spore capsule stem rhizoids moss plant x 4

ausência de

sistema radicular

Transporte pelo floema

xilema

O transporte a longa distância na planta se dá por transporte de massa.

ausência de sistema radicular

eras geológicas

Transporte pelo floema

Marcello Malpighi (1628-1694)

Experimento realizado no início do séc. XVII pelo italiano Marcello Malpighi

Em 1929 Mason e Maskell verificaram que o mesmo procedimento não influenciava a velocidade de transpiração e identificaram os elementos do tubo crivado como responsáveis pelo transporte da seiva elaborada.

Demonstração do transporte através do floema

Demonstração do transporte através do floema

Floema

Componentes estruturais do floema de angiospermas:

- elementos do tubo crivado
- células companheiras
- células parenquimáticas

Outros componentes:

- fibras
- esclereídes
- células condutoras de látex
- células da bainha do feixe (folhas)

placa crivada poro da placa crivada área crivada placa crivada área de parede celular com poros

o transporte de massa se dá somente através dos elementos do tubo crivado!

corte

estilete do elemento afídeo do tubo crivado

Compostos transportados pelo floema

(Ricinus communis)

<u>Orgânicos</u>	mg/ml		1
açúcares não redut	ores*	80 –	160
amino ácidos		5,2	
ácidos orgânicos		2 - 3	3,2
proteínas (enzimas)		1,45	-2,2
RNA `	,	·	
hormônios	traços		

<u>Inorgânicos</u> água, K, Cl, P, Mg

Fonte: para, *Ricinus communis*, Hall e Baker, 1972

Velocidade de transporte: 1 m/h (difusão: 1m/32anos)

^{*} na maioria das espécies investigadas, a concentração de açúcares no floema é superior a sua concentração no mesófilo e a pressão de turgor das células é alta.

Bloqueio do tubo crivado após dano

(o bloqueio pode ser revertido)

(Knoblauch e van Bel, Institut für Allgemeine Botanik, Giessen, Germany)

reação mediada pela [Ca²⁺], permite minimizar a perda da seiva elaborada – a saliva de afídios impede que esta reação ocorra*

Células companheiras

Características em comum das células companheiras:

- citoplasma denso
- numerosas mitocôndrias
- ligadas aos elementos do tubo crivado por numerosos plasmodesmas

Desenvolvimento do floema:

Função:

- provém o elemento do tubo crivado com, entre outros, proteínas e ATP.
- nas folhas auxiliam no carregamento do elemento do tubo crivado com produtos da fotossíntese.

em geral, células companheiras ordinárias e de transferência são encontradas em plantas cujo carregamento do floema é feito via apoplasto

Células companheiras encontradas em folhas maduras

Taiz and Zeiger (2002)

elementos do tubo crivado

- 3) célula intermediária
- muitos plasmodesmas ligando células adjacentes
- cloroplastos pouco desenvolvidos
- numerosos vacúolos
- 1) célula companheira ordinária
- poucos plasmodesmas, estando a maioria voltada para o elemento do tubo crivado
- cloroplastos bem desenvolvidos
- parede celular lisa

- 2) célula de transferência
- semelhante a 1)
- espessamento de regiões da parede celular

Translocação no Floema: conceito fonte - dreno

O C fixado na fotossíntese pode ser utilizado para o crescimento e manutenção do metabolismo da planta, para armazenagem ou para transporte.

Transição da folha de dreno para fonte é gradual

C¹⁴ fixado em folha madura

- A transição da folha de dreno para fonte se inicia quando esta atinge cerca de 25% do seu tamanho. A transição se dá do ápice para a base.
- A base da folha continua recebendo foto-assimilados de folhas fonte próximas.
- Os foto-assimilados são carregados ou descarregados por vasos diferentes.

Na folha madura o C fixado pode ser alocado para:

- síntese de sacarose
- síntese de amido

destino da sacarose:

- transporte
- armazenagem temporária no vacúolo

destino da amido:

- armazenagem temporária no cloroplasto durante o dia
- hidrólise enzimática e transporte para os drenos a noite

A "força" do dreno depende do seu tamanho e atividade metabólica.

Amorphophallus titanum

drenos fontes drenos

Padrões de translocação no floema

Fatores que influenciam a direção da translocação:

- proximidade
- etapa de desenvolvimento do órgão/planta (vegetativo/reprodutivo)
- conexões vasculares (plasticidade)

As vias de translocação podem ser alteradas.

Direção do fluxo no floema (em cada vaso o fluxo se dá em apenas uma direção!)

Distribuição de radioatividade em plantas de batata doce (*Beta vulgaris*)

O transporte pelo floema é guiado por uma diferença de pressão gerada osmóticamente

Experimento idealizado por E. Münch, 1927 (modificado por Ziegler, 1963)

O sistema não entra em equilíbrio enquanto a concentração de A for diferente da concentração de B.

Fluxo de massa através no floema

DRENO

Indicações:

• O fluxo é mais rápido do que seria se fosse por difusão.

• Os poros das placas crivadas são desobstruídos.

• Quando o cortado o floema exuda seu conteúdo portanto está sob pressão.

• O floema é rico em solutos.

• Existe um gradiente de concentração no floema, ele é mais concentrado na fonte que no dreno.

• Não há transporte bidirecional em um único vaso.

• Este transporte requer pouca energia (cessa quando a respiração é bloqueada).

cloroplasto

amiloplastos plasmodesmas

parede celular

placa de perfuração

O sistema não entra em equilíbrio enquanto há fotossíntese na fonte e metabolismo no dreno.

Velocidade de transporte através do floema: 0.3 - 1.5 m/h

Fluxo de massa originado pela diferença de pressão no vaso entre a fonte e no dreno. Esta diferença é gerada por osmose.

O fluxo no elemento do tubo crivado é movido por um gradiente de pressão gerado osmoticamente entre a fonte e o dreno.

Evidências:

- Placa crivada desobstruída
- Não há transporte bidirecional em um mesmo elemento crivado
- Existe diferença de pressão de turgor e concentração de solutos entre a região da fonte e a do dreno sendo a da fonte maior.

O transporte de açúcares das células do mesófilo ao floema se dá via apoplasto ou simplasto

Espécies diferentes usam vias diferentes: ou apoplástica* ou simplástica

Carregamento do floema via apoplasto:

- A concentração de sacarose é maior nas células companheiras e nos elementos do tubo crivado do que nas células adjacentes.
- Transporte secundário: utiliza o gradiente de concentração gerado por uma bomba de prótons.
- Ocorre em plantas com células companheiras do tipo ordinária e/ou de transferência.

Outros dados experimentais:

• pH alto no apoplasto reduz o transporte de sacarose

Em Arabidopsis:

- existe uma correlação entre a presença da bomba e do transportador.
- maior concentração da bomba de prótons na membrana entre as células da bainha do feixe e as células companheiras.

Taiz and Zeiger (2006), modificada

B point of pular pular point of pular point of pular pula

Mutantes de SWEET* em A. thaliana

acúmulo de amido nas folhas negras

crescimento da raíz *SWEET – sucrose efflux transporters, expressas nas células do parênquima, transporte apoplástico

Chen, SCIENCE VOL 335 13 JANUARY 2012

Carregamento do floema via simplasto: Modelo "polymer trapping"

Evidências:

- sacarose é mais concentrada nas células do mesófilo do que nas células intermediárias.
- a composição dos açúcares no mesófilo e no floema é diferente.
- enzimas para a síntese de rafinose estão, preferencialmente, nas células intermediárias.
- há diferença estrutural nos plamodesmas das diferentes células para a passagem seletiva das moléculas.

Descarregamento do floema

Etapas de transporte para as células dreno (importação):

- Descarregamento do complexo elemento do tubo crivado/célula companheira.
- 2. Transporte intercelular através de pequenas distâncias (difusão).
- 3. Metabolismo no dreno.

O descarregamento do floema é SEMPRE dependente da atividade metabólica do tecido dreno!

Via simplasto: transporte passivo

ocorre em folhas jovens, meristemas e tecidos de reserva que acumulam açúcares na forma de polímero

Descarregamento do floema

via apoplasto: pode ser tanto passivo quanto ativo

Vídeos

http://www.youtube.com/watch?v=MxwI63rQubU https://www.youtube.com/watch?v=JFb-CWlz7kE https://www.youtube.com/watch?v=3OEd8WDxg1U

Texto com pequenas animações:

https://msu.edu/~walwort8/page2.html