Problem solving and search – Chapter 3

August 23, 2021

Outline

- Problem-solving agents
- ♦ Problem types
- ♦ Problem formulation
- ♦ Example problems
- ♦ Basic search algorithms

Problem-solving agents

- Restricted form of general agent:offline problem solving (solution executed "eyes closed.")
- ▶ **Online** problem solving involves acting without complete knowledge.

```
function Simple-Problem-Solving-Agent (percept) returns an action
  static: seq, an action sequence, initially empty
          state, some description of the current world state
          qoal, a goal, initially null
          problem, a problem formulation
  state \leftarrow Update-State(state, percept)
  if seq is empty then
       goal \leftarrow Formulate-Goal(state)
       problem \leftarrow Formulate-Problem(state, goal)
       seq \leftarrow Search(problem)
  action \leftarrow Recommendation(seq, state)
  seq \leftarrow Remainder(seq, state)
  return action
```

Example: Romania

On holiday in Romania; currently in Arad. Flight leaves tomorrow from Bucharest

- ► Formulate goal: be in Bucharest
- Formulate problem:
 - states: various cities
 - actions: drive between cities
- ► Find solution: sequence of cities, e.g., Arad, Sibiu, **Fagaras**, Bucharest

Example: Romania

Example: Romania

traight-line distar	ice
Bucharest	
rad	366
Sucharest	0
Craiova	160
Oobreta	242
forie	161
agaras	178
Giurgiu	77
Iirsova	151
asi	226
ugoj	244
Iehadia	241
leamt	234
)radea	380
itesti	98
Rimnicu Vilcea	193
ibiu	253
`imisoara	329
J rziceni	80
aslui 💮	199
Zerind	374

Problem types

- ▶ Deterministic, fully observable ⇒ single-state problem
 - Agent knows exactly which state it will be in; solution is a sequence
- ▶ Deterministic, Non-observable ⇒ conformant problem
 - Agent may have no idea where it is; solution (if any) is a sequence
- ▶ Nondeterministic and/or partially observable ⇒
 - contingency problem
 - percepts provide new information about current state
 - solution is a contingent plan or a policy
 - often interleave search, execution
- ▶ Unknown state space ⇒ exploration problem ("online")

Single-state, start in #5. Solution??


```
Single-state, start in #5. Solution?? [Right, Suck] Conformant, start in \{1, 2, 3, 4, 5, 6, 7, 8\} e.g., Right goes to \{2, 4, 6, 8\}. Solution??
```



```
Single-state, start in #5. Solution?? [Right, Suck]
Conformant, start in {1,2,3,4,5,6,7,8}
e.g., Right goes to {2,4,6,8}. Solution??
[Right, Suck, Left, Suck]
Contingency, start in #5
```

Murphy's Law: Suck can dirty a clean carpet

Local sensing: dirt, location only.

Solution??

- ► Single-state, start in #5. Solution ?? [Right, Suck]
- Conformant, start in {1,2,3,4,5,6,7,8} e.g., Right goes to {2,4,6,8}. Solution ?? [Right, Suck, Left, Suck]
- Contingency, start in #5 Murphy's Law: Suck can dirty a clean carpet Local sensing: dirt, location only. Solution?? [Right, if dirtthenSuck]

Single-state problem formulation

- A problem is defined by four items:
 - 1. initial state e.g., "at Arad"
 - 2. successor function S(x) = set of action-state pairse.g., $S(Arad) = \{ \langle Arad \rightarrow Zerind, Zerind \rangle, \ldots \}$
 - 3. goal test, can be
 - ightharpoonup explicit, e.g., x = "at Bucharest"
 - ▶ implicit, e.g., NoDirt(x)
 - 4. path cost (additive)
 e.g., sum of distances, number of actions executed, etc.
 c(x, a, y) is the step cost, assumed to be ≥ 0
- ➤ A solution is a sequence of actions leading from the initial state to a goal state

Selecting a state space

- Real world is (absurdly?) complex ⇒ state space must be abstracted for problem solving
 - ► (Abstract) state = set of real states
 - ► (Abstract) action = complex combination of real actions e.g., "Arad → Zerind" represents a complex set of possible routes, detours, rest stops, etc.
- ► For guaranteed realizability, **any** real state "in Arad" must get to some real state "in Zerind"
- (Abstract) solution = set of real paths that are solutions in the real world
- ► Each abstract action should be "easier" than the original problem!


```
states??
actions??
goal test??
path cost??
```

```
states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??
goal test??
path cost??
```

```
states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??
path cost??
```

```
states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??
```

```
states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??: 1 per action (0 for NoOp)
```


Start State

Goal State

```
states??
actions??
goal test??
path cost??
```


states??: integer locations of tiles (ignore intermediate positions)
actions??
goal test??
path cost??

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming
etc.)
goal test??
path cost??

Start State

Goal State

```
states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming
etc.)
goal test??: = goal state (given)
path cost??
```


Start State

Goal State

```
states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming
etc.)
goal test??: — goal state (given)
```

goal test??: = goal state (given)

path cost??: 1 per move

[Note: optimal solution of *n*-Puzzle family is NP-hard]

Example: robotic assembly

<u>states??</u>: real-valued coordinates of robot joint angles parts of the object to be assembled

actions??: continuous motions of robot joints
goal test??: complete assembly with no robot included!
path cost??: time to execute

Tree search algorithms

Basic idea:

 offline, simulated exploration of state space by generating successors of already-explored states (a.k.a. expanding states)

function Tree-Search (problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to *strategy* if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree end

Tree search example

Tree search example

Tree search example

Implementation: states vs. nodes

- ► A **state** is (a representation of) a physical configuration
- ▶ A **node** is a data structure constituting part of a search tree includes **parent**, **children**, **depth**, **path cost** g(x)
- States do not have parents, children, depth, or path cost!

The $\rm Expand$ function creates new nodes, filling in the various fields and using the $\rm SuccessorFn$ of the problem to create the corresponding states.

Implementation: general tree search

 $\begin{aligned} \text{Depth}[s] \leftarrow \text{Depth}[node] + 1 \\ \text{add } s \text{ to } successors \end{aligned}$

```
loop do

if fringe is empty then return failure

node ← REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE(node)) then return node

fringe ← InsertAll(Expand(node, problem), fringe)

function Expand(node, problem) returns a set of nodes

successors ← the empty set

for each action, result in Successor-Fn(problem, STATE[node]) do

s ← a new Node

Parent-Node[s] ← node; Action[s] ← action; STATE[s] ← result
```

 $Path-Cost[s] \leftarrow Path-Cost[node] + Step-Cost(State[node], action, result)$

function Tree-Search (problem, fringe) returns a solution, or failure fringe ← Insert (Make-Node (Initial-State problem)), fringe)

Search strategies

- ► A strategy is defined by picking the **order of node expansion**
- ► Strategies are evaluated along the following dimensions:
 - 1. completeness—does it always find a solution if one exists?
 - 2. time complexity—number of nodes generated/expanded
 - 3. space complexity—maximum number of nodes in memory
 - 4. optimality—does it always find a least-cost solution?
- ▶ Time and space complexity are measured in terms of
 - 1. b—maximum branching factor of the search tree
 - 2. d—depth of the least-cost solution
 - 3. *m*—maximum depth of the state space (may be ∞)

Uninformed search strategies

- Uninformed strategies use only the information available in the problem definition
 - 1. Breadth-first search
 - 2. Uniform-cost search
 - 3. Depth-first search
 - ► Depth-limited search
 - ► Iterative deepening search

Breadth-first search

Expand shallowest unexpanded node Implementation: fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

Expand shallowest unexpanded node **Implementation**: *fringe* is a FIFO queue, i.e., new successors go at end

Breadth-first search

Expand shallowest unexpanded node **Implementation**: *fringe* is a FIFO queue, i.e., new successors go at end

Breadth-first search

Expand shallowest unexpanded node **Implementation**: *fringe* is a FIFO queue, i.e., new successors go at end

Properties of breadth-first search

```
Complete?? Yes (if b is finite)

Time?? 1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1}), i.e., exp. in d

Space?? O(b^{d+1}) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general
```

Space is the big problem; can easily generate nodes at 100MB/sec so 24hrs = 8640GB.

Uniform-cost search

```
Expand least-cost unexpanded node  \begin{array}{l} \textbf{Implementation:} \ \textit{fringe} = \text{queue ordered by path cost, lowest first} \\ \textbf{Equivalent to breadth-first if step costs all equal} \\ \underline{\textbf{Complete}??} \ \ \textbf{Yes, if step cost} \ \geq \epsilon \\ \underline{\textbf{Time}??} \ \ \# \ \ \text{of nodes with} \ \ g \leq \ \ \text{cost of optimal solution,} \ \ O(b^{\lceil C^*/\epsilon \rceil}) \\ \end{array}
```

```
where C^* is the cost of the optimal solution 

Space?? # of nodes with g \leq \text{cost} of optimal solution, O(b^{\lceil C^*/\epsilon \rceil}) Optimal?? Yes—nodes expanded in increasing order of g(n)
```

Expand deepest unexpanded node Implementation: fringe = LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Expand deepest unexpanded node

 $\label{eq:limplementation:fringe} \textbf{Implementation:} \ \textit{fringe} = \text{LIFO} \ \text{queue, i.e., put successors at front}$

Properties of depth-first search

```
Complete?? No: fails in infinite-depth spaces, spaces with loops: Modify to avoid repeated states along path \Rightarrow complete in finite spaces Time?? O(b^m): terrible if m is much larger than d; but if solutions are dense, may be much faster than breadth-first Space?? O(bm), i.e., linear space! Optimal?? No
```

Depth-limited search

Depth-limited search = depth-first search with depth limit /: nodes at depth / have no successors

Recursive implementation

```
function Depth-Limited-Search (problem, limit) returns soln/fail/cutoff Recursive-DLS (Make-Node (Initial-State [problem]), problem, limit)
```

```
function Recursive-DLS(node, problem, limit) returns soln/fail/cutoff cutoff-occurred? \leftarrow false if Goal-Test(problem, State[node]) then return node else if Depth[node] = limit then return cutoff else for each successor in Expand(node, problem) do result \leftarrow Recursive-DLS(successor, problem, limit) if result = cutoff then cutoff-occurred? \leftarrow true else if result \neq failure then return result if cutoff-occurred? then return cutoff else return failure
```

Iterative deepening search

```
function Iterative-Deepening-Search
( problem) returns a solution inputs: problem, a problem
```

```
for depth \leftarrow 0 to \infty do result \leftarrow Depth-Limited-Search( problem, depth) if result \neq cutoff then return result end
```

Iterative deepening search l = 0

Limit = 0

Iterative deepening search I = 1

Iterative deepening search I = 2

Iterative deepening search l = 3

Properties of iterative deepening search

```
Complete?? Yes

Time?? (d+1)b^0 + db^1 + (d-1)b^2 + ... + b^d = O(b^d)

Space?? O(bd)

Optimal?? Yes, if step cost = 1
```

Can be modified to explore uniform-cost tree Numerical comparison for b=10 and d=5, solution at far right leaf:

$$N(IDS) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450$$

 $N(BFS) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990$
 $= 1,111,100$

IDS does better because other nodes at depth d are not expanded BFS can be modified to apply goal test when a node is **generated**

Summary of algorithms

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening
Complete? Time	Yes* b^{d+1}	$Yes^* \\ b^{\lceil C^*/\epsilon \rceil}$	No <i>b</i> ^m	Yes, if $l \ge d$ b^l	Yes b ^d
Space Optimal?	b^{d+1} Yes*	$b^{\lceil C^*/\epsilon ceil}$ Yes	<i>bm</i> No	<i>bl</i> No	<i>bd</i> Yes*

Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one!

Graph search

```
function Graph-Search (problem, fringe) returns a solution, or failure  \begin{array}{l} closed \leftarrow \text{an empty set} \\ fringe \leftarrow \text{Insert}(\text{Make-Node}(\text{Initial-State}[problem]), fringe) \\ \text{loop do} \\ \text{if } fringe \text{ is empty then return failure} \\ node \leftarrow \text{Remove-Front}(fringe) \\ \text{if } \text{Goal-Test}(problem, \text{State}[node]) \text{ then return } node \\ \text{if } \text{State}[node] \text{ is not in } closed \text{ then} \\ \text{add } \text{State}[node] \text{ to } closed \\ fringe \leftarrow \text{InsertAll}(\text{Expand}(node, problem), fringe) \\ \text{end} \end{array}
```

Summary

- Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored
- Variety of uninformed search strategies
- ► Iterative deepening search uses only linear space and not much more time than other uninformed algorithms
- Graph search can be exponentially more efficient than tree search