Algorithms and datastructures Exercises

Kristoffer Klokker 2022

Contents

6	\mathbf{Uge}			4
	6.1	Indica	te the following according to figure 1	4
		6.1.a	The attributes of each realtion	4
		6.1.b	The tuples of each realtion	4
		6.1.c	The components of one tuble of each realtion	5
		6.1.d	The relation schema of each realtion	5
		6.1.e	The database schema	5
		6.1.f	A suitable domain of each attribute	5
		6.1.g	Another equivalent way to present each relation	5
	6.2	In a ta	ble with the following attributes which are valid example	
		of keys	S	6
	6.3		nany ways can relation be represented if it has:	6
		6.3.a	Four attributes and five tuples	6
		6.3.b	n attributes and m tuples	6
	6.4	Write	a database schema of the following relations	6
		6.4.a	Write a schema for <i>Product</i>	6
		6.4.b	Write a schema for PC	6
		6.4.c	Write a schema for <i>Printer</i>	7
		6.4.d	Write an alternation for Printer and delete the at-	
			tribute color	7
		6.4.e	Add an od attribute for PC, which defaults to none an	
			otherwise can be cd or $dvd \dots \dots \dots$.	7
7	Uge			7
	7.1		ng with linear notation	7
		7.1.a	PC models which have speed of at least 3.00?	7
		7.1.b	PC manufacturers which makes PC with a hdd with	
			at leat 100GB	7
		7.1.c	Find model and price of all products made by manu-	
			facturer B	8
		7.1.d	Find model numbers of all color laster printers	8
		7.1.e	Find manufactures that sell Laptops but not PC	8
		7.1.f	Find hd size which accour in two or more PC's	8
	7.2		following data, what is the result of $\pi_{speed}(PC)$ when	
		treated	d as a bag and set	9
8	Wee	.lz		10
U	8.1		are the expexted FD's in the following database and	10
	0.1		key would it have	10
		************	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0

	8.2	Consid	ler the relation with schema $R(A, B, C, D)$ and FD's	
		$AB \rightarrow$	$C, C \to D, D \to A$	10
		8.2.a	What are all the nontrivial FD's that follow from the	
			given FD's? You should restrict yourself to FD's with	
			single attributes on the rigth side	10
		8.2.b	What are all the keys of R	10
		8.2.c	What are all the superkeys for R that is not keys?	11
	8.3	Find E	BCNF violations and decompose the schema	11
		8.3.a	$R(A, B, C, D)$ with $AB \to C$, $C \to D$, and $D \to A$	11
		8.3.b	$R(A, B, C, D, E)$ and $AB \to C, DE \to C, B \to D$	11
	8.4	Perfor	m the chase method on the relations $R(A, B, C)$, $R(B, C, D)$	(P), R(A, C, E)
		using t	the given FD's	11
		8.4.a	$B \to E$ and $CE \to A \ldots \ldots \ldots \ldots \ldots$	11
		8.4.b	$A \to D, D \to E \text{ and } B \to D \dots \dots \dots \dots$	12
	8.5	The fo	llowing exercise is on the relation $Courses(C, T, H, R, S, G)$) 12
		8.5.a	What are all the keys for <i>Courses</i>	12
		$8.5.\mathrm{b}$	Verify that the given FD's are their own minimal basis	12
		8.5.c	Make the relation into a 3NF and check if any BCNF	
			violation accour	12
_		_		
9	Wee			13
	9.1		e a ER diagram from the given information	13
	9.2		e a ER diagram from the given information	13
	9.3		e a ER diagram from the given information	13
	9.4		e a relation schema from the given diagram	13
	9.5		e a relation using the different methods, from the given	4.4
		0	m	14
		9.5.a	Straigt E/R model	15
		9.5.b	The object oriented	15
		9.5.c	The null method	15

6 Uge

6.1 Indicate the following according to figure 1.

$\underline{acct}No$	type	balance	
12345	savings	12000	
23456	checking	1000	
34567	savings	25	

The relation Accounts

firstName	lastName	idNo	account
Robbie	Banks	901-222	12345
Lena	Hand	805-333	12345
Lena	Hand	805-333	23456

The relation Customers

Figure 1: Two relations of a banking database

6.1.a The attributes of each realtion

 ${\bf Accounts:}\ acctNo,\, type,\, balance$

Customers: firstName, lastName, idNo, account

6.1.b The tuples of each realtion

• 12345, savings, 12000

• 23456, checking, 1000

 \bullet 34567, savings, 25

- Robbie, Banks, 901 222, 12345
- Lena, Hand, 805 − 333, 12345
- Lena, Hand, 805 − 333, 23456

6.1.c The components of one tuble of each realtion

12000

Banks

6.1.d The relation schema of each realtion

Accounts(acctNo, type, balance)Customers(firstName, lastName, idNo, account)

6.1.e The database schema

Accounts, Customers

6.1.f A suitable domain of each attribute

- acctNo INT
- type VARCHAR[20]
- balance INT
- firstName VARCHAR[20]
- lastName VARCHAR[20]
- *idNo CHAR*[7]
- ullet account INT

6.1.g Another equivalent way to present each relation.

The attributes could simply just be in a different order.

6.2 In a table with the following attributes which are valid example of keys

title, year, length, genre, studioName, producerC#

- title, year
- title, year, studioName
- title, length
- length, genre, studioName, year

6.3 How many ways can relation be represented if it has:

6.3.a Four attributes and five tuples

 $4! \cdot 5! = 2880$

6.3.b n attributes and m tuples

 $n! \cdot m!$

6.4 Write a database schema of the following relations

The datasbase schema includes Product(make, model, type) PC(model, speed, ramhd, price) Laptop(model, speed, ram, hd, screen, price) Printer(model, color, type, price)

6.4.a Write a schema for Product

CREATE TABLE Product(VARCHAR[20] maker, INT model, INT type) The type is here an int where 0 is PC, 1 is laptop and 2 is printer. There is no foreign keys due to it being the lookup table for the other relations

6.4.b Write a schema for *PC*

CREATE TABLE PC(INT model, FLOAT speed, INT ram, BOOLEAN hd, FLOAT prize, FOREIGN KEY(Products) REFERENCES Products(model)) Here the model is a reference to products, speed is gigahertz of CPU

6.4.c Write a schema for *Printer*

CREATE TABLE Printer(INT model, BOOLEAN color, VARCHAR[20] type, FLOAT price, FOREIGN KEY(Products) REFERENCES Products(model))

6.4.d Write an alternation for Printer and delete the attribute color

ALTER TABKE Printer DROP color

6.4.e Add an *od* attribute for PC, which defaults to none an otherwise can be cd or dvd

ALTER TABLE PC ADD VARCHAR[20] od DEFAULT 'none'

7 Uge

7.1 Working with linear notation

The following exercises uses the following schema: Product(maker, model, type) PC(model, speed, ram, hd, price) Laptop(model, speed, ram, hd, screen, price) Printer(model, color, type, price)

7.1.a PC models which have speed of at least 3.00?

 $\pi_{model}(\sigma_{speed>3.00}(PC))$

7.1.b PC manufacturers which makes PC with a hdd with at leat $100\mathrm{GB}$

 $\pi_{maker}(Product \bowtie \sigma_{hd>=100}(PC))$

7.1.c Find model and price of all products made by manufacturer B

$$\begin{split} man := \sigma_{maker=B}(Product) \\ PCModelPrice := \pi_{model,price}(man \bowtie PC) \\ LaptopModelPrice := \pi_{model,price}(man \bowtie Laptop) \\ PrinterModelPrice := \pi_{model,price}(man \bowtie Printer) \\ modPrice := PCModelPrice \cup LaptopModelPrice \cup PrinterModelPrice \\ \end{split}$$

7.1.d Find model numbers of all color laster printers

 $\pi_{model}(Product \bowtie \sigma_{color=1ANDtype=laser}(Printer))$

7.1.e Find manufactures that sell Laptops but not PC

Due to algebra not including a method for group by I have answered in form of SQL queries.

SELECT (SELECT maker FROM LAPTOP NATURAL JOIN Product GROUP BY maker) - (SELECT maker FROM PC NATURAL JOIN Product GROUP BY maker)

7.1.f Find hd size which accour in two or more PC's

$$PC = \pi_{model,hd}(PC)$$

$$PC2(model2,hd) = \pi_{model,hd}(PC)$$

$$hd = \pi_{hd}(\sigma_{model!=model}(PC \bowtie PC2)$$

7.2 In the following data, what is the result of $\pi_{speed}(PC)$ when treated as a bag and set

model	speed	ram	hd	price
1001	2.66	1024	250	2114
1002	2.10	512	250	995
1003	1.42	512	80	478
1004	2.80	1024	250	649
1005	3.20	512	250	630
1006	3.20	1024	320	1049
1007	2.20	1024	200	510
1008	2.20	2048	250	770
1009	2.00	1024	250	650
1010	2.80	2048	300	770
1011	1.86	2048	160	959
1012	2.80	1024	160	649
1013	3.06	512	80	529

Set
speed
2.66
2.10
1.42
2.80
3.20
2.20
2.00
2.80
1.86
3.06

8 Week

- 8.1 What are the expexted FD's in the following database and what key would it have
 - name
 - Social Security number
 - street address
 - city
 - state
 - ZIP code
 - area code
 - phone number

Social Security number \rightarrow name, street address, city, state, ZIP code, area code

phone number \rightarrow name key: Social security number, phone number

- 8.2 Consider the relation with schema R(A,B,C,D) and FD's $AB \to C, C \to D, D \to A$
- 8.2.a What are all the nontrivial FD's that follow from the given FD's? You should restrict yourself to FD's with single attributes on the rigth side

$$AB \to C$$

$$C \to D$$

$$D \to A$$

$$C \to A$$

8.2.b What are all the keys of R

$$AB^+ = \{C, D\}$$

$$C^+ = \{A, D\}$$

$$D^+ = \{A\}$$

$$BC^+ = \{D, A\}$$

$$BD^{+} = \{A, C\}$$
$$AB, BC, DC$$

8.2.c What are all the superkeys for R that is not keys?

BC, BD

8.3 Find BCNF violations and decompose the schema

8.3.a
$$R(A, B, C, D)$$
 with $AB \rightarrow C$, $C \rightarrow D$, and $D \rightarrow A$

$$AB^{+} = \{C, D, A\}$$
 - violation.
 $R1 = R - AB^{+} + AB = R(A, B)$
 $R2 = AB^{+} = R2(A, C, D)$

8.3.b R(A, B, C, D, E) and $AB \rightarrow C, DE \rightarrow C, B \rightarrow D$

Starts wit the original relation

The table violates ABC

$$AB^+ = \{C, D\}$$

$$R1 = R - AB^+ = R(A, B, E)$$

$$R2 = AB^+ + AB = R(A, B, C, D)$$

But R2 violates $B \to D$

$$B^+ = \{D\}$$

$$R3 = R2 - B^+ = R(A, B, C)$$

$$R4 = B^+ + B = R(B, D)$$

Therefore the new realtions are R1, R3, R4, since none now violates BCNF.

8.4 Perform the chase method on the relations R(A, B, C), R(B, C, D), R using the given FD's

8.4.a $B \rightarrow E$ and $CE \rightarrow A$

$$A, B, C, D_1, E_1$$

$$A_2, B, C, D, E_2$$

$$A, B_3, C, D_3, E$$

$$E_1 = E_2 - B \rightarrow E$$

$$A_2 = A - CE_1 \to A$$

$$E_1 = E - CE \rightarrow A$$

Therfore on line two is now

8.4.b $A \rightarrow D, D \rightarrow E \text{ and } B \rightarrow D$

$$A, B, C, D_1, E_1$$

 A_2, B, C, D, E_2
 A, B_3, C, D_3, E

$$A, B_3, C, D_3, E$$

 $D_1 = D - B \rightarrow D$

$$A_2 = A - A \to D$$

$$D = D \land D$$

$$D_3 = D - A \to D$$

$$E_1 = E - D \rightarrow E$$

8.5 The following exercise is on the relation Courses(C, T, H, R, S, G)

The relation has the following FD's

$$C \to T$$

$$HR \to C$$

 $HT \to R$

$$HS \to R$$

$$CS \to G$$

What are all the keys for Courses

The candidate keys are:

$$CSH^+ = \{T, G, R\}$$

$$SHR^+ = \{C, T, G\}$$

8.5.b Verify that the given FD's are their own minimal basis

$$C^+ = \{T\}$$

$$HR^+ = \{C, T\}$$

$$HT^+ = \{R, C\}$$

$$HS^+ = \{R, C, T\}$$

$$CS^+ = \{G, T\}$$

As it can be seen no one of the FD's closure result in another FD, therefore making it minimal.

Make the relation into a 3NF and check if any BCNF violation accour

R1(C,T)

R2(H, R, C, T)

R3(H,T,R,C)

R4(H, S, R, C, T)

R5(C, S, G, T)

R2 violates BCNF due to $HT \to R$, the same with R3 due to HR FD.

9 Week

9.1 Create a ER diagram from the given information

Figure 2: ER diagram describing a bank scenario

9.2 Create a ER diagram from the given information

Figure 3: ER diagram describing a course and student enrollment

9.3 Create a ER diagram from the given information

9.4 Create a relation schema from the given diagram

Customer(SSNO primary,phone,addr,name)

Flights(number primary, day primary, aircraft)

Bookings(SSNo primary, number primary, day primary, row, seat)

Figure 4: ER diagram describing a department and course situation with a weak key

9.5 Create a relation using the different methods, from the given diagram

9.5.a Straigt E/R model

Courses(room,number primary)
Depts(name primary, chair)
GivenBy(number primary, name primary)
LabCourses(number primary, computerAllo)

9.5.b The object oriented

The same as Depts, GivenBy and Courses but... LavCourses(number primary, room, CcomputerAllo)

9.5.c The null method

The same Depts and Given by but... LabCourses(number primary, room, computerAllo)