Project 3 - Main Script

Group 12: Vikas Arun, Xuanyu Xiao, Boxuan Zhao, Boya Zhao, Yuxi Zhou

Revlevant packages needed for this file

```
list.of.packages <- c("e1071", "ggplot2", "gbm", "caret", "randomForest", "EBImage")

new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[, "Package"])]

if(length(new.packages))
    {
        install.packages(new.packages)
        source("https://bioconductor.org/biocLite.R")
        biocLite("EBImage")
    }

library("gbm")
library("ggplot2")
library("caret")
library("randomForest")
library("EBImage")</pre>
```

Step 1: specify directories.

This directory should be set to the lib folder of the cloned repository

```
knitr::opts_knit$set(root.dir = "../lib")
knitr::opts_knit$set(width = 150)
# here replace it with your own path or manually set it in RStudio to where this rmd file is located.
```

Providing directories for images, sift features, and labels. Providing paths for oututted models and predictions.

```
#image_test_dir <- "../data/test_data/raw_images" # This will be modified for different data sets.
#image_train_dir <- "../data/train_data/raw_images"</pre>
#img_train_dir <- paste(experiment_dir, "train/", sep="")</pre>
#img_test_dir <- paste(experiment_dir, "test/", sep="")</pre>
image_all.dir <- "../data/training_data/raw_images"</pre>
original_data_train = "../data/sift_ori_train.csv"
original_data_test = "../data/sift_ori_test.csv"
modified_data_train = "../data/sift_simp_gray_train.csv"
modified_data_test = "../data/sift_simp_gray_test.csv"
labels_train = "../data/labels_train.csv"
labels_test = "../data/labels_test.csv"
gbm_model_original_features = "../output/GBMFullFeature.RData"
rf_model_original_features = "../output/RFFullFeature.RData"
gbm_model_modified_features = "../output/GBMModifiedFeature.RData"
rf_model_modified_features = "../output/RFModifiedFeature.RData"
gbm_model_original_predict = "../output/GBMFullFeaturePredictions.csv"
rf_model_original_predict = "../output/RFFullFeaturePredictions.csv"
gbm_model_modified_predict = "../output/GBMModifiedPredictions.csv"
rf_model_modified_predict = "../output/RFModifiedPredictions.csv"
```

Step 2: set up controls for evaluation experiments.

In this chunk, ,we have a set of controls for the evaluation experiments.

• (T/F) cross-validation on the training set for GBM

- (number) K, the number of CV folds
- (T/F) Out of Bag Estimate (similar to cross-validation) on training set for Random Forest
- (T/F) process features for training set
- (T/F) run evaluation on an independent test set

```
run.cv=FALSE # run cross-validation on the training set
K <- 5 # number of CV folds
run.00B=FALSE
run.feature.train=TRUE # process features for all pictures
run.test=TRUE # run evaluation on an independent test set
#run.feature.test=TRUE # process features for test set</pre>
```

Using cross-validation or independent test set evaluation, we compare the performance of different classifiers or classifiers with different specifications. For the GBM model, shrinkage values of .001, .01, and .1 are evaluated, as well as a size limit of 100, 500, and 1000 trees. For the Random Forest model, a size limit of 100, 500, and 1000 trees is evaluated using the Out of Bag (OOB) error estimate, which is similar to cross validation.

Step 3: construct visual feature for Full images

Features are created by doing two things. First, the number of provided sift features is reduced. Sift feature with standard deviation in the lowest 25th percentile are thrown out. Additionally for each feature, the mean value for "chicken" images is subtracted from the mean value for "poodle" images. Features, with the absolute value of differences less than the median are discarded. Second, grayscale features are added. For each image, a frequency histogram is created, representing the percentage of pixels falling in each of 256 gray scale bins. As such, each image has 256 grayscale features added.

The data is also split into training and testing data in a 75/25 split.

Elapsed training time for featurizer is 681.786 seconds

Step 4: Model Training and Parameter Selection

Training the GBM model and Random Forest model on the original features and the new features. Outputed models are stored in RData files in the output folder. Cross validation and OOB parameter estimates are done if requested.

```
source("../lib/train.R")
source("../lib/test.R")
```

train_models(original_data_train, labels_train, full_feature = TRUE, run_cv = run.cv, run_00B = run.00B, K = K

Loading required package: plyr

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3732	nan	0.1000	0.0042
##	2	1.3613	nan	0.1000	0.0052
##	3	1.3485	nan	0.1000	0.0051
##	4	1.3379	nan	0.1000	0.0040
##	5	1.3290	nan	0.1000	0.0030
##	6	1.3199	nan	0.1000	0.0031
##	7	1.3118	nan	0.1000	0.0024
##	8	1.3032	nan	0.1000	0.0036
##	9	1.2951	nan	0.1000	0.0026
##	10	1.2872	nan	0.1000	0.0022
##	20	1.2215	nan	0.1000	0.0020
##	40	1.1300	nan	0.1000	0.0006
##	60	1.0625	nan	0.1000	-0.0012
##	80	1.0041	nan	0.1000	-0.0000
##	100	0.9598	nan	0.1000	0.0003
##	120	0.9154	nan	0.1000	-0.0007
##	140	0.8761	nan	0.1000	-0.0001
##	160	0.8368	nan	0.1000	0.0001
##	180	0.8022	nan	0.1000	0.0001
##	200	0.7735	nan	0.1000	-0.0010
##	220	0.7433	nan	0.1000	-0.0002
##	240	0.7129	nan	0.1000	-0.0004
##	260	0.6847	nan	0.1000	-0.0000
##	280	0.6595	nan	0.1000	-0.0001
##	300	0.6320	nan	0.1000	0.0001
##	320	0.6090	nan	0.1000	-0.0002
##	340	0.5885	nan	0.1000	-0.0000
##	360	0.5678	nan	0.1000	-0.0001
##	380	0.5463	nan	0.1000	-0.0004
##	400	0.5256	nan	0.1000	-0.0001
##	420	0.5076	nan	0.1000	-0.0005
##	440	0.4901	nan	0.1000	-0.0000
##	460	0.4744	nan	0.1000	-0.0002
##	480	0.4592	nan	0.1000	-0.0002
##	500	0.4425	nan	0.1000	-0.0003

##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3737	nan	0.1000	0.0061
##	2	1.3634	nan	0.1000	0.0038
##	3	1.3530	nan	0.1000	0.0035
##	4	1.3395	nan	0.1000	0.0039
##	5	1.3286	nan	0.1000	0.0041
##	6	1.3179	nan	0.1000	0.0025
##	7	1.3077	nan	0.1000	0.0038
##	8	1.2969	nan	0.1000	0.0047
##	9	1.2902	nan	0.1000	0.0024
##	10	1.2804	nan	0.1000	0.0032
##	20	1.2057	nan	0.1000	0.0015
##	40	1.1038	nan	0.1000	0.0000
##	60	1.0293	nan	0.1000	-0.0002
##	80	0.9686	nan	0.1000	-0.0000
##	100	0.9194	nan	0.1000	-0.0009
##	120	0.8742	nan	0.1000	-0.0002
##	140	0.8373	nan	0.1000	-0.0018
##	160	0.7990	nan	0.1000	-0.0003
##	180	0.7656	nan	0.1000	-0.0001
##	200	0.7359	nan	0.1000	-0.0000
##	220	0.7029	nan	0.1000	-0.0001
##	240	0.6747	nan	0.1000	-0.0001
##	260	0.6500	nan	0.1000	0.0002
##	280	0.6257	nan	0.1000	-0.0005
##	300	0.6033	nan	0.1000	-0.0006
##	320	0.5796	nan	0.1000	0.0000
##	340	0.5584	nan	0.1000	-0.0004
##	360	0.5390	nan	0.1000	-0.0001
##	380	0.5179	nan	0.1000	-0.0001
##	400	0.4989	nan	0.1000	-0.0001
##	420	0.4820	nan	0.1000	-0.0002
##	440	0.4657	nan	0.1000	-0.0001
##	460	0.4500	nan	0.1000	-0.0000
##	480	0.4334	nan	0.1000	-0.0001
##	500	0.4180	nan	0.1000	-0.0006
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3725	nan	0.1000	0.0044
##	2	1.3632	nan	0.1000	0.0028
##	3	1.3511	nan	0.1000	0.0050
##	4	1.3408	nan	0.1000	0.0044
##	5	1.3291	nan	0.1000	0.0046
##	6	1.3204	nan	0.1000	0.0028
##	7	1.3133	nan	0.1000	0.0016
##	8	1.3032	nan	0.1000	0.0038
##	9	1.2928	nan	0.1000	0.0047
##	10	1.2835	nan	0.1000	0.0029
##	20	1.2133	nan	0.1000	0.0024
##	40	1.1237	nan	0.1000	0.0014
##	60	1.0526	nan	0.1000	0.0010
##	80	0.9929	nan	0.1000	-0.0004
##	100	0.9443	nan	0.1000	-0.0008
##	120	0.8963	nan	0.1000	-0.0002
##	140	0.8555	nan	0.1000	-0.0005
##	160	0.8204	nan	0.1000	-0.0005
##	180	0.7864	nan	0.1000	0.0002
##	200	0.7537	nan	0.1000	-0.0002
##	220	0.7233	nan	0.1000	-0.0005

##	240	0.6949	nan	0.1000	-0.0000
##	260	0.6667	nan	0.1000	-0.0005
##	280	0.6423	nan	0.1000	-0.0003
##	300	0.6159	nan	0.1000	-0.0004
##	320	0.5947	nan	0.1000	-0.0005
##	340	0.5722		0.1000	-0.0005
	360	0.5496	nan	0.1000	0.0003
##			nan		
##	380	0.5295	nan	0.1000	-0.0007
##	400	0.5128	nan	0.1000	-0.0004
##	420	0.4952	nan	0.1000	-0.0004
##	440	0.4789	nan	0.1000	-0.0002
##	460	0.4623	nan	0.1000	-0.0002
##	480	0.4468	nan	0.1000	-0.0002
##	500	0.4308	nan	0.1000	-0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3754	nan	0.1000	0.0027
##	2	1.3650	nan	0.1000	0.0035
##	3	1.3538	nan	0.1000	0.0045
##	4	1.3415	nan	0.1000	0.0052
##	5	1.3302		0.1000	0.0032
			nan		
##	6	1.3190	nan	0.1000	0.0038
##	7	1.3096	nan	0.1000	0.0035
##	8	1.3001	nan	0.1000	0.0037
##	9	1.2919	nan	0.1000	0.0034
##	10	1.2843	nan	0.1000	0.0025
##	20	1.2182	nan	0.1000	0.0014
##	40	1.1292	nan	0.1000	-0.0008
##	60	1.0567	nan	0.1000	0.0007
##	80	0.9967	nan	0.1000	0.0011
##	100	0.9456	nan	0.1000	0.0002
##	120	0.9022	nan	0.1000	-0.0007
##	140	0.8627	nan	0.1000	0.0007
##	160	0.8262	nan	0.1000	-0.0002
##	180	0.7891	nan	0.1000	-0.0012
##	200	0.7557		0.1000	-0.0012
	220	0.7357	nan	0.1000	-0.0001
##			nan		
##	240	0.6964	nan	0.1000	0.0000
##	260	0.6684	nan	0.1000	-0.0002
##	280	0.6428	nan	0.1000	-0.0007
##	300	0.6190	nan	0.1000	-0.0003
##	320	0.5976	nan	0.1000	-0.0000
##	340	0.5756	nan	0.1000	0.0001
##	360	0.5559	nan	0.1000	-0.0001
##	380	0.5362	nan	0.1000	-0.0005
##	400	0.5187	nan	0.1000	-0.0003
##	420	0.4990	nan	0.1000	-0.0003
##	440	0.4814	nan	0.1000	-0.0006
##	460	0.4654	nan	0.1000	-0.0009
##	480	0.4489	nan	0.1000	-0.0002
##	500	0.4332	nan	0.1000	-0.0002
##	300	0.4002	nan	0.1000	0.0002
	Iter	TrainDeviance	ValidDeviance	StenSize	Improve
##				StepSize	Improve
##	1	1.3732	nan	0.1000	0.0042
##	2	1.3606	nan	0.1000	0.0043
##	3	1.3502	nan	0.1000	0.0045
##	4	1.3420	nan	0.1000	0.0021
##	5	1.3305	nan	0.1000	0.0049
##	6	1.3193	nan	0.1000	0.0036
##	7	1.3106	nan	0.1000	0.0026

##	8	1.3008	nan	0.1000	0.0035
##	9	1.2930	nan	0.1000	0.0026
##	10	1.2844	nan	0.1000	0.0020
##	20	1.2145	nan	0.1000	0.0017
##	40	1.1197	nan	0.1000	0.0005
##	60	1.0503	nan	0.1000	0.0008
##	80	0.9931	nan	0.1000	0.0004
##	100	0.9439	nan	0.1000	-0.0001
##	120	0.9014	nan	0.1000	-0.0006
##	140	0.8624	nan	0.1000	-0.0002
##	160	0.8227	nan	0.1000	-0.0004
##	180	0.7913	nan	0.1000	-0.0004
##	200	0.7610	nan	0.1000	-0.0001
##	220	0.7299	nan	0.1000	-0.0002
##	240	0.7026	nan	0.1000	-0.0002
##	260	0.6763	nan	0.1000	-0.0003
##	280	0.6520	nan	0.1000	-0.0006
##	300	0.6283	nan	0.1000	-0.0006
##	320	0.6039	nan	0.1000	-0.0001
##	340	0.5825	nan	0.1000	0.0001
##	360	0.5623	nan	0.1000	-0.0004
##	380	0.5429	nan	0.1000	-0.0003
##	400	0.5239	nan	0.1000	-0.0004
##	420	0.5046	nan	0.1000	0.0000
##	440	0.4868	nan	0.1000	0.0002
##	460	0.4684	nan	0.1000	-0.0001
##	480	0.4538	nan	0.1000	-0.0001
##	500	0.4381	nan	0.1000	-0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3742	nan	0.1000	0.0051
##	2	1.3623	nan	0.1000	0.0038
##	3	1.3515	nan	0.1000	0.0048
##	4	1.3419	nan	0.1000	0.0032
##	5	1.3320	nan	0.1000	0.0042
##	6	1.3218	nan	0.1000	0.0038
##	7	1.3121	nan	0.1000	0.0041
##	8	1.3023	nan	0.1000	0.0042
##	9	1.2926	nan	0.1000	0.0031
##	10	1.2857	nan	0.1000	0.0028
##	20	1.2238	nan	0.1000	0.0015
##	40	1.1290	nan	0.1000	0.0009
##	60	1.0662	nan	0.1000	0.0004
##	80	1.0123	nan	0.1000	0.0003
##	100	0.9691	nan	0.1000	-0.0004
##	120	0.9293	nan	0.1000	-0.0002
##	140	0.8915	nan	0.1000	0.0001
##	160	0.8574	nan	0.1000	-0.0002
##	180	0.8278	nan	0.1000	0.0000
##	200	0.7977	nan	0.1000	0.0001
##	220	0.7701	nan	0.1000	-0.0001
##	240	0.7441	nan	0.1000	-0.0002
##	260	0.7187	nan	0.1000	-0.0001
##	280	0.6938	nan	0.1000	-0.0005
##	300	0.6721	nan	0.1000	-0.0001
##	320	0.6509	nan	0.1000	-0.0006
##	340	0.6312	nan	0.1000	-0.0001
##					
	360	0.6119	nan	0.1000	-0.0003
##	380	0.6119	nan	0.1000	-0.0003

```
##
      420
                 0.5599
                                            0.1000
                                                      -0.0004
                                    nan
##
      440
                 0.5434
                                    nan
                                            0.1000
                                                     -0.0001
##
      460
                0.5269
                                    nan
                                            0.1000
                                                      -0.0002
##
      480
                 0.5110
                                    nan
                                            0.1000
                                                      -0.0001
##
      500
                 0.4969
                                            0.1000
                                                      -0.0001
                                    nan
##
## Elapsed training time for GBM with 500 trees and shrinkage 0.1 is 233.611 seconds
## Validation error for GBM is 0.2646667Elapsed time for Training Random Forest with 500 trees is 280.784 s
## Validation Error rate for Random Forest with 500 trees is 0.288
## [[1]]
## Stochastic Gradient Boosting
##
## 1500 samples
## 5000 predictors
##
      2 classes: '0', '1'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 1 times)
## Summary of sample sizes: 1200, 1200, 1200, 1200, 1200
## Resampling results:
##
##
     Accuracy
                Kappa
##
     0.7353333 0.4706362
##
## Tuning parameter 'n.trees' was held constant at a value of 500
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
##
##
## [[2]]
##
## Call:
   randomForest(x = image_features, y = as.factor(image_labels),
##
                                                                        ntree = 500)
##
                  Type of random forest: classification
##
                        Number of trees: 500
## No. of variables tried at each split: 70
##
##
           OOB estimate of error rate: 28.8%
## Confusion matrix:
       0 1 class.error
## 0 517 227
              0.3051075
## 1 205 551
               0.2711640
train_models(modified_data_train, labels_train, full_feature = FALSE, run_cv = run.cv, run_00B = run.00B, K =
## Iter
         TrainDeviance
                         ValidDeviance
                                          StepSize
                                                      Improve
##
        1
                1.2690
                                    nan
                                           0.1000
                                                       0.0558
##
        2
                1.1731
                                    nan
                                            0.1000
                                                       0.0468
        3
                                            0.1000
##
                1.0849
                                                       0.0440
                                    nan
##
        4
                 1.0123
                                            0.1000
                                                       0.0356
                                    nan
        5
##
                                                      0.0326
                 0.9454
                                            0.1000
                                    nan
##
        6
                0.8857
                                            0.1000
                                                      0.0285
                                    nan
        7
##
                 0.8340
                                    nan
                                            0.1000
                                                      0.0256
##
        8
                 0.7860
                                    nan
                                            0.1000
                                                      0.0229
        9
##
                                            0.1000
                 0.7415
                                    nan
                                                       0.0207
##
       10
                 0.7026
                                            0.1000
                                                       0.0190
                                    nan
       20
##
                 0.4466
                                    nan
                                            0.1000
                                                       0.0077
##
       40
                 0.2285
                                    nan
                                            0.1000
                                                       0.0028
```

##	60	0.1343	nan	0.1000	0.0013
##	80	0.0833	nan	0.1000	0.0010
##	100	0.0580	nan	0.1000	0.0005
##	120	0.0435	nan	0.1000	-0.0000
##	140	0.0328	nan	0.1000	0.0003
##	160	0.0249	nan	0.1000	0.0002
##	180	0.0203	nan	0.1000	0.0000
##	200	0.0159	nan	0.1000	0.0002
##	220	0.0127	nan	0.1000	0.0000
##	240	0.0102	nan	0.1000	0.0000
##	260	0.0087	nan	0.1000	-0.0000
##	280	0.0068	nan	0.1000	0.0000
##	300	0.0056	nan	0.1000	-0.0000
##	320	0.0045	nan	0.1000	-0.0000
##	340	0.0034	nan	0.1000	-0.0000
##	360	0.0029	nan	0.1000	-0.0000
##	380	0.0024	nan	0.1000	0.0000
##	400	0.0020	nan	0.1000	-0.0000
##	420	0.0016	nan	0.1000	0.0000
##	440	0.0013	nan	0.1000	0.0000
##	460	0.0011	nan	0.1000	-0.0000
##	480	0.0009	nan	0.1000	0.0000
##	500	0.0007	nan	0.1000	-0.0000
##				0.1000	0.000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2803	nan	0.1000	0.0495
##	2	1.1814	nan	0.1000	0.0488
##	3	1.0975	nan	0.1000	0.0415
##	4	1.0240	nan	0.1000	0.0376
##	5	0.9609	nan	0.1000	0.0310
##	6	0.8997	nan	0.1000	0.0300
##	7	0.8509	nan	0.1000	0.0228
##	8	0.8013	nan	0.1000	0.0245
##	9	0.7573	nan	0.1000	0.0212
##	10	0.7187	nan	0.1000	0.0179
##	20	0.4566	nan	0.1000	0.0088
##	40	0.2270	nan	0.1000	0.0037
##	60	0.1303	nan	0.1000	0.0014
##	80	0.0790	nan	0.1000	0.0010
##	100	0.0539	nan	0.1000	0.0005
##	120	0.0420	nan	0.1000	-0.0000
##	140	0.0303	nan	0.1000	0.0003
##	160	0.0248	nan	0.1000	0.0001
##	180	0.0188	nan	0.1000	-0.0000
##	200	0.0153	nan	0.1000	0.0001
##	220	0.0116	nan	0.1000	0.0001
##	240	0.0094	nan	0.1000	0.0001
##	260	0.0079	nan	0.1000	-0.0000
##	280	0.0064	nan	0.1000	-0.0000
##	300	0.0048	nan	0.1000	0.0000
##	320	0.0040	nan	0.1000	0.0000
##	340	0.0032	nan	0.1000	0.0000
##	360	0.0027	nan	0.1000	0.0000
##	380	0.0027	nan	0.1000	0.0000
##	400	0.0018	nan	0.1000	0.0000
##	420	0.0015	nan	0.1000	0.0000
##	440	0.0013	nan	0.1000	-0.0000
##	460	0.0012	nan	0.1000	0.0000
##	480	0.0008	nan	0.1000	-0.0000
##	500	0.0006	nan	0.1000	0.0000
	500	0.000	nan	3.1000	2.000

##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2742	nan	0.1000	0.0565
##	2	1.1804	nan	0.1000	0.0460
##	3	1.0919	nan	0.1000	0.0417
##	4	1.0188	nan	0.1000	0.0360
##	5	0.9530	nan	0.1000	0.0327
##	6	0.8957	nan	0.1000	0.0272
##	7	0.8421	nan	0.1000	0.0260
##	8	0.7946	nan	0.1000	0.0222
##	9	0.7514	nan	0.1000	0.0207
##	10	0.7121	nan	0.1000	0.0182
##	20	0.4510	nan	0.1000	0.0087
##	40	0.2233	nan	0.1000	0.0031
##	60	0.1267	nan	0.1000	0.0017
##	80	0.0800	nan	0.1000	0.0005
##	100	0.0542	nan	0.1000	0.0005
##	120	0.0399	nan	0.1000	0.0003
##	140	0.0296	nan	0.1000	0.0002
##	160	0.0230	nan	0.1000	0.0002
##	180	0.0181	nan	0.1000	0.0001
##	200	0.0144	nan	0.1000	0.0001
##	220	0.0115	nan	0.1000	-0.0000
##	240	0.0091	nan	0.1000	-0.0000
##	260	0.0071	nan	0.1000	0.0000
##	280	0.0055	nan	0.1000	0.0000
##	300	0.0047	nan	0.1000	0.0000
##	320	0.0037	nan	0.1000	0.0000
##	340	0.0031	nan	0.1000	-0.0000
##	360	0.0023	nan	0.1000	0.0000
##	380	0.0019	nan	0.1000	0.0000
##	400	0.0015	nan	0.1000	-0.0000
##	420	0.0012	nan	0.1000	0.0000
##	440	0.0009	nan	0.1000	0.0000
##	460	0.0008	nan	0.1000	0.0000
##	480	0.0006	nan	0.1000	0.0000
##	500	0.0005	nan	0.1000	0.0000
## ##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2747	nan	0.1000	0.0540
##	2	1.1796	nan	0.1000	0.0340
##	3	1.0926	nan	0.1000	0.0439
##	4	1.0204	nan	0.1000	0.0350
##	5	0.9502	nan	0.1000	0.0337
##	6	0.8902	nan	0.1000	0.0285
##	7	0.8398	nan	0.1000	0.0252
##	8	0.7947	nan	0.1000	0.0220
##	9	0.7537	nan	0.1000	0.0182
##	10	0.7123	nan	0.1000	0.0198
##	20	0.4555	nan	0.1000	0.0080
##	40	0.2354	nan	0.1000	0.0026
##	60	0.1382	nan	0.1000	0.0016
##	80	0.0866	nan	0.1000	0.0005
##	100	0.0612	nan	0.1000	-0.0000
##	120	0.0436	nan	0.1000	0.0003
##	140	0.0331	nan	0.1000	0.0002
##	160	0.0267	nan	0.1000	0.0001
##	180	0.0203	nan	0.1000	0.0000
##	200	0.0177	nan	0.1000	0.0001
##	220	0.0140	nan	0.1000	0.0001

##	240	0.0108	nan	0.1000	0.0000
##	260	0.0091	nan	0.1000	-0.0000
##	280	0.0073	nan	0.1000	0.0000
##	300	0.0064	nan	0.1000	0.0000
##	320	0.0048	nan	0.1000	0.0000
##	340	0.0041	nan	0.1000	0.0000
##	360	0.0034	nan	0.1000	0.0000
##	380	0.0028	nan	0.1000	0.0000
##	400	0.0024	nan	0.1000	-0.0000
##	420	0.0019	nan	0.1000	0.0000
##	440	0.0016	nan	0.1000	-0.0000
##	460	0.0013	nan	0.1000	0.0000
##	480	0.0010	nan	0.1000	0.0000
##	500	0.0009	nan	0.1000	0.0000
##	000	0.0000	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2749	nan	0.1000	0.0567
##	2	1.1805	nan	0.1000	0.0367
##	3	1.0927		0.1000	0.0400
##	4		nan		0.0450
		1.0181	nan	0.1000	
##	5	0.9555	nan	0.1000	0.0292
##	6	0.8955	nan	0.1000	0.0301
##	7	0.8400	nan	0.1000	0.0274
##	8	0.7946	nan	0.1000	0.0213
##	9	0.7494	nan	0.1000	0.0213
##	10	0.7109	nan	0.1000	0.0180
##	20	0.4448	nan	0.1000	0.0087
##	40	0.2261	nan	0.1000	0.0026
##	60	0.1286	nan	0.1000	0.0012
##	80	0.0817	nan	0.1000	0.0007
##	100	0.0574	nan	0.1000	0.0001
##	120	0.0403	nan	0.1000	0.0004
##	140	0.0300	nan	0.1000	0.0002
##	160	0.0229	nan	0.1000	0.0001
##	180	0.0181	nan	0.1000	0.0000
##	200	0.0141	nan	0.1000	0.0001
##	220	0.0110	nan	0.1000	0.0001
##	240	0.0087	nan	0.1000	0.0001
##	260	0.0069	nan	0.1000	0.0000
##	280	0.0054	nan	0.1000	0.0000
##	300	0.0043	nan	0.1000	-0.0000
##	320	0.0032	nan	0.1000	0.0000
##	340	0.0026	nan	0.1000	0.0000
##	360	0.0021	nan	0.1000	-0.0000
##	380	0.0018	nan	0.1000	-0.0000
##	400	0.0013	nan	0.1000	0.0000
##	420	0.0011	nan	0.1000	0.0000
##	440	0.0009	nan	0.1000	0.0000
##	460	0.0007	nan	0.1000	0.0000
##	480	0.0006	nan	0.1000	0.0000
##	500	0.0005	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2742	nan	0.1000	0.0561
##	2	1.1792	nan	0.1000	0.0464
##	3	1.0962	nan	0.1000	0.0381
##	4	1.0183	nan	0.1000	0.0389
##	5	0.9523	nan	0.1000	0.0321
##	6	0.8929	nan	0.1000	0.0275
##	7	0.8393	nan	0.1000	0.0265
	•	11000			

```
##
                 0.7930
                                              0.1000
                                                        0.0221
        8
                                     nan
##
        9
                 0.7512
                                     nan
                                              0.1000
                                                        0.0197
                                              0.1000
                                                        0.0199
##
       10
                 0.7106
                                     nan
##
       20
                 0.4515
                                              0.1000
                                                        0.0104
                                     nan
##
       40
                 0.2316
                                              0.1000
                                                        0.0022
                                     nan
##
       60
                 0.1339
                                     nan
                                              0.1000
                                                        0.0015
##
       80
                 0.0848
                                     nan
                                              0.1000
                                                        0.0008
##
      100
                 0.0555
                                     nan
                                              0.1000
                                                        0.0006
##
      120
                                              0.1000
                                                        0.0002
                 0.0426
                                     nan
                                                        0.0001
##
      140
                 0.0336
                                     nan
                                              0.1000
##
      160
                 0.0266
                                     nan
                                              0.1000
                                                       -0.0000
##
      180
                 0.0211
                                     nan
                                              0.1000
                                                        0.0000
##
      200
                 0.0172
                                     nan
                                              0.1000
                                                       -0.0000
##
      220
                 0.0140
                                              0.1000
                                                       -0.0000
                                     nan
##
      240
                 0.0109
                                     nan
                                              0.1000
                                                        0.0000
##
      260
                                              0.1000
                                                        0.0000
                 0.0088
                                     nan
                 0.0075
##
      280
                                     nan
                                              0.1000
                                                       -0.0000
##
      300
                 0.0062
                                     nan
                                              0.1000
                                                       -0.0000
##
      320
                 0.0051
                                     nan
                                              0.1000
                                                        0.0000
##
      340
                 0.0040
                                     nan
                                              0.1000
                                                        0.0000
##
      360
                 0.0032
                                              0.1000
                                                        0.0000
                                     nan
##
      380
                 0.0025
                                              0.1000
                                                        0.0000
                                     nan
##
      400
                 0.0021
                                     nan
                                              0.1000
                                                       -0.0000
##
      420
                 0.0018
                                     nan
                                              0.1000
                                                        0.0000
      440
##
                 0.0015
                                     nan
                                              0.1000
                                                       -0.0000
##
      460
                 0.0013
                                              0.1000
                                                       -0.0000
                                     nan
##
      480
                 0.0010
                                              0.1000
                                     nan
                                                        0.0000
##
      500
                 0.0008
                                     nan
                                              0.1000
                                                       -0.0000
##
## Elapsed training time for GBM with 500 trees and shrinkage 0.1 is 102.893 seconds
## Validation error for GBM is 0.0039978Elapsed time for Training Random Forest with 500 trees is 54.141 se
## Validation Error rate for Random Forest with 500 trees is 0.004
## [[1]]
## Stochastic Gradient Boosting
##
## 1500 samples
## 2131 predictors
      2 classes: '0', '1'
##
##
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 1 times)
## Summary of sample sizes: 1200, 1201, 1200, 1200, 1199
## Resampling results:
##
##
     Accuracy
                Kappa
##
     0.9960022 0.9920032
##
## Tuning parameter 'n.trees' was held constant at a value of 500
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
##
##
## [[2]]
##
## Call:
##
    randomForest(x = image_features, y = as.factor(image_labels),
                                                                          ntree = 500)
                  Type of random forest: classification
##
```

```
##
                         Number of trees: 500
## No. of variables tried at each split: 46
##
           OOB estimate of
##
                             error rate: 0.4%
   Confusion matrix:
##
           1 class.error
##
           5 0.006720430
    739
##
  0
##
       1 755 0.001322751
```

GBM Cross Validation Results

Accuracy vs. Shrinkage

Figure 1: Figure 1: GBM Cross Validation Results

As can be seen in the above figure, a shrinkage value of 0.1 appears to be the best choice regardless of the number of trees. At a shrinkage value of 0.1, the 500 tree and 1000 tree model have nearly identical errors.

What is the best choice of parameters? Though the 1000 tree model is slightly better than the 500 tree model when shrinkage is 0.1, the 500 tree model is chosen to avoid overfitting. Additionally, the 500 tree model trains quicker, predicts quicker,

and is smaller to store, so given the scenario of creating a phone app, these considerations make the 500 tree model more appropriate.

Random Forest OOB Results

Validation Error for Random Forest

Figure 2: Figure 2: Random Forest OOB error results

As expected, the above results show that, as the number of trees increases, the OOB error decreases at a very high rate until it eventually flat lines.

Choose the best number of trees The best number of trees to chose is the least complex model that achieves the best error. The diagram above shows that the error from 500 onwards is fairly flat, and thus we chose to use a 500 tree model for our random forest.

For original features

Predictions are made by the GBM model and Random Forest model on the original SIFT feature set. These predictions are on the test set, which contain 25% of the original data (i.e. 500 points).

```
tm_test=NA
if(run.test){
 load(gbm_model_original_features)
 load(rf_model_original_features)
 test_models(tune_gbm, image_rf, original_data_test, full_feature = TRUE)
 rf_predict = read.csv(rf_model_original_predict)$x
 gbm_predict = read.csv(gbm_model_original_predict)$x
 test_labels = unlist(read.csv(labels_test))
 rf_error = sum(rf_predict != test_labels)/length(test_labels)
 gbm_error = sum(gbm_predict != test_labels)/length(test_labels)
  cat("GBM error for original features is ", gbm_error, "/n")
  cat("Random Forest error for original features is, ", rf error, "/n")
  #load(file=paste0("../output/feature_", "zip", "_", "test", ".RData"))
  #load(file="../output/fit_train.RData")
  #tm_test <- system.time(pred_test <- test(fit_train, dat_test))</pre>
  #save(pred_test, file="../output/pred_test.RData")
}
## Elapsed prediction time for GBM with 500 trees is 1.192 seconds
## Elapsed prediction time for Random Forest with 500 trees is 1.667 seconds
## GBM error for original features is 0.244 /nRandom Forest error for original features is, 0.304 /n
```

For test feature

Predictions are made by the GBM model and Random Forest model on the modified data set, which contains the small subset of SIFT features and additional grayscale features. These predictions are on the test set, which contain 25% of the original data (i.e. 500 points).

```
tm test=NA
if(run.test){
  load(gbm_model_modified_features)
  load(rf model modified features)
  test_models(tune_gbm, image_rf, modified_data_test, full_feature = FALSE)
  rf_predict = read.csv(rf_model_modified_predict)$x
  gbm_predict = read.csv(gbm_model_modified_predict)$x
  test_labels = unlist(read.csv(labels_test))
  rf_error = sum(rf_predict != test_labels)/length(test_labels)
  gbm_error = sum(gbm_predict != test_labels)/length(test_labels)
  cat("GBM error for modified features is ", gbm_error, "/n")
  cat("Random Forest error for modified features is, ", rf_error, "/n")
  #load(file=paste0("../output/feature_", "zip", "_", "test", ".RData"))
  #load(file="../output/fit_train.RData")
  #tm_test <- system.time(pred_test <- test(fit_train, dat_test))</pre>
  #save(pred_test, file="../output/pred_test.RData")
}
## Elapsed prediction time for GBM with 500 trees is 0.903 seconds
## Elapsed prediction time for Random Forest with 500 trees is 0.89 seconds
```

GBM error for modified features is 0.01 /nRandom Forest error for modified features is, 0.008 /n

Summarize Performance of various models

While prediction performance matters, so does the running times for constructing features and testing model, given the scenario limitations of the phone app. We assume training time is not an important factor as training can be done offline on a powerful machine.

		Full SIFT Train	Full SIFT Test	Small SIFT Train	Small SIFT Test	Small SIFT+Grayscale Train	Small SIFT+Grayscale Test
	Error	0.2519	0.238	0.2426	0.24	0.0033333	0.006
	Time	282 sec	1.22 sec	113 sec	0.52 sec	134 sec	0.86 seconds
GBM	Size	19.09 MB		15.06MB		15.9MB	
	Error	0.288	0.286	0.27	0.26	0.004666	0.006
	Time	356 sec	2.45 sec	165 sec	0.93 sec	75.87 sec	0.72 sec
Random Forest	Size	2.227MB		1.663MB		.17MB	
	Error	0.89	0.51	0.288	0.2	0.19	0.132
	Time	134.34sec	15.12sec	67.17 sec	7.56 sec	67.94 sec	7.97 sec
SVM Linear	Size						

Figure 3: Figure 3: Running Time, Error, and Storage Space of Various Models

The figure above shows the results from training and testing three different feature combinations: 1) The original SIFT data 2) The smaller subset of SIFT Data combined with grayscale data. First focus on the error portion of the gray collumn, which represents training error. One will notice that adding grayscale feature significantly reduced error from ~20% to ~1%. This means, despite removing RGB features, color was still a very important indicator to distinguish between poodles and fried chicken. It is noteable that Linear SVM performs significantly worse than GBM and Random Forest on the third set of features. It is also important to look at the storage size of the blue collumns. This indicates the size required to store the trained model. One will notice than Random Forest takes significantly less space to store than GBM. As such, we chose Random Forest on the third feature set as our model due to its combination of accuracy, small storage size, and quick predicting time.