1 Polaritones fonónicos de volumen

Figure 1: Medio homogéneo polar $(\varepsilon_{\infty}, \omega_T, \omega_L)$.

Descripción. En un medio homogéneo infinito, la ecuación característica es simplemente la condición de propagación que se obtiene al sustituir la solución tipo onda plana en las ecuaciones de Maxwell, $\varepsilon(\omega) \omega^2 = c^2 k_x^2$. Sustituir en esta expresión la función dieléctrica de un material polar (Ec. 1.2) con $\gamma_O = 0$ y obtener la relación de dispersión $\omega(k_x)$ y sus límites asintóticos.

Ecuación característica. Usamos

$$\varepsilon(\omega) = \varepsilon_{\infty} \frac{\omega_L^2 - \omega^2}{\omega_T^2 - \omega^2}$$
 $(\gamma_O = 0),$

de modo que la condición de propagación queda

$$\varepsilon_{\infty} \frac{\omega_L^2 - \omega^2}{\omega_T^2 - \omega^2} \, \omega^2 = c^2 k_x^2. \tag{1}$$

Relación de dispersión (dos ramas). Definimos $\omega_{\infty}^2(k_x) = \frac{c^2 k_x^2}{\varepsilon_{\infty}}$. Resolviendo (1) para ω , con $u = \omega^2$, el cuadrático queda

$$u^2 - (\omega_L^2 + \omega_\infty^2) u + \varepsilon_\infty \omega_\infty^2 \omega_T^2 = 0,$$

y por tanto $\omega_{\pm}(k_x) = \sqrt{u_{\pm}(k_x)}$:

$$\omega_{-}(k_x) = \sqrt{\frac{\omega_{\infty}^2 + \omega_L^2 - \sqrt{(\omega_{\infty}^2 + \omega_L^2)^2 - 4\varepsilon_{\infty}\omega_{\infty}^2\omega_T^2}}{2}},$$
 (2)

$$\omega_{+}(k_x) = \sqrt{\frac{\omega_{\infty}^2 + \omega_L^2 + \sqrt{(\omega_{\infty}^2 + \omega_L^2)^2 - 4\varepsilon_{\infty}\omega_{\infty}^2\omega_T^2}}{2}}.$$
 (3)

Asíntotas. Sea $k \equiv k_x$ y $\omega_{\infty} = \omega_{\infty}(k) = ck/\sqrt{\varepsilon_{\infty}}$.

(i) Límite $k \to 0$ (equivalente a $\omega_{\infty} \to 0$). Expandiendo en series:

$$\omega_{-}(k) = \frac{\omega_{T}}{\omega_{L}} \, \omega_{\infty} \to 0 \quad \text{(acústica, lineal en } \omega_{\infty}), \qquad \omega_{+}(k) = \omega_{L} + \frac{1}{2\omega_{L}} \left(1 - \frac{\omega_{T}^{2}}{\omega_{L}^{2}} \right) \omega_{\infty}^{2} \to \omega_{L}$$

(ii) Límite $k \to \infty$ (equivalente a $\omega_{\infty} \to \infty$).

$$\omega_{+}(k) = \omega_{\infty} + \frac{\omega_{L}^{2} - \omega_{T}^{2}}{2\omega_{\infty}} \to \omega_{\infty}$$
 $\omega_{-}(k) = \omega_{T}$

Así, la rama superior tiende a la línea $\omega = \omega_{\infty} = ck/\sqrt{\varepsilon_{\infty}}$ y la inferior a ω_T .

Diferencia $\Delta\omega$ y mínimo. Definimos $\Delta\omega(k) = \omega_+(k) - \omega_-(k)$. Para $\omega_\infty \to \infty$, $\Delta\omega \sim \omega_\infty - \omega_T$ (crece linealmente en ω_∞); para $\omega_\infty \to 0$, $\Delta\omega \to \omega_L$. Una estimación del mínimo se obtiene con la intersección $\omega_\infty = \omega_T$:

$$\omega_{\infty}(k_{\min}) \approx \omega_T \implies k_{\min} \approx \frac{\sqrt{\varepsilon_{\infty}}}{c} \omega_T$$

Figure 2: Aluminio

Figure 3: Silicio

Figure 4: Diferencia $\Delta \omega = \omega_+ - \omega_-$ para dos materiales (p. ej., Si y Al). Se marcan el mínimo numérico y la estimación $k_{\min} \approx \sqrt{\varepsilon_{\infty}} \omega_T/c$.