Departamento de Matemática - IMECC - Unicamp Exame de Análise no \mathbb{R}^n - 21 de Julho de 2010.

1. Questão. Sejam f e g duas funções diferenciáveis em uma vizinhança de $0 \in \mathbb{R}^n$, e suponha que f(0) = g(0) e que $(\nabla_x f)(0) = (\nabla_x g)(0)$. Seja h uma função definida em uma vizinhança Ω de 0, tal que, $f(x) \leq h(x) \leq g(x)$ em Ω . Mostre que h é diferenciável em x = 0.

2. Questão.

(a) Assuma que $f: \mathbb{R}^n \to \mathbb{R}$ é tal que f(0) = 0 e $\nabla_x f(0) = 0$, e seja K > 0 uma constante. Mostre que se

$$\left|\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right| \leq K, \text{ para todo } |x| \leq 1 \text{ e } i, j \in \{1, 2, ..., n\},$$

então existe C > 0 e uma vizinhança da origem Ω , tal que,

$$|f(x)| \le C |x|^2$$
 para todo $x \in \Omega$.

(b) Mostre que a recíproca do resultado contido no item (a) é falsa.

3. Questão.

- (a) Demonstre o teorema da aplicação inversa, usando o teorema do posto.
- (b) Considere o seguinte sistema definido no aberto $U = (-1,1) \times (-1,1) \subset \mathbb{R}^2$:

$$\begin{cases} x_1 + \frac{1}{40}x_1^4 + \frac{1}{5}\ln(x_2 + e^2) = a_1 \\ x_2 + \frac{1}{7}\sin(x_1) + 1 = a_2 \end{cases}$$
 (1)

Mostre que o sistema (1) tem uma única solução $x=(x_1,x_2)\in U$ quando $a_1=\frac{2}{5}$ e $a_2=1$.

4. Questão.

(a) Seja $\Omega \subset \mathbb{R}^3$ um aberto conexo e limitado tal que $S = \partial \Omega$ é uma superfície de classe C^{∞} . Assuma que $F : \mathbb{R}^3 \to \mathbb{R}^3$ e $F \in C^1$. Usando o Teorema de Stokes (em sua forma mais geral), mostre que

$$\int_{\Omega} div(F) dx = \int_{\partial \Omega} (F \cdot n) dS \ \ (\text{Teorema da Divergência}).$$

- (b) Mostre que se $div(F) \equiv 0$ então F é tangente a $\partial \Omega$ em algum ponto.
- **5. Questão.** Seja Ω um aberto em \mathbb{R}^3 e $M:\Omega\to\mathcal{M}_{3\times3}$ uma função diferenciável com valor no espaço das matrizes reais 3×3 , dada por

$$M(x) = \begin{pmatrix} m_1(x) & 0 & 0 \\ 0 & m_2(x) & 0 \\ 0 & 0 & m_3(x) \end{pmatrix},$$

onde m_i são funções diferenciáveis. Para cada $x \in \Omega$ fixado, defina a forma bilinear $B(x)(v, w) = (M(x)v) \times (M(x)w)$ para todo par de vetores $v, w \in \mathbb{R}^3$. Seja $\pi_1 : \mathbb{R}^3 \to \mathbb{R}$ a projeção na primeira coordenada, isto é, $\pi_1[(a,b,c)] = a$. Mostre que $L(x) = \pi_1 \circ B(x)$ é uma 2-forma e calcule dL.

Álgebra Linear(MM719)-1S 2010-Exame de Qualificação-Mestrado

Nome:	RA: _	14/12/200	9
-------	-------	-----------	---

Escolher questões cujo total de pontos possíveis seja 100. Respostas sem justificativas serão desconsideradas. Bom trabalho!

- 1. Responda se cada uma das afirmações abaixo é verdadeira ou falsa.
 - (a) (08pts) A matriz $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$ é diagonalizável quando considerada no espaço $M_4(\mathbb{C})$.
 - (b) (08pts) Para toda transformação linear em $T: \mathbb{C}^n \to \mathbb{C}^n$ temos que Nu $T \oplus \operatorname{Im} T = \mathbb{C}^n$.
 - (c) (08pts) Se $V = \mathbb{R}^3$ com o produto interno usual, então existe um operador linear auto-adjunto $T: V \to V$ satisfazendo T(0,1,1) = (0,1,1) e T(1,2,3) = (2,3,5).
 - (d) (08pts) Para uma matriz nilpotente $A \in M_n(\mathbb{R})$ temos que tr $(M^t) = 0$, para todo $t \ge 1$.
 - (e) (08pts) Se uma transformação linear $T:\mathbb{C}^n\to\mathbb{C}^n$ só tem autovalores reais, então T é auto-adjunta.
 - (f) (08pts) Se para uma transformação linear em $T: \mathbb{C}^n \to \mathbb{C}^n$ valer $T \circ T^* = 0$, onde T^* é a adjunta de T, então T = 0.
 - (g) (08pts) Se V é um \mathbb{C} -espaço vetorial e $u \in V$ é um vetor não nulo, então a aplicação linear $T_u: V \to V \otimes V$ definida por $T_u(v) = u \otimes v$ é injetora.
- 2. (15pts) Seja $T: \mathbb{C}^4 \to \mathbb{C}^4$ uma transformação linear cuja matriz na base canônica é $\begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 2 & -1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 2 \end{pmatrix}$. Encontre uma base de Jordan para T e a forma canônica de Jordan de T.
- 3. (15pts) Seja $f(x,y,z)=2x^2+2y^2+2z^2+2xy+2xz+2yz$ uma forma quadrática definida sobre \mathbb{R}^3 . Encontre uma matriz ortogonal U de forma que a troca de varáveis $\binom{x}{y}=U\binom{x_1}{x_2}$ sstisfaça $f(x_1,x_2,x_3)=ax_1^2+bx_2^2+cx_3^2$, para convenientes $a,b,c\in\mathbb{R}$.
- 4. (12pts) Seja $\{T_i: i \in \mathcal{I}\}$ um subconjunto de $\operatorname{End}_{\mathbb{F}}(V)$ onde V é um espaço vetorial de dimensão finita sobre um corpo algebricamente fechado \mathbb{F} . Suponha que $T_iT_j=T_jT_i$ para todo $i,j\in\mathcal{I}$. Mostre que existem subespaços V_1,\ldots,V_m para algum $m\geq 1$ tais que $V=\bigoplus_{j=1}^m V_j$ e, se $v\in V_j$ para algum j, então v é autovetor generalizado de T_i para todo $i\in\mathcal{I}$.
- 5. (10pts) Dê um exemplo de espaço vetorial que não é isomorfo ao seu dual.
- 6. (12pts) Enuncie a propriedade universal do produto tensorial entre dois espaços vetoriais e demonstre a existência e a unicidade de tal produto.

UNICAMP - IMECC

Pós-Graduação em Matemática – 1º semestre de 2010 EXAME DE QUALIFICAÇÃO EM TOPOLOGIA

Nome:

Questão 1. Denotamos por \mathcal{D} o conjunto das funções contínuas por partes $\rho:[0,1]\to[0,+\infty)$ tais que

$$\int_0^1 \rho(x)dx = 1.$$

Munimos então \mathcal{D} com uma topologia cuja base é formada pelos conjuntos abertos

$$\mathcal{V}_{\rho_0}(\epsilon; f_1, \dots, f_\ell) := \left\{ \rho \in \mathcal{D} : \left| \int_0^1 f_k(x) [\rho(x) - \rho_0(x)] dx \right| < \epsilon, \ k = 1, \dots, \ell \right\},\,$$

onde $\rho_0 \in \mathcal{D}$, $\epsilon > 0$, $\ell \in \mathbb{N}$ e $f_1, \ldots, f_\ell \in C^0([0,1])$. Mostre que, nesta topologia, a seqüência $\{\rho_n(x) = \frac{n+1}{n}x^{1/n}\}_{n \in \mathbb{N}} \subset \mathcal{D}$ converge para a função identicamente constante igual a 1.

Questão 2.

- i. Seja $f: K \to X$ uma aplicação contínua de um espaço compacto K em um espaço de Hausdorff localmente conexo por caminhos X. Mostre que as componentes conexas por caminhos de X f(K) são conjuntos abertos.
- ii. Prove que \mathbb{R}^2 não é homeomorfo a \mathbb{R}^n se $n \neq 2$.

Questão 3. Um espaço topológico X é dito ser hiperconexo se todo aberto $n\tilde{a}o$ -vazio é denso em X. Um espaço topológico Y é dito ser ultraconexo se $\overline{\{a\}} \cap \overline{\{b\}} \neq \emptyset$ para quaisquer $a, b \in Y$.

- i. Mostre que todo espaço topológico hiperconexo é conexo.
- ii. Prove que um conjunto infinito Z quando munido com a topologia $\mathcal{T} = \{A \subset Z : A = \emptyset \text{ ou } Z A \text{ \'e finito}\}$ torna-se um espaço hiperconexo, por \'em não ultraconexo.
- iii. Considere Z um conjunto com mais de dois pontos. Dado $p \in Z$, equipe Z com a topologia $\mathcal{T} = \{A \subset Z : A = Z \text{ ou } p \notin A\}$. Mostre que o espaço topológico assim obtido é ultraconexo, contudo não é hiperconexo.
- iv. Prove que um espaço topológico ultraconexo Y é conexo por caminhos demonstrando que, para quaisquer $a,b\in Y$ e qualquer $p\in \overline{\{a\}}\cap \overline{\{b\}},$ é contínua a aplicação $\gamma:[0,1]\to Y$ definida por

$$\gamma(t) = \begin{cases} a & se \ 0 \le t < 1/2 \\ p & se \ t = 1/2 \\ b & se \ 1/2 < t \le 1 \end{cases}.$$

Questão 4. Suponha que X é um espaço de Hausdorff localmente compacto e que A é subconjunto fechado não-vazio de X. Denote por $\omega(X-A)=(X-A)\cup\{\infty\}$ a compactificção a um ponto (compactificação de Alexandroff) de X-A. Denote por X/A o espaço quociente obtido ao identificar todos os pontos de A a um único ponto sem realizar nenhuma outra identificação.

- i. Explique porque X-A é um espaço de Hausdorff localmente compacto.
- ii. Seja $f: X \to \omega(X-A)$ a aplicação sobrejetiva que se comporta como a identidade sobre X-A e leva A em ∞ . Mostre que f é contínua.
- iii. Mostre que f induz uma bijeção contínua $\bar{f}: X/A \to \omega(X-A)$.
- iv. Mostre que \bar{f} é um homeomeorfismo se, e somente se, X/A é compacto.

Questão 5. Prove que o grupo fundamental do produto de dois espaços, $\pi(X \times Y, (x, y))$, é isomorfo ao produto direto dos respectivos grupos fundamentais, $\pi(X, x) \times \pi(Y, y)$.