MS321 Algebra, tutorial 9, question 2

2. If G is a finite abelian group and p is a prime factor of |G|, prove that G has an element of order p.

We know $G\cong \mathbb{Z}_{p_1^{k_1}}\times \mathbb{Z}_{p_2^{k_2}}\times \ldots \times \mathbb{Z}_{p_n^{k_n}}$ so that $|G|=p_1^{k_1}p_2^{k_2}\ldots p_n^{k_n}$. Since p is a divisor of |G|, one of these p_i must be p. Thus \mathbb{Z}_{p^k} is one of the factors with $k\geq 0$. This factor is the cyclic group \mathbb{Z}_{p^k} with generator 1. Thus $p^k=0$ in this factor so that $p(p^{k-1})=0$ and $p^{k-1}\neq 0$. This p^{k-1} is the element we want. So an element in G of order p is the element of G which corresponds under the isomorphism

$$G \cong \mathbb{Z}_{p_1^{k_1}} \times \mathbb{Z}_{p_2^{k_2}} \times \ldots \times \mathbb{Z}_{p_n^{k_n}}$$

to the element $(0, \dots, 0, p_i^{k_i-1}, 0, \dots, 0)$.