CX1104: Linear Algebra for Computing

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}}_{n \times n} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}}_{m \times 1}$$

Chap. No: 6.1.2 (modified by Tay Kian Boon)

Lecture: Orthogonality

Topic: Dot Product

Concept: Norm of a Vector and Unit Vectors

Instructor: A/P Chng Eng Siong

TAs: Zhang Su, Vishal Choudhari

Rev: 25th June 2020

Norm of Vector

DEFINITION 1 If $\mathbf{v} = (v_1, v_2, \dots, v_n)$ is a vector in \mathbb{R}^n , then the *norm* of \mathbf{v} (also called the *length* of \mathbf{v} or the *magnitude* of \mathbf{v}) is denoted by $\|\mathbf{v}\|$, and is defined by the formula

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} \tag{3}$$

Unit Vector

For any non-zero vector v in Euclidean space, v/||v|| is a unit vector pointing in same direction as v.

Unit Vector Example

EXAMPLE 2 Normalizing a Vector

Find the unit vector **u** that has the same direction as $\mathbf{v} = (2, 2, -1)$.

Solution The vector **v** has length

$$\|\mathbf{v}\| = \sqrt{2^2 + 2^2 + (-1)^2} = 3$$

Thus, from (4)

$$\mathbf{u} = \frac{1}{3}(2, 2, -1) = \left(\frac{2}{3}, \frac{2}{3}, -\frac{1}{3}\right)$$

As a check, you may want to confirm that $\|\mathbf{u}\| = 1$.

Norm of a Vector: properties

THEOREM 3.2.1 If v is a vector in \mathbb{R}^n , and if k is any scalar, then:

- (a) $\|\mathbf{v}\| \ge 0$
- (b) $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = \mathbf{0}$
- $(c) \quad ||k\mathbf{v}|| = |k| ||\mathbf{v}||$

We will prove part (c) and leave (a) and (b) as exercises.

Proof (c) If
$$\mathbf{v} = (v_1, v_2, \dots, v_n)$$
, then $k\mathbf{v} = (kv_1, kv_2, \dots, kv_n)$, so
$$||k\mathbf{v}|| = \sqrt{(kv_1)^2 + (kv_2)^2 + \dots + (kv_n)^2}$$
$$= \sqrt{(k^2)(v_1^2 + v_2^2 + \dots + v_n^2)}$$
$$= |k|\sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$
$$= |k|||\mathbf{v}|| \blacktriangleleft$$

Examples

A vector whose length is 1 is called a **unit vector**. If we *divide* a nonzero vector **v** by its length—that is, multiply by $1/\|\mathbf{v}\|$ —we obtain a unit vector **u** because the length of **u** is $(1/\|\mathbf{v}\|)\|\mathbf{v}\|$. The process of creating **u** from **v** is sometimes called **normalizing v**, and we say that **u** is *in the same direction* as **v**.

Several examples that follow use the space-saving notation for (column) vectors.

EXAMPLE 2 Let $\mathbf{v} = (1, -2, 2, 0)$. Find a unit vector \mathbf{u} in the same direction as \mathbf{v} .

SOLUTION First, compute the length of **v**:

$$\|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v} = (1)^2 + (-2)^2 + (2)^2 + (0)^2 = 9$$

 $\|\mathbf{v}\| = \sqrt{9} = 3$

Then, multiply v by $1/\|\mathbf{v}\|$ to obtain

$$\mathbf{u} = \frac{1}{\|\mathbf{v}\|} \mathbf{v} = \frac{1}{3} \mathbf{v} = \frac{1}{3} \begin{bmatrix} 1 \\ -2 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \\ 0 \end{bmatrix}$$

To check that $\|\mathbf{u}\| = 1$, it suffices to show that $\|\mathbf{u}\|^2 = 1$.

$$\|\mathbf{u}\|^2 = \mathbf{u} \cdot \mathbf{u} = \left(\frac{1}{3}\right)^2 + \left(-\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^2 + (0)^2$$
$$= \frac{1}{9} + \frac{4}{9} + \frac{4}{9} + 0 = 1$$

Note: $||v||^2 = v.v$

Derived in Slide 6 of Lecture 6.1.3 on Dot Product

Lay's Linear Algebra and Applications:

For **u** and **v** in \mathbb{R}^n , the **distance between u and v**, written as dist(**u**, **v**), is the length of the vector $\mathbf{u} - \mathbf{v}$. That is,

$$dist(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|$$

In \mathbb{R}^2 and \mathbb{R}^3 , this definition of distance coincides with the usual formulas for the Euclidean distance between two points, as the next two examples show.

EXAMPLE 4 Compute the distance between the vectors $\mathbf{u} = (7, 1)$ and $\mathbf{v} = (3, 2)$.

SOLUTION Calculate

$$\mathbf{u} - \mathbf{v} = \begin{bmatrix} 7 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$$
$$\|\mathbf{u} - \mathbf{v}\| = \sqrt{4^2 + (-1)^2} = \sqrt{17}$$

The vectors \mathbf{u} , \mathbf{v} , and $\mathbf{u} - \mathbf{v}$ are shown in Fig. 4. When the vector $\mathbf{u} - \mathbf{v}$ is added to \mathbf{v} , the result is \mathbf{u} . Notice that the parallelogram in Fig. 4 shows that the distance from \mathbf{u} to \mathbf{v} is the same as the distance from $\mathbf{u} - \mathbf{v}$ to $\mathbf{0}$.

FIGURE 4 The distance between \mathbf{u} and \mathbf{v} is the length of $\mathbf{u} - \mathbf{v}$.

EXAMPLE 5 If
$$\mathbf{u} = (u_1, u_2, u_3)$$
 and $\mathbf{v} = (v_1, v_2, v_3)$, then dist $(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \sqrt{(\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})}$
$$= \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + (u_3 - v_3)^2}$$

CX1104: Linear Algebra for Computing

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}}_{n \times n} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}}_{m \times 1}$$

Chap. No : **6.1.3**

Lecture: Orthogonality

Topic: Dot Product

Concept: The Dot Product

Instructor: A/P Chng Eng Siong

TAs: Zhang Su, Vishal Choudhari

Rev: 25th June 2020

Dot Product

DEFINITION 3 If \mathbf{u} and \mathbf{v} are nonzero vectors in R^2 or R^3 , and if θ is the angle between \mathbf{u} and \mathbf{v} , then the *dot product* (also called the *Euclidean inner product*) of \mathbf{u} and \mathbf{v} is denoted by $\mathbf{u} \cdot \mathbf{v}$ and is defined as

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta \tag{12}$$

If $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$, then we define $\mathbf{u} \cdot \mathbf{v}$ to be 0.

How to define "angle" between two vectors in R^2 or R^3 ? For this purpose, let **u** and **v** be nonzero vectors in R^2 or R^3 that have been positioned so that their initial points coincide. We define the *angle between* **u** *and* **v** to be the angle θ determined by **u** and **v** that satisfies the inequalities $0 \le \theta \le \pi$ (Figure 3.2.4).

The sign of the dot product reveals information about the angle θ that we can obtain by rewriting Formula (12) as

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} \tag{13}$$

Since $0 \le \theta \le \pi$, it follows from Formula (13) and properties of the cosine function studied in trigonometry that

• θ is acute if $\mathbf{u} \cdot \mathbf{v} > 0$. • θ is obtuse if $\mathbf{u} \cdot \mathbf{v} < 0$. • $\theta = \pi/2$ if $\mathbf{u} \cdot \mathbf{v} = 0$.

Dot product relates the length of two vectors and the angle (θ) between them.

If vectorsuandvare unit vectors, i.e, ||v|| = ||u|| = 1, the dot product isu. $v = \cos \theta$.

Ref:

- 1. Stack Exchange
- 2. Khan Academy: https://www.youtube.com/watch?v=KDHuWxy53uM
- 3. 3Blue1Brown, Dot Product and Duality: https://www.youtube.com/watch?v=LyGKycYT2v0
- 4. MathsTheBeautiful: https://www.youtube.com/watch?v=QPkKWGq V0U

Dot Product Interpretation

Case 1: When two vectors are pointing nearly towards the same direction, their dot product is +ve.

Angle between vectors: acute.

Case 2: When two vectors are pointing away from one another, their dot product is -ve.

Angle between vectors: obtuse.

$$v.w = \sum_{i=1}^{n} v_i w_i = v_1 w_1 + v_2 w_2 + \dots + v_n$$

$$= ||v|| \times ||w|| \times \cos\theta$$
Derived in Slide 5

$$v.w = ||v|| \times ||w|| \times cos\theta$$

$$v.w = (||w|| \times cos\theta) \times ||v||$$

Length of projection of wontov Length of vectors

$$v.w = (||v|| \times cos\theta) \times ||w||$$
Length of projection of vontow Length of vectorw

3

Example

146 Chapter 3 Euclidean Vector Spaces

EXAMPLE 5 Dot Product

Find the dot product of the vectors shown in Figure 3.2.5.

Solution The lengths of the vectors are

$$\|\mathbf{u}\| = 1$$
 and $\|\mathbf{v}\| = \sqrt{8} = 2\sqrt{2}$

and the cosine of the angle θ between them is

$$\cos(45^\circ) = 1/\sqrt{2}$$

Thus, it follows from Formula (12) that

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta = (1)(2\sqrt{2})(1/\sqrt{2}) = 2$$

Component Form of the Dot Product

Component Form of the Dot Product

▲ Figure 3.2.6

Although we derived Formula (15) and its 2-space companion under the assumption that \mathbf{u} and \mathbf{v} are nonzero, it turned out that these formulas are also applicable if $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$ (verify).

For computational purposes it is desirable to have a formula that expresses the dot product of two vectors in terms of components. We will derive such a formula for vectors in 3-space; the derivation for vectors in 2-space is similar.

Let $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ be two nonzero vectors. If, as shown in Figure 3.2.6, θ is the angle between \mathbf{u} and \mathbf{v} , then the law of cosines yields

$$\|\overrightarrow{PQ}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\|\mathbf{u}\|\|\mathbf{v}\|\cos\theta \tag{14}$$

Since $\overrightarrow{PQ} = \mathbf{v} - \mathbf{u}$, we can rewrite (14) as

$$\|\mathbf{u}\| \|\mathbf{v}\| \cos \theta = \frac{1}{2} (\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - \|\mathbf{v} - \mathbf{u}\|^2)$$

or

$$\mathbf{u} \cdot \mathbf{v} = \frac{1}{2} (\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - \|\mathbf{v} - \mathbf{u}\|^2)$$

Substituting

$$\|\mathbf{u}\|^2 = u_1^2 + u_2^2 + u_3^2, \qquad \|\mathbf{v}\|^2 = v_1^2 + v_2^2 + v_3^2$$

and

$$\|\mathbf{v} - \mathbf{u}\|^2 = (v_1 - u_1)^2 + (v_2 - u_2)^2 + (v_3 - u_3)^2$$

we obtain, after simplifying,

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3 \tag{15}$$

The companion formula for vectors in 2-space is

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 \tag{16}$$

Motivated by the pattern in Formulas (15) and (16), we make the following definition.

DEFINITION 4 If $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are vectors in \mathbb{R}^n , then the *dot product* (also called the *Euclidean inner product*) of \mathbf{u} and \mathbf{v} is denoted by $\mathbf{u} \cdot \mathbf{v}$ and is defined by

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n \tag{17}$$

Reviewing Law of Cosines

$$c^2 = a^2 + b^2 - 2ab\cos\gamma,$$

Example

► EXAMPLE 6 Calculating Dot Products Using Components

- (a) Use Formula (15) to compute the dot product of the vectors **u** and **v** in Example 5.
- (b) Calculate $\mathbf{u} \cdot \mathbf{v}$ for the following vectors in \mathbb{R}^4 :

$$\mathbf{u} = (-1, 3, 5, 7), \quad \mathbf{v} = (-3, -4, 1, 0)$$

Solution (a) The component forms of the vectors are $\mathbf{u} = (0, 0, 1)$ and $\mathbf{v} = (0, 2, 2)$. Thus,

$$\mathbf{u} \cdot \mathbf{v} = (0)(0) + (0)(2) + (1)(2) = 2$$

which agrees with the result obtained geometrically in Example 5.

Solution (b)

$$\mathbf{u} \cdot \mathbf{v} = (-1)(-3) + (3)(-4) + (5)(1) + (7)(0) = -4$$

In the special case where $\mathbf{u} = \mathbf{v}$ in Definition 4, we obtain the relationship

$$\mathbf{v} \cdot \mathbf{v} = v_1^2 + v_2^2 + \dots + v_n^2 = \|\mathbf{v}\|^2$$
 (18)

This yields the following formula for expressing the length of a vector in terms of a dot product:

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} \tag{19}$$

Note that the angle θ obtained in Example 7 does not involve k. Why was this to be expected?

▲ Figure 3.2.7

EXAMPLE 7 A Geometry Problem Solved Using Dot Product

Find the angle between a diagonal of a cube and one of its edges.

Solution Let k be the length of an edge and introduce a coordinate system as shown in Figure 3.2.7. If we let $\mathbf{u}_1 = (k, 0, 0)$, $\mathbf{u}_2 = (0, k, 0)$, and $\mathbf{u}_3 = (0, 0, k)$, then the vector

$$\mathbf{d} = (k, k, k) = \mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_3$$

is a diagonal of the cube. It follows from Formula (13) that the angle θ between **d** and the edge \mathbf{u}_1 satisfies

$$\cos \theta = \frac{\mathbf{u}_1 \cdot \mathbf{d}}{\|\mathbf{u}_1\| \|\mathbf{d}\|} = \frac{k^2}{(k)(\sqrt{3k^2})} = \frac{1}{\sqrt{3}}$$

With the help of a calculator we obtain

$$\theta = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right) \approx 54.74^{\circ} \blacktriangleleft$$

Properties of Dot Product

Dot products have many of the same algebraic properties as products of real numbers.

THEOREM 3.2.2 If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k is a scalar, then:

(a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

[Symmetry property]

(b) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$

[Distributive property]

(c) $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v}$

[Homogeneity property]

(d) $\mathbf{v} \cdot \mathbf{v} \ge 0$ and $\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = \mathbf{0}$

[Positivity property]

Proof (c) Let $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$. Then $k(\mathbf{u} \cdot \mathbf{v}) = k(u_1v_1 + u_2v_2 + \dots + u_nv_n)$ = $(ku_1)v_1 + (ku_2)v_2 + \dots + (ku_n)v_n = (k\mathbf{u}) \cdot \mathbf{v}$

Proof (d) The result follows from parts (a) and (b) of Theorem 3.2.1 and the fact that

$$\mathbf{v} \cdot \mathbf{v} = v_1 v_1 + v_2 v_2 + \dots + v_n v_n = v_1^2 + v_2^2 + \dots + v_n^2 = \|\mathbf{v}\|^2$$

THEOREM 3.2.3 If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k is a scalar, then:

- (a) $\mathbf{0} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{0} = 0$
- (b) $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
- (c) $\mathbf{u} \cdot (\mathbf{v} \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} \mathbf{u} \cdot \mathbf{w}$
- (d) $(\mathbf{u} \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} \mathbf{v} \cdot \mathbf{w}$
- (e) $k(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (k\mathbf{v})$

Proof (b)

$$(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{w} \cdot (\mathbf{u} + \mathbf{v})$$
 [By symmetry]
= $\mathbf{w} \cdot \mathbf{u} + \mathbf{w} \cdot \mathbf{v}$ [By distributivity]
= $\mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$ [By symmetry]

EXAMPLE 8 Calculating with Dot Products

$$(\mathbf{u} - 2\mathbf{v}) \cdot (3\mathbf{u} + 4\mathbf{v}) = \mathbf{u} \cdot (3\mathbf{u} + 4\mathbf{v}) - 2\mathbf{v} \cdot (3\mathbf{u} + 4\mathbf{v})$$

$$= 3(\mathbf{u} \cdot \mathbf{u}) + 4(\mathbf{u} \cdot \mathbf{v}) - 6(\mathbf{v} \cdot \mathbf{u}) - 8(\mathbf{v} \cdot \mathbf{v})$$

$$= 3\|\mathbf{u}\|^2 - 2(\mathbf{u} \cdot \mathbf{v}) - 8\|\mathbf{v}\|^2$$

Property and Example

Table 1

Form	Dot Product	Example	
u a column matrix and v a column matrix	$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u}$	$\mathbf{u} = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$ $\mathbf{v} = \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix}$	$\mathbf{u}^{T}\mathbf{v} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7$ $\mathbf{v}^{T}\mathbf{u} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$

If A is an $n \times n$ matrix and **u** and **v** are $n \times 1$ matrices, then it follows from the first row in Table 1 and properties of the transpose that

$$A\mathbf{u} \cdot \mathbf{v} = \mathbf{v}^T (A\mathbf{u}) = (\mathbf{v}^T A)\mathbf{u} = (A^T \mathbf{v})^T \mathbf{u} = \mathbf{u} \cdot A^T \mathbf{v}$$
$$\mathbf{u} \cdot A\mathbf{v} = (A\mathbf{v})^T \mathbf{u} = (\mathbf{v}^T A^T)\mathbf{u} = \mathbf{v}^T (A^T \mathbf{u}) = A^T \mathbf{u} \cdot \mathbf{v}$$

The resulting formulas

$$A\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot A^T \mathbf{v} \tag{26}$$

$$\mathbf{u} \cdot A\mathbf{v} = A^T \mathbf{u} \cdot \mathbf{v} \tag{27}$$

provide an important link between multiplication by an $n \times n$ matrix A and multiplication by A^T .

EXAMPLE 9 Verifying that Au \cdot v = u \cdot A^T v

Suppose that

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 4 & 1 \\ -1 & 0 & 1 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix}$$

Then

$$A\mathbf{u} = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 4 & 1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 7 \\ 10 \\ 5 \end{bmatrix}$$

$$A^{T}\mathbf{v} = \begin{bmatrix} 1 & 2 & -1 \\ -2 & 4 & 0 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} -7 \\ 4 \\ -1 \end{bmatrix}$$

from which we obtain

$$A\mathbf{u} \cdot \mathbf{v} = 7(-2) + 10(0) + 5(5) = 11$$

 $\mathbf{u} \cdot A^T \mathbf{v} = (-1)(-7) + 2(4) + 4(-1) = 11$

Thus, $A\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot A^T \mathbf{v}$ as guaranteed by Formula (26). We leave it for you to verify that Formula (27) also holds.

CX1104: Linear Algebra for Computing

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}}_{n \times n} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}}_{m \times 1}$$

Chap. No: **6.1.4**

Lecture: Orthogonality

Topic: Dot Product

Concept: Important Inequalities

Instructor: A/P Chng Eng Siong

TAs: Zhang Su, Vishal Choudhari

Rev: 25th June 2020

Cauchy-Schwarz Inequality

DEFINITION 3 If \mathbf{u} and \mathbf{v} are nonzero vectors in R^2 or R^3 , and if θ is the angle between \mathbf{u} and \mathbf{v} , then the *dot product* (also called the *Euclidean inner product*) of \mathbf{u} and \mathbf{v} is denoted by $\mathbf{u} \cdot \mathbf{v}$ and is defined as

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta \tag{12}$$

If $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$, then we define $\mathbf{u} \cdot \mathbf{v}$ to be 0.

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} \qquad \qquad \theta = \cos^{-1} \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} \right)$$

Formula (20) is not defined unless its argument satisfies the inequalities

$$-1 \le \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} \le 1 \tag{21}$$

Fortunately, these inequalities do hold for all nonzero vectors in \mathbb{R}^n as a result of the following fundamental result known as the *Cauchy–Schwarz inequality*.

THEOREM 3.2.4 Cauchy–Schwarz Inequality

If
$$\mathbf{u} = (u_1, u_2, \dots, u_n)$$
 and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are vectors in \mathbb{R}^n , then
$$|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| ||\mathbf{v}|| \tag{22}$$

or in terms of components

$$|u_1v_1 + u_2v_2 + \dots + u_nv_n| \le (u_1^2 + u_2^2 + \dots + u_n^2)^{1/2}(v_1^2 + v_2^2 + \dots + v_n^2)^{1/2}$$
(23)

Triangle Inequality

▲ Figure 3.2.8

▲ Figure 3.2.9

THEOREM 3.2.5 If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , then:

(a)
$$\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$$

[Triangle inequality for vectors]

(b) $d(\mathbf{u}, \mathbf{v}) \le d(\mathbf{u}, \mathbf{w}) + d(\mathbf{w}, \mathbf{v})$ [Triangle inequality for distances]

Proof:

Proof (a)

$$\|\mathbf{u} + \mathbf{v}\|^{2} = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = (\mathbf{u} \cdot \mathbf{u}) + 2(\mathbf{u} \cdot \mathbf{v}) + (\mathbf{v} \cdot \mathbf{v})$$

$$= \|\mathbf{u}\|^{2} + 2(\mathbf{u} \cdot \mathbf{v}) + \|\mathbf{v}\|^{2}$$

$$\leq \|\mathbf{u}\|^{2} + 2\|\mathbf{u}\|\|\mathbf{v}\| + \|\mathbf{v}\|^{2}$$

$$\leq \|\mathbf{u}\|^{2} + 2\|\mathbf{u}\|\|\mathbf{v}\| + \|\mathbf{v}\|^{2}$$

$$= (\|\mathbf{u}\| + \|\mathbf{v}\|)^{2}$$
Property of absolute value
$$\leq \|\mathbf{u}\|^{2} + 2\|\mathbf{u}\|\|\mathbf{v}\| + \|\mathbf{v}\|^{2}$$

$$= (\|\mathbf{u}\| + \|\mathbf{v}\|)^{2}$$

This completes the proof since both sides of the inequality in part (a) are nonnegative.

Proof (b) It follows from part (a) and Formula (11) that

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \|(\mathbf{u} - \mathbf{w}) + (\mathbf{w} - \mathbf{v})\|$$

$$\leq \|\mathbf{u} - \mathbf{w}\| + \|\mathbf{w} - \mathbf{v}\| = d(\mathbf{u}, \mathbf{w}) + d(\mathbf{w}, \mathbf{v})$$

Parallelogram Equation for Vectors

▲ Figure 3.2.10

THEOREM 3.2.6 Parallelogram Equation for Vectors

If **u** and **v** are vectors in \mathbb{R}^n , then

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2(\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2)$$
(24)

Proof:

THEOREM 3.2.6 Parallelogram Equation for Vectors

If **u** and **v** are vectors in \mathbb{R}^n , then

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2(\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2)$$
 (24)

Proof

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) + (\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})$$
$$= 2(\mathbf{u} \cdot \mathbf{u}) + 2(\mathbf{v} \cdot \mathbf{v})$$
$$= 2(\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2)$$

THEOREM 3.2.7 If **u** and **v** are vectors in \mathbb{R}^n with the Euclidean inner product, then

$$\mathbf{u} \cdot \mathbf{v} = \frac{1}{4} \|\mathbf{u} + \mathbf{v}\|^2 - \frac{1}{4} \|\mathbf{u} - \mathbf{v}\|^2$$
 (25)

Proof

$$\|\mathbf{u} + \mathbf{v}\|^2 = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = \|\mathbf{u}\|^2 + 2(\mathbf{u} \cdot \mathbf{v}) + \|\mathbf{v}\|^2$$
$$\|\mathbf{u} - \mathbf{v}\|^2 = (\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) = \|\mathbf{u}\|^2 - 2(\mathbf{u} \cdot \mathbf{v}) + \|\mathbf{v}\|^2$$

from which (25) follows by simple algebra.

Reference

Materials in these slides have been taken from:

Anton and Rorres, "Linear Algebra", 11th edition, Wiley.

Chapter: 3.1, 3.2

Euclidean Vector Spaces

- 3.1 Vectors in 2-Space, 3-Space, and *n*-Space 131
- 3.2 Norm, Dot Product, and Distance in \mathbb{R}^n 142

