الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2010

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و 30 د

اختبار في مادة : التكنولوجيا (هندسة الطرائق)

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (05 نقاط)

المسخن A على النحاس المسخن A مينوي A على النحاس المسخن A على النحاس المسخن A على النحاس المسخن على المركب A الذي يتفاعل مع كاشف A بينما لا يتفاعل مع محلول فهلنغ.

- أوجد الصيّغة نصف المفصيّلة لكل من المركبين A و B موضيّحا طبيعتهما الكيميائية.

2/- يتفاعل المركب B مع بروميد المثيل مغنزيوم CH_3 –MgBr ليعطي مُركَبًا يتحلّل بالماء ليتشكّل المركب C.

- .D على الألومين Al_2O_3 المسخّن عند C فيتشكّل المركب نمرّر أبخرة المركب على الألومين Al_2O_3
 - يتأكسد المركب D بواسطة $K_2Cr_2O_7$ في وسط حمضي فينتج المركبين D و C
 - .G مع كلوريد الثيونيل ($SOCl_2$) ليعطي المركب يتفاعل المركب
 - تأثير $\mathrm{CH_3-MgCl}$ على المركب G يؤدي إلى المركب E .
 - أ- أكتب الصنيغ نصف المفصلة للمركبات G ، F ، E ، D ، C .
 - ب- ما نوع التفاعل المؤدي إلى تشكّل كلّ من المركبين D و G ؟
 - ج- أكمل التفاعل التالي:

التمرين الثاني: (05 نقاط)

يعطى التفاعل الآتي عند 25°C:

$$C_3H_{8(g)} + 5O_{2(g)} \longrightarrow 3CO_{2(g)} + 4H_2O_{(g)}$$

1/ أحسب أنطالبي هذا التفاعل باستخدام المعادلات التالية:

$$3C_{(s)} + 4H_{2(g)} \longrightarrow C_3H_{8(g)}$$

$$\Delta H_1^0 = -103.8 \ kJ.mol^{-1}$$

$$C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)}$$

$$\Delta H_2^0 = -393,5 \text{ kJ.mol}^{-1}$$

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_2O_{(g)}$$

$$\Delta H_3^0 = -241.8 \ kJ.mol^{-1}$$

2/ أحسب أنطالبي هذا التفاعل عند 700°C.

3/ أحسب طاقة الرّابطة C-H في البروبان (C₃H_{8(g)}.

المعطيات:

المركبات	C ₃ H _{8(g)}	H ₂ O _(g)	O _{2(g)}	CO _{2(g)}
C _p (J. mol ⁻¹ .K ⁻¹)	73,89	34,23	29,37	37,20

$$\Delta H_{\text{sub}}^{0}(C_{(s)}) = 717 \text{ kJ.mol}^{-1}$$

$$E_{\rm C-C} = -347,3 \ kJ \ mol^{-1}$$

$$\Delta H_{dis}^{0}(H_2) = 436 \ kJ.mol^{-1}$$

التمرين الثالث: (05 نقاط)

لتحضير حمض البنزويك استخدمنا المواد التالية:

PaOH من 2 g -

- 6 g من 6 KMnO₄

 $C_6H_5-CH_2-OH$ کحول بنزیلی 2,5 mL -

- 100 mL ماء مقطر

- حجر الخفان (pierre ponce)

- محلول HCl مركز

بعد إجراء التجربة حصلنا على g 1,763 من حمض البنزويك.

1/ أكتب معادلة التفاعل الحادث.

2/ ما دور حجر الخفان في التجربة؟

3/ ما دور حمض كلور الماء في التجربة؟

4/ أحسب عدد مولات كل من الكحول البنزيلي وبرمنغنات البوتاسيوم KMnO4.

5/ أحسب مردود التفاعل.

Mn=54,9 g/mol K=39,1 g/mol C=12 g/mol H=1 g/mol O=16 g/mol المعطيات: ρ =1,04 g/cm³ هي ρ =1,04 g/cm³

التمرين الرابع: (05 نقاط)

لديك صيغ الأحماض الأمينية التالية:

$$H_2N$$
 - CH - $COOH$ H_2N - CH_2 - $COOH$ H_2N - CH - $COOH$ CH_2 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_6 CH_6 CH_6 CH_6 CH_6 CH_6 CH_6 CH_7 CH_8 CH_8 CH_8 CH_8 CH_8 CH_8 CH_8 CH_8 CH_9 CH_9

1/ صنّف الأحماض الأمينية التالية Met ، Phe ، Ala /

2/ أكتب الصبيغة الكيميائية لثلاثي الببتيد Phe-Gly-Leu .

3/ هل يعطي هذا الببتيد نتيجة إيجابية مع كاشف كزانتوبروتييك؟ علَّل إجابتك.

4/ أكتب الصبيغ الكيميائية الممكنة لثنائي الببنيد المتشكل من الحمضين الأمينيين Gly و Ala.

5/ نعتبر ثنائى الببتيد التالى:

$$\begin{array}{cccc} & & & & & \\ \text{O} & & & \\ \text{H}_2\text{N} - \text{CH} - \overset{\circ}{\text{C}} - & \text{NH} - \text{CH} - \text{COOH} \\ & & & & & \\ \text{CH}_2)_2 & & & \text{CH}_2 \\ & & & & & \\ \text{CH}_3 & & & & \\ \text{CH}_3 & & & & \\ \end{array}$$

أ- ما هي الأحماض الأمينية المكونة له؟

ب- مثّل المماكبات الضوئية لأحد الحمضين الأمينيين مع إعطاء التّسمية D و L.

الموضوع الثاني

التمرين الأول: (07 نقاط)

I) نعتبر التفاعلات الكيميائية المتسلسلة التالية:

+ H₂O

G، F، E، D، C ، B ، A التفاعلات الكيميائية G ، G ، G ، G ، G ، G ، G ، G المتسلسلة.

G → MgBrOH

2/ أكتب تفاعل إرجاع كليمنسن للمركب B.

II) يحضر البولي إستر في الصناعة من التفاعل التالي:

$$n \times + n \times \longrightarrow \begin{bmatrix} \ddot{c} & \ddots & \ddot{c} \\ \ddot{c} & \ddots & \ddot{c} \end{bmatrix} - C + CH_2 - CH_2 -$$

1/ استنتج الصنيغة نصف المفصلة لكلّ من المونوميرين X و Y.

2/ ما نوع البلمرة في تفاعل تشكل البولي إستر؟ 2/ - نحصل على المركب X بأكسدة CH₃ - CH₃ بواسطة برمنغنات البوتاسيوم في وسط حمضي.

- نحصل على المركب Y بأكسدة الإيثلين بواسطة فوق الحمض R-CO3H متبوعة بالإماهة. أكتب التفاعلات الكيميانية الحاصلة.

التمرين الثاني: (07 نقاط) 1/ لديك الجدول التالي:

pH_i	pKa _R	pKa ₂	pKa ₁	الصيّغة الكيميائية	الرّمز	الحمض الأميني
		9,62	2,38	$(\mathrm{CH_3})_2\mathrm{CH}$ - $\mathrm{CH_2}$ - CH - COOH NH $_2$	Leu	لوسين
2,77		9,6	1,88	HOOC - CH ₂ - CH - COOH NH ₂	Asp	حمض الأسبارتيك
9,7	10,5		2,2	H ₂ N - (CH ₂) ₄ - CH - COOH NH ₂	Lys	ليزين

أ- أكمل الجدول مبرر الجابتك.

ب- مثّل الشّكلين D و L لحمض الأسبارتيك.

ج- أكتب صبيغ الحمض الأميني Leu عند pH=6 ، pH=1 و pH=12

2/ نضع مزيجا من الأحماض الأمينية الثلاثة Lys ، Asp ، Leu في جهاز الهجرة الكهربائية عند7,7- اللهجرة الكهربائية عند7,7- حدّد بالرسم مواقع الأحماض الأمينية الثلاثة بعد هجرتها مع التعليل.

3/ لديك ثلاثي الببتيد التالي: Lys-Leu-Asp

أ- أكتب الصبيغة الكيميائية لهذا الببتيد.

ب- استنج صيغته عند 13=pH

4/ ينتج حمض الأسبارتيك من التفاعل الإنزيمي التالي:

أ- أكمل التفاعل الإنزيمي.

ب- أذكر اسم الإنزيم المحفّز E.

ج- أعط تصنيف هذا الإنزيم.

التمرين الثالث: (06 نقاط)

 N_2 عند 24,45 L من غاز ثنائي الأزوت N_2 تمددا عكسيا من الحجم N_2 إلى الحجم N_2 عند درجة حرارة ثابتة N_2 05°C.

ملاحظة: نعتبر N2 غاز مثالي.

أ- استخرج عبارة عمل التمدد.

ب- أحسب عمل تمدّد الغاز N₂.

التفاعلين التاليين: O_2 بالأكسجين N_2 وفق التفاعلين التاليين:

$$N_{2(g)} + O_{2(g)} - - - 2NO_{(g)} \Delta H_1 = 180 \text{ kJ}$$

$$NO_{(g)}$$
 + 1/2 $O_{2(g)}$ \longrightarrow $NO_{2(g)}$ $\Delta H_2 = -57 \text{ kJ}$

أ- استنتج الأنطالبي ΔH_3 للتفاعل التالى:

$$N_{2(g)} + 2O_{2(g)} \longrightarrow 2NO_{2(g)}$$

ب- هل هذا التفاعل ناشر أو ماص للحرارة؟ علَّل إجابتك.

3/ ليكن التفاعل التالي:

$$N_{2(g)} + 3H_{2(g)} = 2NH_{3(g)}$$

 ΔH = -92 kJ : 25°C عند التفاعل عند

- أحسب أنطالبي التفاعل عند 500°C .

تعطى السعات الحرارية المولية عند ضغط ثابت:

 $C_n(N_2)=29,10 \text{ J.mol}^{-1}.\text{K}^{-1}$

 $C_p(H_2)=28,90 \text{ J.mol}^{-1}.\text{K}^{-1}$

 $C_p(NH_3)=36,10 \text{ J.mol}^{-1}.\text{K}^{-1}$

4/ نعتبر التفاعل التالي عند 25°C :

$$NH_{3(g)} + \frac{5}{4}O_{2(g)} \longrightarrow NO_{(g)} + \frac{3}{2}H_2O_{(g)}$$

 ΔH = -226,7 kJ : أنطالبي هذا التفاعل

- أحسب التغير في الطَّاقة الدّاخلية ∆U للتفاعل عند 25°C.

صفحة 6 من 6

التمرين الثاني: (07 نقاط) 1/ لديك الجدول التالي:

pH_i	pKa _R	pKa ₂	pKa ₁	الصنيغة الكيميائية	الرّمز	الحمض الأميني
		9,62	2,38	${\rm (CH_3)_2CH}$ - ${\rm CH_2}$ - ${\rm CH}$ - ${\rm COOH}$ NH $_2$	Leu	لوسين
2,77		9,6	1,88	${ m HOOC}$ - ${ m CH}_2$ - ${ m CH}$ - ${ m COOH}$ ${ m NH}_2$	Asp	حمض الأسبارتيك
9,7	10,5		2,2	H ₂ N - (CH ₂) ₄ - CH - COOH NH ₂	Lys	ليزين

أ- أكمل الجدول مبررا إجابتك.

ب- مثّل الشّكلين D و L لحمض الأسبارتيك.

ج- أكتب صبيغ الحمض الأميني Leu عند PH=6 ، pH=12 و pH=12

2/ نضع مزيجا من الأحماض الأمينية الثلاثة Lys ، Asp ، Leu في جهاز الهجرة الكهربائية عند9,7=PH=9,7 في حدّد بالرسم مواقع الأحماض الأمينية الثلاثة بعد هجرتها مع التعليل.

3/ لديك ثلاثي الببتيد التالي: Lys-Leu-Asp

أ- أكتب الصبيغة الكيميائية لهذا الببتيد.

ب- استنتج صيغته عند 13=pH

4/ ينتج حمض الأسبارتيك من التفاعل الإنزيمي التالي:

أ- أكمل التفاعل الإنزيمي.

ب- أذكر اسم الإنزيم المحفّز E.

ج- أعط تصنيف هذا الإنزيم.

بكالوريا 2010	(فحم هیدروجینی)	مادة : التكنولوجيا هندسة الطرانق	شعبة: تقني رياضي	موذجية وسلم التنقيط	الإجابة الذ
العلامة		1 69		}	المجلما

	العلام	عناصر الإجابة الموضوع الأول عناصر الإجابة الموضوع الأول	المحاور
مجموع	مجزاة	التمرين الأول: (05 نقاط)	
	{	1) الصيغة نصف المفصلة للمركب A:	
		OH OH	
	0,5 0,25	CH ₃ - CH ₂ - CH ₃ - CH ₃ - CH ₃	
1,5	ļ	الصيغة نصف المفصلة للمركب B:	
	0,5	0	
1	0,25	CH ₃ -C-CH ₂ -CH ₃ طبيعة B: سيتون	
	}	2) أ- الصبيغ نصف المفصلة للمركبات:	
l		OH OH OH OH OH	
		$CH_3 - C - CH_2 - CH_3$ $CH_3 - C = CH - CH_3$ CH_3 CH_3	
2.5			
3,5	5×0,5	(C) (D)	
		CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	
		(E) (F) (G)	
	0,25	ب- نوع التفاعل المؤدي إلى D: تفاعل نزع.	
	0,25	نوع التفاعل المؤدي إلى G: تفاعل استبدال.	
		ج- إكمال التفاعل:	1
		O MnO O O	Ų i
	0,5	$2 \text{ CH}_3 - \text{C} - \text{OH} \xrightarrow{\text{MnO}} \text{CH}_3 - \text{C} - \text{CH}_3 + \text{CO}_2 + \text{H}_2\text{O}$]
		التمرين الثاني: (05 نقاط) (F)	
, 		1) حساب أنطالبي التفاعل:	
' - -	0,25	$C_3H_{8(g)}$ \longrightarrow $3C_{(s)} + 4H_{2(g)} -\Delta H_1^0$	}
	0,25	$\left(\begin{array}{cccc} C_{(s)} & + & O_{2(g)} & \longrightarrow & CO_{2(g)} & \Delta H_{2}^{0} \end{array}\right) \times 3$	
1,5	,23	,	
	0,25	$\left(\begin{array}{ccc} H_{2(g)} + 1/2 O_{2(g)} & \longrightarrow & H_2O_{(g)} \\ \end{array} \right) \times 4$	
		$C_3H_{8(g)} + 5O_{2(g)} \longrightarrow 3CO_{2(g)} + 4H_2O_{(g)}$	
	0,25	$\Delta H = -\Delta H_1^0 + 3\Delta H_2^0 + 4\Delta H_3^0$	
	0,25	$\Delta H = 103.8 + 3(-393.5) + 4(-241.8)$	
	0,25	$\Delta H = -2043,9 kJ.mol^{-1}$	

201) بحورون	عودېو» راسم استوت استان ایسی روسی ساده استونویو سنسه اسارانی (عم موروجویی	
14 14 14 14	او	ملحظة: تمنح العلامة الكاملة في حالة استعمال قانون Hess لإيجاد أنطالبي التفاعل حيث:	
		$\Delta H = \sum \Delta H_f^0(\text{Produits}) - \sum \Delta H_f^0(\text{Re actifs})$	
	0,5	$\Delta H = 3\Delta H_f^0(CO_{2(g)}) + 4\Delta H_f^0(H_2O_{(g)}) - \left[\Delta H_f^0(C_3H_{8(g)}) + 5\Delta H_f^0(O_{2(g)})\right]$	
	0,5	$\Delta H = 3(-393,5) + 4(-241,8) - [-103,8+5\times0]$	
	0,5	$\Delta H = -2043,9 kJ.mol^{-1}$	
		2) حساب أنطالبي التفاعل عند 700°C:	
		الدينا قانون كيرشوف:	
	0,25	$\Delta H_{T} = \Delta H_{T_0} + \int_{T_0}^{T} \Delta C p dT$	
	0,25	T=700+273=973K	
2	0,25	$T_0 = 25 + 273 = 298K$	}
	0,25	$\Delta Cp = \sum Cp(Produits) - \sum Cp(Reactifs)$	
	0,25	$\Delta \text{Cp=3Cp(CO}_2) + 4\text{Cp(H}_2\text{O}) - [\text{Cp(C}_3\text{H}_8) + 5\text{Cp(O}_2]]$	
	0,25	Δ Cp=(3×37,2)+4(34,23)-(73,89+5×29,37)	
		$\Delta \text{Cp=27,78 J.mol}^{-1}.\text{K}^{-1}$	
	0,25	$\Delta H_{T} = \Delta H_{T_0} + \Delta C p (T - T_0)$	}
		$\Delta H_{973} = -2043,9 \cdot 10^3 + 27,78(973 - 298)$ $\Delta H_{973} = -2043900 + 18751,5$	
		$\Delta H_{973} = -2025148,5 \text{ J.mol}^{-1}$	
	0,25	$\Delta H_{973} = -2025,1485 \text{ kJ.mol}^{-1}$	
		3) حساب طاقة الرابطة C-H:	
	0,5	$3 C_{(s)} + 4 H_{2 (g)} \xrightarrow{\Delta H_{f}^{\circ}(C_{3}H_{8(g)})} C_{3}H_{8 (g)}$	
1,5		$3\Delta H^{0}_{sub}(C_{(s)})$ $4\Delta H^{0}_{dis}(H_{2})$ $2E_{C-C} + 8E_{C-H}$	
		3 C _(g) + 8 H _(g)	
	0,5	$\Delta H_{f}^{0}(C_{3}H_{8(g)}) = 3\Delta H_{sub}^{0}(C_{(s)}) + 4\Delta H_{dis}^{0}(H_{2}) + 2E_{C-C} + 8E_{C-H}$	ŀ
	0,25	$-103,8 = 3(717) + 4(436) + 2(-347,3) + 8E_{C-H}$	
	0,25	$\Rightarrow E_{C-H} = \frac{-3304, 2}{8} = -413,025kJ.mol^{-1}$	}

الإجابة النموذجية وسلم التنقيط شعبة : تقني رياضي مادة : التكنولوجيا هندسة الطرانق (فحم هيدروجيني) بكالوريا 2010

2010) بخالوریا (الإجابة التمودجية ومنتم التعيظ شعبة يقتي رياضي ماده :التحتولوجيا هندسة الطرائق (قحم هيدروجيني
		التمرين الثالث: (05 نقاط)
	}	1) كتابة معادلة التفاعل الحادث:
0,75	0,25	$\left[C_{6}H_{5} - CH_{2}OH + 5OH \longrightarrow C_{6}H_{5} - COO + 4e + 4H_{2}O \right] \times 3$
	0,25	$\left[MnO_4^{-} + 3e^{-} + 2H_2O MnO_2 + 4OH^{-}\right] \times 4$
}	0,25	3C ₆ H ₅ -CH ₂ OH + 4 MnO ₄ → 3C ₆ H ₅ -COO + 4MnO ₂ +
		4H ₂ O + OH ⁻
		ملاحظة: تقبل الإجابة إذا كتبت المعادلة فقط.
0,5	0,5	2) دور حجر الخفان في التجربة: تنظيم الغليان.
0,5	0,5	(3 دور HCl هو ترسیب حمض البنزویك.
		(4 حساب عدد مو لات C ₆ H ₅ -CH ₂ OH و KMnO ₄ :
1,75	2×0,25	$m_1 = \rho$. $V = 1,04 \times 2,5 = 2,6g$ limit like (Line 1) Site (1) S
		الكتلة المولية للكحول:
	0,25	$M_1 = (7 \times 12) + (8 \times 1) + 16 = 108g / mol$
	2×0,25	$n_1 = \frac{m_1}{M_1} = \frac{2,6}{108} = 0,024 mol$
		الكتلة المولية لــ KMnO ₄ :
	0,25	$M_2 = 39,1+54,9+4\times16=158g / mol$
	0,25	$n_2 = \frac{m_2}{M_2} = \frac{6}{158} = 0,038mol$
1,5	0,25	$M_{C_6H_3-COOH} = (7\times12) + 6 + (2\times16) = 122g / mol$ (5)
}		C ₆ H ₅ -CH ₂ OH — C ₆ H ₅ -COOH
		108 g — → 122 g
}		2,6 g
	0,5	$\Rightarrow x = \frac{2,6 \times 122}{108} = 2,937g$
}	0,5	$100 \times \frac{ كتابة العملية من حمض البنزويك}{ كتابة النظرية من حمض البنزويك × 100$
		$100 \times \frac{1,763}{2,937} = 100$ المردود
	0,25	المردود = 60 %
I	L	4

النمو	لْجِيةُ وسلم النَّنْقَيْطُ شَعِبُهُ :تَقَنَّي رياضي حادة :التَكنُولُوجِيا هندسه الطرائق ﴿ فَحَم هيدروجيني) بكالوريا (2010
	التمرين الرابع: (05 نقاط)		
	1) التصنيف:		
	Ala : حمض أميني ذو سلسلة كربونية بسيطة	0,25	0,75
	Phe : حمض أميني عطري	0,25	,
	Met : حمض أميني كبريتي	0,25	
	2) الصيغة الكيميائية للببتيد : Phe – Gly – Leu هي:	,	
	O O		
	H ₂ N - CH - C - NH - CH ₂ - C - NH - CH - COOH		
	ĊH ₂ ĊH ₂	0,75	0,75
	ĆH CH		
	ĆH₃ CH₃		
	3) هذا الببتيد يقبل النفاعل اللوني (كزانتوبروتييك) لاحتوائه على حمض أميني	2 × 0.25	0.5
	عطري (Phe) .	2×0,25	0,5
	4) الصيغ الكيميائية الممكنة لثنائي الببتيد المتشكل من Ala ، Gly :		
	H ₂ N - CH ₂ -CO - NH -CH -COOH - H ₂ N - CH -CO -NH -CH2 -COOH	2×0,5	1
	CH ₃ CH ₃ CH ₃ ملاحظة: تقبل الإجابة: Ala – Gly–Ala و		
	مرکمت. نمبن ، پرجباب. Ala — Gly-Ala و Gly-Ala .		
	5) أ- الأحماض الأمينية:	2×0,5	2
	О 	2.0,3	
	1		
	l -		
	CH ₃ CH ₃ CH ₃		
	ب- تمثيل المماكبات الضوئية لأحد الحمضين الأمينيين (Leu):		
	COOH COOH	2×0,5	
	$H_2N \longrightarrow H \longrightarrow H_2$		
	CH ₂ CH ₂		
	CH (L) CH (D) CH_3 CH_3 CH_3		
	CH ₃ CH ₃ CH ₃ CH ₃		
	ملاحظة: تقبل الإجابة بالنسبة للحمض الأميني الأخر (Met)		
1	1	1	1

	بدوري ۱	موردید وستم استورد سنجه انعنی ریاضی ماده استدونوچی هنسته انظرانی (عجم میتروجینی)	<u> </u>
	العلاء مجزاة	عناصر الإجابة الموضوع الثاتي	المحاور
مجموع	مبراه	(112.07) . t.511	
]		التمرين الأول: (07 نقاط)	
		(1-I	
	0.5	CH_3 - $COOH$ + PCI_5 \longrightarrow CH_3 - C - CI + HCI + $POCI_3$	
4,25	0,5 ±0.25	CH_3 - $COOH$ + PCI_5 \longrightarrow CH_3 - C' - CI + HCI + $POCI_3$	l
	+0,25 +0,25	(A)	
}	' ',25	ړ٥	1
	ı	+ CH ₃ - C - CI AICI ₃ C - CH ₃ + HCI	
	0,5	+ CH ₃ - C - CI AlCl ₃ + HCI + HCI	
	0,25+	(B)	
		` ,	
]	0.5	OH OH H-SO.	
	0,5	$CH_3 - CH - CH_3 \xrightarrow{H_2SO_4} CH_3 - CH = CH_2 + H_2O$	
} ('	(C)	
	!	. Br	
	0,5	$CH_3 - CH = CH_2 + HBr \longrightarrow CH_3 - CH_3$	
		(D)	
	0,5	CHCH-Br + Mg R-O-R CU ALB	
	0,5	CH ₃ - CH - Br + Mg R-O-R CH ₃ - CH - MgBr CH ₃	
		CH ₃ CH ₃	
	, I	O (E) CH3 CH3	
	0,5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
ŀ	0,5		ĺ
		CH ₃ OMgBr CH ₃	
		(F)	
		OMgBr OH	ŀ
		l l	ļ
	0,5		
	į	CH ₃ CH ₃ CH ₃	ŀ
		(F) (G)	}
}		(2	1
}		,,o	}
}		C'- CH ₃ Zn/H ₃ O ⁺ CH ₂ - CH ₃ + H ₂ O	
0,5	0,5	+ H ₂ O	1
		(2)	}
0,75	0,25	$CH_3 - C = N + $	
0,/3	v,∠3		
			ĺ
			1
<u> </u>			

الصفحة 5 من 9

	بداوري ا	الإجابة المونجية ومنم التنفيط التعب العني رياضي المادة التحلولوجيا مندسة الطرائق المحم ميدروجيني)
	0,25	$CH_3 - C = NMgCI + H_2O \longrightarrow CH_3 - C = NH + MgCIOH$
	0,25	$CH_3 - C = NH + H_2O \longrightarrow C - CH_3 + NH_3$
0,5	0,25	х : ноос—соон
	0,25	Y: HO - CH ₂ - CH ₂ - OH
0,25	0,25	2) نوع البلمرة : بلمرة بالتكاثف 3)
0,75	0,25	CH_3 CH_3 CH_3 $COOH + 2H_2O$ $COOH + 2H_2O$
	0,25	$CH_2 = CH_2 + R - CO_3H \longrightarrow CH_2 - CH_2 + R - COOH$
	0,25	$CH_2 - CH_2 + H_2O \longrightarrow CH_2 - CH_2$ OH OH OH OH OH OH
		التمرين الثاني: (07 نقاط)
2 25		1) أ- إكمال الجدول مع التبرير:
3,25	2×0,25	$pH_i = \frac{pKa_1 + pKa_2}{2} = \frac{2,38+9,62}{2} = 6$: Leu
	0,25	$pH_i = \frac{pKa_1 + pKa_R}{2} $: Asp
	0,25	$\Rightarrow pKa_R = 2pH_i - pKa_1 = 2 \times 2,77 - 1,88$ $pKa_R = 3,66$
	0,25	$pH_i = \frac{pKa_2 + pKa_R}{2} $:Lys
		$\Rightarrow pKa_2 = 2pH_i - pKa_R = 2 \times 9, 7 - 10, 5$
	0,25	$pKa_2 = 8,9$

الصفحة 7 من 9

201	بكاثوريا ()	الإجابة النموذجية وسلم التنقيط شعبة :تقنى رياضى مادة :التكنولوجيا هندسة الطرائق (فحم هيدروجيني)
	0,25	Lys → pHi=pH=9,7
		لدينا أيون معتدل [±] A والليزين لا يهاجر
	0,25	$Leu \rightarrow pHi < pH$
	0,25	لدينا أيون سالب A واللوسين يهاجر إلى القطب الموجب
	0,20	$Asp \rightarrow pHi < pKa_2 < pH$
		لدينا أيون بشحنتين سالبتين A حمض الأسبارتيك يهاجر إلى القطب الموجب.
		3) أ- كتابة الصيغة الكيميائية للببتيد Lys – Leu – Asp:
		0 H ₂ N - ÇH - Ć - NH - ÇH - Ć - NH - CH - COOH
1,25	0,75	(CH2)4 $CH2$ $CH2$
		(CH ₂) ₄ CH ₂ CH ₂ NH ₂ CH COOH
		CH ₃ CH ₃
		ب- صيغة الببتيد عند pH=13 :
		<u>-</u>
		O O H ₂ N - CH - C - NH - CH - COO -
	0.5	(CH ₂) ₄ CH ₂ CH ₂
	0,5	$(\dot{C}H_2)_4$ $\dot{C}H_2$ $\dot{C}H_2$ $\dot{C}H_2$ $\dot{C}H$ $\dot{C}OO^-$
		CH ₃ CH ₃
		-1 (4
		COOH COOH COOH
		$CH - NH_2 + C = O \xrightarrow{E} C = O + CH - NH_2$
1	2×0,25	$(CH_2)_2$ CH_2 $(CH_2)_2$ CH_2
	2^0,23	соон соон соон
		حمض اسبارتيك حمض غلوتاميك حمض غلوتاميك
	0,25	س- اسم الإنزيم: غلوتاميك أوكسالو أستيك ترانس أميناز (GOT)
	0,25	ج- تصنيف الإنزيم: ينتمي إلى الإنزيمات الناقلة.
		التمرين الثالث: (06 نقاط)
		اً أ- استخراج عبارة عمل التمدد:
	0,25	$W = \int_{V_1}^{V_2} -PdV$
1,5	0,25	$W = -nRT \int_{V_{\perp}}^{V_{\perp}} \frac{dV}{V}$
	0,25	$W = -nRT \ln \frac{V_2}{V_1}$

ى) بكالوريا 2010	(قحم هيدروجيني	مادة :التكنولوجيا هندسة الطرائق	شعبة :تقنى رياضى	الإجابة النموذجية وسلم التنقيط
------------------	----------------	---------------------------------	------------------	--------------------------------

بكالوريا 2010		جابه النمودجية وسلم التنقيط شعبه القني رياضي الماده التكنولوجيا هدسه الطرائق (الحم هيدروجيني)
		ب- حساب عمل تمدد الغاز N ₂ :
	}	عدد المولات N ₂ :
	0,25	$n = \frac{28}{28} = 1 \ mol$
		T = 25 + 273 = 298 K
	0,25	$W = -1 \times 8,314 \times 298 \ln \frac{24,45}{2,445}$
	0,23	2,
	0,25	W = -5704,82 J
	0,23	W = -5,7 kJ
		: أ− استنتاج أنطالبي : N _{2 (g)} + O _{2 (g)}
1,25	0,25	$\frac{\left(NO_{(g)} + 1/2 O_{2(g)} \longrightarrow NO_{2(g)} \Delta H_2 = -57kJ\right) \times 2}{\left(NO_{(g)} + 1/2 O_{2(g)} - NO_{2(g)} \Delta H_2 = -57kJ\right) \times 2}$
	0,25	$N_{2(g)}$ + 20 $_{2(g)}$ \longrightarrow 2NO $_{2(g)}$ $\Delta H_3 = \Delta H_1 + 2\Delta H_2$
	0,25	$\Delta H_3 = 180 + 2(-57) = 66 \text{ kJ}$
	2×0,25	$\Delta H_3 > 0$ ب- التفاعل ماص للحرارة لأن $\Delta H_3 > 0$
	[3) حساب أنطالبي التفاعل عند 500°C:
2	0,5	$\Delta H_{T} = \Delta H_{T_{0}} + \int_{T_{0}}^{T} \Delta C p dT$
1,25	0,5	$\Delta \text{Cp=2Cp(NH}_3) - \text{Cp(N}_2) - 3\text{Cp(H}_2)$
		$\Delta Cp = 2(36,1) - 29,1 - 3(28,9)$
	0,25	$\Delta Cp = -43.6 \text{ J.mol}^{-1}.\text{K}^{-1}$
	0,25	$T_0 = 25 + 273 = 298K$
	0,25	T = 500 + 273 = 773K
		$\Delta H_{T} = \Delta H_{T_0} + \Delta Cp(T - T_0)$ $\Delta H_{773} = -92000 - 43,6 (773 - 298)$
	0,25	$\Delta H_{773} = -12710 \text{ J} = -112,71 \text{ kJ}$
	, 5,=5	4) حساب التغير في الطاقة الداخلية ΔU للتفاعل عند 25°C:
		$NH_{3(g)} + \frac{5}{4}O_{2(g)} \longrightarrow NO_{(g)} + \frac{3}{2}H_2O_{(g)} \Delta H = -226.7 \text{ kJ}$
	{	$\Delta H = \Delta U + \Delta nRT$
	0,5	$\Delta U = \Delta H - \Delta nRT$
	0,25	$\Delta n = (1 + \frac{3}{2}) - (1 + \frac{5}{4}) = 0,25mol$
	0,25	$\Delta U = -226, 7.10^3 - 0, 25 \times 8, 314 \times 298$
		$\Delta U = -226700 - 619,393$
	0.25	$\Delta U = -227319,39J$
	0,25	$\Delta U = -227,319kJ$