****The following questions are concerned with Chapter 6: Polynomials and Codes.****

- **78** a) Show in general (and by contradiction) that if in a ring R we have $a \neq 0, b \neq 0$, but ab = 0, then there is no a^{-1} or b^{-1} in R.
 - b) Use $R = \mathbb{F}_2[x]/(x^3+x^2+x+1)$ to provide an example of this: for each (nontrivial) factor of x^3+x^2+x+1 , find all its multiples in R, to show that none of them is 1. (You are finding two rows of the multiplication table for R.)
- **S78** a) Suppose $a \neq 0, b \neq 0$, but ab = 0. If a^{-1} exists then we have $b = 1b = (a^{-1}a)b = a^{-1}(ab) = a^{-1} \cdot 0 = 0$, which is a contradiction.
 - b) In R, $(x+1)(x^2+1) = x^3 + x^2 + x + 1 = 0$.

	×	1	x	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
_	x+1	x+1	$x^2 + x$	$x^2 + 1$	x+1	0	$x^2 + 1$	$x^2 + x$
	$x^2 + 1$	$x^2 + 1$	$x^2 + 1$	0	$x^2 + 1$	0	0	$x^2 + 1$

 \triangle

- **79** Which elements of \mathbb{F}_5 are primitive? Which elements of \mathbb{F}_7 are primitive?
- **S79** In \mathbb{F}_5 , the powers of 2 are $2^0=1, 2^1=2, 2^2=4, 2^3=8=3$. Similarly the powers of 3 are 1, 3, 9=4, 27=2. So 2 and 3 are primitive in \mathbb{F}_5 . But the powers of 4 are only 4 and 1, so 4 is not primitive. In \mathbb{F}_7 the powers of 3 are 1, 3, 2, 6, 4, 5, and the powers of 5 are 1, 5, 4, 6, 2, 3. So 3 and 5 are primitive. But the powers of 2 and 4 are all 1, 2 and 4, and the powers of 6 are only 1 and 6.
- Working in \mathbb{F}_7 , express each non-zero element as a power of 3. If $a=3^i$ then what is a^{-1} , in terms of i? Now find a primitive element of \mathbb{F}_{11} , and answer the corresponding question.

S80

In \mathbb{F}_7 we have $3^6=3^0=1$, so $a^{-1}=(3^i)^{-1}=3^{6-i}$. Similarly, in \mathbb{F}_{11} , where $2^{10}=1$, we have $(2^i)^{-1}=2^{10-i}$. (The other primitive elements of \mathbb{F}_{11} you could use are 8, 7, and 6.)

- 81 In \mathbb{F}_7 , for which $1 \le i \le 6$ is 3^i a primitive element? In \mathbb{F}_{11} , for which $1 \le i \le 10$ is 2^i a primitive element? Can you generalise this idea? If a is a primitive element in \mathbb{F}_p , for which $1 \le i \le p-1$ is a^i a primitive element?
- **S81** In \mathbb{F}_7 , only $3=3^1$ and $5=3^5$ are primitive elements. The other powers all share a factor with 6, so $2^3=(3^2)^3=3^6=1$; $6^2=(3^3)^2=3^6=1$; $4^3=(3^4)^3=3^{12}=1$. Similarly in \mathbb{F}_{11} , only $2=2^1$, $8=2^3$, $7=2^7$, and $6=2^9$ are primitive elements, because only 1, 3, 7 and 9 do not share a factor with 10, and 2^{10} is 1, so again the powers of other powers of 2 get back to 10 "too soon". In general, in \mathbb{F}_p , there are p-1 non-zero elements, and since a is primitive we know that $a^{p-1}=1$, but $a^i\neq 1$ for $1\leq i< p-1$. So, similarly, the element a^i a primitive if and only if i is prime to (shares no factor with) p-1.

- 82 In lectures we used the field $\mathbb{F}_8 = \mathbb{F}_2[x]/(x^3+x+1)$. What happens if, instead, we divide $\mathbb{F}_2[x]$ out by other f(x) of degree 3 over \mathbb{F}_2 ? By considering polynomials of smaller degree, show that x^3+x+1 and x^3+x^2+1 are irreducible, but x^3+x^2+x+1 is reducible, and show how it factors. (It follows that $\mathbb{F}_2[x]/(x^3+x^2+1)$ is also the field \mathbb{F}_8 (see Q83) but $\mathbb{F}_2[x]/(x^3+x^2+x+1)$ is a ring (see Q78).)
- **S82** Let $f(x) \in \mathbb{F}_2[x]$ be of degree 3, with non-zero constant term (otherwise x is obviously a factor). Then one factor must be x+1, and the other could be $x^2+1=(x+1)^2$, or x^2+x+1 . So the reducible options are x^3+x^2+x+1 and x^3+1 , and the irreducible ones are x^3+x+1 and x^3+x^2+1 .
- **83** a) Find all the powers of x in $\mathbb{F}_8 = \mathbb{F}_2[x]/(x^3+x^2+1)$. That is, make a table giving each $x^i, \ 0 \le i \le 7$, in the form $a_2x^2+a_1x+a_0$.
 - b) Use your table to find $x^4 + x^5$ in the form x^i , and $(x^2 + x + 1)(x^2 + x)$ in the form $a_2x^2 + a_1x + a_0$.

S83 a)

b)
$$x^4 + x^5 = (x^2 + x + 1) + (x + 1) = x^2$$
, and $(x^2 + x + 1)(x^2 + x) = x^4 \cdot x^6 = x^{10} = x^3 = x^2 + 1$. \triangle

- 84 Consider $\mathbb{F}_3[x]/(x^2+1)$. Show that in this version of \mathbb{F}_9 , x is not a primitive element, but x+1 is a primitive element. (Thus, we say that x^2+1 is not a primitive polynomial over \mathbb{F}_3 .)
- **S84** First, notice that in \mathbb{F}_3 , $x^2+1=0$ has no roots, so x^2+1 is irreducible, and so $\mathbb{F}_9=\mathbb{F}_3[x]/(x^2+1)$ is indeed a field. In this field, since we identify x^2+1 with 0, we have $x^2=-1=2$. We can therefore compute the powers of x as

The powers of x do not include all 8 non-zero elements of \mathbb{F}_9 , and so x is not primitive in $\mathbb{F}_3[x]/(x^2+1)$, and so (x^2+1) is not a primitive polynomial over \mathbb{F}_3 .

If we now consider powers of (x+1), we find that

$$(x+1)^2 = x^2 + 2x + 1 = 2x$$

$$(x+1)^3 = 2x(x+1) = 2x^2 + 2x = 2x - 2 = 2x + 1$$

$$(x+1)^4 = ((x+1)^2)^2 = (2x)^2 = 4x^2 = x^2 = 2.$$

and so we can complete a table of powers of (x+1) as

Since this does contain include all 8 non-zero elements of \mathbb{F}_9 , (x+1) is primitive in $\mathbb{F}_3[x]/(x^2+1)$. \triangle

By considering possible roots, show that x^3+2x+1 is irreducible in $\mathbb{F}_3[x]$. Use Proposition 6.9 to show that $\mathbb{F}_3[x]/(x^3+2x+1)$ is a field \mathbb{F}_q , and find q. By writing each x^i , $0 \le i \le 13$, in the form $a_2x^2+a_1x+a_0$, show that x^3+2x+1 is a primitive polynomial over \mathbb{F}_3 . Why do we *not* need to calculate the x^i , $14 \le i \le 26$, to know this?

S85 If $f(x) = x^3 + 2x + 1$ factors in $\mathbb{F}_3[x]$, it must factor into a linear and a quadratic term. Thus it must have a root in \mathbb{F}_3 , But we have f(0) = 1 f(1) = 4 = 1, f(2) = 13 = 1, so it is irreducible. We have the requirements for prop 6.3 with p = 3, r = 3, so $\mathbb{F}_3[x]/(x^3 + 2x + 1)$ is the field \mathbb{F}_{27} .

From now on, $x^{13+i}=2x^i$, so we will not get to 1 until x^{26} . (You could also argue that the order of the element x must divide the order of the multiplicative group $\mathbb{F}_{27}-\{0\}$, which is 26. So if the order of x is not 2 or 13, it must be 26.) So x is primitive in this version of \mathbb{F}_{27} , so by definition x^3+2x+1 is a primitive polynomial over \mathbb{F}_3 .

- **86** Let a be a primitive element in the field \mathbb{F}_q , where the prime power $q=p^r$.
 - a) For which $1 \le i \le q-1$ is a^i a primitive element? (See Q81; explain if you can. For a formal proof, you need Lagrange's Theorem the order of a subgroup divides the order of the group.)
 - b) Show that if every $a \in \mathbb{F}_q, a \neq 0, a \neq 1$ is primitive, then p = 2.
 - c) Show that the converse is not true: for some values of r, \mathbb{F}_{2^r} has other non-primitive elements.
 - d) Show that any irreducible polynomial of degree 3 or 5 in $\mathbb{F}_2[x]$ is a primitive polynomial over \mathbb{F}_2 .
- **S86** a) a^i is primitive $\Leftrightarrow i$ shares no factors with q-1
 - \Rightarrow , contrapositive: If i shares a factor with q-1, then we have ki=m(q-1), with k< q-1, m< i. But then $(a^i)^k=1$, so a^i is not primitive.
 - \Leftarrow , contrapositive: The powers of a^i form a subgroup of the multiplicative group $\mathbb{F}_q 0$. The order k of this subgroup divides q-1, so there is some k which divides q-1 such that $(a^i)^k=1$, so ki=m(q-1). If a^i is not primitive, then k< q-1, so i must share a factor with q-1.
 - b) If every a^i is primitive, then by part a) every 1 < i < q-1 shares no factor with q-1. This is true if and only if q-1 is prime. If the prime $p \neq 2$, then $q=p^r$ is odd, so q-1 is even, so not prime. (Strictly, p=3, r=1 gives q-1=2 which is prime, so in this small case we also have every element primitive.)
 - c) $2^4=16$, $2^6=64$, and 15 and 63 are not prime, so \mathbb{F}_{16} and \mathbb{F}_{64} have non-primitive elements.
 - d) An irreducible polynomial f(x) is called primitive over \mathbb{F}_p if, when we form the field $\mathbb{F}_q=\mathbb{F}_p[x]/(f(x))$, the element x is primitive in this field. If f(x) has degree 3, then $\mathbb{F}_q=\mathbb{F}_2[x]/(f(x))=\mathbb{F}_8$. So q-1=7, which is prime, and as in part b) every element, including x, must be primitive. Similarly if f(x) has degree 5, then $\mathbb{F}_q=\mathbb{F}_2[x]/(f(x))=\mathbb{F}_{32}$, and q-1=31, which is also prime.
- **87** Using $\mathbb{F}_4 = \mathbb{F}_2[x]/(x^2 + x + 1)$,
 - a) Construct a check-matrix, and then a generator-matrix for $\mbox{\rm Ham}_4(2).$
 - b) Decode the received word, y = (x, x, x + 1, 1, x).
 - c) Construct a generator-matrix and a check-matrix for the extended Hamming code $\widehat{\text{Ham}}_4(2)$.
 - d) Show that for $\widehat{\text{Ham}}_4(2)$, some received words do not have a unique nearest neighbour.
- **S87** a) In this field, we just have to remember that $x^2 = x + 1$. So $L_{(0,1)} = \{(0,1), (0,x), (0,x+1)\}$, $L_{(1,0)} = \{(1,0), (x,0), (x+1,0)\}$, $L_{(1,1)} = \{(1,1), (x,x), (x+1,x+1)\}$,

$$L_{(1,x)} = \{(1,x), (x,x+1), (x+1,1)\}, L_{(1,x+1)} = \{(1,x+1), (x,1), (x+1,x)\}.$$

Then one choice is
$$H = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & x & x+1 \end{pmatrix}$$
, and (using Proposition 4.5) $G = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & x & 0 & 1 & 0 \\ 1 & x+1 & 0 & 0 & 1 \end{pmatrix}$.

- b) With this H, S(y)=(x,x), which is x times the third column of H, so we assume the error-vector is $x\mathbf{e}_3=(0,0,x,0,0)$, and decode to (x,x,1,1,x). But if you have a different H, you have a different (though equivalent) code, and the decoding will be different. For example, with $H'=\begin{pmatrix} 1 & 0 & x+1 & x+1 & x \\ 0 & 1 & x & x \end{pmatrix}$, the given y is actually a codeword.
- $H' = \begin{pmatrix} 1 & 0 & x+1 & x+1 & x \\ 0 & 1 & 1 & x & x \end{pmatrix}, \text{ the given } y \text{ is actually a codeword.}$ $\text{c) By the definition, } \widehat{H} = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & x & x+1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}, \text{ and by Proposition 5.9 } \widehat{G} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & x & 0 & 1 & 0 & x \\ 1 & x+1 & 0 & 0 & 1 & x+1 \end{pmatrix}$
- d) Any Hamming code has d=3, so we know that no two columns of H are dependent. But then because of their last entries 1, no three columns of \widehat{H} can be dependent. Because they are of length 3, any 4 columns of \widehat{H} are dependent, so for $\widehat{Ham}_4(2)$, d=4. (This is the same idea as for Corollary 5.8. But here the codes are not strictly binary ...) It follows (see Q16a) that for any pair of codewords $\mathbf{c}_1, \mathbf{c}_2$ with $d(\mathbf{c}_1, \mathbf{c}_2) = 4$, there is a word \mathbf{y} with $d(\mathbf{c}_1, \mathbf{y}) = d(\mathbf{c}_2, \mathbf{y}) = 2$. In other words, $\widehat{Ham}_4(2)$, having d even, is not perfect.
- **88** Using $\mathbb{F}_4 = \mathbb{F}_2[x]/(x^2+x+1)$, let $C \subseteq \mathbb{F}_4^4$ have check-matrix $H = \begin{pmatrix} 1 & x+1 & x & 1 \\ 0 & x+1 & 1 & x \end{pmatrix}$. Find d(C).
- **S88** We can see that no column is a multiple of another (the L_v for Q87 confirm this). But the last three columns add to $\mathbf{0}$ (and in any case, $d \le n k + 1$), so d(c) = 3.
- **89** Using $\mathbb{F}_4 = \mathbb{F}_2[x]/(x^2+x+1)$, let $C = \langle (1,1) \rangle \subseteq \mathbb{F}_4^2$.
 - a) Make a decoding array for C and use it to decode (x,0), (1,x), (x+1,x), and (0,1).
 - b) C is transmitted over a 4-ary symmetric channel with symbol-error probability p. Find the chance that a received word is successfully decoded by your array.
 - c) Now make a syndrome look-up table for C, and decode the same words as in a). Does it decode them to the same codewords? If not, could you make a syndrome look-up table that *does* decode like the array?
- **S89** a) The code $C = \langle (1,1) \rangle = \{(0,0), (1,1), (x,x), (x+1,x+1)\} \subseteq \mathbb{F}_4^2$, so the array could be:

$$\begin{array}{c|ccccc} (0,0) & (1,1) & (x,x) & (x+1,x+1) \\ \hline (0,1) & (1,0) & (x,x+1) & (x+1,x) \\ (x,0) & (x+1,1) & (0,x) & (1,x+1) \\ (x+1,0) & (x,1) & (1,x) & (0,x+1) \\ \hline \end{array}$$

With this array (and there are many others!) we decode (x,0) to (0,0), (1,x) to (x,x), (x+1,x) to (x+1,x+1) and (0,1) to (0,0).

- b) We use Proposition 2.11; that is, we add the probabilities of the error-vectors in the first column. This gives $(1-p)^2 + 3(1-p)p/3$.
- c) A generator matrix for C is $G=(1\ 1)$, so (by Proposition 4.5) a check matrix is also $H=(1\ 1)$, and the syndrome of a word is just the sum of its entries. So two possible syndrome look-up tables would be

Syndrome $S(\mathbf{x})$	Error-vector x		Syndrome $S(\mathbf{x})$	Error-vector x	
0	(0,0)	•	0	(0,0)	
1	(0,1)	and	x+1	(x+1,0)	The first one decodes
x	(x,0)		x	(x,0)	
x+1	(x+1,0)		1	(1,0)	

like the array above, because it tells us to subtract the same assumed error-vectors. The second

 \triangle does not.

90 Using
$$\mathbb{F}_4 = \mathbb{F}_2[x]/(x^2+x+1)$$
, let $C \subseteq \mathbb{F}_4^6$ have check-matrix $H = \begin{pmatrix} 1 & 0 & 0 & 1 & x & 0 \\ 0 & 1 & 0 & 0 & 1 & x \\ 0 & 0 & 1 & x & 0 & 1 \end{pmatrix}$.

- a) Find d(C).
- b) How many rows would there be in a syndrome look-up table for C? To cut the table shorter, let us only include syndromes $S(\mathbf{x})$ with $w(\mathbf{x}) \leq 1$. Also, we can condense several lines into one by using λe_i as our x's, where λ stands for any non-zero element of \mathbb{F}_4 .
- c) Make a shortened table like this and use it to decode (if possible) the received words (1, 1, 1, 1, 1, 1),
- (0, 0, 0, x, 1, x+1), (x, 1, 0, x+1, x, 1), (0, x+1, 0, x+1, x, 1), (1, 0, x, 1, 0, x), (1, x, 0, x+1, x+1), (1, 0, x+1), (1,1, x, 1).
- d) How many received words can we decode using this table?
- **S90** a) By the positions of the zeros, no column is a multiple of another, but $x \cdot \text{col.} 1 + \text{col.} 2 + \text{col.} 5 = 0$, so d(C) = 3
 - b) Since q = 4, n = 6, r = n k = 3, so k = 3, we would have $q^{n-k} = 4^{6-3} = 64$ rows. c)

Syndrome $S(\mathbf{x})$	Error-vector x	Syndrome $S(\mathbf{x})$	Error-vector x
(0, 0, 0)	(0,0,0,0,0,0)		
$\lambda(1,0,0)$	$\lambda(1,0,0,0,0,0)$	$\lambda(1,0,x)$	$\lambda(0,0,0,1,0,0)$
$\lambda(0,1,0)$	$\lambda(0, 1, 0, 0, 0, 0)$	$\lambda(x,1,0)$	$\lambda(0,0,0,0,1,0)$
$\lambda(0,0,1)$	$\lambda(0,0,1,0,0,0)$	$\lambda(0,x,1)$	$\lambda(0,0,0,0,0,1)$

	\mathbf{y}	$S(\mathbf{y})$	corresponding ${f x}$	decode?
ſ	(1,1,1,1,1,1)	(x, x, x)	none	table fails
	(0, 0, 0, x, 1, x + 1)	(0, 0, 0)	(0,0,0,0,0,0)	(0, 0, 0, x, 1, x + 1)
	(x, 1, 0, x + 1, x, 1)	(x, 1, 0)	1(0,0,0,0,1,0)	(x, 1, 0, x + 1, x + 1, 1)
	(0, x+1, 0, x+1, x, 1)	(0, x+1, 0)	(x+1)(0,1,0,0,0,0)	(0, 0, 0, x + 1, x, 1)
	(1, 0, x, 1, 0, x)	(0, x + 1, x)	x(0,0,0,0,0,1)	(1, 0, x, 1, 0, 0)
	(1, x, 0, x + 1, x, 1)	(1, x, 0)	none	table fails

- d) We can decode anything in any $S(\mathbf{c}, 1)$ round some codeword \mathbf{c} , and these spheres are disjoint. There are $4^3 = 64$ codewords, and $|S(\mathbf{c}, 1)| = 1 + 6 \cdot 3 = 19$. So we can decode $64 \times 19 = 1216$ words out of a possible $4^6 = 4096 = |\mathbb{F}_4^6|$. (In the "table fails" cases, we could still find a nearest neighbour - see Q69.)
- This question uses $\mathbb{F}_8 = \mathbb{F}_2[x]/(x^3+x+1)$. To help you do arithmetic in this field, first make or 91
 - find the table expressing each $x^i,\ 0 \le i \le 7$, in the form $a_2x^2 + a_1x + a_0$. a) Let $C = \langle \{(x,\,x^2,\,x^2+x,\,x^2+1),(0,\,0,\,x^2,\,x),(x+1,\,x^2+x,\,0,\,x^2+1)\} \rangle \subseteq \mathbb{F}_8^4$. Find a generator- and a check-matrix for C, and its parameters [n, k, d].
 - b) Use your generator-matrix to encode $(x^2, x^2 + 1)$, and to channel-decode $(x, x^2, x^2 + x, x^2 + 1)$.
- **S91** a) In $\mathbb{F}_8 = \mathbb{F}_2[x]/(x^3+x+1)$, we identify the polynomial x^3+x+1 with zero, so we therefore have the identity $x^3=x^2+1$ (since our coefficients are in \mathbb{F}_2). We can then calculate higher powers of

x as follows:

$$x^{3} = x + 1$$

$$x^{4} = x^{2} + x$$

$$x^{5} = x^{3} + x^{2} = x^{2} + x + 1$$

$$x^{6} = x^{3} + x^{2} + x = (x + 1) + x^{2} + x = x^{2} + 1$$

$$x^{7} = x^{3} + x = 1.$$

Putting this into a table like before for easy referral:

Now to find a generator matrix for the code, we first need to put the elements of the spanning set as the rows of a matrix and then row-reduce to check for linear dependence.

$$\begin{pmatrix} x & x^2 & x^2 + x & x^2 + 1 \\ 0 & 0 & x^2 & x \\ x + 1 & x^2 + x & 0 & x^2 + 1 \end{pmatrix} \xrightarrow{M_1(x^2+1)} \begin{pmatrix} 1 & x & x + 1 & x^2 + x + 1 \\ 0 & 0 & x^2 & x \\ x + 1 & x^2 + x & 0 & x^2 + 1 \end{pmatrix}$$

$$\xrightarrow{A_{13}(x+1)} \begin{pmatrix} 1 & x & x + 1 & x^2 + x + 1 \\ 0 & 0 & x^2 & x \\ 0 & 0 & x^2 + 1 & x^2 + x + 1 \end{pmatrix} \xrightarrow{A_{23}(x^4)} \begin{pmatrix} 1 & x & x + 1 & x^2 + x + 1 \\ 0 & 0 & x^2 & x \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Since there's an all 0 row, we should now remove this, and then continue to row reduce.

$$\begin{pmatrix} 1 & x & x+1 & x^2+x+1 \\ 0 & 0 & x^2 & x \end{pmatrix} \xrightarrow{M_2(x^5)} \begin{pmatrix} 1 & x & x+1 & x^2+x+1 \\ 0 & 0 & 1 & x^2+1 \end{pmatrix} \xrightarrow{A_{21}(x+1)} \begin{pmatrix} 1 & x & 0 & x+1 \\ 0 & 0 & 1 & x^2+1 \end{pmatrix} = G.$$

G is therefore a generator matrix for C. We can now use the $G \leftrightarrow H$ algorithm to find a check matrix. The matrix G is already in RREF, with leading 1s in columns 1 and 3, so a basis for C^{\perp} (and hence the rows of a check-matrix) is given by

$$\mathbf{v}_2 = (x, 1, 0, 0), \quad \mathbf{v}_4 = (x + 1, 0, x^2 + 1, 1),$$

and hence a check matrix for C is given by

$$H = \begin{pmatrix} x & 1 & 0 & 0 \\ x+1 & 0 & x^2+1 & 1 \end{pmatrix}.$$

By considering the generator matrix, we easily see that we have n=4 and k=2, and by considering the check-matrix, we see we have d=2 using Theorem 4.11 (since the final two columns are linearly dependent).

b) To encode $\mathbf{x} = (x^2, x^2 + 1)$, we calculate $\mathbf{c}_1 = \mathbf{x} \cdot G$,

$$\mathbf{c}_1 = (x^2, x^2 + 1) \begin{pmatrix} 1 & x & 0 & x+1 \\ 0 & 0 & 1 & x^2 + 1 \end{pmatrix} = (x^2, x+1, x^2+1, 0).$$

To channel-decode $\mathbf{c}_2 = (x, x^2, x^2 + x, x^2 + 1)$, we need to find $\mathbf{m} = (m_1, m_2)$ such that $\mathbf{m} \cdot G = \mathbf{c}_2$. By considering the positions of the leading 1s, we see that we must have $\mathbf{m} = (x, x^2 + x)$. \triangle

- This question uses $\mathbb{F}_9 = \mathbb{F}_3[x]/(x^2+x+2)$. To help you do arithmetic in this field, first make or find the table expressing each $x^i,\ 0 \le i \le 8$, in the form a_1x+a_0 . Let $C = \langle \{(0,x+1,2x+1,x,1),(1,0,0,2,x),(2,1,0,x+2,x)\} \rangle \subseteq \mathbb{F}_9^5$. Find a generatorand a check-matrix for C, and its parameters [n,k,d]. (To find d, it may help to re-write H with entries x^i .)
- \$92 In lectures we made the table

To find the generator-matrix we must row-reduce:

So in fact the original three vectors were linearly independent, and any of these matrices is a generator -matrix for C.

Then by Proposition 4.5 $H=\begin{pmatrix} 1 & 2x+2 & 2x+1 & 1 & 0 \\ 2x & x & x+2 & 0 & 1 \end{pmatrix}=\begin{pmatrix} 1 & x^3 & x^2 & 1 & 0 \\ x^5 & x & x^6 & 0 & 1 \end{pmatrix}$. No column of the check-matrix H is a multiple of another. (From top to bottom of columns 1, 2, 3, we multiply by x^5, x^6, x^4 respectively.) But clearly columns 4, 5 and any one other are linearly dependent (and anyway, we know $d \leq 3$). So d(C)=3.

- 93 Prove that for f(x) in $\mathbf{R}_n = \mathbb{F}_q[x]/(x^n-1)$, its span $\langle f(x) \rangle$ is a cyclic code. (This is Proposition 6.14. Use Proposition 6.12 to prove it.)
- **S93** We must prove properties i) and ii) of Proposition 6.12. We can write $a(x), b(x) \in \langle f(x) \rangle$ as a'(x)f(x), b'(x)f(x) for some $a'(x), b'(x) \in \mathbf{R}_n$ But then for i) $a(x) + b(x) = (a'(x) + b'(x))f(x) \in \langle f(x) \rangle$ and for ii) $r(x)a(x) = (r(x)a'(x))f(x) \in \langle f(x) \rangle$ as required.
- **94** Let $g(x) \in \mathbf{R}_n = \mathbb{F}_q[x]/(x^n-1)$ be monic, of degree r, and be a factor of x^n-1 .
 - a) By considering the check-polynomial h(x), show that any element of $C = \langle g(x) \rangle$ has degree $\geq r$.
 - b) Show that, with these conditions, g(x) is the generator-polynomial of $\langle g(x) \rangle$.
 - c) Deduce that there is a 1-1 correspondence between monic factors of x^n-1 and cyclic codes in \mathbf{R}_m .
- **S94** a) Let $g(x)h(x) = x^n 1$ in \mathbb{F}_q^n . Then h(x) is the check-polynomial of C, and has degree n-r=k. Any element of C is a(x)g(x) for some $a(x) \in \mathbf{R}_n$, and a(x) = q(x)h(x) + r(x) for some r(x) of degree < k. Then in $\mathbb{F}_q^n[x]$, $a(x)g(x) = g(x)[q(x)h(x) + r(x)] = q(x)g(x)h(x) + g(x)r(x) = q(x)(x^n 1) + g(x)r(x)$. This is g(x)r(x) in \mathbf{R}_n . But since $0 \le deg(r(x)) < k$, we know $r \le deg(g(x)r(x)) < n$ in $\mathbb{F}_q^n[x]$, so there is no further reduction to be done when we go to \mathbf{R}_n , and indeed in \mathbf{R}_n , $deg(a(x)g(x)) = deg(g(x)r(x)) \ge r$ also.
 - b) As in the proof of Theorem 6.15 i), there cannot be two monic polynomials of least degree in C. So any other monic polynomial in C has degree > r. Thus g(x) is the generator-polynomial of $\langle g(x) \rangle$.
 - c) From Proposition 6.14 we know that any code $\langle g(x) \rangle$ is a cyclic code, and from Theorem 6.15 that any cyclic code has a generator-matrix as described (correspondence is surjective). But also, if

 $g_1(x)$ and $g_2(x)$ are monic factors of x^n-1 , and $C=\langle g_1(x)\rangle=\langle g_2(x)\rangle$, then by b) they are both the unique generator-polynomial of C, so must be the same (injectivity).

- 95 Find all ternary cyclic codes of block-length 3. These can be regarded as both subrings (in fact, ideals) in the ring $\mathbf{R}_3 = \mathbb{F}_3[x]/(x^3-1)$ and subspaces of the vector space \mathbb{F}_3^3 . So, first find the generator-polynomial of each, and then a generator-matrix for each. Two of the codes are trivial. For the two which are not trivial, find their parameters [n,k,d]. How are they related?
- **S95** Since in $\mathbb{F}_3[x]$ we have $x^3-1=(x-1)^3$, the factors of x^3-1 are: 1, x-1=2+x, $(x-1)^2=1+x+x^2$, and $(x-1)^3$. By Theorem 6.15 these generate all the codes we want in \mathbf{R}_3 , but of course $x^3-1=0$ in \mathbf{R}_3 . Then by Proposition 6.17 we can also write out the generator-matrices, and from these it is easy to find check-matrices and parameters.

generator- polynomial	generator- matrix	code in \mathbb{F}_3^3	check- matrix	(n, k, d)
1	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	all of \mathbb{F}_3^3	(0 0 0)?	(3, 3, 1)
2+x	$ \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} $	$ \begin{cases} (0,0,0), & (2,1,0), & (0,2,1), \\ (1,2,0), & (0,1,2), & (2,0,1), \\ (1,0,2), & (1,1,1), & (2,2,2) \end{cases} $	(1 1 1)	(3, 2, 2)
$1 + x + x^2$	(1 1 1)	$\{(0,0,0),(1,1,1),(2,2,2)\}$	$ \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix} $	(3,1,3)
0	(0 0 0)?	$\{(0,0,0)\}$	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	(3, 0, ??)

(In the table, the ?? acknowledges that the last, trivial code does not really have a minimum distance, because it only has one word. Also, ? admits that though $(0\ 0\ 0)$ does check or generate the code, it does not fully qualify as a check- or generator-matrix. In each case, if you think about dimensions, it should really have 0 rows and its rows should be linearly independent. The vector (0,0,0) is linearly dependent all by itself.) From the matrices, it is clear that the two non-trivial codes (second and third in the table) are dual to each other (as are the two trivial codes). \triangle

- **96** a) By considering possible roots, factor $x^3 1$ in the ring of polynomials $\mathbb{F}_7[x]$.
 - b) Using these factors, find all the non-trivial 7-ary cyclic codes of block-length 3. (There are six of them). Give a generator-polynomial and a generator-matrix for each.
 - c) Let C be the one of these codes with generator-matrix $G=\begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix}$. By finding x_1 and x_2 such that $x_1(3,1,0)+x_2(0,3,1)=(1,2,6)$, show that $(1,2,6)\in C$. (In effect, you are channel decoding.) In the same way, show that (2,6,1) and (6,1,2) (the cyclic shifts of (1,2,6)) are in C, but (1,6,2) is not.
- **S96** a) In \mathbb{F}_7 , we have that $1^3 = 1$, $2^3 = 8 = 1$, and $4^3 = 64 = 1$. These are therefore all roots of $x^3 1 = 0$, and so $(x^3 1) = (x 1)(x 2)(x 4)$.
 - b) Non-trivial factors $g_i(x)$ of (x^3-1) generate non-trivial cyclic codes of block length 3 in $R_3 = \mathbb{F}_7[x]/(x^3-1)$, with generator matrices G_i . Explicitly, we have the following:

 \triangle

- $g_1(x)=(x-1)=6+x$, which gives the generator matrix $G_1=\begin{pmatrix} 6 & 1 & 0 \\ 0 & 6 & 1 \end{pmatrix}$.

 $g_2(x)=(x-2)=5+x$, which gives the generator matrix $G_2=\begin{pmatrix} 5 & 1 & 0 \\ 0 & 5 & 1 \end{pmatrix}$.

 $g_3(x)=(x-4)=3+x$, which gives the generator matrix $G_3=\begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix}$.

- $g_4(x) = (x-1)(x-2) = 2+4x+x^2$, which gives the generator matrix $G_4 = \begin{pmatrix} 2 & 4 & 1 \end{pmatrix}$.
- $g_5(x) = (x-1)(x-4) = 4 + 2x + x^2$, which gives the generator matrix $G_5 = (4 \ 2 \ 1)$.
- $g_6(x)=(x-2)(x-4)=1+x+x^2$, which gives the generator matrix $G_6=\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$.
- c) This is the code with generator matrix G_3 from above. Considering the positions of the zeros in G_3 , we see that the first position of the word (1, 2, 6) can only come from some multiple of the first row. We therefore need to take $x_1 = 3^{-1} = 5$. Similarly, the only contribution to the final position comes from a multiple of the second row, so we need to take $x_2 = 6$. We then have that

$$(1, 2, 6) = (5, 6) \cdot \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix} \in C.$$

Using the same ideas, we find that

$$(2, 6, 1) = (3, 1) \cdot \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix} \in C,$$

$$(6, 1, 2) = (2, 2) \cdot \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix} \in C.$$

If we try to use the same idea to find (1, 6, 2) as the image of a message (x_1, x_2) , we would need to take $x_1 = 5$ and $x_2 = 2$. However, we find that

$$(5, 2) \cdot \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix} = (1, 4, 2) \neq (1, 6, 2),$$

so (1, 6, 2) is not a codeword, as it is not the image in C of any message.

- Consider the code C of Q96c. Write down its generator-polynomial q(x) and its check-polynomial 97 h(x). Use Proposition 6.20 to find out which of these polynomials are in C: $a(x) = 6x^2 + 2x + 6x^2 +$ 1, $b(x) = 2x^2 + 6x + 1$. Do your answers agree with Q96c?
- **S97** The generator matrix for C is g(x) = x 4 = 3 + x. Thus the check-matrix is h(x) = (x 1)(x 2) = x 4 $x^2 + 4x + 2$. We now use this to "check" a(x) and b(x): $a(x)h(x) = (6x^2 + 2x + 1)(x^2 + 4x + 2) = 6x^4 + 26x^3 + 21x^2 + 8x + 2 = 6x + 5 + 0 + 8x + 2 = 0$ $x^2 + 2x + 4 \neq 0$ This agrees with Q96: $a(x) \leftrightarrow (1,2,6) \in C$; $b(x) \leftrightarrow (1,6,2) \notin C$.
- In lectures, we found all the ternary cyclic codes of length 4. The codes we found (see Example 54) 98 come in dual pairs, C and C^{\perp} . Find these pairs, and show that they are duals,
 - a) by considering their generator- and check-matrices, and using ideas from Chapter 4,
 - b) by considering their generator- and check-polynomials and using Proposition 6.22. (Remember that a polynomial can generate a code even if it is not that code's unique, official generatorpolynomial.)

- **S98** Ternary cyclic codes of block-length 4 can be thought of as living in $R_4 = \mathbb{F}_3/(x_4-1)$ (where the codewords are polynomials of the form $a_0 + a_1x + a_2x^2 + a_3x^3$) and in \mathbb{F}_3^4 (where the codewords are vectors (a_0, a_1, a_2, a_3)).
 - a) In \mathbb{F}_3^4 , if C is a [4,k] code, then C^\perp is a [4,4-k] code. So then if the dimensions match, we have that $C_j=C_i^\perp$ if and only if G_j is a check matrix for C_i , and this is the case if and only if every row of G_i is orthogonal to every row of G_j . In particular, we therefore must have that $G_i\cdot G_j$ is a matrix of all zeros, of dimensions $k\times (n-k)$.

Checking this, we see that $C_5=C_1^\perp$, as $C_1=\mathbb{F}_3^4$ with dimension 4, and $C_5=\{\mathbf{0}\}$ with dimension 0. $C_7=C_3^\perp$, both of dimension 2. $C_8=C_2^\perp$, with $\dim C_8=1$ and $\dim C_2=3$. $C_4=C_6^\perp$, with $\dim C_4=1$ and $\dim C_6=3$.

- b) In $R_4 = \mathbb{F}_3/(x^4-1)$, we know from Proposition 6.22 that the reciprocal polynomial $\bar{h}(x)$, found from the check polynomial h(x), generates the dual code. In particular, if we multiply $\bar{h}(x)$ by h_0^{-1} , then we get a monic polynomial which is the generator polynomial for the dual code.
- C_1 has generator polynomial 1, and so check polynomial $x^4 1$ which is 0 in R_4 . The reciprocal polynomial is therefore 0, which generates the trivial code C_5 .
- C_2 has generator polynomial x+1, and therefore has check-polynomial $(x-1)(x^2+1)=x^3-x^2+x+1$, and reciprocal polynomial $1-x+x^2-x^3$. This polynomial is not monic, but we can multiply by -1 to find the monic polynomial $-1+x-x^2+x^3$, which is the generator polynomial for the dual code. Since this is also the generator polynomial for C_8 , we see that $C_2^{\perp}=C_8$.
- C_3 has generator polynomial x^2+1 and therefore check-polynomial $(x-1)(x+1)=x^2-1$, and reciprocal polynomial $1-x^2$. The generator polynomial for C_2^{\perp} is therefore the monic polynomial $-1+x^2$, which is the generator polynomial for C_7 , and so $C_3^{\perp}=C_7$.

Finally, C_4 has generator polynomial $(x+1)(x^2+1)$, and therefore has check-polynomial x-1, and reciprocal polynomial 1-x. The generator polynomial for C_4^{\perp} is therefore the monic polynomial -1+x, which is the generator polynomial for C_6 , and so $C_4^{\perp}=C_6$.

- **99** a) In $\mathbb{F}_2[x]$, $x^7 1 = (x^3 + x + 1)(x^4 + x^2 + x + 1)$. Let $g(x) = (x^3 + x + 1) \in \mathbb{F}_2[x]$, and write out the generator-matrix G_1 for the cyclic code $C_1 = \langle g(x) \rangle \subseteq \mathbf{R}_7 = \mathbb{F}_3[x]/(x^7 1)$.
 - b) Using just 3 EROs, row-reduce G_1 to standard form $(A \mid I)$. Find a check matrix H_1 for C_1 , and explain why C_1 is a $\text{Ham}_2(3)$ code.
 - c) Using Proposition 6.22 find a check-polynomial $h_1(x)$ for C_1 , and a generator-polynomial $g_2(x)$ for code $C_2 = C_1^{\perp}$. Write out a generator-matrix G_2 for the cyclic code C_2 .
 - d) But of course H_1 is also a generator-matrix for C_2 . Use just one ERO to change G_2 to H_1 .
- **S99** a) Using Theorem 6.15 and Proposition 6.17, since g(x) is the generator polynomial for the code C_1 , a generator matrix for this code is

$$G_1 = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}.$$

b) Using 3 EROs, we have

$$G_{1} = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix} \xrightarrow{A_{24}(1)} \begin{pmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 & 0 \\ A_{13}(1) & A_{14}(1) & A_{$$

which is in the form $(A \mid I_4)$. Using Proposition 4.5, a check-matrix for C_1 is therefore $H_1 = (I_3 \mid -A^t)$, or

$$H_1 = \begin{pmatrix} 1 & 0 & 0 & | & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & | & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 1 & 1 & 1 \end{pmatrix}.$$

This matrix has every non-zero vector of \mathbb{F}_2^3 appearing as one of it's columns, so it's a check-matrix for $\operatorname{Ham}_2(3)$, and hence $C_1 = \operatorname{Ham}_2(3)$.

c) By Proposition 6.22, a check-polynomial for C_1 is $h(x)=(x^4+x^2+x+1)$, since we then have $x^7-1=g(x)h(x)$. The reciprocal polynomial $\bar{h}(x)=1+x^2+x^3+x^4$ is then a polynomial which generates the dual code. Since this is monic, this is the generator polynomial for $C_2=C_1^\perp$, and hence a generator matrix G_2 for G_2 is

$$G_2 = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

d) We have

$$G_2 = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix} \xrightarrow{A_{31}(1)} \begin{pmatrix} 1 & 0 & 0 & | & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & | & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 1 & 1 & 1 \end{pmatrix} = H_1,$$

so H_1 and G_2 are both check matrices for C_1 , and generator matrices for $C_2 = C_1^{\perp}$. \triangle

- **100** In \mathbf{R}_n , let g(x) and h(x) be monic, and $g(x)h(x)=x^n-1$. Then we know by Q94b that g(x) and h(x) are the generator-polynomials for $C_1=\langle g(x)\rangle$ and $C_2=\langle h(x)\rangle$ respectively.
 - a) Specify polynomials which generate C_1^\perp and C_2^\perp respectively.
 - b) By considering generator-matrices for C_1 and C_2^{\perp} , show that these codes are equivalent.

(So, we might say that $C_1 = \langle g(x) \rangle$ and $C_2 = \langle h(x) \rangle$ are "almost dual" to each other.)

- c) Conclude that in general, if g(x) is monic and divides x^n-1 , then the codes $\langle g(x) \rangle$ and $\langle \overline{g}(x) \rangle$ are equivalent.
- **S100** a) By Proposition 6.22 $\overline{h}(x)$ generates C_1^{\perp} and $\overline{g}(x)$ generates C_2^{\perp} .
 - b) Let $g(x) = g_0 + g_1 x + \cdots + g_r x^r$. Then by Proposition 6.22, the generator-matrices for $C_1 = \langle g(x) \rangle$ and $C_{\overline{x}} = \langle \overline{g}(x) \rangle$ are, respectively.

By reversing the order of the rows of G, we get another generator-matrix for C_1 . But by then reversing the order of the columns we get G', so by Proposition 3.7, C_2^{\perp} is equivalent to C_1 .

- c) If g(x) is monic and divides x^n-1 , then there must exist h(x) as for a) and b), and the conclusion follows.
- **101** We can construct the Golay codes as cyclic codes. In $\mathbb{F}_2[x]$, $x^{23}-1$ factors as

$$(x-1)(x^{11} + x^{10} + x^6 + x^5 + x^4 + x^2 + 1)(x^{11} + x^9 + x^7 + x^6 + x^5 + x + 1) = (x-1)g_1(x)g_2(x).$$

Use Q100 to show that $\langle g_1(x) \rangle$ and $\langle g_2(x) \rangle$, cyclic codes in $R_{23} = \mathbb{F}_2[x]/(x^{23}-1)$, are equivalent. In fact, they are both equivalent to the binary Golay code \mathcal{G}_{23} of Section 5.3.

- **S101** $g_1(x) = 1x^{11} + 1x^{10} + 0x^9 + 0x^8 + 0x^7 + 1x^6 + 1x^5 + 1x^4 + 0x^3 + 1x^2 + 0x + 1$ $g_2(x) = 1x^{11} + 0x^{10} + 1x^9 + 0x^8 + 1x^7 + 1x^6 + 1x^5 + 0x^4 + 0x^3 + 0x^2 + 1x + 1$ So $g_2(x) = \overline{g_1}(x)$. Since $g_1(x)$ is a monic factor of $x^{23} 1$ it follows from Q100 that $\langle g_1(x) \rangle$ and $\langle g_2(x) \rangle$ are equivalent.
 - **102** Let $\mathbf{a}=(1,0,4,7), \mathbf{b}=(1,2,3,4)\in \mathbb{F}_{11}^4$. Find the minimum distance and a basis for the Reed-Solomon code $\mathsf{RS}_3(\mathbf{a},\mathbf{b})\subseteq \mathbb{F}_{11}^4$.
- **S102** We use Proposition 6.24. Here n=4, k=3. So as RS₃(\mathbf{a}, \mathbf{b}) is MDS we know d=n-k+1=2. A basis is $\{\varphi_{\mathbf{a}, \mathbf{b}}(1), \varphi_{\mathbf{a}, \mathbf{b}}(x), \varphi_{\mathbf{a}, \mathbf{b}}(x^2)\} = \{(1, 2, 3, 4), (1, 0, 1, 6), (1, 0, 4, 9)\}.$
 - **103** Let $\mathbf{a} = (0, 1, 2, 3, 4), \mathbf{b} = (1, 1, 1, 1, 1) \in \mathbb{F}_7^5$. Find a generator-matrix for each code $\mathsf{RS}_k(\mathbf{a}, \mathbf{b}) \subseteq \mathbb{F}_7^5$, $1 \le k \le 4$. Then find a check-matrix for each code.
- **S103** Recall that the Reed-Solomon code is the image of the map $\varphi_{\mathbf{a},\mathbf{b}}: P_k \to \mathbb{F}_q^n$. In this case we have q=7, n=5 and $\varphi_{\mathbf{a},\mathbf{b}}(f(x))=(b_1f(a_1),\,b_2f(a_2),\ldots,b_5f(a_5))$. By Proposition 6.24, the elements $\varphi_{\mathbf{a},\mathbf{b}}(x^i)$ for $0\leq i\leq k$ are a basis for $\mathrm{RS}_k(\mathbf{a},\mathbf{b})$, and hence can be taken as the rows of a generator matrix for $\mathrm{RS}_k(\mathbf{a},\mathbf{b})$.

We have

$$\varphi_{\mathbf{a},\mathbf{b}}(1) = (1, 1, 1, 1, 1) = \mathbf{b}$$

$$\varphi_{\mathbf{a},\mathbf{b}}(x) = (f(a_1), f(a_2), f(a_3), f(a_4), f(a_5)) = (0, 1, 2, 3, 4) = \mathbf{a}$$

$$\varphi_{\mathbf{a},\mathbf{b}}(x^2) = (0^2, 1^2, 2^2, 3^2, 4^2) = (0, 1, 4, 2, 2)$$

$$\varphi_{\mathbf{a},\mathbf{b}}(x^3) = (0^3, 1^3, 2^3, 3^3, 4^3) = (0, 1, 1, 6, 1),$$

and so letting G_k be the generator matrix for $RS_k(\mathbf{a},\mathbf{b})$, we have

$$G_{1} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \end{pmatrix} \qquad G_{2} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix}$$

$$G_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 4 & 2 & 2 \end{pmatrix} \qquad G_{4} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 4 & 2 & 2 \\ 0 & 1 & 6 & 6 & 1 \end{pmatrix}.$$

To find the check-matrices for each of these codes, we first find c as in Proposition 6.25, $c = H_4$, the check-matrix for RS₄(a, b). We row reduce G_4 to

$$G_4' = \begin{pmatrix} 1 & 0 & 0 & 0 & 6 \\ 0 & 1 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 4 \end{pmatrix},$$

which is in standard form $(I_4 \mid A)$, and hence a check-matrix for $RS_4(\mathbf{a}, \mathbf{b})$ is $H_4 = (-A^t \mid 1) = (1, 3, 6, 3, 1) = \mathbf{c} = \varphi_{\mathbf{a}, \mathbf{c}}(1)$.

 \triangle

To find the remaining check-matrices, we then calculate

$$\varphi_{\mathbf{a},\mathbf{c}}(x) = (1 \times 0, 3 \times 1, 6 \times 2, 3 \times 3, 1 \times 4) = (0, 3, 5, 2, 4)$$

$$\varphi_{\mathbf{a},\mathbf{c}}(x^2) = (1 \times 0^2, 3 \times 1^2, 6 \times 2^2, 3 \times 3^2, 1 \times 4^2) = (0, 3, 3, 6, 2)$$

$$\varphi_{\mathbf{a},\mathbf{c}}(x^3) = (1 \times 0^3, 3 \times 1^3, 6 \times 2^3, 3 \times 3^3, 1 \times 4^3) = (0, 3, 6, 4, 1),$$

and so if we let H_k be the check-matrix for $\mathsf{RS}_k(\mathbf{a},\mathbf{b})$, we have

$$H_3 = \begin{pmatrix} 1 & 3 & 6 & 3 & 1 \\ 0 & 3 & 5 & 2 & 4 \end{pmatrix} \quad H_2 = \begin{pmatrix} 1 & 3 & 6 & 3 & 1 \\ 0 & 3 & 5 & 2 & 4 \\ 0 & 3 & 3 & 6 & 2 \end{pmatrix} \quad H_1 = \begin{pmatrix} 1 & 3 & 6 & 3 & 1 \\ 0 & 3 & 5 & 2 & 4 \\ 0 & 3 & 3 & 6 & 2 \\ 0 & 3 & 6 & 4 & 1 \end{pmatrix}$$

as the remaining check-matrices.

- **104** Let \mathbf{a}, \mathbf{b} , and \mathbf{b}' be vectors in \mathbb{F}_q^n . Show that if $\mathsf{RS}_k(\mathbf{a}, \mathbf{b})$ and $\mathsf{RS}_k(\mathbf{a}, \mathbf{b}')$ are two Reed-Solomon codes, they are (monomially) equivalent. Deduce from this and Proposition 6.25 that $[\mathsf{RS}_k(\mathbf{a}, \mathbf{b})]^\perp$ and $\mathsf{RS}_{n-k}(\mathbf{a}, \mathbf{b})$ are equivalent.
- **S104** For each $f(x) \in \mathbf{P}_k$, we get the codeword $\varphi_{\mathbf{a},\mathbf{b}}(f(x)) = (b_1 f(a_1), \dots, b_n f(a_n)) \in \mathsf{RS}_k(\mathbf{a},\mathbf{b})$, and the codeword $\varphi_{\mathbf{a},\mathbf{b}'}(f(x)) = (b_1' f(a_1), \dots, b_n' f(a_n)) \in \mathsf{RS}_k(\mathbf{a},\mathbf{b}')$. So to make $\mathsf{RS}_k(\mathbf{a},\mathbf{b}')$ from $\mathsf{RS}_k(\mathbf{a},\mathbf{b})$, we only need to multiply all entries in position j by $b_j' \cdot b_j^{-1}$, for $1 \le j \le n$. (We know that all $b_j \ne 0$).

By Proposition 6.25, $[RS_k(\mathbf{a}, \mathbf{b})]^{\perp} = RS_{n-k}(\mathbf{a}, \mathbf{c})$ for some \mathbf{c} . But we have just shown that $RS_{n-k}(\mathbf{a}, \mathbf{c})$ is (monomially) equivalent to $RS_{n-k}(\mathbf{a}, \mathbf{b})$.

- **105** Let $\mathbf{a}, \mathbf{a}',$ and \mathbf{b} be vectors in \mathbb{F}_q^n , and $\mathsf{RS}_k(\mathbf{a}, \mathbf{b})$ and $\mathsf{RS}_k(\mathbf{a}', \mathbf{b})$ be two Reed-Solomon codes. How could we pick \mathbf{a} and \mathbf{a}' to make the codes (monomially) equivalent?
- **S105** We can do this by making \mathbf{a}' have the same entries as \mathbf{a} , but in a different order. In other words, for $1 \leq j \leq n$, we set $a_j' = a_{\sigma(j)}$, for some permutation σ of $\{1,\ldots,n\}$. Now we can't just use σ on the entries of the codewords, because that would permute the b_j too. But we can go via $\mathsf{RS}_k(\mathbf{a}',\mathbf{1})$, where $\mathbf{1} = (1,\ldots,1)$, as follows: By Q104, we know that $\mathsf{RS}_k(\mathbf{a},\mathbf{b})$ is monomially equivalent to $\mathsf{RS}_k(\mathbf{a},\mathbf{1})$. We then apply σ to the entries of the codewords of $\mathsf{RS}_k(\mathbf{a},\mathbf{1})$, to get the equivalent code $\mathsf{RS}_k(\mathbf{a}',\mathbf{1})$, which is monomially equivalent to $\mathsf{RS}_k(\mathbf{a}',\mathbf{b})$. Since monomial equivalence is an equivalence relation (!), this chain of equivalences shows that $\mathsf{RS}_k(\mathbf{a},\mathbf{b})$ and $\mathsf{RS}_k(\mathbf{a}',\mathbf{b})$ are equivalent as required.
 - 106 Of course, there are Reed-Solomon codes over non-prime fields. But we have a clash of notation: in Section 6.2 we used x as an element of \mathbb{F}_q , and now in 6.5 it is the variable for our polynomials $f(x) \in \mathbf{P}_k$. So here is just one small, easy question: Let $\mathbf{a} = (1, x, x+1), \mathbf{b} = (1, 1, 1) \in \mathbb{F}_4^3$. Find a generator-matrix and then a check-matrix for $\mathsf{RS}_2(\mathbf{a}, \mathbf{b}) \subseteq \mathbb{F}_4^3$.
- **S106** By Proposition 6.24, $G = \begin{pmatrix} b_1 & b_2 & b_3 \\ b_1a_1 & b_2a_2 & b_3a_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & x & x^2 \end{pmatrix}$. Then we row reduce this, in \mathbb{F}_4 : $G \xrightarrow{A_{1,2}(1)} \begin{pmatrix} 1 & 1 & 1 \\ 0 & x+1 & x \end{pmatrix} \xrightarrow{M_2(x)} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & x^2 \end{pmatrix} \xrightarrow{A_{2,1}(1)} \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & x^2 \end{pmatrix}$, and by Proposition 4.5 $H = (x \ x+1 \ 1)$.