

Non-Transitive Connectivity and DHTs

Mike Freedman

Karthik Lakshminarayanan

Sean Rhea

Ion Stoica

WORLDS 2005

Distributed Hash Tables...

- System assigns keys to nodes
- All nodes agree on assignment
- Chord assigns keys as integers modulo 2¹⁶⁰
- Assigns keys via successor relationship
- Each node must know predecessor

Distributed Hash Tables...

- Used to store and retrieve (key, value) pairs
- Any node can discover key's successor, yet without full knowledge of network
 - Implies some form of routing

All have implicit assumption: full connectivity

Distributed Hash Tables...

- All have implicit assumption: full connectivity
- Non-transitive connectivity (NTC) not uncommon

$$B \leftrightarrow C$$
 , $C \leftrightarrow A$, $A \nleftrightarrow B$

A thinks C is its successor!

Does non-transitivity exist?

- Gerding/Stribling PlanetLab study
 - 9% of all node triples exhibit NTC
 - Attributed high extent to Internet-2
- Yet NTC is also transient
 - One 3 hour PlanetLab all-pair-pings trace
 - 2.9% have persistent NTC
 - 2.3% have intermittent NTC
 - 1.3% fail only for a single 15-minute snapshot
- Level3
 → Cogent, but Level3
 → X
 Cogent
- NTC motivates RON, Detour, and SOSR!

Our contributions

We have built and run Bamboo (OpenDHT), Chord (i3), Kademlia (Coral) for > 1 year

Vanilla DHT algorithms break under NTC

Identify four main algorithmic problems and present our solutions

Short-term

- Inform other developers about NTC solutions
- Important: DHTs are being widely deployed in Overnet, Morpheus, and BitTorrent

Long-term

- Encourage new designs to directly handle NTC
- (This topic is far from solved)

DHTs 101: Routing

- Key space defines an identifier distance
- Routing ideally proceeds by halving distance to destination per overlay hop

DHTs 101: Routing

DHTs 101: Routing tables

- v successors / leaf set: ensure correctness
- fingers / routing table: efficient routing
 - √ O (log (n)) hops, generally

Problems we identify

- Invisible nodes
- Routing loops
- Broken return paths
- Inconsistent roots

NTC problem fundamental?

Traditional routing

$S \rightarrow R$	Α
$A \rightarrow R$	В
$B \rightarrow R$	R

NTC problem fundamental?

Traditional routing

$S \rightarrow R$	Α
$A \rightarrow R$	В
$B \rightarrow R$	R

Greedy routing

$S \rightarrow R$	A
$A \rightarrow R$	С
$C \rightarrow R$	X

- DHTs implement greedy routing for scalability
- Sender might not use path, even though exists: finds local minima when id-distance routing

Problems we identify

- Invisible nodes
- Routing loops
- Broken return paths
- Inconsistent roots

(First discuss how problems apply to iterative routing, then consider recursive routing.)

Iterative routing: Invisible nodes

Invisible nodes cause lookup to halt

Iterative routing: Invisible nodes

- Invisible nodes cause lookup to halt
- Enable lookup to continue
 - Tighter timeouts via network coordinates
 - Lookup RPCs in parallel
 - Unreachable node cache

Routing table pollution

- Many proposals for maintaining routing tables
 - E.g., replace nodes with larger RTT
- Must first prevent routing table pollution
 - Only add new nodes upon contacting directly
 - Do not immediately remove nodes from hearsay

- Nodes do not agree where key is assigned: inconsistent views of root
 - Can be caused by membership changes
 - Also due to non-transitive connectivity
 - May persist indefinitely

Inconsistent roots

- No solution when network partitions
- If non-transitivity is limited:
 - Consensus among leaf set?
 - [Etna, Rosebud]
 - Expensive in messages and bandwidth
 - Link-state routing among leaf set?
 - [Pastry 1.4.1]
- Can use application-level solutions!

Inconsistent roots

- Root replicates (key,value) among leaf set
 - Leafs periodically synchronize
 - Get gathers results from multiple leafs
 - [OpenDHT, DHash]
- Not applicable when require fast update (i3)

Recursive routing

Invisible nodes

- Must also prevent routing table pollution
- Easier to achieve accurate timeouts
- Harder to perform concurrent RPCs

Inconsistent Roots

- Similar solutions
- (Routing Loops)
- One new problem...

Broken return paths

- Direct path back from R to S fails
 - Source-route reverse path
 - Use single intermediate hop ----
 - RON, Detour, SOSR...

Summary

- Non-transitive connectivity exists
 - DHTs must deal with it

- Discovered problems the "hard way"
 - v OpenDHT / Bamboo, i3 / Chord, Coral / Kademlia
 - Presented our "from the trenches" fixes

NTC should be considered during design phase

Thanks...

Watch Our Real, Large Distributed Systems...

coralcdn.org
opendht.org
i3.cs.berkeley.edu