

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ (ШКОЛА)

Департамент математического и компьютерного моделирования

ОТЧЕТ

к лабораторной работе №2 по дисциплине «Вычислительная математика»

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Выполнил студент гр.

Б9121-01.03.02сп (2)

Беляков О.В.

 $(\Phi.И.О.)$ (подпись)

г. Владивосток

2023

Содержание

1	Введение		3 5	
2	Точные методы решения			
	2.1	Схема	а Гаусса с выбором главного элемента	5
		2.1.1	Описание метода	5
		2.1.2	Код	5
		2.1.3	Тестирование	6
3	В Итерационные методы			7
4	Зак	лючени	ie	8

1. Введение

В этой лабораторной работе будет проведена работа по программированию и тестированию алгоритма выбора главного элемента для решения системы линейных алгебраических уравнений.

2. Точные методы решения

2.1. Схема Гаусса с выбором главного элемента

2.1.1. Описание метода

2.1.2. Код

```
import numpy as np
def get_max_index(mat: np.matrix, exclude: list):
    args = abs(mat).argmax(axis=1)
    maxes = abs(mat).max(axis=1)
    alist = [((k, args[k]), maxes[k]) for k in range(len(args)) if k not in
    exclude]
    argmax = max(alist, key = lambda x: x[1])
    return argmax [0]
def gaussian_elimination(matrix: np.matrix, values: np.array):
    matrix = matrix.copy().astype(float)
    values = values.copy().astype(float)
13
    if np.linalg.det(matrix) == 0:
14
      exit
15
16
    rows exclude = []
    for _ in range(len(matrix)):
18
      ind = get_max_index(matrix, rows_exclude)
19
      rows_exclude.append(ind[0])
      values[ind[0]] = values[ind[0]] / matrix[ind]
      matrix[ind[0]] = matrix[ind[0]] / matrix[ind]
23
      for i in range(len(matrix)):
24
        if i not in rows exclude:
          values[i] = matrix[(i, ind[1])] * values[ind[0]]
          matrix[i] -= matrix[(i, ind[1])] * matrix[ind[0]]
28
    rows_exclude.reverse()
29
    for i in rows exclude:
      ind = matrix[i].argmax()
31
      for j in range (len(matrix)):
        if j != i:
33
          values[j] -= matrix[(j, ind)] * values[i]
```

2.1.3. Тестирование

Для тестирования будут сгенерированы случайные матрицы и столбцы размерностью 10 в количестве 10000.

3. Итерационные методы

4. Заключение

В этой лабораторной работе была проведена работа по программированию и тестированию алгоритма выбора главного элемента для решения системы линейных алгебраических уравнений.