1. Calculer I_1 .

Pour tout entier naturel n non nul, on pose : $I_n = \int_0^1 \frac{dt}{(1+t^3)^n}$.

2. À l'aide d'une intégration par parties sur I_1 , calculer I_2 .

3. De même, déterminer, pour tout $n \in \mathbb{N}^*$, I_{n+1} en fonction de I_n .

- Pour tout entier naturel n non nul, on pose : $F_n : x \in \mathbb{R} \mapsto \int_0^\infty \frac{\mathrm{d}t}{(1+t^2)^n}$.

1. Déterminer F_1 .

2. Déterminer une relation de récurrence entre F_{n+1} et F_n .

4. Déterminer les primitives de : $x \mapsto \sqrt{\frac{1-x}{1+x}}$, sur]-1,1].

3. En déduire F_2 et F_3 .

Exercice 3

- 1. Résoudre l'équation différentielle : y'' + y' 2y = 0.
- 2. Déterminer une solution particulière pour les seconds membres suivants : x(x-1) et xe^x .

3. En déduire la solution générale de l'équation : $y'' + y' - 2y = x(x-1) + xe^x$.

Exercice 4

Résoudre les équations différentielles suivantes :

1.
$$y'' - y = 1 + x^2 + e^{3x} + \sin(2x)$$

2. $y'' + 2y' + 2y - 2x + e^{-x} + \sin(2x)$

2.
$$y'' + 2y' + 2y = 2x + e^{-x} + \sin x$$

3. $y'' + 4y' + 4y = x^2 + x + 1 + e^{-2x}$