

Pelagial

Freshwater Biodiversity ao. Univ. Prof. Dr. Michael Schagerl

Ecosystems and element cycles from a global perspective aquatic terrestrial Area Biomass Net productivity

Aquatic biocoenoses

Nekton (gr. nekton "das Schwimmende"): larger organisms able to control their position in the pelagial by swimming; able to actively swim against water currents (eg. fish).

Plankton (altgr. "das Umherirrende"): organisms of the pelagial drifting passively with water movement; the direction is identical to water currents (mostly small organisms, but also jellyfish).

Pleuston (aus gr. pleuston "das Segelnde"): large organisms living on the water surface (eg. water fowl, water hyacinths).

Neuston (aus gr. neuston "das Schwimmende"); small organisms living at the water surface (= Epineuston; eg. water striders genus Gerris) or just below the water surface (= Hyponeuston; eg. microalgae, meniscus waterflea = Kahnfahrer).

Benthos (gr. "die Tiefe"): organisms associated with any solid-liquid interface in water; associated with substrata.

	Plankton Size Classes				
name	from size	to size	Organism groups		
femtoplankton		0,2 μm	viruses, phages		
picoplankton	0,2 μm	2 μm	bacteria, small phytoplankton, protozoa		
nanoplankton	2 μm	20 μm	phytoplankton, protozoa, biggest bacteria		
microplankton	20 μm	200 μm	big phytoplankton and protozoa, small metazoa (e.g. rotifers)		
mesoplankton	200 μm	2 mm	biggest protozoa, phytoplankton colonies, many metazoa (e.g. cladocera, copepods)		
macroplankton	2 mm	2 cm	very big phytoplankton colonies, big marine planktonic crustacea (e.g. Euphausiidae), insects (e.g. Diptera as <i>Chaoborus</i> larvae, bugs as <i>Anisops</i> sp.)		
megaplankton	2 cm		biggest marine zooplankton, e.g. jellyfish		

Standing water bodies

- long retention time from months to years
- temperature stratification
- turbulences spiral-like movement of particles in the epilimnion
- nutrient limitation

Figure 6-4 Depth-time diagram of isotherms (°C) in Lawrence Lake, Michigan, 1968. Dashed line indicates the upper metalimnetic-lower epilimnetic boundary. Ice-cover drawn to scale. (Modified from Wetzel, et al., 1972.)

Figure 22–7 Vertical distribution of cryptomonads and Oscillatoria spp. in a stratified kettle lake. (Goldman, C. R., and A. J. Horne. 1983. Limnology. McGraw-Hill. Reproduced with permission of the McGraw-Hill Companies, based on Baker and Brook, 1971)

Energy flux density W m^{-2} (maximum 350 W m^{-2} PAR)

Photon flux density mol photons m⁻² s⁻¹ (maximum 2000 µmol m⁻² s⁻¹ PAR)

1 μ mol photons m⁻² s⁻¹ = 0.20 - 0.25 W m⁻²

$$\varepsilon = \frac{1}{z} ln \frac{I_0}{I_z}$$

ε...vertical coefficient of attenuation

z...depth

I_o...light intensity surface

I_z...light intensity depth z

$$\boldsymbol{I}_z = \boldsymbol{I}_0 \boldsymbol{e}^{-\epsilon z}$$

z_{eu}...euphotic zone (1% of surface light intensity)

$$z_{eu} = \frac{1}{\epsilon} ln \frac{100}{1} = \frac{1}{\epsilon} 4.6$$

Reflection, Absorption und Scattering cause

Shortening of day length in water compared to terrestrial systems

Worse light supply compared to terrestrial systems

Shift of the spectral properties with water depth

Adaptations

UV-absorbing substances in cell walls and mucilage, cellular protection mechanisms (carotenoids), negative phototaxis against excess light

Reduced sinking, positive phototaxis, increase in cellular pigment levels at suboptimal light conditions

Carbon dioxide – assimilation, puffer capacity

Oxygen – respiration, decomposition processes, water chemistry

Trophy = Intensity of primary production

Oligotrophic = very low production

Mesotrophic = low production

Eutrophic = high production

Hypertrophic = massive production

Merkmal	Trophiegrad oligotroph	eutroph	
Produktivität	niedrig	hoch	
Anzahl von Tier- und Pflanzenarten	hoch	hoch (Reduktion in hypertrophen Seen)	
Biomasse	niedrig	hoch	
Algenblüten	selten	häufig	
Anteil Cyanobakterien	gering	hoch	
euphotische Zone	bis zum Hypolimnion	an der Oberfläche	
Makrophyten im Litoral	selten bis häufig	oft häufig, hoher Anteil filamen- töser Algen	
charakteristische	Chlorophyceen	Cyanobakterien	
Algen Taxa	Staurastrum	Anabaena	
		Aphanizomenon	
		Microcystis	
		Oscillatoria	
	Diatomeen	Diatomeen	
	Tabellaria	Melosira	
	Cyclotella	Fragilaria	
	Chrysophyceen	Stephanodiscus Asterionella	
	Dinobryon	Asierionella	
	Dinocryon		
charakteristische	Bosmina obtusirostris	B. longirostris	
Zooplankton Taxa	B. coregoni	Daphnia culcullata	
O, im Hypolimniom	das ganze Jahr hoch	während der Stag-	
2	0 0	nationsphase niedrig	
Mittlere Tiefe	oft tief	oft flach	
Größe des Hypolimnions	oft groß	klein oder groß	

Trophic level	PP in C	Ntot	Ptot	Chl-a	Secchi
	gm ⁻² a ⁻¹	μgl⁻¹	μgl ⁻¹	μgl ⁻¹	m
oligotrophic	< 70	< 400	< 15	< 3	4.0
mesotrophic	70-150	400-600	15-25	3-7	2.5-4.0
eutrophic	150-500	600-1500	25-100	7-40	1.0-2.5
hypertrophic	> 500	> 1500	> 100	> 40	<1.0