EE1030: Matrix Theory

EE24BTECH11006 - Arnav Mahishi

F. Match the Following

In these questions there are entries in columns 1 and 2. Each entry in column 1 is related to exactly one entry in column 2. Write the correct letter from column 2 against the entry number in column 1 in your answer book

1.	$sin3\alpha$	i e
	$cos2\alpha$	l S

[1992 - 2Marks]

Column I

Column II

$$(p)\left(\frac{13\pi}{48},\frac{14\pi}{48}\right)$$

(q)
$$\left(\frac{14\pi}{48}, \frac{18\pi}{48}\right)$$

$$(r)\left(\frac{18\pi}{48},\frac{23\pi}{48}\right)$$

(s)
$$\left(0, \frac{\pi}{2}\right)$$

2. Let $f(x) = \sin(\pi \cos x)$ and $g(x) = \cos(2\pi \sin x)$ be two functions defined for x > 0. Define the following sets whose elements are written in the [*JEEAdv*.2019] increasing order.

$$X = \{x : f(x) = 0\}, Y = \{x : f'(x) = 0\}$$

 $Z = \{x : g(x) = 0\}, W = \{x : g'(x) = 0\}$

Column I

Column II

 $(p) \supseteq \left\{ \frac{\pi}{2}, \frac{3\pi}{2}, 4\pi, 7\pi \right\}$

(B) Y

(q)an arithmetic progression

(C)Z

(r)NOT an arithmetic progression

 $(s) \supseteq \left\{ \frac{\pi}{6}, \frac{7\pi}{6}, \frac{13\pi}{6} \right\}$

$$(t) \supseteq \left\{ \frac{\pi}{3}, \frac{2\pi}{3}, \pi \right\}$$

Which of the following is the only CORRECT combination?

a
$$(IV),(P),(R),(S)$$

b (III),(P),(Q),(U)

c (III),(R),(U)

d(IV),(Q),(T)

3. Let $f(x) = sin(\pi cos x)$ and $g(x) = cos(2\pi sin x)$ be two functions defined for x > 0. Define the following sets whose elements are written in the increasing order. [*JEEAdv*.2019]

$$X = \{x : f(x) = 0\}, Y = \{x : f'(x) = 0\}$$

 $Z = \{x : g(x) = 0\}, W = \{x : g'(x) = 0\}$

Column I

Column II

(A) X

 $(p) \supseteq \left\{ \frac{\pi}{2}, \frac{3\pi}{2}, 4\pi, 7\pi \right\}$

(B) Y

(q)an arithmetic progression

(C)Z

(r)NOT an arithmetic progression

(D) W

 $(s) \supseteq \left\{\frac{\pi}{6}, \frac{7\pi}{6}, \frac{13\pi}{6}\right\}$

$$(t) \supseteq \left\{ \frac{\pi}{3}, \frac{2\pi}{3}, \pi \right\}$$

 $(t) \supseteq \left\{ \tfrac{\pi}{3}, \tfrac{2\pi}{3}, \pi \right\}$ Which of the following is the only CORRECT combination?

a (I),(Q),(U)

b (I),(P),(R)

c (II),(R),(S)

d(II),(Q),(T)

Paragraph 1

Let O be the origin, and \overrightarrow{OX} , \overrightarrow{OY} , \overrightarrow{OZ} be three unit vectors in the directions of the sides $\overrightarrow{QR}, \overrightarrow{RP}, \overrightarrow{PQ}$ respectively, of a triangle PQR. [JEE Adv 2017]

$$1. \left| \overrightarrow{OX} \times \overrightarrow{OY} \right| =$$

a sin(P+Q)

b sin2R

c sin(P+R)

d sin(Q + R)

2. If the triangle PQR varies, then the minimum value of cos(P + Q) + cos(Q + R) + cos(R + P) is.

$$\begin{array}{ccc} a & \frac{-5}{3} \\ b & \frac{-3}{2} \\ c & \frac{3}{2} \\ d & \frac{5}{3} \end{array}$$

I. Integer value type

1. The number of all possible values of θ where $0 < \theta < \pi$ for which the system of equations

$$(y+Z)\cos 3\theta = (xyz)\sin 3\theta$$
$$x\sin 3\theta = \frac{2\cos 3\theta}{y} + \frac{2\sin 3\theta}{z}$$
$$(xyz)\sin 3\theta = (y+2z)\cos 3\theta + y\sin 3\theta$$

have a solution (x_o, y_o, x_o) with $y_o z_o \neq 0$, is [2010]

2. The number of all possible values of θ in the interval, $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ such that $\theta \neq \frac{n\pi}{5} forn = 0, \pm 1, \pm 2$ and $tan\theta = cot5\theta$ as well as $sin2\theta = cos4\theta$ is [2010]

3.The maximum value of the expression
$$\frac{1}{\sin^2\theta + 3\sin\theta\cos\theta + 5\cos^2\theta}$$
 is [2010]

- 4. Two parallel chords of a circle of radius 2 are at a distance $(\sqrt{3} + 1)$ apart. If the chords subtend at the center, angles of $\frac{\pi}{k}$ and $\frac{2\pi}{k}$, where k > 0, the value of [k] is [2010]
- 5. The positive integer value of n > 3 satisfying the equation $\frac{1}{\sin(\frac{\pi}{n})} = \frac{1}{\sin(\frac{2\pi}{n})} + \frac{1}{\sin(\frac{3\pi}{n})}$ is [2010]