Graph Theory winter term 2013

Problem sheet 10

Due date: January 15, 12:00 am.

Discussion of solutions: January 17.

(Please prepare solutions for at most three problems.)

Hint: You may use the fact that $\sum_{v \in V} \binom{\deg(v)}{2} \ge \frac{m}{n} (2m-n)$ for any n-vertex, m-edge graph G = (V, E). This inequality will be proven in the problem class.

Problem 37. 5 points

Show that every graph G without C_6 has a subgraph H with $|E(H)| \ge |E(G)|/2$, which contains no C_4 .

Problem 38. 5 points

Show that any graph on n vertices and at least $\lfloor \frac{n^2}{4} \rfloor + 1$ edges contains at least $\lfloor \frac{n}{2} \rfloor$ triangles.

Problem 39. 5 points

Let G = (V, E) be a graph on n vertices and m edges. For i = 0, 1, 2, 3 let t_i denote the number of vertex triples of G inducing exactly i edges.

- (a) Prove that $t_0 + t_3 = \binom{n}{3} (n-2)m + \sum_{v \in V} \binom{\deg(v)}{2}$.
- (b) Conclude with (a) that $t_3 \ge \frac{m}{3n}(4m n^2)$.

Problem 40. 5 points

Prove that any graph G with $\delta(G) \geq k$ contains all trees on k edges as a subgraph.

Open Problem.

Prove or disprove that for all trees T with k edges $ex(n,T) \leq \frac{n(k-1)}{2}$.