Recommender System using Matrix Factorization

Jia-Wei Liao, Kuok-Tong Ng, Yi-Cheng Hung Advisor: Wen-Wei Lin

> Department of Applied Mathematics National Yang Ming Chiao Tung University

> > December 29, 2021

Outline

- Introduction
- 2 Alternative Least Square (ALS)
- 3 Soft Impute Alternative Least Square (SIALS)
- 4 Experience
- Conclusion

Introduction

(User, Movie)	Rating
(1, 5)	4
(1, 18)	1
(1, 32)	3
(1, 44)	2
(2, 22)	5
(2, 90)	2
(3, 49)	3
(3, 56)	4
(3, 70)	5
(3, 94)	1
÷	:

Introduction

(User, Movie)	Rating	
(1, 5)	4	-
(1, 18)	1	
(1, 32)	3	
(1, 44)	2	
(2, 22)	5	
(2, 90)	2	User
(3, 49)	3	
(3, 56)	4	
(3, 70)	5	
(3, 94)	1	
:	:	

Idea

Action Romance Science Fiction Fantasy

			THE RESERVE
0.2	1.2	1.8	1.8
1.68	0.5	0.1	0.3
0.2	1.8	0.6	1.6
0.48	0.8	0.4	0.4

 Sam
 0.8
 1.6
 1.8
 1.2

 Jack
 1.1
 0.3
 1.2
 1.6

 Andy
 1.3
 0.5
 1.6
 0.8

A. R. S. F.

Given $R \in \mathbb{R}^{m \times n}$ is rating matrix, where m is number of user, and n is number of movie. Our goal is going to find the feature vector of user x_i and feature vector of movie y_j such that

$$r_{i,j} pprox x_i^ op y_j$$
, for all i,j

Problem

$$\min_{X,Y} \|R - X^{\top}Y\|_F^2 + \lambda \left(\|X\|_F^2 + \|Y\|_F^2 \right)$$

where

- ullet $R \in \mathbb{R}^{m imes n}$, $X \in \mathbb{R}^{k imes m}$ and $Y \in \mathbb{R}^{k imes n}$
- $\lambda > 0$ is a parameter

Problem

$$\min_{X,Y} \|R - X^{\top}Y\|_F^2 + \lambda \left(\|X\|_F^2 + \|Y\|_F^2 \right)$$

where

- $R \in \mathbb{R}^{m \times n}$, $X \in \mathbb{R}^{k \times m}$ and $Y \in \mathbb{R}^{k \times n}$
- $\lambda > 0$ is a parameter

Remark

$$\begin{split} & \min_{X \in \mathbb{R}^{k \times m}, Y \in \mathbb{R}^{k \times n}} \|R - X^{\top}Y\|_F^2 + \lambda \left(\|X\|_F^2 + \|Y\|_F^2\right) \\ &= \min_{Z: \text{rank } Z \leq k} \|R - Z\|_F^2 + 2\lambda \|Z\|_* \end{split}$$

Alternative Least Square (ALS)

ALS method

Given initials $X^{(0)}$, $Y^{(0)}$, for t=0,1,2,..., we solve the following two sub-problem alternatingly:

$$\begin{split} X^{(t+1)} &= \underset{X}{\arg\min} \|R - X^{\top} Y^{(t)}\|_F^2 + \lambda \|X\|_F^2 \\ Y^{(t+1)} &= \underset{Y}{\arg\min} \|R - X^{(t+1)}^{\top} Y\|_F^2 + \lambda \|Y\|_F^2 \end{split}$$

We iterate until convergence.

Solving Alternative Least Square

Define

$$F(X) = \|R^{\top} - Y^{(t)}^{\top} X\|_F^2 + \lambda \|X\|_F^2$$

Then

$$\nabla F(X) = -2Y^{(t)}(R^{\top} - Y^{(t)}^{\top}X) + 2\lambda X$$

Let $\nabla F(X) = 0$, we have

$$(Y^{(t)}Y^{(t)}^{\top} + \lambda I)X = Y^{(t)}R^{\top}$$

Therefore, we obtain the solution

$$X^{(t+1)} = (Y^{(t)}Y^{(t)}^{\top} + \lambda I)^{-1}Y^{(t)}R^{\top}$$

Solving Alternative Least Square

Similarly, we can get

$$Y^{(t+1)} = (X^{(t+1)}X^{(t+1)}^{\top} + \lambda I)^{-1}X^{(t+1)}R$$

Therefore, the iterative scheme can be posed as follows:

$$X^{(t+1)} = \left(Y^{(t)} Y^{(t)}^{\top} + \lambda I \right)^{-1} Y^{(t)} R^{\top}$$

$$Y^{(t+1)} = \left(X^{(t+1)} X^{(t+1)^{\top}} + \lambda I \right)^{-1} X^{(t+1)} R$$

Let
$$\Omega = \{(\emph{i},\emph{j}) \mid R_{\emph{i},\emph{j}} > 0\}$$
 and

$$[\mathcal{P}_{\Omega}(A)]_{i,j} = \begin{cases} A_{i,j} & \text{if } (i,j) \in \Omega \\ 0 & \text{if } (i,j) \notin \Omega \end{cases}$$

Problem

$$\min_{X,Y} \|\mathcal{P}_{\Omega}(R - X^{\top}Y)\|_F^2 + \lambda \left(\|X\|_F^2 + \|Y\|_F^2\right)$$

where

- $R \in \mathbb{R}^{m \times n}$, $X \in \mathbb{R}^{k \times m}$, and $Y \in \mathbb{R}^{k \times n}$
- $\lambda > 0$ is a parameter

Problem

$$\min_{X,Y} \|\mathcal{P}_{\Omega}(R - X^{\top}Y)\|_F^2 + \lambda \left(\|X\|_F^2 + \|Y\|_F^2\right)$$

Its equivalence to

$$\min_{x_{i},y_{j}} \sum_{(i,j)\in\Omega} (r_{i,j} - x_{i}^{\top}y_{j})^{2} + \lambda \left(\sum_{i=1}^{m} ||x_{i}||_{2}^{2} + \sum_{i=1}^{n} ||y_{j}||_{2}^{2} \right)$$

where $x_i, y_i \in \mathbb{R}^{k \times 1}$.

Solving Alternative Least Square

For fixed i, we define

$$F(x_i) = \sum_{(i,j)\in\Omega} (r_{i,j} - y_j^{\top} x_i)^2 + \sum_{i=1}^m ||x_i||_2^2$$

Then

$$\nabla F(x_i) = -2\sum_{(i,j)\in\Omega} y_j(r_{i,j} - y_j^\top x_i) + 2\lambda x_i$$

Letting $\nabla F(x_i) = 0$, we have

$$\left(\sum_{(i,j)\in\Omega} y_j y_j^\top + \lambda I\right) x_i = r_{i,j} y_j$$

Solving Alternative Least Square

Algorithm (ALS)

- **1** Initial $x_1, x_2, ..., x_m, y_1, y_2, ..., y_n$
- ② For i = 1, 2, ..., m:

$$\left(\sum_{(i,j)\in\Omega} y_j y_j^\top + \lambda I\right) x_i = r_{i,j} y_j$$

3 For j = 1, 2, ..., n:

$$\left(\sum_{(i,j)\in\Omega} x_i x_i^\top + \lambda I\right) y_j = r_{i,j} x_i$$

Repeat 2, 3 until convergence.

Stochastic Gradient Descent (SGD)

Algorithm (SGD)

- $\bullet \text{ Initial: } x_i,y_j \in \mathbb{R}^{k\times 1} \text{ for } i=1,2,...,n, j=1,2,...,m$
- **2** Randomly pick $(i,j) \in \Omega$
- Oral Calculate residual with regularization term:

$$\tilde{r}_{i,j} = r_{i,j} - x_i^{\top} y_j + \lambda$$

SGD update:

$$x_i \leftarrow x_i + \rho \tilde{r}_{i,j} x_i$$
$$y_j \leftarrow y_j + \rho \tilde{r}_{i,j} y_j$$

where $\rho > 0$ is learning rate.

Sepeat 2-4 until convergence.

Soft Impute Alternative Least Square (SIALS)

Problem

$$\min_{X,Y} \|\mathcal{P}_{\Omega}(R - X^{\top}Y)\|_F^2 + \lambda \left(\|X\|_F^2 + \|Y\|_F^2\right)$$

$$\mathcal{P}_{\Omega}(R - X^{\top}Y) = \mathcal{P}_{\Omega}(R) - \mathcal{P}_{\Omega}(X^{\top}Y) + X^{\top}Y - X^{\top}Y$$

Let

$$\tilde{R} = \mathcal{P}_{\Omega}(R) - \mathcal{P}_{\Omega}(X^{\top}Y) + X^{\top}Y$$

Then the problem becomes

$$\min_{X,Y} \|\tilde{R} - X^{\top}Y\|_F^2 + \lambda \left(\|X\|_F^2 + \|Y\|_F^2 \right)$$

Soft Impute Alternative Least Square (SIALS)

SIALS method

Given an initial $X^{(0)}$, $Y^{(0)}$, for t=0,1,..., we solve the following two sub-problem alternatingly:

$$\begin{split} \tilde{R}^{(t+\frac{1}{2})} &= \mathcal{P}_{\Omega}(R) - \mathcal{P}_{\Omega}(X^{(t)}^{\top}Y^{(t)}) + X^{(t)}^{\top}Y^{(t)} \\ X^{(t+1)} &= \left(Y^{(t)}Y^{(t)}^{\top} + \lambda I\right)^{-1}Y^{(t)}\tilde{R}^{\top} \\ \tilde{R}^{(t+1)} &= \mathcal{P}_{\Omega}(R) - \mathcal{P}_{\Omega}(X^{(t+1)}^{\top}Y^{(t)}) + X^{(t+1)}^{\top}Y^{(t)} \\ Y^{(t+1)} &= \left(X^{(t+1)}X^{(t+1)}^{\top} + \lambda I\right)^{-1}X^{(t+1)}\tilde{R} \end{split}$$

We iterate until convergence is achieved.

Solving SIALS by SVD

Idea (rank k approximation) ¹

$$R = U\Sigma V^{\top} \approx U_k D_k^2 V_k = (D_k U_k^{\top})^{\top} (D_k V_k^{\top}) = X^{\top} Y$$

Goal

Given $U^{(0)} \in \mathbb{R}^{m \times k}$ with orthonormal columns, $D^{(0)} = I_k$, and $V^{(0)} = O_{n \times k}$. We use the Iterative method to find the suitable $X = D^{(t)} U^{(t)}^{\top}$, $Y = D^{(t)} V^{(t)}^{\top}$ such that

$$\min_{X,Y} \|P_{\Omega}(R - X^{\top}Y)\|_F^2 + \lambda \left(\|X\|_F^2 + \|Y\|_F^2 \right)$$

¹T. Hastie, R. Mazumder, J.-D. Lee and R. Zadeh, Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares, Journal of Machine Learning Research (2015).

Solving SIALS by SVD

Algorithm (SIALS)

- Initial: $R \in \mathbb{R}^{m \times n}$, $U \in \mathbb{R}^{m \times k}$ with orthonormal columns, D = I, $V = O_{n \times k}$, $X = DU^{\top}$ and $Y = DV^{\top}$.
- $\tilde{X} \leftarrow (D^2 + \lambda I)^{-1} D V^{\top} S^{\top} + (D^2 + \lambda I)^{-1} D^2 X$

- $\tilde{Y} \leftarrow \left(D^2 + \lambda I\right)^{-1} D U^{\top} S + \left(D^2 + \lambda I\right)^{-1} D^2 Y$
- O $D, V \leftarrow SVD(\tilde{D}\tilde{Y}), Y \leftarrow \tilde{D}V^{\top}$
- 8 Repeat 2-7 until convergence.
- Output: *U,V,D*

Information of Dataset: ml-1m

Number of data: 900,188

Number of user: 6,040

• Number of movie: 3,952

• Sparsity: 3.77%

Time Elapsed

Remark

Direct method: $O(|\Omega|k^2 + (m+n)k^3)$

Objective

Metrics

We use the following metrics to evaluate our methods:

Root Mean Square Error (RMSE):

$$RMSE_{\Omega}(X,Y) = \sqrt{\frac{\sum_{(i,j)\in\Omega} |X_{i,j} - Y_{i,j}|^2}{|\Omega|}}$$

Mean Absolute Error (MAE):

$$MAE_{\Omega}(X,Y) = \frac{\sum_{(i,j)\in\Omega} |X_{i,j} - Y_{i,j}|}{|\Omega|}$$

Evaluation

Evaluation

Metrics	RM	SE	MAE	
Туре	Training	Testing	Training	Testing
ALS	0.5542	0.9545	0.4363	0.7385
SIALS (w/o SVD)	0.5745	0.9624	0.4517	0.7441
SIALS (w/ SVD)	0.8928	0.9099	0.7017	0.7143

$$\lambda = 5$$
, $d = 50$ with 600 epochs

Metrics	RM	SE	MAE	
Туре	Training	Testing	Training	Testing
ALS	0.7288	0.8778	0.5727	0.6889
SIALS (w/o SVD)	0.7330	0.8820	0.5749	0.6913
SIALS (w/ SVD)	0.8980	0.9147	0.7101	0.7229

 $\lambda = 20$, d = 50 with 600 epochs

ml-10m dataset

Number of data: 9,000,048

• Number of user: 71,567

• Number of movie: 65,133

• Sparsity: 0.19%

Metrics	RMSE		MAE	
Туре	Training	Testing	Training	Testing
ALS	0.7287	0.8453	0.5453	0.6479
SIALS (w/ SVD)	0.9301	0.9454	0.7171	0.7286

$$\lambda = 50$$
, $d = 100$ with 500 epochs

Prediction

We compute $\hat{r}_{i,j} = x_i^{ op} y_j$, and list the prediction as the following:

(User, Movie)	Rating	Prediction
(308, 1707)	2	1.5211
(990, 89)	3	2.7883
(2247, 2291)	3	4.0016
(2454, 595)	3	3.8591
(2853, 3363)	4	3.7680
(3067, 703)	1	1.0212
(3317, 3793)	4	4.1885
(3727, 2259)	2	2.2826
(4796, 2761)	4	4.1454
(5451, 969)	5	4.4651

Conclusion

In this project, we implement ALS, SIALS to do the matrix factorization. We use the direct method and CG to solve ALS and use SVD to solve SIALS and then apply it to the recommender system.

Reference

- Trevor Hastie, Rahul Mazumder, Jason D. Lee and Reza Zadeh, Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares, Journal of Machine Learning Research 16 (2015), 3367-3402.
- Yehuda Koren, Robert Bell and Chris Volinsky, Matrix Factorization Techniques for Recommender Systems, IEEE Computer Society 42 (2009), 30-37.

THE END

Thanks for listening!

