

7 de fevereiro de 2022 Duração: 2 horas e 30 minutos

<u>Justifique</u> todas as suas respostas, indicando os cálculos efetuados e/ou os conceitos teóricos utilizados.

- 1. (40 pts) Seja $g(x) = 2 \operatorname{arcsen}(\operatorname{tg} x)$ onde $D_g \subset] \frac{\pi}{2}, \frac{\pi}{2}[.$
 - (a) Determine o domínio de g, D_q .
 - (b) Caracterize a função inversa de g, indicando o domínio, o contradomínio e a expressão analítica que a define.
 - (c) Justifique que g atinge mínimo e máximo globais no seu domínio e calcule esses valores.
 - (d) Sabendo que

$$\int f(x) dx = g(x) + C, C \in \mathbb{R},$$

determine f(0).

- 2. (30 pts) Calcule:
 - (a) o integral definido $\int_1^5 \frac{2x}{\sqrt{2x-1}} dx;$
 - (b) a família de primitivas $\int (2x^3 + x) \arctan x \, dx$.
- 3. (30 pts) Dada uma função $f:[3,+\infty[\to\mathbb{R},\text{ considere o integral impróprio de }1^{\underline{a}}\text{ espécie}$

$$\int_{3}^{+\infty} f(x) \, dx.$$

- (a) Suponha que o integral impróprio referido acima é convergente. Explicite o significado matemático desta afirmação.
- (b) Enuncie um teorema que lhe permite comparar a natureza de uma série numérica real com a de um integral impróprio adequado.
- (c) Aplicando o teorema referido em (b) estude a natureza da série de

$$\sum_{n=3}^{+\infty} \frac{1}{n \ln n \left(\ln(\ln n) \right)}.$$

4. (28 pts) Determine a natureza das seguintes séries numéricas, indicando, em caso de convergência, se se trata de convergência simples ou absoluta:

(a)
$$\sum_{n=3}^{+\infty} (-1)^n \left(1 - \frac{2}{n}\right)^{n^2}$$
;

(b)
$$\sum_{n=1}^{+\infty} \frac{n}{n^2 + 1} \cos[(n+1)\pi].$$

- 5. (15 pts) Mostre que a equação $x^2 = x \operatorname{sen} x + \cos x$ tem exatamente duas soluções em \mathbb{R} .
- 6. (25 pts) Sejam $\varphi : \mathbb{R} \to \mathbb{R}$ uma função contínua, positiva e derivável em \mathbb{R} e $f : \mathbb{R} \to \mathbb{R}$ a função definida por

$$f(x) = \int_{x}^{x^2} \varphi(t) dt, \ x \in \mathbb{R}.$$

- (a) Mostre que f é duas vezes derivável e determine expressões para f' e f''.
- (b) Prove que f é estritamente decrescente em] $-\infty, 0$ [.
- (c) Estude o sinal de f em \mathbb{R} .

Fórmulas trigonométricas $\sec u = \frac{1}{\cos u} \left| \csc u = \frac{1}{\sin u} \right| \cot u = \frac{\cos u}{\sin u} \left| 1 + \tan^2 u = \sec^2 u \right| 1 + \cot u = \csc^2 u$ $\sec^2 u = \frac{1 - \cos(2u)}{2} \left| \cos^2 u = \frac{1 + \cos(2u)}{2} \right| \cos(u + v) = \cos u \cos v - \sin u \sin v$ $\sin(u + v) = \sin u \cos v + \sin v \cos u$

$$\int u' \sec u = \ln|\sec u + \operatorname{tg} u| \parallel \int u' \operatorname{cosec} u = -\ln|\operatorname{cosec} u + \operatorname{cotg} u|$$

Formulário de Derivadas						
Função	Derivada	Função	Derivada			
$Ku \ (K \in \mathbb{R})$	Ku'	$\ln u $	$\frac{u'}{u}$			
u^r	$r u^{r-1} u'$	$\log_a u \ (a > 0 \ \mathrm{e} \ a \neq 1)$	$\frac{u'}{u \ln a}$			
e^u	$u'e^u$	$a^u (a > 0 e a \neq 1)$	$a^u \ln a u'$			
sen u	$u'\cos u$	$\cos u$	$-u' \operatorname{sen} u$			
$\operatorname{tg} u$	$u'\sec^2 u$	$\cot g u$	$-u'\csc^2 u$			
$\sec u$	$\sec u \operatorname{tg} u u'$	$\operatorname{cosec} u$	$-\csc u \cot u u'$			
arcsen u	$\frac{u'}{\sqrt{1-u^2}}$	$\arccos u$	$-\frac{u'}{\sqrt{1-u^2}}$			
$\operatorname{arctg} u$	$\frac{u'}{1+u^2}$	$\operatorname{arccotg} u$	$-\frac{u'}{1+u^2}$			
$\operatorname{senh} u$	$u'\cosh u$	$\cosh u$	$u'\operatorname{senh} u$			

7.

$\begin{array}{c} 7~{\rm de~fevereiro~de~2022} \\ {\rm Duração:~2~horas~e~30~minutos} \end{array}$

Responda nesta folha e entregue-a juntamente com as restantes folhas de prova.

Nome:	N° Mec.:
Classificação Questão 7:	
(32 pts) Para cada uma das questões seguintes, assinale a op	ção correta.
(a) Sejam $f \in g$ as funções definidas por $f(x) = -\arccos(x - \cos(x - o))))))))))))))$	
(A) $\lim_{x \to -4^-} \frac{f(x)}{g(x)} = +\infty.$	
(B) $\lim_{x \to -4^-} \frac{f(x)}{g(x)} = -\infty.$	
(C) $\lim_{x \to -4^-} \frac{f(x)}{g(x)} = 0.$	
(D) $\lim_{x \to -4^{-}} \frac{f(x)}{g(x)} = -\frac{1}{3}$	
$x \to -4^ g(x)$ 5 (b) Seja f uma função contínua em [8, 13], derivável em]8, 13 $f(13) = 0$. Seja ainda g uma função definida em [8, 13] p Pode afirmar-se que existe $t \in]8, 13[$ tal que	[e satisfazendo a condição $f(8) =$
(A) $f(t) = \frac{1}{3} f'(t)$	
(B) $f(t) = 3f'(t)$	
(C) $g'(t) = \frac{1}{3}g(t)$	
(D) $g'(t) = 3 g(t)$	
(c) Seja f uma função real de variável real de domínio \mathbb{R} . S	$\lim_{x \to +\infty} f(x) = 2 \text{ então o integral}$
impróprio $\int_{1}^{+\infty} \frac{f(x)}{x^{2}} dx$	
(A) é convergente	
(B) é divergente.	
(C) \neq igual $a + \infty$.	
(D) é igual a 2	
(A) $\int_{-1}^{1} (\sqrt[3]{x} - x^2) dx$	
(B) $\int_{-1}^{1} (x^2 - \sqrt[3]{x}) dx$	
(C) $\int_{-1}^{0} (\sqrt[3]{x} - x^2) dx + \int_{0}^{1} (x^2 - \sqrt[3]{x}) dx$	
(D) $\int_{-1}^{0} (x^2 - \sqrt[3]{x}) dx + \int_{0}^{1} (\sqrt[3]{x} - x^2) dx$	

vtex
dvifalse vtexpdffalse vtexpsfalse vtexhtmlfalse vtexgexfalse vtex
dvitrue $\,$

0 if tex.enableprimitives then Ωtex.enableprimitives (Ω'pdf@',Ω'primitive', 'ifprimitive', 'pdfdraftitm Is the ite (", 'luaescapestring') Ωend Ω 13 de novembro de 2019 Teste 1 de Cálculo I - Agrupamento 2 Duração: 2 horas

Leia com atenção

- <u>Justifique</u> todas as suas respostas, indicando os cálculos efetuados e/ou os conceitos teóricos utilizados.
- Não pode ter consigo telemóvel nem qualquer dispositivo eletrónico (ainda que desligado).
- Se desistir neste teste manter-se-á em avaliação discreta e não pode realizar o exame final.
- 1. (60 pts) Considere a função real de variável real definida por

$$f(x) = \begin{cases} x^2 \ln(-x) & \text{se } x < 0\\ \frac{\pi}{2} & \text{se } x = 0\\ \arctan(\frac{1}{x}) & \text{se } x > 0 \end{cases}$$

- (a) A função f é contínua em x = 0? Justifique.
- (b) A função f é derivável em x = 0? Justifique.
- (c) Indique, caso existam, os extremos de f no intervalo $]-\infty,0[$.
- (d) Seja g a restrição de f a \mathbb{R}^+ . Caracterize a função g^{-1} , indicando expressão analítica, domínio e contradomínio.
- (e) Seja $h(x) = e^x f(x)$ com $x \in [0, 1]$. Prove que existe $c \in]0, 1[$ tal que $h'(c) = (e 2)\frac{\pi}{4}$.
- 2. (50 pts) Determine as seguintes famílas de primitivas

(a)
$$\int x (x^2 + 2019)^{2020} dx;$$

(b)
$$\int \frac{(1+2\arctan x)^3}{1+x^2} dx;$$

(c)
$$\int \frac{x^2+1}{(x-1)^3} dx$$
.

- 3. **(25 pts)** Determine a família de primitivas $\int \sqrt{16-4x^2} dx$ usando a substituição $x=2\cos t$, com $t\in[0,\pi]$.
- 4. (25 pts) Determine a expressão analítica da função $f:]0, +\infty[\to \mathbb{R}$ que verifica as condições: $f'(x) = (1 + \ln x)^2$ e f(1) = 5.
- 5. (20 pts) Seja f a função real de variável real definida em \mathbb{R} por

$$f(x) = \text{sen}(x^2 - 1) + 2x^2.$$

Prove que f tem exatamente dois zeros em \mathbb{R} .

6. (20 pts) Determine $a \in \mathbb{R}$ tal que $f(x) = \frac{e^{ax} - e^x - x}{x^2}$ tenha limite finito quando x tende para 0 e calcule esse limite.

Uma ajuda

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\operatorname{sen} x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\operatorname{tg} x$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	ND

$$\sec u = \frac{1}{\cos u}; \quad \csc u = \frac{1}{\sin u}; \quad \cot u = \frac{\cos u}{\sin u}$$

$$\cos^{2} u = \frac{1 + \cos(2u)}{2}; \quad \sin^{2} u = \frac{1 - \cos(2u)}{2};$$
$$1 + \operatorname{tg}^{2} u = \sec^{2} u; \quad 1 + \operatorname{cotg}^{2} u = \operatorname{cosec}^{2} u$$

$$sen (u + v) = sen u cos v + sen v cos u$$
$$cos (u + v) = cos u cos v - sen u sen v$$

$$\operatorname{sen} u \operatorname{sen} v = \frac{1}{2}(\cos(u-v) - \cos(u+v))$$
$$\cos u \cos v = \frac{1}{2}(\cos(u-v) + \cos(u+v))$$
$$\operatorname{sen} u \cos v = \frac{1}{2}(\operatorname{sen}(u-v) + \operatorname{sen}(u+v))$$

$(e^u)' = u' e^u$	$(\ln u)' = \frac{u'}{u}$	$(u^r)' = r u^{r-1} u'$	
$(a^u)' = a^u \ln a u'(a > 0 e a \neq 1)$	$(\log_a u)' = \frac{u'}{u \ln a} \ (a > 0 \ e \ a \neq 1)$	$(\operatorname{sen} u)' = u' \cos u$	
$(\cos u)' = -u' \sin u$	$(\operatorname{tg} u)' = u' \sec^2 u$	$(\cot g u)' = -u' \csc^2 u$	
$(\sec u)' = \sec u \operatorname{tg} u u'$	$(\csc u)' = -\csc u \cot u u'$	$(\arcsin u)' = \frac{u'}{\sqrt{1 - u^2}}$	
$(\arccos u)' = -\frac{u'}{\sqrt{1-u^2}}$	$(\operatorname{arctg} u)' = \frac{u'}{1 + u^2}$	$\operatorname{arccotg} u = -\frac{u'}{1+u^2}$	

$$P(u' \sec u) = \ln|\sec u + \operatorname{tg} u| P(u' \csc u) = -\ln|\csc u + \cot u|$$

$$P - \text{primitiva}$$