

CSE322 DUMPING LEMMA FOR REGULAR SETS AND ITS APPLICATIONS

Lecture #11

Non-regular languages

$$\{a^n b^n : n \ge 0\}$$

 $\{vv^R : v \in \{a,b\}^*\}$

Regular languages

$$a*b$$
 $b*c+a$ $b+c(a+b)*$ $etc...$

How can we prove that a language L is not regular?

Prove that there is no DFA that accepts L

Problem: this is not easy to prove

Solution: the Pumping Lemma!!!

The Pigeonhole Principle

4 pigeons

3 pigeonholes

A pigeonhole must contain at least two pigeons

n pigeons

m pigeonholes

•••••

The Pigeonhole Principle

n pigeons

m pigeonholes

n > m

There is a pigeonhole with at least 2 pigeons

The Pigeonhole Principle

and

DFAs

DFA with 4 states

In walks of strings: a

aa no stateaab is repeated

In walks of strings: aabb

bbaa

a state is repeated

abbabb

If string w has length $|w| \ge 4$: Then the transitions of string ware more than the states of the DFA Thus, a state must be repeated

In general, for any DFA:

String w has length \geq number of states

A state q must be repeated in the walk of w

In other words for a string w:

(q) states are pigeonholes

The Pumping Lemma

Take an infinite regular language L_{\parallel}

There exists a DFA that accepts L

Take string w with $w \in L$

There is a walk with label w:

If string w has length $|w| \ge m$ (number of states then, from the pigeonhole principle:

a state is repeated in the walk w

Let q be the first state repeated in the walk of w

Write w = x y z

Observations:

The string xz is accepted

Observation:

The string xyyz is accepted

The string x y y y z is accepted

In General:

The string is accepted

$$x y^{i} z$$

 $i = 0, 1, 2, ...$

$$i = 0, 1, 2, \dots$$

Language accepted by the DFA

In other words, we described:

The Pumping Lemma!!!

The Pumping Lemma:

- \cdot Given a infinite regular language L
- there exists an integer m
- for any string $w \in L$ with length $|w| \ge m$
- we can write w = x y z
- with $|xy| \le m$ and $|y| \ge 1$
- such that: $x y^i z \in L$ i = 0, 1, 2, ...

Applications

of

the Pumping Lemma

Theorem: The language
$$L = \{a^n b^n : n \ge 0\}$$

is not regular

Proof: Use the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Let m be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$

length $|w| \ge m$

We pick
$$w = a^m b^m$$

Write: $a^m b^m = x y z$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a^m b^m = \underbrace{a...aa...aa...ab...b}_{m}$$

Thus:
$$y = a^k$$
, $k \ge 1$

$$x y z = a^m b^m \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma:
$$x y^i z \in L$$

$$i = 0, 1, 2, \dots$$

Thus:
$$x y^2 z \in L$$

$$x \ y \ z = a^m b^m \qquad y = a^k, \ k \ge 1$$
 From the Pumping Lemma: $x \ y^2 \ z \in L$

$$xy^{2}z = \underbrace{a...aa...aa...aa...ab...b}_{m+k} \in L$$

Thus:
$$a^{m+k}b^m \in L$$

$$a^{m+k}b^m \in L \quad k \ge 1$$

BUT:
$$L = \{a^n b^n : n \ge 0\}$$

$$a^{m+k}b^m \notin L$$

CONTRADICTION!!!

Conclusion: L is not a regular language

Non-regular languages $\{a^nb^n: n \ge 0\}$

$$\{a^nb^n: n\geq 0\}$$

More Applications

of

the Pumping Lemma

The Pumping Lemma:

- \cdot Given a infinite regular language L
- there exists an integer m
- for any string $w \in L$ with length $|w| \ge m$
- we can write w = x y z
- with $|xy| \le m$ and $|y| \ge 1$
- such that: $x y^i z \in L$ i = 0, 1, 2, ...

$$L = \{vv^R : v \in \Sigma^*\}$$

Theorem: The language

$$L = \{ vv^R : v \in \Sigma^* \} \qquad \Sigma = \{a,b\}$$
 is not regular

Proof: Use the Pumping Lemma

$$L = \{vv^R : v \in \Sigma^*\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{vv^R : v \in \Sigma^*\}$$

Let m be the integer in the Pumping Lemma Pick a string w such that: $w \in L$ and $|w| \geq m$

We pick
$$w = a^m b^m b^m a^m$$

Write $a^m b^m b^m a^m = x \ y \ z$ From the Pumping Lemma it must be that length $|x \ y| \le m, |y| \ge 1$

$$xyz = a...aa...a...ab...bb...ba...a$$

$$x y z = a...aa...a$$

Thus:
$$y = a^k, k \ge 1$$

$$x y z = a^m b^m b^m a^m$$

$$y = a^k, \quad k \ge 1$$

From the Pumping Lemma:

$$x y^{i} z \in L$$

$$i = 0, 1, 2, \dots$$

Thus:
$$x y^2 z \in L$$

$$x y z = a^m b^m b^m a^m$$
 $y = a^k, k \ge 1$

$$y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = \overbrace{a...aa...aa...aa...ab...bb...ba...a}^{m + k} \in L$$

Thus:
$$a^{m+k}b^mb^ma^m \in L$$

$$a^{m+k}b^mb^ma^m \in L \quad k \ge 1$$

BUT:
$$L = \{vv^R : v \in \Sigma^*\}$$

$$a^{m+k}b^mb^ma^m \notin L$$

CONTRADICTION!!!

Conclusion: L is not a regular language

Non-regular languages

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Regular languages

Theorem: The language

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

is not regular

Proof: Use the Pumping Lemma

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Let m be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$ and $|w| \ge m$

We pick
$$w = a^m b^m c^{2m}$$

$$a^m b^m c^{2m} = x y z$$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a...aa...aa...ab...bc...cc...c$$

$$x y z = a...aa...ab...bc...cc...c$$

Thus:
$$y = a^k$$
, $k \ge 1$

$$x y z = a^m b^m c^{2m} \quad y = a^k, \quad k \ge 1$$

$$y = a^k, \quad k \ge 1$$

From the Pumping Lemma:

$$x y^{i} z \in L$$

 $i = 0, 1, 2, ...$

Thus:
$$x y^0 z = xz \in L$$

$$x y z = a^m b^m c^{2m} \quad y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $xz \in L$

$$xz = \underbrace{a...aa...ab...bc...cc...c}_{x} \in L$$

Thus:
$$a^{m-k}b^mc^{2m} \in L$$

$$a^{m-k}b^mc^{2m} \in L$$

$$k \ge 1$$

BUT:
$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

$$a^{m-k}b^mc^{2m} \notin L$$

CONTRADICTION!!!

Conclusion: L is not a regular language

Non-regular languages $L = \{a^{n!} : n \ge 0\}$

$$L = \{a^{n!}: n \ge 0\}$$

Regular languages

Theorem: The language

$$L = \{a^{n!}: n \ge 0\} \text{ is not regular}$$

$$n! = 1 \cdot 2 \cdot \cdot \cdot (n-1) \cdot n$$

Proof: Use the Pumping Lemma

$$L = \{a^{n!}: n \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^{n!}: n \ge 0\}$$

Let m be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$

length $|w| \ge m$

We pick
$$w = a^{m!}$$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a^{m!} = \overbrace{a...aa...aa...aa...aa...aa...aa}^{m!-m}$$

Thus:
$$y = a^k$$
, $1 \le k \le m$

$$x \ y \ z = a^{m!}$$

$$x y z = a^{m!}$$
 $y = a^k$, $1 \le k \le m$

From the Pumping Lemma: $x y^{l} z \in L$

$$x y^{l} z \in L$$

 $i = 0, 1, 2, ...$

Thus:
$$x y^2 z \in L$$

$$x y z = a^{m!}$$

$$y = a^k$$
, $1 \le k \le m$

 $x \ y \ z = a^{m!}$ $y = a^k$, $1 \le k \le m$ From the Pumping Lemma: $x \ y^2 \ z \in L$

$$a^{m!+k} \in L$$

$$\in L$$

$$a^{m!+k} \in L \qquad 1 \le k \le m$$

Since:

$$L = \{a^{n!} : n \ge 0\}$$

There must exist p such that:

$$m!+k = p!$$

$$m!+k \leq m!+m$$

for
$$m > 1$$

$$\leq m!+m!$$

$$< m!m + m!$$

$$= m!(m+1)$$

$$=(m+1)!$$

$$m!+k < (m+1)!$$

$$m!+k \neq p!$$
 for any p

$$a^{m!+k}$$

$$\in L$$

$$1 \le k \le m$$

BUT:
$$L = \{a^{n!}: n \ge 0\}$$

$$a^{m!+k} \notin L$$

CONTRADICTION!!!

Conclusion: L is not a regular language