✓ Congratulations! You passed!

Next Item

Correct

size of the hidden layers $n^{[l]}$

Key concepts on Deep Neural Networks

Quiz, 10 questions

10/10 points (100%)

Un-se	bias vectors $b^{[l]}$ elected is correct	
	activation values $a^{[l]}$	
Un-se	elected is correct	
Un-se	weight matrices $W^{[l]}$	
	number of iterations	
Corre	ect	
Corre	number of layers L in the neural network $oxed{ect}$	
3.	1 / 1 points of the following statements is true?	
VIIICII	of the following statements is true:	
0	The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.	
Correct		
	The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.	

4.

Vectorization allows you to compute forward propagation in an L-layer neural Key concepts while the layer the source of the concepts of the part of the concepts of the con

Quiz, 10 questions	layers l=1, 2,,L.	True/False?
--------------------	-------------------	-------------

True

False

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ($a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: ($a^{[l]}=g^{[l]}(z^{[l]})$, $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$, ...).

1/1 points

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = [n_x , 4,3,2,1]. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

```
1 for(i in range(1, len(layer_dims)/2)):
2  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i -1])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```


1/1 points

6

Consider the following neural network.

How many layers does this network have?

The number of layers L is 4. The number of hidden layers is 3.

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

The number of layers \boldsymbol{L} is 3. The number of hidden layers is 3.
The number of layers \boldsymbol{L} is 4. The number of hidden layers is 4.
The number of layers L is 5. The number of hidden layers is 4.

1/1 points

7.

During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?

True

Correct

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.

1/1 points

8.

There are certain functions with the following properties:

(i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

True

Correct

False

1/1 points

9

Consider the following 2 hidden layer neural network:

Which of the following statements are True? (Check all that apply).

 $W^{[1]}$ will have shape (4, 4)

 $b^{[1]}$ will have shape (4, 1) **Correct**Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$. $W^{[1]}$ will have shape (3, 4)

Un-selected is correct

 $b^{[1]}$ will have shape (3, 1)

Un-selected is correct

 $W^{[2]}$ will have shape (3, 4)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $b^{[2]}$ will have shape (1, 1)

Un-selected is correct

 $W^{[2]}$ will have shape (3, 1)

Un-selected is correct

 $b^{[2]}$ will have shape (3, 1)

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

 $W^{[3]}$ will have shape (3, 1)

Un-selected is correct

 $b^{[3]}$ will have shape (1, 1)

Correct

Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

$W^{\left[3 ight] }$ will have shape (1, 3

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $b^{[3]}$ will have shape (3, 1)

Un-selected is correct

1/1 points

10.

Whereas the previous question used a specific network, in the general case what is the dimension of $W^{[l]}$, the weight matrix associated with layer l?

- $W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$
- $W^{[l]}$ has shape $(n^{[l-1]}, n^{[l]})$
- $W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$

Correct

True

 $W^{[l]}$ has shape $(n^{[l+1]}, n^{[l]})$

