Ways to improve the efficiency of an automotive thermoelectric generator

Alexey Osipkov¹, Roman Poshekhonov, Sergey Pankratov, Dmitry Onishchenko

Bauman Moscow State Technical University

Cold exchanger

 $Q_{cold}^{i} = \frac{T_3^{i} - T_4^{i}}{\frac{2\delta_C}{(S_3 + S_4)\lambda_C} + \frac{\delta_{case}}{S_3\lambda_{case}}}$

 $\alpha_h, \alpha_c = function(Nu, Re, Pe)$

Model results:

TEB parameters S_p , S_n

thermo-electric power W_{teb}

 $Q_{cold}^{i} = k_{i_{-}w} \alpha_{c} S_{4} \left(T_{4}^{i} - 0.5 \left(T_{w1}^{i} + T_{w2}^{i} \right) \right)$

 $(S_1 + S_2)\lambda_A S_2\lambda_{case}$

* 1D heat flow through laminate plate.

* Thermoelectric characteristics were

solving nonlinear system equations

* Convective condition (α=const or

* Steady-state problem.

MATLAB program

* Fourier low for heat transfer in solid bodies.

measured using methods described in ref. 1

Methods: genetic algorithm, Neldor- Mead method for

Main hypothesis:

Experiment

2000

1000

Å 200

Clean polished contact surface

3000

n_E,[min⁻¹]

4000

5000

2000

3000

 $n_{E}^{,[min^{-1}]}$

1000

