

自动驾驶汽车的决策规划技术 (Part I)

李升波

清华大学 · 车辆与运载学院

Email: lishbo@tsinghua.edu.cn

清华大学·车辆与运载学院

目录

1

决策规划技术概述

2

分解式决策方案

3

集中式决策方案

决策规划技术概述

决策规划的难点

某一发展中国家的高峰时段交通状况

清华大学·车辆与运载学院

什么是决策规划?

决策规划系统类似驾驶员的大脑

制定当前道路的行驶策略(跟车、 换道、超车、停车、转弯、掉头 等),输出参考行驶轨迹

决策规划能力是自动驾驶汽车 "智能性"的核心体现

决策规划的难点

□ 复杂性 (Sophisticated)

• 交通参与者多,道路类型多,规则约束多

□ 动态性 (Dynamic)

• 行人/自行车/机动车/红绿灯均运动, 自车面临的情况瞬息万变

□ 随机性 (Stochastic)

• 机动车、非机动车、自行车、行人的意图和行为难以预测

□ 博弈性 (Game-based Interactive)

• 自车与交通参与者(行人、机动车等)的行为是互相影响/制约

清华大学·车辆与运载学院

如下交通警示谚语,那一些反映了驾驶过程的博弈性?

- A 红灯停,绿灯行
 -] | 开车守规矩,不要抢红灯
- C 左转让直行,变道莫加塞
- D 支线让干线,抢行起祸端
- E 超车选直宽,蛮干不安全

- 黄实线,不能压导向线,要遵守
- G 违规掉头扣3分
- H 打转向灯,提醒后车避让
- 1 闪远光灯,晃瞎对头车

提交

两类基本决策方案

清华大学·车辆与运载学院

两类基本决策方案

	分解式	集中式
方法	排序、搜索、优化等	监督学习、强化学习等
代表	谷歌、百度、通用、福特、 Tesla等	英伟达,Comma.ai, Wayve 等
优点	✓ 问题可分解、任务可分工✓ 节省车载存储和计算资源✓ 决策代码的开发可控性好	✓ 体系框架简洁明了✓ 环境感知信息无损失✓ 几乎无需手工标记数据
缺点	x 感知信息存在损失 x 涵盖场景\行为有限 x 决策目标制定困难	x 难以嵌入已知驾驶经验 x 场景间难以互相迁移 x 算法难以理解与手动改进

清华大学·车辆与运载学院

- 驾驶水平:曾获美国DARPA无人驾驶 挑战赛冠军。最高时速达190km/h。
- 测试道路: Thunderhill Raceway赛道
- 传感配置:差分GPS、激光雷达、轮速传感器、加速度传感器、陀螺仪

□ 决策功能解析

- 场景: 非公路赛道、城市赛道
- 分解式决策方案
 - (1) 场景理解: 支持向量机 (SVM)
 - (2) 周车预测:卡尔曼滤波、粒子滤波
 - (3) 行为选择:有限状态机、贝叶斯推断
 - (4) 轨迹规划: 动态规划、多项式轨迹采样、Hybrid A*搜索

- 驾驶水平:行驶145万英里,人工接管0.076次/1000英里(*2019年DMV报告)
- 示范运行:美国加州、亚利桑那州 (600辆)
- 传感配置: GPS,激光雷达,摄像 头,毫米波雷达、惯导IMU

□ 决策功能解析

• 场景: 结构化城市道路+高速公路

• 分解式决策方案

■ (1) 场景理解: 卷积神经网络、动态博弈

■ (2) 周车预测:循环神经网络

■ (3) 行为选择: 卷积神经网络、有限状态机

■ (4) 轨迹规划:循环神经网络、Hybrid A*

- 驾驶水平:行驶10.8万英里,人工接管0.055次/1000英里,居于榜首(*2019年DMV报告)
- 示范运行:中国长沙(45辆)
- 传感配置: GPS,激光雷达,摄像头,毫米波雷达、惯导IMU

□ 决策功能解析

• 场景: 结构化城市道路+高速公路

• 分解式决策方案

■ (1) 场景理解: 卷积神经网络

■ (2) 周车预测:卡尔曼滤波

■ (3) 行为选择:有限状态机

■ (4) 轨迹规划:轨迹采样、二次规划、交互式预测

- 驾驶水平:每3.07百万英里行驶 中发生一次事故;自主泊车/出库
- 传感配置: GPS、摄像头, 超声 波雷达, 毫米波雷达

□ 决策功能解析

• 场景: 结构化城市道路+高速公路

• 分解式决策方案

■ (1) 场景理解: 数字神经网络

(2) 周车预测: 粒子滤波

(3) 行为选择:有限状态机

■ (4) 轨迹规划: 卷积神经网络

• 驾驶水平: 平均人工干预里程为

11.0英里。

• 传感配置: 3个摄像头

□ 决策功能解析

• 场景:稀疏交通流、结构化低速道路

• 集中式决策方案

■ 卷积神经网络、全连接神经网络

• 驾驶水平: 车道保持功能, 车速

<20km/h.

· 传感配置: 1个前向摄像头

□ 决策功能解析

• 场景:稀疏交通流、结构化低速道路

- 集中式决策方案
 - 强化学习 (DDPG、卷积神经网络)

分解式决策规划方案

分解式决策的构架

	类型	学者	特点	
规则 切换 型	有限状态机	Buehler M et al., 2009	- 简单易用, 但是扩展性 差,依赖设	
	模糊逻辑	Vicente Milanés et al., 2010		
	驾驶员模型	Davis L et al., 2007; Chen et al., 2017		
	博弈规则	Kitta 1999; Xuegang Ban et al., 2007; Kyungwon Kang et al., 2017	计人员经验	
数据	神经网络模型	MA Arain et al., 1993; Y Lin et al., 2005	/ 	
驱动	马尔可夫 决策模型	S Ulbrich, 2013	- 依赖一定数 量的驾驶员 - 数据训练	
型	贝叶斯模型	S brechtel et al., 2014	交入」/□ 小川 5小	

分解式决策的构架

□ (a) 交通情景理解

• 对自车所处道路交通环境的认知与理解

□ (b) 参与者运动预测

• 预测交通参与者的行驶意图和行驶轨迹

□ (c) 驾驶行为选择

依据安全、高效、低耗等目标,选择超车、 换道、直行等某一行为模式

□ (d) 局部轨迹规划

规划一条可行的局部行驶轨迹,作为后续的 运动控制参考

清华大学·车辆与运载学院

□ 从感知到认知

■ 感知:

- What? ——行人
- Where?——马路右侧
- How? ——不知道
- Why?——不知道
- 识别目标的类型及姿态

■ 认知:

- What? ——行人
- Where?——马路右侧
- How? ——横穿马路或停止不前
- Why?——不知道
- 对目标可能的行为模式进行估计

□ 从认知到理解

■ 认知:

- What? ——行人
- Where?——马路右侧
- How? ——横穿马路或停止不前
- Why?——不知道
- 对目标可能的行为模式进行估计

■ 理解:

- What? ——行人
- Where?——马路右侧
- How? ——横穿马路或停止不前
- Why? ——行人抢行或让汽车先行
- 推断交通参与者之间的博弈关系

□ "理解一件事情"的困难性

■ 挖掘隐含信息

■ 认知:一个男人被一群大象追着跑

■ **理解**:大选前夕,奥巴马被一群共和党竞选者追赶!

■ 推断逻辑关系

■ 认知:一辆车斜横于车道中间

■ **理解**:警车在后面,驾驶员的确着急,小心这辆车!

□ "认知" VS "理解": 环境感知的不同要求

■ 认知层的感知需求:

- 目标位置
- 行进速度
- 行进方向

■ 理解层的感知需求:

- 身高/年龄/性别
- 手部动作/步幅/步频/头部朝向
- 人行横道、地面标识、路侧标识
- 人群状态、他车行为
- 天气、光照、路面等

□ 情景理解的语义解析

• 感知层

人车路的 位置姿态

- 道路结构
- 行人/骑车人
- 车辆
- 信号灯
- 路侧/地面标识

• 认知层

人车路 态势判断

- 场景类型判别
- 交通流密度估测
- 自车可选行为模式
- 行车风险评估

• 理解层

人车路行 为的机理 解析

- 参与者的行为博弈
- 参与者的意图解析
- 参与者的冲突模式

认知层: 行车风险评估

□ 典型风险评估模型

动力学失稳风险

车辆碰撞风险

稳定包络模型

安全场模型

清华大学·车辆与运载学院

认知层: 行车风险评估

□ 纵向跟车风险: TTC (Time To Collision)

• 后车与前车发生碰撞所需的时间

- D 前后车相对距离
- ∆v 后车车速 前车车速

$$TTC = \frac{D}{\Delta v}$$

前车车速	20km/h	40km/h	60km/h
低风险	5s	5s	5s
中风险	1.1s	1.3s	1.3s
高风险	0.67s	0.8s	0.83s

清华大学·车辆与运载学院

请计算一下后车车速=40km/h,车间距离是50 米时,大致的纵向行车风险是多少呢?

- A 高风险
- **B** 中风险
- (低风险
- **建以计算**

提交

认知层: 行车风险评估

□ 车车碰撞风险:安全距离法

$$R_{\stackrel{}{\sim} \frac{\pm \xi}{6}}$$

$$R_{ ext{自行车}} = \frac{\text{车长}}{2}$$

$$R_{\perp} = 0.5$$
m

计算自车各圆圆心与目标物圆心的距离,当任一距离小于两者半径之和, $d < (R_{ego} + R_{env})$,即视为<mark>碰撞事故</mark>。

车速	20km/h	40km/h	60km/h
安全距离	3.2m	9.8m	21m

理解层:车辆博弈关系建模

□ 交通参与者博弈关系

斑马线抢行/避让

换道抢行/避让

避让救护车

无交通灯抢行/避让

有交通灯抢行/避让

顾客打车

理解层:车辆博弈关系建模

□ 零和博弈

• 各方的利益冲突, 总利益/损失为 "零"

□非零和博弈

• 各方可能存在某种共同利益

清华大学·车辆与运载学院

分解式决策:参与者运动预测

□ 基本任务

- 第一步: 识别行驶意图
 - 直行:自由直行、跟驰、紧急制动等
 - 换道:左\右换道、自由换道、 受迫换道
 - 转弯、掉头、并线等

- 第二步: 预测运动轨迹
 - 预测未来可能出现的位置
 - 预测未来每个时间的速度

分解式决策:参与者运动预测

□ 以运动轨迹预测为例

- 待预测的对象: 行人、自行车、机动车等
- 挑战性难题:
 - 交通参与者的路权存在重叠\冲突(自行车→机动车道)
 - 使用道路的优先级难以确定 (车避让人 VS 人避让车)
 - 参与者之间存在更强的交互性\博弈性

□ 行人轨迹预测方法 (室内)

分解式决策:参与者运动预测

口 开放道路的周车轨迹预测

■ 开环轨迹递推模型

✓ 预测<1s,适用 于车辆实时控制

■ 驾驶员闭环递推模型 (+驾驶员行为模型)

✓ 预测1~3s,适
用于稀疏交通流

驾驶员闭环递推模型 (+驾驶员意图模型)

✓ 预测1~3s,考 虑人-人、车-车 交互,适用于中 等密度交通流

□ 线性递推模型 (直行)

■ 恒定速度 v

$$x(t+1) = x(t) + v*\Delta t$$

■ 恒定加速度 a

$$x(t+1) = x(t) + v(t)*\Delta t$$
$$v(t+1) = v(t) + a*\Delta t$$

- x(t) 当前时刻纵向位置; x(t+1) 下一时刻纵向位置
- v(t) 当前时刻速度; v(t+1) 下一时刻速度
- △t 时间间隔

□ 线性递推模型 (转向)

• 刚性车身假设(忽略轮胎侧偏角)

■ 恒定前轮转角 δ, 和速度 v

$$x(t+1) = x(t) + v*\Delta t*\sin(\beta + \varphi(t))$$
$$y(t+1) = y(t) + v*\Delta t*\cos(\beta + \varphi(t))$$
$$\varphi(t+1) = \varphi(t) + v*\Delta t / R$$

- y(t) t 时刻侧向位置
- φ(t) t 时刻横摆角
- β=f(δ) 质心侧偏角
- R 质心转向半径

□ 线性递推模型 (转向)

- 刚性车身假设(忽略轮胎侧偏角)
 - 前轮转角 δ 和质心侧偏角 β 的关系

$$tan(\delta) = (A+B)/L$$

$$tan(\beta) = B/L$$

$$\downarrow$$

$$\beta = tan^{-1}(B*tan(\delta)/(A+B))$$

- A 质心到前轴距离
- B 质心到后轴距离
- L 转向中心到后轴距离

□ 线性递推模型 (转向)

• 刚性车身假设(忽略轮胎侧偏角)

■ 恒定前轮转角 δ , 和加速度 a

$$x(t+1) = x(t) + v(t)*\Delta t*sin(\beta+\varphi(t))$$

$$y(t+1) = y(t) + v(t)*\Delta t*cos(\beta+\varphi(t))$$

$$\varphi(t+1) = \varphi(t) + v(t)*\Delta t / R$$

$$v(t+1) = v(t) + a*\Delta t$$

- y(t) t 时刻侧向位置
- φ(t) t 时刻横摆角
- $\beta = f(\delta)$ 质心侧偏角
- R 质心转向半径

□ 驾驶员纵向跟驰模型

• 利用车辆跟驰数据拟合的刺激-反应模型

$$a(t+T) = \lambda * \Delta v^{front}(t)$$

a — 车辆加速度

T — 驾驶员的反应时间

λ — 跟车灵敏度

 $\Delta v^{front}(t)$ — 前车速度变化

□ 驾驶员纵向跟驰模型

• 利用车辆跟驰数据拟合的刺激-反应模型

$$a(t+T) = \lambda * \Delta v^{front}(t)$$

a — 车辆加速度

T — 驾驶员的反应时间

λ — 跟车灵敏度

 $\Delta v^{front}(t)$ — 前车速度变化

$$x(t+1) = x(t) + v(t)*\Delta t$$

$$v(t+1) = v(t) + a(t)*\Delta t$$

$$a(t) = \begin{cases} 0, & t-t_0 < T \\ \lambda * \Delta v^{front}(t), & t-t_0 \ge T \end{cases}$$

□ 驾驶员换道跟踪模型 (结合换道意图)

• 换道意图判定: 利用目标车道的前车和后车状态, 判断能否换道

$$Y_{n}(t) = \begin{cases} 1 & \text{if } G_{n}(t) \geq G_{n}^{er}(t) \\ 0 & \text{if } G_{n}(t) \leq G_{n}^{er}(t) \end{cases}$$

- $Y_n(t)$ 是选择指示变量,值是1间隙可接受,值是0则相反;
- $G_n(t)$ 是可用到的间隙; $G_n^{er}(t)$ 是临界间隙

□ 换道轨迹跟踪模型

换道轨迹:

$$y_{des}(t) = b_3 t^3 + b_2 t^2 + b_1 t + b_0$$

$$x(t+1) = x(t) + v*\Delta t*sin(\beta(t)+\varphi(t))$$

$$y(t+1) = y(t) + v*\Delta t*cos(\beta(t)+\varphi(t))$$

$$\varphi(t+1) = \varphi(t) + v*\Delta t / R$$

$$\beta(t) = f(\delta(t))$$

$$\delta(t) = k_{Lateral}*(y_{des}(t)-y(t))$$
例向轨迹误差反馈

请具体计算一下 5步 纵向闭环预测模型?

$$x(t+1) = x(t) + v(t)*\Delta t$$

$$v(t+1) = v(t) + a(t)*\Delta t$$

$$a(t) = \begin{cases} 0, & t-t_0 < T \\ \lambda * \Delta v^{front}(t), & t-t_0 \ge T \end{cases}$$

初始状态: x(0)=0, v(0)=10m/s, $\Delta t=0.2$ sec, T=0.6 sec

作答

正常使用主观题需2.0以上版本雨课堂

□ 驾驶行为分类

□ 行为选择的基本流程

驾驶场景

道路约束

驾驶目标

选择方法

- 高速公路

- 限速

- 安全好

- 基于规则

- 城市道路
- 交通标志
- 时间少

- 基于因果推理

- 越野道路...

- 周车运动

- 舒适高

...

例子

高速公路

道路拥堵

家有急事

最终选择

自由直行、跟车 左换道、右换道

□ 选择方法:有限状态机

- 行为状态 (例: 跟车、自由直行、换道)
- 輸入量(例:自车速度、前车位置、侧车位置)
- 规则条件(例: 自车速度<80km/h)

□ 有限状态机的示意图

- 有限个状态数量
- 只能处于某一种状态
- 给定规则条件的状态转移

□ 基于有限状态机的行为选择

• 道路场景: 高速公路

• 行为状态: 跟车、换道、超车

輸入量:与前车的距离(△x)、与前车的相对速度(△v)

□ 基于有限状态机的行为选择 (示例)

- 主要行为选择规则:
 - 如果处于跟驰区域、离开区域,则保持车道行驶
 - 如果处于接近区域,并满足换道条件,则进行换道
 - 如果完成换道,则进行车道行驶
 - 如果处于接近或制动区域,且前车速度过低,则进行超车
 - 如果完成超车,则进行车道行驶
 - ▶ 换道过程中,如果换道目标车道前车速度过低,则进行超车
 - 超车过程中,如果无法回到原车道,则超车终止,进行换道

□ 基于有限状态机的行为选择 (示例)

3个状态 + 9条规则

□ 基于有限状态机的行为选择 (示例)

- 7/二7中
- △x∈跟驰区域 or 离开区域 = 车道行驶
- 超车 + 完成超车 = 车道行驶
- 换道 + 完成换道 = 车道行驶
- ∆x∈接近区域 + 可以换道 = 换道
- 超车 + 已至邻道 + 不能回原车道 = 换道
- 换道 + 未完成换道 = 换道
- ∆x∈接近区域 or 制动区域 + 前车速度低 = 超车
- 换道 + 目标车道前车速度低 = 超车
- 超车 + 未完成超车 = 超车

□ 选择方法: 贝叶斯推断

- 示例:双车行驶工况
- 动作=[保持、换道]; 状态=[当前车道、临侧车道]

□ 选择方法: 贝叶斯推断

- 示例: 双车行驶工况
- 动作=[保持、换道]; 状态=[当前车道、临侧车道]

安全) = +1

安全) = +1

风险

自车换道:

cost= 0.4 * 1 + 0.6 * (-10) **自车直行:**

cost = 0.6 * 1 + 0.4 * (-10)

最优动作:?

□ 基本概念:

给定起点和终点位置,连接起点位置和终点位置的序列点或曲线 称之为轨迹,构成轨迹的策略称之为轨迹规划。

■ 轨迹: 带时间轴信息的位置曲线

■ 路径:不带时间轴信息的轨迹

□ 一般步骤:

环境建模

将物理空间抽象成计算机可 处理的数学模型。

轨迹搜索

利用优化目标寻找一条最佳 的可行轨迹,使预定的目标 性能最优。

轨迹平滑

进一步平滑,使之适用于车辆跟踪控制。

□ 优化目标:

□ 智能汽车的路径规划难点

• (1) 车辆本身是受约束的动力学系统

完整式机器人 (三自由度独立运动)

非完整式机器人(三自由度不能独立运动)

□ 智能汽车的路径规划难点

• (2) 环境本身是动态的(车辆、行人)且存在随机不确定性

车辆运动的复杂性

行人的复杂性

□ 地图网格化

- 将路面划分成小型网格
- 网格大小根据需求调整
- 将网格节点作为不同位置点
- 将网格边线作为节点与节点 间的链接路线
- 轨迹规划问题转化为图论中 的最短路径问题

□ 网格化难点:

- 如何找到网格的大小, 网格的大小越小, 对环境的表现就越准确。
- 使用较小的网格将导致记忆空间和搜索范围的指数增长。

□ 单元格之间的关系

- 各单元格之间的联系分为四连接、八连接、十六连接
- 四连接
 - 表明当前栅格可以到达与之相邻的四个栅格节点
- 八连接
 - 表明当前栅格可以到达与之相邻的八个栅格节点
- 十六连接
 - 表明当前栅格可以到达与之相邻的十六个栅格节点

四连接

八连接

十六连接

□ 基于网格化地图的搜索算法

	深度优先算法	广度优先算法		
原理	从起点开始, <mark>沿一条路径一</mark> 直搜 索到底,可能需要重复搜索。	从起点开始,以 <mark>不断扩散</mark> 的 方式来遍历整个地图。		
搜索效率	较低	较高		
适用场景	节点数目少	节点数目多		
示意图				

□启发式搜索

- 利用问题拥有的启发信息和相应启发函数具体引导搜索,以减少搜索范围、降低问题复杂度。
- 启发式广度优先算法:

A*搜索算法

□ A*搜索算法示例

从起点(绿),通过可行节点(白),越过障碍物(黑),到达终点(粉),寻找最短轨迹。

□ A*搜索算法示例

• 8连接可行方向(棕),可到达相邻节点(蓝)。

□ A*搜索算法示例

- 启发式代价函数: f(x) = g(x) + h(x)
 - g(x)——节点x到起点的最短路程或轨迹路程(欧式距离)
 - h(x)——不考虑障碍物, 节点x到终点的最短路程(曼哈顿距离)

$$g(A) = \sqrt{10^2 + 10^2} \approx 14$$

 $h(A) = 30 + 10 = 40$

$$\int$$

$$f(A) = g(A) + h(A) = 54$$

单元格边长=10

□ A*搜索算法示例

- 启发式代价函数: f(x) = g(x) + h(x)
 - g(x)——节点x到起点的最短路程或轨迹路程
 - h(x)——不考虑障碍物, 节点x到终点的最短路程

□ A*搜索算法示例

- 启发式代价函数: f(x) = g(x) + h(x)
 - g(x)——节点x到起点的最短路程或轨迹路程
 - *h(x)*——不考虑障碍物,节点x到终点的最短路程

□ A*搜索算法示例

- 启发式代价函数: f(x) = g(x) + h(x)
 - *g(x)*——节点*x*到起点的最短路程或轨迹路程
 - *h(x)*——不考虑障碍物,节点x到终点的最短路程

□ A*搜索算法示例

- 启发式代价函数: f(x) = g(x) + h(x)
 - g(x)——节点x到起点的最短路程或轨迹路程
 - *h(x)*——不考虑障碍物,节点x到终点的最短路程

添加新的子节点

 $min \{f(x), x \in$ 子节点} = 48

添加新的审查节点

□ A*搜索算法示例

- 启发式代价函数: f(x) = g(x) + h(x)
 - g(x)——节点x到起点的最短路程或轨迹路程
 - *h(x)*——不考虑障碍物,节点*x*到终点的最短路程

14 60 74	14 40 54		48 14 62	52 10 60	
10 50 60	10 30 40		38 10 48		
14 60 74	14 40 54			52 10 60	
	38 50 88	34 40 74	38 30 68		

新审查节点为终点

搜索结束

得到最短轨迹

本课小结

- □ (a) 交通情景理解
 - 感知 → 认知 → 理解
- □ (b) 参与者运动预测
 - 开环轨迹递推模型
 - 驾驶员闭环递推模型
- □ (c) 驾驶行为选择
 - 任务制定 → 行为选择 (有限状态机)
- □ (d) 局部路径规划
 - 环境建模(地图网格化)→轨迹搜索(A*算法)

谢谢大家!