A graph pre-image method based on graph edit distances

Linlin Jia linlin.jia@insa-rouen.fr Supervisors:

Paul Honeine, paul.honeine@univ-rouen.fr Benoit Gaüzère, benoit.gauzere@insa-rouen.fr

Normandie Université, INSA Rouen et Université de Rouen, LITIS Lab

19/09/2020

Overview

- 1 Introduction
- 2 Preliminaries
- 3 Proposed graph pre-image method
- 4 Experimental results
- **5** Conclusion and future work

LINLIN JIA Pre-image 1 de 27

Graph data

Graph structure and machine learning methods

These images are from the Internet.

Graph kernels and pre-image problem

Current methods to generate graphs

• Pre-image based on iterations:

- Explore the benefit of kernel space.
- New graphs can only be generated by adding or removing edges, and only a restricted number of edges can be inserted or deleted, thus the possible graph space is not fully explored.
- Randomly generate new graphs in each iteration, which may cause the decrease of the quality of the pre-image, and is time consuming.
- No labelling information can be tackled.

• Based on graph edit distance (GED):

- A nature way to construct graphs.
- Only explore the graph space.
- -> Our method: combine the two methods above, use GED as a direction when constructing graphs in the iteration of the pre-image method.

Overview

- 1 Introduction
- 2 Preliminaries
- 3 Proposed graph pre-image method
- 4 Experimental results
- **5** Conclusion and future work

Linear and non-linear graph kernels

Graph kernels comparison

Table: Characteristics of graph kernels based on linear patterns and two on non-linear patterns.

Kernels	Substructures			Labeling						Computational		
	linear	non-linear	cyclic	symbolic		non-symbolic		Directed	Edge Weighted	Complexity	Explicit Representation	Weighting
				vertices	edges	vertices	edges			(Gram Matrix)	,	
Common walk	/	Х	Х	1	1	Х	Х	1	Х	$O(N^2n^6)$	Х	a priori
Marginalized	1	X	X	1	1	X	X	/	X	$O(N^2rn^4)$	Х	×
Sylvester equation	/	X	X	X	X	X	×	/	/	$O(N^2n^3)$	Х	a priori
Conjugate gradient	1	X	X	1	1	/	/	/	1	$O(N^2rn^4)$	Х	a priori
Fixed-point iterations	1	X	X	1	1	/	/	/	1	$O(N^2rn^4)$	Х	a priori
Spectral decomposition	/	X	X	X	X	X	×	/	/	$O(N^2n^2 + Nn^3)$	Х	a priori
Shortest path	1	X	X	1	X	/	X	/	1	$O(N^2n^4)$	Х	×
Structural shortest path	/	X	X	/	/	/	/	/	X	$O(hN^2n^4 + N^2nm)$	Х	×
Path kernel up to length h	1	X	Х	/	1	X	X	/	X	$O(N^2h^2n^2d^{2h})$	/	/
Treelet	1	1	X	1	1	Х	X	1	Х	$O(N^2nd^5)$	/	/
WL subtree	1	/	Х	/	Х	Х	X	/	X	$O(Nhm + N^2hn)$	/	×

- The "Computational complexity" column is a rough estimation for computing the Gram matrix.
- The "Explicit representation" column indicates whether the embedding of graphs in the representation space can be
 encoded by a vector explicitly; in other words, whether the patterns of graph kernels can be explicitly presented.
- The "Weighting" column indicates whether the substructures can be weighted in order to obtain a similarity measure
 adapted to a problem of particular prediction, where "a priori" indicates that the weights are set while constructing
 kernels.

Graph edit distances

$$(v_{i_0}, v_{r_0}, v_{s_0}, v_{s_1}, v_{r_1} \dots) \to \pi$$

$$GED(G_1, G_2) = \min_{\pi_1, \dots, \pi_k \in \Pi(G_1, G_2)} \sum_{i=1}^k c(\pi_i)$$

Graph edit distances

$$c_{vr} \rightarrow n_{vr}, \qquad c_{vi} \rightarrow n_{vi}, \qquad c_{vs} \rightarrow n_{vs}$$
 $c_{er} \rightarrow n_{er}, \qquad c_{ei} \rightarrow n_{ei}, \qquad c_{es} \rightarrow n_{es}$
 \longrightarrow

$$egin{aligned} oldsymbol{\omega} &= [n_{vr}, n_{vi}, n_{vs}, n_{er}, n_{ei}, n_{es}]^ op \ oldsymbol{c} &= [c_{vr}, c_{vi}, c_{vs}, c_{er}, c_{ei}, c_{es}]^ op \ d_{GED}(G_i, G_i) &= oldsymbol{\omega}^ op oldsymbol{c} \end{aligned}$$

References

• Graph kernels:

- Jia, L., Gaüzère, B., Honeine, P., 2019. Graph Kernels Based on Linear Patterns: Theoretical and Experimental Comparisons. URL: https://hal-normandie-univ.archives-ouvertes.fr/hal-02053946. working paper or preprint.
- Jia, L., Gaüzère, B., Honeine, P., 2020. graphkit-learn: A Python Library for Graph Kernels Based on Linear Patterns. (submitted to *Pattern Recognition Letters*.)

• Graph edit distances:

 Blumenthal, D.B., Boria, N., Gamper, J., Bougleux, S., Brun, L., 2019a.
 Comparing heuristics for graph edit distance computation. The VLDB Journal, 140.

Overview

- 1 Introduction
- 2 Preliminaries
- 3 Proposed graph pre-image method
- 4 Experimental results
- **5** Conclusion and future work

Goal: construct graph pre-image

Align graph space and kernel space

$$d_1 = d_{\mathcal{F}_1}, \quad d_2 = d_{\mathcal{F}_2}, \quad d_3 = d_{\mathcal{F}_3}, \quad d_4 = d_{\mathcal{F}_4}, \quad \dots$$

LINLIN JIA Pre-image 14 de 27

Align graph space and kernel space

$$d_{GED}(G_i, G_j) = \boldsymbol{\omega}^{\top} \boldsymbol{c}$$

$$=$$

$$d_{\mathcal{F}}(\phi(G_i), \phi(G_j)) = \sqrt{k(G_i, G_i) + k(G_j, G_j) - 2k(G_i, G_j)}$$

$$\arg\min_{\boldsymbol{c},\boldsymbol{\omega}} \sum_{i,j=1}^{N} \left(d_{GED}^{i,j} - d_{\mathcal{F}}^{i,j} \right)^{2}$$

LINLIN JIA

Align graph space and kernel space

- \boldsymbol{W}^{\top} : the N^2 -by-6 matrix with rows $\boldsymbol{\omega}(i,j)^{\top}$;
- $d_{\mathcal{F}}$: the vector of N^2 entries $d_{\mathcal{F}}(\phi(G_i),\phi(G_j))$, for $i,j=1,\ldots,N$.

16 de 27

LINLIN JIA

Align graph space and kernel space

Generate graph pre-image

Using $c_{optimized}$, alternately iterate the following procedures:

Generate median graph via Block Coordinate Update (BCU)

$$\bar{g} = (\bar{\varphi}, \bar{A}, \bar{\Phi}) \leftarrow \arg \min_{\substack{\varphi \in \mathbb{F}_v^{\bar{n}} \\ A \in \{0,1\}^{\bar{n} \times \bar{n}} \\ \Phi \in \mathbb{F}_e^{\bar{n} \times \bar{n}}}} \sum_{p=1}^{|\mathcal{G}|} (c_v(\bar{\pi}_p, \varphi, \varphi_p) + \frac{1}{2} c_e(\bar{\pi}_p, A, \Phi, A_p, \Phi_p))$$

$$\forall p \in \{1, \dots, |\mathcal{G}|\}, \bar{\pi}_p \leftarrow \arg\min_{\pi_p \in \Pi(\bar{g}, g_p)} c(\pi_p, \bar{G}, G_p)$$

LINLIN JIA Pre-image 19 de 27

Block Coordinate Update (BCU)

Block Coordinate Update (BCU)

Nodes:

- Each node is labeled with one of the most present labels among the ones substituted to it.
- The optimal attribute for a node is given by the mean attribute of the nodes substituted to it.

• Edges:

- Each edge is labeled with one of the most present labels among the ones substituted to it.
- The optimal attribute for an edge is given by the mean attribute of the edges substituted to it.

Overview

- 1 Introduction
- 2 Preliminaries
- 3 Proposed graph pre-image method
- 4 Experimental results
- **5** Conclusion and future work

Distances in kernel space

Datasets	Graph Kernels	Algorithms	d≠ GM	Running Times			
Datasets	Graph Remeis	Algorithms	a≠ Givi	Optimization	Generation	Total	
Letter-high		From median set	0.469	=	-	-	
		IAM (random costs)	0.467	=	142.59	142.59	
	shortest paths	IAM (expert costs)	0.451	-	30.31	30.31	
		IAM (optimized costs)	0.460	5968.92	26.55	5995.47	
		From median set	0.459	-	-	-	
	structural sp	IAM (random costs)	0.435	-	30.22	30.22	
	Structural Sp	IAM (expert costs)	0.391	=	29.71	29.71	
		IAM (optimized costs)	0.394	24.79	25.60	50.39	
Letter-med		From median set	0.469	-	-	-	
	shortest paths	IAM (random costs)	0.303	-	25.61	25.61	
	snortest paths	IAM (expert costs)	0.288	=	26.93	26.93	
		IAM (optimized costs)	0.288	23.72	24.79	48.52	
		From median set	0.478	-	-	-	
	structural sp	IAM (random costs)	0.286	-	24.77	24.77	
	structurai sp	IAM (expert costs)	0.248	-	27.51	27.51	
		IAM (optimized costs)	0.248	27.06	29.24	56.30	
Letter-low		From median set	0.166	-	-	-	
	shortest paths	IAM (random costs)	0.116	=	26.47	26.47	
	shortest paths	IAM (expert costs)	0.116	-	24.87	24.87	
		IAM (optimized costs)	0.116	26.35	29.97	56.31	
	<u> </u>	From median set	0.148		-	-	
		IAM (random costs)	0.103	=	30.22	30.22	
	structural sp	IAM (expert costs)	0.086	-	29.43	29.43	
		IAM (optimized costs)	0.104	21.95	24.59	46.53	

Pre-images constructed by different algorithms

Pre-images generated as median graphs for each letter of *Letter-high* dataset using random costs, expert costs and optimized costs:

Overview

- 1 Introduction
- 2 Preliminaries
- 3 Proposed graph pre-image method
- 4 Experimental results
- **5** Conclusion and future work

Conclusion:

- We proposed a novel method to estimate graph pre-images by aligning kernel space and graph space.
- Our method is able to generate better pre-images than other methods, as demonstrated on the *Letter-high* dataset.

• Future work:

- Generalize our method to construct pre-images as arbitrary graphs.
- Improve both BCU algorithm and the distance alignment.

Questions

Thank you.

Any questions?