Modeling the Interior of Haumea

Luke Probst
Astrobiology Coffee
Arizona State University
April 29, 2015

Outline

- Introducing Haumea
 - Location
 - Surface Properties
 - Bulk Properties: Mass, Size, Density
 - Formation Theories
- Jacobi Ellipsoids and Maclaurin Spheroids
- What the Code Measures
- Results for Haumea's Most Likely Configuration
- Conclusions

Dwarf Planets in the Solar System

	ERIS	PLUTO	HAUMEA	MAKEMAKE	CERES
Year of discovery	2003	1930	2003	2005	1801
Diameter (mean)	1,445 miles 2,326 km	1,430 miles 2,302 km	892.3 miles 1,436 km	882 miles 1,420 km	591.8 mile 952.4 km
Orbital period (Earth years)	561.4	247.9	281.9	305.34	4.6
Distance from sun (times Earth's distance)	68	39.5	43.1	45.3	2.8
Orbital inclination (degrees)	46.9	17.14	28.2	29	10.59
Rotation period	25.9 hours	6.39 Earth days	3.9 hours	22.5 hours	9.1 hours
Moons	1	5	2	0	0

SOURCE: NASA

Haumea's Orbit

Aphelion = 51.5 AU Perihelion = 35 AU Eccentricity = 0.19

 $1 AU = 1.496 \times 10^8 \text{ km}$

Haumea

- Discovered Dec. 28, 2004 by team led by Mike Brown at Palomar
- Two satellites (Hi'iaka and Namaka) discovered one month later at Keck Observatory
- Originally nicknamed Santa, its two moons were called Rudolph and Blitzen
- Inducted as a dwarf planet in 2008

Keck Telescope, CalTech, Mike Brown et al.

http://en.wikipedia.org/wiki/Haumea#/media/File:2003EL61art.jpg

Haumea in a Nutshell

- Mass = 4.006x10²¹ kg (measured from its moons' orbits; Ragozzine & Brown 2009)
- Surface spectrum shows almost pure H₂O ice
- Mean radius ≈ 715 km
- Bulk density ≈ 2600 kg m⁻³
- Rotation period = 3.92 hours (fastest spinning large (>1000 km) object in the Solar System)
- Possesses an elongated shape due to its fast rotation

Surface

- Spectrum shows almost pure H₂O ice
- Crystalline ice signature at 1.65 μm

As for its size:

Pinilla-Alonso et al. 2009

$$p=b/a$$

$$q=c/a$$

Maclaurin Spheroids:

$$a=b>c$$

$$p=1$$

q = flattening
parameter

Ellipsoidal Figures of Equilibrium:

For homogeneous Jacobi Ellipsoids:

$$\omega 12 / \pi G \rho = 2abc \int 0 1 \infty u du / \Delta (a12 + u)(b12 + u)$$

where

$$\Delta = \sqrt{(a12 + u)(b12 + u)(c12 + u)}$$

Putting all equations together:

 $a/b \ge 10 \uparrow 0.4 \Delta m$

(1)

 $M=4/3 \pi abc\rho$

(2)

Leads to five different possible shapes for the outer surface:

(1-4: Rabinowitz et al. 2006;

 $\omega 12 / \pi G \rho = 2abc \int 0 \uparrow \infty = u \, du / \Delta (a 12 + u) (b 12 : +e)$ ouch et al. 2010)

(3)

Is there a Dark Red Spot?

Lacerda 2009

Possible Location of Dark Red Spot

http://www.space.com/7289-strange-dwarf-planet-red-spot.html

Questions

 Why is Haumea so dense when we only see ice?

 Haumea has been treated thus far as a homogeneous ellipsoid, but we know it must be a two-phase, heterogeneous ellipsoid. How to reconcile this contradiction?

Satellites

<u>Hi'iaka</u>	<u>Namaka</u>		
$m = 1.79 \times 10^{19} \text{ kg}$	$m = 1.79 \times 10^{18} \text{ kg}$		
(~1/100 of Haumea)	(1/10 of Hi'iaka)		
r = 160 km	r = 80 km		

- Both satellites are covered in pure H₂O ice (Ragozzine & Brown 2009)
- Hi'iaka orbits in Haumea's equatorial plane (Rabinowitz et al. 2006)

Collisional Family

- Brown et al. (2007) discovered a family of KBOs with very similar orbits to Haumea
- Of 36 potential candidates:
 - 11 have similar H₂O ice surfaces to Haumea
 - Each has diameter between 70 365 km
- 7 dark candidates with higher Δv: pieces of Haumea's undifferentiated crust? ("Black Sheep", Cook et al. 2011)
- Only known collisional family in the Kuiper Belt

Formation Theories

- Catastrophic impact (Brown et al. 2007)
- Graze and merge scenario (Leinhardt et al. 2010)
- Double impact (Schlichting & Sari 2009)
- Desch & Neveu (2015): collision between two differentiated bodies each with radius 650 km and bulk density 2000 kg m⁻³
 - Cores merged
 - Crusts and ice mantles were almost wholly ejected
 - Hydrothermal circulation and convection homogenized the core

Before Going Further: What Do We Expect of the Core?

- Axes are coincident with outer surface
- To preserve bulk density (2600 kg m⁻³): the lower the core density, the bigger it will be.

High ρ_c

The higher the core density,
 the smaller it will be.

Shape? What are p_c and q_c?

Simulating a Two-Phase Haumea

- Set up a 3D rectangular space completely containing the ellipsoid, then discretized the space and assigned rock density to the core, ice density to the mantle, and zero density outside
- Grid cells straddling rock and ice (the core-mantle boundary, CMB) are randomly populated

Metric

For a run, the following metric was calculated:

$$M = \oint S \uparrow m \cdot g \ dS / \oint S \uparrow m dS$$

- n is the surface normal (downward)
- g is the total acceleration, including gravity
 and centrifugal effects
- Finally, cos⁻¹(M) gives the average "fit angle"
 - Should be 0° if in hydrostatic equilibrium
 - → Both the outer surface and the CMB are coincident with equipotential surfaces

Performing the Runs

- Outer surface was fixed (Shapes 1 5)
- Ice density = 935 kg m^{-3}
- Core density ranged from 2700 3300 kg m⁻³, in intervals of 100 kg m⁻³ (seven values)
 - → 35 scenarios in all
- Each scenario tested with all possible core shapes
- Highest resolution: 120 grid cells on each side
- At highest resolution, for homogeneous density case, the average fit angle was ~0.5°
 - This is the minimum achievable value.

Haumea's Likely Interior: Vertical Cross Section

Conclusions

- Haumea is a Jacobi ellipsoid (~Shape 5) with a core density in the range 2700 – 2800 kg m⁻³
 - This closely matches Desch & Neveu's (2015)
 estimated core density of 2900 kg m⁻³
- Silicate mass fraction is 96.5% 98.2%
- Haumea is practically homogeneous
- Such low-density core material could be hydrated silicate, suggesting much mixture between water and rock in the past

Thank You!

Special Thanks to Steve Desch, Anand Thirumalai, and Alex Spacek!