CS2105

An *Awesome* Introduction to Computer Networks

Lecture 1: Introduction

Course Instructors

Dr. Zhou Lifeng

Senior Lecturer

Office: COM2 #02-56

Email: zhoulifeng@nus.edu.sg

Dr. Leong Wai Kay

Lecturer

Office: COM2 #02-11

Email: waikay@comp.nus.edu.sg

What is CS2105 About?

- Discussion of fundamental concepts and principles behind computer networking
 - Using the Internet as a case study
- Introduction to networking tools and networked application programming
 - Programming with Python, Java, or C++

What you will NOT learn in CS2105

- How to configure hardware, e.g. router
 - This is covered in CS3103 Computer Networks Practice - perform hands-on experiments in subnetting, DHCP, DNS, RIP, OSPF, TCP handshaking and congestion mechanism
- Mobile and wireless networks
 - This is covered in CS4222 Wireless Networking

Textbook

Computer Networking: A Top-Down Approach: Global Edition, 7/E

Authors: Kurose

Ross

Publisher: Pearson

ISBN : 9781292153599

Acknowledgement:
Most of the lecture slides are
adopted from slides of this textbook.

Available at NUS Campus bookstore

Contact Hours

Lectures

- Every Monday 2 4pm @ ICube Auditorium
- 2 hours per session
- week 8 lecture reserved for midterm test

Tutorials

- Start from week 3.
- 1 hour per session
- No tutorial in week 8 ⁽²⁾

Consultation

Email me or Wai Kay to make arrangement

Assessments

- ***** CA (50%)
 - Tutorial attendance/participation 5%
 - Individual programming assignments 25%
 - Mid-term test (week 8 lecture time: Mon, 7 Oct 2019, 2:10 - 3:30pm) - 20%
- Final Exam (50%)
 - Mon, 2 Dec 2019, 5 7pm

Notes and Tips

- Why CS2105 can be easy
 - You use and interact with the Internet constantly
 - Many of the concepts are intuitive and based on very practical design considerations
 - There are very few equations!

- Why CS2105 can be tough
 - Many concepts are covered
 - Programming!

Lecture 1: Introduction

After this class, you are expected to:

- understand the basic terms, including host, packet, protocol, throughput, store-and-forward, and autonomous system.
- know about the logical (five protocol layers) and physical (a network of ASes) architecture of the Internet.
- understand the different components of end-toend delay and their relations to bandwidth, packet size, distance, propagation speed, and queue size.

Lecture 1: Roadmap

- 1.1 What is the Internet?
- 1.2 Network Edge
- 1.3 Network Core
- 1.4 Delay, Loss and Throughput in Networks
- 1.5 Protocol Layers and Service Models

Kurose Textbook, Chapter 1 (Some slides are taken from the book)

Internet: "nuts and bolts" View

- The Internet is a network of connected computing devices (e.g. PC, server, laptop, smartphone)
 - such devices are known as hosts or end systems.
 - they run network applications (e.g. WhatsApp, browser).
 - they communicate over links.

Growth of Internet Hosts

"Fun" Internet-connected Devices

IP picture frame http://www.ceiva.com/

control cable TV remotely

Web-enabled toaster + weather forecaster

Tweet-a-watt: monitor energy use

Internet refrigerator

sensorized, bed mattress

Internet phones

Lecture 1: Roadmap

- 1.1 What is the Internet?
- 1.2 Network Edge
 - hosts, access networks, links
- 1.3 Network Core
 - packet switching, circuit switching, network structure
- 1.4 Delay, Loss and Throughput in Networks
- 1.5 Protocol Layers and Service Models

Access Networks

- Hosts access the Internet through access network.
 - Residential access networks
 - Institutional access networks (school, company)
 - Mobile access networks

Home Networks

Enterprise Access Networks (Ethernet)

- Typically used in companies, universities, etc.
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- Today, hosts typically connect to Ethernet switch

Wireless Access Networks

- Wireless access network connects hosts to router
 - via base station aka "access point"

Wireless LANs:

- within building (100 ft)
- 802.1 lb/g/n/ac (Wi-Fi)

Wide-area wireless access

- 3G, 4G
- provided by telco (cellular) operator, 10's km

Physical Media

- Hosts connect to the access network over different physical media.
 - Guided media:
 - signals propagate in solid media

Coaxial cable

Fiber optic cable

- Unguided media:
 - · signals propagate freely, e.g., radio

Lecture 1: Roadmap

- 1.1 What is the Internet?
- 1.2 Network Edge
 - hosts, access networks, links
- 1.3 Network Core
 - packet switching, circuit switching, network structure
- 1.4 Delay, Loss and Throughput in Networks
- 1.5 Protocol Layers and Service Models

The Network Core

- A mesh of interconnected routers
- The fundamental question: how is data transmitted through net?
 - Circuit switching: dedicated circuit per call
 - Packet switching: data sent thru net in discrete "chunks"

Circuit Switching

End-end resources allocated to and reserved for "call" between source & dest:

- call setup required
- circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)
- commonly used in traditional telephone networks
- divide link bandwidth into "pieces"
 - frequency division
 - time division

In above diagram, each link has four circuits. A "call" gets 2nd circuit in top link and 1st circuit in right link.

Packet Switching

Host sending function:

- breaks application message into smaller chunks, known as packets, of length L bits
- transmits packets onto the link at transmission rate R
 - link transmission rate is aka link capacity or link bandwidth

transmission = time needed to transmission = transmit
$$L$$
-bit = $\frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$

Packet-switching: store-and-forward

- ❖ Packets are passed from one router to the next, across links on path from source to destination.
- Store and forward: entire packet must arrive at a router before it can be transmitted on the next link.

End-to-end delay = 2*L/R (assuming no other delay)

Routing and Addressing

- Routers determine source-destination route taken by packets.
 - Routing algorithms
- Addressing: each packet needs to carry source and destination information

Packet Switching

- The Internet is a packet switching network
- User A, B ... 's packets share network resources
- Resources are used on demand
- Excessive congestion is possible

- Hosts connect to Internet via access ISPs (Internet Service Providers)
 - Residential, company and university ISPs
- Access ISPs in turn must be interconnected.
- Resulting network of networks is very complex
 - Evolution was driven by economics and national policies
- Therefore, the Internet is a "network-of-networks", organized into <u>autonomous systems</u> (AS), each is owned by an organization.

Question: given millions of access nets, how to connect them

Who Runs the Internet?

- ❖ IP address & Internet Naming administered by Network Information Centre (NIC)
 - Refer to: www.sgnic.net.sg; www.apnic.org
- The Internet Society (ISOC) Provides leadership in Internet related standards, education, and policy around the world.
- The Internet Architecture Board (IAB) Authority to issue and update technical standards regarding Internet protocols.
- Internet Engineering Task Force (IETF) Protocol engineering, development and standardization arm of the IAB.
 - Internet standards are published as RFCs (Request For Comments)
 - Refer to: www.ietf.org; for RFCs: http://www.ietf.org/rfc.html

Lecture 1: Roadmap

- 1.1 What is the Internet?
- 1.2 Network Edge
 - hosts, access networks, links
- 1.3 Network Core
 - packet switching, circuit switching, network structure
- 1.4 Delay, Loss and Throughput in Networks
- 1.5 Protocol Layers and Service Models

Recall: Packet Switching Network

- To send a packet in a packet switching network,
 - 1. Sender transmit a packet onto the link as a sequence of bits.
 - 2. Bits are propagated to the next node (e.g. a router) on the link.
 - 3. Router stores, processes and forwards the packet to the next link.
 - 4. Steps 2 & 3 repeat till the packet arrives at the receiver.

How do Delay and Loss Occur?

- Packets queue in router buffers
 - wait for turn to be sent out one by one

Q: What if packet arrival rate exceeds departure rate?

Packet Loss

- Queue (aka buffer) of a router has finite capacity.
- Packet arriving to full queue will be dropped (aka lost).
- Lost packet may be retransmitted by previous node, by source host, or not at all.

Four Sources of Packet Delay

d_{proc} : nodal processing

- check bit errors
- determine output link
- typically < msec

d_{queue}: queuing delay

- time waiting in the queue for transmission
- depends on congestion level of router

Four Sources of Packet Delay

d_{trans} : transmission delay

- L: packet length (bits)
- R: link bandwidth (bps)
- $extbf{d}_{trans} = L/R$

d_{prop} : propagation delay

- d: length of physical link
- s: propagation speed in medium (~2x10⁸ m/sec)

End-to-end Packet Delay

- End-to-end packet delay is the time taken for a packet to travel from source to destination. It consists of:
 - transmission delay
 - propagation delay
 - processing delay
 - queueing delay

traceroute program displays the route (path) from source to destination and measures the delay from source to each router along the end-end Internet path.

Throughput

- Throughput: how many bits can be transmitted per unit time.
 - Throughput is measured for end-to-end communication.
 - Link capacity (bandwidth) is meant for a specific link.

Metric Units

❖ 1 byte = 8 bits

Ехр.	Explicit	Prefix	Exp.	Explicit	Prefix
10 ⁻³	0.001	milli	10 ³	1,000	Kilo
10 ⁻⁶	0.000001	micro	10 ⁶	1,000,000	Mega
10 ⁻⁹	0.00000001	nano	10 ⁹	1,000,000,000	Giga
10 -12	0.00000000001	pico	10 ¹²	1,000,000,000,000	Tera
10 ⁻¹⁵	0.0000000000001	femto	10 ¹⁵	1,000,000,000,000,000	Peta
10 ⁻¹⁸	0.000000000000000001	atto	10 ¹⁸	1,000,000,000,000,000	Exa
10 ⁻²¹	0.0000000000000000000000001	zepto	10 ²¹	1,000,000,000,000,000,000	Zetta
10 -24	0.0000000000000000000000000000000000000	yocto	10 ²⁴	1,000,000,000,000,000,000,000	Yotta

The principal metric prefixes

Lecture 1: Roadmap

- 1.1 What is the Internet?
- 1.2 Network Edge
 - hosts, access networks, links
- 1.3 Network Core
 - packet switching, circuit switching, network structure
- 1.4 Delay, Loss and Throughput in Networks
- 1.5 Protocol Layers and Service Models

Internet: a Service View

- The Internet supports various kinds of network applications:
 - Web, VoIP, email, games, e-commerce, social nets, ...
- Network applications exchange messages and communicate among peers according to protocols.

What's a Protocol?

a human protocol and a computer network protocol:

Protocols define format and order of messages exchanged and the actions taken after messages are sent or received.

Protocol "Layers"

- Protocols in the Internet are logically organized into "layers" according to their purposes.
 - Each layer provides a service
 - Simple interfaces between layers
 - Hide details from each other
- Layering is a common CS trick to deal with large and complex systems.
 - Explicit structure allows identification, relationship of complex system's pieces
 - Modularization eases maintenance, updating of system
 - E.g. change of implementation of one layer's service is transparent to rest of system

Internet Protocol Stack

- application: supporting network applications
 - FTP, SMTP, HTTP
- transport: process-to-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, 802.11 (WiFi), PPP
- physical: bits "on the wire"

application transport network link physical

Example

ISO/OSI reference model (FYI)

- ❖ Theoretical model not in use
- Two additional layers not present in Internet Protocol Stack
 - presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions
 - session: synchronization, checkpointing, recovery of data exchange

application presentation session transport network link physical

Lecture 1: Summary

covered a "ton" of material!

- Internet overview
- Network edge, core, access network
 - packet-switching versus circuitswitching
 - Internet structure
- Performance: loss, delay, throughput
- What's a protocol?
- Layering, service models

you now have:

- Context, overview, "feel" of networking
- More depth, detail to follow!