Aufgabe 1 Schreiben Sie eine Funktion exponential, die den Funktionswert $\exp(x)$ approximativ berechnet: Dazu berechnen Sie die Partialsumme

$$S_N(x) := \sum_{j=0}^N \frac{x^j}{j!},$$

wobei die Summationsgrenze $N \in \mathbb{N}$ durch das Kriterium

$$\left|\frac{x^{N+1}}{(N+1)!}\right| \leq \left|\frac{x^N}{N!}\right| \leq \varepsilon$$

für eine gegebene Toleranz $\varepsilon > 0$ bestimmt werde. Intern realisiere man die Berechnung der Summationsglieder $x^j/j!$ möglichst rechenökonomisch. Vergleichen Sie den Fehler $|S_N(x) - \exp(x)|$ für verschiedene Wahlen von $\varepsilon > 0$ und Auswertungspunkten $x \in \mathbb{R}$.