Homework 2

September 22, 2021

Gabe Morris gnm54

```
[1]: # Importing packages that will be used throughout the document.
import matplotlib.pyplot as plt
from scipy.optimize import fsolve
import sympy as sp
import numpy as np
from mech import * # This package was created by me for this class.
plt.rcParams['figure.dpi'] = 300

import warnings
warnings.filterwarnings('ignore')
```

1 Problem 1

1.1 Part A

1.1.1 Limit Position 1

The value of x may be solved by the Law of Cosines. Then, the value of θ_4 may be solved by subtracting it from 180°. Finally, the value of θ_2 can be solved by the Law of Sines.

```
[2]: # Solving for the value of x
from sympy.solvers import solve
x = sp.Symbol('x')
solve(sp.Pow(180 + 520, 2) - sp.Pow(400, 2) - sp.Pow(400, 2) + 2*400*400*sp.
→cos(x), x)[0]
```

$$\boxed{2]: - a\cos\left(-\frac{17}{32}\right) + 2\pi}$$

```
[3]: # The value of x solved above is the conjugate. Here is the value of x:

x = sp.N(sp.acos(-17/32)*180/sp.pi)

x
```

[3]: 122.08995125628

[4]: 57.9100487437197

[5]: _{28.9550243718598}

1.1.2 Answers:

```
\theta_2 = 28.9550243718598^\circ \theta_4 = 57.9100487437197^\circ
```

1.1.3 Limit Position 2

This is the same process as above except this time, the side opposite to θ_4 is $r^3 - r^2$.

- [6]: # Solving for the value of x x2 = sp.N(sp.acos((340**2 - 400**2 - 400**2)/(-2*400*400))*180/sp.pi) x2
- [6]: 50.3013268250874
- [7]: # Solving for theta_4 th4_2 = 180 - x2 th4_2
- [7]: 129.698673174913
- [8]: # Solving for theta_2
 # You have to add 180 to get the value of the angle shown in the figure above.
 th2_2 = sp.N(sp.asin(400*sp.sin(th4_2*sp.pi/180)/340)*180/sp.pi) + 180
 th2_2
- [8]: _{244.849336587456}

1.1.4 Answers:

 $\theta_2 = 244.849336587456^{\circ}$

 $\theta_4 = 129.698673174913^{\circ}$

1.2 Part B

The rocker angle is the maximum angle of θ_4 minus the minimum θ_4 .

- [9]: th4_2 th4_1
- [9]: 71.7886244311929

1.2.1 Answer:

The rocker angle is 71.7886244311929°

2 Problem 2

Kinematic Diagram:

Defining Vectors and Joints for this mechanism:

```
[10]: 0, A, B, C, P = get_joints('OABCP')
a = Vector((0, A), length=2)
b = Vector((A, B), length=4.1)
c = Vector((C, B), length=3)
d = Vector((0, C), length=4, angle=0, ls='--', color='black')
e = Vector((A, P), length=2.5)
# Vector f is not shown in the figure but is the vector from 0 to P
mech = Mechanism(vectors=(a, b, c, d, e), input_vector=a)
```

Position Loop Equation:

$$\begin{cases} 2cos(\theta_2) + 4.1cos(\theta_3) - 3cos(\theta_4) - 4 = 0\\ 2sin(\theta_2) + 4.1sin(\theta_3) - 3sin(\theta_4) = 0 \end{cases}$$

Knowns: a, b, c, d, e, and θ_1 which is 0

Unknowns: θ_2 , θ_3 , and θ_4 , but θ_2 is the input angle

```
[11]: position_loop = lambda x, i: np.array((a.get_x(i) + b.get_x(x[0]) - c.

→get_x(x[1]) - d.length,

a.get_y(i) + b.get_y(x[0]) - c.

→get_y(x[1])))
```

2.1 $\theta_2 = 45^{\circ}$

```
[12]: # Solving for the values of theta_3 and theta_4 when theta_2 is 45 degrees
guess = np.deg2rad([20, 60])
solution = fsolve(position_loop, guess, args=(np.pi/4, ))
np.rad2deg(solution)
```

[12]: array([18.27915529, 64.16535766])

The position of point P can be determined by summing vectors a and e. The angle for vector e is $\theta_3 + 30^{\circ}$.

```
[13]: e.get_x(np.deg2rad(30) + solution[0])
e.get_y(np.deg2rad(30) + solution[0])
```

[13]: 1.8659902906492987

```
[14]: mech.fix_position() # This fixes the positions of all the joints.
mech.plot(cushion=0.5) # This produces a plot
mech.tables(position=True) # Displays tables
```


POSITION

	Length		•	•	x 	•	у
	2				1.4142135623730951		
R_AB	4.1	-	18.27915529442809		3.8931125568365097		1.2859528062109784
R_CB	3	-	64.16535766360016		1.307326119209602		2.7001663685840476
R_OC	4	-	0.0		4.0		0.0
R_AP	1 2.5	-	48.27915529442809		1.6637548603092185	1	1.8659902906492987

Joint	•	x 		J
	Ċ	1.4142135623730951	Ċ	
В	1	5.307326119209602		2.7001663685840476
C	Ι	4.0	ı	0.0

```
0 | 0 | 0 | 0
P | 3.0779684226823134 | 3.280203853022394
```

To prove that this is the correct answer, this method will calculate the distances between all the points so that we can see that they match the lengths provided.

```
[15]: mech.calculate()
```

Distances:

- 0 to A: 2.0
- A to B: 4.09999999999999
- C to B: 3.0000000000000004
- O to C: 4.0
- A to P: 2.5

```
[16]: # Getting vector A to P
f = a + e
f.get_length()
f
```

[16]: Vector(joints=(Joint(name=0), Joint(name=P))), length=4.498180401941702, angle=0.8171946078320964)

```
[17]: # Vector f angle in degrees
np.rad2deg(f.angle)
```

[17]: 46.82180206962757

2.1.1 Answers:

 $\theta_3 = 18.27915529442809^{\circ}$

 $\theta_4 = 64.16535766360016^{\circ}$

The angle of vector \overrightarrow{e} is $\theta_{AP} = 48.27915529442809^{\circ}$

The polor coordinates of the position vector from O to P is $(4.498180401941702, 46.82180206962757^{\circ})$

2.2
$$\theta_2 = 87^{\circ}$$

```
[18]: # Solving for the values of theta_3 and theta_4 when theta_2 is 87 degrees
mech.clear_joints()
guess = np.deg2rad([20, 60])
solution = fsolve(position_loop, guess, args=(np.deg2rad(87), ))
np.rad2deg(solution)
```

[18]: array([14.14093814, 88.46366837])

```
[19]: e.get_x(np.deg2rad(30) + solution[0])
e.get_y(np.deg2rad(30) + solution[0])
```

[19]: 1.7410643097965348

```
[20]: mech.fix_position()
mech.plot(cushion=0.5)
mech.tables(position=True)
```


POSITION

	Length	_	x	у
	2		0.10467191248588793	
R_AB	4.1	14.140938135101566	3.9757605844603874	1.0016625055632233
R_CB	3	88.46366836775566	0.08043249694627211	2.998921575072444
R_OC	4	0.0	4.0	0.0
R AP	1 2.5	l 44.140938135101564	1.7940722028816778	1.7410643097965348

Joint		x	•	У
	Ċ	0.10467191248588793	Ċ	
В	1	4.080432496946272		2.998921575072444
С	Ι	4.0	1	0.0

```
1.8987441153675657 | 3.7383233793056823
[21]: mech.calculate()
     Distances:
     - D to A: 1.99999999999998
     - A to B: 4.10000000000014
     - C to B: 3.0
     - O to C: 4.0
     - A to P: 2.5
[22]: f = a + e
      f.get_length()
      f
[22]: Vector(joints=(Joint(name=0), Joint(name=P))), length=4.192885748968891,
      angle=1.1008381471903976)
[23]: np.rad2deg(f.angle)
[23]: 63.07337976101109
     2.2.1 Answers:
     \theta_3 = 14.140938135101566^{\circ}
     \theta_4 = 88.46366836775566^{\circ}
     The angle of vector \overrightarrow{e} is \theta_{AP} = 44.140938135101564^{\circ}
     The polor coordinates of the position vector from O to P is (4.192885748968891,
     63.07337976101109°)
     2.3 \theta_2 = 134^{\circ}
[24]: # Solving for the values of theta 3 and theta 4 when theta 2 is 134 degrees
      mech.clear_joints()
      guess = np.deg2rad([20, 60])
      solution = fsolve(position_loop, guess, args=(np.deg2rad(134), ))
      np.rad2deg(solution)
[24]: array([ 16.73316184, 119.18573817])
[25]: e.get_x(np.deg2rad(30) + solution[0])
      e.get_y(np.deg2rad(30) + solution[0])
```

[25]: 1.8204239399750564

```
[26]: mech.fix_position()
mech.plot(cushion=0.5)
mech.tables(position=True)
```


POSITION

```
Vector | Length | Angle
R_OA
               | 134.0
                                    | -1.3893167409179947 | 1.4386796006773022
       1 2
R_AB
               | 16.733161844004133 | 3.9263896612363984 | 1.1804508579927901
R CB
               | 119.18573817282972 | -1.4629270796817053 | 2.619130458670197
R_{OC}
               0.0
                                    4.0
                                                         0.0
               | 46.73316184400413 | 1.713492538287136
                                                        1.8204239399750564
R_AP
```

[27]: mech.calculate()

Distances:

- O to A: 2.0
- A to B: 4.0999999999925
- C to B: 3.0 O to C: 4.0
- A to P: 2.5
- [28]: f = a + e
 f.get_length()
 f
- [29]: np.rad2deg(f.angle)
- [29]: 84.31960043112036

2.3.1 Answers:

 $\theta_3 = 16.733161844004133^\circ$

 $\theta_4=119.18573817282972^\circ$

The angle of vector \overrightarrow{e} is $\theta_{AP} = 46.73316184400413^{\circ}$

The polor coordinates of the position vector from O to P is $(3.275186381916708, 84.31960043112036^{\circ})$

3 Problem 3

The numbers in blue are the loop reference.

3.1 Knowns and Unknowns:

3.1.1 Answer:

A letter without the vector notation denotes a length. If the cell contains a variable then it is unknown.

Vector	Length	Angle
\overrightarrow{a}	2	θ_2
	10	θ_3 0°
\overrightarrow{c}	\mathbf{c}	0_{\circ}
\overrightarrow{d}	4	θ_4 90°
\overrightarrow{e}	e	90°
\overrightarrow{f}	8	$ heta_5 \ 0^\circ$
\overrightarrow{x}	3	0°

3.2 Vector Loops

3.2.1 Loop 1

$$\overrightarrow{a} - \overrightarrow{b} - \overrightarrow{c} = 0$$

3.2.2 Answer:

In the complex vector form:

$$ae^{i\theta_2} - be^{i\theta_3} - c = 0$$

Applying Euler's Identity and Magnitudes:

$$2cos(\theta_2) + 2isin(\theta_2) - 10cos(\theta_3) - 10isin(\theta_3) - c = 0$$

Collecting the real and imaginary terms, a system of equations may be defined:

11

$$\begin{cases} 2cos(\theta_2) - 10cos(\theta_3) - c = 0\\ 2sin(\theta_2) - 10sin(\theta_3) = 0 \end{cases}$$

3.2.3 Loop 2

$$\overrightarrow{e} + \overrightarrow{x} - \overrightarrow{f} - \overrightarrow{d} - \overrightarrow{a} = 0$$

3.2.4 Answer:

In the complex vector form:

$$ee^{90i} + x - fe^{i\theta_5} - de^{i\theta_4} - ae^{i\theta_2} = 0$$

Applying Euler's Identity and Magnitudes:

$$ie + 3 - 8cos(\theta_5) - 8isin(\theta_5) - 4cos(\theta_4) - 4isin(\theta_4) - 2cos(\theta_2) - 2isin(\theta_2) = 0$$

Collecting the real and imaginary terms, a system of equations may be defined:

$$\begin{cases} 3 - 8\cos(\theta_5) - 4\cos(\theta_4) - 2\cos(\theta_2) = 0\\ e - 8\sin(\theta_5) - 4\sin(\theta_4) - 2\sin(\theta_2) = 0 \end{cases}$$

3.3 Finding the Stroke of Point B

The stroke of point B is calculated by finding the maximum length of \overrightarrow{c} and subtracting the its minimum length. Because points O_2 and B are in-line, the maximum value occurs when θ_2 is 0° and the minimum occurs when θ_2 is 180° . This means that the maximum value is a+b=2+10=12in and the minimum value is b-a=10-2=8in.

3.3.1 Answer:

- $B_{max} = 12in$
- $B_{min} = 8in$
- $stroke = B_{max} B_{min} = 12 8 = 4in$

3.4 Finding B_x as a Function of θ_2

In order to obtain the length equation of \overrightarrow{c} in the x direction $(c_x = c = f(\theta_2))$, the position loop equation (loop 1) must be solved analytically. Here is the analytical solution: $c = 2cos(\theta_2) - 10cos(arcsin(\frac{1}{5}sin(\theta_2)))$.

3.4.1 Answer (Plotting the Function):

```
[30]: # Plotting on the interval from 0 to 2pi
f = lambda x: 2*np.cos(x)+10*np.cos(np.arcsin(0.2*np.sin(x)))
d = np.linspace(0, 2*np.pi, 1000)
plt.plot(d, f(d), color='maroon', \( \)
\[
\times \] label=r'$c=2cos(\theta_2)+10cos(arcsin(\frac{1}{5}\sin(\theta_2))$')
plt.legend()
plt.xlabel(r'$\theta_2$')
plt.ylabel(r'$c$ (in)')
```

plt.show()

Note: I changed it to + 10cos(arcsin...) so that we wouldn't see the crossed

→ solution from page 186.

3.5 Finding D_y as a Function of θ_2 BONUS

In order to find $e_y(\theta_2) = e(\theta_2)$, the relationship between θ_4 and θ_3 must be established from the Law of Cosines in the figure below. Also, notice that there is also this relationship between θ_3 and θ_2 from the first position loop equation: $\theta_3 = \arcsin(\frac{1}{5}\sin(\theta_2))$

From the above figure: $\alpha = \theta_4 + 180^{\circ} - \theta_3$.

```
[31]: # Solving for alpha using the law of cosines.
alpha = np.arccos((7**2-10**2-4**2)/(-2*4*10))
```

```
alpha # This is in radians
```

[31]: 0.5781043645663436

Now we can begin by using the loop 2 equations in this form:

$$\begin{cases} 8\cos(\theta_5) = 3 - 4\cos(\theta_4) - 2\cos(\theta_2) \\ 8\sin(\theta_5) = e - 4\sin(\theta_4) - 2\sin(\theta_2) \end{cases}$$

Now if you square both sides of the equation then add, the θ_5 terms go away via the pythagorean identity.

$$64 = (3 - 4\cos(\theta_4) - 2\cos(\theta_2))^2 + (e - 4\sin(\theta_4) - 2\sin(\theta_2))^2$$
$$e = \sqrt{64 - (3 - 4\cos(\theta_4) - 2\cos(\theta_2))^2} + 4\sin(\theta_4) + 2\sin(\theta_2)$$

With the above relationships between θ_2 , θ_3 , and θ_4 , e can now be determined as a function of θ_2 alone by substituting $\theta_4 = \alpha - \pi + \arcsin(\frac{1}{5}\sin(\theta_2))$.

3.6 Finding the Stroke of Point D BONUS

The stroke can be found by determining the maximum and minimum value of $e(\theta_2)$ and taking the difference between the two. Note: The length of e is the y value of point F.

3.6.1 Plotting $e(\theta_2)$ BONUS


```
[33]: # Getting the maximum and minimum values
e_max = np.max(e_values)
e_max
```

[33]: 11.448596166062995

```
[34]: e_min = np.min(e_values)
e_min
```

[34]: 8.809289404889084

```
[35]: stroke = e_max - e_min stroke
```

[35]: 2.639306761173911

3.6.2 Answers BONUS:

- $D_{max} = 11.448596166062995in$
- $D_{min} = 8.809289404889084in$
- stroke = 2.639306761173911in

4 Problem 4

4.1 Loop 1 Known and Unknowns

Vector	Length	Angle
\overrightarrow{a}	2	$-50\pi t$
\overrightarrow{b}	6	$\theta_3(t)$
\overrightarrow{x}	x(t)	60°

The $\theta_2(t)$ comes from integrating $\omega_2(t) = -1500 rmp = -50 \pi \frac{rad}{s}$

```
[36]: t = sp.Symbol('t')
t2 = sp.Symbol('theta_2')
t2_t = -50*sp.pi*t
x = sp.Symbol('x')
t3 = sp.Symbol('theta_3')

a, b = 2, 6
x_angle = sp.pi/3
```

4.2 Position Loop 1

$$\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{x} = 0$$

$$\begin{cases} 2\cos(\theta_2) + 6\cos(\theta_3) - x\cos(60) = 0\\ 2\sin(\theta_2) + 6\sin(\theta_3) - x\sin(60) = 0 \end{cases}$$

```
[37]: # Solving for x and theta_3 as functions of theta_2
p1 = a*sp.cos(t2) + b*sp.cos(t3) - x*sp.cos(x_angle)
p2 = a*sp.sin(t2) + b*sp.sin(t3) - x*sp.sin(x_angle)

p_loop1 = solve([p1, p2], (x, t3), dict=True)
p_loop1
```

```
[37]: [\{\text{theta}_3: -a\cos(-\sqrt{34} - 2*\cos(2*\text{theta}_2 + pi/3))/12 - \sqrt{3}*\cos(\text{theta}_2 + pi/3)\}]
       pi/6)/6) + 2*pi,
          x: -sqrt(34 - 2*cos(2*theta_2 + pi/3)) + 2*sin(theta_2 + pi/6)},
         \{\text{theta}_3: -\text{acos}(\text{sqrt}(34 - 2*\cos(2*\text{theta}_2 + \text{pi}/3))/12 - \text{sqrt}(3)*\cos(\text{theta}_2 + \text{pi}/3)\}\}
       pi/6)/6) + 2*pi,
          x: sqrt(34 - 2*cos(2*theta_2 + pi/3)) + 2*sin(theta_2 + pi/6)},
         \{\text{theta 3: acos}(-\text{sqrt}(34 - 2*\cos(2*\text{theta } 2 + \text{pi/3}))/12 - \text{sqrt}(3)*\cos(\text{theta } 2 + \text{pi/3})\}\}
       pi/6)/6),
          x: -sqrt(34 - 2*cos(2*theta_2 + pi/3)) + 2*sin(theta_2 + pi/6)},
         \{\text{theta}_3: acos(sqrt(34 - 2*cos(2*theta}_2 + pi/3))/12 - sqrt(3)*cos(theta}_2 + pi/3)\}
       pi/6)/6),
          x: sqrt(34 - 2*cos(2*theta_2 + pi/3)) + 2*sin(theta_2 + pi/6)}]
      I will chose the last solution because x and \theta_3 are positive for all values of \theta_2.
[38]: x_t2 = p_{1oop1}[-1][x] # x(theta_2)
       t3_t2 = p_{loop1}[-1][t3] # t3(theta_2)
       # Substituting -50pi*t in for theta_2
       x_t = x_t2.subs(t2, t2_t)
       t3_t = t3_t2.subs(t2, t2_t)
[39]: \# x \text{ as a function of time}
       x_t
       \sqrt{34 - 2\sin\left(100\pi t + \frac{\pi}{6}\right)} + 2\cos\left(50\pi t + \frac{\pi}{3}\right)
[39]:
[40]: # Theta_3 as a function of time
       t3_t
      a\cos\left(\frac{\sqrt{34 - 2\sin\left(100\pi t + \frac{\pi}{6}\right)}}{12} - \frac{\sqrt{3}\sin\left(50\pi t + \frac{\pi}{3}\right)}{6}\right)
[40]:
[41]: # Plotting x(t) and t3(t)
       x_t_lamb = sp.lambdify(t, x_t, modules=['numpy'])
       t3_t_lamb = sp.lambdify(t, t3_t, modules=['numpy'])
       d = np.linspace(0, 0.04, 1000)
       plt.plot(d, x_t_lamb(d), color='maroon', label=r'$x(t)$')
       plt.plot(d, t3_t_lamb(d), color='black', label=r'$\theta_3(t)$')
       plt.legend()
       plt.xlabel(r'$t(s)$')
       plt.ylim(0, 9)
       plt.grid()
       plt.show()
```


4.2.1 Acceleration at Point B Answer:

Just from this information alone, the acceleration of point B can now be determined.

$$\overrightarrow{a_B} = \overrightarrow{a_{BO}} + \overrightarrow{a_O}$$

The acceleration of point O is zero.

$$\overrightarrow{a_B} = \overrightarrow{a_{BO}}$$

Since the acceleration from O to B is purely translational, $\overrightarrow{a_{BO}} = \ddot{x}$. Therefore, $\overrightarrow{a_B} = \ddot{x}$.

[42]: # Getting the 2nd order derivative of x with respect to time $x_t_{-} = x_t.diff(t, 2)$ # Two underscores at the end of the variable declaration denotes a second order derivative x_t_{-}

$$2500\pi^{2} \left(-2\cos\left(\pi\left(50t + \frac{1}{3}\right)\right) + \frac{2\sqrt{2}\sin\left(\pi\left(100t + \frac{1}{6}\right)\right)}{\sqrt{17 - \sin\left(\pi\left(100t + \frac{1}{6}\right)\right)}} - \frac{\sqrt{2}\cos^{2}\left(\pi\left(100t + \frac{1}{6}\right)\right)}{\left(17 - \sin\left(\pi\left(100t + \frac{1}{6}\right)\right)\right)^{\frac{3}{2}}} \right)$$

4.2.2 Another Way to Get the Answer

The acceleration of B can also be found by using this path:

$$\overrightarrow{a_B} = \overrightarrow{a_{AB}} + \overrightarrow{a_A}$$

Now we must find $\overrightarrow{a_A}$ which is equal to $\overrightarrow{a_{OA}}$. Because $\alpha_2 = 0$, the acceleration will only consist of the radial component.

```
\overrightarrow{a_A} = -2\omega_2^2 e^{i\theta_2}
```

```
[43]: # Getting acceleration of point A in the cartesian form.

e1 = lambda x: sp.Matrix([sp.cos(x), sp.sin(x)]) # Returns <sin(theta), □

cos(theta)>

e2 = lambda x: sp.Matrix([-sp.sin(x), sp.cos(x)]) # Returns <-sin(theta), □

cos(theta)>

mag = lambda m: sp.sqrt(m[0]**2 + m[1]**2) # Returns the magnitude of a vector

A_vector = -a*t2_t.diff(t)**2*e1(t2_t)

A_vector
```

- [43]: $\begin{bmatrix} -5000\pi^2 \cos(50\pi t) \\ 5000\pi^2 \sin(50\pi t) \end{bmatrix}$
- [44]: mag(A_vector).simplify() # Just making sure that this is working
- [44]: $5000\pi^2$

Now the value of $\overrightarrow{a_{AB}}$ can be considered. Since the vector from A to B is pure rotation, the following is true:

$$\overrightarrow{a_{AB}} = 6\alpha_3 i e^{i\theta_3} - 6\omega_3^2 e^{i\theta_3}$$

```
[45]: # Getting the acceleration vector from A to B
AB_vector = b*t3_t.diff(t, 2)*e2(t3_t) - b*t3_t.diff(t)**2*e1(t3_t)

# Summing the two vectors
B_vector = AB_vector + A_vector
B_other = mag(B_vector)

# Plotting the two functions to compare
B_other_lamb = sp.lambdify(t, B_other, modules=['numpy'])
x_t__lamb = sp.lambdify(t, x_t__, modules=['numpy'])

plt.plot(d, B_other_lamb(d), color='black', label='Relative Acceleration_u
--Method')
plt.plot(d, x_t__lamb(d), color='maroon', label=r"$x''(t)=a_{B}(t)$")
plt.legend()
plt.xlabel(r'$t(s)$')
plt.grid()
plt.show()
```


As seen from above, the two methods agree with each other. The relative acceleration is a magnitude which is why all the values are above 0.

4.3 Loop 2 Known and Unkowns

Vector	Length	Angle
\overrightarrow{a}	2	$-50\pi t$
\overrightarrow{C}	2	$\theta_4(t)$
\overrightarrow{y}	5	$\theta_5(t)$
\overrightarrow{d}	d(t)	120°

```
[46]: # Solving for gamma via law of cosines
gamma = sp.acos((6**2 - 6**2 - 2**2)/(-2*6*2))
gamma
```

[46]: 1.40334824757521

```
[47]: t4_t = t3_t + gamma
t4, t5, d = sp.symbols('theta_4 theta_5 d')

d_angle = 2*sp.pi/3
c, y = 2, 5
```

4.4 Position Loop 2

$$\overrightarrow{d} + \overrightarrow{c} + \overrightarrow{y} - \overrightarrow{d} = 0$$

$$\begin{cases} 2\cos(\theta_2) + 2\cos(\theta_4) + 5\cos(\theta_5) - d\cos(120) = 0\\ 2\sin(\theta_2) + 2\sin(\theta_4) + 5\sin(\theta_5) - d\sin(120) = 0 \end{cases}$$

```
[48]: # Solving the system for d and theta_5
p3 = a*sp.cos(t2_t) + c*sp.cos(t4_t) + y*sp.cos(t5) - d*sp.cos(d_angle)
p4 = a*sp.sin(t2_t) + c*sp.sin(t4_t) + y*sp.sin(t5) - d*sp.sin(d_angle)

# p_loop2 = solve([p3, p4], (d, t5), dict=True, quick=True)
# p_loop2
```

4.4.1 Acceleration of Point D Answer

I tried running the above cell, but sympy cannot handle solving this symbolically. Nevertheless, the solution of that system would get d(t) then differentiating with respect to time twice would get the acceleration of point D because $\overrightarrow{a_D} = \overrightarrow{a_{OD}} + \overrightarrow{a_O}$. With $\overrightarrow{a_O}$ being equal to zero, that would mean that $\overrightarrow{a_{OD}} = \overrightarrow{a_D}$ and $\overrightarrow{a_{OD}}$ is purely translational. This is similar to the way the acceleration of point B was solved.

The above system can be solved for d(t) by hand. First, place the system in this form:

$$\begin{cases} 2cos(\theta_2) + 2cos(\theta_4) - dcos(120) = -5cos(\theta_5) \\ 2sin(\theta_2) + 2sin(\theta_4) - dsin(120) = -5sin(\theta_5) \end{cases}$$

Now if you square both sides then add the two equations, the θ_5 can be eliminated via Pythagorean Identity. This results in an equation with d as the only unknown.

$$(2\cos(\theta_2) + 2\cos(\theta_4) - d\cos(120))^2 + (2\sin(\theta_2) + 2\sin(\theta_4) - d\sin(120))^2 = 25$$

Sympy will solve for d in the cell below. This will result in a function of time.

```
[49]: # Solving for d as a function of time

d_solutions = solve((2*sp.cos(t2_t) + 2*sp.cos(t4_t) - d*sp.cos(d_angle))**2 +

(2*sp.sin(t2_t) + 2*sp.sin(t4_t) - d*sp.sin(d_angle))**2 - 25, d, dict=True)

# d_solutions Suppressing this output because it's too large
```

```
[50]: d_t = d_solutions[1][d]
# d_t Suppressing this output because it's too large
```

The acceleration of d is \ddot{d} .

```
[51]: # getting the acceleration of point d as a function of time
d_t__ = d_t.diff(t, 2)
# d_t__ I am suppressing this output because it's too large
```

```
[52]: # Plotting the acceleration of point D
d_t__lamb = sp.lambdify(t, d_t__, modules=['numpy'])
period = np.linspace(0, 0.04, 1000)

plt.plot(period, d_t__lamb(period), color='maroon', label=r'$a_{D}(t)$')
plt.grid()
plt.legend()
plt.xlabel(r'$t(s)$')
plt.show()
```


4.4.2 Acceleration of Point C Answer

The acceleration of point C, however, can be solved by using relative acceleration with the already solved information. Consider the following relative acceleration equation:

$$\overrightarrow{a_C} = \overrightarrow{a_{AC}} + \overrightarrow{a_A}$$

 $\overrightarrow{a_A}$ was solved earlier, but since $\overrightarrow{a_{AC}}$ is purely rotational, the following is true: $\overrightarrow{a_{AC}} = 2\alpha_3 i e^{i(\theta_3 + \gamma)} - 2\omega_3^2 e^{i(\theta_3 + gamma)}$

```
[53]: # Calculating the acceleration of point C

C_vector = c*t4_t.diff(t, 2)*e2(t4_t) - c*t4_t.diff(t)**2*e1(t4_t) + A_vector

# mag(C_vector) Suppressing this output because it's too large
```

This solution is ugly, but graphing it will show that it is correct.

```
[54]: # Plotting acceleration of point C
C_vector_lamb = sp.lambdify(t, mag(C_vector), modules=['numpy'])
time = np.linspace(0, 0.04, 1000) # This is the period
plt.plot(time, C_vector_lamb(time), label=r"$a_C(t)$", color='maroon')
plt.plot(time, x_t__lamb(time), label=r"$a_B(t)$", color='deepskyblue')
plt.legend()
plt.grid()
plt.xlabel(r'$t(s)$')
plt.show()
```


5 Problem 5

5.1 Known and Unkown Quantities

Vector	Length	Angle
\overrightarrow{a}	2.5	θ_4
\overrightarrow{b}	8.4	θ_3
\overrightarrow{c}	12.5	0°
\overrightarrow{d}	5	θ_2
\overrightarrow{e}	2.4	θ_3
$\overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \overrightarrow{d} \overrightarrow{e} \overrightarrow{f} \overrightarrow{g} \overrightarrow{h} \overrightarrow{i} \overrightarrow{j} \overrightarrow{k}$	8.9	θ_5
\overrightarrow{g}	3.2	θ_6
\overrightarrow{h}	10.5	90°
\overrightarrow{i}	3	θ_5
\overrightarrow{j}	6.4	θ_7
\overrightarrow{k}	k	150°
\overrightarrow{l}	1.2	00

There are 6 unknowns (excluding θ_4 because it's postion is the input) and each loop provides 2 equations which means that there are 6 equations, making this a consistent system.

5.2 Finding the Limit Position of θ_4

The linkage system for loop 1 is not a Grashof linkage.

```
[55]: 2.5 + 12.5 < 8.4 + 5
```

[55]: False

The maximum value of θ_4 occurs when \overrightarrow{d} and \overrightarrow{b} are co-linear. The Law of Cosines could be used to determine this value, but a position loop could also solve it.

```
[56]: # Creating the limit position
      A, B = get_joints('AB')
      02, 04 = Joint('02'), Joint('04')
      a_limit = Vector((04, B), length=2.5)
      b_limit = Vector((A, B), length=8.4)
      c_limit = Vector((04, 02), length=12.5, angle=0, ls='--', color='black')
      d_limit = Vector((02, A), length=5)
      limit = Mechanism(vectors=(a_limit, b_limit, c_limit, d_limit),__
       →input_vector=a_limit)
      # Implementing the position loop equation
      limit_position_loop = lambda x: np.array([a_limit.get_x(x[0]) - b_limit.
       \rightarrowget_x(x[1]) - d_limit.get_x(x[1]) - c_limit.length,
                                                 a_limit.get_y(x[0]) - b_limit.
       \rightarrowget_y(x[1]) - d_limit.get_y(x[1])])
      solution = fsolve(limit_position_loop, np.deg2rad([120, 160]))
      np.rad2deg(solution)
```

```
[56]: array([105.8404803, 169.66039052])
```

```
[57]: limit.fix_position()
    limit.plot()
    limit.tables(position=True)
```


POSITION

```
Vector | Length | Angle
R_04B | 2.5
               | 105.84048029945892 | -0.68239999999741 | 2.4050634586222532
R_AB
               | 169.66039051940945 | -8.26359402985071
      8.4
                                                          1.5076517203305604
R 0402 | 12.5
               0.0
                                    l 12.5
                                                          0.0
R_02A | 5
               | 169.66039051940945 | -4.918805970149232 | 0.8974117382920002
Joint | x
                           Ιу
      7.581194029850735
                           1 0.8974117382916929
Α
В
     | -0.682399999999741 | 2.4050634586222532
                           0.0
02
     | 12.5
04
     1 0
                           10
```

From the above data, $\theta_4 = 105.84048029945892^{\circ}$. Lets calculate the other limit position to check if the solution half way between 0° and θ_4 max exists.

```
[58]: A, B = get_joints('AB')

02, 04 = Joint('02'), Joint('04')

a_limit = Vector((04, B), length=2.5)

b_limit = Vector((B, A), length=8.4)

c_limit = Vector((04, 02), length=12.5, angle=0, ls='--', color='black')

d_limit = Vector((02, A), length=5)

limit2 = Mechanism(vectors=(a_limit, b_limit, c_limit, d_limit),___

input_vector=a_limit)

limit_2 = lambda x: np.array([a_limit.get_x(x[0]) + b_limit.get_x(x[0]) -___

d_limit.get_x(x[1]) - c_limit.length,

a_limit.get_y(x[0]) + b_limit.get_y(x[0]) -___

d_limit.get_y(x[1])])
```

```
solution = fsolve(limit_2, np.deg2rad([50, 40]))
np.rad2deg(solution)
```

[58]: array([23.41489115, 119.96824853])

[59]: # The solution is possible because theta_4 is 23.41 degrees which is less than_□

→half of its max

limit2.fix_position()

limit2.plot()


```
[60]: # Getting the half way point between 0 and theta_4's limit position t4 = 105.84048029945892/2 t4
```

[60]: 52.92024014972946

5.3 Position Analysis

Position Loop Equations:

$$\begin{cases} 2\cos(52.92^{\circ}) + 8.4\cos(\theta_{3}) - 5\cos(\theta_{2}) - 12.5 = 0\\ 2\sin(52.92^{\circ}) + 8.4\sin(\theta_{3}) - 5\sin(\theta_{2}) = 0\\ 8.9\cos(\theta_{5}) - 3.2\cos(\theta_{6}) + 5\cos(\theta_{2}) - 2.4\cos(\theta_{3}) = 0\\ 8.9\sin(\theta_{5}) - 3.2\sin(\theta_{6}) - 10.5 + 5\sin(\theta_{2}) - 2.4\sin(\theta_{3}) = 0\\ 6.4\cos(\theta_{7}) - k\cos(150^{\circ}) + 3.2\cos(\theta_{6}) - 3\cos(\theta_{5}) = 0\\ 6.4\sin(\theta_{7}) - k\sin(150^{\circ}) - 1.2 + 3.2\sin(\theta_{6}) - 3\sin(\theta_{5}) = 0 \end{cases}$$

```
[61]: # Defining the mechanism
      A, B, C, D, E, F, G = get_joints('ABCDEFG')
      02, 04, 06 = Joint('02'), Joint('04'), Joint('06')
      a = Vector((04, B), length=2.5)
      b = Vector((B, A), length=8.4)
      c = Vector((04, 02), length=12.5, angle=0, ls='--', color='black')
      d = Vector((02, A), length=5)
      e = Vector((C, A), length=2.4, show=False)
      f = Vector((C, E), length=8.9)
      g = Vector((06, E), length=3.2)
      h = Vector((02, 06), length=10.5, angle=np.pi/2, ls='--', color='black')
      i = Vector((D, E), length=3, show=False)
      j = Vector((D, F), length=6.4)
      k = Vector((G, F), angle=np.deg2rad(150), ls=':', color='black')
      1 = Vector((06, G), length=1.2, angle=np.pi/2, ls=':', color='black')
      mechanism = Mechanism(vectors=(a, b, c, d, e, f, g, h, i, j, k, 1), u
      →input_vector=a, omega=-30, alpha=0)
      order = ('Theta 2', 'Theta 3', 'Theta 5', 'Theta 6', 'Theta 7', 'k')
      position_loops = lambda t: np.array([
          a.get_x(np.deg2rad(t4)) + b.get_x(t[1]) - d.get_x(t[0]) - c.length,
          a.get_y(np.deg2rad(t4)) + b.get_y(t[1]) - d.get_y(t[0]),
          f.get_x(t[2]) - g.get_x(t[3]) + d.get_x(t[0]) - e.get_x(t[1]),
          f.get_y(t[2]) - g.get_y(t[3]) - h.length + d.get_y(t[0]) - e.get_y(t[1]),
          j.get_x(t[4]) - k.get_unknown_length(t[5])*np.cos(k.angle) + g.get_x(t[3])u
       \rightarrow i.get_x(t[2]),
          j.get_y(t[4]) - k.get_unknown_length(t[5])*np.sin(k.angle) - 1.length + g.
      \rightarrowget_y(t[3]) - i.get_y(t[2]),
      ])
      guess = np.concatenate((np.deg2rad([120, 20, 70, 170, 120]), np.array([7])))
      p_loop = fsolve(position_loops, guess)
      p_loop
[61]: array([2.17998043, 0.25342828, 1.29821101, 2.62870235, 1.94696281,
             6.86701739])
[62]: mechanism.fix_position()
      mechanism.plot(cushion=2)
      mechanism.tables(position=True, to five=True)
```


POSITION

Vector	Length	Angle	x	l у
R_0206 R_DE R_DF R_GF	5.00000 2.40000 8.90000 3.20000 10.50000 3.00000 6.40000 6.86702	52.92024 14.52037 0.00000 124.90368 14.52037 74.38201 150.61355 90.00000 74.38201 111.55275 150.00000	1.50732 8.13169 12.50000 -2.86099 2.32334 2.39608 -2.78826 0.00000 0.80767 -2.35109 -5.94701	1.99449 2.10608 0.00000 4.10058 0.60174 8.57140 1.57023 10.50000 2.88923 5.95251 3.43351
R_06G	1.20000	90.00000	0.00000	1.20000
Joint	х	l ;	у	
A	9.639007389	965331 -	4.1005757258	363581
В І	1.507315494	15133524	1.994492416	6313514
C I	7.315666849	9322855	3.4988376360	0150624
D I	8.904077792	2318697	9.180998376	100744
E I	9.711744373	3503024	12.070232650	0720582

```
F | 6.552988491303877 | 15.133508695172324
G | 12.49999999972339 | 11.699999999768787

02 | 12.5 | 0.0

04 | 0 | 0

06 | 12.5 | 10.5
```

[63]: # Checking the distances mechanism.calculate()

```
Distances:
```

- 04 to B: 2.5
- B to A: 8.39999998982823
- 04 to 02: 12.5
- 02 to A: 5.0
- C to A: 2.399999998982824
- C to E: 8.9
- 06 to E: 3.2000000025126614
- 02 to 06: 10.5
- D to E: 3.0
- D to F: 6.399999999999995 - G to F: 6.867017390807077
- 06 to G: 1.19999999768787

5.4 Velocity Analysis

The velocity analysis will consist of the same loops defined earlier. Every unkown angle defined will now have an unkown angular velocity corresponding to the same number. \overrightarrow{k} will only have an uknown slip velocity.

From the position analysis, all the values of θ_n are known.

$$\omega_4 = -30 \frac{rad}{s}$$

```
\begin{cases} 2.5(-30)(-sin(52.92^{\circ})) + 8.4\omega_{3}(-sin(\theta_{3})) - 5\omega_{2}(-sin(\theta_{3})) = 0 \\ 2.5(-30)(cos(52.92^{\circ})) + 8.4\omega_{3}(cos(\theta_{3})) - 5\omega_{2}(cos(\theta_{3})) = 0 \\ 8.9\omega_{5}(-sin(\theta_{5})) - 3.2\omega_{6}(-sin(\theta_{6})) + 5\omega_{2}(-sin(\theta_{2})) - 2.4\omega_{3}(-sin(\theta_{3})) = 0 \\ 8.9\omega_{5}(cos(\theta_{5})) - 3.2\omega_{6}(cos(\theta_{6})) + 5\omega_{2}(cos(\theta_{2})) - 2.4\omega_{3}(cos(\theta_{3})) = 0 \\ 6.4\omega_{7}(-sin(\theta_{7})) - \dot{k}cos(150^{\circ}) + 3.2\omega_{6}(-sin(\theta_{6})) - 3\omega_{5}(-sin(\theta_{5})) = 0 \\ 6.4\omega_{7}(cos(\theta_{7})) - \dot{k}sin(150^{\circ}) + 3.2\omega_{6}(cos(\theta_{6})) - 3\omega_{5}(cos(\theta_{5})) = 0 \end{cases}
```

```
[64]: a_v, b_v, c_v, d_v, e_v, f_v, g_v, h_v, i_v, j_v, k_v, l_v = mechanism.

→get_velocities()

order2 = ('Omega 2', 'Omega 3', 'Omega 5', 'Omega 6', 'Omega 7', 'k_dot')

velocity_loops = lambda x: np.array([
    a_v.tan_x(a_v.omega) + b_v.tan_x(x[1]) - d_v.tan_x(x[0]),
```

```
a_v.tan_y(a_v.omega) + b_v.tan_y(x[1]) - d_v.tan_y(x[0]),
f_v.tan_x(x[2]) - g_v.tan_x(x[3]) + d_v.tan_x(x[0]) - e_v.tan_x(x[1]),
f_v.tan_y(x[2]) - g_v.tan_y(x[3]) + d_v.tan_y(x[0]) - e_v.tan_y(x[1]),
j_v.tan_x(x[4]) - k_v.slip_x(x[5]) + g_v.tan_x(x[3]) - i_v.tan_x(x[2]),
j_v.tan_y(x[4]) - k_v.slip_y(x[5]) + g_v.tan_y(x[3]) - i_v.tan_y(x[2]),
])

guess = np.array([15, 15, 30, 12, 30, 3])
v_loop = fsolve(velocity_loops, guess)
mechanism.fix_velocity()
mechanism.plot(velocity=True, cushion=2)
mechanism.tables(velocity=True, to_five=True)
```


VELOCITY

`	g Ang			·
	.00000 322			
V_BA 76	.08683 104	.52037 -	-19.07681	73.65650
V_0402 0.0	00000 90.	00000 0	0.00000	0.00000
V_02A 49	.69785 34.	90368 4	40.75796	28.43704
V_CA 21	.73909 104	.52037 -	-5.45052	21.04472
V_CE 37	.71928 164	.38201 -	-36.32661	10.15487
V_06E 20	.13840 60.	61355 9	9.88187	17.54719

V_0206 0.00000 90.00000 V_DE 12.71436 164.38201 V_DF 29.74448 201.55275 V_GF 6.39467 150.00000 V_06G 0.00000 90.00000	0.00000 0.00000 -12.24493 3.42299 -27.66474 -10.92687 -5.53795 3.19734 0.00000 0.00000
Vector Omega Slip Vel	
V_04B	
Joint Mag Angle	х ју
A 49.69785 34.90368 B 75.00000 322.92024 C 46.79605 9.08903 D 26.25049 32.55132 E 20.13840 60.61355 F 6.39467 150.00000 G 0.00000 90.00000 O2 0.00000 90.00000 O4 0.00000 90.00000 O6 0.00000 90.00000	46.20848 7.39232 22.12679 14.12420 9.88187 17.54719 -5.53795 3.19734 0.00000 0.00000

5.4.1 Velocity of Link 8 Answer

The velocity of link 8 is $6.39467\frac{units}{s}$

5.5 Acceleration Analysis

Similarly to the velocity analysis, only the angular accelerations for all the vectors are unkown except for \vec{k} which has an unkown slip acceleration \ddot{k} . The value of \ddot{k} is the acceleration of link 8.

$$\alpha_4 = 0 \frac{rad}{s^2}$$

Look at the set up for the acceleration loop equation in the code below. All vectors will only have a normal and tangental component of acceleration with the exception of \vec{k} .

```
[65]: a_a, b_a, c_a, d_a, e_a, f_a, g_a, h_a, i_a, j_a, k_a, l_a = mechanism.
                                   →get_accelerations()
                               order3 = ('Alpha 2', 'Alpha 3', 'Alpha 5', 'Alpha 6', 'Alpha 7', 'k_ddot')
                               acceleration_loops = lambda x: np.array([
                                                    a_a.normal_tan_x(a_a.alpha) + b_a.normal_tan_x(x[1]) - d_a.
                                   \rightarrownormal_tan_x(x[0]),
                                                    a_a.normal_tan_y(a_a.alpha) + b_a.normal_tan_y(x[1]) - d_a.
                                   \rightarrownormal_tan_y(x[0]),
                                                   f_a.normal_tan_x(x[2]) - g_a.normal_tan_x(x[3]) + d_a.normal_tan_x(x[0]) - d_a.normal_tan_x(x[
                                    \rightarrowe_a.normal_tan_x(x[1]),
                                                   f_a.normal_tan_y(x[2]) - g_a.normal_tan_y(x[3]) + d_a.normal_tan_y(x[0]) - d_a.normal_tan_y(x[
                                   \rightarrowe_a.normal_tan_y(x[1]),
                                                    j_a.normal_tan_x(x[4]) - k_a.slip_x(x[5]) + g_a.normal_tan_x(x[3]) - i_a.
                                   \rightarrownormal_tan_x(x[2]),
                                                   j a.normal_tan_y(x[4]) - k_a.slip_y(x[5]) + g a.normal_tan_y(x[3]) - i_a.
                                   \rightarrownormal_tan_y(x[2])
                               ])
                               guess = np.array([10, 10, 30, -30, 20, 10])
                               a_loop = fsolve(acceleration_loops, guess)
                               mechanism.fix_acceleration()
                               mechanism.plot(acceleration=True)
                               mechanism.tables(acceleration=True, to_five=True)
```


ACCELERATION

Vector	Mag	Angle	x	I у
A_02A A_CA A_CE A_06E A_0206 A_DE	2250.00000 690.38940 0.00000 2843.11552 197.25412 762.80051 2572.93540 0.00000 257.12377 3404.97848 2121.04337 0.00000	232.92024 197.89664 90.00000 224.90928 197.89664 332.28495 243.43693 90.00000 332.28495 19.22594 330.00000 90.00000	-1356.58395 -656.98313 0.00000 -2013.56707 -187.70947 675.28555 -1150.57205 0.00000 227.62434 3215.07384 1836.87744 0.00000	-1795.04317 -212.15724 0.00000 -2007.20042 -60.61635 -354.75913 -2301.34320 0.00000 -119.58173 1121.23978 -1060.52169 0.00000
	+		-	
A_02A A_CA A_CE A_06E A_0206	0.00000 -4.84036 0.00000 559.97479 -4.84036 -83.80469 803.06630 0.00000 -83.80469 -531.58924 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -2121.0433	.7	
Joint	Mag +-	Angle	x	l у +
A B C D F G G G G G G G G G	2843.11552 2250.00000 2668.88470 2580.60233 2572.93540 2121.04337 0.00000 0.00000 0.00000	224.90928 232.92024 226.83297 237.71982 243.43693 330.00000 90.000000 90.000000 90.000000	-2013.56707 -1356.58395 -1825.85761 -1378.19640 -1150.57205 1836.87744 0.00000 0.00000	-2007.20042 -1795.04317 -1946.58406 -2181.76146 -2301.34320 -1060.52169 0.00000 0.00000
06	0.00000	90.00000	0.00000	0.00000

5.5.1 Acceleration of Link 8 Answer

The magnitude of the acceleration of link 8 is $2121.04337\frac{units}{s^2}$