<u>Программа:</u> цикл на 100000 итераций, в котором в предварительно созданную Map<Integer, String> складываются ключ = {индекс} и значение = {"value" + индекс}

#### Задание по JIT:

Запустить программу с опциями -XX:+PrintCompilation, -XX:+UnlockDiagnosticVMOptions -XX:+PrintInlining и проанализировать информацию в консоли

1) -XX:+PrintCompilation будет выводить в стандартный поток вывода логирование для каждого метода и цикла:

| time | id  | attr level | methodName                   | (size)                      | deopt                    |
|------|-----|------------|------------------------------|-----------------------------|--------------------------|
| 370  | 412 | n 0        | java.lang.ClassLoader::defin | eClass2 (native) (static    | )                        |
| 370  | 410 | 3          | java.security.SecureClassLoa | der\$CodeSourceKey::hashCod | e (21 bytes)             |
| 371  | 416 | 3          | java.lang.ClassLoader::getNa | medPackage (73 bytes)       |                          |
| 371  | 417 | 3          | jdk.internal.module.SystemMo | duleFinders\$SystemModuleRe | ader::release (10 bytes) |
| 371  | 418 | 3          | jdk.internal.jimage.ImageRea | der::releaseByteBuffer (5   | bytes)                   |
| 371  | 420 | ! 3        | jdk.internal.jimage.BasicIma | geReader::readBuffer (232   | bytes)                   |
| 372  | 419 | 3          | jdk.internal.jimage.BasicIma | geReader::releaseByteBuffe  | r (16 bytes)             |
| 373  | 411 | ! 3        | java.lang.ClassLoader::check | Certs (195 bytes)           |                          |
| 374  | 413 | 3          | java.lang.ClassLoader::addCl | ass (9 bytes)               |                          |
| 374  | 414 | s 3        | java.util.Vector::addElement | (24 bytes)                  |                          |

- 1. **time** это время со старта JVM
- 2. **id** id задачи
- 3. attr набор атрибутов с доп информацией
  - % OSR (on-stack replacement)
  - s метод является синхронизированным (synchronized)
  - ! метод содержит обработчик исключений
  - b компиляция произошла в блокирующем режиме
  - n скомпилированный метод является оберткой нативного метода
- 4. **level** уровень компиляции
  - многоуровневая компиляция выключена
  - 0 интерпретируемый код
  - 1 C1 с полной оптимизацией (без профилирования)
  - 2 C1 с учетом количества вызовов методов и итераций циклов
  - 3 С1 с профилированием
  - 4 С2 (более оптимизированный код)
- 5. **methodName** название скомпилированного метода
- 6. **size** размер скомпилированного байт-кода
- 7. **deopt** название деоптимизации (made zombie и т.п.)
- 2) -XX:+UnlockDiagnosticVMOptions разблокирует диагностические параметры JVM
- 3) -XX:+PrintInlining будет выводить в стандартный поток вывода, какие методы становятся встроенными. Должен использоваться вместе с параметром XX:+UnlockDiagnosticVMOptions

```
1017 477 1 com.sun.tools.javac.util.SharedNameTable$NameImpl::getIndex (5 bytes)

1017 474 3 java.lang.String::toCharArray (25 bytes)

@ 1 java.lang.String::isLatin1 (19 bytes)

@ 11 java.lang.StringLatin1::toChars (16 bytes)

@ 11 java.lang.StringLatin1::inflate (34 bytes) callee is too large

@ 21 java.lang.StringUTF16::toChars (18 bytes)

@ 13 java.lang.StringUTF16::getChars (42 bytes) callee is too large
```

Задание по GC: Запустить приложение создающее много объектов с разными GC, посмотреть в jvisualvm как заполняются объекты в разных областях памяти(heap)

Существуют различные сборщики мусора, использующие общую стратегию Mark-Sweep-Compact:

| Сборщик<br>мусора | Описание                                                                      | Преимущества /<br>Недостатки                                                                                                                    | Когда использовать                                                                                                                                                   | Флаги для<br>включения                             |
|-------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Serial            | использует<br>один поток                                                      | + нет оверхедов на взаимодействие потоков - длинные паузы - ручная настройка размера кучи                                                       | • однопроцессорные машины<br>• не требуется большой<br>размер кучи (~100 МБ)<br>• приложение не очень<br>чувствительно к коротким<br>остановкам                      | -XX:+UseSerialGC                                   |
| Parallel          | использует<br>несколько<br>потоков                                            | + быстрая сборка мусора + автоматическая настройка - фрагментация памяти                                                                        | • многопроцессорные машины • в приоритете пиковая производительность • допустимы паузы при GC в одну секунду и более • работа со средними и большими наборами данных | -XX:+UseParallelGC                                 |
| CMS               | использует<br>несколько<br>потоков и<br>более умную<br>major сборку           | + минимизация времени простоя - относительно низкая пропускная способность - фрагментация Tenured - требуется больше RAM для оптимальной работы | <ul> <li>многопроцессорные машины</li> <li>работа с большим объемом долгоживущих данных</li> </ul>                                                                   | -XX:+UseConcMark<br>SweepGC<br>(removed in JDK-14) |
| G1                | использует<br>несколько<br>потоков и<br>новый подход<br>к организации<br>кучи | + аккуратнее предсказывает размеры пауз, чем CMS, и лучше распределяет сборки во времени - низкая пропускная способность 90%                    | • многопроцессорные машины • время отклика важнее пропускной способности • паузы GC должны быть меньше одной секунды.                                                | -XX:+UseG1GC                                       |

| Z1         | использует<br>несколько<br>потоков и новый<br>подход к сборке<br>мусора | + субмиллисекундные паузы<br>наузы не растет с увеличением<br>кучи<br>- низкая пропускная<br>способность                           | • многопроцессорные машины • паузы GC должны быть меньше 10 мс • требуется большой размер кучи до 16 ТБ                         | -XX:+UseZGC              |
|------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Epsilon    | по-новому<br>аллоцирует<br>память и не<br>осуществляет<br>сборку мусора | + быстрый процесс создания новых объектов - память не освобождается                                                                | <ul> <li>все объекты создаются при старте</li> <li>короткоживущие приложения</li> <li>анализ других сборщиков мусора</li> </ul> | -XX:+UseEpsilonGC        |
| Shenandoah | использует<br>несколько<br>потоков и новый<br>подход к сборке<br>мусора | + короткие паузы независимо от размера кучи + множество настроек под специфику работы приложения - повышенное потребление ресурсов | • многопроцессорные машины • время отклика стоит на первом месте • нужно протестировать приложение, чтобы узнать ответ          | -XX:+UseShenandoah<br>GC |

Запустим внутри цикла на 500 итераций <u>программу</u> с различными garbage коллекторами:

## 1) -XX:+UseSerialGC



## 2) -XX:+UseParallelGC



## 3) -XX:+UseConcMarkSweepGC



# 4) -XX:+UseG1GC



## **5)** -XX:+UseZGC Не поддерживается в Visual GC



**6) -XX:+UseEpsilonGC** Не поддерживается в Visual GC

