DG Algebra Gröbner

March 7, 2020

1 Preliminary Material

Throughout this note, let K be a field and let S denote the polynomial ring $K[x_1, \ldots, x_n]$.

1.1 Monomial orderings on S

Definition 1.1. A **monomial** in *S* is a product of the form

$$x^{\alpha}=x_1^{\alpha_1}\cdots x_n^{\alpha_n},$$

where all of the exponents $\alpha_1, \ldots, \alpha_n$ are nonnegative integers. Here we view α as the ordered n-tuple $\alpha = (\alpha_1, \ldots, \alpha_n)$. We denote by \mathcal{M} to be the set of all monomials in S. A **monomial ordering** on S is a total ordering > on \mathcal{M} which satisfies the following property:

$$x^{\alpha} > x^{\beta}$$
 implies $x^{\gamma}x^{\alpha} > x^{\gamma}x^{\beta}$,

for all x^{α} , x^{β} , $x^{\gamma} \in \mathcal{M}$. We say > is a **global** if $x^{\alpha} > 1$ for all $x^{\alpha} \in \mathcal{M}$.

1.1.1 Multidegree, Leading Coefficients, Leading Monomials, and Leading Terms

Definition 1.2. Let $f = \sum_{\alpha} c_{\alpha} x^{\alpha}$ be a nonzero polynomial in S and let > be a monomial ordering on S.

1. The **multidegree** of f is

multdeg
$$f = \max\{x^{\alpha} \in \mathcal{M} \mid c_{\alpha} \neq 0\}.$$

2. The **leading coefficient** of f is

$$LC(f) = c_{\text{multdeg } f} \in K.$$

3. The **leading monomial** of f is

$$LM(f) = x^{multdeg f}$$
.

4. The **leading term** of f is

$$LT(f) = LC(f) \cdot LM(f).$$

1.2 Gröbner Bases

Definition 1.3. Let I be a nonzero ideal in S and let > be a monomial ordering on S. We denote by LT(I) the set of leading terms of nonzero elements of I, that is,

$$LT(I) = \{cx^{\alpha} \mid \text{there exists } f \in I \setminus \{0\} \text{ with } LT(f) = cx^{\alpha}\}.$$

A finite subset $G = \{g_1, \dots, g_r\}$ is said to be a **reduced Gröbner basis** if

- 1. $\langle LT(g_1), \ldots, LT(g_r) \rangle = \langle LT(I) \rangle$
- 2. LC(g) = 1 for all $g \in G$.
- 3. For all $g \in G$, no monomial of g lies in $\langle LT(G \setminus \{g\}) \rangle$.

1.2.1 Algorithmic computations in the K-algebra S/I using Gröbner bases

Let *I* be an ideal in *S*, let > be a global monomial ordering on *S*, and let $G = \{g_1, \dots, g_r\}$ be the reduced Gröbner basis for *I* with respect to this monomial ordering. Given a polynomial *f* in *S*, there are unique polynomials

 $\pi(f)$ and f^G in S such that

$$f = \pi(f) + f^{G}$$

and such that no term of f^G is divisible by any of $LT(g_1), \ldots, LT(g_r)$. We call f^G the **normal form of** f **with respect to** G. It follows from uniqueness of f^G and $\pi(f)$ that taking the normal form of a polynomial is a *K*-linear map:

$$c_1 f_1^G + c_2 f_2^G = (c_1 f_1 + c_2 f_2)^G$$
(1)

for all $c_1, c_2 \in K$ and $f_1, f_2 \in S$. We will denote this map by $-^G \colon S \to S_I$. Another important property of $-^G$ is that it preserves homogeneity. In particular, assume that I is a homogeneity neous ideal. Then S/I is a graded K-algebra, where the ith homogeneous component S_i is the K-vector space of all homogeneous polynomials $f \in S$ of degree i. Define

$$S_I := \operatorname{span}_K \{ x^{\alpha} \mid x^{\alpha} \notin \langle \operatorname{LT}(I) \rangle \}$$

There is an obvious decompostion of S_I into K-vector spaces $(S_I)_i$, where

$$(S_I)_i = \operatorname{span}_{\kappa} \{ x^{\alpha} \mid x^{\alpha} \notin \langle \operatorname{LT}(I) \rangle \text{ and } \operatorname{deg} x^{\alpha} = i \}.$$

In fact, S/I and S_I are isomorphic as graded K-modules. The isomorphism is given by mapping $\overline{f} \in S/I$ to $f^G \in S_I$. Indeed, well-definedness of this map follows from the fact that $f^G = 0$ for all $f \in I$. Also K-linearity follows from (1), and the grading is preserved since $-^G$ preserves homogeneity. This makes S/I isomorphic to S_I as graded K-modules. Using this isomorphism, we can carry multiplication from S/I over to S_I to turn S_I into a graded K-algebra: multiplication in S_I is defined by

$$f_1 \cdot f_2 = (f_1 f_2)^G. (2)$$

for all $f_1, f_2 \in S_I$. Defining multilpication in this way makes S_I isomorphic to S/I as graded K-algebras.

Example 1.1. Consider $S = \mathbb{F}_2[x,y]$ and $I = \langle xy^2 + y^3, x^3 + x^2y \rangle$. Then $G = \{xy^2 + y^3, x^3 + x^2y\}$ is the reduced Gröbner basis with respect to graded reverse lexicographical order. Thus $LT(I) = \langle xy^2, x^3 \rangle$. Let's do some computations in S_I . First, let's write the first few homogeneous terms of S_I :

$$(S_I)_0 = \mathbb{F}_2$$

 $(S_I)_1 = \mathbb{F}_2 x + \mathbb{F}_2 y$
 $(S_I)_2 = \mathbb{F}_2 x^2 + \mathbb{F}_2 x y + \mathbb{F}_2 y^2$
 $(S_I)_3 = \mathbb{F}_2 x^2 y + \mathbb{F}_2 y^3$
 $(S_I)_4 = \mathbb{F}_2 y^4$
 $(S_I)_5 = \mathbb{F}_2 y^5$
:

Next, we multiply some elements together in S_I in the multiplication table below

Setup

Let *A* be an *n*-dimensional graded *K*-vector space and let \star : $A \otimes_K A \to A$ be a graded *K*-linear map. So (A, \star) is a (not necessarily associative) graded K-algebra. Suppose $\{e_1,\ldots,e_n\}$ is a basis for A as graded K-vector space. Then for each $1 \le i, j \le n$, we have

$$e_i \star e_j = \sum_{1 \le k \le n} c_{i,j}^k e_k$$

where $c_{i,j}^k \in K$ for all $1 \le k \le n$ and $c_{i,j}^k = 0$ if $|e_i| + |e_j| \ne |e_k|$. Let I be the homogeneous ideal in S generated by the set

$$\left\{x_i x_j - \sum_k c_{i,j}^k x_k \mid 1 \le i, j \le n\right\} \cup \left\{x_i^2 \mid 1 \le i \le n\right\}$$
(3)

We give S a weighted lexicographical ordering where x_i is assigned the weight $n+1-|e_i|^1$ as follows: we say $x^{\alpha} >_{W_{\mathcal{D}}} x^{\beta}$ if either

¹the reason we assign x_i the weight $n+1-|e_i|$ and not $|e_i|$ is so that this becomes a global ordering.

- 1. $|\alpha| > |\beta|$ where $|\alpha| = \sum_{i=1}^n \alpha_i |e_i|$ and $|\beta| = \sum_{i=1}^n \beta_i |e_i|$ or;
- 2. $|\alpha| = |\beta|$ and there exists $1 \le i \le n$ such that $\alpha_i = \beta_i$ and

$$\alpha_1 = \beta_1 \\
\vdots \\
\alpha_{i-1} = \beta_{i-1} \\
\beta_{i-1} = \beta_i$$

Let $G = \{g_1, \dots, g_r\}$ be the reduced Gröbner basis for I with respect to this monomial ordering. Observe that for each $1 \le i, j \le n$, we have

$$LT\left(x_ix_j - \sum_k c_{i,j}^k x_k\right) = x_ix_j.$$

In particular, the set of monomials which do not belong to LT(I) will form a subset of $\{x_1, \ldots, x_n\}$. Let us denote this subset by \mathcal{M}_I .

Finally, let $\varphi: A \to S/I$ be the unique graded *K*-linear map defined by

$$\varphi(e_i) = \overline{x}_i$$

for $1 \le i \le n$. Observe that $\varphi: A \to S/I$ is a *K*-algebra homomorphism. Indeed, for all $1 \le i, j \le n$, we have

$$\varphi(e_i \star e_j) = \varphi\left(\sum_k c_{i,j}^k e_k\right)$$

$$= \sum_k c_{i,j}^k \varphi(e_k)$$

$$= \sum_k c_{i,j}^k \overline{x}_k$$

$$= \overline{\sum_k} c_{i,j}^k x_k$$

$$= \overline{x_i x_j}$$

$$= \overline{x_i x_j}$$

$$= \varphi(e_i) \varphi(e_j).$$

We are now ready to state and prove the main theorem.

2.1 Theorem

Theorem 2.1. The multiplication map \star is associative if and only if $\mathcal{M}_I = \{x_1, \dots, x_n\}$.

Proof. Suppose \star is associative. To show that $\mathcal{M}_I = \{x_1, \dots, x_n\}$, it suffices to show that $S(f_{i,j}, f_{i',j'})^G = 0$ for all $1 \le i, j, i', j' \le n$, where

$$f_{i,j} = x_i x_j - \sum_{k} c_{i,j}^k x_k.$$

It follows from the the fact that A is associative and φ is an K-algebra homomorphism that

$$0 = (-^{G} \circ \varphi)(0)$$

$$= (-^{G} \circ \varphi)((e_{i'} \star e_{j'}) \star (e_{i} \star e_{j}) - (e_{i} \star e_{j}) \star (e_{i'} \star e_{j'}))$$

$$= (-^{G} \circ \varphi) \left((e_{i'} \star e_{j'}) \star \left(\sum_{k} c_{i,j}^{k} e_{k} \right) - (e_{i} \star e_{j}) \star \left(\sum_{k} c_{i',j'}^{k} e_{k} \right) \right)$$

$$= \left(x_{i'} x_{j'} \left(\sum_{k} c_{i,j}^{k} x_{k} \right) - x_{i} x_{j} \left(\sum_{k} c_{i',j'}^{k} x_{k} \right) \right)^{G}$$

$$= S(f_{i,j'}, f_{i',j'})^{G}.$$

Conversely, suppose $\mathcal{M}_I = \{x_1, \dots, x_n\}$. Let $\psi \colon S_I \to A$ be the unique graded K-linear map defined by

$$\psi(x_i) = e_i$$

for all $1 \le i \le n$. Since $\mathcal{M}_I = \{x_1, \dots, x_n\}$, we see that ψ and $-^G \circ \varphi$ are inverses to each other. Thus for any $1 \le i, j, \le n$ we have

$$\psi(x_i) \star \psi(x_j) = e_i \star e_j$$

$$= (\psi \circ -^G \circ \varphi)(e_i \star e_j)$$

$$= (\psi \circ -^G)(\overline{x_i x_j})$$

$$= \psi((x_i x_j)^G)$$

$$= \psi(x_i \cdot x_j).$$

In particular, for all $1 \le i, j, k \le n$, we have

$$e_{i} \star (e_{j} \star e_{k}) = \psi(x_{i}) \star (\psi(x_{j}) \star \psi(x_{k}))$$

$$= \psi(x_{i}) \star \psi(x_{j} \cdot x_{k})$$

$$= \psi(x_{i} \cdot (x_{j} \cdot x_{k}))$$

$$= \psi((x_{i} \cdot x_{j}) \cdot x_{k})$$

$$= \psi(x_{i} \cdot x_{j}) \star \psi(x_{k})$$

$$= (\psi(x_{i}) \star \psi(x_{j})) \star \psi(x_{k})$$

$$= (e_{i} \star e_{j}) \star e_{k}.$$

It follows that \star is associative.

4