

¹²C(p,2p)¹¹B Quasi Free Scattering in Inverse Kinematics at R³B

Tobias Jenegger
For the R3B Collaboration

DREB 2022

Setup Experiment S444

¹²C(p,2p)¹¹B reaction

Analysis

Summary & Outlook

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC-2094 – 390783311,

BMBF 05P19W0FN1, 05P21W0FN1

and the FAIR Phase-0 program

TUM Members: Roman Gernhäuser, Lukas Ponnath, Philipp Klenze, Tobias Jenegger

Quasi Free Scattering Analysis with Experiment S444/467 (2020)

¹²C(p,2p)¹¹B reaction

- > 12C beam
- proton like target

- 2 protons
- > ¹¹B fragment (spectator)

Fragment Particle Identification

- Time Measurement (START & TOFW)
- Charge Measurement (TWIM Music)
- Flightpath Reconstruction:

$$B*\rho = \frac{\beta*\gamma*M}{q}$$

Identification of the two correlated Protons

Gamma Spectrum of ¹¹B

Event Selection Criteria:

- > 11B fragment identification
- > Two hits (protons) with E_{hit} > 30 MeV
- $\theta 1 + \theta 2 < 90^{\circ}$
- $\Delta \phi = 180^{\circ} + 40^{\circ}$

Reconstruction of Inner Momenta

z-comp.

Before Scattering:

After Scattering:

(Four-)Momentum conservation relation:

$$p_{12C} + p_{tg} = p_1 + p_2 + p_{11B}$$

assuming QE scattering in mean field potential:

$$p_{12C} = p_i + p_{11B}$$

$$p_i \approx p_{missing} = p_1 + p_2 - p_{tg} (no ISI/FSI)$$

Momentum reconstruction of 11B

Correlations between Fragment

What if we cut on the events with high inner proton momentum?

Gamma spectrum (highest energy) with high p11B_x > 100MeV/c && p_i_x > 100 MeV/c in 12C frame

Tobias Jenegger

Gamma spectrum (highest energy) with high p11B_y > 100MeV/c && p_i_y > 100 MeV/c in 12C frame

Momentum Reconstruction for Inclusive 12C(p,2p)

Reaction Channels for ¹²C(p,ppn)¹⁰B:

- Multiple scattering
- Neutron evaporation
- SRC breakup reactions

Momentum Reconstruction for Inclusive 12C(p,2p)

Simulation neutron evaporation: p_r

$$p_{miss\,11\,B}$$
+ $p_{isotropic}$ (240 MeV/c)

Simulation double scattering:

$$p \rightarrow pn \rightarrow pnp$$

Momentum Component Correlations

¹²C(p,2p)¹⁰B

Summary

14

Identification of the QFS-process:

> Inner Momenta and according correlation plots:

Inclusive ¹²C(p,2p) Momentum Reconstruction

Outlook

- Analyze data with other CH₂ target lengths (24.53/24 mm)
- Background subtraction with carbon target (5.4/10.86/21.98 mm)
 - → Get cross section for QFS-process
- > Further investigations of nuclear properties, eg. proton separation energy

$$\mathbf{S}_{p} = \mathbf{T}_{tg} - \mathbf{T}_{p1} - \mathbf{T}_{p2} - \mathbf{T}_{11B} = (1 - \gamma) m_{p} - \gamma (T_{1} + T_{2}) + \beta \gamma (p_{1\parallel} + p_{2\parallel}) - \frac{k^{2}}{2m_{_{11}_{P}}}$$

➤ S444 Comissioning Experiment can also be used for 12C – 12C inelastic scattering analysis

Thank you!

