NEURALNE MREZE Izvestaj o prvom projektnom zadatku

Filip Kojic 2018/0285

Ivan Jevtic 2018/0550

1.Zadatak

Vrednosti dobijene na osnovu indeksa su:

A = 1, B = 3, f1 = 20, f2 = 9, pa je:

$$h(x) = \sin(40 * PI * X) + 3\sin(18 * PI * x),$$

 $y(x) = h(x) + std*randn(1, N)$
 $std = 0,2$

Grafik funkcija h(x) i y(x):

Kreirana je neuralna mreza sa 2 skrivena sloja koji imaju 10 i 6 neurona.

Aktivaciona funkcija u skrivenim slojevima je tansig,a u izlaznom sloju purelin.

Kriva performanse:

Regresiona kriva:

Grafik funkcija y(x) i predikcije neuralne mreze:

Mreza je dobro istrenirana, sto pokazuje i velika vrednost regresije, pa izlaz predikcije skoro u potpunosti odgovara izlazu originalne funkcije.

2.Zadatak

Radi se sa dataset2.mat datotekom.Postoje 3 klase obelezene brojevima 1,2,3.

Prikaz podataka:

Posto se podaci dele na 3 grupe, izlazi su kodirani sa 3 neurona tako da za klasu 1 izlaz izgleda 100,za klasu 2 010, a za klasu 3 001 (one-hot encoding). Funkcije aktivacije koje su koriscene su tansig u skrivenim i softmax u izlaznom sloju. Podaci koji se dobiju simulacijom su razdvajani tako da ukoliko je izlaz veci od 0.7 aproksimira se na 1 a ukoliko je manji aproksimira se na 0. Na slikama su prikazani grafici klasifikacije, konfuzione matrice i grafici performansi treniranja.

Podela podataka je bitna jer zelimo da mrezu naucimo da prepoznaje primerke sve 3 klase.Ne zelimo da mreza uci samo na primercima jedne klase tako da podelu vrsimo na slucajan nacin.90% podataka je odvojeno za treniranje mreze,a 10% za njeno testiranje.

<u>Arhitektura 1:</u> mreza sa rasporedom neurona u skrivenim slojevima 3, 6, 6:

Parametri na trening skupu:

Precission = 0.9597, Recall = 0.9956

Parametri na test skupu:

Precission = 0.9375, Recall = 1

<u>Arhitektura 2</u>: mreza sa rasporedom neurona u skrivenim slojevima 15, 15, 15:

Parametri na trening skupu:

Precission = 0.9845, Recall = 0.9978

Parametri na test skupu:

Precission = 0.9474, Recall = 0.9818

<u>Arhitektura 3</u>: mreza sa rasporedom neurona u jednom skrivenom sloju 3:

Parametri na trening skupu:

Precission = 0.9281, Recall = 1

Parametri na test skupu:

Precission = 0.9796, Recall = 1

U trecoj arhitekturi imamo primetno vise belih podrucja na slici, jer usled nedostatka neurona mreza ne moze sa zadatom verovatnocom da izvrsi klasifikaciju.

3.Zadatak

Na osnovu brojeva indeksa radi se sa Star datotekom.Problem koji se resava je klasifikacija pulsara.Pulsari su retka vrsta neutronske zvezde koji emituju zracenje.Svaki kandidat za pulsar je opisan sa 9 atributa, od kojih je poslednji indikator da li je kandidat pulsar (0 vrednost ako nije, 1 ako jeste).

Izvrsena je podela na trening, validacioni i test skup u odnosu 80:10:10.

Posto je skup nebalansiran, kao metriku za odredjivane tacnosti neuralne mreze koristimo harmonijsku sredinu parametara precision i recall, F1.Za hiperparametar struktura mreze uzete su viseslojne mreze sa razlicitim brojem neurona u njima.Za hiperparametar funkcija aktivacije uzete su funkcije tansig i logsig.Za hiperparametar regularizacija uzete su vrednosti izmedju 0.2 i 0.8, posto on moze da uzme vrednosti i blize 0 i blize 1.Za hiperparametar koeficijent tezinskih faktora uzete su vrednosti vece od 1, da bi se otezale vrednosti za klasu 1 koja ima manje vrednosti.

Vrednosti optimalnih parametara:

struktura mreze:20 15

funkcija aktivacije:tansig

koeficijent regularizacije:0.2

koeficijent tezinskih faktora:4

Kriva performanse neuralne mreze nakon obucavanja optimalnim parametrima:

Matrica konfuzije za trening skup:

Dobili smo visoke vrednosti za parametre precision i recall, pa je i harmonijska sredina tih parametara visoka.

Parametri na trening skupu za K1:

Precission = 0.9021, Recall = 0.9247, F1 = 0.9133

Matrica konfuzije za test skup:

Ponovo smo dobili visoke vrednosti za parametre precision i recall, pa je i harmonijska sredina tih parametara visoka.Mreza dobro prepoznaje primerke klasa.

Parametri na test skupu za K1:

Precission = 0.9162, Recall = 0.9329, F1 = 0.9245