${\hbox{Solutions to}\atop Convex \ Analysis \ and \ Optimization}$

Yunwei Ren

Contents

1	Basic Convexity Concepts		
	1.2	Convex Sets and Functions	2
	1.3	Convex and Affine Hulls	7

1 Basic Convexity Concepts

1.2 Convex Sets and Functions

1.

Proof. For every $y \in (\lambda_1 + \lambda_2)C$, there is an $x \in C$ such that

$$y = (\lambda_1 + \lambda_2)x = \lambda_1 x + \lambda_2 x.$$

Since $\lambda_i x \in \lambda_i C$, (i = 1, 2,) $y \in \lambda_1 C + \lambda_2 C$. Thus, $(\lambda_1 + \lambda_2)C \subset \lambda_1 C + \lambda_2 C$. For the converse, suppose that $y_i = \lambda_i x_i \in \lambda_i C$. Then

$$\lambda_1 x_1 + \lambda_2 x_2 = (\lambda_1 + \lambda_2) \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} x_1 + \frac{\lambda_2}{\lambda_1 + \lambda_2} x_2 \right) = (\lambda_1 + \lambda_2) z.$$

By the convexity of C, $z \in C$. Hence, $\lambda_1 x_1 + \lambda_2 x_2 \in (\lambda_1 + \lambda_2)C$. Namely, $(\lambda_1 + \lambda_2)C \supset \lambda_1 C + \lambda_2 C$.

If C is not convex, the statement may be false. For example, put n = 1, $C = \{0, 1\}$ and $\lambda_1 = \lambda_2 = 1$. Then $(\lambda_1 + \lambda_2)C = \{0, 2\}$ but $\lambda_1C + \lambda_2C = \{0, 1, 2\}$.

2.(d, e)

Proof.

- (d) Let C be a cone and $x \in \bar{C}$. Then there is a sequence $\{x_k\} \subset C$ with $x_k \to x$. For every positive λ , Clear that $\lambda x = \lim_{k \to \infty} \lambda x_k$ and $\lambda x_k \in C$. Namely, $\{\lambda x_k\} \subset C$ converges to λx . Hence, $\lambda x \in \bar{C}$. Thus, \bar{C} is a cone.
- (e) Let T a linear transformation on \mathbb{R}^n . Suppose y = Tx for some $x \in C$. Then $\lambda y = \lambda Tx = T(\lambda x) \in T(C)$. Hence, T(C) is a cone. Suppose that there is an $v \in C$ such that Tu = v. Then $T(\lambda u) = \lambda v \in C$. Hence, the inverse image is also a cone.

3. Lower Semicontinuity under Composition

Proof.

(a) For every $x \in \mathbb{R}^n$ and $\{x_k\}$ converging to x, put $y_k = f(x_k)$. Since f is continuous, $y_k \to y = f(x)$. Hence,

$$\liminf_{k \to \infty} h(x) = \liminf_{k \to \infty} g(y_k) \ge g(y) = h(x).$$

Namely, h is lower semicontinuous.

(b) First we show that for every $\{y_k\} \subset \mathbb{R}$,

$$\liminf_{k \to \infty} g(y_k) \ge g\left(\liminf_{k \to \infty} y_k\right).$$
(1)

Put $y = \liminf y_k$. Since $y_k \ge y$ for every k and g is nondecreasing, $g(y_k) \ge g(y)$. Hence, $\liminf g(y_k) \ge g(y)$.

For every $x \in \mathbb{R}^n$ and $\{x_k\}$ converging to x, put $y_k = f(x_k)$. Since f is lower semicontinuous, $\lim \inf y_k \ge f(x)$. Hence,

$$\liminf_{k \to \infty} h(x) = \liminf_{k \to \infty} g(y_k) \ge g\left(\liminf_{k \to \infty} y_k\right) \ge g(f(x)),$$

where the second and third inequalities come from (1) and the monotonicity of g respectively. Thus, h is lower semicontinuous.

To show that the monotonic nondecrease assumption is essential, put n=1 and define both f and g by

 $f(x) = g(x) = \begin{cases} 1, & x < 0 \\ -1, & x \ge 0 \end{cases}$

Clear that both f and g are lower semicontinuous but $h = g \circ f$ takes value -1 for x < 0 and 1 for $x \ge 0$ and therefore is not lower semicontinuous.

4. Convexity under Composition

Proof.

(a) For every $\lambda \in [0,1]$ and $x, y \in C$,

$$h(\lambda x + (1 - \lambda)y) = g(f(\lambda x + (1 - \lambda)y))$$

$$\leq g(\lambda f(x) + (1 - \lambda)f(y))$$

$$\leq \lambda h(x) + (1 - \lambda)h(y),$$

where the first inequality comes from the monotonicity of g and convexity of f, and the second one comes from the convexity of g. Thus, h is convex. If g is increasing and f is strictly convex, then the first inequality is strict, provided $\lambda \in (0,1)$ and $x \neq y$. Therefore, h is strictly convex.

5. Examples of Convex Functions

Proof.

(a) For every $x \in \text{dom } f$,

$$\nabla^2 f_1(x) = K \left\{ \left[\frac{1}{x_i x_j} \right]_{ij} - n \operatorname{diag} \left\{ \frac{1}{x_i^2} \right\}_i \right\},\,$$

where $K = -(x_1 \cdots x_n)^{1/n}/n^2 < 0$. For each $y \in \text{dom } f_1$,

$$y^{T} \nabla^{2} f_{1}(x) y = \frac{K}{n^{2}} \left\{ \left(\frac{\sum_{i=1}^{n} y_{i} / x_{i}}{n} \right)^{2} - \frac{1}{n} \sum_{i=1}^{n} \frac{y_{i}^{2}}{x_{i}^{2}} \right\} \ge 0,$$

where the inequality comes from the RMS-AM inequality. Hence, f_1 is convex.

(b) For every $x \in \mathbb{R}^n$,

$$\nabla^2 f_2 = K \left\{ [e^{x_i} e^{x_j}]_{ij} - \left(\sum_{i=1}^n e^{x_i} \right) \operatorname{diag} \{ e^{x_i} \} \right\},\,$$

where $K = -1/(e^{x_1} + \dots + e^{x_n})^2 < 0$. For each $y \in \mathbb{R}^n$, put $a = (e^{x_1/2}, \dots, e^{x_n/2})$ and $b = (y_1 e^{x_1/2}, \dots, y_n e^{x_n/2})$. Then

$$y^{T} \nabla^{2} f_{2}(x) y = K \left\{ \left(\sum_{i=1}^{n} y_{i} e^{x_{i}} \right)^{2} - \left(\sum_{i=1}^{n} e^{x_{i}} \right) \left(\sum_{i=1}^{n} y_{i}^{2} e^{x_{i}} \right) \right\}$$
$$= K \left\{ (a^{T} b)^{2} - (a^{T} a)(b^{T} b) \right\} \ge 0,$$

where the inequality comes from the Cauchy-Schwarz inequality. Thus, f_2 is convex.

- (c) Since $\|\cdot\|: \mathbb{R}^n \to [0, \infty)$ is convex over \mathbb{R}^n and the function $x \mapsto x^p$ $(p \ge 1)$ is convex and nondecreasing on $[0, \infty)$, f_3 is convex by Prob. 1.4(a).
- (d) -f is convex and negative, and the function $x \mapsto -1/x$ is convex and nondecreasing on $(-\infty, 0)$, so, by Prob. 1.4(a), $f_4 = -1/(-f)$ is convex.
- (e) The function $g: x \mapsto \alpha x + \beta$ is convex and nondecreasing on \mathbb{R} . Hence, $f_5 = g \circ f$ is convex by Prob. 1.4(a).
- (f) The function $g: x \mapsto e^{\beta x}$ is convex and nondecreasing on \mathbb{R} and the function $h: x \mapsto x^T A x$ is convex since A is positive semidefinite. Hence, by Prob. 1.4(a), $f_6 = g \circ h$ is convex.
 - (g) For every $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$,

$$f_7(\lambda x + (1 - \lambda)y) = f(A(\lambda x + (1 - \lambda)y) + b)$$

$$= f(\lambda(Ax + b) + (1 - \lambda)(Ay + b))$$

$$\leq \lambda f_7(x) + (1 - \lambda)f_7(y),$$

where the inequality comes from the convexity of f. Hence, f_7 is convex.

6. Ascent/Descent Behavior of a Convex Function

Proof.

(a) Let $\lambda \in (0,1)$ be such that $x_2 = \lambda_1 x_1 + (1-\lambda)x_3$. Then

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{\lambda f(x_1) + (1 - \lambda)f(x_3) - f(x_1)}{\lambda x_1 + (1 - \lambda)x_3 - x_1} = \frac{f(x_3) - f(x_1)}{x_3 - x_1}.$$

Similarly, we can show that

$$\frac{f(x_3) - f(x_2)}{x_3 - x_2} \ge \frac{f(x_3) - f(x_1)}{x_3 - x_1}.$$

Thus,

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

7. Characterization of Differentiable Convex Functions

Proof. If f is convex over C, then by Proposition 1.2.5,

$$f(y) - f(x) \ge \nabla f(x)^T (y - x), \quad f(x) - f(y) \ge \nabla f(y)^T (x - y)$$

for every $x, y \in C$. Sum up these two inequalities and we get

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge 0. \tag{2}$$

For the converse, we first prove a lemma: If $h:(a,b)\to\mathbb{R}$ is differentiable and its derivative is nondecreasing, then it is convex. By the mean value theorem, for every $x,y\in(a,b)$, $h(y)-h(x)=h'(\xi)(y-x)$ where ξ is between x and y. Since h' is nondecreasing, this implies that $h(y)-h(x)\geq h'(x)(y-x)$. Thus, h is convex.

Now we suppose (2) holds for every $x, y \in C$. Define $h : [0,1] \to \mathbb{R}^n$ by h(t) = x + t(y-x) and put $g = f \circ h$. Then

$$Dg(t) = \nabla f(h(t))^T (y - x).$$

Hence, for $1 \ge t_2 > t_1 \ge 0$,

$$Dg(t_2) - Dg(t_1) = (\nabla f(h(t_2)) - \nabla f(h(t_1))^T \frac{h(t_2) - h(t_1)}{t_2 - t_1} \ge 0.$$

Namely, Dg is nondecreasing. By our lemma, g is convex. Since the choice of $x, y \in C$ are arbitrary, we conclude that f is convex over C.

8. Characterization of Twice Continuously Differentiable Convex Functions

Proof. We may assume without loss of generality that $0 \in C$ and, in consequence, $S = \operatorname{aff}(C)$. If $\dim S = 0$, then there is nothing to prove. Suppose $m = \dim S > 0$, let $Z \in \operatorname{Hom}(\mathbb{R}^m, S)$ be isometric¹ and define $g : \mathbb{R}^m \to \mathbb{R}$ by $u \mapsto f(Zu)$. Clear that g is also twice continuously differentiable and $\nabla^2 g = Z^T \nabla^2 f Z$.

First we suppose that $y^T \nabla^2 f(x) y \geq 0$ for all $x \in C$ and $y \in S$. Since Z is an isometry, this implies that $u^T Z^T \nabla^2 f(x) Z u \geq 0$ for all $u \in \mathbb{R}^m$. Namely, $\nabla^2 g(x)$ is positive semidefinite on \mathbb{R}^m . Therefore, by Prop. 1.2.6, g is convex. Thus, $f = g \circ Z^{-1}$ is also convex.

Now we suppose that f is convex over C and assume, to obtain a contradiction, that there is some $x \in C$ and $y \in S$ such that $y^T \nabla^2 f(x) y < 0$. Suppose y = Zu. Then this implies that $u^T \nabla^2 g(x) u < 0$. However, since g is convex (as f is) and \mathbb{R}^m is open, by Prop. 1.2.6(c), $\nabla^2 g(x)$ should be positive semidefinite on \mathbb{R}^m . Contradiction. Thus, $y^T \nabla^2 f(x) y \geq 0$ for all $x \in C$ and $y \in S$.

9. Strong Convexity

Proof.

- (a) Note that (1.16) implies that when restricted to the line segment connecting x and y, the function f has strictly increasing gradient. Hence, the argument in Prob. 1.7, $mutatis\ mutandis$, gives a proof of (a).
- (b) First we suppose that $\nabla^2 f(x) \alpha I$ is positive semidefinite. Then for every $y, x \in \mathbb{R}^n$, there exists some $\theta \in (0,1)$ and $z = x + \theta(y-x)$ such that

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + (y - x)^{T} \nabla^{2} f(z) (y - x)$$

$$= f(x) + \nabla f(x)^{T} (y - x) + (y - x)^{T} (\nabla^{2} f(z) - \alpha I) (y - x) + \alpha ||y - x||^{2}$$

$$\geq f(x) + \nabla f(x)^{T} (y - x) + \alpha ||y - x||^{2}.$$
(3)

Meanwhile, since $\nabla^2 f(x)$ is positive semidefinite, f is convex and therefore

$$f(y) - f(x) \le \nabla f(y)^T (y - x). \tag{4}$$

The previous two inequalities imply (1.16), i.e., f is strongly convex with coefficient α .

¹Consider the linear transformation X which maps an orthonormal basis of \mathbb{R}^m to an orthonormal basis of S. It can be verified that X is an isometry and is bijective.

Now suppose that (1.16) holds. For fixed x, let $u \in \mathbb{R}^n$ and $t \in \mathbb{R}$. Then there exists some $\theta_1, \theta_2 \in (0, 1)$ such that

$$f(x+tu) = f(x) + \nabla f(x)^{T} t u + \frac{t^{2}}{2} u^{T} \nabla^{2} f(x+\theta_{1} t u) u,$$

$$f(x) = f(x+tu) - \nabla f(x+tu)^{T} t u + \frac{t^{2}}{2} u^{T} \nabla^{2} f(x+\theta_{2} t u) u.$$

Add these two equations and we get

$$\frac{t^2}{2}u^T(\nabla^2 f(x + \theta_1 t u) + \nabla^2 f(x + \theta_2 t u))u = (\nabla f(x + t u) - \nabla f(x))^T t u \ge \alpha ||tu||^2.$$

Namely,

$$\frac{1}{2}u^T(\nabla^2 f(x+\theta_1 t u) + \nabla^2 f(x+\theta_2 t u))u \ge \alpha \|u\|^2.$$

Let $t \to 0$ and we obtain

$$u^T \nabla^2 f(x) u > \alpha ||u||^2.$$

Hence, all eigenvalues of $\nabla^2 f(x)$ are no less than α and, in consequence, $\nabla^2 f(x) - \alpha I$ is positive semidefinite.

11. Arithmetic-Geometric Mean Inequality

Proof. Since the function $x \mapsto -\log x$ is strictly convex on $(0, \infty)$.

$$-\log(\alpha_1 x_1 + \dots + \alpha_n x_n) \le -\alpha_1 \log x_1 - \dots - \alpha_n \log x_n$$

=
$$-\log(x_1^{\alpha_1} \cdots x_n^{\alpha_n}),$$

where the equality is obtained when $x_1 = \cdots = x_n$. Thus, $x_1^{\alpha_1} \cdots x_n^{\alpha_n} \leq \alpha_1 x_1 + \cdots + \alpha_n x_n$ with equality iff $x_1 = \cdots = x_n$.

12.

Proof. If x = 0 or y = 0, then the inequality is trivial. If both x and y are nonzero, then, by Prob. 1.11, $x^{1/p}y^{1/q} \le x/p + y/q$. Replace x and y with x^p and y^q respectively and we get $xy \le x^p/p + y^q/q$.

If all y_i are zero or all x_i are zero, then the inequality is trivial. If there exists some nonzero y_i and some nonzero x_i , then, by the homogeneity, we may assume without loss of generality that

$$\sum_{i=1}^{n} |x_i|^p = \sum_{i=1}^{n} |y_i|^q = 1.$$

Then, by Young's inequality,

$$\sum_{i=1}^{n} |x_i y_i| \le \frac{1}{p} \sum_{i=1}^{n} |x_i|^p + \frac{1}{q} \sum_{i=1}^{n} |y_i|^q = \frac{1}{p} + \frac{1}{q} = 1.$$

Namely, Holder's inequality holds.

13.

Proof. For $x \notin \text{dom } f$, $f(x) = \inf \emptyset = \infty$. For every $x_1, x_2 \in \text{dom}(f)$, since C is convex, $x_{\theta} = (1 - \theta)x_1 + \theta x_2 \in \text{dom}(f)$. By definition, for every $\varepsilon > 0$, there exists some $(x_1, w_1), (x_2, w_2) \in C$ such that $w_i < f(x_i) + \varepsilon$. Hence,

$$(1 - \theta)w_1 + \theta w_2 < (1 - \theta)f(x_1) + \theta f(x_2) + \varepsilon.$$

Since C is convex, $(1-\theta)(x_1,w_1)+\theta(x_2,w_2)\in C$ and therefore

$$f(x_{\theta}) \le (1 - \theta)w_1 + \theta w_2.$$

These two inequalities, together with the fact that the choice of ε is arbitrary, imply that $f(x_{\theta}) \leq (1-\theta)f(x_1) + \theta f(x_2)$. Thus, f is convex.

1.3 Convex and Affine Hulls

14.

Proof. Given $\emptyset \neq X \subset \mathbb{R}^n$, let C be the collection of all convex combination of elements of X. Clear that $X \subset C$. Meanwhile, for every $x, y \in C$, they are the convex combination of points in X and therefore so is $(1-\theta)x + \theta y$ for every $\theta \in (0,1)$. Hence, C is a convex set containing X. Thus, $\operatorname{conv}(X) \subset C$. For every $x \in C$, x is a convex combination of points in X and therefore is contained in any convex set containing X; See Fig. 1.3.1. Hence, $x \in \operatorname{conv}(C)$. Thus, $C = \operatorname{conv}(C)$.

15.

Proof. Let $D = \bigcup_{x \in C} \{ \gamma x : \gamma \geq 0 \}$. It follows immediately from the definition that $D \subset \text{cone}(C)$. For every $x \in \text{cone}(C)$. If x = 0, then clear that $x \in D$. If $x \neq 0$, then it can be written as $x = \alpha_1 x_1 + \cdots + \alpha_m x_m$ where m > 0, $\alpha_i > 0$ and $x_i \in C$. Hence

$$x = \frac{1}{\alpha} \sum_{i} \frac{\alpha_i}{\alpha} x_i$$
 where $\alpha = \sum_{i} \alpha_i$.

Since C is convex, $\sum \alpha_i x_i / \alpha \in C$ and therefore $x \in D$. Thus, D = cone(C).

16.

Proof.

(a) First we show that C is closed. Suppose that $\{x_k\} \subset C$ converges to some $x \in \mathbb{R}^n$. Then for every $i \in I$ and $k = 1, 2, \ldots, a_i^T x_k \leq 0$. Let $k \to \infty$, by the continuity of the inner product, $a_i^T x \leq 0$. Hence, C is closed.

For the convexity, let $x, y \in C$ and $\theta \in (0, 1)$. Then for every $i \in I$,

$$a_i^T((1-\theta)x + \theta y) = (1-\theta)a_i^T x + \theta a_i^T y \le 0.$$

Namely, $(1 - \theta)x + \theta y \in C$. Thus, C is convex.

Finally, since for all $\lambda > 0$, $a_i^T(\lambda x) \leq 0$ as long as $a_i^T x \leq 0$. Hence, C is cone. Thus, we conclude that C is a closed convex cone.

(b) Let C be a cone. Suppose that C is convex, then for every $x, y \in C$, $(x+y)/2 \in C$. Hence, $x + y = 2((x + y)/2) \in C$ as C is a cone. Namely, $C + C \subset C$. For the

converse, suppose that $C + C \subset C$. For every $x, y \in C$ and $\theta \in (0, 1)$, since C is a cone, $(1 - \theta)x, \theta y \in C$ and therefore $(1 - \theta)x + \theta y \in C + C \subset C$. Hence, C is convex.

(c) For every $x \in C_1$ and $y \in C_2$,

$$x + y = \frac{1}{2}(2x) + \frac{1}{2}(2y) = \operatorname{conv}\{2x, 2y\} \subset \operatorname{conv}(C_1 \cup C_2).$$

Hence, $C_1 + C_2 \subset \operatorname{conv}(C_1 \cup C_2)$. For the converse, we show that $C_1 + C_2$ is a convex set containing $C_1 \cup C_2$. Since $0 \in C_1$, $C_2 \subset 0 + C_2 \subset C_1 + C_2$. Similarly, $C_1 \subset C_1 + C_2$. Meanwhile, by Prop. 1.2.1(b), $C_1 + C_2$ is convex. Hence, $\operatorname{conv}(C_1 \cup C_2) \subset C_1 + C_2$. Thus, $\operatorname{conv}(C_1 \cup C_2) = C_1 + C_2$.

Since C_1 and C_2 are cones, for $\alpha \in (0,1)$, $C_1 = \alpha C_1$ and $C_2 = (1-\alpha)C_2$ and therefore $C_1 \cap C_2 = \alpha C_1 \cap (1-\alpha)C_2$. For $\alpha \in \{0,1\}$, $\alpha C_1 \cap (1-\alpha)C_2 = \{0\} \in C_1 \cap C_2$. Thus, $C_1 \cap C_2 = \bigcup_{\alpha \in [0,1]} (\alpha C_1 \cap (1-\alpha)C_2)$.

18. Convex Hulls, Affine Hulls, and Generated Cones

Proof.

- (a) We may assume without loss of generality that $0 \in X$, so that the affine hulls are subspaces of \mathbb{R}^n . Since X is contained by $\operatorname{conv}(X)$ and $\operatorname{cl}(X)$, $\operatorname{aff}(X)$ is contained by $\operatorname{aff}(\operatorname{conv}(X))$ and $\operatorname{aff}(\operatorname{cl}(X))$. For the converse, note that a convex combination of points in X is also a linear combination, hence $\operatorname{conv}(X) \subset \operatorname{aff}(X)$ and therefore $\operatorname{aff}(\operatorname{conv}(X)) \subset \operatorname{aff}(X)$. Meanwhile, since finite dimensional vector spaces are all closed, $\operatorname{cl}(X) \subset \operatorname{aff}(X)$ and therefore $\operatorname{aff}(\operatorname{cl}(X)) \subset \operatorname{aff}(X)$. Thus, $\operatorname{aff}(X) = \operatorname{aff}(\operatorname{conv}(X)) = \operatorname{aff}(\operatorname{cl}(X))$.
- (b) Clear that $\operatorname{cone}(X) \subset \operatorname{cone}(\operatorname{conv}(X))$. For the converse, suppose $x \in \operatorname{cone}(\operatorname{conv}(X))$. If x = 0, then $x \in \operatorname{cone}(X)$ in a trivial way. If $x \neq 0$, then $x = \alpha_1 x_1 + \dots + \alpha_p x_p$ where $x_i \in \operatorname{conv}(X)$, p > 0 and $\alpha_i > 0$. Meanwhile, for each i, suppose that $x_i = \beta_{i,1} x_{i,1} + \dots + \beta_{i,q} x_{i,q}$ where q > 0, $\beta_{i,j} > 0$ and $\sum_j \beta_{i,j} = 1$. Hence,

$$x = \sum_{i} \alpha_{i} \sum_{j} \beta_{i,j} x_{i,j} = \sum_{i,j} \alpha_{i} \beta_{i,j} x_{i,j}.$$

Namely, x is a positive combination of points in X and therefore $x \in \text{cone}(X)$. Hence, $\text{cone}(\text{conv}(X)) \subset \text{cone}(X)$. Thus, cone(conv(X)) = cone(X).

- (c) Since $\operatorname{conv}(X) \subset \operatorname{cone}(X)$, $\operatorname{aff}(\operatorname{conv}(X)) \subset \operatorname{aff}(\operatorname{cone}(X))$. Let $X = [-1, 1] \times \{1\} \subset \mathbb{R}^2$. Then clear that $\operatorname{aff}(\operatorname{conv}(X))$ is the line crossing (0, 1) and parallel to the x-axis while $\operatorname{aff}(\operatorname{cone}(X)) = \mathbb{R}^2$.
- (d) Since $0 \in \operatorname{conv}(X) \subset \operatorname{cone}(X)$, both $\operatorname{aff}(\operatorname{conv}(X))$ and $\operatorname{aff}(\operatorname{cone}(X))$ are subspaces of \mathbb{R}^n . By part (c), we already have $\operatorname{aff}(\operatorname{conv}(X)) \subset \operatorname{aff}(\operatorname{cone}(X))$. Hence, we only need to show that $\operatorname{dim}\operatorname{aff}(\operatorname{conv}(X)) \geq \operatorname{dim}\operatorname{aff}(\operatorname{cone}(X))$ to complete the proof. Suppose that $\operatorname{dim}\operatorname{aff}(\operatorname{cone}(X)) = m$. By Prop. 1.3.1, there exists $b_1,\ldots,b_m \in X$ such that linearly independent and span $\operatorname{aff}(\operatorname{cone}(X))$. Note that $\{b_1,\ldots,b_m\}$ is also a set of linearly independent set in $\operatorname{aff}(\operatorname{conv}(X))$. Hence, $\operatorname{dim}\operatorname{aff}(\operatorname{conv}(X)) \geq m$. Thus, $\operatorname{aff}(\operatorname{conv}(X)) = \operatorname{aff}(\operatorname{cone}(X))$.

19.

Proof. We denote these two representation by f and g respectively. For every $(x, w) \in \text{conv}(\bigcup_{i \in I} \text{epi}(f_i))$, there exists some positive $\alpha_1, \ldots, \alpha_m$ with $\sum \alpha_i = 1$ and $(x_1, w_1), \ldots$,

 $(x_m, w_m) \in \bigcup \operatorname{epi}(f_i)$ such that $(x, w) = \sum_j \alpha_j(x_j, w_j)$. Namely, for fix x,

$$f(x) = \inf \left\{ \sum_{j} \alpha_j w_j : x = \sum_{j} \alpha_j x_j, (x_j, w_j) \in \bigcup_{i} \operatorname{epi}(f_i), \alpha_j \ge 0, \sum_{j} \alpha_j = 1, m > 0 \right\}.$$

By the definition of epi, $(x_j, w_j) \in \bigcup_i \operatorname{epi}(f_i)$ implies $f_{i_j}(x_j) \leq w_j$ for some i_j . Hence, $f(x) \geq g(x)$. Meanwhile, since the union of graphs of f_i is contained in $\bigcup \operatorname{epi}(f_i)$, $f(x) \leq g(x)$. Thus, f(x) = g(x).

20. Convexification of Nonconvex Functions

Proof.

- (a) The convexity follows from Prob. 13 immediately. For each x, let f_x takes value f(x) and ∞ for other points. Then $\{f_x\}$ is a collection of convex functions. Then, by Prob. 19, F has the representation given.
- (b) Put $M = \inf_{x \in \operatorname{conv}(X)} F(x)$. By definition, for all $y \in X \subset \operatorname{conv}(X)$, $M \leq F(y)$ and $F(y) \leq f(y)$. Hence, $M \leq \inf_{y \in X} f(y)$. For the converse, again by definition, for every $\varepsilon > 0$, there exists some $x \in \operatorname{conv}(X)$ such that $M + \varepsilon \geq F(x)$. By part (a), this implies there exists nonnegative $\alpha_1, \ldots, \alpha_m$ with $\sum \alpha_i = 1$ and $x_1, \ldots, x_m \in X$ such that $\sum \alpha_i x_i = x$ and $M + \varepsilon \geq \sum \alpha_i f(x_i)$. Since $\sum \alpha_i f(x_i)$ is a weighted average of values of f, it is no less than $\inf_{x \in X} f(x)$. Since the choice of $\varepsilon > 0$ is arbitrary, we conclude that $M \geq \inf_{x \in X} f(x)$. Thus, $\inf_{x \in \operatorname{conv}(X)} F(x) = \inf_{x \in X} f(x)$.

(c) It follows immediately from part (b).
$$\Box$$

21. Minimization of Linear Functions

Proof. Note that the convexification of $f: X \to \mathbb{R}$ is just $c^T x$ with domain $\operatorname{conv}(X)$. Hence, the equation follows from Prob. 20. Suppose that the infimum of the left-hand side is attained, that is, there is some $x^* \in \operatorname{conv}(X)$ such that $c^T x^* = \inf_{x \in \operatorname{conv}(X)} c^T x$. Then by the definition of the convex hull, x^* is the convex combination of some points x_1, \ldots, x_m of X and, as $c^T x$ is linear, $c^T x^*$ is the weighted average of $c^T x_1, \ldots, c^T x_m$. As a consequence, $c^T x^* \ge \min\{c^T x_1, \ldots, c^T x_m\}$. Thus, the infimum in the right-hand side can also be attained. For the converse, it is obvious.

22. Extension of Caratheodory's Theorem

Proof. TODO

23.

Proof. Since X is bounded, $\operatorname{cl}(X)$ is also bounded and therefore compact. Hence, by Prop. 1.3.2, $\operatorname{conv}(\operatorname{cl}(X))$ is compact. In consequence, $\operatorname{cl}(\operatorname{conv}(\operatorname{cl}(X))) = \operatorname{conv}(\operatorname{cl}(X))$. Thus, $\operatorname{cl}(\operatorname{conv}(X)) \subset \operatorname{cl}(\operatorname{conv}(\operatorname{cl}(X))) = \operatorname{conv}(\operatorname{cl}(X))$. For the converse, it follows from the fact that $\operatorname{conv}(\operatorname{cl}(\operatorname{conv}(X))) = \operatorname{cl}(\operatorname{conv}(X))$ and $\operatorname{conv}(\operatorname{cl}(X)) \subset \operatorname{conv}(\operatorname{cl}(\operatorname{conv}(X)))$. Thus, $\operatorname{cl}(\operatorname{conv}(X)) = \operatorname{conv}(\operatorname{cl}(X))$.

If X is compact, then it is bounded and closed. Hence, $\operatorname{conv}(X) = \operatorname{conv}(\operatorname{cl}(X)) = \operatorname{cl}(\operatorname{conv}(X))$. Namely, $\operatorname{conv}(X)$ is also closed. Meanwhile, $\operatorname{conv}(X)$ is bounded as X is. Thus, $\operatorname{conv}(X)$ is compact.

24. Radon's Theorem

Proof. TODO

25. Helly's Theorem [Hel21]

Proof. We use induction on the size of the collection. If the size is no more than n + 1, then the statement clearly holds. Assume that, for all collection of no more than M sets, the statement holds. We show that the statement holds for every collection of M + 1 sets.

Let C_1, \ldots, C_{m+1} be a collection of M+1 convex sets. For each $j=1,\ldots,M+1$, put $B_j=\bigcap_{i\neq j}C_i$. By the induction hypothesis, all B_j are nonempty. Choose $x_j\in B_j$ $(j=1,\ldots,M+1)$. Note that $M+1\geq n+2$. Hence, by Radon's Theorem, we can partition $\{1,\ldots,M+1\}$ into to two sets P and Q such that

$$D = \operatorname{conv}(\{x_p : p \in P\}) \cap \operatorname{conv}(\{x_q : q \in Q\}) \neq \varnothing.$$

Let $x \in D$ and we show that $x \in \bigcap C_j$ to complete the proof. By the construction of B_j , we know that for each $p \in P$, $x_p \in C_q$ for every $q \in Q$. Since all C_q are convex, x, a convex combination of x_p , belongs to all C_q . Similarly, we can show that x belongs to all C_p . Thus, $x \in \bigcap C_j$. Namely, the intersection of C_1, \ldots, C_{M+1} is nonempty. \square

26.

Proof. First, clear that for any I, $\inf_x \max_i f_i(x) \leq f^*$. For the converse, we assume, to obtain a contradiction, that for all index set I with no more than n+1 indices, $\inf_x \max_i f_i(x) < f^*$. Then, putting $X_i = \{x : f_i(x) < f^*\}$, $i = 1, \ldots, M$, this implies that every subcollection of X_1, \ldots, X_M , provided it contains no more than n+1 sets, has nonempty intersection. Meanwhile, X_i are convex sets as f_i are convex functions. Hence, by Helly's theorem, $\bigcap_{i=1}^M X_i$ is nonempty, which contradicts the infimum assumption of f^* . Thus, there exists some I such that $\inf_x \max_i f_i(x) \geq f^*$ and therefore the two values coincide.