Technische Universität Berlin

Notes

BlUB

Sascha Lange

Meta Blub

Let S denote state space and A denote action space. Let $P = \{1, ..., P\}$ be the set of players and $\mathcal{N} = \{N_0, ..., N_P\}$ the set of (neural network) function approximators, where $N_i : S \mapsto A$, $N_i(s) = a$, corresponds to player i.

Definition 1 (Agreement, stability). Let $i \in \mathcal{P}, s, s' \in \mathcal{S}$.

- i) Agreement between two states s, s' is defined as the ratio $\frac{1}{P} \cdot |\{i \in \mathcal{P} : N_i(s) = N_i(s')\}|$
- ii) Stability of a state s is defined as the ratio $\frac{2}{P(P-1)} \cdot |\{(N_i, N_j) \in \mathcal{N} \times \mathcal{N} : N_i(s) = N_i(s), i \neq j\}|$

Then we can define

Definition 2 (Distance). Let $i \in \mathcal{P}, s, s' \in \mathcal{S}$.

The distance d between two states is given by: d(s, s') = 1 - Agreement(s, s')

After having observed data $D = \{(s_1, a_1), ..., (s_n, a_n)\}$ from a new teammate p, we can give the action classifier as

$$C_p(s) = \underset{a}{\operatorname{argmin}} \{ d(\tilde{s}, s) : (\tilde{s}, a) \in D \}$$

The goal is, to combine the two notions in Definition 1, to obtain a *similarity* of two states, relative to our teammate (for reasons I explained on slack). What I initially suggested was to do it manually (i.e. no NN training), however, I think this can be done using meta learning in the following way:

Let C_{θ} denote our meta classifier. We want to learn $\theta = \theta_0$, such that

• after small number L of gradient steps on data D from agent A, to obtain θ_L , the network C_{θ_L} performs well on predicting actions of A

So we obtain updated network params after $i \leq L$ steps on D from A by

$$\theta_i^A = \theta_{i-1}^A - \alpha \Delta_\theta \mathcal{L}_A(C_{\theta_{i-1}^A})$$

for a single Task A, and thus the meta-objective becomes

$$\sum_{A \in POOL} \mathcal{L}_P(C_{\theta_L}^A) =: \mathcal{L}_{Meta},$$

where \mathcal{L}_P denotes the loss on the hold out set corresponding to A. Both A and P are agents, but A denotes agents at training time and P denotes agents at test time, indicating that players can be humans. Note however, that the different notation simply denotes disjoint data, but from the same agent P=A.

Finally we have the outer loop update given by

$$\theta_0 = \theta_0 - \beta \Delta \mathcal{L}_{Meta}$$
.

Using the idea of incorporating implicit soft cluster assignment (see slack) into the learning process we may obtain for C_{θ} the following architecture:

