PCT/JPU3/16384

庁 JAPAN PATENT OFFICE

20. 1. 2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

RECEIVED

05 MAR 2004

WIPO PCT

出願年月日 Date of Application:

2003年 9月30日

出 号 願 番 Application Number:

人

特願2003-340384

[ST. 10/C]:

[JP2003-340384]

出 Applicant(s):

電気化学工業株式会社

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年 2月19日

特許庁長官 Commissioner, Japan Patent Office

BEST AVAILABLE COPY

【書類名】 特許願 【整理番号】 A104790

 【あて先】
 特許庁長官殿

 【国際特許分類】
 CO8F 2/26

【発明者】

【住所又は居所】 新潟県西頸城郡青海町青海2209番地 電気化学工業株式会社

青海工場内

【氏名】 八嶋 裕之

【発明者】

【住所又は居所】 新潟県西頸城郡青海町青海2209番地 電気化学工業株式会社

青海工場内

【氏名】 望月 健二

【特許出願人】

【識別番号】 000003296

【氏名又は名称】 電気化学工業株式会社

【代表者】 畫間 敏男

【手数料の表示】

【予納台帳番号】 028565 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 要約書 1

【書類名】特許請求の範囲

【請求項1】

クロロプレン単量体及びエチレン性不飽和カルボン酸単量体の合計100質量部を、

- (1) 下記の化学式1の構造を有し、HLB値が9以上で16未満のノニオン系乳化 剤A 1~10質量部と
- (2) HLB値が16以上で芳香族環を有しないノニオン系乳化剤B 0.1~2質 量部

の存在下に乳化共重合したポリクロロプレンラテックス。

【化1】

ここに R:ベンゼン環及び/またはナフタレン環を

1個以上含む置換基

 $n = 1 \sim 200$

R₁:水素またはアルキル基

【請求項2】

エチレン性不飽和カルボン酸が単量体中に0.3~10質量%含まれることを特徴とする請求項1に記載されたポリクロロプレンラテックス。

【請求項3】

乳化剤成分として更に芳香族スルフォン酸ホルマリン縮合物の金属塩 0.05~0.5 質量部を含むことを特徴とする、請求項1又は2のいずれか1項に記載されたポリクロロ プレンラテックス。

【請求項4】

請求項1から3のいずれか1項に記載したポリクロロプレンラテックスに粘着付与樹脂を添加して得られることを特徴とする水系接着剤組成物。

【請求項5】

請求項4に更に金属酸化物を添加して得られることを特徴とする水系接着剤組成物。

【請求項6】

クロロプレン単量体及びエチレン性不飽和カルボン酸単量体の合計100質量部を、(1)化学式1の構造を有し、HLB値が9以上で16未満のノニオン系乳化剤 A1~10質量部と(2)HLB値が16以上で芳香族環を有しないノニオン系乳化剤B0.1~2質量部の存在下に乳化共重合してなることを特徴とするポリクロロプレンラテックス組成物の製造方法。

【書類名】明細書

【発明の名称】ポリクロロプレンラテックス組成物およびその製造方法、それを用いた水 系接着剤組成物

【技術分野】

[0001]

本発明は、接着剤として有効なポリクロロプレンラテックス組成物およびその製造方法、それを用いた水系接着剤組成物に関する。さらに詳しくは初期接着力や常態接着力、接着耐水性等の接着性能に優れ、水系コンタクト型接着剤として好適なポリクロロプレンラテックス組成物およびその製造方法、それを用いた水系接着剤組成物に関する。

【背景技術】

[0002]

従来、ポリクロロプレンをベースとした接着剤は溶剤型が主流であった。しかし、近年 溶剤型接着剤を製造または使用する際に、有機溶剤による衛生性、火気危険性、環境汚染 などの問題があり、脱溶剤化の要求が高まっている。

[0003]

脱溶剤化の手法としては、溶剤型接着剤をラテックス接着剤に代替する方法が有効と考えられ、各種ポリマーを使用したラテックス接着剤の検討が盛んに行われている。

[0004]

なかでもポリクロロプレンラテックス接着剤は、接合する被着体の双方に塗布し、これらの接着剤層を乾燥した後に貼り合わせることにより、貼り合わせ直後から高い接着力を発現する。こうした特徴から、水系コンタクト型接着性としての利用を期待されている反面、溶剤系接着剤と比較して初期接着強度、耐水性等の接着性能が劣り、この改良が課題とされてきた。

$[0\ 0\ 0\ 5]$

従来は、クロロプレンを不飽和カルボン酸、ポリビニルアルコール、連鎖移動剤の存在下で重合するポリクロロプレンラテックス接着剤の製造方法が示されているが、このようなポリクロロプレンラテックスでは接着耐水性が不十分であった(例えば、特許文献 1 参照)。

[0006]

【特許文献 1】特開平 06-287360 号公報 (第 2 頁;請求項 1、第 3 ~ 6 頁; 製造例 $1\sim 8$)

【発明の開示】

【発明が解決しようとする課題】

[0007]

本発明は、このような従来技術の問題点を解決し、初期接着力や常態接着力、耐水性に優れ、かつ機械的安定性や貯蔵安定性の良好な水系接着剤用のポリクロロプレンラテックス組成物とその製造方法、それを用いた水系接着剤組成物を提供するものである。

【課題を解決するための手段】

[0008]

本発明者らは、上記課題を解決すべく、鋭意検討を重ねた結果、クロロプレン単量体及びエチレン性不飽和カルボン酸単量体の合計100質量部を、(1)化学式1の構造を有し、HLB値が9以上16未満のノニオン系乳化剤A 1~10質量部と、(2)化学式1以外でHLB値が16以上の芳香族環を有しないノニオン系乳化剤B 0.1~2質量部の存在下に乳化共重合したポリクロロプレンラテックス組成物を用いた水系接着剤組成物が、接着特性に優れることを見いだし、本発明を完成させるに至った。

【発明の効果】

[0009]

以上の実施例と比較例より、本発明の製造方法により得られたポリクロロプレンラテックスを含む接着剤組成物は、初期接着強度や耐水性に優れていることが明かであり、合板などの木材接着、紙材、布、ジャージ、合成樹脂、発泡樹脂シート、鋼板、セメント基質

【発明を実施するための最良の形態】

[0010]

即ち、本発明は、クロロプレン単量体及びエチレン性不飽和カルポン酸単量体の合計 100質量部を、(1)化学式1の構造を有し、HLB値が9以上16未満のノニオン系乳化剤A 1~10質量部と(2)化学式1以外でHLB値が16以上の芳香族環を有しないノニオン系乳化剤B 0.1~2質量部の存在下に乳化共重合したポリクロロプレンラテックス組成物およびその製造方法、それを用いた水系接着剤組成物である。

[0011]

本発明におけるエチレン性不飽和カルボン酸単量体としては、例えばアクリル酸、メタクリル酸、クロトン酸、フマル酸、マレイン酸、シトラコン酸等が挙げられ、必要に応じて2種以上用いてもかまわない。なお本発明においてはアクリル酸、メタクリル酸を使用することが好ましく、特にメタクリル酸を使用することが好ましい。

[0012]

本発明におけるエチレン性不飽和カルボン酸の添加量は、全単量体中に 0.3~10質量%含まれることが好ましい。より好ましくは 1~5質量%である。エチレン性不飽和カルボン酸の添加量が 10質量%を越える場合には、水系接着剤組成物の接着耐水性が悪くなり、0.3質量%未満の場合はラテックスの機械的安定性が悪化する。

[0013]

本発明の単量体としては他にアクリル酸のエステル類、メタクリル酸のエステル類、2,3-ジクロロー1,3-ブタジエン、1-クロロー1,3-ブタジエン、ブタジエン、イソプレン、スチレン、アクリロニトリル等を必要に応じて使用することも可能である。

[0014]

本発明におけるノニオン系乳化剤Aとは化学式1の構造を有するものである。

【化1】

ここに R:ペンゼン環及び/またはナフタレン環を

1個以上含む置換基

 $n = 1 \sim 200$

R1:水素またはアルキル基

置換基Rの具体例としては例えば次の(I)~(XIII)のような構造が挙げられる。また、これら構造は混合物であっても構わない。

【化2】

$$\begin{array}{c|c} (I) & R_{2} \\ \hline O & CH & -\hline O \end{array}$$

ここに R2: 水素またはアルキル基

(II) R_{2} $CH \leftarrow$

 $HC-R_3$

ここに R_{2,3}:水素または炭素数1~6のアルキル基

(III)

ここに R2: 水素または炭素数1~6のアルキル基

(IV)

ここに R_{2~4}: 水素または炭素数1~6のアルキル基

【化3】

ここに R_{2.3}:水素または炭素数1~6のアルキル基

$$(VI)$$

$$R_4 \qquad R_2 \qquad R_2$$

$$CH \qquad CH \qquad CH \qquad CH \qquad CH \qquad CH \qquad CH$$
ここに $R_{2\sim 4}$: 水素または炭素数 $1\sim 6$ のアルキル基

(V I I)

ここに R_{2.3}: 水素または炭素数1~6のアルキル基 R₅: 炭素数1~6のアルキル基または水酸基

(VIIIV)

$$R_{5} CH$$
 CH
 CH

ここに R_{2.3}: 水素または炭素数 1~6のアルキル基 R₅: 炭素数 1~6のアルキル基または水酸基

(IX)

ここに R2.3: 水素または炭素数1~6のアルキル基

【化4】

(X)

ここに R2.3:水素または炭素数1~6のアルキル基

(XI)

(XII)

ここに R2: 水素または炭素数1~6のアルキル基

(XIII)

ここに R2:水素または炭素数1~6のアルキル基

Rs: 炭素数1~6のアルキル基または水酸基

[0015]

本発明のノニオン系乳化剤は例えばポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレンジスチリルフェニルエーテル、ポリオキシエチレントリスチリルフェニルエーテル、ポリオキシエチレンスチリルクレジルエーテル、ポリオキシエチレンジスチリルクレジルエーテル、ポリオキシエチレントリスチリルクレジルエーテル、ポリオキシエチレントリスチリルヒドロキシフェニルエーテル、ポリオキシエチレンジスチリルヒドロキシフェニルエーテル、ポリオキシエチレントフチルエーテル、ポリオキシエチレンナフチルエーテル、ポリオキシエチレンウレジルナフチルエーテル等を挙げることができる。また、これらは混合物であっても構わない。

[0016]

本発明のノニオン系乳化剤のHLB値とは、米国ICI社のグリフィン氏により考案された親水性、疎水性のバランスを示す指標であり、下記の式に従って算出される1~20

HLB= (親水基部分の分子量) / (界面活性剤の分子量) × (100/5)

本発明のノニオン系乳化剤AのHLB値は9以上16未満の範囲であるが、好ましくは 12~15.5の範囲である。この範囲を外れるとクロロプレン単量体の安定な重合が凩 難になる。

[0017]

本発明のノニオン系乳化剤Aの添加量は単量体100質量部に対して1~10質量部 である。更に好ましくは、2~7質量部である。1質量部に満たない場合は、ポリクロロ プレンラテックス組成物の重合が困難になる。10質量部を越えると、水系接着剤組成物 の接着耐水性が悪くなる。

[0018]

本発明のノニオン系乳化剤Bは、化学式1以外の構造であり、芳香族環を有しない化合 物である。

例えばポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルアリル エーテル、ポリオキシアルキレンソルビタンエーテル、ポリオキシエチレンひまし油エー テル等のポリオキシエチレン誘導体、ソルビタンモノステアレート、ソルビタンモノラウ リレート、ソルビタンモノパルミレート等のソルビタン脂肪酸エステル類、グリセロール モノステアレート、グリセロールモノオレエレート等のグリセロールの脂肪酸エステル類 、脂肪族アルカノールアミン類等であり、その中から1種類以上を選択して用いることが できる。

[0019]

本発明のノニオン系乳化剤BのHLB値は、16以上である。好ましくは17以上であ る。

[0020]

本発明のノニオン乳化剤Bの添加量は、単量体100質量部に対して0.1~2質量部 であることが必要であり、好ましくは0.2~1.5質量部である。0.1質量部未満で は、ポリクロロプレンラテックス組成物の機械的安定性が不十分であり、2質量部を越え ると水系接着剤組成物の接着耐水性が悪くなる。

[0021]

本発明の芳香族スルフォン酸ホルマリン縮合物の金属塩としては、β-ナフタレンスル フォン酸ホルマリン縮合物のリチウム、ナトリウム、カリウム、セシウム塩等が挙げられ る。好ましくはナトリウム塩またはカリウム塩である。

[0022]

本発明の芳香族スルフォン酸ホルマリン縮合物の金属塩はポリクロロプレンラテックス 組成物の貯蔵安定性をよりよくする目的で使用される。添加量は、単量体100質量部に 対して0.05~0.5質量部の範囲であることが好ましく、更に好ましくは0.08~ 4質量部である。0.05質量部に満たない場合は、ポリクロロプレンラテックス組 成物の貯蔵安定性の改良効果が見られない。0.5質量部を越えるとポリクロロプレンラ テックス組成物の機械的安定性が悪くなる。

[0023]

本発明のポリクロロプレンラテックスの重合に使用される触媒としては過硫酸カリウム 等の無機酸化物、ケトンパーオキサイド類、パーオキシケタール類、ハイドロパーオキサ イド類、ジアルキルパーオキサイド類、ジアシルパーオキサイド類等の有機過酸化物等を 挙げることができる。触媒としては過硫酸カリウムの使用が安定した重合を行う上で好ま しい。また、過硫酸カリウムは0.1~5質量%の水溶液で使用することが好ましい。

[0024]

本発明のポリクロロプレンラテックスの重合に使用される触媒の活性を高める上で、亜 硫酸ソーダ、亜硫酸カリウム、酸化鉄(ΙΙ)、アントラキノンβスルフォン酸ソーダ、

フォルムアミジンスルフォン酸、L-アスコルビン酸等を添加することができる。

[0025]

また本発明におけるポリクロロプレンラテックス組成物についてトルエン不溶のゲル分 含有率は特に制限されるものではなく、要求特性に応じて任意に変えることができる。た だ、水系接着剤組成物の初期接着強度がより重視される場合は、ゲル含有率を60質量% 以下に抑えることが好ましい。また、水系接着剤組成物の耐熱性能が重視される場合は、 ゲル含有率を20質量%以上とすることが好ましい。

[0026]

本発明のポリクロロプレンラテックス組成物のゲル分含有率の制御に関しては、連鎖移 動剤の使用とその使用量、重合温度とさらに重合率の制御によって任意に行うことができ る。

[0027]

まず連鎖移動剤としては、クロロプレン重合体の製造に一般的に用いられるものであれ ば特に制限はなく、例えばn-ドデシルメルカプタンやtert-ドデシルメルカプタン 等の長鎖アルキルメルカプタン類、ジイソプロピルキサントゲンジスルフィドやジエチル キサントゲンジスルフィド等のジアルキルキサントゲンジスルフィド類、ヨードホルム等 の公知の連鎖移動剤を使用することができる。

[0028]

次に重合温度については、0~55℃の範囲であることが重合制御上好ましい。なお重 合反応をより円滑にかつ安全に行うには、重合温度を10~45℃とすることが好ましい

[0029]

また最終重合率については、60質量%以上とすることが好ましく、80質量%以上と することがより好ましい。

[0030]

本発明において、ポリクロロプレンラテックス組成物の固形分濃度は40~65質量% の範囲にあることが好ましく、より好ましくは45~60質量%の範囲である。より高い 固形分濃度とすることにより、乾燥速度が速く、初期接着性により優れたラテックスとな る。なお固形分濃度については、重合時のモノマーと水の比率によっても調整できるが、 重合後に濃縮を行い調整することが可能である。濃縮の方法としては、減圧濃縮等を挙げ ることができるが、特に限定されるものではない。

[0031]

本発明におけるポリクロロプレンラテックス組成物には、ジエタノールアミン、トリエ タノールアミン等の塩基性物質、炭酸ナトリウム、炭酸カリウム、りん酸3ナトリウム、 りん酸水素2ナトリウム、りん酸3カリウム、りん酸水素2カリウム、クエン酸3カリウ ム、クエン酸水素2カリウム、酢酸ナトリウム、酢酸カリウム、4硼酸ナトリウム等の弱 酸塩類を添加することにより、PHを自由に調整することができる。

[0032]

本発明におけるPH調整剤の添加方法は特に制限を受けるものではなく、PH調整剤粉 末を直接添加または水で任意の割合に希釈して添加することができる。

PH調整剤の添加するタイミングとしては特に限定するものでは無く、重合開始前や重 合終了後に添加することができる。

[0033]

本発明におけるポリクロロプレンラテックス組成物には、アニオン系乳化剤、ポリオキ シアルキレンアルキルエーテルや1:2モル型脂肪族アルカノールアミド等のノニオン系 乳化剤、ポバール等の分散助剤を添加することができる。添加するタイミングとしては特 に限定するものでは無く、重合開始前、途中または終了後に添加することが可能である。

[0034]

本発明のポリクロロプレンラテックス組成物の重合を停止させる目的でチオジフェニル アミン、ジエチルハイドロキシルアミン、ハイドロキノン、p-t-ブチルカテコール、

[0035]

本発明の粘着付与樹脂としては、ロジン酸エステル樹脂、テルペンフェノール樹脂、クマロンーインデン樹脂、脂肪族炭化水素樹脂、芳香族樹脂等を挙げることができる。粘着付与樹脂としてはテルペンフェノール樹脂やロジン酸エステル樹脂のエマルジョンが水系接着剤組成物の初期接着力や耐水性を発現させる上で好ましい。

[0036]

粘着付与樹脂の添加量(固形分換算)は、ポリクロロプレンラテックスの固形分100質量部に対して、10~100質量部が好ましく、20~70質量部が特に好ましい。10質量部未満では初期接着力が劣る場合があり、100質量部を越えると接着剤皮膜の形成が阻害され易い。

[0037]

本発明における金属酸化物としては酸化亜鉛、酸化チタン及び酸化鉄等を挙げることができる。酸化亜鉛、酸化チタンが接着剤組成物の耐水性を向上させる上で好ましく、特に酸化亜鉛の使用が好ましい。

[0038]

金属酸化物の添加量は0.2~6.0質量部が好ましく、特に0.5~3.0質量部が好ましい。0.2質量部未満では接着剤組成物の耐水性が不十分となる場合があり、6.0質量部を越えると初期接着力が悪くなり易い。

[0039]

本発明の水系接着剤組成物は炭酸カルシウム、シリカ、タルクやクレー等の無機充填剤、ジブチルフタレートやプロセスオイルなどの可塑剤・軟化剤、ポリアクリル酸ナトリウム、水溶性ポリウレタン、メチルセルロース等の増粘剤、ポリオキシアルキレンアルキルエーテル、1:2モル型脂肪族アルカノールアミド、1:1モル型ジエタノールアミン、ポリオキシエチレンステアレート、ポバール等の乳化剤、防腐剤、各種老化防止剤、紫外線吸収剤や酸化防止剤等を必要に応じて任意に配合することができる。

[0040]

本発明の水系接着剤組成物はポリクロロプレンラテックス、粘着付与樹脂及び金属酸化物等を混合して作られるが、混合装置は特に限定されるものではなく、スリーワンモーター、ホモジナイザーメディアミル、コロイドミル等の公知の装置を使用できる。

[0041]

本発明により得られたポリクロロプレンラテックス接着剤は、紙、木材、布、皮革、レザー、ゴム、プラスチック、フォーム、陶器、ガラス、モルタル、セメント系材料、セラミック、金属などの同種、あるいは異種の接合接着用として好適である。

接着時の施工方法に関しては、刷毛塗り、コテ塗り、スプレー塗布、ロールコーター塗 布などが可能である。

「実施例」

[0042]

以下実施例により本発明を具体的に説明するが、これらの実施例は本発明を限定するものでない。なお、下記の実施例において部及び%は、特に断りのない限り質量基準である

【実施例1】

[0043]

内容積3リットルの反応器を用い、窒素気流下で、純水100部及ぴノニオン系乳化剤

を停止した。 【0044】

次に、このポリクロロプレンラテックスに、20%ジエタノールアミンを12部添加してPHを中性になるように調整した後、更に減圧下で水分を蒸発させて濃縮を行い、固形分濃度が50%となるように調整し、ポリクロロプレンラテックス組成物を得た。

い、最終重合率が95%に達したところで、チオジフェニルアミンの乳濁液を加えて重合

[0045]

次に、このポリクロロプレンラテックス組成物について、以下の測定を行い、結果を表 1に示した。

[機械的安定性測定]

JISK6828に準拠し、マロン式試験装置を使用し、50gのラテックスに荷重10kg、回転数1000rpmのせん断力を加えて測定した。生成した凝固物を乾燥計量し、下記の式により評価した。

機械的安定性(%)=凝固物乾燥重量g/ラテックス量50g×100

[0046]

[貯蔵安定性]

ラテックスをガラス瓶に23℃で2ヶ月間、密閉状態で保管し、外観変化を目視観察した。異常が無い場合は○、凝固や沈降等異常の有る場合は×とした。

[0047]

[ゲル分測定]

ラテックス試料を凍結乾燥後精秤し、Aとした。これをトルエンに溶解 (0.6%に調製)し、遠心分離機を使用した後、200メッシュの金網を用いてゲルを分離した。ゲル分を風乾後110℃雰囲気下で、1時間乾燥し、精秤してBとした。

ゲル分は下式に従がって算出した。

ゲル分=B/A×100

結果を表1に示した。

[0048]

次に表1に示した処方で接着剤組成物を調整した。

次に帆布(25×150mm)2枚各々に、300g(固形分)/m²の接着剤組成物を刷毛で塗布し、80℃雰囲気下9分間乾燥し、室温で1分間放置後に塗布面を張り合わせハンドローラーで圧締した。

[初期剥離強度]

圧締10分間後、引張り試験機を用い、引張り速度200mm/minで180°剥離強度を測定した。

〔常態剥離強度〕

圧締7日後、引張り試験機を用い、引張り速度200mm/minで180°剥離強度を測定した。

[0049]

〔耐水強度〕

圧締7日後、水中に2日間浸漬し、引張り試験機を用い、引張り速度200mm/minで180°剥離強度を測定した。

【実施例2】

[0050]

実施例1において、ノニオン系乳化剤B-1をB-2 (エマルゲン1135S-70: 花王社製) に変更した以外は実施例1と同様にポリクロロプレンラテックスを作成した。

出証特2004-3010956

【実施例3】

[0051]

実施例1において、ノニオン系乳化剤B-1をB-3 (レオドールスーパーTW120: 花王社製)に変更した以外は、実施例1と同様にポリクロロプレンラテックスを作成した。

[比較例1]

[0052]

実施例1において、ノニオン系乳化剤B-1とホルムアルデヒドナフタレンスルフォン酸縮合物のナトリウム塩を0部にした以外は、実施例1同様にポリクロロプレンラテックスを作成した。

[比較例2]

[0053]

実施例1において、メタクリル酸を0部にした以外は、実施例1同様にポリクロロプレンラテックスを作成した。

[0054]

実施例2、3及び比較例1,2で得たラテックスの性状及びその接着剤組成物の配合処方と接着剥離試験結果を表1に示す。

【表1】

【書類名】要約書

【要約】

【課題】 機械的安定性と貯蔵安定性に優れたポリクロロプレンラテックスとその製造方法、それを用いた初期接着力や常態接着力、耐水性に優れた水系接着剤組成物。

【解決手段】 クロロプレンまたはクロロプレン及びクロロプレンと共重合可能な単量体 100質量部を特定の構造を有するノニオン系乳化剤1~10質量部と高HLBのノニオン系乳化剤0.1~2質量部の存在下に重合してなるポリクロロプレンラテックス組成物を用いた水系接着剤組成物。

認定・付加情報

特許出願の番号

特願2003-340384

受付番号

50301618876

書類名

特許願

担当官

第六担当上席

0095

作成日

平成15年10月 1日

<認定情報・付加情報>

【提出日】

平成15年 9月30日

特願2003-340384

出願人履歴情報

識別番号

[000003296]

1. 変更年月日

2000年12月 4日

[変更理由]

住所変更

住所

東京都千代田区有楽町1丁目4番1号

氏 名

電気化学工業株式会社