

Analysis und Lineare Algebra

Vorlesung im Wintersemester 2014/2015 Prof. Dr. habil. Christian Heinlein

2. Übungsblatt (13. Oktober 2014)

Aufgabe 3: Grenzwerte

Gegeben sei die Funktion $f(x) = 3 - \frac{2}{x-2}$.

Geben Sie die Grenzwerte für $x \to 2+$, $x \to 2-$, $x \to \infty$ und $x \to -\infty$ an und beweisen Sie Ihre Aussagen jeweils!

a)
$$\lim_{x \to 2+} f(x) = -\infty$$

Beweis:

- Zu zeigen: Zu jedem Y < 0 gibt es ein zugehöriges $\delta(Y) > 0$, sodass gilt: f(x) < Y für $0 < x 2 < \delta(Y)$.
- Sei Y < 0 beliebig vorgegeben.
- Vorüberlegung zur Wahl von $\delta(Y)$: Für x > 2 gilt:

$$f(x) = 3 - \frac{2}{x-2} < Y$$
, wenn $3 - Y < \frac{2}{x-2} \Leftrightarrow x - 2 < \frac{2}{3-Y}$

(Beachte beim Umformen der Ungleichung:

x - 2 > 0 und 3 - Y > 0, daher bleibt das Ungleichheitszeichen unverändert.)

- Wähle daher $\delta(Y) = \frac{2}{3-Y}$.
- Dann gilt für $0 < x 2 < \delta(Y)$ aufgrund der Vorüberlegung: f(x) < Y q. e. d.
- b) $\lim_{x \to 2^{-}} f(x) = \infty$

Beweis:

- Zu zeigen: Zu jedem Y > 0 gibt es ein zugehöriges $\delta(Y) > 0$, sodass gilt: f(x) > Y für $-\delta(Y) < x 2 < 0$.
- Sei Y > 0 beliebig vorgegeben.
- Vorüberlegung zur Wahl von $\delta(Y)$: Für x < 2 gilt:

$$f(x) = 3 - \frac{2}{x-2} > -\frac{2}{x-2} > Y$$
, wenn $-\frac{2}{Y} < x-2$

(Beachte beim Umformen der Ungleichung:

x - 2 < 0 und Y > 0, daher dreht sich das Ungleichheitszeichen um.)

- Wähle daher $\delta(Y) = \frac{2}{Y}$.
- Dann gilt für $\delta(Y) < x 2 < 0$ aufgrund der Vorüberlegung: f(x) > Y q. e. d.
- c) $\lim_{x \to \infty} f(x) = 3$

Beweis:

- Zu zeigen: Zu jedem $\varepsilon > 0$ gibt es ein zugehöriges $X(\varepsilon) \in \mathbb{R}$, sodass gilt: $|f(x) 3| < \varepsilon$ für $x > X(\varepsilon)$.
- Sei $\varepsilon > 0$ beliebig vorgegeben.
- Vorüberlegung zur Wahl von $X(\varepsilon)$: Für x > 2 gilt:

$$|f(x)-3| = \left|3-\frac{2}{x-2}-3\right| = \left|-\frac{2}{x-2}\right| = \frac{2}{x-2} < \varepsilon$$
, wenn $\frac{2}{\varepsilon} < x-2 \Leftrightarrow x > 2+\frac{2}{\varepsilon}$

(Beachte beim Weglassen der Betragsstriche und beim Umformen der Ungleichung: x - 2 > 0 und $\varepsilon > 0$.)

- Wähle daher $X(\varepsilon) = 2 + \frac{2}{\varepsilon}$.
- Dann gilt für $x > X(\varepsilon)$ aufgrund der Vorüberlegung: $|f(x) 3| < \varepsilon$ q. e. d.
- $d) \quad \lim_{x \to -\infty} f(x) = 3$

Beweis:

- Zu zeigen: Zu jedem $\varepsilon > 0$ gibt es ein zugehöriges $X(\varepsilon) \in \mathbb{R}$, sodass gilt: $|f(x) 3| < \varepsilon$ für $x < X(\varepsilon)$.
- Sei $\varepsilon > 0$ beliebig vorgegeben.
- Vorüberlegung zur Wahl von $X(\varepsilon)$: Für x < 2 gilt:

$$|f(x)-3| = \left|3-\frac{2}{x-2}-3\right| = \left|-\frac{2}{x-2}\right| = -\frac{2}{x-2} < \varepsilon$$
, wenn $-\frac{2}{\varepsilon} > x-2 \Leftrightarrow x < 2-\frac{2}{\varepsilon}$

(Beachte beim Weglassen der Betragsstriche und beim Umformen der Ungleichung: x - 2 < 0 und $\varepsilon > 0$.)

- Wähle daher $X(\varepsilon) = 2 \frac{2}{\varepsilon}$.
- Dann gilt für $x < X(\varepsilon)$ aufgrund der Vorüberlegung: $|f(x) 3| < \varepsilon$ q. e. d.

Aufgabe 4: Rechenregeln für Grenzwerte

Führen Sie die folgenden Grenzwerte durch Anwendung der Rechenregeln für Grenzwerte auf Grenzwerte zurück, die in der Vorlesung bereits bestimmt wurden:

a)
$$\lim_{x \to 0} \frac{(\sin x)^2}{x^2}$$
 b) $\lim_{x \to 0} \frac{x}{\sin x}$ c) $\lim_{x \to 0} \frac{x^2}{\sin x}$

a)
$$\lim_{x \to 0} \frac{(\sin x)^2}{x^2} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{\sin x}{x} = \left(\lim_{x \to 0} \frac{\sin x}{x}\right) \cdot \left(\lim_{x \to 0} \frac{\sin x}{x}\right) = 1 \cdot 1 = 1$$

b)
$$\lim_{x \to 0} \frac{x}{\sin x} = \lim_{x \to 0} \frac{1}{\frac{\sin x}{x}} = \frac{\lim_{x \to 0} 1}{\lim_{x \to 0} \frac{\sin x}{x}} = \frac{1}{1} = 1$$

c)
$$\lim_{x \to 0} \frac{x^2}{\sin x} = \lim_{x \to 0} x \cdot \frac{x}{\sin x} = \left(\lim_{x \to 0} x\right) \cdot \left(\lim_{x \to 0} \frac{x}{\sin x}\right) = 0 \cdot 1 = 0$$