MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 – FEBRUARY 2012 SOLUTION KEY

Round 1

A)
$$f(f(2))+f(f(-2))+f(0)=f(10)+f(-10)+f(0)=45+(-34)+10=21$$
.

B)
$$f(x) = (x+1)(x^2-6)(x^2+1)$$

 $\frac{2f(-2)}{3f(3)} = \frac{2(-1\cdot-2\cdot5)}{3(4\cdot3\cdot10)} = \frac{20}{360} = \frac{1}{18}$

C) Replace f(x) with y, i.e. let $y = \frac{x+1}{x-1}$ and solve for x in terms of y.

$$\Rightarrow xy - y = x + 1$$
. Solving for $x \Rightarrow y + 1 = xy - x = x(y - 1) \Rightarrow x = \frac{y + 1}{y - 1}$

Thus,
$$f(2x) = \frac{2x+1}{2x-1} = \frac{2\frac{y+1}{y-1}+1}{2\frac{y+1}{y-1}-1} = \frac{2(y+1)+(y-1)}{2(y+1)-(y-1)} = \frac{3y+1}{y+3} = \frac{3f(x)+1}{f(x)+3}$$

Round 2

A) The notes are being played in repeating blocks of 8 in the sequence CDEFGFED.

$$\frac{2011}{8} = 251, \quad r = 4.$$

Thus, Engelbert completed 251 blocks and stops on the 4th note in the 252nd block \Rightarrow $(F, N) = (\mathbf{R}, \mathbf{F})$.

B) The 3-digit number must be of the form 3x7 or $4x7 \Rightarrow$ digit sum is 10 + x or 11 + x.

For integers in the 300s, we must test only 317.

For integers in the 400s, we must test only 407

Since 407 = 11(37), we need only rigorously test 317.

We must test for divisibility only by primes smaller than $\sqrt{317}$. Since $19^2 = 361 > 317$, the divisors to be tested are: 2, 3, 5, 7, 11, 13 and 17.

The first three divisors are easily eliminated.

$$7 \Rightarrow r = 2$$
 $11 \Rightarrow r = 9$ $13 \Rightarrow r = 5$ $17 \Rightarrow r = 11$

Thus, <u>317</u> is prime.

C) Each pointer cycles through the 13 numbered positions, before returned to #3.

Pointer A: 3 10 4 11 5 12 6 13 7 1 8 2 9 | 3

Pointer B: 3 11 6 1 9 4 12 7 2 10 5 13 8 3

Pointer C: 3 5 7 9 11 13 2 4 6 8 10 12 1 | 3

Sums: 26 17 21 25 29 20 24 15 19 23 27 18

Thus, the maximum sum is 29 and it occurs first for $n = 5 \Rightarrow (5, 29)$.