Sayısal Sistemler-H11CD1

Ardışık Lojik Devre Tasarım Örnekleri

Dr. Meriç Çetin

versiyon031220

Eş-zamanlamalı Saat Darbeli Ardışık Devreler

FIGURE 5.2

Synchronous clocked sequential circuit

Depolama Elemanları: Flip-Floplar

- Bir sayısal devredeki bir depolama elemanı, durumları değiştirmek için bir giriş sinyali tarafından yönlendirilene kadar ikili bir durumu süresiz olarak koruyabilir.
- Sinyal seviyeleriyle çalışan depolama elemanları saat geçişiyle kontrol edilen flip-floplar'dır.
- Temel flip-flop devreleri NOR veya NAND kapıları kullanılarak tasarlanır.

RS Flip-Flop

	Öncek	Sonraki Durum		
СР	Q(t)	S	R	Q(t+1)
1	0	0	0	0 (Durum Değiştirmez)
1	0	0	1	0
1	0	1	0	1
1	0	1	1	Tanımsız
1	1	0	0	1 (Durum Değiştirmez)
1	1	0	1	0
1	1	1	0	1
1	1	1	1	Tanımsız

D Tipi Flip-Flop

• D tipi flip-flop, RS tipi flip-flop'un girişlerinin değiştirilmesiyle elde edilir. D girişi doğrudan S girişine, R girişi ise S girişine bir invertor (tersleyici) ile bağlanarak D tipi flip-flop elde edilir.

(c) Characteristic table

(b) Graphic symbol

(d) Characteristic equation

JK Tipi Flip-Flop

Q	J	K	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

(c) Characteristic table

(d) Characteristic equation

(b) Graphic symbol

T (Trigger) Tipi Flip-Flop

(b) Graphic symbol

Q	Т	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

(c) Characteristic table

(d) Characteristic equation

Kenar Tetiklemeli Flip-Flop'lar

- Flip-flop çıkışlarında herhangi bir hataya sebep vermemek için flip-flop'ların durum değiştirmeleri saat darbelerinin (clock pulse) uygulama zaman aralığı yerine saat darbelerinin
 - lojik «0» dan lojik «1» durumuna yükselme zamanlarında veya
 - lojik «1» den lojik «1» durumuna düşmeleri esnasında
- durum değiştirmelerini sağlamak amacıyla kenar tetiklemeli flip-flop'lar kullanılır.
- Bu sayede çıkış ile giriş arasındaki geri beslemeden dolayı meydana gelebilecek hatalı durum değiştirmeler ortadan kaldırılır.

FIGURE 5.11
Graphic symbol for edge-triggered *D* flip-flop

Kenar Tetiklemeli Flip-Flop'lar

FIGURE 5.8
Clock response in latch and flip-flop

Flip-flop doğruluk tabloları

Flip-flop characteristic tables

S	R	Q(t+1)		J	K	Q(t+1)
0	0	Q(t)		0	0	Q(t)
0	1	0		0	1	0
1	0	1		1	0	1
1	1	?		1	1	Q'(t)
	(a) RS			(b) <i>JK</i>		

D	Q(t+1)	T	Q(t+1)
0	0	0	Q(t)
1	1	1	Q'(t)
	(c) D	(d) T

Flip-flop durum geçiş tabloları

Flip-flop excitation tables

Q(t)	Q(t + 1)	S	R	Q(t)	Q(t + 1)	J	K
0	0	0	X	0	0	0	X
0	1	1	0	0	1	1	X
1	0	0	1	1	0	X	1
1	1	X	0	1	1	X	0
	(a) R	S			(b) <i>JK</i>		

Q(t)	Q(t+1)	D	Q(t)	Q(t + 1)	T
0	0	0	0	0	0
0	1	1	0	1	1
1	0	0	1	0	1
1	1	1	1	1	0
	(c) D			(d) T	

Durum diyagramlarına örnekler

Durum tablosundan durum diyagramına geçiş

FIGURE 5.15
Example of sequential circuit

Table 5.3 Second Form of the State Table

Present State		N	Next State			Output		
		x =	0	х:	= 1	x = 0	<i>x</i> = 1	
Α	В	A	В	Α	В	у	у	
0	0	0	0	0	1	0	0	
0	1	0	0	1	1	1	0	
1	0	0	0	1	0	1	0	
1	1	0	0	1	0	1	0	

FIGURE 5.16
State diagram of the circuit of Fig. 5.15

Durum İndirgeme

- Ardışık bir devrede flip-flop sayısındaki azalma, durum indirgeme problemi olarak adlandırılır.
- Durum indirgeme algoritmaları, harici giriş-çıkış gereksinimlerini değiştirmeden tutarken, bir durum tablosundaki durumların sayısını azaltmak için prosedürlerle ilgilidir.
- m adet flip-flop 2^m adet durum ürettiğinden, durum sayısındaki bir azalma, flip-flopların sayısında bir azalmaya neden olabilir (veya olmayabilir).
- Flip-flop sayısını azaltmada öngörülemeyen bir etki, bazen eşdeğer devrenin (daha az flip-flop ile) bir sonraki durumunu ve çıkış mantığını gerçekleştirmek için daha fazla kombinasyon kapısı gerektirmesidir.

Durum İndirgeme-örnek

Table 5.7 *Reducing the State Table*

	Next	State	Output	
Present State	x = 0	x = 1	x = 0	x = 1
а	а	b	0	0
b	c	d	0	0
C	a	d	0	0
d	e	f	0	1
e	a	f	0	1
f	e	f	0	1

Table 5.8 *Reduced State Table*

Next	State	Output		
x = 0	x = 1	x = 0	x = 1	
a	b	0	0	
c	d	0	0	
a	d	0	0	
e	d	0	1	
a	d	0	1	
	x = 0 a c a e	c d a d e d	x = 0 $x = 1$ a b c d a	

 Durum tablosunu inceleyerek, aynı sonraki duruma giden ve her iki giriş kombinasyonu için aynı çıktıya sahip iki mevcut durumu ararız.

Table 5.6 State Table

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
a	a	b	0	0	
b	c	d	0	0	
С	a	d	0	0	
d	e	f	0	1	
e	a	f	0	1	
f	g	f	0	1	
g	a	f	0	1	

Ardışık Lojik Devre Tasarım Prosedürü

- Ardışık lojik devre tasarımı için şu yol takip edilmelidir:
- Devre davranışı tanımlanır. Bu, durum diyagramlarıyla belirlenir.
- Elde edilen değerler durum tablosuna taşınır.
- Gerekli flip-flop sayısı ve flip-flop türü belirlenir.
- Karnaugh veya diğer indirgeme metotları kullanılarak kombinasyonel devre çıkış ve flip-flop giriş denklemleri elde edilir.
- Elde edilen bu sonuçlara göre lojik devre tasarımı yapılır.

• Aşağıda durum diyagramı verilen lojik devreyi J-K flip-floplarını kullanarak gerçekleştiriniz.

State diagram

• Durum diyagramından durum tablosuna geçiş:

Durum Tablosu							
Önceki	ceki Durum Sonraki Durum						
۸	В	X=	=0	X=	=1		
Α	Ь	Α	В	Α	В		
0	0						
0	1						
1	0						
1	1						

• Durum diyagramından durum tablosuna geçiş:

Durum Tablosu								
Önceki	Durum	Sonraki Durum						
А	В	X=	=0	x=1				
	ь	Α	В	Α	В			
0	0	0	0	0	1			
0	1	1	0	0	1			
1	0	1	0	1	1			
1	1	1	1	0	0			

Kombinasyonel Devre Girişleri			Sonraki Durum		Kombinasyonel Devre Çıkışları				
Önceki Durum		Giriş	Sonraki Durum		Flip-flop Girişleri				
Α	В	Х	А	В	JA	KA	JB	KB	
0	0	0							
0	0	1							
0	1	0							
0	1	1							
1	0	0							
1	0	1							
1	1	0							
1	1	1							

Kombinasyonel Devre Girişleri			Consolsi Dusum		Kombinasyonel Devre Çıkışları				
Önceki Durum Giriş		Giriş	Sonraki Durum		Flip-flop Girişleri				
Α	В	Х	А	В	JA	KA	JB	KB	
0	0	0	0	0					
0	0	1	0	1					
0	1	0	1	0					
0	1	1	0	1					
1	0	0	1	0					
1	0	1	1	1					
1	1	0	1	1					
1	1	1	0	0					

Kombinasyonel Devre Girişleri			Conrold Durum		Kombinasyonel Devre Çıkışları				
Önceki Durum		Giriş	Sonraki Durum		Flip-flop Girişleri				
А	В	Х	А	В	JA	KA	JB	КВ	
0	0	0	0	0	0	X	0	X	
0	0	1	0	1	0	X	1	X	
0	1	0	1	0	1	Х	X	1	
0	1	1	0	1	0	X	Х	0	
1	0	0	1	0	X	0	0	X	
1	0	1	1	1	X	0	1	X	
1	1	0	1	1	X	0	X	0	
1	1	1	0	0	X	1	X	1	

• Flip-flop girişlerini elde etmek için Karnaugh diyagramlarından faydalanalım.

Kombinasyonel Devre Girişleri			Sonraki Durum		Kombinasyonel Devre Çıkışları				
Önceki Durum Giriş		Giriş	Solitaki Durum		Flip-flop Girişleri				
А	В	х	А	В	JA	KA	JB	KB	
0	0	0	0	0	0	X	0	X	
0	0	1	0	1	0	X	1	X	
0	1	0	1	0	1	X	X	1	
0	1	1	0	1	0	X	X	0	
1	0	0	1	0	X	0	0	X	
1	0	1	1	1	X	0	1	X	
1	1	0	1	1	X	0	X	0	
1	1	1	0	0	X	1	X	1	

• Ardışık lojik devreyi çizelim:

Figure 6-22 Block digram of sequential circuit

• Ardışık lojik devreyi çizelim:

Х

 $KB = A \odot x$

Logic diagram of sequential circuit