Álgebra lineal I, Grado en Matemáticas

Febrero 2019, Primera Semana

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora.

Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Matriz triangular inferior y triangular superior.
- (b) Rango de un conjunto de vectores. Rango de una matriz.
- (c) Subespacio vectorial.
- (d) Matriz de una aplicación lineal.

Ejercicio 1: (2 puntos)

Demuestre que si A es una matriz de tamaño $n \times 1$ y B es una matriz de tamaño $1 \times n$, entonces la matriz AB no es invertible. Determine el rango de AB si A y B no son nulas.

Ejercicio 2: (3 puntos)

Sea U_a , con $a \in \mathbb{K}$, el subespacio vectorial de \mathbb{K}^4 formado por las soluciones del siguiente sistema lineal homogéneo

$$\begin{cases} x + ay + z + t = 0 \\ 2x + (1+2a)y + 2z + (a+2)t = 0 \\ x + ay + az + t = 0 \end{cases}$$

- (a) Determine los valores de $a \in \mathbb{K}$ para los cuales U_a es un plano de \mathbb{K}^4 .
- (b) ¿Existe algún valor de a para el cual U_a sea un hiperplano de \mathbb{K}^4 ?
- (c) Encuentre una base del subespacio U_a en el caso a=3.

Ejercicio 3: (3 puntos)

Sea s la simetría de \mathbb{R}^3 que transforma el vector (1,0,0) en el vector (0,1,0) y deja fijo el vector (0,0,1).

- (a) Determine la matriz de s respecto de la base canónica.
- (b) Determine los subespacios base y dirección de la simetría.

Nota: un endomorfismo s es una simetría si $s \circ s = Id$.