Основы теории графов - II

1 Эйлеровы циклы

- **1.1.** Обратимся теперь к самой первой по времени содержательной задаче теории графов задаче о кенигсбергских мостах (смотри рис.1,а), которая была предложена жителями города Кенигсберга (ныне Калининграда) для решения Леонарду Эйлеру в тридцатых годах восемнадцатого века.
- 1.1.1. Вот как описывал постановку задачи сам Эйлер: "Некогда мне была предложена задача об острове, расположенном в городе Кенигсберге и окруженном рекой, через которую перекинуто семь мостов. Спрашивается, может ли кто-нибудь обойти их, переходя только однажды через каждый мост. И тут же мне было сообщено, что никто до сих пор не мог это проделать, но никто и не доказал, что это невозможно. Вопрос этот, хотя и банальный, показался мне, однако, достойным внимания тем, что для его решения недостаточны ни геометрия, ни алгебра, ни комбинаторное искусство...". Эйлер не только решил эту задачу, но и установил необходимое условие, позволяющее определить, можно ли обойти любой город, имеющий мосты, так, чтобы пройти по всем мостам, не проходя дважды ни по одному из них.
- **1.1.2.** Для решения задачи о кенигсберсгских мостах вслед за Эйлером нам следует, прежде всего, формализовать эту задачу. Именно, построим упрощенную схему города, заменяя части города точками вершинами графа, а мосты дугами, то есть ребрами этого графа (смотри рис.1,а). В результате мы придем к графу, изображенному на рис.1,b.

(а) Кёнигсберг

(b) Граф

Рис. 1: задача о кёнигсбергских мостах

Теперь настало время дать несколько дополнительных определений.

Определение 1.1. Эйлеровым путем в произвольном (не обязательно простом) графе называется путь, который проходит через кажедое ребро графа ровно один раз. Эйлеров путь, начинающийся и заканчивающийся в одной и той же вершине, называется эйлеровым циклом.

Определение 1.2. Любой граф, в котором существует эйлеров цикл, называется *эйлеровым* графом. Граф, в котором существует эйлеров путь, называется *полуэйлеровым*.

Итак, нам нужно определить, является ли граф, изображенный на рис.1,b, эйлеровым. Эйлер ответил на этот вопрос отрицательно, доказав следующее необходимое условие существования эйлерова цикла в графе.

Теорема 1.3 (Необходимое условие существования эйлерова цикла в графе). Для существования в графе эйлерова цикла необходимо, чтобы он был связным, и чтобы все вершины этого графа имели четную степень.

Доказательство этого факта довольно несложно. Требование связности очевидно. Далее, если мы хотим пройти каждое ребро в графе лишь однажды, то, войдя в какую-то из вершин по одному ребру, мы должны выйти из этой же вершины по какому-то другому ребру. При этом количество входов в любую вершину должно совпадать с количеством выходов. Удовлетворить этим требованиям мы можем лишь тогда, когда степень любой вершины является четной.

В графе, представленном на рис.1,b, имеются вершины нечетных степеней. Следовательно, эйлерова цикла в нем не существует.

1.1.3. Эйлер оставил без доказательства достаточность сформулированного им условия. Первое полное доказательство теоремы об эйлеровом цикле было дано немецким математиком Карлом Хиерхолцером лишь в 1873 году.

Теорема 1.4 (Достаточное условие существования эйлерова цикла в графе). Для того, чтобы граф имел эйлеров цикл, достаточно, чтобы он был связным и любая его вершина имела четную степень.

Доказательство. Выберем в связном графе G, все вершины которого имеют четную степень (рис.2), произвольную вершину $x \in V(G)$. Будем совершать обход этого графа, проходя по каждому ребру лишь один раз, до тех пор, пока мы не сможем двигаться дальше, не нарушая это условие. Так как любая вершина в графе имеет четную степень, то войдя в любую вершину графа, отличную от x, по одному из ребер, мы всегда сможем из нее выйти по какому-то другому ребру. Единственным исключением в этом смысле является сама вершина x: как только мы вернемся в нее, обойдя по разу каждое из инцидентных x ребер, то мы уже не сможем из нее выйти. Итак, процесс обхода неизбежно закончится в вершине x.

Обозначим полученный в процессе такого обхода графа G цикл через C_1 . Если он совпал со всем графом, то все доказано — граф G является эйлеровым. В противном случае у нас в графе остались какие-то ребра, через которые мы еще не прошли (рис.3). При этом у нас возникает задача продолжить каким-то образом цикл C_1 на оставшиеся ребра графа G.

Для решения данной задачи постараемся найти вершину в графе G, которая, во-первых, принадлежит циклу C_1 , а во-вторых, содержит инцидентные ей ребра, не принадлежащие циклу C_1 (вершина y на рис.3). Чуть позже мы докажем, что в любом графе, удовлетворяющем условиям теоремы, такая вершина y обязательно найдется. Сейчас же мы введем подграф $G \setminus C_1$, образованный ребрами, не вошедшими в цикл C_1 , и повторим для него описанную выше процедуру обхода, начинающуюся с вершины y. Полученный в результате такого обхода цикл C_2

можно объединить с циклом C_1 в единый замкнутый цикл $C_1 \cup C_2$. Действительно, стартуя с точки $x \in C_1$, мы можем остановиться в точке $y \in C_1$, обойти весь цикл C_2 , а затем продолжить обход по оставшейся части цикла C_1 . Если теперь $C_1 \cup C_2 = G$, то все доказано. Если же нет, то нам следует продолжить описанный выше алгоритм до тех пор, пока полученное на k-м шаге объединение циклов $C_1 \cup \ldots \cup C_k$ не совпадет со всем графом G.

Для завершения доказательства теоремы нам осталось убедиться в том, что нужная нам вершина y в графе G обязательно найдется. Легче всего это доказать от противного. Именно, предположим, что это не так, то есть предположим, что все ребра, инцидентные вершинам C_1 , принадлежат этому циклу, а сам цикл C_1 не совпадает со всем графом G. В таком случае в графе обязательно найдется вершина z, такая, что ни она сама, ни все инцидентные ей ребра не принадлежат циклу C_1 (рис.4). Так как граф G связный, то в нем обязательно существует путь P, соединяющий точки $z \notin C_1$ и $x \in C_1$. Заметим, что по построению, цикл C_1 содержит все ребра графа, инцидентные x. Кроме того, мы сказали, что все ребра, инцидентные вершине z, этому циклу не принадлежат. Следовательно, путь P обязательно содержит как ребра, принадлежащие C_1 , так и ребра, C_1 не принадлежащие. А такой путь обязательно содержит вершину y и два инцидентных ей ребра, одно из которых принадлежит C_1 , а другое — не принадлежит C_1 . Полученное предположение доказывает теорему.

1.1.4. Итак, окончательно нами доказано следующее утверждение.

Теорема 1.5. Связный граф G имеет эйлеров цикл тогда и только тогда, когда все степени его вершин четные.

Из этой теоремы немедленно вытекает и следующее

Следствие 1.6. Связный граф G имеет эйлеров путь, начинающийся в вершине $x \in V(G)$ и заканчивающийся в некоторой другой вершине $y \in V(G)$, тогда и только тогда, когда степени вершин x и y нечетные, а степени всех остальных вершин являются четными.

Доказательство. Действительно, добавим к графу G еще одно дополнительное ребро, соединяющее точки x и y. Полученный в результате граф имеет эйлеров цикл тогда и только тогда, когда исходный граф G имеет эйлеров путь, соединяющий точки x и y. Это обстоятельство и доказывает следствие 1.6.

Замечание 1.7. Полученные результаты достаточно легко перенести на случай орграфов. Именно, сильно связанный орграф имеет эйлеров цикл тогда и только тогда, когда входящая степень любой его вершины совпадает с исходящей степенью.

2 Двудольные графы. Раскраски графов

- **2.1.** Достаточно часто в приложениях возникают задачи, которые мы на языке теории графов можем переформулировать как задачи о раскраске вершин или ребер графа. Простейшим и в то же время наиболее важным с практической точки зрения примером является задача о так называемой правильной раскраске вершин графа в два цвета. С изложения этой задачи мы и начнем этот параграф.
- **2.1.1.** Правильно раскаршиваемые в два цвета графы имеют специальное название они называются двудольными графами.

Определение 2.1. Двудольным графом называется граф G, множество V(G) вершин которого может быть разбито на два блока X и Y (то есть на два непустых попарно непересекающихся подмножества множества вершин, объединение которых дает нам все множество V(G)) так, что любая вершина из блока X может быть соединена ребрами только с вершинами из блока Y и наоборот.

Давайте теперь поймем, как это понятие связано с понятием раскраски вершин графа. Достаточно очевидно, что любой двудольный граф мы можем рассматривать как граф, вершины которого можно правильно раскрасить в два цвета — например, в белый и черный. При этом под "правильной" раскраской понимается такой способ окраски вершин, при котором любая вершина черного цвета соединяется только с вершинами белого цвета и наоборот.

2.1.2. Простейшим примером двудольного графа является дерево (смотри упражнение $\ref{eq:condition}$). Еще одним простым примером двудольного графа является куб — на рис.5 вершины куба, принадлежащие множеству X, окрашены в черный цвет, а вершины из множества Y — в белый.

Еще одним важным примером двудольного графа является так называемый полный двудольный граф.

Определение 2.2. Полным двудольным графом $K_{m,n}$ называется двудольный граф, в котором любая вершина из первого блока X, |X|=m, соединена со всеми вершинами из второго блока Y, |Y|=n, и наоборот.

На рис.6 приведен простейший пример такого рода графа — граф $K_{3,4}$.

Рис. 6: Полный двудольный граф $K_{3,4}$

2.2. Часто на практике нам нужно уметь отвечать на вопрос, является ли граф G двудольным или нет. Для этого нам нужен какой-то простой и удобный критерий двудольности графа. **2.2.1.**

Рис. 7: Простые циклы четной и нечетной длины

Для того, чтобы такой критерий сформулировать, рассмотрим два очень важных частных случая графа G, а именно, рассмотрим два простых цикла (рис.7), один из которых имеет четную длину (граф C_6 на рис.7), а второй — нечетную длину (граф C_5 на рис.7). Легко видеть, что вершины любого цикла C_{2n} четной длины окрашиваются в два цвета. Действительно, обойдем все вершины такого цикла против часовой стрелки и занумеруем их в порядке такого обхода. Заметим теперь, что любая вершина с нечетным номером соседствует только лишь с вершинами с четными номерами и наоборот. Поэтому, окрашивая вершины с нечетным номером в черный цвет, а все вершины с четным номером в белый, мы получим правильную раскраску графа C_{2n} в два цвета.

В случае нечетного цикла такая раскраска вершин в графе C_{2n+1} отсутствует. Действительно, выберем какую-то вершину этого цикла, пометим ее цифрой 1, а затем пронумеруем оставшиеся вершины числами от 2 до 2n+1 в порядке обхода цикла против часовой стрелки. Параллельно с этим будем пытаться правильно окрашивать эти вершины в два цвета. Окрасим, например, вершину с номером 1 в черный цвет. Тогда вершину 2 нам нужно будет окрасить в белый цвет, вершину 3 мы сможем попытаться окрасить в черный цвет и так далее. У нас все будет получаться, однако, лишь до тех пор, пока мы не дойдем до последней, (2n+1)-й вершины

цикла. С одной стороны, эта вершина имеет нечетный номер, ее предшественница окрашена в белый цвет, и поэтому (2n+1)-я вершина должна быть окрашена в черный цвет. С другой же стороны, она соседствует с вершиной 1, которая уже окрашена в черный цвет. Иными словами, последнюю вершину цикла мы не можем правильно окрасить ни в белый, ни в черный цвет. Как следствие, цикл нечетной длины двудольным графом не является.

2.2.2. Оказывается, отсутствие циклов нечетной длины в произвольном графе является необходимым и достаточным условием его двудольности. Именно, справедлива следующая теорема.

Теорема 2.3. Γ раф G двудолен тогда и только тогда, когда он не содержит нечетных циклов.

Доказательство. То, что в любом двудольном графе нечетные циклы отсутствуют, достаточно очевидно. Действительно, рассмотрим в двудольном графе G произвольный цикл x_1, x_2, \ldots, x_k длины k, k > 2. Окрасим вершину x_1 в черный цвет. Тогда вершины x_2, x_4, \ldots , то есть все вершины цикла с четными индексами, должны быть окрашены в белый цвет. Обратим теперь внимание на последнюю вершину цикла — вершину x_k . Так как наш граф является двудольным, и так как вершина x_k соседствует с вершиной x_1 , то вершина x_k обязана быть окрашена в белый цвет. Но тогда индекс k должен быть четным числом — мы ранее показали, что в белый цвет у нас окрашены только лишь вершины с четными индексами. Тем самым мы и показали, что если в графе G имеется цикл, то этот цикл обязан иметь четную длину.

Перейдем теперь к доказательству достаточности нашего критерия. Предположим, что в графе G циклы нечетной длины отсутствуют. Нам нужно показать, что в таком случае граф G является двудольным. Сразу заметим, что при доказательстве нам достаточно ограничиться связными графами — любой несвязный граф является двудольным тогда и только тогда, когда двусвязной является любая из его компонент связности. Итак, рассмотрим произвольный связ-

ный граф G, в котором циклы нечетной длины отсутствуют. Выберем любую вершину $x \in V(G)$ графа G и разобъем множество V(G) его вершин на два блока X и Y следующим образом: к блоку Y отнесем все вершины $y \in V(G)$, для которых длина кратчайшего пути из x в y нечетна, а к блоку X отнесем все оставшиеся вершины. В частности, сама вершина $x \in X$, а все смежные с ней вершины принадлежат подмножеству Y.

Докажем теперь, что любые две вершины x', x'' множества X смежными не являются (рис.8). Рассмотрим для этого произвольные кратчайшие пути P и Q, соединяющие эти вершины с вершиной x. Обозначим через $z \in V(G)$ последнюю общую вершину этих двух путей. Эта вершина разделяет пути P и Q на два участка — на участки P' и Q' этих путей от x до вершины z, и на участки P'' и Q'', соединяющие z с вершинами x' и x'' соответственно. Сразу заметим, что длины участков P' и Q' наших двух путей P и Q обязаны совпадать. Действительно, предположим, например, что длина участка P' пути P превосходит длину аналогичного участка Q' пути Q. В этом случае мы можем заменить в пути P участок P' на участок Q', и получить тем самым новый, более короткий путь из вершины x в вершину x'. А это противоречит тому, что путь P является кратчайшим.

Итак, длины участков P' и Q' путей P и Q совпадают. Кроме того, так как x' и x'' принадлежат блоку X, длины путей P и Q имеют одинаковую четность. Как следствие, участки путей P и Q от точки z до точек x' и x'' также имеют длины одинаковой четности и не имеют никаких других общих вершин, помимо z. Добавление к этим участкам путей P и Q ребра $e = \{x', x''\}$ приводит в образованию в G простого цикла нечетной длины, чего быть не может.

Аналогично доказывается, что и любые две вершины $y', y'' \in Y$ смежными не являются. Следовательно, граф G является двудольным.

- **2.2.3.** Несложная модификация алгоритма поиска в глубину позволяет использовать этот алгоритм для проверки графа на двудольность. Именно, выберем произвольную вершину x графа G и окрасим ее в черный цвет. Затем запустим из этой вершины поиск в глубину и начнем оставшиеся вершины окрашивать в два цвета в черный или в белый в зависимости от того, каково расстояние от этих вершин до вершины x. Если расстояние от некоторой вершины y до вершины x нечетно, то мы будем красить такую вершину в белый цвет, а если четно то в черный. Таким образом мы все вершины нашего графа окрасим в два цвета. Все, что нам останется это проверить ребра, которые не вошли в дерево поиска в глубину. Если эти ребра не соединяют вершины с одинаковым цветом, то граф G является двудольным. Если же y нас найдется хотя бы одно ребро, соединяющее между собой две белые вершины или две черные вершины, то граф G двудольным не является.
- **2.3.** Как мы уже неоднократно упоминали выше, любой двудольный граф мы можем рассматривать как двураскрашиваемый граф, то есть граф, вершины которого могут быть правильно окрашены в два цвета. Логично предположить, что наряду с двураскрашиваемыми должны существовать и графы более общего вида, а именно, k-раскрашиваемые графы. К изучению таких графов мы сейчас и перейдем.
- **2.3.1.** Под раскраской вершин графа G понимается разбиение множества V его вершин на блоки, называемые цветами. Задать такое разбиение можно, например, с помощью функции $\varphi:V\to C$, отображающей множество V вершин на некоторое множество $C=\{1,\ldots,k\}$, называемое множеством цветов.
- **Определение 2.4.** Раскраска вершин простого графа G называется *правильной*, если любые две смежные вершины графа окрашены в разные цвета. Любой граф, который допускает правильную раскраску своих вершин в k цветов, называется k-раскрашиваемым графом.
- **2.3.2.** Рассмотрим граф G, построенный на n вершинах. Мы можем взять n цветов и каждую из вершин графа G окрасить в свой цвет. При этом мы, конечно же, получим правильную раскраску вершин графа. Однако такой способ окраски вершин нам не очень интересен на практике нас, как правило, интересует *минимальное* количество цветов, в которые мы можем правильно раскрасить вершины графа G.
- **Определение 2.5.** Наименьшее количество k цветов, в которое можно правильно покрасить вершины графа G, называется *хроматическим числом* $\chi(G)$ этого графа. Сам граф при этом часто называют k-хроматическим.
- **Замечание 2.6.** При анализе k-раскрашиваемых графов нам достаточно ограничиться простыми графами. Действительно, любая петля соединяет вершину саму с собой. Такую вершину мы одновременно в два цвета раскрасить, конечно же, не сможем, поэтому графы с петлями являются 1-хроматическими и мы их сразу можем исключить из рассмотрения. Далее, нас, как

правило, будет интересовать вопрос, соединены ли у нас в принципе какие-то две вершины ребром или нет. При этом нам совершенно не принципиально, соединены ли эти вершины одним или несколькими ребрами. Так что любое мультиребро мы можем заменить на единственное ребро и рассматривать, таким образом, только лишь простые графы.

2.3.3. Понятно, что простой граф G является 1-раскрашиваемым тогда и только тогда, когда G представляет собой пустой граф \bar{K}_n , и 2-раскрашиваемым тогда и только тогда, когда он двудольный. Любой простой цикл нечетной длины является простейшим примером 3-хроматического графа (смотри рис.7).

Как мы уже заметили выше, хроматическое число любого графа, построенного на n вершинах, ограничено сверху значением n. Эта верхняя граница достигается, например, на полном графе. Действительно, так как любые две его вершины соединены ребром, то никакие две вершины K_n нельзя окрасить в один и тот же цвет. Следовательно, хроматическое число полного графа $\chi(K_n) = n$.

- ${f 2.3.4.}$ Задачи, связанные с правильной окраской вершин графа G в как можно меньшее количество цветов, достаточно часто встречаются на практике. Приведем несколько характерных примеров такого рода задач.
- **Пример 2.7.** Предположим, что студенты в некотором университете учатся по индивидуальным программам и сдают в конце года экзамены по всем предметам, которые они изучали в течение года. Учебный отдел должен так составить расписание экзаменов, чтобы экзамены, на которые должен прийти один и тот же студент, стояли в разные дни. При этом расписание хочется составить так, чтобы количество экзаменационных дней было бы минимальным.

Для формализации данной задачи рассмотрим граф G, множество вершин которого совпадает с множеством читаемых в университете курсов. Соединим две вершины ребром в случае, если хотя бы один студент слушает оба эти курса. Тогда любая правильная раскраска вершин графа G даст нам бесконфликтное расписание, а хроматическое число графа G определит нам минимальное количество экзаменационных дней.

Пример 2.8. Химическая компания производит набор $X = \{x_1, \dots, x_n\}$ химикатов. Некоторые пары этих химикатов взрываются, если приходят в контакт друг с другом. В качестве меры предосторожности компания делит свой склад на отсеки, помещая в каждый отсек лишь те препараты, которые не взрываются при контакте друг с другом. Задача состоит в нахождении минимального количества отсеков для данного набора химических веществ.

Для решения данной задачи построим граф G на n вершинах, помеченных элементами множества X. Соединим любые две вершины графа ребром в случае, если соответствующие этим вершинам химикаты взрываются при контакте друг с другом. Тогда минимальное количество отсеков, на которые следует разделить склад, совпадает с хроматическим числом $\chi(G)$ графа.

2.4. Любую задачу, связанную с раскраской вершин графа, можно разбить на две подзадачи. Первая подзадача состоит в проверке данного графа G на k-раскрашиваемость, вторая — в определении хроматического числа $\chi(G)$ графа G. Мы знаем, что в случае k=2 существует достаточно простой критерий двураскрашиваемости графа, на основе которого мы можем построить простой алгоритм проверки графа G на двудольность. К сожалению, для любого k>2 никаких простых и удобных критериев проверки графа на k-раскрашиваемость не существует. Говоря формальным языком, задача проверки графа G на k-раскрашиваемость является NP-полной задачей. Как следствие, более сложная задача определения хроматического числа графа

NP-сложна. В частности, не существует никакого алгоритма, работающего за полиномиальное время и позволяющего для произвольно взятого графа определить его хроматическое число. В этой связи на практике довольствуются обычно какими-то эвристическими алгоритмами, позволяющими более или менее эффективно определить верхнюю границу хроматического числа $\chi(G)$. Опишем наиболее очевидный и популярный из них — так называемый жадный алгоритм окраски вершин графа.

- **2.4.1.** Рассмотрим простой связный граф G, построенный на n вершинах, и линейно упорядочим эти вершины (рис.9). Мы знаем, что любой граф на n вершинах мы можем всегда правильно окрасить цветами из множества $Y = \{1, \ldots, n\}$. Возьмем это множество цветов и начнем окрашивать вершины графа следующим образом:
- окрасим вершину x_1 в цвет 1;
- рассмотрим вторую вершину вершину x_2 ; если она смежна с вершиной x_1 , то окрасим ее в цвет 2; в противном случае вновь окрасим ее в цвет 1;
- выберем теперь третью вершину x_3 ; если она смежна с вершинами x_1 и x_2 , и если вершины x_1 и x_2 смежны между собой, то x_3 мы сможем окрасить только в новый цвет 3; если она смежна с вершинами x_1 и x_2 , а сами эти вершины не смежны, то мы окрасим ее в цвет 2; если она не смежна ни с одной из вершин x_1 и x_2 , то мы можем ее окрасить в цвет 1; наконец, если она смежна лишь с одной из двух вершин x_1 и x_2 , то мы можем окрасить x_3 в цвет той из вершин x_1 и x_2 , которая с x_3 не смежна.
- опишем теперь общий, k-й шаг алгоритма: рассмотрим вершину x_k , а также все смежные с ней вершины с меньшими индексами; эти вершины как-то нами окрашены на предыдущих шагах алгоритма; исключим тогда из множества Y цветов все те цвета, которые были использованы при окраске смежных с x_k вершин с меньшими индексами; в оставшемся множестве цветов выберем минимальный цвет и окрасим этим цветом вершину x_k .

На рис.10 показан результат работы жадного алгоритма для графа, показанного на рис.9, после пятого шага алгоритма.

2.4.2. Описанный нами жадный алгоритм далеко не всегда работает оптимально и может очень сильно зависеть от способа линейного упорядочивания вершин. Несмотря на это, максимальное количество использованных в данном алгоритме цветов никогда не превысит величины $\Delta+1$, где Δ — максимальная из степеней вершин графа G.

Действительно, в жадном алгоритме для любой вершины x_i количество уже использованных цветов, в которые нельзя окрасить вершину x_i , никогда не превысит величины $\deg(x_i) \leq \Delta$. Худший случай с точки зрения окраски вершин наступит у нас в том случае, когда мы встретили вершину x степени Δ , и у этой вершины все Δ смежных с ней вершин оказались окрашенными на предыдущих шагах нашего алгоритма. Тогда вершину x мы будем вынуждены окрасить в новый цвет $\Delta+1$. Во всех остальных случаях количество использованных цветов будет меньше величины $\Delta+1$.

Проведенные рассуждения доказывают, в частности, следующий важный результат.

Теорема 2.9. Хроматическое число $\chi(G)$ графа G ограничено сверху величиной $\Delta+1$, то есть

$$\chi(G) \leqslant \Delta + 1$$
,

где Δ — наибольшая из степеней вершин графа G.

Следствие 2.10. Любой k-хроматический граф обязательно содержит по-крайней мере одну вершину степени k-1.

2.4.3. Полученная выше верхняя оценка на хроматическое число графа неулучшаема для полного графа K_n , а также для простого цикла C_{2n+1} нечетной длины. Во всех остальных случаях эту оценку можно уменьшить, но только лишь на единицу. Именно, справедлива следующая

Теорема 2.11 (Brooks, 1941). Пусть G есть простой граф, не являющийся полным графом или же простым нечетным циклом. Тогда

$$\chi(G) \leqslant \Delta(G), \qquad \epsilon \partial e \qquad \Delta(G) = \max_{x_i \in V(G)} \deg(x_i).$$

Замечание 2.12. Указанная в теореме Брукса верхняя оценка на $\chi(G)$ может быть, вообще говоря, сколь угодно далека от хроматического числа. Так, в дереве степень вершины может быть любой, тогда как хроматическое число $\chi(T)$ дерева T равно двум.

3 Паросочетания. Теорема Холла

- **3.1.** Понятие паросочетания является одним из наиболее важных понятий теории графов. Оно встречается в огромном количестве прикладных задач.
- 3.1.1. Начнем, как всегда, с определения данного понятия.

Определение 3.1. Паросочетанием M в произвольном графе G называется любой набор ребер, не имеющих общих концевых вершин.

Замечание 3.2. Из определения видно, что при изучении паросочетаний нас будут интересовать только лишь простые графы. Действительно, любая петля в мультиграфе соединяет вершину саму с собой, и поэтому по определению не может входить ни в какое из паросочетаний. Далее, если одно из ребер мультиграфа, соединяющего пару вершин графа, входит в паросочетание M, то остальные ребра, соединяющие ту же пару вершин, в паросочетание M по определению войти не могут. Поэтому и мультиребра в графе также рассматривать смысла не имеет.

Рис. 11

Пример 3.3. Любое одиночное ребро e в (простом) графе $G \neq \bar{K}_n$ является простейшим примером паросочетания.

Пример 3.4. На рис.15 показан чуть менее тривиальный пример паросочетания M в полном двудольном графе $K_{3,4}$. Это паросочетание состоит из двух ребер и соединяет (или, как говорят, покрывает) четыре вершины этого графа.

Определение 3.5. Говорят, что вершина $x \in V(G)$ покрыта паросочетанием M, если она является концом одного из ребер e, входящего в паросочетание M.

3.1.2. На практике нам, как правило, хочется покрыть паросочетанием как можно большее количество вершин в графе G. Идеальным в этом смысле является так называемое cosepmenhoe паросочетание.

Определение 3.6. Паросочетание M называется coeepmenhum, если оно покрывает все вершины графа G.

Пример 3.7. Рассмотрим полный двудольный граф $K_{n,n}$, состоящий из блоков X и Y одинакового размера n. Ясно, что любая биекция $f\colon X\to Y$ задает нам некоторое совершенное паросточетание в таком графе. Так как существует n! взаимно-однозначных отображений из X в Y, то существует и n! различных совершенных паросочетаний в графе $K_{n,n}$.

3.1.3. Далеко не все графы, однако, имеют совершенное паросочетание. Так, очевидно, что любое паросочетание M покрывает четное количество вершин в графе G. Поэтому любой граф, построенный на нечетном количестве вершин, совершенного паросочетания не имеет. Для графов, у которых совершенные паросочетания отсутствуют, полезно ввести понятие максимального паросочетания.

Определение 3.8. Максимальным паросочетанием (maximum matching) в графе G называется паросочетание, покрывающее наибольшее количество вершин в графе G. Количество ребер в таком паросочетании обозначается обычно через $\alpha'(G)$.

3.1.4. Казалось бы, для построения максимального паросочетания в графе можно использовать жадный алгоритм, добавляя случайным образом к M ребра графа до тех пор, пока это возможно. Полученное паросочетание, однако, максимальным может и не оказаться.

В качестве примера на рис.12,а показано паросочетание M, полученное в результате работы некоторого жадного алгоритма. Оно является наибольшим по включению (maximal matching)

Рис. 12: Паросочетания

в том смысле, что добавление к нему любого другого ребра из множества E(G) уже невозможно. Однако количество ребер в M строго меньше $\alpha'(G)=5$. Максимальное (и одновременно совершенное) паросочетание для такого графа показано на рис.12,b.

3.1.5. Итак, мы убедились на приведенном выше примере, что жадный алгоритм дает нам не максимальное, а наибольшее по включению паросочетание. Такое паросочетание иногда может оказаться максимальным, а иногда может таковым и не быть. В принципе, эти соображения могли бы нам позволить построить алгоритм поиска максимального паросочетания в графе, если бы в дополнении к жадному алгоритму у нас был бы некоторый критерий проверки того или иного графа на максимальность. Действительно, если бы такой критерий существовал, то мы могли бы для произвольного графа G запускать жадный алгоритм, получать с его помощью наибольшее по включению паросочетание, а затем с помощью этого критерия проверять полученное паросочетание на максимальность. В случае, если паросочетание оказывается максимальным, мы останавливаемся. В противном случае мы вновь запускаем жадный алгоритм.

Итак, для реализации описанного выше подхода нам необходим критерий максимальности паросочетания. Для того, чтобы этот критерий сформулировать, нам понадобятся следующие полезные понятия.

Определение 3.9. Пусть M есть некоторое паросочетание в графе G. Произвольный путь P в графе G, в котором котором чередуются ребра, входящие в M, и ребра, в M не входящие, называется M-чередующимся (рис.13,а). M-чередующийся путь, оба конца которых не покрыты паросочетанием M, называется M-дополняющим путем (рис.13,b).

Посмотрим теперь повнимательнее на рис.13,b. Заметим, что в M-дополняющем пути P (помеченном пунктирной ломаной на рис.13,b) количество ребер, покрытых паросочетанием M, на единицу меньше количества ребер в P, этим паросочетанием не покрытых. Исключим теперь из паросочетания M ребра, входящие в P, и добавим к M ребра этого пути, изначально паросочетанием не покрытые (процесс, известный в англоязычной литературе как matching augmentation). В результате мы получим некоторое новое паросочетание M', содержащее на единицу большее количество ребер по сравнению с исходным паросочетанием M. Одновременно с этим у нас увеличится количество вершин, покрытых паросочетанием M'. Иными словами, мы показали, что наличие в графе G для заданного паросочетания M-дополняющего пути является признаком того, что паросочетание M максимальным не является.

Рис. 13

3.1.6. В 1957 году французский математик Claude Berge доказал, что условие отсутствия для заданного паросочетания M в графе M-дополняющего пути является не только необходимым, но и достаточным условием максимальности паросочетания M. Именно, справедлива

Теорема 3.10 (Berge, 1957). Паросочетание M в графе G является максимальным тогда и только тогда, когда в таком графе M-дополняющие пути отсутствуют.

Доказательство. Необходимость этого условия мы уже проверили — мы доказали, что если в графе существует M-дополняющий путь, то паросочетание M максимальным не является. Нам осталось доказать достаточность этого условия. Именно, предположим, что M не является максимальным паросочетанием в графе G. Покажем, что тогда в графе G обязательно найдется M-дополняющий путь.

Рис. 14

Обозначим через M' максимальное паросочетание в G (зеленые ребра на рис.14). Так как паросочетание M максимальным не является, то |M'| > |M|. Выкинем из графа G все ребра, не принадлежащие ни M, ни M' (все ребра, окрашенные черным цветом на рис.14), а также ребра, принадлежащие как M, так и M' (ребра, покрашенные в два цвета на рис.14). Так как любая вершина в полученном в результате данных операций графе H может быть инцидентна максимум одному ребру из M', то степень любой такой вершины не превосходит двух. Следовательно, любая компонента связности графа H представляет собой путь (или цикл), в котором чередуются ребра из M и из M'.

Заметим теперь, что так как |M'| > |M|, то в графе H обязан существовать путь, начальное и конечное ребра которого принадлежат M'. Начальная и конечная вершины такого пути покрыты M', а значит, не покрыты M. Поэтому данный путь представляет собой M-дополняющий путь в G.

- **3.2.** Достаточно важной задачей, часто встречающейся в приложениях, является задача поиска максимального паросочетания в двудольном графе.
- 3.2.1. Приведем характерный пример такого рода задач.

Рис. 15

Пример 3.11. Пусть в группе имеется m студентов, которых необходимо распределить по n компаниям на летнюю практику. Для моделирования этой задачи распределения мы можем ввести двудольный граф G, блоки X и Y которого содержат m и n вершин соответственно. Любые две вершины $x \in X$ и $y \in Y$ этого графа соединяются ребром в случае, если квалификация студента удовлетворяет данную компанию, а сама компания, в свою очередь, устраивает данного студента. На рис.15,а в качестве примера изображен полный двудольный граф $K_{3,4}$, моделирующий некоторую идеальную ситуацию, при которой у нас любой студент готов пройти практику в любой компании, а любая компания, в свою очередь, готова принять на практику любого студента. Если же у нас какой-то студент не готов пойти в ту или иную компанию, или в случае, когда компания не готова того или иного студента на практику пригласить, мы получим некоторый подграф данного полного двудольного графа.

Предположим теперь, что в каждую компанию мы можем устроить только лишь одного студента. Последнее условие означает, что задача распределения студентов по летним практикам сводится к задаче поиска паросочетания в построенном двудольном графе (см.рис.15,b, на котором красными ребрами помечено некоторое решение данной задачи). Кроме того, нам нужно каждого студента устроить на практику. Это означает, что в графе G нам нужно найти так называемое X-насыщенное паросочетание.

Определение 3.12. Паросочетание M в двудольном графе G, разбитом на блоки X и Y, называется X-насыщенным, если любая вершина из блока X покрыта этим паросочетанием.

3.2.2. Оказывается, существует очень удобный критерий существования X-насыщенного паросочетания в двудольном графе G. Именно, рассмотрим произвольный двудольный граф G с блоками X и Y. Для любого подмножества U множества X вершин первого блока через N(U) обозначим подмножество вершин, смежных со всеми вершинами из U (рис.16). Очевидно, что в двудольном графе все вершины множества N(U) принадлежат блоку Y.

Теорема 3.13 (Ph.Hall, 1935). Для того, чтобы в двудольном графе G существовало X-насыщенное паросочетание, необходимо и достаточно, чтобы для любого подмножества U множества X мощность соответствующего ему подмножества $N(U) \subset Y$ смежных с U вершин была бы больше или равна мощности |U| подмножества U.

Замечание 3.14. Неформально говоря, теорема Холла утверждает, что каждое подмножество $U\subseteq X$ должно иметь в Y достаточное количество смежных вершин. В частности, совершенно очевидно, что для существования X-насыщенного паросочетания необходимо выполнение условия $|X|\leqslant |Y|$. Теорема 3.13, по сути, обобщает это несложное наблюдение на произвольное подмножество U множества X.

Замечание 3.15. Теорему Холла часто называют также теоремой о деревенских свадьбах. Это название связано со следующей формулировкой этой задачи, восходящей к известному немецкому математику первой половины двадцатого века Герману Вейлю. В деревне относительно каждой пары юноша-девушка известно, дружат они или нет. Тогда, если для любых k юношей объединение подмножеств их подруг содержит по крайней мере k девушек, то каждый юноша сможет выбрать себе будущую жену из числа своих же подруг.

3.2.3. Доказательство теоремы Холла легко следует из вершинной теоремы Менгера. Действительно, добавим к графу G две вершины x и y, а затем соединим вершину x со всеми вершинами блока X, а вершину y — со всеми вершинами блока Y. Пусть $k:=|X|\leqslant |Y|$. Заметим, что X является наименьшим разделяющим x и y множеством. Тогда, по теореме Менгера, у нас существует k непересекающихся во внутренних точках простых путей, соединяющих x и y. Участки этих путей, соединяющие вершины блоков X и Y, и представляют собой искомое X-насыщенное паросочетание в исходном графе G.

Приведем все же для полноты изложения и прямое доказательство теоремы Холла. Это доказательство интересно, в частности, тем, что оно дает конструктивный алгоритм построения X-насыщенного паросочетания в двудольном графе.

3.2.4. Сразу заметим, что необходимость условия

$$|U| \leqslant |N(U)| \qquad \forall \ U \subseteq X \tag{1}$$

совершенно очевидна. Действительно, пусть существует хотя бы одно подмножество U, для которого условие (1) не выполняется. На рис.17 изображена подобная ситуация — в этом примере смежное с подмножеством U первых трех вершин подмножество $N(U) \subset Y$ содержит всего

две вершины. Рассмотрим тогда двудольный подграф G', состоящий из блоков U и N(U). В таком графе U-насыщенного паросочетания, очевидно, не существует. Так, например, вершину x_1 из блока U на рис.мы можем соединить с вершиной $y_3 \in N(U)$, а вершину x_2 — с вершиной $y_2 \in N(U)$. Вершину же $x_3 \in U$ мы уже ни с какой вершиной $y_i \in N(U)$ соединить не сможем — все вершины блока N(U) уже покрыты ребрами на предыдущих шагах. Итак, мы показали,

что при нарушении условия Холла (1) у нас существует подграф G' графа G, в котором Uнасыщенного паросочетания не существует. Но это автоматически означает, что не существует X-насыщенного паросочетания и в исходном графе G. Действительно, все ребра, исходящие из U, приходят только в N(U). Поэтому правильно выбрать ребра, выходящие из подмножества U, нам уже не удастся вне зависимости от того, насколько успешно мы справились с решением этой задачи для ребер, исходящих из подмножества $X \setminus U$.

3.2.5. Докажем теперь, что выполнение условий (1) гарантирует нам существование X-насыщенного паросочетания. Рассмотрим двудольный граф G, состоящий из блоков X, |X| = m, и Y, |Y| = n. Пусть M есть некоторое произвольное паросочетание в этом графе G с числом ребер |M|. Если |M| = m, то доказывать нечего — M является X-насыщенным паросочетанием. Поэтому предположим, что |M| < m (рис.18). Покажем, что в этом случае мы всегда сможем построить паросочетание M' с количеством |M'| ребер, равных |M| + 1.

Рис. 18: Паросочетания

Так как |M| < m, то в блоке X обязательно существует вершина x_1 , не покрытая паросочетанием M. Рассмотрим теперь все M-чередующиеся пути, исходящие из вершины x_1 . Обозначим через Z множество вершин графа G, достижимых из вершины x_1 по M-чередующимся путям, начинающимся в x_1 . Так, для графа на рис.18,а множество Z имеет следующий вид:

$$Z = \{x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_6, y_7\}.$$

Нам остается доказать, что среди всего множества M-чередующихся путей, исходящих из x_1 , найдется хотя бы один M-дополняющий путь, то есть M-чередующийся путь, концы которого не покрыты паросочетанием M (путь $x_1, y_1, x_2, y_3, x_4, y_6$ на рис.18). Действительно, в этом случае мы всегда сможем все ребра этого пути, которые принадлежат M, из этого паросочетания выкинуть, и добавить в него те ребра пути, которые этому паросочетанию изначально не принадлежали. Тем самым мы и получим паросочетание M' с количеством ребер, на единицу большим, чем в паросочетании M.

Будем действовать от противного, а именно, предположим, что M-дополняющие пути у нас отсутствуют (то есть предположим, что в примере графа, показанного на рис.18,а, ребра $\{x_4, y_6\}$ и $\{x_4, x_6\}$ отсутствуют, и мы имеем граф, показанный на рис.18,b). В этом случае все пути, начинающиеся в вершине x_1 , будут обязательно заканчиваться в каких-то вершинах x_i из блока X. Введем следующие обозначения:

$$R := Z \cap X,$$
 $B := Z \cap Y$ $(R = \{x_1, x_2, x_3, x_4\}, B = \{y_1, y_2, y_3\} \text{ Ha puc.18,b}).$

Заметим теперь, что паросочетание M устанавливает нам взаимно-однозначное соответствие между множествами B и $R \setminus \{x_1\}$ (см. синие ребра на рис.18,b). Как следствие, мощности этих двух множеств у нас также совпадают:

$$|R \setminus \{x_1\}| = |B| \qquad \Longleftrightarrow \qquad |B| = |R| - 1.$$

С другой стороны, множество N(R) вершин, смежных с вершинами из множества R, есть в точности множество B:

$$N(R) = B$$
.

Действительно, если бы это было не так, то мы бы имели еще какие-то вершины $y \in Y$, достижимые из x_1 по M-чередующимся путям, а это не так — все такие вершины у нас, по определению множеств $B = Z \cap Y$ и Z, входят в B. В частности, это означает, что |N(R)| = |B|. Но мы только что показали, что |B| = |R| - 1. Следовательно, мы получаем равенство вида

$$|N(R)| = |R| - 1.$$

А такое равенство противоречит условию Холла:

$$|N(R)| \geqslant |R|$$
.

Полученное противоречие завершает доказательство теоремы Холла.