\operatorname{cov}\left(Y_{i}(1), D_{i}(1)\right)} + \underbrace{\frac{\operatorname{Cov}\left(Y_{i}(0), D_{i}(0)\right)}{n_{0}}}_{\operatorname{cov}\left(Y_{i}(1), D_{i}(1)\right)}$$

Xinzhou Guo Causal Inference April 17, 2024 14/37

$$\int a(\tilde{\epsilon}_{x} - A(\tilde{\epsilon}_{x})) - A(\tilde{\epsilon}_{y}) - A(\tilde{\epsilon}_{y})$$

$$\int a(\tilde{\epsilon}_{y} - A(\tilde{\epsilon}_{y})) - A(\tilde{\epsilon}_{y}) - A(\tilde{\epsilon}_{y})$$

$$\int a(\tilde{\epsilon}_{y} - A(\tilde{\epsilon}_{y})) - A(\tilde{\epsilon}_{y}) - A(\tilde{\epsilon}_{y})$$

$$\int a(\tilde{\epsilon}_{y} - A(\tilde{\epsilon}_{y})) - A(\tilde{\epsilon}_{y})$$

$$\int a(\tilde{\epsilon}_{y} - A(\tilde{\epsilon}_{y})) - A(\tilde{\epsilon}_{y})$$

$$\int_{0}^{\alpha} \left(\frac{\partial}{\partial t} - \theta_{1} \right) \longrightarrow \mathcal{N}(0, \Sigma)$$

$$\int_{0}^{\alpha} \left(\frac{\partial}{\partial t} - \theta_{2} \right) \longrightarrow \mathcal{N}(0, \Sigma)$$

$$\int_{0}^{\alpha} \left(\frac{\partial}{\partial t} - \theta_{2} \right) \longrightarrow \mathcal{N}(0, \Sigma)$$

$$\int_{0}^{\alpha} \left(\frac{\partial}{\partial t} - \theta_{2} \right) \longrightarrow \mathcal{N}(0, \Sigma)$$

$$\int_{0}^{\alpha} \left(\frac{\partial}{\partial t} - \theta_{2} \right) \longrightarrow \mathcal{N}(0, \Sigma)$$

$$\int_{0}^{\alpha} \left(\frac{\partial}{\partial t} - \theta_{2} \right) \longrightarrow \mathcal{N}(0, \Sigma)$$

$$\int_{0}^{\alpha} \left(\frac{\partial}{\partial t} - \theta_{2} \right) \longrightarrow \mathcal{N}(0, \Sigma)$$

$$\int_{0}^{\alpha} \left(\frac{\partial}{\partial t} - \theta_{2} \right) \longrightarrow \mathcal{N}(0, \Sigma)$$

$$\int_{0}^{\alpha} \left(\frac{\partial}{\partial t} - \theta_{2} \right) \longrightarrow \mathcal{N}(0, \Sigma)$$

$$\int_{0}^{\alpha} \left(\frac{\partial}{\partial t} - \theta_{2} \right) \longrightarrow \mathcal{N}(0, \Sigma)$$

$$\int_{0}^{\alpha} \left(\frac{\partial}{\partial t} - \theta_{2} \right) \longrightarrow \mathcal{N}(0, \Sigma)$$

$$\int_{0}^{\alpha} \left(\frac{\partial}{\partial t} - \theta_{2} \right) \longrightarrow \mathcal{N}(0, \Sigma)$$

Variance calculation

- $\overrightarrow{ACE}_{Y} \overrightarrow{CACE} \cdot \overrightarrow{ACE}_{D}$ is the difference in means estimator for the adjusted outcome $A_{i} = Y_{i} \overrightarrow{CACE} \cdot D_{i}$ what is the interpretation?
- Variance estimation steps
 - obtain the adjusted outcome $A_i = Y_i \widehat{CACE} \cdot D_i$
 - obtain the variance estimate based on the adjusted outcome

$$\widehat{V}_A = \frac{\widehat{\text{var}}\{A_i(1)\}}{n_1} + \frac{\widehat{\text{var}}\{A_i(0)\}}{n_0}$$

• obtain the final variance estimate $\widehat{V}_A/\widehat{\mathrm{ACE}}_D^2$

15 / 37

Xinzhou Guo Causal Inference April 17, 2024

Weak instrumental variable

- $\widehat{CACE}_{Wald} = \frac{\widehat{ACE}_Y}{\widehat{ACE}_D}$ has poor properties when ACE_D is close to 0 weak instrument
 - CACE_{Wald} has finite sample bias
 - confidence interval has poor coverage rate
- How do we deal with a weak instrument (encouragement)?
 - testing: $H_0: \underline{CACE} = 0 \iff H'_0: \underline{ACE}_{Y} = 0$
 - confidence interval: Anderson-Rubin type confidence interval based on Fieller (1954)

Xinzhou Guo Causal Inference April 17, 2024 16/37

Anderson-Rubin type confidence interval

• Given the true value of CACE,
$$\mathbb{E}\left\{\widehat{ACE}_Y - \widehat{CACE} \cdot \widehat{ACE}_D\right\} = 0$$

- Inverting hypothesis tests to obtain a confidence interval
- Define the adjusted outcome $A_i(t) = Y_i tD_i$
 - ACE on $A_i(t)$: $\widehat{ACE}_A(t)$; variance estimator: $\widehat{V}_A(t)$
 - $\hat{A}_i(t)$ and $\hat{V}_A(t)$ are functions of t
 - $\mathbb{E}\left\{\widehat{ACE}_A(CACE)\right\} = 0$ test object and translated to $\widehat{ACE}_A(CACE = 0)$

•
$$\operatorname{pr}\left(\left|\frac{\widehat{ACE}_A(CACE)}{\sqrt{\widehat{V}_A(CACE)}}\right| \leq 1.96\right) = 0.95$$

• Solve a quadratic inequality to obtain the confidence interval

Xinzhou Guo Causal Inference April 17, 2024 17/37

(((1), (10), (10)) 1 2 ((11)- that, (10)-that) 12

Evaluation of job training program

- A randomized field experiment investigating the efficacy of a job training intervention on unemployed workers
- Encouragement: Z; participation: D; job-search self-efficacy: Y
- Assumption:
 - Monotonicity: being encouraged would never discourage anyone from participating
 - Exclusion restriction: being encouraged has no effect on other than through participation in the program
- CACE: effect of the encouragement (participation) on job-search self-efficacy for people who would participate if and only if they are encouraged
- ITT: est. = 0.067, s.e. = 0.050, 95%Cl = [-0.031, 0.166]
- CACE: est. = 0.109, s.e. = 0.081,95%Cl = [-0.050,0.268]

Xinzhou Guo Causal Inference April 17, 2024 18/37

Z L (VC11, Vco), FCO, FCO)

 $V + C \times (1), \times (0),$ $Y_1 = \overline{Y}_1 - \overline{X}_1 Y_1$ $Y_2 - \overline{Y}_3$

Covariate adjustment

• We can obtain the adjusted estimator for both the ACEs on D and Y

$$\widehat{ACE}_{D,L} = \left\{ \bar{D}(1) - \widehat{\beta}_{D1}^{\top} \bar{X}(1) \right\} - \left\{ \bar{D}(0) - \widehat{\beta}_{D0}^{\top} \bar{X}(0) \right\}$$

$$\widehat{ACE}_{Y,L} = \left\{ \bar{Y}(1) - \widehat{\beta}_{Y1}^{\top} \bar{X}(1) \right\} - \left\{ \bar{Y}(0) - \widehat{\beta}_{Y0}^{\top} \bar{X}(0) \right\}$$

- $\widehat{\mathrm{CACE}}_L = \frac{\widehat{\mathrm{ACE}}_{Y,L}}{\widehat{\mathrm{ACE}}_{D,L}}$
- Asymptotically more efficient than the simple ratio estimator

Xinzhou Guo Causal Inference April 17, 2024 19 / 37

Variance calculation

$$\widehat{\mathrm{CACE}}_L - \mathrm{CACE} \approx \underbrace{\widehat{\mathrm{ACE}}_{Y,L} - \mathrm{CACE} \cdot \widehat{\mathrm{ACE}}_{D,L}}_{\mathrm{ACE}_D}$$

• $\widehat{ACE}_{Y,L} - \widehat{CACE} \cdot \widehat{ACE}_{D,L}$ is the difference in means estimator for the adjusted outcome

$$A_i = \begin{cases}
\left(Y_i - \hat{\beta}_{Y1}^\top X_i\right) - \text{CACE} \cdot \left(D_i - \hat{\beta}_{D1}^\top X_i\right) & \text{if } Z_i = 1 \\
\left(Y_i - \hat{\beta}_{Y0}^\top X_i\right) - \text{CACE} \cdot \left(D_i - \hat{\beta}_{D0}^\top X_i\right) & \text{if } Z_i = 0
\end{cases}$$

- Variance estimation steps
 - obtain the adjusted outcome
 - obtain the variance estimate based on the adjusted outcome

$$\widehat{V}_{A,L} = \frac{\widehat{\text{var}}\{A_i(1)\}}{n_1} + \frac{\widehat{\text{var}}\{A_i(0)\}}{n_0}$$

ullet obtain the final variance estimate $\widehat{V}_A/\widehat{\mathrm{ACE}}_{D,L}^2$

Xinzhou Guo Causal Inference April 17, 2024 20 / 37

Evaluation of a job training program

- Do covariate adjustment for the ITT effects
 - center the covariates (without intercept)
 - regress Y on X for both groups to obtain $\hat{\beta}_{Y1}$ and $\hat{\beta}_{Y0}$
 - regress D on X for both groups to obtain $\widehat{\beta}_{D1}$ and $\widehat{\beta}_{D0}$
- Calculate the ITT effects: $\widehat{ACE}_{D,L} = 0.617, \widehat{ACE}_{Y,L} = 0.059$
- Calculate the CACE: $\widehat{CACE}_L = \widehat{ACE}_{Y,L}/\widehat{ACE}_{D,L} = 0.096$
- Obtain the adjusted outcome

$$A_{i} = \begin{cases} \left(Y_{i} - \widehat{\beta}_{Y1}^{\top} X_{i}\right) - \widehat{\text{CACE}} \cdot \left(D_{i} - \widehat{\beta}_{D1}^{\top} X_{i}\right) & \text{if } Z_{i} = 1\\ \left(Y_{i} - \widehat{\beta}_{Y0}^{\top} X_{i}\right) - \widehat{\text{CACE}} \cdot \left(D_{i} - \widehat{\beta}_{D0}^{\top} X_{i}\right) & \text{if } Z_{i} = 0 \end{cases}$$

• Calculate the variance estimate $\hat{V}_{A,L}/\widehat{\text{ACE}}_{D,L}^2 = 0.006$

•

CACE: est. =
$$0.109$$
, s.e. = $0.081,95\%$ Cl = $[-0.050,0.268]$
CACE (covs): est. = 0.096 , s.e. = $0.080,95\%$ Cl = $[-0.061,0.252]$

Xinzhou Guo Causal Inference April 17, 2024 21/37

Necessary condition for identification

- Are exclusion restriction and monotonicity necessary?
- Necessary condition for identification: number of observed frequencies is larger than the number of parameters
 - observed data: $\operatorname{pr}(Z_i, D_i, Y_i) \rightsquigarrow 7$ observed frequencies
 - compliance behavior: $U_i = a, n, c$
 - parameters: $\operatorname{pr}(Y, Z, U) = \operatorname{pr}(Z) \operatorname{pr}(U \mid Z) \operatorname{pr}(Y \mid Z, U)$
 - number of parameters = $\begin{cases} 12 & \text{no asm.} \\ 9 & \text{with mon.} \\ 10 & \text{with ex.} \\ 7 & \text{with both} \end{cases}$
- Without exclusion restriction or monotonicity, CACE is not identifiable

- ◆□ ▶ ◆♪ ▶ ◆ ≥ ▶ ◆ ≥ ■ ◆ へへ⊙

E(Y(2) | U)

= E(Y | Z=2, V=U)

= E(Y | Z=1, V=C)

= E(VY | Z=1) - E(NY | Z=0)

Y(complier)

Identification for the joint distribution

• Proportions of principal strata

$$\pi_a = \text{pr}(D = 1 \mid Z = 0), \pi_n = \text{pr}(D = 0 \mid Z = 1), \pi_c = 1 - \pi_a - \pi_n$$

$$\underbrace{\mathbb{E}\{Y(z)\mid U\}}_{\mathbb{E}\{Y(1)\mid U=a\}} = \mathbb{E}\{Y(0)\mid U=a\} = \mathbb{E}\{Y(1)\mid U=a\} = \mathbb{E}\{Y(0)\mid U=a\} = \mathbb{E}(Y\mid Z=0,D=1)$$

$$\mathbb{E}\{Y(1)\mid U=n\} = \mathbb{E}\{Y(0)\mid U=n\} = \mathbb{E}(Y\mid Z=1,D=0)$$

•

$$\mathbb{E}\{Y(z) \mid U\} = \mathbb{E}(Y \mid Z = z, U) \text{ for } U = c$$

$$\mathbb{E}(Y \mid z = 1, U = c) = \pi_c^{-1} \{\mathbb{E}(DY \mid Z = 1) - \mathbb{E}(DY \mid Z = 0)\}$$

$$\mathbb{E}(Y \mid z = 0, U = c) = \pi_c^{-1} \{\mathbb{E}((1 - D)Y \mid Z = 0) - \mathbb{E}((1 - D)Y \mid Z = 1)\}$$

• Can replace Y with $\mathbf{1}(Y=y)$ to obtain $\operatorname{pr}(Y=y\mid Z=z,U)$

Xinzhou Guo Causal Inference April 17, 2024 23/3

Testable conditions for IV assumptions

How do we test the assumptions?

- Assumptions imply conditions that can be used to falsify the assumptions
- Testable conditions for exclusion restriction and monotonicity

• Statistical test for testable conditions

$$\mathbb{E}(Q \mid Z = 1) - \mathbb{E}(Q \mid Z = 0) \geqslant 0,$$

where
$$Q = D \cdot \mathbf{1}(Y = y), (1 - D) \cdot \mathbf{1}(Y = y)$$

$$= \mathcal{L} \left(\mathcal{L} \cdot \mathcal{L} \left(\mathcal{L} \cdot \mathcal{L} \right) \right)$$

Xinzhou Guo Causal Inference April 17, 2024 24/37

16 4=9, D=1 (Z=1) = P(Y(1)=9, D(1)=1/2=1) = P(*c()=y, D(1)=1). 11(Y=9, 1)=1 (2=0) = /16 K(0)=9, V(0)=1) 7 / L YC(1=9, DC()=1) > pl 4005=9, VO)=1) => P(\(\alpha(1) = 9\) \(\D(1) = 1) 2 P(\(\frac{1}{2}\)(\(\frac{1}{2}\)) \(\frac{1}{2}\)

Examples

- Investigators et al. (2014) assess the effectiveness of the emergency endovascular versus the open surgical repair strategies for patients with a clinical diagnosis of ruptured aortic aneurism
- Instrument Z=1: endovascular strategy; treatment D: treatment received; outcome Y=0: alive
- Statistical tests for testable conditions all pass
- CACE: est. = 0.131; 95% CI: (-0.036, 0.298)

Xinzhou Guo Causal Inference April 17, 2024 25 / 37

Examples

- In Hirano et al. (2000), physicians are randomly selected to receive a letter encouraging them to inoculate patients at risk for flu
- Instrument Z=1 : encouragement; treatment D : flu shot; outcome Y=0 : flu-shot related hospitalization
- Statistical tests for testable conditions all pass, however,

$$\mathbb{E}\{D(1-Y) \mid Z=1\} < \mathbb{E}\{D(1-Y) \mid Z=0\}$$

- CACE: est. = 0.116; 95% CI: (-0.061, 0.293)
- $\mathbb{E}(Y \mid Z = 1, U = c) = 1.004$

Xinzhou Guo Causal Inference April 17, 2024 26 / 37

CACE in observational studies

• Conditional independence and exclusion restriction may be more plausible after conditioning on covariates X_i

$$\underbrace{Z_i \perp \{Y_i(1), Y_i(0), D_i(1), D_i(0)\} \mid \mathbf{X}_i}_{Y_i(1) = Y_i(0) \text{ for } U = a, n}$$

• Within subgroup defined by **X**, estimate

CACE(
$$\mathbf{x}$$
) = $\mathbb{E}\{Y_i(1) - Y_i(0) \mid D_i(1) = 1, D_i(0) = 0, \mathbf{X}_i = \mathbf{x}\}$

• Estimate $CACE(\mathbf{x})$ for each \mathbf{x} and then average over \mathbf{X}

$$CACE = \mathbb{E} \left\{ CACE \left(\mathbf{X}_i \right) \mid D_i(1) = 1, D_i(0) = 0 \right\},\,$$

which requires the estimation of $\operatorname{pr}(\mathbf{X}_i \mid D_i(1) = 1, D_i(0) = 0)$

• For continuous \mathbf{X}_i , we need to model CACE(\mathbf{x}), which is hard to estimate because the model is for compliers only

Xinzhou Guo Causal Inference April 17, 2024 27

17, 8, X YCV=11 YCV=07

$$= \sum_{i \neq j} \frac{\sum_{i \neq j} \sum_{i \neq j} \sum_{i \neq j} \sum_{j \neq j}$$

Weighting method for CACE

We can do weighting for compliers.

Theorem (Abadie Kappa)

Suppose that the assumptions for CACE hold conditional on X_i . Define

$$\kappa_{0i} = \underbrace{(1-D)}_{\text{pr}(Z=0 \mid \mathbf{X}_i)} \underbrace{(1-Z) - (\text{pr}(Z=0 \mid \mathbf{X}_i))}_{\text{pr}(Z=0 \mid \mathbf{X}_i)},$$

$$\kappa_{1i} = \underbrace{D - \underbrace{Z - \text{pr}(Z=1 \mid \mathbf{X}_i)}_{\text{pr}(Z=0 \mid \mathbf{X}_i)},$$

Then

$$\mathbb{E}\left\{g\left(Y_{i}(0), \mathbf{X}_{i}\right) \mid U_{i} = c\right\} = \underbrace{\frac{1}{\operatorname{pr}\left\{U_{i} = c\right\}}}_{\mathbb{E}\left\{\kappa_{0i}g(Y, X)\right\}}$$

$$\mathbb{E}\left\{g\left(Y_{i}(1), \mathbf{X}_{i}\right) \mid U_{i} = c\right\} = \underbrace{\frac{1}{\operatorname{pr}\left\{U_{i} = c\right\}}}_{\mathbb{E}\left\{\kappa_{1}g(Y, X)\right\}}$$

Xinzhou Guo Causal Inference April 17, 2024 28 / 37

Abadie's procedure for estimating CACE

- Two-step procedure
 - step 1: fit a model for pr $(Z_i = 1 \mid \mathbf{X}_i)$, and calculate κ_{0i} and κ_{1i} for each unit
 - step 2: apply Abadie's formula

• Abadie's procedure simplifies to Wald estimator without covariates

- ◀ □ ♪ ◀ ∰ ♪ ◀ 豊 ♪ ◆ 豊 · ♪ �� (

Model-assisted weighting method

- We may want to assume some parametric models for $\underline{Y}(z)$, e.g. $\mathbb{E}\{Y_i(z) \mid \mathbf{X}_i, D_i(1) = 1, D_i(0) = 0\} = \beta_{z0} + \beta_{z,X}\mathbf{X}_i$ estimation is not direct because the model is for compliers only
- Least squares for compliers:

$$\underset{\boldsymbol{\beta}}{\operatorname{argmin}} \mathbb{E}\left[\left\{Y_{i}(z) - (\beta_{z0} + \beta_{z,X}\mathbf{X}_{i})\right\}^{2} \mid \underline{D_{i}(1)} = 1, \underline{D_{i}(0)} = 0\right]$$

$$\equiv \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \mathbb{E}\left[\kappa_{zi}\left\{Y_{i} - (\beta_{z0} + \beta_{z,X}\mathbf{X}_{i})\right\}^{2}\right]$$

why does this work?

- Abadie's procedure
 - step 1: fit a model for pr $(Z_i = 1 \mid \mathbf{X}_i)$, and calculate κ 's for each unit
 - step 2: weighted least squares estimation

Xinzhou Guo Causal Inference April 17, 2024 30/3

Effect of veteran status on earnings

- There were five draft lotteries during the Vietnam War period. In each lottery, priority for induction was determined by a Random Sequence Number (RSN) from 1-365 that was assigned to birthdates in the cohort being drafted
- Men were called for induction by RSN up to a ceiling determined by the Defense Department, and only men with lottery numbers below the ceiling could have been drafted
- Draft lottery RSNs were randomly assigned in a televised drawing held a few months before men reaching draft age were to be called
- Draft-eligibility ceilings were announced later in the year, once Defense Department manpower needs were known
- Subsequent selection from the draft-eligible pool was based on a number of criteria: physical examination and a mental aptitude test

Xinzhou Guo Causal Inference April 17, 2024 31/37

IV setup

- IV Z_i : draft-eligibility; treatment D_i : veteran status; outcome Y_i earnings in 1981-1984
- Assumptions hold?

Notes: The figure plots the difference in FICA taxable earnings by draft-eligibility status for the four cohorts born 1950-53. Each tick on the vertical axis represents \$500 real (1978) dollars.

FIGURE 2. THE DIFFERENCE IN EARNINGS BY DRAFT-ELIGIBILITY STATUS

Xinzhou Guo Causal Inference April 17, 2024 32/37

Wald estimates

TABLE 3—WALD ESTIMATES

		Draft-E	ligibility Effects in	Current \$		
Cohort	Year	FICA Earnings (1)	Adjusted FICA Earnings (2)	Total W-2 Earnings (3)	$\hat{p}^e - \hat{p}^n$ (4)	Service Effect in 1978 \$ (5)
1950	1981	-435.8	-487.8	- 589.6	0.159	
1930	1961	(210.5)		-389.6 (299.4)		-2,195.8
	1982	-320.2	(237.6) -396.1	-305.5	(0.040)	(1,069.5)
	1982					-1,678.3
	1983	(235.8) - 349.5	(281.7) -450.1	(345.4)		(1,193.6)
	1983			-512.9		-1,795.6
	1984	(261.6) -484.3	(302.0)	(441.2)		(1,204.8)
	1984		-638.7	-1,143.3		-2,517.7
1051	1.001	(286.8)	(336.5)	(492.2)	0.126	(1,326.5)
1951	1981	-358.3	-428.7 (224.5)	-71.6	0.136	-2,261.3
	1000	(203.6)	(224.5)	(423.4)	(0.043)	(1,184.2)
	1982	-117.3	-278.5	-72.7		-1,386.6
	1000	(229.1)	(264.1)	(372.1)		(1,312.1)
	1983	-314.0	-452.2	-896.5		-2,181.8
		(253.2)	(289.2)	(426.3)		(1,395.3)
	1984	-398.4	-573.3	-809.1		-2,647.9
		(279.2)	(331.1)	(380.9)		(1,529.2)
1952	1981	-342.8	-392.6	-440.5	0.105	-2,502.3
		(206.8)	(228.6)	(265.0)	(0.050)	(1,556.7)
	1982	-235.1	-255.2	-514.7		-1,626.5
		(232.3)	(264.5)	(296.5)		(1,685.8)
	1983	-437.7	-500.0	-915.7		-3,103.5
		(257.5)	(294.7)	(395.2)		(1,829.2)
	1984	-436.0	-560.0	-767.2		-3,323.8
		(281.9)	(330.1)	(376.0)		(1,959.3)

33 / 37

Xinzhou Guo Causal Inference April 17, 2024

Physical activity and weight after buying a car

Physical activity and weight following car ownership in Beijing, China: quasi-experimental cross sectional study

Michael L Anderson, ¹ Fangwen Lu, ² Jun Yang ³

- In January 2011, to deal with the problem of congestion, Beijing capped the number of new vehicles allowed at 240000 each year and introduced a vehicle permit (license plate) lottery
- After that date, only residents who entered and won the lottery were entitled to a license plate.
- The lottery was drawn monthly, and winners had to purchase a car within six months of winning. By mid-2012 the probability of winning fell below 2% a month

Xinzhou Guo Causal Inference April 17, 2024 34/37

Effect of winning the lottery

- IV: winning the lottery; treatment: buying a car; outcome: weekly transit rides, minute daily walking/bicycling, weight
- IV assumptions satisfied?

	Time since winning (95% CI)				
Dependent variables	0.1 years (minimum)	2.6 years (average)	5.1 years (maximum)		
Individuals aged ≥40					
Weekly transit rides	-2.18 (-4.13 to -0.24)	-2.1 (-3.35 to -0.85)	-2.02 (-5.16 to 1.12)		
Minutes daily walking/bicycling	12.1 (-4.66 to 28.86)	-2.59 (-12.12 to 6.94)	-17.29 (-36.52 to 1.95)		
Weight (kg)	1.29 (-5.07 to 7.65)	3.24 (<u>-0</u> .31 to 6.8)	5.2 (-2.59 to 12.99)		
Individuals aged ≥50	\sim				
Weekly transit rides	-2.88 (-5.57 to -0.19)	-1.9 (-3.61 to -0.18)	-0.91 (-5.45 to 3.63)		
Minutes daily walking/bicycling	27.4 (-0.28 to 55.08)	-1.19 (-13.76 to 11.38)	-29.78 (-54.08 to -5.49)		
Weight (kg)	-1 (-8.4 to 6.4)	4.67 (0.04 to 9.31)	10.34 (0.49 to 20.19)		

Xinzhou Guo Causal Inference April 17, 2024 35 / 37

Summary |

- ITT vs. CACE \rightsquigarrow additional assumptions are required
 - randomization of instrument
 - 2 monotonicity
 - **3** exclusion restriction
- Problems of external validity:
 - compliers vs. non-compliers
 - compliers as latent group defined by an instrument
- Exclusion restriction and monotonicity imply testable conditions

Xinzhou Guo Causal Inference April 17, 2024 36 / 37

Suggested readings

- Non-compliance
 - Angrist, Imbens & Rubin, "Identification of Causal Effects Using Instrumental Variables"
 - Imbens and Rubin, Chapters 23 and 24
 - Angrist and Pischke, Chapter 4
- Weighting method for CACE
 - Abadie (2003). "Semi-parametric instrumental variable estimation of treatment response models"

Xinzhou Guo Causal Inference April 17, 2024 37/37