

Prof. Dr. Florian Kauffeldt

A Jump Start for Beginners

Content

1	lr	nstallation	2
2	Н	Hello World	4
3	F	First Steps with Data	5
	3.1	Code Description	5
	3.2	Loading Data	5
	3.3	B Exercises	6
4	Т	The momeda.py Module	12
	4.1	Class describe	12
	4.2	Class dataprep	15
	4.3	Class plots	18
	4.4	Class tests	23
	4.5	Class regression	30
	4.6	Class outlier	31
5	٧	Working with Data	33
	5.1	Data Structures	33
	5.2	Pata Frames	35
	5.3	B Data Visualization	38
	5.4	Programing Functions	38

1 Installation

Step 1. Download and install Anaconda.

Links:

https://www.anaconda.com/products/individual

Alternatively, you may use a different interpreter, e.g. VisualStudioCode (https://code.visualstudio.com/download)

Step 2. Download the following file from ILIAS under ::

INSTALLS.ipynb

• Don't double click or open the file directly when downloaded!

Step 3. Open Anaconda and launch Jupyter notebook:

Step 4. Upload *INSTALLS.ipynb* to JupyterNotebook (_PC or _MAC depending on your computer):

Step 5. Open the file INSTALLS.ipynb within JupyterNotebook via click

Step 6. Run the file *INSTALLS.ipynb* by hitting :

 The file creates a folder called "ProfKModules"— don't rename this folder!

Important remark:

Whenever you start a new notebook, you have to copy the following in the first cell:

PC:

```
#get path to modules
f = open("path.txt", "r")
path=str(f.read())
#import modules
import sys
sys.path.append(path)
import lib, momeda
from lib import *
from momeda import *
```

MAC:

```
import lib, momeda
from lib import *
from momeda import *
```

• *Installs.iypnb* will create a notebook_template.iypnb in which this preamble is already present

2 Hello World

Step 1. Create a new python notebook:

Step 2. Create a new cell by the "+" button in the toolbar

Step 3. Now, the time has come to say hello to the world:

Type

Important Information!

If you leave ANACONDA and open your notebook sometime later, you need to rerun the entire notebook:

3 First Steps with Data

3.1 Code Description

You are supposed to comment and structure your coding by using markdown cells. In order to switch a coding cell into a comment cell hit "cell":

Then hit "cell type" and pick "markdown cell".

There are some styling options, for instance:

- Headlines:
 - Headline 1: # markdown
 - Headline 2: ## markdown
 - 0 ...
- Colored markdown:

Try these commands. You should get the following result:

markdown normal

markdown headline 1

markdown colored

Please follow the link below to learn more about the options:

https://jupyter-

notebook.readthedocs.io/en/stable/examples/Notebook/Working%20With%20Markdown%20Cells.html

3.2 Loading Data

Data is usually stored in an excel or csv file. At first, you need to upload your data sheet to Anaconda (local access is also possible but requires more complicated coding).

Once the data is uploaded, we may use the data in Jupyter notebooks. In order to do so, we need to open a notebook and load the data:

```
data = pd.read excel ('file_name.xlsx')
```

Hint 1. The code above is for files in .xlsx format. If you want to load csv files, replace _excel by _csv

Hint 2. The code above can be used if you already uploaded your data to the Anaconda cloud. If you want to load files from your computer, use:

Hint 3. Before you use a .csv file, check if it is separated by commas. If it is separated by, e.g., semicolons, you need to replace all semicolons by commas first using, for instance, the windows editor.

3.3 Exercises

Preliminaries

- Download the file YoungPeopleSurvey.xlsx from ILIAS.
- Open (click) the file notebook_template.ipynb within Jupyter notebook:
- Create a new cell by hitting
- Load the file YoungPeopleSurvey.xlsx (see previous section)
- Run all cells by hitting

Exercises

The following exercises help you to develop a basic understanding of Python. Notice that the data frame was named data. You may name the data frame differently and adjust the code accordingly.

Exercise 1. Distribution plot.

Create a new cell. Create a distribution plot of weight:

```
plots.dist(data['Weight'],fig=[6,4],labelsize=14,ticksize=10,legsize=10,lin
ewidth=1.5)
```


Exercise 2. Barplot with error bars that shows the mean weight for male and female.

Create a new cell. Create the barplot as follows:

```
plt.figure(figsize=(4,4))
sns.barplot(x='Gender',y='Weight',data=data,ci='sd',capsize=.1,errwidth=1.5
)
```


Exercise 3. Boxplot with quartiles of age for educational levels.

• Create a new cell. Create the boxplot as follows:

Exercise 4. Violin plot with with age for educational levels and gender.

• Create a new cell. Create the violin plot as follows:

```
sns.catplot(data=data, y="Education", x="Age", hue='Gender',
kind="violin",inner=None, split=True)
```


Exercise 5. Countplot for educational level and gender.

Create a new cell. Create the countplot as follows:

sns.countplot(data=data, x='Education',hue='Gender')
plt.xticks(rotation=30)

Exercise 6. Scatterplot age vs. height.

• Create a new cell. Create the scatterplot as follows:

Exercise 7. Bubbleplot Folk vs. Country.

• Create a new cell. Create the bubbleplot as follows:

Exercise 8. Encode Variable Education.

Have a look at the unique values of the variable:

Define encoder where the values are set in ascending order:

```
enc=dataprep.encoder(order={'Education':['currently a primary school
pupil','primary school','secondary school','college/bachelor
degree','masters degree','doctorate degree']})
```

Encode the variable:

```
data_encoded=enc.fit_transform(data)
```

• Have a look at the unique values of the encoded variable:

```
data_encoded['Education'].unique()
array([ 3., 2., 1., 4., 5., 0., nan])
```

Exercise 9. Dropping columns.

 Create a new data set that contains only the variables Education, Age and Gender.

```
data_new=data[['Education','Age','Gender']]
```

Exercise 10. Dropping rows I.

• Create a new data set that contains only people who are over 25:

```
data_over25=data[data['Age']>25]
```

Have a look at the data shapes:

```
print(data.shape)
print(data_over25.shape)

(1010, 150)
(67, 150)
```

Exercise 11. Dropping rows II.

- Create a new data set that contains only people who hold a masters or doctorate degree.
- Method 1:

```
data_educated=data[(data['Education']=='masters degree') &
  (data['Education']=='doctorate degree')]
```

Method 2:

```
indices=data[(data['Education'].isin(['masters degree','doctorate
degree']))].index
data_educated=data.loc[indices]
```

Exercise 12. Create a new column that contains the body mass index (bmi).

$$bmi = \frac{weight}{height (in m)^2}$$

data['bmi']=data['Weight']/(data['Height']/100)**2

4 The momeda.py Module

In this section, we use the following abbreviations for types of input objects:

Abbreviation	Meaning
var	Variable
str	String
bool	Boolean Expression (True or False)
int	Integer number (1,2,3,4,)

In the following, a "grouping variable" refers to a variable that groups your data set in categories.

4.1 Class describe

4.1.1 Summary

```
Class describe
-----
.data
.contingency
.corrmat
```

4.1.2 describe.data

Example:

description=describe.data(data=data2[['married','age']],nominal=['married'])
description.table(show='nominal')

	married
count	28885
mode	yes
categories	2
least freq	no(37.60%)
most freq	yes(62.40%)

Code Structure:

```
arguments
------
- data = name of dataframe (var)
- ordinal = list of ordinal variables ([str,str,...])
- nominal = list of nominal variables ([str,str,...])
returns
-----
.table(show) -> descriptive statistics (pd.DataFrame)
    arguments
    -----
    - show = statistics for which variables ('numeric', 'ordinal', 'nominal') (str)
[default='numeric']
```

4.1.3 describe.contingency

Example:

```
describe.contingency(data2['married'],data2['house_own'],show='observed')

house_own no yes

married

no 5710 5150

yes 3540 14485
```

Code Structure:

```
arguments
-----
- x,y = vector of the variables (pd.Series)
- show = what to show ('observed','expected','deviations') (str)
[default='observed']
- decimals = decimal places for percentage deviations (int)
returns
-----
observed or expected frequencies or their deviation
```

4.1.4 describe.corrmat

Examples:

```
cm=describe.corrmat(data=data_pair2)
cm.table
```

	Age	Height	Weight
Age	1.000000	0.114687	0.237084
Height	0.114687	1.000000	0.697786
Weight	0.237084	0.697786	1.000000

cm.heatmap()

data_pair2=data_pair2.dropna()
cm=describe.corrmat(data=data_pair2,utri=False,stars=True)

	Age	Height	Weight
Age		***	***
Height	0.1147***		***
Weight	0.2371****	0.6978****	

```
arguments
------
- data = name of dataframe (var)
- nominal,ordinal = list of names of nominal,ordinal variables ([str,str,...])
- ordvsord = correlation coefficient for ordinal vs ordinal/numerical
('spearman','kendall','gk_gamma') (str) [default = 'spearman']
- nomvsnom = correlation coefficient for nominal vs nominal/ordinal ('cramer')
(str)
- numvsnom = correlation coefficient for numerical vs nominal ('eta','pbc') (str)
[default = 'eta']
- stars = do you want to flag significant correlations with stars (bool) [default
= False]
- padjust = method to correct for multiple testing
('none','bonf','sidak','holm','fdr_bh','fdr_by') (str) [default='bonf']
- utri = do you want to show the upper triangle of the matrix (bool) [default =
True]
- ltri = do you want to show the upper triangle of the matrix (bool) [default =
True]
- fill = how to fill the empty spaces if upper/lower triangle is masked (str)
[default = '']
- decimals = how many decimal places to show in case a triangle is masked or stars
is True (int) [default = 4]
- percent = display the correlations as percentages (bool) [default = False]
- force_biserial = always use rank-biserial resp. point-biserial coefficent when
ordinal/numerical vs binary nominal (bool) [default = True]
```

4.2 Class dataprep

Examples:

• Separate a data set, e.g., married from not married people:

```
groups=dataprep.group_sep(data=data2[['married','age','income']],groupvar='
married')
groups[0].head()
```

	married	age	income
0	no	75	67195.781504
1	no	75	57014.602488
2	no	75	51924.012980
3	no	75	41742.833964
4	no	75	50905.895078

groups[1].head()

	married	age	income
5	yes	50	38688.480260
6	yes	50	37670.362358
7	yes	50	38688.480260
8	yes	50	38688.480260
9	yes	50	38688.480260

One-hot-/Dummy-Encoding of data, e.g., ethnicity.

Original data:

	ethnicity	income
0	white	67195.781504
1	white	57014.602488
2	white	51924.012980
3	white	41742.833964
4	white	50905.895078

One-hot-Encoding:

```
enc=dataprep.onehot(cats=['ethnicity'])
data_encoded=enc.fit_transform(data2[['ethnicity','income']])
```

Encoded Data:

	dummyethnicity_hispanic	dummyethnicity_other	dummyethnicity_white	income
0	0.0	0.0	1.0	67195.781504
1	0.0	0.0	1.0	57014.602488
2	0.0	0.0	1.0	51924.012980
3	0.0	0.0	1.0	41742.833964
4	0.0	0.0	1.0	50905.895078

Standard encoding of an ordinal variable, e.g., happiness:

Original data:

	happy_study_program	income	year	level
0	very unhappy	1100.0	2023	Bachelor
1	happy	650.0	2023	Bachelor
2	unhappy	1000.0	2023	Bachelor
3	so,so	500.0	2023	Bachelor
4	unhappy	1000.0	2023	Bachelor

Standard encoding:

```
enc=dataprep.encoder(order={'happy_study_program':['very
unhappy','unhappy','so,so','happy', 'very happy']})
data_encoded=enc.fit_transform(data)
```

Encoded data:

	happy_study_program	income	year	level
0	0.0	1100.0	2023	Bachelor
1	3.0	650.0	2023	Bachelor
2	1.0	1000.0	2023	Bachelor
3	2.0	500.0	2023	Bachelor
4	1.0	1000.0	2023	Bachelor

Remark: in case of nominal variables, the order can be omitted.

```
arguments
list of groupwise dataframes (list of pd.DataFrame)
arguments
returns
arguments
returns
.fit(X,y)
   arguments
arguments
```

```
returns
-----
.transform(data,sparse) -> an encoded dataframe
arguments
-----
- data = a dataframe (pd.DataFrame) or a vector (pd.Series)
- sparse = whether output should be returned in sparse format (bool)
[default=False]
```

4.3 Class plots

4.3.1 Summary

```
Class plots
-----
.dist
.qq
.scatter
.scatter3d
.outlier
```

4.3.2 plots.dist

Example:

```
plots.dist(data,var='income',groupvar='level',fig=[12,8],ticksize=15,
    labelsize=25,legsize=15,dark=False,linewidth=3,lineclr='blue',xlabel=None,s
    harediagram=True)
```



```
arguments
-----
- data = either name of dataframe (var) or vector (pd.Series)
- var, groupvar = name of variable and grouping variable (str) -> only relevant
when data is name of a dataframe
- fig = figure size ([int,int]) [default=[12,8]]
- ticksize = size of ticks (int) [default=15]
```

```
- labelsize = size of labels (int) [default=25]
- legsize = size of legend (int) [default=15]
- dark = dark background (bool) [default=False]
- linewidth = line width (int) [default=3]
- lineclr = line color (str) [default='blue']
- xlabel = custom x-axis label (str) [default=None]
- sharediagram = whether plots should be done in the same diagram (bool) [default = True]

returns
------
Distribution plot
```

4.3.3 plots.qq

Example:

plots.qq(data,var='income',groupvar='level',fig=[12,8],ticksize=14,labelsize=18,le
gsize=16,dark=False,rotx=0,roty=90,dotsize=80,confidence=False)


```
arguments
------
- data = either name of dataframe (var) or vector (pd.Series)
- var, groupvar = name of variable and grouping variable (str) -> only relevant
when data is name of a dataframe
- fig = figure size ([int,int]) [default=[12,8]]
- ticksize = size of ticks (int) [default=15]
- labelsize = size of labels (int) [default = 18]
- legsize = size of legend [default = 16]
- dark = dark background? (bool) [default = False]
- rotx, roty = rotate x and y (int between 0 and 360) [default: rotx=0, roty=90]
- dotsize = size of dots (int) [default = 80]
- confidence = whether to plot a confidence interval (dec between 0 and 1)
[default = False]

returns
-----
00 Plot
```

4.3.4 plots.scatter

Example:

plots.scatter(data3['age'],data3['income'],data=None,fig=[8,6],ticksize=14,labelsi
ze=16,dark=False,dotsize=100,dotclr=['blue'],hue=None,hueclr='tab10',hue_norm=None
, namexy=[],rotx=0,roty=90, ordinal=False,bubsize=(20, 2000), regression=None,
linewidth=2, lineclr='red', poly_deg=3,legend=False,legendfont=12, legendcol=1,
legendspaceh=3, legendspacev=2,intext=False,pos=[0,0],txtclr='red',txtsize=12)


```
arguments
------
- data = name of dataframe (var)
- x,y = names of variables (str)
- fig = figure size ([int,int]) [default = [8,6]]
- ticksize = size of ticks (int) [default = 14]
- labelsize = size of labels (int) [default = 16]
- dark = dark background? (bool) [default = False]
- dotsize = size of dots (int) [default = 100]
- dotclr = color of dots (str) [default = ['blue']]
- hue = name of third variable whose values are used to color the dots (str)
[default = None]
- hueclr = palette for colors of hue variable (str) [default = 'tab10']
- namexy = names of variables (list) [default = None]
- rotx, roty = rotate x and y (int between 0 and 360) [default: rotx=0, roty=90]
- ordinal = enable bubble plot (bool) [default = False]
- bubsize = size of dots in bubble plot ((int,int)) [default = (20,2000)]
- regression = plot a regression ('linear','logistic','poly') (str) [default = False]
- linewidth = width of regression line (int) [default = 2]
- lineclr = color of regression line (str) [default = 'red']
- poly_deg = polynomial degrees only relevant if regression = 'poly' (int)
[default = 3]
- legend = enable legend (bool) [default = False]
- legend = enable legend (int) [default = 12]
- legendcol = number of legend cols (int) [default = 1]
```

4.3.5 plots.scatter3d

Example:

```
plots.scatter3d(data3[['age','debt_total']],data3['income'],fig=[12,8],ticksize=12
,labelsize=14,dotsize=60,dotclr='blue',
linreg=True,regpal=plt.cm.RdBu_r,regclr='red',intext=False,pos=[0,0,60],
txtclr='red',txtsize=10)
```



```
arguments
-----
- X = feature matrix with 2 variables (pd.DataFrame)
- y = dependent variable (pd.Series)
- fig = figure size ([int,int]) [default = [8,6]]
- ticksize = size of ticks (int) [default = 14]
- labelsize = size of labels (int) [default = 16]
- dotsize = size of dots (int) [default = 60]
- dotclr = color of dots (str) [default = 'blue']
- linreg = whether to plot regression plane (bool) [default = True]
```

```
- regpal = palette for regression plane, can be None (obj) [default =
plt.cm.RdBu_r]
- regclr = color of regression plan used only if regpal=None (str) [default =
'red']
- intext = whether to plot the regression description inside plot (bool) [default
= False]
- pos = position of intext [x,y] ([int,int]) [default = [0,0]]
- txtclr = color of intext (str) [default = 'red']
- txtsize = size of intext [default = 12]
returns
------
3D Scatter Plot
```

4.3.6 plots.outlier

Examples:

• Visualize potential univariate outliers, e.g., for age:

plots.outlier(data3['income'],k='auto',method='iqr',limround=0,dtype='univa
riate')

Visualize potential bivariate outliers, e.g., for age+income:

plots.outlier(data3[['income']],data3['age'],k='auto',method='Cook',limroun
d=0,dtype='bivariate')

Visualize potential multivariate outliers, e.g., for age+income+debt:

Code Structure:

```
arguments
-----
- x = either feature matrix with variables (pd.DataFrame) or variable (pd.Series)
- y = dependent variable (pd.Series) or None if univariate
- k = outlier detection factor either 'auto' (str) or a dictionary containing
methods and factors (dic) [default='auto']
- method = outlier detection method ('iqr','zscore','mad','Cook','Mahalanobis')
(str) [default = iqr]
- limround = decimal places to round tresholds (int) [default = 0]
- dtype = data type ('univariate','bivariate','multivariate') (str) [default =
'univariate']
returns
-----
uni- and multivariate return a observation vs distance/values plot with tresholds
bivariate returns a scatterplot where outliers are flagged red
```

4.4 Class tests

4.4.1 Summary

```
Class tests
-----
.t
.nonparametric
.independence
.correlation
.association
.equal_var
```

tests.t

Examples:

One-sample t-test:

tests.t.one sample(data=data3,var='income',nullmean=600).round(4) null cohenmean t dof alternative CI95% BF10 power val mean [477173.42, One-Sample tincome 674574.7795 600 6.7 988 two-sided 0.0 1.0 0.213 1.146e+08 871976.14]

Two-sample t-test:

	tests.t.two_sample(data=data3,var='income',groupvar='gender').round(4)											
	var	group	mean	variances	t	dof	alternative	p-val	CI95%	cohen- d	BF10	power
Two- Sample	income	female	67440.0837	equal	-3.2533	987.0000	two-sided	0.0012	[-1253444.17, -310243.89]	0.2483	14.809	0.9015
t-Test		male	849284.1126	unequal	-6.0454	778.8207		0.0000	[-1035718.7, -527969.35]	0.2483	3.821e+06	0.9015

Paired t-Test

```
        tests.t.paired(data_time['income 2019'],data_time['income 2020']).round(4)

        var
        mean diff correlation
        t dof alternative
        p-val
        Cl95%
        cohenda
        BF10 power

        Paired Sample t- Test
        income 2019-income 2020 income 2020 inco
```

```
Class t
------
.one_sample
    anguments
------
    data = name of dataframe (var)
    var = name of the variable in the dataframe (str)
    nullmean = mean under null hypothesis (int)
    alternative = direction of the test ('two-sided', 'left', 'right') (str)
    returns
-----
    table of one-sample t-test (pd.DataFrame)
.two_sample
    arguments
------
    data = name of dataframe (var)
    var = name of the variable in the dataframe (str)
    groupvar = name of the grouping variable (str)
    alternative = direction of the test ('two-sided', 'left', 'right') (str)
    returns
-----
table of two-sample t-test (pd.DataFrame)
.paired
arguments
-------
```

```
- data = name of dataframe (var) [optional]
- var1, var2 = names of the variables in the dataframe (str) or vectors
(pd.Series) if data is None
- alternative = direction of the test ('two-sided', 'left', 'right') (str)
returns
-----
table of paired t-test (pd.DataFrame)

Remarks:
-----
- Missing values are automatically removed from the data.
```

4.4.2 tests.nonparametric

Examples:

Sign test:

tests.nonparametric.sign(data=data3,var='income',nullmedian=60000).round(4)

	var	median	null median	n(-)	n(+)	n	M	alternative	p-val
Sign Test	income	78395.0784	60000	402	587	989	92.5	two-sided	0.0

Mann-Whitney U test:

tests.nonparametric.mwu(data=data3,var='income',groupvar='gender').round(4)

	var	groups	n	median	U-val	alternative	p-val	RBC	CLES
Mann-Whitney U test	income	female/male	221/768	38688.48026/100793.67226	39015.5	two-sided	0.0	0.5403	0.2299

Wilcoxon test:

tests.nonparametric.wilcoxon(data_time['income 2019'],data_time['income 2020']).round(4)

	var	n	median	ranksum (+)	ranksum (-)	W-val	alternative	p-val	RBC	CLES	
Wilcoxon signed-rank Test	income 2019- income 2020	200	85012.84478099999/87863.574905	9401.5	10498.5	9401.5	two-sided	0.5005	-0.0551	0.486	

```
- alternative = direction of the test ('two-sided', 'left', 'right') (str)
returns
-----
table of one-sample sign test (pd.DataFrame)

.mwu
arguments
------
- data = name of dataframe (var)
- var = name of the variable in the dataframe (str)
- groupvar = name of the grouping variable (str)
- alternative = direction of the test ('two-sided', 'left', 'right') (str)
returns
-----
table of Mann-Whitney U test (pd.DataFrame)

.wilcoxon
arguments
------
- data = name of dataframe (var) [optional]
- var1, var2 = names of the variables in the dataframe (str) or vectors
(pd.Series) if data is None
- alternative = direction of the test ('two-sided', 'left', 'right') (str)
returns
-----
table of Wilcoxon signed-rank test (pd.DataFrame)
```

4.4.3 tests.independence

Examples:

• Chi2 tests:

tests.independence.chi2(data=data3,var1='gender',var2='expenses last12')

	vars	no. categories	test	chi2	dof	p-val	cramer	power
Chi2 Tests	gender	2	pearson	12.068362	2.0	0.002395	0.110465	0.885033
of Independence	expenses_last12	3	cressie-read	11.737415	2.0	0.002827	0.108940	0.875730
			G(log-likelihood)	11.182538	2.0	0.003730	0.106334	0.858654
			freeman-tukey	10.846742	2.0	0.004412	0.104725	0.847363
			mod-log-likelihood	10.569450	2.0	0.005068	0.103378	0.837466
			neyman	10.161636	2.0	0.006215	0.101364	0.821920

Exact tests:

tests.independence.exact(data['gender'],data['married']).round(4)

	vars	test	statistic	p-val
Exact Tests	gender	fisher	123.8947	0.0
of Independence	married	barnard	20.9032	0.0
		boschloo	0.0000	0.0

Code Structure:

```
Class independence
-------
.chi2
arguments
-----
- data = name of dataframe (var) [optional]
- var1, var2 = names of the variables in the dataframe (str) or vectors

(pd.Series) if data is None
- yates = whether to apply the yates correction (bool) [default = False]
returns
-----
table of chi2 independence test (pd.DataFrame)
.exact
arguments
-----
- data = name of dataframe (var) [optional]
- var1, var2 = names of the variables in the dataframe (str) or vectors

(pd.Series) if data is None
returns
-----
table of containing Fisher, Barnard, and Boschloo Exact Test (pd.DataFrame)
```

4.4.4 tests.correlation

Examples:

• Simple Correlation with Kendall correlation coefficient:

```
tests.correlation.simple(data['income'],data['age'],method='kendall').round
(4)
```

	var1	var2	n	r (kendall)	CI95%	alternative	p-val	power
kendall Test of Correlation	income	age	989	0.1277	[0.07, 0.19]	two-sided	0.0	0.981

• Partial Correlation with Pearson correlation coefficient:

```
tests.correlation.partial(data=data,var1='income',var2='age',covar=['debt_t
otal']).round(4)
```

	var1	var2	covar	n	r (pearson)	CI95%	alternative	p-val
pearson Partial Correation Test	income	age	[debt_total]	989	0.1503	[0.09, 0.21]	two-sided	0.0

```
Class correlation
------
.simple
arguments
-----
- data = name of dataframe (var) [optional]
```

```
- var1, var2 = names of the variables in the dataframe (str) or vectors
    - method = correlation coefficient ('pearson','spearman','kendall') (str)
[default = 'pearson']
   returns
   arguments
    - covar = list of names of the covariates ([str,str,...])
    - groupvar = name of the grouping variable (str)
    - method = correlation coefficient ('pearson', 'spearman', 'kendall') (str)
[default = 'pearson']
    returns
   arguments
.rbc
   returns
   arguments
   returns
    (Goodman and Kruskal's gamma, asymptotic pvalue under null, asymptotic pvalue
.cramer
    arguments
    returns
    (Cramer's V, p-value) (tup)
```

4.4.5 tests.equal_var

Examples:

• Levene's Test of equal variances:

tests.equal_var.levene(data=data,var='income',groupvar='education').round(4)

	var	group		f	dof1	dof2	p-val
Levenes Test	income	education	Mean	18.0211	3	985	0.0000
of Equal Variances			Median	7.4110	3	985	0.0001
			Trimmed	118.0536	3	985	0.0000

• Bartlett's Test of equal variances:

tests.equal_var.bartlett(data=data,var='income',groupvar='education').round(4)

	var	group	Т	dof1	dof2	pval
Bartletts Test of Equal Variances	income	education	781.5386	3	985	0.0

4.5 Class regression

Examples:

• Multiple linear regression:

```
X=data[['age','social_pension_income']]
y=data['income']
reg=regression(X,y)
reg.coef.round(4)
```

		coef	stand. coef	std err	t	P> t	[0.025	0.975]
linear reg.	intercept	-601800.0000	-1.4135	361000.000	-1.665	0.096	-1310000.000	107000.000
coefficients	age	22410.0000	0.7455	7004.086	3.199	0.001	8663.452	36200.000
	social_pension_income	5.8039	0.6680	2.683	2.163	0.031	0.539	11.069

reg.datafit.round(4) dv dofresid dof model R2 adj. R2 omnibus (F) omnibus (p-val)

linear reg. fit income 986.0 2.0 0.0277 0.0258 14.0628 0.0 -16191.4723

reg.asstest.round(2)

	test	statistic	p-val
linear reg.	Jarque-Bera	1816978.14	0.0
assumptions	Breusch-Pagan	7.96	0.0187
	Durbin-Watson	2.06	
	Ramsey RESET	41.56	0.0

• Multiple logistic regression:

```
X=data[['age','income']]
y=data['gender']
reg=regression(X,y,regression='logistic')
reg.coef.round(4)
```

		coef	exp(coef)	std err	Z	P> z	[0.025	0.975]
logistic reg.	intercept	-1.1406	0.3196	0.269	- 4.247	0.000	-1.667	-0.614
coefficients	age	0.0120	1.0121	0.005	2.508	0.012	0.003	0.021
	income	-0.0000	1.0000	0.000	-5.690	0.000	-0.000	-0.000

LL

Code Structure:

4.6 Class outlier

Examples:

Detecting univariate outliers:

```
out=outlier.univariate(data['income'])
out.analysis
```

	method	pot. outlier	proportion
extreme value	zscore	11	1.11%
analysis	iqr	184	18.6%
	mad	240	24.27%
	E[ND] (>3 std from mean)	2	0.27%

```
out.show(method='zscore')
```

[166, 177, 285, 466, 472, 478, 545, 696, 798, 872, 875]

data.loc[out.show(method='zscore')][['income']].head()

	income
166	1.224796e+07
177	1.192216e+07
285	3.405604e+07
466	1.145383e+07
472	3.896337e+07

Detecting multivariate outliers:

```
out=outlier.multivariate(data[['income']],data['debt_total'])
out.analysis
```

method pot. outlier proportion

extreme value	Cook	18	1.82%
analysis	Mahalanobis	9	0.91%

```
out.show(method=' Mahalanobis')
```

[285, 316, 382, 466, 472, 618, 696, 710, 872]

5 Working with Data

5.1 Data Structures

5.1.1 Types

Python mainly processes data by the following structures

 Series Object. A series is a vector-like object (a one-dimensional column array) with index. Link:

https://pandas.pydata.org/pandasdocs/stable/reference/api/pandas.Series.html

List. A list object is a one-dimensional row array without index. Link:
 https://www.w3schools.com/python/python_lists.asp

 Array Object. An array is a matrix-like object. Link: https://www.w3schools.com/python/python_arrays.asp

Pandas Dataframe. A data frame is like an array embedded within a table.
 Link:

https://pandas.pydata.org/pandasdocs/stable/reference/api/pandas.DataFrame.html

 Dictionary. A dictionary is a mapping from keys to values {key:value}. Link: https://www.w3schools.com/python/python_dictionaries.asp

5.1.2 Converting Data Structures

Convert series to (let ser be the name of the object)	 list list(ser) array ser.array dataframe pd.DataFrame(ser)
Convert list to (let is be the name of the object)	 series pd.Series(li) array np.array(li) dataframe pd.DataFrame(li)
Convert array to (let ar be the name of the object)	seriespd.Series(ar)list

	ar.tolist()dataframe
	pd.DataFrame(ar)
Convert dataframe to (let of be the name of the object)	 series (column with name c) df['c'] or df.c list (column with name c) df['c'].to_list() or df.c.to_list() array df.to_numpy()

5.1.3 Selecting Cells, Columns an Rows

• Series/Lists. Select ith item:

ser[i] li[i]

• Array. Select cell with row index i and column index j:

ar[i,j]

- Dataframe.
 - Select column with name c:

df['c']

Select row with index i:

df.loc[i]

o Select cell with column name c and row index i:

df.loc[i,'c']

Select cell with column index j and row index i:

df.iloc[i,j]

• Dictionary. Select value for key k:

dic[k]

5.2 Data Frames

5.2.1 Dropping Columns

Suppose your data frame is named df.

 The following command drops the column named c. Only one column can be dropped:

```
del df['c']
```

The following command drops all columns whose names are in [] (c1,c2,...):

```
df=df.drop(['c1','c2',...],axis=1)
```

The following command <u>keeps</u> all columns whose names are in [[]] (c1,c2,...):

```
df=df[['c1','c2',...]]
```

5.2.2 Dropping Rows

Suppose your data frame is named df.

• The following command drops all rows whose numbers are in [] (r1,r2,...):

```
df=df.drop([r1,r2,...])
```

• The following command keeps all rows whose names are in [[]] (r1,r2,...):

```
df=df.loc[[r1,r2,...]]
```

• The following command drops all rows where the values in column c are greater or equal x (x = a number):

```
df=df[df['c']<x]
```

- Similarly, you may use a greater (>), a equal (==) or an unequal (!=) statement in this code.
- The following command <u>keeps</u> all rows where the values in column named c1
 x and, at the same time, those in column named c2 are > y:

```
df=df[(df['c1']<x) & (df['c2']>y)]
```

- Instead of an and (&) you may also use an and/or operator (|) in this code.
- The following commands drop all rows where the values in column c take on the values in [] (v1,v2,...):

```
indices = df[df['c'].isin([v1,v2,...])].index
df=df.drop(indices)
```

5.2.3 Creating new Columns

Suppose your data frame is named df.

• The following code creates a column named new that contains only one value x (which can be a number or a text string):

```
df['new']=x
```

 The following command creates a new column named new whose values are the sum of the values of the columns named c1 and c2:

```
df['new']=df['c1']+df['c2']
```

• The following command creates a new column with name new that assumes value v1 if the column with name c equals value v2 and, otherwise, value v3:

```
df['new']=df['c'].apply(lambda x: v1 if x==v2 else v3)
```

- Create a column conditional on the values of several other columns.
 - Step 1. Define a function. The following function assigns 'yes' if column c1 equals x and c2 is greater than y. It assigns 'no' if c1 equals x and y is less or equal y. Otherwise (if c1 unequal x), it assigns 'maybe':

```
def f(a):
    if a(c1) == x and a(c2)>y:
        return 'yes'
    elif a(c1) == x and a(c2)<=y:
        return 'no'
    else:
        return 'maybe'</pre>
```

Step 2. Apply the function:

```
df.apply(f,axis=1)
```

- 5.2.4 Rename Columns and and Replace Values
 - The following command renames the old columns with new names (old_name: new name):

```
df=df.rename(columns={'colname1_old':'colname1_new','colname2_old':'colname
1_new',...})
```

 The following command replaces value x in column c1 by 1 and the value y in column c2 by 'a':

```
df.replace({'c1': {x: 1}, 'c2':{y:'a'})
```

5.2.5 Merging Data Frames

Data frames (df1, df2) can be merged as follows:

Append:

df1.append(df2)

- Link: <u>https://www.geeksforgeeks.org/python-pandas-dataframe-append/</u>
- Concat:

```
frames=[df1,df2]
df_merged = pd.concat(frames)
```

- Remark: The data frames are stacked vertically and need to have exactly the same number of columns with identical names.
- However, you may set an inner join (horizontal merge) by adding join='inner':

o Link:

https://pandas.pydata.org/pandasdocs/stable/reference/api/pandas.concat.html

5.2.6 Some Useful Commands

Command	Description
<pre>df.describe()</pre>	returns the descriptive statistics of the data frame
df.dropna()	eliminates all missing values from your data frame
<pre>dfget_numeric_data()</pre>	eliminates all columns from df that do not contain numeric data
df.groupby('colname')	groups your data frame w.r.t. the grouping variable named colname
df.head(i)	shows the first <i>i</i> rows of the data frame
df.round(i)	rounds your data frame to i decimal places
df.shape	returns a list tuple: (number of columns, number of rows)
<pre>df.sort_values(by=['colname'])</pre>	sorts the data frame w.r.t. to the values of the column named colname
<pre>df['colname'].count()</pre>	shows the number of rows of the column named colname
<pre>df['colname'].cumsum()</pre>	returns a series object containing the cumulated sum of the entries of the column named colname
<pre>df['colname'].mean()</pre>	returns the mean of the column named colname
<pre>df['colname'].std()</pre>	returns the standard deviation of the column named colname

<pre>df['colname'].sum()</pre>	shows the sum of the entries of the column named colname
<pre>df['colname'].unique()</pre>	returns a list of the unique values in the column named colname
<pre>df['colname'].value_counts()</pre>	returns a list of all values of the column named colname and the number of observations per value

5.3 Data Visualization

In Python, it is very easy to create a plot based on two columns of a data frame:

```
df.plot(x='colname1',y='colname2')
```

Example.

5.4 Programing Functions

Python allows to easily program functions. In order to program a function use the command def f(a1,a2,...): $syntax \ return \ y$. The arguments of the function are a1,a2,... and y is the output of the function.

Example.

```
def f(x,a,b):
    return a*x+b

f(2,3,1)
```

WE HOPE THAT THIS BRIEF INTRODUCTION SHOWED YOU SOME ABILITIES OF PYTHON AND HELPED YOU TO DO SOME STEPS ON YOUR OWN.

ENJOY THE PROGRAM!

FLORIAN KAUFFELDT

Please report any typos/errors in this document to florian.kauffeldt@hs-heilbronn.de