Carlingford High School

2014

TRIAL
HIGHER SCHOOL CERTIFICATE
EXAMINATION

Mathematics Extension 1

NAME:	CLASS:	TEACHER:	

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper.
- In Questions 11 − 14, show relevant mathematical reasoning and/or calculations

Total Marks - 70

Section I Pages 2 – 4

10 marks

- Attempt Questions 1 − 10
- Allow about 15 minutes for this section

Section II Pages 5 – 10

60 marks

- Attempt Questions 11 14
- Allow about 1hour and 45 minutes for this section

	MC	Q11	Q12	Q13	Q14	TOTAL
МС	/10					/10
HE3			/5		/7	/12
HE4		/3	/4	/5		/12
HE5				/6		/6
HE6		/3				. /3
HE7	<u> </u>	/9	/6	/4	/8	/27
TOTAL	/10	/15	/15	/15	/15	/70

Section I

10 marks

Attempt Questions 1 - 10.

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet located on page 12 for Questions 1-10.

- 1. How many numbers greater than 5 000 can be formed with the digits 2, 4, 5, 6 and 9 if a digit cannot occur more than once in any number?
 - (A) 72
 - (B) 120
 - (C) 144
 - (D) 192
- 2. Find the value of x:
 - (A) 30°
 - (B) 45°
 - (C) 60°
 - (D) 90°

- 3. Find the derivative of $e^{\cos x}$
 - (A) $e^{\cos x}$
 - (B) $e^{\sin x}$
 - (C) $-\sin x e^{\cos x}$
 - (D) $\sin x e^{\cos x}$

4. The expansion needed to show $\sin 75^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}$ is:

(A)
$$\sin(45^{\circ} + 30^{\circ}) = \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$$

(B)
$$\sin(45^{\circ} + 30^{\circ}) = \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ}$$

(C)
$$\sin(100^{\circ} - 25^{\circ}) = \sin(100^{\circ} \cos 25^{\circ} + \cos 100^{\circ} \sin 25^{\circ}$$

(D)
$$\tan(45^{\circ} + 30^{\circ}) = \frac{\tan 45^{\circ} \tan 30^{\circ}}{1 + \tan 45^{\circ} \tan 30^{\circ}}$$

5. The Cartesian equation of the tangent to the parabola x = t - 3, $y = t^2 + 2$ at t = -3 is:

(A)
$$6x + y + 25 = 0$$

(B)
$$6x + y + 36 = 0$$

(C)
$$6x - y - 25 = 0$$

(D)
$$6x + 2y - 25 = 0$$

6. Using the substitution $u = 1 - x^3$, evaluate $\int_0^1 x^2 \sqrt{1 - x^3} dx$.

(A)
$$-\frac{1}{9}$$

(B)
$$\frac{1}{9}$$

(C)
$$\frac{2}{9}$$

(D)
$$\frac{1}{3}$$

7. A particle moves in a straight line. Its position at any time t is given by

$$x = 3\cos 2t + 4\sin 2t.$$

The acceleration in terms of x is:

(A)
$$\ddot{x} = -3x$$

(B)
$$\ddot{x} = -4x$$

(C)
$$\ddot{x} = -16x^2$$

(D)
$$\ddot{x} = -6\cos 2x + 8\sin 2x$$

$$8. \qquad \int \frac{dx}{\sqrt{1-3x^2}} =$$

(A)
$$\left(\sin^{-1} 3x\right) + C$$

(B)
$$\left(\tan^{-1} 3x\right) + C$$

(C)
$$\frac{1}{\sqrt{3}} \left(\tan^{-1} \sqrt{3} \ x \right) + C$$

(D)
$$\frac{1}{\sqrt{3}} (\sin^{-1} \sqrt{3} x) + C$$

9. If α , β and γ are the roots of $x^3 - 7x^2 + 9x - 15 = 0$. Find the value of $\frac{1}{\alpha\beta} + \frac{1}{\alpha\gamma} + \frac{1}{\beta\gamma}$.

(A)
$$-\frac{7}{15}$$

(B)
$$\frac{7}{15}$$

(C)
$$\frac{9}{15}$$

(D)
$$\frac{15}{7}$$

Using Newton's method once with a starting value of x = 3, find the approximate value of $\sqrt[3]{33}$.

(A)
$$2\frac{7}{9}$$

(B)
$$3\frac{1}{5}$$

(C)
$$3\frac{2}{9}$$

(D)
$$3\frac{2}{3}$$

Section II

60 marks

Attempt Questions 11 - 14.

Allow about 1 hour and 45 minutes for this section.

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11 - 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

Marks

- (a) A polynomial is given by $P(x) = x^3 + ax^2 + bx 18$. Find the values of a and b if (x + 2) is a factor of P(x) and the remainder when P(x) is divided by (x 1) is -24.
- (b) A and B are the points (1, 4) and (5, 2) respectively. Find the coordinates of the point M which divides the interval AB externally in the ratio 2:3.
- (c) Differentiate $y = \cos^{-1}(3x + 2)$ and state the values for which x is defined.
- (d) Find the volume of the solid of revolution formed when the curve $y = x^3 + 1$ is rotated about the y-axis from y = 0 to y = a.
- (e) Sketch $y = \frac{x-3}{x}$ showing all the main features including stationary points, inflexions and asymptotes.
- (f) Find the area bounded by the curve $y = \frac{1}{9+x^2}$, the x axis and the lines x = 0 and $x = \sqrt{3}$ using the substitution $x = 3 \tan \theta$.

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.

Marks

(a) (i) Show 3 $\sin x \cos x = \frac{3}{2} \sin 2x$.

1

(ii) Hence or otherwise, find the exact value of $\int_0^{\frac{\pi}{2}} 9 \sin^2 x \cos^2 x \, dx.$

2

(b) (i) Sketch the graph of $y = sin^{-1}(x^2)$ and state its domain and range.

3

(ii) Solve the equation $sin^{-1}(x^2) = \frac{\pi}{6}$.

1

(c) Greg designs a sky-diving simulator for a video game. He simulates the rate of change of the velocity of the skydivers as they fall by:

 $\frac{dV}{dt} = -k(V-P)$, where k and P are constants.

The constant P represents the terminal velocity of the skydiver in the prone position which is 55 m/s.

(i) Show that $V = P + Ae^{-kt}$ is a solution of this differential equation.

1

(ii) Initially the velocity of the skydiver is 0 m/s and the velocity after 10 seconds is 27 m/s. Find values for A and k.

2

(iii) Find the velocity of the skydiver after 17 seconds.

1

(iv) How long does it take the skydiver to reach a velocity of 50 m/s?

1

Question 12 continues on page 7

Question 12 (continued)

(d) A circle, centre O, passes through the points A, C, D and E. Another circle, centre P, passes through the points A and O. CE is a tangent to the circle centre P, with point of contact at O. AB is a tangent to both circles with point of contact at A. OA is a diameter. $\angle CBA = x^{\circ}$.

Show that $\angle CED = (90 - x)^{\circ}$

3

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.

Marks

(a) By expressing $\cos x + \sin x$ in the form $r \sin(x + \alpha)$ solve the equation $\sin x + \cos x = 1$ for $0 \le x \le 2\pi$.

2

- (b) Consider the function $f(x) = \frac{e^x}{4 + e^x}$.
 - (i) This function has no stationary points. Given that $f'(x) = \frac{4 e^x}{(4 + e^x)^2}$, find any points of inflexion.

2

(ii) Explain why f(x) has an inverse function.

1

(iii) Find the inverse function $y = f^{-1}(x)$.

2

- (c) A particle moves on a line so that its distance from the origin at time t is x.
 - (i) Prove that $\frac{d^2x}{dt^2} = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$ where v denotes velocity.

2

(ii) If $\frac{d^2x}{dt^2} = -2x(x^2 - 20)$ and v = 0 at x = 2 find v^2 in terms of x.

1

3

(iii) Is the motion simple harmonic? Why?

2

(d) Prove by mathematical induction that $a + ar + ar^2 + ar^3 + \dots + ar^{n-1} = \frac{a(r^n - 1)}{r - 1}$ for all a and r, where n is a positive integer.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

Marks

(a) Find the general solutions of $sin^2x - cosx = 1$.

2

(b) A ball is hit from the centre (O) of a cricket ground with a velocity of 34 m/s at an angle θ to the horizontal and towards a 1.25 metre high boundary fence which is 100 metres away.

(i) Derive the equations for horizontal and vertical displacement of the ball in flight. Air resistance may be neglected and acceleration can be taken as -10m/s².

2

(ii) Show the ball just clears the boundary fence when: $50000 \tan^2 \theta - 115600 \tan \theta + 51445 = 0$

3

(iii) Between what values does θ lie, for the ball to clear the boundary fence?

2

Question 14 continues on page 10

Question 14 (continued)

(c) The Eiffel Tower (GT) is on flat ground in central Paris. Three friends Jordan, Maddy and Bella are observing the tower from a straight road on ground level. Jordan is due north of the tower, Bella is due east of the tower and Maddy is on the line of sight between Jordan and Bella. The angles of elevation to the summit of the tower from Jordan, Maddy and Bella are 28° , 30° and 32° respectively. The distances to the base of the tower from Jordan, Maddy and Bella are x, y and z respectively.

(i) Find expressions for x, y, and z.

(ii) Find angle GJM to the nearest minute.

1

1

(iii) Determine the bearing of Maddy from the base of the Eiffel Tower.

2

(iv) Write an expression which is independent of h, for the ratio $\frac{MB^2}{JM^2}$.

2

End of Paper

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_{\rho} x$, x > 0

Trial HSC Examination 2014

Mathematics Extension 1

	Name	········		·····	Гeacher			
		Sect	ion I – M	Iultiple	Choice A	nswer Sheet		
Allow abou Select the a					rs the questi	on. Fill in the resp	oonse oval complete	ly.
Sample:	2 + 4	=	(A) 2 A O		(B) 6 B ●	(C) 8	(D) 9 D O	
If you think answer.	you have	made a m	nistake, pu	t a cross	through the	incorrect answer	and fill in the new	
			A $lacktriangle$		В 🗯	c O	D O	
•					_	ider to be the corr drawing an arrow		
			A 🗯		В	c O	D O	
1.	A 🔿	В	С	D O				
2.	A 🔿	В	c O	D 🔾				
3.	A 🔾	В	c O	D O				
4.	A 🔾	В	c 🔾	D 🔿				
5.	A 🔿	В	c 🔾	D 🔾				
6.	A 🔾	В	c 🔾	D 🔾				
7.	A 🔾	В	c O	D 🔾				
8.	A 🔾	В	c 🔾	D O				
9.	A 🔾	$B \bigcirc$	c 🔾	D 🔾				
10.	A 🔾	$B \bigcirc$	c 🔾	D 🔾				

1 for stating defined values I for using correct method to differentiate 1 correct differentiation $y = \cos^{-1}(3x + 2)$ is defined $\therefore \cos^{-1}(3x + 2)$ is defined for $\sqrt{-9x^2-12x-3}$ $\sqrt{1-(3x+2)^2}$ n+n $2 \times 2 + -3 \times 4$ $y = \cos^{-1}(3x + 2)$ $-1 \le 3x + 2 \le 1$ $y = \frac{my_2 + my_1}{my_2 + my_2}$ $x = \frac{mx_2 + nx_1}{x}$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $-3 \le 3x \le -1$ $-1 \le x \le -\frac{1}{2}$ $y = \cos^{-1} u$ -1 ≤x≤ --<u>1</u> Let u = 3x + 22-3 2-3 : pt (-7, 8) $\frac{du}{dx} = 3$ <u>a</u> ax <u>e</u> <u>છ</u> 1 for finding the 2 equations 2014
Marks | Allocation of marks とのに $\begin{array}{c} 1 \cdot (2) \\ 1 \cdot (2) \\ 0 = (-2)^3 + a(-2)^2 + b(-2) - 18 \\ 0 = -8 + 4a - 2b - 18 \\ 0 = 4a - 2b - 26 \\ -24 = 1 + a + b - 18 \\ 0 = a + b + 7 \\ \text{sub } (2) \text{ into } (1) \\ 4(-7 - b) - 2b = 26 \end{array}$ 75121 $P(x) = x^{3} + ax^{2} + bx - 18$ P(-2) = 0 P(1) = -24 P(-2) = 0VItile Choice -28 - 6b = 26-28 - 4b - 2b = 26

Solution Question 11

ड

5			c
Ð	$V=\pi \int_{-\infty}^{\infty} x^2 dy$	m	1 for finding x^2
	$y = x^3 + 1$		
	$y-1=x^3$		
	$x^2 = (3/y - 1)^2$		
•	,		
	x = (y-1)		
	$\chi^2 = (y - 1)^3$		
_	$V = \pi \int_{-\pi}^{\pi} \frac{2}{(\gamma - 1)^3} d\gamma$		
	0	!	

1 for solving the simultaneous equations

a=2 and b=-9

6 - = q

-6b = 54

a - 9 = -7

a = 2

2014	Marks Allocation of marks	1					2			1 for using part (i) or other method for changing form		-	$\frac{9}{32}\sin 0$ 1 for correct integration	1			1	
Question 12		(a) (i) 3sinxcosx	= sinxcosx + 2sinxcosx	$= \frac{1}{2}\sin 2x + \sin 2x$	$= \sin 2x \left(\frac{1}{2} + 1\right)$	$=\frac{3}{5}\sin 2x$	(i) u	$\int_{0}^{2} 9 \sin^{2} x \cos^{2} x dx = \int_{0}^{2} (3 \sin x \cos x)^{2} dx$	$= \int_{-\frac{1}{4}}^{\frac{\pi}{2}} \sin^2 2x dx$	$= \int_{-2}^{2} \frac{1}{4} \times \left[\frac{1}{2} (1 - \cos 4x) \right] dx$	$\frac{\pi}{\pi} = \left\{ \frac{2}{9} (1 - \cos 4x) dx \right\}$	$= \begin{bmatrix} \frac{9}{6}x - \frac{9}{2x} \sin 4x \end{bmatrix}^{\frac{1}{x}}$	$= \left[\frac{9\pi}{16} - \frac{9}{32} \sin 2\pi \right] - \left[0 - \frac{9}{32} \sin 0 \right]$ $= \frac{9\pi}{16}$	(b) (j) D: $-1 \le x \le 1$ R: $0 \le y \le \frac{\pi}{2}$	plu.	*	(ii) $x^2 = \sin\frac{\pi}{6}$ $= \frac{1}{2}$	$x = \pm \frac{1}{\sqrt{2}}$
							1 for correct substitution						1 for correct substitution and change of end points			1 for correct answer		
	$y = \frac{1}{9 + x^2}$	Let $x = 3 \tan \theta$	$\frac{dx}{dx} = 3\sec^2\theta$	10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$9 + 9 \tan^2 \theta$	$9(1 + \tan^2\theta)$	1	When $x = \sqrt{3}$	$\sqrt{3} = 3 \tan \theta$ $\tan \theta = \sqrt{3}$		π ∈ θ δ	When $x = 0$ $0 = 3 \tan \theta$	$\theta = 0$ $\frac{3}{3} \frac{1}{0 + \sqrt{3}} dx$	$\begin{bmatrix} \frac{\pi}{6} & \frac{1}{1} & \frac{dx}{d\theta} \times d\theta \\ 0 & \frac{1}{9} + \frac{x^2}{3} & \frac{d\theta}{d\theta} \end{bmatrix}$	$\int_{0}^{\frac{\pi}{6}} \frac{1}{9\sec^2\theta} \times 3\sec^2\theta d\theta$	$= \int_{0}^{\frac{\pi}{11}} \frac{1}{3} d\theta$		$\begin{bmatrix} 1.18 & \ \ \ \end{bmatrix}$ writ ²

<u> </u>	$V = P + Ae^{-kl}$		Either method is acceptable	(iv) $50 = 55 - 55\rho^{-0.0675 \times t}$	
	$\frac{dV}{dt} = -kAe^{-kt}$			$e^{-0.0675 \times t} = \frac{5}{55}$	
	$but Ae^{-kt} = V - P$			$t = \frac{ \mathbf{n} }{55}$	
	$\therefore \frac{dV}{dt} = -k(V-P)$			t = 35.5 seconds So it will take approximately 35.5 seconds	
	70			. 1 . 1	1 for amount of time needed
	$\frac{dV}{dt} = -kAe^{-ta}$			x x 180-x x	
	$= -k(P + Ae^{-kt} - P)$				
	-k(V-P)	,			Alternative solutions
	(ii)	7	1 for A		possible, allocate marks as
	V = 0 $P = 55$ $t = 0$				approprate.
	$V = 55 + Ae^{-\kappa t}$ Tritially $t = 0$ $v = 0$			A / / / / /	
	$0 = 55 + 4e^0$)\	
	$A = -55$ $\therefore V = 45 - 550^{-kl}$			q	
				$\angle PAB = 90^{\circ}$ (Angle between a tangent and radius)	1 for abovering manual 11.
				$\angle POC = 90^{\circ}$ (Angle between a tangent and radius)	1 tot showing parallel lines
	When $t = 10 \ V = 27$		1 for k	$\sim 2 OCB = 180 - x^2$ (Cointerjor angles on II lines)	1 6.00
	$27 = 55 - 55e^{-10}$			$\angle DCE = x^{\circ}$ (angles on straight line	1 to external angle $\angle DCE_c$
				$\angle EDC = 90^{\circ}$ (angle in a semicircle is a right angle) $\angle CED = 180^{\circ} - 90^{\circ} - x^{\circ}$ (angle sum ΔCED)	
	55		1	$ \therefore \angle CED = 90^{\circ} - x^{\circ}$	1 for final answer
	k = 0.067512867				
*. 					
	(iii) When t = 17	-	Ionore any rounding either		
	$V = 55 - 55e^{-0.0675i}$	4	with k or the answer		
	$V = 55 - 55e^{-0.0675 \times 17}$ V = 3.7 Sm/s				
L					

For inflexion points $f''(x) = 0$	$4 - e^x = 0$	e = 4	$x = \ln 4$	When $x = \ln 4$	$y = \frac{4}{4+4}$		7 2	\therefore possible inflexion = $\left(\ln 4, \frac{1}{2}\right)$	Test	f''(1) > 0	f"(2) < 0	$\therefore f''(x)$ changes sign	\therefore Inflexion at $= \left(\ln 4, \frac{1}{2} \right)$	(ii) (ii) 1	f(x) > 0 for all x . If you check it graphically with a horizontal line test, it will	only cut the function once. Therefore if you reflect the graph in the line $y=x$ it will pass the vertical line test.			10.5	23								
	Allocation of marks								l for expressing in correct	Vertilis							1 for correct solutions		I for inding the second derivative									Amazari (a)
2014	Marks	2																2				<u>-</u>						_
) nestion 13	Solution	3) $cosx + sinx = rsin(x + \alpha)$	$r = \sqrt{\left[\frac{2}{4} + 1\right]^2}$	1 <u>C</u>	tano; = 1	<u> </u>	00 = 00 = 00 = 00 = 00 = 00 = 00 = 00	$\cos x + \sin x = 1$	$\cos x + \sin x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right)$	$G_{n,n}$ G_{n	$\sqrt{4}$ $\sqrt{4}$	$\sin\left(x + \frac{\pi}{2}\right) = \frac{1}{2\pi}$	(4) 22	Let $\theta = \left(x + \frac{\pi}{4}\right)$: $\sin \theta = \frac{1}{\sqrt{2}}$	$\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{9\pi}{4}$	$\therefore \qquad \left(x + \frac{\pi}{4}\right) = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{9\pi}{4}$	$x=0,\frac{\pi}{2},2\pi$	(j) (c	$f'(x) = \frac{4e^x}{(4+e^x)^2}$	$u = 4e^x v = \left(4 + e^x\right)^2$	$u' = 4e^x v' = 2e^x \left(4 + e^x\right)$	$f''(x) = \frac{4e^x(4+e^x)^2 - 8e^{2x}(4+e^x)}{2e^{2x}}$	$\left(\left(4+e^{x}\right)^{2}\right)^{2}$	$f''(x) = \frac{(4+e^x)(4e^x(4+e^x)-8e^{2x})}{(4+e^x)^4}$	$f''(x) = \frac{(4+e^x)(16e^x + 4e^{2x} - 8e^{2x})}{4+e^x}$	$(4+e^x)$	$f''(x) = \frac{4e^x(4-e^x)}{(4+e^x)^3}$	

1 any valid explanation is acceptable, with or without a graph/sketch

For inflexion	For inflexion points $f''(x) = 0$		1 for the inflexion with test
	$4 - e^x = 0$		
	e = 4		
	$x = \ln 4$		
	When $x = \ln 4$		
	$y = \frac{4}{4 + 4}$		
	$y = \frac{1}{2}$		
sod ::	possible inflexion = $\left(\ln 4, \frac{1}{2}\right)$		
Test	,		
	f''(1) > 0		
	f''(2) < 0		
$\therefore f''(x)$ changes sign	es sign		
·:	Inflexion at $= \left(\ln 4, \frac{1}{2}\right)$		
(ii		-	

į L	() () () () () () () () () ()	c			
····	ie $y = \frac{e^x}{4 + e^x}$		1 for interchanging κ and y	(iii) The particle oscillates between the points $x=2$ and $x=6$, this however is not simple harmonic motion as	
	Inverse $x = \frac{1}{4 + e^y}$ $4x + xe^y = e^y$			$ \begin{array}{l} \dot{x} = -2x(\ddot{x} - 20) \\ \text{Is not in the form} \\ \dot{x} = -n^2x \end{array} $	I for stating not in correct form for SHM
	$e^{y}(1-x) = 4x$ $e^{y} = \frac{4x}{x}$		(d)	$a + ar + ar^2 + ar^3 + + ar^{n-1} = \frac{a(r^n - 1)}{r - 1}$	1 for step 1 and 2
	$y = \ln\left(\frac{4x}{1-x}\right)$			Step 1 Prove true for $n = 1$ LHS = a	
<u> </u>	$\frac{d^2x}{dt^2} = \frac{d}{dt}\left(\frac{dx}{dt}\right) = \frac{d}{dt}v = \frac{dv}{dt}$	7	Any acceptable proof may be used	$RHS = \frac{a(r^{2} - 1)}{r - 1}$ $= a$ $\therefore LHS = RHS$	
	$=\frac{dv}{dx}\times\frac{dx}{dt}$			Step 2 Assume true for $n = k$	
	$= \frac{dv}{dv} \times v$ $= v \frac{dv}{dv}$			Step 3 Prove true for $n = k + 1$	
	$=\frac{d}{dv}\left(\frac{1}{2}v^2\right)\times\frac{dv}{dx}$			16 Frove that $a + ar + ar^2 + ar^3 + \dots + ar^{(k+1)-1} = \frac{a\binom{k+1}{2}-1}{r-1}$	
	$=\frac{d}{dx}\left(\frac{1}{2}v^2\right)$		1	$LHS = a + ar + ar^2 + ar^3 + \dots + ar^{(k+1)-1}$ $a(r^k - 1)$	
		က		1 + 4	
	$= 40x - 2x^{3}$ and $\frac{d^{2}x}{dt^{2}} = \frac{d}{dx} \left(\frac{1}{2}v^{2}\right)$			$=\frac{ar^{k+1}-a}{r-1}$	
	$\therefore \frac{d}{dx} \left(\frac{1}{2} v^2\right) = 40x - 2x^3$ $\therefore \frac{1}{2} v^2 = \left(40x - 2x^3 dx\right)$		1	$=\frac{a(r-1)}{r-1}$ = RHS Therefore if true for $n=k$, also true for $n=k+1$.	1 mark for Step 3
	$\frac{2}{2}v^2 = 20x^2 - \frac{x^4}{2} + C$			since the for $n=1$, by induction it is true for all positive integral values of n .	
	When $v = 0 \ x = 2$ $\therefore 0 = 20 \times 2^2 - \frac{2^4}{2} + C$		1 for correct integration		
	∴ C ≈ -72				
	$\frac{1}{2} \frac{1}{2} v^2 = 20x^2 - \frac{x}{2} - 72$ $v^2 = 40x^2 - x^4 - 144$ $= -\left(x^4 - 40x^2 + 144\right)$ $= -\left(x^2 - 36\right)\left(x^2 - 4\right)$		1 for expressing ν^2 in terms of x		•

		formula correctly				1 for the range of angles														1 for a correct diagram and expressions to find side	lengths				A Accepted To the Local Co.	Accept x= ncot28 y= hcot30	z≕ hcot32				
	For a six, when $x = 100$	y > 1.25 50000 tan ² $\theta - 115600 \text{ tan}\theta + 51445 < 0$	$\tan\theta = \frac{115600 \pm \sqrt{(115600)^2 - 4 \times 50000 \times 51445}}{2 \times 60000}$	0.6015	0 = 59°41', 31°2'	c) T		- I		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		130 NOCEII	¥ /	225	<i>></i>		East	A	1 - FD + (i)	$G_{J} = x$	GM = y $GB = z$	Ä	$\angle GTJ = 62^{\circ}$	ZGIM == 60°	$\frac{1}{x} = \frac{1}{x} + \frac{1}{x} + \frac{1}{x} = \frac{1}{x}$		$z = h \tan 58^{\circ}$		N Constitution of the cons	r,	
	cs Allocation of marks			1 Mach															-					1 for subst in t correctly				1 for correct y	-		1 for correct values and
100 14	u	$\frac{1}{1 - \cos^2 x - \cos x} = 1$	(01 x (100x + 1) = 0	 - -	n= 2nt 1 cos "10 or 2nt t cos"(-1)	· 2nrt I or 2nrt II	1) (j) Horizontal Mortion	$\dot{x} = V \cos \theta$	x = 34cosθ	$x = 34t \cos\theta + c_1$	$t = 0 x = 0 c_1 = 0$	$\therefore x = 34t \cos\theta$	$l = \frac{x}{34cos\theta}$	Varios Motion	אַ כַּזְ וַיְּנְסָדוּ דְאַסְכְּנְסְדִּוּ	<i>y</i> = −10	$\dot{y} = -10t + C_2$	$t = 0$ $\dot{y} = V \sin \theta$	$\therefore c_2 = 34 \sin \theta$	$\therefore \dot{y} = -10t + 34 \sin\theta$	$\therefore y = -5t^2 + 34 \sin\theta + C_3$	$t=0$ $y=0$ $C_3=0$	$\therefore y = -5t^2 + 34t \sin\theta$	(ii) $y = -5t^2 + 34t \sin\theta$ 3	$=-5\left[\frac{x}{24\cos\theta}\right]^{2}+34\times\left[\frac{x}{24\cos\theta}\right]\times\sin\theta$	[34 cust] [34 cust] [532 cm.20 d. v. tent]	1156 sec 0 1 4 and	$=-\frac{2x}{1156}(1+\tan^2\theta)+x\tan\theta$	1156 $y = -5x^2 - 5x^2 \tan^2 \theta + 1156x \tan \theta$	When $x = 100 \text{ y} = 1.25$ since the ball just clears the boundary fence.	$1445 = -50000 - 50000 \tan^2 \theta + 1156000 \tan \theta$

_	1 to tiliming the needed
$\therefore \tan \beta = \frac{h \tan 58^{\circ}}{h \tan 67^{\circ}}$	angles,
$\beta = 40^{\circ} 24'$ (iii) $\sin \alpha = \sin 40^{\circ} 24'$	
tan 60° = 0.703.67	
$\alpha = \sin^{-1}(0.70367)$	
$\alpha = 44^{\circ}44^{\circ} \text{ or } 135^{\circ} 16^{\circ}$ Now if $\alpha = 44^{\circ}44^{\circ} \text{ or } 135^{\circ} 16^{\circ}$	1 for correct bearing
then $\theta = 180 - 44^{\circ}44^{\circ} - 40^{\circ}24^{\circ} = 94^{\circ}52^{\circ}$.	1 or 2 marks can be awarded
But $\theta < 90^{\circ}$, since it lies between north and east.	if student was on the right
$\therefore \theta = 130^{-10} - 40^{\circ}24' - 135^{\circ}16'$	track but has made a small
= 4° 20'	
Maddy is on a bearing of 004° T from the Biffel Tower	
(iv) Using the angles calculated above we can obtain the diagram	
below:	
North 135°16	-
₀ Z9	
act it	
8 100 17	
G HBB 58° Garage	
100:1	1 mark for obtaining an
Using the cos rule on $\triangle MBG$.	expression for at least one
$\lim_{n \to \infty} \frac{1}{n} (\ln an b) + (\ln an b) -2 \times (\ln an b) (\ln an b) \cos 85^{\circ} 40^{\circ}$ $= h^{2} + nn^{2} + 60 + h^{2} + nn^{2} + 8 - 3 \times \frac{1}{2} + nn + 60 \times \frac{1}{2} $	of MB and/or JM'.
$= \frac{1}{k^2} \{ \tan^2 60 + \tan^2 58 - 2 \times \text{ton } 60 \text{ ton } 58 \text{ as } 85 \text{ A}0 \}$	
Using the cos rule on AJMG.	
$JM^2 = (htan 60)^2 + (htan 62)^2 - 2 \times (htan 60)(htan 62)\cos 4^{\circ}20^{\circ}$	
= $h \tan^2 60 + h \tan^2 62 - 2 \times h^2 \tan 60$, $\tan 62$, $\cos 4^{\circ}20^{\circ}$ = $h^2 (\tan^2 60 + \tan^2 62 - 2 \times \tan 60$, $\tan 62$, $\cos 4^{\circ}20^{\circ}$	1 mark for writing the ratio
	and simplifying out the
~	No need to evaluate the
$JM^2 = h^2(\tan^2 60 + \tan^2 62 - 2 \times \tan 60$, $\tan 62$, $\cos 4^{\circ}20)$	expression.
$(tan^2 60 + tan^2 58 - 2 \times 34an 60, tan 58, cos 85.40!)$	
2,2,2	