User Guide to DCW

1. Load Data

```
import DCW.core.load as 1d
from DCW.core.load import *
loaddata('train.csv',labellist=['SalePrice'],IDlist=['Id'])
check data
```

ld.df_train.shape

(1460, 81)

ld.df_train.head(5)

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	 PoolArea	PoolQC	Fence	MiscFeature	MiscVal	MoSold	YrSold	SaleType	SaleCondition	SalePrice
0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN	NaN	0	2	2008	WD	Normal	208500
1	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN	NaN	0	5	2007	WD	Normal	181500
2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN	NaN	0	9	2008	WD	Normal	223500
3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN	NaN	0	2	2006	WD	Abnorml	140000
4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN	NaN	0	12	2008	WD	Normal	250000

5 rows × 81 columns

```
ld.quantitative

['LotFrontage',
    'LotArea',
    'YearBuilt',
    'MasVnrArea',
    'BsmtFinsF1',
    'BsmtFinsF2',
    'BsmtUnfsF',
    'TotalBsmtsF',
    '1stFlrsF',
    '2ndFlrsF',
    'GriuArea',
    'GarageYrBlt',
    'GarageYrBlt',
    'GorageArea',
    'MoodbecksF',
    'OpenPorchSF',
    'EnclosedPorch',
    'ScreenPorch']
```

ld.qualitative

```
['MSSubClass',
  'MSZoning',
 'Street',
 'LotShape',
'LandContour',
  'Utilities',
 'LotConfig',
 'LandSlope',
 'Neighborhood',
  'Condition2',
 'BldgType',
'HouseStyle',
  'OverallQual',
 'OverallCond',
'YearRemodAdd',
  'RoofStyle',
  'RoofMatl',
  'Exterior1st',
  'Exterior2nd',
 'MasVnrType',
'ExterQual',
 'ExterCond',
'Foundation',
 'BsmtQual',
'BsmtCond',
  'BsmtExposure',
  'BsmtFinType1',
 'BsmtFinType2',
  'Heating',
  'HeatingQC',
 'CentralAir',
'Electrical',
 'LowQualFinSF',
'BsmtFullBath',
  'BsmtHalfBath',
 'FullBath',
'HalfBath',
  'BedroomAbvGr',
 'KitchenAbvGr',
'KitchenQual',
  'TotRmsAbvGrd',
  'Functional',
  'Fireplaces',
  'FireplaceQu',
 'GarageType',
'GarageFinish',
 'GarageCars',
  'GarageCond',
 'PavedDrive',
'3SsnPorch',
  'PoolArea',
  'PoolQC',
 'Fence',
'MiscFeature',
 'MiscVal',
```

```
'YrSold',
'SaleType',
'SaleCondition']
```

2. EDA

univariable

import DCW.core.EDA.univariable as uv

uv.Countplot('RoofStyle')

Gable 1141
Hip 286
Flat 13
Gambrel 11
Mansard 7
Shed 2
Name: RoofStyle, dtype: int64

uv.Describe('SalePrice')

Count 1460.000000
mean 180921.195890
std 79442.502883
min 34900.000000
25% 129975.000000
50% 163000.000000
75% 214000.000000
max 755000.000000
Name: describe, dtype: float64

• •

uv.Distplot('SalePrice')

Probability Plot

uv.Skewness()

uv.Kurtosis()

multivariable

import DCW.core.EDA.multivariable as mv

mv.Scatterplot(xlabel='GrLivArea',ylabel='SalePrice',color='r')

mv.Jointplot(xlabel='GrLivArea',ylabel='SalePrice')

mv.Correlation('GrLivArea', 'SalePrice', show_cm=True, zoom=0.3)

SalePrice	1	0.79	0.71	0.64	0.62	0.61	0.61	0.56	0.53		0.51		0.75
OverallQual	0.79	1	0.59	0.6	0.56	0.54	0.48	0.55	0.43	0.57	0.55		
GrLivArea	0.71	0.59	1	0.47	0.47	0.45	0.57	0.63	0.83	0.2	0.29		
GarageCars	0.64	0.6	0.47	1	0.88	0.43	0.44	0.47	0.36	0.54	0.42		0.60
GarageArea	0.62	0.56	0.47	0.88	1	0.49	0.49	0.41	0.34	0.48	0.37		
TotalBsmtSF	0.61	0.54	0.45	0.43	0.49	1	0.82	0.32	0.29	0.39	0.29		0.45
1stFlrSF	0.61	0.48	0.57	0.44	0.49	0.82	1	0.38	0.41	0.28	0.24		
FullBath	0.56	0.55	0.63	0.47	0.41	0.32	0.38	1	0.55	0.47	0.44		0.30
TotRmsAbvGrd	0.53	0.43	0.83	0.36	0.34	0.29	0.41	0.55	1	0.096	0.19		0.00
YearBuilt	0.52	0.57	0.2	0.54	0.48	0.39	0.28	0.47	0.096	1	0.59		
YearRemodAdd	0.51	0.55	0.29	0.42	0.37	0.29	0.24	0.44	0.19	0.59	1		0.15
	SalePrice	OverallQual	GrLivArea	GarageCars	GarageArea	TotalBsmtSF	1stFlrSF	FullBath 1	otRmsAbvG	rd YearBuiltY	earRemodAc	dd	

The correlation between features and SalePrice

SalePrice	1.000000
OverallQual	0.790982
GrLivArea	0.708624
GarageCars	0.640409
GarageArea	0.623431
TotalBsmtSF	0.613581
1stFlrSF	0.605852
FullBath	0.560664
TotRmsAbvGrd	0.533723
YearBuilt	0.522897
YearRemodAdd	0.507101
GarageYrBlt	0.486362
MasVnrArea	0.477493
Fireplaces	0.466929
BsmtFinSF1	0.386420
LotFrontage	0.351799
WoodDeckSF	0.324413
2ndFlrSF	0.319334
OpenPorchSF	0.315856
HalfBath	0.284108

```
LotArea
BsmtFullBath
                     0.263843
                     0.227122
BsmtUnfSF
                     0.214479
                    0.168213
0.111447
BedroomAbvGr
ScreenPorch
PoolArea
                     0.092404
                    0.046432
0.044584
MoSold
3SsnPorch
BsmtFinSF2
                     -0.011378
BsmtHalfBath
                    -0.016844
MiscVal
                    -0.021190
                    -0.021917
LowQualFinSF
                    -0.025606
YrSold
                    -0.028923
OverallCond
                    -0.077856
MSSubClass
EnclosedPorch
                    -0.084284
KitchenAbvGr -0.135907
Name: SalePrice, dtype: float64
```

mv.Barplot(xlabel='MSZoning',ylabel='SalePrice',hue='Fence')

mv.Boxplot(xlabel='MSZoning',ylabel='SalePrice',hue='Street')

mv.Violinplot(xlabel='MSZoning',ylabel='SalePrice',hue='Street')

mv.Pointplot(xlabel='MSZoning',ylabel='SalePrice',hue='Street')

mv.Stripplot(xlabel='MSZoning',ylabel='SalePrice',hue='Street')

mv.Swarmplot(xlabel='MSZoning',ylabel='SalePrice',hue='Street')

3. Missing Value

import DCW.core.missing as ms ms.Missing_Table() Total Percent PoolQC MiscFeature 1453 0.995205 1406 0.963014 Alley 0.937671 Fence FireplaceQu 1179 0.807534 690 0.472603 259 0.177397 LotFrontage GarageCond GarageType 81 0.055479 81 0.055479 GarageYrBlt 81 0.055479 GarageFinish GarageQual 81 0.055479 81 0.055479 BsmtExposure BsmtFinType2 38 0.026027 38 0.026027 BsmtFinType1 37 0.025342 37 0.025342 37 0.025342 BsmtCond BsmtQual MasVnrArea 8 0.005479 8 0.005479 1 0.000685 MasVnrType Electrical

ms.Missing_Plot()


```
Fences

Fences

Fences

Garage/ord

Garage/ord

Bamifcond

Bamifco
```

ms.Missing_Process(drop_threshold=0.90,filllist=[],fillnum='mean',fillcat='Missing')

```
missing data has been processed
missing data has been processed
fill none value of categorial data with Missing
fill none value of categorial data with Missing
fill none value of numerical data with mean
fill none value of categorial data with Missing fill none value of categorial data with Missing
fill none value of numerical data with mean
fill none value of categorial data with Missing
fill none value of categorial data with Missing fill none value of categorial data with Missing
fill none value of numerical data with mean
fill none value of categorial data with Missing fill none value of categorial data with Missing
('the features you dropped are ', ['PoolQC', 'MiscFeature', 'Alley'])
```

print 'after missing process the shape is ',ld.df_train.shape

after missing process the shape is (1460, 78)

4. Single Process

import DCW.core.single as sg
sg.single_process(drop_threshold=0.99, single_ratio=0.95, collect=True, show_plot=True, show_table=False, drop=True)
sg.duplicate_process()

print 'after single process the shape is ',ld.df_train.shape

```
single value ratio count
{'3SsnPorch': 0.9835616438356164, 'PoolArea': 0.9952054794520548, 'MiscVal': 0.9643835616438357, 'Heating':
0.9888219178082191, 'KitchenAbvGr': 0.9534246575342465, 'Utilities': 0.9993150684931507, 'RoofMatl':
0.9821917808219178, 'Street': 0.9958904109589041, 'LowQualFinsF': 0.9821917808219178, 'Condition2':
0.9897260273972602}
single value ratio count
```


single value ratio count
drop over
no duplicated value exist
after single process the shape is (1460, 75)

5. Outlier Process

```
import DCW.core.outlier as ot

ot.Outlier_collect(feature='GrLivArea',label='SalePrice')
[array([ 4676, 184750], dtype=int64), array([ 5642, 160000], dtype=int64)]
```

ot.Outlier_Plot(feature='GrLivArea',label='SalePrice')

ot.Outlier_Drop(feature='all',label='SalePrice',method='dropall')

```
drop outlier of LotFrontage finished drop outlier of LotArea finished drop outlier of YearBuilt finished drop outlier of MasVnrArea finished drop outlier of BsmtFinSF1 finished drop outlier of BsmtFinSF2 finished drop outlier of BsmtUnfSF finished drop outlier of TotalBsmtSF finished drop outlier of TotalBsmtSF finished drop outlier of GrelivArea finished drop outlier of GrelivArea finished drop outlier of GarageYrB1t finished drop outlier of GarageYrB1t finished drop outlier of GorageArea finished drop outlier of WoodDeckSF finished drop outlier of OpenPorchSF finished drop outlier of OpenPorchSF finished drop outlier of ScreenPorch finished drop outlier of ScreenPorch finished
```

print 'after outlier process the shape is ',ld.df_train.shape

after outlier process the shape is (1403, 75)