EXERCISES - FRIDAY - ECCO 2016

SYLVIE CORTEEL

The exercises marked * are recommended to review the understanding of the material.

1. RSK algorithm*

1. Apply the RSK algorithm to the matrix A

 $\begin{array}{ccc}
1 & 2 \\
0 & 1 \\
1 & 0
\end{array}$

and get two semi standard young tableaux of the same shape.

- 2. Compute the length of the first row of the tableaux from the matrix A.
- 3. Tranform the two tableaux into a pair of Gelfand-Tsetlin triangles.

Recall that a plane partition $\Pi = (\pi_{i,j})$ is an array of non negative integers such that $\pi_{i,j} \geq \pi_{i+1,j}$ and $\pi_{i,j} \geq \pi_{i,j+1}$. Its weight $|\Pi|$ is $\sum_{i,j} \pi_{i,j}$.

- 4. Glue the two triangles in order to get a plane partition.
- 5. Is it possible to compute the weight of the plane partition from the matrix A? If the matrix has n rows and m columns, how many rows and columns does the plane partition have?

2. PLANE PARTITIONS

Given a plane partition $\Pi = (\pi_{i,j})$ its trace $\operatorname{tr}(\Pi)$ is $\sum_i \pi_{i,i}$. Let \mathcal{P}_n be the set of plane partitions with at most n rows and n columns. That is $\Pi = (\pi_{i,j})$ with $1 \leq i, j \leq n$.

Exercise 1*. Draw all the plane partitions of 4 with at most 2 rows and 2 columns. Compute their trace.

Exercise 2.

We want to compute the generating function:

$$P_n(q,t) = \sum_{\Pi \in \mathcal{P}_n} q^{|\Pi|} t^{\operatorname{tr}(\Pi)}.$$

1.* Use the decomposition of plane partitions into two Gelfand-Tsetlin triangles with the same first row to show that :

$$P_n(q,t) = \sum_{\lambda} q^{-|\lambda|} t^{|\lambda|} s_{\lambda}(q,\ldots,q^n) s_{\lambda}(q,\ldots,q^n).$$

2. Show that

$$x^{|\lambda|}s_{\lambda}(q,\ldots,q^n)=s_{\lambda}(xq,\ldots,xq^n).$$

3. Use the Cacuchy identity

$$\sum_{\lambda} s_{\lambda}(x_1, \dots, x_n) s_{\lambda}(y_1, \dots, y_n) = \prod_{i,j=1}^{n} \frac{1}{1 - x_i y_j}$$

Date: June 17th, 2016.

to compute $P_n(q,t)$.

2.1. Reverse plane partitions. Exercise 1 A reverse plane partition of shape λ is a filling of the cells of λ by nonnegative integers. The entries are increasing in rows and columns. Its weight is the sum of the entries.

For example

$$\begin{array}{ccccc}
0 & 0 & 7 \\
1 & 4 & 7 \\
1 & 6
\end{array}$$

is a reverse plane partition of shape (3, 3, 2).

1* Let $\lambda = (3,3,2)$. Show that there exists a weight preserving bijection between reverse plane partitions of shape λ and sequences of partitions $\Lambda = (\lambda^{(0)}, \dots, \lambda^{(6)})$ such that $\lambda^{(0)}, \dots, \lambda^{(6)} = \emptyset$ et

$$\lambda^{(0)} \prec \lambda^{(1)} \prec \lambda^{(2)} \succ \lambda^{(3)} \prec \lambda^{(4)} \succ \lambda^{(5)} \succ \lambda^{(6)}.$$

Recall that $\mu > \lambda$ if and only of $\mu_1 \ge \lambda_1 \ge \mu_2 \ge \lambda_2 \ge \dots$

For example $\Lambda = (\emptyset, (1), (6, 1), (4, 0), (7, 0), (7), \emptyset)$ is such a sequence.

2.*. Deduce that the generating function of such reverse plane partitions of shape $\lambda = (3, 3, 2)$ can be written as:

$$\langle \emptyset | \, \Gamma_-(q^{-1}) \Gamma_-(q^{-2}) \Gamma_+(q^3) \Gamma_-(q^{-4}) \Gamma_+(q^5) \Gamma_+(q^6) \, | \emptyset \rangle \, .$$

3.* Show that this series is equal to:

$$\frac{1}{(1-q)^2(1-q^2)^2(1-q^3)(1-q^4)^2(1-q^5)}.$$

4. Compute the generating function of reverse plane partition of shape λ for any partition λ . **Exercise 3** 1. Define a polynomial

$$g_{\lambda}(x_0, x_1, \dots, x_m) = \sum_{\Pi} x^{\Pi},$$

where the sum is over reverse plane partitions Π with entries $\leq m$ of shape λ . Compute $g_{21}(x_0, x_1, x_2)$. Is g_{λ} symmetric? Is g_{λ} quasisymmetric?

2. Define a polynomial

$$G_{\lambda}(x_0, x_1, \dots, x_m) = \sum_{\Pi} x_0^{c_0(\Pi)} x_1^{c_1(\Pi)} \cdots,$$

where the sum is over reverse plane partitions Π of shape λ and $c_i(\Pi)$ is the number of columns of Π with i. Compute $g_{21}(x_0, x_1, x_2)$. Is it symmetric?