第3节角的取舍(★★★)

内容提要

解三角形问题中, 计算角时, 可能会出现增根, 常通过以下方式舍增根:

- 2. 三角形内角和为 π , 所以任意两角的内角和小于 π ;
- 3. 已知角 $A = \alpha$,则 $B + C = \pi \alpha$,所以 $B, C \in (0, \pi \alpha)$.

典型例题

类型 1: 通过大边对大角舍增根

【例 1】在
$$\triangle ABC$$
 中, $B = 30^{\circ}$, $a = \sqrt{3}$, $b = 1$,则 $A = ($

 $(A) 60^{\circ}$

(B) 120° (C) 60°或120°

(D) 30°

解析: 己知的和要求的合在一起, 是两边两对角, 故用正弦定理,

由正弦定理,
$$\frac{a}{\sin A} = \frac{b}{\sin B}$$
, 所以 $\sin A = \frac{a \sin B}{b} = \frac{\sqrt{3} \sin 30^{\circ}}{1} = \frac{\sqrt{3}}{2}$,

因为 0° < A < 180° ,所以 $A = 60^{\circ}$ 或 120° .

答案: C

【反思】本题由于a > b,所以A > B,故A可取锐角或钝角,两个都不能舍,

两种情况的图形如图所示,其中顶点A可以在 A_1 或 A_2 处.

【变式 1】在
$$\triangle ABC$$
 中, $a = 6$, $b = 4$, $\sin A = \frac{3}{4}$,则 $B = ($)

 $(A) 30^{\circ}$

(B) 30°或150°

(C) 120°

(D) 150°

解析: 已知的与要求的合在一起, 是两边两对角, 故用正弦定理,

由正弦定理,
$$\frac{a}{\sin A} = \frac{b}{\sin B}$$
, 所以 $\sin B = \frac{b \sin A}{a} = \frac{4 \times \frac{3}{4}}{6} = \frac{1}{2}$,

因为 0° <B < 180° ,所以 $B = 30^{\circ}$ 或 150° ,这两个解都能取吗?可通过分析A 和B 的大小来判断,

又因为b < a,所以B < A,从而B为锐角,故 $B = 30^{\circ}$.

答案: A

【反思】在知道边长的条件下,可根据大边对大角来决定是否舍根,在例 1 中 a > b,所以 A > B,则 A 可 取钝角或锐角,有两解;而在变式1中,由于b < a,所以B < A,故B只能取锐角.

【变式 2】在 $\triangle ABC$ 中, $C = \frac{\pi}{3}$, $c = \sqrt{3}$, a = x(x > 0),若 $\triangle ABC$ 有两解,则 x 的取值范围是_____.

解法 1: 把 x 看成已知量,这是已知两边一对角的情形,可用正弦定理先求另一边对角的正弦值,

由正弦定理, $\frac{a}{\sin A} = \frac{c}{\sin C} \Rightarrow \sin A = \frac{a \sin C}{c} = \frac{x}{2}$, 若 ΔABC 有两解,则由 $\sin A$ 求角 A 时,应可取锐角或钝

角,所以需满足两点: ① $\sin A$ 的值应在(0,1)上; ②a>c,也即A>C,否则A只能取锐角,

所以
$$\begin{cases} 0 < \frac{x}{2} < 1 \\ x > \sqrt{3} \end{cases}$$
 解得: $\sqrt{3} < x < 2$.

解法 2: 已知两边一对角,也可用余弦定理求第三边,

由余弦定理, $c^2 = a^2 + b^2 - 2ab\cos C$,将所给数据代入整理得: $b^2 - xb + x^2 - 3 = 0$ ①,

把式①看成关于b的一元二次方程, ΔABC 有两解等价于方程①有两个不相等的正根 b_1 , b_2 ,

所以
$$\begin{cases} \Delta = (-x)^2 - 4(x^2 - 3) > 0 \\ b_1 + b_2 = x > 0 \end{cases}, 解得: \sqrt{3} < x < 2.$$
$$b_1 b_2 = x^2 - 3 > 0$$

答案: $(\sqrt{3},2)$

【总结】大边对大角,记住只有大边所对的角,才可能有多解.

类型II:通过分析角的范围取解

【例 2】在
$$\triangle ABC$$
 中, $c = 2b\cos B$, $C = \frac{\pi}{3}$,求 B .

解: (题干给出 $c = 2b\cos B$ 这个式子,结合要求的是角,所以边化角)

因为 $c = 2b\cos B$,所以 $\sin C = 2\sin B\cos B$,故 $\sin C = \sin 2B$,

又
$$C = \frac{\pi}{3}$$
,所以 $\sin 2B = \frac{\sqrt{3}}{2}$,(要由此求 B ,应先分析 B 的范围)

因为
$$C = \frac{\pi}{3}$$
,所以 $A + B = \pi - C = \frac{2\pi}{3}$,从而 $B \in (0, \frac{2\pi}{3})$,故 $2B \in (0, \frac{4\pi}{3})$,

结合
$$\sin 2B = \frac{\sqrt{3}}{2}$$
 可得 $2B = \frac{\pi}{3}$ 或 $\frac{2\pi}{3}$, 所以 $B = \frac{\pi}{6}$ 或 $\frac{\pi}{3}$.

【反思】在解三角形问题中,已知三角函数值求角时,常通过内容提要第3点来分析角的范围.

【变式】(2019•新课标 I 卷) $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c, 设 $(\sin B - \sin C)^2 = \sin^2 A - \sin B \sin C$.

- (1) 求A;
- (2) 若 $\sqrt{2}a + b = 2c$, 求 sin*C*.

解: (1) 因为 $(\sin B - \sin C)^2 = \sin^2 A - \sin B \sin C$,所以 $\sin^2 B + \sin^2 C - \sin^2 A = \sin B \sin C$,

(这个式子全是正弦值,且齐次,可用正弦定理角化边)故 $b^2+c^2-a^2=bc$,

由余弦定理推论, $\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{bc}{2bc} = \frac{1}{2}$,结合 $0 < A < \pi$ 可得 $A = \frac{\pi}{3}$.

(2) (要求的是 $\sin C$,所以将 $\sqrt{2}a+b=2c$ 边化角)由 $\sqrt{2}a+b=2c$ 可得 $\sqrt{2}\sin A+\sin B=2\sin C$ ①,(第1问求出了A,可代入此式,且能消去B,让方程只含C)

由(1)知
$$A = \frac{\pi}{3}$$
,所以 $B + C = \pi - A = \frac{2\pi}{3}$,故 $B = \frac{2\pi}{3} - C$,

代入①得: $\sqrt{2}\sin\frac{\pi}{3} + \sin(\frac{2\pi}{3} - C) = 2\sin C$, 所以 $\sqrt{2} \times \frac{\sqrt{3}}{2} + \sin\frac{2\pi}{3}\cos C - \cos\frac{2\pi}{3}\sin C = 2\sin C$,

故
$$\frac{\sqrt{6}}{2} + \frac{\sqrt{3}}{2}\cos C + \frac{1}{2}\sin C = 2\sin C$$
,整理得: $\frac{\sqrt{3}}{2}\sin C - \frac{1}{2}\cos C = \frac{\sqrt{2}}{2}$,所以 $\sin(C - \frac{\pi}{6}) = \frac{\sqrt{2}}{2}$,

(要求 *C*, 先分析角的范围) 因为 $B+C=\frac{2\pi}{3}$, 所以 $0 < C < \frac{2\pi}{3}$, 从而 $-\frac{\pi}{6} < C - \frac{\pi}{6} < \frac{\pi}{2}$,

结合
$$\sin(C-\frac{\pi}{6}) = \frac{\sqrt{2}}{2}$$
 可得 $C-\frac{\pi}{6} = \frac{\pi}{4}$,故 $C = \frac{\pi}{4} + \frac{\pi}{6}$,

所以
$$\sin C = \sin(\frac{\pi}{4} + \frac{\pi}{6}) = \sin\frac{\pi}{4}\cos\frac{\pi}{6} + \cos\frac{\pi}{4}\sin\frac{\pi}{6} = \frac{\sqrt{6} + \sqrt{2}}{4}$$
.

强化训练

1. (2022 •四川雅安期末 •★★) 记 $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c, $(a^2-b^2+c^2)\tan B = \sqrt{3}ac$, 则 B=

- 2. $(2022 \cdot 浙江台州期末 \cdot ★★) 在 \Delta ABC 中, <math>a = 3\sqrt{2}$, c = 3 , $A = 45^{\circ}$,则 ΔABC 的最大内角为() (A) 105° (B) 120° (C) 135° (D) 150°
- 3. $(2023 \cdot \text{全国乙卷} \cdot \star \star \star \star)$ 在 ΔABC 中,内角 A, B, C 的对边分别为 a, b, c, 若 $a\cos B b\cos A = c$, $\text{且 } C = \frac{\pi}{5}, \text{ 则 } B = ()$
- (A) $\frac{\pi}{10}$ (B) $\frac{\pi}{5}$ (C) $\frac{3\pi}{10}$ (D) $\frac{2\pi}{5}$
- 4. $(2022 \cdot 全国乙卷节选 \cdot ★★★) 记 △ABC 的内角 <math>A$, B, C 的对边分别为 a, b, c, 已知 $\sin C \sin(A-B) = \sin B \sin(C-A)$, 若 A = 2B, 求 C.

5. (★★★) 已知锐角 $\triangle ABC$ 的三个内角 A, B, C 的对边分别是 a, b, c, 且 $\frac{a+b}{\cos A+\cos B}=\frac{c}{\cos C}$, 求角 C.

《一数•高考数学核心方法》