UNIT-5

Topics to be covered:

- 1. I/O STREAMS, UTILITY CLASSES I/O Streams: Byte Streams Character Streams Reading and Writing Files
- 2. Legacy Classes and Interface: Vector, Stack,
- 3. The Enumeration Interface Utility classes: String Tokenizer, Date, Calendar, GregorianCalendar, Random, Scanner.

Collections in java is a framework that provides an architecture to store and manipulate the group of objects.

All the operations that you perform on a data such as searching, sorting, insertion, manipulation, deletion etc. can be performed by Java Collections.

Java Collection simply means a single unit of objects. Java Collection framework provides many interfaces (Set, List, Queue, Deque etc.) and classes (ArrayList, Vector, LinkedList, PriorityQueue, HashSet, LinkedHashSet, TreeSet etc).

What is framework in java

- o provides readymade architecture.
- o represents set of classes and interface.
- o is optional.

What is Collection framework

Collection framework represents a unified architecture for storing and manipulating group of objects. It has:

- 1. Interfaces and its implementations i.e. classes
- 2. Algorithm

Hierarchy of Collection Framework

Java ArrayList class

Java ArrayList class uses a dynamic array for storing the elements. It inherits AbstractList class and implements List interface.

The important points about Java ArrayList class are:

- o Java ArrayList class can contain duplicate elements.
- Java ArrayList class maintains insertion order.
- o Java ArrayList class is non synchronized.
- o Java ArrayList allows random access because array works at the index basis.
- In Java ArrayList class, manipulation is slow because a lot of shifting needs to be occurred
 if any element is removed from the array list.

ArrayList class declaration

Let's see the declaration for java.util.ArrayList class.

Constructors of Java ArrayList

Constructor	Description
ArrayList()	It is used to build an empty array list.
ArrayList(Collection c)	It is used to build an array list that is initialized with the elements of the collection c.
ArrayList(int capacity)	It is used to build an array list that has the specified initial capacity.

Java ArrayList Example

```
import java.util.*;
class TestCollection1{
  public static void main(String args[]){
    ArrayList<String> list=new ArrayList<String>();//Creating arraylist
    list.add("Ravi");//Adding object in arraylist
    list.add("Vijay");
    list.add("Ravi");
    list.add("Ajay");
    //Traversing list through Iterator
    Iterator itr=list.iterator();
    while(itr.hasNext()){
        System.out.println(itr.next()); } }}
```

Ravi

Vijay

Ravi

Ajay

vector

ArrayList and Vector both implements List interface and maintains insertion order.

But there are many differences between ArrayList and Vector classes that are given below.

ArrayList	Vector
1) ArrayList is not synchronized.	Vector is synchronized .
2)ArrayList increments 50% of current array size if number of element exceeds from its capacity.	Vector increments 100% means doubles the array size if total number of element exceeds than its capacity.
3)ArrayList is not a legacy class, it is introduced in JDK 1.2.	Vector is a legacy class.
4) ArrayList is fast because it is non-synchronized.	Vector is slow because it is synchronized i.e. in multithreading environment, it will hold the other threads in runnable or non-runnable state until current thread releases the lock of object.
5) ArrayLis tuses Iterator interface to traverse the elements.	Vector uses Enumeration interface to traverse the elements. But it can use Iterator also.

Example of Java Vector

Let's see a simple example of java Vector class that uses Enumeration interface.

- 1. **import** java.util.*;
- 2. **class** TestVector1{
- 3. public static void main(String args[]){
- 4. Vector<String> v=new Vector<String>();//creating vector
- 5. v.add("umesh");//method of Collection
- 6. v.addElement("irfan");//method of Vector
- 7. v.addElement("kumar");
- 8. //traversing elements using Enumeration

- 9. Enumeration e=v.elements();
- 10. **while**(e.hasMoreElements()){
- 11. System.out.println(e.nextElement());
- 12. } }

Output:

umesh irfan

kumar

Java Hashtable class

Java Hashtable class implements a hashtable, which maps keys to values. It inherits Dictionary class and implements the Map interface.

The important points about Java Hashtable class are:

- A Hashtable is an array of list. Each list is known as a bucket. The position of bucket is identified by calling the hashcode() method. A Hashtable contains values based on the key.
- o It contains only unique elements.
- o It may have not have any null key or value.
- o It is synchronized.

Hashtable class declaration

Let's see the declaration for java.util.Hashtable class.

1. **public class** Hashtable<K,V> **extends** Dictionary<K,V> **implements** Map<K,V>, Cloneable, Ser ializable

Hashtable class Parameters

Let's see the Parameters for java.util.Hashtable class.

- o **K**: It is the type of keys maintained by this map.
- o V: It is the type of mapped values.

Constructors of Java Hashtable class

Constructor	Description
Hashtable()	It is the default constructor of hash table it instantiates the Hashtable class.
Hashtable(int size)	It is used to accept an integer parameter and creates a hash table that has an initial size specified by integer value size.
Hashtable(int size, float fillRatio)	It is used to create a hash table that has an initial size specified by size and a fill ratio specified by fillRatio.

Java Hashtable Example

```
import java.util.*;
class TestCollection16{
  public static void main(String args[]){
    Hashtable<Integer,String> hm=new Hashtable<Integer,String>();
    hm.put(100,"Amit");
    hm.put(102,"Ravi");
    hm.put(101,"Vijay");
    hm.put(103,"Rahul");
    for(Map.Entry m:hm.entrySet()){
        System.out.println(m.getKey()+" "+m.getValue());
    } } }
}
```

Output:

```
103 Rahul
102 Ravi
101 Vijay
100 Amit
```

Stack

Stack is a subclass of Vector that implements a standard last-in, first-out stack.

Stack only defines the default constructor, which creates an empty stack. Stack includes all the methods defined by Vector, and adds several of its own.

Stack()

Example

The following program illustrates several of the methods supported by this collection –

```
import java.util.*;
public class StackDemo {
 static void showpush(Stack st, int a) {
   st.push(new Integer(a));
   System.out.println("push(" + a + ")");
   System.out.println("stack: " + st);}
 static void showpop(Stack st) {
   System.out.print("pop -> ");
   Integer a = (Integer) st.pop();
   System.out.println(a);
   System.out.println("stack: " + st); }
 public static void main(String args[]) {
   Stack st = new Stack();
   System.out.println("stack: " + st);
   showpush(st, 42);
   showpush(st, 66);
   showpush(st, 99);
   showpop(st);
   showpop(st);
   showpop(st);
   try {
     showpop(st);
    } catch (EmptyStackException e) {
```

System.out.println("empty stack");

}}}

This will produce the following result –

Output

```
stack: []
push(42)
stack: [42]
push(66)
stack: [42, 66]
push(99)
stack: [42, 66, 99]
pop -> 99
stack: [42, 66]
pop -> 66
stack: [42]
pop -> 42
stack: []
pop -> empty stack
```

Enumeration

The Enumeration Interface

The Enumeration interface defines the methods by which you can enumerate (obtain one at a time) the elements in a collection of objects.

The methods declared by Enumeration are summarized in the following table –

Sr.No.	Method & Description
1	boolean hasMoreElements() When implemented, it must return true while there are still more elements to extract, and false when all the elements have been enumerated.
2	Object nextElement() This returns the next object in the enumeration as a generic Object reference.

Example

JAVA PROGRAMMING Page 69

Following is an example showing usage of Enumeration.

```
import java.util.Vector;
import java.util.Enumeration;
public class EnumerationTester {
 public static void main(String args[]) {
   Enumeration days;
   Vector dayNames = new Vector();
   dayNames.add("Sunday");
   dayNames.add("Monday");
   dayNames.add("Tuesday");
   dayNames.add("Wednesday");
   dayNames.add("Thursday");
   dayNames.add("Friday");
   dayNames.add("Saturday");
   days = dayNames.elements();
   while (days.hasMoreElements()) {
     System.out.println(days.nextElement());
   } }}
```

This will produce the following result -

Output

```
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
```

Iterator

It is a **universal** iterator as we can apply it to any Collection object. By using Iterator, we can perform both read and remove operations. It is improved version of Enumeration with additional functionality of remove-ability of a element.

Iterator must be used whenever we want to enumerate elements in all Collection framework implemented interfaces like Set, List, Queue, Deque and also in all implemented classes of Map interface. Iterator is the **only** cursor available for entire collection framework.

Iterator object can be created by calling *iterator()* method present in Collection interface.

```
// Here "c" is any Collection object. itr is of
// type Iterator interface and refers to "c"

Iterator itr = c.iterator();

Iterator interface defines three methods:

// Returns true if the iteration has more elements

public boolean hasNext();

// Returns the next element in the iteration
// It throws NoSuchElementException if no more
// element present
public Object next();

// Remove the next element in the iteration
// This method can be called only once per call
// to next()
```

public void remove();

remove() method can throw two exceptions

- *UnsupportedOperationException* : If the remove operation is not supported by this iterator
- *IllegalStateException*: If the next method has not yet been called, or the remove method has already been called after the last call to the next method

Limitations of Iterator:

- Only forward direction iterating is possible.
- Replacement and addition of new element is not supported by Iterator.

StringTokenizer in Java

The **java.util.StringTokenizer** class allows you to break a string into tokens. It is simple way to break string.

It doesn't provide the facility to differentiate numbers, quoted strings, identifiers etc.

Constructors of StringTokenizer class

There are 3 constructors defined in the StringTokenizer class.

Constructor	Description
StringTokenizer(String str)	creates StringTokenizer with specified string.
StringTokenizer(String str, String delim)	creates StringTokenizer with specified string and delimeter.
StringTokenizer(String str, String delim, boolean returnValue)	creates StringTokenizer with specified string, delimeter and returnValue. If return value is true, delimiter characters are considered to be tokens. If it is false, delimiter characters serve to separate tokens.

Methods of StringTokenizer class

The 6 useful methods of StringTokenizer class are as follows:

Public method	Description
boolean hasMoreTokens()	checks if there is more tokens available.
String nextToken()	returns the next token from the StringTokenizer object.
String nextToken(String delim)	returns the next token based on the delimeter.
boolean hasMoreElements()	same as hasMoreTokens() method.
Object nextElement()	same as nextToken() but its return type is Object.
int countTokens()	returns the total number of tokens.

Simple example of StringTokenizer class

Let's see the simple example of StringTokenizer class that tokenizes a string "my name is khan" on the basis of whitespace.

```
import java.util.StringTokenizer;
public class Simple{
  public static void main(String args[]){
```

```
StringTokenizer st = new StringTokenizer("my name is khan"," ");
   while (st.hasMoreTokens()) {
     System.out.println(st.nextToken());
   } } }
   Output:my
       name
       is
       khan
   Example of nextToken(String delim) method of StringTokenizer class
import java.util.*;
public class Test {
 public static void main(String[] args) {
    StringTokenizer st = new StringTokenizer("my,name,is,khan");
   // printing next token
   System.out.println("Next token is: " + st.nextToken(","));
  }
      }
   Output:Next token is: my
```

java.util.Random

- For using this class to generate random numbers, we have to first create an instance of this class and then invoke methods such as nextInt(), nextDouble(), nextLong() etc using that instance.
- We can generate random numbers of types integers, float, double, long, booleans using this class
- We can pass arguments to the methods for placing an upper bound on the range of the numbers to be generated. For example, nextInt(6) will generate numbers in the range 0 to 5 both inclusive.

```
// A Java program to demonstrate random number generation
// using java.util.Random;
import java.util.Random;

public class generateRandom{

   public static void main(String args[])
   {

      // create instance of Random class
      Random rand = new Random();

      // Generate random integers in range 0 to 999
      int rand_int1 = rand.nextInt(1000);
      int rand_int2 = rand.nextInt(1000);
}
```

```
// Print random integers
System.out.println("Random Integers: "+rand_int1);
System.out.println("Random Integers: "+rand_int2);

// Generate Random doubles
double rand_dub1 = rand.nextDouble();
double rand_dub2 = rand.nextDouble();

// Print random doubles
System.out.println("Random Doubles: "+rand_dub1);
System.out.println("Random Doubles: "+rand_dub2);
}}
Output:
```

Random Integers: 547

Random Integers: 126

Random Doubles: 0.8369779739988428

Random Doubles: 0.5497554388209912

Java Scanner class

There are various ways to read input from the keyboard, the java.util.Scanner class is one of them. The **Java Scanner** class breaks the input into tokens using a delimiter that is whitespace by default. It provides many methods to read and parse various primitive values.

Java Scanner class is widely used to parse text for string and primitive types using regular expression.

Java Scanner class extends Object class and implements Iterator and Closeable interfaces.

Commonly used methods of Scanner class

There is a list of commonly used Scanner class methods:

Method	Description
public String next()	it returns the next token from the scanner.
public String nextLine()	it moves the scanner position to the next line and returns the value as a string.
public byte nextByte()	it scans the next token as a byte.

<pre>public short nextShort()</pre>	it scans the next token as a short value.
<pre>public int nextInt()</pre>	it scans the next token as an int value.
public long nextLong()	it scans the next token as a long value.
public float nextFloat()	it scans the next token as a float value.
public double nextDouble()	it scans the next token as a double value.

Java Scanner Example to get input from console

Let's see the simple example of the Java Scanner class which reads the int, string and double value as an input:

```
import java.util.Scanner;
class ScannerTest{
public static void main(String args[]){
Scanner sc=new Scanner(System.in);
System.out.println("Enter your rollno");
int rollno=sc.nextInt();
System.out.println("Enter your name");
String name=sc.next();
System.out.println("Enter your fee");
double fee=sc.nextDouble();
System.out.println("Rollno:"+rollno+" name:"+name+" fee:"+fee);
sc.close();
} } Output:
      Enter your rollno
       111
      Enter your name
      Ratan
      Enter
      450000
      Rollno:111 name:Ratan fee:450000
```

Java Calendar Class

Java Calendar class is an abstract class that provides methods for converting date between a specific instant in time and a set of calendar fields such as MONTH, YEAR, HOUR, etc. It inherits Object class and implements the Comparable interface.

Java Calendar class declaration

Let's see the declaration of java.util.Calendar class.

- 1. public abstract class Calendar extends Object
- 2. **implements** Serializable, Cloneable, Comparable<Calendar>

Java Calendar Class Example

```
import java.util.Calendar;
public class CalendarExample1 {
   public static void main(String[] args) {
      Calendar calendar = Calendar.getInstance();
      System.out.println("The current date is : " + calendar.getTime());
      calendar.add(Calendar.DATE, -15);
      System.out.println("15 days ago: " + calendar.getTime());
      calendar.add(Calendar.MONTH, 4);
      System.out.println("4 months later: " + calendar.getTime());
      calendar.add(Calendar.YEAR, 2);
      System.out.println("2 years later: " + calendar.getTime());
    }
}
```

Output:

```
The current date is: Thu Jan 19 18:47:02 IST 2017
15 days ago: Wed Jan 04 18:47:02 IST 2017
4 months later: Thu May 04 18:47:02 IST 2017
2 years later: Sat May 04 18:47:02 IST 2019
```

Java - Files and I/O

The java.io package contains nearly every class you might ever need to perform input and output (I/O) in Java. All these streams represent an input source and an output destination. The stream in the java.io package supports many data such as primitives, object, localized characters, etc.

Stream

A stream can be defined as a sequence of data. There are two kinds of Streams –

- **InPutStream** The InputStream is used to read data from a source.
- OutPutStream The OutputStream is used for writing data to a destination.

Java provides strong but flexible support for I/O related to files and networks but this tutorial covers very basic functionality related to streams and I/O. We will see the most commonly used examples one by one –

Byte Streams

Java byte streams are used to perform input and output of 8-bit bytes. Though there are many classes related to byte streams but the most frequently used classes are, **FileInputStream** and **FileOutputStream**. Following is an example which makes use of these two classes to copy an input file into an output file —

Example

```
import java.io.*;
public class CopyFile {
  public static void main(String args[]) throws IOException {
    FileInputStream in = null;
    FileOutputStream out = null;
    try {
        in = new FileInputStream("input.txt");
        out = new FileOutputStream("output.txt");
        int c;
        while ((c = in.read()) != -1) {
```

```
out.write(c);
}
}finally {

if (in != null) {

 in.close();
}

if (out != null) {

 out.close();
}
}}
```

Now let's have a file **input.txt** with the following content –

This is test for copy file.

As a next step, compile the above program and execute it, which will result in creating output.txt file with the same content as we have in input.txt. So let's put the above code in CopyFile.java file and do the following —

```
$javac CopyFile.java
$java CopyFile
```

Character Streams

Java **Byte** streams are used to perform input and output of 8-bit bytes, whereas Java **Character** streams are used to perform input and output for 16-bit unicode. Though there are many classes related to character streams but the most frequently used classes are, **FileReader** and **FileWriter**. Though internally FileReader uses FileInputStream and FileWriter uses FileOutputStream but here the major difference is that FileReader reads two bytes at a time and FileWriter writes two bytes at a time.

We can re-write the above example, which makes the use of these two classes to copy an input file (having unicode characters) into an output file –

Example

```
import java.io.*;
public class CopyFile {
  public static void main(String args[]) throws IOException {
```

```
FileReader in = null;
FileWriter out = null;

try {
    in = new FileReader("input.txt");
    out = new FileWriter("output.txt");
    int c;
    while ((c = in.read()) != -1) {
        out.write(c);}
}finally {
    if (in != null) {
        in.close();
    if (out != null) {
        out.close();
}
```

Now let's have a file **input.txt** with the following content –

```
This is test for copy file.
```

As a next step, compile the above program and execute it, which will result in creating output.txt file with the same content as we have in input.txt. So let's put the above code in CopyFile.java file and do the following —

```
$javac CopyFile.java
$java CopyFile
```

Standard Streams

All the programming languages provide support for standard I/O where the user's program can take input from a keyboard and then produce an output on the computer screen. Java provides the following three standard streams —

• **Standard Input** – This is used to feed the data to user's program and usually a keyboard is used as standard input stream and represented as **System.in**.

- **Standard Output** This is used to output the data produced by the user's program and usually a computer screen is used for standard output stream and represented as **System.out**.
- **Standard Error** This is used to output the error data produced by the user's program and usually a computer screen is used for standard error stream and represented as **System.err**.

Following is a simple program, which creates **InputStreamReader** to read standard input stream until the user types a "

Example

```
import java.io.*;
```

```
public class ReadConsole {
  public static void main(String args[]) throws IOException {
    InputStreamReader cin = null;
    try {
        cin = new InputStreamReader(System.in);
        System.out.println("Enter characters, 'q' to quit.");
        char c;
        do {
            c = (char) cin.read();
            System.out.print(c);
        } while(c != 'q');
    } finally {
        if (cin != null) {
            cin.close();
        } } } }}
```

This program continues to read and output the same character until we press 'q' -

```
$javac ReadConsole.java
$java ReadConsole
```

```
Enter characters, 'q' to quit.

1
1
e
e
q
q
```

Reading and Writing Files

As described earlier, a stream can be defined as a sequence of data. The **InputStream** is used to read data from a source and the **OutputStream** is used for writing data to a destination.

Here is a hierarchy of classes to deal with Input and Output streams.

The two important streams are FileInputStream and FileOutputStream

FileInputStream

This stream is used for reading data from the files. Objects can be created using the keyword **new** and there are several types of constructors available.

Following constructor takes a file name as a string to create an input stream object to read the file –

InputStream f = new FileInputStream("C:/java/hello");

Following constructor takes a file object to create an input stream object to read the file. First we create a file object using File() method as follows –

```
File f = new File("C:/java/hello");
InputStream f = new FileInputStream(f);
```

Once you have *InputStream* object in hand, then there is a list of helper methods which can be used to read to stream or to do other operations on the stream.

- ByteArrayInputStream
- DataInputStream

FileOutputStream

FileOutputStream is used to create a file and write data into it. The stream would create a file, if it doesn't already exist, before opening it for output.

Here are two constructors which can be used to create a FileOutputStream object.

Following constructor takes a file name as a string to create an input stream object to write the file –

```
OutputStream f = new FileOutputStream("C:/java/hello")
```

Following constructor takes a file object to create an output stream object to write the file. First, we create a file object using File() method as follows –

```
File f = new File("C:/java/hello");
OutputStream f = new FileOutputStream(f);
```

Once you have *OutputStream* object in hand, then there is a list of helper methods, which can be used to write to stream or to do other operations on the stream.

- ByteArrayOutputStream
- <u>DataOutputStream</u>

Example

Following is the example to demonstrate InputStream and OutputStream –

```
import java.io.*;
public class fileStreamTest {
  public static void main(String args[]) {
    try {
```

```
byte bWrite [] = {11,21,3,40,5};

OutputStream os = new FileOutputStream("test.txt");

for(int x = 0; x < bWrite.length; x++) {
    os.write( bWrite[x] ); // writes the bytes}

os.close();

InputStream is = new FileInputStream("test.txt");

int size = is.available();

for(int i = 0; i < size; i++) {
    System.out.print((char)is.read() + " "); }

is.close();
} catch (IOException e) {
    System.out.print("Exception");
}</pre>
```

Java.io.RandomAccessFile Class

The **Java.io.RandomAccessFile** class file behaves like a large array of bytes stored in the file system.Instances of this class support both reading and writing to a random access file.

Class declaration

Following is the declaration for **Java.io.RandomAccessFile** class –

```
public class RandomAccessFile
extends Object
implements DataOutput, DataInput, Closeable
```

Class constructors

S.N.	Constructor & Description
1	RandomAccessFile(File file, String mode)
	This creates a random access file stream to read from, and optionally to write to, the file specified by the File argument.

JAVA PROGRAMMING Page 83

2

RandomAccessFile(File file, String mode)

This creates a random access file stream to read from, and optionally to write to, a file with the specified name.

Methodsinherited

This class inherits methods from the following classes –

• Java.io.Object

Java.io.File Class in Java

The File class is Java's representation of a file or directory path name. Because file and directory names have different formats on different platforms, a simple string is not adequate to name them. The File class contains several methods for working with the path name, deleting and renaming files, creating new directories, listing the contents of a directory, and determining several common attributes of files and directories.

- It is an abstract representation of file and directory pathnames.
- A pathname, whether abstract or in string form can be either absolute or relative. The parent of an abstract pathname may be obtained by invoking the getParent() method of this class.
- First of all, we should create the File class object by passing the filename or directory name to it. A file system may implement restrictions to certain operations on the actual file-system object, such as reading, writing, and executing. These restrictions are collectively known as access permissions.
- Instances of the File class are immutable; that is, once created, the abstract pathname represented by a File object will never change.

How to create a File Object?

A File object is created by passing in a String that represents the name of a file, or a String or another File object. For example,

```
File a = new File("/usr/local/bin/geeks");
```

defines an abstract file name for the geeks file in directory /usr/local/bin. This is an absolute abstract file name.

Program to check if a file or directory physically exist or not.

```
// In this program, we accepts a file or directory name from
// command line arguments. Then the program will check if
// that file or directory physically exist or not and
// it displays the property of that file or directory.
*import java.io.File;

// Displaying file property
class fileProperty
{
   public static void main(String[] args) {
```

JAVA PROGRAMMING Page 84

```
//accept file name or directory name through command line args
    String fname =args[0];
    //pass the filename or directory name to File object
    File f = new File(fname);
    //apply File class methods on File object
    System.out.println("File name :"+f.getName());
    System.out.println("Path: "+f.getPath());
    System.out.println("Absolute path:" +f.getAbsolutePath());
    System.out.println("Parent:"+f.getParent());
    System.out.println("Exists :"+f.exists());
    if(f.exists())
       System.out.println("Is writeable:"+f.canWrite());
       System.out.println("Is readable"+f.canRead());
       System.out.println("Is a directory:"+f.isDirectory());
       System.out.println("File Size in bytes "+f.length());
  }
}
```

Output:

```
File name :file.txt

Absolute path:C:\Users\akki\IdeaProjects\codewriting\src\file.txt

Parent:null

Exists :true

Is writeable:true

Is readabletrue

Is a directory:false

File Size in bytes 20
```

Connceting to DB

Whatis JDBCDriver?

JDBC drivers implement the defined interfaces in the JDBC API, for interacting with your database server.

For example, using JDBC drivers enable you to open database connections and to interact with it by sending SQL or database commands then receiving results with Java.

The *Java.sql* package that ships with JDK, contains various classes with their behaviours defined and their actual implementaions are done in third-party drivers. Third party vendors implements the *java.sql.Driver* interface in their database driver.

JDBC Drivers Types

JDBC driver implementations vary because of the wide variety of operating systems and hardware platforms in which Java operates. Sun has divided the implementation types into four categories, Types 1, 2, 3, and 4, which is explained below –

Type 1: JDBC-ODBCBridge Driver

In a Type 1 driver, a JDBC bridge is used to access ODBC drivers installed on each client machine. Using ODBC, requires configuring on your system a Data Source Name (DSN) that represents the target database.

When Java first came out, this was a useful driver because most databases only supported ODBC access but now this type of driver is recommended only for experimental use or when no other alternative is available.

The JDBC-ODBC Bridge that comes with JDK 1.2 is a good example of this kind of driver.

Type 2: JDBC-Native API

In a Type 2 driver, JDBC API calls are converted into native C/C++ API calls, which are unique to the database. These drivers are typically provided by the database vendors and used in the same manner as the JDBC-ODBC Bridge. The vendor-specific driver must be installed on each client machine.

If we change the Database, we have to change the native API, as it is specific to a database and they are mostly obsolete now, but you may realize some speed increase with a Type 2 driver, because it eliminates ODBC's overhead.

The Oracle Call Interface (OCI) driver is an example of a Type 2 driver.

Type 3: JDBC-Net pure Java

In a Type 3 driver, a three-tier approach is used to access databases. The JDBC clients use standard network sockets to communicate with a middleware application server. The socket information is then translated by the middleware application server into the call format required by the DBMS, and forwarded to the database server.

This kind of driver is extremely flexible, since it requires no code installed on the client and a single driver can actually provide access to multiple databases.

You can think of the application server as a JDBC "proxy," meaning that it makes calls for the client application. As a result, you need some knowledge of the application server's configuration in order to effectively use this driver type.

Your application server might use a Type 1, 2, or 4 driver to communicate with the database, understanding the nuances will prove helpful.

Type 4: 100% Pure Java

In a Type 4 driver, a pure Java-based driver communicates directly with the vendor's database through socket connection. This is the highest performance driver available for the database and is usually provided by the vendor itself.

This kind of driver is extremely flexible, you don't need to install special software on the client or server. Further, these drivers can be downloaded dynamically.

MySQL's Connector/J driver is a Type 4 driver. Because of the proprietary nature of their network protocols, database vendors usually supply type 4 drivers.

Which Driver should be Used?

If you are accessing one type of database, such as Oracle, Sybase, or IBM, the preferred driver type is 4.

If your Java application is accessing multiple types of databases at the same time, type 3 is the preferred driver.

Type 2 drivers are useful in situations, where a type 3 or type 4 driver is not available yet for your database.

The type 1 driver is not considered a deployment-level driver, and is typically used for development and testing purposes only.

Example to connect to the mysql database in java

For connecting java application with the mysql database, you need to follow 5 steps to perform database connectivity.

In this example we are using MySql as the database. So we need to know following informations for the mysql database:

- 1. **Driver class:** The driver class for the mysql database is **com.mysql.jdbc.Driver**.
- 2. **Connection URL:** The connection URL for the mysql database is **jdbc:mysql://localhost:3306/sonoo** where jdbc is the API, mysql is the database, localhost is the server name on which mysql is running, we may also use IP address, 3306 is the port number and sonoo is the database name. We may use any database, in such case, you need to replace the sonoo with your database name.
- 3. **Username:** The default username for the mysql database is **root**.
- 4. **Password:** Password is given by the user at the time of installing the mysql database. In this example, we are going to use root as the password.

Let's first create a table in the mysql database, but before creating table, we need to create database first.

- 1. create database sonoo;
- 2. use sonoo;
- 3. create table emp(id int(10),name varchar(40),age int(3));

Example to Connect Java Application with mysql database

In this example, sonoo is the database name, root is the username and password.

```
import java.sql.*;
class MysqlCon{
public static void main(String args[]){
   try{
    Class.forName("com.mysql.jdbc.Driver");
   Connection con=DriverManager.getConnection(
   "jdbc:mysql://localhost:3306/sonoo","root","root");
//here sonoo is database name, root is username and password
```

```
Statement stmt=con.createStatement();
ResultSet rs=stmt.executeQuery("select * from emp");
while(rs.next())
System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getString(3));
con.close();
}catch(Exception e){ System.out.println(e);}
} }
```

The above example will fetch all the records of emp table.

To connect java application with the mysql database mysqlconnector.jar file is required to be loaded.

Two ways to load the jar file:

- 1. paste the mysqlconnector.jar file in jre/lib/ext folder
- 2. set classpath

1) paste the mysqlconnector.jar file in JRE/lib/ext folder:

Download the mysqlconnector.jar file. Go to jre/lib/ext folder and paste the jar file here.

2) set classpath:

There are two ways to set the classpath:

1.temporary 2.permanent

How to set the temporary classpath

open command prompt and write:

1. C:>set classpath=c:\folder\mysql-connector-java-5.0.8-bin.jar;.;

How to set the permanent classpath

Go to environment variable then click on new tab. In variable name write **classpath** and in variable value paste the path to the mysqlconnector.jar file by appending mysqlconnector.jar;.; as C:\folder\mysql-connector-java-5.0.8-bin.jar;

JDBC-Result Sets

The SQL statements that read data from a database query, return the data in a result set. The SELECT statement is the standard way to select rows from a database and view them in a result set. The *java.sql.ResultSet* interface represents the result set of a database query.

A ResultSet object maintains a cursor that points to the current row in the result set. The term "result set" refers to the row and column data contained in a ResultSet object.

The methods of the ResultSet interface can be broken down into three categories –

- Navigational methods: Used to move the cursor around.
- **Get methods:** Used to view the data in the columns of the current row being pointed by the cursor.
- **Update methods:** Used to update the data in the columns of the current row. The updates can then be updated in the underlying database as well.

The cursor is movable based on the properties of the ResultSet. These properties are designated when the corresponding Statement that generates the ResultSet is created.

JDBC provides the following connection methods to create statements with desired ResultSet -

- createStatement(int RSType, int RSConcurrency);
- prepareStatement(String SQL, int RSType, int RSConcurrency);
- prepareCall(String sql, int RSType, int RSConcurrency);

The first argument indicates the type of a ResultSet object and the second argument is one of two ResultSet constants for specifying whether a result set is read-only or updatable.

Type of ResultSet

The possible RSType are given below. If you do not specify any ResultSet type, you will automatically get one that is TYPE_FORWARD_ONLY.

Туре	Description
ResultSet.TYPE_FORWARD_ONLY	The cursor can only move forward in the result set.
ResultSet.TYPE_SCROLL_INSENSITIVE	The cursor can scroll forward and backward, and the result set is not sensitive to changes made by others to the database that occur after the result set was created.

	ResultSet.TYPE_SCROLL_SENSITIVE.	The cursor can scroll forward and backward, and the result set is sensitive to changes made by others to the database that occur after the result set was created.
--	----------------------------------	--

Concurrency of ResultSet

The possible RSConcurrency are given below. If you do not specify any Concurrency type, you will automatically get one that is CONCUR_READ_ONLY.

Concurrency	Description
ResultSet.CONCUR_READ_ONLY	Creates a read-only result set. This is the default
ResultSet.CONCUR_UPDATABLE	Creates an updateable result set.

Viewinga Result Set

The ResultSet interface contains dozens of methods for getting the data of the current row.

There is a get method for each of the possible data types, and each get method has two versions

- One that takes in a column name.
- One that takes in a column index.

For example, if the column you are interested in viewing contains an int, you need to use one of the getInt() methods of ResultSet –

S.N.	Methods & Description
1	public int getInt(String columnName) throws SQLException Returns the int in the current row in the column named columnName.
2	public int getInt(int columnIndex) throws SQLException Returns the int in the current row in the specified column index. The column index starts at 1, meaning the first column of a row is 1, the second column of a row is 2, and so on.

Similarly, there are get methods in the ResultSet interface for each of the eight Java primitive types, as well as common types such as java.lang.String, java.lang.Object, and java.net.URL.

There are also methods for getting SQL data types java.sql.Date, java.sql.Time, java.sql.TimeStamp, java.sql.Clob, and java.sql.Blob. Check the documentation for more information about using these SQL data types.

For a better understanding, let us study <u>Viewing - Example Code</u>.

Updatinga Result Set

The ResultSet interface contains a collection of update methods for updating the data of a result set.

As with the get methods, there are two update methods for each data type –

- One that takes in a column name.
- One that takes in a column index.

For example, to update a String column of the current row of a result set, you would use one of the following updateString() methods –

S.N.	Methods & Description
1	public void updateString(int columnIndex, String s) throws SQLException Changes the String in the specified column to the value of s.
2	public void updateString(String columnName, String s) throws SQLException Similar to the previous method, except that the column is specified by its name instead of its index.

There are update methods for the eight primitive data types, as well as String, Object, URL, and the SQL data types in the java.sql package.

Updating a row in the result set changes the columns of the current row in the ResultSet object, but not in the underlying database. To update your changes to the row in the database, you need to invoke one of the following methods.

S.N.	Methods & Description	
1	public void updateRow()	
	Updates the current row by updating the corresponding row in the database.	
2	public void deleteRow()	
	Deletes the current row from the database	
3	<pre>public void refreshRow()</pre>	
	Refreshes the data in the result set to reflect any recent changes in the database.	
4	public void cancelRowUpdates()	
	Cancels any updates made on the current row.	
5	public void insertRow()	
	Inserts a row into the database. This method can only be invoked when the cursor is	
	pointing to the insert row.	

Advance java topics GUI Programming with java

The AWT Class hierarchy

Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-based applications in java.

Java AWT components are platform-dependent i.e. components are displayed according to the view of operating system. AWT is heavyweight i.e. its components are using the resources of OS.

The java.awt package provides classes for AWT api such as TextField, Label, TextArea, RadioButton, CheckBox, Choice, List etc.

Java AWT Hierarchy

The hierarchy of Java AWT classes are given below.

Container

The Container is a component in AWT that can contain another components like buttons, textfields, labels etc. The classes that extends Container class are known as container such as Frame, Dialog and Panel.

Window

The window is the container that have no borders and menu bars. You must use frame, dialog or another window for creating a window.

Panel

The Panel is the container that doesn't contain title bar and menu bars. It can have other components like button, textfield etc.

Frame

The Frame is the container that contain title bar and can have menu bars. It can have other components like button, textfield etc.

Useful Methods of Component class

Method	Description
public void add(Component c)	inserts a component on this component.
public void setSize(int width,int height)	sets the size (width and height) of the component.
public void setLayout(LayoutManager m)	defines the layout manager for the component.
public void setVisible(boolean status)	changes the visibility of the component, by default false.

Java AWT Example

To create simple awt example, you need a frame. There are two ways to create a frame in AWT.

- o By extending Frame class (inheritance)
- o By creating the object of Frame class (association)

AWT Example by Inheritance

Let's see a simple example of AWT where we are inheriting Frame class. Here, we are showing Button component on the Frame.

```
import java.awt.*;
class First extends Frame{
First(){
Button b=new Button("click me");
b.setBounds(30,100,80,30);// setting button position
add(b);//adding button into frame
setSize(300,300);//frame size 300 width and 300 height
setLayout(null);//no layout manager
setVisible(true);//now frame will be visible, by default not visible
}
public static void main(String args[]){
First f=new First();
}}
```

The setBounds(int xaxis, int yaxis, int width, int height) method is used in the above example that sets the position of the awt button.

Java Swing

Java Swing tutorial is a part of Java Foundation Classes (JFC) that is *used to create window-based applications*. It is built on the top of AWT (Abstract Windowing Toolkit) API and entirely written in java.

Unlike AWT, Java Swing provides platform-independent and lightweight components.

The javax.swing package provides classes for java swing API such as JButton, JTextField, JTextArea, JRadioButton, JCheckbox, JMenu, JColorChooser etc.

Difference between AWT and Swing.

No.	Java AWT	Java Swing
1)	AWT components are platform- dependent .	Java swing components are platform- independent .
2)	AWT components are heavyweight .	Swing components are lightweight .
3)	AWT doesn't support pluggable look and feel.	Swing supports pluggable look and feel.
4)	AWT provides less components than Swing.	Swing provides more powerful components such as tables, lists, scrollpanes, colorchooser, tabbedpane etc.
5)	AWT doesn't follows MVC(Model View Controller) where model represents data, view represents presentation and controller acts as an interface between model and view.	Swing follows MVC.

Commonly used Methods of Component class

Method	Description
public void add(Component c)	add a component on another component.
public void setSize(int width,int height)	sets size of the component.
public void setLayout(LayoutManager m)	sets the layout manager for the component.
public void setVisible(boolean b)	sets the visibility of the component. It is by default false.

Hierarchy of Java Swing classes

The hierarchy of java swing API is given below.

Java Swing Examples

There are two ways to create a frame:

- o By creating the object of Frame class (association)
- By extending Frame class (inheritance)

We can write the code of swing inside the main(), constructor or any other method.

Simple Java Swing Example

Let's see a simple swing example where we are creating one button and adding it on the JFrame object inside the main() method.

File: FirstSwingExample.java

```
import javax.swing.*;
public class FirstSwingExample {
  public static void main(String[] args) {
    JFrame f=new JFrame();//creating instance of JFrame
    JButton b=new JButton("click");//creating instance of JButton
    b.setBounds(130,100,100, 40);//x axis, y axis, width, height
    f.add(b);//adding button in JFrame
    f.setSize(400,500);//400 width and 500 height
    f.setLayout(null);//using no layout managers
    f.setVisible(true);//making the frame visible
    }
}
```


Containers

Java JFrame

The javax.swing.JFrame class is a type of container which inherits the java.awt.Frame class. JFrame works like the main window where components like labels, buttons, textfields are added to create a GUI.

Unlike Frame, JFrame has the option to hide or close the window with the help of setDefaultCloseOperation(int) method.

JFrame Example

```
import java.awt.FlowLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.Jpanel;
public class JFrameExample {
  public static void main(String s[]) {
   JFrame frame = new JFrame("JFrame Example");
   JPanel panel = new JPanel();
   panel.setLayout(new FlowLayout());
   JLabel label = new JLabel("JFrame By Example");
   JButton button = new JButton();
   button.setText("Button");
   panel.add(label);
```

```
panel.add(button);
frame.add(panel);
frame.setSize(200, 300);
frame.setLocationRelativeTo(null);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);
} }
```

JApplet

As we prefer Swing to AWT. Now we can use JApplet that can have all the controls of swing. The JApplet class extends the Applet class.

Example of EventHandling in JApplet:

```
import java.applet.*;
import javax.swing.*;
import java.awt.event.*;
public class EventJApplet extends JApplet implements ActionListener{
JButton b:
JTextField tf;
public void init(){
tf=new JTextField();
tf.setBounds(30,40,150,20);
b=new JButton("Click");
b.setBounds(80,150,70,40);
add(b);add(tf);
b.addActionListener(this);
setLayout(null);
}
public void actionPerformed(ActionEvent e){
tf.setText("Welcome");
} }
       In the above example, we have created all the controls in init() method because it is invoked
      only once.
   myapplet.html
1. <html>
2. <body>
3. <applet code="EventJApplet.class" width="300" height="300">
```

</applet>
</body>
</html>

JDialog

The JDialog control represents a top level window with a border and a title used to take some form of input from the user. It inherits the Dialog class.

Unlike JFrame, it doesn't have maximize and minimize buttons.

JDialog class declaration

Let's see the declaration for javax.swing.JDialog class.

1. **public class** JDialog **extends** Dialog **implements** WindowConstants, Accessible, RootPaneConta iner

Commonly used Constructors:

Constructor	Description
JDialog()	It is used to create a modeless dialog without a title and without a specified Frame owner.
JDialog(Frame owner)	It is used to create a modeless dialog with specified Frame as its owner and an empty title.
JDialog(Frame owner, String title, boolean modal)	It is used to create a dialog with the specified title, owner Frame and modality.

Java JDialog Example

```
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class DialogExample {
private static JDialog d;
DialogExample() {
JFrame f= new JFrame();
d = new JDialog(f, "Dialog Example", true);
d.setLayout( new FlowLayout() );
JButton b = new JButton ("OK");
b.addActionListener()
{
public void actionPerformed( ActionEvent e )
          DialogExample.d.setVisible(false);
}
});
d.add( new JLabel ("Click button to continue."));
d.add(b);
d.setSize(300,300);
d.setVisible(true);
}
public static void main(String args[])
new DialogExample();
} }
```

Output:

JPanel

The JPanel is a simplest container class. It provides space in which an application can attach any other component. It inherits the JComponents class.

It doesn't have title bar.

JPanel class declaration

1. public class JPanel extends JComponent implements Accessible

Java JPanel Example

```
import java.awt.*;
import javax.swing.*;
public class PanelExample {
   PanelExample()
    JFrame f= new JFrame("Panel Example");
    JPanel panel=new JPanel();
    panel.setBounds(40,80,200,200);
    panel.setBackground(Color.gray);
    JButton b1=new JButton("Button 1");
    b1.setBounds(50,100,80,30);
    b1.setBackground(Color.yellow);
    JButton b2=new JButton("Button 2");
    b2.setBounds(100,100,80,30);
    b2.setBackground(Color.green);
    panel.add(b1); panel.add(b2);
    f.add(panel);
         f.setSize(400,400);
         f.setLayout(null);
         f.setVisible(true);
     }
    public static void main(String args[])
    new PanelExample();
    } }
```


Overview of some Swing Components

Java JButton

The JButton class is used to create a labeled button that has platform independent implementation. The application result in some action when the button is pushed. It inherits AbstractButton class.

JButton class declaration

Let's see the declaration for javax.swing.JButton class.

1. public class JButton extends AbstractButton implements Accessible

Java JButton Example

```
import javax.swing.*;
public class ButtonExample {
    public static void main(String[] args) {
        JFrame f=new JFrame("Button Example");
        JButton b=new JButton("Click Here");
        b.setBounds(50,100,95,30);
        f.add(b);
        f.setSize(400,400);
        f.setLayout(null);
        f.setVisible(true); } }
```

Java JLabel

The object of JLabel class is a component for placing text in a container. It is used to display a single line of read only text. The text can be changed by an application but a user cannot edit it directly. It inherits JComponent class.

JLabel class declaration

Let's see the declaration for javax.swing.JLabel class.

1. public class JLabel extends JComponent implements SwingConstants, Accessible

Commonly used Constructors:

Constructor	Description	
JLabel()	Creates a JLabel instance with no image and with an empty string for the title.	
JLabel(String s)	Creates a JLabel instance with the specified text.	
JLabel(Icon i)	Creates a JLabel instance with the specified image.	
JLabel(String s, Icon i, int horizontalAlignment)	Creates a JLabel instance with the specified text, image, and horizontal alignment.	

Commonly used Methods:

Methods	Description
String getText()	t returns the text string that a label displays.
void setText(String text)	It defines the single line of text this component will display.
void setHorizontalAlignment(int alignment)	It sets the alignment of the label's contents along the X axis.
Icon getIcon()	It returns the graphic image that the label displays.
int getHorizontalAlignment()	It returns the alignment of the label's contents along the X axis.

Java JLabel Example

```
import javax.swing.*;
class LabelExample
public static void main(String args[])
  JFrame f= new JFrame("Label Example");
  JLabel 11,12;

≜ Label Example

  11=new JLabel("First Label.");
  11.setBounds(50,50, 100,30);
  12=new JLabel("Second Label.");
                                                    First Label.
  12.setBounds(50,100, 100,30);
  f.add(11); f.add(12);
                                                    Second Label.
  f.setSize(300,300);
  f.setLayout(null);
  f.setVisible(true);
```

JTextField

The object of a JTextField class is a text component that allows the editing of a single line text. It inherits JTextComponent class.

JTextField class declaration

Let's see the declaration for javax.swing.JTextField class.

1. public class JTextField extends JTextComponent implements SwingConstants

Java JTextField Example

```
import javax.swing.*;
class TextFieldExample
{
public static void main(String args[])
    {
    JFrame f= new JFrame("TextField Example");
    JTextField t1,t2;
    t1=new JTextField("Welcome to Javatpoint.");
    t1.setBounds(50,100, 200,30);
    t2=new JTextField("AWT Tutorial");
    t2.setBounds(50,150, 200,30);
    f.add(t1); f.add(t2);
    f.setSize(400,400);
    f.s etLayout(null);
    f.setVisible(true);
```


Java JTextArea

The object of a JTextArea class is a multi line region that displays text. It allows the editing of multiple line text. It inherits JTextComponent class

JTextArea class declaration

Let's see the declaration for javax.swing.JTextArea class.

1. public class JTextArea extends JTextComponent

Java JTextArea Example

```
import javax.swing.*;
public class TextAreaExample
{
    TextAreaExample(){
        JFrame f= new JFrame();
        JTextArea area=new JTextArea("Welcome to javatpoint");
        area.setBounds(10,30, 200,200);
        f.add(area);
        f.setSize(300,300);
        f.setLayout(null);
        f.setVisible(true);
    }
public static void main(String args[])
    {
        new TextAreaExample();
    }
}
```

Simple Java Applications

```
import javax.swing.JFrame;
import javax.swing.SwingUtilities;

public class Example extends JFrame {
    public Example() {
        setTitle("Simple example");
        setSize(300, 200);
        setLocationRelativeTo(null);
        setDefaultCloseOperation(EXIT_ON_CLOSE);
    }

    public static void main(String[] args) {
        Example ex = new Example();
        ex.setVisible(true);
    }
}
```


Layout Management

Java LayoutManagers

The LayoutManagers are used to arrange components in a particular manner. LayoutManager is an interface that is implemented by all the classes of layout managers.

BorderLayout

The BorderLayout provides five constants for each region:

- 1. public static final int NORTH
- 2. public static final int SOUTH
- 3. public static final int EAST
- 4. public static final int WEST
- 5. public static final int CENTER

Constructors of BorderLayout class:

- o **BorderLayout():** creates a border layout but with no gaps between the components.
- JBorderLayout(int hgap, int vgap): creates a border layout with the given horizontal and vertical gaps between the components.

Example of BorderLayout class:

```
import java.awt.*;
import javax.swing.*;
public class Border
JFrame f:
Border()
  f=new JFrame();
  JButton b1=new JButton("NORTH");;
  JButton b2=new JButton("SOUTH");;
  JButton b3=new JButton("EAST");;
  JButton b4=new JButton("WEST");;
  JButton b5=new JButton("CENTER");;
  f.add(b1,BorderLayout.NORTH);
  f.add(b2,BorderLayout.SOUTH);
  f.add(b3,BorderLayout.EAST);
  f.add(b4,BorderLayout.WEST);
  f.add(b5,BorderLayout.CENTER);
  f.setSize(300,300);
  f.setVisible(true);
public static void main(String[] args)
 new Border();
```

} }

Output:

Java GridLayout

The GridLayout is used to arrange the components in rectangular grid. One component is displayed in each rectangle.

Constructors of GridLayout class

- 1. **GridLayout():** creates a grid layout with one column per component in a row.
- 2. **GridLayout(int rows, int columns):** creates a grid layout with the given rows and columns but no gaps between the components.
- 3. **GridLayout(int rows, int columns, int hgap, int vgap):** creates a grid layout with the given rows and columns alongwith given horizontal and vertical gaps.

Example of GridLayout class

```
import java.awt.*;
2. import javax.swing.*;
public class MyGridLayout{
JFrame f;
MyGridLayout(){
  f=new JFrame();
  JButton b1=new JButton("1");
  JButton b2=new JButton("2");
  JButton b3=new JButton("3");
  JButton b4=new JButton("4");
  JButton b5=new JButton("5");
  JButton b6=new JButton("6");
  JButton b7=new JButton("7");
  JButton b8=new JButton("8");
  JButton b9=new JButton("9");
  f.add(b1);f.add(b2);f.add(b3);f.add(b4);f.add(b5);
  f.add(b6);f.add(b7);f.add(b8);f.add(b9);
  f.setLayout(new GridLayout(3,3));
  //setting grid layout of 3 rows and 3 columns
  f.setSize(300,300);
  f.s etVisible(true);
public static void main(String[] args) {
```


Java FlowLayout

The FlowLayout is used to arrange the components in a line, one after another (in a flow). It is the default layout of applet or panel.

Fields of FlowLayout class

new MyGridLayout(); }}

- 1. public static final int LEFT
- 2. public static final int RIGHT
- 3. public static final int CENTER
- 4. public static final int LEADING
- 5. public static final int TRAILING

Constructors of FlowLayout class

- 1. **FlowLayout():** creates a flow layout with centered alignment and a default 5 unit horizontal and vertical gap.
- 2. **FlowLayout(int align):** creates a flow layout with the given alignment and a default 5 unit horizontal and vertical gap.
- 3. **FlowLayout(int align, int hgap, int vgap):** creates a flow layout with the given alignment and the given horizontal and vertical gap.

Example of FlowLayout class

```
import java.awt.*;
import javax.swing.*;
public class MyFlowLayout{
JFrame f;
MyFlowLayout(){
  f=new JFrame();
  JButton b1=new JButton("1");
  JButton b2=new JButton("2");
  JButton b3=new JButton("3");
  JButton b4=new JButton("4");
  JButton b5=new JButton("5");
  f.add(b1);f.add(b2);f.add(b3);f.add(b4);f.add(b5);
  f.setLayout(new FlowLayout(FlowLayout.RIGHT));
  //setting flow layout of right alignment
 f.setSize(300,300);
  f.setVisible(true);
public static void main(String[] args) {
new MyFlowLayout();
} }
```


Event Handling

Event and Listener (Java Event Handling)

Changing the state of an object is known as an event. For example, click on button, dragging mouse etc. The java.awt.event package provides many event classes and Listener interfaces for event handling.

Types of Event

The events can be broadly classified into two categories:

- **Foreground Events** Those events which require the direct interaction of user. They are generated as consequences of a person interacting with the graphical components in Graphical User Interface. For example, clicking on a button, moving the mouse, entering a character through keyboard, selecting an item from list, scrolling the page etc.
- Background Events Those events that require the interaction of end user are known as

background events. Operating system interrupts, hardware or software failure, timer expires, an operation completion are the example of background events.

Event Handling

Event Handling is the mechanism that controls the event and decides what should happen if an event occurs. This mechanism have the code which is known as event handler that is executed when an event occurs. Java Uses the Delegation Event Model to handle the events. This model defines the standard mechanism to generate and handle the events. Let's have a brief introduction to this model

The Delegation Event Model has the following key participants namely:

- **Source** The source is an object on which event occurs. Source is responsible for providing information of the occurred event to it's handler. Java provide as with classes for source object.
- **Listener** It is also known as event handler. Listener is responsible for generating response to an event. From java implementation point of view the listener is also an object. Listener waits until it receives an event. Once the event is received, the listener process the event an then returns.

Event classes and Listener interfaces:

Event Classes	Listener Interfaces
ActionEvent	ActionListener
MouseEvent	MouseListener and MouseMotionListener
MouseWheelEvent	MouseWheelListener
KeyEvent	KeyListener
ItemEvent	ItemListener
TextEvent	TextListener
AdjustmentEvent	AdjustmentListener
WindowEvent	WindowListener
ComponentEvent	ComponentListener
ContainerEvent	ContainerListener
FocusEvent	FocusListener

Steps to perform Event Handling

Following steps are required to perform event handling:

- 1. Implement the Listener interface and overrides its methods
- 2. Register the component with the Listener

For registering the component with the Listener, many classes provide the registration methods. For example:

- o Button
 - o public void addActionListener(ActionListener a){}
- MenuItem
 - o public void addActionListener(ActionListener a){}
- TextField
 - o public void addActionListener(ActionListener a){}
 - o public void addTextListener(TextListener a){}
- TextArea
 - o public void addTextListener(TextListener a){}
- Checkbox
 - o public void addItemListener(ItemListener a){}
- Choice
 - o public void addItemListener(ItemListener a){}
- List
 - o public void addActionListener(ActionListener a){}
 - o public void addItemListener(ItemListener a){}

EventHandling Codes:

We can put the event handling code into one of the following places:

- 1. Same class
- 2. Other class
- 3. Annonymous class

Example of event handling within class:

```
import java.awt.*;
import java.awt.event.*;
class AEvent extends Frame implements ActionListener{
TextField tf;
```

```
AEvent(){

tf=new TextField();

tf.setBounds(60,50,170,20);

Button b=new Button("click me");

b.setBounds(100,120,80,30);

b.addActionListener(this);

add(b);add(tf);

setSize(300,300);

setLayout(null);

setVisible(true);

}

public void actionPerformed(ActionEvent e){

tf.setText("Welcome");

}

public static void main(String args[]){

new AEvent();

}
```


public void setBounds(int xaxis, int yaxis, int width, int height); have been used in the above example that sets the position of the component it may be button, textfield etc.

Java event handling by implementing ActionListener

```
import java.awt.*;
import java.awt.event.*;
class AEvent extends Frame implements ActionListener{
TextField tf;
AEvent(){
//create components
tf=new TextField();
tf.setBounds(60,50,170,20);
Button b=new Button("click me");
b.setBounds(100,120,80,30);
//register listener
b.addActionListener(this);//passing current instance
//add components and set size, layout and visibility
add(b);add(tf);
setSize(300,300);
setLayout(null);
setVisible(true);
public void actionPerformed(ActionEvent e){
tf.setText("Welcome");
public static void main(String args[]){
new AEvent();
} }
```


JAVA

Java MouseListener Interface

The Java MouseListener is notified whenever you change the state of mouse. It is notified against MouseEvent. The MouseListener interface is found in java.awt.event package. It has five methods.

Methods of MouseListener interface

The signature of 5 methods found in MouseListener interface are given below:

```
1. public abstract void mouseClicked(MouseEvent e);
2. public abstract void mouseEntered(MouseEvent e);
3. public abstract void mouseExited(MouseEvent e);
4. public abstract void mousePressed(MouseEvent e);
5. public abstract void mouseReleased(MouseEvent e);
```

Java MouseListener Example

```
import java.awt.*;
import java.awt.event.*;
public class MouseListenerExample extends Frame implements MouseListener{
  Label 1;
  MouseListenerExample(){
    addMouseListener(this);
    l=new Label();
    l.setBounds(20,50,100,20);
    add(1);
    setSize(300,300);
    setLayout(null);
    setVisible(true);
  public void mouseClicked(MouseEvent e) {
    l.setText("Mouse Clicked");
  public void mouseEntered(MouseEvent e) {
    l.setText("Mouse Entered");
  public void mouseExited(MouseEvent e) {
    l.setText("Mouse Exited");
  public void mousePressed(MouseEvent e) {
    l.setText("Mouse Pressed");
  public void mouseReleased(MouseEvent e) {
    l.setText("Mouse Released");
public static void main(String[] args) {
  new MouseListenerExample();
```

} }

Java KeyListener Interface

The Java KeyListener is notified whenever you change the state of key. It is notified against KeyEvent. The KeyListener interface is found in java.awt.event package. It has three methods.

Methods of KeyListener interface

The signature of 3 methods found in KeyListener interface are given below:

```
1. public abstract void keyPressed(KeyEvent e);
```

- 2. public abstract void keyReleased(KeyEvent e);
- 3. public abstract void keyTyped(KeyEvent e);

Java KeyListener Example

```
import java.awt.*;
import java.awt.event.*;
public class KeyListenerExample extends Frame implements KeyListener{
  Label 1;
  TextArea area:
  KeyListenerExample(){
    l=new Label();
    1.setBounds(20,50,100,20);
    area=new TextArea();
    area.setBounds(20,80,300, 300);
    area.addKeyListener(this);
    add(l);add(area);
    setSize(400,400);
    setLayout(null);
    setVisible(true);
  public void keyPressed(KeyEvent e) {
    l.setText("Key Pressed");
  public void keyReleased(KeyEvent e) {
    l.setText("Key Released");
  public void keyTyped(KeyEvent e) {
    l.setText("Key Typed");
  public static void main(String[] args) {
    new KeyListenerExample(); } }
```


Java Adapter Classes

Java adapter classes *provide the default implementation of listener interfaces*. If you inherit the adapter class, you will not be forced to provide the implementation of all the methods of listener interfaces. So it *saves code*.

java.awt.event Adapter classes

Adapter class	Listener interface	
WindowAdapter	WindowListener	
KeyAdapter	KeyListener	
MouseAdapter	MouseListener	
MouseMotionAdapter	MouseMotionListener	
FocusAdapter	FocusListener	
ComponentAdapter	ComponentListener	
ContainerAdapter	ContainerListener	
HierarchyBoundsAdapter	HierarchyBoundsListener	

Java WindowAdapter Example

```
1. import java.awt.*;
import java.awt.event.*;
public class AdapterExample{
  Frame f;
  AdapterExample(){
    f=new Frame("Window Adapter");
    f.addWindowListener(new WindowAdapter(){
       public void windowClosing(WindowEvent e) {
         f.dispose();
                     } });
    f.s etSize(400,400);
    f.setLayout(null);
    f.setVisible(true);
public static void main(String[] args) {
  new AdapterExample();
} }
```


Applets

Applet is a special type of program that is embedded in the webpage to generate the dynamic content. It runs inside the browser and works at client side.

Advantage of Applet

There are many advantages of applet. They are as follows:

- o It works at client side so less response time.
- Secured
- It can be executed by browsers running under many plateforms, including Linux, Windows, Mac Os etc.

Drawback of Applet

o Plugin is required at client browser to execute applet.

Lifecycle of Java Applet

- 1. Applet is initialized.
- 2. Applet is started.
- 3. Applet is painted.
- 4. Applet is stopped.
- 5. Applet is destroyed.

Hierarchy of Applet

Lifecycle methods for Applet:

The java.applet.Applet class 4 life cycle methods and java.awt.Component class provides 1 life cycle methods for an applet.

java.applet.Applet class

For creating any applet java.applet.Applet class must be inherited. It provides 4 life cycle methods of applet.

- 1. **public void init():** is used to initialized the Applet. It is invoked only once.
- 2. **public void start():** is invoked after the init() method or browser is maximized. It is used to start the Applet.
- 3. **public void stop():** is used to stop the Applet. It is invoked when Applet is stop or browser is minimized.
- 4. **public void destroy():** is used to destroy the Applet. It is invoked only once.

java.awt.Component class

The Component class provides 1 life cycle method of applet.

1. **public void paint(Graphics g):** is used to paint the Applet. It provides Graphics class object that can be used for drawing oval, rectangle, arc etc.

Simple example of Applet by html file:

To execute the applet by html file, create an applet and compile it. After that create an html file and place the applet code in html file. Now click the html file.

```
1. //First.java
import java.applet.Applet;
import java.awt.Graphics;
public class First extends Applet{
public void paint(Graphics g){
g.drawString("welcome",150,150);
}
}
```

Simple example of Applet by appletviewer tool:

To execute the applet by appletviewer tool, create an applet that contains applet tag in comment and compile it. After that run it by: appletviewer First.java. Now Html file is not required but it is for testing purpose only.

```
1. //First.java
import java.applet.Applet;
import java.awt.Graphics;
public class First extends Applet{
  public void paint(Graphics g){
    g.drawString("welcome to applet",150,150);
  }
}
/*
<applet code="First.class" width="300" height="300">
  </applet>
*/
```

To execute the applet by appletviewer tool, write in command prompt:

c:\>javac First.javac:\>appletviewer First.java

Difference between Applet and Application programming

	Java Applet	Java Application
User graphics	Inherently graphical	Optional
Memory requirements	Java application requirements plus web browser requirements	Minimal java application requirements
Distribution	Linked via HTML and transported via HTTP	Loaded from the file system or by a custom class loading process
Environmental input	Browser client location and size; parameters embedded in the host HTML document	command-line parameters
Method expected by the virtual Machine	init- initialization method start-startup method stop pause/ deactive method destroy-termination method paint-drawing method	Main - startup method
Typical applications	public-access order-entry systems for the web, online multimedia persentations, web page animation	Network server, multimedia kiosks, developer tools, appliance and consumer electronics control and navigation.

Parameter in Applet

We can get any information from the HTML file as a parameter. For this purpose, Applet class provides a method named getParameter(). Syntax:

1. **public** String getParameter(String parameterName)

Example of using parameter in Applet:

```
1. import java.applet.Applet;
2. import java.awt.Graphics;
3. public class UseParam extends Applet
4. {
5. public void paint(Graphics g)
7. String str=getParameter("msg");
8. g.drawString(str, 50, 50);
9. } }
   myapplet.html
1. <html>
2. <body>
3. <applet code="UseParam.class" width="300" height="300">
4. <param name="msg" value="Welcome to applet">
5. </applet>
6. </body>
7. </html>
```