Ensemble Quantum—Classical Hybrid Predictor for Drug-Induced Autoimmunity

Team - QCanary

Abstract

We present a hybrid ensemble for predicting drug-induced autoimmunity (DIA) from RDKit molecular descriptors. Our pipeline standardizes $\sim \!\! 195$ descriptors, reduces them to 5 principal components via PCA, and feeds these into three variational quantum neural networks (QNNs), a logistic regression, and a random forest. Ensemble weights are 50% QNN + 25% LR + 25% RF. We tune the decision threshold on a validation set to maximize F1. On the held-out test set, we achieve balanced performance (Table 1) and analyze fairness, robustness, and model interpretability via SHAP.

1 Introduction

Drug-induced autoimmunity is a rare but serious adverse event. Classical ML on molecular descriptors has shown promise, but quantum feature maps may capture non-linear chemical structure. We therefore combine three QNNs with classical baselines to form a robust ensemble.

2 Data & Preprocessing

- Dataset: 477 molecules, ~195 RDKit descriptors, binary DIA label.
- Scaling: StandardScaler fit on train, applied to test.
- Dimensionality Reduction: PCA \rightarrow 5 components (captures $\approx 80\%$ variance).

3 Quantum Model Architecture

- Input: 5 PCA features \rightarrow 5 qubits.
- Encoding: $R_Y(x_i + b_i)$ on qubit i (shift b_i trainable).
- Variational Layers: 4 layers; each layer applies per-qubit $R_{xyz}(\theta_{l,i})$ then ring CNOT entanglement.
- **Readout:** $\langle Z_0 \rangle$ on qubit 0, in [-1,1].
- Classical Head: Dense $1 \rightarrow 16 \rightarrow 1$ ReLU network.

Total trainable parameters per QNN: 65 (quantum) + 49 (classical head) = 114.

4 Classical Baselines & Ensemble

- Logistic Regression (L2+ridge).
- Random Forest (100 trees).
- Ensemble Score:

$$s_{\text{ens}} = 0.5 \,\bar{s}_{\text{QNNs}} + 0.25 \,s_{\text{LR}} + 0.25 \,s_{\text{RF}}.$$

5 Threshold Tuning

Sweep threshold $t \in [0.1, 0.9]$ on validation set, select t^* maximizing F1. We found $t^* \approx 0.25$.

6 Results

Table 1: Test-set performance of ensemble (t = 0.25).

	Accuracy	Precision	Recall	F1-score	AUC
Ensemble	0.60	0.30	0.73	0.42	0.62

6.1 Confusion Matrix

$$\begin{pmatrix} TN = 38 & FP = 52 \\ FN = 8 & TP = 22 \end{pmatrix}$$

Figure 1: Confusion matrix on test set (t = 0.25).

7 Fairness Analysis

Group by molecular weight (heavy vs. light):

- Positive-prediction rate: heavy = 0.62, light = 0.29.
- Disparate impact ratio = $0.29/0.62 \approx 0.47$.
- Error rates: heavy = 0.10, light = 0.40.

8 Robustness (FGSM Attack)

Perturb PCA inputs with FGSM ($\varepsilon \in \{0, 0.05, 0.1, 0.2\}$). Accuracy vs. ε :

$$\varepsilon$$
 | 0.00 | 0.05 | 0.10 | 0.20
Accuracy | 0.60 | 0.55 | 0.50 | 0.45

9 SHAP Explainability

- **Global:** mean |SHAP| per PCA component: PCA1=0.12, PCA2=0.08, PCA3=0.10, PCA4=0.06, PCA5=0.04.
- Local: one sample's force-plot shows PCA1 (+0.15) driving positive prediction.

10 Reproducibility & Code

- Fixed seed 42 everywhere.
- PennyLane lightning.qubit for adjoint gradients.
- Saved: scaler, PCA, QNN state_dicts, LR and RF models, FGSM epsilons.
- Full code in https://github.com/.../ensemble_quantum_classical_hybrid.py.

Figure 1: Overall Architecture

Figure 2: Data flow: RDKit descriptors \rightarrow Standardize \rightarrow PCA \rightarrow QNNs & classical models \rightarrow Ensemble \rightarrow threshold \rightarrow predictions.