National Water Conditions

UNITED STATES Department of the Interior Geological Survey

CANADA Department of the Environment Water Resources Branch

JULY 1987

Heavy rains of 4-6 inches in 24 hours on July 1-2 caused flooding which resulted in estimated damages of \$30 million in north-central Ohio. No record-high peak discharges were reported but the Olentangy River at Claridon, Ohio (drainage area 157 square miles), peaked at 13,700 cubic feet per second (cfs) on July 3, about 1.5 times the discharge for the 100-year flood, but 1,200 cfs less than the January 1959 peak of record. In Minneapolis, Minnesota, where precipitation had been below normal through mid July, 8.96 inches of rain fell in 24 hours on July 23-24, exceeding the 100-year 24-hour rainfall by about 3 inches. Total precipitation for the week ending July 25 was 14.49 inches, double that recorded January 1-July 18, 1987. Two people were killed, many highways were flooded for days, and high winds or tornadoes damaged at least 50 homes. Peak discharges on several streams in the area were estimated to have exceeded peaks of record and the 100-year flood, but recurrence interval and discharge data were not available.

Streamflow was in the normal to above-normal range at about 69 percent of the 191 reporting index stations in southern Canada, the United States, and Puerto Rico, compared with the 58 percent in those ranges for last month. Total July flow was only about 17,500 cfs more than in July 1985, the lowest July in the 1983-87 period.

Mean July elevations for the Great Lakes (provisional National Ocean Service data) were lower than those for July 1986. The level of Utah's Great Salt Lake fell 0.50 foot during July, reaching 4,210.70 feet above National Geodetic Vertical Datum of 1929 on July 31. Contents of 78 percent of reporting reservoirs were near or above average for the end of July, compared with 81 percent for the end of June.

The combined flow of the 3 largest rivers in the lower 48 States—Mississippi, St. Lawrence, and Columbia—averaged a below-normal 875,900 cfs during July, 9.5 percent below median and 17.7 percent below last month's flow.

SURFACE-WATER CONDITIONS DURING JULY 1987

Flows generally increased from June to July only in Saskatchewan, North Dakota, Kansas, Tennessee, Kentucky, Ohio, Pennsylvania, New Jersey, Vermont, and Florida. Streamflow generally changed variably in Nebraska, Missouri, Illinois, Indiana, Quebec, New York, Maryland, South Carolina, and Georgia. Alaskan flows changed seasonally. Flow generally decreased in the rest of southern Canada and the United States.

Streamflow was in the normal to above-normal range at about 69 percent of the 191 reporting index stations in southern Canada, the United States, and Puerto Rico, compared with the 58 percent in those ranges for last month. This is the lowest percentage of stations with flow in the normal to above-normal range for July in the last 5 years. Total July flow was the second lowest for July in the last 5 years, but only about 17,500 cubic feet per second (cfs) more than in July 1985, the lowest July during the period.

New July extremes occurred at only 3 index stations. The monthly mean flow of 798 cfs (535 percent of median) on Oil Creek at Rouseville, Pennsylvania (drainage area 300 square miles), was the highest in 58 years of record, exceeding that of 1958 by 51 cfs. Monthly mean flow of Contentnea Creek at Hookerton, North Carolina (drainage area 729 square miles), was 59.0 cfs (22 percent of median), 4.3 cfs less than the 1952 minimum, and the lowest for July in 58 years of record. The monthly mean flow of 331 cfs on Smith River near Crescent City, California (drainage area 609 square miles), was the lowest for July in 55 years of record, 6 cfs less than the 1959 low. Hydrographs of streamflow for two index stations at which new extremes occurred are at the top of page 4. The other hydrographs on the left side of page 4 are for sites at which flows for this month vary from above normal to below normal, and cumulative runoff for the water year is 323, 174, and 121 percent of median, respectively. The other hydrographs on the right side of the page are for sites where flows for this month are below normal, and cumulative runoff for the water year is 49, 101, and 31 percent of median, respectively.

Mean July elevations for the Great Lakes (provisional National Ocean Service data) ranged from 0.13 foot (Lake Superior) to 1.32 feet (Lake Ontario) lower than those for July 1986. Levels rose from last month on both Lake Superior (+0.10 foot) and Lake Erie (+0.04 foot). Levels fell on both Lake Huron (-0.07 foot) and Lake Ontario (-0.29 foot). Stage

hydrographs for Lakes Superior, Huron, Erie, and Ontario are on page 5.

The level of Utah's Great Salt Lake fell 0.50 foot during July, reaching 4,210.70 feet above National Geodetic Vertical Datum of 1929 on July 31. Lake level has fallen 1.15 feet since the March 30, 1987, seasonal high of 4,211.85 feet above NGVD of 1929 (see graph on page 5), which equaled last year's record high set July 3-8.

Contents of 78 percent of reporting reservoirs were near or above average for the end of July, compared with 81 percent for the end of June. Most reporting reservoirs in Texas, New Mexico, Colorado, and Utah had contents of more than 5 percent of normal maximum contents above the average for the end of July. In contrast, most reporting reservoirs in Maine, New Jersey, North Dakota, Wyoming, Idaho, Nevada, California, and Arizona had contents of more than 5 percent of normal maximum contents below the average for the end of July. Graphs of contents for seven reservoirs are shown on page 6 with contents for the 100 reporting reservoirs given on page 7.

The combined flow of the 3 largest rivers in the lower 48 States—Mississippi, St. Lawrence, and Columbia—averaged a below-normal 875,900 cfs during July, 9.5 percent below median and 17.7 percent below last month's flow. Mean flow of the St. Lawrence River at Cornwall, Ontario, was in the above-normal range for the 30th consecutive month. Flow hydrographs for both the combined and individual flows of the "Big 3" are shown on page 10. Dissolved solids and water temperatures at five large river stations are given on page 8. July flows of the "Big 3" and other large rivers are given in the Flow of Large Rivers table on page 9.

July precipitation (provisional National Weather Service data) is shown by the Total Precipitation and Percentage of Normal Precipitation maps on page 10. Total precipitation exceeded 6 inches at 23 cities scattered around the United States during the month. Those cities with more than 6 inches of precipitation that also had record-high totals for July (amounts in inches) were Minneapolis (17.90), Minnesota, and La Crosse (9.35), Wisconsin. Record low precipitation for July fell at Augusta (1.02), Georgia; Jackson (1.04), Mississippi; Beckley (1.66), West Virginia. Total Precipitation and Percentage of Normal Precipitation maps are on page 10. The Crop Moisture map and Drought Severity map (page 11) for August 1 show the differences between short-term and long-term soil moisture for that date. August through October outlook maps for both temperature and precipitation are on page 15.

CONTENTS	Page
Streamflow (map)	
Surface-water conditions.	
Monthly mean discharge of selected streams (graphs)	
Great Lakes elevations (graphs)	
Fluctuations of the Great Salt Lake, February 1981-July 1987 (graph)	
Usable contents of selected reservoirs (graphs)	
Usable contents of selected reservoirs	
Hydrographs for the "Big 3" rivers - combined and individual flows (graphs).	
Dissolved solids and water temperatures at downstream sites on five large rivers	
Flow of large rivers	
Total Precipitation and Percentage of Normal Precipitation (maps)	
Crop Moisture and Drought Severity on August 1 (maps)	
Ground-water conditions	13
Ice volumes on Cascade Volcanoes: Mount Rainier, Mount Hood, Three Sisters, and Mount Shasta (abstract)	
Temperature and precipitation outlooks for August through October 1987 (maps)	
Explanation of data	

PERSISTENCE IN, OR MOVEMENT INTO, THE BELOW-NORMAL OR ABOVE-NORMAL } FLOW RANGE: JUNE TO JULY 1987

SUMMARY OF JULY 1987 STREAMFLOW

[Flow ranges]

		w normal range		ormal range		re normal	Number of stations			
Area	No.	Percent	No.	Percent	No.	Percent	Reporting data	Missing data		
Conterminous United States.	50	30,7	79	48.5	34	20.9	163	0		
Alaska, Hawaii, and Puerto Rico.	1	10.0	4	40.0	5	50.0	10	0		
United States and Puerto Rico.	51	29.5	83	48.0	39	22.5	173	0		
Southern Canada	9	50.0	6	33.3	3	16.7	18	0		
Conterminous United States and southern Canada.	59	32.6	85	47.0	37	20.4	181	0		
All sites	60	31.4	89	46.6	42	22.0	191	0		

[Comparison of total monthly means with total monthly medians and last month's total monthly means]

Total of July means (All sites).	1.803.950	CES
Total of July medians (All sites)	1,892,080	
Total of last month's means (All sites)	2,083,780	CFS
Total of July means compared to total of medians	-4.7	Percent
Total of July means compared to total of last month's means	-13.6	Percent

MONTHLY MEAN DISCHARGE OF SELECTED STREAMS

Unshaded area indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period, 1951-80. Heavy line indicates mean for current period.

GREAT LAKES ELEVATIONS

Unshaded area indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period, 1951-80. Heavy line indicates mean for current period. Data from National Ocean Service.

ELEVATION, IN FEET ABOVE NATIONAL GEODETIC VERTICAL DATUM OF 1929 June 3-8, 1986 Record high 4211.85 feet 4210 4205 4200 Record low 4191.35 feet October - November 1963 July July July July Feb. July July July Jan. Jan. Jan. Jan. Jan, Jan. 1983 1985 1986 1987 1982 1984

USABLE CONTENTS OF SELECTED RESERVOIRS NEAR END OF JULY 1987

[Contents are expressed in percent of reservoir capacity. The usable storage capacity of each reservoir is shown in the column headed "Normal maximum."]

Firegration Firegrate Fi	Principal uses: Reservoir F-Flood control	Pe		of norma	al	Nome	Principal uses: F-Flood control	Pe		of norma	ıl	Manual
Allard (P)	P-Power R-Recreation	of July	of July	end of	of June	Normai	I-Irrigation M-Municipal P-Power	of July	of July	for end of	of June	Normal maximum (acre-feet)
Allard (P)	NOVA SCOTIA Rossignol, Mulgrave, Falls Lake, St. Margaret's Bay, Black, and Ponhook					h	Lake McConaughy (IP)	79	91	75	85	1,948,000
Gouin (P)	QUEBEC						Eufaula (FRP)	91	97 97	89 95	105 104	2,378,000 661,000
Seven reservoir systems (MP). 70 76 79 79 4,107,000 NEW AMAPSHIRE Seven reservoir systems (MP). 88 86 88 89 37 76,450 Lake Francise (PK). 89 87 75 88 88 77 75 81 80 82 83 165,700 Lake Francise (PK). 89 103 88 103 165,700 Lake Wallengause (PK). 81 90 72 92 115,250 Lake Wallengause (PK). 81 90 72 92 115,250 Lake Wallengause (PK). 81 90 77,950 Lake Wallengause (PK). 81 90 77,950 Lake Wallengause (PK). 82 99 90 99 90 99 100 100 11,175 Lake Wallengause (PK). 82 99 90 99 90 99 90 10,175 Lake Karmina (PK). 82 99 90 99 90 99 90 10,175 Lake Wallengause (PK). 82 99 90 99 90 99 90 10,175 Lake Wallengause (PK). 82 99 90 99 90 99 90 10,175 Lake Wallengause (PK). 83 17,175 Lake Wallengause (PK). 84 11,180,000 Pransition (PK). 85 17,175 Lake Wallengause (PK	0.000	87 66	97	76 69	88 65	280,600 6,954,000	Tenkiller Ferry (FPR)	101	104 41 95	97 64 91	104 100 92	628,200 133,000 1,492,000
First Connecticut Lake (P)	Seven reservoir systems (MP)	70	76	79	79	4,107,000	OKLAHOMA—TEXAS	98	93	100	123	2,722,00
Harriman (P)	First Connecticut Lake (P)	88	86	88	93	76,450	TEXAS	00	06	53	100	206 40
Indian Lake (FMP) 92 95 95 95 95 163,300 NewYorkCity reservoir system (NW) 82 99 88 1,680,000 Fort Peck (FPR) 85 20 88 1,890,000 Fort Peck (FPR) 85 100 99 100 97 99 100 97 99 100 97 99 100 97 99 100 97 99 100 97 99 100 97 99 100 98 100 98 100 98 100 98 100 98 100 98 100 99 100 98		96	103	88	103	165,700	Canyon (FMR)	140 98	100 51	78 73	181	386,40 385,60 3,497,00
Indiana Lake (FMP) 92 99 90 95 1,63,000 1,63,000 1,60,000 1	Harriman (P) Somerset (P)	84 81	89 90	78 82	92 90	116,200 57,390	International Facon (FIMPW)	99 67 75	100 94 61	89 98 24	101 67 81	2,668,00 1,788,00 570,20 307,00
Indian Lake (FMP) S2 99 90 95 133.300 New YorkCity reservoir system (NW) S2 99 90 88 1.680,000 Fort Peck (FPR) S2 90 88 1.680,000 Fort Peck (FPR) S2 90 88 1.890,000 Fort Peck (FPR) S2 90 88 1.890,000 Fort Peck (FPR) S2 90 80 18.9 Fort Peck (FPR) S2 90 80 18.9 Fort Peck (FPR) S3 S4 S4 S4 S4 S4 S4 S4	Cobble Mountain and Borden Brook (MP)	84	83	83	90	77,920	Twin Buttes (FIM). Lake Kemp (IMW). Lake Meredith (FWM).	79 101 38	23 104 26	26 89 38	79 109 38	4,472,00 177,80 268,00 796,90
New Jersey Pennsylvania 49 52 45 49 1,180,000 1,18	Great Sacandaga Lake (FPR)	88 92 82	98 99 89	83 90 90	90 . 99 88	786,700 103,300 1,680,000	MONTANA Canyon Ferry (FIMPR)	80		92		1,144,00
PENNSYLVANIA	NEW JERSEY						Fort Peck (FPR)	85 99	100 100	90 97	85 99	18,910,00 3,451,00
Pymatuning (FMR)	PENNSYLVANIA						Ross (PR)					1,052,00
Raystown Lake (FR)	Pymatuning (FMR)	100	97	93		188,000	Lake Chelan (PR)	98	98	98		5,022,00 676,10
NORTH CAROLINA Bridgewater (Lake James) (P)	Raystown Lake (FR)Lake Wallenpaupack (PR)	68 73	67 79	63 74	68 79		Lake Cushman (PR)					359,50 245,60
Bridgewater (Lake James) (P)			68	91	89	261,900	IDAHO Boise River (4 reservoirs) (FIP) Coeur d'Alene Lake (P)	48 100	73 21	77 82	64 98	1,235,00 238,50 1,561,00
SOUTH CAROLINA 88 86 78 93 1,614,000 1,862,000 2,000	NORTH CAROLINA Bridgewater (Lake James) (P) Narrows (Badin Lake) (P) High Rock Lake (P)	95 93 82	86 78 50	90 97 77	97 94 95	288,800 128,900 234,800	IDAHO-WYOMING					4,401,00
Lake Murray (P)	SOUTH CAROLINA						WYOMING					
Burton (PR)	Lake Murray (P) Lakes Marion and Moultrie (P)	88 83	86 84	78 72	93 88	1,614,000 1,862,000	Buffalo Bill (IP)	78 43	95 91 35	101 49		802,00 421,30 193,80
Burton (PR)	Clark Hill (FP)	81	47	69	80	1,730,000		67	82	61	79	3,056,00
Lake Sidney Lanier (FMPR)	Burton (PR)	96					John Martin (FIR)					364,4
TENNESSEE VALLEY Clinch Projects: Norris and Melton File	Lake Sidney Lanier (FMPR)	62					Colorado-Big Thompson project (I)					106,20 730,30
Hill Lakes (FPR)	Lake Martin (P)		81	90	98	1,375,000	COLORADO RIVER STORAGE PROJECT Lake Powell; Flaming Gorge, Fontenelle, Navajo, and Blue Mesa					
Hiwassee Projects: Chatuge, Nottely, Hiwassee, Apalachia, Blue Ridge, Ococe 3, and Parksville Lakes (FPR)	Clinch Projects: Norris and Melton Hill Lakes (FPR)	57				2,293,000		94	98		96	31,620,0
Lakes (FPR)	Hiwassee Projects: Chatuge, Nottely, Hiwassee, Apalachia, Blue				"	1,554,000	Bear Lake (IPR)	76	98	69		1,421,00
and Cherokee Lakes (FPR)	Lakes (FPR)	77	43	76	83	1,012,000	Folsom (FIP)	60				1,000,0 360,4
Lake's (FPR)	Waterick Boone Fort Patrick Henry	68	20	62	78	2.880.000	Isabella (FIR)	36	85	46	46	568,10
Lake's (FPR)	Little Tennessee Projects: Nantahala, Thorpe, Fontana, and Chilhowee	00		- 02	,,	3,000,000	Clair Engle Lake (Lewiston) (P)	87 96	92		95	2,438,0 1,036,0 1,600,0
Chippewa and Flambeau (PR)		. 74	49	76	82	1,478,000	Lake Berryessa (FIMW)	1 77	92	83	1 80	1,600,0 503,2 4,377,0
MINNESOTA Mississippi River headwater system (FMR)	Chippewa and Flambeau (PR)	77 59	93	83 75	79 55	365,000 399,000	CALIFORNIA—NEVADA					744,6
NORTH DAKOTA Lake Sakakawea (Garrison) (FIPR) 88 96 94 88 22,700,000 Lake Mead and Lake Mohave (FIMP) 91 91 82 91 27,5 SOUTH DAKOTA ARIZONA—NEVADA ARIZONA—NEVADA ARIZONA—NEVADA 63 74 89 73 9	MINNESOTA Mississippi River headwater system (FMR)	. 42	47	38	38	1,640,000	NEVADA					194,3
SOUTH DAKOTA 81 89 86 93 127.600 San Carlos (IP)	-	1		94	88	22,700,000	ARIZONA—NEVADA Lake Mead and Lake Mohave (FIMP)	91	91	82	91	27,970,0
Lake Francis Case (FIP)	SOUTH DAKOTA	. 81	89	86		127,600	San Carlos (IP)	. 63				935,1 2,019,1
Lake Sharpe (FIP)	Belle Fourche (I). Lake Francis Case (FIP). Lake Oahe (FIP). Lake Sharpe (FIP).	. 66 . 81 . 90	62 77 99	81	93	4,834,000	[Conchas (FIR)	. 94	8	9 81	100	330,1

HYDROGRAPHS FOR THE "BIG THREE" RIVERS

Unshaded area indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period, 1951-80. Heavy line indicates mean for current period.

Provisional data; subject to revision

DISSOLVED SOLIDS AND WATER TEMPERATURES, FOR JULY 1987, AT DOWNSTREAM SITES ON FIVE LARGE RIVERS

		July	Stream discharge during	Dissolve concent			ssolved-so discharge		Water	atureb	
Station number	Station name	data of following	month	NO:-1			Mini-	Maxi-			
number		calendar vears	Mean	Mini- mum	Maxi- mum	Mean	mum	mum	Mean in °C	mum,	Maxi- mum,
		,	(cfs)	(mg/L)	(mg/L)	(t	ons per da	ay)		Mini-	in °C
01463500	Delaware River at Trenton, N.J. (Morrisville, Pa.).	1987 1945—86 (Extreme yr)	6,855 7,199 c4,822	(1947)	121 145 (1978)	1,962	1,254 465 (1965)	4,201 16,700 (1969)			30.0 33.5
07289000	Mississippi River at Vicksburg, Miss.	1987 1976—86 (Extreme yr)	422,100 515,600 c421,700	200 (1981)	307 305 (1986)		224,600 163,000 (1977)	387,100 633,000 (1980)	29.5		30.5 34.5
03612500	Ohio River at lock and dam 53, near Grand Chain, Ill. (stream- flow station at Metropolis, Ill.).	1987 1955—86 (Extreme yr)	155,000 156,800	168 124 (1965,	238 276 (1968)		35,000 25,000 (1966)	177,000 237,000 (1958)			27.0 31.0
06934500	Missouri River at Hermann, Mo. (60 miles west of St. Louis, Mo.).	1987 1976—86 (Extreme yr)	99,400 103,700	276 201 (1981)	484 501 (1985)	99,500 95,260		134,000 208,000 (1984)	28.0		32.5 32.0
14128910	Columbia River at Warrendale, Oreg. (streamflow station at The Dalles, Oreg.).	1987 1976—86 (Extreme yr)	109,000 184,600	81 60 (1976)	84 93 (1977)	24,400 37,300		29,000 65,100 (1981)	18.5	18.5 15.5	21.0 22.0

^aDissolved-solids concentrations, when not analyzed directly, are calculated on basis of measurements of specific conductance. ^bTo convert °C to °F: [(1.8 X °C) + 32] =°F. ^cMedian of monthly values for 30-year reference period, water years 1951—80, for comparison with data for current month.

FLOW OF LARGE RIVERS DURING JULY 1987

						July 198'	7		
Station number	Stream and place of determination	Drainage area (square miles)	Average discharge through September 1980	Monthly mean dis- charge	Percent of median	Change in dis- charge from		rge near f month	
		nuics)	(cubic feet per second)	(cubic feet per second)	monthly discharge, 1951—80	previous month (percent)	Cubic feet per second	Million gallons per day	Dat
01014000	St. John River below Fish River at Fort Kent, Maine	5,690	9,647	5,789	125	-9	3,150	2,035	3
1318500	Hudson River at Hadley, N.Y	1,664	2,909	1,960	189	-24	1,210	782	3
1357500	Mohawk River at Cohoes, N.Y	3,456	5,734 11,750	2,060	110	+4	750	484	3
1463500	Delaware River at Trenton, N.J	6,780	11,750	6,855	142	+43	4,400	2,840	3
1570500	Susquehanna River at Harrisburg, Pa.	24,100	34,530	17,250	146	+26	7,440	4,808	2
1646500	Potomac River near	11,560	111,490	15,290	132	-14			
2105500	Washington, D.C. Cape Fear River at William O. Huske	4,810	5,005	1,160	59	-17			
2121000	Lock near Tarheel, N.C.	0 020	0.051	7 450	121	. 15	6 410	4 149	1 4
2231000	Pee Dee River at Peedee, S.C	8,830	9,851	7,450	131	+15	6,410	4,142	1 3
22220500	Altamaha River at Doctortown, Ga	13,600	13,880	6,970 5,550	105	+23	3,150	2,035	3
22520300	Suwannee River at Branford, Fl	7,880	6,987	3,330	108		4,580	2,960	
	Apalachicola River at Chattahoochee, Fl.	17,200	22,570	19,300	143	+29	12,200	7,890	1
	Tombigbee River at Demopolis lock and dam near Coatopa, Ala.	15,400	23,300	6,524	104	-27	3,450	2,229	1
)2489500	Pearl River near Bogalusa, La	6,630	9,768	3,574	110	-32	2,650	1,712	
J3U4Y3UU	Allegneny River at Natrona, Pa	11,410 7,337	119,480 112,510	120,820	347	+83	5,240	3,386	
03085000	Monongahela River at Braddock, Pa Kanawha River at Kanawha	7,337 8,367	12,510	14,820 4,655	119 91	-42 -29	3,050 2,730	1,971 1,764	
00004500	Falls, W.Va.								
03234500	Scioto River at Higby, Ohio	5,131	4,547	7,293	433	+58	830	536	
03294500	Ohio River at Louisville, Ky.2	91,170	11,600	107,100	218	+48	78,330	50,625	
	Wabash River at Mount Carmel, Ill French Broad River below Douglas	28,635 4,543	27,220 6,798	21,570 3,505	139 85	+46	8,810	5,694	
04084500	Dam, Tenn. Fox River at Rapide Croche Dam,	6,150	4,163	1,796	75	-32	1,741	1,125	
04264331		298,800	242,700	305,600	112	-2	293,000	189,400	
02NG001	Ontario-near Massena, N.Y. ³ St. Maurice River at Grand	16,300	25,150	16,600	84	0	17,200	11,120	
05082500	Mere, Quebec Red River of the North at Grand	30,100	2,551	3,617	136	+42	10,400	6,720	
05122500	Forks, N.Dak.	10.400	11 920	4 700	20	12	0.660	6 242	
05133300	Rainy River at Manitou Rapids, Minn	19,400		4,700	29	-12	9,660	6,243	
05330000	Minnesota River near Jordan, Minn	16,200	3,402	2,590 7,179	62	-20	2,140	1,383	
05365500	Mississippi River at St. Paul, Minn Chippewa River at Chippewa	36,800 5,600		2,357	55 74	-35 +8	10,500 5,300	6,790 3,430	
05407000	Falls, Wis. Wisconsin River at Muscoda, Wis	10,300	8,617	4,806	85	-5	6,228	4,025	
	Rock River near Joslin, Ill	9,551	5,873	2,990	86	-41	3,000	1,900	
05474500	Mississippi River at Keokuk, Iowa	119,000	62,620	38,874	62	-20	59,700	38,580	
06214500	Yellowstone River at Billings, Mont			6,120	41	-41	5,120	3,309	
06934500	Missouri River at Hermann, Mo	524,200	79,490	99,380	131	-6	68,100	44,010	
07289000	Mississippi River at Vicksburg, Miss.4.	1,140,500	576,600	422,600	100	-14	410,000	265,000	
07331000	Washita River near Dickson, Okla	7,202	1,368	3,510	844	-69	1,000	600	
	Rio Grande below Taos Junction Bridge, near Taos, N.Mex.	9,730	725	793	243	-79	331	213	
09315000		44,850	6,298	3,037	53	-49	2,660	1,720	
	Sacramento River at Verona, Calif		18,820	14,040	144	+47	14,800	9,570)
	Snake River at Weiser, Idaho		18,050	8,390	76	-6	8,403	5,431	
	Salmon River at White Bird, Idaho		11,250	4,830	33	-49	3,656	2,362	
13342500	Clearwater River at Spalding, Idaho	9,570		4,728	43	-45	2,099	1,357	1
14105700	Columbia River at The Dalles, Oreg.5	237,000	1193,100	1147,700	53	-41	112,800	72,900	
14191000	Willamette River at Salem, Oreg	7,280		15,080	92	-12	6,090	3,936	5
15515500			23,460	61,090		+65	64,000	41,400)
	Fraser River at Hope, British Columbia.	83,800				-30	122,500	79,190	

¹Adjusted.

²Records furnished by Corps of Engineers.

³Records furnished by Buffalo District, Corps of Engineers, through International St. Lawrence River Board of Control. Discharges shown are considered to be the same as discharge at Ogdensburg, N.Y. when adjusted for storage in Lake St. Lawrence.

⁴Records of daily discharge computed jointly by Corps of Engineers and Geological Survey.

⁵Discharge determined from information furnished by Bureau of Reclamation, Corps of Engineers, and Geological Survey.

(From Weekly Weather and Crop Bulletin prepared and published by the NOAA/USDA Joint Agricultural Weather Facility)

ø

(From Weekly Weather and Crop Bulletin prepared and published by the NOAA/USDA Joint Agricultural Weather Facility)

GROUND-WATER CONDITIONS DURING JULY 1987

Ground-water levels continued to decline seasonally in most of the Northeast, including New England (except parts of New Hampshire and Vermont), northern and western New York State, western and south-central Pennsylvania, and in Maryland and Delaware. (See map). Elsewhere in the region, there were mixed changes in water levels. Levels near the end of July remained above average in southeastern Massachusetts and in much of Connecticut and Rhode Island. Levels were also above average in parts of New Hampshire and Vermont. Elsewhere in the Northeast, levels were generally above or below average for this time of year.

In the Southeastern States, water-level changes were mixed in West Virginia and Kentucky, and declined in Virginia, North Carolina, Arkansas, Louisiana, Mississippi, and Florida, and declined in all but one observation well in Georgia. Ground-water level in the single active observation well in Alabama, at Montgomery, rose but was below the long-term average. Water levels were above long-term averages in Kentucky, below average in Arkansas and Louisiana, and mixed with respect to average in West Virginia, Virginia, and North Carolina. A new low ground-water level for July was reached in the key well at Memphis in western Tennessee.

In the central and western Great Lakes States, ground-

water levels declined in Minnesota, Wisconsin, and Michigan. Water-level changes were mixed in Iowa. Levels were about average in Wisconsin and Indiana, and below average in Minnesota and Michigan. Levels were mixed with respect to average in Iowa.

Map showing ground-water storage near end of July and change in ground-water storage from end of June to end of July.

MONTH-END GROUND-WATER LEVELS IN KEY WELLS

Unshaded area indicates range between highest and lowest record for the month. Dashed line indicates average of monthly levels in previous years. Heavy line indicates level for current period.

In the Western States, net changes in ground-water levels were mixed in Idaho, Utah, Kansas, New Mexico, and Texas. Levels declined in Washington, North Dakota, Nebraska, southern California, and Nevada. Water levels were below long-term averages in Washington and North Dakota. Levels were mixed with respect to average in Idaho, Nebraska, southern California, Nevada, Utah, Kansas, New Mexico, and Texas. New high ground-water

levels for July occurred at wells in Nevada and New Mexico, and a new all-time high level (27 years of record) was reached in the observation well in the Blanding area in Utah. New July low levels occurred in New Mexico and Texas, and a new all-time low level (41 years of record) was reached in the key well in Las Vegas Valley in Nevada.

Provisional data; subject to revision

WATER LEVELS IN KEY OBSERVATION WELLS IN SOME REPRESENTATIVE AQUIFERS IN THE CONTERMINOUS UNITED STATES—JULY 1987

Aquifer and Location	Water level in feet with ref- erence to land-	Departure from average	Net change level in fe		Year records	Remarks	
	surface datum	in feet	Last month	Last year	began		
Glacial drift at Hanska, south-central Minnesota.	-8.50	-2.27	-0.36	-3.43	1942	Equals 1936	
Glacial drift at Roscommon in north-central part of Lower Peninsula, Michigan.	-5.72	-1.00	-0.27	-1.40	1935	July low.	
Glacial drift at Marion, Iowa	-5.32	-0.17	-1.15	-1.40	1941		
Glacial drift at Princeton in northwestern Illinois.	-9.60	+2.13	-0.82	-2.56	1943		
Petersburg Granite, southeastern Piedmont near Fall Zone, Colonial Heights, Virginia.	-15.70	-0.09	-0.81	+0.67	1939		
Glacial outwash sand and gravel, Louisville, Kentucky (U.S. well no. 2).	-18.48	+6.22	+0.14	-0.82	1946		
500-foot sand aquifer near Memphis, Tennessee (U.S. well no. 2).	-106.46	-16.61	-0.26	-1.66	1941	July low.	
Weathered granite, Mocksville area, Davie County, western Piedmont, North Carolina.	-18.66	+1.89	-1.01	+2.36	1932		
Sparta Sand in Pine Bluff industrial area, Arkansas.	-230.50	-23.39	-1.30	-8.54	1958		
Eutaw Formation in the City of Montgomery, Alabama (U.S. well no. 4).	-23.4	-0.6	+2.8	+4.8	1952		
Limestone aquifer on Cockspur Island, Savannah area, Georgia (U.S. well no. 6).	-37.22	-9.38	-2.14	+0.38	1956		
Sand and gravel in Puget Trough, Tacoma, Washington.	-111.97	-0.94	-1.39	+0.06	1952		
Pleistocene glacial outwash gravel, North Pole, northern Idaho (U.S. well no. 3).	-464.2	-4.9	0.0	-2.5	1929		
Snake River Group: Snake River Plain Aquifer, at Eden, Idaho (U.S. well no. 4).	-118.0	-0.3	+1.4	+2.5	1957		
Alluvial valley fill in Flowell area, Millard County, Utah (U.S. well no. 9).	-20.48	+19.57	-0.29	-5.93	1929	,	
Alluvial sand and gravel, Platte River Valley, Ashland, Nebraska (U.S. well no. 6).	-4.82	+0.60	-1.32	+0.05	1935		
Alluvial valley fill in Steptoe Valley, Nevada Pleistocene terrace deposits in Kansas River valley, at Lawrence, northeastern Kansas.	-8.13 -17.16	+4.87 +3.30	-0.65 -1.15	+0.47	1950 1953	July high.	
Alluvium and Paso Robles clay, sand, and gravel, Santa Maria, California	-122.50	+18.19	-1.00	+0.02	1957		
Valley fill, Elfrida area, Douglas, Arizona (U.S. well no. 15).	-103.3		+0.1	+1.9	1951		
Hueco bolson, El Paso area, Texas	-268.38	-17.31	+0.21	-1.42	1965	July low.	
Evangeline aquifer, Houston area, Texas	-308.12	- 6.70	-1.35	+3.88	1965		

ICE VOLUMES ON CASCADE VOLCANOES: MOUNT RAINIER, MOUNT HOOD, THREE SISTERS, AND MOUNT SHASTA

The abstract and illustrations below are from the report, *Ice volumes on Cascade volcanoes: Mount Rainier, Mount Hood, Three Sisters, and Mount Shasta,* by Carolyn L. Driedger and Paul M. Kennard, U.S. Geological Survey Professional Paper 1365, 28 pages, 6 plates, 1986. This report may be purchased for \$10.00 from U.S. Geological Survey, Books and Open-File Reports, Box 25425, Federal Center, Denver, CO 80225 (check or money order payable to U.S. Geological Survey); or from Superintendent of Documents, Government Printing Office, Washington, D.C. 20402 (payable to Superintendent of Documents).

ABSTRACT

During the eruptions of Mount St. Helens the occurrence of floods and mudflows made apparent the need for predictive water-hazard analysis of other Cascade volcanoes. A basic requirement for such analysis is information about the volumes and distributions of snow and ice on other volcanoes.

A radar unit contained in a backpack was used to make point measurements of ice thickness on major glaciers of Mount Rainier, Wash.; Mount Hood, Oreg.; the Three Sisters, Oreg.; and Mount Shasta, Calif. (see figure 1). The measurements were corrected for slope and were used to develop subglacial contour maps from which glacier volumes were measured.

These values were used to develop estimation methods for finding volumes of unmeasured glaciers. These methods require a knowledge of glacier slope, altitude, and area and require an estimation of basal shear stress, each estimate derived by using topographic maps updated by aerial photographs. The estimation methods were found to be accurate within ± 20 percent on measured glaciers and to be within ± 25 percent when applied to unmeasured glaciers on the Cascade volcanoes. The estimation methods may be applicable to other temperate glaciers in similar climatic settings.

Areas and volumes of snow and ice are as follows: Mount Rainier, 991 million ft², 156 billion ft³; Mount Hood, 145 million ft², 12 billion ft³; (see table 1); Three Sisters, 89 million ft², 6 billion ft³; and Mount Shasta, 74 million ft², 5 billion ft³.

The distribution of ice and firn patches within 58 glacierized basins on volcanoes is mapped and listed by altitude and by watershed to facilitate water-hazard analysis.

Figure 1. Location of volcanoes studied.

Table 1. Areas and volumes of glacier ice and snow on Mount Hood

[Methods of determination: A, volume estimated by using area correlation; M, glacier thickness measured by ice radar. Because total glacier areas are required in the application of the volume estimation method, volumes are available by total glacier. Area measured in ft (x 10%); volume measured in ft (x 10%);

								Altıtud	Interval									
	Glacier or		0-6.000		-7,000		-8,000		-9,000	-1	-10,000		-11,000			Area	Volume	Method of
Drainage area	snow patch	Area	Volume	Area	Volume	Area	Volume	Area	Volume	Area	Volume	Area	Volume	Area	Volume	total	total	determination
White River	Snow patches			0.5		1.2		0.8		0.4						29	0.2	A
	Coalman		-		-					-	sale stee	.6	.03			.6	.03	M
	White River			.01	.0008	3.2	.2	2.3	.19	.3	.008					5.8	.3	M
Subtotal				.5		4.4		3.1		.7		.6				9.3	.5	
Hood River	Snow patches	.5		8.3		9.9		.6		-			-	.1		19.4	1.0	Α
	Newton-Clark					2.1	.05	12.3	.9	5.7	.4	1.3	.03		100.00	21.4	1.4	M
	Coe	.3	.09	3.7	.5	5.0	.8	2.0	.2	1.7	.2	.7	.04		ment men	13.4	1.9	M
	Ladd	alon der		1.0	.04	5.9	.5	2.5	.3	.3	.01					9.7	.9	M
	Eliot			4.6	.9	7.2	1.4	4.1	.7	1.3	.1	.9	.1			18.1	3.2	M
	Langille			-		.4	.02	2.9	.2	1.0	.06					4.3	.3	M
Subtotal		.8		17.6		30.5		24.4	-	10.0		2.9		.1		86.3	8.7	
Zigzag River	Snow patches			3.9	-	7.8		1.5		.5	***			.2		13.9	.7	Α
	Zigzag					1.3	.04	4.5	.3	2.4	.2	.1	.005			8.3	.6	M
	Palmer	-	-			.6	.04	.8	.03							1.4	.07	M
	Coalman		NAME OF THE OWNER.					-			-	.3	.01			.3	.01	M
Subtotal			May 100	3.9		9.7		6.8		2.9		.4		.2		23.9	1.4	
Sandy River	Snow patches	.2		2.3		.8		.4		.3		.6		.1		4.7	.2	Α
	Sandy			3.1	.1	8.0	.6	1.7	.1					-		12.8	.8	M
	Reid			.9	.03	2.2	.1	4.0	.4	1.0	.06					8.1	.6	M
Subtotal		.2		6.3		11.0		6.1	-	1.3		.6		.1		25.6	1.7	
Total		1.0		28.3		55 6		40.4		14.9		4.5		.4		145.1	12.3	

TEMPRATURE OUTLOOK FOR AUGUST THROUGH OCTOBER 1987

PRECIPITATION OUTLOOK FOR AUGUST THROUGH OCTOBER 1987

NATIONAL WATER CONDITIONS

JULY 1987

Based on reports from the Canadian and U.S. Field offices; completed August 20, 1987

TECHNICAL STAFF Thomas G. Ross, Editor Carroll W. Saboe, Asst. Editor John C. Kammerer Allen Sinnott Krishnaveni V. Sarma Sharon A. Edmonds Carole J. Marlow

COPY PREPARATION Lois C. Fleshmon Sharon L. Peterson Aisha P.R. Law

GRAPHICS

Frances L. Buchanan Carolyn L. Moss

The National Water Conditions is published monthly. Subscriptions are free on application to the U.S. Geological Survey, 419 National Center, Reston, VA 22092.

EXPLANATION OF DATA (Revised April 1987)

Cover map shows generalized pattern of streamflow for the month based on provisional data from 183 index gaging stations—18 in Canada, 163 in the United States, and 2 in the Commonwealth of Puerto Rico. Alaska, Hawaii, and Puerto Rico inset maps show streamflow only at the index gaging stations that are located near the point shown by the arrows. Classifications on map are based on comparison of streamflow for the current month at each index station with the flow for the same month in the 30-year reference period, 1951–80. Shorter reference periods are used for one Canadian index station, two Kansas index stations, one New York index station, and the Puerto Rico index stations because of the limited records available.

The persistence/change map shows where streamflow has persisted in the above- or below-normal range from last month to this month and also where streamflow is in the above- or below-normal range this month after being in a different range last month. The table below the map shows areal streamflow range conditions for all index stations reporting data for this month and compares total flow of the stations reporting data for both last month and this month.

The comparative data are obtained by ranking the 30 flows for each month of the reference period in order of decreasing magnitude—the highest flow is given a ranking of 1 and the lowest flow is given aranking of 30. Quartiles (25-percent points) are computed by averaging the 7th and 8th highest flows (upper quartile), 15th and 16th

highest flows (middle quartile and median), and the 23rd and 24th highest flows (lower quartile). The upper and lower quartiles set off the highest 25 percent of flows and lowest 25 percent of flows, respectively, for the reference period. The median (middle quartile) is the middle value by definition. For the reference period, 50 percent of the flows are greater than the median, 50 percent are less than the median, 50 percent are between the upper and lower quartiles (in the normal range) 25 percent are greater than the upper quartile (above normal), and 25 percent are greater than the lower quartile (above normal). Flow for the current month is then classified as; above normal if it is greater than the upper quartile, in the normal range if it is between the upper and lower quartiles, and below normal if it is less than the lower quartile. Change in flow from the previous month to the current month is classified as seasonal if the change is in the poposite direction of the change in the median. If the change is classified as contraseasonal (opposite to the seasonal change). For examples at a particular index station, the January median is greater than the December median; if flow for the current January increased from December (the previous month), the increase is seasonal; if flow for the current January increased from December, the decrease is contraseasonal.

Flood frequency analyses define the relation of flood peak magnitude to probability of occurrence or recurrence interval. Probability of occurrence is the chance that a given flood magnitude will be exceeded in any one year. Recurrence interval is the reciprocal of probability of occurrence and is the average number of years between occurrences. For example, a flood having a probability of occurrence of 0.01 (1 percent) has a recurrence interval of 100 years. Recurrence interval imply no regularity of occurrence; a 100-year flood might be exceeded in consecutive years or it might not be exceeded in a 100-year period.

Statements about ground-water levels refer to conditions near the end of the month. The water level in each key observation well is compared with average level for the end of the month determined from the 30-year reference period, 1951-80, or from the entire past record for that well when only limited records are available. Comparative data for ground-water levels are obtained in the same manner as comparative data for streamflow. Changes in ground-water levels, unless described otherwise, are from the end of the previous month to the end of the current month.

Dissolved solids and temperature data for July are given for five stream-sampling sites that are part of the National Stream Quality Accounting Network (NASQAN). Dissolved solids are minerals dissolved in water and usually consist predominately of silica and ions of calcium, magnesium, sodium, potassium, carbonate, bicarbonate, sulfate, chloride, and nitrate. Dissolved-solids discharge represents the total daily amount of dissolved minerals carried by the stream. Dissolved-solids concentrations are generally higher during periods of low streamflow, but the highest dissolved-solids discharges occur during periods of high streamflow because the total quantities of water, and therefore total load of dissolved minerals, are so much greater than at times of low flow.

UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY
NATIONAL CENTER, STOP 419
RESTON, VIRGINIA 22092
OFFICIAL BUSINESS

Return this sheet to above address, if you do NOT wish to receive this material , or if change of address is needed (indicate change, including ZIP code).

POSTAGE AND FRES PAID
U.S. DEPARTMENT OF THE INTERIOR
INT 413

FIRST CLASS

SPECIAL PROCESSING DEPT MARCIA KOZLOWSKI XEROX/UNIVERSITY MICROFILMS ANN ARBOR, MI 48106

0044