Algebra I - Teoría para el primer parcial

Silvano Picard

April 2024

1 Conjuntos, Relaciones y Funciones

1.1 Conjuntos

Se dice conjunto a una colección de objetos, los cuales son llamados elementos. Un ejemplo de conjunto puede ser: A=1,2,3,7,8. Al definir un conjunto no importa el orden y tampoco la repetición, ya que en este último caso cuentan como si aparecieran una sola vez. Un conjunto puede describirgse de dos maneras:

- Por comprensión: $Q = \left\{ \frac{a}{b}, a \in Z, b \in N \right\}$
- Por extensión: $N = \{1, 2, 3, 4, ...\}$

1.2 Pertenencia

Respecto al conjunto vacío éste no pertenece a otro conjunto a menos que sea explicitado. Entonces si A es un conjunto definido como $A = \{1, 2, 3, 4\} \rightarrow \emptyset \notin A$ luego si B es otro conjunto definido como $B = \{3, 5, \emptyset, 8\} \rightarrow \emptyset \in B$.

1.3 Inclusión

Sean A y B conjuntos. Se dice que B está incluido en A cuando todos los elementos de B pertenecen a A: $B \subseteq A \iff \forall x: x \in B \to x \in A$.

Se dice que B no está incluido en A cuando algún elemento de B no pertenece a A: $BA \iff \exists x \in B : x \notin A$.

Entonces tenemos las siguientes afirmaciones tautológicas:

- $A \subseteq A$
- $\emptyset \subseteq A$

1.4 Conjunto de partes

Los elemtos de p(a) son los subconjuntos de A: $B \in p(a) \iff B \subseteq A$. Así tengo que $p(\emptyset) = \{\emptyset\}$ por tanto $\emptyset \in p(\emptyset)$ pues $\emptyset \subseteq \emptyset$

1.5 Operaciones entre conjuntos

1.5.1 Complemento

Siendo A y U conjuntos defino el complemento de A como: $A\subseteq U\to A^c\subseteq U, x\in A^c\iff x\in U\land x\notin A$

1.5.2 Unión

Siendo A,B,U conjuntos y $A,B\subseteq U$, la unión de A y B se define como: $A\cup B=\{x\in U:x\in A\vee x\in B\}$. Entonces tengo que $A\cup B=B\cup A,\ A\cup\emptyset=A,\ A\cup U=U$ y $A\cup A^c=U$

1.5.3 Intersección

Siendo A,B,U conjuntos tales que $A,B\subseteq U$. La intersección de A y B se escribe como: $A\cap B=\{x\in U:x\in A\land x\in B\}.$

Entonces tengo que:

- $A \cap B = B \cap A$
- $A \cap \emptyset = \emptyset$
- $A \cap U = A$
- $A \cap A^c = \emptyset$
- $A \cap B = B \iff B \subseteq A$

Por tanto puedo decir que $\emptyset \subseteq (A \cap B) \subseteq (A \cup B) \subseteq U$.

1.5.4 Leyes de De Morgan

Siendo A,B,U conjuntos tales que $A,B\subseteq U$ tengo que:

- $(A \cup B)^c = A^c \cap B^c$
- $(A \cap B)^c = A^c \cup B^c$

1.5.5 Diferencia

Sean A,B,U conjuntos y $A,B\subseteq U$ defino la diferencia entre A y B como: $A\setminus B=\{x\in A:x\notin B\}$

Entonces si $A \cap B = \emptyset \rightarrow [(A \setminus B = A) \land (B \setminus A = B)]$ y además:

- $A \setminus B \neq B \setminus A$ (en general)
- $A \setminus \emptyset = A$
- $A \setminus U = \emptyset$
- $\bullet \ \emptyset \setminus A = \emptyset$
- $U \setminus A = A^c$

1.5.6 Diferencia Simétrica

Sean A,B,U conjuntos tales que $A,B\subseteq U$ defino la diferencia simétrica como: $A\triangle B=(A\setminus B)\cup (B\setminus A)=(A\cup B)\setminus (A\cap B).$

Entonces tengo que:

- $A\triangle B = B\triangle A$
- $A \triangle \emptyset = A$
- $\bullet \ A\triangle U=A^c$
- $A \triangle A = \emptyset$
- $A \triangle A^c = U$

1.5.7 Propiedad distributiva en conjuntos

- $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$
- $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$

1.5.8 Producto cartesiano

Siendo A,B,U,V conjuntos tales que $A \subseteq U$ y $B \subseteq V$ defino el producto cartesiano como: $A \times B = \{(a,b) : a \in A \land b \in B\} \subseteq U \times V$

De esta forma puedo establecer las siguientes afirmaciones:

- $A \times B = B \times A \iff A = B$
- $A \times \emptyset = \emptyset$
- $\emptyset \times B = \emptyset$
- $U \times V = \{(x, y)/x \in V \land y \in V\}$

1.6 Relaciones

Sean A,B conjuntos, una relación R de A en B es un subconjunto (cualquiera) de $A \times B$ osea que: R relación de A en B \iff R \subseteq $A \times B$ \iff R \in $p(A \times B)$.

Un ejemplo puede ser $A = \{a, b, c\}$ y $B = \{1, 2\}$ y $R_1 = \{(a, 1), (b, 1), (b, 2)\}$. Otros útiles pueden ser $R_2 = \emptyset$ (nadie está relacionado con nadie) y $R_3 = A \times B$ (todos están relacionados con todos).

1.6.1 Relaciones de un conjunto en sí mismo

Sea A un conjunto. Una relación en A es un subconjunto (cualquiera) de $A \times A$ (A^2) . R relación en A $\iff R \subseteq A^2 \iff R \in p(A^2)$

1.6.2 Propiedades

Sea $R \in p(A^2)$ una relación en A:

- R es reflexiva si $\forall x \in A$ se tiene xRx
- R es simétrica si $\forall x, y \in A$ x tiene xRy \rightarrow yRx
- R es transitiva si $\forall x, y, z \in A$ se tiene xRy \land yRz \rightarrow xRz
- R es antisimétrica si $\forall x, y \in A$ se tiene xRy \land yRx \rightarrow x=y lo cual es lo mismo que decir $\forall x, y \in A$ si xy y xRy \rightarrow y $\not Rx$

1.6.3 Relaciones de equivalencia y relaciones de orden

Sea R una relación en A entonces R es una relación de equivalencia si R es reflexiva, simétrica y transitiva.

Luego, se dice que R es una relación de orden si R es reflexiva, antisimétrica y transitiva

1.6.4 Particiones y clases de equivalencia

Se dice clase de equivalencia de x cuando tengo un conjunto de todos los elementos relacionados con ese x. Por ejemplo si tengo un $R = \{(2,5), (2,8)\}$ tengo que la clase de equivalencia de 2 es: $[2] = \{5,8\}$

1.7 Funciones