

Question 2c

Error plot:

Plotting error against exact solution

Question 2d

Plotting FEM Solution on Ellipse

Plotting FEM Solution on Polygon

Question 2e

Plotting FEM Solution on Concave region, h=0.1

Plotting FEM Solution on Concave region, h=0.05

Resolution Study:

Consider the concave region:

For h = 0.01, the L2 norm of the solution = 0.18239867646815075For h = 0.05, the L2 norm of the solution = 0.45766497250426924

Now, consider the circular region:

For h=0.1, the L2 norm of u = 2.610957571554937

For h=0.5, the L2 norm of u = 0.4458913952006164

We can say that in the concave region, as h reduces or the mesh becomes more fine, the L2 norm of the solution increases.

However, for the same factor of decrease in h, the L2 norm of u reduces.

Since the exact solution for the concave case is not known, this study is inconclusive for the behavior of the solution u on a concave region as h is refined.

The right way to do it would be to compute the exact solution for the concave region and compare the FEM solution with this exact solution by refining the mesh.

Question 5c

```
Num Elements = 16 h=0.25 Error = |u - u_exact| = 0.0008465312128414781
Num Elements = 64 h=0.125 Error = |u - u_exact| = 0.00021610678305636344
Num Elements = 256 h=0.0625 Error = |u - u_exact| = 5.429626130537546e-05
```

Error(h=0.25)/Error(h=0.125) = 3.9171894600859978Error(h=0.125)/Error(h=0.0625) = 3.9171894600859978

Thus, the expected convergence of error, which is quadratic, is satisfied. When h is reduced by a factor of 2, the error reduces by a factor of 4.

FEM Solution for Q5, num elements=16

Exact Solution for Q5, num elements=16

FEM Solution for Q5, num_elements=64

Exact Solution for Q5, num_elements=64

FEM Solution for Q5, num_elements=256

Exact Solution for Q5, num_elements=256

