

BCH Codes

1

G V V Sharma*

1

2

2

CONTENTS

1 Generator Polynomial

- 1 Generator Polynomial
- 2 Encoding 2
- 3 Decoding
- 4 Applications

 $\label{lem:abstract-abstract} Abstract — This manual provides an introduction to BCH codes.$

1.1 For a BCH code, the minimal polynomials are given by

$$g_1(x) = 1 + x + x^3 + x^5 + x^{14}$$
 (1.1)

$$g_2(x) = 1 + x^6 + x^8 + x^{11} + x^{14}$$
 (1.2)

$$g_3(x) = 1 + x + x^2 + x^6 + x^9 + x^{10} + x^{14}$$
 (1.3)

$$g_4(x) = 1 + x^4 + x^7 + x^8 + x^{10} + x^{12} + x^{14}$$

$$g_5(x) = 1 + x^2 + x^4 + x^6 + x^8 + x^9 + x^{11}$$
(1.4)

$$+ x^{13} + x^{14}$$

$$g_6(x) = 1 + x^3 + x^7 + x^8 + x^9 + x^{13} + x^{14}$$
(1.5)

$$g_6(x) = 1 + x + x + x + x + x + x + x$$

$$(1.6)$$

$$g_7(x) = 1 + x^2 + x^5 + x^6 + x^7 + x^{10} + x^{11} + x^{13} + x^{14}$$
 (1.7)

$$g_8(x) = 1 + x^5 + x^8 + x^9 + x^{10} + x^{11} + x^{14}$$
 (1.8)

$$g_9(x) = 1 + x + x^2 + x^3 + x^9 + x^{10} + x^{14}$$
 (1.9)

$$g_{10}(x) = 1 + x^3 + x^6 + x^9 + x^{11} + x^{12} + x^{14}$$
(1.10)

$$g_{11}(x) = 1 + x^4 + x^{11} + x^{12} + x^{14}$$
 (1.11)

$$g_{12}(x) = 1 + x + x^2 + x^3 + x^5 + x^6 + x^7 + x^8 + x^{10} + x^{13} + x^{14}$$
 (1.12)

Obtain the minimal polynomial matrix. **Solution:**

https://raw.githubusercontent.com/gadepall/ EE6317/master/BCH/codes/ min_poly_mat.py

1.2 Obtain the generator polynomial vector.

Solution: The generator polynomial is obtained as

$$g(x) = \prod_{i=1}^{m} g_i(x)$$
 (1.13)

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

The following code computes **g**.

https://raw.githubusercontent.com/gadepall/ EE6317/master/BCH/codes/gen poly.py

2 Encoding

2.1 Let **m** be a $k \times 1$ message vector and

$$m(x) = m_{k-1}x^{k-1} + m_{k-2}x^{k-2} + \dots + m_1x + m_0$$
(2.1)

be the correspoding Message polynomial.

2.2 Let

$$m(x)x^{n-k} = q(x)g(x) + d(x)$$
 (2.2)

and

$$c(x) = m(x)x^{n-k} + d(x)$$
 (2.3)

Write a program to compute the corresponding coefficient vector c. This is the output of the BCH encoder.

3 Decoding

3.1 Let the Received polynomial be r(x) i.e which contains both transmitted codeword polynomial c(x) and the error polynomial e(x)

$$e(x) = e_0 + e_1 x^1 + \dots + e_{n-1} x^{n-1}$$
 (3.1)

Where e_i represents the value of the error at the location. For binary BCH codes e_i is either 0 or 1.

$$r(x) = c(x) + e(x) = r_{n-1}x^{n-1} + r_{n-2}x^{n-2} + \dots + r_1x + r_0$$
 4.1 Explain how (??) can be used to obtain the Nearest Neighbour approximation.

Definie, Syndrome

$$S_i = r(\alpha^i) = c(\alpha^i) + e(\alpha^i) = e(\alpha^i)$$
 (3.3)

Where α^i is a root of the codeword.

Suppose that v errors occurred, and $0 \le v \le t$. Let the error occurs at $i_1, i_2, \ldots, i_{\nu}$.

The Decoding Process, for a t-error correcting code will follows the basic steps,

- 3.2 Compute the Syndrome $S = (S_1, S_2, \dots, S_{2t})$ from the received polynomial r(x)
- 3.3 Determine the error-location polynomial $\sigma(x)$ from the syndrome components S_1, S_2, \dots, S_{2t} using the Berlekamp's Algorithm.
- 3.4 Using the Chain searching algorithm, determine the error-locations by finding the roots of $\sigma(x)$, the flip the posisions in r(x). Which is the estimated message vector polynomial $\hat{c}(x)$

3.5 where w is $p \times 1$ and X is $N \times p$. Show that

$$E\left(\hat{\mathbf{w}}\right) = \mathbf{w} \tag{3.4}$$

3.6 If the covariance matrix of y is

$$\mathbf{C_v} = \sigma^2 \mathbf{I} \tag{3.5}$$

show that

$$\mathbf{C_w} = \sigma^2 \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \tag{3.6}$$

3.7 Let

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} \tag{3.7}$$

$$\hat{\sigma}^2 = \frac{1}{N - p} ||\mathbf{y} - \hat{\mathbf{y}}||^2 \tag{3.8}$$

$$\mathbf{y} - \hat{\mathbf{y}} \sim \mathcal{N}\left(\mathbf{0}, \sigma^2 \mathbf{I}\right) \tag{3.9}$$

Show that

$$(N-p)\,\hat{\sigma}^2 \sim \sigma^2 \chi_{N-p}^2$$
 (3.10)

3.8 Let

$$\hat{z} = \frac{w_j}{\hat{\sigma} \sqrt{v_j}} \tag{3.11}$$

where v_j is the diagonal element of $(\mathbf{X}^T\mathbf{X})^{-1}$. If $w_j = 0$, show that z_j has a t_{N-p} distribution.

3.9 Plot Pr(|Z| > z) for t_{30} , t_{100} and the standard normal distribution.

4 Applications

- Nearest Neighbour approximation.
- 4.2 Repeat the exercise for the least squares method.