

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

Εργαστήριο Στοιχείων Μηχανών & Μηχανολογικού Σχεδιασμού

ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ

Πρόσθετες Σημειώσεις και Λυμένες ασκήσεις

Αθανάσιος Μιχαηλίδης, Καθ. Κωνσταντίνος Παναγιωτίδης, Λέκτ.

ΘΕΣΣΑΛΟΝΙΚΗ 2008

ΣΥΝΤΟΜΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΑΤΡΑΚΤΩΝ – ΑΞΟΝΩΝ ΚΑΤΑ DIN 743 : 2000-10

V1.4

Περιεχόμενα

1	Εισαγωγή	9
2	Αντοχή χαλύβων	
	Φόρτιση	
4	Υπολογισμός σε δυναμική θραύση	12
	4.1 Ονομαστικές τάσεις (ημιεύρος δυναμικής τάσης $\sigma_{zd,ba}$, τ_{ta} , μέση τάση $\sigma_{zd,bm}$, τ_{tm} ,	
	ισοδύναμη ορθή μέση, εφαπτομενική μέση τάση σ_{mv}, τ_{mv}).	12
	4.2 Επιτρεπόμενο ημιεύρος δυναμικής καταπόνησης	13
	4.2.1 Επιτρεπόμενο ημιεύρος για εναλλασσόμενη καταπόνηση $\sigma_{zd,bWK}$, τ_{tWK}	13
	4.2.2 Επιτρεπόμενο ημιεύρος για δυναμική καταπόνηση γενικής μορφής $\sigma_{zd,bADK}$, τ_{tADK}	. 14
5	Συντελεστές επίδρασης και εγκοπής	17
	5.1 Συντελεστής επίδρασης μεγέθους στη θερμική κατεργασία $K_1(d_{\it eff})$	17
	5.2 Συντελεστής εγκοπής $\beta_{\sigma,\tau}$	
	5.2.1 Υπολογισμός του συντελεστή εγκοπής $\beta_{\sigma,\tau}$ από μετρήσεις	19
	5.2.1.1 Σφηνότοπος και σύσφιξη	
	5.2.1.2 Πολύσφηνα	
	5.2.1.3 Περιφερειακό αυλάκι για ασφάλειες	21
	5.2.2 Υπολογισμός του συντελεστή εγκοπής $\beta_{\sigma,\tau}$ από τον συντελεστή μορφής $\alpha_{\sigma,\tau}$	22
	5.2.2.1 Διαβάθμιση και περιφερειακό αυλάκι	24
	5.2.2.2 Διαβάθμιση με περιφερειακό αυλάκι μορφής (ξεθύμασμα)	25
	5.2.2.3 Εγκάρσια οπή	
	5.3 Συντελεστής επίδρασης μεγέθους $K_2(d)$	27
	5.4 Συντελεστής επίδρασης μεγέθους στην εγκοπή $K_3(d)$	28
	5.5 Συντελεστής τραχύτητας $K_{\scriptscriptstyle F}$	29
	5.6 Συντελεστής αύξησης επιφανειακής αντοχής K_{V}	30
6	Υπολογισμός σε πλαστική παραμόρφωση	32
7	Συνοπτική παρουσίαση του υπολογισμού ατράκτων - αξόνων	34
	7.1 Υπολογισμός ατράκτων-αξόνων σε πλαστική παραμόρφωση	
	7.2 Υπολογισμός ατράκτων-αξόνων σε δυναμική θραύση	
	7.3 Υπολογισμός τελικού συντελεστής ασφάλειας	36
_	7.4 Έλεγχος συντελεστή ασφάλειας	
	Λογικό διάγραμμα υπολογισμού του συνολικού συντελεστή επίδρασης εγκοπής $K_{\sigma,\tau}$	
9	Παραδείγματα	
	9.1 Παράδειγμα 1°	
	9.2 Παράδειγμα 2°	
	7.J 11ԱՍԱՍԵԼYԱԱ J	44

Συμβολισμοί

Συμβολισμός	Μονάδες	Περιγραφή
d	[mm]	Διάμετρος ατράκτου ή άξονα στη διατομή με εγκοπή
d_{i}	[mm]	Εσωτερική διάμετρος δακτυλιοειδούς διατομής
$d_{\it eff}$	[mm]	Καθοριστική διάμετρος για θερμική κατεργασία
$d_{\scriptscriptstyle B}$	[mm]	Διάμετρος λείου δοκιμίου
d_{BK}	[mm]	Διάμετρος δοκιμίου με εγκοπή
G'	[1/mm]	Σχετική πτώση τάσης
K	[-]	Συνολικός συντελεστής επίδρασης εγκοπής
$K_1(d)$	[-]	Συντελεστής επίδρασης μεγέθους στη θερμική κατεργασία
$K_2(d)$	[-]	Συντελεστής επίδρασης μεγέθους
$K_3(d)$	[-]	Συντελεστής επίδρασης μεγέθους στην εγκοπή
K_{2F}	[-]	Συντελεστής στατικής αντιστήριξης
$K_{F\sigma}, K_{F\tau}$	[-]	Συντελεστής τραχύτητας για εφελκυσμό-θλίψη-κάμψη, στρέψη
K_{V}	[-]	Συντελεστής αύξησης επιφανειακής εγκοπής
n	[-]	Συντελεστής δυναμικής αντιστήριξης
r	[mm]	Ακτίνα καμπυλότητας εγκοπής
R_z	[µm]	Τραχύτητα επιφάνειας
S	[-]	Συντελεστής ασφάλειας
S_{min}	[-]	Ελάχιστος συντελεστής ασφάλειας
S_D	[-]	Συντελεστής ασφάλειας σε δυναμική θραύση
S_F	[-]	Συντελεστής ασφάλειας σε πλαστική παραμόρφωση ή ρηγμάτωση ή βίαια θραύση
a_{σ}, a_{τ}	[-]	Συντελεστής μορφής της εγκοπής

 $β_{\sigma}, β_{\tau}$ [-] Συντελεστής εγκοπής

 $\gamma_{\scriptscriptstyle F}$ [-] Συντελεστής αύξησης του ορίου πλαστικής παραμόρφωσης

 $\psi_{\sigma\!K}, \psi_{\tau\!K}$ [-] Συντελεστής καταπονήσεως

 $\sigma_{\scriptscriptstyle B}$ [N/mm²] Οριο θραύσεως για την διάμετρο $d_{\scriptscriptstyle B}$

 $\sigma_{\rm S}$ [N/mm²] Όριο πλαστικής παραμόρφωσης

 σ [N/mm 2] Τάση εφελκισμού-θλίψης, κάμψης

τ [N/mm²] Στρεπτική τάση

Δείκτες

Ημιεύρος ονομαστικής τάσης

Α Επιτρεπόμενο ημιεύρος

zd Εφελκυσμός-θλίψη

b Κάμψη

D Δυναμική αντοχή

F Όριο πλαστικής παραμόρφωσης

Κ Αξονας ή άτρακτος με εγκοπή

m Μέση

η Ονομαστική τάση

t Στρέψη

ν Ισοδύναμη

W Επιτρεπόμενο εναλλασσόμενο ημιεύρος

1 Εισαγωγή

Με το νέο DIN 743 τυποποιείται ο υπολογισμός ελέγχου δυναμικής αντοχής (δηλ. διάρκεια ζωής τουλάχιστον 10^7 φορτίσεις) ατράκτων και αξόνων που καταπονούνται δυναμικά ή στατικά σε εφελκυσμό/θλίψη ή/και κάμψη ή/και στρέψη.

Ο υπολογισμός καταλήγει στον προσδιορισμό δύο συντελεστών ασφάλειας:

- του συντελεστή ασφάλειας S_D σε δυναμική θραύση (δηλ. θραύση που οφείλεται σε κόπωση), και
- του συντελεστή ασφάλειας S_F σε πλαστική παραμόρφωση ή ρηγμάτωση ή βίαια θραύση.

Καθοριστικός για την αντοχή του εξαρτήματος είναι ο μικρότερος από τους δύο

$$S = \min(S_E, S_D) \tag{1.1}$$

Η αντοχή του εξαρτήματος θεωρείται ικανοποιητική όταν

$$S \ge S_{\min} \tag{1.2}$$

Η ελάχιστη τιμή του συντελεστή ασφάλειας εκλέγεται λαμβάνοντας υπόψη:

- την ακρίβεια με την οποία καθορίστηκαν η φόρτιση και οι επιτρεπόμενες τάσεις των υλικών,
- την κρισιμότητα της κατασκευής κλπ.

Πρέπει όμως πάντοτε να είναι $S \ge 1.2$, ώστε να λαμβάνεται υπόψη η ακρίβεια της μεθόδου.

Η τυποποίηση καλύπτει ατράκτους και άξονες που:

- είναι κατασκευασμένοι από χάλυβες με κατεργασίες κοπής ή διαμόρφωσης αλλά όχι με συγκόλληση,
- καταπονούνται στατικά ή δυναμικά σε εφελκυσμό/θλίψη ή/και κάμψη ή/και στρέψη αλλά η επίδραση της διάτμησης είναι αμελητέα,
- λειτουργούν σε θερμοκρασίες -40 ... +150 °C,
- το περιβάλλον λειτουργίας τους δεν είναι διαβρωτικό.
- η διατομή τους είναι πλήρης κυκλική ή δακτυλιοειδής κυκλική.

2 Αντοχή χαλύβων

Για τον υπολογισμό αντοχής απαιτούνται οι ακόλουθες τιμές αντοχής του υλικού:

- $\,$ Όριο θραύσεως $\,\sigma_{\scriptscriptstyle B}\,$ για την διάμετρο $\,d_{\scriptscriptstyle B}\,$

Αυτό προκύπτει κατά προτίμηση από πείραμα εφελκυσμού με λείο δοκίμιο χωρίς εγκοπή διαμέτρου $d_{\scriptscriptstyle B}$.

Εναλλακτικά μπορεί να χρησιμοποιηθεί σκληρομέτρηση, οπότε

$$\sigma_R \approx 3.6 H_{HR} \tag{2.1}$$

όπου H_{HB} είναι η σκληρότητα του πυρήνα κατά Brinell.

Αν δεν μπορεί να γίνει ούτε πείραμα εφελκυσμού, ούτε σκληρομέτρηση χρησιμοποιούνται οι τιμές των πινάκων Π. 2.1, ή άλλων τυποποιήσεων.

- $\,$ Όριο πλαστικής παραμόρφωσης $\,\sigma_{_{
m S}}$

Για συνήθεις χάλυβες κατασκευών είναι ίσο με το όριο ροής ενώ για τους χάλυβες υψηλής αντοχής είναι ίσο με το όριο μηκύνσεως. Αν δεν υπάρχουν άλλα δεδομένα το όριο πλαστικής παραμόρφωσης σε θλίψη λαμβάνεται ίσο με το όριο πλαστικής παραμόρφωσης σε εφελκυσμό.

- Επιτρεπόμενο ημιεύρος εναλλασσόμενου εφελκυσμού, κάμψης και στρέψης $\,\sigma_{zd\,W},\sigma_{bW}, au_{tW}$

Κατά προτίμηση οι τιμές λαμβάνονται από πειράματα για διάρκεια ζωής τουλάχιστον 10^7 φορτίσεις. Εναλλακτικά, εφόσον δεν υπάρχουν πειράματα, χρησιμοποιούνται οι ακόλουθοι τύποι:

$$\sigma_{bW} \approx 0.5\sigma_{B}
\sigma_{zdW} \approx 0.4\sigma_{B}
\tau_{tW} \approx 0.3\sigma_{B}$$
(2.2)

Π. 2.1 Τιμές
$$\sigma_{\scriptscriptstyle B}, \sigma_{\scriptscriptstyle S}, \sigma_{\scriptscriptstyle zdW}, \sigma_{\scriptscriptstyle bW}, \tau_{\scriptscriptstyle tW}$$
 για διάφορους χάλυβες

Π. 2.1.α Κοινοί χάλυβες κατασκευών κατά DIN EN 10025 ($d_{\it B} \leq 16mm$)								
Ονομασία	$\sigma_B N/mm^2$ $d_B \le 3mm$	$\sigma_{_S}$ N/mm^2	$\sigma_{zdW} = N/mm^2$	$\sigma_{bW} = N/mm^2$	$ au_{tW}$ N/mm^2			
S235JR	360	235	140	180	105			
S275JR	430	275	170	215	125			
E295	490	295	195	245	145			
S355JO	510	355	205	255	150			
E335	590	335	235	290	180			
E360	690	360	275	345	205			

Π. 2.1.β Χάλυβες συγκολλήσεως κατά DIN EN 10113 ($d_{\scriptscriptstyle B} \leq 16mm$)								
Ονομασία	$d_{B} = \frac{N/mm^{2}}{M}$ $d_{B} \leq 100mm$	$\sigma_{_S}$	$\sigma_{zdW} = N/mm^2$	$\sigma_{bW} = N/mm^2$	$ au_{tW}$ N/mm^2			
S275N	370	275	150	185	110			
S355N	470	355	190	235	140			
S420N	520	420	210	260	155			
S460N	550	460	220	275	165			

Π. 2.1.γ Χάλυβες ενανθρακώσεως, ενανθρακωμένοι και βαμμένοι										
	κατά DIN EN 10084 ($d_B \le 11mm$)									
Ονομασία	$\sigma_{_B}$ N/mm^2	$\sigma_{_S}$	$\sigma_{zdW} = N/mm^2$	$\sigma_{bW} = N/mm^2$	$ au_{tW}$ N/mm^2					
C10E	750	430	300	375	225					
17Cr3	1050	750	420	525	315					
16MnCr5	900	630	360	450	270					
20MnCr5	1100	730	440	550	330					
20MoCrS4	900	630	360	450	270					
$18 \text{CrNiMo7-6} $ $d_B \le 16 mm$	1150	830	460	575	345					

Π. 2.1.δ Χάλυβες επιβελτιώσεως, επιβελτιωμένοι κατά DIN EN 10083									
$(d_B \le 16mm)$									
Ονομασία	$\sigma_{_B} \ N/mm^2$	$\sigma_{_S}$ N/mm^2	$\sigma_{zdW} = N/mm^2$	$\sigma_{bW} = N/mm^2$	$ au_{tW} = N/mm^2$				
1 C 22	500	340	200	250	150				
2 C 22	500	340	200	250	150				
1 C 25	550	370	220	275	165				
1 C 30	600	400	240	300	180				
1 C 35	630	430	250	315	190				
1 C 40	650	460	260	325	200				
1 C 45	700	490	280	350	210				
2 C 45	700	490	280	350	210				
1 C 50	750	520	300	375	220				
(1 C 60)	850	580	340	425	250				
46Cr2	900	650	360	450	270				
41Cr4	1000	800	400	500	300				
34CrMo4	1000	800	400	500	300				
42CrMo4	1100	900	440	550	330				
50CrMo4	1100	900	440	550	330				
36CrNiMo4	1100	900	440	550	330				
30CrNiMo8	1250	1050	500	625	375				
34CrNiMo6	1200	1000	480	600	360				

Π. 2.1.ε Εναζωτωμένοι χάλυβες κατά DIN EN 17211 ($d_{\it B} \leq 100 mm$)								
Ονομασία	$\sigma_{_B} = N/mm^2$	$\sigma_{_S}$ N/mm^2	$\sigma_{zdW} = N/mm^2$	$\sigma_{bW} = N/mm^2$	$ au_{tW} = N/mm^2$			
31CrMo12	1000	800	400	500	300			
31CrMoV9	1000	800	400	500	300			
15CrMoV59	900	750	360	450	270			
34CrAlMo5	800	600	320	400	240			
34CrAlNi7	850	650	340	425	255			

Π. 2.1.ζ Αντιστοίχηση συμβολισμών χαλύβων								
DIN	EN 10025: 19	990	DIN EN 10113; 1993					
	κατά DIN 1	7100: 1980		κατά DIN 17	102: 1983			
Συμβολισμός	Αριθμός υλι- κού	Ονομασία	Συμβολισμός	Αριθμός υλι- κού	Ονομασία			
S235JR	1.0037	St 37-2	S275N	-	-			
S275JR	1.0044	St 44-2	S355N	1.0562	StE 355			
E295	1.0050	St 50-2	S420N	1.8902	StE 420			
S355JO		St 52-3	S460N	1.8901	StE 460			
E335	1.0060	SI 60-2						
E360	1.0070	St 70-2						

3 Φόρτιση

Στη διατομή που ελέγχεται είναι δεδομένα:

- η μέση τιμή της φόρτισης
- το ημιεύρος

Πρέπει επίσης να ενταχθεί η δυναμική φόρτιση σε μία από τις παρακάτω περιπτώσεις:

- Περίπτωση 1 (F₁): Σταθερή μέση τιμή.
- Περίπτωση 2 (F_2): Σταθερός λόγος ημιεύρους προς μέση τιμή.

Σε περίπτωση αμφιβολίας η φόρτιση εντάσσεται στην περίπτωση F_2 .

4 Υπολογισμός σε δυναμική θραύση

Ο συντελεστής ασφάλειας σε δυναμική θραύση υπολογίζεται συγκρίνοντας το ονομαστικό με το επιτρεπόμενο ημιεύρος:

$$S_D = \frac{1}{\sqrt{\left(\frac{\sigma_{zda}}{\sigma_{zdADK}} + \frac{\sigma_{ba}}{\sigma_{bADK}}\right)^2 + \left(\frac{\tau_{ta}}{\tau_{tADK}}\right)^2}}$$
(4.1)

4.1 Ονομαστικές τάσεις (ημιεύρος δυναμικής τάσης $\sigma_{zd,ba}$, τ_{ta} , μέση τάση $\sigma_{zd,bm}$, τ_{tm} , ισοδύναμη ορθή μέση, εφαπτομενική μέση τάση σ_{mv} , τ_{mv}).

Οι ονομαστικές τάσεις για εφελκυσμό-θλίψη, κάμψη και διάτμηση υπολογίζονται στη θέση της εγκοπής με τον ακόλουθο πίνακα Π. 4.1:

Π. 4.1 Ονομαστικές τάσεις για εφελκυσμό-θλίψη, κάμψη και στρέψη.							
Είδος καταπό-	Τάο	ση	Διατομή ή ροπή				
νησης	Ημιεύρος	Μέση τιμή	αντιστάσεως				
Εφελκ/θλίψη	$\sigma_{zda} = \frac{F_{zda}}{A}$	$\sigma_{zdm} = \frac{F_{zdm}}{A}$	$A = \frac{\pi}{4} \left(d^2 - d_i^2 \right)$				
Κάμψη	$\sigma_{ba} = \frac{M_{ba}}{W_b}$	$\sigma_{bm} = \frac{M_{bm}}{W_b}$	$W_b = \frac{\pi}{32} \frac{\left(d^4 - d_i^4\right)}{d}$				
Στρέψη	$\tau_{tm} = \frac{T_m}{W_t}$	$W_{t} = \frac{\pi}{16} \frac{\left(d^4 - d_i^4\right)}{d}$					
Σημ. Στη θλιπτική περιοχή της διατομής είναι $\sigma_{zdm}, \sigma_{bm}$ αρνητικά							

Από τις ονομαστικές τάσεις αυτές υπολογίζονται η ισοδύναμη ορθή μέση τάση και η ισοδύναμη εφαπτομενική μέση τάση με τον ακόλουθο τρόπο:

Ισοδύναμη ορθή τάση

Eάν
$$\sigma_{zdm} + \sigma_{bm} \ge 0$$

$$\sigma_{mv} = \sqrt{\left(\sigma_{zdm} + \sigma_{bm}\right)^2 + 3\tau_{lm}^2} \tag{4.2}$$

Eάν $\sigma_{zdm} + \sigma_{bm} < 0$

$$\sigma_{mv} = \frac{H}{|H|} \sqrt{|H|} \ \acute{o}\pi o \upsilon \ H = \frac{\left(\sigma_{bm} + \sigma_{zdm}\right)^3}{\left|\left(\sigma_{bm} + \sigma_{zdm}\right)\right|} + 3\tau_{tm}^2 \tag{4.3}$$

Ισοδύναμη εφαπτομενική τάση

Eάν $σ_{mv}$ ≥ 0

$$\tau_{mv} = \frac{\sigma_{mv}}{\sqrt{3}} \tag{4.4}$$

Eάν $\sigma_{mv} < 0$

$$\tau_{mv} = 0 \tag{4.5}$$

4.2 Επιτρεπόμενο ημιεύρος δυναμικής καταπόνησης.

Καταρχήν, από την αρχική αντοχή του υλικού (δηλ. λείου δοκιμίου χωρίς εγκοπή διαμέτρου d_B) υπολογίζεται το επιτρεπόμενο ημιεύρος των τάσεων που αναπτύσσονται στην διατομή του άξονα ή της ατράκτου με εγκοπή για εναλλασσόμενη καταπόνηση. Λαμβάνονται υπόψη:

- Η επίδραση της διαμέτρου στην δυναμική αντοχή λείου δοκιμίου χωρίς εγκοπή με τον συντελεστή επίδρασης μεγέθους στη θερμική κατεργασία $K_1(d_{eff})$.
- Η συνδυασμένη επίδραση της μορφής και των διαστάσεων της εγκοπής, της επιφανειακής τραχύτητας, και της αύξησης της επιφανειακής αντοχής με τον συνολικό συντελεστή επίδρασης εγκοπής K.

Στη συνέχεια, υπολογίζεται το επιτρεπόμενο ημιεύρος της ατράκτου ή του άξονα για δυναμική καταπόνηση γενικής μορφής λαμβάνοντας υπόψη την επίδραση της μέσης φόρτισης.

4.2.1 Επιτρεπόμενο ημιεύρος για εναλλασσόμενη καταπόνηση $\sigma_{zd,bWK}$, τ_{tWK}

Το επιτρεπόμενο ημιεύρος των τάσεων που αναπτύσσονται στον άξονα ή άτρακτο για εναλλασσόμενη καταπόνηση υπολογίζονται με τις ακόλουθες σχέσεις:

$$\sigma_{zdWK} = \frac{\sigma_{zdW}(d_B)K_1(d_{eff})}{K_{\sigma}}$$
(4.6)

$$\sigma_{bWK} = \frac{\sigma_{bW}(d_B)K_1(d_{eff})}{K_{\sigma}}$$
(4.7)

$$\tau_{tWK} = \frac{\tau_{tW}(d_B)K_1(d_{eff})}{K_{\tau}} \tag{4.8}$$

όπου:

 $K_1(d_{\it eff})$ είναι ο συντελεστής επίδρασης μεγέθους στη θερμική κατεργασία. Υπολογίζεται ανάλογα με το υλικό κατασκευής, τη θερμική κατεργασία και την καθοριστική διάμετρο για τη θερμική κατεργασία $d_{\it eff}$ όπως περιγράφεται στο κεφ. 5.1

 $K_{\sigma,\tau}$ είναι ο συνολικός συντελεστής επίδρασης εγκοπής. Υπολογίζεται από τον συντελεστή εγκοπής $\beta_{\sigma,\tau}$ (Κεφ. 5.2), τον συντελεστή επίδρασης μεγέθους $K_2(d)$ (Κεφ. 5.3), τον συντελεστή τραχύτητας K_F (Κεφ. 5.5) και τον συντελεστή επίδρασης της αύξησης επιφανειακής αντοχής K_V (Κεφ. 5.6), ανάλογα με το είδος της καταπόνησης:

Για εφελκυσμό/θλίψη και κάμψη :

$$K_{\sigma} = \left(\frac{\beta_{\sigma}}{K_2(d)} + \frac{1}{K_{F\sigma}} - 1\right) \frac{1}{K_V}$$
(4.9)

- Για στρέψη:

$$K_{\tau} = \left(\frac{\beta_{\tau}}{K_{2}(d)} + \frac{1}{K_{F\tau}} - 1\right) \frac{1}{K_{V}}$$
 (4.10)

4.2.2 Επιτρεπόμενο ημιεύρος για δυναμική καταπόνηση γενικής μορφής $\sigma_{zd,bADK}$, τ_{tADK}

Αρχικά υπολογίζεται ο συντελεστή καταπονήσεως $\psi_{zd,b\sigma\!K}$, $\psi_{\tau\!K}$ από τις ακόλουθες σχέσεις:

$$\psi_{zd\sigma K} = \frac{\sigma_{zdWK}}{2K_1(d_{eff})\sigma_B(d_B) - \sigma_{zdWK}}$$
(4.11)

$$\psi_{b\sigma K} = \frac{\sigma_{bWK}}{2K_1(d_{eff})\sigma_B(d_B) - \sigma_{bWK}} \tag{4.12}$$

$$\psi_{\tau K} = \frac{\tau_{tWK}}{2K_1(d_{eff})\sigma_B(d_B) - \tau_{tWK}} \tag{4.13}$$

Το όριο πλαστικής παραμόρφωσης $\sigma_{zd,bFK}$, τ_{tFK} υπολογίζεται σύμφωνα με το κεφάλαιο 6.

Ακολούθως ανάλογα με την περίπτωση φόρτισης υπολογίζονται για τον άξονα ή άτρακτο στη θέση της εγκοπής το επιτρεπόμενο ημιεύρος για δυναμική καταπόνηση γενικής μορφής (Σχ. 4.1):

- Περίπτωση $F_{\scriptscriptstyle 1}$:

Περιοχή Ι:
$$\sigma_{mv} < \left(\sigma_{zd,bWK} - \sigma_{dFK}\right) \left(1 - \frac{\sigma_{zd,bWK}}{2\sigma_{B}(d)}\right)$$

$$\sigma_{zd,bADK} = \sigma_{dFK} + \sigma_{mV} \tag{4.14}$$

Το σ_{dFK} τίθεται θετικό

Περιοχή II:
$$\left(\sigma_{zd,bWK} - \sigma_{dKF}\right) \left(1 - \frac{\sigma_{zd,bWK}}{2\sigma_{B}(d)}\right) \le \sigma_{mv} \le \frac{\sigma_{zd,bFK} - \sigma_{zd,bWK}}{1 - \psi_{zd,b\sigma K}}$$
ή

$$0 \le \tau_{mv} \le \frac{\tau_{tFK} - \tau_{tWK}}{1 - \psi_{\tau^{V}}}$$

$$\sigma_{zdADK} = \sigma_{zdWK} - \psi_{zd\sigma K} \sigma_{mv} \tag{4.15}$$

$$\sigma_{bADK} = \sigma_{bWK} - \psi_{b\sigma K} \sigma_{mv} \tag{4.16}$$

$$\tau_{tADK} = \tau_{tWK} - \psi_{\tau K} \tau_{mv} \tag{4.17}$$

Περιοχή III:
$$\frac{\sigma_{zd,bFK} - \sigma_{zd,bWK}}{1 - \psi_{zd,b\sigma\!K}} < \sigma_{\mathit{mv}} \quad \acute{\eta} \quad \frac{\tau_{\mathit{tFK}} - \tau_{\mathit{tWK}}}{1 - \psi_{\mathit{\tau\!K}}} < \tau_{\mathit{mv}}$$

$$\sigma_{zd,bADK} = \sigma_{zd,bFK} - \sigma_{mv} \tag{4.18}$$

$$\tau_{tADK} = \tau_{tFK} - \tau_{mv} \tag{4.19}$$

- Περίπτωση F_2

Περιοχή Ι:
$$\frac{\sigma_{\textit{mv}}}{\sigma_{\textit{zd},\textit{ba}}} < \frac{\sigma_{\textit{zd},\textit{bWK}} - \sigma_{\textit{dFK}}}{\psi_{\textit{zd},\textit{bσK}}\sigma_{\textit{dFK}} + \sigma_{\textit{zd},\textit{bWK}}}$$

$$\sigma_{zd,bADK} = \frac{\sigma_{dFK}\sigma_{zd,ba}}{\sigma_{zd,ba} - \sigma_{mV}} \tag{4.20}$$

Το σ_{dFK} τίθεται θετικό

Περιοχή ΙΙ:
$$\frac{\sigma_{zd,bW\!K} - \sigma_{dF\!K}}{\psi_{zd,b\sigma\!K}\sigma_{dF\!K} + \sigma_{zd,bW\!K}} \leq \frac{\sigma_{mv}}{\sigma_{zd,ba}} \leq \frac{\sigma_{zd,bF\!K} - \sigma_{zd,bW\!K}}{\sigma_{zd,bW\!K} - \psi_{zd,b\sigma\!K}\sigma_{zd,bF\!K}} \ \acute{\eta}$$

$$0 \le \frac{\tau_{mv}}{\tau_{ta}} \le \frac{\tau_{tFK} - \tau_{tWK}}{\tau_{tWK} - \tau_{tFK} \psi_{\tau K}}$$

$$\sigma_{zdADK} = \frac{\sigma_{zdWK}}{1 + \psi_{zd\sigma K} \sigma_{mv} / \sigma_{zda}}$$
 (4.21)

$$\sigma_{bADK} = \frac{\sigma_{bWK}}{1 + \psi_{b\sigma K} \sigma_{mv} / \sigma_{ba}}$$
 (4.22)

$$\tau_{tADK} = \frac{\tau_{tWK}}{1 + \psi_{\tau K} \tau_{mv} / \tau_{ta}} \tag{4.23}$$

Περιοχή III:
$$\frac{\sigma_{zd,bFK} - \sigma_{zd,bWK}}{\sigma_{zd,bWK} - \psi_{zd,b\sigma\!K}\sigma_{zd,bFK}} < \frac{\sigma_{mv}}{\sigma_{zd,ba}} \text{ ή } \frac{\tau_{t\!F\!K} - \tau_{t\!W\!K}}{\tau_{t\!W\!K} - \tau_{t\!F\!K}\psi_{\tau\!K}} < \frac{\tau_{mv}}{\tau_{ta}}$$

$$\sigma_{zdADK} = \frac{\sigma_{zdFK}}{1 + \sigma_{mv} / \sigma_{zda}}$$
 (4.24)

$$\sigma_{bADK} = \frac{\sigma_{bFK}}{1 + \sigma_{mv} / \sigma_{ba}} \tag{4.25}$$

$$\tau_{tADK} = \frac{\tau_{tFK}}{1 + \tau_{mv} / \tau_{ta}} \tag{4.26}$$

Σχ. 4.1 Διάγραμμα Smith και περιοχές I, II, III για τις περιπτώσεις φόρτισης F_1, F_2

5 Συντελεστές επίδρασης και εγκοπής

5.1 Συντελεστής επίδρασης μεγέθους στη θερμική κατεργασία $K_1(d_{\it eff})$

Με τον συντελεστή αυτόν λαμβάνεται υπόψη το γεγονός ότι κατά κανόνα οι διατομές μικρότερης διαμέτρου έχουν μεγαλύτερη αντοχή από τις διατομές μεγαλύτερης διαμέτρου, διότι η σκληρότητα (και συνεπώς η αντοχή) που μπορεί να επιτευχθεί με τη θερμική κατεργασία μειώνεται όσο αυξάνει η διάμετρος. Δηλαδή, με τον συντελεστή αυτόν υπολογίζεται η αντοχή ενός λείου δοκιμίου χωρίς εγκοπή με διάμετρο $d_{\it eff}$ όταν είναι γνωστή η αντοχή ενός επίσης λείου δοκιμίου χωρίς εγκοπή με διάμετρο $d_{\it B}$. Η $d_{\it eff}$ καθορίζεται σύμφωνα με τη θερμική κατεργασία. Εφόσον το εξάρτημα έχει υποστεί θερμική κατεργασία πριν την τόρνευση τίθεται συνήθως $d_{\it eff}$ ίση με τη μέγιστη διάμετρο του εξαρτήματος. Αν η άτρακτος είναι κοίλη και έχει κατεργαστεί από κοιλοδοκό τότε $d_{\it eff}$ ισούται με το πάχος της κοιλοδοκού. Ανάλογα με το υλικό κατασκευής υπολογίζεται συναρτήσει της διαμέτρου ως εξής:

- Όλκιμοι χάλυβες, δηλ. κοινοί χάλυβες κατασκευών ή άλλοι χάλυβες χωρίς θερμική κατεργασία:

Για τον υπολογισμό του ορίου θραύσεως

$$d_{eff} \le 100mm \qquad K_1(d_{eff}) = 1$$

$$100mm < d_{eff} < 300mm \qquad K_1(d_{eff}) = 1 - 0.23 \lg \left(\frac{d_{eff}}{100mm}\right) \qquad (5.1)$$

$$300mm \le d_{eff} \le 500mm \qquad K_1(d_{eff}) = 0.89$$

Για τον υπολογισμό του ορίου πλαστικής παραμόρφωσης

$$d_{eff} \le 32mm K_{1}(d_{eff}) = 1$$

$$32mm < d_{eff} < 300mm; d_{B} = 16mm K_{1}(d_{eff}) = 1 - 0.26 \lg \left(\frac{d_{eff}}{2d_{B}}\right) (5.2)$$

$$300mm \le d_{eff} \le 500mm K_{1}(d_{eff}) = 0.75$$

Εναζωτωμένοι χάλυβες:

Για τον υπολογισμό του ορίου θραύσεως και του ορίου πλαστικής παραμόρφωσης

$$d_{eff} \le 100mm \qquad K_1(d_{eff}) = 1$$

$$100mm < d_{eff} < 300mm \qquad K_1(d_{eff}) = 1 - 0.23 \lg \left(\frac{d_{eff}}{100mm}\right) \qquad (5.3)$$

$$300mm \le d_{eff} \le 500mm \qquad K_1(d_{eff}) = 0.89$$

- Επιβελτιωμένοι χάλυβες και ενανθρακωμένοι χάλυβες με υψηλή περιεκτικότητα σε Cr, Ni, Mo.

Για τον υπολογισμό του ορίου θραύσεως και του ορίου πλαστικής παραμόρφωσης

$$d_{eff} \le 16mm \qquad K_{1}(d_{eff}) = 1$$

$$16mm < d_{eff} < 300mm; d_{B} = 16mm \qquad K_{1}(d_{eff}) = 1 - 0.26 \lg \left(\frac{d_{eff}}{d_{B}}\right) \qquad (5.4)$$

$$300mm \le d_{eff} \le 500mm \qquad K_{1}(d_{eff}) = 0.67$$

- Ενανθρακωμένοι χάλυβες με χαμηλή περιεκτικότητα σε Cr, Ni, Mo.

Για τον υπολογισμό του ορίου θραύσεως και του ορίου πλαστικής παραμόρφωσης

$$d_{eff} \le 11mm K_{1}(d_{eff}) = 1$$

$$11mm < d_{eff} < 300mm; d_{B} = 11mm K_{1}(d_{eff}) = 1 - 0.411g\left(\frac{d_{eff}}{d_{B}}\right) (5.5)$$

$$300mm \le d_{eff} \le 500mm K_{1}(d_{eff}) = 0.41$$

Εναλλακτικά οι τιμές μπορούν να λαμβάνονται από το διάγραμμα (Σχ. 5.1).

Σχ. 5.1 Συντελεστής επίδρασης μεγέθους στη θερμική κατεργασία $K_1\!\left(\!d_{\mathit{eff}}\right)$

5.2 Συντελεστής εγκοπής $\beta_{\sigma \tau}$

Ο συντελεστής εγκοπής ορίζεται ως ο λόγος της δυναμικής αντοχής σε εναλλασσόμενη καταπόνηση ενός λείου δοκιμίου διαμέτρου d, προς την δυναμική αντοχή σε εναλλασσόμενη καταπόνηση ενός άλλο δοκιμίου ιδίων χαρακτηριστικών (διάμετρος, υλικό, τραχύτητα) αλλά με εγκοπή. Έτσι, ανάλογα με το είδος της καταπόνησης, ο συντελεστής εγκοπής ορίζεται με τις σχέσεις:

- Εφελκυσμός / θλίψη, κάμψη

$$\beta_{\sigma} = \frac{\sigma_{zd,bW}(d)}{\sigma_{zd,bWK}} \tag{5.6}$$

- Στρέψη

$$\beta_{\tau} = \frac{\tau_{tW}(d)}{\tau_{tWK}} \tag{5.7}$$

Ο συντελεστής εγκοπής μπορεί να προσδιοριστεί:

- από μετρήσεις, ή
- χρησιμοποιώντας τον συντελεστή μορφής της εγκοπής.

5.2.1 Υπολογισμός του συντελεστή εγκοπής $\beta_{\sigma,\tau}$ από μετρήσεις

Ο συντελεστής εγκοπής εξαρτάται από:

- το είδος και τις διαστάσεις της εγκοπής,
- το υλικό κατασκευής και τις διαστάσεις του εξαρτήματος (δηλαδή του άξονα ή της ατράκτου που ελέγχεται η αντοχή), και τέλος από
- το είδος της καταπόνησης.

Επειδή όμως κατά κανόνα η διάμετρος των δοκιμίων d_{BK} είναι διαφορετική από τη διάμετρο d του εξαρτήματος, χρησιμοποιείται ο συντελεστής επίδρασης μεγέθους στην εγκοπή $K_3(d)$:

$$\beta_{\sigma} = \beta_{\sigma} (d_{BK}) \frac{K_3(d_{BK})}{K_3(d)} \tag{5.8}$$

Η σχέση αυτή ισχύει για εφελκυσμό/θλίψη και κάμψη. Για στρέψη ισχύει η ίδια σχέση θέτοντας β_{τ} όπου β_{σ} .

Ο συντελεστής επίδρασης μεγέθους στην εγκοπή K_3 υπολογίζεται σύμφωνα με το κεφ. 5.4

Στη συνέχεια παρατίθενται πειραματικά προσδιορισμένοι συντελεστές εγκοπών για ορισμένες συνηθισμένες εγκοπές.

5.2.1.1 Σφηνότοπος και σύσφιξη

Ο ακόλουθος πίνακας Π. 5.1 περιλαμβάνει τους συντελεστές εγκοπής $\beta_{\sigma}(d_{\mathit{BK}})$, $\beta_{\tau}(d_{\mathit{BK}})$ σε συνάρτηση με το όριο θραύσεως λείου δοκιμίου διαμέτρου $d_{\mathit{BK}}=40\,\mathit{mm}$.

Π. 5.1 Συντελεστές $oldsymbol{eta}_{\sigma}$ και $oldsymbol{eta}_{ au}$ για σφηνότοπο ή σύσφιξη										
Σφηνότοπος ή σύσφιζη		$\sigma_{\scriptscriptstyle B}(d) \ {\it N/mm}^2$								
24111010100511 00041511			500	600	700	800	900	1000	1100	1200
	0 (1)	2.1	2.3	2.5	2.6	2.8	2.9	3.0	3.1	3.2
	$eta_{\sigma}(d_{\scriptscriptstyle BK})$	$\beta_{\sigma}(d_{BK}) \approx 3.0 (\sigma_{B}(d)/(1000N/mm^{2}))^{0.38}$						38		
	B(A)	1.3	1.4	1.5	1.6	1.7	1.8	1.8	1.9	2.0
	$eta_{ au}(d_{\mathit{BK}})$	$\beta_{\tau}(d_{BK}) \approx 0.56 \beta_{\sigma}(d_{BK}) + 0.1$								
	$eta_{\sigma}(d_{\scriptscriptstyle BK})$	1.8	2.0	2.2	2.3	2.5	2.6	2.7	2.8	2.9
		$\beta_{\sigma}(d_{BK}) \approx 2.7 (\sigma_{B}(d)/(1000N/mm^{2}))^{0.43}$					43			
	0(1)	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.8	1.9
\(\ldot\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$eta_{ au}(d_{\scriptscriptstyle BK})$			β_{τ}	(d_{BK})	≈ 0.6	$5\beta_{\sigma}$	d_{BK}		

Οι ονομαστικές τάσεις υπολογίζονται με τη διάμετρο d.

Οι συντελεστές τραχύτητας $K_{{\scriptscriptstyle F}\sigma}=K_{{\scriptscriptstyle F}\tau}=1$

Για δύο σφηνότοπους οι συντελεστές β_{σ} και β_{τ} που δίδονται στον πίνακα Π. 5.1 προσαυξάνονται κατά 15%.

5.2.1.2 Πολύσφηνα

Σημ.: Οι ονομαστικές τάσεις υπολογίζονται με τη διάμετρο d

Σχ. 5.3 Συντελεστής εγκοπής $\beta_{\rm t}$ και συντελεστής $\beta_{\rm t}^*$

Σχ. 5.2 Πολύσφηνο με ορθογωνικούς σφήνες

Οι συντελεστές τραχύτητας $K_{{\scriptscriptstyle F}\sigma}=K_{{\scriptscriptstyle F}\tau}=1$

Πειραματικά διαπιστώθηκε ότι ο συντελεστής εγκοπής για στρέψη β_{τ} πολύσφηνων με εξωτερική διάμετρο $d_{\mathit{BK}} = 29\,mm$ υπολογίζεται από τις ακόλουθες σχέσεις:

- Για χάλυβες ενανθρακωμένους και βαμμένους είναι

$$\beta_{\sigma}(d_{RK}) = 1; \ \beta_{\sigma}(d_{RK}) = 1, \ K_{V} = 1$$
 (5.9)

- Για όλους τους άλλους χάλυβες ανάλογα με το είδος της καταπόνησης και του πολύσφηνου ισχύουν τα ακόλουθα

Για εφελκυσμο/θλίψη και κάμψη

- πολύσφηνο με ορθογωνικούς σφήνες

$$\beta_{\sigma}(d_{BK}) = 1 + 0.45(\beta_{\tau}^{*}(d_{BK}) - 1)$$
 (5.10)

πολύσφηνο με τριγωνικούς σφήνες

$$\beta_{\sigma}(d_{BK}) = 1 + 0.65(\beta_{\tau}^{*}(d_{BK}) - 1)$$
 (5.11)

- πολύσφηνο με εξελιγμένους σφήνες

$$\beta_{\sigma}(d_{BK}) = 1 + 0.49(\beta_{\tau}^{*}(d_{BK}) - 1)$$
 (5.12)

Για στρέψη (Σχ. 5.3)

- πολύσφηνο με ορθογωνικούς ή τριγωνικούς σφήνες

$$\beta_{\tau}(d_{RK}) = \beta_{\tau}^*(d_{RK}) \tag{5.13}$$

- πολύσφηνο με εξελιγμένους σφήνες

$$\beta_{\tau}(d_{RK}) = 1 + 0.75(\beta_{\tau}^{*}(d_{RK}) - 1)$$
 (5.14)

όπου $\boldsymbol{\beta}_{\tau}^{*}$ υπολογίζεται από τη σχέση

$$\beta_{\tau}^{*}(d_{BK}) = \exp\left(4.2 \cdot 10^{-7} \left(\frac{\sigma_{B}(d)}{N/mm^{2}}\right)^{2}\right)$$
 (5.15)

5.2.1.3 Περιφερειακό αυλάκι για ασφάλειες

Οι συντελεστές εγκοπής για ορθές καταπονήσεις και στρέψη, για περιφερεικό αυλάκι για ασφάλειες (Σχ. 5.4) υπολογίζονται σύμφωνα με τις ακόλουθες σχέσεις. Οι τάσεις υπολογίζονται για τη διάμετρο d

Σχ. 5.4 Περιφερειακό αυλάκι για ασφάλειες

Εφελκυσμός/θλίψη
$$\beta_{\sigma}^{*} = 0.9 \left(1.27 + 1.17 \sqrt{\frac{t}{r_{f}}} \right), \quad r_{f} = r + 2.9 \rho^{*}$$
 (5.16)

Κάμψη
$$\beta_{\sigma}^{*} = 0.9 \left(1.14 + 1.08 \sqrt{\frac{t}{r_{f}}} \right), \quad r_{f} = r + 2.9 \rho^{*}$$
 (5.17)

Στρέψη
$$β_{\tau}^* = \left(1.48 + 0.45 \sqrt{\frac{t}{r_f}}\right), \qquad r_f = r + \rho^*$$
 (5.18)

όπου η ακτίνα ιδεατής εγκοπής για χάλυβα δίνεται από τη σχέση $\rho^* = 10^{-(0.514+0.00152\sigma_{S}(d))}$ ή το Σχ. 5.5.

Οπότε για τον υπολογισμό του $\,eta_{\sigma, au}\,$ ισχύουν οι σχέσεις

$$\frac{m}{t} < 1.4 \qquad \beta_{\sigma,\tau} = \beta_{\sigma,\tau}^* 1.08 \left(\frac{m}{t}\right)^{-0.2}$$

$$\frac{m}{t} \ge 1.4 \qquad \beta_{\sigma,\tau} = \beta_{\sigma,\tau}^*$$

$$(5.19)$$

Αν από τις παραπάνω σχέσεις προκύψει $\beta_\sigma > 4$ τίθεται $\beta_\sigma = 4$. Αν προκύψει $\beta_\tau > 2.5$ τίθεται $\beta_{\tau} = 2.5$.

Σχ. 5.5 Ακτίνα ιδεατής εγκοπής κατά Neuber

Υπολογισμός του συντελεστή εγκοπής $eta_{\sigma, au}$ από τον συντελεστή μορφής $lpha_{\sigma, au}$ 5.2.2

Ο συντελεστής μορφής της εγκοπής ορίζεται ως ο λόγος της μέγιστης αναπτυσσόμενης τάσης στην εγκοπή προς την ονομαστική τάση (σ_n , τ_n). Ανάλογα με το είδος της καταπόνησης ορίζεται λοιπόν από τις σχέσεις:

$$\alpha_{\sigma} = \frac{\sigma_{\max K}}{\sigma_{n}}$$

$$\alpha_{\tau} = \frac{\tau_{\max K}}{\tau_{n}}$$
(5.20)

$$\alpha_{\tau} = \frac{\tau_{\text{max}K}}{\tau_n} \tag{5.21}$$

Ο συντελεστής μορφής μπορεί να προσδιοριστεί πειραματικά, αλλά και να υπολογιστεί χρησιμοποιώντας π.χ. πεπερασμένα στοιχεία.

Όταν είναι γνωστός ο συντελεστής μορφής $a_{\sigma, \tau}$ της εγκοπής μπορεί να προσδιορισθεί ο συντελεστής εγκοπής $\beta_{\sigma,\tau}$ χρησιμοποιώντας την μέθοδο του Stieler:

$$\beta_{\sigma,\tau} = \frac{\alpha_{\sigma,\tau}}{n} \tag{5.22}$$

Ο συντελεστής δυναμικής αντιστήριξης η υπολογίζεται, ανάλογα με το είδος του υλικού, ως εξής:

Για χάλυβες που έχουν υποστεί επιφανειακή σκλήρυνση (με ενανθράκωση και βαφή, φλογοβαφή, επαγωγική βαφή, εναζώτωση κλπ) και για όλα τα είδη καταπόνησης:

$$n = 1 + \sqrt{G' \cdot mm} \cdot 10^{-0.7} \tag{5.23}$$

Για όλους τους άλλους χάλυβες:

$$n = 1 + \sqrt{G' \cdot mm} \cdot 10^{-\left(0.33 + \frac{\sigma_s(d)}{712N/mm^2}\right)}$$
 (5.24)

όπου

$$\sigma_{S}(d) = K_{1}(d_{eff})\sigma_{S}(d_{B})$$
 (5.25)

Η σχετική πτώση τάσης G' υπολογίζεται σύμφωνα με τον πίνακα Π. 5.2.

Ο συντελεστής δυναμικής αντιστήριξης μπορεί να προκύψει και από το σχήμα Σχ. 5.6

Π. 5.2 Σχετική πτώση τάσης G'						
Εγκοπή	Είδος καταπόνησης	Σχετική πτώση τάσης G'				
	Εφελκ./θλίψη	$\frac{2(1+\varphi)}{r}$				
	Κάμψη	$\frac{2(1+\varphi)}{r}$				
	Στρέψη	$\frac{1}{r}$				
	Εφελκ./θλίψη	$\frac{2.3(1+\varphi)}{r}$				
	Κάμψη	$\frac{2.3(1+\varphi)}{r}$				
	Στρέψη	$\frac{1.15}{r}$				
	Εφελκ./θλίψη	$\frac{2.3}{r}$				
	Κάμψη	$\frac{2.3}{r} + \frac{2}{d}$				
	Στρέψη	$\frac{1.15}{r} + \frac{2}{d}$				
$\operatorname{gra} \frac{d}{D} > 0.67, r > 0$	$\varphi = \frac{1}{4\sqrt{t/r} + 2}$					
στις υπόλοιπες περιπτώσεις	$\varphi = 0$					

Σχ. 5.6 Συντελεστής δυναμικής αντιστήριξης n

5.2.2.1 Διαβάθμιση και περιφερειακό αυλάκι

$$\alpha_{\sigma,\tau} = 1 + \frac{1}{\sqrt{A\frac{r}{t} + 2B\frac{r}{d}\left(1 + 2\frac{r}{d}\right)^2 + C\left(\frac{r}{t}\right)^2}}$$
 (5.26)

Οι τιμές των συντελεστών $A,\,B,\,C$ και του εκθέτη z καθορίζονται ανάλογα με το είδος της καταπόνησης

Για περιφερειακό αυλάκι:

 $lpha_{\sigma R}$

	A	В	С	Z
Εφελκυσμός/Θλίψη	0.22	1.37	0	0
Κάμψη	0.2	2.75	0	0
Στρέψη	0.7	10.3	0	0

Για διαβάθμιση:

 $lpha_{\sigma^{\mathsf{A}}}$

	A	В	С	Z
Εφελκυσμός/Θλίψη	0.62	3.5	0	0
Κάμψη	0.62	5.8	0.2	3
Στρέψη	3.4	19	1	2

Διαβάθμιση με περιφερειακό αυλάκι μορφής (ξεθύμασμα)

Ο συντελεστής μορφής για ορθές καταπονήσεις υπολογίζεται σε συνάρτηση των συντελεστών μορφής για περιφερειακό αυλάκι $\alpha_{\sigma,\text{tR}}$ και διαβάθμιση $\alpha_{\sigma,\text{tA}}$

$$\alpha_{\sigma F} = \left(\alpha_{\sigma R} - \alpha_{\sigma A}\right) \sqrt{\frac{D_1 - d}{D - d}} + \alpha_{\sigma A} \tag{5.27}$$

Ο συντελεστής μορφής για στρέψη είναι:

$$\alpha_{rF} = 1.04\alpha_{rA} \tag{5.28}$$

 Στα διαγράμματα που ακολουθούν (Σχ. 5.7 - Σχ. 5.12) παρουσιάζονται οι συντελεστές μορφής για περιφερειακό αυλάκι $\alpha_{\sigma,\mathrm{tR}}$ και διαβάθμιση $\alpha_{\sigma,\mathrm{tA}}$

εγκοπή

Σχ. 5.7 Συντελεστής α_{σ} για εφελκυσμό/θλίψη σε Σχ. 5.8 Συντελεστής α_{σ} για κάμψη σε εγκοπή

Σχ. 5.9 Συντελεστής $\alpha_{\scriptscriptstyle \tau}$ για στρέψη σε εγκοπή

Σχ. 5.11 Συντελεστής α_{σ} για κάμψη σε διαβάθμιση

Σχ. 5.10 Συντελεστής α_{σ} για εφελκυσμό/θλίψη σε διαβάθμιση

Σχ. 5.12 Συντελεστής α_{τ} για στρέψη σε διαβάθμιση

5.2.2.3 Εγκάρσια οπή

Οι ονομαστικές τάσεις δίδονται από τις σχέσεις

$$\sigma_{zdn} = F / (\pi d^2 / 4 - 2rd)$$

$$\sigma_{bn} = M_b / (\pi d^3 / 32 - rd^2 / 3)$$

$$\tau_n = T / (\pi d^3 / 16 - rd^2 / 3)$$
(5.29)

Ο συντελεστής μορφής για τα διάφορα είδη καταπόνησης υπολογίζεται από τις σχέσεις που ακολουθούν ή από το $\Sigma \chi$. 5.13

$$\alpha_{zd\sigma} = 3 - (2r/d)$$

$$\alpha_{b\sigma} = 1.4(2r/d) + 3 - 2.8\sqrt{2r/d}$$

$$\alpha_{\tau} = 2.023 - 1.125\sqrt{2r/d}$$
(5.30)

Σχ. 5.13 Συντελεστής μορφής $\alpha_{\sigma, \tau}$ για εγκάρσια οπή

5.3 Συντελεστής επίδρασης μεγέθους $K_2(d)$

Με τον συντελεστή αυτόν λαμβάνεται υπόψη το γεγονός ότι όταν αυξάνεται η διάμετρος των δοκιμίων ελαττώνεται η αντοχή σε κάμψη (πλησιάζοντας την αντοχή σε εφελκυσμό/θλίψη) και η αντοχή σε στρέψη.

Για εφελκυσμό/θλίψη

$$K_2(d) = 1$$
 (5.31)

Για κάμψη και στρέψη

7.5mm
$$\leq d \leq 150$$
mm $K_2(d) = 1 - 0.2 \frac{\lg(d/7.5 mm)}{\lg 20}$ (5.32)
 $d > 150$ $K_2(d) = 0.8$

Στο σχήμα που ακολουθεί εμφανίζεται ο συντελεστής $K_2(d)$

Σχ. 5.14 Συντελεστής επίδρασης μεγέθους $K_2(d)$

5.4 Συντελεστής επίδρασης μεγέθους στην εγκοπή $\,K_{\scriptscriptstyle 3}(d)\,$

Η επίδραση της εγκοπής στην αντοχή εξαρτάται από τη διάμετρο της διατομής. Το γεγονός αυτό λαμβάνεται υπόψη με τον συντελεστής επίδρασης μεγέθους στην εγκοπή $K_3(d)$, μόνον όταν ο συντελεστής εγκοπής υπολογίζεται από μετρήσεις:

- Για ορθές καταπονήσεις είναι:

7.5
$$mm \le d \le 150mm$$
 $K_3(d) = 1 - 0.2 \lg \alpha_\sigma \frac{\lg(d/7.5mm)}{\lg 20}$ (5.33)
 $d > 150$ $K_3(d) = 1 - 0.2 \lg \alpha_\sigma$

όπου

- α_σ ο συντελεστής μορφής της εγκοπής για ορθή καταπόνηση. Όταν δεν μπορεί να προσδιορισθεί τίθεται κατά προσέγγιση $\alpha_\sigma=\beta_\sigma$.
- Για στρέψη ισχύει η προηγούμενη σχέση αντικαθιστώντας το α_{σ} με α_{τ} (ή β_{τ} όταν είναι άγνωστος ο συντελεστής μορφής).

Στο σχήμα Σχ. 5.15 που ακολουθεί εμφανίζεται ο συντελεστής $K_3(d)$

Σχ. 5.15 Συντελεστής επίδρασης μεγέθους στην εγκοπή $K_3(d)$

5.5 Συντελεστής τραχύτητας K_F

Με τον συντελεστή αυτόν λαμβάνεται υπόψη η επίδραση της τραχύτητας στη δυναμική αντοχή

- Για ορθές καταπονήσεις (Σχ. 5.16)

$$K_{F\sigma} = 1 - 0.22 \lg \left(\frac{R_z}{\mu m}\right) \left(\lg \frac{\sigma_B(d)}{20 \frac{N}{mm^2}} - 1\right)$$
 (5.34)

Στην εξίσωση αυτή το όριο θραύσεως $\sigma_{\scriptscriptstyle B}(d) = K_{\scriptscriptstyle 1}(d_{\scriptscriptstyle eff})\sigma_{\scriptscriptstyle B}(d_{\scriptscriptstyle b})$

Για στρέψη

$$K_{F_{\tau}} = 0.575K_{F_{\sigma}} + 0.425 \tag{5.35}$$

όταν ο υπολογισμός γίνεται χρησιμοποιώντας συντελεστή εγκοπής που προέκυψε από πειράματα με δοκίμια τραχύτητας R_{zB} τότε οι αντίστοιχες τιμές των συντελεστών τραχύτητας δίδονται από τις σχέσεις

$$K_{F\sigma} = \frac{K_{F\sigma}(R_z)}{K_{F\sigma}(R_{zB})}$$
 (5.36)

$$K_{F\tau} = \frac{K_{F\tau}(R_z)}{K_{F\tau}(R_{zB})} \tag{5.37}$$

Σε ορισμένες περιπτώσεις τα πειράματα έγιναν με τυπικές κατεργασίες όπου είναι δύσκολο να επηρεασθεί η τραχύτητα (π.χ. σφηνότοποι, πολύσφηνα). Στις περιπτώσεις αυτές δεν χρειάζονται να χρησιμοποιούνται οι παραπάνω σχέσεις και λαμβάνεται $K_{F\sigma}, K_{F\tau}=1$.

Σχ. 5.16 Συντελεστής τραχύτητας $K_{{\scriptscriptstyle F}\sigma}$.

5.6 Συντελεστής αύξησης επιφανειακής αντοχής $K_{\scriptscriptstyle V}$.

Η επιφανειακή αντοχή των χαλύβων μπορεί να αυξηθεί είτε με θερμικές κατεργασίες (εναζώτωση, ενανθράκωση και βαφή, επαγωγική βαφή, φλογοβαφή) είτε με μηχανικές κατεργασίες (κύλιση, σφαιροβολή).

Εάν δεν έχει γίνει καμία από τις παραπάνω επιφανειακές κατεργασίες τότε $K_{V}=1$.

Σε αντίθετη περίπτωση εκλέγεται ο K_V ανάλογα με την επιφανειακή κατεργασία σύμφωνα με τα παρακάτω διαγράμματα $\Sigma \chi$. 5.17.

Η περιοχή (2) των διαγραμμάτων χρησιμοποιείται όταν ο συντελεστής $\beta_{\sigma,\tau}$ έχει προσδιορισθεί από πειράματα σύμφωνα με το κεφάλαιο 5.2.1, δηλαδή σε δοκίμια χωρίς επιφανειακή κατεργασία. Οι τιμές της περιοχής αυτής ισχύουν μόνο εφόσον $\beta_{\sigma,\tau}>K_V$ σε αντιθετη περίπτωση εκλέγονται οι τιμές του K_V από την περιοχή (1).

Η περιοχή (1) των διαγραμμάτων χρησιμοποιείται σε όλες τις άλλες περιπτώσεις δηλαδή

- ο $eta_{\sigma, au}$ έχει προσδιορισθεί από τον συντελεστή μορφής $lpha_{\sigma, au}$
- ο $\beta_{\sigma,r}$ έχει προσδιορισθεί από πειράματα με δοκίμια με επιφανειακή κατεργασία.

Για λεία δοκίμια ισχύει η περιοχή (1).

Για διαμέτρους 40 < d < 250 συνιστάται να λαμβάνεται $K_V = 1$ για εγκοπές με ασθενή επίδραση ή $K_V = 1.1$ για εγκοπές με ισχυρή επίδραση.

Για διαμέτρους $d \ge 250$ λαμβάνεται $K_V = 1$.

Σχ. 5.17 Συντελεστής αύξησης επιφανειακής αντοχής $\,K_{\scriptscriptstyle V}\,$.

6 Υπολογισμός σε πλαστική παραμόρφωση

Ο συντελεστή ασφάλειας S_F υπολογίζεται συγκρίνοντας τις μέγιστες τάσεις που εμφανίζονται κατά τη λειτουργία προς το αντίστοιχο όριο παραμόρφωσης.

$$S_{F} = \frac{1}{\sqrt{\left(\frac{\sigma_{zd\text{max}}}{\sigma_{zFK}} + \frac{\sigma_{b\text{max}}}{\sigma_{bFK}}\right)^{2} + \left(\frac{\tau_{\text{max}}}{\tau_{tFK}}\right)^{2}}}$$
(6.1)

όπου

 $\sigma_{zd\max}, \sigma_{b\max}, \tau_{t\max}$ είναι οι μέγιστες τάσεις που μπορούν να εμφανισθούν και δίδονται από τον ακόλουθο πίνακα Π . 6.1 συναρτήσει των $F_{zd\max}, M_{b\max}, T_{\max}$

Π. 6.1 Υπολογισμός μέγιστων τάσεων.		
Είδος καταπόνησης	Μέγιστη τάση	Διατομή ή ροπή α- ντιστάσεως
Εφελκ/θλίψη	$\sigma_{zd \max} = \frac{F_{zd \max}}{A}$	$A = \frac{\pi}{4} \left(d^2 - d_i^2 \right)$
Κάμψη	$\sigma_{b\text{max}} = \frac{M_{b\text{max}}}{W_b}$	$W_b = \frac{\pi}{32} \frac{\left(d^4 - d_i^4\right)}{d}$
Στρέψη	$\tau_{t\text{max}} = \frac{T_{\text{max}}}{W_t}$	$W_t = \frac{\pi}{16} \frac{\left(d^4 - d_i^4\right)}{d}$

 $\sigma_{zdFK}, \sigma_{bFK}, \tau_{tFK}$ είναι οι επιτρεπόμενες τάσεις εκφράζονται συναρτήσει του ορίου πλαστικής παραμόρφωσης και δίδονται από τις σχέσεις

$$\sigma_{zd,bFK} = K_1 \left(d_{eff} \right) K_{2F} \gamma_F \sigma_S \left(d_B \right) \tag{6.2}$$

$$\tau_{tFK} = K_1 \left(d_{eff} \right) K_{2F} \gamma_F \frac{\sigma_S \left(d_B \right)}{\sqrt{3}} \tag{6.3}$$

όπου

 $K_1(d_{\it eff})$ είναι ο συντελεστής επίδρασης μεγέθους στη θερμική κατεργασία. Υπολογίζεται ανάλογα με το υλικό κατασκευής, τη θερμική κατεργασία και την διάμετρο όπως περιγράφεται στο κεφ. 5.1

 K_{2F} είναι ο συντελεστής στατικής αντιστήριξης και δίνεται από τους ακόλουθους πίνακες ανάλογα με το είδος της θερμικής κατεργασίας

- Για χάλυβες χωρίς σκληρό επιφανειακό στρώμα από τον πίνακα Π. 6.2

Π. 6.2 Συντελεστής στατικής αντιστήριξης K_{2F} για χάλυβες χωρίς σκληρό επίστρωμα.			
Είδος καταπόνησης	K_{2F}		
	Πλήρης διατομή	Κοίλη διατομή	
Εφελκ/θλίψη	1.0	1.0	
Κάμψη	1.2	1.1	
Στρέψη	1.2	1.0	

- Για χάλυβες με σκληρό επιφανειακό στρώμα από τον πίνακα Π. 6.3

Π. 6.3 Συντελεστής στατικής αντιστήριξης K_{2F} για χάλυβες με σκληρό		
επίστρωμα.		
Είδος καταπόνησης	Πλήρης διατομή	Κοίλη διατομή
Εφελκ/θλίψη	1.0	1.0
Κάμψη	1.1	1.0
Στρέψη	1.1	1.0

 γ_F είναι ο συντελεστής αύξησης του ορίου πλαστικής παραμόρφωσης. Για περιφερειακές εγκοπές δίνεται από τον ακόλουθο πίνακα συναρτήσει των a_σ ή β_σ

Π . 6.4 Συντελεστής αύξησης του ορίου πλαστικής παραμόρφωσης γ_F .		
Είδος καταπόνησης	$lpha_{\sigma}$ ή eta_{σ}	${oldsymbol{\gamma}}_F$
	μέχρι 1.5	1.00
Εφελκ/θλίψη ή	1.5 μέχρι 2.0	1.05
Κάμψη	2.0 μέχρι 3.0	1.10
	μεγαλύτερο του 3.0	1.15
Στρέψη	οποιαδήποτε	1.00

7 Συνοπτική παρουσίαση του υπολογισμού ατράκτων - αξόνων

7.1 Υπολογισμός ατράκτων-αξόνων σε πλαστική παραμόρφωση.

	•
Από τους πίνακες των υλικών προκύπτουν η διάμετρος $d_{\it B}$, οι τάσεις $\sigma_{\it B},\sigma_{\it S},\sigma_{\it zdW},\sigma_{\it bW},\tau_{\it tW}$	Κεφ. 2
Συντελεστής επίδρασης μεγέθους στη θερμική κατεργασία $K_{\scriptscriptstyle 1} \! \left(\! d_{\it eff} \! \right)$	Κεφ. 5.1
Συντελεστής στατικής αντιστήριξης K_{2F}	Κεφ. 6
Συντελεστής αύξησης του ορίου πλαστικής παραμόρφωσης γ_F	Κεφ. 6
Επιτρεπόμενες τάσεις για πλαστική παραμόρφωση $\sigma_{\mathit{zdFK}}, \sigma_{\mathit{bFK}}, \tau_{\mathit{tFK}}$	Kεφ. 6 $\sigma_{zd,bFK} = K_1(d_{eff})K_{2F}\gamma_F\sigma_S(d_B)$ $\tau_{tFK} = K_1(d_{eff})K_{2F}\gamma_F\frac{\sigma_S(d_B)}{\sqrt{3}}$
Από τις φορτίσεις $F_{zd\max}, M_{b\max}, T_{\max}$ υπολογίζονται οι ονομαστικές τάσεις $\sigma_{zd\max}, \sigma_{b\max}, \tau_{t\max}$	Κεφ. 6
Συντελεστής ασφάλειας σε πλαστική παραμόρφωση	$S_F = \frac{1}{\sqrt{\left(\frac{\sigma_{zd\text{max}}}{\sigma_{zFK}} + \frac{\sigma_{b\text{max}}}{\sigma_{bFK}}\right)^2 + \left(\frac{\tau_{t\text{max}}}{\tau_{tFK}}\right)^2}}$

7.2 Υπολογισμός ατράκτων-αξόνων σε δυναμική θραύση.

Από τους πίνακες των υλικών προκύπτουν η διά-	Κεφ. 2
μετρος d_B , οι τάσεις $\sigma_B, \sigma_S, \sigma_{zdW}, \sigma_{bW}, \tau_{tW}$	1104. 2
By Sy Zan y on y in	
Συντελεστής επίδρασης μεγέθους στη θερμική	Κεφ. 5.1
κατεργασία $K_1(d_{\mathit{eff}})$	
Συντελεστής εγκοπής $oldsymbol{eta}_{\sigma, au}$ από μετρήσεις	Κεφ. 5.2.1
συντελεστής επίδρασης μεγέθους στην εγκο-	Κεφ. 5.4
$πή K_3(d)$	V (1)
• Υπολογισμός συντελεστή εγκοπής $oldsymbol{eta}_{\sigma, au}$	$\beta_{\sigma} = \beta_{\sigma}(d_{BK}) \frac{K_3(d_{BK})}{K_3(d)}$
Συντελεστή εγκοπής $oldsymbol{eta}_{\sigma, au}$ από τον συντελεστή	Κεφ. 5.2.2
μορφής $\alpha_{\sigma, \tau}$	
• σχετική πτώση τάσης G'	
• συντελεστής δυναμικής αντιστήριξης <i>n</i>	
$ullet$ συντελεστή μορφής $lpha_{\sigma, au}$	
 Υπολογισμός συντελεστή εγκοπής $β_{\sigma z}$ 	$\beta_{\sigma,\tau} = \frac{\alpha_{\sigma,\tau}}{\sigma}$
Thomographic doubles on the symmetry $\rho_{\sigma,\tau}$	n
Συντελεστής επίδρασης μεγέθους $K_2(d)$	Κεφ. 5.3
Συντελεστής τραχύτητας $K_{\scriptscriptstyle F}$	Κεφ. 5.5
Συντελεστής αύξησης επιφανειακής αντοχής $K_{\scriptscriptstyle V}$	Κεφ. 5.6
Συνολικός συντελεστής επίδρασης εγκοπής $K_{\sigma, \tau}$	Κεφ. 4.2.1
	$K_{\sigma} = \left(\frac{\beta_{\sigma}}{K_2(d)} + \frac{1}{K_{F\sigma}} - 1\right) \frac{1}{K_V}$
	$K_{\tau} = \left(\frac{\beta_{\tau}}{K_2(d)} + \frac{1}{K_{F\tau}} - 1\right) \frac{1}{K_V}$
Από τις φορτίσεις υπολογισμός των	Κεφ. 4.1
- ημιεύρος δυναμικής τάσης $\sigma_{zd,ba}$, τ_{ta} ,	
$ullet$ μέση τάση $\sigma_{zd,bm}$, $ au_{lm}$,	
ισοδύναμη ορθή μέση τάση εφαπτομενική	
μέση τάση (σ_{mv}, au_{mv}).	

Επιτρεπόμενο ημιεύρος για εναλλασσόμενη καταπόνηση $\sigma_{zd,bWK}, \tau_{tWK}$	$Kεφ. 4.2.1$ $\sigma_{zdWK} = \frac{\sigma_{zdW}(d_B)K_1(d_{eff})}{K_{\sigma}}$ $\sigma_{bWK} = \frac{\sigma_{bW}(d_B)K_1(d_{eff})}{K_{\sigma}}$ $\tau_{tWK} = \frac{\tau_{tW}(d_B)K_1(d_{eff})}{K_{\tau}}$
συντελεστής καταπονήσεως $\psi_{zd,b\sigma\!K},\psi_{t\!K}$	$Kεφ. 4.2.2$ $\psi_{zdσK} = \frac{\sigma_{zdWK}}{2K_1(d_{eff})\sigma_B(d_B) - \sigma_{zdWK}}$ $\psi_{bσK} = \frac{\sigma_{bWK}}{2K_1(d_{eff})\sigma_B(d_B) - \sigma_{bWK}}$ $\psi_{\tau K} = \frac{\tau_{tWK}}{2K_1(d_{eff})\sigma_B(d_B) - \tau_{tWK}}$
Επιτρεπόμενο ημιεύρος για δυναμική καταπόνηση γενικής μορφής $\sigma_{zd,bADK}, \tau_{tADK}$ Περίπτωση φόρτισης F_1 ή Περίπτωση φόρτισης F_2	Κεφ. 4.2.2
Συντελεστής ασφάλειας σε δυναμική θραύση	$S_D = \frac{1}{\sqrt{\left(\frac{\sigma_{zda}}{\sigma_{zdADK}} + \frac{\sigma_{ba}}{\sigma_{bADK}}\right)^2 + \left(\frac{\tau_{ta}}{\tau_{tADK}}\right)^2}}$

7.3 Υπολογισμός τελικού συντελεστής ασφάλειας

Τελικός συντελεστής ασφάλειας	Κεφ. 1
	$S = \min(S_F, S_D)$

7.4 Έλεγχος συντελεστή ασφάλειας

Έλεγχος συντελεστή ασφάλειας	Κεφ. 1
	τουλάχιστον $S \ge 1.2$

8 Λογικό διάγραμμα υπολογισμού του συνολικού συντελεστή επίδρασης εγκοπής $K_{\sigma,\tau}$

9 Παραδείγματα

9.1 Παράδειγμα 1°

Στη διατομή

Δίδονται

Φορτίσεις

$$\sigma_b = \sigma_{bm} \pm \sigma_{ba} = 500 N / mm^2 \pm 50 N / mm^2$$

 $\tau_t = \tau_{tm} \pm \tau_{ta} = 100 N / mm^2 \pm 30 N / mm^2$

Υλικό 34CrMo4

Τραχύτητα $R_z = 5 \mu m$

Περίπτωση φόρτισης F_1 (σταθερή μέση φόρτιση)

Χωρίς επιφανειακή σκλήρυνση

Λύση

Από τον πίνακα Π. 2.1 για υλικό 34CrMo4 προκύπτει

$$d_B \le 16mm$$

$$\sigma_B = 1000 N / mm^2$$
, $\sigma_S = 800 N / mm^2$, $\sigma_{zdW} = 400 N / mm^2$, $\sigma_{bW} = 500 N / mm^2$, $\tau_{tW} = 300 N / mm^2$

Υπολογισμός για κάμψη

Συντελεστής μορφής a_{σ} (κεφ. 5.2.2.1)

Για την διαβάθμιση είναι d/D = 0.84, r/t = 1.25, r/d = 0.119

$$\alpha_{\sigma} = 1 + \frac{1}{\sqrt{A\frac{r}{t} + 2B\frac{r}{d}\bigg(1 + 2\frac{r}{d}\bigg)^2 + C\bigg(\frac{r}{t}\bigg)^2\frac{d}{D}}} \text{ , A=0.62, B=5.8, C=0.2, Z=3}$$

προκύπτει $\alpha_{\sigma} = 1.557$

Σχετική πτώση τάσης G' (κεφ. 5.2.2)

$$φ = \frac{1}{4\sqrt{t/r} + 2}$$
 προκύπτει $φ = 0.179$

$$G' = \frac{2.3(1+\varphi)}{r}$$
 προκύπτει $G' = 0.542mm^{-1}$

Συντελεστής επίδρασης μεγέθους στη θερμική κατεργασία $K_{\rm l} \! \left(\! d_{\it eff} \! \right)$ (κεφ. 5.1)

Από τα δεδομένα του υλικού $d_{\it B}=16mm$.

Από τον τρόπο κατεργασίας $d_{\it eff} = 50mm$

$$K_1(d_{eff}) = 1 - 0.26 \lg(d_{eff}/d_B) = 0.871$$

Υπολογισμός συντελεστή αντιστήριξης n (κεφ. 5.2)

$$\sigma_{S}(d) = K_{1}(d_{eff})\sigma_{S}(d_{B}) = 697N/mm^{2}$$

$$n = 1 + \sqrt{G' \cdot mm} \cdot 10^{-\left(0.33 + \frac{\sigma_s(d)}{712N/mm^2}\right)}$$

$$n = 1 + \sqrt{0.542 \cdot 10^{-\left(0.33 + \frac{697}{712}\right)}} = 1.036$$

Υπολογισμός συντελεστή εγκοπής β_{σ} (κεφ. 5.2)

$$\beta_{\sigma} = \alpha_{\sigma} / n = 1.557 / 1.036 = 1.503$$

Συντελεστής επίδρασης μεγέθους $K_2(d)$ (κεφ. 5.3)

$$7.5mm \le d \le 150mm \qquad K_2(d) = 1 - 0.2 \frac{\lg(d/7.5mm)}{\lg 20}$$

$$K_2(d) = 1 - 0.2 \frac{\lg(42/7.5)}{\lg 20} = 0.885$$

Συντελεστής τραχύτητας K_{F} (κεφ 5.5)

$$\sigma_B(d) = \sigma_B(d_B)K_1(d_{eff}) = 871N/mm^2$$

$$K_{F\sigma} = 1 - 0.22 \lg \left(\frac{R_z}{\mu m}\right) \left(\lg \frac{\sigma_B(d)}{20 \frac{N}{mm^2}} - 1\right)$$

$$K_{F\sigma} = 1 - 0.22 \lg(5) \left(\lg \frac{871}{20} - 1 \right)$$

$$K_{E_{\sigma}} = 0.902$$

Συντελεστής αύξησης επιφανειακής αντοχής K_{ν} (κεφ 5.6)

$$K_{\nu} = 1$$

Συνολικός συντελεστής επίδρασης εγκοπής K_{σ} (κεφ 4.2.1)

$$K_{\sigma} = \left(\frac{\beta_{\sigma}}{K_2(d)} + \frac{1}{K_{F\sigma}} - 1\right) \frac{1}{K_V}$$

$$K_{\sigma} = \left(\frac{1.503}{0.885} + \frac{1}{0.9} - 1\right) \frac{1}{1} = 1.809$$

Στρέψη

Υπολογισμός του συντελεστή μορφής a_{τ} (κεφάλαιο 5.2.2.1)

$$\alpha_{\tau} = 1 + \frac{1}{\sqrt{A\frac{r}{t} + 2B\frac{r}{d}\left(1 + 2\frac{r}{d}\right)^{2} + C\left(\frac{r}{t}\right)^{2}\frac{d}{D}}} , A=3.4, B=19, C=1, Z=2$$

προκύπτει $\alpha_{\tau} = 1.283$

Σχετική πτώση τάσης G' (κεφ. 5.2.2)

$$G' = \frac{1.15}{r}$$
 προκύπτει $G' = 0.23 mm^{-1}$

Συντελεστής επίδρασης μεγέθους στη θερμική κατεργασία $K_1(d_{\it eff})$ (κεφ. 5.1)

$$K_1(d_{eff}) = 0.871$$

Συντελεστή αντιστήριξης n (κεφ. 5.2.2)

$$\sigma_s(d) = 697N / mm^2$$

$$n = 1 + \sqrt{G' \cdot mm} \cdot 10^{-\left(0.33 + \frac{\sigma_s(d)}{712N/mm^2}\right)}$$

$$n = 1 + \sqrt{0.23 \cdot 10^{-\left(0.33 + \frac{697}{712}\right)}} = 1.024$$

Συντελεστής εγκοπής $β_{\tau}$ (κεφ. 5.2.2)

$$\beta_{\tau} = \alpha_{\tau} / n = 1.283 / 1.024 = 1.253$$

Συντελεστής επίδρασης μεγέθους $K_2(d)$ (κεφ. 5.3)

$$K_2(d) = 0.885$$

Συντελεστής τραχύτητας $K_{{\scriptscriptstyle F}_{\tau}}$ (κεφ. 5.5)

$$K_{F\tau} = 0.575 K_{F\sigma} + 0.425$$

$$K_{F\tau} = 0.575 \cdot 0.902 + 0.425$$

$$K_{E\tau} = 0.944$$

Συντελεστής αύξησης επιφανειακής αντοχής K_V (κεφ. 5.6)

$$K_{V} = 1$$

Συνολικός συντελεστής επίδρασης εγκοπής K_{τ} (κεφ. 4.2.1)

$$K_{\tau} = \left(\frac{\beta_{\tau}}{K_2(d)} + \frac{1}{K_{F\tau}} - 1\right) \frac{1}{K_V}$$

$$K_{\tau} = \left(\frac{1.253}{0.885} + \frac{1}{0.944} - 1\right)\frac{1}{1} = 1.475$$

Συντελεστής στατικής αντιστήριξης K_{2F} (κεφ 6.)

$$K_{2F\sigma} = 1.2$$

$$K_{2E\tau} = 1.2$$

Συντελεστής αύξησης του ορίου πλαστικής παραμόρφωσης γ_F (κεφ. 6.)

$$\gamma_{F\sigma} = 1.05$$

$$\gamma_{F\tau} = 1$$

Συντελεστές ασφάλειας

Επιτρεπόμενες τάσεις για πλαστική παραμόρφωση $\sigma_{\mathit{bFK}}, \tau_{\mathit{tFK}}$ (κεφ. 6)

$$\sigma_{bFK} = K_1(d_{eff})K_{2F}\gamma_F\sigma_S(d_B)$$

$$\sigma_{bEK} = 0.871 \cdot 1.2 \cdot 1.05 \cdot 800$$

$$\sigma_{bFK} = 878.0 N / mm^2$$

$$\tau_{tFK} = K_1 \left(d_{eff} \right) K_{2F} \gamma_F \frac{\sigma_S (d_B)}{\sqrt{3}}$$

$$\tau_{tFK} = 0.871 \cdot 1.2 \cdot 1 \cdot 800 / \sqrt{3}$$

$$\tau_{tFK} = 482.7 N / mm^2$$

Ισοδύναμες τάσεις (κεφ. 4.1)

$$\sigma_{mv} = \sqrt{\sigma_{bm}^2 + 3\tau_{tm}^2}$$

$$\sigma_{mv} = \sqrt{500^2 + 3 \cdot 100^2}$$

$$\sigma_{mv} = 529.1 N / mm^2$$

$$\tau_{mv} = \frac{\sigma_{mv}}{\sqrt{3}} = \frac{529.1}{\sqrt{3}} = 305.5 N / mm^2$$

Επιτρεπόμενο ημιεύρος για εναλλασσόμενη καταπόνηση σ_{WK} , τ_{WK} (κεφ. 4.2.1)

$$\sigma_{bWK} = \frac{\sigma_{bW}(d_B)K_1(d_{eff})}{K_{\sigma}}$$

$$\sigma_{bWK} = \frac{500 \cdot 0.871}{1.809} = 240.7 N / mm^2$$

$$\tau_{tWK} = \frac{\tau_{tW}(d_B)K_1(d_{eff})}{K_{\tau}}$$

$$\tau_{tWK} = \frac{300 \cdot 0.871}{1.475} = 177.1 N / mm^2$$

Συντελεστές καταπόνησης $\psi_{bo\!K}, \psi_{\tau\!K}$ (κεφ. 4.2.2)

$$\psi_{b\sigma K} = \frac{\sigma_{bWK}}{2K_1(d_{eff})\sigma_B(d_B) - \sigma_{bWK}}$$

$$\psi_{boK} = \frac{240.7}{2 \cdot 0.871 \cdot 1000 - 240.7}$$

$$\psi_{b\sigma\!K}=0.1603$$

$$\psi_{\tau K} = \frac{\tau_{tWK}}{2K_1(d_{eff})\sigma_B(d_B) - \tau_{tWK}}$$

$$\psi_{\tau K} = \frac{177.1}{2 \cdot 0.871 \cdot 1000 - 177.1}$$

$$\psi_{\tau K} = 0.1132$$

Επιτρεπόμενο ημιεύρος για δυναμική καταπόνηση γενικής μορφής $\sigma_{bADK}, \tau_{tADK}$ (κεφ. 4.2.2)

Περίπτωση φόρτισης F_1

Ισχύει
$$\sigma_{mv} < \frac{\sigma_{bFK} - \sigma_{bWK}}{1 - \psi_{b\sigma^K}} = \frac{878 - 240.7}{1 - 0.163} = 761.4 N / mm^2$$
 οπότε

$$\sigma_{bADK} = \sigma_{bWK} - \psi_{b\sigma K} \sigma_{mv}$$

$$\sigma_{bADK} = 240.7 - 0.1603 \cdot 529.1$$

$$\sigma_{bADK} = 155.8N / mm^2$$

Ισχύει
$$au_{mv} \leq \frac{ au_{tFK} - au_{tWK}}{1 - \psi_{\tau K}} = \frac{482.7 - 177.1}{1 - 0.1132} = 344.6 N \ / \ mm^2 \ \text{ οπότε}$$

$$\tau_{tADK} = \tau_{tWK} - \psi_{\tau K} \tau_{mv}$$

$$\tau_{tADK} = 177.1 - 0.1132 \cdot 305.5$$

$$\tau_{tADK} = 142.5 N / mm^2$$

Συντελεστής ασφάλειας σε δυναμική θραύση $\,S_{D}\,$ (κεφ. 4)

$$S_D = \frac{1}{\sqrt{\left(\frac{\sigma_{ba}}{\sigma_{bADK}}\right)^2 + \left(\frac{\tau_{ta}}{\tau_{tADK}}\right)^2}}$$

$$S_D = \frac{1}{\sqrt{\left(\frac{50}{155.8}\right)^2 + \left(\frac{30}{142.5}\right)^2}}$$

$$S_D = 2.61$$

Συντελεστής ασφάλειας σε πλαστική παραμόρφωση $S_{\scriptscriptstyle F}$ (κεφ. 6.)

$$\sigma_{b\,\mathrm{max}} = 500 N \, / \, mm^2 + 50 N \, / \, mm^2 = 550 N \, / \, mm^2$$

$$\tau_{t \max} = 100 N / mm^2 + 30 N / mm^2 = 130 N / mm^2$$

$$S_F = \frac{1}{\sqrt{\left(\frac{\sigma_{b \max}}{\sigma_{bFK}}\right)^2 + \left(\frac{\tau_{\max}}{\tau_{tFK}}\right)^2}}$$

$$S_F = \frac{1}{\sqrt{\left(\frac{550}{878.0}\right)^2 + \left(\frac{130}{482.7}\right)^2}}$$

$$S_F = 1.47$$

9.2 Παράδειγμα 2°

d = 50mm

στη διατομή του σχήματος στον σφηνότοπο υπάρχουν οι φορτίσεις

Εναλλασσόμενη κάμψη και στατική στρέψη

$$M_b = \pm 1200Nm$$

$$T = 3000Nm$$

Μέγιστες φορτίσεις

$$M_{b \max} = 1.5 \cdot M_b$$

$$T_{\text{max}} = 1.5 \cdot T$$

υλικό ατράκτου 42CrMo4 (χάλυβας με υψηλή περιεκτικότητα σε Cr,Ni,Mo)

Περίπτωση φόρτισης F1 (σταθερή μέση φόρτιση)

Χωρίς επιφανειακή σκλήρυνση

Τραχύτητα $R_z = 12.5 \mu m$

Λύση

$$S_D = 1.268$$

$$S_F = 2.69$$

9.3 Παράδειγμα 3°

Στη διατομή

Δίδονται

$$M_{b} = M_{bm} \pm M_{ba} = 8000 Nm \pm 2500 Nm$$

Περίπτωση φόρτισης F2

Υλικό ατράκτου Ε335 (St 60-2) (κοινός χάλυβας)

Χωρίς επιφανειακή σκλήρυνση

Τραχύτητα
$$R_z = 25 \mu m$$

Λύση

$$S_D = 1.26$$

$$S_F = 1.84$$

ΕΡΓΑΣΤΗΡΙΟ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Α.Π.Θ. ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΑΘ. ΜΙΧΑΗΛΙΔΗΣ ONOMA : EIIOETO : EEAMHNO: A.E.M. :

Ημερομηνία: 8/9/2003

Υπολογιστικό θέμα εξετάσεων Σεπτεμβρίου στο μάθημα ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι Επιτρέπονται όλα τα βοηθήματα Διάρκεια 1:45 ώρες

ΤΡΟΧΟΣ ΒΑΓΟΝΕΤΟΥ

Στο παρακάτω σκαρίφημα παριστάνεται ο τροχός ενός βαγονέτου.

Ο τροχός (1) περιστρέφεται ελεύθερα περί τον άξονά του και προσαρμόζεται στη διεύθυνση κύλισης περιστρεφόμενος επίσης ελεύθερα περί τον άξονα του πείρου (2), ο οποίος εδράζεται με τα έδρανα κυλίσεως (3) και (4) στο κέλυφος (5).

<u>Δεδομένα</u>

$F = 3 \pm 30\% \text{ kN}$	δύναμη στον τροχό (1)
Διαστάσεις	όπως στα σχήματα
St 37	υλικό της ατράκτου (1)
	τραχύτητα επιφάνειας του πείρου (2) στη θέση (Ι-Ι)
6205	

Ζητούμενα

- 1. Ο υπολογισμός ελέγχου του πείρου (2) στη θέση Ι-Ι.
- 2. Ο υπολογισμός ελέγχου στη συγκόλληση του πείρου (2) με το πιρούνι (6).

Λύση

Υπολογισμός αντιδράσεων

$$\left. \begin{array}{ll}
\sum F_x = 0 \implies & A_x - B_x = 0 \\
\sum M_B = 0 \implies & F \cdot 60 - A_x \cdot 30 = 0
\end{array} \right\} \implies A_x = B_x = \frac{F \cdot 60}{30} \\
\sum F_y = 0 \implies & F - B_y = 0 \implies B_y = F$$

Θέση Ι-Ι

Η αξονική δύναμη παραλαμβάνεται από το έδρανο

Η ροπή κάμψης στη θέση I-Ι δίνεται από τη σχέση $M = F \cdot 60$

Γεωμετρικά δεδομένα ατράκτου στη θέση I-I $D = 30 \, mm$ $d = 25 \, mm$ $r = 1 \, mm$

Δύναμη στον τροχό

Από τα δεδομένα $F_m = 3000 N$ $F_a = 3000 \cdot 0.3 = 900 N$

$$M_{bm} = F_m \cdot 60 = 3000 \cdot 60 = 180000 \, Nmm$$

 $M_{b\alpha} = F_{\alpha} \cdot 60 = 900 \cdot 60 = 54000 \, Nmm$

Άρα η διατομή καταπονείται σε δυναμική κάμψη και ο υπολογισμός θα γίνει σε δυναμική θραύση (κόπωση) και πλαστική παραμόρφωση.

Ο συντελεστής ασφάλειας δίνεται από τη σχέση

$$S = \min(S_D, S_F)$$

όπου S_{D} ο συντελεστής ασφάλειας σε δυναμική θραύση (κεφ. 4) και

 S_{F} ο συντελεστής ασφάλειας σε πλαστική παραμόρφωση (κεφ. 6.)

Συντελεστής ασφάλειας σε δυναμική θραύση S_D (κεφ. 4)

$$S_D = \frac{1}{\sqrt{\left(\frac{\sigma_{zda}}{\sigma_{zdADK}} + \frac{\sigma_{ba}}{\sigma_{bADK}}\right)^2 + \left(\frac{\tau_{ta}}{\tau_{tADK}}\right)^2}} = \frac{1}{\sqrt{\left(\frac{\sigma_{ba}}{\sigma_{bADK}}\right)^2}}$$

Υπολογισμός ημιεύρους δυναμικής τάσης $\,\sigma_{{\scriptscriptstyle b}\alpha}^{}$, μέσης τάσης $\,\sigma_{{\scriptscriptstyle b}m}^{}$

$$\sigma_{ba} = \frac{M_{ba}}{W_b} = \frac{M_{ba}}{\frac{\pi \cdot d^3}{32}} = \frac{54000}{\frac{\pi \cdot 25^3}{32}} = 35.2 \, N/mm^2$$

$$\sigma_{bm} = \frac{M_{bm}}{W_b} = \frac{M_{bm}}{\frac{\pi \cdot d^3}{32}} = \frac{180000}{\frac{\pi \cdot 25^3}{32}} = 117.3 \, N/mm^2$$

Επιτρεπόμενο ημιεύρος για δυναμική καταπόνηση γενικής μορφής σ_{hADK} (κεφ. 4.2.2)

Είναι συνάρτηση των

- αντοχή του υλικού
- συνολικό συντελεστή επίδρασης εγκοπής K_{σ} (κεφ 4.2.1)
- Επιτρεπόμενες τάσεις για πλαστική παραμόρφωση σ_{bFK} (κεφ. 6)
- επιτρεπόμενο ημιεύρος για εναλλασσόμενη καταπόνηση σ_{bWK} (κεφ. 4.2.1)
- περίπτωση φόρτισης (F₁ ή F₂)

Υλικό St-37

Από πίνακα Π.2.1.ζ (Αντιστοίχηση συμβολισμών χαλύβων) προκύπτει ότι ο νέος συμβολισμός του υλικού είναι S235JR

Από πίνακα Π.2.1.α (Κοινοί χάλυβες κατασκευών κατά DIN EN 10025) προκύπτει

$$\begin{split} \sigma_{B} &= 360 \, N/mm^{2} \,, \qquad d_{B} \leq 3 \, mm \\ \sigma_{S} &= 235 \, N/mm^{2} \,, \qquad \sigma_{zdw} = 140 \, N/mm^{2} \\ \sigma_{bw} &= 180 \, N/mm^{2} \,, \qquad \tau_{tw} = 105 \, N/mm^{2} \end{split} \right\} \quad d_{B} \leq 16 \, mm \end{split}$$

Κάμψη

Συνολικός συντελεστής επίδρασης εγκοπής K_{σ} (κεφ 4.2.1)

$$K_{\sigma} = \left(\frac{\beta_{\sigma}}{K_{2}(d)} + \frac{1}{K_{F\sigma}} - 1\right) \frac{1}{K_{V}}$$

Υπολογισμός συντελεστή εγκοπής $\,eta_{\sigma}\,$ (κεφ. 5.2) από τον συντελεστή μορφής $\,lpha_{\sigma}\,$

$$\beta_{\sigma} = \frac{\alpha_{\sigma}}{n}$$

Συντελεστής μορφής a_{σ} (κεφ.5.2.2.1)

Για την διαβάθμιση ισχύει

$$\alpha_{\sigma} = 1 + \frac{1}{\sqrt{A\frac{r}{t} + 2B\frac{r}{d}\left(1 + 2\frac{r}{d}\right)^2 + C\left(\frac{r}{t}\right)^2\frac{d}{D}}} \ ,$$

$$\frac{d}{D} = \frac{25}{30} = 0.83 > 0.67,$$

$$t = \frac{D - d}{2} = \frac{30 - 25}{2} = 2.5$$

$$\frac{r}{d} = \frac{1}{25} = 0.04$$

$$\alpha_{\sigma} = 1 + \frac{1}{\sqrt{0.62 \cdot 0.4 + 2 \cdot 5.8 \cdot 0.04 (1 + 2 \cdot 0.04)^2 + 0.2 \cdot 0.4^3 \cdot 0.83}}$$

προκύπτει $\alpha_{\sigma} = 2.12$

Υπολογισμός συντελεστή αντιστήριξης η (κεφ. 5.2) (... για όλους τους άλλους χάλυβες...)

$$n = 1 + \sqrt{G' \cdot mm} \cdot 10^{-\left(0.33 + \frac{\sigma_s(d)}{712N/mm^2}\right)}$$

Σχετική πτώση τάσης G' (κεφ. 5.2.2) (... για διαβάθμιση και κάμψη...)

$$φ = \frac{1}{4\sqrt{\frac{t}{r}} + 2} = \frac{1}{4\sqrt{\frac{2.5}{1}} + 2} = \frac{1}{8.32}$$
 προκύπτει $φ = 0.120$

$$G' = \frac{2.3 \cdot (1 + \varphi)}{r} = \frac{2.3 \cdot (1 + 0.120)}{1}$$
 προκύπτει $G' = 2.58 \, mm^{-1}$

Συντελεστής επίδρασης μεγέθους στη θερμική κατεργασία $K_1(d_{\it eff})$ (κεφ. 5.1)

$$d_{eff} = 30 mm$$

$$K_1 \left(d_{\it eff} \right) = 1$$
 για όριο θραύσης $d_{\it eff} = 30 \leq 100 \, mm$

$$K_1(d_{\it eff})$$
 = 1 για όριο πλαστικής παραμόρφωσης $d_{\it eff}$ = $30 \le 32\,mm$

$$\sigma_B(d) = \sigma_B(d_B)K_1(d_{eff}) = 360 \cdot 1 = 360 N / mm^2$$

$$\sigma_S(d) = \sigma_S(d_B)K_1(d_{eff}) = 235 \cdot 1 = 235 N / mm^2$$

Οπότε μετά από αντικατάσταση προκύπτει

$$n = 1 + \sqrt{G' \cdot mm} \cdot 10^{-\left(0.33 + \frac{\sigma_s(d)}{712N / mm^2}\right)} = 1 + \sqrt{2.58 \cdot 10^{-\left(0.33 + \frac{235}{712}\right)}} = 1.35 \quad \kappa\alpha$$

$$\beta_{\sigma} = \frac{\alpha_{\sigma}}{n} = \frac{2.12}{1.35} = 1.57$$

Συντελεστής επίδρασης μεγέθους $K_2(d)$ (κεφ. 5.3) (.... για κάμψη)

$$7.5mm \le d \le 150mm \qquad K_2(d) = 1 - 0.2 \frac{\lg\left(\frac{d}{7.5mm}\right)}{\lg 20} = 1 - 0.2 \frac{\lg\left(\frac{25}{7.5mm}\right)}{\lg 20} = 0.92$$

Συντελεστής τραχύτητας K_F (κεφ 5.5) (... για ορθές καταπονήσεις ...)

$$K_{F\sigma} = 1 - 0.22 \cdot \lg \left(\frac{R_z}{\mu m} \right) \left(\lg \frac{\sigma_B(d)}{20 \frac{N}{mm^2}} - 1 \right) = 1 - 0.22 \cdot \lg \left(16 \right) \left(\lg \frac{360}{20} - 1 \right) = 0.932$$

Συντελεστής αύζησης επιφανειακής αντοχής K_V (κεφ 5.6) (... δεν αυζήθηκε η επιφανειακή αντοχή...)

$$K_{\nu} = 1$$

Αντικαθιστώντας τις τιμές που βρήκαμε προηγουμένως προκύπτει ο συνολικός συντελεστής επίδρασης εγκοπής K_{σ} (κεφ 4.2.1)

$$K_{\sigma} = \left(\frac{\beta_{\sigma}}{K_{2}(d)} + \frac{1}{K_{F\sigma}} - 1\right) \frac{1}{K_{V}} = \left(\frac{1.57}{0.92} + \frac{1}{0.932} - 1\right) \frac{1}{1} = 1.78$$

Επιτρεπόμενες τάσεις για πλαστική παραμόρφωση σ_{bFK} (κεφ. 6)

$$\sigma_{bFK} = K_1(d_{eff}) \cdot K_{2F} \cdot \gamma_F \cdot \sigma_S(d_B)$$

Συντελεστής στατικής αντιστήριξης K_{2F} (κεφ 6.) (...για χάλυβες χωρίς σκληρό επιφανειακό στρώμα ... κάμψη πλήρη διατομή..)

$$K_{2F\sigma} = 1.2$$

Συντελεστής αύξησης του ορίου πλαστικής παραμόρφωσης γ_F (κεφ. 6.) (... για κάμψη ...)

$$\gamma_{F\sigma} = 1.1$$
 $\gamma \alpha \quad 2 \le a_{\sigma} \le 3$

αντικαθιστώντας προκύπτουν οι επιτρεπόμενες τάσεις για πλαστική παραμόρφωση $\sigma_{\it bFK}$ (κεφ. 6)

$$\sigma_{bFK} = K_1(d_{eff}) \cdot K_{2F} \cdot \gamma_F \cdot \sigma_S(d_B) = 1 \cdot 1.2 \cdot 1.1 \cdot 235 = 310.2 \, N/mm^2$$

Ισοδύναμες μέσες τάσεις (κεφ. 4.1)

$$\sigma_{mv} = \sqrt{\sigma_{bm}^2 + 3\tau_{lm}^2} = \sqrt{117.3^2 + 3 \cdot 0^2} = 117.3 \, N/mm^2$$

Επιτρεπόμενο ημιεύρος για συμμετρική εναλλασσόμενη καταπόνηση σ_{bWK} (κεφ. 4.2.1)

$$\sigma_{bWK} = \frac{\sigma_{bW}(d_B)K_1(d_{eff})}{K_{\sigma}} = \frac{180 \cdot 1}{1.78} = 101.1 N/mm^2$$

Συντελεστές καταπόνησης $\psi_{h\sigma K}$ (κεφ. 4.2.2)

$$\psi_{b\sigma K} = \frac{\sigma_{bWK}}{2K_1(d_{eff})\sigma_B(d_B) - \sigma_{bWK}} = \frac{101.1}{2 \cdot 1 \cdot 360 - 101.1} = 0.163$$

Επιτρεπόμενο ημιεύρος για δυναμική καταπόνηση γενικής μορφής $\sigma_{\rm bADK}$ (κεφ. 4.2.2)

Περίπτωση φόρτισης F_1

Ισχύει
$$\sigma_{mv} < \frac{\sigma_{bFK} - \sigma_{bWK}}{1 - \psi_{b\sigma K}} = \frac{310.2 - 101.1}{1 - 0.163} = 249.8 \, N / mm^2$$
 οπότε

$$\sigma_{bADK} = \sigma_{bWK} - \psi_{b\sigma K} \sigma_{mv} = 101.1 - 0.163 \cdot 117.3 = 82 N/mm^2$$

Συντελεστής ασφάλειας σε δυναμική θραύση $S_{\scriptscriptstyle D}$ (κεφ. 4)

$$S_D = \frac{1}{\sqrt{\left(\frac{\sigma_{ba}}{\sigma_{bADK}}\right)^2}} = \frac{\sigma_{bADK}}{\sigma_{ba}} = \frac{82}{35.2} = 2.33$$

Συντελεστής ασφάλειας σε πλαστική παραμόρφωση $S_{\scriptscriptstyle F}$ (κεφ. 6.)

Δίνεται από τη σχέση

$$S_F = \frac{1}{\sqrt{\left(\frac{\sigma_{zd\text{max}}}{\sigma_{\text{zdFK}}} + \frac{\sigma_{b\text{max}}}{\sigma_{b\text{FK}}}\right)^2 + \left(\frac{\tau_{\text{max}}}{\tau_{\text{tFK}}}\right)^2}} = \frac{1}{\sqrt{\left(\frac{\sigma_{b\text{ max}}}{\sigma_{b\text{FK}}}\right)^2}} = \frac{\sigma_{bFK}}{\sigma_{b\text{ max}}}$$

Υπολογισμός της μέγιστης ονομαστικής τάσης $\sigma_{b\,\mathrm{max}}$

$$\sigma_{b\,\text{max}} = \frac{M_{b\,\text{max}}}{W_b}$$

Μέγιστη δύναμη

$$F_{\text{max}} = F_m + F_a = 3000 + 900 = 3900 \, N$$

Μέγιστη ροπή

$$M_{\text{max}} = F_{\text{max}} \cdot 60 = 3900 \cdot 60 = 234000 \, Nmm$$

Μέγιστη ονομαστική τάση

$$\sigma_{b \max} = \frac{M_{b \max}}{W_b} = \frac{M_{b \max}}{\frac{\pi \cdot d^3}{32}} = \frac{234000}{\frac{\pi \cdot 25^3}{32}} = 152.5 \, N/mm^2$$

Οπότε προκύπτει

$$S_F = \frac{\sigma_{bFK}}{\sigma_{h \max}} = \frac{310.2}{152.5} = 2.03$$

Aρα
$$S = \min(S_F, S_D) = \min(2.03, 2.33)$$
 \Rightarrow $S = 2.03 \ge 1.2$

ΕΡΓΑΣΤΗΡΙΟ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Α.Π.Θ. ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΑΘ. ΜΙΧΑΗΛΙΔΗΣ ONOMA:
EIIIOETO:
EEAMHNO:
A.E.M.:

Ημερομηνία: 8/9/2003

Κατασκευαστικό θέμα εξετάσεων Σεπτεμβρίου στο μάθημα ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι Επιτρέπονται όλα τα βοηθήματα Διάρκεια 2:00 ώρες

ΤΡΟΧΟΣ ΒΑΓΟΝΕΤΟΥ

Στο παρακάτω σκαρίφημα παριστάνεται ο τροχός ενός βαγονέτου.

Ο τροχός (1) περιστρέφεται ελεύθερα περί τον άξονά του και προσαρμόζεται στη διεύθυνση κύλισης περιστρεφόμενος επίσης ελεύθερα περί τον άξονα του πείρου (2), ο οποίος εδράζεται με τα έδρανα κυλίσεως (3) και (4) στο κέλυφος (5).

<u>Δεδομένα</u>

$F = 3 \text{ kN} \dots$	δύναμη στον τροχό (1)
<i>St</i> 37	υλικό κατασκευής
$d = 120mm \dots d$	
Ρύπανση υψηλή	
Κατασκευή συγκολλητή	

Ζητούμενα

Η σχεδίαση της κατασκευής.

Παράδειγμα σχεδίασης κατά τις εξετάσεις. (Βρείτε τα λάθη)

Παράδειγμα σωστής σχεδίασης

ΣΤΟΙΧΕΙΩΔΕΙΣ ΕΞΙΣΩΣΕΙΣ ΣΤΑΤΙΚΗΣ

1)

- 2) Εάν δύο σώματα βρίσκονται σε επαφή και μεταφέρονται δυνάμεις τότε
 - Η κάθετη δύναμη στην επιφάνεια έχει κατεύθυνση προς το σώμα
 - Η εφαπτομενική δύναμη τριβής εάν δημιουργείται έχει διεύθυνση αντίθετη προς τη σχετική κίνηση

3) Σε ένα σώμα που ισορροπεί ισχύουν οι σχέσεις

$$\begin{split} &\sum F_x=0, & \sum F_y=0, & \sum F_z=0 \\ &\sum M_{xy}=0, & \sum M_{xz}=0, & \sum M_{yz}=0 & \text{ ws pros opoisdy patterns} \end{split}$$

Παράδειγμα Στατικής

4) Για να υπολογίσουμε τις καταπονήσεις σε μία διατομή θεωρούμε πάκτωση στη θέση της διατομής και υπολογίζουμε τις καταπονήσεις είτε από τη μία είτε από την άλλη πλευρά της πάκτωσης.

ΥΠΟΛΟΓΙΣΜΟΣ ΕΔΡΑΝΩΝ ΚΥΛΙΣΕΩΣ

Υπολογισμός ισοδύναμου φορτίου σε λοξά έδρανα

Στα λοξά έδρανα με σφαιρικά ή κωνικά σώματα κυλίσεως, που δεν παραλαμβάνουν μόνο αξονικά, αλλά και εγκάρσια φορτία, το σημείο εφαρμογής της συνισταμένης δύναμης φορτίσεώς τους βρίσκεται στο σημείο τομής του άξονα περιστροφής της ατράκτου με τις ευθείες πιέσεως των σωμάτων κυλίσεως. Οι ευθείες αυτές είναι οι ευθείες εφαρμογής των δυνάμεων φορτίσεως των σωμάτων κυλίσεως και συγκλίνουν όλες στο παραπάνω σημείο σχηματίζοντας μία γωνία πιέσεως, όπως φαίνεται και στα σχήματα.

Εκτός απ' αυτή την ιδιομορφία στα λοξά έδρανα αναπτύσσεται και μία πρόσθετη εσωτερική αξονική φόρτιση, η οποία οφείλεται ακριβώς στη γεωμετρία τους.

Για τον υπολογισμό του ισοδύναμου φορτίου των λοξών εδράνων συνιστάται από τους κατασκευαστές τους η εξής μέθοδος με την οποία λαμβάνεται υπόψη αυτή η πρόσθετη εσωτερική, αξονική φόρτιση:

- 1. Καθορίζεται η διάταξη που θα χρησιμοποιηθεί (Ο ή Χ βλέπε σχήμα).
- 2. Ορίζεται ως έδρανο με τον αριθμό "1" αυτό που θα παραλάβει το εξωτερικό αξονικό φορτίο K_a . Το άλλο έδρανο συμβολίζεται με τον αριθμό "2".
- 3. Υπολογίζονται τα εγκάρσια φορτία F_{1r}, F_{2r} των εδράνων.
- 4. Από τους πίνακες των εδράνων λαμβάνονται οι μη μηδενικές τιμές των συντελεστών Y (που αντιστοιχούν στην περίπτωση $\frac{F_a}{F_r} > e$) για κάθε έδρανο (Y_1, Y_2) .
- 5. Για τον υπολογισμό των αξονικών φορτίων F_{a1}, F_{a2} των εδράνων διακρίνονται δύο περιπτώσεις

a. Όταν
$$\frac{F_{r1}}{Y_1} \le \frac{F_{r2}}{Y_2}$$
 και $K_a >= 0$

$$\dot{\eta} \qquad \frac{F_{r1}}{Y_1} > \frac{F_{r2}}{Y_2} \text{ kai } K_a \ge 0.5 \cdot \left(\frac{F_{r1}}{Y_1} - \frac{F_{r2}}{Y_2}\right)$$

τότε η πρόσθετη, εσωτερική αξονική φόρτιση των εδράνων έχει το μέγεθος $0.5\cdot\left(\frac{F_{r2}}{Y_2}\right)$ και τα αξονικά φορτία είναι:

$$F_{a1} = K_a + 0.5 \cdot \left(\frac{F_{r2}}{Y_2}\right) \kappa \alpha i \quad F_{a2} = 0.5 \cdot \left(\frac{F_{r2}}{Y_2}\right)$$

b. Otan
$$\frac{F_{r1}}{Y_1} > \frac{F_{r2}}{Y_2}$$
 kai $K_a < 0.5 \cdot \left(\frac{F_{r1}}{Y_1} - \frac{F_{r2}}{Y_2}\right)$

τότε η πρόσθετη, εσωτερική αξονική φόρτιση των εδράνων έχει το μέγεθος $0.5\cdot\left(\frac{F_{r1}}{Y_1}\right)$ και τα αξονικά φορτία είναι:

$$F_{a1} = 0.5 \cdot \left(\frac{F_{r1}}{Y_1}\right) \quad \text{ foi } \quad F_{a2} = 0.5 \cdot \left(\frac{F_{r1}}{Y_1}\right) - K_a$$

6. Τέλος υπολογίζεται το ισοδύναμο φορτίο για κάθε έδρανο από τη σχέση

$$P = X \cdot F_r + Y \cdot F_a$$

όπου τα X και Y λαμβάνονται συναρτήσει του λόγου $\frac{F_a}{F_a}$

Ο ίδιος υπολογισμός των αξονικών φορτίων εφαρμόζεται και στην περίπτωση ελέγχου των εδράνων κυλίσεως σε πλαστική παραμόρφωση.

ΠΑΡΑΔΕΙΓΜΑ 1

Ένσφαιρα έδρανα κυλίσεως

Έστω μετά από την στατική ανάλυση υπολογίζεται ότι σε ένα έδρανο κυλίσεως οι δυνάμεις που εφαρμόζονται είναι $F_r = 240\,\mathrm{Kp}, \quad F_a = 130\,\mathrm{Kp}$

Οι στροφές με τις οποίες περιστρέφεται η άτρακτος είναι $n=1500\,rpm$ και η επιδιωκόμενη διάρκεια ζωής σε ώρες είναι $L_h=20000\,h$

Υπολογισμός μελέτης (Πιν. Λ 27)

$$\frac{F_a}{F_a} = \frac{130}{240} = 0.54 > e \Rightarrow X = 0.56, \quad Y \approx 1.5$$

$$P = X \cdot F_r + Y \cdot F_a = 0.56 \cdot 240 + 1.5 \cdot 130 = 329.4 \, Kp$$

$$C = P \left(\frac{60 \cdot n \cdot L_h}{10^6} \right)^{\frac{1}{k}} = 329.4 \left(\frac{60 \cdot 1500 \cdot 20000}{10^6} \right)^{\frac{1}{3}} = 4007 \, Kp$$

Τα έδρανα που έχουν αριθμό δυναμικής αντοχής μεγαλύτερο του C είναι 16022, 6018, 6213, 6309, 6407, 4212. Ανάλογα με την κατασκευαστική διαμόρφωση (διάμετρος εσωτερική, εξωτερική, πλάτος) επιλέγουμε την κατηγορία που θα χρησιμοποιήσουμε. Έστω ότι θα χρησιμοποιήσουμε την κατηγορία 63.

Υπολογισμός ελέγχου

Έδρανο 6309

$$d = 45,$$
 $D = 100,$ $B = 25,$ $r = 2.5$
 $C = 4150 \, Kp$ $C_0 = 3000 \, Kp$
 $F = 130$

$$\frac{F_a}{C_0} = \frac{130}{3000} = 0.043$$

Από τον Πίν. Λ27 Β προκύπτει e = 0.24

$$\frac{F_a}{F_r} = 0.54 > e \Rightarrow X = 0.56, \quad Y = 1.85$$

$$P = X \cdot F_r + Y \cdot F_a = 0.56 \cdot 240 + 1.85 \cdot 130 = 374.9 \, Kp$$

$$L_h = \frac{10^6}{60 \cdot n} \left(\frac{C}{P}\right)^k = \frac{10^6}{60 \cdot 1500} \left(\frac{4150}{374.9}\right)^3 = 15071h < 20000h$$

Έδρανο 6310

$$d = 50,$$
 $D = 110,$ $B = 27,$ $r = 3$
 $C = 4800 \, Kp$ $C_o = 3550 \, Kp$

$$\frac{F_a}{C_o} = \frac{130}{3550} = 0.037$$

$$e = 0.23 \Rightarrow X = 0.56, Y = 1.9$$

$$P = X \cdot F_r + Y \cdot F_a = 0.56 \cdot 240 + 1.9 \cdot 130 = 381.4 \, Kp$$

$$L_h = \frac{10^6}{60 \cdot n} \left(\frac{C}{P}\right)^k = \frac{10^6}{60 \cdot 1500} \left(\frac{4800}{381.4}\right)^3 = 22148 \, h > 20000 \, h$$

ΠΑΡΑΔΕΙΓΜΑ 2

Στο παρακάτω σκαρίφημα παρουσιάζεται η έδραση της ατράκτου (1) στην οποία έχει τοποθετηθεί ο οδοντοτροχός (2)

$F_{2A} = 634 \pm 30\% \text{ Kp}$	αξονική συνιστώσα
$F_{2R} = 802 \pm 30\% \text{ Kp}$	ακτινική συνιστώσα
$F_{2U} = 1867 \pm 30\% \text{ Kp}$	περιφερειακή συνιστώσα
n = 1500 rpm	στροφές της ατράκτου (1)
L = 130 mm	εσωτερικό πλάτος κελύφους
$d_{\rm w} = 109.29 \text{ mm}$	διάμετρος κυλίσεως λει-
τουργίας	
$L_h = 50000 \text{ h}$	διάρκεια ζωής σε ώρες
31314	έδρανο στη θέση Α
32016	έδρανο στη θέση Β

Υπολογισμός ελέγχου κωνικών εδράνων κυλίσεως

Υπολογίζονται και τα δύο έδρανα συγχρόνως

31314 Έδρανο στη θέση Α	32016 Έδρανο στη θέση Β
C = 187000 N	C = 138000 N
e = 0.83	e = 0.43
Y = 0.72	Y = 1.4
d = 70 mm	d = 80 mm
D = 150 mm	D = 125 mm
T = 38 mm	T = 29 mm
C = 25 mm	C = 22 mm
a = 45 mm	a = 27 mm
B = 35 mm	B = 29 mm

Θέση του κέντρου του κώνου πίεσης

$$L_A = \frac{130}{2} + C - a = 65 + 25 - 45 = 45 \, mm$$
 $L_B = \frac{130}{2} + C - a = 65 + 22 - 27 = 60 \, mm$

$$L_B = \frac{130}{2} + C - a = 65 + 22 - 27 = 60 \, mm$$

Υπολογισμός αντιδράσεων

$$\sum F_x = 0 \Rightarrow A_x - F_{2A} = 0 \Rightarrow A_x = F_{2A} = 634 \, Kp$$

$$\sum M_A = 0 \Rightarrow F_{2R} \cdot L_A - B_y \left(L_A + L_B \right) - F_{2A} \frac{d_w}{2} = 0$$

$$\Rightarrow B_y = \frac{F_{2R} \cdot 45 - F_{2A} \frac{d_w}{2}}{105} = \frac{802 \cdot 45 - 634 \cdot 54.7}{105}$$

$$\Rightarrow B_y = 13.4 \, Kp$$

$$\sum F_y = 0 \Rightarrow A_y + B_y = F_{2R} \Rightarrow A_y = F_{2R} - B_y$$

$$\Rightarrow A_y = 802 - 13.4$$

$$\Rightarrow A_y = 788.6 \, Kp$$

$$\sum M_A = 0 \Rightarrow F_{2U} \cdot L_A - B_z (L_A + L_B) = 0$$

$$\Rightarrow B_z = \frac{F_{2U} \cdot 45}{105} = \frac{1867 \cdot 45}{105}$$

$$\Rightarrow B_z = 800 \, Kp$$

$$\sum F_z = 0 \Rightarrow A_z + B_z = F_{2U}$$

$$\Rightarrow A_z = F_{2U} - B_z = 1867 - 800$$

$$\Rightarrow A_z = 1065 \, Kp$$

$$A_r = \sqrt{A_y^2 + A_z^2} = \sqrt{788.6^2 + 1065^2}$$

 $\Rightarrow A_r = 1325 Kp$

$$B_r = \sqrt{B_y^2 + B_z^2} = \sqrt{13.4^2 + 800^2}$$

$$\Rightarrow B_r = 800.1 Kp$$

Από το σχήμα Λ 23 προκύπτει

Σχ. Λ 23: Ἡμιτονοειδής διακύμανση φορτίου.

$$F_2 = 0.3 \cdot F_1 \Rightarrow \frac{F_1}{F_1 + F_2} = \frac{F_1}{F_1 + 0.3 \cdot F_1} = \frac{1}{1 + 0.3} = 0.77 \Rightarrow f_m = 0.82$$

Το έδρανο κυλίσεως που θα παραλάβει την αξονική δύναμη είναι το Α.

Oπότε
$$1 → A$$
 και $2 → B$

$$F_{r1} = f_m \cdot A_r \cdot (1+0.3) = 0.82 \cdot 1325 \cdot 1.3$$

$$\Rightarrow F_{r1} = 1412 \, Kp$$

$$\frac{F_{r1}}{Y_1} = \frac{1412}{0.72} = 1961$$

$$0.5 \cdot \left[\frac{F_{r1}}{Y_1} - \frac{F_{r2}}{Y_2} \right] = 0.5 \cdot [1961 - 609.2] = 675.9$$

 $K_a = 0.82 \cdot A_x \cdot 1.3 = 0.82 \cdot 634 \cdot 1.3 = 675.8 \, Kp$

$$F_{r2} = f_m \cdot B_r \cdot (1+0.3) = 0.82 \cdot 800.1 \cdot 1.3$$

$$\Rightarrow F_{r2} = 852.9 \, Kp$$

$$\frac{F_{r2}}{Y_2} = \frac{852.9}{1.4} = 609.2$$

Ισχύουν οι σχέσεις

$$\frac{F_{r1}}{Y_1} > \frac{F_{r2}}{Y_2}$$
 kai $K_a < 0.5 \cdot \left[\frac{F_{r1}}{Y_1} - \frac{F_{r2}}{Y_2} \right]$

Οπότε ισχύει

 $\Rightarrow L_{hA} = 61062 h$

Οπότε ισχύει
$$F_{a1} = 0.5 \cdot \frac{F_{r1}}{Y_1} = 0.5 \cdot 1961$$

$$F_{a2} = 0.5 \cdot \frac{F_{r1}}{Y_1} - K_a = 0.5 \cdot 1961 - 675.8$$

$$\Rightarrow F_{aA} = F_{a1} = 980.5 Kp$$

$$\Rightarrow F_{aB} = F_{a2} = 304.7 Kp$$

$$\frac{F_{aB}}{F_{rA}} = \frac{980.5}{1412} = 0.69 < e_A = 0.83$$

$$\frac{F_{aB}}{F_{rB}} = \frac{304.7}{852.9} = 0.36 < e_B = 0.42$$

$$X_A = 1, \qquad Y_A = 0$$

$$X_B = 1, \qquad Y_B = 0$$

$$P_A = X_A \cdot F_{rA} + Y_A \cdot F_{aA} = 1 \cdot 1412 + 0 \cdot 980.5$$

$$P_B = X_B \cdot F_{rB} + Y_B \cdot F_{aB} = 1 \cdot 852.9 + 0 \cdot 304.7$$

$$\Rightarrow P_A = 1412 \, Kp \approx 14120 \, N$$

$$\Rightarrow P_A = 852.9 \, Kp \approx 8529 \, N$$

$$L_{hA} = \frac{10^6}{60 \cdot n} \left(\frac{C_A}{P_A}\right)^k = \frac{10^6}{60 \cdot 1500} \left(\frac{187000}{14120}\right)^{\frac{10}{3}}$$

$$L_{hB} = \frac{10^6}{60 \cdot n} \left(\frac{C_B}{P_B}\right)^k = \frac{10^6}{60 \cdot 1500} \left(\frac{138000}{8529}\right)^{\frac{10}{3}}$$

Η διάρκεια ζωής σε ώρες του εδράνου Β είναι πολύ μεγαλύτερη από την απαιτούμενη οπότε μπορούμε να επιλέξουμε ένα άλλο έδρανο κυλίσεως με μικρότερο αριθμό δυναμικής αντοχής.

 $\Rightarrow L_{hB} = 119040 h$

Τυποποιήσεις λοξών εδράνων

_		Соричич																		295
			nd fillet	r _a max		9,0	0,6	9,0	1.6				- 1,5	- 1,	- 1 ,	- 2	2,5	2,5	2,5	
			Abutment and fillet dimensions	D _a max		52	31	98	35	4 4	46 55	56 65	65	73	91	83 100	110	101	111	
	, o	-	Abr	d min	E E	15	17	52	323	26	32	36	44	47	52	57	65	69	74	
				æ		13	1 1	16	18	23	24	31	31	39 34	37	39	51	47	90	
				, 13.4 min		0,3	0,3	0,3	9,0	9.0	9.0	9.0	9,0	9,0	1.6	0,6		-5	- 5	
	Da -			71,2 min		9'0	9,0	1,0	1.0	-5	- =	- 2	1.1	1,5	1.1	2,1	2,5	2,1	2,1	
				°2		23,1	25,1	28 32,9	31,9		42,2	50.8 57.3	59 64,2	66,3	70.9 80,7	75,9 89,7	84,1 97,6	92,5	101	
			Dimensions	φ°	_	18,2	20,2	22,7	25,9	30,7	35,7	42,3	49,3 52,4	55,9 59,4	60.5	65,5	72,4	79,3 87	86,3 93,8	SKF
			i i	ъ	E	5	12	15	17	20	25	30	35	4	45	20	99	9	9	រី
			Designation			7200 BE	7201 BE 7301 BE	7202 BE 7302 BE	7203 BE 7303 BE	7204 BE 7304 BE	7205 BE 7305 BE	7206 BE 7306 BE	7207 BE 7307 BE	7208 BE 7308 BE	7209 BE 7309 BE	7210 BE 7310 BE	7211 BE 7311 BE	7212 BE 7312 BE	7213 BE 7313 BE	SKF
	,		Mass Designation		kg -		0,036 7201 BE 0,060 7301 BE	0,045 7202 BE 0,080 7302 BE	0,065 7203 BE 0,11 7303 BE	0,11 7204 BE 0,14 7304 BE	0,13 7205 BE 0,23 7305 BE	0,20 7206 BE 0,34 7306 BE	0,28 7207 BE 0,45 7307 BE	0,37 7208 BE 0,63 7308 BE	0,42 7209 BE 0,85 7309 BE	0,47 7210 BE 1,10 7310 BE	0,62 7211 BE 1,40 7311 BE	0,80 7212 BE 1,75 7312 BE	1,00 7213 BE 2,15 7313 BE	SKF
			Mass	ō		0,030														SKF
				grease on		28 000 0,030	0,036	24 000 0,045 20 000 0,080	0,065	0,11	0,13	0,20	0,28	0,37	0,42	1,10	1,40	0,80	2,15	SKF
	5		Mass		kg	19 000 28 000 0,030	26 000 0,036 24 000 0,060	24 000 0,045 20 000 0,080	20 000 0,065 18 000 0,11	17 000 0,11 16 000 0,14	15 000 0,13 13 000 0,23	12 000 0,20 11 000 0,34	11 000 0,28 10 000 0,45	9 500 0,37 9 000 0,63	9 000 0,42 8 000 0,85	8 000 0,47 7 000 1,10	7 500 0,62 6 300 1,40	6 700 0,80 6 000 1,75	6 000 1,00 5 600 2,15	SKF
arings	0		Fatigue Speed ratings Mass		r/min kg	140 19 000 28 000 0,030	18 000 26 000 0,036 17 000 24 000 0,060	17 000 24 000 0,045 15 000 20 000 0,080	15 000 20 000 0,065 13 000 18 000 0,11	12 000 17 000 0,11 11 000 16 000 0,14	10 000 15 000 0,13 9 000 13 000 0,23	8 500 12 000 0,20 8 000 11 000 0,34	8 000 11 000 0,28 7 500 10 000 0,45	7 000 9 500 0,37 6 700 9 000 0,63	6 700 9 000 0,42 6 000 8 000 0,85	6 000 8 000 0,47 5 300 7 000 1,10	5 600 7 500 0,62 4 800 6 300 1,40	5 000 6 700 0,80 4 500 6 000 1,75	54 000 2 280 4 500 6 000 1,00 80 000 3 350 4 300 5 600 2,15	SKF
act ball bearings			Speed ratings Mass	C ₀ P _u	r/min kg	3 350 140 19 000 28 000 0,030	160 18 000 26 000 0,036 208 17 000 24 000 0,060	204 17 000 24 000 0,045 280 15 000 20 000 0,080	260 15 000 20 000 0,065 355 13 000 18 000 0,11	355 12 000 17 000 0,11 440 11 000 16 000 0,14	430 10 000 15 000 0,13 655 9 000 13 000 0,23	655 8 500 12 000 0,20 900 8 000 11 000 0,34	880 8 000 11 000 0,28 1 040 7 500 10 000 0,45	1 100 7 000 9 500 0,37 1 400 6 700 9 000 0,63	1 200 6 700 9 000 0,42 1 730 6 000 8 000 0,85	1 290 6 000 8 000 0,47 2 200 5 300 7 000 1,10	1 630 5 600 7 500 0,62 2 550 4 800 6 300 1,40	1 930 5 000 6 700 0,80 3 000 4 500 6 000 1,75	2 280 4 500 6 000 1,00 3 350 4 300 5 600 2,15	SKF
r contact ball bearings ow 65 mm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Basic load ratings Falique Speed ratings Mass dynamic static load Lubrication	C ₀ P _u	N r/min kg	3 350 140 19 000 28 000 0,030	3 800 160 18 000 26 000 0,036 5 000 20 000 0,050	4 800 204 17 000 24 000 0,045 6 700 280 15 000 0,090	6 100 260 15 000 20 000 0,065 8 300 355 13 000 18 000 0,11	8 300 355 12 000 17 000 0,11 10 400 1400 16 000 0,14	10 200 430 10 000 15 000 0,13 15 600 655 9 000 13 000 0,23	15 600 655 8 500 12 000 0,20 21 200 900 8 000 11 000 0,34	20 800 880 8 000 11 000 0,28 24 500 1 040 7 500 10 000 0,45	26 000 1 100 7 000 9 500 0,37 33 500 1 400 6 700 9 000 0,63	19 37 700 28 000 1 200 6 700 9 000 0,42 25 60 500 41 500 1 730 6 000 8 000 0,85	20 39 000 30 500 1 290 6 000 8 000 0,47 27 74 100 51 000 2 200 5 300 7 000 1,10	21 48 800 38 000 1 630 5 600 7 500 0,62 29 85 200 60 000 2 550 4 800 6 300 1,40	22 57 200 45 500 1 930 5 000 6 700 0,80 31 95 600 69 500 3 000 4 500 6 000 1,75	54 000 2 280 4 500 6 000 1,00 80 000 3 350 4 300 5 600 2,15	SKF
Angular contact ball bearings single row d 10–65 mm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Fatigue Speed ratings Mass	C C ₀ P _u	N r/min kg	9 7 020 3 350 140 19 000 28 000 0,030	7 610 3 800 160 18 000 26 000 0,036 10 600 5 000 208 17 000 24 000 0,060	8 840 4 800 204 17 000 24 000 0,045 13 000 6 700 280 15 000 20 000 0,080	11 100 6 100 260 15 000 20 000 0,065 15 900 8 300 355 13 000 18 000 0,11	14 000 8 300 355 12 000 17 000 0,11 19 000 10 400 440 11 000 16 000 0,14	15 600 10 200 430 10 000 15 000 0,13 26 000 15 600 655 9 000 13 000 0,23	23 800 15 600 655 8 500 12 000 0,20 34 500 21 200 900 8 000 11 000 0,34	30 700 20 800 880 8 000 11 000 0,28 39 000 24 500 1 040 7 500 10 000 0,45	36 400 26 000 1100 7 000 9 500 0,37 49 400 33 500 1400 6 700 9 000 0,63	37 700 28 000 1 200 6 700 9 000 0,42 60 500 41 500 1 730 6 000 8 000 0,85	39 000 30 500 1 290 6 000 8 000 0,47 74 100 51 000 2 200 5 300 7 000 1,10	48 800 38 000 1 630 5 600 7 500 0,62 85 200 60 000 2 550 4 800 6 300 1,40	57 200 45 500 1 930 5 000 6 700 0,80 95 600 69 500 3 000 4 500 6 000 1,75	66 300 54 000 2 280 4 500 6 000 1,00 108 000 80 000 3 350 4 300 5 600 2,15	294 5KF

297

		Speed ratings Mass Designation Dimensions	grease oil d d ₁	r/min kg – mm	4 300 5 600 1.10 7214 BE 70 91.3 3 800 5 000 2.65 7314 BE 100	4 300 5 600 1,20 7215 BE 75 96,5 3 600 4 800 3,20 7315 BE 108	3 800 5 000 1,45 7216 BE 80 103 3 400 4 500 3,80 7316 BE 114	3 600 4 800 1,85 7217 BE 85 110 3 200 4 300 4,45 7317 BE 121	3 400 4 500 2.30 7218 BE 90 117 3 000 4 000 5.20 7318 BE 128	4 300 2,70 3 800 6,05	3 000 4 000 3,30 7220 BE 100 131 2 600 3 600 7,50 7320 BE 144	3 800 3 400	2 500 3 600 4,60 7222 BE 110 145 2 200 3 200 10,0 7322 BE 160	2 200 3 200 6,10 7224 B 120 157 1900 2 800 14,5 7324 B	6,95 17,5	1800 2 600 8,85 7228 B 140 164 1700 2 400 21,5 7328 BCB 203	11,5 7230 BCB 150 26,0 7330 BCB	1 600 2 200 14,0 7232 BCB 160 211	SKF SKF
ball bearings	g	Basic load ratings Fatigue	C C ₀ P _u	Z	71 500 60 000 2 500 119 000 90 000 3 650	72 800 64 000 2 650 133 000 106 000 4 150	83 200 73 500 3 000 143 000 118 000 4 500	83 000 132 000		108 000 163 000	135 000 122 000 4 400 203 000 190 000 6 400	137 000 208 000	163 000 153 000 5 200 225 000 224 000 7 200	165 000 163 000 5 300 238 000 250 000 7 650	193 000 270 000	182 000 196 000 5 850 276 000 310 000 8 800	224 000 365 000	199 000 236 000 6 700	
Angular contact ball bearings single row d 70–160 mm		Principal	9 Q P	mm	70 125 24 150 35	75 130 25 160 37	80 140 26 170 39	85 150 28 180 41	90 160 30 190 43		100 180 34 215 47	105 190 36 225 49	110 200 38 240 50	120 215 40 260 55		140 250 42 300 62		160 290 48	596

ra max

Abutment and fillet dimensions D_a max d min

C_b max

Da Db Ca max min min

nent and fillet dimensions

g.

Da da

527

41

526

bearings		D D D D D D D D D D D D D D D D D D D
pe	Ε	

	ž			۳ ا	ω 4 ω	6444	ω4	4444040	44	40000000	ď	99999
	Abutment a	Page Age		2	2323	25 26 27	28.2	3223333	34	36 36 37 37	38	42 44 42 42 42 42 42 42 42 42 42 42 42 4
	Abr	d _a max	E E	22	25.25	25 27 27	27	8288888	33	35 37 36 36 36 41 40	. 88	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		æ		6	557		==	120113		54 54 55 55 55 55 55 55 55 55 55 55 55 5	4	15 17 18
		r. III		0,3	000	0000	0,0	0000000	0,3	00000000	0,3	0,0
		13.4 min		-		6,0	0,6	6,1 1 5,1				- 4 4 4 4
		1,2 min		-		0,0	0,6	6,1 1 5,1			-	- 1
		O		=	25 5	2225	13,5		212	13 17 17 19,5 19,5	5	4 1 1 1 1 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5
		8		5	544	51 41 51 51	15	15 15 17 17 17 17	91	17 20 20 25 25 19 19	17	823274
	Dimensions	ъ́≅		27.3	30,4	33.7.1 34.3 34.5	33,4	36.5 40.2 41.5 45.8	40,3	443 45,2 45,3 45,8 48,4 48,7	45.6	49,2 51,8 52,4 53,1
	Oime	ъ	E	5	: 4	50	22	52	28	30	32	32
						-				•		
			i	ı								
	sion to	ō										
	Dimension Series to	8	١, ١	2FB	208 2FB 2FD	30C 27B 27B		200 200 200 200 200 200 200 200 200 200	500	400 300 300 300 200 276 276 270 270	QC QC	200 200 200 200 200 200 200 200 200 200
	tion							4 17 47 14 14 14		40000000	4	40000
	Designation			30302	30203 30303 32303	32004 X 30204 30304 32304	320/22 X T2CC 022	32005 X 30205 32205 B 33205 30305 31305 32305	320/28 X 322/28 B	32006 X 30206 32206 33206 33206 31306 32306	320/32 X	X
			١,	303	3333	320 303 323	320 T20	322 332 332 313 313 323 323 323	320,	3200 3220 3220 3320 3130 3230 3230	320/	32007 X 30207 32207 32207 33207 B
	Mass		kg	0,095	0,075 0,13 0,17	0,097 0,12 0,17 0,23	0,10	0,11 0,15 0,28 0,26 0,26 0,36	0,15	0,17 0,23 0,28 0,30 0,39 0,39 0,55	0,19	0,22 0,32 0,44 0,56
	s			13 000	888	0000	88	880000				
	d ratin	5		13	13 000 12 000 11 000	12 000 11 000 10 000	11 000	11 000 10 000 9 500 9 000 7 500 8 000	9 500 8 500	9 000 8 500 8 500 7 500 7 500 6 700	8 500	8 000 7 000 7 000 7 000 6 300
	Speed ratings Lubrication		r/min	000 6	9 000 8 500 8 000	8 500 8 000 7 500	8 000	200 200 200 200 200 200 200 200 200 200	300	6 700 6 300 6 300 6 000 5 600 5 900 5 300	300	8000000
				-			æ æ	8779999	7	00000000	9	φ υυυ 4
	Fatigue load limit	۵	z	2 120	1 860 2 750 3 650	2 700 3 000 5 000	3 900	3 350 3 550 4 750 6 000 4 4 400 7 100	200	650 800 500 500 400 850 650	900	5 850 6 200 8 650 8 300 11 800
				_			-469		40	440000000	4	
	Basic load ratings dynamic static	ပိ		20 000	18 600 25 000 33 500	27 000 28 000 32 500 45 500	29 000 36 500	32 500 33 500 44 000 43 000 63 000	38 000 50 000	44 000 44 000 57 000 58 500 76 500 56 000 85 000	46 500	54 000 56 000 78 000 75 000 106 000
	sic los namic			400	000 700	200 100 000 000	<u>88</u>	200000000000000000000000000000000000000	800	2000 2000 2000 2000 2000 2000 2000 200	006	200000
	Ba dy	٥	z	22 '	19 (28)	27284	34 1	27 0 30 8 35 8 44 6 38 0 60 5	31 41 8	35 8 4 4 5 6 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	36 90	51 20 66 00 84 20
				14,25	13,25 15,25 20,25	15 15,25 16,25 22,25	15	15 16,25 19,25 22 18,25 18,25 25,25	16 20,25	17,25 21,25 21,25 20,75 20,75 28,75		18,25 24,25 24,25 28
	sions	١		42	47 47 21 2						17	
	Principal dimensions		E I	15 4	444	0 47 52 52	2 44	52 52 62 62 62 62	58	62 62 72 72 72 73	28	22222
1	a 0	ľ	٤I	7	-	20	22	52	28	8	32	32

SKF

SKT

528

-	g 7
3	<u>.</u>
5	a da

Dime	Dimensions							Abu	tmen	Abutment and fillet dimensions	fillet	dime	nsior	SL			Calculat	Calculation factors	
ъ	£.≅	8	O	7.E	7. Min 10.4	S.E	es	d _a	a _b	D min	D _a	og E	క్రాక్ట్	S _E	ra max	r _b	Φ	>	>°
E								E									,		
35	54,5 59,6 59,8	3355	12 25 25 25	0000	<u> </u>	0,6 0,6 0,6	16 20 24	4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	4 4 4 4	70 62 66 61	2222	74 74 76	0044	7,5	<u> </u>	<u> </u>	0,31 0,83 0,31 0,54	1,9 0,72 1,9 1,1	1,1 1,1 0,6
4	54.2 57.5 58.4 59.7 62.5 62.9 67.1	. 23 32 33 33 33 33 33 33 33 33 33 33 33	20,5 16 19 28 28 20 27 27	++++++2,42,42 2,2,2,2,2		0,000,000,000	15 19 19 22 23 23 23	46 47 47 48 51 51 51	44 47 47 49 49 49	60 65 67 77 73 73	668 668 773 773 773 811 811	65 74 77 76 88 88 88 88	44000000004	4.ជ.ជ.៤.৮.៤៤៩៩៩ ជ.ជ.ជ.ជ.			0,37 0,35 0,35 0,35 0,35 0,35 0,35	1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
45	60.4 632.7 64.7 74.7 70.1 70.4 70.4 70.4 70.4 70.4 70.4 70.4 70.4	38 38 38 38 38 38 38 38 38 38 38	2005 2005 2005 300 300 300 300 300 300 300			00000000000000	32523233 33523333 3653333333333333333333	52 52 53 54 55 55 55 55 55 57	552 552 552 554 554 554 554 554 554 554	67 73 72 72 73 73 74 75 76 76 76	669 778 778 778 833 833 91	777 777 880 880 891 893 993	440040000440	404.00.0000 សំសំសំសំសំ			0.40 0.40 0.40 0.60 0.88 0.33 0.35 0.35	1,5 1,5 1,5 1,5 1,7 1,7 1,7 1,7	8.000000000000000000000000000000000000
20	65,6 66,9 667,9 667,9 70,8 70,7 81,5 81,5	8428888888888 3	15,5 19 17 17 19 18 23 23 24,5		2021-1-00-26 2020-2020-20 2020-2020-2020-2020-	000000000000000000000000000000000000000	35 35 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37	557 557 558 559 559 559 559 559 559	55 57 57 57 57 57 57 60 60 60	72 74 74 78 78 78 78 78 78 78	777 777 778 883 883 883 883 883 883 893 893 893 89	77 78 88 88 88 88 88 88 94 100	44446646664	4,54,5 6,55,5 10 10 10 10 10 10 10 10 10 10 10 10 10	22 - 1 - 1 - 5 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	110,5	0,43 0,03 0,43 0,43 0,63 0,63 0,63 0,63 0,63 0,63 0,63	4.0.00 4.4. 8.8.1.1.00 8.00 8.00 8.00 8.00 8.00 8.	8,1-1-8,000 1 1 8,000

- 0
P P P P P P P P P P P P P P P P P P P

Taper roller bearings single row d 35–50 mm

Principal dimensions d D	sions D	-	Basic load ratii dynamic static C C ₀	Basic load ratings dynamic static	Fatigue load limit P _u	Speed ration Lubrication grease oil	Speed ratings Lubrication grease oil	Mass	Designation	Dimension Series to ISO 355
E			z		z	r/min		kg	-	.,
35 (cont.)	8888	22,75 22,75 32,75 32,75	72 100 61 600 95 200 93 500	73 500 67 000 106 000 114 000	8 500 7 800 12 200 13 200	5 000 4 500 4 800 4 500	6 700 6 900 6 300 6 900	0,52 0,52 0,73 0,80	30307 31307 32307 32307 B	2FB 7FB 2FE 5FE
6	90 00 00 00 00 00 00 00 00 00 00 00 00 0	19 26 19,75 24,75 32 33 25,25 25,25 35,25 35,25 35,25	52 800 61 600 74 800 105 000 121 000 85 800 73 700 117 000	71 000 104 000 68 000 86 500 132 000 150 000 95 000 140 000	7 800 11 600 7 650 9 800 15 300 11 000 9 650 16 300	5 300 5 4 800 6 4 800 6 4 900 6 4 900 7 90	7 000 6 700 6 300 6 900 6 900 6 900 5 300 5 300	0,27 0,53 0,53 0,77 0,72 1,00 1,10	32008 X 31108 30208 30208 33208 33208 31308 31308 31308 32308 32308	300 200 200 200 200 200 200 200 200 200
45	75 86 85 85 85 85 85 95 100 100 100 100	20 26 20,75 24,75 32 32 32 36 27,25 38,25 38,25	58 300 84 200 66 000 80 900 73 700 108 000 89 700 147 000 140 000 134 000	80 000 114 000 76 500 98 000 93 000 143 000 112 000 112 000 102 000 170 000 176 000	8 800 12 900 8 650 11 200 11 200 16 300 17 200 17 500 12 500 20 400 20 000	4 4 4 4 4 4 8 800 00000 0000	6 300 6 000 6 000 6 000 6 000 6 000 6 000 6 000 6 000 7 2 300 7 2 300 8 000 8 000 8 000 9	0,34 0,60 0,58 0,92 1,35 4,35 4,55	32009 X 31109 30209 30209 30209 32209 32309 32309 32309 33309 32309 B	300 300 300 300 300 300 300 300 300 300
99	88888888888888888888888888888888888888	20 24,5 21,5 21,75 24,75 28,75 28 32 32 32	60 500 69 300 72 100 85 800 76 500 82 500 106 000 114 000 154 000 108 000	88 000 102 000 100 000 1122 000 191 500 104 000 140 000 140 000 160 000 137 000	9 650 11 400 11 000 13 700 10 400 11 600 12 500 16 300 18 300 18 300 16 000	4 4 4 4 4 4 4 4 500 0000 0000 0000 0000	6 000 6 000 6 000 6 000 6 000 7 5 300 7 5 000 7 5 000 7 5 000	0,37 0,59 0,59 0,59 0,65 0,75 0,90 1,30	32010 X 32010 32010 3211 104948/K-JLM 104910 30210 30210 32210 K-JM 205149/K-JM 205110 K-JM 205149/K-JM 205110 A 32210 32210 77ED 050	30C 20C 30C 30C 30C 30C 30C 30C 30C 30C 30C 3

3	SKF

5
Q - 2
A B B
<u> </u>

Taper roller bearings single row d 50-65 mm

Dimension Series to			Jimen	Dimensions							Ap	utme	nt an	# E	Abutment and fillet dimensions	nsio	S.			Calc	Calculation factors	_
		•	70	- 5≈	æ	o	1.E	73.4 min	r ₅ min	æ	d _a	용률	D E	Dax	og E	ပ္ခ်ိဳင်	ဇ္ဗ	nax	nax max	Φ	>	>°
		E	E								E		Ш						Н	.		
2F8 7F8 2FD 5FD		S.	28 7 8	77,2 81,5 77,7 82,9	27 49 40	33 3 2 3	2,2,2,2,2,3,5,5,5,5,5	0000	0,0 0,0 0,0	37 33 34 35	62 63 63	8888	95 90 83	5555	102 102 103	4400	9 9 9	0000	2000	0,35 0,83 0,35 0,54	1,7 0,72 1,7 1,1	0.0
0.000		v o	777777777777777777777777777777777777777	72.2 73.2 775.9 775.1 775.2 81.7 88.4 88.4 90.5	23 23 23 23 23 23 23 23 23 23 23 23 23 2	18,5 17,5 23 23 23 27 27 25,5 25,5 35 35		0	000000000000000000000000000000000000000	323 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	26222442223244 262224422233244	45 65 65 65 65 65 65 65 65 65 65 65 65 65	79 81 83 87 87 87 87 93 94 94	88 83 88 88 88 88 88 91 100 110 110 110 110	86 86 86 86 94 95 96 104 111 111 112	440044001-44400	4,5 6,5 7,5 7,5 10,5 10,5 10,5	2	0, cit. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	0,31 0,40 0,37 0,40 0,57 0,88 0,35 0,35 0,35 0,35	6,1 6,1 7,1 6,0 7,1 7,1 7,1 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1	1.01-0000000000000000000000000000000000
0 20 20 20 20 20 20 20 20 20 20 20 20 20		•	26	777 8 8 7 7 7 7 8 8 8 1 7 7 7 7 8 8 8 1 7 7 7 8 8 8 1 9 9 1	23 27 27 27 33 33 33 33 46	17,5 119 23 23 24 26 26 26 26 27 27	+ 0 + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2,2,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2	0,00000000	23 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	68 67 70 70 72 74 74 74	67 69 69 69 72 72 72	85 84 85 88 88 88 88 92 111 1103	88 88 88 88 88 93 101 101 111 111 111 111 111 111 111 11	91 90 90 103 103 112 123 123	4466446664666	5 5 6 6 7 7 7 7,5 11,5	-4	- 2 2 2 2 2 2 2 2 2 2 2 2	0,43 0,40 0,40 0,40 0,40 0,40 0,54 0,54 0,33 0,33 0,35 0,35	4.00 8.11 8.10 8.10 8.10 8.10 8.10 8.10 8	88 8886 466
200 200 200 200 200 200 200 200 200 200	1.00	ซี	න සමස්ත්රිත් ආ			37 17,5 22,5 26,5 20 31	ຍ ຍດ-4 ຕໍ່ຕໍ່ ຄໍ	2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	0,6 0,6 0,6 0,6 0,6	35 23 24 25 38	73 72 74 78 76 75	2 22 22 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4	98 88 89 89 104 104 104 104 104 104 104 104 104 104	118 93 98 103 111 111	122 96 104 113 115	0 4000440	1. 6, 7, 7, 8 7, 7, 7, 8	2 12 2	2 ++2++5	0,54 0,40 0,40 0,40 0,57	1. 6. 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	0,000 0 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0 0,000 0 0,000

1 I	L Q B	dynamic static	static C ₀	load limit P	Lubrication grease oil	ation e oil		ional de la constant	Series to ISO 355
		z		z	r/min		kg		,
(cont.) 1	110 29,25 110 29,25 110 42,25 110 42,25	125 000 106 000 172 000 161 000	140 000 120 000 212 000 216 000	17 000 14 300 24 500 25 000	3 200	4 4 4 800 4 300 300 4 300	1,25 1,80 1,85	30310 31310 32310 B	2FB 7FB 2FD 5FD
	90 23 90 23 90 27 100 22/75 110 36 110 38 111 34 112 34 120 31,5 120 31,5 120 31,5 120 45,5	78 100 80 900 89 700 110 000 89 700 106 000 101 000 179 000 125 000 179 000 125 000 179 000 179 000 179 000 170 000 17	112 000 116 000 150 000 150 000 129 000 129 000 129 000 123 000 163 00	12 500 13 200 14 200 17 200 18 200 17 200 17 200 19 600 19 600 19 600 19 600 19 600 19 600 19 600 19 600 19 600 30 600	4 4 4 6 000 4 4 4 000 5 3 3 3 8 000 5 3 3 5 000 5 3 5 000 5 5 000 5 6 000 5 7 000 5 8 000 5 9 000 5 0	5 300 5 300 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0,56 0,55 0,75 0,70 0,87 1,70 1,70 1,55 2,30 2,50	K-JLM 506849/K-JLM 506810 32011 X 32011 X 32011 33211 30211 B 30211 B 30211 B 30311 3031 3131 3331 3331 3331 3331 333	200 200 200 200 200 200 200 200 200 200
60 95 95 95 95 95 95 95 95 95 95 95 95 95	23 24 27 27 28 38 5 39 5 30 5 33 5 37 6 33 6 33 6 33 6 48 7 5 3 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	82 500 84 200 91 300 11 7 000 99 000 125 000 168 000 168 000 168 000 168 000 164 000 174 000 175 000 175 000 175 000 175 000 175 000 175 000	122 000 132 000 170 000 170 000 170 000 160 00	13 700 15 000 19 000 13 400 19 000 27 000 27 000 28 500 38 000 38 000 38 000 38 000 38 000 38 000 38 000 38 000 38 000 38 000	00000000000000000000000000000000000000	6 4 4 4 4 4 4 4 6 4 8 8 8 8 8 8 8 8 8 8	0,59 0,62 0,71 0,92 0,92 1,15 1,16 1,85 1,95 1,95 1,95 2,05 2,85 2,85 2,80 2,80	33012 X K-JLM 508748/K-JLM 508710 33012 3312 3212 32212 32212 32212 3212 7FC 060 7FC 060 30312 33312 33312	4 0 C C C C C C C C C C C C C C C C C C
65 100 110 120 120 120 120	23 27 28 34,75 32,75	84 200 96 800 123 000 142 000 1114 000 151 000 161 000	127 000 156 000 208 000 240 000 240 000	14 300 17 600 21 200 24 500 16 300 23 200 27 500	00000000000000000000000000000000000000	4 4 4 4 4 4 4 4 4 9 000 0 0 0 0 0 0 0 0	0,63 1,05 1,15 1,15 1,95	32013 X 33013 33113 33113 30213 32213 TSED 065	20E 20E 30E 36C 56D

O O O O O O O O O O O O O O O O O O O	Dimensions Abutment and fillet dime	d dı B C fış fışı fış a dı dı Dı Dı Dı Dı min min min min max mın	mm mm	65 91,3 38,5 32 2 2,5 0,6 27 76 77 103 108 113 92,1 41 32 2 1,5 0,6 29 75 74 102 111 115 102 33,5 26 3 3 0,6 4 77 77 98 116 124 98,6 33 28 3 2,5 1 28 8 47 77 122 128 130 103 33 28 3 2,5 1 3,5 90 77 11 128 132 105,4 8 39 3 2,5 1 41 79 77 107 122 130 105,4 8 39 3 2,5 1 41 79 77 107 122 130 105 105 48 39 3 2,5 1 41 79 77 107 128 130 105 105 105 105 105 105 105 105 105 10	70 89,8 25 19 1,5 1,5 0,6 23 78 77 98 103 105 89,8 13 25,5 1,2 5,0 3 58 78 77 99 105 105 89,8 37 72 95 105 105 105 105 105 105 105 105 105 10	75 89,2 20 16 1 1 0.3 19 81 81 81 89 99 10 96,1 25 25 36 28 83 82 103 108 110 98,1 28,5 2 3 25 5 5 84 87 104 109 115 100 37 29 2 2 15 0.6 29 84 87 104 109 115 20 15 0.6 29 84 84 104 109 115 20 110 20 20 11 20 20 2 84 84 116 20 11 22 11 20 20 20 88 84 14 11 12 12 20 20 20 88 87 11 12 12 12 10 20 20 88 87 11 12	80 103 29 22 1,5 1,5 0,6 27 90 87 112 118 120 6 102 36 29,5 1,5 1,5 0,6 30 87 112 118 119 6 105 37 29 2 1,5 0,6 30 89 89 114 121 126 6	SKF
<u> </u>						•		
	Dimension Series to	150 355		3EE 7FC 2GB 2GD 5GD	20 P P P P P P P P P P P P P P P P P P P	286 206 206 206 206 206 206 206 206 206 20	30E	SKF
	Designation			K.JH 211749/K.JH 211710 33213 30313 30313 31313 32313 32313 B	32014 X 52.4LM 813049/K-JLM 813010 33014 33114 30214 30214 30214 30214 30314 30314 30314 32314 32314	32915 32015 X 30015 X 33115 - 33115 - 32215 32215 32315 XAH 415610 - 17C 075 30315 33315 32315 32315	32016 X 33016 33116	
	Mass		kg	1,90 2,20 2,20 2,35 3,45 3,35 3,35	0.84 0.91 1.10 1.10 1.10 1.10 1.10 1.10 1.10	0,52 0,95 1,18 1,18 1,17 1,17 1,17 1,17 1,17 1,17	1,90	
	Speed ratings Lubrication	8		2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 4 300 4 4 000 3 3 800 3 4 00 3 4 00 3 4 00 2 3 900 2 8 900 2 8 900 2 8 900	3 600 3 600 3 600	
•	Speed	grease	r/min	2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 2 20 3 2 20 3 2 20 5 2 2 2 20 5 2 2 20 5 2 2 2 20 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 600 2 600 2 600	
5	Fatigue	E °	z	30 500 25 500 27 500 23 600 40 000 40 500	17 300 18 300 30 200 30 200 30 200 18 300 18 300 27 500 27 600 45 500 45 500	13 200 19 000 26 500 27 500 27 500 28 000 28 000 31 000 31 000 31 000 31 000 31 000 31 000 31 000 31 000 31 000 32 9 000 33 50 000 34 000 35 000 36 000 37 000 38 000 30 000 30 000 30 000 30 000 30 000 30 000 30 000 30 000 30 000 300 3	25 000 32 000 32 500	
	Basic load ratings dynamic static	ပိ		265 000 270 000 216 000 228 000 193 000 335 000 345 000	153 000 160 000 250 000 156 000 156 000 220 000 220 000 405 00	116 000 163 000 226 000 265 000 176 000 212 000 212 000 225 000 225 000 245 000 245 000 245 000 245 000 245 000 245 000 245 000	216 000 285 000 280 000	
<u>r</u> <u>o</u>	Basic lo dynamic	ပ	z	187 000 194 000 157 000 194 000 165 000 264 000	101 000 1730 000 1730 000 175 000 157 000 221 000 228 1 000 281 000 281 000	70 400 106 000 134 000 138 000 140 000 161 000 209 000 246 000 336 000 336 000	138 000 168 000 179 000	
	al sions	L G		120 39 120 41 130 37 140 36 140 51	110 25 110 32 110 37 125 37 125 37 125 43 125 43 126 38 140 52 140 52 14	105 20 115 25 115 31 120 31 120 31 130 41 130 41 150 40 160 40 160 58	125 29 125 36 130 37	
	Principal dimensions	g	E	65 (cont.)	2	A R	08	532

Taper roller bearings single row d 65–80 mm

္တို့။ မျာ

SKF

	2		
	뎚		
	ä		
	8		ڃ
	5	_	5 mm
:		ě	2
	=	=	ĭ
	ě	릀	8
	늄	ing	
١	-	S	р

a. g.

Δ,

	%		0,8 0,9 1,1 0,9 0,9 0,9	8 8 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0
Calculation factors	>		4.1. 6.1. 7.7. 7.1. 1.1.	1,35 2,135 1,14 1,14 1,7 1,7 1,7	27.2 2.1.3 2.1.3 2.1.4 1.4 2.7.2 2.2 2	1,35 1,8 1,4 1,7 0,72 0,72
Calcu	٥		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000 44400444 440068888888888888	0,43 0,43 0,43 0,43 0,63 0,83 0,35	0,44 0,43 0,43 0,43 0,35 0,35
	o E ax		~~~~~~	- 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,	******************
	ra max		00000000	22555	0,000000000000000000000000000000000000	2,55
Se l	သို့		6 9.5 13.5 13.5 13.5	7 6,5 9,5 12,12 14,5 14,5 14,5	8 8 8 10 6,5 6,5 115 10,5 14,5	8 6,5 7,5 8,5 11,5 16,5
nensi	S.E.		4 5 2 8 2 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	77667557656	7200277027	85655116
et gi	Da Db max min		0 132 0 134 0 135 3 137 8 159 8 159 8 159	3 125 3 125 3 125 3 125 3 125 3 167 1 67 1 67 1 69	134 135 139 144 147 150 150 150 176 177 177	139 152 153 154 161 187 187
<u> </u> <u> </u>	D, D,		124 130 122 130 125 133 125 133 134 158 134 158 130 158	117 128 129 130 132 140 140 140 140 140 150 160 160 160 160 160 160 160 160 160 16	5 131 7 133 7 133 7 133 7 133 150 8 150 8 150 7 176 7 176	0 136 0 146 0 158 9 158 5 158 6 186 6 186
ent a	ab min n		998 99 99 99 99 99 99 99 99 99 99 99 99	29 99 92 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	99 125 99 127 108 127 100 130 100 140 100 138 104 134 104 151 104 151	104 130 107 140 107 149 107 145 109 172 109 157
Abutment and fillet dimensions	d _a d max n	E	92 99 91 99 92 92 90 92 92 99 96 99	94 995 995 995 995 995 995 995 995 995 9	000 000 000 000 000 000 000 000 000 00	01 04 10 10 10 10 10 10 10 10 10 10 10 10 10
	e -		28 33 33 33 55 55 56 57	28 28 33 33 33 33 34 34 35 35 36 36 36 37 37 38 37 38 38 38 38 38 38 38 38 38 38 38 38 38	227 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	31 1 28 1 28 1 33 1 1 33 1 1 4 4 7 1 1 4 4 7 1 1
	min.		0.6	00000000	00000000	006 200 600 800 800 800 800 800 800 800 800 8
	min 4		2222222	+ u + u u u u u u u u u u u u u u u u u	++0000004000	22.22.22
	r _{1,2}		333333	- 6 - 9 9 9 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00000004444 0000	0/0/0/0/0/444
	o		22 28 28 33 33 48 48	22 22 23 33 33 44 49 49	24 227 227 33 33 33 33 33 33 33 33 33 33 33	24 32,5 33 33 35 55
	8		28 39 39 58 58 58 58	29 28 38 28 4 4 4 4 4 6 6 6 0 0 0	33 33 33 33 44 45 44 45 47 47 47 47 47 47 47 47 47 47 47 47 47	28 38 39 29 49 45 45 45 45 45 45 45 45 45 45 45 45 45
Dimensions	υΣ		28 28 28 28 28 28	108 112 112 113 113 113 126 136	115 113 120 120 118 138 138	120 118 125 126 128 139 145
Dime	ъ	Ę	8	8	06	98
		•				
sion			1: 1	1		
Dimension Series to	00 00 00		268 268 268 268 268 268 268 268 268	200 200 200 200 200 200 200	30C 20E 3DE 3DE 3FC 3FC 26B 26B	268 268 268 268 268 268 268 268 268
ss Designation		-	30216 32216 32216 32378 30316 30316 32316 32316 32316	32017 X 5.M 716649/K-JM 716610 33017 30217 32217 32317 30317 32317 32317 32317	32018 X 32018 K-JM 718149 A/K-JM 718110 72ED 990 32218 77FC 990 30318 31318	32019 X 32019 7XED 095 30219 30319 31319 32319
Mass		ğ	2,05 3,25 3,25 6,20 6,20 5,70	1,35 1,75 1,75 2,05 2,05 2,05 2,05 3,70 4,60 6,85 7,50	1,75 2,20 2,15 3,10 3,10 3,55 3,55 4,95 5,90 8,40	2,30 3,65 3,00 6,70 11,0
eed ratings brication	5		2 800 2 800 2 800 2 800 2 800	2 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 200 3 2 200 2 8 800 2 8 800 2 2 800 2 2 600 2 4 00
pric	ğ	Æ	88888888	8888888888	8888888888	2222222

Principal dimension	ons		Basic	Basic load ratings Fatigue dynamic static load	Fatigue load	Speed ratings Mass Lubrication	Mass	Designation	Dimension Series to	
ъ	۵	-		ပိ	Ĕ.º	grease oil			150 355	٠
au			2		2	- Jania				

255 000 255 00

1870 0 18

8

mm (cont.)

85

95

Ĺ,

534

ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ ΠΕΡΙΕΧΟΜΕΝΟ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι

Παράδειγμα υπολογισμού κρίσιμου αριθμού στροφών

Στο σχέδιο παριστάνεται μία άτρακτος στην οποία είναι τοποθετημένες οι μάζες G1 και G2. Ζητείται να υπολογισθεί ο κρίσιμος αριθμός στροφών της ατράκτου.

Διαστάσεις όπως στο σχήμα G1=G2=1500 Kp E =21000 Kp/mm2

Λύση

1. Λαμβάνοντας υπόψη μόνο το φορτίο G1 υπολογίζονται οι αντιδράσεις στις θέσεις A και B

$$\sum M_B = 0 \qquad \Rightarrow \qquad A_1 \cdot L - G_1(L - L_3) = 0 \qquad \Rightarrow \qquad A_1 = \frac{G_1(L - L_3)}{L}$$
$$\Rightarrow \qquad A_1 = \frac{1500 \cdot 875}{1440} = 910$$

$$\sum F = 0$$
 \Rightarrow $A_1 + B_1 - G_1 = 0$ \Rightarrow $B_1 = G_1 - A_1 = 1500 - 910 = 590 Kp$

Με την υπόθεση πάκτωσης στη θέση G1 υπολογίζονται τα βέλη κάμψης στις θέσεις A και B (Σχ. Θ33α)

$$f_{A1} = \frac{64 A_1}{3 \pi E} \left[\frac{L_1^3}{d_1^4} + \frac{L_2^3 - L_1^3}{d_2^4} + \frac{L_3^3 - L_2^3}{d_3^4} \right]$$

$$= \frac{64 \cdot 910}{3 \cdot \pi \cdot 21000} \left[\frac{148^3}{150^4} + \frac{273^3 - 148^3}{225^4} + \frac{565^3 - 273^3}{250^4} \right] = 0.016 \, mm$$

$$f_{B1} = \frac{64 B_1}{3 \pi E} \left[\frac{L_I^3}{d_I^4} + \frac{L_{II}^3 - L_I^3}{d_{II}^4} + \frac{(L - L_3)^3 - L_{II}^3}{d_{III}^4} \right]$$

$$= \frac{64 \cdot 910}{3 \cdot \pi \cdot 21000} \left[\frac{115^3}{150^4} + \frac{240^3 - 115^3}{225^4} + \frac{(1440 - 565)^3 - 240^3}{250^4} \right] = 0.0335 \, mm$$

Η δύναμη G1 εφαρμόζεται μεταξύ των εδράσεων οπότε (Θ32) το βέλος κάμψεως στη θέση εφαρμογής της δύναμης G1 δίνεται από τη σχέση

$$f_1 = f_{A1} + \frac{L_3}{L} (f_{B1} - f_{A1}) = 0.016 + \frac{565}{1440} (0.0335 - 0.016) = 0.0228 \, mm$$

2. Θεωρούμε ότι εφαρμόζεται το φορτίο G2 εφαρμόζονται οι ίδιες σχέσεις όπως προηγουμένως

$$\sum M_B = 0 \qquad \Rightarrow \qquad A_2 \cdot L - G_2 \cdot L_{III} = 0 \qquad \Rightarrow \qquad A_2 = \frac{G_2 \cdot L_{III}}{L}$$
$$\Rightarrow \qquad A_2 = \frac{1500 \cdot 530}{1440} = 552 \, Kp$$

$$\sum F = 0$$
 \Rightarrow $A_2 + B_2 - G_2 = 0$ \Rightarrow $B_2 = G_2 - A_2 = 1500 - 552 = 948 Kp$

Με την υπόθεση πάκτωσης στη θέση G1 υπολογίζονται τα βέλη κάμψης στις θέσεις A και B (Σχ. $\Theta 33\alpha$)

$$f_{A2} = \frac{64 A_2}{3 \pi E} \left[\frac{L_1^3}{d_1^4} + \frac{L_2^3 - L_1^3}{d_2^4} + \frac{(L - L_{III})^3 - L_2^3}{d_3^4} \right] = 0.0358 \, mm$$

$$f_{B1} = \frac{64 B_2}{3 \pi E} \left[\frac{L_I^3}{d_I^4} + \frac{L_{II}^3 - L_I^3}{d_{II}^4} + \frac{L_{III}^3 - L_{II}^3}{d_{II}^4} \right] = 0.013 \, mm$$

Η δύναμη G1 εφαρμόζεται μεταξύ των εδράσεων οπότε (Θ32) το βέλος κάμψεως στη θέση εφαρμογής της δύναμης G1 δίνεται από τη σχέση

$$f_2 = f_{A2} + \frac{\left(L - L_{III}\right)}{L} \left(f_{B2} - f_{A2}\right) = 0.0358 + \frac{1440 - 530}{1440} \left(0.013 - 0.0358\right) = 0.0214 \, mm$$

Ο κρίσιμος αριθμός στροφών υπολογίζεται από τη σχέση

$$\eta_{kb} = 946 \sqrt{\frac{1}{f_1 - f_2}} = 946 \sqrt{\frac{1}{0.0228 + 0.0214}} = 4500 \,\Sigma / \min$$

Παράδειγμα Κοχλίες

Στο παραπάνω σκαρίφημα παρουσιάζεται η αρχή λειτουργίας ενός μηχανισμού για την εκμετάλλευση της ενέργειας των κυμάτων. Ο πλωτήρας (1) παρακολουθεί την κίνηση των κυμάτων εκτελώντας μία κατακόρυφη παλινδρομική κίνηση. Η κίνηση αυτή μέσω του μοχλού (2) που εδράζεται στην άρθρωση (3) μεταφέρεται στο έμβολο (4) όπου και παράγεται έργο. Το ελατήριο (5) χρησιμεύει για την ρύθμιση του πλωτήρα σε μία επιθυμητή θέση.

Δεδομένα	
11 = 5m	
12 = 1 m	
13 = 0.5 m	
14 = 0.5 m	
15 = 0.2m	
Fan = 1tδύναμη που ασκείται στον τ	τλωτήρα στην ανώτερη θέση Α
St 37υλικό βραχίονα (3)	
α = 8 mmπάχος συγκόλλησης	
8.8υλικό κοχλία	
Soλ = 1,1συντελεστής ασφάλειας	σε ολίσθηση
μ = 0,14συντελεστής τριβής με	ταξύ των προένταση με χειροκίνητο
δυναμόκλειδο και μέτρη	ηση μόνο της ροπής προεντάσεως
ΙΙκατηγορία ποιότητας συ	ργκόλλησης
M30 DIN 931κοχλίας της βάσης	

Do = 33μέση διάμετρος οπής κοχλιοσύνδεσης

Ζητούνται

Όταν ο πλωτήρας βρίσκεται στην ανώτερη θέση Α οπότε στο έμβολο δεν ασκείται καμιά αντίδραση ζητείται ο υπολογισμός ελέγχου της κοχλιοσύνδεσης της βάσης της αρθρώσεως (3) όπως παριστάνεται στο σχήμα 3.

Σημείωση: Να μη ληφθεί υπόψη το ίδιο βάρος της κατασκευής.

Λύση

Παρατηρήσεις

Εάν δεν μας δίνονται κάποια δεδομένα μπορούμε να τα πάρουμε από αντίστοιχους πίνακες ή σχήματα.

Sol : σελίδα Δ64

μ : πίνακας Δ20 σελίδα Δ52Do : πίνακας Δ16 σελίδα Δ38

Υπολογισμός δυνάμεων

$$\sum M = 0 \qquad \Rightarrow \qquad F_{\alpha\nu}l_1 - F_{\varepsilon\lambda}l_2 = 0 \qquad \Rightarrow \qquad F_{\varepsilon\lambda} = \frac{F_{\alpha\nu}l_1}{l_2} = \frac{1000 \cdot 5}{1} \qquad \Rightarrow \qquad F_{\varepsilon\lambda} = 5000 \, Kp$$

Προσεγγιστικός υπολογισμός

Η πλάκα τείνει να περιστραφεί ως προς τον άξονα Β Μεταφέρουμε τις δυνάμεις στο κέντρο βάρους των οπών. Στην περίπτωσή μας στο μέσον της πλάκας (σημείο A).

Κατανέμουμε τις δυνάμεις στις τέσσερις κοχλιοσυνδέσεις.

$$F_{\Lambda i} = \frac{F_{\varepsilon \lambda}}{4} = \frac{5000}{4} = 1250 \, Kp$$

$$F_{\Delta i} = \frac{F_{\alpha v}}{\Delta} = \frac{1000}{\Delta} = 250 \, Kp$$

Η ροπή που προκύπτει κατά τη μεταφορά της δύναμης $F_{\alpha \nu}$ στο σημείο Α είναι

$$M = F_{\alpha \nu} l_4 = 1000 \cdot 0.5 = 500 \, Kpm = 500000 \, Kpmm$$

$$M = 2F_{x1}l_1 + 2F_{x2}l_2$$

$$\Rightarrow \frac{F_{x1}}{l_1} = \frac{F_{x2}}{l_2}$$

$$\Rightarrow \frac{F_{x2}}{25} = \frac{F_{x1}}{375}$$

$$F_{x2} = 44.25 \, Kp$$

 $F_{x1} = 663.7 \, Kp$

$$F_{\varepsilon\phi 1} = F_{\Lambda 1} + F_{x1} = 1250 + 663.7 = 1913.7 \, Kp$$

Άρα στην κοχλιοσύνδεση στη θέση 1 εφαρμόζεται διατμητική δύναμη $F_{\rm ll} = 250\,{\rm Kp}$ εφελκυστική δύναμη $F_{\rm efl} = 1913.7\,{\rm Kp}$

Πίνακας ΠΔ1 σελ Δ15 για Μ30

$$d_2 = 27.727 \, mm$$

μέση διάμετρος

$$d_3 = 25.706 \, mm$$

εσωτερική διάμετρος

$$a_2 = 2.30^{\circ}$$

γωνία ελίκωσης

$$A_3 = \frac{\pi \cdot d_3^2}{4} = \frac{\pi \cdot 25.706^2}{4} = 518.99 \, mm^2$$

$$A_d = \frac{\pi \cdot d^2}{4} = \frac{\pi \cdot 30^2}{4} = 706.86 \, mm^2$$

Σταθερά ελατηρίου του κοχλία

$$\frac{1}{c_k} = \frac{1}{E_k} \left(\frac{l_3}{A_3} + \frac{0.8 \cdot d}{A_d} \right) = \frac{1}{21000} \left(\frac{40}{519} + \frac{0.8 \cdot 30}{706.9} \right) \quad \Rightarrow \quad c_k = 189145.3 \, Kp/mm \tag{66.45}$$

Σταθερά ελατηρίου των σωμάτων

$$c_{\Sigma} = \frac{A_{\Sigma} \cdot E_{\Sigma}}{l_{\Sigma}}$$
 Δ15 σελ. Δ47

$$A_{\Sigma} = \frac{\pi}{4} \left(\left(s + \frac{l_{\Sigma}}{10} \right)^2 - D_0^2 \right)$$

$$l_{\Sigma} = 40 \, mm$$

$$s = 46 \, mm$$

Πίνακας Δ.8 σελ. Δ27 για Μ30

οπότε

$$A_{\Sigma} = \frac{\pi}{4} \left[\left(46 + \frac{40}{10} \right)^2 - 33^2 \right] = 1108.2 \, mm^2$$

$$c_{\Sigma} = \frac{1108.2 \cdot 21000}{40} = 581805 \, Kp/mm$$

Δύναμη λόγω ψυχρής καθίζησης

$$F_z = \Delta l_z \frac{c_k \cdot c_{\Sigma}}{c_k + c_{\Sigma}}$$

σχέση Δ26 σελ. Δ51

$$\Delta l_z = 5 + 7.5 \cdot n = 5 + 7.5 \cdot 3 = 27.5 \,\mu m$$

σγέση Δ25 σελ Δ50 για τραγείες επιφάνειες και διάτμηση

άρο

$$F_z = 27.5 \cdot 10^{-3} \frac{189145 \cdot 581805}{189145 + 581805} = 3925.4 \, Kp$$

Ελάχιστη δύναμη σωμάτων

$$S_{o\lambda} = \frac{(F_{\Sigma})_{\varepsilon\lambda} \cdot \mu_0}{F_{\Delta 1}}$$

!!! σωστή σχέση Δ46 σελ. Δ64

$$\Rightarrow (F_{\Sigma})_{\varepsilon\lambda} = \frac{F_{\Delta 1} \cdot S_{o\lambda}}{0.14} = \frac{250 \cdot 1.1}{0.14} = 1964.3 \, Kp$$

Δύναμη προεντάσεως

$$\begin{split} F_{\pi} &= \left(F_{\Sigma}\right)_{\varepsilon\lambda} + F_{\Delta\Sigma} = \left(F_{\Sigma}\right)_{\varepsilon\lambda} + F_{\lambda} \left(1 - \frac{c_{\kappa\lambda}}{c_{\kappa\lambda} + c_{\Sigma\lambda}}\right) \\ &= 1964.3 + 1913.7 \left(1 - \frac{189145}{189145 + 581805}\right) = 3408.5 \, \mathit{Kp} \end{split}$$

Συντελεστής προεντάσεως

$$a_{\pi} = 1.6$$

Πίνακας Δ21 σελ. Δ53 για χειροκίνητο δυναμόκλειδο και μέτρηση μόνο της ροπής προέντασης

Μέγιστη δύναμη προέντασης

$$(F_{\pi})_{u\varepsilon\gamma} = a_{\pi}[F_{\pi} + F_{z}] = 1.6(3408.5 + 3925.4) = 11734.2 \, Kp$$

σχέση Δ38 σελ. Δ58

Φορτίο του κοχλία

$$F_{\Delta k} = F_{\lambda} \frac{c_k}{c_k + c_{\Sigma}} = 1913.7 \frac{189145}{189145 + 581805} = 469.5 \, Kp$$

Ισοδύναμη τάση

$$\sigma_{\iota\sigma} = \sqrt{\left[\frac{4 \cdot \left[\left(F_{\pi}\right)_{\mu\varepsilon\gamma} + F_{\Delta\kappa}\right]}{\pi \cdot d_{s}^{2}}\right]^{2} + 3\left[\frac{8 \cdot d_{2}\left(F_{\pi}\right)_{\mu\varepsilon\gamma} \cdot \varepsilon\phi(\rho' + a_{2})}{\pi \cdot d_{s}^{3}}\right]^{2}}$$

$$d_s = \frac{d_2 + d_3}{2} = \frac{27.727 + 25.706}{2} = 26.716 \, mm$$

διατομή καταπόνησης κοχλία

 ρ' : ανηγμένη γωνία τριβής του σπειρώματος

$$\varepsilon\phi \, \rho' = \frac{\mu}{\sigma \upsilon v \, \beta} = \frac{0.14}{\sigma \upsilon v \, 30^{\circ}} \quad \Rightarrow \quad \rho' = 9.18^{\circ}$$

οπότε προκύπτει

$$\sigma_{\iota\sigma} = 26.6 \, Kp/mm^2$$

Συντελεστής ασφάλειας

$$S_{z\rho} = \frac{\sigma_{z\rho}}{\sigma_{z\sigma}}$$

σχέση Δ50 σελ. Δ80

$$\sigma_{z\rho} = 64 \, Kp / mm^2$$

Πίνακας Δ17 σελ. Δ40 για υλικό 8.8

άρα
$$S_{z\rho} = \frac{64}{26.6} = 2.41$$
 > 1.1

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

Υπολογιστικό θέμα εξετάσεων στο μάθημα ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι Επιτρέπονται όλα τα βοηθήματα Διάρκεια 1:45 ώρες

EMBOAO

Στο σκαρίφημα παρουσιάζεται ένα έμβολο διπλής κατεύθυνσης. Το λάδι εισάγεται στον κύλινδρο (1) από τις θέσεις (Α) ή (Β) αναγκάζοντας το έμβολο (2) να κινηθεί προς την αριστερή ή την δεξιά κατεύθυνση. Κατά την κίνηση παρασύρεται το βάκτρο (3) που είναι ένα σώμα με το έμβολο. Τα καπάκια (4) και (5) συνδέονται με τους κοχλίες (6) στον κύλινδρο (1).

Το σύστημα παροχής λαδιού είναι συνδεδεμένο με τέτοιο τρόπο ώστε όταν η πίεση γίνεται μέγιστη από τη θέση (A) να επιστρέφει ελεύθερα το λάδι από τη θέση (B) και αντίστροφα. Έτσι σε κάθε πλευρά του εμβόλου μεταβάλλεται διαδοχικά η πίεση από μηδέν έως p_{max} Το τμήμα του βάκτρου που βρίσκεται στο χώρο που αναπτύσσεται η πίεση καταπονείται σε εφελκυσμό ενώ το υπόλοιπο δεν καταπονείται καθόλου.

$p_{\text{max}} = 2 \text{ Kp/mm}^2 \dots$	μέγιστη πίεση
D = 150 mm	εσωτερική διάμετρος κυλίνδρου
d = 60 mm	διάμετρος βάκτρου
30CrNiMo8	υλικό του εμβόλου - βάκτρου
$\rho = 5 \text{ mm} \dots$	ακτίνα καμπυλότητας στη θέση Ι-Ι
$R_z = 10 \ \mu m$	τραχύτητα επιφανείας στη θέση Ι-Ι
$C_s = 1.1$	συντελεστής κρούσεων
χωρίς επιφανειακή σκλήρυνση	,
z = 16	πλήθος κοχλιών

M12 DIN933	. κοχλίες (6)
8.8	
Τρόπος προέντασης	με χειροκίνητο δυναμόκλειδο και μέτρηση μόνο της
	ροπής προέντασης και επάλειψη του σπειρώματος και των τριβόμενων επιφανειών κατά την προένταση με λάδι
(abla abla)	κατεργασία επιφανειών των συνδεομένων στοιχείων με
	την κοχλιοσύνδεση

Ζητούμενα

- α) Ο συντελεστής ασφάλειας στη θέση I-I β) Ο συντελεστής ασφάλειας των κοχλιοσυνδέσεων στερέωσης των καπακιών

Η μέγιστη δύναμη που εφαρμόζεται στο έμβολο δίνεται από τη σχέση

$$F_{\text{max}} = \frac{p\pi (D^2 - d^2)}{4} = \frac{2\pi (150^2 - 60^2)}{4} = 29688kp$$

$$F_{\text{max}} = 9.81F_{\text{max}} = 291239N$$

Από την εκφώνηση προκύπτει ότι η δύναμη στο έμβολο μεταβάλλεται από 0 μέχρι $F_{\rm max}$. Δηλαδή η φόρτιση είναι μόνο κυματοειδής εφελκυστική.

$$F_{za} = F_{zm} = \frac{F_{\text{max}}}{2} = \frac{291239}{2} = 145620N$$

Υπολογισμός ημιεύρους δυναμικής τάσης $\sigma_{z\alpha}$, μέσης τάσης σ_{zm}

$$\sigma_{za} = \frac{F_{z\alpha}}{A} = \frac{F_{z\alpha}}{\frac{\pi d^2}{4}} = \frac{145620}{\frac{\pi 60^2}{4}} = 51.5 \text{ N/mm}^2$$

$$\sigma_{zm} = \frac{F_{zm}}{A} = \sigma_{za} = 51.5 \ N/mm^2$$

Ισοδύναμη μέση τάση (κεφ. 4.1)

$$σ_{zm} + σ_{bm} > O$$

άρα $σ_{mv} = \sqrt{(σ_{zm} + σ_{bm})^2 + 3τ_{tm}^2} = 51.5N / mm^2$

αν αυξηθεί η F_{max} τότε

$$\frac{\sigma_{\it{za}}}{\sigma_{\it{min}}}$$
 = 1 σταθερό άρα περίπτωση φόρτιση F_2

Από πίνακα Π.2.1.δ για υλικό 30CrNiMo8 προκύπτει

$$\sigma_{\rm B} = 1250 \, N / mm^2$$
, $\sigma_{s} = 1050 \, N / mm^2$, $\sigma_{zdw} = 500 \, N / mm^2$
 $\sigma_{bw} = 625 \, N / mm^2$, $\tau_{tw} = 375 \, N / mm^2$
 $d_{B} = 16 mm$

Για εφελκυσμό

Συντελεστής μορφής a_{σ} (κεφ.5.2.2.1)

$$t = \frac{D - d}{2} = \frac{150 - 60}{2} = 45 \, mm$$

$$a_{\sigma} = 1 + \frac{1}{\sqrt{A \frac{r}{t} + 2B \frac{r}{d} \left(1 + 2\frac{r}{d}\right)^{2} + C\left(\frac{r}{t}\right)^{2} \frac{d}{D}}}$$

όπου

$$A = 0.62, B = 3.5, C = 0, z = 0$$

$$\Rightarrow a_{\sigma} = 1 + \frac{1}{\sqrt{0.62 \frac{5}{45} + 2 \cdot 3.5 \frac{5}{60} \left(1 + 2 \frac{5}{60}\right)^2}} = 2,077$$

Υπολογισμός συντελεστή αντιστήριξης η (κεφ. 5.2.2)

Σχετική πτώση τάσης

$$\frac{d}{D} = \frac{60}{150} = 0.4 \Rightarrow \varphi = 0$$

$$G' = \frac{2.3(1+\phi)}{r} = \frac{2.3(1+0)}{5} = 0.46mm^{-1}$$

$$n = 1 + \sqrt{G'} \cdot 10^{-\left(0.33 + \frac{\sigma_s(d)}{712}\right)}$$

όπου

$$\sigma_s(d) = K_1(d_{eff}) \cdot \sigma_s(d_B)$$

Συντελεστής επίδρασης μεγέθους στη θερμική κατεργασία $K_1(d_{\it eff})$ (κεφ 5.1)

$$d_{eff} = 150 \, mm$$

Επιβελτιωμένοι χάλυβες για όριο θραύσεως και όριο πλαστικής παραμόρφωσης

$$16 < d_{eff} < 300 K_1(d_{eff}) = 1 - 0.26 \cdot \log\left(\frac{d_{eff}}{d_B}\right)$$
$$\Rightarrow K_1(d_{eff}) = 1 - 0.26 \cdot \log\left(\frac{150}{16}\right) = 0.747$$

οπότε

$$\sigma_s(d) = 0.747 \cdot 1050 = 784.3 \ N / mm^2$$

και

$$\eta = 1 + \sqrt{0.46} \, 10^{-\left(0.33 + \frac{784.3}{712}\right)} = 1.025$$

Συντελεστής εγκοπής β_{σ}

$$\beta_{\sigma} = \frac{\alpha_{\sigma}}{\eta} = \frac{2,077}{1,025} = 2,026$$

Συντελεστής μεγέθους $K_2(d)$ (κεφ. 5.3) για εφελκυσμό

$$K_2(d) = 1$$

Συντελεστής τραχύτητας K_F (κεφ 5.5) για ορθές καταπονήσεις

$$K_{F\sigma} = 1 - 0.22 \cdot \log(R_z) \left(\log \frac{\sigma_B(d)}{20} - 1 \right)$$

όπου

$$\sigma_B(d) = K_1(d_{eff})\sigma_B(d_B) = 0.747 \cdot 1250 = 933,75 \ N / mm^2$$

οπότε

$$K_{F\sigma} = 1 - 0.22 \cdot \log(10) \left(\log \frac{933.75}{20} - 1\right) = 0.853$$

Συντελεστής αύξησης επιφανειακής αντοχής K_V (κεφ 5.6) (... χωρίς επιφανειακή σκλήρυνση...)

$$K_{V} = 1$$

Συνολικός συντελεστής επίδρασης εγκοπής K_{σ} (κεφ 4.2.1)

$$K_{\sigma} = \left(\frac{\beta_{\sigma}}{K_{2}(d)} + \frac{1}{K_{F\sigma}} - 1\right) \frac{1}{K_{V}} = \left(\frac{2,026}{1} + \frac{1}{0,853} - 1\right) \frac{1}{1}$$

$$\Rightarrow K_{\sigma} = 2,198$$

Επιτρεπόμενο ημιεύρος για εναλλασσόμενη καταπόνηση $\sigma_{zdW\!K}$ (κεφ 4.2.1)

$$\sigma_{zwK} = \frac{\sigma_{zw}(d_B)K_1(d_{eff})}{K_{\sigma}} = \frac{500 \cdot 0.747}{2.198} = 169.93 \ N/mm^2$$

Συντελεστής καταπόνησης $\psi_{z\sigma\! K}$ (κεφ 4.2.1)

$$\psi_{z\sigma k} = \frac{\sigma_{zwk}}{2K_i(d_{eff})\sigma_B(d_B) - \sigma_{zwk}} = \frac{169,93}{2 \cdot 0,747 \cdot 1250 - 169,93} = 0,1$$

Πλαστική παραμόρφωση

Συντελεστής στατικής αντιστήριξης K_{2F} κεφ 6 (... για χάλυβες χωρίς σκληρό επίστρωμα..)

$$K_{2F} = 1$$

Συντελεστής αύξησης του ορίου πλαστικής παραμόρφωσης γ_F κεφ 6

$$3 > a_{\sigma} = 2,077 > 2 \implies \gamma_F = 1,10$$

Επιτρεπόμενη τάση για πλαστική παραμόρφωση σ_{zFK} κεφ 6

$$\sigma_{zFK} = K_{1(deff)} K_{2F} \gamma_F \sigma_s (d_B) = 0.747 \cdot 1.110 \cdot 1050 = 862.8 N / m^2$$

Καθορισμός περιοχής περίπτωσης φόρτισης F_2

$$\frac{\sigma_{mv}}{\sigma_{za}} = \frac{51.5}{51.5} = 1$$

$$\frac{\sigma_{zFK} - \sigma_{zWK}}{\sigma_{zWK} - \psi_{z\sigma K} - \sigma_{zFK}} = \frac{862.8 - 169.93}{169.93 - 0.1 \cdot 862.8} = 8.28$$

Επιτρεπόμενο ημιεύρος για δυναμική καταπόνηση γενικής μορφής σ_{zADK} κεφ 4.2.4

$$\sigma_{zADK} = \frac{\sigma_{zWK}}{1 + \psi_{z\sigma K}} \frac{\sigma_{mv}}{\sigma_{z\sigma}} = \frac{169,93}{1 + 0,1 \frac{51,5}{51,5}} = 154,48$$

Συντελεστής ασφάλειας σε δυναμική θραύση S_D κεφ 4

$$S_D = \frac{1}{\sqrt{\left(\frac{\sigma_{zda}}{\sigma_{zdDK}}\right)^2}} = \frac{1}{\frac{51,5}{154,48}} = 3$$

Πλαστική παραμόρφωση

Μέγιστη ονομαστική τάση

$$\sigma_{z \max} = \frac{F_{z \max}}{A} = \frac{C_s(F_m + F_a)}{A} = \frac{1,1 \cdot (145620 + 145620)}{\frac{\pi \cdot 60^2}{4}} \Rightarrow \sigma_{z \max} = 113,3 \ N / mm^2$$

Συντελεστής ασφάλειας σε πλαστική παραμόρφωση $S_{\scriptscriptstyle F}$

$$S_F = \frac{\sigma_{zFK}}{\sigma_{z max}} = \frac{862.8}{113.3} = 7.62$$

Συντελεστής ασφάλειας

$$S = \min(S_{D_s} S_F) = 3$$

ΚΟΧΛΙΟΣΥΝΔΕΣΗ

Η κοχλιοσύνδεση καταπονείται μόνο από εφελκυστική δύναμη οπότε

$$F_{\lambda} = \frac{F_{\text{max}}C_{S}}{Z} = \frac{29688 \cdot 1,1}{16} = 2041kp$$

Από τον πίνακα ΠΔ1 για κοχλία Μ12 προκύπτουν οι ακόλουθες διαστάσεις

$$d = 12mm$$
 $d_2 = 10,863mm$ $d_3 = 9,853mm$ $a_2 = 2,94^{\circ}$ $P = 1,75mm$ $\frac{d}{R} = 47,5$

Από το σχήμα της εκφώνησης προκύπτει ότι ο κοχλίας έχει σπείρωμα σε όλο το μήκος του οπότε το μήκος του σπειρώματος l_3 συμπίπτει με το μήκος των σωμάτων l_5

Σταθερά ελατηρίου του κοχλία

$$\frac{1}{C_k} = \frac{1}{E_k} \left(\frac{l_3}{A_3} + \frac{1}{d} \right) = \frac{1}{21000} \left(\frac{25 + 25}{\frac{\pi \cdot 9,853^2}{4}} + \frac{1}{12} \right) \Rightarrow C_k = 28413,3 \text{kp/mm}$$
 (\Delta 12)

Σταθερά ελατηρίου των σωμάτων

$$C_{\Sigma} = \frac{A_{\Sigma} E_{\Sigma}}{l_{\Sigma}}$$

$$\Delta 14 \text{ sel. } \Delta 47$$

$$A_{\Sigma} = \frac{\pi}{4} \left[\left(s + \frac{l_{\Sigma}}{10} \right)^2 - D_o^2 \right]$$

$$\Delta 15 \text{ sel. } \Delta 47$$

s = 19mm Πίν. $\Delta 8$ σελ $\Delta 27$ για M12

οπότε

$$A_{\Sigma} = \frac{\pi}{4} \left[\left(19 + \frac{50}{10} \right)^2 - 13^2 \right] = 319,66 \, mm^2$$

$$C_{\Sigma} = \frac{A_{\Sigma} E_{\Sigma}}{l_{\Sigma}} = \frac{319,65 \cdot 21000}{50} = 134253 \, kp / mm$$

Η διατμητική δύναμη στην κοχλιοσύνδεση είναι μηδενική οπότε θα πρέπει να ισχύει $F_{\text{Sel}} = 0, 1 \cdot F_{\pi}$

Η δύναμη προεντάσεως δίνεται από τη σχέση

$$F_{\pi} = \left(F_{\Sigma}\right)_{\text{el}} + F_{\text{AS}} = \left(F_{\Sigma}\right)_{\text{el}} + F_{\text{l}} \left(1 - \frac{C_{\text{k}}}{C_{\text{k}} + C_{\Sigma}}\right) = 0, 1 \cdot F_{\pi} + F_{\text{l}} \left(1 - \frac{C_{\text{k}}}{C_{\text{k}} + C_{\Sigma}}\right)$$

$$\Delta 64 \text{ sel } \Delta 70$$

$$\Rightarrow F_{\pi} = \frac{F_{\lambda}}{0.9} \left(1 - \frac{C_{k}}{C_{k} + C_{\Sigma}} \right) = \frac{2041}{0.9} \left(1 - \frac{28413.3}{28413.3 + 134253} \right)$$

$$\Rightarrow F_{\pi} = 1871,7kp$$

Ψυχρή καθίζηση για τραχίες επιφάνειες δίνεται από τη σχέση

$$\Delta l_z = 5 + 4 \cdot n = 5 + 4 \cdot 3 = 17 \mu m = 0,017 mm$$
 $\Delta 23 \text{ Gel} \Delta 50$

Δύναμη λόγω ψυχρής καθίζησης

$$F_z = \Delta l_z \frac{C_k C_{\Sigma}}{C_k + C_{\Sigma}} = 0.017 \frac{28413.3 \cdot 134253}{28413.3 + 134253} Kp$$

$$\Rightarrow F_z = 398.7 Kp$$

$$\Delta 26 \text{ sell } \Delta 51$$

Συντελεστής προέντασης

$$a_{\pi}$$
 = 1,25

Μέγιστη δύναμη προέντασης

$$(F_{\pi})_{\mu\epsilon\gamma} = \alpha_{\pi}(F_{\pi} + F_{z}) = 1,25(1871,7 + 398,7) = 2838kp$$
 $\Delta 38 \text{ sel } \Delta 58$

Αύξηση του φορτίου του κοχλία

$$F_{\text{DK}} = F_{\lambda} \frac{C_{k}}{C_{k} + C_{\Sigma}} = 2041 \frac{28413,3}{28413,3 + 134253} = 356,5 \text{kp}$$

$$\Delta 61 \text{ seld } \Delta 69$$

Ισοδύναμη ονομαστική τάση

$$\sigma_{\iota\sigma} = \sqrt{\frac{4\left[\left(F_{\pi}\right)_{\mu\varepsilon\gamma} + F_{\Delta K}\right]}{\pi d_{s}^{2}}}^{2} + 3\left[\frac{8d_{2}\left(F_{\pi}\right)_{\mu\varepsilon\gamma}\varepsilon\phi(\rho' + a_{2})}{\pi d_{s}^{3}}\right]^{2}}$$

$$\Delta 76 \text{ sell } \Delta 79$$

διάμετρος διατομής καταπόνησης κοχλία

$$d_s = \frac{d_2 + d_3}{2} = \frac{10,863 + 9,853}{2} = 10,358mm$$
 $\Sigma\chi$. $\Delta 26 \text{ sel } \Delta 65$

μέση γωνία ελικώσεως του σπειρώματος στη μέση διάμετρο d_2

$$a_2 = 2,94^o$$
 από τον Πίνακα Δ1

ανηγμένη γωνία τριβής ρ'

$$\varepsilon\phi\rho' = \frac{\mu_o}{\sigma\upsilon\nu}\frac{\beta}{2} = \frac{0.14}{\sigma\upsilon\nu}\frac{60}{2} = 0.157 \Rightarrow \rho' = 9.92^o$$

$$\sigma\varepsilon\lambda \Delta 54$$

$$\sigma_{\iota\sigma} = \sqrt{\left[\frac{4[2838 + 356.5]}{\pi \cdot 10.358^2}\right]^2 + 3\left[\frac{8 \cdot 10.863 \cdot 2838 \cdot \varepsilon\phi(9.92 + 2.94)}{\pi \cdot 10.358^3}\right]^2}$$

 $\Rightarrow \sigma_{i\sigma} = 45,44 \, kp / mm^2$

Όριο μηκύνσεως

$$\sigma_{zo2} = 64 \ kp / mm^2$$

Συντελεστής ασφάλειας σε μήκυνση

$$S_{z_{0,2}} = \frac{\sigma_{z_{0,2}}}{\sigma_{t\sigma}} = \frac{64}{45,44} = 1,41$$

 $\Delta 51 \text{ sel} \Delta 66$

Δυναμική καταπόνηση

Ημιεύρος της τάσεως

$$\sigma_{za} = \frac{F_{\Delta K}}{2A_3} = \frac{356.5}{\frac{2\pi \cdot 9.853^2}{4}} = 2.33$$
 $\Delta 78 \text{ sel} \Delta 81$

Επιτρεπόμεη τάση του σπειρώματος

$$(\sigma_{zA})_{\varepsilon\pi} = \kappa_1 \kappa_2 \cdot \sigma_{zA}$$

$$\Delta 81 \text{ seld } \Delta 82$$

συντελεστής κατασκευής σπειρώματος

$$\kappa_1 = 1.2$$
 self and $\delta = 1.2$

συντελεστής μορφής περικοχλίου

$$\kappa_2 = 1$$
 self and $\delta = 1$

δυναμική αντοχή του πυρήνα

οπότε

$$(\sigma_{zA})_{\varepsilon\pi} = 1, 2 \cdot 1 \cdot 9, 2 = 11 kp / mm^2$$

συντελεστής ασφάλειας σε δυναμική θραύση

$$S_{za} = \frac{\left(\sigma_{zA}\right)_{\varepsilon\pi}}{\sigma_{za}} = \frac{11}{2,33} = 4,72$$

$$\Delta 82 \text{ sel } \Delta 84$$

άρα
$$S = \min(S_{z_0,2}, S_{z_a}) = 1,41$$