	Utech
Name:	
Roll No.:	In Standard (VK Samplings 2nd Standard)
Invigilator's Signature :	

CS/B.TECH(ECE)/SEP.SUPPLE/SEM-7/EC-703/2012

2012

CODING AND INFORMATION THEORY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

- i) A communication channel with additive white Gaussian noise has a bandwidth of 4 kHz and an SNR of 1.5. Its channel capacity is
 - a) 1.6 kbps
- b) 16 kbps
- c) 32 kbps
- d) 256 kbps.
- ii) A source delivers symbol x_1, x_2, x_3 and x_4 with probabilities $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}$ respectively. The entropy of the system is
 - a) 1.75 bits/sec
- b) 1.75 bits/symbol
- c) 1.75 symbol/sec
- d) 1.75 symbols/bit.

SS-319 [Turn over

CS/B.TECH(ECE)/SEP.SUPPLY/SEM-7/EC-703/2012

- a) carrier frequency
- b) bandwidth
- c) transmission time
- d) transmission power.
- iv) We use an cryptography method in which the plaintext AAAAAA becomes the cipher text BCDEFG. This is probably
 - a) monoalphabetic substitution
 - b) polyalphabetic substitution
 - c) transpositional
 - d) none of these.
- v) The purpose of source coding is to
 - a) increase the information transmission rate
 - b) decrease the S?N rate
 - c) decrease the information transmission rate
 - d) decrease the probability of error.
- vi) The rate at which information can be passed through a telecommunication channel depends on the
 - a) carrier frequency
- b) bandwidth
- c) transmission time
- d) transmitter power.
- vii) The channel capacity under the Gaussian noise environment for a discrete memory less channel with a bandwidth of 4 MHz and SNR of 31 is
 - a) 20 mbps
- b) 4 mbps

- c) 8 mpbs
- d) 4 kbps.

SS-319

CS/B.TECH(ECE)/SEP.SUPPLY/SEM-7/EC

the received vector r = (001110). The syndrome is given by

a) (110)

b) (100)

c) (111)

- d) (101).
- ix) Measure of information $I(m_k)$ of a message m_k with probability p_k is given by

a)
$$\log_b \left(\frac{1}{p_k}\right)$$

b)
$$\log_b(p_k)$$

c)
$$\log_b(1-p_k)$$

d)
$$\log_b \left(\frac{1}{(1-p_k)} \right)$$
.

- x) Chain search is used for decoding
 - a) linear block codes
- b) BCH codes
- c) convolution codes
- d) none of these.
- xi) Cyclic Redundancy Check is a type of
 - a) convolution code
- b) cyclic code
- c) parity check code
- d) none of these.
- xii) The entropy of information source is maximum when symbol occurrences are
 - a) equiprobable
- b) different probability
- c) both (a) and (b)
- d) none of these.
- xiii) A message that is sent in cryptography is known as
 - a) plain text
- b) cipher text
- c) cracking
- d) decryption.

SS-319

3

[Turn over

CS/B.TECH(ECE)/SEP.SUPPLY/SEM-7/EC-703/2012

- xiv) The generator polynomial of a cyclic code is a factor of
 - a) $X^{n} + 1$

- b) $X^{(n+1)}+1$
- c) $X^{(n+2)}+1$
- d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. A binary linear cyclic code $C_{cyc}(n,k)$ has code length n=7 and generator polynomial $g(X)=1+X^2+X^3+X^4$.
 - a) Construct the generator matrix for the code.
 - b) If all the information symbols are 1's, what is the corresponding code vector? 2 + 3
- 3. For the linear cyclic code $C_{cyc}(7,4)$ generated by the polynomial $g(X) = 1 + X + X^3$, determine the corresponding generator matrix and then convert it into a systematic generator matrix. 2+3
- 4. The generator matrix of a binary linear block code is given below:

- a) Write down the parity check equations of the code.
- b) Determine the code rate and minimum Hamming distance. 2+3

SS-319

4

CS/B.TECH(ECE)/SEP.SUPPLY/SEM-7/EC/3/2012

5. Consider the convolutional encoder given below

- a) Determine the generator polynomial.
- b) Is this a catastrophic code? Justify the answer. 2 + 3
- 6. a) What is Entropy?
 - b) Consider a source X which produces five symbols with probabilities $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$ and $\frac{1}{16}$. Find the source entropy. 2+3

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. For a systematic linear block code, the three parity check digits $C_4,\,C_5$ and C_6 are given by

$$\begin{aligned} &C_4 = d_1 \oplus d_2 \oplus d_3 \\ &C_5 = d_1 \oplus d_2 \\ &C_6 = d_1 \oplus d_3 \end{aligned}$$

- a) Construct generator matrix.
- b) Construct code generator by this matrix.
- c) Determine error correcting capability.
- d) Prepare a suitable decoding table.
- e) Decode the received words 101100. 5×3

SS-319 5 Turn over

CS/B.TECH(ECE)/SEP.SUPPLY/SEM-7/EC-703/2012

$$C(x) = C_0 + C_1 x + C_2 x^2 + ... + C_{n-1} x^{n-1}$$

Show that a cyclic shift to C(x) is equivalent to $xC(x) \mod x^{n-1}$.

- b) Design a syndrome calculator for a (7, 4) cyclic Hamming code generated by the polynomial $G(p) = p^3 + p + 1$. Calculate the syndrome for $Y = (1\ 0\ 0\ 1\ 1\ 0\ 1)$.
- c) The generator polynomial of a (7, 4) cyclic code is $G(p) = p^3 + p + 1$. Find all the code vectors for the code in systematic form. 2 + 3 + 4 + 6
- 9. a) Explain DES, also explain each round in DES. How triple DES is different from the original DES?
 - b) What is a trapdoor one-way function? What is error propagation in block cipher?
 - c) What do you mean by Pretty Good Privacy? Describe the protocol for quantum key generation.

$$4 + 2 + 2 + 1 + 3 + 3$$

- 10. a) A DMS *X* has five equally likely symbols.
 - i) Construct Shannon-Fano code for *X*, and calculate the efficiency of the code.
 - ii) Repeat for the Huffman code and compare the result.

SS-319

CS/B.TECH(ECE)/SEP.SUPPLY/SEM-7

b) A binary channel is shown in the figure.

- i) Find the channel matrix of the channel.
- ii) Find P(y1) and P(y2) when P(x1) = P(x2) = 0.5.

8 + 7

- 11. Write short notes for the following (any three): $3 \times 5 = 15$
 - a) BCH code
 - b) Golay Codes
 - c) Read Soloman codes
 - d) Huffman coding
 - e) Quantum cryptography.

=========