## **COMPRESSION FOR AGI**

Yuxuan Lu

Nov. 3 2023

Northeastern Human-Centered Al Lab

#### **TAKEAWAYS**



- Generative models are Lossless compressors
  - "ChatGPT Is a Blurry JPEG of the Web"? No!
- · LLMs are State-of-the-Art text compressors
  - · comparing to deflate(gzip), Zstd, etc.
- Re-think about the training objective of foundation models

#### TABLE OF CONTENTS



Revisit the Training Process of LLMs

Why are LLMs Lossless compressors

Rethink the goal for foundation models

# REVISIT THE TRAINING PROCESS OF LLMs





Figure 1: Transformer: A Black Box - step 1





Figure 2: Transformer: A Black Box – step 2





Figure 3: Transformer: A Black Box – step 2





Figure 4: Transformer: A Black Box – training



- We have a sequence:  $X = [x_1, x_2, \dots, x_n]$
- We put this sequence into LLM and get a sequence of probabilities:
  - $p_i = P(x_i|x_{< i})$
- We want  $p_i$  approachs 1, so we minimize the following loss during pre-training:
  - $L = \sum_{i=1}^{n} -\log P(x_i|x_{< i})$

Questions?

WHY ARE LLMS LOSSLESS COMPRESSORS



- · Naturally, you would assume an LLM is a lossy compressor
  - That turns trainig corpus to model parameters
  - For LLaMa, the training dataset is 5.6TB
  - · And the 65 billion parameters takes about 130GB of storage
    - So 43x compression rate?
    - Lossy!



- · Naturally, you would assume an LLM is a lossy compressor
  - That turns trainig corpus to model parameters
  - · For LLaMa, the training dataset is 5.6TB
  - · And the 65 billion parameters takes about 130GB of storage
    - So 43x compression rate?
    - · Lossy!
- Actually, LLaMa can compress the entire 5.6TB of training corpus to 397.3 GB losslessly
  - 14x compression
  - · Best text compressor: 8.7x compression



- To compress the entire training corpus  $\mathcal C$  losslessly, we only need the CODE to train the models and  $\sum_{i\in\mathcal C} -\log P(x_i|x_{< i})$  bits of imformation.
  - The result size (after compression) ISN'T related the number of parameters!



- To compress the entire training corpus  $\mathcal C$  losslessly, we only need the CODE to train the models and  $\sum_{i\in\mathcal C} -\log P(x_i|x_{< i})$  bits of imformation.
  - The result size (after compression) ISN'T related the number of parameters!
- · But, HOW?

#### LLMs as compressors - How



- Imagine Alice is trying to send some text to Bob through a telephone wire
- · Alice needs to encode the data to "something"
- · Bob needs to decode the "something" back to data
- So we need an "encoding" algorithm and a "decoding" algorithm



• Let's say we have a vocabulary of  $\mathcal{V}$  (which should be defined in the training code), and we want to encode the first token  $x_1$ .



- Let's say we have a vocabulary of  $\mathcal{V}$  (which should be defined in the training code), and we want to encode the first token  $x_1$ .
- · First, we initialize the model and fed it the training data
  - and we can get the probability distribution of the first token p and an index  $x_1 \in \mathcal{V}$



- Let's say we have a vocabulary of  $\mathcal{V}$  (which should be defined in the training code), and we want to encode the first token  $x_1$ .
- · First, we initialize the model and fed it the training data
  - and we can get the probability distribution of the first token p and an index  $x_1 \in \mathcal{V}$
- With arithmetic encoding, we can encode the index  $x_1$  with  $-\log_2 p_{x_1}$  bits
  - Rather than  $-\log_2 \frac{1}{|\mathcal{V}|}$  bits



- Let's say we have a vocabulary of  $\mathcal{V}$  (which should be defined in the training code), and we want to encode the first token  $x_1$ .
- · First, we initialize the model and fed it the training data
  - and we can get the probability distribution of the first token p and an index  $x_1 \in \mathcal{V}$
- With arithmetic encoding, we can encode the index  $x_1$  with  $-\log_2 p_{x_1}$  bits
  - Rather than  $-\log_2\frac{1}{|\mathcal{V}|}$  bits
- We send those  $-\log_2 p_{x_1}$  bits to Bob
  - Let's call it  $z_1$



- Let's say we have a vocabulary of  $\mathcal{V}$  (which should be defined in the training code), and we want to encode the first token  $x_1$ .
- · First, we initialize the model and fed it the training data
  - and we can get the probability distribution of the first token p and an index  $x_1 \in \mathcal{V}$
- With arithmetic encoding, we can encode the index  $x_1$  with  $-\log_2 p_{x_1}$  bits
  - Rather than  $-\log_2 \frac{1}{|\mathcal{V}|}$  bits
- We send those  $-\log_2 p_{x_1}$  bits to Bob
  - Let's call it  $z_1$
- ... and update the model to minimize the loss, and repeat these steps for every data



• Bob retrives the code for training the model



- Bob retrives the code for training the model
- And he can initialize the exact same model (with random seed defined in the code)



- Bob retrives the code for training the model
- And he can initialize the exact same model (with random seed defined in the code)
- So he will have the exact same distribution p for the first token
  - He then can decode the token with p and z<sub>1</sub> with arithmetic decoding, get x<sub>1</sub>



- · Bob retrives the code for training the model
- And he can initialize the exact same model (with random seed defined in the code)
- So he will have the exact same distribution p for the first token
  - He then can decode the token with p and z<sub>1</sub> with arithmetic decoding, get x<sub>1</sub>
- And he will run the training loop to update the model with
  x<sub>1</sub>
- Note that the model parameters isn't transmitted through the phone wire

#### LLMs as compressors - Conclusion



- In the above process, the model parameter is always synced between bob and alice
- With arithmetic encoding, we can use fewer bits to encode something have a higher probability in a distribution.
  - If the distribution is uniform,  $-\log_2 p_{x_i} = -\log_2 \frac{1}{|\mathcal{V}|}$ , which is same as naive storage
  - And as the model is continually training, it can predict the next token with higher and higher probability.
- Bob can re-construct the entire training corpus  $\mathcal{C}$  with  $\sum_{i \in \mathcal{C}} -\log P(x_i|x_{< i})$  bits of information
  - Which is exactly the same with the sum of training loss on all tokens!

Questions?

## RETHINK THE GOAL FOR FOUNDATION MODELS



- If a computer program translates English and Chinese using an oracle comprising all possible combinations of Chinese and English combinations.
  - · Does it have understanding of translation?



- If a computer program translates English and Chinese using an oracle comprising all possible combinations of Chinese and English combinations.
  - · Does it have understanding of translation?
  - · It has the *least* understanding of translation



- If a computer program translates English and Chinese using an oracle comprising all possible combinations of Chinese and English combinations.
  - Does it have understanding of translation?
  - · It has the least understanding of translation
- What if it do it by a set of rules?
  - Tt have some understanding of translation.



- If a computer program translates English and Chinese using an oracle comprising all possible combinations of Chinese and English combinations.
  - · Does it have understanding of translation?
  - · It has the least understanding of translation
- · What if it do it by a set of rules?
  - Tt have some understanding of translation.
- If we can make the rule set smaller, it will generalise better.

#### LOSSY V.S. LOSSLESS



- "Lossy" compression means the model "remembers" everything in the training dataset
  - · BAD generalization
- "Lossless" compression means the model can better predict unseen data samples
  - · Better compression means GOOD generalization
    - · Because EVERY example is unseen

#### TARGET FOR FOUNDATION MODELS





Figure 5: All data V.S. Training Data

- For foundation models, what we want is good generalization ability
  - i.e. ability to generate or write UNSEEN samples.

## "A RECIPE FOR PERCEPTION"



## A recipe for perception

- · Collet all useful perceptual information
- Learn to compress it as best as possible with a powerful fundation model
  - Better architecture
  - Scale
  - Tool use
  - ...

## **RECAP**



- How LLM works
- · How LLM works as a compressor
- · How compressor generates intelligence

Questions?