L3 Informatique • Réseaux & Télécommunications

TD5 & Chapitre 5

Notes TD grp 3

Lundi 16/11/2020

Le rôle d'un serveur DNS

Le serveur DNS (le Protocol DNS) – résoudre une adresse url en une adresse IP
Un serveur qui nous permet de recevoir une adresse IP quand on envoie une url
url – https://www.google.com

- → Pour sortir sur internet, on a besoin d'un équipement qui fait du routage, et le routage va nous permettre de sortir sur internet. Il y a des equipment intermédiaire comme notre box – notre routeur qui est lier a d'autres routeur. Les routeur ils resonne pas par url, mais par IP.
- → Donc, quand on est sur internet et on écrit une url, le routeur ne comprend pas, il comprend que les IP.

protocol DNS: Domaine Name System

Chapitre 5 du cours

La on parle de **protocole de type Telnet**

Tous Protocol de la couche application (Protocol applicatif) repose sur un protocole spécifique de la couche transport (Protocol de transport). On a 2 protocoles sur la couche transport : TCP ou UDP.

Tout Protocol applicatif traine sur un protocole de transport

Un Protocol applicatif: Les protocole de la couche application du modèle TCP/IP ou le modèle OSI. Langage utiliser pour communiquer entre client et serveur: Telnet, SSH..

Tous Protocol de la couche application repose sur un protocole spécifique de la couche transport : on a 2 protocoles sur la couche transport : TCP ou UDP

Protocol TCP: mode connecté Protocol UDP: mode non connecté

- → TCP : l'émetteur est obligé de d'établir une connexion avant l'échange de donner
- → UDP : l'émetteur n'est pas obligé à établir une connexion avant l'envoie de sa data, il envoie directement ses donnes.

TCP mode connecté

en TCP il y a un échange de 3 paquer entre les 2 cotes pour voir si la connexion peut se faire alors qu'en UDP on ne le fait pas.

3- Way Handshake (en TCP)

- → Si on fait du TCP il faut établir une connexion avant l'envoie des donnes, ça se fait via 3- Way Handshake
- → Un échange de 3 paquets avant l'envoi de la data.
 Les 3 paquets : SYN SYN ACK et ACK

SYN : initialisation de la synchronisation SYN ACK : accusé de réception de SYN

ACK: accusé de réception du SYN ACK

Exemple de connexion de type telnet

Le client il demande une résolution nom de domaine vers adresse IP. Il pose la question a son serveur DNS.

Mon serveur DNS va chercher linfo (l'IP public),si il a pas l'info il interroge d'autres serveur NDS

Les flux sur du telnet c comment ? clair ou chiffrer ? pour chiffrer on utilisera SSH

Protocol ICMP

- → Quand on lance un PING il y a derrière des requête ICMP
- → Donc le Protocol ICMP permet de tester la connectivité avec d'autres machine distante.
- → Il y a 2 types de paques : Echo Request et les réponses : Echo Reply

Protocole ICMP

- Le protocole ICMP (Internet Control Message Protocol) permet d'envoyer des messages de commande ou des messages d'erreurs vers d'autres machines ou routeurs.
- ICMP rapporte les messages d'erreur à l'émetteur initial.
- Beaucoup d'erreurs sont causées par l'émetteur, mais d'autres sont dûes à des problèmes d'interconnexions rencontrées sur l'Internet :
 - machine destination déconnectée,
 - durée de vie du datagramme expirée,
 - congestion de routeurs intermédiaires.
- Si un routeur détecte un problème sur un datagramme IP, elle le détruit et émet un message ICMP pour informer l'émetteur initial.
- Les messages ICMP sont véhiculés à l'intérieur de datagrammes IP et sont routés comme n'importe quel datagramme IP sur l'internet.
- Une erreur engendrée par un message ICMP ne peut donner naissance à un autre message ICMP (évite l'effet cummulatif).

page 40

ICMP: type de messages

TYPE	Message ICMP	TYPE	Message ICMP
0	Echo Reply	13	Timestamp Request
3	Destination Unreachable	14	Timestamp Reply
4	Source Quench	15	Information Request (obsolete)
5	Redirect (change a route)	16	Information Reply
8	Echo Request	10	(obsolète)
11	Time Exceeded (TTL)	17	Address Mask Reque
12	Parameter Problem with a	18	Address Mask Reply