

中国人民大学经济学院

房价和租金预测

Group 2

组员: 刘子意 周方健 张嘉麟 马雨翔

Midterm Project -- 刘子意

数据处理

1. 划分数据集

---为避免数据泄露,首先划分训练集与测试集

Price模型性能:

Metrics	In sample	Out of sample	Cross-validation	Kaggle Score
OLS	0.0891	0. 1769	0. 2870	67.58
Lasso	0.2922	0.3049	0.3879	67.58
Ridge	0.2417	0.2601	0.3418	67.58
ElasticNet	0.2884	0.3006	0.3849	67.58

2. 数据预处理

原始特征数量:50 处理后特征数量:54

删除的特征: {'建筑年代', '交易时间', '燃气费', '房屋户型', '供热费', '物 业 费'}

新增的特征: ['物业费平均','供热费平均','室','卫','厅','交易月份','交易年份','建成时间','厨','燃气费平均']

Price训练集数据预处理完成

3. 异常值处理

原始样本量: 83096

X数值列异常值样本数: 3772 (4.54%)

4. 特征工程

```
df_new['建筑面积2'] = df_new['建筑面积'] ** 2
df_new['总楼层2'] = df_new['总楼层'] ** 2
df_new['面积_室交互'] = df_new['建筑面积'] * df_new['室']
df_new['面积_厅交互'] = df_new['建筑面积'] * df_new['厅']
df_new['面积_匠交互'] = df_new['建筑面积'] * df_new['厨']
df_new['面积_卫交互'] = df_new['建筑面积'] * df_new['卫']
df_new['楼层_电梯交互'] = df_new['总楼层'] * df_new['配备电梯']
df_new['位置交互'] = df_new['coord_x'] * df_new['coord_y']
```

Rent模型性能:

Metrics	In sample	Out of sample	Cross-validation	Kaggle Score
OLS	0.1692	0.1804	0.2546	67.58
Lasso	0.2651	0.2680	0.3465	67.58
Ridge	0.2177	0. 2253	0.3014	67.58
ElasticNet	0.2536	0.2577	0.3369	67.58

Midterm创新点-周方健 2023200743


```
for col in numeric cols:
    if col in df_filled.columns:
       # 使用留中位数项页
        df_filled|col| = df_filled.groupby(group_cols)[col].transform(
           lambda x: x.fillna(x.median()) if x.notna().any() else x.fillna(df_filled[col].median())
for col an categorical_cols:
   if col in df_filled.column:
       * WHEORKS
        df filled col = df filled.groupby(group cols) col ).transform(
           lambda x: x.fillna(x.mode()[0]) if not x.mode().cmpty else x.fillna(df_filled|col|.mode()[0])
```

采用分组统计 按城市和区域

租金款据:

提取楼层比例 ● 提取户型信息


```
# 匹配推式: 支持两种格式
patterns = |
   "bedroom": r'(\d+)(?:室|房间)", # 匹配"X並"或"X房间"
   'living room': r'(\d+)厅',
   "kitchen': r'(\d+)例',
   'bathroom': r'(\d+) I'
result = ()
for key, pattern in patterns.items():
   match = re.search(pattern, layout_text)
   result[key] = int(match.group(1)) if match else 0
```

对价格对数变换 处理偏态

模型性能总结(MA	E)			
Metrics	In sample	Out of sample	Cross-validation	Kaggle Scor
		*****	->	
CL5	0.25	0.25	0.25	58.55
LA550	0.25	0.25	0.25	
Ridge	0.25	0.25	0.25	-
Flasticiat	0.25	9 25	0.25	

```
# 对目标变量进行对现变换(处理编念分布)
if use log transform:
   y_train_full = np.log1p(y_train_full) # log(1+y) 避免0值问题
```

```
# 现在需要反向变换
if use log transform:
   predictions = np.expm1(predictions) # exp(y) - 1
```


. 炒新定列进行编码 encoded_array = ohe.fit_transform(df[columns])

创建编码后的形容 feature_names = ||| for i, col in enumerate(columns):

for category in ohe.categories (i): feature_names.append(f*(col)_(category)*)

使用Onehot编码

ohe = OneHotEncoder(sparse output=False, handle unknown='ignore')

房价数据:

模型性能总结 (MAE)

Out of sample Cross-validation Kaggle Score In sample *0L5* 0.27 0.27 0.27 58.55 LASSO 0.28 0.28 0.28 Ridge 0.27 0.27 0.27 ElasticNet 0.28 0.28 0.28

张嘉麟 2022201745

1. 对数变换


```
y_train_pred_log_exp = np.expm1(y_train_pred_log)
y_test_pred_log_exp = np.expm1(y_test_pred_log)
```

2. 特征选择


```
# 6.3 VIF分析 (多重共线性) - 采样进行
print("\n[6.3] VIF分析 (采样30000条) ...")
from statsmodels.stats.outliers_influence import variance_inflation_factor

# 只在高相关特征上做VIF (减少计算量)
high_corr_features = correlations[correlations >= 0.05].index.tolist()[:150] # 选top 150
print(f" 在 {len(high_corr_features)} 个高相关特征上进行VIF分析...")

# 采样减少计算量
sample_size = min(30000, len(X_train))
X_train_sample = X_train[high_corr_features].sample(n=sample_size, random_state=111)
print(f" 使用 {sample_size:,} 个样本进行VIF计算...")
high_vif_features = []
vif_threshold = 10
```

Model	In-Sa	In-Sample		Out-of-Sample		CV		gle
	Rent	Price	Rent	Price	Rent	Price		
OLS	192,025.92	959,001.37	207,268.86	969,535.37	193,844.39	960,904.38	23.38	
Lasso	192,049.24	960,927.58	207,280.57	971,398.49	192,600.09	962,945.91	23.39	
Log-OLS	170,645.52	810,639.81	186,588.49	815,630.78	171,285.34	0.3620 (log)	43.91	
Random Forest	47,298.21	217,223.72	86,230.96	284,757.10	-	306,092.05	61.22	