Linear Classification: Probabilistic Generative Models

Sargur N. Srihari
University at Buffalo, State University of New York
USA

Linear Classification using Probabilistic Generative Models

- Topics
 - 1. Overview (Generative vs Discriminative)
 - 2. Bayes Classifier
 - using Logistic Sigmoid and Softmax
 - 3. Continuous inputs
 - Gaussian Distributed Class-conditionals
 - Parameter Estimation
 - 4. Discrete Features
 - 5. Exponential Family

Overview of Methods for Classification

1. Generative Models (Two-step)

- 1. Infer class-conditional densities $p(\mathbf{x}|C_k)$ and priors $p(C_k)$
- 2. Use Bayes theorem to determine posterior probabilities

$$p(C_k \mid \boldsymbol{x}) = \frac{p(\boldsymbol{x} \mid C_k)p(C_k)}{p(\boldsymbol{x})}$$

2. Discriminative Models (One-step)

- Directly infer posterior probabilities $p(C_k|\mathbf{x})$

Decision Theory

In both cases use decision theory to assign each new x to a class

Generative Model

- Model class conditionals $p(\boldsymbol{x}|C_k)$, priors $p(C_k)$
- Compute posteriors $p(C_k|\mathbf{x})$ from Bayes theorem
- Two class Case
- Posterior for class C_1 is

$$p(C_1 | \mathbf{x}) = \frac{p(\mathbf{x} | C_1) p(C_1)}{p(\mathbf{x} | C_1) p(C_1) + p(\mathbf{x} | C_2) p(C_2)}$$

$$= \frac{1}{1 + \exp(-a)} = \sigma(a) \text{ where } a = \ln \frac{p(\mathbf{x} | C_1) p(C_1)}{p(\mathbf{x} | C_2) p(C_2)}$$
LLR with Bayes odds

Since
$$p(x) = \sum_{i} p(x, C_i) = \sum_{i} p(x|C_i)p(C_i)$$

Logistic Sigmoid Function

Sigmoid: "S"-shaped or squashing function maps real a ϵ $(-\infty, +\infty)$ to finite (0,1) interval

Note: Dotted line is scaled probit function cdf of a zero-mean unit variance Gaussian

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

Property: $\sigma(-a) = 1 - \sigma(a)$

Inverse: $a = \ln \left(\frac{\sigma}{1 - \sigma} \right)$

If $\sigma(a) = P(C_1 | x)$ then Inverse represents

$$\ln[p(C_1|\boldsymbol{x})/p(C_2|\boldsymbol{x})]$$

Log ratio of probabilities called logit or log odds

Generalizations and Special Cases

- More than 2 classes
- Gaussian Distribution of x
- Discrete Features
- Exponential Family

Softmax: Generalization of logistic sigmoid

- For K=2 we used logistic sigmoid
 - $p(C_1|x) = \sigma(a)$ where $a = \ln \frac{p(x|C_1)p(C_1)}{p(x|C_2)p(C_2)}$ Log ratio of probabilities

$$a = \ln \frac{p(\boldsymbol{x} \mid C_{_{\! 1}}) p(C_{_{\! 1}})}{p(\boldsymbol{x} \mid C_{_{\! 2}}) p(C_{_{\! 2}})}$$

• For K > 2, we can use its generalization

$$\begin{split} p(C_k \mid \boldsymbol{x}) &= \frac{p(\boldsymbol{x} \mid C_k) p(C_k)}{\sum_{j} p(\boldsymbol{x} \mid C_j) p(C_j)} \quad \frac{\text{If } p(C_k)}{\sum_{j} p(\boldsymbol{x} \mid C_j) p(C_j)} \\ &= \frac{\exp(a_k)}{\sum_{j} \exp(a_j)} \end{split}$$

$$\begin{split} p(C_k \mid \boldsymbol{x}) &= \frac{p(\boldsymbol{x} \mid C_k) p(C_k)}{\sum_j p(\boldsymbol{x} \mid C_j) p(C_j)} \\ &= \frac{\exp(a_k)}{\sum_j \exp(a_j)} \end{split} \quad \begin{aligned} &\text{If } K = 2 \text{ this reduces to a sigmoid} \\ &p(C_1 \mid \boldsymbol{x}) = \exp(a_1) / \left[\exp(a_1) + \exp(a_2) \right] \\ &= 1 / \left[1 + \exp\left(\ln p(\boldsymbol{x} \mid C_2) p(C_2) - \ln(\boldsymbol{x} \mid C_1) p(C_1) \right] \\ &= 1 / \left[1 + \exp\left(\ln p(\boldsymbol{x} \mid C_2) p(C_2) / p(\boldsymbol{x} \mid C_1) p(C_1) \right] \\ &= 1 / \left[1 + \exp\left(-a \right) \right] \text{ where} \\ &= 1 / \left[1 + \exp\left(-a \right) \right] \text{ where} \\ &= 1 / \left[1 + \exp\left(-a \right) \right] \end{aligned}$$

- Quantities a_k are defined by $a_k = \ln p(\mathbf{x}|C_k)p(C_k)$
- Known as the soft-max function
 - Since it is a smoothed max function
 - If $a_k >> a_j$ for all $j \neq k$ then $p(C_k | \boldsymbol{x}) = 1$ and 0 for rest
 - A general technique for finding max of several a_k

Specific forms of class-conditionals

- We will next see that linear classifiers occur both in continuous and discrete cases as consequences of choosing specific forms of the class-conditional densities $p(\boldsymbol{x}|C_k)$
- Looking first at continuous input variables x
- Then discussing discrete inputs

Srihari

Continuous Inputs: Gaussians

 Assume Gaussian class-conditional densities with same covariance matrix Σ

$$p(\boldsymbol{x} \mid C_k) = \frac{1}{(2\pi)^{D/2}} \frac{1}{\left|\boldsymbol{\Sigma}\right|^{1/2}} \exp \left\{-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_k)\right\}$$

- Consider first two-class case.
 - Substituting into $p(C_1 \mid \boldsymbol{x}) = \sigma \left(\ln \frac{p(\boldsymbol{x} \mid C_1)p(C_1)}{p(\boldsymbol{x} \mid C_2)p(C_2)} \right)$
 - And rearranging we get $p(C_1 | \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x} + w_0)$
 - where

- Quadratic terms in x from the exponents of the Gaussians have cancelled due to common covariance matrices
- The argument of the logistic sigmoid is a linear function of x

Two Gaussian Classes

Two-dimensional input space $\boldsymbol{x} = (x_1, x_2)$

Class-conditional densities $p(\boldsymbol{x}|C_k)$

Values are positive (need not sum to 1)

Posterior $p(C_1|\mathbf{x})$

A logistic sigmoid of a linear function of \boldsymbol{x} Red ink proportional to $p(C_1|\boldsymbol{x})$ Blue ink to $p(C_2|\boldsymbol{x})=1$ - $p(C_1|\boldsymbol{x})$ Value 1 or 0

Continuous case with K>2

$$\begin{split} p(C_k \mid \boldsymbol{x}) &= \frac{p(\boldsymbol{x} \mid C_k) p(C_k)}{\sum_j p(\boldsymbol{x} \mid C_j) p(C_j)} \\ &= \frac{\exp(a_k)}{\sum_j \exp(a_j)} \end{split}$$

With Gaussian class conditionals

$$a_k(\boldsymbol{x}) = \boldsymbol{w}_k^T \boldsymbol{x} + w_{k0}$$

- where
$$\boldsymbol{w}_k = \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k$$

$$w_{k0} = -\frac{1}{2}\boldsymbol{\mu}_k^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k + \ln p(C_k)$$

Quadratic terms cancel thereby leading to linearity

 If we did not assume shared covariance matrix we get a quadratic discriminant

Three-class case with Gaussian models

Both Linear and Quadratic Decision boundaries

2 -1 0 1 2

Class-conditional Densities C_1 and C_2 have same covariance matrix

Posterior Probabilities
Between C_1 and C_2 boundary is linear,
Others are quadratic
RGB values correspond to posterior
probabilities

Maximum Likelihood Solutions

- Once we have specified a parametric functional forms
- for the class-conditional densities $p(\boldsymbol{x}|C_k)$
- we can then determine the parameters together with the prior probabilities $p(\mathit{C_k})$ using maximum likelihood
- This requires a data set of observations $oldsymbol{x}$ along with their class labels

M.L.E. for Gaussian Parameters

• Assuming parametric forms for $p(\mathbf{x}|C_k)$ we can determine values of parameters and priors $p(C_k)$ using maximum likelihood

```
Data set given \{x_n, t_n\}, n = 1, ..., N, t_n = 1 denotes class C_1 and t_n = 0 denotes class C_2
```

Let prior probabilities $p(\mathcal{C}_1) = \pi$ $\qquad p(\mathcal{C}_2) = 1 - \pi$

$$p(\mathbf{x}_n, C_1) = p(C_1)p(\mathbf{x}_n|C_1) = \pi \mathcal{N}(\mathbf{x}_n|\mu_1, \Sigma)$$

$$p(x_n, C_2) = p(C_2)p(x_n|C_2) = (1 - \pi)N(x_n|\mu_2, \Sigma)$$

Likelihood is given by

$$p(\mathbf{t}|\pi, \mu_1, \mu_2, \Sigma) == \prod_{n=1}^{N} [\pi \mathcal{N} (\mathbf{x}_n | \mu_1, \Sigma)]^{t_n} [(1 - \pi) \mathcal{N} (\mathbf{x}_n | \mu_2, \Sigma)]^{1 - t_n}$$

where
$$\mathbf{t} = (t_1, ..., t_N)^T$$

Convenient to maximize log of likelihood

Max Likelihood for Prior and Means

Estimates for prior probabilities

Log likelihood function that depend on π are $\sum_{n=1}^{N} \left\{ t_n \ln \pi + (1-t_n) \ln (1-\pi) \right\}$

MLE for *p* is Fraction of points

Setting derivative to zero and rearranging $\pi = \frac{1}{N} \sum_{n=1}^{N} t_n = \frac{N_1}{N_1 + N_2}$ where N_1 is no fo data points in class \mathcal{C}_1 and N_2 in class \mathcal{C}_2 .

Estimates for class means

Now consider maximization w.r.t. μ_1 . Pick log likelihood function depending only on μ_1

$$\sum_{n=1}^{N} t_n \ln \mathcal{N}\left(\mathbf{x}_n | \mu_1, \Sigma\right) = -\frac{1}{2} \sum_{n=1}^{N} t_n \left(\mathbf{x} - \mu_1\right)^T \Sigma^{-1} \left(\mathbf{x} - \mu_1\right) + \mathsf{const}$$

Setting derivative to zero and solving $\mu_1 = \frac{1}{N_1} \sum_{n=1}^N t_n \mathbf{x}_n$

Mean of all input vectors x_n assigned to class C_I

Similarly
$$\mu_2 = \frac{1}{N_2} \sum_{n=1}^N (1-t_n) \mathbf{x}_n$$

Max Likelihood for Covariance Matrix

Solution for Shared Covariance Matrix

Pick out terms in log-likelihood function depending on Σ

Now maximize w.r.t.
$$\Sigma$$

$$-\frac{1}{2}\sum_{n=1}^{N}t_{n}\ln|\Sigma|-\frac{1}{2}\sum_{n=1}^{N}t_{n}\left(\mathbf{x}_{n}-\mu_{1}\right)^{T}\Sigma^{-1}\left(\mathbf{x}_{n}\mu_{1}\right)$$

$$-\frac{1}{2}\sum_{n=1}^{N}\left(1-t_{n}\right)\ln|\Sigma|-\frac{1}{2}\sum_{n=1}^{N}\left(1-t_{n}\right)(\mathbf{x}_{n}-\mu_{2})^{T}\Sigma^{-1}(\mathbf{x}_{n}-\mu_{2})$$

$$=-\frac{N}{2}\ln|\Sigma|-\frac{N}{2}\mathrm{Tr}\left\{\Sigma^{-1}\mathbf{S}\right\}$$
 Weighted average of the two separate
$$\mathbf{S}=\frac{N_{1}}{N}\mathbf{S}_{1}+\frac{N_{2}}{N}\mathbf{S}_{2}$$
 two separate covariance matrices
$$\mathbf{S}_{1}=\frac{1}{N_{1}}\sum_{n\in\mathcal{C}_{1}}\left(\mathbf{x}_{n}-\mu_{1}\right)\left(\mathbf{x}_{n}-\mu_{1}\right)^{T}$$
 covariance matrices

Discrete Features

- Assuming binary features $x_i \in \{0,1\}$ With M inputs, distribution is a table of 2^M values
- Naive Bayes assumption: independent features
 Class-conditional distributions have the form

$$p(\boldsymbol{x} \mid C_k) = \prod_{i=1}^{M} \mu_{ki}^{x_i} (1 - \mu_{ki})^{1 - x_i}$$

Substituting in the form needed for normalized exponential

$$\begin{split} a_k(\boldsymbol{x}) &= \ln(p(\boldsymbol{x} \mid C_k) p(C_k)) \\ &= \sum_{i=1}^M \left\{ x_i \ln \mu_{ki} + (1-x_i) \ln(1-\mu_{ki}) \right\} + \ln p(C_k) \end{split}$$

which is linear in x

 Similar results for discrete variables which take more than 2 values

Exponential Family

- We have seen that for both Gaussian distributed and discrete inputs, the posterior class probabilities are given by generalized linear models with logistic sigmoid (*K*=2) or softmax (*K*≥2) activation functions
- These are particular cases of a more general result obtained by assuming that the class-conditional densities $p(\boldsymbol{x}|C_k)$ are members of the exponential family of distributions

Exponential Family Definition

 Class-conditionals that belong to the exponential family have the general form

$$p(\boldsymbol{x} \mid \boldsymbol{\lambda}_k) = h(\boldsymbol{x})g(\boldsymbol{\lambda}_k) \exp\left\{\boldsymbol{\lambda}_k^T \boldsymbol{u}(\boldsymbol{x})\right\}$$

- Where λ_k are natural parameters of the distribution, u(x) is a function of x and $g(\lambda_k)$ is a coefficient that ensures distribution is normalized
- Restricting attention to the subclass of such distributions for which u(x)=x and introducing a scaling parameter s we obtain the form

$$p(\boldsymbol{x} \mid \boldsymbol{\lambda}_{k}, s) = \frac{1}{s} h(\frac{1}{s} \boldsymbol{x}) g(\boldsymbol{\lambda}_{k}) \exp \left\{ \frac{1}{s} \boldsymbol{\lambda}_{k}^{T} \boldsymbol{x} \right\}$$

• Note that each class has its own parameter vector λ_k but share a scale parameter

Exponential Family Sigmoidal form

- For the two-class problem
 - Substitute expressions for the class conditional densities into $a = \ln \frac{p(\boldsymbol{x} \mid C_1)p(C_1)}{p(\boldsymbol{x} \mid C_2)p(C_2)}$ and we see that the posterior probability is given by a logistic sigmoid acting on a linear function $a(\boldsymbol{x})$

$$\left|a(\boldsymbol{x}) = (\boldsymbol{\lambda}_{\!\scriptscriptstyle 1} - \boldsymbol{\lambda}_{\!\scriptscriptstyle 2})^{\!\scriptscriptstyle T} \boldsymbol{x} + \ln g(\boldsymbol{\lambda}_{\!\scriptscriptstyle 1}) - \ln g(\boldsymbol{\lambda}_{\!\scriptscriptstyle 2}) + \ln p(\boldsymbol{C}_{\!\scriptscriptstyle 1}) - \ln p(\boldsymbol{C}_{\!\scriptscriptstyle 2})\right|$$

- For the K-class problem
 - Substituting the class-conditional density expression into $a_k = \ln p(\mathbf{x}|C_k)p(C_k)$ and we get

$$\left| a_k(\boldsymbol{x}) = \boldsymbol{\lambda}_k^T \boldsymbol{x} + \ln g(\boldsymbol{\lambda}_k) + \ln p(C_k) \right|$$

- which is again a linear function of $oldsymbol{x}$

Summary of probabilistic linear classifiers

- Defined using
 - logistic sigmoid

 $p(C_1 \mid x) = \sigma(a)$ where a is LLR with Bayes odds

soft-max functions

$$p(C_k \mid \boldsymbol{x}) = \frac{\exp(a_k)}{\sum_{i} \exp(a_i)}$$

- Continuous case with shared covariance
 - we get linear functions of input x
- Discrete case with independent features also results in linear functions