Practice Problems: Proofs CS 113 Discrete Mathematics

kisi ka bharosa nahi

Habib University - Spring 2022

1. Show that $\sqrt{2}$ is irrational. In other words, $\sqrt{2}$ cannot be written in the form $\frac{p}{q}$ where $p,q\in\mathbb{Z}$ and $q\neq 0$

Solution: Assume $\sqrt{2}$ is rational, then $\sqrt{2} = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and $q \neq 0$. And $\frac{p}{q}$ is the lowest form it can be.

$$\left(\frac{p}{q}\right)^2 = 2$$

$$p^2 = 2q^2$$

This implies p is even which means p = 2k, for some $k \in \mathbb{Z}$

$$4k^2 = 2q^2$$

$$2k^2 = q^2$$

This implies q is even.

But p and q can't both be even as they are in the lowest form possible thus the 2 would be canceled.

Here we have a contradiction.

Thus $\sqrt{2}$ cannot be written in form $\frac{p}{q}$ where $p, q \in \mathbb{Z}$

Thus $\sqrt{2}$ is irrational.

2. Explain what you must do to disprove the statement: $x^3 + 5x + 3$ has a root between x = 0 and x = 1

Solution: The statement in logical notation is

$$\exists x \text{ such that } (0 < x < 1 \land x^3 + 5x + 3 = 0)$$

Giving a counterexample is not enough. Saying that when x = 0.5 then $x^3 + 5x + 3 \neq 0$ is not sufficient.

To disprove this statement, we need to prove that the **negation is true** which is

 $\neg \exists x \text{ such that } 0 < x < 1 \land x^3 + 5x + 3 = 0 \equiv \forall x \text{ such that } \neg (0 < x < 1 \land x^3 + 5x + 3 = 0)$

Or in English

For all x, it is not the case that both x is between 0 and 1 and $x^3 + 5x + 3 = 0$

3. Prove that for any integer n the number $n^2 + 5n + 13$ is odd

Solution:

If n is an integer, it can either be even or odd.

Case 1: n is even. Therefore $n = 2a, a \in \mathbb{Z}$

$$(2a)^{2} + 5(2a) + 13$$

$$= 4a^{2} + 10a + 13$$

$$= 4a^{2} + 10a + 12 + 1$$

$$= 2(2a^{2} + 5a + 6) + 1$$

Therefore $n^2 + 5n + 13$ is odd in this case.

Case 2: n is odd. Therefore $n = 2a + 1, a \in \mathbb{Z}$

$$(2a+1)^{2} + 5(2a+1) + 13$$

$$=4a^{2} + 4a + 1 + 10a + 5 + 13$$

$$=4a^{2} + 14a + 19$$

$$=4a^{2} + 14a + 18 + 1$$

$$=2(2a^{2} + 7a + 9) + 1$$

Therefore $n^2 + 5n + 13$ is odd in this case.

Since the statement is true in all cases, it is true in general.

4. State the statement of Contradiction and verify that it is a valid argument.

Hint: In contradiction we are saying that A implies B is the same as saying that A and $\neg B$ happening together is false.

Solution:

Statement is

$$(A \Longrightarrow B) \equiv ((A \land \neg B) \text{ is false})$$

We can show that one side is equivalent to the other

$$\neg (A \land \neg B) \equiv (\neg A \lor B) \equiv (A \implies B)$$

Therefore it is true

5. Show through contraposition the following proposition is true: $x \in \mathbb{Z}$. If 7x + 9 is even, then x is odd.

Solution: Proof by Contrapositive

Let P be "7x + 9 is even" and Q be "x is odd"

Instead of doing a direct proof where we show $P \implies Q$, we would show that $\neg Q \implies \neg P$ since that seems easier.

Suppose x is not odd.

Thus x is even, so x = 2a for some integer a.

Then

$$7x + 9 \tag{1}$$

$$= 7(2a) + 9 (2)$$

$$= 14a + 8 + 1 \tag{3}$$

$$2(7a+4)+1 (4)$$

Therefore 7x + 9 = 2b + 1, where b is the integer 7a + 4.

Consequently 7x + 9 is odd.

Therefore 7x + 9 is not even

Therefore proving $\neg Q \implies \neg P$ thus logically equivalent to $P \implies Q$

6. Prove that " $(a+b)^2 = a^2 + b^2$ " is **not** an algebraic identity where $a, b \in \mathbb{R}$

Solution: We can disprove this by finding **specific** real numbers a and b for which the equation is false.

If an equation is **not** an identity, you can usually find a counterexample by trial and error. In this case, if a = 1, b = 2 then

$$(a+b)^2 = (1+2)^2 = 3^2 = 9$$
 while $a^2 + b^2 = 1^2 + 2^2 = 5$

So if a = 1, b = 2 then $(a + b)^2 \neq a^2 + b^2$ and hence the statement is not an identity.

A common mistake is to say:

"
$$(a+b)^2 = a^2 + 2ab + b^2$$
, which is not the same as $a^2 + b^2$."

In the first place, how do you know $a^2 + 2ab + b^2$ is not the same as $a^2 + b^2$? It is no answer to say that they look different - after all, $(\sin \theta)^2 + (\cos \theta)^2$ looks very different than 1, but $(\sin \theta)^2 + (\cos \theta)^2 = 1$ is an identity.

In the second place, $a^2 + 2ab + b^2$ is the same as $a^2 + b^2$ if (for instance) a = 17 and b = 0 - and they're equal for many other values of a and b.

7. Prove the following claim: There exists irrational numbers a and b such that a^b is rational.

Solution: Take $a = \sqrt{2}$ and $b = \sqrt{2}$

 $c = a^b$

Case 1:

If $\sqrt{2}^{\sqrt{2}}$ is rational then we already have our irrational numbers a and b such that a^b is rational

Case 2:

If $\sqrt{2}^{\sqrt{2}}$ is irrational then, let $a = \sqrt{2}^{\sqrt{2}}$ and $b = \sqrt{2}$

$$c = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = 2$$

and 2 is rational

8. Show that $x^n + y^n = z^n$ has no solutions where $x, y, z \in \mathbb{Z}$ with and $x \neq 0, y \neq 0, z \neq 0$ whenever $n \in \mathbb{Z}$ and n > 2

Solution: I've found a remarkable proof of this fact, but there is not enough space in the margin to write it.

9. Prove that for m and n integers, if 2 divides m or 10 divides n, then 4 divides m^3n^2

Solution:

$$(m \mod 2 = 0 \lor n \mod 10 = 0) \implies m^3 n^2 \mod 4 = 0$$

Case 1: $m \mod 2 = 0$ is true.

This is when m = 2x where $x \in \mathbb{Z}$

Then:

 $(2x)^3 n^2$

Recitation: Sets

$$8x^3n^2$$
$$4(2x^3n^2)$$

The above is divisible by 4.

Proved for $m \mod 2 = 0$.

Case 2:

 $n \mod 10 = 0$ is true:

This is when n = 10x where $x \in \mathbb{Z}$

then:

$$m^3 (10x)^2$$

 $m^3 100x^2$
 $4(25m^3x^2)$

The above is divisible by 4

Proved for $n \mod 10 = 0$.

10. Show that there are infinitely many primes, in other words the set containing all prime numbers is infinite.

Definition: A prime number is a Natural number that is only divisible by 1 and itself, and has to be divisible by 2 different numbers.

Fundamental Theorem of Arithmetic: Every integer N > 1 has a prime factorization, meaning either N is itself prime or can be written as a product of prime numbers.

Solution: Let $s = \{p_0, p_1, p_2, ..., p_n\}$ be set of all primes.

Let $P = p_0 \times p_1 \times p_2 \times ... \times p_n$

Let q = P + 1

Case 1:

q is prime, which is not in our set s

Case 2:

if q is not prime, then there exits a prime factor decomposition of q.

Let f be a prime that divides q, then f would be in our set s thus f would divide P too.

As f divides q and P then f divides q - P, which is 1

Then f divides 1.

As $f \geq 2$ f cannot divide 1, thus we have a contradiction.

11. Show a direct proof that you are worthy of love

Solution: This statement is true by the axiom of humanity. The proof is trivial.

12. Give a counterexample to the statement

"If n is an integer and n^2 is divisible by 4, then n is divisible by 4"

Solution: To give a counterexample, we need an integer n such that n^2 is divisible by 4 but n is **not** divisible by 4 - the "if" part must be true, but the "then" part must be false. For example, n = 6. Then $n^2 = 36$ is divisible by 4 but n = 6 is not divisible by 4. Thus, n = 6 is a counterexample to the statement.

Note that n=5 is not divisible by 4, $n^2=25$ is also not divisible by 4. Both the "if" and "then" parts of the statement are both false. Therefore, n=5 is not a counterexample to the statement.

13. Show through contraposition the following proposition is true: If $x^2 - 6x + 5$ is even, then x is odd.

Solution: A direct proof seems difficult. We would begin by assuming that $x^2 - 6x + 5$ is even, so $x^2 - 6x + 5 = 2a$.

Then we would need to transform this into x=2b+1 for $b\in\mathbb{Z}$. But it is not quite clear how that could be done, for it would involve isolating an x from the quadratic expression.

However the proof becomes very simple if we use contrapositive proof.

Proposition Suppose $x \in \mathbb{Z}$. If $x^2 - 6x + 5$ is even, then x is odd.

Proof. (Contrapositive) Suppose x is not odd. Thus x is even, so x=2a for some integer a. So

$$x^2 - 6x + 5 (5)$$

$$= (2a)^2 - 6(2a) + 5 \tag{6}$$

$$=4a^2 - 12a + 5 \tag{7}$$

$$4a^2 - 12a + 4 + 1 \tag{8}$$

$$=2(2a^2 - 6a + 2) + 1. (9)$$

Therefore $x^2 - 6x + 5 = 2b + 1$, where b is the integer $2a^2 - 6a + 2$

Consequently $x^2 - 6x + 5$ is odd. Therefore $x^2 - 6x + 5$ is not even.

In summary, since x being not odd $(\neg Q)$ resulted in $x^2 - 6x + 5$ being not even $(\neg P)$, then $x^2 - 6x + 5$ being even (P) means that x is odd (Q).

Thus we have proved $P \implies Q$ by proving $\neg Q \implies \neg P$

14. In this question we will prove Euclid's Lemma that if p is a prime number that divides ab then p divides a or p divides b.

We shall prove this by proving a lemma and using a corollary from that lemma.

Well ordering principle: Every non empty set of positive integers have a smallest element. **Division algorithm:** if $a, b \in \mathbb{Z}$, where b > 0, then there exists unique $q, r \in \mathbb{Z}$, a = bq + r where, 0 < r < b

(a) **Bezout's lemma:** for all integers a and b there exist integers s and t such that gcd(a,b) = as + bt

Solution: Let $S = \{am + bn \mid m, n \in \mathbb{Z} \text{ and } am + bn > 0\}$

Due to well ordering principle S has a smallest element d

$$d = as + bt$$

We claim that d = gcd(a, b)

Using the division algorithm a = dq + r, where $0 \le r < d$

We assume r > 0, and reach a contradiction, from which we can conclude that r = 0 thus d would divide a

If r > 0

$$r = a - dq = a - (as + bt)q = a - asq - btq = a(1 - sq) + b(-tq) \in S$$

r is in the form that it belongs to our set S, but as said above r < d thus it contradicts the fact that d is the smallest element in S

Thus r = 0, which means d divides a

Same argument can be constructed for b and used to show that d divides b as well.

Now assume there exist d' that is also a divisor of a and b.

Let a = d'h and b = d'k

Then d = as + bt = (d'h)s + (d'k)t = d'(sh + kt), then d' is also a divisor of d

Thus d > d', so by universal generalization we can conclude that d is the greatest of all divisors of a and b. Thus contradiction with the fact that d is the smallest element.

- (b) Corollary of bezout's lemma: If a and b are relatively prime then as + bt = 1
- (c) Using the above corollary prove Euclid's lemma.

Solution: Let p be a prime that divides ab but does not divide a We need to show that p must divide b

Then there exist $s, t \in \mathbb{Z}$ such that 1 = as + pt

$$b = abs + pbt$$

as p divides right hand side then p would divide b as well.

15. In solving coding questions, you would want to know whether your solution is valid or not in all cases. You can easily do that by giving a proof of correctness. Come up with a solution and give a proof of correctness for the following problem.

Recitation: Sets

https://codeforces.com/problemset/problem/1635/C

Solution: First of all, if $a_{n-1} > a_n$, then the answer is -1 since we can't change the last two elements.

If $a_n \leq 0$, there exists a simple solution: perform the operation (i, n-1, n) for each $1 \leq i \leq n-2$.

Otherwise, the answer exists if and only if the initial array is sorted.

Proof:

Assume that $a_n < 0$ and we can sort the array after m > 0 operations.

Consider the last operation we performed (x_m, y_m, z_m) . Since all elements should be negative after the last operation, so $a_{z_m} < 0$ should hold before the last operation. But $a_{x_m} = a_{y_m} - a_{z_m} > a_{y_m}$ after this, so the array isn't sorted in the end. By contradiction, we have proved that we can't perform any operations as long as $a_n < 0$.