CSC 525: Computer Networks

Logistics

- Lectures:
 - Mon & Wed, 2-3:15pm, GS 701
 - Instructor: Beichuan Zhang
 - Email: bzhang@cs.arizona.edu, Office: GS 723
 - Office Hour:
 - Tue 1-2 PM in office
 - Other times by appointment
- Online resources
 - D2L: course material
 - Piazza: online discussions
 - Gradescope: exam grading

What this course is about ...

- The Internet: the past, the present, and the future
- Learn the core Internet protocols
 - only have time to cover a small subset
 - open to suggestions
- Understand network protocol design
 - Principles → Principles
- Hands-on network programming experience

What we cover

- Basic design principles behind Internet architecture
- Network Layer
 - Intra-domain Routing: RIP, OSPF
 - Inter-domain Routing: BGP
 - Multicast Routing: DVMRP, CBT, etc.
- Transport Layer
 - Congestion control: TCP, XCP
- Application Layer
 - service: DNS, HTTP
 - Peer-to-Peer and Overlay
- Emerging areas and new directions
 - Data centers, IPv6, software-defined networks, information-centric network, etc.

What we don't cover

- Wireless networks
- Network security
- Data Link layer and Physical Layer
- Cisco certificates, etc.

•

Prerequisites

- CSc 425 or equivalent
 - Understanding of packet switched networks and TCP/IP protocol suite
- C programming on Linux, basic data structures, debugging, etc.

What we aim by the semester end

- A solid understanding of how the Internet works today, why the protocols were designed the way they are, and what potential challenges lie ahead.
- A better understanding of how to approach and solve protocol design problems
- The benefits
 - Open the door to network research
 - Prepare you for industry jobs.

Course Workload

- Reading: usually about 2 papers per week
- Report: a one-page report per week
- Midterm Exam: cover first half
- Final Exam: comprehensive, but focus on second half
- Project
 - First: implement a software router.
 - Second: implement a routing protocol.

Papers

- Posted on D2L.
- Read before lectures
- Pick one paper from the week to write a reading report
 - Submission on D2L, due on the following Monday before class.

Reading Reports

Format

- 11pt Times font, single column, single space.
- At least 300 words.
- At most one page, including the paper title and your name.
- Use your own words
- Focus on a single technical point.
 - E.g., discuss what you would do to follow up the work, or what you would do differently from the paper.
- The most important thing is to put your own thoughts here, try to be *different*, *critical*, and *creative*.

Projects

- First project: implement a software router
 - Be able to forward IP packets
 - Will use your router to download files.
- Second project: add a routing protocol to the router
 - Be able to route packets around link failures.
- You'll be given a code skeleton to start with.
- You'll test it with real traffic.

Projects

- Start from the second week of class.
- Program in C on department Linux machines.
- Can work in a group of up to 2 people.

Textbooks

No required books

- Optional Reference:
 - Computer Networks, A Systems Approach by Peterson and Davie.
 - Routing in the Internet by Huitema

Grading

- Final numeric grade is a weighted sum of
 - Project 1: 20%, Project 2: 25%, Midterm: 20%,Final: 20%, Reading reports 15%
- The final letter grade may be curved:
 - ->= 90% A, >= 75% at least B, >= 60% at least C, >= 50% at least D, < 50% E
- No late turn-in will be accepted.
- Partial credit for incomplete but on-time submissions.

Academic Integrity

- Familiarize yourself with the code of academic integrity on the syllabus.
 - Especially don't share your code and exams with others nor upload them to other websites; and don't access those from other websites either.

Review on Internet Layering

Example

- How to express what we're looking for
- How to find the content?
- How to direct bits towards the destination?
- How to transmit the bits?
- How to recover from loss, error etc.?
- Many more ...

Solution

- Divide and Conquer
- Layering, protocol stack, logical communication, encapsulation.
- Naming
- APIs
- Internet vs. OSI

How to retrieve a web page?

- Get http://www.google.com/index.htm
- DNS name lookup
 - www.google.com → 64.233.167.104
- Establish TCP connection with 64.233.167.104
- Send IP packets to the destination
- Routers figure out how to forward packets.
- Translate IP address to Ethernet address via ARP
 - 192.12.69.2 → 0:f:8f:f7:13:7f
- Send/receive Ethernet frames on the wire.

Application Layer

- Application-specific functionality
 - Client-server: HTTP, DNS, SMTP, NTP ...
 - Peer-to-peer: Gnutella, Bittorrent, DHT, ALM

HTTP Request:

HTTP Response:

protocol header

POST /index.html HTTP/1.1

Host: map.google.com

User-Agent: Mozilla/4.0

Content-Length: 22

Accept-language: fr

Application data

City=Tucson&State=AZ

HTTP/1.1 200 OK

Date: Tue, 04 Mar 2003 08:01:01 GMT

Server: GWS/2.0

Content-Length: 2824

Content-Type: text/html

<HTML> ... </HTML>

Transport Layer

- Data can get lost in communication
 - Transmission error
 - Equipment failure
 - Congestion
- Transport Layer: end-toend data delivery service
 - TCP: reliable byte stream
 - UDP: unreliable datagram
 - DCCP, SCTP etc.

Congestion Control

Congestion

- Too many sources sending too much data and too fast for network to handle
- Throughput plunges, lost packets and long delay
- Solution: rate control
 - By how much? When to increase sending rate back?
 - End-to-end
 - Network assisted

Network Layer

- Forwarding packets from source host to the destination host
- Forwarding: send packets to the next hop router.
- Routing: compute the next hop for each destination.
- Routing Algorithms and protocols
 - Distance Vector (RIP)
 - Path Vector (BGP)
 - Link State (OSPF)
- Best effort and QoS

Internet Routing Hierarchy

- AS (Autonomous System): a collection of routers under the same technical and administrative control.
- EGP (External Gateway Protocol): for inter-domain routing, e.g. BGP
- IGP (Internal Gateway Protocol): for intra-domain routing, e.g. RIP, OSPF

Internet: Network of Networks

Data Link Layer

- Functions
 - Framing
 - Error detection & correction
 - Access sharing
- Example
 - Dialup, DSL
 - Cable Modem
 - WiFi, CDMA, 5G

Physical Layer

- Transmit bits on physical media
 - Twisted pair
 - Coaxial cable
 - Fiber optics
 - Radio link
- Bandwidth
- Dedicated vs. shared

The Hourglass Architecture of the Internet

Challenges

- Changing environment
 - Large-scale, dynamic content publishing and distribution
 - Mobile ad-hoc connectivity
 - E.g., Internet of Things, vehicular networks, cloud computing, etc.
- Scalability
- Security and privacy
- Architectural evolution

Assignments

- Read the first paper
 - "On Distributed Communications Networks"
- Decide on project team
 - You can either work by yourself or with another student.