# A Brief Introduction to Linear Regression Model with Panel Data

- \* A brief overview of linear regression model assumptions.
- **❖** A brief overview of cross-section and panel data.
- Test of hypothesis for model specification test.
- \* Brief overview of heterogeneity and endogeneity issues with panel data.
- \* Between groups and between times model.
- One way and Two way fixed and random effect models overview.

Pinto Bhusan Datta, M.Sc. (Statistics), M.Sc. (Operation Research and Business Analytics (Pursuing)) Working Student, HVB.

# All models are wrong but some are useful



George E.P. Box

# "No Free Lunch" :(

D. H. Wolpert. The supervised learning no-free-lunch theorems. In Soft Computing and Industry, pages 25–42. Springer, 2002.

Our model is a simplification of reality



Simplification is based on assumptions (model bias)



Assumptions fail in certain situations

Roughly speaking:

"No one model works best for all possible situations."

# Linear Regression Assumptions



# (Correct functional form)

Consider the following model:  $Lung\ Function_i = oldsymbol{eta_0} + oldsymbol{eta_1}(age)_i + oldsymbol{arepsilon_i}$ 









# Other forms

#### Linear in parameter

$$y = Ax^{\beta}e^{\varepsilon}$$

#### **Elasticity from Linear Regression Model**

Example 2: InY = a + bInX



$$\frac{1}{Y}dY = \frac{b}{X}dX$$
 (divide through by dX)

$$\frac{dY}{dX}\frac{1}{Y} = \frac{b}{X}$$
 (multiply through by X)

$$\frac{dY}{dX}\frac{X}{Y} = b$$

#### Non-linear in parameter

$$y = Ax^{\beta} + \varepsilon$$

# What's the issue

Due to wrong functional form there is a great chance that both the coefficients and standard error are biased

**Detection Methods** 

- Residual plots
- Likelihood Ratio (LR) Test

**Treatments** 

- ❖ Get the correct specification
- Correct (Trial and error)

Machine Learning methods are more prudent here!!!





 $\operatorname{Var}[\varepsilon_i \mid \mathbf{X}] = \sigma^2$ , for all  $i = 1, \dots, n$ ,

# What's the issue

Due to heteroscedasticity, standard error will be biased

#### **Detection Methods**

- ❖ Residual plots
- ❖ Goldfeldt-Quant test
- ❖ Breusch-Pagan test

#### **Treatments**

- Whits standard errors
- Weighted least squares
- Log transformation and many more



$$Cov[\varepsilon_i, \varepsilon_j \mid \mathbf{X}] = 0,$$
 for all  $i \neq j$ .

# Homoscedasticity and No-Autocorrelation

$$E[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}' | \mathbf{X}] = \begin{bmatrix} E[\varepsilon_{1}\varepsilon_{1} | \mathbf{X}] & E[\varepsilon_{1}\varepsilon_{2} | \mathbf{X}] & \dots & E[\varepsilon_{1}\varepsilon_{n} | \mathbf{X}] \\ E[\varepsilon_{2}\varepsilon_{1} | \mathbf{X}] & E[\varepsilon_{2}\varepsilon_{2} | \mathbf{X}] & \dots & E[\varepsilon_{2}\varepsilon_{n} | \mathbf{X}] \\ \vdots & \vdots & \vdots & \vdots \\ E[\varepsilon_{n}\varepsilon_{1} | \mathbf{X}] & E[\varepsilon_{n}\varepsilon_{2} | \mathbf{X}] & \dots & E[\varepsilon_{n}\varepsilon_{n} | \mathbf{X}] \end{bmatrix}$$

$$= \begin{bmatrix} \sigma^{2} & 0 & \dots & 0 \\ 0 & \sigma^{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \sigma^{2} \end{bmatrix},$$

# What's the issue

Due to autocorrelation, standard error will be biased as well as high prediction bias.

## **Detection Methods**

- Residual plots
- Durbin-Watson test
- Breusch-Godfrey test

#### **Treatments**

- Searching omitted variables
- Generalized difference equations
- Advance modelling techniques

Univariate: ARIMA, ARIMAX, SARIMA, SARIMAX, ARCH, GARCH etc.

Multivariate: like VAR, machine learning (RNN, LSTM, GRU etc.)



$$\varepsilon \mid \mathbf{X} \sim N[\mathbf{0}, \sigma^2 \mathbf{I}].$$

# What's the issue

Due to normality violation, standard error will be biased

## **Detection Methods**

- Histogram or Q-Q plot
- Shapirio-wilk test
- Kolmogrov-Smirnob test
- Anderson-Darling test

#### **Treatments**

- Take log transformation or other variables transformations
- Advance modelling techniques non-parametric methods: Stochastic Frontier.



Motor Accidents<sub>i</sub> = 
$$\beta_0 + \beta_1 (Num \ cars)_i + \beta_2 (Num \ residents)_i + \varepsilon$$

$$X2 = A + B * X1$$

# What's the issue

Due to multicolinearity, coefficients and standard error will be biased of the effected variables

#### **Detection Methods**

- Scatter plot Matrix or heatmap
- Variance inflation factor (VIF)

#### **Treatments**

Delete strong correlated variables except one



#### $Salary_i = \beta_0 + \beta_1 (Years of education)_i + \varepsilon_i$

Socio-economic status affects **both** X and Y variables, thus would cause **omitted variable bias**.

**TECHNICALLY -** Socio-economic status would affect  $\varepsilon_i$  in the model, thus, Education is no longer wholly exogenous as it can be explained in part by the error term.

$$E[\varepsilon_i \mid \mathbf{X}] = 0.$$

$$E\left[egin{aligned} E\left[arepsilon_{1}\left|\mathbf{X}
ight]\ E\left[arepsilon_{2}\left|\mathbf{X}
ight]\ \end{array}
ight] = \mathbf{0}.\ E\left[arepsilon_{n}\left|\mathbf{X}
ight] \end{aligned}$$

# What's the issue

Due to endogeneity problem model can use for prediction but not causation

**Detection Methods** 

- ❖ Model speciation test
- ❖ Test of hypothesis

#### **Treatments**

Using Instrumental variables

# Other assumptions:

❖ Full-Rank:

The number of parameters must be less than number of observations.

Data Generation:

X values fixed in repeated samples i.e. non-stochastic.

- The explanatory variable in the given sample must not be the same i.e Var(X) must be finite positive value.
- Zero covariance between error and explanatory variables.

# The Normal Linear Regression Model



# **Least Square Regression**



#### THE LEAST SQUARES COEFFICIENT VECTOR

The necessary condition for a minimum is

$$\frac{\partial S(\mathbf{b}_0)}{\partial \mathbf{b}_0} = -2\mathbf{X}'\mathbf{y} + 2\mathbf{X}'\mathbf{X}\mathbf{b}_0 = \mathbf{0}.$$

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}.$$

For this solution to minimize the sum of squares,

$$\frac{\partial^2 S(\mathbf{b})}{\partial \mathbf{b} \, \partial \mathbf{b'}} = 2\mathbf{X'X}$$

#### THEOREM 3.2 Orthogonal Partitioned Regression

In the multiple linear least squares regression of y on two sets of variables  $X_1$  and  $X_2$ , if the two sets of variables are orthogonal, then the separate coefficient vectors can be obtained by separate regressions of y on  $X_1$  alone and y on  $X_2$  alone.

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} = \mathbf{X}_1\boldsymbol{\beta}_1 + \mathbf{X}_2\boldsymbol{\beta}_2 + \boldsymbol{\varepsilon}.$$

coefficient of determination: 
$$\frac{SSR}{SST} = \frac{b'X'M^0Xb}{y'M^0y} = 1 - \frac{e'e}{y'M^0y}$$
.

$$\tilde{R}_{j}^{2} = 1 - \frac{n + K_{j}}{n - K_{j}} (1 - R_{j}^{2}).$$

$$AIC(K) = \log\left(\frac{\mathbf{e}'\mathbf{e}}{n}\right) + \frac{2K}{n}$$
$$BIC(K) = \log\left(\frac{\mathbf{e}'\mathbf{e}}{n}\right) + \frac{K\log n}{n}.$$

# Law of large numbers and Central limit Theorem

$$\lim_{n\to\infty}\sum_{i=1}^n\frac{X_i}{n}=\overline{X}$$

$$\overline{X}_n = rac{1}{n}(X_1 + \cdots + X_n)$$

converges to the expected value:

$$\overline{X}_n o \mu \quad ext{as } n o \infty.$$

#### Weak law [edit]

The weak law of large numbers (also called Khinchin's law) states that the sample average converges in probability towards the expected value<sup>[17]</sup>

$$\overline{X}_n \stackrel{P}{\to} \mu$$
 when  $n \to \infty$ .

That is, for any positive number  $\varepsilon$ ,

$$\lim_{n o\infty}\Pr\Bigl(\,|\overline{X}_n-\mu|$$

#### Strong law [edit]

The strong law of large numbers (also called Kolmogorov's law) states that the sample average converges almost surely to the expected value [18]

$$\overline{X}_n \stackrel{ ext{a.s.}}{\longrightarrow} \mu \qquad ext{when } n o \infty.$$

That is,

$$\Pr\Bigl(\lim_{n \to \infty} \overline{X}_n = \mu\Bigr) = 1.$$







#### Finite sample properties of Least square estimator

#### **Terms of Art**

- Estimates and estimators
- Properties of an estimator the sampling distribution
- "Finite sample" properties as opposed to "asymptotic" or "large sample" properties

#### Ordinary Least squares estimator and its variance

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$
$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}) = \boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\varepsilon}$$

$$E[\mathbf{b}|\mathbf{X}] = \beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'E[\epsilon | \mathbf{X}] = \beta \text{ as } E[\epsilon | \mathbf{X}] = \mathbf{0}$$

$$Var[\mathbf{b} \mid \mathbf{X}] = E[(\mathbf{b} - \boldsymbol{\beta})(\mathbf{b} - \boldsymbol{\beta})' \mid \mathbf{X}]$$

$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'E[\epsilon\epsilon' \mid \mathbf{X}]\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}$$

$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\sigma^{2}\mathbf{I}\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}$$

$$= \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{I}\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}$$

$$= \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}$$

$$= \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}$$

#### Testing a Hypothesis about coefficient and Regression

$$t_k = \frac{(b_k - \beta_k)/\sqrt{\sigma^2 S^{kk}}}{\sqrt{[(n - K)s^2/\sigma^2]/(n - K)}} = \frac{b_k - \beta_k}{\sqrt{s^2 S^{kk}}}$$
(4-13)

$$t = \frac{b_k}{s_{b_k}} \tag{4-14}$$

$$F[K-1, n-K] = \frac{R^2/(K-1)}{(1-R^2)/(n-K)}.$$
 (4-15)

#### Large sample properties and instrumental variables

#### Taking Stock: The Ordinary Least Squares (OLS) Estimation Procedure

**OLS Bias Question** 

**OLS Reliability Question** 

standard error may be trusted.

#### Estimation Procedures: Unbiased, Biased, Consistent, and Inconsistent

Unbiased and Consistent Estimation Procedure

Unbiased but Inconsistent Estimation Procedure

Biased but Consistent Estimation Procedure



#### Instrumental Variables (IV): A Two-Step Estimation Procedure

OLS Bias Question: Are the model's explanatory variable and error term independent or correlated?

# OLS estimation procedure for the value of the Coefficient is Unbiased OLS Reliability Question: Are the OLS standard error term premises satisfied or violated? If "Violated" then use alternative approach like GLS. The OLS estimation procedure is BLUE and the coefficient

Use alternative approach which may be biased but consistent.

#### Others measures for assessing prediction accuracy

$$RMSE = \sqrt{\frac{1}{n^0} \sum_{i} (y_i - \hat{y}_i)^2}$$

$$MAE = \frac{1}{n^0} \sum_{i} |y_i - \hat{y}_i|,$$

$$U = \sqrt{\frac{(1/n^0)\sum_i (y_i - \hat{y}_i)^2}{(1/n^0)\sum_i y_i^2}}.$$







#### **Model Specification Tests**

#### Functional form specification

- The functional form for the regression model needs to be correctly specified. The functional form may include square terms, interactions terms, logs of variables, etc.
- $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$
- $log(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$
- $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_1^2 + \beta_5 x_2^2 + \beta_6 x_3^2 + u$
- $log(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_1^2 + \beta_5 x_2^2 + \beta_6 x_3^2 + u$

# RESET – regression specification error test

- RESET (regression specification error test) includes squares, cubes, and possibly higher order of the fitted
  values for the dependent variable in the regression model and tests for their joint coefficient significance.
- Regression model:  $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$
- Obtain fitted values  $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3$
- Calculate the squares  $\hat{y}^2$  and cubes  $\hat{y}^3$ .
- Estimate the regression:  $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \delta_1 \hat{y}^2 + \delta_2 \hat{y}^3 + e$
- $H_0 \delta_1 = 0$  and  $\delta_2 = 0$  (correctly specified model)
- $H_a \delta_1 \neq 0$  or  $\delta_2 \neq 0$  (misspecified model)

#### Omitted variable bias (review)

- The "true" population regression model is:  $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$
- We need to estimate:  $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$
- But instead we estimate a misspecified model:  $\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1$ , where  $x_2$  is the omitted variable from this model. The coefficient  $\tilde{\beta}_1$  will be biased.

$$x_2 = \delta_0 + \delta_1 x_1 + v$$

Substitute in above equation to get:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 (\delta_0 + \delta_1 x_1 + v) + u = (\beta_0 + \beta_2 \delta_0) + (\beta_1 + \beta_2 \delta_1) x_1 + (\beta_2 v + u)$$

The coefficient that will be estimated for  $x_1$  when  $x_2$  is omitted will be biased.

#### Proxy variables

- The true population regression model is: y = β<sub>0</sub> + β<sub>1</sub>x<sub>1</sub> + β<sub>2</sub>x<sub>2</sub> + u
- If we do not have data on  $x_2$  and it is omitted from the regression, there will be omitted variable bias.
- Find a "proxy" variable x<sub>2</sub><sup>P</sup>.
- If  $x_2^P$  and  $x_2$  are correlated, there will be a relationship between them:  $x_2 = \delta_0 + \delta_2 x_2^P + v$

#### Others Specification Tests

Lagrange Multiplier (LM) Test

**Wald Test Tests** 

#### Classical Model Selection

- Parametric Vision.
- ☐ Assuming a true data-generating process.
- Evaluation based on fit.
- ☐ Ignoring Model uncertainty.



# **Cross-Sectional Data**

| Time | $Y_1$    | $Y_2$    | $Y_N$    |
|------|----------|----------|----------|
| 1    | $Y_{11}$ | $Y_{21}$ | $Y_{N1}$ |

# **Panel Data**

| Time | $Y_1$      | $Y_2$      | $Y_N$      |
|------|------------|------------|------------|
| 1    | $Y_{11}$   | $Y_{21}$   | $Y_{N1}$   |
| 2    | $Y_{12}$   | $Y_{22}$   | $Y_{N2}$   |
| 3    | $Y_{13}$   | $Y_{23}$   | $Y_{N3}$   |
| 4    | $Y_{14}$   | $Y_{24}$   | $Y_{N4}$   |
| 1    | 1          | 1          | 1          |
| T-1  | $Y_{1T-1}$ | $Y_{2T-1}$ | $Y_{NT-1}$ |
| Т    | $Y_{1T}$   | $Y_{2T}$   | $Y_{NT}$   |

# **Balanced Panel Data**

| Person | Year Income |        | Age | Sex |
|--------|-------------|--------|-----|-----|
| 1      | 2013        | 20,000 | 23  | F   |
| 1      | 2014        | 25,000 | 24  | F   |
| 1      | 2015        | 27,500 | 25  | F   |
| 2      | 2013        | 35,000 | 27  | M   |
| 2      | 2014        | 42,500 | 28  | M   |
| 2      | 2015        | 50,000 | 29  | M   |

# **Unbalanced Panel Data**

| Person | Year | Income | Age | Sex |
|--------|------|--------|-----|-----|
| 1      | 2013 | 20,000 | 23  | F   |
| 1      | 2014 | 25,000 | 24  | F   |
| 2      | 2013 | 35,000 | 27  | M   |
| 2      | 2014 | 42,500 | 28  | M   |
| 2      | 2015 | 50,000 | 29  | M   |
| 3      | 2014 | 46,000 | 25  | F   |



# NONSPHERICAL DISTURBANCES — THE GENERALIZED REGRESSION MODEL (GLS)





- True GLS uses [X'Ω<sup>-1</sup> X]<sup>-1</sup>X'Ω<sup>-1</sup>y which converges in probability to β.
- We seek a vector which converges to the same thing that this does. Call it "feasible" GLS, FGLS, based on [χ'Ω̂-¹χ]<sup>-¹</sup>χ'Ω̂-¹γ



$$\sigma^2 \mathbf{\Omega} = \sigma^2 \begin{bmatrix} 1 & \rho_1 & \cdots & \rho_{n-1} \\ \rho_1 & 1 & \cdots & \rho_{n-2} \\ & \vdots & & \vdots \\ \rho_{n-1} & \rho_{n-2} & \cdots & 1 \end{bmatrix}$$

#### One Way Fixed Effect Model

$$y_{it} = \mathbf{x}'_{it}\boldsymbol{\beta} + \alpha_i + \varepsilon_{it}, \quad \text{where } \alpha_i = \mathbf{z}'_i \boldsymbol{\alpha}$$



$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \vdots \\ \mathbf{y}_n \end{bmatrix} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_n \end{bmatrix} \boldsymbol{\beta} + \begin{bmatrix} \mathbf{i} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{i} & \cdots & \mathbf{0} \\ & & \vdots & \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{i} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} + \begin{bmatrix} \boldsymbol{\varepsilon}_1 \\ \boldsymbol{\varepsilon}_2 \\ \vdots \\ \boldsymbol{\varepsilon}_n \end{bmatrix}$$

#### Fixed Effect Model (Within Transformation)

The within transformation demeans the variables:

$$\tilde{y}_{it} = \beta_0 + \beta_1 \tilde{x}_{1it} + \ldots + \beta_K \tilde{x}_{Kit} + \tilde{\epsilon}_{it}$$

$$\begin{pmatrix} y_{11} - \bar{y}_1 \\ y_{12} - \bar{y}_1 \\ y_{21} - \bar{y}_2 \\ y_{22} - \bar{y}_2 \\ \vdots \\ y_{N1} - \bar{y}_N \\ y_{N2} - \bar{y}_N \end{pmatrix} = \begin{pmatrix} 1 & x_{1,11} - \bar{x}_{1,1} & \cdots & x_{K,11} - \bar{x}_{K,1} \\ 1 & x_{1,12} - \bar{x}_{1,1} & \cdots & x_{K,12} - \bar{x}_{K,1} \\ 1 & x_{1,21} - \bar{x}_{1,2} & \cdots & x_{K,21} - \bar{x}_{K,2} \\ 1 & x_{1,22} - \bar{x}_{1,2} & \cdots & x_{K,22} - \bar{x}_{K,2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{1,n1} - \bar{x}_{1,N} & \cdots & x_{K,N1} - \bar{x}_{K,N} \\ 1 & x_{1,n2} - \bar{x}_{1,N} & \cdots & x_{K,N2} - \bar{x}_{K,N} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{pmatrix} + \begin{pmatrix} \epsilon_{11} - \bar{\epsilon}_1 \\ \epsilon_{12} - \bar{\epsilon}_1 \\ \epsilon_{21} - \bar{\epsilon}_2 \\ \epsilon_{22} - \bar{\epsilon}_2 \\ \vdots \\ \epsilon_{N1} - \bar{\epsilon}_N \\ \epsilon_{N2} - \bar{\epsilon}_N \end{pmatrix}$$

# Two Way Fixed Effect Model (Within Transformation + Dummy Technique)

$$\tilde{y}_{it} = \beta_0 + \beta_1 \tilde{x}_{1it} + \ldots + \beta_K \tilde{x}_{Kit} + \sum_{t=1}^{T-1} \tau_t TD_t + \epsilon_{it}$$

# What's the difference between dummies and within transformation



#### First deference estimator

$$\Delta y_{it} = \beta \Delta x_{it} + \Delta \epsilon_{it}$$

with

$$-\Delta y_{it} = (y_{it} - y_{i,t-1})$$

$$-\Delta x_{it} = (x_{it} - x_{i,t-1})$$

$$-\Delta \epsilon_{it} = (\epsilon_{it} - \epsilon_{i,t-1})$$

#### A dynamic model

$$y_{it} = \gamma_1 y_{i,t-1} + \mathbf{x}'_{it} \boldsymbol{\beta} + \alpha_i + \epsilon_{it}$$

$$\Delta y_{it} = \gamma_1 \Delta y_{i,t-1} + \Delta x'_{it} \beta + \Delta \epsilon_{it}$$

#### One Way Random Effect Model

$$y_{it} = \mathbf{x}'_{it}\boldsymbol{\beta} + E[\mathbf{z}'_{i}\boldsymbol{\alpha}] + \{\mathbf{z}'_{i}\boldsymbol{\alpha} - E[\mathbf{z}'_{i}\boldsymbol{\alpha}]\} + \varepsilon_{it}$$
$$= \mathbf{x}'_{it}\boldsymbol{\beta} + \boldsymbol{\alpha} + u_{i} + \varepsilon_{it},$$

$$u_{it} = v_i + e_t + \epsilon_{it}$$



# Estimation methods for One Way and Two Way random effect model.

- Fuller and Battese Method
- Wansbeek and Kapteyn Method
- Wallace and Hussain Method
- Nerlove Method

#### **Specification Tests**

#### F Test

Breusch-Pagan (BP) test for one-way random effects

Breusch-Pagan (BP) test for two-way random effects

#### **Advance Methods (Hybrid Method)**

- Hausman-Taylor Estimation
- Amemiya-MaCurdy Estimation
- Parks Method (Autoregressive Model)
- Da Silva Method (Variance-Component Moving Average Model)

#### **Panel Data Poolability Test**

**Null hypothesis:** Poolability assumes homogeneous slope coefficients i.e. There is no fixed effect.

#### F Test

$$F = \frac{(SSE_r - SSE_u)/q}{SSE_u/df_u} \sim F(q, df_u)$$

#### **LR** Test

$$LR = -2log\left((1 + qF/df_u)^{-NT/2}\right)$$

#### Panel Data Cross-Sectional Dependence Test

**Null hypothesis:** zero cross-sectional error correlations.

BPs = 
$$\sqrt{\frac{1}{N(N-1)}} \sum_{i=1}^{N} \sum_{j=i+1}^{N} (T_{ij} \hat{\rho}_{ij}^2 - 1)$$

**Unit Root Test** 

#### Test all time series analysis related tests

Lagrange Multiplier (LM) Tests for Cross-Sectional and Time Effects.

#### Tests for Serial Correlation and Cross-Sectional Effects

**Wooldridge Test for the Presence of Unobserved Effects** 

Bera, Sosa Escudero, and Yoon Modified Rao's Score Test in the Presence of Local Misspecification.

LM Test for First-Order Correlation under Fixed Effects

Baltagi and Li Joint LM Test for Serial Correlation and Random Cross-Sectional Effects

# Getting Started: PANEL Procedure

```
data greene;
   input firm year production cost @@;
datalines:
          5.36598
1 1955
                     1.14867 1 1960
                                         6.03787
                                                    1.45185
1 1965
          6.37673
                     1.52257 1 1970
                                         6.93245
                                                    1.76627
          6.54535
                     1.35041 2 1960
                                         6.69827
2 1955
                                                    1.71109
2 1965
          7.40245
                     2.09519 2 1970
                                                   2.39480
                                         7.82644
3 1955
          8.07153
                     2.94628 3 1960
                                         8.47679
                                                   3.25967
          8.66923
3 1965
                     3.47952 3 1970
                                         9.13508
                                                    3.71795
          8.64259
4 1955
                     3.56187 4 1960
                                         8.93748
                                                  3.93400
 ... more lines ...
C_{it} = \text{Intercept} + \beta P_{it} + v_i + e_t + \epsilon_{it} i = 1, ..., N; t = 1, ..., T
```

```
proc sort data=greene;
   by firm year;
run;
proc panel data=greene;
     model cost = production / rantwo vcomp = fb;
     id firm year;
run;
```

#### Figure 26.1 The Variance Components Estimates

The PANEL Procedure Fuller and Battese Variance Components (RanTwo)

#### Dependent Variable: cost

| Model Description        |        |  |  |  |  |
|--------------------------|--------|--|--|--|--|
| Estimation Method        | RanTwo |  |  |  |  |
| Number of Cross Sections | 6      |  |  |  |  |
| Time Series Length       | 4      |  |  |  |  |

#### Example 26.2: The Airline Cost Data: Fixtwo Model

```
TC_{ii} = exp\left(\alpha_i + \gamma_t + \beta_3 LF_{ii} + \epsilon_{ii}\right) Q_{ii}^{\beta_1} PF_{ii}^{\beta_2}
```

```
ln (T C_{it}) = \alpha_N + \gamma_T + (\alpha_i - \alpha_N) + (\gamma_t - \gamma_T) + \beta_1 ln (Q_{\dot{u}}) + \beta_2 ln (P F_{\dot{u}}) + \beta_3 L F_{\dot{u}} + \epsilon_{\dot{u}}
```

```
data airline;
   set airline;
   1C = log(C);
   1Q = log(Q);
   1PF = log(PF);
   label 1C = "Log Transformation of Costs";
   label 1Q = "Log Transformation of Quantity";
   label 1PF= "Log Transformation of Price of Fuel";
run;
```

```
proc panel data=airline printfixed;
  id i t;
  model 1C = 1Q 1PF LF / fixtwo;
run;
```

#### Output 26.2.1 The Airline Cost Data—Model Description

#### The PANEL Procedure Fixed Two-Way Estimates

Dependent Variable: IC (Log Transformation of Costs)

| Model Description        |        |
|--------------------------|--------|
| Estimation Method        | FixTwo |
| Number of Cross Sections | 6      |
| Time Series Length       | 15     |
|                          |        |

Output 26.2.2 The Airline Cost Data—Fit Statistics

| Fit Statistics |        |          |        |  |  |  |
|----------------|--------|----------|--------|--|--|--|
| SSE            | 0.1768 | DFE      | 67     |  |  |  |
| MSE            | 0.0026 | Root MSE | 0.0514 |  |  |  |
| R-Square       | 0.9984 |          |        |  |  |  |

Output 26.2.3 The Airline Cost Data—Test for Fixed Effects

| F Test for No Fixed Effects |        |         |        |  |  |  |  |
|-----------------------------|--------|---------|--------|--|--|--|--|
| Num DF                      | Den DF | F Value | Pr > F |  |  |  |  |
| 19                          | 67     | 23.10   | <.0001 |  |  |  |  |

Output 26.2.4 The Airline Cost Data—Parameter Estimates

| Parameter Estimates |    |          |                   |         |         |                                    |
|---------------------|----|----------|-------------------|---------|---------|------------------------------------|
| Variable            | DF | Estimate | Standard<br>Error | t Value | Pr >  t | Label                              |
| CS1                 | 1  | 0.174237 | 0.0861            | 2.02    | 0.0470  | Cross Sectional Effect 1           |
| CS2                 | 1  | 0.111412 | 0.0780            | 1.43    | 0.1576  | Cross Sectional Effect 2           |
| CS3                 | 1  | -0.14354 | 0.0519            | -2.77   | 0.0073  | Cross Sectional Effect 3           |
| CS4                 | 1  | 0.18019  | 0.0321            | 5.61    | <.0001  | Cross Sectional Effect 4           |
| CS5                 | 1  | -0.04671 | 0.0225            | -2.08   | 0.0415  | Cross Sectional Effect 5           |
| TS1                 | 1  | -0.69286 | 0.3378            | -2.05   | 0.0442  | Time Series Effect 1               |
| TS2                 | 1  | -0.63816 | 0.3321            | -1.92   | 0.0589  | Time Series Effect 2               |
| TS3                 | 1  | -0.59554 | 0.3294            | -1.81   | 0.0751  | Time Series Effect 3               |
| TS4                 | 1  | -0.54192 | 0.3189            | -1.70   | 0.0939  | Time Series Effect 4               |
| TS5                 | 1  | -0.47288 | 0.2319            | -2.04   | 0.0454  | Time Series Effect 5               |
| TS6                 | 1  | -0.42705 | 0.1884            | -2.27   | 0.0267  | Time Series Effect 6               |
| TS7                 | 1  | -0.39586 | 0.1733            | -2.28   | 0.0255  | Time Series Effect 7               |
| TS8                 | 1  | -0.33972 | 0.1501            | -2.26   | 0.0269  | Time Series Effect 8               |
| TS9                 | 1  | -0.2718  | 0.1348            | -2.02   | 0.0478  | Time Series Effect 9               |
| TS10                | 1  | -0.22734 | 0.0763            | -2.98   | 0.0040  | Time Series Effect 10              |
| TS11                | 1  | -0.1118  | 0.0319            | -3.50   | 0.0008  | Time Series Effect 11              |
| TS12                | 1  | -0.03366 | 0.0429            | -0.78   | 0.4354  | Time Series Effect 12              |
| TS13                | 1  | -0.01775 | 0.0363            | -0.49   | 0.6261  | Time Series Effect 13              |
| TS14                | 1  | -0.01865 | 0.0305            | -0.61   | 0.5430  | Time Series Effect 14              |
| Intercept           | 1  | 12.93834 | 2.2181            | 5.83    | <.0001  | Intercept                          |
| IQ                  | 1  | 0.817264 | 0.0318            | 25.66   | <.0001  | Log Transformation of Quantity     |
| IPF                 | 1  | 0.168732 | 0.1635            | 1.03    | 0.3057  | Log Transformation of Price of Fue |
| LF                  | 1  | -0.88267 | 0.2617            | -3.37   | 0.0012  | Load Factor (utilization index)    |

```
proc panel data=airline;
  id i t;
  model 1C = 1Q 1PF LF / fixone;
run;
```

#### Output 26.3.2 The Airline Cost Data—Test for Fixed Effects

```
F Test for No Fixed Effects

Num DF Den DF F Value Pr > F

5 81 57.74 <.0001
```

#### Output 26.3.3 The Airline Cost Data—Parameter Estimates

#### 

```
proc panel data=airline;
  id I T;
  model "One-Way, FB"
                         1C = 10 1PF 1F / ranone vcomp=fb;
  model "One-Way, WK"
                         1C = 1Q 1PF 1F / ranone vcomp=wk;
                         1C = 1Q 1PF 1F / ranone vcomp=wh;
  model "One-Way, WH"
  model "One-Way, NL"
                         1C = 1Q 1PF 1F / ranone vcomp=n1;
                         1C = 1Q 1PF 1F / rantwo vcomp=fb;
  model "Two-Way, FB"
  model "Two-Way, WK"
                         1C = 1Q 1PF 1F / rantwo vcomp=wk;
  model "Two-Way, WH"
                         1C = 1Q 1PF 1F / rantwo vcomp=wh;
  model "Two-Way, NL"
                         1C = 1Q 1PF 1F / rantwo vcomp=n1;
                         1C = 1Q 1PF 1F / pooled;
  model "Pooled"
  model "Between Groups" 1C = 1Q 1PF 1F / btwng;
  model "Between Times" 1C = 10 1PF 1F / btwnt;
  compare / pstat(estimate) mstat(varcs varts varerr);
run;
```

#### Output 26.4.1 Parameter Estimates

#### The PANEL Procedure Model Comparison

#### Dependent Variable: IC (Log Transformation of Costs)

#### Comparison of Model Parameter Estimates

| Variable  |          | One-Way, FB<br>RanOne |           | One-Way, WH<br>RanOne | One-Way, NL<br>RanOne |           | Two-Way, WK<br>RanTwo |
|-----------|----------|-----------------------|-----------|-----------------------|-----------------------|-----------|-----------------------|
| Intercept | Estimate | 9.637027              | 9.629542  | 9.643869              | 9.640560              | 9.362705  | 9.643579              |
| IQ        | Estimate | 0.908032              | 0.906926  | 0.909042              | 0.908554              | 0.866458  | 0.843341              |
| IPF       | Estimate | 0.422199              | 0.422676  | 0.421766              | 0.421975              | 0.436160  | 0.409662              |
| LF        | Estimate | -1.064733             | -1.064564 | -1.064966             | -1.064844             | -0.980482 | -0.926308             |

| Comparison of Model Parameter Estimates  Two-Way, WH Two-Way, NL Pooled Between Groups Between Times  Variable RanTwo RanTwo Pooled BtwGrps BtwTime |          |           |           |           |           |           |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-----------|-----------|-----------|-----------|--|--|--|
|                                                                                                                                                     |          |           |           |           |           |           |  |  |  |
| IQ                                                                                                                                                  | Estimate | 0.869214  | 0.838724  | 0.882740  | 0.782455  | 1.133318  |  |  |  |
| IPF                                                                                                                                                 | Estimate | 0.435317  | 0.382904  | 0.453978  | -5.524011 | 0.334268  |  |  |  |
| LF                                                                                                                                                  | Estimate | -0.985181 | -0.913357 | -1.627511 | -1.750949 | -1.350947 |  |  |  |

#### CRISP-DM



#### **Limitations**

- 1. There is no details about mentioned algorithms.
- 2. Little amount of data visualizations.
- 3. Little amount of mathematical derivations.

#### References

- Greene, William H. Econometric analysis. Pearson Education India, 2003.
- Wooldridge, Jeffrey M. Econometric analysis of cross section and panel data. MIT press, 2010.
- Others mentioned websites and lecture notes from my current study.

