Department of Software Engineering Mehran University of Engineering and Technology, Jamshoro

Course: SW222 – Database Management & Administration			
Instructor	Ms Shafiya Qadeer	Practical/Lab No.	12
Date	2021	CLOs	3
Signature		Assessment Score	2 Marks

Topic	To become familiar Cursors in PL/SQL	
Objectives	- To become familiar with Implicit & Explicit Cursors	

Lab Discussion: Theoretical concepts and Procedural steps

Cursors

- A cursor is a temporary work area created in the system memory when a SQL statement is executed.
- This temporary work area is used to store the data retrieved from the database, and manipulate this data.
- A cursor can hold more than one row, but can process only one row at a time.
- The set of rows the cursor holds is called the active set.

2 TYPES OF CURSORS:

- 1. Implicit cursors
- 2. Explicit cursors
 - These are created by default when DML statements like, INSERT,
 UPDATE, and DELETE statements are executed.
 - They are also created when a SELECT statement that returns just one row is executed.
 - In PL/SQL, you can refer to the most recent implicit cursor as the SQL cursor, which always has attributes such as %FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT.

1. Implicit Cursors

These are created by default when DML statements like, INSERT,
 UPDATE, and DELETE statements are executed.

- They are also created when a SELECT statement that returns just one row is executed.
- In PL/SQL, you can refer to the most recent implicit cursor as the SQL cursor, which always has attributes such as %FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT.

S.No	Attribute & Description
1	%FOUND Returns TRUE if an INSERT, UPDATE, or DELETE statement affected one or more rows or a SELECT INTO statement returned one or more rows. Otherwise, it returns FALSE.
2	%NOTFOUND The logical opposite of %FOUND. It returns TRUE if an INSERT, UPDATE, or DELETE statement affected no rows, or a SELECT INTO statement returned no rows. Otherwise, it returns FALSE.
3	%ISOPEN Always returns FALSE for implicit cursors, because Oracle closes the SQL cursor automatically after executing its associated SQL statement.
4	%ROWCOUNT Returns the number of rows affected by an INSERT, UPDATE, or DELETE statement, or returned by a SELECT INTO statement.

2. Explicit Cursors

- Explicit cursors are programmer-defined cursors.
- An explicit cursor should be defined in the declaration section of the PL/SQL Block.
- It is created when you are executing a SELECT statement that returns more than one row.

SYNTAX:

CURSOR cursor_name IS select_statement;

- Working with an explicit cursor includes the following steps –
- 1. Declaring the cursor for initializing the memory
- 2. Opening the cursor for allocating the memory
- 3. Fetching the cursor for retrieving the data
- 4. Closing the cursor to release the allocated memory
 - Declaring the cursor defines the cursor with a name and the associated SELECT statement.

• For example:

CURSOR e_employees IS

SELECT empno, ename, job FROM emp;

1. Declaring the Cursor

 Declaring the cursor defines the cursor with a name and the associated SELECT statement.

• For example:

CURSOR e_employees IS

SELECT empno, ename, job FROM emp;

2. Opening the Cursor

 Opening the cursor allocates the memory for the cursor and makes it ready for fetching the rows returned by the SQL statement into it.

• For example:

OPEN e_employees;

3. Fetching the Cursor

Fetching the cursor involves accessing one row at a time.

For example:

FETCH e_employees INTO e_empno, e_ename, e_job;

4. Closing the Cursor

Closing the cursor means releasing the allocated memory.

For example

```
CLOSE e_employees;
DECLARE
  e_empno emp.empno%type;
  e_ename emp.ename%type;
  e job emp.job%type;
   CURSOR e_employees IS
      SELECT empno, ename, job FROM emp;
BEGIN
   OPEN e_employees;
   LOOP
   FETCH e_employees into e_empno, e_ename, e_job;
      EXIT WHEN e_employees%notfound;
      dbms_output.put_line(e_empno || ' ' || e_ename || ' ' || e_job);
   END LOOP;
   CLOSE e employees;
END;
```

Results Explain Describe Saved SQL History

```
70 LEVI MARIO TECNICO
71 CALVINO ANDREA PROFESSORE
72 FUMAROLA LUDOVICO SEGRETARIO
73 NERI ELENA DIRIGENTE
74 SANTE ANDREA DIRIGENTE
75 ESPOSITO ANDREA ISPETTORE
76 ECO MASSIMO DOTTORANDO
```

Lab Tasks

1. Run the examples given above