Obstructive Sleep Apnea

- Case Study -

Jaime Pérez Sánchez

What challenge are we trying to solve?

Problem Description

Symptoms:

- © Excessive daytime sleepiness
- Coud Snoring
- Morning headache
- Not rested after sleeping
- Abrupt awakenings
- Migh blood pressure
- **O** ...

Problem Description

Risk Factors:

- Smoking
- O Diabetes
- Migh blood pressure
- Neck circumference > 40 cm
- Be over 40 years of age
- Male
- **O** ...

Machine Learning Approach

Objective: Apnea-Hypopnea Index (AHI)

Supervised Learning Problem:

Machine Learning Approach

Experimental Setup:

- Python (3.7) in an Anaconda's Virtual Environment
- O Libraries:
 - Numpy
 - Pandas & Pandas-profiling
 - Scikit-Learn & XGBoost & CatBoost
 - Matplotlib & Seabon

Machine Learning Approach

Methodology:

- 1. Data Acquisition
- 2. Data Wrangling
- 3. Evaluation Metrics and Protocols
- 4. Model Selection and Training
- 5. Model Testing and Results
- 6. Hyperparameter tuning and Model Deployment

Data Acquisition Clinical dataset

Pandas-Profiling: Report file

Selected columns:

- Patient (index)
- Gender (categorical)
- Weight (numerical)
- Height (numerical)
- Age (numerical)
- Smoker (categorical)
- Cervical Perimeter (numerical)
- BMI (numerical)
- AHI (target numerical)

Missing Values:

- Replace 'ns' and -1 values with NumPy
- Drop NaN values with Pandas

	Patient	Gender	Weight	Height	Age	Smoker	Cervical	AHI
NaNs	0	0	7	6	5	3	5	34
-1	0	0	1	1	3	0	7	0

Missing Values:

Encoding Categorical Variables:

Label Encoding

Food Name	Categorical #	Calories	
Apple	1	95	
Chicken	2	231	
Broccoli	3	50	

One Hot Encoding

Apple	Chicken	Broccoli	Calories
1	0	0	95
0	1	0	231
0	0	1	50

Encoding Categorical Variables:

'Smoker'

Label	Code
Non-smoker ("no")	0
Former smoker ("antiguo")	1
Light smoker ("poco")	2
Smoker ("si")	3

'Gender'

•••	Gender == Male	Gender == Female
	1	0
	0	1
•••	0	1
	1	0

Feature Engineering:

Creating new variables from available data

'OSA' for Classification Models:

Label	Code
Healthy (AHI ≤ 10)	0
Severe (AHI ≥ 30)	1

3.

Evaluation Metrics and Protocols

Methods for evaluating the performance and generalization of the models

3. Evaluation Metrics and Protocols

Regression metrics:

- Coefficient of determination (R²)
- Max. Absolute Error (MaxAE)
- Mean Absolute Error ± Standard Deviation (MAE ± STD)
- Root Mean Square Error (RMSE)

3. Evaluation Metrics and Protocols

Predicted Values

Actual Values

Classification metrics:

- Precision and Recall
- State of the st
- Balanced Accuracy
- Confusion Matrix Plot
- ROC AUC Curve

3. Evaluation Metrics and Protocols

K-Fold cross-validation:

- For a better generalization and confidence in the model
- \bigcirc K = 5 \rightarrow 20% each set

	◄ Total Number of Dataset — ▶	
Experiment 1		
Experiment 2		Training
Experiment 3		
Experiment 4		Validation
Experiment 5		

4.

Exploratory Data Analysis

Approach to analyze datasets: summarize their main characteristics, discover patterns, spot anomalies, test hypothesis... Know your data!

Often with visual methods

Correlation Matrix:

Join Plots:

Violin Plot (categorical vars ⇔ target):

Pair Plots (hue Gender):

Pair Plots (hue Smoker):

Classification:

5. Model Selection and Training

Implementing the Machine Learning models

5. Model Selection and Training

Data Preprocessing:

Polynomial Features

$$[a, b] \rightarrow [1, a, b, a^2, ab, b^2]$$

Standard Scaler

$$z = \frac{x - \mu}{\sigma}$$

$$\mu=$$
 Mean $\sigma=$ Standard Deviation

MinMax Scaler

$$z = \frac{x - \min(x)}{\max(x) - \min(x)}$$

5. Model Selection and Training

Implemented Models: Why not all of them?

- Generalized Linear Models
- Support Vector Machines
- Nearest Neighbors
- Gaussian Processes
- O Decision Trees
- © Ensemble Methods
- XGBoost and CatBoost (Gradient Boosting Decision Trees)
- Neural Networks

Comparing the performance of the models

Regression Models: (Standard Scaling)

Regression Models: (Standard Scaling)

Regression Models: (Standard Scaling)

Model	R ²	Max Error	MAE ± STD	RMSE
Kernel_Ridge	0.213	84.91	12.49 ± 16.53	16.53
Gaussian_Process	0.211	84.99	12.50 ± 16.54	16.54

Regression Models Discussion:

- No sufficient precision to be useful in real-world
- Despite a certain correlation between real and predicted values, the variance is very high and there are very remarkable mistakes
- The positive aspect... Best models are white box (explainability)
- The most complex models are not leading the results... This may indicate that the weak results are not caused by a bad choice of hyperparameters or models
- The problem may be in the data itself (lack of samples or too high complexity of the problem to be solved with the used variables)

Classification Models: (Raw Data)

Classification Models: (Raw Data)

Classification Models: (Raw Data)

Model	Precision	Recall	F1-Score	Balanced Accuracy
K-neighbors	0.72	0.72	0.720	0.720
Random_Forest	0.72	0.72	0.720	0.720
CatBoost	0.72	0.72	0.724	0.724

Classification Models: (Raw Data)

K-Neighbors

Classification Models: (Raw Data)

Random Forest

Classification Models: (Raw Data)

CatBoost

Regression Models Discussion:

- © Certainly good results (easier problem than regression...)
- Best results obtained with CatBoost model, but...
- In health applications minimizing False Negatives (FN) is critical → Minimize severe patients classified as healthy → Random Forest model
- © Explainability is also very important in this field → *K-Neighbors* model

What lessons can we draw from this project?

Conclusions

- O In regression approach, it has not been possible to obtain models good enough for deployment in real-world scenarios
- O In classification approach, certainly good results
- This weak results are probably due to data itself (lack of samples or too high complexity of the problem to be solved with the used variables)
- Python and the presented libraries for Machine Learning problems and data processing, provides a very powerful and user-friendly framework for ML development

What can be done to improve the models?

Future Lines

- Use of the frequencies audio dataset (Feature Selection)
- © Feature Engineering (linear combinations of the variables)
- Methods for handling with missing values (mean, median, last/next observation, interpolation, most frequent value...)
- O Different scalers for the input data
- © Ensembling methods to combine multiple models
- Hyperparameter optimization on the best models (grid search, random search, bayesian optimization...)
- Analysis of the requirements (computational and time) of the models used, since is a critical factor for a real-world deployment

Thanks!

Any questions?

You can find me at:

www.linkedin.com/in/jaime-perez-sanchez/

jaime.perez.sanchez@alumnos.upm.es