Bag of words, tf-idf, RSREFIELD TfidfVectorizer , cosine similarity, NLP basics tutorial

	Doc1	Doc2	Doc3	Doc4
Doc1	1	0.492416	0.492416	0.277687
Doc2	0.492416	1	0.75419	0.215926
Doc3	0.492416	0.75419	1	0.215926
Doc4	0.277687	0.215926	0.215926	1

Definitions

- Corpus
 Is a collection of documents
- Vocabulary
 Collection of all words present in a corpus
- ➤ Bag of words

In this model, a text (such as a sentence or a document) is represented as the bag (multiset) of its words, disregarding grammar and even word order but keeping multiplicity

Bag of words(BoW) example

- Doc 1: "Sachin is a great Indian cricket player"
- Doc 2: "Virat is the captain of the Indian cricket team

```
Corpus ->{Doc1,Doc2}
```


Bag of words(BoW) example

Vector representation

Doc	Sachin	is	а	great	Indian	cricket	player	Virat	the	team	of	captain
Doc1	1	1	1	1	1	1	1	0	0	0	0	0
Doc2	0	1	0	0	1	1	0	1	2	1	1	1

Definitions

- Frem Frequency(tf)
 Is the number of times a word occurs in a document
 tf(t,d) = f (t,d)
 t -> Term, d-> Document
- ➤ Inverse Document Frequency(idf)

 Number of documents that contain the word.

$$\mathrm{idf}(t,D) = \log \frac{N}{|\{d \in D : t \in d\}|}$$

N -> Total number of documents

t -> Term, d-> Document

Term frequency-Inverse document frequency

$$tf$$
- $idf(t,d,C) = tf(t,d) \cdot Idf(t,C)$

Uncommon words in a document-> Higher tf-idf

More common words across documents -> Almost zero tf-idf

Doc \rightarrow { tf-idf(w1) , tf-idf(w2), ..., tf-idf(wn) }

Cosine Similarity

$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}},$$

Text Matching:

➤ Vectors A and B - > tf-idf vectors of the documents.

Cosine similarity:

Method of <u>normalizing</u> document length during comparison.

Information retrieval:

- \triangleright Cosine similarity of two documents ->[0,1]
- ➤ As tf-idf values are not negative

Ⅲ csimDf - DataFrame							
Index	Doc 1	Doc 2	Doc 3	Doc 4			
Doc 1	1	0.492416	0.492416	0.277687			
Doc 2	0.492416	1	0.75419	0.215926			
Doc 3	0.492416	0.75419	1	0.215926			
Doc 4	0.277687	0.215926	0.215926	1			

https://github.com/rsreetech/Tf-idf

