# **Dynamic Design**

### ECU 1

### **State Machine Diagram**



#### **Door sensor:**



#### <u>Light sensor:</u>



#### **Speed sensor:**



## **Sequence Diagram**



### **CPU Load**

- Assume execution time of each part of super loop is **1 ms**
- Periodicities of **20, 10, and 5**

CPU Load = 
$$\left(\frac{\sum E}{Hyper\ period}\right) = \left(\frac{1+1*2+1*4}{20}\right)*100 = 35\%$$

### ECU 2

### **State Machine Diagram**



#### Lights:



#### **Buzzer:**



# **Sequence Diagram**



#### **CPU Load**

- Assume execution time 2 ms & periodicity of 6 ms

CPU Load = 
$$\left(\frac{\sum E}{Hyper\ period}\right) = \left(\frac{2}{6}\right)*100 = 33\%$$

#### **CAN Bus Load**

- Assume 1 CAN frame contains ~ 125 bits
- Using 500 Kbit/s bit rate

Bit time = 1 / bit rate = 1 /  $(500 * 1000) s = 2 * 10-6 s = 2 \mu s$ 

1 bit will take 2  $\mu s$  to transfer on bus when using 500 Kbit/s.

Time to transfer 1 frame is  $(2 \mu s/bit * 125 bit) = 250 \mu s$ .

We send: 1 frame every 20, 10, and 5 ms -> 200, 100, 50 frames every 1 s

Total frames in 1 second is 350 frames

Total time = 350 \* 250 = **87500 us** 

Bus Load = (87500 \* 1000 /1000) \* 100 = **8.75** %