t- Distribution

1908 Student 't' test

$$t = \frac{\bar{X}_1 - \bar{X}_2}{S_{X_1 X_2} \cdot \sqrt{\frac{2}{n}}}$$

t-Distribution

If the sample size is small (<30), the variance of the population is not adequately captured by the variance of the sample. Instead of z-distribution, t-distribution is used.

It is also the appropriate distribution to be used when population variance is **not known**, **irrespective of sample size**.

t-Distribution

Density of the *t*-distribution (red) for 1, 2, 3, 5, 10, and 30 degrees of freedom compared to the standard normal distribution (blue).

Previous plots shown in green.

t-Distribution

t statistic (or t score),
$$t = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$$

Degrees of freedom, v: # of independent observations for a source of variation minus the number of independent parameters estimated in computing the variation.*

When estimating mean or proportion from a single sample, the # of independent observations is equal to n-1.

^{*} Roger E. Kirk, Experimental Design: Procedures for the Behavioral Sciences. Belmont, California: Brooks/Cole, 1968.

Properties of t-Distribution

The standard normal distribution (z-Distribution) has mean of zero and a variance of 1.

t-Distribution has slightly different properties

- Mean of the distribution = 0
- Variance = $\frac{v}{v-2}$, where v > 2
- Variance is always greater than 1, although it is close to 1 when there are many degrees of freedom (sample size is large)
- With infinite degrees of freedom, *t* distribution is the same as the standard normal distribution

Confidence Interval to Estimate μ

 Population standard deviation UNKNOWN and the population normally distributed.

$$\bar{x} - t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

- Sample mean, standard deviation and size can be calculated from the data; t value can be read from the table or obtained from software.
- $-\alpha$ is the area in the tail of the distribution. For 90% Confidence Level, α =0.10. In a Confidence Interval, this area is symmetrically distributed between the 2 tails ($\frac{\alpha}{2}$ in each tail).

t-table

Percentage Points of the *t* Distribution; $t_{\nu,\alpha}$ $P(T > t_{\nu,\alpha}) = \alpha$

B

Г									a salata katan						
			/						α			I			I
_	ν	0.40	0.30	0.20	0.15	0.10	0.05	0.025	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0005
	1	0.325	0.727	1.376	1.963	3.078	6.314	12.706	15.895	21.205	31.821	42.434	63.657	127.322	636.590
L	2	0.289	0.617	1.061	1.386	1.886	2.920	4.303	4.849	5.643	6.965	8.073	9.925	14.089	31.598
	3	0.277	0.584	0.978	1.250	1.638	2.353	3.182	3.482	3.896	4.541	5.047	5.841	7.453	12.924
L	4	0.271	0.569	0.941	1.190	1.533	2.132	2.776	2.999	3.298	3.747	4.088	4.604	5.598	8.610
	5	0.267	0.559	0.920	1.156	1.476	2.015	2.571	2.757	3.003	3.365	3.634	4.032	4.773	6.869
L	6	0.265	0.553	0.906	1.134	1.440	1.943	2.447	2.612	2.829	3.143	3.372	3.707	4.317	5.959
	7	0.263	0.549	0.896	1.119	1.415	1.895	2.365	2.517	2.715	2.998	3.203	3.499	4.029	5.408
L	8	0.262	0.546	0.889	1.108	1.397	1.860	2.306	2.449	2.634	2.896	3.085	3.355	3.833	5.041
	9	0.261	0.543	0.883	1.100	1.383	1.833	2.262	2.398	2.574	2.821	2.998	3.250	3.690	4.781
	10	0.260	0.542	0.879	1.093	1.372	1.812	2.228	2.359	2.527	2.764	2.932	3.169	3.581	4.587
	11	0.260	0.540	0.876	1.088	1.363	1.796	2.201	2.328	2.491	2.718	2.879	3.106	3.497	4.437
	12	0.259	0.539	0.873	1.083	1.356	1.782	2.179	2.303	2.461	2.681	2.836	3.055	3.428	4.318
	13	0.259	0.538	0.870	1.079	1.350	1.771	2.160	2.282	2.436	2.650	2.801	3.012	3.372	4.221
	14	0.258	0.537	0.868	1.076	1.345	1.761	2.145	2.264	2.415	2.624	2.771	2.977	3.326	4.140
	15	0.258	0.536	0.866	1.074	1.341	1.753	2.131	2.249	2.397	2.602	2.746	2.947	3.286	4.073
	16	0.258	0.535	0.865	1.071	1.337	1.746	2.120	2.235	2.382	2.583	2.724	2.921	3.252	4.015
	17	0.257	0.534	0.863	1.069	1.333	1.740	2.110	2.224	2.368	2.567	2.706	2.898	3.222	3.965
	18	0.257	0.534	0.862	1.067	1.330	1.734	2.101	2.214	2.356	2.552	2.689	2.878	3.197	3.922
	19	0.257	0.533	0.861	1.066	1.328	1.729	2.093	2.205	2.346	2.539	2.674	2.861	3.174	3.883
Γ	20	0.257	0.533	0.860	1.064	1.325	1.725	2.086	2.197	2.336	2.528	2.661	2.845	3.153	3.850
	21	0.257	0.532	0.859	1.063	1.323	1.721	2.080	2.189	2.328	2.518	2.649	2.831	3.135	3.819
	22	0.256	0.532	0.858	1.061	1.321	1.717	2.074	2.183	2.320	2.508	2.639	2.819	3.119	3.792
	23	0.256	0.532	0.858	1.060	1.319	1.714	2.069	2.177	2.313	2.500	2.629	2.807	3.104	3.768
Ī	24	0.256	0.531	0.857	1.059	1.318	1.711	2.064	2.172	2.307	2.492	2.620	2.797	3.091	3.745
	25	0.256	0.531	0.856	1.058	1.316	1.708	2.060	2.167	2.301	2.485	2.612	2.787	3.078	3.725
	26	0.256	0.531	0.856	1.058	1.315	1.706	2.056	2.162	2.296	2.479	2.605	2.779	3.067	3.707
	27	0.256	0.531	0.855	1.057	1.314	1.703	2.052	2.158	2.291	2.473	2.598	2.771	3.057	3.690
	28	0.256	0.530	0.855	1.056	1.313	1.701	2.048	2.154	2.286	2.467	2.592	2.763	3.047	3.674
	29	0.256	0.530	0.854	1.055	1.311	1.699	2.045	2.150	2.282	2.462	2.586	2.756	3.038	3.659
	30	0.256	0.530	0.854	1.055	1.310	1.697	2.042	2.147	2.278	2.457	2.581	2.750	3.030	3.646
	40	0.255	0.529	0.851	1.050	1.303	1.684	2.021	2.123	2.250	2.423	2.542	2.704	2.971	3.551
	60	0.254	0.527	0.848	1.045	1.296	1.671	2.000	2.099	2.223	2.390	2.504	2.660	2.915	3.460
	120	0.254	0.526	0.845	1.041	1.289	1.658	1.980	2.076	2.196	2.358	2.468	2.617	2.860	3.373
	00	0.253	0.524	0.842	1.036	1.282	1.645	1.960	2.054	2.170	2.326	2.432	2.576	2.807	3.291

The labeled potency of a tablet dosage form is 100 mg. As per the quality control specifications, 10 tablets are randomly assayed.

A researcher wants to estimate the interval for the true mean of the batch of tablets with 95% confidence. Assume the potency is normally distributed.

Data are as follows (in mg):

98.6	102.1	100.7	102.0	97.0
103.4	98.9	101.6	102.9	105.2

Mean, $\bar{x} = 101.24 \, mg$

Standard deviation, s = 2.48

$$n = 10$$

 $v = 10 - 1 = 9$

At 95% level,
$$\alpha = 0.05$$
, and \therefore , $\frac{\alpha}{2} = 0.025$

t-table

Percentage Points of the t Distribution; $t_{\nu,\alpha}$ $P(T > t_{\nu,\alpha}) = \alpha$

 $t_{9,0.025}$

= 2.262

								α					
ν	0.40	0.30	0.20	0.15	0.10	0.05	0.025	0.02	0.015	0.01	0.0075	0.005	0.0025
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706	15.895	21.205	31.821	42.434	63.657	127.322
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303	4.849	5.643	6.965	8.073	9.925	14.089
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182	3.482	3.896	4.541	5.047	5.841	7.453
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776	2.999	3.298	3.747	4.088	4.604	5.598
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571	2.757	3.003	3.365	3.634	4.032	4.773
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447	2.612	2.829	3.143	3.372	3.707	4.317
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365	2.517	2.715	2.998	3.203	3.499	4.029
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306	2.449	2.634	2.896	3.085	3.355	3.833
9	0.261	0.543	0.883	1.100	1.383	1.833	2.262	2.398	2.574	2.821	2.998	3.250	3.690
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228	2.359	2.527	2.764	2.932	3.169	3.581
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201	2.328	2.491	2.718	2.879	3.106	3.497
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179	2.303	2.461	2.681	2.836	3.055	3.428
13	0.259	0.538	0.870	1.079	1.350	1.771	2.160	2.282	2.436	2.650	2.801	3.012	3.372
14	0.258	0.537	0.868	1.076	1.345	1.761	2.145	2.264	2.415	2.624	2.771	2.977	3.326
15	0.258	0.536	0.866	1.074	1.341	1.753	2.131	2.249	2.397	2.602	2.746	2.947	3.286
16	0.258	0.535	0.865	1.071	1.337	1.746	2.120	2.235	2.382	2.583	2.724	2.921	3.252
17	0.257	0.534	0.863	1.069	1.333	1.740	2.110	2.224	2.368	2.567	2.706	2.898	3.222
18	0.257	0.534	0.862	1.067	1.330	1.734	2.101	2.214	2.356	2.552	2.689	2.878	3.197
19	0.257	0.533	0.861	1.066	1.328	1.729	2.093	2.205	2.346	2.539	2.674	2.861	3.174
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086	2.197	2.336	2.528	2.661	2.845	3.153
21	0.257	0.532	0.859	1.063	1.323	1.721	2.080	2.189	2.328	2.518	2.649	2.831	3.135
22	0.256	0.532	0.858	1.061	1.321	1.717	2.074	2.183	2.320	2.508	2.639	2.819	3.119
23	0.256	0.532	0.858	1.060	1.319	1.714	2.069	2.177	2.313	2.500	2.629	2.807	3.104
24	0.256	0.531	0.857	1.059	1.318	1.711	2.064	2.172	2.307	2.492	2.620	2.797	3.091
25	0.256	0.531	0.856	1.058	1.316	1.708	2.060	2.167	2.301	2.485	2.612	2.787	3.078
26	0.256	0.531	0.856	1.058	1.315	1.706	2.056	2.162	2.296	2.479	2.605	2.779	3.067
27	0.256	0.531	0.855	1.057	1.314	1.703	2.052	2.158	2.291	2.473	2.598	2.771	3.057
28	0.256	0.530	0.855	1.056	1.313	1.701	2.048	2.154	2.286	2.467	2.592	2.763	3.047
29	0.256	0.530	0.854	1.055	1.311	1.699	2.045	2.150	2.282	2.462	2.586	2.756	3.038
30	0.256	0.530	0.854	1.055	1.310	1.697	2.042	2.147	2.278	2.457	2.581	2.750	3.030
40	0.255	0.529	0.851	1.050	1.303	1.684	2.021	2.123	2.250	2.423	2.542	2.704	2.971
60	0.254	0.527	0.848	1.045	1.296	1.671	2.000	2.099	2.223	2.390	2.504	2.660	2.915
120	0.254	0.526	0.845	1.041	1.289	1.658	1.980	2.076	2.196	2.358	2.468	2.617	2.860
oc	0.253	0.524	0.842	1.036	1.282	1.645	1.960	2.054	2.170	2.326	2.432	2.576	2.807

Mean, $\bar{x} = 101.24 \, mg$, Standard deviation., s = 2.48n = 10, v = 10 - 1 = 9

$$\bar{x} - t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

$$101.24 - 2.262 * \frac{2.48}{\sqrt{10}} \le \mu \le 101.24 + 2.262 * \frac{2.48}{\sqrt{10}}$$

$$99.47 \le \mu \le 103.01$$

The batch mean is 101.24 mg with an error of $\pm 1.77 \text{ mg}$. The researcher is 95% confident that the average potency of the batch of tablets is between 99.47 mg and 103.01 mg.

A researcher wants to examine CD4 counts for HIV+ patients at her clinic. She randomly selects a sample of 25 HIV+ patients and measures their CD4 levels. Calculate a 95% CI for population mean given the following sample results:

HIV copies itself to make more virus

Variable	n	\overline{x}	SE of mean	S	Min	Q_1	Media n	Q_3	Max
CD4 (cells)	25	321.4	14.8	73.8	208.0	261.5	325.0	394.0	449.0

OLOGY HUB

Variable			mean				Media n		Max
CD4 (cells)	25	321.4	14.8	73.8	208.0	261.5	325.0	394.0	449.0

Margin of Error ME =
$$t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

CI (0.05):
$$\bar{x} - ME \le \mu \le \bar{x} + ME$$

$$321.4 - ME \le \mu \le 321.4 + ME$$

$$ME = t_{25-1, \frac{0.05}{2}} \frac{73.8}{\sqrt{25}}$$

t-table

Percentage Points of the *t* Distribution; $t_{\nu,\alpha}$ $P(T > t_{\nu,\alpha}) = \alpha$

								α					
v	0.40	0.30	0.20	0.15	0.10	0.05	0.025	0.02	0.015	0.01	0.0075	0.005	0.0025
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706	15.895	21.205	31.821	42.434	63.657	127.322
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303	4.849	5.643	6.965	8.073	9.925	14.089
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182	3.482	3.896	4.541	5.047	5.841	7.453
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776	2.999	3.298	3.747	4.088	4.604	5.598
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571	2.757	3.003	3.365	3.634	4.032	4.773
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447	2.612	2.829	3.143	3.372	3.707	4.317
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365	2.517	2.715	2.998	3.203	3.499	4.029
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306	2.449	2.634	2.896	3.085	3.355	3.833
9	0.261	0.543	0.883	1.100	1.383	1.833	2.262	2.398	2.574	2.821	2.998	3.250	3.690
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228	2.359	2.527	2.764	2.932	3.169	3.581
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201	2.328	2.491	2.718	2.879	3.106	3.497
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179	2.303	2.461	2.681	2.836	3.055	3.428
13	0.259	0.538	0.870	1.079	1.350	1.771	2.160	2.282	2.436	2.650	2.801	3.012	3.372
14	0.258	0.537	0.868	1.076	1.345	1.761	2.145	2.264	2.415	2.624	2.771	2.977	3.326
15	0.258	0.536	0.866	1.074	1.341	1.753	2.131	2.249	2.397	2.602	2.746	2.947	3.286
16	0.258	0.535	0.865	1.071	1.337	1.746	2.120	2.235	2.382	2.583	2.724	2.921	3.252
17	0.257	0.534	0.863	1.069	1.333	1.740	2.110	2.224	2.368	2.567	2.706	2.898	3.222
18	0.257	0.534	0.862	1.067	1.330	1.734	2.101	2.214	2.356	2.552	2.689	2.878	3.197
19	0.257	0.533	0.861	1.066	1.328	1.729	2.093	2.205	2.346	2.539	2.674	2.861	3.174
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086	2.197	2.336	2.528	2.661	2.845	3.153
21	0.257	0.532	0.859	1.063	1.323	1.721	2.080	2.189	2.328	2.518	2.649	2.831	3.135
22	0.256	0.532	0.858	1.061	1.321	1.717	2.074	2.183	2.320	2.508	2.639	2.819	3.119
23	0.256	0.532	0.858	1.060	1.319	1.714	2.069	2.177	2.313	2.500	2.629	2.807	3.104
24	0.256	0.531	0.857	1.059	1.318	1.711	2.064	2.172	2.307	2.492	2.620	2.797	3.091
25	0.256	0.531	0.856	1.058	1.316	1.708	2.060	2.167	2.301	2.485	2.612	2.787	3.078
26	0.256	0.531	0.856	1.058	1.315	1.706	2.056	2.162	2.296	2.479	2.605	2.779	3.067
27	0.256	0.531	0.855	1.057	1.314	1.703	2.052	2.158	2.291	2.473	2.598	2.771	3.057
28	0.256	0.530	0.855	1.056	1.313	1.701	2.048	2.154	2.286	2.467	2.592	2.763	3.047
29	0.256	0.530	0.854	1.055	1.311	1.699	2.045	2.150	2.282	2.462	2.586	2.756	3.038
30	0.256	0.530	0.854	1.055	1.310	1.697	2.042	2.147	2.278	2.457	2.581	2.750	3.030
40	0.255	0.529	0.851	1.050	1.303	1.684	2.021	2.123	2.250	2.423	2.542	2.704	2.971
60	0.254	0.527	0.848	1.045	1.296	1.671	2.000	2.099	2.223	2.390	2.504	2.660	2.915
120	0.254	0.526	0.845	1.041	1.289	1.658	1.980	2.076	2.196	2.358	2.468	2.617	2.860

$$t_{24,0.025} = 2.064$$

$$ME = t_{25-1, \frac{0.05}{2}} \frac{73.8}{\sqrt{25}} = 30.46$$

$$321.4 - ME \le \mu < 321.4 + ME$$

Interview Question

If you toss a coin 20 times and get 15 head, would you say the coin is biased?

Let us apply our learning thus far

•••

- Q. What is distribution is it?
- A. Binomial; X^{\sim} B(20,0.5) assuming the coin is fair.
- Q. What is the expectation?
- A. np = 10
- Q. What is the standard deviation?
- A. $\sqrt{npq} = \sqrt{5} = 2.236$
- Q. How many standard deviation away from the mean is 15?

A.
$$\frac{15-10}{2.236} = 2.236$$

Let us apply our learning thus far

•••

- Q. What is the probability of getting 15 or more heads?
- A. $P(X \ge 15) = P(X = 15) + P(X = 16) + P(X = 17) + P(X = 18) + P(X = 19) + P(X = 20) = 0.021$
- Q. Can it be approximated to a normal distribution?
- A. np = 10 and nq = 10. Since both are greater than 5, it can be approximated to $X \sim N(10,5)$
- Q. What is probability of getting 15 or more heads?

$$AP(X > 14.5) = 1 - P(X < 14.5)$$

Q. What is the z-score?

A.
$$\frac{14.5-10}{\sqrt{5}} = 2.01$$
, $\therefore P = 1 - 0.9778 = 0.0222$