06

Spectrogram Analysis of Thai Speech II

Stop Consonants

- make complete closure in the oral cavity while maintaining the air flow from the lungs
- pressure behind the closure increases
- promptly release the closure (might generate the turbulence noise at the just-released closure → release burst)
- during the beginning of the closure phrase,
 - vocal folds vibrate → voiced
 - vocal folds do not vibrate → voiceless

Place of Articulation

- closure can be made at:
 - labial → Labial stop consonant
 - alveolar ridge+tongue tip → Alveolar stop consonant
 - hard palate+tongue body → Velar stop consonant
- The spectral shape of the release burst for labial and alveolar can be explained in the same way as the spectral shape of the fricative consonant.
 - labial fricative → labial stop release burst
 - alveolar fricative → alveolar stop release burst
- For Velar, the portion of the vocal tract in front of the closure gives mid-freq. resonance.

Aspiration

- After the release of the closure of a voiceless stop, if the glottis is widely spread, the air flow rush through the glottis will cause turbulence noise at the glottis.
- spread glottis → aspirated stop consonant
- otherwise → unaspirated stop consonant

Anatomy of Stop Consonants

Anatomy of Stop Consonants

Anatomy of Stop Consonants

Stop Consonants

voiced labial stop \rightarrow /b/ in <u>b</u>us, เบา voiceless unaspirated labial stop \rightarrow /p/ in spin, ปีน voiceless aspirated labial stop \rightarrow /ph/ in <u>p</u>en, พาน

voiced alveolar stop \rightarrow /d/ in den, in voiceless unaspirated alveolar stop \rightarrow /t/ in star, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alveolar stop \rightarrow /th/ in ten, now voiceless aspirated alv

voiced velar stop \rightarrow /g/ in \underline{g} un, \underline{m} 1
voiceless unaspirated velar stop \rightarrow /k/ in scar
voiceless aspirated velar stop \rightarrow /kh/ in \underline{k} eep, \underline{m} 114

Labial Stop Consonants

Labial Stop Consonants

Alveolar Stop Consonants

Alveolar Stop Consonants

Alveolar Stop Consonants

Velar Stop Consonants

Velar Stop Consonants

Burst Spectra

Picture from Suchato 2004

Affricates

- make complete closure like stop consonants
- release the closure and generate the turbulence noise like fricatives

voiceless palatoalveolar affricate →/ch/ in church, ฐาน voiced palatoalveolar affricate → /c/ in judge , จิก

Affricates

- Form a complete closure at some point along the oral cavity
- "Velopharyngeal port" opens during the closure
 - connecting the nasal cavity
 - Forming side-branch (More complicated tube)
- No pressure increase behind the closure
- Signal amplitude decreases due to loss in the nasal cavity

3 places of articulations (similar to stops)

labial nasal \rightarrow /m/ in man, with alveolar nasal \rightarrow /n/ in not, with velar nasal \rightarrow /ng/ in sing, with

Classes of Sounds

Semi-Vowels

A Semi-vowel is phonetically similar to a <u>vowel</u> but functions as a <u>consonant</u>.

the syllable "boundary", rather than as the "nucleus" of a syllable

- Higher degree of constriction in the vocal tract
- Slower articulatory movement than consonants

Approximants

Articulators approaching each other

Spectrogram

 Movement of Formants is more extreme than vowels Not narrowly enough to create turbulence (I.e. like in the fricative case)

voiced labial approximant → /w/ in weep, อาด voiced alveolar lateral approximant → /l/ in lay, อา voiced palatal approximant → /j/ in year, ยาน voiced retroflex approximant → read

Voiced Labial/Palatal Approximant

Voiced Labial Approximant

- "Constriction" is produced by "Rounded Lips"
- Extreme version of /uu/

voiced labial approximant → /w/ in weep, 219

Voiced Palatal Approximant

- "Constriction" is produced by "Tongue body" and "hard palate"
- Extreme version of /ii/

voiced palatal approximant -> /j/ in year, ยาน

Voiced Labial/Palatal Approximant

Very low F1 Very high F2 F1, F2 low

Alveolar Lateral Approximant

 "Constriction" is produced with the tongue blade in contact with alveolar ridge in the midline → Forming side branches

voiced alveolar lateral approximant → /1/ in lay, an

Alveolar Lateral Approximants

Low F1, Mid to Low F2 Abrupt change in amplitude

Retroflex Approximants

Articulated with the tip of the tongue "curled up"

Very low F3

Voiced Alveolar Trills

 Sounds produced by vibrations between the active articulator and passive articulator

voiced alveolar trill → /r/ in 11

Voiced Alveolar Trills

On-off energy Very low F3

Aspirants

- Airflow through "spread" glottis
- Rapid airflow generates turbulence noise at the glottis

Voiceless
Glottal
Fricative

aspirant -> /h/ in hair, หอน

h aa

th aa

Classes of Sounds

Spectrogram Reading Exercises