Representação Numérica

Algoritmos e Programação de Computadores - ABI/LFI/TAI

Prof. Daniel Saad Nogueira Nunes

IFB – Instituto Federal de Brasília, Campus Taguatinga

Sumário

- Introdução
- 2 Inteiros
- Reais
- 4 ASCII

Sumário

Introdução

- Utilizamos números para expressar quantidades.
- Um sistema de numeração consiste nos símbolos utilizados para representar os números.
- O mais utilizado no dia a dia é o sistema decimal de numeração, apesar de várias civilizações terem adotado outros sistemas no passado.

- No sistema decimal, temos 10 algarismos: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
- Portanto dizemos que a **base** dele é 10.
- Além disso, ele é um sistema posicional, em que a posição dos algarismos indica o peso a ser aplicado àquele algarismo.
- Os algarismos s\(\tilde{a}\) colocados em sequ\(\tilde{e}\)ncia para compor um n\(\tilde{u}\) mero.
- $9543 = 3 \cdot 10^0 + 4 \cdot 10^1 + 5 \cdot 10^2 + 9 \cdot 10^3 = 3 + 40 + 500 + 9000$.

• Sendo um pouco mais formal, um número x, de n dígitos, composto da sequência de dígitos $x_{n-1}x_{n-2}\dots x_0$ pode ser interpretado da seguinte maneira:

$$x = \sum_{i=0}^{n-1} x_i \cdot 10^i$$

- Podemos ter sistemas de numeração com diferentes bases.
- Como exemplos importantes para computação, podemos destacar os sistemas posicionais: binário, octal e hexadecimal.

Sumário

- Introdução
 - Sistema binário
 - Sistema octal
 - Sistema hexadecimal

- O sistema de numeração binário é muito relevante para a Computação, uma vez que a lógica digital é booleana.
- Este sistema possui apenas dois algarismos (bits): 0 ou 1, que representam ligado ou desligado; com tensão ou sem tensão; . . .
- Ele também é um sistema posicional.
- Sua base é 2.

Notação

De agora em diante, para evitar ambiguidades, usaremos a notação de subscrito para indicar a base do sistema no qual o número foi escrito.

Seja x um número e d uma base. Diremos que x está escrito de acordo com o sistema de base d com a seguinte notação:

 x_d

Notação

binário.

• 1010010_2 significa que estamos falando do número 1010010_2 em

- 10_{10} significa que estamos falando do número 10 (dez) em decimal.
- 712_8 significa que estamos falando de 712 na base 8.

- Exemplos de números em binário: 1001001₂, 1101₂, 11001100₂.
- Como interpretar um número em binário no seu equivalente em decimal?

- Exemplos de números em binário: 1001001₂, 1101₂, 11001100₂.
- Como interpretar um número em binário no seu equivalente em decimal?
- Adaptamos a fórmula utilizada para a base 10.

Conversão Binário-Decimal

• Um número binário $x = x_{n-1}x_{n-2} \dots x_0$ pode ser convertido para o seu equivalente em decimal realizando a seguinte soma:

$$\sum_{i=0}^{n-1} x_i \cdot 2^i$$

Conversão Binário-Decimal

Exemplos

- $\bullet \ 10_2 = 0 \cdot 2^0 + 1 \cdot 2^1 = 2_{10}$
- $1101_2 = 1 \cdot 2^0 + 0 \cdot 2^1 + 1 \cdot 2^2 + 1 \cdot 2^3 = 13_{10}$.
- $\bullet \ 111_2 = 1 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2 = 7_{10}.$

Conversão Decimal-Binário

- Também é possível realizar o processo inverso: converter um número decimal em seu equivalente em binário.
- Para isto utilizamos o processo inverso: em vez de multiplicações, usamos divisões.
- Algoritmo: dividir o número por 2 e guardar o resto da divisão a cada etapa. Quando o quociente chegar a 0, compor o número binário utilizando o resultado dos restos de trás para frente.

Exemplo

Número	Quociente	Resto
225	112	1
112	56	0
56	28	0
28	14	0
14	7	0
7	3	1
3	1	1
1	0	1

 $225_{10} = 11100001_2.$

Sistemas Alternativos

- Outros sistemas bem relevantes para computação são os sistemas octal e hexadecimal (base 8 e base 16), que também são posicionais.
- Eles permitem compactar números em binários de maneira a simplificar a sua conversão.

Sumário

- Introdução
 - Sistema binário
 - Sistema octal
 - Sistema hexadecimal

- O sistema octal, base 8, é baseado nos algarismos $\{0,1,2,3,4,5,6,7\}$.
- Um número binário pode ser convertido facilmente para um número octal ao separá-lo em triplas (da esquerda para a direita) e interpretar os valores destas triplas.
- Caso o número de bits não seja múltiplo de 3, o último agrupamento de bits (mais à esquerda) terá 1 ou 2 bits.

Conversão Binário-Octal

- $\underbrace{101}_{5} \underbrace{011}_{3} = 53_{8}$
- $\bullet \underbrace{11}_{3} \underbrace{010}_{2} = 32_{8}.$
- \bullet $\underbrace{1}_{1}\underbrace{110}_{6}=16_{8}.$

Conversão Octal-Binário

- Para converter um número octal para um número em binário fazemos o processo inverso.
- Cada algarismo em octal representará três em binário.
- Podemos utilizar a seguinte tabela:

Octal	Binário	
0	000	
1	001	
2	010	
3	011	
4	100	
5	101	
6	110	
7	111	

Conversão Octal-Binário

- \bullet 42₈ = 100010₂
- $71_8 = 111001_2$
- $15_8 = 001101_2 = 1101_2$ (zeros à esquerda são omitidos).

Conversão Octal para Decimal

• Para converter um número octal $x = x_{n-1}x_{n-2}\dots x_0$ para decimal, basta aplicar o somatório:

$$\sum_{i=0}^{n-1} = x_i \cdot 8^i$$

$$7234_8 = 4 \cdot 8^0 + 3 \cdot 8^1 + 2 \cdot 8^2 + 7 \cdot 8^3 = 3740_{10}$$

Conversão Decimal para Octal

 Algoritmo: dividir o número por 8 e guardar o resto da divisão a cada etapa. Quando o quocientePP chegar a 0, compor o número octal utilizando o resultado dos restos de trás para frente.

Exemplo

Número	Quociente	Resto
3740	467	4
467	58	3
58	7	2
7	0	7

• $3740_{10} = 7234_8$.

Sumário

- Introdução
 - Sistema binário
 - Sistema octal
 - Sistema hexadecimal

Sistema Hexadecimal

- O sistema hexadecimal é composto pelos algarismos $\{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}$.
- Permite compactar ainda mais um número binário, enquanto mantém sua conversão simples.

Conversão Binário-Hexadecimal

- Para converter um número binário em hexadecimal, seguimos uma estratégia muito parecida com a conversão de binário para octal.
- Mas em vez de triplas, utilizamos quádruplas!
- Caso o número de bits não seja divisível por 4, a quádrupla mais à esquerda terá de 1 a 3 bits.

Exemplo

•
$$\underbrace{1010}_{A} \underbrace{0101_{2}}_{5} = A5_{16}$$

$$\bullet \ \underbrace{110}_{6} \underbrace{1111_{2}}_{F} = 6F_{16}$$

$$\bullet \underbrace{10}_{2} \underbrace{0111_{2}}_{7} = 27_{16}$$

$$\bullet \underbrace{1}_{1} \underbrace{0011_{2}}_{3} = 13_{16}$$

Conversão Hexadecimal-Binário

 A conversão de hexadecimal para binário é bem simples, cada número hexadecimal produz 4 bits. Utilizamos a seguinte tabela:

Hexadecimal	Binário
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Hexadecimal	Binário
8	1000
9	1001
А	1010
В	1011
С	1100
D	1101
E	1110
F	1111

Exemplo

- $FC_{16} = 111111100_2$
- $\bullet 79_{16} = 01111001_2 = 1111001_2$
- $2D_{16} = 00101101_2 = 101101_2$
- $\bullet \ 1B_{16} = 00011011_2 = 11011_2$

Conversão Hexadecimal para Decimal

• Para converter um número hexadecimal $x = x_{n-1}x_{n-2}\dots x_0$ para decimal, basta aplicar o somatório:

$$\sum_{i=0}^{n-1} = x_i \cdot 16^i$$

 $F53A_{16} = 10 \cdot 16^0 + 3 \cdot 16^1 + 5 \cdot 16^2 + 15 \cdot 16^3 = 62778_{10}$

Conversão Decimal para Hexadecimal

 Algoritmo: dividir o número por 16 e guardar o resto da divisão a cada etapa. Quando o quociente chegar a 0, compor o número hexadecimal utilizando o resultado dos restos de trás para frente.

Exemplo

Número	Quociente	Resto
62778	3923	10 (A)
3923	245	3
245	15	5
15	0	15 (F)

• $62778_{10} = F53A_{16}$.

2 Inteiros

Números Inteiros

- Até o momento vimos como representar números naturais em binário e em outras bases.
- Mas como representamos números negativos?
- Como representar os números inteiros computacionalmente?
- Algumas estratégias:
 - Sinal-magnitude;
 - Complemento de um;
 - Complemento de dois.

- Sinal-magnitude
- Complemento de um
- Complemento de dois

Sinal-magnitude

- Na abordagem de sinal magnitude, reservamos o bit mais significativo (mais à esquerda) para descrever o sinal:
 - ▶ 0: indica que o número é positivo.
 - ▶ 1: indica que o número é negativo.
- Os demais bits descrevem o número da forma como vimos anteriormente.

Sinal-magnitude

• Formalmente temos que se $x=x_{n-1}x_{n-2}\dots x_0$ é um número em binário no formato sinal-magnitude, podemos obter o decimal correspondente da seguinte maneira:

$$-1^{x_{n-1}} \cdot \sum_{i=0}^{n-2} x_i \cdot 2^i$$

Sinal-magnitude

Exemplo

•
$$0100101_2 = -1^0 \cdot (1 \cdot 2^0 + 0 \cdot 2^1 + 1 \cdot 2^2 + 0 \cdot 2^3 + 0 \cdot 2^4 + 1 \cdot 2^5) = 37_{10}$$

•
$$111001_2 = -1^1 \cdot (1 \cdot 2^0 + 0 \cdot 2^1 + 0 \cdot 2^2 + 1 \cdot 2^3 + 1 \cdot 2^4) = -25_{10}$$

Sinal-Magnitude

Vantagens/Desvantagens

Assumindo que estamos utilizando n bits para representar números binários:

- Vantagens:
 - Representação familiar.
- Desvantagens:
 - o valor 0_{10} possui duas representações em binário: $1\underbrace{00\ldots0}_{n-1}$ e $0\underbrace{0\ldots0}_{n-1}$.
 - Aritmética mais complicada, sempre temos que examinar o bit de sinal.
- Intervalo representado é simétrico $[-(2^{n-1}-1), 2^{n-1}-1]$.

- Sinal-magnitude
- Complemento de um
- Complemento de dois

Complemento de Um

- A abordagem complemento de um representa os números negativos simplesmente invertendo os bits do número correspondente positivo.
- O bit mais significativo é utilizado para indicar o sinal, como na abordagem sinal-magnitude.

Complemento de Um

Exemplo

- $\bullet \ 43_{10} = 00101011_2.$
- $-43_{10} = 11010100_2$

Complemento de Um

Vantagens/Desvantagens

Assumindo que estamos utilizando n bits para representar números binários:

- Vantagens:
 - Aritmética mais direta.
- Desvantagens:
 - o valor 0_{10} possui duas representações em binário: $1\underbrace{00\ldots0}_{n-1}$ e $0\underbrace{0\ldots0}_{n-1}$.
- Intervalo representado é simétrico $[-(2^{n-1}-1), 2^{n-1}-1]$.

- 2 Inteiros
 - Sinal-magnitude
 - Complemento de um
 - Complemento de dois

- A estratégia de complemento de dois é obtida a partir da representação em complemento de um somada com 1₂.
- Supondo que os números binários estejam sendo representados com n bits em complemento de dois, então o número binário $x=x_{n-1}\dots x_0$ pode ser convertido para decimal da seguinte forma:

$$-1 \cdot x_{n-1} \cdot 2^{n-1} + \sum_{i=0}^{n-2} x_i \cdot 2^i$$

Exemplo

- $\bullet \ 43_{10} = 00101011_2.$
- Complemento de um: $-43_{10} = 11010100_2$
- Complemento de dois: 11010101_2
- $11010101_2 = -1 \cdot 1 \cdot 2^7 + 1 \cdot 2^0 + 0 \cdot 2^1 + 1 \cdot 2^2 + 0 \cdot 2^3 + 1 \cdot 2^4 + 0 \cdot 2^5 + 1 \cdot 2^6 = -128 + 1 + 4 + 16 + 64 = -43_{10}$

Exemplo

- $\bullet \ 1_{10} = 00000001_2.$
- $\bullet \ \ \mathsf{Complemento} \ \ \mathsf{de} \ \mathsf{um} \colon \ -1_{10} = 111111110_2$
- Complemento de dois: 11111111₂
- $111111111_2 = -1 \cdot 1 \cdot 2^7 + 1 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2 + 1 \cdot 2^3 + 1 \cdot 2^4 + 1 \cdot 2^5 + 1 \cdot 2^6 = -128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = -1_{10}$

Exemplo

- $\bullet \ 0_{10} = 000000000_2.$
- Complemento de um: $-0_{10} = 11111111_2$
- Complemento de dois: 00000000_2

Vantagens/Desvantagens

Assumindo que estamos utilizando n bits para representar números binários:

- Vantagens:
 - Aritmética mais direta ainda.
 - $lackbox{ O valor } 0_{10}$ possui uma única representação em binário: $\underbrace{0\ldots0}_n$
- Desvantagens:
 - Um pouco mais difícil de compreender.
- Intervalo representado é assimétrico $[-2^{n-1}, 2^{n-1} 1]$.
- Estratégia padrão para representar inteiros!

Reais

- Diferentemente dos números inteiros, não é possível representar todos os números reais dentro de um intervalo em um computador usando uma quantidade fixa de bits.
- Isso dá margem à arredondamentos, o que leva à imprecisões.
- Erros são introduzidos durante os cálculos.

Reais

- Apesar das limitações, precisamos trabalhar com números reais.
- Duas principais estratégias são:
 - Representação em ponto fixo.
 - Representação em ponto flutuante.

- Reais
 - Ponto fixo
 - Ponto Flutuante
 - IEEE 754: Precisão Simples
 - IEEE 754: Precisão dupla
 - Considerações sobre o Padrão IEEE 754

Ponto fixo

- A representação em ponto fixo se parece muito com a representação de inteiros em complemento de dois.
- A diferença é que temos a presença de um ponto binário.
- A localização deste ponto binário nos indica que à direita deste ponto, os expoentes passam a ser negativos.
- Equivalentemente podemos ver a representação em ponto fixo como a representação inteira em complemento de dois dividido por alguma potência de dois.

Ponto Fixo

Exemplo

Supondo que o ponto binário se encontra antes do segundo bit menos significativo, e assumindo números binários de 8 bits em complemento de dois temos:

•
$$010011.10_2 = 0.2^{-2} + 1.2^{-1} + 1.2^{0} + 1.2^{1} + 0.2^{2} + 0.2^{3} + 1.2^{4} = 19.5$$

$$\bullet \ 010011.10_2 = 01001110_2/4_{10} = 78/4 = 19.5$$

Ponto Fixo

Exemplo

Supondo que o ponto binário se encontra antes do segundo bit menos significativo, e assumindo números binários de 8 bits em complemento de dois temos:

- $110011.11_2 = -1.2^5 + 1.2^{-2} + 1.2^{-1} + 1.2^0 + 1.2^1 + 0.2^2 + 0.2^3 + 1.2^4 = -12.25_{10}$
- $\bullet \ 110011.11_2 = 11001111_2/4_{10} = -49/4 = -12.25_{10}$

Ponto Fixo

Vantagens/Desvantagens

- Vantagens:
 - Aritmética extremamente simples, podemos usar a mesma lógica de hardware da representação dos inteiros.
 - Alto desempenho.
- Desvantagens:
 - Baixa precisão.
- Encontrado em hardwares mais simples e sistemas embarcados.

- Reais
 - Ponto fixo
 - Ponto Flutuante
 - IEEE 754: Precisão Simples
 - IEEE 754: Precisão dupla
 - Considerações sobre o Padrão IEEE 754

Ponto Flutuante

- A representação em ponto flutuante, como o nome diz, permite que o ponto binário seja regulado conforme um valor de expoente.
- A aritmética é mais complexa, mas permite representar mais valores que a estratégia de ponto fixo.
- Padrão universalmente adotado: IEEE 754:
 - Precisão simples (32-bits);
 - Precisão dupla (64-bits);

- 3 Reais
 - Ponto fixo
 - Ponto Flutuante
 - IEEE 754: Precisão Simples
 - IEEE 754: Precisão dupla
 - Considerações sobre o Padrão IEEE 754

- O formato IEEE 754 de precisão simples ocupa exatamente 32-bits:
 - ▶ 1 bit representa o sinal (s).
 - \triangleright 8 bits para o expoente (e).
 - ▶ 23 bits para a mantissa, parte fracionária, (f), considerando representação de ponto-fixo).
- Forma geral: $(-1)^s \cdot 1.f \cdot 2^{e-127}$

Exemplo

- s = 0.
- e = 124
- f = 0.25
- \bullet Resultado: $(-1)^0 \cdot 1.25 \cdot 2^{(124-127)} = 1.25 \cdot 2^{-3} = 0.15625$

- Considerando a forma geral, existem 7 casos do padrão IEEE para precisão simples:
 - e = 255 e $f \neq 0$ temos NaN (not a number).
 - $s=0, \ e=255 \ \mathrm{e} \ f=0$: temos ∞
 - \bullet s=1, e=255 e f=0: temos $-\infty$
 - 0 < e < 255: temos $(-1)^s \cdot 1.f \cdot 2^{e-127}$
 - **5** e = 0 e $f \neq 0$: temos $(-1)^s \cdot (0.f) \cdot 2^{-126}$
 - **1** s = 0, e = 0 e f = 0: temos 0.

- NaN: usado para indicar um valor irrepresentável, como uma raiz de número negativo.
- ∞ e $-\infty$: utilizados para representador *overflow*.

- Reais
 - Ponto fixo
 - Ponto Flutuante
 - IEEE 754: Precisão Simples
 - IEEE 754: Precisão dupla
 - Considerações sobre o Padrão IEEE 754

IEEE 754: Precisão Dupla

- O formato IEEE 754 de precisão dupla ocupa exatamente 64-bits:
 - ▶ 1 bit representa o sinal (s).
 - ▶ 11 bits para o expoente (e).
 - ▶ 52 bits para a mantissa, parte fracionária, (f), considerando representação de ponto-fixo.
- Forma geral: $(-1)^s \cdot 1.f \cdot 2^{e-1023}$

IEEE 754: Precisão Dupla

- Considerando a forma geral, existem 7 casos do padrão IEEE para precisão dupla:
 - e = 2047 e $f \neq 0$ temos NaN (not a number).
 - ② s = 0, e = 2047 e f = 0: temos ∞
 - **3** s = 1, e = 2047 e f = 0: temos $-\infty$
 - 0 < e < 2047: temos $(-1)^s \cdot 1.f \cdot 2^{e-1023}$
 - **5** e = 0 e $f \neq 0$: temos $(-1)^s \cdot (0.f) \cdot 2^{-1022}$
 - **1** s = 0, e = 0 e f = 0: temos 0.

- Reais
 - Ponto fixo
 - Ponto Flutuante
 - IEEE 754: Precisão Simples
 - IEEE 754: Precisão dupla
 - Considerações sobre o Padrão IEEE 754

Representação IEEE 754

- Permitem maior precisão para representação de números reais.
- Aritmética mais complexa e mais lenta que a de ponto fixo.
- \bullet Conseguem representar resultados como NaN, ∞ e $-\infty.$
- 0 e 0 são representados.

Representação IEEE754

- Além dos dois formatos compreendidos temos o formato de precisão estendida, que considera mais bits.
- O padrão IEEE 754 também especifica quais são as opções no caso de arredondamentos.

ASCII

- A codificação ASCII consegue representar caracteres utilizando inteiros sem sinal de 7 bits.
- Cada inteiro corresponde a um caractere, seja ele de controle ou não.
- Caracteres de controle possuem várias finalidades, como: quebra de linha, tabulação horizontal e o chamado carriage return.
- A maioria das codificações de caracteres atuais é baseado na ASCII, considerando ela como um subconjunto.
 - ASCII estendida.
 - ► UTF-8.
 - ► UTF-16.
 - **.**..

ASCII Inteiros Reais ASCII

ASCII

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	0	96	60	
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	(BELL)	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	The second second
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C		76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D		77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	1	123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	A.	124	7C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]