Contrôle de cours 2 (1 heure)

Probabilités 1

Exercice 1 (5 points)

Considérons une variable aléatoire infinie X dont la loi est donnée par:

$$X(\Omega) = \mathbb{N}^* \text{ et } \forall n \in \mathbb{N}^*, P(X = n) = \frac{2}{3} \times \left(\frac{1}{3}\right)^{n-1}$$

1. Vérifier par le calcul que $\sum_{n=1}^{+\infty} P(X=n) = 1$.

$$\Sigma_{n=1}^{+\infty} P(X=n) = \Sigma_{n=1}^{+\infty} \frac{2}{3} \times \left(\frac{1}{3}\right)^{n-1} = \frac{2}{3} \Sigma_{n=1}^{+\infty} \left(\frac{1}{3}\right)^{n-1}$$
$$= \frac{2}{3} \Sigma_{n=0}^{+\infty} \left(\frac{1}{3}\right)^{n} = \frac{2}{3} \times \frac{1}{1 - \frac{1}{3}}$$
$$= \frac{1}{3} \times \frac{1}{\frac{2}{3}} = \frac{2}{3} \times \frac{3}{2}$$
$$= 1$$

2. Déterminer sa fonction génératrice $G_X(t)$. On l'exprimera d'abord sous la forme d'une série entière, puis à l'aide des fonctions usuelles.

$$G_X(t) = \sum_{n=1}^{+\infty} P(X=n)t^n$$

$$= \sum_{n=1}^{+\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{n-1} t^n$$

$$= \frac{2}{3} t \sum_{n=0}^{+\infty} \left(\frac{t}{3}\right)^n$$

$$= \frac{2}{3} t \frac{1}{1 - \frac{t}{3}}$$

$$= \frac{2t}{3 - t}$$

3. Calculer l'espérance et la variance de X.
$$G_X'(t) = \frac{2(3-t)-(-1)(2t)}{(3-t)^2} = \frac{6}{(3-t)^2} \\ G_X''(t) = (6\times(3-t)^{-2})' = 6\times(-2)\times(-1)\times(3-t)^{-3} = \frac{12}{(3-t)^3}$$

$$E(X) = G'_X(1) = \frac{6}{(3-1)^2} = \frac{3}{2}$$

$$V(X) = G''_X(1) + G'_X(1) + (G'_X(1))^2$$

$$= \frac{12}{(3-1)^3} + \frac{6}{(3-1)^2} - \left(\frac{6}{(3-1)^2}\right)^2$$

$$= \frac{12}{8} + \frac{6}{4} - \frac{36}{16}$$

$$= \frac{3}{4}$$

2 Familles de vecteurs, base et dimension d'un espace vectoriel

Exercice 2 (8 points)

Soient E un espace vectoriel sur $\mathbb{R}, n \in \mathbb{N}^*$ et $\mathcal{F} = (u_1, ..., u_n)$ une famille de E.

- 1. Écrire la définition de : " \mathcal{F} est une famille libre". $\forall (\lambda_1, ..., \lambda_n) \in \mathbb{R}^n, \lambda_1 u_1 + ... + \lambda n u_n = 0_E \Longrightarrow (\lambda_1, ..., \lambda n) = (0, ..., 0)$
- 2. Écrire la définition de : " \mathcal{F} est une famille liée". $\exists (\lambda_1,...,\lambda_n) \in \mathbb{R}^n, \lambda_1 u_1 + ... + \lambda n u_n = 0_E$ et $(\lambda_1,...,\lambda_n) = (0,...,0)$
- 3. Écrire la définition de : " \mathcal{F} est une famille génératrice de E". $\forall u \in E, \exists (\lambda_1, ..., \lambda_n) \in \mathbb{R}^n$ tel que $u = \lambda_1 u_1 + ... + \lambda_n u_n$
- 4. Dans cette question, on suppose que n=3, c'est-à-dire $\mathcal{F}=(u_1,u_2,u_3)$, et de plus que $u_1-2u_2+3u_3=0_E$. Montrer que $\text{Vect}(\mathcal{F})=\text{Vect}(u_1,u_3)$.
- 5. Application : dans $E = \mathbb{R}^3$, considérons la famille $\mathcal{F} = (u_1 = (1, -1, 1), u_2 = (5, 1, 1), u_3 = (1, 2, -1)).$
 - (a) La famille \mathcal{F} est-elle libre? Justifier votre réponse.
 - (b) Donner une base de $Vect(\mathcal{F})$ et en déduire sa dimension.

Une démonstration de cours (3 points)

Soient E un \mathbb{R} -ev, F et G deux sous-espaces vectoriels de E de dimension finies n et p, $\mathcal{B} = (e_1, ..., e_n)$ une base de F et $\mathcal{B}' = (\varepsilon_1, ..., \varepsilon_p)$ une base de G.

On considère la famille $\mathcal{F} = (e_1, ..., e_n, \varepsilon_1, ..., \varepsilon_p)$ obtenue par concaténation des bases de \mathcal{B} et \mathcal{B}' . Montrer que :

$$\mathcal{F} \text{ libre } \Longrightarrow F \cap G = \{0_E\}$$

3 Applications linéaires

Exercice 3 (4 points)

1. Donner une exemple d'application $f:\mathbb{R}[X] \longrightarrow \mathbb{R}^3$ qui n'est pas linéaire. Justifier votre réponse.

2. Soit E et F deux \mathbb{R} -ev et $f \in \mathcal{L}(E,F)$. Donner les définitions mathématiques de $\mathrm{Ker}(f)$ et $\mathrm{Im}(f)$.

$$Ker(f) = \{u \in E, f(u) = 0_E\}$$

$$Im(f) = \{v \in F, \exists x \in E \text{ tel que } v = f(u)\}$$

3. Soit $f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^2 \\ (x,y,z) & \longmapsto & (3x,x-2y+z) \end{array} \right.$. Trouver une base de $\operatorname{Kerf}(f)$ et en déduire sa dimension.

$$Ker(f) = \{u \in E, f(u) = 0_E\} = \{(x, y, z) \in \mathbb{R}^3, f((x, y, z)) = (0, 0, 0)\} = \{(x, y, z) \in \mathbb{R}^3, 3x = 0, x - 2y + z = 0\}$$

$$\implies \begin{cases} 3x = 0 \\ x - 2y + z = 0 \end{cases} \iff \begin{cases} x = 0 \\ y = \frac{1}{2}z \end{cases}$$

$$\Longrightarrow \mathrm{Ker}(f) = \mathrm{Vect}((0, \frac{1}{2}, 1)) \neq ((0, 0, 0)).$$
 On a donc $\mathrm{Ker}(f) = \mathrm{Vect}((0, \frac{1}{2}, 1))$ et $(0, \frac{1}{2}, 1) \neq (0, 0, 0)$ donc $\mathrm{Dim}(\mathrm{Ker}(f)) = 1$.