Policy learning for personalized treatment recommendation

Talk PreMeDICaL 30/09/2024

Laura Fuentes Vicente

Lab presentation

Montpellier Antenna, INRIA Côte d'Azur

IDESP (Institut Desbrest of epidemiology and Public Health)

PreMeDICaL (Precision Medicine by Data Integration and Causal Learning)

Julie JOSSE

Antoine CHAMBAZ

Paris Cité University

Plan

Plan

I. Context

I. Mathematical framework

II. Methods

- I. Measures of causal effect
 - I. Average treatment effect
 - II. Conditional average treatment effect
- II. Policy learning
 - I. Policy optimization
 - II. Policy evaluation

III. Results

IV. Conclusion

I. Context

Medical motivations

Given patient's characteristics, what is the **optimal treatment** to give to **maximize** each **patient's outcome**

→ Causal inference, policy learning

Example:

Find the **optimal hormone dose** to **maximize** the **number of oocyte** produced (under no-hyperstimulation constraint)

Gonadotrophin dose classes (treatment)

➤ Dose 1 ... ➤ Dose K

I.1-Mathematical framework

Set of independent and identically distributed subjects

- \succ Covariates: $X_i \in \mathcal{X}$
- \triangleright Binary action: $W_i \in \mathcal{W} = \{0,1\}$
- Potential outcomes: $Y_i(w) \in \mathcal{Y}, w \in \{0,1\}$ $Y_i(0)$ outcome in a world where w = 0 $Y_i(1)$ outcome in a world where w = 1

I.1-Mathematical framework

Set of independent and identically distributed subjects

- \succ Covariates: $X_i \in \mathcal{X}$
- \triangleright Binary action: $W_i \in \mathcal{W} = \{0,1\}$
- Potential outcomes: $Y_i(w) \in \mathcal{Y}, w \in \{0,1\}$ $Y_i(0)$ outcome in a world where w = 0 $Y_i(1)$ outcome in a world where w = 1
- \triangleright Observed outcome: $Y_i = Y_i(W_i) \in \mathcal{Y}$

I.1-Mathematical framework

Set of independent and identically distributed subjects

- \triangleright Covariates: $X_i \in \mathcal{X}$
- \triangleright Binary action: $W_i \in \mathcal{W} = \{0,1\}$
- Potential outcomes: $Y_i(w) \in \mathcal{Y}, w \in \{0,1\}$ $Y_i(0)$ outcome in a world where w = 0 $Y_i(1)$ outcome in a world where w = 1
- \triangleright Observed outcome: $Y_i = Y_i(W_i) \in \mathcal{Y}$
- ightharpoonup Complete data-structure: $\mathbb{O}_i = (X_i, Y_i(1), Y_i(0), W_i, Y_i) \sim \mathbb{P}_0$
- \triangleright Observation: $\mathcal{O}_i = (X_i, W_i, Y_i) \sim P_0$

II. Methods

II.1- Measures of causal effect

II.1.1- Average treatment effect

I.2.1-Average treatment effect

Represents the mean effect of treatment over a population

Individual treatment effect: $\Delta_i = Y_i(1) - Y_i(0)$

VS.

Average treatment effect:

$$\theta_{\mathbb{P}_0} = \mathbb{E}_{\mathbb{P}_0}[\Delta] = \mathbb{E}_{\mathbb{P}_0}[Y(1) - Y(0)]$$

1.2.1-Average treatment effect

Represents the <u>mean effect</u> of <u>treatment</u> over a population

Individual treatment effect: $\Delta_i = Y_i(1) - Y_i(0)$

Average treatment effect:

$$\theta_{\mathbb{P}_0} = \mathbb{E}_{\mathbb{P}_0}[\Delta] = \mathbb{E}_{\mathbb{P}_0}[Y(1) - Y(0)]$$

Observational data: $O_i = (X_i, W_i, Y_i) \sim P_0$

Covariates			Treatment	Outcome	Potential outcomes	
X_1	X_2	X_3	W	Y	Y(0)	Y(1)
1.1	20	A	1	200	?	200
-6	45	В	0	10	10	?
0	15	В	1	150	?	150
-2	52	А	0	100	100	?

Assumptions:

- 1. SUTVA: $Y_i = Y_i(W_i)$
- 2. Overlap: $\eta < P_0(W=1|X) < 1-\eta$, for $\eta > 0$ 3. Unconfoundedness: $Y(w) \perp W|X$, $w \in \{0,1\}$

Average treatment effect estimation:

$$\theta_{\mathbb{P}_{0}} = \mathbb{E}_{\mathbb{P}_{0}}[Y(1) - Y(0)] = \mathbb{E}_{\mathbb{P}_{0}}[Y(1)] - \mathbb{E}_{\mathbb{P}_{0}}[Y(0)]$$

$$\triangleq \mathbb{E}_{P_{0}}[Y|W = 1] - \mathbb{E}_{P_{0}}[Y|W = 0] = \mathbb{E}_{P_{0}}[\mathbb{E}_{P_{0}}[Y|W = 1, X] - \mathbb{E}_{P_{0}}[Y|W = 0, X]]$$

1.2.1-Average treatment effect estimators

Average treatment effect:

$$\psi_{G-comp,n} = \mathbb{E}_{P_n} [\hat{\mu}_{(1,n)}(X) - \hat{\mu}_{(0,n)}(X)] = \frac{1}{n} \sum_{i=1}^n \hat{\mu}_{(1,n)}(X_i) - \hat{\mu}_{(0,n)}(X_i)$$

$$\psi_{IPW,n} = \mathbb{E}_{P_n} \left[\frac{(2W - 1)Y}{\widehat{P}_n(W = w|X = x)} \right] = \frac{1}{n} \sum_{i=1}^n \frac{2W_i - 1}{\widehat{P}_n(W = W_i|X = X_i)} Y_i$$

$$\widehat{\mu}_{(1,n)}(X) = \widehat{\mathbb{E}}_{P_n}[Y|W=1,X]$$

$$\widehat{\mu}_{(0,n)}(X) = \widehat{\mathbb{E}}_{P_n}[Y|W=0,X]$$

1.2.1-Average treatment effect estimators

Average Treatment effect:

Double robust estimators

- → Augmented IPW / One-step correction estimator
- → Targeted MLE

$$\widehat{\mu}_{(1,n)}(X) = \widehat{\mathbb{E}}_{P_n}[Y|W=1,X]$$

$$\widehat{\mu}_{(0,n)}(X) = \widehat{\mathbb{E}}_{P_n}[Y|W=0,X]$$

Normal framework:

Representation of the relationship between:

- Observed data
- the empirical distribution (P_n)
- the parameter of interest $\psi(P_0)$

where:

- \mathcal{M} : set of distributions st. $\psi(P_0)$ well defined

$$-\psi(P_0) = \mathbb{E}_{P_0}[\mathbb{E}_{P_0}[Y|W=1,X] - \mathbb{E}_{P_0}[Y|W=0,X]]$$

$$-\psi(P_n) = \mathbb{E}_{P_n}[\widehat{\mathbb{E}}_{P_n}[Y|W=1,X] - \widehat{\mathbb{E}}_{P_n}[Y|W=0,X]]$$

Normal framework:

Representation of the relationship between:

- Observed data
- the empirical distribution (P_n)
- the parameter of interest $\psi(P_0)$

Case: $P_n \notin \mathcal{M}$

Case: $P_n \notin \mathcal{M}$

H \mathcal{M} $\times P_0$ $O_1,...,O_n \sim P_0$ X non-discrete

Consequences:

- → Restrinctive assumptions on model class or
- \rightarrow Using algorithms to estimate: $\widehat{\mathbb{E}}_{P_n}[Y|W,X]$
 - → slower convergence rate
 - → bias

$$\psi(P) = \psi(P_0) - \mathbb{E}_{P_0}[\varphi(O;P)] + Rem_{P_0}(P)$$
 Influence function (IF)
$$o_p(\frac{1}{\sqrt{n}})$$

$$\psi(P) = \psi(P_0) - \mathbb{E}_{P_0}[\varphi(O;P)] + Rem_{P_0}(P)$$
 Influence function (IF)
$$o_p(\frac{1}{\sqrt{n}})$$

$$\psi(P) - \psi(P_0) = a + b - c + o_p(\frac{1}{\sqrt{n}})$$

Assumptions:

$$1-\varphi(0;P) \in \mathcal{L}_{0}^{2}(P) = \{\varphi(0;P) \colon \mathbb{E}_{P}[\varphi(0;P)] = 0 \& \mathbb{E}_{P}[\varphi(0;P)^{2}] < \infty\}$$

2-
$$\exists P_{\infty} \in \mathcal{M} \text{ such that } \|\varphi(0;P) - \varphi(0;P_{\infty})\|_{2,p} \xrightarrow[n \to \infty]{} 0$$

$$a) \mathbb{E}_{P_n}[\varphi(O; P_\infty)] - \mathbb{E}_{P_0}[\varphi(O; P_\infty)] \Rightarrow \sqrt{n}(\mathbb{E}_{P_n}[\varphi(O; P_\infty)] - \mathbb{E}_{P_0}[\varphi(O; P_\infty)]) \rightarrow \mathcal{N}(0, Var_P(O; P_\infty)(O))$$

b)
$$(\mathbb{E}_{P_n}[\varphi(O;P)] - \mathbb{E}_{P_n}[\varphi(O;P_\infty)]) - (\mathbb{E}_{P_0}[\varphi(O;P)] - \mathbb{E}_{P_0}[\varphi(O;P_\infty)]) = o_p(\frac{1}{\sqrt{n}})$$

c) $\mathbb{E}_{P_n}[\varphi(O; P)]$: random term!

Augmented IPW

$$\psi(P) = \psi(P_0) - \mathbb{E}_{P_0}[\varphi(O; P)] + Rem_{P_0}(P) \qquad \Rightarrow \psi(P) - \psi(P_0) = a + b - c + o_p(\frac{1}{\sqrt{n}})$$

Solution:

$$\psi_{AIPW}(P) = \psi(P) + c = \psi(P) + \mathbb{E}_{P_n} [\varphi(O; P)] = \psi(P) + \frac{1}{n} \sum_{i=1}^n \varphi(O_i; P)$$

Objective: compute $\varphi(0; P)$!

Augmented IPW

$$\psi(P) = \psi(P_0) - \mathbb{E}_{P_0}[\varphi(O; P)] + Rem_{P_0}(P) \qquad \Rightarrow \psi(P) - \psi(P_0) = a + b - c + o_p(\frac{1}{\sqrt{n}})$$

Solution:

$$\psi_{AIPW}(P) = \psi(P) + c = \psi(P) + \mathbb{E}_{P_n} [\varphi(O; P)] = \psi(P) + \frac{1}{n} \sum_{i=1}^n \varphi(O_i; P)$$

Objective: compute $\varphi(0; P)$!

$$\begin{split} \psi_{AIPW}(P) &= \mathbb{E}_{P}[\ \widehat{\mathbb{E}}_{P}[Y|X,W=1] \ - \widehat{\mathbb{E}}_{P}[Y|X,W=0] \\ &+ \frac{1_{W=1}}{P(W=1|X=x)} (Y - \widehat{\mathbb{E}}_{P}[Y|X,W=1] \ - \frac{1 - 1_{W=1}}{1 - P(W=1|X=x)} (Y - \widehat{\mathbb{E}}_{P}[Y|X,W=0])] \end{split}$$

<u>II.1.1- ATE double robust estimators </u>

Targeted Maximum Likelihood Estimator (TMLE)

Performs the bias correction in the regression space *Q*

- Build initial estimators
 - Regression: $Q(P) \in Q$
 - Propensity score: $G(P) \in G$
- Build our fluctuation:

Correct initial regression $Q(P_n)$, s.t.:

$$c = \mathbb{E}_{P_n}[\varphi(O; P)] = 0$$

- Estimate $\psi(P_0)$ with corrected regression!

II.1.2- Conditional average treatment effect

I.2.2-Conditional average treatment effect

Expected <u>difference in outcome</u> between <u>receiving</u> and <u>not receiving</u> <u>treatment</u> within a specific <u>population</u> defined by covariates X = x

Example:

$$X = x$$

Conditional average treatment effect:

$$CATE_{\mathbb{P}_0}(x) = \mathbb{E}_{\mathbb{P}_0}[\Delta | X = x] = \mathbb{E}_{\mathbb{P}_0}[Y(1) - Y(0) | X = x]$$

Same assumptions

Conditional average treatment effect estimation:

$$\begin{aligned} CATE_{\mathbb{P}_{0}}(x) &= \tau_{P_{0}}(x), \quad \tau_{P} \colon \mathcal{X} \to \mathbb{R}, \quad \forall P \in \mathcal{M} \\ &= \mathbb{E}_{P_{0}}[Y|W = 1, X = x] - \mathbb{E}_{P_{0}}[Y|W = 0, X = x] \end{aligned}$$

I.2.2-Conditional treatment effect estimators

$$\hat{\mu}_{(1,n)}(x) = \widehat{\mathbb{E}}_{P_n}[Y|W=1, X=x]$$

$$\hat{\mu}_{(0,n)}(x) = \widehat{\mathbb{E}}_{P_n}[Y|W=0, X=x]$$

Conditional average treatment effect:

$$\tau_{G-comp,n}(x) = \hat{\mu}_{(1,n)}(x) - \hat{\mu}_{(0,n)}(x)$$

i.e. X-learner, R-learner, DR-learner, MACF, etc.

Double robust estimators

- → Augmented IPW / One-step correction estimator
- → Targeted MLE

II.2- Policy learning

II.2-Policy learning framework

Mathematical framework:

Let's consider a decision maker:

- \triangleright Patient characteristics: $X_i \in \mathcal{X}$ (covariates)
- \triangleright Actions: $W_i \in \mathcal{W}$ (here action = treatment)
- \triangleright Observed outcome: $Y_i \in \mathcal{Y}$ (for chosen action)

Policy: $d \in \mathcal{D}$ decision maker's support $d: \mathcal{X} \to \mathcal{W}$

II.2-Policy learning framework: policy value

The value of a policy reflects the mean outcome expected following the given policy (d)

$$V_d(\mathbb{P}_0) = \mathbb{E}_{\mathbb{P}_0}[Y(d(X))] = \mathbb{E}_{\mathbb{P}_0}[d(X)Y(1) + (1 - d(X))Y(0)]$$

$$\triangleq \mathbb{E}_{P_0}\left[\mathbb{E}_{P_0}[Y|X, W = d(X)]\right] = V_d(P_0)$$

- Assess performance of a policy
- Compare policies
- **>** ...

Two possible goals:

1. Optimization: Find the best treatment policy (maximizing the total expected value)

$$d^* \in \operatorname{argmax}_{d \in \mathcal{D}} V_d(P_0)$$

2. Evaluation: Estimating the expected value of a given policy:

$$V_d(\mathbb{P}_0) \triangleq V_d(P_0) \iff \hat{V}_d(P_n)$$

II.2.1- Policy optimization

II.2.1- Outcome modeling approaches

1- Outcome modeling-based methods:

Model Y(1) and Y(0)

 \rightarrow Estimate $CATE_{\mathbb{P}_0}(x)$:

$$\triangleq \tau_{P_0}(x) = \mathbb{E}_{P_0}[Y|W=1, X=x] - \mathbb{E}_{P_0}[Y|W=0, X=x]$$

$$d^*(X) = 1_{sign(\tau_{P_0}(X)) > 0}$$

Covariates	Treatment	Estimated potential outcomes	Treatment rule
X_1 X_2 X_3	W	$\widehat{\mu}_0(X)$	d (X)
1.1 20 F	1	100 200	1
-6 45 F	0	10 9	0
0 15 M	1	180 150	0
-2 52 M	0	70 170	1

$$\hat{\tau}_n(x) = \hat{\mu}_{1,n}(x) - \hat{\mu}_{0,n}(x)$$

IPW/AIPW

TMLE

MACF

II.2.1- Outcome modeling approaches

1- Outcome modeling-based methods:

Model Y(1) and Y(0)

 \rightarrow Estimate $CATE_{\mathbb{P}_0}(x)$:

$$\triangleq \tau_{P_0}(x) = \mathbb{E}_{P_0}[Y|W=1, X=x] - \mathbb{E}_{P_0}[Y|W=0, X=x]$$

$$d^*(X) = 1_{sign(\tau_{P_0}(X)) > 0}$$

Covariates	Treatment	Estimated potential outcomes	Treatment rule
X_1 X_2 X_3	W	$\widehat{\mu}_0(X)$ $\widehat{\mu}_1(X)$	d(X)
1.1 20 F	1	100 200	1
-6 45 F	0	10 9	0
0 15 M	1	180 150	0
-2 52 M	0	70 170	1

II.2.1- Outcome modeling approaches

1- Outcome modeling-based methods:

Model Y(1) and Y(0)

 \rightarrow Estimate $CATE_{\mathbb{P}_0}(x)$:

$$\triangleq \tau_{P_0}(x) = \mathbb{E}_{P_0}[Y|W=1, X=x] - \mathbb{E}_{P_0}[Y|W=0, X=x]$$

$$d^*(X) = 1_{sign(\tau_{P_0}(X)) > 0}$$

Covariates	Treatment	Estimated potential outcomes	Treatment rule
X_1 X_2 X_3	W	$\widehat{\mu}_0(X)$ $\widehat{\mu}_1(X)$	d(X)
1.1 20 F	1	100 200	1
-6 45 F	0	10 9	0
0 15 M	1	180 150	0
-2 52 M	0	70 170	1

II.2.2- Direct estimation techniques

2- Direct estimation techniques:

2- Direct estimation techniques:

Single stage outcome weighted learning

$$d_{0}^{*} \in \underset{d \in \mathcal{D}}{\operatorname{argmax}} V_{d}(P_{0}), V_{d}(\mathbb{P}_{0}) = \mathbb{E}_{\mathbb{P}_{0}}[\mathbb{E}_{\mathbb{P}_{0}}[Y(d(X))]] = \mathbb{E}_{\mathbb{P}_{0}}[\mathbb{E}_{\mathbb{P}_{0}}[\frac{1_{W=d(X)}Y(d(X))}{\mathbb{P}_{0}(W|X)}|X]] \triangleq \mathbb{E}_{P_{0}}\left[\frac{Y}{P_{0}(W|X)}1_{W=d(X)}\right]$$

$$= \underset{d \in \mathcal{D}}{\operatorname{argmin}} \mathbb{E}_{P_{0}}\left[\frac{Y}{P_{0}(W|X)}1_{W\neq d(X)}\right] \Rightarrow \underset{f \in \mathcal{F}}{\operatorname{argmin}} \mathbb{E}_{P_{0}}\left[\alpha_{i} \frac{1_{(2W-1)f(X)}}{1_{(2W-1)f(X)}} + \lambda Pen(d(X))\right]$$

$$\Phi(1 - (2W - 1)f(X))$$

Find f_0^* whose sign defines the OTR: $d_0^* = \frac{sign(f_0^*) + 1}{2}$

loss: Hinge, logistic, etc.

penalization: Lasso, Ridge, ElasticNet, None

weight: IPW $(\frac{Y}{P_0(W=w|X)})$, AIPW $(\frac{Y-\mu_w(X)}{P_0(W=w|X)})$

2- Direct estimation techniques:

Single stage outcome weighted learning

$$d_{0}^{*} \in \underset{d \in \mathcal{D}}{\operatorname{argmax}} V_{d}(P_{0}), V_{d}(\mathbb{P}_{0}) = \mathbb{E}_{\mathbb{P}_{0}}[\mathbb{E}_{\mathbb{P}_{0}}[Y(d(X))]] = \mathbb{E}_{\mathbb{P}_{0}}[\mathbb{E}_{\mathbb{P}_{0}}[\frac{1_{W=d(X)Y(d(X))}}{\mathbb{P}_{0}(W|X)}|X]] \triangleq \mathbb{E}_{P_{0}}\left[\frac{Y}{P_{0}(W|X)} 1_{W=d(X)}\right]$$

$$= \underset{d \in \mathcal{D}}{\operatorname{argmin}} \mathbb{E}_{P_{0}}\left[\frac{Y}{P_{0}(W|X)} 1_{W\neq d(X)}\right] \Rightarrow \underset{f \in \mathcal{F}}{\operatorname{argmin}} \mathbb{E}_{P_{0}}\left[\alpha_{i} 1_{(2W-1)f(X)} + \lambda Pen(d(X))\right]$$

$$\Phi(1 - (2W - 1)f(X))$$

Estimate $f_0^*(X)$ with P_n :

$$f_n^* \in \underset{d \in \mathcal{D}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \frac{Y_i}{\hat{P}_n(W_i | X = X_i)} \Phi(1 - (2W_i - 1)f(X_i)) + \lambda Pen(d(X_i))$$

$$d_n^* = \frac{sign(f_n^*) + 1}{2}$$

Find f_0^* whose sign defines the OTR: $d_0^* = \frac{sign(f_0^*) + 1}{2}$

loss: Hinge, logistic, etc.

penalization: Lasso, Ridge, ElasticNet, None

weight: IPW $(\frac{Y}{P_0(W=w|X)})$, AIPW $(\frac{Y-\mu_w(X)}{P_0(W=w|X)})$

2- Direct estimation techniques:

- 1. Single stage outcome weighted learning
- 2. Weighted classification

$$\begin{split} V_d(\mathbb{P}_0) &= \mathbb{E}_{\mathbb{P}_0}[Y(d(X))] = \mathbb{E}_{\mathbb{P}_0}\Big[d(X)Y(1) + \Big(1 - d(X)\Big)Y(0)\Big] \\ &= \mathbb{E}_{\mathbb{P}_0}[Y(0)] + \mathbb{E}_{\mathbb{P}_0}\Big[\Big(Y(1) - Y(0)\Big)d(X)\Big] \\ &\text{baseline effect} \qquad \text{ATE dependence} \end{split}$$

2- Direct estimation techniques:

Single stage outcome weighted learning

$$V_d(\mathbb{P}_0) = \mathbb{E}_{\mathbb{P}_0}[Y(0)] + \mathbb{E}_{\mathbb{P}_0}[(Y(1) - Y(0))d(X)]$$
baseline effect ATE dependence

Weighted classification

$$\Rightarrow \mathbf{A}(d) = 2(V_d(\mathbb{P}_0) - \mathbb{E}_{\mathbb{P}_0}[Y(0)]) - \mathbb{E}_{\mathbb{P}_0}[Y(1) - Y(0)]$$

$$\triangleq \mathbb{E}_{P_0}[\tau(X) (2d(X) - 1)] = \mathbb{E}_{P_0}[|\tau(X)|sign(\tau(X))(2d(X) - 1)]$$

$$\alpha \in \{-1, 1\}$$

$$d_0^* \in \operatorname*{argmax} A(d)$$

$$d_0^* \in \operatorname*{argmax}_d A(d), \qquad A(d) = \mathbb{E}_{P_0}[\alpha \ \underset{d}{sign}(\tau(X))(2d(X) - 1)]$$

$$d_n^* \in \underset{d \in \mathcal{D}}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^n |\alpha_i| \frac{sign(\tau(X_i))(2d(X_i) - 1)}{n}$$

Options for α :

IPW:
$$\alpha^{IPW} = |\frac{Y}{P_0(W = w|X)}|$$
AIPW: $\alpha^{AIPW} = |\frac{Y - \hat{\mu}_w(X)}{P_0(W = w|X)}|$

II.2.2- Policy evaluation

II.3- Policy evaluation

The value of a policy reflects the mean outcome expected following the given policy (d)

Objective: Compute the value of each policy to compare their performances

$$V_d(P) = \mathbb{E}_P[\mathbb{E}_P[Y|W = d(X), X]]$$

Step 1: Gather policies (d) to evaluate

II.3- Policy evaluation

The value of a policy reflects the mean outcome expected following the given policy (d)

Objective: Compute the value of each policy to compare their performances

$$V_d(P) = \mathbb{E}_P[\mathbb{E}_P[Y|W = d(X), X]]$$

Step 1: Gather policies (d) to evaluate

Step 2: Train nuisance parameters

II.3- Policy evaluation

The value of a policy reflects the mean outcome expected following the given policy (d)

Objective: Compute the value of each policy to compare their performances

$$V_d(P) = \mathbb{E}_P[\mathbb{E}_P[Y|W = d(X), X]]$$

Step 1: Gather policies (d) to evaluate

Step 2: Train nuisance parameters

Step 3: Compute policy value

And other double robust estimators: AIPW, TMLE

III. Results

III-Synthetic setting

Optimal treatment rule function

$$c(X) = c_0(2d^*(X) - 1)$$

 $d^*: \mathbb{R}^p \mapsto \{0,1\}$
 $: X \mapsto d^*(X) = 1_{f(X) < b} \text{ or } 1_{f(X) > b}$

n = 1000 (individuals), p = 5 (covariates)

III-Synthetic setting

 $c(X) = c_0(2d^*(X) - 1)$

 $: X \mapsto d^*(X) = 1_{f(X) < b} \text{ or } 1_{f(X) > b}$

 $d^*: \mathbb{R}^p \mapsto \{0,1\}$

Tree setting:

$$u(X) = k + \sqrt{\frac{5}{\sum_{i=1}^{p} X_p}} \times \sum_{i=i}^{p} X_p$$

$$k = 10 - \frac{1}{n} \sum_{i=1}^{p} X_{p} |c(X)| - \sqrt{\frac{5}{\sum_{i=1}^{p} X_{p}}} \times \sum_{i=i}^{p} X_{p}$$

$$c_{0} = \sqrt{5} \qquad b_{1} = 0.6 \qquad b_{2} = 0.2$$

$$f_{1}(X) = X_{1} \qquad f_{2}(X) = X_{2}$$

$$d^{*}(X) = 1_{f_{1}(X) < b_{1} \land f_{2}(X) \ge b_{2}}$$

$$n = 1000$$
 (individuals), $p = 5$ (covariates)

Optimal treatment rule (d_Opt)

Optimal treatment rule (d_Opt)

Treats:

Variable 1 < 0.6 (1)

and

Variable 2 > 0.2 (2)

Outcome modeling-based approach:

Estimate CATE:

$$\hat{\tau}_n(x) = \hat{\mu}_{1,n}(x) - \hat{\mu}_{0,n}(x)$$

$$\hat{d}_n(x) = 1_{sign(\hat{\tau}_n(x) > 0)}$$

Figure 1: Policy optimization results for regression and tree-based algorithms in a tree setting

$$\hat{\mu}_{w,n}(x) = \widehat{\mathbb{E}}_{P_n}[Y|X=x, W=w]$$

Outcome modeling-based approach:

Estimate CATE:

$$\hat{\tau}_n(x) = \hat{\mu}_{1,n}(x) - \hat{\mu}_{0,n}(x)$$

$$\hat{d}_n(x) = 1_{sign(\hat{\tau}_n(x) > 0)}$$

Figure 1: Policy optimization results for regression and tree-based algorithms in a tree setting

$$\hat{\mu}_{w,n}(x) = \widehat{\mathbb{E}}_{P_n}[Y|X=x, W=w]$$

Figure 1: Policy optimization results for regression and tree-based algorithms in a tree setting

$$\hat{\mu}_{w,n}(x) = \widehat{\mathbb{E}}_{P_n}[Y|X=x, W=w]$$

Figure 1: Policy optimization results for regression and tree-based algorithms in a tree setting

$$\hat{\mu}_{w,n}(x) = \widehat{\mathbb{E}}_{P_n}[Y|X=x, W=w]$$

Oracle policy values for $d: \mathbb{E}_{P_0}[Y] = \mathbb{E}_{P_0}[u(X) + d(X)c(X) + Z]$

Figure 1: Policy optimization results for regression and tree-based algorithms in a tree setting Left: Visual representation of treatment rules

IV. Discussion

Discussion

- Policy optimization and evaluation techniques
- Synthetic simulation for binary treatment
 - To improve:
 - Test multiple n sizes (boxplots)
 - Test non RCT scenario
- Other contributions:
 - Multi-treatment extensions:
 - Policy optimization algorithm
 - Policy evaluation technique
 - Application to IVF data

Perspectives: adding constraints to the policy optimization problem (Ph.D thesis)

- Explainability
- Fairness, No-harm criteria ...

Thank you!

Annexes

II.1.1- ATE double robust estimators

Targeted Maximum Likelihood Estimator (TMLE)

Build a fluctuation: Find a regression $\mathbf{Q}(P_n^*) = \mathbb{E}_{P_n^*}[Y|X=x,W=w]$ closest to $Q(P_0) = \mathbb{E}_{P_0}[Y|X=x,W=w]$

$$Q_{n,\epsilon} = \{(w,x) \to expit(logit(\widehat{\mathbb{E}}_{P_n}[Y|X=x,W=w]) + \epsilon H_n(x,w))\}$$

If
$$Y \in \{0,1\}$$
 or $[0,1]$

$$\operatorname{argmin} \mathbb{E}_{P_n}[R_n(\epsilon)] = \sum_{i=1}^n -Y_i \log(Q_{n,\epsilon}(X_i, W_i)) - (1 - Y_i) \log(1 - Q_{n,\epsilon}(X_i, W_i))$$

$$H_n(x,w) = \frac{2w - 1}{wP_n(W = 1|X = x) + (1 - w)P_n(W = 0|X = x)}$$

II.1.1- ATE double robust estimators

Targeted Maximum Likelihood Estimator (TMLE)

Build a fluctuation: Find a regression $\mathbf{Q}(P_n^*) = \mathbb{E}_{P_n^*}[Y|X=x,W=w]$ closest to $Q(P_0) = \mathbb{E}_{P_0}[Y|X=x,W=w]$

If
$$Y \in \{0,1\}$$
 or $[0,1]$

$$Q_{n,\epsilon} = \{(w,x) \to expit(logit(\widehat{\mathbb{E}}_{P_n}[Y|X=x,W=w]) + \epsilon H_n(x,w))\}$$

$$\operatorname{argmin} \mathbb{E}_{P_n}[R_n(\epsilon)] = \sum_{i=1}^n -Y_i \log(Q_{n,\epsilon}(X_i,W_i)) - (1-Y_i) \log(1-Q_{n,\epsilon}(X_i,W_i))$$

If
$$Y \in [a, b]$$
, $a < b$

$$Q_{n,\epsilon} = \{(w, x) \to (\widehat{\mathbb{E}}_{P_n}[Y|X = x, W = w] + \epsilon H_n(x, w))\}$$

$$\underset{\epsilon}{\operatorname{argmin}} \mathbb{E}_{P_n}[R_n(\epsilon)] = \sum_{i=1}^n (Y_i - Q_{n,\epsilon}(X_i, W_i))^2$$

$$H_n(x, w) = \frac{2w - 1}{wP_n(W = 1|X = x) + (1 - w)P_n(W = 0|X = x)}$$

II.1.1- ATE double robust estimators

Targeted Maximum Likelihood Estimator (TMLE)

$$\mathbf{Q}(\boldsymbol{P_n^*}) = \mathbb{E}_{P_n^*}[Y|X = x, W = w]$$

$$= \widehat{\mathbb{E}}_{P_n}[Y|X = x, W = w] + \boldsymbol{\epsilon_n} H_n(x, w)$$

$$\mathbb{E}_{P_n^*}[Y|X, W = 1] = \widehat{\mathbb{E}}_{P_n}[Y|X, W = 1] + \boldsymbol{\epsilon_n} H_n(x, 1)$$

$$\mathbb{E}_{P_n^*}[Y|X, W = 0] = \widehat{\mathbb{E}}_{P_n}[Y|X, W = 0] + \boldsymbol{\epsilon_n} H_n(x, 0)$$

$$\psi(P_n^*) = \mathbb{E}_{P_n^*}[\mathbb{E}_{P_n^*}[Y|X,W=1] - \mathbb{E}_{P_n^*}[Y|X,W=0]]$$

$$I_n(x, w) = \frac{2w - 1}{wP_n(W = 1|X = x) + (1 - w)P_n(W = 0|X = x)}$$

A VISUAL GUIDE TO POLICY EVALUATION

The value of a policy reflects the mean outcome expected following the given policy (d)

Objective: Compute the policy value of each policy to compare their performances

$$V_d(P) = \mathbb{E}_P[\mathbb{E}_P[Y|W = d(X), X]]$$

Step 1: Gather policies (d) to evaluate

Step 2: Train nuisance parameters

Step 3: Compute policy value

Substitution estimator

$$V_{subs.est,d}(P_n) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mathbb{E}}_{P_n}[\quad | X = \quad , W = \quad]$$

AIPW

TMI F

$$V_{TMLE,d}(P_n) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mathbb{E}}_{P_n^*}[\blacksquare | X = \blacksquare, W = \blacksquare]$$

