TRIGONOMETRY Chapter 3

TRIÁNGULO RECTÁNGULO

MOTIVATING STRATEGY

HELICO THEORY TRIÁNGULO RECTÁNGULO

Es aquel triángulo en el cual uno de sus ángulos interiores mide 90°.

Elementos:

AC: Cateto

BC: Cateto

AB: Hipotenusa

Si m∡ACB = 90°, recto en C

$$\alpha + \theta = 90^{\circ}$$

Teorema de Pitágoras:

$$c^2 = a^2 + b^2$$

La hipotenusa tiene mayor longitud que los catetos, es decir:

Triángulos pitagóricos

Son aquellos triángulos rectángulos cuya medida de sus lados están expresadas por números enteros y tienen la siguiente forma:

Donde:

m y n son números enteros positivos.

$$\overline{m > n}$$

EJEMPLO:

Cuando: m = 3 y n = 2, hallar los lados del triángulo pitagórico.

Vamos a reemplazar:

Del gráfico, calcule el valor de x.

Resolución:

Por el teorema de Pitágoras:

$$(H)^2 = (cateto)^2 + (cateto)^2$$

$$x^2 = 2^2 + 5^2$$

$$x = \sqrt{4 + 25}$$

$$x = \sqrt{29}$$

Calcule el valor de "n" en el gráfico adjunto.

Resolución:

Por el teorema de Pitágoras:

$$(H)^2 = (cateto)^2 + (cateto)^2$$

$$x^2 = 5^2 + 12^2$$

$$x = \sqrt{25 + 144}$$

$$x = \sqrt{169}$$

Del gráfico, calcule el valor de a.

Resolución:

Por el teorema de Pitágoras:

$$(H)^2 = (cateto)^2 + (cateto)^2$$

$$(2\sqrt{7})^2 = a^2 + \sqrt{3}^2$$

 $28 = a^2 + 3$
 $a^2 = 25$

 $a = \sqrt{25}$

a = 5

Si m = 7 y n = 1; calcule el perímetro del triángulo pitagórico.

Resolución:

Del gráfico el perímetro será:

$$2p = m^2 + n^2 + m^2 - n^2 + 2mn$$

$$2p = 2m^2 + 2mn$$

Vamos a reemplazar:

$$2p = 2(7)^2 + 2(7)(1)$$

$$2p = 98 + 14$$

2p = 112u

Si m = 5 y n = 3; calcule el área del triángulo pitagórico.

$$A = \frac{(BASE) \times (ALTURA)}{2}$$

Resolución:

Del gráfico el área será:

$$A = \frac{(2mn)x(m^2 - n^2)}{2}$$

$$A = (mn)x(m^2 - n^2)$$

Vamos a reemplazar:

$$A = (5.3)x(5^2 - 3^2)$$

$$A = 15x(25 - 9)$$

$$A = 15 \times 16 \implies A = 240 \text{ u}^2$$

Al atardecer, un árbol proyecta una sombra de 5 metros de longitud. Si la distancia desde la parte más alta del árbol al extremo más alejado de la sombra es de 13 metros, ¿cuál es la altura del árbol?

Resolución:

Por el teorema de Pitágoras:

$$(H)^2 = (cateto)^2 + (cateto)^2$$

$$13^2 = H^2 + 5^2$$

$$169 = H^2 + 25$$

$$H^2 = 144$$

$$H = 12m$$

Un gato se queda atrapado en la parte más alta de una casa a una altura de 8m y para rescatarlo utilizarán una escalera de 10m. Determine la distancia a la que se debe ubicar la escalera para poder rescatar al gato.

Aplicaremos el teorema de Pitágoras:

$$(H)^2 = (cateto)^2 + (cateto)^2$$

Resolución:

Calculando el valor de x:

$$(10)^2 = x^2 + 8^2$$

$$100 = x^2 + 64$$

$$x^2 = 36$$

$$x = \sqrt{36}$$

