

Metrics for Multi-class and Multi-label Classification

Motivation for Metrics in Classification

- Classification: Categorize an instance/sample into a class or multiple classes
- How to determine the performance of a classifier?
 - Count the number of correct and incorrect predictions
 - Summarize counts using evaluation metrics
- Problems with metrics
 - Metrics usually not standardized for application domains
 - Small variations in metrics may even lead to different classifier rankings
 - Number of possibilities to evaluate classifiers for multi-class and multi-label problems increases

Binary Classification: Confusion Matrix

Counts the number of correct and incorrect predictions of classifier h

		Actua	l Class	Predictions	
		Cat	Not Cat	per Class	
Predicted Class	Cat	9	2	11	
	Not Cat	1	8	9	
Instances per Class		10	10	20	

- Raw confusion matrix is difficult to interpret
- → Use metrics to summarize absolute confusion matrix values

Actual Class

Excerpt of Binary Classification Metrics

Predicted Class Positive Negative

Positive	Negative
TP	FP
FN	TN

Recall: Percentage of instances that have been correctly classified as positive

$$r = \frac{TP}{TP + FN}$$

Precision: Percentage of positive predictions that were actually correct

$$p = \frac{TP}{TP + FP}$$

F₁-score: harmonic mean of recall and precision

$$F_1 = \frac{2 \cdot p \cdot r}{p+r} = \left(\frac{p^{-1} \cdot r^{-1}}{2}\right)^{-1}$$

$$p = \frac{TP}{TP + FP}$$

Issue with Imbalanced Datasets

Balanced Dataset:

Equal amount of instances per class

Imbalanced Dataset: Different amount of instances per class

		Actua	l Class	Predictions per
		Cat Not Cat		Class
Predicted Class	Cat	9	2	11
	Not Cat	1	8	9
Instances per Class		10	10	20

	9	9		0.00
p =	$\frac{1}{9+2}$	$=\frac{1}{11}$	\approx	0.82

		Actua	l Class	Predictions per
		Cat Not Cat		Class
Predicted Class	Cat	9	4	13
	Not Cat	1	16	17
Instances per Class		10	20	30

$$p = \frac{9}{9+4} = \frac{9}{13} \approx 0.69$$

- Although same proportion of $\frac{TP}{FN}$ and $\frac{FP}{TN}$ different results for metric
- Metrics which use values from both "actual class" columns are sensitive to imbalanced datasets

Multi-class Classification

- Given:
 - Instance $x \in \mathcal{X} \subseteq \mathbb{R}^d$
 - Label space $\mathcal{Y} \subseteq \{0,1\}^m$, one-hot-coded vectors
 - Classifier $h: \mathcal{X} \to \mathcal{Y}$, predicts exactly **one** class per instance

Example: Cat
$$y_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, Dog $y_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, Mouse $y_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

$$x \in \mathcal{X}$$

What kind of animal is this?

$$h \longrightarrow \operatorname{Cat}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \in \mathcal{Y} \quad \checkmark$$

Multi-class Confusion Matrix

		Actual Class			Predictions per
		Cat	Dog	Mouse Class	
Predicted Class	Cat	9	3	1	13
	Dog	1	6	2	9
	Mouse	0	1	7	8
Instances per Class		10	10	10	30

- Confusion matrix becomes more complex: For m classes, $m \times m$ confusion matrix
- How to summarize now the performance of a given classifier?

– Solution:

- Create for each class C_j a binary confusion matrix
- Summarize all per-class results using an averaging strategy

Per-class Confusion Matrix

- Converts the problem into a binary classification problem
 - Class C_j and class "not C_j"

- Previously introduced metrics can be computed per class
- Problem: How to summarize the results over all classes?

Actual Class

Predicted Class

Positive Negative

Positive	Negative
TP	FP
FN	TN

Averaging Strategies

Macro Averaging: Arithmetic mean of all per-class metrics

Example: macro-
$$r_M = \frac{1}{m} \sum_{j=1}^{m} \frac{TP_j}{TP_j + FN_j}$$
 Recall

All per-class results weighted equally

 Micro Averaging: Sum up numerator and denominator separately of the appropriate metric and compute the result

$$r_{\mu} = \frac{\sum_{j=1}^{m} TP_{j}}{\sum_{j=1}^{m} TP_{j} + FN_{j}}$$

Sensitive to imbalanced datasets

 Weighted Averaging: weight the per-class metrics by the number of instances of the appropriate class

$$r_w = \frac{1}{n} \sum_{j=1}^m \frac{n_j \cdot TP_j}{TP_j + FN_j}$$

Intentionally weighted by number of instances per class

Averaging the F_1 -score

Micro-averaged F_1 analogous to the standard approach:

$$F_{1\mu} = \frac{2 \cdot p_{\mu} \cdot r_{\mu}}{p_{\mu} + r_{\mu}} = p_{\mu} = r_{\mu}$$
 Since $\sum_{j=1}^{m} FP_{j} = \sum_{j=1}^{m} FN_{j}$

Since
$$\sum_{j=1}^{m} FP_j = \sum_{j=1}^{m} FN_j$$

- Two distinct approaches to compute the macro-averaged F_1 -score
 - \mathcal{F}_1 , the averaged F_1

$$\mathcal{F}_1 = \frac{1}{m} \sum_{j=1}^m \frac{2 \cdot p_j \cdot r_j}{p_j + r_j}$$

• \mathbb{F}_1 , the F_1 of averages

$$\mathbb{F}_1 = \frac{2 \cdot p_M \cdot r_M}{p_M + r_M}$$

The standard approach, recommended by Opitz and Burst (2019)

Individual values p_i and r_i not as much influence

→ May be overly benevolent

→ Different strategies also applicable to the weighted-aproach

Multi-label Classification

- Given:
 - Instance $x \in \mathcal{X} \subseteq \mathbb{R}^d$
 - Label space $\mathcal{Y} \subseteq \{0,1\}^m$
 - Classifier $h: \mathcal{X} \to \mathcal{Y}$, may predict **multiple** classes/labels per instance

Example: Text classification

What if prediction is only partially correct?

Multi-label Classification: Viewpoint of Correctness

Per-instance Evaluation: Which Averaging Strategies?

- Per-instance evaluation makes only sense with macro averaging strategies -> each instance is equally weighted
 - Micro- and weighted-averaged result would weight instances differently
- Example: weighted-average
 - Each per-instance result is weighted by the factor $TP_j + FN_j$ per instance x_i

	Meaning		
	Per-class	Per-instance	
$TP_j + FN_j$	#instances per class C_j	#labels in actual label set y_j	

Best Practice When Dealing with Metrics

- Always explicitly indicate which metric has been deployed
 - Include the metric as equation
 - If the metric has been implemented by a library (e.g. Python SciKit-learn), look up the concrete implementation
 - If possible include the test dataset evaluation
 - → Computation of metric can be reproduced

MESINESP task: JSON file of the test dataset evaluation

Source: https://temu.bsc.es/mesinesp2/evaluation/