PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-130560

(43) Date of publication of application: 12.05.2000

(51)Int.Cl.

F16H 55/08 F16H 55/17

(21)Application number: 10-306055

(71)Applicant : FUJI KIKO CO LTD

(22)Date of filing: 27.10.1998

(72)Inventor: FUJIWARA NOBUAKI

(54) CYCLOIDAL GEAR WITH SMALL-NUMBERED TEETH

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a cycloidal gear with smallnumbered teeth which can be designed easily in a short time. SOLUTION: This cycloidal gear is composed of four or five cycloidal teeth. A ratio T of thickness of theeth ranges between 0.655 and 0.741. A radius r1 of an outward rotation rolling circle ranges between 3.5 and 6.5 mm/l module. A radius r2 of an inward rotation rolling circle ranges between 1.97 and 2.60 mm/l module. Addendum h1 ranges between 0.68 and 1.14 mm/l module. Dedendum h2 ranges between 0.454 and 0.650 mm/l module. It is thus possible to compose the cycloidal gear of four teeth which is sufficiently practical.

LEGAL STATUS

[Date of request for examination]

25.12.2000 04.11.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application

converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision

of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-130560 (P2000-130560A)

(43)公開日 平成12年5月12日(2000.5.12)

(51) Int.Cl.7

織別記号

 \mathbf{F} I

テーマコート*(参考)

F16H 55/08

55/17

F16H 55/08 55/17 31030

z

審査請求 未請求 請求項の数2 OL (全 9 頁)

(21)出願番号

特賢平10-306055

(22) 出願日

平成10年10月27日(1998.10.27)

(71) 出顧人 000237307

富士機工株式会社

静岡県湖西市鷲津2028

(72)発明者 藤原 言哲

静岡県湖西市鷲津2028番地 富士機工株式

会社鷲津工場内

(74)代理人 100083806

弁理士 三好 秀和 (外8名)

Fターム(参考) 3J030 AC10 BA01 BB11 BB13 BB14

(54) 【発明の名称】 少歯数サイクロイド歯車

(57)【要約】

【課題】 歯数の少ないものを短時間で簡単に設計する ことのできる少歯数サイクロイド歯車、することを課題 としている。

【解決手段】 サイクロイド歯形の歯を有し、歯数が4 枚又は5枚のもので構成されていることを特徴とするサ イクロイド歯車を提供している。そして、歯厚の割合T を0.655~0.741、外転転がり円半径r1を 3. 5~6. 5 mm/1モジュール、内転転がり円半径 r 2を1. 97~2. 60mm/1モジュール、歯末の たけh1を0.68~1.14mm/1モジュール、歯 元のたけh2を0.454~0.650mm/1モジュ ールに設定することにより充分実用可能な4枚歯のサイ クロイド歯車を構成している。

【特許請求の範囲】

【請求項1】 サイクロイド歯形の大歯車(2)と、この大歯車(2)にかみ合う同じくサイクロイド歯形の小歯車(1)とを備えた高歯数比の歯車列であって、小歯車(1)の歯数が4枚又は5枚のもので構成されていることを特徴とするサイクロイド歯車。

【請求項2】 円ピッチを分母とし、ピッチ円上の歯厚を分子として計算した歯厚の割合(T)が 0.655~0.741であり、外転転がり円半径(r1)が 3.5~6.5 mm/1モジュールであり、内転転がり円半径(r2)が 1.97~2.60 mm/1モジュールであり、歯末のたけ(h1)が 0.68~1.14 mm/1モジュールであり、歯元のたけ(h2)が 0.454~0.650 mm/1モジュールであることを特徴とする請求項1記載のサイクロイド歯車。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、サイクロイド歯車に関し、詳しくは、減速機構を構成する大歯車と小歯車の内の小歯車に用いる歯数の少ないサイクロイド歯車に関する。

[0002]

【従来の技術】通常、歯車としてはインボリュート歯形のものが使用されており、このインボリュート歯形の大歯車と小歯車とを組み合わせることにより歯車列が構成されている。このような歯車列において、小歯車の歯数を少なくすることによって歯数比を高めようとすると、小歯車の歯元にアンダーカットが生じることになる。アンダーカットをさけるために転位という方法があるが、歯数が少ないと強度・耐久性が著しく劣り実用的には6枚以上とされている。なお、歯数比は、小歯車の歯数を 21、大歯車の歯数を 22とすると、 22/21で表せる。

【0003】一方、近年になってロジックスギヤ(例えば、特公平2-15743号公報)が開発されている。このロジックスギヤでは、微少区間の複数のインボリュート曲線を連続する曲線状につなぎ合わせることによって歯形を形成している。このため、ロジックスギヤを用いた場合には、歯形の形状を種々工夫することができ、この工夫により、小歯車として4枚の歯数のものを用いても強度的に問題のないものが得られ、これにより高歯数比の歯車列の開発が可能になっている。

[0004]

【発明が解決しようとする課題】ところが、上記ロジックスギヤを用いた歯車を設計する場合には、非常に多くのインボリュート曲線を連続的につなぎ合わせる計算を、種々の歯形形状について何回も繰り返し行わなければならず、歯車の設計が完了するまでに多大の時間がかかるという問題がある。

【0005】この発明は、上記事情に鑑みてなされたも

のであり、歯車の歯形にサイクロイド歯形を用いること で歯数の少ないものを短時間で簡単に設計することので きるようにしたサイクロイド歯車を提供することを課題 としている。

[0006]

【課題を解決するための手段】上記課題を解決するために、請求項1記載の発明は、サイクロイド歯形の歯を有し、歯数が4枚又は5枚のもので構成されていることを特徴とするサイクロイド歯車を提供している。

【0008】そして、上記のように構成された請求項1記載の発明においては、後述する実施例に示す通り、4枚の歯を有するものを4枚歯で実績のあるロジックスギヤと同程度に形成することができる。このため、インボリュート歯形の歯車では実用上不可能な5枚又は4枚の歯数の歯車を提供することができる。したがって、例えば減速機において一つの歯車として使用した場合には、一度に大きな減速比が得られるので、減速機の小型化を図ることができる。また、歯形としてはサイクロイド曲線を用いたものであるから、計算が簡単であり、短時間で所望の歯数の歯車を設計することができるという利点がある。

【0009】請求項2記載の発明においては、歯厚の割合 (T) を $0.655\sim0.741$ 、外転転がり円半径 (r1) を $3.5\sim6.5$ mm/1 モジュール、内転転がり円半径 (2) を $1.97\sim2.60$ mm/1 モジュール、歯末のたけ (h1) を $0.68\sim1.14$ mm/1 モジュール、歯元のたけ (h2) を $0.454\sim0.650$ mm/1 モジュールにすることにより歯数を4又は5枚にしてもアンダーカット、歯先尖りが生じることがなく、かみ合い率も1.0以上確保でき、歯元強度も充分にとることができる。

[0010]

40

【発明の実施の形態】以下、この発明の実施の形態を実施例に基づき、図1~図16を参照して説明する。

【0011】この実施例で示す高歯数比サイクロイド歯車列Gは、図1に示すように、サイクロイド歯形の大歯車2と、この大歯車2にかみ合う同じくサイクロイド歯形の小歯車1とを備えたものであって、小歯車1は、4枚の歯数を有することを特徴としている。

【0012】そして、大歯車2のピッチ円PC2上の歯

【0014】以下、上記構成についてさらに詳細に説明する。まず、歯車として実用的に成立する設計条件を設定し、この条件で4枚歯の小歯車1及びこれにかみ合う大歯車2を設計する(ただし、この実施例では小歯車1を主に説明する)。この設計条件は以下の①~⑥の通りである。

【0015】① かみ合い率Lが1.0以上であること。

- ② 小歯車1の歯先が尖らないこと。
- ③ 小歯車1の歯元歯厚が十分あること。具体的には、 すでに4枚歯で実績のあるロジックスギヤの歯元歯厚と 同等以上とする。
- ④ 大歯車2の歯元歯厚が十分あること。具体的には、 上述した4枚歯のロジックスギヤにかみ合う同じくロジックスギヤで形成した大歯車の歯元歯厚と同等以上とする。
- ⑤ 歯底部が隣の歯と干渉しないで成立すること。
- ⑥ 圧力角は30度以下であること。

従ってこの条件で5枚歯を作れば充分満足するものができる。但し、この範囲の外で作ってもロジックス歯車に匹敵する歯車が作り得る。以上の設計条件に当てはまった4枚歯の小歯車1が成立すれば、5枚歯以上の歯車は問題なく成立することになる。すなわち、5枚歯の場合には、4枚歯を成立される条件がそのまま広がることになり、限定範囲が広くとれる。そのため、4枚歯が成立できる条件で5枚歯を作れば上記設計条件にあてはまる5枚歯の小歯車を成立させることができる。ただし、5枚歯の場合には、4枚歯の限定範囲の外で作っても上記設計条件に当てはまる歯車を作り得る。なお、上記設計条件について補足すると、上記①のかみ合い率とは、小歯車1と大歯車2とが同時にかみ合う歯数のことである。このかみ合い率が1.0以上ないとスムーズな回転伝達が得られないため、1.0以上必要である。逆に、

かみ合い率が1.0未満では、かみ合いが行なわれていない状態が生じ、異音が大きくなり、歯車として成立していないといえる。

【0016】上記②の小歯車1の歯先の尖りとは、図5に示すように、左右の歯面11aが歯先円HCに達する前に交差して歯先が尖った状態になることをいう。このように歯先が尖った状態になると、正規の歯先円まで歯形がないため、かみ合いが成立しないという問題がおきる。したがって、歯先の尖りを防止する必要がある。

【0017】上記③、④の歯元歯厚とは、例えば小歯車1で示せば図1における最も薄い位置の歯元歯厚Tbをいう。一般に歯車は歯元に最大曲げモーメントが作用するため、歯元歯厚が薄いと、強度は低下する。したがって、この実施例では、歯元歯厚をすでに4枚歯で実績のある小歯車のロジックスギヤや大歯車のロジックスギヤの歯元歯厚の±10%になるように規制して、強度の低下を実質面から防止するようにしている。

【0018】そして、このようにロジックスギヤの歯元 歯厚と比較することによって、ロジックスギヤに対する 本発明の強度上の良否を判断することもできるようになる。なお、-10%以上としたのは、これ以下になると 小歯車1の強度低下の恐れがあると判断したためであり、+10%以下としたのは、これ以上になると、歯底部が干渉したり、例えば小歯車1にかみ合う大歯車20歯厚が薄くなりすぎるなどの恐れがあると判断したためである。

【0019】上記⑤の歯底部が隣の歯と干渉するとは、図6に示すように、例えば大歯車2における左右の歯面21aが歯底円BCに達する前に交差する状態をいう。このような歯底部の干渉は、歯元歯厚を厚くしすぎた場合に生じるが、歯車として成立しないので、防止する必要がある。

【0020】上記®の圧力角は、サイクロイド歯形の場合、ピッチ円PCから歯先側に向かうにしたがって、あるいは歯元側に向かうにしたがって大きくなる。圧力角αが大きくなると、強度的には有利となるが、音が大きくなるので、一般には最大でも30度が限度といわれている。

【0021】そして、上記設計条件を成立させるために、サイクロイド歯形を決定するための各種パラメータによる計算が必要になる。例えば、設計条件とパラメータとの関係を示すと、図2に示すようになる。すなわち、上記①のかみ合い率は、外転転がり円半径(直径)r1、協未のたけh1、内転転がり円半径(直径)r2、歯元のたけh2、歯厚の割合Tと主に関係があるといえる。また、上記②の先端尖りは、外転転がり円半径 r1、歯末のたけh1、歯厚の割合Tと主に関係があるといえる。さらに、上記③、④の歯元歯厚については、内転転がり円半径r2、歯元のたけh2、歯厚の割合Tと主に関係があるといえる。

【0022】次に、上記設計条件に基づいて4枚歯の小 歯車1を設計するための各種パラメータの計算方法を説 明する。

【0023】まず、サイクロイド歯形について説明する。サイクロイド歯形は、図3に示すように、歯末と歯元に2つのサイクロイド曲線を使用し、つなぎ合わせた歯形である。すなわち、小歯車1の場合、ピッチ円PCの外側に外転転がり円OCを滑らさずに転がした際に、外転転がり円OC上の一点の軌跡が歯末の歯形11a1になる。また、ピッチ円PCの内側に内転転がり円ICを滑らさずに転がした際に、内転転がり円IC上の一点の軌跡が歯元の歯形11a2になる。そして、歯末の歯形11a1と歯元の歯形11a2とによって各歯のサイクロイド歯形11aが形成されている。

【0024】ただし、図3に示すような歯車形状から直接サイクロイド歯形11aを検討するのではなく、図4に示す基準ラックからサイクロイド歯形11bを検討する。すなわち、ピッチ円は、その直径を無限大にすると、図4に示すように、直線状のピッチ線PLになる。このピッチ線PLの上に外転転がり円OCを転がした際の外転転がり円OC上の一点の軌跡がサイクロイド歯形11bになる。そして、点aから点bまでの間の歯形が歯末の歯形11a1に対応するものとなり、ピッチ線PLから点bまでの垂直方向の高さ、すなわちy方向高さが歯末のたけh1に対応するようになっている。また、ピッチ線PLの下に内転転がり円ICをころがした際には、サイクロイド曲線による歯元の歯形11a2に対応するものが得られる。

【0025】また、図4において、ピッチ線PLに沿い

外転転がり円OCが転がる方向をX軸の正方向、このX軸に直交し、外転転がり円OC側の方向をY軸の正方向とし、転がり開始時点において外転転がり円OCがX軸に接する点を点aとし、この点aの位置をX軸及びY軸のO点とすると、サイクロイド歯形11a上の任意の点のxy座標は次のようになる。

[0026]

$$\mathbf{x} = (D/2) \cdot \theta - (D/2) \cdot \mathbf{s} \ \mathbf{i} \ \mathbf{n} \ \theta \cdots \cdots (1)$$

 $y = (D/2) \cdot (1 - c \circ s \theta) \cdot \cdots \cdot (2)$

 $r = D / 2 \cdot \cdots \cdot (3)$

 $\alpha = \theta / 2 \cdots (4)$ ただし、

D:外転転がり円OC又は内転転がり円ICの直径(mm/1モジュール)

heta: 外転転がり円OC又は内転転がり円ICの転がり角度(rad)

 \mathbf{r} : 外転転がり円OC又は内転転がり円ICの半径(\mathbf{m} m / 1 モジュール)

α:圧力角 (rad)

をして、上記基準ラック歯形からピッチ円直径を変換して歯車歯形が得られる。

【0027】次に、小歯車1と大歯車2とのかみ合い率 Lを計算する。このかみ合い率Lは次の数式で求められる。

$$[0028]L = L1 + L2 \cdots (5)$$

 $L 1 = f 1 / C p \cdots (6)$

 $L 2 = f 2 / C p \cdots (7)$

【数1】

$$f = 2 \cdot r \cdot 1 \cdot t \cdot a \cdot n^{-1} \sqrt{\frac{h \cdot (2 \cdot r \cdot p + h \cdot 1)}{(2 \cdot r \cdot p + 2 \cdot r \cdot 1 + h \cdot 1) \cdot (2 \cdot r \cdot t - h \cdot 1)}} \cdots (8)$$

【数2】

$$f = 2 \cdot r \cdot 1 \cdot t \cdot a \cdot n \cdot \sqrt{\frac{H \cdot 1 \cdot (2 \cdot R \cdot p + H \cdot 1)}{(2 \cdot R \cdot p + 2 \cdot R \cdot 1 + H \cdot 1) \cdot (2 \cdot R \cdot 1 - H \cdot 1)}} \cdots (9)$$

ただし、

L :かみ合い率

L1:小歯車1の歯末のかみ合い率

L2:大歯車2の歯末のかみ合い率

Cp:円ピッチ (mm/1モジュール)

r 1:小歯車 1 の外転転がり円半径(mm/1 モジュール)

R 1:大歯車2の外転転がり円半径(mm/1モジュー

*)*レ)

r p:小歯車1のピッチ円半径(mm/1モジュール)

Rp:大歯車2のピッチ円半径 (mm/1モジュール)

h 1:小歯車1の歯末のたけ (mm/1モジュール)

H1:大歯車2の歯末のたけ(mm/1モジュール)

さらに、歯厚の割合Tは次の数式によって計算される。

【0029】T = T1/(T1+T2) …… (10) (T1+T2) = Cp…… (11) ただし、

40 T : 歯厚の割合

T 1: 小歯車1のピッチ円上の歯厚 (mm/1モジュール)

T 2: 大歯車2のピッチ円上の歯厚 (mm/1モジュール)

次に上記数式等を利用して、小歯車1の歯数を4枚にするために必要なパラメータの値を計算する。まず、

(イ) 歯厚の割合Tをある値、例えば4枚歯のロジックスギヤに用いられている値0.685に設定し、(ロ) 歯末のたけh1もある値、例えば0.91mm/1モジ ュールに設定する。そして、(ハ) 前述した設計条件を

満足する外転転がり円半径r1を計算する。すなわち、①のかみ合い率Lが1. 0以上あること、②の歯先が尖らないこと(歯先歯厚>0)、④の大歯車2の歯元歯厚が十分あること等を設計条件として外転転がり円半径r1を計算する。

【0030】ただし、①のかみ合い率Lについては、小歯車1の歯末のかみ合い率L1>0.672を用いて計算する。この0.672の数値は、上記数式(5)~(9)及び最小かみ合い率1.0から算出される。そして、小歯車1の歯末のかみ合い率L1と大歯車2の歯末のかみ合い率L2の合計が1.0以上であること、及び(大歯車2の歯末)=(小歯車1の歯元)の関係があることから、後述する小歯車1の歯元のかみ合い率>0.328七次まってしまう。また、②における大歯車2の歯元歯厚は、4枚歯で実績のあるロジックスギヤの土10%に設定することから、0.619mm/1モジュール<大歯車2の歯元歯厚く0.756mm/1モジュールへ大歯車2の歯元歯厚く0.756mm/1モジュールの条件となる。

【0031】そして、(二)上記各設計条件が成立する 外転転がり円半径r1が計算されたら、上記(口)に戻って、歯末のたけh1の値を変化させて、外転転がり円 半径r1を繰り返し計算する。

【0032】これにより、(ホ)所定の歯厚の割合Tにおける、歯末のたけh1及び外転転がり円半径r1の各範囲が明らかになる。そうしたら、(へ)上記(イ)に戻って、歯厚の割合Tの値を変化させて同様の計算を繰り返す。

【0033】また、(ト)内転転がり円半径 r 2及び歯元のたけ h 2についても、上述した外転転がり円半径 r 1及び歯末のたけ h 1と同様にして計算する。ただし、設計条件は、①の小歯車1の歯元のかみ合い率(L 2に対応)>0.328、③の小歯車1の歯元歯厚T b が十分あること、すなわち4枚歯で実績のあるロジックスギヤの±10%に設定することから、0.805 mm/1モジュール<小歯車1の歯元歯厚<0.327 mm/1モジュール、⑤の歯底部の干渉を防止、⑥の圧力角>30度、⑦小歯車1の歯元のたけ h 2>0.24 mm/1モジュールとなる。

【0034】ここで、⑦の条件を新たに加えたのは、基準ラック歯形から歯車歯形に変化する時、圧力角などの要因により歯元のたけが極端に短くなってしまうのを防ぐためである。すなわち、歯元のたけが極端に短くなってしまうと、加工誤差などの理由で、歯元の歯形が存在しない状態になり得ることがあり、そうなると歯車として成立しないためである。なお、上記0.24mm/1モジュールは現在実績のある4枚歯のロジックスギャの値から選定したものである。

【0035】以上の計算は、上述した設計条件を上述した数式のもとで繰り返し計算することにより、各種のパラメータ \mathbf{r} 1、 \mathbf{r} 2、 \mathbf{h} 1、 \mathbf{h} 2、 \mathbf{T} 等が算出されるこ

とになる。

【0036】この計算結果について、図7~図10を参照しながら説明する。まず、歯厚の割合Tは、上記①~⑦の条件をすべて満たすためには、0.655~0.741の範囲でなければならないことが計算により求まる。

【0037】そこで歯厚の割合 T が最大の 0.741, 最低の 0.655の時の h 1 と r 1 の関係をグラフに書 くとそれぞれ図 7,図 9 となる。図 8 は中心値 0.68 5 の時の関係グラフであり参考に示す。

【0038】すなわち、歯厚の割合Tが0.655の場合において、外転転がり円半径r1は、図7に示すように、歯末のたけh1が0.68mm/1モジュールのときに6.2mm/1モジュールのほぼ一点、歯末のたけh1が0.80mm/1モジュールのときに5.3 \sim 6.5mm/1モジュールの範囲、歯末のたけh1が0.97mm/1モジュールのときに4.3mm/1モジュールのほぼ一点で上記① \sim ⑦の条件を満たすことになる。

【0039】さらに、歯厚の割合Tが0.741の場合において、外転転がり円半径r1は、図9に示すように、歯末のたけh1が0.96mm/1モジュールのときに4.2mm/1モジュールのほぼ一点、歯末のたけh1が1.02mm/1モジュールのときに4.0mm/1モジュールの節囲、歯末のたけh1が1.14mm/1モジュールのときに3.5mm/1モジュールのほぼ一点で上記①m0条件を満たすことになる。

【0040】したがって、外転転がり円半径 r 1 は、全 体として3.5~6.5 mm/1モジュールの範囲で上 記①~⑦の条件を満たすことが可能になる。

【0041】又、h1は全体として $0.68\sim1.14$ mm/1モジュールの範囲で上記 $0\sim0$ の条件を満たすことが可能になる。

【0042】一方、小歯車1の歯元のたけ h 2 は、図10に示すように、0.454~0.650 mm/1モジュールの範囲で、上記①~⑦の条件を満たす計算結果となった。そして、小歯車1の内転転がり円半径 r 2 は、歯元のたけ h 2 が 0.454 mm/1モジュールのときに2.08 mm/1モジュールのほぼ一点、歯元のたけ h 2 が 0.458 mm/1モジュールのときに1.97~2.13 mm/1モジュールのときに2.60 mm/1モジュールのほぼ一点で1.00をきに2.60 mm/1モジュールのほぼー点で1.10~⑦の条件を満たすことになり、全体として1.97~2.60 mm/1モジュールの範囲で上記①~⑦の条件を満たすことが可能になる。

【0043】また、図11~図16は、上述のようにして設計した4枚嬢の小歯車1と、大歯車2とのかみ合い状態を示した図である。そして、これらの図は、小歯車

1の回転角が0度の状態(図11)から時計方向に15度ずつ回転させて、75度の状態(図16)まで表示したものであり、小歯車1と大歯車2が確実にかみ合いながら、回転力を円滑に伝えている様子を明確に示してい

【0044】以上説明したように、パラメータを所定の範囲内に設定することにより、実際の使用に十分耐え得る強度の4枚歯の小歯車1を提供することができる。したがって、4枚歯の小歯車1を例えば減速機に使用した場合には、一度に大きな減速比が得られるので、減速機の小型化を図ることができる。また、歯形としてはサイクロイド曲線を用いたものであるから、ロジックスギヤに比べて計算が簡単であり、短時間で所望の歯数の歯車を設計することができるという利底がある。しかも、サイクロイド曲線による凸面と凹面とでかみ合うことになるから、面圧強度が高く、したがって耐久性の向上を図ることができる。しかも、すべりが歯末の面や歯元の面で一定になることから、摩耗も一様に生じることになり、この点からも耐久性の向上を図ることができる。

【0045】また、上述のように4枚歯の歯車が容易に構成できるから、5枚歯以上の歯車についても容易に構成することができる。したがって、インボリュート歯形では実用上構成することができなかった5枚歯又は4枚歯の歯車を容易に構成することができるという利点がある。

[0046]

【発明の効果】そして、上記のように構成された請求項1記載の発明においては、後述する実施例に示す通り、実用上で使用可能な4枚の歯を有する歯車を形成することができる。このため、インボリュート歯形の歯車では実用上不可能な5枚又は4枚の歯数の歯車を提供することができる。したがって、例えば減速機において一つの歯車として使用した場合には、一度に大きな減速比が得られるので、減速機の小型化を図ることができる。また、歯形としてはサイクロイド曲線を用いたものであるから、計算が簡単であり、短時間で所望の歯数の歯車を設計することができるという利点がある。

【0047】請求項2記載の発明においては、歯厚の割合 (T) を $0.655\sim0.741$ 、外転転がり円半径 (r1) を $3.5\sim6.5$ mm/1 モジュール、内転転がり円半径 (2) を $1.97\sim2.60$ mm/1 モジュール、協未のたけ (h1) を $0.68\sim1.14$ mm/1 モジュール、歯元のたけ (h2) を $0.454\sim0.650$ mm/1 モジュールにすることにより歯数を4又は5枚にしてもアンダーカット、歯先尖りが生じることがなく、かみ合い率も1.0以上確保でき、歯元強度も充分にとることができる。

【図面の簡単な説明】

【図1】この発明の一実施例として示した高歯数比サイクロイド歯車列の要部正面図である。

【図2】同高歯数比サイクロイド歯車列を設計するため の条件とパラメータとの関係を示す説明図である。

10

【図3】同高歯数比サイクロイド歯車列におけるサイクロイド歯形を示す説明図である。

【図4】同高歯数比サイクロイド歯車列におけるサイクロイド歯形を構成する際の前段として検討した基準ラック歯形を示す説明図である。

【図5】同高歯数比サイクロイド歯車列の各歯車において発生を防止する必要のある歯先の尖りについて示す説明図である。

【図6】同高歯数比サイクロイド歯車列の各歯車において発生を防止する必要のある歯底部の干渉について示す説明図である。

【図7】同高歯数比サイクロイド歯車列の各歯車を設計するためのパラメータを計算した結果を示す図であって、4枚歯の小歯車を構成するための歯末のたけと外転転がり円半径との関係を示す図である。

【図8】同高歯数比サイクロイド歯車列の各歯車を設計するためのパラメータを計算した結果を示す図であって、4枚歯の小歯車を構成するための歯末のたけと外転転がり円半径との関係を示す図である。

【図9】同高歯数比サイクロイド歯車列の各歯車を設計するためのパラメータを計算した結果を示す図であって、4枚歯の小歯車を構成するための歯末のたけと外転転がり円半径との関係を示す図である。

【図10】同高歯数比サイクロイド歯車列の各歯車を設計するためのパラメータを計算した結果を示す図であって、4枚歯の小歯車を構成するための歯元のたけと内転転がり円半径との関係を示す図である。

【図11】同高歯数比サイクロイド歯車列を示す図であって、小歯車の回転角が0度の状態を示す正面図である。

【図12】同高歯数比サイクロイド歯車列を示す図であって、小歯車の回転角が15度の状態を示す正面図である

【図13】同高歯数比サイクロイド歯車列を示す図であって、小歯車の回転角が30度の状態を示す正面図である。

【図14】同高歯数比サイクロイド歯車列を示す図であって、小歯車の回転角が45度の状態を示す正面図である。

【図15】同高歯数比サイクロイド歯車列を示す図であって、小歯車の回転角が60度の状態を示す正面図である。

【図16】同高歯数比サイクロイド歯車列を示す図であって、小歯車の回転角が75度の状態を示す正面図である。

【符号の説明】

- 1 小歯車
- 0 2 大歯車

Ср 円ピッチを分母

h 1 歯末のたけ h 2 歯元のたけ

PCピッチ円

r 1 外転転がり円半径

r 2 内転転がり円半径

T 歯厚の割合

T1 小歯車のピッチ円上の歯厚

T2 大歯車のピッチ円上の歯厚

【図1】

[図5]

【図2】

【図3】

【図6】

【図7】

【図8】

小歯車の回転角=45度

小歯事の回転角=30度

【図15】

[図16]

[図14]

