# Honors Mathematics III Review — Midterm 1

CHEN Xiwen

UM-SJTU Joint Institute

June 18, 2018

### Table of contents

Linear Maps

Matrices

Theorem of Systems of Linear Equations

Determinant

Overview

Matrices

Theorem of Systems of Linear Equations

Determinant

Overview

To prove a map from vector space  $(U, \oplus, \odot)$  to another vector space  $(V, \boxplus, \boxdot)$  is *linear*, it needs to be

- ▶ Homogeneous:  $L(\lambda \odot u) = \lambda \boxdot L(u)$ , and
- Additive:  $L(u \oplus u') = L(u) \boxplus L(u')$ .

### Examples.

- 1. For  $I \in \mathbb{R}$ , the map  $D : C^1(I) \to C(I), f \mapsto f'$  is linear.
- 2. The complex conjugation map in  $\mathbb C$  is linear if  $\mathbb C$  is regarded as a real vector space.
- 3. Exercise 2.6.  $\mathcal{P}_n$  is the vector space of real polynomials over  $\mathbb{R}$  of degree at most n. The map

$$\alpha: \mathcal{P}_n \to \mathbb{R}, \qquad \alpha(p) = \int_{-1}^1 p(x) dx$$

is linear.



# Range and Kernel

#### Definitions.

- **Dual space**:  $V^* = \mathcal{L}(V, \mathbb{F})$  for a finite-dimensional vector space V with basis  $\{b_1, \ldots, b_n\}$ .
- ▶ **Dual basis**:  $\{b_1^*, \ldots, b_n^*\}$  with

$$b_k^*(b_j) = \begin{cases} 1 & k = j \\ 0 & k \neq j \end{cases}$$

#### Exercise 2.5

- 1.  $L = \sum_{i=1}^{n} L(b_i)b_i^*$  for a linear map  $L \in \mathcal{L}(V, \mathbb{F})$ .
- 2.  $V \cong V^*$ .

## Range and Kernel

#### Definitions.

$$\operatorname{ran} L := \left\{ v \in V : \exists_{u \in U} v = Lu \right\}, \qquad \ker L := \left\{ u \in U : Lu = 0 \right\}$$

#### Results.

- 1. A linear map  $L \in \mathcal{L}(U, V)$  is injective iff  $\ker L = \{0\}$ .
- 2. Dimension formula.  $\dim \operatorname{ran} L + \dim \ker L = \dim U$  (for finite-dimensional vector spaces).

# Isomorphisms

- For *n*-dimensional vector spaces U, V, an isomorphism maps from basis  $(b_1, \ldots, b_n)$  to basis  $(Lb_1, \ldots, Lb_n)$ .
- ▶ For finite-dimensional vector spaces  $U, V, U \cong V$   $\Leftrightarrow$  dim  $U = \dim V$ .
- ▶ If dim  $U = \dim V$ , then for a linear map  $L \in \mathcal{L}(U, V)$ , injective  $\Leftrightarrow$  surjective  $\Leftrightarrow$  bijective.

## Operator Norm

► Equivalent definitions:

$$||L|| := \sup_{\substack{u \in U \\ u \neq 0}} \frac{||Lu||_V}{||u||_U} = \sup_{\substack{u \in U \\ ||u||_U = 1}} ||Lu||_V$$

Additional property:

$$||L_2L_1|| \le ||L_2|| \cdot ||L_1||, \qquad L_1 \in \mathcal{L}(U, V), \quad L_2 \in \mathcal{L}(V, W)$$

#### Matrices

Theorem of Systems of Linear Equations

Determinant

Overview

# Linear Maps as Matrices

Every linear map between finite-dimensional vector spaces can be expressed as a matrix.

$$\begin{array}{ccc}
U & \xrightarrow{L} & V & \Phi_{\mathcal{A}}^{\mathcal{B}}(L) = A = \varphi_{\mathcal{B}} \circ L \circ \varphi_{\mathcal{A}}^{-1} \\
\downarrow^{\varphi_{\mathcal{A}}} & & \downarrow^{\varphi_{\mathcal{B}}} \\
\mathbb{R}^{n} & \xrightarrow{A} & \mathbb{R}^{m}
\end{array}$$

- Matrix multiplication.
- ▶ Transpose  $A^T$  and adjoint  $A^*$ ,  $\langle x, Ay \rangle = \langle A^*x, y \rangle$ .
- Inverse  $A^{-1}$  of  $n \times n$  matrices. (Find inverse using Gauss-Jordan algorithm.)
- ► Change basis.

# Change Basis — Passive Point of View

- 1. Find basis change matrix T such that  $e'_i = Te_i$ .
- 2. Find inverse of T.
- 3. Find matrix A representing the operation with respect to the new basis.
- 4. Calculate  $TAT^{-1}$ .

Matrices

### Theorem of Systems of Linear Equations

Determinant

Overview

### Solution Set

#### Structure of solution set.

$$Sol(A, b) = \{x_0\} + \ker A$$

#### Fredholm alternatives.

- 1. Ax = b has a unique solution for any  $b \in \mathbb{R}^n$ .
  - A is invertible.
  - $ightharpoonup \det A \neq 0.$
  - ▶  $\ker A = \{0\}.$
- 2. Ax = 0 has a non-trivial solution. (Ax = b either has no solution or infinitely many solutions.)
  - A is not invertible.
  - det A = 0.
  - $\blacktriangleright \ker A \neq \{0\}.$

In general, a system Ax = b is solvable if b is in the range of A, i.e., in the span of column vectors of matrix A.

Matrices

Theorem of Systems of Linear Equations

#### Determinant

Overview

### Determinant

- ightharpoonup Determinants in  $\mathbb{R}^2$  and  $\mathbb{R}^3$
- Permutations.
- Group and group actions.
- ▶ Determinant in  $\mathbb{R}^n$ .

# Properties of Determinant

- Normed.  $\det id = 1$ .
- Multilinear.
- Alternating:
  - det is alternating.

$$\det(a_{\cdot 1}, \dots, a_{\cdot (j-1)}, a_{\cdot j}, a_{\cdot (j+1)}, \dots, a_{\cdot (k-1)}, a_{\cdot k}, a_{\cdot (k+1)}, \dots, a_{\cdot p})$$

$$= -\det(a_{\cdot 1}, \dots, a_{\cdot (j-1)}, a_{\cdot k}, a_{\cdot (j+1)}, \dots, a_{\cdot (k-1)}, a_{\cdot j}, a_{\cdot (k+1)}, \dots, a_{\cdot p})$$

 $ightharpoonup \det(a_{\cdot 1}, \dots, a_{\cdot p}) = 0$  if  $a_{\cdot 1}, \dots, a_{\cdot p}$  are linearly dependent.

## Properties of Determinant

- 1. Elementary column operations.

  - $\det(a_1,\ldots,a_j,\ldots,a_k+\lambda a_j,\ldots,a_n) = \det(a_1,\ldots,a_j,\ldots,a_k,\ldots,a_n).$
- 2.  $\det A = \det A^T$ .
- 3.  $\det(AB) = (\det A)(\det B)$ .
- 4. det  $A = \sum_{\pi \in S_n} \operatorname{sgn} \pi \ a_{1\pi(1)} \cdots a_{n\pi(n)}$ .
- 5. det  $A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij}$ .

### Results from Determinant

► Solve linear system of equations.

$$x_i = \frac{1}{\det A} \det(a_1, \dots, a_{i-1}, b, a_{i+1}, \dots, a_n), \quad i = 1, \dots, n$$

Find inverse.

$$A^{-1} = \frac{1}{\det A} A^{\sharp}$$

# Calculating Determinants

#### Few methods to calculate determinant:

- 1. In  $\mathbb{R}^3$ : expand to the case of  $\mathbb{R}^2$  and calculate directly.
- In higher dimensions: use properties of determinant. Apply elementary row or column operations combined with Laplace expansion.
- 3. Leibnitz Formula.
- 4. Induction.

Matrices

Theorem of Systems of Linear Equations

Determinant

Overview

# Systems of Linear Equations

Gauss-Jordan algorithm.

## Finite-Dimensional Vector Spaces

Definition of Linear Independence.

$$v = \sum_{i=1}^{n} \lambda_i v_i = 0 \quad \Leftrightarrow \quad \lambda_i = 0$$

- v is a n-dimensional vector.
- $\triangleright$  v is a linear map: v acting on any vector (basis) gives 0.

Exercise 2.5. The maps  $b_1^*, \ldots, b_n^*$  form a basis of  $V^*$ .

- 1.  $L = \sum_{i=1}^{n} \lambda_i b_i^* = 0 \Leftrightarrow Lb_i = 0 \Leftrightarrow \lambda_i = 0$ .
- 2.  $\forall L \in \mathcal{L}(V, \mathbb{F}), L = \sum_{i=1}^{n} L(b_i)b_i^*$ .

## Finite-Dimensional Vector Spaces

### Basis (Any two combined.)

- $\triangleright \operatorname{span}\{b_1,\ldots,b_n\}=V.$
- $\{b_1, \ldots, b_n\}$  is linearly independent.
- ▶ The length of the set  $\{b_1, \ldots, b_n\}$  is dim V.

### Proof using basis.

- Definition: unique representation.
- Characterization of basis:
  - 1.  $\{b_1, \ldots, b_n\}$  is independent.
  - 2.  $V = \text{span}\{b_1, \ldots, b_n\}.$
- Finite-dimensional vector spaces (subspaces) basis extension theorem.
  - e.g.  $\dim(U+W) + \dim(U\cap W) = \dim U + \dim W$ .

## Inner Product Spaces

#### Inner Product.

- Definitions of inner product. proof of inner products.
  - 1.  $\langle v, v \rangle \geq 0$  and  $\langle v, v \rangle = 0$  iff v = 0.
  - 2.  $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$ .
  - 3.  $\langle u, \lambda v \rangle = \lambda \langle u, v \rangle$ .
  - 4.  $\langle u, v \rangle = \langle v, u \rangle$ .
- Induced norm.  $||v||^2 = \langle v, v \rangle$ .
  - e.g.  $||x + y||^2 + ||x y||^2 = 2(||x||^2 + ||y||^2)$ .
- Normalization and projection.
  - e.g. (2.4) The vector space C([-1,1]) of real continuous functions on [-1,1] endowed with the scalar product  $\langle f,g\rangle:=\int_{-1}^1 fg$  and the induced norm  $\|f\|=\sqrt{\langle f,f\rangle}$ .
    - 1.  $m_k(x) = x^k, k = 0, 1, ...$
    - 2.  $\{1, \sin(n\pi x), \cos(n\pi x)\}_{n=1}^{\infty}$ .
- Note:  $V = A \oplus B$ ,  $V = A \oplus C \Rightarrow B = C$ .



- ► Vector spaces:
  - 1. Dimension.
  - 2. Basis.
- Linear map:
  - 1. Range.
  - 2. Kernel.

#### **Matrices**

### Matrices as Linear Maps

$$\begin{array}{c|c}
U & \xrightarrow{L} V & \Phi_{\mathcal{A}}^{\mathcal{B}}(L) = A = \varphi_{\mathcal{B}} \circ L \circ \varphi_{\mathcal{A}}^{-1} \\
\downarrow^{\varphi_{\mathcal{A}}} & \downarrow^{\varphi_{\mathcal{B}}} \\
\mathbb{R}^{n} & \xrightarrow{A} \mathbb{R}^{m}
\end{array}$$

- $ran L = span\{a_{.1}, \ldots, a_{.n}\}.$
- Matrix acting on x.
- ▶ Matrix elements.  $\langle e_i, Ae_j \rangle = a_{ij}$ .

Basis change. Use a basis that is convenient for the operation.

- Projection.
- Rotation. e.g.(3.5.) Find the matrix describing rotation about the axis through the origin and the point (1,2,-1)<sup>T</sup>.

# Theory of Systems of Linear Equations

- Fredholm alternatives.
- Matrix rank.
- Presenting solution sets.

### **Determinants**

- ▶ Properties. (Row and column operations.)
- Matrix implications.
- ▶ Relations to system of linear equations.

Matrices

Theorem of Systems of Linear Equations

Determinant

Overview

- 1. Vectors and vector spaces. (ran V, ker V, span  $\mathcal{B}$  are all vector spaces!)
- If the notations do not occur in the problem statement, define then clearly.
- Do not forget to normalize the vectors using the specified inner product in Gram-Schmidt orthonormalization.
- 4. Consider using properties to reduce work.
- 5. Be careful with calculations.

Thanks for your attention!

Good Luck!