SEM with Continuous and Ordered Categorical Variables for Prostate Cancer

WANG Lijun

Department of Statistics, CUHK

April 10, 2019

Introduction

- Prostate Cancer: the second most common cancer in men worldwide(World Cancer Research Fund)
- Prostate-specific antigen (PSA):
 - monitor the progression of prostate cancer in men who had already been diagnosed with the disease.
 - increased availability of screening for PSA in men without symptoms of the disease.
- ▶ Dataset: Stamey et al. (1989) examined the relationship between the level of PSA and a number of clinical measures.
- ► Source: Friedman, Hastie, and Tibshirani (2001) https://web.stanford.edu/~hastie/ElemStatLearn/.

the log of prostate specific antigen (PSA) $\,$

 $lcavol(y_2)$

log cancer volume

 $lcavol(y_2)$

 $gleason(y_3)$

Gleason score, {6,7,8,9}

 $lcavol(y_2)$

gleason(y₃)

pgg45(y₄)

percent of Gleason grade 4 or 5

 $lpsa(y_1)$ $lcavol(y_2)$ gleason(y₃) $pgg45(y_4)$ lweight(y₅)

log prostate weight

 $lpsa(y_1)$ $lcavol(y_2)$ gleason(y₃) $pgg45(y_4)$ lweight(y₅) $lbph(y_6)$ log of benign prostatic hyperplasia

 $lpsa(y_1)$ $lcavol(y_2)$ gleason(y₃) $pgg45(y_4)$ $svi(y_7)$ seminal vesicle invasion, {0,1} lweight(y₅) $lbph(y_6)$

Path Diagram

Measurement and Structural Equation

$$y = \mu + \Lambda \omega + \varepsilon \tag{1}$$

$$\eta = bd + \Gamma \xi + \delta \,, \tag{2}$$

where

- ▶ $y = [y_1, y_2, y_3^*, y_4, y_5, y_6, y_7^*, y_8]'$, where the unobservable y_3^*, y_7^* are related to the ordered categorical variable y_3, y_7 via a set of thresholds.
- $\omega = [\eta, \xi']'$, and $\xi = [\xi_1, \xi_2, \xi_3]' \sim N(\mathbf{0}, \Phi)$.

$$\mathbf{\Lambda'} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & \lambda_1 & \lambda_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & \lambda_3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \lambda_4 \end{bmatrix}$$

- $\Gamma = [\gamma_1, \gamma_2, \gamma_3]$
- $\varepsilon \sim N(\mathbf{0}, \Psi_{\varepsilon}), \delta \sim N(\mathbf{0}, \psi_{\delta}).$

3

Parameters

priors:

- hyperparameters for $\{\lambda_1, \lambda_2, \lambda_3, \lambda_4\}$ are $\{0.9, 0.7, 0.9, 0.7\}$.
- hyperparameters for $\{b, \gamma_1, \gamma_2, \gamma_3\}$ are $\{0.5, 0.4, 0.2, 0.5\}$.
- hyperparameters for Φ are $\rho_0 = 4$ and $\mathbf{R}_0^{-1} = \mathbf{I}$.
- $\alpha_{0\epsilon k} = \alpha_{0\delta} = 9$ and $\beta_{0\epsilon k} = \beta_{0\delta} = 4$.
- sampling:
 - method: Hamiltonian Monte Carlo (Stan Interface for Julia)
 - ▶ number of iterations: 1000 (burn in) + 1000
 - number of chains: 4, each with different initial values

Convergence (Γ)

Convergence (Λ)

6

Convergence (Ψ_{ϵ})

Results

	Mean	SD	SE	MCSE		Mean	SD	SE	MCSE
b	0.0088	0.0101	0.0002	0.001	mu.8	-0.2386	0.1443	0.0023	0.004
c0	1.4981	1.1569	0.0183	0.0792	phx.1.1	1.0871	0.2046	0.0032	0.0039
c.1	-0.402	1.0013	0.0158	0.0182	phx.1.2	0.0668	0.0546	0.0009	0.0017
c.2	2.0835	1.1226	0.0178	0.0244	phx.1.3	1.453	0.7031	0.0111	0.0808
c.3	2.2658	1.1455	0.0181	0.0254	phx.2.1	0.0668	0.0546	0.0009	0.0017
gamma.1	0.671	0.2705	0.0043	0.0083	phx.2.2	0.1168	0.029	0.0005	0.0009
gamma.2	0.6099	0.3108	0.0049	0.0088	phx.2.3	0.0601	0.0931	0.0015	0.0037
gamma.3	0.1062	0.2062	0.0033	0.0068	phx.3.1	1.453	0.7031	0.0111	0.0808
lambda.1	0.8925	0.249	0.0039	0.0062	phx.3.2	0.0601	0.0931	0.0015	0.0037
lambda.2	1.2511	0.6235	0.0099	0.0083	phx.3.3	2.8512	3.1856	0.0504	0.391
lambda.3	2.9679	0.7407	0.0117	0.0425	sgd	0.5515	0.0591	0.0009	0.0013
lambda.4	0.8845	0.3198	0.0051	0.0331	sgm.1	0.5549	0.0619	0.001	0.0013
mu.1	1.852	0.6424	0.0102	0.0625	sgm.2	0.6039	0.0621	0.001	0.0016
mu.2	1.2855	0.1219	0.0019	0.0035	sgm.3	0.9498	0.2057	0.0033	0.007
mu.3	0.0296	0.9847	0.0156	0.0181	sgm.4	32.4829	2.2894	0.0362	0.0279
mu.4	2.0747	0.9671	0.0153	0.0146	sgm.5	0.4218	0.0334	0.0005	0.0006
mu.5	3.6116	0.0552	0.0009	0.001	sgm.6	0.9644	0.1749	0.0028	0.009
mu.6	0.0705	0.1417	0.0022	0.0026	sgm.7	0.6703	0.1117	0.0018	0.0034
mu.7	0.008	0.9626	0.0152	0.0138	sgm.8	0.73	0.0896	0.0014	0.0043
					-				

Interpretation

- ▶ All the factor loading $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ estimates 0.89, 1.25, 2.96, 0.88 are high, indicating strong associations between each latent variable and their corresponding indicators.
- The latent variables can be interpreted as
 - η : the level of prostate specific antigen
 - ξ_1 : the status of cancer cells.
 - ξ_2 : physical measurements of prostate.
 - ξ_3 : living environment of cells.
- ► The estimated structural equation is

$$\eta = 0.0088d + 0.671\xi_1 + 0.6099\xi_2 + 0.1062\xi_3,$$

thus, the status of cancer cells (ξ_1) has most important effect on the level of PSA, and the physical measurements of prostate (ξ_2) has slightly less important effect, while the living environment (ξ_3) is not very important.

Model Comparison (I)

Motivation: there might be some interactions between cancer cells (ξ_1) and prostate (ξ_2), then propose a nonlinear SEM,

$$M_0: \eta = bd + \gamma_1 \xi_1 + \gamma_2 \xi_2 + \gamma_3 \xi_3 + \gamma_4 \xi_1 \xi_2 + \delta \,,$$

use the following linking model to compare it with the current model,

$$M_t: \eta = bd + \gamma_1 \xi_1 + \gamma_2 \xi_2 + \gamma_3 \xi_3 + (1-t)\gamma_4 \xi_1 \xi_2 + \delta$$
,

where M_1 corresponds to the current model.

Result: $\log B_{10} = 0.4834$, which implies that the interaction $\xi_1 \xi_2$ doesn't make much difference.

Model Comparison (II)

Motivation: there might be some interactions between cancer cells (ξ_1) and environment (ξ_3), then propose a nonlinear SEM,

$$M_0': \eta = bd + \gamma_1 \xi_1 + \gamma_2 \xi_2 + \gamma_3 \xi_3 + \gamma_4 \xi_1 \xi_3 + \delta \,,$$

use the following linking model to compare it with the current model,

$$M'_{t}: \eta = bd + \gamma_{1}\xi_{1} + \gamma_{2}\xi_{2} + \gamma_{3}\xi_{3} + (1-t)\gamma_{4}\xi_{1}\xi_{3} + \delta$$
,

where M'_1 corresponds to the current model.

Result: $\log B'_{10} = 2.0830$, which slightly supports the current model.

Model Comparison (III)

Motivation: *age* might not make much difference because prostate cancer is only for old people because the small coefficient b = 0.0088.

$$M_0'': \eta = \gamma_1 \xi_1 + \gamma_2 \xi_2 + \gamma_3 \xi_3 + \delta$$
,

use the following linking model to compare it with the current model,

$$M''_t: \eta = tbd + \gamma_1 \xi_1 + \gamma_2 \xi_2 + \gamma_3 \xi_3 + \delta$$
,

where M_1'' corresponds to the current model.

Result: $\widehat{\log B_{10}''} = -0.6812$, which implies that M_0'' is better.

Sensitivity Analysis

Focus on $\hat{\Gamma}$ with different hyperparameters in the priors of Γ .

Prior: {0.4, 0.2, 0.5}Prior I: {0.1, 0.1, 0.1}

► Prior II: {0.9, 0.9, 0.9}

► Prior III: {0.1, 0.1, 0.9}

	$\hat{\gamma}_1(\hat{\sigma}_1)$	$\hat{\gamma}_2(\hat{\sigma}_2)$	$\hat{\gamma}_3(\hat{\sigma}_3)$
Prior	0.6710(0.2705)	0.6099(0.3108)	0.1062(0.2062)
Prior I	0.6558(0.2747)	0.5920(0.3133)	0.1089(0.2040)
Prior II	0.6920(0.2650)	0.8339(0.3164)	0.1107(0.2171)
Prior III	0.5181(0.2925)	0.6054(0.3155)	0.2252(0.2258)

Result: The results are robust to different prior inputs for Γ . Specifically, ξ_1 and ξ_2 again have approximately equal effects on the level of PSA and ξ_3 is still not important even for the highest prior (case III).

Conclusion

By the following techniques,

- 1. SEM with Continuous and Ordered Categorical Variables
- 2. Model Comparisons
- 3. Sensitivity Analysis

we obtain reasonable (expected) conclusions:

- the status of cancer cells and the physical measurements of prostate have approximately equal effects on PSA.
- the living environment is much less important for PSA.
- ▶ the *age* is not important at all, and even can be omitted in the model.

Source code *model.stan*

```
* Stan Program for the final project of STAT 5020
* author: WANG Lijun liwang@link.cuhk.edu.hk>
* date: April 9, 2019
data {
    int<lower=1> N:
    vector[6] Y[N];
    int<lower=0. upper=9> Z[N. 2]:
    int < lower = 0 > age[N];
transformed data {
    vector[3] zero = rep_vector(0, 3);
    cov_matrix[3] Phi0 = diag_matrix(rep_vector(1, 3));
parameters {
    vector[8] mu;
    vector[4] lambda;
    vector[3] gamma;
    vector<lower=0.0>[8] sgm2;
    real<lower=0.0> sgd2;
    cov matrix[3] phx:
    vector[N] eta:
```

Source code model.stan (Cont'd)

```
vector[3] xi[N];
    ordered[3] c:
    real c0:
    real b;
transformed parameters {
    vector[8] u[N];
    vector[N] nu;
    vector[8] sgm = sgrt(sgm2):
    real sgd = sqrt(sgd2);
    for (i in 1:N){
        nu[i] = b * age[i] + gamma[1] * xi[i, 1] + gamma[2] * xi[i, 2] + gamma[3] *
             xi[i, 3];
        u[i, 1] = mu[1] + eta[i]:
        u[i, 2] = mu[2] + xi[i, 1]:
        u[i, 3] = mu[3] + lambda[1] * xi[i, 1];
        u[i, 4] = mu[4] + lambda[2] * xi[i, 1];
        u[i, 5] = mu[5] + xi[i, 2]:
        u[i, 6] = mu[6] + lambda[3] * xi[i, 2];
        u[i, 7] = mu[7] + xi[i, 3];
        u[i, 8] = mu[8] + lambda[4] * xi[i, 3]:
model {
    vector[4] theta:
```

Source code model.stan (Cont'd)

```
vector[2] theta0;
// prior
mu ~ normal(0. 1):
lambda[1] ~ normal(0.9, sgm[1]);
lambda[2] ~ normal(0.7, sgm[2]);
lambda[3] ~ normal(0.9, sgm[3]);
lambda[4] ~ normal(0.7, sgm[4]);
gamma[1] ~ normal(0.4, sgd);
gamma[2] ~ normal(0.2, sgd);
gamma[3] ~ normal(0.5, sgd);
b ~ normal(0.5, sgd):
sgm2 ~ inv_gamma(9, 4);
sgd2 ~ inv gamma(9, 4):
phx ~ inv_wishart(4, Phi0);
for (i in 1:N) {
    eta[i] ~ normal(nu[i], sgd);
    xi[i] ~ multi_normal(zero, phx);
// likelihood
for (i in 1:N) {
    theta[1] = Phi((c[1] - u[i, 3]) / sgm[3]):
```

Source code model.stan (Cont'd)

```
theta[2] = Phi((c[2] - u[i, 3]) / sgm[3]) - Phi((c[1] - u[i, 3]) / sgm[3]);
        theta[3] = Phi((c[3] - u[i, 3]) / sgm[3]) - Phi((c[2] - u[i, 3]) / sgm[3]);
        theta[4] = 1 - Phi((c[3] - u[i, 3]) / sgm[3]);
        Y[i, 1] ~ normal(u[i, 1], sgm[1]);
        Y[i, 2] ~ normal(u[i, 2], sgm[2]);
        Z[i, 1] - 5 ~ categorical(theta);
        Y[i, 3] ~ normal(u[i, 4], sgm[4]);
        Y[i, 4] ~ normal(u[i, 5], sgm[5]);
        Y[i, 5] ~ normal(u[i, 6], sgm[6]);
        theta0[1] = Phi((c0 - u[i, 7]) / sgm[7]);
        theta0[2] = 1 - theta0[1]:
        Z[i, 2] + 1 ~ categorical(theta0);
        Y[i, 6] ~ normal(u[i, 8], sgm[8]);
/* only for model comparisons
generated quantities {
    real U = 0:
    for (i in 1:N) {
        U -= (eta[i] - b*age[i] - gamma[1]*xi[i,1] - gamma[2]*xi[i,2] - gamma[3]*xi[i
              .3] - gamma[4]*(1-t)*xi[i,1]*xi[i,2] ) * (gamma[4] * xi[i, 1] * xi[i
              ,2]) / sgd2;
```

Source code sem.jl

```
## Julia Program for the final project of STAT 5020
##
## author: WANG Lijun liwang@link.cuhk.edu.hk>
## date: April 9, 2019
##
using CmdStan
using DelimitedFiles
data = readdlm("prostate.data", ',')
Y = data[2:end, [9, 1, 8, 2, 4, 6]]
age = data[2:end, 3]
Z = data[2:end, [7, 5]]
N = size(Y)[1]
inputdata = Dict("N" => N, "Y" => Y, "Z" => Z, "age" => age)
monitor = vcat("mu.".*string.(1:8),
                "lambda.".*string.(1:4),
                "gamma.".*string.(1:3),
                "sgm.".*string.(1:8), "sgd",
                "phx.1.".*string.(1:3), "phx.2.".*string.(1:3), "phx.3.".*string
                      .(1:3),
                "b".
                "c.".*string.(1:3), "c0")
```

```
# run
model = Stanmodel(model = read(open("model.stan"), String), monitors = monitor)
rc, sim, cnames = stan(model, inputdata)
** *********************************
## save traceplots
using MCMCChains
using StatsPlots
p1 = plot(sim[vcat("sgm.".*string.(1:4))])
savefig(p1, "sgm1to4.png")
p2 = plot(sim[vcat("sgm.".*string.(5:8))])
savefig(p2, "sgm5to8.png")
p3 = plot(sim[vcat("lambda.".*string.(1:4))])
savefig(p3, "lambda.png")
p4 = plot(sim[vcat("gamma.".*string.(1:3))])
savefig(p4, "gamma.png")
p5 = plot(sim[["phx.1.1","phx.1.2","phx.1.3","phx.2.2","phx.2.3", "phx.3.3"]])
savefig(p5, "phx.png")
p6 = plot(sim[vcat("b","c.".*string.(1:3), "c0")])
savefig(p6, "bc.png")
p7 = plot(sim["sgd"])
savefig(p7, "sgd.png")
```

```
## calculate logBF
using StatsBase
function logBF(model, data; nt::Int=10)
    U = ones(nt+1)
    for s = 1:(nt+1)
        data["t"] = 1/nt*(s-1)
        rc, sim, cnames = stan(model, data, summary = false)
        U[s] = mean(sim[:.:.1])
    end
    res = 0
    for s = 1:nt
        res += ( U[s] + U[s+1] ) * (1 / nt) / 2
    end
    return res
end
** ***********************************
## model comparisons
# comparison I
model_c = Stanmodel(model = read(open("model_c.stan"), String), output_format=:array,
      monitors = ["U"], nchains = 1)
res = ones(10)
for i=1:10
```

```
res[i] = logBF(model_c, inputdata)
end
# comparison II
model_c13 = Stanmodel(model = read(open("model_c13.stan"), String), output_format=:
     array, monitors = ["U"], nchains = 1)
res = ones(10)
for i=1:10
    res[i] = logBF(model c13, inputdata)
end
# comparison III
model_cd = Stanmodel(model = read(open("model_cd.stan"), String), output_format=:
     array, monitors = ["U"], nchains = 1)
res = ones(10)
for i = 1.10
    res[i] = logBF(model cd. inputdata)
end
** ***********************************
## sensitivity analysis
model_s1 = Stanmodel(model = read(open("model_s1.stan"), String), monitors = monitor,
      nchains = 4)
rc, sim, cnames = stan(model_s1, inputdata)
```

Thank You!