

Pontificia Universidad Católica de Chile Departamento de Estadística Facultad de Matemática

Profesor: Fernando Quintana Ayudante: Daniel Acuña León

Ayudantía 6 EYP2805 - Métodos Bayesianos 23 de Septiembre

1. Una variable aleatoria X es transmitida por un canal de comunicación. Asuma que la señal recibida está dada por

$$Y = X + W$$

donde $W \sim N(0, \sigma^2)$, independiente de X. Suponga que X = 1 con probabilidad p y X = -1 con probabilidad 1 - p. Plantee una región para decidir el valor de X al observar Y.

2. Suponga que X_1, \ldots, X_m es una muestra de una población $\mathcal{N}(\mu_1, \sigma_1^2)$, y que Y_1, \ldots, Y_n es una muestra de una población $\mathcal{N}(\mu_2, \sigma_2^2)$, independiente de la muestra anterior. Suponga además que se asumen las distribuciones a priori impropias habituales, y que se desea estudiar las hipótesis

$$H_0: \sigma_1^2 \le \sigma_2^2,$$

$$H_1: \sigma_1^2 > \sigma_2^2.$$

Asumiendo parámetros de costo ω_0 y ω_1 , derive el procedimiento de test Bayesiano para este problema. Estudie además la relación con el test F clásico. En particular, muestre que el test Bayesiano coincide con el test F clásico de nivel $\alpha_0 = \omega_1/(\omega_0 + \omega_1)$, y que el valor p del test F es la probabilidad a posteriori de que H_0 sea cierta.

- 3. Considere el modelo $X_1, \ldots, X_n | \theta \sim Beta(\theta, 1)$, con $\theta > 0$:
 - a) Suponga que la distribución a priori es $\theta \sim \Gamma(a,b)$, con a,b números positivos conocidos. Encuentre el estimador bajo pérdida cuadrática.
 - b) Se quiere testear la hipótesis $H_0: \theta \leq \theta_0$ y $H_1: \theta > \theta_0$. Obtenga el test de Bayes correspondiente a la función de pérdida usual, dados los parámetros de penalización $\omega_0, \omega_1 > 0$ cualquiera.
 - c) Si a es un entero, exprese el test en términos de cuantiles χ^2 .
 - d) Obtenga una región de credibilidad de probabilidad $(1-\alpha)$ para θ a posteriori en términos de los percentiles de una distribución chi-cuadrado.