2. ДИНАМИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛОВ

<u>Задача 1</u>

Импульсный сигнал прямоугольной формы имеет длительность т и амплитуду U. Передний фронт импульса отстоит от начала отсчёта времени на t_0 . Запишите аналитическое выражение для этого сигнала и изобразите его график.

№ варианта	т (мкс)	<i>U</i> (B)	t_{O} (MKC)
0	5	5	0

Задача 2

Источник ЭДС, изменяющийся по закону $e(t) = U \cdot 10^6 t$ (В), подключается к внешней нагрузке идеальным коммутатором, срабатывающим в момент времени t_0 . Запишите математическую модель напряжения на нагрузке и изобразите его график.

№ варианта	<i>U</i> (B/c)	$t_{\scriptscriptstyle O}$ (MKC)	
0	3	2	

Задача 3

Запишите аналитическое выражение для синусоидального сигнала с амплитудой U и периодом T, начавшегося в момент времени t_0 и изобразите его график.

№ варианта	<i>U</i> (B)	<i>T</i> (c)	$t_{0}\left(\mathtt{c}\right)$
0	4	5	3

Задача 4

Изобразите графики следующих сигналов:

a.
$$S_1(t) = U \cdot \sigma(t-T_1)$$
 b. $S_2(t) = U \cdot \sigma(T_1-t)$ c. $S_4(t) = U \cdot \sigma(t+T_1)$

№ варианта	Сигналы	<i>U</i> (B)	T ₁ (C)
0	Bce	1	2

<u>Задача 5</u>

Изобразите графики сигналов $S_1(t) \div S_4(t)$ из задачи 4, заменив U на -U.

	* *	
№ варианта	<i>U</i> (B)	T ₁ (C)
0	1	2

Задача 6

Изобразите график сигнала, математическая модель которого имеет вид:

$$S_{1}(t) = \begin{cases} 0, & |t| > T_{\text{N}}/2; \\ 2U_{\text{m}} \cdot |t| / T_{\text{N}}, & |t| < T_{\text{N}}/2. \end{cases}$$

$$S_{2}(t) = \begin{cases} 0, & |t| > T_{\text{N}}/2; \\ U_{\text{m}} \cdot [1-2\cdot |t|/T_{\text{N}}], & |t| < T_{\text{N}}/2. \end{cases}$$

$$S_{3}(t) = \begin{cases} 0, & |t| > T_{\text{N}}/2; \\ U_{\text{m}} \cdot [1-2\cdot |t|/T_{\text{N}}], & |t| < T_{\text{N}}/2; \\ U_{\text{m}} \cdot [1-\sin(\pi |t|/T_{\text{N}})], & |t| < T_{\text{N}}/2. \end{cases}$$

Запишите математическую модель с помощью функций Хевисайда.

№ варианта	Сигналы	$U_m\left(B\right)$	т _и (с)
0	$S_1(t)$ и $S_2(t)$	1	2

<u>Задача 7</u>

Импульсы напряжения приведены на рисунках. Запишите математическую модель сигналов двумя способами:

- 1) значениями на временных интервалах аналогично выражению в задаче 6;
- 2) С помощью функций Хевисайда.

Задача 8

Запишите математические модели для описания бесконечной последовательности одинаковых импульсов различной формы из задачи 7 с периодом $T = A \cdot \tau_{\text{N}}$.

№ варианта	Сгналы	<i>U</i> (B)	T ₁ (C)	T ₂ (C)	Α
0	$S_1(t)$ и $S_2(t)$	1	1	2	2