Practica 2do parcial

Auxi. J. Fernando Llaveta C.

1. La resistencia variable R_0 del circuito se ajusta para una máxima transferencia de potencia ¿Qué porcentaje de la <u>Potencia Suministrada por las fuentes</u> se suministra a la resistencia de $3[k\Omega]$?

 La resistencia variable R₀ del circuito se ajusta para una máxima transferencia de potencia, Bajo estas condiciones se pide determinar la potencia total generada (Suministrada y absorbida)

3. La resistencia variable R_0 del circuito se ajusta para una máxima transferencia de potencia ¿Qué porcentaje de la <u>Potencia</u> <u>Suministrada</u> en el sistema se suministra a R_0 ?

4. La resistencia variable R_0 del circuito

se ajusta para una máxima transferencia de potencia, ¿Qué porcentaje de la <u>Potencia Total</u> <u>Generada</u> en el circuito se entrega a R_0 ?

5. El conmutador del circuito a estado en esa posición durante un largo periodo de tiempo. En t=0s el conmutador se mueve de posición, considerando la constante de tiempo a 40~ms determinar en que instante de tiempo en ms

el voltaje sobre la resistencia de $5[k\Omega]$ es de -1,1[V]

6. Hallar el valor de v_0 para todo tiempo t

7. Hallar el valor de v_0 para todo tiempo t

 Hallar el valor de la fuente de voltaje Vs tal que ocurra la máxima transferencia de potencia sobre la resistencia R₀ sea de 30 W

Hallar el valor de la tensión
para t > 0

 Hallar el circuito equivalente de Τκαγεκίο, para las terminales α – b

 Hallar el valor de R para que exista la máxima transferencia de potencia sobre la resistencia de 10[Ω]

 La resistencia variable R del circuito se ajusta para una máxima transferencia de potencia, hallar la potencia sobre R

13. Hallar el valor de la corriente i_x para t>0

En el circuito de la figura 7.117, halle i_x para t>0. Sean $R_1=R_2=1$ k $\Omega,R_3=2$ k Ω y C=0.25 mF.

14. Hallar el valor de la tensión v para t>0

15. Hallar el valor de la corriente i para t > 0

