Week Twelve

Siva Sundar, EE23B151

December 22, 2024

16nd December

- A database is an organised system of interlocking tables. Database Scheme are categories \mathcal{C} , data itself is given by a 'set-valued' functor $\mathcal{C} \longrightarrow \mathbf{Set}$, and databases can be mapped to each other via functors $\mathcal{C} \longrightarrow \mathcal{D}$.
- Category theory formalizes data migration between databases using adjoint functors.
- A category C consists of four constituents:
 - \star a collection $Ob(\mathcal{C})$, whose elements are **objects**.
 - * $\forall c, d \in \text{Ob}(\mathcal{C})$, we specify the **hom-set** $\mathcal{C}(c, d)$, whose elements are called **morphisms**.
 - * $\forall c \in \mathrm{Ob}(\mathcal{C})$, we can specify the **identity morphism** on c: $id_c \in \mathcal{C}(c,c)$.
 - * $\forall c, d, e \in \text{Ob}(\mathcal{C})$ and morphisms $f \in \mathcal{C}(c, d)$ and $g \in \mathcal{C}(d, e)$, we can define the **composite morphism** $f \circ g \in \mathcal{C}(c, c)$.

It should also satisfy two properties:

- * Unitality: $id_c \circ f = f \circ id_c = f$.
- * associativity: $(f \circ g) \circ h = f \circ (g \circ h)$.
- For any graph G = (V, A, s, t), we can define a **free category Free**(G) whose objects are *vertices* V, and morphisms from c to d are the *paths* from c to d.
- A category with one object is called **monoid**. (see page 83)
- A finite graph with path equations is called a *finite presentation* and this category is called *finitely-presented category*. (see difference between free category and commutative square in page 84)
- A preorder is a category where every two parallel arrows are the same (ie, between two points, there is *at-most* one morphism, Page 85-86). Similarly, any category can be converted to a preorder by destroying the distinction between any two parrelel morphisms.

19th December

- The cateogory of finite sets, is called **FinSet**. There are many other categories as well. (See page 87)
- $f: A \longrightarrow B$ is an **isomorphism** if there exists another morphism $g: B \longrightarrow A$ satisfying $f \circ g = id_A$ and $g \circ f = id_B$. g is said to be inverse of f and A and B are said to be **isomorphic** objects.

Author: Siva Sundar Roll No: EE23B151

• Functor is a mapping between categories. It maps objects as well as morphisms from one category to another. It obeys the *structure-preserving* rule: $F(f \circ g) = F(f) \circ F(g)$. (See page 91)

- Let \mathcal{C} be a finitely-presented category. A \mathcal{C} -instance is a functor $I:\mathcal{C}\longrightarrow \mathbf{Set}$. (It is a state of the database, "at an instant in time", see ex 3.45)
 - The takeway is that: 'a database schema is a category, and an instance on that schema (the data itself), is a set-valued functor. The constraints (biz rules, etc) are ensured by the structure preserving rule.'
- Natural transformation (say α) is a mapping between two functors (say $F: \mathcal{C} \longrightarrow \mathcal{D}$ and $G: \mathcal{C} \longrightarrow \mathcal{D}$), denoted as $\alpha: F \Longrightarrow G$:
 - * $\forall c \in \mathcal{C}, c\text{-component of } \alpha \text{ is the morphism } \alpha_c : F(c) \longrightarrow G(c) \text{ in } \mathcal{D}.$
 - * Naturality condition: $\forall f: c \longrightarrow d \text{ in } C, F(f) \circ \alpha_d = \alpha_c \circ G(f).$

$$F(c) \xrightarrow{\alpha_c} G(c)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(d) \xrightarrow{\alpha_d} G(d)$$

Figure 1: Diagram commutes ← naturality condition

 $\alpha: F \longrightarrow G$ is said to be **natural isomorphism** if each of its component α_c is an **isomorphism in** \mathcal{D} .

• Functor category: Let \mathcal{C} and \mathcal{D} be categories. We define the category of functors $\mathcal{D}^{\mathcal{C}}$ with *objects* as functors $F: \mathcal{C} \longrightarrow \mathcal{D}$ and with *morphisms* $\mathcal{D}^{\mathcal{C}}(F,G)$ as the natural transformations $\alpha: F \longrightarrow G$. (See ex 3.72)

Figure 2: The category C^1 is equivalent to C.

The category of preorders is equivalent to category of **Bool**-categories. (Page 97)

$22^{nd} December$

• Let \mathcal{C} be a database scheme and $I, J: \mathcal{C} \longrightarrow \mathbf{Set}$ be database instances. An **instance** homomorphism between I and J is a natural transformation $\alpha: I \longrightarrow J$ and these are included in the functor category $\mathcal{C} - \mathbf{Inst} := \mathbf{Set}^{\mathcal{C}}$.

Author: Siva Sundar Roll No: EE23B151

• The objects in the functor category **Gr-Inst** are graphs and the morphisms init are called *graph homomorphisms* which must *respect source and target*. (See page 98)

- Let \mathcal{C} and \mathcal{D} be categories and let $F: \mathcal{C} \longrightarrow \mathcal{D}$ be a functor. For any set-valued functor $I: \mathcal{D} \longrightarrow \mathbf{Set}$, the composite functor $F \circ I$ is called **pullback of I along** \mathbf{F} .
- Let $L: \mathcal{C} \longrightarrow \mathcal{D}$ and $R: \mathcal{D} \longrightarrow \mathcal{C}$ be functors. L is the **left adjoint** to R and R is the **right adjoint** to L if there exist an isomorphism (see page 102):

$$\forall c \in \mathcal{C} \& d \in \mathcal{D}, \quad \alpha_{c,d} : \mathcal{C}(c, R(d)) \xrightarrow{\cong} \mathcal{C}(L(c), d)$$

In set theory, given a set B, we have an adjunction called **currying** B: (see page 103)

$$\mathbf{Set}(A \times B, C) \cong \mathbf{Set}(A, C^B)$$

• Given $F: \mathcal{C} \longrightarrow \mathcal{D}$, the data migration functor Δ_F turns \mathcal{D} -instances into \mathcal{C} -instances.

Figure 3: Σ_F and Π_F are the Left and Right (Pushforward) adjoint functors resp. (See page 105)