

INVESTIGACIÓN DE OPERACIONES EN INGENIERÍA II

Programación Dinámica: Problema de la diligencia

> Ingeniería de Sistemas Ing. Néstor Muñoz

Logro de sesión

culminar aplica programación Al sesión, dinámica analizando el Problema de la diligencia.

EL PROBLEMA DE LA DILIGENCIA

Un cazafortunas decide ir de Missouri (A) a California (J), Tiene que hacer el viaje en diligencia a través de territorios. Como se puede observar, se requieren cuatro etapas —jornadas en diligencia— para viajar desde Missouri a California a un costo mínimo total (\$)

INTRODUCCIÓN

La programación dinámica se utiliza para resolver problemas donde se debe tomar decisiones interrelacionadas.

INTRODUCCIÓN

- Fue inventado por Bellman en 1953.
- La Programación Dinámica (PD) juega un papel importante en la toma de decisiones interrelacionadas: Proporciona un **procedimiento sistemático** para determinar la combinación óptima de decisiones.
- En contraste con la programación lineal, no cuenta con una formulación matemática estándar, sino que se trata de un **enfoque de tipo general** para la solución del problema.
- Es una técnica que permite determinar de manera eficiente las decisiones que optimizan el comportamiento de un sistema que evoluciona a lo largo de una serie de etapas.
- Trata de encontrar la secuencia de decisiones que optimice el comportamiento de un proceso de múltiples etapas.
- Determina la solución óptima de un problema de n variables descomponiéndola en n etapas.
- Los cálculos en la PD se hacen **recursivamente**, en el sentido de la solución óptima de un subproblema se utiliza como una entrada para el siguiente subproblema.
- Para el momento en que se resuelve el último subproblema, se tiene la solución óptima para todo el problema.

Ejemplo: El Problema de la diligencia

Un cazafortunas decide ir de Missouri (A) a California (J), Tiene que hacer el viaje en diligencia a través de territorios. Como se puede observar, se requieren cuatro etapas —jornadas en diligencia— para viajar desde Missouri a California a un costo mínimo total (\$)

Sistema de caminos y costos Cij (del estado i, al estado j) del problema de la diligencia

Ejemplo: El Problema de la diligencia

Un cazafortunas decide ir de Missouri (A) a California (J), Tiene que hacer el viaje en diligencia a través de territorios. Como se puede observar, se requieren cuatro etapas —jornadas en diligencia— para viajar desde Missouri a California a un costo mínimo total (\$)

Sistema de caminos y costos Cij (del estado i, al estado j) del problema de la diligencia

Llapa 3	Eta	ра	3
---------	-----	----	---

	Н	1
Ε	1	4
F	6	3
G	3	3

FORMULACIÓN DEL PROBLEMA

Sean x_n (n = 1, 2, 3...p) las variables de decisión que representan el destino inmediato de la etapa n, tal que la ruta seleccionada sea

 $A \longrightarrow X_1 \longrightarrow X_2 \longrightarrow \dots \longrightarrow X_p$, donde X_p será el destino J.

Sea f_n (s, x_n) el costo total de la mejor política global para las etapas restantes, dado que el viajero se encuentra en el estado S, listo para iniciar la etapa N y se dirige a X_n como destino inmediato.

Dados S y n, sea x_n^* (no necesariamente único) que minimiza f_n (S, x_n) y sea f_n^* el valor mínimo de f_n (S, x_n) entonces:

$$f_n *(S) = \min x_n f_n (S, x_n) = f_n (S, x_n*)$$

...FORMULACIÓN DEL PROBLEMA

$$f_{n} *(S) = \min x_{n} f_{n} (S, x_{n}) = f_{n} (S, x_{n} *)$$

costo

$$f_n(S, x_n) = inmediato(etapa n)$$

mínimo costo futuro (etapas n+1 en adelante),

$$f_n$$
 (s, x_n) = C_{s, x_n}

Costo de ir de la ciudad j

$$f_{n+1}^*(x_n)$$

Costo óptimo acumulado

Ejemplo: El Problema de la diligencia

Un cazafortunas decide ir de Missouri (A) a California (J), Tiene que hacer el viaje en diligencia a través de territorios. Como se puede observar, se requieren cuatro etapas —jornadas en diligencia— para viajar desde Missouri a California a un costo mínimo total (\$)

Sistema de caminos y costos Cij (del estado i, al estado j) del problema de la diligencia

Llapa 3	Eta	ра	3
---------	-----	----	---

	Н	1
Ε	1	4
F	6	3
G	3	3

SOLUCIÓN

Una forma de solucionar el problema sería la enumeración completa; sin 🛭 embargo, llevaría mucho tiempo, pudiendo crear confusión al momento de enumerar todas las rutas posibles.

El método óptimo de solución es a través de *Relaciones Recursivas*

Pasos:

- ✓ En este problema el destino final es el estado J y se alcanza al terminar la etapa 4, entonces $f_5*(J) = 0$
- ✓ El objetivo es encontrar $f_1*(A)$ y la ruta de menor costo de A a J
- ✓Sí el cazafortunas sólo tiene una etapa por recorrer n=4 y su ruta de recursiva estará determinada por el estado H o I: su destino final $X_{\Delta} = J$

$$f_{A}^{*}(H) = C_{H,I} + 0 = 3 + 0 = 3$$

$$f_4^*(H) = C_{H,J} + 0 = 3+0=3$$

 $f_4^*(I) = C_{I,J} + 0 = 4+0=4$

- El cazafortunas le faltan 2 etapas por recorrer (n=3) de la etapa n=4 tenemos : $f_4*(H)=3$ y $f_4*(I)=4$

$$f_3*(E) = C_{E,H} + f_4*(H)$$

 $f_3*(E) = 1 + 3 = 4$

X_3	$f_3*(S,X_3) = C$	$C_{S,X3} + f_4^*(X_3)$	C 44.4.5		
S	Н	I	f ₃ *(S)	X ₃ *	
E	1+3=4	4+4=8	4	Н	
F	6 +3 =9	3 +4 =7	7	I	
G	3 +3 =6	3 +4 =7	6	Н	

$$f_3*(E) = 4$$
; $f_3*(F) = 7$; $f_3*(G) = 6$

- El cazafortunas le faltan 1 etapas por recorrer (n=2) de la etapa 3 $f_3*(E) = 4$; $f_3*(F) = 7$; $f_3*(G) = 6$

X ₂	$f_2*(S,S)$	f	X ₂ *		
S	E	F	G	f ₂ *(S)	72
В	7 +4 =11	4 +7 =11	6 +6 =12		
С	3+4 =7	2 +7 =9	4+6 =10		
D					

- El cazafortunas le faltan 1etapa por recorrer (n=2) de la etapa n=3 tenemos :

 $f_3*(E) = 4$, $f_3*(F) = 7$; $f_3*(G) = 6$

X ₂	f ₂ *(S				
S	E	F	G	f_2 *(S)	X ₂ *
В	7 +4 =11	4+7=11	6 +6 =12	11	EoF
C	3+4=7	2 +7 =9	4 +6 =10	7	Е
D	4+4=8	1 +7 =8	5 +6 =11	8	EoF

- El cazafortunas le faltan 0 etapa por recorrer (n=1) de la etapa n=2 tenemos :

$$f_2*(B) = 11, f_2*(C) = 7; f_2*(D) = 8$$

El costo total mínimo de ir de la ciudad (Missouri – nodo A) a la ciudad California – nodo J) es de 11 dólares

TODAS LAS RUTAS DEBEN DAR UN COSTO TOTAL MÍNIMO DE 11 DÓLARES

RUTA 1: $A \rightarrow C \rightarrow E \rightarrow H \rightarrow J=4+3+1+3=11$

RUTA 2: $A \rightarrow D \rightarrow E \rightarrow H \rightarrow J = 3+4+1+3=11$

RUTA 3: $A \rightarrow D \rightarrow F \rightarrow I \rightarrow J = 3+1+3+4=11$

- El cazafortunas le faltan 1 etapa por recorrer (n=2) de la etapa n=3 tenemos : $f_3*(E) = 4$,

$$f_3*(F) = 7 y f_3*(G) = 6$$

Luego:

$$f_2*(B) = C_{B,E} + f_3*(E)$$

 $f_2*(B) = 7 + 4 = 11$

	X ₂	f ₂ *(S,X	f ₂ *(S)	X ₂ *		
	5	E	F	G		
	В	(7+4) =11	(4+7)=11	(6+6)=12	11	EoF
	С	(3+4) =7	(2+7)=9	(4+6)=10	7	Е
The state of the s	D	(4+4) =8	(1+7)=8	(5+6)=11	8	EoF

- El cazafortunas le faltan 1 etapa por recorrer (n=1) (partiendo de A) de la etapa n=2 tenemos : $f_2*(B) = 11$, $f_2*(C) = 7$ y $f_2*(D) = 8$

Luego:

$$f_1*(A) = C_{A,B} + f_2*(B)$$

 $f_1*(A) = 2 + 11 = 13$

	X ₁	f ₁ *(S,X	C_{1}) = $C_{S,X1}$ +	f ₂ *(X ₂)	f ₁ *(S)	X ₁ *
	5	В	С	D		
O	A	(2+11) =13	(4+7)=11	(3+8)=11	11	CoD

Universidad

Vacional de

Cajamarca

Verificamos que hay tres rutas críticas óptimas con un costo total de 11 dólares

- 1) A-C-E-H-J \rightarrow 4+3+1+3 =11
- 2) A-D-E-H-J \rightarrow 3+4+1+3 =11
- 3) A-D-F-I-J \rightarrow 3+1+3+4 = 11

CARÁCTERÍSTICAS DE LA PROGRAMACIÓN DINÁMICA:

- 1) EL problema se puede dividir por etapas que requieren una política de decisión en cada una de ellas.
- 2) Cada etapa tiene un cierto número de estados asociados a su inicio. (Estados son las diferentes condiciones posibles en las que se puede encontrar el sistema en cada etapa del problema).
- 3) El efecto de la política de decisión en cada etapa, es transformar el estado actual en un estado asociado con el INICIO de la siguiente etapa.
- 4) El procedimiento pretende hallar la política óptima para el problema completo. Esto quiere decir, la política a emplear desde cualquier posible estado del problema.
- 5) Dado el estado actual, la política óptima desde este estado es independiente de las políticas adoptadas en las etapas anteriores. (La solución óptima depende únicamente del estado actual y no de cómo se llegó allí).
- 6) El procedimiento de la solución termina cuando se obtiene la política óptima de la última etapa.
- 7) Siempre se dispone de una relación recursiva, esto es lo que permite trabajar las decisiones interrelacionadas.

8. La relación recursiva será:

$$f_n *(S) = \min x_n \{ f_n (S, x_n) \}$$

También
$$f_n$$
 *(S) = max x_n { f_n (S, x_n) }

N: número de etapas

n: etiqueta para la etapa actual (1,2, ..., N)

S_n: Estado actual para la etapa n.

X_n: Variable de decisión para la etapa n.

9. Cuando se tiene una relación recursiva como la de la función, el procedimiento de solución "hacia atrás" inicia en la última etapa y se mueve hacia la primera, etapa por etapa.

Ejercicio 1

Juan desea viajar en su vehículo privado de Cajamarca (nodo 1) a Lima (nodo 10), para llegar a su destino puede ir por diferentes ciudades que tienen un costo de peaje, por atravesar esa ruta. Encuentre el costo mínimo total incurrido en peajes (S/.) para llegar de Cajamarca a Lima. A continuación de muestran los peajes a pagar entre ciudad y ciudad (en S/.):

Practicamos:

Ruta más corta - Programación dinámica. Ejemplo 1

