判断题答案在所有判断题题目后面

一、单项选择题

1. 图示结构 A 截面的弯矩为 (A)

- A. $F_{p}l$, 下侧受拉
- B. F_{il} , 上侧受拉
- C. $2F_{pl}$, 上侧受拉 D. $2F_{pl}$, 下侧受拉
- 2. 静定结构产生位移的原因有(D)
 - A 荷载作用与温度变化 B 支座位移
 - C 制造误差
- D 以上四种原因
- 3. 静定结构由于支座位移,将(C)。
 - A 发生变形和位移
- B 不发生变形和位移
- C 不发生变形,但产生位移 D 发生变形,但不产生位移
- 4. 结构位移计算的一般公式根据什么原理推导的? (B)
 - A 虚位移原理
- B虚功原理
- C反力互等原理
- D位移互等原理
- 5. 图乘法的适用条件为(D)。
 - $A M_P \overline{M}$ 图中至少有一图是由直线组成
 - B 杆件的 EI 为常数
 - C杆件为直杆
 - D 同时满足以上条件
- 6. 图示简支梁中间截面的弯矩为(A)

7. 图示悬臂梁中间截面的弯矩为(B)

- $A \qquad \frac{ql^2}{16}$
- B $\frac{ql^2}{8}$
- $C = \frac{ql^2}{4}$
- D $\frac{ql^2}{2}$
- 8. 图示梁 AB在所示荷载作用下 A 截面的剪力值为(A)

9. 图示结构 AB杆件 A 截面的弯矩等于(B)

A 0

- B $F_p l$ 上侧受拉
- C $2F_{p}l$ 下侧受拉
- D $F_p l$ 下侧受拉
- 10. 图示结构的弯矩图形状应为(B)

11. 图示多跨静定梁的基本部分是(A)

- A ABC部分 B BCD部分
- C CDE 部分 D DE 部分

12. 图示多跨静定梁的基本部分是(A)

- A AB 部分
 B BC 部分

 C CD 部分
 D DE 部分
- 13. 结构位移计算时虚设力状态中的荷载可以是(A)
 - A 任意值(除 0 外) B 1

C正数

- D负数
- 14. 静定结构的内力与刚度(D)
 - A 有关
- B 比值有关
- C 绝对值有关 D 无关
- 15. 求图示结构 AB 两点的相对线位移,虚设力状态为图(A)

- 16. 力法典型方程是根据以下哪个条件得到的?(C)
 - A 结构的平衡条件

B结构的物理条件

- C 多余约束处的位移协调条件 D 同时满足 A、B 两个条件
- 17. 超静定结构产生内力的原因有(D
 - A 荷载作用或温度变化
- B支座位移
- C制造误差

- D以上四种原因
- 18. 超静定结构在荷载作用下产生的内力与刚度(A)
 - A 相对值有关

B绝对值有关

C 无关

- D 相对值绝对值都有关
- 19. 超静定结构在支座移动作用下产生的内力与刚度(C)
 - A 无关

B 相对值有关

- C 绝对值有关
- D 相对值绝对值都有关
- 20. 用力法计算超静定结构时,其基本未知量为(D)
 - A 杆端弯矩

- B 结点角位移
- C 结点线位移
- D 多余未知力
- 21. 力法的基本体系是(D)
 - A 一组单跨度超静定梁
 - B 瞬变体系
 - C 可变体系
- D 几何不变体系
- 22. 在力法方程的系数和自由项中(B)

 - A δ_{ii} 恒大于零 B δ_{ii} 恒大于零

 - C δ_{ii} 恒大于零 D Δ_{ip} 恒大于零
- 23. 力法典型方程中的系数 δ_{ii} 代表基本结构在(C)
 - A $X_i = 1$ 作用下产生的 X_i 方向的位移
 - B $X_i = 1$ 作用下产生的 X_i 方向的位移

- $CX_{j} = 1$ 作用下产生的 X_{i} 方向的位移
- D $X_j = 1$ 作用下产生的 X_j 方向的位移
- 24. 用力法计算图示结构时,不能作为基本结构的是图(A)

25. 图示超静定结构的超静定次数是(B)

A 5 B 7 C 8 D 6

26. 图示结构的超静定次数为 (D)

A 1 B 2 C 3 D 4

27. 用力法求解图示结构时,基本未知量的个数是(B)

34. 图示对称结构杆件 EI 为常量,利用对称性简化后的一半结构为(A)

35. 图示对称结构受正对称荷载作用,利用对称性简化后的半边结构为(A)

- 36. 用位移法计算超静定结构时,基本未知量的数目与(D)相等
 - A 多余约束数
- B 刚结点数
- C 铰结点数
- D 独立的结点位移数
- 37. 用位移法计算超静定刚架时,独立的结点角位移数目决定于(C)
 - A 铰结点数
- B 超静定次数
- C 刚结点数
- D 杆件数
- 38. 用位移法求解图示结构时,基本未知量的个数是(B)

39. 图示超静定结构用位移法求解,结点角位移的个数是(C)

40. 用位移法计算图示超静定结构,其独立的结点角位移的个数是(A)

- 41. 位移法典型方程的物理意义是(A)
 - A 附加约束上的平衡方程 B 附加约束上的位移条件
 - C 外力与内力的关系
- D 反力互等定理
- 42. 在位移法计算中规定正的杆端弯矩是(A)

 - A 绕杆端顺时针转动 B 绕结点顺时针转动
 - C 绕杆端逆时针转动
- D 使梁的下侧受拉
- 43. 位移法基本方程中的自由项 F_{ip} ,代表基本结构在荷载单独作用下产生的(C)

A Δ,

 $B \Delta_i$

C 第 i 个附加约束中的约束反力 D 第 j 个附加约束中的约束反力

44. 用力矩分配法计算超静定结构时, 刚结点的不平衡力矩等于(B)

A 结点上作用的外力矩 B 附加刚臂中的约束反力矩

- C 汇交于该结点的固端弯矩之和 D 传递弯矩之和
- 45. 与杆件的传递弯矩有关的是(B)
 - A 分配弯矩

B 传递系数

C 分配系数

- D 结点位移
- 46. 图示结构杆件 BA 的 B 端转动刚度 S_{BA} 为 (C)

47. 图示结构杆件 BC的 B端转动刚度 S_{BC} 为 (D)

- 48. 在力矩分配法中传递系数 C与什么有关? (D)
 - A 荷载

- B 线刚度 *i*
- C 近端支承
- D 远端支承
- 49. 力矩分配法的直接对象是(A)
 - A 杆端弯矩
- B 结点位移
- C 多余未知力
- D 未知反力
- 50. 汇交于一刚结点的各杆端弯矩分配系数之和等于(A)
 - A 1

B 0

C 1/2

- D 1
- 51. 一般情况下结点的不平衡力矩总等于(A)
 - A 汇交于该结点的固定端弯矩之和
 - B 传递弯矩之和
 - C 结点集中力偶荷载
 - D 附加约束中的约束力矩
- 52. 下图所示连续梁结点 B的不平衡力矩为 (A)

- 53. 影响线的纵坐标是(D)

 - A 固定荷载的数值 B 移动荷载的数值
 - C 不同截面的某一量值 D 指定截面的某一量值
- 54. 影响线的横坐标是(D)

A 固定荷载的位置

B 移动荷载的位置

C截面的位置

D单位移动荷载的位置

- 55. 静定结构内力与反力影响线的形状特征是(A)
 - A 直线段组成

B曲线段组成

C直线曲线混合

D二次抛物线

- 56. 机动法作静定梁影响线应用的原理为(C)
 - A 变形体虚功原理 B 互等定理

C 刚体虚功原理 D 叠加原理

- 57. 机动法作静定梁影响线的假设为(A)

 - A 杆件为刚性杆 B 杆件为弹性杆

 - C 杆件为塑性杆 D 杆件为弹塑性杆
- 58. 绘制影响线采用的是(D)

A 实际荷载 B 移动荷载

C单位荷载

- D单位移动荷载
- 59. 图示梁中 F_{VA} 的影响线为(D)

- 60. 由基本附属型结构的受力特点可知,附属部分的内力(反力)影响线在基本 部分上(A)
 - A 全为零

B全为正

C 全为负

- D可正可负
- 61. 图示梁 A 截面弯矩影响线是(A)

62. 根据影响线的定义,图示悬臂梁 A截面的剪力影响线在 B点的纵坐标为(C)

63. 根据影响线的定义,图示悬臂梁 A 截面的弯矩(下侧受拉为正)影响线在 B 点的纵坐标为(B)

64. 图示结构中,除横梁外各杆件 EI = 常数。质量集中在横梁上,不考虑杆件的轴向变形,则体系振动的自由度数为(A)

C 3 D 4

65. 不考虑杆件的轴向变形, 竖向杆件的 EI=常数。图示体系的振动自由度为(A)

66. 在结构动力计算中,体系振动自由度数 n 与质点个数 m 的关系为 (D)

A n 小于 m

B m 小于 n

C 相等

D 不确定

67. 反映结构动力特性的重要物理参数是(B)

A 振动自由度

B自振频率

C振幅

D 初位移

68. 结构动力计算的基本未知量是(A)

A 质点位移

B结点位移

C多余未知力

D 杆端弯矩

69. 图示结构中,使体系自振频率 ω 减小,可以(C)

70. 在图示结构中,为使体系自振频率 ω 增大,可以(D)

71. 在图示结构中,使体系自振频率 ω 减小,可以(C)

72. 忽略直杆轴向变形的影响,图示体系的振动自由度为(C)。

- 73. 静定结构由于温度变化,能(A)。
 - A. 发生变形和位移
- B. 不发生变形和位移
- C. 不发生变形, 但产生位移 D. 发生变形, 但不产生位移
- 74. 力法典型方程中的自由项 Δ_{iP} 是基本体系在荷载作用下产生的(C)。
 - A. X_i

- B. X_i
- $C. x_i$ 方向的位移
- D. X_i 方向的位移
- 75. 不考虑杆件的轴向变形,下图所示体系的振动自由度为(A)。

A. 1

B. 2

C. 3

- D. 4
- 76. 在力矩分配法中, 当远端为固定支座时, 其传递系数为(A)。

D. -1

B. 1

C. 0

77. 位移法是利用什么条件建立典型方程(B)。

- A. 位移协调条件
- B. 平衡条件
- C. 虚功原理
- D. 胡克定律
- 78. 图示结构的超静定次数是(C)。

A. 1

B. 2

C. 3

D. 4

79. 对图 a 所示结构,按虚拟力状态 b 将求出 (D)。

- A. A、D两截面的相对转动 B. A、D两点的相对线位移
- C. A、D两点的相对水平位移 D. A、D连线的转动
- 80. 图示结构当支座 B有沉降时,产生(C)。

- A. 内力
- B. 反力
- C. 位移
- D. 变形
- 81. 图示 a、b 两体系的自振频率 $\omega_{\rm a}$ 与 $\omega_{\rm b}$ 的关系为(B)。

- A. $\omega_{\rm a} > \omega_{\rm b}$ B. $\omega_{\rm a} < \omega_{\rm b}$
- C. $\omega_{\rm a}=\omega_{\rm b}$ D. 不确定

- 82. 荷载作用下产生桁架位移的主要原因是(A)。 A. 轴向变形 B. 弯曲变形
 - C. 剪切变形 D. 扭转变形
- 83. 位移法计算图示超静定结构时,独立结点角位移的个数是(C)

A. 1

B. 2

C. 3

- D. 4
- 84. 静定结构产生内力的原因有(D)
 - A. 制造误差
- B. 支座位移
- C. 温度变化
- D. 荷载作用
- 85. 超静定结构的超静定次数等于结构中(B)
 - A. 约束的数目

B. 多余约束的数目

C. 结点数

- D. 杆件数
- 86. 用位移法计算图示各结构,受弯杆件不考虑轴向变形时,基本未知量是两个的结构为($^{\circ}$ C)

A. B.

C.

D.

87. 在图示结构中,让体系自振频率 ω 减小,可以(C)

二、判断题

- 1. 静定结构产生内力的原因是荷载作用。()
- 2. 图示多跨静定梁仅 FD 段有内力。()

- 3. 静定多跨梁中基本部分、附属部分的划分与杆件的刚度绝对值有关。()
- 4. 静定多跨梁中基本部分、附属部分的确定与所承受的荷载有关。()
- 5. 一般来说静定多跨梁的计算是先计算基本部分后计算附属部分。()
- 6. 基本附属型结构力的传递顺序是从附属部分到基本部分。()
- 7. 图示刚架, *AB* 部分的内力为 0。()

- 8. 用平衡条件能求出全部内力的结构是静定结构。 ()
- 9. 求桁架内力时截面法所截取的隔离体包含两个或两个以上的结点。()
- 10. 某荷载作用下桁架可能存在零杆,它不受内力,因此在实际结构中可以将其去掉。()
- 11. 在温度变化或支座位移的作用下,静定结构有内力产生。()
- 12. 支座移动时静定结构发生的是刚体位移。()
- 13. 当结构中某个杆件的 EI 为无穷大时, 其含义是这个杆件无弯曲变形。()
- 14. 当结构中某个杆件的 EA 为无穷大时,其含义是这个杆件无轴向变形。()

- 15. 静定结构的内力与材料的性质无关。()
- 16. 静定结构的内力和反力与杆件截面的几何尺寸有关。()
- 17. 计算受弯杆件时不考虑其轴向变形,则杆件轴力为0。()
- 18. 桁架结构在结点荷载作用下,杆内只有剪力。()
- 19. 图示悬臂梁截面 A 的弯矩值是 ql^2 。()

20. 图示梁 AB在所示荷载作用下 A截面的弯矩值为 $2ql^2$ 。()

21. 图示为刚架的虚设力状态,按此力状态及位移计算公式可求出 A 处的水平位移。()

22. 图示为梁的虚设力状态,按此力状态及位移计算公式可求出 AB 两点的相对线位移。()

23. 图示为刚架. 的虚设力状态, 按此力状态及位移计算公式可求出 A 处的水平位移。()

24. 图示为梁的虚设力状态, 按此力状态及位移计算公式可求出梁较 B两侧截面的相对转角。()

25. 图示结构的超静定次数是 n=3。()

- 26. 超静定结构的超静定次数等于结构的多余约束的数目。()
- 27. 超静定次数一般不等于多余约束的个数。()
- 28. 力法计算的基本体系不能是可变体系。()
- 29. 同一结构选不同的力法基本体系,所得到的力法方程代表的位移条件相同。
- 30. 支座位移引起的超静定结构内力,与各杆刚度的相对值有关。()
- 31. 超静定结构的力法基本结构不是唯一的。()
- 32. 同一结构选不同的力法基本体系所得到的最后结果是相同的。()
- 33. 用力法计算超静定结构,选取的基本结构不同,则典型方程中的系数和自由项数值也不同。()
- 34. 在荷载作用下,超静定结构的内力分布与各杆刚度的绝对值有关。()
- 35. 力法典型方程是根据平衡条件得到的。()
- 36. 用力法计算时,多余未知力由位移条件来求,其他未知力由平衡条件来求。
- 37. 力法的基本方程使用的是位移条件,该方法只适用于解超静定结构。()
- 38. 力法典型方程中的系数项 Δ_{ip} 表示基本结构在荷载作用下产生的沿 X_i 方向的位移。()
- 39. 力法典型方程的等号右端项不一定为 0。()
- 40. 超静定结构的内力与材料的性质无关。()
- 41. 超静定结构的内力状态与刚度有关。()
- 42. 超静定结构由于支座位移可以产生内力。()
- 43. 温度改变在静定结构中不引起内力; 温度改变在超静定结构中引起内力。()
- 44. 由于支座位移超静定结构产生的内力与刚度的绝对值有关。()
- 45. 位移法典型方程中的主系数恒为正值,副系数恒为负值。()
- 46. 位移法的基本结构是一组单跨超静定梁。()
- 47. 位移法可用来计算超静定结构也可用来计算静定结构。()
- 48. 位移法的基本结构不是唯一的。()
- 49. 位移法的基本结构是超静定结构。()
- 50. 用位移法解超静定结构时, 附加刚臂上的反力矩是利用结点平衡求得的。()
- 51. 用位移法计算荷载作用下的超静定结构,采用各杆的相对刚度进行计算,所得到的结点位移不是结构的真正位移,求出的内力是正确的。()
- 52. 位移法的基本未知量与超静定次数有关,位移法不能计算静定结构。()

- 53. 力矩分配法只适用于连续梁的计算。()
- 54. 力矩分配法适用于所有超静定结构的计算。()
- 55. 能用位移法计算的结构就一定能用力矩分配法计算。()
- 56. 在力矩分配法中, 当远端为定向支座时, 其传递系数为 0。()
- 57. 用力矩分配法计算结构时,汇交于每一结点各杆端分配系数总和为 1,则表明分配系数的计算无错误。()
- 58. 在力矩分配法中,结点各杆端分配系数之和恒等于1。()
- 59. 汇交于某结点各杆端的力矩分配系数之比等于各杆端转动刚度之比。()
- 60. 用力矩分配法计算结构时,结点各杆端力矩分配系数与该杆端的转动刚度成正比。()
- 61. 在多结点结构的力矩分配法计算中,可以同时放松所有不相邻的结点以加速收敛速度。()
- 62. 影响线的横坐标是移动的单位荷载的位置。()
- 63. 静定结构剪力影响线是由直线段组成的。()
- 64. 弯矩影响线竖坐标的量纲是长度。()
- 65. 静定结构的内力和反力影响线是直线或者折线组成。()
- 66. 图示影响线是 A 截面的弯矩影响线。()

67. 图示影响线中 K 点的竖坐标表示 P=1 作用在 K 点时产生的 K 截面的弯矩。

68. 图示结构 A 截面剪力影响线在 B 处的竖标为 1。()

69. 图示简支梁支座反力 F_{yz} 的影响线是正确的。()

- 70. 一般情况下,振动体系的振动自由度与超静定次数无关。()
- 71. 图示体系有3个振动自由度。()

72. 图示结构中,除横梁外,各杆件 EI = 常数。不考虑杆件的轴向变形,则体系振动的自由度数为 1。()

- 73. 刚结点可以承受和传递力,但不能承受和传递力矩。()
- 74. 结构由于弱阻尼其自由振动不会衰减。 ()
- 75. 结构的自振频率与干扰力无关。()
- 76. 结构的自振频率与结构中某杆件的刚度无关。()
- 77. 在结构动力计算中,振动体系的振动自由度等于质点的数目。()
- 78. 图 (a) 为一个对称结构作用对称荷载,利用对称性简化的半边结构如图 (b) 所示。()

79. 对称结构在反对称荷载作用下,反力、内力都是反对称的() 80. 同一结构选不同的力法基本体系, 所得到的力法方程代表的位移条件不相同。 () 81. 位移法的基本结构是静定结构。() 82. 静定结构的支座反力与构件所使用材料的弹性模量有关。() 83. 虚功原理既适用于静定结构,也适用于超静定结构。() 84. 自由振动过程中无外荷载作用。() 85. 在结构发生变形时, 刚结点处各杆端之间的夹角保持不变。() 86. 用力法计算超静定结构,选取的基本结构可以是几何可变体系。() 87. 超静定结构的内力状态仅由静力平衡条件不能唯一确定。(√) 88. 两根链杆的约束作用相当于一个单铰。() 89. 在力矩分配法中,规定杆端力矩绕杆端顺时针为正,外力偶绕结点顺时针为 正。() 90. 无阻尼单自由度体系自由振动时,质点的速度和加速度在同一时刻达到最大 值。() 91. 静定结构的内力与结构的几何形状和尺寸有关。() 92. 外力作用在静定多跨梁的基本部分上时,附属部分的内力、变形和位移均为 零。() 93. 力法计算超静定结构时,可选的基本结构是唯一的。() 94. 用位移法解超静定结构时, 附加刚臂上的反力矩是利用结点的位移协调条件 求的。() 95. 结构的自振频率与结构的刚度及动荷载的频率有关。() 96. 一个点在平面内的自由度等于1。() 97. 对于只有一个结点角位移的结构,利用力矩分配法计算可以得到精确解。() 98. 对称结构在正对称荷载作用下, 弯矩图和轴力图是反对称的, 剪力图是正对 称的。() 99. 对称结构在正对称荷载作用下,内力是对称的,反力是反对称的。() 100. 静定结构一定是无多余约束的几何不变体系。() 101. 外界干扰力既不改变体系的自振频率,也不改变振幅。() 102. 从形状上看,连续梁的内力影响线是曲线段图形。() 103. 一个刚结点相当于 3 个约束。() 104. 力矩分配法适用于连续梁和无结点线位移的刚架。() 105. 作用在静定多跨梁中基本部分上的荷载对附属部分没有影响。() 106. 在理想桁架结构中,杆件内力不是只有轴力。() 107. 当 AB杆件刚度系数 $S_{AB} = 3i$ 时,杆件的 B端为固定支座。()

108. 图(a)对称结构利用对称性可简化为图(b)来计算。()

109. 结构的自振频率与外激励无关。()

110. 不考虑杆件的轴向变形,图示结构用位移法计算的基本未知量是4。()

参考答案:

 $2\times$ $3 \times$ $4 \checkmark$ 6 √ $5\times$ $7 \checkmark$ 8 √ 9 √ $10 \times$ $11 \times 12 \checkmark 13 \checkmark 14 \checkmark 15 \checkmark$ $16 \times 17 \times$ $18 \times$ $19 \times$ $20\times$ $21 \times 22 \times$ 23 √ $24 \checkmark$ 25 √ 26 √ 28 √ $27\times$ $29\times$ $30 \times$ 31 √ $32 \checkmark 33 \checkmark 34 \times$ 37 √ 39 √ $35\times$ 36 √ 38 √ $40 \times$ $42 \checkmark 43 \checkmark 44 \checkmark$ $47 \checkmark$ 49 √ 41 √ $45\times$ 46 √ $48 \times$ 50 √ 51 √ $52 \times$ $53 \times$ $54 \times$ $56 \times$ $57 \times$ 58 √ 59 √ 60 √ $55\times$ 61 √ 62 √ 63 √ 64 √ 65 √ 66 √ $67 \times$ 68 √ $69 \times$ 70 √ $71 \times$ 72 √ $73 \times 74 \times$ 75 √ $76\times$ $77\times$ 78 √ 79 √ 80 √ $81 \times$ $82\times$ 83 √ 84 √ 85 √ $86 \times$ 87 √ $88 \times$ 89 √ 90× 91 √ 92× $93 \times 94 \times 95 \times$ 96× 97 √ 98× 99× 100 √ $101 \times 102 \checkmark 103 \checkmark 104 \checkmark 105 \checkmark$ $106 \times 107 \times 108 \times 109 \sqrt{110} \sqrt{}$

三、作图题。

1. 作图示静定梁的弯矩图。

2. 作图示静定梁的弯矩图。

参考答案:

3. 作图示静定梁的弯矩图。

参考答案:

4. 作图示结构的弯矩图。

参考答案:

5. 作图示静定梁的弯矩图。

参考答案:

6. 作图示静定梁的弯矩图。

参考答案:

7. 作图示静定梁的弯矩图。

8. 作图示静定梁的弯矩图。

参考答案:

9. 作图示静定梁的弯矩图。

10. 作图示静定梁的弯矩图。

11. 作图示静定梁的弯矩图。

四、用力法计算。

1. 用力法计算图示结构,并作弯矩图。各杆 EI=常数。

参考答案:

(1) 一次超静定,基本体系和基本未知量,如图(a)所示。

(a) 基本体系

(2) 列力法方程

$$\Delta_{\rm l} = \delta_{\rm l1} X_{\rm l} + \Delta_{\rm lP} = 0$$

(3) 作 \overline{M}_1 图, 见图 (b)

作**M**_P图,见图(c)

(4) 计算δ₁₁、Δ_{1P}

$$\begin{split} &\delta_{11} = \sum \int \frac{\overline{M}_1^2}{EI} \, \mathrm{d} \, s = \frac{1}{EI} \times \frac{1}{2} \times l \times l \times l \times \frac{2}{3} = \frac{l^3}{3EI} \\ &\Delta_{1P} = \sum \int \frac{\overline{M}_1 M_P}{EI} \, \mathrm{d} \, s = -\frac{1}{EI} \times \frac{1}{2} \times l \times l \times F_P l \times \frac{1}{2} = -\frac{F_P l^3}{4EI} \\ &X_1 = \frac{3F_P}{4} \end{split}$$

(5) 作 M 图

2. 用力法计算图示结构,并作弯矩图。各杆 EI=常数。

参考答案: 利用对称性荷载分组如图(a)、(b) 所示。

图 (a) 简化一半刚架如图 (c) 所示。

一半刚架弯矩图如图(d)所示。

作后弯矩图如图 (f) 所示。

3. 用力法计算图示结构,并作弯矩图。各杆 EI=常数。

参考答案:(1)原结构为一次超静定结构,选取用力法计算的基本体系如图所示。

(2) 列力法方程

$$\delta_{11}X_1 + \Delta_{1P} = 0$$

(3)作 \overline{M}_1 图, M_p 图,计算 δ_{11} 、 Δ_{1P} 。

4. 用力法计算图示结构,作弯矩图。各杆件 EI=常数。

(1) 选取基本体系 参考答案:

- (2) 列力法方程 $\Delta_1 = \delta_{11} X_1 + \Delta_{1P} = 0$
- (3) 作 \overline{M}_1 图

(4) 作**M**_P图

- (5) 由图乘法计算 $\delta_{11} = \frac{4l^3}{3EI}$
- (6) 由图乘法计算 $\Delta_{IP} = -\frac{29Pl^3}{48EI}$
- (7)解方程可得 $X_1 = \frac{29P}{64}$
- (8) 由叠加原理作弯矩图

5. 用力法计算图示结构,作弯矩图。各杆件 EI=常数。

参考答案: (1) 选取基本体系

(2) 列力法方程

$$\Delta_1 = \delta_{11} X_1 + \Delta_{1P} = 0$$

(3) 作 \overline{M}_1 图 (单位: m)

(4)作M_P图 (单位: kN·m)

- (5) 由图乘法计算 $\delta_{11} = \frac{32}{3EI}$
- (6) 由图乘法计算 $\Delta_{\text{IP}} = -\frac{1360}{3EI}$
 - (7)解方程可得 $X_1 = 42.5$ kN
- (8) 由叠加原理作弯矩图(单位: kN·m)

6. 利用对称性计算图示结构,作弯矩图。各杆件 EI=常数。

参考答案: 简化后可取半边结构如所示

(2)作出一半刚架弯矩图如图示。(单位: kN . m)

(3)作整个刚架弯矩图如图所示。(单位: kN . m)

五、用位移法计算图示刚架,各杆 EI 为常数,求出系数项及自由项。

1. 用位移法计算图示刚架,各杆 EI 为常数,求出系数项及自由项。

参考答案: (1) 取基本体系如下图示

基本体系

(2) 位移法典型方程

$$k_{11}\Delta_1 + F_{1P} = 0$$

$$(3) \ \diamondsuit i = \frac{EI}{l}$$

作 \overline{M}_1 图、 M_P 图

 M_{P}

 $M_{\rm P}$ 图

求得 $k_{11} = 10i$; $F_{1P} = -3F_{P}l/8$

2. 用位移法计算图示刚架, 各杆 EI 为常数, 求出系数项及自由项。

参考答案: (1) 基本未知量为2个结点角位移,取基本体系如下图示。

基本体系

(2) 位移法典型方程

$$\begin{aligned} k_{11} \Delta_1 + k_{12} \Delta_2 + F_{1P} &= 0 \\ k_{21} \Delta_1 + k_{22} \Delta_2 + F_{2P} &= 0 \end{aligned}$$

$$(3)$$
令 $i = \frac{EI}{2l}$,作 \overline{M}_1 图, \overline{M}_2 图

 \overline{M}_2 图

求得 $k_{11} = 8i$ $k_{22} = 12i$ $k_{12} = k_{21} = 2i$

3. 用位移法计算图示刚架,求出系数项及自由项。各杆件 EI=常数。

参考答案:基本体系如下图。

列出位移法方程 $k_{11}\Delta_1+F_{1P}=0$

令
$$i = \frac{EI}{6}$$
,作 \overline{M}_1 图

取结点 B为研究对象,得 $\mathbf{k}_{11}=1i$ 作 \mathbf{M}_{P} 图

取结点 B为研究对象,得 $F_{1P}=-21$ kN . m

4. 用位移法计算图示刚架,求出系数项和自由项。

参考答案:基本体系如下图所示。

列出位移法方程 $k_{11}\Delta_1+F_{1P}=0$

令
$$i = \frac{EI}{l}$$
,作 \overline{M}_1 图

取结点 B为研究对象,得 $k_{11}=12i$ 作 M_P 图

取结点 B为研究对象,得 $F_{1P} = \frac{Pl}{8}$

5. 用位移法计算图示刚架,求出系数。各杆 EI=常数。

参考答案:基本结构如图示

列出位移法方程 $k_{11}\Delta_1 + k_{12}\Delta_2 + F_{1P} = 0$ $k_{21}\Delta_1 + k_{22}\Delta_2 + F_{2P} = 0$ 令 $i = \frac{EI}{4}$,作 \overline{M}_1 图

取结点 B为研究对象,得 8i作 $\overline{M_2}$ 图

取结点 C为研究对象,得 $k_{22} = 12i$ 由结点平衡得, $k_{12}=k_{21}=2i$

6. 用位移法计算图示刚架,列出典型方程,求出系数项及自由项。各杆件 EI=常 数。

位移法方程 $k_{11}\Delta_1+F_{1P}=0$

令
$$i = \frac{EI}{l}$$
,作 \overline{M}_1 图

取结点 B为研究对象,得 $k_{11} = 8i$ 作 M_P 图

由结点平衡,得 $F_{1P} = -Pl$