Introduction to Linear Algebra

Week 1 Assignment

Part I: Mathematical Solutions

Instructions: Manually solve the problems listed, clearly showing all steps and explanations for your process. Use a clean and readable format for your written solutions.

- 1. (a) Given two vectors $\mathbf{v}=[2,4,6,8,10]$ and $\mathbf{u}=[1,3,5,7,9]$, compute the result of the following
 - component-wise division $\frac{\mathbf{v}}{\mathbf{u}}$.
 - $3\mathbf{v} 2\mathbf{u} + \frac{1}{2}\mathbf{v}$
 - (b) Compute the Euclidean norm (magnitude) of the vector $\mathbf{v} = [8, 0, 5, 2, 1]$.
- 2. Compute the determinant of the matrix $A = \begin{pmatrix} 2 & 3 & 7 \\ -4 & 0 & 6 \\ 1 & 5 & 0 \end{pmatrix}$.
- 3. (a) Given a square matrix $B = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$, compute the eigenvalues and eigenvectors.
 - (b) Verify whether the following vectors are eigenvectors of the matrix $D = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & 1 \\ 2 & 1 & 3 \end{pmatrix}$: $\mathbf{v}_1 = [1, 1, 1]$ and $\mathbf{v}_2 = [-1, 1, -1]$.
- 4. (a) Given a dataset with three features $X = \{(4,2,3), (3,13,4), (9,4,5), (0,5,7)\}$, perform PCA to reduce the dimensionality of the dataset to two dimensions.
 - (b) Compute the percentage of variance explained by each principal component in the PCA transformation.

Part II: Python Script in Jupyter Notebook

Instructions: Implement the solutions using Python in a Jupyter Notebook, applying the concepts taught in your first lecture. Ensure your code is well-commented to explain the implementation.

1

Submission Instructions

File Formats to Submit:

- 1. PDF Document: Submit a PDF that includes both your written solutions and the exported PDF version of your Jupyter Notebook.
- 2. Jupyter Notebook (.ipynb): Also submit the original Jupyter Notebook file.

How to Merge Documents:

• Export your Jupyter Notebook to a PDF and combine/merge it with your manual solutions using any standard PDF editing tool.