函数图形的描绘

- 一、曲线的凹凸性与拐点
- 二、函数图形的描绘

一、曲线的凹凸性与拐点

问题:如何研究曲线的弯曲方向?

图形上任意弧段 位于所张弦的下方 图形上任意弧段 位于所张弦的上方

2 首页 上页 返回 下页 结束 铃

❖曲线的凹凸性定义

CA CHANGE WITH ME

设f(x)在区间I上连续,

对I上任意两点 $x_1, x_2,$ 如果恒有

$$f(\frac{x_1+x_2}{2}) < \frac{f(x_1)+f(x_2)}{2}$$
,

那么称f(x)在I上的图形是凹的; 如果恒有

$$f(\frac{x_1+x_2}{2}) > \frac{f(x_1)+f(x_2)}{2}$$
,

那么称f(x)在I上的图形是凸的.

❖定理1(曲线凹凸性的判定法)

设f(x)在[a, b]上连续,在(a, b)内具有二阶导数. 若在(a, b)内f''(x)>0,则f(x)在[a, b]上的图形是凹的; 若在(a, b)内f''(x)<0,则f(x)在[a, b]上的图形是凸的.

观察与思考:

f(x)的图形的凹凸性与f'(x)的单调性的关系.

- 1) f(x)的图形是凹的
- $\iff f'(x)$ 单调增加;
- 2) f(x)的图形是凸的
- $\iff f'(x)$ 单调减少.

❖定理1(曲线凹凸性的判定法)

设f(x)在[a, b]上连续,在(a, b)内具有二阶导数. 若在(a, b)内f''(x)>0,则f(x)在[a, b]上的图形是凹的; 若在(a, b)内f''(x)<0,则f(x)在[a, b]上的图形是凸的.

例1 判断曲线y=x³的凹凸性.

 μ $y'=3x^2, y''=6x.$

由y"=0, 得x=0.

因为当x<0时, y"<0,

所以曲线在 $(-\infty, 0]$ 上是凸的;

因为当x>0时, y">0,

所以曲线在[0,+∞)上是凹的.

5

首页

上页

返回

下页

结束

铃

❖拐点

连续曲线y=f(x)上凹弧与凸弧的连接点称为该曲线的拐点.

•讨论

如何确定曲线y=f(x)的拐点?

如果 $(x_0, f(x_0))$ 是拐点,且 $f''(x_0)$ 存在,问 $f''(x_0)=?$

如何找可能的拐点?

6

首页

上页

返回

下页

结束

铃

- •只有 $f''(x_0)$ 等于零或不存在, $(x_0, f(x_0))$ 才可能是拐点.
- CAPACTOU UNITED
- •如果在 x_0 的左右两侧f''(x)异号,则 $(x_0, f(x_0))$ 是拐点.

•讨论

曲线y=x4是否有拐点?

虽然y"(0)=0, 但(0,0)不是拐点.

例2 求曲线 $y=\sqrt[3]{x}$ 的拐点.

二阶导数无零点;

当x=0时, 二阶导数不存在.

因为当x<0时, y">0; 当x>0时, y"<0,

所以点(0,0)是曲线的拐点.

7

首页

上页

返回

下页

结束

一

•只有 $f''(x_0)$ 等于零或不存在, $(x_0, f(x_0))$ 才可能是拐点. •如果在 x_0 的左右两侧f''(x)异号,则 $(x_0, f(x_0))$ 是拐点.

例3 求曲线 $y=3x^4-4x^3+1$ 的拐点及凹、凸的区间.

解 (1)函数
$$y=3x^4-4x^3+1$$
的定义域为($-\infty$, $+\infty$);

(2)
$$y'=12x^3-12x^2$$
, $y''=36x^2-24x=36x(x-\frac{2}{3})$; (3)解方程 $y''=0$, 得 $x_1=0$, $x_2=\frac{2}{3}$; (4)列表判断:

X	$(-\infty, 0)$	0	(0, 2/3)	2/3	$(2/3, +\infty)$
y''(x)	+	0	- 11	0	//s + ///
y(x)	\cup	1		11/27	\cup

在区间 $(-\infty,0]$ 和 $[2/3,+\infty)$ 上曲线是凹的; 在区间[0,2/3]上曲线是凸的. 点(0,1)和(2/3,11/27)是曲线的拐点.

- •只有 $f''(x_0)$ 等于零或不存在, $(x_0, f(x_0))$ 才可能是拐点.
- CHARLES UNTURE
- •如果在 x_0 的左右两侧f''(x)异号,则 $(x_0, f(x_0))$ 是拐点.

例3 求曲线 $y=3x^4-4x^3+1$ 的拐点及凹、凸的区间.

在区间($-\infty$,0]和[2/3,+ ∞)上曲线是凹的; 在区间[0,2/3]上曲线是凸的. 点(0, 1)和(2/3, 11/27)是曲线的拐点.

9

首页

上页

返回

下页

结束

铃

例4 求曲线 $y = x^2 + 9\sqrt[3]{x^2}$ 的凹凸区间和拐点.

$$\mathbf{p}' = 2x + \frac{6}{\sqrt[3]{x}}, \quad y'' = 2 - \frac{2}{\sqrt[3]{x^4}},$$

二阶导数的零点为 $x_1 = -1$, $x_2 = 1$,

二阶导数不存在的点为 x=0.

x	$(-\infty,-1)$	-1	(-1,0)	0	(0,1)	1	$(1, +\infty)$
y"	+	0	-	不存在		0	+
У)	10		0		10	

凹区间为 $(-\infty, -1]$ 和 $[1, +\infty)$,凸区间为[-1, 0]和[0, 1], 拐点为(-1, 10)和(1, 10).

思考: 凸区间[-1,0]与[0,1]可否合并为[-1,1]?

二、函数图形的描绘

用描点法作函数图形需要计算许多点,才能画出较精确的函数图形.

当我们对函数曲线的性态有了全面了解之后,只需少数几个点就能画出较精确的函数图形.

1

确定函数的定义域(奇偶性和周期性).

- 2 讨论函数的单调性和极值,曲线的凹凸性和拐点,渐近线.
- 3 定点作图: 峰点, 谷点, 拐点, 坐标轴交点 (适当补点)用光滑曲线连接定点.

12 首页 上页 返回 下页 结束 铃

例5 画出函数 $y=x^3-x^2-x+1$ 的图形.

解 (1)函数的定义域为 $(-\infty, +\infty)$.

$$(2)f'(x)=3x^2-2x-1=(3x+1)(x-1), f''(x)=6x-2=2(3x-1).$$

(3)曲线性态分析表:

\mathcal{X}	$(-\infty,-1/3)$	-1/3	(-1/3,1/3)	1/3	(1/3, 1)	1	$(1, +\infty)$
f'(x)	+	0	<u> </u>	-	-	0	+
f''(x)	_	_	_	0	+	+	+
f(x)		32/27 极大		16/27 拐点		极小	1

(4)特殊点的函数值: f(0)=1, f(-1)=0, f(3/2)=5/8.

例5 画出函数 $y=x^3-x^2-x+1$ 的图形.

解 曲线性态分析表:

\mathcal{X}	$(-\infty,-1/3)$	-1/3	(-1/3,1/3)	1/3	(1/3, 1)	1	$(1, +\infty)$
f(x)		32/27 极大		16/27 拐点	J	0 极小)

特殊点的函数值: f(0)=1, f(-1)=0, f(3/2)=5/8. 描点联线画出图形.

例6 作函数
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$
 的图形.

 $\mathbf{f}(x)$ 是偶函数,图形关于 \mathbf{y} 轴对称.

(2)
$$f'(x) = -\frac{x}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$$
, $f''(x) = \frac{(x+1)(x-1)}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$.

(3)曲线性态分析表:

\mathcal{X}	0	(0, 1)	1	$(1, +\infty)$
f'(x)	0	(<u>-4</u>)	nes -1	<u>.</u>
f''(x)		_	0	+
y=f(x)的图形	$\frac{1}{\sqrt{2\pi}}$ 极大	`	$\frac{1}{\sqrt{2\pi e}}$ 拐点	<u>\</u>

(4)曲线有水平渐近线y=0.

例6 作函数 $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$ 的图形.

解 函数性态分析表:

X	0	(0, 1)	1	$(1, +\infty)$
y=f(x)的图形	$\frac{1}{\sqrt{2\pi}}$ 极大		$\frac{1}{\sqrt{2\pi e}}$ 拐点	<u>_</u>

y=0是曲线的水平渐近线.

先作出区间 $(0,+\infty)$ 内的图形, 然后利用对称性作出区间 $(-\infty,0)$ 内的图形.

 16
 首页
 上页
 返回
 下页
 结束
 经

例7 作函数
$$y=1+\frac{36x}{(x+3)^2}$$
 的图形.

解 (1)函数的定义域为 $(-\infty, -3)\cup(-3, +\infty)$.

(2)
$$f'(x) = \frac{36(3-x)}{(x+3)^3}$$
, $f''(x) = \frac{72(x-6)}{(x+3)^4}$.

(3)曲线性态分析表:

\mathcal{X}	$(-\infty, -3)$	(-3, 3)	3	(3, 6)	6	$(6, +\infty)$
f'(x)	-	+	0	V 7	-	_
f''(x)		A - 2/ -	-	//	0	+
y=f(x)的图形			4极大		11/3拐点	

(4)曲线有铅直渐近线x=-3与水平渐近线y=1.

(5)特殊点的函数值: f(0)=1, f(-1)=-8, f(-9)=-8,

f(-15)=-11/4.

例7 作函数 $y=1+\frac{36x}{(x+3)^2}$ 的图形.

解 函数性态分析表:

\mathcal{X}	$(-\infty, -3)$	(-3, 3)	3	(3, 6)	6	$(6, +\infty)$
y=f(x)的图	形入	-	4极大	1	11/3拐点	

铅直渐近线为x=-3,水平渐近线为y=1.

$$f(0)=1$$
, $f(-1)=-8$, $f(-9)=-8$, $f(-15)=-11/4$.

作业3.5

 19
 首页
 上页
 返回
 下页
 结束
 铃