Trigonometría

SAG

Def 1.- Si la longitud de un arco subtendido por un arco es $\frac{1}{360}$ de la longitud de una circunferencia, entonces diremos que la unidad de medida de este se llamará grado sexagecimal.

Notación: Se anotará un grado sexagecimal por 1º

Def 2.-Se dice que el ángulo α tiene por medida un radián si este subtiende un arco de longitud igual al radio del círculo.

Estas definiciones nos permite encontrar una relación entre los ángulos medidos en radianes y loa ángulos medidos en grados.

Si α^{o} es un ángulo medido en grados y α^{r} es el ángulo medido en radianes entonces tenemos que

$$\frac{\alpha^{\rm o}}{\alpha^r} = \frac{180}{\pi}$$

Usando esta relación se puede establecer por ejemplo que

$\alpha^{\rm o}$	1°	30°	45°	60°	90°	180°	270°	360°
α^r	$\frac{\pi}{180}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π

Consideremos ahora el conjunto $C(x,y) = \{(x,y) \in \mathbb{R}.x^2 + y^2 = 1\}$ Sea $P \in C(x,y)$ luego cuándo P toma distintas posiciones sobre la circunferencia entonces se tiene que $-1 \le x \le 1, -1 \le y \le 1$

Pero tambíen puede ser P determinado por un par de cordenadas (r, α) donde r es la longitud del segmento que une el origen O con el punto P y α es el ángulo cuyo vértice es el orígen medido desde el eje X en sentido contrario a las manecillas del reloj como lo indica la figura 1

Def 3. Se definen las siguientes funciones

a)
$$\cos : [0, 2\pi] \to [-1, 1] \cos \alpha = \Pr_1(x, y) = x$$

b)
$$sen : [0, 2\pi] \to [-1, 1]$$
 $sen\alpha = Pr_2(x, y) = y$

Es inmediato que si $P(x,y) \in C$ entonces $x^2 + y^2 = 1$ luego se tiene

$$\cos^2\alpha + sen^2\alpha = 1$$

También es fácil observar que

sen0 = 0	$sen\pi = 0$
$sen\frac{\pi}{2} = 1$	$sen\frac{3\pi}{2} = -1$
$\cos 0 = 1$	$\cos \pi = -1$
$\cos \frac{\pi}{2} = 0$	$\cos \frac{3\pi}{2} = 0$

Las funciones sen y cos son epiyectivas, pero no son inyectivas en efecto tenemos $sen0 = sen\pi pero 0 \neq \pi$

$$\cos \frac{\pi}{2} = \cos \frac{3\pi}{2} \text{ pero } \frac{\pi}{2} = \frac{3\pi}{2}$$

$$\mathbf{Prop 1.} \ \forall \alpha \beta \in \mathbb{R}$$

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - sen\alpha sen\beta$$

Demostración: Considere la figura 2

Sean
$$\leq \alpha = \leq HOL$$
, $\leq \beta = \leq HOP$, $\overline{PQ} \perp \overline{OL}$; $\overline{PW} \perp \overline{OH}$; $\overline{WT} \perp \overline{PQ}$; $\overline{HL} \perp \overline{OL}$, $\overline{WS} \perp \overline{OL}$

Luego se tiene que

$$1.-\triangle OLH \cong \triangle OSW \cong \triangle PTW$$

2.
$$\cos(\alpha + \beta) = \overline{OO} = \overline{OS} - \overline{OS} = \overline{OS} - \overline{TW}$$

1.-
$$\triangle OLH = \triangle OSW = \triangle FIW$$

2. $\cos(\alpha + \beta) = \overline{OQ} = \overline{OS} - \overline{QS} = \overline{OS} - \overline{TW}$
3.- $\cos(\alpha + \beta) = \frac{\overline{OS}}{\overline{OW}} \overline{OW} - \frac{\overline{TW}}{\overline{PW}} \overline{PW}$

4.- Como
$$\frac{\overline{OS}}{\overline{OW}} = \frac{\overline{OL}}{\overline{OH}}$$
 y $\frac{\overline{TW}}{\overline{PW}} = \frac{\overline{LH}}{\overline{OH}}$ además $\overline{OH} = 1$

Entonces tenemos

$$\cos(\alpha + \beta) = \frac{\overline{OL}}{\overline{OH}} \overline{OW} - \frac{\overline{LH}}{\overline{OH}} \overline{PW} = \overline{OL}\overline{OW} - \overline{LHPW}$$

5.-
$$cos(\alpha + \beta) = cos \alpha cos \beta - senasen \beta$$
.

Observe que si aplicamos la Prop1 con la condición $\alpha = \beta$ se tiene

$$\cos 2\alpha = \cos^2 \alpha - sen^2 \alpha$$

Def 4.- Se dice que una función es $f: A \rightarrow B$ es períodica con período p $\operatorname{si} f(x+p) = f(x)$

Ejemplo. La función $f(x) = \cos x$, es periódica conperíodo $p = 2\pi$

En efecto $cos(\alpha + 2\pi) = cos \alpha$ (aplicar Prop 1)

Def 5.- Se dice que una función $f: A \to B$ es una función par si f(x) = f(-x)y es impar si f(-x) = -f(x)

Ejemplos:

La función $f(x) = x^2 - x^4$ es una función par La función $f(x) = x^3 - x$ es una función impar

Prop 2.- $\forall \alpha \in \mathsf{R}$

- a) $cos(\alpha) = cos(-\alpha)$ Función par
- b) $sen(-\alpha) = -sen\alpha$ Función impar Dem Considere la figura 3

Fig 3

Dem : Sea $P(x,y) \in C$ luego se tiene

- a) $\cos \alpha = \Pr_1(x, y) = x$
- b) $cos(-\alpha) = Pr_1(x, -y) = x$

luego se tiene que $\cos(-\alpha) = \cos \alpha$

Ejercicio: Demuestre que $sen(-\alpha) = -sen\alpha$

Usando la Prop 1 y Prop 2 se demuestra la siguiente propiedad

Prop 3 $\forall \alpha, \beta \in \mathbb{R}$, se cumple

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + sen\alpha sen\beta$$

Dem: (ejercicio) Basta observar que $cos(\alpha - \beta) = cos(\alpha + (-\beta))$

Obsevación:

1.-De la definición 3 y Prop 2 puede concluirse

$sen \alpha > 0$	$\forall \alpha \in]0,\pi[$
$\cos \alpha > 0$	$\forall \alpha \in \left]0, \frac{\pi}{2}\right[\cup \left]\frac{3\pi}{2}, 2\pi\right[$
$sen \alpha < 0$	$\forall \alpha \in]\pi, 2\pi[$
$\cos \alpha < 0$	$\forall \alpha \in \left] \frac{\pi}{2}, \frac{3\pi}{2} \right[$

Este último cuadro lo identificaremos hablando de CUADRANTES como sigue

Primer cuadrante

Segundo cuadrante

Tercer cuadrante

Cuarto cuadrante $0 < \alpha < \frac{\pi}{2}$ $\frac{\pi}{2} < \alpha < \pi$ $\pi < \alpha < \frac{3\pi}{2}$ Cuarto cuadrante $\frac{3\pi}{2} < \alpha < 2\pi$

Fig 4

2.- Usando la Prop 3 se puede demostrar que $\cos(\frac{\pi}{2} - \alpha) = sen\alpha$ y $sen(\frac{\pi}{2} - \alpha) = \cos\alpha$ esta identidad nos permite demostrar la siguiente propiedad

Prop 4.-
$$\forall \alpha, \beta \in \mathsf{R}$$

$$sen(\alpha + \beta) = sen\alpha\cos\beta + sen\beta\cos\alpha$$

Dem:
$$sen(\alpha + \beta) = cos(\frac{\pi}{2} - (\alpha + \beta)) = cos((\frac{\pi}{2} - \alpha) - \beta)$$

= $cos(\frac{\pi}{2} - \alpha)cos\beta + sen(\frac{\pi}{2} - \alpha)sen\beta = sen\alpha cos\beta + cos\alpha sen\beta$

Observación:

1.- De la propiedad 4 y haciendo $\alpha = \beta$ se tiene

$$sen2\alpha = 2sen\alpha\cos\alpha$$

2. Usando $sen(\alpha - \beta) = sen(\alpha + (-\beta))$ y la propiedad 4 se demuestra:

$$sen(\alpha - \beta) = sen\alpha\cos\beta - sen\beta\cos\alpha$$

Usando las propiedades anteriores se pueden demostrar las siguientes identidades

Ejemlos

Probar que

a)
$$sen\alpha = 2\cos\frac{\alpha}{2}sen\frac{\alpha}{2}$$

b)
$$\cos^2\alpha = \frac{1 + \cos 2\alpha}{2}$$

c)
$$sen^2\alpha = \frac{1 - \cos 2\alpha}{2}$$

a)
$$sen\alpha = 2\cos\frac{\alpha}{2}sen\frac{\alpha}{2}$$

b) $\cos^2\alpha = \frac{1+\cos 2\alpha}{2}$
c) $sen^2\alpha = \frac{1-\cos 2\alpha}{2}$
d) $sen(\alpha + \beta)sen(\alpha - \beta) = sen^2\alpha - sen^2\beta$

Dem:

a) Se sabe que

$$sen2\theta = 2sen\theta\cos\theta\ (*)$$

Si llamamos
$$2\theta = \alpha \Rightarrow \theta = \frac{\alpha}{2}$$
 y reemplazando en (*) se tiene $sen\alpha = 2\cos\frac{\alpha}{2}sen\frac{\alpha}{2}$

b) Se sabe que

$$sen^2\alpha = 1 - \cos^2\alpha$$
 y que $\cos 2\alpha = \cos^2\alpha - sen^2\alpha$

luego se tiene

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = \cos^2 \alpha - (1 - \cos^2 \alpha) = 2\cos^2 \alpha - 1$$
$$\cos 2\alpha = 2\cos^2 \alpha - 1 \Rightarrow \cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$$

c) Este se demuestra igual que el ejemplo (b)

d) Usando las prop 3 y prop 4 se tiene

$$sen(\alpha + \beta)sen(\alpha - \beta) = [sen\alpha\cos\beta + sen\beta\cos\alpha][sen\alpha\cos\beta - sen\beta\cos\alpha]$$

$$= (sen\alpha\cos\beta)^2 - (sen\alpha\cos\beta)(sen\beta\cos\alpha) + (sen\beta\cos\alpha)(sen\alpha\cos\beta) - (sen\beta\cos\alpha)^2$$

$$= (sen\alpha\cos\beta)^2 - (sen\beta\cos\alpha)^2 = sen^2\alpha(1 - sen^2\beta) - sen^2\beta(1 - sen^2\alpha)$$

$$= sen^2\alpha - sen^2\alpha sen^2\beta + sen^2\beta sen^2\alpha - sen^2\beta = sen^2\alpha - sen^2\beta.$$

Relación entre las funciones trigonométricas y los triángulos rectángulos

Sea $\triangle EOD$ rectángulo como la figura y $OC = 1, \alpha = \angle EOD$

Se tiene entonces que los triángulos OAC y OED son semejantes (tienen tres ángulos iguales)

$$1. - \frac{OA}{OC} = \frac{OE}{OD} \Rightarrow OA = \frac{OE}{OD} \Rightarrow \cos \alpha = \frac{OE}{OD}$$

Luego se tiene $1.-\frac{OA}{OC} = \frac{OE}{OD} \Rightarrow OA = \frac{OE}{OD} \Rightarrow \cos \alpha = \frac{OE}{OD}$ Observe que en el $\triangle OED$ se tiene que OE es el cateto adyacente y OD es la hipotenusa

$$2.-\frac{CA}{OC} = \frac{DE}{OD} \Rightarrow CA = \frac{DE}{OD} \Rightarrow sen\alpha = \frac{DE}{OD}$$

Observe que en el $\triangle OED$ se tiene DE es el cateto opuesto al $\triangleleft \alpha$

Con esta relación podemos aplicar las funciones seno y coseno a los triángulos rectángulos como lo demostramos en el párrafo anterior, esto es

a)
$$\cos \alpha = \frac{cateto \text{ adyacente}}{hipotenusa}$$

b) $sen\alpha = \frac{cateto \text{ adyacente}}{hipotenusa}$

b)
$$sen\alpha = \frac{\text{cateto adyacente}}{hipotenusa}$$

Ahora estamos en condiciones de definir otras funciones trigonómetricas

Def 6.-
$$\forall \alpha \in \mathsf{R}$$

a)
$$tg\alpha = \frac{sen\alpha}{\cos\alpha}$$
 Función tangente

b)
$$ctg\alpha = \frac{\cos \alpha}{sen\alpha}$$
 Función cotangente

c)
$$\sec \alpha = \frac{1}{\cos \alpha}$$
 Función secante

d)
$$\cos ec\alpha = \frac{1}{sen\alpha}$$
 Función cosecante

De la definición 6 podemos concluir que aplicado a un triángulo rectángulos estas funciones serán

$$1.- tg\alpha = \frac{\text{cateto opuesto}}{\text{cateto adyacente}}$$

$$2.- ctg\alpha = \frac{\text{cateto adyacente}}{\text{cateto opuesto}}$$

$$3.- \sec \alpha = \frac{\text{hipotenusa}}{\text{cateto adyacente}}$$

$$4.- \cos ec\alpha = \frac{\text{hipotenusa}}{\text{cateto opuesto}}$$

También de la definición 6 se tienen las siguientes identidades

- a) $tg\alpha\cos\alpha = sen\alpha$
- b) $ctgasena = \cos a$
- c) $\sec \alpha \cos \alpha = 1$
- d) $\cos e \cos \alpha = 1$
- e) $tg\alpha ctg\alpha = 1$

Apliquemos estos datos para calcular funciones trigonométricas para ángulos de 30°, 45°, y 60°

I) Considere un triángulo equilátero de lado de longitud 1 como la figura 6

Fig 6

Tenemos entonces que el $\angle CAD = 60^{\circ}$ y el $\angle DCA = 30^{\circ}$, además $AD = \frac{1}{2}$, y aplicando el teorema de Pitágoras al $\triangle ADC$ se obtiene que $CD = \frac{\sqrt{3}}{2}$.

Luego podemos afirmar que

	_ 1			1			
α	sena	$\cos \alpha$	tgα	ctgα	$sec \alpha$	$\cos eca$	
30°	1/2	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2	
60°	$\frac{\sqrt{3}}{2}$	1/2	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$	

II) Consideremos ahora un triángulo isósceles rectágulo como la figura 7, donde AB=1 y BC=1

Fig 7

Así se tiene que $AC = \sqrt{2}$

α	senα	$\cos \alpha$	tgα	ctgα	sec α	cos <i>ecα</i>
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$

También se pueden encontrar valores de ángulos como por ejemplo

$$sen125^{\circ} = sen(180^{\circ} - 45^{\circ}) = sen45^{\circ} = \frac{\sqrt{2}}{2}$$

$$\cos 330^{\circ} = \cos(360^{\circ} - 30^{\circ}) = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

$$tg125 = tg(180^{\circ} - 45^{\circ}) = -tg45^{\circ} = -1$$

Ejercicio En el gráfico siguiente se tiene un triángulo cualquiera. Demuestre que el área está dada por $A=\frac{1}{2}\overline{AB}$ $\overline{AC}sen\alpha$ con $\lessdot \alpha= \lessdot BAD$

Dem: Sabemos que el área es $A=\frac{1}{2}Base \times Altura$ Si consideramos el triángulo rectángulo ADC tendremos $sen\alpha=\frac{CD}{AC} \Rightarrow CD=ACsen\alpha$ reenplazamos en $A=\frac{1}{2}\overline{AB}\overline{CD}$ y tenemos $A=\frac{1}{2}\overline{AB}\overline{AC}sen\alpha$

Prop 5 $\forall \alpha, \beta$

$$tg(\alpha + \beta) = \frac{tg\alpha + tg\beta}{1 - tg\alpha tg\beta}$$

Prop 6 $\forall \alpha, \beta$

$$ctg(\alpha + \beta) = \frac{ctg\alpha ctg\beta - 1}{ctg\alpha + ctg\beta}$$

Observe que si hacemos $\alpha = \beta$ en la propiedad 5 y 6 se obtiene a) $tg2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}$ b) $ctg2\alpha = \frac{ctg^2\alpha - 1}{2ctg\alpha}$

a)
$$tg2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}$$

b)
$$ctg2\alpha = \frac{ctg^2\alpha - 1}{2ctg\alpha}$$

GRAFICAS DE LA FUNCION SEN, COS Y TG

1. Gráfica de f(x) = senx

Fig 8

2.- Gráfica de $f(x) = \cos x$

Fig 9

3.- Gráfica de $f(x) = tg\alpha$

Fig 10

OBSERVE LAS GRAFICAS DE SEN Y COS

Fig 11

Se verifica que ambas funciones no son inyectivas, pero si hacemos una restricción del dominio a $\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$ en el caso de f(x)=senx y a $[0,\pi]$ en el caso que $f(x)=\cos x$ entonces si se tine que ambas funciones son biyectivas y por lo tanto tienen una función Inversa.

$$f(x) = \sin^{-1} x$$

Observación:

La función inversa de f(x) = senx se llama función $Arcosenx = sen^{-1}x$ y la función inversa de f(x) = cos x se llama función $Arcocos x = cos^{-1}x$ Luego se tiene que

 $\alpha = Arcsenx \iff sen\alpha = x$

 $\alpha = Arc\cos x \iff \cos \alpha = x$

De aquí en adelante nos referiremos en general a la relación inversa de las funciones trigonométricas.

Recuerde el siguiente gráfico

Fig 12

Ahora estamos en condiciones de resolver algunas ecuaciones trigonómetricas

Def Se dice que un conjunto S_0 es el conjunto solución principal de una ecuación trigonométrica sí y sólo sí $S_0 = \{x \in [0, 2\pi] : f(\alpha) = 0\}$

Ejemplo: Determine el conjunto solución principal de la ecuación $senx = \frac{1}{2}$

Solución:

1.- La función senx > 0 en el I cuadrante y en el II cuadrante

2. Ahora
$$senx = \frac{1}{2} \iff x = arcsen\frac{1}{2} (x = sen^{-1}x) \implies x = 30^{\circ} \lor x = 150^{\circ}$$

3 El conjunto solución principal es el conjunto

$$S_0 = \{30^{\circ}, 150^{\circ}\}$$

Ejemplo: Determine el conjunto solución principal de la ecuación $senx = -\frac{1}{2}$

Solución:

1. La función senx < 0 en el III y IV cuadrante

2.-
$$senx = -\frac{1}{2} \iff x = arcsen\frac{1}{2} \implies x = 210^{\circ} \lor x = 330^{\circ}$$

3.- El conjunto solución principal será

$$S_0 = \{210^{\circ}, 330^{\circ}\}$$

Ejemplo: Determine el conjunto solución principal de la ecuación $tan^2x - 3tanx - 2 = 0$

1.- En este caso la ecuación es de 2º grado, por lo tanto su solución será

$$\tan x = \frac{3 \pm \sqrt{9 + 8}}{2} \implies \tan x = \frac{3 + \sqrt{17}}{2}, \ \tan x = \frac{3 - \sqrt{17}}{2}$$

2. Luego hay solución en donde tan x > 0 y donde tan x < 0

 $3 \tan x = \frac{3+\sqrt{17}}{2} > 0$ aquí hay solución en el I y III cuadrante por lo tanto $x = 74^\circ, 19^t$ y $x = 254^\circ19^t$

4.- $\tan x = \frac{3-\sqrt{17}}{2} < 0$ así hay solución en el II y IV cuadrante por lo tanto $x = 150^{\circ}41'$ y $x = 330^{\circ}41'$

5. El conjunto solución será

 $S_0 = \{74^{\circ}, 19', 150^{\circ}41', 254^{\circ}19', 330^{\circ}41'\}$

Def Se dice que S es el conjunto solución general de una ecuación trigonómetrica y = f(x) si $S = \{x \in \mathbb{R} : f(x) = 0\}$

Ejemplo: Resolver $1 - senx = \cos x$

1.- Como $\cos x = \sqrt{1 - sen^2 x}$ entonces

$$1 - senx = \sqrt{1 - sen^2x} \quad ()^2$$

$$1 - 2senx + sen^2x = 1 - sen^2x$$

$$2sen^2x - 2senx = 0$$

$$2senx(senx-1)=0$$

$$senx = 0 \lor senx = 1$$

2.-lo que nos da las siguientes posibles soluciones principales

$$x = 0^{\circ}, x = \frac{\pi}{2}, x = \pi, x = 2\pi$$

Por comprobación se tiene que son soluciones principales

$$x = 0^{\circ}, x = \frac{\pi}{2}, x = 2\pi$$

3.- Así la solución general será

$$S = \left\{ 0 + 2K\pi, \frac{\pi}{2} + 2K\pi \right\} \text{ con } k \in \mathsf{R}$$

Ejemplo: Resolver sen2x = cos x

1.- Como sen2x = 2senx cos x entonces tenemos la ecuación 2senx cos x - cos x = 0

$$2\cos x(2senx - 1) = 0$$

$$\cos x = 0 \lor 2senx - 1 = 0$$

$$\cos x = 0 \lor senx = \frac{1}{2}$$

2.- Así las soluciones principales serán

para
$$\cos x = 0 \Rightarrow x = \frac{\pi}{2}, x = \frac{3\pi}{2}$$

para $\sin x = \frac{1}{2} \Rightarrow x = \frac{\pi}{6}, x = \frac{5\pi}{6}$
3.- Así la solución general será
 $S = \left\{\frac{\pi}{6} + 2K\pi, \frac{5\pi}{6} + 2K\pi, \frac{\pi}{2} + K\pi, \right\}$

$$S = \left\{ \frac{\pi}{6} + 2K\pi, \frac{5\pi}{6} + 2K\pi, \frac{\pi}{2} + K\pi, \right\}$$

APLICACION SOBRE TRIANGULOS EN GENERAL

En la fig 13 sea triángulo ABC cualquiera $CE = h_c$, $\triangleleft ACB = \gamma$, $\triangleleft BAC = \alpha$ $\triangleleft ABC = \beta$, AC = b, AB = c, BC = a y sea O el centro de la circunferencia I Ley de los senos

En un $\triangle ABC$ con ángulos agudos se cumple que $\frac{a}{sen\alpha} = \frac{b}{sen\beta} = \frac{c}{sen\gamma}$

$$\frac{a}{sen\alpha} = \frac{b}{sen\beta} = \frac{c}{sen\gamma}$$

Fig 13

Dem:

En el $\triangle AEC$ se tiene $sen\alpha = \frac{h_c}{b} \Rightarrow h_c = bsen\alpha$ En el $\triangle BEC$ se tiene $sen\beta = \frac{h_c}{a} \Rightarrow h_c = asen\beta$ Luego se tiene $bsen\alpha = asen\beta \Rightarrow \frac{a}{sen\alpha} = \frac{b}{sen\beta}$

Analogamente se demuestra que $\frac{a}{sen\alpha} = \frac{c}{sen\gamma}$ y que $\frac{c}{sen\gamma} = \frac{b}{sen\beta}$

Ejercicio:

Demostrar que $\frac{a}{sen\alpha} = 2r$ siendo r el radio de la circunferencia Ayuda : Observe que el triángulo ABD de la figura 13 es rectángulo en B y $\triangleleft ADB = \gamma$.

II Ley del coseno

En un $\triangle ABC$ cualquiera se cumple

a)
$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$

b)
$$b^2 = a^2 + c^2 - 2ac\cos\beta$$

c)..
$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

Dem En la fig 14 sean
$$AD = u$$
, $DB = v$, $AC = b$, $BC = a$, $AB = c$, $h_c = CD$
 $\alpha = \langle BAD, \beta = \langle ABC y \gamma = \langle ACB \rangle$

En el
$$\triangle ADC$$
 se tiene $b^2 = u^2 + h_c^2$ y $\cos \alpha = \frac{u}{b}$
luego $h_c^2 = b^2 - (b\cos \alpha)^2$

En el
$$\triangle BDC$$
 se tiene $a^2 = v^2 + h_c^2$ (*)
como $v = c - u \Rightarrow v = c - b\cos\alpha$
reemplazando en (*) se tiene
 $a^2 = (c - b\cos\alpha)^2 + b^2 - (b\cos\alpha)^2 \Rightarrow$
 $a^2 = c^2 - 2cb\cos\alpha + (b\cos\alpha)^2 + b^2 - (b\cos\alpha)^2$

$$\boxed{a^2 = b^2 + c^2 - 2bc\cos\alpha}$$

Ejemplo. Determine los ángulos de un triángulo en que uno de los ángulos interiores es mayor que 90°

Considere la figura y observe que si $\alpha > 90^{\circ}$, $\alpha = 4$ BAC entonces

Fig 15
$$\beta = 180 - \alpha - \gamma < 90^{\circ}, \ \gamma = 180^{\circ} - \alpha - \beta < 90^{\circ}$$

$$\Rightarrow b^{2} = a^{2} + c^{2} - 2ac\cos\beta \Rightarrow \cos\beta = \frac{a^{2} + c^{2} - b^{2}}{2ac} \Rightarrow$$

$$\beta = \arccos(\frac{a^{2} + c^{2} - b^{2}}{2ac})$$
analogamente
$$\gamma = \arccos(\frac{a^{2} + b^{2} - c^{2}}{2ab})$$
observe que $\beta + \gamma < 90^{\circ}$ y que $\alpha = 180^{\circ} - (\beta + \gamma)$
así α queda determinado.

Ejemplo Resolver el triángulo dados los lados a = 71.6, b = 33.4y c = 60.24.

Debemos determinar α , β y γ que son los ángulos interiores de vértices *A*, *B* y *C*.

Dados los datos usaremos el teorema del coseno
$$a^2 = b^2 + c^2 - 2bc\cos\alpha \Rightarrow \cos\alpha = \frac{b^2 + c^2 - a^2}{2bc} \Rightarrow \cos\alpha = \frac{(33.4)^2 + (60.24)^2 - (71.6)^2}{2(33.4)(60.24)} = -9.4965 \times 10^{-2} \Rightarrow \alpha = 93^{\circ}54/57,5$$
 Aplicamos ahora el teorema del seno y tenemos
$$\frac{sen\beta}{sen\alpha} = \frac{b}{a} \Rightarrow sen\beta = \frac{b}{a}sen\alpha \Rightarrow sen\beta = \frac{33.4}{60.24}sen(93.916^{\circ})$$

$$sen\beta = 0.55192 \Rightarrow \beta = 37,22^{\circ}$$
 así $\gamma = 180^{\circ} - 93.916^{\circ} - 37.22^{\circ} = 48.864^{\circ}$

Ejemplo En la figura $\triangle ABC$ esta inscrito en una circunferencia de centro O Demuestre que $a = 2rsen\alpha$, $b = 2rsen\beta$ y $c = 2rsen\gamma$

Fig 16

Sean
$$\alpha = \langle BAC, \beta = \langle ABC \text{ y } \gamma = \langle ACB \text{ de la figura} \rangle$$
 todos son ángulos inscritos, luego se tiene $\alpha = \langle BOD \Rightarrow BD = rsen\alpha \Rightarrow a = BC = 2BD = 2rsen\alpha$
Luego se tiene que $a = 2rsen\alpha$
Por otra parte como $\frac{sen\alpha}{sen\beta} = \frac{a}{b} \Rightarrow b = a\frac{sen\beta}{sen\alpha}$ reemplazando $b = a\frac{sen\beta}{\frac{a}{2r}} \Rightarrow b = 2rsen\beta$

Analogamente se demuestra que $c = 2rsen\beta$

Ejercicio: Demuestre que el área A del triángulo del ejemplo anterior esta dado por $A=2r^2sen\alpha sen\beta sen\gamma$

Ejemplo Demostrar que el radio r de una circunferencia inscrita en un triángulo de área A y perímetro p está dado por $r = \frac{2A}{p}$

El *área* solicitada está dada por A =suma de las áreas de los triángulos AOB, COB y COA

$$A = \frac{1}{2}rc + \frac{1}{2}ra + \frac{1}{2}rb = \frac{1}{2}r(a+b+c) = \frac{rp}{2} \implies r = \frac{2A}{p}$$

Ejemplo: Desde un plano horizontal se observa la cima de un edificio con un ángulo de 45°. Si después de caminar 500 mts en la misma dirección de la cima del edificio con una pendiente de 15° respecto al plano horizontal se observa ahora la cima con un ángulo de 75°. Hallar la altura del edificio. Considere el gráfico siguiente, con BC la altura del edificio, $\langle DAF = 15^{\circ} \rangle$ $\langle BAC = 45^{\circ}, \langle FEC = 75^{\circ}, AE = 500 \rangle$

CB = CAsen45 (considerando $\triangle ABC$)

Por otro lado se pueden determinar facilmente el

 $\triangleleft ECA = 30^{\circ}$ y aplicando el teorema del seno al $\triangle AED$

se tiene
$$\frac{sen15}{AE} = \frac{sen120}{AC} \Rightarrow AC = AE \frac{sen120}{sen15} \Rightarrow AC = 500 \frac{sen120}{sen15}$$

luego AC = 2037 aproximadamente $\Rightarrow CB = 2037$ sen45 $\Rightarrow CB = 1323$.