

Square Grid Puzzle

Dana vam je 0-indeksirana zagonetka zadana s N x N kvadratnoj mrežom. U svakom se polju nalazi po jedan broj od 0 do $N \times N - 1$ uključivo. Svaki se broj pojavljuje točno jedanput. Vaš je cilj riješiti zagonetku tako da postignete poredano stanje gdje je broj na sjecištu i-tog retka i j-tog stupca jednak $i \times N + j$ za svaki $0 \le i, j < N$. To možete postići koristeći sljedeće operacije:

- Potez dolje: " \mathbf{D} a[0] a[1] ... a[N-1]", gdje je a[0], a[1], ... ,a[N-1] neki poredak brojeva koji se nalaze u najgornjem retku mreže. S ovim potezom najgornji se red briše i novi red je stvoren s novim redoslijedom brojeva a[0], a[1], ... ,a[N-1] s lijeva na desno i takav je dodan na dno mreže.
- Potez desno: " $\mathbf{R}\ b[0]\ b[1]\ ...\ b[N-1]$ ", gdje je $b[0],\ b[1],\ ...\ ,b[N-1]$ neki poredak brojeva od najljevijeg stupca. S ovim potezom najljeviji se stupac briše i novi je stupac stvoren s novim redoslijedom brojeva $b[0],\ b[1],\ ...\ ,b[N-1]$ odozgo prema dolje i takav je dodan na desni kraj mreže.

Preraspodjela se odnosi na mijenjanje redoslijeda brojeva bez dodavanja ili brisanja ikog od njih i može sačuvati originalan poredak brojeva.

Na primjer, neka je trenutna mreža:

Red/Stupac	0	1	2
0	2	4	6
1	8	1	5
2	7	3	0

Ako napravimo potez "**D** 6 2 4", dobiti ćemo sljedeću mrežu:

Red/Stupac	0	1	2
0	8	1	5
1	7	3	0
2	6	2	4

No, ako inače napravimo potez "R 2 8 7", dobili bismo:

Red/Stupac	0	1	2
0	4	6	2
1	1	5	8
2	3	0	7

Za N=3, konačno bi stanje trebalo izgledati ovako:

Red/Stupac	0	1	2
0	0	1	2
1	3	4	5
2	6	7	8

Cilj vam je riješiti ovu zagonetku s manje ili jednako $3 \times N$ poteza. Međutim, postoji **parcijalno bodovanje** ako koristite više poteza ili ne uspijete riješiti zagonetku. Obratite pozornost na sekciju bodovanje za detalje.

Ulazni podaci

U prvoj se liniji nalazi jedan prirodan broj N.

Sljedećih N linija opisuju početno stanje mreže sN brojeva u svakoj liniji.

Izlazni podaci

U prvoj liniji ispišite broj M - broj poteza koji koristite. U svakoj od sljedećih M linija ispišite jedan potez u formatu zadanom u zadatku.

Bodovanje

Neka je M broj poteza koje koristi vaše rješenje. Dodatno, neka je A=3 imes N i $B=2 imes N^2.$

Ako je vaš ispis neispravan, ili ako je M>B, dobiti ćete 0 bodova. Inače vaš broj bodova ovisi o broju brojeva koji se nalaze na točnim pozicijama. (označeno sC).

Ako je $C < N \times N$, zagonetka nije riješena i dobiti ćete $(50 \times \frac{C}{N \times N})$ % bodova za taj test primjer. Inače:

- ullet ako je M < A, dobiti ćete 100% bodova za taj test primjer.
- ako je $A \leq M \leq B$, dobiti ćete $(40 imes \left(\frac{B-M}{B-A}\right)^2 + 50)\%$ bodova za taj test primjer.

Svaki pojedini test primjer vrijedi jednak broj bodova. Vaš rezultat je suma svih test primjera, i gledat će se vaše **najbolje rješenje** od svih poslanih rješenja (najbolje ukupno, ne po pojedinim primjerima)

1. primjer

Ulaz	Izlaz	
3	4	
142	R 3 6 1	
375	D234	
680	D 5 6 7	
	R 2 5 8	

Ovo rješenje postiže željeno stanje u manje od 9 poteza i dobilo bi sve bodove za taj primjer.

2. primjer

Ulaz	Izlaz
2	0
21	
03	

Ova zagonetka nije rješenja budući da su samo dva broja (1 i 3) od 4 na točnim pozicijama. Ovakav bi ispis dobio $50 \times \frac{2}{4} = 25\%$ bodova.

Ograničenja

• $2 \le N \le 9$

Podzadaci

- Ovaj zadatak nema podzadataka.
- Postoji jednak broj primjera za svaki N od 2 do 9.