LEHRSTUHL FÜR STATISTIK UND ÖKONOMETRIE ÜBUNG ZUR DATENANALYSE

Aufgabenserie 5: Hauptkomponentenanalyse, Faktorenanalyse

Aufgabe 11

Folgende Tabelle enthält die Daten von zwölf amerikanischen Städten, für welche zehn Variablen erhoben wurden. Während sich die Variablen X_2 bis X_7 auf die Luftverschmutzung beziehen, sind die übrigen Variablen demografischer Natur, wobei X_1 die "Sterblichkeitsrate", X_8 die "Bevölkerungsdichte pro Quadratmeile mal 0.1", X_9 den "Anteil an Weißen in der Bevölkerung" und X_{10} den "Anteil an Familien, die ein Einkommen oberhalb der Armutsgrenze beziehen" bezeichnet. Die Variablen sollen letztlich zur Prognose der zukünftigen Zu- und Abwanderung dienen; zunächst ist aber die Anzahl der exogenen Variablen mithilfe einer Hauptkomponentenanalyse zu reduzieren. Die Daten liegen Ihnen in der Datei staedte. txt vor.

Stadt	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	X_{10}
A	1199	155	229	340	63	147	253	1357.2	93.1	87.3
B	841	2	61	188	54	126	229	25.4	95.8	86.9
C	921	65	134	236	49	150	299	150.2	94	90.4
D	869	18	27	128	22	122	754	28.6	69	73.7
E	1112	42	163	337	55	141	252	174.5	97.3	88.5
F	938	137	205	308	32	91	182	103.3	94.7	90.7
G	1000	75	166	328	88	182	296	167.5	85.2	89.4
H	689	40	46	58	10	78	157	20.9	87,2	75,2
I	938	1	47	179	32	69	141	26.2	95.2	88.8
J	823	47	67	248	29	129	284	25.3	67.7	74.6
K	823	31	46	158	28	66	142	15.2	70.2	67.8
L	780	15	283	940	55	225	958	27.9	94.2	78.6

Führen Sie für die gegebenen Daten mittels R eine Hauptkomponentenanalyse durch:

- 1. Berechnen Sie die Stichproben-Varianz-Kovarianz- und die Stichproben-Korrelationsmatrix.
- 2. Geben Sie an, ob Sie die Analyse auf Basis der Stichproben-Varianz-Kovarianz-Matrix oder auf Basis der Stichproben-Korrelationsmatrix durchführen würden. Begründen Sie Ihre Entscheidung.
- 3. Bestimmen Sie anhand der Eigenwerte der gewählten Matrix die Anzahl der zu bildenden Hauptkomponenten.
- 4. Berechnen Sie die erste Hauptkomponente.
- 5. Zeigen Sie allgemein, dass die (normierten) Eigenvektoren von Σ das Optimierungsproblem der Hauptkomponentenanalyse, d. h. $\max_{\boldsymbol{l}} \boldsymbol{l}' \Sigma \boldsymbol{l}$ unter den Nebenbedingungen $\boldsymbol{l}' \boldsymbol{l} = 1$ und Unkorreliertheit der Hauptkomponenten, lösen.

¹Die Daten sind Jobson, J.D.: Applied Multivariate Data Analysis, Springer, 1992, S. 702 entnommen.

Aufgabe 12

Zu einer Korrelationsmatrix ρ von vier Zufallsvariablen X_1 bis X_4 liegt Ihnen der Vektor λ ihrer Eigenwerte und die aus den korrespondierenden Eigenvektoren gebildete Matrix \boldsymbol{P} vor:

$$\boldsymbol{\lambda} = \begin{pmatrix} 1.875 \\ 1.421 \\ ? \\ 0.239 \end{pmatrix}, \quad \boldsymbol{P} = \begin{pmatrix} -0.605 & 0.365 & -0.139 & 0.694 \\ -0.621 & 0.331 & 0.034 & -0.709 \\ -0.308 & -0.648 & -0.693 & -0.066 \\ -0.391 & -0.580 & 0.707 & 0.105 \end{pmatrix}.$$

- 1. Inwiefern unterscheidet sich die Faktorenanalyse in ihrem Ansatz und ihrer Zielsetzung von der Hauptkomponentenanalyse?
- 2. Bestimmen Sie den fehlenden Eigenwert λ_3 und die Korrelationsmatrix ρ . Berechnen Sie sodann die Determinante und die Spur von ρ .
- 3. Extrahieren Sie die ersten beiden Faktoren mittels der Hauptkomponenten-Methode, und stellen Sie die Ladungsmatrix bei Verwendung dieser beiden Faktoren auf.
- 4. Bestimmen Sie die Kommunalitäten basierend auf den beiden Faktoren. Interpretieren Sie das Element l_{21} der Ladungsmatrix.
- 5. Welcher Prozentsatz der Streuung der Variablen X_3 kann durch die beiden gebildeten Faktoren erklärt werden?
- 6. Welcher Prozentsatz der gesamten Streuungssumme wird vom ersten Faktor erklärt?

Aufgabe 13

Ein Online-Versandhändler interessiert sich dafür, was Kunden zur Abgabe von Produktbewertungen motiviert. Um dies untersuchen, wurden 100 Bewerter befragt. Auf einer Siebener-Skala von "stimme voll zu" bis "stimme überhaupt nicht zu" sollten sie jeweils angeben, inwieweit sie ein bestimmtes Motiv mit der Abgabe einer Bewertung verfolgen:

 X_1 : "Ich möchte andere Kunden vor einem schlechten Produkt warnen."

X₂: "Ich möchte anderen Kunden ein gutes Produkt empfehlen."

 X_3 : "Ich möchte eine Belohnung (z. B. einen Warengutschein) erhalten."

 X_4 : "Ich möchte einen Mehrwert für die Kunden-Community schaffen."

 X_5 : "Ich möchte mir eine gute Reputation als Produktbewerter aufbauen."

Folgende Tabelle enthält die Stichproben-Korrelationsmatrix, die sich aus der Befragung ergab:

	X_1	X_2	X_3	X_4	X_5
			-0.054		
X_2	0.902	1.000	-0.086	0.798	0.063
X_3	-0.054	-0.086	1.000	0.012	0.862
			0.012		
X_5	0.049	0.063	0.862	0.111	1.000

Diese Stichproben-Korrelationsmatrix liegt Ihnen auch in der Datei korrelationen.txt vor. Auf ihrer Basis soll eine Faktorenanalyse durchgeführt werden.

- 1. Diskutieren Sie, ob die verwendeten Daten aus messtheoretischer Sicht überhaupt für eine Faktorenanalyse geeignet sind.
- 2. Wann ist im Rahmen der Faktorenanalyse die Annahme der Normalverteilung nötig?
- 3. Testen Sie mithilfe des Bartlett-Tests die Hypothese, dass den beobachteten Variablen ein gemeinsamer Faktor zugrunde liegt.
- 4. Uberprüfen Sie, ob gemäß des Kriteriums kleiner Restkorrelationen die Verwendung eines Faktors akzeptabel wäre.

Gehen Sie nun von zwei zu extrahierenden Faktoren aus.

- 5. Bestimmen Sie die Ladungsmatrix zum einen mittels der Hauptkomponenten-Methode und zum anderen mithilfe der Maximum-Likelihood-Methode. Stellen Sie die Ergebnisse vergleichend gegenüber.
- 6. Berechnen Sie für beide Methoden die Kommunalitäten und den erklärten Streuungsanteil je Faktor. Vergleichen Sie die Ergebnisse.
- 7. Führen Sie für die mittels der Maximum-Likelihood-Methode extrahierten Faktoren eine Faktor-Rotation durch, und interpretieren Sie die rotierten Faktoren.