Lineare Algebra 2

Probeklausur

Es besteht kein Zusammenhang mit möglichem Prüfungsstoff. Die Bearbeitungszeit dieser Probeklausur beträgt 90 Minuten. Hilfsmittel sind nicht vorgesehen.

Im Folgenden sei K ein Körper.

Aussage	wahr	falsch
Ein Körper positiver Charakteristik ist endlich.		
Für $A \in M_n(K)$ ist die Summe der Grade der Elementarteiler der charakteristischen Matrix $M_A(x)$ genau n .		
Jeder Vektorraum V ist kanonisch isomorph zu seinem Bidualraum V^{**} .		
Für jeden kommutativen Ring R ist der Polynomring $R[x]$ ein Hauptidealring.		
Jedes irreduzible Polynom $f \in \mathbb{R}[x]$ erfüllt deg $f \in \{1,2\}$. Dasselbe gilt für jedes irreduzible Polynom $f \in \mathbb{C}[x]$.		
Seien $f,g:V\to V$ Endomorphismen auf dem K -Vektorraum V . Dann gilt für die dualen Abbildungen: $(g\circ f)^*=g^*\circ f^*$.		
Sei V ein endlichdimensionaler K -Vektorraum und $\beta:V\times V\to K$ eine K -Bilinearform. Dann ist β genau dann im ersten Argument ausgeartet, wenn β im zweiten Argument ausgeartet ist.		
Sei $A \in M_n(\mathbb{C})$ mit $A^t A = AA^t$; dann ist A diagonalisierbar.		
Hauptidealringe sind faktoriell.		
Seien R faktoriell und M ein R -Modul. Dann ist der Torsionsmodul $T(M)$ ein Untermodul von M .		

Aufgabe 2 (10 = 5+5 Punkte). Für einen K-Vektorraum V sei $\Phi_V: V \to V^{**}$ die kanonische Abbildung $\Phi_V(v): V^* \to K, \ f \mapsto f(v)$.

(a) Es seien U und W K-Vektorräume, und $g:U\to W$ linear. Es bezeichne $g^{**}=(g^*)^*$ die duale Abbildung zur dualen Abbildung g^* von g.

Beweise: $\Phi_W \circ g = g^{**} \circ \Phi_U$.

(b) Sei nun V endlichdimensional mit Basis $v_1, ..., v_n$. Zeige: Φ_V ist ein Isomorphismus mit $\Phi_V : v_i \mapsto (v_i^*)^*$, $1 \le i \le n$, wobei $(v_i^*)^*$ für alle i das duale Basiselement zum dualen Basiselement v_i^* von v_i ist.

Aufgabe 3 (10 Punkte). Es bezeichne $U(n) = \{A \in M_n(\mathbb{C}) \mid A^{-1} = A^*\}$ die unitäre Gruppe. Beweise:

$$\forall n, m \in \mathbb{N} \, \forall A \in U(n) \, \exists B \in U(n) : B^m = A.$$

Aufgabe 4 (20 = 5+5+5+5 Punkte). (a) Bestimme den Torsionsmodul des \mathbb{Z} -Moduls

$$M = \mathbb{Z}^3 \left/ \left\langle \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} -1\\1\\4 \end{pmatrix} \right\rangle.$$

(b) Betrachte die beiden Geraden $g, h \subset \mathbb{R}^4$, definiert als

$$g = \begin{pmatrix} 0 \\ \alpha \\ 0 \\ 0 \end{pmatrix} + \mathbb{R} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \qquad h = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} + \mathbb{R} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix},$$

wobei $\alpha \in \mathbb{R}$. Bestimme den Abstand von g und h.

(c) Löse folgendes Gleichungssystem simultaner Kongruenzen nach $x \in \mathbb{Z}$:

$$x = 7 \mod 8,$$

$$x = 1 \mod 13,$$

$$x = 2 \mod 5.$$

(d) Bestimme die Weierstraßsche Normalform der Matrix

$$A = \begin{pmatrix} -3 & -5 & 0 & -4 \\ 2 & 3 & 0 & 2 \\ 0 & \frac{1}{3} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in M_4(\mathbb{Q}).$$

Aufgabe 5 (10 Punkte). Es seien G eine Untergruppe der orthogonalen Gruppe O(n) und $\beta: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ eine symmetrische Bilinearform $\neq 0$. Ferner gelten:

- (1) $\forall A \in G \, \forall x, y \in \mathbb{R}^n : \beta(Ax, Ay) = \beta(x, y),$
- (2) für alle Unterräume $U \leq \mathbb{R}^n$ gilt: Falls $\forall A \in G \forall u \in U : Au \in U$, so folgt bereits $U \in \{0, \mathbb{R}^n\}$.

Zeige: Es gibt $\lambda \in \mathbb{R}$, so dass $\lambda \cdot \beta$ das Standardskalarprodukt auf \mathbb{R}^n ist.