Dimensionality Reduction

01 Curse of Dimensionality

Many characteristics slow down training and make it difficult to find a good solution

=> Dimension reduction speeds up training and is useful for data visualization

High-dimensional Dataset

- 1) A lot of space = new samples are also likely to stay away from training samples
- 2) Predictions are more unstable than at low dimensions

=> The larger dimension, the greater risk of overfitting

02 How to approach dimensionality reduction

Projection

- : Training samples are not uniformly spread across all dimensions
- = Exists in low-dimensional subspace in high-dimensional space
- Project training samples vertically

Swiss Roll

02 How to approach dimensionality reduction

- 2) Manifold: 2D Manifolds are curved or twisted in high-dimensional space
 - Manifold Learning: Many dimensionalities reduction algorithms work by modeling manifolds where training samples are placed
 - Manifold Assumption: The real high-dimensional dataset is closer to a lower-dimensional method

- ⇒ Reducing dimension of training set speeds up training
- ⇒ but does not always make it a better or simpler solution: depends on dataset

03 PCA: Principal Component Analysis

Distributed Preservation

An axis that minimizes the mean square distance between the original dataset and the projected one should be selected

Principal Component

$$X = U \sum V^T$$
 에서 V 가 주성분
$$\mathbf{V} = \begin{pmatrix} | & | & | \\ \mathbf{c}_1 & \mathbf{c}_2 & \cdots & \mathbf{c}_n \\ | & | & | \end{pmatrix}$$

svd() is used to extract the principal components of the training set

Projecting in d-dimensions

$$\mathbf{X}_{d\text{-proj}} = \mathbf{X}\mathbf{W}_d$$

Proportion of variance

```
pca.explained_variance_ratio_
array([0.84248607, 0.14631839])
```

Reduce the dimension of dataset to d dimensions by projecting it onto hyperplane defined by d principal components

Variance ratio of the dataset along the axis of each principal component

Select the appropriate number of dimensions

(1) Select the number of dimensions to add until sufficient variance is available

```
pca = PCA()
pca.fit(X_train)|
cumsum = np.cumsum(pca.explained_variance_ratio_)
d = np.argmax(cumsum >= 0.95) + 1

d

154
```

(2) Draw the described variance as a function of the number of dimensions

PCA for compresssion

$$\mathbf{X}_{\text{recovered}} = \mathbf{X}_{d\text{-proj}} \mathbf{W}_d^{\mathsf{T}}$$

Random PCA

```
rnd_pca = PCA(n_components=154, svd_solver="randomized", random_state=42)
X_reduced = rnd_pca.fit_transform(X_train)
```

Computational Complexity : $O(m * d^2) + O(d^3)$

Lost a certain amount of information in projection, so it can be recovered to a similar dataset, not the same

Random PCA uses stochastic algorithms to quickly find approximations for d principal components

Incremental PCA

Problems with implementation: SVD algorithms require the entire training set to run

=> Develop an incremental PCA

(1) Injected into the incrementalPCA and called partial_fit() per mini-batch

```
from sklearn.decomposition import IncrementaIPCA

n_batches = 100
inc_pca = IncrementaIPCA(n_components=154)
for X_batch in np.array_split(X_train, n_batches):
    print(".", end="") # 책에는 없음
    inc_pca.partial_fit(X_batch)

X_reduced = inc_pca.transform(X_train)
```

(2) Use memmap to load data into memory when needed

```
X_mm = np.memmap(filename, dtype="float32", mode="readonly", shape=(m, n))
batch_size = m // n_batches
inc_pca = IncrementaIPCA(n_components=154, batch_size=batch_size)
inc_pca.fit(X_mm)
```

IncrementalPCA(batch_size=525, n_components=154)

Kernel PCA enables complex nonlinear transformation for dimensionality reduction

```
from sklearn.decomposition import KernelPCA

rbf_pca = KernelPCA(n_components = 2, kernel="rbf", gamma=0.04)
X_reduced = rbf_pca.fit_transform(X)
```

Kernel Selection and Hyper parameter Tuning

To obtain the highest classification accuracy, Use GridSearch to find the best kernel And gamma parameters of kPCA

04 Kernel PCA

Select the kernel and hyper parameters that create the lowest reconstruction error through the kernel trick

05 LLE: Locally linear embedding

Non-projection-dependent manifold learning as a technique for nonlinear dimensionality reduction

- How LLE works
- 1) Find the nearest neighbor k for training sample x
- 2) Reconfigure x as a linear function for neighbors

$$\widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{i=1}^{m} \left(\mathbf{x}^{(i)} - \sum_{j=1}^{m} w_{i,j} \mathbf{x}^{(j)} \right)^{2}$$
subject to
$$\begin{cases} w_{i,j} = 0 & \text{if } \mathbf{x}^{(j)} \text{ is not one of the } k \text{ c.n. of } \mathbf{x}^{(i)} \\ \sum_{j=1}^{m} w_{i,j} = 1 \text{ for } i = 1, 2, \dots, m \end{cases}$$

3) Map the training samples to d-dimensional to preserve the local linear relationship between training samples $\widehat{\mathbf{z}} = \underset{\mathbf{z}}{\operatorname{argmin}} \sum_{i=1}^{m} \left(\mathbf{z}^{(i)} - \sum_{i=1}^{m} \widehat{w}_{i,j} \mathbf{z}^{(j)}\right)^{2}$

Computational Complexity

- 1) Find the nearest neighbor k: O(mlog(m) nlog(k))
- 2) Weight optimization: O(mk³)
- 3) Create a low-dimensional RepresentationO(dm²)

THANK YOU