

Greedy

Algorísmica Avançada | Enginyeria Informàtica

Santi Seguí | 2019-2020

Greedy?

 L'algorisme greddy (o voraç) és un algorisme que, per resoldre un problema d'optimització, fa una seqüència d'eleccions, prenent en cada pas un òptim local, amb l'esperança (no sempre complerta) d'arribar a un òptim global. L'algorisme greddy no torna mai enrere per reavaluar les eleccions ja preses

Exemple

 Tornar un canvi amb el mínim de monedes. El conjunt de candidats és {20, 10, 5, 1}

Els algorismes voraços **no garanteixen** sempre **una solució**, **ni** que la **solució** obtinguda sigui **l'òptima**

Greedy

- Podem guanyar als escacs pensant només en la següent jugada?
- I al scrabble? → algorisme greedy?
- Algoritmes greedy troben la millor "jugada" a cada pas

Problem: Laying Telephone Wire

Wiring: Naïve Approach

Expensive!

Wiring: Better Approach

Minimize the total length of wire connecting the customers

Exemple

Teniu un negoci amb diverses oficines; voleu llogar línies de telèfon per connectar-les entre elles; i l'empresa de telefonia cobra diferents quantitats de diners per connectar les oficines. Volem un conjunt de línies que **connecti totes** les seves oficines amb un **cost total mínim**. Hauria de ser un arbre extensiu, ja que si una xarxa no és un arbre, sempre podeu treure algunes vores i estalviar diners.

Exemple

- Volem connectar els oficines (nodes) d'una empresa. Les connexions són les arestes. Cadascuna té un cost. Volem el mínim cost.
 - > llavors no volem cicles
 - > volem un graf no dirigit acíclic connectat
 - → arbre !!!
 - \rightarrow de mínim cost: **Minimum Spanning Tree** (MST)

Kruskal

MST amb cost 16 (un dels possibles)

- Algorisme greedy: Kruskal
 - Començar amb arbre buit
 - Mentre no estiguin tots els nodes connectats
 - Incloure aresta de cost mínim que no produeix un cicle

• Cost 14!

 $B-C,\ C-D,\ B-D,\ C-F,\ D-F,\ E-F,\ A-D,\ A-B,\ C-E,\ A-C.$

Aquest algoritme és òptim!

- Per què? Propietat de tall ("cut"):
 - Un tall és aquella aresta que si la traiem es genera una nova component connexa.
 - El que fem amb Kruskal és anar connectant elements amb el tall de cost mínim.
 - Cóm ho podem implementar eficientment?

Kruskal example

Kruskal example

Kruskal example


```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6        A = A U {(u, v)}
7        UNION(FIND-SET(u), FIND-SET(v))
8 return A
```



```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6        A = A U {(u, v)}
7        UNION(FIND-SET(u), FIND-SET(v))
8 return A
```

Makeset: Construir un nou conjunt a partir d'un simple node.
 Temps constant

After makeset(A), makeset(B), . . . , makeset(G):


```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6        A = A U {(u, v)}
7        UNION(FIND-SET(u), FIND-SET(v))
8 return A
```

• Find-Set(u): Busca el conjunt que conté l'element u.


```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6        A = A U {(u, v)}
7        UNION(FIND-SET(u), FIND-SET(v))
8 return A
```

• **Union(S1, S2)**: Crea un nou conjunt amb l'unió dels conjunts S1 i S2.

After union(A, D), union(B, E), union(C, F):

• Representació dels conjunts: arbres dirigits

 $\frac{\text{procedure makeset}}{\pi(x) = x} (x)$ rank(x) = 0

 $\frac{\text{function find}}{\text{while } x \neq \pi(x): \quad x = \pi(x)}$ return x

punter rank: altura dins de l'arbre

- Makeset: temps constant
- **Find**: segueix punters dels pares als roots, per tant el temps és proporcional a l'altura
- **Union**: com l'altura ens defineix la complexitat, posem el punter de l'arbre més curt apuntant al punter de l'arbre amb més altura

```
\begin{array}{l} \underline{\text{procedure union}}(x,y) \\ r_x = \text{find}(x) \\ r_y = \text{find}(y) \\ \text{if } r_x = r_y \colon \text{ return} \\ \text{if } \text{rank}(r_x) > \text{rank}(r_y) \colon \\ \pi(r_y) = r_x \\ \text{else:} \\ \pi(r_x) = r_y \\ \text{if } \text{rank}(r_x) = \text{rank}(r_y) \colon \text{ rank}(r_y) = \text{rank}(r_y) + 1 \end{array}
```



```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6        A = A U {(u, v)}
7        UNION(FIND-SET(u), FIND-SET(v))
8 return A
```


Weight
4
6
3
2
4
2
5
1

```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6        A = A U {(u, v)}
7        UNION(FIND-SET(u), FIND-SET(v))
8 return A
```


$$A = \{ \}$$

Edges	Weight
AB	4
ВС	6
CD	3
DE	2
EF	4
AF	2
BF	5
CF	1

```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6        A = A U {(u, v)}
7        UNION(FIND-SET(u), FIND-SET(v))
8 return A
```


A	=	{ }
---	---	------------

(D)	(E)	(F

Edges	Weight
AB	4
ВС	6
CD	3
DE	2
EF	4
AF	2
BF	5
CF	1

```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6        A = A U {(u, v)}
7        UNION(FIND-SET(u), FIND-SET(v))
8 return A
```


Edges	Weight
CF	1
AF	2
DE	2
CD	3
AB	4
FE	4
BF	5
ВС	6

```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6         A = A U {(u, v)}
7         UNION(FIND-SET(u), FIND-SET(v))
8 return A
```


Edges	Weight
CF	1
AF	2
DE	2
CD	3
AB	4
FE	4
BF	5
ВС	6

```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6         A = A U {(u, v)}
7         UNION(FIND-SET(u), FIND-SET(v))
8 return A
```


Edges	Weight
CF	1
AF	2
DE	2
CD	3
AB	4
FE	4
BF	5
ВС	6
ВС	6

```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6        A = A U {(u, v)}
7        UNION(FIND-SET(u), FIND-SET(v))
8 return A
```


Edges	Weight
CF	1
AF	2
DE	2
CD	3
AB	4
FE	4
BF	5
ВС	6

```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6     A = A U {(u, v)}
7     UNION(FIND-SET(u), FIND-SET(v))
8 return A
```


Weight
1
2
2
3
4
4
5
6

```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6         A = A U {(u, v)}
7         UNION(FIND-SET(u), FIND-SET(v))
8 return A
```



```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6        A = A U {(u, v)}
7        UNION(FIND-SET(u), FIND-SET(v))
8 return A
```


Α	= {	(C,I	F).(A.F	=)}
_	_ L	(),	' /;\	м,	IJ

/ –	١
(B	
\ _	

D) (E

Weight
1
2
2
3
4
4
5
6

```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6     A = A U {(u, v)}
7     UNION(FIND-SET(u), FIND-SET(v))
8 return A
```


Α	= {	(C,F),(A	,F) }
		\ - j -	/	-,- / 3

(D)

Edges	Weight
CF	1
AF	2
DE	2
CD	3
AB	4
FE	4
BF	5
ВС	6

```
KRUSKAL(G):
1 A = \emptyset
2 foreach v E G.V:
     MAKE-SET(V)
3
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
     if FIND-SET(u) ≠ FIND-SET(v):
        A = A \cup \{(u, v)\}
6
        UNION(FIND-SET(u), FIND-SET(v))
8 return A
```


· = ·	{(C,F),(A	F),(D,E)}
	B	A,C,F

Edges	Weight
CF	1
AF	2
DE	2
CD	3
AB	4
FE	4
BF	5
ВС	6

```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6        A = A U {(u, v)}
7        UNION(FIND-SET(u), FIND-SET(v))
8 return A
```


A =	{(C,F).(A.I	F).(D).E)}
/	ι(Ο,:	/;(/ `;'	\	', - /J

В	(A,C,F
D,E	

Edges	Weight
CF	1
AF	2
DE	2
CD	3
AB	4
FE	4
BF	5
ВС	6

```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6     A = A U {(u, v)}
7     UNION(FIND-SET(u), FIND-SET(v))
8 return A
```


$A = {}$	(C.F).(A.F),(D,E)]	ļ
<i>,</i> , – ,	((), (/;\/``;	/, _ ,_/	J

Edges	Weight		
CF	1		
AF	2		
DE	2		
CD	3		
AB	4		
FE	4		
BF	5		
ВС	6		


```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6         A = A U {(u, v)}
7         UNION(FIND-SET(u), FIND-SET(v))
8 return A
```


A	$= \{(C,F),(A,F),(D,E),$
	(C,D)}

 \bigcirc B

A,C,D,F

Edges	Weight			
CF	1			
AF	2			
DE	2			
CD	3			
AB	4			
FE	4			
BF	5			
ВС	6			

```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6        A = A U {(u, v)}
7        UNION(FIND-SET(u), FIND-SET(v))
8 return A
```


A	$= \{(C,F),(A,F),(D,E),$
	(C,D)}

(B)

A,C,D,F

Edges	Weight		
CF	1		
AF	2		
DE	2		
CD	3		
AB	4		
FE	4		
BF	5		
ВС	6		
DE CD AB FE BF	2 3 4 4 5		

i continua amb la següent solució:


```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6        A = A U {(u, v)}
7        UNION(FIND-SET(u), FIND-SET(v))
8 return A
```


$$A = \{(C,F),(A,F),(D,E),(C,D),(A,B)\}$$

A,B,C,D,F

Edges	Weight		
CF	1		
AF	2		
DE	2		
CD	3		
AB	4		
FE	4		
BF	5		
ВС	6		
FE BF	4 5		

Complexitat Kruskal

```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6        A = A U {(u, v)}
7        UNION(FIND-SET(u), FIND-SET(v))
8 return A
```

?

Complexitat Kruskal

```
KRUSKAL(G):
1 A = Ø
2 foreach v ∈ G.V:
3    MAKE-SET(v)
4 foreach (u, v) in G.E ordered by weight(u, v), increasing:
5    if FIND-SET(u) ≠ FIND-SET(v):
6        A = A U {(u, v)}
7        UNION(FIND-SET(u), FIND-SET(v))
8 return A
```

```
O(V)
O(ELogE)
O(ELovV)
```


Complexitat Kruskal

```
Complexitat = O(1) + O(V) + O(E logE) + O(E LogV)
= O(E logE) + O(E logV)
= O(E logE)
```


Exercici: MST i Kruskal

• Exercicis (1):

- A) Quin és el cost del MST?
- B) En quin ordre les arestes són incloses en el MST usant l'algorisme Kruskal?

Prim

- Exemple: Algorisme de **Prim**
 - Alternativa a Kruskal
- La propietat de tall ens diu que qualsevol algorisme que segueix el següent procediment hauria de funcionar :

```
X=\{\ \} (edges picked so far) repeat until |X|=|V|-1: pick a set S\subset V for which X has no edges between S and V-S let e\in E be the minimum-weight edge between S and V-S X=X\cup\{e\}
```


Algoritme de Prim

$$cost(v) = \min_{u \in S} w(u, v).$$

La complexitat és similar a l'algorisme de kruskal

Algorisme de Prim

```
procedure prim(G, w)
Input: A connected undirected graph G = (V, E) with edge weights w_e
Output: A minimum spanning tree defined by the array prev
for all u \in V:
   cost(u) = \infty
   prev(u) = nil
Pick any initial node u_0
cost(u_0) = 0
H = makequeue(V) (priority queue, using cost-values as keys)
while H is not empty:
   v = deletemin(H)
   for each \{v,z\} \in E:
      if cost(z) > w(v, z):
         cost(z) = w(v, z)
         prev(z) = v
         decreasekey(H,z)
```


Algorisme de Prim

$\operatorname{Set} S$	A	B	C	D	E	F
{}	0/nil	∞ /nil				
A		5/A	6/A	4/A	∞ /nil	∞/nil
A, D		2/D	2/D		∞ /nil	4/D
A, D, B			1/B		∞ /nil	4/D
A, D, B, C					5/C	3/C
A, D, B, C, F					4/F	

現代で、新聞の日の問題となっている。 一般的

Exercici: PRIM

- Aplica l'algorisme Prim (order alfabètic)
 - Escriu la taula de costos intermedis
- Aplica l'algorisme Kruskal i mostra els diferents arbres intermedis.

- En altres casos, els algorismes greedy obtenen respostes aproximades
 - > factor d'aproximació
- No són òptimes, però no existeixen algorismes lineals que solucionen el problema
 - \rightarrow Ho veurem a problemes NP

