Dimensionality Reduction - Introduction

- · In many learning problems, the datasets have large number of variables.
- Sometimes, the number of variables is more than the number of observations.
- · For example, in many scientific fields such as
 - image processing,
 - time series analysis,
 - Internet search engines, and
 - automatic text analysis.

Dimensionality Reduction - Introduction

- Statistical and machine learning methods have some difficulty when dealing with such high-dimensional data.
- Normally the number of input variables is reduced before the machine learning algorithms can be successfully applied.
- In statistical and machine learning, dimensionality reduction or dimension reduction is the process of reducing the number of variables under consideration by obtaining a smaller set of principal variables.

WD D7

Feature selection

• In feature selection, we are interested in finding k of the total of n features that give us the most information and we discard the other (n-k) dimensions.

Dimensionality Reduction - Types

Feature extraction

- In feature extraction, we are interested in finding a new set of k features that are the combination of the original n features.
- These methods may be supervised or unsupervised depending on whether or not they use the output information.
- The best known and most widely used feature extraction methods are Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA).

Dimensionality Reduction - Measures of error

- · In both methods we require a measure of the error in the model.
- · In regression problems, we may use the
 - -Mean Squared Error (MSE) or the
 - Root Mean Squared Error (RMSE)

Dimensionality Reduction - Measures of error

- MSE is the sum, over all the data points, of the square of the difference between the predicted and actual target variables, divided by the number of data points.
- If y_1, y_2, \dots, y_n are the observed values and $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_n$ are the predicted values, then

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Dimensionality Reduction - Measures of error

- In classification problems, we may use the misclassification rate as a measure of the error.
- · This is defined as follows:

$$misclassification rate = \frac{no. of misclassified examples}{total no. of examples}$$

Principle Component

Solved Example

Analysis

Given the data in Table, reduce the dimension from 2 to 1 using the
 Principal Component Analysis (PCA) algorithm.

Feature	Example 1	Example 2	Example 3	Example 4
X ₁	4	8	13	7
X ₂ .	11	4	5	14

Principle Component Analysis – Solved Example

Step 1: Calculate Mean

$$\underline{\bar{X}_1} = \frac{1}{4}(4+8+13+7) = 8,$$

$$\underline{\bar{X}_2} = \frac{1}{4}(11+4+5+14) = 8.5.$$

F	Ex 1	Ex 2	Ex 3	Ex 4
X ₁	4	8	13	7
X ₂	11	4	5	14

Step 2: Calculation of the covariance matrix.

$$S = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Cov}(X_2, X_2) \end{bmatrix}$$

$$\underline{\frac{\text{Cov}(X_1, X_1)}{N-1} = \frac{1}{N-1} \sum_{k=1}^{N} (X_{1k} - \bar{X}_1)(X_{1k} - \bar{X}_1)}_{= \frac{1}{3} ((4-8)^2 + (8-8)^2 + (13-8)^2 + (7-8)^2)}_{= 14}$$

F	Ex 1	Ex 2	Ex 3	Ex 4
\mathbf{X}_1	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

Principle Component Analysis - Solved Example

Step 2: Calculation of the covariance matrix.

$$S = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Cov}(X_2, X_2) \end{bmatrix}$$

$Cov(X_1, X_2) = \frac{1}{N-1} \sum_{k=1}^{N} (X_{1k} - \bar{X}_1)(X_{2k} - \bar{X}_2)$
$= \frac{1}{3}((4-8)(11-8.5)+(8-8)(4-8.5)$
+(13-8)(5-8.5)+(7-8)(14-8.5)
= -11

F	Ex 1	Ex 2	Ex 3	Ex 4
X ₁	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

Step 2: Calculation of the covariance matrix.

S =	$\begin{bmatrix} \operatorname{Cov}(X_1, X_1) \\ \operatorname{Cov}(X_2, X_1) \end{bmatrix}$	$ \begin{bmatrix} \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_2) \end{bmatrix} $
12	■ 0 E9 C3	

F	Ex 1	Ex 2	Ex 3	Ex 4
X ₁	4	8	13	7
X ₂	11	4	5	14

$$Cov(X_2, X_1) = Cov(X_1, X_2)$$

= -11

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$Cov(X_2, X_2) = \frac{1}{N-1} \sum_{k=1}^{N} (X_{2k} - \bar{X}_2)(X_{2k} - \bar{X}_2)$$

$$= \frac{1}{3} ((11 - 8.5)^2 + (4 - 8.5)^2 + (5 - 8.5)^2 + (14 - 8.5)^2)$$

$$= 23$$

Step 3: Eigenvalues of the covariance matrix

The characteristic equation of the covariance matrix is,

F	Ex 1	Ex 2	Ex 3	Ex 4
X ₁	4	8	13	7
X ₂	11	4	5	14

$$0 = \det(S - \lambda I)$$

$$= \begin{vmatrix} 14 - \lambda & -11 \\ -11 & 23 - \lambda \end{vmatrix}$$

$$= (14 - \lambda)(23 - \lambda) - (-11) \times (-11)$$

$$= \lambda^2 - 37\lambda + 201$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

Ex 2 Ex 3 Ex 4

13

 $\overline{X_1} = 8$ $\overline{X_2} = 8.5$

Principle Component Anal 1. Data Preprocessing Feature Engineering & Selection Data Mini.

Step 2: Calculation of the covariance matrix.

S =	$\begin{bmatrix} \operatorname{Cov}(X_1, X_1) \\ \operatorname{Cov}(X_2, X_1) \end{bmatrix}$	$ \begin{bmatrix} \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_2) \end{bmatrix} $
=	$\begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$	

$$\begin{array}{c|cccc}
11 & 4 & 5 & 14 \\
\hline
\overline{X_1} & = 8 \\
\hline
\overline{X_2} & = 8.5
\end{array}$$

Ex 1

 X_1

Step 3: Eigenvalues of the covariance matrix

The characteristic equation of the covariance matrix is,

F	Ex 1	Ex 2	Ex 3	Ex 4
Xi	4	8	13	7
X ₂	11	4	5	14

$$0 = \det(S - \lambda I)$$

$$= \begin{vmatrix} 14 - \lambda & -11 \\ -11 & 23 - \lambda \end{vmatrix}$$

$$= \frac{(14 - \lambda)(23 - \lambda)}{\lambda^2 - 37\lambda + 201}$$

$$\lambda = \frac{1}{2}(37 \pm \sqrt{565})$$

$$= 30.3849, 6.6151$$

$$= \lambda_1, \lambda_2 \quad (\text{say})$$

$$X_1 = 8$$

$$\overline{X_2} = 8.5$$

$$= \lambda_1, \lambda_2 \quad (\text{say})$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

Step 4: Computation of the eigenvectors

· · · · · ·	X ₁	4	8	13	7
$U = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \underbrace{(S - \lambda \ I) \ U}$	X ₂	11	4	5	14
$\begin{bmatrix} u_2 \end{bmatrix} \begin{bmatrix} v_1 \\ -11 \\ 23 - \lambda \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$				<u>X</u> 1 =	8
				$\overline{X_2} =$	8.5
$= \begin{bmatrix} (14 - \lambda_{\perp})u_1 - 11u_2 \\ -11u_1 + (23 - \lambda_{\perp})u_2 \end{bmatrix}$		c	٦_	14 -	-11]
[14-7) NI = 11	U ₂		-[-	14 - 11	23
$(14 - \lambda)u_1 - 11u_2 = 0$ $\frac{u_1}{11} = \frac{u_2}{14 - \lambda} = t$			λ ₁ =	30.3	849
$-11u_1 + (23 - \lambda)u_2 = 0^{\vee}$ 11 14 - λ			λ2 =	= 6.6	151

$$(14 - \lambda)u_1 - 11u_2 = 0$$

$$-11u_1 + (23 - \lambda)u_2 = 0$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \underbrace{(S - \lambda \ I) \ U}_{14 - \lambda} -11 \\ = \underbrace{\begin{bmatrix} 14 - \lambda & -11 \\ -11 & 23 - \lambda \end{bmatrix}}_{14 - \lambda} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \\ = \underbrace{\begin{bmatrix} (14 - \lambda) u_1 - 11 u_2 \\ -11 u_1 + (23 - \lambda) u_2 \end{bmatrix}}_{14 - \lambda}$$

$$\frac{u_1}{11} = \frac{u_2}{14} = t$$

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$

$$\lambda_2 = 6.6151$$

Principle Component Analysis - Solved Example

Step 4: Computation of the eigenvectors

$$U = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$\frac{u_1}{11} = \frac{u_2}{14 - \lambda} = t$$

$$\underbrace{u_1 = 11t}_{t}, \quad u_2 = (14 - \lambda)t$$

F	Ex 1	Ex 2	Ex 3	Ex 4
X ₁	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$

$$\lambda_2 = 6.6151$$

Step 4: Computation of the eigenvectors

$$U_1 = \begin{bmatrix} 11 \\ 14 - \lambda_1 \end{bmatrix}$$
.

To find a unit eigenvector, we compute the length of
 U₁ which is given by,

$$||U_1|| = \sqrt{11^2 + (14 - \lambda_1)^2}$$

= $\sqrt{11^2 + (14 - 30.3849)^2}$
= 19.7348

F	Ex 1	Ex 2	Ex 3	Ex 4
X ₁	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1=30.3849$$

$$\lambda_2 = 6.6151$$

Principle Component Analysis - Solved Example

Step 4: Computation of the eigenvectors

$$U_1 = \begin{bmatrix} 11 \\ 14 - \lambda_1 \end{bmatrix}$$

· To find a unit eigenvector, we compute the length of

U₁ which is given by,
$$e_1 = \begin{bmatrix} 11/||U_1||\\ (14 - \lambda_1)/||U_1|| \end{bmatrix}$$

$$||U_1|| = \sqrt{11^2 + (14 - \lambda_1)^2} = \begin{bmatrix} 11/19.7348\\ (14 - 30.3849)/19.7348 \end{bmatrix}$$

$$= \sqrt{11^2 + (14 - 30.3849)^2}$$

$$= 19.7348$$

$$= \begin{bmatrix} 0.5574\\ -0.8303 \end{bmatrix}$$

F	Ex 1	Ex 2	Ex 3	Ex 4
X ₁	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1=30.3849$$

$$\lambda_2 = 6.6151$$

Step 4: Computation of the eigenvectors

	1
<i>U</i> ₁ =	11 14 – λ

· To find a unit eigenvector, we compute the	length of
--	-----------

U₁ which is given by,
$$e_1 = \begin{bmatrix} 11/||U_1|| \\ (14 - \lambda_1)/||U_1|| \end{bmatrix} \qquad S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$||U_1|| = \sqrt{11^2 + (14 - \lambda_1)^2} \qquad = \begin{bmatrix} 11/19.7348 \\ (14 - 30.3849)/19.7348 \end{bmatrix} \qquad \lambda_1 = 30.3849$$

$$= 19.7348 \qquad 0 = \begin{bmatrix} 0.5574 \\ -0.8303 \end{bmatrix} \qquad e_2 = \begin{bmatrix} 0.8303 \\ 0.5574 \end{bmatrix} \qquad \lambda_2 = 6.6151$$

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$

$$\lambda_2 = 6.6151$$

Principle Component Analysis - Solved Example

Step 5: Computation of first principal

components

$$\underbrace{e_1^T \begin{bmatrix} X_{1k} - \bar{X}_1 \\ X_{2k} - \bar{X}_2 \end{bmatrix}}_{\{Z_2 = X_2\}} \qquad e_1 = \begin{bmatrix} 0.5574 \\ -0.8303 \end{bmatrix} \qquad \underbrace{\overline{X_1}}_{\{Z_2 = X_2\}} = \underbrace{S}_{\{Z_2 = X_2\}} = \underbrace{\begin{bmatrix} X_{1k} - \bar{X}_1 \\ X_{2k} - \bar{X}_2 \end{bmatrix}}_{\{Z_2 = X_2\}} = \underbrace{\begin{bmatrix} 0.5574 \\ -0.8303 \end{bmatrix}}_{\{Z_2 = X_2\}} = \underbrace{\begin{bmatrix} 0.8303 \\ 0.5574 \end{bmatrix}}_{\{Z_2 = X_2\}} \qquad e_2 = \begin{bmatrix} 0.8303 \\ 0.5574 \end{bmatrix} \qquad S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$= 0.5574(X_{11} - \bar{X}_1) - 0.8303(X_{21} - 0.5574(4 - 8) - 0.8303(11 - 8, 5)$$

$$= -4.30535$$

$$e_1 = \begin{bmatrix} 0.5574 \\ -0.8303 \end{bmatrix}$$

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$e_2 = \begin{bmatrix} 0.8303 \\ 0.5574 \end{bmatrix}$$
 $S = \begin{bmatrix} 14 \\ -11 \end{bmatrix}$

$$\lambda_1=30.3849$$

$$\lambda_2=6.6151$$

Step 5: Computation of first principal components

F	Ex 1	Ex 2	Ex 3	Ex 4
X ₁	4	8	13	7
X ₂	11	4	5	14

Feature	Ex 1	Ex 2	Ex 3	Ex 4
X ₁	4	8	13	7
X ₂	11	4 .	5	14
First Principle Components	-4.3052	3.7361	5.6928	-5.1238

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$

$$\lambda_2 = 6.6151$$

Principle Component Analysis – Solved Example

Step 6: Geometrical meaning of first principal components

F	Ex 1	Ex 2	Ex 3	Ex 4
X ₁	4	8	13	7
х,	11	4	5	14

$$X_2$$
 11 4 5 14 $C_{1} = \begin{bmatrix} 0.5574 \end{bmatrix}$ $\overline{X_1} = 8$

$$e_2 = \begin{bmatrix} 0.8303 \\ 0.5574 \end{bmatrix} S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$

$$\lambda_2=6.6151$$

Step 6: Geometrical meaning of first principal

components

\(^2\)			-/7	14)	
14	0.000	8	•(1,	14)	7
10	,11)	•	` .		e_2
8		W	ζ_1, \bar{X}	.)	
- 1	,	, "		P.	(13, 5)
4		(8,	1)•	Q	
2					

F	Ex 1	Ex 2	Ex 3	Ex 4
X ₁	4	8	13	7
X ₂	11	4	5	14

$$e_1 = \begin{bmatrix} 0.5574 \\ -0.8303 \end{bmatrix}$$
 $\overline{X_1} = \mathbf{8}$ $\overline{X_2} = \mathbf{8}.5$

$$e_2 = \begin{bmatrix} 0.8303 \\ 0.5574 \end{bmatrix} S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$

$$\lambda_2 = 6.6151$$

Principle Component Analysis - Solved Example

Step 5: Computation of first principal components

	F	Ex 1	Ex 2	Ex 3	Ex 4
Ì	X ₁	4	8	13	7
	X ₂	11	4	5	14

Feature	Ex 1	Ex 2	Ex 3	Ex 4
X ₁	4	8	13	7
X ₂	11	4	5	14
First Principle Components	-4.3052	3.7361	5.6928	-5.1238

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$

$$\lambda_2=6.6151$$