TA181901003

EL4091 - Tugas Akhir II (Capstone Design)

Semester 2 T.A. 2018/2019

Latar belakang & Rumusan Masalah

Latar Belakang

Kebutuhan terhadap keamanan tempat tinggal merupakan suatu hal yang semakin meningkat setiap waktu. Sementara biaya untuk menyewa satpam memiliki harga yang tinggi dan dibayar berkala. Sementara, kamera keamanan biasa saat ini umumnya hanya mendeteksi gerakan yang ada, tidak dapat mengidentifikasi hasil gerakannya yang menyebabkan hasil tingkat keamanan dihasilkan tidak tinggi.

Rumusan Masalah

- Masalah yang akan diselesaikan adalah
 "Tingkat keamanan tempat tinggal yang kurang."
- Pihak yang memiliki masalah "Customer yang tempat tinggalnya ditinggalkan kosong."

Kegunaan Produk

- Dampak dari penyelesaian masalah
 - Tempat tinggal customer menjadi lebih aman.
- Pencurian dapat diidentifikasi lebih cepat.

Solusi untuk penyelesaian masalah

"Sebuah sistem yang dipasang di titik strategis yang dapat mengenali perilaku."

Fitur Utama:

Produk ini memiliki kemampuan untuk mendeteksi objek yang kemudian dianalisis terhadap karakteristik tingkah laku yang umum. Produk mengklasifikasikan jenis tingkah laku berdasarkan informasi dari objek yang diketahui. Produk merekam dan menandai perilaku yang dideteksi sebagai kondisi perilaku negatif.

Fitur Dasar:

- o Sistem dapat mendeteksi objek bergerak yang terdapat pada suatu ruangan.
- o Sistem dapat mengambil kesimpulan berdasarkan kumpulan informasi yang didapatkan.
- o Sistem dapat menyimpan informasi yang direkam.
- o Sistem dapat menandai kelompok perilaku spesifik yang berada dideteksi sebagai kondisi perilaku negatif.

Fitur Tambahan:

- o Sistem memiliki sudut pandang beserta jangkauan yang luas.
- o Sistem dapat mengirimkan kepada pengguna mengenai seluruh informasi yang diterima.
- o Sistem memiliki GUI yang ramah digunakan bagi pengguna.

Skenario Penggunaan Produk

No	Hal	Rincian					
1	Jarak transmisi	Kamera dalam radius 8,86m.					
2	Daya kamera	5V 2A daya minimum yang dibutuhkan agar pandangan kamera dapat bergerakkan secara remote.					

No	Hal	Rincian		
3	Konsumsi daya	Maksimal 710 watt.		
4	Jarak pandang	Terjauh minimal 8 meter.		

No	Hal	Rincian			
5	Redundansi Sistem	Area yang dicakupi 80% dari area semula saat satu kamera mati.			
6	Intensitas cahaya sekitar	Minimal 100 lux.			

No	Hal	Rincian		
7	Akses ke seluruh fungsionalitas utama	Maksimal 3 aksi pengguna.		
8	Resolusi kamera	Minimal 512x288 pixel tiap kamera (total 1024x576 untuk 4 kamera).		

No	Hal	Rincian
9	Kualitas <i>playback</i> video	Minimal 400 Kbps maksimal 4 Mbps.
10	Keperluan bandwidth mengirim data ke internet	Maksimal 7,91 Mbps.
11	Keperluan bandwidth menerima data dari internet	Maksimal 9.82 Mbps.

No	Hal	Rincian		
12	Frame per detik	Minimal 3 frame per detik		
13	Penyimpanan data lokal	Minimal 795 GB		

No	Hal	Rincian		
14	Kemampuan komputasi	GPU Nvidia dengan compute capability minimal 3.5		
15	Akurasi deteksi kerangka tubuh	Minimal 86,9 persen		

No	Hal	Rincian					
16	Akurasi penentuan aman dan tidak aman	Sistem dapat memberikan respons aman dan tidak aman yang tepat minimal 90% setelah suatu kegiatan yang seharusnya dikenal terjadi paling lambat dalam 4 detik.					
17	VRAM minimum & Skalabilitas	VRAM sebesar minimal 4GB dengan skalabilitas linear terhadap jumlah pixel.					

Level 0

Diagram Blok Sistem Level 1

Diagram Blok Sistem Level 2

Implementasi & Hasil

Wired vs Wireless

• Wired : USB, PoE, Ethernet

• Wireless : WiFi

HTTP vs RTSP

	НТТР	RTSP		
Kelebihan	- Seluruh jenis firewall bisa dilewati.	- Didesain untuk mengirimkan video dalam permintaan dan secara langsung.		
Kekurangan	- Didesain untuk mengirimkan dokumen.	- Tidak bisa melewati seluruh firewall.		

UDP vs TCP

	RTSP UDP	RTSP TCP
Kelebihan	 Paket data ringan dengan header minim Kecepatan lebih tinggi dibanding TCP 	- Error checking dan error recovery
Kekurangan	- Ada error checking tapi tidak ada error recovery, data error langsung terbuang	 Kecepatan lebih rendah dibanding UDP Paket data berat karena adanya overhead

UDP vs TCP

Visualisasi

Cakupan Area

Reliabilitas dan Redundansi

Cakupan dari	Luas (petak)	Luas (m ²)	Keterangan
Keseluruhan tanpa prabotan	176	15.84	61% Keseluruhan ruangan
Kamera 1 (kanan-atas)	112	10.08	64% Ruang tanpa prabotan
Kamera 2 (kiri-atas)	69	6.21	39% Ruang tanpa prabotan
Kamera 3 (kanan-bawah)	85	7.65	48% Ruang tanpa prabotan
Kamera 4 (kiri-bawah)	76	6.84	43% Ruang tanpa prabotan
Cakupan apabila	Luas (petak)	Luas (m ²)	Keterangan
Kamera 1 mati	154	13.86	88% Ruang tanpa prabotan
Kamera 2 mati	156	14.04	89% Ruang tanpa prabotan
Kamera 3 mati	171	15.39	97% Ruang tanpa prabotan
Kamera 4 mati	167	15.03	95% Ruang tanpa prabotan
1 kamera mati	173	15.57	98% Ruang tanpa prabotan
2 kamera mati	133	11.97	76% Ruang tanpa prabotan
3 kamera mati	56	5.04	32% Ruang tanpa prabotan

Estimasi Pose

Estimasi Pose

Estimasi Pose

Sistem Kamera Posisi dari posisi mendatar

Kasus	Benar	%	Salah	%	Tidak Deteksi	%	Total Key	Total Uji
Kaos Polos	5517	99.44	28	0.5047	3	0.054	5548	308
Baju Corak	3580	64.16	5	0.0896	1995	35.753	5580	308
TOTAL	9097	81.75	33	0.2965	1998	17.955	11128	616

Sistem Kamera Posisi dari posisi atas

				Tidak			
Benar	%	Salah	%	Deteksi	%	Total Key	Total Uji
718	77.538	39	4.21	169	18.25054	926	30

Pengenalan Objek

Pengenalan Objek

Pengenalan Objek

Sistem Kamera Posisi dari posisi mendatar

Kelas/Prediksi	Terklasifikasi Positif	Terklasifikasi Negatif	
Positif	86	45	
Negatif	2	-	

Akurasi Deteksi Objek 64.66%

Sistem Kamera Posisi dari posisi atas

Kelas/Prediksi	Terklasifikasi Positif	Terklasifikasi Negatif
Positif	20	49
Negatif	18	-

Akurasi Deteksi Objek 22.99%

Pengenalan Muka

Konfigurasi		Benar	Salah Kenal	Salah Tidak Dikenal
Toleransi 0.6	Total	496	93	7
Toleransi 0.6	Persen	83.22%	15.60%	1.17%
Toloronoi 0.4	Total	539	0	57
Toleransi 0.4	Persen	90.44%	0.00%	9.56%

Pengenalan Gestur

Diagram persiapan data training

Diagram pengenalan gestur

Pengenalan Gestur

Terminologi Data

Pemrosesan Data

- Pengelompokan Kelas-Kelas Gestur
 - a. Berdasarkan kamera
 - b. Berdasarkan translasi tubuh
- 2. Augmentasi Data
 - a. Transformasi pose
 - b. Overlapping
 - c. Transformasi titik

- NE = Kamera Timur Laut
- NW = Kamera Barat Laut
- SE = Kamera Barat Daya
- SW = Kamera Tenggara

- UR = Ke atas-kanan
- UL = Ke atas-kiri
- DR = Ke bawah-kanan
- DL = Ke bawah-kiri
- ND = Tanpa arah

Pemrosesan Data

- 3. Preprocessing Gestur
 - a. Amplify
 - b. Normalize Pose
 - c. Normalize Gesture
 - d. Normalize Point
 - e. Reverse
- 4. Postprocessing Pengenalan Gestur
 - a. Average
 - b. Percentile
 - c. Count-if

Skenario Uji

Gestur-gestur:

- Positif : Diam, Jalan
- Negatif : Barang2, Barang1l, Barang1r

Pengujian:

- Tipe 1 : Terhadap data training namun dengan varian augmentasi lain
- Tipe 2 : Terhadap data baru namun seharusnya dikenal

Pengujian Pengelompokan Kelas

Efek dari
Postprocessing

Model terbaik

Model dengan trigger level keamanan tertinggi:

- Model LSTM satu hidden layer.
- Pengelompokan kelas-kelas gestur berdasarkan **translasi tubuh**.
- Augmentasi data: Overlap & transformasi pose.
- Preprocessing gestur skema Normalize Gesture.
- **Postprocessing** pengenalan gestur skema **persentil** (30 persentil dan threshold level keamanan 0.8).

Model terbaik

$A\P$	P	N	Sampel	320
ъ	160	0	Acc Pengenalan Spesifik	59.82%
P	160	160 0	Acc Pengenalan Sentimen	76.51%
N	20	140	Acc Level Keamanan	93.75%

$A \setminus P$	Diam	Jalan	Barang2	Barang1r	Barang11
Diam	0	0	0	0	0
Jalan	3	185	2	4	14
Barang2	0	28	49	11	35
Barang1r	0	42	5	14	18
Barang11	0	11	0	1	11
Acc (%)	0.0	69.5	87.5	46.7	14.1

*Acc spesifik : Mengenali kelompok gestur dengan benar.

*Acc sentimen : Mengenali sentimen dengan benar.

Mekanisme Pemanfaatan Pengenalan Muka

- 1. Ada orang dikenal masuk ruangan berarti mode "authorized".
- 2. Mode tersebut aktif sampai batasan tertentu. Opsi:
 - Suatu durasi konstan.
 - Orang tersebut keluar ruangan. Diperiksa dengan:
 - i. Memperoleh warna baju orang yang dikenal ketika masuk.
 - ii. Menguji setiap warna pakaian orang yang keluar ruangan.
 - iii. Jika ada yang serupa, orang tersebut dihapus dari daftar.
- 1. Kembali ke mode semula atau netral.

Mekanisme Pemanfaatan Pengenalan Muka

Uji Temperatur

 Laju sistem tak dibatasi (4.1 – 4.6 FPS)

Laju sistem dibatasi 3 FPS

Komputer Uji

Komputer A:

- Intel Core i5-6400 2.7GHz-3.3GHz (4 Core 4 Threads)
- Nvidia GeForce GTX 1060 CUDA cores 1280 VRAM 6 GB
- Motherboard Asrock H110M-HDV
- RAM DDR4 8GBx2 2400MHz
- HDD WDC Sata3 7200 RPM 1 TB
- Power Supply Corsair VS650 80 plus white

Komputer Uji

Komputer B:

- Intel Core i7-6700HQ 2.6GHz-3.5GHz (4 Core 8 Threads)
- Nvidia GeForce GTX 960M CUDA cores 640 VRAM 4GB
- Lenovo IdeaPad Y700 Series Intel I7 Motherboard
- RAM DDR4 8GB+4GB 2400MHz
- HDD 1TB 5400RPM SATA III 6Gb/s
- SSD 256 GB SATA M.2 3.0 x4

Komputer Uji

Komputer C:

- Intel Core i5-8250U 1.6 GHz-3.4GHz (4 Core 8 Threads)
- Nvidia GeForce MX150 CUDA cores 384 VRAM 2GB
- X510UNO Motherboard
- RAM DDR4 4GB 3200MHz
- HDD 1TB + 16GB Optane

Pengujian Tanpa GPU

Comp: CPU	Clock (MHz)		Cores	Usage				
Architecture & Model	Core	Mem	or Threads	CPU	GPU	RAM ¹ (GB/GB)	VRAM ^{1,2} (GB/GB)	FPS
A: CPU Intel Skylake i5-6400	up to 3300	2133	4 cores 4 threads	3.08 GHz 100%	0.14 GHz ³ 1%	1.3 / 16	0.34 / 6	1
B: CPU Intel Skylake i7-6700HQ	up to 3500	2133	4 cores 8 threads	3.1 GHz 100%	0 GHz 0%	0.3 / 12	0 / 4	0.7
C: CPU Intel Kaby Lake R i5-8250U	up to 3400	2400	4 cores 8 threads	3.2 GHz 100%	0 GHz 0%	0.4 / 4	0 / 2	1.3

Pengujian Dengan GPU

Comp: GPU	Clock (MHz)		Cores	Usage				
Architecture & Model	Core	Mem	or Threads	CPU	GPU	RAM ¹ (GB/GB)	VRAM ^{1,2} (GB/GB)	FPS
A: GPU Nvidia Pascal GTX 1060 6GB	1873	4200	1280 cores	3.15 GHz 50%	1873 GHz 20%	0.2 / 16	5.2 / 6	18
B: GPU Nvidia Maxwell GTX 960m 4GB	1096	1253	640 cores	3.2 GHz 30%	1.09 GHz 30%	1.1 / 12	3.2 / 4	11
C: GPU Nvidia Pascal MX150 2GB	1468	1500	384 cores	2.12 GHz 29%	1.47 GHz 31 %	1.2 / 4	1.6 / 2	6.4

Pengujian VRAM Minimum

- Total = 3.7 GB
- Pose Estimation = 2.5 GB (~70% Total)
- Gesture Recognition = 0.3 GB
- Object Detection = 0.5 GB
- Face Recognition = 0.4 GB

Pengujian VRAM Minimum

Konsumsi Daya

Kondisi idle

Komponen	Vrms (V)	Irms (A)	Daya (W)
PC	223	0.371	82.733
Monitor	223	0.111	24.753
Kamera 4	223	0.022	4.906
	112.392		

 Kondisi bekerja penuh

Komponen	Vrms (V)	Irms (A)	Daya (W)
PC	223	0.719	160.337
Monitor	223	0.111	24.753
Kamera 4	223	0.022	4.906
	Total		189.996

Konsumsi Daya

Komponen	Konsumsi Daya (W)
Hard Disk WDC Sata3 7200 RPM 1 TB	10
Intel i5-6400 2.7GHz (4 Core)	90
GeForce GTX 1060 Gaming X + 6G	400
RAM DDR4 8GBx2 2400MHz	10
Total	510

Pengujian Lebih Lanjut

Pengujian performa sistem total dengan konfigurasi sebagai berikut.

Konfigurasi	CPU	GPU
А	i5-6400 4C/4T @ 3.1 GHz	GTX 1060 6GB 1280C @1506 MHz
В	i7-6700 4C/8T @ 3.7 GHz	GTX 1060 6GB 1280C @1506 MHz
С	i5-6400 4C/4T @ 3.1 GHz	GTX 1070 8GB 1920C @1557 MHz
D	i7-6700 4C/8T @ 3.7 GHz	GTX 1070 8GB 1920C @1557 MHz

Pengujian Lebih Lanjut

Uji tanpa memanfaatkan CUDA atau komputasi tambahan GPU (hanya CPU).

Konfigurasi	FPS Rata-rata
Α	0.4131
В	0.6891
С	0.4657
D	0.6928

Pengujian Lebih Lanjut

Uji dengan memanfaatkan GPU.

Diuji pula terhadap jumlah pose yang terdeteksi.

Gestur yang Seharusnya Tidak Dikenal

Pengujian tipe kedua terhadap	Akurasi Pengenalan
Gestur yang seharusnya dikenal saja	59.4%
Gestur yang seharusnya dikenal dan tidak	45.6%

Visualisasi Output

Visualisasi Output

Graphical User Interface

Demo

