STA221

Neil Montgomery

Last edited: 2017-02-01 15:06

The formula for the slope estimator b_1 turns out to be (corrected from class!):

$$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{S_{xy}}{S_{xy}}$$

The formula for the slope estimator b_1 turns out to be (corrected from class!):

$$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{S_{xy}}{S_{xx}}$$

Recall the simple regression model:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

What is random and what is fixed?

• β_0 and β_1 are fixed model parameters

The formula for the slope estimator b_1 turns out to be (corrected from class!):

$$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{S_{xy}}{S_{xx}}$$

Recall the simple regression model:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

What is random and what is fixed?

- β_0 and β_1 are fixed model parameters
- the x values are treated as fixed (even if they aren't)

The formula for the slope estimator b_1 turns out to be (corrected from class!):

$$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{S_{xy}}{S_{xx}}$$

Recall the simple regression model:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

What is random and what is fixed?

- β_0 and β_1 are fixed model parameters
- the x values are treated as fixed (even if they aren't)
- ▶ the error ε is random

The formula for the slope estimator b_1 turns out to be (corrected from class!):

$$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{S_{xy}}{S_{xx}}$$

Recall the simple regression model:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

What is random and what is fixed?

- \triangleright β_0 and β_1 are fixed model parameters
- the x values are treated as fixed (even if they aren't)
- **ightharpoonup** the error ε is random
- ▶ therefore, y is random (as the sum of a fixed part and a random part)

The intercept and slope parameter estimates are functions of the y and x.

The intercept and slope parameter estimates are functions of the y and x.

Since the y are considered random, so are b_0 and b_1 .

The intercept and slope parameter estimates are functions of the y and x.

Since the y are considered random, so are b_0 and b_1 .

What properties do they have? By simulation, and by examination of the formulae we will determine these properties. The properties of interest are:

their distributions

The intercept and slope parameter estimates are functions of the y and x.

Since the y are considered random, so are b_0 and b_1 .

What properties do they have? By simulation, and by examination of the formulae we will determine these properties. The properties of interest are:

- their distributions
- their means and variances

In a simple regression analysis, we need:

▶ an actual linear relationship between y and x

- ▶ an actual linear relationship between y and x
 - ▶ check using scatterplot; another more sensitive plot can be used TBA

- an actual linear relationship between y and x
 - check using scatterplot; another more sensitive plot can be used TBA
 - violation of this requirement is fatal to any analysis.

- an actual linear relationship between y and x
 - check using scatterplot; another more sensitive plot can be used TBA
 - violation of this requirement is fatal to any analysis.
 - transforming one or both variables is a possible remedy.

- an actual linear relationship between y and x
 - check using scatterplot; another more sensitive plot can be used TBA
 - violation of this requirement is fatal to any analysis.
 - transforming one or both variables is a possible remedy.
- independent observations in the dataset

- an actual linear relationship between y and x
 - check using scatterplot; another more sensitive plot can be used TBA
 - violation of this requirement is fatal to any analysis.
 - transforming one or both variables is a possible remedy.
- independent observations in the dataset
 - hard to verify—usually assumed.

- an actual linear relationship between y and x
 - check using scatterplot; another more sensitive plot can be used TBA
 - violation of this requirement is fatal to any analysis.
 - transforming one or both variables is a possible remedy.
- independent observations in the dataset
 - hard to verify—usually assumed.
 - ▶ one type of non-independence can sometimes be detected by plotting values versus time or the order in which they were observed.

- an actual linear relationship between y and x
 - check using scatterplot; another more sensitive plot can be used TBA
 - violation of this requirement is fatal to any analysis.
 - transforming one or both variables is a possible remedy.
- independent observations in the dataset
 - hard to verify—usually assumed.
 - one type of non-independence can sometimes be detected by plotting values versus time or the order in which they were observed.
 - violation could be fatal but possibly not

- an actual linear relationship between y and x
 - check using scatterplot; another more sensitive plot can be used TBA
 - violation of this requirement is fatal to any analysis.
 - transforming one or both variables is a possible remedy.
- independent observations in the dataset
 - hard to verify—usually assumed.
 - one type of non-independence can sometimes be detected by plotting values versus time or the order in which they were observed.
 - violation could be fatal but possibly not
 - "time series" methods are one way to deal with one type of non-independence.

▶ the amount of variation (up and down) around the line needs to be constant

- ▶ the amount of variation (up and down) around the line needs to be constant
 - check using a special scatterplot involving the residuals, TBA

- ▶ the amount of variation (up and down) around the line needs to be constant
 - check using a special scatterplot involving the residuals, TBA
 - violation is fatal

- ▶ the amount of variation (up and down) around the line needs to be constant
 - check using a special scatterplot involving the residuals, TBA
 - violation is fatal
 - transformation of variables and more sophisticated models are possible remedies

- ▶ the amount of variation (up and down) around the line needs to be constant
 - check using a special scatterplot involving the residuals, TBA
 - violation is fatal
 - transformation of variables and more sophisticated models are possible remedies
- ▶ NEW the error should follow a normal distribution

- ▶ the amount of variation (up and down) around the line needs to be constant
 - check using a special scatterplot involving the residuals, TBA
 - violation is fatal
 - transformation of variables and more sophisticated models are possible remedies
- ▶ NEW the error should follow a normal distribution
 - check using a normal quantile plot of the residuals

- ▶ the amount of variation (up and down) around the line needs to be constant
 - check using a special scatterplot involving the residuals, TBA
 - violation is fatal
 - transformation of variables and more sophisticated models are possible remedies
- ▶ NEW the error should follow a normal distribution
 - check using a normal quantile plot of the residuals
 - violation is not fatal* as long as the sample size is "large enough"

- ▶ the amount of variation (up and down) around the line needs to be constant
 - check using a special scatterplot involving the residuals, TBA
 - violation is fatal
 - transformation of variables and more sophisticated models are possible remedies
- ▶ NEW the error should follow a normal distribution
 - check using a normal quantile plot of the residuals
 - violation is not fatal* as long as the sample size is "large enough"

- ▶ the amount of variation (up and down) around the line needs to be constant
 - check using a special scatterplot involving the residuals, TBA
 - violation is fatal
 - ▶ transformation of variables and more sophisticated models are possible remedies
- ▶ NEW the error should follow a normal distribution
 - check using a normal quantile plot of the residuals
 - violation is not fatal* as long as the sample size is "large enough"

These two assumptions can be rolled into one statement:

$$\varepsilon \sim N(0, \sigma)$$

- ▶ the amount of variation (up and down) around the line needs to be constant
 - check using a special scatterplot involving the residuals, TBA
 - violation is fatal
 - transformation of variables and more sophisticated models are possible remedies
- ▶ NEW the error should follow a normal distribution
 - check using a normal quantile plot of the residuals
 - ▶ violation is **not fatal*** as long as the sample size is "large enough"

These two assumptions can be rolled into one statement:

$$\varepsilon \sim N(0,\sigma)$$

* with one exception TBA

The properties of the slope parameter estimator b_1 is of most interest.

▶ What is its average value, variation, distribution?

The properties of the slope parameter estimator b_1 is of most interest.

- ▶ What is its average value, variation, distribution?
- ▶ What factors affect the accuracy of the estimator?

The properties of the slope parameter estimator b_1 is of most interest.

- ▶ What is its average value, variation, distribution?
- ▶ What factors affect the accuracy of the estimator?

The properties of the slope parameter estimator b_1 is of most interest.

- ▶ What is its average value, variation, distribution?
- ▶ What factors affect the accuracy of the estimator?

Compare these issues with the simpler situation in which \overline{X} is used to estimate μ , etc.

The properties of the slope parameter estimator b_1 is of most interest.

- ▶ What is its average value, variation, distribution?
- ▶ What factors affect the accuracy of the estimator?

Compare these issues with the simpler situation in which \overline{X} is used to estimate μ , etc.

First, we'll look at the average value of b_0 , using simulation. To do this I will start with a *fully known theoretical linear model*:

$$y = 2 + 0.75x + \varepsilon$$

with $\varepsilon \sim N(0,1)$.

The properties of the slope parameter estimator b_1 is of most interest.

- ▶ What is its average value, variation, distribution?
- ▶ What factors affect the accuracy of the estimator?

Compare these issues with the simpler situation in which \overline{X} is used to estimate μ , etc.

First, we'll look at the average value of b_0 , using simulation. To do this I will start with a fully known theoretical linear model:

$$y = 2 + 0.75x + \varepsilon$$

with $\varepsilon \sim N(0,1)$.

I will simulate fake datasets of size n=50 from this model, compute the regression line for each dataset, and see what happens.

e.g. plots of four samples

properties of b_1 from 1000 samples

I would like to investigate the distribution of b_1 using simulation. So I will simulate 1000 replications, and see what happens.

Here is a numerical summary of the 1000 simulated b_1 (and b_0 as well, since I have them):

term	Average	SD
(Intercept)	1.99499	0.22788
×	0.75465	0.14225

(Note: these numbers *change* every time I render the lecture notes - the simulation is embedded right in them.)

Conclusion: the average values of b_1 (and b_0) are the true values β_1 (and β_0).

histogram of the simulated b_1

Looks symmetric and bell-shaped. Perhaps they have a normal distribution?

change σ from 1 to 0.1

I will simulate again, but this time with $\varepsilon \sim N(0,0.1)$. Four example plots:

properties of b_1 from 1000 samples ($\sigma = 0.1$ version)

The averages and SDs of the 1000 estimators:

term	Average	SD
(Intercept)	1.99950	0.02333
×	0.75039	0.01432

The histogram looks the same.

Conclusion: when the *inherent underlying noise is smaller* the parameter estimators are *more accurate*.

put σ back to 1; increase the sample size to n=200

Four sample plots:

properties of b_1 from 1000 samples (n = 200 version)

The averages and SDs of the 1000 estimators:

term	Average	SD
(Intercept)	2.00363	0.11522
X	0.74960	0.06986

The histogram looks the same.

Conclusion: when the sample size is larger the parameter estimators are more accurate.

back to n = 50; properties of b_1 when the x values are less spread out

This one is a little more subtle. It turns out the x values affect the accuracy of the parameter estimates. I re-simulate with less spread in the x values. Four sample plots with x values 4 times "less spread out":

properties of b_1 (x less spread version)

The averages and SDs of the 1000 estimators:

term	Average	SD
(Intercept)	2.01478	0.73753
X	0.73827	0.57449

The histogram looks the same.

Conclusion: when the x values are less spread out the parameter estimators are less accurate.

Start with the basic simple linear regression model:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

in which the error follows a $N(0, \sigma)$ distribution.

The slope estimator b_1 turns out to follow a normal distribtion with mean β_1 and standard deviation:

$$\frac{\sigma}{\sqrt{S_{xx}}}$$

(Recall
$$S_{xx} = \sum (x_i - \overline{x})^2$$
)

(Note: there is a typo on the first formula in section 24.2 - the s_x should not be under the $\sqrt{}$.)

Therefore we have:

$$rac{b_1-eta_1}{\sigma/\sqrt{S_{\mathsf{xx}}}}\sim extsf{N}(0,1)$$

and p-values and confidence intervals come from this—BAM we're done.

Therefore we have:

$$rac{b_1-eta_1}{\sigma/\sqrt{S_{\mathsf{xx}}}}\sim extstyle \mathsf{N}(0,1)$$

and p-values and confidence intervals come from this—BAM we're done.

Except we would never know the true value of σ . This is the third simple regression parameter—a nuisance we'll have to deal with.

Therefore we have:

$$rac{b_1-eta_1}{\sigma/\sqrt{S_{xx}}}\sim N(0,1)$$

and p-values and confidence intervals come from this—BAM we're done.

Except we would never know the true value of σ . This is the third simple regression parameter—a nuisance we'll have to deal with.

We can estimate σ using the "average" of the squared residuals:

$$s_e = \frac{\sum (y_i - \hat{y}_i)^2}{n-2}$$

Who wants to guess what distribution this will have:

$$rac{b_1-eta_1}{s_e/\sqrt{S_{\mathsf{xx}}}}\sim ???$$

hypothesis testing for β_1

The principal hypothesis test concerns whether there is any linear relationship at all between x and y. The null hypothesis immediately presents itself:

$$H_0: \beta_1=0$$

hypothesis testing for β_1

The principal hypothesis test concerns whether there is any linear relationship at all between x and y. The null hypothesis immediately presents itself:

$$H_0: \beta_1 = 0$$

And it works the same way any other hypothesis test works. Use the data to compute:

$$rac{b_1-0}{s_e/\sqrt{S_{xx}}}$$

and get the probability of being "further away" from H_0 , according to the ??? distribution.

example - body fat versus weight

