Section 1.4 The Approximation Method of Enler

Let Y(x) be the true solution of the IVP with initial value yo:

$$Y^{l}(x) = f(x, Y(x))$$
, $x_0 \le x \le b$

We shall obtain an approximate solution at a discrete set of nodes:

We shall assume that the nodes are evenly spaced:

The approximate solution at the node point is denoted ylxn) or yn.

PREPARED BY

Merivation of Eulers Method

Enlers Method is defined by taking this to be exact.

Enlers Mathod: yn+1 = yn+h f(xn, yn), n=0,1,2,...,N-1

Usually choose yo = Yo.

Example 1 Use Enter's method with step size h=0.1 to approximate the solution to the mitial value problem

at the points x=1-1, 1-2, 1-3, 1-4, 1-5

PREPARED BY

Solution h=0.1, xo=1

$$n=0$$
 $y_1 = y_0 + (0.1) \times_0 \int y_0$
= $4 + (0.1) (1) \int 4$
= 4.2

$$\frac{N=2}{3} = 32 + (0.1) \times 2 \sqrt{32}$$

$$= a + (0.1) \cdot 2 \sqrt{a}$$

$$= 4.67787 \longrightarrow b$$

$$\frac{h=4}{5} = \frac{3}{4} + \frac{10.1}{1.4} = \frac{134}{5}$$

$$= \frac{10.1}{5} + \frac{134}{5} = \frac{10.1}{5} = \frac{10.1}{5} + \frac{134}{5} = \frac{10.1}{5} =$$

See data of Table 1.1 on page 25.

n	Xn	47	Yn	Emor = 1/1-7/1
0		4	4	0
1	1.1	4-2	4.21276	.01276
2	1-2	4-42543	4.45210	. 02667
3	1.3	4-61787	4071976	.04189
4	1-4	4.95904	5-01760	.05856
5	1.5	5.27081	5.34766	.07685

HW Pg 28, 415: 1,3,5,7