7,1400

SEQUENCE LISTING

<110> Gao, Zeren Hart, Charles E. Piddington, Christopher S. Sheppard, Paul O. Shoemaker, Kimberly E. Gilbertson, Debra G. West, James W.	
<120> GROWTH FACTOR HOMOLOG ZVEGF3	
<130> 98-60	
<160> 50	
<170> FastSEQ for Windows Version 3.0	
<210> 1 <211> 1760 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (154)(1191)	
<pre><400> 1 attatgtgga aactaccctg cgattctctg ctgccagagc aggctcggcg cttcca agtgcagcct tcccctggcg gtggtgaaag agactcggga gtcgctgctt ccaaag cgccgtgagt gagctctcac cccagtcagc caa atg agc ctc ttc ggg ctt</pre>	tgcc 120 ctc 174
ctg ctg aca tct gcc ctg gcc ggc cag aga cag ggg act cag gcg g Leu Leu Thr Ser Ala Leu Ala Gly Gln Arg Gln Gly Thr Gln Ala G 10 15 20	
tcc aac ctg agt agt aaa ttc cag ttt tcc agc aac aag gaa cag a Ser Asn Leu Ser Ser Lys Phe Gln Phe Ser Ser Asn Lys Glu Gln A	

		cag Gln 45								318
		cca Pro								366
		tta Leu								414
		aga Arg		_	_	-	-	_		462
		gta Val								510
		ggt Gly 125								558
		agg Arg								606
		tgc Cys								654
		cct Pro								702
		gct Ala								750
		cca Pro 205								798

tat a Tyr A																846
aaa t Lys S		-			_	-					~ ~	~ ~	~	_		894
tac a Tyr S																942
aag a Lys A 2										-		-	-		-	990
tgt g Cys G 280																1038
tgt g Cys V																1086
aga c Arg P					_			_						-		1134
gcc c Ala L	_eu								_		_	_		-		1182
gga g Gly G 3		tag *	ccgo	catca	acc a	accag	gcago	ct ct	tgco	caga	a gct	gtgo	cagt			1231
gcttc agaat cttca ttacc ggtaa aactc	caag tag atc atgt ctaa cgct	ga caga ga	cttt gttgt ggaaa gtat gtaca ctcca	cato gcaa agaaa tcca aggaa atgto cacat	et to accompany to the	cagga gctct caaat agctg aact gggco gtaaa	ittta ittta igtta igtga itaaa iccag	a cag g aga g tat c ctg c aag a ato g aac	gtgca nggag taat gtatt gtgag gtat	ittc jgcc itag itca jcac iaaa itat	tgaa taaa atca gtto ctga atct gtao	agagagagagagagagagagagagagagagagagagag	gga g cag g gct a cga t cgt t ctt t	gacat gagaa agttt cacgo cgcct	tgttt caaac aaggt cagag gcttag tgctt ttttt	1291 1351 1411 1471 1531 1591 1651 1711 1760

<210> 2 <211> 345 <212> PRT <213> Homo sapiens

<400> 2

Met Ser Leu Phe Gly Leu Leu Leu Thr Ser Ala Leu Ala Gly Gln Arg Gln Gly Thr Gln Ala Glu Ser Asn Leu Ser Ser Lys Phe Gln Phe Ser Ser Asn Lys Glu Gln Asn Gly Val Gln Asp Pro Gln His Glu Arg Ile Ile Thr Val Ser Thr Asn Gly Ser Ile His Ser Pro Arg Phe Pro 55 His Thr Tyr Pro Arg Asn Thr Val Leu Val Trp Arg Leu Val Ala Val Glu Glu Asn Val Trp Ile Gln Leu Thr Phe Asp Glu Arg Phe Gly Leu 85 90 Glu Asp Pro Glu Asp Asp Ile Cys Lys Tyr Asp Phe Val Glu Val Glu 100 105 Glu Pro Ser Asp Gly Thr Ile Leu Gly Arg Trp Cys Gly Ser Gly Thr 120 Val Pro Gly Lys Gln Ile Ser Lys Gly Asn Gln Ile Arg Ile Arg Phe 135. 140 Val Ser Asp Glu Tyr Phe Pro Ser Glu Pro Gly Phe Cys Ile His Tyr 150 155 160 Asn Ile Val Met Pro Gln Phe Thr Glu Ala Val Ser Pro Ser Val Leu 165 170 175 Pro Pro Ser Ala Leu Pro Leu Asp Leu Leu Asn Asn Ala Ile Thr Ala 180 185 Phe Ser Thr Leu Glu Asp Leu Ile Arg Tyr Leu Glu Pro Glu Arg Trp 200 Gln Leu Asp Leu Glu Asp Leu Tyr Arg Pro Thr Trp Gln Leu Leu Gly 220 215 Lys Ala Phe Val Phe Gly Arg Lys Ser Arg Val Val Asp Leu Asn Leu 230 235 Leu Thr Glu Glu Val Arg Leu Tyr Ser Cys Thr Pro Arg Asn Phe Ser 245 250 Val Ser Ile Arg Glu Glu Leu Lys Arg Thr Asp Thr Ile Phe Trp Pro 265 260 270 Gly Cys Leu Leu Val Lys Arg Cys Gly Gly Asn Cys Ala Cys Cys Leu 280 285 His Asn Cys Asn Glu Cys Gln Cys Val Pro Ser Lys Val Thr Lys Lys 295 300

```
Tyr His Glu Val Leu Gln Leu Arg Pro Lys Thr Gly Val Arg Gly Leu 305 310 315 320 His Lys Ser Leu Thr Asp Val Ala Leu Glu His His Glu Glu Cys Asp 325 330 335
```

Cys Val Cys Arg Gly Ser Thr Gly Gly 340 345

<210> 3

<211> 116

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide motif

<221> VARIANT

<222> (2)...(19)

<223> Xaa is any amino acid

<221> VARIANT

<222> (20)...(34)

<223> Xaa is any amino acid or not present

<221> VARIANT

<222> (36)...(36)

<223> Xaa is any amino acid

<221> VARIANT

<222> (38)...(38)

<223> Xaa is any amino acid

<221> VARIANT

<222> (40)...(45)

<223> Xaa is any amino acid

<221> VARIANT

<222> (46)...(72)

<223> Xaa is any amino acid or not present

<221> VARIANT

<222> (74)...(93)

<223> Xaa is any amino acid

<221> VARIANT

<222> (94)...(113)

IHH

```
<223> Xaa is any amino acid not present
   <221> VARIANT
   <222> (115)...(115)
   <223> Xaa is any amino acid
   <400> 3
10
Xaa Xaa Cys Xaa Gly Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
55
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa
65
90
100
                    105
                                 110
Xaa Cys Xaa Cys
     115
   <210> 4
   <211> 24
   <212> PRT
   <213> Artificial Sequence
   <220>
   <223> peptide motif
   <221> VARIANT
   <222> (2)...(2)
   <223> Xaa is Lys or Arg
   <221> VARIANT
   <222> (4)...(4)
   <223> Xaa is Asp, Asn or Glu
   <221> VARIANT
   <222> (5)...(5)
   <223> Xaa is Trp, Tyr or Phe
```

<221> VARIANT

```
<222> (6)...(16)
     <223> Xaa is any amino acid
     <221> VARIANT
     <222> (17)...(20)
     <223> Xaa is any amino acid or not present
     <221> VARIANT
     <222> (22)...(22)
     <223> Xaa is Lys or Arg
     <221> VARIANT
     <222> (23)...(23)
     <223> Xaa is Trp, Tyr or Phe
     <400> 4
10
Xaa Xaa Xaa Gly Xaa Xaa Cys
           20
     <210> 5
     <211> 6
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> peptide tag
     <400> 5
Glu Tyr Met Pro Met Glu
 1
               5
     <210> 6
     <211> 1035
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> degenerate sequence derived from SEQ ID NOS: 1 and
     <221> misc feature
     <222> (1)...(1035)
     <223> n = A,T,C or G
```

<400>	6					
atgwsnytnt cargengarw gtncargaye cenmgnttye gargaraayg gaygayatht ggnmgntggt	tyggnytnyt snaayytnws cncarcayga cncayacnta tntggathca gyaartayga	nwsnaartty rmgnathath yccnmgnaay rytnacntty yttygtngar	carttywsnw acngtnwsna acngtnytng gaygarmgnt gtngargarc	snaayaarga cnaayggnws tntggmgnyt tyggnytnga cnwsngaygg	rcaraayggn nathcaywsn ngtngcngtn rgayccngar nacnathytn	60 120 180 240 300 360 420
mgnathmgnt aayathgtna ytnccnytng mgntayytng carytnytng ytnacngarg gargarytna	tygtnwsnga tgccncartt ayytnytnaa arccngarmg gnaargcntt argtnmgnyt	ygartaytty yacngargcn yaaygcnath ntggcarytn ygtnttyggn ntaywsntgy	ccnwsngarc gtnwsnccnw acngcnttyw gayytngarg mgnaarwsnm acnccnmgna	cnggnttytg sngtnytncc snacnytnga ayytntaymg gngtngtnga ayttywsngt	yathcaytay nccnwsngcn rgayytnath nccnacntgg yytnaayytn nwsnathmgn	480 540 600 660 720 780 840
ggnggnaayt gtnacnaara cayaarwsny ggnwsnacng	gygcntgytg artaycayga tnacngaygt	yytncayaay rgtnytncar	tgyaaygart ytnmgnccna	gycartgygt aracnggngt	nccnwsnaar nmgnggnytn	900 960 1020 1035
<220>	17 DNA Artificial	l Sequence eotide prime	er			
<222>	misc_featu (1)(17) n = A,T,C	•				
<400> mgntgyggng						17
<210> <211> <212> <213>	17	Sequence				
<220> <223>	Oligonucle	eotide prime	er			
<221>	misc_featu	ıre				


```
<222> (1)...(17)
      <223> n = A.T.C or G
      <400> 8
mgntgydsng gnwrytg
                                                                         17
      <210> 9
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc_feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 9
carywnccns hrcanck
                                                                         17
      <210> 10
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc_feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 10
ttytggccng gntgyyt
                                                                         17
      <210> 11
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc_feature
```



```
<222> (1)...(17)
      <223> n = A.T.C or G
      <400> 11
ntnddnccnn sntgybt
                                                                          17
      <210> 12
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc_feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 12
avrcansnng gnhhnan
                                                                         17
      <210> 13
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <400> 13
                                                                         17
caygargart gygaytg
      <210> 14
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 14
```

caynnnn	nvnt gyvvntg	17
<	<pre><210> 15 <211> 17 <212> DNA <213> Artificial Sequence</pre>	
	<pre><220></pre> <pre><223> Oligonucleotide primer</pre>	
<	<pre>\$221> misc_feature \$222> (1)(17) \$223> n = A,T,C or G</pre>	
	<pre><400> 15 canb nnnnrtg</pre>	17
<	210> 16 211> 17 212> DNA 213> Artificial Sequence	
	:220> :223> Oligonucleotide primer	
<	221> misc_feature 222> (1)(17) 223> n = A,T,C or G	
	:400> 16 :cnm gnaaytt	17
<; <;	210> 17 2211> 17 2212> DNA 2213> Artificial Sequence	
	220> 223> Oligonucleotide primer	
</td <td>221> misc_feature 222> (1)(17) 223> n = A,T,C or G</td> <td></td>	221> misc_feature 222> (1)(17) 223> n = A,T,C or G	
<	4400> 17	

tgyhnnmcnm knrmndh	17
<210> 18 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<221> misc_feature <222> (1)(17) <223> n = A,T,C or G	
<400> 18 dhnkynmkng knndrca	17
<210> 19 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 19 tgyaartayg aytwygt	17
<210> 20 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 20 acrwartcrt ayttrca	17
<210> 21 <211> 17 <212> DNA <213> Artificial Sequence	
<220>	


```
<223> Oligonucleotide primer
      <221> misc feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 21
ywnggnmrnt dbtgygg
                                                                          17
      <210> 22
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc_feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 22
ccrcavhany knccnwr
                                                                         17
      <210> 23
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 23
tdbccnmand vntaycc
                                                                         17
      <210> 24
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
```


	<223> Oligonucleotide primer	
	<221> misc_feature <222> (1)(17) <223> n = A,T,C or G	
ggrta	<400> 24 nbhnt knggvha	17
	<210> 25 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Oligonucleotide primer	
agcag	<400> 25 gtcca gtggcaaagc	20
	<210> 26 <211> 21 <212> DNA <213> Artificial Sequence	
	<220> <223> Oligonucleotide primer	
cgttt	<400> 26 gatga aagatttggg c	21
	<210> 27 <211> 21 <212> DNA <213> Artificial Sequence	
	<220> <223> Oligonucleotide primer	
ggaggt	<400> 27 tctat ataagcagag c	21
	<210> 28 <211> 18 <212> DNA	

<213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 28 gagga ggtaagat	18
<210> 29 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 29 cctct ttagttct	18
<210> 30 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 30 acgtc ctcctgctgg tatag	25
<210> 31 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 31 gagc caggggcaag ttggg	25
<210> 32 <211> 27 <212> DNA <213> Artificial Sequence	

	220> 223> Oligonucleotide primer	
	100> 32 nac ttccagggcc aggagag	27
<21 <21	210> 33 211> 27 212> DNA 213> Artificial Sequence	
	220> 223> Oligonucleotide primer	
	ag cctcaaccct gactatc	27
<2] <2]	210> 34 211> 35 212> DNA 213> Artificial Sequence	
	20> 23> Oligonucleotide primer ZC20,180	
	00> 34 tt aaacgccacc atgagcctct tcggg	35
<21 <21	110> 35 111> 32 112> DNA 113> Artificial Sequence	
	20> 23> Oligonucleotide primer ZC20,181	
	00> 35 cg cgccctatcc tcctgtgctc cc	32
<21 <21	10> 36 11> 1882 12> DNA 13> Homo sapiens	

<220> <221> CDS

120

<222> (226)...(1338) <400> 36 ccgtcaccat ttatcagctc agcaccacaa ggaagtgcgg cacccacacg cgctcggaaa 60 gttcagcatg caggaagttt ggggagagct cggcgattag cacagcgacc cgggccagcg 120 cagggcgagc gcaggcggcg agagcgcagg gcggcgcggc gtcggtcccg ggagcagaac 180 ccggcttttt cttggagcga cgctgtctct agtcgctgat cccaa atg cac cgg ctc 237 Met His Arg Leu 1 atc ttt gtc tac act cta atc tgc gca aac ttt tgc agc tgt cgg gac 285 Ile Phe Val Tyr Thr Leu Ile Cys Ala Asn Phe Cys Ser Cys Arg Asp 5 10 15 20 act tot goa acc cog cag ago goa too atc aaa got ttg cgc aac goo 333 Thr Ser Ala Thr Pro Gln Ser Ala Ser Ile Lys Ala Leu Arg Asn Ala aac ctc agg cga gat gag agc aat cac ctc aca gac ttg tac cga aga 381 Asn Leu Arg Arg Asp Glu Ser Asn His Leu Thr Asp Leu Tyr Arg Arg 40 45 50 gat gag acc atc cag gtg aaa gga aac ggc tac gtg cag agt cct aga 429 Asp Glu Thr Ile Gln Val Lys Gly Asn Gly Tyr Val Gln Ser Pro Arg 55 60 65 ttc ccg aac agc tac ccc agg aac ctg ctc ctg aca tgg cgg ctt cac 477 Phe Pro Asn Ser Tyr Pro Arg Asn Leu Leu Leu Thr Trp Arg Leu His 70 75 tct cag gag aat aca cgg ata cag cta gtg ttt gac aat cag ttt gga 525 Ser Gln Glu Asn Thr Arg Ile Gln Leu Val Phe Asp Asn Gln Phe Gly 85 90 95 100 tta gag gaa gca gaa aat gat atc tgt agg tat gat ttt gtg gaa gtt 573 Leu Glu Glu Ala Glu Asn Asp Ile Cys Arg Tyr Asp Phe Val Glu Val 105 110 115 gaa gat ata too gaa acc agt acc att att aga gga cga tgg tgt gga 621 Glu Asp Ile Ser Glu Thr Ser Thr Ile Ile Arg Gly Arg Trp Cys Gly

125

		cct cca Pro Pro	Arg I			_	_					669
	Phe Lys	tcc gat Ser Asp	-			-					•	717
		ttg ctg Leu Leu 170	Glu A				_	_	-			765
		tct gtc Ser Val 185		-				_				813
		acg gat Thr Asp		-			_	-	_	-		861
		ttt gat Phe Asp	Thr V		_	_		_				909
	Ser Trp	caa gaa Gln Glu	_			_		-	-			957
		agg tca Arg Ser 250	Tyr H	-		-			_	_	_	1005
		gat gat Asp Asp 265										1053
_	-	ata aga Ile Arg	_		_	_	-			_		1101
		ctc ctc Leu Leu	Val G									1149

gga act gtc aac tgg agg tcc tgc aca tgc aat tca ggg aaa acc gtg Gly Thr Val Asn Trp Arg Ser Cys Thr Cys Asn Ser Gly Lys Thr Val 310 315 320	1197
aaa aag tat cat gag gta tta cag ttt gag cct ggc cac atc aag agg Lys Lys Tyr His Glu Val Leu Gln Phe Glu Pro Gly His Ile Lys Arg 325 330 335 340	1245
agg ggt aga gct aag acc atg gct cta gtt gac atc cag ttg gat cac Arg Gly Arg Ala Lys Thr Met Ala Leu Val Asp Ile Gln Leu Asp His 345 350 355	1293
cat gaa cga tgc gat tgt atc tgc agc tca aga cca cct cga taa His Glu Arg Cys Asp Cys Ile Cys Ser Ser Arg Pro Pro Arg * 360 365 370	1338
gagaatgtgc acatccttac attaagcctg aaagaacctt tagtttaagg agggtgagat aagagaccct tttcctacca gcaaccaaac ttactactag cctgcaatgc aatgaacaca agtggttgct gagtctcagc cttgctttgt taatgccatg gcaagtagaa aggtatatca tcaacttcta tacctaagaa tataggattg catttaataa tagtgtttga ggttatatat gcacaaacac acacagaaat atattcatgt ctatgtgtat atagatcaaa tgttttttt ttttggtata tataaccagg tacaccagag gttacatatg tttgagttag actcttaaaa tcctttgcca aaataaggga tggtcaaata tatgaaacat gtctttagaa aatttaggag ataaatttat ttttaaattt tgaaacacga aacaattttg aatcttgctc tcttaaagaa agcatcttgt atattaaaaa tcaaaagatg aggctttctt acatatacat cttagttgat tatt	1398 1458 1518 1578 1638 1698 1758 1818 1878 1882

<210> 37

<211> 370

<212> PRT

<213> Homo sapiens

<400> 37

 Met His Arg Leu Ile Phe Val Tyr Thr Leu Ile Cys Ala Asn Phe Cys

 1
 5
 10
 15

 Ser Cys Arg Asp Asp Thr Ser Ala Thr Pro Gln Ser Ala Ser Ile Lys Ala 20
 25
 30

 Leu Arg Asn Ala Asn Leu Arg Arg Asp Glu Ser Asn His Leu Thr Asp 35
 40
 45

 Leu Tyr Arg Arg Asp Glu Thr Ile Gln Val Lys Gly Asn Gly Tyr Val 50
 55
 60

 Gln Ser Pro Arg Phe Pro Asn Ser Tyr Pro Arg Asn Leu Leu Leu Thr 75
 80

 Trp Arg Leu His Ser Gln Glu Asn Thr Arg Ile Gln Leu Val Phe Asp 90
 95

Asn Gln Phe Gly Leu Glu Glu Ala Glu Asn Asp Ile Cys Arg Tyr Asp 100 105 Phe Val Glu Val Glu Asp Ile Ser Glu Thr Ser Thr Ile Ile Arg Gly 120 Arg Trp Cys Gly His Lys Glu Val Pro Pro Arg Ile Lys Ser Arg Thr 135 Asn Gln Ile Lys Ile Thr Phe Lys Ser Asp Asp Tyr Phe Val Ala Lys 150 155 Pro Gly Phe Lys Ile Tyr Tyr Ser Leu Leu Glu Asp Phe Gln Pro Ala 170 Ala Ala Ser Glu Thr Asn Trp Glu Ser Val Thr Ser Ser Ile Ser Gly 180 185 190 Val Ser Tyr Asn Ser Pro Ser Val Thr Asp Pro Thr Leu Ile Ala Asp 200 205 Ala Leu Asp Lys Lys Ile Ala Glu Phe Asp Thr Val Glu Asp Leu Leu 210 215 220 Lys Tyr Phe Asn Pro Glu Ser Trp Gln Glu Asp Leu Glu Asn Met Tyr 230 235 Leu Asp Thr Pro Arg Tyr Arg Gly Arg Ser Tyr His Asp Arg Lys Ser 250 255 Lys Val Asp Leu Asp Arg Leu Asn Asp Asp Ala Lys Arg Tyr Ser Cys 265 Thr Pro Arg Asn Tyr Ser Val Asn Ile Arg Glu Glu Leu Lys Leu Ala 280 Asn Val Val Phe Phe Pro Arg Cys Leu Leu Val Gln Arg Cys Gly Gly 295 300 Asn Cys Gly Cys Gly Thr Val Asn Trp Arg Ser Cys Thr Cys Asn Ser 305 310 315 320 Gly Lys Thr Val Lys Lys Tyr His Glu Val Leu Gln Phe Glu Pro Gly 325 330 His Ile Lys Arg Arg Gly Arg Ala Lys Thr Met Ala Leu Val Asp Ile 345 Gln Leu Asp His His Glu Arg Cys Asp Cys Ile Cys Ser Ser Arg Pro 355 360 365 Pro Arg 370 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> oligonucleotide primer ZC21,222

	<pre><400> 38 ctcg ccccagtcag</pre>	20
<; <;	210> 39 211> 25 212> DNA 213> Artificial Sequence	
	220> 223> oligonucleotide primer ZC21,224	
	400> 39 Igga aagccttgcc caaaa	25
	2210> 40 2211> 25 2212> DNA 2213> Artificial Sequence	
	:220> :223> oligonucleotide primer ZC21,223	
	:400> 40 ecct gcgattctct gctgc	25
<2 <2	210> 41 211> 21 212> DNA 213> Artificial Sequence	
	220> 223> oligonucleotide primer ZC21,334	
	gga gcttggctga g	21
<2 <2	210> 42 211> 3571 212> DNA 213> Mus musculus	
<2	220> 221> CDS 222> (1049)(2086)	

<400> 42				
qaattccgg gtcgacccac ggcggcattc ctcgccgcag ctgcgccagc acctgttggc cgcccggcgg gggacaaga gcgatcctcc cacctctc tcagccctgc ctccgagccg ggcccaagctct tcggtggca ccgactgcag tcgtcccaag gtgggggtgg cccaaggtg tcgcccaaggtg tcgccccaggtg tcgccccaggtgc tcgcctgct tcggcag tcgccccaaggtgc tcgcctcgct tcggcacag tcgccccaaggtgc tcgcctgct tcggcacag ctcaggattt ttgatcctt tcaaaaactg attatgtgga aactaccctg agcgcagcc ctcgcccag	tgtgggctcc greecegcagetg geccegcagetg geccegcaget gecceggettec cecaaggaggag geccegcetgg are gecgacetgg cecaaactgac are acceptett tegttaaacet tegggagacacaga are gggctgagec treagecaa atg	tctgccgcg gg ccgcccgcg cc cgcccgctg gg gccttccct ta ccttagggc ag gcagcactt cg ctccgcggt gg cccgcccga tc ttccagtct gg ggtgctccc tg cgggaaactg gt gagggctct ag tgccagagc cg tggagtcgt cg ctc ctc ctc ctc ctc ctc	ggcccgcag tgccccccgcgc ccccgggaaagtg gagaagccgccg tgctggcatccga gccggatccgggcatccgggcatccggggaacccggggagtcgcaggccaggcgatccgca ccccca ccccagggaaaaaact tttggcggccaggcg cttcccca gtgcggcttccca gtgcggcttcccca gtgcggcttcccca gtgcggcttcccca gtgcggcttcccca gtgccccca cccca gtgcgcttcccca gtgcggcccaggcg cttcccca gtgcccccca cccca gtgcggcccaggcg cttcccca gtgccccca gtgcccaggcg cccccca cccca gtgcccaggcg cttcccca gtgcccaggcg cttcccca gtgcccaggcg ccccca	accetgt 120 acgegee 180 acgggga 240 atageeg 300 ategega 360 aggaact 420 accegag 480 aggteee 540 acttgat 600 accegagt 660 accegac 780 atttget 840 agatggg 900 acacege 960 accgeeg 1020 actg 1072
ctg aca tct gcc ctg g Leu Thr Ser Ala Leu A 10		g Thr Gly Th		
aac ctg agc agc aag t Asn Leu Ser Ser Lys L 25				
gtg caa gat ccc cgg c Val Gln Asp Pro Arg H 45	is Glu Arg Va	l Val Thr Il	le Ser Gly Asr	Gly
agc atc cac agc ccg a Ser Ile His Ser Pro L 60	=	s Thr Tyr Pr	_	
ctg gtg tgg aga tta g Leu Val Trp Arg Leu V 75		-		_
aca ttt gat gag aga t Thr Phe Asp Glu Arg P 90			lu Asp Asp Ile	

_		_		_	gaa Glu 110	_	 		_	-		-	-		1408
	-		-		tct Ser		-			_	_				1456
					ata Ile	-	-		-						1504
_				_	atc Ile		_			_			_		1552
					tcg Ser										1600
					gtg Val 190										1648
					gat Asp										1696
_				_	ctt Leu	_	 _	_		_					1744
					ctg Leu										1792
	_				aac Asn		-				-	-		-	1840
		•			ttc Phe 270			-		Leu	-	_	-	-	1888

gga gga aat tgt gcc tgt tgt ctc cat aat tgc aat gaa tgt cag Gly Gly Asn Cys Ala Cys Cys Leu His Asn Cys Asn Glu Cys Gln 285 290 295	•
gtc cca cgt aaa gtt aca aaa aag tac cat gag gtc ctt cag ttg Val Pro Arg Lys Val Thr Lys Lys Tyr His Glu Val Leu Gln Leu 300 305 310	-
cca aaa act gga gtc aag gga ttg cat aag tca ctc act gat gtg Pro Lys Thr Gly Val Lys Gly Leu His Lys Ser Leu Thr Asp Val 315 320 325	
ctg gaa cac cac gag gaa tgt gac tgt gtg tgt aga gga aac gca Leu Glu His His Glu Glu Cys Asp Cys Val Cys Arg Gly Asn Ala 330 335 340	
ggg taa ctgcagcctt cgtagcagca cacgtgagca ctggcattct gtgtaccc Gly * 345	ccc 2136
acaagcaacc ttcatcccca ccagcgttgg ccgcagggct ctcagctgct gatgc	
atggtaaaga tettactegt etecaaceaa atteteagtt gtttgettea atage	
cctgcaggac ttcaagtgtc ttctaaaaga ccagaggcac caagaggagt caatc	
gcactgcctt ctagaggaag cccagacaat ggtcttctga ccacagaaac aaatg aatgtagatc gctagcaaac tctggagtga cagcatttct tttccactga cagaa	•
tagettagtt gtettgatat gggeaagtga tgteageaca agaaaatggt gaaaa	
cacttgattg tgaacaatgc agaaatactt ggatttctcc aacctgtttg catag	
cagatgctct gttttctaca aactcaaagc ttttagagag cagctatgtt aatag	•
aaatgtgcca tgctgaaagg aaagactgaa gttttcaatg cttggcaact tctcc	
ttggaggaaa ggtgcggtca tggtttggag aaagcacacc tgcacagagg agtgg	ecttc 2736
ccttcccttc cctctgaggt ggcttctgtg tttcattgtg tatattttta tattc	
ttgacattat aactgttggc ttttctaatc ttgttaaata tttctatttt tacca	• •
atttaatatt cttttttatg acaacctaga gcaattattt ttagcttgat aattt	
tctaaacaaa attgttatag ccagaagaac aaagatgatt gatataaaaa tcttg	•
ctgacaaaaa catatgtatt tcttccttgt atggtgctag agcttagcgt catct	•
tgaaaagatg gaatggggaa gtttttagaa ttggtaggtc gcagggacag tttga	
actgtactat catcaattcc caattctgtt cttagagcta cgaacagaac agagc taaatatgga gccattgcta acctacccct ttctatggga aataggagta tagct	
aagcacgtcc ccagaaacct cgaccatttc taggcacagt gttctgggct atgct	
gtatggacat atcctattta tttcaatact agggttttat tacctttaaa ctctg	ctcca 3336
tacacttgta ttaatacatg gatattttta tgtacagaag tatatcattt aagga	
cttattatac tctttggcaa ttgcaaagaa aatcaacata atacattgct tgtaa	•
taatctgtgc ccaagttttg tggtgactat ttgaattaaa atgtattgaa tcatc	
aaataatctg gctattttgg ggaaaaaaaa aaaaaaaaa aaaaagggcg gccgc	3571

<210> 43

<211> 345

<212> PRT

<213> Mus musculus

<400> 43

Met Leu Leu Leu Gly Leu Leu Leu Thr Ser Ala Leu Ala Gly Gln Arg Thr Gly Thr Arg Ala Glu Ser Asn Leu Ser Ser Lys Leu Gln Leu Ser Ser Asp Lys Glu Gln Asn Gly Val Gln Asp Pro Arg His Glu Arg 40 Val Val Thr Ile Ser Gly Asn Gly Ser Ile His Ser Pro Lys Phe Pro His Thr Tyr Pro Arg Asn Met Val Leu Val Trp Arg Leu Val Ala Val Asp Glu Asn Val Arg Ile Gln Leu Thr Phe Asp Glu Arg Phe Gly Leu Glu Asp Pro Glu Asp Asp Ile Cys Lys Tyr Asp Phe Val Glu Val Glu Glu Pro Ser Asp Gly Ser Val Leu Gly Arg Trp Cys Gly Ser Gly Thr 120 Val Pro Gly Lys Gln Thr Ser Lys Gly Asn His Ile Arg Ile Arg Phe 135 140 Val Ser Asp Glu Tyr Phe Pro Ser Glu Pro Gly Phe Cys Ile His Tyr 150 155 Ser Ile Ile Met Pro Gln Val Thr Glu Thr Thr Ser Pro Ser Val Leu 170 Pro Pro Ser Ser Leu Ser Leu Asp Leu Leu Asn Asn Ala Val Thr Ala 185 Phe Ser Thr Leu Glu Glu Leu Ile Arg Tyr Leu Glu Pro Asp Arg Trp 200 205 Gln Val Asp Leu Asp Ser Leu Tyr Lys Pro Thr Trp Gln Leu Leu Gly 215 Lys Ala Phe Leu Tyr Gly Lys Lys Ser Lys Val Val Asn Leu Asn Leu 230 235 Leu Lys Glu Glu Val Lys Leu Tyr Ser Cys Thr Pro Arg Asn Phe Ser 245 250 Val Ser Ile Arg Glu Glu Leu Lys Arg Thr Asp Thr Ile Phe Trp Pro 260 265 Gly Cys Leu Leu Val Lys Arg Cys Gly Gly Asn Cys Ala Cys Cys Leu 280 His Asn Cys Asn Glu Cys Gln Cys Val Pro Arg Lys Val Thr Lys Lys 290 295 300

Tyr Hi 305	s Glu	Val	Leu	Gln 310	Leu	Arg	Pro	Lys	Thr 315	Gly	Val	Lys	Gly	Leu 320	
His Ly	's Ser	Leu	Thr 325		Val	Ala	Leu	G1u 330		His	Glu	Glu	Cys 335		
Cys Va	ıl Cys	Arg 340		Asn	Ala	Gly	Gly 345	000							
	<210> <211> <212> <213>	65 Dna	fici	ial S	Seque	ence									
	<220> <223>	olig	jonud	cleot	tide	prir	mer Z	ZC20	,572						
tcacca ggcgg	<400> cgcg &		eggta	ac cg	gctgg	gttco	c gcg	gtgga	atcc	ggc	cagaç	gac a	agggg	gactca	60 65
	<210> <211> <212> <213>	65 DNA	fici	al S	Seque	ence									
	<220> <223>	olig	jonuc	leot	ide	prin	mer Z	'C20	,573						
tctgta tgcac	<400> tcag g	_	aaat	c tt	tatct	cato	c cgc	caaa	aca	ctat	ccto	cct (gtgct	ccctc	60 65
	<210> <211> <212> <213>	40 DNA	fici	al S	Seque	ence									
	<220> <223>	olig	onuc	:leot	ide	prin	ner Z		.372						
tgtcga	<400> tgaa g		gaaa	g ac	gcgc	agac	c taa	itteg	gagc						40
	<210><211><211>	60													

(66

tttgtagaag	ttgaggaacc	cagtgatgga	actatattag	ggcgctggtg	tggttctggt	420
actgtaccag	gaaaacagat	ttctaaagga	aatcaaatta	ggataagatt	tgtatctgat	480
gaatattttc	cttctgaacc	agggttctgc	atccactaca	acattgtcat	gccacaattc	540
acagaagctg	tgagtccttc	agtgctaccc	ccttcagctt	tgccactgga	cctgcttaat	600
aatgctataa	ctgcctttag	taccttggaa	gaccttattc	gatatcttga	accagagaga	660
tggcagttgg	acttagaaga	tctatatagg	ccaacttggc	aacttcttgg	caaggctttt	720
gtttttggaa	gaaaatccag	agtggtggat	ctgaaccttc	taacagagga	ggtaagatta	780
tacagctgca	cacctcgtaa	cttctcagtg	tccataaggg	aagaactaaa	gagaaccgat	840
accattttct	ggccaggttg	tctcctggtt	aaacgctgtg	gtgggaactg	tgcctgttgt	900
ctccacaatt	gcaatgaatg	tcaatgtgtc	ccaagcaaag	ttactaaaaa	ataccacgag	960
gtccttcagt	tgagaccaaa	gaccggtgtc	aggggattgc	acaaatcact	caccgacgtg	1020
gccctggagc	accatgagga	gtgtgactgt	gtgtgcagag	ggagcacagg	aggatagtgt	1080
tttggcggat	gagat					1095
tggcagttgg gtttttggaa tacagctgca accattttct ctccacaatt gtccttcagt gccctggagc	acttagaaga gaaaatccag cacctcgtaa ggccaggttg gcaatgaatg tgagaccaaa accatgagga	tctatatagg agtggtggat cttctcagtg tctcctggtt tcaatgtgtc gaccggtgtc	ccaacttggc ctgaaccttc tccataaggg aaacgctgtg ccaagcaaag aggggattgc	aacttcttgg taacagagga aagaactaaa gtgggaactg ttactaaaaa acaaatcact	caaggctttt ggtaagatta gagaaccgat tgcctgttgt ataccacgag caccgacgtg	720 780 840 900 960 1020

(67)