(p. 462: 9.37)

Let $X_1, X_2, ..., X_n$ denote n iid Bernoulli random variables such that

$$P(X_i = 1) = p$$
 and $P(X_i = 0) = 1 - p$,

for each i = 1, 2, ..., n. Show that $\sum_{i=1}^{n} X_i$ is sufficient for p by using the factorization criterion given in Theorem 9.4.

Solution:

The likelihood function is $L(p) = p^{\sum x_i} (1-p)^{n-\sum x_i}$. By theorem 9.4, $\sum_{i=1}^n X_i$ is sufficient for p with $g(\sum_{i=1}^n X_i, p) = p^{\sum X_i} (1-p)^{n-\sum X_i}$ and h(y) = 1.

(p. 462: 9.38)

Let $Y_1, Y_2, ..., Y_n$ denote a random sample from a normal distribution with mean μ and variance σ^2 .

- (a) If μ is unknown and σ^2 is known, show that \overline{Y} is sufficient for μ .
- (b) If is μ known and σ^2 is unknown, show that $\sum_{i=1}^n (Y_i \mu)^2$ is sufficient for σ^2 .
- (c) If μ and σ^2 are both unknown, show that $\sum_{i=1}^n Y_i$ and $\sum_{i=1}^n Y_i^2$ are jointly sufficient for μ and σ^2 . [Thus, it follows that \overline{Y} and S^2 are also jointly sufficient for μ and σ^2 .]

Solution:

For this exercise, the likelihood function is given by

$$L = \frac{1}{(2\pi)^{n/2}\sigma^n} \exp\left[-\frac{\sum_{i=1}^{n}(y_i - \mu)^2}{2\sigma^2}\right] = (2\pi)^{-n/2}\sigma^{-n} \exp\left[-\frac{1}{2\sigma^2}\left(\sum_{i=1}^{n}y_i^2 - 2\mu n\overline{y} + n\mu^2\right)\right]$$

(a) When σ^2 is known, \overline{Y} is sufficient for μ by Theorem 9,4 with

$$g(\overline{y}, \mu) = \exp\left(\frac{2\mu n \overline{y} - n\mu^2}{2\sigma^2}\right) \text{ and } h(\mathbf{y}) = (2\pi)^{-n/2} \sigma^{-n} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n y_i^2\right]$$

(b) When μ is known, use Theorem 9.4 with

$$g(\Sigma_{i=1}^{n}(y_{i}-\mu)^{2},\sigma^{2}) = (\sigma^{2})^{-n/2} \exp\left[-\frac{\Sigma_{i=1}^{n}(y_{i}-\mu)^{2}}{2\sigma^{2}}\right] \text{ and } h(\mathbf{y}) = (2\pi)^{-n/2}.$$

(c) When μ and σ^2 are both unknown, the likelihood can be written in terms of the two statistics $U_1 = \sum_{i=1}^n Y_i$ and $U_2 = \sum_{i=1}^n Y_i^2$. Let

$$g(U_1, U_2, \mu, \sigma^2) = (2\pi\sigma^2)^{-n/2} \exp(-\frac{U_2}{2\sigma^2}) \exp[-\frac{n}{2\sigma^2} (\frac{U_1}{n} - \mu)^2] \text{ and } h(\mathbf{y}) = 1$$

 $\sum_{i=1}^{n} Y_i$ and $\sum_{i=1}^{n} Y_i^2$ are jointly sufficient for μ and σ^2 .

 \overline{Y} and S^2 are also jointly sufficient for μ and σ^2 since they can be written in terms of U_1 and U_2 .

(p. 481: 9.80)

Suppose that $Y_1, Y_2, ..., Y_n$ denote a random sample from the Poisson distribution with mean λ .

- (a) Find the MLE $\hat{\lambda}$ for λ .
- (b) Find the expected value and variance of $\hat{\lambda}$.

- (c) Show that the estimator of part (a) is consistent for λ .
- (d) What is the MLE for $P(Y=0) = e^{-\lambda}$?

Solution:

(a) For the Poisson distribution, the likelihood function would be

$$L = \prod_{i=1}^{n} \frac{e^{-\lambda} \chi^{y_i}}{y_i!}$$
$$= \frac{e^{-n\lambda} \lambda^{\sum_{i=1}^{n} y_i}}{\prod_{i=1}^{n} y_i!}$$

and the log-likelihood function would be

$$\ln L = \ln \left(\frac{e^{-n\lambda} \lambda^{\sum_{i=1}^{n} y_i}}{\prod_{i=1}^{n} y_i!} \right)$$
$$= -n\lambda + \sum_{i=1}^{n} y_i \ln \lambda - \sum_{i=1}^{n} \ln(y_i!)$$

Now take the derivative of it with respect to λ and set it to 0,

$$\frac{\partial \ln L}{\partial \lambda} = -n + \frac{\sum_{i=1}^{n} y_i}{\lambda} = 0$$

Solving it for λ , we get

$$\hat{\lambda} = \overline{Y}$$

Since the second derivative of the log-likelihood function evaluated at $\hat{\lambda} = \overline{Y}$ is less than 0, $1 \hat{\lambda} = \overline{Y}$ is the MLE for λ .

- (b) By sampling distribution $E(\hat{\lambda}) = \lambda$ and $V(\hat{\lambda}) = \lambda / n$.
- (c) Since $\hat{\lambda}$ is unbiased and has variance that goes to 0 with increasing n, it is consistent.
- (d) By the invariance property, the MLE for $P(Y=0) = e^{-\lambda}$ is $e^{\overline{Y}}$.

(p. 481: 9.81)

Suppose that Y_1 , Y_2 , ..., Y_n denote a random sample from an exponential distributed population with mean θ . Find the MLE of the population variance θ^2 .

Solution:

For the exponential distribution, the likelihood function would be

$$\begin{split} L &= \prod_{i=1}^n \frac{1}{\theta} e^{-y_i/\theta} \\ &= \frac{e^{-\sum_{i=1}^n y_i/\theta}}{\theta^n} \end{split}$$

Then the log-likelihood function is

$$\ln L = \ln \left(\frac{e^{-\sum_{i=1}^{n} y_i / \theta}}{\theta^n} \right)$$
$$= -\sum_{i=1}^{n} y_i / \theta - n \ln \theta$$

Now take the derivative of it with respect to θ and set it to 0,

$$\frac{\partial \ln L}{\partial \theta} = -\frac{n}{\theta} + \frac{\sum_{i=1}^{n} y_i}{\theta^2} \stackrel{\Delta}{=} 0$$

Solving it for θ , we get

$$\hat{\theta} = \overline{Y}$$
.

Since the second derivative of the log-likelihood function evaluated at $\hat{\theta} = \overline{Y}$ is less than 0, the MLE is $\hat{\theta} = \overline{Y}$. By the invariance property of MLEs, the MLE of θ^2 is $\overline{\overline{Y}^2}$