Evolving Invaders and Resistors for the Iterated Prisoner's Dilemma

Vincent Knight Marc Harper Nikoleta E. Glynatsi Owen Campbell

Abstract

The Iterated Prisoner's Dilemma is a well established framework for the study of emergent behaviour. In this paper an extensive numerical study of the evolutionary dynamics of this framework are presented. Fixation probabilities for Moran processes are obtained for 164 different strategies. It is found that players with long memories and sophisticated behaviours outperform many strategies that perform well in a two player setting. Moreover we introduce several strategies trained with evolutionary algorithms to excel at the Moran process. These strategies are excellent invaders and resistors of invasion.

1 Introduction

The Prisoner's Dilemma (PD) [8] is a fundamental two player game used to model a large variety of strategic interactions. Each player can choose between cooperation (C) or defection (D). The decisions are made simultaneously and independently. The payoffs of the game are defined by the matrix $\begin{pmatrix} R & S \\ T & P \end{pmatrix}$, where T>R>P>S and 2R>T+S. The PD is a one round game, but is commonly studied in a manner where the prior outcomes matter. This extended form is called the Iterated Prisoner's Dilemma (IPD). As described in [5, 12, 20] a number of strategies have been developed to take advantage of the history of play. Recently, some strategies referred to as Zero Determinant strategies [20] can manipulate some players through extortionate mechanisms.

The Moran Process [18] is a model of evolutionary population dynamics that has been used to gain insights about the evolutionary stability in a number of settings (more details given in Section 1.1). Several earlier works have studied iterated games in the context of the prisoner's dilemma [19, 24], however these often make simplifying assumptions and/or do not consider sophisticated behaviour: only considering strategies that either cooperate or defect, or are limited to classes of strategies such as memory-one strategies that only use the previous round of play.

This manuscript provides a detailed numerical analysis of 164 complex and adaptive strategies for the IPD. This is made possible by the Axelrod library [25], an effort to provide software for reproducible research for the IPD. The library now contains over 186 parameterized strategies including classics like TitForTat and WinStayLoseShift, as well as recent variants such as OmegaTFT, Zero determinant and other memory one strategies, strategies based on finite state machines, lookup tables, neural networks, and other machine learning based strategies, and a collection of novel strategies. Not all strategies have been considered for this study: excluded are those that make use of knowledge of the game such as the number of turns and others that have a high computational run time. The large number of strategies are available thanks to the open source nature of the project with over 40 contributions made by different programmers and researchers [12]. Three of the considered strategies are finite state machines trained specifically for Moran processes (described further in Section 1.2.

In addition to providing a large collection of strategies, the Axelrod library can conduct matches, tournaments and population dynamics with variations including noise and spatial structure. The strategies and simulation frameworks are automatically tested to an extraordinarily high degree of coverage in accordance with best research software practices.

Fixation probabilities for all pairs of strategies are presented, identifying those that are effective invaders and those resistant to invasion, for population sizes N = 2 to N = 14.

In particular the following questions are addressed:

- 1. What strategies are good invaders?
- 2. What strategies are good at resisting invasion?
- 3. How does the population size affect these findings?

While the results agree with some of the published literature, it is found that:

1. Zero determinant strategies are not particularly effective for N>2

- 2. Complex strategies can be effective, and in fact can naturally evolve through evolutionary processes to outperform designed strategies.
- 3. Strong resistors specifically evolve or have a handshake mechanism.

These finding have the potential to offer insight in to organisms such as antibacterial resistant bacteria [7] and human social behaviors.

1.1 The Moran Process

Figure 1 shows a diagrammatic representation of the Moran process, a stochastic birth death process on a finite population in which the population size stays constant over time. Individuals are **selected** according to a given fitness landscape. Once selected, the individual is reproduced and similarly another individual is chosen to be removed from the population. In some settings mutation is also considered but without mutation (the case considered in this work) this process will arrive at an absorbing state where the population is entirely made up of players of one strategy. The probability with which a given strategy is the survivor is called the *fixation probability*. A more detailed analytic description of this is given in Section 2. In our simulations offspring do not inherit any knowledge or history from parent replicants.

Figure 1: A diagrammatic representation of a Moran process

The Moran process was initially introduced in [18]. It has since been used in a variety of settings including the understanding of the spread of cooperative and non-cooperative behaviour such as cancer [27] and the emergence of cooperative behaviour in spatial topologies [3]. However these works mainly consider non-sophisticated strategies. Some work has looked at evolutionary stability of strategies within the Prisoner's Dilemma [15] but this is not done in the more widely used setting of the Moran process, rather in terms of infinite population stability. In [6] Moran processes are studied in a theoretical framework for a small subset of strategies. The subset included memory one strategies, strategies that recall the events of the previous round only.

Of particular interest are the Zero determinant strategies introduced in [20] and praised in [24] it was argued that generous ZD strategies are robust against invading strategies. However, in [13] a strategy using machine learning techniques was capable of resisting invasion and also able to invade any memory one strategy. Recent work [9] has investigated the effect of memory length on strategy performance and the emergence of cooperation but this is not done in Moran process context and only considers specific cases of memory 2 strategies. In [1] it was recognised that many Zero determinant strategies do not fare well against themselves. This is a disadvantage for the Moran process where the best strategies cooperate well with other players using the same strategy.

1.2 Strategies considered

To carry out this large numerical experiment, 164 strategies, listed (with their properties) in Appendix A are used library. There are 43 stochastic and 121 deterministic strategies. Their memory depth, defined by the number of rounds of history used by the strategy each round, is shown in Table 1. The memory depth is infinite if the strategy uses the entire history of play (whatever its length). For example, a strategy that utilizes a handshaking mechanism where the opponents actions on the first few rounds of play determines the strategies subsequent behavior would have infinite memory depth.

A number of these strategies have been trained with reinforcement learning algorithms.

- Evolved ANN: a neural network based strategy;
- Evolved LookerUp: a lookup table based strategy;
- PSO Gambler: a stochastic version of the lookup table based strategy;
- Evolved HMM: a hidden Markov model based strategy.

A part from the PSO Gambler strategy, which was trained using a particle swarm optimisation algorithm, these strategies are trained with an evolutionary algorithm that perturbs strategy parameters and optimizes the mean total score against all other opponents [2]. They were not trained specifically for the Moran process or to cooperate well with themselves (though they all do). Variation is introduced via mutation and crossover of parameters, and the best performing strategies are carried to the next generation along with new variants. Similar methods appear in the literature [4].

More information about each player can be obtained in the documentation for [25] and a detailed description of the performance of these strategies in IPD tournaments will be described in upcoming manuscript(s).

All of the training code is available in the Axelrod repository with documentation to train new strategies easily. Training typically takes less than 100 generations and can be completed within several hours on commodity hardware.

There are three further strategies trained specifically for this study; Trained FSM 1, 2, and 3 (TF1 - TF3). These are based on finite state machines of 16, 16, and 8 states respectively (see Figures 2, 3 and 4).

Figure 2: TF1: a 16 state finite state machine with a handshake leading to mutual cooperation at state 4.

As opposed to the previously described strategies, these strategies were trained with the objective function of **mean** fixation probabilities for Moran processes starting at initial population states consisting of N/2 individuals of the training candidates and N/2 individuals of an opponent strategy, taken from a selection of 150 opponents from the axelrod library:

- TF1 N = 12,0% noise, 10000 repetitions per matchup
- TF2 N = 10,0% noise, 10000 repetitions per matchup
- TF3 N=8, 1% noise, 100 repetitions per matchup

Each matchup of players was run to fixation for the specified number of repetitions to estimate the absorption probabilities. The trained algorithms were run for less than 50 generations. Training data for this is available at [11].

TF3 cooperates and defects with various cycles depending on the opponent's actions. TF3 will mutually cooperate with any strategy and only tolerates a few defections before defecting for the rest of match. It is similar to but not exactly the same as Fool Me Once, a strategy that cooperates until the opponent has defected twice (not necessarily consecutively),

Figure 3: TF2: a 16 state finite state machine with a handshake leading to mutual cooperation at state 16.

Figure 4: TF3: an 8 state finite state machine.

and defects indefinitely thereafter. Though a product of training with a Moran objective. It differs from TF1 and TF2 by lacking a handshake mechanism.

TF2 always starts with CD and will defect against opponents that start with DD. It plays CDD against itself and then cooperates thereafter. There is a longer complex handshake which eventually results in mutual cooperation with Firm but Fair, Fortress3, Fortress4, and Grofman (always) and Evolved HMM 5 and GTFT (depending on the random seed).

TF1 has an initial handshake of CCD and cooperates if the opponent matches. However if the opponent later defects, TF1 will respond in kind, so the handshake is not permanent. Only one player (Prober 4 [16]) manages to achieve cooperation with TF1 after about 20 rounds of play. TF1 is functionally very similar to a strategy known as "Collective Strategy", which has a handshake of CD and cooperates with opponents that matched the handshake until they defect, defecting thereafter if the opponent ever defects [14]. This strategy was specifically designed for evolutionary processes.

For both TF1 and TF2 a handshake mechanism naturally emerges from the structure of the underlying finite state machine. This behavior is an outcome of the evolutionary process and is in no way hard-coded or included via an additional mechanism.

Memory Depth	0	1	2	3	4	5	6	9	10	11	12	16	20	40	200	∞
Count	3	28	12	8	2	6	1	1	5	1	1	3	2	2	1	88

Table 1: Memory depth

1.3 Data collection

Each strategy pair is run for 1000 repetitions of the Moran process to fixation with starting population distributions of (1, N-1), (N/2, N/2) and (N-1, 1), for N from 2 through 14. The fixation probability is then empirically computed for each combination of starting distribution and value of N. The axelrod library can carry out exact simulations of the Moran process. Since some of the strategies have a high computational cost or are stochastic, samples are taken from a large number of match outcomes for the pairs of players for use in computing fitnesses in the Moran process. This approach was verified to agree with unsampled calculations to a high degree of accuracy in specific cases. This is described in Algorithms 1 and 2.

Algorithm 1 Data Collection

```
1: for player one in players list do
      for player two in (players list - player one) do
2:
3:
         pair \leftarrow (player one, player two)
         for starting population distributions in [(1, N-1), (\frac{N}{2}, \frac{N}{2}), (N-1, 1)] do
4:
           while repetitions \leq 1000 \text{ do}
5:
              simulate moran process*(pair, starting distribution)
6:
           end while
7:
           return fixation probabilities
8:
9:
         end for
      end for
10:
11: end for
```

Section 2 will further validate the methodology by comparing simulated results to analytical results in some cases. The main results of this manuscript are presented in Section 3 which will present a detailed analysis of all the data generated. Finally, Section 5 will conclude and offer future avenues for the work presented here.

2 Validation

As described in [19] consider the payoff matrix:

$$M = \begin{pmatrix} a, b \\ c, d \end{pmatrix} \tag{1}$$

Algorithm 2 Moran process

```
1: initial population \leftarrow (pair, starting distribution)
 2: population \leftarrow initial population
   while repetitions \leq max repetitions do
 4:
       for player in population do
         for opponent in (population - player) do
 5:
 6:
            match \leftarrow (player, opponent)
            results \leftarrow cache (match)
 7:
         end for
 8:
       end for
 9:
       population \leftarrow sorted(results)
10:
       parent \leftarrow first in population
11:
       child \leftarrow parent
12:
       kill off \leftarrow random player from population
13:
       population \leftarrow child replaces kill off
14:
15: end while
```

The expected payoffs of i players of the first type in a population with N-i players of the second type are given by:

$$f_i = \frac{a(i-1) + b(N-i)}{N-1} \tag{2}$$

$$g_i = \frac{ci + d(N - i - 1)}{N - 1} \tag{3}$$

The transitions within the birth death process that underpins the Moran process are then given by:

$$p_{i,i+1} = \frac{if_i}{if_i + (N-i)g_i} \frac{N-i}{N}$$
(4)

$$p_{i,i-1} = \frac{(N-i)g_i}{if_i + (N-i)g_i} \frac{i}{N}$$
 (5)

$$p_{ii} = 1 - p_{i,i+1} - p_{i,i-1} \tag{6}$$

Using this it is a known result [3] that the fixation probability of the first strategy in a population of i individuals of the first type (and N-i individuals of the second::

$$x_{i} = \frac{1 + \sum_{j=1}^{i-1} \prod_{k=1}^{j} \gamma_{j}}{1 + \sum_{j=1}^{N-1} \prod_{k=1}^{j} \gamma_{j}}$$
(7)

where:

$$\gamma_j = \frac{p_{j,j-1}}{p_{j,j+1}}$$

A neutral strategy will have fixation probability $x_i = i/N$.

Comparisons of $x_1, x_{N/2}, x_{N-1}$ are shown in Figure 5. The points represent the simulated values and the line shows the theoretical value. Note that these are all deterministic strategies and show a perfect match up between the expected value of (7) and the actual Moran process for all strategies pairs. Figure 6 shows the fixation probabilities for stochastic strategies. These are no longer a good match which highlights the weakness of the analytical formulae that relies on the average payoffs (1). Estimating all the transitions may give better agreement but is not necessary for our purposes. All data generated for this validation exercise can be found at [11].

3 Empirical results

This section outlines the data analysis carried out:

• Section 3.1 considers the specific case of N=2.

(g) Win Stay Lose Shift and Tit For Tat (h) Alternator and Win Stay Lose Shift (i) Defector and Win Stay Lose Shift Figure 5: Comparison of theoretic and actual Moran Process fixation probabilities for **deterministic** strategies

Figure 6: Comparison of theoretic and actual Moran Process fixation probabilities for stochastic strategies

- Section 3.2 investigates the effect of population size on the ability of a strategy to invade another population. This will highlight how complex strategies with long memories outperform simpler strategies.
- Section 3.3 similarly investigates the ability to defend against an invasion.
- Section 3.4 investigates the relationship between performance for differing population sizes as well as taking a close look at Zero determinant strategies [20].

3.1 The special case of N=2

When N=2 the Moran process is effectively a measure of the distribution of relative mean payoffs over all possible matches between two players. The strategy that scores higher than the other more often will fixate more often.

For N = 2 the two cases of x_1 and x_{N-1} coincide, but will be considered separately for larger N in sections 3.2 and 3.3. Figure 7 shows all fixation probabilities for the strategies considered. This is summarised in Table 2.

- 1. The top strategy is the Collective Strategy (CS) which has a simple handshake mechanism described above.
- 2. The Defector: it always defects. As it has little potential interaction with itself (recall that N=2), its aggressiveness is rewarded.
- 3. The Aggravater strategy which plays like Grudger (responding to any defections with unconditional defections throughout) however starts by playing 3 defections.
- 4. Predator, a finite state machine described in [4].
- 5. Handshake: a slightly less aggressive version of the Collective strategy [22]. As long as the initial sequence is played then it cooperates. Thus it will do well in a population consisting of many members of itself: just as the Collective strategy does. However it is not aggressive enough to invade other populations (as can be seen in Section 3.2.

	Player	Mean p_1
1	CS	0.6651
2	Defector	0.6496
3	Aggravater	0.6328
4	Predator	0.6301
5	Handshake	0.6240
6	Prober 4	0.6183
7	TF1	0.6171
8	Prober 3	0.6044
9	TF2	0.6026
10	Grudger	0.5996
11	Better and Better	0.5980
12	MEM2	0.5942
13	Meta Hunter Aggressive	0.5933
14	TF3	0.5927
15	Fool Me Once	0.5892
16	ZD-Extort-4	0.5867

Table 2: Top strategies for N=2 (neutral fixation is p=0.5.

As will be demonstrated in Section 3.4 the results for N=2 differ from those of larger N. Hence these results do not concur with the literature which suggests that Zero Determinant strategies should be effective for larger population sizes, but these analysis consider stationary behaviour, while this work runs for a fixed number of rounds. Note that the stationarity assumptions allows for the analysis to take place leading to the conclusions about zero determinant strategies however it is dependent on a specific structure of strategies. The analysis carried out here makes no assumptions about the structure of the strategies by using actual simulation interactions. [Stewart...]

3.2 Strong invaders

In this section the focus is on the ability of a mutant strategy to invade: the probability of one individual of a given type successfully fixating in a population of N-1 other individuals, denoted by x_1 . The ranks of each strategy for all considered values of N according to mean x_1 are shown in Figures ??.

The fixation probabilities are shown in Figures 9, 10 and 11 for $N \in \{3, 7, 14\}$ showing the mean fixation as well as the neutral fixation for each given scenario.

Figure 7: The fixation probabilities for ${\cal N}=2$

Figure 8: Ranks of all strategies according to x_1 for different population sizes

Figure 9: The fixation probabilities x_1 for N=3

Figure 10: The fixation probabilities x_1 for N=7

Figure 11: The fixation probabilities x_1 for N=14

	Player	Mean p_1
1	CS	0.4478
2	Grudger	0.4313
3	MEM2	0.4278
4	TF3	0.4267
5	Prober 4	0.4242
6	Fool Me Once	0.4242
7	Davis	0.4218
8	Predator	0.4210
9	Evolved ANN 5	0.4163
10	Evolved ANN	0.4163
11	Evolved FSM 16	0.4154
12	Meta Hunter	0.4140
13	TF1	0.4139
14	PSO Gambler 2_2_2	0.4134
15	EvolvedLookerUp1_1_1	0.4113
16	Evolved FSM 16 Noise 05	0.4107

	Player	Mean p_1
1	Evolved FSM 16	0.2523
2	PSO Gambler 2_2_2	0.2467
3	Fool Me Once	0.2459
4	Evolved ANN 5	0.2450
5	Evolved ANN	0.2449
6	EvolvedLookerUp2_2_2	0.2443
7	Grudger	0.2442
8	$\overline{\text{MEM2}}$	0.2436
9	TF3	0.2430
10	PSO Gambler 1_1_1	0.2404
11	CS	0.2395
12	Evolved FSM 16 Noise 05	0.2394
13	Evolved HMM 5	0.2390
14	Meta Hunter	0.2385
15	Davis	0.2379
16	PSO Gambler Mem1	0.2348

(a) N = 3

(b) N = 7

	Player	Mean p_1
1	Evolved FSM 16	0.2096
2	PSO Gambler 2_2_2	0.2042
3	EvolvedLookerUp2_2_2	0.2014
4	Evolved ANN	0.2014
5	Evolved ANN 5	0.2004
6	Evolved HMM 5	0.1972
7	PSO Gambler 1_1_1	0.1955
8	Fool Me Once	0.1955
9	Evolved FSM 16 Noise 05	0.1943
10	PSO Gambler Mem1	0.1920
11	Evolved FSM 4	0.1918
12	Meta Hunter	0.1869
13	Evolved ANN 5 Noise 05	0.1858
14	Omega TFT	0.1849
15	Fortress4	0.1848
16	TF3	0.1846

(c) N = 14

Table 3: Top invaders for $N \in \{3,7,14\}$

The top strategies are given in Tables 3.

It can be seen that apart from CS, none of the strategies of Table 2 perform well for $N \in \{3, 7, 14\}$. The new high performing strategies are:

- Grudger (which only performs well for N=3), starts by cooperating but will defect if at any point the opponent has defected.
- MEM2, an infinite memory strategy that switches between TfT, Tf2T, and Defector [15].
- TF3, the finite state machine trained specifically for Moran processes described in Section 1.
- Prober 4, complex strategy with an initial 20 move sequence of cooperations and defections [16]. This initial sequence serves as approximate handshake.
- PSO Gambler and Evolved Lookerup 2 2 2: are strategies that make use of a lookup table mapping the first 2 moves of the opponent as well as the last 2 moves of both players to an action. The PSO gambler is a stochastic version which maps those states to probabilities of cooperating. The lookerup was described in [12].
- The evolved ANN strategies are neural networks that map a number of attributes (first move, number of cooperations, last move etc...) to an action. Both of these have been trained using an evolutionary algorithm and the ANN 5 was trained to perform well in a noisy tournament.
- The Evolved FSM 16 is a 16 state finite state machine trained to perform well in tournaments.

As well as noting that the memory length and complexity of these strategies are much greater than one, it is interesting to note that none of them are akin to memory one strategies. Only one is stochastic although close inspection of the source code of PSO Gambler shows that it makes stochastic decisions rarely, and is functionally very similar to its deterministic cousin Evolved Looker Up. Apart from TF3 in N=3, the finite state machines trained specifically for Moran processes do not appear in the top 5: whereas strategies trained for tournaments do. This is due to the nature of invasion: most of the opponents will initially be different strategies. The next section will consider the converse situation.

3.3 Strong resistors

In addition to identifying good invaders, strategies resistant to invasion by other strategies are identified by examining the distribution of x_{N-1} for each strategy. The ranks of each strategy for all considered values of N according to mean x_{N-1} are shown in Figures ??.

The fixation probabilities are shown in Figures 13, 10 and 15 for $N \in \{3, 7, 14\}$ showing the mean fixation as well as the neutral fixation for each given scenario.

Table 4 shows the top strategies when ranked according to x_{N-1} for $N \in \{3,7,14\}$. Once again none of the short memory strategies from Section 3.1 perform well for high N.

Interestingly none of these strategies are stochastic: this is explained by the need of strategies to have a steady hand when interacting with their own kind. In essence: acting stochastically increases the chance of friendly fire. However it is possible to design a strategy with a stochastic or error-correcting handshake that is an excellent resistor even in noisy environments [13].

There are only two new strategies that appear in the top ranks for x_{N-1} : TF1 and TF2. These two strategies are with CS the strongest resistors. They all have handshakes, and whilst the handshakes of CS and Handshake (which ranks highly for the smaller values of N) were programmed, the handshakes of TF1 and TF2 evolved through an evolutionary process without any priming.

As described in Section 3.2 the strategies trained with the payoff maximizing objective are among the best invaders in the library however they are not as resistant to invasion as the strategies trained using a Moran objective function. These strategies include trained finite state machine strategies, but they do not appear to have handshaking mechanisms. Therefore it is reasonable to conclude that the objective function is the cause of the emergence of handshaking mechanisms.

The payoff maximizing strategies typically will not defect before the opponent's first defection, possibly because the training strategy collection contains some strategies such as Grudger and Fool Me Once that retaliate harshly by defecting for the remainder of the match if the opponent has more than a small number of cumulative defections. Paradoxically it is advantageous to defect (as a signal) in order to achieve mutual cooperation with opponents using the same strategy but not with other opponents. Nevertheless an evolutionary process is able to tunnel through the costs and risks associated to early defections to find more optimal solutions, so it is not surprising in hindsight that handshaking strategies emerge from the evolutionary training process.

Figure 12: Ranks of all strategies according to x_{N-1} for different population sizes

Figure 13: The fixation probability x_{N-1} for N=3

Figure 14: The fixation probability x_{N-1} for N=7

Figure 15: The fixation probability x_{N-1} for N=14

	Player	Mean p_{N-1}
1	CS	0.8359
2	Predator	0.8121
3	TF1	0.8087
4	Handshake	0.8014
5	TF2	0.7957
6	Prober 4	0.7905
7	Grudger	0.7612
8	Hard Prober	0.7582
9	TF3	0.7570
10	MEM2	0.7554
11	Davis	0.7536
12	Winner21	0.7529
13	Fool Me Once	0.7489
14	Fortress4	0.7467
15	Retaliate 3	0.7448
16	$EvolvedLookerUp1_1_1$	0.7422

	Player	Mean p_{N-1}
1	CS	0.9765
2	TF1	0.9714
3	TF2	0.9677
4	Predator	0.9677
5	Handshake	0.9547
6	Prober 4	0.9540
7	Winner21	0.9392
8	Hard Prober	0.9331
9	Fortress4	0.9255
10	Grudger	0.9198
11	TF3	0.9189
12	Davis	0.9186
13	Ripoff	0.9183
14	Tester	0.9176
15	MEM2	0.9165
16	Retaliate 3	0.9161

(a) N = 3

(b) N = 7

	Player	Mean p_{N-1}
1	CS	0.9984
2	TF1	0.9973
3	TF2	0.9949
4	Predator	0.9941
5	Prober 4	0.9863
6	Handshake	0.9812
7	Winner21	0.9778
8	Hard Prober	0.9731
9	Fortress4	0.9726
10	Ripoff	0.9669
11	Tester	0.9662
12	Grudger	0.9592
13	TF3	0.9589
14	Davis	0.9588
15	Retaliate 3	0.9580
16	Retaliate	0.9576

(c) N = 14

Table 4: Top resistors for $N \in \{3,7,14\}$

A handshake requires at least one defection and there is selective pressure to defect as few times as possible to achieve the self-recognition mechanism. It is also unwise to defect on the first move as some strategies additionally retaliate first round defections. So the handshakes used by TF1, TF2, and CS are in some sense optimal. These discoveries may have significant ramifications regarding the evolution of cooperation and forgiveness in biological organisms such as antibacterial resistant bacteria and social interactions between humans.

It is evident through Sections 3.1, 3.2 and 3.3 that performance of strategies not only depends on the initial population distribution but also that there seems to be a difference depending on whether or not N > 2. This will be explored further in the next section, looking not only at x_1 and x_{N-1} but also consider $x_{N/2}$.

3.4 The effect of population size

To complement Figures 8 and 12 Figure 16 shows the rank of each strategy based on $x_{N/2}$. Tables 5, 6 and 7 show the same information for a selection of strategies:

- The strategies that ranked highly for N=2;
- The strategies that ranked highly for N = 14;
- The Zero determinant strategies.

For all starting populations $i \in \{1, N/2, N-1\}$ the ranks of strategies are relatively stable across the different values of N > 2 however for N = 2 there is a distinct difference. This highlights that there is little that can be inferred about the evolutionary performance of a strategy in a large population from its performance in a small population.

This is confirmed by the performance of the zero determinant strategies. While some do rank relatively highly for N = 2 (ZD-extort-4 has rank 16) this rank does not translate to larger populations.

Player	2	3	4	5	6	7	8	9	10	11	12	13	14
CS	1	1	2	11	9	11	13	21	16	22	17	25	23
Defector	2	43	80	91	89	87	87	103	97	105	94	103	101
Aggravater	3	50	89	99	102	103	108	113	114	115	115	116	117
Predator	4	8	24	35	28	33	31	43	36	43	34	45	35
Handshake	5	17	40	46	43	46	46	49	48	49	47	50	49
Evolved FSM 16	31	11	6	2	1	1	1	1	1	1	1	1	1
PSO Gambler 2_2_2	29	14	10	6	4	2	2	2	2	2	2	2	2
EvolvedLookerUp2_2_2	33	18	11	9	10	6	6	5	3	5	3	3	3
Evolved ANN	20	10	8	7	8	5	3	3	4	3	4	4	4
Evolved ANN 5	21	9	7	8	7	4	5	4	5	4	5	5	5
ZD-Extort-4	16	81	107	120	135	136	142	140	142	142	144	144	145
ZD-Extort-2 v2	41	105	126	140	152	152	153	152	153	153	153	152	153
ZD-Extort-2	43	107	125	139	151	151	152	153	152	152	152	153	152
ZD-SET-2	100	111	117	117	122	127	131	128	131	131	130	132	131
ZD-GTFT-2	112	92	82	80	81	82	84	72	81	71	78	72	70
ZD-GEN-2	113	96	87	83	85	88	90	82	87	82	86	83	91

Table 5: Ranks of some strategies according to x_1 for different population sizes

Player	2	3	4	5	6	7	8	9	10	11	12	13	14
CS	1	1	1	1	1	1	1	1	1	1	1	1	1
Defector	2	29	55	79	94	97	98	98	102	101	103	100	102
Aggravater	3	42	71	97	101	106	107	111	113	113	116	115	115
Predator	4	2	3	3	3	4	4	4	4	4	4	4	4
Handshake	5	4	5	5	5	5	5	6	6	6	6	6	6
TF1	7	3	2	2	2	2	2	2	2	2	2	2	2
TF2	10	5	4	4	4	3	3	3	3	3	3	3	3
Prober 4	6	6	6	6	6	6	6	5	5	5	5	5	5
ZD-Extort-4	19	68	98	106	108	114	115	115	118	118	117	118	117
ZD-Extort-2 v2	49	98	111	121	123	124	124	130	130	132	134	132	134
ZD-Extort-2	50	97	112	123	124	125	123	126	131	131	132	133	133
ZD-SET-2	108	105	104	104	103	103	100	100	101	99	98	98	98
ZD-GTFT-2	112	95	88	84	75	72	71	73	71	71	67	68	68
ZD-GEN-2	114	96	89	86	77	75	72	74	72	72	68	69	69

Table 6: Ranks of some strategies according to x_{N-1} for different population sizes

Figure 16: Ranks of all strategies according to $x_{N/2}$ for different population sizes

Player	2	4	6	8	10	12	14
CS	1	1	1	1	1	1	2
Defector	2	78	99	106	110	113	120
Aggravater	3	91	105	111	122	125	128
Predator	4	2	4	4	4	4	4
Handshake	5	6	5	6	6	6	6
TF2	9	4	3	2	2	2	1
TF1	7	3	2	3	3	3	3
Prober 4	6	5	6	5	5	5	5
ZD-Extort-4	16	102	117	129	141	143	145
ZD-Extort-2 v2	41	118	135	151	152	152	153
ZD-Extort-2	43	117	136	149	151	151	152
ZD-SET-2	100	110	110	108	106	106	108
ZD-GTFT-2	112	82	80	77	75	75	74
ZD-GEN-2	113	85	81	82	79	77	76

Table 7: Ranks of some strategies according to $x_{N/2}$ for different population sizes

Figure 17 show the correlation coefficients of the ranks of strategies in differing population size. It is immediate to note that how well a strategy performs in any Moran process for N > 2 has little to do with the performance for N = 2. This illustrates why the strong performance of Zero determinant strategies predicted in [20] does not extend to larger populations. This was discussed theoretically in [1] however not observed empirically at the scale presented here.

Figure 17: Heatmap of correlation coefficients of rankings by population size

4 Discussion

Training strategies to excel at the Moran process leads to the evolution of cooperation, but only with like individuals in the case of TF1 and TF2. This may have significant implications for human social interactions such as the evolution of ingroup/outgroup mechanisms and other sometimes costly rituals that reinforce group behavior.

While TF1 and TF2 are competent invaders, the best invaders in the study do not appear to employ strict handshakes, and are generally cooperative strategies. TF3, which does not use a handshake, is a better invader than TF1 and TF2 but not as good of a resistor. Nevertheless it was the result of the same kind of training processes and is a better combined invader-resistor than the invaders that were trained previously to maximize payout.

The strategies trained to maximize payoff in head-to-head matches are generally cooperative and are effective invaders. Combined with the fact that handshaking strategies are stronger resisters, this suggests that while maximizing individual payoff can lead to the evolution of cooperation, these strategies are not the most evolutionarily stable in the long run. A strategy with a handshaking mechanism is still capable of invading and is more resistant to subsequent invasions. Moreover, the best resistor of the payoff maximally trained strategies (Evolved Looker Up 1-1-1), which always defects if the opponent defects in the first round, is effectively employing a one-shot handshake of C. These insights also suggest that a strategy aware of the population distribution could choose to become a handshaker at a critical threshold and use a different strategy for invasion when in the minority. However this information was not available to our strategies.

We did not attempt other objective functions that may serve to select for both invasion and resistance better than training at a starting population of (N/2, N/2). Nevertheless our results suggest that there is not much room for improve-

ment. Any handshake more sophisticated than C necessarily involves a defection. (A handshake consisting of a longer sequence of cooperations is effectively a grudger.) For TF3 or EvolvedLookerUp1.1.1 to become better resistors they need a longer or more strict handshake. But if this handshake involves a defection then likely the invasion ability is diminished for N > 2: the top invaders for larger N are nice strategies that do not defect before their opponents. This is because good invaders still need to cooperate with themselves, and so in the absense of a handshake mechanism or knowledge of the population distribution, a strategy must be generally cooperative. Aggressive strategies are only effective invaders for the smallest N, dropping down dramatically as the population size increases.

We did, however, attempt to evolve CS using FSM and lookup table based players, which resulted in some very similar strategies. In particular we evolved a lookup strategy that had a handshake of DC and played TFT with other players after a correct handshake while defecting otherwise, which is quite close in function to CS (full grudging is not possible with a lookup table).

Finally we note that it may be possible to achieve similar results with smaller capacity finite state machine players.

5 Conclusion

A detailed empirical analysis of 164 strategies of the IPD within a pairwise Moran process has been carried out. All $\binom{164}{2} = 13,366$ possible ordered pairs of strategies have been placed in a Moran process with different starting values allowing the each strategy to attempt to invade the other. This is the largest such experiment carried out and has lead to many insights.

When studying evolutionary processes it is vital to consider N > 2 since results for N = 2 cannot be used to extrapolate performance in larger populations. This was shown both observationally in Sections 3.2 and 3.3 but also by considering the correlation of the ranks in different population sizes in Section 3.4.

Memory one strategies do not perform well in general in this study. There are no memory one strategies in the top 5 performing strategies for N > 3. This is due at least partly to their lack of ability to recognise their opponents. More sophisticated strategies prove to be high performers for invasion: these are infinite memory strategies which have been trained using a number of reinforcement learning algorithms. Interestingly they have been trained to perform well in tournaments and not Moran processes which highlights the potentially for improvement.

One of the major findings discussed in Section 3.3, is the ability of strategies with a handshake mechanism to resist invasion. This was not only revealed for CS (a human designed strategy) but also for two FSM strategies (TF1 and TF2) specifically trained through an evolutionary process. In these two cases, the handshake mechanism was a product of the evolutionary process. This has the potential to help with the understanding of organisms with a strong resistance to invasion such as anti antibacterial resistant bacteria [7]. With the knowledge that a handshake being likely to exist, perhaps it can be mimicked.

These findings are important for the ongoing understanding of population dynamics and offer evidence for some of the shortcomings of low memory which has started to be recognised by the community [9].

All source code for this work has been written in a sustainable manner: it is open source, under version control and tested which ensures that all results can be reproduced [21, 23, 28]. The raw data as well as the processed data has also been properly archived and can be found at [11].

Acknowledgements

This work was performed using the computational facilities of the Advanced Research Computing @ Cardiff (ARCCA) Division, Cardiff University.

A variety of software libraries have been used in this work:

- The axelrod library (IPD strategies and Moran processes) [25].
- The matplotlib library (visualisation) [10].
- The pandas and numpy libraries (data manipulation) [17, 26].

References

- [1] Christoph Adami and Arend Hintze. "Evolutionary instability of zero-determinant strategies demonstrates that winning is not everything." In: Nature communications 4.1 (2013), p. 2193. ISSN: 2041-1723. DOI: 10.1038/ncomms3193. arXiv: arXiv:1208.2666v4. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3741637%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract.
- [2] Michael Affenzeller et al. Genetic algorithms and genetic programming: modern concepts and practical applications. Crc Press, 2009.
- [3] B. Allen et al. "Evolutionary dynamics on any population structure". In: 544 (Mar. 2017), pp. 227–230. DOI: 10. 1038/nature21723. arXiv: 1605.06530 [q-bio.PE].
- [4] Wendy Ashlock and Daniel Ashlock. "Changes in Prisoner's Dilemma Strategies Over Evolutionary Time With Different Population Sizes". In: (2006), pp. 1001–1008.
- [5] R. Axelrod. "Effective Choice in the Prisoner's Dilemma". In: Journal of Conflict Resolution 24.1 (1980), pp. 3–25.
- [6] Seung Ki Baek et al. "Comparing reactive and memory- one strategies of direct reciprocity". In: *Nature Publishing Group* (2016), pp. 1–13. DOI: 10.1038/srep25676. URL: http://dx.doi.org/10.1038/srep25676.
- [7] Julian Davies and Dorothy Davies. "Origins and Evolution of Antibiotic Resistance". In: *Microbiol. Mol. Biol. Rev.* 74.3 (2010), pp. 417-433. ISSN: 1098-5557. DOI: 10.1128/mmbr.00016-10. URL: http://mmbr.asm.org/cgi/content/abstract/74/3/417.
- [8] Merrill M. Flood. Some Experimental Games. 1958. DOI: 10.1287/mnsc.5.1.5.
- [9] Christian Hilbe et al. "Memory- ¡i¿n¡/i¿ strategies of direct reciprocity". In: Proceedings of the National Academy of Sciences (2017), p. 201621239. ISSN: 0027-8424. DOI: 10.1073/pnas.1621239114. URL: http://www.pnas.org/lookup/doi/10.1073/pnas.1621239114.
- [10] John D Hunter. "Matplotlib: A 2D graphics environment". In: Computing In Science & Engineering 9.3 (2007), pp. 90–95.
- [11] Knight, Vincent and Harper, Marc and Glynatsi E., Nikoleta. Data: Empirical Study of Invasion and Resistance for Iterated Prisoner's Dilemma Strategies. May 2017. DOI: ?. URL: ?.
- [12] Vincent Knight et al. "An Open Framework for the Reproducible Study of the Iterated Prisoner's Dilemma". In: (2016).
- [13] Christopher Lee, Marc Harper, and Dashiell Fryer. "The Art of War: Beyond Memory-one Strategies in Population Games". In: *Plos One* 10.3 (2015), e0120625. ISSN: 1932-6203. DOI: 10.1371/journal.pone.0120625. URL: http://dx.plos.org/10.1371/journal.pone.0120625.
- [14] Jiawei Li and Graham Kendall. "A strategy with novel evolutionary features for the iterated prisoner's dilemma." In: Evolutionary Computation 17.2 (2009), pp. 257–274. ISSN: 1063-6560. DOI: 10.1162/evco.2009.17.2.257. URL: http://www.ncbi.nlm.nih.gov/pubmed/19413490.
- [15] Jiawei Li, Graham Kendall, and Senior Member. "The effect of memory size on the evolutionary stability of strategies in iterated prisoner's dilemma". In: X.X (2014), pp. 1–8.
- [16] LIFL. PRISON. 2008. URL: http://www.lifl.fr/IPD/ipd.frame.html.
- [17] Wes McKinney et al. "Data structures for statistical computing in python". In: *Proceedings of the 9th Python in Science Conference*. Vol. 445. van der Voort S, Millman J. 2010, pp. 51–56.
- [18] P.A.P. Moran. "Random Processes in Genetics". In: April (1957), pp. 60–71.
- [19] Martin A Nowak. Evolutionary Dynamics: Exploring the Equations of Life. Cambridge: Harvard University Press. ISBN: 0674023382. DOI: 10.1086/523139.
- [20] William H Press and Freeman J Dyson. "Iterated Prisoner's Dilemma contains strategies that dominate any evolutionary opponent." In: *Proceedings of the National Academy of Sciences of the United States of America* 109.26 (2012), pp. 10409-13. ISSN: 1091-6490. DOI: 10.1073/pnas.1206569109. URL: http://www.pnas.org/content/109/26/10409.abstract.
- [21] Andreas Prli and James B. Procter. "Ten Simple Rules for the Open Development of Scientific Software". In: PLoS Computational Biology 8.12 (2012), e1002802. ISSN: 1553-7358. DOI: 10.1371/journal.pcbi.1002802. URL: http://dx.plos.org/10.1371/journal.pcbi.1002802.

- [22] Arthur Robson. EFFICIENCY IN EVOLUTIONARY GAMES: DARWIN, NASH AND SECRET HANDSHAKE. Working Papers. Michigan Center for Research on Economic & Social Theory, 1989. URL: http://EconPapers.repec.org/RePEc:fth:michet:89-22.
- [23] Geir Kjetil Sandve et al. "Ten Simple Rules for Reproducible Computational Research". In: *PLoS Computational Biology* 9.10 (2013), pp. 1–4. ISSN: 1553734X. DOI: 10.1371/journal.pcbi.1003285.
- [24] Alexander J. Stewart and Joshua B. Plotkin. "Extortion and cooperation in the Prisoners Dilemma". In: *Proceedings of the National Academy of Sciences* 109.26 (2012), pp. 10134-10135. DOI: 10.1073/pnas.1208087109. eprint: http://www.pnas.org/content/109/26/10134.full.pdf. URL: http://www.pnas.org/content/109/26/10134.short.
- [25] The Axelrod project developers. Axelrod: v2.9.0. Apr. 2016. DOI: 499122. URL: http://dx.doi.org/10.5281/zenodo.499122.
- [26] Stfan van der Walt, S Chris Colbert, and Gael Varoquaux. "The NumPy array: a structure for efficient numerical computation". In: Computing in Science & Engineering 13.2 (2011), pp. 22–30.
- [27] Jeffrey West et al. "The prisoners dilemma as a cancer model". In: Convergent Science Physical Oncology 2.3 (2016), p. 035002. URL: http://stacks.iop.org/2057-1739/2/i=3/a=035002.
- [28] Greg Wilson et al. "Best Practices for Scientific Computing". In: 12.1 (2014). DOI: 10.1371/journal.pbio.1001745.

A List of players

- 1. ϕ Deterministic Memory depth: ∞
- 2. π Deterministic Memory depth: ∞
- 3. e Deterministic $Memory\ depth$: ∞
- 4. ALLCorALLD Stochastic Memory depth: 1
- 5. Adaptive Deterministic Memory depth: ∞
- 6. Adaptive Pavlov 2006 Deterministic Memory depth: ∞
- 7. Adaptive Pavlov 2011 Deterministic Memory depth: ∞
- 8. Adaptive Tit For Tat: 0.5 Deterministic Memory depth: ∞
- 9. Aggravater Deterministic Memory depth: ∞
- 10. Alternator Deterministic Memory depth: 1
- 11. Alternator Hunter Deterministic Memory depth: ∞
- 12. Anti Tit For Tat Deterministic Memory depth: 1
- 13. AntiCycler Deterministic Memory depth: ∞
- 14. Appeaser Deterministic Memory depth: ∞
- 15. Arrogant QLearner Stochastic Memory depth: ∞
- 16. Average Copier Stochastic Memory depth: ∞
- 17. Better and Better Stochastic Memory depth: ∞
- 18. Bully Deterministic Memory depth: 1
- 19. Calculator Stochastic Memory depth: ∞
- 20. Cautious QLearner Stochastic Memory depth: ∞

- 21. CollectiveStrategy (CS) Deterministic Memory $depth: \infty$
- 22. Contrite Tit For Tat (**CTfT**) Deterministic Memory depth: 3
- 23. Cooperator Deterministic Memory depth: 0
- 24. Cooperator Hunter Deterministic Memory depth: ∞
- 25. Cycle Hunter Deterministic Memory depth: ∞
- 26. Cycler CCCCCD Deterministic Memory depth: 5
- 27. Cycler CCCD Deterministic Memory depth: 3
- 28. Cycler CCCDCD Deterministic Memory depth: 5
- 29. Cycler CCD Deterministic Memory depth: 2
- 30. Cycler DC Deterministic Memory depth: 1
- 31. Cycler DDC Deterministic Memory depth: 2
- 32. Davis: 10 Deterministic Memory depth: ∞
- 33. Defector Deterministic Memory depth: 0
- 34. Defector Hunter Deterministic Memory depth: ∞
- 35. Desperate Stochastic Memory depth: 1
- 36. Doubler Deterministic Memory depth: ∞
- 37. EasyGo Deterministic Memory depth: ∞
- 38. Eatherley Stochastic Memory depth: ∞
- 39. Eventual Cycle Hunter Deterministic Memory depth: ∞
- 40. Evolved ANN Deterministic Memory depth: ∞

- 41. Evolved ANN 5 Deterministic Memory depth: ∞
- 42. Evolved ANN 5 Noise 05 Deterministic Memory depth: ∞
- 43. Evolved FSM 16 Deterministic Memory depth: 16
- 44. Evolved FSM 16 Noise 05 Deterministic Memory depth: 16
- 45. Evolved FSM 4 Deterministic Memory depth: 4
- 46. Evolved HMM 5 Stochastic Memory depth: 5
- 47. Evolved Looker Up1_1_1 - Deterministic - Memory depth: ∞
- 48. EvolvedLookerUp2_2_2 Deterministic Memory depth: ∞
- 49. FSM Player: [(0, 'C', 0, 'C'), (0, 'D', 3, 'C'), (1, 'C', 5, 'D'), (1, 'D', 0, 'C'), (2, 'C', 3, 'C'), (2, 'D', 2, 'D'), (3, 'C', 4, 'D'), (3, 'D', 6, 'D'), (4, 'C', 3, 'C'), (4, 'D', 1, 'D'), (5, 'C', 6, 'C'), (5, 'D', 3, 'D'), (6, 'C', 6, 'D'), (6, 'D', 6, 'D'), (7, 'C', 7, 'D'), (7, 'D', 5, 'C')], 0, C (**TF3**) Deterministic Memory depth: 16
- 50. FSM Player: [(0, 'C', 13, 'D'), (0, 'D', 12, 'D'), (1, 'C', 3, 'D'), (1, 'D', 4, 'D'), (2, 'C', 14, 'D'), (2, 'D', 9, 'D'), (3, 'C', 0, 'C'), (3, 'D', 1, 'D'), (4, 'C', 1, 'D'), (4, 'D', 2, 'D'), (5, 'C', 12, 'C'), (5, 'D', 6, 'C'), (6, 'C', 1, 'C'), (6, 'D', 14, 'D'), (7, 'C', 12, 'D'), (7, 'D', 2, 'D'), (8, 'C', 7, 'D'), (8, 'D', 9, 'D'), (9, 'C', 8, 'D'), (9, 'D', 0, 'D'), (10, 'C', 2, 'C'), (10, 'D', 15, 'C'), (11, 'C', 7, 'D'), (11, 'D', 13, 'D'), (12, 'C', 3, 'C'), (12, 'D', 8, 'D'), (13, 'C', 7, 'C'), (13, 'D', 10, 'D'), (14, 'C', 10, 'D'), (14, 'D', 7, 'D'), (15, 'C', 15, 'C'), (15, 'D', 11, 'D')], 0, C (**TF2** $) Deterministic Memory depth: <math>\infty$
- 51. FSM Player: [(0, 'C', 7, 'C'), (0, 'D', 1, 'C'), (1, 'C', 11, 'D'), (1, 'D', 11, 'D'), (2, 'C', 8, 'D'), (2, 'D', 8, 'C'), (3, 'C', 3, 'C'), (3, 'D', 12, 'D'), (4, 'C', 6, 'C'), (4, 'D', 3, 'C'), (5, 'C', 11, 'C'), (5, 'D', 8, 'D'), (6, 'C', 13, 'D'), (6, 'D', 14, 'C'), (7, 'C', 4, 'D'), (7, 'D', 2, 'D'), (8, 'C', 14, 'D'), (8, 'D', 8, 'D'), (9, 'C', 0, 'C'), (9, 'D', 10, 'D'), (10, 'C', 8, 'C'), (10, 'D', 15, 'C'), (11, 'C', 6, 'D'), (11, 'D', 5, 'D'), (12, 'C', 6, 'D'), (13, 'C', 9, 'D'), (13, 'D', 8, 'D'), (14, 'C', 8, 'D'), (14, 'D', 13, 'D'), (15, 'C', 4, 'C'), (15, 'D', 5, 'C')], 0, C (**TF1** $) Deterministic Memory depth: <math>\infty$
- 52. Feld: 1.0, 0.5, 200 Stochastic Memory depth: 200
- 53. Firm But Fair Stochastic Memory depth: 1
- 54. Fool Me Forever Deterministic Memory depth: ∞
- 55. Fool Me Once Deterministic Memory depth: ∞
- 56. Forgetful Fool Me Once: 0.05 Stochastic Memory depth: ∞

- 57. Forgetful Grudger Deterministic Memory depth: 10
- 58. Forgiver Deterministic Memory depth: ∞
- 59. For giving Tit For Tat (**FTfT**) - Deterministic - Memory depth: ∞
- 60. Fortress3 Deterministic Memory depth: 3
- 61. Fortress4 Deterministic Memory depth: 4
- 62. GTFT: 0.33 Stochastic Memory depth: 1
- 63. General Soft Grudger: n=1,d=4,c=2 Deterministic Memory depth: ∞
- 64. Gradual Deterministic Memory depth: ∞
- 65. Gradual Killer: ('D', 'D', 'D', 'D', 'D', 'C', 'C') Deterministic Memory depth: ∞
- 66. Grofman Stochastic Memory depth: ∞
- 67. Grudger Deterministic Memory depth: ∞
- 68. Grudger Alternator - Deterministic - Memory depth: ∞
- 69. Grumpy: Nice, 10, -10 Deterministic Memory depth: ∞
- 70. Handshake Deterministic Memory depth: ∞
- 71. Hard Go By Majority Deterministic Memory depth: ∞
- 72. Hard Go By Majority: 10 Deterministic Memory depth: 10
- 73. Hard Go By Majority: 20 Deterministic Memory depth: 20
- 74. Hard Go By Majority: 40 Deterministic Memory depth: 40
- 75. Hard Go By Majority: 5 Deterministic Memory depth: 5
- 76. Hard Prober Deterministic Memory depth: ∞
- 77. Hard Tit For 2 Tats (**HTf2T**) Deterministic Memory depth: 3
- 78. Hard Tit For Tat (**HTfT**) Deterministic Memory depth: 3
- 79. Hesitant QLearner Stochastic Memory depth: ∞
- 80. Hopeless Stochastic Memory depth: 1
- 81. Inverse Stochastic Memory depth: ∞
- 82. Inverse Punisher Deterministic Memory depth: ∞
- 83. Joss: 0.9 Stochastic Memory depth: 1
- 84. Level Punisher Deterministic Memory depth: ∞

- 85. Limited Retaliate 2: 0.08, 15 Deterministic Memory depth: ∞
- 86. Limited Retaliate 3: 0.05, 20 Deterministic Memory depth: ∞
- 87. Limited Retaliate: 0.1, 20 Deterministic Memory depth: ∞
- 88. MEM2 Deterministic Memory depth: ∞
- 89. Math Constant Hunter Deterministic Memory depth: ∞
- 90. Meta Hunter Aggressive: 7 players Deterministic Memory depth: ∞
- 91. Meta Hunter: 6 players Deterministic Memory depth: ∞
- 92. Naive Prober: 0.1 Stochastic Memory depth: 1
- 93. Negation Stochastic Memory depth: 1
- 94. Nice Average Copier Stochastic Memory depth: ∞
- 95. Nydegger Deterministic Memory depth: 3
- 96. Omega TFT: 3, 8 Deterministic Memory depth: ∞
- 97. Once Bitten Deterministic Memory depth: 12
- 98. Opposite Grudger Deterministic Memory depth: ∞
- 99. PSO Gambler 1_1_1 Stochastic Memory depth: ∞
- 100. PSO Gambler 2_2_2 Stochastic Memory depth: ∞
- 101. PSO Gambler 2_2_2 Noise 05 Stochastic Memory depth: ∞
- 102. PSO Gambler Mem1 Stochastic Memory depth: 1
- 103. Predator Deterministic Memory depth: 9
- 104. Prober Deterministic Memory depth: ∞
- 105. Prober 2 Deterministic Memory depth: ∞
- 106. Prober 3 Deterministic Memory depth: ∞
- 107. Prober 4 Deterministic Memory depth: ∞
- 108. Pun1 Deterministic Memory depth: 2
- 109. Punisher Deterministic Memory depth: ∞
- 110. Raider Deterministic Memory depth: 3
- 111. Random Hunter Deterministic Memory depth: ∞
- 112. Random: 0.5 Stochastic Memory depth: 0
- 113. Remorseful Prober: 0.1 Stochastic Memory depth: 2
- 114. Resurrection Deterministic Memory depth: 1

- 115. Retaliate 2: 0.08 Deterministic Memory depth: ∞
- 116. Retaliate 3: 0.05 Deterministic Memory depth: ∞
- 117. Retaliate: 0.1 Deterministic Memory depth: ∞
- 118. Revised Downing: True Deterministic Memory depth: ∞
- 119. Ripoff Deterministic Memory depth: 2
- 120. Risky QLearner Stochastic Memory depth: ∞
- 121. SelfSteem Stochastic Memory depth: ∞
- 122. ShortMem Deterministic Memory depth: 10
- 123. Shubik Deterministic Memory depth: ∞
- 124. Slow Tit For Two Tats Deterministic Memory depth: 2
- 125. Slow Tit For Two Tats 2 Deterministic Memory depth: 2
- 126. Sneaky Tit For Tat Deterministic Memory depth: ∞
- 127. Soft Go By Majority Deterministic Memory depth: ∞
- 128. Soft Go By Majority: 10 Deterministic Memory depth: 10
- 129. Soft Go By Majority: 20 Deterministic Memory depth: 20
- 130. Soft Go By Majority: 40 Deterministic Memory depth: 40
- 131. Soft Go By Majority: 5 Deterministic Memory depth: 5
- 132. Soft Grudger Deterministic Memory depth: 6
- 133. Soft Joss: 0.9 Stochastic Memory depth: 1
- 134. SolutionB1 Deterministic Memory depth: 3
- 135. SolutionB5 Deterministic Memory depth: 5
- 136. Spiteful Tit For Tat Deterministic $Memory\ depth$: ∞
- 137. Stochastic Cooperator Stochastic Memory depth: 1
- 138. Stochastic WSLS: 0.05 Stochastic Memory depth:
- 139. Suspicious Tit For Tat Deterministic Memory depth: 1
- 140. Tester Deterministic Memory depth: ∞
- 141. ThueMorse Deterministic Memory depth: ∞
- 142. ThueMorseInverse Deterministic Memory depth: ∞

- 143. Thumper Deterministic Memory depth: 2
- 144. Tit For 2 Tats (**Tf2T**) Deterministic Memory depth: 2
- 145. Tit For Tat (**TfT**) Deterministic Memory depth: 1
- 146. Tricky Cooperator Deterministic Memory depth: 10
- 147. Tricky Defector Deterministic Memory depth: ∞
- 148. Tullock: 11 Stochastic Memory depth: 11
- 149. Two Tits For Tat (2TfT) Deterministic Memory depth: 2
- 150. VeryBad Deterministic Memory depth: ∞
- 151. Willing Stochastic Memory depth: 1
- 152. Win-Shift Lose-Stay: D (**WShLSt**) Deterministic Memory depth: 1
- 153. Win-Stay Lose-Shift: C (WSLS) Deterministic Memory depth: 1

- 154. Winner12 Deterministic Memory depth: 2
- 155. Winner21 Deterministic Memory depth: 2
- 156. Worse and Worse Stochastic Memory depth: ∞
- 157. Worse and Worse 2 Stochastic Memory depth: ∞
- 158. Worse and Worse 3 Stochastic Memory depth: ∞
- 159. ZD-Extort-2 v2: 0.125, 0.5, 1 Stochastic Memory depth: 1
- 160. ZD-Extort-2: 0.1111111111111111, 0.5 Stochastic Memory depth: 1
- 161. ZD-Extort-4: 0.23529411764705882, 0.25, 1 Stochastic Memory depth: 1
- 162. ZD-GEN-2: 0.125, 0.5, 3 Stochastic Memory depth:
- 163. ZD-GTFT-2: 0.25, 0.5 Stochastic Memory depth: 1
- 164. ZD-SET-2: 0.25, 0.0, 2 Stochastic Memory depth: $\ensuremath{\mathbf{1}}$