Extensions and Cohomology of Groups

Felix Ingbert Zieger

Geboren am 26. Juli 1995 in Aschaffenburg

15. Februar 2018

Bachelorarbeit Mathematik

Betreuer: Dr. Irakli Patchkoria

Zweitgutachter: Prof. Dr. Carl-Friedrich Bödigheimer

MATHEMATISCHES INSTITUT

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT DER RHEINISCHEN FRIEDRICH-WILHELMS-UNIVERSITÄT BONN

Contents

1	Inti	roduction	3				
2	Ext	xtensions and Resolutions					
	2.1	Ext	3				
	2.2	$\operatorname{Ext}^{\operatorname{n}}$	5				
		2.2.1 Splicing and Factorizing	5				
		2.2.2 Ext ⁿ as Bifunctor	6				
		2.2.3 Addition in Ext^n	6				
	2.3	Resolutions	7				
	2.4	Ext ⁿ and Resolutions	8				
	2.5	A Long Exact Sequence for Ext^n					
3	Ext	ensions and Cohomology of Groups	13				
	3.1	Group Ring	14				
	3.2	Factor Sets	15				
	3.3	Opext and the 2-dimensional Cohomology Group	16				
	3.4	Bar Resolution					

Zusammenfassung: In dieser Arbeit werden grundlegende Konzepte aus dem Bereich der homologischen Algebra vorgestellt. Ziel ist es einen Bezug zwischen Gruppenerweiterungen und der 2-dimensionalen Kohomologiegruppe herzustellen.

In Kapitel 2 wird der Bifunktor Ext_R^n eingeführt. Dies geschieht mittels Erweiterungen von Moduln. Zur Berechnung von Ext_R^n wird in Kapitel 2.4 ein Isomorphismus zwischen $\operatorname{Ext}_R^n(C,A)$ und der n-dimensionalen Kohomologiegruppe $H^n(X,A)$ für eine projektive Auflösung X des R-Moduls C gegeben. Außerdem wird in Kapitel 2.5 eine lange exakte Sequenz für Ext_R^n konstruiert.

Kapitel 3 beginnt mit Erweiterungen von Gruppen. Für eine abelsche Gruppe A und eine beliebige Gruppe Π , wird eine Menge an Kongruenzklassen $Opext(\Pi,A,\phi)$ eingeführt. Einer Erweiterung ordnen wir in Kapitel 3.2 eine Funktion zu, die Faktor System (engl. factor set) genannt wird. Die 2-dimensionale Kohomologiegruppe $H^2_{\phi}(\Pi,A)$ ist als Quotient der Menge der Faktor Systeme definiert. In Kapitel 3.3 bilden wir $H^2_{\phi}(\Pi,A)$ bijektiv auf $Opext(\Pi,A,\phi)$ ab. Zudem wird in Kapitel 3.4 eine Definition der n-dimensionalen Kohomologiegruppe $H^n(\Pi,A)$ mittels Auflösungen gegeben. Die Arbeit aus dem Kapitel 2 zeigt abschließend, dass die Kohomologie von Gruppen ein Spezialfall von Ext^n_R mit $R = \mathbb{Z}(\Pi)$, dem Gruppenring, ist.

1 Introduction

The aim of this thesis is to show the connection between the 2-dimensional cohomology group of a group Π over an abelian group A and group extensions of A by Π . Furthermore the n-dimensional cohomology group of a group Π with coefficients in an abelian group A is shown to be a special case of Ext_R^n with $R = \mathbb{Z}(\Pi)$ the group ring.

The thesis closely follows Mac Lane [Mac63].

2 Extensions and Resolutions

Throughout this thesis R will denote a ring with identity. We only consider left modules over rings. If not stated otherwise, all modules are R-modules and all module homomorphisms are R-module homomorphisms. The notation for an identity map of a set X into itself is 1_X . Image and kernel of a map α are denoted im α and ker α respectively.

2.1 Ext

Let A and C be R-modules. An extension E of A by C is a short exact sequence

$$E: 0 \longrightarrow A \xrightarrow{\chi} B \xrightarrow{\sigma} C \longrightarrow 0 \tag{1}$$

of R-modules. When speaking of extensions we always mean the associated modules and homomorphisms. We write $E = (\chi, \sigma)$ for a sequence (1). A morphism Γ from E to E' is a triple of module homomorphisms (α, β, γ) such that the diagram

commutes. For a morphism of the form

$$(1_A, \beta, 1_C) : E \to E' \tag{2}$$

the Short Five Lemma [Mac63, Lemma I.3.1.] assures us that β is an isomorphism. Therefore the existence of a morphism (2) defines an equivalence relation which we denote $E \equiv E'$. Define $\operatorname{Ext}_R(C,A)$ to be the set of congruence classes of extensions of A by C. Given an extension E as in (1) and a module homomorphism $\alpha:A\to A'$, we can construct an extension αE of A' by C and a morphism $\Gamma=(\alpha,\beta,1_C):E\to\alpha E$ as the push out along α . We can also pull back along a module homomorphism $\gamma:C'\to C$ and thereby construct an extension $E\gamma$ of A by C' and a morphism $\Gamma_1=(1_A,\beta_1,\gamma):E\gamma\to E$. The pairs $\Gamma_1=(1_A,\beta_1,\gamma)$ are

unique up to congruence. For details on how to push out, pull back and a proof see [Mac63, Chapter III.1.]. We denote the category of left R-modules by \mathbf{M} and the category of abelian groups by \mathbf{Ab} . The bifunctor $\operatorname{Ext}_R(C,A)$ from $\mathbf{M} \times \mathbf{M}$ to \mathbf{Ab} is contravariant in its first and covariant in its second argument [Mac63, see Chapters III.1. and III.2.]. The group operation on $\operatorname{Ext}(C,A)$ will be explained in subsection 2.2.3.

Definition 1. Let A and C be modules. We denote their direct sum by $A \oplus C$. The short exact sequence

$$0 \longrightarrow A \longrightarrow A \oplus C \longrightarrow C \longrightarrow 0$$

is called direct sum extension of A by C.

An extension congruent to the direct sum extension is called split.

Example 1. [Wei94, Exercise 3.4.1.] Let p be prime and \mathbb{Z}/p be the cyclic group of order p. Every extension E of \mathbb{Z}/p by \mathbb{Z}/p is either split or congruent to a sequence of the form $0 \to \mathbb{Z}/p \xrightarrow{p} \mathbb{Z}/p^2 \xrightarrow{i} \mathbb{Z}/p \to 0$, for $i = 1, \ldots, p-1$.

Proof. Let $E=(\chi,\sigma):0\to\mathbb{Z}/p\to B\to\mathbb{Z}/p\to 0$ be a short exact sequence. Because $\frac{B}{\mathbb{Z}/p}\cong\mathbb{Z}/p$ the group B must be of order p^2 . There are two groups of order p^2 , the cyclic group \mathbb{Z}/p^2 and the direct sum $\mathbb{Z}/p\oplus\mathbb{Z}/p$.

If $B \cong \mathbb{Z}/p \oplus \mathbb{Z}/p$, the monomorphism χ must send the generator s of \mathbb{Z}/p to (i,j) with $i,j \in \mathbb{Z}/p$ and not both zero. Suppose $i \neq 0$ then $(i,0) \mapsto s$ is a left inverse of χ and by [Mac63, Proposition I.4.3.] E is isomorphic to the direct sum sequence.

If $B \cong \mathbb{Z}/p^2$, the monomorphism χ must send the generator to a multiple of p. Then σ can send the generator of \mathbb{Z}/p^2 to any integer from $1, \ldots, p-1$. Let i and $j \in 1, \ldots, p-1$. Notice that for E = (ip, j) we have a congruence

to $E' = (p, ij) = (p, ij \mod p)$. And two extensions (p, i') and (p, j') are congruent only if i' = j'.

Lemma 1. Let E be as in (1). Then χE and $E\sigma$ are split extensions.

Proof. By uniqueness of χE and $E\sigma$ up to congruence it is enough to push out and pull back the sequence E to split extensions. Let ι, ι' denote inclusions into the first and ρ, ρ' projections onto the second factor. The diagrams

are commutative.

2.2 Extⁿ

Fix a positive integer n. We call an exact sequence of modules

$$S = (\chi, \lambda_{n-1}, \dots, \lambda_1, \sigma) : 0 \to A \to B_{n-1} \to \dots \to B_0 \to C \to 0$$
 (3)

an *n*-fold extension of A by C. Let S and S' be n-fold extensions. A morphism $\Gamma: S \to S'$ is a tuple of n+2 module homomorphisms $(\alpha, \beta_{n-1}..., \beta_0, \gamma)$ such that the diagram

$$S: \qquad A \longrightarrow B_{n-1} \longrightarrow \dots \longrightarrow B_0 \longrightarrow C$$

$$\downarrow \qquad \qquad \downarrow \beta_0 \qquad \qquad \downarrow \gamma$$

$$S': \qquad A' \longrightarrow B'_{n-1} \longrightarrow \dots \longrightarrow B'_0 \longrightarrow C'$$

commutes. Let S ad S' be two n-fold extensions of A by C. We say S is congruent to S' if there is a positive integer k, modules S_0, S_1, \ldots, S_{2k} with $S = S_0$ and $S_{2k} = S'$ and morphisms

$$S_0 \to S_1 \leftarrow S_2 \to S_3 \leftarrow \cdots \to S_{2k-1} \leftarrow S_{2k}$$

all starting in 1_A and ending in 1_C . This defines an equivalence relation on the set of all n-fold extensions of A by C. Notice that the definition for congruence on Ext_R agrees with the one defined here for n=1. Let $\operatorname{Ext}_R^n(C,A)$ denote the set of congruence classes of n-fold extensions of Aby C. When the ring is clear we write $\operatorname{Ext}^n(C,A)$. A congruence class $\sigma \in$ $\operatorname{Ext}^n(C,A)$ consists of n-fold extensions of A by C. If we are not interested in the congruence class of an extension, we use the notation $S \in \operatorname{Ext}^n(C,A)$ for an element $S \in \sigma \in \operatorname{Ext}^n(C,A)$.

2.2.1 Splicing and Factorizing

Given exact sequences

$$S: 0 \to A \to B_{n-1} \to \cdots \to B_0 \xrightarrow{\sigma} K \to 0$$

$$S': 0 \to K \xrightarrow{\chi} B'_{m-1} \to \cdots \to B'_0 \to C \to 0$$

we assign to them an exact sequence $S \circ S'$ defined as

$$0 \to A \to \cdots \to B_0 \xrightarrow{\lambda} B'_{m-1} \to \cdots \to C \to 0$$

where $\lambda := \chi \sigma$. This process is called splicing and $S \circ S'$ is called the Yoneda composite of S and S'. Furthermore any exact sequence can be factorized into short exact sequences. Let S be as in (3). Let ρ be the restriction

of $B_{n-1} \to B_{n-2}$ onto its image and $\iota : \ker(B_{n-2} \to B_{n-3}) \to B_{n-2}$ the inclusion. Then $S =: S_n = E_n \circ S_{n-1}$ where

$$E_n: 0 \to A \to B_{n-1} \xrightarrow{\rho} \operatorname{im}(B_{n-1} \to B_{n-2}) \to 0$$

$$S_{n-1}: 0 \to \ker(B_{n-2} \to B_{n-3}) \xrightarrow{\iota} B_{n-2} \to \cdots \to B_0 \to C \to 0$$

are both exact. Iterating this process for S_{n-1} and so on gives us a factorization of S into short exact sequences $S = E_n \circ \cdots \circ E_1$ where $E_1 := S_1$.

2.2.2 Extⁿ as Bifunctor

Let S be as in (3) with factorization $S = E_n \circ \cdots \circ E_1$. Let $\alpha : A \to A'$ and $\gamma : C' \to C$ be module homomorphisms. We assign extensions $\alpha S := (\alpha E_n) \circ \cdots \circ E_1$ of A' by C and $S\gamma := E_n \circ \cdots \circ (E_1\gamma)$ of A by C'. By this definition we get morphisms $\Gamma : S \to \alpha S$ and $\Gamma_1 : S\gamma \to S$. The bifunctor $\operatorname{Ext}_R^n(C,A) : \mathbf{M} \times \mathbf{M} \to \mathbf{Ab}$ is contravariant in its first and covariant in its second argument [Mac63, p. 85]. The group operation is presented in the succeeding subsection.

We will later need

Lemma 2. Every morphism $\Gamma = (\alpha, ..., \gamma) : S \to S'$ between two n-fold extensions S and S' yields a congruence $\alpha S \equiv S' \gamma$.

Proof. See [Mac63, Proposition III.5.1.].
$$\Box$$

2.2.3 Addition in Extⁿ

We will sketch how to define an addition on Ext_R^n . Define the diagonal $\Delta: C \to C \oplus C$ by $c \mapsto (c,c)$ and the codiagonal $\nabla: A \oplus A \to A$ by $(a,a_1) \mapsto a+a_1$. Given two n-fold extensions S,S' of A by C we define $S \oplus S'$ to be the component wise direct sum of their modules and homomorphisms. The resulting sequence is exact, starts in $A \oplus A$ and ends in $C \oplus C$. We define S + S' by $\nabla(S \oplus S')\Delta$. Note that $(\nabla(S \oplus S'))\Delta = \nabla((S \oplus S')\Delta)$ so we can omit the parentheses. The element S + S' is called the Baer sum of S and S'. Together with this operation $\operatorname{Ext}_R^n(C,A)$ is an abelian group [Mac63, p. 85]. The congruence class of the sequence

$$S_0 = (1_A, 0, \dots, 0, 1_C) : 0 \to A \to A \to 0 \to \dots \to 0 \to C \to C \to 0$$
 (4)

is the zero element of $\operatorname{Ext}_R^n(C,A)$ under the Baer sum. Let $\alpha:A\to A',$ $\gamma:C'\to C$ be homomorphisms and $S,S'\in \operatorname{Ext}_R^n(C,A)$. The Baer sum is distributive [Mac63, see Theorem 5.3.]. That is:

$$\alpha(S+S') \equiv \alpha S + \alpha S', \quad (S+S')\gamma \equiv S\gamma + S'\gamma$$

We will later need

¹Pulling back and pushing out gives morphisms between the short exact sequences as mentioned in subsection 2.1. Use the identity everywhere else.

Lemma 3. If S is as in (3), the composite extensions χS and $S\sigma$ are congruent to the zero element S_0 as defined in (4).

Proof. Consider the morphisms $S \to \chi S \to S_0$ in the following diagram

$$A \xrightarrow{\chi} B_{n-1} \xrightarrow{\lambda_{n-1}} B_{n-2} \longrightarrow \dots \longrightarrow B_0 \longrightarrow C$$

$$\downarrow^{\chi} \qquad \downarrow^{(1,\lambda_{n-1})} \qquad \qquad \qquad \parallel \qquad \qquad \parallel$$

$$B_{n-1} \longrightarrow B_{n-1} \oplus \lambda_{n-1} B_{n-1} \xrightarrow{\rho_2} B_{n-2} \longrightarrow \dots \longrightarrow B_0 \longrightarrow C$$

$$\downarrow \qquad \qquad \downarrow^{\rho_1} \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$B_{n-1} \xrightarrow{1} B_{n-1} \longrightarrow B_{n-1} \longrightarrow 0 \longrightarrow \dots \longrightarrow C \xrightarrow{1} C$$

where ρ_1 is the projection onto the first and ρ_2 the projection onto the second factor. This shows that $\chi S \equiv S_0$. One proves $S\sigma \equiv S_0$ via construction of morphisms $S_0 \leftarrow S\sigma \rightarrow S$ in a similar fashion.

2.3 Resolutions

We recall some basic definitions from homological algebra.

Definition 2. A module P is projective if for all epimorphisms $\alpha : B \to C$ and every module homomorphism $\gamma : P \to C$ there is a homomorphism $\beta : P \to B$ such that $\alpha\beta = \gamma$.

Definition 3. A chain complex X is a family $(X_n, \partial_n)_{n \in \mathbb{Z}}$ of modules X_n and homomorphisms $\partial_n : X_n \to X_{n-1}$ satisfying $\partial_n \partial_{n+1} = 0$ for all $n \in \mathbb{Z}$.

Definition 4. The homology H(X) of a complex $X = (X_n, \partial_n)$ is the family of modules $H_n(X) := \ker \partial_n / \operatorname{im} \partial_{n+1}$.

Let C be a module, $X=(X_n,\partial_n)$ a chain complex, trivial in negative degrees, and $\epsilon: X_0 \to C$ a module homomorphism with $\epsilon \partial_1 = 0$. The pair (X,ϵ) is called a complex over C. If X has trivial homology $H_n(X)$ for every n>0 and $\partial_1 X_1 = \ker \epsilon$, then (X,ϵ) is called a resolution of C. If all X_n are projective modules, then (X,ϵ) is called projective.

Definition 5. Let $X = (X_n, \partial_n)$ and $X' = (X'_n, \partial'_n)$ be chain complexes. A chain transformation $f: X \to X'$ is a family of module homomorphisms $f_n: X_n \to X'_n$ satisfying $\partial'_n f_n = f_{n-1} \partial_n$ for all $n \in \mathbb{Z}$.

Theorem 1. [Mac63, Theorem II.6.1.] Let C and C' be modules. Given a projective complex (X, ϵ) over C, a resolution (X', ϵ') of C' and a module homomorphism $\gamma: C \to C'$ there is a chain transformation $f: X \to X'$ lifting γ . That is, there are homomorphisms f_0, f_1, \ldots such that the diagram

$$\dots \longrightarrow X_2 \xrightarrow{\partial_2} X_1 \xrightarrow{\partial_1} X_0 \xrightarrow{\epsilon} C$$

$$\downarrow f_2 \qquad \downarrow f_1 \qquad \downarrow f_0 \qquad \downarrow \gamma$$

$$\dots \longrightarrow X'_2 \xrightarrow{\partial'_2} X'_1 \xrightarrow{\partial'_1} X'_0 \xrightarrow{\epsilon'} C'$$

commutes.

Proof. Because X_0 is projective and $\epsilon': X_0' \to C'$ is surjective there is a map $f_0: X_0 \to X_0'$ with $\epsilon' f_0 = \gamma \epsilon$. Suppose we constructed maps f_0, \ldots, f_n . Because $\partial_n \partial_{n+1} = 0$ and $f_{n-1} \partial_n = \partial'_n f_n$ we have $0 = f_{n-1} \partial_n \partial_{n+1} = \partial'_n f_n \partial_{n+1}$. Hence $f_n \partial_{n+1} X_{n+1} \subset \ker \partial'_n = \partial'_{n+1} X'_{n+1}$ by exactness at X'_n . As X_{n+1} is projective there is a map f_{n+1} with $\partial'_{n+1} f_{n+1} = f_n \partial_{n+1}$.

Definition 6. Let $f, f': X \to X'$ be chain transformations. A chain homotopy s between f and f' is a familiy of maps $s_n: X_n \to X'_{n+1}$ satisfying $f_n - f'_n = s_{n-1} \partial_n + \partial'_{n+1} s_n$ for all $n \in \mathbb{Z}$.

Lemma 4. Under the assumptions of Theorem 1, two chain transformations f, f' lifting the same γ are chain homotopic.

Proof. For convenience we use the same symbol ∂ for all boundary maps ∂_n and ∂'_n . We want to construct maps $s_n: X_n \to X'_{n+1}$ satisfying

$$f_0 - f_0' = \partial s_0 \tag{5}$$

$$f_{n+1} - f'_{n+1} = \partial s_{n+1} + s_n \partial \tag{6}$$

for $n \geq 0$. We observe that by commutativity $\epsilon'(f_0 - f_0') = 0$. By exactness of the bottom row we know $(f_0 - f_0')X_0 \subset \partial X_1'$. Projectivity of X_0 gives us a map $s_0: X_0 \to X_1'$ satisfying (5). Suppose we have maps s_0, \ldots, s_n satisfying (5) and (6). Then $\partial s_n = f_n - f_n' - s_{n-1} \partial$ and therefore $\partial (f_{n+1} - f_{n+1}' - s_n \partial) = (f_n - f_n') \partial - (f_n - f_n' - s_{n-1} \partial) \partial = 0$. Exactness of the bottom row implies $(f_{n+1} - f_{n+1}' - s_n \partial)X_{n+1} \subset \partial X_{n+2}'$. Finally, because X_{n+1} is projective, we get a map $s_{n+1}: X_{n+1} \to X_{n+2}'$ satisfying $\partial s_{n+1} = f_{n+1} - f_{n+1}' - s_n \partial$.

2.4 Extⁿ and Resolutions

We have to recall some more definitions.

Definition 7. Let G be a module and $X = (X_n, \partial_n)$ a complex. The cohomology $H^*(X, G)$ of X with coefficients in G is defined as the homology of the complex Hom(X, G). An element of $\text{Hom}(X_n, G)$ is called n-cochain. The coboundary for an n-cochain f is defined by $\delta^n f = (-1)^{n+1} f \partial_{n+1}$. An element of $\ker \delta^n$ is called n-cocycle. Two n-cocycles are cohomologous if their difference is the coboundary of an (n-1)-cochain.

For n > 0 the groups $\operatorname{Ext}^n(C, A)$ can be computed as cohomology groups $H^n(X, A)$ of a projective resolution of C.

Regard an n-fold extension S of A by C as a resolution of C with zeros beyond the nth term. By Theorem 1 we can lift the identity 1_C to a chain

transformation $g: X \to S$:

$$X_{n+1} \xrightarrow{\partial_{n+1}} X_n \xrightarrow{\partial_n} X_{n-1} \longrightarrow \dots \longrightarrow X_0 \longrightarrow C$$

$$\downarrow g_n \qquad \downarrow g_{n-1} \qquad \downarrow g_0 \qquad \parallel$$

$$0 \longrightarrow A \longrightarrow B_{n-1} \longrightarrow \dots \longrightarrow B_0 \longrightarrow C$$

Note that by commutativity $g_n \partial_{n+1} = 0$. This means that g_n is a cocycle. Define a map $\zeta : \operatorname{Ext}^n(C, A) \to H^n(X, A)$ by $\zeta(\operatorname{cls}(S)) := \operatorname{cls}(g_n)$, where cls assigns a congruence class to an extension (or a cohomology class in the case of a cocycle) to the respective element. Now we show that ζ is well defined.

- 1. We need to show that any two chain transformations lifting 1_C yield cohomologous elements. Suppose $g': X \to S$ is a seconds chain transformation lifting 1_C . Let s denote a chain homotopy between g and g' given by Lemma 4. Note that $s_n: X_n \to 0$ is zero. The chain homotopy there gives $g_n g'_n = s_{n-1} \partial_n$, so g_n and g'_n are cohomologous.
- 2. We need to prove that the class of g_n does not depend on the representative of cls(S). By our definition of congruence of n-fold exact sequences it is sufficient to check two cases.

First case. Suppose $\Gamma: S \to S'$ is a morphism that starts with 1_A and ends with 1_C . Then $(\Gamma g)_n = g_n$ and Γg is a chain transformation.

Second case. Suppose $\Gamma: S'' \to S$ is a morphism that starts with 1_A and ends with 1_C . Now we construct a chain transformation $f: X \to S''$ lifting 1_C as in Theorem 2. Then Γf and g are chain transformations lifting 1_C . We saw in 1 that they therefore yield cohomologous elements f_n and g_n .

Theorem 2. [Mac63, Theorem III.6.4.] Let A, C be modules and (X, ϵ) be a projective resolution of C. Then the map $\zeta : \operatorname{Ext}^n(C, A) \to H^n(X, A)$ is an isomorphism for n > 0. ζ is natural in A.

Proof. The function η defined below will be the inverse of ζ . We factor $\partial_n: X_n \to X_{n-1}$ as $(\partial', \chi): X_n \to \partial_n X_n \to X_{n-1}$ with χ the inclusion. Let $g: X_n \to A$ be an n-cocyle, i.e. $g \partial_{n+1} = 0$. Because $\ker(\partial') = \ker(\partial_n) = \partial_{n+1} X_{n+1} \subset \ker(g)$ we can factor g as $h \partial'$ by the universal property of the quotient.

In the above diagram from [Mac63, p. 89] S_n is an n-fold exact sequence and hS_n is the push out along h. We define $\eta: H^n(X,A) \to \operatorname{Ext}^n(C,A)$ by $\eta\operatorname{cls}(g) := \operatorname{cls}(hS_n)$. Using the distributive law in Ext we show that η is well defined. Consider a coboundary $h\partial'$ with $\delta k = h\partial'$ for some $k: X_{n-1} \to A$. By definition of the coboundary $\delta k = (-1)^n k \partial = (-1)^n k \chi \partial'$. Therefore $h = (-1)^n k \chi$ and $hS_n = ((-1)^n k \chi) S_n$. By Lemma 3 the composite extension χS_n is congruent to S_0 as defined in (4). Because S_0 is the zero element of addition in Ext^n the distributive law implies that cohomologous elements are assigned the same element. This shows that η is well defined. Now we show that the maps are inverses of each other.

Let $S \in \operatorname{Ext}^n(C,A)$ be an extension and $g: X \to S$ a chain transformation lifting 1_C . Denote the factorization of g_n by $h \partial'$. Notice that $(h, g_{n-1}, \ldots, g_0, 1_C): S_n \to S$ is a morphism. Lemma 2 implies $hS_n \equiv S$. This shows $\eta \zeta = 1$.

Consider a cocycle $g: X_n \to A$ with factorization $g = \partial' h$. Constructing the sequence hS_n yields a chain transformation $X \to hS_n$ via composition of $X \to S_n \to hS_n$. The *n*th homomorphism of this chain transformation is exactly g. Therefore $\zeta \eta = 1$.

It still remains to prove that ζ is natural. Let $\alpha: A \to A'$ be a module homomorphism. We need to show that the diagram

$$\operatorname{Ext}^{n}(C,\underline{\hspace{0.1cm}})(A) \xrightarrow{\zeta} H^{n}(X,\underline{\hspace{0.1cm}})(A)$$

$$\downarrow^{\alpha_{*}} \qquad \qquad \downarrow^{\alpha_{*}}$$

$$\operatorname{Ext}^{n}(C,\underline{\hspace{0.1cm}})(A') \xrightarrow{\zeta} H^{n}(X,\underline{\hspace{0.1cm}})(A')$$

commutes.

Suppose $S \in \text{Ext}^n(C, A)$.

Let $g: X \to S$ be a chain transformation lifting 1_C . Then $\alpha_* \zeta \operatorname{cls}(S) = \operatorname{cls}(\alpha g_n)$.

Let $h: X \to \alpha S$ be a chain transformation lifting 1_C . Then $\zeta \alpha_* \operatorname{cls}(S) = \zeta \operatorname{cls}(\alpha S) = \operatorname{cls}(h_n)$.

By definition of αS we have a morphism $\Gamma: S \to \alpha S$. The composition $\Gamma g: X \to \alpha S$ also lifts 1_C . Thus Γg and h are chain homotopic by Lemma 4, so $\operatorname{cls}(h_n) = \operatorname{cls}(\Gamma g)_n = \operatorname{cls}(\alpha g_n)$.

Theorem 2 is a useful tool for computing Ext groups.

Application 1. Let A be an abelian group and n, m positive integers. Then

$$\operatorname{Ext}_{\mathbb{Z}}^{m}(\mathbb{Z}/n, A) \cong \begin{cases} A/nA, & m = 1\\ 0, & m \geq 2 \end{cases}$$

Proof. Let $\rho: \mathbb{Z} \to \mathbb{Z}/n$ be the projection. Consider the exact sequence

$$(X, \rho): \qquad \ldots \longrightarrow 0 \longrightarrow 0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot n} \mathbb{Z} \xrightarrow{\rho} \mathbb{Z}/n \longrightarrow 0.$$

Because \mathbb{Z} is a projective module over itself, the pair (X, ρ) is a projective resolution of \mathbb{Z}/n . Theorem 2 implies $\operatorname{Ext}^m(\mathbb{Z}/n, A) \cong H^m(X, A)$ for m > 0. Denote the induced maps on Hom-groups by n_* and p_* . We calculate

$$\operatorname{im} n_* = \{ nf : \mathbb{Z} \to A | f \in \operatorname{Hom}(\mathbb{Z}, A) \} \cong \{ na | a \in A \} =: nA.$$

This gives us

$$\operatorname{Ext}^1(\mathbb{Z}/n, A) \cong \ker(\operatorname{Hom}(X_1, A) \to 0) / \operatorname{im} n_* = A/nA$$

and clearly the cohomology groups $H^m(X,A)$ are trivial for m>2.

From here on we will denote $\operatorname{Hom}(C,A)$ by $\operatorname{Ext}^0(C,A)$. Given a resolution $\cdots \to X_1 \to X_0 \xrightarrow{\epsilon} C \to 0$, the induced sequence $\operatorname{Hom}(X_1,A) \leftarrow \operatorname{Hom}(X_0,A) \xleftarrow{\epsilon^*} \operatorname{Hom}(C,A) \leftarrow 0$ is exact [Mac63, Theorem II.6.1.]. Hence $\ker(\operatorname{Hom}(X_0,A) \to \operatorname{Hom}(X_1,A)) \cong \operatorname{im} \epsilon^*$ and therefore $\epsilon^* : \operatorname{Hom}(C,A) = \operatorname{Ext}^0(C,A) \cong H^0(X,A)$. For convenience we will denote this isomorphism by ζ .

2.5 A Long Exact Sequence for Extⁿ

Definition 8. A module F is called free if it has a basis.

Lemma 5. Every free module is projective.

Proof. Let F be free with basis $T \subset F$. Given an epimorphism $\alpha : B \to C$ and a homomorphism $\gamma : F \to C$, we can choose elements $b_t \in B$ with $\alpha b_t = \gamma t$ for each $t \in T$. This defines a homomorphism $\beta : F \to B$ satisfying $\alpha \beta = \gamma$.

In the main proof of this subsection we will use some notation of

Theorem 3. [Mac63, Theorem II.4.5.] If X is a projective complex of R-modules and if $E = (\chi, \sigma): 0 \to A \to B \to C \to 0$ is a short exact sequence of R-modules, there is a connecting homomorphism $\delta_E: H^n(X,C) \to H^{n+1}(X,A)$. Explicitly δ_E is defined by $\delta_E = \operatorname{cls} \chi^{-1} \delta \sigma^{-1} \operatorname{cls}^{-1}$ where δ is the coboundary. The connecting homomorphism yields a long exact sequence

$$\cdots \to H^n(K,A) \xrightarrow{\chi_*} H^n(K,B) \xrightarrow{\sigma_*} H^n(K,C) \xrightarrow{\delta_E} H^{n+1}(K,A) \to \cdots$$

The maps χ_* and σ_* are the induced maps on cohomology classes.

Proof. See [Mac63, Theorem II.4.5.].
$$\square$$

Definition 9. Given a short exact sequence E from A to C we define the connecting homomorphisms $E_* : \operatorname{Ext}^n(G,C) \to \operatorname{Ext}^{n+1}(G,A)$ for each $n \geq 0$ by $E_*(cls(S)) := cls(E \circ S)$.

To see that E* is well defined, suppose we have representatives S and S' of an element $\sigma \in \operatorname{Ext}^n(G,C)$. By definition of congruence we have morphisms

$$S \to S_1 \leftarrow S_2 \to \cdots \to S_{2k-1} \leftarrow S'$$

all starting in 1_C and ending in 1_G . We use this sequence to construct morphisms

$$E \circ S \to E \circ S_1 \leftarrow E \circ S_2 \to \cdots \to E \circ S_{2k-1} \leftarrow E \circ S'$$

by filling up the missing module homomorphisms with identities.

We use the notation $E_*\tau = E\tau$ for $\tau \in \operatorname{Ext}^n(G,C)$. We can regard $\operatorname{Ext}^n(G)(E) := \operatorname{Ext}^n(G,C)$ and $\operatorname{Ext}^{n+1}(G)(E) := \operatorname{Ext}^{n+1}(G,A)$ as covariant functors of E. Then the connecting homomorphism is a natural transformation between $\operatorname{Ext}^n(G)(\underline{\ })$ and $\operatorname{Ext}^{n+1}(G)(\underline{\ })$ [Mac63, p. 97].

Theorem 4. [Mac63, Theorem III.9.1.] Consider a short exact sequence $E = (\chi, \sigma) : 0 \to A \to B \to C \to 0$ of R-modules and an R-module G. Then

$$\cdots \to \operatorname{Ext}^n(G,A) \xrightarrow{\chi_*} \operatorname{Ext}^n(G,B) \xrightarrow{\sigma_*} \operatorname{Ext}^n(G,C) \xrightarrow{E_*} \operatorname{Ext}^{n+1}(G,A) \to \cdots$$

is exact. It starts with $0 \to \operatorname{Ext}^0(G, A)$. The maps involved are defined as

$$\chi_* \rho = \chi \rho, \quad \sigma_* \omega = \sigma \omega, \quad E_* \tau = E \tau$$
(7)

for elements $\rho \in \operatorname{Ext}^n(G, A)$, $\omega \in \operatorname{Ext}^n(G, B)$ and $\tau \in \operatorname{Ext}^n(G, C)$.

Proof. Because every module is isomorphic to a quotient of a free module [Mac63, Proposition I.5.3.] we can construct free resolutions for any module.² Let X be a free resolution of G. Theorems 2 and 3 yield a long exact sequence for Ext:

$$\operatorname{Ext}^{n}(G,A) \xrightarrow{\chi_{*}} \operatorname{Ext}^{n}(G,B) \xrightarrow{\sigma_{*}} \operatorname{Ext}^{n}(G,C) \xrightarrow{E_{*}} \operatorname{Ext}^{n+1}(G,A)$$

$$\downarrow^{\zeta} \qquad \qquad \downarrow^{\zeta} \qquad \qquad \downarrow^{\zeta} \qquad \downarrow^{\zeta}$$

$$H^{n}(X,A) \xrightarrow{\chi_{*}} H^{n}(X,B) \xrightarrow{\sigma_{*}} H^{n}(X,C) \xrightarrow{(-1)^{n+1}\delta_{E}} H^{n+1}(X,A)$$

$$(8)$$

It suffices to check that the maps defined in (7) make the diagram commutative for every $n \geq 0$. Commutativity of the first two squares of (8) follows by naturality of ζ for n > 0 and by recalling the definition of the isomorphism for n = 0.

To prove commutativity of the square on the right in (8) in the case n=0, we have to show that $(-1)\delta_E\zeta=\zeta E_*$. Let $\gamma:G\to C$ be a

²Suppose we have a module $A \cong F_0/G_0$ for F_0 free. Then $G_0 \cong F_1/G_1$ with F_1 free and so on. Then $\cdots \to F_1 \to F_0 \to A \to 0$ is a free resolution of A.

homomorphism and $(1_A, \beta, \gamma) : E\gamma \to E$ a morphism. The diagram

$$X: \qquad X_1 \xrightarrow{\partial} X_0 \xrightarrow{\epsilon} G$$

$$\downarrow f_1 \qquad \downarrow f_0 \qquad \parallel$$

$$E\gamma: \qquad A \xrightarrow{\chi} B' \xrightarrow{\sigma} C$$

shows chain transformations $X \to E\gamma \to E$. By definition of δ_E and commutativity

$$\delta_E \zeta \gamma = \delta_E \operatorname{cls}(\gamma \epsilon) = \operatorname{cls} \chi^{-1} \delta \sigma^{-1} \gamma \epsilon$$
$$= \operatorname{cls} \chi^{-1} \delta(\beta f_0) = (-1) \operatorname{cls} \chi^{-1} \beta f_0 \partial = (-1) \operatorname{cls}(f_1).$$

On the other hand $\zeta E_* \gamma = \zeta \operatorname{cls}(E\gamma) = \operatorname{cls}(f_1)$. Thus the case is proven. Let $S \in \operatorname{Ext}^n(G, C)$ for n > 0. Regard $E \circ S$ as a resolution of G. Let $f: X \to E \circ S$ be a chain transformation lifting 1_G . The diagram

$$X: X_{n+1} \xrightarrow{\partial_{n+1}} X_n \longrightarrow X_{n-1} \longrightarrow \dots \longrightarrow X_0 \longrightarrow G$$

$$\downarrow^f \downarrow^{f_{n+1}} \downarrow^{f_n} \downarrow^{f_{n-1}} \downarrow^{f_0} \parallel$$

$$E \circ S: A \xrightarrow{X} B \xrightarrow{\lambda \sigma} B_{n-1} \longrightarrow \dots \longrightarrow B_0 \longrightarrow G$$

$$\downarrow^{\Gamma} \downarrow^{\sigma} \parallel \parallel$$

$$S: C \xrightarrow{\lambda} B_{n-1} \longrightarrow \dots \longrightarrow B_0 \longrightarrow G$$

shows chain transformations $X \to E \circ S \to S$. By definition of ζ we get $\zeta E_* \operatorname{cls}(S) = \operatorname{cls}(f_{n+1})$. Composing Γf results in a chain transformation $X \to S$ lifting 1_G . Therefore $\zeta(S) = \operatorname{cls}((\Gamma f)_n) = \operatorname{cls}(\sigma f_n)$. Hence $\delta_E \zeta(S) = \operatorname{cls} \chi^{-1} \delta f_n = (-1)^{n+1} \operatorname{cls} \chi^{-1} f_n \, \partial_{n+1} = (-1)^{n+1} \operatorname{cls}(f_{n+1})$. The last equation follows by commutativity of the upper left square in the diagram. Signs cancel out with those in our exact sequence (8). This shows commutativity for n > 0.

3 Extensions and Cohomology of Groups

Let G, B, Π be groups. An exact sequence

$$E: 0 \longrightarrow G \xrightarrow{\chi} B \xrightarrow{\sigma} \Pi \longrightarrow 1 \tag{9}$$

is called a group extension of G by Π . For convenience G, B are denoted as additive groups and Π as a multiplicative group. We define a homomorphism $\theta: B \to \operatorname{Aut}(G)$ via conjugation

$$\chi(\theta(b)q) = b + \chi q - b$$

for $b \in B$ and $g \in G$. Let A := G be an abelian group. Then for any $b \in \ker \sigma$ by exactness $b = \chi a$ for some $a \in A$, hence $\theta(b) = 1_A$. Therefore $\ker \sigma \subset \ker \theta$. Thus we can define $\phi : \Pi \to Aut(A)$ via the universal property of the quotient as the unique map such that $\phi \sigma = \theta$. Call ϕ the operators of the extension E. We have the following equality

$$\chi(\phi(\sigma(b))a) = b + \chi a - b \tag{10}$$

for $a \in A$ and $b \in B$. A morphism $\Gamma : E \to E'$ is a tuple of group homomorphisms (α, β, γ) such that the diagram

commutes. Two group extensions E, E' are congruent if there is a morphism of the form $(1_A, \beta, 1_{\Pi}) : E \to E'$. We use the familiar notation $E \equiv E'$ for congruent extensions. As in the case of Ext we may speak of congruence classes of group extensions because β is an isomorphism via the Short 5 Lemma.

Lemma 6. Congruent extensions have the same operators.

Proof. Consider extensions $E = (\chi, \sigma) : A \to B \to \Pi$ with operators ϕ and $E' = (\chi', \sigma') : A \to B' \to \Pi$ with operators ϕ' . Assume E and E' are congruent, so there is a morphism $(1_A, \beta, 1_\Pi) : E \to E'$. Let $b \in B$ and set $\sigma b = x$. By commutativity $\sigma' \beta b = \sigma b = x$ and $\beta \chi = \chi'$. By the definition of operators for $a \in A$ we have

$$\beta \chi(\phi(\sigma b)a) = \beta b + \beta \chi a - \beta b$$

$$\implies \beta \chi(\phi(x)a) = \chi'(\phi'(\sigma'\beta b)a)$$

$$\implies \chi'(\phi(x)a) = \chi'(\phi'(x)a).$$

Because χ' is injective the operators ϕ and ϕ' are equal.

Denote the set of congruence classes of group extensions of an abelian group A by any group Π with operators ϕ by Opext (Π, A, ϕ) .

3.1 Group Ring

In this subsection we follow [PS02, Chapter 3.2.]. Let Π be any multiplicative group. Let $\mathbb{Z}(\Pi)$ denote the set of all formal linear combinations $\alpha = \sum_{x \in \Pi} a_x x$ where $a_x \in \mathbb{Z}$ with $a_x = 0$ for all but finitely many x. We define the sum of two elements in $\mathbb{Z}(\Pi)$ by

$$\left(\sum_{x\in\Pi}a_xx\right)+\left(\sum_{y\in\Pi}b_yy\right)=\sum_{x\in\Pi}(a_x+b_x)x.$$

We define the product of two elements $\alpha = \sum_{x \in \Pi} a_x x$ and $\beta = \sum_{y \in \Pi} b_y y$ by

$$\alpha\beta = \sum_{x,y \in \Pi} (a_x b_y) xy.$$

These operations induce a ring structure on $\mathbb{Z}(\Pi)$. A module over $\mathbb{Z}(\Pi)$ is called Π -module. We want to show that a group homomorphism $\Pi \to Aut(A)$ for an abelian group A defines a unique Π -module structure on A.

Define an embedding $\iota: \Pi \to \mathbb{Z}(\Pi)$ by $\iota(x) = 1 \cdot x$. Note that $\iota\Pi$ is a basis of $\mathbb{Z}(\Pi)$.

Lemma 7. [Mac63, Proposition IV.1.1.] Let $\mu : \Pi \to R$ be a function with $\mu(1) = 1$ and $\mu(xy) = \mu(x)\mu(y)$. There is a unique ring homomorphism $\rho : \mathbb{Z}(\Pi) \to R$ such that the diagram

commutes.

Proof. Define $\rho(\sum_{x\in\Pi} a_x x) := \sum_{x\in\Pi} a_x \mu(x)$. It is easy to check that this is a ring homomorphism and that the diagram commutes. Since $\iota\Pi$ is a basis, ρ is unique.

Lemma 8. [Mac63, Proposition IV.1.2.] Let A be an abelian group. A group homomorphism $\phi: \Pi \to Aut(A)$ gives A a unique Π -module structure.

Proof. The group homomorphisms $A \to A$ form a ring End(A). The automorphisms Aut(A) are a subset of End(A). Extending the range of ϕ to End(A) allows us to apply Lemma 7. Hence ϕ induces a Π -module structure on A. We say A is a Π -module with operators ϕ .

3.2 Factor Sets

From here on we identify A with $\chi A \subset B$. For an extension E as in (9) we choose a set function $u: \Pi \to B$ such that $\sigma u = 1_{\Pi}$ and u(1) = 0. We call u representatives. Notice that σ being onto ensure the existence of representatives. We use the notation $xa := \phi(x)a$. The equation (10) with b = u(x) then becomes

$$u(x) + a = xa + u(x). \tag{11}$$

Since $A = \ker \sigma$ we conclude that each coset b + A in B contains exactly one u(x). For suppose u(x) = u(x') + a then $x = \sigma u(x) = \sigma(u(x') + a) = \sigma u(x') + \sigma(a) = x'$.

Because $\sigma u(xy) = xy = \sigma u(x)\sigma u(y) = \sigma(u(x) + u(y))$ there exist unique elements $f(x,y) \in A$ such that u(x) + u(y) = f(x,y) + u(xy). Call f a factor set of the extension E.

The described procedure of assigning a factor set to a given group extension will be used in Theorem 5.

The addition in B is determined by u and f in the following way: Every element in B can be written uniquely as a + u(x) for $a \in A$ and $x \in \Pi$. For elements a + u(x) and $a_1 + u(y)$ in B we calculate their sum

$$(a+u(x)) + (a_1 + u(y)) = a + xa_1 + u(x) + u(y) = a + xa_1 + f(x,y) + u(xy)$$

by using (11) and the definition of f.

3.3 Opext and the 2-dimensional Cohomology Group

We define $Z^2_{\phi}(\Pi, A)$ to be the set of functions $f: \Pi \times \Pi \to A$ such that the conditions

$$f(x,1) = 0 = f(1,y) \tag{12}$$

$$xf(y,z) + f(x,yz) = f(x,y) + f(xy,z)$$
 (13)

are satisfied for all $x, y, z \in \Pi$. Denote by $B^2_{\phi}(\Pi, A)$ the subset of $Z^2_{\phi}(\Pi, A)$ containing all functions δg of the form

$$\delta g(x,y) := xg(y) - g(xy) + g(x) \tag{14}$$

for some function $g:\Pi\to A$ with g(1)=0. We define an operation (f+f')(x,y)=f(x,y)+f'(x,y). Together with this operation $Z_\phi^2(\Pi,A)$ is an abelian group with $B_\phi^2(\Pi,A)$ being a subgroup.

Definition 10. We define the 2-dimensional cohomology group as the quotient

$$H^2_\phi(\Pi,A)=Z^2_\phi(\Pi,A)/B^2_\phi(\Pi,A).$$

Lemma 9. Factor sets satisfy conditions (12) and (13).

Proof. It is easy to see that the equation (12) holds for factor sets. Let f be a factor set of the extension $A \to B \to \Pi$. Using the addition described in subsection 3.2 we calculate

1.
$$(u(x) + u(y)) + u(z) = (f(x,y) + u(xy)) + u(z)$$

 $= f(xy) + f(xy,z) + u(xyz)$
2. $u(x) + (u(y) + u(z)) = u(x) + (f(y,z) + u(yz))$
 $= xf(y,z) + f(x,yz) + u(xyz)$

Since addition in A is associative 1 and 2 are equal. So equation (13) is satisfied.

When we assigned factor sets to group extensions it involved a choice of representatives. To prove Theorem (5) we will need

Lemma 10. The factor set of a group extension of A by Π with operators ϕ is well defined modulo $B^2_{\phi}(\Pi, A)$.

Proof. Let $u, u' : \Pi \to B$ be representatives. By definition $\sigma u(x) = \sigma u'(x) = x$ for all $x \in \Pi$. Therefore u(x) and u'(x) lie in the same coset of A in B and for all $x \in \Pi$ we can choose some set function $g : \Pi \to A$ such that u'(x) = g(x) + u(x). Using (11) we get

$$u'(x) + u'(y) = g(x) + u(x) + g(y) + u(y)$$

$$= g(x) + xg(y) + u(x) + u(y)$$

$$= g(x) + xg(y) + f(x, y) + u(xy)$$

$$= g(x) + xg(y) + f(x, y) - g(xy) + u'(xy)$$

$$= xg(y) - g(xy) + g(x) + f(x, y) + u'(xy)$$

$$= \delta g(x, y) + f(x, y) + u'(xy)$$

where f is the factor set for representatives u and δg as defined in (14). So we can define the new factor set as

$$f'(x,y) = \delta g(x,y) + f(x,y)$$

with $\delta g \in B^2_{\phi}$.

Theorem 5. Assigning a factor set to a congruence class of group extensions yields a bijection

$$\omega: \operatorname{Opext}(\Pi, A, \phi) \to H^2_{\phi}(\Pi, A)$$

modulo $B^2_{\phi}(\Pi, A)$.

Proof. Given a congruence class $\tau \in \text{Opext}(\Pi, A, \phi)$ choose a representative $E \in \tau$. Now construct a factor set as described in subsection 3.2. Define $\omega \tau := f + B_{\phi}^2(\Pi, A)$. It is easy to see that congruent extensions have the same factor sets. Together with Lemma 10, this shows that ω is well defined.

To show that it is injective, let $E:A\to B\to\Pi$ and $E':A\to B'\to\Pi$ be two group extensions. Choose representatives u and u' with factor sets f and f'. Assume $f'-f=\delta g$ for some set function $g:\Pi\to A$ satisfying g(1)=0. Choosing representatives g(x)+u'(x) for E' shows that f is factor set for E'. As representatives and factor set determine the addition of B and B', the extensions are congruent.

Lemma 11 shows surjectivity.

Lemma 11. Every $f \in \mathbb{Z}_{\phi}^2$ is factor set of some group extension E.

Proof. Define $B := A \times \Pi$. The operation

$$(a, x) + (a_1, y) := (a + xa_1 + f(x, y), xy)$$

defined for elements $(a, x), (a_1, y) \in B$ induces a group structure on B. Associativity is shown by

$$((a,x) + (a_1,y)) + (a_2,z) = (a + xa_1 + f(x,y), xy) + (a_2,z)$$

$$= (a + xa_1 + f(x,y) + xya_2 + f(xy,z), xyz)$$

$$= (a + x(a_1 + ya_2 + f(y,z)) + f(x,yz), xyz)$$

$$= (a,x) + (a_1 + ya_2 + f(y,z), yz)$$

$$= (a,x) + ((a_1,y) + (a_2,z)).$$

The third equation holds because of (13). The short exact sequence (χ, σ) : $A \to B \to \Pi$ with χ inclusion and σ projection has representatives u(x) = (0, x) and factor set f.

Let A be a Π -module. The semi-direct product $A \times_{\phi} \Pi$ is defined as the set $A \times \Pi$ together with the addition

$$(a,x) + (a_1,y) := (a + xa_1, xy)$$

for $(a,x), (a_1,y) \in A \times \Pi$. The neutral element is (0,1) and the inverse of an element (a,x) is given by $-(a,x) := (x^{-1}(-a),x^{-1})$. Let $\iota: A \to A \times_{\phi} \Pi$ denote the inclusion and $\rho: A \times_{\phi} \Pi \to \Pi$ the projection. An extension that is congruent to (ι,ρ) is called semi-direct product extension.

The proof of Lemma 11 shows that the image of the zero element of $H^2_\phi(\Pi,A)$ is the semi-direct product extension.

3.4 Bar Resolution

Given a group Π we will construct a chain complex $B(\mathbb{Z}(\Pi))$ of free Π modules.

Definition 11. Let $n \geq 0$. Define $B_n(\mathbb{Z}(\Pi))$ to be the free Π -module generated by all tuples $[x_1|x_2|\dots|x_n]$ with $x_i \in \Pi$ and $x_i \neq 1$ for $1 \leq i \leq n$.

Notation wise we set $[x_1|\dots|x_n]=0$ if any $x_i=1$. The module B_0 is generated by a single generator $[\]$. Regard $\mathbb Z$ as trivial Π -module, that is $\alpha m=m$ for all $\alpha\in\mathbb Z(\Pi)$ and $m\in\mathbb Z$. We have a module homomorphism $\epsilon:B_0\to\mathbb Z$ defined by $\epsilon[\]:=1$. Define module homomorphisms $\partial:B_n\to B_{n-1}$ by

$$\partial[x_1|\dots|x_n] := x_1[x_2|\dots|x_n] + \sum_{i=1}^{n-1} (-1)^i[x_1|\dots|x_i x_{i+1}|\dots|x_n] + (-1)^n[x_1|\dots|x_{n-1}]$$

for n > 0. The definition includes the case where $x_j = 1$ for some $1 \le j \le n$. Regarding the B_n as abelian groups generated by $x[x_1|...|x_n]$ we define group homomorphisms $s_{-1}: \mathbb{Z} \to B_0$ and $s_n: B_n \to B_{n+1}$ by

$$s_{-1}1 := []$$
 and $s_n x[x_1| \dots |x_n] := [x|x_1| \dots |x_n].$

Lemma 12. The equations

$$\epsilon s_{-1} = 1_{\mathbb{Z}}, \quad \partial s_0 + s_{-1}\epsilon = 1_{B_0}, \quad \partial s_n + s_{n-1}\partial = 1_{B_n}$$
 (15)

are satisfied.

Proof. The first equation is clear. We compute the two summands in the second equation:

1.
$$\partial s_0 x[] = \partial [x] = x[] - []$$

2. $s_{-1} \epsilon x[] = s_{-1} x 1 = s_{-1} 1 = []$

Adding 1 and 2 proves the second equation. Now we calculate the summands of the remaining equation.

1.
$$\partial s_n x_0[x_1|\dots|x_n] = \partial [x_0|x_1|\dots|x_n]$$

 $= x_0[x_1|\dots|x_n]$
 $+ \sum_{i=0}^{n-1} (-1)^{i+1} [x_0|x_1|\dots|x_ix_{i+1}|\dots|x_n]$
 $+ (-1)^{n+1} [x_0|x_1|\dots|x_{n-1}])$

2.
$$s_{n-1} \partial x_0[x_1| \dots | x_n] = s_{n-1}x_0(x_1[x_2| \dots | x_n]$$

$$+ \sum_{i=1}^{n-1} (-1)^i [x_1| \dots | x_i x_{i+1}| \dots | x_n]$$

$$+ (-1)^n [x_1| \dots | x_{n-1}])$$

$$= [x_0 x_1 | x_2 | \dots | x_n]$$

$$+ \sum_{i=1}^{n-1} (-1)^i [x_0 | x_1 | \dots | x_i x_{i+1}| \dots | x_n]$$

$$+ (-1)^n [x_0 | x_1 | \dots | x_i x_{i+1}| \dots | x_n]$$

$$+ (-1)^n [x_0 | x_1 | \dots | x_i x_{i+1}| \dots | x_n]$$

$$+ (-1)^n [x_0 | x_1 | \dots | x_{n-1}])$$

The two sums cancel, as the $[x_0|x_1|\dots|x_{n-1}]$ terms do. This proves the last equation.

Lemma 13. (B_n, ∂_n) is a complex.

Proof. Observe that $\epsilon \partial_1([x]) = \epsilon(x[\] - [\]) = 0$. We can rewrite the third equation in (15) as $\partial_{n+1} s_n = 1 - s_{n-1}$. Applying this twice results in

$$\partial_n \, \partial_{n+1} \, s_n = \partial_n (1 - s_{n-1} \, \partial_n) = \partial_n - \partial_n \, s_{n-1} \, \partial_n$$
$$= \partial_n - (1 - s_{n-2} \, \partial_{n-1}) \, \partial_n = s_{n-2} \, \partial_{n-1} \, \partial_n \,. \tag{16}$$

The module B_{n+1} is generated by $s_n B_n$. By induction it follows that $\partial_n \partial_{n+1} = 0$.

Let $x \in \ker \partial_n$. By (15) $\partial_{n+1} s_n x = x$. This means $x \in \operatorname{im} \partial_{n+1}$. Therefore $\ker \partial_n \subset \partial_{n+1} B_{n+1}$ and $B(\mathbb{Z}(\Pi)) := (B_n, \partial_n)$ is a resolution of \mathbb{Z} . Define the n-dimensional cohomology group of Π with coefficients in the Π -module A by $H^n(\Pi, A) := H^n(B(\mathbb{Z}(\Pi)), A)$.

An element of $\operatorname{Hom}(B_2,A)$ is a module homomorphisms $f:B_2\to A$. It is determined by the images of the module generators [x|y]. Hence we can view f as a function from $\Pi\times\Pi$ to A with f(x,1)=f(1,y)=0. If f is a cocycle, it satisfies (13). Thus f can be viewed as an element of $Z_{\phi}^2(\Pi,A)$. The subgroup ∂B_3 can be identified with $B_{\phi}^2(\Pi,A)$ in the same manner. This means that given a Π -module A, with module structure recorded by the operators ϕ , the assigned groups $H_{\phi}^2(\Pi,A)$ and $H^2(\Pi,A)$ are isomorphic.

The n-dimensional cohomology of groups is a special case of Ext^n . This is shown by

Theorem 6. [Mac63, Corollary IV.5.2.] Let A be a Π -module. There is an isomorphism

$$\operatorname{Ext}_{\mathbb{Z}(\Pi)}^n(\mathbb{Z},A) \cong H^n(\Pi,A),$$

which is natural in A.

Proof. We proved that $B(\mathbb{Z}(\Pi))$ is a resolution of \mathbb{Z} as a trivial Π -module and the B_n are free by construction. Since free modules are projective, the isomorphism and its naturality follow from Theorem 2.

We saw in subsection 2.5 that for any short exact sequence $0 \to A \to B \to C \to 0$ there is a long exact sequence for Extⁿ. Theorem 6 therefore yields a long exact sequence

$$\cdots \to H^n(\Pi, A) \to H^n(\Pi, B) \to H^n(\Pi, C) \to H^{n+1}(\Pi, A) \to \cdots$$

We end this section with two calculations using Theorem 6.

Application 2. [Mac63, Chapter IV.7.] Let A be an abelian group and m a positive integer. We denote the cyclic group of order m by C_m and its generator by t. We calculate $H^n(C_m, A)$ for n > 0.

First we construct a projective resolution of \mathbb{Z} as a C_m -module. Let Γ denote the group ring $\mathbb{Z}(C_m)$. The elements

$$N := 1 + t + \dots + t^{m-1}$$
 and $D := t - 1$

induce maps $N_*, D_*: \Gamma \to \Gamma$ via multiplication. It is easy to see that ND=0. Therefore

$$W: \cdots \xrightarrow{N_*} \Gamma \xrightarrow{D_*} \Gamma \xrightarrow{N_*} \Gamma \xrightarrow{D_*} \Gamma.$$

defines a complex. Furthermore the module homomorphism $\epsilon: \Gamma \to \mathbb{Z}$ defined by $\epsilon(\sum a_i t_i) = \sum a_i$ sends all elements of the form Du for $u \in \Gamma$ to zero. Therefore

$$(W,\epsilon): \quad \cdots \xrightarrow{N_*} \Gamma \xrightarrow{D_*} \Gamma \xrightarrow{N_*} \Gamma \xrightarrow{D_*} \Gamma \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0$$

is a complex over \mathbb{Z} . To show exactness we have to look at elements $u:=\sum_{i=0}^{m-1}a_it^i\in\Gamma$.

- 1. Suppose Du = 0. Then $Du = \sum_{i=0}^{m-1} (a_{i-1} a_i)t^i = 0$ (with $a_{-1} := a_{m-1}$) and therefore $a_i = a_{i-1}$ for all i. So we can write $u = a_0N$.
- 2. Suppose Nu = 0. Then $Nu = \sum_{j} (\sum_{i} a_{i}) t^{j} = 0$ which implies $\sum_{i} a_{i} = 0$. Hence we can write $u = -D(a_{0} + (a_{1} + a_{0})t + \cdots + (a_{m-1} + \cdots + a_{0})t^{m-1})$.
- 3. Suppose $\epsilon u = 0$. Then $\sum_i a_i = 0$ and as above we see that we can write $u = -D(a_0 + (a_1 + a_0)t + \cdots + (a_{m-1} + \cdots + a_0)t^{m-1})$.

We proved that (W, ϵ) is a resolution over \mathbb{Z} . The ring Γ is a projective module over itself. So by Theorem 2 we can compute Ext^n using (W, ϵ) .

Note that $\operatorname{Hom}(\Gamma, A) \cong A$ since any homomorphism $f : \Gamma \to A$ is determined by $f(1) \in A$. Thus applying $\operatorname{Hom}(\underline{\ }, A)$ yields the sequence

$$\dots \stackrel{N^*}{\longleftarrow} A \stackrel{D^*}{\longleftarrow} A \stackrel{N^*}{\longleftarrow} A \stackrel{D^*}{\longleftarrow} A.$$

Calculating the homology of this complex results in

$$H^{2n}(C_m, A) = [a|ta = a]/N^*A, n \ge 0$$

$$H^{2n+1}(C_m, A) = [a|Na = 0]/D^*A, n > 0.$$

Example 2. With the same situation as in Application 2, but A a trivial C_m -module, the cohomology groups are

$$H^{2n}(C_m,A)=[a\in A|ta=a]/N^*A=A/mA, n\geq 0$$

$$H^{2n+1}(C_m, A) = [a \in A | Na = 0]/D^*A = [a | order \ of \ a \ divides \ m], n > 0.$$

Proof. All elements of A are invariant under C_m . The image of N^* is all elements of the form ma, $a \in A$. The kernel of N^* are all elements with order dividing m. The image of elements $a \in A$ under D^* is (1-t)a = a - a = 0. Now the results follow by our calculations in Application 2

References

- [Mac63] Saunders Mac Lane. *Homology*. Die Grundlehren der mathematischen Wissenschaften, Bd. 114. Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
- [PS02] César Polcino Milies and Sudarshan K. Sehgal. An introduction to group rings. Vol. 1. Algebra and Applications. Kluwer Academic Publishers, Dordrecht, 2002.
- [Wei94] Charles A. Weibel. An introduction to homological algebra. Vol. 38. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.