

<u>Trabajo Práctico Embebidos</u> "Control Lanzamiento"

Realizar un programa que simule el rebote de una pelota restringida dentro de un rectángulo, que pueda controlarse desde MBED y desde la PC.

- **x0[m]**: Posición inicial X.
- y0[m]: Posición inicial Y.
- ang0[Grd.]: Ángulo inicial.
- v0[m/seg]: Velocidad inicial.
- alpha[%]: Pérdida de energía al rebotar.

Para esto realice un programa en QT para simular el rebote de la pelota, la cual sale desde una posición inicial (x0, y0), con una velocidad inicial v0, y un ángulo inicial ang0. Para simular la pérdida de energía en la pared de la pelota establezca un coeficiente de pérdida alpha que disminuya la velocidad de la pelota cada vez que rebota en alguna de las paredes.

Los parámetros del lanzamiento de la pelota y los rebotes que realiza en las paredes deben poder controlarse y reflejarse respectivamente en el MBED. Para esto se establecen los siguientes comandos y funcionalidades en el MBED:

Pulsadores:

Si se presionan de forma individual cumple la siguiente función:

- [SW0]: Desplaza la pelota hacia arriba.
- [SW1]: Desplaza la pelota hacia abajo.
- [SW2]: Desplaza la pelota hacia la izquierda.
- [SW3]: Desplaza la pelota hacia la derecha.

La pelota se desplaza 1 pixel por cada vez que se presiona algún pulsador, si este se mantiene presionado por más de 500 ms, la pelota se desplazará en *n pixeles* cada 200ms. Estos píxeles serán configurados desde la PC.

Pulsadores Combinados:

- [SW0] + [SW2]: Aumenta la velocidad de salida.
- [SW1] + [SW2]: Disminuye la velocidad de salida.

Por cada vez que se presiona esta combinación la velocidad de salida aumenta o disminuye 0.1 m/s, si se mantienen presionados por más de 500 ms la velocidad cambia cada 200 ms **0.1 x n m/s**. Este cambio de velocidad será configurado desde la PC.

Computación III 2023 1 de 5

- [SW0] + [SW3]: Aumenta el ángulo de salida.
- [SW1] + [SW3]: Disminuye el ángulo de salida.

Por cada vez que se presiona esta combinación el ángulo de salida aumenta o disminuye 0.1 grados, si se mantienen presionados por más de 500 ms el ángulo cambia cada 200 ms **0.1 x n grados**. Este cambio de grados será configurado desde la PC.

• [SW2] + [SW3]: Comienza o detiene el lanzamiento de la pelota.

Si se mantienen presionados por más de 1 seg se cambia el estado del lanzamiento.

LEDs:

- **[LED_0]**: Se enciende durante 50 ms cada vez que la pelota rebota en la pared izquierda.
- **[LED_1]**: Se enciende durante 50 ms cada vez que la pelota rebota en la pared de arriba.
- [LED_2]: Se enciende durante 50 ms cada vez que la pelota rebota en la pared de abajo.
- **[LED_3]**: Se enciende durante 50 ms cada vez que la pelota rebota en la pared derecha.
- **[LED_BUILTIN]**: Utilice el este led como heartbeat siguiendo el siguiente patrón:

ON	OFF				
100ms	900ms				
Lanzamiento en OFF					
ON		OFF	ON	OFF	
400ms		100ms	100ms	400ms	
Lanzamiento en ON					

NOTAS:

- El recinto donde la pelota rebota debe cambiar de dimensiones cuando la ventana cambia su dimensión. La ventana debe tener un tamaño mínimo de 800x600 pixeles.
- La pelota podrá arrastrarse a una nueva posición con el mouse cuando este el botón derecho presionado sobre la pelota.

Computación III 2023 2 de 5

COMANDOS MBED \leftrightarrow **PC**:

CMD ID	Dirección	CMD Data	Descripción
0xF0	$PC \rightarrow MBED$		ALIVE. Verifica conexión
0xF0	$MBED \to PC$	$uint8_t = 0x0D$	ACK Conexión
0xF1	$PC \rightarrow MBED$		FIRMWARE. Pide versión.
0xF1	$MBED \to PC$	char[] versión	FIRMWARE.
0xXX	$MBED \to PC$	uint8_t = 0xFF	Comando NO conocido. 0xXX Representa el ID del comando.
0x10	$PC \rightarrow MBED$	uint8_t ledsToAct uint8_t ledsValue	Enciende o Apaga un LED ledsToAct: Indica el led a cambiar.
			ledsToAct(0): Led1 ledsToAct(1): Led2 ledsToAct(2): Led3 ledsToAct(3): Led4
			Bit = 1. Set nuevo valor Bit = 0. Deja el valor anterior
			ledsValue: Tiene el valor del led a cambiar.
			ledsValue(0): Led1 ledsValue(1): Led2 ledsValue(2): Led3 ledsValue(3): Led4 Bit = 1. Led On Bit = 0. Led Off
0x10	$MBED \to PC$	uint8_t statusLed	statusLed tiene el último valor de los leds.
			statusLed(0): Led1 statusLed(1): Led2 statusLed(2): Led3 statusLed(3): Led4 Bit = 1 Led On Bit = 0 Led Off
0x12	$PC \rightarrow MBED$		Pide estado de los Pulsadores

Computación III 2023 3 de 5

Facultad de Ciencias de la Alimentación Ingeniería en Mecatrónica Computación III

CMD ID	Dirección	CMD Data	Descripción
0x12	$MBED \to PC$	uint8_t buttonsStatus	buttonsStatus tiene el último estado de cada pulsador
			buttonsStaus(0): SW0 buttonsStaus(1): SW1 buttonsStaus(2): SW2 buttonsStaus(3): SW3
			Bit = 1. Pulsador presionado Bit = 0. Pulsador sin presionar
0x13	$PC \rightarrow MBED$	uint8_t action int16_t value	Configura o Lee 0.1 x n grados
			$\begin{array}{l} \textbf{action} == 0x00. \text{ Lee} \\ \textbf{action} != 0x00. \text{ Configura.} \end{array}$
			value: indica los <i>n grados</i> en que cambiará el ángulo de salida.
0x13	$MBED \to PC$	int16_t value	Devuelve el valor de value configurado.
0x14	$PC \rightarrow MBED$	uint8_t action int16 t value	Configura o Lee 0.1 x n m/s
		inivio_t value	
			value: indica los <i>n m/s</i> en que cambiará la velocidad de salida.
0x14	$MBED \to PC$	int16_t value	Devuelve el valor de value configurado.
0x15	PC → MBED	uint8_t action int16_t value	Configura o Lee <i>n pixeles</i> action == $0x00$. Lee action != $0x00$. Configura.
			value: indica los n píxeles en que cambiará la posición.
0x15	$MBED \to PC$	int16_t value	Devuelve el valor de value configurado.
0x16	$MBED \to PC$		Comienza o detiene el lanzamiento.
0x16	PC → MBED	uint8_t state	Envía el estado del lanzamiento cada vez que este se configure.
			$ \mathbf{state} = 0x00. \text{ OFF} \\ \mathbf{state} = 0x01. \text{ ON} $

Computación III 2023 4 de 5

Facultad de Ciencias de la Alimentación Ingeniería en Mecatrónica Computación III

CMD ID	Dirección	CMD Data	Descripción
0x17	MBED → PC	uint8_t id int16_t value	Se envía para cambiar algún parámetro de configuración de lanzamiento. id = 0x00. x0
			$\mathbf{id} = 0x01. \ y0$ $\mathbf{id} = 0x02. \ v0$
			$\mathbf{id} = 0 \times 03. \text{ ang } 0$
			value: Cambia el valor de configuración en value cuentas. Negativo disminuye. Positivo aumenta.
0x17	$PC \rightarrow MBED$	$uint8_t = 0x0D$	ACK Configuración
0x18	$PC \rightarrow MBED$	uint8_t wall	Indica rebote en la pared.
			wall = $0x00$. Derecha. wall = $0x01$. Izquierda. wall = $0x02$. Arriba. wall = $0x03$. Abajo

Computación III 2023 5 de 5