Mengen:

 $_{\mathrm{A}\subset\mathrm{B}}$ GBA Teilmenge $A \cup B$ Vereinigung Durchschnitt $A\cap\!B$ A',Ā Komplement Α\Β Komp. von B in A

 $A \cup \emptyset = A$ $A \cup \overline{A} = G$ $A \cup A = A$ $A \cap G = A$ $A \cap \overline{A} = \emptyset$ $A \cap A = A$ $A \cup B \!=\! B \cup A$ $(A \cup B) \cup C = B \cup (A \cup C)$ G B $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \setminus A = \emptyset \quad A \setminus \emptyset = A$ $A \times \emptyset = \emptyset \times A = \emptyset$

 $P(\mathcal{O}) = \{\mathcal{O}\}$

Mächtigkeit einer Menge: |M|= Anzahl Elemente in M $P(\emptyset) \times P(\emptyset) = \{(\emptyset, \emptyset)\}$ Potenzmenge: Menge aller Teilmengen. Beispiel:

 $\begin{array}{l} \mathbf{M} = [a,\psi,\{\odot\}] \; ; \; [\mathbf{M}] = 3; P(\mathbf{M}) = \{\varnothing,\mathbf{M},\{a\},\{\psi\},\{\{\odot\}\},\{\{\odot\}\},\{\{\odot\}\},\{\{\odot\}\},\{\{\odot\}\},\{\{\odot\}\},\{\{\odot\}\}\},\{\{\odot\}\},\{\{\odot\}\},\{\{\odot\}\},\{\{\odot\}\},\{\{\odot\}\},\{\{\odot\}\},\{\{\odot\}\}\},\{\{\odot\}\},\{\{\cup\}\},\{$

Kartesisches Produkt:

Allgemein: $A \times B = \{(a,b) | a \in A \land b \in B\}$ (a,b) heisst "geordnetes Paar"

Bsp: $[a,b] \times [\bar{X},Y] = \{(a,X),(a,Y),(b,X),(b,Y)\}$ Mächtigkeit des Kartesischen Produkts: $|A \times B| = |A| \cdot |B|$ Kartesisches Produkt mit leeren Mengen: $\emptyset \times \emptyset = \emptyset$; $|\emptyset| = 0$ Potenzmenge der leeren Menge: $P(\emptyset) = [\emptyset] = [\{\}]$; $|P(\emptyset)| = 1$

Kart. Produkt auf $P(\mathcal{O}): P(\mathcal{O}) \times P(\mathcal{O}) = \{(\mathcal{O}, \mathcal{O})\}$

 $P(\mathcal{O}\times\mathcal{O})=P(\mathcal{O})=\{\mathcal{O}\}; |P(P(M))|=2^{2^{|M|}}; P(P(\mathcal{O}))=\{\mathcal{O},\{\mathcal{O}\}\}$

Homogene, binäre Relationen: $R \subseteq M \times M \Rightarrow R \in P(M \times M) \# xRy :\Leftrightarrow (x,y) \in R$ Anzahl mögliche binäre Relationen R auf eine Menge M: $2^{|M|^2}$

Bei zwei ungleichen Mengen $\,A\,$ und $\,B\,$ gilt also: $\,2^{(|A|\cdot|B|)}$

 $2^{2^{2}}=16$; $2^{3^{2}}=2^{9}=512$; $2^{4^{2}}=2^{16}=65'536$; $2^{5^{2}}=2^{25}=33'554'432$; Bell: Anzahl mögliche binäre Relationen auf P(M): $B_0 = 1$ $B_1 = 1$ $B_2 = 2$ $2^{|P(M)|^2} = 2^{(2^{|M})^2}$ Bsp: $M = \{1, 2, 3, 4\}$; $2^{(2^4)^2} = 2^{16^2} = 2^{256} \approx 1.1579 \cdot 10^{77}$ $B_3 = 5$ $B_4 = 15$ $B_5 = 52$ $B_6 = 203$ $B_7 = 877$ **Partitionen:** $\Pi_{\emptyset} = \{\emptyset\}; |\Pi| = Bellzahl$ $\begin{array}{l} \Pi_{[a,b,c]} = \{ \{[a,b,c]\}, \{[a,b], [c]\}, \{[a], [b,c]\}, \{[a,c], [b]\}, \{[a], [b], [c]\}\} \\ \Pi_{M} = \{A_{i} | i \in \underline{I} \}; A_{i} \neq \emptyset; A_{i} \subseteq M; A_{i} \cap A_{j} = \emptyset, \text{falls } i \pm j; \cup A_{j} = M \\ \end{array}$ B = 4140

Funktionen: $f: A \rightarrow B$

total: $\forall x \in A \exists y \in B: (x, y) \in R$ Alle x aus A sind definiert **funktional:** $\forall x \in A \forall y, z \in B: (x, y) \in R, (x, z) \in R \Rightarrow y = z$ Kein Element aus A hat mehr als einen Partner in B. **surjektiv** : $\Leftrightarrow \forall y \in B : \exists x \in A : f(x) = y / (x, y) \in f$ Jedes Element aus B hat mindestens einen Partner in A.

→ Alle Zielwerte werden als Funktionswert angenommen.

injektiv : $\Leftrightarrow \forall x$, $y \in A$: $f(x) = f(y) \Rightarrow x = y$

Kein Element aus B hat mehr als einen Partner in A.

→ Alle Zielwerte werden höchstens einmal als Fktwert angenommen.

bijektiv : $\Leftrightarrow f$ ist surjektiv und injektiv

Jedes Element aus B hat genau einen Partner in A → eindeutig umkehrbar. "trivial": Bsp: f(x)=5/(f(x))=x; Kein mathem. Ausdruck; Hängt von Aufgabe ab **Verkettung:** $\mathbf{S} \circ \mathbf{R} := \{(x, z) | \exists y \in \mathbf{M}, (x, y) \in \mathbf{R} \land (y, z) \in \mathbf{S}\}, (\mathbf{S} \circ \mathbf{R})(x) = \mathbf{S}(\mathbf{R}(x))\}$

Relationen: $R \subset M^2$:

reflexiv: $\Leftrightarrow \forall x \in M: (x, x) \in R$ Alle mit Loop $irreflexiv: \Leftrightarrow \forall x \in M: (x, x) \notin R$ Keine Loops symmetrisch: $\Leftrightarrow \forall x, y \in M : (x, y) \in R \Rightarrow (y, x) \in R$ Doppelpfeile antisymmetrisch: $\Leftrightarrow \forall x, y \in M: (x, y) \in R \land (y, x) \in R \Rightarrow x = y$ Keine Doppelpf. transitiv: $\Leftrightarrow \forall x, y, z \in M: (x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R$ Abkürzungen

Äquivalenzrelation: reflexiv, symmetrisch, transitiv. Siehe Partition. Halbordnung: reflexif, antisymmetrisch, transitiv. Siehe Hasse-Diagramm.

Matrizen: $M := \{1,2,3\}, R := \{(1,1), (2,3), (3,2)\}$

$$A_R := \begin{pmatrix} x & (y) \\ 10 & 0 \\ 0 & 0 & 1 \\ 0 & 10 \end{pmatrix}$$
 $a_{xy} < x \text{ in Zeile, } y \text{in Spalte}$ Anz. Rel: $2^{|M|^2} = 1,2,16,512...$

Graph: $M := \{1, ..., 5\}; R = \{(1, 1), (2, 2), (4, 3), (3, 1)\}$

40 3, 4

Ungerichteter Graph:

Paar von Mengen G=(V,K)=(V ertexmenge, K antenmenge) V sei eine endliche Menge; $V\neq\emptyset$ K ist eine binäre Rel. auf V; $K\subseteq V\times V$. K ist irreflexiv und symmetrisch.

Ecken/Vertices v_0, v_1 benachtbart/adjeszent $\Leftrightarrow (v_0, v_1) \in K$ Kanten (a, b), (c, d) benachbart $\Leftrightarrow [a, b] \cap [c, d] \neq \emptyset$ $v_0, \dots, v_r(r > 0)$ heisst **Pfad**: $\Leftrightarrow (v_i, v_{i+1}) \in K$ für $i = 0, \dots, r-1$

Pfad heisst **einfach** $\Leftrightarrow v_i \neq v_j$ für $i \neq j$ Pfad heisst **offen** $\Leftrightarrow v_0 \neq v_r$ (kein Ring) Pfad heisst **geschlossen** $\Leftrightarrow v_0 = v_r$ (Ring) Länge Pfad = Anzahl Kanten = Anz. Ecken - 1 Länge Zyklus = Anzahl Kanten = Anz. Ecken Geschl. & einfacher Pfad Z heisst **Zyklus** ⇔länge Z≥3

Graph ohne Zyklen heisst azyklisch

Bipartiter Graph: $G=(V_1 \cup V_2, K); \{V_1, V_2\}$ ist Bipartition Matching: Menge von Kanten, welche nicht benachbart sind. Maximales Matching: Keine weiteren Kanten in diesem M. möglich. Maximum-Matching: Es gibt kein grösseres M. Es ist auch maximal.

Hasse-Diagramm: Graphische darstellung endlicher halbgeordneter Mengen.

maximales/minimales Element: Ganz oben/unten grösstes/kleinstes E.: Alleine oben/unten (auch max./min.) Halbordnung: reflexif, antisymmetrisch, transitiv.

Ordnungshomomorphismus (ordnungstreue Abbildung):

Gegeben: (T(30),|) und $(P([a,b,c]),\subset)$ seien zwei Halbordnungen. Eine Abbildung $h:T(30) \to P([a,b,c])$ heisst $O. \Leftrightarrow \forall x,y \in T(30): (x|y \Rightarrow h(x) \subset h(y))$

Ordnungsisomorph: Bijektiver Homomorphismus.

Aussagenlogik (AL):

Literal: p_1 , $(\neg(p_1))$ Variable oder negative Variable

L_{AL}: {Formeln über AL }

 $\begin{array}{lll} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\$

Konjunktive Normalform: $\psi \in KNF \Leftrightarrow \psi = \varphi_1 \land \varphi_2 \land ... \land \varphi_s$; $s \ge 1 \land \varphi_i Klauseln$

1) Wenn eine Klausel = 0, dann KNF = 0 2) Wenn alle K. = Tautologie, dann KNF = Tautologie 3) Wenn eine K. = Kontradiktion, dann KNF = Kontr. 0 1 0 1 1 0 1 1 0 0 1 0 0 1 Äquivalente Formeln: ⊧(φ↔ψ) $\varphi \lor (\psi \land \varrho) \approx (\varphi \lor \psi) \land (\varphi \lor \varrho) \quad |\varphi \land (\psi \lor \varrho) \approx (\varphi \land \psi) \lor (\varphi \land \varrho)$ 1 1 1 1 1 0 $\neg(\varphi \lor \psi) \approx (\neg \varphi) \land (\neg \psi)$ $\neg(\varphi \land \psi) \approx (\neg \varphi) \lor (\neg \psi)$ $\varphi \lor (\neg \varphi) \approx 1 ; \varphi \land (\neg \varphi) \approx 0$ $\neg(\neg\varphi)\approx\varphi$ $\varphi \land (\varphi \lor \psi) \approx \varphi$ $\varphi \lor (\varphi \land \psi) \approx \varphi$ $\varphi \wedge ((\neg \varphi) \vee \psi) \approx \varphi \wedge \psi$ $\varphi \lor ((\neg \varphi) \land \psi) \approx \varphi \lor \psi$ $(\varphi \land \psi) \lor (\varphi \land (\neg \psi)) \approx \varphi$ $(\varphi \lor \psi) \land (\varphi \lor (\neg \psi)) \approx \varphi$ $\overline{\varphi \rightarrow \psi} \approx ((\neg \varphi) \lor \psi)$ $|(\neg \varphi) \rightarrow (\neg \psi) \approx \varphi \lor (\neg \psi) \approx \psi \rightarrow \varphi$ $\varphi \to (\neg \psi) \approx (\neg (\varphi \land \psi)) \approx (\neg \varphi) \lor (\neg \psi)$ $\overline{\neg \varphi} \rightarrow \psi \approx (\varphi \lor \psi)$ $(\varphi \leftrightarrow \psi) \approx ((\varphi \land \psi) \lor ((\neg \varphi) \land (\neg \psi)))$ $\neg(\varphi \rightarrow (\neg \psi)) \approx (\varphi \land \psi)$

 $(\varphi \oplus \psi) \approx (((\neg \varphi) \land \psi) \lor (\varphi \land (\neg \psi)))$

Ein Modell ist falsifizierbar/erfüllbar, Tautologie/Kontradiktion.

Belegung: ω :AV \rightarrow {0,1} **Modell:** $\models_w \varphi$ // "w ist ein Modell für φ " Logische (/Semantische) **Folgerung**: $\Psi_1, \Psi_2, ... \Psi_n \models \varphi$ Bsp: $\omega(p_1) = 1$; $\omega(p_2) = 0$; Definition: φ folgt semantisch aus $\psi_1, \psi_2, ...$ Interpretation: $\psi_1, \psi_2 \models \varphi$ ist wahr, wenn $\forall \models_\omega \psi_n \Rightarrow \models_\omega \varphi$. $I_{\omega}: \dot{L}_{AL} \rightarrow \{0,1\}$ $Bsp: I_{\omega}(p_1 \land p_2) = 0$

Sprachen:

 $\neg(\varphi \rightarrow \psi)) \approx \varphi \land (\neg \psi)$

Alphabet: Σ = Menge von endlichen Zeichen. Bsp: Wörter: $\omega \in \Sigma^*$: Menge aller endlichen Wörter über Σ . **Wortlänge**: $|\omega|$ = Anzahl Zeichen; **Leeres Wort**: ε ; $|\varepsilon|=0$ **Sprachen über** Σ : $P(\Sigma^*)$: Menge aller Sprachen über Σ **Sprache:** $L \subset \Sigma^*$; Teilmenge von Wörtern aus Σ^*

Beschreibung von Spr.: Aufzählen, Generieren, Akzeptieren, Konstruieren Grammatik: 4-Tupel G:=(N,T,R,S)

N: Nichtterminalalphabet (Variabeln); T: Terminalalphabet; S : Startsymbol; R : Regeln $R \subset (N \cup T)^+ \times (N \cup T)$

⇒ / ⇒*: Anwendung einer/mehrerer Regeln

 $L(G):=\{w \in T^* | S \Rightarrow^* w\}$ Sprache die aus G generiert wird.

C	Chomsky-Hierarchie: G nach Regein klassifizieret						
	Тур	Bezeichnung	Bedingung für Regel: u→v		Art: $\alpha, \beta, \gamma \in (N \cup T)^*$ $A.B \in N \land a \in T$		
	0	allgemein	_		beliebig		
	1	kontextsensitiv		$\omega_1, \omega_2, \omega \in (N \cup T)^*$	$\alpha A \beta \rightarrow \alpha \gamma \beta$		
			$v = \omega_1 \omega \omega_2$	$\omega \neq \varepsilon$, $A \in N$			
			$ u \le v \Rightarrow nichtverk \ddot{u}rzend$				
	2	kontextfrei	$u \in N, v \in (N \cup T)^*$		$A \rightarrow \gamma$		
			wie Typ 1 mit $\omega_1, \omega_2 = \varepsilon$				
	3	regulär	$u \in N, v = a \in T \lor v = aA, A \in N$		A → a a B (rechtsregulär)		
	"beste"		$ u =1; 2 \ge v $	≥1	$A \rightarrow a \mid Ba$ (linksregulär)		

Die Regel $S \rightarrow \varepsilon$ steht "ausser Konkurenz" \rightarrow keine Relevanz bei Klassifizierung!

Klasse einer Grammatik G: "schlechteste" Regel aus Grammatik G. Notation: $L \in \mathcal{L}_i \Rightarrow$ Sprache L ist vom Typ i . D.h. es gibt eine Typ-i-Grammatik \mathscr{L}_{i} Ist die Menge aller Sprachen vom Typ iwelche L erzeugt.

Operationen auf Sprachen von $P(\Sigma^*)$:

Sei \varSigma ein Alphabet und $\mathscr{L}=P(\varSigma^*)$ ($\mathscr{L}=$ Menge der Sprachen über \varSigma) Seien L_1 und $L_2 \in \mathscr{L}$

Bekannte Operationen: \overline{L}_1 (Komplement); $L_1 \cup L_2$; $L_1 \cap L_2$; $L_1 \setminus L_2$; ... **Konkatenation**: $L_1 \circ L_2 = \{\omega_1 \omega_2 | \omega_1 \in L_1, \omega_2 \in L_2\}$ $|L_1 \circ L_2| = |L_1| |L_2|$

Stern- oder Kleene-Operator: $L^* = L^0 \cup L^1 \cup L^2 \cup ... \cup L^n$

 $L^{0} = \{ \varepsilon \}; L^{1} = L; L^{2} = L^{1} \circ L; L^{2} = L^{2} \circ L = (L \circ L) \circ L; L^{n} = L^{n-1} \circ L$

Entprechend mit Alphabet: $\Sigma^* = \{\varepsilon\} \cup \Sigma \cup \Sigma \circ \Sigma \cup \Sigma \circ \Sigma \cup \Sigma \circ \Sigma \cup ... \cup \Sigma^n; \Sigma^+ = \Sigma^* \setminus \{\varepsilon\}$

Als Partition: $\Sigma^* = \bigcup\limits_{n \in \mathbb{N}} \{ \omega \mid |\omega| = n \}$ (Alle Wörter mit Länge von 0 bis n)

Reguläre Ausdrücke:

Ausdruck	PCRE	Wörter (generierte Sprache)	Operation
а	/a/	{a}	-
a*	/a*/	{ε,a,aa,aaa,aaaa,}	Kleene-Stern
[ab]	/ab/	{a} {b} = {ab}	Konkatenation
[aUb]	/(a b)/	${a}U{b} = {a,b}$	Vereinigung
[a*U[bc]*]	/(a* (bc)*)/	{ε,a,aa,aaa,} U {ε,bc,bcbc,bcbcbc,}	(Kombination)
[ɛUb]	/b?/	$\{\varepsilon\}$ U $\{b\}$ = $\{\varepsilon,b\}$	Vereinigung

Syntax: definiert, wie reguläre Ausdrücke auszusehen haben: regex = [a*Ub*] Semantik: definiert, welche formale Bedeutung die Syntax hat: E(regex) = {a}*U{b}* Grammatik: **E** (Kleene-Mykill): $E:(Reg_{\mathcal{A}}) \to Reg_{\mathcal{A}}$

 $G_{reg} = (N, T, R, S); N = \{S\};$ E(Ausdruck (=Zeichenkette)):=Sprache (=Menge von Wörtern) $E(\mathcal{O}) := \mathcal{O}$ $\forall \alpha, \beta \in Reg_{A}$ $\mathcal{A} = \{a_1, a_2, ..., a_n\}$ $E(\varepsilon) := \{\varepsilon\}$ $E([\alpha \cup \beta]) := (E(\alpha) \cup E(\beta))$ $T = \mathcal{A} \cup \{\tilde{\mathcal{O}}, \varepsilon, \cup, *, [,]\}$ $\forall a \in A : a \rightarrow E(a) := [a] \quad E([\alpha \beta]) := (E(\alpha) \circ E(\beta))$ $R = \{ \forall b \in A \cup \{\emptyset, \varepsilon\} : S \rightarrow b,$ $E(\alpha^*) := E(\alpha)^*$ $S \rightarrow [S \cup S], S \rightarrow [SS], S \rightarrow S^*$

Korollar: Jede reguläre Sprache über ${\mathcal A}$ lässt sich aus den endlichen Sprachen über $\, \mathcal{A} \,$ mithilfe der Operationen $\, \cup \,$, $\, \circ \,$, und $\, ^* \,$ konstruieren.

Pumping-Lemma:

Sei $L \in \Re g_{\Sigma} \Rightarrow \exists A \in DFA: L(A) = L$ d.h. $A = (Q, \Sigma, \delta, q_0, F): Q = [q_0, \dots, q_k]: n = |Q|: |L| = \infty$ Sei $\omega \in L$ mit $|\omega| \ge n$. $\omega = xyz; |xy| \le n; |y| \ge 1; \forall k \in \mathbb{N}: xy^k z \in L$

Da ein Zustand mehr als einmal durchquert wird, kann y beliebig oft vorkommen.

Bsp: $L \in P(\{0,1\}^*); L = \{0^k, 1^k\}; k \in \mathbb{N}; n \ge 1$

$$\omega = \underbrace{0...0}_{xy} \underbrace{1...1}_{z} \in L //|\omega_k| = 2k \quad \Rightarrow y = 0...0 \quad \Rightarrow \tilde{\omega} = xyyz \in L \quad \Leftrightarrow \quad \frac{1}{x} \xrightarrow{\psi} \xrightarrow{\psi} \xrightarrow{\psi} \xrightarrow{z} \xrightarrow{\psi}$$

Automaten:

Deterministischer endlicher Automat (DFA): 5-Tupel $A=(Q, \Sigma, \delta, q_o, F)$

 $Q: \mathsf{Zust"ande}; \ \ \mathcal{\Sigma}: \mathsf{Alphabet}; \ \ \delta: \ \ Q \times \mathcal{\Sigma} \rightarrow Q \quad (\mathsf{Zust"ands"ubergangsfunktion})$

 $q_{\scriptscriptstyle{0}}$: Anfangszustand; ${\it F}{\subset}{\it Q}\,$: Akzeptierte Endzustände

Von jedem Zustunde gehen so viele Pfeile weg wie es Buchstaben in Σ hat! **Antwortfunktion**: $r_A: \Sigma^* \to Q \Leftrightarrow r_A(\varepsilon) = q_0; \ \forall \ \omega \in \Sigma^*, a \in \Sigma: r_A(\omega a) = \delta(r_A(\omega), a)$

 $L(A):=\{\omega\in\Sigma^*|r_A(\omega)\in F\}$ die vom Automaten A akzeptierte (reguläre) Sprache.

Startzust.: \diamond akzeptierter Z: \circledcirc übrige Z: \circ akz. Start-Z.: \circledcirc $\Rightarrow \varepsilon \in L(A)$

Nichtdeterministische Automaten (NFA):

Der Automat hat auf dem Weg zum Ergebnis Wahlfreiheiten.

 $\forall A \in NFA \exists B \in DFA : L(A) = L(B) \text{ mit } \delta_B : Q \times \Sigma \rightarrow P(Q)$

Determinisierung nach Rabin/Scott (Umwandlung NFA
$$\rightarrow$$
 DFA):
$$A{=}(Q_A, \Sigma, \delta_A, q_{0A}, F_A); B{=}(Q_B, \Sigma, \delta_B, q_{0B}, F_B); L(A){=}L(B)$$

$$Q_B{=}P(Q_A); \quad q_{0B}{=}\{q_{0A}\};$$

R:Zustand von B, also $R \in P(Q_A)$: $\delta_B(R,a) = \{q \in Q_A | \exists r \in R : \delta_A(r,a) = q\}$; Anders gesagt: $\delta_B(R,a) = \bigcup \delta_A(r,a)$

reference $B(R, \alpha) = S \circ A$

 $F_B = \{R \in P(Q_A) | R \cap F \neq \emptyset\}$

Beispiel:

$$\begin{split} &A \! = \! (Q_{\scriptscriptstyle A}, \Sigma, \delta_{\scriptscriptstyle A}, q_{\scriptscriptstyle 0}, F_{\scriptscriptstyle A}); B \! = \! (Q_{\scriptscriptstyle B}, \Sigma, \delta_{\scriptscriptstyle B}, [q_{\scriptscriptstyle 0}], F_{\scriptscriptstyle B}); \\ &Q_{\scriptscriptstyle A} \! = \! [q_{\scriptscriptstyle 0}, q_{\scriptscriptstyle 1}, q_{\scriptscriptstyle 2}]; \; \Sigma \! = \! [a,b]; \; F_{\scriptscriptstyle A} \! = \! [q_{\scriptscriptstyle 2}]; \\ &Q_{\scriptscriptstyle B} \! = \! P(Q_{\scriptscriptstyle A}) \! = \! [\mathcal{D}, [q_{\scriptscriptstyle 0}, [q_{\scriptscriptstyle 0}, q_{\scriptscriptstyle 1}], \dots]; \\ &\delta_{\scriptscriptstyle A}(q_{\scriptscriptstyle 0}, a) \! = \! q_{\scriptscriptstyle 1}; \delta_{\scriptscriptstyle A}(q_{\scriptscriptstyle 0}, b) \! = \! q_{\scriptscriptstyle 1} |q_{\scriptscriptstyle 2}... \end{split}$$

NFA/ε:

Ohne weiteren Buchstaben zu lesen, kann der Zustand durch ϵ geändert werden. Dieser wird zuerst in einen NFA (ohne ϵ) gewandelt und anschliessend in einen DFA.

Sonstiges/Beispiele:

Primzahlen: 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | 83 | 89 | 97 | (1 gehört per Def. nicht dazu!)

 $T(32) = \{1,2,4,8,16,32\}; \ T(36) = \{1,2,3,4,6,9,12,18,36\}; \ T(34) = \{1,2,17,34\}; \ T(30) = \{1,2,3,5,6,10,15,30\}$

P({1,2,3})

Für $(P(\{1,2,3\}),\subseteq)$ und (T(30),|) sind ordnungsisomorph:

$\{(\{1,2,3\},30),\,(\{1,2\},6),\,(\{1,3\},10),\,(\{2,3\},15),\,(\{1\},2),\,(\{2\},3),\,(\{3\},5),\,(\{\},1)\};$

Spickzettel "Diskrete Mathematik 1" für MSP.

Erstellt von Claude Martin. FHNW Windisch. Studiengang Informatik.

Herbstsemester 2010/2011. Dozent: D. Mall.

Alles ohne Gewähr! Kein Anspruch auf Korrektheit oder Vollständigkeit!

Regexp -> Automat:

Automat für Regexp "a":

Kleene Operation auf einen Automaten: $A(b^*)=A(b)^*$ [®] von A werden durch ε mit dem $^{\diamondsuit}$ (als $^{\bigodot}$) von A verbunden.

 $A([a \cup b])=A(a)\cup A(b)$

Verkettung zweier Automaten: A∪B

Neues ♦ wird durch ε jeweils mit ♦ von A und B (als ○) verbunden.

 $A([ab])=A(a)\circ A(b)$

Verkettung zweier Automaten: A B

[⊚] von A werden durch ε mit dem [◇] von B (als [○]) verbunden.

Spezielle Reguläre Ausdrücke:

Leere Sprache: { }

 $\emptyset \to A(\emptyset)$:

Sprache mit leerem Wort: {\$\mathbf{\epsilon}\$}

 $\varepsilon \to A(\varepsilon)$:

Ein Beispiel: $[[[ab]^*c] \cup [cb]]$

Sprache:

 $E([[[ab]^*c] \cup [cb]]) = \{c,abc,ababc,abababc,...\} \cup \{cb\}$

Notizen: