Social Insurance and Occupational Mobility German Cubas and Pedro Silos

Tate Mason

Tate.Mason@uga.edu

John Munro Godfrey Sr. Department of Economics
The University of Georgia

September 20, 2025

Outline

- Introduction
- Methodology
- Results
- Conclusion

Motivation

- Social insurance provides a cushion for workers.
- Differs across countries, affecting labor market dynamics.
- How can we model this effect?

Research Question

Main Question

How does social insurance effect occpational experimentation?

Research Question

Main Question

How does social insurance effect occpational experimentation?

Hypothesis

Providing more social insurance allows for riskier occupational choices.

Model

- Build upon Roy (1951) model of occupational choice.
- Add interaction between earnings risk, social insurance, and occupational choice.

Human Capital

Workers have two types of ability:

- Innate
 - occupation specific
 - discovered through work experience

Human Capital

Workers have two types of ability:

- Innate
 - occupation specific
 - discovered through work experience
- General
 - applicable to all occupations
 - will experience occupation-specific shocks to this human capital

Model Environment

Household:

- Lives for S periods
- endowed one unit of time each period, with no leisure value
- workers dislike risk
- ullet rank levels of consumption c according to a utility function u(c)

Model Environment

Household:

- Lives for S periods
- endowed one unit of time each period, with no leisure value
- workers dislike risk
- rank levels of consumption c according to a utility function u(c)

Labor Market:

- J occupations, j = 1, ..., J
- workers can only work in one occupation at a time, but can switch between periods
- receive wage w_i per unit of human capital

Value Functions

Value of staying in occupation j:

$$V_s(\Omega_s, z, \epsilon, j) = \{u(c) + \beta \int W_{s+1}(\Omega_{s+1}, z', \epsilon', j') dF(\epsilon')\},$$

$$s.t.$$

$$c = T(w_j e^{\theta_j} e^z e^{\epsilon})$$

$$z' = z + \epsilon$$

$$\Omega_{s+1} = \Omega_s$$

Value Functions, cont.

Value of switching to occupation j':

$$H_{s}(\Omega_{s}, \theta_{j'}, z, \epsilon, j') = \{u(c) + \beta \int W_{s+1}(\Omega_{s+1}, z', \epsilon', j') dF(\epsilon')\},$$

$$s.t.$$

$$c = T(w_{j'}e^{z}e^{\theta'_{j}}e^{\epsilon'_{j}}e^{-c(s,\kappa)})$$

$$z' = z + \epsilon'$$

$$\Omega_{s+1} = \{\Omega_{s}, j', \theta_{j'}\}$$

 $\Psi_{j,s}(\Omega_s,z,\epsilon)$ is the distribution of workers in occupation j at age s with history Ω_s , general human capital z, and shock ϵ . Ψ is defined for all $\Omega_s,z,\epsilon\in\mathbb{R}$

 $\Psi_{j,s}(\Omega_s,z,\epsilon)$ is the distribution of workers in occupation j at age s with history Ω_s , general human capital z, and shock ϵ . Ψ is defined for all $\Omega_s,z,\epsilon\in\mathbb{R}$

Mass of newborns:

$$\Psi_{j,0}(\Omega_0,z,\epsilon)=\frac{1}{S}f_j\forall j\in\{1,...,J\}$$

where f_j is the fraction of newborns with initial occupation specific ability θ_j .

 $\Psi_{j,s}(\Omega_s,z,\epsilon)$ is the distribution of workers in occupation j at age s with history Ω_s , general human capital z, and shock ϵ . Ψ is defined for all $\Omega_s,z,\epsilon\in\mathbb{R}$

Mass of newborns:

$$\Psi_{j,0}(\Omega_0,z,\epsilon)=\frac{1}{S}f_j\forall j\in\{1,...,J\}$$

where f_j is the fraction of newborns with initial occupation specific ability θ_j . In period S+1:

$$\Psi_{j,S+1}(\Omega_{S+1}, z, \epsilon) = 0 \forall j \in \{1, ..., J\}$$

 $\Psi_{j,s}(\Omega_s,z,\epsilon)$ is the distribution of workers in occupation j at age s with history Ω_s , general human capital z, and shock ϵ . Ψ is defined for all $\Omega_s,z,\epsilon\in\mathbb{R}$

Mass of newborns:

$$\Psi_{j,0}(\Omega_0,z,\epsilon)=\frac{1}{S}f_j\forall j\in\{1,...,J\}$$

where f_j is the fraction of newborns with initial occupation specific ability θ_j . In period S+1:

$$\Psi_{j,S+1}(\Omega_{S+1},z,\epsilon)=0 \forall j \in \{1,...,J\}$$

For s = 0, ..., S:

$$\Psi_{j,s+1}(\Omega_{s+1},z',\epsilon) = \sum_{j'} \Psi_{j',s}(\Omega_s,z,\epsilon) I_{j,s}(j',\omega_s,\epsilon,z) \forall j \in \{1,...,J\}$$

Equilibrium cont.

Define aggregate mass of efficiency units in occupation j at age s as:

$$N_{j} = \frac{1}{S} \sum_{s \in S} \int e^{z} e^{\theta_{j'}} e^{\epsilon_{j'}} + \frac{1}{S} \sum_{s \in S} \sum_{j \neq j'} \int e^{-c(s,\kappa)} d\Psi_{j,s}(\Omega_{s-1}, z, \epsilon)$$

Equilibrium cont.

Define aggregate mass of efficiency units in occupation j at age s as:

$$N_{j} = \frac{1}{S} \sum_{s \in S} \int e^{z} e^{\theta_{j'}} e^{\epsilon_{j'}} + \frac{1}{S} \sum_{s \in S} \sum_{j \neq j'} \int e^{-c(s,\kappa)} d\Psi_{j,s}(\Omega_{s-1}, z, \epsilon)$$

This let's us define the SCE consisting of

- **1** set of occupation level wages $\{w_j\}_{j=1}^J$
- 2 occupational populations $\{\Psi_j\}_{j=1}^J$
- lacktriangledown set of intermediate goods prices $\{p_j\}_{j=1}^J$
- set of occupational labor inputs $\{N_j\}_{j=1}^J$
- **o** occupation-specific decision rules $\{I_{j,s}\}_{j=1,s=0}^{J,S}$
- **o** value functions $\{V_s\}_{s=0}^S$

Equilibrium Conditions

- Above value functions solve optimization problems
- Labor inputs N_j are the solution to the intermediate producer optimnization problem
- **3** Intermediate goods quantities X_j solve the final goods producer's problem
- **Q** Prices p_j equate supply and demand of intermediate goods
- Wage in occupation j is the marginal product of an efficiency unit in that occupation s.t.

$$w_j = \alpha_j N_j^{\alpha_j - 1} \Pi_{j' \neq j} \{ N_j'^{\alpha_j'} \}$$

- 6 Labor markets clear at occupational level
- **1** In occupation j, Ψ_i is the stationary distribution
- Final goods market clears by Walras' Law

Data

- Describe your dataset
- Number of observations, variables
- Time period, source

Main Results

example-figure.pdf

Table of Results

Variable	Coef.	Std. Error
X	0.45	0.12
Ζ	-0.23	0.08

Table: Regression results

Conclusion

- Summarize findings
- Contributions
- Future work

References I