21-484 Notes JD Nir jnir@andrew.cmu.edu April 18, 2012

Recall: - 2-Cell region

- 2-Cell embedding

Theorem: (9.9): Let G be a connected graph, 2-cell embedded on a surface of genus k, and G has n vertices, m edges and r regions.

Then n - m + r = 2 - 2k

Proof ideas: Induction on k

- k = 0 – Euler's identity

- k > 0

<u>Claim:</u> Let G be a connected graph, let $k = \delta(G)$. Any embedding of G on a surface of genus k is a 2-cell embedding.

<u>Proof:</u> Assume for the sake of contradiction that G is embedded on S_k and there is a region that is not a 2-cell region. There is a closed curve C that is not continuously contractable in the region to a point.

This region contains a handle and there are no edges or vertices on the handle. Remove the handle to ger S_{k-1} in which G is embedded. \not $\delta(G) = k$.

Corollary: (9.10) If G is connected, embedded on a surface of genus $\delta(G)$ and n, m, r are as usual, then

$$n - m + r = 2 - 2\delta(G).$$

 \rightarrow following the same proof that showed $m \leq 3n-6$ for planar graphs give. If G has n vertices and m edges then

$$m < 3n + 6(\delta(G) - 1)$$

1

 $\rightarrow G$ is embeddable on S_0 (the sphere) iff it is planar.

 \rightarrow If G is planar, embed it in the plan, take a curve surrounding G and contract it to a point to get an embedding of G on S_0 . For the other direction, start with a point not on an edge, and "tear" through it to get an embedding in the plane.

21-484 Graph Theory

 $\underline{\text{Def:}}\ (\text{p.249-250})$

 \rightarrow Let G be a graph and assume $uv \in E(G)$ contracting the edge uv means the following:

- remove the vertices u and v
- add a new vertex w
- add edges between w and all the vertices in $N(u) \cup N(v)$.
- \rightarrow A minor of a graph G is a graph that can be obtained from G by a sequence of vertex deletions, edge deletions and edge contractions.

Example:

fact: If H is a subdivision of G then G is a minor of H.

 \rightarrow contract the new paths back to an edge.

<u>claim</u>: If H is a minor of G then $\delta(H) \leq \delta(G)$.

 \rightarrow contracting an edge does not increase the genus.

Thm (9.15, Wagner's thm)

A graph is planar iff it does not contain a K_5 or a $K_{3,3}$ minor.

Example: recall that the graph below is not planar. We showed that by finding a $K_{3,3}$ subdivision in it.

 \rightarrow there is no K_5 subdivision in it.

There is a K_5 minor.