Linear Algebra I Problem Set 11: Linear Differential Equations and Diagonalization

Dr Nicholas Sedlmayr

Friday April 8th 2016

Due: In class, April 15th 2016

- 1. (3) Let **A** be an $n \times n$ matrix with real entries. If λ is a complex eigenvalue of **A** with eigenvector **u** show that $\bar{\lambda}$ is also a complex eigenvalue of **A**, where $\bar{\lambda}$ is the complex conjugate of λ . What is the eigenvector for $\bar{\lambda}$?
- 2. (9) Solve the set of linear differential equations

$$y'_1(x) = y_1(x) - 2 y_2(x)$$
 and $y'_2(x) = 2 y_1(x) + y_2(x)$

subject to the boundary condition $y_1(x=0)=0$ and $y_2(x=0)=2i$.

3. (8) Consider the matrix

$$\mathbf{A} = \begin{pmatrix} 3 & 0 & 2 \\ -4 & 2 & -5 \\ -4 & 0 & -3 \end{pmatrix} .$$

Find the eigenvalues of eigenvectors of \mathbf{A} . What is the base change matrix \mathbf{P} from the standard basis to the basis of eigenvectors? What is $\mathbf{P}^{-1}\mathbf{A}\mathbf{P}$?

Total available marks: 20