AD-A009 473

POWERING PREDICTIONS FOR THE UNITED STATES COAST GUARD 140-FOOT WYTM REPRESENTED BY MODEL 5336

E. E. West

Naval Ship Research and Development Center Bethesda, Maryland

April 1975

DISTRIBUTED BY:

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTAT		READ INSTRUCTIONS BEFORE COMPLETING FORM
SPD-223-16	2. GOVT ACCESSION NO	AD-ACOG 473
TITLE (and Subtitio)		S. TYPE OF REPORT & PERIOD COVERED
POWERING PREDICTIONS FOR THE GUARD 140-FOOT WYTM REPRESEN		
		6. PERFORMING ORG. REPORT NUMBER
AUTHOR(a)		S. CONTRACT OR GRANT NUMBER(s)
E. E. WEST		
PERFORMING ORGANIZATION NAME AND AD		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK HINT NIMMFRS
Naval Ship Research & Develop	pment Center	USCG Purchase Request 7-700
Ship Performance Dept. Bethesda, Md. 20084		4-44131 of 28 Jun 74
		1524-550
CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
		APRIL 1975
		13. NUMBER OF PAGES
MONITORING AGENCY NAME & ADDRESS/II	dillerent from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		154. DECLASSIFICATION/DOWNGRADING
DISTRIBUTION STATEMENT (of this Report)		· · · · · · · · · · · · · · · · · · ·
Approved for public release		
Distribution unlimited		
7. DISTRIBUTION STATEMENT (of the abatract o	ntered in Block 20, if different fra	in Report)
SUPPLEMENTARY NOTES		
. KEY WORDS (Continue on raverse side if neces	and ideally by block suppor	
(U) ICE BREAKER; (U) BUOY TEND	DER; (U) TOW ROPE PULI	.; (U) TUG
ABSTRACT (Continue en reverse elde il necese		a LIVINA and also associated associations
(U) This report presents power is hull can attain a speed of		
ight increase should be attain		
Reproduced by NATIONAL TECHNIC	AL —	INITES TO CILLIE
INFORMATION SERV US Department of Commerce Segrinalistic, VA, 22151		UBJECT TO CHANGE

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE 5/N 0102-014-6601 |

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

The Naval thip Research and Development Center is a U. S. Navy center for laboratory effort directed at achieving improved see and air vehicles. It was fermed in March 1967 by merging the David Taylor Model Basin at Carderock, Maryland with the Merine Engineering Laboratory at Annapolis, Maryland.

Naval Ship Research and Development Center Bethesda, Md. 20034

MAJOR NSRDC ORGANIZATIONAL COMPONENTS

INTRODUCTION

The United States Coast Guard (USCG) initiated a model experimental program at the Naval Ship Research and Development Center (NSRDC) to aid in the evaluation of a proposed design for a 140-foot WYTM with icebreaking capabilities. In this program NSRDC was requested to provide the following:

- (1) Shaft horsepower (P_S) , effective horsepower (P_E) , RPM and allied data for the hull with rudder.
 - (2) Ps and RPM for the towrope and bollard pull conditions.
 - (3) Flow patterns about the underwater portion of the hull and rudder.
- (4) Velocity distribution in way of the propeller and its harmonic analysis.
 - (5) Maneuvering and directional stability.

This report covers Items (1) and (2). Data for Items (3), (4), and (5) of the program will be issued in subsequent reports.

PROCEDURE AND EXPERIMENTAL RESULTS

Model 5336 represents a 140-foot WYTM icebreaker constructed in accordance with USCG lines and offsets No. 140 WYTM-0101-1 dated 14 August 1974.

A linear ratio of 9.273 was selected so that a 4-bladed stock propeller with a nominal diameter of 11 inches could be used in the powering phase of this program. Additional ship and model data along with hull characteristics are given in Figure 1. Abbreviated hull lines of the WYTM are shown in Figure 2. Fitting room photographs of the model are displayed in Figure 3.

Predictions of P_E , P_S and allied data resulting from the propulsion experiment at the design draft corresponding to 12 feet, trimmed to a level baseline, and a displacement of 666 tons are tabulated in Table 1. The tables are copies of computer output sheets. In this computer program some of the final values are rounded off. The P_E , P_S , RPM and P_S (P_E/P_S) are presented graphically in Figure 4. These data show that when fitted with an 8.5-foot prototype of NSRDC Stock Propeller 4665, the WYTM will attain a speed of about 14.6 knots using 2500 shaft horsepower.

Table 2 gives predictions for P_S and allied data tabulated for the WYTM at the 11-foot draft, even baseline. The P_E , P_S , RPM and η_S are also shown graphically in Figure 5.

All powering predictions reported herein are for the ship operating in smooth, deep, fresh water with a temperature of 40 degrees Fahrenheit. A correlation allowance (CA) of 0.0004 and the ITTC friction formulation of 1957 were used in all frictional calculations. The open-water characteristic curves for NSRDC Stock Propeller 4665 are shown in Figure 6. Tabulated open-water data are given in Table 3.

Change of level data taken during various experiments are shown in Figure 7. The wave profiles for 10 and 15 knots are shown graphically in Figure 8 for the 12-foot draft condition. Wave profile photographs taken during Experiment 5, the 12-foot draft condition, are shown in Figure 9.

Predictions of P_S and RPM requirements for towrope pull conditions are shown in Figure 10. The speeds covered in the ahead operation are zero (bollard) pull), 3, and 6 knots. The predictions for the bollard pull astern operation are given in Figure 11,

4

TABLE 1

PREDICTIONS OF SHP, RPM AND ALLIED DATA FOR THE 140-FOOT WYTM REPRESENTED BY NODEL 5336 WITH PROPELLER 4665

DRAFT 12.0 FT - EVEN BASELINE PROPELLER DIAMETER 8.5 FT EXPERIMENTS 4 & 5 DISPLACEMENT 666 TONS CORRELATION ALLOWANCE 0.0004

ر ھ	1.020	1.020	1.015	1.015	1.010	1.010	1.010	1.020	1.030	1.030	1.030	1.020	1.005	1.005	1.010	1.020	1.020	1.020	1.020	1.015	0.980
E H	1.090	1.095	1.095	1.100	1.100	1.100	1.100	1.100	1.090	1.085	1.075	1.075	1.075	1.070	1.065	1.060	1.050	1.040	1.030	1.025	1.010
د ۳	.505	.505	. 505	.510	.510	.510	. 505	. 505	. 500	. 500	.500	.495	.495	.495	.485	.480	.465	.455	.440	.425	.415
1-t	.810	.810	.810	.810	.810	.810	.810	.810	.810	.810	.810	.810	.810	.810	.810	.810	.810	.810	.810	.810	.810
$1-W_Q$.755	.750	. 750	.745	.740	.740	.740	.750	.760	.765	.770	.765	.760	.760	.765	. 780	. 790	800	.810	.810	.770
$_{\mathbf{T}}^{\mathbf{L}}$.540	.540	.535	. 530	.525	. 525	.520	. 500	. 490	.485	.480	. 480	.475	.465	.450	.435	.420	400	.380	.365	.350
$^{1-W}_{\mathrm{T}}$.745	.740	.740	.740	.735	.735	.735	.740	.740	.750	.750	.755	.755	.755	. 760	. 765	.770	.780	. 785	. 790	. 800
r s	. 565	. 565	. 565	. 565	. 565	. 565	.565	. 565	. 565	.560	.550	. 545	. 535	.530	. 525	.515	. 500	.485	.465	.445	.410
RPM	81.9	97.9	115.0	132.6	149.9	158.7	169.0	183.9	198.1	211.4	223.5	235.1	246.4	261.4	280.2	302.8	328.9	358.2	391.4	427.3	463.9
S.	35.	.09	.66	156.	228.	272.	334.	445.	567.	697.	833.	986.	1160.	1410.	1780.	2300.	3050.	4070.	5490.	7410.	10080.
e E	20.	34.	56.	88.	129.	154.	189.	251.	319.	389.	.095	536.	621.	747.	932.	1190.	1530.	1970.	2550.	3280.	4130.
s S	2.00	9.00	7.00	8.00	9.00	9.50	10.00	10.50	11.00	11.50	12.00	12.50	13.00	13.50	14.00	14.50	15.00	15.50	16.00	16.50	17.00

TABLE 2

PREDICTIONS OF SHP, RPM AND ALLIED DATA FOR THE 140-FOOT WYTM FULLY APPENDED REPRESENTED BY MODEL 5305 WITH PROPELLER 4665

DRAFT 11.0 FT EVEN BASELINE	PROPELLER DIAMETER 8.5 FT
TOWS	
.581	
DISPLACEMENT	NCE 0.0004
7	OWAL
6 &	ALL
EXPERIMENTS 6	CORRELATION ALLOWANCE 0.0004

ت ۾	1.090 1.090 1.085 1.075 1.050 1.050 1.010 1.010 1.015 1.035 1.035 1.035	1.015
r H	1.085 1.090 1.090 1.100 1.100 1.080 1.085 1.065 1.065 1.065	. 990
<u>د</u> 9	.505 .505 .505 .500 .500 .500 .500 .500	.420
1-t	. 820 . 820	795
$1-W_Q$	795 790 780 780 7780 775 775 775 775 775 775 775 775 775 77	.820
T _r	545 545 545 545 530 530 530 545 6495 6445 6445 6445 6445 6445 6445	.355
$1-W_{\mathrm{T}}$	755 750 750 750 745 745 760 760 760 775 770 770 790 790	. 805
S	600 600 600 600 600 500 500 500 500 500	.420
RPM	82.2 98.4 114.6 111.5 131.5 149.6 159.3 170.1 182.3 196.7 220.1 243.7 278.7 300.9 327.4 357.8	457.7
φ. S	33. 89. 137. 207. 207. 207. 410. 530. 648. 772. 909. 1350. 1350. 2210. 2230. 3960.	9260.
or En	20. 34. 54. 124. 124. 153. 370. 434. 593. 722. 1920. 1480.	3890.
s S	5.00 6.00 7.00 9.00 10.00 11.00	17.00

TABLE 3

FAIRED OPEN WATER CHARACTERISTICS

PROPELLER 4665 TEST 2

J	K. ^L	10KQ	η_{\circ}
.000	. 284	. 342	,000
.050	.268	.322	.066
.100	.251	.304	. 132
.150	.234	.286	. 195
.200	.217	.269	. 257
.250	.199	.252	. 314
.300	.181	.235	. 367
.350	.162	.217	. 415
.400	.142	.199	. 455
.450	.122	.131	. 485
•500	.102	.151	.504
•550	.081	.140	•505
.600	.059	.118	.478
.650	.03?	.094	. 404
.703	.014	.068	. 225
.733	0.300	.052	0.000

SHIP AND MODEL DATA MODEL 5336

mvc	4 8 4 0EG	SI		10:00	.98A	966.			
9.27	1.27 .51 .51 .51	COEFFICIENT	= .451 = 3.80 = 303.28 = 0.00	00.6	•955	-985	20.00	000-0	•050
RATIO = LWL) = K	LLWL = 1 LLWL = 1 LLWL = 1 CLWL = 1		×	8.00	906.	.957	19.50	.010	.152
EAR ORT (CLE	CIRCLE P XFB/LWL XFB/LPP XFF/LWL 1/2 ENT•	LPP	CP CP L/BX D-L FTE TTE	7.00	.831	.916	19.00	.034	•569
THE SHIP LIN V/SI	CIR XFBR XFBR 1/2			00•9	•729	•856	18.50	.110	.378
FOR			0.00 0.00 0.00 3.80 2.84 3.28	5.00	209.	•775	18.00	-202	.480
DEG. FW DFL 02 02 02 68	30 83FW 99 93		9	4.00	•458	.670	17.50	•306	.568
04 104 144 144	1868.9 51.87		59 LF/L = 62 LP/L = 62 LP/L = 63 L/RX = 63 RX/TX = 68 D-L = 376 CWS = 64	3.00	•304	*****	17.00	•415	•650
1756 AT	3	17.5		2.50	165.	87 • 46R	16.00	•614	.787
- 0:	12.0 666. 1 4460.	FICIE		2.09	.147	444	15.00	.782	• AA5
RATIO =	1. S	LWL COEFFICIENTS	CPE CVPA CVPF CMF ==	1.50	.083	H66.	14.00 1	. H99	.950
DENSITY F (LAL) FT (LPP) FT (HX) FT	(fX) FT T(UIS) TONS LAS • (S) SQ FT D (V) KTS	1		1.00	4E0.	£02.	13.00	£96°	5H6.
H (L)	· · · c		70	FTONS •50	.010	.104	STATIONS .00 12.00	£66°	466.
BARE HULL. DENSITY WE LENGTH (LML) FI LENGTH AR (LPP) FI PEAM AT AX (HX) FI	NGAFT AT AX (fX) FT DISPLACEMENT(!)IS)TONS LMS WFTTEN SURF. (S)SG FT DESIGN SPEED (V) KTS		# # # # # # # # # # # # # # # # # # #	FWO STATTONS	0.000 0.000 xe/a	0.0-0	11.30 1	1.000 B/ux	1.030

, %

ABBREVIATED LINES AND BODY PLAN
OF UNITED STATES COAST GUARD 140-FOOT WYTM

FITTING ROOM PHOTOGRAPHS OF MODEL 5336 REPRESENTING THE UNITED STATES COAST GUARD 140-FOOT WYTH

FIGURE 3

vad eleicience (\mathcal{Y}^{o}) THRUST COEFFICIENT (K_T) , TORQUE COEFFICIENT (LOKQ),

ADVANCE COEFFICIENT (J)

CHANGE OF LEVEL CURVES

FOR

USCG 140-FOOT WYTM

REPRESENTED BY MODEL 5336

EXPERIMENT	DISPLACEMENT	DRAFT	TRIM	
4 & 5	666 TONS	12 FT	EVEN BASELINE -	
6 & 7	581 TONS	11 FT	EVEN BASELINE -	

FIGURE 8

PSD 342337

PSD 342336

PSD 342340

PSD 342338

PSD 342339

WAVE PROFILE PHOTOGRAPHS OF MODEL 5336 REPRESENTING THE UNITED STATES COAST GUARD 140-FOOT WYTM

FIGURE 9

