

JUN 29, 2023

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.n2bvj694xlk5/v1

Protocol Citation: Anna S Fomsgaard 2023. TELEvir Field Protocol . **protocols.io** https://dx.doi.org/10.17504/p rotocols.io.n2bvj694xlk5/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Apr 06, 2022

Last Modified: Jun 29, 2023

PROTOCOL integer ID:

60387

TELEvir Field Protocol

Anna S Fomsgaard^{1,2}

¹Statens Serum Institut; ²University of Copenhagen

Anna S Fomsgaard

DISCLAIMER

This protocol was prepared for a workshop held the 23-24 June 2022 at Statens Serum Institut, Denmark. Here 25 TELEVIR partners from 10 European countries participated to train in the usage of a field-deployable point-of-incidence toolbox to identify emgerging virus threats. The protocol was used to detec SARS-CoV-2 and Human Papillomavirus a RNA and DNA virus detection test-of-concept.

ABSTRACT

The TELE-Vir project key aim is to develop a fast point-of-incidence (poi) toolbox for identification and characterisation of emerging virus threats for humans and/or domestic and wildlife animals.

Presented here is a protocol including sample pretreatment, NA extraction and random amplification for metagenomic virus detection using the MinION device (Oxford Nanopore Technologies)

Pretreatment

15m

1

DNase Set I Zymo Research Catalog #E1010

Equipment	
BD Disposable Syringe with Luer-Lok Tip (5ml)	NAME
Syringe	TYPE
Becton Dickinson	BRAND
309649	SKU

Note

If 400 µL sample is not available, downscale the reagents to fit the lower sample volume.

- 2 Add \perp 500 μ L PBS (or equivalent to 1 ml sample material in total)
- 3 Poor the diluted sample into the lid of the Syringe Filter (Minsart). The filter can be placed on a sterile surface meanwhile e.g. the Syringe Filter paper lid (inner side).
- 4 Suck in air corresponding to app 1 ml in a 5 ml syringe
- **5** Extract the 1 ml sample material from the petri dish to the 5 ml syringe
- 6 Attach the 0,22 μM Minisart syringe filter to the 5 ml syringe with Luer-Lok
- 7 Filter the sample and air directly into a 4.5 ml cryotube containing 1 ml MPLB-buffer. Put lid on, mix by turning tube.

MagNA Pure LC Total Nucleic Acid Isolation Kit Roche Catalog #03038505001

Inactivation

20m

8 Incubate

for viral inactivation

CITATION

Vinner L, Fomsgaard A (2007). Inactivation of orthopoxvirus for diagnostic PCR analysis.. Journal of virological methods.

CITATION

Rosenstierne MW, Jensen CE, Fomsgaard A (2018). Rapid, Safe, and Simple Manual Bedside Nucleic Acid Extraction for the Detection of Virus in Whole Blood Samples.. Journal of visualized experiments: JoVE.

LINK

https://doi.org/10.3791/58001

Extraction

10m

9 Kit used for hand held NA extraction:

MagNA Pure LC Total Nucleic Acid Isolation Kit Roche Catalog #03038505001

Equipment	
4.5 ml cryotube	NAME
tube	TYPE
Thermo Fisher Scientific	BRAND
363452	SKU
https://www.thermofisher.com/order/catalog/product/363452	LINK

Cylinder magnet

A rubber band to attach the magnet to a tube.

A 50 ml Nunc tube or similar to pour excess solutions into for disposing.

Following the protocol by:

CITATION

Rosenstierne MW, Jensen CE, Fomsgaard A (2018). Rapid, Safe, and Simple Manual Bedside Nucleic Acid Extraction for the Detection of Virus in Whole Blood Samples.. Journal of visualized experiments: JoVE.

LINK

https://doi.org/10.3791/58001

10 Per X number of samples, aliquot in cryotubes or Eppendorf tubes

Δ 960 μL Magnetic Glass Particles (MGPs) in an Eppendorf tube

△ 4 mL Wash buffer I in a 4.5 ml cryotube

△ 1.5 mL Wash buffer II in an Eppendorf tube

🗸 3 mL Wash buffer III in a 3.6 ml cryotube

Δ 100 μL Elution buffer in an Eppendorf tube

Prepare one sample at the time.

Approximate time 00:10:00 per sample

11 Add 960 µl MGPs to 2 ml solution of sample and MPLB-buffer

12 Put lid on and turn tube in hand gently until well mixed 13 Attach magnet and trap beads. 14 Pour solution into trash tube. The MGPs should stay behind trapped on the side of the tube. 15 Pour Wash buffer I in the sample tube 16 Put a lid on, remove magnet and turn the tube in hand gently until well mixed 17 Attach magnet and trap beads. 18 Pour solution into trash tube. The MGPs should stay behind trapped on the side of the tube. 19 Pour Wash buffer II in the sample tube 20 Put a lid on, remove magnet and turn the tube in hand gently until well mixed

21	Attach magnet and trap beads.
22	Pour solution into trash tube. The MGPs should stay behind trapped on the side of the tube.
23	Pour Wash buffer III in the sample tube
24	Put a lid on, remove magnet and turn the tube in hand gently until well mixed
25	Attach magnet and trap beads.
26	Pour solution into trash tube. The MGPs should stay behind trapped on the side of the tube.
27	Pour Elution buffer in the sample tube
28	Put a lid on, remove magnet and turn the gently until beads are eluted.

4h

Whole Transcriptome and Genome Amplification

- **30** Equipment to enable portability
 - A MiniPCR to run isothermal incubations
 - A powerbank that can provide 20V. Use one to power the miniPCR and another to power the MinION for approximately 5 hours. Use brand of choice.
 - A salad swing as a hand driven centrifuge. Use brand of choice.
 - A coolbox for reagents and cooling samples. Use brand of choice.

Equipment	
All-in1 Laptop Powerbank 24000	NAME
Power Bank	TYPE
Sanberg	BRAND
420-57	SKU
https://sandberg.world/da-dk/product/all-in-1-laptop-powerbank-2400	LINK
Any powerbank that can produce 20V is acceptable. Have 2-3 to run the MiniPCR and the MinION	SPECIFICATIONS

Equipment MAME Thermal cycler TYPE miniPCR® BRAND mini8 SKU https://www.minipcr.com/ LINK

Equipment A Salad Spinner Centrifuge Centrifuge undefined BRAND undefined SKU https://www.oxo.com/salad-spinner.html? queryID=975936c98686e2b0325b684dd613daff&objectID=2251&indexName=magento2_prod_oxooxo_products#color=White

Kit used for WTA and WGA

Quantiscript RT Enzyme Mix, Ligase Mix, and REPLI-g SensiPhi DNA Polymerase should be thawed on ice.

All other components can be thawed at room temperature (15–25°C)

The two aliquots of same sample enables uniform whole genome amplification (WGA) and whole transcriptome amplification (WTA) in parallel reactions.

32 Cleanup for WTA

10m

33 Repair (WGA) and Reverse Transcription (WTA)

33.1 For WGA, mix following and add \blacksquare 10 μ L Repair reagent mix to sample

Reagents	Volume (µL) per sample
RT/Polymerase Buffer	4
gDNA Wipeout buffer	2
H20 sc	1
Random primer	1
Random Hex-P primer (20µM)	1
WGA Ready Enzym	1
Total	10

This modified protocol uses 5'-phosphorylated random hexamers (P-N6) instead of kit provided oligo-dT primers according to Rosenstierne et al (2014).

CITATION

Rosenstierne MW, McLoughlin KS, Olesen ML, Papa A, Gardner SN, Engler O, Plumet S, Mirazimi A, Weidmann M, Niedrig M, Fomsgaard A, Erlandsson L (2014). The microbial detection array for detection of emerging viruses in clinical samples—a useful panmicrobial diagnostic tool.. PloS one.

https://doi.org/10.1371/journal.pone.0100813

33.2 For WTA, mix following and add \blacksquare 8 μ L RT reagent mix to sample

Reagents	Volume (µL) per sample
RT/Polymerase Buffer	4
H20 sc	1
Random primer	1
Random Hex-P primer (20µM)	1
Quantiscript RT Enzym Mix	1
Total	8

33.3 Incubate

♦ 01:00:00 **\$** 42 °C

Afterwards immediatly

♦ 00:03:00 **\$** 95 ℃ on MiniPCR

34 Ligation

Mix following and add

On MiniPCR

to each tube

Reagents	Volume (µL) per sample
Ligation buffer	8
Ligase Mix	2
Total	10

Incubate

© 00:30:00

24 °C This is the Repli-G recommended temperature, however, the miniPCR only goes to 25C. Instead of incubation in the MiniPCR, try table-top incubation.

♦ 00:05:00 \$ 95 °C

Hold at 3° 4°C

35 Amplification

2h 5m

1h 3m

Reagents	Volume (μL) per sample
Repli-g reaction buffer	29
Repli-g SensiPhi DNA polymerase	1
Total	30

Incubate

36 For library preparation use amplified material **without** MGPs.

Library Preparation

37

Multiple rapid library preparation kits are available through **Oxford Nanopore Technology.** For Workshop we use.

Rapid Sequencing Kit **Oxford Nanopore Technologies Catalog #SQK- RAD004**

