

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 14

THROUGH HOLE RADIUS r=0.1mm RESONATOR THICKNESS h=0.2mm

θ (degree)	f (GHz)	Q	fr(GHz)	Qr	d (mm)	A (dB)
30	22. 99	275. 10	22. 87	20. 66	0. 90	-6. 95
24	23. 55	283. 02	23. 51	63. 97	0. 73	-9. 22
20	23. 89	289. 16	23. 88	146. 49	0. 62	-11. 75
18	24. 05	291. 62	24. 04	200. 22	0. 56	-13. 60
15	24. 27	294. 96	24. 27	273. 15	0. 47	-17. 83
12	24. 47	298. 87	24. 47	296. 69	0. 37	-25. 93
10	24. 59	300. 99	24. 59	300. 97	0. 31	-37. 48
CYLINDER (THEORETICAL) (VALUE	24. 98	307. 80	24. 98	307. 80		

FIG. 15A

THROUGH HOLE RADIUS r=0. 1mm RESONATOR THICKNESS h=0. 3mm

θ (degree)	f (GHz)	Q	fr(GHz)	Qr	d (mm)	A (dB)
30	23. 00	379. 75	22. 89	21.06	0. 90	-6. 95
24	23. 56	393. 95	23. 53	68. 68	0. 73	-9. 22
20	23. 90	403. 31	23. 89	167. 71	0. 62	-11. 75
18	24. 06	407. 36	24. 05	249. 22	0. 56	-13. 60
15	24. 28	414. 80	24. 28	368. 46	0. 47	-17. 83
12	24. 48	421.00	24. 48	418. 58	0. 37	-25. 93
10	24. 60	425. 28	24. 60	425. 54	0. 31	<i>−</i> 37. 48
CYLINDER (THEORETICAL) (VALUE	24. 98	438. 62	24. 98	438. 62		

FIG. 15B

THROUGH HOLE RADIUS r=0.1mm RESONATOR THICKNESS h=0.4mm

θ (degree)	f (GHz)	Q	fr(GHz)	Qr	d (mm)	A (dB)
30	23. 01	469. 69	22. 89	21. 38	0. 90	-6. 95
24	23. 56	490. 35	23. 53	70. 88	0. 73	-9. 22
20	23. 91	504. 42	23. 90	181. 17	0. 62	-11. 75
18	24. 07	510. 85	24. 06	280. 23	0. 56	-13. 60
15	24. 29	520.06	24. 29	451. 90	0. 47	-17. 83
12	24. 49	531.07	24. 49	525. 72	0. 37	-25. 93
10	24. 61	535. 10	24. 61	528. 15	0. 31	-37. 48
CYLINDER (THEORETICAL) (VALUE	24. 98	556. 98	24. 98	556. 98		

FIG. 15C

heta (degree)	r/d
30	0. 0556
24	0. 0683
20	0. 0812
18	0. 0899
15	0. 1073
12	0. 1336
10	0. 1600

FIG. 16

heta (degree)							
r=0.1mm	r=0.2mm	r=0.3mm					
30.00	58. 73	88. 66					
24. 00	46. 40	68. 30					
20.00	38. 42	55. 92					
18.00	34. 48	49. 97					
15. 00	28. 64	41. 27					
12.00	22. 85	32. 79					
10.00	19. 01	27. 22					

FIG. 17

THROUGH HOLE RADIUS r=0. 2mm RESONATOR THICKNESS h=0. 2mm

f (GHz) θ (degree) Q fr (GHz) Qr A (dB) d (mm) 58. 73296 21. 19 268. 55 20. 14 13. 27 1.62 -6.7646.39951 22. 24 276. 90 21.91 34.90 1.38 -9.0938.41832 22.91 283.48 22.81 92.58 1.18 -11.7234. 48327 -13.6423. 22 286.83 23.17 151, 70 1.08 28.63711 23.65 291.86 23.65 252.02 0.91 -17.9922.84636 24.04 296. 54 293.00 0.74 -26.2924.04 19.01041 24. 27 299, 26 24.27 299. 15 -38. 10 0.62 CYLINDER THEORET I CAL\ 24.98 307.80 24.98 307.80 VALUE

FIG. 18A

THROUGH HOLE RADIUS r=0.2mm RESONATOR THICKNESS h=0.3mm

f (GHz) θ (degree) Q fr (GHz) Qr d (mm) A (dB) 58. 73296 21. 20 373. 42 20. 15 13.44 1.62 -6.7646. 39951 22.25 385.89 21.92 -9.0936. 17 1.38 38. 41832 22.92 102.00 396. 71 22. 82 1. 18 -11.7234. 48327 402, 40 178, 75 -13.6423. 23 23. 19 1.08 28.63711 23.67 410.76 23, 66 335.74 0.91 -17.9922.84636 24.05 417, 45 24.05 412.84 0.74 -26.2919.01041 24, 29 423.34 24. 28 422.97 -38. 10 0.62 CYLINDER THEORET I CAL\ 24. 98 438, 62 24. 98 438.62 VALUE

FIG. 18B

THROUGH HOLE RADIUS r=0.2mm RESONATOR THICKNESS h=0.4mm

θ (degree)	f (GHz)	Q	fr(GHz)	Qr	d (mm)	A (dB)
58. 73296	21. 21	463. 75	20. 15	13. 53	1. 62	-6. 76
46. 39951	22. 26	480. 94	21. 93	36. 84	1. 38	-9.09
38. 41832	22. 92	495. 16	22. 82	107. 45	1. 18	-11. 72
34. 48327	23. 24	503. 41	23. 19	195. 99	1. 08	-13. 64
28, 63711	23. 67	515. 04	23. 66	401. 13	0.91	-17. 99
22. 84636	24. 06	525. 97	24. 06	518. 37	0. 74	-26. 29
19. 01041	24. 29	533. 65	24. 29	533. 29	0. 62	-38. 10
CYLINDER (THEORETICAL) (VALUE	24. 98	556: 98	24. 98	556. 98		

FIG. 18C

THROUGH HOLE RADIUS r=0. 3mm RESONATOR THICKNESS h=0. 2mm

f (GHz) fr (GHz) θ (degree) Q Qr d (mm) A (dB) 88.6634 19.55 263.96 17.35 9.15 2.00 -7.8268.3 20.96 271.49 20.13 22.08 1.86 -9.3055.9194 21.68 21.94 278. 34 64. 30 -11.831.66 49.969 22.41 282. 28 22.30 -13.78119. 23 1.53 41. 2709 23.07 288.40 23.05 236. 72 1.32 -18.2632. 7863 23.65 294, 21 23.64 290.88 -26.831.08 27. 221 23.98 297. 54 -39.03297.63 23.98 0.91 CYLINDER /THEORETICAL\| 24.98 307.80 24.98 307.80 VALUE

FIG. 19A

THROUGH HOLE RADIUS r=0.3mm RESONATOR THICKNESS h=0.3mm

f (GHz) θ (degree) Q fr (GHz) Qr d (mm) A (dB) 88.6634 19.57 370. 59 17. 36 9. 24 2.00 -7. 82 68. 3 379. 74 22, 60 -9.3020.98 20. 14 1.86 55. 9194 21.95 389.69 21.69 68.81 1.66 -11.83 49.969 -13.7822. 42 396. 14 22.31 135. 62 1.53 41.2709 23.08 405.82 23.06 309. 52 1.32 -18.2632. 7863 23.66 415, 29 23.66 408.82 -26.831.08 27. 221 -39. 03 23.99 419.58 23.99 420.83 0.91 CYLINDER THEORET I CAL 24.98 438. 62 24. 98 438.62 VALUE

FIG. 19B

THROUGH HOLE RADIUS r=0. 3mm RESONATOR THICKNESS h=0. 4mm

θ (degree)	f (GHz)	Q	fr(GHz)	Qr	d (mm)	A (dB)
88. 6634	19. 57	464. 32	17. 36	9. 29	2. 00	−7. 82
68. 3	20. 98	474. 38	20. 14	22. 87	1. 86	-9. 30
55. 9194	21. 95	488. 31	21. 69	71. 34	1. 66	-11. 83
49. 969	22. 43	496. 31	22. 31	145. 64	1. 53	-13. 78
41. 2709	23. 09	509. 64	23. 07	367. 81	1. 32	-18. 26
32. 7863	23. 66	522. 94	23. 66	513. 03	1. 08	-26. 83
27. 221	24. 00	531. 38	24. 06	531. 37	0. 91	-39. 03
CYLINDER (THEORETICAL) (VALUE	24. 98	556. 98	24. 98	556. 98		

FIG. 19C

F1G. 20

FIG. 22A r=0.1mm

FIG. 22B r=0.2mm

FIG. 22C r=0.3mm

