

AERO4701 Assignment 1

STUDENT PLAGIARISM: COURSE WORK - POLICY AND PROCEDURE COMPLIANCE STATEMENT

INDIVIDUAL / COLLABORATIVE WORK

I/We certify that:

- (1) I/We have read and understood the *University of Sydney Student Plagiarism: Coursework Policy and Procedure*;
- (2) I/We understand that failure to comply with the *Student Plagiarism: Coursework Policy and Procedure* can lead to the University commencing proceedings against me/us for potential student misconduct under Chapter 8 of the *University of Sydney By-Law 1999* (as amended);
- (3) this Work is substantially my/our own, and to the extent that any part of this Work is not my/our own I/we have indicated that it is not my/our own by Acknowledging the Source of that part or those parts of the Work.

Name(s): Lydia Drabsch

Signature(s):

Lydia Drabsch

Date: 24/3/16

AERO4701

CONTENTS

1	Introduction	1
2	Question 1	1
3	Question 2	1
4	Introduction 4.1 Final orbital requirements	1 1 1
5	Appendix A: Question 1	2
6	Appendix B: Question 2	2
${f L}$	IST OF FIGURES	
${f L}$	IST OF TABLES	
	4.1 toxt	1

AERO4701 Assignment 1

1. Introduction

Each mainQN.m file has a section called 'User Input' where the animations and state plots can be turned on/off. Also the timestep and the number of days to simulate are defined. The default settings are dt = 100 seconds and days = 1.

2. Question 1

$$H_k = 2 \tag{1}$$

3. Question 2

4. Introduction

The final GEO orbit is defined as having a period of one sidereal day, 23 hours 56 minutes 4.0916 seconds. The satellite parameters in the park orbit are

4.1 Final orbital requirements

4.2 Methodology

The Hessian of the Lagrangian $H_{\mathcal{L}} = \nabla^2_{xx} \mathcal{L}$ BFGS method. Approximation of the Hessian update

$$\boldsymbol{H}_{k+1} = \boldsymbol{H}_k - \frac{\boldsymbol{H}_k s_k s_k^T \boldsymbol{H}_k}{s_k^T \boldsymbol{H}_k s_k} + \frac{\boldsymbol{y}_k \boldsymbol{y}_k^T}{\boldsymbol{y}_k^T s_k}$$
(2)

$$s_k = x_{k+1} - x_k \tag{3}$$

$$y_k = \nabla f_{k+1} - \nabla f_k \tag{4}$$

Table 4.1: text

Orbital Parameter	Initial Value	Final Value
Semi-major axis	6655937 m	
Period		86164.0916 s
Velocity		
Eccentricity	0	0
Inclination angle	-28.5°	0°
RAAN	0°	
Argument of Perigee	0°	
Mean Anomaly	0°	free
Epoch	0 s	free

AERO4701 Assignment 1

- 5. APPENDIX A: QUESTION 1
- 6. APPENDIX B: QUESTION 2