BOLT PROJECT OVERVIEW John E. Laird

Soar Workshop

PIs:

Bob Bechtel, Soar Technology John Laird, University of Michigan Edwin Olson, University of Michigan

Modeling human reasoning. Enhancing human performance.

DARPA BOLT, Activity E

(Broad Operational Language Translation)

"Grounded Language Acquisition: research in deep semantic language acquisition using robotic visual and tactile information as input for experiential learning of objects actions and learning of objects, actions, and consequences."

- Five-year project
- Five funded groups
 - Soar Tech/Michigan, Arizona, Berkeley, MIT, Rochester
 - Wide variety of approaches being pursued
 - We are only one using a cognitive architecture
- Why are we doing it?
 - Another step in integrating Soar with real world.
 - Another step in using and learning natural language.
 - Another step in using instruction to build up knowledge.

Our Research Goal

- Fast and robust language learning that is grounded in ongoing experience.
 - Learn adjectives/nouns, prepositions, verbs in a real-world robotic environment
 - Learn during task performance dynamically extending language
- Approach:
 - Situated Interactive Instruction
 - Supplemented by supervised, unsupervised, reinforcement, and analytic learning mechanisms
 - In a cognitive architecture (Soar!)
 - Learning across production, episodic, and semantic memories.

Approach: Situated Interactive Instruction

Instruction-based learning

Human guides language acquisition through language

Initial task is object movement in a fake kitchen

- Situated Instruction
 - Instruction grounded in the real world
 - Agent learns while interacting with environment:
 guided by instruction and through exploration
- Interactive Instruction
 - Agent asks for help when it needs it
 - Human corrects and extends agent's knowledge
 - Human can aid with language acquisition, instruction interpretation, and task performance.
- Understanding is demonstrated through performance

Environment and Agent Interface

- Test Environment
 - Tabletop with robot arm at center
 - Identified regions
 - Foam blocks of various shapes and colors
- System physical capabilities (and in simulation)
 - Visual sensing:
 - Color camera and Kinect. XYZ location, color, size, shape
 - Arm can cover about 330° and has max range of about one foot
- Primitive commands point-to, pick-up(ObjID), place-at(X,Y,Z)
- Basic syntactic knowledge (sentence structure) is built in

Simple Instruction Examples

- Learn new nouns and adjectives
 - "This is a red triangle"
- Learn new prepositions that map to spatial relations
 - "The red triangle is right-of the blue sphere"
- Demonstrate what is has learned
 - "Describe the scene."
- Execute primitive verb using learned features
 - "Put the red cylinder in the pantry"
- Learn new verb that is composition of primitive verbs
 - "Move the red triangle to the pantry"

Agent Overview

Phase I: Syntactical Processing

Language Parsing and Sentence Categorization - Sam Wintermute

Phase II: Interaction Managment

Interaction Model - Shiwali Mohan

Phase III: Grounded Comprehension

Noun/Adjective Comprehension and Learning - Aaron Mininger Preposition Comprehension Learning - James Kirk Situated Comprehension of Action Commands - Shiwali Mohan

Phase IV: Behavior Execution

Verb Learning - Shiwali Mohan

Demonstration Tonight!