

ALOHA #6주차

Knapsack & Interval DP

#CH.O

Knapsack 문제란?

Knapsack 문제란?

배낭에 담을 수 있는 무게의 최댓값이 정해져 있고 일정 가치와 무게가 있는 짐들을 배낭에 넣을 때, 가치의 합이 최대가 되도록 짐을 고르는 방법을 찾는 문제

Knapsack 문제의 종류

Fractional Knapsack Problem

보석을 쪼개서 가방에 담을 수 있는 경우 보석들 중 무게 대비 가격이 가장 높은 것부터 담으면 된다.

0-1 Knapsack Problem

여러 종류의 보석들이 각각 한 개씩만 있는 경우 가장 대표적인 Knapsack 문제

Unbounded Knapsack Problem

여러 종류의 보석들이 무한히 존재하며 원하는 만큼 담을 수 있는 경우

#CH.1

0-1 Knapsack Problem

DP 배열의 정의

DP[k][w] = "크기 w의 배낭 안에 1~k번 보석까지 확인하여 담았을 때 최대 가치"

배낭의 최대 무게를 M이라고 했을 때, k번째 보석까지 확인하여 DP[k][M] 배열까지 채웠다면, k+1번째 보석을 배낭에 넣어 DP[k][w]를 채울 때 두 가지 상황을 가정할 수 있다.

k+1번째 보석을 담는 경우

k+1번째 보석을 담지 않는 경우

k+1번 보석을 담는 경우

가방에 k+1번 보석이 들어가야 하므로, 무게를 W'라고 할 때, DP[k][w-W']에서 k+1번째 보석의 가치(c)를 더해준 값이 DP[k+1][w]의 값이 된다.

K+1번 보석을 담지 않는 경우 가방에 들어있는 보석은 변하지 않으므로, DP[k+1][w]와 DP[k][w]의 값은 같다.

 K+1번 보석을 담는 경우

 가방에 k+1번 보석이 들어가야 하므로, 무게를 W'라고 할 때, DP[k][w-W']에서 k+1번째 보석의 가치(c)를 더해준 값이 DP[k+1][w]의 값이 된다.

 OI 두 가지 경우에서 가능한 DP[k+1][w]의 값들 중, 지맛값을 대입해준다!

K+1번 보석을 담지 않는 경우 가방DP[k+1][w]변화[mgx(BP[k][w],):DP[k][w=W']+c)

```
int N. W:
                           -// N : 보석의 개수
                            - // ₩ : 배낭의 크기
int _w[N_Max + 1], c[N_Max + 1];//_w[k] : k번째 보석의 무게
                            //c[k] : k번쨰 보석의 무게
int DP[N_Max + 1][W_Max + 1];
for (int k = 0; k < N; k++) {
   for (int w = 1; w \le W; w++) {
       if (w >= _w[k]) // w - _w[k]가 음수가 되지 않도록 체크!
          DP[k+1][w] = max(DP[k][w], DP[k][w - _w[k]] + c[k+1]);
       else
          DP[k+1][w] = DP[k][w];
```

풀어볼까유

#1535 안녕

다음 장에 풀이

전형적인 0-1 Knapsack 문제

배낭의 최대 용량을 99 (체력이 0이 되면 죽으므로)

인사할 때 잃는 체력을 보석의 무게,

인사할 때 얻는 기쁨을 보석의 가치로 생각한다.

위 코드에서 N과 N_Max를 사람의 수, W와 W_Max를 99라고 하고 w 배열과 c배열에 각각 인사했을 때 잃는 체력과 얻는 기쁨들을 입력받으면.

결과적으로 DP[N_Max][W_Max]칸의 값이 우리가 원하는 답이 된다.

#61.2

Unbounded Knapsack Problem

DP 배열의 정의

DP[k][w] = "크기 w의 배낭 안에 1~k번 보석까지 확인하여 담았을 때 최대 가치"

배낭의 최대 무게를 M이라고 했을 때, k번째 보석까지 확인하여 DP[k][M] 배열까지 채웠다면, k+1번째 보석을 배낭에 넣어 DP[k][w]를 채울 때 두 가지 상황을 가정할 수 있다.

k+1번째 보석을 1개 이상 담는 경우 k+1번째 보석을 담지 않는 경우

k+1번 보석을 1개 이상 담는 경우

가방에 k+1번 보석이 들어가야 하므로, 무게를 W'라고 할 때, DP[k+1][w-W']에서 k+1번째 보석의 가치(c)를 더해준 값이 DP[k+1][w]의 값이 된다.

K+1번 보석을 담지 않는 경우 가방에 들어있는 보석은 변하지 않으므로, DP[k+1][w]와 DP[k][w]의 값은 같다.

※ DP[k+1][w-W'] = w-W' 크기의 배낭에 k+1번째 보석까지 확인하여 담았을 때, 담을 수 있는 최대 가치를 저장한 칸

k+1번 보석을 1개 이상 담는 경우

가방에 k+1번 보석이 들어가야 하므로, 무게를 W'라고 할 때, DP[k+1][w-W']에서 k+1번째 보석의 가치(c)를 더해준 값이 DP[k+1][w]의 값이 된다.

* DP[k+1][w-W'] = w-W' 크기의 배낭에 k+1번째 보석까지 확인하여 담았을 때, 담을 수 있는 최대 가치를 저장한 칸

k+1번 보석을 1개 이상 담는 경우

0-1 Knapsack의 경우, k+1번째 보석을 추가로 담을 때, k+1번째 보석이 가방에 없었다는 가정이 있다. 즉, DP[k][w-W'] 배열을 참조해야 한다.

Unbounded Knapsack의 경우, k+1번째 보석을 추가로 담을 때, 가방 안에 k+1번째 보석이 이미 담겨 있을 수 도 있다. 즉 DP[k+1][w-W'] 배열을 참조해야 한다.

k+1번 보석을 1개 이상 담는 경우

0-1 Knapsack의 경우, k+1번째 보석을 추가로 담을 때, k+1번째 보석이 가방에 없었다는 가정이 있다. 즉, DP[k][w-W'] 배열을 참조해야 한다.

즉, DP[k][w=W']을 참조하느냐, DP[k±1][w=W']을 참조하느냐 이어는 구현하는 데 카이점이 없다.

0-1 Knapsack의 경우 DP배열의 크기는 N*W이고, 배열을 모두 채워야 하므로, 시간복잡도 또한 O(NW)이다.

Unbounded Knapsack의 경우도 마찬가지로, 공간복잡도와 시간복잡도 모두 O(NW)이다.

공간 복잡도 줄이기

Unbounded Knapsack의 경우, 0-1 Knapsack과 달리, 1차원 배열로 구현할 수 있다.

DP[k+1][w]를 구하기 위해 필요한 곳은 DP[k][w]와 DP[k][w-W']이다. 이를 DP[W_max]를 이용해 똑같이 구현할 수 있다.

EX) 총 배낭의 용량: 8

1번째 보석의 무게: 2, 1번째 보석의 가격: 4 2번째 보석의 무게: 3, 2번째 보석의 가격: 7

DP	0	1	2	3	4	5	6	7	8
	0	0	0	0	0	0	0	0	0

1번째 보석까지 확인하여 테이블을 채우면 다음과 같다.

1번째 보석의 무게: 2, 1번째 보석의 가격: 4

DP	0	1	2	3	4	5	6	7	8
	0	0	0	0	0	0	0	0	0
	+4	<	비교하여 더 큰 것	>					

1번째 보석까지 확인하여 테이블을 채우면 다음과 같다.

1번째 보석의 무게: 2, 1번째 보석의 가격: 4

DP	0	1	2	3	4	5	6	7	8
	0	0	4	0	0	0	0	0	0

1번째 보석까지 확인하여 테이블을 채우면 다음과 같다.

1번째 보석의 무게: 2, 1번째 보석의 가격: 4

DP	0	1	2	3	4	5	6	7	8
	0	0	4	4	8	8	12	12	16

2번째 보석의 무게: 3, 2번째 보석의 가격: 7 2번째 보석의 무게가 3이므로, DP[3]부터 갱신해 나간다.

DP[3]을 갱신하는 과정에서 이미 DP[3]에 들어간 값 '4'는 1번째 보석까지 확인했을 때의 최대 가치이다.

DP	0	1	2	3	4	5	6	7	8
	0	0	4	4	8	8	12	12	16

2번째 보석의 무게: 3, 2번째 보석의 가격: 7

DP[3]에 원래 있던 값인 4와 DP[3-3]+7을 비교해준다.

DP	0	1	2	3	4	5	6	7	8
	0	0	4	4	8	8	12	12	16
	+7			비교하여 더	>				
				큰것					

2번째 보석의 무게: 3, 2번째 보석의 가격: 7

DP[3]에 원래 있던 값인 4와 DP[3-3]+7을 비교해준다.

DP									
	0	0	4	7	8	8	12	12	16

2번째 보석의 무게: 3, 2번째 보석의 가격: 7

DP	0	1	2	3	4	5	6	7	8
	0	0	4	7	8	8	12	12	16
					I				
		+7		-	비교하여 더				
					큰것				

2번째 보석의 무게: 3, 2번째 보석의 가격: 7

DP	0	1	2	3	4	5	6	7	8
	0	0	4	7	8	8	12	12	16

2번째 보석의 무게: 3, 2번째 보석의 가격: 7

DP	0	1	2	3	4	5	6	7	8
	0	0	4	7	8	8	12	12	16
						I			
			+7			비교하여 더 큰 것			
						큰것			

2번째 보석의 무게: 3, 2번째 보석의 가격: 7

DP	0	1	2	3	4	5	6	7	8
	0	0	4	7	8	11	12	12	16

2번째 보석의 무게: 3, 2번째 보석의 가격: 7

DP	0	1	2	3	4	5	6	7	8
	0	0	4	7	8	11	12	12	16
							I		
				+7			비교하여 더		
							큰것		

2번째 보석의 무게: 3, 2번째 보석의 가격: 7

DP	0	1	2	3	4	5	6	7	8
	0	0	4	7	8	11	14	12	16

2번째 보석의 무게: 3, 2번째 보석의 가격: 7

DP	0	1	2	3	4	5	6	7	8	
	0	0	4	7	8	11	14	12	16	
+7 비교하여 더 큰 것										

2번째 보석의 무게: 3, 2번째 보석의 가격: 7

DP	0	1	2	3	4	5	6	7	8
	0	0	4	7	8	11	14	15	16

2번째 보석의 무게: 3, 2번째 보석의 가격: 7

DP	0	1	2	3	4	5	6	7	8
	0	0	4	7	8	11	14	15	16
									<u> </u>
						+7		\prec	비교하여 더 큰 것

Unbounded Knapsack Problem

2번째 보석의 무게: 3, 2번째 보석의 가격: 7

이를 반복하여 DP[8]까지 갱신한다.

					4				
	0	0	4	7	8	11	14	15	18

풀어볼까유

#4781 사탕가게

대표적인 문제

풀어볼까유

#9084 동전

대표적인 문제

#53

Interval DP

Interval DP란?

2차원 DP의 일종

DP[i][j]가 i번째부터 j번째까지의 정보를 담고 있을 때, 이러한 종류의 DP를 Interval DP라고 한다.

풀어볼까유

#11066 파일 합치기

DP table의 정의

처리해야 하는 배열은 문자열 하나, DP table은 2차원으로 정의

DP[i][j]는 i번째 파일부터 j번째 파일을 합칠 때 필요한 최소 비용을 저장

문제의 예제 입력에서 파일 4개 (40, 30, 30, 50)을 합치는 경우를 살펴보자

DP table의 정의에 따라 우리가 원하는 답은 DP[1][4]에 저장되어 있다.

마지막 1개의 파일을 만들 때, 아래 3가지 경우가 있다.

{40}/{30,30,50} {40,30}/{30,50} {40,30,30}/{50}

{40}/{30,30,50}의 경우를 살펴보자.

(40)이라는 파일의 경우, 다른 파일과 합친 적이 없으므로, (40)이라는 파일을 만드는데 드는 비용은 0이다. 즉, DP[1][1] 은 0이다.

{30,30,30}의 파일을 만드는 최소 비용도 앞 슬라이드와 같이 2가지로 생각할 수 있다. {30}/{30,50}

각각 0, 80의 비용이 들고, {30}과 {30,50}을 합치는데 110의 비용이 드므로 총 190 {30,30}/{50}

각각 60, 0의 비용이 들고, {30,30}과 {50}을 합치는데 110의 비용이 드므로 총 170

위의 두 경우를 비교했을 때, {30,30,50}의 파일을 만드는 데 최소 170의 비용이 필요함을 알 수 있다.

(40)/(30,30,50)의 경우를 살펴보자.

(40)이라는 파일의 경우, 다른 파일과 합친 적이 없으므로, (40)이라는 파일을 만드는데 드는 비용은 0이다. 즉, 마즉, 1 (40)과 (30,30,50) 두 파일을 합쳐서 (30,30,30)의 파일을 (40,30,430,50) 이파일을 만드는데는 데는 데는 (30,7730,50) (30,50) 나이용이를 만드는데것을 알 수 있다. 0 + 170 + 0.150 = 0320의 비용이를 만든다것을 알 수 있다. 90 (30,30) / (50) 각각 60, 0의 비용이들고, (30,30)과 (50)을 합치는데 110의 비용이 드므로 총 170

위의 두 경우를 비교했을 때, {30,30,50}의 파일을 만드는 데 최소 170의 비용이 필요함을 알 수 있다.

마찬가지 방식으로 다른 경우의 비용을 구해보면 {40,30}/{30,50}은 300, {40,30,30}/{50}의 경우 310의 비용이 드는 것을 알 수 있다.

이 3가지 경우 중 최소 비용이 드는 것은 {40,30}/{30,50}이므로, DP[1][4] = 300이다.

즉, $DP[i][j] = min(i <= k < j) {DP[i][k] + DP[k+1][j]} + (sum[j] - sum[i-1])$

어떻게 쪼개진 파일을 합쳐야 최소 비용이 되는지 결정

쪼개진 파일들을 합칠 때 드는 비용(일정)

sum[i]는 0~i번째 배열까지의 합을 의미함

다음 시간에 만나요~