Exp. Mail No. EM035613879US IDS Filed on March 5, 2008 For USAN 10/714,389

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

A01N 37/18, 43/04, C12Q 1/00, 1/02, 1/68, C12N 5/00, 5/06, 15/00, 15/06, 15/09, 15/10, 15/11, G01N 33/53

(11) International Publication Number:

WO 98/54963

A2 |

(43) International Publication Date:

10 December 1998 (10.12.98)

(21) International Application Number:

PCT/US98/11422

(22) International Filing Date:

4 June 1998 (04.06.98)

(30) Priority Data:

60/048,915 60/048,882 6 June 1997 (06.06.97) 6 June 1997 (06.06.97)

US US

(Continued on the following page)

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): YOUNG, Paul [US/US]; 122 Beckwith Street, Gaithersburg, MD 20878 (US). GREENE, John, M. [US/US]; 872 Diamond Drive, Gaithersburg, MD 20878 (US). FERRIE, Ann, M. [US/US]; 13203 L Astoria Hill Court, Germantown, MD 20874 (US). RUBEN, Steven, M. [US/US]; 18528 Heritage Hills Drive, Olney, MD 20832 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hill Road, Laytonsville, MD 20882 (US). HU, Jing-Shan [CN/US]; 1247 Lakeside Drive #3034, Sunnyvale, CA 94086 (US). OLSEN, Henrik, S. [DK/US]; 182 Kendrick Place #24, Gaithersburg, MD 20878 (US). EBNER, Reinhard [DE/US]; 9906 Shelbume Terrace #316,

Gaithersburg, MD 20878 (US). BREWER, Laurie, A. [US/US]; 14920 Mt. Nebo Road, Poolesville, MD 20837 (US). MOORE, Paul, A. [GB/US]; Apartment 104, 1908 Holly Ridge Drive, McLean, VA 22102 (US). SHI, Yanggu [CN/US]; 437 West Side Drive, Gaithersburg, MD 20878 (US). FLORENCE, Charles [US/US]; (US). FLORENCE, Kimberly [US/US]; 12805 Atlantic Avenue, Rockville, MD 20851 (US). LAFLEUR, David, W. [US/US]; 1615 Q Street, N.W. #807, Washington, DC 20009 (US). NI, Jian [CN/US]; 5502 Manorfield Road, Rockville, MD 20853 (US). FAN, Ping [CN/US]; Apartment 302, 335 West Side Drive, Gaithesburg, MD 20878 (US). WEI, Ying-Fei [CN/US]; 13524 Straw Bale Lane, Damestown, MD 20878 (US). FISCHER, Carrie, L. [US/US]; 5810 Hall Street, Burke, VA 22015 (US). SOPPET, Daniel, R. [US/US]; 15050 Stillfield Place, Centreville, VA 22020 (US). LI, Yi [CN/US]; 1247 Lakeside Drive #3034, Sunnyvale, CA 94086 (US). ZENG, Zhizhen [CN/US]; 13950 Saddleview Drive, Gaithersburg, MD 20878 (US). KYAW, Hla [MM/US]; 520 Sugarbush Circle, Frederick, MD 21703 (US). YU, Guo-Liang [CN/US]; 13524 Straw Bale Lane, Darnestown, MD 20878 (US). FENG, Ping [CN/US]; 4 Relda Court, Gaithersburg, MD 20878 (US). DILLON, Patrick, J. [US/US]; 1055 Snipe Court, Carlsbad, CA 92009 (US). ENDRESS, Gregory, A. [US/US]; 9729 Clagett Farm Drive, Potomac, MD 20854 (US). CARTER, Kenneth, C. [US/US]; 11601 Brandy Hall Lane, North Potomac, MD 20878 (US).

- (74) Agents: HOOVER, Kenley, K. et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 10850 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With declaration under Article 17(2)(a); without abstract; title not checked by the International Searching Authority.

(54) Title: 207 HUMAN SECRETED PROTEINS

(Continued)	
-------------	--

60/048,892	6 June 1997 (06,06,97)	ÙS	60/057,651	5 September 1997 (05.09.97)	US
60/048.901	6 June 1997 (06.06.97)	US	60/057,769	5 September 1997 (05.09.97)	US
60/048,900	6 June 1997 (06.06.97)	US	60/057,643	5 September 1997 (05.09.97)	US
60/048,893	6 June 1997 (06.06.97)	US	60/057,645	5 September 1997 (05.09.97)	US
60/048,964	6 June 1997 (06.06.97)	US	60/057,668	5 September 1997 (05.09.97)	US
60/048.884	6 June 1997 (06.06.97)	US	60/057,635	5 September 1997 (05.09.97)	US
60/048.894	6 June 1997 (06.06.97)	US	60/057,627	5 September 1997 (05.09.97)	US
60/048,971	6 June 1997 (06,06.97)	US	60/057,667	5 September 1997 (05.09.97)	US
60/048,885	6 June 1997 (06.06.97)	US	60/057,666	5 September 1997 (05.09.97)	US
60/049,375	6 June 1997 (06.06.97)	US	60/057,764	5 September 1997 (05.09.97)	US
60/048,881	6 June 1997 (06.06.97)	US	60/057,644	5 September 1997 (05.09.97)	US
60/048.880	6 June 1997 (06.06.97)	US	60/057,765	5 September 1997 (05.09.97)	US
60/048,896	6 June 1997 (06.06.97)	US	60/057,762	5 September 1997 (05.09.97)	US
60/049,020	6 June 1997 (06.06.97)	US	60/057,775	5 September 1997 (05.09.97)	US
60/048,876	6 June 1997 (06.06.97)	US	60/057,634	5 September 1997 (05.09.97)	US
60/048,895	6 June 1997 (06.06.97)	US	60/05 7,777	5 September 1997 (05.09.97)	US
60/049,019	6 June 1997 (06.06.97)	US	60/057,628	5 September 1997 (05.09.97)	US
60/048,916	6 June 1997 (06.06.97)	US	60/057,776	5 September 1997 (05.09.97)	US
60/048,970	6 June 1997 (06.06.97)	US	60/057,760	5 September 1997 (05.09.97)	US
60/048,972	6 June 1997 (06.06.97)	US	60/057,761	5 September 1997 (05.09.97)	US
60/048,949	6 June 1997 (06.06.97)	US	60/057,771	5 September 1997 (05.09.97)	US
60/048,974	6 June 1997 (06.06.97)	US	60/057,770	5 September 1997 (05.09.97)	US
60/048,883	6 June 1997 (06.06.97)	US	60/057,649	5 September 1997 (05.09.97)	US
60/048,897	6 June 1997 (06.06.97)	US	60/057,774	5 September 1997 (05.09.97)	US
60/048,898	6 June 1997 (06.06.97)	US	60/057,648	5 September 1997 (05.09.97)	US
60/049,373	6 June 1997 (06.06.97)	US	60/057,642	5 September 1997 (05.09.97)	US
60/048,917	6 June 1997 (06.06.97)	US	60/057,629	5 September 1997 (05.09.97)	US
60/048,962	6 June 1997 (06.06.97)	US	60/057,778	5 September 1997 (05.09.97)	US
60/048,878	6 June 1997 (06.06.97)	US	60/057,763	5 September 1997 (05.09.97)	US
60/049,374	6 June 1997 (06.06.97)	US	60/057,584	5 September 1997 (05.09.97)	US
60/048,875	6 June 1997 (06.06.97)	US	60/057,654	5 September 1997 (05.09.97)	US
60/048,899	6 June 1997 (06.06.97)	US	60/057,646	5 September 1997 (05.09.97)	US
60/048,877	6 June 1997 (06.06.97)	US	60/057,662	5 September 1997 (05.09.97)	US
60/048,963	6 June 1997 (06.06.97)	US	60/057,650	5 September 1997 (05.09.97)	US
			60/057,661	5 September 1997 (05.09.97)	US
			60/057,647	5 September 1997 (05.09.97)	US
			60/070,923	18 December 1997 (18.12.97)	US

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL -	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN:	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
cz	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 98/54963 PCT/US98/11422

207 Human Secreted Proteins

1

Field of the Invention

This invention relates to newly identified polynucleotides and the polypeptides encoded by these polynucleotides, uses of such polynucleotides and polypeptides, and their production.

5

10

15

20

25

30

35

Background of the Invention

Unlike bacterium, which exist as a single compartment surrounded by a membrane, human cells and other eucaryotes are subdivided by membranes into many functionally distinct compartments. Each membrane-bounded compartment, or organelle, contains different proteins essential for the function of the organelle. The cell uses "sorting signals," which are amino acid motifs located within the protein, to target proteins to particular cellular organelles.

One type of sorting signal, called a signal sequence, a signal peptide, or a leader sequence, directs a class of proteins to an organelle called the endoplasmic reticulum (ER). The ER separates the membrane-bounded proteins from all other types of proteins. Once localized to the ER, both groups of proteins can be further directed to another organelle called the Golgi apparatus. Here, the Golgi distributes the proteins to vesicles, including secretory vesicles, the cell membrane, lysosomes, and the other organelles.

Proteins targeted to the ER by a signal sequence can be released into the extracellular space as a secreted protein. For example, vesicles containing secreted proteins can fuse with the cell membrane and release their contents into the extracellular space - a process called exocytosis. Exocytosis can occur constitutively or after receipt of a triggering signal. In the latter case, the proteins are stored in secretory vesicles (or secretory granules) until exocytosis is triggered. Similarly, proteins residing on the cell membrane can also be secreted into the extracellular space by proteolytic cleavage of a "linker" holding the protein to the membrane.

Despite the great progress made in recent years, only a small number of genes encoding human secreted proteins have been identified. These secreted proteins include the commercially valuable human insulin, interferon, Factor VIII, human growth hormone, tissue plasminogen activator, and erythropoeitin. Thus, in light of the pervasive role of secreted proteins in human physiology, a need exists for identifying and characterizing novel human secreted proteins and the genes that encode them. This knowledge will allow one to detect, to treat, and to prevent medical disorders by using secreted proteins or the genes that encode them.

Summary of the Invention

The present invention relates to novel polynucleotides and the encoded polypeptides. Moreover, the present invention relates to vectors, host cells, antibodies, and recombinant methods for producing the polypeptides and polynucleotides. Also provided are diagnostic methods for detecting disorders related to the polypeptides, and therapeutic methods for treating such disorders. The invention further relates to screening methods for identifying binding partners of the polypeptides.

10

15

20

25

30

35

5

Detailed Description

Definitions

The following definitions are provided to facilitate understanding of certain terms used throughout this specification.

In the present invention, "isolated" refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered "by the hand of man" from its natural state. For example, an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be "isolated" because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide.

In the present invention, a "secreted" protein refers to those proteins capable of being directed to the ER, secretory vesicles, or the extracellular space as a result of a signal sequence, as well as those proteins released into the extracellular space without necessarily containing a signal sequence. If the secreted protein is released into the extracellular space, the secreted protein can undergo extracellular processing to produce a "mature" protein. Release into the extracellular space can occur by many mechanisms, including exocytosis and proteolytic cleavage.

As used herein, a "polynucleotide" refers to a molecule having a nucleic acid sequence contained in SEQ ID NO:X or the cDNA contained within the clone deposited with the ATCC. For example, the polynucleotide can contain the nucleotide sequence of the full length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, with or without the signal sequence, the secreted protein coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence. Moreover, as used herein, a "polypeptide" refers to a molecule having the translated amino acid sequence generated from the polynucleotide as broadly defined.

In the present invention, the full length sequence identified as SEQ ID NO:X was often generated by overlapping sequences contained in multiple clones (contig

10

15

20

25

30

35

analysis). A representative clone containing all or most of the sequence for SEQ ID NO:X was deposited with the American Type Culture Collection ("ATCC"). As shown in Table 1, each clone is identified by a cDNA Clone ID (Identifier) and the ATCC Deposit Number. The ATCC is located at 10801 University Boulevard, Manassas, Virginia 20110-2209, USA. The ATCC deposit was made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for purposes of patent procedure.

A "polynucleotide" of the present invention also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID NO:X, the complement thereof, or the cDNA within the clone deposited with the ATCC. "Stringent hybridization conditions" refers to an overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 µg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65°C.

Also contemplated are nucleic acid molecules that hybridize to the polynucleotides of the present invention at lower stringency hybridization conditions. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature. For example, lower stringency conditions include an overnight incubation at 37°C in a solution comprising 6X SSPE (20X SSPE = 3M NaCl; 0.2M NaH₂PO₄; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 ug/ml salmon sperm blocking DNA; followed by washes at 50°C with 1XSSPE, 0.1% SDS. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).

Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.

Of course, a polynucleotide which hybridizes only to polyA+ sequences (such as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a

WO 98/54963 PCT/US98/11422

4

complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide," since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone).

5

10

15

20

25

30

35

The polynucleotide of the present invention can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. For example, polynucleotides can be composed of single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, the polynucleotide can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. A polynucleotide may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically, or metabolically modified forms.

The polypeptide of the present invention can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids. The polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine.

10

15

20

25

30

35

formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. (See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993); POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth Enzymol 182:626-646 (1990); Rattan et al., Ann NY Acad Sci 663:48-62 (1992).)

"SEQ ID NO:X" refers to a polynucleotide sequence while "SEQ ID NO:Y" refers to a polypeptide sequence, both sequences identified by an integer specified in Table 1.

"A polypeptide having biological activity" refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that of the polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the polypeptide of the present invention (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the polypeptide of the present invention.)

Polynucleotides and Polypeptides of the Invention

FEATURES OF PROTEIN ENCODED BY GENE NO: 1

This gene is expressed primarily in melanocytes and, to a lesser extent, in testes, ovary, kidney and other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer, disorders of neural crest derived cells including pigmentation defects, melanoma, reproductive organ defects, and defects of the kidney. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skin.

WO 98/54963

6

PCT/US98/11422

reproductive, and renal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating disorders that arise from alterations in the number or fate of neural crest derived cells including cancers such as melanoma and defects of the developing reproductive system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 2

5

10

15

20

25

30

This gene is expressed primarily in infant brain and fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental disorders of the brain or lung. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous and pulmonary systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating or diagnosing disorders associated with abnormal proliferation of cells in the Central nervous system and developing lung.

FEATURES OF PROTEIN ENCODED BY GENE NO: 3

This gene is expressed primarily in breast lymph node and to a lesser extent in ovarian cancer and chondrosarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune responses such as inflammation or immune surveillance for

WO 98/54963 PCT/US98/11422

7

tumors. This gene may be important for inflammatory responses associated with tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 236 as residues: Lys-45 to Val-50, Lys-69 to Arg-76.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment or diagnosis of immune responses including those associated with tumor-induced inflammation.

15

20

25

30

35

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 4

This gene is expressed primarily in T-cells and T-cell lymphomas.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunilogical diseases involving T-cells such as inflammation, autoimmunity, and cancers including T-cell lymphomas. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of T-cells and other cells of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosing and treating T-cell based disorders such as inflammatory diseases, autoimmune disease and tumors including T-cell lymphomas.

10

15

20

25

30

35

8

FEATURES OF PROTEIN ENCODED BY GENE NO: 5

This gene is expressed primarily in activated monocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation, autoimmunity, infection, or disorders involving activation of monocytes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 238 as residues: Asp-19 to Arg-31.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosing or treating diseases that result in activation of monocytes including infections, inflammatory responses or autoimmune diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 6

The translation product of this gene shares sequence homology with terminal deoxynucleotidyltransferase which is thought to be important in catalyzing the elongation of oligo- or polydeoxynucleotide chains.

This gene is expressed primarily in activated human neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer, particularly those of the blood such as leukemia and deficiencies in neutrophils such as neutropenia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having

10

15

20

25

30

35

such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to terminal deoxynucleotidyltransferase indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and differential diagnosis of acute leukemia's. Alternatively, this gene may function in the proliferation of neutrophils and be useful as a treatment for neutropenia, for example, following neutropenia as a result of chemotherapy.

FEATURES OF PROTEIN ENCODED BY GENE NO: 7

The contig exhibits a reasonable homology to the human chorionic gonadotropic (HCG) analogue-GT beta-subunit as disclosed in U.S. Patent No. 5,508,261 and PCT Publication No. WO 92/22568. There is a high degree of conservation of the structurally important cysteine residues in these identities.

This gene is expressed primarily in IL-1 and LPS induced neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the immune system, including inflammatory diseases and allergies. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of diseases of the immune system since expression is primarily in neutrophils, and may be useful as a growth factor for the differentiation or proliferation of neutrophils for the treatment of neutropenia following chemotherapy.

FEATURES OF PROTEIN ENCODED BY GENE NO: 8

This gene is expressed primarily in IL-1- and LPS-induced neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

10

15

20

25

30

35

biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the immune system, including inflammatory diseases and allergies. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 241 as residues: Ser-14 to Pro-22, Leu-43 to Val-53.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of diseases of the immune system since expression is primarily in neutrophils, and may be useful as a growth factor for the differentiation or proliferation of neutrophils for the treatment of neutropenia following chemotherapy.

FEATURES OF PROTEIN ENCODED BY GENE NO: 9

This gene is expressed primarily in IL-1 and LPS induced neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the immune system, including inflammatory diseases and allergies. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 242 as residues: Tyr-22 to His-35.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of diseases of the immune system since expression is primarily in neutrophils, and may be useful as a growth

WO 98/54963 PCT/US98/11422

11

factor for the differentiation or proliferation of neutrophils for the treatment of neutropenia following chemotherapy.

FEATURES OF PROTEIN ENCODED BY GENE NO: 10

This gene is expressed primarily in activated T-cells and to a lesser extent in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune dysfunctions including cancer of the T lymphocytes and autoimmune disorders and inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of immune disorders particularly of T-cell origin and may act as a growth factor for particular subsets of T-cells such as CD4 positive cells which would make this a useful therapeutic for the treatment of HIV and other immune compromising illnesses.

25

- 30

35

5

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 11

This gene is expressed primarily in fetal tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of many developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developing fetus, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

10

15

20

25

35

the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful as a growth factor or differentiation factor for particular cell types in the developing fetus and may be useful in replacement or other types of therapy in cases where the gene is expressed aberrantly.

FEATURES OF PROTEIN ENCODED BY GENE NO: 12

This gene is expressed primarily in T-cells and to a lesser extent in tumor tissue including glioblastoma, meningioma, and Wilm's tumor.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the immune system including autoimmune conditions such as rheumatoid arthritis, inflammatory disorders and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 245 as residues: Thr-9 to Ser-14.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis/ modulation of immune function disorders, including rheumatoid arthritis and inflammatory responses.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 13

This gene is expressed primarily in placenta and to a lesser extent in fetal liver and bone marrow.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of hematological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of

10

15

20

25

30

35

disorders of the above tissues or cells, particularly of the hematological and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful as a growth factor for hematapoietic stem cells or progenitor cells in the treatment of chemotherapy patients or kidney disease.

FEATURES OF PROTEIN ENCODED BY GENE NO: 14

This gene is expressed primarily in stromal cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of hematapoietic disorders including cancer, neutropenia, anemia, and thrombocytopenia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematapoietic and immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful as a growth factor for hematapoietic stem cells or progenitor cells, in particular following chemotherapy treatment.

FEATURES OF PROTEIN ENCODED BY GENE NO: 15

The translation product of this gene shares sequence homology with epsilon-COP from Bos taurus which is thought to be important as a component of coatomer, a complex of seven proteins, that is the major component of the non-clathrin membrane coat. Preferred polypeptides encoded by this gene comprise the following amino acid sequences:

MAPPAPGPASGGSGEVDELFDVKNAFYIGSYQQCINEAXXVKLSSPERDVERD

10

30

35

VFLYRAYLAQRKFGVVLDEIKPSSAPELQAVRMFADYLAHESRRDSIVAELDRE MSRSXDVTNTTFLLMAASIYLHDQNPDAALRALHQGDSLECTAMTVQILLKLD RLDLARKELKRMQDLDEDATLTQLATAWVSLATGGEKLQDAYYIFQEMADKCS PTLLLLNGQAACHMAQGRWEAAEGLLQEALDKDSGYPETLVNLIVLSQHLGKP PEVTNRYLSQLKDAHRSHPFIKEYQAKENDFDRLVLQYAPSAEAGPELSGP (SEQ ID NO:458); or RDVERDVFLYRAYLAQRKFGVVLDEIKPSSAPELQAVRMF ADYLAHESRRDSIVAELDREMSRSXDVTNTTFLLMAASIYLHDQNPDAALRALH QGDSLECTAMTVQILLKLDRLDLARKELKRMQDLDEDATLTQLATAWVSLATG GEKLQDAYYIFQEMADKCSPTLLLLNGQAACHMAQGRWEAAEGLLQEALDKD SGYPETLVNLIVLSQHLGKPPEVTNRYLSQLKDAHRSHPFIKEYQAKENDFDRL VLQYAPSA (SEQ ID NO:459).

This gene is expressed primarily in activated monocytes and T-cells, and to a lesser extent in multiple other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as 15 reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunomodulation, specifically relating to transport problems in these cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell 20 type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene 25 expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to epsilon-COP indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating /diagnosing problems with the cellular transport of proteins that may result in immunologic dysfunction.

FEATURES OF PROTEIN ENCODED BY GENE NO: 16

The translation product of this gene shares sequence homology with an RNA helicase which is thought to be important in polynucleotide metabolism. The translation product of this contig exhibits good homology to the LbeIF4A antigen of Leishmania braziliensis. The LbeIF4A antigen, or immunogenic portions of it, can be used to induce protective immunity against leishmaniasis, specifically L. donovani, L. chagasi,

WO 98/54963 PCT/US98/11422

15

L. infantum, L. major, L. braziliensis, L. panamensis, L. tropica and L. guyanensis. It can also be used diagnostically to detect Leishmania infection or to stimulate a cellular and/or humoral immune response or to stimulate the production of interleukin-12.

This gene is expressed primarily in colon cancer and to a lesser extent in pituitary.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of cancers particularly of the colon. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the gastrointestinal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 249 as residues: Glu-93 to Ala-98, Gln-150 to Leu-156, Leu-220 to Leu-231, Leu-268 to Arg-273, Val-324 to Pro-341, Arg-372 to Asn-380, Ser-405 to Gly-410, Phe-426 to Ala-433, Glu-458 to Asp-470, Arg-506 to Ser-547.

The tissue distribution and homology to RNA helicase indicates that polynucleotides and polypeptides corresponding to this gene are useful for development of diagnostic tests for colon cancer.

25

30

35

5

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 17

The translation product of this contig has sequence homology to a cytoplasmic protein that binds specifically to JNK designated the JNK interacting protein-1 or JIP-1 in mice. JIP-1 caused cytoplasmic retention of JNK and inhibition of JNK-regulated gene expression.

This gene is expressed primarily in brain including pituitary cerebellum frontal cortex, fetal brain and to a lesser extent in the kidney cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of the central nervous system disorders including ischemia, epilepsy, Parkinson's disease, and schizophrenia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological

10

15

20

25

30

35

probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Furthermore, the translation product of this contig may suppress the effects of the JNK signaling pathway on cellular proliferation, including transformation by the Bcr-Abl oncogene. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 250 as residues: Pro-6 to Ser-26, Ala-30 to Asp-41, Gly-55 to Ser-61, Gly-74 to Thr-80, Tyr-117 to Ala-123, Tyr-167 to Asp-172, Ala-212 to Cys-223, Pro-239 to Tyr-244.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for enhanced survival and/or differentiation of neurons as a treatment for neurodegenerative disease.

FEATURES OF PROTEIN ENCODED BY GENE NO: 18

The translation product of this gene shares sequence homology with a liver stage antigen from a protozoan parasite.

This gene is expressed primarily in fetal tissue and to a lesser extent in activated T-cells and other immune cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental abnormalities and diseases of immune function. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

PCT/US98/11422 WO 98/54963

17

The tissue distribution and homology to a protozoan antigen indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/immune modulation of parasitic infections.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 19

10

15

35

Preferred polypeptide encoded by this gene comprise the following polypeptide sequences:

MKAIGIEPSLATYHHIIRLFDQPGDPLKRSSFIIYDIMNELMGKRFSPKD PDDDKFFQSAMSICSSLRDLELAYQVHGLLKTGDNWKFIGPDQHRNFYYSKFF DLICLMEQIDVTLKWYEDLIPSAYFPHSQTMIHLLQALDVANRLEVIPKIWER (SEQ ID NO:460); and/or KDSKEYGHTFRSDLREEILMLMARDKHPPELQVAF ADCAADIKSAYESQPIRQTAQDWPATSLNCIAILFLRAGRTQEAWKMLGLFRKH NKIPRSELLNELMDSAKVSNSPSQAIEVVELASAFSLPICEGLTQRVMSDFAINQ EQKEALSNLTALTSDSDTDSSSDSDSDTSEGK (SEQ ID NO:461). Polynucleotides encoding such polypeptides are also provided.

This gene is expressed primarily in stromal and CD34 depleted bone marrow cells and to a lesser extent in tissues of embryonic origin.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are 20 not limited to, diseases of hematologic origin including cancers and immune dysfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of 25 the hematapoietic and immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily 30 fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 252 as residues: Ser-28 to Gln-34.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful as a growth factor for hematopoietic stem cells or progenitor cells which may be useful in the treatment of chemotherapy patients suffering from neutropenia.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 20

Preferred polypeptide fragments can be found in an alternative open reading frame. These preferred polypeptides comprise the amino acid sequence: MSSDNESDIEDEDLKLELRRLRDKHLKEIQDLQSRQKHEIESLYTKLGKVPPAVI IPPAAPLSGRRRPTKSKGSKSSRSSSLGNKSPQLSGNLSGQSAASVLHPQOTL HPPGNIPESGQNQLLQPLKPSPSSDNLYSAFTSDGAISVPSLSAPGQGTSSTNTV GATVNSQAAQAQPPAMTSSRKGTFTDDLHKLVDNWARDAMNLSGRRGSKGH MNYEGPGMARKFSAPGQLCISMTSNLGGSAPISAASATSLGHFTKSMCPPQQY GFPATPFGAQWSGTGGPAPQPLGQFQPVGTASLQNFNISNLQKSISNPPGSNL RTT (SEQ ID NO:462); IQDLQSRQKHEIESLYTKLGKVPPAVIIPPAAPLSGRRRR PTKSKGSKSSRSSSLGNKSPQLSGNLSGQSAASVLHPQQTLHPPGNIPESGQN QLLQPLKPSPSSDNLYSAFTSDGAISVPSLSAPGQGTSST (SEQ ID NO:463); TSDGAISVPSLSAPGQGTSSTNTVGATVNSQAAQAQPPAMTSSRKGTFTDDLH (SEQ ID NO:464); KGHMNYEGPGMARKFSAPGQLCISMTSNLGGSAPISAAS ATSLGHFTK (SEQ ID NO:465); QPLKPSPSSDNLYSAFTSDGAISVPSLSAPG (SEQ ID NO:466). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed in fetal liver and tissues associated with the CNS.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, liver and CNS diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the liver and CNS, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 253 as residues: Gln-26 to Lys-34.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment for liver diseases such as hepatocellular carcinomas and diseases of the CNS.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 21

In an alternative reading frame, this gene shows sequence homology to two recently cloned genes, karyopherin beta 3 and Ran_GTP binding protein 5. (See Accession Nos. gil2102696 and gnllPIDle328731.) The Ran_GTP binding protein is related to importin-beta, the key mediator of nuclear localization signal (NLS)-dependent nuclear transport. Based on homology, it is likely that this gene may activity similar to the RAN_GTP binding protein. Preferred polypeptide fragments comprise the amino acid sequence: VRVAAAESMXLLLECAXVRGPEYLTQMWHFMCDALIKA IGTEPDSDVLSEIMHSFAK (SEQ ID NO:467). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed in thymus tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment for immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 22

This gene is expressed primarily in prostate and osteoclastoma tissues. Preferred polypeptide fragments also comprise the amino acid sequence: MEINNQNCFIVIDLVRTVMENGVEGLLIFGAFLPESWLIGVRCSSEPPKALLLIL AHSQKRRLDGWSFIRHLRVHYCVSLTIHFS (SEQ ID NO:468). Also preferred are polynucleotide sequences encoding this polypeptide fragment.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, bone and prostate diseases, and cancers, particularly of the bone and prostate. Similarly, polypeptides and antibodies directed to these polypeptides are

10

15

20

25

30

35

useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the bone and prostate systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 255 as residues: Met-1 to Ser-11.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment for bone and prostate disorders, especially cancers of those systems.

FEATURES OF PROTEIN ENCODED BY GENE NO: 23

This gene shares sequence homology with the FK506-binding protein (FKBP-13) family, a known cytosolic receptor for the immunosuppressants. Recently, another group has cloned a very similar gene, recognizing the homology to FK506-binding protein family, calling their gene FKBP23. (See Accession No. 2827255.)

This gene is expressed primarily in lymphoid tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample, especially for those susceptible to immune suppressant therapies and for diagnosis of diseases and conditions, which include, but are not limited to, immune suppressant disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 256 as residues: Ala-19 to Val-31, Arg-38 to Gly-49, Ala-61 to Lys-66, Tyr-68 to Pro-78, Gly-116 to Ala-121, Asp-154 to Ser-162, Glu-173 to Gln-186, Phe-194 to Gly-203, Pro-207 to Val-212.

15

20

25

30

35

The tissue distribution and homology to FKBP-12 and -13 indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment for immune suppressant disorders.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 24

This gene is expressed primarily in the brain and in the retina. This gene maps to chromosome 8, and therefore can be used in linkage analysis as a marker for chromosome 8.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological and ocular associated disease states. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the disorders of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 257 as residues: Cys-34 to Asp-40.

The tissue distribution in retina indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and/or detection of eye disorders including blindness, color blindness, impaired vision, short and long sightedness, retinitis pigmentosa, retinitis proliferans, and retinoblastoma. Expression in the brain indicates a role in the is useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 25

This gene shows sequence homology to a newly identified class of proteins expressed in the nervous system, called stathmin family. (See Accession No. 2585991; see also Eur. J. Biochem. 248 (3), 794-806 (1997).) The stathmin family appears to be an ubiquitous phosphoprotein involved as a relay integrating various intracellular signaling pathways. These pathways affect cell proliferation and differentiation.

10

15

20

30

35

Preferred polypeptide fragments comprise the amino acid sequence:

QDKHAEEVRKNKELKEEASR (SEQ ID NO:469); QQDLSPWAAPVGCPLXXASX

TCHXLPLSGCLRRQSXSLPVVAXLCFWFSCPLASLFVPGQPCVTCPFPSLPFQD

KHAEEVRKNKELKEEASR (SEQ ID NO:470). Also preferred are the polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntintons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 26

The polynucleotide sequence of this gene contains a domain similar to a Flt3 ligand peptide. Preferred polypeptide fragments comprise the amino acid sequence: PTRCCTTQPCRSSARRPCWVPMVPSPEGREXQPTCPS (SEQ ID NO:471). Thus, this gene may have activity as binding to Flt3 receptors, a process known to promote angiogenesis and/or lymphangiogenesis.

This gene is expressed in human tonsil, and to a lesser extent in teratocarcinoma, placenta, colon carcinoma, and fetal kidney.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the tonsil, as well as cancers, such as colon, reproductive, and kidney cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful

WO 98/54963 PCT/US98/11422

23

in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the tonsils, colon, reproductive organs, and kidneys, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 259 as residues: Pro-22 to Glu-33.

5

10

15

25

30

35

The tissue distribution in tonsil and several cancers and fetal tissues indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases of the tonsil or colon, such as tonsillitis, inflammatory diseases involving nose and paranasal sinuses, especially during the infection of influenza, adenoviruses, parainfluenza, rhinoviruses. The gene may also be useful in the diagnosis and treatment of neoplasms of nasopharynx or colon origins.

FEATURES OF PROTEIN ENCODED BY GENE NO: 27

In an alternative reading frame exists a large open reading frame that encodes a 20 preferred polypeptide. Preferred polypeptide fragments comprise the amino acid sequence:

MKRSLNENSARSTAGCLPVPLFNQKKRNRQPLTSNPLKDDSGISTPSDNYDFP PLPTDWAWEAVNPEXAPVMKTVDTGQIPHSVSRPLRSQDSVFNSIQSNTGRSO GGWSYRDGNKNTSLKTWXKNDFKPQCKRTNLVANDGKNSCPMSSGAQQQK QLRTPEPPNLSRNKETELLRQTHSSKISGCTMRGLDKNSALQTLKPNFOONOY KXQMLDDIPEDNTLKETSLYQLQFKEKASSLRIISAVIESMKYWREHAQKTVLL FEVLAVLDSAVTPGPYYSKTFLMRDGKNTLPCVFYEIDRELPRLIRGRVHRCVG NYDQKKNIFQCVSVRPASVSEQKTFQAFVKIADVEMQYYINVMNET (SEQ ID NO:472); SQDSVFNSIQSNTGRSQGGWSYRDGNKNTSLKTWXKNDFKPOCKR

(SEQ ID NO:473); NKETELLRQTHSSKISGCTMRGLDKNSALQTLKPNF (SEQ ID NO:474);SSLRIISAVIESMKYWREHAOKTVLLFEVLAVLDSAVTPGPYYSKTFLM (SEQ ID NO:475); and PRLIRGRVHRCVGNYDQKKNIFQCVSVRPASVSEQKT FQAFV (SEQ ID NO:476).

This gene is expressed primarily in human testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

20

25

30

35

not limited to, male reproductive disorders, including cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful as a hormone with reproductive or other systemic functions; contraceptive development; male infertility of testicular causes, such as Kleinfelterís syndrome, varicocele, orchitis; male sexual dysfunctions; testicular neoplasms; and inflammatory disorders such as epididymitis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 28

This gene is expressed primarily in apoptotic T-cell.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases relating to T cells, as well as cancer in general. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the disorders of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for immune disorders. Moreover, since the gene was isolated from an apoptotic cell and based on the understanding of the relationship of apoptosis and cancer, it is likely that this gene may play a role in the genesis of cancer.

10

15

25

30

WO 98/54963 PCT/US98/11422

25

FEATURES OF PROTEIN ENCODED BY GENE NO: 29

This gene is expressed primarily in human tonsils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, gastrointestinal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the gastrointestinal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of gastrointestinal diseases.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 30

The translation product of this gene shares sequence homology with C44C1.2 gene product of Caenorhabditis elegans with unknown function. Preferred polypeptide fragments comprise the amino acid sequence:

GVFRPCVCGRPASLTCSPLDPEVGPYCDTPTMRTLFNLLWLALACSPVHTTLSK SDAKKAASKTLLEKSQFSDKPVQDRGLVVTDLKAESVVLEHRSYCSAKARDRH FAGDVLGYVTPWNSHGYDVTKVFGSKFTQISPVWLQLKRRGREMFEVTGLHD VDQGWMRAVRKHAKGLHIVPRLLFEDWTYDDFRNVLDSEDEIEELSKTVVQVA KNQHFDGFVVEVWNQLLSQKRVGLIHMLTHLAEALHQARLLALLVIPPAITPGT DQLGMFTHKEFEQLAPVLDGFSLMTYDYSTAHQPGPNAPLSWVRACVQVLDP

- KXKWRTKSSWGSTSMXWTXRXPXDARXPVVGXRXIQXLKDHXPRMVLDSK PQ (SEQ ID NO:477); TCSPLDPEVGPYCDTPTMRTLFNLLWLALACSPVHTTLS (SEQ ID NO:478); LVVTDLKAESVVLEHRSYCSAKARDRHFAGDVLGYVTPW NSHGYDVTKVFGSKF (SEQ ID NO:479); REMFEVTGLHDVDQGWMRAVRK HAKGLHIVPRLLFEDWTYDDFRNVLDSEDE (SEQ ID NO:480); HFDGFVVEVW
- NQLLSQKRVGLIHMLTHLAEALHQARLLALLVIPPAITPGTDQLGM (SEQ ID NO:481); DGFSLMTYDYSTAHQPGPNAPLSWVRACVQVLDPKXKWRTKSSW GST (SEQ ID NO:482). Also preferred are polynucleotide fragments encoding these

10

15

20

35

polypeptide fragments. This gene maps to human chromosome 11, and therefore is useful in linkage analysis as a marker for chromosome 11.

This gene is expressed primarily in human T cells and to a lesser extent in human colon carcinoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and gastrointestinal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 263 as residues: Leu-21 to Ala-30, Ser-38 to Asp-47, Pro-87 to Asp-94, Leu-197 to Thr-204, Pro-256 to Ser-262, Thr-277 to Arg-282, Thr-293 to Trp-303.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of immune disorders and gastrointestinal diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 31

The translation product of this gene shares sequence homology with Ribosomal protein L11 of Caenorhabditis elegans. (See Accession No. 156201.) Preferred polypeptide fragments comprise the amino acid sequence:

ERGVSINQFCKEFNERTKDIKEGIPLPTKILVKPDRTFEIKIGQPTVSYFLKAAAG IEKGARQTGKEVAGLVTLKHVYEIARIKAQDEAFALQDVPLSSVVRSIIGSARSL

GIRVVKDLSSEELAAF QKERAIFLAAQKEADLAAQEEAAKK (SEQ ID NO:483). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed in human embryo tissue and to a lesser extent in human epithelioid sarcoma and other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, development disorders and epithelial cell cancer. Similarly, polypeptides and antibodies

WO 98/54963 PCT/US98/11422

27

directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the embryonic and epithelial cell systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 264 as residues: Lys-34 to Gly-40.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of developmental disorders and epithelial cancer.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 32

5

10

20

25

30

35

This gene is expressed primarily in resting T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammatory and general immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of disorders of immune system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 33

This gene is believed to reside on chromosome 1. Accordingly, polynucleotides derived from this gene are useful in linkage analysis as chromosome 1 markers.

This gene is expressed primarily in prostate and to a lesser extent in soares adult brain, human umbilical vein endothelial cells, and amniotic cells.

WO 98/54963

5

10

15

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, prostate-related disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the urinary system and nervous system expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for the diagnosis and treatment of disorders of the urinary and nervous systems.

FEATURES OF PROTEIN ENCODED BY GENE NO: 34

This gene shares sequence homology with R05G6.4 gene product. (See Accession No. gil1326338.) This gene also shares sequence homology with the cyclophilin-like protein 20 CyP-60. (See Accession No. 1199598, see also Biochem. J. 314 (1), 313-319 (1996).) Preferred polypeptide fragments comprise the amino acid sequence: AVYTYHEKKKDTAASGYGTQNIRLSRDAVKDFDCCCLSLQPCHDPVVTPDGYL YEREAILEYILHQKKEIARQMKAYEKQRGTRREEQKELQRAASQDHVRGFLEKE SAIVSRP LNPFTAKALSGTSPDDVQPGPSVGPPSKDKDKVLPSFWIPSLTPEAK 25 ATKLEKPSRTVTCPMSGKPLRMSDLTPVHFTPLDSSVDRVGLITRSERYVCAVT RDSLSNATPCAVLRPSGAVVTLECVEKLIRKDMVDPVTGDKLTDRDIIVLQRGT (SEQ ID NO:484); YLYEREAILEYILHQKKEIARQMKAYEKQRGTRREEQKELO RAASQDHVRGFLE (SEQ ID NO:485); and FTAKALSGTSPDDVQPGPSVGPP SKDKDKVLPSFWIPSLTPEAKATKLEKPSRTVTCPMSGKPL (SEQ ID NO:486). 30 Also preferred are polynucleotide fragments that encode these polypeptide fragments.

This gene is expressed primarily in human testis and to a lesser extent in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, male reproductive disorders and in particular testicular cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing

10

15

20

25

30

35

immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system. Expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of disorders of the male reproductive system and in particular of testicular cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 35

The translation product of this gene shares sequence homology with Lpe5p of Saccharomyces cerevisiae which is thought to be important in the metabolism of phospholipids.

This gene is expressed primarily in liver and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, metabolic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the metabolic and nervous systems expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 268 as residues: Pro-14 to Leu-20, Lys-28 to Asn-38, Arg-109 to Arg-114, Lys-119 to Asn-124, Glu-152 to Leu-157, Pro-172 to Val-180.

The tissue distribution and homology to Lpe5p of Saccharomyces cerevisiae indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of metabolic and nervous disorders.

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 36

This gene shares sequence homology with the nuclear ribonucleoprotein U (HNRNP U), encoded by *C. elegans* (See Accession gil1703576.) Preferred polypeptide fragments comprise the amino acid sequence:

5 MDTSENRPENDVPEPPMPIADQVSNDDRPEGSVEDEEKKESSLPKSFKRKISVV
SATKGVPAGNSDTEGGQPGRKRRWGASTATTQKKPSISITTESLKSLIPDIKPL
AGQEAVVDLHADDSRISEDETERNGDDGTHDKGLKICRTVTQVVPAEGQENGQ
REEEEEEKEPEAEPPVPPQVSVEVALPPPAEHEVKKVTLGDTLTRRSISQQKSGV
SITIDDPVRTAQVPSPPRGKISNIVHISNLVRPFTLGQLKELLGRTGTLVEEAFWI
10 DKIKSHCFVTYSTVEEAVATRTALHGVKWPQSNPKFLCADYAEQDELDYHRGL
LVDRPSETKTEEQGIPRPLHPPPPPPVQPPQHPRAEQREQERAVREQWAERERE
MERRERTRSEREWDRDKVREGPRSRSRSRXRRRKERAKSKEKKSEKKEKAQE
EPPAKLLDDLFRKTKAAPCIYWLPLTDSQIVQKEAERAERAKEREKRRKEQEEE
EQKEREKEAERERNRQLEREKRREHSRERDRERERERDRGDRDRDRERDRE
15 RGRERDRRDTKRHSRSRSRSTPVRDRGGR (SEQ ID NO:488). Also preferred are
the polynucleotide fragments encoding this polypeptide fragments.

This gene is expressed primarily in epididymus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the male reproductive system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of male reproductive disorders.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 37

This gene is expressed primarily in amygdala.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammatory diseases and reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the amygdala, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of inflammatory diseases and reproductive disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 38

This gene shares sequence homology with human opsonin protein P35 fragment. (See Accession No. R94181.) The opsonin protein activates the phagocytosis of pathogenic microbes by phagocytic cells. Preferred polypeptide fragments comprise the amino acid sequence: GCDSCPPHLPREAFAQDTQAEGECSSRAERADMCPDAP PSQEVPEGPGAAP (SEQ ID NO:489). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed in immune-related tissues such as thymus, macrophage, T cells and to a lesser extent in many other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders and infectious disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and infectious disease, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

10

15

20

25

30

35

the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 271 as residues: Lys-9 to Arg-14, Met-38 to Asp-51.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune disorders, as well as the treatment and/or diagnosis of infectious disease.

FEATURES OF PROTEIN ENCODED BY GENE NO: 39

The translation product of this gene shares sequence homology with alpha-2 type I collagen which is thought to be important in tissue repair. (See, e.g., 211607.) Preferred polypeptide fragments comprise the amino acid sequence: PQLPSCGRPW PGTASVFQSHTQGPREDPDPCRAQGSAGTHCPISLSPPRQ (SEQ ID NO:490). Also preferred are the polynucleotide sequences encoding these polypeptide sequences.

This gene is expressed primarily in the brain and to a lesser extent in the kidney and thymus

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, brain, kidney, and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, kidney, and immune disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to alpha-2 type I collagen indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of tissue repair, and brain, kidney, immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 40

The translation product of this gene shares sequence homology with minicollagen which is thought to be important in tissue repair tumor metastasis. (See Accession No. gnllPIDld1006976.) Preferred polypeptide fragments comprise the amino acid sequence: PGFRGPSGSLGCSFFPRSLGRVLPPGCQRPGAHAD

10

15

20

35

SSPPPTP (SEQ ID NO:491). Also preferred are polynucleotides encoding this polypeptide fragment.

This gene is expressed in ovarian cancer and to a lesser extent in dedritic cells and smooth muscle.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, tumor metastasis and tissue repair. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the tumor metastasis and tissue repair, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 273 as residues: Asn-2 to His-11.

The tissue distribution and homology to mini-collegen gene indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of tumor metastasis and tissue repair.

FEATURES OF PROTEIN ENCODED BY GENE NO: 41

This gene shares sequence homology with the HIV TAT protein. (See

25 Accession No. 328416.) Preferred polypeptide fragments comprise the amino acid
sequence: EDLKKPDPASLRAASCGEGKKRKACKNCTCGLAEELEKEK
SREQMSSQPKSACGNCYLGDAFRCASCPYLGMPAFKPGEKVLLS (SEQ ID
NO:492); EDLKKPDPASLRAASCGEGKKRKACKNCTCGLAEELEKEK
SREQMSSQPKSACGNCYLGDAFRCASCPYLGMPAFKPGEKVLLSDSNLHD

30 (SEQ ID NO:493); CGNCYLGDAFRCASCPYLGMPAFKPGEKVLLSDS
(SEQ ID NO:494); SCGEGKKRKACKNCTCGLAEELEKE (SEQ ID NO:495);
SQPKSAC GNCYLGDAFRCASC (SEQ ID NO:496); and REAGQNSERQYVS
LSRD (SEQ ID NO:497). Also preferred are polynucleotide fragments encoding these
polypeptide fragments.

This gene is expressed primarily in the infant brain and to a lesser extent in the breast and testes.

10

15

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, brain, testes and breast disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, testes and breast disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 274 as residues: Pro-7 to Val-15.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of brain, testes and breast, and other related disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 42

This gene is expressed primarily in the infant brain, human cerebellum, and to a lesser extent in medulloblastoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, brain related disorders and medulloblastoma and other brain cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain related disorders and brain cancers, including medulloblastoma, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 275 as residues: Thr-41 to Glu-47.

WO 98/54963 PCT/US98/11422

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of human brain related disorders, brain cancers, and medulloblastoma.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 43

The translation product of this gene shares sequence homology with a phosphotyrosine-independent ligand for the lck SH2 domain which is thought to be important in signal transduction related to phosphotyrosine-independent ligand for the lck SH2 domain. (See Accession No. gil1184951.) Preferred polypeptide fragments comprise the amino acid sequence: ESSGQARTLADPGPGWPRQQGMCFGSLT GLSTTPHGFLTVSAEADPRLIESLSQMLSMGFSDEGGWLTRLLQTKNYDIGAAL DTIQYSKH (SEQ ID NO:498). Also preferred are polynucleotide fragments encoding this polypeptide fragment. It is likely that this gene is a new member of a family of phosphotyrosine-independent ligands for the lck SH2 domains.

This gene is expressed primarily in the placenta and to a lesser extent in endothelial cells and neutrophil.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, reproductive, cardiovascular, immune, and infectious diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular, reproductive, and immune system, and infectious diseases, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to a phosphotyrosine-independent ligand for the lck SH2 domain indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cardiovascular, reproductive, and immune system diseases, as well as infectious diseases.

10

15

20

25

30

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 44

This gene is expressed primarily in the fetal brain, cerebellum and to a lesser extent in the placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neuronal cell related disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neuronal cell related disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 277 as residues: Thr-20 to Gly-28.

The tissue distribution and homology to proline-rich protein genes indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neuronal cell related disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 45

The translation product of this gene shares sequence homology with precerebellin of human, which is thought to be important in synaptic physiology. (See Accession No. gil180251.) It has been observed that cerebellin-like immunoreactivity is associated with Purkinje cell postsynaptic structures. Thus, it is likely that this gene also have synaptic activity. Preferred polypeptide fragments comprise the amino acid sequence: QEGSEPVLLEGECLVVCEPGRAAAGGPGGAALGEAPPGRVAFXAV RSHHHEPAGETGNGTSGAIYFDQVLVNEGGGFDRASGSFVAPVRGVYSFRFH VVKVYNRQTVQVSLMLNTWPVISAFANDPDVTREAATSSVLLPLDPGDRVSLR LRRGXSTGW (SEQ ID NO:499). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in cerebellum and infant brain. By Northern analysis, a single transcript of 2.4 kb was observed in brain tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

WO 98/54963 PCT/US98/11422

37

not limited to, neuronal cell signal transduction and synaptic physiology. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neuronal cell signal transduction and synaptic physiology expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to gene or gene family indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neuronal cell related disorders.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 46

This gene is expressed in fetal liver and spleen, and to a lesser extent in bone marrow, umbilical vein, and T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders of the immune system, particularly hematopoiesis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoiesis and immune disorders, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 279 as residues: Asp-30 to Glu-57.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of hematopieotic and immune disorders.

5

10

20

25

30

10

15

20

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 47

The translation product of this gene shares sequence homology with a 12 kD nucleic acid binding protein of Feline calcivirus which is thought to be important in viral replication. (See Accession No. 59264)

This gene is expressed primarily in human cardiomyopathy and to a lesser extent in T helper cells, fetal brain and synovial sarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cardiomyopathy as well as viral infection. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 280 as residues: Trp-20 to Cys-26.

The tissue distribution in cardiomyopathy and homology to viral 12 kD nucleic acid binding protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of cardiomyopathy, including those caused by ischemic, hypertensive, congenital, valvular, or pericardial abnormalities.

25 The gene expression pattern may be the consequence or the cause for these conditions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 48

The translation product of this gene shares sequence homology with tumor necrosis factor related gene product which is thought to be important in tumor necrosis, bacterial and viral infection, immune diseases and immunoreactions.

This gene is expressed primarily in colon and to a lesser extent in ovarian and breast cancers.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, tumors of colon, ovary or breast origins. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes

10

20

for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the colon, ovary and breast, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to Tumor necrosis factors indicates that polynucleotides and polypeptides corresponding to this gene are useful for intervention of cancers of colon, ovary and breast origins, because TNF family members are known to be involved in the tumor development.

FEATURES OF PROTEIN ENCODED BY GENE NO: 49

The translation product of this gene shares sequence homology with mucins, such as epithelial mucin, which is thought to be important in extracellular matrix functions such as protection, lubrication and cell adhesion (See for example Accession No. R68002). Preferred polypeptide fragments comprise the following amino acid sequence: PRSRPALRPGRQRPPSHSATSGVLRPRKKPDP (SEQ ID NO:500).

Also preferred are polynucleotide fragments encoding these polypeptide fragments. Moreover, this gene maps to chromosome 22q11.2-qter, and therefore, can be used as a marker in linkage analysis for chromosome 22.

This gene is expressed primarily in corpus colosum.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a 25 biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, tumors, especially of corpus colosum, as well as metastatic lesions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell 30 type(s). For a number of disorders of the above tissues or cells, particularly of the corpus colosum and other solid tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue 35 or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to mucins indicates that polynucleotides and polypeptides corresponding to this gene are useful for serum tumor markers or immunotherapy targets because tumor cells have greatly elevated level of mucin expression and shed the molecules into the epithelial tissues.

5

10

15

20

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 50

This gene is expressed primarily in CD34 depleted buffy coat cord blood and primary dendritic cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, hematopoietic disorders and immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in CD34 depleted buffy coat cord blood and primary dendritic cells indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of hematopoietic and immune disorders. Secreted or cell surface proteins in the above tissue distribution often are involved in cell activation (e.g. cytokines) or molecules involved in cell surface activation.

FEATURES OF PROTEIN ENCODED BY GENE NO: 51

The translation product of this gene shares sequence homology with Interferon induced 1-8 gene encoded polypeptide which is thought to be important in binding to retroviral rev responsive element. Preferred polypeptide fragment comprise the following amino acid sequences: MTLITPSXKLTFXKGNKSWSSRACSSTLVDP (SEQ ID NO:501). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

35

This gene is expressed primarily in CD34 positive cells and neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

WO 98/54963

5

10

15

20

25

30

35

PCT/US98/11422

biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, retroviral infection, such as AIDS, and other immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 284 as residues: Gln-51 to Trp-62.

The tissue distribution and homology to interferon induced gene 1-8 indicates that polynucleotides and polypeptides corresponding to this gene are useful for intervention of retroviral infection including HIV. The factor may be involved in viral stability or viral entry into the cells. Alternatively, the virus/factor complex may elicit the cellular immune reaction.

FEATURES OF PROTEIN ENCODED BY GENE NO: 52

This gene shares sequence homology to immunoglobulin lambda chain (See Accession No. 2865484). Therefore it is likely that this gene has activity similar to an immunoglobulin lambda chain. Preferred polypeptide fragments comprise the following amino acid sequence: GHPSPALSIAPSDGSQLPCDEVPYGEAHVTRYCKKPLTNS HLETEAQSSSL (SEQ ID NO:502). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in Hodgkin's lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, Hodgkin's lymphoma and other immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 285 as residues: Pro-27 to Thr-32.

The tissue distribution in Hodgkin's lymphoma and the sequence homology indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis of Hodgkin's lymphoma, since the elevated expression and secretion by the tumor mass may be indicative of tumors of this type. Additionally the gene product may be used as a target in the immunotherapy of the cancer. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 53

10

15

20

25

30

35

This gene has extensive homology to cDNA for Homo sapiens mRNA for the ISLR gene(See Accession No. AB003184). This protein is considered to be a new member of the Ig superfamily and contains a leucine-rich repeat (LRR) with conserved flanking sequences and a C2-type immunoglobulin (Ig)-like domain. These domains are important for protein-protein interaction or cell adhesion, and therefore it is possible that the novel protein ISLR may also interact with other proteins or cells. The ISLR gene was mapped on human chromosome 15q23-q24 by fluorescence in situ hybridization (See Medline Article No. 97468140). Homology to the ISLR gene has been confirmed by another independent group as well (See Accession No. Hs.102171)

This gene is expressed in a number of tissues including human retina, heart, skeletal muscle, prostate, ovary, small intestine, thyroid, adrenal cortex, testis, stomach, spinal cord, fetal lung and fetal kidney tissues, colon, tonsil and stomach cancer, and to a lesser extent in endometrial stromal cells treated with estradiol, breast tissue, synovium, lymphoma, and number of other tumors.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, tumors of colon, ovary and breast origins. However, due to the wide range of expression in various tissues, protein may play a vital role in the development of cancer in other tissues as well, not just those mentioned above. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the colon, ovary and breast, expression of this gene at significantly higher or lower levels may be routinely

10

15

20

25

30

35

detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Additionally, this gene maps to chromosome 15q23-q24, and therefore, can be used as a marker in linkage analysis for chromosome 15.

The tissue distribution in tumors of colon, ovary, and breast origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 54

This gene is expressed primarily in lung, esophagus, leukemia (Jurkat cells) and breast cancers and to a lesser extent in macrophages treated with GM-CSF fetal tissues and wide range of tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer of wide range of origins. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the solid tumors, lung and leukemia, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

10

20

25

30

35

the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Furthermore, due to the high expression level in lung tissue and the proposed function of the multidrug resistance protein 1 gene as the efflux pump responsible for low-drug accumulation in multidrug-resistant cells, protein as well mutants thereof, may also be beneficial as a target for gene therapy, particularly for the chronic patient. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 287 as residues: Met-1 to Lys-16.

The tissue distribution in wide range of cancers and fetal tissues indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection of cells in active proliferation, such as cancers. The gene products may be used for cancer markers or immunotherapy target.

FEATURES OF PROTEIN ENCODED BY GENE NO: 55

This gene maps to the X chromosome.

This gene is expressed primarily in the brain and to a lesser extent in the developing embryo.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurodegenerative disease states and developmental disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders, including sex-linked disorders, of the above tissues or cells, particularly of the neurological, developmental systems, and cardiovascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Moreover, this gene maps to the X chromosome, and therefore, may be used as a marker in linkage analysis for this chromosome.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Klinefelter's, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental

disorders associated with the developing embryo, sexually-linked disorders, or disorders of the cardiovascular system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 56

5 The translation product of this gene shares sequence homology with paxillin which is thought to be important in mediating signal transduction from growth factor receptors to the cytoskeleton. Preferred polynucleotide fragments comprise the following sequence: TGGCTCACTGTCTTACAATCACTGCTGTGGAATCATGA TACCACTTTTAGCTCTTTGCATCTTCCTTCAGTGTATTTTTGTTTTTCAAGAGG 10 GGCTTGTGGTTTCAA (SEQ ID NO:506). Also preferred are polypeptide fragments encoded by these polynucleotide fragments. More preferably, polypeptide fragments comprise the amino acid sequence: LDELMAHLTEMQAKVAVRAD AGKKHLPDKQDHKASLDSMLGGLEQELQDLGIATVPKGHCASCQKPIAGKVI 15 HALGQSWHPEHFVCTHCKEEIGSSPFFERSGLXYCPNDYHOLFSPRCAYCAAP ILDKVLTAMNQTWHPEHFFCSHCGEVFGAEGFHEKDKKPYCRKDFLAMFSPK CGGCNRPVLENYLSAMDTVWHPECFVCGDCFTSFSTGSFFELDGRPFCELHYH HRRGTLCHGCGQPITGRCISAMGYKFHPEHFVCAFCLTQLSKGIFREQNDKTY CQPCFNKLF (SEQ ID NO:507); KASLDSMLGGLEQELQDLGIATVPKGHC 20 ASCQKPIAGKVIHAL (SEQ ID NO:508); CPNDYHQLFSPRCAYCAAPILDKVL TAMNQTWHPEHFFCSHCGEVFGAEG (SEQ ID NO:509); DKKPYCRKDFLAM FSPKCGGCNRPVLENYLSAMDTVWHPECFVCGDCFTSFSTGSFFELDGRPFCE L (SEQ ID NO:510); CGQPITGRCISAMGYKFHPEHFVCAFCLTOLSKGIFRE QNDKTYCQ (SEQ ID NO:511). Polynucleotide fragments encoding these preferred 25 polypeptide fragments are also contemplated.

This gene is expressed primarily in brain, and to a lesser extent in the developing embryo.

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological disease states and developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or

10

15

20

25

30

35

cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Moreover, since this gene shares homology with a gene that maps to chromosome 11, (See Accession No.T87404), gene as well as its translated product may be used for linkage analysis on chromosome 11.

The tissue distribution and homology to paxillin indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and or detection of disease states associated with abnormal signal transduction in brain and/or the developing embryo. This would include treatment or detection of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder and also in the treatment and or detection of embryonic development defects.

FEATURES OF PROTEIN ENCODED BY GENE NO: 57

This gene is expressed primarily in fetal spleen, brain, and to a lesser extent in six week old embryo.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders, neurological disorders, and developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and developmental systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 290 as residues: Arg-28 to Gly-34.

The expression of this gene in fetal spleen indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/detection of immune disorders such as arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. In addition the expression of this gene in the early embryo, indicates a key role in embryo development and hence the gene or gene product could be used in the treatment and or detection of embryonic development defects. This would include

WO 98/54963 PCT/US98/11422

47

treatment or detection of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntintons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder and also in the treatment and or detection of embryonic development defects.

5

10

15

20

25

FEATURES OF PROTEIN ENCODED BY GENE NO: 58

The translation product of this gene shares sequence homology with the gene disrupted in the neurodegenerative disease dentatorubal-pallidoluysian atrophy. Moreover a long open reading fame exists in an alternative frame. Preferred polypeptide fragments comprise the following:

MGSSQSVEIPGGGTEGYHVLRVQENSPGHRAGLEPFFDFIVSINGSRLNKDND
TLKDLLKXNVEKPVKMLIYSSKTLELRETSVTPSNLWGGQGLLGVSIRFCSFD
GANENVWHVLEVESNSPAALAGLRPHSDYIIGADTVMNESEDLFSLIETHEAKP
LKLYVYNTDTDNCREVIITPNSAWGGEGSLGCGIGYGYLHRIPTRPFEEGKKIS
LPGQMAGTPITPLKDGFTEVQLSSVNPPSLSPPGTTGIEQSLTGLSISSTPPAVSS
VLSTGVPTVPLLPPQVNQSLTSVPPMNPATTLPGLMPLPAGLPNLPNLNLNLPA
PHIMPGVGLPELVNPGLPPLPSMPPRNLPGIAPLPLPSEFLPSFPLVPESSSAASS
GELLSSLPPTSNAPSDPATTTAKADAASSLTVDVTPPTAKAPTTVEDRVGDSTPV
SEKPVSAAVDANASESP (SEQ ID NO:512); SVEIPGGGTEGYHVLRVQENSPGH
RAGLEPFFDFIVSINGSRLNKDNDTLKDLLKXNVEKPVKMLIYSSKTLELRETS
VTPSNLWGGQGLLGVSIRFCSFDGANENVWH (SEQ ID NO:513); ESNSPAA
LAGLRPHSDYIIGADTVMNESEDLFSLIETHEAKPLKLYVYNTDTDNCREVIITP
NSAWGGEGSLGCGIGYGYLHRIPTRPFEEGKKISLPGQMAGTPITPLKDGFTEV
QLSSVNPPSLSPPGTTGIEQSLTG LSISS (SEQ ID NO:514); RIPTRPFEEGKKI
SLPGQMAGTPITPLKDGFTEVOLSSVNPPSLSPPGTTGIEOSLTGLSISSTPPAVS

SLPGQMAGTPITPLKDGFTEVQLSSVNPPSLSPPGTTGIEQSLTGLSISSTPPAVS SVLSTGVPTVPLLPPQVNQSLTSVPPMNPATTLPGLMPLPAGLPNLPNLNLNLP APHIMPGVGLPELVNPGLPPLPSMPPRN (SEQ ID NO:516); PGLPPLPSMPPRN LPGIAPLPLPSEFLPSFPLVPESSSAASSGELLSSLPPTSNAPSDPATTTAKADAA SSLTVDVTPPTAKAPTTVEDRVGDSTPVSEKPVSAAVDAN (SEQ ID NO:517).

30

35

This gene is expressed primarily in prostate cancer, and to a lesser extent in the pineal glands and in fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological conditions and pulmonary disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For

a number of disorders of the above tissues or cells, particularly of the nervous, pulmonary, and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 291 as residues: Asn-9 to Leu-14.

5

10

15

20

25

30

35

The abundance of this gene in the pineal gland and its homology to a gene disrupted in the neurodegenerative disease state Dentatorubral-pallidoluysian atrophy indicates that this gene may be useful in the treatment and/or detection of other neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. The abundance of this gene in fetal lung would suggest that misregulation of the expression of this protein product in the adult could lead to lymphoma or sarcoma formation, particularly in the lung; that it may also be involved in predisposition to certain pulmonary defects such as pulmonary edema and embolism, bronchitis and cystic fibrosis; and thus the gen or the gene protein encoded by the gene could be used in the detection and/or treatment of these pulmonary disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 59

This gene is expressed primarily in the developing embryo.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developmental system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The expression of this gene primarily in the embryo, indicates the gene plays a key role in embryo development and that the gene or the protein encoded by the gene could be used in the treatment and or detection of developmental defects in the embryo or in infants.

5

10

15

20

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 60

This gene displays homology to nestin, an intermediate filament protein, the expression of which correlates with the proliferation of Central Nervous System progenitor cells and that is useful in the identification of brain tumors. This gene maps to chromosome 1, and therefore, may be used as a marker in linkage analysis for chromosome 1 (See Accession No. AA527348).

This gene is expressed primarily in kidney and to a lesser extent in brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, renal disorders and neurodegenerative conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the excretory and nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 293 as residues: Thr-128 to Asn-135.

The tissue distribution and homology to nestin indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection and/or treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, its abundance in kidney indicates that it is useful in the treatment and detection of acute renal failure and other disease states associated with the kidney.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 61

Gene shares homology with the latrophilin-related protein 1 precursor as well as the calcium-independent alpha-latrotoxin receptor. Preferred polypeptide fragments

10

15

20

comprise the following amino acid sequence:

IYKVFRHTAGLKPEVSCFENIRSCARXXXXXXXXXXXXXXWIFGVLHVVHASVV TAYLFTVSNAFQGMFIFLFLCVLSRKIQEEYYRLFKNVPCC (SEQ ID NO:518); WIFGVLHVVHASVVTAYLFTVSNAFQGMFIFLFLCVLSRKIQEEYYRLFKNVPC C (SEQ ID NO:519). Also preferred are polynucleotide fragments encoding these polypeptide fragments. (See Accession No. 2213659) The translation product of this

gene shares sequence homology with CD 97, a seven transmembrane bound receptor.

This gene is expressed primarily in infant brain and in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological disorders and hematopoeitic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neurological and hematopoeitic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 294 as residues: Lys-13 to Leu-21.

The tissue distribution of this gene suggest that it may be useful in the detection and/or treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder, while its expression in hematopoietic cell types indicates that the gene could be important for the treatment or detection of immune or hematopoietic disorders including arthritis, asthma and immunodeficiency diseases.

30

35

25

FEATURES OF PROTEIN ENCODED BY GENE NO: 62

This gene is expressed primarily in fetal liver and fetal spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, hematological and immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes

10

25

30

35

for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hematopoetic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 295 as residues: Ser-91 to Lys-98.

The tissue distribution of this gene fetal liver and spleen indicates that the gene could be important for the treatment or detection of immune or hematopoietic disorders including arthritis, leukemia, asthma and immunodeficiency diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 63

Gene shares homology with human serum amyloid protein. Preferred polypeptide fragments comprise the following amino acid sequence:
 ALTRIPPGDWVINVTAVSFAGKTTARFFHSSPPSLGDQARTDPGHQRRD (SEQ ID NO:520) (See Accession No. W13671). Also preferred are polynucleotide fragments encoding these polypeptide fragments This gene maps to chromosome 9, and therefore, may be used as a marker in linkage analysis for chromosome 9 (See Accession No. AA004342).

This gene is expressed primarily in fetal liver and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, hematopoietic and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

25

30

35

The tissue distribution of this gene in fetal liver-spleen indicates that the gene could be important for the treatment or detection of immune or hematopoietic disorders including arthritis, leukemia, asthma, and immunodeficiency diseases.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 64

This gene maps to chromosome 3, and therefore, may be used as a marker in linkage analysis for chromosome 3 (See Accession No. AA219669).

This gene is expressed specifically in the brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurodegenerative disease states. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neurological systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntintons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder.

FEATURES OF PROTEIN ENCODED BY GENE NO: 65

Gene shares homology with a yeast protein. Preferred polypeptide fragments comprise the following amino acid sequence: LQEVNITLPENSVWYERYKFDIP VFHL (SEQ ID NO:521). Also preferred are polynucleotide fragments encoding these polypeptide fragments. (See Accession No. 1332638)

This gene is expressed primarily in fetal tissue (fetus and fetal liver).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, liver disorders and cancers (e.g. hepatoblastoma). Similarly,

10

15

53

polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 298 as residues: Asn-59 to Glu-64.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of liver disorders and cancers (e.g. hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and conditions that are attributable to the differentiation of hepatocyte progenitor cells). In addition the expression in fetus would suggest a useful role for the protein product in developmental abnormalities, fetal deficiencies, pre-natal disorders and various would-healing models and/or tissue trauma.

FEATURES OF PROTEIN ENCODED BY GENE NO: 66

20 Gene has homology with a B-cell surface antigen which may indicate gene plays a role in the immune response, including, but not limited to disorders and infections of the immune system. Preferred polynucleotide fragments comprise the following sequence: TAGCATGTAGCCAGTCGAATAACNTATAAGGACAAAGTGGAGTC CACGCGTGCGGCCGTCTAGACTAGTGGATCCCCCGGCTGCAGGATTCGGC 25 ACGAG (SEQ ID NO:523). Also preferred are polypeptide fragments encoded by these polynucleotide fragments (See Accession No.T94535). Additionally, this gene shares homology with an interferon-gamma receptor. Preferred polypeptide fragments also comprise the following amino acid sequence: MQGSGSQFRACLLCLCFSCPC SPGGPRWNSRQGGRRFPKTCRAISQNLVFKYKTFCPVRYMQPHRSSLCLHFTS 30 YVFILSTWGSLRTYSTDLKKKKKNSRGGPVPIRPKS (SEQ ID NO:522); MQGSGSQFRACLLCLCFSCPCSPGGPRWNSRQGGRRFPKTCRAISQNLVFK (SEQ ID NO:524); PVRYMQPHRSSLCLHFTSYVFILSTWGSLRTYSTDLKKKKK NSRGGPVPIRPKS (SEQ ID NO:525); and GEEQRDCSLGWRGVGMRATHCQAA RMFVLFSLPKYAGL (SEQ ID NO:526). Also preferred are polynucleotide fragments 35 encoding these polypeptide fragments

This gene is expressed primarily in T-cells and gall bladder.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunological disorders and conditions (immunodeficiencies, cancer, leukemia, hematopoeisis). Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and digestive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 299 as residues: Thr-41 to Gly-52.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of immune disorders including: leukemias, lymphomas, auto-immune disorders, immuno-supressive (transplantation) and immunodeficiencies (e.g. AIDS), inflammation and hematopoeitic disorders. The expression of this gene in gall bladder would suggest a possible role for this gene product in digestive disorders, particularly of the pancreas.

FEATURES OF PROTEIN ENCODED BY GENE NO: 67

This gene maps to chromosome 11, and therefore, may be used as a marker in linkage analysis for chromosome 11 (See Accession No. AA011622).

This gene is expressed primarily in a variety of fetal and developmental tissues (e.g. fetal spleen, infant brain).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental, immune or neurological abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developing immune and central nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or

10

20

25

30

35

another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 300 as residues: Ser-38 to Ser-43.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for developmental abnormalities or fetal deficiencies. The detection in infant brain would suggest a role in neurological disorders (both developmental and neurodegenerative conditions of the brain and nervous system, behavioral disorders, depression, schizophrenia, Alzheimer's disease, Parkinson's disease, Huntington's disease, mania, dementia). In addition, the detection in spleen would similarly suggest a role in detection and treatment of immunologically mediated disorders (e.g. immunodeficiency, inflammation, cancer, wound healing, tissue repair, hematopoeisis).

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 68

This gene is expressed primarily in spleen, T-cells, and fetal heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunological deficiencies, including AIDSand cardiovascular disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and cardiovascular systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of immune disorders including: leukemias, lymphomas, autoimmune disorders, immunodeficiencies (e.g. AIDS), immuno-suppressive conditions (transplantation) and hematopoeitic disorders. The expression in fetal heart indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of cadiovascular disorders (e.g. heart disease, restenosis, atherosclerosis, stoke, angina, thrombosis).

PCT/US98/11422 WO 98/54963

56

FEATURES OF PROTEIN ENCODED BY GENE NO: 69

Gene shares homology with a human collagen protein. Preferred polypeptide fragments comprise the following amino acid sequence:

5 MPRKTSKCRQLLCSGASRNADTAARQSTCSSHRPPGKIPSLGPRRXPGCXSVP SSRGEQSTGSPAAPRCGRRDAHRGLPGGAAMTPGDTWASFNPRAGHSKSOGE GQESSGASRQDRHPVSHWVERQREAWGAPRSSSAGGVKVAATTEREPEFKIK TGKA (SEQ ID NO:527); CSGASRNADTAARQSTCSSHRPPGKIPSLGPRRXPG CXSVPSSRGEQSTGSPAAPRCGRRDAHRGLPGGAAMTPGDTWASFNPRAGHS 10 (SEQ ID NO:528); QGEGQESSGASRQDRHPVSHWVERQREAWGAPRSSSAGG VKVAATTEREPEFKIKTGKA (SEQ ID NO:529) (See Accession No. 124886). Also preferred are polynucleotide fragments encoding these polypeptide fragments

This gene is expressed primarily in fetal heart.

Therefore, polynucleotides and polypeptides of the invention are useful as 15 reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cardiovascular disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above 20 tissues or cells, particularly of the cardiovascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level 25 in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 302 as residues: Pro-32 to Ser-39.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of cadiovascular disorders (e.g. heart disease, restenosis, atherosclerosis, stroke, angina, thrombosis).

FEATURES OF PROTEIN ENCODED BY GENE NO: 70

30

35

The translation product of this gene shares sequence homology with a chicken single-strand DNA-binding protein. Preferred polypeptide fragments comprise the following amino acid sequence:

MSPRYPGGPRPPLRIPNQALGGVPGSQPLLPSGMDPTRQQGHPNMGGPMQRM TPPRGMVPLGPQNYGGAMRPPLNALGGPGMPGMNMGPGGGRPWPNPTNAN

SIPYSSASPGNYVGPPGGGGPPGTPIMPSPADSTNSGDNMYTLMNAVPPGPNR PNFPMGPGSDGPMGGLGGMESHHMNGSLGSGDMDSISKNSPNNMSLSNOP GTPRDDGEMGGNFLNPFQSESYSPSMTMSV (SEQ ID NO:530); MSPRYPGG PRPPLRIPNQALGGVPGSQPLLPSGMDPTRQQGHPNMGGPMQRMTPPRGMVP 5 LGPONYGGAMRPPLNALGGPGMPGMNMGPGGGRPWPNPTNANSIPYSSASP GNY (SEQ ID. NO:531); LNALGGPGMPGMNMGPGGGRPWPNPTNANSIPYSS ASPGNYVGPPGGGPPGTPIMPSPADSTNSGDNMYTLMNAVPPGPN (SEO ID NO:532); GPMGGLGGMESHHMNGSLGSGDMDSISKNSPNNMSLSNOPGTPR DDGEMGGNFLNPFQSESYSPSMTMSV (SEQ ID NO:533); TCEHSSEAKAFHDY 10 (SEQ ID NO:534). Also preferred are polynucleotide fragments encoding these polypeptide fragments. (See Accession No. 1562534)

This gene is expressed primarily in placenta and to a lesser extent in the fetal heart and a variety of other tissues and cell types.

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental abnormalities, fetal deficiencies, and particularly of the cardiovascular system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells. particularly of the reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of developmental abnormalities or fetal deficiencies, ovarian and other endometrial cancers, reproductive dysfunction, cardiovascular disorders, and pre-natal disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 71

This gene is expressed primarily in fetal liver and to a lesser extent in the breast and testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

not limited to, liver disorders (including hepatoblastomas) and reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic and reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection and treatment of liver disorders and cancers (e.g. hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and conditions that are attributable to the differentiation of hepatocyte progenitor cells). The expression in testes and breast indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of endocrine and reproductive disorders (e.g. sperm maturation, milk production, testicular and breast cancers).

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 72

This gene maps to chromosome 1, and therefore, may be used as a marker in linkage analysis for chromosome 1 (See Accession No. W93595).

This gene is expressed primarily in smooth muscle and to a lesser extent in brain.

25 Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cardiovascular and neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes 30 for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular and central nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene 35 expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

WO 98/54963 PCT/US98/11422

59

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of restenosis, atherosclerosis, stroke, angina, thrombosis, wound healing and other conditions of heart disease. In addition, the expression in brain would suggest that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of developmental, degenerative and behavioral conditions of the brain and nervous system (e.g. schizophrenia, depression, Alzheimer's disease, Parkinson's disease, Huntington's disease, mania, dementia, paranoia, addictive behavior and sleep disorders).

10

15

20

25

30

35

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 73

Gene shares homology with human stromalin-2. Preferred polypeptide fragments comprise the following amino acid sequence:

QAFVLLSDLLLIFSPQMIVGGRDFLRPLVFFPEATLQSELASFLMDHVFIQPGDL
GSGA (SEQ ID NO:535); ACSYLLCNPEFTFFSRADFARSQLVDLLTDRFQQE
LEELLQVG (SEQ ID NO:536),QKQLSSLRDRMVAFCELCQSCLSDVDTEIQEQV
ST (SEQ ID NO:537); QVILPALTLVYFSILWTLTHISKSDAS (SEQ ID NO:538);
STHDLTRWELYEPCCQLLQKAVDTGXVPHQV (SEQ ID NO:539). Also preferred are polynucleotide fragments encoding these polypeptide fragments (See Accession No.R65208) This gene maps to chromosome 7, and therefore, may be used as a marker in linkage analysis for chromosome 7 (See Accession No. D52585).

This gene is expressed primarily in the brain (infant brain, adult brain, pituitary, cerebellum, hippocampus, schizophrenic hypothalmus, amygdala).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental and neurodegenerative diseases of the brain and nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those

10

15

20

25

35

comprising a sequence shown in SEQ ID NO: 306 as residues: Thr-25 to Lys-36, Lys-55 to Ser-63.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection and treatment of developmental, degenerative and behavioral conditions of the brain and nervous system (e.g. schizophrenia, depression, Alzheimer's disease, Parkinson's disease, Huntington's disease, mania, dementia, paranoia, addictive behavior and sleep disorders).

FEATURES OF PROTEIN ENCODED BY GENE NO: 74

This gene is expressed primarily in the hypothalamus of a human suffering from schizophrenia.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders of the CNS particularly schizophrenia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the CNS, such as schizophrenia expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 307 as residues: Gly-38 to Ala-44.

The tissue distribution indicates that the protein products of this gene are useful for the study, diagnosis and treatment of schizophrenia and other disorders involving the CNS.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 75

Preferred polypeptides of the invention comprise the following amino acid sequence encoded by this gene:

LAVSTSFICCADISTALPLGSSRPAPAPRHREHEHGHQARPPRLLXTSLMPLSTP AAAQLLWTQLTPMGGRPGGRHSPPTLHTGPRALPPGPPHPSLHVAALSLLR (SEQ ID NO:540). Polynucleotides encoding such polypeptides are also provided.

This gene is expressed primarily in endometrial tumor and to a lesser extent in amniotic cells.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, reproductive and immune disorders particularly cancers of those systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 308 as residues: Ser-3 to Arg-9.

The tissue distribution indicates that the protein products of this gene are useful for study and treatment of immune and reproductive disorders particularly cancers of those systems.

FEATURES OF PROTEIN ENCODED BY GENE NO: 76

This gene is expressed primarily in kidney cortex and to a lesser extent in early stage human brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, renal disorders such as renal cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the kidney expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 309 as residues: Gly-38 to Gly-45, Gly-47 to Gly-52, Pro-92 to Lys-110.

The tissue distribution indicates that the protein products of this gene are useful for study, treatment and diagnosis of renal diseases such as cancer of the kidney.

15

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 77

This gene is expressed primarily in kidney medulla.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, metabolic and renal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of 10 the above tissues or cells, particularly of the metabolic and renal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for study, treatment and diagnosis of metabolic and renal diseases and disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 78 20

This gene is expressed in chronic synovitis and microvascular endothelium.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, arthritis and atherosclerosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular and skeletal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for study, diagnosis and treatment of arthritic and other inflammatory diseases as well as cardiovascular diseases.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 79

This gene is expressed in resting T-cells and activated monocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for the study and treatment of immune diseases such as inflammatory conditions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 80

This gene is expressed in a variety of immune system tissues, e.g., neutrophils, T-cells, and TNF induced epithelial and endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, infectious and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and vascular systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 313 as residues: Met-1 to Trp-6.

The tissue distribution indicates that the protein products of this gene are useful for study and treatment of infectious diseases, immune and vascular disorders.

PCT/US98/11422

FEATURES OF PROTEIN ENCODED BY GENE NO: 81

This gene is expressed in activated neutrophils.

5

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and other immune conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for study and treatment of immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 82

This gene is expressed in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammatory and other immune conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 315 as residues: Ala-83 to Thr-91.

The tissue distribution indicates that the protein products of this gene are useful for study and treatment of immune disorders.

10

15

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 83

This gene is expressed in human neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and inflammatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis and treatment of disorders of the inflammatory and immune systems.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 84

This gene is expressed in human neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders of the inflammatory and immune systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the inflammatory and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis and treatment of disorders of the immune and inflammatory systems.

10

15

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 85

This gene is expressed in activated neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and immune system diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and inflammatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis and treatment of diseases of the inflammatory and immune systems.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 86

This gene is expressed in activated neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and immune system disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the inflammatory and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 319 as residues: Met-1 to Gly-6, Gly-32 to Pro-43, Leu-55 to Gln-60.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis and treatment of disorders of the immune and inflammatory system.

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 87

In specific embodiments, polypeptides of the invention comprise the sequence: EQVLALLWPRFELILEMNVQSVRSTDPQRLGGLDTRPHYITRRYAEFSSALVSIN QTIPNERTMQLLGQLQVEVENFVLRVAAEFSSRKEQLVFLINNYDMMLGVLME 5 RAADDSKEVESFQQLLNARTQEFIEELLSPPFGGLVAFVKEAEALIERGQAERLR GEEARVTQLIRGFGSSWKSSVESLSQDVMRSFTNFRNGTSIIQG (SEQ ID NO:541),ALLKYRFFYQFLLGNERATAKEIRDEYVETLSKIYLSYYRSYLGRLMK VOYEEVAEKDDLMGVEDTAKKGFXSKPSRSRNTIFTLGTRGSVISPTELEAPILV 10 PHTAQR (SEQ ID NO: 542); EQRYPFEALFRSQHYXLLDNSCREYLFICEFFVVS GPXAHDLFHAVMGRTLSMTLKHLDSYLADCYDAIAVFLCIHIVLRFRNIAAKRD VPALDRYW (SEQ ID NO:543),GGLDTRPHYITRRYAEFSSALVSINQ (SEQ ID NO:544); SRKEQLVFLINNYDMMLGVL (SEQ ID NO: 545) and/or ALLKYRFFY QFLLGNERATAKEIRDEYVETLSKIYLSYYRSYLGRLMKVQYEEVAEKDDLMG 15 VEDTAKKGFXSKPSLRSRNTIFTLGTRGSVISPTELEAPILVPHTAQRXEQRYPF EALFRSQHYXLLDNSCREYLFICEFFVVSGPXAHDLFHAVMGRTLSMTLKHLD SYLADCYDAIAVFLCIHIVLRFRNIAAKRDVPALDRYWEOVLALLWPRFELILEM NVQSVRSTDPQRLGGLDTRPHYITRRYAEFSSALVSINQTIPNERTMOLLGOLOV EVENFVLRVAAEFSSRKEQLVFLINNYDMMLGVLMERAADDSKEVESFOOLLN 20 ARTQEFIEELLSPPFGGLVAFVKEAEALIERGQAERLRGEEARVTQLIRGFGSSW KSSVESLSQDVMRSFTNFRNGTS (SEQ ID NO:546). Polynucleotides encoding these polypeptides are also encompassed by the invention. The translation product of this gene shares sequence homology with suppressor of actin mutation which is thought to be important in mutation suppression.

This gene is expressed primarily in fetal liver and to a lesser extent in a variety of other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, liver and mutations. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the liver or cancer, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level

10

15

30

35

in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 320 as residues: Val-53 to Arg-60, Thr-88 to Thr-94, Ala-142 to Ser-150, Gly-188 to Glu-196, Gly-208 to Ser-214, Thr-227 to Gly-232, Lys-279 to Phe-285.

The tissue distribution and homology to suppressor of actin mutation suggest that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and of liver disorder or cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 88

This gene maps to chromosome 9, and therefore can be used in linkage analysis as a marker for chromosome 9. In specific embodiments, polypeptides of the invention comprise the sequence:

YEGKEFDYVFSIDVNEGGPSYKLPYNTSDDPWLTAYNFLQKNDLNPMFLDQVA KFIIDNTKGQMLGLGNPSFSDPFTGGGRYVPGSSGSSNTLPTADPFTGAGRYV PGSASMGTTMAGVDPFTGNSAYRSAASKTMNIYFPKKEAVTFDQANPTQILGK LKELNGTAPEEKKLTEDDLILLEKILSLICNSSSEKPTVQQLQILWKAINCPEDIV FPALDILRLSIKHPSVNENFCNEKEGAQFSSHLINLLNPKGKPANQLLALRTFC NCFVGQAGQKLMMSQRESLMSHAIELKSGSNKNI (SEQ ID NO: 547); HIALATLALNYSVCFHKD (SEQ ID NO: 548); HNIEGKAQCLSLISTILEVVO

DLEATFRLLVALGTLISDDSNAVQLAKS (SEQ ID NO:549); LGVDSQIKKYSS
 VSEPAKVSECCRFILNLL (SEQ ID NO:550); and/or YEGKEFDYVFSIDVNEGGPS
 YKLPYNTSDDPWLTAYNFLQKNDLNPMFLDQVAKFIIDNTKGQMLGLGNPSFS
 DPFTGGGRYVPGSSGSSNTLPTADPFTGAGRYVPGSASMGTTMAGVDPFTGN
 SAYRSAASKTMNIYFPKKEAVTFDQANPTQILGKLKELNGTAPEEKKLTEDDLI
 LLEKILSLICNSSSEKPTVOOLOII WKAINCPEDIVEPALDII RI SIKHPSVNENEC

LLEKILSLICNSSSEKPTVQQLQILWKAINCPEDIVFPALDILRLSIKHPSVNENFC NEKEGAQFSSHLINLLNPKGKPANQLLALRTFCNCFVGQAGQKLMMSQRESL MSHAIELKSGSNKNIHIALATLALNYSVCFHKDHNIEGKAQCLSLISTILEVVQD LEATFRLLVALGTLISDDSNAVQLAKSLGVDSQIKKYSSVSEPAKVSECCRFILN LL (SEQ ID NO:551). Polynucleotides encoding these polypeptides are also

encompassed by the invention. These polypeptides share significant homology with phospholipase A2 activating protein which is thought to be important in signal transduction (see, e.g., Wang et al., Gene 161(2):237-241 (1995)).

This gene is expressed primarily in endothelial cells, to a less extent in placenta, endometrial stromal cells, osteosarcoma, testis tumor, muscle, and infant brain that are likely to be rich in blood vessles.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

10

15

20

25

30

35

biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders in vascular system, aberrent angiogenesis, tumor angiogenesis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system or tumors, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene in endothelial cells and several potential highly vascularized tissues and its homology to phospholipase A2 activating protein suggest that this gene may be involved in transducing signals for endothelial cells in angiogenesis or vasculogenesis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 89

In specific embodiments, polypeptides of the invention comprise the sequence: YPNQDGDILRDQVLHEHIQRLSKVVTANHRALQIPEVYLREAPWPSAQSEIRTIS AYKTPRDKVQCILRMCSTIMNLLSLANEDSVPGADDFVPVLVFVLIKANPPCLL STVQYISSFYASCLSGEESYWWMQFTAAVE (SEQ ID NO:552); YPNQDGDILR DQVLHEHIQRLSKVVTANHRALQIPEVYLREAPWPSAQSEIRTISAYKTPRDKVQ CILRMCSTIMNLLSLANEDSVPGADDFVPVLVFVLIKANPPCLLSTVQYISSFYA SCLSGEESYWWMQFTAAVEFIKTI (SEQ ID NO:553); YPNQDGDILRDQVL (SEQ ID NO:554); EAPWPSAQSEI (SEQ ID NO:555); PVLVFVLIKANP (SEQ ID NO:560); SGEESYWWMQFTAAVEFIKTI (SEQ ID NO:556); ADDFVPVLVF VLIKANPP (SEQ ID NO:557); YKTPRDKVQCIL (SEQ ID NO:558); and/or GADDFVPVLVFVLIK (SEQ ID NO:559). The translation product of this gene shares sequence homology with human ras inhibitor and yeast VPS9p which is thought to be important in golgi vacuole transport.

This gene is expressed primarily in T cells and melanocytes and to a lesser extent in a variety of other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, dysfunction and disorders involving T cells and melanocytes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing

10

15

20

25

30

35

immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ras inhibitor indicates that polynucleotides and polypeptides corresponding to this gene are useful for regulating signal transduction; diagnosis and treatment of disorders involving T cells and melanocytes.

FEATURES OF PROTEIN ENCODED BY GENE NO: 90

This gene maps to chromosome 9 and therefore polypeptides of the invention can be used in linkage analysis as a marker for chromosome 9. The translation product of this gene shares sequence homology with neuronal olfactomedin-related ER localized protein which is thought to be important in influence the maintenance, growth, or differentiation of chemosensory cilia on the apical dendrites of olfactory neurons. In specific embodiments, polypeptides of the invention comprise the sequence: SARASTQPPAGQHPGPC (SEQ ID NO:561); MPGRWRWQRDMHPARKLLSLL FLILMGTELTQD (SEQ ID NO:562); SAAPDSLLRSSKGSTRGSL (SEQ ID NO:563); AAIVIWRGKSESRIAKTPGI (SEQ ID NO:564); FRGGGTLVLPPTHT PEWLIL (SEQ ID NO:567); PLGITLPLGAPETGGGD (SEQ ID NO:565); and/or CAAETWKGSQRAGQLCALLA (SEQ ID NO:566).

This gene is expressed in pineal gland.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological and endocrinological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neurological or endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

10

15

20

25

30

35

the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 323 as residues: Leu-20 to Ala-26, Arg-32 to Arg-39, Thr-104 to Gly-112.

The tissue distribution and homology to olfactomedin-related protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for maintenance, growth, or differentiation of neuron cells in pineal gland, therefore, may be useful for diagnosis and treatment of neurological disorders in pineal gland.

FEATURES OF PROTEIN ENCODED BY GENE NO: 91

This gene is expressed primarily in prostate and apoptotic T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, prostate disease and T cell dysfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the prostate cancer, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for detect abnormal activity in prostate and T cells or probably treatment of this abnormality.

FEATURES OF PROTEIN ENCODED BY GENE NO: 92

This gene is expressed primarily in prostate and to a lesser extent in smooth muscle cells, fibroblasts, and placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders in prostate or vascular system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the prosate or vascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain

15

20

25

35

72

tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for regulating function of prostate or highly vascularized tissues, e.g. placenta.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 93

This gene is expressed primarily in embryos and fetal tissues stage human and to a lesser extent in a wide variety of other proliferative tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders in embryonic development and cell proliferation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the embryonic tissues and proliferative cells, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis or treatment of abnormalities in developing and proliferative cells and organs.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 94

The translation product of this gene shares sequence homology with transformation related protein which is thought to be important in transformation.

This gene is expressed primarily in female reproductive tissues, i.e., breast cancer cells, placenta, and ovary and to a lesser extent in fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

WO 98/54963

73

not limited to, cancer or dysfunction of reproductive tissues. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproduction system. expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 327 as residues: Ser-50 to Pro-61.

The tissue distribution and homology to transformation related protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of conditions caused by transformation, i.e. tumorigenesis in reproductive organs, e.g. breast, placenta, and ovary.

FEATURES OF PROTEIN ENCODED BY GENE NO: 95

5

10

15

20

25

30

35

This gene is expressed primarily in testes, rhabdomyosarcoma, infant brain and to a lesser extent in some tumors and highly vascularized tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, tumorigenesis, abnormal angiogenesis, and/or neurological disorders., Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the tumor tissues or vascular tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 328 as residues: Arg-46 to Trp-54, Pro-60 to Ile-69, Asn-116 to Ala-122, Arg-147 to Lys-153, Ser-158 to Glu-170, Ile-399 to Ser-405, Pro-486 to Met-499, Pro-502 to Asp-508.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for a range of disease states including treatment of

15

20

25

30

35

tumor or vascular disorders and the treatment of neurological disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 96

This gene maps to chromosome 7 and therefore polynucleotides of the present invention can be used in linkage analysis as a marker for chromosome 7. The translation product of this gene is homologous to the Clostridium perfringens enterotoxin (CPE) receptor gene product and shares sequence homology with a human ORF specific to prostate and a glycoprotein specific to oligodendrocytes both of which are tissue specific proteins.(See e.g., Katahira et al., J Cell Biol. 136(6):1239-1247 (1997). PMID: 9087440; UI: 97242441.

This gene is expressed primarily in pancreas tumor and ulcerative colitis and to a lesser extent in several tumors and normal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, pancreatic disorder, ulcerative colitis, tumors and food poisoning. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system or tumorigenic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 329 as residues: Gly-147 to Met-152, Cys-177 to Lys-188.

The tissue distribution and homology to prostate and oligodendrocyte-specific protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for marker of diagnosis or treatment of disorder in pancreas, ulcerative colitis, and tumors. Furthermore, identity to the human receptor for Clostridium perfringenes entertoxin indicates that the soluble portion of this receptor could be used in the treatment of food poisoning associated with Clostridia perfringens by blocking the activity of perfringens enterotoxin.

10

15

20

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 97

The translation product of this gene shares sequence homology with ATPase which is thought to be important in metabolism.

This gene is expressed primarily in testes and several hematopoietic cells and to a lesser extent in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, leukemia and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 330 as residues: Leu-37 to Ala-42.

The tissue distribution and homology to ATPase indicates that polynucleotides and polypeptides corresponding to this gene are useful for marker of diagnosis and treatment of leukemia and other hematopoietic disorders.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 98

In specific embodiments, polypeptides of the invention comprise the sequence: MRSARPSLGCLPSWAFSQALNI (SEQ ID NO:568); LLGLKGLAPAEISAVCE KGNFN (SEQ ID NO:569); VAHGLAWSYYIGYLRLILPELQARIR (SEQ ID NO:570); TYNQHYNNLLRGAVSQRC (SEQ ID NO:571); ILLPLDCGVPDNLSM ADPNIRFLDKLPQQTGDRAGIKDRVYSN (SEQ ID NO:572); SIYELLENGQRAGT CVLEYATPLQTLFAMSQYSQAGFSGEDRLEQ (SEQ ID NO:573); AKLFCRTLE DILADAPESQNNCRLIAYQEPADDSSFSLSQEVLRHLRQEEKEEVTVGSLKTSAV PSTSTMSQEPELLISGMEKPLPLRTDFS (SEQ ID NO:574); and/or LLGLKGLA PAEISAVCEKGNFNVAHGLAWSYYIGYLRLILPEL (SEQ ID NO:575).

Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in prostate BPH and to a lesser extent in bone marrow.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, benign prostatic hypertrophy or prostate cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male urinary system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 331 as residues: Ile-60 to Asn-69, Leu-106 to Asp-112, Glu-130 to Gly-136, Phe-160 to Glu-167, Pro-184 to Cys-190, Glu-197 to Ser-202, Arg-215 to Glu-221, Thr-237 to Pro-242.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis or treatment of benign prostatic hypertrophy or prostate cancer.

20

25

30

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 99

This gene is expressed primarily in salivary gland.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders or injuries of the salivary gland. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of glandular tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of disorders of, or injuries to the salivary gland or other glandular tissue.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 100

This gene maps to chromosome 15, accordingly, polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 15. The translation product of this gene shares sequence homology with a *C.elegans* gene of unknown function. In specific embodiments, polypeptides of the invention comprise the sequence: DPRVRLNSLTCKHIFISLTQ (SEQ ID NO:583); TMKLLKLRRNIV KLSLYRHFTN (SEQ ID NO:576); TLILAVAASIVFIIWTTMKFRI (SEQ ID NO:577); VTCQSDWRELWVDDAIWRLLFSMILFVI (SEQ ID NO:578); MVLWR PSANNQRFAFSPLSEEEEEDEQ (SEQ ID NO:580); KEPMLKESFEGMKMRS TKQEPNGNSKVNKAQEDDL (SEQ ID NO:584); and/or KWVEENVPSSVTDVALP ALLDSDEERMITHFERSKME (SEQ ID NO:582). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in thyroid and to a lesser extent in osteoclastoma, kidney medulla, and lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, thyroid dysfunction or cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 333 as residues: Lys-107 to Leu-124, Glu-150 to Thr-159, Pro-173 to Asp-179, Ser-192 to Ser-201.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of thyroid dysfunction or cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 101

This gene maps to chromosome 16, therefore polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 16. In specific embodiments, polypeptides of the invention comprise the sequence:

10

15

20

IRHELTVLRDTRPACA (SEQ ID NO:585); and/or MDFXMALIYD (SEQ ID NO:586). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in kidney cortex and to a lesser extent in adult brain, corpus colosum, hippocampus, and frontal cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment or diagnosis of neurological disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 102

In specific embodiments, polypeptides of the invention comprise the sequence: MQEMMRNQDRALSNLESIPGGYNA (SEQ ID NO:587); LRRMYTDIQEPMLSA 25 AQEQF GGNPF (SEQ ID NO:588); ASLVSNTSSGEGSQPSRTENRDPLPNPWAP QT (SEQ ID NO:589); SQSSSASSGTASTVGGTTGSTASGTSGQSTTAPNLVPGV GASMFNTPG MQSLLQQITENPQLMQNMLSAPY (SEQ ID NO:590); MRSMMQSLSQNPDLAAQMMLNNPLFAGNPQLQEQMRQQLPTFLQQ (SEQ ID NO:591); MQNPDTLSAMSNPRAMQALLQIQQGLQTLATEAPGLIPGFTPGLG 30 ALGSTGGSSGTNGSNATPSENTSPTAGT (SEQ ID NO:592); TEPGHQQFI QQMLQALAGVNPQLQNPEVRFQQQLEQLSAMGFLNREANLQALIATGGDINAA IERLLGSQPS (SEQ ID NO:593); RNPAMMQEMMRNQDRALSNLESIPGGY NALRRMYTDIQEPMLSAA (SEQ ID NO:594); GNPFASLVSNTSS (SEQ ID NO:595); ENRDPLPNPWA (SEQ ID NO:595); GKILKDQDTLSQHGIHD (SEQ ID 35 NO:597); GLTVHLVIKTQNRP (SEQ ID NO:598); SELQSQMQRQLLSNPEMM (SEQ ID NO:599); PEISHMLNNPDIMR (SEQ ID NO:600); and/or RQLIMANPQMQQLIQRNP (SEQ ID NO:601). Polynucleotides encoding these

10

25

30

35

polypeptides are also encompassed by the invention.

This gene is expressed primarily in breast.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, breast cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of tumor systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of some types of breast cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 103

The translation product of this gene shares sequence homology with secreted serine proteases and lysozyme C precursor, which is thought to be important in bacteriolytic function. In specific embodiments, polypeptides of the invention comprise the sequence: NLCHVDCQDLLNPNLLAGIHCAKRIVS (SEQ ID NO:602); LDGFEGYSLSDWLCLAFVESKFN (SEQ ID NO:603);

NENADGSFDYGLFQINSHYWCN (SEQ ID NO:604); and/or NLCHVDCQDLLNPNLLAGIHCAKRIVS (SEQ ID NO:605). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, infection. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or

15

20

25

another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 336 as residues: Ile-62 to Phe-70, Asn-78 to Asn-84.

The tissue distribution and homology to lysozyme C precursor indicates that polynucleotides and polypeptides corresponding to this gene are useful for boosting the moncyte-macrophage system and enhance the activity of immunoagents.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 104

This gene is expressed primarily in apoptotic T-cell.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of some immune disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 105

The translation product of this gene shares sequence homology with ARI

protein of Drosophila (accession 2058299; EMBL: locus DMARIADNE, accession X98309), which is thought to be important in axonal path-finding in the central nervous system. In specific embodiments, polypeptides of the invention comprise the sequence IREVNEVIQNPAT (SEQ ID NO:606); ITRILLSHFNWDKEKLMERYF DGNLEKLFA (SEQ ID NO:607); NTRSSAQDMPCQICYLNYPNSYF (SEQ ID NO:608); TGLECGHKFCMQCWSEYLTTKIMEEGMGQTISCPAHG (SEQ ID NO:614); CDILVDDNTVMRLITDSKVKLKYQHLITNSFVECNRLLKWCPAPD CHHVVKVQYPDAKPV (SEQ ID NO:609); CDILVDDNTVMRLITDSK

10

15

20

25

30

35

VKLKYQHLITNSFVECNRLLKWCPAPDCHHVVKV (SEQ ID NO:610);
GCNHMVCRNQNCKAEFCWVCLGPWEPHGSAWYNCNRYNEDDAKAARDAQE
RSRAALQRYL (SEQ ID NO:611); FYCNRYMNHMQSLRFEHKLYAQVKQ
KMEEMQQHNMSWIEVQFLKKAVDVLCQCRATLMYT (SEQ ID NO: 612);
YVFAFYLKKNNQSIIFENNQADLENATEVLSGYLERDISQDSLQDIKQKVQDKY
RYCESR (SEQ ID NO:613) Polynucleotides encoding these polypeptides are also
encompassed by the invention.

This gene is expressed primarily in adult brain, and to a lesser extent in endometrial tumor, melanocytes, and infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases or injuries involving axonal path development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ARI protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of disease states or injuries involving axonal path development, including neurodegenerative diseases and nerve injury.

FEATURES OF PROTEIN ENCODED BY GENE NO: 106

The translation product of this gene shares sequence homology with cytochrome b561 [Sus scrofa] which is thought to be an integral membrane protein of neuroendocrine storage vesicles of neurotransmitters and peptide hormones.

This gene is expressed primarily in frontal cortex and to a lesser extent in rhabdomyosarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological disorders. Similarly, polypeptides and antibodies directed to

these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 339 as residues: Ser-18 to Pro-24.

The tissue distribution and homology to cytochrome b561 [Sus scrofa] indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of neurological disorders. This gene may also be important in regulation of some types of cancers.

15

20

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 107

In specific embodiments, polypeptides of the invention comprise the sequence: MWGYLFVDAAWNFLGCLICGW (SEQ ID NO:615); MHFISSGNVSAIRSSILLL RXSLSYLGNCLRVSAIFVYFLLFLLLS (SEQ ID NO:616); and/or MDQALRGSPSE GFSTDPSPPQVGRQIPSFPPWRRLVLPKASGCFLEREWWLCVFKLRTRPGAEA HAYNSSILGGRGKGIT (SEQ ID NO:617). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in pancreas tumor and to a lesser extent in cerebellum.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, pancreatic tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred

epitopes include those comprising a sequence shown in SEQ ID NO: 340 as residues: Pro-22 to Phe-33.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of pancreatic tumors.

5

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 108

This gene maps to chromosome 17 and therefore polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 17. In specific embodiments, polypeptides of the invention comprise the sequence:

MLPALASCCHFSPPEQAARLKKLQEQEKQQKVEFRKRMEKEVSDFIQDSGQIK KKFQPMNKIERSILHDVVEVAGLTSFSFGEDDDCRYVMIFKKEFAPSDEELDSY RRGEEWDPQKAEEKRNXKELAQRQ (SEQ ID NO:618); EEEAAQQGPVVV SPASDYKDKYSHLIGKGAAKDAAHMLQANKTYGCXPVANKRDTRSIEEAMNE IRAKKRLRQSGE (SEQ ID NO:619); PPRRPAQLPLTPGAGQGAGRDKAAAIRA HPGAPPLNHLLP (SEQ IDNO:620); AVPQAGGKQVFDLSPLELGYVRGMCVCV (SEQ ID NO:621) and/or MLPALASCCHFSPPEQAARLKKLQEQEKQQKVEFRK RMEKEVSDFIQDSGQIKKKFQPMNKIERSILHDVVEVAGLTSFSFGEDDDCRYV MIFKKEFAPSDEELDSYRRGEEWDPQKAEEKRNXKELAQRQEEEAAQQGPVVV SPASDYKDKYSHLIGKGAAKDAAHMLQANKTYGCXPVANKRDTRSIEEAMNE

IRAKKRLRQSGE (SEQ ID NO:622). Polynucleotides encoding these polypeptides are also encompassed by the invention. The translation product of this gene shares sequence homology with FSA-1 which may play a role as a structural protein component of the acrosome.

This gene is expressed primarily in fetal kidney and sperm.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, male reproductive disorders, especially involving acrosomal disfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an

10

15

20

25

35

individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 341 as residues: Glu-8 to Asn-35.

The tissue distribution and homology to FSA-1 indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of infertility due to acrosomal disfunction of sperm.

FEATURES OF PROTEIN ENCODED BY GENE NO: 109

This gene is expressed primarily in pituitary and to a lesser extent in epididymus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, male reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 342 as residues: Met-1 to Trp-6.

Because the gene is found in both pituitary and epididymus, this indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of male reproductive disorders. This may involve a secreted peptide produced in the pituitary targeting the epididymus.

FEATURES OF PROTEIN ENCODED BY GENE NO: 110

In specific embodiments, polypeptides of the invention comprise the sequence: LLCPVLNSGXSWNFPHPSQPEYSFHGFHSTRLWI (SEQ ID NO:623); and/or PSTPWFLFLLGLTCPFSTSHPRWDSIPP (SEQ ID NO:624). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in resting T-cells. .

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

20

25

30

not limited to, T-cell disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of certain immune disorders, especially those involving T-cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 111

This gene is expressed primarily in cerebellum and whole brain and to a lesser extent in infant brain and fetal kidney.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 344 as residues: Asp-48 to Gly-55.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neurological disorders.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 112

The translation product of this gene shares sequence homology with yeast mitochondrial ribosomal protein homologous to ribosomal protein s15 of E.coli which

10

15

20

25

is thought to be important in the early assembly of ribosomes (See Accession No. M38016). This gene maps to chromosome 1, and therefore, may be used as a marker in linkage analysis for chromosome 1.

This gene is expressed primarily in developmental tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, development of cancers and tumors in addition to healing wounds. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and developmental expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ribosomalprotein s15 of E. coli indicates that polynucleotides and polypeptides corresponding to this gene are useful for diseases related to the assembly of ribosomes in the mitochondria which is important in the translation of RNA into protein. Therefore, this indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of multiple tumors as well as in healing wounds which are thought to be under similar regulation as developmental tissues. Protein, as well as, antibodies directed against the protein have utility as tumor markers, in addition to immunotherapy targets, for the above listed tumors and tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 113

The translation product of this gene shares sequence homology with human

poliovirus receptor precursors which are thought to be important in viral binding and uptake. Preferred polypeptide fragments comprise the following amino acid sequence:

ELSISISNVALADEGEYTCSIFTMPVRTAKSLVTVLGIPQKPIITGYKSSLREKDT ATLNCQSSGSKPAARLTWRKGDQELHGEPTRIQEDPNGKTFTVSSSVTFQVTR EDDGASIVCSVNHESLKGADRSTSQRIEVLYTPTAMIRPDPPHPREGQKLLLHC

35 EGRGNPVPQQYLWEKEGSVPPLKMTQESALIFPFLNKSDSGTYGCTATSNMGS YKAYYTLNVND (SEQ ID NO:625). Also preferred are polynucleotide fragments encoding these polypeptide fragments (See Accession No. gnllPIDld1002627).

This gene is expressed almost exclusively in human brain tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, susceptibility to viral disease and diseases of the CNS especially cancers of that system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 346 as residues: Leu-26 to Asp-37, Lys-53 to Ser-59.

The tissue distribution and homology to poliovirus receptor precursors indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and prevention of diseases that involve the binding and uptake of virus particles for infection. It might also be helpful in genetic therapy where the goal is to insert foreign DNA into infected cells. With the help of this protein, the binding and uptake of this foreign DNA might be aided. In addition, it is expected that over expression of this gene will indicate abnormalities involving the CNS, particularly cancers of that system.

25

30

35

5

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 114

The translation product of this gene shares sequence homology with YO87_CAEEL hypothetical 28.5 KD protein ZK1236.7 in chromosome III of Caenorhabditis elegans in addition to alpha-1 collagen type III (See Accession No. gil537432). One embodiment for this gene is the polypeptide fragment(s) comprising the following amino acid sequence: VPELPDRVHQLHQAVQGCALGRPGFPGGPTH SGHHKSHPGPAGGDYNRCDRPGQVHLHNPRGTGRRGQLHPTAGPGVHRRA CPSQQLPHRLGPGVPCPSPSLTPVLPSWTQSWCG LPGYTSSS (SEQ ID NO:630). An additional embodiment is the polynucleotide fragment(s) encoding these polypeptide fragments

This gene is expressed primarily in brain cells and to a lesser extent in activated B and T cells.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurodegeneration and imunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neural and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 347 as residues: Glu-34 to Glu-39, Gly-51 to Ser-72, Ala-88 to Glu-93, Gln-100 to Val-105.

The tissue distribution and homology to YO87_CAEEL hypothetical 28.5 KD protein ZK1236.7 in chromosome III of Caenorhabditis elegans as well as to a conserved alpha-1 collagen type III protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons' Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorders. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 115

The translation product of this gene shares sequence homology with alpha 3 type IX collagen which is thought to be important in hyaline cartilage formation via its ability to uptake inorganic sulfate by cells (See Accession No. gil975657). One embodiment of this gene is the polypeptide fragment comprising the following amino acid sequence: SLRRPRSAAXQTLTTFLSSVSSASSSALPGSREPCDPRAPPPPR SGSAASCCSCCCSCPRRRAPLRSPRGSKRRIRQREVVDLYNGMCLQGPAGVPG RDGSPGANGIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNY GIDLGKIAECTFTKMRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGP LPIEAIIYLDQGSPEMNSTINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKG DASTGWNSVSRIIEELPK (SEQ ID NO:634). An additional embodiment are the

polynucleotide fragments encoding this polypeptide fragment.

5

10

15

20

25

30

35

This gene is expressed primarily in smooth muscle and to a lesser extent in synovial tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, dwarfism, spinal deformation, and specific joint abnormalities as well as chondrodysplasias i.e., spondyloepiphyseal dysplasia congenita, familial osteoarthritis, Atelosteogenesis type II, metaphyseal chondrodysplasia type Schmid and autoimmune disorders . Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to alpha 3 type IX collagen indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of diseases associated with the mutation in this gene which leads to the many different types of chondrodysplasias. By the use of this product, the abnormal growth and development of bones of the limbs and spine could be routinely detected or treated in utero since the protein or muteins thereof could affect epithelial cells early in development and later the chondrocytes of the developing craniofacial structure.

FEATURES OF PROTEIN ENCODED BY GENE NO: 116

The translation product of this gene shares sequence homology with retrovirusrelated reverse transcriptase which is thought to be important in viral replication. One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence: TKKENCRPASLMNIDTKILNKILMNQ (SEQ ID NO:640). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments (See Accession No. pirlA25313IGNHUL1).

This gene is expressed primarily in human meningima.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

20

25

30

35

not limited to, retroviral diseases such as AIDS, and possibly certain cancers due to transactivation of latent cell division genes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to retrovirus-related reverse transcriptase indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of diseases and maladies associated with retroviral infection since a functional reverse transcriptase (RT) or RT-like molecule is an integral component of the retroviral life cycle.

FEATURES OF PROTEIN ENCODED BY GENE NO: 117

The translation product of this gene shares sequence homology with an unknown gene from *C. elegans*, as well as weak homolog with mammalian metaxin, a gene contiguous to both thrombospondin 3 and glucocerebrosidase, is known to be required for embryonic development. Preferred polypeptide fragments comprise the following amino acid sequence: MCNLPIKVVCRANAEYMSPSGKVPXXHVGNQ VVSELGPIVQFVKAKGHSLSDGLEEVQKAEMKAYMELVNNMLLTAELYLQWC DEATVGXITHXRYGSPYPWPLXHILAYQKQWEVKRKXKAIGWGKKTLDQVLE DVDQCCQALSQRLGTQPYFFNKQPTELDALVFGHLYTILTTQLTNDELSEKVKN YSNLLAFCRRI EQHYFEDRGKGRLS (SEQ ID NO:641); MCNLPIKVVCRANAE YMSPSGKVPXXHVGNQVVSELGPIVQFVK (SEQ ID NO:642),. Also preferred are polynucleotide fragments encoding these polypeptide fragments (See Accession No. gil1326108).

This gene is expressed primarily in fetal tissues and to a lesser extent in hematopoietic cells and tissues, including spleen, monocytes, and T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer; lymphoproliferative disorders; inflammation; chondrosarcoma, and Gaucher disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification

10

15

20

25

30

35

of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and embryonic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of cancer and other proliferative disorders. Expression in embryonic tissue and other cellular sources marked by proliferating cells indicates that this protein may play a role in the regulation or cellular division. Additionally, the expression in hematopoietic cells and tissues indicates that this protein may play a role in the proliferation, differentiation, and survival of hematopoietic cell lineages. Thus, this gene may be useful in the treatment of lymphoproliferative disorders, and in the maintenance and differentiation of various hematopoietic lineages from early hematopoietic stem and committed progenitor cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 118

The translation product of this gene shares sequence homology with reverse transcriptase which is important in the synthesis of a cDNA chain from an RNA molecule, and is a method whereby the infecting RNA chains of retroviruses are transcribed into their DNA complements. One embodiment for this gene is the polypeptide fragment comprising the following amino acid sequence:

MXXXNSHITIFTLNVNGLNAPNERHRLANWIQSQDQVCCIQETHLTGRDTHRL KIKGWRKIYQANGKQKK (SEQ ID NO:647). An additional embodiment is the polynucleotide fragments comprising polynucleotides encoding these polypeptide fragments (See Accession No. gil2072964).

This gene is expressed primarily in skin and to a lesser extent in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer, hematopoietic disorders; inflammation; disorders of immune surveillance. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the epidermis and/or hematopoietic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and

WO 98/54963 PCT/US98/11422

92

wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to reverse transcriptase indicates that polynucleotides and polypeptides corresponding to this gene are useful for cancer therapy. Expression in the skin also indicates that this gene is useful in wound healing and fibrosis. Expression by neutrophils also indicates that this gene product plays a role in inflammation and the control of immune surveillance (i.e. recognition of viral pathogens). Reverse transcriptase family members are also useful in the detection and treatment of AIDS.

FEATURES OF PROTEIN ENCODED BY GENE NO: 119

The translation product of this gene shares sequence homology with reverse transcriptase which is important in the synthesis of a cDNA copy of an RNA molecule, and is a method whereby a retrovirus reverse-transcribes its genome into an inheritable DNA copy.

This gene is expressed primarily in the frontal cortex of brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer and neurodegenerative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the CNS and peripheral nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to reverse transcriptase suggest that this is useful in the treatment of cancer and AIDS. The expression in brain indicates that it plays a role in neurodegenerative disorders and in neural degeneration.

5

10

15

20

25

30

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 120

One embodiment of this gene has homology to a hypothetical protein in Schizosaccharomyces pombe (See Accession No. 2281980). Another embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence: IYHLHSWIFFHFKRAFCMCFITMKVIHAHCSKLRKCXNAQISVFCTTLTASYPT (SEQ ID NO:651). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments. This gene maps to chromosome 18, and therefore, may be used as a marker in linkage analysis for chromosome 18.

This gene is expressed primarily in adult hypothalamus and to a lesser extent in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurodegenerative disorders; endocrine function; and vertigo. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, CNS and peripheral nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of neurodegenerative disorders; diagnosis of tumors of a brain or neuronal origin; treatments involving hormonal control of the entire body and of homeostasis, behavioral disorders, such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo.

FEATURES OF PROTEIN ENCODED BY GENE NO: 121

The translation product of this gene shares sequence homology with the human IRLB protein which is thought to be important in binding to a c-myc promoter element and thus regulating its transcription (See Accession No. gil33969). This gene maps to

chromosome 1, and therefore, may be used as a marker in linkage analysis for chromosome 1.

This gene is expressed primarily in brain and breast and to a lesser extent in a variety of hematopoietic tissues and cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer of the brain and breast; lymphoproliferative disorders; neurodegenerative diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the CNS, breast, and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of cancer of the brain, breast, and hematopoietic system. In addition, it may be useful for the treatment of neurodegenerative disorders, as well as disorders of the hematopoietic system, including defects in immune competency and inflammation. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and immunotherapy targets for the above listed tumors and tissues.

25

20

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 122

The translation product of this gene shares sequence homology with an ATP synthase, a key component of the proton channel that is thought to be important in the translocation of protons across the membrane.

30

35

This gene is expressed primarily in T cell lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, T cell lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or

10

20

25

30

35

lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to ATP synthase indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of defects in proton transport, homeostasis, and metabolism, as well as the diagnosis and treatment of lymphoma. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia

FEATURES OF PROTEIN ENCODED BY GENE NO: 123

This gene maps to chromosome 15, and therefore, may be used as a marker in linkage analysis for chromosome 15.

This gene is expressed primarily in a variety of fetal tissues, including fetal liver, lung, and spleen, and to a lesser extent in a variety of blood cells, including eosinophils and T cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer (abnormal cell proliferation); T cell lymphomas; and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetus and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of conditions involving cell proliferation. Expression of this gene in fetal tissues, as well as in a variety of blood cell lineages indicates that it may play a role in either cellular proliferation; apoptosis; or cell survival. Thus it may be useful in the management and

treatment of a variety of cancers and malignancies. In addition, its expression in blood cells suggest that it may play additional roles in hematopoietic disorders and conditions, and could be useful in treating diseases involving autoimmunity, immune modulation, immune surveillance, and inflammation..

5

10

15

20

25

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 124

This gene is expressed primarily in placenta and to a lesser extent in pineal gland and rhabdomyosarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental, endocrine, and female reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the [insert system where a related disease state is likely, e.g., immune], expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 357 as residues: Leu-69 to Val-76.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of disorders in development. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and immunotherapy targets for the above listed tumors and tissues.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 125

This gene is expressed primarily in benign prostatic hyperplasia.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of benign prostatic hyperplasia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive

WO 98/54963 PCT/US98/11422

97

system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of benign prostatic hyperplasia. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and immunotherapy targets for the above listed tumors and tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 126

This gene is expressed primarily in apoptotic T-cells and to a lesser extent in suppressor T cells and ulcerative colitis.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases involving premature apoptosis, and immunological and gastrointestinal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of disorders involving inappropriate levels of apoptosis, especially in immune cell lineages. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases (such as AIDS), and leukemia.

5

10

15

20

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 127

This gene is expressed primarily in Raji cells.

5

10

15

20

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and T cell autoimmune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 360 as residues: Asp-23 to Gly-29.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of inflammation and T cell autoimmune disorders. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases (such as AIDS), and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 128

25 The translation product of this gene shares sequence homology with an C. elegans coding region C47D12.2 of unknown function (See Accession No. gnllPIDle348986). One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence: EDDGFNRSIHEVILKNITWY SERVLTEISLGSLLILVVIRTIQYNMTRTRDKYLHTNCLAALANMSAQFRSLHQY 30 AAQRIISLFSLLSKKHNKVLEQATQSLRGSLSSNDVPLPDYAQDLNVIEEVIRMM LEIINSCLTNSLHHNPNLVALLYKRDLFEQFRTHPSFQDIMQNIDLVISFFSSRLL QAGS (SEQ ID NO:657); EDDGFNRSIHEVILKNITWYSERVLTEISLGSLLILVV (SEQ ID NO:658); RTIQYNMTRTRDKYLHTNCLAALANMSAOFRSLHOYAAO RIISLFSLLSKKHN (SEQ ID NO:659); KKHNKVLEQATQSLRGSLSSNDVPLPDY AQD (SEQ ID NO:661); SCLTNSLHHNPNLVYALLYKRDLFEQFRTHPSFQD 35 IMQNIDLVISFFSSRLLQAGS (SEQ ID NO:660). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments. This gene maps to

10

15

20

25

chromosome 18, and therefore, may be used as a marker in linkage analysis for chromosome 18.

This gene is expressed primarily in smooth muscle and to a lesser extent in fetal liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, atherosclerosis and other cardiovascular and hepatic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of circulatory system disorders such as atherosclerosis, hypertension, and thrombosis. In addition, the tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of liver disorders and cancers (e.g. hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and conditions that are attributable to the differentiation of hepatocyte progenitor cells). In addition the expression in fetus would suggest a useful role for the protein product in developmental abnormalities, fetal deficiencies, pre-natal disorders and various would-healing models and/or tissue trauma.

FEATURES OF PROTEIN ENCODED BY GENE NO: 129

The translation product of this gene shares sequence homology with a ribosomal protein which is thought to be important in cellular metabolism, in addition to the *C.elegans* protein F40F11.1 which does not have a known function at the current time (See Accession No. gnllPIDle244552). Preferred polypeptide fragments comprise the following amino acid sequence:

35 MADIQTERAYQKQPTIFQNKKRVLLGETGKEKLPRVTNKNIGLGFKDT PRRLLRGTYIDKKCPFTGNVSIRGRILSGVVTQDEDAEDHCHPPRLSALHPQVQ PLREAPQEHVCTPVPL LQGRPDR (SEQ ID NO:662); MKMQRTIVIRRDYLH

15

20

25

YIRKYNRFEKRHKNMSVHLSPCFRDVQIGDIVTVGECRPLSKTVRFNVLKVTK AAGTKKQFQKF (SEQ ID NO:663); MADIQTERAYQKQPTIFQNKKRVLLGET GK (SEQ ID NO:664); HCHPPRLSALHPQVQPLREAPQEHVCTPVPL LQGRPDR (SEQ ID NO:666); NIGLGFKDTPRRLLRGTYIDKKCPFTGNVSIRGRILSGVVTQ (SEQ ID NO:669); MKMQRTIVIRRDYLHYIRKYNRFEKRHKNMSVHLSP (SEQ ID NO:667); CFRDVQIGDIVTVGECRPLSKTVRFNVLKVTKAAGTKKQFQKF (SEQ ID NO:668). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in Wilm's tumor and to a lesser extent in thymus and stromal cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases affecting RNA translation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the Wilm's tumors, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 362 as residues: Thr-11 to Asp-20.

The tissue distribution and homology to a ribosomal protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for diseases affecting RNA translation.

FEATURES OF PROTEIN ENCODED BY GENE NO: 130

The translation product of this gene shares sequence homology with a yeast DNA helicase which is thought to be important in global transcriptional regulation (See Accession No. gnllPIDle243594). One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence: IFYDSDWNPTVDQQA MDRAHRLGQTKQVTVYRLICKGTIEERILQRAKEKSEIQRMVISG (SEQ ID NO:670); TRMIDLLEEYMVYRKHTYXRLDGSSKISERRDMVADFQNRNDI FVFLLSTRAGGLGINLTAXDTVHF (SEQ ID NO:671); TRMIDLLEEYMVYRK HTYXRLDGSSKISERRDM (SEQ ID NO:674); RRDMVADFQNRNDIFVFLL

10

15

20

25

30

35

STRAGGLGINLTAXDTVHF (SEQ ID NO:675), IFYDSDWNPTVDQQAMD RAHRLGQTKQVTVYRLICKG (SEQ ID NO:676); RLICKGTIEERILQRAK EKSEIQRMVISG (SEQ ID NO:678). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in amygdala.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases and disorders of the brain. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to a DNA helicase indicates that polynucleotides and polypeptides corresponding to this gene are useful for diseases affecting RNA transcription, particularly developmental disorders and healing wounds since the later are though to approximate developmental transcriptional regulation.

FEATURES OF PROTEIN ENCODED BY GENE NO: 131

This gene is expressed primarily in prostate and to a lesser extent in amygdala and pancreatic tumors.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, prostate enlargement and gastrointestinal disorders, particularly of the pancreas and gall bladder. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to

10

15

20

25

30

35

102

the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of prostate diseases, including benign prostatic hyperplasia and prostate cancer. In addition, the tissue distribution in tumors of the pancreas indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tissues where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 132

This gene is expressed primarily in adult lung and to a lesser extent in hypothalamus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, pulmonary diseases and neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the pulmonary and respiratory systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of pulmonary and respiratory disorders such as emphysema, pneumonia, and pulmonary edema and emboli. In addition, the tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental

disorders associated with the developing embryo, sexually-linked disorders, or disorders of the cardiovascular system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 133

This gene is expressed primarily in human liver.

5

10

15

20

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cirrhosis of the liver and other hepatic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of liver disorders such as cirrhosis, jaundice, and Hepatitus. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 134

This gene is expressed primarily in fetal kidney and to a lesser extent in fetal liver and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, development and regeneration of liver and kidney and immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive and excretory systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or

10

20

25

30

35

another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 367 as residues: Pro-70 to Arg-77, Tyr-102 to Thr-107.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of diseases of the kidney and liver, such as cirrhosis, kidney failure, kidney stones, and liver failure, hepatoblastoma, jaundice, hepatitis, liver metabolic diseases and conditions that are attributable to the differentiation of hepatocyte progenitor cells. In addition the expression in fetus would suggest a useful role for the protein product in developmental abnormalities, fetal deficiencies, pre-natal disorders and various would-healing models and/or tissue trauma.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 135

This gene is expressed primarily in brain, bone marrow, and to a lesser extent in placenta, T cell, testis and neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurodegenerative and immunological diseases and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 368 as residues: Met-1 to His-6.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, the gene or gene product may also

WO 98/54963

105

play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, or sexually-linked disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 136

10

30

35

5 Translatation product of this gene is homologous to the human WD repeat protein HAN11. Preferred polypeptide fragments comprise the following amino acid sequence:

MSLHGKRKEIYKYEAPWTVYAMNWSVRPDKRFRLALGSFVEEYNNKVQLVG LDEESSEFICRNTFDHPYPTTKLMWIPDTKGVYPDLLATSGDYLRVWRVGETET RLECLLNNNKNSDFCAPLTSFDWNEVDPYLLGTSSIDTTCTIWGLETGQVLGRV NLVSGHVKTQLIAHDKEVYDIAFSRAGGGRDMFASVGADGSVRMFDLRHLEH STIIYEDPQHHPLLRLCWNKQDPNYLATMAMDGMEVVILDVRVPAHLXPGTTIE HVSMALLGPHIHPATSALQRMTTRLSSGTSSKCPEPLRTLSWPTQLXGEINNVQ WASTQPELSPSATTTAWRYSECSVGGAVPTRQGLLYFLPLPHPQS (SEQ ID

15 NO:679); MSLHGKRKEIYKYEAPWTVYAMNWSVRPDKRFRLALGSFV **EEYNNKVQLVGLDEESSEFICRNTFDHPYPTTKLMWIPDTKGVYPDLLATSGDY** LRVWRVGETETRLECLLNNNKNSDFCAPLTSFDWNEVDPYLL (SEQ ID NO:680); SFDWNEVDPYLLGTSSIDTTCTIWGLETGOVLGRVNLVSGHVK TQLIAHDKEVYDIAFSRAGGGRDMFASVGADGSVRMFDLRHLEHSTIIYEDPOH

20 HPLLRLCWNKQDPNYLATMAMDGMEVVILDVRVPAHLXPGTTI (SEQ ID NO:681); VGADGSVRMFDLRHLEHSTIIYEDPQHHPLLRLCWNKQDPNYLA TMAMDGMEVVILDVRVPAHLXPGTTIEHVSMALLGPHIHPATSALQRMTTRLS SGTSSKCPEPLRTLSWPTQLXGEINNVQWASTQPELSPSATTTAWRYSECSVG GAVPTRQGLLYFLPHPPQS (SEQ ID NO:682). Also preferred are polynucleotide 25 fragments encoding these polypeptide fragments.

This gene is expressed primarily in placenta, embryo, T cell and fetal lung and to a lesser extent in endothelial, tonsil and bone marrow.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunological and developmental diseases in addition to cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or

WO 98/54963 PCT/US98/11422

106

cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 369 as residues: Gly-19 to Gln-28, Pro-36 to Phe-42.

The tissue distribution in tumors of colon, ovary, and breast origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 137

This gene is expressed primarily in TNF and INF induced epithelial cells, T cells and kidney.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammatory conditions particularly inflammatory reactions in the kidney. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of renal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 370 as residues: Thr-67 to Gly-72, Gln-132 to Ala-145, Arg-150 to Pro-157.

The tissue distribution indicates that the protein products of this gene are useful for treating the damage caused by inflammation of the kidney.

5

10

20

25

30

10

15

20

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 138

This gene maps to chromosome 1, and therefore, may be used as a marker in linkage analysis for chromosome 1 (See Accession No. D63485).

This gene is expressed primarily in breast cancer and colon cancer and to a lesser extent in thymus and fetal spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancers, especially of the breast and colon tissues. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in tumors of colon and breast origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 139

This gene maps to chromosome 17, and therefore, can be used as a marker for linkage analysis from chromosome 17.

This gene is expressed primarily in CD34 positive cells, and to lesser extent in activated T-cells and neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunologically related diseases and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and hematopoietic system, expression of this gene at significantly higher or lower levels

10

15

35

may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in CD34, T-cell and neutrophils indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of hematopoietic disorders and immunologically related diseases, such as anemia, leukemia, inflammation, infection, allergy, immunodeficiency disorders, arthritis, asthma, immune deficiency diseases such as AIDS.

FEATURES OF PROTEIN ENCODED BY GENE NO: 140

This gene was recently cloned by another group, who called the gene KIAA0313 gene. (See Accession No. d1021609.) Preferred polypeptide fragments comprise the amino acid sequence:

- LYATATVISSPSTEXLSQDQGDRASLDAADSGRGSWTSCSSGSHDNIQTIQ HQRSWETLPFGHTHFDYSGDPAGLWASSSHMDQIMFSDHSTKYNRQNQSRES LEQAQSRASWASSTGYWGEDSEGDTGTIKRRGGKDVSIEAESSSLTSVTTEETK PVPMPAHIAVASSTTKGLIARKEGRYREPPPTPPGYIGIPITDFPEGHSHPARKP
- 20 PDYNVALQRSRMVARSSDTAGPSSVQQPHGHPTSSRPVNKPQWHKXNESDPR LAPYQSQGFSTEEDEDEQVSAV (SEQ ID NO:683); HMDQIMFSDHSTKYNRQ NQSRESLEQAQSRASWASSTGYWGE (SEQ ID NO:684); SVTTEETKPVPMP AHIAVASSTTKGLIARKEGRYREPPPTPPGYIGIPITD (SEQ ID NO:685); and VALQRSRMVARSSDTAGPSSVQQPHGHPTSSRPVNKPQW
- 25 HKXNESDPRLAPYQSQGF (SEQ ID NO:686). Also preferred are polynucleotide fragments encoding these polypeptide fragments. This gene maps to chromosome 4, and therefore, may be used as a marker in linkage analysis for chromosome 4 (See Accession No. AB002311).

This gene is expressed primarily in ovarian cancer, tumors of the Testis, brain, and colon.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, ovarian, testicle, brain and colon cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male and female reproductive systems.

WO 98/54963 PCT/US98/11422

109

expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in tumors of colon, ovary, testis, and brain origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 141

This gene is expressed primarily in spleen and colon cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, colon cancer and immunological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the gastrointestinal trace and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in tumors of colon, ovary, and breast origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues.

5

10

15

20

25

30

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 142

Translation product is homologous to T cell translocation protein, a putative zinc finger factor (See Accession No. 340454), as well as to the G-protein coupled receptor TM5 consensus polypeptide (See Accession No. R50734). Preferred polypeptide fragments comprise the following amino acid sequence:

CLLFVFVSLGMRCLFWTIVYNVLYLKHKCNTVLLCYHLCSI (SEQ·ID NO:687);

ACSKLIPAFEMVMRAKDNVYHLDCFACQLCNQRXCVGDKFFLKNNXXLCQT DYEEGLMKEGYAPXVR (SEQ ID NO:688). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in fetal brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological disorders including brain cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the Central Nervous System, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo.

FEATURES OF PROTEIN ENCODED BY GENE NO: 143

Translation product for this gene has significant homology to the Fas ligand, which is a cysteine-rich type II transmembrane protein/tumor necrosis factor receptor homolog. Mutations within this protein have been shown to result in generalized lymphoproliferative disease leading to the development of lymphadenopathy and autoimmune disease (See Medline Article No. 94185175). Preferred polypeptide

10

15

20

25

30

35

fragments comprise the following amino acid sequence: SALSEPGAPDRRRPCPESVPRRPDDEQWPPPTALCLDVAPLPPSS (SEQ ID NO:689). Also preferred are polynucleotide fragments encoding these polypeptide fragments (See Accession No. 473565).

This gene is expressed primarily in osteoblasts, lung, and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, osteoblast-related, pulmonary, neurological, and immunological diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal and nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 376 as residues: Trp-33 to Thr-40, Lys-45 to Ile-63.

The tissue distribution in osteoblasts, lung, and brain combined with its homology to the Fas ligand indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues. Because the Fas ligand gene is known to be expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including asthma, immune deficiency diseases such as AIDS and leukemia, and various autoimmune disorders including lupus and arthritis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 144

This gene shares sequence homology with a 21.5 KD transmembrane protein in the SEC15-SAP4 intergenic region of yeast. (See Accession No. 1723971.) Preferred polypeptide fragments comprise the amino acid sequence:

AHASESGERWWACCGVRFGLRSIEAIGRSCCHDGPGGLVANRGRRFKWAIEL SGPGGGSRGRSDRGSGQGDSLYPVGYLDKQVPDTSVQETDRILVEKRCWDIAL

GPLKQIPMNLFIMYMAGNTISIFPTMMVCMMAWRPIQALMAISATFKMLESSSQ KFLQGLVYLIGNLMGLALAVYKCQSMGLLPTHASDWLAFIEPPERMEFSGG GLLL (SEQ ID NO:691); PVGYLDKQVPDTSVQETDRILVEKRCWDIALGPLKQ IPMNLFI (SEQ ID NO:693); and ATFKMLESSSQKFLQGLVYLIGNLMGLALAV YKCQSMGLLPTHASD (SEQ ID NO:692). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in osteoclastoma, hemangiopericytoma, liver, lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, osteoclastoma, hemangiopericytoma, liver and lung tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the above tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the lung and liver systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosing osteoclastoma, hemangiopericytoma, liver and lung tumors.

25

30

5

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 145

Translation product of this gene shares homology with the glucagon-69 gene which may indicate this gene plays a role in regulating metabolism. (See Accession No. A60318) One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence:

PTTKLDIMEKKKHIQIRFPSFYHKLVDSGRMRSKRETRREDSDTKHNL (SEQ ID NO:694). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in brain, kidney, colon, and testis.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

WO 98/54963 PCT/US98/11422

not limited to, brain, kidney, colon, and testicular cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive system, neurological, circulatory, and gastrointestinal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

5

10

The tissue distribution in tumors of brain, kidney, colon, and testis origins, indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues. The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection/treatment of neurodegenerative disease states and behavioral disorders such as Alzheimer's Disease, Parkinson's Disease, Huntingtons Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder and panic disorder. In addition, the gene or gene product may also play a role in the treatment and/or detection of developmental disorders associated with the developing embryo, sexually-linked disorders, or disorders of the cardiovascular system.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 146

The translation product of this gene shares sequence homology with goliath protein which is thought to be important in the regulation of gene expression during development. Protein may serve as a transcription factor. One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence:

- TEHIIAVMITELRGKDILSYLEKNISVQMTIAVGTRMPPKNFSRGSLVFVSISFIV LMIISSAWLIFYFIQKIRYTNARDRNQRRLGDAAKKAISKLTTRTVKKGDKETD PDFDHCAVCIESYKQNDVVRILPCKHVFHKSCVDPWLSEHCTCPMCKLNILKA LGIV (SEQ ID NO:695); TEHIIAVMITELRGKDILSYLEKNISVQMTIAVGTRMP PKNFSRGSLVFVSISFIVLM IISSAWLIFYF (SEQ ID NO:697); SISFIVLMIISSA
- 35 WLIFYFIQKIRYTNARDRNQRRLGDAAKKAISKLTTRTVKKGDKE (SEQ ID NO:698); VKKGDKETDPDFDHCAVCIESYKQNDVVRILPCKHVFHKSCVDP

WLSEHCTCPMCKLNILKALGIV (SEQ ID NO:699). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments (See Accession No. 157535). Moreover, another embodiment is the polynucleotide fragments encoding these polypeptide fragments:

- 5 MTHPGTEHIIAVMITELRGKDILSYLEKNISVQMTIAVGTRMPPKNFSRGS
 LVFVSISFIVLMIISSAWLIFYFIQKIRYTNARDRNQRRLGDAAKKAISKLTTRTV
 KKGDKETDPDFDHCAVCIESYKQNDVVRILPCKHVFHKSCVDPWLSEHCTCP
 MCKLNILKALGIVPNLPCTDNVAFDMERLTRTQAVNRRSALGDLAGDNSLGLE
 PLRTSGISPLPQDGELTPRTGEINIAVTKEWFIIASFGLLSALTLCYMIIRATASLN
- 10 ANEVEWF (SEQ ID NO:696);MTHPGTEHIIAVMITELRGKDILSYLEKNISVQM TIAVGTRMPPKNFSRGSLVFVSISFIVLMIISSAWLIFYFIQKIRYTNARDRNQRR LGDAAKKAISKLTTRT (SEQ ID NO:700); AAKKAISKLTTRTVKKGDKE TDPDFDHCAVCIESYKQNDVVRILPCKHVFHKSCVDPWLSEHCTCPMCKLNIL KALGIVPNLPC (SEQ ID NO:701); TQAVNRRSALGDLAGDNSLGLEPLRTSGI
- 15 SPLPQDGELTPRTGEINIAVTKEWFIIASFGLLSALTLCYMIIRATASLNANEVEW F (SEQ ID NO:702); PLHGVADHLGCDPQTRFFVPPNIKQWIALLQRGNCTF KEKISRAAFHNAVAVVIYNNKSKEEPVTMTHPGTEHIIAVMITELRGKDILSYLE KNISVQMTIAVGTRMPPKNFSRGSLVFVSISFIVLMIISSAWLIFYFIQKIRYTNA RDRNQRRLGDAAKKAISKLTTRTVKKGDKETDPDFDHCAVCIESYKQNDVVRI
- 20 LPCKHVFHKSCVDPWLSEHCTCPMCKLNILKALGIVPNLPCTDNVAFDMERLT RTQAVNRRSALGDLAGDNSLGLEPLRTSGISPLPQDGELTPRTGEINIAVTKEW FIIASFGLLSALTLCYMIIRATASLNANEVEWF(SEQ ID NO:703); and HGVADHLGCDPQTRFFVPPNIKQWIALLQRGNCTFKEKISRAAFHNAVAVVIY NNKSKEE (SEQ ID NO:704). An additional embodiment is the polynucleotide
- fragments encoding these polypeptide fragments. When tested against Jurkat cell lines, supernatants removed from cells containing this gene activated the GAS pathway. Thus, it is likely that this gene activates immune cells through the JAKS/STAT signal transduction pathway.

This gene is expressed primarily in macrophage, breast, kidney and to a lesser extent in synovium, hypothalamus and rhabdomyosarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, schizophrenia and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and neural system, expression of this gene at

10

15

WO 98/54963 PCT/US98/11422

115

significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to zinc finger protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of schizophrenia, kidney disease and other cancers. The tissue distribution in macrophage, breast, and kidney origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of tumors within these tissues, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 147

The translation product of this gene shares sequence homology with HNP36 protein, an equilibrative nucleoside transporter, which is thought to be important in gene transcription as well as serving as an important component of the nucleoside transport apparatus (See Accession No. 1845345). One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence:

- 25 MSGQGLAGFFASVAMICAIASGSELSESAFGYFITACAVIILTIICYLGLPRLEFYR YYQQLKLEGPGEQETKLDLISKGEEPRAGKEESGVSVSNSQPTNESHSIKAILK NISVLAFSVCFIFTITIGMFPAVTVEVKSSIAGSSTWERYFIPVSCFLTFNIFDWLG RSLTAVFMWPGKDSRWLPSWXLARLVFVPLLLLCNIKPRRYLTVVFEHDAWFI FFMAAFAFSNGYLASLCMCFGPKKVKPAEAETAEPSWPSSCVWVWHWGLFS
- 30 PSCSGQLCDKGWTEGLPASLPVCLLPLPSARGDPEWSGGFFF (SEQ ID NO:705); MSGQGLAGFFASVAMICAIASGSELSESAFGYFITACAVIILTIIC YLGLPRLEFYRYYQQLKLE GPGEQETKLDLISKGEEPRAGKEESGVSVSNSQ PTNESHSI (SEQ ID NO:706); SGVSVSNSQPTNESHSIKAILKNISVLAFSVCFI FTITIGMFPAVTVEVKSSIAGSSTWERYFIPVSCFLTFNIFDWLGRS (SEQ ID
- 35 NO:707),TIGMFPAVTVEVKSSIAGSSTWERYFIPVSCFLTFNIFDWLGRSLTAVF MWPGKDSRWLPSWXLARLVFVPLLLLCNIK PRRYLTVVFEHDA (SEQ ID NO:708); FGPKKVKPAEAETAEPSWPSSCVWVWHWGLFSPSCSGQLCDK

GWTEGLPASLPVCLLPLPSARGDPEWSGGFFF (SEQ ID NO:709). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in eosinophils and aortic endothelium and to a lesser extent in umbilical vein endothelial cell and thymus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, hematopoietic disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to HNP36 protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of blood neoplasias and other hematopoietic disease.

20

25

30

35

15

5

10

FEATURES OF PROTEIN ENCODED BY GENE NO: 148

This gene is expressed primarily in breast cancer cell lines, thymus stromal cells, and ovary.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, endocrine and female reproductive system diseases including breast cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

25

30

35

117

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of endocrine disorders. In addition, the tissue distribution in tumors of thymus, ovary, and breast origins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of these tumors, in addition to other tumors where expression has been indicated. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 149

This gene is expressed primarily in retina and ovary and to a lesser extent in brreast cancer cell, epididymus and osteosarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neuronal growth disorders, cancer and reproductive system disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neural and reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 382 as residues: Met-1 to Gly-7.

25

30

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis or treatment of reproductive system disease and cancers.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 150

One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence:

MIKDKGRARTALTSSQPAHLCPENPLLHLKAAVKEKKRNKKKKTIGSPKRIQS PLNNKLLNSPAKTLPGACGSPQKLIDGFLKHEGPPAEKPLEELSASTSGVPGLS

10 SLQSDPAGCVRPPAPNLAGAVEFNDVKTLLREWITTISDPMEEDILQVVKYCTD LIEEKDLEKLDLVIKYMKRLMQQSVESVWNMAFDFILDNVQVVLQQTYGSTLK VT (SEQ ID NO:713); MIKDKGRARTALTSSQPAHLCPENPLLHLKAAVKE KKRNKKKKTIGSPKRIQ (SEQ ID NO:714); KRIQSPLNNKLLNSPAKT LPGACGSPQKLIDGFLKHEGPPAEKPLEELSASTSGVPGLSSLQSDPAGCVRPP

15 APNLAGAVEFNDVKTLLREWITTISDPM (SEQ ID NO:715);
TISDPMEEDILQVVKYCTDLIEEKDLEKLDLVIKYMKRLMQQSVE
SVWNMAFDFILDNVQVVLQQTYGSTLKVT (SEQ ID NO:716). An additional embodiment is the polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in 12 week embryo and to a lesser extent in hemangiopericytoma and frontal cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, growth disorders and hemangiopericytoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the circular and neural system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 383 as residues: Leu-4 to Lys-11.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of growth disorders, hemangiopericytoma and other soft tissue tumors.

10

15

20

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 151

The translation product of this gene has been found to have homology to a human DNA mismatch repair protein PMS3. Preferred polypeptide fragments comprise the following amino acid sequence: FCHDCKFPEASPAMNCEP (SEQ ID NO:717). Also preferred are polynucleotide fragments encoding these polypeptide fragments (See Accession No. R95250).

This gene is expressed primarily in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, lymphoma, immunodeficiency diseases, and cancers resulting from genetic instability. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 384 as residues: Met-1 to Lys-6.

The tissue distribution in neutrophils and the sequence homology indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis of Hodgkin's lymphoma, since the elevated expression and secretion by the tumor mass may be indicative of tumors of this type. Additionally the gene product may be used as a target in the immunotherapy of the cancer. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. Furthermore, its homology to a known DNA repair protein would suggest gene may be useful in establishing cancer predisposition and prevention in gene therapy applications.

FEATURES OF PROTEIN ENCODED BY GENE NO: 152

This gene is expressed primarily in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

20

25

30

35

biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, infectious diseases and lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of inflammation and infectious diseases.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 153

One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence:

MASSVPAGGHTRAGGIFLIGKLDLEASLFKSFQWLPFVLRKKC
NFFCWDSSAHSLPLHPLSASCSAPACHASDTHLLYPSTRALCPSIFAWLVAPHS
VFRTNAPGPTPSSQSSPVFPVFPVSFMALIVCXLVCC (SEQ ID NO:720);
MASSVPAGGHTRAGGIFLIGKLDLEASLFKSFQWLPFVLRKKCNFFCWDSSAH
SLPLHPLSASCSAPACHA (SEQ ID NO:721);FAWLVAPHSVFRTNAPGPTPS
SQSSPVFPVFPVSFMALIVCXLVCC (SEQ ID NO:722). An additional embodiment
is the polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and infectious disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred

10

15

20

25

30

35

epitopes include those comprising a sequence shown in SEQ ID NO: 386 as residues: Ser-11 to Pro-17.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of infectious diseases and inflammation.

FEATURES OF PROTEIN ENCODED BY GENE NO: 154

This gene is expressed in multiple tissues including ovary, uterus, adipose tissue, brain, and the liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, uterine, ovarian, brain, and liver cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the female reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnostic or therapeutic uses in the treatment of the female reproductive system, obesity, and liver disorders, particularly cancer in the above tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 155

This gene maps to chromosome 3, and therefore, may be used as a marker in linkage analysis for chromosome 3 (See Accession No. D87452).

This gene is expressed in multiple tissues including brain, aortic endothelial cells, smooth muscle, pituitary, testis, melancytes, spleen, nertrophils, and placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunological disorders including immunodeficiencies, cancers of the brain and the female reproductive system, as well as cardiovascular disorders, such as

atherosclerosis and stroke. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution suggest that polynucleotides and polypeptides corresponding to this gene are useful in treatment/detection of disorders in the nervous system, including schizophrenia, neurodegeneration, neoplasia, brain cancer as well as cardiovascular and female reproductive disorders including cancer within the above tissues.

15

20

25

30

35

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 156

The translation product of this gene shares sequence homology with the human gene encoding cytochrome b561 (See Accession No. P10897). Cytochrome b561 is a transmembrane electron transport protein that is specific to a subset of secretory vesicles containing catecholamines and amidated peptides. This protein is thought to supply reducing equivalents to the intravesicular enzymes dopamine-beta-hydroxylase and alpha-peptide amidase. Preferred polypeptides of the invention comprise the amino acid sequence:

MAMEGYWRFLALLGSALLVGFLSVIFALVWVLHYREGLGWDGSALEFNWHP VLMVTGFVFIQGIAIIVYRLPWTWKCSKLLMKSIHAGLNAVAAILAIISVVAVFE NHNVNNIANMYSLHSWVGLIAVICYLLQLLSGFSVFLLPWAPLSLRAFLMPIHV YSGIVIFGTVIATALMGLTEKLIFSLRDPAYSTFPPEGVFVNTLGLLILVFGALIF WIVTRPQWKRPKEPNSTILHPNGGTEQGARGSMPAYSGNNMDKSDSEL NSEVAARKRNLALDEAGQRSTM (SEQ ID NO:724); as well as antigenic fragments of at least 20 amino acids of this gene and/or biologically active fragments. Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in anergic T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune system and metabolism related diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological

10

15

20

25

30

35

probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product or RNA of this gene is useful for treatment or diagnosis of immune system and metabolic diseases or conditions including Tay-Sachs disease, phenylketonuria, galactosemia, various porphyrias, and Hurler's syndrome.

FEATURES OF PROTEIN ENCODED BY GENE NO: 157

The translation product of this gene shares sequence homology with collagen which is important in mammalian development. This gene also shows sequence homology with bcl-2. (See Accession No. P80988.) Preferred polypeptide fragments comprise the amino acid sequence: PGRAGPSPGLSLQLPAEPGHPAGNLAPL TSRPQPLCRIPAVPG (SEQ ID NO:725). Also preferred are polynucleotide sequences encoding this polypeptide fragment.

This gene is expressed primarily in HL-60 tissue culture cells and to a lesser extent in liver, breast, and uterus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunological diseases, hereditary disorders involving the MHC class of immune molecules, as well as developmental disorders and reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and reproductive system expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those

10

15

20

25

30

35

comprising a sequence shown in SEQ ID NO: 390 as residues: Ser-39 to Gly-46, Leu-49 to Ala-62.

The tissue distribution and homology to collagen indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of hereditary MHC disorders and particularly autoimmune disorders including rheumatoid arthritis, lupus, scleroderma, and dermatomyositis, as well as many reproductive disorders, including cancer of the uterus, and breast tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 158

This gene is expressed primarily in the amygdala region of the brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, a variety of brain disorders, particularly those effecting mood and personality. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and/or diagnosis of a variety of brain disorders, particularly bipolar disorder, unipolar depression, and dementia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 159

This gene is expressed in a variety of tissues and cell types including brain, smooth muscle, kidney, salivary gland and T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancers of a variety of organs including brain, smooth muscle, kidney, salivary gland and T-cells and cardiovascular disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders

10

15

20

25

30

35

of the above tissues or cells, particularly of the central nervous, urinary, salivary, digestive, and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in brain, smooth muscle, and T-cells indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis of various neurological, and cardiovascular disorders, but not limited to cancer within the above tissues. Additionally the gene product may be used as a target in the immunotherapy of the cancer. Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 160

The translation product of this gene shares sequence homology with collagen which is thought to be important in cellular interactions, extracellular matrix formation, and has been found to be an identifying determinant in autoimmune disorders.

Moreover, this gene shows sequence homology with the yeast protein, Sls1p, an endoplasmic reticulum component, involved in the protein translocation process in Yeast Yarrowia lipolytica. (See Accession No. 1052828; see also J. Biol. Chem. 271, 11668-11675 (1996).) With mouse, this same region shows sequence homology with the heavy chain of kinesin. (See Accession No. 2062607.) Recently, suppression of the heavy chain of kinesin was shown to inhibits insulin secretion from primary cultures of mouse beta-cells. (See Endocrinology 138 (5), 1979-1987 (1997).) Moreover, kinesin was found associated with drug resistance and cell immortalization. (See 468355.)

Thus, it is likely that this gene also act as a genetic suppressor elements.

This gene is expressed primarily in the greater omentum and to a lesser extent in a variety of organs and cell types including gall bladder, stromal bone marrow cells, lymph node, liver, testes, pituitary, and thymus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders of the endocrine, gastrointestinal, and immunological systems, including autoimmune disorders and cancers in a variety of organs and cell types.

15

20

25

30

35 ·

Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and gastrointestinal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 393 as residues: Asn-27 to Leu-47, Gln-81 to Lys-88, Asp-93 to Lys-102, Asn-107 to Leu-116, Met-129 to Glu-141, Glu-150 to Asp-157, Lys-176 to Glu-185, Glu-333 to Tyr-349, Cys-393 to Leu-403, Gln-423 to Gly-429.

The tissue distribution in within various endocrine and immunological tissues combined with the sequence homology to a conserved collagen motif indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis of various autoimmune disorders including, but not limited to, rheumatoid arthritis, lupus erthyematosus, scleroderma, dermatomyositis Because the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 161

This gene has homology to the tissue inhibitor of metalloproteinase 2. Such inhibitors are vital to proper regulation of metalloproteins such as collagenases (See Accession No. P16368). In addition, this gene maps to chromosome 17, and therefore, may be used as a marker in linkage analysis for chromosome 17 (See Accession No. P16368).

This gene is expressed primarily in several types of cancer including osteoclastoma, chondrosarcoma, and rhabdomyosarcoma and to a lesser extent in several non-malignant tissues including synovium, amygdala, testes, placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, various types of cancer, particularly cancers of bone and cartilage, as well as various autoimmune disorders. Similarly, polypeptides and antibodies directed

to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the musculoskeletal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in various cancers and the sequence homology to a collagenase inhibitor indicates that polynucleotides and polypeptides corresponding to this gene are useful for detection of various autoimmune disorders such as rheumatoid arthritis, lupus, scleroderma, and dermatomyositis. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

15

20

25

30

35

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 162

This gene is homologous to the mitochondrial ATP6 gene and therefore is likely a homolog of this gene family (See Accession No. X76197).

This gene is expressed primarily in brain tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, a variety of brain disorders, including Down's syndrome, depression, Schizophrenia, and epilepsy. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in brain tissue indicates this gene is useful for diagnosis of various neurological disorders including, but not limited to, brain cancer. Additionally the gene product may be used as a target in the immunotherapy of cancer in the brain as well as for the diagnosis of metabolic disorders such as obesity Tay-Sachs disease, phenylketonuria and Hurler's Syndrome.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 163

This gene is expressed primarily in placenta, neutrophils, and microvascular endothelial cells and to a lesser extent in multiple tissues including brain, prostate, spleen, thymus, and bone.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neutropenea and other diseases of the immune system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in placenta indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis various female reproductive disorders. Additionally the gene product may be used as a target in the immunotherapy of various cancers. Because the gene is expressed in some cells of lymphoid and endocrine origin, the natural gene product may be involved in immune functions and metabolism regulation, respectively. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 164

This gene is expressed primarily in neutrophils, monocytes, bone marrow, and fetal liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune system disorders including, but not limited to, autoimmune disorders such as lupus, and immunodeficiency disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders

of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in various immune system tissue indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis of various immunological disorders such as Hodgkin's lymphoma, arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 165

5

10

The translation product of this gene shares sequence homology with dystrophin which is thought to be defective in both Duchene and Becker Muscular Dystrophy. 15 Preferred polypeptide fragments comprise the following amino acid sequence: MKLLGECSSSIDSVKRLEHKLKEEEESLPGFVNLHSTETQTAGVIDRWELLQAQ ALSKELRMKQNLQKWQQFNSDLNSIWAWLGDTEEELEQLQRLELSTDIQTIELQ IKKLKELQKAVDHRKAIILSINLCSPEFTQADSKESRDLQDRLXQMNGRWDRV CSLLEEWRGLLQDALMQCQGFHEMSHGLLLMLENIDRRKNEIVPIDSNLDAEIL 20 QDHHKQLMQIKHELLESQLRVASLQDMSCQLLVNAEGTDCLEAKEKVHVIGNR LKLLLKEVSRHIKELEKLLDVSSSQQDLSSWSSADELDTSGSVSPXSGRSTPNR QKTPRGKCSLSQPGPSVSSPHSRSTKGGSDSSLSEPXPGRSGRGFLFRVLRAA LPLQLLLLLIGLACLVPMSEEDYSCALSNNFARSFHPMLRYTNGPPPL (SEQ ID NO:726); MKLLGECSSSIDSVKRLEHKLKEEEESLPGFVNLHSTETQTAGVIDR 25 WELLQAQALSKELRMKQNLQKWQQFNSDLNSIWAWLGDTEEELEQLQRLELS TDIQTIELQIK (SEQ ID NO:727); KLKELQKAVDHRKAIILSINLCSPEFTOADSK ESRDLQDRLXQMNGRWDRVCSLLEEWRGLLQDALMQCQGFHEMSHGLLLML ENIDRRKNEIVPIDSNLDAEILQDHHKQLMQIKHELLESQLRVASLQDMSCOL (SEQ ID NO:728); QDMSCQLLVNAEGTDCLEAKEKVHVIGNRLKLLLKEVS 30 RHIKELEKLLDVSSSQQDLSSWSSADELDTSGSVSPXSGRSTPNRQKTPRGKCS LSQPGPSVSSPHS (SEQ ID NO:729); DSSLSEPXPGRSGRGFLFRVLRAAL PLQLLLLLIGLACLVPMSEEDYSCALSNNFARSFHPMLRYTNGPPPL (SEO ID NO:730). Also preferred are polynucleotide fragments encoding these polypeptide fragments. Furthermore, this gene maps to chromosome 6, and therefore, may be used 35 as a marker in linkage analysis for chromosome 6 (See Accession No. N62896).

This gene is expressed in numerous tissues including the heart, kidney, and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, musculoskeletal disorders including Muscular Dystrophy and cardiovascular diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the muscle tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to dystrophin indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of Muscular Dystrophy and other muscle disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 166

5

10

15

20

25

30

35

This gene is expressed primarily in human cerebellum.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the central nervous system, including Alzheimer's Disease, Parkinson's Disease, ALS, and mental illnesses. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 399 as residues: Pro-20 to Gly-26, Leu-37 to Pro-42, His-57 to Gly-63.

The tissue distribution indicates that the protein products of this gene are useful for treatment/diagnosis of diseases of the central nervous system and may protect or

10

15

20

25

30

35

enhance survival of neuronal cells by slowing progression of neurodegenerative diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 167

Preferred polypeptides encoded by this gene comprise the following amino acid sequence:

MKLLICGNYLAPSHSESSRRCCLLCFYPLCLEINFGMKVFLSMPFLVLFQ SLIQED (SEQ ID NO:731). Polynucleotides encoding such polypeptides are also provided. This gene is believed to reside on chromosome 15. Therefore polynucleotides derived from this gene are useful in linkage analysis as chromosome 15 markers.

This gene is expressed primarily in human testes tumor and to a lesser extent in normal human testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the testes, particularly cancer, and other reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for treatment/diagnosis of testicular diseases including cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 168

This gene is expressed primarily in fetal liver.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, conditions affecting hematopoietic development and metabolic diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the

10

15

30

35

hepatic system, and fetal hematopoietic system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 401 as residues: His-7 to Trp-17, Leu-19 to Lys-27, Pro-33 to Gly-44, Lys-68 to Gly-74, Lys-85 to Cys-95.

132

PCT/US98/11422

The tissue distribution indicates that the protein products of this gene are useful for treatment/diagnosis of diseases of the developing liver and hematopoietic system, and act as a growth differentiation factor for hematopoietic stem cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 169

The polypeptide encoded by this gene is believed to be a membrane bound receptor. The extracellular domain of which is expected to consist of the following amino acid sequence:

RILLVKYSANEENKYDYLPTTVNVCSELVKLVFCVLVSFCVIKKDHQSRNLKY ASWKEFSDFMKWSIPAFLYFLDNLIVFYVLSYLQPAMAVIFSNFSIITTALLFRIV LKXRLNWIQWASLLTLFLSIVALTAGTKTLQHNLAGRGFHHDAFFSPSNSCLL

FRNECPRKDNCTAKEWTFPEAKWNTTARVFSHIRLGMGHVLIIVQCFISSMANI YNEKILKEGNQLTEXIFIQNSKLYFFGILFNGLTLGLQRSNRDQIKNCGFFYGH S (SEQ ID NO:732). Thus, preferred polypeptides encoded by this gene comprise the extracellular domain as shown above. It will be recognized, however, that deletions of either end of the extracellular domain up to the first cysteine from the N-terminus and the first cysteine of the C-terminus, is expected to retain the biological functions of the full-length extracellular domain because the cysteines are thought to be responsible for

providing secondary structure to the molecule. Thus, deletions of one or more amino acids from either end (or both ends) of the extracellular domain are contemplated. Of course, further deletions including the cysteines are also contemplated as useful as such polypeptides is expected to have immunological properties such as the ability to evoke and immune response. Polynucleotides encoding all of the foregoing polypeptides are provided.

This gene is expressed primarily in human osteoclastoma and to a lesser extent in hippocampus and chondrosarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

not limited to, cancers, particularly those of the bone and connective tissues. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 402 as residues: Met-1 to Cys-6, Ala-41 to Tyr-49, Lys-76 to Lys-84.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis of cancers of the bone and connective tissues, and may act as growth factors for cells involved in bone or connective tissue growth.

15

20

25

30

35

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 170

Preferred polypeptides encoded by this gene comprising the following amino acid sequence:

NSVPNLQTLAVLTEAIGPEPAIPRXPREPPVATSTPATPSAGPQPLPTGTV LVPGGPAPPCLGEAWALLLPPCRPSLTSCFWSPRPSPWKETGV (SEQ ID NO:733). Polynucleotides encoding such polypeptides are also provided herein.

This gene is expressed primarily in hematopoietic progenitor cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the blood including cancer and autoimmune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the blood/circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 403 as residues: Gln-4 to His-10, Pro-25 to His-32.

10

15

20

25

30

35

The tissue distribution indicates that the protein products of this gene are useful for diagnosis of diseases involving growth differentiation of hematopoietic cells.

FEATURES OF PROTEIN ENCODED BY GENE NO: 171

Preferred polypeptides encoded by this gene comprise the following amino acid sequences: ALQLAFYPDAVEEWLEENVHPSLQRLQXLLQDLSEVSAPP (SEQ ID NO:734); and/or CHPPALAGTLLRTPEGRAHARGLLLEAGGA (SEQ ID NO:735). Polynucleotides encoding such polypeptides are also provided. The protein product of this gene shares sequence homology with metallothionines. Thus, polypeptide encoded by this gene are expected to have metallothionine activity, such activities are known in the art and described elsewhere herein.

This gene is expressed primarily in kidney cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the kidney including cancer and renal dysfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the renal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 404 as residues: Ser-47 to Gln-52.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of diseases of the kidney including kidney failure.

FEATURES OF PROTEIN ENCODED BY GENE NO: 172

This gene is expressed primarily in 12 week old early stage human.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental abnormalities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for

WO 98/54963 PCT/US98/11422

differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developing embryo, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 405 as residues: Gln-31 to Thr-43, Gly-51 to Ser-58, Pro-65 to Pro-72.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of developmental problems with fetal tissue. The gene may be involved in vital organ development in the early stage, especially hematopoiesis, cardiovascular system, and neural development.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 173

5

10

20

25

30

35

The translation product of this gene shares sequence homology with TGN38, an integral membrane protein previously shown to be predominantly localized to the trans-Golgi network (TGN) of cells.

This gene is expressed primarily in developing embryo and to a lesser extent in cancer tissues including lymphoma, endometrial, protate and colon.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental abnormalities and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developing fetus, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 406 as residues: His-65 to Ser-72, Pro-82 to Gly-91, Pro-98 to Glu-118, Ser-126 to Gly-166, Pro-180 to Asp-188, Tyr-209 to Lys-214, Gln-220 to Leu-228.

The tissue distribution and homology to an integral membrane protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for

10

15

20

25

35

diagnosis of cancers and developmental abnormalities where aberrant expression relates to an abnormality.

FEATURES OF PROTEIN ENCODED BY GENE NO: 174

The translation product of this gene shares sequence homology with a dnaJ heat shock protein from E. coli which is allelic to sec63, a gene that affects transit of nascent secretory proteins across the endoplasmic reticulum in yeast.

This gene is expressed primarily in Hodgkin's lymphoma and to a lesser extent in testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 407 as residues: Thr-13 to Trp-21, Arg-74 to Asp-81.

The tissue distribution and homology to dnaJ indicates that polynucleotides and polypeptides corresponding to this gene are useful as a diagnostic for cancer including Hodgkin's lymphoma.

FEATURES OF PROTEIN ENCODED BY GENE NO: 175

This gene is expressed primarily in endothelial cells and to a lesser extent in bone marrow stromal cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases involving angiogenic abnormalities including diabetic retinopathy, macular degeneration, and other diseases including arteriosclerosis and cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell

WO 98/54963 PCT/US98/11422

137

type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for treating diseases where an increase or decrease in angiogenesis is indicated and as a factor in the wound healing process.

FEATURES OF PROTEIN ENCODED BY GENE NO: 176

5

10

15

20

25

30

35

The translation product of this gene shares sequence homology with MAT8 (mouse) which is thought to be important in regulating chloride conductance in cells (particularly in the breast) by modulating the response mediated by cAMP and protein kinase C to extracellular signals.

This gene is expressed primarily in amniotic cells and hematopoeitic cells including macrophages, Neutrophils, T cells, TNF induced aortic endothelium and to a lesser extent in testes, TNF induced epithelial cells, and smooth muscle.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammatory responses mediated by T cells, macrophages, and/or neutrophils particularly those involving TNF, and also cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 409 as residues: Thr-19 to Ala-33, Leu-54 to Asp-82, Pro-89 to Ala-97, Pro-100 to Lys-125, Ser-127 to Phe-135, Gly-164 to Leu-169, Cys-173 to Arg-178.

The tissue distribution and homology to mat-8 indicates that polynucleotides and polypeptides corresponding to this gene are useful for modifying inflammatory

15

20

responses to cytokines such as TNF and thus modifying the duration and/or severity of inflammation. Polynucleotides and polypeptides derived from this gene are thought to be useful in the diagnosis and treatment of cancer.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 177

This gene is expressed primarily in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, vascular restenosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating diseases associated with vascular response to injury such as vascular restenosis following angioplasty..

FEATURES OF PROTEIN ENCODED BY GENE NO: 178

One embodiment of the claimed invention comprises:

MRPDWKAGAGPGGPPQKPAPSSQRKPPARPSAAAAAIAVAAAEERRLRQRN
RLRLEEDKPAVERCLEELVFGDVENDEDALLRRLRGPRVQEHEDSGDSEVENEA
KGNFPPQKKPVWVDEEDEDEEMVDMMNNRFRKDMMKNASESKLSKDNLKK
RLKEEFQHAMGGVPAWAETTKRKTSSDDESEEDEDDLLQRTGNFISTSTSLPRG
ILKMKNCQHANAERPTVARISICAVPSRCTDCDGCWD (SEQ ID NO:737); or
 CLEELVFGDVENDEDALLRRLRGPRVQEHEDSGDSEVENEAKGNFPPQKKPV
WVDEEDEDEEMVDMMNNRFRKDMMKNASESKLSKDNLKKRLKEEFQHAMG
GVPAWAETTKRKTSSDDESEEDEDDLLQRTGNFISTSTSLPRGILKMKNCQHA
NAERPTVARISICAVPSRCTDCDGC (SEQ ID NO: 738). LKEKIVRSFEVSPDGS
FLLINGIAGYLHLLAMKTKELIGSMKINGRVAASTFSSDSKKVYASSGDGEVYV
 WDVNSRKCLNRFVDEGSLYGLSIATSRNGQYVACGSNCGVVNIYNQDSCLQE
TNPKPIKAIMNLVTGVTSLTFNPTTEILAIASEKMKEAVRLVHLPSCTVFSNFPVI

KNKNISHVHTMDFSPRSGYFALGNEKGKALMYRLHHYSDF (SEQ ID NO:739);

10

15

20

30

35

and/or KINGRVAASTFSSDSKKVYASSGDGEVYVWDVNSRKCLNRFVDEGSL YGLSIATSRNGQYVACGSNCGVVNIYNQDSCLQETNPKPIKAIMNLVTGVTSLT FNPTTEILAIASEKMKEAVRLVHLPSCTVFSNFPVIKNKNISHVHTMDFSPRSG YFALGNEKGKAL (SEQ ID NO:740).

This gene is expressed primarily in epidydimus and endometrial tumors and to a lesser extent in T cell lymphoma and cell lines derived from colon cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, tumors of the reproductive organs including testis and endometrial cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 411 as residues: Ser-67 to Lys-72, Val-87 to Leu-93, Tyr-128 to Pro-141, Asp-204 to Gly-210.

The tissue distribution indicates that the protein products of this gene are useful for treating tumors of the endometrium or epithelial tumors of the reproductive system.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 179

Preferred polypeptides encoded by this gene comprise the following amino acid sequence:

MRILQLILLALATGLVGGETRIIKGFECKLHSQPWQAALFEKTRLLCGATLIAPR WLLTAAHCLKPRYIVHLGQHNLQKEEGCEQTRTATESFPHPGFNNSLPNKDH RNDIMLVKMASPVSITWAVRPLTLSSRCVTAGTSCSFPAGAARPDPSYACLTPC DAPTSPSLSTRSVRTPTPATSQTPWCVPACRKGARTPARVTPGALWSVTSLFKA LSPGARIRVRSPESLVSTRKSANMWTGSRRR (SEQ ID NO:741); ETRIIKGFEC KLHSQPWQAALFEKTRLLCGATLIAPRWLLTAAHCLKPRYIVHLGQHNLQKEE GCEQTRTATESFPHPGFNNSLPNKDHRNDIMLVKMASPVSITWAVRPLTLSSR CVTAGTSCSFPAGAARPDPSYACLTPCDAPTSPSLSTRSVRTPTPATSQTPWCVP ACRKGARTPARVTPGALWSVTSLFKALSPGARIRVRSPESLVSTRKSANMWTG

15

20

25

30

SRRR (SEQ ID NO:742); or CKLHSQPWQAALFEKTRLLCGATLIAPRWLLT **AAHCLKPRYIVHLGQHNLQKEEGCEQTRTATESFPHPGFNS**

(SEQ ID NO:743). The translation product of this gene shares sequence homology with neuropsin a novel serine protease which is thought to be important in modulating extracellular signaling pathways in the brain. Owing to the structural similarity to other serine proteases the protein products of this gene are expected to have serine protease activity which may be assayed by methods known in the art and described elsewhere herein.

This gene is expressed primarily in endometrial tumor and to a lesser extent in colon cancer, benign hypertrophic prostate, and thymus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancers of the endometrium or colon and benign hypertrophy of the prostate. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the urogenital or reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 412 as residues: Gly-12 to Ser-22, Pro-34 to Ser-53.

The tissue distribution and homology to serine proteases indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosing or treating hperproliferative disorders such as cancer of the endometrium or colon and hyperplasia of the prostate.

FEATURES OF PROTEIN ENCODED BY GENE NO: 180

Preferred polypeptide encoded by this gene comprise the following amino acid sequence: VLQGRYFSPILEMRRLRPEGXXNLPGGSRAQKEPRQDLTLVLWPHC PHFAMTRSYVPTKQCMVQGSFYCIFIFKGPVQNWC (SEQ ID NO:744).

35 Polynucleotides encoding such polypeptide are also provided.

This gene is expressed primarily in fetal brain

WO 98/54963

5

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, identifying and expanding stem cells in the CNS. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for detecting and expanding stem cell populations in the (or of the) central nervous system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 181

This gene is expressed primarily in early stage human brain and a stromal cell line.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental abnormalities of the CNS. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 414 as residues: Gln-42 to Gln-47, Gln-54 to Pro-60.

The tissue distribution indicates that the protein products of this gene play a role in the development of the central nervous system. Therefore this gene and its products

are useful for diagnosing or treating developmental abnormalities of the central nervous system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 182

5

10

15

20

25

30

35

Preferred polypeptides encoded by this gene comprise the following amino acid sequence:

MPIIDQVNPELHDFMQSAEVGTIFALSWLITWFGHVLSDFRHVVRLYDF FLACHPLMPIYFAAVIVLYREQEVLDCDCDMASVHHLLSQIPQDLPYETLISRXE TFLFSFPHPNLLGRPLPNSKLRGRQPLLSKTLSWHQPSRGLIWCCGSGXRGLL RPEDRTKDVLTKPRTNRFVKLAVMGLTVALGAAALAVVKSALEWAPKFQLQL FP (SEQ ID NO:745); or CPEFFIPATLPCPFVFAFTSEASSRAYLTQRGPGGLAQ NLMPLPVGFWMGSLPPPWCWRKWVSEACSCFC (SEQ ID NO:746) These polypeptides are structurally similar to various TGF-beta family members. Thus, this polypeptide is expected to have a variety of activities in the modulation of cell growth and proliferation.

This gene is expressed primarily in osteoclastoma, microvascular endothelium, and bone marrow derived cell lines.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, hematological diseases particularly involving aberrant proliferation of stem cells. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 415 as residues: Ser-33 to Ala-39.

The tissue distribution indicates that the protein products of this gene is useful for treating disorders of the progenitors of the immune system. Applications include in vivo expansion of progenitor cells, ex vivo expansion of progenitor cells, or the treatment of tumors of the circulatory system, such as lymphomas.

FEATURES OF PROTEIN ENCODED BY GENE NO: 183

This gene maps to chromosome 17 and therefore, polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 17. In specific embodiments, polypeptides of the invention comprise the sequence:

- 5 GFGSVSAAGRRSGGTWQPVQ (SEQ ID NO:747); PGGLAVGSRWWSRSLT (SEQ ID NO:748); LEPSRQRRPRRRGGTSRPETDQRAKCWRQL (SEQ ID NO:749); and/or VCLRCQNRMEN (SEQ ID NO:750). In further specific embodiments, polypeptides of the invention comprise the sequence: MAACTARRPGR GQPLVVPVADXGPVAKAALCAAXAGAFSPASTTTTRRHLSSRNRPEGKVLETV GVFEVPKQNGKYETGQLFLHSIFGYRGVVLFPWQARLXDRDVASAAPEKAEN PAGHGSKEVKGKTHTYYQVLIDARDCPHISQRSQTEAVTFLANHDDSRALYAIP GLDYVSHEDILPYTSTDQVPIQHELFERFLLYDQTKAPPFVARETLRAWQEKNH PWLELSDVHRETTENIRVTVIPFYMGMREAQNSHVYWWRYCIRLENLDSDVVQ LRERHWRIFSLSGTLETVRGRGVVGREPVLSKEQPAFQYSSHVSLQASSGHMW
- GTFRFERPDGSHFDVRIPPFSLESNKDEKTPPSGLHW (SEQ ID NO:751);
 MAACTARRPGRGQPLVVPVADXGPVAKAALCAA (SEQ ID NO:752);
 VLETVGVFEVPKQNGKYETGQLFLHSIFGYRGVVL (SEQ ID NO:757);
 GLDYVSHEDILPYTST (SEQ ID NO:758); DVHRETTENIRVTVIPFYM (SEQ ID NO:759); WWRYCIRLENLDSDVVQLRER (SEQ ID NO:760); and/or PAFQYSS
 HVSLOASSGHMWGTFRFER (SEQ ID NO:761). Polynucleotides encoding these
- 20 HVSLQASSGHMWGTFRFER (SEQ ID NO:761). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in gall bladder, prostate, and fetal brain, and to a lesser extent in a few tumor and fetal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as 25 reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, growth related disorders such as cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders 30 of the above tissues or cells, particularly of the prostate, gall bladder, and fetal brain, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., 35 the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

15

20

25

30

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of growth-related disorders, such cancers.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 184

In specific embodiments, polypeptides of the invention comprise the sequence:SLCCPEGAEGC (SEQ ID NO:762) and/or QLKKTHYDRPCP (SEQ ID NO:763). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in stromal cell, tonsil, and glioblastoma and to a lesser extent in some other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune and inflammatory disorders and glioblastoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the stromal cells. tonsil, and glioblastoma expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Additionally, it is believed that the product of this gene regulates pancreatic cell differentiation into beta cells. Accordingly, polynucleotides and polypeptides of the invention are useful in the treatment of insulindependent diabetes mellitus and associated conditions e.g. pancreatic hypofunction and the prevention, as well as the treatment of undifferentiated type pancreatic cancers. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 417 as residues: Pro-27 to Ala-32.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune and inflammatory disorders and glioblastoma.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 185

This gene is expressed primarily in hepatocellular carcinoma and to a lesser extent in other tissues.

10

15

20

25

30

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, liver diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the liver, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 418 as residues: Gly-32 to Lys-39.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of liver diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 186

This gene is expressed primarily in hippocampus and to a lesser extent in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neutronal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hippocampus, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neuronal disorders.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 187

This gene is expressed primarily in bone cancer and hippocampus and to a lesser extent in osteoclastoma and other tissues.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, bone-related disorders and neuronal diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the bone, ostoeclast, and hippocampus, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of bone-related disorders and neuronal diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 188

This gene maps to chromosome 4 and therefore polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 4.

This gene is expressed primarily in neuronal tissues such as hippocampus, spinal cord, and hypothalamus and to a lesser extent in a few other tissues such as ovary.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neuronal diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neuronal tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neuronal disorders.

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 189

This gene maps to chromosome 10, therefore, polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 10.

This gene is expressed primarily in neuronal tissues and immune tissues, and to a lesser extent in a few other tissues such as skin tumor, lung etc.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neuronal and immune-related disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neuronal and immune-related tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 422 as residues: Pro-19 to Asp-25.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neuronal and immune-related disorders.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 190

The translation product of this gene shares sequence homology with human N33, a gene located in a homozygously deleted region of human metastatic prostate cancer which is thought to be important in prevention of prostate cancer. In specific embodiments, polypeptides of the invention comprise the sequence:

- AQRKKEMVLSEKVSQLMEWTNKRPVIRMNGDKFRRLVKAPPRNYSVIVMFTA LQLHRQCVVCKQADEEFQILANSWRYSSAFTNRIFFAMVDFDEGSDVFQMLNM NSAPTFINFPAKGKPKRGDTYELQVRGFSAEQIARWIADRTDVNIRVIRPPNMA ARWRFWCVSVT (SEQ ID NO:765); MVVALLIVCDVPSAS (SEQ ID NO:766); AQRKKEMVLSEKVSQL (SEQ ID NO:767); MEWTNKRPVIRMNGDKF (SEQ ID:768); RRLVKAPPRNYSVIVMFTALOLHROCVVCKQADEFFQILANSWRV
- ID:768); RRLVKAPPRNYSVIVMFTALQLHRQCVVCKQADEEFQILANSWRY SSAFTNRIFFA (SEQ ID NO:769); MVDFDEGSDVFQMLNMNSAPTFINFPAK GKP (SEQ ID NO:770); KRGDTYELQVRGFSAEQIARWIADRTDVNIRVIRPPN

(SEQ ID NO:771); and/or YAGPLMLGLLLAVIGGLVYLRRVIWNFSLIKLDGLLQL CVLCLL (SEQ ID NO:772). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in infant adrenal gland prostate cell line and to a lesser extent in a few other tissues like liver, smooth muscle etc.

5

10

15

20

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, prostate cancer and endocrine disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the prostate and adrenal gland, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 423 as residues: Pro-34 to Gly-43, Arg-113 to Pro-120.

The tissue distribution and homology to N33 indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment for prostate cancer and endocrine disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 191

This gene is expressed primarily in T cell and to a lesser extent in fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue

or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 424 as residues: Trp-3 to Phe-9.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune disorders.

5

10

15

20

25

FEATURES OF PROTEIN ENCODED BY GENE NO: 192

This gene maps to chromosome 6, therefore, polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 6. Neural activity and neurotrophins induce synaptic remodeling in part by altering gene expression. This gene is believed to be a glycosylphoshatidylinositol-anchored protein encoded by a hippocampal gene and to possess neural activity. This molecule is believed to be expressed in postmitotic-differentiating neurons of the developing nervous system and neuronal structures associated with plasticity in the adult. Message of this gene is believed to be induced by neuronal activity and by the activity-regulated neurotrophins BDNF and NT-3. The product of this gene is believed to stimulate neurite outgrowth and arborization in primary embryonic hippocampal and cortical cultures and to act as a downstream effector of activity-induced neurite outgrowth. In specific embodiments, polypeptides of the invention comprise the sequence: DAVFKGFSDCLLKLGDS (SEO ID NO:773); CQEGAKDMWDKLRKESKNLN (SEQ ID NO:774); VLLVSLSAALATWLSF (SEQ ID NO:775); MGLKLNGRYISLILAVQIAYLVQAVR AAGKCDAVFKGFSDCLLKLGDS (SEQ ID NO:776); PAAWDDKTNIKTVCTYW EDFHSCTVTALTDCQEGAKDMWDKLRKESKNLNIQGSLFELCGSGNGAAGSL LPAFPVLLVSLSAALATWLSF (SEQ ID NO:777); and/or MGLKLNGRYISLILA VQIAYLVQAVRAAGKCDAVFKGFSDCLLKLGDSXXXXXPAAWDDKTNJKTVC TYWEDFHSCTVTALTDCQEGAKDMWDKLRKESKNLNIQGSLFELCGSGNGAA GSLLPAFPVLLVSLSAALATWLSF (SEQ ID NO:778). Polynucleotides encoding

This gene is expressed primarily in human placenta, endometrial tumor and tissues of the central nervous system (CNS).

this polypeptide are also encompassed by the invention.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, relating to reproductive disorders, cancers and neurological diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive and neurological disorders, expression of this gene at significantly higher

or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 425 as residues: Asp-47 to Asp-63, His-75 to Tyr-80, Pro-83 to Tyr-89.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of reproductive disorders such as endometrial tumors. Expression of this gene in tissues of the CNS and its strong homology to Neuritin suggest that the protein product from this gene may also be used in the treatment and diagnosis of neurological disorders and in the regeneration of neural tissues, e.g., following injury.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 193

5

10

20

25

30

35

The translation product of this gene shares sequence homology with tenascin which is thought to be important in development. The translation product of this gene is believed to be a ligand of the fibroblast growth factor family. FGF ligand activity is known in the art and can be assayed by methods known in the art and disclosed elsewhere herein.

This gene is expressed primarily in endometrial tumors, and other types of tumors.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cancer tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 426 as residues: Gly-29 to Glu-34, Arg-71 to Arg-76, Thr-176 to Cys-182, Gly-184 to Glu-199.

15

20

25

30

35

The tissue distribution and homology to tenascin indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancers.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 194

In specific embodiments, polypeptides of the invention comprise the sequence: MNSAAGFSHLDRRERVLKLGESFEKQPRCASTLC (SEQ ID NO:779). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in fetal human lung and neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, lung development and respiratory disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the respiratory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in fetal lung and neutrophils indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of lung and immunity related diseases, for example, lung cancer, viral, fungal or bacterial infections (e.g. lesions caused by tuberculosis), inflammation (e.g. pneumonia), metabolic lesions etc.

FEATURES OF PROTEIN ENCODED BY GENE NO: 195

This gene is expressed primarily in breast lymph node.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at

30

35

significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of immunal disorders.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 196

encompassed by the invention.

This gene maps to chromosome 5 and accordingly, polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 5. The translation product of this gene shares sequence homology with human M-phase phosphoprotein 4 which is thought to be important in phosphorylation and signal transduction processes. In specific embodiments, polypeptides of the invention comprise the sequence: 15 TIYPTEEELQAVQKIVSITERALKLVSD (SEQ ID NO:780); RALKGVLRV GVLAKGLLLRGDRNVNLVLLC (SEQ ID NO:781); ALAALRHAKWFQARAN GLQSCVIIIRILRDLCQRVPTWS (SEQ ID NO:782); GDALRRVFECISSGIIL (SEO ID NO:783); LAFRQIHKVLGMDPLP (SEQ ID NO:784); and/or TIYPTEEELQAVQ 20 KIVSITERALKLVSDSLSEHEKNKNKEGDDKKEGGKDRALKGVLRVGVLAKG LLLRGDRNVNLVLLCSEKPSKTLLSRIAENLPKQLAVISPEKYDIKCAVSEAAIIL NSCVEPKMQVTITLTSPIIREENMREGDVTSGMVKDPPDVLDROKCLDALAALR HAKWFQARANGLQSCVIIIRILRDLCQRVPTWSDFPSWAMELLVEKAISSASSP QSPGDALRRVFECISSGIILKGSPGLLDPCEKDPFDTLATMTDQQREDITSSAQFA 25 LRLLAFRQIHKVLGMDPLPQMSQRFNIHNNRKRRRDSDGVDGFEAEGKKDKK DYDNF (SEQ ID NO:785). Polynucleotides encoding these polypeptides are also

This gene is expressed primarily in Human Hippocampus and to a lesser extent in Prostate, Human Frontal Cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders related to reproductive system and nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system and nervous system, expression of this gene at significantly higher or lower

WO 98/54963 PCT/US98/11422

153

levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to human M-phase phosphoprotein 4 indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of reproductive and nervous system disorders.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 197

In specific embodiments, polypeptides of the invention comprise the sequence: MGSQHSAAARPSSCRRKQEDDRDG (SEQ ID NO:786); LLAEREQEEAIAQFPYVEFTGRDSITCLTC (SEQ ID NO:787); and/or QGTGYIPTEQVNELVALIPHSDQRLRPQRTKQYV (SEQ ID NO:788).

15 Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in Human Primary Breast Cancer and to a lesser extent in Human Adult Spleen, Hodgkin's Lymphoma I, Salivary Gland.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer and immunal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cancer and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 430 as residues: Ser-126 to Gly-138.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of cancer and immunal disorders.

20

25

30

5

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 198

This gene is expressed primarily in monocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, blood cell disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of blood cell disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 199

This gene is expressed primarily in Human Ovary and Synovia and to a lesser extent in Human 8 Week Whole Embryo.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, reproductive and developmental disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive and developmental system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of reproductive and developmental disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 200

This gene maps to chromosome 8 and therefore polynucleotides of the invention can be used in linkage analysis as a marker for chromosome 8. The translation product of this gene shares limited sequence homology with collagen proline rich domain.

This gene is expressed primarily in CNS.

5

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are 10 not limited to, neurological diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., 15 cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 433 as residues: 20 Pro-35 to Asp-41.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neurological diseases.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 201

Translation product of this gene shares homology with a mammalian histone H1a protein. One embodiment for this gene is the polypeptide fragments comprising the following amino acid sequence: ARLNVGRESLKREMLKSQGVKVSESPMGAR HSSWPEGAAFCKKVQGAQMQFPPRR (SEQ ID NO:789); ARLNVGRESLKR EML (SEQ ID NO:790); LKSQGVKVSESPMGARHSSW (SEQ ID NO:791); AFCKKVQGAQMQFPPRR (SEQ ID NO:792). An additional embodiment is the polynucleotide fragments encoding these polypeptide (See Accession No. pirlS24178) fragments.

This gene is expressed primarily in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

20

25

30

35

not limited to, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune disorders. Since the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in vital immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 202

This gene is expressed primarily in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune disorders. Since the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 203

This gene is expressed primarily in Neutrophils.

5

10

15

20

25

30

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, infectious disorders, immune disorders, and cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEO ID NO: 436 as residues: Thr-31 to Lys-36.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of infectious disorders, immune disorders, and cancers. Since the gene is expressed in cells of lymphoid origin, the natural gene product may be involved in immune functions. Therefore it may be also used as an agent for immunological disorders including arthritis, asthma, immune deficiency diseases such as AIDS, and leukemia. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tumors and tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 204

This gene maps to chromosome 16 and therefore polynucleotides of the invention can be used in linkage analysis as markers for chromosome 16. The translation product of this gene shares sequence homology with lactate dehydrogenase which is thought to be important in lactate metabolism.

This gene is expressed primarily in human tonsils and to a lesser extent in Spleen, and Neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as 35 reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders, infectious disorders, and cancers. Similarly,

10

20

25

30

35

polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune disorders, infectious disorders, and cancers, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 437 as residues: Gly-7 to Ser-12.

The tissue distribution and homology to lactate dehydrogenase gene indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune disorders, infectious disorders, and cancers.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 205

The translation product of this gene shares sequence homology with Gcap1 protein which is developmentally regulated in brain.

This gene is expressed primarily in placenta and endometrial tumor and to a lesser extent in several other tumors.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, vasculogenesis/angiogenesis and tumorigenesis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular system and tumors, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to Gcap1 protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of disorder or dysfunction of vascular system of tumorigenesis.

PCT/US98/11422

FEATURES OF PROTEIN ENCODED BY GENE NO: 206

In specific embodiments, polypeptides of the invention comprise the sequence MPYAQWLAENDRFEEAQKAFHKAGRQREA (SEQ ID NO:799);
VQVLEQLTNNAVAESRFNDAAYYYWMLSMQCLDIAQD (SEQ ID NO:794);
PAQKDTMLGKFYHFQRLAELYHGYHAIHRHTEDP (SEQ ID NO: 795);
FSVHRPETLFNISRFLLHSLPKDTPSGISKVKILFT (SEQ ID NO:800);
LAKQSKALGAYRLARHAYDKLRGLYIP (SEQ ID NO:796); ARFQKSIELG
TLTIRAKPFHDSEELVPLCYRCSTNN (SEQ ID NO: 797); and/or PLLNNLGNVC INCRQPFIFSASSYDVLHLVEFYLEEGITDEEAISLIDLEVLRPKRDDRQLEICKQQ
LPDSCG (SEQ ID NO:798). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in testes.

15

20

25

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, male reproductive and endocrine disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of male reproductive and endocrine disorders.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 207

This gene is expressed in fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, lung diseases such as cystic fibrosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders

of the above tissues or cells, particularly of the respiratory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 440 as residues: Tyr-49 to Cys-54.

The tissue distribution indicates that polynucleotides and polypeptides

corresponding to this gene are useful for detection and treatment of disorders associated with developing lungs particularly in premature infants where the lungs are the last tissues to develop. The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of lung tumors since the gene may be involved in the regulation of cell division,

particularly since it is expressed in fetal tissue. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and immunotherapy targets for the above listed tumors and tissues.

															
=	10	9	∞	7	6	5	4	3	3	2	<u> </u>	Gene No.)		
HOUDL69	HOUBE18	HNHGO09	HNHGC82	HNHDX07	HNFED65	HMSJX24	HLTEI25	HLMMJ13	HLMMJ13	HLHDZ58	HLHDS67	cDNA Clone ID			
97979 03/27/97	Nr and Date	Deposit	ATCC												
Uni-ZAP XR	Lambda ZAP II	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Vector										
21	20	19	18	17	16	15	14	218	13	12	11	×Ö.	Βį	SHO	
1471	1446	959	869	553	661	8101	843	941	941	1131	2526	NT Seq.	Total		
579	1	1	1	1	1	1	1	39	39	1	427	Seq.	Clone	5' N	
1460	1446	959	869	553	661	8101	843	941	941	1131	2526	Seq.	\circ	5' NT 3' NT	
692	101	176	101	106	76	90	155	245	62	129	458	Start Codor	of	7. 7.	
692	101	176	101	106	76	06	155	245	62	129	458	Signal NO: 1 Pep Y	AA of	First	5' NT
244	243	242	241	240	239	238	237	441	236	235	234	Y Y	۵	£ SB SB	
_	1	-	ь-	_		-	1	-	1	_	1	Sig Pep	of :	First	
31	27	21	21	23	28	18	19	35	44	14	30	Sig Pep	of ;	Last	
32	28	22	22	24	29	19	20	36	45	15	31	Secreted Portion	of	First A A	
42	50	44	68	66	127	36	42	41	102	115	30		Α		

21	20	19	19	18	17	16	16	15	14	13	12	Gene No.		
HSDGP60	HSDFW61	HSAVU34	HSAVU34	HRGCZ46	HPTWC08	HPTWA66	HPTWA66	нРТВВ03	HPQAC69	HPMGQ55	HPMFI71	cDNA Clone ID		
97974 04/04/97	9/9/4 04/04/97 209080 05/29/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	97979 03/27/97	Nr and Date	Deposit	ATCC
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR 220 3018	Uni-ZAP XR	Uni-ZAP XR	pBluescript	pBluescript	pBluescript	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Vector		
31	30	220	29	28	27	219	26	25	24	23	22	XO:	Ħ,	SEO
1408	1667	3018	3735	3989	1951	575	1922	1208	990	1047	1402	NT Seq.	Total	
-	39		2966	2635	1951 1422	_	1381	350	1	1	242	Seq.	Clone	of of
1408	1625	1929 3018	3735	3989	1874	575	1922	1173	988	1047	1402	Seq. Seq.	Clone Clone	of of
285	138	26	272		219	148	24	398	82	164	401	Start Codon	of	5; NT
285	138	26	272	2748	219	148	24	398	82	164	401	Signal NO: Pep Y	AA of	of First
254	253	443	252	251	250	442	249	248	247	246	245	L	. '	AA SEO
		_	1	1	1	1	1	1	1	1	1	Sig Pep		First AA
	32	-	30	16	19	22	33	29	20	26	32	Sig Pep		Last AA
	33	2	31	17	20	23	34	30	21	27	33	Secreted Portion	of	First AA
20	130	156	594	39	299	65	547	210	37	35	60	of ORF	A	Last

							<u> </u>		\neg
27	26	25	24	23	23	22		Gene No.	
HTEGQ64	HTDAF28	HSXAS67	HSXAM05	HSQEO84	HSQEO84	HSOAJ55		cDNA Clone ID	
97974	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	209080 05/29/97	ATCC Deposit Nr and Date	
Uni-ZAP XR	pSport1	Uni-ZAP XR		Vector					
37	36	35	34	221	33	32		X SEQ NT	
1382 67	912	896	1792	968	971	2031		Total NT Seq.	
67	<u> </u>	1	369	8	13	1273		5' NT of Clone Seq.	
1382	912	968	1792	968	971	2031		S' NT 3' NT of of Clone Clone Seq. Seq.	
271	38	96	470	86	91	1285	-	5' NT of Start Codor	
271	38	96	470	98	91	1285			2. Z
260	259	258	257	444	256	255		SEQ NO.	
	—	–	1	1	1	1	-	First AA of Sig Pep	1
	22	32	26	20	19	29		Last AA of Sig Pep	1
	23	33	27	21	20	30		First AA of Secreted Portion	
25	87	121	49	56	218	30		Last AA of ORF	

33	32	ω	30	30	29	28		Gene No.	
HTWCI46	HTWBY48	HJPCD40	HTSEV09	HTPBW79	HTOAM21	HTGEU09		cDNA Clone ID	
97974 04/04/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	209511 12/03/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	04/04/97 209080 05/29/97	ATCC Deposit Nr and Date	
pSport1	pSport1	Uni-ZAP XR	pBluescript	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector	
43	42	41	222	40	39	38		× NO BEO	_
1821		704	1404	1515	812	872		Total NT Seq.	
892	1	22	⊢	118	1	1		5' NT of Clone Seq.	
1647	1094	704	1265	1507	812	872		of of Of Clone Clone Seq. Seq.	
56	32		92	302	41	74		Co St St	
56	32	117	92	302	41	74		of AA First I NT First SEQ AA of AA of ID of art Signal NO: Sig don Pep Y Pep I	15, N.I
266	265	264	445	263	262	261		YOU BE A	
		- -	H	I	1	1		First AA of Sig Pep	
26	34	18	19	24	30	18		Last AA of Sig Pep	
27	35	19	20	25	31	19		First AA of Secreted Portion	
28	53	127	415	362	43	28		Last AA of ORF	

39	38	37	. 36	35	35	34		Gene No.	
HBMSN25	HATEF60	HAGFB60	HADAE74	HWTBF59	HWTBF59	HTXGI75		e cDNA Clone ID	
97974	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	209080 05/29/97	Deposit Nr and Date	ATCC
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pSport l	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector	
49	48	47	46	223	45	44		×ÖÐ	SEO
1742	2432	840	2421	707	983	1024		Total NT Seq.	
1165	1193	, —	664	488	779	30		Clone Seq.	5' N7
1742	2246	840	1587	707	983	1024		Total Clone Clone NT Seq. Seq. Seq.	s' NT 3' NT
1207	1491	97	710	514	85			of Start Codon	5; N.T.
1207	1491	97	710	514	85	167		AA of ID Signal NO:	S' NT of First
272	271	270	269	446	268	267		ΥO.E.	AA
	p	1	, L		1	1			First
23	17	30		41	30	20		of Sig Pep	Last
24	18	31		42	31	21		of Secreted Portion	First AA
31	51	48	2	64	221	25			Last

45	44	43	42	41	40		Gene No.
HCESF40	HCEEC15	HCECA49	HMDAN54	НСЕЗЈ79	HCDAR68		cDNA Clone ID
97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	04/04/97 209080 05/29/97	ATCC Deposit Nr and Date
pBluescript	Uni-ZAP XR		Vector				
55	54	53	52	51	50		× Ö. BÖ. N.T.
990	948	1558	1856	1328	1487		Total NT Seq.
99	1	310	725	251	181		5' NT of Clone Seq.
990	948	1408	1853	1328	1455		5' NT 3' NT of of Clone Clone Seq. Seq.
193	6	393	928	525	325		5' NT of Start Codon
193	9	393	928	525	325		of AA First SEQ AA of ID Signal NO: Pep Y
278	277	276	275	274	273		SEQ NO:
-	-	<u></u>		1	1		First AA of Sig Pep
32	23		33	-	35		Lasi AA of Sig Pep
33	24		34		36		First AA of Secreted Portion
256	65	—	50	21	56		Last AA of ORF

51	50	49	48	47	46	45	Gene No.
HCWBB42	HCUDC07	HCRAF32	HCNAP62	HCMSX86	HCFMV39	HCESF40	cDNA Clone ID
97975 04/04/97 209081	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97974 04/04/97 209080 05/29/97	97974 04/04/97 209080 05/29/97	ATCC Deposit Nr and Date
ZAP Express	ZAP Express	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	pSport1	pBluescript	Vector
61	60	59	58	57	56	224	× NO. SEQ NO.
618	478	1215	814	1052	1603	1384	Total NT Seg.
	1	257	1	5		99	5' NT of Clone Seq.
618	478	1215	558	786	1296	1384	5' NT 3' NT of of of Clone NT Seq. Seq.
212	147		93	12	96	193	5' NT of Start Codon
212	147	356	93	12	96	193	5' N' of First AA o Signa Pep
284	283	282	281	280	279	447	YO: BES
-	-	<u> </u>	–			<u> </u>	First AA of Sig Sig Pep
35	36	19	22	28	29	32	Last AA of Sig Pep
36	37	20	23	29	30	33	Last AA First AA of of Sig Secreted Pep Portion
74	69	20	42	32	102	205	Last AA of ORF

			<u> </u>			· · · · · ·		
58	57	56	55	54	53	52		Gene No.
НЕ9НU17	HE6EU50	HE2OF09	HE2GS36	HE2AY71	HE2AV74	HDTAB05		cDNA Clone ID
97975 04/04/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pCMVSport 2.0		Vector
68	67	99	65	64	63	62		NT SEQ ID NO:
2483	1152	1866	774	588	780	751		Total NT Seq.
1577	117	1866 1313	272	21	283	1		5' NT of Clone Seq.
2448	686	1866	774	588	780	751		5' NT 3' NT of of Clone Clone Seq. Seq.
1620	237	1596	445	169		257		5' NT of Start Codor
1620	237	1596	445	169	433	257		of AA I First SEQ AA of ID Signal NO: Pep Y
291	290	289	288	287	286	285		AA SEQ ID NO: Y
	-	1	_	—	1	1		First AA of Sig Pep
	20					21		Last AA of Sig Pep
	21					22		First AA of Secreted Portion
14	34	11	37	16	16	32		Last AA of ORF

_		· · · · · · · · · · · · · · · · · · ·				·		
65	64	63	62	61	60	59		Gene No.
HFVHY45	HFGAB89	HFEBA88	HEMAE80	HELDY74	HEBBW11	HE9ND48		cDNA Clone ID
97975	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	209081 05/29/97	ATCC Deposit Nr and Date
pBluescript	Uni-ZAP XR		Vector					
75	74	73	72	71	70	69		NT SEQ ID NO:
831	1069	785	996	932	865	536		Total NT Seq.
_	196	464	1	1	647	_		5' NT of Clone Seq.
831	1047	785	945	932	865	536		5' NT 3' NT of of Clone Clone Seq. Seq.
	295	356	12	201		83		5' NT of Start Codon
89	295	356	12	201	388	83		of AA of SEQ AA of ID Signal NO: Pep Y
298	297	296	295	294	293	292		AA SEQ ID NO: Y
	Ь		Ь	_	1)		First AA of Sig Pep
30	32	29	24	17	30	36		Last AA of Sig Pep
31	33	30	25	18	31	37		First AA of Secreted Portion
76	. 34	57	136	33	135	43		Last AA of ORF

71	70	69	68	67	66		Gene No.
HHGCN69	HHFHR32	ннғнл59	HHFCF08	нсввQ69	HGBAJ93		cDNA Clone ID
97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	04/04/97 209081 05/29/97	ATCC Deposit Nr and Date
Lambda ZAP II	Uni-ZAP XR		Vector				
	80	79	78	77	76		× O. B. N. N. N. O. S. E. O. N. T. N. O. S. N. T. N. T
1440	1378	661	1133	1274	590		Total NT Seq.
298	1	-	4	1	-		5' NT of Clone Seq.
1440	1378	199	1042	1273	590	· <u>-</u>	5' NT 3' NT of of Clone Clone Seq. Seq.
532		192	175	105	233		5' NT of Start Codor
532	358	192	175	105	233		of AA I of SEQ AA of ID Signal NO: Pep Y
304	303	302	301	300	299		AA SEQ ID NO:
	1	1	1	1	1		First AA of Sig Pep
23		29	23	24	38		Last AA of Sig Pep
24	·	30	24	25	39		Last AA First AA of of Sig Secreted Pep Portion
34	13	112	30	43	94		Last AA of ORF

82	81	80	79	78	77	76	75	74	73	72	Gene No.	_
HNGBT31	HNFJH45	HNFAE54	HMSKS35	HMEJE31	HKMNC43	HKIXL73	HJPAV06	HHSEG23	HHPFD63	HHGDO13	cDNA Clone ID	
97976 04/04/97	97975 04/04/97 209081 05/29/97	97975 04/04/97 209081 05/29/97	ATCC Deposit Nr and Date									
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	pBluescript	pBluescript	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	Vector	
92	91	90	89	88	87	86	85	84	83	82	× NO: SEQ NT	_
639	575	1533	1102	655	908	1036	684	573	1706	1381	Total NT Seq.	-
-	1	665	1	1	1	1036 591	199	1	182	766	5' NT of Clone Seq.	-
639	575	1518	1102	655	908	1036	684	573	1644	1371	5' NT 3' NT of of Clone Clone Seq. Seq.	
224	275	347	228	165	139	690	323	160	257	993	5' Nota	_
224	275	347	228	165	139	069	323	160	257	993	of AA Fi WT First SEQ A f AA of ID o A Signal NO: Si on Pep Y Pe	IS' NT
315	314	313	312	311	310	309	308	307	306	305	SEQ NO:	
	-	1	1	1	1	1	1	1	-	1	First AA of Sig Pep	
28	30	26	26	33	18	32	27	81	24		Last AA of Sig Pep	
29	31	27	27	34	19	33	28	19	25	24	First AA of Secreted Portion	
104	67	293	49	64	108	114	33	71	81	34	Last AA of ORF	

91	90	89	88	87	86	85	84	83	Gene No.	
HPCAL49	HPBCU51	HOSDI92	HOSBZ55	HOGAR52	HNHFL57	HNHDW42	HNGJG84	HNGIN60	cDNA Clone ID	
97977 04/04/97 209082	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97976 04/04/97	97976 04/04/97	97976 04/04/97	97976 04/04/97	Deposit Nr and Date	ATCC
Uni-ZAP XR	pBluescript SK-	Uni-ZAP XR	Uni-ZAP XR	pCMVSport 2.0	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Vector	
101	100	99	98	97	96	95	94	93	×ö Nö U	NT SEQ
784	599	1935	1416	1985	844	426	526	744	Total NT Seq.	_
1	1	141	69	453	1	1	1	1	Clone Seq.	of of
784	599	772	1416	1985	844	426	526	744	Clone Clone Seq. Seq.	5' NT 3' NT of of
	86		246	533	98	168	268	225	Of Star Code	Z 2
280	86	274	246	533	86	168	268	225	AA of ID of Signal NO:	5' NT of First
324	323	322	321	320	319	318	317	316	NO: Y	AA SEQ
-	-	-	-	_	1	1	1	1	of Sig Pep	First AA
18	27	20	32	17	25	28	29	43	of Sig Pep	Last AA
19	28	21	33	18	26	29	30	44	of Secreted Portion	First AA
43	119	58	54	285	61	71	38	70		

			· · · · · · · · · · · · · · · · · · ·				_	γ	
97	96	95	95	94	93	92		Gene No.	
HRGBR28	HRDFB85	HPWAN23	HPWAN23	НРМВQ32	НРНАС83	HPFCR13		cDNA Clone ID	
97977 04/04/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	05/29/97	Deposit Nr and Date	ATCC
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector	
107	106	226	105	104	103	102		×ÿĦ,	SEO
1167	1705	2057	2066	1351	2218	1035		Total NT Seq.	
611	23	I	51	_	840	602		Clone Seq.	of Of
1167	1697	1954	2052	1351	2182	1035		Total Clone Clone NT Seq. Seq. Seq.	5' NT 3' NT
53	233	220	270	18	1035	859		Sta	Ci.
53	233	220	270	18	1035	859		AA of ID of curt Signal NO: Sig S	5' NT of First
330	329	449	328	327	326	325		≺ö∄,	AA
	1	-	1	_	1	1		of Sig Pep	First AA
	21	29	29	23	17	32		ep ig	Last AA
2	22	30	30	24	18	33		of Secreted Portion	First AA
263	201	315	537	86	17	58		_	Last

102	101	100	100	99	98	98		Gene No.	
			0					o ne	
HTEFU09	HSXCS62	НЅХВТ86	HE8EU04	HSPAH56	HSKGN81	HSKĜN81		cDNA Clone ID	
97977 04/04/97 209082	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	209746 04/07/98	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	209082 05/29/97	Deposit Nr and Date	ATCC
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pSport1	pBluescript	pBluescript		Vector	
112	111	228	110	109	227	108		ןĦ	SEO
2198	2249	228 2143	2632	611	2084	1907		Total NT Seq.	
228	1	53	294	1	335	151		Clone Seq.	5' NT
2158	1953	1096	2632	576	2084	1432		Clone Clone Seq. Seq.	5' NT 3' NT
400	90	235	337	229	537	353		of Sta	ع اک
400	90	235	337	229	537	353		AA of ID of control of Signal NO: Signal Sig	5' NT of First
335	334	451	333	332	450	331		YÖ.⊞	AA SEO
	—		1	1	1	-		of Sig Pep	First AA
	18		25	25	19	23		of Sig Pep	Last
	19		26	26	20	24			First AA
23	199	9	333	47	23	260			1.ast

109	108	107	106	İ05	104	103		Gene No.	
HTSHE40	HTSGM54	HTPCN79	НТОЕҮ16	HTGEW91	HTGEP89	НТЕКМ35		cDNA Clone ID	
97977 04/04/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	05/29/97	Deposit Nr and Date	ATCC
pBluescript	pBluescript	Uni-ZAP XR		Vector					
119	118	117	116	115	114	113		×Ö.Ð.	SEO
1101	1133	503	1965	3684	703	1043		Total NT Seq.	
118	316		127	526		40		Clone Seq.	5' NT
956	1069	503	1915	1338	703	1043		Clone Seq.	5' NT 3' NT
218			202	584	285	320		of Start Codon	5' NT
218	423	}	202	584	285	320		AA of ID Signal NO: Pep Y	5' NT of First
342	341	340	339	338	337	336		Y NO: D	T AA First SEQ AA
	_	_	_	-	ь			of Sig Pep	First AA
31	.12	7	27	24	29	20		of Sig Pep	
32	13	∞	28	25	30	21		of Secreted Portion	First AA
89	84	70	38	37	94	142			Last

116	115	114	113	112	111	110		Gene No.
HE6EL90	HDTAW95	HCEVR60	HCE3Q10	HUKFC71	нтwвү29	HTWAF58		cDNA Clone ID
209007	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	97977 04/04/97 209082 05/29/97	97977 04/04/97 209082 05/29/97	209082 05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR 126 1517	pCMVSport 2.0	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	pSport1	Lambda ZAP II		Vector
126	125	124	123	122	121	120		X D D SEO NIT
1517	1288	1390	1542	994	2635	282		Total NT Seq.
1	412	82	-	-	1593	_		5' NT of Clone Seq.
1452	1288	1390	1542	932	2489	282		5' NT 3' NT of of Clone Clone Seq. Seq.
243	571	127	143		1654	137		5' NT of Start Codon
243	571	127	143	272	1654	137		of First AA of Signal Pep
349	348	347	346	345	344	343		AA First SEQ AA ID of NO: Sig Y Pep
	1	_	1	1	1	1		First AA of Sig Pep
		32	25	15	25	25		First Last AA AA of of Sig Sig Pep Pep
		33	26	16	26	26		First AA of Secreted Portion
9	16	153	63	221	55	48		Last AA of ORF

122	121	120	119	118	117		Gene No.
HLTER03	HIBED17	ннртD20	HFXBW82	HERAH36	HELBU29		cDNA Clone ID
209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	04/28/97 209083 05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Other	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR		Vector
132	131	130	129	128	127		X SEQ NT
990	1950	130 472	1275	300	1073		Total NT Seq.
_	284	51	_	155	198		5' NT of Clone Seq.
990	1927	472	1275	300	1073		5' NT 3' NT of of Clone Clone Seq. Seq.
78	395		56	202			5' NT of Start Codor
78	395	243	56	202	776		of AA I of SEQ AA of ID Signal NO: Pep Y
355	354	353	352	351	350		AA SEQ ID NO: Y
	<u> </u>	,	_	1	1		First AA of Sig Pep
22	72		23				Last AA of Sig Pep
23	73		24				First AA of Secreted Portion
34	245	32	61	17	13		Last AA of ORF

129	128	127	126	125	124	123	Gene No.
H6EAA53	HUKCO64	HSUBW09	HRGBR18	HPWAZ95	НРМСЈ92	HOABL56	cDNA Clone ID
209007 04/28/97 209083	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR 139	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Vector
139	138	137	136	135	134	133	× N. E. SE N.
643	1777	1021	582	323	705	1720 565	Total NT Seq.
303	439	1	1	1	28	565	5' NT of Clone Seq.
643	1777	1021	582	323	705	1720	5' NT 3' NT of of Clone Clone Seq. Seq.
		153		88	106	660	5' NT of Start Codor
313	521	153	16	88	106	660	of AA I First SEQ AA of ID Signal NO: Pep Y
362	361	360	359	358	357	356	Y.O.
-	1	-	-	_	Ь		First AA of Sig Pep
7		32	17	27	28.	18	Last AA of Sig Pep
8		33	18	28	29	19	First AA of Secreted Portion
31	. 2	56	30	78	98	21	Last AA of ORF

135	134	134	133	132	131	130		Gene No.
HBMTD81	HBGCB91	HAIBP89	HALSQ59	HALSK07	HAGAO39	HAGAIII		cDNA Clone ID
209008 04/28/97 209084 05/29/97	209007 04/28/97 209083 05/29/97	unknown 05/18/98	209007 04/28/97 209083 05/29/97	209007 04/28/97 209083 05/29/97	209007 04/28/97 04/28/97 209083 05/29/97	209007 04/28/97 04/28/97 209083 05/29/97	05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector
145	229	144	143	142	141	140		NT SEQ NO:
1082	1025	2243	300	1468	721	1220		Total NT Seq.
163	409	173	4	125	<u>-</u>			
1082	1025	2243	300	1468	721	1220		5' NT 3' NT of Of Clone Clone Seq. Seq.
357	624	311	101	210				5' NT of Start Codor
357	624	311	101	210	415	127		of AA I of AA I of AA I of AA I of SEQ AA of ID Signal NO: Pep Y
368	452	367	366	365	364	363		AA SEQ ID NO: Y
,	-	1	L	—	L	1		First AA of Sig Pep
	20	27	22	29		16		Last AA of Sig Pep
	21	28	23	30		17		First AA of Secreted Portion
30	25	317	66	33	14	27		Last AA of ORF

	-	_					-0
142	141	140	139	138	137	136	Gene No.
HFCEB37	HE8EY43	HE2GT20	HCWHZ24	HCQAI40	HFKFJ07	HBXGK12	.cDNA Clone ID
209008 04/28/97 209084	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209010 04/28/97 209085 05/29/97	209008 04/28/97 209084 05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	Lambda ZAP II	Uni-ZAP XR	ZAP Express	Vector
152	151	150	149	148	147	146	X SEQ
802	2399	2890	1405	734	1183		Total NT Seq.
352	1181	1178	1	1	· _		5' NT of Clone Seq.
802	2399	150 2890 1178 2890	1405	734	1183	1153 4313	S' NT 3' NT of of Clone Clone NT Seq. Seq.
	1265	1178	108	285	149	1313	S' NT of Start Codo
487	1265	1178	108	285	149	1313	5' NT AA First of AA First First SEQ AA AA of ID of Signal NO: Sig N Pep Y Pep
375	374	373	372	371	370	369	AA SEQ ID NO:
-	<u> </u>	1		1	1	1	First AA of Sig Pep
	30	31	34		41	18	Last AA of Sig Pep
	31	32	35		42	19	First AA of Secreted Portion
10	34	39	63	19	254	42	Last AA of ORF

149	148	147	146	145	144	143		Gene No.	
HLMMU76	HKLAB16	HUSIT49	нјаа Озб	HHGBR15	HGLAM46	HFTCT67		cDNA Clone ID	
209008 04/28/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	05/29/97	ATCC Deposit Nr and Date	
Lambda ZAP II	Lambda ZAP II	pSport1	pBluescript SK-	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR		Vector	
159	158	157	156	155	154	153		× N. E. SEO	
1687	1625	2127	1251	642	2388	461		Total NT Seq.	
1307	817	247	583	322	818	24		5' NT of Clone Seq.	
1687	1625	2127	1251	642	2388	461		5' NT 3' NT of of Clone Seq. Seq.	
1296	1012	383		400	648	145		5' NT of Start Codor	
1296	1012	383	933	400	648	145		of AA First SEQ AA of ID Signal NO: Pep Y	LN S
382	381	380	379	378	377	376		AA SEQ ID NO: Y	
1	—	—	_	1	_	_		First AA of Sig Pep	1
28	18	47	16			37		Last AA of Sig Pep	
29	19	48	17			38		First AA of Secreted Portion	
28	20	83	16	4	18	63		Last AA of ORF	

157	156	156	155	154	153	152	151	150		Gene No.	
H6EAE26	HSKCP69	HSKCP69	HPTRC15	HOECU83	HNHFQ63	HNHEJ88	HNHED86	HMSKQ35		cDNA Clone ID	
209009	209009 04/28/97	209009 04/28/97	209009 04/28/97	209009 04/28/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209008 04/28/97 209084 05/29/97	209084 05/29/97	Deposit Nr and Date	ATCC
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector	
167	230	166	165	164	163	162	161	160		×öp	SEQ
882	1250	1251	2153	1400	753	519	770	1842		Total NT Seq.	
48	223	219	594	189	1	_	⊢	172		Clone Seq.	5' NT
882	1250	1120	2153	1400	753	519	770	1463		Clone Clone Seq. Seq.	5' NT 3' NT of
155	393				164	242	30	319		of Start Codon	S' NT
155	393		611	508	164	242	30	319		AA of ID Signal NO: Pep Y	5' NT of First
390	453	389	388	387	386	385	384	383		YO.⊟	AA SEQ
-	_	-	_	-	1	-	1	_		of Sig Pep	First
33	32			22	17	17	31	30		of Sig Pep	
34	33			23	18	18	32	31		of Secreted Portion	First AA
153	171		13	33	67	24	46	33		AA of ORF	Last

168	167	166	165	164	163	162	161	160	159	158		No.	Cana	-	
HCFNF11	HCEZS40	HCEQA68	HCDDB78	HBMVP04	НВМТҮ28	HBHAD12	HAUAE83	HAICP19	HAGDQ47	HAGBX03			DNIA		
209010	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209009 04/28/97	04/28/97	Date	Deposit	ATCC								
pSport1	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector			
178	177	176	175	174		172	171		169	168		×	į̈́θ	SEQ	
1637	1502	1348	2379	888	173 1758	786	2003	170 1624	169 1307	1208		Seq.	٠.,		
26	178		750	330	962	1	889	89	1	1		seq.		of 2	
1607	1502	1348	2379	862	1758	786	2003	1483	1307	1208		seq.	Clone Clone	of of of	
152	315	12	901		1184		1080	128	44	182		Codon	of	5' NT	
152	315	12	901	546	1184	176	1080	128	4	182		Pep Y	AA of	of First	5' NT
401	400	399	398	397	396	395	394	393	392	391		۲.	, S B	AA SEQ	
	<u> </u>	1	1	1	1	1	1	1	-	Ь		Pep		First	
44		28	18		27	17		18	22			Pep	e of	Last	
45		29	19		28	81		19	23			Portion		First AA Las	
257	20	78	24	2	34	23	23	446	60	∞		ORF of	λ	Last	

							
173	172	171	170	169	169		Gene No.
HE8MG65	HE2CT29	HDSAP81	HCUBL62	HCRBL20	HCRBL20		cDNA Clone ID
209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	04/28/97 209085 05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	Uni-ZAP XR	Uni-ZAP XR		Vector
183	182	181	180	231	179		SEQ NO:
2276	1128	968	519	1811	2911		Total NT Seg.
48	1	320	1	20	1103		5' NT of Clone Seq.
2276	1128	968	519	1811	2858		S' NT 3' NT of of Clone Clone Seq. Seq.
88	111	476	57	93	192		5' NT of Start Codon
88	111	476	57	93	192		5' NT of First AA of Signal Pep
406	405	404	403	454	402		AA SEQ ID NO: Y
-	-	1	þensk	1	Ь		First AA of Sig Pep
37	26	27	28	36	32		Last AA of Sig Pep
38	27	28	29	37	33		First AA of Secreted Portion
257	94	79	32	95	424		Last AA of ORF

	1		1	1			ZΩ
178	77	176	175	175	174	173	Gene No.
HETAR54	HEMDX17	HEMCV19	HEMAM41	HEMAM41	HE9FB42	HE8MG65	cDNA Clone ID
209010 04/28/97 209085	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	ATCC Deposit Nr and Date
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Vector
188	187	186	233	185	184	232	NT SEQ ID NO:
1848	654	186 941	1338	1337	2500	2271	F 18
454	1	33	33	60	76	56	5' NT of Clone Seq.
1848	654	931	1327	1328	1693	2232	3' NT of Clone Seq.
948	137	79	175	175	518		C S
948	137	79	175	175	518	79	of AA First Land of SEQ AA A A A A A A A A A A A A A A A A A
411	410	409	456	408	407	455	AA SEQ ID NO:
	1	1	1	L	-	-	First AA of Sig Pep
14		23	32	39	<u>-</u>	43	P A st
15		24	33	40	2	44	First AA of Secreted Portion
232	13	178	91	190	623	170	Last AA of ORF

		r							_		
187	186	185	184	183	182	181	180	179		Gene No.	
HHPSD37	HHPDW05	HHLBA89	HGLAM56	HGBF079	HFXHN68	HFKFI40	HFGAB48	HETBX14		. cDNA Clone ID	
209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	209010 04/28/97 209085 05/29/97	05/29/97	Deposit Nr and Date	ЭЭТА
pBluescript	Uni-ZAP XR	pBluescript SK-	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Vector	
197	196	195	194	193	192	191	190	189		XÖ.	SEO
1282	1443	1001	1098	1538	2118	1941	906	1146		Total NT Seq.	
99	1	1	89	259	777	120	156	157		Clone Seq.	5' N1
1282	1443	1001	1098	1538	2118	1002	906	1146		Clone Clone Seq. Seq.	5' NT 3' NT
171	246	324		273	996	213	245			of Start Codon	Zi NT
171	246	324	185	273	966	213	245	74		AA of ID Signal NO:	5' NT of First
420	419	418	417	416	415	414	413	412		NO:	SEA A
_	1	1	1	1	—	1) ———	. 1			First
19	.21	25	28	23	23	18	30	14		of Sig Pep	Last
20	22	26	29	24	24	19	31	15		of Secreted Portion	Firet A A
37	21	39	69	49	50	218	32	53			I act

F			r —										,			
200	199	198	197	196	195	194	193	192	191	190	189	188	No.)		
HNFAH08	HMSHQ24	HMSHM43	HLTDB65	HLTCY93	HLMIW92	HLHTC70	HLHSK94	нјрвв39	HJABZ65	HIASB53	HHSAK25	HHPSF70	CIONE ID			
209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	Nr and Date	Deposit	ATCC	
Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Lambda ZAP II	pBluescript	pBluescript	Uni-ZAP XR	pBluescript SK-	pBluescript	Uni-ZAP XR	pBluescript	Vector			
210	209	208		206	205	204	203	202	201	200	199	198	×Ċ	, ₽	SEO	
2110	1779	872	1480	2465	721	204 1057	1974	1617	779	200 1707	1740	951	Seq.	Total		
592	16	1	1	886	1	229	1	188	1	401	1390	26	Seq.	Clone	of N	
2110	1779	872	1480	2465	721	1057	1794	1605	779	1195	1740	951	Seq.	Clone	of of of	
611	148	35		1225	244	365	112	182	23	652	1534		Start Codon	of	5' NT	
611	148	35	371	1225	244	365	112	182	23	652	1534	162	Signal Pep	AA of	of First	5' NT
433	432	431	430	429	428	427	426	425	424	423	422	421	Y.	_	SEO	_
		1	_	_			_	-		_	1	1	Sig Pep	of.	First AA	
18	24	81	15		25	23	26	28	26	26	19		Sig Pep		Last	
19	25	19	16		26	24	27	29	27	27	20	17	Secreted Portion	of	First AA	
191	36	36	143	4	46	22	379	91	68	126	31	34	_		Last	

207	206	700	3	204	203	202	201	Gene No.			
HCDE095	НРНАС88		HOSEMOO	HNHCM59	HNHAZI6	HNGBE45	HNGAO10	cDNA Clone ID			
209007 04/28/97 209083 05/29/97	97977 04/04/97 209082 05/29/97	04/04/97 209082 05/29/97	97977	209011 04/28/97	209011 04/28/97	209011 04/28/97	209011 04/28/97	Nr and Date	Deposit	ATCC	
Uni-ZAP XR 217	Uni-ZAP XR		Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR 213 997	Uni-ZAP XR	Uni-ZAP XR	Vector			
	216		215	214	213	212	211	×0	۳	SFO	
999	216 1705 384	·	1308	214 1496	997	212 1551	938	Seq.	Total		
608	384		501		-	_	_	Seq.	Clone	of Of	
999	1705	·	1308	1132	997	1551	938	Seq.	Clone	of N	!
273	549				202			Seq. Seq. Start Signal INC: Signal Seq. Codon Pep Y Pep I	of	5' NT	
273	349		809	165	202	114	107	Pep	AA of	or First	5' NT
440	439		438	43/	430	433		Υ C.	; ; ; ;	SEO	•
-			_	_	-	-	_	Pep	of.	AA	!
22	23	2		87	24	21	2/	Je s	. c	Ast	•
23	24			29	25	25	87	Portion	of	First AA	
54	24		-	4	00	3 10	1		ξĄ	Last	

WO 98/54963

5

10

15

20

25

30

35

Table 1 summarizes the information corresponding to each "Gene No." described above. The nucleotide sequence identified as "NT SEQ ID NO:X" was assembled from partially homologous ("overlapping") sequences obtained from the "cDNA clone ID" identified in Table 1 and, in some cases, from additional related DNA clones. The overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ ID NO:X.

189

PCT/US98/11422

The cDNA Clone ID was deposited on the date and given the corresponding deposit number listed in "ATCC Deposit No:Z and Date." Some of the deposits contain multiple different clones corresponding to the same gene. "Vector" refers to the type of vector contained in the cDNA Clone ID.

"Total NT Seq." refers to the total number of nucleotides in the contig identified by "Gene No." The deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq." and the "3' NT of Clone Seq." of SEQ ID NO:X. The nucleotide position of SEQ ID NO:X of the putative start codon (methionine) is identified as "5' NT of Start Codon." Similarly, the nucleotide position of SEQ ID NO:X of the predicted signal sequence is identified as "5' NT of First AA of Signal Pep."

The translated amino acid sequence, beginning with the methionine, is identified as "AA SEQ ID NO:Y," although other reading frames can also be easily translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.

The first and last amino acid position of SEQ ID NO:Y of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep." The predicted first amino acid position of SEQ ID NO:Y of the secreted portion is identified as "Predicted First AA of Secreted Portion." Finally, the amino acid position of SEQ ID NO:Y of the last amino acid in the open reading frame is identified as "Last AA of ORF."

SEQ ID NO:X and the translated SEQ ID NO:Y are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below. For instance, SEQ ID NO:X is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods of the invention. Similarly, polypeptides identified from SEQ ID NO:Y may be used to generate antibodies which bind specifically to the secreted proteins encoded by the cDNA clones identified in Table 1.

25

30

35

Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors. The errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence. The erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence. In these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).

Accordingly, for those applications requiring precision in the nucleotide

sequence or the amino acid sequence, the present invention provides not only the
generated nucleotide sequence identified as SEQ ID NO:X and the predicted translated
amino acid sequence identified as SEQ ID NO:Y, but also a sample of plasmid DNA
containing a human cDNA of the invention deposited with the ATCC, as set forth in
Table 1. The nucleotide sequence of each deposited clone can readily be determined by
sequencing the deposited clone in accordance with known methods. The predicted
amino acid sequence can then be verified from such deposits. Moreover, the amino
acid sequence of the protein encoded by a particular clone can also be directly
determined by peptide sequencing or by expressing the protein in a suitable host cell
containing the deposited human cDNA, collecting the protein, and determining its
sequence.

The present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ID NO:Y, or the deposited clone. The corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.

Also provided in the present invention are species homologs. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for the desired homologue.

The polypeptides of the invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.

The polypeptides may be in the form of the secreted protein, including the mature form, or may be a part of a larger protein, such as a fusion protein (see below).

191

It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification, such as multiple histidine residues, or an additional sequence for stability during recombinant production.

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of a polypeptide, including the secreted polypeptide, can be substantially purified by the one-step method described in Smith and Johnson, Gene 67:31-40 (1988). Polypeptides of the invention also can be purified from natural or recombinant sources using antibodies of the invention raised against the secreted protein in methods which are well known in the art.

Signal Sequences

5

10

15

20

25

30

35

Methods for predicting whether a protein has a signal sequence, as well as the cleavage point for that sequence, are available. For instance, the method of McGeoch, Virus Res. 3:271-286 (1985), uses the information from a short N-terminal charged region and a subsequent uncharged region of the complete (uncleaved) protein. The method of von Heinje, Nucleic Acids Res. 14:4683-4690 (1986) uses the information from the residues surrounding the cleavage site, typically residues -13 to +2, where +1 indicates the amino terminus of the secreted protein. The accuracy of predicting the cleavage points of known mammalian secretory proteins for each of these methods is in the range of 75-80%. (von Heinje, supra.) However, the two methods do not always produce the same predicted cleavage point(s) for a given protein.

In the present case, the deduced amino acid sequence of the secreted polypeptide was analyzed by a computer program called SignalP (Henrik Nielsen et al., Protein Engineering 10:1-6 (1997)), which predicts the cellular location of a protein based on the amino acid sequence. As part of this computational prediction of localization, the methods of McGeoch and von Heinje are incorporated. The analysis of the amino acid sequences of the secreted proteins described herein by this program provided the results shown in Table 1.

As one of ordinary skill would appreciate, however, cleavage sites sometimes vary from organism to organism and cannot be predicted with absolute certainty. Accordingly, the present invention provides secreted polypeptides having a sequence shown in SEQ ID NO:Y which have an N-terminus beginning within 5 residues (i.e., + or - 5 residues) of the predicted cleavage point. Similarly, it is also recognized that in some cases, cleavage of the signal sequence from a secreted protein is not entirely

15

20

25

30

35

uniform, resulting in more than one secreted species. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

Moreover, the signal sequence identified by the above analysis may not necessarily predict the naturally occurring signal sequence. For example, the naturally occurring signal sequence may be further upstream from the predicted signal sequence. However, it is likely that the predicted signal sequence will be capable of directing the secreted protein to the ER. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

10 Polynucleotide and Polypeptide Variants

"Variant" refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the polynucleotide or polypeptide of the present invention.

By a polynucleotide having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence of the present invention, it is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the polypeptide. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. The query sequence may be an entire sequence shown in Table 1, the ORF (open reading frame), or any fragement specified as described herein.

As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the presence invention can be determined conventionally using known computer programs. A preferred method for determing the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are:

Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization

Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.

5

10

15

20

25

- 30

35

If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results. This is becuase the FASTDB program does not account for 5' and 3' truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only bases outside the 5' and 3' bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.

For example, a 90 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignement of the first 10 bases at 5' end. The 10 unpaired bases represent 10% of the sequence (number of bases at the 5' and 3' ends not matched/total number of bases in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%. In another example, a 90 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5' or 3' of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5' and 3' of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to made for the purposes of the present invention.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence of the present invention, it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a query

194

amino acid sequence, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

5

10

15

20

25

30

35

As a practical matter, whether any particular polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequences shown in Table 1 or to the amino acid sequence encoded by deposited DNA clone can be determined conventionally using known computer programs. A preferred method for determing the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB amino acid alignment are: Matrix=PAM 0, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence due to N- or Cterminal deletions, not because of internal deletions, a manual correction must be made to the results. This is becuase the FASTDB program does not account for N- and Cterminal truncations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N- and C-termini, relative to the the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C-terminal residues of the subject sequence.

For example, a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity. The deletion occurs at the Nterminus of the subject sequence and therefore, the FASTDB alignment does not show a matching/alignment of the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C- termini 5 not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. 10 This time the deletions are internal deletions so there are no residues at the N- or Ctermini of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequnce are manually corrected for. No other manual corrections are to made for the purposes of the present invention.

15

20

25

30

35

The variants may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred. Moreover, variants in which 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred. Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as E. coli).

Naturally occurring variants are called "allelic variants," and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. (Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985).) These allelic variants can vary at either the polynucleotide and/or polypeptide level. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.

Using known methods of protein engineering and recombinant DNA technology, variants may be generated to improve or alter the characteristics of the polypeptides of the present invention. For instance, one or more amino acids can be deleted from the N-terminus or C-terminus of the secreted protein without substantial loss of biological function. The authors of Ron et al., J. Biol. Chem. 268: 2984-2988 (1993), reported variant KGF proteins having heparin binding activity even after

196

deleting 3, 8, or 27 amino-terminal amino acid residues. Similarly, Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J. Biotechnology 7:199-216 (1988).)

5

10

15

20

25

30

35

Moreover, ample evidence demonstrates that variants often retain a biological activity similar to that of the naturally occurring protein. For example, Gayle and coworkers (J. Biol. Chem 268:22105-22111 (1993)) conducted extensive mutational analysis of human cytokine IL-1a. They used random mutagenesis to generate over 3,500 individual IL-1a mutants that averaged 2.5 amino acid changes per variant over the entire length of the molecule. Multiple mutations were examined at every possible amino acid position. The investigators found that "[m]ost of the molecule could be altered with little effect on either [binding or biological activity]." (See, Abstract.) In fact, only 23 unique amino acid sequences, out of more than 3,500 nucleotide sequences examined, produced a protein that significantly differed in activity from wild-type.

Furthermore, even if deleting one or more amino acids from the N-terminus or C-terminus of a polypeptide results in modification or loss of one or more biological functions, other biological activities may still be retained. For example, the ability of a deletion variant to induce and/or to bind antibodies which recognize the secreted form will likely be retained when less than the majority of the residues of the secreted form are removed from the N-terminus or C-terminus. Whether a particular polypeptide lacking N- or C-terminal residues of a protein retains such immunogenic activities can readily be determined by routine methods described herein and otherwise known in the art.

Thus, the invention further includes polypeptide variants which show substantial biological activity. Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity. For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie, J. U. et al., Science 247:1306-1310 (1990), wherein the authors indicate that there are two main strategies for studying the tolerance of an amino acid sequence to change.

The first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.

The second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. (Cunningham and Wells, Science 244:1081-1085 (1989).) The resulting mutant molecules can then be tested for biological activity.

As the authors state, these two strategies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at certain amino acid positions in the protein. For example, most buried (within the tertiary structure of the protein) amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Moreover, tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and Ile; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gln, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.

Besides conservative amino acid substitution, variants of the present invention include (i) substitutions with one or more of the non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) substitution with one or more of amino acid residues having a substituent group, or (iii) fusion of the mature polypeptide with another compound, such as a compound to increase the stability and/or solubility of the polypeptide (for example, polyethylene glycol), or (iv) fusion of the polypeptide with additional amino acids, such as an IgG Fc fusion region peptide, or leader or secretory sequence, or a sequence facilitating purification. Such variant polypeptides are deemed to be within the scope of those skilled in the art from the teachings herein.

For example, polypeptide variants containing amino acid substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with improved characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity. (Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36: 838-845 (1987); Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993).)

10

15

20

25

30

35

Polynucleotide and Polypeptide Fragments

In the present invention, a "polynucleotide fragment" refers to a short polynucleotide having a nucleic acid sequence contained in the deposited clone or shown in SEQ ID NO:X. The short nucleotide fragments are preferably at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length. A fragment "at least 20 nt in length," for example, is intended to include 20 or more contiguous bases from the cDNA sequence contained in the deposited clone or the nucleotide sequence shown in SEQ ID NO:X. These nucleotide fragments are useful as diagnostic probes and primers as discussed herein. Of course, larger fragments (e.g., 50, 150, 500, 600, 2000 nucleotides) are preferred.

Moreover, representative examples of polynucleotide fragments of the invention, include, for example, fragments having a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 651-700, 701-750, 751-800, 800-850, 851-900, 901-950, 951-1000, 1001-1050, 1051-1100, 1101-1150, 1151-1200, 1201-1250, 1251-1300, 1301-1350, 1351-1400, 1401-1450, 1451-1500, 1501-1550, 1551-1600, 1601-1650, 1651-1700, 1701-1750, 1751-1800, 1801-1850, 1851-1900, 1901-1950, 1951-2000, or 2001 to the end of SEQ ID NO:X or the cDNA contained in the deposited clone. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. Preferably, these fragments encode a polypeptide which has biological activity. More preferably, these polynucleotides can be used as probes or primers as discussed herein.

In the present invention, a "polypeptide fragment" refers to a short amino acid sequence contained in SEQ ID NO:Y or encoded by the cDNA contained in the deposited clone. Protein fragments may be "free-standing," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, include, for example, fragments from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 102-120, 121-140, 141-160, or 161 to the end of the coding region. Moreover, polypeptide fragments can be about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 amino acids in length. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either extreme or at both extremes.

Preferred polypeptide fragments include the secreted protein as well as the mature form. Further preferred polypeptide fragments include the secreted protein or the mature form having a continuous series of deleted residues from the amino or the

10

15

20

25

30

35

carboxy terminus, or both. For example, any number of amino acids, ranging from 1-60, can be deleted from the amino terminus of either the secreted polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted protein or mature form. Furthermore, any combination of the above amino and carboxy terminus deletions are preferred. Similarly, polynucleotide fragments encoding these polypeptide fragments are also preferred.

Particularly, N-terminal deletions of the polypeptide of the present invention can be described by the general formula m-p, where p is the total number of amino acids in the polypeptide and m is an integer from 2 to (p-1), and where both of these integers (m & p) correspond to the position of the amino acid residue identified in SEQ ID NO:Y.

Moreover, C-terminal deletions of the polypeptide of the present invention can also be described by the general formula 1-n, where n is an integer from 2 to (p-1), and again where these integers (n & p) correspond to the position of the amino acid residue identified in SEQ ID NO:Y.

The invention also provides polypeptides having one or more amino acids deleted from both the amino and the carboxyl termini, which may be described generally as having residues m-n of SEQ ID NO:Y, where m and n are integers as described above.

Also preferred are polypeptide and polynucleotide fragments characterized by structural or functional domains, such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions. Polypeptide fragments of SEQ ID NO:Y falling within conserved domains are specifically contemplated by the present invention. Moreover, polynucleotide fragments encoding these domains are also contemplated.

Other preferred fragments are biologically active fragments. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.

Epitopes & Antibodies

In the present invention, "epitopes" refer to polypeptide fragments having antigenic or immunogenic activity in an animal, especially in a human. A preferred embodiment of the present invention relates to a polypeptide fragment comprising an

200

epitope, as well as the polynucleotide encoding this fragment. A region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." In contrast, an "immunogenic epitope" is defined as a part of a protein that elicits an antibody response. (See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983).)

Fragments which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, R. A., Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985) further described in U.S. Patent No. 4,631,211.)

In the present invention, antigenic epitopes preferably contain a sequence of at least seven, more preferably at least nine, and most preferably between about 15 to about 30 amino acids. Antigenic epitopes are useful to raise antibodies, including monoclonal antibodies, that specifically bind the epitope. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe, J. G. et al., Science 219:660-666 (1983).)

Similarly, immunogenic epitopes can be used to induce antibodies according to methods well known in the art. (See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985).) A preferred immunogenic epitope includes the secreted protein. The immunogenic epitopes may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting.)

As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab')2 fragments) which are capable of specifically binding to protein. Fab and F(ab')2 fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody. (Wahl et al., J. Nucl. Med. 24:316-325 (1983).) Thus, these fragments are preferred, as well as the products of a FAB or other immunoglobulin expression library. Moreover, antibodies of the present invention include chimeric, single chain, and humanized antibodies.

Fusion Proteins

5

10

15

20

25

30

35

Any polypeptide of the present invention can be used to generate fusion proteins. For example, the polypeptide of the present invention, when fused to a second protein, can be used as an antigenic tag. Antibodies raised against the

201

polypeptide of the present invention can be used to indirectly detect the second protein by binding to the polypeptide. Moreover, because secreted proteins target cellular locations based on trafficking signals, the polypeptides of the present invention can be used as targeting molecules once fused to other proteins.

Examples of domains that can be fused to polypeptides of the present invention include not only heterologous signal sequences, but also other heterologous functional regions. The fusion does not necessarily need to be direct, but may occur through linker sequences.

5

10

15

20

25

30

35

Moreover, fusion proteins may also be engineered to improve characteristics of the polypeptide of the present invention. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art.

Moreover, polypeptides of the present invention, including fragments, and specifically epitopes, can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life in vivo. One reported example describes chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EP A 394,827; Traunecker et al., Nature 331:84-86 (1988).) Fusion proteins having disulfide-linked dimeric structures (due to the IgG) can also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. (Fountoulakis et al., J. Biochem. 270:3958-3964 (1995).)

Similarly, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP-A 0232 262.) Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, D.

10

20

25

30

35

Bennett et al., J. Molecular Recognition 8:52-58 (1995); K. Johanson et al., J. Biol. Chem. 270:9459-9471 (1995).)

Moreover, the polypeptides of the present invention can be fused to marker sequences, such as a peptide which facilitates purification of the fused polypeptide. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Another peptide tag useful for purification, the "HA" tag, corresponds to an epitope derived from the influenza hemagglutinin protein. (Wilson et al., Cell 37:767 (1984).)

Thus, any of these above fusions can be engineered using the polynucleotides or the polypeptides of the present invention.

15 Vectors, Host Cells, and Protein Production

The present invention also relates to vectors containing the polynucleotide of the present invention, host cells, and the production of polypeptides by recombinant techniques. The vector may be, for example, a phage, plasmid, viral, or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

The polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.

The polynucleotide insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase, G418 or neomycin resistance for eukaryotic cell culture and tetracycline, kanamycin or ampicillin resistance

WO 98/54963

5

10

15

20

25

30

35

genes for culturing in E. coli and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, 293, and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Other suitable vectors will be readily apparent to the skilled artisan.

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology (1986). It is specifically contemplated that the polypeptides of the present invention may in fact be expressed by a host cell lacking a recombinant vector.

A polypeptide of this invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.

Polypeptides of the present invention, and preferably the secreted form, can also be recovered from: products purified from natural sources, including bodily fluids, tissues and cells, whether directly isolated or cultured; products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes. Thus, it is well known in the art that the N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein

204

after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.

5

Uses of the Polynucleotides

Each of the polynucleotides identified herein can be used in numerous ways as reagents. The following description should be considered exemplary and utilizes known techniques.

10

The polynucleotides of the present invention are useful for chromosome identification. There exists an ongoing need to identify new chromosome markers, since few chromosome marking reagents, based on actual sequence data (repeat polymorphisms), are presently available. Each polynucleotide of the present invention can be used as a chromosome marker.

15

Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the sequences shown in SEQ ID NO:X. Primers can be selected using computer analysis so that primers do not span more than one predicted exon in the genomic DNA. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the SEQ ID NO:X will yield an amplified fragment.

20

Similarly, somatic hybrids provide a rapid method of PCR mapping the polynucleotides to particular chromosomes. Three or more clones can be assigned per day using a single thermal cycler. Moreover, sublocalization of the polynucleotides can be achieved with panels of specific chromosome fragments. Other gene mapping strategies that can be used include in situ hybridization, prescreening with labeled flowsorted chromosomes, and preselection by hybridization to construct chromosome specific-cDNA libraries.

25

Precise chromosomal location of the polynucleotides can also be achieved using fluorescence in situ hybridization (FISH) of a metaphase chromosomal spread. This technique uses polynucleotides as short as 500 or 600 bases; however, polynucleotides 2,000-4,000 bp are preferred. For a review of this technique, see Verma et al., "Human Chromosomes: a Manual of Basic Techniques," Pergamon Press, New York (1988).

35

30

For chromosome mapping, the polynucleotides can be used individually (to mark a single chromosome or a single site on that chromosome) or in panels (for marking multiple sites and/or multiple chromosomes). Preferred polynucleotides correspond to the noncoding regions of the cDNAs because the coding sequences are

205

more likely conserved within gene families, thus increasing the chance of cross hybridization during chromosomal mapping.

5

10

15

20

25

30

35

Once a polynucleotide has been mapped to a precise chromosomal location, the physical position of the polynucleotide can be used in linkage analysis. Linkage analysis establishes coinheritance between a chromosomal location and presentation of a particular disease. (Disease mapping data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library).) Assuming 1 megabase mapping resolution and one gene per 20 kb, a cDNA precisely localized to a chromosomal region associated with the disease could be one of 50-500 potential causative genes.

Thus, once coinheritance is established, differences in the polynucleotide and the corresponding gene between affected and unaffected individuals can be examined. First, visible structural alterations in the chromosomes, such as deletions or translocations, are examined in chromosome spreads or by PCR. If no structural alterations exist, the presence of point mutations are ascertained. Mutations observed in some or all affected individuals, but not in normal individuals, indicates that the mutation may cause the disease. However, complete sequencing of the polypeptide and the corresponding gene from several normal individuals is required to distinguish the mutation from a polymorphism. If a new polymorphism is identified, this polymorphic polypeptide can be used for further linkage analysis.

Furthermore, increased or decreased expression of the gene in affected individuals as compared to unaffected individuals can be assessed using polynucleotides of the present invention. Any of these alterations (altered expression, chromosomal rearrangement, or mutation) can be used as a diagnostic or prognostic marker.

In addition to the foregoing, a polynucleotide can be used to control gene expression through triple helix formation or antisense DNA or RNA. Both methods rely on binding of the polynucleotide to DNA or RNA. For these techniques, preferred polynucleotides are usually 20 to 40 bases in length and complementary to either the region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxy-nucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988).) Triple helix formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques are effective in model

10

15

20

25

30

35

systems, and the information disclosed herein can be used to design antisense or triple helix polynucleotides in an effort to treat disease.

Polynucleotides of the present invention are also useful in gene therapy. One goal of gene therapy is to insert a normal gene into an organism having a defective gene, in an effort to correct the genetic defect. The polynucleotides disclosed in the present invention offer a means of targeting such genetic defects in a highly accurate manner. Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell.

The polynucleotides are also useful for identifying individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identifying personnel. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The polynucleotides of the present invention can be used as additional DNA markers for RFLP.

The polynucleotides of the present invention can also be used as an alternative to RFLP, by determining the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, individuals can be identified because each individual will have a unique set of DNA sequences. Once an unique ID database is established for an individual, positive identification of that individual, living or dead, can be made from extremely small tissue samples.

Forensic biology also benefits from using DNA-based identification techniques as disclosed herein. DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, etc., can be amplified using PCR. In one prior art technique, gene sequences amplified from polymorphic loci, such as DQa class II HLA gene, are used in forensic biology to identify individuals. (Erlich, H., PCR Technology, Freeman and Co. (1992).) Once these specific polymorphic loci are amplified, they are digested with one or more restriction enzymes, yielding an identifying set of bands on a Southern blot probed with DNA corresponding to the DQa class II HLA gene. Similarly, polynucleotides of the present invention can be used as polymorphic markers for forensic purposes.

There is also a need for reagents capable of identifying the source of a particular tissue. Such need arises, for example, in forensics when presented with tissue of

unknown origin. Appropriate reagents can comprise, for example, DNA probes or primers specific to particular tissue prepared from the sequences of the present invention. Panels of such reagents can identify tissue by species and/or by organ type. In a similar fashion, these reagents can be used to screen tissue cultures for contamination.

In the very least, the polynucleotides of the present invention can be used as molecular weight markers on Southern gels, as diagnostic probes for the presence of a specific mRNA in a particular cell type, as a probe to "subtract-out" known sequences in the process of discovering novel polynucleotides, for selecting and making oligomers for attachment to a "gene chip" or other support, to raise anti-DNA antibodies using DNA immunization techniques, and as an antigen to elicit an immune response.

Uses of the Polypeptides

5

10

15

20

25

30

35

Each of the polypeptides identified herein can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques.

A polypeptide of the present invention can be used to assay protein levels in a biological sample using antibody-based techniques. For example, protein expression in tissues can be studied with classical immunohistological methods. (Jalkanen, M., et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, M., et al., J. Cell . Biol. 105:3087-3096 (1987).) Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine (125I, 121I), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99mTc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.

In addition to assaying secreted protein levels in a biological sample, proteins can also be detected in vivo by imaging. Antibody labels or markers for in vivo imaging of protein include those detectable by X-radiography, NMR or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma.

A protein-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, 131I, 112In, 99mTc), a radio-opaque substance, or a material detectable by nuclear magnetic

resonance, is introduced (for example, parenterally, subcutaneously, or intraperitoneally) into the mammal. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982).)

5

10

15

20

25

30

35

Thus, the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression of a polypeptide of the present invention in cells or body fluid of an individual; (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a disorder.

Moreover, polypeptides of the present invention can be used to treat disease. For example, patients can be administered a polypeptide of the present invention in an effort to replace absent or decreased levels of the polypeptide (e.g., insulin), to supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin S for hemoglobin B), to inhibit the activity of a polypeptide (e.g., an oncogene), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth).

Similarly, antibodies directed to a polypeptide of the present invention can also be used to treat disease. For example, administration of an antibody directed to a polypeptide of the present invention can bind and reduce overproduction of the polypeptide. Similarly, administration of an antibody can activate the polypeptide, such as by binding to a polypeptide bound to a membrane (receptor).

At the very least, the polypeptides of the present invention can be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. Polypeptides can also be used to raise antibodies, which in turn are used to measure protein expression from a recombinant cell, as a way of assessing transformation of the host cell. Moreover, the polypeptides of the present invention can be used to test the following biological activities.

WO 98/54963

209

PCT/US98/11422

Biological Activities

The polynucleotides and polypeptides of the present invention can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these molecules may be involved in the diseases associated with the biological activity. Thus, the polynucleotides and polypeptides could be used to treat the associated disease.

Immune Activity

5

10

15

20

25

30

35

A polypeptide or polynucleotide of the present invention may be useful in treating deficiencies or disorders of the immune system, by activating or inhibiting the proliferation, differentiation, or mobilization (chemotaxis) of immune cells. Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells. The etiology of these immune deficiencies or disorders may be genetic, somatic, such as cancer or some autoimmune disorders, acquired (e.g., by chemotherapy or toxins), or infectious. Moreover, a polynucleotide or polypeptide of the present invention can be used as a marker or detector of a particular immune system disease or disorder.

A polynucleotide or polypeptide of the present invention may be useful in treating or detecting deficiencies or disorders of hematopoietic cells. A polypeptide or polynucleotide of the present invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat those disorders associated with a decrease in certain (or many) types hematopoietic cells. Examples of immunologic deficiency syndromes include, but are not limited to: blood protein disorders (e.g. agammaglobulinemia, dysgammaglobulinemia), ataxia telangiectasia, common variable immunodeficiency, Digeorge Syndrome, HIV infection, HTLV-BLV infection, leukocyte adhesion deficiency syndrome, lymphopenia, phagocyte bactericidal dysfunction, severe combined immunodeficiency (SCIDs), Wiskott-Aldrich Disorder, anemia, thrombocytopenia, or hemoglobinuria.

Moreover, a polypeptide or polynucleotide of the present invention could also be used to modulate hemostatic (the stopping of bleeding) or thrombolytic activity (clot formation). For example, by increasing hemostatic or thrombolytic activity, a polynucleotide or polypeptide of the present invention could be used to treat blood coagulation disorders (e.g., afibrinogenemia, factor deficiencies), blood platelet disorders (e.g. thrombocytopenia), or wounds resulting from trauma, surgery, or other causes. Alternatively, a polynucleotide or polypeptide of the present invention that can

WO 98/54963

10

15

20

25

30

35

PCT/US98/11422

210

decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting. These molecules could be important in the treatment of heart attacks (infarction), strokes, or scarring.

A polynucleotide or polypeptide of the present invention may also be useful in treating or detecting autoimmune disorders. Many autoimmune disorders result from inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing autoimmune disorders.

Examples of autoimmune disorders that can be treated or detected by the present invention include, but are not limited to: Addison's Disease, hemolytic anemia, antiphospholipid syndrome, rheumatoid arthritis, dermatitis, allergic encephalomyelitis, glomerulonephritis, Goodpasture's Syndrome, Graves' Disease, Multiple Sclerosis, Myasthenia Gravis, Neuritis, Ophthalmia, Bullous Pemphigoid, Pemphigus, Polyendocrinopathies, Purpura, Reiter's Disease, Stiff-Man Syndrome, Autoimmune Thyroiditis, Systemic Lupus Erythematosus, Autoimmune Pulmonary Inflammation, Guillain-Barre Syndrome, insulin dependent diabetes mellitis, and autoimmune inflammatory eye disease.

Similarly, allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems, may also be treated by a polypeptide or polynucleotide of the present invention. Moreover, these molecules can be used to treat anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.

A polynucleotide or polypeptide of the present invention may also be used to treat and/or prevent organ rejection or graft-versus-host disease (GVHD). Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues. The administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing organ rejection or GVHD.

Similarly, a polypeptide or polynucleotide of the present invention may also be used to modulate inflammation. For example, the polypeptide or polynucleotide may inhibit the proliferation and differentiation of cells involved in an inflammatory response. These molecules can be used to treat inflammatory conditions, both chronic and acute conditions, including inflammation associated with infection (e.g., septic

shock, sepsis, or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, or resulting from over production of cytokines (e.g., TNF or IL-1.)

Hyperproliferative Disorders

5

10

15

20

25

30

35

A polypeptide or polynucleotide can be used to treat or detect hyperproliferative disorders, including neoplasms. A polypeptide or polynucleotide of the present invention may inhibit the proliferation of the disorder through direct or indirect interactions. Alternatively, a polypeptide or polynucleotide of the present invention may proliferate other cells which can inhibit the hyperproliferative disorder.

For example, by increasing an immune response, particularly increasing antigenic qualities of the hyperproliferative disorder or by proliferating, differentiating, or mobilizing T-cells, hyperproliferative disorders can be treated. This immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, decreasing an immune response may also be a method of treating hyperproliferative disorders, such as a chemotherapeutic agent.

Examples of hyperproliferative disorders that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but are not limited to neoplasms located in the: abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.

Similarly, other hyperproliferative disorders can also be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of such hyperproliferative disorders include, but are not limited to: hypergammaglobulinemia, lymphoproliferative disorders, paraproteinemias, purpura, sarcoidosis, Sezary Syndrome, Waldenstron's Macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above.

Infectious Disease

A polypeptide or polynucleotide of the present invention can be used to treat or detect infectious agents. For example, by increasing the immune response, particularly increasing the proliferation and differentiation of B and/or T cells, infectious diseases

212

may be treated. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, the polypeptide or polynucleotide of the present invention may also directly inhibit the infectious agent, without necessarily eliciting an immune response.

5 Viruses are one example of an infectious agent that can cause disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of viruses, include, but are not limited to the following DNA and RNA viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus, Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Flaviviridae, 10 Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes Simplex, Herpes Zoster), Mononegavirus (e.g., Paramyxoviridae, Morbillivirus, Rhabdoviridae), Orthomyxoviridae (e.g., Influenza), Papovaviridae, Parvoviridae. Picornaviridae, Poxviridae (such as Smallpox or Vaccinia), Reoviridae (e.g., Rotavirus), Retroviridae (HTLV-I, HTLV-II, Lentivirus), and Togaviridae (e.g., Rubivirus). Viruses falling within these families can cause a variety of diseases or 15 symptoms, including, but not limited to: arthritis, bronchiollitis, encephalitis, eye infections (e.g., conjunctivitis, keratitis), chronic fatigue syndrome, hepatitis (A, B, C, E, Chronic Active, Delta), meningitis, opportunistic infections (e.g., AIDS), pneumonia, Burkitt's Lymphoma, chickenpox, hemorrhagic fever, Measles, Mumps, 20 Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Similarly, bacterial or fungal agents that can cause disease or symptoms and that 25 can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following Gram-Negative and Gram-positive bacterial families and fungi: Actinomycetales (e.g., Corynebacterium, Mycobacterium, Norcardia), Aspergillosis, Bacillaceae (e.g., Anthrax, Clostridium), Bacteroidaceae, Blastomycosis, Bordetella, Borrelia, Brucellosis, Candidiasis, Campylobacter, Coccidioidomycosis, Cryptococcosis, Dermatocycoses, Enterobacteriaceae (Klebsiella, 30 Salmonella, Serratia, Yersinia), Erysipelothrix, Helicobacter, Legionellosis, Leptospirosis, Listeria, Mycoplasmatales, Neisseriaceae (e.g., Acinetobacter, Gonorrhea, Menigococcal), Pasteurellacea Infections (e.g., Actinobacillus, Heamophilus, Pasteurella), Pseudomonas, Rickettsiaceae, Chlamydiaceae, Syphilis, and Staphylococcal. These bacterial or fungal families can cause the following diseases 35 or symptoms, including, but not limited to: bacteremia, endocarditis, eye infections (conjunctivitis, tuberculosis, uveitis), gingivitis, opportunistic infections (e.g., AIDS

related infections), paronychia, prosthesis-related infections, Reiter's Disease, respiratory tract infections, such as Whooping Cough or Empyema, sepsis, Lyme Disease, Cat-Scratch Disease, Dysentery, Paratyphoid Fever, food poisoning, Typhoid, pneumonia, Gonorrhea, meningitis, Chlamydia, Syphilis, Diphtheria, Leprosy, Paratuberculosis, Tuberculosis, Lupus, Botulism, gangrene, tetanus, impetigo, Rheumatic Fever, Scarlet Fever, sexually transmitted diseases, skin diseases (e.g., cellulitis, dermatocycoses), toxemia, urinary tract infections, wound infections. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Moreover, parasitic agents causing disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following families: Amebiasis, Babesiosis, Coccidiosis, Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardiasis, Helminthiasis, Leishmaniasis, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas. These parasites can cause a variety of diseases or symptoms, including, but not limited 15 to: Scabies, Trombiculiasis, eye infections, intestinal disease (e.g., dysentery, giardiasis), liver disease, lung disease, opportunistic infections (e.g., AIDS related), Malaria, pregnancy complications, and toxoplasmosis. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or 20 diseases.

Preferably, treatment using a polypeptide or polynucleotide of the present invention could either be by administering an effective amount of a polypeptide to the patient, or by removing cells from the patient, supplying the cells with a polynucleotide of the present invention, and returning the engineered cells to the patient (ex vivo therapy). Moreover, the polypeptide or polynucleotide of the present invention can be used as an antigen in a vaccine to raise an immune response against infectious disease.

Regeneration

5

10

25

30

35

A polynucleotide or polypeptide of the present invention can be used to differentiate, proliferate, and attract cells, leading to the regeneration of tissues. (See, Science 276:59-87 (1997).) The regeneration of tissues could be used to repair, replace, or protect tissue damaged by congenital defects, trauma (wounds, burns, incisions, or ulcers), age, disease (e.g. osteoporosis, osteocarthritis, periodontal disease, liver failure), surgery, including cosmetic plastic surgery, fibrosis, reperfusion injury, or systemic cytokine damage.

Tissues that could be regenerated using the present invention include organs (e.g., pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal

15

20

35

or cardiac), vascular (including vascular endothelium), nervous, hematopoietic, and skeletal (bone, cartilage, tendon, and ligament) tissue. Preferably, regeneration occurs without or decreased scarring. Regeneration also may include angiogenesis.

Moreover, a polynucleotide or polypeptide of the present invention may increase regeneration of tissues difficult to heal. For example, increased tendon/ligament regeneration would quicken recovery time after damage. A polynucleotide or polypeptide of the present invention could also be used prophylactically in an effort to avoid damage. Specific diseases that could be treated include of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects. A further example of tissue regeneration of non-healing wounds includes pressure ulcers, ulcers associated with vascular insufficiency, surgical, and traumatic wounds.

Similarly, nerve and brain tissue could also be regenerated by using a polynucleotide or polypeptide of the present invention to proliferate and differentiate nerve cells. Diseases that could be treated using this method include central and peripheral nervous system diseases, neuropathies, or mechanical and traumatic disorders (e.g., spinal cord disorders, head trauma, cerebrovascular disease, and stoke). Specifically, diseases associated with peripheral nerve injuries, peripheral neuropathy (e.g., resulting from chemotherapy or other medical therapies), localized neuropathies, and central nervous system diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome), could all be treated using the polynucleotide or polypeptide of the present invention.

Chemotaxis

A polynucleotide or polypeptide of the present invention may have chemotaxis activity. A chemotaxic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hyperproliferation. The mobilized cells can then fight off and/or heal the particular trauma or abnormality.

A polynucleotide or polypeptide of the present invention may increase chemotaxic activity of particular cells. These chemotactic molecules can then be used to treat inflammation, infection, hyperproliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body. For example, chemotaxic molecules can be used to treat wounds and other trauma to tissues by attracting immune cells to the injured location. Chemotactic molecules of the present invention can also attract fibroblasts, which can be used to treat wounds.

WO 98/54963 PCT/US98/11422

215

It is also contemplated that a polynucleotide or polypeptide of the present invention may inhibit chemotactic activity. These molecules could also be used to treat disorders. Thus, a polynucleotide or polypeptide of the present invention could be used as an inhibitor of chemotaxis.

5

10

15

20

25

30

35

Binding Activity

A polypeptide of the present invention may be used to screen for molecules that bind to the polypeptide or for molecules to which the polypeptide binds. The binding of the polypeptide and the molecule may activate (agonist), increase, inhibit (antagonist), or decrease activity of the polypeptide or the molecule bound. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

Preferably, the molecule is closely related to the natural ligand of the polypeptide, e.g., a fragment of the ligand, or a natural substrate, a ligand, a structural or functional mimetic. (See, Coligan et al., Current Protocols in Immunology 1(2):Chapter 5 (1991).) Similarly, the molecule can be closely related to the natural receptor to which the polypeptide binds, or at least, a fragment of the receptor capable of being bound by the polypeptide (e.g., active site). In either case, the molecule can be rationally designed using known techniques.

Preferably, the screening for these molecules involves producing appropriate cells which express the polypeptide, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or *E. coli*. Cells expressing the polypeptide (or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either the polypeptide or the molecule.

The assay may simply test binding of a candidate compound to the polypeptide, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to the polypeptide.

Alternatively, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide, measuring polypeptide/molecule activity or binding, and comparing the polypeptide/molecule activity or binding to a standard.

10

15

20

25

30

35

Preferably, an ELISA assay can measure polypeptide level or activity in a sample (e.g., biological sample) using a monoclonal or polyclonal antibody. The antibody can measure polypeptide level or activity by either binding, directly or indirectly, to the polypeptide or by competing with the polypeptide for a substrate.

All of these above assays can be used as diagnostic or prognostic markers. The molecules discovered using these assays can be used to treat disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the polypeptide/molecule. Moreover, the assays can discover agents which may inhibit or enhance the production of the polypeptide from suitably manipulated cells or tissues.

Therefore, the invention includes a method of identifying compounds which bind to a polypeptide of the invention comprising the steps of: (a) incubating a candidate binding compound with a polypeptide of the invention; and (b) determining if binding has occurred. Moreover, the invention includes a method of identifying agonists/antagonists comprising the steps of: (a) incubating a candidate compound with a polypeptide of the invention, (b) assaying a biological activity, and (b) determining if a biological activity of the polypeptide has been altered.

Other Activities

A polypeptide or polynucleotide of the present invention may also increase or decrease the differentiation or proliferation of embryonic stem cells, besides, as discussed above, hematopoietic lineage.

A polypeptide or polynucleotide of the present invention may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape (e.g., cosmetic surgery). Similarly, a polypeptide or polynucleotide of the present invention may be used to modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.

A polypeptide or polynucleotide of the present invention may be used to change a mammal's mental state or physical state by influencing biorhythms, caricadic rhythms, depression (including depressive disorders), tendency for violence, tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.

A polypeptide or polynucleotide of the present invention may also be used as a food additive or preservative, such as to increase or decrease storage capabilities, fat content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.

10

15

20

25

30

Other Preferred Embodiments

Other preferred embodiments of the claimed invention include an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 50 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Clone Sequence and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Start Codon and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Similarly preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 150 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

Further preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 500 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NO:X beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

5

10

15

20

25

30

35

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence of SEQ ID NO:X.

Also preferred is an isolated nucleic acid molecule which hybridizes under stringent hybridization conditions to a nucleic acid molecule, wherein said nucleic acid molecule which hybridizes does not hybridize under stringent hybridization conditions to a nucleic acid molecule having a nucleotide sequence consisting of only A residues or of only T residues.

Also preferred is a composition of matter comprising a DNA molecule which comprises a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the material deposited with the American Type Culture Collection and given the ATCC Deposit Number shown in Table 1 for said cDNA Clone Identifier.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in the nucleotide sequence of a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the deposit given the ATCC Deposit Number shown in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said sequence of at least 50 contiguous nucleotides is included in the nucleotide sequence of the complete open reading frame sequence encoded by said human cDNA clone.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 150 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 500 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is a method for detecting in a biological sample a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method

WO 98/54963 PCT/US98/11422

comprises a step of comparing a nucleotide sequence of at least one nucleic acid molecule in said sample with a sequence selected from said group and determining whether the sequence of said nucleic acid molecule in said sample is at least 95% identical to said selected sequence.

5

10

15

20

25

30

35

Also preferred is the above method wherein said step of comparing sequences comprises determining the extent of nucleic acid hybridization between nucleic acid molecules in said sample and a nucleic acid molecule comprising said sequence selected from said group. Similarly, also preferred is the above method wherein said step of comparing sequences is performed by comparing the nucleotide sequence determined from a nucleic acid molecule in said sample with said sequence selected from said group. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

A further preferred embodiment is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting nucleic acid molecules in said sample, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for identifying the species, tissue or cell type of a biological sample can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject nucleic acid molecules, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for diagnosing a pathological condition can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95%

5

10

15

20

25

30

35

identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1.

Also preferred is a polypeptide, wherein said sequence of contiguous amino acids is included in the amino acid sequence of SEQ ID NO:Y in the range of positions beginning with the residue at about the position of the First Amino Acid of the Secreted Portion and ending with the residue at about the Last Amino Acid of the Open Reading Frame as set forth for SEQ ID NO:Y in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the complete amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is a polypeptide wherein said sequence of contiguous amino acids is included in the amino acid sequence of a secreted portion of the secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

5

10

15

20

25

30

35

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

221

PCT/US98/11422

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is an isolated antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method for detecting in a biological sample a polypeptide comprising an amino acid sequence which is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group and determining whether the sequence of said polypeptide molecule in said sample is at least 90% identical to said sequence of at least 10 contiguous amino acids.

Also preferred is the above method wherein said step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group comprises determining the extent of specific binding of polypeptides in said sample to an antibody which binds specifically to a polypeptide

5

10

15

20

25

30

35

comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO: Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method wherein said step of comparing sequences is performed by comparing the amino acid sequence determined from a polypeptide molecule in said sample with said sequence selected from said group.

Also preferred is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting polypeptide molecules in said sample, if any, comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method for identifying the species, tissue or cell type of a biological sample, which method comprises a step of detecting polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the above group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

In any of these methods, the step of detecting said polypeptide molecules includes using an antibody.

10

15

20

25

30

35

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a nucleotide sequence encoding a polypeptide wherein said polypeptide comprises an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said nucleotide sequence encoding a polypeptide has been optimized for expression of said polypeptide in a prokaryotic host.

Also preferred is an isolated nucleic acid molecule, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method of making a recombinant vector comprising inserting any of the above isolated nucleic acid molecule into a vector. Also preferred is the recombinant vector produced by this method. Also preferred is a method of making a recombinant host cell comprising introducing the vector into a host cell, as well as the recombinant host cell produced by this method.

Also preferred is a method of making an isolated polypeptide comprising culturing this recombinant host cell under conditions such that said polypeptide is expressed and recovering said polypeptide. Also preferred is this method of making an isolated polypeptide, wherein said recombinant host cell is a eukaryotic cell and said polypeptide is a secreted portion of a human secreted protein comprising an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y beginning with the residue at the position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y wherein Y is an integer set forth in Table 1 and said position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y is defined in Table 1; and an amino acid sequence of a secreted portion of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The isolated polypeptide produced by this method is also preferred.

Also preferred is a method of treatment of an individual in need of an increased level of a secreted protein activity, which method comprises administering to such an individual a pharmaceutical composition comprising an amount of an isolated polypeptide, polynucleotide, or antibody of the claimed invention effective to increase the level of said protein activity in said individual.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

10

15

20

30

35

5

Examples

Example 1: Isolation of a Selected cDNA Clone From the Deposited Sample

Each cDNA clone in a cited ATCC deposit is contained in a plasmid vector. Table 1 identifies the vectors used to construct the cDNA library from which each clone was isolated. In many cases, the vector used to construct the library is a phage vector from which a plasmid has been excised. The table immediately below correlates the related plasmid for each phage vector used in constructing the cDNA library. For example, where a particular clone is identified in Table 1 as being isolated in the vector "Lambda Zap," the corresponding deposited clone is in "pBluescript."

Vector Used to Construct Library	Corresponding Deposited Plasmid
Lambda Zap	pBluescript (pBS)
Uni-Zap XR	pBluescript (pBS)
Zap Express	pBK
lafmid BA	plafmid BA
pSport1	pSport1
pCMVSport 2.0	pCMVSport 2.0
pCMVSport 3.0	pCMVSport 3.0
pCR [®] 2.1	pCR [®] 2.1
	Lambda Zap Uni-Zap XR Zap Express lafmid BA pSport1 pCMVSport 2.0 pCMVSport 3.0

Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res. 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Both can be transformed into E. coli strain XL-1

10

15

20

25

30

35

Blue, also available from Stratagene. pBS comes in 4 forms SK+, SK-, KS+ and KS. The S and K refers to the orientation of the polylinker to the T7 and T3 primer sequences which flank the polylinker region ("S" is for SacI and "K" is for KpnI which are the first sites on each respective end of the linker). "+" or "-" refer to the orientation of the f1 origin of replication ("ori"), such that in one orientation, single stranded rescue initiated from the f1 ori generates sense strand DNA and in the other, antisense.

Vectors pSport1, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. (See, for instance, Gruber, C. E., et al., Focus 15:59 (1993).) Vector lafmid BA (Bento Soares, Columbia University, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR®2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. (See, for instance, Clark, J. M., Nuc. Acids Res. 16:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).) Preferably, a polynucleotide of the present invention does not comprise the phage vector sequences identified for the particular clone in Table 1, as well as the corresponding plasmid vector sequences designated above.

The deposited material in the sample assigned the ATCC Deposit Number cited in Table 1 for any given cDNA clone also may contain one or more additional plasmids, each comprising a cDNA clone different from that given clone. Thus, deposits sharing the same ATCC Deposit Number contain at least a plasmid for each cDNA clone identified in Table 1. Typically, each ATCC deposit sample cited in Table 1 comprises a mixture of approximately equal amounts (by weight) of about 50 plasmid DNAs, each containing a different cDNA clone; but such a deposit sample may include plasmids for more or less than 50 cDNA clones, up to about 500 cDNA clones.

Two approaches can be used to isolate a particular clone from the deposited sample of plasmid DNAs cited for that clone in Table 1. First, a plasmid is directly isolated by screening the clones using a polynucleotide probe corresponding to SEQ ID NO:X.

Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported. The oligonucleotide is labeled, for instance, with ³²P-γ-ATP using T4 polynucleotide kinase and purified according to routine methods. (E.g., Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).)

WO 98/54963 PCT/US98/11422

The plasmid mixture is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as those provided by the vector supplier or in related publications or patents cited above. The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening (e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press, pages 1.93 to 1.104), or other techniques known to those of skill in the art.

10

15

20

5

Alternatively, two primers of 17-20 nucleotides derived from both ends of the SEQ ID NO:X (i.e., within the region of SEQ ID NO:X bounded by the 5' NT and the 3' NT of the clone defined in Table 1) are synthesized and used to amplify the desired cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 µl of reaction mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 µM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

porti
25 inclu
and p

Several methods are available for the identification of the 5' or 3' non-coding portions of a gene which may not be present in the deposited clone. These methods include but are not limited to, filter probing, clone enrichment using specific probes, and protocols similar or identical to 5' and 3' "RACE" protocols which are well known in the art. For instance, a method similar to 5' RACE is available for generating the missing 5' end of a desired full-length transcript. (Fromont-Racine et al., Nucleic Acids Res. 21(7):1683-1684 (1993).)

30

35

Briefly, a specific RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcripts. A primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest is used to PCR amplify the 5' portion of the desired full-length gene. This amplified product may then be sequenced and used to generate the full length gene.

This above method starts with total RNA isolated from the desired source, although poly-A+ RNA can be used. The RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step. The phosphatase should then be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to remove the cap structure present at the 5' ends of messenger RNAs. This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.

This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction is used as a template for PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the desired gene.

15

20

25

30

35

10

Example 2: Isolation of Genomic Clones Corresponding to a Polynucleotide

A human genomic P1 library (Genomic Systems, Inc.) is screened by PCR using primers selected for the cDNA sequence corresponding to SEQ ID NO:X., according to the method described in Example 1. (See also, Sambrook.)

Example 3: Tissue Distribution of Polypeptide

Tissue distribution of mRNA expression of polynucleotides of the present invention is determined using protocols for Northern blot analysis, described by, among others, Sambrook et al. For example, a cDNA probe produced by the method described in Example 1 is labeled with P³² using the rediprime™ DNA labeling system (Amersham Life Science), according to manufacturer's instructions. After labeling, the probe is purified using CHROMA SPIN-100™ column (Clontech Laboratories, Inc.), according to manufacturer's protocol number PT1200-1. The purified labeled probe is then used to examine various human tissues for mRNA expression.

Multiple Tissue Northern (MTN) blots containing various human tissues (H) or human immune system tissues (IM) (Clontech) are examined with the labeled probe using ExpressHybTM hybridization solution (Clontech) according to manufacturer's protocol number PT1190-1. Following hybridization and washing, the blots are mounted and exposed to film at -70°C overnight, and the films developed according to standard procedures.

10

25

30

35

Example 4: Chromosomal Mapping of the Polynucleotides

An oligonucleotide primer set is designed according to the sequence at the 5' end of SEQ ID NO:X. This primer preferably spans about 100 nucleotides. This primer set is then used in a polymerase chain reaction under the following set of conditions: 30 seconds, 95°C; 1 minute, 56°C; 1 minute, 70°C. This cycle is repeated 32 times followed by one 5 minute cycle at 70°C. Human, mouse, and hamster DNA is used as template in addition to a somatic cell hybrid panel containing individual chromosomes or chromosome fragments (Bios, Inc). The reactions is analyzed on either 8% polyacrylamide gels or 3.5 % agarose gels. Chromosome mapping is determined by the presence of an approximately 100 bp PCR fragment in the particular somatic cell hybrid.

Example 5: Bacterial Expression of a Polypeptide

A polynucleotide encoding a polypeptide of the present invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence, as outlined in Example 1, to synthesize insertion fragments. The primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHI and XbaI, at the 5' end of the primers in order to clone the amplified product into the expression vector. For example, BamHI and XbaI correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc., Chatsworth, CA). This plasmid vector encodes antibiotic resistance (Amp^r), a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His), and restriction enzyme cloning sites.

The pQE-9 vector is digested with BamHI and XbaI and the amplified fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS. The ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan^I). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis.

Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D.⁶⁰⁰) of between 0.4 and 0.6. IPTG

(Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression.

Cells are grown for an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidine HCl by stirring for 3-4 hours at 4°C. The cell debris is removed by centrifugation, and the supernatant containing the polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (available from QIAGEN, Inc., supra). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist (1995) QIAGEN, Inc., supra).

5

10

15

20

25

30

35

Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5.

The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.

In addition to the above expression vector, the present invention further includes an expression vector comprising phage operator and promoter elements operatively linked to a polynucleotide of the present invention, called pHE4a. (ATCC Accession Number 209645, deposited on February 25, 1998.) This vector contains: 1) a neomycinphosphotransferase gene as a selection marker, 2) an E. coli origin of replication, 3) a T5 phage promoter sequence, 4) two lac operator sequences, 5) a Shine-Delgarno sequence, and 6) the lactose operon repressor gene (lacIq). The origin of replication (oriC) is derived from pUC19 (LTI, Gaithersburg, MD). The promoter sequence and operator sequences are made synthetically.

DNA can be inserted into the pHEa by restricting the vector with NdeI and XbaI, BamHI, XhoI, or Asp718, running the restricted product on a gel, and isolating the larger fragment (the stuffer fragment should be about 310 base pairs). The DNA

10

15

20

25

30

insert is generated according to the PCR protocol described in Example 1, using PCR primers having restriction sites for NdeI (5' primer) and XbaI, BamHI, XhoI, or Asp718 (3' primer). The PCR insert is gel purified and restricted with compatible enzymes. The insert and vector are ligated according to standard protocols.

The engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.

Example 6: Purification of a Polypeptide from an Inclusion Body

The following alternative method can be used to purify a polypeptide expressed in *E coli* when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 xg for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 xg centrifugation for 15 min., the pellet is discarded and the polypeptide containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

Following high speed centrifugation (30,000 xg) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 μm membrane filter with appropriate surface area

15

(e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 nm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

Fractions containing the polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant polypeptide should exhibit greater than 95% purity after the above refolding and purification steps. No major contaminant bands should be observed from Commassie blue stained 16% SDS-PAGE gel when 5 μ g of purified protein is loaded.

The purified protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

Example 7: Cloning and Expression of a Polypeptide in a Baculovirus Expression System

In this example, the plasmid shuttle vector pA2 is used to insert a polynucleotide into a baculovirus to express a polypeptide. This expression vector contains the strong polyhedrin promoter of the *Autographa californica* nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites such as BamHI, Xba I and Asp718. The polyadenylation site of the simian virus 40 ("SV40") is used for efficient polyadenylation. For easy selection of recombinant virus, the plasmid contains the beta-galactosidase gene from *E. coli* under control of a weak Drosophila promoter in the same orientation, followed by the polyadenylation signal of the polyhedrin gene. The inserted genes are flanked on both sides by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate a viable virus that express the cloned polynucleotide.

10

15

20

25

30

35

Many other baculovirus vectors can be used in place of the vector above, such as pAc373, pVL941, and pAcIM1, as one skilled in the art would readily appreciate, as long as the construct provides appropriately located signals for transcription, translation, secretion and the like, including a signal peptide and an in-frame AUG as required. Such vectors are described, for instance, in Luckow et al., Virology 170:31-39 (1989).

Specifically, the cDNA sequence contained in the deposited clone, including the AUG initiation codon and the naturally associated leader sequence identified in Table 1, is amplified using the PCR protocol described in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the pA2 vector does not need a second signal peptide. Alternatively, the vector can be modified (pA2 GP) to include a baculovirus leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).

The fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase. *E. coli* HB101 or other suitable *E. coli* hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing.

Five μg of a plasmid containing the polynucleotide is co-transfected with 1.0 μg of a commercially available linearized baculovirus DNA ("BaculoGoldTM baculovirus DNA", Pharmingen, San Diego, CA), using the lipofection method described by Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987). One μg of BaculoGoldTM virus DNA and 5 μg of the plasmid are mixed in a sterile well of a microtiter plate containing 50 μl of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 μl Lipofectin plus 90 μl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm

10

15

20

25

tissue culture plate with 1 ml Grace's medium without serum. The plate is then incubated for 5 hours at 27° C. The transfection solution is then removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. Cultivation is then continued at 27° C for four days.

After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, supra. An agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.) After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 μ l of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4° C.

To verify the expression of the polypeptide, Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus containing the polynucleotide at a multiplicity of infection ("MOI") of about 2. If radiolabeled proteins are desired, 6 hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Rockville, MD). After 42 hours, 5 μCi of ³⁵S-methionine and 5 μCi ³⁵S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then are harvested by centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled).

Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the produced protein.

30 Example 8: Expression of a Polypeptide in Mammalian Cells

The polypeptide of the present invention can be expressed in a mammalian cell. A typical mammalian expression vector contains a promoter element, which mediates

WO 98/54963 PCT/US98/11422

5

10

15

20

25

30

35

234

the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription is achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter).

Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146), pBC12MI (ATCC 67109), pCMVSport 2.0, and pCMVSport 3.0. Mammalian host cells that could be used include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.

Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.

The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies of the gene of interest. (See, e.g., Alt, F. W., et al., J. Biol. Chem. 253:1357-1370 (1978); Hamlin, J. L. and Ma, C., Biochem. et Biophys. Acta, 1097:107-143 (1990); Page, M. J. and Sydenham, M. A., Biotechnology 9:64-68 (1991).) Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.

Derivatives of the plasmid pSV2-dhfr (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and pC6 (ATCC Accession No.209647) contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al., Cell 41:521-530 (1985).) Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp718, facilitate the cloning of the gene of interest. The vectors also contain the 3' intron, the

WO 98/54963 PCT/US98/11422

235

polyadenylation and termination signal of the rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.

Specifically, the plasmid pC6, for example, is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

A polynucleotide of the present invention is amplified according to the protocol outlined in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the vector does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The amplified fragment is then digested with the same restriction enzyme and purified on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC6 using, for instance, restriction enzyme analysis.

Chinese hamster ovary cells lacking an active DHFR gene is used for transfection. Five µg of the expression plasmid pC6 is cotransfected with 0.5 µg of the plasmid pSVneo using lipofectin (Felgner et al., supra). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of metothrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 µM, 2 µM, 5 µM, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 -200 μM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

5

10

15

20

25

30

10

15

20

25

30

Example 9: Protein Fusions

The polypeptides of the present invention are preferably fused to other proteins. These fusion proteins can be used for a variety of applications. For example, fusion of the present polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See Example 5; see also EP A 394,827; Traunecker, et al., Nature 331:84-86 (1988).) Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time in vivo. Nuclear localization signals fused to the polypeptides of the present invention can target the protein to a specific subcellular localization, while covalent heterodimer or homodimers can increase or decrease the activity of a fusion protein. Fusion proteins can also create chimeric molecules having more than one function. Finally, fusion proteins can increase solubility and/or stability of the fused protein compared to the non-fused protein. All of the types of fusion proteins described above can be made by modifying the following protocol, which outlines the fusion of a polypeptide to an IgG molecule, or the protocol described in Example 5.

Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector.

For example, if pC4 (Accession No. 209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a polynucleotide of the present invention, isolated by the PCR protocol described in Example 1, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced.

If the naturally occurring signal sequence is used to produce the secreted protein, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

Human IgG Fc region:

GGGATCCGGAGCCCAAATCTTCTGACAAAACTCACACATGCCCACCGTGCC
CAGCACCTGAATTCGAGGGTGCACCGTCAGTCTTCCTCTTCCCCCCAAAACC
35 CAAGGACACCCTCATGATCTCCCGGACTCCTGAGGTCACATGCGTGGTGGT
GGACGTAAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG
GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAAC

10

15

35

AGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG
AATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAACCCCC
ATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT
GTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCT
GACCTGCCTGGTCAAAGGCTTCTATCCAAGCGACATCGCCGTGGAGTGGGA
GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG
ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCA
GGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGC
ACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGAGTGC
GACGGCCGCGACTCTAGAGGAT (SEQ ID NO:1)

Example 10: Production of an Antibody from a Polypeptide

The antibodies of the present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) For example, cells expressing a polypeptide of the present invention is administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of the secreted protein is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

In the most preferred method, the antibodies of the present invention are monoclonal antibodies (or protein binding fragments thereof). Such monoclonal antibodies can be prepared using hybridoma technology. (Köhler et al., Nature 256:495 (1975); Köhler et al., Eur. J. Immunol. 6:511 (1976); Köhler et al., Eur. J. Immunol. 6:292 (1976); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N.Y., pp. 563-681 (1981).) In general, such procedures involve immunizing an animal (preferably a mouse) with polypeptide or, more preferably, with a secreted polypeptide-expressing cell. Such cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 μg/ml of streptomycin.

The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP2O), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as

10

15

20

25

30

35

described by Wands et al. (Gastroenterology 80:225-232 (1981).) The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide.

Alternatively, additional antibodies capable of binding to the polypeptide can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the protein-specific antibody can be blocked by the polypeptide. Such antibodies comprise anti-idiotypic antibodies to the protein-specific antibody and can be used to immunize an animal to induce formation of further protein-specific antibodies.

It will be appreciated that Fab and F(ab')2 and other fragments of the antibodies of the present invention may be used according to the methods disclosed herein. Such fragments are typically produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, secreted protein-binding fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry.

For in vivo use of antibodies in humans, it may be preferable to use "humanized" chimeric monoclonal antibodies. Such antibodies can be produced using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric antibodies are known in the art. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne et al., Nature 312:643 (1984); Neuberger et al., Nature 314:268 (1985).)

Example 11: Production Of Secreted Protein For High-Throughput Screening Assays

The following protocol produces a supernatant containing a polypeptide to be tested. This supernatant can then be used in the Screening Assays described in Examples 13-20.

First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution (1mg/ml in PBS) 1:20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a

10

25

working solution of 50ug/ml. Add 200 ul of this solution to each well (24 well plates) and incubate at RT for 20 minutes. Be sure to distribute the solution over each well (note: a 12-channel pipetter may be used with tips on every other channel). Aspirate off the Poly-D-Lysine solution and rinse with 1 ml PBS (Phosphate Buffered Saline). The PBS should remain in the well until just prior to plating the cells and plates may be poly-lysine coated in advance for up to two weeks.

Plate 293T cells (do not carry cells past P+20) at 2 x 10⁵ cells/well in .5ml DMEM(Dulbecco's Modified Eagle Medium)(with 4.5 G/L glucose and L-glutamine (12-604F Biowhittaker))/10% heat inactivated FBS(14-503F Biowhittaker)/1x Penstrep(17-602E Biowhittaker). Let the cells grow overnight.

The next day, mix together in a sterile solution basin: 300 ul Lipofectamine (18324-012 Gibco/BRL) and 5ml Optimem I (31985070 Gibco/BRL)/96-well plate. With a small volume multi-channel pipetter, aliquot approximately 2ug of an expression vector containing a polynucleotide insert, produced by the methods described in Examples 8 or 9, into an appropriately labeled 96-well round bottom plate. With a multi-channel pipetter, add 50ul of the Lipofectamine/Optimem I mixture to each well. Pipette up and down gently to mix. Incubate at RT 15-45 minutes. After about 20 minutes, use a multi-channel pipetter to add 150ul Optimem I to each well. As a control, one plate of vector DNA lacking an insert should be transfected with each set of transfections.

Preferably, the transfection should be performed by tag-teaming the following tasks. By tag-teaming, hands on time is cut in half, and the cells do not spend too much time on PBS. First, person A aspirates off the media from four 24-well plates of cells, and then person B rinses each well with .5-1ml PBS. Person A then aspirates off PBS rinse, and person B, using a12-channel pipetter with tips on every other channel, adds the 200ul of DNA/Lipofectamine/Optimem I complex to the odd wells first, then to the even wells, to each row on the 24-well plates. Incubate at 37°C for 6 hours.

While cells are incubating, prepare appropriate media, either 1%BSA in DMEM with 1x penstrep, or CHO-5 media (116.6 mg/L of CaCl2 (anhyd); 0.00130 mg/L

CuSO₄-5H₂O; 0.050 mg/L of Fe(NO₃)₃-9H₂O; 0.417 mg/L of FeSO₄-7H₂O; 311.80 mg/L of Kcl; 28.64 mg/L of MgCl₂; 48.84 mg/L of MgSO₄; 6995.50 mg/L of NaCl; 2400.0 mg/L of NaHCO₃; 62.50 mg/L of NaH₂PO₄-H₂O; 71.02 mg/L of Na₂HPO4; .4320 mg/L of ZnSO₄-7H₂O; .002 mg/L of Arachidonic Acid; 1.022 mg/L of Cholesterol; .070 mg/L of DL-alpha-Tocopherol-Acetate; 0.0520 mg/L of Linoleic Acid; 0.010 mg/L of Linolenic Acid; 0.010 mg/L of Palmitric Acid; 0.010 mg/L of Palmitric Acid; 100 mg/L of

30

35

Pluronic F-68; 0.010 mg/L of Stearic Acid; 2.20 mg/L of Tween 80; 4551 mg/L of D-Glucose; 130.85 mg/ml of L- Alanine; 147.50 mg/ml of L-Arginine-HCL; 7.50 mg/ml of L-Asparagine-H₂0; 6.65 mg/ml of L-Aspartic Acid; 29.56 mg/ml of L-Cystine-2HCL-H₂0; 31.29 mg/ml of L-Cystine-2HCL; 7.35 mg/ml of L-Glutamic Acid; 365.0 mg/ml of L-Glutamine; 18.75 mg/ml of Glycine; 52.48 mg/ml of L-Histidine-HCL-5 H₂0; 106.97 mg/ml of L-Isoleucine; 111.45 mg/ml of L-Leucine; 163.75 mg/ml of L-Lysine HCL; 32.34 mg/ml of L-Methionine; 68.48 mg/ml of L-Phenylalainine; 40.0 mg/ml of L-Proline; 26.25 mg/ml of L-Serine; 101.05 mg/ml of L-Threonine; 19.22 mg/ml of L-Tryptophan; 91.79 mg/ml of L-Tryrosine-2Na-2H,0; 99.65 mg/ml of L-10 Valine; 0.0035 mg/L of Biotin; 3.24 mg/L of D-Ca Pantothenate; 11.78 mg/L of Choline Chloride; 4.65 mg/L of Folic Acid; 15.60 mg/L of i-Inositol; 3.02 mg/L of Niacinamide; 3.00 mg/L of Pyridoxal HCL; 0.031 mg/L of Pyridoxine HCL; 0.319 mg/L of Riboflavin; 3.17 mg/L of Thiamine HCL; 0.365 mg/L of Thymidine; and 0.680 mg/L of Vitamin B₁₂; 25 mM of HEPES Buffer; 2.39 mg/L of Na Hypoxanthine; 0.105 mg/L of Lipoic Acid; 0.081 mg/L of Sodium Putrescine-2HCL; 55.0 mg/L of 15 Sodium Pyruvate; 0.0067 mg/L of Sodium Selenite; 20uM of Ethanolamine; 0.122 mg/L of Ferric Citrate; 41.70 mg/L of Methyl-B-Cyclodextrin complexed with Linoleic Acid; 33.33 mg/L of Methyl-B-Cyclodextrin complexed with Oleic Acid; and 10 mg/L of Methyl-B-Cyclodextrin complexed with Retinal) with 2mm glutamine and 1x penstrep. (BSA (81-068-3 Bayer) 100gm dissolved in 1L DMEM for a 10% BSA stock 20 solution). Filter the media and collect 50 ul for endotoxin assay in 15ml polystyrene conical.

The transfection reaction is terminated, preferably by tag-teaming, at the end of the incubation period. Person A aspirates off the transfection media, while person B adds 1.5ml appropriate media to each well. Incubate at 37°C for 45 or 72 hours depending on the media used: 1%BSA for 45 hours or CHO-5 for 72 hours.

On day four, using a 300ul multichannel pipetter, aliquot 600ul in one 1ml deep well plate and the remaining supernatant into a 2ml deep well. The supernatants from each well can then be used in the assays described in Examples 13-20.

It is specifically understood that when activity is obtained in any of the assays described below using a supernatant, the activity originates from either the polypeptide directly (e.g., as a secreted protein) or by the polypeptide inducing expression of other proteins, which are then secreted into the supernatant. Thus, the invention further provides a method of identifying the protein in the supernatant characterized by an activity in a particular assay.

10

30

35

Example 12: Construction of GAS Reporter Construct

One signal transduction pathway involved in the differentiation and proliferation of cells is called the Jaks-STATs pathway. Activated proteins in the Jaks-STATs pathway bind to gamma activation site "GAS" elements or interferon-sensitive responsive element ("ISRE"), located in the promoter of many genes. The binding of a protein to these elements alter the expression of the associated gene.

GAS and ISRE elements are recognized by a class of transcription factors called Signal Transducers and Activators of Transcription, or "STATs." There are six members of the STATs family. Stat1 and Stat3 are present in many cell types, as is Stat2 (as response to IFN-alpha is widespread). Stat4 is more restricted and is not in many cell types though it has been found in T helper class I, cells after treatment with IL-12. Stat5 was originally called mammary growth factor, but has been found at higher concentrations in other cells including myeloid cells. It can be activated in tissue culture cells by many cytokines.

The STATs are activated to translocate from the cytoplasm to the nucleus upon tyrosine phosphorylation by a set of kinases known as the Janus Kinase ("Jaks") family. Jaks represent a distinct family of soluble tyrosine kinases and include Tyk2, Jak1, Jak2, and Jak3. These kinases display significant sequence similarity and are generally catalytically inactive in resting cells.

The Jaks are activated by a wide range of receptors summarized in the Table below. (Adapted from review by Schidler and Darnell, Ann. Rev. Biochem. 64:621-51 (1995).) A cytokine receptor family, capable of activating Jaks, is divided into two groups: (a) Class 1 includes receptors for IL-2, IL-3, IL-4, IL-6, IL-7, IL-9, IL-11, IL-12, IL-15, Epo, PRL, GH, G-CSF, GM-CSF, LIF, CNTF, and thrombopoietin; and (b) Class 2 includes IFN-a, IFN-g, and IL-10. The Class 1 receptors share a conserved cysteine motif (a set of four conserved cysteines and one tryptophan) and a WSXWS motif (a membrane proxial region encoding Trp-Ser-Xxx-Trp-Ser (SEQ ID NO:2)).

Thus, on binding of a ligand to a receptor, Jaks are activated, which in turn activate STATs, which then translocate and bind to GAS elements. This entire process is encompassed in the Jaks-STATs signal transduction pathway.

Therefore, activation of the Jaks-STATs pathway, reflected by the binding of the GAS or the ISRE element, can be used to indicate proteins involved in the proliferation and differentiation of cells. For example, growth factors and cytokines are known to activate the Jaks-STATs pathway. (See Table below.) Thus, by using GAS elements linked to reporter molecules, activators of the Jaks-STATs pathway can be identified.

	Ligand	tyk2	JAKs Jak l	Jak2	Jak3	<u>STATS</u>	GAS(elements) or ISRE
5	IFN family IFN-a/B IFN-g II-10	+	+ + ?	- + ?	-	1,2,3 1 1,3	ISRE GAS (IRF1>Lys6>IFP)
10	gp130 family IL-6 (Pleiotrohic) Il-11(Pleiotrohic) OnM(Pleiotrohic)	+ ? ?	+ + +	+ ? +	???	1,3 1,3 1,3	GAS (IRF1>Lys6>IFP)
15	LIF(Pleiotrohic) CNTF(Pleiotrohic) G-CSF(Pleiotrohic) IL-12(Pleiotrohic)	? -/+ ? +	+ + + -	+ + ? +	? ? ? ?	1,3 1,3 1,3 1,3	
20	g-C family IL-2 (lymphocytes) IL-4 (lymph/myeloid) IL-7 (lymphocytes) IL-9 (lymphocytes) IL-13 (lymphocyte) IL-15	- - - - - ?	+ + + + +	- - - ?	+ + + + ? +	1,3,5 6 5 5 6 5	GAS GAS (IRF1 = IFP >>Ly6)(IgH) GAS GAS GAS GAS GAS
30	gp140 family IL-3 (myeloid) IL-5 (myeloid) GM-CSF (myeloid)	- - -	- -	+++++	- - -	5 5 5	GAS (IRF1>IFP>>Ly6) GAS GAS
35	Growth hormone fami GH PRL EPO	? ? ?	- +/- -	+ + +	- -	5 1,3,5 5	GAS(B-CAS>IRF1=IFP>>Ly6)
40	Receptor Tyrosine Kin EGF PDGF CSF-1	nases ? ? ?	+ + +	++++	- - -	1,3 1,3 1,3	GAS (IRF1) GAS (not IRF1)

To construct a synthetic GAS containing promoter element, which is used in the Biological Assays described in Examples 13-14, a PCR based strategy is employed to generate a GAS-SV40 promoter sequence. The 5' primer contains four tandem copies of the GAS binding site found in the IRF1 promoter and previously demonstrated to bind STATs upon induction with a range of cytokines (Rothman et al., Immunity 1:457-468 (1994).), although other GAS or ISRE elements can be used instead. The 5' primer also contains 18bp of sequence complementary to the SV40 early promoter sequence and is flanked with an XhoI site. The sequence of the 5' primer is: 5':GCGCCTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATATCTGCCATCTCAATTAG:3' (SEQ ID NO:3)

5

10

15

20

25

30

35

The downstream primer is complementary to the SV40 promoter and is flanked with a Hind III site: 5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the B-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with Xhol/Hind III and subcloned into BLSK2-. (Stratagene.) Sequencing with forward and reverse primers confirms that the insert contains the following sequence:

With this GAS promoter element linked to the SV40 promoter, a GAS:SEAP2 reporter construct is next engineered. Here, the reporter molecule is a secreted alkaline phosphatase, or "SEAP." Clearly, however, any reporter molecule can be instead of SEAP, in this or in any of the other Examples. Well known reporter molecules that can be used instead of SEAP include chloramphenicol acetyltransferase (CAT), luciferase, alkaline phosphatase, B-galactosidase, green fluorescent protein (GFP), or any protein detectable by an antibody.

The above sequence confirmed synthetic GAS-SV40 promoter element is subcloned into the pSEAP-Promoter vector obtained from Clontech using HindIII and XhoI, effectively replacing the SV40 promoter with the amplified GAS:SV40 promoter element, to create the GAS-SEAP vector. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

15

20

25

30

35

244

Thus, in order to generate mammalian stable cell lines expressing the GAS-SEAP reporter, the GAS-SEAP cassette is removed from the GAS-SEAP vector using Sall and Notl, and inserted into a backbone vector containing the neomycin resistance gene, such as pGFP-1 (Clontech), using these restriction sites in the multiple cloning site, to create the GAS-SEAP/Neo vector. Once this vector is transfected into mammalian cells, this vector can then be used as a reporter molecule for GAS binding as described in Examples 13-14.

Other constructs can be made using the above description and replacing GAS with a different promoter sequence. For example, construction of reporter molecules containing NFK-B and EGR promoter sequences are described in Examples 15 and 16. However, many other promoters can be substituted using the protocols described in these Examples. For instance, SRE, IL-2, NFAT, or Osteocalcin promoters can be substituted, alone or in combination (e.g., GAS/NF-KB/EGR, GAS/NF-KB, Il-2/NFAT, or NF-KB/GAS). Similarly, other cell lines can be used to test reporter construct activity, such as HELA (epithelial), HUVEC (endothelial), Reh (B-cell), Saos-2 (osteoblast), HUVAC (aortic), or Cardiomyocyte.

Example 13: High-Throughput Screening Assay for T-cell Activity.

The following protocol is used to assess T-cell activity by identifying factors. such as growth factors and cytokines, that may proliferate or differentiate T-cells. Tcell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The T-cell used in this assay is Jurkat T-cells (ATCC Accession No. TIB-152), although Molt-3 cells (ATCC Accession No. CRL-1552) and Molt-4 cells (ATCC Accession No. CRL-1582) cells can also be used.

Jurkat T-cells are lymphoblastic CD4+ Th1 helper cells. In order to generate stable cell lines, approximately 2 million Jurkat cells are transfected with the GAS-SEAP/neo vector using DMRIE-C (Life Technologies)(transfection procedure described below). The transfected cells are seeded to a density of approximately 20,000 cells per well and transfectants resistant to 1 mg/ml genticin selected. Resistant colonies are expanded and then tested for their response to increasing concentrations of interferon gamma. The dose response of a selected clone is demonstrated.

Specifically, the following protocol will yield sufficient cells for 75 wells containing 200 ul of cells. Thus, it is either scaled up, or performed in multiple to generate sufficient cells for multiple 96 well plates. Jurkat cells are maintained in RPMI + 10% serum with 1%Pen-Strep. Combine 2.5 mls of OPTI-MEM (Life Technologies)

5

10

15

20

25

30

with 10 ug of plasmid DNA in a T25 flask. Add 2.5 ml OPTI-MEM containing 50 ul of DMRIE-C and incubate at room temperature for 15-45 mins.

During the incubation period, count cell concentration, spin down the required number of cells (10⁷ per transfection), and resuspend in OPTI-MEM to a final concentration of 10⁷ cells/ml. Then add 1ml of 1 x 10⁷ cells in OPTI-MEM to T25 flask and incubate at 37°C for 6 hrs. After the incubation, add 10 ml of RPMI + 15% serum.

The Jurkat:GAS-SEAP stable reporter lines are maintained in RPMI + 10% serum, 1 mg/ml Genticin, and 1% Pen-Strep. These cells are treated with supernatants containing a polypeptide as produced by the protocol described in Example 11.

On the day of treatment with the supernatant, the cells should be washed and resuspended in fresh RPMI + 10% serum to a density of 500,000 cells per ml. The exact number of cells required will depend on the number of supernatants being screened. For one 96 well plate, approximately 10 million cells (for 10 plates, 100 million cells) are required.

Transfer the cells to a triangular reservoir boat, in order to dispense the cells into a 96 well dish, using a 12 channel pipette. Using a 12 channel pipette, transfer 200 ul of cells into each well (therefore adding 100, 000 cells per well).

After all the plates have been seeded, 50 ul of the supernatants are transferred directly from the 96 well plate containing the supernatants into each well using a 12 channel pipette. In addition, a dose of exogenous interferon gamma (0.1, 1.0, 10 ng) is added to wells H9, H10, and H11 to serve as additional positive controls for the assay.

The 96 well dishes containing Jurkat cells treated with supernatants are placed in an incubator for 48 hrs (note: this time is variable between 48-72 hrs). 35 ul samples from each well are then transferred to an opaque 96 well plate using a 12 channel pipette. The opaque plates should be covered (using sellophene covers) and stored at -20°C until SEAP assays are performed according to Example 17. The plates containing the remaining treated cells are placed at 4°C and serve as a source of material for repeating the assay on a specific well if desired.

As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate Jurkat T cells. Over 30 fold induction is typically observed in the positive control wells.

10

20

25

30

Example 14: High-Throughput Screening Assay Identifying Myeloid Activity

The following protocol is used to assess myeloid activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate myeloid cells. Myeloid cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The myeloid cell used in this assay is U937, a pre-monocyte cell line, although TF-1, HL60, or KG1 can be used.

To transiently transfect U937 cells with the GAS/SEAP/Neo construct produced in Example 12, a DEAE-Dextran method (Kharbanda et. al., 1994, Cell Growth & Differentiation, 5:259-265) is used. First, harvest 2x10e⁷ U937 cells and wash with PBS. The U937 cells are usually grown in RPMI 1640 medium containing 10% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 mg/ml streptomycin.

Next, suspend the cells in 1 ml of 20 mM Tris-HCl (pH 7.4) buffer containing 0.5 mg/ml DEAE-Dextran, 8 ug GAS-SEAP2 plasmid DNA, 140 mM NaCl, 5 mM KCl, 375 uM Na₂HPO₄.7H₂O, 1 mM MgCl₂, and 675 uM CaCl₂. Incubate at 37°C for 45 min.

Wash the cells with RPMI 1640 medium containing 10% FBS and then resuspend in 10 ml complete medium and incubate at 37°C for 36 hr.

The GAS-SEAP/U937 stable cells are obtained by growing the cells in 400 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 400 ug/ml G418 for couple of passages.

These cells are tested by harvesting $1x10^8$ cells (this is enough for ten 96-well plates assay) and wash with PBS. Suspend the cells in 200 ml above described growth medium, with a final density of $5x10^5$ cells/ml. Plate 200 ul cells per well in the 96-well plate (or $1x10^5$ cells/well).

Add 50 ul of the supernatant prepared by the protocol described in Example 11. Incubate at 37°C for 48 to 72 hr. As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate U937 cells. Over 30 fold induction is typically observed in the positive control wells. SEAP assay the supernatant according to the protocol described in Example 17.

5

10

15

20

25

30

35

Example 15: High-Throughput Screening Assay Identifying Neuronal Activity.

When cells undergo differentiation and proliferation, a group of genes are activated through many different signal transduction pathways. One of these genes, EGR1 (early growth response gene 1), is induced in various tissues and cell types upon activation. The promoter of EGR1 is responsible for such induction. Using the EGR1 promoter linked to reporter molecules, activation of cells can be assessed.

Particularly, the following protocol is used to assess neuronal activity in PC12 cell lines. PC12 cells (rat phenochromocytoma cells) are known to proliferate and/or differentiate by activation with a number of mitogens, such as TPA (tetradecanoyl phorbol acetate), NGF (nerve growth factor), and EGF (epidermal growth factor). The EGR1 gene expression is activated during this treatment. Thus, by stably transfecting PC12 cells with a construct containing an EGR promoter linked to SEAP reporter, activation of PC12 cells can be assessed.

The EGR/SEAP reporter construct can be assembled by the following protocol. The EGR-1 promoter sequence (-633 to +1)(Sakamoto K et al., Oncogene 6:867-871 (1991)) can be PCR amplified from human genomic DNA using the following primers:

- 5' GCGCTCGAGGGATGACAGCGATAGAACCCCGG -3' (SEQ ID NO:6)
- 5' GCGAAGCTTCGCGACTCCCGGATCCGCCTC-3' (SEQ ID NO:7)

Using the GAS:SEAP/Neo vector produced in Example 12, EGR1 amplified product can then be inserted into this vector. Linearize the GAS:SEAP/Neo vector using restriction enzymes XhoI/HindIII, removing the GAS/SV40 stuffer. Restrict the EGR1 amplified product with these same enzymes. Ligate the vector and the EGR1 promoter.

To prepare 96 well-plates for cell culture, two mls of a coating solution (1:30 dilution of collagen type I (Upstate Biotech Inc. Cat#08-115) in 30% ethanol (filter sterilized)) is added per one 10 cm plate or 50 ml per well of the 96-well plate, and allowed to air dry for 2 hr.

PC12 cells are routinely grown in RPMI-1640 medium (Bio Whittaker) containing 10% horse serum (JRH BIOSCIENCES, Cat. # 12449-78P), 5% heatinactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 ug/ml streptomycin on a precoated 10 cm tissue culture dish. One to four split is done every three to four days. Cells are removed from the plates by scraping and resuspended with pipetting up and down for more than 15 times.

Transfect the EGR/SEAP/Neo construct into PC12 using the Lipofectamine protocol described in Example 11. EGR-SEAP/PC12 stable cells are obtained by growing the cells in 300 ug/ml G418. The G418-free medium is used for routine

10

15

20

25

30

growth but every one to two months, the cells should be re-grown in 300 ug/ml G418 for couple of passages.

To assay for neuronal activity, a 10 cm plate with cells around 70 to 80% confluent is screened by removing the old medium. Wash the cells once with PBS (Phosphate buffered saline). Then starve the cells in low serum medium (RPMI-1640 containing 1% horse serum and 0.5% FBS with antibiotics) overnight.

The next morning, remove the medium and wash the cells with PBS. Scrape off the cells from the plate, suspend the cells well in 2 ml low serum medium. Count the cell number and add more low serum medium to reach final cell density as $5x10^5$ cells/ml.

Add 200 ul of the cell suspension to each well of 96-well plate (equivalent to $1x10^5$ cells/well). Add 50 ul supernatant produced by Example 11, 37°C for 48 to 72 hr. As a positive control, a growth factor known to activate PC12 cells through EGR can be used, such as 50 ng/ul of Neuronal Growth Factor (NGF). Over fifty-fold induction of SEAP is typically seen in the positive control wells. SEAP assay the supernatant according to Example 17.

Example 16: High-Throughput Screening Assay for T-cell Activity

NF-κB (Nuclear Factor κB) is a transcription factor activated by a wide variety of agents including the inflammatory cytokines IL-1 and TNF, CD30 and CD40, lymphotoxin-alpha and lymphotoxin-beta, by exposure to LPS or thrombin, and by expression of certain viral gene products. As a transcription factor, NF-κB regulates the expression of genes involved in immune cell activation, control of apoptosis (NF-κB appears to shield cells from apoptosis), B and T-cell development, anti-viral and antimicrobial responses, and multiple stress responses.

In non-stimulated conditions, NF- κB is retained in the cytoplasm with I- κB (Inhibitor κB). However, upon stimulation, I- κB is phosphorylated and degraded, causing NF- κB to shuttle to the nucleus, thereby activating transcription of target genes. Target genes activated by NF- κB include IL-2, IL-6, GM-CSF, ICAM-1 and class 1 MHC.

Due to its central role and ability to respond to a range of stimuli, reporter constructs utilizing the NF-kB promoter element are used to screen the supernatants produced in Example 11. Activators or inhibitors of NF-kB would be useful in treating

10

20

diseases. For example, inhibitors of NF-kB could be used to treat those diseases related to the acute or chronic activation of NF-kB, such as rheumatoid arthritis.

The downstream primer is complementary to the 3' end of the SV40 promoter and is flanked with a Hind III site:

5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the pB-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI and Hind III and subcloned into BLSK2-. (Stratagene)

Sequencing with the T7 and T3 primers confirms the insert contains the following sequence:

5':CTCGAGGGGACTTTCCCGGGGACTTTCCGGGACTTTCC
ATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCA
TCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACT
AATTTTTTTATTTATCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTC
CAGAAGTAGTGAGGAGGCCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTT:
3' (SEQ ID NO:10)

Next, replace the SV40 minimal promoter element present in the pSEAP2-promoter plasmid (Clontech) with this NF-kB/SV40 fragment using XhoI and HindIII. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

In order to generate stable mammalian cell lines, the NF-κB/SV40/SEAP

cassette is removed from the above NF-κB/SEAP vector using restriction enzymes SalI and NotI, and inserted into a vector containing neomycin resistance. Particularly, the NF-κB/SV40/SEAP cassette was inserted into pGFP-1 (Clontech), replacing the GFP gene, after restricting pGFP-1 with SalI and NotI.

PCT/US98/11422

Once NF-kB/SV40/SEAP/Neo vector is created, stable Jurkat T-cells are created and maintained according to the protocol described in Example 13. Similarly, the method for assaying supernatants with these stable Jurkat T-cells is also described in Example 13. As a positive control, exogenous TNF alpha (0.1,1, 10 ng) is added to wells H9, H10, and H11, with a 5-10 fold activation typically observed.

Example 17: Assay for SEAP Activity

5

10

15

20

25

As a reporter molecule for the assays described in Examples 13-16, SEAP activity is assayed using the Tropix Phospho-light Kit (Cat. BP-400) according to the following general procedure. The Tropix Phospho-light Kit supplies the Dilution, Assay, and Reaction Buffers used below.

Prime a dispenser with the 2.5x Dilution Buffer and dispense 15 μ l of 2.5x dilution buffer into Optiplates containing 35 μ l of a supernatant. Seal the plates with a plastic sealer and incubate at 65°C for 30 min. Separate the Optiplates to avoid uneven heating.

Cool the samples to room temperature for 15 minutes. Empty the dispenser and prime with the Assay Buffer. Add 50 μ l Assay Buffer and incubate at room temperature 5 min. Empty the dispenser and prime with the Reaction Buffer (see the table below). Add 50 μ l Reaction Buffer and incubate at room temperature for 20 minutes. Since the intensity of the chemiluminescent signal is time dependent, and it takes about 10 minutes to read 5 plates on luminometer, one should treat 5 plates at each time and start the second set 10 minutes later.

Read the relative light unit in the luminometer. Set H12 as blank, and print the results. An increase in chemiluminescence indicates reporter activity.

Reaction Buffer Formulation:

Reaction	butter Formulation:			
# of plates	Rxn buffer diluent (ml)	CSPD (ml)		
10	60	3		
11	65	3.25		
12	70	3.5		
13	75	3.75		
14	80	4		
15	85	4.25		
16	90	4.5		
17	95	4.75		
18	100	5 .		
19	105	5.25		
20	110	5.5		
21	115	5.75		
22	120	6		

23	125	6.25
24	130	6.5
25	135	6.75
26	140	7
27	145	7.25
28	150	7.5
29	155	7.75
30	160	8
31	165	8.25
32	170	8.5
33	175	8.75
34	180	9
35	185	9.25
36	190	9.5
37	195	9.75
38	200	10
39	205	10.25
40	210	10.5
41	215	10.75
42	220	11
43	225	11.25
44	230	11.5
45	235	11.75
46	240	12
47	245	12.25
48	250	12.5
49	255	12.75
50	260	13

10

15

Example 18: High-Throughput Screening Assay Identifying Changes in Small Molecule Concentration and Membrane Permeability

Binding of a ligand to a receptor is known to alter intracellular levels of small molecules, such as calcium, potassium, sodium, and pH, as well as alter membrane potential. These alterations can be measured in an assay to identify supernatants which bind to receptors of a particular cell. Although the following protocol describes an assay for calcium, this protocol can easily be modified to detect changes in potassium, sodium, pH, membrane potential, or any other small molecule which is detectable by a fluorescent probe.

The following assay uses Fluorometric Imaging Plate Reader ("FLIPR") to measure changes in fluorescent molecules (Molecular Probes) that bind small molecules. Clearly, any fluorescent molecule detecting a small molecule can be used instead of the calcium fluorescent molecule, fluo-3, used here.

For adherent cells, seed the cells at 10,000 -20,000 cells/well in a Co-star black 96-well plate with clear bottom. The plate is incubated in a CO_2 incubator for 20 hours. The adherent cells are washed two times in Biotek washer with 200 ul of HBSS (Hank's Balanced Salt Solution) leaving 100 ul of buffer after the final wash.

A stock solution of 1 mg/ml fluo-3 is made in 10% pluronic acid DMSO. To load the cells with fluo-3, 50 ul of 12 ug/ml fluo-3 is added to each well. The plate is incubated at 37° C in a CO_2 incubator for 60 min. The plate is washed four times in the Biotek washer with HBSS leaving 100 ul of buffer.

For non-adherent cells, the cells are spun down from culture media. Cells are re-suspended to 2-5x10⁶ cells/ml with HBSS in a 50-ml conical tube. 4 ul of 1 mg/ml fluo-3 solution in 10% pluronic acid DMSO is added to each ml of cell suspension. The tube is then placed in a 37°C water bath for 30-60 min. The cells are washed twice with HBSS, resuspended to 1x10⁶ cells/ml, and dispensed into a microplate, 100 ul/well. The plate is centrifuged at 1000 rpm for 5 min. The plate is then washed once in Denley CellWash with 200 ul, followed by an aspiration step to 100 ul final volume.

For a non-cell based assay, each well contains a fluorescent molecule, such as fluo-3. The supernatant is added to the well, and a change in fluorescence is detected.

To measure the fluorescence of intracellular calcium, the FLIPR is set for the following parameters: (1) System gain is 300-800 mW; (2) Exposure time is 0.4 second; (3) Camera F/stop is F/2; (4) Excitation is 488 nm; (5) Emission is 530 nm; and (6) Sample addition is 50 ul. Increased emission at 530 nm indicates an extracellular signaling event which has resulted in an increase in the intracellular Ca++ concentration.

20

25

30

35

5

10

15

Example 19: High-Throughput Screening Assay Identifying Tyrosine Kinase Activity

The Protein Tyrosine Kinases (PTK) represent a diverse group of transmembrane and cytoplasmic kinases. Within the Receptor Protein Tyrosine Kinase RPTK) group are receptors for a range of mitogenic and metabolic growth factors including the PDGF, FGF, EGF, NGF, HGF and Insulin receptor subfamilies. In addition there are a large family of RPTKs for which the corresponding ligand is unknown. Ligands for RPTKs include mainly secreted small proteins, but also membrane-bound and extracellular matrix proteins.

rest cyte asse

Activation of RPTK by ligands involves ligand-mediated receptor dimerization, resulting in transphosphorylation of the receptor subunits and activation of the cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinases include receptor associated tyrosine kinases of the src-family (e.g., src, yes, lck, lyn, fyn) and non-receptor linked and cytosolic protein tyrosine kinases, such as the Jak family, members of which mediate signal transduction triggered by the cytokine superfamily of receptors (e.g., the Interleukins, Interferons, GM-CSF, and Leptin).

Because of the wide range of known factors capable of stimulating tyrosine kinase activity, the identification of novel human secreted proteins capable of activating tyrosine kinase signal transduction pathways are of interest. Therefore, the following protocol is designed to identify those novel human secreted proteins capable of activating the tyrosine kinase signal transduction pathways.

5

10

15

35

Seed target cells (e.g., primary keratinocytes) at a density of approximately 25,000 cells per well in a 96 well Loprodyne Silent Screen Plates purchased from Nalge Nunc (Naperville, IL). The plates are sterilized with two 30 minute rinses with 100% ethanol, rinsed with water and dried overnight. Some plates are coated for 2 hr with 100 ml of cell culture grade type I collagen (50 mg/ml), gelatin (2%) or polylysine (50 mg/ml), all of which can be purchased from Sigma Chemicals (St. Louis, MO) or 10% Matrigel purchased from Becton Dickinson (Bedford,MA), or calf serum, rinsed with PBS and stored at 4°C. Cell growth on these plates is assayed by seeding 5,000 cells/well in growth medium and indirect quantitation of cell number through use of alamarBlue as described by the manufacturer Alamar Biosciences, Inc. (Sacramento, CA) after 48 hr. Falcon plate covers #3071 from Becton Dickinson (Bedford,MA) are used to cover the Loprodyne Silent Screen Plates. Falcon Microtest III cell culture plates can also be used in some proliferation experiments.

To prepare extracts, A431 cells are seeded onto the nylon membranes of 20 Loprodyne plates (20,000/200ml/well) and cultured overnight in complete medium. Cells are quiesced by incubation in serum-free basal medium for 24 hr. After 5-20 minutes treatment with EGF (60ng/ml) or 50 ul of the supernatant produced in Example 11, the medium was removed and 100 ml of extraction buffer ((20 mM HEPES pH 7.5, 0.15 M NaCl, 1% Triton X-100, 0.1% SDS, 2 mM Na3VO4, 2 mM Na4P2O7 and a cocktail of protease inhibitors (# 1836170) obtained from Boeheringer Mannheim 25 (Indianapolis, IN) is added to each well and the plate is shaken on a rotating shaker for 5 minutes at 4°C. The plate is then placed in a vacuum transfer manifold and the extract filtered through the 0.45 mm membrane bottoms of each well using house vacuum. Extracts are collected in a 96-well catch/assay plate in the bottom of the vacuum manifold and immediately placed on ice. To obtain extracts clarified by centrifugation, 30 the content of each well, after detergent solubilization for 5 minutes, is removed and centrifuged for 15 minutes at 4°C at 16,000 x g.

Test the filtered extracts for levels of tyrosine kinase activity. Although many methods of detecting tyrosine kinase activity are known, one method is described here.

Generally, the tyrosine kinase activity of a supernatant is evaluated by determining its ability to phosphorylate a tyrosine residue on a specific substrate (a

10

15

20

25

biotinylated peptide). Biotinylated peptides that can be used for this purpose include PSK1 (corresponding to amino acids 6-20 of the cell division kinase cdc2-p34) and PSK2 (corresponding to amino acids 1-17 of gastrin). Both peptides are substrates for a range of tyrosine kinases and are available from Boehringer Mannheim.

The tyrosine kinase reaction is set up by adding the following components in order. First, add 10ul of 5uM Biotinylated Peptide, then 10ul ATP/Mg₂₊ (5mM ATP/50mM MgCl₂), then 10ul of 5x Assay Buffer (40mM imidazole hydrochloride, pH7.3, 40 mM beta-glycerophosphate, 1mM EGTA, 100mM MgCl₂, 5 mM MnCl₂, 0.5 mg/ml BSA), then 5ul of Sodium Vanadate(1mM), and then 5ul of water. Mix the components gently and preincubate the reaction mix at 30°C for 2 min. Initial the reaction by adding 10ul of the control enzyme or the filtered supernatant.

The tyrosine kinase assay reaction is then terminated by adding 10 ul of 120mm EDTA and place the reactions on ice.

Tyrosine kinase activity is determined by transferring 50 ul aliquot of reaction mixture to a microtiter plate (MTP) module and incubating at 37°C for 20 min. This allows the streptavadin coated 96 well plate to associate with the biotinylated peptide. Wash the MTP module with 300ul/well of PBS four times. Next add 75 ul of anti-phospotyrosine antibody conjugated to horse radish peroxidase(anti-P-Tyr-POD(0.5u/ml)) to each well and incubate at 37°C for one hour. Wash the well as above.

Next add 100ul of peroxidase substrate solution (Boehringer Mannheim) and incubate at room temperature for at least 5 mins (up to 30 min). Measure the absorbance of the sample at 405 nm by using ELISA reader. The level of bound peroxidase activity is quantitated using an ELISA reader and reflects the level of tyrosine kinase activity.

Example 20: High-Throughput Screening Assay Identifying Phosphorylation Activity

As a potential alternative and/or compliment to the assay of protein tyrosine
kinase activity described in Example 19, an assay which detects activation
(phosphorylation) of major intracellular signal transduction intermediates can also be
used. For example, as described below one particular assay can detect tyrosine
phosphorylation of the Erk-1 and Erk-2 kinases. However, phosphorylation of other
molecules, such as Raf, JNK, p38 MAP, Map kinase kinase (MEK), MEK kinase,
Src, Muscle specific kinase (MuSK), IRAK, Tec, and Janus, as well as any other

phosphoserine, phosphotyrosine, or phosphothreonine molecule, can be detected by substituting these molecules for Erk-1 or Erk-2 in the following assay.

Specifically, assay plates are made by coating the wells of a 96-well ELISA plate with 0.1ml of protein G (lug/ml) for 2 hr at room temp, (RT). The plates are then rinsed with PBS and blocked with 3% BSA/PBS for 1 hr at RT. The protein G plates are then treated with 2 commercial monoclonal antibodies (100ng/well) against Erk-1 and Erk-2 (1 hr at RT) (Santa Cruz Biotechnology). (To detect other molecules, this step can easily be modified by substituting a monoclonal antibody detecting any of the above described molecules.) After 3-5 rinses with PBS, the plates are stored at 4°C until use.

A431 cells are seeded at 20,000/well in a 96-well Loprodyne filterplate and cultured overnight in growth medium. The cells are then starved for 48 hr in basal medium (DMEM) and then treated with EGF (6ng/well) or 50 ul of the supernatants obtained in Example 11 for 5-20 minutes. The cells are then solubilized and extracts filtered directly into the assay plate.

After incubation with the extract for 1 hr at RT, the wells are again rinsed. As a positive control, a commercial preparation of MAP kinase (10ng/well) is used in place of A431 extract. Plates are then treated with a commercial polyclonal (rabbit) antibody (lug/ml) which specifically recognizes the phosphorylated epitope of the Erk-1 and Erk-2 kinases (1 hr at RT). This antibody is biotinylated by standard procedures. The bound polyclonal antibody is then quantitated by successive incubations with Europium-streptavidin and Europium fluorescence enhancing reagent in the Wallac DELFIA instrument (time-resolved fluorescence). An increased fluorescent signal over background indicates a phosphorylation.

25

30

5

10

15

20

Example 21: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide

RNA isolated from entire families or individual patients presenting with a phenotype of interest (such as a disease) is be isolated. cDNA is then generated from these RNA samples using protocols known in the art. (See, Sambrook.) The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO:X. Suggested PCR conditions consist of 35 cycles at 95°C for 30 seconds; 60-120 seconds at 52-58°C; and 60-120 seconds at 70°C, using buffer solutions described in Sidransky, D., et al., Science 252:706 (1991).

35

PCR products are then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase. (Epicentre Technologies).

10

30

35

The intron-exon borders of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations is then cloned and sequenced to validate the results of the direct sequencing.

PCR products is cloned into T-tailed vectors as described in Holton, T.A. and Graham, M.W., Nucleic Acids Research, 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals are identified by mutations not present in unaffected individuals.

Genomic rearrangements are also observed as a method of determining alterations in a gene corresponding to a polynucleotide. Genomic clones isolated according to Example 2 are nick-translated with digoxigenindeoxy-uridine 5'-triphosphate (Boehringer Manheim), and FISH performed as described in Johnson, Cg. et al., Methods Cell Biol. 35:73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.

15 Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C- and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometrics, Tucson, AZ) and variable excitation wavelength filters. (Johnson, Cv. et al., Genet. Anal. Tech. Appl., 8:75 (1991).) Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.

Example 22: Method of Detecting Abnormal Levels of a Polypeptide in a Biological Sample

A polypeptide of the present invention can be detected in a biological sample, and if an increased or decreased level of the polypeptide is detected, this polypeptide is a marker for a particular phenotype. Methods of detection are numerous, and thus, it is understood that one skilled in the art can modify the following assay to fit their particular needs.

For example, antibody-sandwich ELISAs are used to detect polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 ug/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described in Example 10.

WO 98/54963

257

The wells are blocked so that non-specific binding of the polypeptide to the well is reduced.

The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove unbounded polypeptide.

Next, 50 ul of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbounded conjugate.

Add 75 ul of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution to each well and incubate 1 hour at room temperature. Measure the reaction by a microtiter plate reader. Prepare a standard curve, using serial dilutions of a control sample, and plot polypeptide concentration on the X-axis (log scale) and fluorescence or absorbance of the Y-axis (linear scale). Interpolate the concentration of the polypeptide in the sample using the standard curve.

Example 23: Formulating a Polypeptide

5

10

15

20

25

30

35

The secreted polypeptide composition will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the secreted polypeptide alone), the site of delivery, the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

As a general proposition, the total pharmaceutically effective amount of secreted polypeptide administered parenterally per dose will be in the range of about 1 µg/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the secreted polypeptide is typically administered at a dose rate of about 1 μg/kg/hour to about 50 μg/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

Pharmaceutical compositions containing the secreted protein of the invention are administered orally, rectally, parenterally, intracistemally, intravaginally,

25

30

35

intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

The secreted polypeptide is also suitably administered by sustained-release systems. Suitable examples of sustained-release compositions include semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules. Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), 10 copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman, U. et al., Biopolymers 22:547-556 (1983)), poly (2- hydroxyethyl methacrylate) (R. Langer et al., J. Biomed. Mater. Res. 15:167-277 (1981), and R. Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (R. Langer et al.) or poly-D- (-)-3-hydroxybutyric acid (EP 133,988). Sustained-release compositions also include liposomally entrapped 15 polypeptides. Liposomes containing the secreted polypeptide are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. USA 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes 20 are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal secreted polypeptide therapy.

For parenteral administration, in one embodiment, the secreted polypeptide is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to polypeptides.

Generally, the formulations are prepared by contacting the polypeptide uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.

259

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

The secreted polypeptide is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.

Any polypeptide to be used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutic polypeptide compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

Polypeptides ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous polypeptide solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized polypeptide using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the polypeptides of the present invention may be employed in conjunction with other therapeutic compounds.

5

10

15

20

25

10

15

20

25

30

Example 24: Method of Treating Decreased Levels of the Polypeptide

It will be appreciated that conditions caused by a decrease in the standard or normal expression level of a secreted protein in an individual can be treated by administering the polypeptide of the present invention, preferably in the secreted form. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an individual a pharmaceutical composition comprising an amount of the polypeptide to increase the activity level of the polypeptide in such an individual.

For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 ug/kg of the polypeptide for six consecutive days. Preferably, the polypeptide is in the secreted form. The exact details of the dosing scheme, based on administration and formulation, are provided in Example 23.

Example 25: Method of Treating Increased Levels of the Polypeptide

Antisense technology is used to inhibit production of a polypeptide of the present invention. This technology is one example of a method of decreasing levels of a polypeptide, preferably a secreted form, due to a variety of etiologies, such as cancer.

For example, a patient diagnosed with abnormally increased levels of a polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The formulation of the antisense polynucleotide is provided in Example 23.

Example 26: Method of Treatment Using Gene Therapy

One method of gene therapy transplants fibroblasts, which are capable of expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin) is added. The flasks are then incubated at 37°C for approximately one week.

At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

pMV-7 (Kirschmeier, P.T. et al., DNA, 7:219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

The cDNA encoding a polypeptide of the present invention can be amplified using PCR primers which correspond to the 5' and 3' end sequences respectively as set forth in Example 1. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to transform bacteria HB101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.

The amphotropic pA317 or GP+am12 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is produced.

The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

5

10

15

20

25

10

15

20

25

30

35

Example 27: Method of Treatment Using Gene Therapy - In Vivo

Another aspect of the present invention is using *in vivo* gene therapy methods to treat disorders, diseases and conditions. The gene therapy method relates to the introduction of naked nucleic acid (DNA, RNA, and antisense DNA or RNA) sequences into an animal to increase or decrease the expression of the polypeptide of the present invention. A polynucleotide of the present invention may be operatively linked to a promoter or any other genetic elements necessary for the expression of the encoded polypeptide by the target tissue. Such gene therapy and delivery techniques and methods are known in the art, see, for example, WO90/11092, WO98/11779; U.S. Patent NO. 5693622, 5705151, 5580859; Tabata H. et al. (1997) Cardiovasc. Res. 35(3):470-479, Chao J et al. (1997) Pharmacol. Res. 35(6):517-522, Wolff J.A. (1997) Neuromuscul. Disord. 7(5):314-318, Schwartz B. et al. (1996) Gene Ther. 3(5):405-411, Tsurumi Y. et al. (1996) Circulation 94(12):3281-3290 (incorporated herein by reference).

The polynucleotide constructs of the present invention may be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, intestine and the like). These polynucleotide constructs can be delivered in a pharmaceutically acceptable liquid or aqueous carrier.

The term "naked" polynucleotide, DNA or RNA, refers to sequences that are free from any delivery vehicle that acts to assist, promote, or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like. However, the polynucleotides may also be delivered in liposome formulations (such as those taught in Felgner P.L. et al. (1995) Ann. NY Acad. Sci. 772:126-139 and Abdallah B. et al. (1995) Biol. Cell 85(1):1-7) which can be prepared by methods well known to those skilled in the art.

The polynucleotide vector constructs of the present invention used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Any strong promoter known to those skilled in the art can be used for driving the expression of DNA. Unlike other gene therapies techniques, one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months.

15

20

25

30

35

The polynucleotide construct of the present invention can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective tissue. Interstitial space of the tissues comprises the intercellular fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma of the circulation and the lymph fluid of the lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. In vivo muscle cells are particularly competent in their ability to take up and express polynucleotides.

For the naked polynucleotide injection, an effective dosage amount of DNA or RNA will be in the range of from about 0.05 g/kg body weight to about 50 mg/kg body weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration. The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose. In addition, naked polynucleotide constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.

The dose response effects of injected polynucleotide in muscle *in vivo* is determined as follows. Suitable template DNA for production of mRNA coding for the polypeptide of the present invention is prepared in accordance with a standard recombinant DNA methodology. The template DNA, which may be either circular or linear, is either used as naked DNA or complexed with

10

15

20

25

liposomes. The quadriceps muscles of mice are then injected with various amounts of the template DNA.

Five to six week old female and male Balb/C mice are anesthetized by intraperitoneal injection with 0.3 ml of 2.5% Avertin. A 1.5 cm incision is made on the anterior thigh, and the quadriceps muscle is directly visualized. The template DNA is injected in 0.1 ml of carrier in a 1 cc syringe through a 27 gauge needle over one minute, approximately 0.5 cm from the distal insertion site of the muscle into the knee and about 0.2 cm deep. A suture is placed over the injection site for future localization, and the skin is closed with stainless steel clips.

After an appropriate incubation time (e.g., 7 days) muscle extracts are prepared by excising the entire quadriceps. Every fifth 15 um cross-section of the individual quadriceps muscles is histochemically stained for protein expression. A time course for protein expression may be done in a similar fashion except that quadriceps from different mice are harvested at different times. Persistence of DNA in muscle following injection may be determined by Southern blot analysis after preparing total cellular DNA and HIRT supernatants from injected and control mice. The results of the above experimentation in mice can be use to extrapolate proper dosages and other treatment parameters in humans and other animals using naked DNA of the present invention.

It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.

The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background of the Invention, Detailed Description, and Examples is hereby incorporated herein by reference.

PCT/US98/11422

265

Sequence Listing

(1) GENERAL INFORMATION: (i) APPLICANT: Human Genome Sciences, Inc., et al. 5 (ii) TITLE OF INVENTION: 207 Human Secreted Proteins 10 (iii) NUMBER OF SEQUENCES: 800 (iv) CORRESPONDENCE ADDRESS: 15 (A) ADDRESSEE: Human Genome Sciences, Inc. (B) STREET: 9410 Key West Avenue 20 (C) CITY: Rockville (D) STATE: Maryland (E) COUNTRY: USA 25 (F) ZIP: 20850 30 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage (B) COMPUTER: HP Vectra 486/33 35 (C) OPERATING SYSTEM: MSDOS version 6.2 (D) SOFTWARE: ASCII Text 40 (vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: 45 (B) FILING DATE: (C) CLASSIFICATION: 50 (vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 55

(B) FILING DATE:

	(viii) ATTORNEY/AGENT INFORMATION:	
_	(A) NAME: Kenley K. Hoover	
5	(B) REGISTRATION NUMBER: 40,302	
	(C) REFERENCE/DOCKET NUMBER: PZ007PCT	
10		
	(vi) TELECOMMUNICATION INFORMATION:	
16	(A) TELEPHONE: (301) 309-8504	
15	(B) TELEFAX: (301) 309-8439	
20	(2) INFORMATION FOR SEQ ID NO: 1:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 733 base pairs (B) TYPE: nucleic acid	
23	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
30	GGGATCCGGA GCCCAAATCT TCTGACAAAA CTCACACATG CCCACCGTGC CCAGCACCTG	60
	AATTCGAGGG TGCACCGTCA GTCTTCCTCT TCCCCCCAAA ACCCAAGGAC ACCCTCATGA	120
35	TCTCCCGGAC TCCTGAGGTC ACATGCGTGG TGGTGGACGT AAGCCACGAA GACCCTGAGG	180
<i>33</i>	TCAAGTTCAA CTGGTACGTG GACGGCGTGG AGGTGCATAA TGCCAAGACA AAGCCGCGGG	240
	AGGAGCAGTA CAACAGCACG TACCGTGTGG TCAGCGTCCT CACCGTCCTG CACCAGGACT	300
40	GGCTGAATGG CAAGGAGTAC AAGTGCAAGG TCTCCAACAA AGCCCTCCCA ACCCCCATCG	360
	AGAAAACCAT CTCCAAAGCC AAAGGGCAGC CCCGAGAACC ACAGGTGTAC ACCCTGCCCC	420
45	CATCCCGGGA TGAGCTGACC AAGAACCAGG TCAGCCTGAC CTGCCTGGTC AAAGGCTTCT	480
	ATCCAAGCGA CATCGCCGTG GAGTGGGAGA GCAATGGGCA GCCGGAGAAC AACTACAAGA	540
	CCACGCCTCC CGTGCTGGAC TCCGACGGCT CCTTCTTCCT CTACAGCAAG CTCACCGTGG	600
50	ACAAGAGCAG GTGGCAGCAG GGGAACGTCT TCTCATGCTC CGTGATGCAT GAGGCTCTGC	660
	ACAACCACTA CACGCAGAAG AGCCTCTCCC TGTCTCCGGG TAAATGAGTG CGACGGCCGC	726
55	CACTOTAGAG GAT	73:

PCT/US98/11422

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 5 amino acids	
	(B) TYPE: amino acid	
5	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
	Trp Ser Xaa Trp Ser	
10	1 5	
15	(2) INFORMATION FOR SEQ ID NO: 3:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 86 base pairs	
	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
	(XI) SEQUENCE DESCRIPTION: SEQ ID NO. 3.	
25	GCGCCTCGAG ATTTCCCCGA AATCTAGATT TCCCCGAAAT GATTTCCCCG AAATGATTTC	60
	·	86
	CCCGAAATAT CTGCCATCTC AATTAG	00
30		
	(2) INFORMATION FOR SEQ ID NO: 4:	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 27 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
70	(XI) Significal paperstation only the view	
	GCGGCAAGCT TTTTGCAAAG CCTAGGC	27
45		
43		
	(2) INFORMATION FOR SEQ ID NO: 5:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 271 base pairs	
50	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
	CTCGAGATTT CCCCGAAATC TAGATTTCCC CGAAATGATT TCCCCGAAAT GATTTCCCCG	60
	AAATATCTGC CATCTCAATT AGTCAGCAAC CATAGTCCCG CCCCTAACTC CGCCCATCCC	120
60		

	GCCCCTAACT CCGCCCAGTT CCGCCCATTC TCCGCCCCAT GGCTGACTAA TTTTTTTTAT	180
	TTATGCAGAG GCCGAGGCCG CCTCGGCCTC TGAGCTATTC CAGAAGTAGT GAGGAGGCTT	240
5	TTTTGGAGGC CTAGGCTTTT GCAAAAAGCT T	271
10	(2) INFORMATION FOR SEQ ID NO: 6:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 32 base pairs	
	(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
20	GCGCTCGAGG GATGACAGCG ATAGAACCCC GG	32
25	(2) INFORMATION FOR SEQ ID NO: 7:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 31 base pairs(B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
35		2.4
	GCGAAGCTTC GCGACTCCCC GGATCCGCCT C	31
40		
	(2) INFORMATION FOR SEQ ID NO: 8:	
	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 12 base pairs (B) TYPE: nucleic acid	
45	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
50	CCCCNOTIVIC CC	12
	GGGGACTITC CC	
55		
	(2) INFORMATION FOR SEQ ID NO: 9:	
	(i) SEQUENCE CHARACTERISTICS:	
60	(A) LENGTH: 73 base pairs (B) TYPE: nucleic acid	

	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
5	GCGGCCTCGA GGGGACTTTC CCGGGGACTT TCCGGGGACT TTCCATCCTG	60
	CCATCTCAAT TAG	73
10	•	
	(2) INFORMATION FOR SEQ ID NO: 10:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 256 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
	CTCGAGGGGA CTTTCCCGGG GACTTTCCG GGACTTTCCA TCTGCCATCT	60
25	CAATTAGTCA GCAACCATAG TCCCGCCCCT AACTCCGCCC ATCCCGCCCC TAACTCCGCC	120
	CAGTTCCGCC CATTCTCCGC CCCATGGCTG ACTAATTTT TTTATTTATG CAGAGGCCGA	180
	GGCCGCCTCG GCCTCTGAGC TATTCCAGAA GTAGTGAGGA GGCTTTTTTG GAGGCCTAGG	240
30	CTTTTGCAAA AAGCTT	256
35		
	(2) INFORMATION FOR SEQ ID NO: 11:	
40	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 2526 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
45	GACAGGCTAT CCGAGAATCT GAGAGCTGGG CCCGGCAATT CCTCCAGYTA CCCTTGTGAC	60
	CTAAGTCCAG TCACACATTT CCCAAAGTTT CTCTTTGTCA TAACCCTGGT CTGGCTGGTT	. 120
50	TTGRGGRCTT GAGAATGGGT CAGGGACTCC AGGCCAAGTC CAACAGAGAC CCCAAACCCA	180
	CCACACACCA GCAGCCACAA CCTCACCACC AACAAAGAGG ACTTTTGTGG GGCCACAAGT	240
55	AAGAGGTCAT TTCTGGAATG GACTCAGACC TTTAAACAGG AGAGTTGAGC ACTTCCAGKS	300
رر	AGTTTTTAAG CAAGGCATGG GGAACAGGGA ATAGAACCTT TCAAAGAGGT TGCCCAGAGA	360
	AAAGCTGGGC CTCTTGCATT CGGCTTCCTT GGAGCAGCCT CTTCTGGCAG AAAGCCATCA	420
40	TOTAL CARREST CONTROL OF THE PROPERTY OF THE CONTROL OF THE CARREST CA	480

	GGCCAGGCCC CCAGCGACTC TTCTTGGCCT GATGTTTGTC CTCACAGGCA TGCCACGTGG	540
5	CCTGAGATGA TTCAGAACAA ATCATGCTAA CTTTGAATCC ATCCAGCCAC TTGCAAATGA	600
	TAATCAGAAG TCAGCTTGTT CACTGTTAGA AAGAAACTAA CAAAAGAGAA CCCAGAGCAA	660
	TCTAGAATCT TTGAGTGCTT GGCTTTCCAA GGATACTGCG GAGACTCTGG CCAAGCTGAT	720
10	GAMCTTCTGA ARTGTCACTG GCACCATATG CAACAAGAAC CACCATTCAC TGAGTAGCTA	780
	ATGGGTTTGG GGCCTGGGAC ATTCCATCTG AGGTCCTTCC TGAACATGTC ACTCCACAGC	840
	AGAGGACCGG TTGCAGCTTA CCCAGAACCA CTCCTCCAGG AGAGCTGGAT GTTTTGCGTG	900
15	CAACACCTTG AGCACTGACT GCTATTGTTC AAAAAAAAGCC TTTGCTGCAT TCGGAGGACT	960
	GCCCCGTGCC CTGAGGTGAC TTCCTAACTA TGTGGTTTCA TTAGCGAATT TATTTTTTGT	1020
20	GCTGGGTGGA CATTTGTATT TTGTTAGGTT GCTGTTTAAG CTCAAGTTTG CTGTGCTCTC	1080
	TGCAGCTACA AAACATCTTG GCATATTTAA GAKTGGCTTT TATAAATAGC TTTATTCTGA	1140
25	TATTAATCAG ATTCCCAACT TTACTGAGAA TTAAGGACTG GGGTACTTTA AAGAAATGCA	1200
25	AATAGCAATT GAAGAACCAC TGCTGCAGGT GGTAGCCCTG GCTAGACTGA ATTACACTAG	1260
	AAATCAGCCA GAAGGAAGCG TCCTTGGGAT CCCAGATCAC TCTTTTTTTT TTTTTTTTA	1320
30	AAAGGGGCAG CCCCTTGATG GCTCATCTCT CTGAATAACA GTTACGTCTT CATATCGATA	1380
	CCAGATGCCT TCTTCATCAT GCCACTGAAG CCACTCACCA CCTTCAAGAA CATGCCAACC	1440
25	TCTGTCAGAT TCACTTACCC ACAAACAAGG AGGCACGTTT GGCACAAAGT GTTGTCCTCC	1500
35	AGGTCCAAGT GGACTCTACA GAGTGCTTGA CCTCAACACA CTGGATTCCA GGTGGACTGG	1560
	ACCAAGAGCA GGCAAAGACA CGGGAACTGA AAAACTCCAC AGGGTTTGGA GAATAGAAAT	1620
40	GAAAAGCCAC GTCATATAAC TCAAGAATAA ATGGTGTTTT GGAAATTTTA AAATTATCAT	1680
	CGAAGGTGGT GAAACTATTT CAGGCCCAAA TGAAAGGAAA TCGCCAGTTG GGGATGAAAT	1740
45	CACAGAGCCT GTGTTTTATG ATATGGTTGG ATGTCCACTG ATGAAATTTT AAAGGAGTTT	1800
45	CATTITIAAA AGTGCGCATG ATTCTACATA TGAGAATTCT TTAGGCCAAG AAACTGTCCT	1860
	TGGCTCAGAG GTGTTGGGAA TTAAAGCAGA GAGAAGCCAT TCGTGATGCT TAGAACCAAG	1920
50	GATGGTCATG TACACAAAGA CCATCGAGAC GGCCATTCTT GTTTACAAAA CACTTACCAA	. 1980
	GAAAGCACTT TGTAGGGGAA CITTAGTAAG TTCTTCTCAT TTCATTATGT TTCTTCCAAG	2040
55	GAAACAGGAG AGACTGAATT AATAATTCTC TCTTTCCTCT TAAGCACTTT TAAAATAATA	2100
55	AAGTACATCT TGAAATTTGG GGGGCATCT CTGATTTAAA AAAAGAAAAA GGCTGCTTGA	2160
	TGTATGTTAT GCAGAGACAC TCTGCCTCTG GTGGCTGCAG AGCAATACCC AAGCCTCATT	2220
60	TGGAAGGCTC AACATTIGGA ATTGCACTTT AATTGATTAA TCCTCAATTC ATGTGGCCTT	2280

WO 98/54963

•	ACGGGATGGT	GGGTCTGGGA	CCCCAATTCA	TTCTTATCTG	CCAAAGAATT	ATCTAGAAGC	2340
_	ACATCAAATA	CCAGCACCCC	ACCTGCACAA	TGGGGGTGGA	AAACTTTTGT	ATCCCTAAGC	2400
5	ATATTATTTT	ATAGTGTCTG	CCATGCCATG	TGGAAATACT	TTATTTTAA	CCTCAGGATT	2460
	TAAATAAAGT	AAACACTATG	ACATTTAAAA	АААААААА	AAAACTCGAG	GGGGGCCCGG	2520
10	TACCCA						2526

15 (2) INFORMATION FOR SEQ ID NO: 12:

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1131 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

25	CACTGCACCA GCTTTGTTAT CTGTAAAATG ATGATAATAC CAACACCTTC TTCTTGGGGT	60
	ACTGAAGATG AGAGAACATG ATATGTGTAA AGTGCCTTCC ACAATACCCA GAACATAGCA	120
30	AACATGTAAT GAATGTAGTA ATAGTAATTA TTTTATTTTC TTTTGATTCA GTTGGGACTA	180
30	TGTTCAGCTG TAACAGAATA CCCAAAATAA CTGTTTTAAA CAAATTAAAG TTTWGTTGTG	240
	AAGTTTTGTT ACGAATTCAG ACAATCCAGG GCTTTTATAG ATGCACCAGG ATCAGCAGGT	300
. 35	ACAAAGGCAT CTTTCCTGAT TTCTGCCAGT CTCAATGCAT GGGTTGCAAT CCAGARTCCA	360
	RGATGGCAGT TCCAGCCCTG GTTACGCCCA TATTAGCACA CAGAAAGAAA GAGAAAGGGA	420
40	TGTGCCTCTT CACTTTAATC ATAGCTCCCA CTAGATGCAC CCACTACTTC TGCTGATACT	480
-10	CCATTAGCTA ATGCTTGCTT ACATGGTCAC ACTTAGTTTC CAGAGAGACA TGTCTGGACA	540
	GTCATGTGCT CAATTAATAT CCAAGTGTCC AATTACTGAG AAAAAAAGAA ACTAGCACCT	600
45	TIGCTIGGIT GCATICCTCT TAGCATAAGC CACATICTTT TIAIGAAGTI GTCCTCAGIT	660
	ACTTGGATGC CTCAGTTGTC CTTTCAWITA GAAAWGCYCC TKGGACAYCC TGAAWCTGAC	720
50	TTCTTTTGTC ATCAGCACCA TCACTACCAC TGCCYTCTTC AAAGCCACCA CGTTCTGTCC	780
30	CCAGGATGGT TGCAACAACC ACCATAGGGA CTTTTTGCCT TCTACTTCCA CACAATAGNC	840
	CAGAGTAAGC TTTTGAAAAT GTAGGTCAGA TCATGTCTCT CTCTTCCTCT TCAAAACCCT	900
55	CCCGATGGCT TTTCATATTA CTCAAAAGAA AACCTAAAAC TTTGCTGTGA GATCTATGTG	960
	ACCCGGCTTA TICTTCCTCT TACTTTATCT CTGTATTGCT CTTCCTCACT CTACTCCAGC	1020
60	CATCCCACCT CCTTGCTGCT TGTCCTATAC TCCTAAAAGA AGTTCAGTCT TCCCTTATGA	1080

941

TATTIGCACT TAAAATAGAA AAAAAAAAA AAAAAAAACT CGAGGGGGGC C	1131
(2) INFORMATION FOR SEQ ID NO: 13:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 941 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
GGCACGAGTA GCATTTCATT TAATCTGCAG GTATATTCTC CCAACAGTTT ATTGTCATGT	60
GATGTCCTCA GCCAAGATTG TRAGGCAGAG AGGAGCTGTC CCAACCTACT ATACCACCGA	120
GGCTGGAGAG ATCATATTTT TGGTATTAAA CTGGAGTCTC TCCATCCTTC ACATTGTTGA	180
TGTCCTCTGT AGCAAACCGG AAAAGTCAGT GACAGAAGAT GCCGCTAGCG GTTTGAGCCA	240
GAGAATGACA GCTCTGGTTT GGAGAAAAGG GCCGGATGGT GGCTCTAGAA AGCCCATCCT	300
TCTGCTCTTC TTTTTTCTCC CCCTTATATT GTGCTTTCAT TCATTCATTC ATTCATCAAA	360
CATTTGTTGA GCACCTATTA TGTGTCAAGC TCTGTGCTAG CCTCTGGAAA ACCTGCCCTC	420
ATGTAGCTCA CTGTGGAGTA GGAGAAACAA TGACTACACT ATGATAAGCA CGGGTTGTCA	48
GGGTCTCACA GAGCAGTGGC CCCTCATCCA GACCGATGAG GTCAAAGAAG GCATCCAGGC	54
GAGGATGGTG TCAGAGCTAA CTGAAGAATG AGAGGGAGCT GCACCASCAG GGGTTGGAAC	60
TGAAGGTGGC AGTGCCTGGA GTCTTGATTC CAGCAGAGGG AGAGCAGTCT GTGAAAAGGC	66
ACCAAGGTG GGAGAGGGCA GAGCACATGG AGGAACTTCA GGTAGTTCTG GATGGCSCTG	72
GGGCAAAGCT AGAGAGGTAA GAAGAATCTA CAAATGTTCC TCGAGTTACA TGAACTTCCA	78
	84
	90
	(2) INFORMATION FOR SEQ ID NO: 13: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 941 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13: GGCACGAGTA GCATTICATT TAATCTGCAG GTATATTCTC CCAACAGTTT ATTGTCATGT GATGTCCTCA GCCAAGATTG TRAGGCAGAG AGGAGCTGTC CCAACCTACT ATACCACCGA GGCTGGAGAG ATCATATTTT TGGTATTAAA CTGGAGTCTC TCCATCCTTC ACATTGTTGA TGTCCTCTGT AGCAAACCGG AAAAGTCAGT GACAGAAGAT GCCGCTAGCG GTTTGAGCCA GAGAATGACA GCTCTGGTTT GGAGAAAAGG GCCGGATGGT GGCTCTAGAA AGCCCATCCT TCTGCTCTTC TTTTTTCTCC CCCTTATATT GTGCTTTCAT TCATTCATTC ATTCATCAAA CATTTGTTGA GCACCTATTA TGTGTCAAGC TCTGGCTAG CCTCTGGAAA ACCTGCCCTC ATGTAGCTCA CTGTGGAGTA GGAGAAACAA TGACTACACT ATGATAAGCA CGGGTTGTCA GGGTCTCACA GAGCAGTGGC CCCTCATCCA GACCGATGAG GTCAAAGAAG GCATCCAGGC GAGGATGGTG TCAGAGCTAA CTGAAGAATG AGAGGAGCT GCACCASCAG GGGTTGGAAC TGAAGGTGG AGTGCCTGGA GTCTTGATTC CAGCAGAGGG AGAGCAGTCT GTGAAAAGGC ACCAAGGGTG GGAGAGGGCA GAGCACATGG AGGAACTTCA GGTAGTTCTG GATGGCSCTG

50

55

45

(2) INFORMATION FOR SEQ ID NO: 14:

(i) SEQUENCE CHARACTERISTICS:

CCACTCCCAC TGCTTCACCT GACTAGCCTT TAAAAAAAAA A

(A) LENGTH: 843 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

WO 98/54963

540

	CNAGGGATAA CCCCAAAGNT GGGAAATAAA CCCTCAATTA AAGGGGGAAC CAAAAAGCTG	60
	GGAAGTTCCC CCCCGCGGTG GCGGCCNGNT CTAGGAACTA GTGGAATCCC CCGGGGCTGC	120
5	AGGGAATTCG GCACGGAGTG GGAATGTTGT TTGTATGATA CTATTTCCAC AAWATGCATT	180
	GAGACTTGGT KTGTGGCCTA GGACATGGTC AATTCTTTYT AAATATTCCG TGAATTTCTT	240
ι Δ	TAGTGCATAT TCTCCGATGG GGGCTGTGGG GACAGAGTTC TAAATATGCC CATTAGATTA	300
10	AATCTCTTCA TTCTGTTGCT CACATCTTCT ATATCCTTAT TAATCTGTCA ATCTCTTCAA	360
	GAGAGGTGTT ATTAAAATCT CTCACTGTAT GTGTCACTTT GCCCTTAAAA TTCTGATGAT	420
15	TTGCTTTATA AATGGTTATA ACCATTTTCC AGGAAGAACA TTAAAGAACT TTCCATTGGC	480
	ATTATCCAGT TTCCCTCAAA ATACTGGTTT TTTTTATTTT GGCTNCTAAG CAGCTATGAA	540
20	TCCAGTTTCT CAGAAGCCCT TGTCTCAAGG CATTIGTTTC CAGATTACCT TGTTAGCATC	600
20	CACACTATGG GCTATTTTAG AAAAACAAAA AAAGTATCAA AATCATATAG CTATGATTTT	660
	CCTGTGCTTG AAGGAGCCTT AAAGCTCATC TAGTCCAGCC AGTATTTGTT CATCCAAATT	720
25	CTGCCAAGAA ATCTCTATTG TCAAGATATT CTTTACCATC TTTGGGACAT TCTCATTATT	780
	AGAAACAAAT CCTAAGAAGA AATTCTGCCA TAKACAACCC ATCCGTTCTT TAAAAAAAAA	340
30	AAA	343
30		
	(2) INFORMATION FOR SEQ ID NO: 15:	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1018 base pairs(B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
	CTGTAATTTT TAATTTTCAT ATACCGTGCT TTGATTCTAA TTTTATTTTT TGAGTTCTCT	60
45	GAAGGTTACA TATACAGAGT GCTTCAGGAA TGATCATTTT GTTATTATTC ATGCTTCTTA	120
	ACAATGTTGT TTTAGTCCAA GAAGATAATT GCCAGAGAAA GAATACAGTG CAGGAAAGAA	180
50	GARGCTGGAG CCAGTGGTGA AGARGGATTG AGARGACAGA CATTGTGGGA ATGAAATCAT	240
	GAATAATCGT GTTTTTGAAT TGTCCAAAAA CTTCTACAAA CCATGAAATG TTGGAGTTTA	300
	AATCTAATTG TTGAAAAATT CCCCACATTC CTTGTATCCC TTAGGTTGAG CATAATTCCA	360
55	CATCCGTGGA CTGATGCACT TCCCAAGAGG GGGCCTCATT AACTCTTCCG AGGCAGCAGC	420

AGCAAGGGCA CCCCCTCCTT TCCCCCCACA CCCCAYTTCT CATGGCTCTT CTTTCTCTCA

60 TCTCATGCTT AGGTTAGAAA AGGGCACAAG GTAAGGAAGC CCTTGGGAAT AGGCTGAATC

PCT/US98/11422

	TGGCTATCTA ATTTGGTGCC AAATACTTAA TGTGCTTGAA TTTAAAAACA GCAAACATGT	600
5	AGAAAGGTAA TTATAATTAT GAGGCCAGTT CTTTAAGCTA GCTTTTTTTC CCCTCTCAAA	660
	CAGCATATTG GCTTGGATGT CAGCAGGAGA AAGTGTTTTT TGCAATACAC ATAATGCATA	720
	TATEGTCCTG TTAGCAATCT ATAGAAAATA GATATTGCTC ATTAAGGTAA ATATTTTTGT	780
10	TGATGAATGA TCTGGAATGG TCTGGACTTG TTGTGTGAAC AGGAAATTGC TCTGTAGGCT	840
	TTGACTTGTG AGGTAAAGAG TGAGGCTGGT AAGATTAATT AAAGTAAATA CTGTGACAAT	900
	AGGATGTCAA AACCAAAAAC GTGTTTCTGA AACTCAAGGA ATTAATGACA CATAGGGAAG	960
15	TTTTTGCCAT ATTAAGCATA GAGTAGGAGA GGCAAGTCAA GAATAAAAA AAAAAAA	1018
20	(2) INFORMATION FOR SEQ ID NO: 16:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 661 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
30	TTTAAGAAAT TAGTGAATCC CCGGNTGCAG GGAATTCGGC ACGAGGAGGA GGCCGTCAGC	60
	TGGCAGGAGC GCAGGATGGC AGCTGYTCCC CCGGGTTGCA CCCCCCCAGY TCTGCTGGAC	120
35	ATAAGYTGGT TAACAGAGAG CCTGGGAGCT GGGCAGCCTG TACCTGTGGA GTGCCGGCAC	180
	CGCCTGGAGG TGGCTGGGCC AAGQAAGGGG CCTCTGAGCC CAGCATGGAT GCCTGCCTAT	240
40	GCCTGCCAGC GCCCTACGCC CCTCACACAC CACAACACTG GCCTMTCCGA GCTGCTGGAG	300
70	CATGGAGTGT GTGAGGAGGT GGAGAGAGTT CGGCGCTCAG AGAGGTACCA GACCATGAAG	360
	GTGCGCAGGG CAGGGCTCGG ACCTACCCCA GGAATGTCCT GCCCTGGGAA TGACAACACA	420
45	GTCCACACCA TGCACGGGGA GGCAAACAGG GGCAGCTGAC CCAGCCCAGG GGTCAGANGA	480
	GGTCTTGCCG AGGAAGTGGC AGCTAAGCTG ATACCTGATA TGCACWAGKC AGCCARGYGG	540
50	AGACAGGCAA GGAAGAAGCT TGTTTTGAGG ACAGAATTTT CTAGATCACT CAGCACCATC	600
JU	TGGCTTTTGG GGCTTTTTGT TTTATTTTGT TTTTGAGACG GGGTCTCGCT CTGTCGCCCA	660
	N	661

(2) INFORMATION FOR SEQ ID NO: 17:

55

60 (i) SEQUENCE CHARACTERISTICS:

WO 98/54963

600

	(A) LENGTH: 553 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
5	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
	GGCACAGGGC TATTTGCCCC TCTCTCCACA TGACAGAACT GCTCTAAGTT TCTTTGCTGC	60
10	TCTTCTCAGC TGTCAGACGG CTTGCTGCTT GTTTTCCACA CCACCATGTC TATTCTTTGC	120
	TGTCCTTWAC TCTGCCTGTT TTTTTCCTTT TGTATTTCTT CTGGCTCTTG TCCCTTTTCC	180
15	CACGTGTCWC AGCTTTCCTT TATTGCCACT TTCAGTCAGA GCAGTCCTGT GCTTCTGGTG	240
13	CCGGCATACA ATACTTACTT GAGTTTCTTG GCTTTTCTTG ACTGTGCATC TCTTACTTCA	300
	ACATAGGAAT AGCCTGTCAT AGAATTTCTC CAGTTCCAGG GCTCAAGAGG GAGAGTGCCA	360
20	GAAAATTGAG ACTGTTTTCC CTGTCTTGGA TTGAATTCAT AAAGCAAAAC CAGTGTTTGT	420
	GTGAGGGTTT GCTGTGTCAT GCCTATAGGT TGTTTGGGTG CAAACCTATA GAATCCAGCC	480
25	TGCGAAAAGA AAGRAACCAG AGAATANCAG CATCAGAACA ATGCTTGACA TCATTTCTCA	540
25	ATCAAGCAGT CCA	553
30	(2) INFORMATION FOR SEQ ID NO: 18:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 869 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
40	GGCACGAGCT GCCAACACTG AGGTCTTCGT GGCTTCTCAC ATCTAGATGT ATCCCTCTCA	60
	AATCTATCCT CTATCCAGGC ACCAGATTGA GGTATCTAAA ATGTCAACTT TCCAGTTACT	120
45	CCTTCTTATA CTAGCCCAAT CAACTTACAA GATAAAGTCC AAGCCCCTTC ATATGACAAA	180
	CCACACCCTG CTTAACTCTC CAGGTTTGAA TCCTTCATCT CCTACTTTAA ACTTTAAAAC	240
50	CCAGCAGCAC GAAAGTGTCT CCTATGCATG TTGCCATATG CGTTCTCTCC ATCATGCATT	300
50	TGCCTGAGCA AGATGTCTTG AGTTAACATC TTATTCTTTA AGACTCATTG TGGTGGTAGA	360
	CAGCCTTTAA TAACGGATCC TTGGCCAGGC ACAGTGACTC ACACCTGTAA TCCCAGAACT	420
55	TTGAAAGGCC AAAGAAGGAA GAAAGCTTGA GGCCAGTAGT TTGAGACCAG CCTGGGAAAC	480
	AGAGAGATAT CCCATCTGTA CCAAAAATTT AAAAAAATAT TAGCAGGGAG TAGTGGCATG	540

CACAAGTGGT CCCAGCTCCA TGGGAGASTG AGGTAGGAAC ATCACTTGAG CCCAGGAAGT

٠	CAAGGCTGCA	GTGAACCATG	ATCAGAACAT	TGCANTCCAG	CTTGGGTAAC	AGAGTGAGAC	660
	CTTAGGTCAG	AAAAATGAAT	AAATAAGCAT	AAATTTTAA	AAACTTAGCC	AGGCATGGTG	720
5	GCACACATCT	GTGGTCCCTG	CTACTTAGGA	GGCTGAGGTG	AGAGGATCCT	TGAGCCCAGG	780
	AGGTCAACAC	TACAGTGAGC	TATGATTGTG	CCACTAAACT	CCAACCTGGG	TGAAAAAGCA	840
10	AAACCCTGCC	ААААААААА	аааааааст				869
10							

(2) INFORMATION FOR SEQ ID NO: 19:

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 959 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

	GGCGAGCCGA GATCGTGCCA TTGCACTCCA GCCTGGGCAA CAAGAGTGAA ACTCTGTCTC	60
25	AAAAAAAAA AATTATAATA CTATATGCCA TAAAATGACA TTTCATATTT AAAGAGTTTT	120
	TTAAAACTCT TGTATTCACA TGCCATAATT TGAAACCCTA TTTCACTGAA TGAGAATGGT	180
30	ATCTGTTGTC CTCATTTTTT CATTTTTATC CTTAACAATT TCCACCACAG CCAGTGCATA	240
	TAATGGCAAT GACACCCAGG GATGGAATGA TAAGTTCCAT CRCMGCTCAG TCAAGACGCA	300
0.5	GACTTGATGT GGCCCCAACA ACAGTCAATA ATGGAGTCTC CAAAATAAAG CTCTATAGGA	360
35	AAGGTAAATA CCCGCTGCAC AAGAAACCAC AGCATCTAGG TICTAACCCC ATCTCTATGA	420
	AGAGCTTGCT GGGAGAGTTT TGACATTWAA CAATCTGTCT GATKGCCAAT TTTYTTCTTC	480
40	TATAAAATGA TAATGTTKGA YTCAAAGATC CAAAGTCAAT TCATGGTCTA AAACTTAATG	540
	ATTITUTAG GTTTTGKGAC ATTTCACTGT ACACTGTAGT AATTTATATC TTATTTTCCC	600
	ACTAATTTAG AAAAATATYT AAATGATCCT TAATTGGCAA TGGGTCCTAA GAATTTTGIT	660
45	TTAAATCCCT GTTACCCAAA AGAGCCCTTT TTTGTATCTC GCAGTAGTTA CAAGGATCTT	720
	ТСТАААТСТТ АААДААААА ААААААGAAA GAAAGAAAAG AAAAGAAAAA AAGTCAGCCG	780
50	GGCGTGGTGG CTCATGCCTG TAATCCCAGC ACTTTGGGAC CAAGGTGGAC AGATCACGAG	840
	GTCAGGAGAT GGAGACCATC CCGGCCAACA TGGAGAAACC CTGTCTCTAC TAAAAAAAAA	900
55	AAAAACTCGA GGGGGCCCG GTACCCAATN CGCCGGCTAG TGGTCGTAAA ACAATCAAA	959

⁽²⁾ INFORMATION FOR SEQ ID NO: 20:

277

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1446 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

CGGGGCAGGG CTGTGTGGCA CCGCCAGGGA GCGGGCCCAC CTGAGTCACT TTATTGGGTT 60 10 CAGTCAACAC TITCTTGCTC CCTGTTTTCT CTTCTGTGGG ATGATCTCAG ATGCAGGGGC 120 180 TGGTTTTGGG GTTTTCCTGC TTGTGCCAAG GGCTGGACAC TGCTGGGGGG CTGGAAAGCC 240 CCTCCCTTCC TGTCCTTCTG TGGCCTCCAT CCCCTCATGG GTGCTGCCAT CCTTCCTGGA 15 GAGAGGGAGG TGAAAGCTGG TGTGAGCCCA GTGGGTTCCC GCCCACTCAC CCAGGAGCTG 300 GCTGGGCCAG GACCGGGAGA GGGAGCACTG CTGCCCTCCT GGCCCTGCTC CTTCCGCAGT 360 20 TAGGGGTGGA CCGAGCCTCG CTTTCCCCAC TGTTCTGGAG GGAAGGGGAA GGAGGGGGTC 420 TTCAGGCTGG AGCCAGGCTG GGGGTGCTGG GTGGAGAGAT GAGATTTAGG GGGTGCCTCA 480 540 TGGGGTGGGC AGGCCTGGGG TGAAATRAGA AAGGCCCAGA ACGTGCAGGT CTGCGGAGGG 25 GAAGTGTCCT GAGTGAAGGA GGGGACCCCC ATCCTGGGGG ATGCTGGGAG TGAGTGAGTG 600 AGATGGCTGA GTGAGGGTTA TGGGGAGCCT GAGGTTTTAT GGGCCTGTGT ATCCCCTTCT 660 30 720 CCCGGCCCCA GCCTGCCTCC CTCCTGCCCG CCTGGCCCAC AGGTCTCCCT CTGGTCCCTG TCCCTCTGGT GGTTGGGGAT GGAGCGGCAG CAAGGGGTGT AATGGGGCTG GGTTCTGTCT 780 TCTACAGGCC ACCCCGAGGT CCTCAGTGGT TGCCTGGGGA GCCGGACGGG GCTCCTGAGG 840 35 GGTACAGGTT GGGTGGGCCC TCCCTGAGGG TCTGGGGTCA GGCTTTGGCT CTGCTGCCTC 900 TCAGTCACCA AGTCACCTCC CTCTGAAAAT CCAGTCCCTT CTTTGGATGT CCTTGTGAGT 960 40 CACTCTGGGC CTGGCTGTCG TCCCTCCTCA GCTTCTTGTT CCTGGGACAA GGGTCAAGCC 1020 AGGATGGGCC CAGGCCTGGG ATCCCCCACC CCAGGACCCC CAGGCCCCCT CCCCTGCTGC 1080 TTTGCGGGGG GCAGGGCAGA AATGGACTCC TTTTGGGTCC CCGAGGTGGG GTCCCCTCCC 1140 45 AGCCCTGCAT CCTCCGTGCC STAGACCTGC TCCCCAGAGG AGGGGCCTTG ACCCACAGGA 1200 CGTGTGGTGG CGCCTGGCAC TCAGGGACCC CCAGCTGCCC CAGCCCTGGT CTCTGGCGCA 1260 50 TCTCTTCCCT CTTGTCCCGA AGATCTGCGC CTCTAGTGCC TTTTGAGGGG TTCCCATCAT 1320 CCCTCCCTGA TATTGTATTG AAAATATTAT GCACACTGTT CATGCTTCTA CTAATCAATA 1380 AACGCTTTAT TTAAAGCCAA AAAAAAAAA AAAAAACTCG AGGGGGGGCC CGTACCCAAT 1440 55 1446 TCGCCA

(2) INFORMATION FOR SEQ ID NO: 21:

(i)	SECUENCE	CHARACTERISTICS:

(A) LENGTH: 1471 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

	(D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
	CAAAAAATAA TAATGATAAT TTAAAATAAA TAAGTAACTA ATAAAAAGAT TTTATATCCC	60
	AGTCTTATGA TGTTGGTTGG CAAGGCTAGA TAAAAAGATG TTAGAATGAA AGAACATATT	120
15	TTTAGTGATA TGTAAATGAA GGATTCTACA ATAGTCATAT ATTTTTATAT GAATGAATGT	180
	TEGETTEGEC TEGAGAGETA TETETETETA AATATAAAGE TETEACATTE AGAGTATAGE	240
20	TCTGAAATAA TGGAACTCAT GTCTACAATT CAACATGCAT CTGTATAGTT ACATCTCATG	300
	TAAATATACA CAGACATATT TTGCAGCCAG TAATTGACAG TTAATGTCCA AAACAGGTGA	360
25	TTGATAGGTA ACAGAAATTA GATAACCACC AATTTTGCCC AAGAGAAAGA CTAGAAGGAC	420
25	TAAAAGCAGT TGAATGTATG GTACTGACAT TGTCATAAGC AGTCTGATAA CCAGTTTATT	480
	GAAACGTGTG CATTAACAGA GAATTTAATT TTAAACCCAT AATTTCTCCT ATCCATTAAA	540
30	ATATTATAAT TOTTAGTAGT ATGAAACCAA CAGGAAATGT TTTTTAATCA TTTAGTGAGG	600
	TGATTCATTT GTTTCATGGG CAAACACTAT CCAGGAAAAG CCTTGCTTGC CTGTTTCCCA	660
35	AAGAGCTCTA AGAAATAGAA TCAAGTGTAA AATGGTTCAG ACCATTCAGG ATTTCTTGTC	720
33	ACTOTTCTCA ACCOCGATCT TOCTGTTATT ACTGATGTTT GAAACCCTGT CATTAGCCCC	780
	GGCCTGGTTA AAGCCCCTCA GAGTCACCTC TCATTCATAG CAATAGAATT CAACCCCAAG	840
40	TGGTTGATGG TGTCCCCAGC ACAGCCGAGA GACCTGATCT CTGGATTCAG TGCTTTTAGC	900
	TCTTCGAGTT TACCCTAAGA TACCTTCGGG CAATATTTTT AACCAACCCA AAAGCTCTTC	960
15	AGGTCATTTC TGAAGAGGAC AAGGTGAATC TTGGCTTGGA ACACCATTTT TGGGCTCTTG	1020
45	CTACTGAATG AATCAGAAAG GAATTTTTTC TGAAGAGCAT TAGAAAGTAA AGGAGATGTT	1080
	AAAATAAGTT CTTGAAGTAT GTTTTATATT TATCTAAAAC ACTGATTTTA AAAGTTTACA	1140
50	TTCAAATGTG TATTCAAAAG AAGTACTGAT TTGTAATTAT TATAGTTTGT GTGTATCATC	120
	CCCTTTTAAC CGTGCCTAAC AACTGTACTT AAATTTTGTT TTCCTAGTGT AACAAATGTT	126
<i>5.5</i>	TCCCATAAGA TTTTCTAGAG CCAAATAATG GGAGTGAAAA ATTCCTTAAG TGTTATATAA	132
55	GAAAATATAT TAGAAAATCA GCTTTGGATT ATACGATTTC TAAAATATAC TAATACAGAA	138
	TCCTCAGTAA TATGTTTTGA ATTGGATTTT TTCTCAGAAC TGTTACATAA TAAATAATAC	144
60	ATCAACCAGA AAAAAAAAA AAAAAAATTN C	147

279

ς	121	INFORMATION	FOR	SEO	ID	NO:	22:
,	(7)	INFORMATION	T OIL	2		1.00	~~.

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1402 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

	(X1) SEQUENCE DESCRIPTION: SEQ 15 No. 22.	
5	AGGGACGTCT TGCCTGAGGA GATGCCCATT TCTGTCCTGG RTTACCCTCA CTGCGTGGTG	60
	CATGAGCTGC CAGAGCTGAC GGCGGAGAGT TTGGAAGCAG GTGACAGTAA CCAATTTTGC	120
	TGGAGGAACC TCTTTTCTTG TATCAATCTG CTTCGGATCT TGAACAAGCT GACAAAGTGG	180
20	AAGCATTCAA GGACAATGAT GCTGGTGGTG TTCAAGTCAG CCCCCATCTT GAAGCGGGCC	240
	CTAAAGGTGA AACAAGCCAT GATGCAGCTC TATGTGCTGA AGCTGCTCAA GGTACAGACC	300
25	AAATACTTGG GGCGGCAGTG GCGAAAGAGC AACATGAAGA CCATGTCTGC CATCTACCAG	360
	AAGGTGCGGC ATCGGCTGAA CGACGACTGG GCATACGGCA ATGATCTTGA TGCCCGGCCT	420
30	TGGGACTTCC AGGCAGAGGA GTGTGCCCTT CGTGCCAACA TTGAACGCTT CAACGCCCGG	480
50	CGCTATGACC GGGCCCACAG CAACCCTGAC TTCCTGCCAG TGGACAACTG CCTGCAGAGT	540
	GTCCTGGGCC AACGGGTGGA CCTCCCTGAG GACTTTCAGA TGAACTATGA CCTCTGGTTA	600
35	GAAAGGGAGG TCTTCTCCAA GCCCATTTCC TGGGAAGAGC TGCTGCAGTG AGGCTGTTGG	660
	TTAGGGGACT GAAATGGAGA GAAAAGATGA TCTGAAGGTA CCTGTGGGAC TGTCCTAGTT	720
40	CATTGCTGCA GTGCTCCCAT CCCCCACCAG GTGGCAGCAC AGCCCCACTG TGTCTTCCGC	780
-10	AGTCTGTCCT GGGCTTGGGT GAGCCCAGCT TGACCTCCCC TTGGTTCCCA GGGTCCTGCT	840
	CCGAAGCAGT CATCTCTGCC TGAGATCCAT TCTTCCTTTA MITCCCCCAM CCTCCTCTCT	900
45	TGGATATGGT TGGTTTTGGC TCATTTCACA ATCAGCCCAA GGYTGGGAAA GCTGGAATGG	960
	GATGGGAACC CCTCCGCCGT GCATCTRAAT TTCAGGGGTC ATGCTGATGC CTCTCGAGAC	1020
50	ATACAAATCC TTGCCTTTGT CAGCTTGCAA AGGAGGAGAG TTTAGGATTA GGGCCAGGGC	1080
50	CAGAAAGTCG GTATCTTGGT TGTGCTCTGG GGTGGGGGTG GGGTGTTTCT GATGTTATTC	1140
	CAGCCTCCTG CTACATTATA TCCAGAAGTA ATTGCGGAGG CTCCTTCAGC TGCCTCAGCA	1200
55	CTTTGATTTT GGACAGGGAC AAGGTAGGAA GAGAAGCTTC CCTTAACCAG AGGGGCCATT	1260
	TTTCCTTTTG GCTTTCGAGG GCCTGTAAAT ATCTATATAT AATTCTGTGT GTATTCTGTG	1320
60	TCATGTTGGG GTTTTTAATG TGATTGTGTA TTCTGTTTAC ATTAAAAAGA AGCAAAAATA	1380

АТААААААА ААААААААА СТ

1402

2							
	(2)	INFORMATION	FOR	SEQ	ID	NO:	23:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1047 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

	(XI) SEQUENCE DESCRIPTION. SEQ ID NO. 23.	
15	GGCACAGGGG ACTACAGGCA CCCACGACCA TACCCAGCTA ATTTTTGTAT TTTTTTGTAG	60
	AGATGGGGTT TCACGATGTC GCCCAGGCTG GTCTTGAACT CCTGGGCTTG AGCGATCTTC	120
20	CCATCTTTCC ATCTTGGCCT CCTAAAGTGC TGGGACTGCA GGCATGAGCC ACCATGCCCA	180
	GCCAAGATTC TTATTGATTA CCATGTTGCT TCAAGAAGCC AAGCCAGTTT CCAATATTCC	240
25	CCATTTGCTG GAGTCTTGGT ACTTTGGGTA GAAGCAACTG GTAAATTGTT AATTGGAACA	300
23	NTTGGTGGTG TAGATAACCA CGTATGGCCA AACCTAGAGC ATCTAGGCTC ACAATTACTA	360
	TCCTGACTTG ATAACAAGTG TTCTGATATT AACCTGAAAA TGGGAATAAT GCCAAATCTG	420
30	TGTAACTTAA CATCTATATA CACAGTGGGG AGAACTGAAG TTATTAAACC TGGAATCTCT	480
	GTGATCAAGG CTAACAGTAG TTATCTAAGA AGCAAAGGAC CTACAATTCT TAGACTTGGA	540
35	GTCATATTCT TTAAGGACGT GTTCTGAAAC TATATCAAGC ATCTGGTTTC CACGTATTTC	600
33	TCCCTCAGAA ATTATGAAGT ACAAGTAAAA ATGAAGGTAC AGGGTAAGAC ACATGCTGCT	660
	TTCTTGCTCT TGAGTGGAGA CAGTTTTCCA GCCATCTTAA CCCCTTWACA CAAAACAATT	720
40	TGTGTTTTAT AGCAAATAAG TGACTCAACA TAATTTCAAT ATGATGTTTA TCCACCAGTA	780
	CTTTCCTTTC AGCTTCTAGT CCCATAARTG GTTTGTGAAG TCATCGGTTA CATTAGCCAA	840
45	GATAGGCCTA GACTTGAAGT CTAGAATGTT TTTCCCACTA TATGCCAAAG TAGAATGTGG	900
	GTATCTCAGG GTCATTTTTG TTGTTCAATT TCCCACCTGT ACAGTTGTTA TGATTCACTT	960
	TCCTTATGTG TCTAATAAAT CTTGTTCCAT GAAATGATCA AAAAAAAAAA	1020
50	CGAGGGGGG CCCGGTACCC AAATCGC	1047

55 (2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 990 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	
5	TTGGAAAGGG TCTAGCTCTT TCTCATTCAC CAACTATATT AGAAGCACTT GAGGGAAATT	60
	TACCACTCCA AATCCAAAGC AATGAACAGT CTTTTCTGGA TGATTTTATT GCCTGTGTCC	120
	CAGGATCAAG TGGTGGAAGG CTTGCAAGGT GGCTTCAGCC AGATTCATAT GCGGATCCTC	180
10	AGAAAACATC TTTGATCCTG GAATAAGGAT GATATTCGTT GTGGTTGGCC TACCACCATA	240
	ACTGTTCAAA CAAAAGACCA GTATGGGGAT GTGGTACATG TTCCCAATAT GAAGGTAATT	300
15	ATAACTGGAT TAAATTAGCA GACATCTATA TACTGGCTGC AATGACTGAT AAAATTTTAG	360
	AAATGCCAAG TGCTGAGRGT CCATTTGTTC TACCCTCTTT ATATAAAGGG TGATGCTGAA	420
••	AGTTTGTTTA AATGACTTGT TTATATTAAT TAGTCCCCAA GTGTCCAAGT TACACCTGTT	480
20	TTTTTTGTGA GTTTGTTCTT TACATTTTGC TACCTGTTAC GGGGACTCAA AGGAGGGATA	540
	AGAAAGTATC CATCTAAAGA GTGCTAGACA CATACAGTGA AGCCCCTCAA TATGTATTGA	600
25	TIGAATAAAT GCATGAAAGA ATACATTITT AAATITIGIG TATAGTITIG AAAGACTCAA	660
	GTACGTTCTG TGTTTGGTAT TACTGAAACC ACATTTTAAA AATAACACTC ATTAAGTTAG	720
	AAATATATGA GTTTAGATTG TAAAAGAATG AGGAATTGAA ATAGTTGTAT ACCATATTGA	780
30	TGAATATAGA GTTTTTAGGA TACCTCTTAC CTGAAATATT AATAATAATG TTTNCAGAGC	840
	ATATTATACA TAATTATTTG TGATTTAATC TGTTAATATG AATATCTCAT TTAAAACTTT	900
35	TATTTCTGAA AAAATTATAT TGAATAAAAT TITATATAGG CAGTCCCCAG CCCTTTCCTC	960
	CTTCAAAGTT GTCTTATAGA GTGATTGGTT	990
40	·	
40		
	(2) INFORMATION FOR SEQ ID NO: 25:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1208 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
	TAATCGCTAC TATAGGGAAA GCTGGTCGCT GCAGGTACCG GTCCGGAATT CCGGGTCGAC	60
	CCACGCGTCC GAGCGAAATG GCGCCTCCGG CCCCCGGCCC GGCCTCCGGC GGCTCCGGGG	120
55	AGGTAGACGA GCTGTTCGAC GTAAAGAACG CCTTCTACAT CGGCAGCTAC CAGCAGTGCA	180
	TAAACGAGGC GCASGGGTGA AGCTRTCAAG CCCAGAGAGA GACGTGGAGA GGGACGTCTT	240
60	CCTGTATAGA GCGTACCTGG CGCAGAGGAA GTTCGGTGTG GTCCTGGATG AGATCAAGCC	300

•	CTCCTCGGCC CCTGAGCTCC AGGCCGTGCG CATGTTTGCT GACTACCTCG CCCACGAGAG	360
	TCGGAGGGAC AGCATCGTGG CCGAGCTGGA CCGAGAGATG AGCAGGAGCK TGGACGTGAC	420
5	CAACACCACC TTCCTGCTCA TGGCCGCCTC CATCTATCTC CACGACCAGA ACCCGGATGC	480
	CGCCCTGCGT GCGCTGCACC AGGGGGACAG CCTGGAGTGC ACAGCCATGA CAGTGCAGAT	540
10	CCTGCTGAAG CTGGACCGCC TGGACCTCGC CCGGAAGGAG CTGAAGAGAA TGCAGGACCT	600
	GGACGAGGAT GCCACCCTCA CCCAGCTCGC CACTGCCTGG GTCAGCCTGG CCACGGGTGG	660
	TGAGAAGCTG CAGGATGCCT ACTACATCTT CCAGGAGATG GCTGACAAGT GCTCGCCCAC	720
15	CCTGCTGCTG CTCAATGGGC AGGCGGCCTG CCACATGGCC CAGGGCCGCT GGGAGGCCGC	780
	TGAGGGCCTG CTGCAGGAGG CGCTAGACAA GGATAGTGGC TACCCRGAGA CGCTGGTCAA	840
20	CCTCATCGTC CTGTCCCAGC ACCTKGGCAA GCCCCCTGAG GTGACAAACC GATACCTGTC	900
	CCAGCTGAAG GATGCCCACA GGTCCCATCC CTTCATCAAG GAGTACCAGG CCAAGGAGAA	960
25	CGACTTTGAC AGGCTGGTGC TACAGTACGC TCCCAGCGCT GAGGCTGGCC CAGAGCTGTC	1020
25	AGGACCATGA AGCCAGGACA GAGGCCAGGA GCCAGCCCTG CAGCCCTCCC CACCCGGCAT	1080
	CCACCTGCAT CCCTCTGGGG CAGGAGCCCA CCCCCAGCAC CCCCATCTGT TAATAAATAT	1140
30	CTCAACTCCA RGGTGTTCCA CCTGAAAAAA AAAAAAAAAA AAAAAAAAAA	1200
	ААААААА	1208
35		
33	(2) INFORMATION FOR SEQ ID NO: 26:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 1922 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
	GTGCTGCGCT ACTGAGCAGC GCCATGGAGG ACTCTGAAGC ACTGGGCTTC GAACACATGG	60
50	GCCTCGATCC CCGGCTCCTT CAGGCTGTCA CCGATCTGGG CTGGTCGCGA CCTACGCTGA	120
50	TCCAGGAGAA GGCCATCCCA CTGGCCCTAG AAGGGAAGGA CCTCCTGGCT CGGGCCCGCA	180
	CGGGCTCCGG GAAGACGGCC GCTTATGCTA TTCCGATGCT GCAGCTGTTG CTCCATAGGA	240
55	AGGCGACAGG TCCGGTGGTA GAACAGGCAG TGAGAGGCCT TGTTCTTGTT CCTACCAAGG	300
	AGCTGGCACG GCAAGCACAG TCCATGATTC AGCAGCTGGC TACCTACTGT GCTCGGGATG	360
	TCCGAGTGGC CAATGTCTCA GCTGCTGAAG ACTCAGTCTC TCAGAGAGCT GTGCTGATGG	420

	AGAAGCCAGA TGTGGTAGTA GGGACCCCAT CTCGCATATT AAGCCACTTG CAGCAAGACA	480
	GCCTGAAACT TCGTGACTCC CTGGAGCTTT TGGTGGTGGA CGAAGCTGAC CTTCTTTTTT	540
5	CCTTTGGCTT TGAAGAAGAG CTCAAGAGTC TCCTCTGTCA CTTGCCCCGG ATTTACCAGG	600
	CTTTTCTCAT GTCAGCTACT TTTAACGAGG ACGTACAAGC ACTCAAGGAG CTGATATTAC	660
10	ATAACCCGGT TACCCTTAAG TTACAGGAGT CCCAGCTGCC TGGGCCAGAC CAGTTACAGC	- 720
10	AGTITCAGGI GGICTGIGAG ACTGAGGAAG ACAAATTCCI CCTGCTGIAT GCCCTGCTCA	780
	AGCTGTCATT GATTCGGGGC AAGTCTCTGC TCTTTGTCAA CACTCTAGAA CGGAGTTACC	840
15	GGCTACGCCT GTTCTTGGAA CAGTTCAGCA TCCCCACCTG TGTGCTCAAT GGAGAGCTTC	900
	CACTGCGCTC CAGGTGCCAC ATCATCTCAC AGTTCAACCA AGGCTTCTAC GACTGTGTCA	960
20	TAGCAACTGA TGCTGAAGTC CTGGGGGCCCC CAGTCAAGGG CAAGCGTCGG GGCCGAGGGC	1020
20	CNAAAGGGGA CAAGGCCTCT GATCCGGAAG CAGGTGTGGC CCGGGGCATA GACTTCCACC	1080
	ATGTGTCTGC TGTGCTCAAC TTTGATCTTC CCCCAACCCC TGAGGCCTAC ATCCATCGAG	1140
25	CTGGCAGGAC AGCACGCGCT AACAACCCAG GCATAGTCTT AACCTTTGTG CTTCCCACGG	1200
	AGCAGTTCCA CTTAGGCAAG ATTGAGGAGC TTCTCAGTGG AGAGAACAGG GGCCCCATTC	1260
20	TGCTCCCCTA CCAGTTCCGG ATGGAGGAGA TCGAGGGCTT CCGCTATCGC TGCAGGGATG	1320
30	CCATGCGCTC AGTGACTAAG CAGGCCATTC GGGAGGCAAG ATTGAAGGAG ATCAAGGAAG	1380
	AGCTTCTGCA TTCTGAGAAG CTTAAGACAT ACTTTGAAGA CAACCCTAGG GACCTCCAGC	1440
35	TGCTGCGGCA TGACCTACCT TTGCACCCCG CAGTGGTGAA GCCCCACCTG GGCCATGTTC	1500
	CTGACTACCT GGTTCCTCCT GCTCTCCGTG GCCTGGTRCG CCCTCACAAG AAGCGGAAGA	1560
40	AGCTGTCTTC CTCTTGTAGG AAGGCCAAGA GAGCAAAGTC CCAGAACCCA CTGCGCAGCT	1620
40	TCAAGCACAA AGGAAAGAAA TTCAGACCCA CAGCCAAGCC CTCCTGAGGT TGTTGGGCCT	1680
	CTCTGGAGCT GAGCACATTG TGGAGCACAG GCTTACACCC TTCGTGGACA GGCGAGGCTC	1740
45	TOGTECTTAC TECACAGCCT GAACAGACAG TTCTEGGGCC GGCAGTGCTG GGCCCTTTAG	1800
	CTCCTTGGCA CTTCCAAGCT GGCATCTTGC CCCTTGACAA CAGAATAAAA ATTTTAGCTG	186
50	CCCCAAAAAA AAAAAAAAAA AAAAAAACTC GAGGGGGGC CCGTACCCAA TTCGCCCTAT	192
50	λλ	192

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1951 base pairs

(B) TYPE: nucleic acid

⁽²⁾ INFORMATION FOR SEQ ID NO: 27:

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

_	,,	
5	TCGTCCCCAG AGCGGGCTGA GCCCCAGGCG SAGGGTGGCG GGGGAGCCTG GGGGAGCCGC	60
	CGCCACCTCC ACGGGCCTCT CTGAGCTCGG ACACCAGCGC CCTGTCCTAT GACTCTGTCA	120
10	AGTACACGCT GGTGGTAGAT GAGCATGCAC AGCTGGAGCT GGTGAGCCTG CGCCGTGCTT	180
	CGGAGACTAC AGTGACGAGA GTGACTCTGC CACCGTCTAT GACAACTGTG CCTCCGTCTC	240
1.5	CTCGCCCTAT GAGTCGGCCA TCGGAGAGGA ATATGAGGAG GCCCCGCGGC CCCAGCCCCC	300
15	TGCCTGCCTC TCCGAGGAAC TCCACGCCTG ATGAACCCGA CGTCCATTTC TCCAAGAAAT	360
	TCCTGAACGT YTTCATGAGT GGCCGCTCCC GCTCCTCCAG TGCTGAGTCC TTCGGGCTGT	420
20	TCTCCTGCAT CATCAACGGG GAGGAGCAGG AGCAGACCCA CCGGGCCATA TTCAGGTTTG	480
	TGCCTCGACA CGAAGACGAA CTTGAGCTGG AAGTGGATGA CCCTCTGCTA GTGGAGCTCC	540
25	AGGCTGAAGA CTACTGGTAC GAGGCCTACA ACATGCGCAC TGGTGCCCGG GGTGTCTTTC	600
25	CTGCCTATTA CGCCATCGAG GTCACCAAGG AGCCCGAGCA CATGGCAGCC CTGGCCAAAA	660
	ACAGTGACTG GGTGGACCAG TTCCGGGTGA AGTTCCTGGG CTCAGTCCAG GTTCCCTATC	720
30	ACAAGGGCAA TGACGTCCTC TGTGCTGCTA TGCAAAAGAT TGCCACCACC CGCCGGCTCA	780
	CCGTGCACTT TAACCCGCCC TCCAGCTGTG TCCTGGAGAT CAGCGTGCGG GGTGTGAAGA	840
25	TAGGCGTCAA GGCCGATGAC TCCCAGGAGG CCAAGGGGAA TAAATGTAGC CACTTTTTCC	900
35	AGTTAAAAAA CATCTCTTTC TGCGGATATC ATCCAAAGAA CAACAAGTAC TTTGGGTTCA	960
	TCACCAAGCA CCCCGCCGAC CACCGGTTTG CCTGCCACGT CTTTGTGTCT GAAGACTCCA	1020
40	CCAAAGCCCT GGCAGAGTCC GTGGGGAGAG CATTCCAGCA GTTCTACAAG CAGTTTGTGG	1080
	AGTACACCTG CCCCACAGAA GATATCTACC TGGAGTAGCT GTGCAGCCCC GCCCTCTGCG	1140
45	TCCCCCAGCC CTCAGGCCAG TGCCAGGACA GCTGGCTGCT GACAGGATGT GGCACTGCTT	1200
45	GAGGAGGGC ACCTGCCACC GCCAGAGGAC AAGGAAGTGG GGCGCTGGCC CAGGGTAGGG	1260
	GAGGGTGGG CAATGGGGAG AGGCAAATGC AGTTTATTGT AATATATGGG ATTAGATTCA	1320
50	TCTATGGAGG GCAGAGTGGG CTGCCTGGGG ATTGGGAGGG ACAGGGCTTG GGGAGCAGGT	1380
	CTCTGGCAGA GAAGGATGTC CGTTCCAGGA GCACACGGCC CTGCCCCATC CTGGGCCTTA	. 1440
 -	CCTCCCCTGC CAGGGCTCGG GCGCTGTGGC TCCTGCCTTG ATGAAGCCCG TGTCCTGCCT	1500
. 55	TGATGAAGCC TGTGCCACCT GCAAGTGCCC GCCCTGCCCC TGCCCCAACC CCCACCGAAG	1560
	AGCCCTGAGC TCAGGCTGAG CCCAGCCACC TCCCAAGGAC TTTCCAGTGA GGAAATGGCA	1620
60	ACACGTGGAG GTGAAGTCCC TGTTCTCAGC TCCGTCATCT GCGGGGCTTC TGGGTGGCTC	1680

285

5	CTGCCACTGA	CCTCACCGGC	ATGCTGGCCT	GTGGCAGGCC	TAGGACCTCA	GGCGGGGAGG	1740
	AGGAGCTGCC	GCAAGGCCCT	GTCCCAGCAG	AAGAGGGAGG	CTTCCTGACT	GACACAGGCC	1800
	AGCCCCATCT	TGGTCCTGTC	ACCCTGGCCC	CAACTATTAA	AGTGCCATTT	CCTGTCAAAA	1860
	ааааааааа	AAAATCGGGG	GGGCCCGGA	ANCCAATTTC	CCCCAAAAAG	CGGCGTTATA	1920
10	AAAATTCCCN	GGCNGTGTTT	TTAAAAATTC	G			1951

15 (2) INFORMATION FOR SEQ ID NO: 28:

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3989 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

25	GGCACAGGCC GCAGGGNACC TATGGGCGCA TATAGGTTGT AATGAAACTG TAGTCTCAGT	60
	TGGAAGCCTA GACATGAAAT GGGTCAGTGA GCAAGGCTCT ATTCCTAGTC TCCAGCCATG	120
30	CCTGTGGAAC CTGARCCCRC TCTCAGCACA TTGGACCCAG GCAGATGYAA AAAATTCACA	180
	GAACTATGAT TTGGACTCAA GGGTTTGTAG ATTTCCTCCT TCATTCTAAT TTCAGTGTCT	240
	AAAATTCTTG CATCCRTGAA CGAGCTGGGC ATTTGATGAG ACAGGGCYGA ATACTGCAGT	300
35	TTTCCTCCTA GAAATCATCT GGGGCATTTT CTTTGAACTG ATGGGAACAA TAAGGCATAA	360
	CTGTTTGCAC AAACTTGGGA TAARTGATTT TGGGATAACG ATCTACCAGA ATGGGGATAT	420
40	TTCACCCTTG GTTCTGAGAT GCAAACCAAA GAATATCATG ACCAGCTTTC AGGCCTCCTG	480
40	AAGTATATCT CTCACATTGT CCTGTTCTCA TGCTGAGGAG CCTGAGATCC CTGTGTGGGG	540
	ATTAGACAGT GGACTGTTAT GGGTGTAGGT GAATTGGCTT ATTTTGTCTG TCCCTGTCTG	600
45	AATGTATTGC AGGAAYTAAA AAGGACCAAG AAGAGGAAGA AGACCAAGGC CCACCATGCC	660
	CCAGGCTCAG CAGGGAGCTG CTGGAGGTAG TAGAGCCTGA AGTCTTGCAG GACTCACTGG	720
50	ATAGATGTTA TTCAACTCCT TCCAGTTGTC TTGAACAGCC TGACTCCTGC CAGCCCTATG	780
50	GAAGTTCCTT TTATGCATTG GAGGAAAAAC ATGTTGGCTT TTCTCTTGAC GTGGGAGAAA	840
	TTGAAAAGAA GGGGAAGGGG AAGAAAAGAA GGGGAAGAA	900
55	GGGGAAGAAA AGAAGGGGAA GAAGATCAAA ACCCACCATG CCCCAGGCTC AGCAGGGAGC	960
	TGCTGGATGA GAAAGRGCCT GAAGTCTTGC AGGACTCACT GGATAGATGT TATTCAACTC	1020
60	CTTCAGTTGT GTTGAACTGT GTGACTCATG CCAGCCCTAC AGAAGTGCCT TTTATGTATT	1080

	GGAGCAACAG CATGTTGGCT TGGCTGTTGA CATGGATGAA ATTGAAAAGT ACCAAGAAGT	1140
	GGAAGAAGAC CAAGACCCAT CATGCCCCAG GCTCAGCAGG GAGCTGCTGG ATGAGAAAGA	1200
5	GCCTGAAGTC TTGCAGGACT CACTGGATAG ATGTTATTCG ACTCCTTCAG GTTATCTTGA	1260
	ACTGCCTGAC TTAGGCCAGC CCTACAGCAG TGCKGTTTAC TCATTGGAGG AMCAKTACCT	1320
10	TGGCTTKKCT CTTGACGTGG ASAAATTGAA AAGAAGGGGA AGGGGAARAA AAGAAGGGGA .	1380
	AGAAGATCAA AGAAGGAAAG AAGAAGGGGA AGAAAAAGAAG GGGAAGAA	1440
	CCATGCCCCA GGCTCAGCAG GGAGCTGCTG GATGAGAAAG GGCCTGAAGT CTTGCAGGAC	1500
15	TCACTGGATA GATGTTATTC AACTCCTTCA GGTTGTCTTG AACTGACTGA CTCATGCCAG	1560
	CCCTACAGAA GTGCCTTTTA YRTATTGGAG CAACAGYGTG TTGGCTTGGC TGTTGACATG	1620
20	GATGAAATTG AAAAGTACCA AGAAGTGGAA GAAGACCAAG ACCCATCATG CCCCAGGCTC	1680
	AGCAGGGAGC TGCTGGATGA GAAAGAGCCT GAAGTCTTGC AGGACTCACT GGATAGATGT	1740
	TATTCGACTC CTTCAGGTTA TCTTGAACTG CCTGACTTAG GCCAGCCCTA CAGCAGTGCT	1800
25	GTTTACTCAT TGGAGGAACA GTACCTTGGC TTGGCTCTTG ACGTGGACAG AATTAAAAAG	1860
	GACCAAGAAG AGGAAGAAGA CCAAGGCCCA CCATGCCCCA GGCTCAGCAG GGAGCTGCTG	1920
30	GAGGTAGTAG AGCCTGAAGT CTTGCAGGAC TCACTGGATA GATGTTATTC AACTCCTTCC	1980
30	AGTTGTCTTG AACAGCCTGA CTCCTGCCAG CCCTATGGAA GTTCCTTTTA TGCATTGGAG	2040
	GAAAAACATG TTGGCTTTTC TCTTGACGTG GGAGAAATTG AAAAGAAGGG GAAGGGGAAG	2100
35	AAAAGAAGGG GAAGAAGATC AAMGAAGRAA AGAAGAAGGG GAAGAAAAGA AGGGGAAGAA	2160
	GATCAAAACC CACCATGCCC CAGGCTCAAC GGCGTGCTGA TGGAAGTGGA AGAGCSTGAA	2220
40	GTCTTACAGG ACTCACTGGA TAGATGTTAT TCGACTCCGT CAATGTACTT TGAACTACCT	2280
40	GACTCATTCC AGCACTACAG AAGTGTGTTT TACTCATTTG AGGAACAGCA CATCAGCTTC	2340
	GCCCTTTACG TGGACAATAG GTTTTTTACT TTGACGGTGA CAAGTCTCCA CCTGGTGTTC	2400
45	CAGATGGGAG TCATATTCCC ACAATAAGCA GCCCTTASTA AKCCGAGAGA TGTCATTCCT	2460
	GCAGGCAGGA CCIATAGGCA MGTGAAGATT TGAATGAAAG TACAGTTCCA TTTGGAAGCC	2520
50	CAGACATAGG ATGGGTCAGT GGGCATGGCT CTATTCCTAT TCTCAAACCA TGCCAGTGGC	2580
50	AACCTGTGCT CAGTCTGAAG ACAATGGACC CACGTTAGGT GTGACACGTT CACATAACTG	2640
	TGCAGCACAT GCCGGGAGTG ATCAGTCRGA CATTTTAATT TGAACCACGT ATCTCTGGGT	2700
55	AGCTACAAAA TTCCTCAGGG ATTTCATTTT GCAGGCATGT CTCTGAGCTT CTATACCTGC	276
	TCAAGGTCAK TGTCATCTTT GTGTTTAGCT CATCCAAAGG TGTTACCCTG GTTTCAATGA	282
60	ACCTAACCTC ATTCTTTGTG TCTTCAGTGT TGGCTTGTTT TAGCTGATCC ATCTGTAACA	288
-		

PCT/US98/11422

180

240

300

60

	CAGGAGGGAT CCTTGGCTGA GGATTGTATT TCAGAACCAC CAACTGCTCT TGACAATTGT	2940
	TAACCCGCTA GRCTCCTTTG GTTAGAGAAG CCACAGTCCT TCAGCCTCCA ATTGGTGTCA	3000
5	GTACTTAGGA AGACCACAGC TAGATGGACA AACAGCATTG GGAGGCCTTA GCCCTGCTCC	3060
	TCTCRATTCC ATCCTGTAGA GAACAGGAGT CAGGAGCCGC TGGCAGGAGA CAGCATGTCA	3120
Δ.	CCCAGGACTC TGCCGGTGCA GAATATGAAC AAYGCCATGT TCTTGCAGAA AACGCTTAGC	3180
10	CTGAGTTTCA TAGGAGGTAA TCACCAGACA ACTGCAGAAT GTRGARCACT GAGCAGGACA	3240
	GCTGACCTGT CTCCTTCACA TAGTCCATRT CACCACAAAT CACACAACAA AAAGGAGARG	3300
15	AGATATTTTG GGTTCAAAAA AAGTAAAAAG ATAATGTAGC TGCATTTCTT TAGTTATTTT	3360
	GARCCCCAAA TATTTCCTCA TCTTTTTGTT GTTGTCATKG ATGGTGGTGA CATGGACTTG	3420
20	TTTATAGAGG ACAGGTCAGC TGTCTGGCTC AGTGATCTAC ATTCTGAAGT TGTCTGAAAA	3480
20	TGTCTTCATG ATTAAATTCA GCCTAAACGT TTTGCCGGGA ACACTGCAGA GACAATGCTG	3540
	TGAGTTTCCA ACCTYAGCCC ATCTGCGGGC AGAGAAGGTC TAGTTTGTCC ATCASCATTA	3600
25	TCATGATATC AGGACTGGTT ACTTGGTTAA GGAGGGGTCT AGGAGATCTG TCCCTTTTAG	3660
	AGACACCTTA CTTATAATGA AGTATTTGGG AGGGTGGTTT TCAAAATTAG AAATGTCCTG	3720
30	TATTCCRATG ATCATCCTGT AAACATTTTA TCATTTATTA ATCATCCCTG CCTGTGTCTA	3780
50	TTATTATATT CATATCTCTA CGCTGGAAAC TTTCTGCCTC AATGTTTACT GTGCCTTTGT	3840
	TTTTGCTAGT GTGTGTTGTT GAAAAAAAA ACATTCTCTG CCTGAGTTTT AATTTTTGTC	3900
35	CAAAGTTATT TTAATCTATA CAATTAAAAG CTTTTGCCTA TCAAAAAAAA AAAAAAAAAA	3960
	AAAAAAAAA AAAAAGCGGA CGCGTGGGC	3989
40		
10	(2) INFORMATION FOR SEQ ID NO: 29:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 3735 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
-	CTGCTGTTCG CTGGCTGGGC TCCGCAGCAG GCTTGGCCAG CSGCTGACGG GTCGGCGGGC	6
	GGGTTTGTGT GAACAGGCAC GCAGCTGCAG ATTTTATTCT GGTAGTGCAN CCCTCTCAAA	12
55	OGGITTGTGT CHARACTOCHC GENOCIOCHC ATTIMITES COMMON	

GGTTGAAGGA ACTGATGTAA CAGGGATTGA AGAAGTAGTA ATTCCAAAAA AGAAAACTTG

GGATAAAGTA GCCGTTCTTC AGGCACTTGC ATCCACAGTA AACAGGGATA CCACAGCTGT

GCCTTATGTG TTTCAAGATG ATCCTTACCT TATGCCAGCA TCATCTTTGG AATCTCGTTC

	ATTTTTACTG GCAAAGAAAT CCGGGGAGAA TGTGGCCAAG TTTATTATTA ATTCATACCC	360
_	CAAATATTTT CAGAAGGACA TAGCTGAACC TCATATACCG TGTTTAATGC CTGAGTACTT	420
5	TGAACCTCAG ATCAAAGACA TAAGTGAAGC CGCCCTGAAG GAACGAATTG AGCTCAGAAA	480
	AGTCAAAGCC TCTGTGGACA TGTTTGATCA GCTTTTGCAA GCAGGAACCA CTGTGTCTCT	540
10	TGAAACAACA AATAGTCTCT TGGATTTWTT GTGTTACTAT GGTGACCAGG AGCCCTCAAC	600
	TGATTACCAT TTTCAACAAA CTGGACAGTC AGAAGCATTG GAAGAGGAAA ATGATGAGAC	660
15	ATCTAGGAGG AAAGCTGGTC ATCAGTTTGG AGTTACATGG CGAGCAAAAA ACAACGCTGA	720
13	GAGAATCTTT TCTCTAATGC CAGAGAAAAA TGAACATTCC TATTGCACAA TGATCCGAGG	780
	AATGGTGAAG CACCGAGCTT ATGAGCAGGC ATTAAACTTG TACACTGAGT TACTAAACAA	840
20	CAGACTCCAT GCTGATGTAT ACACATTTAA TGCATTGATT GAAGCAACAG TATGTGCGAT	900
	AAATGAGAAA TTTGAGGAAA AATGGAGTAA AATACTGGAG CTGCTAAGAC ACATGGTTGC	960
25	ACAGAAGGTG AAACCAAATC TTCAGACTTT TAATACCATT CTGAAATGTC TCCGAAGATT	1020
23	TCATGTGTTT GCAAGATCGC CAGCCTTACA GGTTTTACGT GAAATGAAAG CCATTGGAAT	1080
	AGAACCCTCG CTTGCAACAT ATCACCATAT TATTCGCCTG TTTGATCAAC CTGGAGACCC	1140
30	TTTAAAGAGA TCATCCTTCA TCATTTATGA TATAATGAAT GAATTAATGG GAAAGAGATT	1200
	TTCTCCAAAG GACCCGGATG ATGATAAGTT TTTTCAGTCA GCCATGAGCA TATGCTCATC	1260
35	TCTCAGAGAT CTAGAACTTG CCTACCAAGT ACATGGCCTT TTAAAAAACCG GAGACAACTG	1320
33	GAAATTCATT GGACCTGATC AACATCGTAA TTTCTATTAT TCCAAGTTCT TCGATTTGAT	1380
	TTGTCTAATG GAACAAATTG ATGTTACCTT GAAGTGGTAT GAGGACCTGA TACCTTCAGC	1440
40	CTACTTTCCC CACTCCCAAA CAATGATACA TCTTCTCCAA GCATTGGATG TGGCCAATCG	1500
	GCTAGAAGTG ATTCCTAAAA TTTGGAAAGA TAGTAAAGAA TATGGTCATA CTTTCCGCAG	1560
15	TGACCTGAGA GAAGAGATCC TGATGCTCAT GGCAAGGGAC AAGCACCCAC CAGAGCTTCA	1620
45	GGTGGCATTT GCTGACTGTG CTGCTGATAT CAAATCTGCG TATGAAAGCC AACCCATCAG	1680
	ACAGACTGCT CAGGATTGGC CAGCCACCTC TCTCAACTGT ATAGCTATCC TCTTTTTAAG	1740
50	GGCTGGGAGA ACTCAGGAAG CCTGGAAAAT GTTGGGGCTT TTCAGGAAGC ATAATAAGAT	1800
	TCCTAGAAGT GAGTTGCTGA ATGAGCTTAT GGACAGTGCA AAAGTGTCTA ACAGCCCTTC	1860
	CCAGGCCATT GAAGTAGTAG AGCTGGCAAG TGCCTTCAGC TTACCTATTT GTGAGGGCCT	1920
55	CACCCAGAGA GTAATGAGTG ATTTTGCAAT CAACCAGGAA CAAAAGGAAG CCCTAAGTAA	1980
	TCTAACTGCA TTGACCAGTG ACAGTGATAC TGACAGCAGC AGTGACAGCG ACAGTGACAC	2040
60	CAGTGAAGGC AAATGAAAGT GGAGATTCAG GAGCAGCAAT GGTCTCACCA TAGCTGCTGG	2100

•	AATCACACCT GAGAACTGAG ATATACCAAT ATTTAACATT GTTACAAAGA AGAAAAGATA	2160
_	CAGATTTGGT GAATTTGTTA CTGTGAGGTA CAGTCAGTAC ACAGCTGACT TATGTAGATT	2220
5	TAAGCTGCTA ATATGCTACT TAACCATCTA TTAATGCACC ATTAAAGGCT TAGCATTTAA	2280
	GTAGCAACAT TGCGGTTTTC AGACACATGG TGAGGTCCAT GGCTCTTGTC ATCAGGATAA	2340
10	GCCTGCACAC CTAGAGTGTC GGTGAGCTGA CCTCACGATG CTGTCCTCGT GCGATTGCCC	2400
	TCTCCTGCTG CTGGACTTCT GCCTTTGTTG GCCTGATGTG CTGCTGTGAT GCTGGTCCTT	2460
1.5	CATCTTAGGT GTTCATGCAG TTCTAACACA GTTGGGGTTG GGTCAATAGT TTCCCAATTT	2520
15	CAGGATATTT CGATGTCAGA AATAACGCAT CTTAGGAATG ACTAAACAAG ATAATGGCAG	2580
	TTTAGGCTGC ACAACTGGTA AAATGACTGT AGATAAATGT TGTAATTAGT GTACACGTTT	2640
20	GTATTTTTGT TAATATAGCC GCTGCCATAG TTTTCTAACT TGAACAGCCA TGAATGTTTC	2700
	ATGTCTCCCT TTTTTTTTG TCTATAGCTG TTACCTATTT TAGTGGTTGA AATGAGAGCT	2760
25	AGTGATGACA GAAGGATGTG GAATGTCTTC TTGACATCAT TGTGTATTGC TGGTAATCAA	2820
25	GTTGGTAACG ACTACTTCTA GCAGCTCTTA CCACTATGAC TTAAGTGGTC CTGGAAGGCA	2880
	GTAAGTGGAG GTTTGCAGCA TTCCTGCCTT CATGAGGGCT TCTACCACTG ACCACTTTGC	2940
30	ACGTACCTGG CTCCCAGATT TACTTAGGTA CCCCACGAGT CGTCCACATA AGCAGCTTCA	3000
	TCTTTACCTT GCCAGAGTTG ACAATTATGG GATACTCTAG TCTACTTATA CTTGTGTTCC	3060
25	CATCTGTCTG CCATCCTCTG AAGGCCAGGA CCCAGTCATA CATCCTTAGA AACCAAAGTA	3120
35	TGGTTTTTGT TTTCTCTTGG AATGTCAGGT CTTAAGGCAT TTAATTGAGG GACAAAAAA	3180
	AAAAAAAAGCC GATATAGTAG CTAGCTACTT AAGCATCCAT GGGTATTGCT CCATATCAAA	3240
40	GCAGATTTGC AGGACAGAAA GAGTAAATTA GCCTTCAGTC TTGGTTTACA GCTTCCAAGG	3300
	AGAGCCTTGG CCACCTGAAA TGTTAACTCG GTCCCTTCCT GTCTCTAGTT CATCAGCACC	3360
4.5	TGCAGATGCC TGACTCTTGT TAGCCTTACT ATTCAATACA GTCCTTAGAT TCACGGTATG	3420
45	CCTCTTCCTA TCCAGGCACC TATTCTGAAT CACCATGTTG CTCTGCAGCT AGAGTTGATA	3480
	GGAGAAAATC CATTTGGGTA GATGGCCTAT GAATTTGTAG TAGACTTTCA AAATGAGTGA	3540
50	TTTGTTAGCT TGGTACTTTT AAGTTTGTGG TACAGATCCT CCAAACCCAT ACTCTGAGCA	3600
	ATTAACTGCC TIGAACATAG AGAAAATTAA GGCCTCACAG GATGAGTCTC CATTCTCTGT	3660
	AAATGCTTAT TTTATCATAG TCTTTAGCCN CTACTATGAG TAAAATGTTC TCTTCNGCCG	3720
55	GGTGTGGTGA CTCAC	3735

WO 98/54963

(2) INFORMATION FOR SEQ ID NO: 30:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1667 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

10	(XI) SEQUENCE DESCRIPTION. SEQ 15 No. 11.	
10	TAGTAATTCA TTTAACTCCT CTTACATGAG TAGCGACAAT GAGTCAGATA TCGAAGATGA	60
	AGACTTAAAG TTAGAGCTGC GACGACTACG AGATAAACAT CTCAAAGAGA TTCAGGACCT	120
15	GCAGAGTCGC CAGAAGCATG AAATTGAATC TTTGTATACC AAACTGGGCA AGGTGCCCCC	180
	TGCTGTTATT ATTCCCCCAG CTGCTCCCCT TTCAGGGAGA AGACGACGAC CCACTAAAAG	240
20	CAAAGGCAGC AAATCTAGTC GAAGCAGTTC CTTGGGGAAT AAAAGCCCCC AGCTTTCAGG	300
20	TAACCTGTCT GGTCAGAGTG CAGCTTCAGT CTTGCACCCC CAGCAGACCC TCCACCCTCC	360
	TGGCAACATC CCAGAGTCCG GGCAGAATCA GCTGTTACAG CCCCTTAAGC CATCTCCCTC	420
25	CAGTGACAAC CTCTATTCAG CCTTCACCAG TGATGGTGCC ATTTCAGTAC CAAGCCTTTC	480
	TGCTCCAGGT CAAGGAACCA GCAGCACAAA CACTGTTGGG GCAACAGTGA ACAGCCAAGC	540
30	CGCCCAAGCT CAGCCTCCTG CCATGACGTC CAGCAGGAAG GGCACATTCA CAGATGACTT	600
30	GCACAAGTTG GTAGACAATT GGGCCCGAGA TGCCATGAAT CTCTCAGGCA GGAGAGGAAG	660
	CAAAGGGCAC ATGAATTATG AGGGCCCTGG AATGGCAAGG AAGTTCTCTG CACCTGGGCA	720
35	ACTGTGCATC TCCATGACCT CGAACCTGGG TGGCTCTGCC CCCATCTCTG CAGCATCAGC	780
	TACCTCTCTA GGTCACTTCA CCAAGTCTAT GTGCCCCCCA CAGCAGTATG GCTTTCCAGC	840
40	TACCCCATTT GGCGCTCAAT GGAGTGGGAC GGGTGGCCCA GCACCACAGC CACTTGGCCA	900
40	GTTCCAACCT GTGGGAACTG CCTCCTTGCA GAATTTCAAC ATCAGCAATT TGCAGAAATC	960
	CATCAGCAAC CCCCCAGGCT CCAACCTGCG GACCACTTAG ACCTAGAGAC ATTAACTGAA	1020
45	TAGATCTGGG GGCAGGAGAT GGAATGCTGA GGGGGTGGGT GGGGGTGGGA AGTAGCCTAT	1080
	ATACTAACTA CTAGTGCTGC ATTTAACTGG TTATTTCTTG CCAGAGGGGA ATGTTTTAA	1140
50	TACTGCATTG AGCCCTCAGA ATGGAGAGTC TCCCCCGCTC CAGTTATTGG AATGGGAGAG	1200
50	GAAGGAAAGA ACAGCTTTT TGTCAAGGGG CAGCTTCAGA CCATGCTTTC CTGTTTATCT	1260
	ATACTCAGTA ATGAGGATGA GGGCTAGGAA AGTCTTGTTC ATAAGGAACC TGGAGAACTC	1320
55	AATGTAAAAT CAAACCCATC TGTAATTTCG AGTGGGTGGA GCTCTTGCTT TTGGTACATG	1380
	CCCTGAATCC CTCACTCCCT CAAGAATCCG AACCACAGGA CAAAAACCAC CTACTGGGCT	1440
(0	CTCTCCTACC CTGCCCTCCT CCCTTTTTTT TACCCCTCTC TTTTTTATTT TTTCTTTGCT	1500
60	·	

PCT/US98/11422

20

	CTTTAGAACC	CAGTGAAAAA	TACCAGGGTA	CTGGGGTGCA	ACTCTTTCTT	ATGATAGGTC	156
	ATTAGTGCTT	TAAGCAAAAG	ATATTAGCAG	CTTTGACTGC	AGCATTAGCA	ATTAGGRAAA	162
5	AAAAAANWA	AAAACTCGAG	GGGGGGCCCG	GTTACCCAAT	TCGCCCT		166

(2) INFORMATION FOR SEQ ID NO: 31: 10

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1408 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double 15
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

20	ATTACACACC TGAGCACTGT GCCTGGCAAG ACCTGTCTTA ATAGATTAGA GAACCACTGA	60
	TAGATGGTCA GCTTTCTGTA GCAGTGAGAA CCCTACATTT CAAATGTGGA TAGCACCTTT	120
. -	GCGGGGAAAC ATCACTTGGC ACATCTGCAT TCTTTTTTGA CACAGGGTCT CACTCTGTTG	180
25	CCCAGGCTAG AGTGCATGGC ACGATCTTAG CTCACTGCAA CCTCCACCTC CCAAGTTCAA	240
	GCGATTCTTC TGCCTCAGCC TCCTGAGCAG CTGGGATCAC AGACATGCGC TACCATGCCC	300
30	AGCTAATTTT TIGTATTTTT TGTKTGTTTG TTTTTGTTTK TAAGTAGAGA CGGGCTTTCA	360
	CCACGTTGGS CAGGCAGGTC TCGAACTCCT GAMCTCAGGT GATCCACCCA CATCTGCGTT	420
25	CCAATATCTT TCTCAACATA ATGATAGCCG TAATTAATAT TTTCCAGTAC ATTTTTATGC	480
35	CTTTACACAC GAGAGTGGTA GACAGACACA AACCCAGATC TGTCTGACTC CAAAGCCCGT	540
	TIGTCATCAT TCCTTTTACG GTATCCTATA GTGGTATCCT TTACAGAAAG ACAGCTTTTA	600
40	CCCAACAAAG ACTTAACTTC CCAGGATGCC AGAAGGACAA AGCGGGATTG CTTTTAAGRA	660
	GRAAGTTATC AAGAMCTTAT TTTATAAATG AGATTAGATA GGGAAAGGCA ATTTATCTTT	720
	ATTAAAAACT GAAAAGGCCA GCATAGGGAA GGAGGTCCTT CGGTGGTCTT TTTCAGGGAA	780
45	ATACTTCAGT TGCTTTTATT AGAAACAGAT AGTACCTAAG GTTTTGAGGT AGGWACAGCT	840
	TAAGGCATGC TAATGKTCAT GGGTCCTTCC ATAGTCATTT TKGTATTTTG GTTWACATTT	900
50	GAGCAATAGG CAGCCCTTCA CTGCTGCTGG AYTCATTCCT GCCAYTATTA CAGGTGACAG	960
	AGGAGACAGG AGGTATGTCT TTTCTATTTT TAWACATGCT TTATATTTAA CACAAGCTCT	1020
	TGGGTATCTT AGATAAACAG AAGTTGCCTA GCACTCCTTT TAGTGCATTG AACCCTTTAA	1080
55	CATTTAAGCA AAATAATAAA CAGTCTTTTG AGGTTCCTTA ACAATGAAAC GTGTTCGAGT	1140
	GGCAGCAGCG GAATCCATGC YTCTTCTCCT GGAGTGTGCA AKAGTCCGTG GTCCTGAGTA	120
60	TCTCACACAG ATGTGGCATT TTATGTGTGA TGCTCTAATT AAGGCCATTG GTACAGAACC	126

1140

1200

292

	AGATTCAGAC GTCCTCTCAG AAATAATGCA TTCTTTTGCA AAGGTGAATA TTTTTCTCTT	1320
_	AAAAATATG TATAAGGTGG TATGTTCATT TATTAGTCTT GCTAAAAAAA AAAAAAAAAA	1380
5	ACTINGAGGG GGGGNCCGGT ACCCAATT	1408
10	(2) INFCRMATION FOR SEQ ID NO: 32:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2031 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
20	AGGATATGCA TGATTCTTAA CCAGGCTATA TGTTAAAAAA AAATTGGAAA ATGCAATACA	60
	TITTTTATTA TACAAACTAC AGAATGAGTA TGCAAGTTTT ATTTATCAAA ATGTAATGGA	120
25	THTTTAAAGG CTGAGAAATT TTCCTTATAC CTACCTTTTC AGTTATTTTA ATTATACCAA	180
	ATTATCARCT AGRATAGCTT CATCCATATG ABATATABABA TGAAGAGACA CCTAGGCTCT	240
30	ATCAGGCTTA GGATTCTTTG AACTTATTTC CACTTTAATT TCTCAGTGGA AGTTAAGAGG	300
50	GGTGAGALAA CAAAGAAGGG GAAAAACTGA CAACTAACAA AACCAGCACC ACATCGCTAG	360
	GTGGTGCTTA CTAATTACCT TCTCAGGATT TTCCTCAGAT TGAAAAGCTT ATGAGGATTT	420
35	CTTGGGASTC TTAATAACCT GCCTGTTAGT ACAGAGCTTT CCTGATGATA TTTACTCTTG	480
	AGCACATGTG GTTGTAAAAC CTTAACTTTC TTTCTCCAGG AGGGTGGTGA TAGAAACAGA	540
40	TGGTAGTATT TATGAACTGA TGTTCTCGTG AAATGTTGAG GGTGGGGAGA AAAGACTTTA	600
40	AGGGAGGAGA GCCATCTATT TTGTTCCTAA AGCCACCTCT CAGCAGAATC GTCATGTTTT	660
	TCTGATGCAC CGCTCTGCTT CATGCCCAAG ATGACTTGCG AGGCAATCTC AGGAGCTGTG	720
45	GACTTAACCR TTGCAAAGCA CACTGTCTTT CTCAGCGTTC TCTGCAAGTC AGTAGGTGTT	780
	AGTATGGTTG CAAAGTTCAC TGTCTCAGCA AAGTTGAACT GGGCTACCTC TCTACAGCTG	840
50	TTTCCTCAGA GGGAAAAATC TTGAGACCAG ATGGTGGAGC TCTGGAGTCA GAGGAAATGG	900
50	GTGTCTTCAG CACAAAGCTG CTGCTTTTAC TTCAGCCACT TCTGACATTT TTACATACCG	960
	AGCCTGAGAT TRIGIGATIA TCTCAAATCA AATCACTITG ATGGAGATAA ATAATCAAAA	1020
55	CTGTTTTATA GTCATTGATT TGGTGAGAAC AGTAATGGAA AATGGTGTTG AAGGACTTCT	1080
	CATTITIGGA GCTTTCCTTC CAGAGTCCTG GCTGATTGGT GTTCGCTGTT CATCTGAGCC	1140

CCCAAAAGCA TTATTACTGA TACTTGCACA CAGTCAAAAG CGCAGACTGG ATGGATGGTC

	TTTTATAAGG	CATTTAAGGG	TACACTACTG	TGTTTCACTG	ACCATACATT	TTTCTTAGCC	1260
	CCTCAAGTAA	TATAGCACAG	AGTTATGAAT	GACAATTCCC	CTAACCATTC	CTCTTCATAT	1320
5	CTGCCTCTTC	CCCTTACCAT	CGTAATTCTC	CAAACTGGTC	ATAAAGGCAC	TCTGTGAAGA	1380
	TATTGGGGAC	TGACATCTTA	AGCTCTCACC	TGGCTGCAGT	AGGAAAGGCC	AAACTGACGA	1440
10	СААААААА	ATTCTTTATA	AAGATGATAT	GGTAACATGT	ATCTTTGCCC	TGGGTCTGGG .	1500
10	TGGGTCCAGT	CAGTCTCAGA	TTTACAAGCA	TTTAGGAGCC	TAGGTAAAAG	CTGCTAGTAT	1560
	TCTTTTAAAA	GTTACATTTA	TGACTTGCAA	TGATAGAAAA	CTCCTTCCAA	TTAAATGGCA	1620
15	TTTTATAATA	TTATGTGTGT	ACTTCACAGT	GTTAAAAATA	CCCTCATACG	TTATTGCATT	1680
	TGATCTTCAC	AGAAAGTGCA	TTTTAACCAG	TACTCTGGGT	GCAATAAATA	ATATGTAGAA	1740
20	ATTTAAGTCC	TCCAATTCCA	. GCATATCCAG	TGAGTTTTGA	CAGTGTGTTT	ATGTGGAATG	1800
20	TTTAAGGATA	TACAATTGTA	. CTTTATATAA	ATTGGTTCTT	GTTCTTCTTA	AATGTGACAT	186
	GAAATAATTG	TGCTGCTACA	TTATACTGGA	AATTAACAGG	GGAAAAGGGA	AGAGCTCTTG	192
25	GCTCCCTTGA	GGTTCTGCTA	GTGGTGTTAC	GAGTGGTTAC	AACTGAGCTT	TTAGTAACCA	198
	TTTAACCGTA	TGTAAACTTC	GTTTCTAATT	таааааааа	TTCTTTTTCC	A	203

(2) INFORMATION FOR SEQ ID NO: 33:

(i) SEQUENCE CHARACTERISTICS:

35 (A) LENGTH: 971 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

	CGCGTCGGAA	CTCGGCCGCG	GGACATCCAC	GGGGCGCGAG	TGACACGCGG	GAGGGAGAGC	60
45	AGTGTTCTGC	TGGAGCCGAT	GCCAAAAACC	ATGCATTTCT	TATTCAGATT	CATTGTTTTC	120
45	TTTTATCTGT	GGGGCCTTTT	TACTGCTCAG	AGACAAAAGA	AAGAGGAGAG	CACCGAAGAA	180
	GTGAAAATAG	AAGTTTTGCA	TCGTCCAGAA	AACTGCTCTA	AGACAAGCAA	GAAGGGAGAC	240
50	CTACTAAATG	CCCATTATGA	CGGCTACCTG	GCTAAAGACG	GCTCGAAATT	CTACTGCAGC	300
	CGGACACAAA	ATGĄAGGCCA	CCCCAAATGG	TTTGTTCTTG	GIGTTGGGCA	AGTCATAAAA	360
~ ~	GGCCTAGACA	TTGCTATGAC	AGATATGTGC	CCTGGAGAAA	AGCGAAAAGT	AGTTATACCC	420
55	CCTTCATTTG	CATACGGAAA	GGAAGGCTAT	GCAGAAGGCA	AGATTCCACC	GGATGCTACA	480
	TTGATTTTTG	AGATTGAACT	TTATGCTGTG	ACCAAAGGAC	CACGGAGCAT	TGAGACATTT	540
60	AAACAAATAG	ACATGGACAA	TGACAGGCAG	CTCTCTAAAG	CCGAGATAAA	CCTCTACTTG	600

	CAAAGGGAAT TTGAAAAAGA TGAGAAGCCA CGTGACAAGT CATATCAGGA TGCAGTTTTA	660
٠.	GAAGATATTT TTAAGAAGAA TGACCATGAT GGTGATGGCT TCATTTCTCC CAAGGAATAC	720
5	AATGTATACC AACACGATGA ACTATAGCAT ATTTGTATTT CTACTTTTTT TTTTTAGCTA	780
	TTTACTGTAC TTTATGTATA AAACAAAGTC ACTTTTCTCC AAGTTGTATT TGCTATTTTT	840
0	CCCCTATGAG AAGATATTTT GATCTCCCCA ATACATTGAT TTTGGTATAA TAAATGTGAG	900
	GCTGTTTTGC AAACTTAAAA AAAAAWWAAA AAAACTSGAG GGGGGCCCGT ACCCAANTCG	960
1.5	CCGNATATGA T	971
15		
20	(2) INFORMATION FOR SEQ ID NO: 34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1792 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	•
30	GAACCCCCTT TCTCCTGGTA AAGGGTAAGG GGGGGGATAA TGTTTACCAC AGGTACGAAA	60
50	TAGTCACTIT AACATTGAGA CCTCTGCCTC ATTGAATTCA GGITTTTTAA GTACTTGAAA	120
	CTCTTCAGAT TCTCCTTATT TTAGTTTCTT TTTACATTTA TGAAGTAGAA AGCATTGTTT	180
35	TGTAAACTGT TTTGAAAATA AATAGCCTAG TCTCTTATCC TCTTTAGCGT GGATTAAAGG	240
	TGAAGITCTG CAAATGGGAG AGTGITCACA GTAGATAGCT CAGATTGATT GAACACATTT	300
40	GAGGAAGAGA CTCCTGCATG AGATACCAGC ATTTTTACAA ATACTTTTTA TGTACATTCT	360
70	TTATTITGTC ATTITGTCAA CCCTCTCCCC AAGCACATCT TCTTTCCTTT TACTATGTCT	420
	ATGTAGGGAA AAACAAAACA AAAAATTGCA CTTACGTTAC ACTCCCAAAA TGTGGGTAAT	480
45	CCGTGTCTTT CAAAAAACAT TTCTGTTTTT TGTTTTGTTT	540
	TGACAAGTTT GGGTGCTTGT GGCACGTATG TATGAAGCGG GAGGGGGATG ASAATTGCCT	600
50	GTCCTTCAGT ARGCTGTAAA AGTAATTTAC ATGTAAGTAA AAAGGGAAAA TAGAATAGAT	660
50	GCCAAAGTCA TTTATTCAGT CCTTAGTTTT CTTATGTGGC ATTACTGCAT CTGCTAGTTA	720
	GTGAGAAAGC ACCCTCAGCT TTTACTGCTC CCCTCCCTGC CTGCCAACAC ACTTGATGTG	780
55	TGCAAACAGC CCTCAAGTAT CTGTCAGATG ACCTATATAA GGTATTGAAT AAGGTATTCT	840
	TGTCAGTTTA GAAATGGACT GGATAAAACT TACTTGGTTG TCATTATTTT ATCTCATTTG	900
	TCCTGTTACA TGCCCTATGT TAAGATAATT ATATTGCCAC TAATAATCAA GATGCTAAAT	960

WO 98/54963 PCT/US98/11422

295

	GAGTATTACA	ACTGGCTAAT	ATCATTITT	ATATACAAGG	GTATGTGTAT	ATTTGGAATT	1020
	GRTATGAGAA	ACTCATTTGT	ACCCATTTGA	GTGATATTGC	ACAACAAACA	CAGATAYCTA	1080
5	CAGACTCCGT	TTTCATTTTC	TCGTGTTCTT	TATGATAATG	ATCTTTGTAG	ATTGGTTATT	1140
	TCTGTACTTT	ATCTGTAATA	AACTTTGTAG	ATCCTGTGAA	CCATTACTTT	GCCTAAATCA	1200
	CTTGAGACTT	GAGTCTTTAA	TAACAAAGCA	TCAATATTCA	CTAAAGTCAA	TCTCTTTTGA	. 1260
10	GTTTCTGTGA	CTTGGCTAGA	AGCTCTTGAC	ACTAAGGGAT	TAGTGTTAAT	TTTCCCTGGG	1320
	GGTGTTCCAC	TAGGGCATTA	CTGTATAATG	ACTTGATGTT	GCCACATAGA	CTTCAAGATA	1380
15	TATAATATT	TGAGGATTTT	GTTGATTGGC	CTATGTTTTA	TTGCATAGTG	TGAAACGTGT	1440
	AAAGCTTGGT	TAACCTGTAT	ATAGATAGCT	TATTGTTGAC	TAGTTATAGT	GTATTTAGGG	1500
	TTGCCTGTAA	TATTTAAGCT	TCTTTACTGA	TGTGTGTGCT	GGTAGGAACA	TATAATTTT	1560
20	GTACATTATA	TTTACTGAGA	TGTTGCCTTT	TTTATTTTAC	AAATACTTTG	GAATTCCAAT	1620
	GTGTTTTTG	CTTCCGTGAG	GATTAATTTG	GAAAGGTTTT	TAATGACATT	CCACTGATTT	1680
25	CAGATTTTGC	TTGAGATTGA	CTTCAATAAA	. TTGTCCTGTA	TGTTCCAAAA	AAATTAAAA .	1740
	AAACTCGAGG	GGGGCCCGGT	ACCCAANNCG	CCGGATATGA	TCGTAAACAA	, TC	1792
30							

35

(2) INFORMATION FOR SEQ ID NO: 35:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 896 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35: 40

	AGTTGNANAC	AACAGGACCT	GAGTCCTTGG	GCAGCACCAG	TAGGTTGCCC	CYTGCYTCYT	60
45	GCCAGCYTCA	CYTGCCACYT	TYTGCCCCTY	TCGGGATGCC	TTCGCAGACA	GAGYTYTTCG	120
43	CTGCCTGTGG	TGGCCAYTCT	TTGCTTTTGG	TTYTCTTGCC	CCTTGGCCTC	CCTTTTTGTC	180
	CCCGGGCAGC	CTTGTGTGAC	CTGCCCTTTT	CCCTCCCTTC	CTTTCCAGGA	CAAGCACGCC	240
50	GAGGAGGTGC	GGAAAAACAA	GGAGCTGAAG	GAAGAGGCCT	CCAGGTAAAG	CCTAGAGGCC	300
	AAAGAACTTT	CCAGGTCAGC	CGGACAGCTC	CAGCAGCTCC	ACGTTCCAGG	CAGCCTCGMC	360
e e	CGCCGGCTGC	GCTCCCAGCA	CTGGGGTTTG	GGGGGAGGGG	GGTGGCCAAG	GGGCGTTTCC	420
55	TCTGCTTTTG	GTGTTTGTAC	ATGTTAAGAA	TTGACCAGTG	AAGCCATCCT	ATTTGTTTCC	480
	GGGGAACAAT	GACGGGGTGG	GARAGGGGAG	AGGAGAGAGT	TTGGGAAAGG	GAGATGGAGA	540
60	AGAACTCAAG	GACATTGCAA	CCCTGCCCGG	CGCAGATCTG	ATTTTCACAT	CTCTACCTGG	600

	ACATTGAGCC	TCCCAGGCAC	CATGTTGAGG	AGAGATGAAA	ACCAGGGCGG	TAGAACTTCA	660
_	GGGTGAAGGA	CAGAGTCCTG	GGTGGGGCAG	CGGCTGCAGG	GCGCACCAGA	GAACCCAGCC	720
5	AGAGGGGGTG	TGAGTACCAG	TGGTGTTGCT	TCCACCCTGC	AGCAGGTGGG	ATGAGGTCTG	780
	TGTGTGTGTG	TGAACCATCA	TTTTTTGATC	ATCATGACCA	ATGAAACATT	GAAAAAAAA	840
0	AAAAAAACTG	GAGGGGGCC	CGTACCCAAN	TCGCCGNATA	GTGATCGTAA	ACAATC	896

15 (2) INFORMATION FOR SEQ ID NO: 36:

20

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 912 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

25	TCGACCCACG	CGTCCGGTCA	GCCAGTCGCA	TCCAGCCATG	ACAGCCTTCT	GCTCCCTGCT	60
	CCTGCAAGCG	CAGAGCCTCC	TACCCAGGAC	CATGGCAGCC	CCCCAGGACA	GCCTCAGACC	120
30	AGGGGAGGAA	GACGAAGGGA	TGCAGCTGCT	ACAGACAAAG	GACTCCATGG	CCAAGGGAGC	180
30	TAGGCCCGGG	GCCAKCCGCG	GCAGGGCTCG	CTGGGGTCTG	GCCTACACGC	TGCTGCACAA	240
	CCCAACCCTG	CAGGTCTTCC	GCAAGACGGC	CCTGTTGGGT	GCCAATGGTG	CCCAGCCCTG	300
35	ARGGCAGGGA	AKGTCAACCC	ACCTGCCCAT	CTGTGCTGAG	GCATGTTCCT	GCCTACCATC	360
	CTCCTCCCTC	CCCGGCTCTC	CTCCCAGCAT	CACACCAGCC	ATGCAGCCAG	CAGGTCCTCC	420
40	GGATCACYGT	GGTTKGGTGG	AGGTCTGTCT	GCACTGGGAG	CCTCARGARG	GCTCTGCTCC	480
40	ACCCACTTGG	CTATGGGAGA	GCCAGCAGGG	GTTCTGGAGA	AAAAAACTGG	TGGGTTAGGG	540
	CCTTGGTCCA	GGAGCCAGTT	GAGCCAGGGC	AGCCACATCC	AGGCGTCTCC	CTACCCTGGC	600
45	TCTGCCATCA	GCCTTGAAGG	GCCTCGATGA	AGCCTTCTCT	GGAACCACTC	CAGCCCAGCT	660
	CCACCTCAGC	CTTGGCCTTC	ACGCTGTGGA	AGCAGCCAAG	GCACTTCCTC	ACCCCYTCAG	720
50	CGCCACGGAC	CTYTYTGGGG	AGTGGCCGGA	AAGCTCCCSG	GCCTYTGGCC	TGCAGGGCAG	780
	CCCAAGTCAT	GACTCAGACC	AGGTCCCACA	CTGAGCTGCC	CACACTCGAG	AGCCAGATAT	840
	TTTTGTAGTT	TTTATKCCTT	TGGCTATTAT	GAAAGAGGTT	AGTGTGTTCC	CTGCAATAAA	900
55	CTTGTTCCTG	AG					912

^{60 (2)} INFORMATION FOR SEQ ID NO: 37:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1382 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

	(XI) SEQUENCE DESCRIPTION. SEQ 15 No. C.	
10	AATTCGGCAC GAGCGAGGC GAGGGAAACT RAGGGCGAAA GTTGTGTGTC GTGTTGGCAG	60
	GAGGGCCTAG AAGGGAAAGA CTGTCTAGTG GGACAATGTC ATATTATAAA TTTGGAATGC	120
15	TGAATAGAAA ATTATAGATT TTGATATTGA AGGAAATGAA GCGAAGCYTA AATGAAAATT	180
13	CAGCTCGAAG TACAGCAGGC TGTTTGCCTG TTCCGTTGTT CAATCAGAAA AAGAGGAACA	240
	GACAGCCATT AACTTCTAAT CCACTTAAAG ATGATTCAGG TATCAGTACC CCTTCTGACA	300
20	ATTATGATTT TCCTCCTCTA CCTACAGATT GGGCCTGGGA AGCTGTGAAT CCAGAGTTKG	360
	CTCCTGTAAT GAAAACAGTG GACACCGGGC AAATACCACA TTCAGTTTCT CGTCCTCTGA	420
25	GAAGTCAAGA TTCTGTCTTT AACTCTATTC AATCAAATAC TGGAAGAAGC CAGGGTGGTT	480
23	GGAGCTACAG AGATGGTAAC AAAAATACCA GCTTGAAAAC TTGGRATAAA AATGATTTTA	540
	AGCCTCAATG TAAACGAACA AACTTAGTGG CAAATGATGG AAAAAATTCT TGTCCAATGA	600
30	GTTCGGGAGC TCAACAACAA AAACAATTAA GAACACCTGA ACCTCCTAAC TTATCTCGCA	660
	ACAAAGAAAC CGAGCTACTC AGACAAACAC ATTCATCAAA AATATCTGGC TGCACAATGA	720
35	GAGGGCTAGA CAAAAACAGT GCACTACAGA CACTTAAGCC CAATTTTCAA CAAAATCAAT	780
55	ATAAGANACA AATGTTGGAT GATATTCCAG AAGACAACAC CCTGAAGGAA ACCTCATTGT	840
	ATCAGTTACA GTTTAAGGAA AAAGCTAGTT CTTTAAGAAT TATTTCTGCA GTTATTGAAA	900
40	GCATGAAGTA TTGGCGTGAA CATGCACAGA AAACTGTACT TCTTTTTGAA GTATTAGCTG	960
	TTCTTGATTC AGCTGTTACA CCTGGCCCAT ATTATTCGAA GACTTTTCTT ATGAGGGATG	1020
45	GGAAAAATAC TCTGCCTTGT GTCTTTTATG AAATCGATCG TGAACTTCCG AGACTGATTA	1080
73	GAGGCCGAGT TCATAGATGT GTTGGCAACT ATGACCAGAA AAAGAACATT TTCCAATGTG	1140
	TTTCTGTCAG ACCGGCGTCT GTTTCTGAGC AAAAAACTTT CCAGGCATTT GTCAAAATTG	1200
50	CAGATGTTGA GATGCAGTAT TATATTAATG TGATGAATGA AACTTAAGTA GTGATAAAAG	1260
	GAAGTTTAGC ATAAATTATA GCAGTTTTCT GTTATTGCTT AATTTACCAT CTCCATAGTT	1320
55	TTATAGCTAC TATTGTATTT CACTTGTTGA ATTAAAGTAT TTGAATTCTT TTAAAAAAAA	1380
<i>)</i>	AA	1382

240

•	(2) INFORMATION FOR SEQ ID NO: 38:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 872 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
10	GGGCTACTTC AAAGCCCTGG GCCTTATTTC TTCAGGTAAA AAAATATAAA GTCAGATCTC	60
	ATCCCGGCTG GCCATGCTGT TAGACCCTTT CATCCTTCTC TTCTGCCTCT TCTCAACAGC	120
15	TGCCCAGTCC TGTTTGGAAT TCATATACAT ACAGTTCTAA TACTGATGTA TTTACCCTCA	180
	TAAGCCACTC AACCCAGAAT CTTATTTGAA TTATAATCCA GAAACATCAG GTGACGTGTG	240
20	AGACTACTGT ATGAGAAAGA GACAGTTTAA GGGTCAGTCC AATGGAAAAA AGAGTTCTCA	300
20	GAGCTTTCTT TAGCTTATTC TCATCAAAGA GCTTTCTCTG CAGAAGGAAC CTACTGGTTC	360
	CTCCTTTCCA GTCCTAGAAA TCCTGACCTA GAGTGGCTTA ATCCTGCTAG CACCTCTCTC	420
25	TCGCACTCTG GTGCCAAATG ACTCCAGGAA CTGGGCCATG ATGTGGTGGG AATGACCTTA	480
	CCCTGAGCAT GTCACTCATG CATTGAACAA CAGCTAAGAG CAGAGCTTAG AGCTTAGAGC	540
30	TGGGCCCTGT AAGGTGAGAG GAATCACATC CTGCAGAAGT CTGTCCTGAG AAGCAGGTAC	600
50	TCCTGTCACA GCAGAGACAC AGTGGATACC TGAGTAACAA TAATACAAGA CAGGACGTGG	660
	GMACAGCAAA AGATTTGGGT GTCAGAAGAR GCCGAGAACA CTTYCAGGCA GGAACATTCA	720
35	RARTIGITCT TGGAGGAART AGGCMCSAAG GCTGGGCAGG ATTTCMCGGG GCAGAGATGG	780
	AGCAAGCAAT TGAAATGAAA GCCATGGCAT GGGAAAAGGA GCACTGGCCA CAGGGAGTGC	840
40	AACGTTGTGA TGCAAGGCCA CTGTGGAGCC AT	872
45	(2) INFORMATION FOR SEQ ID NO: 39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 812 base pairs	
	(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
55	GGCAGAGGCT CACCCCAGCA GAGATTGAGG GGGAACCGTG ATGAAATTTT TAAGTATTCT	60
	TOTAL STREET, CHICARA WOMEN A MACHINICICAL COCCUPINACION CONTRACTOR CONTRACTO	120

TGAAAGGAGT ATGAAAATGC GGAATGGGGC TTTGGGGCTT GAGGAGGTGT GATCTCTAGT

GTTTAAAAAA TTTAATTGCA CAAATAGAAA TAATTCACCC ACATTATTGA ACCCCACTAA

60

WO 98/54963 PCT/US98/11422

299

	AGCATATCCT	TTTTGTCCAT	ATTCCTTTCC	TGCTGCCCTC	GTGTGTACCA	TTATTACTCA	300
_	GTTGTGATTT	GAGCTCGTTC	CACTTAAAGT	CATTCATAGA	TACTTTTGCG	TCGTGTTKGA	360
5	ATATTTATTG	AATTTCTATT	CTGTGTTTTA	CTTAATTACT	TTATTATGGA	ACCTTTACAC	420
	AGGTCTGGTG	TACTTGTTCT	TTGAAAAGTC	TTATGTTGAC	CACCATCACT	GAGCATATAG	480
10	CTTTTTCCTT	ATTTCCTTGG	GATAATTACC	CGAAGTGGAA	ATACCGAATC	AAACTTCTGT	540
	TTTCTTTCTT	TGGCACTATT	ATATAAATTG	TTTTCCAAAC	AAGGCATGTT	TACAATAGAC	600
15	ATTTTTCAAA	ATCTGGGTAT	TTGTCCTATT	TTGCTCTCTG	TATGCAGAAT	TCAGCGGGGT	660
15	GCCAAGTCGT	TTTCTGTGTG	GGTTGAGAGA	CAGGCTGTGC	AGCCCACTGT	TGCATAGGAC	720
	таастастас	AAATCATGCT	GAGACCGAGC	TATTTTTGCT	GCTTAGARGC	TTTGCAGCCT	780
20	TGAGTAAGTT	TCGNCATCTG	GAAACNTTGN	AA			812
•							

25 (2) INFORMATION FOR SEQ ID NO: 40:

30

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1515 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

35	AATTCGGCAC GAGGGAAATT CAAGCACTTT TCCTAAAAGA AGGGGGAATG GATGCTGAAA	60
	CAACACGINI CCCACAAAGG GAGCAGACAC IGGGCIIGIG AAGCIGCCCC ATACCIICCC	120
40	CACAGAACTG GGGTCCGGCC TCCCTGACAT GCAGATTTCC ACCCAGAAGA CAGAGAAGGA	180
40	GCCAGTGGTC ATGGAATGGG CTGGGGTCAA AGACTGGGTG CCTGGGAGCT GAGGCAGCCA	240
	CCGTTTCAGC CTGGCCAGCC CTCTGGACCC CGAGGTTGGA CCCTACTGTG ACACACCTAC	300
45	CATGCGGACA CTCTTCAACC TCCTCTGGCT TGCCCTGGCC TGCAGCCCTG TTCACACTAC	360
	CCTGTCAAAG TCAGATGCCA AAAAAGCCGC CTCAAAGACG CTGCTGGAGA AGAGTCAGTT	420
50	TTCAGATAAG CCGGTGCAAG ACCGGGGTTT GGTGGTGACG GACCTCAAAG CTGAGAGTGT	480
50	GGTTCTTGAG CATCGCAGCT ACTGCTCGGC AAAGGCCCGG GACAGACACT TTGCTGGGGA	540
	TGTACTGGGC TATGTCACTC CATGGAACAG CCATGGCTAC GATGTCACCA AGGTCTTTGG	600
55	GAGCAAGTTC ACACAGATCT CACCCGTCTG GCTGCAGCTG AAGAGACGTG GCCGTGAGAT	660
	GTTTGAGGTC ACGGCCTCC ACGACGTGGA CCAAGGGTGG ATGCGAGCTG TCAGGAAGCA	720
60	TGCCAAGGGC CTGCACATAG TGCCTCGGCT CCTGTTTGAG GACTGGACTT ACGATGATTT	780

	CCGGAACGTC	TTAGACAGTG	AGGATGAGAT	AGAGGAGCTG	AGCAAGACCG	TGGTCCAGGT	840
	GGCAAAGAAC	CAGCATTTCG	ATGGCTTCGT	GGTGGAGGTC	TGGAACCAGC	TGCTAAGCCA	900
5	GAAGCGCGTG	ACCGACCAGC	TGGGCATGTT	CACGCACAAG	GAGTTTGAGC	AGCTGGCCCC	960
	CGTGCTGGAT	GGTTTCAGCC	TCATGACCTA	CGACTACTCT	ACAGCGCATC	AGCCTGGCCC	1020
10	TAATGCACCC	CTGTCCTGGG	TTCGAGCCTG	CGTCCAGGTC	CTGGACCCGA	AGTCCAAGTG	1080
10	GCGAAGCAAA	ATCCTCCTGG	GGCTCAACTT	CTATGGTATG	GACTACGCGA	CCTCCAAGGA	1140
	TGCCCGTGAG	CCTGTTGTCG	GGGCCAGGTA	CATCCAGACA	CTGAAGGACC	ACAGGCCCCG	1200
15	GATGGTGTGG	GACAGCCAGG	YCTCAGAGCA	CTTCTTCGAG	TACAAGAAGA	GCCGCAGTGG	1260
	GAGGCACGTC	GTCTTCTACC	CAACCCTGAA	GTCCCTGCAG	GTGCGGCTGG	AGCTGGCCCG	1320
20	GGAGCTGGGC	GTTGGGGTCT	CTATCTGGGA	GCTGGGCCAG	GGCCTGGACT	ACTTCTACGA	1380
20	CCTGCTCTAG	GTGGGCATTG	CGGCCTCCGC	GGTGGACGTG	TTCTTTTCTA	AGCCATGGAG	1440
	TGAGTGAGCA	GGTGTGAAAT	ACAGGCCTTC	ACTCCGTTAA	ААААААААА	AAAAAAAAA	1500
25	АААААААА	AAAAA					1515

30 (2) INFORMATION FOR SEQ ID NO: 41:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 704 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

40	AAGATGGTGG	CGCCCAGAGC	TTCGCTCTAT	GCTGCTCCCC	TGAGAGAGGC	GTTTCCATCA	60
	ACCAGTTTTG	CAAGGAGTTC	AATGAGAGGA	CAAAGGACAT	CAAGGAAGGC	ATTCCTCTGC	120
15	CTACCAAGAT	TTTAGTGAAG	CCTGACAGGA	CATTTGAAAT	TAAGATTGGA	CAGCCCACTG	180
45	TTTCCTACTT	CCTGAAGGCA	GCAGCTGGGA	TTGAAAAGGG	GGCCCGGCAA	ACAGGGAAAG	240
	AGGTGGCAGG	CCTGGTGACC	TTGAAGCATG	TGTATGAGAT	TGCCCGCATC	AAAGCTCAGG	300
50	ATGAGGCATT	TGCCCTGCAG	GATGTACCCC	TGTCGTCTGT	TGTCCGCTCC	ATCATCGGGT	360
	CTGCCCGTTC	TCTGGGCATT	CGCGTGGTGA	AGGACCTCAG	TTCAGAAGAG	CTTGCAGCTT	420
EE	TCCAGAAGGA	ACGAGCCATC	TTCCTGGCTG	CTCAGAAGGA	GGCAGATTTG	GCTGCCCAAG	480
55	AAGAAGCTGC	CAAGAAGTGA	CCCTTGCCCC	ACCAACTCCC	AGATTTCAAA	GGAGGTAGTT	540
	GCAAAAGCTG	TGCCCAAGGG	GAGGAAGGAG	GTCACACCAA	TATGATGATG	GTTTTCATGA	600
60	CTTTGAATGA	TATATTTTTG	TACATCTAGC	TGTATCGAGG	CATCAGGCCT	GAATAAACAT	660

PCT/US98/11422

5

10

20

25

30

35

40

45

50

301

(A) LENGTH: 1094 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

60 GGCAGCTTTC TTACAAACCC ATCCTTCTGA AATGTTGCTT CAAATTCATC CTCTGCTCCC CAGTCCCACT ATTCCACACA TACTGTTACT GTTTCTTTAT CCTACTTTCT CAATTTTGGA 120 ACATAGITGC AGITACTGCA TTGAATACCT GTGGGTTTGC CTGTTGTTCT GTCTGTCTCT 180 GTGGTTCTTG TAATANTGGA TCCCAGAGAT AAAATGGACA GTTGTNATGC ACAGTTAATT 240 CAGAAACTAG ACCTTACTTG CTGTGTGAAA TACCAACTAA ATTCTCAGTG AACTCAGCTG 300 ANCTITATCT CCTTTTGTTT CCCCAATTTA TAATTTCAGT TCAGGCCCAG AAAGATGGAA 360 TCCCAGCTAA GAAATACAAG TTACACCCTG TACTAGCAGC CCATGTGTGC ATGTTCTTTA 420 480 TTTGAGGAAA AAAACCCATA ATACCACACC TCATTTTTTT CAAGTAATAG GGTCATAAGT 540 600 CTCATYCTYC ATATAATATG TTGAGTATGC AGTATATTAT GTGTTAGGCT CTGGANAGGC AGAGGTTAGA TCATGTWACA GATÇATATCK GATTAGGCAG ATAAACAGTA TTTTAACCTT TTCCTTATTA TATGTAACTT GCTTTCAGGT TTTTTAATGT TACTATTATG TCTTTAATAT 720 ATTATCTTTA TTTGTACTTT TGTATACAGA GTGATTTTCC TTTTTTAAAA AAAATTGTGT 780 CTTTAGGATG GATTCCAAAG ATGTGGAATC AGTAGGTTTA AGGAATATGG ATATTTTGGC TGGCAAGGTG GCTCACACCT GTAATCCCAG CACTTTGGGA GGCTGAGGTG GGTGGATCAC 900 CTGAAGTCAG GAGTTCGAGA CCAGCCTGAC CAACATGGCG AAACCCTGTT TNIACTAAAG 960 ACACACWWAA AATTRGCCAG TGGTGGTGGC ATGTGCTTGT AGTCCCACTT AGCTACTCGA 1020 GAGGCTGAGG CAGGAGAATC GCTTGAACCC GGGAGGCAGA GGTTGCAGTG AGGCAAGATG 1080 1094 GCACCTCTAC ACTC

55

(2) INFORMATION FOR SEQ ID NO: 43:

60 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1321 base pairs

(2) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TCPCLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

	TGGCTTAGGC C	ATCACCOTT (CCTTGGCTG	GAACTACTGG	ACAGACCCTT '	TTGAGATGTG	. 60
10	COTGTGGTGC TO	GTGGAGATG :	EGTGTAGTGG	TCTTAGCTCT	TTGTTGAGCT	TGTGTGTGTG	120
	TTGTGTAGTC T	TAGCTGTAT	GCTGAAATTG	GGCGTGTGTT	GGAGGGCTTC	TTAGCTCTTT	180
15	GGTGAGATTG T	ATTTCTATG	GITTGTATC	ASCTGAATGT	TGCTGGAAAT	AAAACCTTGG	240
13	TTTGTMARGG C	TCTTTTTG	TGGGAAGTAA	GTAGGGGAAA	AGGTCTTTGA	GGGTTCCTAG	300
	GCTCCTTTGT A	CAACAGGAA .	AATGCCTCAA	AGCCTTGCTT	CCCAGCAACC	TGGGGCTGGT	360
20	TCCCAGTGCC T	ecicciece	CCTTCCTGGT	TCTTATCTCA	AGGCAGAGCT	TCTGAATTTC	420
	AGGCCTTCAT T	CCFGFGCCC	TCTTGTGGCC	AGGCCTTCCT	TTGCTGGAGG	AAGGTACACA	480
25	GGGTGAAGCT G	ATGCTGTAC	TTGGGGGATC	TCCTTGGCCT	GTTCCACCAA	GTGAGAGAAG	540
23	GTACTTACTC T	TGTACCTCC	TGTTCAGCCA	GGTGCATTAA	CAGACCTCCC	TACAGCTGTA	600
	GGAACTACTG I	TOCAGAGCT	GAGGCAAGGG	GATTTCTCAG	GTCATTTGGA	GAACAAGTGC	660
30	TTTAGTAGTA G	PYYTAAAGTA	GTAACTGCTA	CTGTATTTAG	TGGGGTGGAA	TTCAGAAGAA	720
	ATTIGAAGAC C	LAGATCATGG	GTGGTCTGCA	TGTGAATGAA	CAGGAATGAG	CCGGACAGCC	780
35	TGGCTGTCAT T	rectitette	CTCCCCATTT	GGACCCTTCT	CTGCCCTTAC	ATTTTTGTTT	840
55	CTCCATCTAC C	CACCATCCAC	CAGTCTATTT	ATTAACTTAG	CAAGAGGACA	AGTAAAGGGC	900
	CCTCTTGGCT 7	rgattitget	TCTTTCTTTC	TGTGGAGGAT	ATACTAAGTG	CGACTTTGCC	960
40	CTATCCTATT 7	rggaaatccc	TAACAGAATT	GAGTTTTCTA	TTAAGGATCC	AAAAAGAAAA	1020
	ACAAAATGCT A	AATGAAGCCA	TCAGTCAAGG	GTCACATGCC	AATAAACAAT	AAATTTTCCA	1080
45	GAAGAAATGA 1	AATCCAACTA	GACAAATAAA	GTAGAGCTTA	TGAAATGGTT	CAGTAAGGAT	1140
75	GAGITTGITG	HTTMGITT	TGTTTTGTTT	TGKTTTTTT	AAGACGGAGT	CTCGCTCTGT	1200
	CACTCAGGCT (GGAGTGCAGT	GGTATGATCT	TGGCTCACTC	TAACCTCCGC	CTCCCGGGTT	- 1260
50	CAAGCCATTC '	TCCTGCCTCA	GTCTCCTGAG	TAGCTGGGAT	TACAGGTGCG	TGCCACCATG	1320
	CCTGGCTAAT '	TTTGTGTTT	TTAGTAGAGA	CAGGGTTTC	CCATGTTGGT	CGGGCTGGTC	1380
55	TCAAACTCCT	GACCTCTTGA	TCCGCCTGCC	TTGGCCTCCC	AAAGTGATGG	GATTACAGAT	1440
55	GTGAGCCACC	CGTGCCCTAG	CCAAGGATGA	A GATTTTAA	A GTATGTTTCA	GTTCTGTGTC	1500
	ATGGTTGGAA	GACAGAGTAG	GAAGGATATO	GAAAAGGTCI	A TGGGGAAGCA	GAGGTGATTC	1560
60	ATGGCTCTGT	GAATTTGAGG	TGAATGGTT	CTTATTGTC	r aggccacttg	TGAAGAATAT	1620

WO 98/54963 PCT/US98/11422

303

GAGTCAGTTA	TTGCCAGCCT	TGGAATTTAC	TTCTCTAGCT	TACAATGGAC	CTTTTGAACT	1680
GGAAAACACC	TTGTCTGCAT	TCACTTTAAA	ATGTCAAAAC	TAATTTTTAT	AATAAATGTT	1740
TATTTTCACA	TTGAAAAAA	AAAAAATTT	AAAAACYCGG	GGGGGGCCCS	GAACCCCATT	1800
NGCCCCTAAG	GGGGGGGTT	т				1821

10

5

(2) INFORMATION FOR SEQ ID NO: 44:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1024 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

GGGGCACAGT TGAAGAAGCG ACCGAGGGAC TGGGAGTCGT TAGTGAGGAT GACGCGGCAT 60 GGCAAGAACT GCACCGCAGG GCCGTCTACA CCTACCACGA GAAGAAGAAG GACACAGCGG 120 25 CCTCGGGCTA TGGGACCCAG AACATTCGAC TGAGCCGGGA TGCCGTGAAG GACTTCGACT 180 GCTGTTGTCT CTCCCTGCAG CCTTGCCACG ATCCTGTTGT CACCCCAGAT GGCTACCTGT 240 30 ATGAGCGTGA GGCCATCCTG GAGTACATTC TGCACCAGAA GAAGGAGATT GCCCGGCAGA 300 TGAAGGCCTA CGAGAAGCAG CGGGGCACCC GGCGCGAGGA GCAGAAGGAG CTTCAGCGGG 360 CGGCCTCGCA GGACCATGTG CGGGGCTTCC TGGAGAAGGA GTCGGCTATC GTGAGCCGGC 420 35 CCCTCAACCC TTTCACAGCC AAGGCCCTCT CGGGCACCAG CCCAGATGAT GTCCAACCTG 480 GGCCCAGTGT GGGTCCTCCA AGTAAGGACA AGGACAAAGT GCTGCCCAGC TTCTGGATCC 40 CGTCGCTGAC GCCCGAAGCC AAGGCCACCA AGCTGGAGAA GCCGTCCCGC ACGGTGACCT 600 GCCCCATGTC AGGGAAGCCC CTGCGCATGT CGGACCTGAC GCCCGTGCAC TTCACACCGC 660 TAGACAGCTC CGTGGACCGC GTGGGGCTCA TCACCCGCAG CGAGCGCTAC GTGTGTGCCG 45 TGACCCGCGA CAGCCTGAGC AACGCCACCC CCTGCGCTGT GCTGCGGCCC TCTGGGGCTG 780 840 TGGTCACCCT CGAATGCGTG GAGAAGCTGA TTCGGAAGGA CATGGTGGAC CCTGTGACTG 50 GAGACAAACT CACAGACCGC GACATCATCG TGCTGCAGCG GGGCGGTACC GSTTCGCGGG 900 CTCCGGAGTG AAGCTGCAAG CGGAGAAATC ACGGCCGGTG ATGCAGGCCT GAGTGTGTGC 960 1020 55 1024 AAAA

PCT/US98/11422

(2) INFORMATION FOR SEQ ID NO: 45:

(i)	SECUENCE	CHARACTER	ISTICS:

(A) LENGTH: 983 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45: CGACACGCT GCGAGAAGAC GACAGAAGGG CCCGACCGCG AGCCGTCCAG GTCTCAGTGC 60 TGTGCCCCCC CCAGAGCCTA GAGGATGTTT CATGGGATCC CAGCCACGCC GGGCATAGGA 15 180 AGGGAGAAGT ACGACAACAT GGCAGAGCTG TTTGCGGTGG TGAAGACAAT GCAAGCCCTG GAGAAGGCCT ACATCAAGGA CTGTGTCTCC CCCAGCGAGT ACACTGCAGC CTGCTCCCGG 20 CTCCTGGTCC AATACAAAGC TGCCTTCAGG CAGGTCCAGG GCTCAGAAAT CAGCTCTATT 360 GACGAATTCT GCCGCAAGTT CCGCCTGGAC TGCCCGCTGG CCATGGAGCG GATCAAGGAG 420 25 GACCGGCCCA TCACCATCAA GGACGACAAG GGCAACCTCA ACCGCTGCAT CGCAGACGTG GTCTCGCTCT TCATCACGGT CATGGACAAG CTGCGCCTGG AGATCCGCGC CATGGATGAG 540 ATCCAGCCCG ACCTGCGAGA GCTGATGGAG ACCATGCACC GCATGAGCCA CCTCCCACCC 600 30 GACTITGAGG GCCGCCAGAC GGTCAGCCAG TGGCTGCAGA CCCTGAGCGG CATGTCGGCG 660 720 TCAGATGAGC TGGACGACTC ACAGGTGCGT CAGATGCTGT TCGACCTGGA GTCAGCCTAC 35 AACGCCTTCA ACCGCTTCCT GCATGCCTGA GCCCGGGGCA CTAGCCCTTG CACAGAAGGG 780 CAGAGTCTGA GGCGATGGCT CCTGGTCCCC TGTCCGCCAC ACAGGCCGTG GTCATCCACA 840 900 CAACTCACTG TCTGCAGCTG CCTGTCTGGT GTCTGTCTTT GGTGTCAGAA CTTTTGGGCC 40 960

(2) INFORMATION FOR SEQ ID NO: 46:

50

45

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2421 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

55 (D) TOPOLOGY: linear

KGSGGCCGGT CCCCANTCCC CCC

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

CCGGCTGATC GCTGCCGCTC CGCCAATACA ATAGAGCCAK CCACTACCAG CAGCCTGGCC

50

983

	CTCTTCCTCC TTCTCCAGAG AGACCAATCC AGCCGAACTC GGGGTTTGCC TGAGGAGAAG	120
	GAGGAAGTGA CCATGGACAC AAGTGAAAAC AGACCTGAAA ATGATGTTCC AGAACCTCCC	180
5	ATGCCTATTG CAGACCAAGT CAGCAATGAT GACCGCCCGG AGGGCAGTGT TGAAGATGAG	240
	GAGAAGAAAG AGAGCTCGCT GCCCAAATCA TTCAAGAGGA AGATCTCCGT TGTCTCAGCT	300
10	ACCAAGGGG TGCCAGCTGG AAACAGTGAC ACAGAGGGGG GCCAGCCTGG TCGGAAACGA	. 360
10	CGCTGGGGAG CCAGCACAGC CACCACAGA AAGAAACCTT CCATCAGTAT CACCACTGAA	420
	TCACTAAAGA GCCTCATCCC CGACATCAAA CCCCTGGCGG GGCAGGAGGC TGTTGTGGAT	480
15	CTTCATGCTG ATGACTCTCG CATCTCTGAG GATGAGACAG AGCGTAATGG CGATGATGGG	540
	ACCCATGACA AGGGGCTGAA AATATGCCGG ACAGTCACTC AGGTAGTACC TGCAGAGGGC	600
20	CAGGAGAATG GGCAGAGGA AGAAGAGGAA GAAGAGAAGG AACCTGAAGC AGAACCTCCT	660
20	GTACCTCCCC AGGTGTCAGT AGAGGTGGCC TTGCCCCCAC CTGCAGAGCA TGAAGTAAAG	720
	AAAGTGACTT TAGGAGATAC CTTAACTCGA CGTTCCATTA GCCAGCAGAA GTCCGGAGTT	780
25	TCCATTACCA TTGATGACCC AGTCCGAACT GCCCAGGTGC CCTCCCCACC CCGGGGCAAG	840
	ATTAGCAACA TIGTCCATAT CTCCAATTIG GTCCGTCCTT TCACTTTAGG CCAGCTAAAG	900
30	GAGTTGTTGG GGCGCACAGG AACCTTGGTG GAAGAGGCCT TCTGGATTGA CAAGATCAAA	960
30	TCTCATTGCT TTGTAACGTA CTCAACAGTA GAGGAAGCTG TTGCCACCCG CACAGCTCTG	1020
	CACGGGGTCA AATGGCCCCA GTCCAATCCC AAATTCCTTT GTGCTGACTA TGCCGAGCAA	1080
35	GATGAGCTGG ATTATCACCG AGGCCTCTTG GTGGACCGTC CCTCTGAAAC TAAGACAGAG	1140
	GAGCAGGGAA TACCACGGCC CCTGCACCCC CCACCCCCAC CCCCGGTCCA GCCACCACAG	1200
40	CACCCCCGGG CAGAGCAGCG GGAGCAGGAA CGGGCAGTGC GGGAACAGTG GGCAGAACGG	1260
40	GAACGGGAAA TGGAGCGGCG GGAGCGGACT CGATCAGAGC GTGAATGGGA TCGGGACAAA	1320
•	GTTCGAGAAG GGCCCCGTTC CCGATCAAGG TCCCGTRACC GCCGCCGCAA GGAACGTGCG	1380
45	AAGTCTAAAG AAAAGAAGAG TGAGAAGAAA GAGAAAGCCC AGGAGGAACC ACCTGCCAAG	1440
	CTGCTGGATG ACCTTTTCCG AAAGACCAAG GCAGCTCCCT GCATCTATTG GCTCCCACTG	1500
50	ACTGACAGCC AGATCGTTCA GAAAGAGGCA GAGCGGGCCG AACGGGCCAA GGAGCGGGAG	1560
50	AAGCGGCGAA AGGAGCAAGA AGAAGAAGAG CAAAAGGAGC GGGAGAAGGA AGCCGAGCGG	1620
	GAACGGAACC GACAGCTGGA GCGAGAGAAA CGTCGGGAGC ACAGTCGGGA GAGGGACAGG	1680
55	GAGAGAGAGA GAGAAAGGGA GCGGGACAGG GGGGACCGAG ATCGGGATAG GGAAAGGGAC	174
	CGAGAACGAG GCAGGGAAAG GGATCGCAGG GACACCAAGC GCCACAGCAG AAGCCGGAGT	180
60	CGGAGCACAC CTGTGCGGGA CCGGGGTGGG CGCCGCTAGC TGGGAAAACA CTAGAGCTGC	186

WO 98/54963

306

PCT/US98/11422

340

•	AGGTACCAGC CACTCGGCCC CAGGGGGTTA TGGCCACAGA GGGATAGGCA CAGTCTCCAC	1920
	CACCCTGGAG CCAAGGGTCT TTCACATCAC CTATCCCTAC ATACATACCA AATGGAAAAG	1930
5	TGGCCATCCT TTTCCCCCCA AACACACCCC CTTAACCTAT CTCTTGGGAC TTAGCCCGAC	2040
	CCTCCCTCTC ATTTCCCATT AAGTCTGAGA GGCAAGAGCT AGGTTAGGCA AGGAGGTGGT	2100
١.	TGGCCAGAGA TGGGGAACAG CCAGGTGCCC CAGTCCTCTG ATTITTCCTC CATCCTGCTT	2160
10	ACCACCTCCC TGGGTACTTA CAGCCTTCTC TTGGGAACAG CCGGGGCCAG GACTGGGTCA	2220
	CCTATGAGCT GAATCAGCAT CTCCTCCTGA GTCCCAGGGC CCCTGCAGTT CCCAGTCTCT	2280
15	TCTGTCCTGC AGCCCTTGCC TCTTTCCCAC AGGTTCCACT TTATATCCAC CTTTTCCTTT	2340
	TGTTCAATTT TTATTTTTAT TTTTTTTATT ATTAAATGAT GTGGTCTATG GAAAAAAAA	2400
20	TAAAAATCTG ACTTAGTTTT A	2421
25	(2) INFORMATION FOR SEQ ID NO: 47: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 840 base pairs	
30	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:	
35	CTCAAACTCC TGAGCTGAAG CGATCTACCT GCCTCAGCTA GGATTACAGG TGTGAGCCAC	50
-	CGCACCCAAC CTCAATAAGC KTATTTGATA AAAKATATGC AAGCTCCCTT TATKCACTTT	120
	TCATTCAGAA TGTTTAGTAA TTTGTATTGT TTTTCAGATT TTCAGCCCAA TATATCTCC!	180
40	TGCCCACTGT GTCACTGTAT TCTACCTAWA CATCATCACG TGTTTCTGCT ATTGGCTGTA	240
	TGATGGAACA CTGCGGCTCA TTTTCCTGAA AACTGCCGAT AGTGCATAGA RTGCTGGGÀT	300
45	GGAAACCAGA ARCTTTGAAT TCAAGCCTTG GTTCTGCCTT GTTTTTGCTT GGGTGGCCTT	360
	GAGTCAGCCA CATACCTTTT AAAATCTCAA TTTATTAGAA ATTATTCCAA ATCAAAATCA	420
	AATGAGAAGG TATATACAAA AGTGCTTTAT CCCACAATAA ACTATTCAAG AGAGAGCAAA	1 80
50	GGAGAGGACA TITACTCAAC ACCICCTAAA AGGCAGCCAG IGAAATTAGG CATITTATIT	54
	AATCCTCCTG GCAACTCTGA GAGTAAAGCA TTATTAATCC CATTTTGGCT GTTTAAAG23	50
55	ATTATITGCA CTAGATTCCA GCTGTAGTTT AGYTTCAGAA AAAAAAATCC TGAGATGTGA	66
,,	ATTCACAGCT TTCTGGGTTT AAAGCCCAAG CTCTATCACA TCATGCTATT ATTGTTACAT	72
	TACTGCTAGT TCTATGAAAA GAAATACTAA TTTATGAAAT ACATCTTATC CAAAAAAAAAA	78

60 AAAAAAAAC TOGGAGGGGG GGCCCGTACC CAAATCGCCG GATAGTGATC GTAAACAATC

WO 98/54963 PCT/US98/11422

307

5	(2)	INFORMATION	FOR	SEO	ID	NO:	48:
.)	121	INFORMATION	LON	250			20.

10

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2432 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

GGCACGAGGC CCGGAACGCT GAGGAAGGGC CCGTCCCGCC TTCCCCGGCG CGCCATGGAG 60 15 CCCCGGGCGG TTGCAGAAGC CGTGAGACG GGTGAGGAGG ATGTGATTAT GGAAGCTCTG 120 CGGTCATACA ACCAGGAGCA CTCCCAGAGC TTCACGTTTG ATGATGCCCA ACAGGAGGAC 180 20 CGGAAGAGAC TGGCGGASTG CTGGTCTCCG TCCTGGAACA GGGCTTGCCA CCCTCCCACC 240 GTGTCATCTG GCTGCAGAGT GTCCGAATCC TGTCCCGGGA CCGCAACTGC CTGGACCCGT 300 TCACCAGCCG CCAGAGCCTG CAGGCAYTAG CCTGYTATGY TGACATCTCT GTCTCTGAGG 360 25 GGTCCGTCCC AGACTCCGCA GACATGGATG TTGTACTGGA GTCCCTCAAG TGCCTGTGCA 420 ACCTCGTGCT CAGCAGCCCT GTGGCACAGA TGCTGGCAGC AGAGGCCCGC CTAGTGGTGA 480 30 AGCTCACAGA GCGTGTGGGG CTGTACCGTG AGAGGAGCTT CCCCCACGAT GTCCAGTTCT 540 TTGACTTGCG GCTCCTCTTC CTGCTAACGG CACTCCGCAC CGATGTGCGC CANAGCTGTT 600 TCAGGAGCTG AAAGGAGTGC GCCTGCTAAC TGACACACTG GAGCTGACGC TGGGGGTGAC 660 35 TCCTGAAGGG AACCCCCCAC CCACGCTCCT TCCTTCCCAA GAGACTGAGC GGGCCATGGA 720 GATCCTCAAA GTGCTCTTCA ACATCACCCT GGACTCCATC AAGGGGGAGG TGGACGAGGA 780 40 AGACGCTGCC CTTTACCGAC ACCTGGGGAC CCTTCTCCGG CACTGTGTGA TGATCGCTAC 840 TGCTGGAGAC CGCACAGAGG AGTTCCACGG CCACGCAGTA ASCCTCCTGG GGAACTTGCC 900 CCTCAAGTGT CTGGATGTTC TCCTCACCCT GGAGCCACAT GGAGACTCCA CGGAGTTCAT 960 45 GGGAGTGAAT ATGGATGTGA TTCGTGCCCT CCTCATCTTC CTAGAGAAGC GTTTGCACAA 1020 GACACACAGG CTGAAGGAGA GTGTAGCTCC CGTGCTGAGC GTGCTGACTG AATGTGCCCG 1080 50 GATGCACCGC CCAGCCAGGA AGTTCCTGAA GGCCCAGGTG CTGCCCCCTC TGCGGGATGT 1140 GAGGACACGG CCTGAGGTTG GGGAGATGCT GCGGAACAAG CTTGTCCGCC TCATGACACA 1200 CCTGGACACA GATGTGAAGA GGGTGGCTGC CGAGTTCTTG TTTGTCCTGT GCTCTGAGAG 1260 55 TGTGCCCCGA TTCATCAAGT ACACAGGCTA TGGGAATGCT GCTGGCCTTC TGGCTGCCAG 1320 GGGCCTCATG GCAGGAGGCG GCCCGAGGGC AGTACTCAGA GGATGAGGAC ACAGACACAG 1380

•	ATGAGTACAA	GGAAGCCAAA	GCCAGCATAA	ACCCTGTGAC	CGGGAGGGTG	GAGGAGAAGC	1440
	CGCCTAACCC	TATGGAGGGC	ATGACAGAGG	AGCAGAAGGA	GCACGAGGCC	ATGAAGCTGG	1500
5	TGACCATGTT	TGACAAGCTC	TCCAGGAACA	GAGTCATCCA	GCCAATGGGG	ATGAGTCCCC	1560
	GGGGTCATCT	TACGTCCCTG	CAGGATGCCA	TGTGCGAGAC	TATGGAGCAG	CAGCTCTCCT	1620
10	CGGACCCTGA	CTCGGACCCT	GACTGAGGAT	GGCAGCTCTT	CTGCTCCCCC	ATCAGGACTG	1680
10	GTGCTGCTTC	CAGAGACTTC	CTTGGGGTTG	CAACCTGGGG	AAGCCACATC	CCACTGGATC	1740
	CACACCCGCC	CCCACTTCTC	CATCTTAGAA	ACCCCTTCTC	TTGACTCCCG	TTCTGTTCAT	1800
15	GATTTGCCTC	TGGTCCAGTT	TCTCATCTCT	GGACTGCAAC	GGTCTTCTTG	TGCTAGAACT	1860
	CAGGCTCAGC	CTCGAATTCC	ACAGACGAAG	TACTTTCTTT	TGTCTGCGCC	AAGAGGAATG	1920
20	TGTTCAGAAG	CTGCTGCCTG	AGGGCAGGGC	CTACCTGGGC	ACACAGAAGA	GCATATGGGA	1980
	GGGCAGGGGT	TTGGGTGTGG	GTGCACACAA	AGCAAGCACC	ATCTGGGATT	GGCACACTGG	2040
	CAGAGCMANT	GTKTTGGGGT	ATGTGCTGCA	CTTCCCAGGG	AGAAAACCTG	TCAGAACTTT	2100
25	CCATACGAGT	ATATCAGAAC	ACACCCTTCC	AAGGTATGTA	TGCTCTGTTG	TTCCTGTCCT	2160
	GTCTTCACTG	AGCGCAGGGC	TGGAGGCCTC	TTAGACATTC	TCCTTGGTCC	TCGTTCAGCT	2220
30	GCCCACTGTA	GTATCCACAG	TGCCCGAGTT	CTCGCTGGTT	TTGGCAATTA	AACCTCCTTC	2280
	CTACTGGTTT	' AGACTACACT	TACAACAAGG	AAAATGCCCC	TCGTGTGACC	ATAGATTGAG	2340
	ATTTATACCA	CATACCACAC	ATAGCCACAG	AAACATCATC	TTGAAATAAA	GAAGAGTTTT	2400
35	GGACAAAAAA	AAAAAAAA	AAAAAAAAA	AA			2432

40 (2) INFORMATION FOR SEQ ID NO: 49:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1742 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

50	GTCCTGCAGG	AGCTGCACGC	GGCCGAGGTG	CGCANGAACA	AGGAGCAGCG	AGAAGAGATG	60
	TCGGGCTAAG	GGCCCGGSAC	GRGSGGCGCC	CATCCTGCGA	CGGAACACGT	TCGGGTTTTG	120
55	GTTTTGTTTC	GTTCACCTCT	GTCTAGATGC	AACTTTTGTT	CCTCCTCCCC	CACCCCAGCC	180
55	CCCAGCTTCA	TGCTTCTCTT	CCGCACTCAG	CCGCCCTGCC	CTGTCCTCGT	GGTGAGTCGC	240
	TGACCACGGC	TTCCCCTGCA	GGAGCCGCCG	GGCGTGRAGA	CGCGCTCCCT	CGGTGCAGAC	300
60	ACCAGGCCGG	GCGCGGCTGG	GTCCCCCGGG	GGCCCTGTGA	GAGAGGTGGY	GGTGACCGTG	360

	GTAAACCCAG GGCGGTGGCG TGGGATCRCG GGTCCTTACG CTGGGCTGTC TGGTCAGCAC	420
-	GTGCAGGTCA GGGCAGGTCC TCTGAGCCGG CGCCCCTGGC CAGCAGGCGA GGCTACAGTA	480
5	CCTGCTGTCT TTCCAGGGGG AAGGGGCTCC CCATGAGGRA GGGGCGACGG GGGAGGGGGG	540
	TGATGCTGCC TGGGAAGCCT GCKTGTGCAN CCGGTGCTTG TTGAACTGGC AGGCGGGTGG	. 600
10	GTGGGGGCTG CAGCTTTCCT TAATGTGGTT GCACAGGGGT CCTCTRAGAC CACCTGGCGT	660
	GAGGTGGACA CCCTGGGCCT TCCTGGAAGC CTGCAGTTGG GGGCCTGCCC TGAGTCTGCT	720
15	GGGGAGTGGG CATTCTCTGC CAGGGACCCA TGAGCAGGCT GCATGGTCTA GAGGTTGTGG	780
13	GCAGCATGGA CAGTCCCCCA CTCAGAAGTG CAAGAGTTCC AAAGAGCCTC TGGCCCAGGC	840
	CCCTCCGTGG GACAGCCCCG CCGCCCCTCC CCACCAGGGC TTTGCAGATG TCCTTGAAAG	900
20	ACCCACCCTA GAGCCCTTTG GAGTGCTGGC CCCTCCTGTG CCCTCTGCCC TGGTGGAAGC	960
	GGCASCACAA GTCCTCCTCA GGGAGCCCCA AGGGGGATTT TKTGGGACCG CTGCCCACAG	1020
25	ATCCAGGTGT TGGAAGGGCA GCGGGTAAGG TTCCCAAGCC AGCCCCAACA CCCTTCCCAC	1080
	TTGGCACCCA GAGGGGGCTG TGGGTGGAGG CCTGACTCCA GGCCTCTCCT GCCCACACCC	1140
	TCTGGGCTGA GITCCTTCTT TCCCTTGGAC GCCCAGTGCT GGCCTTGGAG GACGGTCAGC	1200
30	TGGAGGATGG CGGTGGGGGA GGCTGTCTTT GTACCACTGC AGCATCCCCC ACTTCTCCAC	1260
	GGAAGCCCCA TCCCAAAGCT GCTGCCTGGC CCCTTGCTGT AAAGTGTGAA GGGGGCGGCT	1320
35	GAGTTCTCTT AGGACCCAGA GCCAGGGCCC TCAACTTCCA TCCTGCGGGA GGCCTTGGCC	1380
33	GGGCACTGCC AGTGTCTTCC AGAGCCACAC CCAGGGACCA CGGGAGGATC CTGACCCCTG	1440
	CAGGGCTCAG GGGTCAGCAG GGACCCACTG CCCCATCTCC CTCTCCCCAC CAAGACAGCC	1500
40	CCAGAAGGAG CAGCCAGCTG GGATGGGAAC CCAAGGCTGT CCACATCTGG CTTTTGTGGG	1560
	ACTCAGAAAG GGAAGCAGAA CTGAGGGCTG GGATATTCCT CATGGTGGCA GCGCTCATAG	1620
45	CGAAAGCCTA CTGTAATATG CACCCATCTC ATCCACGTAG TAAAGTGAAC TTAAAAATTC	1680
73	AATCAAATGA ACAATTAAAT AAACACCTGT GTGTTTAAGA AAAAAAAAA AAAAAAAACTG	1740
	CG .	1742

(2) INFORMATION FOR SEQ ID NO: 50:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1487 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:	
	GGCACGAGCC TCCGCGAACT GTGGAGTCGG CGGAGGGCTG GAATCAGCGT GGGCTCCAGG	60
5	TCGCTGGCAG CCGCGTGGCA GAACTCTTCC GAGGCTCCTT GGGAAGAAGC TACACCCGAG	120
	GGAGCCGGAT GGGCCTCGAA AACCTGGCCC GCTCTGGTTC TGTACCATTG CAAGGGGAAC	180
10	CGTAAACTGA GCTTTTCTAA CGTGGGTTTC TGCCAAGTAC TTTTCCAGCT GCCCCCTTCC	240
10	CCCCAGCACA CAGGAGAGCC TCTGTGTAGC CAGCGCTTGA CAGTCGTTAG GTAGGTTGTA	300
	CTGTGTAGGG AGGAGCTCAA GATCATGAAT GGTTGTCACA GGAGAAAGCG GTTGCATCTT	360
15	TGCAAAACTA TATACCTGCT GTGGTTTGTG TTTTCTTTTC	420
	AGTTCACACT GGCACATTCT CAGGGCTGTG CAGATTATTT GCACTTTATT TCATAGGTGR	480
20	ATAAGTGCTT TTTAGCTTTC TTTGTATATT GAGTTGCTTT TGAATTGCTT CCCATATTTT	540
20	TATTTCATAC AAACTGAACA ATTGTGGCCC CTCTATTTTA TTTATAAAGG TTCAGTGTAT	600
	CTTTGCCTGC CTACATCAAT CTGCAAGGGA GTTGCAGAAA GCCTCATGTT CATCGAGCCG	660
25	TGAGTCACAA CCAATTTCTA AGCTGTTATA ACAAAAAAGT GTTTGCTTTT TTTCACAAGT	720
	AACTTTAAAA GTGTAGTTTA GAAAGAAAAC ATTTTCAATA AAAAGACACT ACATTAATCC	780
30	TGGATGCTTG CAAATCCTAA AATMIATTCC TCCTCTAGCG TTGCACAGCT CTGTGTGTA	840
50	TACACAGACT AGCTTTAAAA TTTGTCACAT ACCACTTTAC CTTTACTTTT ATGTATCATT	900
	CCCCCGACTT CCTTACTGCA GGTGTGGGCA AGAAAACTTT TCCTTTAACA CTTTTCAACA	960
35	GCGGGCATAA AATTCTGCAG CTGAGGTCTT GAAGAATGCA GATGGGTACA GTATGTGTTG	1020
	GAGCTCACAG TGTGTATTGA CTAACCTAGT TCCTTTTTTTG CTTTTTTTTGG TATTGTCTTG	108
40	TTAAAAGTGA CTCCCAGGTA GCAACTCTCT TTTTTAAGGG TGGGAACGAA AGGGACGTAG	114
	GAAGAATAGA TCTAGATTAT TTAACAGTCT TCGATAGAGT TTGAAAGCTT TCTTCTTCAT	120
	TCAATTTTGG GCAAAATACT GCCTCTGCAT TTGTTCATAA CAAAAAGATT AGATTAATAA	126
45	GTAGCTTTTG TTGGTGGAAA TTACCAGCTC TATAAGTCAC CCTTGGTGGT TCATGGACCT	132
	CTGATTAGCT TGGGTTTTGC AGTCTCATTG CCACATGTAT ATGTGGAGCC AATGGCCTTT	138
50	TGGTGCTCAG CTGTTTACGT CTGACTCCTT GACTTCTTTG GTACAGTGAT GGAGTCAGAT	144
30	CTCATTAAGT GTGATTCTCC ATGGATATAA CCAGCCCCAA AAAAANG	148

- (2) INFORMATION FOR SEQ ID NO: 51:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1328 base pairs
- 60 (B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

5		
3	GGCACGAGCT CGTGCCGAAT TCGGCACGAG AGAAGATTTG AAGAAGCCAG ATCCAGCTTC	60
	CCTGCGGGCT GCTTCTTGTG GGGAAGGGAA AAAGAGGAAG GCCTGTAAGA ACTGCACCTG	120
10	TGGCCTTGCC GAAGAACTGG AAAAAGAGAA GTCAAGGGAA CAGATGAGCT CCCAACCCAA	180
	GTCAGCTTGT GGAAACTGCT ACCTGGGCGA TGCCTTCCGC TGTGCCAGCT GCCCCTACCT	240
15	TGGGATGCCA GCCTTCAAAC CTGGGGAAAA GGTGCTTCTG AGTGATAGCA ATCTTCATGA	300
15	TGCCTAGGAG GTTCCTGACA TGGGACCCAT CTGCTCCTCC AGCCAACTCC TGTCCCTCAC	360
	ATCCCACCAT GGTGGCTCCT CCCACCTCCT CTGGATTTGT TCACTCTGAG ATCTGTTTGC	420
20	AGAGTGGGTG CTTAGCAGAC AGAGTGAAGC TGGCTGGGGG GCACAGTGGT GTGTAGTGCT	480
	GCTGTGTATC AAAAGACCAA GGTATTATGG GACCTGGTTT CAGAATGGGA TGGGTTTCTT	540
25	CACCTCATGT TAAGAGAAGG GAGTGTGTCC TGAAGAAGCC CTTCTTCTGA TGTTAAAATG	600
25	CTGACCAGAA CGCTCTTGAG CCCAGGCATC GTTGAGCATT AACACTCTGT GACAGAGCTG	660
	CAGACCCCTG CCTTGAGTCT CATCTCAGCA ATGCTGCCAC CCTCTTGTCT TTCAGAGTTG	720
30	TTAGTTTACT CCATTCTTTG TGACACGAGT CAAGTGGCTC ACAACCTCCT CAGGGCACCA	780
	GAGGACTCAC TCACTGGTTG CTGTGATGAT ATCCAGTGTC CCTCTGCCCC CTTCCATCCC	840
35	CAACCACATT TGACTGTAGC ATTGCATCTG TGTCCTGTTG TCATTTATGT TAACCTTCAG	900
33	GTATTAAACT TGCTGCATAT CTTGACATAT CTTGAGATTC TGCATGTCTT GTAAAGAGAG	960
	GGGATGTGCA TTTGTGTGTG ATGTTGGATA GTCATCCACG CTCAGTTTGG ACCATTGGAG	1020
40	GAACTTAGTG TCACGCACAA ATGGGGCTAT TCCTACGCTT AGAATAGGGC TTGTCTGCCC	1080
	ACTITAGAAG AGTCCCAGGT TGGTGAGCAT TTAGAGGGAA GCAGGGCAGA ACTCTGAACG	1140
45	ACAATACGTC TCTCTGAGCA GAGACCCCTT TGTTCTTGTT ATCCACCCAT ATGGACTTGG	1200
43	AATCAATCTT GCCAAATATT TGGAGAGATT GTGTGGATTT AAGAGACCTG GATTTTTATA	1260
	TTTTACCAGT AAATAAAAGT TTTCATTGAT ATCTGTCCTT GAAAAAAAAA AAAAAAAAAA	1320
50	AAACTCGA	1328

(2) INFORMATION FOR SEQ ID NO: 52:

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1856 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ □ NO: 52:

	(73.2) 52.2 (52.2 52.2 52.2 52.2 52.2 52.2 52.	
5	GAATTCGGCA CGAGCTCTGC AACATTSCAA ATSAACTTGT AGGCGAGGGT TCCGCTGCCC	60
	CCTAGATTAA ATTCCCCGGG CTGAAACTGA GTTGCAGATT TACAATATCA TATTTTAAAT	120
10	TECTETOTIC AATTARACCA TITATERCIA TARCTRATTI TORGGATETO GATECATECT	180
10	THTCCAGGCC TTCCTTCTTT GTACAARAGT ARATGTCCAT RARGCGTTTC ACTTATATTC	240
	TYCHARCATG ATGCTRATTT ARATTARITA CTTCCTATGR TRIGITATIA TTCCTATGRT	300
15	THYGCCACTG THATTAGTTC TCTCAAAAAT ACATCTAGGG AAGAGGATTA TTTTAAGTRA	360
	THYGATTATC THYCTATCTC THYTATTIAL THOTCALTIA CHIAAGAAAF TOGTTCCATT	420
20	GGTTGGCATT GATACAGTAA ATTTGTAAAT GAGGAGACAA TAJAAAAAAT CTAAATTACT	480
20	TGTGCTTAAT GACTGTAGCA GAATSCCTTT TCTCTAAATC AGALTGTCTT TCTTGCAGTT	540
	TAGTITGATA GATTTGCAAG CTATGCTGCT TCCATGAAGT TAGTTGCGCT GGTAGGAACG	600
25	CAGGCTTCTT TGTCTCTGGT TGTAGCTTGC ATGATCGCCC CACTAGGCAG ACAACGTAGC	660
	CGGAGATCAC AAATCAGGCC CTTGGTGTAG TTGCTAGTGT GTGGAGGTGC AGAGAGGTTG	720
30	GCAGAAACTG ACCTCACTGG GCAAGGGTGG CCATGGACCT GALTISTTTAA TGCACTCTAT	780
50	GTGTTCAGGA AGCCACAGGC CATATTYGAC TCTGAGAAAA AAAACAAGAG GAAAAACCCC	840
	ACAAAGTATA ACAACCCCTT AAGATACATC TATTTTAAAG TGAAAFTAAT TTTTCAGTFT	900
35	ATACCATTGG CCANTTACAA GATAANATG TTCNATTTOT TUNAGAATCC TTTGTTGACT	960
	TGTCTTTTCA TCTCTTGCTA TTTATATTG TCACTGTTAG TCAACAAAGT CTTATTTGCT	1020
40	GAGGAAGGAC TTTGCTGCAC TTACTGTACC ACATCAAACA CTGGGGAGGG TGGTGTTTAA	1080
,,	CTTTTTAAAA AATGTTATTC TGATTATAL AATAATATTG GCTTTTTCA TGAAAAGAGC	1140
	GCCACCTTGC AAGGITTAGT GAGATTIATG GAAGITGAAI AUSTRAGCAG GAATTGCTGC	1200
45	TAGCTCCAAA AATTTGCGAA GCAAAAGCTA GCCCCAATTG GTTTGGAAGT TTGAAACTGA	1260
	TTAACAGATT TGCATTTGAA GTGACTICAS ACATTAGGTC CAGACATTAG TTAAAAAATAG	1320
50	AAAGAGGAAT AAAGACATCT YTTCTCTCTA GAAAAGATAA CACCACAATT AATAATCCTT	1380
30	CCCACTITCA TIGAGATCAG CITGICIGAL AACCIGATAL GAGTGIGALA AIGATAAACA	1440
	TGATAATAGT GGTACTTTTG TAATTTTGCT GGTGCATTTA AGRAGATAGT AAAKGATGAG	1500
55	TYCAYCTTTT CTYCGAACAT YCCTATYCCT AGATGIAGTT TACCTCAAAT TGGGAATTAT	1560
	AACTGTCCTA ATTTTTGTTG TGTACCCTGA TGCCCCTTTT GCTTTAATAC CCACAGTGTA	1620
60	ACAATTAAAT ATCACACTAT GACATATGAT TEAGGTAGGA TATTITAAAG ATAAATTITA	1680

15

GGGGTAAATG	TTTACTTCAA	AATGACTCCA	TATTTCAAAT	ATCTGTTTAG	ACTGTGAAGG	1740
ССАААТААТТ	TTTAAGAAAA	CATTTGAAGA	GTAGTGTGTT	TGCATTTGTG	AATAATCTTA	1800
CTCACAGCAA	GTAAACGTAA	TAAAAGCCAA	CATTTAAGCC	ааааааааа	ААААА	1856

10 (2) INFORMATION FOR SEQ ID NO: 53:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1558 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

20	TGGGTATCCA	TTCCTGNAAT	TACTTTACTT	AGGATAATGG	CCTCCAGCTC	CGTCCAAGTT	60
	GCTGCAAAAG	GTATTATTTC	GTTCCTTTTT	GTGGCTGAGT	AGTATTCCAT	GGTGTATATA	120
25	TACCACATTT	TCTTTATCCA	CTCATTGCTT	GATGGGCAGT	TAGGTTGGTT	CCACATCTTT	180
23	GCAATTGTGA	GTTGTGCTGC	TCCAGATATC	ATCTTTAACT	CCTTTGCCTT	CTCCACATAC	240
	ATTTCCAAGT	CCTGTTCATT	CTACCTCCAA	AATGTATCTT	GTATCCATTC	ATCTCTCTCC	300
30	ATCTTCAATC	TATTTCAATG	CCCCATCATC	TCTTGCATGG	AGGAGTGTAA	TAATTGGCTA	360
	ACTGGCCTGT	TCTTACATTT	TAAAATCAAA	AGATGTGACA	GGTGAAATGC	CTATTTCAGT	420
35	GTCCATTGAT	GGTTCTGCTT	ACACACCACC	TGGCTGCCTG	GTGTCGCAGT	GGCAGAGTTG	480
33	AGCAGTGTGA	AAAAGACTGC	TTGGCCCTTT	ACAGGGAAAG	CAGGTCCACT	GTGGCCTGTG	540
	AGGACGAGAG	CTCTGGGCAG	GCTCGGACAC	TGGCAGACCC	TGGTCCTGGC	TGGCCAAGGC	600
40	AGCAGGGTAT	GTGTTTCGGG	TCACTCACAG	GGCTCAGCAC	CACTCCTCAT	GGCTTCCTTA	660
	CTGTTTCGGC	AGAGGCTGAC	CCGCGGCTGA	TTGAGTCCCT	CTCCCAGATG	CTGTCCATGG	720
45	GCTTCTCTGA	TGAAGGCGGC	TGGCTCACCA	GGCTCCTGCA	GACCAAGAAC	TATGACATCG	780
73	GAGCGGCTCT	GGACACCATC	CAGTATTCAA	AGCATCCCC	GCCGTTGTGA	CCACTTTTGC	840
	CCACCTCTTC	TGCGTGCCCC	TCTTCTGTCT	CATAGTTGTG	TTAAGCTTGC	GTAGAATTGC	900
50	AGGTCTCTGT	ACGGGCCAGT	TTCTCTGCCT	TCTTCCAGGA	TCAGGGGTTA	GGGTGCAAGA	960
	AGCCATTTAG	GGCAGCAAAA	CAAGTGACAT	GAAGGGAGGG	TCCCTGTGTG	TGTGTGTGCT	1020
55	GATGTTTCCT	GGGTGCCCTG	GCTCCTTGCA	GCAGGGCTGG	GCCTGCGAGA	CCCAAGGCTC	1080
33	ACTGCAGCGC	GCTCCTGACC	CCTCCCTGCA	GGGGCTACGT	TAGCAGCCCA	GCACATAGCT	1140
	TGCCTAATGG	CITTCACTTT	CTCTTTTGTT	TTAAATGACT	'CATAGGTCCC	TGACATTTAG	1200
60	TTGATTATTT	TCTGCTACAG	ACCTGGTACA	CTCTGATTTT	AGATAAAGTA	AGCCTAGGTG	1260

	TTGTCAGCAG	GCAGGCTGGG	GAGGCCAGTG	TTGTGGGCTT	CCTGCTGGGA	CTGAGAAGGC	1320
5	TCACGAAGGG	CATCCGCAAT	GTTGGTTTCA	CTGAGAGCTG	CCTCCTGGTC	TCTTCACCAC	1380
	TGTAGTTCTC	TCATTTCCAA	ACCATCAGCT	GCTTTTAAAA	TAAGATCTCT	TTGTAGCCAT	1440
	CCTGTTAAAT	TTGTAAACAA	TCTAATTAAA	TGGCATCAGC	ACTTTAACCA	АААААААА	1500
10	ааааааааа	AAANAAAAA	AAAAGGGGGC	CGCTCTAGAG	GTCCAAGTTA	NGACGNGG	1558

15 (2) INFORMATION FOR SEQ ID NO: 54:

20

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 948 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

25	TAAAAATCAT	GCTCTGTACC	ATCCTCACCG	TAGTCATCAT	CATCGCCGCG	CAGACCACGA	60
	GAACTACTGG	GATCCCTAAA	AACGCCCCTG	GTCCGGCCCC	ACTCTGCGCC	CCTCGATCTC	120
30	CCAGGCTCTT	TCTGCAGWCA	TACCGCGGAC	CCAATGGGCG	CCCTGCACAC	CCGTTTCTGG	180
30	GGCCGTCAGA	CTTGGATACA	TCGTAAACTC	CGCCTCCACG	GAACGTCTCG	CCTKGCGAGC	240
	AAGMTCGGAA	TCCAGTTCCT	CAGGAACCCC	TCCAAAACCC	ACACCCCCAG	GGACGCCGCT	300
35	TTCCGGGATC	CCGGSCAAAC	GCCGGACCCT	CAGTCGCTCC	AGGCCCCCTC	ACCCTCAAAG	360
	TGTAGCGCCC	CCAACCGAGC	AACCTCGGTT	TGGTCCCTAA	AACCCCGCCT	CCTCTATAAG	420
40	CACCGCCCCA	GCTCTGACAA	AACCCCGCCT	CCAGGTCGGC	AGGCTCCGCT	TCTTTTCTTC	480
40	TCCGCGGGGT	GATTCAGTCC	AGTGATTGGG	TTTGTGGCTC	CAGGCCTCGC	CCACAGACGG	540
	ACAGACCCCT	CCCTTTCTTC	CGGCAAAAGG	ACCGAGCCCT	GGGGTAGTAA	GGSCCCCACA	600
45	CTCCTGTTTT	TTGCAAGTAC	ATTTTTGTCC	YTCCTCCACC	CAGGTATCTG	CCTATTTTCT	660
	TGCTAATCCC	AGAACCTTTC	CTTTTGCTTT	TTTTAAGGAC	ATTTGGGAAG	TTCCTGGTGT	720
50	AGGACCCTTC	TCCCTGGGAT	AAGAAACCTG	CCTGTAAACG	CTCTGTAAAT	ACTCCCTTCC	780
30	ACCCATCCCA	GCCCCTGGGC	AGCCGGGCAG	AAGGGAATCC	AGGCTATGGA	CCTCCCAAGT	840
	CCCCGCTCCC	CGCTCCCCTC	GGCGGCCCG	CCTTGTTCTG	ATCTGTGTGT	GAGTGTGTGT	900
55	GAACTTCTGA	AAGACAATAT	TAAAGAGACT	TAGTTGAAAA	ААААААА		948

⁽²⁾ INFORMATION FOR SEQ ID NO: 55:

(i) SEQUENCE CHARACTERISTICS:

5	(A) LENGTH: 990 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:	-
10	GGGGAACTGC AGTGACAGCA GGAGTAAGAG TGGGAGGCAG GACAGAGCTG GGACACAGGT	60
	ATGGAGAGGG GCTTCAGCGA GCCTAGAGAG GGCAGACTAT CAGGGTGCCG GCGGTGAGAA	120
	TCCAGGGAGA GGAGCGGAAA CAGAAGAGGG GCAGAAGACC GGGGCACTTG TGGGTTGCAG	180
15	AGCCCCTCAG CCATGTTGGG AGCCAAGCCA CACTGGCTAC CAGGTCCCCT ACACAGTCCC	240
	GGGCTGCCCT TGGTTCTGGT GCTTCTGGCC CTGGGGGCCCG GGTGGGCCCA GGAGGGGTCA	300
20	GAGCCCGTCC TGCTGGAGGG GGAGTGCCTG GTGGTCTGTG AGCCTGGCCG AGCTGCTGCA	360
	GGGGGGCCCG GGGGAGCAGC CCTGGGAGAG GCACCCCCTG GGCGAGTGGC ATTTGYTGCG	420
25	GTCCGAAGCC ACCACCATGA GCCAGCAGGG GAAACCGGCA ATGGCACCAG TGGGGCCATC	480
23	TACTTCGACC AGGTCCTGGT GAACGAGGGC GGTGGCTTTG ACCGGGCCTC TGGCTCCTTC	540
	GTAGCCCCTG TCCGGGGTGT CTACAGCTTC CGGTTCCATG TGGTGAAGGT GTACAACCGC	600
30	CAAACTGTCC AGGTGAGCCT GATGCTGAAC ACGTGGCCTG TCATCTCAGC CTTTGCCAAT	660
	GATCCTGACG TGACCCGGGA GGCAGCCACC AGCTCTGTGC TACTGCCCTT GGACCCTGGG	720
35	GACCGAGTGT CTCTGCGCCT GCGTCGGGGG NAATCTACTG GGTGGTTGGA AATACTCAAG	780
33	TITCTCTGGC TICCTCATCT TCCCTCTCTG AAGGACCCAA GTCTTTCAAG CACAAGAATC	840
	CAGCCCCTGA CAACTTTCTT CTGCCCTCTC TTGCCCCANA AACAGCANAA GCAGGANANA	900
40	NACTCCCTCT GGCTCCTATC CCACCTCTTT GCATGGGAAC CTGTGCCAAA CACCCAAGTT	960
	TAAGAAAAAA ATAAAACTGT GGCATCTCCA	990
45		
	(2) INFORMATION FOR SEQ ID NO: 56:	
50	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1603 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:	
	GGTCGACCCA CGCGTCCGGC CCGCCGGCTC CGGAGCGGCT CTGCCTTCCC GAGCGCGGGA	60
60	CCGCGCCCTG GGGGAGGAGG GCGAACGACG CGGCGATGGC TCCGCGGGCA CTCCCGGGGT	120

•	CCGCCGTCCT	AGCCGCTGCT	GTCTTCGTGG	GAGGCGCCGT	GAGTTCGCCG	CIGGIGGCIC	180
	CGGACAATGG	GAGCAGCCGC	ACATTGCACT	CCAGAACAGA	GACGACCCCG	TCGCCCAGCA	240
5	ACGATACTGG	GAATGGACAC	CCAGAATATA	TTGCATACGC	GCTTGTCCCT	GTGTTCTTTA	300
	TCATGGGTCT	CTTTGGCGTC	CTCATTINGC	CAMCTNGCTT	NAAGAAGAAA	GCTATCGTT	360
10	GTACAACAGA	AGCAGAGCAA	GATATCGAAG	AAGAAAAAGG	TTGAAAAGWT	AGRATTGAAT	420
10	GACAGTGTGA	ATGAAAACAG	TGACACTGTT	GGGCAAATCG	TCCACTACAT	CATGAAAAAT	480
	GAAGCGAATG	CTGATGTYTT	AAAGGCGATG	GTAGCAGATA	ACAGCCTGTA	TGATCCTGAA	540
15	AGCCCCGTGA	CCCCAGCAC	ACCAGGGAGC	CCGCCAGTGA	GTCCTGGGCT	TTGTCACCAG	600
	GGGGACGCC	AGGGAAGCAC	GTCTGTGGCC	ATCATCTGCA	TACGGTGGGC	GGTGTWGTCG	660
20	AGAGGGATGT	GTGTCATCGG	TGTAGGCACA	AGCGGTGGCA	CTTTATAAAG	CCCACTAACA	720
	AGTCCAGAGA	GAGCAGACCA	CGGCGCCAAG	GCGAGGTCAC	GGTCCTTTCT	GTTGGCAGAT	780
	TTAGAGTNAC	AAAAGTGGAG	CACAAGTCAA	ACCAGAAGGA	ACGGAGAAGC	CTGATGTCTG	840
25	TTAGTGGGGC	TGAAACCGTC	AATGGGGAGG	TGCCGGCAAC	ACCTGTGAAG	AGAGAACGCA	900
	GTGGCACAGA	GTAGCAGGTG	AGCCGTGGTT	TTGGTGACAT	TGGGGGCAGA	GTGGTGCAGG	960
30	GTGAGGAGAA	GGTACTTGGA	GCCTCCCAGG	TGCTGTGGCA	GCATAGGAAT	GGTATTTGAC	1020
	AGGGAAGTGG	GAGAGCTTTC	CTTGACCCAG	GAAGACTGAG	GGGGACTGAA	CATGATTACT	1080
	TGTCTGCCTA	GAGCTTCTTG	TAAAGAAGTC	ACAAACTTAG	TGCCTCCAGG	GCTTGCCTG	1140
35	TGTGATAATO	GAGGATAGAGG	ATTACTTGTG	AGGCAATGTG	GCATGGTGGG	GATTGTGGCA	1200
	AACTAGAATT	CACATCACCC	ACCATATAGO	GCTTGCATTA	CCACGAGGCA	GAAAGCACCT	1260
40	AGTGTTGCTC	CATCTTCTTA	CGCAAAAAAA	ACAAAATCCA	A GACTTCTAA	ATGTAAAATC	1320
	ACTGATTTTC	GATATTGGCA	GCTTACTTT	CAATTTTTTT C	A CAACCATGC	A GGCCAAATGA	1380
	CTTGTAATCT	TGTCACCATI	TTTAGGTAAA	CTGTGACTTC	AAAAAGTCTY	GAGCAAACAA	1440
45	ACCAATGCT	r trtcctrtt	A TTCTGTTGGF	R AACCAGTTT	r ctttgtgtc	A CAGTTYTGAA	150
	ACCTCAATA	C GAATATTTCT	CTTCCCACCA	A AATATTTTG/	A GGCAATTGA	A AAGCCACAGT	156
50	GATTTATTT	C TTGATTIGGG	AATTTTAAT	TTGCAAGAC	A ATT		160

(2) INFORMATION FOR SEQ ID NO: 57:

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1052 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

WO 98/54963 PCT/US98/11422

317

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:

5	TACAGCTCAG GATGCCTGTA ACATTGTCAT CTCTGGGCTT CTGGGTCCTG CTTAGCCTGC	60
J	TTTTTCCCTG GAGGACTGAC CAGGGATGCG GCCCAGCAAC ATGTTACTAA ATCATACTCT	120
	CCTCCCTACC TTTCCCAGAC CTCTCACTCC TGCCTGGTGT TCCAACCCGT TCTGTGGCCA	180
10	GAGTATACAT TTTGGAACCT CTTCGAGGCC ATCCTGCAGT TCCAGATGAA CCATAGCGTG	240
	CTTCAGCAGN AAGGCCCGAG ACATGTATGC AGAGGAGCGG AAGAGGCAGC AGCTGGAGAG	300
· 15	GGACCAGGCT ACAGTGACAG AGCAGCTGCT GCGAGAGGGG CTCCAAGCCA GTGGGGACGC	360
13	CCAGCTCCGA AGGACACGCT TGCACAAACT CTCGGCCAGA CGGGAAGAGC GAGTCCAAGG	420
	CTTCCTGCAG GCCTTGGAAC TCAAGCGAGC TGACTGGCTG GCCCGTCTGG GCACTGCATC	480
20	AGCCTGAATG AGGCTGGCCA CCTGCCACTT TGCCCTGCCC	540
	MYCCTTCCTT TTCTTGGTGA AAGGCACCTC CTTTCCTGAT AATGAATGGT GTTCCCTTTG	600
25	CTTGGCTGGG GAGCCCCCCA GGCCAGGTTT GCTGGCCATA GATACCTTTG GGCTGCCTGR	660
23	GACAGGCTCC TGAGGAGGAT TGAGGGTGAA AGTCTCCCAC GAGTACACTA AACCTAGGTC	720
	TGGTCACCAA TAGGGTTTGG AGAGCAAAGG GCCACAACTC ATCAGCTGCC TGTCTCTTAG	780
30	ATGCACTITC TITTTCCACC AGCACATCCT TCAACACACA GAATTTCAGG GAAGAGTTCT	840
	CCCCAAAACC CTAGCTCTTT ACCCTTCCAT TTTAGCCTTC CACCCAGCTT CCACAAAAGA	900
35	TTTGGCTCTA CCTTGGATCT GCTAGTAAAT AACTAATAGG CAGGCAGTTA TTTGGGTAAG	960
23	GAAAAAAGGG GTGGGAGAGA CAGAAAATTT GCCCACTGCT GCTCCTCCCC TTGGSTYTCC	1020
	ACCTGGGATT TGCTATTGAA TCTCTACCCT NN	105
40		
	(2) TATTORNAMION FOR CEO ID NO. 59.	
,	(2) INFORMATION FOR SEQ ID NO: 58:	
45	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 814 base pairs	
	(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
50		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:	
	ACNOGNITGGC GGCCGCTCTA GAACTAGGGG ANCCCCCGGG CTGCAGGAAT TCGGCACGAG	6
55	CATAGACTIT TAAACTGGTA CGGTTCTTAG AGATGGTCCT TGGCCTTCTG TTGTTGTTGT	12
	KGTTTTTTC TTTTTCTTCT TCTCCTTCTC CTTCTTCTTC	18
60	TTTTTTTCA GAGTCTTGCT CTGTCACCAA GACTGGAGTG AAGTGATGTG ATCTCGGCTT	24

WO 98/54963

	ACTGCAACCT GGGAGGCAGA GGTTGCAGTG AGTCGAGATG GTGCCATTGC TCTCGTTTGG	300
	GCAACAAGAG TGAAACTCTT GTCTCAAAAA AAAAAAAAAA	360
5	GTCATTACTG GTGGGATCTG GTCACACAAG ATAGCATTAA ACGTGACATG GCACATAAAA	420
	TIGGTTAAAA AATTITGTTT TITAATTACG TAATGTAAAA GCCCAACAAA CACTITATGC	480
10	AAGATTGGAA TGTATCTTCA AATTCAGATT TAATAAACAT GTAAAGATCC TCTGTATATA	540
10	AAAGTTGTAT TTAATCCCTT GTGCCCCAAG AATGCTATAA AAGATCCCAA GAATGTTATC	600
	TATGAAAAGA TAGCAATAGG GAATGGTGAA CAAATAATTT AATTTGCCAA TTCTAAAAAA	660
15	CATGGACTTA AACCCCATGA AAACTTGGTT CCATAGTTTT AACTGTTTTA TGGTTCCAAT	720
	ACAAAACCAG AGTGGTTTAC ATTCCACAAT NACCAAATTT GCATCCAATN TTGGGGTAAT	780
20	TTTNGGTATT TGCCATGGGA TACTATTCAT TTTT	814
	(2) INFORMATION FOR SEQ ID NO: 59:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1215 base pairs(B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(wi) CDOUTING DESCRIPTION OF TO VO. 50	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:	
25	AGAGGAAGTC TITTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA	60
35	-	60 120
35	AGAGGAAGTC TTTTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA	
35 40	AGAGGAAGTC TTTTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA GAGTGCTCTG CTACACTCGT CCCCCTCCTG CCTCATCTTC CTTCTCAGCC TTGGTTCCTG	120
	AGAGGAAGTC TTTTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA GAGTGCTCTG CTACACTCGT CCCCCTCCTG CCTCATCTTC CTTCTCAGCC TTGGTTCCTG ATGGGAACAG AATGGAGGGC CTGAGAACAT ACTTTCTAAA TGCCTTTGAC CCAGGAACCG	120 180
40	AGAGGAAGTC TTTTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA GAGTGCTCTG CTACACTCGT CCCCCTCCTG CCTCATCTTC CTTCTCAGCC TTGGTTCCTG ATGGGAACAG AATGGAGGGC CTGAGAACAT ACTTTCTAAA TGCCTTTGAC CCAGGAACCG ATTATCTATA TTTGTTCCCA TTTTCCTTCA CCGTGACATT CCAGCATTGT CTGACTGTGA	120 180 240
	AGAGGAAGTC TTTTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA GAGTGCTCTG CTACACTCGT CCCCCTCCTG CCTCATCTTC CTTCTCAGCC TTGGTTCCTG ATGGGAACAG AATGGAGGGC CTGAGAACAT ACTTTCTAAA TGCCTTTGAC CCAGGAACCG ATTATCTATA TTTGTTCCCA TTTTCCTTCA CCGTGACATT CCAGCATTGT CTGACTGTGA GGTGGGCCTT TGAGAGCCTC CAGGTTCCTC AAAACAGGCC TGAGCGATGG GCATCACACC	120 180 240 300
40	AGAGGAAGTC TTTTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA GAGTGCTCTG CTACACTCGT CCCCCTCCTG CCTCATCTTC CTTCTCAGCC TTGGTTCCTG ATGGGAACAG AATGGAGGGC CTGAGAACAT ACTTTCTAAA TGCCTTTGAC CCAGGAACCG ATTATCTATA TTTGTTCCCA TTTTCCTTCA CCGTGACATT CCAGCATTGT CTGACTGTGA GGTGGGCCTT TGAGAGCCTC CAGGTTCCTC AAAACAGGCC TGAGCGATGG GCATCACACC CTCTGCCTAC CCACRTGCCT GCTTACCTGC CAGATAACCA AGTGNAGATG TCTGCGAGTG	120 180 240 300 360
40	AGAGGAAGTC TTTTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA GAGTGCTCTG CTACACTCGT CCCCCTCCTG CCTCATCTTC CTTCTCAGCC TTGGTTCCTG ATGGGAACAG AATGGAGGGC CTGAGAACAT ACTTTCTAAA TGCCTTTGAC CCAGGAACCG ATTATCTATA TTTGTTCCCA TTTTCCTTCA CCGTGACATT CCAGCATTGT CTGACTGTGA GGTGGGCCTT TGAGAGCCTC CAGGTTCCTC AAAACAGGCC TGAGCGATGG GCATCACACC CTCTGCCTAC CCACRTGCCT GCTTACCTGC CAGATAACCA AGTGNAGATG TCTGCGAGTG GCTAGTTTTC ACATTCTTAC TAGTGTTTGG YTCACCTTTG GGCAAAGGCC CCCTCTAGGC	120 180 240 300 360 420
40 45	AGAGGAAGTC TTTTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA GAGTGCTCTG CTACACTCGT CCCCCTCCTG CCTCATCTTC CTTCTCAGCC TTGGTTCCTG ATGGGAACAG AATGGAGGGC CTGAGAACAT ACTTTCTAAA TGCCTTTGAC CCAGGAACCG ATTATCTATA TTTGTTCCCA TTTTCCTTCA CCGTGACATT CCAGCATTGT CTGACTGTGA GGTGGGCCTT TGAGAGCCTC CAGGTTCCTC AAAACAGGCC TGAGCGATGG GCATCACACC CTCTGCCTAC CCACRTGCCT GCTTACCTGC CAGATAACCA AGTGNAGATG TCTGCGAGTG GCTAGTTTTC ACATTCTTAC TAGTGTTTGG YTCACCTTTG GGCAAAGGCC CCCTCTAGGC CTTGCCCCAC CTCCATCAAA CGCAGACACT GTAGTCAGAC CTCAGYAATA TAGGAGGCAA	120 180 240 300 360 420 480
40 45 50	AGAGGAAGTC TTTTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA GAGTGCTCTG CTACACTCGT CCCCCTCCTG CCTCATCTTC CTTCTCAGCC TTGGTTCCTG ATGGGAACAG AATGGAGGGC CTGAGAACAT ACTTTCTAAA TGCCTTTGAC CCAGGAACCG ATTATCTATA TTTGTTCCCA TTTTCCTTCA CCGTGACATT CCAGCATTGT CTGACTGTGA GGTGGGCCTT TGAGAGCCTC CAGGTTCCTC AAAACAGGCC TGAGCGATGG GCATCACACC CTCTGCCTAC CCACRTGCCT GCTTACCTGC CAGATAACCA AGTGNAGATG TCTGCGAGTG GCTAGTTTTC ACATTCTTAC TAGTGTTTGG YTCACCTTTG GGCAAAGGCC CCCTCTAGGC CTTGCCCCAC CTCCATCAAA CGCAGACACT GTAGTCAGAC CTCAGYAATA TAGGAGGCAA TAATCTTTTA ACAGTGTTTT GCAAACAAAC AAAAAGAGAA AAATCCCAGC CAGGGGAACT	120 180 240 300 360 420 480 540
40 45	AGAGGAAGTC TTTTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA GAGTGCTCTG CTACACTCGT CCCCCTCCTG CCTCATCTTC CTTCTCAGCC TTGGTTCCTG ATGGGAACAG AATGGAGGGC CTGAGAACAT ACTTTCTAAA TGCCTTTGAC CCAGGAACCG ATTATCTATA TTTGTTCCCA TTTTCCTTCA CCGTGACATT CCAGCATTGT CTGACTGTGA GGTGGGCCTT TGAGAGCCTC CAGGTTCCTC AAAACAGGCC TGAGCGATGG GCATCACACC CTCTGCCTAC CCACRTGCCT GCTTACCTGC CAGATAACCA AGTGNAGATG TCTGCGAGTG GCTAGTTTTC ACATTCTTAC TAGTGTTTGG YTCACCTTTG GGCAAAGGCC CCCTCTAGGC CTTGCCCCAC CTCCATCAAA CGCAGACACT GTAGTCAGAC CTCAGYAATA TAGGAGGCAA TAATCTTTTA ACAGTGTTTT GCAAACAAAC AAAAAGAGAA AAATCCCAGC CAGGGGAACT CGCCACCTGC CCACGCTAGT TCCATCCACG CTCAAGACCC GCCCTTAGAC CAGGCAGGCA	120 180 240 300 360 420 480 540 600
40 45 50	AGAGGAAGTC TTTTGCCAAG CCTGTTCTCT GGACTAACGC CATCCAGGCT GGGAGGGGAA GAGTGCTCTG CTACACTCGT CCCCCTCCTG CCTCATCTTC CTTCTCAGCC TTGGTTCCTG ATGGGAACAG AATGGAGGGC CTGAGAACAT ACTTTCTAAA TGCCTTTGAC CCAGGAACCG ATTATCTATA TTTGTTCCCA TTTTCCTTCA CCGTGACATT CCAGCATTGT CTGACTGTGA GGTGGGCCTT TGAGAGCCTC CAGGTTCCTC AAAACAGGCC TGAGCGATGG GCATCACACC CTCTGCCTAC CCACRTGCCT GCTTACCTGC CAGATAACCA AGTGNAGATG TCTGCGAGTG GCTAGTTTTC ACATTCTTAC TAGTGTTTGG YTCACCTTTG GGCAAAGGCC CCCTCTAGGC CTTGCCCCAC CTCCATCAAA CGCAGACACT GTAGTCAGAC CTCAGYAATA TAGGAGGCAA TAATCTTTTA ACAGTGTTTT GCAAACAAAC AAAAAGAGAA AAATCCCAGC CAGGGGAACT CGCCACCTGC CCACGCTAGT TCCATCCACG CTCAAGACCC GCCCTTAGAC CAGGCAGGCA AAGGCCCCCA TCACACTCGG CCACTAGTGG GGTCCTGAGG CCAAGAAAGA AACCAGACCC	120 180 240 300 360 420 480 540 600

	AAGGTCAGGT TAGGGCTCCT GTACCCATTC TGTTCCACCA CTGTTTGATC TCTCTGGCCT	900
5	CCCACCAGGA ATGCCGTTTC CTTTTTATGG ATCTGTTGGG AACCAGAGAG AATCAACAGA	960
J	TCAATGACAT AGGATCCGAA GTGCAATGAT AGTCACTTCT AGTTTGGCAT TTCACAAACT	1020
	CTGNACAGCA AGGTATTGGT AGGTTACTCA ATTTCAAAAG GGCCCCATGG CCAAATATGT	1080
10	TTAGGAACCG CTGTTTGNAT TTCTTTTTTT GGAGACGCAT TGTATATAAT ATATGTCAAA	1140
	GGCTTTCGGA ATTCCTGCAG GAAAGAAATC AGCTTTGTTA AATCCNAAAA AAAAAAAAAA	1200
15	AAAAAAATAG ACTCG	1215
20	(2) INFORMATION FOR SEQ ID NO: 60: (i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 478 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:	
30	ATTTCTTATG ACATGGGGGT TTGAATTGGT TGGCAAATGT TTAATTTTAA TATCCATAAT	60
	CAGTGAGGTC CTGCTGGCTG TAATCATTAA TTGTGAAATC TAAGGAGCTT AGTTCATGGC	120
	TCTAGAATTT CACAGAAAAR TGYGMTATGA TACGAGCATT AAGTTTATTT CTTCTGATCT	180
35	TTGATGCAGC TTTGTTCAGT TTATCTGTTT TTGTATTTAT TGGTCATCTA CTTCCCATGC	240
	CAAAAGGGAC TGGTCTACAT AGCTGCGCTA AACACCTGAT CAAATCACTA AAAGAAAATG	300
40	TGTTACCTCT AATGAATTAT CCTGATTGTA AGTTAAAAAT CAATATTTCC CCGTAGTGAG	360
	GTTTGCTTTT TAAAAAGAAK KCTTAAAAAA AAAAAAAAAA AAACGAGTTN AAGAAAAGGA	420
15	AGCAAGCTCA GGTAAGGTGC ACACATTGGG CTAAGGAAGC TAGAGCCTGT GGAGANGC	478
45		
	(2) INFORMATION FOR SEQ ID NO: 61:	
50 55	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 618 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
. ·	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:	
	TATGACCTTG ATAACCCCAA GTINGAAATT AACCTTCANT AAAGGGAACA AAAGCTGGAG	60
50	TTCGCGCGCT TGCAGTTCGA CACTAGTGGA TCCCAAAGAA TTCGGCACGA GTCATAATGA	120

	GCTACTAGGT AAGCCTTCTG GGACTTTCAG ATATTTTGGG GAAGATTGAT TTTTGTTCTT	180
5	ACATGCTGTG GACCCTTGGC CATCAAATGG TATGGGGAAG CTCATCCGTC TGTCTGTGAT	240
J	GGTCATGTCA GTCAGGCGTC TTTTTAGTAT TTACTGGGTG CTCAGTACTG TGCCAGATGC	300
	TGTCGGGAGC CGTGGTGGTA TGGAGGAGGA GTGCTCCAGA GGACTCTGCT GTGTGGCAGG	360
10	CCAGCATAAA CAAGCCAAGG GGAAAAGGCA GGCATGGAAT AAAGGGGGGAG AATACCAGTG	420
	TGTGACTTAC TGCTGACTGT GTGGATTAGC CTATCAGCAG TAATCAAGCA GGGCGGAGGG	480
15	CATTATCTTT GAGCCAGAAG AGTGAGCACT GGSCCGAGGG TGGAGCATCA AGAGGGGGTG	540
15	TAGGACCNCA AGGCTTCTTN CNGGGGAGAC AACGTCAATA AGCNGTCAGT AGTCACCGAC	600
	AGTTTTGGGA AGCAAGGG	618
20		
	(2) INFORMATION FOR CEO ID NO. (2)	
	(2) INFORMATION FOR SEQ ID NO: 62:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 751 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	•	•
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:	
	TCGACCCACG CGTCCGAGGA GCTGGACTTC TGAGACAGCC ATTCTCCTTG CATAGCACTG	60
35,	TCTGCTGCTA CAGCTCATAG AAGTCAACAA TTTTCTTCAA CACTGGTAGG CAGCCTCTAA	120
	ATGGCCCTGA TCACCCTCAC CTCCTGCCAT TCACACCNNT GTAAAATTCC ACCCCTGGAC	180
40	CTAGTGACTC ACTTCTAACA ANGAGAATAC AGCAAAAGTA ACATCGCTTC TGAGGTGAGG	240
	CTACAAGGAG ACTACGATGC CTGCCTTGGT CACCCTTCTC CTGCTCTTTC CATTGCTCCC	300
	TCTGATGGAA GCCAGTTGCC ATGTGATGAG GTGCCCTATG GAGAGGCCCA CGTGACAAGG	360
45	TATTGTAAAA AGCCTCTGAC CAATAGCCAT CTAGAAACGG AGGCCCAGTC CAGCAGCCTC	420
	TGAGATGAAT CCTGCCAACC TGAGCTTGGA GACAGATTCT CTCCCTATCC TGCCTTGGGA	480
50	TGATCACAGC CACCACCAAC ACCTTCACTG CCTGGTGAGA GGCCAAGCCA GTGAACCCAA	540
		600
	GGTAAACTGG ACAGAATCCT GACCCACAGA AACTGAGATA ATGTTTGTTA TTTTAAGCTG	000
•	CTCAGTTTGT TACAGAGCAA TAGATAACTA ACTCAAACAC CATAAAATTC TAATATTTTA	660
55	•	

	(2) DIFCHMATION FOR SEQ ID NO: 63:	
5	(i) SEQUENCE CHPRACTERISTICS: (A) LENGTH: 780 base pairs (B) TYPE: nucleic acid (C) STRAIDEDNESS: double (D) TOPCLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:	•
	CNONCAGTCA CHATCOCCGA TICCCCGGGTC GACCCACGCG TCCGGGTTGG CAACTCCTGA	60
15	GCCCTGCATG GGTGACTTCA CATTITCCTA CCTCTCCTTC TAATCTCTTC TAGAGCACCT	120
13	GCTATCCCCA ACTICTAGAC CIGCICCAAA CTAGIGACTA GGATAGAATI IGATCCCCTA	180
	ACTOACTGTO TGCGGTGCTC ATTGCTGCTA ACAGCATTGC CTGTGCTCTC CTCTCAGGGG	240
20	CAGCATECTA ACEGESCGAC GTCCTAATCC AACTGGGAGA AGCCTCAGTG GTGGAATTCC	300
	ACGCACTGTG ACTGTCAAGC TGGCAAGGGC CAGGATTGGG GGAATGGAGC TGGGGCTTAG	360
25	CTGGGAGGTG GTCTGAAGCA GACAGGGAAT GGGAGAGGAG GATGGGAAGT AGACAGTGGC	420
23	TEGTALISECT CTGAGGCTCC CTGGGGCCTG CTCAAGCTCC TCCTGCTCCT TGCTGTTTTC	480
	TEATERITYS GEGGETTEGG ASTECCTTTE TECTEATETS AGACTGARAT GTGGGGATEC	540
30	AGGATGGCCT TOUTTCCTCT TACCCTTCCT CCCTCAGCCT GCAACCTCTA TCCTGGAACC	600
	TETCCTCCCT TTCTCCCCAA CTATGCATCT GTTGTCTGCT CCTCTGCAAA GGCCAGCCAG	660
35	CTTGGGAGCA GCAGAGAAAT AAACAGCATT TCTGATGCCA AAAAAAAAAA	720
<i>JJ</i>	GCGCCCGAAA GCTTATTNCC CTTTAAGTAA GGGGTTAATT TTTAGCTTGG GCACTNGGCC	780
40	(2) EXPOPMATION FOR SEQ ID NO: 64:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 588 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:	
JU	TICCGAATTA ATCGACTCAC TATAGGAAWT GCCGTCGCCA TGACCCGCGG TAACCAGCGT	60
	GAGCTCGCCC GCCAGAAGAA TATGAAAAAG CAGAGCGACT CGGTTAAGGC AAAGCGCCGA	120
55	GATGADGGC TITCISCTGC CSCCCGCAAG CAGAGGGACT CGGAGATCAT GCAGCAGAAG	180
	CAGARAAGG CAAACGAGAA GAAGGAGGAA CCCAAGTAGC TTTGTGGCTT CGTGTCCAAC	24
60	CCTCTTGCCC TTCGCCTGTG TGCCTGGAGC CAGTCCCACC ACGCTCGCGT TTCCTCCTGT	30

WO 98/54963 PCT/US98/11422

•	AGTGCTCACA GGTCCCAGCA CCGATGGCAT TCCCTTTGCC CTGAGTCTGC AGCGGGTCCC	360
	TTTTGTGCTT CCTTCCCCTC AGGTAGCCTC TCTCCCCCTG GGCCACTCCC GGGGGTGAGG	420
5	GGGTTACCCC TTCCCAGTGT TTTTTATTCC TGTGGGGCTC ACCCCAAAGT ATTAAAAGTA	480
	GCTTTGTAAT ТССААААААА ААААААААА ААААААААА АААААААА	540
10	AAAAAAAAA AAAAAAAAAA AAAANNCGGG GGGGGGCCCC CCCCCCCC	· 588
15	(2) INFORMATION FOR SEQ ID NO: 65:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 774 base pairs(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:	
25	TTTAAAGATG AAGAAATGAC AAGGGAGGGA GATGAGATGG AAAGGTGTTT GGAAGAGATA	60
23	AGGGGTCTRA GAAAGAAATT TAGGGCTCTG CATTCTAACC ATAGGCATTC TCGGGACCGT	120
	CCTTATCCCA TITAATTAAT TICTCTGACA ATTCAATTAT TITCTGTTAT TAATGTTGCC	180
30	ACTGCTTTCT GTTTGTCTGC ACTTTCTTGA TAAATATTTG CTATCGTTTT ACTCCAGTCA	240
	TTCGATGTTG CTGAGATTTA CATATGACTC TTGTCAACAT CTCATCTTTT GACCCAATCT	300
35	TATTCATTTA ATAAGAGGTC TCATTCATTT GCATGGAAAA ATGCTCATTG TATATTGCAA	360
23	AGTGAAAATA ACGAGTTGCA AAACAGTGTA TACATATATG TGTGTATATA TGTACACTTT	420
	ATTTGTACAT TICTATGTGA CATAATGCAA AGGAAAGTGT CTGATTTAT TATACACCAA	480
40	AGGITAACAG TGAATCTCTG TGTGATCTCT TTTTTTTTCT TTTTGCCTAT CTGCATCTTC	540
	TCACTTGCCA AAAAATGAAT ATATGTTTAT GTGTGTATAT TACTTGTGTC ACAAAAAACC	600
15	CTAAAGTAGA CAGTAAAAGA ACTTGTCAAT CGCCTTTGGA AGGCAATGAA ACACTTAATA	660
45	AACTCTCAAT AACAGAAGCG TAAAAATGAA ATGTAAACCT CCAATTACCT CTGGATCTCT	720
	TAGCCAGAGT AATAAACTGG TAATTATTAC AGATAAAAAA AAAAAAAAAA	774
50		
	(2) INFORMATION FOR SEQ ID NO: 66:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1866 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:

•	(X2) 3-2	
	ACCCACGCGT CCGGTCCTCT TCTTCAGCAC ATGCCAAAGC TGTTCCTCAC GGCCTGTGAG	60
5	ACAAGAGCAT CTTGGATGTA GGACAATGGA AGAGTTAGAT GCCTTATTGG AGGAACTGGA	120
	ACGCTCCACC CTTCAGGACA GTGATGAATA TTCCAACCCA GCTCCTCTTC CCCTGGATCA	180
10	GCATTCCAGA AAGGAGACTA ACCTTGATGA GACTTCGGAG ATCCTTTCTA TTCAGGATAA	. 240
10	CACAAGTCCC TIGCCGGCGC ANTCGTGTAT ACTACCAATA TCCAGGAGCT CAATGTCTAC	300
	AGTGAAGCCC AAGAGCCAAA GGAATCACCA CCACCTTCTA AAACGTCAGC AGCTGCTCAG	360
15	TTGGATGAGC TCATGGCTCA CCTGACTGAG ATGCAGGCCA AGGTTGCAGT GAGAGCAGAT	420
	GCTGGCAAGA AGCACTTACC AGACAAGCAG GATCACAAGG CCTCCCTGGA CTCAATGCTT	480
20	GGGGGTCTSG AGCAGGAATT GCAGGACCTT GGCATTGCCA CAGTGCCCAA GGGCCATTGT	540
20	GCATCCTGCC AGAAACCGAT TGCTGGGAAG GTGATCCATG CTCTAGGGCA ATCATGGCAT	600
	CCTGAGCATT TTGTCTGTAC TCATTGCAAA GAAGAGATTG GCTCCAGTCC CTTCTTTGAG	660
25	CGGAGTGGCT TGGNCTACTG CCCCAACGAC TACCACCAAC TTTTTTCTCC ACGCTGTGCT	720
	TACTGCGCTG CTCCCATCCT GGATAAAGTG CTGACAGCAA TGAACCAGAC CTGGCACCCA	780
30	GAGCACTTCT TCTGCTCTCA CTGCGGAGAG GTGTTTGGTG CAGAAGGCTT TCATGAGAAG	840
50	GACAAGAAGC CATATTGCCG AAAGGATTTC TTAGCCATGT TCTCACCCAA GTGTGGTGGC	900
	TGCAATCGCC CAGTGTTGGA AAACTACCTT TCAGCCATGG ACACTGTCTG GCACCCAGAG	960
35	TECTTTETTT GIGGGGACTG CTTCACCAGT TTTTCTACTG GCTCCTTCTT TGAACTGGAT	1020
	GGACGTCCAT TCTGTGAGCT CCATTACCAT CACCGCCGGG GAACGCTCTG CCATGGGTGT	1080
40	GGGCAGCCCA TCACTGGCCG TTGTATCAGT GCCATGGGGT ACAAGTTCCA TCCTGAGCAC	1140
.0	TTTGTGTGTG CTTTCTGCCT GACACAGTTG TCGAAGGGCA TTTTCAGGGA GCAGAATGAC	1200
	AAGACCTATT GTCAACCTTG CTTCAATAAG CTCTTCCCAC TGTAATGCCA ACTGATCCAT	1260
45	AGCCTCTTCA GATTCCTTAT AAAATTTAAA CCAAGAGAGG AGAGGAAAGG GTAAATTTTC	1320
	TGTTACTGAC CTTCTGCTTA ATAGTCTTAT AGAAAAAGGA AAGGTGATGA GCAAATAAAG	1380
50	GAACTICTAG ACTITACATG ACTAGGCTGA TAATCTTATT TITTAGGCTT CTATACAGTT	1440
	AATTOTATAA ATTOTOTTO TOOOTOTTO CTOCAATCAA GCACTTGGAG TTAGATCTAG	1500
	GTCCTTCTAT CTCGTCCCTC TACAGATGTA TTTTCCACTT GCATAATTCA TGCCAACACT	1560
55	GGTTTTCTTA GGTTTCTCCA TTTTCACCTC TAGTGATGGC CCTACTCATA TCTTCTCTAA	1620
	TTTGGTCCTG ATACTTGTTT CTTTTCACGT TTTCCCATTT CCCTGTGGCT CACTGTCTTA	1680
60	CAATCACTGC TGTGGAATCA TGATACCACT TTTAGCTCTT TGCATCTTCC TTCAGTGTAT	1740
50		

324

5	АААААА						1866
	тааатаааст	GGCTTGTGGT	TTCAATAAAA	АААААААА	AAAAAAAAA	АААААААА	1860
	TTTTGTTTTT	CAAGAGGAAG	TAGATTTTAA	CTGGACAACT	TTGAGTACTG	ACATCATTGA	1800

10 (2) INFORMATION FOR SEQ ID NO: 67:

15

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1152 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:

	(312)						
20	CTCAAGGATG TA	AAGGCTCT	GCAGATTTCG	GGAGGCCTGT	CTCCCAGCAC	CTGATGGGAC	60
	ACTITITGCC CC	ACTGTAAA	TTCTGGGTGT	ATCCTCCACT	GTATGCTGTC	ACCCCAAGGG	120
25	CAAGCACTGC AT	CTGCTTAG	TGAAGGATTT	ATTGTTCGGA	AGATACATTT	TCCCCTTKAG	180
23	CAGAGAGTGG CG	TATCCTGG	CAGTCTTCGG	TGAGCCAGTT	GTACCAGGAT	TATGAAATGC	240
	AGATGTTTAC TG	STGTCATTG	TIGCTGTCAT	TGCTACTGAG	GAGTACTGAC	CAGAATCATC	300
30	TGCAACTYTT AG	STTGGCAGA	GAGGACCACT	ATGGCGGGTA	GCTCTTTTCT	TTCCTGCCAT	360
	TGTGGGGATG AT	TCCAGGCC	AAAGATGATG	GARAAGTATG	GAAATCATCT	GAAAGGTTGA	420
35	AGCTTGGCAC GT	TGAAGCCAT	TCATGACTTT	GTAAGGCAGT	TTTGCTGAAG	GCCAGTTCTG	480
55	CCCTGGGAGG GA	ACGGAGGTG	AATCCTCCTG	AGTACCTGTG	GTTTTCTTAC	TTCCTGCTGA	540
	ATTTACCTAA GT	IGCCTGTTG	TTTGCTTGCT	GTGGAGGCTT	TCTGGTATTT	CATTTCAGGT	600
40	GCAGATGCCT TO	CACTTTCCC	ACCRAAAAAA	CCCCMACCAA	ACCTAAGACC	TTACTGCAAC	660
	TAAGTYTNCC A	AGTACTTTT	TAACCCAATG	GGATGAACAG	CCTGTGGTCT	GCTCAGATCA	720
45	CCCTGAGTGC G	TGTGAGAAG	GCMTNGGCTT	TGCCAGGAAA	TCCAGGAAGG	CAGGGCCGGG	780
43	CTGTGTTGGA A	GCTGGCTTA	CCTCGTGGGG	CAGCCTTATI	TCAATTAAAA	GGGCATTGAC	840
	TGGGAGCAGC AG	GTCCTGGAG	TTTGTTGCAT	TTCCTATTGC	: CCTCAAAATG	AGAAACCAGG	900
50	AAAATAGCAG A	TTGGAGCCT	TCGAGAAGGC	AGTAAATGGC	TGTTTTTATI	GACAAAAGGA	960
	AAACATTTTA C	TGCCATCTC	ACTGATGGCA	TCTCACTGAC	TTAAAATGAA	GGCANGTTGT	1020
	AGTAAAAAAA A	AAGTCTACA	TTTTTCCACC	GCCACGTTCT	TATATCCTGT	TTGTCAGCCA	1080
55	CTGCTCANAA G	GCCATGTTG	TCTTGCGGAN	TANAGGCGC1	CTCCTTCCC1	CGTTTTCCCT	1140
	ATAGGTTGGG T	r G					1152

PCT/US98/11422 WO 98/54963

325

(2) INFORMATION FOR SEQ ID NO: 68:

(i) SEQUENCE CHARACTERISTICS: 5

(A) LENGTH: 2483 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68: AGCAGGCGGT GCGCTGGGGG CGGGAGCAGC GCGKAGCCCG GCTCGGCCAC ACCGATCGCC 60 CGCCGCCATG GGCTCCTCGC AAAGCGTCGA GATCCCGGGC GGGGCCACCG AGGGCTACCA 120 15 CGTTCTGCGG GTACAAGAAA ATTCCCCAGG ACACAGAGCT GGTTTGGAGC CTTTCTTTGA 180 TTTTATTGTT TCTATTAATG GTTCAAGATT AAATAAAGAC AATGACACTC TTAAGGATCT 240 20 GCTGAAASCA AACGTTGAAA AGCCTGTAAA GATGCTTATC TATAGCAGCA AAACATTGGA 300 ACTGCGAGAG ACCTCAGTCA CACCAAGTAA CCTGTGGGGC GGCCAGGGCT TATTGGGAGT 360 GAGCATTCGT TTCTGCAGCT TTGATGGGGC AAATGAAAAT GTTTGGCATG TGCTGGAGGT 420 25 GGAATCAAAT TCTCCTGCAG CACTGGCAGG TCTTAGACCA CACAGTGATT ATATAATTGG 480 AGCAGATACA GTCATGAATG AGTCTGAAGA TCTATTCAGC CTTATCGAAA CACATGAAGC 540 30 AAAACCATTG AAACTGTATG TGTACAACAC AGACACTGAT AACTGTCGAG AAGTGATTAT 600 TACACCAAAT TCTGCATGGG GTGGAGAAGG CAGCCTAGGA TGTGGCATTG GATATGGTTA 660 TTTGCATCGA ATACCTACAC GCCCATTTGA GGAAGGAAAG AAAATTTCTC TTCCAGGACA 720 35 AATGGCTGGT ACACCTATTA CACCTCTTAA AGATGGGTTT ACAGAGGTCC AGCTGTCCTC 780 AGTTAATCCC CCGTCTTTGT CACCACCAGG AACTACAGGA ATTGAACAGA GTCTGACTGG 840 40 ACTITICIATI AGCICAACIC CACCAGCIGI CAGIAGIGII CICAGIACAG GIGIACCAAC 900 AGTACCGTTA TTGCCACCAC AAGTAAACCA GTCCCTCACT TCTGTGCCAC CAATGAATCC 960 AGCTACTACA TTACCAGGTC TGATGCCTTT ACCAGCAGGA CTGCCCAACC TCCCCAACCT 45 CAACCTCAAC CTCCCAGCAC CACACATCAT GCCAGGGGTT GGCTTACCAG AACTTGTAAA 1080 CCCAGGTCTG CCACCTCTTC CTTCCATGCC TCCCCGAAAC TTACCTGGCA TTGCACCTCT 1140 50 CCCCCTGCCA TCCGAGTTCC TCCCGTCATT CCCCTTGGTT CCAGAGAGCT CTTCTGCAGC 1200 AAGCTCAGGA GAGCTGCTGT CTTCCCTCCC GCCCACCAGC AACGCACCCT CTGACCCTGC 1260 CACAACTACT GCAAAGGCAG ACGCTGCCTC CTCACTCACT GTGGATGTGA CGCCCCCCAC 1320 55 TGCCAAGGCC CCCACCACCG TTGAGGACAG AGTCGGCGAC TCCACCCCAG TCAGCGAGAA 1380 GCCTGTTTCT GCGGCTGTGG ATGCCAATGC TTCTGAGTCA CCTTAACTTT GAACCATTCT 1440 60

	TTGGAATTGG	CGTGGTATAT	TTAACCACGG	GAGCGTGTCT	GGAAACGCAA	ACTATCATTA	1500
	ATTTCATACT	AGTTTGTACC	GTATCTGTAG	GCATCCTGTA	AATAATTCCA	AGGGGAAAAC	1560
5	TAAACGAGGA	CCTCCCTTCT	ATCCTGCCAG	GTTGAGTGGG	GCTCACACGC	TAGGGTGAGA	1620
	TGTCAGAAAG	CGCTTGTATT	TTAAACAACC	AAAAAGAATT	GTAAGGGTGG	CTTGCTGCCA	1680
10	GGCTTGCACT	GCCGTTCCTG	GGGGTGTGCA	TCTTCGGGAA	AGGTGGTGGC	GGGGCGTCCA	1740
10	CTAGGTTTCC	TGTCCCCTGC	TGCTCCTTCC	GTAAGAAAAT	GAAATATTCT	ATGCCTAATA	1800
	CTCACACGCA	ACATTTCTTG	TACTTTGTAA	GTCGTTTGCG	AGAATGCAGA	CCACCTCACT	1860
15	AAACTGTAAA	CGGTAAAGAG	ATTTTTACTT	TTGGTCTCCG	TGAGTCGCAT	CTCTACTAAG	1920
	GTTTACACAG	GAATTCCACC	TGAAGACTTG	TGTTAAAGTT	CTACAGCGCG	CACTGTTAAC	1980
20	TGAACGTCTT	TTTCTTCAGC	CTATACGCGG	ATCCTTGTTT	TGAGCTCTCA	GAATCACTCA	2040
20	GACAACATTT	TGTAACTGCT	GCTGTTGCTT	TCTACATACA	CCTTATAAAG	TGACATTTCA	2100
	AAAGAAATAA	GGTGCCACAG	TTTTAAACCA	GAAGGTGGCA	CTCTGTGGCT	CCTTGTAGTA	2160
25	TTATAGCTAT	ACTGGGAAAG	CATAGATACA	GCAATAAAGT	ACAGTAATTT	TACTTTTTTT	2220
	CTTGTGTTAC	ATCTAAATTA	CAACCCTTAA	TTGCCACGTG	TGCACTTACT	ACTCTCCAGT	2280
30	ATGTCTTATT	ACTCTCCAGT	ATGTCACGCA	TCTTTAACTT	TTCACGTCCT	ATGTTTGCTT	2340
50	TCTCCCATTT	TTAAGAGATG	GTAAGTTAAC	TGGAATTGAT	TTACTGAATG	AAATTAAATG	2400
	CAGATATCCC	TGTTTTTGAA	ATAAAAAAAA	AAAAAAAAA	AAAAAAAA .	AAAAAAAA	2460
35	AAAAAAAAA	AAAAAAAA	AAA				2483

40 (2) INFORMATION FOR SEQ ID NO: 69:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 536 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:

50	GAGAAATGGA GCTTTG	TTAG ATAAAAATTI	TTTCAACGCA	AACAGTCATT	TTCCAGTGAA	60
55	AGGAGAGCGT ATCCGC	CGTA GGATGGACTI	AGATCGTGTA	AAAGCTGAGG	CCACCGAGGA	120
	TATAACCTCC GGGGTC	CITT GCCTCCTTT	CCTTAGACTC	CCTCCAAACT	CGTGTATCTT	180
	TCCTTCAGCA GTACTG	GCT CCACGCGAAC	CTAGTCCTTT	GTCTTTACCC	TATTACCTTT	240
	CATAACATCC TAGTTG	AAAA GTARTTATTO	AACCGCGTTT	GAAAATGAGA	ACAGGTTCAC	300
60	AGARGCTAGG TTACTT	GCGA AGGTCGTTC	A ATTAGTAACC	AGTAACGCCA	GGACTGCCAG	360

	TTTCTTGCTT CCGAATTCTC ATGGTAGCTT TCACCARGCT CCCCGTCMAA TGCTAACGTC	420
5	AACTACTGAA CTAGATTAGC AAAAAGGTCT TTTAACAGAA TTCCTGGTTT TCAGAGAGAG	480
J	TTTCTTTCAT GAAGCGCCCC ATTTCTACAG AGGAAAATAA ACTCCAAGCA GCCAGT	536
10	(2) INFORMATION FOR SEQ ID NO: 70:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 865 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:	
20	CCACGCGTCC GGCCTTTCTT GGCCAGAGGC GCCGGTTGGA CTCACGGGCG GGGCATGATG	60
	GGTAACAGGA CCGGTGGGGT CCCCAGGAAG TCCTAGAGGG GGTCGGGGTT TGGGTGGACA	120
25	AGCTTTCCTC GTCCTCTCCC GACAGAGCTG ACGTGTCCTG GGTTCCACCG GGAGCGGCA	180
	TTTCCACCGG ACGGGAGGGT TCGGGGTGTC CGGGGCTGGG GAATACGTAG GGGTTGCCGC	240
30	GCGGTGTGGG GAGTTGGGGC GTGTGGCTGC AGTCCCGGGA GTTCTTGGAG GGGGTCGGCC	300
50	CACCGAGCTT CCGGACCGGC TGATCTGCCC GTAGCTTGCC GGANGGARGG CGGAGCTGAC	360
	TCTCCGTCCC TTCTCCCATC CCCTCCAGTG GTGGGTACGG GCACCTCGCT GGCGCTCTCC	420
35	TCCCTCCTGT CCCTGCTGCT CTTTGCTGGG ATGCAGATGT ACAGCCGTCA GCTGGCCTCC	480
	ACCGAGTGGC TCACCATCCA GGGCGGCCTG CTTGGTTCGG GTCTCTTCGT GTTCTCGCTC	540
40	ACTGCCTTCA ATAATCTGGA GAATCTTGTC TTTGGCAAAG GATTCCAAGC AAAGATCTTC	600
40	CCTGAGATTC TCCTGTGCCT CCTGTTGGCT CTCTTTGCAT CTGGCCTCAT CCACCGAGTC	660
	TGTGTCACCA CCTGCTTCAT CTTCTCCATG GTTGGTCTGT ACTACATCAA CAAGATCTCC	720
45	TCCACCCTGT ACCAGGCAGC AGCTCCAGTC CTCACACCAG CCAAGGTCAC AGGCAAGAGC	780
	AAGAAGAGAA ACTGACCCTG AATGTTCAAT AAAGTTGATT CTTTGTAAAA AAAAAAAAA	840
50	AAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAA	865
20		

(2) INFORMATION FOR SEQ ID NO: 71:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 932 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

60 (D) TOPOLOGY: linear

•		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:	
5	TCATCATATA CAAAGTTTTT CGTCACACTG CAGGGTTGAA ACCAGAAGTT AGTTGCTTTG	60
5	AGAACATAAG GTCTTGTGCA AGAGGAGCCC TCGCTCTTCT GTTCCTTCTC GGCACCACCT	120
	GGATCTITGG GGITCTCCAT GTTGTGCACG CATCAGTGGT TACAGCTTAC CTCTTCACAG	180
10	TCAGCAATGC TTTCCAGGGG ATGTTCATTT TTTTATTCCT GTGTGTTTTA TCTAGAAAGA	240
	TTCAAGAAGA ATATTACAGA TTGTTCAAAA ATGTCCCCTG TTGTTTTGGA TGTTTAAGGT	300
	AAACATAGAG AATGGTGGAT AATTACAACT GCACAAAAAT AAAAATTCCA AGCTGTGGAT	360
15	GACCAATGTA TAAAAATGAC TCATCAAATT ATCCAATTAT TAACTACTAG ACAAAAAGTA	420
	TTTTAAATCA GTTTTTCTGT TTATGCTATA GGAACTGTAG ATAATAAGGT AAAATTATGT	480
20	ATCATATAGA TATACTATGT TTTTCTATGT GAAATAGTTC TGTCAAAAAT AGTATTGCAG	540
	ATATTTGGAA AGTAATTGGT TTCTCAGGAG TGATATCACT GCACCCAAGG AAAGATTTTC	600
	TTTCTAACAC GAGAAGTATA TGAATGTCCT GAAGGAAACC ACTGGCTTGA TATTTCTGTG	660
25	ACTCGTGTTG CCTTTGAAAC TAGTCCCCTA CCACCTCGGT AATGAGCTCC ATTACAGAAA	720
	GTGGAACATA AGAGAATGAA GGGGCAGAAT ATCAAACAGT GAAAAGGGAA TGATAAGATG	780
30	TATTTTGAAT GAACTGTTTT TTCTGTAGAC TAGCTGAGAA ATTGTTGACA TAAAATAAAG	840
	AATTGAAGAA ACACATTTTA CCATTTAAAA AAAAAAAAAA	900
35	CCAAATCGCC GCATAGTGAT CGTAAACAAT CT	932
40	(2) INFORMATION FOR SEQ ID NO: 72:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 996 base pairs	
45	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:	
50	CGCCTGGCAC CATGAGGACG CCTGGGCCTC TGCCTGTGCT GCTGCTGCTC CTGGCGGGAG	60
<i>5</i> 0	CCCCCGCCGC GCGGCCCACT CCCCCGACCT GCTACTCCCG CATGCGGGCC CTGAGCCAGG	120
	AGATCACCCG CGACTTCAAC CTCCTGCAGG TCTCGGAGCC CTCGGAGCCA TGTGTGAGAT	180
55	ACCTGCCCAG GCTGTACCTG GACATACACA ATTACTGTGT GCTGGACAAG CTGCGGGACT	24
	TTGTGGCCTC GCCCCCGTGT TGGAAAGTGG CCCAGGTAGA TTCCTTGAAG GACAAAGCAC	30

GGAAGCTGTA CACCATCATG AACTCGTTCT GCAGGAGAGA TITGGTATTC CTGTTGGATG

. 60

	ACTGCAATGC	CTTGGAATAC	CCAATCCCAG	TGACTACGGT	CCTGCCAGAT	CGTCAGCGCT	420
	AAGGGAACTG	AGACCAGAGA	AAGAACCCAA	GAGAACTAAA	GTTATGTCAG	CTACCCAGAC	480
5	TTAATGGGCC	AGAGCCATGA	CCCTCACAGG	TCTTGTGTTA	GTTGTATCTG	AAACTGTTAT	540
	GTATCTCTCT	ACCTTCTGGA	AAACAGGGCT	GGTATTCCTA	CCCNGGAACC	TCCTTTGAGC	600
10	ATAGAGTTAG	CAACCATGCT	TCTCATTCCC	TTGACTCATG	TCTTGCCAGG	ATGGTTAGAT	. 660
10	ACACAGCATG	TTGATTTGGT	CACCTAAAAA	GAAGAAAAGG	ACTAACAAGC	TTCACTTTTA	720
	TGAACAACTA	TTTTGAGAAC	ATGCACAATA	GTATGTTTTT	ATTACTGGTT	TAATGGAGTA	780
15	ATGGTACTTT	TATTCTTTCT	TGATAGAAAC	CTGCTTACAT	TTAACCAAGC	TTCTATTATG	840
	ССТТТТТСТА	ACACAGACTT	TCTTCACTGT	CTTTCATTTA	AAAAGAAATT	AATGCTCTTA	900
20	AGATATATAT	TTTAYGTAGT	GCTGACAGGA	CCCACTCTT	CATTGAAAGG	TGATGAAAAT	960
20	CAAATAAAGA	ATCTCTTCAC	ATGARAAAAA	AAAAA			996

25

30

(2) INFORMATION FOR SEQ ID NO: 73:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 785 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:

25	(XI) SEQUENCE DESCRIPTION. SEQ IS NOT	
35	GGCACGAGGG GCTTTGCGTA CACAATAGCT GCTAGGAGTA CCCAAAGCCT GARTACARCC	60
	TECTEGTETC ATEGECEACET GTGACCAGGC CAGCGTCAMA CEGCTCECTE TGACCCGTCC	120
40	CGRAGACTGA AATGGGCCTG GGTCTTCTCC TKGTCCTGTG ATWAAAGTCC TCTCTTGAAA	180
	GTGGAGAGCA AAGGCACACA GAGGTGCGCG CTCACAAGAA TTCCTCCCGG TGACTGGGTA	240
45	ATCAATGTTA CTGCTGTTTC CTTTGCAGGA AAGACCACAG CAAGATTCTT TCATTCGTCT	300
45	CCTCCTAGCC TGGGGGACCA GGCTCGAACT GACCCTGGAC ATCAAAGGAG GGATTATGTG	360
	GCTGCTAAAG CCATCGGCCC ACAGCCCTGT TCACRTCTTG GTGCTTCTCT TTCCCAGAGG	420
50	CTGGTCCCAG CCAGGCACAC ACAAAAGGCA GATTCTCGTA AACSCAGCCT CCCTCCCTGG	480
	AGGCTGCCTC CTGCCCTGGA TCTGGAGTGG AGCTGCTCTG AGATTTTGAG TTCTTCTGCA	540
<i>5.5</i>	GAGATGATTA AATATATCCA AGAGACATTG GAAAACCTGC TGAACATTTT ACATTGGTCT	600
55	GCTCAGCACA TGGCTGGATG CGGATATTTC TATAATTCCA GAAAGTCACA CAGCTCCTCT	660
	GTATGAGACC AGTGGGCGCC ATTTAAAAGA ACAGGATGAG AATCTAAGAT ATATTATTAA	720
60	ТАААТСТААТ ССАТТТТТТ ТТТСТААААА АААААААА	780

785 AAAAA

5

10

20

25

30

35

40

45

(2) INFORMATION FOR SEQ ID NO: 74:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1069 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74:

TCCTCACCAT TCCCCTAGGN CAGGTCCCTG CAGGTCCCAC ACTTCTCCCA GGTCCCTAAA CTTGGGTCGG TCCTTTCCCT GGAGTAGCTG GNTCCTCCAG TCGAGGTCCC TGTTCAGTCG 120 GTTCTTAGGC TCCTGCACAT GAAGGTGTGT GCCTGTGGTG TGTGGGCTGC TCTAGGAGCA 180 GATACAGGCT GGTATAGAGG ATGCAGAAAG GTAGGGCAGT ATGTTTAAGT CCAGACTTGG 240 300 CACATGGCTA GGGATACTGC TCACTAGCTG TGGAGGTCCT CAGGAGTGGA GAGAATGAGT AGGAGGGCAG AAGCTTCCAT TTTTGTCCTT CCTAAGACCC TGTTATTTGT GTTATTTCCT 360 GCCTTTCCGA GTCCTGCAGT GGGCTGCCCT GTACCCTGAA CCTCATGAGC CTCTAAGGGA 420 AAGGAGGAAC AATTAGGACG TGGCAATGAG ACCTGGCAGG GCAGARTACA AGCCCAGCAC 480 CAGTGTCCCA GCCTTACTGG GTCCTTACCC TGGGCCAAAC AGGGAGGGCT GATACCTCCT 540 TGCTCTTCCT AGATGCCCAC CTCCTACAAT CTCAGCCCAC AAGTCCTCTC CACCCTAGGG 600 GGCTTGCTGC ATGGCAATAA CTCATAATCT GATTTGGAGG TTTGCCCTTT ACAGGGGCAG ATTITCTGCT CAGTTCAACA ATGAAATGAA GAGGAACTCC CTCTTTCTAC AGCTCACTTC 720 780 TATCAGAGGC CCAGGTGCCT CAGAGCCACA TTGAGTTGCT TTTTCTGGGA TGAGGAAGTA GGGTTAAACT CCCCAGTTTC CTGAGGGAGG CTCCTGACAG GTGCCCTTTG TCAGACCCTA CCACAGCCTG GATAGGCAGC CACATTGGTC CTCGCCCTTG CTCGGNACTC CGTGGTGGTC 900 CTGCCCTTCT CCCTGCATGC CTGTGGGTCT GCTCTGGTGT GTGAAGGTCG GTGGGTTAAC 960 1020 1069

55

50

(2) INFORMATION FOR SEQ ID NO: 75:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 831 base pairs

(B) TYPE: nucleic acid 60

WO 98/54963

331

PCT/US98/11422

360

420

(C)	STRANDEDNE	ESS:	double
(D)	TOPOLOGY:	line	ear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75: 5 GGACATTAGA TCACTGTGGA CCTAAAACAA ACAAACAACT ATAAGGAAAA TGGCATTAGA 60 AATGGTCTGG GGATCAGTTT ATCACTGCAG TTGTTACATC ACCCCATGGT CTAAAATACA 120 GAGCTTTAGT CTGTCTCTGT TTCAGTTCAT TTTACAGGAG GTGAACATCA CACTTCCAGA 10 180 AAACTCTGTC TGGTATGAAA GGTATAAATT TGATATTCCT GTCTTTCACT TGAATGGCCA 240 GTTTCTGATG ATGCATCGAG TAAACACCTC AAAACTTGAA AAACAGCTCC TGAAACTTGA 15 GCAGCAAAGT ACTGGARGCT GACTGATGCC CTCATGATTT TCCACCCTCT CTTCCCATAA 360 AGCATCTTCC TAAGGAAATG AMCATGGCCT GATACTCATT TTGTCACTTG TACAGAGCCC 420 20 TAAGGATGTT CTGAATTCAG TGGTGCCAAA TAAATGTTGA CATTCCCCTT TTGGTTGATG 480 GAAGTATCAG TGTGGGAACT GTTTGCTTAA TGGCATTTTA TAAAATAAKA AKAKCATATT 540 AGCAGGAGG GAGATGATGG AGGGAGGGAG AAGTCCATTT GTCTTATTTA TCCTTTTTGT 600 25 ATTAATAGAG AAGCACTTCA CAGTCACTGG CAATGCCATT TATAGGAAGA AGGTTCTGCA 660 TTCCTGCTGC TCCCGGAGGG CTTAACTTTT TAATGAAAGA ATAAATGCTC TTCCACTCAG 720 30 TAGATAAAGT GAAATGTGAA TTGTTAATAA CTGTGCACGG TCAATAAAGC GATGTTTTAA 780 831 35 (2) INFORMATION FOR SEQ ID NO: 76: (i) SEQUENCE CHARACTERISTICS: 40 (A) LENGTH: 590 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76: TATATATAGA CNGTTAATAG TCGTGANTGN TGTGNACGAA CATTAACGGA AGTAGCATGT 60 AGCCAGTCGA ATAACNTATA AGGACAAAGT GGAGTCCACG CGTGCGGCCG TCTAGACTAG 120 50 TGGATCCCCC GGCTGCAGGA TTCGGCACGA GCTGCCAGGT GAGGAGCAGA GAGACTGTTC 180 CCTTGGGTGG AGAGGTGTGG GCATGAGAGC CACCCATTGC CAAGCAGCAA GAATGTTCGT 240 55 300 GCTTTTTTCC CTTCCAAAAT ATGCAGGGCT CAGGCTCCCA ATTCCGGGCC TGTCTGCTTT

GCTTGTGTTT CTCCTGTCCC TGTTCTCCCG GAGGGCCCAG GTGGAACTCA CGACAGGGAG

GGAGACGCTT CCCAAAAACC TGCAGGGCTA TTTCCCAGAA TTTGGTTTTC AAGTACAAAA

332

	CTTTTTGTCC	TGTAAGATAT	ATGCAGCCTC	ACAGAAGCAG	CCTCTGCCTC	CACTTTACCA	480
	GCTACGTTTT	TATCTTAAGC	ACATGGGGCT	CCCTTAGAAC	TTACTCCACT	GATTTAAAAA	540
5	АААААААА	AAACTCGAGG	GGGGGCCCGG	TACCCATTCG	CCCTAAAAGT		590

10 (2) INFORMATION FOR SEQ ID NO: 77:

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1274 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:

20	GAGCCACCAC	ACCTGGCCTG	GAAGGAACCT	CTTAAAATCA	GTTTACGTCT	TGTATTTTGT	60
	TCTGTGATGG	AGGACACTGG	AGAGAGTTGC	TATTCCAGTC	AATCATGTCG	AGTCACTGGA	120
25	CTCTGAAAAT	CCTATTGGTT	CCTTTATTTT	ATTTGAGTTT	AGAGTTCCCT	TCTGGGTTTG	180
23	TATTATGTCT	GGCAAATGAC	CTGGGTTATC	ACTITICCTC	CAGGGTTAGA	TCATAGATCT	240
	TGGAAACTCC	TTAGAGAGCA	TTTTGCTCCT	ACCAAGGATC	AGATACTGGA	GCCCCACATA	300
30	ATAGATTICA	TTTCACTCTA	GCCTACATAG	AGCTTTCTGT	TGCTGTCTCT	TGCCATGCAC	360
	TTGTGCGGTG	ATTACACACT	TGACAGTACC	AGGAGACAAA	TGACTTACAG	ATCCCCCGAC	420
35	ATGCCTCTTC	CCCTTGGCAA	GCTCAGTTGC	CCTGATAGTA	GCATGTTTCT	GTTTCTGATG	480
55	TACCTTTTTT	CTCTTCTTCT	TTGCATCAGC	CAATTCCCAG	AATTTCCCCA	GGCAATTTGT	540
	AGAGGACCTT	TTTGGGGTCC	TATATGAGCC	ATGTCCTCAA	AGCTTTTAAA	CCTCCTTGCT	600
40	CTCCTACAAT	ATTCAGTACA	TGACCACTGT	CATCCTAGAA	GGCTTCTGAA	AAGAGGGGCA	660
	AGAGCCACTC	TGCGCCACAA	AGGTTGGGGT	CCATCTTCTC	TCCGAGGTTG	TGAAAGTTTT	720
45	CAAATTGTAC	TAATAGGSTG	GGCCCTGAC	TTGGCTGTGG	GCTTTGGGAG	GGGTAAGCTG	780
40	CTTTCTAGAT	CTCTCCCAGT	GAGGCATGGA	GGTGTTTCTG	AATTTTGTCT	ACCTCACAGG	840
	GAŢGTTGTGA	GGCTTGAAAA	GGTCAAAAAA	TGATGGCCCC	TTGAGCTCTT	TGTAAGAAAG	900
50	GTAGATGAAA	TATCGGATGT	AATCTGAAAA	AAAGATAAAA	TGTGACTTCC	CCTGCTCTGT	. 960
	GCAGCAGTCG	GGCTGGATGC	TCTGTGGCCT	TTCTTGGGTC	CTCATGCCAC	CCCACAGCTC	1020
55	CCAGGAACCT	TGAAGCCAAT	CTGGGGGACT	TTCAGATGTT	TGACAAAGAG	GTACCAGGCA	1080
33	AACTTCCTGC	TACACATGCC	CTGAATGAAT	TGCTAAATTT	CAAAGGAAAT	GGACCCTGCT	1140
	TTTAAGGATG	TACAAAAGTA	TGTCTGCATC	GATGTCTGTA	CTGTAAATTT	СТААТТТАТС	1200
60	ACTGTACAAA	GAAAACCCCT	TGCTATITAA	TTTTGTATTA	AAGGAAAATA	AAGTTTTGTT	1260

тоттааааа аааа 1274

. 5

10

20

25

30

35

40

45

50

(2) INFORMATION FOR SEQ ID NO: 78:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1133 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:

60	ACACTGAAAA	TATGTTGAAA	GCATTCTTTC	CAAAATCTGA	CTTGTTCAAC	AGGATTTTC
120	AAAATACTAC	AAGAAACAGA	ATTGATTTTW	TAGAAAGAAT	GTTAATGAAC	ACTAATTTWA
180	TAACATGCTG	GGCTGAAGTA	AAAAACTTCT	CGTTTCTTTC	TCTCAAATAA	TTATTTTCCT
240	TTTAGATGCT	TTCTTTGTTA	TTCTTTATCT	CTTTCTCTTG	TAAATCTTGT	GTAGTTAACA
300	TTGAAGAAGT	AGAGCTTAAT	CCTAATTGAC	TTATTAAGTG	TCTTTTGTTT	TGTATAAATG
360	TGTTCCTGCG	GTATTTTATT	CTTTATTGGG	TAAGAATTGC	ATTGACCACT	GCCCTAATTT
420	CAGCTGATAG	GTGTGGGGGA	CTGTGAGTAT	CTACTCATCC	GTTGTTCAGT	TCTTTTTGAT
480	AGAGATCCAC	CCACTCAGCC	TGCCCTTTAG	TGCTCAGGAT	AGTGTGTCTA	AAGGGAGGAG
540	GTGAGGAGGA	GGAAGAAACA	AGACTTTCTT	TCACATGCTT	AAGGACAGTT	AGGGAGCAAC
600	GACCCCACCT	TAAGGCAGTT	AGAATTGTCC	AGCTGGATGT	AGTAGTGTCA	GTAAGTCGTG
660	CATTTGGATT	GGTTAGGTTC	CCTACATTTG	тттесссстс	TTTCACTTTA	TCCAACATGT
720	ATCCTTTTAT	GGCACATAAA	GTCAGGATTT	TTCTCTCTTG	ATGACTTTAT	TGCAGCAATA
780	TATAGAGAAT	TGGAGAGATT	ATGTAACTAA	TTACATAGTÁ	GCTATTTTAG	TATAGAACTA
840	TAGAAATTAA	ATGATAGAAC	GGAGACAGAT	TGTCCATTTT	CTGTCATATA	TTTGKTTTTG
900	TATTAAATTT	TCTTCTTAAT	ACTTCAAGTA	ATTTGAATGA	TGCAAGTGCC	GTTGCATTTC
960	ATTTGGAAAT	TCTAATTAAT	ТАТТАТТААА	AAATATATAG	GCATTGTAAC	TCTGATGAAG
1020	AGATAAATCT	TTCATTATGT	AAAGTCAAAC	TTTACTGTAA	AGGTATTTA	АТТААТАААТ
1080	ACCAATTAAA	AAGCTTAGTC	CCTTTTTACA	CTGTTTACAT	ATTCTTTCCC	TATTCTTTTC
1133	CCT	AGTTCTCTCT	ACTCGAGACT	ааааааааа	САААААААА	GCTTTCCTAT

55

(2) INFORMATION FOR SEQ ID NO: 79:

60 (i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 661 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:	
	GAATTCGCCA CGAGGGGAAA AGGATGCTGA ACGAGAGCAG AAAGCCTCTT TCCTTTGCTT	60
10	CACGCCTTTC CAGTCTTTAT TTTAAACTCG GGTTCCCTTT CTGTGGTCGC AGCAACCTTT	120
	ACTCCACCTG CACTGCTGCT CCTGGGGGCT CCCCAGGCCT CCCTCTGCCT TTCTACCCAG	180
15	TGGCTGACGG GATGCCTGTC TTGCCTGGAC GCACCACTGC TCTCCTGTCC CTCACCTTGG	240
15	CTTTTGCTGT GCCCTGCTCT GGGGTTGAAG CTGGCCCCATG TGTCCCCCGG AGTCATGGCT	300
	GCTCCTCCTG GGAGGCCTCT GTGTGCGTCA CGTCTTCCAC ACCTGGGGGC AGCTGGCGAG	360
20	CCCGTGCTCT GTTCCCCTCG GCTGCTTGGC ACAGAGYTGC AGCCTGGGAY TCTCCGTGGA	420
	CCCAGACTGG GGATTTTGCC AGGGGGGGGA TGGGAGGAGC AGGTGCTTTG CCTGGCGGCT	480
٠.	GTGTCTGCAT TTCTGGACGC CCCAGAGCAC AGAAGTTGCC GGCACTTTGA GGTCTTCCTC	540
25	GGCATGTGCC AGATTACATG AGTGACGGCT GGGAATATGT TITCTTTTTT GTAATGGAGG	600
	CGTGTTTCAC ATATAGTAAA GCTCACCAAA AAGTAAAAAA AAAAAAAAAA	660
30	A	661
35	(2) INFORMATION FOR SEQ ID NO: 80:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1378 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:	
45	ATTGGGTACC GGGCCCCCC TCGAAGTTTT TTTTTTTTT TTTTAATGAA AGCTCTCAAA	60
	TAAGCGATTT TATTCCTATC CATGATTGCA GACATTTACA AAACCATAAC ATCTGAGTTC	120
50	ACCTTAAAAA ATAACTTATA TAAAGCAGTG ATATACACAG CACAAAATAG TTCAGGGAGG	180
	GGGCAGGAGC AACTTGTAAT AATTAAAATG TAAACGTGAA AAAAAGGATG GAATAAAAGT	240
	CCCTACTTAT TTCTACTTAA GATGTCATGT GATAATATTT TACAATGTCC TGTGGGTCAA	300
55	TGTATGTATG TGTATATGTC TGTATAACAT ACACATATAC AGTACATTCT CTTTCCCACA	360
	CATATACATA CACACATAAT TATTTGCAGT TCAGTTTAGG GCAATTCTAA TATGCCACTC	420
	CGTACAGTTG TTTGAATCAC ATTTGGACCC GCTTTCTTCA CAAAAGAGGG GAGAGAGCAG	480

480

540

60

	GAAATAAAAA	GGTTGGTTTG	GTGTGACTGA	GATTCCTTTG	TTTAACTGTA	CACTGTGATG	540	
	AATAATTTTC	TTCCGTAGTA	GTTCTGTGAA	GGGCTGACTC	ACTGTGGTTT	TCATGAGGAG	600	
5	ACTTGGTAAT	GGATCACACG	CTCATTGTCA	TGCTAGGGGA	GTAACTCTCA	CTCTGAAAAG	660	
	GATTTAAGAA	ATTTCCCCCC	ATTTCGCCAT	CATCCCTTGG	AGTGCCCGGT	TGATTACTCA	720	
10	GGCTCATATT	ATTGGGAGAA	TTCTTGGAAA	TACTGTCCAT	ATCTCCTGAG	CCTAAAGAGC	. 780	
10	CATTCATGTG	ATGTGACTCC	ATTCCTCCTA	ATCCACCCAT	GGGACCATCT	GACCCAGGRC	840	
	CCATTGGAAA	ATTAGGTCTG	TTAGGTCCAG	GAGGTACTGC	ATTCATTAAA	GTATACATGT	900	
15	TATCACCAGA	GTTGGTTGAA	TCTGCTGGAC	TAGGCATGAT	GGGTGTTCCT	GGTGGCCCTC	960	
	CACCTCCTGG	AGGACCTACA	TAATTCCCAG	GAGATGCTGA	GGAGTATGGT	ATTGAATTGG	1020	
20	CATTTGTTGG	GTTTGGCCAA	GGTCTACCAC	CACCTGGACC	CATGTTCATT	CCAGGCATTC	1080	
	CAGGGCCACC	TAAAGCATTC	AGTGGGGGTC	TCATTGCACC	TCCATAGTTC	TGTGGTCCTA	1140	
	AGGGCACCAT	TCCTCTTGGA	GGAGTCATTC	TCTGCATTGG	CCCACCCATA	TTTGGATGTC	1200	
25	CTTGTTGTCG	AGTTGGATCC	ATTCCACTGG	GGAGTAATGG	CTGACTTCCT	GGGACACCTC	1260	
	CAAGTGCCTG	ATTAGGTATC	CTCAATGGGG	GCCTTGGACC	TCCAGGGTAC	CGAGGTGACA	1320	
30	TAAAAGGGTA	ATCATGGAAG	CCTTTTCCTT	CACTTGAGTG	TTCACATGTT	TCACGTCT	1378	
	•							
	(2) INFORMATION FOR SEQ ID NO: 81:							
35	(i)	SEQUENCE C	HARACTERIST	ics:				
			GTH: 1440 b E: nucleic	=				
40			RANDEDNESS: POLOGY: line					
	(xi) SEQUENCE	DESCRIPTION	1: SEQ ID NO): 81:			
	ACTTTGTCCA	AATGTGTCTG	TCACATGTAG	TCAGCTGNAG	NAATTTAAAA	TGAATTGCCA	6	
45	AGTGAAGAGT	CTGTGGATTA	ATTGGCCGTT	AATTAACAGG	CTTTATCAAT	GTGTCCTCAA	12	
	GGGAGAGGCC	CAACCCTAAT	'TAAGGAGCTA	AACTTCCTGA	GTGAGGGCT	GTGAGGATGG	18	
50.	AGGTGGAGGA	GGCATCTGGG	GCGGGTGGTG	GCCGGGCCAG	CAGATGGCGC	CTCCCTGGCT	24	
	GAGCTGCCCG	CACCGCCAGT	TCCCTCATTI	CCACTCAGGA	AGGCAGAGAA	GGCAGAGTGA	30	
<i></i>	TCTCCTCAAG	GAAGAGCTTC	: CCCAGCCTTC	GGGAGCAGCI	GGCAGGGCGT	CCGGGAATAA	36	
55								

GCCCTACACG CCGCCGCCTG CCTCCAACTC ACTAACCCTG CGCCTCTTGT CTTTCAGATT

CAACGCGTTC AACAGAAGCC ATCCCCAGCC CAGCTTAAAT TATAAAGATA GACAATAACT

CTGTTCCAAT CTGCGTGGTG CTTCTTTAGT AAATACTGTA CAGATTTTAC CATGGAGAAC

	тттттттт	GTTTTTACC	TTTCTTAATT	ACCCTTATTC	CGAATGGACG	AACACTTTCT	600
<u>~</u>	ACCACTGCTG	ACCATTGTA	A AATACCGTGT	ATATAAATCC	CATTGAAATA	ATGCCCTGGA	660
5	ATAGAACATC	TCAAATGCT	G CTTAATTACA	GACTCAGGTC	GATTACTTGT	ATTTCATGTA	720
	ATGTTCCTCC	AAGTTAGAC.	A TCTGGTGCAA	GACCAACCGG	GAGACCATGG	AATTGTCAAA	780
10	AGTACAAACT	GACAGTGTG	г ататттаатт	TAAAGACTTA	TTTAAAAACT	CACAAGCTCT	840
	CACCTAGACT	TTGGAGAGC	A GTCTGTTTTC	TGTAATGTCT	GATACTAGAA	ACTAATTTGC	900
	TTATTTTAGT	TGTATTCAA	g atttgaagat	GTATTTTATA	GACAAGTTCT	GTTTTTGAAC	960
15	TTTGTGGAAC	TGTTCCAAT	C AATCAATTTC	CCAGTTATGA	TGAGTATTTA	CATTATGAAT	1020
	GTATAACCCA	GACATGATT	T GTAAAGCCGA	CAGTATGTTT	CTATTACACA	ACACTTTTTG	1080
20	ATACAGCGTC	TCTTGTCTT	C ACTGATACTG	GAGTCTCCGT	TGTCTGCNNG	GTCCCTTCGA	1140
	GTTTCTAGTT	ACAGACACA	A TCATACTGTG	ATTTTATTT	TAATATCGAT	ATGCTATCAA	1200
25	ACTGTGATAC	ACTTATAAT	T CACTGGTCCI	GCATCAGGAG	ATGGAGTGGG	GAAAACTGTA	1260
25	TTTAATACAG	TTTGTATCT	G AATAATCTGT	ATGGTTTATA	CAGTTTGTGT	TGTTCAGAGA	1320
	TGTTTAAAGT	TTGATCTTT	G TTTTTCTAAA	GATTAAAAAA	GCACTTGCCC	CACTGTAAAT	1380
30	ATACAGCATG	TAAAATTTC	T RTAGTATATA	AATGGCAGCA	AATCACAAAA	. AAAAAAAA	1440
35	(2) INFORM	ATION FOR	SEQ ID NO: 8	32 :			
	(i)	_	CHARACTERIS				
40		(B) T (C) S	ENGTH: 1381 YPE: nucleic TRANDEDNESS: DPOLOGY: lin	acid double			
	(xi	L) SEQUENC	E DESCRIPTION	N: SEQ ID NO	D: 82:		

45 CCCGGGCTGC AGGAATTCGK YACGAGGCCA GCAGTTGCTC CCAGTTCAGG AGGTGCTCCT 60 120 GTACCCTGGC CACAGCCCAA TCCTGCCACT GCTGACATCT GGGGAGACTT TACCAAATCT ACAGGATCAA CTTCCAGCCA GACCCAGCCA GGCACAGGCT GGGTCCAGTT CTGACCTGAG 180 50 CACGGTTTTT CCTCATGTGA CTTCTGGGAA GGCGCTCCCT CATCTGGGCC AAAGGAAGGA 240 GGACGAAGCC CTCCTCAGCT GGCCTGTGTT TGGGGCATGA ATCTCTCCTC TCCTCCTTGT 300 55 CTGGCTCTGT TGACAAACCG GGCATGTTTG GCAGTAAATT GGCACCGTGT CACACTGTTT 360 CCTGGGATTC AAGTATGCAA CCAGAACACA GGAGAAGAAA AGCTCCAGGA TCCCTGTCCC 420 CATCTGTCCT CTTGATGTGA GAGAGACTCT GAGACTTCTT CCATCGCAAT GACCTGTATT 480 60

337

360

420

480

	AAACACAAGC CCC	CCCAAGCA	AAAGAAGAGG	TTGAGTTTGC	TGCCAGGATT	CAGATCAGCC	540
	CTTCCCAGGG TCT	TGCAGGTG	TCACATGATC	ACAGTTCAGC	GGGAGGCTTT	CCGTACCCAC	600
5	ACTGGCTGTA GC	ACTTCAGT	CCATCTGCCC	TCCAGAGGAG	GGTTTCTTCC	TGATTTTTAG	660
	CAGGTTTAGA GGG	CTGCAGCT	TGAGCTACAA	TCAGGAGGGA	AATTGGAAGG	ATTAGCAGCT	720
10	TTTAAAAATG TT	TAAATAT	TIGCTIIGCT	AATGTGCTGA	TCCGCACTAA	CTCATCTTTG	. 780
10	CAAAAGGAAC TGG	CTCCCTCG	GCGTGCCCCA	GCTGGGGCCT	CTGAAGGGAT	TCCTCACTGT	840
	GGGCAGCTGC CC	TGAGCTTC	AGGCAGCAGT	GTTCATCTCT	GGCCAGTTGT	CTGGTTTCCA	900
15	TGTATTCTAG GC	CAGGTAGG	CAACACAGAG	CCAAGGCGGG	TGCTGGAAGC	CAGACGGAAC	960
	AGTGTTGGGG CA	GGAAGGTG	GATGCTGTTG	TCATGGAGCT	GTGGGAGTTG	GCACTCTGTC	1020
20	TGCTGGTGGC CC	TCTCGGCT	CACATGTTCA	CAGTGCAGCT	CCTGGCAGAC	TTGGGTTTTC	1080
20	TCTTTGGTGG TT	TCTAAAGT	GCCTTATCTG	CAAACAACTT	CTTTTCTCCT	TCAGGAACTG	1140
	TGAATGGCTA GA	AGAAGGAG	CTCAGTAAAC	TAGAAGTCCA	GGGTTGCTTG	GTTTACTGGT	1200
25	TTATAAGAAA TC	TGAAAGCA	CCTCTGACAT	TCCTTTTATT	AACTCACCTC	TCAGTTGAAA	1260
	GATTTCTTCT TT	GAAAGGTC	AAGACCGTGA	ACTGAAAAA	GTGTTGGCCT	TTTTGCGGGA	1320
30	CCAGATTTTT AA	GATAAAAT	AAATATTTT	ACTTCTGTCA	ААААААААА	AAAAAATNT	1380
50	С						1381
35	(2) INFORMATION	ON FOR SE	O ID NO: 8	3:			
			HARACTERIST				
40	(-/	(A) LEN	GTH: 1706 b E: nucleic	ase pairs			
		(C) STR	ANDEDNESS: OLOGY: line	double			
	(xi) S			: SEQ ID NO	: 83:		
45	ACTGCACCAC TG	~		_		GAAGCTGGCT	60
	AGCTCAGACT GG						120
50	CCAACTATCA TO						180
	AGGGGGAAAA GA						240
	TCAATTTCTC CT						300
55			Joe Modern				500

ACTCACCTGC TCCTGGATCT CAGTATCCAC ATCTGAGAGG CAACTCTGGC AGAGTTCACA

GAAGGCCACC ATTCTGTCCC TCAAACTCGA CAGCTGCTTC TGTGGGCACA GTGGCTTGAA

GGGGAAGAAT GAAGACACAG ACTCCTCTGT TCCCATTATC CCATCTAAGA CCCACACTCA

	CCTGGGGAAG	CATCTGATTT	AGAAATGTGG	GTTAGTGTCC	AGAGAATGGA	AAAATAGACA	540
_	AGAGTCAAGG	CTGGCAGGAT	AACCTGTAAC	AACAAAGGGT	TTGAAAAATG	AGGTTTGGGT	600
5	TAGGAGAGGG	AGAGACAGAT	AGCCAGAAAC	ACACCAGTGA	AGAGGAGAGA	AAATGAGTAA	660
	AGGGAGAGCT	AATTCCTTTT	CCAGTGGAAA	ATGAGTGATA	TTCTGGACAT	TCTTCAGAGG	720
10	CATCTACACG	AAGTAGAAAT	GTCACCGCTC	CCTAATTTAC	TCTACGTCTT	CTAGAATCCC	780
	TCAATATTAT	CCTTGGCTTC	CAGGAAATCC	AAGAAGACCC	TGGAAGTAGA	GTCCACCTTC	840
. ~	TAAGAGAGGA	ATGTAAGAGG	TGACCCCCAC	CCACCTGATC	TTCCTCGCTT	TGTCCACTCC	900
15	ACGCACTGAG	ACTTGACACA	CCTAGTGGCC	ACCTAGAACG	TAGGTCCTTA	AAATYTAGCC	960
	CCCCAGCCCC	CAACCCATCT	CTAGCCTGTC	CACTCACCTG	GTGAGGAACY	TYTCCTGTGT	1020
20	CCACAGCYTT	CTGCAGGAGT	TGGCAACATG	GCTCATAGAG	CTCCCAGCGA	GTCAGGTCAT	1080
	GAGTGCTTTG	GGGGAGAAAG	GGGAATGTTA	TACTGGAAAA	GAACAGAGGG	AACCAACTCC	1140
25	ACAGACACCA	GTAAAAACGG	GATGGGGAAG	AGGAGGAAAG	CCACTCACTT	GTAGAAGGCA	1200
25	GAGAGGCGTT	TCAGAGTGGC	TGCCAGATTA	TATACCTCAT	CCTCATCTAG	GAAGGACGAC	1260
	TGAGAAGGAA	. AGAAGATCCA	CAATAGCATT	TCCCCCAGAA	CTCATCAGTC	CACATCCCCC	1320
30	GTCTTGCAGC	CCCTCCCACC	CTTGTTTGGG	GTGTCCCATT	GTCCAGCCCC	AGCTCCTACC	1380
	TGTAACAGCT	CTTCAAGCTC	CTGCTGGAAR	CGGTCAGTCA	GCAAATCTAC	TAGCTGGCTG	1440
25	CGGGCAAAGT	CCGCCCGGCT	GAAGAAAGTG	AATTCGGGAT	TACAGAGCAG	GTAAGAGCAT	1500
35	GCGCCCCAGC	: CTCAAGCACC	GCTGGCTCTG	CATGCTTCAC	CACCACCTCC	TGGAGTTGCT	1560
	GCAGGAACAG	CTCCAGGTGC	TGAGAAGAAA	AGGCAGAAGA	TGGTGTGCTG	TGGGGATGGG	1620
40	AGGAGGACAC	TCTTCTGGCG	GGAAGTGGAA	CGGGGTTAAA	AGCATTAAAC	TTCAAGGATA	1680
	AGATGCCTAA	RAAAAAAAAAA	AAAAA				1706

50

(2) INFORMATION FOR SEQ ID NO: 84:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 573 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:

GAATTCGGCA CGAGCTTGGT AGCCTTAGAA CTGCATGAGC TGCTTTACCA CTGGGAAACA 60
CGAGCACAGC CTAGCTTGAT TTTGTATGTG GTATCAGATC TAAGGTGGAT GGAATTCAGG 120

	ACTICCIGIC TACTCITIGA TITIGITITA TITITAGAAA IGITITATIT IGITITATIC	180
	ATTTATTCAT CTTCAGAGAC ATGGTCTGGC TCTGTTGCCC AGGATGGAGT GCATGGTGTG	240
5	ATCATAGGCC ACTGCAGTGT TGAGCTCCCG GGCTCAGGCG ATCCTCCTGC CTCAGCTYCC	300
	TTAGTAGCTG GGACTATAGG CACATGCCCT ACCATGCCTG GCTTTGTCTA CTTTTTGAAT	360
10	GATGTCYCAA ACTAGAAGGT CTATTAATTT AAAAAATTAA GGATAGCATG CCATAATTAA	420
10	AAATAATAAC AGTGGGAAAA GGCACCTTCC AATGATTCAG ACATCAACTT GTGATTTAAA	480
	AAAACGAAAA ATAAATAATA GGAAAAAAG GGGAAAAAGT TAAATAAA	540
15	AAAAAAAAA AAAAACTCGA GGGGGGCCCG GTA	573
20	(2) INFORMATION FOR SEQ ID NO: 85:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 684 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:	
30	CTCTTTGGCT GTGTCTACCT CCTTCATCTG CTGCGCCGAC ATAAGCACCG CCCTGCCCCT	60
	AGGCTCCAGC CGTCCCGCAC CAGCCCCCAG GCACCGAGAG CACGAGCATG GGCACCAAGC	120
35	CAGGCCTCCC AGGCTGCTCT YCACGTCCCT TATGCCACTA TCAACACCAG CTGCYGCCCA	180
	GCTACTTTGG ACACAGCTCA CCCCCATGGG GGGCCGTCCT GGTGGGCGTC ACTCCCCACC	240
	CACGCTGCAC ACCGGCCCCA GGGCCCTGCC GCCTGGGCCT CCACACCCAT CCCTGCACGT	300
40	GGCAGCTTTG TCTCTGTTGA GAATGGACTC TACGCTCAGG CAGGGGAGAR GCCTCCTCAC	360
	ACTGGTCCCG GCCTCACTCT TTTCCCTGAC CCTCGGGGGC CCAGGGCCAT GGAAGGACCC	420
45	TTAGGAGTTC GATGAGAGA ACCATGAGGC CACTGGGCTT TCCCCCTCCC AGGCCTCCTG	480
15	GGTGTCATCC CCTTACTTTA ATTCTTGGGC CTCCAATAAG TGTCCCATAG GTGTCTGGCC	540
	AGGCCCACCT GCTGCGGATG TGGTCTGTGT GCGTGTGTGG GCACAGGTGT GAGTGTGTGA	600
50	GTGACAGTTA CCCCATTTCA GTCATTTCCT GCTGCAACTA AGTCAGCAAC ACAGTTTCTC	660
	тдаалалаа даалалала алас	684

55

- (2) INFORMATION FOR SEQ ID NO: 86:
 - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1036 base pairs

180

340

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:	
TGGAGGCAGA TGCACAGGAG AAAGGTTCCC GTCCGCACCC TCTCAGACCT GAGGCTGAGC	60
TTGCAGTGAG GGCTTCTCCT CGGCCCCTCG CCCGCCCCCA GAGCTGCCAT CCCTGCTGTT	- 120
ACAAGCCAGA GGAGCCCGGA TGTGAGGCCC CAGATCACCT CCAGGGACTT GGGGTTCCCA	180
TCTGAAATCC TTTATTTTTG TACCATGGGG TGGGCCCCGG GCTGAGAAGG AAGAAGCACC	240
CTCTCCCCGG CCTCCTCTGT CTGCACCCGT GGGGCTGTGA CTTACTCCTG CCTCCAGGGG	300
CGGGGCGGGG CCCCCTGGGA CCTCTTAAGG CCCAAGGTGG GCCCCAGGAC CTYTGGGCAG	360
AGTGGAYTGC TCATGGCAGA TGTGTGGCAA TGTCTGGCTG WGTCTTTCCG GCAMCTGCGT	420
YCCCTYTCCC GGGYTCCCCT GCTGCATGGT GGATGTGCTC CTTCCTGGCC CGGTCACATT	480
GCCTCCTTGA GCCTTAGTCC AGGGGGTCAC TYCTCCCACC CCACCTACCT CACAGGGTTG	540
TTGTGAGGGT GCACAGAGGA GCAAAGTCCC TGAAGGCCCT CAGGCAGTAT ATAGGGGCCG	600
CCCACCTTCA GCTGCCCTGG GATGGGAAGG ACCCAGCCCG ACCCCTGGGC ATAACACTGT	660
GTTTGCAAAT GGAGATTCAG GTATTGGGGA TGCAGGTTGT GGGGAGCTGG CCTGGCAGAG	720
TAGGGGTAGT TGGCTTGGCC TTCTCTTTGG TGATCCCACC CCCAGCCATT TGCATTGCTG	780
GCCCAGCGCC TGGCCTGGGG GGCGGGAGA GGCAGCAGAA GGGGCTGGGC AGGGGCGGTG	840
GAGGACTCAG GAACTGCCCG GGGAGAGTGG GTATGGCGGC TGAGCCAGGG GCCCTCCTGT	900
GTTTGACTTC CCGGGATGGG TCCTTGCTTC TCAGCTGTGT CCGACCCCAC CATGTAATAA	960
AACCCAAAGG AACAGCAAAA AAAAAAAAAA AAAAAAAA	1020
CCCNGGGGG GNCCCG	1036
(2) INFORMATION FOR SEQ ID NO: 87:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 908 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:	
TTAAACAAAT GGAATCATGC AATATGTGAC CTTTTGCGTC TGGCTTATTT TATTTAGCAT	60
AATGTTTTTG AGGTTCATCC AAGCTGTAGC ATGTATCAGC ACCTCATTTC TTTTTCTGGC	120
	TIGGAGGCAGA TGCACAGGAG AAAGGTTCCC GTCCGCACCC TGTCAGACCT GAGGCTGAGC TTGCAGTGAG GGCTTCTCCT CGGCCCCTG CCCGCCCCCA GAGCTGCCAT CCCTGCTGTT ACAAGCCAGA GGAGCCCGGA TGTGAGGCCC CAGATCACCT CCAGGGACTT GGGGTTCCCA TCTGAAATCC TTTATTTTTG TACCATGGGG TGGGCCCCGG GCTGAGAAGG AAGAAGCACC CTCTCCCCGG CCTCCTCTGT CTGCACCCGT GGGGCTGTGA CTTACTCCTG CCTCCAGGGG CGGGGCGGGG CCCCCTGGGA CCTCTTAAGG CCCAAGGTGG CCCCAGGAC CTYTGGGCAG AGTGGAYTGC TCATGGCAGA TGTGTGGCAA TGTCTGGCTG WGTCTTTCCG GCAMCTGCGT YCCCTYTCCC GGGYTCCCCT GCTGCATGGT GGATGTGCTC CTTCCTGGCC CGGTCACATT GCCTCCTTGA GCCTTAGTCC AGGGGGTCAC TYCTCCCACC CCACCTACCT CACAGGGTTG TTGTGAGGGT GCACAGAGGGA GCAAAGTCCC TGAAGGCCCT CAGGCAGTAT ATAGGGGCCG CCCACCTTCA GCTGCCCTGG GATGGGAAGG ACCCAGCCCG ACCCCTGGGC ATAACACTGT GTTTGCAAAT GGAGATTCAG GTATTGGGGA TGCAGGTTGT GGGGAGCTGG CCTGGCAGAG TAGGGGTAGT TGCCTTGGCC TTCTCTTTGG TGATCCCACC CCCAGCCATT TGCATTGCTG GCCCAGCCCC TCGCCTGGGG GGCGGGAGA GGCAGCAGAA GGGGCTGGGC AGGGGCGGTG GAGGACTCAG GAACTGCCCG GGGAGAGTGG GTATGGCCCC CCCAGCCATT TGCATTGCTG GTTTGACTTC CCGGGATGGG TCCTTGCTTC TCAGCTGTGT CCGACCCCCAC CATGTAATAA AACCCAAAGG AACAGCAAAA AAAAAAAAAAAAAAA

TGAATATTAT TCCATTATAT GGATTTACCA CAATTCATTT ACCTATTCAT CTTTTGTTTC

	TGCTGTCTGG CTATTGTGAA TAATGCTTCG ATAAACATTC ATATACAAGT TTCTATGTGG	240
5	CTTTATGTTT TCATTTCTCT TGGCTATCTA CATGGGAGTA GAATTCTAGG TCATAATATA	300
J	ATTTTATGTT TAACTTCTCA AAGAATTGCC AAAAGGTTTT TCATAGTGGC TGCATCATTT	360
	ACATTCCCAC CGGCAATGTA CAAGGATTTC TATTTTTCCA TATCCTTGCA CTTACCAACA	420
10	CTTCTTTTTK GTWATWATTT TGTTTTTTCA TTATTGCCAC CCTAGTGGAT GTGAAATGGC	480
	ATCTTATTGT TITGATTTGC ATTTCTCTAA TGACAAATGA TATCATACTT TTTTTATGTG	540
15	CTTACGGATC AAAGGTATTT CCTTGGAGAA ATGTCCCTTC AAGTCCTTTG CCATTTCAAA	600
13	ATTTGGTTAT TTGTCTTTTA TTATTCAGTT TTAAGAAATT CTGGCCAGGC GCAGTGGCTC	660
	ACCTGTAATC MTAGCACTTT GGGAGGCCAA GGCGGGCAGA TCACTTGAGK TCAGGACTTC	720
20	GAGACCAGCC TGGCCAACAT GGTGAAACCC CATCTTACTA AAAATACAAA AATTAGCTGG	780
	GCGTGGTGGC AGGTGCATGT AATCNTATCT ACTCAGGAGG CTGAGGCAGG AGAATCGCTT	840
25	GAACCCAGGA GGCGGAGGCT GCAGTGAGCC AAGATCACGC CATTGCACTC TAGCCTGGGT	900
2.5	GACACAGA	908
30 35	(2) INFORMATION FOR SEQ ID NO: 88: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 655 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88: TGCACTGGTT CCTTCTCCCC AGCAAATACT GCCTTCTTGT TTTTCTCTGA TGTGGCAGGT	60
		60 120
45	TGCACTGGTT CCTTCTCCCC AGCAAATACT GCCTTCTTGT TTTTCTCTGA TGTGGCAGGT	
45	TGCACTGGTT CCTTCTCCCC AGCAAATACT GCCTTCTTGT TTTTCTCTGA TGTGGCAGGT GACTACAAAA TCCGCCTTGG TATTCTTCAA ATGCATATAT ATTCCTTTCT TGTCAGCTCC	120
45	TGCACTGGTT CCTTCTCCCC AGCAAATACT GCCTTCTTGT TTTTCTCTGA TGTGGCAGGT GACTACAAAA TCCGCCTTGG TATTCTTCAA ATGCATATAT ATTCCTTTCT TGTCAGCTCC CTCTCTTCCT AGATTAGAAA ACTGCCTCAT TTTCTGCTCA CTGGATGTGC AGTCCCAGCT	120
	TGCACTGGTT CCTTCTCCCC AGCAAATACT GCCTTCTTGT TTTTCTCTGA TGTGGCAGGT GACTACAAAA TCCGCCTTGG TATTCTTCAA ATGCATATAT ATTCCTTTCT TGTCAGCTCC CTCTCTTCCT AGATTAGAAA ACTGCCTCAT TTTCTGCTCA CTGGATGTGC AGTCCCAGCT TGTCTTCCTC TCCTCCCCCC CTGTTGCAGG TGTTCTTTTT TTTTTTCTTC TCTCCCCACT	120 180 240
50	TGCACTGGTT CCTTCTCCCC AGCAAATACT GCCTTCTTGT TTTTCTCTGA TGTGGCAGGT GACTACAAAA TCCGCCTTGG TATTCTTCAA ATGCATATAT ATTCCTTTCT TGTCAGCTCC CTCTCTTCCT AGATTAGAAA ACTGCCTCAT TTTCTGCTCA CTGGATGTGC AGTCCCAGCT TGTCTTCCTC TCCTCCCCCC CTGTTGCAGG TGTTCTTTTT TTTTTTCTTC TCTCCCCACT GGGCAGCAAA AGTTGTTCCA CAGTGGAAAW TTAGGCATCC TCAAGTTTCY TCCCAGCTTC	120 180 240 300
	TGCACTGGTT CCTTCTCCCC AGCAAATACT GCCTTCTTGT TTTTCTCTGA TGTGGCAGGT GACTACAAAA TCCGCCTTGG TATTCTTCAA ATGCATATAT ATTCCTTTCT TGTCAGCTCC CTCTCTTCCT AGATTAGAAA ACTGCCTCAT TTTCTGCTCA CTGGATGTGC AGTCCCAGCT TGTCTTCCTC TCCTCCCCCC CTGTTGCAGG TGTTCTTTTT TTTTTTCTTC TCTCCCCACT GGGCAGCAAA AGTTGTTCCA CAGTGGAAAW TTAGGCATCC TCAAGTTTCY TCCCAGCTTC TGCTGTGTTT TCTTAGAGTA AATTGCCAAT TTCTGTTTTT ACAGGAAATC CTTTTTTAAA	120 180 240 300 360
50	TGCACTGGTT CCTTCTCCCC AGCAAATACT GCCTTCTTGT TTTTCTCTGA TGTGGCAGGT GACTACAAAA TCCGCCTTGG TATTCTTCAA ATGCATATAT ATTCCTTTCT TGTCAGCTCC CTCTCTTCCT AGATTAGAAA ACTGCCTCAT TTTCTGCTCA CTGGATGTGC AGTCCCAGCT TGTCTTCCTC TCCTCCCCCC CTGTTGCAGG TGTTCTTTTT TTTTTTCTTC TCTCCCCACT GGGCAGCAAA AGTTGTTCCA CAGTGGAAAW TTAGGCATCC TCAAGTTTCY TCCCAGCTTC TGCTGTGTTT TCTTAGAGTA AATTGCCAAT TTCTGTTTTT ACAGGAAATC CTTTTTTAAA AATGGAATCA GTGTGGTCCC CATCTACTCT GCAAAAATTG CATTTTTCTC TATTTTCAAA	120 180 240 300 360 420

342

AAAAAAAAA AAAAAAAACY GRAGGGGGC CCGGTACCAA TTCGCCCTAT AATGA 655

5

10

(2) INFORMATION FOR SEQ ID NO: 89:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1102 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:

	${\bf TTTTTTTTTT}$	ACCATTTAAA	ATAAAATGAA	AGTGACCTTC	TGTTTATAAA	AATCTTTGTC	60
	TGCATCTCTG	CTTATTTCCT	TAGAAGAGAT	TCCAAGAAGC	GGTGAGTGAT	TTCACGGCAG	120
20	CAGAGGGTTG	GGACATATTA	CGGGCGCGGA	TCCCTCTTGG	ACTGAGATGA	CTCTCCGGAG	180
	AGATTTAGTC	GTCACCCTCG	CGTGTGAGGC	TGCGTCACAC	CCCAGGGATG	TGTCTATCAA	240
25	GATGGAAGAT	CTTTTACACG	CTCTTGATTT	TGTTTGSCTY	TTTTTCTATT	ACTAGTGAGA	300
23	AKGAAACTTT	TTATATGATT	ATTATCCATC	ATAATCCAAC	ACAAATTACT	GCTTCATGTT	360
	CTTTTACTTT	CCTGTGAAGG	TTTTAGTGCC	TTTTAAAAAT	TGCTATATAT	TAAGCTTGTT	420
30	AATACTTCCA	TGCTGTATTT	GTGGSCATCA	RTTTCCCCGG	GNACAGGCNT	GCACATTTTG	480
	CCTTCACACG	CTGGGTGGTT	TTTCATTTTC	AMTTCTATTT	CTCGTTCTTC	TATCGTTTTA	540
35	TGTTCAGACG	GGTTTCTCCG	TGTAGAAAGC	AGTTTATGAA	GATTTACTTT	CGACAGTCTT	600
55	CTCTCTACTT	TCTACAGTGA	ATTCTCTGAT	GTGTCTGGGA	GTTTGGGGGT	CTGGGTAAGA	660
	RTCCTCCTCT	CACCCTATTC	TCTATTACGA	TCCACAGCCT	CATGCTTTAT	GARATTGGTG	720
40	GCCGGGARCG	GGGAGATTT	GCGGATCCCC	CAAGCCAGAC	TTTATCCCCC	TATCCCTGCC	780
	TCTGGATCCC	ACGTACAGGC	CTGGGAACTC	CCTGTGGGTA	GGGGCCAATG	GTCTCGCACT	840
45	CTCACCTGTA	. CCCCAGGGCT	GGCACAGGAT	GGTCAAGGAG	AGAGGCTGCC	CAAGCGCATC	900
.5	CYTCTGGTGT	CCCCTGACA	CGCCTCCAAA	GTGAGCAGGT	AGGTTTCAAC	AGCCCCACGT	960
	TGCAGGTGGG	AGATGAAGCT	CAGGGTGGAG	ACCAGTATCT	CACAGTTCTC	TTTGCATGGC	1020
50	CGGGTACTTC	TTAGTCAACT	GATCAAGTGA	AAATTCTAGC	CCCAGAGGCA	GGAGAATCCG	1080
	GAACAAAATT	AAACCAGCCA	. GG				1102

55

(2) INFORMATION FOR SEQ ID NO: 90:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1533 base pairs

343

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90: GGCACGAGCC GNCACGGGCA GCGCCCCATA GCGCCAGGGA CCCCCTGGCA GCGGGAGCCG 60 CGGGTCGAGG TTATGGATCC AGCGGGCGGC CCCCGGGGCG TGCTCCCGCG GCCCTGCCGG 120 10 TGNCTGGTGC TGCTGAACCC GCGCGGCGGC AAGGGCAAGG CCTTGCAGCT CTTCCGGAGT 180 CACGTGCAGC CCCTTTTGGC TGAGGCTGAA ATCTCCTTCA CGCTGATGCT CACTGAGCGG 240 15 CGGAACCACG CGCGGGARCT GGTGCGGTCG GAGGAGCTGG GCCGCTGGRA CGCTCTGGTG 300 GTCATGTYTG GAGACGGGCT GATGCACGAG GTGGTGAACG GGCTTCATGG AGCGGCCTGA 360 CTGGGAGACC GCCATCCAGA AGCCCCTGTG TAGCCTCCCA GCAGGCTCTG GCAACGCSCT 420 20 GGCAGCTTCC TTRAACCATT ATGCTGGCTA TRAGCAGGTC ACCAATGAAG ACCTCCTGAC 480 CAACTGCACG CTATTGCTGT GCCGCCGGCT GCTGTCACCC ATGAACCTGC TGTCTCTGCA 540 25 CACGGCTTCG GGGCTGCGCC TCTTCTCTGT GCTCAGCCTG GCCTGGGGCT TCATTGCTGA 600 TGTGGACCTA GAGAGTGAGA AGTATCGGCG TCTGGGGGAG ATGCGCTTCA CTCTGGGCAC 660 CTTCCTGCGT CTGGCAGCCC TGCGCACCTA CCGCGGCCGA CTGGCCTACC TCCCTGTAGG 720 30 AAGAGTGGGT TCCAAGACAC CTGCCTCCCC CGTTGTGGTC CAGCAGGGCC CGGTAGATGC 780 ACACCTTGTG CCACTGGAGG AGCCAGTGCC CTCTCACTGG ACAGTGGTGC CCGACGAGGA 840 35 CTTTGTGCTA GTCCTGGCAC TGCTGCACTC GCACCTGGGC AGTGAGATGT TTGCTGCACC 900 CATGGGCCGC TGTGCAGCTG GCGTCATGCA TCTGTTCTAC GTGCGGCGG GAGTGTCTCG 960 TGCCATGCTG CTGCGCCTCT TCCTGGCCAT GGAGAAGGGC AGGCATATGG AGTATGAATG 1020 40 CCCCTACTTG GTATATGTGC CCGTGGTCGC CTTCCGCTTG GAGCCCAAGG ATGGGAAAGG 1080 TGTGTTTGCA GTGGATGGGG AATTGATGGT TAGCGAGGCC GTGCAGGGCC AGGTGCACCC 1140 45 AAACTACTTC TGGATGGTCA GCGGTTGCGT GGAGCCCCCG CCCAGCTGGA AGCCCCAGCA 1200 GATGCCACCG CCAGAAGAGC CCTTATGACC CCTGGGCCGC GCTGTGCCTT AGTGTCTACT 1260 TGCAGGACCC TTCCTCCTTC CCTAGGGCTG CAGGGCCTGT CCACAGCTCC TGTGGGGGTG 1320 50 GAGGAGACTC CTCTGGAGAA GGGTGAGAAG GTGGAGGCTA TGCTTTGGGG GGACAGGCCA 1380 GAATGAAGTC CTGGGTCAGG AGCCCAGCTG GCTGGGCCCA GCTGCCTATG TAAGGCCTTC 1440 55 TAGTTTGTTC TGAGACCCCC ACCCCACGAA CCAAATCCAA ATAAAGTGAC ATTCCCAAAA 1500 AAAAAAAAA AAAAAAAAA ANCCCGNGGG GGG 1533

	(b) In oldarion for Sig 15 No. 31.	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 575 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:	
	ATCCTCTGGA ATCTAGGTGG AAGCCACCAA GCCTTCTTCA CACTTGCGTT CTGAGCATCT	60
15	GCAGACTTAA CCCCATGTGG CAATCACCAA GGCTTATGGC TTGTGTCCTC CAGAACTGTG	120
15	GCCAGAGCTG TACCTGGGCC CCTTTGAGCT GAGGCTGAAG CCAGAGTCTG AAGCTCAGCA	180
	GGGCAGTARG GCCCTGGGCC TGGCCCCTGA AACCATTCTT TTCTCCTAAG CCTCTGGGCC	240
20	TTTGATGGGA RGGCTGTCC TCAAGATTTT TGAAATGCCT TTGGAGGGTT TTTGCCTTGT	300
	CTTGGATATT GGCTTCCTTT TAGTTATGCT CATCTCTCTA GCAAGTGAAT GTTTCACAAC	360
25	CTGCTTGGAT TCTTTCTCTA CCACAGARCC AGGCTGCAAA TTTTACAAAC TTTTACACTC	420
23	TGTTTCCCTT TTAAATATAA ATTTCAATGT TAAGTCACTT CTTTGCTCCC ATATCTGATT	480
	TAGGTTGCTG GAAGTAGCCA AGTCACCTCT TGAATGCTTT GCTGCTTAGA AATTTCCTCT	540
30	ACTAGGTAGC CTGGGTCATC ACACTTAAGT TCAAA	575
35 40	(2) INFORMATION FOR SEQ ID NO: 92: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 639 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:	
45	TCCTTTCATC TTAAGCACCA CCCGACAGGG CAGGTACTAT TACCATCTCC GTTTGACAGA	60
	TNAGGAACCT GGCACAGGAA GCATTTAAGT GGATTCCCCA GGATCGCCCC ACTGTCAGGA	120
50	GCAGANTCAG AATGGGCCTC AGCATCAGGC TCCCAATCCT GGCTTCTAAC TGCTGCGCTC	180
	TGCCCTTCYC TCWCCCCACC TCCCCACTCC AGTGCCTTTG GTCATGCCAC TGCAGCTTTC	240
	AGGCCAATAC TGGATTAGCC TCTTAGTGTT CTTGTCCCTG CAGCCATTTC CCCAGGCAGC	300
55	AATTCCATGT GCCCTCACTG ATGTAGGTGG CTCTTGTGTC ATTTGTCACA TCCTATTGAA	360
	TIGITITATGC ATCITGTICA CACTCACAGC ACCCTCCCTC TCACACGTCC TCCTTATAAA	420
60	AATGTCCCTC AGTGTCTGCT ATGAGCCAGG TGCAGACTTA AGTGACAGGG CTGCTACGGG	480

	·	
	AAATAAAAAA TTAACAAGGA GCACCTGCCT CTTAATGCAC AGTAACAAAC TATGTTAAGT	540
	GTCAGGAAGG AAAGGTTAAG GATGCCAGGA AGGCTTTTAA TAAATAACCT GACTTAGATG	600
5	GGCAGGTGGT GCTGARGATT AAGAACGTGT TCTTCTCGA	639
10	(2) INFORMATION FOR SEQ ID NO: 93:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 744 base pairs (B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:	
20	GAATTCGGCA CGAGAGTGGC TGGAGTCTGG CTGCAGAGGG AAGACATCAG CAGGGAGGGA	60
	GCCAGGGCCT GTCACATCTT TCCTCTGGCC ATTGTCCTGG TCTTTGTAAG CCCAGAATCT	120
25	CCCCTTCCCT GAAGGGAGGC CAGCACCCCA GGAGGGCAGC AGGTGTGCTG TGAGGGTTGG	180
	AGTAGTGTGA GAGGTCAGGG TACACTAGAA TGGCCATGGA CACCATGTGG GGGTGCTCTG	240
	GGCTGGGCCA CAGAACAGTG TCCTTCCTGC TGCTCCTCCC CTGCAGCTTC CCCCGACCTT	300
30	GTNGTTTATT TGGTTTGATA CCAATCAGCA GACCCTGCAA GGTGGAAGCT CCCAGGCTCT	360
	CAGTCCCACS ACTCTCATGT GCCAGTCACC CNTACTGTAA CTGCCCAATG AGTACTTCTT	420
35	GCCCACTGCC AAGATAGAGC CAGTTTACCA AGACAGGGGA ATTGCAGTAG AGAAAGAGTT	480
	GAATATACAT AGAGCCAGCT AAATGGGAGA GTGGAGTTTT CTTATTACTT AAATCAGCCT	540
	CCCYTAAAAT TCAGAGGTGA GAATTTTTCA AGGACAGTTT GGTGGSCAGG CCTAGGGAAT	600
40	GGATGCTGCT GATTGGCTAG GGATGCAATC ATAGGGGTGT AGAAAAGTWC CTTGTGCACT	660
	GAGTCCACTT TTGGTGAGAG CTACCAAGGA GCTGCTGGTC TGCTGGTCCC GGTAGAGCCA	720
45	TCTGGTGTCA GGAATGCAAA AGTG	744
	(2) INFORMATION FOR SEQ ID NO: 94:	
50	(i) CROUTINGS CHARACTERITORS.	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 526 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:	
60	GCAGGGGAAT TCGGCCACGG AGGGGTTTCA ACAGGGCCCG TGGGGTGAGG TGCARACACA	60
60		

	AAGCCCATAA GTGCTGGCCT GTTGGGACAA ATGAGAGAAA TCCCATAGGG TGGTGATGAC	120
	AGCGCAYTCA GCCATCYTAY TCCTGGGGAA AATGAAACTT GTGCTCCTAT CAAATGCTCA	180
5	GTTGTAAAAC ȚGGAAAAAAA TTTTAGAAGA CATCTTGTCC AGCATCTGTG TTTATGTCTA	240
	TAAAATGTAG AAAACTAAAG CACAGAGATG TTAAATGTTT TGTCCAAGGT CCAACAGCTG	300
10	GTTAGCARGC TTGGTCTGGT GACCTTTCTA CTGAACCACA GTGCCGCTGG GGGAAGTCCT	360
10	CAGCACAGAT GGCTGCTGCT ATAGCTGGGG TATGGGCAGT ATTAGTAGTT AACCAGTCAA	420
	CCCAAGTTCC CATAGTCTAG GTTCTGCTTC AGCTGGAGGT TAGGGAAAAA CACAAGAAAA	480
15	TCCCTTACCA CTCTACCAGT GCTGGGGGAT GTACTAAGAG ATCCCC	526
20		
20	(2) INFORMATION FOR SEQ ID NO: 95:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 426 base pairs	
25	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:	
30	GGCACAGGGC AGGAGAGCT TGGTCCATGG GGAGAAGCCT GCAGTATAGA TGGGACCTCC	60
	AGGAGCCCAA GTAGCATAGA CCCTGCTGAT CCGGGGCCAT TGAGCCAGAG GATTTGGGCT	120
35	GAATGTCCCC AGAGACAAAA GGGAAAGGTA GATCCTTTCC CTTAAAGATG AAAGCCATCG	180
	CCCGGGCTTG CTTATTGCTC TCTCTCCTGG TCCTTCCACA TGTTGTTTCT GAACATTTGT	240
	TCTGGCATCA CAATCCCCGT CATCCTGTCA TCTGGCCCTT CCCACCTTTC CACCTTATCT	300
40	CTTGCAGTGT CTCCGCGTCG ACCTGGCACC TGGGTGAARG CTTGCTCTTG CTGGTGCCCA	360
	TAGCCCCCAG TGTATGGTCT TGAMCTCCCC AGCCATATGG ARACCCACCT CAGGAGGGCC	420
45	CCTCGA	426
73		
	(2) INTERPRETARING FOR STO ID NO. 06	
50	(2) INFORMATION FOR SEQ ID NO: 96:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 844 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
55	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:	
C C	GCCACAGCGG CACGAGATAG GAAGCTTGGC AGGGGCAGCT CCCCCAGTGC GCATTGCCCT	60
60	·	

600

	GTAACTCGAG CGCCTGGGAG TGGGGAGAGG CTTGGAAATG GAGCAGGGTG GTGGACCTCG	120
	TCTTCTCCTG CTCATCCCAG GCCTCCTCCA TAACACCTAC CTAGCACGGC CTGGGGACTT	180
5	CCCAGCCCAA GGAACAACTG AGAATACTGA GTGCCAGGGT AGCCCTAGCC CCATTTCACA	240
	CCTGGGCAAA GTGAGGTCAC TGGATTCAAA CACTCAGATT TAAACCTCCT CTGTGTCTGC	300
0	AGCACCTGTA TATAACTGCC AGCCTCTGCT GCCCCTCTCC AAAAAGTCTC TGCCCTTGTC	360
U	TTTGGCACCT GTCTCTGTCC TCCCCATTCT CTGCTCCTCC TTTCTCCAAC TCAGANTCAC	420
	CCTGTTAGTT CAGCAAATGT TCATCGAGCT CCATAATGTA GCAGGACAGG NCTGTCTAAC	480
15	AGATTCTGGN CTTGCAAGGG TGAGACAAGT ACTCTCCATC TTTCTCTCAT CTTCACAGAT	540
	GGTCTGCTCA ACAACTTTGC ACTGAATTGT AAATAATTGA TACTGCATAA AACATTGATG	600
20	TTCTTTAAGG GTAGTCCAGC AAGGTGGCAA GTCTTATAAT GATAACTGCT CAAGGATCTC	660
20	TCAGTGAAGC ATTTGGGGST GCTAGCTCTG CCTATGGGTG AGGTCAGCTA TCTCACGCCA	720
	TCTACTTCCA CNTGCCCCCC CATGCCAGGC TCACCCTGAG CTGAGATGCC TGAGCAGGTG	780
25	GCAGAAAGGA GCCACCTGGT TTATGCTTCG GGACCACAAA CTCCTCTATC CAGANGACAG	840
	TTT	844
30		
, ,	(2) INFORMATION FOR SEQ ID NO: 97:	
	(2) INIONATION FOR SEQ ID NO. 37.	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1985 base pairs	
,,	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEO ID NO: 97:	
+0	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 97:	
	AGCCCTGCTG AAGTACAGGT TCTTCTATCA GTTTCTGTTG GGCAATGAAC GAGCAACAGC	60
15		
	AAAGGAGATC AGGGATGAAT ATGTGGAGAC GCTGAGCAAG ATTTACCTGT CTTACTACCG	120
	AAAGGAGATC AGGGATGAAT ATGTGGAGAC GCTGAGCAAG ATTTACCTGT CTTACTACCG CTCTTACCTG GGGCGGCTCA TGAAGGTGCA GTATGAGGAA GTCGCTGAGA AAGATGATCT	120 180
	CTCTTACCTG GGGCGGCTCA TGAAGGTGCA GTATGAGGAA GTCGCTGAGA AAGATGATCT	180
	CTCTTACCTG GGGCGCTCA TGAAGGTGCA GTATGAGGAA GTCGCTGAGA AAGATGATCT AATGGGTGTG GAAGATACAG CAAAGAAAGG ATTCTYCTCA AAGCCATCGC TCCGCAGCAG	180 240
50	CTCTTACCTG GGGCGGCTCA TGAAGGTGCA GTATGAGGAA GTCGCTGAGA AAGATGATCT AATGGGTGTG GAAGATACAG CAAAGAAAGG ATTCTYCTCA AAGCCATCGC TCCGCAGCAG GAACACCATT TTCACCCTAG GAACCCGCGG CTCTGTCATC TCCCCCACTG AACTTGAGGC	180 240 300
	CTCTTACCTG GGGCGGCTCA TGAAGGTGCA GTATGAGGAA GTCGCTGAGA AAGATGATCT AATGGGTGTG GAAGATACAG CAAAGAAAGG ATTCTYCTCA AAGCCATCGC TCCGCAGCAG GAACACCATT TTCACCCTAG GAACCCGCGG CTCTGTCATC TCCCCCACTG AACTTGAGGC CCCCATCCTG GTGCCTCACA CAGCGCAGCG GNAGAGCAGA GGTATCCATT TGAGGCCCTC	180 240 300 360

60 GCTGTTTTC TCTGTATCCA CATTGTTCTC CGGTTCCGTA ACATTGCAGC AAAGAGGGAT

	GTTCCTGCCC	TGGACAGGTA	CTGGGGAACA	GGTGCTTGCC	TTGCTATGGC	CACGGTTTGA	660
5	ACTGATCCTG	GAGATGAATG	TTCAGAGCGT	CCGAAGCACT	GACCCCCAGC	GCCTAGGGGG	720
5	GTTGGATACT	CGGCCCCACT	ATATCACACG	CCGCTATGCA	GAGTTCTCCT	CCGCTCTTGT	780
	CAGTATCAAC	CAGACAATTC	CTAATGAACG	GACCATGCAA	TTGCTGGGAC	AGCTGCAGGT	. 840
10	GGAGGTGGAG	AATTTTGTCC	TCCGAGTGGC	AGCTGAGTTC	TCCTCAAGGA	AGGAGCAGCT	900
	TGTGTTTCTG	ATCAACAACT	ATGACATGAT	GCTGGGTGTG	CTGATGGAGC	GGGCTGCAGA	960
15	TGACAGCAAA	GAGGTTGAGA	GCTTCCAGCA	GCTGCTCAAT	GCTCGGACAC	AGGAATTCAT	1020
15	TGAAGAGTTG	CTGTCTCCCC	CTTTTGGGGG	TTTAGTGGCA	TTTGTGAAGG	AGGCTGAGGC	1080
	TTTGATTGAG	CGTGGACAGG	CTGAGCGACT	TCGAGGGGAA	GAAGCCCGGG	TAACTCAGCT	1140
20	GATCCGTGGC	TTTGGTAGTT	CCTGGAAATC	ATCAGTGGAA	TCTCTGAGTC	AGGATGTAAT	1200
	GCGGAGTTTC	ACCAACTTCA	GAAATGGCAC	CAGTATCATT	CAGGGAGCGC	TGACCCAGCT	1260
25	GATCCAGCTC	TATCATCGCT	TCCACCGGGT	GCTGTCCCAG	CCGCAGCTCC	GAGCCCTCCC	1320
	TGCCCGGGCT	GAGCTCATCA	ACATTCACCA	CCTTATGGTG	GAGCTCAAGA	AGCATAAGCC	1380
	CAACTTCTGA	TGTGCCAGAA	ACCGCCCTGA	GATCTGCCGG	TCATCTCCAT	GGACTTCTGC	1440
30	ACCCCATTCC	ATACCCTTCT	TCACCTGGGG	TACCCCTTCC	AGTTTTCCCC	TIGCTICCCA	1500
	GGCCCTTGAC	ATGGCTTACC	TGCCTTCACT	CCCAGCACCT	TGCCCAACAG	GATAAGCTGG	1560
35	ATCCCCTTGG	CCTTCTGAAT	ATCCCAGTGT	CTTCAGGTTT	CCCAAGACCA	CTICCCIGIG	1620
	GGCTTCCAAA	ATGGCCTTTA	TCATTTCTCC	AGTCTGTCAC	CCTCCTTTCC	TGCTCCCATA	1680
	CACCCAAGGC	TIGTTTCTTC	CCCTGTAAAA	ACCACTGCCT	CAATCTCTGG	TTCACTCAAC	1740
40	TAGTCACCAT	GTCCTGAGGC	ATGAAGCCTC	CTCAGCTCTT	GGAATTGCTG	GCAAGGGGTG	1800
	ACTGCCTCTG	AGTCATTGTG	TTTTTCAAAG	TGATTTCTTT	TCTGTAGCTT	TTTGACCTAA	1860
45	GATCTCAGCA	ATTTGAACAC	TAACCTCTCC	CCTCCTGGCT	CAAGAATTAC	TCCGAAGTCA	1920
	GTCTGCAGAA	AATAAATATT	TAGTATGACA	TGAAAAAAA	ААААААААА	AAAAAAAA	1980
	AAAAA						1985

(2) INFORMATION FOR SEQ ID NO: 98:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1416 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60

. 50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:

	ATATGAAGGG	AAAGAATTTG	ATTATGTTTT	CTCAATTGAT	GTCAATGAAG	GTGGACCATC	60
5	ATATAAATTG	ССАТАТААТА	CCAGTGATGA	CCCTTGGTTA	ACTGCATACA	ACTTCTTACA	120
	GAAGAATGAT	TTGAATCCTA	TGTTTCTGGA	TCAAGTAGCT	AAATTTATTA	TTGATAACAC	180
10	AAAAGGTCAA	ATGTTGGGAC	TTGGGAATCC	CAGCTTTTCA	GATCCATTTA	CAGGTGGTGG	240
10	TCGGTATGTT	CCGGGCTCTT	CGGGATCTTC	TAACACACTA	CCCACAGCAG	ATCCTTTTAC	300
	AGGTGCTGGT	CGTTATGTAC	CAGGTTCTGC	AAGTATGGGA	ACTACCATGG	CCGGAGTTGA	360
15	TCCATTTACA	GGGAATAGTG	CCTACCGATC	AGCTGCATCT	AAAACAATGA	ATATTTATTT	420
	CCCTAAAAAA	GAGGCTGTCA	CATTTGACCA	AGCAAACCCT	ACACAAATAT	TAGGTAAACT	480
20	GAAGGAACTT	AATGGAACTG	CACCTGAAGA	GAAGAAGTTA	ACTGAGGATG	ACTTGATACT	540
	TCTTGAGAAG	ATACTGTCTC	TAATATGTAA	TAGTTCTTCA	GAAAAACCCA	CAGTCCAGCA	600
	ACTTCAGATT	TTGTGGAAAG	CTATTAACTG	TCCTGAAGAT	ATTGTCTTTC	CTGCACTTGA	660
25	CATTCTTCGG	TTGTCAATTA	AACACCCCAG	TGTGAATGAG	AACTTCTGCA	ATGAAAAGGA	720
	AGGGGCTCAG	TTCAGCAGTC	ATCTTATCAA	TCTTCTGAAC	CCTAAAGGAA	AGCCAGCAAA	780
30	CCAGCTGCTT	GCTCTCAGGA	CTTTTTGCAA	TIGITITIGIT	GGCCAGGCAG	GACAAAAACT	840
	CATGATGTCC	CAGAGGGAAT	CACTGATGTC	CCATGCAATA	GAACTGAAAT	CAGGGAGCAA	900
	TAAGAACATT	CACATTGCTC	TGGCTACATT	GGCCCTGAAC	TATTCTGTTT	GTTTTCATAA	960
35	AGACCATAAC	ATTGAAGGGA	AAGCCCAATG	TTTGTCACTA	ATTAGCACAA	TCTTGGAAGT	1020
						TTATCAGTGA	1080
40						TAAAAAAGTA	1140
						TAAATTTGCT	
						CCTCACATTT	1260
45						AAAATTTTAC	
			•		TTTGCACTGC	TGAAAAAAA	
50	ААААААААА	AAAAGGAAAC	TCGAGGGGGG	GCCCGG			1416

(2) INFORMATION FOR SEQ ID NO: 99:

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1935 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:

5	NTCTACCCTA ATCAAGATGG GGACATACTT CGC	GACCAGG TTCTTCATGA	ACATATCCAG	60
5	AGATTGTCTA AAGTAGTGAC TGCAAATCAC AGA	GCTCTTC AGATACCAGA	GGTTTATCTT	120
	CGAGAAGCAC CATGGCCATC TGCACAATCA GAA	ATCAGGA CAATAAGTGC	TTATAAAACC	180
10	CCCCGGGACA AAGTGCAGTG CATCCTGAGA ATG	TGCTCTA CGATTATGAA	CCTCCTGAGC	240
	CTGGCCAATG AGGACTCTGT CCCTGGAGCG GAT	GACTTTG TTCCTGTGTT	GGTGTTTGTG	300
15	TTGATAAAGG CAAATCCACC CTGTTTGCTG TCT	ACTGTGC AGTATATCAG	TAGCTTTTAT	360
13	GCTAGCTGTC TGTCTGGAGA GGAGTCCTAT TGG	TGGATGC AGTTCACAGC	AGCAGTAGAA	420
	TTCATTAAAA CCATCGATGA CCGAAAGTGA CCA	AGACCAA GGCCCACCAA	GGCAGCAGAC	480
20	TGTTAATCAG ACAAACAGAT CTCTGAGAAG GTG	CATCAGC TGCTTTGAAG	GCTGAAGATT	540
	GTTTTGTATG ATACTGCACA GCATCAGGCA TTT	TAAAGCA GATCTTTACT	AAACAGGTTA	600
25	ATGAGCTAAC AAGCAGGTTC TCTCGTCTTT GGC	CTCTTTC CTTTCTGAGT	TGCATATTCT	660
23	ATTTTCTTGT CCCCAAGTAG AGACTAGTAC TAC	AAAAAGG GACCACATTT	TTCAAGTATT	720
	TCTAAGTATA AAAAACAAAA CAAAAATCTC TTA	GGAAATG TCTAGACCTC	CATTCTTGGA	780
30	TTCCCTTTCT TTCCTTTTAT TTTAAAAAAG AAG	AGTACCC CTCTTTAAG	ATGCTGTCTT	840
	ACATTAATGA GCATCTAATG GAAAGAAGGT ATC	GAGTIGCA CIGAGGATTA	GAATAGTGGT	900
35	GCGTTAGTGG CATTATCTAT AAATACACTC ACC	TAAATTG AAAGCTAAGA	AGGAAATGTA	960
55	AATATAATAT ATATTTATAT TIGATGTAAT ATO	GACATCT GCAGATTCTA	ATAAACAAGG	1020
	ACTATIGCTG ATAGTAGGCT GIGACATACT GIV	TTGIGAA ATGGTTTCCT	TGACAAAATT	1080
40	TAAGCTGAGC TTAAAAGCAA AAAAACAAAA AGT	PACACAGA AATATTTATT	AAAATGTAAT	1140
	ACAGTITATI GAACTITCIA GGTATGGAGT TIX	SATGGACA GGGCTGCCTY	TAATGAGTGT	1200
45	GAAGGTCACT AAGTCACTTA GACATCTCAC CG	GGAAGTT TGTGAGCCTG	CATTAGGAGA	1260
73	TAGACTGATT ACCATACATG ACATAAAAAG GAA	ACAGTGGA TAGCTCATAC	TTTATGGTGG	1320
	TTCTTCTCCT CCGAAATAAT ATACTGCAGA AA	CCCAGAC AGAGCTCCTT	ACAAACCTTT	1380
50	AATTGTAATA TATTTTTGAT GATTATTCAC AT	rgaatgca cagaccaaga	ATTCAGTGAA	1440
	TGTCATTTTT TAAAAAACTA ATTTGTATTG TC	IGCTCTAG TGATACAAGT	TTTACTAGTG	1500
55	ATAAACTATT TTAATCAACC ATACTATTCT TA	rggaaaa aatatctatt	TTGGCAGGTT	1560
55	TCTGTGCCTT TATTTCCCTC TTCTGAAAAA AAG	STOTGTGT TTTCATAGTT	TGGTTTGCAT	1620
	TGTATATCAA TAATTAATCA GGAATGGGTT TT	GGTGCCTG AAAAATTGGC	CATGGAGGCA	1680
60	CACCAAAGCT TCAAGCACAA GTCTTGTACA TG	GCCATCA CIGICIGGII	TCACTTCGTG	1740

	TGTTTCCTAA ACACATTTAG CTGCTTTTTT AACAAACTCA GCCCCATACT TGAGTCCCTT	1800
5	GTTGTTGGGA GCATTTCCAG GCATCTTTTA AGGGAACTGT GACAAACAGC CTCGGGCAGA	1860
J	TGAACACGGA GGCTCTCTGT TGTCTGTCTC TGAGATCTTT GTGTCTGGGA ATGCCTAAAG	1920
	NTTTIGNITT TTTTT	1935
10		
	(2) INFORMATION FOR CEO ID NO. 100.	
	(2) INFORMATION FOR SEQ ID NO: 100:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 599 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEO ID NO: 100:	
2.5	GAATTCGGCA CGAGCGTCCA CGCAGCCGCC GGCCGGCCAG CACCCAGGGC CCTGCATGCC	60
25	AGGTCGTTGG AGGTGGCAGC GAGACATGCA CCCGGCCCGG	120
	CCTCATCCTG ATGGGCACTG AACTCACTCA AGACTCCGCT GCCCCCGACT CCCTGCTGAG	180
30	AAGTTCAAAG GGCAGCACGA GGGGGTCTTT GGCTGCTATT GTCATCTGGA GGGGGAAGAG	240
	TGAGAGCCGG ATAGCCAAGA CCCCAGGCAT TTTCAGAGGT GGCGGGACCT TAGTCCTACC	300
	CCCAACACA ACCCCTGAGT GGCTCATCCT CCCTTTGGGC ATAACGCTGC CCTTGGGGGC	360
35	TCCAGAAACA GGCGGTGGGG ATTGTGCCGC TGAGACCTGG AAGGGCAGCC AGCGTGCCGG	420
	CCAGCTGTGT GCATTGCTGG CTTAATATGC AGGCTTGGG GGGCTGTGGC CACATGCCCG	480
40	GCAGGAGGTG AGTGAGGAGC CCTGTGGCGT GCTGGTGTGG GGATCGTGGG CATTTCAAAC	540
	GGGCTTGTCG TACCCTGAAC AATGTATCAA TAGAGAAAAA AAAAAAAAA AAAACTCGA	599
45	(2) 7)70000700 700 700 700 700	
	(2) INFORMATION FOR SEQ ID NO: 101:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 784 base pairs	
50	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:	
	GAATTCGGCA CAGAAAAAA AGAGAGACTG GGTCTTACTG TGTTGCCCAG ACTTGTCTTG	60
	AACTCCTGCC TCAGCCTCTC AAGTACTTGG GATTATAGGC CAAGAAGCCA CCATGCCTAG	120
60	ርምምርሞምርር ምርልሞምርልጥርር ልርልርሞልልሞልር ምርምርርርርጥርል ርርርጥርልሞሞውር ሞጥርሞርሞሞውር	180

	CACTTTGCAC ATCCACTTGT CACCAAATCK RGTTCATTCT GCATCCTAAG TAAGTCCTTT	240
5	GATTCCTCCA GITGTTCATT AGTAATGTCT CAARTGTAAT TITTTCTAGT AGTTTTCAGC	300
	CTGTCTTTCC KGCCTTCAGT CTTAACTTCT CCAGTACATA KGCCACATTG TTGTCAGCAK	360
	GATCAWATTT TATTTAAAAA TACTTTACAW AKGTTTATKG CCAAATATTA GRAAATACAG	420
10	ATTCATGGAA AGAAAATCA CTGTCCCAAG GAGGTCACTG GCATGGTGAG GTTAAGGGGT	480
	GATTTTAATT TTTAAAAATG TATATTTTT CCTGTGTAGA GTAGTAACAC CCTTGAAAAC	540
15	ACAWTCCCTT GTAAAGTCTC TAATTCTGTA CTCCGCATCT AGSTGRTCTC TTCTTTCTCA	600
	GATATTTTAC AATTTCATTT ATCACCACCT TTCTCTAGCC TTTACCCGTC TCTTCAATAT	660
	TWACATATGC AGAAGTITCT CCTAACAAAC ACCTGCCTCT GCCTCAGTTC TGCTACCACC	720
20	CTGTTGCTTT CTTTCCCTTC ACAATCAAAT TTAAGAGTGT CAAAAAAAAAA	780
	TCGA	784
25		
	(2) INFORMATION FOR SEQ ID NO: 102:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 1035 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:	
-	AGAGGCCTGG CTGCGTTGCC CTATCTCCGT CTCCGCCACC CACTTAGCGT TTTAGGCATC	۲0
	AATTACCAGC AGTTTCTCCG CCACTATCTG GAAAATTACC CGATTGCTCC CGGCAGAATA	60
40		120
	CAAGAGCTTG AAGAACGCCG CAGTTGCGTG GAAGCCTGCA GAGCAAGGGA AGCAGCGTTT	180
45	GATGCCGAAT ATCAGCGAAA TCCTCACAGG GTGGACCTCG ATATTTTAAC CTTTACGATA	240
43	GCTCTGACTG CCTCTGAAGT TATCAACCCT CTGATAGAAG AACTTGGTTG CGATAAGTTT	300
	ATCAATAGAG AATAGTTAGG TGGTGACACT ACTTCAAGAG AACCTCTGCA TTCCAGTCAT	360
50	ACCAATCCTG CAACTTGATT TTCAGAAGTC AAGAGTATAT CGCGATAAGA CAGTGCACAG	420
	GTGGAGGGGA AAAAAAGGGG GAGGGGGAAG CTTATCTTGA AAAAGCATCA CAGAAGTAGA	480
	AAAAAATGTC GAAAGCATTA TAACTGTAAC GTTCTTTGAG TTTGTGATTG ATCCACATTT	540
55	TTCCCCCTGC ATTATGGAAA ATGTCTCTCA GCATTGCTTT ATTACAAAGT AAAGGATGGT	600
	TTTATAAAAT TGAGACTGAT GAAACATCAA TACTAGAGCC CATGAGGATG AAAGAAATTA	660
60	TCAAATAGTG CTGAACAGAA TAAGATGTTA ACGCTGAGTT ATTAGGACTG GAAGGCTATG	720

	AAAAGAACTT GAAATTGTCG GAATATGTGC TCTCTTCATG TCATATTCAA TAGAAGTTTC	780
	TAGTTTAAGA TIGATTTIGT GTTTTCTTAG GCATTTCAAG TGACAAGCAA AGTAAATGTA	840
5	TATATTATGT GATAAATCAT GTTTTCAAGA ACGTCAAATT TCTGGACTTT TTTCTTTCAA	900
	TTTTTAATTT TTAAAGTTTT TTTGGTATTA AAAAATCYAT TCACAAGCCA AAAAATWIWI	960
10	WAAATWIWCM GCGAAAAGCC AAAAAAAAA AAAAMMAGGG GGGGCCGGGC CCCATCCCCC	1020
10	CAAGGGGGTC CNGNT	1035
15	(2) INFORMATION FOR SEQ ID NO: 103:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2218 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:	
	AGGTATTAGG CCCTTTTGTG GGAGCCCCAT GTTTTGTTTT	60
	SGGAGGGGA GGGCTGAATT GTTTTGCAGA GGAAGATGGC ATCTGTGCTT TAAATTTCTC	120
30	ATTACTGGGT TAGAAAACAA AGAGGGAKTG CCCTGCACAT TTTCTTTTGT GCTTTTAAAT	180
	GTTTCTTAAG TTGGAACAGG TTTCCTCGGG CCTGTTTTGA CTGATTGCTG GAGTGCATTT	240
35	GATAGTTAAA AATTACTAAT TGGTTTTATT TCCCTTCACA CTCTGCCTCC CCACTTCTCC	300
	CCCCGTTACT GAAAAATAAC CATTTTAGTG TCAGGCTAGA AATTGAATTG	360
	TGTATCCTTT AAATTAAAAA CCACAAGTGT TTATTGTAGT GGTTAAACTG TAGCATCTCA	420
40	GCATCTGGGT GGAAGCTGCC TATATTTCTT CCCAGTTTAA CTGGGGACCA TCTGTGAAAT	480
	TAATTTTCCA TCCAGACAGC TGCTGTGAGC AAATGAACAT AAATGCTCGC TGGAAATTTA	540
45	CTAACCAGTT TTTATATTGA CCTGCAGTGT AAAAAGCACA TTTAATTATA AACAATATAT	600
	TCAAAATGGG CAAATTTTAT TTTCAAATGC AGTGTAGAGC TAGATTAAAA GCAACTCTTT	660
	GCCACCTACT CTGCCCTTTT GGCAAAGTTA CCTTGAACAA AGAATCTTAA GGGTTTATTA	720
50	AGAACTCTTT ATTTTCTTCA TACCCTGTTC TCTGCAGTGC TTTCTAACAG CTTCTGGGTG	780
	CAGATTITCT TCGGCATCCT TTTGCACTCA GCTTATTACA GGTAGGTAGT GCTTAAGAAA	840
55	AGTCATGGAG GACTAAAGCC TAAGTCCTTT TCACTTTTCC TCCATCTGAA GGTAGGTGAG	900
=	TTCATCCTCT TCATAGTAAT GCTGTTTTAC CAAGACTTTA TAGCAGATGG ACCCAGAAAG	960
	AATTTTCTGC TATTGTGTTC ACTACAACAG GATAGGGACA TCAGACAGCC CCAGAAACCC	1020

cttccagatc tgatatggga ctattaattt ttatgctgtt aattggtatt cattcacaat

	GCAGTTGAAG GGGGAAGGCT CCACTGCATT CTTTGGCTAA GGCCTGAATG CTTGCTCATC	1140
5	TGTAAGATCT ATACTCGAGG TTTTGTTTTC CTTTTAAAAT TCTTTAGGGA GAGAGGGATG	1200
	GTTTCTGAGG GGTTCTGAAA GTATGATTCA ATGTGCAACA TACAGGTAGG TCTTCAGCAT	1260
	AAGCTGAAAT ATATGCATGT AAAAACTTTG ACATCTTTTT TTTTAATTTT CCACTTTCTT	1320
10	CTTAACTTTA CTTCTCTTTT TGTCCCCCCC CCATCTTACA GAAGTTGAGG CCAAGGGAGA	1380
	ATGGTAGGCA CAGAAGAAAC ATGGCAAACT GCTCTGTGCT TTCAAACCAA AGTGTTCCCC	1440
15	CCAACCCCAA ATTTGTCTAA GCACTGGCCA GTCTGTTGTG GGCATTGTTT TCTACAACCA	1500
	AATTCTGGGT TTTTTTCTTC TTTCTTTAAA CATAGAGGTA CCACCACAAG GGATGCCCTA	1560
	CTCTCTCGCA GCTCTTGAAA GCATCTGTTT GAGGGAAAGG TCTCTGGGCA AGCAAGTGGT	1620
20	TATTTGGATT GCTTGCTTCC CTTTTTCCAC CTGGGACATT GYAATCATAA AATAACAGTA	1680
	AATTCCAAAC CTCAAAAACT ATTATGGCCT GAGCACAGCT GAAATCTAGC AGAGTTTAAC	1740
25	TCTTCTGCCT CCATGTCTGT CACTTATAAT TCAGGTTCTG CTGTTGGCTT CAGAACATGA	1800
23	GCAGAAGAAT CGTTTTATGC TAGTTATTGC ATTCATGGTT GAAACTCAAC TTAGGGAAAG	1860
	GGTTCCAATG TATTAAGCAA TGGGCTGCTT CTCCCCAATC CTCCCTAACA ATTCGTTGTG	1920
30	TGGACTTCTC ATCTAAAAGG TTAGTGGCTT TTGCTTGGGA TCAGTGCTCT CTATTGATGT	1980
	TCTTGCTGGT CTCCAGACAC ATTCCTGTTG CATTAAGACT TGAAAGACTT GTAGATGTGT	2040
35	GATGTTCAGG CACAGGATGC TGAAAGCTAT GTTACTATTC TTAGTTTGTA AATTGTCCTT	2100
55	TTGATACCAT CATCTTGTTT TCTTTTTGTA GGTATAAATA AAAACACTGT TGACAATAAA	2160
	AAAAAAAA AAAAAAAAA AAAAAAAAA AAAAAAAAA	2218
40		
	(0)	
	(2) INFORMATION FOR SEQ ID NO: 104:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1351 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:	
	CTTCACAGAC TGACAGAATG GTTTTGTTTT GTTTTGTTTT	60
55	TGGACTCTAG CTCTGTCACC CAGGCTGGAG TGCAGTGGTG CGATCTCGGC TCACTGCAAG	120
	CTCCGCCTCC CGGGTTCTCA CCATTCTCCT GCCTCAGCCT CCCGAGTAGC TGGGACTACA	180
60	GGCGCCCACC ACCACGCCCG GCTAATTTTT TGTATTTTTT AGTAGAGACG GGGTTTCACC	240

	ATGTTAGCCA GGATGGTCTC GATCTCCTGA CCTCGTGATC CGCCCGCYTC GGCCTCCCAA	300
	AGTGCTGGGA TTACAGGCGT GAGCCACCGT GCCTGCCCCA GAATGGTTTT TAAAGCCACA	360
5	GTTGAGARGC CACCCATTGC CCGGCGCCTG GACAGTGATC ATCTTGTTCA TCTTGTTCAG	420
	TCCTTTCTTG TGTGATTGGA ATTATTCATC CCCTTTGAAA GATGAGAAGG TTGAGATGCA	480
10	AAGAGTCTAC CTTTCCAAGT TCTCACTGCT GGAAAGARCT AGAAGCACAG TTCAAAGTTC	540
	TGGNTTCTGG ACTCTGCAGT CCAGGTYTCC CTTYTCCCAC TTGCCTACCC TCAATGCCAC	600
	ACTGTTTTTG AAGTGGCCCA TAACTTGAAG GRAAAGTTTA AAGACAGTTC AATTTAATCA	660
15	TCAGRATGCA TTCTTTTTT TTTCGGARAC GGAKTTTCAC TCTTGCTGCC CASGCTGGAG	720
	TGCAATGGTG CAATGATCTC GGCTCACTGC AACCTATGCC TCCTGGGTTC AAGNGATTAT	780
20	CCAGCCTCAG CCTCCCGAGT AGCTGGGATT ATGGGCGCCC ACCACCATGC CCAGCTAATT	840
	TTTGTATTTT TTTTTTTAGT AGAGATGGGG TTTCGCCAGG TTGGCCAGGC TGKTCTTGTG	900
	AAYTCCTGGC YTCAGGTGAT YTGCCCACYT CATCYTCCAA AAGTGCTGGG ATTACAGGCA	960
25	TGAGCCACTG CGCCTGGCYT CAGAATGCAT TCTTACACAT CTATCCTAGA CATTTATAAG	1020
	CACTCTAATG GATAACAATC CAAGAATAAA TGATTGTAAA AGATGATGCC GAAGAGTTGA	1080
30	TGTCAATCTT TTTTTCCTAA GAAAAAAAGT CCGCGAGTAT TAAATATTTA GATCAATGTT	1140
	TATAAAATGA TTACTTTGTA TATCTCATTA TTCCTATTTT GGAATAAAAA CTGACCTTCT	1200
	TTAATCATAT ACTIGTCTTT TGTAAATAGC AGCTTTTGTG TCATTCTCCC CACTTTATTA	1260
35	GTTAATTTAA ATTGGAAAAA ACCCTCAAAC TAATATTCTT GTCTGTTCCA GTCTTATAAA	1320
	TAAAACTTAT AATGCATGTA AAAAAAAAA A	1351
40		
	(2) INFORMATION FOR SEQ ID NO: 105:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2066 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:	
	GGCACGAGGC GGCGGAGGGC CACAATCACA GCTCCGGGCA TTGGGGGAAC CCGAGCCGGC	60
55	TGCGCCGGGG GAATCCGTGC GGGCGCCTTC CGTCCCGGTC CCATCCTCGC CGCGCTCCAG	120
	CACCTCTGAA GTTTTGCAGC GCCCAGAAAG GAGGCGAGGA AGGAGGGAGT GTGTGAGAGG	180
	AGGGAGCAAA AAGCTCACCC TAAAACATTT ATTTCAAGGA GAAAAGAAAA	240
60	CAAAAATGGC TGGGGCAATT ATAGAAAACA TGAGCACCAA GAAGCTGTGC ATTGTTGGTG	300

	GGATTCTGCT	CGTGTTCCAA	ATCATCGCCT	TTCTGGTGGG	AGGCTTGATT	GCTCCAGGGC	360
5	CCACAACGGC	AGTGTCCTAC	ATGTCGGTGA	AATGTGTGGA	TGCCCGTAAG	AACCATCACA	420
J	AGACAAAATG	GTTCGTGCCT	TGGGGACCCA	ATCATTGTGA	CAAGATCCGA	GACATTGAAG	480
	AGGCAATTCC	AAGGGAAATT	GAAGCCAATG	ACATCGTGTT	TTCTGTTCAC	ATTCCCCTCC	540
10	CCCACATGGA	GATGAGTCCT	TGGTTCCAAT	TCATGCTGTT	TATCCTGCAG	CTGGACATTG	600
	CCTTCAAGCT	AAACAACCAA	ATCAGAGAAA	ATGCAGAAGT	CTCCATGGAC	GTTTCCCTGG	660
15	CTTACCGTGA	TGACGCATTT	GCTGAGTGGA	CTGAAATGGC	CCATGAAAGA	GTACCACGGA	720
13	AACTCAAATG	CACCTTCACA	TCTCCCAAGA	CTCCAGAGCA	TGAGGGCCGT	TACTATGAAT	780
	GTGATGTCCT	TCCTTTCATG	GAAATTGGGT	CTGTGGCCCA	TAAGTTTTAC	CTTTTAAACA	840
20	TCCGGCTGCC	TGTGAATGAG	AAGAAGAAAA	TCAATGTGGG	AATTGGGGAG	ATAAAGGATA	900
	TCCGGTTGGT	GGGGATCCAC	CAAAATGGAG	GCTTCACCAA	GGTGTGGTTT	GCCATGAAGA	960
25	CCTTCCTTAC	GCCCAGCATC	TTCATCATTA	TGGTGTGGTA	TTGGAGGAGG	ATCACCATGA	1020
23	TGTCCCGACC	CCCAGTGCTT	CTGGAAAAAG	TCATCTTTGC	CCTTGGGATT	TCCATGACCT	1080
	TTATCAATAT	CCCAGTGGAA	TGGTTTTCCA	TCGGGTTTGA	CTGGACCTGG	ATGCTGCTGT	1140
30	TTGGTGACAT	CCGACAGGGC	ATCTTCTATG	CGATGCTTCT	GTCCTTCTGG	ATCATCTTCT	1200
	GTGGCGAGCA	CATGATGGAT	CAGCACGAGC	GGAACCACAT	TGCAGGGTAT	TGGAAGCAAG	1260
35	TCGGACCCAT	TGCCGTTGGC	TCCTTCTGCC	TCTTCATATT	TGACATGTGT	GAGAGAGGGG	1320
33	TACAACTCAC	GAATCCCTTC	TACAGTATCT	GGACTACAGA	CATTGGAACA	GAGCTGGCCA	1380
	TGGCCTTCAT	CATCGTGGCT	GGAATCTGCC	TCTGCCTCTA	CTTCCTGTTT	CTATGCTTCA	1440
40	TGGTATTTCA	GGTGTTTCGG	AACATCAGTG	GGAAGCAGTC	CAGCCTGCCA	GCTATGAGCA	1500
	AAGTCCGGCG	GCTACACTAT	GAGGGGCTAA	TTTTTAGGTT	CAAGTTCCTC	ATGCTTATCA	1560
45	CCTTGGCCTG	CGCTGCCATG	ACTGTCATCT	TCTTCATCGT	TAGTCAGGTA	ACGGAAGGCC	1620
75	ATTGGAAATG	GGGCGGCGTC	ACAGTCCAAG	TGAACAGTGC	CTTTTTCACA	GGCATCTATG	1680
	GGATGTGGAA	TCTGTATGTC	TTTGCTCTGA	TGTTCTTGTA	TGCACCATCC	CATAAAAACT	1740
50	ATGGAGAAGA	. CCAGTCCAAT	GGAATGCAAC	TCCCATGTAA	ATCGAGGGAA	GATTGTGCTT	1800
	TGTTTGTTTC	GGAACTTTAT	CAAGAATTGT	TCAGCGCTTC	GAAATATTCC	TTCATCAATG	1860
55	ACAACGCAGC	TTCTGGTATT	TGAGTCAACA	AGGCAACACA	TGTTTATCAG	CTTTGCATTT	1920
<i>)</i>)	GCAGTTGTCA	CAGTCACATT	GATTGTACTT	GTATACGCAC	ACAAATACAC	TCATTTAGCC	1980
	TTTATCTCAA	. AATGTTAAAT	ATAAGGAAAA	AAGCGTCAAC	AATAAATAT	CTTGAGTATA	2040
60	ААААААААА	AAAAAAAAA	AAAAA				2066

357

)	(2)	INFORMATION	FOR	SEO	ID	NO:	106:

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1705 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:

(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 106:										
15	AATTCGCCAK AGGGCAGCTG TCGGCTGGAA	GGAACTGGTC	TGCTCACACT	TGCTGGCTTG	60					
	CGCATCAGGA CTGGCTTTAT CTCCTGACTC	ACGGTGCAAA	GGTGCACTCT	GCGAACGTTA	120					
20	AGTCCGTCCC CAGCGCTTGG AATCCTACGG	CCCCACAGC	CGGATCCCCT	CAGCCTTCCA	180					
	GGTCCTCAAC TCCCGYGGAC GCTGAACAAT	GGCCTCCATG	GGGCTACAGG	TAATGGGCAT	240					
	CGCGCTGGCC GTCCTGGGCT GGCTGGCCGT	CATGCTGTGC	TGCGCGCTGC	CCATGTGGCG	300					
25	CGTGACGGCC TTCATCGGCA GCAACATTGI	CACCTCGCAG	ACCATCTGGG	AGGGCCTATG	360					
30	GATGAACTGC GTGGTGCAGA GCACCGGCCA	GATGCAGTGC	AAGGTGTACG	ACTCGCTGCT	420					
	GGCACTGCCG CAGGACCTGC AGGCGGCCCC	CGCCCTCGTC	ATCATCAGCA	TCATCGTGGC	480					
	TECTCTEGGC GTGCTGCTGT CCGTGGTGGC	GGGCAAGTGT	ACCAACTGCC	TGGAGGATGA	540					
	AAGCGCCAAG GCCAAGACCA TGATCGTGGC	GGGCGTGGTG	TTCCTGTTGG	CCGGCCTTAT	600					
35	GGTGATAGTG CCGGTGTCCT GGACGGCCCA	CAACATCATC	CAAGACTTCT	ACAATCCGCT	660					
	GGTGGCCTCC GGGCAGAAGC GGGAGATGGC	TGCCTCGCTC	TACGTCGGCT	GGGCCGCCTC	720					
40	CGGNCTGCTG CTCCTTGGCG GGGGGCTGCT	TTGCTGCAAC	TGTCCACCCC	GCACAGACAA	780					
	GCCTTACTCC GCCAAGTATT CTGCTGCCCC	CTCTGCTGCT	GCCAGCAACT	ACGTGTAAGG	840					
	TGCCACGGCT CCACTCTGTT CCTCTCTGCT	TTGTTCTTCC	CTGGACTGAG	CTCAGCGCAG	900					
45	GCTGTGACCC CAGGAGGGCC CTGCCACGGC	CCACTGGCTG	CTGGGGACTG	GGGACTGGGC	960					
	AGAGACTGAG CCAGGCAGGA AGGCAGCAGC	CTTCAGCCTC	TCTGGCCCAC	TCGGACAACT	1020					
50	TCCCAAGGCC GCCTCCTGCT AGCAAGAACA	A GAGTCCACCC	TCCTCTGGAT	ATTGGGGAGG	1080					
	GACGGAAGTG ACAGGGTGTG GTGGTGGAG	r ggggageteg	CTTCTGCTGG	CCAGGATGGC	1140					
	TTAACCCTGA CTTTGGGATC TGCCTGCAT	C GGTGTTGGCC	ACTGTCCCCA	TTTACATTTT	1200					
55	CCCCACTCTG TCTGCCTGCA TCTCCTCTG	TGCGGGTAGG	CCTTGATATC	ACCTCTGGGA	1260					
	CTGTGCCTTG CTCACCGAAA CCCGCGCCC	A GGAGTATGGC	TGAGGCCTTG	CCCACCCACC	1320					
60	TGCCTGGGAA GTGCAGAGTG GATGGACGG	G TTTAGAGGGG	AGGGGCGAAG	GTGCTGTAAA	1380					

358

	CAGGTTTGGG	CAGTGGTGGG	GGAGGGGGCC	AGAGAGGCGG	CTCAGGTTGC	CCAGCTCTGT	1440
	GGCCTCAGGA	CTCTCTGCCT	CACCCGCTTC	AGCCCAGGGC	CCCTGGAGAC	TGATCCCCTC	1500
5	TGAGTCCTCT	GCCCCTTCCA	AGGACACTAA	TGAGCCTGGG	AGGGTGGCAG	GGAGGAGGG	1560
	ACAGCTTCAC	CCTTGGAAGT	CCTGGGGTTT	TTCCTCTTCC	TTCTTTGTGG	TTTCTGTTTT	1620
10	GTAATTTAAG	AAGAGCTATT	CATCACTGTA	ATTATTATTA	TTTTCTACAA	TAAATGGGAC .	1680
	CTGTGCACAG	GRAAAAAAAA	AAAAG				170

15

(2) INFORMATION FOR SEQ ID NO: 107:

(i) SEQUENCE CHARACTERISTICS:

20

(A) LENGTH: 1167 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:

(D) TOPOLOGY: linear

25

30

35

40

45

50

55

60

TGCAGGAATT CGGCAGAGGT TTTCCGCTAG ACTCTGGCAG TTGGTGAGCA TCATGGCAAC 60 CGTTACAGCC ACAACCAAAG TCCCGGAGAT CCGTGATGTA ACAAGGATTG AGCGAATCGG 120 TGCCCACTCC CACATCCGGG GACTGGGGCT GGACGATGCC TTGGAGCCTC GGCAGGCTTC 180 GCAAGGCATG GTGGGTCAGC TGGCGGCACG GCGGGGGGT GGCGTGGTGC TGGAGATGAT 240 CCGGGAAGGG AAGATTGCCG GTCGGGCAGT CCTTATTGCT GGCCAGCCGG GCACGGGGAA 300 GACGGCCATC GCCATGGGCA TGGCGCAGGC CCTGGGCCCT GACACGCCAT TCACAGCCAT 360 CGCCGGCAGT GAAATCTTCT CCCTGGAGAT GAGCAAGACC GAGGCGCTGA CGCAGGCCTT 420 CCGCGGTCC ATCGCGTTC GCATCAAGGA GGAGACGGAG ATCATCGAAG GGGAGGTGGT 480 GGAGATCCAG ATTGATCGAC CAGCAACAGG GACGGGCTCC AAGGTGGGCA AACTGACCCT 540 CAAGACCACA GAGATGGAGA CCATCTACGA CCTGGGCACC AAGATGATTG AKTCCCTGAC 600 CAAGGACAAG GTCCAGGCCG GGGACGTGAT CACCATCGAC AAGGCGACGG GCAAGATCTC CAAGCTGGGC CGCTCCTTCA CACGCGCCCG CGAACTACGA CGCTATGGGC TCCCAGACCA 720 AGTTCGTGCA GTGCCCAGAT GGGGAGCTCC AGAAACGCAA GGAGGTGGTG CACACCGTGT 780 CCCTGCACGA GATCGACGTC ATCAACTCTC GCACCCAGGG CTTCCTGGCG CTCTTCTCAG 840 GTGACACAGG GGAGATCAAG TCAGAAGTCC GTGAGCAGAT CAATGCCAAG GTGGCTGAGT 900 GGCGCGAGGA GGGCAAGGCG GAGATCATCC CTGGAGTGCT GTTCATCGAC GAGGTCCACA 960 TGCTGGACAT CGAGAGCTTC TCCTTCCTCA ACCGGGCCCT GGAGAGTGAC ATGGCGCCTG 1020

TCCAGCAGGT CTATGGGGAT GCCGTGAGGG CTCTGGTAGC TGGTGCCCCG GATTCGCGTG

359

	ATGCCACGGT TGGTGGCCTC GTGCCGAATT CCTGCAGCCC GGGGGATCCA CTAGTTCTAG	1140
5	AGCGGCCGCC ACCGCGGTGG ANCTCCN	1167
10	(2) INFORMATION FOR SEQ ID NO: 108:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1907 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108:	
20	GGCACAGGGG AATCATCGTG TGATGTGTGT GCTGCCTTTG TGAGTGTGTG GAGTCCTGCT	60
20	CAGGTGTTAG GTACAGTGTG TTTGATCGTG GTGGCTTGAG GGGAACCCTT GTTCAGAGCT	120
	GTGACTGCGG CTGCACTCAG AGAAGCTGCC CTTGGCTGCT CGTAGCGCCG GGCCTTCTCT	180
25	CCTCGTCATC ATCCAGAGCA GCCAGTGTCC GGGAGGCAGA AGGTACCGGG GCAGCTACTG	240
	GAGGACTGTG CGGGCCTGCC TGGGCTGCCC CCTCCGCCGT GGGGCCCTGT TGCTGCTGTC	300
20	CATCTATTTC TACTACTCCC TCCCAAATGC GGTCGGCCCG CCCTTCACTT GGATGCTTGC	360
30	CCTCCTGGGC CTCTCGCAGG CACTGAACAT CCTCCTGGGC CTCAAGGGCC TGGCCCCAGC	420
	TGAGATCTCT GCAGTGTGTG AAAAAGGGAA TTTCAACGTG GCCCATGGGC TGGCATGGTC	480
35	ATATTACATC GGATATCTGC GGCTGATCCT GCCAGAGCTC CAGGCCCGGA TTCGAACTTA	540
	CAATCAGCAT TACAACAACC TGCTACGGGG TGCAGTGAGC CAGCGGCTGT ATATTCTCCT	600
40	CCCATTGGAC TGTGGGGTGC CTGATAACCT GAGTATGGCT GACCCCAACA TTCGCTTCCT	660
40	GGATAAACTG CCCCAGCAGA CCGGTGACCG TGCTGGCATC AAGGATCGGG TTTACAGCAA	720
	CAGCATCTAT GAGCTTCTGG AGAACGGCCA GCGGGCGGGC ACCTGTGTCC TGGAGTACGC	780
45	CACCCCTTG CAGACTTTGT TTGCCATGTC ACAATACAGT CAAGCTGGCT TTAGCGGGGA	840
	GGATAGGCTT GAGCAGGCCA AACTCTTCTG CCGGACACTT GAGGACATCC TGGCAGATGC	900
50	CCCTGAGTCT CAGAACAACT GCCGCCTCAT TGCCTACCAG GAACCTGCAG ATGACAGCAG	960
50	CTTCTCGCTG TCCCAGGAGG TTCTCCGGCA CCTGCGGCAG GAGGAAAAGG AAGAGGTTAC	1020
	TGTGGGCAGC TTGAAGACCT CAGCGGTGCC CAGTACCTCC ACGATGTCCC AAGAGCCTGA	1080
55	GCTCCTCATC AGTGGAATGG AAAAGCCCCT CCCTCTCCGC ACGGATTTCT CTTGAGACCC	1140
	AGGGTCACCA GGCCAGAGCC TCCAGTGGTC TCCAAGCCTC TGGACTGGGG GCTCTCTTCA	1200

GTGGCTGAAT GTCCAGCAGA GCTATTTCCT TCCACAGGGG GCCTTGCAGG GAAGGGTCCA

60

•	GGACTTGACA	TCTTAAGATG	CGTCTTGTCC	CCTTGGGCCA	GTCATTTCCC	CTCTCTGAGC	1320
	CTCGGTGTCT	TCAACCTGTG	AAATGGGATC	ATAATCACTG	CCTTACCTCC	CTCACGGTTG	1380
5	TTGTGAGGAC	TGAGTGTGTG	GAAGTTTTTC	ATAAACTTTG	GATGCTAGTG	TACTTAGGGG	1440
	GTGTGCCAGG	TGTCTTTCAT	GGGGCCTTCC	AGACCCACTC	CCCACCCTTC	TCCCCTTCCT	1500
10	TTGCCCGGGG	ACGCCGAACT	CTCTCAATGG	TATCAACAGG	CTCCTTCGCC	CTCTGGCTCC	1560
	TGGTCATGTT	CCATTATTGG	GGAGCCCCAG	CAGAAGAATG	GAGAGGAGGA	GGAGGCTGAG	1620
	TTTGGGGTAT	TGAATCCCCC	GGCTCCCACC	CTGCAGCATC	AAGGTTGCTA	TGGACTCTCC	1680
15	TGCCGGGCAA	CTCTTGCGTA	ATCATGACTA	TCTCTAGGAT	TCTGGCACCA	CTTCCTTCCC	1740
	TGGCCCCTTA	AGCCTAGCTG	TGTATCGGCA	CCCCACCCC	ACTAGAGTAC	TCCCTCTCAC	1800
20	TTGCGGTTTC	CTTATACTCC	ACCCCTTTCT	CAACGGTCCT	TTTTTAAAGC	ACATCTCAGA	1860
	TTAAAAAAAA	АААААААА	АААААААА	AAAAAAAGGG	CGGCCGC		1907

25

30

35

40

45

50

55

(2) INFORMATION FOR SEQ ID NO: 109:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 611 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:

ATGAATTAAC GCCAAGCTNT NAATAGGGAC TCACTATGGG GGAAAGNTGG GTAACGCCTG 60 CAGGTACCGT TCCGGAATTC CCGGGTCGAC CCACGCGTCC GATGGGGCTT TAGTAAATCA 120 GGCTTGCAGG CTCAAAGCTG CAATCTGCCC ACTCTCAGGT ACTGAGACTT TGTGGGCCTC 180 AGACACCAGG AAGAAAGTTG GGATACAGTC ATTTGAGTTA AAAAGGGAAT GACCCCTCAG 240 AAACCGCAT TAGCAGTGTT ACTCTTGGAA GTGCCTTTAC TTTTAACGCT CTCTGTTCTG 300 AAAAAGAGGT GTTTGGTTAC GTGTGAGCCA ACATCACGTT TTGTTAGCTG TGATTTACCT 360 TTGTCCGTTT AAAAGACTTC ACGGAGCCAT TCTGTATACA AGGTGTGCTC TTTCCAATGT 420 AGAAGGGTT ATGGAAAAGG GTGCGATCCT TTGCTGTAAA CTGGAGAGAC CAGTCCCAAA CAGAGGGGAA TTTTAAGCCC TTCTCATCAC CCAATTGGAT GTTTTTGCTT ATAGCAAATT 540 600 GGGGGGNCCN C 611

361

(2) INFORMATION FOR SEQ ID NO: 110:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2632 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110:

10 TCCCAGCTCT CAGGACAAGG GCCCTGGGCG ATCTTTTAAA AAAGCCGATT GGGTGTCTTT 60 CTAAAANTAC AACCAGTACT TCATCGTCAA GTTTCTGGGA AGGGAGTCCC CTCCAGATTC 120 15 TCATGGAGTG ACAAATCTTG ACTCTTGCTC CTGGAATTTT TCAGGCCCAA ACTAGCGTTT 180 CTACAATGAT TTATTTGGCA AATTTGTCTT GATTATGGGT GGCTGATGAG GAACGTGCTT 240 TTGTTAGGAA CCGAAACTGG GCGGCGTGA GGGCGTGTAC GCAATGAGTC CGGAAGAGGG 300 20 TGAAATGCTT TCGGTAGGCA CTCCACGGCT GTGAAGATGG CGGCGGCTGC GTGGCTTCAG 360 GTGTTGCCTG TCATTCTTCT GCTTCTGGGA GCTCACCCGT CACCACTGTC GTTTTTCAGT 420 25 GCGGGACCGG CAACCGTAGC TGCTGCCGAC CGGTCCAAAT GGCACATTCC GATACCGTCG 480 GGGAAAAATT ATTTTAGTTT TGGAAAGATC CTCTTCAGAA ATACCACTAT CTTCCTGAAG 540 TTTGATGGAG AACCTTGTGA CCTGTCTTTG AATATAACCT GGTATCTGAA AAGCGCTGAT 600 30 TGTTACAATG AAATCTATAA CTTCAAGGCA GAAGAAGTAG AGTTGTATTT GGAAAAACTT 660 AAGGAAAAA GAGGCTTGTC TGGGAAATAT CAAACATCAT CAAAATTGTT CCAGAACTGC 720 35 AGTGAACTCT TTAAAACACA GACCTTTTCT GGAGATTTTA TGCATCGACT GCCTCTTTTA 780 GGAGAAAAAC AGGAGGCTAA GGAGAATGGA ACAAACCTTA CCTTTATTGG AGACAAAACC 840 GCAATGCATG AACCATTGCA AACTTGGCAA GATGCACCAT ACATTTTTAT TGTACATATT 900 40 GGCATTTCAT CCTCAAAGGA ATCATCAAAA GAAAATTCAC TGAGTAATCT TTTTACCATG 960 ACTGTTGAAG TGAAGGGTCC CTATGAATAC CTCACACTTG AAGACTATCC CTTGATGATT 1020 45 TTTTCATGG TGATGTGTAT TGTATATGTC CTGTTTGGTG TTCTGTGGCT GGCATGGTCT 1080 GCCTGCTACT GGAGAGATCT CCTGAGAATT CAGTTTTGGA TTGGTGCTGT CATCTTCCTG 1140 GGAATGCTTG AGAAAGCTGT CTTCTATGCG GAATTTCAGA ATATCCGATA CAAAGGARAA 1200 50 TCTGTCCAGG GTGCTTTGAT CCTTGCAGAR CTGCTTTCAG CAGTGAAACG CTCACTGGCT 1260 CGAACCCTGG TCATCATAGT CAGTCTGGGA TATGGCATCG TCAAGCCACG CCTGGAGTCA 1320 55 CTCTTCATAA GGTTGTAGTA GCAGRAGCCC TCTATCTTTT GTTCTCTGGC ATGGAAGGGG 1380 TCCTCAGAGT TACTGGGGCC CAGACTGATC TTGCTTCCTT GGCCTTTATC CCCTTGGCTT 1440 TCCTAGACAC TGCCTTGTGC TGGTGGATAT TTATTAGCCT GACTCAAACA ATGAAGCTAT 1500 60

300

	TAAAACTTCG C	GAGGAACATT	GTAAAACTCT	CTTTGTATCG	GCATTTCACC	AACACGCTTA	1560
	TTTTGGCAGT (GCAGCATCC	ATTGTGTTTA	TCATCTGGAC	AACCATGAAG	TTCAGAATAG	1620
5	TGACATGTCA (STCGGACTGG	CGGGAGCTGT	GGGTAGACGA	TGCCATCTGG	CGCTTGCTGT	1680
	TCTCCATGAT (CTCTTTGTC	ATCATGGTTC	TCTGGCGACC	ATCTGCAAAC	AACCAGAGGT	1740
10	TTGCCTTTTC A	ACCATTGTCT	GAGGAAGAGG	AGGAGGATGA	ACAAAAGGAG	CCTATGCTGA	1800
10	AAGAAAGCTT 1	rgaaggaatg	AAAATGAGAA	GTACCAAACA	AGAACCCAAT	GGAAATAGTA	1860
	AAGTTAACAA	AGCACAGGAA	GATGATTTGA	AGTGGGTAGA	AGAGAATGTT	CCTTCTTCTG	1920
15	TGACAGATGT	AGCACTTCCA	GCCCTTCTGG	ATTCAGATGA	GGAACGAATG	ATCACACACT	1980
	TTGAAAGGTC (CAAAATGGAG	TAAGGAATGG	GAAGATTTGC	AGTTAAAGAT	GGCTACCATC	2040
20	AGGGAAGAGA '	TCAGCATCTG	TGTCAGTCTT	CTGTACGGCT	CCATGGGATT	AAAGGAAGCA	2100
20	ATGACATCCT (GATCTGTTCC	TTGATCTTTG	GGCATTGGAG	TTGGCGAGAG	GTGTCAGAAC	2160
	AAAGAGAACA '	TCTTACTGAA	AACAAGTTCA	TAAGATGAGA	AAAATCTACG	AGCTTCTTAT	2220
25	TTACAACACT	GCTGCCCCCT	TTCCTCCCAG	ACTCTGACAT	GGATGTTCAT	GCAACTTAAG	2280
	TGTGTTGTTC	CTGAACTTTC	TGTAATGTTT	CATTTTTTAA	ATCTGACAAA	CTAAAAAGTT	2340
30	TAACGTCTTC	TAAAAGATTG	TCATCAACAC	CATAATATGT	AATCTCCAGG	AGCAACTGCC	2400
50	TGTAATTTTT	ATTTATTTAG	GGAGTTACAT	AGGTGATGGG	GGAAATTGTT	AACTACCTTT	2460
	CATTTTCCTG	GGAAGTCAAG	GTTACATCTT	GCAGAGGTTG	TTTTGAGAAA	AAAGGGCCCT	2520
35	TCTGAGTTAA	GGAGCCATAG	TTCTATCAAT	GATCAAAAGA	. ААААААААА	AACTCGATCG	2580
	GCACGAGGGG	GGGCCCGGTA	CCCAATTCGC	CCTATGGGAN	TCGAATGAGA	cc	2632
40							
,,,	(2) INFORMA	TION FOR S	ກດ ເກັນດ∙ 1	11.			
	, , , , , , , , , , , , , , , , , , , ,		_				
45	(i)	(A) LEN (B) TYI (C) STI	HARACTERIST NGTH: 2249 N PE: nucleic RANDEDNESS: POLOGY: line	oase pairs acid double			
50	(xi)	SEQUENCE	DESCRIPTION	1: SEQ ID NO	o: 111:		
	GAATTCGGCA	CGAGCTCACC	GIGCIGCGIC	ACACAAGGCC	: AGCCTGCGCC	TACGAGCCCA	6
	TGGACTTTKT	RATGGCCCTC	: ATCTACGAC	TGGTACTGSW	TGTGGTCACC	: CTGGGGCTGG	12
55	CCCTCTTCAC	TCTGTGCGGC	AAGTTCAAGA	GGTGGAAGCT	GAACGGGGCC	TTCCTCCTCA	18
	TCACAGCCTT	CCTCTCTGTG	CTCATCTGGG	TGGCCTGGAT	GACCATGTAC	CTCTTCGGCA	24

ATGTCAAGCT GCAGCAGGGG GATGCCTGGA ACGACCCCAC CTTGGCCATC ACGCTGGCGG

	CCAGCGCTGG	GTCTTCGTCA	TCTTCCACGC	CATCCCTGAG	ATCCACTGCA	CCCTTCTGCC	360
5	AGCCCTGCAG	GAGAACACGC	CCAACTACTT	CGACACGTCG	CAGCCCAGGA	TGCGGGAGAC	420
J	GGCCTTCGAG	GAGGACGTGC	AGCTGCCGCG	GCCTATATG	GAGAACAAGG	CCTTCTCCAT	480
	GGATGAACAC	AATGCAGCTC	TCCGAACAGC	AGGATTTCCC	AACGGCAGCT	TGGGAAAAAG	. 540
10	ACCCAGTGGC	AGCTTGGGGA	AAAGACCCAG	CGCTCCGTTT	AGAAGCAACG	TGTATCAGCC	600
	AACTGAGATG	GCCGTCGTGC	TCAACGGTGG	GACCATCCCA	ACTGCTCCGC	CAAGTCACAC	660
15	AGGAAGAMAC	CTTTGGTGAA	AGACTTTAAG	TTCCAGAGAA	TCAGAATTTC	TCTTACCGAT	720
13	TTGCCTCCCT	GGCTGTGTCT	TTCTTGAGGG	AGAAATCGGT	AACAGTTGCC	GAACCAGGCC	780
	GCCTCACAGC	CAGGAAATTT	GGAAATCCTA	GCCAAGGGGA	TTTCGTGTAA	ATGTGAACAC	840
20	TGACGAACTG	AAAAGCTAAC	ACCGACTGCC	CCCCCTCCC	CTGCCACACA	CACAGACACG	900
	TAATACCAGA	CCAACCTCAA	TCCCCGCAAA	CTAAAGCAAA	GCTAATTGCA	AATAGTATTA	960
25	GGCTCACTGG	AAAATGTGGC	TGGGAAGACT	GTTTCATCCT	CTGGGGGTAG	AACAGAACCA	1020
23	AATTCACAGC	TGGTGGGCCA	GACTGGTGTT	GGTTGGAGGT	GGGGGGCTCC	CACTCTTATC	1080
	ACCTCTCCCC	AGCAAGTGCT	GGACCCCAGG	TAGCCTCTTG	GAGATGACCG	TTGCGTTGAG	1140
30	GACAAATGGG	GACTTTGCCA	CCGGCTTTGC	CTGGTGGTTT	GCACATTTCA	GGGGGTCAG	1200
	GAGAGTTAAG	GAGGTTGTGG	GTGGGATTCC	AAGGTGAGGC	CCAACTGAAT	CGTGGGGTGA	1260
35	GCTTTATAGC	CAGTAGAGGT	GGAGGGACCC	TGGCATGTGC	CAAAGAAGAG	GCCCTCTGGG	1320
55	TGATGAAGTG	ACCATCACAT	TTGGAAAGTG	ATCAACCACT	GTTCCTTCTA	TGGGGCTCTT	1380
	GCTCTAGTGT	CTATGGTGAG	AACACAGGCC	CCCCCCTTC	CCTTGTAGAG	CCATAGAAAT	1440
40	ATTCTGGCTT	GGGCAGCAG	TCCCTTCTTC	CCTTGATCAT	CTCGCCCTGT	TCCTACACTT	1500
	ACGGGTGTAT	CTCCAAATCC	TCTCCCAATT	TTATTCCCTT	ATTCATTTCA	AGAGCTCCAA	1560
45	TGGGGTCTCC	AGCTGAAANS	CCCTCCGGGA	GGCAGGTTGG	AAGGCAGGCA	CCACGGCAGG	1620
43	TTTTCCGCGA	TGATGTCACC	TAGCAGGGCT	TCAGGGGTTC	CCACTAGGAT	GCAGAGATGA	1680
	CCTCTCGCTG	CCTCACAAGC	AGTGACACCT	CGGGTCCTTT	CCGTTGCTAT	GGTGAAAATT	1740
50	CCTGGATGGA	ATGGATCACA	TGAGGGTTTC	TTGTTGCTTT	TGGAGGGTGT	GGGGGATATT	1800
	TIGTTITGGT	TTTTCTGCAG	GTTCCATGAA	AACAGCCCTT	TTCCAAGCCC	ATTGTTTCTG	1860
55	TCATGGTTTC	CATCTGTCCT	GAGCAAGTCA	TTCCTTTGTT	ATTTAGCATT	TCGAACATCT	1920
رر	CGGCCATTCA	AAGCCCCCAT	GTTCTCTGCA	CTGTTTGGCC	AGCATAACCT	CTAGCATCGA	1980
	TTCAAAGCAG	AGTTTTAACC	TGACGGCATG	GAATGTATAA	ATGAGGGTGG	GTCCTTCTGC	2040
60	AGATACTCTA	ATCACTACAT	TGCTTTTTCT	АТААААСТАС	CCATAAGCCT	TTAACCTTTA	2100

	AAGAAAATG AAAAAGGTTA GTGTTTGGGG GCCGGGGGAG GACTGACCGC TTCATAAGCC	2160
5	AGTACGTCTG AGCTGAGTAT GTTTCAATAA ACCTTTTGAT ATTTCTCAAA AAAAAAAAA	2220
,	AAAAANCCOG GGGGGGGCC CGGACCTGG	2249
10	(2) THECOMPTON TOO STORE TO VO. 112	
	(2) INFORMATION FOR SEQ ID NO: 112:	
1.5	(i) SEQUENCE CHAPACTERISTICS: (A) LENGTH: 2193 base pairs	
15	(B) TYPE: nucleic acid (C) STRAIDEMESS: double	
	(D) TOPCLOFF: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:	
	GATACTATAA GGCAAGTGAC TCACGGTGC GCCGTTAGAC TAGTGGATCC CGGGTGCAGG	60
	AATTOGGCAG AGGGCGCGG GAGCCGAAGT GCTGGGGCCCC CCGCGGCCGC TGCCTCCGCG	120
25	GANCCCAAAA TCATGAAAGT CACCGTGAAG ACCCCGAAGA AAAGGAGGAA TTCGCCGTGC	180
	CCGAGAATAG CTCCGTCCAG CAGTTTAAGG AAGAAATCTC TAAACGTTTT AAATCACATA	240
30	CTGACCAACT TGTGTTGATA TTTGCTGGAA AAATTTTGAA AGATCAAGAT ACCTTGAGTC	300
20	AGCATGGAAT TCATGATGGA CTTACTGTTC ACCTTGTCAT TAAAACACAA AACAGGCCTC	360
	AGGATCATTC AGCTCAGCAA ACAAATACAG CTGGAAGCAA TGTTACTACA TCATCAACTC	420
35	CTAATAGTAA CTCTACATCT GGTTCTGCTA CTAGCAACCC TTTTGGTTTA GGTGGCCTTG	480
	GGGGACTTGC AGGTCTGAGT AGCTTGGGTT TGAATACTAC CAACTTCTCT GAACTACAGA	540
40	GTCAGATGCA GCGACAACTT TTGTCTAACC CTGAAATGAT GGTCCAGATC ATGGAAAAWC	600
10	CCYTTGTTCA GAGCATGCTC 1FCAAATCCT GACCTGATGN AGACAGTTAA TTATGGCCAA	660
	TCCACAAATG CAGCAGTTGA TACAGAGAAA TCCCAGAAAT TAGTCATATG TTGAATAATC	720
45	CAGATATAAT GAGACAAACG TTGGAACTTG CCCAGGAATC CAGCAATGAT GCAGGAGATG	780
	ATGAGGAACC AGGACCGAGC TTTGAGCAAC CTAGAAAGCA TCCCAGGGGG ATATAATGCT	840
50	TTAAGGCGCA TGTACACAGA TATTCAGGAA CCAATGCTGA GTGCTGCACA AGAGCAGTTT	900
50	GGTGGTAATC CATTTGCTTC CTTGGTGAGC AATACATCCT CTGGTGAAGG TAGTCAACCT	960
	TCCCGTACAG AAAATAGAGA TCCACTACCC AATCCATGGG CTCCACAGAC TTCCCAGAGT	1020
55	TCATCAGCTT CCAGCGGCAC TGCCAGCACT GTGGGTGGCA CTACTGGTAG TACTGCCAGT	1080
	GGCACTICTG GGCAGAGTAC TACTGCGCCA AATTTGGTGC CTGGAGTAGG AGCTAGTATG	1140
	TTCAACACAC CAGGAATGCA GAGCTTGTTG CAACAAATAA CTGAAAAACCC ACAACTTATG	1200

PCT/US98/11422

1260

CAAAACATGT TGTCTGCCCC CTACATGAGA AGCATGATGC AGTCACTAAG CCAGAATCCT

	GACCITGCTG CACAGATGAT GCTGAATAAT CCCCTATTTG CTGGAAATCC TCAGCTTCAA	1320
5	GAACAAATGA GACAACAGCT CCCAACTTTC CTCCAACAAA TGCAGAATCC TGATACACTA	1380
	TCAGCAATGT CAAACCCTAG AGCAATGCAG GCCTTGTTAC AGATTCAGCA GGGTTTACAG	1440
10	ACATTAGCAA CGGAAGCCCC GGGCCTCATC CCAGGGTTTA CTCCTGGCTT GGGGGCATTA	1500
10	GGAAGCACTG GAGGCTCTTC GGGAACTAAT GGATCTAACG CCACACCTAG TGAAAACACA	1560
	AGTCCCACAG CAGGAACCAC TGAACCTGGA CATCAGCAGT TTATTCAGCA GATGCTGCAG	1620
15	GCTCTTGCTG GAGTAAATCC TCAGCTACAG AATCCAGAAG TCAGATTTCA GCAACAACTG	1680
	GAACAACTCA GTGCAATGGG ATTTTTGAAC CGTGAAGCAA ACTTGCAAGC TCTAATAGCA	1740
20	ACAGGAGGTG ATATCAATGC AGCTATTGAA AGGTTACTGG GCTCCCAGCC ATCATAGCAG	1800
20	CATTTCTGTA TCTKGAAAAA ATGTAATTTA TTTTTGATAA CGGCTCTTAA ACTTTAAAAT	1860
	ACCTGCTTTA TTTCATTTTG ACTCTTGGAA TTCTGTGCTG TTATAAACAA ACCCAATATG	1920
25	ATGCATTTTA AGGTGGAGTA CAGTAAGATG TGTGGGTTTT TCTGTATTTT TCTTTTCTGG	1980
	AACAGTGGGA ATTAAGGCTA CTGCATGCAT CACTTCTGCA TTTATTGTAA TTTTTTAAAA	2040
20	ACATCACCTT TTATAGTTGG GTGACCAGAT TTTGTCCTGC ATCTGTCCAG TTTATTTGCT	2100
30	TTTTAAACAT TAGCCTATGG TAGTAATTTA TGTAGAATAA AAGCATTAAA AAGAAGCAAA	2160
	AAAAAAAAA AAAAATTCCT GCGCCCGCGA ATTCTTCT	219
35		
	0	
40	(2) INFORMATION FOR SEQ ID NO: 113:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1043 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 113:	,
50	CTGAAGTGTA TGTGGTGAGG AAGAAGAGGC TCCTACTGTA GACAGCCTTG TTCTACAGAT	. 6
50	CCTCCCAGAA ATCTCTGGGC CAGGTGGAAC CCAGGGTCAG AGAGGGATGG GAGAGAGGTT	12
	TAATTTTCCA TGATAAATAA AAATCTATAA AATAATAAAC AAGAGAAAAG AGATTGGAAA	18
55	CAGCCAGGTT GGAGCAGTGA GTGAGTAAGG AAACCTGGCT GCCCTCTCCA GATTCCCCAG	24
	GCTCTCAGAG AAGATCAGCA GAAAGTCTGC AAGACCCTAA GAACCATCAG CCCTCAGCTG	30
60	CACCTCCTCC CCTCCAAGGA TGACAAAGGC GCTACTCATC TATTTGGTCA GCAGCTTTCT	36
60	TGCCTAAAT CAGGCCAGCC TCATCAGTCG CTGTGACTTG GCCCAGGTGC TGCAGCTGGA	42

366

	RGACTTGGAT GGGTTTGAGG GTTACTCCCT GAGTGACTGG CTGTGCCTGG CTTTTGTGGA	480
5	AAGCAAGTTC AACATATCAA AGATWAATGA AAATGCAGAT GGAAGCTTTG ACTATGGSCT	540
J	CTTCCAGATC AACAGCCACT ACTGGTGCAA CRATTATAAG AGTTACTCGG AAAACCTTTG	600
	CCACGTAGAC TGTCAAGATC TGCTGAATCC CAACCTTCTT GCAGGCATCC ACTGCGCAAA	. 660
10	AAGGATTGTG TCCGGAGCAC GGGGGATGAA CAACTGGGTT AGAATGGAAG KTTGCACTGT	720
	TCAGGCCGGC CACTCTTCTA CTGGCTGACA GGATGCCGCC TGAGATKAAA CARGGTGCGG	780
15	GTGCACCGTG GARTCATTCC AAGACTCCTG TCCTCACTCA RGGATTCTTC ATTTCTTCTT	840
	CCTACTGCCT CCACTTCATG TTATTTTCTT CCCTTCCCAT TTACAACTAA AACTGACCAG	900
	AGCCCCAGGA ATAAATGGTT TTCTTGGCTT CCTCCTTACT CCCATCTGGA CCCAGTCCCC	960
20	TGGTTCCTGT CTGTTATTTG TAAACTGAGG ACCACAATAA AGAAATCTTT ATATTTATCG	1020
	AAAAAAAAA AAAAAAAACT CGA	1043
25		
	(2) INFORMATION FOR SEQ ID NO: 114:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 703 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114:	
	GAATTCGGCA CGAGTGCGCG GGCACCACGG CGGTTTTTCG ACGCTGGCGG TGGACGCAGG	60
40	CAGCATGGAC CACGGTTGCT GGGCGGATGG GGAGCGTCTA TGGTCAGTTG CCTTAGAAGT	120
,,	GGTGAGATGG GAAGCTGCAG TTGGAAGACC CTGGAGGATG CCTGACAAGG GGATGTCTGA	180
	CACATGATTG GAGCTCTTTT TGAAATGTTT CTTGCCCTTC CTGGAGCAGA GGAGCCATTA	240
45	TTTATGCAGG TACATCGAAG TCTTTTGACC TCCATACAGT GATTATGCTT GTCATCGCTG	300
	GTGGTATCCT GGCGGCCTTG CTCCTGCTGA TAGTTGTCGT GCTCTGTCTT TACTTCAAAA	360
50	TACACAACGC GCTAAAAGCT GCAAAGGAAC CTGAAGCTGT GGCTGTAAAA AATCACAACC	420
50	CAGACAAGGT GTGGTGGGCC AAGAACAGCC AGGCCAAAAC CATTGCCACG GAGTCTTGTC	480
	CTGCCCTGCA GTGCTGTGAA GGATATAGAA TGTGTGCCAG TTTTGATTCC CTGCCACCTT	540
55	GCTGTTGCGA CATAAATGAG GGCCTCTGAG TTAGGAAAGG TGGGCACAAA AATCTTCATG	600
	AGCAATACTT CTTAGTAGAT TGTTTTGTTA TTCAAATCAA GTTCTAGTGT TTTTATGTGA	660

GATTATATAA TTTACAGTGT TGTTTTATAT ACTTTTGAAT AAA

60

(2) INFORMATION FOR SEQ ID NO: 115:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3684 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:

60 GGCAGAGGGG GCATGAGCAG GAGGAGGATT ACCGCTACGA GGTGCTCACG GCCGAGCAGA 15 TTCTACAACA CATGGTGGNA ATGTATCCGG GAGGTCAACG AGGTCATCCA GAATCCAGCA 120 ACTATCACAA GAATACTCCT TAGCCACTTC AATTGGGATA AAGAGAAGCT AATGGAAAGG 180 20 240 TACTTGATG GAAACCTGGA GAAGCTCTTT GCTGAGTGTC ATGTAATTAA TCCAAGTAAA AAGTCTCGAA CACGCCAGAT GAATACAAGG TCATCAGCAC AGGATATGCC TTGTCAGATC 300 TGCTACTTGA ACTACCCTAA CTCGTATTTC ACTGGCCTTG AATGTGGACA TAAGTTTTGT 360 25 ATGCAGTGCT GGAGTGAATA TTTAACTACC AAAATAATGG AAGAAGGCAT GGGTCAGACT 420 ATTTCGTGTC CTGCTCATGG TTGTGATATC TTAGTGGATG ACAACACAGT TATGCGCCTG 30 ATCACAGATT CAAAAGTTAA ATTAAAGTAT CAGCATTTAA TAACAAATAG CTTTGTAGAG 540 TGCAATCGAC TGTTAAAGTG GTGTCCTGCC CCAGATTGCC ACCATGTTGT TAAAGTCCAA 600 TATCCTGATG CTAAACCTGT TCGCTGCAAA TGTGGGCGCC AATTTTGCTT TAACTGTGGA 660 35 GAAAATTGGC ATGATCCTGT TAAATGTAAG TGGTTAAAGA AATGGATTAA AAAGTGTGAT 720 GATGACAGTG AAACCTCCAA TTGGATTGCA GCCAACACAA AGGAATGTCC CAAATGCCAT 780 40 GTCACAATTG AGAAGGATGG TGGTTGTAAT CACATGGTCT GTCGTAACCA GAATTGTAAA 840 GCAGAGTTTT GCTGGGTGTG TCTTGGCCCA TGGGAACCAC ATGGATCTGC CTGGTACAAC 900 TGTAACCGCT ATAATGAGGA TGATGCAAAG GCAGCAAGAG ATGCACAGGA GCGATCTAGG 960 45 GCAGCCCTGC AGAGGTACCT GTTCTACTGT AATCGCTATA TGAACCACAT GCAGAGCCTG 1020 CGCTTTGAGC ACAAACTATA TGCTCAGGTG AAACAGAAAA TGGAGGAGAT GCAGCAGCAC 1080 AACATGTCCT GGATTGAGGT GCAGTTCCTG AAGAAGGCAG TTGATGTCCT CTGCCAGTGT 50 1140 CGTGCCACAC TCATGTACAC TTATGTCTTC GCTTTCTACC TCAAAAAGAA TAACCAGTCC 1200 ATTATCTTTG AGAATAACCA AGCAGATCTA GAGAATGCCA CAGAGGTGCT CTCGGGCTAC 1260 55 1320 TACAGATACT GTGAGAGTCG ACGAAGGGTT TTGTTACAGC ATGTGCATGA AGGCTATGAA 1380 60 AAAGATCTGT GGGAGTACAT TGAGGACTGA GAATGGCCCT GCATAAAATG AACTCTGAAA 1440

	ACTTTACCAT	CTAGAGTGCT	CATGCAATTA	AAACAAAACA	AACACAAACA	AGGAGGCACT	1500
5	AAGCCTATTC	TGACACCACT	GGTCTGTAGT	ACCAGAATTG	TTTTGTTAAT	GGAAAGTTTA	1560
	AGTAAATTAT	ATTGTAATAA	AAAGGTAGAT	AAACCATTGT	ACAACAGTAT	TCTAGGCCGC	1620
	CAACAAAAGT	GTGACAGACA	CACTAAAAGC	CCTCCAACTT	TAACTTGTAA	CGTAGCTTCA	1680
10	TTCTCAAAGC	TGACTCCTTT	TTTTTCTTTT	TCCTTTTCCT	GAGTGTAGTA	CAGTTAAAAT	1740
	TTCAAACAGC	TCCTTGACAC	TGCTTTTCAT	GTTCAAACCA	GCCATTTTGT	TGTACTTTGG	1800
15	TAAAGGACCT	CTTCCCCTTC	CTCCCCTACA	CATACAGATA	CACCCACACA	CAGACTGACT	1860
15	CTCTTTCTCT	CATACCCCAA	GGTCATGAGT	GAATGATGCT	TAGTTCCTTG	TAAAGAAAAT	1920
	CTTGGGATGG	GGAAAGGGGT	AGGCAGCAAG	AGGATTCAAC	AAACGAAAAA	CATAAAAACT	1980
20	TTGTATATGA	CTTTTAAAAC	AAGAGGACAA	CACAGTATTT	TTCAAAATTG	TATATAGCGC	2040
	ATATGCATGG	ACAAAGCAAG	CGTGGCACGT	GTTTGCATAA	TGTTTAATTA	СААААААТА	2100
25	TTTATTCTTT	AAAAATCTTC	AAGATTATGT	CTATTTGCTG	TGCATTTTCT	TTCAGTTTGC	2160
20	TTATCTTTCC	CGGGTTGGGG	TTGGGATAAA	GGTGTGTCGG	TTTAGCACCT	CTGGAAGACC	2220
	TATCTAGAGC	TCTTTCACTT	TCCTGAGGTT	ATTTTGCCCY	TTCTGGTGTT	GGTATGTCTG	2280
30	TTGCCGGCCA	TGGGCTNCAY	GCCTTGAATT	CCTGCTCTTG	ATCAGGGACA	AGGGAGGTCA	2340
	AGCTCTGACT	AATGCCATGA	CCTGATTAAG	GGGTACAGCA	GGGAGTTTTG	TTGCTACAGC	2400
35	TCATGAATTA	ACCTGTCCCA	ACCTAATCCC	CCTCCATGGC	ATCATGCCTC	TACCCAAGCC	2460
	TTTGTGTGCC	CATGTTATGC	ACACAGCTGT	AGGCATTCTT	AAGTCCCCTG	TCGCATCCAG	2520
	TGGAAGCATT	TTAAAATTTC	TTTTACTTTT	TGGTTTTCCC	TTAATTGCTG	CTTTTCAGAT	2580
40	TTTAGTTATG	GCTCGTCTGC	TCACCCCTTC	TCTACATTAG	GGTGTCAAAG	AGAATGTTTT	2640
	GCTTTAAATA	TAAATAGCCA	TTCATTTAGT	CTCAGATTGT	GAATTTAAAA	TGGTGGATAC	2700
45	CGAAATTGCT	TGTGTGTGTT	GCTGTGGGTT	TGGTTTGAAG	GCAAACACCC	CTAGAACATG	2760
.5	ATATTCCCAT	CTAGTGCATT	TAAATAGAAA	TCACTGAGTT	TGCTGCTTTT	TTATTGTCAG	2820
	CAGATAGGAG	AATTAATAAT	GCATTTTAGC	TGTGATGTCC	ATTTTTATGA	AATTCCTACT	2880
50	AAGAGCTATG	TTAAAAGTAA	AGGATGGTGG	TGGTTGTATT	AACTATATAC	CTGTTTAGGC	2940
	CATTCTGGCT	GTGGTATTT	TCAATAGGTC	AGCATCTGTA	AATCTGTCAG	TTTTATACAG	3000
55	GAGTGCAGAG	TGAACTAGGC	AACTAGATTA	AGAGGTCTAA	ATATGAAATA	CCAGTTGAGG	3060
<i>JJ</i>	CTGAGGACCT	CTTCGTCTTC	CTTTAAATGT	CTTTTGCCTA	GGGAGTGTTT	ACCATTTGTG	3120
	AGGCAGCTTT	GTCTGCTCTT	ACACTGTACA	TCCTATTACT	CCATTGGGAA	GTAGGTTCAC	3180
60	TTTCCTCTGG	CCTTTTGCCT	AAGTTAGGCT	TTGCTGAATC	AACCCTACTT	TTCCTTTTAG	3240

369

	AAAAGGTTGT	TACAGGAGAT	TTACTGGCAA	CTGTTCTTTT	CCCATCAAAA	ATCAGTGAAT	3300
5	GTTTGCTGAG	TATAAATGCT	GCTTCCTTAA	ACCACTTGTC	GCTTTAGGAT	CAACTTTACC	3360
3	TGTACCTTTT	CTCCTTTCCT	CCCTTGCCAC	CTCAGGTGCA	AATCTGAACT	CAGTGTCTGC	3420
	TTCTTCCATT	TTCTCGTCTC	TCTCCCCTCT	TCCCCCATTA	TCCATATGAC	ATTATTTTAC	3480
10	TTCAAATGAC	AGCATCAATC	TTAAAAAGAT	ATACATTAAA	ACTAAGGAGT	TTTTTTAAAG	3540
	AAAGCCTGAA	TAAGTTCCTT	TCCCTGGTAA	CTTTGAAAAG	CAGTCAGAGT	TGCTATATAG	3600
15	ATATATGTGG	CTCCTTTAAA	ATGCTTTGTG	TATGTGTGGT	GTTTAAAAAA	AAAAAAAA	3660
10	TTCGGGGGG	GGCCCGGTNC	CCAT				3684

20

25

30

(2) INFORMATION FOR SEQ ID NO: 116:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1965 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116:

AAGAAAGGGT ATTAAAATTC TAGATCACAT ATGGACCCGG GAAGGTTTTT NACCCTCTGT TAGTGACATC GAGTCTCCCA CTAGACAAAA TAGGTGGAAA AATCTCTCGA GGGCTCACAT 120 35 TGTTTTGTCA TCTTCAGGAA AAACACCACC AGGCCATACC ACAGCCTGCC CAGTGAGGCG 180 GTCTTTGCCA ACAGCACCGG GATGCTGGTG GTGGCCTTTG GGCTGCTGGT GCTCTACATC 240 CTTCTGGCTT CATCTTGGAA GCGCCCAGAG CCGGGGATCC TGACCGACAG ACAGCCCCTG 300 40 CTGCATGATG GGGAGTGAAG CAGCAGGAAG GGGCTCCCAA GAGCTCCTGG TGGTGCAGCC 360 TGTGCTCCCC TCAGAAGCTC TGCTCTTCCC AGGGCTCCCG GCTGGTTTCA GCAGGCGACT 420 45 TTCTTCCAAT GCTGGCCCA GACTTCTTGC CTGGGTGCTG GCCTGCCCTC TCCGGNCCGC 480 TTGCTGCCTG TCTGCTTTCC TTGGTGGYTT TGCTGGGTGC TGGGCCTGCC CTCTCCGGCC 540 CCTTGCTGCC TGTCTGCTTT CCTTGGTGGC TTTGCTGGGT GCTGGGCCTG CCTTCTCTGG 600 50 CTGCTTGCTG CCTGTCTGCT TTCCTTGGTG GCTTTGGCTT CTGCACTCCT TGGCGTCASC 660 TCTCAGGTCC TCCATTCACA CGAGGTCCTC CTCGCTCTGG CCGCTCTTGC TGCTCCTGTC 720 55 TGAAGAWATC AGACTGATTT CCTCTTAAGA CTCCTAGGGA TGTGGTGAAG AGCTGGGACT 780 CAAGTGCAGT CCACGGTGTG AAACATGAGG GARGTGAGGT GTCCGTCCAC TTCCCCCATA 840 900 AAGGTGTGCA TTTCAGTTAG GCTGCCCCGC CACAGAGCAG GCTTCATCTG CTCTGCCATC 60

	CAGCCCCATC	TGGATGTGAG	GTGGGGTGGA	GACATCATGG	GGTGATTGCA	GAAAGGGGGA	960
	GTGGCGGCCC	ACGCAGCTTC	TGCTGAGGAG	CTGACCGCTC	TGAGCTGTTC	TGTTTCGTAT	1020
5	TGCTGCTCTG	TGTCTGCATG	TATTGTGACC	GTGCGGCTCC	ACCTCTTCCA	GCTGCTGCTA	1080
	CAGCTGAGGC	CTGGATCCCG	GCCTTTCCCT	GTGACTTACG	TGTCTGTCAC	CGGCANGCAG	1140
10	CCCTACAAAT	CCTGGTGACC	TGCTCTCCCA	AGAACAGAGC	CTGTCCCCAG	ATGTCCCAGT	1200
10	AGCGATGAGT	AACAGAGGTG	GCTGTGGACT	TCCTCTACTT	CTCCTTGCTG	GATCAGGGCC	1260
	TTCCTGCCTC	CCGCTGGGCA	GGTCTGGCCT	TGCTCTCTTG	GCAGGGCCCC	AGCCCCTCTG	1320
15	ACCACTCTGC	AGCTCACCAT	GCAGCTGATG	CCAAAGTTGT	GGTGTCCAGT	GTGCAGCAGC	1380
	CCTGGGAGCC	ACTGCCACCT	TCAGAGGGGT	TCCTTGCTGA	GACCCACATT	GCTTCACCTG	1440
20	GCCCCACCAT	GCTGCTTGC	CTGGCCCAAC	CTAGCGTTCT	GTGCCATGCT	AGAGCTTGAG	1500
20	CTGTTGCTCT	TCTTCAGGGG	AGGAAATAGG	GTGGAGAGCG	GGAAGGGTCT	TGCTCCTAAG	1560
	TGTTGCTGCT	GIGGCTTTTT	TGCCTTCTCC	AAAGACGCAC	TGCCAGGTCC	CAAGCTTCAG	1620
25	ACTGCTGTGC	TTAGTAAGCA	AGTGAGAAGC	CTGGGGTTTG	GAGCCCACCT	ACTCTCTGGC	1680
	AGCATCAGCA	TCCTACTCCT	GGCAACATCA	GGCCAACGTC	CACCCCAGCC	TCACATTGCC	1740
30	AGATGTTGGC	AGAAGGGCTA	ATATTGACCG	TCTTGACTGG	CTGGAGCCTT	CAAAGCCACT	1800
50	GGGATGTCCT	CCAGGCACCT	GGGTCCCATG	ACCAGCTCCC	CGTCTCCATA	GGGGTAGGCA	1860
	TTTCACTGGT	TTATGAAGCT	CGAGTTTCAT	TAAATATGTT	AAGAATCAAA	GCTGTCTTTG	1920
35	TTCAGGCTGC	TATAACAAAA	ATATAATAGC	CTGGGTGGCT	TAAAC		1965

40 (2) INFORMATION FOR SEQ ID NO: 117:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 503 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:

50	AGTGATCCCC	TTGCCTCGGC	CTCCCAAAAT	GCTGGAATTG	TAAGCGTGGG	CCTCTGCACC	60
	CGGCCTGGTC	CGCAATTTAA	AAACGCACAG	CCACCATTCC	CTYTCCAGAA	AGCACCCAGA	120
55	TGCCTTTGGG	AGAACCAGCC	TCCTCCATGG	AGGAAAGCTT	GGGATCTGCC	TTCCCACCTG	180
33	GGGAGGAGAG	GGATCTGTGG	AAAATCCTTC	TGACGGACTT	CCCCTCAGTG	CCTGATCCAT	240
	ACTCAATAGT	AGAAAAGTA	AGAAATATAC	AAAGATAGCA	GATACACGGA	GACAGTTCCC	300
60	CAAATAGCTG	AGCGAWTAGC	GCAGAAGCAA	TATTGAAGAC	CTAATAGCTG	AGACATTICC	360

371

	AGAACTGATA	AAGTGCATCC	AGCCACAGAT	CAAGCAGCCC	AGAAAATTCC	AGGCAGCATC	420
5	ААСАААТААА	TAGCCCCACA	TGCACCCGTG	AAAATGCAGA	AGACCAAACA	AAAAAGTCCG	480
J	GTCAACAGCC	AGAGTTAAAG	AGG				503

10

15

(2) INFORMATION FOR SEQ ID NO: 118:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1133 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118:

20 GGCACAGCTT GGAATGAACC CCTGTGGATA AGGGGGACTA TTAGATAGAA TAAACATCAA 60 TAAATGCTTG ATGAATAAAC GCTAATCCTA CCTTCCCAGC CTGACACCTC CCAGTGGACA 120 25 CCACACTTCA CTTGAAGCCT TAGAAACCTT TCCCACCCAT GCTTCCAGCC CTGGCTTCAT 180 GTTGCCATTT CTCACCCCA GAACAGGCCG CCCGCCTGAA GAAACTACAA GAGCAAGAGA AACAACAGAA AGTGGAGTTT CGTAAAAGGA TGGAGAAGGA GGTGTCAGAT TTCATTCAAG 300 30 ACAGTOGGCA GATCAAGAAA AAGTTTCAGC CAATGAACAA GATCGAGAGG AGCATACTAC 360 ATGATGTGGT GGAAGTGGCT GGCCTGACAT CCTTCTCCTT TGGGGAAGAT GATGACTGTC 420 35 GCTATGTCAT GATCTTCAAA AAGGAGTTTG CACCCTCAGA TGAAGAGCTA GACTCTTACC 480 GTCGTGGAGA GGAATGGGAC CCCCAGAAGG CTGAGGAGAA GCGGAACNTG AACGAGCTGG 540 CCCAGAGGCA ANGAGGAGGA GGCAGCCCAG CAGGGGCCTG TGGTGGTGAG CCCTGCCAGC 600 40 GACTACAAGG ACAAGTACAG CCACCTCATC GGCAAGGGGAG CAGCCAAAGA CGCAGCCCAC 660 ATGCTACAGG CCAATAAGAC CTACGGCTGT KTGCCCGTGG CCAATAAGAG GGACACACGC 720 45 TCCATTGAAG AGGCTATGAA TGAGATCAGA GCCAAGAAGC GTCTGCGGCA GAGTGGGGAA 840 GGGGCAGGG AGAGACAAGG CTGCTGCTAT TAGAGCCCAT CCTGGAGCCC CACCTCTGAA 900 50 CCACCTCCTA CCAGCTGTCC CTCAGGCTGG GGGAAAACAG GTGTTTGATT TGTCACCGTT 960 GGAGCTTGGA TATGTGCGTG GCATGTGTGT GTGTGTGTGA GAGTGTGAAT GCACAGGTGG 1020 55 GTATTTAATC TGTATTATTC CCCGTTCTTG GAATTTTCTT CCCATGGGGC TGGGGTACTT 1080 TACATTCAAT AAATACTGTT TAACCCAAAA AAAAAAAAA AAAAGAAAGA AGN 1133

(2) INFORMATION FOR SEQ ID NO: 119)	:
------------------------------------	---	---

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1101 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119:

GGGCACAGCT GAAGCTGCAG ACCTCCCCAG GGGATGGCTC CTCTCCCCCA GGAGCCCCGA 60 GGCAGGGGAG GCAGAAAGCC TGGGCTCTGG GGGGTGGCCT GCGGACAGCT GTGCTGTGG 120 15 CCGGGGGCTG GGCCTGTCCC ACAGGGNCGT GGAGCTCGTG GTTCTGAGCA GCCAGCTGGG TGGTGTCTGG GGATAGCTGG GAGGCACAGC GGCTGCCATG TGGGACTGGG ACTGGAGTGC 240 20 TCCCTGGTCT TGGCCTCTGT GGCTCAGCCT TGCTCTGGTC TGCCTGAGTG CAGGGGCCAA 300 GGGGCACAGG GCCAGTGAGG CCGGCCACGC TCGGGCCCTC ACCTGTGAGA TGGGGTCGGA 360 ATTTKACACA GCCTANGGCT TGGTTCTTGG TKGTNGAMCG TGGACTYCTK AGAACGGGAG 420 25 TGCTGGTCCT.GAAAGGCGTG GTTGGAGACC AGCTGCTTTT CTCGCTGTTT TTCTCTTAGG 480 AGATTAAACA AAAACAGAAA GCACAAGACG AACTCAGTAG CAGACCCCAG ACTCTCCCCT 540 30 TGCCAGACGT GGTTCCAGAC GGGGAGACGC ACCTCGTCCA GAACGGGATT CAGCTGCTCA 600 ACGGGCATGC GCCGGGGGCC GTCCCAAACC TCGCAGGGCT CCAGCAGGCC AACCGGCACC ACGGACTCCT GGGTGGCGCC CTGGCGAACT TGTTTGTGAT AGTTGGGTTT GCAGCCTTTG 720 35 CTTACACGGT CAAGTACGTG CTGAGGAGCA TCGCGCAGGA GTGAGGCCCA GGCGCCGAGA 780 CCCAAGGCGC CACTGAGGGC ACCGCGCACC AGAGCGTGAC CTCGGCAGGC TGGACACACT 840 40 GCCCAGCACA GGCAGACCCA CCAGGCTCCT AGGTTTAGCT TTTAAAAACC TGAAAGGGGA 900 AGCAAAAACC AAAATGTGTG ACTGGGCTTT GGAGGAGACT GGAGCCTCAG CCCTGTCCTG 960 GCCACGGGCC GCTGGGGCTG GTGTGGGTGG GCCTTGTGTG CTGGATTTGT AGCTTATCTT 1020 45 1080 AAACTTTGGG GGGGGGCCCC N 1101

50

(2) INFORMATION FOR SEQ ID NO: 120:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 282 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120:	
	AGCTTCTCTG TCCAGTCTTG AACTCTGGGS TCTCTTGGAA CTTTCCTCAC CCCTCTCAGC	6
5	CTGAATATTC CTTCCATGGA TTCCACTCAA CCAGACTTTG GATCTGTGCC TACTTAATCA	12
	ACCTTATCTT TGCAATATGT TCGGGCCCAC CTTCCACTCC TTGGTTCTTG TTCCTCCTTG	18
10	GCCTAACTTG TCCCTTCTCC ACTTCACATC CCCGGTGGGA CAGCATTCCT CCTTCCTCCC	. 24
10	AACCTCCCTC CGTCTCARAA AAAAAAAAA AAAAAAAAA TT	28
15	(2) INFORMATION FOR SEQ ID NO: 121:	
	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 2635 base pairs	
20	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121:	
	TAAGGGGGTG TGTGCTCACC TCCTCCTGAC CCTTAACACT CCTGTCCTGC CCAGACCAAC	6
	AGAGAGAGCT GTCCCTGAGA CCCCGGAGAG AAGCAGCTGC CGAAAGCTGC AGCCTTTCCG	12
30	CACTCTGAGA CCATGATCTT CCTCCTGCCA GGGGAGAGCC ACCCACAGGC CATGTCCAGC	180
	CCCACTTCCC TCAGCCCCCA GGGYTTCCTT CTGGCCCCTC TGAGGATTCC CTAGGGCTGC	24
35	CCCGCAGAGG GGYTTCCCCA AGCTCTGTTT TGAAGCCTGC AATGTGGAAA AGTGAGAAGT	300
	CAGAGGGAAC AGGACAGGTG CAGCCGGGCT CTGAGGCCAC ACCTCACACC TCGCTGTTCC	366
	CCAACATCCC CTGAGCAGTG TGAGCTCATC TCACCAGATG AGAAGAGGCC CTGTGCATTT	420
40	YTTTTGTTTG TTTGTTGCTG TTTTCCCCCA CCCATCCAGT TCTCCTCAGC AAAGCAAATT	480
	CCTTAACACC TTTGGTGGAG AATTTCTTAC CCAGACTTGG GGCTGTGATG CCCTTCAGTG	540
15	CGTGGTGAGT GCAGCGTGTG TGCGTGTGCC TGTGTGTGAA CCTGGGGGCCC ATCCTGGTGG	600
	CCTGGGAGCG TGAGGAGAGG CCCCCTGTGT GCTGGGTGAG TGGTGGGTGT GGGGTCAATG	660
	CAGTGAGGCT CTCTGGGTGA GGCTCCCAAC CTGGCAGTCC CCAGCCTCCC AGCATCTGTG	720
50	AGCGTCTGTT GGACTTTACA GAAGAGCCTC ATCCYGTCTG CCCCTCACTC TGCCCTGGAA	780
	TCAACATCTT CCGAGTCCTT CTTGGGGGAA ATAGCAGAGC CCCACTTAAC TCCATAAACT	840
55	GCTTCCCATT CCGCAGCCCA GTTCTGATTG TTGAGGTGTC GCGTCGTTCC AGGTCCCCCA	900
	GTCCCCTCTT TCTCCTGTCC TCTCTCTGTC CTTCACCTCC CCACTCCAGC CCCGGCTCAG	960
.	TTCAGGGAAA TGCTGTTCCA YATCAGCCCT CTGCTCTCTG AGGCAGCCGC GCCTCTGACT	1020
50	CCCACCTACT TO A A COTTO CONCINCO A COMPACA CO CTA COTATION COMPACA TOTAL	1000

	TCCCAGCTGG	AGTTCTGGAA	CTTTCCTCCT	CGGGGTGGGG	GIGGGGGTIG	TTAAGGATGC	1140
5	TGGGGGGCCT	GGGGAAGGAA	GGAGTTCAGA	GGAAGGGTGT	cccatalcat	CTTCATGTCA	1200
	CCCTCCGCTC	CTGGGACACG	TGCTCTCTCT	GICICIGGGI	CTTCTGGCTG	TGCACGTTTG	1260
	TGTGTCCTTG	TAAATATGTT	TTAGGAAGAA	AGCAAAAGGG	ACTGAACTAG	COTTIGGTAG	1320
10	GATTGCAGGG	GTCCAGCCTT	GCCTGTTTCC	GAAGCCCCCA	CACTGCTTT	CGCCCCACTG	1380
	AGACTGGTCC	CCTCAAAAGG	TAGACAAAAC	AGCAGCTCCC	TGTGGAGTTG	AAGGCGGCC	1440
15	TCAAAGTGGC	TTTTTGTTAG	ACAAGGTTAA	GGTTTCCTCA	TGAGCALGGT	TGIAGATOGG	1500
	TCCTTCCTCA	GCTCCTTGAT	TTGTGACCTT	GACCAAGGGG	CCTGCCASSC	AGCCCCTCCA	1560
						AGGCAGGTAG	1620
20						TTTCTTGCTT	1680
				CAGGCCTCCT			1740
25				AGAGAAAATA			1800
				AAGCATGGCC	•		1860
20				TGTTGTCCCA			1920
30				TTCCATGAGC			1980
				ACACGGGGAC			2040
35				CTGAGCTTTG			2100
			• •	GACACCACAG			2160
40				CAGCCTGAAG	•		2220
40				TGTTCAAGTG			2280
				TTTTAGATGT			2340
45				TGGGCACTCA			2400
				TCACGTCCCG			2460
50				ACTCAGCCTA			2520
50				TAAGAAAATG			2580
	САССАААААА	AAAAAAAA	ACCCNGGGGG	GGGGCCGGTA	ACCCATTTCG	CCTAA	2635

60

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 994 base pairs

⁽²⁾ INFORMATION FOR SEQ ID NO: 122:

PCT/US98/11422

(B) TYPE: nucleic acid

	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122:	
	GAATTCGGCA GAGGTTCGGC GAAGATAGGG AATAAGGAAG CACAGGAGTA GGGGAGAAGG	60
10	AAGCACAGGA GTAGGGGAGA TATACAGCGG TCAGGATAAG GGGGAAAGGG CGGTGGTTGC	120
10	SCAAGAGGTG AAACAAGATG TGAGAGACAA GGGGTAGGGA AGAAATGGGG CAGCGGTTAG	180
	GTTCAGAAGC GCATAGACCG TGGCGGACGG GCAATGCGAG GGGCACAGAA AGGAACTGAG	240
15	GGGTGGGCTA TTTTAARGGA GATGGTCCTT CAGCCCTCTT YTTTTCTGCG TAGTTCTCCT	300
	CCTCCAGGCC GCGCGCGGAT ATGTCGTCCG GAAACCAGCC CAGTCTAGGC TGGATGATGA	360
20	CCCACCTCCT TCTACGCTGC TCAAAGACTA CCAGAATGTC CCTGGAATTG AGAAGGTTGA	420
20	TGATGTCGTG AAAAGACTCT TGTCTTTGGA AATGGCCAAC AAGAAGGAGA TGCTAAAAAT	480
	CAAGCAAGAA CAGTTTATGA AGAAGATTGT TGCAAACCCA GAGGACACCA GATCCCTGGA	540
25	GGCTCGAATT ATTGCCTTGT CTGTCAAGAT CCGCAGTTAT GAAGAACACT TGGAGAAACA	600
	TCGAAAGGAC AAAGCCCACA AACGCTATCT GCTAATGAGC ATTGACCAGA GGAAAAAGAT	660
30	GCTCAAAAAC CTCCGTAACA CCAACTATGA TGTCTTTGAG AAGATATGCT GGGGGCTGGG	720
50	AATTGAGTAC ACCTTCCCCC CTCTGTATTA CCGAAGAGCC CACCGCCGAT TCGTGACCAA	780
	GAAGGCTCTG TGCATTCGGG TTTTCCAGGA GACTCAAAAG CTGAAGAAGC GAAGAAGACC	840
35	CTTAAAGCT GCAGCAGCAG CCCAAAAACA AGCAAAGCGG AGGAACCCAG ACAGCCCTGC	900
	CAAAGCCATA CCAAAGACAC TCAAAGACAG CCAATAAATT CTGTTCAATC ATTTAAAAAA	960
40	AAAAAAAAA AAAAAAAAA AAAAAGGGGA GCCG	994
15	(2) INFORMATION FOR SEQ ID NO: 123:	
,,	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1542 base pairs(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123:	
55	GGCASAGCCA CCTCGGCCCC GGGCTCCGAA GCGGCTCGGG GGCGCCCTTT CGGTCAACAT	60
	CGTAGTCCAC CCCCTCCCCA TCCCCAGCCC CCGGGGATTC AGGCTCGCCA GCGCCCAGCC	120
	AGGGAGCCGG CCGGGAAGCG CGATGGGGGC CCCAGCCGCC TCGCTCCTGC TCCTGCTCCT	180
50	GCTGTTCGCC TGCTGCTGGG CGCCCGGCGG GGCCAACCTC TCCCAGGACG ACAGCCAGCC	240

	CTGGACATCT	GATGAAACAG	TGGTGGCTGG	TGGCACCGTG	GTGCTCAAGT	GCCAAGTGAA	300
5	AGATCACGAG	GACTCATCCC	TGCAATGGTC	TTAACCCTGC	TCAGCAGACT	CTCTACTTTG	360
	GGGAGAAGAG	AGCCCTTCGA	GATAATCGAA	TTCAGCTGGT	TAMCTCTACG	CCCCACGAGC	420
	TCAGCATCAG	CATCAGCAAT	GTGGCCCTGG	CAGACGAGGG	CGAGTACACC	TGCTCAATCT	. 480
10	TCACTATGCC	TGTGCGAACT	GCCAAGTCCC	TCGTCACTGT	GCTAGGAATT	CCACAGAAGC	540
	CCATCATCAC	TGGTTATAAA	TCTTCATTAC	GGGAAAAAGA	CACAGCCACC	CTAAACTGTC	600
15	AGTCTTCTGG	GAGCAAGCCT	GCAGCCCGGC	TCACCTGGAG	AAAGGGTGAC	CAAGAACTCC	660
	ACGGAGAACC	AACCCGCATA	CAGGAAGATC	CCAATGGTAA	AACCTTCACT	GTCAGCAGCT	720
	CGGTGACATT	CCAGGTTACC	CGGGAGGATG	ATGGGGGGAG	CATCGTGTGC	TCTGTGAACC	780
20	ATGAATCTCT	AAAGGGAGCT	GACAGATCCA	CCTCTCAACG	CATTGAAGTT	TTATACACAC	840
	CAACTGCGAT	GATTAGGCCA	GACCCTCCCC	ATCCTCGTGA	GGGCCAGAAG	CTGTTGCTAC	900
25	ACTGTGAGGG	TCGCGGCAAT	CCAGTCCCCC	AGCAGTACCT	ATGGGAGAAG	GAGGGCAGTG	960
	TGCCACCCCT	GAAGATGACC	CAGGAGAGTG	CCCTGATCTT	CCCTTTCCTC	AACAAGAGTG	1020
	ACAGTGGCAC	CTACGGCTGC	ACAGCCACCA	GCAACATGGG	CAGCTACAAG	GCCTACTACA	1080
30	CCCTCAATGT	TAATGACCCC	AGTCCGGTGC	CCTCCTCCTC	CAGCACCTAC	CACGCCATCA	1140
	TCGGTGGGAT	CGTGGCTTTC	ATTGTCTTCC	TGCTGCTCAT	CATGCTCATC	TTCCTTGGCC	1200
35	ACTACTTGAT	CCGGCACAAA	GGAACCTACC	TGACACATGA	GGCAAAAGGC	TCCGACGATG	1260
	CTCCAGACGC	GGACACGGCC	ATCATCAATG	CAGAAGGCGG	GCAGTCAGGA	GGGGACGACA	1320
	AGAAGGAATA	TTTCATCTAG	AGGCGCCTGC	CCACTTCCTG	CGCCCCCAG	GGCCCTGTGG	1380
40	GGACTTGCTG	GGGCCGTCAC	CAACCCGGAC	TTGTACAGAG	CAACCGCAGG	GGCCGSCCCT	1440
	CCCGNTTGTT	CCCCAGCCCA	CCCACCCCCT	TGTTACAGAA	TGTYTKGTTT	GGGTGCGGT	1500
45	TTTGTWATTG	GTTTNGGATN	GGGGAAGGGA	GGGANGGCGG	GG		1542
50	(2) INFORMA	ATION FOR SE	Q ID NO: 12	24 :			

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1390 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:

CAAGCTCTAA TACGACTCAC TATAGGGAAA GCTGGTACGC CTGCAGGTAC CGGTCCGGAA

	TTCCCGGGTC	GACCCACGCG	TCCGGGCCTC	AGGGTGGACG	CATGGTTCTG	CACTGAGGCC	120
	CTCGTCATGG	TGGCGCCTGT	GTGGTACTTG	GTAGCGGCGG	CTCTGCTAGT	CGGCTTTATC	180
5	CTCTTCCTGA	CTCGCAGCCG	GGGCCGGGCG	GCATCAGCCG	GCCAAGAGCC	ACTGCACAAT	240
	GAGGAGCTGG	CAGGAGCAGG	CCGGGTGGCC	CAGCCTGGGC	CCCTGGAGCC	TGAGGAGCCG	300
10	AGAGCTGGAG	GCAGGCCTCG	GCGCCGGAGG	GACCTGGGCA	GCCGCCTACA	GGCCCAGCGT	. 360
10	CGAGCCCAGC	GGGTGGCCTG	GGCAGAAGCA	GATGAGAACG	AGGAGGAAGC	TGTCATCCTA	420
	GCCCAGGAGG	AGGAAGGTGT	CGAGAAGCCA	GCGGAAAYTC	ACCTGTCGGG	GAAAATTGGA	480
15	GCTAAGAAAC	TGCGGAANNT	GGAGGAGAAA	CAAGCGCGAA	AGGCCCAGCK	TGAGGCAGAG	540
	GAGGCTGAAC	GTGARGWGCG	GAAACGACTC	GAGTCCCAGC	GCGAATGAGT	GGAAGAAGGA	6 00
20	GGAGGAGCGG	CTTCGCCTGG	AGGAGGAGCA	GAAGGAGGAG	GAGGAGAGGA	AGGCCCGCGA	660
20	GGAGCAGGCC	CAGCGGGAGC	ATGAGGAGTA	CCTGAAACTG	AAGGAGGCCT	TTGTGGTGGA	720
	GGAGGAAGGC	GTAGGAGAGA	CCATGACTGA	GGAACAGTCC	CAGAGCTTCC	TGACAGAGTT	780
25	CATCAACTAC	ATCAAGCAGT	CCAAGGTTGT	GCTCTTGGAA	GACCTGGCTT	CCCAGGTGGG	840
	CCTACGCACT	CAGGACACCA	TAAATCGCAT	CCAGGACCTG	CTGGCTGAGG	GGACTATAAC	900
30	AGGTGTGATT	GACGACCGGG	GCAAGTTCAT	CTACATAACC	CCAGAGGAAC	TGGCCGCCGT	960
50	GGCCAACTTC	ATCCGACAGC	GGGCCGGGT	GTCCATCGCC	GAGCTTGCCC	AAGCCAGCAA	1020
	CTCCCTCATC	GCCTGGGGCC	GGGAGTCCCC	TGCCCAAGCC	CCAGCCTGAC	CCCAGTCCTT	1080
35	CCCTCTTGGA	CTCAGAGTTG	GTGTGGCCTA	CCTGGCTATA	CATCTTCATC	CCTCCCCACC	1140
	ATCCTGGGGA	AGTGATGGTG	TGGÇCAGGCA	GTTATAGATT	AAAGGCCTGT	GAGTACTGCT	1200
40	GAGCTTGGTG	TGGCTTGGTG	TGGCAGAAGG	CCTGGCCTAG	GATCCTAGAT	AAGCAGGTGA	1260
.0	AATTTAGGCT	TCAGAATATA	TCCGAGAGGT	GGGGAGGGTC	CCTTGGAAGC	TGGTGAAGTC	1320
	CTGTTCTTAT	TATGAATCCA	TTCATTCAAG	AAAATAGCCT	GTTGCAAAAA	AAAAAAAA	1380
45	AAAAACTCGA			-			1390

50 (2) INFORMATION FOR SEQ ID NO: 125:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1288 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125:

60 GGCGCGCGG TGAAAGGCGC ATTGATGCAG CCTGCGGCGG CCTCGGAGCG CGGCGGASCA

GACGCTGACC ACGTTCCTCT CCTCGGTCTC CTCCGCCTCC AGCTCCGCGC TGCCCGGCAG

_	CCGGGAGCCA TGCGACCCCA GGGCCCCGCC GCCTCCCGC AGCGGCTCCG CGGCCTCCTG	180
5	CTGCTCCTGC TGCTGCAGCT GCCCGCGCCG TCGAGCGCCT CTGAGATCCC CAAGGGGAAG	240
	CAAAAGGCGC ATCCGGCAGA GGGAGGTGGT GGACCTGTAT AATGGAATGT GCTTACAAGG	300
10	GCCAGCAGGA GTGCCTGGTC GAGACGGGAG CCCTGGGGCC AATGGCATTC CGGGTACACC	360
	TGGGATCCCA GGTCGGGATG GATTCAAAGG AGAAAAGGGG GAATGTCTGA GGGAAAGCTT	420
15	TGAGGAGTCC TGGACACCCA ACTACAAGCA GTGTTCATGG AGTTCATTGA ATTATGGCAT	480
13	AGATCTTGGG AAAATTGCGG AGTGTACATT TACAAAGATG CGTTCAAATA GTGCTCTAAG	540
	AGTTTTGTTC AGTGGCTCAC TTCGGCTAAA ATGCAGAAAT GCATGCTGTC AGCGTTGGTA	600
20	TTTCACATTC AATGGAGCTG AATGTTCAGG ACCTCTTCCC ATTGAAGCTA TAATTTATTT	660
	GGACCAAGGA AGCCCTGAAA TGAATTCAAC AATTAATATT CATCGCACTT CTTCTGTGGA	720
25	AGGACTITGT GAAGGAATTG GTGCTGGATT AGTGGATGTT GCTATCTGGG TTGGCACTTG	780
23	TTCAGATTAC CCAAAAGGAG ATGCTTCTAC TGGATGGAAT TCAGTTTCTC GCATCATTAT	840
	TGAAGAACTA CCAAAATAAA TGCTTTAATT TTCATTTGCT ACCTCTTTTT TTATTATGCC	900
30	TTGGAATGGT TCACTTAAAT GACATTTTAA ATAAGTTTAT GTATACATCT GAATGAAAAG	960
	CAAAGCTAAA TATGTTTACA GACCAAAGTG TGATTTCACA TGTTTTTAAA TCTAGCATTA	1020
35	TTCATTTTGC TTCAATCAAA AGTGGTTTCA ATATTTTTTT TAGTTGGTTA GAATACTTTC	1080
<i>33</i>	TTCATAGTCA CATTCTCTCA ACCTATAATT TGGGAATATT GTTGTGGTCT TTTGTTTTTT	1140
	CTCTTAGTAT AGCATTTTTA AAAAAATATA AAAGCTACCA ATCTTTGTAC AATTTGTAAA	1200
40	TGTTAAGAAT TTTTTTTATA TCTGTTAAAT AAAAATTATT TCCMACAACC TTAAAAAAAA	1260
	AAAAAAA AAAAAAAA AAAAAAAA	1288
45		
,,,	(2) INFORMATION FOR SEQ ID NO: 126:	
50	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1517 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126:	
-	AGTGGCTTAA AGGCATCGTT TTAGGGATTA CTGGGAAGTA TCTTCAAAGT AATACATGAG	60
		120
60	AAACATTCCT TCCTAAATCC TTTATTATAT TGAATATCGT ATTAATTGGT TTTCAGAGGT	120

	TAAATTAACC ATGTATTCCT GCAATAAATG TCACTTGTNT CTTGTATATA ATCTTTTTTA	180
	TATATTACCG GATTGATTCA TTAGTATTTT GTTGAGGATT TTTGTGTCTA TATTCATAAG	240
5	AGATGCTGGT CTGCAGTTTT CTTTTTTGT GATAATCTGG TTTTTGTATC AGTAATACAG	300
	GCCCCATGAA ACGAGTTGGG AAGTGTTCAC CTCTCTTGTA TTTTTTCAAG AGTTTGTGAA	360
10	GAATTGCTAT TAATTCTTTA AATGTTTGGT AGAATCTACC ATTGAAATCA TGTGTCCTGG	420
10	GCTTTTTTT GAGGGAAGTG TTCTGATAAC TAATTCAGTA TCTACTTTTT ATAGCTCTGT	480
	TCAGATTTTG CTTCTTCCTG AGTTAGTTTT GGTAATTTGT GTATCTCTAG GARTTTGTCC	540
15	ATTTCATTTA TCTCATTTGT TGGCATAAAT TAAACTAAAT TTGGCCTGAG CCTACCTGTA	600
	TATCTTGAGT CCCTCTGTAA GGAACTGTAG CCTAACTTGT ACATAAACAA ACTGAAATCC	660
20	TAAATTAGGA ATGTAGTTTT TGTAACAGCT CCTGAGTCTC AGGCAGTCAC AGCAGYCAAG	720
20	TCTGTCAATT GCAGGCTGCT AACTAAGCAG CCCATGSTCA AATGAGGCAA AAACCTTTGC	780
	TTTTAACACA TAGTATAGCT TTGTAATCCT TTTCTTGCAC ACTCGGGTAA TTTCTTCCTT	840
25	TTTCATTCCC KGWATTTTCC AKGAATATGA RTCTYCCTTT TTTCCCCTCC TGTCAGTCTA	900
	GCTAATGGTT TGTCAATTTT GTTGATCTTT TGAARAACAA ACCTTTGGTT CCACTTTCTT	960
20	GTTGCATATG CTGARTATTC TCATAATTGG AGTGGAAAGC TGATCTTTGA TTACTTATTT	1020
30	TACTTAGGGC TGAGGAGTTC ATGGACTTCG CAAAACCTCC TTGAATCTAA ATTGCATCTT	1080
	CTTTCCTGGT TTCTGGGCTG AAACATGTTT TTTCCCATCT WANAWACCCT TGGTCTTTTC	1140
35	ATKGGCGATT AAGACTAGAG AAAGTTCTAG ATMCCTTGTC CTTTTATGCT GTCATTTTGT	1200
	TTAAAGGCTT TCTATGTAGT AAAACTATCT ATATAGACAA AATAGAGCCT TGAGTTGTGG	1260
40	TCTTGAATTT GATCAACATG ATTTACCACA TTCTGTACTG GATATTTCTT CACCTGCTGC	1320
40	TACTGTAAAC CATTTTATTC TTGGATCTTC TGTAGAGTAT ATTATCACAG GTACTTTTTA	138
	CAGGGGTGTC TAATCTTTTG GCTTCCCTGG GCACATTGAA AGAAGAAGAA TTGTCTTGGG	144
45	CCACACATCA AATACGCTAA CACTAATAAT AGTTGATGAG CTAAAAAAAA AAAAAAAAAG	150
	GCAAAAAGN CCCAAAA	151

55

- (2) INFORMATION FOR SEQ ID NO: 127:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1073 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127:

300

	TGAATCTATT CTTTGAACAT TCTACAACAA GAATTACATT ATACTGTTAT ACCAGAGTAC	60
5	TTCTGCAGTG TGAAATAGAT TGGTTTGGAA AATGAACCTG GCTTTGCTAT AAATTACATT	120
J	CACAGGCCTT TYTGCAAATG TGTAACTTGC CTATCAAAGT AGTTTGTAGG GCAAATGCAG	180
	AATATATGTC TCCATCTGGT AAAGTACCTT WTAYTCATGT GGGAAATCAA GTAGTATCAG	240
10	AACTTGGTCC AATAGTCCAA TTTGTTAAAG CCAAGGGCCA TTCTCTTAGT GATGGGCTGG	300
	AGGAAGTCCA AAAAGCAGAA ATGAAAGCTT ACATGGAATT AGTCAACAAT ATGCTGTTGA	360
15	CTGCAGAGCT GTATCTTCAG TGGTGTGATG AAGCTACAGT AGGGRMGATC ACTCATGMTA	420
13	GGTATGGWIC TCCTTACCCT TGGCCTCTGW WTCATATTTT GGCCTATCAA AAACAGTGGG	480
	AAGTCAAACG TAAGNTGAAA GCTATTGGAT GGGGAAAGAA GACTCTGGAC CAGGTCTTAG	540
20	AGGATGTAGA CCAGTGCTGT CAAGCTCTCT CTCAAAGACT GGGAACACAA CCGTATTTCT	600
	TCAATAAGCA GCCTACTGAA CTTGACGCAC TGGTATTTGG CCATCTATAC ACCATTCTTA	660
25	CCACACAATT GACAAATGAT GAACTTTCTG AGAAGGTGAA AAACTATAGC AACCTCCTTG	720
	CTITCTGTAG GAGAATTGAA CAGCACTATT TTGAAGATCG TGGTAAAGGC AGGCTGTCAT	780
	AGAGTTATGT GTTAGTCTCA GGAGTCTTAA CTTTTGAAAT ATGTTTTACT TGAATGTTAC	. 840
30	ATTAGATATT GGTGTCAGAA TTTTAAAACC AAATTACTGC TTTTTGAAAC CTCAAATTAT	900
	ATAATGTATC TTATGTATGT GCTTTATATT GTTATTTGTG TATACATTAA AATAATTCTG	960
35	AATTATTTAA TCTGATATGT TGTATTCTGT ATCTTGAAAT TTTTGTTTCC TTGAAACATG	1020
33	CATGCATTTA AAAATAAAGC TTAAACAACT GTAAAAAAAA AAAAAAAAAA	1073
40	(2) INFORMATION FOR SEQ ID NO: 128:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 300 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128:	
50	CAACCCCTGC CTTTTTTTG TTTTCCATTT GCTTGGTAGA TCTTCCTCCA TCCCTTTATT	60
	TTGAGCCTAT GTGTGTCTCT GCCCGTGAGA TGAGTCTCCT GAATACAGCA CACTTACTGG	120
55	TCTTGACTCT GTATCCAATT TGCCAGTCTG TGTCTTTCAT TTGGAGCATT TAGCCCATTT	180
	ACATITAAGG TKAATATTGT TATGIGIGAA TTTRATCYTR TCATTATGWT GITAGCTGGT	240

TATTTTGCTT GTTAGTTGAT GCAGTTTCTT CCNGGCATCA ATGGTCTTTA CAANTTGGCA

(2)	INFORMATION	FOR	SEQ	ID	NO:	129:
-----	-------------	-----	-----	----	-----	------

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1275 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129:

GGCAGAGCCT GTCCCTGCTG CCCCTGCAAA AAAAACCCCC TCTGGTGTGA GCAGGATGGT 60 15 120 TGGAGGTTAT GTGAGCTCCT TCTCCTTTCC TCCAGTTTCC TCTTCCCTTC TCCTCCCTGC CTCTTTTGCT TTTCCCTTTC TTCCTGGTAC CCCCTGCCCA TTCCTGTATT TTCTCCCATC 180 GCCATTCTCC CCTCTCCCAC TGTCCCTAAC CCGTTCAAAC TCTTTCCTCT TAAATGGTTG 20 240 300 AGATTTTCTC TCACCAAGCA CACCCCAGTA TTAATTAAAC TAGCTGCAAA CAGGCAGCAA GTGGTCTACC ATGACAGATG GGTTTTGTGT GTGTGTGTGT GTGTGTAATT GTAATAAAAC 360 25 ATATTGARTC ACTCAATAAA CACAGAGTGT CTACTACATG TATCARGCAC TATCATAGAT 420 GCTAATTAAC GAAACTGAAA TGGCCAGGCC CTCACAGTGG CTCATGCCTA TAATCCCAGC 480 ACTITICGGAG GATGAGGCAG GAGGATCACT TGAGGCCGGG AGTITCAAGAC CAGCCTGGGC 30 AACATAGTAA GACTCCATCT CTACAAAAAA AAAATTTTTT TTATTATACT TTAAGTTTTG 600 GGTTACATGT GCAGAACGTG TAGTTTTGTT ACATAGGTAT ATACGTGCCC TGGTAGTTTG 660 35 CTGCACCCAT CAACCCATCA CCTACATTAG GTATTTCTCC TAATGTTACC CCTCTCCTAG 720 CCCCCCACCC CGTGACAGGC CCTGGTGTGT GATGTTCCCC TCCCTGTGTC CATGTGTTCT 780 CATTGGTCAA CTCTCACCTA TGGAGTGAGA ACATGTGGTA TTTGGTTTTC TGATCTTGTG 840 40 ATAGCTTGCT GAGAATGTKG GTTTCCAGCT TTATCCACGT CCCTGCAAAG GGCATAAACT 900 CATCCCTTTT TATGGCTGCA TAGTGTTCCA TGGTGTATAC GTGCCACATT TTCTTAATCT 960 45 ATCATTGATG GACAAGTTTT GCTATTGTGA ATAGTGCCAC AATAAACATA CGTGTGCGTG 1020 TGTCTTTATA GCAGCATGAT TTATAATCCT TTGGGTATAT ACCCAGTAAT GGGATCACTG 1080 AGTCAAATGG TATTTCTCGT TCTAGATCCG TAAGGAATTG CCACACTGTC TTCCACAATG 1140 50 TTTGAACTAA TNTACACTCC CACCAACAGT GTAAAAGTGT TTCTATTTTT CCACAACCTC 1200 1260 TCCAACATCT GTTATTTCCT GACTTTTTAA TGAACGTCAT TCTAACTGGC GTGAGATGGT 55 1275 ATCTCATTGT GGTTT

	(2) INFORMATION FOR SEQ ID NO. 130.	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 472 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 130:	•
10	CNGAAACCCC GTGAACCCTC CCCGGGTTAA AAAGCCCCCC CTAAATGGGG GGAACGCYTC	60
	ACACGTTATA AAAAAGCACT AGAATGTTTT GAAAGCGAGA AACAACAGCT GTGTAGGGTA	120
15	GCTAGCAGTT AGTGTTGTAC AGAAGACAGA TATTTGTGCA TTTYTGCATT TTCTAAGTTT	180
	GCTGCAATGA GCATGTATTA CTTTCATAGT TATAAAACAC ATGCAAAATG CCCTTTTAAA	240
20	ATGAAAAAA ATCCATGAGT GTAAGTGATA TATATGCTTT GGAAAGCCTG GGACGGTCAT	300
20	TGTTTACTCT CAATAGTATG TGTTTGCCTT TGTCTTTTTG AGACATTTTG TTTTAATCTG	360
	TTGATGACAA TAACCTGTTG ATAATATAAC TTGATAACAA ATAAAATGAC TTATGATTGA	420
25	ИИ АБАБАБББ АБАБББББ Б Б Б Б Б Б Б Б Б Б	472
30 35	(2) INFORMATION FOR SEQ ID NO: 131: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1950 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131:	60
40	ACCTCTCAGA ATCTTCTCTC AGCAACCTGA GTCTTCGCCG TTCCTCAGAG CGCCTCAGTG	60 .
	ACACCCCTGG ATCCTTCCAG TCACCTTCCC TGGAAATTCT GCTGTCCAGC TGCTCCCTGT	120 180
45	GCCGTGCCTG TNATTCGCTG GTGTATGATG AGGAAATCAT GGCTGGCTGG GCACCTGATG	
	ACTICTAACCT CAACACAACC TGCCCCTTCT GCGCCTGCCC CTTTNTGCCC CTGCTCAGTG	240
	TCCAGACCNT TGATTCCCGG CCCAGTGTCC CCAGCCCCAA ATCTGCTGGT GCCAGTGGCA	300
50	GCAAAGATGC TCCTGTCCCT GGTGGTCCTG GCCCTGTGCT CAGTGACCGA AGCTCTGCCT	
	TGCTCTGGAT GAGCCCCAGC TCTGCAACGG GCACATGGGG GGAGCCTCCC GGCGGGTTGA	420
55	GAGTGGGGCA TGGGCATACC TGAGCCCCCT GGTGCTGCGT AAGGAGCTGG AGTCGCTGGT	480
	AGAGAACGAG GGCAGTGAGG TGCTGGCGTT GCCTGAACTG CCCTCTGCCC ACCCCATCAT	
	CTTCTGGAAC CTTTTGTGGT ATTTCCAACG GCTACGNCTG CCCAGTATTC TACCAGGCCT	600
60	CONCONCOCC TOCTOTOLOGIC COCCTTCGMA CTCCCAGGCC CCATCTCCTT GGCTAACCCC	660

	TGATCCAGCC	TCTGTTCAGG	TACGGCTGCT	GTGGGATGTA	CTGACCCCTG	ACCCCAATAG	720
_	CTGCCCACCT	CTCTATGTGC	TCTGGAGGGT	CCACAGCCAG	ATCCCCCAGC	GGGTGGTATG	780
5	GCCAGGCCCT	GTACCTGCAT	CCCTTAGTTT	GGCACTGTTG	GAGTCAGTGC	TGCGCCATGT	840
	TGGACTCAAT	GAAGTGCACA	AGGCTGTGGG	GCTCCTGCTG	GAAACTCTAG	GGCCCCCACC	900
10	CACTGGCCTG	CACCTGCAGA	GGGGAATCTA	CCGTGAGATA	TTATTCCTGA	CAATGGCTGC	960
	TCTGGGCAAG	GACCACGTGG	ACATAGTGGC	CTTCGATAAG	AAGTACAAGT	CTGCCTTTAA	1020
15	CAAGCTGGCC	AGCAGCATGG	GCAAGGAGGA	GCTGAGGCAC	CGGCGGGCGC	AGATGCCCAC	1080
13	TCCCAAGGCC	ATTGACTGCC	GAAAATGTTT	TGGAGCACCT	CCAGAATGCT	AGAGACCTTA	1140
	AGCTTCCCTC	TCCAGCCTAG	GGTGGGGAAG	TGAGGAAGAA	GGGATTCTAG	AGTTAAACTG	1200
20	CTTCCCTGTT	GCCTTCATGG	AGTTGGGAAC	AGGCTGGGAA	GGATGCCCAG	TCAAAGGCTC	1260
	CAAGCGAGGA	CAACAGGAAG	AGGGATCCAC	TGTTACCAAA	AGTCCTGATT	CCCCCATCAC	1320
25	CAACCTACCC	AGITTGTTCG	TGCTGATGTT	GGGGGAGATC	TGGGGGGAGT	TGGTACAGCT	1380
	CTGTTCTTCC	CTTGTCCTAT	ACCGGGAACT	CCCTCCAGG	GTACCCAÇAG	ATCTGCATTG	1440
	CCCTGGTCAT	TTTAGAAGTT	TTTGTTTTAA	AAAACAACTG	GAAAGATGCA	GAGCTACTGA	1500
30	GCCTTTGCCC	TGAATGGGAG	GTAGGGATGI	CATTCTCCAC	CAATAATGGT	CCCTCTTCCC	1560
	TGACGTTGCT	GAAGGAGCCC	AAGGCTCTCC	ATGCCTTTCT	ACCTAAGTGT	TIGTATTITA	1620
35	TTTTAAATTA	TTTATTCTGG	AGCCACAGCC	CCCTTGCTTA	TGAGGTTCTI	ATGGAGAGTG	1680
	AGAAAGGGAA	GGGAAATAGG	GCACCATGGT	CCGGTGGTTI	GTAGTTCCTI	CAAAGTCAGG	1740
	CACTGGGAGG	TAGAGGAGTC	TCAAGCTCCC	CTTAGGAAGA	ACTGGTGCCC	CCTCCAGTCC	1800
40	TAATTTTTC	TGCCTGCCCC	GCCTTGGGG	ATGCCTCACC	CACCCAGGTC	CTGACCTGTG	1860
	CAATAAGGA	TGTTCCCTGC	GAAGTTTTG	TGGATGTAA	TATAGTAAA	A GCTGCTTCTG	1920
45	TCTTTTTCA	AAAAAAAAA	AAAAAAAAC'	r			195

(2) INFORMATION FOR SEQ ID NO: 132:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 990 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132:

TGGAAGATTT AAAATAGGTT TCATATTTCT CTTGAATATG AATATATAAG CTTGAATAAG

60

	CTTGAGTCCT TATTATTATG AAATTTTCCT TATTATTTCT ACCAATGCTT CTTATATTAA	120
	AGCCTGATCT TTTTCATATE AGTATATGTA CATTAGCTGC CTGTGGATTA ACATTTCCAT	180
5	GARATGURUU TUUGCAUUGU TUGATCUTAA ACTUTUTGUG TCTTTATATA AGGTATGCTY	240
	CTTTTAAGGA TGATATTTT AACCACAATA GTTGAAAGAC AATCTYCACC TTTTACTTGT	300
	ATAITTACAI GTAAIGIAAT TIITGATGCA TATTACGTCT TATTATTTAA CCAACCTATT	360
10	TTACTTTATC TAGGGCATTT TTCAGAAAGC CTTATTTTCT TGTATTAATC AAATATTTTT	420
	AYCAPTGTAT TYTOCYCTAT TAGTTAGKAA TACGKTACYC YAAATATATA TYGTGGSTAT	480
15	TTTCAGAATT GCARTATGCC TCCTTAATTT ATTAGAGGCT AACCTAAATT ATTACTTTTA	540
	CCACTTACTT GARRATTCTG GRACTITAGA ACATTTATTG TITTATGCAT TITAATTCTA	600
20	CTTGTATTTT TACTACTCCT AAACATTATT ATTGTTTTAG ACAAGCCAAA ATATATNITG	660
20	TTATTATOTT ATYCTCLATT TCTTTCTGTA TTTTTATGCC ACTATGTATG CTCAATTTCC	720
	TTCTATGTGA TGAACCTAAT TCAGTACTTT TGTTTTTTAA TCTGTGCAGG TAGCCTGGCC	780
25	ATTAAATTTT TATTTTTGGT TIGCTGAAAA AATTGTGTTT ATTTCTATAT GCATACTTAT	840
	GCATATAGAA TNCTAGGTNG ACATATTTT AGTATTTATA AATGTAAAGT CATTWATTKG	900
30	GCTTCTATCA TYTCKGTKGA GAAATCAATT GTCAGCCCAA TAGTTTTTCA TTTTAAATTA	960
50	CNGAATTITT TCATGTCTCT GGTTTTAGGA	990
35	(2) INFORMATION FOR SEQ ID NO: 133:	
	(i) SEQUENCE CHAPACTERISTICS:	
	(A) LENGTH: 1720 base pairs	
40	(3) TYPE: nucleic acid (C) STRANTEDNESS: double	
	(D) TOPOLCGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133:	
45	GTCTGATAAG CGACTGTGGT TATTCCCCTA AAGTTTACTT CAGCACTAAC ACTAGTGCTT	60
		00
	CCGCTGGAGT TTGCAGTTTT CCAGCTTTAT ACAGGATTTT CCTTTGACTG GAAGAGTCAA	
50		
50	COGCTGGAGT TTGCAGTTTT CCAGCTTTAT ACAGGATTTT CCTTTGACTG GAAGAGTCAA	120
	CCGCTGGAGT TTGCAGTTTT CCAGCTTTAT ACAGGATTTT CCTTTGACTG GAAGAGTCAA GGATATAGAG ACTCAACAGT GACATTTATT GTACAACATC AAGGGGAATA GGATACTCAT	120 180
50 55	CCGCTGGAGT TTGCAGTTTT CCAGCTTTAT ACAGGATTTT CCTTTGACTG GAAGAGTCAA GGATATAGAG ACTCAACAGT GACATTTATT GTACAACATC AAGGGGAATA GGATACTCAT CAAACTGGGA TTATTCTTAT CAAAACATGG TCTTCTTTGA ATAAGAAAAA TACATAGTTG	120 180 240
	CCGCTGGAGT TTGCAGTTTT CCAGCTTTAT ACAGGATTTT CCTTTGACTG GAAGAGTCAA GGATATAGAG ACTCAACAGT GACATTTATT GTACAACATC AAGGGGAATA GGATACTCAT CAAACTGGGA TTATTCTTAT CAAAACATGG TCTTCTTTGA ATAAGAAAAA TACATAGTTG GTTATTATGG ACTTAAAACT GTGTTAAATG GATATTCTGA TAAAATATTT GCTGCTCTGT	120 180 240 300

PCT/US98/11422 WO 98/54963

385

	ATTTAATAAT CCTTTGTTAC CTGTGAATGA AGGAACTTTG TAATTCTGAT TTATCGTAAA	540
_	ACATGAGCCT TTCCAGAGTC AGCTTAGACA CTGTTGTCGC AAATAGCCAT GCTTTGCCTT	600
5	ATGCCAAGGA GGCCCAGAGG GAGGGCCTAG TCTTCCTCTG TTGCTGTACA TATATTGAAA	660
	TGCTTTTTTT TTTTATTTTG CATTTGTTAT CTATAATGAG CTTTCTGAGC CCTGATATTA	720
10	TGTGAGACAA ACAGGAGTTA TTGATGTTAT ACACTCCCTT CCATTCAGGA TTTTCTGCTT	780
	GGAGGGAAAT ATGTTGACCT TAGAGAATTG TGAATATTGT TGCAATTCTT GAATATATTA	840
15	CCATGTGAAT AATAGAGACT GTGTTGCTCT CTAGTATAAG CTATATTTAT TTTTGATTCA	900
13	TTTGAATTAC TAGTTATAAC TGGAGAAATT TTGTTACCTC TATCCTGGCT TGCCTGACTG	960
	GCTGTATAAT AGCAGCAGCC TCTTTTAGAG CATCTTAATG AAAACATGGA TGAAAGGAAT	1020
20	TAATGATGAT ATCTGCAGAC TGCGTAGAAA ATGGCTTTTG TTCCCAGCGT TAACATTTTC	1080
	TTCTCAATCA CATTTCAATG TTTGTGGAGA GTGGCAGATT CACACCAGAA ACACTAGGTG	1140
25	TTCATATCCA TAGCATGGAT GCAGAATAAG CAGTTGGGAG AGAAGCTTCT TCCTACCTGG	1200
	TACTCCTCCC ATTCACCTCA GCCCAGCCCC AGACAGGCGT TAGCATTCAG TGTGGGCCCT	1260
	CAGGCAGCCC TGAAGCCTGG CTGGGTCATC AGATGGGGGC AGCCTGTGAC GGGCACCAGC	1320
30	GGCCTGATTC CAGGGAAGAG TTCCTGGAGG GTGTTGGCTG TTTTTGTTAG CTCAGTTTTT	1380
	TTCTGGGCTC CACCATTCCT AACTCCAGGT AGACAAGATA GATGTCACAC ACAACAATTT	1440
35	TAAAGTATTT TGCTTAGTGC ATTTTGTTTA TGATTGCAGT GTTTGTTTCT TATTTAATAG	1500
	GCTTTTTACT TCATTCTATT AAATTTTAGT GTTTAGAAGA GGCGGGTACT GTCACTGTGT	1560
	AAAATATGTA ATATTTTATA TGTTATACCA TGTCATATAT ACTTGCAATA TCAGACCTTG	1620
40	CATTCAATAT ACAATGCAAT TGACTCTTTG CAGACCTGCA TTTTTCAGTG AACAATAAAA	1680
	AGATIGTCTG GCACTCCAAA AAAAAAAAAA AAAAAAAAA	1720
45	·	
	(2) INFORMATION FOR SEQ ID NO: 134:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 705 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134:	
	GGCACGAGGC CATCTGGGCT CATTCAGCAG GAAATAATGG AAAAAGCTGC AATATCCAGG	60
60	TGTTTACTAC AATCTGGAGG CAAGATCTTT CCTCAGTATG TGCTGATGTT TGGGTTGCTT	120

	GTGGAATCAC AGACACTCCT AGAGGAGAAT GCTGTTCAAG GAACAGAACG TACTCTTGGA	180
	TTAAATATAG CACCTTTTAT TAACCAGTTT CAGGTACCTA TACGTGTATT TTTGGACCTA	240
5	TCCTCATTGC CCTGTATACC TTTAAGCAAG CCAGTGGAAC TCTTAAGACT AGATTTAATG	300
	ACTCCGTATT TGAACACCTC TAACAGAGAA GTAAAGGTAT ACGTTTGTNA AATCTGGGAA	360
10	GACTTGACTG CTATTCCATT TTGGGTATCA TATGTACCTT GATGAAGANG ATTAGGTTGG	420
10	GATACTTCAA GTGAAGCCTC CCACTGGAAA CAAGCTGCAG TTGTTTTAGA TAATCCCATC	480
	CAGGTTGAAA TGGGAGAGGA ACTTGTACTC AGCATTCAGC ATCACAAAAG CAATGTCAGC	540
15	ATCACAGTAA AGCAATGAAG AGCAGTTTTC CAATGAAAAC TGTGTAAATA GAGCATCAAC	600
	AAGTACAAAA TTCTTGTCTT AATTAGTGGG GGTATATAAA AATTCCTTGT AATGGTCAAA	660
20	TATTTTTTAA AATTGACATT AATAAAGCAT ATTTTAAAAG TTTCT	705
20		
25	(2) INFORMATION FOR SEQ ID NO: 135: (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 323 base pairs (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135:	
25	AGCACACAC TCCTTTAGTT GCTCCTAAGG TCATGTTCAA CATTCGTGGA GTGCATTTTC	60
35	TGCTCAGGGA GCTTTCCCAG ACCCGGAATG TTTGGTGCTC ACAGACYCTG GCAAGGATCG	120
	GTATTGCTGT TCCTCAGTTT TGCCTGGGGA AATGGAGGST CAGTGACGTT CAGTGACGTG	180
40	CCCAGAGTCA TGCCATTGGC GGGTGGCCCA GKGMTCCAGG TCTCCAGCAC CCCTCGGCCC	240
	CCTCCTCACC AGGTCACATC ATCTCCTGGA TTAGAATCTG CTCACATAGT CTGTCCTGAA	300
45	AGGAAAAAA AAAAAAAAA AAC	323
50	(2) INFORMATION FOR SEQ ID NO: 136:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 582 base pairs	
•	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136:	
60	GGACGGAATG GTGCAACCCT CCTWAMTTTT CTKGKGCTGT TGACAACAGA GGGAGGGAGG	60

WO 98/54963

PCT/US98/11422

387

	GAAAACATTT	TTYGTGGGAG	AATCCTACYT	CTGCAGSGGA	GCCCTTAAGC	GATKGATTTT	120
	GAATCTKGAC	CCTTTACCAA	CTAATTTTGA	AGGAAGATAC	CTTGGAAATA	TTTGGCATTC	180
5	AGTGGGTTAC	TGAAACAGCA	TTAGTGAATT	CATCTAGAGA	ACTCTTTCAT	TTATTCAGGC	240
	AACAACTGTA	CAACTTGGAA	ACCTTGTTAC	AGTCCAGTTG	TGATTTTGGG	AARGTATCAA	300
10	CTCTACACTG	CAAAGCAGAC	AATATTAGGC	AGCAGTGTGT	ACTATTTCTC	CATTATGTTA .	360
10	AAGTTTTCAT	CTTCAGGTAT	CTGAAAGTAC	AGAATGCTGA	GAGTCATGTT	CCTGTCCATC	420
	CTTATGAGGC	TTTGGAGGCT	CAGCTTCCCT	CAGTGTTGAT	TGATGAGCTT	CATGGATTAC	480
15	TCTTGTATAT	TGGACACCTA	TCTGAACTTC	CCAGTGTTAA	TATAGGAGCA	TTTGTAAATC	540
	AAAACCAGAT	TAAGGTTTGA	CTGGTTTCAT	TTGATTTTTA	AG		582

20

25

(2) INFORMATION FOR SEQ ID NO: 137:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1021 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137:

TTCGGCAGAG CCCTTGCGCG CTCTTGAATA CCTGCKTTCT GTAGCGCTAG TTCTCTTCAA GATTIGCTTA GIGTCATTIC ATTICGGTTT CTTTTCTCGC CATGITITIC TGTCGGAATT 120 35 ACGGTTCGTT TTGGTTCTAT GTACTCTCTA AAATGTTATC GTTTTTCATT TGTCTACTAA 180 TTTTCGTGCA TTTGTTACTA CTGAGTTTCT TAATATCTGA CTGGCCTCCG CCCACGGGCT CTGCAGANCA TAAAATACTC AGGCTGATGG TAGTGCAGAG ACTCTCCCTC CTTGATCAGC 40 300 GCAAACGTTG GTCTGAGGCT TGAGGGATGG AGCAACATTT TCTTGGCTGT GTGAAGCGGG 360 CTTGGGATTC CGCAGAGGTG GCGCCAGAGC CCCAGCCTCC ACCTATTGTG AGTTCAGAAG 420 45 ATCGTGGGCC GTGGCCTCTT CCTTTGTATC CAGTACTAGG AGAGTACTCA CTGGACAGCT 480 GTGATTTGGG ACTGCTTTCC AGCCCTTGCT GGCGGCTGCC CGGAGTCTAC TGGCAAAACG 540 GACTCTCTCC TGGAGTCCAG AGCACCTTGG AACCAAGTAC AGCGAAGCCC ACTGAGTTCA 600 50 GTTGGCCGGG GACACAGAAG CAGCAAGARG CACCCGTAGA AKARGTGGGG CAGGCAGARG 660 AACCCGACAG ACTCAGGCTC CRGCAGCTTC CCTGGAGCAG TCCTCTCCAT CCYTGGGACA 720 55 GACAGCAGGA CACCGAGGTC TGTGACAGCG GGTGCCTTTT GGAACGCCGC CATCCTCCTG 780 CCCTCCAGCC GTGGCGCCAC CTCCCGGGTT TCTCAGACTG CCTGGAGTGG ATTCTTCGCG 840 TTGGTTTTGC CGCGTTCTCT GTACTCTGGG CGTGCTGTTC ACGGATCTGT GGAGCTAAGC 900 60

388

	AGCCTTAGAT	AGCAGCAGAA	GGCTTTTTGG	ATTCTCCTCC	TTGAAAAGAT	TCTCAGTTAC	960
	CAAACGTCTC	CACCTAGAAA	АТАААААТАС	ATTAAGATGT	TGANAAAAA	AAAAAAAA	102
,	A						102

10

15

20

25

30

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 138:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1777 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138:

60 CGGAAGATGA TGGCTTCAAC AGATCCATTC ATGAAGTGAT ACTAAAAAAT ATTACTTGGT ATTCAGAACG AGTTTTAACT GAAATCTCCT TGGGGAGTCT CCTGATCCTG GTGGTAATAA 120 GAACCATTCA ATACAACATG ACTAGGACAC GAGACAAGTA CCTTCACACA AATTGTTTGG 180 240 CAGCTTTAGC AAATATGTCG GCACAGTTTC GTTCTCTCCA TCAGTATGCT GCCCAGAGGA TCATCAGTTT ATTTTCTTTG CTGTCTAAAA AACACAACAA AGTTCTGGAA CAAGCCACAC 300 AGTCCTTGAG AGGTTCGCTG AGTTCTAATG ATGTTCCTCT ACCAGATTAT GCACAAGACC 360 TAAATGTCAT TGAAGAAGTG ATTCGAATGA TGTTAGAGAT CATCAACTCC TGCCTGACAA 420 ATTCCCTTCA CCACAACCCA AACTTGGTAT ACGCCCTGCT TTACAAACGC GATCTCTTTG 480 AACAATTTCG AACTCATCCT TCATTTCAGG ATATAATGCA AAATATTGAT CTGGTGATCT 540 CCTTCTTTAG CTCAAGGTTG CTGCAAGCTG GGAGCTGAGC TGTCAGTGGA ACGGGTCCTG 600 GAAATCATTA AGCAAGGCGT CGTTGCGCTG CCCAAAGACA GACTGAAGAA ATTTCCAGAA 660 TTGAAATTCA AATATGTGGA AGAGGAGCAG CCCGAGGAGT TTTTTATCCC CTATGTCTGG 720 TCTCTTGTCT ACAACTCAGC AGTCGGCCTG TACTGGAATC CACAGGACAT CCAGCTGTTC 780 ACCATGGATT CCGACTGAGG GCAGGATGCT CTCCCACCCG GACCCCTCCA GCCAAGCAGC 840 CCTTCAAGTT CTTTTATTTC TGGGTAACAG AAGTAGACAG ACAGGTTACT TGGTGTATCT 900 TCTGTTAAAG AGGATTGCAC GAGTGTGTTT TCCTCACACA CTTTGATTTG GAGAATTGGT 960 GCTAGTTGGC AATAGATAAC TCAGCGTAGA TAGTATTGCA AAAAGGGGAG GAAATACACA 1020 ACAATAATAA ATGTAAAAAC CTGCTATTCA ACATGCAGTT TTATTTCGAR GCCAAAAATC 1080 TAGAGCTITC CCAAGATCCT GTTGCCTTAG GCACATNCAC ACTTCAACAG TGCACACTAT 1140 CCAACAGTGC ACACTATTCA ACAGTGCACA CTATTCAAAA GCGTAGACTA TTTTTTTGCA 1200

	TGTTCAAGAT	ATTIGTTTTG	GTCTTATGTG	TGTGTGAGAG	AGAGAGATTC	CTTTGACATT	1260
	AAGGAGCATC	AATGAGAAAA	GATGATGAGG	CAGGAATTAA	TAAAGAAATG	AAGTCGTGTG	1320
5	TGTTTGGTTG	CCTGTCAGAG	GGCACACAAT	TTCATAAACA	CCATGCCTGG	ACAATTIGAT	1380
	ATTAATATTT	AACACCTCTG	CATCTTTTTC	TTAAAAAAGA	ATATGGGCCA	GATACAGTGG	1440
10	CTCACATTTG	TAATCCCAGC	ACTTTGGGGA	GCCAAGTTAG	CAGAATCCCT	TGAGCACAGG	1500
ıo	AATCTGAAAC	CAGCTTGGGC	AACATAGTGA	GATCCCATCT	NTACAAAAAA	CTTAAAAATT	1560
	AGCCAGGCAT	GATGGCACAT	TCCTGTAGTC	CTAGCTACTC	AGGAGGCTAA	GGTAGGAGGA	1620
15	TTGCCTGAGC	CCAGGAGTTC	AAGGCTGCAG	TGAGCTAAGN	ACGTGCCAGT	ACACTCCAGC	1680
	CTGAGCCACA	AAGTGAGACC	CTGTCTCGCA	ИААААААА	TTAAAAAGTC	GGGGGGGGC	1740
20	CCGGTACCCA	AATCGCCGGA	TATGATCGTA	AACAATC			1777
20							

(2) INFORMATION FOR SEQ ID NO: 139:

25

30

35

40

45

50

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 643 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139:

TTTTTTTTT	TTTTTTTT	TTTTTTTTT	TTTTTTTGGG	AATGAGAAAA	TAACTTTATT	60.
TTCATTGTGG	GGAGCGGGCC	GATGTCCAGC	CTCAGAACTT	CTGGAACTGC	TTCTTGGTGC	120
CGGCAGCCTT	GGTGACCTTG	AGCACGTTGA	AGCGCACTGT	CTTGCTCAGA	GGCCGGCACT	180
CGCCCACTGT	GACGATGTCA	CCGATCTGGA	CGTCCCTGAA	GCAGGGGGAC	AGGTGTACAG	240
ACATGTTCTT	GTGGCGCTTC	TCGAAGCGGT	TGTACTTGCG	GATGTAGTGC	AGATAGTCTC	300
GGCGGATGAC	AATGGTCCTC	TGCATCTTCA	TCTTGGGTCA	CCACGCCAGA	GAGGATCCGC	360
CCTCGAATGG	ACACATTACC	AGTGAAGGGG	CATTTCTTGT	CAATGTAGGT	GCCCTCAAT	420
AGCCTCCTTG	GGGTGTCTTT	GAAGCCCAGA	CCGATGTTCT	TGTTAGTAAC	CCGCGGGAGC	480
TTCTCCTTGC	CAGTTTCTCC	CAGCAGGACC	CTCTTCTTGT	TTTGAAAGAT	GGTCGGCTGC	540
TTTTGGTAGG	CACGCTCAGT	CTGAATGTCC	GCCATCTTCT	CGTGCCGMAY	TCCTGCAGCC	600
CGGGGGATCC	ACTAGTTCTA	GAGCGGCCGC	ACCGCGGTGG	AGC		643

⁽²⁾ INFORMATION FOR SEQ ID NO: 140:

131	SECULENCE.	CHARACTERISTICS:
11)	SECUENCE	CUMMACTENTALITIES.

(A) LENGTH: 1220 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140:

10	GGCACGAGGA TGATAGACCT ACTGGAGGAA TACATGGTTT ACAGGAAGCA TACCTACATR	60
10	AGGCTTGATG GCTCATCCAA GATCTCGGAG AGGCGAGACA TGGTTGCTGA TTTTCAGAAC	120
	AGGAATGACA TCTTTGTGTT CCTGTTAAGC ACACGAGCTG GAGGACTGGG TATCAATCTC	180
15	ACTGCTGMAG ACACAGTGCA TTTTCTATGA TAGCGACTGG AACCCCACTG TGGACCAGCA	240
	GGCCATGGAC AGGGCCCACC GCTTAGGGCA GACAAAGCAG GTTACTGTGT ACCGGCTCAT	300
20	CTGTAAAGGC ACCATTGAAG AACGCATTCT GCAAAGAGCC AAGGAGAAGA GTGAGATTCA	360
20	GCGGATGGTG ATTTCAGGTG GGAACTTCAA ACCAGATACC TTGAAACCCA AAGAGGTGGT	420
	TAGTCTTCTT CTAGACGACG AAGAGTTGGA GAAGAAACGT ATGTACTCTA AACCTCTATA	480
25	CACTCCCCTC ACGTATCTGA GAATGGAAGA GGTACTTGGS TGTGTGCCAA GGGTTAGGCA	540
	AAGCCAGAGG CTGTATTTAG GGAAAGTATT TTTGTGCTCA TATTTTATAT AAAAACCCAA	600
20	ACAAGAATGT GTTTGTAGGC CAGGCGTGGT GGCTCGCGCC TCTAGTCTCA GCATTTCGGG	660
30	ARGCCAAAGT GGGCAGATCA CCTGARGTCA GGARTTTGAG TTTGARAÇCA GCCTGGCCMA	720
	CGTTGTGAAA CCCCACCTCT ACTARGARTA CSGAAAATTG GTTGGGCATG GTGGCGGGCA	780
35	CCTGTAATTC CAGCACTTTG GGAGGCTGGG GCAGAANAAT TGCTTGAGCC CAGGAGGTGG	840
	AGATTGCGGT GAGCCGAGAT YGTQCCATTG CAMTCCAGCC SGGGCAATAA GAGTGAAAYT	900
40	CCATCTTTTA AAAACAAACA AAAACAAAAA ACACAAGACG GCTCACACCT GTAATCCCAG	960
40	CACTITGGGA RGCCGARGCA GGTGGATCAC GARGTCAGGA GTTCCAAGAC TAGCCTGGCC	1020
	AACCTGGTGA AGCCCCGTCT CTACTAAAAA TACMAATATT AGTCGGGCGT GGTGGTGGGC	1080
45	ACGTGTAATC CCAGCTACTC GGGAGGCTGA GGCAGGAGAA TCCCTTGAAG CTAGGAGGCA	1140
	GAGGTTGCAG TGAGCCAGGA TCGTGCCATT GCACTCCAGC CTGGACAACA AGAGCAAGAT	1200
50	TCCATCTCAA AAAAAAAAA	1220

(2) INFORMATION FOR SEQ ID NO: 141:

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 721 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

PCT/US98/11422

(xi) SEQUENCE DESCRIPTION: SEQ	ID	NO):	141:
--------------------------------	----	----	----	------

5	AATTCGGCAC	GAGCCAGGTT	AGCCGGAAGG	GCAGCTCTCC	AGGCCCTGCC	CACCCCACAG	60
3	GGGGCTCCTT	ATGCACAGCG	GGGCGTCTCC	TTGTGGCCAT	AGAAACGGAA	CTGGCTCTTT	120
	TCAACAGTGC	TGCAAGAGGA	TGGTTATTTA	ACGCTGGCCC	CCAAGGAGGA	AAGGCACAGA	. 180
10	CYTTCCTCCC	TCCTGGAACA	TCCAAGGGCA	CTGGATCCTC	TGTGTCCCTC	TGAGATGGGG	240
	TGCCACTCCA	GCAAGAGCAC	CACGGTGGCA	GCTGAGTCCC	AGAAGCTTGA	AGAAGAGYGC	300
15	GAGGGAAGAG	AGCCAGGTCT	GGAGACCGGC	ACCCAGGCAG	CAGACTGCAA	GGATGCCCCG	360
13	CTGAAGGATG	GAACCCCTGA	GCCAAAGAGC	TGAAATGCCT	CTCTCCAGAG	TCGGACCCTC	420
	ACCTCYTTCC	TGGAACTGCC	TTTGGCCCCA	GAACCATGAG	ACAATCCCCA	CCCTGAGAAG	480
20	CTCCGATCAC	TGGGAGGAGA	GAGAAAGCCT	CCAGCTTTGG	GATTCAGGCT	TCAGAAGTTT	540
	TTAGCAGCCT	TTGCTCATTG	GAGAGGTGGG	GAAAGGATAA	AGTTCTTATA	AGGAAATCCC	600
25	TAATTTCCCC	CAGCTCCTCC	CCNCCNGAAG	AAGGAACNAA	AGAAAGITCC	TTCCACACGT	660
23	TTTGTTGGAA	ACTITICCCT	TGCCAACTTT	CCTTGGATTG	CCAGAACAAA	GCCCTCCAGA	720
	A						721

30

(2) INFORMATION FOR SEQ ID NO: 142:

35

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1468 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142:

ATGAATTAAT	GTTTATAAAT	GACTGTACTG	AATTTAAAAC	CGTACAGTTT	CATTTGCATT	60
TTGACATTAC	TTTATTATAC	ATTTTGCATT	TAAAAGGCTG	CACCAGTTGG	CTTTTCTTCT	120
GTTTTATTCT	CAAAATATAG	AGATTCTGTG	ATTTATTTGC	CCTGTTTATG	GATTAAAAAG	180
AAAATTCTAA	TATAAAGCAT	TTCAATAGGA	TGCATAGGTA	TATTACGTTT	TTTAAATGCT	240
TTAGATCTGT	GATTCTTGAC	TTACTATTTA	TTTTATCCCC	TTTAAGTCAG	GGATGCTTTA	300
TTCTATTTTA	AAGCACTTAT	GAGTTACATG	TTGTAATCAA	GTTTGCACAA	TATATTTATC	360
TATATGAGGA	ACCCATAAAT	GAATAGCTAA	TTTTTAAAAT	GCCATTAAAA	TGCATGAAAT	420
КСТТАТТААА	ACCTTACTAT	ACTATTTCTT	CAAGGCAAGT	AAATTGACCA	TGRGRAAAGR	480
ACACAGTTAT	TAAACACTGT	TGACAGGAAA	ATTCTCCTTG	ATAACATAGG	ACAATTAATG	540
	TTGACATTAC GTTTTATTCT AAAATTCTAA TTAGATCTGT TTCTATTTTA TATATGAGGA KCTTATTAAA	TTGACATTAC TTTATTATAC GTTTTATTCT CAAAATATAG AAAATTCTAA TATAAAGCAT TTAGATCTGT GATTCTTGAC TTCTATTTTA AAGCACTTAT TATATGAGGA ACCCATAAAT KCTTATTAAA ACCTTACTAT	TTGACATTAC TTTATTATAC ATTTTGCATT GTTTTATTCT CAAAATATAG AGATTCTGTG AAAATTCTAA TATAAAGCAT TTCAATAGGA TTAGATCTGT GATTCTTGAC TTACTATTTA TTCTATTTTA AAGCACTTAT GAGTTACATG TATATGAGGA ACCCATAAAT GAATAGCTAA KCTTATTAAA ACCTTACTAT ACTATTTCTT	TTGACATTAC TTTATTATAC ATTTTGCATT TAAAAGGCTG GTTTTATTCT CAAAATATAG AGATTCTGTG ATTTATTTGC AAAATTCTAA TATAAAGCAT TTCAATAGGA TGCATAGGTA TTAGATCTGT GATTCTTGAC TTACTATTTA TTTTATCCCC TTCTATTTTA AAGCACTTAT GAGTTACATG TTGTAATCAA TATATGAGGA ACCCATAAAT GAATAGCTAA TTTTTAAAAT KCTTATTAAA ACCTTACTAT ACTATTTCTT CAAGGCAAGT	TTGACATTAC TTTATTATAC ATTTGCATT TAAAAGGCTG CACCAGTTGG GTTTTATTCT CAAAATATAG AGATTCTGTG ATTTATTTGC CCTGTTTATG AAAATTCTAA TATAAAGCAT TTCAATAGGA TGCATAGGTA TATTACGTTT TTAGATCTGT GATTCTTGAC TTACTATTTA TTTTATCCCC TTTAAGTCAG TTCTATTTTA AAGCACTTAT GAGTTACATG TTGTAATCAA GTTTGCACAA TATATGAGGA ACCCATAAAT GAATAGCTAA TTTTTAAAAT GCCATTAAAA KCTTATTAAA ACCTTACTAT ACTATTTCTT CAAGGCAAGT AAATTGACCA	TTGACATTAC TTTATTATAC ATTTTGCATT TAAAAGGCTG CACCAGTTG CTTTTCTTCT GTTTTATTCT CAAAATATAG AGATTCTGTG ATTTATTTGC CCTGTTTATG GATTAAAAAG AAAATTCTAA TATAAAAGCAT TTCAATAGGA TGCATAGGTA TATTACGTTT TTTAAATGCT TTAGATCTGT GATTCTTGAC TTACTATTTA TTTTATCCCC TTTAAGTCAG GGATGCTTTA TTCTATTTTA AAGCACTTAT GAGTTACATG TTGTAATCAA GTTTGCACAA TATATTTATC TATATGAGGA ACCCATAAAT GAATAGCTAA TTTTTAAAAT GCCATTAAAA TGCATGAAAT KCTTATTAAA ACCTTACTAT ACTATTTCTT CAAGGCAAGT AAATTGACCA TGRGRAAAGR ACACAGTTAT TAAACACTGT TGACAGGAAA ATTCTCCTTG ATAACATAGG ACAATTAATG

	GAAAAAAAA TTCTCATTAT TTGCAAAGAA TGAACAAGTT AATGAACAAA CAAACTAGAT	600
	TIGGTATGTT TTCAGCTTTT GTATCATGTT TAATTGTTTA ATTTGGTTGA AAAACTGCAG	660
5	TIGAGAAATC AGATAGCAAT ATAGACATTC ACAGCAGCTC TGTGGATACC ATGTAATTGT	720
	CAGGTAATTT CAGAATGTTG AAAATTATTC AGTGCAGCCC TCATAGTATC ATACTTGAAG	780
0	AAATTGATTA CAGTTCCACT AAATTGTTGA AGATAAATTA TTTTTAAAGG TTATGAAAAC	840
	TAAGTTATAT TAATTCATAT GTTTGATTTT TAAATCCCAC CTCCTCAAGC TATCCAATTT	900
	NCTGACTTTG AAAATAACCA TGAGAGATGC CACATTTCTC TCTGGGAAAC TACCACTCAA	960
15	AGAATAATTG TTAAAAATTA AGCTTTTAGG TATTAGAAGC TGTTATAAAG TATAAAATTA	1020
	AGATATAAGC AGATCACATG TAAATCATTC CTAAAGCACA AGAAAAGAAT GTGCCTTGAT	1080
20	GTACATATAT TACTAAGTTG CCTCTCCCAG TTTACTTTAA AAATGGCTTT AAGGATAAAG	1140
20	AATAAATGTG ATAGCTGTGC ATGCATTATA TATTTGCATT TGCAAATTTC CCATTGTTTT	1200
	AACAGCTGTG TGGCTGACTT TCAATTTTAA GACGTGAATT GACATACAGC CCATAACTTT	1260
25	ATAATGGCTG CTCATTTATC TTATCTTTCA GTTAGTGGAA AAACATTTCA ACCTGACTAA	1320
	AATTTGGAAT TGTGTCTTTT ATGTTCCATC CTCTGTTGTT ACTAGATTTA GTTTAAAAAT	1380
30	TGTGTATGAC CATTAATGTA TGTCATAAAC ATGTAAATAA AAGATGTTGA ATCTTGTTGA	1440
50	AAAGCAWRAA AAAAAAAA AAACTCGA	1468
35	(2) INFORMATION FOR SEQ ID NO: 143:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 300 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143:	
	TGAATTTTTT GCCAAACTTA GTAACTCTGT TAAATATTTG GAGGATTTAA AGAACATCCC	60
	AGTTTGAATT CATTTCAAAC TTTTTAAATT TTTTTGTACT ATGTTTGGTT TTATTTTCCT	120
50	TCTGTTAATC TTTTGTATTC RCTTATGCTC TCGTACATTG AGTACTTTTA TTCCAAAACT	18

AGTGGGTTTT CTCTACTGGA AATTTTCAAT AAACCTGTCA TTATTGCTTA CTTTGATTAA

AAAAAAAAA AAAAAAAAA AAACCCCNAG GGGGGGCCG GGTNCCCAAT CCCCCCCAAA

(2) INFORMATION FOR SEQ ID NO: 144:

393

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2243 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144:

10	TGCCTCCCTT	CCTGCAGATT	GTGGACAGTA	GTTCCTCAGC	CTGCACCCTG	GATTCCTTCT	. 60
10	TCCCCTTCCT	AGCTCCATGG	GACTCGCCCC	AAGACTGTGG	CTTCAAGGAC	CACCAGCCCC	120
	TTACTCTTCA	AGCCCTGACT	GTGGAGTTGG	TAGATGCCTC	TGATCCTCAG	TATTCTCTCT	180
15	GGCAATGTTC	CACGGCTTCT	CCTTCCTGGG	AGCTGGCTCC	ATAACTTGAT	TTTCCCCAAA	240
	CGTGTTGCAA	TCCCTGCTGC	CCCTTAGCCA	CCCAGGGTCT	TGTGTGGGTA	TGAGTGTAGA	300
20	GGATGGGGGT	ATGCCAGGCC	TEGECCETCC	CAGGCAGGCC	CGCTGGACCC	TGATGCTACT	360
	CCTATCCACT	GCCATGTACG	GIGCCCATGC	CCCATTGCTG	GCACTGTGCC	ATGTGGACGG	420
	CCGAGTGCCC	TTYCGGCCCT	CCTCAGCCGT	GCTGCTGACT	GAGCTGACCA	AGCTACTGTT	480
25	ATGCGCCTTC	TCCCTTCTGG	TAGGCTGGCA	AGCATGGCCC	CAGGGGCCCC	CACCCTGGCG	540
	CCAGGCTGCT	CCCTTCGCAC	TATCAGCCCT	GCTCTATGGC	GCTAACAACA	ACCTGGTGAT	600
30	CTATCTTCAG	CGTTACATGG	ACCCCAGCAC	CTACCAGGTG	CTGAGTAATC	TCAAGATTGG	660
	AAGCACAGCT	GTGCTCTACT	GCCTCTGCCT	CCGGCACCGC	CTCTCTGTGC	GTCAGGGGTT	720
	AGCGCTGCTG	CTGCTGATGG	CTGCGGGAGC	CTGCTATGCA	GCAGGGGGCC	TTCAAGTTCC	780
35	CGGGAACACC	CTTCCCAGTC	CCCCTCCAGC	AGCTGCTGCC	AGCCCCATGC	CCCTGCATAT	840
	CACTCCGCTA	GGCCTGCTGC	TCCTCATTCT	GTACTGCCTC	ATCTCAGGCT	TGTCGTCAGT	900
40	GTACACAGAG	CTGCTCATGA	AGCGACAGNG	GCTGCCCCTG	GCACTTCAGA	ACCTCTTCCT	960
.0	CTACACTTTT	GGTGTGCTTC	TGAATCTAGG	TCTGCATGCT	GCCGCCGCT	CTGGCCCAGG	1020
	SCTCCTGGAA	GGTTTCTCAG	GATGGGCAGC	: ACTCGTGGTG	CTGAGCCAGG	CACTAAATGG	1080
45	ACTGCTCATG	TCTGCTGTCA	TGAAGCATGG	CAGCAGCATC	ACACGCCTCT	TTGTGGTGTC	1140
	CTGCTCGCTG	GTGGTCAACG	CCGTGCTCTC	AGCAGTCCTG	CTACGGCTGC	AGCTCACAGC	1200
50	CGCCTTCTTC	CTGGCCACAT	TGCTCATTGG	CCTGGCCATG	CGCCTGTACT	ATGGCAGCCG	1260
50	CTAGTCCCTG	ACAACTTCCA	CCCTGATTCC	GGACCCTGTA	GATTGGGCGC	CACCACCAGA	1320
	TCCCCCTCCC	AGGCCTTCCT	CCCTCTCCC	TCAGCAGCCC	TGTAACAAGT	GCCTTGTGAG	1380
55	AAAAGCTGGA	GAAGTGAGGG	CAGCCAGGT	ATTCTCTGGA	GGTTGGTGGA	TGAAGGGGTA	1440
	CCCCTAGGAG	ATGTGAAGTG	TGGGTTTGGT	TAAGGAAATG	CTTACCATCC	CCCACCCCCA	1500
60	ACCAAGTTCT	TCCAGACTAA	AGAATTAAGO	TAACATCAAT	ACCTAGGCCT	GAGAAATAAC	1560

WO 98/54963

	CCCATCCTTG	TTGGGCAGCT	CCCTGCTTTG	TCCTGCATGA	ACAGAGTTGA	TGAAAGTGGG	1620
	GTGTGGGCAA	CAAGTGGCTT	TCCTTGCCTA	CTTTAGTCAC	CCAGCAGAGC	CACTGGAGCT	1680
5	GGCTAGTCCA	GCCCAGCCAT	GGTGCATGAC	TCTTCCATAA	GGGATCCTCA	CCCTTCCACT	1740
	TTCATGCAAG	AAGGCCCAGT	TGCCACAGAT	TATACAACCA	TTACCCAAAC	CACTCTGACA	1800
10	GTCTCCTCCA	GTTCCAGCAA	TGCCTAGAGA	CATGCTCCCT	GCCCTCTCCA	CAGTGCTGCT .	1860
10	CCCCACACCT	AGCCTTTGTT	CTGGAAACCC	CAGAGAGGGC	TGGGCTTGAC	TCATCTCAGG	1920
	GAATGTAGCC	CCTGGGCCCT	GGCTTAAGCC	GACACTCCTG	ACCTCTCTGT	TCACCCTGAG	1980
15	GGCTGTCTTG	AAGCCCGCTA	CCCACTCTGA	GGCTCCTAGG	AGGTACCATG	CTTCCCACTC	2040
	TGGGGCCTGC	CCCTGCCTAG	CAGTCTCCCA	GCTCCCAACA	GCCTGGGGAA	GCTCTGCACA	2100
20	GAGTGACCTG	AGACCAGGTA	CAGGAAACCT	GTAGCTCAAT	CAGTGTCTCT	WTAACTGCAT	2160
20	AAGCAATAAG	ATCTTAATAA	AGTCTTCTAG	GCTGTAGGGT	GGTTCCTACA	ACCACAGCCA	2220
	ААААААААА	AAAAAAACTC	GAG				2243

25

(2) INFORMATION FOR SEQ ID NO: 145:

30

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1082 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 145:

	GCCAAGCTCT	AATACGACTC	ACTATAGGGA	AAGCTGGTAC	GCCTGCAGKT	ACCGGTTCCG	60
40	GGAATTCCCG	GGTCGACCCA	CGCGTCCGCT	TCCGTGTGTC	AAAATCCTCA	CCTCCTTCAT	120
	AACCATCTCC	CACAATTAAT	TCTTGACTAT	ATAAATTTAT	GGTTTGATAA	TATTATCAAT	180
45	TTGTAATCAA	TTGAGATTTC	TTTAGTGCTT	GCTTTTCTGT	GACTCAACTG	CCCAGACACC	240
43	TCATTGTACT	TGAAAACTGG	AACANCTTGG	GAATGCCATG	GGGTTTGATA	ATCTGCCAGG	300
	GACATGAAGA	GGCTCAGCTT	CCTGGGACCA	TGACTTTGGC	TCAGCTGATC	CTGNACATGG	360
50	GAGAACAACC	ACATTTTCT	TTGTGTGTGC	TTCTAGCAGC	TGTTCGGGAG	GACCKTGACC	420
	CAAYAGTGTT	CCCATGCTGT	TTCTTGTGAA	ATGCTCTCGG	CTATGTAGCA	GCTTTTGATT	480
55	CCCTGCATAC	CCTAGGCTGC	TGCCCCTATC	CTGTCCCTTG	TTTATAACAT	TGAGAGGTTT	540
23	TCTAGGGCAC	ATACTGAGTG	AGAGCAGTGT	TGAGAAGTCG	GGGAAAATGG	TGACTACTTT	600
	TAGAGCAAGG	CTGGGCATCA	GCACCTGTCC	AGCTCTACTT	GTGTGATGTT	TCAGGAACTC	660
60	AGCCCCTTTT	TCTGCCTAGG	ATAAGGAGCT	GAAAGATTAA	CTTGGATCTY	CTAATGGTCC	720

60

	AAATCTTTTG GTCACAATAA AGAGTCTCCA AATTAGAGAC TGCATGTTAG TTCTGGATGG	780
_	ATTTGGTGGC CTGACATGAT ACCCTGCCAG CTGTGAGGGG ACCCCGTTTT TAAGATGCAT	840
5	GGCCAAGCTC TCTGCAAATG GAAATGCTTA CACTGGGTGT TGGGGATGTT TGCTACCTCC	900
	TGCTATTTTT GTGGTTTTGG TTCTCCCACT ATGGTAGGAC CCCTGGCCAG CATTGTGGCT	960
10	TGTCATGTCA GCCCCATTGA CTACCTTCTC ATGCTCTGAG GTACTACTGC CTCTGCAGCA	1020
	CAAATTTCTA TTTCTGTCAA TAAAAGGAGA TGAAAATAAA AAANAAAAA AAAAAACTCG	1080
	NG	1082
15		
20	(2) INFORMATION FOR SEQ ID NO: 146: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4313 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 146:	
	CAAGCTGGTT TGAAACTAGG GGTCGGGCTC GGCCGTCGTC GTTGTTTGTC GCCGCATCCC	50
30	CGCTTCCGGG TTAGGCCGTT CCTGCCCGCC CCCTCCTCTC CTCCCTTCGG ACCCATAGAT	120
	CTCAGGCTCG GCTCCCCGCC CGCCGCAGCC CACTGTTGAC CCGGCCCGTA CTGCGGCCCC	180
35	GTGGCCACCA TGTCCCTGCA CGGCAAACGG AAGGAGATCT ACAAGTATGA AGCGCCCTGG	240
	ACAGTCTACG CGATGAACTG GAGTGTGCGG CCCGATAAGC GCTTTCGCTT GGCGCTGGGC	300
	AGCTTCGTGG AGGAGTACAA CAACAAGGTT CAGCTTGTTG GTTTAGATGA GGAGAGTTCA	350
40	GAGTTTATTT GCAGAAACAC CTTTGACCAC CCATACCCCA CCACAAAGCT CATGTGGATC	420
	CCTGACACAA AAGGCGTCTA TCCAGACCTA CTGGCAACAA GCGGTGACTA TCTCCGTGTG	480
45	TGGAGGGTTG GTGAAACAGA GACCAGGCTG GAGTGTTTGC TAAACAATAA TAAGAACTCT	540
	GATTICTGTG CTCCCCTGAC CTCCTTTGAC TGGAATGAGG TGGATCCTTA TCTTTTAGGT	600
	ACCTCAAGCA TTGATACGAC ATGCACCATC TGGGGGCTGG AGACAGGGCA GGTGTTAGGG	660
50	CGAGTGAATC TCGTGTCTGG CCACGTGAAG ACCCAGCTGA TCGCCCATGA CAAAGAGGTC	720
	TATGATATTG CATTTAGCCG GGCCGGGGGT GGCAGGGACA TGTTTGCCTC TGTGGGTGCT	780
55	GATGGCTCGG TGCGGATGTT TGACCTCCGC CATCTAGAAC ACAGCACCAT CATTTACGAA	840
	GACCCACAGC ATCACCCACT GCTTCGCCTC TGCTGGAACA AGCAGGACCC TAACTACCTG	900
	CCCACCATGG CCATGGATGG AATGGAGGTG GTGATTCTAG ATGTCCGGGT TCCTGCACAC	950

	CTGTSGCCAG GTTAAACAAC CATCGAGCAT GTGTCAATGG CATTGCTTGG GCCCCACATT	1020
	CATCCTGCCA CATCTGCACT GCAGCGGATG ACCACCAGGC TCTCATCTGG GACATCCAGC	1080
5	AAATGCCCCG AGCCATTGAG GACCCTATCC TGGCCTACAC AGCTGNAAGG WGAGATCAAC	1140
	AATGTGCAGT GGGCATCAAC TCAGCCCGAA YTGTCGCCAT CTGCTACAAC AACTGCCTGG	1200
	AGATACTCAG AGTGTAGTGT TGGTGGCGCT GTGCCCACGA GGCAGGGGCT TTTGTATTTC	1260
10	CTGCCTCTGC CCCACCCCCA AAGTAAGAAG AAACATGTTT CCAGTGGCCA GTATGTCTTT	1320
	CATTGCTTTG CACCCACTGT TACCAGAAGC TGCTCTAGGA GTTCCTGGCC AGTCACCCCA	1380
15	TCGCCCTCTG TGGCAGACTC AGTGCTGTGT GGCGCCTCCT CAGCCCAGGG CTGAGTTTTA	1440
	AGATTITCTC TCCTTTCCTC TTCTCCTTTG GTTCCTCAAT TAAAAAAATGT GTGTATATTT	1500
20	GTTTGTCAGG CGTTGTGTTG AGGAGCAGTT CACGCACTGG CTGTGTCTAT TCCTCTGCCC	1560
20	AGGTGTCTCT GTTTGCTGCC CAAKGYWKKT TTTCATGTCT CGTCCATGTC CATGTTCGTG	1620
	TTAGCACTWA CGTGGGAACA AATACCAATT TGTCTTTTCT CCTAGTATCA GTGTGTTTAA	1680
25	CAAATTTTAA CTTTGTATAT TIGTTATCTA TCAGGCTAAT TTTTTTATGA AAAGAATTTT	1740
	ACTCTCCTGC TTCATTTCTT TGTCTTATAG TCCTCCCTCT TTGCACCTTC TTCTCTCCC	1800
30	TCAGTGCCTG GAGCTGGTAC TGGGCCCCTG GCCCCATGAG CAGTTTGCCT TCTTGAGTCA	1860
30	CTGCCTGTGT AGTACATACC TGACCGGGAG TCCAAACCAC CTTGGTGCTC TGAAGTCCAC	1920
	TGACTCATCA CACCTTTCTT AGCCTGGCTC CTCTCAAGGG CATTCTGGGC TTGTAAACAG	1980
35	ACATAGGAAG CCTCTGTTTA CCCTGAAGCA CCACTGTCCA GCCCATTGGT TCCCACTGGC	2040
	AGCATGGTAG AGCTGAGAGA AACAGGCTCT CAGGGTACCT GACTTGAGGG GAATCGTTTC	2100
40	ATGAAGCTGA ACTTCAAGCA TATTTCCAGT ACATTCTTTC AGAGTCTGTT TITCCATCCA	2160
40	AATATAAGCC CCAGGCCATT CCACTTAGTG TCTTTTCAAT GATAGGCAAG AATGATATCT	2220
	GAGTTGAACT TCGGTGCTTC TGTTGTTTGA GTTTACTGTG CCTGGTGGTA TATTGGGCAT	2280
45	TCTTTGGATT GAGTGTTCTG AGGTGAGAGA GTCTTCCCGA GGCATCCTGT CTGTGCTTCC	2340
	AACCCTGAAC AAGACCTTAC ATGAGAGATG GACTGATGGA CTGCGGCAAT CCTGGGCTGT	2400
50	CAAGTGGATA GATAGTTAAA AAGCATTATA CTGTGGGTAA TGAAAAGGGA GGAAAAAAAA	2460
50	AGAAGGAAAA GGAATTATAG ACCCCCAGGG TCAGCCAGTT AAGAGCTCTA CCCACACCTG	2520
-	TCAACCCCTC TCTCCCCCAG TITAGGITCT GAGCAGTATT GGACTTGTAG CCTGCAGTTG	2580
55	TCTTTTGACT TGCAGGCCGC AGTGTCTTTC TGTTATGTGA ATGAGTTCCA TGGAGGGGCA	2640
	TATGTGTGAT TCCACCGTTA GATGAGCCCT TGGGGCAGGC AGTTTGGGAT GTGCTCTTGG	2700
د ۸	GGGAAAGTTG GCTGTTTCCT TGCGCTCTGC TCCTACCCGA AGTTTTTAAG TCCCTCTGAA	2760
60		

	TTGCTCATCT GAGATTAGTA GAGTAGCAGG CCTGAAGGAT GATGGTTTTG TCCTCTTTGG	2820
	TTCTCACCTG CTTGAGAAGT AAAACAGTAA CTTTGTTCTT CTGGGCCCTT AAGCTTTTTT	2880
5	GGTTAAGTCT TCCTTTTCAG AAGTAGATGT CATTATATGC CAAAAGTCTA GCTCTTTGCT	2940
	TTACCATACA GGGACCTGTC CCAAAGAAAA AGGCTCTTTT TTTAGCCAGC ATATTTCCCC	3000
10	TTCTACCCTT TTACTTTGTT GTTCTGATTT TAGGACTCTG GCTGGCCATG TGCTTGTGGT	3060
10	TGCCTCTCCT GCATTTGCCA CTGGATTTGC ACTGCATCGT TTGGAGATAC AAAGCGAGCA	3120
	GTTCTTGGTC AGAACCCTCC TCTGCTTTTC ATTGTGTTTG ATAATGGTTA CTGGGTCCTT	3180
15	CTCTCAAGGG TAGCAAGGCC AAGCTGATGG CTGCTTGTTT AGGAGGCCAT CAGTTCCTTC	3240
	CTGTGGAGAA GGGTCTGAAA TGGAAGTCAG TGGTAGAAGG GGCTGGTCTG CTGGGCAGGG	3300
20	CTTACATCCA CTGAGTTCTA AGATTCCTTT CCTGATCTGC ACCTACGCCT GGTCTGTATG	3360
20	GTGGAATTTG TCAGCTGGAA CTCAGAAACA ACAACTTGAA AAAAAAATAA TAATTAGAAC	3420
	ATATTTGCAT AAGATAGCTA TITACTCTGG AAACCAACAA CTTTTGAGAT TTCCCTTGCC	3480
25	CTGTGGACGC CCAGCTCCTG TCATCCTTCC TTAGGTCCTG CAGTACAGTC TTCCCCTGAA	3540
	TGCCACCGGG GACCCAGGGG GACTCCACCC CCCTAAGCAA GCACACACAT ACTCACAGTT	3600
30	GATGAGTTGC TGGTCTTTGA GTCCCAGCTC TCTTACCCTC CCTTTACTCC ACCAGCCCGA	3660
30	CGACCCATGA CTGAGGAGGG GATTTCTACA GTCTCAGGAT TTAGAAAGTC TGTAAGCCAT	3720
	CCATGCTCCA GAAAGCACCG ATCTGTTGTA GTTGCAAAAA CAACTCTGTA ATTTGTTGAG	3780
35	GTTCTCAAAC TGACAGCCAG CGAGACTGGG TGGGAGGCCC TGGATCTGTT CTCCCTGACT	3840
	GCGGGAGGAG CAGCCACTAG GACTTTAGCA GGAAGCCCAC ATGGAGGCTC CGCCAGGCTG	3900
40	TGGCCCAGCT GGTGATGGCC CTTTTGCTCC TGGCAGCCTG AGGCACAGCT GCCTGTATTG	3960
70	TCCTCATCTG TTCTGACTGA AGGATGGAGG TGCTGAATAA ATTAGGCCTC AGGCNTCTAC	4020
	CACCAGAGAG CTGGAGAATG GGTCCACGTC ATTCAAGGAC CTGAATTTTT TATGCTCAGG	4080
45	AGCATTGGAA TCCTCTTCTT CCAGGGAGGA ATTAGCCTGC AAGGTTAGGA CTTGAAGAGG	4140
	GAAGGTATTT AATAACTGGG CGAGGATGGG TGTGGTGGCT CACACCTGTA ATCCCAGCAT	4200
50	TTTGGGAGGC TGAGGTGGCC AGATCCCAAG GTCAGAAGAT CGAGACCATC CTGGCTAACA	4260
50	TGGTGAAACC CCATCTCTAC TAAAAATACA AAATTAAATT	4313

60

(2) INFORMATION FOR SEQ ID NO: 147:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1183 base pairs

(B) TYPE: nucleic acid

398

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 147:

GGCAGAGCCT CAAGCTGACT TGGATTATGT GGTCCCTCAA ATCTACCGAC ACATGCAGGA 60

GGAGTTCCGG GGCCGGTTAG AGAGGACCAA ATCTCAGGGT CCCCTGACTG TGGCTGCTTA 120

TCAKWYGGGG AGTGTCTACT CAGCTGCTAT GGTCACAGGC CTCACCCTGT TGGCCTTCCC 180

ACTTCTGCTG TTGCATGCGG AGCGCATCAG CCTTGTGTTC CTGCTTCTGT TTCTGCAGAG 240

CTTCCTTCTC CTACATCTGC TTGCTGCTGG GATACCCGTC ACCACCCCTG GTCCTTTTAC 300

TGTGCCATGG CAGGCAGTCT CGGCTTGGGC CCTCATGGCC ACACAGACCT TCTACTCCAC 360

AGGCCACCAG CCTGTCTTTC CAGCCATCCA TTGGCATGCA GCCTTCGTGG GATTCCCAGA 420

20 GGGTCATGGC TCCTGTACTT GGCTGCCTGC TTTGCTAGTG GGAGCCAACA CCTTTGCCTC 480

CCACCTCCTC TTTGCAGTAG GTTGCCCACT GCTCCTGCTC TGGCCTTTCC TGTGTGAGAG 540

25
CGAGGAGGAA GAGGAGCCAC TGATGGAGAT GCGGCTCCGG GATGCGCCTC AGCACTTCTA 660

TCAAGGGCTG CGGAAGAGAC AGCAGCCCCC AGGGAATGAA GCTGATGCCA GAGTCAGACC

TGCAGCACTG CTGCAGCTGG GCCTCAAGTA CCTCTTTATC CTTGGTATTC AGATTCTGGC 720

600

30 CTGTGCCTTG GCAGCCTCCA TCCTTCGCAG GCATCTCATG GTCTGGAAAG TGTTTGCCCC 780

TAAGTTCATA TTTGAGGCTG TGGGCTTCAT TGTGAGCAGC GTGGGACTTC TCCTGGGCAT 840

AGCTTTGGTG ATGAGAGTGG ATGGTGCTGT GAGCTCCTGG TTCAGGCAGC TATTTCTGGC 900

CCAGCAGAGGG TAGCCTAGTC TGTGATTACT GGCACTTGGC TACAGAGAGT GCTGGAGAAC 960

AGTGTAGCCT GGCCTGTACA GGTACTGGAT GATCTGCAAG ACAGGCTCAG CCATACTCTT 1020

ACTATCATGC AGCCAGGGGC CGCTGACATC TANGACTTCA TTATTCWATR ATTCAGGACC 1080

ACAGTGGAGT ATGATCCCTA ACTCCTGATT TGGATGCATC TGAGGGACAA GGGGGKCGGT 1140

STCCGAAGTG GAATAAAATA GGCGGGCGTG GTGACTTGCA CCT 1183

(2) INFORMATION FOR SEQ ID NO: 148:

50 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 734 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

55 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148:

GAATTCGGCA GAGTGAAGCA TTAGAATGAT TCCAACACTG CTCTTCTGCA CCATGAGACC 60

5

10

35

40

WO 98/54963

45

50

55

60

	AACCCAGGGC AAGATCCCAT CCCATCACAT CAGCCTACCT CCCTCCTGGC TGCTGGCCAK	120
	GATGTCGCCA GCATTACCTT CCACTGCCTT TCTCCCTGGG AAGCAGCACA GCTGAGACTG	180
5	GGCACCAGGC CACCTCTGTT GGGACCCACA GGAAAGAGTG TGGCAGCAAC TGCMTGGCTG	240
	ACCTITCTAT CTTCTCTAGG CTCAGGTACT GCTCCTCCAT GCCCATGGYT GGGCCGTGGG	300
	GAGAAGAAGC TCTCATACGC CTTCCCACTC CCTCTGGTTT ATAGGACTTC ACTCCCTAGC	360
10	CAACAGGAGA GGAGGCCTCC TGGGGTTTCC CCRRGGCAGT AGGTCAAACG ACCTCATCAC	420
	AGTCTTCCTT CCTCTTCAAG CGTTTCATGT TGAACACAGC TCTCTCCRCT CCCTTGTGAT	480
15	TTCTGAGGGT CACCACTGCC ARCCTCAGGC AACATAGAGA GCCTCCTGTT CTTTCTATGC	540
	TTGGTCTGAC TGAGCCTAAA GTTGAGAAAA TGGGTGCCAA GGCCAGTGCC AGTGTCTTGG	600
20	GGCCCCTTTG GCTCTCCCTC ACTCTCTGAG GCTCCAGCTG GTCCTGGGAC ATGCAGCCAG	660
20	GACTGTGAGT CTGGGCASGT CCAAGGCCTG CACCTTCAAG AAGTGGAATA AATGTGGCCT	720
	TTGCTTCTAT TTAA	734
25		
	(2) INFORMATION FOR SEQ ID NO: 149:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1405 base pairs (B) TYPE: nucleic acid (C) STANDEDNESS: double	
35	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149:	60
	GGCACAGTGG ACCCCAGACT CCCTCTCCGC CTTTCTCTGC CTGGGGAGAC CCACTGTGTG	
40	CATGGCATCA CTGACTCCCA TACCTCTGGC TATCAAAGGT TTCTGCCATG GCCACCCTGG	120

AAGSAAACCA GAGGGAGGTA GACAGGGAGA TCAGGTCCCT TCTACTCTGG TTCCTGCTCT 180 GTGAAATTGT CTCAGGCTGG CTGTGTCCAG ARGGTCCCTG GTTCTCTCAR GGATGCCAAA 240 TCTACAAGAA TCTCTCCTCT TCCAGTTCCT ATAACCTCTC CTTCCTTTTG TCTCTTTAGA 300 CCTTGGAGTA GTAGCAGCCA GGTTCTTTCT ATCTCTGGGT TAGTGCATTA TCTCTGGTGG 360 CTCCCTTACC CAGGACTTTG GGAATGGTCT TTTTGTAATA CATTCTCCTC AAATAATTCA 420 ATTITGAGIG TICTGTATGT ATCCTGCTGG GAGGITGITA TATACAAATC ACTGTGCCCG 480 TTTAGCAGAG AAGGAGACTG AAGCTCAGGG AGGTTAAGTG TCTTTCTCTA GGTCGTATTG 540 TGGAGAAAGT GGCTGACTGG GGACTTGAAT GAGGTCCCTA GTTTCATGCT CGGAGGGCAA 600 AGANGAATGT CCAATTGGCC TGAGATAAGC CTCTGGTAAA ATGTACTGTA CATAATAGGT 660 AATCAATAAA TGTTGGCTGA TGACAAACAT GTTTTCTTTG TTCATTAGTT ATAGTGATTA 720

	TGTTCTAAAT	AACTCCMACA	AGGAARTCAG	CACATTIGGA	ATATCAWIAT	CTTTCCATGA	780
5	TAATATCTTT	CCMYGGAAAG	AWAATGATAT	TCCMAACTGG	GAGTGTCCCW	ASCARATCTS	840
3	ANTCTGTGTA	TTGGCCCTGG	GGTGGGCCAG	CCCCTTAGAC	TCTATGGTCT	CATTCTCTTT	900
	GTTTACAAAA	TTGAGATAAG	GCCTTATTCT	CTCCCCACCC	CACCCATCCA	TATTGTTTTG	960
10	AGAATAAAAT	GAGAGGATGT	GTGTCAAGGG	TGTATTTTGG	CAATAGTCTC	TGAGCCATTT	1020
	TCTGAGCACC	TCCATACTGT	TGACACTCAA	GTAATATTTC	ATCAGCATTC	CATTCAGGNT	1080
15	CCTCCCTTAA	TGAGGTGTGC	GATGTACAAG	AGTYGTGAGG	TGGCAAAGGA	TGGGCTCCTG	1140
13	AGGAAACACT	TAGGAAACTG	GGCTTTCTGC	CATTAAAAGA	GACAAACCTT	TGTCGTGACC	1200
	TAATTAAAGT	TTTTAAAATT	CAATTTGGAA	AGTTAGCAAG	CTAGCTCCTK	TCCAGGWAAA	1260
20	ATAAGGAGTC	AGTGCATGAC	CTAACCGGTC	CCGGGCTGCT	TGCCATTCCA	AACAACTGCA	1320
	GTAAGTTTAT	CACNTTCTTT	CAGGGACTGA	. GGTTTCCAGG	CACAGACTTG	CATAAGGAAG	1380
25	GATGTCCTAT	GGGGTCACAT	TGATG				1405

(2) INFORMATION FOR SEQ ID NO: 150:

30

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2890 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

35 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150:

TTATATGCTA CAGCTACAGT AATTTCTTCT CCAAGCACAG AGGANCTTTC CCAGGATCAG	60
GGGGATCGCG CGTCACTTGA TGCTGCTGAC AGTGGTCGTG GGAGCTGGAC GTCATGCTCA	120
AGTGGCTCCC ATGATAATAT ACAGACGATC CAGCACCAGA GAAGCTGGGA GACTCTTCCA	180
TTCGGGCATA CTCACTTTGA TTATTCAGGG GATCCTGCAG GTTTATGGGC ATCAAGCAGC	240
CATATGGACC AAATTATGTT TTCTGATCAT AGCACAAAGT ATAACAGGCA AAATCAAAGT	300
AGAGAGAGCC TTGAACAAGC CCAGTCCCGA GCAAGCTGGG CGTCTTCCAC AGGTTACTGG	360
GGAGAAGACT CAGAAGGTGA CACAGGCACA ATAAAGCGGA GGGGTGGAAA GGATGTTTCC	420
ATTGAAGCCG AAAGCAGTAG CCTAACGTCT GTGACTACGG AAGAAACCAA GCCTGTCCCC	480
ATGCCTGCCC ACATAGCTGT GGCATCAAGT ACTACAAAGG GGCTCATTGC ACGAAAGGAG	540
GGCAGGTATC GAGAGCCCCC GCCCACCCCT CCCGGCTACA TTGGAATTCC CATTACTGAC	600
TTTCCAGAAG GGCACTCCCA TCCAGCCAGG AAACCGCCGG ACTACAACGT GGCCCTTCAG	660
	GGGGATCGCG CGTCACTTGA TGCTGCTGAC AGTGGTCGTG GGAGCTGGAC GTCATGCTCA AGTGGCTCCC ATGATAATAT ACAGACGATC CAGCACCAGA GAAGCTGGGA GACTCTTCCA TTCGGGCATA CTCACTTTGA TTATTCAGGG GATCCTGCAG GTTTATGGGC ATCAAGCAGC CATATGGACC AAATTATGTT TTCTGATCAT AGCACAAAGT ATAACAGGCA AAATCAAAGT AGAGAGAGCC TTGAACAAGC CCAGTCCCGA GCAAGCTGGG CGTCTTCCAC AGGTTACTGG GGAGAAGACT CAGAAGGTGA CACAGGCACA ATAAAGCGGA GGGGTGGAAA GGATGTTTCC ATTGAAGCCG AAAGCAGTAG CCTAACGTCT GTGACTACGG AAGAAACCAA GCCTGTCCCC ATGCCTGCCC ACATAGCTGT GGCATCAAGT ACTACAAAGG GGCTCATTGC ACGAAAGGAG GGCAGGTATC GAGAGCCCCC GCCCACCCCT CCCGGCTACA TTGGAATTCC CATTACTGAC

	AGATCGCGGA	TGGTCGCACG	ATCCTCCGAC	ACAGCTGGGC	CTTCATCCGT	ACAGCAGCCA	720
	CATGGGCATC	CCACCAGCAG	CAGGCCTGTG	AACAAACCTC	AGTGGCATAA	AYCGAACGAG	780
5	TCTGACCCGC	GCCTCGCCCC	YTATCAGTCC	CAAGGGTTTT	CCACCGAGGA	GGATGAAGAT	840
	GAACAAGTTT	CTGCTGTTTG	AGGCACAGAC	TTTTCTGGAA	GCAGAGCGAG	CCACCTGAAA	900
10	GGAGAGCACA	AGAAGACGTC	CTGAGCATTG	GAGCCTTGGA	ACTCACATTC	TGAGGACGGT	. 960
10	GGACCAGTTT	GCCTCCTTCC	CTGCCTTAAA	AGCAGCATGG	GGSTTCTTCT	CCCCTTCTTC	1020
	CTTTCCCCTT	TGCATGTGAA	ATACTGTGAA	GAAATTGCCC	TGGCACTTTT	CAGACTTTGT	1080
15	TGCTTGAAAT	GCACAGTGCA	GCAATCTTCG	AGCTCCCACT	GTTGCTGCCT	GCCACATCAC	1140
	ACAGTATCAT	TCCAAATTCC	AAGATCATCA	CAACAAGATG	ATTCACTCTG	GCTGCACTTC	1200
20	TCAATGCCTG	GAAGGATTTT	TTTTAATCTT	CCTTTTAGAT	TTCAATCCAG	TCCTAGCACT	1260
20	TGATCTCATT	GGGATAATGA	GAAAAGCTAG	CCATTGAACT	ACTTGGGGCC	TTTAACCCAC	1320
	CAAGGAAGAC	AAAGAAAAAC	AATGAAATCC	TTTGAGTACA	GTGCTTGTCC	ACTTGTTTAC	1380
25	AATGTCCTCC	TTTTAAAAAA	AAAAAAATGA	GTTTAAAGAT	TTTGTTCAGA	GAGTAAATAT	1440
	ATATCCATTT	AATGATTACA	GTATTATTTT	AAACCTTAAG	TAGGGTTGCC	AGCCTGGTTT	1500
30	CTGAAAAACC	AAATATGCCG	GACAGGGTGT	GGCCACACCA	AGAAGACGGG	AAGACCTGGC	1560
30	TTGTGACCCT	GGCTTCCCAT	GTCCTTCTGG	TCTCACCCGC	GAAGTGCCCT	ATCCTGGAAG	1620
	TATGAAATGT	TAGCCAATTA	ATACCAAGAC	ACCTCATCTG	CTCCTTCCCC	AGTGGATGGG	1680
35	GITCITCIGI	AAAACTGTTT	GCACATGGCC	AGGGGAGGGA	ACTAGGACCC	TTGTGTCCTG	1740
	TCTGAGCCTT	ATGGAGGCAG	GACGGTGTCA	TTGGCGGATG	TGTCCTGCTC	CATTGAGATG	1800
40	GATGGCAAAC	CCCATTTTA	AGTTATATTI	CTTTGATTTT	TGTTAATTTA	GAGGTGTAGG	1860
40	TTTTGTTTT	TGTTTTTTG	TTTTTTTT	AGAGAAACAT	TTATAACTGC	: ATAGCATTGC	1920
	AGTGAAAGCA	GCTTGGGATG	TTGGAGCTA	A TGCCAGCTGT	TTATACTGCT	CTTTCAAGAC	1980
45	AGCCTCCCTT	TATTGAATTC	GCATTAGGG	A ATAAACAAGO	CTTTAAACGT	GATAAAAGAT	2040
	CAAAAACCTO	GTTAGACATO	CCAGCCTTTC	G CAAGGCAGGT	TAGTCACCA	A AGACTAACCT	2100
50	CCAAGTGGCT	TTATGGACGC	TGCATATAG/	A GAAGGCCTAA	GTGTAGCAA	CATCTGCTCA	2160
30	CAGCTGCTAT	TAACCCTAT	ATGACTGAA	A TGACCCCTCC	ACTCTATTT	TGTGTTGTTT	2220
	TGCACAGACT	CCGGAAAAG1	GAAGGCTGC	C AATCTGAGT	GTACTCAAA	r gtgaggaact	2280
55	GCTGGTCTT	GATTTTTTT	CCATTAAAT	r cagctgatca	A TATTGATCA	G TAGATAAACG	234
	TAAATAGCT	CAAATTTTA	A AAGTGGAAT	r gcagtgttt	TTCACTGTA	r caaacaatgt	240
60	CAGTGCTTT	A TTTAATAAT	r cicitcici	A TCATGGCAT	TGTCTACTT	CTTATTACAT	246
60							

402

	TGTCAATTAT	GCATTTGTAA	TTTTACATGT	AATATGCATT	ATTTGCCAGT	TTTATTATAT	2520
	AGGCTATGGA	CCTCATGTGC	ATATAGAAAG	ACAGAAATCT	AGCTCTACCA	CAAGTTGCAC	2580
5	AAATGTTATC	TAAGCATTAA	GTAATTGTAG	AACATAGGAC	TGCTAATCTC	AGTTCGCTCT	2640
	GTGATGTCAA	GTGCAGAATG	TACAATTAAC	TGGTGATTTC	CTCATACTIT	TGATACTACT	2700
10	TGTACCTGTA	TGTCTTTTAG	AAAGACATTG	GTGGAGTCTG	TATCCCTTTT	GTATTTTTAA '	2760
10	TACAATAATT	GTACATATTG	GTTATATTTT	TGTTGAAGAT	GGTAGAAATG	TACTATGTTT	2820
	ATGCTTCTAC	ATCCAGTTTG	TACAAGCTGG	ATAAATAAAA	AATATAACAT	AAAAAAAA	2880
15	АААААААА						2890

20 (2) INFORMATION FOR SEQ ID NO: 151:

25

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2399 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151:

30	GAACTTTTCC ATCTGGCAAA CCGGAAACTC CATCCC	CATT AAACCAACTC CCCCTTTTGG	60
	TITCCCCCCC AGNGGAATAG AATTTGGACN CCCATA	TAAA TCCAGGAAAC CACCTAAATT	120
35	CITTAGINGT TIGIGITITGC AAGATCTAAG GICATG	GTAA ACATTAAGTT CTTAAAATTT	180
33	TTGGGAGGGA CCAGTGCACC TCTCCCTCTG AATTGT	TCNC CAATTTAAAA TTGGAGTAAG	240
	GTTTTAAAAT GTCTNATTCC ATTGGAAGGG TNTGTT	ATTT CATTTTGAGC CCAGAGGGGA	300
40	GAGGCACATT TTAAATATCA GAATTAGATT AGCTTT	GAGT TTGTACAATT GGGAACATAA	360
	TAGATTTTCA TAAATTATGT GTGCCTTGTT GGAAGT	GTCA ACTGTCTTTA TGTCTGCTTG	420
45	TAAAAGTTTC AAAATATGTT TTCCCTCAAA AAGGCA	ACGT TACTTCATTT GCTTGAATAT	480
43	TATGATAGGA ATGCTTACTG ATATTACTTG ATAGTC	CATAT ATAGCCTAGG AAATTTAACA	540
	TATATATAAC TATAGCAGTA TTAATAATGA TAGTTO	TACT TCTTTAAAAC ATTAAATTTG	600
50	AGGAAACTTT AATGCTGTCT CGTGTACATT GCTTTA	ACTAC AGTGAGGGGG AATATCCTTT	660
	AGATTGAGCC TCAATTTACT GGTTAGTAGT ATGTGA	ACTC TGGTATAAAA ACGTAAACTA	720
55	GACAGTAGAG CCGATGAATT AAAATTGTAA ATTGC	PACAT TGGCATTTTC TACCTCCTTT	780
	TCTGTCAGAG TATTACTTTT TCCAGCATTT ATTCT	PATTT GTGAGTAAAG AGGAAATGGG	840
	AACCTGAGGT TAAAATTGAC ATTTTTGTTT CATTGA	AGAAT TTAAGCAGTA GGTACAGGAG	900
60	AAGTGACTTG TCACATTAAT TTGGTGCCTA AATCT	STAAC TACAAGTTGT GATCGACATG	960

	TACAAAATGT	CTAAGAAAGG	TCATATGCTG	AATATTTTAC	TTTTCCTGTA	TAGTCTGCAT	1020
5	GATTTGTTTC	ATAAACCCAG	CTTATTTCCT	CCAAAAAGCA	AAATGGTCCT	GTAATTTTTA	1080
J	AAGTAAAATA	AACGTGCCAT	TTTGTCTGCA	ATCTATAATT	TCAGGAAGTT	ATTGRAAGTT	1140
	CTGACTCAGG	GCTTTTTAAC	AGTTCAAGCA	ATTGTCAGTT	ATATTTTGGA	AACTCCATCT .	1200
10	GTGTAATTCT	CCAGTGCCTT	GAAAGAATTA	TTAACTTGGC	AACACTATTA	AAACTTTATA	1260
	AAAGATGGTC	TTTAGTGCAC	GTGTATCATT	ATATACACGT	TTTAAAGTCA	TATTGCTTAG	1320
15	CTTGTTAATA	ATGATTCTGC	ATGTGTGCTG	GGTTTGGGTA	ATTCTTTAAA	GGAAGTTTTC	1380
15	TAGATTTĢCA	CTTGATGTTT	GTTTTTAAA	AACTGATTAT	TTATGGCCGT	GACACTGTTA	1440
	CCAGAAAAGT	AATTCTAATT	AAGTTATTAT	GCAAAGTCAT	CTATAAGTAG	CATCTGGGAA	1500
20	GAGGAGATSG	AGGCCACAGT	TTGCTATTTT	AGTATGAAAG	GAGGATCTGT	TTGGGAAACA	1560
	TAGATTGTCT	TCCCCTCAAA	TGAGGGGAAA	AAAAAAGACC	CTTTGTTCAA	ATGGATTCTG	1620
25	TTGTAAAAAA	TTATTTTTAA	AGGAAATCAC	AAATTGTATG	TCATTCTTAA	TGCTAGTCTT	1680
20	ATAGAATAAA	TCCATAAAAT	TGTTTTTATG	TTCAGTATGT	TTATGTCATT	CTAAATGCAG	1740
	CAAATTCAAT	GATAGCAGTT	CAATTGACTC	ATAGCAGTGT	TTTGTATTTT	TTCTAATTCT	1800
30	TTAGCTTTCA	ATATTGGATT	AAAGTCTTGT	TTGTGAATAT	AGTTTCCGTA	TGGCAAATGA	1860
	TTTCTTGCTT	ATTAGCTTTT	GTTAAAGAAT	GCTTAGTAAG	AGCTAAGCTT	TTAAAAGTAA	1920
35	TGCAAACATT	TATCGTTAAT	AAAACCTATG	GTGTAATATC	ATATAATGCT	TTTCTTTGAT	1980
20	CTTTGGAGAA	TTATTCTTTT	ATAGTAGTAT	ACATGAATTT	TGATTTTAA	AGCATTTAAA	2040
	AACAAATCTC	AATACATTAA	AAAACCTGTT	ATTGTTAAAA	RGGAAATTAC	CATGCCTTTA	2100
40	AGAAACAAGG	ATGTACATCT	TCAATTCAGC	: ATRAGTGTCC	ACATCTAGAA	GCTCTCATT	2160
	GCAGTTGTTT	ACAGTTAAGG	TACCTCTATO	TAAAGGCCA	AAGAAGCATI	TCATAYTTTA	2220
45	ACACCTCACA	TTCTTTCAGG	ATTAAGACAT	ATGAAAATAG	TCTGAATAGG	ATAAATTTGG	2280
	ATAGGAAGTA	ACTTAACCAG	TCTGGGAAGA	TTCAGGCTTT	TTCTATKAAA	AAGCTTATTC	2340
	CTCTTCACAA	CTCNGGTGGT	AGGNITICAT	TTTTCAAGAG	GGTAGATATT	TTAAAGCCA	2399

(2) INFORMATION FOR SEQ ID NO: 152:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 802 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 152:	
	CGTGCCTGTA GTAAGCTCAT CCCTGCCTTT GAGATGGTGA TGCGTGCCAA GGACAATGTT	60
5	TACCACCTGG ACTGCTTTGC ATGTCAGCTT TGTAATCAGA GATTNTGTGT TGGAGACAAA	120
	TTTTTCCTAA AGAATAACWT GAYCCTTTGC CARACGGACT ACGAGGAAGG TTTAATGAAA	180
10	GAAGGTTATG CACCCCMGGT TCGCTGATCT ATCAACATCA CCCCATTAAG AATACAAAGC	240
10	ACTACATTCT TTTATCTTTT TTGCTCCACA TGTACATAAG AATTGACACA GGAACCTACT	300
	GAATAGCGTA GATATAGGAA GGCAGGATGG TTATATGGAA TAAAAGGCGG ACTGCATCTG	360
15	TATGTAGTGA AATTGCCCCA GTTCAGAGTT GAATGTTTAT TATTAAAGAA AAAAGTAATG	420
	TACATATGGC TGGATTTTTT TGCTTGCTAT TCGTTTTTGT GTCACTTGGC ATGAGATGTT	480
20	TATTTTGGAC TATTGTATAT AATGTATTGT AATATTTGAA GCACAAATGT AATACAGTTT	540
20	TATTGTGTTA CCATTTGTGT TCCATTTGCT YCTTTGTATT GTTGCATTTA GTACAATCAG	600
	TGTTTAAACT TACTGTATAT TTATGCTTTC TGTATTTACC AGCTATTTTA AATGAGCTGT	660
25	AACTITCTAG TAAAGAATTG AAAAGCAAAT CCTCACTAAA GGATACACAG GATAGGATAA	720
	AGCCAAGTCN CATCAACATT AAAAAATACT AAAANANAAA ACACAAAAAA AAAAAANCCC	780
30	GGGGGGGCC CGGAACCCAT TC	802
	(2) INFORMATION FOR SEQ ID NO: 153:	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH:-461 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double	
40	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 153:	
45	CTAGGAGCAC CGAGCAGCTT GGCTAAAAGT AAGGGTGTCG TGCTGATGGC CCTGTGCGCA	60
,,,	CTGACCCGCG CTCTGCNCTC TCTGAACCTG GCGCCCCCGA CCGTCGCCGC CCCTGCCCCG	120
	AGTCTGTTCC CCGCCGCCCA GATGATGAAC AATGGCCTCC TCCAACAGCC CTCTGCCTTG	180
50	ATGTTGCTCC CCTGCCGCCC AGTTCTTACT TCTGTGGCCC TTAATGCCAA CTTTGTGTCC	240
	TGGAAGAGIC GTACCAAGTA CACCATTACA CCAGTGAAGA TGAGGAAGTC TGGGGGCCGA	300
55	GACCACACAG GTGGGAACAA GGACAGGGGG ATTTAAGCAG TCAAAAGGAA AAACATGTTA	360
33	AGACCCTAGA CTTGTATATT GACACACTTG TACCTTGTAA GGCAGAGGAA TGTAATTAAA	420
	AAGCACTTAT TTGGCWNAAA AAAAAAAAAA AAAAAAAAA C	461
60		

405

(2) INFORMATION FOR SEQ ID NO: 154:

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2388 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 154:

GCCCACGCGT CCGAAAGCGG AGAACGCTGG TGGGCCTGTT GTGGAGTACG CTTTGGACTG 60 120 15 AGAAGCATCG AGGCTATAGG ACGCAGCTGT TGCCATGACG GCCCAGGGGG GCTGGTGGCT AACCGAGGCC GGCGCTTCAA GTGGGCCATT GAGCTAAGCG GGCCTGGAGG AGGCAGCAGG 180 GGTCGAAGTG ACCGGGCAG TGGCCAGGGA GACTCGCTCT ACCCAGTCGG TTACTTGGAC 240 20 AAGCAAGTGC CTGATACCAG CGTGCAAGAG ACAGACCGGA TCCTGGTGGA GAAGCGCTGC 300 TGGGACATCG CCTTGGGTCC CCTCAAACAG ATTCCCATGA ATCTCTTCAT CATGTACATG 360 GCAGGCAATA CTATCTCCAT CTTCCCTACT ATGATGGTGT GTATGATGGC CTGGCGACCC 25 ATTCAGGCAC TTATGGCCAT TTCAGCCACT TTCAAGATGT TAGAAAGTTC AAGCCAGAAG 480 TTTCTTCAGG GTTTGGTCTA TCTCATTGGG AACCTGATGG GTTTGGCATT GGCTGTTTAC 540 30 AAGTGCCAGT CCATGGGACT GTTACCTACA CATGCATCGG ATTGGTTAGC CTTCATTGAG 600 CCCCCTGAGA GAATGGAGTT CAGTGGTGGA GGACTGCTTT TGTGAACATG AGAAAGCAGC 660 GCCTGGTCCC TATGTATTTG GGTCTTATTT ACATCCTTCT TTAAGCCCAG TGGCTCCTCA 35 720 GCATACTCTT AAACTAATCA CTTATGTTAA AAAGAACCAA AAGACTCTTT TCTCCATGGT 780 840 GGGGTGACAG GTCCTAGAAG GACAATGTGC ATATTACGAC AAACACAAAG AAACTATACC 40 ATAACCCAAG GCTGAAAATA ATGTAGAAAA CTTTATTTTT GTTTCCAGTA CAGAGCAAAA 900 CAACAACAAA AAAACATAAC TATGTAAACA AGAGAATAAC TGCTGCTAAA TCAAGAACTG 960 1020 TTGCAGCATC TCCTTTCAAT AAATTAAATG GTTGAGAACA ATGCATAAAA AAAGTTGCAC 45 AAGTTCCTTA TITTCCTTAA TATTTCACTT CTATTTAATA CAAGCTGGGA CATAAAAATT 1080 CTGTTGGGGA TACCTGGGGG AAGATGTGAG AAACTAATGC TGAATTCAGC TTATACATGA 1140 50 TGAAAAGAA AACCAGACAA AAGGAGCACA TAAATATGCA TACAGTGTAA CTGTTATTAT 1200 TTTAATACCC ACGATAAGGG ATTTTTGTTA GCATGTTTAG GGGGAACGAG GATTGGTGGG 1260 ATCCTTGGGG CCACAGGAAT CTGAGGCAAC GGAAGATATA TAGAGTGATC GTCCCCCTGC 55 1320 CGAAGGAACC TGGCAYCTGT CAAGCAGATG CTGCAGTTCA AACTTCAGCT TTTAAGATAG 1380 ATAGCTATTG AAGGCAGAGG GTCAGCAGGA GGATGTGTAT TTCTAATCTA CCCTGGTAAA 1440

406

	GTCATAGGTA AGACTCAAAA GCGGGATCTT ATTCAAAAGG CAGGTATTTC CTTTGTTTTC	1500
	TGTCTTGAAA TAGCCCCTTC CCCTAAGGTG CATTCTCTCA AGTTTTCAGT ATTGCTTTAT	1560
5	TTGCAGTGAT TAAAAGAGAT GAGAGACTTT GGAGACAGAC AACGTAAGCA ACACATACAC	1620
	ACATGAAATA CTCTAGACAG AGATGAATAT AAATCTGGCC TAATAACCAG TTTTCCATGT	1680
10	AACAGTGATT TTGTGTTTCG GGCTGAAGCA GTGGTTATAT TAAAAGCCAC TAATTCCCTT	1740
10	ATCCCTTTAA AAGATTTTTA CAATTCTCCA ACCACAAACA GCACTTCTAA AACTAACTTT	1800
	ACTITICISCO CATAATTIST TOTACATGGA AAAAAAAAAT ATTACTITISG CCAGGGGIST	1860
15	GTGTAAATGT GGCAGAATTC CTAGGCAGGC TGACCTTTAC AGTATGGGCC TTTAAGATAC	1920
	TGGATCCTGG TTGGGCAACA AGTGTCACGC CTGAAGTTTC TGAAAACAAA TTAGAAGACT	1980
20	GTTGGCTTGG CTAATCTCGT AGTTCAGGGC CAAGTTTCTG TAGTCAGAAT GAAGAATAAA	2040
20	ATTGAAAGAA AAAGGGGGAA ATGCTTATAC TTGGCATTAA GTTGAATGCC TCAAGTCTTA	2100
	ACTATGGCTT TGTAGATGAG GCAAAAGATT TCTTAGTGGT AAAATTTCTT CAACAGGTCA	2160
25	ATGCCAATCT GTATGCCATT TTAGTAAAGT AGGTAAGGAG AGTAGCCGCT CAGTAACTTT	2220
	GGCACTAAAG AAAGAGTGTG GCTCTAGAAC TTCCAATCCC ATTGCTAGAT GTGCCCTTTA	2280
30	AAAGATGGTC CAGTGCTTTC AGGGAAGGAT GTTTAGCCAG TTTTCCTAGT ATTTGTTCCT	2340
50	TAAGATTITT TGACCTGTGC TTAATAAGAC GGACGCGTGG GTCGACCC	2388
35	(2) INFORMATION FOR SEQ ID NO: 155:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 642 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 155:	
45	AAAACAGACC ATITAAAAAC TCAGACAAGA TTATATTTAA TATATTAATT ACTAAAAAGG	60
	CACAAGATTA CACTGAACAT ATTAGCTACT AAAAAGGCAC TGCTAAGACA TTCAAGCAAA	120
50	TAGCTATTAC ACACTACTGC AGATTTTACA GGTTTCTAAT TCTAACATAT GTTTGAAAAA	180
	TCCGTGAGTA TTCCAAAATA TATTTAATAA TGGAATATCT GCATTAATAT ACCATCCATG	240
55	TGTTTTTACC ATTTGCCTTA ATATTGAATA TACTGTTTAC CTCACACTAA AAAGAAAACC	300
55	AGAAGCCTTA TTTGTGATTT TGGGAGTGGA AGCTTCCATT TTTGTGTCAA AAATGAATCC	360

TGATTCTTAT GGAAATCTCT GTTATTAAGA TATTTCAAGA TGAGACAACA CTGAAGATCA

AATTGTGTTT AGTATCACTA TCTTCTCTCC TCGTTTCTCT CTTACTCCTC ATCCTCCCAG

60

420

407

	AATCTACCAG TITATGGTAG AAAGATGGGA ACCTTATTTG AATGTGTTTT TTTTTTTCCA	540
5	TGATGTCCAA TITTGTTGTG GGAAAGGATT TGGATAAAAT TTTTGTTTAA ATTTTGGTAG	600
,	ATTTTTATCT ATACAAATTT AAATAAAATT ATGTTTTGTA AG	642
10	(2) INFORMATION FOR SEQ ID NO: 156:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1251 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 156:	
	GCCGCTGCCC CTCCACGGAG TTGCTGATCA TCTGGGCTGT GATCCACAAA CCCGGTTCTT	60
	TGTCCCTCCT AATATCAAAC AGTGGATTGC CTTGCTGCAG AGGGGAAACT GCACGTTTAA	120
25	AGAGAAAATA TCACGGGCCG CTTTCCACAA TGCAGTTGCT GTAGTCATCT ACAATAATAA	180
	ATCCAAAGAG GAGCCAGTTA CCATGACTCA TCCAGGCACT GAGCATATTA TTGCTGTCAT	240
30	GATAACAGAA TTGAGGGGTA AGGATATTTT GAGTTATCTG GAGAAAAACA TCTCTGTACA	300
30	AATGACAATA GCTGTTGGAA CTCGAATGCC ACCGAAGAAC TTCAGCCGTG GCTCTCTAGT	360
	CTTCGTGTCA ATATCCTTTA TTGTTTTGAT GATTATTTCT TCAGCATGGC TCATATTCTA	420
35	CTTCATTCAG AAGATCAGGT ACACAAATGC ACGCGACAGG AACCAGCGTC GTCTCGGAGA	480
	TGCAGCCAAG AAAGCCATCA GTAAATTGAC AACCAGGACA GTAAAGAAGG GTGACAAGGA	540
40	AACTGACCCA GACTTTGATC ATTGTGCAGT CTGCATAGAG AGCTATAAGC AGAATGATGT	600
40	CGTCCGAATT CTCCCCTGCA AGCATGTTTT CCACAAATCC TGCGTGGATC CCTGGCTTAG	660
	TGAACATTGT ACCTGTCCTA TGTGCAAACT TAATATATTG AAGGCCCTGG GAATTGTGCC	720
45	GAATTTGCCA TGTACTGATA ACGTAGCATT CGATATGGAA AGGCTCACCA GAACCCAAGC	780
	TGTTAACCGA AGATCAGCCC TCGGCGACCT CGCCGGCGAC AACTCCCTTG GCCTTGAGCC	840
	ACTTCGAACT TCGGGGATCT CACCTCTTCC TCAGGATGGG GAGCTCACTC CGAGAACAGG	900

AGAAATCAAC ATTGCAGTAA CAAAAGAATG GTTTATTATT GCCAGTTTTG GCCTCCTCAG

TGCCCTCACA CTCTGCTACA TGATCATCAG AGCCACAGCT AGCTTGAATG CTAATGAGGT

AGAATGGTTT TGAAGAAGAA AAAACCTGCT TTCTGACTGA TTTTGCCTTG AAGGAAAAAA

GAACCTATTT TTGTGCATCA TTTACCAATC ATGCCACACA AGCATTTATT TTTAGTACAT

TTTATTTTTT CATAAAATTG CTAATGCCAA AGCTTTGTAT TAAAAGAAAT AAATAATAAA

960

1020

1080

1140

1200

60

55

ATAAAAAAA AAAAACCCCG GGGGGGCCC GGTCCCCAAT TGGCCCTATG G 1251

5

10

15

20

25

30

(2) INFORMATION FOR SEQ ID NO: 157:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2127 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 157:

CCGGCGGGAG AGGGAAGCTG CAGCGAGAGG CGCGGATCTC AGCGCGGGAG CAGTGCTTCT 60 GCGGCAGGCC CCTGAGGGAG GGAGCTGTCA GCCAGGGAAA ACCGAGAACA CCATCACCAT 120 GACAACCAGT CACCAGCCTC AGGACAGATA CAAAGCTGTC TGGCTTATCT TCTTCATGCT 180 GGGTCTGGGA ACGCTGCTCC CGTGGAATTT TTTCATGACG GCCACTCAGT ATTTCACAAA 240 CCGCCTGGAC ATGTCCCAGA ATGTGTCCTT GGTCACTGCT GAACTGAGCA AGGACGCCCA 300 GGCGTCAGCG CNCCCTGCAG CACCCTTGCC TGAGCGGAAC TCTCTCAGTG CCATCTTCAA 360 CAATGTCATG ACCCTATGTG CCATGCTGCC CCTGCTGTTA TTCACCTACC TCAACTCCTT 420 CCTGCATCAG AGGATCCCCC AGTCCGTACG GATCCTGGGC AGCCTGGTGG CCATCCTGCT 480 GGTGTTTCTG ATCACTGCCA TCCTGGTGAA GGTGCAGCTG GATGCTCTGC CCTTCTTTGT 540 600 CATCACCATG ATCAAGATCG TGCTCATTAA TTCATTTGGT GCCATCCTGC AGGGCAGCCT 35 GTTTGGTCTG GCTGGCCTTC TGCCTGCCAG CTRACACGGC CCCCATCATG AGTGGCCAGG 660 GCCTAGCAGG CTTCTTTGCC TCCGTGGCCA TGATCTGCGC TATTGCCAGT GGCTCGGAGC 720 TATCAGAAAG TGCCTTCGGC TACTTTATCA CAGCCTGTGC TGTKATCATT TTGACCATCA 780 40 TCTGTTACCT GGGCCTGCCC CGCCTGGAAT TCTACCGCTA CTACCAGCAG CTCAAGCTTG 840 AAGGACCCGG GGAGCAGGAG ACCAAGTTGG ACCTCATTAG CAAAGGAGAG GAGCCAAGAG 900 45 CAGGCAAAGA GGAATCTGGA GTTTCAGTCT CCAACTCTCA GCCCACCAAT GAAAGCCACT 960 1020 CTATCAAAGC CATCCTGAAA AATATCTCAG TCCTGGCTTT CTCTGTCTGC TTCATCTTCA CTATCACCAT TGGGATGTTT CCAGCCGTGA CTGTTGAGGT CAAGTCCAGC ATCGCAGGCA 1080 50 GCAGCACCTG GGAACGTTAC TTCATTCCTG TGTCCTGTTT CTTGACTTTC AATATCTTTG 1140 ACTGGTTGGG CCGGAGCCTC ACAGCTGTAT TCATGTGGCC TGGGAAGGAC AGCCGCTGGC 1200 55 TGCCAAGCTG GNTGCTGGCC CGGCTGGTGT TTGTGCCACT GCTGCTGCTG TGCAACATTA 1260 AGCCCCGCCG CTACCTGACT GTGGTCTTCG AGCACGATGC CTGGTTCATC TTCTTCATGG 1320 CTGCCTTTGC CTTCTCCAAC GGCTACCTCG CCAGCCTCTG CATGTGCTTC GGGCCCAAGA 1380 60

409

	AAGTGAAGCC	AGCTGAGGCA	GAGACCGCAG	AGCCATCATG	GCCTTCTTCC	TGTGTCTGGG	1440
5	TCTGGCACTG	GGGGCTGTTT	TCTCCTTCCT	GTTCCGGGCA	ATTGTGTGAC	AAAGGATGGA	1500
3	CAGAAGGACT	GCCTGCCTCC	CTCCCTGTCT	GCCTCCTGCC	CCTTCCTTCT	GCCAGGGGTG	1560
	ATCCTGAGTG	GTCTGGCGGT	TTTTTCTTCT	AACTGACTTC	TGCTTTCCAC	GGCGTGTGCT	1620
10	GGGCCCGGAT	CTCCAGGCCC	TGGGGAGGGA	GCCTCTGGAC	GGACAGTGGG	GACATTGTGG	1680
	GTTTGGGGCT	CAGAGTCGAG	GGACGGGGTG	TAGCCTCGGC	ATTTGCTTGA	GTTTCTCCAC	1740
15	TCTTGGCTCT	GACTGATCCC	TGCTTGTGCA	GGCCAGTGGA	GGCTCTTGGG	CTTGGAGAAC	1800
13	ACGTGTGTCT	CTGTGTATGT	GTCTGTGTGT	CTGCGTCCGT	GTCTGTCAGA	CTGTCTGCCT	1860
	GTCCTGGGGT	GGCTAGGAGC	TGGGTCTGAC	CGTTGTATGG	TTTGACCTGA	TATACTCCAT	1920
20	TCTCCCCTGC	GCCTCCTCCT	CTGTGTTCTC	TCCATGTCCC	CCTCCCAACT	CCCCATGCCC	1980
	AGITCITACC	CATCATGCAC	CCTGTACAGT	TGCCACGTTA	CTGCCTTTTT	ТАААААТАТА	204
25	TTTGACAGAA	ACCAGGTGCC	TTCAGAGGCT	CTCTGATTTA	AATAAACCTT	TCTTGTTTTT	210
23	TTCTCCATGG	ААААААААА	АААААА				212

30

35

(2) INFORMATION FOR SEQ ID NO: 158:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1625 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 158:

40 CAAAAGATCT ATAATCAGGA CATTGTTTAT GTAAGTTGGA CAANAAAAAT TCTTCCCCTT 60 TATGTCCACC CTTCCTATGA TTGCAAGACA AAATTTCCCT CCTTTACCTC ATCCCTATAA 120 45 CATGGGAGGC TGAGAAAAAT GAGGGGAGAT GGAACCAGAT ACAAGGAGAT CCAATAAGAG AAGCTTATTT AAATATTGTG AAATAAAGGA AGAMCCAAAG CATTTTTTTA AGTGGGGAAT 240 CCTTTGAAC AGTTATTATT TATCCATATT ATTAAYAACA TCTTTTCTGA CAAAATCCAT 300 50 CAGATGAAGT GTAAATGGAT AATCTTTTAA TGGATCTAAA CCTAGAAAGT TTCACTTACT 360 GTTCATGTCC GTGTTCCAGA ATTGTGAAAT GGTGTGGT TTTGCTTTCC AAGTTCTTCT 420 CTGCCTCCTC TTAATTCTCT AATTCCATGT CTTACAGAAG AATGAGAAAT TTCTTTCTTA 55 480 CTTGAGTATC ATGCTCTAAA AAACTTGGCT TCAGTCACAG AAACGCTGGC TCTCCTGTGC 540 TTATATTGAA GCCAACTGCC TTTAATTCTT GGGCCCTCTT ATATTTTTAA GGTGCAAAAT 600 60

•	TTGAAGTCTC	AGTCACCAGA	CACAGGTTCT	АТАСААТТАА	TGATGAGCTG	GAGAAGTAAT	660
	ATGTAGCTAA	TTTTTCAAAA	GCATTGAATA	TACTTTCCGG	AAAGAAAACA	GAAATTAAAT	720
5	ATTGCCACAT	CTTGCCAGAA	TCCCATCTGA	CACCTTAACT	TTGTCAGGTT	TCCTACAACT	780
	TGCTAATCAA	GTTTTATACA	TTCTAAATCT	CCCCAGTITC	TTTGGGGCTG	GAAGATGCAA	840
10	CTTCCATTTA	ATAGAAACTT	TGAAATCTTG	GGGTAAGGGA	GCAGTGGGGG	GACTAGGGAG	900
10	AAGGATAAGA	AATAGAATTA	TTGAAAAGCC	CCCACCAGGG	ACCTTCCTGG	CCAGAATATG	960
	CAGAGTAATT	CCTGCTGGCT	TCACCTTTGA	AAGTCCCTCG	AAACTATGCA	GATGAAACTG	1020
15	AGTCTGTTTT	TGATATTGTC	AGATGTATTC	TACCTTGGAA	GTCCCNACAC	CTAAACTGGA	1080
	ATTCTTGTAT	TTACATCTCC	TCCACTGTCC	CCCACACCAC	CCCTCAATTC	CTGCTGCCCC	1140
20	TGCTAATGTT	AAGCATTTTT	CTCTTGTTAT	CATCAGGTTC	ACATTAAAAM	CAGRTACTTA	1200
20	CAAACTGACT	TGAAGCACAG	ATACTTTTAC	GAATGTGATA	AAATATTTTC	TTAAGAAAAG	1260
	GAAAGAGGAT	GTGGGTCAAA	TAAAACACCG	CATGGATGTT	GATTGGTGAA	TACTGGTGTA	1320
25	AGAAAAGGGA	GCTCAGGAAT	TTTTATTACT	GTATTTGTAA	ATGAGTTTGA	AGGAATTTGT	1380
	AAATGCCACT	GGTACATTTT	TAAGGTGACA	CATTTGCTCC	TTATAAAGTT	TTAAAAATT	144
30	ACAGGGTAAG	CTTAAATGAC	GTTTGCCAGT	AGTTTTACTT	TATATAATCA	ATATTGATAT	150
20	TGTTGCTGAA	CTATGTAACT	TTATGATGCA	TTTTTCAGTC	CCTTTTCAGA	GCAAATGCTT	156
	TTGCAATGGT	AGTAATGTTT	AGTTTAAATT	GACTTAATAA	ATTMTTACCT	GAGCAAAAAA	162
35	AAAAA						162

40 (2) INFORMATION FOR SEQ ID NO: 159:

45

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1687 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 159:

50	CGGGGTCACC	AGTTATTAGA	GGAAGTAACA	CAAGGGGATA	TGAGTGCAGC	AGACACATTT	60
	CTGTCCGATC	TGCCAAGGGA	TGATATCTAT	GTGTCAGATG	TTGAGGACGA	CGGTGATGAC	120
55	ACATCTCTGG	ATAGTGACCT	GGATCCAGAG	GAGCTGGCAG	GAGTCAGGGG	ACATCAGGGT	180
33	CTAAGGGACC	AAAAGCGTAT	GCGACTTACT	GAAGTGCAAG	ATGATAAAGA	ĠGAGGAGGAG	240
	GAGGAGAATC	CACTGCTGGT	ACCACTGGAG	GAAAAGGCAG	TACTGCAGGA	AGAACAAGCC	300
60	AACCTGTGGT	TCTCAAAGGG	CAGCTTTGCT	GGGNATCGAG	GACGATGCCG	ATGAAGGCCC	360

•	TGGAGATCAG	TCAGGCCCAG	CTGTTATTTG	AGAACCGGYG	GAAGGGACGG	CAGCAGCAGC	420
_	AGAAGCAGCA	GCTGCCACAG	ACACCCCCTT	CCTGTTTGAA	GACTGAGATA	ATGTCTCCCC	480
5	TGTACCAAGA	TGAAGCCCCT	AAGGNAACAG	AGGCTTCTTC	GGGGACAGAA	GCTGCCACTG	540
	GCCTTGAAGG	GGAAGAAAAG	GATGGCATCT	CAGACAGTGA	TAGCAGTACT	ACCAKTGACG	500
10	AAGAAGAGAG	CTGGGAACCC	TCCGTGGTAA	GAAGCGAASC	GTGGGCCTAA	AGTCAGATGA	560
	TGACGGGTTT	GAGATAGTGC	CTATTGAGGA	CCCAGCGAAA	CATCGGATAC	TGGACCCCGA	720
1.5	AGGCCTTGCT	CTAGGTGCTG	TTATTGCCTC	TTCCAAAAAG	GCCAAGAGAG	ACCTCATAGA	780
15	TAACTCCTTC	AACCGGTACA	CATTTAATGA	GGATGAGGG	GAGCTTCCGG	AGTGGTTTGT	340
	GCAAGAGGAA	AAGCAGCACC	GGATACGACA	GTTGCCTGTT	GGTAAGAAGG	AGGTGGAGCA	900
20	TTACCGGAAA	CGCTGGCGGG	AAATCAATGC	ACGTCCCATC	AAGAAGGTGG	CTGAGGCTAA	960
	GGCTAGAAAG	AAAAGGAGGA	TGCTGAAGAG	GCTGGAGCAG	ACCAGGAAGA	AGGCAGAAGC	1020
25	CGTGGTGAAC	ACAGTGGACA	TCTNCAGAAC	GAGAGAAAGT	GGCACAGCTG	CGAAGTCTCT	1080
2,3	ACAAGAAGGC	TGGGCTTGGC	AAGGAGAAAC	GCCATGTCAC	CTACGTTGTA	GCCAAAAAAG	1140
	GTGTGGGCCG	CAAAGTGCGC	CGGCCAGCTG	GAGTCAGAGG	TCATTTCAAG	GTGGTGGACT	1200
30	CAAGGATGAA	GAAGGACCAA	AGAGCACAGC	AACGTAAGGA	ACAAAAGAAA	AAACACAAAC	1260
	GGAAGTAAGC	AGAGCTGCCA	GGCTCCCAGG	AGAGCATGGG	GACTAGGAGG	AAGGGTGTGG	1320
35	CATGGCTCAG	TCTGGCCCCC	TTGATTACCO	GCCTAGCCCC	TGCTCACATO	ACAGCTGTCT	1380
33	GAAGAACAGT	GAGGTGGAGT	GCCTAGAACT	CCCGTGGTGG	TCCTGAGCAG	AGAGGAGGAT	1440
	GTCCTCCTGC	CTGCCTGAAG	GTCTCCCATC	AAAACACTGC	TGAACTGTGT	TGACACTCAT	1500
40	GACCCTTTTT	TTAAACCGTT	AAAGGGAAG1	TCGGTGTTGG	AGCGATACTC	: AATGTAGTCA	1560
	GTCTACACCT	GGACGTGTGG	GCCACTTAAC	CCCTCCCCAC	CCCCATCCTA	TTCCTRAATA	1620
45	AAACCAGGAT	AATGGAARAA	KAAAAAAA	AAAAAAAA	GGGGGGCCCI	1 TAAAGGGNCC	1680
4)	CANNTTT						158

55

(2) INFORMATION FOR SEQ ID NO: 160:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1842 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 160:

	GGATGACAGA	TTGCGACANA	GATTTGTGAC	CCTTCCTGCT	GAACTTCAGA	GGGAGCTGAA	60
	ANCAGCGTAT	GATCAAAGAC	AAAGGCAGGG	CGAGAACAGC	ACTCACCAGC	AGTCAGCCAG	120
5	CGCATCTGTG	CCCCGAGAAT	CCTTTACTTC	ATCTAAAGGC	AGCAGTGAAA	GAAAAGAAAA	180
	GAAACAAGAA	GAAAAAAACC	ATTGGTTCAC	CAAAAAGGAT	TCAGAGTCCT	TTGAATAACA	240
0	AGCTGCTTAA	CAGTCCTGCA	AAAACTCTGC	CAGGGGCCTG	TGGCAGTCCC	CAGAAGTTAA	. 300
	TTGATGGGTT	TCTAAAACAT	GAAGGACCTC	CTGCAGAGAA	ACCCCTGGAA	GAACTCTCTG	360
	CTTCTACTTC	AGGTGTGCCA	GGCCTTTCTA	GTTTGCAGTC	TGACCCAGCT	GGCTGTGTGA	420
5	GACCTCCAGC	ACCCAATCTA	GCTGGAGCTG	TTGAATTCAA	TGATGTGAAG	ACCTTGCTCA	480
	GAGAATGGAT	AACTACAATT	TCAGATCCAA	TGGAAGAAGA	CATTCTCCAA	GTTGTGAAAT	540
20	ACTGTACTGA	TCTAATAGAA	GAAAAAGATT	TGGAAAAACT	GGATCTAGTT	ATAAAATACA	600
	TGAAAAGGCT	GATGCAGCAA	TCGGTGGAAT	CGGTTTGGAA	TATGGCATTT	GACTTTATTC	660
	TTGACAATGT	CCAGGTGGTT	TTACAACAAA	CTTATGGAAG	CACATTAAAA	GTTACATAAA	720
25	TATTACCAGA	GAGCCTGATG	CTCTCTGATA	GCTGTGCCAT	AAGTGCTTGT	GAGGTATTTG	780
	CAAAGTGCAT	GATAGTAATG	CTCGGAGTTT	TTATAATTTT	AAATTTCTTT	TAAAGCAAGT	840
30	GTTTTGTACA	TTTCTTTTCA	AAAAGTGCCA	AATTTGTCAG	TATTGCATGT	AAATAATTGT	900
	GTTAATTATT	TTACTGTAGC	ATAGATTCTA	TTTACAAAAT	GTTTGTTTAT	AAAGTTTTAT	960
	GGATTTTTAC	AGTGAAGTGT	TTACAGTTGT	TTAATAAAGA	ACTGTATGTA	TATTTGGTAC	1020
35	RGGCTCCTTT	TKGTGAAYCC	TTAAAAACTC	AACTCTAGGA	RGCAACTACT	GTTTATTATA	1080
	CTAAARGGCT	GAAAAMCCTC	CAGGCCAGAC	TGCTAAGCTC	TGAAATYCCT	GAGAGGTCTC	1140
Ю	AGACCGGGAT	TCTACTTGTT	CCAAGAAAGG	GTAAAGCTTC	TAAACCATCT	TATTCTTGTC	1200
	TCCAAGCATG	AACACAGGAG	CATGTYAAGA	AAATCTTTAC	TACTTTCTYC	CATGCGGAGA	1260
	AATCTACATA	TTTTGAATTA	GAAACACCCT	CACACCCACT	TGAAGATTTT	TTTCCTGGGA	1320
15	ACATTATGTC	CCGTAGATCA	GAGGTGGTGT	TGTCTTTTTG	CTTCTACTGG	CCATTGAGAA	1380
	ACTTTGATGA	TAAAAAAGAA	CGGTATAGAT	TTTTCAAACG	TATATAAAAT	ATTTTTATGT	1440
50	TATATGTTAT	GCCATAACTT	AAAATAAAA	ATAGTTTAAA	ATTCTATGCT	AGTGGATATT	1500
	TGGAACTTTT	TCCTCAAACA	AACACCCCAC	ACTGACTTCA	GCAAAACCCT	AAAACTAGCT	1560
	ACAGATTACT	ACTACGAATG	AATCATYAAG	TTTTGTGTCT	GCAACAATTT	AGAAGCACTA	1620
55	AGCCCAAATA	TCAGGAAATG	TGTGTATGAT	GGAATTTTCT	AGGACAAAAC	AGATCAAGAT	1680
	TAAAACAGGA	TCAAGGATTA	ATGGTATAAA	AATGGTCTAC	TAAAACAGGA	TCAAGGATTA	1740
50	AAACAGGATC	AAGGATTAAT	GGTATAAAAA	TCTCTACTGG	TTACCGGGTG	GCNGGGCCAT	1800
-							

•	ACAGGGTAGT GGTGGATGGA TAGTTTAGTT TGGNAAGGGT AA	1842
5	(2) INFORMATION FOR SEQ ID NO: 161:	
10	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 770 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 161:	
	GGCACGAGCC CTATGCTGTT CTTGTGATAA TGAGTGAGTC TCACAAGATC TGGTGGTGTT	60
	ATAGGCATCT GGCATTTCCC CTGCTGACGC TCATTCTCTA TCCTGCCACC CTGGGAAGAA	120
20	GTGTCTTCTG TCATGATTGT AAGTTTCCTG AGGCCTCCCC AGCTATGTAG AACTGTGAGC	180
	CAATTAAACC TCTTTTCTCT ATAAATTATC CAGTCTTATA TATTTCTTCA TAGCAGTGTG	240
25	AGAACAGATA ATACCGTAAA TTGGTATCAC AGAGAGTGGG GTGTTGCTAT AAACACATCT	300
23	GAAAATGTTA AAGCAAATTT GGAACTGGGT AACAGGCAAA GGCTGGAACA GTTKGAAGAA	360
	CAGTTAAGAA GAAGACAGGA AAATATGAGA AATCTTGAAA CTTCCTAGAG TCTTAAAGGT	420
30	CTCAGAAGAC ATGAAGATGT GGGAAGCTTT GGAACTTCCT AGAGACTTGT TTGAATGGCT	480
	TTGACCAAAA TGCTGATAGT GATATGGACA ATGAAGTCCA GGCTGAGCTT ATCCAGACAG	540
25	ACATAAGAAG CTCGCTGGGA ACTTGAGTAA AGATCACTCT TGCTAGGCAA AGAGACTGGT	600
35	GGCCTTTTTT CCTCTGCCCT AGAGATCTGT GGAAATCTGA ACCTGAGAGA GATGATTTAG	660
	GGTATCTGGC AGAAGAATA TCTAAGCGGC AAAACCTTCM AGAGGAAGCA GAGCATAAAC	720
40	GTTTGAAAAA TTTGCAGCCT GACNATGGGA GACCAAAGTT AAACCCAATT	770
45	(2) INFORMATION FOR SEQ ID NO: 162:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 519 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 162:	
55	GAATTCGCCA CGAGCTGAGA GGCACAGGAG CAACAGCCAG TGCCCCCTGC AGAGGACCAC	60
	TGGGGTCACA GACTTCARAC CTGATGACCT GGGCTCAGAT CCCAGCTCTG CACCTACCAG	120
60	CCGTGTGACA AGGTGTCCTC TCTGAGCCTC AGTCACACAC TGCCTTAACG GTTGGGCCTC	180

414

	ATGGAGCTGT TTGTGAAGGT TAAATGGGAA GACATAAAGC ACTTAGCCCA GAGCCAAGGA	240
	CATGCTGAAT AGGATAATGG TGGCCTCCTT TGGCGCTGTG CTGGTGCAGG TGTGCCGAGG	300
5	AAYTGGGCAG GGGTGACAGA TACCTCTTCT AACCTAGTTC CTTTCCAAGA ACCTAATTGG	360
	TGTCTCTCCC TCCCCCAGGC AATTGGAAGG AGGAGGCTGG GCCCCAGCCC CAGAATACGG	420
10	GAGGTTTCTC ACCGTGGTAG GGAAATTGCT GGGTTGGGGG TGTGGGCAAC CACAGTGATC	480
10	GTCTCTCTGC AGGACGGATG AGGCTTTGCT GACAGAGGC	519
15	(2) INFORMATION FOR SEQ ID NO: 163:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 753 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163:	
23	GGCACGAGCG GCACGAGCAG CCAGTTGCTG ACTGGCACAT GGCCTCCAGC GTCCCGGCTG	60
	GTGGGCACAC TAGAGCCGGA GGGATCTTCT TAATTGGTAA ATTGGATCTT GAAGCTTCAC	120
30	TGTTTAAATC TTTTCAGTGG CTTCCCTTTG TACTTAGAAA AAAATGCAAC TTCTTCTGCT	180
	GGGACTCATC CGCTCACAGC CTTCCCCTCC ACCCTCTCTC TGCCTCATGC TCTGCCCCTG	240
35	CCTGCCATGC CTCCGATACT CACCTTTTGT ACCCCAGCAC CCGTGCCCTC TGCCCCTCGA	300
	TCTTTGCCTG GCTGGTTGCT CCTCACTCAG TGTTCAGGAC AAATGCTCCT GGCCCTACCC	360
	CATCTAGCCA GTCTAGCCCG GTCTTCCCTG TCTTCCCTGT TTCATTCATG GCTCTTATTG	420
40	TTTGTTWACT TGTGTGCTGT TGACTTTTAA CTCTCTCAGT CCCCACTGGA ATGCAAGCGA	480
	TCTCCCAAGC TCCTAGAATT GTTCCTGCCT CTTCACAGGC CCTTACGCTG TGTGTGCTCG	540
45	TGCCGAATTC GGCACGAGGG TATGTGCACT TGCTGGTATG TATGTAGGTG TTTGCTAACA	600
	CATACGTGCA CACGCAGAAT GCTTCCAGGG GACTGCACAG CCTCTAGTTC GCAGCCCCCA	660
	CCCCTCCCTT TGSCCCTGCA CTCTCCCCTC TCTGAGCTGC ATTCGCATGA AAGGGTGCAN	720
50	GGTTCCTGAN CCCGCNAGCG NCACCTCCTG GGA	75:
55	(2) INFORMATION FOR SEQ ID NO: 164:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1400 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 164:

5	GGCACAGTTT	ATTAATACCT	ATTATGGGAA	AGTCACTTIG	GTTGGCATTG	AAAATTACAT	60
	CATCTTTAAA	GCAGTATTIG	TOCCCAGATG	GACTCATCAC	TAGCAAAGAC	TAGGTTCATT	120
10	GGAAGGCATA	GGGTGAGAGA	ATGGGAAGAT	GRAGTGGAGG	CGGGTTGTTA	AAGTGCTGTC	. 180
10	AGTGAGTGAT	TTTGTCTACT	TGAATAATGG	TCCATGTTTG	GGGGCATATT	GTGTTTCATA	240
	AGAAGTGAAA	GGTATTTGCA	AAGTAAGCTA	CAAATGACCC	ATAAATCTGT	TAACAACAGT	300
15	CCTTAATATG	CAAAGATGAA	AAACAAGCAT	TACTGCTACC	CAAAGGGAAC	TGGTGCTTGG	360
	TGATGTGCAG	ATGGGGCTGT	TGGTTAAGAG	AGCTATTACA	GGTTTTCTCT	CTTAGGTTTC	420
20	ATAGGAGGTA	GTTACTGAGA	TGAGATTGTT	TTATCTTTTT	GAATACAGAT	CTCTTGTCTT	480
	GAGTTAGTTC	TGAGGATGGG	AGTAATAAAG	GAGTTTTTTG	TTTTTTTGTT	TGTTTGTTTG	540
	TTTTGGCTCC	TTAGTAATAC	TCCTCTGACA	TTTATTTCTA	TTATTCTTCA	AAGAAAGGAA	600
25	ACCAACTGAA	ATGTTTGCTT	TAACAAACAT	TTTAATAAGT	TCTCTGGGTT	TTTTTTTCCC	660
	CTTTTAAAAA	AATTAGCATA	TACCATAGCA	ATAAAAGAAC	TAATGTTAAC	TATTGTATGC	720
30	TACAACTTAA	GTGATTTTTC	TAAAGAAGCA	CAATGTCATT	GRAAGTATTA	TTGAAAAGGA	780
	TCATAGTCAC	ATTGAATTTG	TGAAGGCCAA	AGAAATTGAA	GGGAGTGATA	TTTTCATTTT	840
	ATGATATTCA	CATATTTAGT	AAATTTTGTG	TACAAGAATA	CCAGGCAGAG	TGTTTTACCC	900
35	ATGGAAACAG	GTTTCAGATT	ACTITGTTTT	TACTGTTAGA	GTCTCAAGTT	TAGAAATGCT	960
	AACACTTAAA	TCAGTTTTTT	TCTÇACTATA	CTTGAAGATT	GTTAATATTT	TGATATCTTC	1020
40	CTAGCTTGAT	GGAATTTAAA	CATATCTTCA	GATCTGTGAC	AGTGACAGCC	AATAGGACTG	1080
	ATAATATTAG	CTTCAAACCA	ATAATATCCA	GGGTTAAAAT	AAAAATCATA	GTGAAAGTAC	1140
	GATTGTAAAA	TTATGCTATA	TTAACTTTTA	AGTCTGTAAT	AACTTGACAT	CAAAATGTTA	1200
45	TGTAATTACC	ATAAATAATG	GCTAGCGAGA	ACATCTTTGG	AAATTCTCAA	ATTACCTTTC	1260
	TTACTACACT	GTTTGCAGAA	TGAATGTAGA	AATGATCCTG	TTAGCTTTCT	GAATGTTCTG	1320
50	TGGTTGAATG	TGTTTTTGCT	TAAATAAAGC	TTTTGGTATT	TGTTTAAATW	АСААААААА	1380
	АААААААА	AAAAACTCGA					1400

55 .

- (2) INFORMATION FOR SEQ ID NO: 165:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2153 base pairs
- 60 (B) TYPE: nucleic acid

416

(C) STRANDEDNESS: double

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 165:

(D) TOPOLOGY: linear

20

25

35

40

45

50

55

CAGCCCTTTG TGAGGCGCTC TTGGCCCTGG GCTGGAGGGA GAACTTTAAG CTTTTTTGCT 240

CACAGGGACG TGGTATGGGC CCTGGGTGCA GGTGCCCACA TTCTGCTAAT GAGAGCTTTG 300

TCTGATCAGT CCTGGGTCCA TCAGTTTGTC CATGTGTCCG GCTGCCAGCC CGTCCCTTGG 360

GATCCTTCCC CTGGGGTGTA GCCTTGTTCA TTAGTATATA CTCATTCCTT CATGCTTTCC 420

TCAGCAGAAC ACTTCCACTT CTGAGGTGAG CTTTTGCCCC RTGCCCTTCC TCCACAGGTG 480

TTGCCTTTTT ATAAAGACCT GATAGCAGAA TAAATTGGTG TTTCCCTGTT GACCCAGCAC 540

CATTTCTGTG GGCCTAGAAT ATGGCCCTCA ACCCTTAGAG TGGGGCAGTG AGGCCTTGAG 600

GAGTGACCCT TCCTTTCTCA TGGTTTTAGT CATTTTGGCT GCCAGCCCTT AATGGCACAG 660

ATCTGCTGCT TCTAACAGAT GGCCAGGAGG TGACACCGAT TTCAGCCATT GCCAAGGTTA 720

30 GCACCCTCTC CTTTGAGCCT AGGGCCACAC TGTTCATTGT CACTTTAGGC AAGTGCCTGT 780

TTGGCTTTAA AGGTAAGCCT GCCAGCTGTG AGAAGCCTTG GTAACTGATG GACTCATTTC 840

CTGGTCCTTA AAGATGCAGC CTCTTAAGGG CTCCTTGATG GATGCCATCT CTCCTAGCCC 900

CCAGCCCTGG TGCCACTGGT GGGCAGGTTC CCATTCTTTG GGGCTGGGAG GGACAGCTTG 960

CCTGTTTCTG GTCACAAATT ACAGTCTTCT CTCCTGTACC ATTCTGTGC TTCAGCATGG 1020

GGGCAGTAGC CTTTCATTAG TGTAGATAGT CATTCCCTGG TAGGGTGGAG GGTAAGACAT 1080

AGGGTCTGGA ACTGTTTGGG ACCTTTTGGG GATGTCCTGT GCCTCCCAGA TTCCTMGATT 1140

CTGGGAGGAG AGGCTGCCGC ATTCTGCTGC TCCTCACAGC GAGCAAAGCT GCACCCACTT 1200

ACATTCAGTA TTTTCCTGGC ACTACAAAGA GTGGGAAGGC CTGGGATTTG CTGCTGCTCC 1260

CTTAGAGCAG GGCCCCTYTT TTCAGCACTT TGGACACCTG GAGACCCAGC CCTGTTATTT 1320

AATGGTAGTG GGCAAGTGTG TGTGCATACT GTCTGCCACT GCTTTCTCCC TGCCCCATGC 1380

CAGAGAGCCC TGTCCCTGCC AGGCCCAGCC TTCTTAGCCC CAACTTGGGA ACAAAGTGCA 1440

ACATGGGATC ATGGGTTGGG GTGCTCAGGT GAGCCCTCTC TATAGTGCTT CCCTGGGCCA 1500

AGCTGACACC AÇCCCTGAG GGTGGGGTGG GACGGGTGGT GCTTAAAAGA GGAAGGGGAC 1560

CAGTGTAGCA ACTTGCCAGG GACCCCACCC CTCCCTCTCT GGGCCTGTGC AGTGAGCATG 1620

60 GGGATTCCCA TCAAGGGGCC TGGCACCTGT GCTAGTTACG TAGCCGCTGN TCACGCGCTC 1680

417

WO 98/54963

	ACTCCTGACC ACATGCACGT TCCCTAGATG CAGACTGCTT TGAACTTTAA AGCTGTACAA	1740							
5	TTTGGTTATG TTTGTGCTGA CTTAAAATAT ATTTTAATGA GGAAAAAATA ATGGAGAACC	1800							
3	CTGGGAAGGA CCTGGTTCTT TTGCTTCTCG GGGAACTGTA AGCCCTCGCG TTCTGGGAAT	1860							
	CGCTCTCTGC TGCTCTTTCC TGGAAGCTAA GCCTGTCTCC ACCGCCCGAG GCCTGCGCCG	1920							
10	GTGCTCCCGC CGCAGTTGCG TTTGCTTTGG ACCTTGCGTG CGGGGGAGGG GGTGCTCGGT	1980							
	CCGAGCCCGC TCCTTTCTGT ACACCTAGCG CTGCCCGCCC CGCTTGTGTC TGAGGTCGTG	2040							
15	TATGTCAAAA ATAAAGCCGC TAGAAACGGA AAAAAAAAAA	2100							
13	AAACTCGAGG GGGGGCCCGT ACCCAATTAA CCCNNTATGA TCTATAAAGC GTC	2153							
20	(2) INFORMATION FOR SEO ID NO: 166:								
	-								
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1251 base pairs(B) TYPE: nucleic acid								
23	(C) STRANDEDNESS: double (D) TOPOLOGY: linear								
	(xi) SEQUENCE DESCRIPTION: SEO ID NO: 166:								
30	GCCCACGCGT CCGCCCACGC GTCCGGCGGT GCGGAGTATG GGGCGCTGAT GGCCATGGAG	60							
	GECTACTGGC GCTTCCTGGC GCTGCTGGGG TCGGCACTGC TCGTCGGCTT CCTGTCGGTG	120							
35	ATCTTCGCCC TCGTCTGGGT CCTCCACTAC CGAGAGGGGC TTGGCTGGGA TGGGAGCGCA	180							
	CTAGAGTTTA ACTGGCACCC AGTGCTCATG GTCACCGGCT TCGTCTTCAT CCAGGGCATC	240							
	GCCATCATCG TCTACAGACT GCCGTGGACC TGGAAATGCA GCAAGCTCCT GATGAAATCC	300							
40	ATCCATGCAG GGTTAAATGC AGTTGCTGCC ATTCTTGCAA TTATCTCTGT GGTGGCCGTG	360							
	TTTGAGAACC ACAATGTTAA CAATATAGCC AATATGTACA GTCTGCACAG CTGGGTTGGA	420							
45	CTGATAGCTG TCATATGCTA TTTGTTACAG CTTCTTTCAG GTTTTTCAGT CTTTCTGCTT	480							
	CCATGGGCTC CGCTTTCTCT CCGAGCATTT CTCATGCCCA TACATGTTTA TTCTGGAATT	540							
	GTCATCTTTG GAACAGTGAT TGCAACAGCA CTTATGGGAT TGACAGAGAA ACTGATTTTT	600							
50	TCCCTGAGAG ATCCTGCATA CAGTACATTC CCGCCAGAAG GTGTTTTCGT AAATACGCTT	660							
	GGCCTTCTGA TCCTGGTGTT CGGGGCCCTC ATTTTTTGGA TAGTCACCAG ACCGCAATGG	720							
55	AAACGTCCTA AGGAGCCAAA TTCTACCATT CTTCATCCAA ATGGAGGCAC TGAACAGGGA	780							

GCAAGAGGTT CCATGCCAGC CTACTCTGGC AACAACATGG ACAAATCAGA TTCAGAGTTA

AACAGTGAAG TAGCAGCAAG GAAAAGAAAC TTAGCTCTGG ATGAGGCTGG GCAGAGATCT

60

840

	ACCATGTAAA	ATGTTGTAGA	GATAGAGCCA	TATAACGTCA	CGTTTCAAAA	CTAGCTCTAC	960
	AGTTTTGCTT	CTCCTATTAG	CCATATGATA	ATTGGGCTAT	GTAGTATCAA	TATTTACTTT	1020
5	AATCACAAAG	GATGGTTTCT	TGAAATAATT	TGTATTGATT	GAGGCCTATG	AACTGACCTG	1080
	AATTGGAAAG	GATGTGATTA	АТАТАААТАА	TAGCAGATAT	AAATTGTGGT	TATGTTACCT	1140
0	TTATCTTGTT	GAGGACCACA	ACATTAGCAC	GGTGCCTTGT	GCAKAATAGA	TACTCAATAT	1200
	GTGAATATGT	GTCTACTAGT	AGTTAATTGG	ATAAACTGGC	AGCATCCCTG	A	125

15

20

30

35

40

45

50

55

(2) INFORMATION FOR SEQ ID NO: 167:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 882 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167: 25

GACSMTCTAG AACTATGGTC CCCCGGGACT GCAGGAATTC	GGCACAGCGG CTGCGGGCGC	60
GAGGTGAGGG GCGCGAGGTT CCCAGCAGGA TGCCCCGGCT	CTGCAGGAAG CTGAAGTGAG	120
AGGCCCGGAG AGGGCCCAGC CCGCCCGGGG CAGGATGACC	AAGGCCCGGC TGTTCCGGCT	180
GTGGCTGGTG CTGGGGTCGG TGTTCATGAT CCTGCTGATC	ATCGTGTACT GGGACAGCGC	240
AGGCGCCGCG CACTTCTACT TGCACACGTC CTTCTCTAGG	CCGCACACGG GGCCGCCGCT	300
GCCCACGCCC GGGCCGGACA GGGACAGGGA GCTCACGGCC	GAYTCCGATG TCGACGAKTT	360
TCTGGACAAK TTTCTCAGTG CTGGCGTGAA GCAGAGTGAC	YTTCCCAGAA AGGAGACGGA	420
GCAGCCGCCT GCGCCGGGGA GCATGGAGGA GAGCGTGAGA	RGCTACGACT GGTCCCCGCG	480
CGAMGCCCGG CGCACCCAGA CCAGGGCCGG CAGCARGCGG	ANCEGAGGAR CETECTECEG	540
GGCTTCTGCG CCAAYTCCAG CCTGGCCTTC CCCACCAAGG	G AGCGCGCATT CRACGACATC	600
CCCAACTCGG AGCTGAGCCA CCTGATCGTG GACGACCGGC	ACGGGGCCAT CTACTGCTAC	660
GTGCCCAAGG TGGCCTGCAC CAACTGGAAG CGCGTRATGA	A TCGTGCTGAG CGGAAGCTGT	720
GCACCGCGTG CGCCTACCGC GACCCGYTGC GNTCCCGCGC	GAGCACGTGC ACAACGCCAG	780
CGCGCACTGA CTTCAACAAT TCTGGCGCCG CTACGGGAAC	TCTCCCCCAC CTCATGAAGT	840
CAAGCTCAAG AATACACCAA TTCTTTCTGC GCGACCCTTC	TG .	882

⁽²⁾ INFORMATION FOR SEQ ID NO: 168:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1208 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 168:

10	GGGAAACTCA	AAAGGATGAT	GGAATGGTTG	ATGGAGCCAG	AGCCTAGAAG	TRAAGGGATA	. 60
10	CAGAGTGAAG	ATAGAGGTAT	TTACGTATAT	TTWAATATTA	GCTTTGGAAT	TACGTAGGGA	120
	TTCTTAAGAA	AAGATCATGA	CAGGACAGCC	ACATTTGGTA	AAATGTCAGG	GCAGCCAGTG	180
15	CATGGTCCTC	CTGGGGCTCC	TCAGTTGACG	GGTTTAAATC	ATTTCCTGAT	CCCCCTGCCC	240
	TGGTTTGAGG	AATGCATACA	GTACGTGAAA	TGCCTGTGGT	ATGAGTTGCA	ATGGGCAATC	300
20	AACCTGGGTA	AATCCAAGAT	TAATGATTAG	TTCTAAAGAT	CCAGTTGAAG	TTCTAGAGTG	360
20	GGAATTTTCC	GTCAAGCARC	TCAGCACAGC	TTTATGCCTG	TTCCTCTAAT	AACGATAGGT	420
	AACAAATAGC	TGTGTKTWCA	CAGCTAGGAR	GATAACCAAA	TCTAGAGTTC	TTGARTCTCA	480
25	TTTAATAAAT	AAKTATTATG	AGTACCAACT	GCATATTTCA	GGCACTGCAT	TTGACTCTGT	540
	TAAATACTGA	TYCCTTAKGA	CMSCCACWIC	AGAWAACMTT	AATCTGTCTG	ATCAATAAAC	600
30	AGCTTGACTT	AGAGRGGTAA	AATAGCTTGC	CACAGGTWAC	CCAATTAGTA	GGTAACAGCG	660
50	ACAGAATAAC	AGTGCAGTTA	AAATCTTAGA	CTGGAGACTA	ATTGCATAAG	TTTGAATTTC	720
	AGTTCTGCTA	TGTAAATTTG	GGTGAGTACC	TTAATTYACC	TGAGTCTCGG	TCTTTATATC	780
35	TGTAGAATGG	AGCTAATGAT	ATTACTTAAT	TTGCTTTATG	TGAGATTAAA	TGTACTAATA	840
	TATGTAAATC	ACTTACAACA	GCAŢŢŢĠĀĊĀ	TATTTGACAT	ACTTAATATA	TTTGCTACTA	900
40	ATACTATTAG	CAACAGCATT	CTGATTTTCC	AAGTTGAAAT	TCAGTGTTTT	CTTTTTTACT	960
40	TTGCCATAAT	TTACAATGTT	GTGCTCTGTA	AACCATAAAT	TTCCCTGAGG	TGTTGTCAGG	1020
	TTAAAAAAAA	ATCACTATGG	CCCCCARNMA	CTTGGAAAAT	AGAAATGAGA	CCAGCTTCAT	1080
45	СТАТАТТСТТ	TACTGCAAAT	AACTTAGAAT	TGTAATAGGC	TAATATGTAC	TGGGACTTCC	1140
	AATTTGGGAA	TATGACAAAA	АТААТАСТАТ	TTAGCTAAAA	CATATACAGA	ACTTATTTTT	1200
50	CCTCTGAA						1208

(2) INFORMATION FOR SEQ ID NO: 169:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1307 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

60 (D) TOPOLOGY: linear

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:	169:
------	----------	--------------	-----	----	-----	------

5	GGCACGAGAG	AAAAGAGGTT	GAGAATGTTT	TCTAGCAGGC	AGAATGTGCA	TACATGTTTT	60
	CATGARTGTC	CTTTGGGTGC	TGTTTCTTTT	AAATCCTCTG	TGCACAGGGC	TCTGGCCTTT	120
	ARTAAACTGT	TTTTCTGTCT	TACGTCATGC	TGACTGGGTG	CTAGGGGCTG	ATTACAAAGG	180
10	GGAAGAGTTG	AACAGACATC	AGGGGCCGAT	GAAACCAAAG	GACTAGGAGT	CAGGAGAACA	240
	AGTCAGGGAT	TAGGAGACAG	CGGTTTGGTT	TATTGTTATC	CAGCTGGAGG	ACTCCTAGGG	300
15	GCAGCAGCAG	GAGGAATACC	AGGCCACGG	AGGGGCAGGA	GTCTCACAGT	GGAGGGCAGA	360
1.5	CTCTAACAGA	TGCCAGCTGA	ACGCTCGCTG	GCCCTGGATG	TCATACGAGT	TGGGGACCAG	420
	AAATCTGGGC	TCAGAGAACC	CGTCCAGGGA	GATTTGAAGC	CATGGGTTAT	CTTCTAGAGT	480
20	TGATACTGAT	AATATATTT	AATTTTTATT	GATGTTTAAT	ACCTTCTGAA	ACAGGAGGGT	540
	AAGATCAGAT	GGGAAGCCCY	TCTGTTGAAG	GATCTTGGGA	ACCTTGGTGG	TTTTTTTTT	600
25	TTGGTTTTTT	TTTTTTGAT	CGAGCTGTGG	ACATCCTTCT	TAATTCGATT	NTGAGGATTT	660
-5	GTTTAACTAA	AAAGTTCCCA	AACACAGAAA	GGCCTCCCC	ACCTGCTTTG	GGGAGCTGTC	720
	TGTSCTGGGA	GTGCCAGGCA	TCCSATGGGA	CCCATCACTG	CCAGTGTCTG	TGCCTCCCAG	780
30	AGGTCAGCCC	TGTGTCTGCC	CTGGCTCTGT	CTCCTCTGTG	ACAGGGCAGA	GCATTTCTGG	840
	TCAGTTTCTC	CATGGTGCCT	CCCACCCCTT	TGTAAAGTGG	ATGGACATGA	TGGAATTCAG	900
35	TTGTCTCACC	CTGATAGCCT	GGGTGTTGAT	ATTCACTTTA	CCCGCACTCA	GACACAGGCG	960
,,,	ACCTTGAAGC	AGTTCTCGGT	GTGTAGAGTC	CACGTGACAG	TCCCCACAGC	CTCCCCAGAT	1020
	AGCTGTGTGC	CTGTGCGCTA	CTCCTGTGCC	ATTTTCCCAA	CTTNGGCGTT	TCACTAAATG	1080
10	CAGCTGATCT	CTCTCTCTGT	GCACTCGTGA	TCCATGTTGA	ACAATACATG	TAGGTTCTTT	1140
	TTCCACGCAA	TGTAAGAACA	TGATATACTG	TACGTTGGAA	AGCATTTACC	TTATTTATAT	1200
15	ACCTGAATGT	TCCTACTACA	САААТАААСА	ТАТАТТАААТ	WCTAAAAAAA	AAAAAAAA	1260
	CTGGAGGGGG	GGCCCGGTAC	CCAAATCGCC	GGATAGTGAT	ССТАЛАС		1307

(2) INFORMATION FOR SEQ ID NO: 170:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1624 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 170:

60

	GGCACGAGGT	CCCCCCCCCC	GCCGCCTGGA	ATTGTGGGAG	TTGTGTCTGC	CACTCGGCTG	60
	CCGGAGGCGA	AGGTCCCTGA	CTATGGCTCC	CCAGAGCCTG	CCTTCATCTA	GGATGGCTCC	120
5	TCTGGGCATG	CTGCTTGGGC	TGCTGATGGC	CGCCTGCTTC	ACCTTCTGCC	TCAGTCATCA	180
	GAACCTGAAG	GAGTTTGCCC	TGACCAACCC	AGAGAAGAGC	AGCACCAAAG	AAACRGAGAG	240
10	AAAAGAAACC	AAAGCCGAGG	ACGAGCTGGA	TGCCGAAGTC	CTGGAGGTGT	TCCACCCGAC	. 300
10	GCATGAGTGG	CAGGCCCTTC	AGCCAGGGCA	GGCTGTCCCT	GCAGGATCCC	ACGTACGGCT	360
	GAATCTTCAG	ACTGGGGAAA	GAGAGGCAAA	ACTCCAATAT	GAGGACAAGT	TCCGAAATAA	420
15	TTTGAAAGGC	AAAAGGCTGG	ATATCAACAC	CAACACCTAC	ACATCTCAGG	ATCTCAAGAG	480
	TGCACTGGCA	AAATTCAAGG	AGGGGGCAGA	GATGGAGAGT	TCAAAGGAAG	ACAAGGCAAG	540
20	GCAGGCTGAG	GTAAAGCGGC	TCTTCCGCCC	CATTGAGGAA	CTGAAGAAAG	ACTTTGATGA	600
20	GCTGAATGTT	GTCATTGAGA	CTGACATGCA	GATCATGGTA	CGGCTGATCA	ACAAGTTCAA	660
	TAGTTCCAGC	TCCAGTTTGG	AAGAGAAGAT	TGCTGCGCTC	TTTGATCTTG	AATATTATGT	720
25	CCATCAGATG	GACAATGCGC	AGGACCTGCT	TTCCTTTGGT	GGTCTTCAAG	TGGTGATCAA	780
	TGGGCTGAAC	AGCACAGAGC	CCCTCGTGAA	GGAGTATGCT	GCGTTTGTGC	TGGGCGCTGC	840
30	CTTTTCCAGC	AACCCCAAGG	TCCAGGTGGA	GGCCATCGAA	GGGGGAGCCC	TGCAGAAGCT	900
50	GCTGGTCATC	CTGGCCACGG	AGCAGCCGCT	CACTGCAAAG	AAGAAGGTCC	TGTTTGCACT	960
	GTGCTCCCTG	CTGCGCCACT	TCCCCTATGC	CCAGCGGCAG	TTCCTGAAGC	TCGGGGGGCT	1020
35	GCAGGTCCTG	AGGACCCTGG	TGCAGGAGAA	GGGCACGGAG	CTCCTCCCC	TGCGCGTGGT	1080
	CACACTGCTC	TACGACCTGG	TCACGGAGAA	GATGTTCGCC	GAGGAGGAGG	CTGAGCTGAC	1140
40	CCAGGAGATG	TCCCCAGAGA	AGCTGCAGCA	. GTATCGCCAG	GTACACCTCC	TGCCAGGCCT	1200
10	GTGGGAACAG	GGCTGGTGCG	AGATCACGGC	CCACCTCCTG	GCGCTGCCCG	AGCATGATGC	1260
	CCGTGAGAAG	GTGCTGCAGA	CACTGGGCGT	CCTCCTGACC	ACCTGCCGGG	ACCGCTACCG	1320
45	TCAGGACCCC	CAGCTCGGCA	GGACACTGGC	CAGCCTGCAG	GCTGAGTACC	AGGTGCTGGC	1380
	CAGCCTGGAG	CTGCAGGATG	GTGAGGACGA	GGGCTACTTC	CAGGAGCTGC	TGGGCTCTGT	1440
50	CAACAGCTTG	CTGAAGGAGC	TGAGATGAGG	CCCCACACCA	GGACTGGACT	GGGATGCCGC	1500
50	TAGTGAGGCT	GAGGGGTGCC	: AGCGTGGGTG	GGCTTCTCAG	GCAGGAGGAC	ATCTTGGCAG	1560
	TGCTGGCTTG	GCCATTAAAT	GGAAACCTGA	AGGCCAAAAA	. ААААААААА	AAAAAAAAA	1620
55	AAAA						1624

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2003 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 171:

	•	-		~			•
10	GGCACGAGCC	AGCTTGCAGG	AGGAATCGGT	GAGGTCCTGT	CCTGAGGCTG	CTGTCCGGGG	60
	CCGGTGGCTG	CCCTCAAGGT	CCCTTCCCTA	GCTGCTGCGG	TTGCCATTGC	TTCTTGCCTG	120
15	TTCTGGCATC	AGGCACCTGG	ATTGAGTTGC	ACAGCTTTGC	TTTATCCGGG	CTTGTGTGCA	180
13	GGCCCGGCT	GGGCTCCCCA	TCTGCACATC	CTGAGGACAG	AAAAAGCTGG	GTCTTGCTGT	240
	GCCCTCCCAG	GCTTAGTGTT	CCCTCCCTCA	AAGACTGACA	GCCATCGTTC	TGCACGGGGC	300
20	TTTCTGCATG	TGACGCCAGC	TAAGCATAGT	AAGAAGTCCA	GCCTAGGAAG	GGAAGGATTT	360
	TGGAGGTAGG	TGGCTTTGGT	GACACACTCA	сттстттстс	AGCCTCCAGG	ACACTATGGC	420
25	CTGTTTTAAG	AGACATCTTA	TTTTTCTAAA	GGTGAATTCT	CAGATGATAG	GTGAACCTGA	480
23	GTTGCAGATA	TACCAACTTC	TGCTTGTATT	TCTTAAATGA	CAAAGATTAC	CTAGCTAAGA	540
	AACTTCCTAG	GGAACTAGGG	AACCTATGTG	TTCCCTCAGT	GTGGTTTCCT	GAAGCCAGTG	600
30	ATATGGGGGT	TAGGATAGGA	AGAACTTTCT	CGGTAATGAT	AAGGAGAATC	TCTTGTTTCC	660
	TCCCACCTGT	GTTGTAAAGA	TAAACTGACG	ATATACAGGC	ACATTATGTA	AACATACACA	720
35	CGCAATGAAA	CCGAAGCTTG	GCGGCCTGGG	CGTGGTCTTG	CAAAATGCTT	CCAAAGCCAC	780
<i>33</i>	CTTAGCCTGT	TCTATTCAGC	GGCAACCCCA	AAGCACCTGT	TAAGACTCCT	GACCCCCAAG	840
	TGGCATGCAG	CCCCATGCC	CACCGGGACC	TGGTCAGCAC	AGATCTTGAT	GACTTCCCTT	900
40	TCTAGGGCAG	ACTGGGAGGG	TATCCAGGAA	TCGGCCCCTG	CCCCACGGGC	GTTTTCATGC	960
	TGTACAGTGA	CCTAAAGTTG	GTAAGATGTC	ATAATGGACC	AGTCCATGTG	ATTTCAGTAT	1020
45	ATACAACTCC	ACCAGACCCC	TCCAACCCAT	ATAACACCCC	ACCCCTGTTC	GCTTCCTGTA	1080
73	TGGTGATATC	ATATGTAACA	TTTACTCCTG	TTTCTGCTGA	TTGTTTTTT	AATGTTTTGG	1140
	TTTGTTTTTG	ACATCAGCTG	TAATCATTCC	TGTGCTGTGT	TTTTTATTAC	CCTTGGTAGG	1200
50	TATTAGACTT	GCACTTTTTT	AAAAAAAGGT	TTCTGCATCG	TGGAAGCATT	TGACCCAGAG	1260
	TGGAACGCGT	GGCCTATGCA	GGTGGATTCC	TTCAGGTCTT	TÇCTTTGGTT	CTTTGAGCAT	1320
55	CTTTGCTTTC	ATTCGTCTCC	CCTCTTTCCT	TCTCCAGTTC	AAATTATTGC	AAAGTAAAGG	1380
33	ATCTTTGAGT	AGGTTCGGTC	TGAAAGGTGT	GCCTTTATA	TTTGATCCAC	ACACGTTGGT	1440
	CTTTTAACCG	TGCTGAGCAG	AAAACAAAAC	AGGTTAAGAA	GAGCCGGGTG	GCAGCTGACA	1500
60	GAGGAAGCCG	CTCAAATACC	TTCACAATAA	ATAGTGGCAA	ТАТАТАТАТА	GTTTAAGAAG	1560

423

	GCTCTCCATT	TGGCATCGTT	TAATTTATAT	GTTATGTTCT	AAGCACAGCT	CTCTTCTCCT	1620
5	ATTTTCATCC	TGCAAGCAAC	TCAAAATATT	TAAAATAAAG	TTTACATTGT	AGTTATTTTC	1680
5	AAATCTTTGC	TTGATAAGTA	TTAAGAAATA	TTGGACTTGC	TGCCGTAATT	TAAAGCTCTG	1740
	TTGATTTTGT	TTCCGTTTGG	ATTTTTGGGG	GAGGGGAGCA	CTGTGTTTAT	GCTGGAATAT	1800
0	GAAGTCTGAG	ACCTTCCGGT	GCTGGGAACA	CACAAGAGTT	GTTGAAAGTT	GACAAGCAGA	1860
	CTGCGCATGT	CTCTGATGCT	TTGTATCATT	CTTGAGCAAT	CGCTCGGTCC	GTGGACAATA	1920
15	AACAGTATTA	TCAAAGAGAA	АААААААА	AAAAAACTCG	NGGGGGGGCC	CGGTACCCAA	1980
	TTCGCCCTAT	AGTGAGCCNA	TTC				2003

20

25

30

(2) INFORMATION FOR SEQ ID NO: 172:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 786 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 172:

60 GGCACAGCGG CACGAGAAGA CTTTGGTGTT TAAGAGATTA ATGTGTTAGC CAGAACAACT CATTTCTCTA CCMGTGTGTA GTCCATTTAT CTTTAAAGAT TTTCTATTGG AATAATTTTG 120 35 AAATTACTTT CTTAGTTTTC TTCATTAAAA ACTAAGAAAA TGCTTTGTTT ATTATGAATT 180 GCTATTTCTC TTGATTATTA TTCTTGGAGA AAGTCTATCA GACGTAATTC TTCTGATTTG CTTCTAGGCT AGAGGAAAAT GTGAAAGATG ACAAATGAAA ATTTCAAAGG TTGTCAGTAG 300 40 TATGACTTCT TTTATCGTTT GTCATTATCA CAAATATATC AACATAGGAC TTTTAAAAGA 360 TATTTTGTAC ATATTGGGCC TTAGTAGGAT TTTGCATGAA TTTTTTTTT CTTTTATGCC 45 CAGAGAGAA GAGCAAAGAA ATAACCAAGG GTGATGTACT CGTATTGAAG GTTTACCAAA 480 540 TAAGGACTGC TTTTATTATG AACTATAGTC TATATTCTAA GTAAATCAAT TTTTCTATTA TGTGTTTTT GTTCCTGCAG GCAAGATCTC TGAACTTTAT GCAGAGGGTT CTTTTAAAAA 600 50 AACAAAGTTG AATTTTTTTA TTTCTTGGAA TATTTTTTTT CATTGATTTC TCCCAAGTAG 660 AGCAGATTCA AATCTCCTTT GTACCCTATG TCTTTTTTGT TTTGCTATTA GCTCAGTATT 720 55 CCGTTTCTAC ATTTTCCTTT CCTAGAACCA GTCAATAAAT GACAAAAAAA AAAAAAAAA 780 786 ACTCGA

5

(2) INFORMATION FOR SEQ ID NO: 173:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1758 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 173:	
	GGGACGAGCC CTGCCCACCT CCTGCAGCCT CCTGCGCCCC GCCGAGCTGG CGGATGGAGC	60
15	TGCGCACGGG GAGCGTGGGC AGCCAGGCGG TGGCGGGGAG GATGGATGGG GACAGCCGAG	120
13	ATGGCGGCGG CGGCAAGGAC GCCACCGGGT CGGAGGACTA CGAGAACCTG CCGACTAGCG	180
	CCTCCGTGTC CACCCACATG ACAGCAGGAG CGATGGCCGG GATCCTGGAG CACTCGGTCA	240
20	TGTACCCGGT GGACTCGGTG AAGACACGAA TGCAGAGTTT GAGTCCAGAT CCCAAAGCCC	300
	AGTACACAAG TATCTACGGA GCCCTCAAGA AAATCATGCG GACCGAAGCT TCTGGAGGCC	360
25	CTTGCGAGGC GTCAACGTCA TGATCATGGG TGCAGGGCCR GCCCATGCCA TGTATTTTGC	420
23	CTGCTATGAA AACATGAAAA GGACTTTAAA TGACGTTTTC CACCACCAAG GAAACAGCCA	480
	CCTAGCCAAC GGTATTTTGA AAGCGTTTGT CTGGAGTTAG AAAGTTCTCT TCTTCAACAC	540
30	GTCCCTCCCC AGGGTGTTCC TCCCTGTGAC CCAGCCGCCT CGACTTCGGC CCGCTTGCTC	600
	ACGAATAAAG AACTCAGAGT TGTGTGTGCA ATGCACACCC AGACACACGC ACGCACACAC	660
35	ACGCGCGCGC ACACACATGC TTTTTTCTGT TCCCCTCCGC TTTCTGAAGC CTGGGGAGAA	720
55	ATCAGTGACA GAGGTGTTTT GGTTTTATTG TTATGTGGGT TTTCTTTTGT ATTTTTTTG	780
	TTTGTTTTGT TTTTAAACAT TCAAAAGCAA TTAATGATCA GACATAGGAG AAACCCTGAA	840
40	TAGAAACAAA ACTITIGAAT GCTGGATTCA AAAAAAAAA AAAGITATCT GGACAGCTTC	900
	TTTGAGACTA TTTAAAAACT GGTACAACAG GTCTCTACAA CGCCAAGATC TAACTAAGCT	960
45	TTAAAAGGTC AAGAAGTTTT ATGGCTGACA AAGGACTCGC GCAACGCAGA AGGCCTTTCC	1020
73	CACCTTAAGC TTCCGGGGAT CTGGGAATTT TACCCCCATT CTCTTCTGTT TGTCTGAGTC	1080
	TCATCTCTCT GCAAGCAAGG GCTGAAATCA TTTTGTTTGG TTGTTTTGAG GGAGAGAGGC	1140
50	GGGGTGGGGG GGTGCAAATC TGCCAGCAGC TCTTACGTAA GGCATGTTTT ATTGGGGAGG	1200
	GCTGAGCTTT TATTITCTCC TCTCCAGTGG GGTTGGCTTT TATTGTTTCT TGTTTGGGTT	1260
55	TGGAATGGAA ATATGGATAG CAGCATAAAG TACTTTTATT TTGACAAAAT TCATTTTTTT	1320
<i>33</i>	CAACAATGGA GACATAGATT TGACCCACAA TAACTTCTCC CCCTCTTTT TTACTCTGCT	1380
	CAAAAAGCAT CTCTCCTCCC ATTACCCAAC CTTGGTCATA AGTGTGCCTG GCTGGTTTGC	1440
60	AGATATTTGT TCTGCTTTGT AAAAATTGGC CATTAGTGCA TTTATTGAGA TGATCTCTAA	1500

	AGAGCTATGC CCTGACCTAC CCCTGATTCT ATGACATTGG GGCCCTTCTT TTGCTGAAAC	1560
5	TGCCTTACGT AATGGTTTTA CTCCTTGAAA GAGATTTGAC GGAATCCATT TTATGCCAAG	1620
J	TGCTGCCCTG CACTGTTTCT GCAATATGTG GTGTATGCTG TGGTGATCTT GCTGGGAATG	1680
	ATTATAAGTG TGTGTGGT GGGGGAGTGG GTATTACATG CATTGCTGAA GAGTCAAAAA	1740
10	AAAAAAAAA AAACTCGA	1758
15	(2) INFORMATION FOR SEQ ID NO: 174:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 888 base pairs	
20	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 174:	
25	CTGTTAGAAT GCCCAGTTTA CCTGGATGGC AACCCAACAG TGCTCCTGCC CACCTGCCCC	60
	TCAATCCTCC TAGAATTCAG CCCCCAATTG CCCAGTTACC AATAAAAACT TGTACACCAG	120
30	CCCCAGGGAC AGTCTCAAAT GCAAATCCAC AGAGTGASMC ACCACCTCGG GTAGAATTTG	180
	ATGACAACAA TCCCTTTAGT GAAAGTTTTC AAGAACGGGA ACGTAAGGAA CGTTTACGAG	240
	AACAGCAAGA GAGACAACGG ATCCAACTCA TGCAGGAGGT AGATAGACAA AGAGCTTTGC	300
35	AGCAGAGGAT GGAAATGGAG CAGCATGGTA TGGTGGGCTC TGAGATAAGT AGTAGTAGGA	360
	CATCTGTGTC CCAGATTCCC TTCTACAGTT CCGACTTACC TTGTGATTTT ATGCAACCTC	420
40	TAGGACCCCT TCAGCAGTCT CCACAACACC AACAGCAAAT GGGGCAGGTT TTACAGCAGC	480
. •	AGAATATACA ACAAGGATCA ATTAATTCAC CCTCCACCCA AACTTTCATG CAGACTAATG	540
	AGCGAGGCAG GTAGGCCCTC CTTCATTTGT TCCTGATTCA CCATCAATCC CTGTTGGAAG	600
45	CCCAAATTTT TCTTCTGTGA AGCAGGGACA TGGAAATCTT TCTGGGACCA GCTTCCAGCA	660
	GTCCCCAGTG AGGCCTTCTT TTACACCTGC TTTACCAGCA GCACCTCCAG TAGCTAATAG	720
50	CAGTCTCCCA TGTGGCCAAG ATTCTACTAT AACCCATGGA CACAGTTATC CGGGATCAAC	780
	CCAATCGCTC ATTCAGTTGT ATTCTGATAT AATCCCAGAG GAAAAAAGGGN AAAAAAAARA	840
	AMAARAARA ARAAAGGAGA TGATGATGCA GAATTCCACC AAGGCTCC	888
55		

(2) INFORMATION FOR SEQ ID NO: 175:

60 (i) SEQUENCE CHARACTERISTICS:

WO 98/54963

426

PCT/US98/11422

(A) LENGTH: 2379 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 175:

		_		-			
	GGCAGAGCTA	GTGTGGACTC	CATCCCCCTG	GAGTGGGATC	ACGNCTATGA	CCTCAGTCGG	. 60
10	GACCTGGAGT	CTGCAATGTC	CAGAGCTCTG	CCCTCTGAGG	ATGAAGAAGG	TCAGGATGAC	120
	AAAGATTTCT	ACCTCCGGG	AGCTGTTGSC	TTATCAGGG	ACCACAGTGC	CCTAGAGTCA	180
15	CAGATCCGAC	AACTGGGCAA	AGCCTGGATG	ATAGCCGCTT	TCAGATACAG	CAAACCGAAA	240
15	ATATCATTCG	CAGCAAAACT	CCCACGGGGC	CGGAGCTAGA	CACCAGCTAC	AAAGGCTACA	300
	TGAAACTGCT	GGGCGAATGC	AGTAGCAGTA	TAGACTCCGT	GAAGAGACTG	GAGCACAAAC	360
20	TGAAGGAGGA	AGAGGAGAGC	CTTCCTGGCT	TTGTTAACCT	GCATAGTACC	GAAACCCAAA	420
	CGGCTGGTGT	GATTGACCGA	TGGGAGCTTC	TCCAGGCCCA	GGCATTGAGC	AAGGAGTTGA	480
25	GGATGAAGCA	GAACCTCCAG	AAGTGGCAGC	AGTTTAACTC	AGACTTGAAC	AGCATCTGGG	540
23	CCTGGCTGGG	GGACACGGAG	GAGGAGTTGG	AACAGCTCCA	GCGTCTGGAA	CTCAGCACTG	600
	ACATCCAGAC	CATCGAGCTC	CAGATCAAAA	AGCTCAAGGA	GCTCCAGAAA	GCTGTGGACC	660
30	ACCGCAAAGC	CATCATCCTC	TCCATCAATC	TCTGCAGCCC	TGAGTTCACC	CAGGCTGACA	720
	GCAAGGAGAG	CCGGGACCTG	CAGGATCGCT	TGTSGCAGAT	GAATGGGCGC	TGGGACCGAG	780
35	TGTGCTCTCT	GCTGGAGGAG	TGGCGGGGCC	TGCTGCAGGA	TGCCCTGATG	CAGTGCCAGG	840
55	GTTTCCATGA	AATGAGCCAT	GGTTTGCTTC	TTATGCTGGA	GAACATTGAC	AGAAGGAAAA	900
	ATGAAATTGT	CCCTATTGAT	TCTAACCTTG	ATGCAGAGAT	ACTTCAGGAC	CATCACAAAC	960
40	AGCTTATGCA	AATAAAGCAT	GAGCTGTTGG	AATCCCAACT	CAGAGTAGCC	TCTTTGCAAG	1020
	ACATGTCTTG	CCAACTACTG	GTGAATGCTG	AAGGAACAGA	CTGTTTAGAA	GCCAAAGAAA	1080
45	AAGTCCATGT	TATTGGAAAT	CGGCTCAAAC	TTCTCTTGAA	GGAGGTCAGT	CGTCATATCA	1140
43	AGGAACTGGA	GAAGTTATTA	GACGTGTCAA	GTAGTCAGCA	GGATTTGTCT	TCCTGGTCTT	1200
	CTGCTGATGA	ACTGGACACC	TCAGGGTCTG	TGAGTCCCAY	ATCAGGAAGG	AGCACCCCAA	1260
50	ACAGACAGAA	AACGCCACGA	GGCAAGTGTA	GTCTCTCACA	GCCTGGACCC	TCTGTCAGCA	1320
	GTCCACATAG	CAGGTCCACA	AAAGGTGGCT	CCGATTCCTC	CCTTTCTGAG	CCARGGCCAG	1380
55	GTCGGTCCGG	CCGCGGCTTC	CTGTTCAGAG	TCCTCCGAGC	AGCTCTTCCC	CTTCAGCTTC	1440
33	TCCTGCTCCT	CCTCATCGGG	CTTGCCTGCC	TTGTACCAAT	GTCAGAGGAA	GACTACAGCT	1500
	GTGCCCTCTC	CAACAACTTT	GCCCGGTCAT	TCCACCCCAT	GCTCAGATAC	ACGAATGGCC	1560
60	CTCCTCCACT	CTGAACTAAG	CAGATGCCAT	CTGCAGAAGT	GCTGGTAGCA	TAAGGAGGAT	1620

600

	CGGGTCATAA GCAATCCCAA ACTACCAACA AGAGGACCTT GATCTTGGCG AAAGCCMTCG	1680
	·	
5	GTGTGGCAGC TTTAGCCTCC TCCAGATCAC ATGTGTGCAA ATTATGGCTT CAGAGGTGGA	1740
	AGATAAACAG TGACGGGGGA ACAAACAGAC AACAAGAAGG TTTGGAAGAA ATCTGGTTTG	1800
	AGACTCTGAA CCTTAGCACT AAGGAGATTG AGTAAGGACC TCCAAAGTTC CCCGGACTCA	1860
10	TGAATTCTGG GCCCTTGGCC NATTCTGTGC ACAGCCAAGG ACTTCAGTAG ACCATCTGGG	1920
	CAGCTITCCC ATGGTGCTGC TCCAACCATC AGATAAATGA CCCTCCCAAG CACCATGTCA	1980
15	GTGTCGTACA ATCTACCAAC CAACCAGTGC TGAAGAGATT TTAGAACCTT GTAACATACA	2040
15	ATTTTAAGA GCTTATATGG CAGCTTCCTT TTTACCTTGT TTTCCTTTGG GGCATGATGT	2100
	TTTAACCTTT GCTTTAGAAG CACAAGCTGT AAATCTAAAA GGCACTTTT TTTAGAGGTA	216
20	TAAAGAAAAA CTAGATGTAA TAAATAAGAT CATGGAAGGC TTTATGTGAA AAAAGTTGAA	2220
	TGTTATAGTA AAAAAAAAG ATATTTATGT ATGTACAGTT TGCTAAAGCC AAGTTTTGTT	228
	TGTATTGATT TCTTTGCATT TATTATAGAT ATTATAAAAT AAAAAAAAAA	2340
25	TCGAGGGGG GCCCGGTACC CAATTCGCCC TATAGTGAG	2379
30		
	(2) INFORMATION FOR SEQ ID NO: 176:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1348 base pairs	
35	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 176:	
10	GCGCCTTCAC GATGCCGGCG GTCAGTGGTC CAGGTCCCTT ATTCTGCCTT CTCCTCCTGC	6
	TCCTGGACCC CCACAGCCCT GAGACGGGGT GTCCTCCTCT ACGCAGGTTT GAGTACAAGC	12
45	TCAGCTTCAA AGGCCCAAGG CTGGCATTGC CTGGGGCTGG AATACCCTTC TGGAGCCATC	18
	ATGGAGGTGA GGGGCAGGGG TGGGGACCGC TATGCCCAGG GTCCCTCAAA GTGCTGGAGG	24
50	GGCTGTRACT TGGTGGGGAG TGGGTCTGTC ACAGCCATCC TCTGTCCAGG GTGGGGCAAG	30
50	GCCTGGGACA GTGCCAGGCA CCCCAGGACC CCTTCCAGGC TTGTCTCCTG CTCCACCGCC	36
	TCAACACCCC CCACCCCTGC CCAAGCTGTT TCTCCTCTGC CTCTCTNVTT CCCTGCCCCA	42
55	GGACTICTCT CTTCTCCTCT GCCTCTCCTT GGACCCCTGC CCTTCCTCTA CCTCTGACCT	48
	GTGAACACAC AGACACATGC TCACACACTA AGTCCCARGC ACACMSAAAG GCAATGTGGA	54

CCAGCACAAA CCTCCACTCT CCCGGCTCCA TCCCARCGGG CCTGTGGCTG GCCATGAAAA

	CTGGGGGCTA	CCTGGAGGGA	AGCATCCTCA	TCCCAGGTGA	GTGGGCACCA	GCCCTTCCCT	660
	GTATGTGTGT	TGTGGGTGGA	AGCAGGCATG	AGAGCATCTT	AGCCCATAGG	TTTGTATTCA	720
5	GGGACTTCCA	AACCCAGACC	TACAAAGAGT	GTGTCTTCTA	CCAGATCTTG	TTCAAAAAAG	780
	GGTTTGTGAT	GATGGAACTA	CACGATAGAG	GGAGTGAGCA	AGAACAATGA	GGATTAGAGT	840
10	GGAGCGTGAA	ATAGTCTAGG	AGCATGGCTT	ССААААСАТА	TGCTGTGAGG	TCTGTCCACC	900
10	TGAGAGTTGG	GCCATGGATT	TAATTCTGAG	CCTCTTAGCA	GGCAAAGCAA	AGACAGAAAG	960
	CAGATCGGCT	GTGGATTTCT	GTCTATAAAA	TGTGAGTTCT	TGGCCGGGTG	CGGTGGCTCA	1020
15	CGCCTGTAAT	CCCGGCGCTT	TGGGAGGCCA	GGGCGGATGG	GTCGCGAGGT	CAGGAGGTTG	1080
	GAAACCATCC	TGGCCGGAAT	GGTGAAGCCC	TGACTCTACT	AGAAGTGCAA	AGATTGGCTG	1140
20	GGTGTGGTGG	CGTGCGCCTG	TGGTCCCAGC	TTCTCGGGAG	GCTGAGGCGG	GAGAGTTGCT	1200
20	TGGGCCTGGG	AGGCCGAGGT	TGCGGTGAGC	TGAGATCCTG	CCATTGCACT	TCAGCCTGGG	1260
	CACAGAGCCA	GACTCTGGCT	САААААААА	AAAAAAAA	ACTCGAGGGG	GCCCGTACC	1320
25	CAATTCGCCG	NATATGATCG	TAAACAAT				1348

30 (2) INFORMATION FOR SEQ ID NO: 177:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1502 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 177:

40	СТСААААТАА	АТАААТАААТ	AAAAATTTGT	ATTCCATTGA	TTTGGGTAGA	CACCAGGAAT	60
	GTGCATTTCT	AACAAGCTTT	CCAGGCGATC	CTATAGTAAG	TCATCTGTGG	ACTACTTTAA	120
45	GAAACTCTTC	TATAGAGAAT	GGAGTTGGAT	TAATAATAGG	TGATTTTTA	CACTGGACTG	180
-13	ATTCACAAGA	ACCTAAACAG	TAGTCCATGA	AGCTGCTCAT	CTGTGGTAAC	TATTTGGCCC	240
	CGTCTCACTC	TGAAAGCAGC	AGGAGATGTT	GTTTACTTTG	TTTCTATCCC	CTTTGTCTGG	300
50	AGATTAATTT	TGGAATGAAA	GTTTTCTCT	CTATGCCATT	CCTGGTTCTT	TTCCAAAGCC	360
	TCATACAAGA	GGATTAGGTC	ACAATGCATG	CATTACCTTT	TAAAAGAATG	CGATATTGAT	420
55	ACCGATGCTT	ACTITITIT	TTTTTNACTA	CTTGTTTTAT	TCCTTCCAGN	AAAGTATAGC	480
J J	CCGCCTTTCT	ATAGCATAGT	TCTCTTTAGG	TGGAATGATT	CCTATAAGAT	TTCTCATTAT	540
	TAAATCATGC	ATTTTTCAAG	ATGGAATCAA	TMTTTGATTT	AATCTAAGCT	GATATTCTCA	600
60	TTTGTTAGAA	GAACAACCTA	CATGCTAGAG	AGAGAGGAGG	AAATATACCC	ACGACCACAC	660

60

	AGCCAGTTAG TATCCAGTTG GTGCTGGACT CCAGCCAGGT GTCCTGCCTC ATGGTAGTTA	720
5	AATGATATAT AGAAAAGGTA AATTTTTAAA GAAATATTTA TTAATATATT CCTATAAAAC	7 80
	ATTITAAAGG TAACCACATA AAAATGGTTA ATTITTCCAT TCCAAAGTAA ATGCTAAGCA	840
	TGTTTATTAA TGAAGCAGTA CTTCTGATTA GTATATGACA TTCTGAAGTT AATTAAACTC	900
0	ATTGCACTAA ATGTGTCTTC CTTGGTATAG TGGAGGATTT GAGGATTGGA ATATAGAGTA	960
	GAGTGCTTGC TTAAGCCTGG GAGCCCATCT TTATAGCTAT TTGATGTAAG AAAAGAGACA	1020
15	TGGNCCATTT CTAAACTATA TAAGGTGAGT GTGTCTATTC CCAGCAGATA TAAAGGAAAA	1080
	AGGAAACTTT TTTGATTCCC ACCTTCCCAG CCTCACCTAG CCATCTTCCA GCCTCAAATA	1140
	TAGAGATGTT AGTGCAAGGT CCTGGGCTCT AGGTGATCAT TTCATAAGTC CTTTACAGAT	1200
20	AAAGAAAAAG TAGTGTTTGT ATGTTTGTTT TTAAGTAACC CCAAAACAAA TTTATATTGT	1260
	ATTCAGCAAA ATTGGAATTC AGGTGTTTAA TTTTAGAACA TGAAGTGCCT GCTGTTTTAA	1320
25	GCATTGACTT GTATAAAAAG AATTGCATGT CTCCAGTAAG CTTATGGGTT TTCTCATTTT	1380
	TAGGTATATG GCTTTTAATC ATGTAAAGTG AAACATTAGT TTTCTTGCAT TTTATTACAG	1440
	GTTCTTTGTT GCAATAAAGA TGCTGCTGAA ATTAATTGAA AAAAAAAAAA	1500
30	GA	1502
35	(2) INFORMATION FOR SEQ ID NO: 178:	
,,,		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1637 base pairs	
40	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 178:	
45	ATTITCTAGC CCACAAGGAC TGAAGTTCAG ATCCAAAAGT TCACTTGCTA ATTATCTTCA	60
	CAAAAATGGA GAGACTICTC TTAAGCCAGA AGATTTTGAT TTTACTGTAC TTTCTAAAAG	120
50	GGGTATCAAG TCAAGATATA AAGACTGCAG CATGGCAGCC CTGACATCCC ATCTACAAAA	180
	CCAAAGTAAC AATTCAAACT GGAACCTCAG GACCCGAAGC AAGTGCAAAA AGGATGTGTT	240
	TATGCCGCCA AGTAGTAGTT CAGAGTTGCA GGAGAGCAGA GGACTCTCTA ACTTTACTTC	300
55	CACTCATTTG CTTTTGAAAG AAGATGAGGG TGTTGATGAT GTTAACTTCA GAAAGGTTAG	360
	AAAGCCCAAA GGAAAGGTGA CTATTTTGAA AGGAATCCCA ATTAAGAAAA CTAAAAAAGG	420

	TAAAGCAGAT GCTGAAAGTG AACCTGTTGC ACAAAAAAGT CAGCTTGATA GAACTGTCTG	540
	CATTTCTGAT GCTGGAGCAT GTGGTGAGAC CCTCAGTGTG ACCAGTGAAG AAAACAGCCT	600
5	TGTAAAAAA AAAGAAAGAT CATTGAGTTC AGGATCAAAT TTTTGTTCTG AACAAAAAAC	660
	TTCTGGCATC ATAAACAAAT TTTGTTCAGC CAAAGACTCA GAACACAACG AGAAGTATGA	720
۱۸	GGATACCTTT TTAGAATCTG AAGAAATCGG AACAAAAGTA GAAGTTGTGG AAAGGAAAGA	780
10	ACATTTGCAT ACTGACATTT TAAAACGTGG CTCTGAAATG GACAACAACT GCTCACCAAC	840
	CAGGAAAGAC TTCACTGAAG ATACCATCCC ACGGAACACA GATAGAAAGA AGGAAAACAA	900
15	GCCTGTATTT TTCCAGCAAA TATAACAAAG AAGCTCTTAG CCCCCACGA CGTAAAGCCT	960
	TTAAGAAATG GACACCTCCT CGGTCACCTT TTAATCTCGT TCAAGAAACA CTTTTTCATG	1020
20	ATCCATGGAA GCTTCTCATC GCTACTATAT TTCTCAATCG GACCTCAGGC AAAATGGCAA	1080
20	TACCTGTGCT TTGGAAGTTT CTGGAGAAGT ATCCTTCAGC TGAGGTAGCA AGAACCGCAG	1140
	ACTOGAGAGA TOTOTCAGAA CTTCTTAAAC CTCTTGGTCT CTACGATCTT CGGGCAAAAA	1200
25	CCATTGTCAA GTTCTCAGAT GAATACCTGA CAAAGCAGTG GAAGTATCCA ATTGAGCTTC	1260
	ATGGGATTGG TGCACCCTGA AGACCACAAA TTAAATAAAT ATCATGACTG GCTTTGGGAA	1320
30	AATCATGAAA AATTAAGTCT ATCTTAAACT CTGCAGCTTT CAAGCTCATC TGTTATGCAT	1380
50	AGCTTTGCAC TTCAAAAAAG CTTAATTAAG TACAACCAAC CACCTTTCCA GCCATAGAGA	1440
	TTTTAATTAG CCCAACTAGA AGCCTAGTGT GTGTGCTTTC TTAATGTGTG TGCCAATGGT	1500
35	GGATCTITGC TACTGAATGT GTITGAACAT GTTTTGAGAT TTTTTTAAAA TAAATTATTA	1560
	ТТТСАСААСА АТССАААААА ААААААААА АААААААА	1620
40	AAAAAAAA AAAAAAA	1637
45	(2) INFORMATION FOR SEQ ID NO: 179:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2911 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	Ÿ
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 179:	
55	GGTGGTTTTT GTTCTGCAAT AGGCGGCTTA GAGGGAGGGG CTTTTTCGCC TATACCTACT	60
JJ	GTAGCTTCTC CACGTATGGA CCCTAAAGGC TACTGCTGCT ACTACGGGGC TAGACAGTTA	120
	CTGTCTCAGC TCTAGGATGT GCGTTCTTCC ACTAGAAGCT CTTCTGAGGG AGGTAATTAA	180
60	AAAACAGTGG AATGGAAAAA CAGTGCTGTA GTCATCCTGT AATATGCTCC TTGTCAACAA	240

	TGTATACATT CCTGCTAGGT GCCATATTCA TTGCTTTAAG CTCAAGTCGC ATCTTACTAG	300
5	TGAAGTATTC TGCCAATGAA GAAAACAAGT ATGATTATCT TCCAACTACT GTGAATGTGT	360
	GCTCAGAACT GGTGAAGCTA GTTTCTGTG TGCTTGTGTC ATTCTGTGTT ATAAAGAAAG	420
	ATCATCAAAG TAGAAATTTG AAATATGCTT CCTGGAAGGA ATTCTCTGAT TTCATGAAGT	480
10	GGTCCATTCC TGCCTTTCTT TATTTCCTGG ATAACTTGAT TGTCTTCTAT GTCCTGTCCT	540
	ATCTTCAACC AGCCATGGCT GITATCTTCT CAAATTTTAG CATTATAACA ACAGCTCTTC	600
	TATTCAGGAT AGTGCTGAAG ANGCGTCTAA ACTGGATCCA GTGGGCTTCC CTCCTGACTT	660
15	TATTTTTGTC TATTGTGGCC TTGACTGCCG GGACTAAAAC TTTACAGCAC AACTTGGCAG	720
	GACGTGGATT TCATCACGAT GCCTTTTTCA GCCCTTCCAA TTCCTGCCTT CTTTTCAGAA	780
20	ATGAGTGTCC CAGAAAAGAC AATTGTACAG CAAAGGAATG GACTTTTCCT GAAGCTAAAT	840
	GGAACACCAC AGCCAGAGTT TTCAGTCACA TCCGTCTTGG CATGGGCCAT GTTCTTATTA	900
	TAGTCCAGTG TTTTATTTCT TCAATGGCTA ATATCTATAA TGAAAAGATA CTGAAGGAAG	960
25	GGAACCAGCT CACTGAARGC ATCTTCATAC AGAACAGCAA ACTCTATTTC TTTGGCATTC	1020
	TGTTTAATGG GCTGACTCTG GGCCTTCAGA GGAGTAACCG TGATCAGATT AAGAACTGTG	1080
30	GATTITITA TGGCCACAGT GCATTTTCAG TAGCCCTTAT TITTGTAACT GCATTCCAGG	1140
	GCCTTTCAGT GGCTTTCATT CTGAAGTTCC TGGATAACAT GTTCCATGTC TTGATGGCCC	1200
25	AGGTTACCAC TGTCATTATC ACAACAGTGT CTGTCCTGGT CTTTGACTTC AGGCCCTCCC	1260
35	TGGAATTTT CTTGGAAGCC CCATCAGTCC TTCTCTCTAT ATTTATTTAT AATGCCAGCA	1320
	AGCCTCAAGT TCCGGAATAC GCACCTAGGC AAGAAAGGAT CCGAGATCTA AGTGGCAATC	1380
40	TTTGGGAGCG TTCCAGTGGG GATGGAGAAG AACTAGAAAG ACTTACCAAA CCCAAGAGTG	1440
	ATGAGTCAGA TGAAGATACT TTCTAACTGG TACCCACATA GTTTGCAGCT CTCTTGAACC	1500
45	TTATTTTCAC ATTTTCAGTG TTTGTAATAT TTATCTTTTC ACTTTGATAA ACCAGAAATG	1560
45	TITCTAAATC CTAATATTCT TTGCATATAT CTAGCTACTC CCTAAATGGT TCCATCCAAG	1620
	GCTTAGAGTA CCCAAAGGCT AAGAAATTCT AAAGAACTGA TACAGGAGTA ACAATATGAA	1680
50	GAATTCATTA ATATCTCAGT ACTTGATAAA TCAGAAAGTT ATATGTGCAG ATTATTTTCC	1740
	TTGGCCTTCA AGCTTCCAAA AAACTTGTAA TAATCATGTT AGCTATAGCT TGTATATACA	1800
5.5	CATAGAGATC AATTIGCCAA ATATTCACAA TCATGTAGTT CTAGTTTACA TGCCAAAGTC	1860
55	TTCCCTTTTT AACATTATAA AAGCTAGGTT GTCTCTTGAA TTTTGAGGCC CTAGAGATAG	1920
	TCATTTTGCA AGTAAAGAGC AACGGGACCC TTTCTAAAAA CGTTGGTTGA AGGACCTAAA	1980
60	TACCTGGCCA TACCATAGAT TTGGGATGAT GTAGTCTGTG CTAAATATTT TGCTGAAGAA	2040

•	GCAGTTTCTC	AGACACAACA	TCTCAGAATT	TTAATTITTA	GAAATTCATG	GGAAATTGGA	2100
_	TTTTTGTAAT	AATCTTTTGA	TGTTTTAAAC	ATTGGTTCCC	TAGTCACCAT	AGTTACCACT	2160
5	TGTATTTTAA	GTCATTTAAA	CAAGCCACGG	TGGGGCTTTT	TTCTCCTCAG	TTTGAGGAGA	2220
	AAAATCTTGA	TGTCATTACT	CCTGAATTAT	TACATTTTGG	AGAATAAGAG	GGCATTTTAT	2280
10	TTTATTAGTT	ACTAATTCAA	GCTGTGACTA	TTGTATATCT	TTCCAAGAGT	TGAAATGCTG	2340
	GCTTCAGAAT	CATACCAGAT	TGTCAGTGAA	GCTGATGCCT	AGGAACTTTT	AAAGGGATCC	2400
1.5	TTTCAAAAGG	ATCACTTAGC	AAACACATGT	TGACTTTTAA	CTGATGTATG	AATATTAATA	2460
15	СТСТАААААТ	AGAAAGACCA	GTAATATATA	AGTCACTTTA	CAGTGCTACT	TCACACTTAA	2520
	AAGTGCATGG	TATTTTTCAT	GGTATTTTGC	ATGCAGCCAG	TTAACTCTCG	TAGATAGAGA	2580
20	AGTCAGGTGA	TAGATGATAT	TAAAAATTAG	CAAACAAAAG	TGACTTGCTC	AGGGTCATGC	2640
	AGCTGGGTGA	TGATAGAAGA	GTGGGCTTTA	. ACTGGCAGGC	CTGTATGTTT	ACAGACTACC	2700
25	ATACTGTAAA	TATGAGCTTT	ATGGTGTCAT	TCTCAGAAAC	TTATACATTT	CTGCTCTCCT	276
25	TTCTCCTAAG	TTTCATGCAG	ATGAATATAA	GGTAATATAC	TATTATATAA	TTCATTTGTG	282
	ATATCCACAA	TAATATGACT	GGCAAGAATT	GGTGGAAATI	TGTAATTAAA	ATAATTATTA	288
30	AACCTAAAAA	AAAAAAAAA	AAAAACTCG#	A G			291

35 (2) INFORMATION FOR SEQ ID NO: 180:

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 519 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 180:

45	GGCACGAGCC CCAGGCCAGC CAGGGC	CAGG CCTACTTTGG	CCACCCTTAA	ATTAGAATGT	60
	GGGGTCAGGG GTCACAGAAA AGCCAT	TTCT CTGACCTAGT	GTTTGGCGTC	CGGGAACTCT	120
50	GTGCCCAACC TTCAGACCCT GGCAGT	CCTC ACTGAGGCCA	TTGGCCCAGA	GCCCGCCATC	180
50	CCCCGARACC CCCGGGAGCC GCCTGT	TGCC ACGTCCACAC	CTGCCACACC	CTCTGCCGGG	240
	CCCCAGCCCC TCCCAACCGG GACCGT	GCTG GTCCCTGGGG	GICCIGCCC	ACCTTGCCTT	300
55	GGGGAGGCAT GGGCCCTCCT CCTCCC	ACCC TGCCGGCCGT	CACTCACCTC	TTGCTTCTGG	360
	TCCCCCAGGC CTAGCCCTTG GAAGGA	GACA GGAGTCTAGG	GAGGCTGAAG	CCCACTCCCG	420
	GGGAGGCCCG TGCTCCTCCA GCCCC	GGGA CAGCAAGGAA	AAGAGAAGAG	AGCAGAGCAT	480
60					

TTCATGGCTC TAATAAAAAA AAAAAAAAAA AAAACTCGA

519

5

(2) INFORMATION FOR SEQ ID NO: 181:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 968 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 181:

TCCCCTTGGG GCCGGAAAAA GCGGGGTTGG CCTGNCCATT GGTTNTCCAT GCCGCCCGCC 60 CATGCCCCAG TACTAGCCTG CAGTCCCAAT GTAGCCCCTC CCTCYTCCMA GAGCCCYTCM 120 180 AACCGCCCCG STCANTTGTG ATTTCAGGAG GATTTGATGA AGATGTTAAA GCGAAAGTGG 20 AGAACCTTCT CGGGATTTCC AGCCTGGAAA AAACGGACCC TGTTAGGCAA GCACCCTGCA GCCCTCCCTG TCCCCTTCTT CCCCTCCCCT TCYCCCGCCC GTGGAGACAG CTGTTYTCAG 300 25 360 CAGGGCTCTC CGCAGGGAGG GGGCCGGCTC CTTCCCTGGC AGCAACATCC TTGCCCTTGT CACACAAGTC AGCCTCCATC TGCGCAGCTC TGTGGATGCG CTGCTGGAGG GCAACAGGTA 420 TGTCACTGGC TGGTTCAGCC CCTACCACCG CCAGCGGAAG CTCATCCACC CGGTCATGGT 480 30 TCAGCACATC CAGCCCGCAG CGCTCAGCCT CCTGGCACAG TGGAGCACCC TCGTGCAGGA GCTGGAGGCT GCCCTGCAGC TGGCTTTCTA CCCGGATGCC GTGGAGGAGT GGCTGGAGGA 600 35 660 AAACGTGCAC CCCAGCCTGC AGCGGCTGCA ARCTCTGCTG CAGGACCTCA GCGAGGTGTC TGCCCCCCG CTGCCACCCA CCAGCCCTGG CAGGGACGTT GCTCAGGACC CCTGAGGGGA 720 GAGCTCATGC CAGGGGGCTC CTGCTGGAGG CTGGGGGGGC TCTGCWYTKY CWWWIGGCCT 780 40 840 GGGCAATACG GCCCACGTGG GCGTCGTGCC CTCTGGCCCA GCAGTGTCTT GCCCACACTC AGTTCCTGAG GGCCCTGGGC AGCCCCTGGG GGAGAGACTA GAAAACACAG AAGGAAGCAG 900 45 CACAGGGAGA CCCGCTTTGT GATCTGCATG TGTGACACTG ATTCTTTGGA AATAAAGAGT 960 968 GGAAGCTG

50

(2) INFORMATION FOR SEQ ID NO: 182:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1128 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ 1D NO: 182:	
	TGTAAAAGTT ATCAGTAATC CTAATTCTTT TCCTGGGTTT TCCTTTTGTC ACTTATTAAT	60
5	CAGTTTTTGA AAGGACGAAT GAATTTAGAG ATGTACTCTG GAGCAGTATC ATGTTAAACC	120
	AGGGGTATAT TAGAAAAATC ATCCTCATAA TCATTCTGGG AAGITTTTCC TCCCCAAAAA	180
10	AAGCCATCCT GATGGGTTTT CAAAACCAGA AAAAAGCTCT TAATGAGGAA CAGACCACTG	240
10	GAGTACCCAT GAGCATCTCA GGAAAACTGA GACCCTCGAG AAGCCTTGAT TTCGTGCAAC	300
	CCCCAAGGTT TCAGAGCCAG CAGCCCAGTG CTGTGGTTGA CAGACGTGGT TTTKTGGRGA	360
15	AAGCAGCCAG AGGCCAGGAA TTTTCAGAGT CGTGAGTCAC GRTYTCCCAC CCAAGATTAG	420
	AGCAMAGATT AGCCATACTG AGATTTGGTA AAATCATTCT GTCTAAGCAA TGGAGGTGTG	480
20	TGCAMACGTG CAGTGCCTGT TCACAGGGGA TGCAGGCAGA TCSYGGGTTT AGGATGGGGR	540
20	AGGCCACCGC ACCCCCYTTC AYTGCTCTGC ACCTGCTCCC TCACGTGGAC ACTGTCCACA	600
	ACTISTIGGETE TEACAGGACA GITGECECAAG GAGETEATAT CITATIGGAG ATAGGGGGTE	660
25	GTACAGGTGA CATTCATGAG CAGTGTGAGC CGGGTGACAT GGGGGTGTCA ACCCAGCATC	720
	TGTCCAGGAG CTCCTCCTGC AGCGGCTCTG GCAGGTGGCC TGAGGCTCCT TTTTGAGAGA	780
30	GAACTGTTTG GCCTTCCTGT CTCCTCTCCT CTGATCTGTT CTTTCTTGGA ACACCACCCA	840
50	AGAACGTCAC CTCCTCCATC AGATTGTGAG CTCCTGGAGG GCAGGAGCTG TGTCCTTCTA	900
	TTCATCTTCC TATCCCCAGA ACCTTGCACA GATCCTGGAA TGTGGTAGGT GCTCAGTAAA	960
35	TGTGTGTTGA ATAAATGAAT GAATGAATGA ACAAATGAAT GAATTTGCTT ACTTCAAGGC	1020
	AAAAGAACCA TGAAACTGTA TTTTAGAGTTT CTATGTTATA GCAGTCAGCA AATCCTATTA	1080
40	AATACTITGT GTTTCCAAGC AAAAAAAAAA AAAAAAAAA AAACTCGA	1128
	(2) INFORMATION FOR SEQ ID NO: 183:	
45	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2276 base pairs (B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 183:	
	CCGCGGCGTC TGACCTCATG GCGTAGAGCC TAGCAACAGC GCAGGCTCCC AGCCGAGTCC	60
55	GTTATGGCCG CTGCCGTCCC GAAGAGGATG AGGGGGCCAG CACAAGCGAA ACTGCTGCCC	120
	GGGTCGGCCA TCCAAGCCCT TGTGGGGTTG GCGCGGCCGC TGGTCTTGGC GCTCCTGCTT	180
60	GTGTCCGCCG CTCTATCCAG TGTTGTATCA CGGACTGATT CACCGAGCCC AACCGTACTC	240

	AACTCACATA TTTCTACCCC AAATGTGAAT GCTTTAACAC ATGAAAACCA AACCAAACCT	300
5	TCTATTTCCC AAATCAGCAC CACCCTCCCT CCCACGACGA GTACCAAGAA AAGTGGAGGA	360
J	GCATCTGTGG TCCCTCATCC CTCGCCTACT CCTCTGTCTC AAGAGGAAGC TGATAACAAT	420
	GAAGATCCTA GTATAGAGGA GGAGGATCTT CTCATGCTGA ACAGTTCTCC ATCCACAGCC	480
10	AAAGACACTC TAGACAATGG CGATTATGGA GAACCAGACT ATGACTGGAC CACGGGCCCC	540
	AGGGACGACG ACGAGTCTGA TGACACCTTG GAAGAAAACA GGGGTTACAT GGAAATTGAA	600
15	CAGTCAGTGA AATCTTTTAA GATGCCATCC TCAAATATAG AAGAGGAAGA CAGCCATTTC	660
15	TTTTTTCATC TTATTATTTT TGCTTTTTGC ATTGCTGTTG TTTACATTAC ATATCACAAC	720
	AAAAGGAAGA TTTTTCTTCT GGTTCAAAGC AGGAAATGGC GTGATGGCCT TTGTTCCAAA	780
20	ACAGTGGAAT ACCATCGCCT AGATCAGAAT GTTAATGAGG CAATGCCTTC TTTGAAGATT	840
	ACCAATGATT ATATTTTTTA AAGCACTGTG ATTTGAATTT GCTTATGTAA TTTTATTTGC	900
25	TTGACTTTTT ATATGATATT GTGCAAATGT TTGCCATAGG CAATTGGTAC TTAAATGAGA	960
25	GGTGAGTCTC TCTTTTGCCT TGGTGCTTTG GAAATTAAAT GTCACAAACG AGTATATAAT	1020
	TTTTTATCTG TACTTTTAGA GCTGAGTTTA ATCAGGTGTC CAAAATGTGA GTTAAACATT	1080
30	ACCTTATATT TACACTGTTA GTTTTTATTG TTTTAGATTT ATTATGCTTC TTCTGGAAGT	1140
	ATTAGTGATG CTACTTTTAA AAGATCCCAA ACTTGTAACT AAATTCTGAC ATATCTGTTA	1200
25	CTGCTGACTC ACATTCATTC TCCGCCATTC AAATACTATT TTTTATCCAC ATTTTTTTTT	1260
35	GTTCCCAAAC TGTAATGTAC AAGGATATGT GTGATAATGC TTTGGATTTG AGTAATATTT	1320
	TTTTTTCTTC CAAGAAAACT GCTTTGGATA TTTTTAGATA ATTTAAACAT AATTTAGGAT	1380
40	AATGATATTG CTCAATCTGA CCACAATTTT AGGTAAAACA TTAAATGTGT CAGAAATCTT	1440
	GGCAACAGAG ACTCTGCAGC TTGCAGTGGA CATAGATAAA ATGTTACAGA GATACTATTT	1500
45	TTTTGGTTGG AATTACTATA TTAAATTTAG AAGCAGAAAC TGGTAAAATG TTAAATACAT	1560
45	GTACAATTGC TTTTAGTTAG CAATTGATTG TAGCATGGGT TCCTCCAAGG TTTCAAGCAA	1620
	TGGGCAGAGT TTAAAATTAT ATCAGATTCG TTTACTTCGT TTATTATTTT ACAGTAAATT	1680
50	TGAATAAATC TTAGGGGTCA TTATCACTTA AATAATACTG TACCTAGGTC TTTCAAATTA	1740
	AAATTATACC TGAATGAAGT TGTTTGTATA CATAAAGGAT ATTTGTGTAC AATTACCTTT	1800
	TTTCCCCCAC ACTTGTTTTC TTTGTTTTTG TTTTTTATGG CAACTGGAAA GTATTTACTA	1860
55	TGGGATTCAT TTATGTCTGT CTTTCTATCA TAAAGAATTG ATCAATATGT AAATATGTGA	1920
	TTTGAACCAT GGTTGACTTA CAAGTGTCAC TACAGCTTTT TAGAAAACAT AGCCCTAATA	1980
60	TATICITY ACC ACCACCICC TGAGCCAGTG GGCTTGCGCT TTATGTAGAG CTGGAAGAAG	2040

WO 98/54963 PCT/US98/11422

436

	GCCGTCCATC CTGTCTCTTG GGCGGACAGT GTACTTTCCT AATAGGGAAG GGAAGCACAA	2100
_	TGGAAATACC CCTGAACCGT TTTATTGCAG TAATTTTTTT CATATCTGAA ACTATTATTT	2160
5	AATATTTTGA ATAAGATTTT AAAAAATAAA TGGCAAAGAT ATAAATCTAA AAAAAAAAA	2220
	АААААА ААААААААА ААААААААА ААААААААА АААА	2276
10		
	(2) INFORMATION FOR SEQ ID NO: 184:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 2500 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 184:	
	TCCAAGCTAC GCCACTCGGG CTGGGGGCGTT GGGAGCGGGA GTGCAGAGCG TGGTCGTGGC	60
25	GCCGCCGTG AGAAGAGCGA GGCGKAGGAG GGGGTGCCAT GGCCGGGCAG CAGTTCCAGT	120
	ACGATGACAG TGGGAACACC TTCTTCTACT TCCTCACCTC CTTCGTGGGG CTCATCGTGA	180
20	TCCCGGCGAC ATACTACCTC TGGCCCCGAG ATCAGAATGC CGAGCAAATT CGATTAAAGA	240
30	ATATCAGAAA AGTATATGGA AGGTGTATGT GGTACGTTTA CGGTTATTAA AACCCCAGCC	300
	AAATATTATT CCTACAGTAA AGAAAATAGT TCTGCTTGCA GGATGGGCAT TGTTCTTATT	360
35	CCTTGCATAT AAAGTTTCCA AAACAGACCG AGAATACCAA GAATACAATC CTTATGAAGT	420
	ATTAAATTTG GATCCTGGAG CCACAGTAGC AGAAATTAAA AAACAATATC GTTTGCTGTC	480
40	ACTTAAATAT CATCCAGATA AAGGAGGTGA TGAGGTTATG TTCATGAGGA TAGCAAAAGC	540
40	TTATGCTGCT TTAACGGATG AAGAGTCCCG GAAAAATTGG GAAGAATTTG GAAATCCAGA	600
	TGGGCCTCAA GCCACAAGCT TTGGAATTGC CCTGCCAGCT TGGATAGTTG ACCAGAAAAA	660
45	TTCAATICTG GTTTTACTTG TATATGGATT GGCATTTATG GTTATCCTTC CAGTTGTTGT	720
	GGGCTCTTGG TGGTATCGCT CAATACGCTA TAGTGGAGAC CAGATTCTAA TACGSACAAC	780
50	ACAGATTTAT ACATACTTTG TTTATAAAAC CCGAAATATG GATATGAAAC GTCTTATCAT	840
30	GGTTTTGGST GGAGCTTCTG AATTTGATCC TCAGTATAAT AAAGATGCCA CAAGCAGACC	900
	AACGGATAAT ATTCTAATAC CACAGCTAAT CAGAGAAATT GGCAGCATTA ATTTAAAGAA	960
55	GAATGAGCCT CCACTTACCT GCCCATATAG CCTGAAGGCC AGAGTTCTTT TACTGTCTCA	1020
	TCTTGCTAGA ATGAAAATTC CTGAGACCCT TGAAGAAGAT CAGCAATTCA TGCTAAAAAA	1080

GTGTCCTGCC CTACTTCAAG AAATGGTTAA TGTAATCTGC CAACTAATAG TAATGGCCCG

60

	GAACCGTGAA GAAAGGGAGT TTCGTGCTCC AACTTTGGCA TCCCTAGAAA ACTGCATGAA	1200
	GCTTTCTCAG ATGGCCGTTC AGGGACTTCA GCAATTTAAG TCTCCCCTTC TGCAGCTCCC	1260
5	TCATATTGAA GAGGACAATC TTAGACGGT TTCTAATCAT AAGAAGTATA AAATTAAAAC	1320
	TATCCAGGAT TTGGTGAGTT TAAAAGAATC AGATCGTCAC ACTCTACTGC ACTTCCTTGA	1380
	AGATGAAAAA TATGAAGAGG TTATGGCTGT CCTTGGGAGT TTTCCATATG TGACCATGGA	. 1440
10	TATAAAATCA CAGGTGTTAG ATGATGAAGA TAGCAACAAC ATCACAGTAG GATCCTTAGT	1500
	TACAGTGTTG GTTAAGTTGA CAAGGCAAAC AATGGCTGAA GTATTTGAAA AGGAGCAGTC	1560
15	CATCTGTGCT GCAGAGGAAC AGCCAGCAGA AGATGGGCAG GGTGAAACTA ACAAGAACAG	1620
	GACAAAAGGA GGATGGCAAC AGAAGAGTAA AGGACCCAAG AAAACTGCTA AATCAAAAAA	1680
20	AAAGAAACCT TTAAAAAAAA AACCTACACC TGTGCTATTA CCACAGTCAA AGCAACAGAA	1740
20	ACAAAAGCAG GCAAATGGAG TCGTTGGGAA TGAAGCTGCA GTAAAGGAAG ATGAAGAAGA	1800
	AGTTTCAGAT AAGGGCAGTG ATTCTGAAGA AGAAGAAACC AATAGAGATT CCCAAAGTGA	1860
25	GAAAGATGAT GGTAGTGACA GAGACTCTGA TAGAGAGCAA GATGAAAAAC AAAACAAAGA	1920
	TGATGAAGCA GAGTGGCAAG AATTACAACA AAGCATACAG CGAAAAGAGA GAGCTCTATT	1980
20	GGAAACCAAA TCAAAAATAA CACATCCTGT GTATAGCCTT TACTTTCCTG AGGAAAAACA	204
30	AGAATGGTGG TGGCTTTACA TTGCAGATAG GAAGGAGCAG ACATTAATAT CCATGCCATA	210
	TCATGTGTGT ACGCTGAAAG ATACAGAGGA GGTAGAGCTG AAGTTTCCTG CACCAGGCAA	216
35	GCCTGGAAAT TATCAGTATA CTGTGTTTCT GAGATCAGAC TCCTATATGG GTTTGGATCA	222
	GATTAAACCA TTGGAAGTTK GGAAGTTCAT GAGGCTGAAG CCTGTGCCAG AAAATCACCC	228
40	ACAGTGGGAT ACAGCAATAG AGGGGGATGA AGACCAGGAG GACAGTGAGG GCTTTGAAGA	234
40	TAGCTTTGAG GGAGGAAGAG GGAGGGAGGA AGGAAGGTGG TGGACTTAAG GCAGTTACTC	240
	TGGAATGGGA CCCACAGTGT TITGCACCAT ATTTTGGCAA TITTTTTTGC CCGTTTTING	246
45	GAAGTGTTTT CCNTNAANCC CAGGAACCAT TACAGAACCG	250

50 (2) INFORMATION FOR SEQ ID NO: 185:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1337 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 185:

	TCTCCCTGGC GPTTGGTCAC CTCTGCTTCA TTCTCCACCG CGCCTATGGT CCCTCTTGGA	120
_	GCCAGCGTGG CGGGCCTGGC GGCTCCCGGG TGGTGAGAGA GCGGTCCGGG AACGATGAAG	180
5	GCCTCGCAGT GCTGCTGCTG TCTCAGCCAC CTCTTGGCTT CCGTCCTCCT CCTGCTGTTG	240
	CTGCCTGAAC TAAGCGGGYC CCTGGMAGTC CTGCTGCAGG CAGCCGAGGC CGCGCCAGGT	300
10	CTTGGGCCTC CTGACCCTAG ACCACGGACA TTACCGCCGC TGCCACCGGG CCCTACCCCT	360
	GCCCAGCAGC CGGGCCGTGG TCTGGCTGAA GCTGCCGGGC CGCGGGGCTC CGAGGGAGGC	420
15	AATGGCAGCA ACCCTGTGGC CGGGCTTGAG ACGGACGATC ACGGAGGGAA GGCCGGGGAA	480
13	GGCTCGGTGG GTGGCGGCCT TGCTGTGAGC CCCAACCCTG GCGACAAGCC CATGACCCAG	540
٠	CGGGCCCTGA CCGTGTTGAT GGTGGTGAGC GGCGCGGTGC TGGTGTACTT CGTGGTCAGG	600
20	ACGGTCAGGA TGAGAAGAAG AAACCGAAAG ACTAGGAGAT ATGGAGTTTT GGACACTAAC	660
	ATAGAAAATA TGGAATTGAC ACCTTTAGAA CAGGATGATG AGGATGATGA CAACACGTTG	720
25	TTTGATGCCA ATCATCCTCG AAGATAAGAA TGTGCCTTTT GATGAAAGAA CTTTATCTTT	780
23	CTACAATGAA GAGTGGAATT TCTATGTTTA AGGAATAAGA AGCCACTATA TCAATGTTGG	840
	GGGGGTATTT AAGTTACATA TATTTTAACA ACCTTTAATT TGCTGTTGCA ATAAATACCG	900
30	TATCCTTTTA TTATATCTTT ATATGTATAG AAGTACTCTR TTAATGGGCT CAGAGATGTT	960
	GGGGATAAAG TATACTGTAA TAATTTATCT GTTTGAAAAT TACTATAAAA CGGTGTTTTC	1020
35	TGATCGGTTT TTGTTTCCTG CTTACCATAT GATTGTAAAT TGTTTTATGT ATTAATCAGT	1080
	TAATGCTAAT TATTTTTGCT GATGTCATAT GTTAAAGAGC TATAAATTCC AACAACCAAC	1140
	TGGTGTGTAA AAATAATTTA AAATTTCCTT TACTGAAAGG TATTTCCCAT TTTTGTGGGG	1200
40	AAAAGAAGCC AAATTTATTA CTTTGTGTTG GGGTTTTTAA AATATTAAGA AATGTCTAAG	1260
	TTATTGTTTG CAAAACAATA AATATGATTT TAAATTCTCT TAAAAAAAAA AAAAAAAACC	1320
45	CCGGGGGGGG GCCCGGN	1337

(2) INFORMATION FOR SEQ ID NO: 186:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 941 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

55 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186:

GGCACGAGCC TGGACGCAGC AGCCACCGCC GCGTCCCTCT CTCCACGAGG CTGCCGGCTT 60

60

	AGGACCCCCA GCTCCGACAT GTCGCCCTCT GGTCGCCTGT GTCTTCTCAC CATCGTTGGC	120				
	CTGATTCTCC CCACCAGAGG ACAGACGTTG AAAGATACCA CGTCCAGTTC TTCAGCAGAC	180				
5	TCAACTATCA TGGACATTCA GGTCCCGACA CGAGCCCCAG ATGCAGTCTA CACAGAACTC	240				
	CAGCCCACCT CTCCAACCCC AACCTGGCCT GCTGATGAAA CACCACAACC CCAGACCCAG	300				
10	ACCCAGCAAC TGGAAGGAAC GGATGGGCCT CTAGTGACAG ATCCAGAGAC ACACAAGAGC	360				
10	ACCAAAGCAG CTCATCCCAC TGATGACACC ACGACGCTCT CTGAGAGACC ATCCCCAAGC	420				
	ACAGACGTCC AGACAGACCC CCAGACCCTC AAGCCATCTG GTTTTCATGA GGATGACCCC	480				
15	TTCTTCTATG ATGAACACAC CCTCCGGAAA CGGGGGCTGT TGGTCGCAGC TGTGCTGTTC	540				
	ATCACAGGCA TCATCATCCT CACCAGTGGC AAGTGCAGGC AGCTGTCCCG GTTATGCCGG	600				
20	AATCATTGCA GGTGAGTCCA TCAGAAACAG GAGCTGACAA CCYGCTGGGC ACCCGAAGAC	660				
20	CAAGCCCCCT GCCAGCTCAC CGTGCCCAGC CTCCTGCATC CCCTCGAAGA GCCTGGCCAG	720				
	AGAGGGAAGA CACAGATGAT GAAGCTGGAG CCAGGGCTGC CGGTCCGAGT CTCCTACCTC	780				
25	CCCCAACCCT GCCCGCCCCT GAAGGCTACC TGGCGCCTTG GGGGCTGTCC CTCAAGTTAT	840				
	CTCCTCTGYT AAGACAAAAA GTAAAGCACT GTGGTCTTTG CAAAAAAAAA AAAAAAAAAA	900				
20	ААЛДААЛАА АЛАЛААЛАА АЛАЛААЛАА АЛАЛААСТСС A	941				
30						
	(2) INFORMATION FOR SEQ ID NO: 187:					
35	(i) SEQUENCE CHARACTERISTICS:					
	(A) LENGTH: 654 base pairs (B) TYPE: nucleic acid					
40	(C) STRANDEDNESS: double					
40	(D) TOPOLOGY: linear					
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 187:					
45	GAATTCGGCA CGAGGCAGCT TGTGCTTTAA AGGAGGTGTT CAAAGCATGT CTGAGCAGAG	60				
	ACTITIGGGC TCTGITTTAA TTAATACTIT AAAATAATIC ATATITAAAA TAICARATGI	120				
	TTCCATAAAG AGGAGGATGT TTAAATGCCT CCAGACTACA TTCCTTTTTA TTSCTTGATT	180				
50	TTACCTGGGA GTCCAAAGTT CAATTCCCAT AAAGCAAGCG TTTTATTTGT CACTTTCAAT	240				
	ATACATCCGA TTGCCATGCT TAAGATGCAA TATGGGCTGC GGAAATAGGT TAACCCACAG	300				
55	GCTCCCAGGG CCCAGTGTAG AAGGTGAGAG ATTCGTGTAA AATGATTCAA ATAAAAGGAA	360				
55	GACCCIGGCC GGGTGCCGTA RCTCACGCCT GTAATCCCAG CACTTTGGGA GGCCGAAGCG	420				
	AGTGGATGAC GAGGTTAGGA GTTGGAGACC AGCCTGGCCA ACATCGTGAA ACCCCGTCTC	480				

TACTAAAAAT ACAAAAATTA GCCGGGCATG GTGGCAGGCA CCTGTAATCC TAGCTAGTTG

WO 98/54963 PCT/US98/11422

	GGAGGCTGAG GCAGGAGAAT CGTTTGAATC TGGGAGTTGG AGGTTGTCAG TGAGCTGAGA	600
5	TCGCGCCACA GCACTCCAGC CTGGGTGACA GGGTGAGACT CTGTCTCAAA NAGA	654
10	(2) INFORMATION FOR SEQ ID NO: 188:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1848 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 188:	
20	GAAACTGGAC CGGAGAACCG GAGCGAAGCG AAGCGGAAGC CCGGAATGAG GCCGGACTGG	60
20	AAAGCCGGAG CGGGGCCAGG CGGGCCTCCC CAAAAGCCTG CCCCTTCATC CCAGCGGAAA	120
	CCGCCGGCCC GGCCGAGCGC GGCGGCCGCT GCGATTGCAG TCGCGGCGGC GGAGGAAGAG	180
25	AGACGGCTCC GGCAGCGGAA CCGCCTGAGG CTGGAGGAGG ACAAACCGGC CGTGGAGCGG	240
	TGCTTGGAGG AGCTGGTCTT CGGCGACGTC GAGAACGACG AGGACGCGTT GCTGCGGCGT	300
30	CTGCGAGGCC CGAGGGTTCA AGAACATGAA GACTCGGGTG ACTCAGAAGT GGAGAATGAA	360
30	GCAAAAGGTA ATTTTCCACC TCAAAAGAAG CCAGTTTGGG TGGATGAAGA AGATGAAGAT	420
	GAGGAAATGG TTGACATGAT GAACAATCGG TTTCGGAAGG ATATGATGAA AAATGCTAGT	480
35	GAAAGTAAAC TITCGAAAGA CAACCTTAAA AAGAGACTTA AAGAAGAATT CCAACATGCC	540
	ATGGGAGGAG TACCTGCCTG GGCAGAGACT ACTAAGCGGA AAACATCTTC AGATGATGAA	600
40	AGTGAAGAGG ATGAAGATGA TTTGTTGCAA AGGACTGGGA ATTTCATATC CACATCAACT	660
40	TCTCTTCCAA GAGGCATCTT GAAGATGAAG AACTGCCAGC ATGCGAATGC TGAACGTCCT	72Ó
	ACTGTTGCTC GGATCTCCAT CTGTGCAGTT CCATCCCGGT GCACAGATTG TGATGGTTGC	780
45	TGGGATTAGA TAATGCTGTA TCACTATTTC AGGTTGATGG GAAAACAAAT CCTAAAATTC	840
	AGAGCATCTA TTTGGAAAGG TTTCCAATCT TTAAGGCTTG TTTTAGTGCT AATGGGGAAG	900
	AAGTTTTAGC CACGAGTACC CACAGCAAGG TTCTTTATGT CTATGACATG CTGGCTGGAA	960
50	AGTTAATTCC TGTGCATCAA GTGAGAGGTT TGAAAGAGAA GATAGTGAGG AGCTTTGAAG	1020
	TCTCCCCAGA TGGGTCCTTC TTGCTCATAA ATGGCATTGC TGGATATTTG CATTTGCTAG	1080
55	CAATGAAGAC CAAAGAACTG ATTGGAAGCA TGAAAATTAA TGGAAGGGTT GCAGCATCCA	1140
	CATTCTCTTC AGATAGTAAG AAAGTATACG CCTCTTCGGG GGATGGAGAA GTTTATGTTT	1200
	GGGATGTGAA CTCAAGGAAG TGCCTTAACA GATTTGTTGA TGAAGGCAGT TTATATGGAT	1260

	TAAGCATTGC CACATCTAGG AATGGACAGT ATGTTGCTTG TGGTTCTAAT TGTGGAGTGG	1320
	TAAATATATA CAATCAAGAT TCTTGTCTCC AAGAAACAAA CCCAAAGCCA ATAAAAGCTA	1380
5	TAATGAACTT GGTTACAGGT GTTACTTCTC TGACCTTCAA TCCTACTACA GAAATCTTGG	1440
	CAATTGCTTC AGAAAAAATG AAAGAAGCAG TCAGATTGGT TCATCTTCCT TCCTGTACAG	1500
	TATTITCAAA CITCCCAGTC ATTAAAAATA AGAATATITC TCATGITCAT ACCATGGATT	. 1560
10	TTTCTCCGAG AAGTGGATAC TTTGCCTTGG GGAATGAAAA GGGCAAGGCC CTGATGTATA	1620
	GGTTGCACCA TTACTCAGAC TTCTAAAGAG ACTATTTGAA GTCCAGTTGA GTCACAAGAG	1680
15	AAGCCTGTCT TGATATATCA TCTCAGAAAC TTTCCTGAAT ATGTGATAAT ATATGGAAAA	1740
	TGATTTATAG ATCCAGCTGT GCTTAAGAGC CAGTAATGTC TTAATAAACA TGTGGCAGCT	1800
20	тттотттора алалалала алалалалал алалалалал аластсор	1848
20		

(2) INFORMATION FOR SEQ ID NO: 189:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1146 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

30 (D) TOPOLOGY: linear

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 189:

AAAAAAAACC CAGGGGAACN TTGGGGGCCG CTTTNNNTTC CCCCTCCAGG CCATTGGGGA 60 35 ATTCTTCAAG TTAATCCTGC TTTGCTCTTG GCCAACAGGG CTTGTAGGGG GGAGAGACCC 120 AGGATCATCA AGGGGTTCGA GTGCAAGCCT CACTCCCAGC CCTGGCAGGC AGCCCTGTTC 180 GAGAAGACGC GGCTACTCTG TGGGGCGACG CTCATCGCCC CCAGATGGCT CCTGACAGCA 240 40 GCCCACTGCC TCAAGCCCCG CTACATAGTT CACCTGGGGC AGCACAACCT CCAGAAGGAG 300 GAGGGCTGTG AGCAGACCCG GACAGCCACT GAGTCCTTCC CCCACCCCGG CTTCAACAAC 45 AGCCTCCCCA ACAAAGACCA CCGCAATGAC ATCATGCTGG TGAAGATGGC ATCGCCAGTC 420 TCCATCACCT GGGCTGTGCG ACCCCTCACC CTCTCCTCAC GCTGTGTCAC TGCTGGCACC 480 AGCTGYCTCA TTTCCGGCTG GGGCAGMACG TCCAGCCCCC AGTTACGCCT GCCTCACACC 540 50 TTGSGATGCG CCAACATCAC CATCATTGAG CACCAGAAGT GTGAGAACGC CTACCCCGGC 600 AACATCACAG ACACCATGGT GTGTGCCAGC GTGCAGGAAG GGGGCAAGGA CTCCTGCCAG 660 55 GGTGACTCCG GGGGCCCTCT GGTCTGTAAC CAGTCTCTTC AAGGCATTAT CTCCTGGGGC 720 CAGGATCCGT GTGCGATCAC CCGAAAGCCT GGTGTCTACA CGAAAGTCTG CAAATATGTG 780 GACTGGATCC AGGAGACGAT GAAGAACAAT TAGACTGGAC CCACCCACCA CAGCCCATCA 840 60

120

300

660

906

	CCCTCCATTT	CCACTTGGTG	TTTGGTTCCT	GTTCACTCTG	TTAATAAGAA	ACCCTAAGCC	900
_	AAGACCCTCT	ACGAACATTC	TTTGGGCCTC	CTGGACTACA	GGAGATGCTG	TCACTTAATA	960
3	ATCAACCTGG	GGTTCGAAAT	CAGTGAGACC	TGGATTCAAA	TTCTGCCTTG	AAATATTGTG	1020
	ACTCTGGGAA	TGACAACACC	TGGTTTGTTC	TCTGTTGTAT	CCCCAGCCCC	AAAGACAGCT	1080
0	CCTGGCCATA	TATCAAGGTT	TCAATAAATA	TTTGCTAAAT	GAAAAARAAA	АААААААА	1140
	ACTCGA						1146

15

20

25

(2) INFORMATION FOR SEQ ID NO: 190:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 906 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 190:

(D) TOPOLOGY: linear

ACTCCCTCAC CCAGGTCCCA GCCCTGGGAA CCACCTACCG TGAGCCCTTT TGCAGATATA GACTCATTTC ATCCTCAGAT GGTCCTTCAA GGTAGGTACT TTAGTCCCAT TTTAGAGATG 30

AGACGATTGA GGCCAGAGGG GTGNNGTAAC TTGCCTGGGG GCTCACGAGC ACAAAAGGAG CCGAGGCAGG ATCTGACCCT TGTTCTCTGG CCTCACTGCC CTCACTTTGC CATGACCCGA 240

AGTTATGTCC CTACAAAGCA ATGCATGGTC CAAGGYTCTT TTTATTGTAT TTTTATTTTT 35 AAGGGTCCTG TTCAAAACTG GTGTGAGCTC TGAGGAGTCC TGAACCCTGG GTGCAGCATC

CTAGCATCCT GGGAGTCCTT TTCTGCCCAC ACTGAGCTGG GCTCCTCGAG GGGTGGGGCT 420 40 GCTGTCCCTG GAAGCCTGGC AGCAGCACTG TATCGGGTTG GCTGAAGCTG ARCGCCGTGG 480

GGTGCAGGGC TCCMGGAATC CCCGTTTGGC TGAAGGGGTT CCCTGTAGCC MGGGATGTTT 540

ATGAGGTCTC TCTGATGCCC CAGGCGCAGG ACATGTGTGC GGGTGGAGAA AAGCAGGCCC 600 45 TTTCAGTGCC AGCTCCACTC AATTTCTATG TGGACCAAGA ACGATAAACT TAAAAAATTT

TTTTTCCTAA GGTATCTTCA GAATATGGTG TATTTTTATG TGGAAAAGAA AAGITATGAA

GGCAGCTGTT ACTTTAAGAG AAAATTCATT AAAAGTCCTC GAGGTATGAA GATGACGGCG 780

TGCTTCTCAA TCATTTTGGC ATAACTTGAT TGTGGCTGTA ATTTTTTTTT TTTTTTTTGT 840 CAAGCATGTC AGACAATAAA GTCTTTGTAA AAAGRGAAAA AAAAAAAAA AAAAAAAAA 900

ACTCGA

50

(2) INFORMATION FOR SEQ ID NO: 191:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1941 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 191:

	CTTCAGCTGA AGCCCAGGGA CCCCTTTTCC ACCCTGGGCC CCAATGCCGT CCTTTCCCCG	60
	CAGAGACTGG TCTTGGAAAC CCTCAGCAAA CTCAGCATCC AGGACAACAA TGTGGACCTG	120
15	ATTCTGGCCA CACCCCCTT CAGCCGCCTG GAGAAGTTGT ATAGCACTAT GGTGCGCTTC	180
	CTCAGTGACC GAAAGAACCC GGTGTGCCGG AGATGGCTGT GGTACTGCTG GCCAACCTGG	240
20	CTCAGGGGGA CAGCCTGGCA GCTCGTGCCA TTGCAGTGCA GAAGGGCAGT ATCGGCAACC	300
	TCCTGGGCTT CCTAGAGGAC AGCCTTGCCG CCACACAGTT CCAGCAGAGC CAGGCCAGCC	360
	TCCTCCACAT GCAGAACCCA CCCTTTGAGC CAAYTAGTGT GGACATGATG CGGCGGGCTG	420
25	CCCGCGCGCT GCTTGCCTTG GCCAAGGTGG ACGAGAACCA CTCAGAGTTT ACTCTGTACG	480
	AATCACGGCT GTTGGACATC TCGGTATCAC CGTTGATGAA CTCAKTGGTT TCACAAGTCA	540
30	TTTGTGATGT ACTGTTTTTG NATTGGCCAG TCATGACAGC CGTGGGACAC CTCCCCCCC	600
	CGTGTGTGTG TGCGTGTGTG GAGAACTTAG AAACTGACTG TTGCCCTTTA TTTATGCAAA	660
	ACCACCTCAG AATCCAGTTT ACCCTGTGCT GTCCAGCTTC TCCCTTGGGA AAAAGTCTCT	720
35	CCTGTTTCTC TCTCCTCCTT CCACCTCCCC TCCCTCCATC ACCTCACGCC TTTCTGTTCC	780
	TTGTCCTCAC CTTACTCCCC TCAGGACCCT ACCCCACCCT CTTTGAAAAG ACAAAGCTCT	840
40	GCCTACATAG AAGACTITTT TTATTITAAC CAAAGTTACT GTTGTTTACA GTGAGTTTGG	900
	GGAAAAAAA TAAAATAAAA ATGGCTTTCC CAGTCCTTGC ATCAACGGGA TGCCACATTT	960
4.5	CATAACTGTT TTTAATGGTA AAAAAAAAA AAAAAAATAC AAAAAAAAAT TCTGAAGGAC	1020
45	AAAAAAGGTG ACTGCTGAAC TGTGTGTGGT TTATTGTTGT ACATTCACAA TCTTGCAGGA	1080
	GCCAAGAAGT TCGCAGTTGT GAACAGACCC TGTTCACTGG AGAGGCCTGT GCAGTAGAGT	1140
50	GTAGACCCTT TCATGTACTG TACTGTACAC CTGATACTGT AAACATACTG TAATAATAAT	1200
	GTCTCACATG GAAACAGAAA ACGCTGGGTC AGCAGCAAGC TGTAGTTTTT AAAAATGTTT	1260
	TTAGTTAAAC GITGAGGAGA AAAAAAAAAA AGGCTTTTCC CCCAAAGTAT CATGTGTGAA	1320
55	CCTACAACAC CCTGACCTCT TTCTCTCCTC CTTGATTGTA TGAATAACCC TGAGATCACC	1380
	TCTTAGAACT GGTTTTAACC TTTAGCTGCA GCGNCTACGT CNAWCGNTGT GTATATATAT	1440
60	GACGTKGTAC ATTGCACATA CCCTTGGATC CCCACAGTTK GGTCCTCCTC CCAGCTACCC	1500

WO 98/54963 PCT/US98/11422

444

	CTTTATAGTA	TGACGAGTTA	ACAAGTTGGT	GACCTGCACA	AAGCGAGACA	CAGCTATTTA	1560
	ATCTCTTGCC	CAGATATCGC	CCCTCTTGGT	GCGATGCTGT	ACAGGTCTCT	GTAAAAAGTC	1620
3	CTTGCTGTCT	CAGCAGCCAA	TCAACTTATA	GTTTATTTTT	TTCTGGGTTT	TTGTTTTGTT	1680
	TTGTTTTCTT	TCTAATCGAG	GTGTGAAAAA	GTTCTAGGTT	CAGTTGAAGT	TCTGATGAAG	1740
10	AAACACAATT	GAGATTTTTT	CAGTGATAAA	ATCTGCATAT	TTGTATTTCA	ACAATGTAGC	1800
	TAAAACTTGA	TGTAAATTCC	TCCTTTTTT	CCTTTTTTGG	CTTAATGAAT	ATCATTTATT	1860
	CAGTATGAAA	TCTTTATACT	ATATGTTCCA	CGTGTTAAGA	ATAAATGTAC	ATTAAATCTT	1920
15	GGTAAGACTT	тааааааааа	A				1941

20

25

30

(2) INFORMATION FOR SEQ ID NO: 192:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2118 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 192:

AAATAATAAT AANAATAAAT AAAAATWAAG TGCTTAKTGT AACTCAGCGG ACAGGGCTCC 60 CAGCTGCTCT GGCACGTGGG ACACCYTCCA CCCTGCACAC AACAGGCATG CAAAGAGGAC 120 TGGATATGGT GGGGTAGAGT GCTTCTGGTG TGTTCACTTT AAGAAAACAT CTGCCAAGAG 35 AGAAGAGTGC CCAGGAAAGA CCAGGAAAAT ACAAGTACAT GGCTGCTTCA TACCATATAC 240 CCCAATTCTT TAAAGCAGCA AAAGGCACTT TTTTTTTCAG GCCAGAGTGA ATCTAAAACA 300 40 AACCTGGCTT TGCTTACAGG GAAGCTGTCC CAGAAGGACT GAGTGATGCC TCTTGTTCCC 360 TAAGGTCTGG AGAGTCTTTG CAAGTTTCCA ACGACATTTC CAACCAGGTG GGAGAGACCA 420 GCAGTTGACG AGACAAGTCA GACCCAAAAA ACGACGCCAA GGTAGTGAGT GGGTGCCTAT 480 45 TTGGGAGTAG GATGATTTGA GGAAAACACG AAGAAAAACC GGTCAGAAAG TGGCACTTTG GAAGTGGAAA GCTGTTTGCA AATAGCAACT CTGGCTAAAG CGAAAATGTT AATCAAGTAG 600 50 AAAGTAAAAT TCAGGATCTT AGAAGCTCAT CCTTCTGATG AGAACTATTT TTTTTTCCGT 660 GAAGGAACTA TTATTACTTT AAAAGTGAGG GTAATTTACA TATGGGGTGT ATATATTCTA 720 AAAATAGTAA TAAAAGTACC TTTTATAAGC AATGTTGTGT GGCTTGTAGA AGAAAGCAGG 55 GAGGAAAAAA AGGCAGGCAA AACTAGTCTA GGTCTAGGCC CTAAAAATGA GCTTCCTTCC 840 CACTTGACTG GAAACGCCCA TGTGATTTCT AGGCTGAAAA TAGGTAGGAT TTAACGAGTA 900 60

	ACCTAGTTCC CTTCTGTCTC TGATTTCTGA TCAGCTGATG GAGCTGCTAG TAAGAGGGGC	960
	CGATCATGCT CCCAGACGAG TCCTTTGGCC TCTTGCTCTC CATCCCAAGC CTGACTCCTT	1020
5	CAGCAGCAGC CCCCTCCTTC TGTGTCCATC TGATGCAGGC AAGCAGGAGC AGTAAGAGGG	1080
	CATCCCATGT TCCAGTTCAC CTTCTATGGG GTGACTARGA GGTTCCCGGT AACTAGGGCA	1140
	GCCCARGCCC AGCAGGTTGC AAAAGCAGCT GCAAGCTTCA GAAACCCACT TCCTCCAACA	1200
10	CCAGGGAGGT GGCAGAGAGC CCATCCAAAA GCCCACTGGG AGAGGCATAA GATTCTGTGC	1260
	CAGGCCCCCA GGTCCCCTCT GTGTCAGGTA GGCTCTGCTA CTGGCCTCTG AAGTAAAGGC	1320
15	AAANACAAAC GGGCAGGGCA GGGTGGCAGG AATAAAAAAC TCTGGACAGA AACCCTTTTA	1380
	ATAAAGGAAA TTCCACCCCT CCCAATCCTT CCATGGAAGG GTGAGACCTT AATGTGATGT	1440
	AAGAGGAAGG TCTTCTCTGG CTTTCAGGGA AACAGCTGCA GCTGAAACTT AGGGGCCCAT	1500
20	TCCAGGGCAC TTTTCACCAC AGCCAGTGCA GCCGCTCCAA GTGCCACTGT CAGCCCCATC	1560
	ACTGCCAATT TCACAAAGCG GTTGGTCCTT GGCTTGGTCA GGACATCTTT TGTTCGATCT	1620
25	TCAGGCCGCA GAAGTCCCCG AANACCGCTG CCGCAGCACC ATATCAGGCC TCTGCTGGGC	1680
	TGATGCCAGC TCAAAGTCTT TGAAAGTAGA GGCTGCCGTC CTCTCAGCTT GCTGTTGGGC	1740
20	AGCGGCCTCC CGAGCAAGTT CGGATGGGGG AAACTGAACA AAAAGGTCTC CTSTCTGCTG	1800
30	ATCAGTGTCT CATAGGGCAA GTCCTGAGGG ATCTGGGACA ACAGGTGGTG GACCGAGGCC	1860
	ATGTCACAGT CACAGTCCAG GACTTCCTGC TCGCGATACA ACACAATCAC GGCTGCAAAG	1920
35	TAAATCGGCA TCAGTGGGTG GCAGGCCAGG AAGAAGTCAT ATAACCGCAC GACGTGCCTG	1980
	AAGTCAGACA GGACATGCCC AAACCAGGTG ATGAGCCAGC TGAGGGCAAA GATGGTCCCT	2040
40	ACCTCAGCAC TCTGCATGAA GTCATGGAGC TCTGGATTCA CCTGGTCAAT GATGGGCATC	2100
40	AGATAGTTTA ATATATGC	2118

50

(2) INFORMATION FOR SEQ ID NO: 193:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1538 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 193:

CCGGGTTCGG CTCTGTGTCA GCAGCCGGGC GGCGCTCGGG CGGGACATGG CAGCCTGTAC 60

AGCCCGGCGG CCTGGCCGTG GGCAGCCGCT GGTGGTCCCG GTCGCTGACT GNGGCCCGGT 120

GGCCAAGGCC GCTCTGTGCG CGGCCGNAGC TGGAGCCTTC TCGCCAGCGT CGACCACGAC 180

	GACGCGGAGG CACCTCTCGT CCCGAAACCG ACCAGAGGGC AAAGTGTTGG AGACAGTTGG	240
	TGTGTTTGAG GTGCCAAAAC AGAATGGAAA ATATGAGACC GGGCAGCTTT TCCTTCATAG	300
5		360
	CATTTTTGGC TACCGAGGTG TCGTCCTGTT TCCCTGGCAG GCCAGACTGT RTGACCGGGA	•
	TGTGGCTTCT GCAGCTCCAG AAAAAGCAGA GAACCCTGCT GGCCATGGCT CCAAGGAGGT	420
10	GAAAGGCAAA ACTCACACTT ACTATCAGGT GCTGATTGAT GCTCGTGACT GCCCACATAT	480
	ATCTCAGAGA TCTCAGACAG AAGCTGTGAC CTTCTTGGCT AACCATGATG ACAGTCGGGC	540
	CCTCTATGCC ATCCCAGGCT TGGACTATGT CAGCCATGAA GACATCCTCC CCTACACCTC	600
15	CACTGATCAG GTTCCCATCC AACATGAACT CTTTGAAAGA TTTCTTCTGT ATGACCAGAC	660
	AAAAGCACCT CCTTTTGTGG CTCGGGAGAC GCTAAGGGCC TGGCAAGAGA AGAATCACCC	720
20	CTGGCTGGAG CTCTCCGATG TTCATCGGGA AACAACTGAG AACATACGTG TCACTGTCAT	780
	CCCCTTCTAC ATGGGCATGA GGGAAGCCCA GAATTCCCAC GTGTACTGGT GGCGCTACTG	840
	TATCCGTTTG GAGAACCTTG ACAGTGATGT GGTACAGCTC CGGGAGCGGC ACTGGAGGAT	900
25	ATTCAGTCTC TCTGGCACCT TGGAGACAGT GCGAGGCCGA GGGGTAGTGG GCAGGGAACC	960
	AGTGTTATCC AAGGAGCAGC CTGCGTTCCA GTATAGCAGC CACGTCTCGC TGCAGGCTTC	1020
30	CAGTGGGCAC ATGTGGGGCA CGTTCCGCTT TGAAAGACCT GATGGCTCCC ACTTTGATGT	1080
	TCGGATTCCT CCCTTCTCCC TGGAAAGCAA TAAAGATGAG AAGACACCAC CCTCAGGCCT	1140
	TCACTGGTAG GCCAGCTGAG GCCCCAAGTG CCCAGGCTTG GTCACCGGGA AGAACAACTC	1200
35	TCATCCCACA ATTGCTGCAG AACTCTTCTC TCCCCATCAT GGGCCACAGT GGGTCTCTTA	1260
	ATTTGATTGT GGGGTTCTTT TTGTGGGGAG GGGTGGTATA ACTTTTCTTC AGAAGACCCA	1320
40	TGTGGGACAC CTCCAAGGCT GGCCTCCTCA TAAGCCCTGC CTACACCATG TTCCAGTAAA	1380
	CCTCTCCACC AAGGAACTGT GTTCAGCTGC CACAGGCCTG GAGGAGTTTC CTGGCCTGTC	1440
	ACGTGAGGTT TGATCAGTAA ACCAGTGCAS GYTTGGCCAA AAAAAAAAAA AAAAAAAAA	150
45	аадаадааа аадаадааа аадаадааа аадстсса	153
	Uniting where	

55

(2) INFORMATION FOR SEQ ID NO: 194:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1098 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 194:

PCT/US98/11422

300

	AGACCCTGTC TCAAATAATA ATAATAATAA TAATCTTATT TTGGAGAATA AAGAGACCTS	60
	TGGATTTGAG GTGCCATTTG GGTAGAAAGA AAAGACGTTT ACACCGAGAA ATAGTCTGTG	120
5	TTGCCCTGAA GGAGCAGAGG GATGCATCGC TGGAGGTGAC CTACAGTTGA AGAAGACTCA	180
	TTATGACAGA CCTTGTCCTT CTTCCTTGTG GAAAGTGTTT CCTCTGCTGC TACTGCTCAT	240
10	GAGACTOTTC CCCCTCCCTG TCCCAGGGAA CCAAAGGGCT TTNCTACCAC ACCCTTTCTT	- 300
10	NGCCCCCCGC CTCCCATGTC TGCTGTGCCT TTGTACTCAG CAATTCTTNG TTTGCTCCCA	360
	TTATCTTCCA GCCGGATACA GAGTGAATAG TTAACCACAC TTAGGTCAAA TAGGATCTAA	420
15	ATTTTTGTTC CTGCTCCNGT GTAAAGAGGC CAGTGTTTGT GTGTTGCAAG CAGCCTTGGA	480
	ATAGTAACTC TTCTCATTTG TTTGGGATCT GGCCAMCAAG TTCCAGAATG ATACACGGAT	540
20	CAGTGCAGAA GTTCATCAGG CTCTCGGACC TTAGGGCTGT TGGAGAAGGC TTCAGCAGCA	600
20	GAACTGATGG TKAWKGYTCG TGTTCTCCAT CCTCAACTTT CTTTGCTTCG ATCATACACA	660
	AGAATACATT TGGAAGGGCA AAAAATGAAC ACTGTTGTTC ATTGCAGCCG TGTTTTGTGA	720
25	CACAGATGCA CAGTCTGCTG TGAAGACCTT CTCTCAAGTG GSATYTGGGA GTCCATGCCA	780
	GATCATGGTG CTTCATGAGA GACTGACAGC TATCAGGGGT TGTGGCACTT AGTGAGGACT	840
30	CTCCTCCCCC AGTGTGTGCT GATGACACAT ACACACCTGA CAATAGCTTG AGTCTTCTCT	900
50	GTTCCTTTTA CTCTGTAGCC AACATACACA TGATTTAAAA CCCTTTCTAA ATATCTATCA	960
	TGGTTCATCC TTGTCCAAAT GCAGAGTCAG AGCTATTTGT ACTTCATTAT TATTTCCAAG	1020
35	GCGAATAGTT GGCTTTCTTT TTGCAAAAAT AATTAAAGTT TTTGTATGTT GCAAAAAAAA	1080
	AAAAAAAAA CTACGTAG	1098
40		
	(2) INFORMATION FOR SEQ ID NO: 195:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1001 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 195:	
	GAATTCGGCA CGAGATAGCT TGCATCTCAT CCCAGTAAAA CCACTTATTT ATAACATATC	60
	AACGTATTGA CAAGGTTGAA GAGCAAGATT GTTCTGAGGT GAGATGCAAA TTTCAAAGGG	120
55	GTGAGCACTA ATTGTTCCAG TGATTGTTTA TYTATTGGCT AGGACATAAT TACTCTCTTT	180
	GAGGTTACAC ATCTGCCTCC AGGTTCCTGT GTGCTTGTGC CCTTGGGATC AGGCCAGGGC	240

AGACTGTGAT CACTGAGATT CAAACTCCCA GARTAATCAG CAAGAGCTTT CTAGAGACCA

-	AGGCCAGGCC	TGATCCCTGA	GGGATGCATG	AGAAGGCTTG	GAATCTCATT	CTGCTATGGT	360
~	GGCTCTCTCT	TGATCTTCTT	GGAGTAGCAA	AAACAGCAAT	GTGGGCCCAA	TGGTGTGGCC	420
5	TAAATGATCA	CAAAGGTAAA	TGAGTAAAGG	GCTCAGCAGA	TGAGTAAGGA	GCCTTGTCCT	480
	GAGAAATTAG	CACTGGGCTC	TGCATTCAGA	AACATGTGAT	AAGCATTGCC	CATTGCACAT	540
10	TGCCTTTATT	GTGTAAGGAC	ATGAAATTCC	AGTTTTGCAT	AGCTAGTGAT	GAATACCTGA	600
	AGGGAATTGC	AGACATATTT	TATTTTATTT	TTAATTGACA	GATGGAATTG	TATATATTTA	660
15	TCATGTACAT	AATCATGCTT	TAAAATATGT	ACATTATGGA	ATGGCTAAAT	CAAACTAACC	720
13	TAGGCATTAT	CTCATATAAT	TGTCATTTT	GTGGCGAGAA	GACTAAAAAT	CTACCCTTTC	780
	AGCATTTTA	AAGAATACAA	TGTGTTTTAT	TAACAACAGT	CACCATTTGG	TACACTAGAT	840
20	CTCTTGAACT	TCTTCCTCTT	ATCTAACTGA	GATCTTGTAA	CCTTTGATAA	CAGCTCCCAA	900
	GCCCTTCCCC	AACCACTGCT	CCACCGTGG	TAACCACCAT	TCTATTCTCA	ACTTCCTGGT	960
25	AATCACCATT	CTAGACACAG	GGAAGACTCT	CTACCCTCTG	i A		1001

(2) INFORMATION FOR SEQ ID NO: 196:

30

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1443 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 196:

40	ATAAACTGAA ATAGGTCATG CAAATATAAA ATATTATTTT TAAATTATTT GTCATAAGAA	60
40	ACGATGGTGG CCATATTTTG CTTTAATAAT GGAAAAAATG TGGTTAGCAT TCTKTGGAAG	120
	GTGGTCATCA GATAGTAGAC ATTTTCTAGG ATTTATTTCT ACCTGCATAT GTGGAAATGT	180
.45	GTACTACTTT AGATTTATWT AATGGCAGCT AACTCAGAGG CATCAAAATG TGCTAATGGT	240
	GTAATATGGC CTTTGTCTTG CTGTYCTGTT TTGTARGCCT TCAATCAAGC ARGGGCAGGG	300
~ 0	CCGTACAGTG AACTTGTCCT TTGSCAGACG CCAGCGTCTG CCCCTGACCC CGTCTCCACT	360
50	CTCTGTGTCC TGGAGGAGGA GCCCCTTGAT GCYTACCCTG ATTCACCTTC TGCGTGCCTT	420
	GTACTGAACT GGGAAGAGCC GTGCAATAAC GGATCTGAAA TCCTTGCTTA CACCATTGAT	480
55	CTAGGAGACA CTAGCATTAC CGTGGGCAAC ACCACCATGC ATGTTATGAA AGATCTCCTT	540
	CCAGAAACCA CCTACCGGTG AGTGCAAGGG AGTAGAAATC TGCATCAGCA CATCAGCACT	600
60	TGGGGATCTA AGTAAACCTC TCGGGGAAAA TGACCAAGTG GATGTCATCT CCCAGCTGTT	660

	TCTAAGAGCC CAGATGTCCA GAGTATTGTC TCACCTTGAT CCCTCAGGCC AGAAGACCTG	720
	TGAAAAAGCC ACACTGGTTC AGGGACTCAC TGGACGGTTT TGTGTCCACT YTAACTTGCA	780
5	CCGTCTCTAC CCCAGAGTGG ACTCARATCC TCAAGTCATC CTCTGAACAT TGRRGTCAGA	840
	AATTATAAAA GGGCTTTGGC AATATGTTAG CCCAAGAATT TGGCTTCTTC CAGAAATTGT	900
10	GCCGACNITA ACAGTGGCTT AAATGATGGT AAAACIIITTA AGATTITCTAA AAAGTREGGCA	. 960
10	TTGGAGATAC GTTGACTTTT ATTAAACMAC CTATAGITGT TTAATGAITT CTAAAAAAAT	1020
	ATCTGGAGCT CAGGGGTTCA ACTGAGGGAA CACATTITGA GRATCATTGT TIALTAATTA	1080
15	AATGCCAGGT AACCCGTTGA AATTATCAAA AACATCTTCC ACGTACCAGA AAGCACCTCA	1140
	GAGGATAGTT CTGTTATGGA GAAGATGAAA TGGTTTAGTA GTGTAGGAAC TATGGAAAGG	1200
20	TGAGCTTAGA TTTGGATAGT AAAACCTCAA GACCCTACTT AAAAAGTACT TTATGAATGC	1260
20	AGCATAAATA ATTTAATTCA GTGTTAANAT GCCAAGGCTA GTATATTGAG CTGAATGTGA	1320
	AAAGAAACTC ACATTGGGAG AATGCCACCT TITCCTIATA AGATAGCTIT GAAGATACCA	1380
25	TTTTAGACAG ATGGAAATTG AATAGCTTTA GAAAAGGCAA ATGTTTGACC TTGGGGAAAA	1440
	AAA	1443

(2) INFORMATION FOR SEQ ID NO: 197:

(i) SEQUENCE CHARACTERISTICS:

35 (A) LENGTH: 1282 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: dcuble

(D) TOPOLOGY: linear

40

45

50

55

60

(xi) SEQUENCE DESCRIPTION: SEQ 🗀 NO: 197:

GAAAAAAAA	AGTATGACCC	AGTAGCTAGG	೧೯೮೦೩೩೩೦	TEAADODOO	TGACACATAA	60
AATTAACTGT	CACAGTATCA	TCTTAGAACT	CAAACAAGCC	CCTTTATCCT	GCAGTGCCCC	120
TCTACCACCA	CCTACTGACA	AAGAACATGG	TGCTATCTGG	CATGGGAGAA	ATGTTCAGTT	180
TGCTATGGCT	TGTATGTGTC	CCCTCAAATT	CARGIGITGC	CAATGTGACA	GCATCAAGAG	240
GTGGGGTCTT	TAAGAGATCA	CTAGGCCATG	AGGGATTCTC	TTAGGACTGG	GATGAAGGCC	300
САТААТАААА	GAGGTTTCAG	GGAGCATCCT	GCTAGCTTGC	CTTCTGTATG	TGAGAACACA	360
GCAAGAAAGC	CCTAGTCAAC	AAGTGCCAGC	TCCTTGATCT	TAGACTTCCC	ACCCTCCAGA	420
ACTGTGAGAA	ATACATTTCT	GTTCCTTACA	AATTACCCAG	TCTCCTGTAT	TCTGTTATAG	480
CAGCACAAAA	. TGAAGATACC	ATACCTGAAC	ACCTEAACAT	TCTTCACAAG	GTAGTAAATG	540
CACTGCTTTA	TTCTGGTCTC	AGTATTGTGT	CCTTAATAAG	GAAATGAGAA	AGGGTGGATC	600

PCT/US98/11422

450

WO 98/54963

	AGGGCATAGG ATGAACAAGT TACTGCTAGA CCTCTCACAA TGCCACTAAT GGATAAGATT	660
_	GTATTTTCAT CATTNCTTGT CTCTTCGGAA GCTAACACCA TGCTATRATA GGCALTAAAT	720
5	AGATGTCTAA AAACACCTTA AGTATTTGTC TAGAAATCTG GTGCATTGTC CAGAAAGAAC	780
	CAAAATTCMA AATAATTTCA AAGGGCCTAA AGCACTAKUT AATCMAAATT CATTAGTTTT	840
10	TAATGGTACT ACCACTCTCA AATTTAAAAT GTCATCTTAC GTTCCTCTTC CTCGCATTGG	900
	ATTTATTGCT AAAACCTGGT AAACACTTTA ATCCYTTTCA ATTCCATTAT CACTGCTCTT	960
15	GTCCAGAATT ACTCGCAGAC TAATAGTCAC CTGACTFCTC CCCCTGCATC CCGATTTGCT	1020
13	GTCTAATTCT GGTTACAAAT AAGTAACTGC CARACTARIC TITCTARARA GCRACACTGA	1080
	TCTCGTCACT CCTTTGCTCA ACAATGTAAA AGCTCCCATT GTCTCCCAAA TAAAACCAGC	1140
20	TTTCCACTGT GTATACAATA CATCCATGAT CIGTATCCAG CATCATTYIG TATTIGCTCA	1200
	CTTTATACAC CACCCCCAT GCCACATCAA ATTAAATTAT CCTGATAAAT GCAALTGCAA	1260
25	алалалала алалаластс GA	1282
30 35	(2) INFORMATION FOR SEQ ID NO: 198: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 951 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: dcuble (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 198:	
	ATTITCGGAAC GAGGACTGAA GTGGGAGCGG CGGCAGGGTA GAAGALLAGAA GGGGGATCTA	60
40	TOTOGTAACT AAAGAATGIT TOTGITTIGI TAATTATIGI GIGIGIGG TITTIATIGIT	120
	TGCTTAAGAG AATCAAAAAC TGAAAAAAAT GAGAATACAG GAAATGGCTC TTGTTTATTT	180
45	TTTTGCTGTG TTTACAGCTT GTTAATGCTC TACTGTCTTT GTTTCAAGAG AGATTTGTTC	240
	ACTOCCCAGO TOGITITIGIG TOCTGAGOOO TATGCCCAGO COACCITATA AAFCATGCCT	300
	GTTTAGATGT TTGATTTTGT TCTGTTTGCT ATTGTTATCT TAAAGGTGTA TAACTCTGAC	360
50	ATGCCAGACA TCAAATTAAG CTCAAATTAA GCTCTCGTTT AAATGTTTAA ACACCTAATT	420
	TATATTCTAA TTGATCCCAG CCACTGATGC ATGTACTTTA GCTACTTCTG CTAAATAAGC	480
55	ATATTAATTT TCCACATCAG GCCATCAGAT CTTGAGAACC AACAGTTACC TAGAATTCCG	540
	TGTCTACTAA TGTTTCACCT GCATGCAGCC TTCATTAATT TTGTAGCAAA ATATAAAGTG	600
60	ATCATTATGT AGTITCTGGA TTAAAAAAAT TTGTGTGTGA AGTTGCTTTG TAAAGTGCAT	669

PCT/US98/11422

	GTGGAATTAA	TGGGACAGTG	TGCCCTTTGT	GTTAGATGTT	AGAGCAAAAG	AAAGGGCTTA	720
	TAGTGTTAGT	ATTGGAGCAC	TTTGAAGATA	GATATTTTCA	GAAAAGATGT	AGGATTTAAA	780
5	AGTTAAATTT	TAAATTTTAG	AAAAAGATAT	GATGGCAATT	GGAAATAGTC	ACAATGAAGT	840
	TCTTCATCCA	GTAGGTGTTT	AACAGTGTTA	TTTTGCCACT	GGTAATGTGT	AAACTGTGAG	900
10	TGATTTACAA	TAAATGATTA	TGAATTCAAA	АААААААА	AAAAAACTCG	Α .	951
IO							

(2) INFORMATION FOR SEQ ID NO: 199:

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1740 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

20

25

30

35

40

45

50

55

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 199:

TTATTATAAT AATGATGATG ATTCCAAGGA AAAAACCTAC AGCGAATGTT CCATTTCTAC	60
CCCGCACGCA GACACTCTCC CTAACACTGA TAACCTGAGC CCCCAGCACT GGACGGAAGA	120
ATGCTGGCGT CTCCGTGTGT ACTGGTTCAG GGTTCTGGCC CCAGCCTTGT CAGGACCCCC	180
TEGTETCCAG AGCCCCCACC CCTCCCGCAA CAAGCAGCTG ATGCCCCAGT GATTCTCTAT	240
ACATTITICA CCTCGGCCAA TATGICCAGG AAAACTGCTT ACTTCTCTTT TCTTGCCTGG	300
AGCCTTCATT GTTCACCCTT ACGTTGCAAT ATAGGAATTA ATGCTACAAA ATAAAAGTAA	360
AGCTTACCTG AAAAGTGCAT AGTTTGGGGC AATGGTATCT ACATCTCCCA CTGTGGGAAA	420
ACCAGCAAAG CATCAAAACT CTCAATTCTC CTGTTACCRA ATGCAGATCT GAATTATAAG	480
ATGTTTATGT TIGACCATTG TITCAACAAT GGGATTTTGT TACGAATTAT CCCTTTAACT	540
GAAACCCTCA GTTTTACTGT TTACATTATT AGGAAAACAG GGATATCTTT TGAATCTAAA	600
AATTTGATGT ACAGCATGTG ATTTTTGAAG TTTACATGTA AAGTCACAGT ATAGGTGAAA	660
TAACGTTTGT CATATTTTGA GACGTATCCT GCAGCCATGT TTTTACGTGA GTGTTTTAGT	720
CAAAGTACAT GGTAGACAGT CTTTCACAAT AAAAGGAAAA GGATTTTTT TCCTCCAAAT	780
GTACATTTAT CAACCTAATG ATTGATTTTT TTAAAAAGAG ATTTCGCCCC AGTCTGGTTT	840
ATGAAAGTTC ATTGCCCTAA ACTGTGCTGA TTGTTTTTAA TCAAGTTATA AATTTCCAAC	900
CTAGATCATG TATCTACCAA CTCTCCTGCA TTTTCCAAAA GGCATTGAGC TTAAATATTA	960
GTCTTGCTTA GAGTAGGTTA TCCACTTACA TGCTGCGCTA AAGCCATGCC TTTGAAACTC	1020
CTTGTTTAAA ACATGATATG ATTTTTGTGG GCAGTTTCAG AAAAGAAAAC AAACAAACAA	1080
	1140
AAATCGACCC TTTAATTATT ACTTGCAACT CAACAGATCT CCCTGCCGTA CTGCCTTTTC	

	CAGGAACTTT	ACTTCAGGGC	TGTCCAGATT	GCAGTTGTGC	CCCGTGTATG	TGGATCTAGT	1200
5	TCACAGAGTC	TTTGGAAGCC	AGCAGTCGTG	CCCTCCGTAT	ACTGTCCACT	CATTITATGT	1260
5	AGATTTGGTA	TCCTCAGCAG	CCAGTGTTAA	CACCACTGTC	ACGTAGTTAN	CAGATTCATC	1320
	TTTTATGTAT	TTAAAGTAAT	CCATACTATG	ATTTGGTTTT	TCCCTGCACC	ATTAATTCTG	1380
10	GCATCAGATC	AGTTTTTGTG	TTGTGAAGTT	CTACTGTGGT	TTGACCCAAG	ACCACAACCA	1440
	TGAGACCCTG	AAGTAAAGAT	AAGGTACACA	TACATTATTT	GAGTAACTGT	TTCCTTGGGG	1500
15	GCCAATCTGT	GTATGCTTTT	AGAAGTTTAC	AGAATGCTTT	TATTTTTGTC	TATAACAAAC	1560
15	AGTCTGTCAT	TTATTTCTGT	TGATAAACCA	TTTGGACAGA	GTGAGGACGT	TTGCCCTGTT	1620
	ATCTCCTAGT	GCTAACAATA	CACTCCAGTC	: ATGAGCCGGG	CTTTACAAAT	AAAGCACTTT	1680
20	TGATGACTCA	AAAAAAAM	AAAAAAAAMC	YCGGGGGGGG	GCCGGTAACC	CATTINNCCC	1740

25 (2) INFORMATION FOR SEQ ID NO: 200:

30

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1707 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 200:

35	GCTTATAGAA GGGAGAGGAG CGAACATGGC AGCGCGTTGG CGGTTTTGGT GTGT	CTCTGT 60
	GACCATGGTG GTGGCGCTGC TCATCGTTTG CGACGTTCCC TCAGCCTCTG CCCA	AAGAAA 120
40	GAAGGAGATG GTGTTATCTG AAAAGGTTAG TCAGCTGATG GAATGGACTA ACAA	AAGACC 180
40	TGTAATAAGA ATGAATGGAG ACAAGTTCCG TCGCCTTGTG AAAGCCCCAC CGAG	AAATTA 240
	CTCCGTTATC GTCATGTTCA CTGCTCTCCA ACTGCATAGA CAGTGTGTCG TTTG	SCAAGCA 300
45	AGCTGATGAA GAATTCCAGA TCCTGGCAAA CTCCTGGCGA TACTCCAGTG CATT	CCACCAA 360
	CAGGATATTT TTTGCCATGG TGGATTTTGA TGAAGGCTCT GATGTATTTC AGAT	GCTAAA 420
50	CATGAATTCA GCTCCAACTT TCATCAACTT TCCTGCAAAA GGGAAACCCA AACC	GGGTGA 480
50	TACATATGAG TTACAGGTGC GGGGTTTTTC AGCTGAGCAG ATTGCCCGGT GGAT	rCGCCGA 540
	CAGAACTGAT GTCAATATTA GAGTGATTAG ACCCCCAAAT TATGCTGGTC CCCT	TATGTT 600
55	GGGATTGCTT TTGGCTGTTA TTGGTGGACT TGTGTATCTT CGAAGAGTAA TATC	GGAATTT 660
	CTCTTTAATA AAACTGGATG GGCTTTTGCA GCTTTGTGTT TTGTGCTTGC TATO	GACATCT 720
60	GGTCAAATGT GGAACCATAT AAGAGGACCA CCATATGCCC ATAAGAATCC CCA	CACGGGA 780
OU		

60

	CATGTGAATT ATATCCATGG AAGCAGTCAA GCCCAGTTTG TAGCTGAAAC ACACATTGTT	840
	CTTCTGTTTA ATGGTGGAGT TACCTTAGGA ATGGTGCTTT TATGTGAAGC TGCTACCTCT	900
5	GACATGGATA TIGGAAAGCG AAAGATAATG TGTGTGGCTG GTATTGGACT TGTTGTATTA	960
	TTCTTCAGTT GGATGCTCTC TATTTTTAGA TCTAAATATC ATGGCTACCC ATACAGCTTT	1020
	CTGATGAGTT AAAAAGGTCC CAGAGATATA TAGACACTGG AGTACTGGAA ATTGAAAAAC	1080
10	GAAAATCGTG TGTGTTTGAA AAGAAGAATG CAACTTGTAT ATTTTGTATT ACCTCTTTTT	1140
	TTCAAGTGAT TTAAATAGTT AATCATTTAA CCAAAGAAGA TGTGTAGTGC CTTAACAAGC	1200
15	AATCCTCTGT CAAAATCTGA GGTATTIGAA AATAATTATC CTCTTAACCT TCTCTTCCCA	1260
	GTGAACTTTA TGGAACATTT AATTTAGTAC AATTAAGTAT ATTATAAAAA TTGTAAAACT	1320
	ACTACTTTGT TITAGTTAGA ACAAAGCTCA AAACTACTTT AGTTAACTTG GTCATCTGAT	1380
20	TTTATATTGC CTTATCCAAA GATGGGGAAA GTAAGTCCTG ACCAGGTGTT CCCACATATG	1440
	CCTGTTACAG ATAACTACAT TAGGAATTCA TTCTTAGCTT CTTCATCTTT GTGTGGATGT	1500
25	GTATACTITA CGCATCTITC CTTTTGAGTA GAGAAATTAT GTGTGTCATG TGGTCTTCTG	1560
	AAAATGGAAC ACCATTCTTC AGAGCACACG TCTAGCCCTC AGCAAGACAG TTGTTTCTCC	1620
• •	TCCTCCTTGC ATATTTCCTA CTGAAATACA GTGCTGTCTA TGATTGTTTT TGTTTTGTTG	1680
30	TTTTTTYGAG ATCACGYTAC TGGGCTC	1707
35	(2) INFORMATION FOR SEQ ID NO: 201:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 779 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 201:	
45	CTGTCCCCAG TGTTTCCAGG TAATGACTTG GCACTCCAGA GAAAGTTTCA TRCTGTTGCG	60
	TGTGGTGGCT CCAAGCCAAG CACCTGGCAT GCAGGTCAGC CCTTCCCAGC GGGCGTGGCG	120
50	CONTRACTOR	180
50	AAACCCATTT TCTTGGTCAT TTATAAAGCT GCTTTATAGA TATCTTTGAT CCTGGCATGC	240
	CTTGGTTTCC TCTCCCTTCC CTCTTTCCAA TCCTGGTTTC CTAACCTCCT CTTGTAGTAA	300
55	TICTCAACTC AACTCAAAGT CCCAAGAATT TGGAATGGTA GGATGCTGTG CGGGGAGCTC	360
	CACCOTTESCS CATASTOSCT GCTTCGGTTC TGCTCATCAG GGGACACGCT CCCTTACTCA	420

TEGCAGCCAT GTTTGATTGT CACAGAGCCC CCCGAATACT CTGTCTATAG TGACACACTG

WO 98/54963 PCT/US98/11422

454

	TAGGTGTCAT	AAATTTTAAG	AAACCTGCTT	TTAAGTACTA	TTTATAGGTT	TTTCTGTTAT	540
_	ACTTGCAACC	TAGTTTTAAA	ATACATGAGG	ATTTTATGAA	AGCTTTATAC	AGACATTTAT	600
5	AGGAAACTCA	TTCTTTGATT	TTAGGTGCCA	TTTAAATTGA	TAACACTTAC	TTTATAAAA	660
	GATGCTTTTT	GTCTGGATAG	AGCCTTATAG	TTTAAAATAT	CTTCATATAT	TGCCATTTGA	720
10	TCAAATAAAT	TTCTTACTTA	GAAAAAAAA	ааааааааа	ААААААААА	AAAACTCGA	779

15 (2) INFORMATION FOR SEQ ID NO: 202:

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1617 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 202:

25	GGCACAGCTT TCTGTCTCTT CCTCGCTCCC TCTCTTTCTC TCCTCCCTC	60
	TGCATAAAGT CTCTGTCGCT CCCGGAACTT GTTGGCAATG CCTATTTTTT GGCTTTCCCC	120
20	CGCGTTCTCT AAACTAACTA TTTAAAGGTC TGCGGTCGCA AATGGTTTGA CTAAACGTAG	180
30	GATGGGACTT AAGTTGAACG GCAGATATAT TTCACTGATC CTCGCGGTGC AAATAGCGTA	240
	TCTGGTGCAG GCCGTGAGAG CAGCGGGCAA GTGCGATGCG GTCTTCAAGG GCTTTTCGGA	300
35	CTGTTTGCTC AAGCTGGGCG ACACATGGCC AACTACCCGC AGCCTGGGAC GACAAGACGA	360
	ACATCAAGAC CGTGTGCACA TACTGGGAGG ATTTCCACAG CTGCACGGTC ACAGCCCTTA	420
40	CGGATTGCCA GGAAGGGGCG AAAGATATGT GGGATAAACT GAGAAAAGAA TCCAAAAACC	480
40	TCAACATCCA AGGCAGCTTA TTCGAACTCT GCGGCAGCGG CAACGGGGCG GCGGGGTCCC	540
	TOCTCCCGGC GTTCCCGGTG CTCCTGGTGT CTCTCTCGGC AGCTTTAGCG ACCTGGCTTT	600
45	CCTTCTGAGC GTGGGGCCAG CTCCCCCGC GCGCCCACCC ACACTCACTC CATGCTCCCG	660
	GAAATCGAGA GGAAGATCCA TTAGTTCTTT GGGGACGTTG TGATTCTCTG TGATGCTGAA	720
50	AACACTCATA TAGGATTGTG GGAAATCCTG ATTCTCTTTT TTATTTCGTT TGATTTCTTG	780
30	TGTTTTATTT GCCAAATGTT ACCAATCAGT GAGCAAGCAA GCACAGCCAA AATCGGACCT	840
	CAGCTTTAGT CCGTCTTCAC ACACAAATAA GAAAACGGCA AACCCACCCC ATTTTTTAAT	900
55	TTTATTATTA TTAATTTTT TTGTTGGCAA AAGAATCTCA GGAACGGCCC TGGGCACCTA	960
	CTATATTAAT CATGCTAGTA ACATGAAAAA TGATGGGCTC CTCCTAATAG GAAGGCGAGG	1020
60	AGAGGAGAAG GCCAGGGGAA TGAATTCAAG AGAGATGTCC ACGGACGAAA CATACGGTGA	1080
60		

•	ATAATTCACG	CTCACGTCGT	TCTTCCACAG	TATCTTGTTT	TGATCATTTC	CACTGCACAT	1140
	TTCTCCTCAA	GAAAAGCGAA	AGGACAGACT	GTTGGCTTTG	TGTTTGGAGG	ATAGGAGGGA	1200
5	GAGAGGGAAG	GGGCTGAGGA	AATCTCTGGG	GTAAGAGTAA	AGGCTTCCAG	AAGACATGCT	1260
	GCTATGGTCA	CTGAGGGGTT	AGCTTTATCT	GCTGTTGTTG	ATGCATCCGT	CCAAGTTCAC	1320
	TGCCTTTATT	TTCCCTCCTC	CCTCTTGTTT	TAGCTGTTAC	ACACACAGTA	ATACCTGAAT	1380
10	ATCCAACGGT	ATAGATCACA	AGGGGGGAT	GTTAAATGTT	AATCTAAAAT	ATAGCTAAAA	1440
	AAAGATTTTG	ACATAAAAGA	GCCTTGATTT	AAAAAAAT	AGAGAGAGAG	ATGTAATTTA	1500
15	AAAAGTTTAT	TATAAATTAA	ATTCAGCAAA	AAAAGATTTG	CTACAAAGTA	TAGAGAAGTA	1560
	ТААААТААА	GITATTGITT	GAAAAAAAAA	WAAAAAAAA	CTCGACCGCA	AGGGAAT	161

25

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 203:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1974 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 203:

GAATTCGGCA CGAGGCTGAG GGAGCTGCAG CGCAGCAGAG TATCTGACGG CGCCAGGTTG	60
CGTAGGTGCG GCACGAGGAG TTTTCCCGGC AGCGAGGAGG TCCTGAGCAG CATGGCCCGG	120
AGGAGCGCCT TCCCTGCCGC CGCGCTCTGG CTCTGGAGCA TCCTCCTGTG CCTGCTGGCA	180
· CTGCGGGCGG AGGCCGGGCC GCCGCAGGAG GAGAGCCTGT ACCTATGGAT CGATGCTCAC	240
CAGGCAAGAG TACTCATAGG ATTTGAAGAA GATATCCTGA TTGTTTCAGA GGGGAAAATG	300
GCACCTTTTA CACATGATTT CAGAAAAGCG CAACAGAGAA TGCCAGCTAT TCCTGTCAAT	360
ATCCATTCCA TGAATTTTAC CTGGCAAGCT GCAGGGCAGG	420
CTGTCCTTGC GCTCCCTGGA TAAAGGCATC ATGGCAGATC CAACCGTCAA TGTCCCTCTG	480
CTGGGAACAG TGCCTCACAA GGCATCAGTT GTTCAAGTTG GTTTCCCATG TCTTGGAAAA	540
CAGGATGGG TGGCAGCATT TGAAGTGGAT GTGATTGTTA TGAATTCTGA AGGCAACACC	600
ATTCTCCAAA CACCTCAAAA TGCTATCTTC TTTAAAACAT GTCAACAAGC TGAGTGCCCA	660
GGCGGGTGCC GAAATGGAGG CTTTTGTAAT GAAAGACGCA TCTGCGAGTG TCCTGATGGG	720
TTCCACGGAC CTCACTGTGA GAAAGCCCTT TGTACCCCAC GATGTATGAA TGGTGGACTT	780
TGTGTGACTC CTGGTTTCTG CATCTGCCCA CCTGGATTCT ATGGAGTGAA CTGTGACAAA	840
GCAAACTGCT CAACCACCTG CTTTAATGGA GGGACCTGTT TCTACCCTGG AAAATGTATT	900

	TSCCCTCCAG GACTAGAGGG AGAGCAGTGT GAAATCAGCA AATGCCCACA ACCCTGTCGA	960
_	AATGGAGGTA AATGCATTGG TAAAAGCAAA TGTAAGTKTT CCAAAGGTTA CCAGGGAGAC	1020
5	CTCTGTTCAA AGCCTGTCTG CGAGCCTGGC TGTGGTGCAC ATGGAACCTG CCATGAACCC	1080
	AACAAATGCC AATGTCAAGA AGGTTGGCAT GGAAGACACT GCAATAAAAG GTACGAAGCC	1140
10	AGCCTCATAC ATGCCCTGAG GCCAGCAGGC GCCCAGCTCA GGCAGCACAC GCCTTCACTT	1200
	AAAAAGGCCG AGGAGCGGCG GGATCCACCT GAATCCAATT ACATCTGGTG AACTCCGACA	1260
15	TCTGAAACGT TTTAAGTTAC ACCAAGTTCA TAGCCTTTGT TAACCTTTCA TGTGTTGAAT	1320
15	GTTCAAATAA TGTTCATTAC ACTTAAGAAT ACTGGCCTGA ATTTTATTAG CTTCATTATA	1380
	AATCACTGAG CTGATATTTA CTCTTCCTTT TAAGTTTTCT AAGTACGTCT GTAGCATGAT	1440
20	GGTATAGATT TTCTTGTTTC AGTGCTTTGG GACAGATTTT ATATTATGTC AATTGATCAG	1500
	GTTAAAATTT TCAGTGTGTA GTTGGCAGAT ATTTTCAAAA TTACAATGCA TTTATGGTGT	1560
25	CTGGGGGCAG GGGAACATCA GAAAGGTTAA ATTGGGCAAA AATGCGTAAG TCACAAGAAT	1620
25	TTGGATGGTG CAGTTAATGT TGAAGTTACA GCATTTCAGA TTTTATTGTC AGATATTTAG	1680
	ATGTTTGTTA CATTTTTAAA AATTGCTCTT AATTTTTAAA CTCTCAATAC AATATATTTT	1740
30	GACCTTACCA TTATTCCAGA GATTCAGTAT TAAAAAAAAA AAAATTACAC TGTGGTAGTG	1800
	GCATTTAAAC AATATAATAT ATTCTAAACA CAATGAAATA GGGAATATAA TGTATGAACT	1860
25	TTTTGCATTG GCTTGAAGCA ATATAATATA TTGTAAACAA AACACAGCTC TTACCTAATA	1920
35	AACATTTTAT ACTGTTTGTA TGTATAAAAT AAAGGTGCTG CTTTAGTTTT CTGA	1974
40	(2) INFORMATION FOR SEQ ID NO: 204:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 1057 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 204:	
50	CGGCCTTCCG GGGCAACCGT TCGTCCCAAC NCGGGAAAGG GTCCTGGAGN CGGGAACTAG	6(
	GAGCCTCGGA AGTCCAAGGG CGGAGCGCCC TTTGCTAATA AGCCAATCAG AACGTGAGAC	120
55	GAGCCTCGGA AGTCCAAGGG CGGAGCGCCC TTTGCTTTTTTTTTT	180
כנ	TCAAGTGCAG CTGCTTCAGG CTGAGGTGGC AGATAGTGAG CGCTGGTGGC GGAGTTAAAG	24
	TCAAGTGCAG CIGCITCAGG CIGAGGIGGC AGAIAGIGIG COOTOGCGG CIGCITCAGG CICCITCAGG CICCITCAGG CICCITCAGG CICCITCAGG CICCITCAGG CICCITCAGG C	30
	TYAAAGCAGG AGAGTAATWA TGAATAGCOC AGCGGGATTC TGACACCTTO ACCGTGGGG	

	GCGGGTTCTC AAGTTAGGGG AGAGTTTCGA GAAGCAGCCG CGCTGCGCTT CCACACTGTG	360
٠	CGCTATGACT TCAAACCTGC TTCTATTGAC ACTTCTTCTG AAGGATACCT TGAGKTTGGC	420
5	GAAGKTGAAC AGKTGACCAT WACTCTGCCM AATATAGAAA GTTGAAGGAA GCAGTAAAAT	480
	TCAGTATCGT AAAGAACAAC AGCAACAACA ATGTGGAATT CASCCAGGAC TCCCAATCTT	540
	GTAAAACATT CTCCATCTGA AGATAAGATG TCCCCAGCAT CTCCAATAGA TGATATCGAA	600
10	AGAGAACTGA AGGCAGAAGC TAGTCTAATG GACCAGATGA GTAGTTGTGA TAGTTCATCA	660
	GATTCCAAAA GTTCATCATC TTCAAGTAGT GAGGATAGTT CTAGTGACTC AGAAGATGAA	720
15	GATTGCAAAT CCTCTACTTC TGATACAGGG NAATTGTGTC TCAGGACATC CTACCATGAC	780
	ACAGTACAGG ATTCCTGATA TAGATGCCAG TCATAATAGA TTTCGAGACA ACAGTGGCCT	840
	TCTGATGAAT ACTTTAAGAA ATGATTTGCA GCTGAGTGAA TCAGGAAGTG ACAGTGATGA	900
20	CTGAAGAAAT ATTTAGCTAT AAATAAAAAT TTATACAGCA TGTATAATTT ATTTTGTATT	960
	AACAATAAAA ATTCCTAAGA CTGAGGGAAA TATGTCTTAA CTTTTGATGA TAAAAGAAAT	1020
25	TAAATTTGAT TCAGAAAAAA AAAAAAAAAA AACTCGA	1057

30 (2) INFORMATION FOR SEQ ID NO: 205:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 721 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 205:

40	GAATTCGGCA CGAGTCATCC CTCTCCCTCT TTCACTCCCT TACTCTTACT CTGTTTTTTG	60
	TGCTCCAGAC AGACAGACCC TACCTCTTTT GCTTCTTTTT TGTTTGTTTG TTTTGAGATG	120
	GAGTGTCGCT CTTGTTGCCC AGGCTGGAGT GCAGTGGCGC AATCTCGGCT CACCACAACC	180
45	TCTGCCTCCC GGGTTCAAGC AATTCTCCTG CCTCAGCCTC CCGAGAAGCT GGGGATTACA	240
	GGCATGCGCC ACCACACCCA GCTNAATTTT ATATTTTTAG TAGAGATGGT GTTTCTCCAT	300
50	GTTGGTCAGG CTGGCCTCAA ACTCCCAACC TCAGGTGATN CCGCCTGCTT TGGCCTCCCC	360
	AAAGTGCTGG GATTACAGGC GTGAGCCACT GCGCCCAGCC TCTTTTGCTC CTTTATACTC	420
5.5	ATTAACTCAC GCCTGTAATC CCTGTTTTGG GAGGCCAAAG TGAGAAGGTT GCTTGAGGCC	480
55	AAGAGTTTGA GACTAGCCTG GGCAACACAG CAAGATGCCA TCTTTATAAT AAAAATAAAA	540
	ATAAAAATCA ATTAGCTGGG CATGGTGGAA CGCACCTGTA GTCCCAGCCA ATTGAGAGGC	600
60	TGAAGTGGGA GGATCATTGA GCCCAGGAGT TGAGGTTGCA GTGAGCCATG ATCATGTCAC	660

PCT/US98/11422

	TACACTCAGC CTGGGCAATA GAGGGACATG TTGTCTCTAA AAAAAAAAAA	720
	A	721
5		
10	(2) INFORMATION FOR SEQ ID NO: 206:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2465 base pairs	
	(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 206:	
	CCACCATTTA TCCAACTGAA GAGGAGTTAC AGGCAGTTCA GAAAATTGTT TCTATTACTG	60
20	AACGTGCTTT AAAACTCGTT TCAGACAGTT TGTCTGAACA TGAGAAGAAC AAGAACAAAG	120
	AGGGAGATGA TAAGAAAGAG GGAGGTAAAG ACAGAGCTTT GAAAGGAGTT TTGCGAGTGG	180
25	GAGTATTGGC AAAAGGATTA CTTCTCCGAG GAGATAGAAA TGTCAACCTT GTTTTGCTGT	240
	GCTCAGAGAA ACCTTCAAAG ACATTATTAA GCCGTATTGC AGAAAACCTA CCCAAACAGC	300
	TTGCTGTTAT AAGCCCTGAG AAGTATGACA TAAAATGTGC TGTATCTGAA GCGGCAATAA	360
30	TTTTGAATTC ATGTGTGGAA CCCAAAATGC AAGTCACTAT CACACTGACA TCTCCAATTA	420
	TTCGAGAAGA GAACATGAGG GAAGGAGATG TAACCTCGGG TATGGTGAAA GACCCACCGG	480
35	ACGTCTTGGA CAGGCAAAAA TGCCTTGACG CTCTGGCTGC TCTACGCCAC GCTAAGTGGT	540
	TCCAGGCTAG AGCTAATGGT CTGCAGTCCT GTGTGATTAT CATACGCATT CTTCGAGACC	600
	TCTGTCAGCG AGTTCCAACT TGGTCTGATT TTCCAAGCTG GGCTATGGAG TTACTAGTAG	660
40	AGAAAGCAAT CAGCAGTGCT TCTAGCCCTC AGAGCCCTGG GGATGCACTG AGAAGAGTTT	720
	TTGAATGCAT TTCTTCAGGG ATTATTCTTA AAGGTAGTCC TGGACTTCTG GATCCTTGTG	780
45	AAAAGGATCC CTTTGATACC TTGGCAACAA TGACTGACCA GCAGCGTGAA GACATCACAT	840
	CCAGTGCACA GTTTGCATTG AGACTCCTTG CATTCCGCCA GATACACAAA GTTCTAGGCA	900
	TGGATCCATT ACCGCAAATG AGCCAACGTT TTAACATCCA CAACAACAGG AAACGAAGAA	960
50	GAGATAGTGA TGGAGTTGAT GGATTTGAAG CTGAGGGGAA AAAAGACAAA AAAGATTATG	1020
	ATAACTITTA AAAAGTGTCT GTAAATCTTC AGTGTTAAAA AAACAGATGC CCATTTGTTG	1080
55	GCTGTTTTTC ATTCATAATA ATGTCTACAT TGAAAAATTT ATCAAGAATT TAAAGGATTT	1140
	CATGGAAGAA CCAAGTTTTT CTATGATATT AAAAAATGTA CAGTGTTAGG TATTATTTGA	1200
	ATGGAAAGAC ACCCAAAAAA AAAAATGTGC TCCGACTAGG GGGAAAACAG TAGTTCCGAT	1260
60		

180

60

	TITTTCCCAT TATITTATT TTATITTCTG GTTGCCCTAG CTTCCCCCCC TATITTTGTG	1320
	TCTTTTATTA ACTAGTGCAT TGTCTTATTA AATCTTCACT GTATTTAATG CAGGATGTGT	1380
5	GCTTCAGTTG CTCTGTGTAT TTTGATATTT TAATTTAGAG GTTTTGTTTG	1440
	CTAGTTGTAA GTTACTTTGT TATAGATGGT ATCCTTTACC CCTTCTTAAT ATTTTACAGC	1500
	AGTACGTTTT TTTGTAACGT GAGACTGCAG AGTTTGTTT TCTATATGTG AAGGATTACA	1560
10	ACACAAAAAG TTATCCTGCC ATTCGAGTGC TCAGAACTGA ATGTTTCTGC AGATCTTGTG	1620
	GCATTTGTCT CTAGTGTGAT ATATAAAGGT GTAATTAAGA CAGAGTTCTG TTAATCTAAT	1680
15	CAAGTTTGCT GTTAGTTGTG CATTAGCAGT ATAAAAGCTA ATATATACTA TATGGTCTTG	1740
	CAACAGTTTT AAAGCCTCTG CATAATTGAT AATAAAAATG CATGACATTC TTGTTTTTAA	1800
20	TAGACTITTA AAATCATAAT TITAGGTTTA ACACGTAGAT CTTTGTACAG TTGACTTTTT	1860
20	GACATAGCAA GGCCAAAAAT AACTTTCTGA ATATTTTTTT CTTGTGTATA AGTGGAAAGG	1920
	GCATTTTCA CATATAAGTG GGCTAACCAA TATTTTCAAA AGAACTTCAT CATTGTACAA	1980
25	CTAACAACAG TAACTAGCCC TTAATTATGG TGACAGTTCC TTATTGGTGT GTGTGAGATT	2040
	ACTCTAGCAA CTATTACAGT ATAACACAGA TGATCTTCTC CACACACCCC ATCACCCAGA	2100
30	TAATTTACAG TTCTGTTAAC AGTGAGGTTG ATAAAGTATT ACTGATAAAA AATTATCTAA	2160
30	GGAAAAAAAC AGAAAATTAT TTGGTGTGGC CATCTTACCT GCTTATGTCT CCTACACAAA	2220
	GCTAAATATT CTAGCAGTGA TGTAATGAAA AATTACATCT TACTGTTGAT ATATGTATGC	2280
35	TCTGGTACAC AGATGTCATT TTGTTGTCAC AGCACTACAG TGAAATACAC AAAAAATGAA	2340
	ATTCATATAA TGACTTAAAT GTATTATATG TTAGAATTGA CAACATAAAC TACTTTTGCT	2400
40	TTGAAATGAT GTATGCTTCA GTAAAATCAT ATTCAAATTT AAAAAAAAAA	2460
40	CTCGA	2465
45	(2) INFORMATION FOR SEQ ID NO: 207:	
	(i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 1480 base pairs (B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 207:	
55	GAATTCGGCA CGAGCTCAAG CTGGCAGGTG GTCGGGGGAG CGGCCGGAGA GGAGCTGCCG	60

GGAGTTCGTG CCCTGCAGGA CATGACACCA GTGGCATATC ACGGCCATGG GGTCTCAGCA

TTCCGCTGCT GCTCGCCCCT CCTCCTGCAG GCGAAAGCAA GAAGATGACA GGGACGGTTT

	GCTGGCTGAA CGAGAGCAGG AAGAAGCCAT TGCTCAGTTC CCATATGTGG AATTCACCGG	240
-	GAGAGATAGC ATCACCTGTC TCACGTGCCA GGGGACAGGC TACATTCCAA CAGAGCAAGT	300
5	AAATGAGTTG GTGGCTTTGA TCCCACACAG TGATCAGAGA TTGCGCCCTC AGCGAACTAA	360
	GCAATATGTC CTCCTGTCCA TCCTGCTTTG TCTCCTGGCA TCTGGTTTGG TGGTTTTCTT	420
10	CCTGTTTCCG CATTCAGTCC TTGTGGATGA TGACGGCATC AAAGTGGTGA AAGTCACATT	480
	TAATAAGCAA GACTCCCTTG TAATTCTCAC CATCATGGCC ACCCTGAAAA TCAGGAACTC	540
1.5	CAACTTCTAC ACGGTGGCAG TGACCAGCCT GTCCAGCCAG ATTCAGTACA TGAACACAGT	600
15	GGTGAATTTT ACCGGGAAGG CCGAGATGGG AGGACCGTTT TCCTATGTGT ACTTCTTCTG	660
	CACGGTACCT GAGATCCTGG TGCACAACAT AGTGATCTTC ATGCGAACTT CAGTGAAGAT	720
20	TTCATACATT GGCCTCATGA CCCAGAGCTC CTTGGAGACA CATCACTATG TGGATTGTGG	780
	AGGAAATTCC ACAGCTATTT AACAACTGCT ATTGGTTCTT CCACACAGCG CCTGTAGAAG	840
25	AGAGCACAGC ATATGTTCCC AAGGCCTGAG TTCTGGACCT ACCCCCACGT GGTGTAAGCA	900
43	GAGGAGGAAT TGGTTCACTT AACTCCCAGC AAACATCCTC CTGCCACTTA GGAGGAAACA	960
	CCTCCCTATG GTACCATTTA TGTTTCTCAG AACCAGCAGA ATCAGTGCCT AGCCTGTGCC	1020
30	CAGCAAATAG TTGGCACTCA ATAAAGATTT GCAGAATTTA ATACAGATCT TTTCAGCTGT	1080
	TCTTAGGGCA TTATAAATGG AAATCATAAC GTGGTTCTAG GTTATCAAAC CATGGAGTGA	1140
35	TGTGGAGCTA GGATTGTGAG TGACCTGCAG GCCATTATCA GTGCCTCATC TGTGCAGAAG	1200
33	TCGCAGCAGA GAGGGACCAT CCAAATACCT AAGAGAAAAC AGACCTAGTC AGGATATGAA	1260
	TTTGTTTCAG CTGTTCCCAA AGGCCTGGGA GCTTTTTGAA AAGAAAGAAA AAAGTGTGTT	1320
40	GGCTTTTTT TTTTTTAGAA AGTTAGAATT GTTTTTACCA AGAGTCTATG TGGGGCTTGA	1380
	TTCACCCTTC ATCCATTGGC TGGAACATGG ATTGGGGATT TGATAGAAAA ATAAACCCTG	1440
45	CTTTTGATTC AAAAAAAAAA AAAAAWAAA AAAAACTCGA	148

(2) INFORMATION FOR SEQ ID NO: 208:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 872 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

55 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 208:

CAGTATTTCC CTCAGTACTG TAAGCAAAAG TGGTATGTTT TTCTTTCTTT ATGTCTACTC

	TGTCCTCTGT GGCCTTCTGG TGTACCCCTC TCTTCCTAGC CATTCAGTCT CTCTAGTCAC	120
5	CTCCCTAGTA GCTAGTGCTC TCTAAGTTTT TATTTAATTA GAACAACTCC ATTTCCATTT	180
	CAAGGTAGGT CAATGGGGGG AAAAGCCTCA TGATTTAAAC TGAAGTTAAC AACACAGCTT	240
	TTAAAATGAA AACTCATACT CCAACTTCTA AAGTATATTT GAGCTGATTT GTTTCCAAAA	300
10	CAAAGATATG CTGTACCTAA AACTGCTAAA ACAAAAATAT AAAGACAAGG ACTAGGTGAT	360
	TAAGGGGAGA GAAAAATCAT YTCTTTTCCA GGAAACCTTT GCTAAAATAA GCAAAACTTG	420
	ANTICTATECT TCATEGAAAC TGACACAAAG AAAAGAAACT GATGGATTEC ACAGECCTTG	480
15	TTATAGAAAT AGATCTATAA AAAGATCTGT CCACAGGAAA TATACACCTT CTCCTGGTTC	540
	TGAACTTCAA TGGGGATTTG TCACCTAGGT CTCCATCTAT AGGAATACCT TCACATACCT	600
20	ATCTATTCAT GCACATATTC TGAAAACAGG TACATACAAA ATTACAACAA AGGAAAAAAA	660
20	TTCTATTGAA CACTTAAAAA TAGAAACAGG CCAGGCACGG TGGCTCATGC TGTAATCCCA	720
	ACAATTTGGG AGGCTGAGGC TGGTGGATCA CCTGAGGTCA GGAGTGTGAG ACCAGCTTGG	780
25	CCAACATGGT GAAACCCCGT CACTACTAAA AATACAAAAA AAATTAGCCT GTGTGGTGGC	840
	ACACTCNTAC AATCCNGGCT GACTCGGGAA AN	872
20		
30	10) THE TOTAL TOTAL TOTAL TO NO. 200.	
	(2) INFORMATION FOR SEQ ID NO: 209:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1779 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 209:	
	AATTGCCAAG ACTGCACAAA ATTACAGTGC TAATGTATAT GGTTGCAGTT CACATAAAGA	60
	CAAAAGCATC TGTTATGAAA TGAGTAGTAA TATTGGGTGG TTGATTTGTT CTTAGCAGAC	120
45	TTGGCTTCAT WTTGGTCTTG AGATAAAATG GCCAGCATAA ATGCTGTTTA TATTCACGTT	180
	TTCCTAGGTG TGTGTGCA GGCCACAGCA GCATGCCCTT GGTGTAGTCA GTGCCGAAAS	240
50	GGGTCTGTTC CTTCTTGAGC CTGCCTGCAG GGATGGTCTC CTTTTAAAGC AGGTTGTGTG	300
	CAGCATTCAG TACACTGAAG GTAAGCTAAA CCATCAACAT CTCTGGTGTT TTAAGATGTT	360
55	ATTTTATTGG AACAACTGAC AAATGAGGGA TGTTAGCTTT GTGGCAGAAT TCCCTGCATG	420
	TGTGATAACT GATCTTGTTT TATTTTTTGG CATTGCAACT GTGGCATAGT TACAATTTCT	480
	GTTTGKTCAT CACATTTAAA ATTGGRAGAG AACGCGCTTG AKGGATAGAG CGCCTTCAGK	540

60 GTACTGTTTC TTATTAACTT TACTTTTTTT AAATCAACTT GCTATAGACT TTATATACAT

PCT/US98/11422

	TITGITAAAT ATAGTTCCTA GIGACATAGA AACGATGCGT AGTITTCATT TACTAATTAC	660
<i>-</i>	AAATGTTGAG GCCTAATTCT GAAAGTCCTC ATATTTAAAG GCTAGACAAC GTAATGAAAT	720
5	TTTTAACTAT TTGTATGTCA TITTGAAAGT GTACTGCTTT ATGGTAAAAG TGTTTTTCAT	780
	TIGITCATTG TITTCATTAT TIGIGATCAT GITGICTITC AATACAGGCA TAAACCITCC	840
10	ACTOTTGAAC AAAGCAGCTG CTTTTTAAAA GCGGTAATTG CTTCTTTACC TTTTATTTCT	900
	TTTGTAAATG AAGCTTTTCT TTAAGAATGT GACTTTAAAG TGTTGTCTAT TGCATAAAAC	960
15	AGTTGACACT CACTTATTGT AAAGTGAAGA TTGTTCTACT GCATGTGAAG TGGACCATGC	1020
15	AGATTICTGT ATGTTCTCAG TATGCATCAC TAGATAATAA AGTCTTTTGT GAACAAGGCA	1080
	TTTGTAGCCA TTTTTAAAAG TTTTTGTCTT CAGTGCTGGT AAGTCAGGTA AACCATAAAT	1140
20	AGTTAAAAGC AACCTTTIGT TTTTTTCCTG AAAGTTTTTA ATTGAAAGTA TTATTAGTTA	1200
	AAGATGTAAA CCTAGCCAAA ATTACCAGTT TATTAATAAT TAGGATCCTA ATTATTTCAA	1260
0.5	AAAATCCTAC AAATATTGTC AGCTTTCAGT GTAGTGAGAT TATTCCTGTA GGTTATGGGG	1320
25	TATAATTCAG GATTTAACTA ATGTTTCTGC TATTTTCTCA CTTTTCCTTT TGATGGTGCG	1380
	GAAAGAGAAA AAGGAAAACG GGGCACAGGC CATTCGACGC CTTCTCCAAG GGGTCTGATT	1440
30	TGCTGAGACA CCAGCTTCAC CTTCTTAACA AGGCACCTAA TTACAACAAG CATGCACATT	1500
	TTGGTGCATT CAAGAATGGA AAATCAGAAT AGCAGCATTG ATTCTTCTGG TGCAGCTCAG	1560
25	TGGAAGATGA TGACAACCAG AAGACATGAG CTAAGGGTAA GGGACTGTTC TGAAGAACCT	1620
35	TTCCATTTAG TGATCAAGAT ATGGAAGCTG ATTTCTGAAA ATGCTCAGTG TGTACTCTAA	1680
	TTATTTATGG TACCATTTGA ATTGTAACTT GCATTTTAGC AGTGCATGTT TCTAATTGAC	1740
40	TTACTGGGAA ACTGAATAAA ATATGCCTCT TATTATCAA	1779
45	(2) INFORMATION FOR SEQ ID NO: 210:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2110 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 210:	
55	GCGGCCGCTG CAGCCCGGAG CTGAGCTAGC CGTCCGAGCC GAGCCGTCCG AGCCGGGGAA	60
	GCCGGCGCGT GCTGCCGCTC GTGGCGGCCA GAGGAGAGGA	120
60	GTCCTGTCCC GACGCCTTGG AAAGCGGTCC CTCCTGGGAG CCCGGGTGTT GGGACCCAGT	180

	GCCTCGGAGG GGCCTCGGCT GCCCCACCCT CGGAGCCACT GCTAGAAGGG GCCGCTCCCC	240
	AGCCTTTCAC CACCTCTGAT GACACCCCCT GCCAGGAGCA GCCCAAGGAA GTCCTTAAGG	300
5	CTCCCAGCAC CTCGGGCCTT CAGCAGGTGG CCTTTMAGCC TGGGCAGAAG GTTTATGTGT	360
	GGTACGGGGG TCAAGAGTGC ACAGGACTGG TGGWGCAGCA CAGCTGGATG GAGGGTCAGG	420
10	TGACCGTCTG GCTGCTGGAG CAGAAGCTGC AGGTCTGCTG CAGGGTGGAG GAGGTGTGGC	480
10	TGGCAGAGCT GCAGGGCCCC TGTCCCCAGG CACCACCCCT GGAGCCCGGA GCCCAGGCCC	540
	TGGCCTACAG GCCCGTCTCC AGGAACATCG ATGTCCCAAA GAGGAAGTCG GACGCATGGA	600
15	AATGGATGAG ATGATGGCGG CCATGGTGCT GACGTCCCTG TCCTGCAGCC CTGTTGTACA	660
	GAGTCCTCCC GGGACCGAGG CCAACTTCTC TGCTTCCCGT GCGGCCTGCG ACCCATGGAA	720
20	GGAGAGTGGT GACATCTCGG ACAGCGGCAN CAGCACTACC AGCGGTCACT GGAGTGGGAG	780
20	CAGTGGTGTC TCCACCCCCT CGCCCCCCA CCCCCAGGCC AGCCCCAAGT ATTTGGGGGA	840
	TGCTTTTGGT TCTCCCCAAA CTGATCATGG CTTTGAGACC GATCCTGACC CTTTCCTGCT	900
25	GGACGAACCA GCTCCACGAA AAAGAAAGAA CTCTGTGAAG GTGATGTACA AGTGCCTGTG	960
	GCCAAACTGT GGCAAAGTTC TGCGCTCCAT TGTGGGCATC AAACGACACG TCAAAGCCCT	1020
30	CCATCTGGGG GACACAGTGG ACTCTGATCA GTTCAAGCGG GAGGAGGATT TCTACTACAC	1080
50	AGAGGTGCAG CTGAAGGAGG AATCTGCTGC TGCTGCTGCT GCTGCTGCCG CAGACCCCCA	1140
	GTCCCTGGGA CTCCCACCTC CGAGCCAGCT CCCACCCCCA GCATGACTGG CCTGCCTCTG	1200
35	TCTGCTCTTC CACCACCTCT GCACAAAGCC CAGTCCTCCG GCCCAGAACA TCCTGGCCCG	1260
	GAGTCCTCCC TGCCCTCAGG GGCTCTCAGC AAGTCAGCTC CTGGGTCCTT CTGGCACATT	1320
40	CAGGCAGATC ATGCATACCA GGCTCTGCCA TCCTTCCAGA TCCCAGTCTC ACCACACATC	1380
40	TACACCAGTG TCAGCTGGGC TGCTGCCCCC TCCGCCGCCT GCTCTCTMTC TCCGGTCCGG	1440
	AGCCGGTCGC TAAGCTTCAG CGAAGCCCCA GCAGCCAGCA CCTGCGATGA AATCTCATCT	1500
45	GATCGTCACT TCTCCACCCC GGGCCCAGAG TGGTGCCAGG AAAGCCCGAG GGGAGGCTAA	1560
	GAAGTGCCGC AAGTGTATGG CATCGAGCAC CGGGACCAGT GGTGCACGGC CTGCCGGTGG	1620
50	AAGAAGGCCT GCCAGCGCTT TCTGGACTGA GCTGTGCTGC AGGTTCTACT CTGTTCCTGG	1680
50	CCCTGCCGGC AGCCACTGAC AAGAGGCCAG TGTGTCACCA GCCCTCAGCA GAAACCGAAA	1740
	GAGAAAGAAC GGAAACACGG AGTTTGGGCT CTGTTGGCTA AGGTGTAACA CTTAAAGCAA	1800
55	TTTTCTCCCA TTGTGCGAAC ATTTTATTTT TTAAAAAAAA GAAACAAAAA TATTTTTCCC	1860
	CCTAAAATAG GAGAGAGCCA AAACTGACCA AGGCTATTCA GCAGTGAACC AGTGACCAAA	1920
60	GAATTAATTA CCCTCCGTTT CCCACATCCC CACTCTCTAG GGGATTAGCT TGTGCGTGTC	1980

	AAAAGAAGGA	ACAGCTCGTT	CTGCTTCCTG	CTGAGTCGGT	GAATTCTTTG	CTTTCTAAAC	2040
	TCTTCCAĠAA	AGGACTGTGA	GCAAGATGAA	TTTACTTTTC	TTAAAAAAAA	АААААААА	2100
5	AAAAACTCGA						2110

10 (2) INFORMATION FOR SEQ ID NO: 211:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 938 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 211:

20	GGCACAGGAA AAAAAAGAAA AAAGAAAAAA GAAAAAAGTT TTTGTACCCA CAGATTAGCA	60
	TTTTCTTGAT GTTTGAAAAA AGTTTAAGCT ATGTCCTAAT TTAAAAATGA GCACAAACTA	120
	CTTAACAGAT GTCTGTTCCC TCTTCTCTTA CTTAAATTAT CTTTATTTTC ACCATCACCT	180
25	CCCAGTGCCG AACACCTGAN CTCTGTGTTT TGTGGTTGGA TCCTGGGTTG CCAAGTTCCT	240
	ATTTGGTCAG TCCCTGGCCT GTGGGGCGGT CTCAGGAAGT GGCATGCTCT TCAMGRAGGA	300
30	TCGTTCATYT CCAGTATAAC CAWITTGITA ATAATAGTTG ATAATTCCCA GCTTTTACCA	360
	GATGARTTTT GACTTATTTT TCCTCCTTTG ACCTGTTCAA AGCTAACATA TCTCGGTCAG	420
25	TTCGGAGAGG GTGGCGGATT TGAGAATGTG AGGAGGAGTG GGGTTAGAAT GGGTTTGCCT	480
35	ATCTGGGCAA GGAAAGAGTT CCTAGTCGAT TGGGCACAAT GACAAAATGA TTCCATGGAT	540
	AGAATCGTCC CATGTTGCTG GAACACCTCA CGTGTTGTGA ACGCCTTAAA TTCCTGCCAT	600
40	CCCTTCTCTG ATTCCCCACC TCCCTGTAGT TTCCACAGGA TTTATCTCTC TGTACCCCCG	660
	TCCTCCAACT CTACTCTGTC AGCCTCTCCT CCATCCCTTA CTTCCCTTCT AAATTCCAGG	720
45	AGATGACCTC ACTITGCAAA GCAAATTGGA GCCACCAAAT TGTAGCTCTC CTCGGTGGAA	780
	ACTGCATCTG TGCTCATCCC TGCACCTTCT TGCAGAAAGC CGCCCCTCA GGCCAAGATG	840
	AGTGCCTGGC CCCCATGGGA GACTCAGACA CTTTGACCCC TTGTGACTTC AGCATCTCCC	900
50	TCTTTAAAGA TTCTCTCCCA ACATTCAGTC GTGCTCGA	938

55 (2) INFORMATION FOR SEQ ID NO: 212:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1551 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 212:

5	AGGCTGGACT AAGCATAGAG AACCAGGAGA GAAAGAAAGA TTTAAGAGAC TGAGTAATAT	50
	TTTTTGACAG ATCATTTAAG AAACTGAGTA ATTTTTTTTT TCTCCAAAAG GGCATGGGTT	120
	TITTTTTGT TITGTTTTTT CTCTATTTGG CACTTTCTAG GGATTGGTCT ATAAATTTTT	. 130
10	TGAAAGATCA TAGGATAAAT TTCTTTGTAG CAACTTCCTA TTTTAGTGTT TATGTTAGGG	240
	GARCCCCARG TGTCCCTGCT GATACGCCAT TAGGGCCACT TCTCAGCCTC TGGCTACATC	300
15	ATAATGCTTT TITTTCTATC TTGCCAAAGT TTCCMGAAAA TTKAKGTTTT CTAATTTTAA	360
	AAAAATTGGT TGTGGAGATG GGATGGGACC TCTTTATAAG CCCTGAAAAT AAGTGATTTN	420
20	TTTTAAGTGC TATTCTGCTA TAAACCTGAT TCTCACTTTT TTCTGTAGAC AACAGTTTTT	430
20	TATAATATAT CTATTTTGTG TGGACATTAT TTCCTTTTAA CCAATACTGA AATTCCATAG	540
	TGTAWACTIT CTCCACATTT TCTTTGATTA ATACTTYCTT AAAATAGACA CTTGGATTGG	600
25	CACCAGCTGT CACCAATAAA GCTGCCCTGA ACATTGTCAA TCAATCCTGT TAACCAATTT	660
	GAGAATITTT CTGGAATGCT TAGTTAGGGA TGAAATTGCT GGGTTATAGG TATGAGTATG	720
30	CTTGATATAC TTTTCTCCAG AATGTCTACA CCTGTGTGTA CACCACATCT CCAGAGATAG	730
30	GGGAATCITA TGTCCCTGCT AACTGCTCTC GITATTTAAT TTTCTGACAT TTGCCGCCGC	840
	CGCCGCCCCC TGCCCCCAAC ACACACATGG TATAAAGTGG TAGTTTCTTG TTTTAAATTG	900
35	AACTTTTGAA TGATTTGAAT TTGGGCATTT CTTTGTATCC TGAGTTATTT TGGTTTCCCG	950
	TTATGIGAAT ATCCTTTTCC TATGCTTTAA CTACTTTTCT AATTTGTCCC TTTTTTNGGT	1020
40	TATCAAATTC CAGGCCATTG TCTATTCCAT CGTCACTTTT GGGTATTGGA AACATCTTTC	1030
40	CATTCTGTAG CCTGTCTGTT GAACATAAAT CTTGATTTTT ATGTAATCAG ATTTTTCTCC	1140
	TTACGGTTAT GTTCTTGGAA TTTTATTTAA GAAATCTTTT TCTATCCTGA GACCACAAAA	1200
45	ATGTCCCCAC CATTTTCTTC TGTTTCATAG TTTTGCCTTG TATGTTTAAT CCTTTAAGGC	1250
	ATGTGTAGTT CATTTTATAT GGTGTGAAAT AGTTCTTATT CATTTATTCA ACACATATTG	1320
50	GTGGAGTGCC TGCTGATGGT AGTACTCTTC AGAGTACTTT GTATATATTT GTGAACACAT	1330
50	ATTCTTGCCC TGGAAGCTTA TGTTGTCNTT CAAGGTAGAT CCNTACTCGG TTTCCACCTG	1440
	TTTTCTTCAG CCCTCAGGAT GAATTCCACA ATTTTACACA TAGCACCAGT TAAGGAATAG	1500
55	GCTTTATTGG AGAAAAGGAA GGCTTATTAG ACCAGCATCA GCAAAAAAAA A	1551

^{60 (2)} INFORMATION FOR SEQ ID NO: 213:

(i) SEQUENCE CHARACTERISTICS:

WO 98/54963

PCT/US98/11422

_	(A) LENGTH: 997 base pairs (B) TYPE: nucleic acid	
5	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 213:	
10	AGAGAGTCCT CAACAGAACC TAATCATGCT GGCACCCTAA TOTCATACTT CTAGCCTCCA	50
	GAACTGAGAG AACATAAACT CCAGTTGTTT AAGCTACCCA GTCTATGGTA ITTGTTATTA	120
15	TAGCCCAAGC TAAGTCAGGT GGAAAGGCAG AAATATTTTG AGAAGARTCA TTTCTACAAA	130
	AACAGAGTTG TTCTAAATGA AATGGCCAGA TATTTCATCT TCTTCATACT AGTATTTATG	240
	AAAGTTTCAT TAAACACCAC TTGGCCAGCA CCCAGGCCTG CCACCCTCAG AACGGCAAAC	300
20	AAAAGCAAAT GATTTGAGGA ACAAAAGAGT GGACACAGAG CTTCTCAGAA GATGGCTCCA	360
	TCTTCTGAGA TGATCTTCTG AGATCATCAA TTTTCTGCAC CTGATGTCCT ACTCCAATTG	420
25	TAGTAGATAA GAGCAAAGAC ACTTCCTGAT CCTGTGGAAA ATGCTGGAGC CCTGCTGATG	430
25	GAGAGGCTGA CACTGGGACC AACAGAAGGC CGGACATTIA TITGGTGCAG CCCTTCTGCA	540
	COTGGGCCCT CTTCAGGCCT TGTACCTTGC ACTCCCCATG CCACTGCTAGC ACCTGGTAAG	600
30	CTGAAGTTAG GTATTTGAAG AGATAATTTG CCCCCAACAA AGAALTACTT AAAAGAAAAA	550
	GGAAACCACT AAATTCCACT TGACAAACCA GTTTGTTCAG TITTGACTIT TGCAAATTIG	720
35	AAACTTTCTC TTTGGCACCA TATGATTCTG TTACATTAGG GSTCATCAAT GCTAAGATAC	780
33	ACAGCTAGGT CTACCAGCTG CCAGTGGTCA AGAATGAAAG AACCTCTCAG AGAGAGATCA	840
	GTTTCTAATA ACCTAACAGT TTTCCTTGGS TATTACMAAA AAAAAAAAA TTAGAATAAA	900
40	ATGTCAGTGC CATGCAGGCA AGTACAGATA TGGAAATGAA AGCTTTGTCT ACAACTGCAA	96
	GATTTGTTTG TTAATAAAAT TGATTGGGAT CACTCGA	99
45		
	(2) INFORMATION FOR SEQ ID NO: 214:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1496 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: dcuble (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 214:	
	GAATTCGGCA CGAGTGACCA CAGATATCTT TGGCTTTCAG CCTCACCACA ATGCTGTCCA	6
60	CTATGTTTTT TTTAATCGAT TGACATCTCA TGAATCCACA AATTTAGCCG CTTTTCCATC	12

	TTTTCCATCT TTGTCATAGC TTCATCACGC ACGATGGAGG TCACTTCAGC ACTATCCGGA	180
	GCGGCCTCAC GGACAGATCR GTGAATTTCC TTTTCCTTTT TCTTGATGTA CCGGATTGTC	240
5	GACTCGTTAA CATTGAGCTC ATGGCCAACA GCACTGTAAC TCATGCCTGA TTGGAGCTTA	300
	TCCAACACGC GGAMITTCTC CGTAAGGSAM ATCAMGGTCT TCTTTCGCTT AGGAACACTG	360
	GGCARARCTT AARCACTACG CTTGGGGGCC ATTTTAGAAA GCAAAACCAC CCACAAAAAG	- 420
10	CAGAAAAAA AGTGTCAGTA AACAGACTGN NGANAGGACT CTTTGTTTAC AGCACAGGAG	480
	CTGCGACTAG AAGGCGGCGC TTCTCCCCAG TTCAAACTTC AGCTGGGAAC CTTACCTCCG	540
15	CCAACTCCAA ATTITCACCC TCTGCGCATG CCCGGGAAAS AAACCCCCAG AACAGTACCG	600
	TGATGATTGA TITTAGGGTT ACAAATACAT TITAGCAAGT AAGTGAATTT GGCATTACGA	660
	ATTAATGATT AATGAAGGTC ACCTGTATTT CCATAGATAT GTAATTTTAT TTAAGCAGGT	720
20	TTATTATATT AAGGCGGSGA GGCAGCGCCG AAGACTACAA GTTCCAGCAT GCACCGCGTC	780
	CGGGCGGGTT CGGGCTCCCA GCGAGGGCTT CAGGGACGCC AGCCCGGAGG CATCGGCCGG	840
25	AAGTGTCGTA GGGCAACCAC GTAGTACTCT CTGCGCATGT GCAAAGCGCT GTCGGGGGCC	900
	GCCCTAGCTG CCGTCGCCGC CGCCGGGGCT CTATGGTCTC TCCCTAGAGC TTTGCCGTTG	960
	GAGGCGGCTG CTGCGGTCTT GTGAGTTTGA CCAGCGTCGA GCGGCAGCAA CATGGAGGAA	1020
30	TTCGACTCCG AAGACTTCTC TACGTCGGAG GAGGACGAGG ACTACGTGCC GTCGGGTGAG	1086
	CGATTCCGCC TGAGGCGAGA AGCGAATTGC CCCGCCCCAC GCCTCACGTG AGGCGCGCTC	1140
35	TGCCCCCGCG GGCGTCTGCC CTGTGGCCCA GGTGGTCCAG GGGGGCTCCT GTTCTCGAGC	120
	GTCCGCTCCC TCAGGCCCCT CATCCTCGGC CGCTCCGGCC CGAGGCGTGT GCGCGTGGCG	126
	GTTCTGTGCT CCCCTCCCGT TGGGCAGCTC CGGCCGCCGC CCCCTCTTGC AGCGCGGGAA	132
40	CGGCACATGG ACACGGCCCC TTGTCGCTAG GGACGCTCGT CGGTCAGCCC CGAACGACAA	138
	CGCTGCTTCA GAAGTCGGGG CGGCAGTTCG AGCCTTGGAA GTTTTTTTCA GCCCTGGCCC	144
45	CACACACCTC CTCCCCAACA ACCCCTCCAA GATAGAGCTG TCCGNTCTCC GNCTGG	149

50 (2) INFORMATION FOR SEQ ID NO: 215:

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1308 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 215:

180

CTGCCTTTGA CCCATCACAC CCCATTTCCT CCTCTTTCCC TCTCCCCGCT GCCAAAAAAA

AAAAAAAAGG AAACGTTTAT CATGAATCAA CAGGGTTTCA GTCCTTATCA AAGAGAGATG

5	••••	
5	TGGAAAGAGC TAAAGAAACC ACCCTTTGTT CCCAACTCCA CTTTACCCAT ATTTTATGCA	240
	ACACAAACAC TGTCCTTTTG GGTCCCTTTC TTACAGATGG ACCTCTTGAG AAGAATTATC	300
10	GTATTCCACG TTTTTAGCCC TCAGGTTACC AAGATAAATA TATGTATATA TAACCTTTAT	360
	TATTGCTATA TCTTTGTGGA TAATACATTC AGGTGGTGCT GGGTGATTTA TTATAATCTG	420
	AACCTAGGTA TATCCTTTGG TCTTCCACAG TCATGTTGAG GTGGGCTCCC TGGTATGGTA	480
15	AAAAGCCAGG TATAATGTAA CTTCACCCCA GCCTTTGTAC TAAGCTCTTG ATAGTGGATA	540
	TACTCTTTTA AGTTTAGCCC CAATATAGGG TAATGGAAAT TTCCTGCCCT CTGGGTTCCC	600
20	CATTITTACT ATTAAGAAGA CCAGTGATAA TTTAATAATG CCACCAACTC TGGCTTAGTT	660
	AAGTGAGAGT GTGAACTGTG TGGCAAGAGA GCCTCACACC TCACTAGGTG CAGAGAGCCC	720
25	AGGCCTTATG TTAAAATCAT GCACTTGAAA AGCAAACCTT AATCTGCAAA GACAGCAGCA	780
25	AGCATTATAC GGTCATCTTG AATGATCCCT TTGAAATTTT TTTTTTGTTT GTTTGTTTAA	840
	ATCAAGCCTG AGGCTGGTGA ACAGTAGCTA CACACCCATA TTGTGTGTTC TGTGAATGCT	900
30	AGCTCTCTTG AATTTGGATA TTGGTTATTT TTTATAGAGT GTAAACCAAG TTTTATATTC	960
	TGCAATGCGA ACAGGTACCT ATCTGTTTCT AAATAAAACT GTTTACATTC ATTATGGGGT	1020
35	ATGTATGACC TTCATTTTCC AAGAAATAGA ACTCTAGCTT AGAATTATGG ATGCTCTAAA	1080
33	ATGTCAGAAT GGGAACTCTC CTCGAAGTTC TCCCAAACTC AGAGACAGCA CTGCCTTCTC	1140
•	CTAAATGATT ATTCTTTTCT CCCTGTTTTC TGGTATTTTC TAGGCATCCT TCTCACCACA	1200
40	GCCATAACCC TTTTTTACTT CCATTAGGCC GTATAACTGG NGGGACNGCT GGTCGGTATA	1260
	TAATACTGGT WCCAACAMAG GGGTTCTGGA TGTACACMAG GTTATCTT	1308
45		
	(2) INFORMATION FOR SEQ ID NO: 216:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1705 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 216:	
	TGGCCATGGA AGCGCTAGAA GGTTTAGATT TTGAAACAGC AAAGAAGGAT TTCCTTGGAT	60
	CTGGAGACCC CAAAGAAACA AAGATGCTAA TCACCAAACA GGCTGACTGG GCCAGAAATA	120
60		

	TCAAGGAGCC CAAAGCCGCC GTGGAGATGT ACATCTCAGC AGGAGAGCAC GTCAAGGCCA	180
	TCGAGATCTG TGGTGACCAT GGCTGGGTTG ACATGTTGAT CGACATCGCC CGCAAACTGG	240
5	ACAAGGCTGA GCGCGAGCCC CTGCTGCTGT GCGCTACCTA CCTCAAGAAG CTGGACAGCC	300
	CTGGCTATGC TGCTGAGACC TACCTGAAGA TGGGTGACCT CAAGTCCCTG GTGCAGCTGC	360
	AGTGGAGACC CAGCGCTGGG ATGAGGCCTT TGCTTTGGGT GAGAAGCATC CTGAGTTTAA	420
10	GGATGACATC TACATGCCGT ATGCTCAGTG GCTAGCAGAG AACGATCGCT TTGAGGAAGC	480
	CCAGAAAGCG TTCCACAAGG CTGGGCGACA GAGAGAAGCG GTCCAGGTGC TGGAGCAGCT	540
15	CACAAACAAT GCCGTGGCGG AGAGCAGGTT TAATGATGCT GCCTATTATT ACTGGATGCT	600
	GTCCATGCAG TGCCTCGATA TAGCTCAAGA TCCTGCCCAG AAGGACACAA TGCTTGGCAA	660
	GTTCTACCAC TTCCAGCGTT TGGCAGAGCT GTACCATGGT TACCATGCCA TCCATCGCCA	720
20	CACGGAAGAT CCGTTCAGTG TCCATCGTCC TGAAACTCTT TTCAACATCT CCAGGTTCCT	780
	GCTGCACAGC CTGCCCAAGG ACACCCCCTC GGGCATCTCT AAAGTGAAAA TACTCTTCAC	840
25	CTTGGCCAAG CAGAGCAAGG CCCTCGGTGC CTACAGGCTG GCCCGGCACG CCTATGACAA	900
	GCTGCGTGGC CTGTACATCC CTGCCAGATT CCAAAAGTCC ATTGAGCTGG GTACCCTGAC	960
	CATCCGCGCC AAGCCCTTCC ACGACAGTGA GGAGTTGGTG CCCTTGTGCT ACCGCTGCTC	1020
30	CACCAACAAC CCGCTGCTCA ACAACCTGGG CAACGTCTGC ATCAACTGCC GCCAGCCCTT	1080
	CATCTTCTCC GCCTCTTCCT ACGACGTGCT ACACCTGGTT GAGTTCTACC TGGAGGAAGG	1140
35	GATCACTGAT GAAGAAGCCA TCTCCCTCAT CGACCTGGAG GTGCTGAGAC CCAAGCGGGA	1200
	TGACAGACAG CTAGAGATTT GCAAACAACA GCTCCCAGAT TCTTGCGGCT AGTGGGAGAC	1260
4.0	CAAGGGACTC CATCGGAGAT NAGGACCCGT TCACAGCTAA GCTRAGCTTT GAGCAAGGTG	1320
40	GCTCARAGIT CGTGCCAGTG GTGGTGAGCC GGCTGGTGCT GCGCTCCATG AGCCGCCGGG	1380
	ATGTCCTCAT CAAGCGATGG CCCCCACCCC TGAGGTGGCA ATACTTCCGC TCACTGCTGC	1440
45	CTGACGCCTC CATTACCATG TGCCCCTCCT GCTTCCAGAT GTTCCATTCT GAGGACTATG	1500
	AGTTGCTGGT GCTTCAGCAT GGCTGCTGCC CCTACTGCCG CAGGTGCAAG GATGACCCTG	1560
	GCCCATGACC AGCATCCTGG GGACGCCCTG CACCCTCTGC CCGCCTTGGG GTCTGCTGGG	1620
50	CTGTGAAGGA GAATAAAGAG TTAAACTGTC AAAAAAAAAA	1680
	AAAAAAAA AAAAAAAA AAANA	1705

60

(i) SEQUENCE CHARACTERISTICS:

⁽²⁾ INFORMATION FOR SEQ ID NO: 217:

	(A) LENGTH: 999 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 217:	
	AGCAAATCAC CTTAACGATC TGGAATGAAA CTGTGACCAG TGCCGCCCTG GGTGGTTCTG	60
10	GAGAGACTGC CGTCTTCTTG TTTGGCCATA GGTGCTGGGG CCCCGGCTTC AGTCACTGTC	120
	TCAGACAGKA GTCCCGATAA GCAGATCACC AGTCCTCCAC TGTCCTTCCT GTCGGCCTTG	180
	CTGCATGAGA AGATAGCTGC TTCCTCCCTC TTTTCCTACA CTGTAAATTA TTGTTTTACA	240
15	ATTGAGTGYC TTAATAATAG TYTACAAATA CTATGTATTT ATGCAAAACT GTTAAAGTTC	300
	TCATCTGTTA TGATTGGATA CTTGGTCTTG TCAGTAGTGG TCAGCATTGG GTTGTGAGCT	360
20	TGTCCTACTC CATACGTGTT TATCCTGCTA TGCATTTTAC ATTGTGTGTT CACATCTATT	420
	CCAAGGAGCC TTGCTAGAAA CAACACTGGC GGTTCCTGCA GGCCAGGCAG GCATTGGCCC	480
	ATGCTGTGTC CCATAGGAGC CAATGGAAAG AACGTAGCTT GGTCTGCTAG CCAGCCGTGG	540
25	GGTGGCGCAG GCCAGGCAGC CTCTGCACCA GAGTCCAGCA CCTGCCCATT CCCCAGTCAC	600
	ACAATCATAC TCTTCTTCA TAGAGATTTT ATTACCACCT AGACCACCCT AGTTTTCCTC	660
30	TCTGTTAGTG TCCTGAGCTC TTTTGCAACA AAATGTAGGT ACAGACCAAT CCCTGTCCCT	720
	TCCCCAATCA GGAGCTCCAC ACCATGAGTT GTTTGGTTTT CCAGAAGCTG CCAGTGGGTT	780
25	CCCGTGAATT GCGTTAAGAT ATCGATGATK TTTTTTATTG TTTTTCTTCT TGTTTTTTTA	840
35	AATAATATAT TTAAAGGCAG TATCTTTTGT ACTGTGAATT TGCAGTAGAA GATGCAGAAT	900
	GCACTTTTT TTTACTTCTG TTGGTGTGTA TTGTATATAG TGTGTGTGCT TCTTGTGATG	960
40	AAAATAAACT TTTTCTTTAT AAAAAAAAAAA AAAAAAAA	999
45	(2) INFORMATION FOR SEQ ID NO: 218:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 941 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 218:	
55	GGCACGAGTA GCATTTCATT TAATCTGCAG GTATATTCTC CCAACAGTTT ATTGTCATGT	60
	GATGTCCTCA GCCAAGATTG TRAGGCAGAG AGGAGCTGTC CCAACCTACT ATACCACCGA	120
	GGCTGGAGAG ATCATATTT TGGTATTAAA CTGGAGTCTC TCCATCCTTC ACATTGTTGA	180
60		

	TGTCCTCTGT AGCAAACCGG AAAAGTCAGT GACAGAAGAT GCCGCTAGCG GTTTGAGCCA	240
	GAGAATGACA GCTCTGGTTT GGAGAAAAGG GCCGGATGGT GGCTCTAGAA AGCCCATCCT	300
5	TCTGCTCTTC TTTTTTCTCC CCCTTATATT GTGCTTTCAT TCATTCATTC ATTCATCAAA	360
	CATTTGTTGA GCACCTATTA TGTGTCAAGC TCTGTGCTAG CCTCTGGAAA ACCTGCCCTC	420
	ATGTAGCTCA CTGTGGAGTA GGAGAAACAA TGACTACACT ATGATAAGCA CGGGTTGTCA	480
10	GGGTCTCACA GAGCAGTGGC CCCTCATCCA GACCGATGAG GTCAAAGAAG GCATCCAGGC	540
	GAGGATGGTG TCAGAGCTAA CTGAAGAATG AGAGGGAGCT GCACCASCAG GGGTTGGAAC	600
15	TGAAGGTGGC AGTGCCTGGA GTCTTGATTC CAGCAGAGGG AGAGCAGTCT GTGAAAAGGC	660
	ACCAAGGGTG GGAGAGGGCA GAGCACATGG AGGAACTTCA GGTAGTTCTG GATGGCSCTG	720
20	GGGCAAAGCT AGAGAGGTAA GAAGAATCTA CAAATGTTCC TCGAGTTACA TGAACTTCCA	780
20	TCCCAATAAA CCCATTGGAA ACGAAAAATT TAAGTCAGAA GTGCATTTAA GGCTGGTCCG	840
	AGTAGAATGA TTTTTACAAC GAATTGATCA CAACCAGTTA CAGATGTCTT TGTTCCTTCT	900
25	CCACTCCCAC TGCTTCACCT GACTAGCCTT TAAAAAAAAAA	941

30 (2) INFORMATION FOR SEQ ID NO: 219:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 575 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 219:

TAAGTGGAAT CCCCCGGGGT TGCAGGGAAT TCGGCACGAG GCATTCTGAG AAGCTTAAGA 60 CATACTITGA AGACAACCCT AGGGACCTCC AGCTGCTGCG GCATGACCTA CCTTTGCACC 120 CCGCAGTGGT GAAGCCCCAC CTGGGCCATG TTCCTGACTA CCTGGTTCCT CCTGCTCTCC GTGGCCTGGT RCGCCCTCAC AAGAAGCGGA AGAAGCTGTC TTCCTCTTGT AGGAAGGCCA 240 AGAGAGCAAA GTCCCAGAAC CCACTGCGCA GCTTCAAGCA CAAAGGAAAG AAATTCAGAC 300 CCACAGCCAA GCCCTCCTGA GGTTGTTGGG CCTCTCTGGA GCTGAGCACA TTGTGGAGCA 360 CAGGCTTACA CCCTTCGTGG ACAGGCGAGG CTCTGGTGCT TACTGCACAG CCTGAACAGA 420 CAGTTCTGGG GCCGGCAGTG CTGGGCCCTT TAGCTCCTTG GCACTTCCAA GCTGGCATCT 480 540 575 CTCGAGGGG GGCCCGTACC CAATTCGCCC TATAA

55

35

40

45

(2)	INFORMATION	FOR	SEO	TD	NO -	220 -

5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3018 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 220: GCCAGCCTTA CAGGTTTTAC GTGAAATGAA AGCCATTGGA ATAGAACCCT CGCTTGCAAC 60 15 ATATCACCAT ATTATTCGCC TGTTTGATCA ACCTGGAGAC CCTTTAAAGA GATCATCCTT 120 CATCATTAT GATATAATGA ATGAATTAAT GGGAAAGAGA TTTTCTCCAA AGGACCCGGA 180 TGATGATAAG TTTTTTCAGT CAGCCATGAG CATATGCTCA TCTCTCAGAG ATCTAGAACT 240 20 TGCCTACCAA GTACATGGCC TTTTAAAAAC CGGAGACAAC TGGAAATTCA TTGGACCTGA TCAACATCGT AATTTCTATT ATTCCAAGTT CTTCGATTTG ATTTGTCTAA TGGAACAAAT 360 25 TGATGTTACC TTGAAGTGGT ATGAGGACCT GATACCTTCA GCCTACTTTC CCCACTCCCA 420 AACAATGATA CATCTTCTCC AAGCATTGGA TGTGGCCAAT CGGCTAGAAG TGATTCCTAA 480 540 30 TCCTGATGCT CATGGCAAGG GACAAGCACC CACCAGAGCT TCAGGTGGCA TTTGCTGACT 600 GTGCTGCTGA TATCAAATCT GCGTATGAAA GCCAACCCAT CAGACAGACT GCTCAGGATT 660 35 GGCCAGCCAC CTCTCTCAAC TGTATAGCTA TCCTCTTTTT AAGGGCTGGG AGAACTCAGG 720 AAGCCTGGAA AATGTTGGGG CTTTTCAGGA AGCATAATAA GATTCCTAGA AGTGAGTTGC 780 TGAATGAGCT TATGGACAGT GCAAAAGTGT CTAACAGCCC TTCCCAGGCC ATTGAAGTAG 840 40 TAGAGCTGGC AAGTGCCTTC AGCTTACCTA TITGTGAGGG CCTCACCCAG AGAGTAATGA 900 GTGATTTTGC AATCAACCAG GAACAAAAGG AAGCCCTAAG TAATCTAACT GCATTGACCA 960 45 GTGACAGTGA TACTGACAGC AGCAGTGACA GCGACAGTGA CACCAGTGAA GGCAAATGAA 1020 AGTGGAGATT CAGGAGCAGC AATGGTCTCA CCATAGCTGC TGGAATCACA CCTGAGAACT 1080 GAGATATACC AATATTTAAC ATTGTTACAA AGAAGAAAG ATACAGATTT GGTGAATTTG 50 TTACTGTGAG GTACAGTCAG TACACAGCTG ACTTATGTAG ATTTAAGCTG CTAATATGCT 1200 ACTTAACCAT CTATTAATGC ACCATTAAAG GCTTAGCATT TAAGTAGCAA CATTGCGGTT 1260 55 TTCAGACACA TGGTGAGGTC CATGGCTCTT GTCATCAGGA TAAGCCTGCA CACCTAGAGT 1320 GTCGGTGAGC TGACCTCACG ATGCTGTCCT CGTGCGATTG CCCTCTCCTG CTGCTGGACT 1380 TCTGCCTTTG TTGGCCTGAT GTGCTGCTGT GATGCTGGTC CTTCATCTTA GGTGTTCATG 1440

•	CAGTTCTAAC	ACAGTTGGGG	TIGGGTCAAT	AGTTTCCCAA	TTTCAGGATA	TTTCGATGTC	1500
	AGAAATAACG	CATCTTAGGA	ATGACTAAAC	AAGATAATGG	CAGTTTAGGC	TGCACAACTG	1560
5	GTAAAATGAC	TGTAGATAAA	TGTTGTAATT	AGTGTACACG	TTTGTATTTT	TGTTAATATA	1620
	GCCGCTGCCA	TAGTTTTCTA	ACTTGAACAG	CCATGAATGT	TTCATGTCTC	CCTTTTTTT	1680
10	TIGTCTATAG	CTGTTACCTA	TTTTAGTGGT	TGAAATGAGA	GCTAGTGATG	ACAGAAGGAT .	1740
10	GTGGAATGTC	TTCTTGACAT	CATTGTGTAT	TGCTGGTAAT	CAAGTTGGTA	ACGACTACTT	1800
	CTAGCAGCTC	TTACCACTAT	GACTTAAGTG	GTCCTGGAAG	GCAGTAAGTG	GAGGTTTGCA	1860
15	GCATTCCTGC	CTTCATGAGG	GCTTCTACCA	CTGACCACTT	TGCACGTACC	TGGCTCCCAG	1920
	ATTTACTTAG	GTACCCCACG	AGTCGTCCAC	ATAAGCAGCT	TCATCTTTAC	CTTGCCAGAG	1980
20	TTGACAATTA	TGGGATACTC	TAGTCTACTT	ATACTTGTGT	TCCCATCTGT	CTGCCATCCT	2040
20	CTGAAGGCCA	GGACCCAGTC	ATACATCCTT	AGAAACCAAA	GTATGGTTTT	TGTTTTCTCT	2100
	TGGAATGTCA	GGTCTTAAGG	CATTTAATTG	AGGGACAAAA	AAAAAAAAA	GCCGATATAG	2160
25	TAGCTAGCTA	CTTAAGCATC	CATGGGTATT	GCTCCATATC	AAAGCAGATT	TGCAGGACAG	2220
	AAAGAGTAAA	TTAGCCTTCA	GTCTTGGTTT	ACAGCTTCCA	AGGAGAGCCT	TGGSCACCTG	2280
30	AAATGTTAAC	TCGGTCCCTT	CCTGTCTCTA	GTTCATCAGC	ACCTGCAGAT	GCCTGACTCT	2340
	TGTTAGCCTT	ACTATTCAAT	ACAGTCCTTA	GATTCACGGT	ATGCCTCTTC	CTATCCAGGC	2400
	ACCTATTCTG	AATCACCATG	TIGCTCTGCA	GCTAGAGTTG	ATAGGAGAAA	ATCCATTIGG	2460
35	GTAGATGGCC	TATGAATTTG	TAGTAGACTT	TCAAAATGAG	TGATTTGTTA	GCTTGGTACT	2520
	TTTAAGTTTG	TGGTACAGAT	CCTCCAAACC	CATACTCTGA	GCAATTAACT	GCCTTGAACA	2580
40	TAGAGAAAAA	TTAAGGCCTC	ACAGGATGAG	TCTCCATTCT	CTGTAAATGC	TTATTTTATC	2640
	ATAGTCTTTA	GCCTCTAACT	ATGAGTAAAA	TGTTCTCTTC	GGCCGGGTGT	GGTGACTCAC	2700
	ACCTGTAACC	TCAGCACTTT	GGGAGGCAGA	GGTGGGAGGA	TCACTTAGGT	CCAGGAGTTC	2760
45	GAGACTAGCC	TGGGCAACAT	AGTGAGACAC	CGGATCTACA	ААААААТААА	AAGCCAGACT	2820
	GCTGCTATCT	ATCTGTGTCC	CAGCTAATTG	GGAGGGTGAG	ATGGGAGGAT	TGTTTGAGCC	2880
50	TAGGAGAGGG	AGGTTGCAGT	GAGCCGTGAT	CGCACCACTG	CACTCCAGCC	TGGGCAACAG	2940
	AGCAAGACCC	TGTCTTGGAG	AAACCAGAAT	TTTGGAAGAG	CAAATGGGGC	TGAGTGCAGT	3000
	GGCTCATGCC	TGTAATCC					3018

(2) INFORMATION FOR SEQ ID NO: 221:

60 (i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 968 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 221:	
	GGCACGAGGG CCGCGGGACA TCCACGGGGC GCGAGTGACA CGCGGGAGGG AGAGCAGTGT	60
10	TCTGCTGGAG CCGATGCCAA AAACCATGCA TTTCTTATTC AGATTCATTG TTTTCTTTTA	120
	TCTGTGGGGC CTTTTTACTG CTCAGAGACA AAAGAAAGAG GAGAGCACCG AAGAAGTGAA	180
1 5	AATAGAAGTT TTGCATCGTC CAGAAAACTG CTCTAAGACA AGCAAGAAGG GAGACCTACT	240
15	NAAATGCCCA TTATGACGGC TACCTGGCTA AAGACGGCTC GAAATTCTAC TGCAGCCGGA	300
	CACAAAATGA AGGCCACCCC AAATGGTTTG TTCTTGGTGT TGGGCAAGTC ATAAAAGGCC	360
20	TAGACATTGC TATGACAGAT ATGTGCCCTG GAGAAAAGCG AAAAGTAGTT ATACCCCCTT	420
	CATTTGCATA CGGAAAGGAA GGCTATGCAG AAGGCAAGAT TCCACCGGAT GCTACATTGA	480
25	TTTTTGAGAT TGAACTTTAT GCTGTGACCA AAGGACCACG GAGCATTGAG ACATTTAAAC	540
25	AAATAGACAT GGACAATGAC AGGCAGCTCT CTAAAGCCGA GATAAACCTC TACTTGCAAA	600
	GGGAATTTGA AAAAGATGAG AAGCCACGTG ACAAGTCATA TCAGGATGCA GTTTTAGAAG	660
30	ATATTTTTAA GAAGAATGAC CATGATGGTG ATGGCTTCAT TTCTCCCAAG GAATACAATG	720
	TATACCAACA CGATGAACTA TAGCATATTT GTATTTCTAC TTTTTTTTT TAGCTATTTA	780
35	CTGTACTTTA TGTATWAAAC AAAGTCMCTT TTCTCCMAGT TGKATTTGCT ATTTTTCCCC	840
<i>))</i>	TATGAGAAGA TATTTTGATC TCCCCAATAC ATTGATTTTG GTATAATAAA TGTGAGGCTG	900
	TTTTGCAAAC TTAAAAAAAA ATTTAAAAAA ACTGGAGGG GGCCCGTACC CAANTCGCCG	960
40	NATATGAT	968
45	(2) INFORMATION FOR SEQ ID NO: 222:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1404 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 222:	
55	CGTTTTCCGG CCGTGCGTTT GTGGCCGTCC GGCCTCCCTG ACATGCAGCC CTCTGGACCC	60
	CGAGGTTGGA CCCTACTGTG ACACACCTAC CATGCGGACA CTCTTCAACC TCCTCTGGCT	120

TGCCCTGGCC TGCAGCCCTG TTCACACTAC CCTGTCAAAG TCAGATGCCA AAAAAGCCGC

	CTCAAAGACG	CTGCTGGAGA	AGAGTCAGTT	TTCAGATAAG	CCGGTGCAAG	ACCGGGGTTT	240
	GGTGGTGACG	GACCTCAAAG	CTGAGAGTGT	GGTTCTTGAG	CATCGCAGCT	ACTGCTCGGC	300
5	AAAGGCCCGG	GACAGACACT	TTGCTGGGGA	TGTACTGGGC	TATGTCACTC	CATGGAACAG	360
	CCATGGCTAC	GATGTCACCA	AGGTCTTTGG	GAGCAAGTTC	ACACAGATCT	CACCCGTCTG	420
10	GCTGCAGCTG	AAGAGACGTG	GCCGTGAGAT	GTTTGAGGTC	ACGGGCCTCC	ACGACGTGGA	. 480
10	CCAAGGGTGG	ATGCGAGCTG	TCAGGAAGCA	TGCCAAGGGC	CTGCACATAG	TGCCTCGGCT	540
	CCTGTTTGAG	GACTGGACTT	ACGATGATTT	CCGGAACGTC	TTAGACAGTG	AGGATGAGAT	600
15	AGAGGAGCTG	AGCAAGACCG	TGGTCCAGGT	GGCAAAGAAC	CAGCATTTCG	ATGGCTTCGT	660
	GGTGGAGGTC	TGGAACCAGC	TGCTAAGCCA	GAAGCGCGTG	GGCCTCATCC	ACATGCTCAC	720
20	CCACTTGGCC	GAGGCTCTGC	ACCAGGCCCG	GCTGCTGGCC	CTCCTGGTCA	TCCCGCCTGC	780
20	CATCACCCCC	GGGACCGACC	AGCTGGGCAT	GTTCACGCAC	AAGGAGTTTG	AGCAGCTGGC	840
	CCCCGTGCTG	GATGGTTTCA	GCCTCATGAC	CTACGACTAC	TCTACAGCGC	ATCAGCCTGG	900
25	CCCTAATGCA	CCCCTGTCCT	GGGTTCGAGC	CTGCGTCCAG	GTCCTGGACC	CGAAGTCCAA	960
	GTGGCGAAGC	AAAATCCTCC	TGGGGCTCAA	CTTCTATGGT	ATGGACTACG	CGACCTCCAA	1020
30	GGATGCCCGT	GAGCCTGTTG	TCGGGGCCAG	GTACATCCAG	ACACTGAAGG	ACCACAGGCC	1080
30	CCGGATGGTG	TGGGACAGCC	AGGYCTCAGA	GCACTTCTTC	GAGTACAAGA	AGAGCCGCAG	1140
	TGGGAGGCAC	GTCGTCTTCT	ACCCAACCCT	GAAGTCCCTG	CAGGTGCGGC	TGGAGCTGGC	1200
35	CCGGGAGCTG	GCCTTGGGG	TCTCTATCTG	GGAGCTGGCC	AGGGCCTGGA	CTACTTCTAC	1260
	GACCTGCTCT	AGGTGGGCAT	TGCGGCCTCC	GCGGTGGACG	TGTTCTTTTC	TAAGCCATGG	1320
40	AGTGAGTGAG	CAGGTGTGAA	ATACAGGCCT	NCACTCCGTT	TGCTGTGAAA	АААААААА	1380
	АААААААА	АААААААА	AAAA				1404

45

(2) INFORMATION FOR SEQ ID NO: 223:

(i) SEQUENCE CHARACTERISTICS:

50

(A) LENGTH: 707 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 223:

NGCGCGCCTG CAGTCGACAC TAGTGGATCC AAAGAATTCG GCACGAGGGC AGGTCCAGGG 60

CTCAGAAATC AGCTCTATTG ACGAATTCTG CCGCAAGTTC CGCCTGGACT GCCCGCTGGC 120

CATGGAGCGG ATCAAGGAGG ACCGGCCCAT CACCATCAAG GACGACAAGG GCAACCTCAA 180

WO 98/54963 PCT/US98/11422

476

	COSCTGCATC GCAGACGTGG TCTCGCTCTT CATCACGGTC ATGGACAAGC TGCGCCTGGA	240
5	GATCCGCGCC ATGGATGAGA TCCAGCCCGA CCTGCGAGAG CTGATGAAGA CCATGCACCG	300
3	CATGAGCCAC CTCCCACCCG ACTTTGAGGG CCGCCAGACG GTCAGCCTAGT GGCTGCAGAC	360
	CCTGAGCGGC ATGTCGGCGT CAGATGAGCT GGACGACTCA CAGGTGCGTC AGATGCTGTT	420
10	CGACCTGGAG TCAGCCTACA ACGCCTTCAA CCGCTTCCTG CATGCCTGAG CCCGGGGCAC	480
	TAGCCCTTGC ACAGAAGGGC AGAGTCTGAG GCGATGGCTC CTGGTCCCCT GTCCGCCACA	540
15	CAGGCCGTGG TCATCCACAC AACTCACTGT CTGCAGCTGC CTGTCTGGTG TCTGTCTTTG	600
	GTGTCAGAAC TTTTGGGCCG GGCCCCTCCC CACAATAAAG ATGCTCTCCG ACCTTCAAAA	660
	AAAAAAAAA AAAAACTCRG GGGGGGCCCG GTCCCAATCC CCCCDEC	707
20		
	(2) INFORMATION FOR SEQ ID NO: 224:	
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1334 base pairs(B) TYPE: nucleic acid	
30	(C) STRANDEINESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 224:	
	GGGGAACTGC AGTGACAGCA GGAGTAAGAG TGGGGAGGCAG GACAGAGGTG GGACACAGGT	60
35	ATGGAGAGGG GGTTCAGCGA GCCTAGAGAG GGCAGACTAT CAGGGTGIGG GCGGTGAGAA	120
	TCCAGGGAGA GGAGCGGAAA CAGAAGAGGG GCAGAAGACC GGGGCACTTG TGGGTTGCAG	180
40	AGCCCCTCAG CCATGTTGGG AGCCAAGCCA CACTGGCTAC CAGGTCCTCT ACACAGTCCC	240
	ACTROCORT TOCOTTOTO CONSTITUTE TOCOTTOTO TOCOTTO TOCOTTOTO TOCOTTOCOTO TOCOTTOTO TOCOTTOTO TOCOTTOTO TOCOTTOTO TOCOTTOTO TOCOTTOCO TOCOTTOCOTTO TOCOTTOCOTTO TOCOTTOCOTTO TOCOTTOCOTTO TOCOTTOCOTTO TOCOTTOCOTTOCOTTOCOTTO TOCOTTO	300
	ASSTRETTEDA SOCRETTEDA SECTESTE STOCKERGO GOSAGOCODOS ASSTRETANTES ASSTRETANT	360
45	GGGGGGCCCG GGGGAGCAGC CCTGGGAGAGG GCACCCCTG GGCGAGTGCC ATTTGCTGCG	420
	GTCCGAAGCC AMCACCATGA GCCACCAGGG GAAACCGGCA ATGCCALTAK TGGGGCCATC	480
50	TACTTCGACC AGGTCCTGGT GAACGAGGGC GGTGCCTTTG ACCGGGCTTC TGGCTCCTTC	540

GTAGCCCCTG TCCGGGGTGT CTACAGCTTC CGGTTCCATG TGGTGAAGGT GTACAACCGC

CAAACTGTCC AGGTGAGCCT GATGCTGAAC ACGTGGCCTG TCATCTCAGC CTTTGCCAAT

GATCCTGACG TGACCCGGGA GGCAGCCACC AGCTCTGTGC TACTGCCCTT GGACCCTGGG

GACCGAGTGT CTCTGCGCCT GCGTCGGGGG ARTCTRCTGG GTGGTTGGAA ATRCTCAAGT

TTCTCTGGCT TCCTCATCTT CCCTCTCTGA GGACCCAAGT YTTTCAAGCA CAAGAATCCA

55

60

600

660

720

780

	GCCCCTGACA	ACTITCTTCT	GCCCTCTCTT	GCCCCAGAAA	CAGCAGAGGC	AGGAGAGAGA	900
	CTCCCTCTGG	YTCCTATCCC	ACYTCTTTGC	ATGGGAMCCT	GTGCCAAACA	CCCAAGTTTA	960
5	AGARAARARY	ARARCTGWGG	CAGGTATACA	GAGCTGGAAG	TGGACCATGG	AAAACATSGA	1020
	TAACCATGCA	TCYTCTTGCT	TGGCCACCTC	CTGAAACTGT	CCACCTTTGA	AGTTTGAACT	1080
10	TTAGTCCCTC		CTGCTGCCTC	CTTCCTCCCA	GCTCTCTCAC	TGAGTTATYT	. 1140
10	TCACTGTACC	TGTTCCAGCA	TATCCCCACT	ATCTCTCTTT	CTCCTGATCT	GTGCTGTCTT	1200
	ATTCTCCTCC	TTAGGCTTCC	TATTACCTGG	GATTCCATGA	TTCATTCCTT	CAGACCCTCT	1260
15	CCTGCCAGTA	TGCTAAACCC	TCCCTCTCTC	TTTCTTATCC	CGCTGTCCCA	TTGGCCCAGC	1320
	CTGGATGAAT	СТАТСААТАА	AACAACTAGA	GAATGGTGGT	САААААААА	AAAAAAAAAC	1380
20	TCGA						1384

(2) INFORMATION FOR SEQ ID NO: 225:

25

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 760 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 225:

GGGTCGACCC ACGCGTCCGC TGACCAGTCC GTTATAGATA CTTCTTCCTA TACCAAAACT 60 35 GTTTAAACAG GTGCCACCAC AAGGGATGTC GTCCTTACTC TCTGCGGGTC TTCAAGCATC 120 CCTTTGTGGG AAARGTCTCT GGGCAAGCAC GTGGTATTTG GTCTGCTGCT TGCTTCCCTT 180 40 TTTCCACCAG GGATGTTGTG ATCATAAGTC AAAACAACAG TATATTCCAA ATCTCAAAAG CTATTGTGGC CTGAGCACAA TTGAAATCTA GCAGAGTTTT TCCTATGTAG CTTTAGAGTA 300 ACTOTTOTGC TTCTCTGTCA CTTACAATTC AGGTTCTGCC TTTGCCTAAG AGCATGAGCA 360 45 GAAGAGTCCT CATGTGACGC TTAGTTCTAT TGCAGTCCTG GGTGAAACTA TTTAAGCWAT 420 GGGGCTGCTK CTCCCCANWT CCTCCCTAAC AATTCGTTGT GTGGACTTCT CATCTAAAAG 480 50 GTTAGTGGCT TTTGCTTGGG ATCAGTGCTC TCTATTGATG TTCTTGCTGG TCTCCAGACA 540 CATTCCTGTT GCATTAAGAC TTGAAAGACT TGTAGATGTG TGATGTTCAG GCACAGGATG 600 CTGAAAGCTA TGTTACTATT CTTAGTTTGT AAATTGTCCT TTTGATACCA TCATCTTGTT 660 55 TICTITITGT AGGTATAAAT AAAAACACTG TIGACAATAA AAAAAAAAA AAAAAAAAAA 720 760 ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑ ΝΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑ

	1	(2)	INFORMATION	FOR	SEO	ID	NO:	226:
--	---	-----	-------------	-----	-----	----	-----	------

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2057 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 226:

CCGAGCCGGC TGCGCCGGGG GAATCCGTGC GGGCGCCTTC CGTCCC

CCGAGCCGGC TGCGCCGGG GAATCCGTGC GGGCGCCTTC CGTCCCRGTC CCATCCTCGC 60 15 CGCGCTCCAG CACCTCTGAA GTTTTGCAGC GCCCAGAAAG GAGGCGAGGA AGGAGGGAGT 120 180 AGGGGGGGC CAAAAATGGC TGGGGCAATT ATAGAAAACA TGAGCACCAA GAAGCTGTGC 240 20 ATTGTTGGTG GGATTCTGCT CGTGTTCCAA ATCATCGCCT TTCTGGTGGG AGGCTTGATT 300 GCTCCAGGGC CCACAACGGC AGTGTCCTAC ATGTCGGTGA AATGTGTGGA TGCCCGTAAG 360 25 AACCATCACA AGACAAAATG GTTCGTGCCT TGGGGACCCA ATCATTGTGA CAAGATCCGA 420 GACATTGAAG AGGCAATTCC AAGGGAAATT GAAGCCAATG ACATCGTGTT TTCTGTTCAC ATTCCCCTCC CCCACATGGA GATGAGTCCT TGGTTCCAAT TCATGMTGTT TATCCTGCAG 540 30 CTGGACATTG CCTTCAAGCT AAACAACCAA ATCAGRGAAA ATGCAGAAGT CTCCATGGAC 600 GTTTCCCTGG CTTACCGTGA TGACGCGTTT GCTGACTGGA CTGAAATGGC CCATGAAAGA 660 35 GTACCACGGA AACTCAAATG CACCTTCACA TCTCCCAAGA CTCCAGAGCA TGGAGGGCCG 720 GTTACTATGA ATGTGATGTC CTTCCTTTCA TGGAAATTGG GTCTGTGGCC CATGAAGTTT 780 TACCTTTTAA ACATCCGGCT GCCTGTGAAT GAGAAGAAGA AAATCAATGT GGGAATTGGG 840 40 GAGATAAAGG ATATCCGGTT GGTGGGGATC CACCAAAATG GAGGCTTCAC CAAGGTGTGG 900 TTTGCCATGA AGACCTTCCT TACGCCCAGC ATCTTCATCA TTATGGTGTG GTATTGGAGG 960 45 AGGATCACCA TGATGTCCCG ACCCCCAGTG CTTCTGGAAA AAGTCATCTT TGCCCTTGGG 1020 ATTTCCATGA CCTTTATCAA TATCCCAGTG GAATGGTTTT CCATCGGGTT TGACTGGACC 1080 TGGATGCTGC TGTTTGGTGA CATCCGACAG GCATCTTCTA TGCRATGCTT CTKTCCTTCT 1140 50 GGATCATCTT CTGTGGCGAG CACATGATGG ATCAGCACGA GCGGAACCAC ATCGCAGGGT 1200 ATTGGAAGCA AGTCGGACCC ATTGCCGTTG GTCCTTCTGC CTCTTCATAT TTGACATGTG 1260 55 TGAGAGAGGG GTACAACTCA CGAATCCCTT CTACAGTATC TGGACTACAG ACATTGGGAA 1320 CAGAGCTGGC CATGGCTTTC ATCATCGTGG CTGGAATCTG CCTCTGCCTC TAACTTCCTG 1380 TTTCTATGCT TCATGGTATT TCAGGTGTTT CGGAACATCA GTGGGAAGCA GTCCAGCCTG 1440

780

	CCAGCTATGA	GCAAAGTCCG	GOGGETACAC	TATGAGGGGC	TAATTTTTAG	GTTCAAGTTC	1500
	CTCATGCTTA	TCACCTTGGC	and contain	ATGACTOTCA	TOTTOTTCAT	CGTTAGTCAG	1560
5	GTAACGGAAG	econtreecy	AATGGGGGGG	CGTCACAGTC	CCAAGTGAAC	AGTGCCTTTT	1620
	TCACAGGCAT	CIRTIGGATG	TGGAATCTGT	ATGTGTTTGC	TCTGATGTTC	TTGTATGCAC	1680
10	CATCCCATAA	AAACTATGGA	GAAGACCAST	CCAATGGAAT	GCAACTCCCA	TGTAAATCGA .	1740
10	GGGAAGATTG	TOCTTIGICT	GTTTCGGAAC	TTTATCAAGA	ATTGTTCAGC	GCTTCGAAAT	1800
	ATTCCTTCAT	CAATGACAAC	echectrote	GTATTTGAGE	CAACAAGGCA	ACACATGTTT	1860
15	ATCAGCTTTG	CATTISCAST	TETCACAGTC	ACATTGATTG	TACTTGTATA	CGCACACAAA	1920
	TACACTCATT	TAGCCTTTAT	TTCAAAATGT	TAAATATAAG	GAAAAAAGCG	TCAACAATAA	1980
20	ATATTCTTTG	AGTATIGICI	TACTTOTOTT	AAAAAAAAA	2.2.AAAAACTC	GTGCCGAATT	2040
20	CGGCACGAGC	GGCACSA					2057

25

30

35

40

45

50

55

60

(2) DEFORMATION FOR SEQ ID NO: 227:

(i) SEQUENCE CHAPACTERISTICS:

(A) LENGTH: 2084 base pairs

(B) TYPE: nucleic acid

(C) STRACEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 227:

GOCAGAGOS CANTYCCTGC AAAGAGCCAA ACCCCCATTC CTCTGTGCCC CTCCTGTCCC 60 ACCAAGTGCT TTATAAAAT AGCTCTTGTT ACCGGAAATA ACTGTTCATT TTTCACTCCT 120 CCCTCCTAGG TCACACTTTT CAGAAAAAAA ATCTGCATCC TGGAAACCAG AAGAAAAATA 180 TOAGACGGGG AATCATCGTG TGATGTGTGT SCTGCCTTTG GCTGAGTGTG TGGAGTCCTG 240 CTCAGGTGTT AUGTACAGTG TGTTTGATCG TGGTGGCTTG AGGGGAACCG CTTGTTCAGA 300 GCTGTGACTG CGGCTGCACT GCAGAGAAGC TGCCCTTGGC TGCTCGTAGC GCCGGGCCTT 360 CTCTCCTCGT CATCATCCAG AGCAGCCAGT GTCCGGGACG CAGAAGGTAC CGGGGCAGCT 420 ACTEGRAGAS TETGOSGGGC TECCTGGGGT GCCCCCTCCG CCGTGGGGGCC CTGTTGCTGC 480 TGTCCATCTA TETCTACTAC TCCCTCCCAA ATGCGGTCGG CCCGCCCTTC ACTTGGATGC 540 TTGCCCTCCT GGGCCTTCTC GCAGGCACTG AACATCCTCC TGGGCCTCAA GGGCCTGGCC 600 CCAGCTGAGA TCTCTCCAGT GTGTGAAAAA GGGAATTTCA ACGTGGCCCA TGGGCTGGCA TGGTCATATT ACATCOGATA TOTGCGGGTG ATCOTGCCAG AGCTCCAGGC CCGGATTCGA 720

ACTTACAATO AGCATTACAA CAACCTGCTA CGGGGTGCAG TGAGCCAGCG GTGTNATATT

	CTCCTCCCAT	TGGACTGTGG	GGTGCCTGAT	AACCTGAGTA	TGGCTGACCC	CAACATTCGC	840
5	TTCCTGGATA	AACTGCCCCA	GCAGACCGGT	GACCGTGCTG	GCATCAAGGA	TCGGGTTTAC	900
J	AGCAACAGCA	TCTATGAGCT	TCTGGAGAAC	GGGCAGCGGG	CGGGCACCTG	TGTCCTGGAG	960
	TACGCCACCC	CCTTGCAGAC	TTTGTTTGCC	ATGTCACAAT	ACAGTCAAGC	TGGCTTTAGC	. 1020
10	GGGAGGATA	GGCTTGAGCA	GGCCAAACTC	TTCTGCCGGA	CACTTGAGGA	CATCCTGGCA	1080
	GATGCCCCTG	AGTCTCAGAA	CAACTGCCGC	CTCATTGCCT	ACCAGGAACC	TGCAGATGAC	1140
15	AGCAGCTTCT	CGCTGTCCCA	GGAGGTTCTC	CGGCACCTGC	GGCAGGAGGA	AAAGGAAGAG	1200
13	GTTACTGTGG	GCAGCTTGAA	GACCTCAGCG	GTGCCCAGTA	CCTCCACGAT	GTCCCAAGAG	1260
	CCTGAGCTCC	TCATCAGTGG	AATGGAAAAG	CCCCTCCCTC	TCCGCACGGA	TTTCTCTTGA	1320
20	GACCCAGGGT	CACCAGGCCA	GAGCCTCCAG	TGGTCTCCAA	GCCTCTGGAC	TGGGGGCTCT	1380
	CTTCAGTGGC	TGAATGTCCA	GCAGAGCTAT	TTCCTTCCAC	AGGGGGCCTT	GCAGGGAAGG	1440
25	GTCCAGGACT	TGACATCTTA	AGATGCGTCT	TGTCCCCTTG	GGCCAGTCAT	TTCCCCTCTC	1500
23	TGAGCCTCGG	TGTCTTCAAC	CTGTGAAATG	GGATCATAAT	CACTGCCTTA	CCTCCCTCAC	1560
	GGTTGTTGTG	AGGACTGAGT	GTGTGGAAGT	TTTTCATAAA	CTTTGGATGC	TAGTGTACTT	1620
30	AGGGGGTGTG	CCAGGTGTCT	TTCATGGGGC	CTTCCAGACC	CACTCCCCAC	CCTTCTCCCC	1680
	TTCCTTTGCC	CGGGGACGCC	GAACTCTCTC	AATGGTATCA	ACAGGCTCCT	TCGCCCTCTG	1740
35	GCTCCTGGTC	ATGTTCCATT	ATTGGGGAGC	CCCAGCAGAA	GAATGGAGAG	GAGGAGGAGG	1800
	CTGAGTTTGG	GGTATTGAAT	CCCCCGCCTC	CCACCCTGCA	GCATCAAGGT	TGCTATGGAC	1860
	TCTCCTGCCG	GGCAACTCTT	GCGTAATCAT	GACTATCTCT	AGGATTCTGG	CACCACTICC	1920
40	TTCCCTGGCC	CCTTAAGCCT	AGCTGTGTAT	, CGGCYCCCC	ACCCCACTAG	AGTACTCCCT	1986
	CTCACTTGCG	GTTTCCTTAT	ACTCCACCC	TTTCTCAACG	GTCCTTTTT	AAAGCACATC	204
45	TCAGATTAAA	AAAAAAAA	AAAAAAAA	AGGGGGGCN	GCNT		208

(2) INFORMATION FOR SEQ ID NO: 228:

50

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2143 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

55 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 228:

TCGACCCACG CGTCCGGTTG AATTCCTTGA CCTGCAAACA CATATTTATT AGCCTGACTC

60

•	AAACAATGAA GCTATTAAAA CTTCGGAGGA ACATTGTAAA ACTCTCTTTG TATCGGCATT	120
	TCACCAACAC GCTTATTTTG GCAGTGGCAG CATCCATTGT GTTTATCATC TGGACAACCA	180
5	TGAAGTTCAG AATAGTGACA TGTCAGTCGG ACTGGCGGGA GCTGTGGGTA GACGATGCCA	240
	TCTGGCGCTT GCTGTTCTCC ATGATCCTCT TTGTCATCAT GGTTCTCTGG CGACCATCTG	300
	CAAACAACCA GAGGTTIGCC TITTCACCAT TGTCTGAGGA AGAGGAGGAG GATGAACAAA	360
10	AGGAGCCTAT GCTGAAAGAA AGCTTTGAAG GAATGAAAAT GAGAAGTACC AAACAAGAAC	420
	CCAATGGAAA TAGTAAAGTT AACAAAGCAC AGGAAGATGA TTTGAAGTGG GTAGAAGAGA	480
15	ATGTTCCTTC TTCTGTGACA GATGTAGCAC TTCCAGCCCT TCTGGATTCA GATGAGGAAC	540
	GAATGATCAC ACACTITGAA AGGTCCAAAA TGGAGTAAGG AATGGGAAGA TITGCAGTTA	600
20	AAGATGGCTA CCATCAGGGA AGAGATCAGC ATCTGTGTCA GTCTTCTGTA CGGCTCCATG	660
20	GGATTAAAGG AAGCAATGAC ATCCTGATCT GTTCCTTGAT CTTTGGGCAT TGGAGTTGGC	720
	GAGAGGTGTC AGAACAAAGA GAACATCTTA CTGAAAACAA GTTCATAAGA TGAGAAAAAT	780
25	CTACGAGCTT CTTATTTACA ACACTGCTGC CCCCTTTCCT CCCAGACTCT GACATGGATG	840
	TTCATGCAAC TTAAGTGTGT TGTTCCTGAA CTTTCTGTAA TGTTTCATTT TTTAAATCTG	900
20	ACAAACTAAA AAGTTTAACG TCTTCTAAAA GATTGTCATC AACACCATAA TATGTAATCT	960
30	CCAGGAGCAA CTGCCTGTAA TTTTTATTTA TTTAGGGAGT TACATAGGTG ATGGGGGAAA	1020
	TTGTTAACTA CCTTTCATTT TCCTGGGAAG TCAAGGTTAC ATCTTGCAGA GGTTGTTTTG	1080
35	AGAAAAAAGG GCCCTTCTGA GTTAAGGAGC CATAGTTCTA TCAATGATCA AAAGAAAAAA	1140
	AAAAAAAAGA GAAACTGTTA CAGTATGATT CAGATCATTT AAAAAAGCAA AATCAAGTGC	1200
40	AATTTTGTTT ACAAATGGTG TATATTAAAG ATTTTTCTAT TTCAGATGTA CTTTAAAGAG	1260
40	AAATATTAGC TTAACTCTTT TGACATCTGC TATTGTGACA CATCCCATTG CTGGCAATGT	1320
	GGTGCACACT CCGAAACTTT TAACTACTGT TTTGTAAGCC TCCAAGGGTG GCATTGCAGG	1380
45	GTCCTTAGGC AATGTTTTGT TTGCCTTTAT GCAGAGAGGT GCTCCAAGTG CTGTGATTGA	1440
	GCACCGTGCT AGAGGAACTG TAATGCTTCA GAAGTTGTAG CTTATACAAA GGAAACAGGT	1500
50	CCTGCTGGCT TAATTTAAAC AGTTATTGCA TGAAGTAGCG TGGAGGCCCT GGACTGCTGC	1560
50	TCGTTCTTTA GGATGGACTG TTCTGGTATC TGGTATTGGT TTAGAGACTG TTAATAAGGG	1620
	ACATCACAAG GTGATGGGAT TCATTTGAAG CACTCTATTT CTGTTTTAAT GGTTTTATCC	1680
55	AATTTTGCCT TCCCAAGATT TTTGTTCTAC ATAAAAAGTT CATGCCACTT TTTAATATAA	1740
	AAAAATTTAA CAAAATTAAT GTATTTTTCT CATTTTTTC AAACTTTTTC TAAAGACTCT	1800
60	TTCTGTCAAA CTCATGAAAA ATTTCTTTCT ATGGCTTTTA TTCTAGATTG TCTTATTTTC	1860
~~		

WO 98/54963 PCT/US98/11422

60

482

10	AAACGTAGGC	CGGANGGAAT	AATTAGGTTG	TNATGCCGGC	GGG		2143
	GTCCATTAGG	CCAAAAGNCT	GGGTGGGTAT	TGGTTGTCAN	GCTGTCTATT	GGCATATTAA	2100
5	GGGAAGTATC	TCTGAGGGAA	CAGGCAATCT	GAAGGAACTG	ACTATATTCT	CCATGGCTAA	2040
	TAACCCTTAG	GTAGTTTCTC	TACAACTCTT	TGCTATGGTG	ATTTTTAAAA	AAGTTTCCTA	1980
	TGTTAAAACC	AATGACCACA	TGACCACAAT	CTTCACTAAC	TCATACTGCA	GTGAAAGTGT	1920

(2) INFORMATION FOR SEQ ID NO: 229:

15

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1025 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 229:

CCTGGCCCAC ATTGCTTCAT TGGCCTGGCC ATGCGCCTGT ACTATGGCAG CCGCTAGTCC 25 CTGACAACTT CCACCCTGAT TCCGGACCCT GTAGATTGGG CGCCACCACC AGATCCCCCT 120 CCCAGGCCTT CCTCCCTCTC CCATCAGCAG CCCTGTAACA AGTGCCTTGT GAGAAAAGCT 180 GGAGAAGTGA GGGCAGCCAG GTTATTCTCT GGAGGTTGGT GGATGAAGGG GTACCCTAGG 30 AGATGTGAAG TGTGGGTTTG GTTAAGGAAA TGCTTACCAT CCCCCACCCC CAACCAAGTT 300 CTTCCAGACT AAAGAATTAA GGTAACATCA ATACCTAGGC CTGAGAAATA ACCCCATCCT 360 35 TGTTGGGCAG CTCCCTGCTT TGTCCTGCAT GAACAGAGTT GATGAAAGTG GGGTGTGGGC 420 AACAAGTGGC TTTCCTTGCC TACTTTAGTC ACCCAGCAGA GCCACTGGAG CTGGCTAGTC 480 CAGCCCAGCC ATGGTGCATG ACTCTTCCAT AAGGGATCCT CACCCTTCCA CTTTCATGCA 40 540 AGAAGGCCCA GTTGCCACAG ATTATACAAC CATTACCCAA ACCACTCTGA CAGTCTCCTC 600 CAGTTCCAGC AATGCCTAGA GACATGCTCC CTGCCCTCTC CACAGTGCTG CTCCCCACAC 660 45 CTAGCCTTTG TTCTGGAAAC CCCAGAGAGG GCTGGGCTTG ACTCATCTCA GGGAATGTAG 720 CCCCTGGGCC CTGGCTTAAG CCGACACTCC TGACCTCTCT GTTCACCCTG AGGGCTGTCT 780 TGAAGCCCGC TACCCACTCT GAGGCTCCTA GGAGGTACCA TGCTTCCCAC TCTGGGGCCT 50 840 GCCCCTGCCT AGCAGTCTCC CAGCTCCCAA CAGCCTGGGG AAGCTCTGCA CAGAGTGACC 900 TGAGACCAGG TACAGGAAAC CTGTAGCTCA ATCAGTGTCT CTTTAACTGC ATAAGCAATA 960 55 AGATCTTAAT AAAGTCTTCT AGGCTGTAGG GTGGTTCCTA CAACCACAGC CAAAAAAAAA 1020 1025 AAAAA

(2) INFORMATION FOR SEQ ID NO: 230:

(i)	SEQUENCE	CHARACTERISTICS

(A) LENGTH: 1250 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230:

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 230:	
	GCCCACGCGT CCGCCCACGC GTCCGGCGGT GCGGAGTATG GGGCGCTGAT GGCCATGGAG	60
15	GGCTACTGGC GCTTCCTGGC GCYGCTGGGG TCGGCACTGC TCGTCGGCTT CCTGTCGGTG	120
	ATSTTCGCCC TCGTCTGGGT CCTCCACTAC CGAGAGGGGC TTGGCTGGGA TGGGAGCGCA	180
20	CTAGAGTTTA ACTGGCACCC AGTGCTSATG GTCACCGGCT TCGTCTTCAT CCAGGGCATC	240
20	GCATCATCGT CTACAGACTG CCGTGGACCT GGAAATGCAG CAAGCTCCTG ATGAAATCCA	300
	TCCATGCAGG GTTAAATGCA GTTGCTGCCA TTCTTGCAAT TATCTCTGTG GTGGCCGTGT	360
25	TTGAGAACCA CAATGTTAAC AATATAGCCA ATATGTACAG TCTGCACAGC TGGGTTGGAC	420
	TGATAGCTGT CATATGCTAT TTGTTACAGC TTCTTTCAGG TTTTTCAGTC TTTCTGCTTC	480
30	CATGGGCTCC GCTTTCTCTC CGAGCATTTC TCATGCCCAT ACATGTTTAT TCTGGAATTG	540
30	TCATCTTTGG AACAGTGATT GCAACAGCAC TTATGGGATT GACAGAGAAA CTGATTTTT	600
	CCCTGAGAGA TCCTGCATAC AGTACATTCC CGCCAGAAGG TGTTTTCGTA AATACGCTTG	660
35	GCCTTCTGAT CCTGGTGTTC GGGGCCCTCA TTTTTTGGAT AGTCACCAGA CCGCAATGGA	720
	AACGTCCTAA GGAGCCAAAT TCTACCATTC TTCATCCAAA TGGAGGCACT GAACAGGGAG	780
40	CAAGAGGTTC CATGCCAGCC TACTCTGGCA ACAACATGGA CAAATCAGAT TCAGAGTTAA	840
40	ACARTGAAGT AGCAGCAAGG AAAAGAAACT TAGCTCTGGA TGAGGCTGGG CAGAGATCTA	900
	CCATGTAAAA TGTTGTAGAG ATAGAGCCAT ATAACGTCAC GTTTCAAAAC TAGCTCTACA	960
45	GTTTTGCTTC TCCTATTAGC CATATGATAA TTGGGCTATG TAGTATCAAT ATTTACTTTA	1020
	ATCACAAAGG ATGGTTTCTT GAAATAATTT GTATTGATTG AGGCCTATGA ACTGACCTGA	1080
50	ATTGGAAAGG ATGTGATTAA TATAAATAAT AGCAGATATA AATTGTGGTT ATGTTACCTT	1140
50	TATCTTGTTG AGGACCACAA CATTAGCACG GTGCCTTGTG CAKAATAGAT ACTCAATATG	1200
	TGAATATGTG TCTACTAGTA GTTAATTGGA TAAACTGGCA GCATCCCTGA	1250

55

60 (i) SEQUENCE CHARACTERISTICS:

⁽²⁾ INFORMATION FOR SEQ ID NO: 231:

(A) LENGTH: 1811 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 231:

	(X1) SEQUENCE DESCRIPTION: SEQ ID NO: 231:	
	CNGNCAGTAC CGGTCNGATT CCCGGGTCGA CCCACGCGTC CGCTGCATTC CAGGGCCTTT	60
10	CAGTGGCTTT CATTCTGAAG TTCCTGGATA ACATGTTCCA TGTCTTGATG GCCCAGGTTA	120
	CCASTGTCAT TATCACAACA GTGTCTGTCC TGGTCTTTGA CTTCAGGCCC TCCCTGGAAT	180
15	TTTTCTTGGA AGCCSCATCA GTCSTYCTCT CTATATTTAT TTATAATGCC AGCAAGCCTC	240
13	AAGTTCCGGA ATACGCACCT AGGCAAGAAA GGATCCGAGA TCTAAGTGGC AATCTTTGGG	300
	AGCGTTCCAG TGGGGATGGA GAAGAACTAG AAAGACTTAC CAAACCCAAG AGTGATGAGT	360
20	CAGATGAAGA TACTITCTAA CTGGTACCCA CATAGTITGC AGCTCTCTTG AACCTTATTT	420
	TCACATTTTC AGTGTTTGTA ATATTTATCT TTTCACTTTG ATAAACCAGA AATGTTTCTA	480
25	AATCCTAATA TTCTTTGCAT ATATCTAGCT ACTCCCTAAA TGGTTCCATC CAAGGCTTAG	540
23	AGTACCCAAA GGCTAAGAAA TTCTAAAGAA CTGATACAGG AGTAACAATA TGAAGAATTC	600
	ATTAATATCT CAGTACTTGA TAAATCAGAA AGTTATATGT GCAGATTATT TICCTTGGCC	660
30	TTCAAGCTTC CAAAAAACTT GTAATAATCA TGTTAGCTAT AGCTTGTATA TACACATAGA	720
	GATCAATTTG CCAAATATTC ACAATCATGT AGTTCTAGTT TACATGCCAA AGTCTTCCCT	780
2.5	TTTTAACATT ATAAAAGCTA GGTTGTCTCT TGAATTTTGA GGCCCTAGAG ATAGTCATTT	840
35	TGCAAGTAAA GAGCAACGGG ACCCTTTCTA AAAACGTTGG TTGAAGGACC TAAATACCTG	900
	GCCATACCAT AGATTTGGGA TGATGTAGTC TGTGCTAAAT ATTTTGCTGA AGAAGCAGTT	960
40	TCTCAGACAC AACATCTCAG AATTTTAATT TITAGAAATT CATGGGAAAT TGGATTTTTG	1020
	TAATAATCTT TIGATGTTTT AAACATTGGT TCCCTAGTCA CCATAGTTAC CACTIGTATT	1080
45	TTAAGTCATT TAAACAAGCC ACGGTGGGGC TTTTTTCTCC TCAGTTTGAG GAGAAAAATC	1140
45	TTGATGTCAT TACTCCTGAA TTATTACATT TTGGAGAATA AGAGGGCATT TTATTTTATT	1200
	AGTTACTAAT TCAAGCTGTG ACTATTGTAT ATCTTTCCAA GAGTTGAAAT GCTGGCTTCA	1260
50	GAATCATACC AGATTGTCAG TGAAGCTGAT GCCTAGGAAC TTTTAAAGGG ATCCTTTCAA	1320
	AAGGATCACT TAGCAAACAC ATGTTGACTT TTAACTGATG TATGAATATT AATACTCTAA	1380
	AAATAGAAAG ACCAGTAATA TATAAGTCAC TTTACAGTGC TACTTCACAC TTAAAAGTGC	1440
55	ATGGTATTTT TCATGGTATT TTGCATGCAG CCAGTTAACT CTCGTAGATA GAGAAGTCAG	1500
	GTGATAGATG ATATTAAAAA TTAGCAAACA AAAGTGACTT GCTCAGGGTC ATGCAGCTGG	1560
60	GTGATGATAG AAGAGTGGGC TTTAACTGGC AGGCCTGTAT GTTTACAGAC TACCATACTG	1620

WO 98/54963 PCT/US98/11422

	TAAATATGAG CITTATGGTG TCATTCTCAG AAACTTATAC ATTTCTGCTC TCCTTTCTCC	1680
5	TAAGTTTCAT GCAGATGAAT ATAAGGTAAT ATACTATTAT ATAATTCATT TGTGATATCC	1740
J	ACAATAATAT GACTGGCAAG AATTGGTGGA AATTTGTAAT TAAAATAATT ATTAAACCTA	1800
	AAAAAAAAN N	. 1811
10		
	(2) INFORMATION FOR SEQ ID NO: 232:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2271 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 232:	
	CTGACCTCAT GGCGTAGAGC CTAGCAACAG CGCAGGCTCC CAGCCGAGTC CGTTATGGCC	60
25	GCTGCCGTCC CGAAGAGGAT GAGGGGGCCA GCACAAGCGA AACTGCTGCC CGGGTCGGCC	120
	ATCCAAGCCC TTGTGGGGTT GGCGCGGCCG CTGGTCTTGG CGCTCCTGCT TGTGTCCGCC	180
30	GCTCTATCCA GTGTTGTATC ACGGACTGAT TCACCGAGCC CAACCGTACT CAACTCACAT	240
30	ATTTCTACCC CAAATGTGAA TGCTTTAACA CATGAAAACC AAACCAAACC	300
	CAAATCAGCA CCACCCTCCC TCCCACGACG AGTACCAAGA AAAGTGGAGG AGCATCTGTG	360
35	GTCCCTCATC CCTCGCCTAC TCCTCTGTCT CAAGAGGAAG CTGATAACAA TGAAGATCCT	420
	AGTATAGAGG AGGAGGATCT TCTGATGCTG AACAGTTCTC CATCCACAGC CAAAGACACT	480
40	CTAGACAATG GCGATTATGG AGAACCAGAC TATGACTGGA CCACGGGCCC CAGGGACGAC	540
40	GACGAGTCTG ATMGACACCT TGGAAGAAAA CAGGGGTTAC ATGGAAATTG AACAGTCAGT	600
	GAAATCTTTT AAGATGCCAT CCTCAAATAT AGAAGAGGAA GACAGCCATT TCTTTTTCA	660
45	TCTTATTATT TTTGCTTTTT GCATTGCTGT TGTTTACATT ACATATCACA ACAAAAGGAA	720
	GATTTTTCTT CTGGTTCAAA GCAGGAAATG GCGTGATGGC CTTTGTTCCA AAACAGTGGA	780
50	ATACCATCGC CTAGATCAGA ATGTTAATGA GGCAATGCCT TCTTTGAAGA TTACCAATGA	840
50	TTATATTTTT TAAAGCACTG TGATTTGAAT TTGCTTATGT AATTTTATTT GCTTGACTTT	900
	TTATATGATA TTGTGCAAAT GTTTGCCATA GGCAATTGGT ACTTAAATGA GAGGTGAGTC	960
55	TCTCTTTTGC CTTGGTGCTT TGGAAATTAA ATGTCACAAA CGAGTATATA ATTTTTTATC	1020
	TGTACTTTTA GAGCTGAGTT TAATCAGGTG TCCAAAATGT GAGTTAAACA TTACCTTATA	1080
	TITACACTGT TAGTTTTAT TGTTTTAGAT TTATTATGCT TCTTCTGGAA GTATTAGTGA	1140

	IGCIACITIT AAAAGATCCC AAACTTGTAA CTAAATTCTG ACATATCTGT TACTGGTGAA	1200
	TCACATTCAT TCTCCGCCAT TCAAATACTA TTTTTTATCC ACATTTTTTT TTGTTCCCAA	1260
5	ACTGTAATGT ACAAGGATAT GTGTGATAAT GCTTTGGATT TGAGTAATAT TTTTTTTCT	1320
	TCCAAGAAAA CTGCTTTGGA TATTTTTAGA TAATTTAAAC ATAATTTAGG ATAATGATAT	1380
10	TGCTCAATCT GACCACAATT TTAGGTAAAA CATTAAATGT GTCAAGAAAT CTTGGCAACA	1440
10	GAGACTCTGC AGCTTGCAGT GGACATAGAT AAAATGTTAC AGAGATACTA TTTTTTTGGT	1500
	TGGAATTACT ATATTAAATT TAGAAGCAGA AACTGGTAAA ATGTTAAATA CATGTACAAT	1560
15	TGCTTTTAGT TAGCAATTGA TTGTAGCATG GGTTCCTCCA AGGTTTCAAG CAATGGGCAG	1620
	AGTTTAAAAT TATATCAGAT TCGTTTACTT CGTTTATTAT TTTACAGTAA ATTTGAATAA	1680
20	ATCTTAGGGG TCATTATCAC TTAAATAATA CTGTACCTAG GTCTTTCAAA TTAAAATTAT	1740
20	ACCTGAATGA AGTTGTTTGT ATACATAAAG GATATTTGTG TACAATTACC TTTTTTCCCC	1800
	CACACTIGTT TTCTTTGTTT TTGTTTTTTA TGGCAACTGG AAAGTATTTA CTATGGGATT	1860
25	CATTTATGTC TGTCTTTCTA TCATAAAGAA TTGATCAATA TGTAAATATG TGATTTGAAC	1920
	CATGGTTGAC TTACAAGTGT CACTACAGCT TTTTAGAAAA CATAGCCCTA ATATATGTTA	1980
30	AGCAGGACCC GGGTGAGCCA GTGGGCTTGC GCTTTATGTA GAGCTGGAAG AAGGCCGTCC	2040
30	ATCCTGTCTC TTGGGCGGAC AGTGTACTTT CCTAATAGGG AAGGGAAGCA CAATGGAAAT	2100
	ACCCCTGAAC CGTTTTATTG CAGTAATTTT TTTCATATCT GAAACTATTA TTTAATATTT	2160
35	TGAATAAGAT TTTAAAAAAT AAATGGCAAA GATATAAATC TAAAAAAAAAA	2220
	AAAAAAAAA AAAAAAAAA AAAAAAAAA AAAAAAAA	227
40		
	(2) INFORMATION FOR SEQ ID NO: 233:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1338 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 233:	
	CTTCCGGTTC TCCGGGCAGC TGCCACTGCT GTAGCTTCTG CCACCTGCCA CGACCGGGCC	6
55	TCTCCCTGGC GTTTGGTCAC CTCTGCTTCA TTCTCCACCG CGCCTATGGT CCCTCTTGGA	12
55	GCCAGCGTGG CGNGCCTGGC GGCTCCCGGG TGGTGAGAGA GCGGTCCGGG AACGATGAAG	18
	GCCTCGCAGT GCTGCTGCTG TCTCAGCCAC CTCTTGGCTT CCGTCCTCCT CCTGCTGTTG	24
60	CONCERNACE TRANSPORTER CONTRACTOR CONTRACTOR CARCOGRAGGE CACCOGRAGGE	30

	YTTGGGCCTC	CTGACCCTAG	ACCAGGACAT	TACCGCCGCT	GCCACCGGGC	CCTWACCCCT	360
<u> </u>	GCCCAGCAGC	CGGCCGTGG	TCTGGCTGAA	GCTGCGGGG	CCGCGGGGCT	CCGAGGGAGG	420
5	CAATGGCAGC	AACCCTGTGG	CCGGGCTTGA	GACGGACGAT	CACGGAGGGA	AGGCCGGGGA	480
	ARGCTCGGTG	GGTGGCGGCC	TTGCTGTGAG	CCCCAACCCT	GGCGACAAGC	CCATGACCCA	540
10	GCGGGCCCTG	ACCGTGTTGA	TGGTGGTGAG	CGCCGCTG	CTGGTGTACT	TCGTGGTCAG	600
	GACGGTCAGG	ATGAGAAGAA	GAAACCGAAA	GACTAGGAGA	TATGGAGTTT	TGGACACTAA	660
15	CATAGAAAAT	ATGGAATTGA	CACCTTTAGA	ACAGGATGAT	GAGGATGATG	ACAACACGTT	720
13	GTTTGATGCC	AATCATCCTC	GAAGATAAGA	ATGTGCCTTT	TGATGAAAGA	ACTITATCIT	780
	TCTACAATGA	AGAGTGGAAT	TTCTATGTTT	AAGGAATAAG	AAGCCACTAT	ATCAATGTTG	840
20	GGGGGTATT	TAAGTTACAT	ATATTTNAAC	AACCTTTAAT	TTGCTGTTGC	AATAAATACC	900
	GTATCCTTTT	ATTATATCTT	TATATGTATA	GAAGTACTCT	GTTAATGGGC	TCAGAGATGT	960
25	TGGGGATAAA	GTATACTGTA	ATAATTTATC	TGTTTGAAAA	ТТАСТАТААА	ACGGTGTTTT	102
23	CTGRTCGGTT	TTTGTTTCCT	GCTTACCATA	TGATTGTAAA	TTGTTTTATG	TATTAATCAG	108
	TTAATGCTAA	TTATTTTTGC	TGATGTCATA	TGTTAAAGAG	CTATAAATTC	CAACAACCAA	114
30	CTGGTGTGTA	AAAATAATTT	AAAATYTCCT	TTACTGAAAG	GTATTTCCCA	TTTTTGTGGG	120
	GAAAAGAAGO	CAAATTTATT	ACTTTGTGTT	GGGGTTTTTA	AAATATTAAG	AAATGTCTAA	126
35	GTTATTGTTI	GCAAAACAAT	AAATATGATT	TTAAATTCTC	ттаааааааа	AAAAAAAAAAC	132
22	cccggggg	GCCCCGGN					133

45

- (2) INFORMATION FOR SEQ ID NO: 234:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 234:
- Met Leu Ser Thr Gly Ile Glu Val Ala Arg Pro Pro Ala Thr Leu Leu 50 1 5 10 15
 - Gly Leu Met Phe Val Leu Thr Gly Met Pro Arg Gly Leu Arg Xaa 20 25 30

- (2) INFORMATION FOR SEQ ID NO: 235:
- (i) SEQUENCE CHARACTERISTICS:
- 60 (A) LENGTH: 116 amino acids

							CY:			- TE	NO.	225				
5	Met		(xi) Val											Ser	Val	Gly
	1				5				_	10	-1 -		vv 1	•	15	7
10	Thr	Met	Phe	Ser 20	Cys	Asn	Arg	He	Pro 25	гуs	11e	The	vai	30	ASN	ьуs
	Leu	Lys	Phe 35	Xaa	Cys	Glu	Val	Leu 40	Leu	Arg	Ile	Gln	Thr 45	Ile	Gln	Gly
15	Phe	Туг 50	Arg	Cys	Thr	Arg	Ile 55	Ser	Arg	Tyr	Lys	Gly 60	Ile	Phe	Pro	Asp
	Phe 65		Gln	Ser	Gln	Cys 70	Met	Gly	Cys	Asn	Pro 75	Glu	Ser	Xaa	Met	Ala 80
20	Val	Pro	Ala	Leu	Val 85	Thr	Pro	Ile	Leu	Ala 90	His	Arg	Lys	Lys	Glu 95	Lys
	Gly	Met	Cys	Leu 100	Phe	Thr	Leu	Ile	Ile 105	Ala	Pro	Thr	Arg	Cys 110	Thr	His
25	Tyr	Phe	Cys 115	Xaa												
30	(2)		ODMA	mT0\1	FOR	CEO	TD 1	NYO .	226.							
	(2)	INF	ORMA			-	RACT			:						
35			. ,	~ ((A) I (B) T	ENGI	H: 1 ami	.03 a .no a	mino .cid		ds					
				SEÇ	UENC		SCRI					. 23	6:			
40	Met		Ser					PIIC	N: S	EQ I	D NC					
				Ala	Lys 5		Val							Pro	Thr 15	Тут
	Туз		Thr		5 Ala			Arg	Gln	Arg 10	Gly	Ala	Val		15 Trp	
45		Thi		Glu 20	5 Ala	Gly	, Glu	Arg	Gln Ile 25 Val	Arg 10 Phe	Gly	Ala Val	Val	Asn 30	15 Trp	Sei
	Lei	Thr	Thr Ile 35	Glu 20	5 Ala His	Gly	Glu Val	Arg Ile Asp 40	Gln Ile 25 Val	Arg 10 Phe	Gly Leu Cys	Ala Val	Val Leu Lys 45	Asn 30	15 Trp	Sei
45 50	Let Se:	Thr Ser Val 50 u Val	Thr Ile 35	Glu 20 e Leu	Ala His Asp	Gly Ile	Glu Val Ala 55	Arg Ile Asp 40	Gln 25 Val	Arg 10 Phe Leu	Gly Leu Cys	Val	Leu Lys 45	Asn 30 Pro	Trp Glu	Ser Lys
	Let Se: Let	Thr Ser Val 50 u Val	Thr Ile 35	Glu 20 e Leu Glu Arç	5 Ala His Asp Lys	Gly Ile Ala Gly 70	· Glu · Val · Ala · 55 · Pro	Arg Ile Asp 40 Ser	Gln Ile 25 Val	Arg 10 Phe Leu Leu	Cys Cys Ser 75	Val	Leu Lys 45 45 Arg	Asn 30 Pro	15 Trp Glu Thr	Lys Ala

	(2) INFORMATION FOR SEQ ID NO: 237:
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 237:
10	Met Ile Leu Phe Pro Gln Xaa Ala Leu Arg Leu Gly Xaa Trp Pro Arg 1 5 10 15
15	Thr Trp Ser Ile Leu Xaa Lys Tyr Ser Val Asn Phe Phe Ser Ala Tyr 25 30 Ser Pro Met Gly Ala Val Gly Thr Glu Phe 35 40
20	(2) INFORMATION FOR SEQ ID NO: 238:
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 238:
30	Met Ile Ile Leu Leu Leu Phe Met Leu Leu Asn Asn Val Val Leu Val 1 5 10 15
	Gln Glu Asp Asn Cys Gln Arg Lys Asn Thr Val Gln Glu Arg Arg Xaa 20 25 30
35	Trp Ser Gln Trp Xaa 35
40	(2) INFORMATION FOR SEQ ID NO: 239:
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 128 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 239:
50	Met Ala Ala Xaa Pro Pro Gly Cys Thr Pro Pro Xaa Leu Leu Asp Ile 1 5 10 15
50	Ser Trp Leu Thr Glu Ser Leu Gly Ala Gly Gln Pro Val Pro Val Glu 20 25 30
55	Cys Arg His Arg Leu Glu Val Ala Gly Pro Arg Lys Gly Pro Leu Ser 35 40 45
	Pro Ala Trp Met Pro Ala Tyr Ala Cys Gln Arg Pro Thr Pro Leu Thr 50 55 60
60	His His Asn Thr Gly Leu Ser Glu Leu Leu Glu His Gly Val Cys Glu

WO 98/54963 PCT/US98/11422

•	65					70					75					80
-	Glu	Val	Glu	Arg	Val 85	Arg	Arg	Ser	Glu	Arg 90	Tyr	Gln	Thr	Met	Lys 95	Val
5	Arg	Arg	Ala	Gly 100	Leu	Gly	Pro	Thr	Pro 105	Gly	Met	Ser	Cys	Pro 110	Gly	Asn
10	Asp	Asn	Thr 115	Val	His	Thr	Met	His 120	Gly	Glu	Ala	Asn	Arg 125	Gly	Ser	Xaa
15																
20	(2)	INF		SEQU: () (ENCE A) L B) T D) T	CHA ENGT YPE:	RACT H: 6 ami OGY:	ERIS 7 am no a lin	TICS ino cid ear	acid		: 24	0:			
25	Met 1		Ile	Leu	Cys 5		Pro	Xaa	Leu	Cys 10		Phe	Phe	Ser	Phe 15	Cys
30	Ile	Ser	Ser	Gly 20	Ser	Cys	Pro	Phe	Ser 25		Val	Ser	Gln	Leu 30		Phe
	Ile	Ala	Thr 35		Ser	Gln	Ser	Ser 40		Val	Leu	Leu	Val 45		Ala	Tyr
35	Asn	Thr 50		Leu	Ser	Phe	Leu 55		Phe	e Leu	Asp	Cys 60	Ala	Ser	Leu	Thr
	Ser 65		Xaa	•												
40																
	(2)	IN	FORMA	TION	FOR	SEÇ) ID	NO:	241:							
45					(A) I (B) ' (D) '	LENG' IYPE IOPO!	TH: : a.m LOGY	69 a ino : : li	mino acid near	aci		D: 24	11:			
50		Sei 1	r Thi	Phe	Glr		ı Lev	ı Lev	ı Lev	ı Ile 10		ı Ala	Glr	n Sei	Th:	r Tyr 5
55	Ly	s Ile	e Lys	S Ser 20		s Pro	Le:	ı Hi:	s Me		r Ası	n His	Thi	c Lei		u Asn
23	Se:	r Pr	o Gly 39		ı Ası	ı Pro	o Sei	r Se:	_	o Thi	r Le	ı Asr	n Phe	_	s Th	r Gln
60	Gl	n Hi: 5		ı Sei	c Val	l Sei	r Ty:		a Cy:	s Cy:	s Hi	s Met		g Sei	r Le	u His

491

WO 98/54963

```
His Ala Phe Ala Xaa
      65
5
     (2) INFORMATION FOR SEQ ID NO: 242:
             (i) SEQUENCE CHARACTERISTICS:
10
                    (A) LENGTH: 44 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 242:
     Met Val Ser Val Val Leu Ile Phe Ser Phe Leu Ser Leu Thr Ile Ser
15
                                10
     Thr Thr Ala Ser Ala Tyr Asn Gly Asn Asp Thr Gln Gly Trp Asn Asp
20
     Lys Phe His Xaa Xaa Ser Val Lys Thr Gln Thr Xaa
                                  40
25
      (2) INFORMATION FOR SEQ ID NO: 243:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 51 amino acids
30
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 243:
      Met Ile Ser Asp Ala Gly Ala Gly Phe Gly Val Phe Leu Leu Val Pro
35
                               10
      Arg Ala Gly His Cys Trp Gly Ala Gly Lys Pro Leu Pro Ser Cys Pro
40
      Ser Val Ala Ser Ile Pro Ser Trp Val Leu Pro Ser Phe Leu Glu Arg
                                  40
      Gly Arg Xaa
           50
45
      (2) INFORMATION FOR SEQ ID NO: 244:
              (i) SEQUENCE CHARACTERISTICS:
50
                     (A) LENGTH: 43 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 244:
 55
     Met Val Gln Thr Ile Gln Asp Phe Leu Ser Leu Phe Ser Thr Pro Ile
       Phe Leu Leu Leu Met Phe Glu Thr Leu Ser Leu Ala Pro Ala Trp
 60
                                      25
```

Leu Lys Pro Leu Arg Val Thr Ser His Ser Xaa 35 . 40 5 (2) INFORMATION FOR SEQ ID NO: 245: (i) SEQUENCE CHARACTERISTICS: 10 (A) LEWIH: 51 amino acids (B) TYPE: amino acid (D) TOPILOTY: Linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 245: Met Ile Leu Met Pro Gly Leu Gly Thr Ser Arg Gln Arg Ser Val Pro 15 Phe Val Pro Thr Leu Asm Ala Ser Thr Pro Gly Ala Met Thr Gly Pro 20 Thr Ala Thr Leu Thr Ser Tys Glin Trp Thr Thr Ala Cys Arg Val Ser Trp Ala Asn Gly Trp Thr Ser Leu Arg Thr Phe Arg Xaa 25 (2) INFORMATION FOR SEQ ID NO: 245: 30 (i) SEQUENCE CHAPACTERISTICS: (A) LEWITH: 35 amino acids (B) TYFE: amino acid (D) TOPILOGY: linear 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 246: Met Ser His His Ala Gln Pro Arg Phe Leu Leu Ile Thr Met Leu Leu 40 Gln Glu Ala Lys Pro Val Ser Asm Ile Pro His Leu Leu Glu Ser Trp 25 Tyr Phe Gly Xaz 35 45 -(2) INFORMATION FOR SEQ ID NO: 247: 50 (i) SEQUENCE CHARACTERISTICS: (A) LEWIH: 32 amino acids (B) TYFE: amino acid (D) TCPCLOGY: Linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 247: 55 Met Asn Ser Leu Phe Trp Met Ile Leu Leu Pro Val Ser Gln Asp Gln 10 1 5 Val Val Glu Gly Leu Gln Gly Sly Phe Ser Gln Ile His Met Arg Ile 25 60 20

Leu Arg Lys His Leu Xaa 35

5

121	INFORMATION	FOR	SEO	TD	NO.	248
(2)	INFORMATION	FUR	SEU	Tυ	MO:	240

III CE	SOUTH TOTAL	CHARACTERISTICS:	٠

10

- (A) LENGTH: 211 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 248:

Met Ser Arg Ser Xaa Asp Val Thr Asn Thr Thr Phe Leu Leu Met Ala 1 5 10 15

Ala Ser Ile Tyr Leu His Asp Gln Asn Pro Asp Ala Ala Leu Arg Ala 20 25 30

20

Leu His Gln Gly Asp Ser Leu Glu Cys Thr Ala Met Thr Val Gln Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Leu Leu Lys Leu Asp Arg Leu Asp Leu Ala Arg Lys Glu Leu Lys Arg 25 50 55 60

Met Gln Asp Leu Asp Glu Asp Ala Thr Leu Thr Gln Leu Ala Thr Ala 65 70 75 80

30 $\,$ Trp Val Ser Leu Ala Thr Gly Gly Glu Lys Leu Gln Asp Ala Tyr Tyr $\,$ 85 $\,$ 90 $\,$ 95

Ile Phe Gln Glu Met Ala Asp Lys Cys Ser Pro Thr Leu Leu Leu Leu 100 105 110

35

Asn Gly Gln Ala Ala Cys His Met Ala Gln Gly Arg Trp Glu Ala Ala 115 120 125

Glu Gly Leu Leu Gln Glu Ala Leu Asp Lys Asp Ser Gly Tyr Pro Glu 40 130 135 140

Thr Leu Val Asn Leu Ile Val Leu Ser Gln His Leu Gly Lys Pro Pro 145 150 155 160

Glu Val Thr Asn Arg Tyr Leu Ser Gln Leu Lys Asp Ala His Arg Ser

His Pro Phe Ile Lys Glu Tyr Gln Ala Lys Glu Asn Asp Phe Asp Arg 180 185 190

50

Leu Val Leu Gln Tyr Ala Pro Ser Ala Glu Ala Gly Pro Glu Leu Ser 195 200 205

Gly Pro Xaa 55 210

(2) INFORMATION FOR SEQ ID NO: 249:

		((i) S	(A	A) LE	NGTH	1: 54	8 an	ino	acid	ls					
				([3) TY 0) TO	POLC	χςΥ:	line	ar	-						
5			(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	249):			
	Met 1	Glu	Asp	Ser	Glu . 5	Ala	Leu	Gly	Phe	Glu 10	His	Met	Gly	Leu	Asp 15	Pro
10	Arg	Leu	Leu	Gln 20	Ala	Val	Thr	Asp	Leu 25	Gly	Trp	Ser	Arg	Pro 30	Thr	Leu
15	Ile	Gln	Glu 35	Lys	Ala	Ile	Pro	Leu 40		Leu	Glu	Gly	Lys 45	Asp	Leu	Leu
15	Ala	Arg 50	Ala	Arg	Thr	Gly	Ser 55	Gly	Lys	Thr	Ala	Ala 60	Tyr	Ala	Ile	Pro
20	Met 65	Leu	Gln	Leu	Leu	Leu 70	His	Arg	Lys	Ala	Thr 75	Gly	Pro	Val	Val	Glu 80
	Gln	Ala	Val	Arg	Gly 85	Leu	Val	Leu	Val	Pro 90	Thr	Lys	Glu	Leu	Ala 95	Arg
25	Gln	Ala	Gln	Ser 100	Met	Ile	Gln	Gln	Leu 105	Ala	Thr	Tyr	Суѕ	Ala 110	Arg	Asp
20	Val	Arg	Val 115	Ala	Asn	Val	Ser	Ala 120	Ala	Glu	Asp	Ser	Val 125	Ser	Gln	Arg
30	Ala	Val 130		Met	Glu	Lys	Pro 135	Asp	Val	Val	Val	Gly 140	Thr	Pro	Ser	Arg
35	Ile 145	Leu	Ser	His	Leu	Gln 150	Gln	Asp	Ser	Leu	Lys 155	Leu	Arg	Asp	Ser	Leu 160
	Glu	Leu	Leu	Val	Val 165	Asp	Glįu	Ala	Asp	Leu 170	Leu	Phe	Ser	Phe	Gly 175	Phe
40	Glu	Glu	Glu	Leu 180		Ser	Leu	Leu	Cys 185		Leu	Pro	Arg	Ile 190		Gln
45	Ala	Ph€	Leu 195		Ser	Ala	Thr	Phe 200		Glu	Asp	Val	Gln 205		Leu	Lys
45	Glu	Let 210		Leu	His	Asn	Pro 215		Thr	: Leu	Lys	Leu 220		Glu	Ser	Gln
50	Leu 225		o Gly	Pro	Asp	Gln 230		Glr	Glr	n Phe	Glr 235		. Val	. Cys	Glu	1 Thr 240
	Glu	Glı	ı Asp	Lys	Phe 245		ı Lev	ı Lev	тул	250		ı Lev	ı Lys	Leu	Ser 255	Leu
55	Ile	e Ar	g Gl	/ Lys 260		: Lev	ı Lev	ı Phe	e Va:		1 Thi	. Le	ı Glu	270		туг
60	Arg	j Le	u Arg 275		ı Phe	e Lev	ı Glu	ı Glı 280		e Sei	: Ile	e Pro	285		s Vai	l Leu

	Asn	Gly 290	Glu	Leu	Pro	Leu	Arg 295	Ser	Arg	Cys	His	Ile 300	Ile	Ser	Gln	Phe
5	Asn 305	Gln	Gly	Phe	Tyr	Asp 310	Cys	Val	Ile	Ala	Thr 315	Asp	Ala	Glu	Val	Leu 320
	Gly	Ala	Pro	Val	Lys 325	Gly	Lys	Arg	Arg	Gly 330	Arg	Gly	Pro	Lys	Gly 335	Asp
10	Lys	Ala	Ser	Asp 340	Pro	Glu	Ala	Gly	Val 345	Ala	Arg	Gly	Ile	Asp 350	Phe	His
15	His	Val	Ser 355	Ala	Val	Leu	Asn	Phe 360	Asp	Leu	Pro	Pro	Thr 365	Pro	Glu	Ala
1.5	Tyr	Ile 370	His	Arg	Ala	Gly	Arg 375	Thr	Ala	Arg	Ala	Asn 380	Asn	Pro	Gly	Ile
20	Val 385	Leu	Thr	Phe	Val	Leu 390	Pro	Thr	Glu	Gln	Phe 395	His	Leu	Gly	Lys	Ile 400
	Glu	Glu	Leu	Leu	Ser 405	Gly	Glu	Asn	Arg	Gly 410	Pro	Ile	Leu	Leu	Pro 415	
25	Gln	Phe	Arg	Met 420	Glu	Glu	Ile	Glu	Gly 425		Arg	Tyr	Arg	Cys 430	Arg	Asp
30	Ala	Met	Arg 435	Ser	Val	Thr	Lys	Gln 440	Ala	Ile	Arg	Glu	Ala 445		Leu	Lys
50	Glu	Ile 450		Glu	Glu	Leu	Leu 455		Ser	Glu	Lys	Leu 460	Lys	Thr	Tyr	Phe
35	Glu 465		Asn	Pro	Arg	Asp 470		Gln	Leu	Leu	475		Asp	Leu	Pro	Leu 480
	His	Pro	Ala	Val	Val 485		Pro	His	Leu	Gly 490		Val	Pro	Asp	Tyr 495	Leu
40	Val	Pro	Pro	Ala 500		Arg	Gly	Leu	Val 505		J Pro	His	Lys	Lys 510		Lys
45	Lys	Leu	Ser 515		Ser	Cys	Arg	Lys 520		Lys	: Arg	Ala	Lys 525		Gln	Asn
73	Pro	530		Ser	Phe	: Lys	His 535		Gly	/ Lys	s Lys	Phe 540		, Pro	Thr	Ala
50	Lys 545		Ser	Xaa												
	(0)								250							
55	(2)	INE		TION SEQU	JENCI	E CHI	ARAC'	reri:	STIC	s:						
					(B)	TYPE	: am	299 ; ino ; : li:	acid		ids					

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 250:

	Met 1	Thr	Thr	Val	Pro 5	Pro	Ser	Pro	Arg	Pro 10	Met	Ser	Arg	Pro	Ser 15	Glu
5	Arg	Asn	Met	Arg 20	Arg	Pro	Arg	Gly	Pro 25	Ser	Pro	Leu	Pro	Ala 30	Ser	Pro
10	Arg	Asn	Ser 35	Thr	Pro	Asp	Glu	Pro 40	Asp	Val	His	Phe	Ser 45	Lys	Lys	Phe
10	Leu	Asn 50	Val	Phe	Met	Ser	Gly 55	Arg	Ser	Arg	Ser	Ser 60	Ser	Ala	Glu	Ser
15	Phe 65	Gly	Leu	Phe	Ser	Cys 70	Ile	Ile	Asn	Gly	Glu 75	Glu	Gln	Glu	Gln	Thr 80
	His	Arg	Ala	Ile	Phe 85	Arg	Phe	Val	Pro	Arg 90	His	Glu	Asp	Glu	Leu 95	Glu
20	Leu	Glu	Val	Asp 100	Asp	Pro	Leu	Leu	Val 105	Glu	Leu	Gln	Ala	Glu 110	Asp	Tyr
25	Trp	Tyr	Glu 115	Ala	Tyr	Asn	Met	Arg 120	Thr	Gly	Ala	Arg	Gly 125	Val	Phe	Pro
	Ala	Tyr 130	Tyr	Ala	Ile	Glu	Val 135	Thr	Lys	Glu	Pro	Glu 140	His	Met	Ala	Ala
30	Leu 145	Ala	Lys	Asn	Ser	Asp 150	Trp	Val	Asp	Gln	Phe 155	Arg	Val	Lys	Phe	Leu 160
	Gly	Ser	Val	Gln	Val 165	Pro	Tyr	His	Lys	Gly 170	Asn	Asp	Val	Leu	Cys 175	Ala
35	Ala	Met	Gln	Lys 180	Ile	Ala	Thr	Thr	Arg 185	Arg	Leu	Thr	Val	His 190	Phe	Asn
40	Pro	Pro	Ser 195		Cys	Val	Leu	Glu 200	Ile	Ser	Val	Arg	Gly 205	Val	Lys	Ile
	Gly	Val 210	_	Ala	Asp	Asp	Ser 215		Glu	Ala	Lys	Gly 220	Asn	Lys	Cys	Ser
45	His 225		Phe	Gln	Leu	Lys 230		Ile	Ser	Phe	Cys 235	Gly	Tyr	His	Pro	Lys 240
	Asn	Asn	Lys	Tyr	Phe 245		Phe	Ile	Thr	Lys 250		Pro	Ala	Asp	His 255	Arg
50	Phe	Ala	. Cys	His 260		Phe	Val	Ser	Glu 265	_	Ser	Thr	Lys	Ala 270		Ala
55	Glu	Ser	Val 275		Arg	Ala	Phe	Gln 280		. Phe	Tyr	Lys	Gln 285		Val	Glu
	Tyr	Thr 290	-	Pro	Thr	Glu	Asp 295		Туг	Leu	Glu					

WO 98/54963 PCT/US98/11422

	(2)	INF	JKMA.	LTON	FOR	SEQ	ו עו	WO: 4	331:							
5				(A) L B) T D) T	ENGT YPE: OPOL	H: 4 ami OGY:	ERIS' 0 am no a lin	ino cid ear	acid		. 25	1.			
			(X1)	SEQ	UEINC.	e de	SCRI	PTIO	N: 5.	EQ I	J 140	: 25	1:			
10	Leu 1	Leu	Tyr	Leu	Leu 5	Lys	Val	Xaa	Val	Ile 10	Phe	Val	Phe	Ser	Ser 15	Ser
	Lys	Gly	Val	Thr 20	Leu	Val	Ser	Met	Asn 25	Leu	Thr	Ser	Phe	Phe 30	Val	Ser
15	Ser	Val	Leu 35	Ala	Cys	Phe	Ser	Хаа 40								
20	(2)	INF	ORMA	NOI	FOR	SEQ	ID I	NO: 2	252:							
25				(A) L B) T D) T	ENGT YPE: OPOL	H: 5 ami OGY:	ERIS' 94 a no a lin PTIO	mino cid ear	aci		: 25	2:			
30	Met 1	Pro	Ala	Ser	Ser 5	Leu	Glu	Ser	Arg	Ser 10	Phe	Leu	Leu	Ala	Lys 15	Lys
	Ser	Gly	Glu	Asn 20	Val	Ala	Lys	Phe	Ile 25	Ile	Asn	Ser	Tyr	Pro 30	Lys	Tyr
35	Phe	Gln	Lys 35	Asp	Ile	Ala	Glu	Pro 40	His	Ile	Pro	Cys	Leu 45	Met	Pro	Glu
	Tyr	Phe 50	Glu	Pro	Gln	Ile	Lys 55	Asp	Ile	Ser	Glu	Ala 60	Ala	Leu	Lys	Glu
40	Arg 65	Ile	Glu	Leu	Arg	Lys 70	Val	Lys	Ala	Ser	Val 75	Asp	Met	Phe	Asp	Gln 80
45	Leu	Leu	Gln	Ala	Gly 85	Thr	Thr	Val	Ser	Leu 90	Glu	Thr	Thr	Asn	Ser 95	Leu
	Leu	Asp	Xaa	Leu 100	Су́ѕ	Tyr	Tyr	Gly	Asp 105	Gln	Glu	Pro	Ser	Thr 110	Asp	Tyr
50	His	Phe	Gln 115	Gln	Thr	Gly	Gln	Ser 120	Glu	Ala	Leu	Glu	Glu 125	Glu	Asn	Asp
	Glu	Thr 130	Ser	Arg	Arg	Lys	Ala 135	Gly	His	Gln	Phe	Gly 140	Val	Thr	Trp	Arg
55	Ala 145	Lys	Asn	Asn	Ala	Glu 150	Arg	Ile	Phe	Ser	Leu 155	Met	Pro	Glu	Lys	Asn 160
60	Glu	His	Ser	Tyr	Cys 165	Thr	Met	Ile	Arg	Gly 170	Met	Val	Lys	His	Arg 175	Ala

	TYL	GIU	GIII	180	Leu	ASII	Leu	TAT	185	Giu	Deu	Beu	71311	190	1119	200
5	His	Ala	Asp 195	Val	Tyr	Thr	Phe	Asn 200	Ala	Leu	Ile	Glu	Ala 205	Thr	Val	Cys
	Ala	Ile 210	Asn	Glu	Lys	Phe	Glu 215	Glu	Lys	Trp	Ser	Lys 220	Ile	Leu	Glu	Leu
10	Leu 225	Arg	His	Met	Val	Ala 230	Gln	Lys	Val	Lys	Pro 235	Asn	Leu	Gln	Thr	Phe 240
15	Asn	Thr	Ile	Leu	Lys 245	Cys	Leu	Arg	Arg	Phe 250	His	Val	Phe	Ala	Arg 255	Ser
13	Pro	Ala	Leu	Gln 260	Val	Leu	Arg	Glu	Met 265	Lys	Ala	Ile	Gly	11e 270	Glu	Pro
20	Ser	Leu	Ala 275	Thr	Tyr	Ĥis	His	Ile 280	Ile	Arg	Leu	Phe	Asp 285	Gln	Pro	Gly
	Asp	Pro 290		Lys	Arg	Ser	Ser 295	Phe	Ile	Ile	Tyr	Asp 300	Ile	Met	Asn	Glu
25	Leu 305		Gly	Lys	Arg	Phe 310	Ser	Pro	Lys	Asp	Pro 315		Asp	Asp	Lys	Phe 320
30	Phe	Gln	Ser	Ala	Met 325	Ser	Ile	Cys	Ser	Ser 330		Arg	Asp	Leu	Glu 335	Leu
	Ala	Tyr	Gln	Val 340		Gly	Leu	Leu	Lys 345		Gly	Asp	Asn	350	Lys	Phe
35	Ile	Gly	Pro 355		Gln	His	Arg	Asn 360		Tyr	Tyr	Ser	Lys 365		Phe	Asp
	Leu	11e 370		Leu	Met	Glu	Gl _n 375		Asp	Val	Thr	Leu 380		Trp	Tyr	Glu
40	Asp 385		lle	Pro	Ser	Ala 390		Phe	Pro	His	395		Thr	Met	Ile	400
45	Leu	. Leu	Gln	Ala	405		Val	Ala	Asn	410		Glu	Val	l Ile	Pro 415	Lys
	Ile	: Trp	Lys	420		Lys	Glu	туг	Gly 425		Thr	Phe	Arç	9 Ser 430		Leu
50	Arg	Glu	435		e Leu	Met	: Leu	440		Arg	J Asī	Lys	445		Pro	Glu
	Leu	1 Glr 450		l Ala	a Phe	Ala	Asg 459		Ala	a Ala	a Asp	11e		s Ser	Ala	Tyr
55	Gl:		r Glr	n Pro	o Ile	470		Thr	: Ala	a Glr	1 Ası 47) Pro	o Ala	t Thr	Ser 480
60	Le	ı Ası	n Cys	s Ile	e Ala 489		e Le	ı Phe	e Lei	490		a Gly	/ Ar	g Thi	Glr 495	ı Glu.

	Ala	Trp	Lys	Met 500	Leu	Gly	Leu	Phe	Arg 505	Lys	His	Asn	Lys	Ile 510	Pro	Arg
5	Ser	Glu	Leu 515	Leu	Asn	Glu	Leu	Met 520	Asp	Ser	Ala	Lys	Val 525	Ser	Asn	Ser
	Pro	Ser 530	Gln	Ala	Ile	Glu	Val 535	Val	Glu	Leu	Ala	Ser 540	Ala	Phe	Ser	Leu
10	Pro 545	Ile	Cys	Glu	Gly	Leu 550	Thr	Gln	Arg	Val	Met 555	Ser	Asp	Phe	Ala	Ile 560
15	Asn	Gln	Glu	Gln	Lys 565	Glu	Ala	Leu	Ser	Asn 570	Leu	Thr	Ala	Leu	Thr 575	Ser
	Asp	Ser	Asp	Thr 580	Asp	Ser	Ser	Ser	Asp 585	Ser	Asp	Ser	Asp	Thr 590	Ser	Glu
20	Gly	Lys														
25	(2)	INF		TION SEQU	ENCE		RACT	ERIS	TICS		.ds					
				-	•	YPE:										
30			(xi)		D) I	OPOL	OGY:	lir	ear	EQ I	D NO	: 25	3:			
30	Met 1			SEQ	D) I UENC	OPOL	OGY: SCRI	lir PTIC	ear N: S		Ala			Pro	Leu 15	Leu
30 35	1		Leu	SEQ Asn	D) I UENC Leu 5 Gln	OPOL E DE Cys	OGY: SCRI Ile	lin PTIC Pro	ear N: S Asn	Trp 10	Ala	Arg	Cys		15 Asp	
35	1 Leu	Leu	Leu Phe	SEQ Asn Pro 20	D) T UENC Leu 5 Gln	OPOL E DE Cys Leu	OGY: SCRI Ile Leu	lin PTIC Pro	Asn Phe 25	Trp 10	Ala Gly	Arg Glu	Cys	Asp 30	15 Asp	
	1 Leu Leu	Leu Lys	Leu Phe Ala 35	SEQ Asn Pro 20	D) I UENC Leu 5 Gln	OPOL E DE Cys Leu Ala	OGY: SCRI Ile Leu Asn	lin PTIC Pro Pro Leu 40	Asn Phe 25	Trp 10 Gln	Ala Gly	Arg Glu Val	Cys Asp Pro 45	Asp 30	15 Asp Gly	Pro
35	1 Leu Leu	Leu Lys Ala 50	Leu Phe Ala 35	SEQ Asn Pro 20 Lys	D) I UENC Leu 5 Gln Ala	OPOL E DE Cys Leu Ala	OGY: SCRI Ile Leu Asn Val 55	Pro Pro Leu 40	Phe 25 Val	Trp 10 Gln Glu	Ala Gly Ala Val	Arg Glu Val Arg 60	Asp Pro 45	Asp 30 Trp	15 Asp Gly	Pro
35 40	Leu Leu Lys Ser 65	Leu Lys Ala 50	Leu Phe Ala 35	SEQ Pro	D) I UENC Leu 5 Gln Ala Phe	OPOLICE DE CYS Leu Ala Gln Arg 70	OGY: SCRI Ile Leu Asn Val	lirr PTIC Pro Pro Leu 40 Thr	near N: S Asn Phe 25 Val	Trp 10 Glu Glu	Ala Gly Ala Val Leu 75	Arg Val Arg 60	Cys Asp Pro 45 Val	Asp 30 Trp Gln	15 Asp Gly Leu	Pro Ile Gln Ser 80
35 40	Leu Lys Ser 65	Leu Lys Ala 50 Cys	Leu Phe Ala 35 Prc Thr	SEQ Asn 20 20 Lys Ser Pro	D) TUENC Leu 5 Gln Ala Phe Ser 85	COPOLLE DE Cys Leu Ala Gln 70 Cys	OGY: SCRI Ile Leu Asn Val 55	lir PTIC Pro Pro Leu 40 Thr	Asn Phee 25 Val Cys	Trpp 10 Glu Glu Leu 90 Leu 90	Ala Gly Ala Val	Arg Glu Val Arg 60	Asp Pro 45 Val	Asp 30 Trp Gln	Asp Gly Leu Glr 95	Pro Ile Gln Ser 80
35 40 45	Leu Lys Ser 65	Leu Lys Ala 50 Cys Gly	Phe Ala 35 Pro	SEQ Asn 20 20 20 Lys Ser Pro 11 11 11 11 11 11 11 11 11 11 11 11 11	D) TUENC Leu 5 Gln Ala Phe Ser 85	COPOLLE DE Cys Leu Ala Gln 70 Cys	OGY: SCRI Ile Leu Asn Val 55	lir PTIC Pro Pro Leu 40 Thr	Phe 25 Val Cys Thr 105	Trpp 10	Ala Gly Ala Val 1 Leu 75	Arg Glu Val Arg 60 Ala His	Asp Pro 45 Val	Asp 30 Trpp Gln Ser 1 Pro	Asp Gly Leu Glr 95	Pro Ile IGh Ser 80 Val

PCT/US98/11422 WO 98/54963

•	(2) INFORMATION FOR SEQ ID NO: 254:
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254:
10	Met Arg Tyr His Ala Gln Leu Ile Phe Cys Ile Phe Cys Xaa Phe Val 1 5 10 15
	Phe Val Xaa Lys Xaa 20
15	
	(2) INFORMATION FOR SEQ ID NO: 255:
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 255:
25	Met Asn Asp Asn Ser Pro Asn His Ser Ser Ser Tyr Leu Pro Leu Pro 1 5 10 15
30	Leu Thr Ile Val Ile Leu Gln Thr Gly His Lys Gly Thr Leu Xaa 20 25 30
35	(2) INFORMATION FOR SEQ ID NO: 256: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 219 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 256:
	Met His Phe Leu Phe Arg Phe Ile Val Phe Phe Tyr Leu Trp Gly Leu 1 5 10 15
45	Phe Thr Ala Gln Arg Gln Lys Lys Glu Glu Ser Thr Glu Glu Val Lys 20 25 30
	Ile Glu Val Leu His Arg Pro Glu Asn Cys Ser Lys Thr Ser Lys Lys 35 40 45
50	Gly Asp Leu Leu Asn Ala His Tyr Asp Gly Tyr Leu Ala Lys Asp Gly 50 55 60
55	Ser Lys Phe Tyr Cys Ser Arg Thr Gln Asn Glu Gly His Pro Lys Trp 65 70 75 80
	Phe Val Leu Gly Val Gly Gln Val Ile Lys Gly Leu Asp Ile Ala Met 85 90 95
60	Thr Asp Met Cys Pro Gly Glu Lys Arg Lys Val Val Ile Pro Pro Ser

	Phe	Ala	Туг 115	Gly	Lys	Glu	Gly	Tyr 120	Ala	Glu	Gly	Lys	Ile 125	Pro	Pro	Asp
5	Ala	Thr 130	Leu	Ile	Phe	Glu	Ile 135	Glu	Leu	Tyr	Ala	Val 140	Thr	Lys	Gly	Pro
10	Arg 145	Ser	Ile	Glu	Thr	Phe 150	Lys	Gln	Ile	Asp	Met 155	Asp	Asn	Asp	Arg	Gln 160
	Leu	Ser	Lys	Ala	Glu 165	Ile	Asn	Leu	Tyr	Leu 170	Gln	Arg	Glu	Phe	Glu 175	Lys
15	Asp	Glu	Lys	Pro 180	Arg	Asp	Lys	Ser	Туг 185	Gln	Asp	Ala	Val	Leu 190	Glu	Asp
	Ile	Phe	Lys 195	Lys	Asn	Asp	His	Asp 200	Gly	Asp	Gly	Phe	Ile 205	Ser	Pro	Lys
20	Glu	Tyr 210	Asn	Val	туг	Gln	His 215	Asp	Glu	Leu	Xaa					
25	(2)	INF	ORMAI	rion	FOR	SEQ	ID N	VO: 2	257:							
			(i) :					ERIS O am			5					
30			(xi)	(D) T	OPOL	OGY:	no a lin PTIO	ear	EQ II	ои с	: 25	7 :			
35 .	Met 1	Trp	Val	Ile	Arg 5	Val	Phe	Gln	Lys	Thr 10	Phe	Leu	Phe	Phe	Val 15	Leu
<i>33</i> ,	Phe	Trp	Ser	Val 20	His	Суѕ	Ile	Ser	Asp 25	Lys	Phe	Gly	Cys	Leu 30	Trp	His
40	Val															
		Cys	Met 35	Lys	Arg	Glu	Gly	Asp 40	Xaa	Asn	Cys	Leu	Ser 45	Phe	Ser	Xaa
		Cys Xaa 50		Lys	Arg	GIu	Gly		Xaa	Asn	Cys	Leu		Phe	Ser	Xaa
45		Xaa		Lys	Arg	GIu	Gly		Xaa	Asn	Cys	Leu		Phe	Ser	Xaa
45	Leu	Xaa 50	35							Asn	Cys	Leu		Phe	Ser	Xaa
45	Leu	Xaa 50	35 ORMAT	FION SEQUI ((FOR ENCE A) L B) T	SEQ CHAI ENGT YPE: OPOL	ID N RACTI H: 1 ami: OGY:	40	258: rics mino cid ear	: aci	ds		45	Phe	Ser	Xaa
	Leu (2)	Xaa 50 INF	35 ORMA1 (i) :	FION SEQUI ((SEQ	FOR ENCE A) L B) T D) T UENCI	SEQ CHAI ENGT YPE: OPOL E DE:	ID N RACTI H: 1 ami: OGY: SCRI:	40 ERIST 22 ar no ar lin	258: FICS mino cid ear N: SI	: aci	ds O NO	: 25	45			

	Leu	Cys	Asp 35	Leu	Pro	Phe	Ser	Leu 40	Pro	Ser	Phe	Pro	Gly 45	Gln	Ala	Arg
5	Arg	Gly 50	Gly	Ala	Glu	Lys	Gln 55	Gly	Ala	Glu	Gly	Arg 60	Gly	Leu	Gln	Val
	Lys 65	Pro	Arg	Gly	Gln	Arg 70	Thr	Phe	Gln	Val	Ser 75	Arg	Thr	Ala	Pro	Ala 80
10	Ala	Pro	Arg	Ser	Arg 85	Gln	Pro	Arg	Pro	Pro 90	Ala	Ala	Leu	Pro	Ala 95	Leu
15	Gly	Phe	Gly	Gly 100	Arg	Gly	Val	Ala	Lys 105	Gly	Arg	Phe	Leu	Cys 110	Phe	Trp
13	Cys	Leu	туr 115	Met	Leu	Arg	Ile	Asp 120	Gln	Xaa						
20	(2)	TNF	ORMA	TION	FOR	SEO	ID	NO:	259 :							
25			(i)	SEQU (ENCE A) L B) T	CHA ENGI YPE :	RACT H: 8 am: OGY	ERIS 38 an ino a : lir	TICS nino ncid near	ació): 2 5	i 9 :			
30	Met 1		Ala	Phe	Cys 5		Leu	. Leu	Leu	Gln 10		Gln	Ser	Leu	Leu 15	Pro
	Arg	Thr	Met	Ala 20		Pro	Glr	a Asp	Ser 25		Arg	Pro	Gly	Glu 30		Asp
35	Glu	. Gly	Met 35		Leu	Leu	Glr	Thr 40		. Asp	Ser	Met	Ala 49		Gly	/ Ala
40	Arg	Pro 50		/ Ala	Хаа	Arg	Gl) 55		j Ala	a Arg	Trp	Gly 60		ı Alá	а Туг	Thr
	Leu 65		ı His	s Asr	Pro	70 70		ı Glr	n Val	l Phe	2 Arg		Thi	c Ala	a Lei	Leu 80
45	Gly	/ Ala	a Asr	n Gly	Ala 85		n Pro	o Xaa	a							
50	(2)	IN	FORM	10ITA	1 FOE	R SE(Q ID	NO:	260	:						
-			(i)	SEQ	(A) (B)	LENG TYPE	TH: : an	TERI 26 a nino 7: li	mino acid	aci l	ds					
55			(xi) SE							ID N	0: 2	60:			
		t Il	e Gl	n Va		r Vai	l Pr	o Le	u Le	u Th 1		e Me	t Il	e Ph		u Leu 5
60	m		63	∽ T1.	~ ~1.	. D~	~ G1	o Ta	c 1.0	n Xa	a					

WO 98/54963

503

5	(2) INFORMATION FOR SEQ ID NO: 261:
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 261:
15	Met Leu Leu Asp Pro Phe Ile Leu Leu Phe Cys Leu Phe Ser Thr Ala 1 5 10 15 Ala Gln Ser Cys Leu Glu Phe Ile Tyr Ile Gln Phe Xaa
20	20 25 (2) INFORMATION FOR SEQ ID NO: 262:
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 262:
30	Met Lys Phe Leu Ser Ile Leu Leu Asp Asp Asn Asn Phe Xaa Leu Met 1 5 10 15
	Leu Met Leu Ala Pro Phe Gly Cys Leu Ala Phe Glu Arg Ser Met Lys 20 25 30
35	Met Arg Asn Gly Ala Leu Gly Leu Glu Glu Val Xaa 35 40
40	(2) INFORMATION FOR SEQ ID NO: 263: (i) SEQUENCE CHARACTERISTICS:
45	(A) LENGTH: 363 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 263:
50	Met Arg Thr Leu Phe Asn Leu Leu Trp Leu Ala Leu Ala Cys Ser Pro 1 5 10 15
50	Val His Thr Thr Leu Ser Lys Ser Asp Ala Lys Lys Ala Ala Ser Lys 20 25 30
55	Thr Leu Leu Glu Lys Ser Gln Phe Ser Asp Lys Pro Val Gln Asp Arg 35 40 45
	Gly Leu Val Val Thr Asp Leu Lys Ala Glu Ser Val Val Leu Glu His 50 55 60
60	Arg Ser Tyr Cys Ser Ala Lys Ala Arg Asp Arg His Phe Ala Gly Asp

	65					70					75					80
5	Val	Leu	Gly	Tyr	Val 85	Thr	Pro	Trp	Asn	Ser 90	His	Gly	Tyr	Asp	Val 95	Tḥr
	Lys	Val	Phe	Gly 100	Ser	Lys	Phe	Thr	Gln 105	Ile	Ser	Pro	Val	Trp 110	Leu	Gln
10	Leu	Lys	Arg 115	Arg	Gly	Arg	Glu	Met 120	Phe	Glu	Val	Thr	Gly 125	Leu	His	Asp
	Val	Asp 130	Gln	Gly	Trp	Met	Arg 135	Ala	Val	Arg	Lys	His 140	Ala	Lys	Gly	Leu
15	His 145	Ile	Val	Pro	Arg	Leu 150	Leu	Phe	Glu	Asp	Trp 155	Thr	Tyr	Asp	Asp	Phe 160
20	Arg	Asn	Val	Leu	Asp 165	Ser	Glu	Asp	Glu	Ile 170	Glu	Glu	Leu	Ser	Lys 175	Thr
-	Val	Val	Gln	Val 180	Ala	Lys	Asn	Gln	His 185	Phe	Asp	Gly	Phe	Val 190	Val	Glu
25	Val	Trp	Asn 195	Gln	Leu	Leu	Ser	Gln 200	Lys	Arg	Val	Thr	Asp 205	Gln	Leu	Gly
	Met	Phe 210	Thr	His	Lys	Glu	Phe 215	Glu	Gln	Leu	Ala	Pro 220	Val	Leu	Asp	Gly
30	Phe 225	Ser	Leu	Met	Thr	Tyr 230	Asp	Tyr	Ser	Thr	Ala 235	His	Gln	Pro	Gly	Pro 240
35	Asn	Ala	Pro	Leu	Ser 245	Trp	Val	Arg	Ala	Cys 250	Val	Gln	Val	Leu	Asp 255	Pro
	Lys	Ser	Lys	Trp 260	Arg	Ser	Lys	Ile	Leu 265	Leu	Gly	Leu	Asn	Phe 270	Tyr	Gly
40	Met	Asp	Tyr 275	Ala	Thr	Ser	Lys	Asp 280	Ala	Arg	Glu	Pro	Val 285	Val	Gly	Ala
	Arg	Туг 290	Ile	Gln	Thr	Leu	Lys 295	Asp	His	Arg	Pro	Arg 300	Met	Val	Trp	Asp
45	Ser 305	Gln	Xaa	Ser	Glu	His 310	Phe	Phe	Glu	Tyr	Lys 315	Lys	Ser	Arg	Ser	Gly 320
50	Arg	His	Val	Val	Phe 325	Tyr	Pro	Thr	Leu	Lys 330	Ser	Leu	Gln	Val	Arg 335	Leu
	Glu	Leu	Ala	Arg 340	Glu	Leu	Gly	Val	Gly 345		Ser	Ile	Trp	Glu 350	Leu	Gly
55	Gln	Gly	Leu 355	Asp	Tyr	Phe	Tyr	Asp 360		Leu	Xaa					

(2) INFORMATION FOR SEQ ID NO: 264:

			(1)						TICS mino		đe					
								no a		acı	us					
_								lin								
5			(xi)	SEQ	UENC:	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 26	4:			
	Leu 1	Pro	Thr	Lys	Ile 5	Leu	Val	Lys	Pro	Asp 10	Arg	Thr	Phe	Glu	Ile 15	Lys
10	Ile	Gly	Gln	Pro 20	Thr	Val	Ser	Tyr	Phe 25	Leu	Lys	Ala	Ala	Ala 30	Gly	Ile
15	Glu	Lys	Gly 35	Ala	Arg	Gln	Thr	Gly 40	Lys	Glu	Val	Ala	Gly 45	Leu	Val	Thr
	Leu	Lys 50	His	Val	Tyr	Glu	Ile 55	Ala	Arg	Ile	Lys	Ala 60	Gln	Asp	Glu	Ala
20	Phe 65	Ala	Leu	Gln	Asp	Val 70	Pro	Leu	Ser	Ser	Val 75	Val	Arg	Ser	Ile	Ile 80
	Gly	Ser	Ala	Arg	Ser 85	Leu	Gly	Ile	Arg	Val 90	Val	Lys	Asp	Leu	Ser 95	Ser
25	Glu	Glu	Leu	Ala 100	Ala	Phe	Gln	Lys	Glu 105	Arg	Ala	Ile	Phe	Leu 110	Ala	Ala
30	Gln	Lys	Glu 115	Ala	Asp	Leu	Ala	Ala 120	Gln	Glu	Glu	Ala	Ala 125	Lys	Lys	Xaa
35	(2)	INFO						-	265: TICS							
40				(. ()	A) L B) T D) T	ENGT YPE : OPOL	H: 5 ami OGY:	4 am no a lin	ino d	acid		: 26	5:			
45	Met 1	Leu	Leu	Gln	Ile 5	His	Pro	Leu	Leu	Pro 10	Ser	Pro	Thr	Ile	Pro 15	His
	Ile	Leu	Leu	Leu 20	Phe	Leu	туг	Pro	Thr 25	Phe	Ser	Ile	Leu	Glu 30	His	Ser
50	Cys	Ser	Туr 35	Cys	Ile	Glu	Tyr	Leu 40	Trp	Val	Cys	Leu	Leu 45	Phe	Cys	Leu
55	Ser	Leu 50	Trp	Phe	Leu	Xaa										
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	IO: 2	266:							
60			(i) 9	SEOUE	ENCE	CHAF	RACTI	ERIST	rics:	:						

(i) SEQUENCE CHARACTERISTICS:

				(A) L B) T D) T	YPE:	ami	no a	cid	acid	s					
5			(xi)							EQ II	ои с	: 26	6:			
	Met 1	Cys	Leu	Trp	Cys 5	Cys	Gly	Asp	Val	Cys 10	Ser	Gly	Leu	Ser	Ser 15	Leu
10	Leu	Ser	Leu	Cys 20	Val	Cys	Cys	Val	Val 25	Leu	Ala	Val	Cys			
15	(2)		ORMAT													
			(i) :	(A) L B) T	ENGT YPE :	H: 2 ami	6 am no a	ino d		s					
20			(xi)		D) T					EQ II	ои с	: 26	7:			
	Glu 1	Gly	Leu	Arg	Leu 5	Leu	Leu	Ser	Leu	Pro 10	Ala	Ala	Leu	Pro	Arg 15	Ser
25	Cys	Cys	His	Pro 20	Arg	Trp	Leu	Pro	Val 25	Xaa						
20		Tarra														
50	(2)	TNL	ORMAT	ITON	FOR	SEQ	ID	NO: 2	268:							
	(2)			SEQUI ((ENCE A) L B) T D) T	CHAI ENGT YPE: OPOL	RACTI H: 2 ami: OGY:	ERIS 21 a no a lin	rics mino cid ear	aci		: 26	8:			
30 35 40			(i) :	SEQUI () (SEQ	ENCE A) L B) T D) T UENC	CHAI ENGT YPE: OPOL E DE:	RACTI H: 2 ami: OGY: SCRI	ERIS: 21 a no a lin PTIO	rics mino cid ear N: Si	aci	ON C			Pro	Gly 15	Asn
35	Met 1	Phe	(i) : (xi)	SEQU ((SEQ Gly	ENCE A) L B) T D) T UENC Ile 5	CHAI ENGT YPE: OPOL E DE:	RACTI H: 2 ami OGY: SCRII	ERIST 21 and and line PTION	rics mino cid ear N: Si	aci EQ II Gly 10	O NO Ile	Gly	Ala		15	
35	Met 1 Lys	Phe Pro	(i) : (xi) His	SEQU ((SEQ Gly Leu 20	ENCE A) L B) T D) T UENC Ile 5	CHAI ENGT YPE: OPOL E DE: Pro	RACTI H: 2 ami: OGY: SCRII Ala	ERIST 21 and and line PTION Thr	rics mino cid ear N: SI Pro Lys 25	aci EQ II Gly 10 Leu	O NO Ile Tyr	Gly Lys	Ala Asn	Ala 30	15 Arg	Glu
35	Met 1 Lys Arg	Phe Pro Glu	(xi) (xi) His Glu Lys	SEQUI ((SEQUI Gly Leu 20	ENCE A) L B) T D) T UENC: Ile 5 Tyr Asp	CHAI ENGT YPE: OPOL E DE: Pro Glu	RACTI H: 2 ami OGY: SCRII Ala Glu Met	ERIST 21 at no at line PTION Thr Val Ala 40	rics mino cid ear N: SI Pro Lys 25 Glu	aci EQ II Gly 10 Leu Leu	O NO Ile Tyr Phe	Gly Lys Ala	Ala Asn Val 45	Ala 30 Val	15 Arg Lys	Glu Thr
35	Met 1 Lys Arg	Phe Pro Glu Gln 50	(i) (xi) His Glu Lys 35	SEQUIDE SEQUENT SEQUEN	ENCE A) L B) T D) T UENC Ile 5 Tyr Asp	CHAINGTHE CHAINGTHE COPOLL Pro Glu Asn	RACTI H: 2 ami: OGY: SCRII Ala Glu Met	ERIS' 21 au no au lin PTIOI Thr Val Ala 40	rics mino cid ear N: SI Pro Lys 25 Glu	aci Gly 10 Leu Leu Lys	O NO Ile Tyr Phe Asp	Gly Lys Ala Cys 60	Ala Asn Val 45 Val	Ala 30 Val Ser	15 Arg Lys Pro	Glu Thr Ser
35 40 45	Met 1 Lys Arg Met Glu 65	Phe Pro Glu Gln 50	(i): (xi) His Glu Lys 35 Ala	SEQUI ((() SEQUI Gly Leu 20 Tyr Leu Ala	ENCE A) L B) T D) T UENCE 5 Tyr Asp Glu Ala	CHAI ENGT YPE: OPOLL E DE: Pro Glu Asn Lys Cys 70	RACTI H: 2 ami OGY: SCRI Ala Glu Met Ala 55 Ser	ERIS: 21 amo	rics mino cid ear N: SI Pro Lys 25 Glu Ile	aci Gly 10 Leu Leu Lys	Tyr Phe Asp Val	Gly Lys Ala Cys 60 Gln	Ala Asn Val 45 Val	Ala 30 Val Ser Lys	15 Arg Lys Pro	Glu Thr Ser Ala 80
35 40 45	Met 1 Lys Arg Met Glu 65 Phe	Phe Pro Glu Gln 50 Tyr	(i) : (xi) His Glu Lys 35 Ala	SEQUI ((((SEQ) Gly Leu 20 Tyr Leu Ala	ENCE A) L B) T D) T UENC Ile 5 Tyr Asp Glu Ala Gln 85	CHAI ENGT YPE: OPOLL E DE: Pro Glu Asn Lys Cys 70	RACTI H: 2 ami OGY: SCRII Ala Glu Met Ala 55 Ser	ERIS: 21 au no au lin PTION Thr Val Ala 40 Tyr Arg	rics mino cid ear N: SI Pro Lys 25 Glu Ile	aci Gly 10 Leu Leu Lys Leu Ser 90	Tyr Phe Asp Val 75 Ser	Gly Lys Ala Cys 60 Gln	Ala Asn Val 45 Val	Ala 30 Val Ser Lys	15 Arg Lys Pro Ala Phe	Glu Thr Ser Ala 80 Cys

PCT/US98/11422

	Ile	Ala 130	Asp	Val	Val	Ser	Leu 135	Phe	Ile	Thr	Val	Met 140	Asp	Lys	Leu	Arg
5	Leu 145	Glu	Ile	Arg	Ala	Met 150	Asp	Glu	Ile	Gln	Pro 155	Asp	Leu	Arg	Glu	Leu 160
10	Met	Glu	Thr	Met	His 165	Arg	Met	Ser	His	Leu 170	Pro	Pro	Asp	Phe	Glu 175	Gly
10	Arg	Gln	Thr	Val 180	Ser	Gln	Trp	Leu	Gln 185	Thr	Leu	Ser	Gly	Met 190	Ser	Ala
15	Ser	Asp	Glu 195	Leu	Asp	Asp	Ser	Gln 200	Val	Arg	Gln	Met	Leu 205	Phe	Asp	Leu
	Glu	Ser 210		Tyr	Asn	Ala	Phe 215	Asn	Arg	Phe	Leu	His 220	Ala			
20												•				
	(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO: 3	269:					٠		
25				(A) I B) T D) T	ENGI YPE : YPOL	TH: 3 ami OGY:	ERIS ami no a lin PTIO	no a cid ear	cids		r: 26	9:			
30	Met 1	Lys	Xaa													
35	(2)	INF	'ORMA	TION	FOR	SEQ	ID	NO:	270,:							
			(i)	_			-	ERIS			_					
40			(xi)		(B) 1 (D) 1	YPE:	ami COGY :	ino a ino a lir PTIC	cid near): 27	70 :			
45	Met	Gln	a Ala	Pro	Phe 5		His	Phe	Ser	Phe 10	_	Met	. Phe	e Ser	Asn 15	
43	Туп	Cys	Phe	Ser 20	_	Phe	e Gln	Pro	Asn 25		e Ser	Pro	Cys	Pro		Cys
50	His	Cys	: Ile 35		Pro	Xaa	. His	His 40		Va]	. Phe	Leu	Leu 45		Ala	Val
	Хаа	1														
55																
	(2)	INE	FORM	TIOI	FOF	R SEÇ) ID	NO:	271:							
60			(i)	SEQ				TERIS 52 ar			ds					

	(B) TYPE: amino acid
	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 271:
_	, ,
5	Met Lys Leu Val Thr Met Phe Asp Lys Leu Ser Arg Asn Arg Val Ile 1 5 10 15
10	Gln Pro Met Gly Met Ser Pro Arg Gly His Leu Thr Ser Leu Gln Asp 20 . 25 30
10	Ala Met Cys Glu Thr Met Glu Gln Gln Leu Ser Ser Asp Pro Asp Ser 35 40 45
15	Asp Pro Asp Xaa 50
20	(2) INFORMATION FOR SEQ ID NO: 272: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 amino acids
	(B) TYPE: amino acid
25	(D) TOPOLOGY: linear
23	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272:
	Met Ala Val Gly Glu Ala Val Phe Val Pro Leu Gln His Pro Pro Leu 1 5 10 15
30	Leu His Gly Ser Pro Ile Pro Lys Leu Leu Pro Gly Pro Leu Leu Xaa 20 25 30
35	
40	(2) INFORMATION FOR SEQ ID NO: 273: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 57 amino acids
	(B) TYPE: amino acid (D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 273:
45	Met Asn Gly Cys His Arg Arg Lys Arg Leu His Leu Cys Lys Thr Ile 1 5 10 15
50	Tyr Leu Leu Trp Phe Val Phe Ser Phe Leu Leu Ser Asn Glu Val Val 20 25 30
	Ser Ser His Trp His Ile Leu Arg Ala Val Gln Ile Ile Cys Thr Leu 35 40 45
55	Phe His Arg Xaa Ile Ser Ala Phe Xaa 50 55
60	(2) INFORMATION FOR SEQ ID NO: 274:

(2) INFORMATION FOR SEQ ID NO: 274:

PCT/US98/11422

WO 98/54963

```
(i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 22 amino acids
                    (B) TYPE: amino acid
 5
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 274:
      Met Gly Trp Val Ser Ser Pro His Val Lys Arg Arg Glu Cys Val Leu
10
      Lys Lys Pro Phe Phe Xaa
                  20
15
      (2) INFORMATION FOR SEQ ID NO: 275:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 51 amino acids
20
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 275:
      Met Phe Asn Phe Phe Lys Asn Pro Leu Leu Thr Cys Leu Phe Ile Ser
25
                                         10
      Cys Tyr Leu Tyr Leu Ser Leu Leu Val Asn Lys Val Leu Phe Ala Glu
                                       25
30
      Glu Gly Leu Cys Cys Thr Tyr Cys Thr Thr Ser Asn Thr Gly Glu Gly
                                   40
      Gly Val Xaa
           50
35
      (2) INFORMATION FOR SEQ ID NO: 276:
40
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 2 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 276:
45
      Met Xaa
        1
50
       (2) INFORMATION FOR SEQ ID NO: 277:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 66 amino acids
55
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 277:
      Met Leu Cys Thr Ile Leu Thr Val Val Ile Ile Ile Ala Ala Gln Thr
60
                        5
                                           10
```

	Thr	Arg	Thr	Thr 20	Gly	Ile	Pro	Lys	Asn 25	Ala	Pro	Gly	Pro	Ala 30	Pro	Leu
5	Cys	Ala	Pro 35	Arg	Ser	Pro	Arg	Leu 40	Phe	Leu	Gln	Xaa	Tyr 45	Arg	Gly	Pro
10	Asn	Gly 50	Arg	Pro	Ala	His	Pro 55	Phe	Leu	Gly	Pro	Ser 60	Asp	Leu	Asp	Thr
	Ser 65	Xaa														
15	(2)	INFO	ORMAT	OION	FOR	SEQ	ID 1	VO: 2	278:							
			(i) S	-				ERIS' 57 a:			ds					
20								no a lin								
			(xi)	SEQ	UENC	E DE:	SCRI	PTIO	N: SI	EQ I	ON C	: 27	8:			
25	Met 1	Leu	Glý	Ala	Lys 5	Pro	His	Trp	Leu	Pro 10	Gly	Pro	Leu	His	Ser 15	Pro
	Gly	Leu	Pro	Leu 20	Val	Leu	Val	Leu	Leu 25	Ala	Leu	Gly	Ala	Gly .30	Trp	Ala
30	Gln	Glu	Gly 35	Ser	Glu	Pro	Val	Leu 40	Leu	Glu	Gly	Glu	Cys 45	Leu	Val	Val
35	Cys	Glu 50	Pro	Gly	Arg	Ala	Ala 55	Ala	Gly	Gly	Pro	Gly 60	Gly	Ala	Ala	Leu
	Gly 65	Glu	Ala	Pro	Pro	Gly 70	Arg		Ala	Phe	Xaa 75	Ala	Val	Arg	Ser	His 80
40	His	His	Glu	Pro	Ala 85	Gly	Glu	Thr	Gly	Asn 90	Gly	Thr	Ser	Gly	Ala 95	Ile
	Tyr	Phe	Asp	Gln 100	Val	Leu	Val	Asn	Glu 105	Gly	Gly	Gly	Phe	Asp 110	Arg	Ala
45	Ser	Gly	Ser 115	Phe	Val	Ala	Pro	Val 120	Arg	Gly	Val	Tyr	Ser 125	Phe	Arg	Phe
50	His	Val 130	Val	Lys	Val	Tyr	Asn 135	Arg	Gln	Thr	Val	Gln 140	Val	Ser	Leu	Met
	Leu 145		Thr	Trp	Pro	Val 150	Ile	Ser	Ala	Phe	Ala 155	Asn	Asp	Pro	Asp	Val 160
55	Thr	Arg	Glu	Ala	Ala 165	Thr	Ser	Ser	Val	Leu 170	Leu	Pro	Leu	Asp	Pro 175	Gly
	Asp	Arg	Val	Ser 180		Arg	Leu	Arg	Arg 185	Gly	Xaa	Ser	Thr	Gly 190	Trp	Leu
60	Glu	Ile	Leu	Lys	Phe	Leu	Trp	Leu	Pro	His	Leu	Pro	Ser	Leu	Lys	Asp

PCT/US98/11422

		195					200					205			
5	Pro Ser 210		Ser	Ser	Thr	Arg 215	Ile	Gln	Pro	Leu	Thr 220	Thr	Phe	Phe	Cys
J	Pro Leu 225	Leu	Pro	Хаа	Lys 231	Gln	Yaa	Lys	Gln	Xaa 235	Хаа	Xaa	Ser	Leu	Trp 240
10	Leu Leu	Se≖	His	Leu 245	Phe	Ala	Trp	Glu	Pro 250	Val	Pro	Asn	Thr	Gln 255	Val
	Xaa														
15															
	(2) ⊐√2	OFMA:	TICN	FCP.	SEQ	ID I	NG: 1	279 :							
20		(<u>i</u>)	(A) I B) I D) I	ENCT YPE: OPCL	H: 1 ami CGY:	.03 a .no a	mino cid ear	aci			•			
0.5			-								: 27				
25	Met Ala 1	Pro	Arg	Ala 5	Leu	Pro	GLY	Ser	Ala 10	Val	Leu	Ala	Ala	Ala 15	Val
30	Phe Wal	l Gly	Gly 20	Ala	Val	Ser	Ser	Pro 25		Val	Ala	Pro	Asp 30	Asn	Gly
50	Ser Se	25 Arg	Thr	Leu	His	Ser	Arg 40	Thr	Glu	Thr	Thr	Pro 45	Ser	Pro	Ser
35	Asn Asp 50		Gly	Asn	Gly	His 55		Glu	Tyr	Ile	Ala 60	Tyr	Ala	Leu	Val
	Pro Val	l Phe	Ph€	Ile	Met 73		Leu	Phe	Gly	Val 75		Ile	Xaa	Pro	Xaa 80
40	Хаа Ка	a Lys	Lys	Lys 85		Tyr	· Arg	Суѕ	Thr 90		Glu	Ala	Glu	Gln 95	
45	Ile Gl		Glu 100	_	Gl ₇	Xaa	ı				•				
	(2) <u>⊐</u> N	FCRMA	TICE	FCR	SEQ	ID	NC:	280:							
50		(<u>i</u>)		(A) I (B) !	LENG! IYPE:	ru: :	TEPIS 33 au ino a	mino acid		âs					
c -		(xi)					: li IPTIC		SEQ :	ID NO	D: 28	30:			
55	Met Pr 1	o 7al	. Thr	: Leu		Ser	: Leu	Gly	Phe 10		Val	. Leu	Leu	Ser 15	
60	Leu ⊋h	e Pro	Trg		Th:	: Ası	Glr	Gl _y 25		Gly	r Pro	Ala	Thr		тут

Xaa

5

10

(2) INFORMATION FOR SEQ ID NO: 281:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 43 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 281:

15 Met Val Leu Gly Leu Leu Leu Leu Leu Xaa Phe Phe Ser Phe Ser Ser 1 5 10 15

Ser Pro Ser Pro Ser Ser Ser Leu Leu Leu Leu Ser Ser Phe Phe Phe 20 25 30

Gln Ser Leu Ala Leu Ser Pro Arg Leu Glu Xaa

25

30

20

(2) INFORMATION FOR SEQ ID NO: 282:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 21 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 282:

Glu Trp Leu Val Phe Thr Phe Leu Leu Val Phe Gly Ser Pro Leu Gly 35 1 5 10 15

Lys Gly Pro Leu Xaa

40

45

55

(2) INFORMATION FOR SEQ ID NO: 283:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 70 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 283:

Met Ile Arg Ala Leu Ser Leu Phe Leu Leu Ile Phe Asp Ala Ala Leu
1 5 10 15

Phe Ser Leu Ser Val Phe Val Phe Ile Gly His Leu Leu Pro Met Pro 20 25 30

Lys Gly Thr Gly Leu His Ser Cys Ala Lys His Leu Ile Lys Ser Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Lys Glu Asn Val Leu Pro Leu Met Asn Tyr Pro Asp Cys Lys Leu Lys 50 55 60

PCT/US98/11422

WO 98/54963

513

```
Ile Asn Ile Ser Pro Xaa
      65
 5
      (2) INFORMATION FOR SEQ ID NO: 284:
             (i) SEQUENCE CHARACTERISTICS:
10
                    (A) LENGTH: 75 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 284:
15
      Met Gly Lys Leu Ile Arg Leu Ser Val Met Val Met Ser Val Arg Arg
       1
                       5
                                          10
     Leu Phe Ser Ile Tyr Trp Val Leu Ser Thr Val Pro Asp Ala Val Gly
                                      25
20
      Ser Arg Gly Gly Met Glu Glu Glu Cys Ser Arg Gly Leu Cys Cys Val
      Ala Gly Gln His Lys Gln Ala Lys Gly Lys Arg Gln Ala Trp Asn Lys
25
                            55
      Gly Gly Glu Tyr Gln Cys Val Thr Tyr Cys Xaa
                          70
30
      (2) INFORMATION FOR SEQ ID NO: 285:
             (i) SEQUENCE CHARACTERISTICS:
35
                    (A) LENGTH: 33 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 285:
40
      Met Pro Ala Leu Val Thr Leu Leu Leu Leu Phe Pro Leu Leu Pro Leu
                        5
                                 10
       1
      Met Glu Ala Ser Cys His Val Met Arg Cys Pro Met Glu Arg Pro Thr
                                      25
45
      Xaa
50
      (2) INFORMATION FOR SEQ ID NO: 286:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 17 amino acids
55
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 286:
      Glu Ala Pro Trp Gly Leu Leu Lys Leu Leu Leu Leu Ala Val Phe
```

10

60

WO 98/54963

```
Xaa
 5
     (2) INFORMATION FOR SEQ ID NO: 287:
            (i) SEQUENCE CHARACTERISTICS:
10
                 (A) LENGTH: 17 amino acids
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 287:
15
     Met Gln Gln Lys Gln Lys Lys Ala Asn Glu Lys Lys Glu Glu Pro Lys
                            10
     1 5
     Xaa
20
     (2) INFORMATION FOR SEQ ID NO: 288:
25
            (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 38 amino acids
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 288:
30
     Met Gln Arg Lys Val Ser Asp Phe Ile Ile His Gln Arg Leu Thr Val
                 5
                                      10
     Asn Leu Cys Val Ile Ser Phe Phe Phe Phe Leu Pro Ile Cys Ile Phe
35
                              25
     Ser Leu Ala Lys Lys Xaa
            35
40
      (2) INFORMATION FOR SEQ ID NO: 289:
            (i) SEQUENCE CHARACTERISTICS:
45
                   (A) LENGTH: 12 amino acids
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 289:
50
     Met Ala Leu Leu Ile Ser Ser Leu Ile Trp Ser Xaa
       1 5 10
55
      (2) INFORMATION FOR SEQ ID NO: 290:
             (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 35 amino acids
                   (B) TYPE: amino acid
60
                   (D) TOPOLOGY: linear
```

			(, ,	الكتاب	JENCI	. نال د	JCIALI	1101	۷. ا	-V -	J 140	. 20	٠.			
5	Met 1	Gln	Met	Phe	Thr 5	Val	Ser	Leu	Leu	Leu 10	Ser	Leu	Leu	Leu	Arg 15	Ser
J	Thr	Asp	Gln	Asn 20	His	Leu	Gln	Leu	Leu 25	Val	Gly	Arg	Glu	Asp 30	His	Туr
10	Gly	Gly	Xaa 35													
15	(2)			SEQUI	ENCE	CHAI	ID N RACTI H: 1	ERIS	rics		5					
20			(xi)	() ()	B) T D) T	YPE: OPOL	ami OGY: SCRI	no a lin	cid ear			: 29	1:			
	Met 1	Ser	Glu	Ser	Ala 5	Cys	Ile	Leu	Asn	Asn 10	Gln	Lys	Glu	Leu	Xaa 15	
25																
	(2)	INF	ORMA!	rion	FOR	SEQ	ID N	NO: 2	292:							
30				(, (A) L B) T D) T	ENGT YPE : OPOL	RACT H: 4 ami OGY: SCRI	4 am no a lin	ino cid ear	acid		: 29	2:			
35	Met 1	Asp	Leu	Asp	Arg 5	Val	Lys	Ala	Glu	Ala 10	Thr	Glu	Asp	Ile	Thr 15	Ser
40	Gly	Val	Leu	Cys 20	Leu	Leu	Phe	Leu	Arg 25	Leu	Pro	Pro	Asn	Ser 30	Cys	Ile
	Phe	Pro	Ser 35	Ala	Val	Leu	Gly	Ser 40	Thr	Arg	Thr	Xaa				
45	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: :	293:							
50				(A) L B) T D) T	ENGT YPE : OPOL	RACT H: 1 ami OGY: SCRI	36 a no a lin	mino cid ear	aci		ı: 29	3:			
55	Val		Gly	Thr	Gly 5	Thr	Ser	Leu	Ala	Leu 10	Ser	Ser	Leu	Leu	Ser 15	Leu
	Leu	Leu	Phe	Ala 20	Gly	Met	Gln	Met	Туг 25	Ser	Arg	Gln	Leu	Ala 30	Ser	Thr
60	Glu	Trp	Leu	Thr	Ile	Gln	Gly	Gly	Leu	Leu	Gly	Ser	Gly	Leu	Phe	Val

		35		40		45	
5	Phe Ser 50	Leu Thr	Ala Phe	Asn Asn 55	Leu Glu As	n Leu Val 60	Phe Gly Lys
J	Gly Phe 65	Gln Ala	Lys Ile 70	Phe Pro		u Leu Cys 5	Leu Leu Leu 80
10	Ala Leu	Phe Ala	Ser Gly 85	Leu Ile	His Arg Va	l Cys Val	Thr Thr Cys 95
	Phe Ile	Phe Ser		Gly Leu	Tyr Tyr Il 105	e Asn Lys	Ile Ser Ser 110
15	Thr Leu	Tyr Glr 115	a Ala Ala	Ala Pro 120	Val Leu Th	r Pro Ala 125	Lys Val Thr
20	Gly Lys 130	_	: Lys Arg	Asn Xaa 135			
	(2) INF	ORMATION	FOR SEQ	ID NO:	294:		
25			JENCE CHA (A) LENGT (B) TYPE: (D) TOPOI	TH: 34 and and a	nino acids acid		
30					N: SEQ ID 1		
	Met Phe	: Ile Phe	e Leu Phe 5	Leu Cys	Val Leu Se 10	er Arg Lys	Ile Gln Glu 15
35	Glu Tyr	Tyr Arg		Lys Asn	Val Pro Cy 25	s Cys Phe	Gly Cys Leu 30
	Arg Xaa						
40							
	(2) INF		N FOR SEC				
45		_	(B) TYPE (D) TOPOI	TH: 137 a : amino a LOGY: lin	amino acids acid	NO: 295:	
50	Met Arg	Thr Pro	o Gly Pro	Leu Pro	Val Leu Le	eu Leu Leu	Leu Ala Gly 15
	Ala Pro	Ala Ala 2	-	Thr Pro	Pro Thr Cy 25	ys Tyr Ser	Arg Met Arg
55	Ala Leu	ser Gli 35	n Glu Ile	Thr Arg	-	sn Leu Leu 45	ı Gln Val Ser
60	Glu Pro		u Pro Cys	Val Arg	Tyr Leu Pi	ro Arg Leu 60	ı Tyr Leu Asp

	Ile 65	His	Asn	Tyr	Cys	Val 70	Leu	Asp	Lys	Leu	Arg 75	Asp	Phe	Val	Ala	Ser 80
5	Pro	Pro	Cys	Trp	Lys 85	Val	Ala	Gln	Val	Asp 90	Ser	Leu	Lys	Asp	Lys 95	Ala
10	Arg	Lys	Leu	Туг 100	Thr	Ile	Met	Asn	Ser 105	Phe	Cys	Arg	Arg	Asp 110	Leu	Val
10	Phe	Leu	Leu 115	Asp	Asp	Cys	Asn	Ala 120	Leu	Glu	Tyr	Pro	Ile 125	Pro	Val	Thr
15	Thr	Val 130	Leu	Pro	Asp	Arg	Gln 135	Arg	Xaa							
20	(2)	INF		SEQU)	ENCE A) L	CHA ENGT	RACT 'H: 5	NO: : ERIS 8 am	TICS ino		ls.					
25			(xi)	(D) T	OPOL	OGY:	lin PTIO	ear	EQ I	D NO	: 29	6:			
	Met 1	Trp	Leu	Leu	Lys 5	Pro	Ser	Ala	His	Ser 10	Pro	Val	His	Xaa	Leu 15	Val
30	Leu	Leu	Phe	Pro 20	Arg	Gly	Trp	Ser	Gln 25		Gly	Thr	His	Lys 30	Arg	Gln
35	Ile	Leu	Val 35		Xaa	Ala	Ser	Leu 40	Pro	Gly	Gly	Cys	Leu 45		Pro	Trp
	Ile	Trp 50		Gly	Ala	Ala	Leu 55	Arg	Phe	Xaa						
40	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	297 :							
45					(A) I (B) 7 (D) 7	ENGI TYPE : TOPOI	TH: 3 : am: LOGY	TERIS S an ino a : lir IPTIC	mino acid near	acio): 2º)7 <u>:</u>			
50	Met 1		Arg	Arg	Ala 5		Ala	Ser	Ile	Phe 10		. Leu	Pro	Lys	Thr 15	Leu
	Leu	Phe	e Val	Leu 20		Pro	Ala	Phe	Pro 25		Pro) Ala	(Va)	. Gly 30		Pro
55	Val	. Pro	35													
60	(2)	INE	ORMA	TION	FOR	SEÇ) ID	NO:	298:	:						

5			(i) S	()	ENCE A) Li B) T D) T	ENGT YPE:	H: 7	8 am. no a	ino a cid		5					
			(xi)	SEQ	JENCI	E DES	SCRI	PTIO	1: SI	EQ II	ON C	: 298	3:			
10	Ser 1	Cys	Tyr	Ile	Thr 5	Pro	Trp	Ser	Lys	Ile 10	Gln	Ser	Phe	Ser	Leu 15	Ser
10	Leu	Phe	Gln	Phe 20	Ile	Leu	Gln	Glu	Val 25	Asn	Ile	Thr	Leu	Pro 30	Glu	Asn
15	Ser	Val	Trp 35	Tyr	Glu	Arg	Tyr	Lys 40	Phe	Asp	Ile	Pro	Val 45	Phe	His	Leu
	Asn	Gly 50	Gln	Phe	Leu	Met	Met 55	His	Arg	Val	Asn	Thr 60	Ser	Lys	Leu	Glu
20	Lys 65	Gln	Leu	Leu	Lys	Leu 70	Glu	Gln	Gln	Ser	Thr 75	Gly	Xaa	Xaa		
25	(2)	INF	ORMAT	rion	FOR	SEQ	ID 1	NO: 2	299:							
30			(i) :	- (A) L B) T D) T	ENGT YPE : OPOL	H: 9 ami OGY:	5 am no a lin	ino cid ear	acid		: 29	9 :			
35	Met 1	Phe	Val	Leu	Phe 5	Ser	Leu	Pro	Lys	Туг 10	Ala	Gly	Leu	Arg	Leu 15	Pro
	Ile	Pro	Gly	Leu 20	Ser	Ala	Leu	Leu	Val 25	Phe	Leu	Leu	Ser	Leu 30	Phe	Ser
40	Arg	Arg	Ala 35	Gln	Val	Glu	Leu	Thr 40	Thr	Gly	Arg	Glu	Thr 45	Leu	Pro	Lys
	Asn	Leu 50	Gln	Gly	Tyr	Phe	Pro 55	Glu	Phe	Gly	Phe	Gln 60	Val	Gln	Asn	Phe
45	Leu 65	Ser	Cys		Ile								Pro	Leu	Pro	Pro 80
50	Leu	Туг	Gln	Leu	Arg 85		Tyr	Leu	Lys	His 90	Met	Gly	Leu	Pro	Xa a 95	
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	300:							
55			(i)		ENCE (A) I (B) I (D) I	ENGI	TH: 4	14 an ino a	nino acid		is					
60			(xi)							EQ I	D NC): 30	0:			

	Met 1	Ser	Ser	His	Trp 5	Thr	Leu	Lys	Ile	Leu 10	Leu	Val	Pro	Leu	Phe 15	Туr
5	Leu	Ser	Leu	G1u 20	Phe	Pro	Ser	Gly	Phe 25	Val	Leu	Cys	Leu	Ala 30	Asn	Asp
	Leu	Gly	Туг 35	His	Phe	Ser	Ser	Arg 40	Val	Arg	Ser	Xaa				
10																
	(2)					_		NO: 3								
15				(A) L B) T D) T	ENGT YPE: OPOL	H: 3 ami OGY:	ERIST 1 am no a lin PTIO	ino cid ear	acid		• 30	1 •			
20	Mer							Leu		-				Pho	Tla	Pho
20	1	Leu	vai	vai	5	me	ASII	Leu	vai	10	Leu	ьeu	Pile	rne	15	FIIE
25	Leu	Cys	Tyr	Leu 20	Asp	Ala	Cys	Ile	Asn 25	Val	Phe	Cys	Phe	Туг 30	Xaa	
	(0)															
	(2)	INF	ORMA'	LTON	FOR	SEQ	TD I	NO: .	302:							
20																
30			(i)	(A) I B) T	ENGT YPE:	H: 1 ami	ERIS 13 a no a lin	mino cid		ds					
30 35				(A) I B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	13 a no a	mino cid ear	aci		: 30	2:			
	Met 1	Pro	(xi)	(SEQ	A) I B) I D) I UENC	ENGT YPE: OPOL E DE	H: 1 ami OGY: SCRI	13 a no a lin	mino cid ear N: S	aci EQ I	D NO			Leu	Thr 15	Leu
	1		(xi) Val	((SEQ Leu	A) I B) T D) T UENC Pro	ENGT YPE: OPOL E DE Gly	H: 1 ami OGY: SCRI Arg	13 a no a lin PTIO	mino cid ear N: S Thr	aci EQ I Ala 10	D NO Leu	Leu	Ser		15	
35	1 Ala	Phe	(xi) Val Ala	(((SEQ Leu Val 20	A) I B) T D) T UENC Pro 5	ENGT YPE: OPOL E DE Gly Cys	H: 1 ami OGY: SCRI Arg	13 a no a lin PTIO	mino cid ear N: S Thr Val 25	ACI EQ I Ala 10 Glu	D NO Leu Ala	Leu	Ser	Cys 30	15 Val	Pro
35	l Ala Arg	Phe Ser	(xi) Val Ala His 35 Pro	(() () () SEQ Leu Val 20 Gly	A) I B) T D) T UENC Pro Fro Cys	ENGT YPE: OPOL E DE Gly Cys	H: 1 ami OGY: SCRI Arg Ser	13 a no a lin PTIO Thr Gly	mino cid ear N: S Thr Val 25 Glu	EQ I Ala 10 Glu Ala	D NO Leu Ala Ser	Leu Gly Val	Ser Pro Cys 45	Cys 30 Val	15 Val Thr	Pro
35 40 45	l Ala Arg Ser	Phe Ser Thr 50	(xi) Val Ala His 35	(() () () () () () () () () () () () ()	A) I B) I D) I UENC Pro Fro Cys	ENGTYPE: YPE: OPPOL E DE Gly Cys Ser	H: 1 ami OGY: SCRI Arg Ser Ser Trp 55	13 a no a lin PTIO	mino cid ear N: S Thr Val 25 Glu	EQ I Ala 10 Glu Ala	D NO Leu Ala Ser	Leu Gly Val Leu 60	Pro Cys 45	Cys 30 Val	15 Val Thr	Pro Ser
35	Ala Arg Ser Ala 65	Phe Ser Thr 50	(xi) Val Ala His 35 Pro	(()()()()()()()()()()()()()()()()()()(A) I B) T D) T UENC Pro 5 Pro Cys Gly Xaaa	ENGT YPE:: OPOLL E DE Gly Cys Ser Ser Ala 70	MH: 1 ami OGY: SCRI Arg Ser Trp 55 Ala	13 a no a lin PTIO	mino cid ear N: S Thr Val 25 Glu Ala	EQ I Ala 10 Glu Ala Arg	D NO Leu Ala Ser Ala Pro	Leu Gly Val Leu 60	Ser Pro Cys 45 Phe	Cys 30 Val Pro Gln	15 Val Thr Ser	Pro Ser Ala Gly 80 Gly
35 40 45	Ala Arg Ser Ala 65 Asp	Phe Ser Thr 50 Trp	(xi) Val Ala His 35 Pro His	(() () () () () () () () () () () () ()	A) I B) TI B) TI D) TI UENC S Proo Cys Gly Xaaa Gly 85 Ser	ENGT YPE:: OPPOL E DE Gly Cys Ser Ser Ala 70	H: 1 ami OGY: SCRI Arg Ser Trp 55 Ala Met	13 a no a lin a lin PTIO	mino cid ear N: S Thr Val 25 Glu Ala Asp	EQ I Ala 10 Glu Ala Arg Ser Ala 90 Ala	D NO Leu Ala Ser Ala Pro 75	Leu Gly Val Leu 60 Trp	Pro Cys 45 Phe Thr	Cys 30 Val Pro	15 Val Thr Ser Thr	Pro Ser Ala Gly 80

```
(2) INFORMATION FOR SEQ ID NO: 303:
            (i) SEQUENCE CHARACTERISTICS:
5
                    (A) LENGTH: 14 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303:
10
     Thr His Ile His Thr His Ile Ile Cys Ser Ser Val Xaa
15
     (2) INFORMATION FOR SEQ ID NO: 304:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 35 amino acids
                    (B) TYPE: amino acid
20
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 304:
     Met Glu Asn Phe Phe Phe Ser Phe Tyr Leu Phe Leu Ile Thr Leu Ile
                       5
25
     Pro Asn Gly Arg Thr Leu Ser Thr Thr Ala Asp His Cys Lys Ile Pro
                                      25
                                                          30
     Cys Ile Xaa
30
              35
      (2) INFORMATION FOR SEQ ID NO: 305:
35
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 35 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
40
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 305:
     Met Glu Leu Trp Glu Leu Ala Leu Cys Leu Leu Val Ala Leu Ser Ala
                       5
                                          10
45
     His Met Phe Thr Val Gln Leu Leu Ala Asp Leu Gly Phe Leu Phe Gly
                                     25
      Gly Phe Xaa
               35
50
      (2) INFORMATION FOR SEQ ID NO: 306:
55
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 82 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 306:
60
```

WO 98/54963

PCT/US98/11422

•	Met 1		Ala	βlγ	Ile E	Leu	Ala	Leu	Leu	Leu 10	Pro	Leu	Glu	Ser	Val 15	Leu
5	Thr	Cys	Ser	Erp 20	Ile	Ser	Val	Sar	<u>Th∓</u> 25	Ser	Glu	Arg	Gln	Leu 30	Trp	Gln
	Ser	Ser	Gln 35	Lys	Alā	Tier	Ile	Leu 40	Ser	Leu	Lys	Leu	Asp 45	Ser	Cys	Phe
10	Cys	Gly 50	His	Ser	Gly	Leu	Lys 55	Gly	Lys	Asn	Glu	qzA 00	Thr	Asp	Ser	Ser
15	7al 65	Pro	Ile	Ile	Pro	Ser 70	Lys	Thr	His	Thr	His 75	Leu	Gly	Lys	His	Leu 80
	Ile	Xaa														
20	(2)	INF	ORMA!	TION	FCF.	SEQ	I CI	ක: 1	307 :							
25				(A) I B) I D) I	enge Ype : Opol	H: 7 ami CGZ:	EPIS 2 am no a lin PTIC	ino cid ear	acid		: 30	7:			
30	Met 1		Ţγr	Phe	Val	Leu	Phe	Ile	Tyr	Ser 10	Ser	Ser	Glu	Thr	Trp 15	Ser
	Gly	Ser	7al	Ala 20	Gln	Жър	Glÿ	Val	His 25	Gly	Val	Ile	Ile	Gly 30	His	Cys
35	Ser	Val	Glu 35	Leu	Pro	.GTA	Ser	Gly 40	Asp	Pro	Pro	Ala	Ser 45	Ala	Xaa	Leu
40	Val	Ala 50		Thr	Ils	Gly	Thr 55	Cys	Bzo	Thr	Met	Pro 60	Gly	Phe	Val	Tyr
	Phe 65		Asn	Ąsp	Val	Х <u>аа</u> 70	Asn	Хаа								
45	(2)	INF	CFMA'	TION	FCP.	SEQ	ID I	NO:	308:							
~^			(i)	-				ERIS			عا					
50			(xi)	(D) T	OPOL	CG!:	no a lin PTIC	ear	EQ I	D NO	: 30	8:			
55	Met 1	_	Ser	Thr	Leu 5	A≃g	GĽn	Gly	Arg	Xaa 10	Leu	Leu	Thr	Leu	Val 15	Pro
	Ala	. Ser	Leu	Phe 20	Ser	Leu	Thr	Leu	Gly 25		Pro	Gly	Pro	Trp 30	Lys	Asp
60	_															

5	(2)	TNFC)KMA'I	TON	FOR	SEQ	ID 1	VO: 3	109:							
10			(i) :	- (. ()	A) L: B) T D) T	ENGT YPE: OPOL	H: 1 ami: OGY:	15 an no a lin	mino cid ear	aci		: 309	9 :			
15	Met 1	Gln	Val	Val	Gly 5	Ser	Trp	Pro	Gly	Arg 10	Val	Gly	Val	Val	Gly 15	Leu
	Ala	Phe	Ser	Leu 20	Val	Ile	Pro	Pro	Pro 25	Ala	Ile	Суѕ	Ile	Ala 30	Gly	Pro
20	Ala	Pro	Gly 35	Leu	Gly	Gly	Gly	Glu 40	Arg	Gln	Gln	Lys	Gly 45	Leu	Gly	Arg
	Gly	Gly 50	Gly	Gly	Leu	Arg	Asn 55	Суѕ	Pro	Gly	Arg	Val 60	Gly	Met	Ala	Ala
25	Glu 65	Pro	Gly	Ala	Leu	Leu 70	Cys	Leu	Thr	Ser	Arg 75	Asp	Gly	Ser	Leu	Leu 80
30	Leu	Ser	Cys	Val	Arg 85	Pro	His	His	Val	Ile 90	Lys	Pro	Lys	Gly	Thr 95	Ala
	Lys	Lys	Lys	Lys 100	Lys	Lys	Lys	Lys	Lys 105	Lys	Lys	Lys	Lys	Lys 110	Xaa	Xaa
35	Gly	Gly	Xaa 115													
40	(2)	INF	ORMA	SEQU	ENCE	CHA	RACT	ERIS	TICS							
45			(xi)	(B) T	ENGT YPE: OPOL E DE	ami OGY:	no a lin	cid ear			: 31	0:			
	Met 1	Asp	Leu	Pro	Gln . 5	Phe	Ile	Туг	Leu	Phe 10	Ile	Phe	Cys	Phe	Cys 15	Cys
50	Leu	Ala	Ile	Val 20	Asn	Asn	Ala	Ser	Ile 25	Asn	Ile	His	Ile	Gln 30	Val	Ser
55	Met	Trp	Leu 35	Tyr	Val	Phe	Ile	Ser 40	Leu	Gly	Tyr	Leu	His 45	Gly	Ser	Arg
55	Ile	Leu 50	_	His	Asn	Ile	Ile 55	Leu	Cys	Leu	Thr	Ser 60	Gln	Arg	Ile	Ala
60	Lys 65		Phe	Phe	Ile	Val 70	Ala	Ala	Ser	Phe	Thr 75	Phe	Pro	Pro	Ala	Met 80

	Tyr	Lys	Asp	Phe	Тут 85	Phe	Ser	He	Ser	90	His	Leu	Pro	Thr	Leu 95	Leu
5	Phe	Xaa	Хаа	Xaa 100	Phe	Val	Phe	Ser	Leu 105	Leu	Pro	Pro				
10	(2)	INF	ORMA	rion	FOR	SEQ	ID 1	NO: 3	311:							
15				(A) L B) T D) T	ENGT YPE : OPOL	H: 6 ami OGY:	5 am no a lin	ino cid ear	acid		: 31	1:			
20	Met 1	Cys	Ser	Pro	Ser 5	Leu	Ser	Ser	Ser	Pro 10	Pro	Pro	Leu	Leu	Gln 15	Val
- •	Phe	Phe	Phe	Phe 20	Phe	Phe	Ser	Pro	His 25	Trp	Ala	Ala	Lys	Val 30	Val	Pro
25	Gln	Trp	Lys 35	Xaa	Arg	His	Pro	Gln 40	Val	Ser	Ser	Gln	Leu 45	Leu	Leu	Cys
	Phe	Leu 50	Arg	Val	Asn	Cys	Gln 55	Phe	Leu	Phe	Leu	Gln 60	Glu	Ile	Leu	Phe
30	Xaa 65															
35	(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	NO: (312:							
40				(A) L B) T D) T	ENGT YPE: OPOL	H: \5 ami OGY:	0 am no a lin	ino cid ear	acid		: 31	2 :			
45	Met 1	Cys	Leu	Ser	Arg 5	Trp	Lys	Ile	Phe	Tyr 10	Thr	Leu	Leu	Ile	Leu 15	Phe
7.7	Xaa	Xaa	Phe	Ser 20	Ile	Thr	Ser	Glu	Xaa 25	Glu	Thr	Phe	Тут	Met 30	Ile	Ile
50	Ile	His	His 35	Asn	Pro	Thr	Gln	Ile 40	Thr	Ala	Ser	Cys	Ser 45	Phe	Thr	Phe
	Leu	Xaa 50														
55																
	(2)	INF	ORMA'	TION SEQU						:						
ናለ .				,		ENICO	πz. 🥎	n 2 -	_:		۵.					

•			(xi)	(B) T D) T JENCI	OPOL	OGY:	line	ear	EQ II	O NO:	: 31	3:			
5	Met 1	Glu	Arg	Pro	Asp 5	Trp	Glu	Thr	Ala	Ile 10	Gln	Lys	Pro	Leu	Cys 15	Ser
10	Leu	Pro	Ala	Gly 20	Ser	Gly	Asn	Ala	Leu 25	Ala	Ala	Ser	Leu	Asn 30	His	Тут
	Ala	Gly	Tyr 35	Xaa	Gln	Val	Thr	Asn 40	Glu	Asp	Leu	Leu	Thr 45	Asn	Cys	Thr
15	Leu	Leu 50	Leu	Cys	Arg	Arg	Leu 55	Leu	Ser	Pro	Met	Asn 60	Leu	Leu	Ser	Leu
	His 65	Thr	Ala	Ser	Gly	Leu 70	Arg	Leu	Phe	Ser	Val 75	Leu	Ser	Leu	Ala	Trp 80
20	Gly	Phe	Ile	Ala	Asp 85	Val	Asp	Leu	Glu	Ser 90	Glu	Lys	Tyr	Arg	Arg 95	Leu
25	Gly	Glu	Met	Arg 100	Phe	Thr	Leu	Gly	Thr 105	Phe	Leu	Arg	Leu	Ala 110	Ala	Leu
	Arg	Thr	Туг 115	Arg	Gly	Arg	Leu	Ala 120	Tyr	Leu	Pro	Val	Gly 125	Arg	Val	Gly
30	Ser	Lys 130	Thr	Pro	Ala	Ser	Pro 135	Val	Val	Val	Gln	Gln 140	Gly	Pro	Val	Asp
	Ala 145	His	Leu	Val	Pro	Leu 150	Glu	Glu	Pro	Val	Pro 155	Ser	His	Trp	Thr	Val 160
35		Pro			165					170					175	
40	Leu	Gly	Ser	Glu 180	Met	Phe	Ala	Ala	Pro 185	Met	Gly	Arg	Cys	Ala 190	Ala	Gly
	Va1	Met	His 195	Leu	Phe	Tyr	Val	Arg 200	Ala	Gly	Val	Ser	Arg 205	Ala	Met	Leu
45	Leu	Arg 210		Phe	Leu	Ala	Met 215	Glu	Lys	Gly	Arg	His 220	Met	Glu	Tyr	Glu
	Cys 225	Pro	Tyr	Leu	Val	Туг 230	Val	Pro	Val	Val	Ala 235	Phe	Arg	Leu	Glu	Pro 240
50	Lys	Asp	Gly	Lys	Gly 245	Val	Phe	Ala	Val	Asp 250	Gly	Glu	Leu	Met	Val 255	
55	Glu	Ala	Val	Gln 260	_	Gln	Val	His	Pro 265		Tyr	Phe	Trp	Met 270	Val	Ser
	Gly	Cys	Val 275	Glu	Pro	Pro	Pro	Ser 280	Trp	Lys	Pro	Gln	Gln 285	Met	Pro	Pro

Pro Glu Glu Pro Leu

290

(2) INFORMATION FOR SEQ ID NO: 316:

5	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 3	314:							
5			(i)	(A) L B) T	ENGT YPE:	H: 6 ami				s					
10			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 31	4:			
	Met 1	Pro	Leu	Glu	Gly 5	Phe	Cys	Leu	Val	Leu 10	Asp	Ile	Gly	Phe	Leu 15	Leu
15	Va1	Met	Leu	Ile 20	Ser	Leu	Ala	Ser	Glu 25	Cys	Phe	Thr	Thr	Cys 30	Leu	Asp
20	Ser	Phe	Ser 35	Thr	Thr	Glu	Pro	Gly 40	Cys	Lys	Phe	Тут	Lys 45	Leu	Leu	His
	Ser	Val 50	Ser	Leu	Leu	Asn	Ile 55	Asn	Phe	Asn	Val	Lys 60	Ser	Leu	Leu	Суз
25	Ser 65	His	Ile	Xaa												
			000434	n Tow	Fon	CEO	TD I	viO•	215.							
30	(2)	INF		SEQU!	ENCE	СНА	RACT	ERI <i>S</i>	TICS mino		ds					
30 35			(i)	SEQUI () (ENCE A) L B) T D) T	CHA ENGT YPE: OPOL	RACT H: 1 ami OGY:	ERIS' 05 a no a lin	TICS mino cid	aci		: 31	5:			
			(i) ; (xi)	SEQUI (() SEQI	ENCE A) L B) T D) T UENC	CHA ENGT YPE: OPOL E DE	RACT H: 1 ami OGY: SCRI	ERIS' 05 a no a lin PTIO	TICS mino cid ear	aci EQ II	ON O			Leu	Val 15	Phe
	Met	Pro	(i) (xi) Leu	SEQU ((SEQ	ENCE A) L B) T D) T UENC Leu 5	CHA ENGT YPE: OPOL E DE Ser	RACT H: 1 ami OGY: SCRI Gly	ERIS' 05 a no a lin PTIO	TICS mino cid ear N: S	aci EQ II Trp 10	D NO Ile	Ser	Leu		15	
35	Met 1 Leu	Pro Ser	(i) (xi) Leu Leu	SEQUI ((SEQI Gln Gln 20	ENCE A) L B) T D) T UENC: Leu 5	CHA ENGT YPE: OPOL E DE Ser	RACT H: 1 ami OGY: SCRI Gly Pro	ERIS' 05 a no a lin PTIO Gln	TICS mino cid ear N: S: Tyr	aci EQ II Trp 10 Ala	D NO Ile Ile	Ser Pro	Leu Cys	Ala 30	15 Leu	Thr
35 40	Met 1 Leu Asp	Pro Ser Val	(i) (xi) Leu Leu Gly 35	SEQUI ((SEQUI Gln 20 Gly	ENCE A) L B) T D) T UENC Leu 5 Pro	CHA ENGT YPE: OPOL E DE Ser Phe	RACT H: 1 ami OGY: SCRI Gly Pro	ERIS' 05 a no a lin PTIO Gln Gln Ile 40	TICS mino cid ear N: S: Tyr Ala 25	aci EQ II Trp 10 Ala His	D NO Ile Ile	Ser Pro Leu	Leu Cys Leu 45	Ala 30 Asn	15 Leu Cys	Thr
35 40	Met 1 Leu Asp	Pro Ser Val Ile 50	(i) : (xi) Leu Gly 35 Leu	SEQUING ((() () () () () () () () (ENCE A) L B) T D) T UENC Leu Pro Ser Thr	CHAMENGT YPE: OPOLL Ser Phe Cys	RACTH: 1 ami OGY: SCRI Gly Pro Val Thr 55	ERIS' 05 a no a lin PTIO Gln Gln Ile 40	rics mino cid ear N: S: Tyr Ala 25	aci EQ II Trp 10 Ala His	D NO Ile Ile Leu	Ser Pro Leu Ser 60	Leu Cys Leu 45 His	Ala 30 Asn Val	15 Leu Cys Leu	Thr Lev
35 40 45	Met 1 Leu Asp Cys	Pro Ser Val Ile 50 Lys	(i) : (xi) Leu Leu Gly 35 Leu Met	SEQUI (() () () SEQUI Gln 20 Gly Phe	ENCE A) L B) T D) T UENC Leu 5 Pro Ser Thr	CHAMENGT YPE: OPOLL E DE Ser Phe Cys Leu Ser 70	RACTH: 1 ami OGY: SCRI Gly Pro Val Thr 55 Val	ERIS' 05 a no a lin PTIO Gln Gln Ile 40 Ala Cys	TICS mino cid ear N: S: Tyr Ala 25 Cys	aci EQ II Trp 10 Ala His Ser	D NO Ile Ile Leu Pro 75	Ser Pro Leu Ser 60	Leu Cys Leu 45 His	Ala 30 Asn Val	15 Leu Cys Leu Leu	Thr Leu Ser
35 40 45	Met 1 Leu Asp Cys Ile 65 Asp	Pro Ser Val Ile 50 Lys	(i) : (xi) Leu Leu Gly 35 Leu Met	() () () () () SEQUI Gln Gln 20 Gly Phe	ENCE A) L B) T D) T UENC Leu 5 Pro Ser Thr Leu Thr 85	CHA ENGT YPPE: OPPOL E DE Ser Phe Cys Leu Ser 70	RACTH: 1 ami OGY: SCRI Gly Pro Val Thr 55 Val Asn	ERIS' 05 a no a lin PTIO Gln Gln Ile 40 Ala Cys	TICS mino cid ear N: S: Tyr Ala 25 Cys Pro Tyr	aci EQ II Trp 10 Ala His Ser Glu Leu	D NO Ile Ile Leu Pro 75	Ser Pro Leu Ser 60	Leu Cys Leu 45 His	Ala 30 Asn Val	15 Leu Cys Leu Leu	Thr Leu Ser

	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 71 amino acids
	(B) TYPE: amino acid
5	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 316:
	Met Trp Gly Cys Ser Gly Leu Gly His Arg Thr Val Ser Phe Leu Leu
10	1 5 10 15
10	Lou Lou Dro Cur Cor Dho Dro Ara Dro Cur Vaa Lou Dho Cly Lou Tle
	Leu Leu Pro Cys Ser Phe Pro Arg Pro Cys Xaa Leu Phe Gly Leu Ile 20 25 30
15	Pro Ile Ser Arg Pro Cys Lys Val Glu Ala Pro Arg Leu Ser Val Pro
15	35 40 45
	Xaa Leu Ser Cys Ala Ser His Pro Tyr Cys Asn Cys Pro Met Ser Thr
	50 55 60
20	Cox Chr. Buo Lou Buo Aug Van
20	Ser Cys Pro Leu Pro Arg Xaa 65 70
	•
25	(2) INFORMATION FOR SEQ ID NO: 317:
	(2) INCOMMITTON TON SEQ ID NO. 317.
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 39 amino acids
30	(B) TYPE: amino acid (D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 317:
	Mak I are Now Hall I are Com I are Hall Clar Clar I are Hall Com Von I are Clar
	Met Leu Asn Val Leu Ser Lys Val Gln Gln Leu Val Ser Xaa Leu Gly 1 5 10 15
35	
	Leu Val Thr Phe Leu Leu Asn His Ser Ala Ala Gly Gly Ser Pro Gln
	20 25 30
	His Arg Trp Leu Leu Xaa
40	35
	(2) INFORMATION FOR SEQ ID NO: 318:
45	(') CDOUTE OF CUIT DA CONTROL
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 72 amino acids
	(B) TYPE: amino acid
50	(D) TOPOLOGY: linear
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 318:
	Met Lys Ala Ile Ala Arg Ala Cys Leu Leu Leu Ser Leu Leu Val Leu
	1 5 10 15
55	
55	Pro His Val Val Ser Glu His Leu Phe Trp His His Asn Pro Arg His 20 25 30
	20 20
	Pro Val Ile Trp Pro Phe Pro Pro Phe His Leu Ile Ser Cys Ser Val
60	35 40 45
~ ~	

	Ser	Ala 50	Ser	Thr	Trp	His	Leu 55	Gly	Glu	Xaa	Leu	Leu 60	Leu	Leu	Val	Pro
5	Ile 65	Ala	Pro	Ser	Val	Trp 70	Ser	Xaa								
10	(2)			rion SEQUI						:						
15			(xi)	(B) T D) T	YPE: OPOL	ami: OGY:	no a lin	cid ear	acid: EQ II		: 319	∂ :			
	Met 1	Glu	Gln	Gly	Gly 5	Gly	Pro	Arg	Leu	Leu 10	Leu	Leu	Ile	Pro	Gly 15	Leu
20	Leu	His	Asn	Thr 20	Tyr	Leu	Ala	Arg	Pro 25	Gly	Asp	Phe	Pro	Ala 30	Gln	Gly
25	Thr	Thr	Glu 35	Asn	Thr	Glu	Cys	Gln 40	Gly	Ser	Pro	Ser	Pro 45	Ile	Ser	His
	Leu	Gly 50	Lys	Val	Arg	Ser	Leu 55	Asp	Ser	Asn	Thr	Gln 60	Ile	Xaa		
30	(2)	INF	ORMA!	TION	FOR	SEQ	ID I	NO: í	320:							
35				(A) L B) T D) T	ENGT YPE : OPOL	H: 2 ami OGY:	86 a no a lin	mino cid ear	aci		: 32	0:			
40	Met 1	Pro		Leu			•							Gly	Ser 15	Val
	Thr	Leu	Gln	Gln 20	Arg	Gly	Met	Phe	Leu 25	Pro	Trp	Thr	Gly	Thr 30	Gly	Glu
45	Gln	Val	Leu 35	Ala	Leu	Leu	Trp	Pro 40	Arg	Phe	Glu	Leu	Ile 45		Glu	Met
50	Asn	Val 50		Ser	Val	Arg	Ser 55		Asp	Pro	Gln	Arg 60	Leu	Gly	Gly	Leu
	Asp 65		Arg	Pro	His	Tyr 70	Ile	Thr	Arg	Arg	Туr 75	Ala	Glu	Phe	Ser	Ser 80
55	Ala	Leu	Val	Ser	Ile 85		Gln	Thr	Ile	Pro 90	Asn	Glu	Arg	Thr	Met 95	Gln
	Leu	Leu	Gly	Gln 100		Gln	Val	Glu	Val 105		Asn	Phe	Val	Leu 110	Arg	Val
60	Ala	Ala	Glu	Phe	Ser	Ser	Arg	Lys	Glu	Gln	Leu	Val	Phe	Leu	Ile	Asn

			115					120					125			
5	Asn	Туг 130	Asp	Met	Met	Leu	Gly 135	Val	Leu	Met	Glu	Arg 140	Ala	Ala	Asp	Asp
3	Ser 145	Lys	Glu	Val	Glu	Ser 150	Phe	Gln	Gln	Leu	Leu 155	Asn	Ala	Arg	Thr	Gln 160
10	Glu	Phe	Ile	Glu	Glu 165	Leu	Leu	Ser	Pro	Pro 170	Phe	Gly	Gly	Leu	Val 175	Ala
	Phe	Val	Lys	Glu 180	Ala	Glu	Ala	Leu	Ile 185	Glu	Arg	Gly	Gln	Ala 190	Glu	Arg
15	Leu	Arg	Gly 195	Glu	Glu	Ala	Arg	Val 200	Thr	Gln	Leu	Ile	Arg 205	Gly	Phe	Gly
20	Ser	Ser 210	Trp	Lys	Ser	Ser	Val 215	Glu	Ser	Leu	Ser	Gln 220	Asp	Val	Met	Arg
20	Ser 225	Phe	Thr	Asn	Phe	Arg 230	Asn	Gly	Thr	Ser	Ile 235	Ile	Gln	Gly	Ala	Leu 240
25	Thr	Gln	Leu	Ile	Gln 245	Leu	Tyr	His	Arg	Phe 250	His	Arg	Val	Leu	Ser 255	Glr
	Pro	Gln	Leu	Arg 260	Ala	Leu	Pro	Ala	Arg 265	Ala	Glu	Leu	Ile	Asn 270	Ile	His
30	His	Leu	Met 275	Val	Glu	Leu	Lys	Lys 280	His	Lys	Pro	Asn	Phe 285	Xaa		
35	(2)	INF		TION SEQU						:						
40				· (A) I B) T D) T	ENGI YPE : OPOL	H: S ami OGY:	5 am no a lin	ino cid ear	acid		: 32	1:			
45	Met 1	Phe	Arg	Ala	Leu 5	-	Asp	Leu	Leu	Thr 10		Tyr	Pro	Gln	Gln 15	
	Leu	Leu	Gln	Val 20	Leu	Val	Val	Met	Туг 25	Gln	Val	Leu	Gln	Val 30	-	Glu
50	Leu	Pro	Trp 35		Glu	Leu	Ile	His 40		Gln	Gly	Ile	Val 45		Thr	Asp
	Gln	Leu 50	His	Leu	Lys	Gln	Xaa 55									
55																
	(2)	INF		TION												
60			(i)	SEQU						: acid	ls					

			(xi)	(D) T	OPOL	OGY:	no a lin PTIO	ear	EQ II	D NO	: 32	2 :			
5	Asp 1	Phe	Val	Pro	Val 5	Leu	Val	Phe	Val	Leu 10	Ile	Lys	Ala	Asn	Pro 15	Pro
10	Cys	Leu	Leu	Ser 20	Thr	Val	Gln	Tyr	Ile 25	Ser	Ser	Phe	Tyr	Ala 30	Ser	Cys
	Leu	Ser	Gly 35	Glu	Glu	Ser	Tyr	Trp 40	Trp	Met	Gln	Phe	Thr 45	Ala	Ala	Val
15	Glu	Phe 50	Ile	Lys	Thr	Ile	Asp 55	Asp	Arg	Lys	Xaa					
20	(2)	INF	ORMA:	SEQU	ENCE	CHA	RACT	ERI <i>S</i>	rics		a_					
				(B) T	YPE:	ami	20 a no a lin	cid	acı	as					
25								PTIO								
	Met 1		Pro	Ala	Arg 5	Lys	Leu	Leu	Ser	Leu 10	Leu	Pne	Leu	He	Leu 15	Met
30	Gly	Thr	Glu	Leu 20	Thr	Gln	Asp	Ser	Ala 25	Ala	Pro	Asp	Ser	Leu 30	Leu	Arg
35	Ser	Ser	Lys 35	Gly	Ser	Thr	Arg	Gly 40	Ser	Leu	Ala	Ala	Ile 45	Val	Ile	Trp
	Arg	Gly 50	Lys	Ser	Glu	Ser	Arg 55		Ala	Lys	Thr	Pro 60	Gly	Ile	Phe	Arg
40	Gly 65		Gly	Thr	Leu	Val 70	Leu	Pro	Pro	Thr	His 75	Thr	Pro	Glu	Trp	Leu 80
	Ile	Leu	Pro	Leu	Gly 85	Ile	Thr	Leu	Pro	Leu 90	Gly	Ala	Pro	Glu	Thr 95	Gly
45	Gly	Gly	Asp	Cys 100	Ala	Ala	Glu	Thr	Trp 105	Lys	Gly	Ser	Gln	Arg 110	Ala	Gly
50	Gln	Leu	Cys 115		Leu	Leu	Ala	Xaa 120								
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	324:							
55			(i)	((A) I (B) T	ENGT	H: 4 ami	ERIS 14 am no a lin	nino cid		ls					
60			(xi)					PTIC		EQ I	D NO	: 32	4:			

•	Phe 1	Phe	Leu	Val	Val 5	Phe	Ser	Leu	Ser	Phe 10	Xaa	Pro	Ser	Val	Leu 15	Thr
5	Ser	Pro	Val	His 20	Xaa	Pro	His	Cys	Cys 25	Gln	Xaa	Asp	Xaa	Ile 30	Leu	Phe
	Lys	Asn	Thr 35	Leu	Xaa	Xaa	Phe	Xaa 40	Ala	Lys	Tyr	Xaa				
10																
	(2)			rion												
15				(A) L B) T D) T	ENGT YPE: OPOL	H: 5 ami OGY:	9 am no a lin	ino cid ear	acid		: 32	5:			
20	Met 1	Phe	Ser	Arg	Thr 5	Ser	Asn	Phe	Trp	Thr 10	Phe	Phe	Phe	Gln	Phe 15	Leu
25	Ile	Phe	Lys	Val 20	Phe	Leu	Val	Leu	Lys 25	Asn	Xaa	Phe	Thr	Ser 30	Gln	Lys
	Ile	Xaa	Xaa 35	Ile	Xaa	Xaa	Glu	Lys 40	Pro	Lys	Lys	Lys	Lys 45	Xaa	Arg	Gly
30	Gly	Arg 50	Ala	Pro	Ser	Pro	Gln 55	Gly	Gly	Pro	Xaa					
35	(2)			(ENCE A) L B) T	CHAI ENGT YPE :	RACT H: 1 ami	ERIS 8 am no a	TICS ino cid	: acid	s					
40			(xi)	SEQ				lin PTIO		EQ I	D NO	: 32	6:			
	Met 1	Gly	Leu	Leu	Ile 5	Phe	Met	Leu	Leu	Ile 10	Gly	Ile	His	Ser	Gln 15	Cys
45	Ser	Xaa														
50	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:	327:							
55				(A) L B) T D) T	ENGT YPE: OPOL	H: 8 ami OGY:	7 am no a lin	ino cid ear	acid		: 32	7:			
60	Met 1	Val	Leu	Phe	Cys 5	Phe	Val	Leu	Phe	Cys 10	Phe	Val	Phe	Glu	Met 15	Asp.

•	Ser	Ser	Ser	Val 20	Thr	Gln	Ala	Gly	Val 25	Gln	Trp	Cys	Asp	Leu 30	Gly	Ser
5	Leu	Gln	Ala 35	Pro	Pro	Pro	Gly	Phe 40	Ser	Pro	Phe	Ser	Cys 45	Leu	Ser	Leu
	Pro	Ser 50	Ser	Trp	Asp	Tyr	Arg 55	Arg	Pro	Pro	Pro	Arg 60	Pro	Ala	Asn	Phe
10	Leu 65	Tyr	Phe	Leu	Val	Glu 70	Thr	Gly	Phe	His	His 75	Val	Ser	Gln	Asp	Gly 80
15	Leu	Asp	Leu	Leu	Thr 85	Ser	Xaa									
20	(2)		ORMAT													
				(A) L B) T D) T	ENGT YPE: OPOL	H: 5 ami OGY:	38 a no a lin	mino cid ear	aci						
25	Mot	Sor						PTIO		-				Tou	Un l	Dho
	1	ser	Thr	гуу	ьуs 5	Leu	Cys	116	vai	10	GIŞ	116	rea	ren	15	rne
30	Gln	Ile	Ile	Ala 20	Phe	Leu	Val	Gly	Gly 25	Leu	Ile	Ala	Pro	Gly 30	Pro	Thr
	Thr	Ala	Val 35	Ser	Tyr	Met	Ser	Val 40	Lys	Cys -	Val	Asp	Ala 45	Arg	Lys	Asn
35	His	His 50	Lys	Thr	Lys	Trp	Phe 55	Val	Pro	Trp	Gly	Pro 60	Asn	His	Cys	Asp
40	Lys 65		Arg	Asp	Ile	Glu 70	Glu	Ala	Ile	Pro	Arg 75	Glu	Ile	Glu	Ala	Asn 80
	Asp	Ile	Val	Phe	Ser 85	Val	His	Ile	Pro	Leu 90	Pro	His	Met	Glu	Met 95	Ser
45	Pro	Trp	Phe	Gln 100	Phe	Met	Leu	Phe	Ile 105	Leu	Gln	Leu	Asp	Ile 110	Ala	Phe
	Lys	Leu	Asn 115	Asn	Gln	Ile	Arg	Glu 120	Asn	Ala	Glu	Val	Ser 125		Asp	Val
50	Ser	Leu 130	Ala	Tyr	Arg	Asp	Asp 135		Phe	Ala	Glu	Trp -140		Glu	Met	Ala
55	His 145		Arg	Val	Pro	Arg 150	_	Leu	Lys	Cys	Thr 155		Thr	Ser	Pro	Lys 160
	Thr	Pro	Glu	His	Glu 165	Gly	Arg	Tyr	Tyr	Glu 170	Суѕ	Asp	Val	Leu	Pro 175	
60	Met	Glu	Ile	Gly 180		Val	Ala	His	Lys 185		Tyr	Leu	Leu	Asn 190		Arg

	Leu	Pro	Val 195	Asn	Glu	Lys	Lys	Lys 200	Ile	Asn	Val	Gly	Ile 205	Gly	Glu	Ile
5	Lys	Asp 210	Ile	Arg	Leu	Val	Gly 215	Ile	His	Gln	Asn	Gly 220	Gly	Phe	Thr	Lys
10	Val 225	Trp	Phe	Ala	Met	Lys 230	Thr	Phe	Leu	Thr	Pro 235	Ser	Ile	Phe	Ile	Ile 240
	Met	Val	Trp	Tyr	Trp 245	Arg	Arg	Ile	Thr	Met 250	Met	Ser	Arg	Pro	Pro 255	Val
15	Leu	Leu	Glu	Lys 260	Val	Ile	Phe	Ala	Leu 265	Gly	Ile	Ser	Met	Thr 270	Phe	Ile
	Asn	Ile	Pro 275	Val	Glu	Trp	Phe	Ser 280	Ile	Gly	Phe	Asp	Trp 285	Thr	Trp	Met
20	Leu	Leu 290	Phe	Gly	Asp	Ile	Arg 295	Gln	Gly	Ile	Phe	Тут 300	Ala	Met	Leu	Leu
25	Ser 305	Phe	Trp	Ile	Ile	Phe 310	Cys	Gly	Glu	His	Met 315	Met	Asp	Gln	His	Glu 320
	Arg	Asn	His	Ile	Ala 325	Gly	Tyr	Trp	Lys	Gln 330	Val	Gly	Pro	Ile	Ala 335	Val
30	Gly	Ser	Phe	Cys 340	Leu	Phe	Ile	Phe	Asp 345	Met	Cys	Glu	Arg	Gly 350	Val	Gln
	Leu	Thr	Asn 355	Pro	Phe	Tyr	Ser	Ile 360	Trp	Thr	Thr	Asp	Ile 365	Gly	Thr	Glu
35	Leu	Ala 370	Met	Ala	Phe	Ile	Ile 375	Val	Ala	Gly	Ile	Cys 380	Leu	Cys	Leu	Tyr
40	Phe 385	Leu	Phe	Leu	Cys	Phe 390	Met	Val	Phe	Gln	Val 395	Phe	Arg	Asn	Ile	Ser 400
	Gly	Lys	Gln	Ser	Ser 405	Leu	Pro	Ala	Met	Ser 410	Lys	Val	Arg	Arg	Leu 415	His
45	Tyr	Glu	Gly	Leu 420	Ile	Phe	Arg	Phe	Lys 425	Phe	Leu	Met	Leu	Ile 430	Thr	Leu
	Ala	Cys	Ala 435	Ala	Met	Thr	Val	Ile 440	Phe	Phe	Ile	Val	Ser 445	Gln	Val	Thr
50	Glu	Gly 450		Trp	Lys	Trp	Gly 455	Gly	Val	Thr	Val	Gln 460	Val	Asn	Ser	Ala
55	Phe 465	Phe	Thr	Gly	Ile	Tyr 470	Gly	Met	Trp	Asn	Leu 475	Tyr	Val	Phe	Ala	Leu 480
	Met	Phe	Leu	Tyr	Ala 485	Pro	Ser	His	Lys	Asn 490	-	Gly	Glu	Asp	Gln 495	Ser
60	Asn	Gly	Met	Gln 500		Pro	Cys	Lys	Ser 505		Glu	Asp	Cys	Ala 510	Leu	Phe

	Vai	501	515	Deu	-7-	GIII	Olu	520		Ser	AIG	ser	525		ser	Ph
5	Ile	Asn 530	Asp	Asn	Ala	Ala	Ser 535	Gly	Ile	Xaa						
10	(2)	INF	ORMA'	TION	FOR	SEQ	ID	NO:	329:							
15				(A) I B) T D) T	ENGI YPE: OPOL E DE	H: 2 ami OGY:	02 a no a lin	mino cid ear	aci		: 32	9 :			
20	Met 1	Gly	Ile	Ala	Leu 5	Ala	Val	Leu	Gly	Trp 10	Leu	Ala	Val	Met	Leu 15	Cys
	Cys	Ala	Leu	Pro 20	Met	Trp	Arg	Val	Thr 25	Ala	Phe	Ile	Gly	Ser 30	Asn	Ile
25	Val	Thr	Ser 35	Gln	Thr	Ile	Trp	Glu 40	Gly	Leu	Trp	Met	Asn 45	Cys	Val	Va:
	Gln	Ser 50	Thr	Gly	Gln	Met	Gln 55	Cys	Lys	Val	Tyr	Asp 60	Ser	Leu	Leu	Ala
30	Leu 65	Pro	Gln	Asp	Leu	Gln 70	Ala	Ala	Arg	Ala	Leu 75	Val	Ile	Ile	Ser	I1e 80
35	Ile	Val	Ala	Ala	Leu 85	Gly	Val	Leu	Leu	Ser 90	Val	Val	Gly	Gly	Lys 95	Cys
	Thr	Asn	Суѕ	Leu 100	Glu	Asp	Glu	Ser	Ala 105	Lys	Ala	Lys	Thr	Met 110	Ile	Val
40	Ala	Gly	Val 115	Val	Phe	Leu	Leu	Ala 120	Gly	Leu	Met	Val	Ile 125	Val	Pro	Va]
	Ser	Trp 130	Thr	Ala	His	Asn	Ile 135	Ile	Gln	Asp	Phe	Туг 140	Asn	Pro	Leu	Val
45	Ala 145	Ser	Gly	Gln	Lys	Arg 150	Glu	Met	Gly	Ala	Ser 155	Leu	Tyr	Val	Gly	Trp 160
50	Ala	Ala	Ser	Gly	Leu 165	Leu	Leu	Leu	Gly	Gly 170	Gly	Leu	Leu	Суѕ	Cys 175	Asr
	Cys	Pro	Pro	Arg 180	Thr	Asp	Lys	Pro	Tyr 185	Ser	Ala	Lys	Tyr	Ser 190	Ala	Ala
55	Arg	Ser	Ala 195	Ala	Ala	Ser	Asn	Tyr 200	Val	Xaa						

(2) INFORMATION FOR SEQ ID NO: 330:

			(1)		A) L	ENGT	H: 2	63 au	mino		ds					
5			(xi)		D) T	OPOL	ami: OGY: SCRII	lin	ear	EQ II	ON C	: 33(0:			
	Met 1	Ala	Thr	Val	Thr 5	Ala	Thr	Thr	Lys	Val 10	Pro	Glu	Ile	Arg	Asp 15	Val
10	Thr	Arg	Ile	Glu 20	Arg	Ile	Gly	Ala	His 25	Ser	His	Ile	Arg	Gly 30	Leu	GΙλ
15	Leu	Asp	Asp 35	Ala	Leu	Glu	Pro	Arg 40	Gln	Ala	Ser	Gln	Gly 45	Met	Val	Gly
15	Gln	Leu 50	Ala	Ala	Arg	Arg	Ala 55	Ala	Gly	Val	Val	Leu 60	Glu	Met	Ile	Arg
20	Glu 65	Gly	Lys	Ile	Ala	Gly 70	Arg	Ala	Val	Leu	Ile 75	Ala	Gly	Gln	Pro	Gl ₂
	Thr	Gly	Lys	Thr	Ala 85	Ile	Ala	Met	Gly	Met 90	Ala	Gln	Ala	Leu	Gly 95	Pro
25	Asp	Thr	Pro	Phe 100	Thr	Ala	Ile	Ala	Gly 105	Ser	Glu	Ile	Phe	Ser 110	Leu	Glu
30	Met	Ser	Lys 115	Thr	Glu	Ala	Leu	Thr 120	Gln	Ala	Phe	Arg	Arg 125	Ser	Ile	Gly
	Val	Arg 130	Ile	Lys	Glu	Glu	Thr 135	Glu	Ile	Ile	Glu	Gly 140	Glu	Val	Val	Glu
35	Ile 145	Gln	Ile	Asp	Arg	Pro 150	Ala	Thr	Gly	Thr	Gly 155	Ser	Lys	Val	Gly	Lys 160
	Leu	Thr	Leu	Lys	Thr 165	Thr	Glu	Met	Glu	Thr 170	Ile	Tyr	Asp	Leu	Gly 175	Thr
40	Lys	Met	Ile	Xaa 180	Ser	Leu	Thr	Lys	Asp 185	Lys	Val	Gln	Ala	Gly 190	Asp	Va]
45	Ile	Thr	Ile 195	Asp	Lys	Ala	Thr	Gly 200	Lys	Ile	Ser	Lys	Leu 205	Gly	Arg	Ser
	Phe	Thr 210	Arg	Ala	Arg	Glu	Leu 215	Arg	Arg	Tyr	Gly	Leu 220	Pro	Asp	Gln	Va]
50	Arg 225	Ala	Val	Pro	Arg	Trp 230	Gly	Ala	Pro	Glu	Thr 235	Gln	Gly	Gly	Gly	Ala 240
	His	Arg	Val	Pro	Ala 245	Arg	Asp	Arg	Arg	His 250	Gln	Leu	Ser	His	Pro 255	Gl
55	Leu	Pro	Gly	Ala 260	Leu	Leu	Arg									

5					(A) I (B) 7 (D) 7	ENGT TYPE: TOPOI	TH: 2 am: OGY:	CERIS 260 á ino á : lir	mino cid near	aci): 3 3	11:			
10	Met 1	Leu	Ala	Leu	Leu 5		Leu	Ser	Gln	Ala 10	Leu	Asn	Ile	Leu	Leu 15	Gly
	Leu	Lys	Gly	Leu 20		Pro	Ala	Glu	Ile 25	Ser	Ala	Val	Cys	Glu 30	Lys	Gly
15	Asn	Phe	Asn 35	Val	Ala	His	Gly	Leu 40	Ala	Trp	Ser	Туг	Tyr 45		Gly	Туг
	Leu	Arg 50	Leu	Ile	Leu	Pro	Glu 55	Leu	Gln	Ala	Arg	Ile 60		Thr	Tyr	Asn
20	Gln 65	His	Tyr	Asn	Asn	Leu 70	Leu	Arg	Gly	Ala	Val 75	Ser	Gln	Arg	Leu	Tyr 80
25	Ile	Leu	Leu	Pro	Leu 85	Asp	Cys	Gly	Val	Pro 90	Asp	Asn	Leu	Ser	Met 95	Ala
	Asp	Pro	Asn	Ile 100	Arg	Phe	Leu	Asp	Lys 105	Leu	Pro	Gln	Gln	Thr 110	Gly	Asp
30			115					Val 120					125			
o.e.		130					135	Gly				140				
35	145					150		Met			155					160
10					165			Gln		170					175	
				180				Pro	185					190		
15			195					Asp 200					205			
50		210					215	Gln				220				
,0	225					230		Val			235					240
55					Leu 245	Ile	Ser	GÌy	Met	Glu 250	Lys	Pro	Leu	Pro	Leu 255	Arg
	mr	Asp	Phe	Ser 260												

	(2)	TVILO	RMAT	NOI	FOR	SEQ	ID N	10: 3	32:							
5				(1 (1	A) L1 B) T	ENGTI YPE : OPOL	H: 4: amin CGY:	ERIST B amino ac line PTION	ino a cid ear	acids		: 332	2 :			
10	Met 1	Thr	Pro	Gln	Lys 5	Pro	Ala	Leu	Ala	Val 10	Leu	Leu	Leu	Glu	Val 15	Pro
	Leu	Leu	Leu	Thr 20	Leu	Ser	Val	Leu	Lys 25	Lys	Arg	Cys	Leu	Val 30	Thr	Cys
15	Glu	Pro	Thr 35	Ser	Arg	Phe	Val	Ser 40	Cys	Asp	Leu	Pro	Leu 45	Ser	Val	Xaa
20																
25	(2)							NO: 3								
25			(i) :	- (A) L B) T	ENGT YPE :	H: 3 ami	ERIS 34 au no ao lin	mino cid		ds					
30				SEQ	UENC:	E DE	SCRI	PTIO	N: SI	_						
	Met 1	Ala	Ala	Ala	Ala 5	Trp	Leu	Gln	Val	Leu 10	Pro	Val	Ile	Leu	Leu 15	Leu
35	Leu	Gly	Ala	His 20	Pro	Ser	Pro	Leu	Ser 25	Phe	Phe	Ser	Ala	Gly 30	Pro	Ala
	Thr	Val	Ala 35	Ala	Ala	Asp	Arg	Ser 40	Lys	Trp	His	Ile	Pro 45	Ile	Pro	Ser
40	Gly	Lys 50	Asn	Tyr	Phe	Ser	Phe 55	Gly	Lys	Ile	Leu	Phe 60	Arg	Asn	Thr	Thr
45	Ile 65	Phe	Leu	Lys	Phe	Asp 70	Gly	Glu	Pro	Cys	Asp 75	Leu	Ser	Leu	Asn	Ile 80
	Thr	Trp	Tyr	Leu	Lys 85	Ser	Ala	Asp	Cys	Туг 90		Glu	Ile	Tyr	Asn 95	Phe
50	Lys	Ala	Glu	Glu 100	Val	Glu	Leu	Tyr	Leu 105	Glu	Lys	Leu	Lys	Glu 110	Lys	Arg
	Gly	Leu	Ser 115	Gly	Lys	Tyr	Gln	Thr 120	Ser	Ser	Lys	Leu	Phe 125	Gln	Asn	Cys
55	Ser	Glu 130	Leu	Phe	Lys	Thr	Gln 135	Thr	Phe	Ser	Gly	Asp 140	Phe	Met	His	Arg
60	Leu 145	Pro	Leu	Leu	Gly	Glu 150	Lys	Gln	Glu	Ala	Lys 155	Glu	Asn	Gly	Thr	Asn 160

	Leu	Thr	Ph	e I		Gly 165	Asp	Lys	Thr	Ala	Met 170	His	Glu	Pro	Leu	Gln 175	Thr
5	Trp	Gln	As		Ala 180	Pro	Tyr	Ile	Phe	Ile 185	Val	His	Ile	Gly	Ile 190	Ser	Ser
	Ser	Lys	Gl 19		Ser	Ser	Lys	Glu	Asn 200	Ser	Leu	Ser	Asn	Leu 205	Phe	Thr	Met
10	Thr	Val 210		u 1	Val	Lys	Gly	Pro 215	Tyr	Glu	Tyr	Leu	Thr 220	Leu	Glu	Asp	Tyr
15	Pro 225		ı M∈	et :	Ile	Phe	Phe 230	Met	Val	Met	Cys	Ile 235	Val	Tyr	Val	Leu	Phe 240
13	Gly	Va.	l L∈	eu′	Trp	Leu 245	Ala	Trp	Ser	Ala	Cys 250		Trp	Arg	Asp	Leu 255	Leu
20	Arg	Ile	e Gl		Phe 260	Trp	Ile	Gly	Ala	Val 265		Phe	Leu	Gly	Met 270	Leu	Glu
	Lys	Ala		al 75	Phe	Tyr	Ala	Glu	Phe 280		Asn	Ile	Arg	Тут 285		Gly	Xaa
25	Ser	Va 29		ln	Gly	Ala	Leu	Ile 295		Ala	Glu	Leu	100 300		Ala	. Val	Lys
30	Arg 305		r L	eu	Ala	Arg	Thr 310		ı Val	. Ile	e Ile	Val 315		Leu	ı Gly	туг	320
	Ile	e Va	1 L	ys	Pro	Arg 325		Glu	ı Ser	Leu	330		Arg	, Ler	ı Xaa	ı	
35	(2)) IN	FOR	ram:	NOIT	I FOF	R SE() ID	NO:	334	:						
40			(i	i) :	SEQU	JENCI (A) (B) (D)	E CHA LENG TYPE TOPO	ARAC TH: : am LOGY	TERI: 200 ino : li IPTI	STIC: amin acid near	S: o ac		o: 3	34:			
45		t Va 1	al I	Leu	Xaa		l Vai	l Th	r Le	u Gl	y Le		a Lei	u Ph	e Th	r Le	u Cys 5
	Gl	у Г	/s I	Phe	Lys 20		g Tr	ρ Ly	s Le	u As 2		y Al	a Ph	e Le	u Le	u Il O	e Thr
50	Al	a Pl	ne I	Leu 35		r Va	l Le	u Il	e Tr		l Al	a Tr	p Me		r Me 5	t Ту	r Leu
55	Ph		ly <i>i</i> 50	Asn	Va:	l Ly	s Le		n Gl 5	n Gl	y As	p Al	a Tr 6	p As 0	n As	p Pr	o Thr
55		eu A	la :	Ile	Th	r Le		a Al O	a Se	r Al	a Gl	y Se 7	r Se 5	r Se	r Se	r Se	r Thr 80
60	Pr	o S	er :	Leu	Ar		r Th	r Al	a Pr	o Ph		rs Gl 0	n Pr	o Cy	rs Ar	g Ar	g Thr 5

	Arg	Pro	Thr	Thr 100	Ser	Thr	Arg	Arg	Ser 105	Pro	Gly	Cys	Gly	Arg 110	Arg	Pro
5	Ser	Arg	Arg 115	Thr	Cys	Ser	Cys	Arg 120	Gly	Pro	Ile	Trp	Arg 125	Thr	Arg	Pro
10	Ser	Pro 130	Trp	Met	Asn	Thr	Met 135	Gln	Leu	Ser	Glu	Gln 140	Gln	Asp	Phe	Pro
	Thr 145	Ala	Ala	Trp	Glu	Lys 150	Asp	Pro	Val	Ala	Ala 155	Trp	Gly	Lys	Asp	Pro 160
15	Ala	Leu	Arg	Leu	Glu 165	Ala	Thr	Cys	Ile	Ser 170	Gln	Leu	Arg	Trp	Pro 175	Ser
	Cys	Ser	Thr	Val 180	Gly	Pro	Ser	Gln	Leu 185	Leu	Arg	Gln	Val	Thr 190	Gln	Glu
20	Xaa	Thr	Phe 195	Gly	Glu	Arg	Leu	Xaa 200								
25	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	No: (335:							
				SEQU	ENCE	СНА	RACT	ERIS	TICS							
30			(xi)	(B) T D) T	YPE:	ami OGY:	4 am no a lin PTIO	cid ear			: 33	5:			
	Met 1	Leu	Leu	His	His 5	Gln	Leu	Leu	Ile	Val 10	Thr	Leu	His	Leu	Val 15	Leu
35	Leu	Leu	Ala	Thr 20	Leu	Leu	Val	Xaa								
40	,															
	(2)	INF		TION SEQU		-				:						
45				(A) I B) T	ENGT	H: 1 ami	.43 a .no a .lin	mino cid		.ds					
-				SEQ												
50	Met 1	Thr	Lys	Ala	Leu 5		Ile	Tyr	Leu	Val 10	Ser	Ser	Phe	Leu	Ala 15	Leu
	Asn	Gln	Ala	Ser 20	Leu	Ile	Ser	Arg	Cys 25	Asp	Leu	-Ala	Gln	Val 30	Leu	Gln
55	Leu	Glu	Asp 35	Leu	Asp	Gly	Phe	Glu 40	Gly	Tyr	Ser	Leu	Ser 45		Trp	Leu
60	Cys	Leu 50		. Phe	Val	Glu	Ser 55		Phe	Asn	Ile	Ser 60		Ile	Asn	Glu ^ʻ

•	Asn 65	Ala	Asp	Gly	Ser	Phe 70	Asp	Tyr	Gly	Leu	Phe 75	Gln	Ile	Asn	Ser	His 80
5	Tyr	Trp	Суѕ	Asn	Xaa 85	Tyr	Lys	Ser	Tyr	Ser 90	Glu	Asn	Leu	Cys	His 95	Val
	Asp	Cys	Gln	Asp 100	Leu	Leu	Asn	Pro	Asn 105	Leu	Leu	Ala	Gly	Ile 110	His	Cys
10	Ala	Lys	Arg 115	Ile	Val	Ser	Gly	Ala 120	Arg	Gly	Met	Asn	Asn 125	Trp	Val	Arg
15	Met	Glu 130	Xaa	Cys	Thr	Val	Gln 135	Ala	Gly	His	Ser	Ser 140	Thr	Gly	Xaa	
20	(2)		(i)	(ENCE A) L B) T D) T	CHA ENGT YPE: OPOL	RACT H: 9 ami OGY:	ERIS 5 am no a lin	TICS ino cid ear	acid		. 77	7.			
25	Met 1	Leu		Ile										Leu	Leu 15	Ile
30	Val	Val	Val	Leu 20	Суз	Leu	Tyr	Phe	Lys 25	Ile	His	Asn	Ala	Leu 30	Lys	Ala
	Ala	Lys	Glu 35	Pro	Glu	Ala	Va1	Ala 40	Val	Lys	Asn	His	Asn 45	Pro	Asp	Lys
35	Val	Trp 50	_	Ala	Lys	Asn	Ser 55	Gln	Ala	Lys	Thr	Ile 60	Ala	Thr	Glu	Ser
40	65			Leu		70					75					80
45	(2)	INF	ORMA'	TION	FOR	SEQ	ID 1	NO:	338:							
50				(A) L B) T D) T	ENGT YPE: OPOL	H: 3 ami OGY:	8 am no a lin	nino cid ear	acid		: 33	8:			
55	Met 1		Leu	Lys	Ser 5	Asn	Ile	Leu	Met	Leu 10	Asn	Leu	Phe	Ala	Ala 15	Asn
	Val	Gly	Ala	Asn 20	Phe	Ala	Leu	Thr	Val 25	Glu	Lys	Ile	Gly	Met 30	Ile	Leu
60	Leu	Asn	Val	Ser	Gly	Xaa										

5	(2) INFORMATION FOR SEQ ID NO: 339:
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 339:
15	Met Leu Val Val Ala Phe Gly Leu Leu Val Leu Tyr Ile Leu Leu Ala 1 5 10 15 Ser Ser Trp Lys Arg Pro Glu Pro Gly Ile Leu Thr Asp Arg Gln Pro 20 25 30
20	Leu Leu His Asp Gly Glu Xaa 35
25	(2) INFORMATION FOR SEQ ID NO: 340: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 71 amino acids
30	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 340:
35	Ser Asp Pro Leu Ala Ser Ala Ser Gln Asn Ala Gly Ile Val Ser Val 1 5 10 15 Gly Leu Cys Thr Arg Pro Gly Pro Gln Phe Lys Asn Ala Gln Pro Pro
40	20 25 30 Phe Pro Xaa Gln Lys Ala Pro Arg Cys Leu Trp Glu Asn Gln Pro Pro 35 40 45
45	Pro Trp Arg Lys Ala Trp Asp Leu Pro Ser His Leu Cly Arg Arg Gly 50 55 60 Ile Cys Gly Lys Ser Phe Xaa
45	65 70
50	(2) INFORMATION FOR SEQ ID NO: 341: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 85 amino acids (B) TYPE: amino acid
55	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 341: Tyr Val Met Ile Pho Lys Lys Cly Pho Ale Pro Ser Arm Cly Cly Lys
60	Tyr Val Met Ile Phe Lys Lys Glu Phe Ala Pro Ser Asp Glu Glu Leu 1 5 10 15 Asp Ser Tyr Arg Arg Gly Glu Glu Trp Asp Pro Gln Lys Ala Glu Glu

WO 98/54963

				20					25					30		
5	Lys	Arg	Asn 35	Xaa	Lys	Glu	Leu	Ala 40	Gln	Arg	Gln	Xaa	Gly 45	Gly	Gly	Ser
J	Pro	Ala 50	Gly	Ala	Cys	Gly	Gly 55	Glu	Pro	Cys	Gln	Arg 60	Leu	Gln	Gly	Gln
10	Val 65	Gln	Pro	Pro	His	Arg 70	Gln	Gly	Ser	Ser	Gln 75	Arg	Arg	Ser	Pro	His 80
	Ala	Thr	Gly	Gln	Xaa 85											
15																
	(2)	INF	ORMA1	NOIT	FOR	SEQ	ID I	v o: 3	342:							
20				(A) L B) T D) T	ENGT YPE : OPOL	H: 9 ami OGY:	0 am no a lin		acid		: 34	2 :			
25	Met l	Trp	Asp	Trp	Asp 5	Trp	Ser	Ala	Pro	Trp 10	Ser	Trp	Pro	Leu	Trp 15	Leu
30	Ser	Leu	Ala	Leu 20	Val	Cys	Leu	Ser	Ala 25	Gly	Ala	Lys	Gly	His 30	Arg	Ala
30	Ser	Glu	Ala 35	Gly	His	Ala	Arg	Ala 40	Leu	Thr	Cys	Glu	Met 45	Gly	Ser	Glu
35	Phe	Xaa 50	Thr	Ala	Xaa	Gly	Leu 55	Val	Leu	Gly	Xaa	Xaa 60	Xaa	Trp	Thr	Xaa
	Xaa 65	Asn	Gly	Ser	Ala	Gly 70	Pro	Glu	Arg	Arg	Gly 75	Trp	Arg	Pro	Ala	Ala 80
40	Phe	Leu	Ala	Val	Phe 85	Leu	Leu	Gly	Asp	Xaa 90						
45	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	vo: :	343 :							
50				(A) L B) T D) T	ENGT YPE: OPOL	H: 4 ami OGY:	8 am no a lin		acid		: 34	3:			
55	Met 1	Phe	Gly	Pro	Thr 5	Phe	His	Ser	Leu	Val 10	Leu	Val	Pro	Pro	Trp 15	Pro
	Asn	Leu	Ser	Leu 20	Leu	His	Phe	Thr	Ser 25	Pro	Val	Gly	Gln	His 30	Ser	Ser
60	Phe	Leu	Pro 35	Thr	Ser	Leu	Arg	Leu 40	Xaa	Lys	Lys	Lys	Lys 45	Lys	Lys	Lys

5																
	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID N	10: 3	344:							
10				(A) L B) T D) T	ENGT YPE : OPOL	H: 5 ami: OGY:	6 am no a lin	ino cid ear	acid		: 34	1 :			
15	Met 1	Cys	Ser	Lys	Asn 5	Gly	Phe	Leu	Leu	Ala 10	Trp	Ser	Trp	Asn	Ser 15	Pro
20	Trp	Leu	Pro	Gln 20	Ala	Ser	Leu	Ala	His 25	Gly	Cys	Trp	Gly	Arg 30	Trp	Met
	Ser	Asp	Leu 35	Val	Gly	Cys	Ser	Arg 40	Glu	Asn	Lys	Cys	Ala 45	Leu	Arg	Asp
25	His	Ser 50	Glu	Arg	Val	Gln	Gly 55	Xaa								
30	(2)	INFO		SEQUI	ENCE A) L	-	RACTI H: 2	ERIS	TICS mino		ds					
35			(xi)	SEQ		OPOL E DE				EQ I	D NO	: 34	5 :			
	Ser 1	Pro	Leu	Xaa	Phe 5	Cys	Val	Val	Leu	Leu 10	Leu	Gln	Ala	Ala	Arg 15	Gly
40	Tyr	Val	Val	Arg 20	Lys	Pro	Ala	Gln	Ser 25	Arg	Leu	Asp	Asp	Asp 30	Pro	Pro
45	Pro	Ser	Thr 35	Leu	Leu	Lys	Asp	Tyr 40	Gln	Asn	Va1	Pro	Gly 45	Ile	Glu	Lys
	Val	Asp 50	Asp	Val	Val	Lys	Arg 55	Leu	Leu	Ser	Leu	Glu 60	Met	Ala	Asn	Lys
50	Lys 65	Glu	Met	Leu	Lys	Ile 70	Lys	Gln	Glu	Gln	Phe 75	Met	Lys	Lys	Ile	Val 80
	Ala	Asn	Pro	Glu	Asp 85	Thr	Arg	Ser	Leu	Glu 90	Ala	Arg	Ile	Ile	Ala 95	Leu
55	Ser	Val	Lys	Ile 100	Arg	Ser	Tyr	Glu	Glu 105	His	Leu	Glu	Lys	His 110	Arg	Lys
	Asn	Lvs	Ala	His	Tare	Ara	T ~	T 011	T 011	Mot	C	T1 -	X	~ 1	3	_

	Lys	Met 130	Leu	Lys	Asn	Leu	Arg 135	Asn	Thr	Asn	Tyr	Asp 140	Val	Phe	Glu	Lys
5	Ile 145	Cys	Trp	Gly	Leu	Gly 150	Ile	Glu	Тут	Thr	Phe 155	Pro	Pro	Leu	Tyr	Tyr 160
	Arg	Arg	Ala	His	Arg 165	Arg	Phe	Val	Thr	Lys 170	Lys	Ala	Leu	Cys	Ile 175	Arg
10	Val	Phe	Gln	Glu 180	Thr	Gln	Lys	Leu	Lys 185	Lys	Arg	Arg	Arg	Ala 190	Leu	Lys
15	Ala	Ala	Ala 195	Ala	Ala	Gln	Lys	Gln 200	Ala	Lys	Arg	Arg	Asn 205	Pro	Asp	Ser
10	Pro	Ala 210	Lys	Ala	Ile	Pro	Lys 215	Thr	Leu	Lys	qzA	Ser 220	Gln	Xaa		
20	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 3	346:							
25				- (A) L B) T D) T	ENGT YPE: OPOL	H: 6 ami OGY:	ERIS 4 am no a lin PTIO	ino cid ear	acid		: 34	6 :			
30	Met 1	_	Ala	Pro	Ala 5	Ala	Ser	Leu	Leu	Leu 10	Leu	Leu	Leu	Leu	Phe 15	Ala
	Cys	Cys	Trp	Ala 20	Pro	Gly	Gly	Ala	Asn 25	Leu	Ser	Gln	Asp	qaA 30	Ser	Gln
35	Pro	Trp	Thr 35	Ser	Asp	Glu	Thr	Val 40	Val	Ala	Gly	Gly	Thr 45	Val	Val	Leu
40	Lys	Cys 50		Val	Lys	Asp	His 55	Glu	Asp	Ser	Ser	Leu 60	Gln	Trp	Ser	Xaa
45	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO: 3	347:							
50				(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	ERIS' 54 a no a lin PTIO	mino cid ear	aci		: 34	7:			
55	Met 1		Ala	Pro	Val 5	Trp	Tyr	Leu	Val	Ala 10	Ala	Ala	Leu	Leu	Val	Gly
	Phe	Ile	Leu	Phe 20	Leu	Thr	Arg	Ser	Arg 25	Gly	Arg	Ala	Ala	Ser 30	Ala	Gly
60	Gln	Glu	Pro	Leu	His	Asn	Glu	Glu	Leu	Ala	Gly	Ala	Gly	Arg	Val	Ala

			35					40					45			
5	Gln	Pro 50	Gly	Pro	Leu	Glu	Pro 55	Glu	Glu	Pro	Arg	Ala 60	Gly	Gly	Arg	Pro
J	Arg 65	Arg	Arg	Arg	Asp	Leu 70	Gly	Ser	Arg	Leu	Gln 75	Ala	Gln	Arg	Arg	Ala 80
0	Gln	Arg	Val	Ala	Trp 85	Ala	Glu	Ala	Asp	Glu 90	Asn	Glu	Glu	Glu	Ala 95	Val
	Ile	Leu	Ala	Gln 100	Glu	Glu	Glu	Gly	Val 105	Glu	Lys	Pro	Ala	Glu 110	Xaa	His
15	Leu	Ser	Gly 115	Lys	Ile	Gly	Ala	Lys 120	Lys	Leu	Arg	Xaa	Xaa 125	Glu	Glu	Lys
20	Gln	Ala 130	Arg	Lys	Ala	Gln	Xaa 135	Glu	Ala	Glu	Glu	Ala 140	Glu	Arg	Glu	Xaa
	Arg 145	Lys	Arg	Leu	Glu	Ser 150	Gln	Arg	Glu	Xaa						
25	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: (348:							
30				(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	7 am no a lin	ino cid ear	acid		: 34	8 :			
35	1	Gln	Lys	Cys	Met 5	Leu	Ser	Ala	Leu	Val 10	Phe	His	Ile	Gln	Trp 15	Ser
40	Xaa															
1 0 .	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	349:							
45				(A) L B) T D) T	ENGT YPE : YOPOL	H: 1 ami OGY:	no a no a lin	ino cid ear	acid		: 34	9:	٠		
50	Met 1		Val	Cys	Ser 5	Phe	Leu	Phe	Leu	Хаа 10						
55	(2)	INF	ORMA	TION	FOR	SEQ	ID:	NO:	350:							
			(i)		A) I	ENGI	H: 1		uno		ls					
60								lir								

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 350:
     Val Ile Glu Leu Cys Val Ser Leu Arg Ser Leu Asn Phe Xaa
 5
      (2) INFORMATION FOR SEQ ID NO: 351:
10
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 18 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 351:
15
     Met Cys Glu Phe Xaa Xaa Xaa Ile Met Xaa Leu Ala Gly Tyr Phe Ala
                      5
     Cys Xaa
20
      (2) INFORMATION FOR SEQ ID NO: 352:
25
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 62 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
30
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 352:
     Met Val Gly Gly Tyr Val Ser Ser Phe Ser Phe Pro Pro Val Ser Ser
                                          10
35
     Ser Leu Leu Pro Ala Ser Phe Ala Phe Pro Phe Leu Pro Gly Thr
                  20
                                      25
     Pro Cys Pro Phe Leu Tyr Phe Leu Pro Ser Pro Phe Ser Pro Leu Pro
                              40
40
     Leu Ser Leu Thr Arg Ser Asn Ser Phe Leu Leu Asn Gly Xaa
          50
                              55
45
      (2) INFORMATION FOR SEQ ID NO: 353:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 33 amino acids
50
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 353:
     Glu Lys Lys Ser Met Ser Val Ser Asp Ile Tyr Ala Leu Glu Ser Leu
55
       1
                       5
     Gly Arg Ser Leu Phe Thr Leu Asn Ser Met Cys Leu Pro Leu Ser Phe
                   20
                                      25
                                                          30
60
     Xaa
```

WO 98/54963 PCT/US98/11422

5	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	10: 3	54:							
10				(1 (1 (1	A) L1 3) T 0) T	ENGTI YPE : OPOLA	H: 2 ami OGY:	ERIST 45 ar no ac line PTION	mino cid ear	acio		: 354	l :			
15	Met 1	Gly	Gly	Ala	Ser 5	Arg	Arg	Val	Glu	Ser 10	Gly	Ala	Trp	Ala	Tyr 15	Leu
15	Ser	Pro	Leu	Val 20	Leu	Arg	Lys	Glu	Leu 25	Glu	Ser	Leu	Val	Glu 30	Asn	Glu
20	Gly	Ser	Glu 35	Val	Leu	Ala	Leu	Pro 40	Glu	Leu	Pro	Ser	Ala 45	His	Pro	Ile
	Ile	Phe 50	Trp	Asn	Leu	Leu	Trp 55	Tyr	Phe	Gln	Arg	Leu 60	Arg	Leu	Pro	Ser
25	Ile 65	Leu	Pro	Gly	Leu	Va1 70	Leu	Ala	Ser	Cys	Asp 75	Gly	Pro	Ser	Xaa	Ser 80
30	Gln	Ala	Pro	Ser	Pro 85	Trp	Leu	Thr	Pro	Asp 90	Pro	Ala	Ser	Val	Gln 95	Val
	Arg	Leu		Trp 100	Asp	Val	Leu	Thr	Pro 105	Asp	Pro	Asn	Ser	Cys 110	Pro	Pro
35	Leu	Tyr	Val 115	Leu	Trp	Arg	Val	His 120	Ser	Gln	Ile	Pro	Gln 125	Arg	Val	Val
	Trp	Pro 130		Pro	Val	Pro	Ala 135	Ser	Leu	Ser	Leu	Ala 140	Leu	Leu	Glu	Ser
40	Val 145	Leu	Arg	His	Val	G1y 150	Leu	Asn	Glu	Val	His 155	Lys	Ala	Val	Gly	Leu 160
45	Leu	Leu	Glu	Thr	Leu 165	Gly	Pro	Pro	Pro	Thr 170	_	Leu	His	Leu	Gln 175	Arg
.0	Gly	Ile	Tyr	Arg 180		Ile	Leu	Phe	Leu 185	Thr	Met	Ala	Ala	Leu 190	Gly	Lys
50	Asp	His	Val 195		Ile	Val	Ala	Phe 200		Lys	Lys	Tyr	Lys 205	Ser	Ala	Phe
	Asn	Lys 210		Ala	Ser	Ser	Met 215	Gly	Lys	Glu	Glu	Leu 220		His	Arg	Arg
55	Ala 225		Met	Pro	Thr	Pro 230		Ala	Ile	Asp	Cys 235	_	Lys	Cys	Phe	Gly 240
60	Ala	Pro	Pro	Glu	Cys 245											-

WO 98/54963 PCT/US98/11422

```
(2) INFORMATION FOR SEQ ID NO: 355:
5
            (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 35 amino acids
                  (B) TYPE: amino acid
                  (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 355:
10
     Met Lys Phe Ser Leu Leu Phe Leu Pro Met Leu Leu Ile Leu Lys Pro
     Asp Leu Phe His Ile Ser Ile Cys Thr Leu Ala Ala Cys Gly Leu Thr
15
                                  25
     Phe Pro Xaa
             35
20
     (2) INFORMATION FOR SEQ ID NO: 356:
            (i) SEQUENCE CHARACTERISTICS:
25
                  (A) LENGTH: 22 amino acids
                  (B) TYPE: amino acid
                  (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 356:
30
     Met Leu Phe Phe Phe Ile Leu His Leu Leu Ser Ile Met Ser Phe Leu
      1 5
                            10
     Ser Pro Asp Ile Met Xaa
35
     (2) INFORMATION FOR SEQ ID NO: 357:
40
            (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 98 amino acids
                  (B) TYPE: amino acid
                  (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 357:
45
     Met Phe Gly Leu Leu Val Glu Ser Gln Thr Leu Leu Glu Glu Asn Ala
                      5
     Val Gln Gly Thr Glu Arg Thr Leu Gly Leu Asn Ile Ala Pro Phe Ile
50
                           25
     Asn Gln Phe Gln Val Pro Ile Arg Val Phe Leu Asp Leu Ser Ser Leu
55
     Pro Cys Ile Pro Leu Ser Lys Pro Val Glu Leu Leu Arg Leu Asp Leu
                           55
     Met Thr Pro Tyr Leu Asn Thr Ser Asn Arg Glu Val Lys Val Tyr Val
          70
                               75 80
60
```

Cys Xaa Ile Trp Glu Asp Leu Thr Ala Ile Pro Phe Trp Val Ser Tyr 85 90 Val Pro 5 (2) INFORMATION FOR SEQ ID NO: 358: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 78 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 358: Met Phe Gly Ala His Arg Xaa Trp Gln Gly Ser Val Leu Leu Phe Leu 5 10 20 Ser Phe Ala Trp Gly Asn Gly Gly Ser Val Thr Phe Ser Asp Val Pro 25 Arg Val Met Pro Leu Ala Gly Gly Pro Xaa Xaa Gln Val Ser Ser Thr 25 Pro Arg Pro Pro Pro His Gln Val Thr Ser Ser Pro Gly Leu Glu Ser Ala His Ile Val Cys Pro Glu Arg Lys Lys Lys Lys Lys 30 (2) INFORMATION FOR SEQ ID NO: 359: 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 359: Thr Leu Leu Xaa Phe Leu Xaa Leu Leu Thr Thr Glu Gly Gly Arg Glu 5 10 45 Asn Ile Phe Xaa Gly Arg Ile Leu Xaa Leu Gln Xaa Ser Pro Xaa 20 25 50 (2) INFORMATION FOR SEO ID NO: 360: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 57 amino acids (B) TYPE: amino acid 55 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 360: Met Leu Ser Phe Phe Ile Cys Leu Leu Ile Phe Val His Leu Leu Leu 5 10 60

```
Leu Ser Phe Leu Ile Ser Asp Trp Pro Pro Pro Thr Gly Ser Ala Xaa
                                      25
     His Lys Ile Leu Arg Leu Met Val Val Gln Arg Leu Ser Leu Leu Asp
 5
                    . 40
     Gln Arg Lys Arg Trp Ser Glu Ala Xaa
        50
                              55
10
      (2) INFORMATION FOR SEQ ID NO: 361:
             (i) SEQUENCE CHARACTERISTICS:
15
                   (A) LENGTH: 3 amino acids
                    (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 361:
20
     Lys Tyr Xaa
       1
25
      (2) INFORMATION FOR SEQ ID NO: 362:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 32 amino acids
                    (B) TYPE: amino acid
30
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 362:
     Trp Ser Ser Ala Ser Ser Ser Trp Val Thr Thr Pro Glu Arg Ile Arg
35
      Pro Arg Met Asp Thr Leu Pro Val Lys Gly His Phe Leu Ser Met Xaa
                 20
                                  25
40
      (2) INFORMATION FOR SEQ ID NO: 363:
45
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 28 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
50
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 363:
     Asp Ile Phe Val Phe Leu Leu Ser Thr Arg Ala Gly Gly Leu Gly Ile
       1
                  5
                                         10
55
     Asn Leu Thr Ala Xaa Asp Thr Val His Phe Leu Xaa
                  20
                                      25
60
     (2) INFORMATION FOR SEQ ID NO: 364:
```

```
(i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 15 amino acids
                    (B) TYPE: amino acid
 5
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 364:
      Thr Leu Thr Ser Phe Leu Glu Leu Pro Leu Ala Pro Glu Pro Xaa
                       5
                                           10
10
      (2) INFORMATION FOR SEQ ID NO: 365:
15
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 34 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 365:
20
      Met His Arg Tyr Ile Thr Phe Phe Lys Cys Phe Arg Ser Val Ile Leu
                      5
                                          10
      Asp Leu Leu Phe Ile Leu Ser Pro Leu Ser Gln Gly Cys Phe Ile Leu
25
      Phe Xaa
30
      (2) INFORMATION FOR SEQ ID NO: 366:
             (i) SEQUENCE CHARACTERISTICS:
35
                    (A) LENGTH: 66 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 366:
40
      Met Phe Gly Phe Ile Phe Leu Leu Leu Ile Phe Cys Ile Xaa Leu Cys
      Ser Arg Thr Leu Ser Thr Phe Ile Pro Lys Leu Val Gly Phe Leu Tyr
                  20
                                       25
45
      Trp Lys Phe Ser Ile Asn Leu Ser Leu Leu Leu Thr Leu Ile Lys Lys
                                  40
      Lys Lys Lys Lys Lys Thr Pro Arg Gly Gly Pro Gly Xaa Gln Ser
50
      Pro Pro
       65
55
      (2) INFORMATION FOR SEQ ID NO: 367:
             (i) SEQUENCE CHARACTERISTICS:
60
                     (A) LENGTH: 317 amino acids
```

(B) TYPE: amino acid (D) TOPOLOGY: linear

			(XI)	SEQ	OEIVC	E DE	SCKI	PITO	W: 2	EQ I	ט אט	: 36	7:			
5	Met 1		Gly	Leu	Gly 5	Arg	Pro	Arg	Gln	Ala 10	Arg	Trp	Thr	Leu	Met 15	Leu
10	Leu	Leu	Ser	Thr 20	Ala	Met	Tyr	Gly	Ala 25	His	Ala	Pro	Leu	Leu 30	Ala	Leu
	Cys	His	Val 35	Asp	Gly	Arg	Val	Pro 40	Phe	Arg	Pro	Ser	Ser 45	Ala	Val	Leu
15	Leu	Thr 50	Glu	Leu	Thr	Lys	Leu 55	Leu	Leu	Cys	Ala	Phe 60	Ser	Leu	Leu	Val
	Gly 65	Trp	Gln	Ala	Trp	Pro 70	Gln	Gly	Pro	Pro	Pro 75	Trp	Arg	Gln	Ala	Ala 80
20	Pro	Phe	Ala	Leu	Ser 85	Ala	Leu	Leu	Tyr	Gly 90	Ala	Asn	Asn	Asn	Leu 95	Val
25	Ile	Tyr	Leu	Gln 100	Arg	Tyr	Met	Asp	Pro 105	Ser	Thr	Tyr	Gln	Val 110	Leu	Ser
	Asn	Leu	Lys 115	Ile	Gly	Ser	Thr	Ala 120	Val	Leu	Tyr	Cys	Leu 125	Cys	Leu	Arg
30	His	Arg 130	Leu	Ser	Val	Arg	Gln 135	Gly	Leu	Ala	Leu	Leu 140	Leu	Leu	Met	Ala
	Ala 145	Gly	Ala	Cys	Tyr	Ala 150	Ala	Gly	Gly	Leu	Gln 155	Val	Pro	Gly	Asn	Thr 160
35	Leu	Pro	Ser	Pro	Pro 165	Pro	Ala	Ala	Ala	Ala 170	Ser	Pro	Met	Pro	Leu 175	His
40	Ile	Thr	Pro	Leu 180	Gly	Leu	Leu	Leu	Leu 185	Ile	Leu	Tyr	Cys	Leu 190	Ile	Ser
	Gly	Leu	Ser 195	Ser	Val	Tyr	Thr	Glu 200	Leu	Leu	Met	Lys	Arg 205	Gln	Xaa	Leu
45	Pro	Leu 210	Ala	Leu	Gln	Asn	Leu 215	Phe	Leu	Tyr	Thr	Phe 220	Gly	Val	Leu	Leu
	Asn 225	Leu	Gly	Leu	His	Ala 230	Gly	Gly	Gly	Ser	Gly 235	Pro	Gly	Leu	Leu	Glu 240
50	Gly	Phe	Ser	Glý	Trp 245	Ala	Ala	Leu	Val	Val 250	Leu	Ser	Gln	Ala	Leu 255	Asn
55	Gly	Leu	Leu	Met 260	Ser	Ala	Val	Met	Lys 265	His	Gly	Ser	Ser	Ile 270	Thr	Arg
	Leu	Phe	Val 275	Val	Ser	Cys	Ser	Leu 280	Val	Val	Asn	Ala	Val 285	Leu	Ser	Ala
60	Val	Leu 290	Leu	Arg	Leu	Gln	Leu 295	Thr	Ala	Ala	Phe	Phe	Leu	Ala	Thr	Leu

Leu Ile Gly Leu Ala Met Arg Leu Tyr Tyr Gly Ser Arg 310 5 (2) INFORMATION FOR SEQ ID NO: 368: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 31 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 368: 15 Met Gly Glu Gln Pro His Phe Ser Leu Cys Val Leu Leu Ala Ala Val Arg Glu Asp Xaa Asp Pro Xaa Val Phe Pro Cys Cys Phe Leu Xaa 20 25 20 (2) INFORMATION FOR SEQ ID NO: 369: 25 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 369: 30 Met Ser Phe Ile Ala Leu His Pro Leu Leu Pro Glu Ala Ala Leu Gly 10 1 5 Val Pro Gly Gln Ser Pro His Arg Pro Leu Trp Gln Thr Gln Cys Cys 35 25 Val Ala Pro Pro Gln Pro Arg Ala Glu Phe Xaa 35 40 (2) INFORMATION FOR SEQ ID NO: 370: (i) SEQUENCE CHARACTERISTICS: 45 (A) LENGTH: 255 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 370: Met Val Thr Ala Leu Thr Leu Leu Ala Phe Pro Leu Leu Leu His 50 10 Ala Glu Arg Ile Ser Leu Val Phe Leu Leu Phe Leu Gln Ser Phe 25 55 Leu Leu His Leu Leu Ala Ala Gly Ile Pro Val Thr Thr Pro Gly 40 Pro Phe Thr Val Pro Trp Gln Ala Val Ser Ala Trp Ala Leu Met Ala 55 60

PCT/US98/11422

	Thr 65	Gln	Thr	Phe	Tyr	Ser 70	Thr	Gly	His	Gln	Pro 75	Val	Phe	Pro	Ala	Ile 80
5	His	Trp	His	Ala	Ala 85	Phe	Val	Gly	Phe	Pro 90	Glu	Gly	His	Gly	Ser 95	Cys
10	Thr	Trp	Leu	Pro 100	Ala	Leu	Leu	Val	Gly 105	Ala	Asn	Thr	Phe	Ala 110	Ser	His
	Leu	Leu	Phe 115	Ala	Val	Gly	Суѕ	Pro 120	Leu	Leu	Leu	Leu	Trp 125	Pro	Phe	Leu
15	Cys	Glu 130		Gln	Gly	Leu	Arg 135	Lys	Arg	Gln	Gln	Pro 140	Pro	Gly	Asn	Glu
	Ala 145	Asp	Ala	Arg	Val	Arg 150	Pro	Glu	Glu	Glu	Glu 155	Glu	Pro	Leu	Met	Glu 160
20	Met	Arg	Leu	Arg	Asp 165	Ala	Pro	Gln	His	Phe 170	Tyr	Ala	Ala	Leu	Leu 175	Gln
25	Leu	Gly	Leu	Lys 180	Tyr	Leu	Phe	Ile	Leu 185	Gly	Ile	Gln	Ile	Leu 190	Ala	Cys
20	Ala	Leu	Ala 195	Ala	Ser	Ile	Leu	Arg 200	Arg	His	Leu	Met	Val 205	Trp	Lys	Val
30	Phe	Ala 210	Pro	Lys	Phe	Ile	Phe 215	Glu	Ala	Val	Gly	Phe 220	Ile	Val	Ser	Ser
	Val 225	Gly	Leu	Leu	Leu	Gly 230	Ile	Ala	Leu	Val	Met 235	Arg	Val	Asp	Gly	Ala 240
35	Val	Ser	Ser	Trp	Phe 245	Arg	Gln	Leu	Phe	Leu 250	Ala	Gln	Gln	Arg	Xaa 255	
40	(2)	INF	ORMA!	NOI	FOR	SEQ	ID 1	NO: 3	371:							
45			(i)	(A) L B) T	ENGT YPE :	H: 2 ami	ERIS' 0 am no a lin	ino cid		s					
			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 37	1:			
50	Met 1	Xaa	Gly	Pro	Trp 5	Gly	Glu	Glu	Ala	Leu 10	Ile	Arg	Leu	Pro	Thr 15	Pro
	Ser	Gly	Leu	Xaa 20												
55	(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	NO: 3	372:							
			(i)					ERIS			1					
60								4 am no a		acıd	s					

```
(D) TOPOLOGY: linear
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 372:
       Met Ala Thr Leu Glu Xaa Asn Gln Arg Glu Val Asp Arg Glu Ile Arg
   5
                       5
       Ser Leu Leu Trp Phe Leu Leu Cys Glu Ile Val Ser Gly Trp Leu
                   20 25
       Cys Pro Glu Gly Pro Trp Phe Ser Gln Gly Cys Gln Ile Tyr Lys Asn
. 10
       Leu Ser Ser Ser Ser Tyr Asn Leu Ser Phe Leu Leu Ser Leu Xaa
                    55
                                                 60
 15
 20
       (2) INFORMATION FOR SEQ ID NO: 373:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 40 amino acids
 25
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 373:
       Met Ile His Ser Gly Cys Thr Ser Gln Cys Leu Glu Gly Phe Phe Leu
 30
                       5
       Ile Phe Leu Leu Asp Phe Asn Pro Val Leu Ala Leu Asp Leu Ile Gly
                              25
 35
       Ile Met Arg Lys Ala Ser His Xaa
               35
 40
       (2) INFORMATION FOR SEQ ID NO: 374:
              (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 35 amino acids
                    (B) TYPE: amino acid
 45
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 374:
      Met Val Phe Ser Ala Arg Val Ser Leu Tyr Thr Arg Phe Lys Val Ile
                5
 50
      Leu Leu Ser Leu Leu Ile Met Ile Leu His Val Cys Trp Val Trp Val
                                     25
      Ile Leu Xaa
55
             35
```

(2) INFORMATION FOR SEQ ID NO: 375:

WO 98/54963 PCT/US98/11422

```
(i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 11 amino acids
                      (B) TYPE: amino acid
                      (D) TOPOLOGY: linear
 5
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 375:
       Gly Leu Leu Tyr Ile Met Tyr Cys Asn Ile Xaa
                       5
10
       (2) INFORMATION FOR SEQ ID NO: 376:
              (i) SEQUENCE CHARACTERISTICS:
15
                     (A) LENGTH: 64 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 376:
20
      Met Asn Asn Gly Leu Leu Gln Gln Pro Ser Ala Leu Met Leu Leu Pro
                                            10
      Cys Arg Pro Val Leu Thr Ser Val Ala Leu Asn Ala Asn Phe Val Ser
                   20
                                        25
25
      Trp Lys Ser Arg Thr Lys Tyr Thr Ile Thr Pro Val Lys Met Arg Lys
      Ser Gly Gly Arg Asp His Thr Gly Gly Asn Lys Asp Arg Gly Ile Xaa
30
                               55
35
      (2) INFORMATION FOR SEQ ID NO: 377:
             (i) SEQUENCE CHARACTERISTICS:
40
                     (A) LENGTH: 19 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 377:
45
      Met Arg Lys Gln Arg Leu Val Pro Met Tyr Leu Gly Leu Ile Tyr Ile
        1
                                           10
      Leu Leu Xaa
50
      (2) INFORMATION FOR SEQ ID NO: 378:
55
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 5 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 378:
60
```

```
Met Arg Gln His Xaa
 5
      (2) INFORMATION FOR SEQ ID NO: 379:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 17 amino acids
10
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 379:
      Leu Leu Pro Val Leu Ala Ser Ser Val Pro Ser His Ser Ala Thr
15
      Xaa
20
      (2) INFORMATION FOR SEQ ID NO: 380:
             (i) SEQUENCE CHARACTERISTICS:
25
                     (A) LENGTH: 84 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 380:
30
      Met Leu Pro Leu Leu Phe Thr Tyr Leu Asn Ser Phe Leu His Gln
      Arg Ile Pro Gln Ser Val Arg Ile Leu Gly Ser Leu Val Ala Ile Leu
                                      25
35
      Leu Val Phe Leu Ile Thr Ala Ile Leu Val Lys Val Gln Leu Asp Ala
      Leu Pro Phe Phe Val Ile Thr Met Ile Lys Ile Val Leu Ile Asn Ser
40
      Phe Gly Ala Ile Leu Gln Gly Ser Leu Phe Gly Leu Ala Gly Leu Leu
                          70
                                              75
45
      Pro Ala Ser Xaa
50
      (2) INFORMATION FOR SEQ ID NO: 381:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 21 amino acids
                    (B) TYPE: amino acid
55
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 381:
     Met Lys Leu Ser Leu Phe Leu Ile Leu Ser Asp Val Phe Tyr Leu Gly
              5
                                          10
60
```

```
Ser Pro Xaa Thr Xaa
20
```

5

10

(2) INFORMATION FOR SEQ ID NO: 382:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 29 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 382:

Met Gly Thr Arg Arg Lys Gly Val Ala Trp Leu Ser Leu Ala Pro Leu 15 1 5 10 15

Ile Thr Gly Leu Ala Pro Ala His Ile Thr Ala Val Xaa $20 \hspace{1.5cm} 25$

20

25

(2) INFORMATION FOR SEQ ID NO: 383:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 34 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 383:

Met Lys Asp Leu Leu Gln Arg Asn Pro Trp Lys Asn Ser Leu Leu Leu lu 1 5 10 15

Leu Gln Val Cys Gln Ala Phe Leu Val Cys Ser Leu Thr Gln Leu Ala 20 25 30

35 Val Xaa

40

45

(2) INFORMATION FOR SEQ ID NO: 384:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 47 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 384:

Met Ser Glu Ser His Lys Ile Trp Trp Cys Tyr Arg His Leu Ala Phe 10 1 5 10 15

Pro Leu Leu Thr Leu Ile Leu Tyr Pro Ala Thr Leu Gly Arg Ser Val 20 25 30

Phe Cys His Asp Cys Lys Phe Pro Glu Ala Ser Pro Ala Met Xaa 35 40 45

60 (2) INFORMATION FOR SEQ ID NO: 385:

(2) INFORMATION FOR SEQ ID NO: 388:

```
(i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 25 amino acids
                      (B) TYPE: amino acid
  5
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 385:
       Met Leu Asn Arg Ile Met Val Ala Ser Phe Gly Ala Val Leu Val Gln
                                            10
 10
       Val Cys Arg Gly Xaa Gly Gln Gly Xaa
                   20
15
       (2) INFORMATION FOR SEQ ID NO: 386:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 68 amino acids
20
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 386:
      Met Gln Leu Leu Leu Gly Leu Ile Arg Ser Gln Pro Ser Pro Pro
25
                                           10
      Pro Ser Leu Cys Leu Met Leu Cys Pro Cys Leu Pro Cys Leu Arg Tyr
                   20
                                       25
30
      Ser Pro Phe Val Pro Gln His Pro Cys Pro Leu Pro Leu Asp Leu Cys
                                   40
      Leu Ala Gly Cys Ser Ser Leu Ser Val Gln Asp Lys Cys Ser Trp Pro
                               55
35
      Tyr Pro Ile Xaa
       65
40
      (2) INFORMATION FOR SEQ ID NO: 387:
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 34 amino acids
45
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 387:
      Lys Glu Phe Phe Val Phe Leu Phe Val Cys Leu Phe Trp Leu Leu Ser
50
                                           10
      Asn Thr Pro Leu Thr Phe Ile Ser Ile Ile Leu Gln Arg Lys Glu Thr
                  20
                                                           30
55
      Asn Xaa
```

			(- /	SEQ													
					(A)	LENC	TH:	14 a	mino	aci	.ds						
_					(B)	TYPE	: an	nino	acid	l							
5							LOGY										
			(xi) SE	OUEN	CE D	ESCR	IPTT	ON ·	SEO	TD N	n. 2	00.				
					_			- -	011.	בבע	ו עד	ψ. 3	00:				
	Se	r Ph	e Le	u Me	t Va	l Le	u Va	1 11	e Le	ı Al	a Al	a Se	r Pr	o Xa	a		
10		1				5				1	0						
10																	
	(2)	IN	FORM	MITA	1 FO	R SE	Q ID	NO:	389	:							
15																	
15			(i)	SEQ													
							TH:			cids							
							: am										
					(D)	TOPO	LOGY	: li	near								
20			(xi) SE(QUEN	CE D	ESCR:	IPTI	ON: .	SEQ :	ID N	D: 3	39 :				
20																	
	,																
	1	•			-)				10)						
25																	
23	(2)	TNE	'ADMA	(TTO)	. Bor	000											
	(2)	TIAL	ORMA	MOIT	FOR	SEÇ	2 ID	NO:	390:								
			151	SEO	IENIO:		ייט אינו		·	_							
			(1)	SEQU													
30							TH: 1			ac:	ids						
••							am										
			(vi)				LOGY:										
			(,,,,	SEQ	OENAC	.E DE	SCKI	PIIC	MV: S	FO 1	D NC): 39	0:				
	Met	Thr	Lvs	Ala	Ara	T.eu	Dho	Ara	Lou	T~~		17-1		~ 1			
35	1				5	Deu	1110	- ALG	Dea	110		vai	Leu	СТУ			L
					,					10					15		
	Phe	Met	Ile	Leu	Leu	Ile	Tle	Val	There	Tr	λαη	c~~	21-	C1			
				20				•	25	пр	rap	Ser	Ald		Ala	Ala	L
				_					23					30			
40	His	Phe	Tyr	Leu	His	Thr	Ser	Phe	Ser	Δτα	Pro	ui c	The	C1	Dura	D	
			35					40	501	9	110	1113	45	GIY	PLO	Pro	,
								••					40				
	Leu	Pro	Thr	Pro	Gly	Pro	azA	Ara	Asp	Ara	Glu	T.eu	Thr	Δla	λαη	C0~	
		50			_		55	- 3			014	60		AIG	ASD	Ser	
45																	
	Asp	Val	Asp	Xaa	Phe	Leu	Asp	Xaa	Phe	Leu	Ser	Δla	Gly	Val.	TVC	Cl.	
	65		_			70	•				75	****	Gry	Val	Буз	80	
																80	
	Ser	Asp	Xaa	Pro	Arg	Lys	Glu	Thr	Glu	Gln	Pro	Pro	Δla	Pro	Glv	Cor	
50					85	-				90			7114	110	95	261	
															,,,		
	Met	Glu	Glu	Ser	Val	Arg	Xaa	Tvr	Asp	Tro	Ser	Pro	Δτα	Xaa	Δla	Δτα	
				100		•		-4-	105		501	110	мy	110	AΙα	Arg	
														110			
55	Arg	Thr	Gln	Thr	Arg	Ala	Gly	Ser	Xaa	Ara	Xaa	G]v	Glv	Xaa	Cve	Cve	
			115		_		-	120				1	125		Cla	Cy 5	
													~~>				
	Gly	Ala	Ser	Ala	Pro	Xaa	Pro	Ala	Tro	Pro	Ser	Pro	Pro	Ara	Ser	د ۱ ۸	
		130					135					140		5			
in .																	

```
His Ser Thr Thr Ser Pro Thr Arg Ser Xaa
                       150
 5
      (2) INFORMATION FOR SEQ ID NO: 391:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 9 amino acids
10
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 391:
     Met Val Leu Leu Gly Leu Leu Ser Xaa
15
              5
      (2) INFORMATION FOR SEQ ID NO: 392:
20
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 61 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
25
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 392:
      Met Cys Ile His Val Phe Met Xaa Val Leu Trp Val Leu Phe Leu Leu
                                           10
30
      Asn Pro Leu Cys Thr Gly Leu Trp Pro Leu Xaa Asn Cys Phe Ser Val
                                      25
      Leu Arg His Ala Asp Trp Val Leu Gly Ala Asp Tyr Lys Gly Glu Glu
35
      Leu Asn Arg His Gln Gly Pro Met Lys Pro Lys Asp Xaa
                               55.
40
      (2) INFORMATION FOR SEQ ID NO: 393:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 447 amino acids
45
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 393:
      Met Leu Leu Gly Leu Leu Met Ala Ala Cys Phe Thr Phe Cys Leu Ser
50.
                                           10
      His Gln Asn Leu Lys Glu Phe Ala Leu Thr Asn Pro Glu Lys Ser Ser
                                       25
55
      Thr Lys Glu Thr Glu Arg Lys Glu Thr Lys Ala Glu Glu Glu Leu Asp
                                   40
      Ala Glu Val Leu Glu Val Phe His Pro Thr His Glu Trp Gln Ala Leu
                               55
60
```

WO 98/54963 PCT/US98/11422

Asn Asn Leu Lys Gly Lys Arg Leu Asp Ile Asn Thr Asn Thr 100 100 105 115 125 126 127 126 127 127 127 128 129 129 125 125 125 126 127 126 127 127 127 128 129 129 129 129 129 129 129 129 129 129																	
Asn Asn Leu Lys Gly Lys Arg Leu Asp Ile Asn Thr Asn Thr 7: 110 Ser Gln Asp Leu Lys Ser Ala Leu Ala Lys Phe Lys Glu Gly Ala 115 Met Glu Ser Ser Lys Glu Asp Lys Ala Arg Gln Ala Glu Val Ly 130 Leu Phe Arg Pro Ile Glu Glu Leu Lys Lys Asp Phe Asp Glu Leu 145 Leu Phe Arg Pro Ile Glu Glu Leu Lys Lys Asp Phe Asp Glu Leu 145 Leu Phe Asn Ser Ser Ser Ser Ser Leu Glu Glu Lys Ile Ala Ala Leu 180 Phe Asn Ser Ser Ser Ser Ser Leu Glu Glu Lys Ile Ala Ala Leu 180 Ser Phe Gly Gly Leu Gln Val Val Ile Asn Gly Leu Asn Ser In 200 Ser Phe Gly Gly Leu Gln Val Val Ile Asn Gly Leu Asn Ser In 220 Ser Asn Pro Lys Val Gln Val Ala Ala Phe Val Leu Gly Ala Ala Phe 225 Ser Asn Pro Lys Val Gln Val Glu Ala Ile Glu Gly Gly Ala Leu 260 Ser Asn Pro Lys Val Gln Val Glu Ala Ile Glu Gly Gly Ala Leu 260 Ser Asn Pro Lys Val Gln Val Glu Ala Ile Glu Gly Gly Ala Leu 260 Ser Asn Pro Lys Val Gln Val Glu Ala Ile Glu Gly Gly Ala Leu 260 Ser Asn Pro Lys Val Clu Tyr Ala Ala Phe Val Leu Arg His Phe Pro Ty 260 40 Lys Val Leu Phe Ala Leu Cys Ser Leu Leu Arg His Phe Pro Ty 275 Gln Arg Gln Phe Leu Lys Leu Gly Gly Leu Gln Val Clu Ala 305 Gln Arg Gln Phe Leu Lys Leu Gly Gly Leu Gln Val Clu Ala 305 Clu Gln Glu Lys Gly Thr Glu Val Leu Ala Val Arg Val Val Thr 305 Leu Tyr Asp Leu Val Thr Glu Lys Met Phe Ala Glu Glu Glu Ala 325 Leu Thr Gln Glu Met Ser Pro Glu Lys Leu Gln Gln Tyr Arg Glu Sato 340 His Leu Leu Ala Leu Pro Gly Leu Trp Glu Gln Gly Trp Cys Glu Ile Thr 355 His Leu Leu Ala Leu Pro Gly Leu Trp Glu Gln Gly Trp Cys Glu Ile Thr 370 370 Asn Asn Asn Pro Glu His Asp Ala Arg Glu Lys Val Leu 370 380			Pro	Gly	Gln	Ala		Pro	Ala	Gly	Ser		Val	Arg	Leu	Asr.	Leu 80
100 105 110 110 110 110 110 110 110 110		Gln	Thr	Gly	Glu	_	Glu	Ala	Lys	Leu		Tyr	Glu	Asp	Lys	Phe 95	Æg
Met Glu Ser Ser Lys Glu Asp Lys Ala Arg Gln Ala Glu Val Ly 130 135 140 Leu Phe Arg Pro Ile Glu Glu Leu Lys Lys Asp Phe Asp Glu Le 145 155 155 Leu Phe Arg Pro Ile Glu Glu Leu Lys Lys Asp Phe Asp Glu Le 145 165 170 155 Val Val Ile Glu Thr Asp Met Gln Ile Met Val Arg Leu Ile As 160 185 170 170 Phe Asn Ser Ser Ser Ser Leu Glu Glu Lys Ile Ala Ala Le 180 180 185 190 25 Asp Leu Glu Tyr Tyr Val His Gln Met Asp Asn Ala Gln Asp Leu 195 200 205 Ser Phe Gly Gly Leu Gln Val Val Ile Asn Gly Leu Asn Ser Th 210 220 Asp Leu Val Lys Glu Tyr Ala Ala Phe Val Leu Gly Ala Ala Phe 225 235 Ser Asn Pro Lys Val Gln Val Glu Ala Ile Glu Gly Gly Ala Leu 245 250 25 Lys Leu Leu Val Ile Leu Ala Thr Glu Gln Pro Leu Thr Ala Ly 260 275 Gln Arg Gln Phe Leu Lys Leu Gly Gly Leu Gln Val Leu Arg The 290 295 300 Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val Arg Val Val The 305 310 315 Leu Tyr Asp Leu Val Thr Glu Lys Met Phe Ala Glu Glu Glu Ala 345 350 His Leu Leu Pro Gly Leu Trp Glu Gln Gly Trp Cys Glu Ile The 355 360 His Leu Leu Ala Leu Pro Glu His Asp Ala Arg Glu Lys Val Leu 370		Asn	Asn	Leu	_	Gly	Lys	Arg	Leu	-	Ile	Asn	Thr	Asr.		Zļ⁄.Z	Tar
150 Leu Phe Arg Pro Ile Glu Glu Leu Lys Lys Asp Phe Asp Glu Leu 145 Val Val Ile Glu Thr Asp Met Gln Ile Met Val Arg Leu Ile Asp 165 Phe Asn Ser Ser Ser Ser Ser Leu Glu Glu Lys Ile Ala Ala Leu 180 25 Asp Leu Glu Tyr Tyr Val His Gln Met Asp Asn Ala Gln Asp Leu 195 Ser Phe Gly Gly Leu Gln Val Val Ile Asn Gly Leu Asn Ser The 210 26 Pro Leu Val Lys Glu Tyr Ala Ala Phe Val Leu Gly Ala Ala Phe 225 Ser Asn Pro Lys Val Gln Val Glu Ala Ile Glu Gly Gly Ala Ala Phe 225 Lys Leu Leu Val Ile Leu Ala Thr Glu Gln Pro Leu Thr Ala Ly 260 Lys Val Leu Phe Ala Leu Cys Ser Leu Leu Arg His Phe Pro Ty 280 Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val Arg Val Val The 305 Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val Arg Val Val The 305 Leu Tyr Asp Leu Val Thr Glu Lys Met Phe Ala Glu Glu Glu Ala 325 Leu Thr Gln Glu Met Ser Pro Glu Lys Leu Gln Gln Tyr Arg Gla 340 Ser Asp Ala Ala Phe Val Lys Leu Gln Gln Tyr Arg Gla 340 Na Gln Glu Met Ser Pro Glu Lys Leu Gln Gln Tyr Arg Gla 340 Leu Thr Gln Glu Met Ser Pro Glu Lys Leu Gln Gln Tyr Arg Gla 340 His Leu Leu Ala Leu Pro Gly Leu Trp Glu Gln Gly Trp Cys Glu Ile The 370 His Leu Leu Ala Leu Pro Gly His Asp Ala Arg Glu Lys Val Leu 370	10	Ser	Gln		Leu	Lys	Ser	Ala		Ala	Lys	Phe	Lys		Gly	Ala	3lu
Leu Phe Arg Pro Ile Glu Glu Leu Lys Lys Asp Phe Asp Glu Lei 145 Val Val Ile Glu Thr Asp Met Gln Ile Met Val Arg Leu Ile As 165 Phe Asn Ser Ser Ser Ser Ser Leu Glu Glu Lys Ile Ala Ala Lei 180 25 Asp Leu Glu Tyr Tyr Val His Gln Met Asp Asn Ala Gln Asp Lei 195 Ser Phe Gly Gly Leu Gln Val Val Ile Asn Gly Leu Asn Ser The 210 Pro Leu Val Lys Glu Tyr Ala Ala Phe Val Leu Gly Ala Ala Phe 225 Ser Asn Pro Lys Val Gln Val Glu Ala Ile Glu Gly Gly Ala Ala Phe 225 Lys Leu Leu Val Ile Leu Ala Thr Glu Gln Pro Leu Thr Ala Ly 260 Lys Val Leu Phe Ala Leu Cys Ser Leu Leu Arg His Phe Pro Ty 275 Gln Arg Gln Phe Leu Lys Leu Gly Gly Gly Leu Gln Val Leu Arg The 305 Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val Arg Val Val The 305 Leu Thr Asp Leu Val Thr Glu Lys Met Phe Ala Glu Glu Ala 235 Leu Thr Gln Glu Met Ser Pro Glu Lys Leu Gln Gln Tyr Arg Gle 340 His Leu Leu Ala Leu Pro Gly Leu Trp Glu Gln Gly Trp Cys Glu Ile The 355 His Leu Leu Ala Leu Pro Gly Leu Trp Glu Gln Gly Trp Cys Glu Ile The 370 375		Met		Ser	Ser	Lys	Glu		Lys	Ala	Arg	Gln		Glu	Val	Lys	Arg
20			Phe	Arg	Pro	Ile		Glu	Leu	Lys	Lys	_	Phe	çaA	Glu	Leu	Asn 160
25 Asp Leu Glu Tyr Tyr Val His Gln Met Asp Asn Ala Glm Asp Leu 195 Ser Phe Gly Gly Leu Gln Val Val Ile Asn Gly Leu Asn Ser Th 210 Pro Leu Val Lys Glu Tyr Ala Ala Phe Val Leu Gly Ala Ala Ph 225 Ser Asn Pro Lys Val Gln Val Glu Ala Ile Glu Gly Gly Ala Ala Ph 245 Lys Leu Leu Val Ile Leu Ala Thr Glu Gln Pro Leu Thr Ala Ly 260 Lys Val Leu Phe Ala Leu Cys Ser Leu Leu Arg His Phe Pro Ty 275 Gln Arg Gln Phe Leu Lys Leu Gly Gly Leu Gln Val Leu Arg Th 305 Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val Arg Val Val Th 305 Leu Tyr Asp Leu Val Thr Glu Lys Met Phe Ala Glu Glu Glu Al 325 Leu Thr Gln Glu Met Ser Pro Glu Lys Leu Gln Gln Tyr Arg Glu Sato 340 55 His Leu Leu Pro Gly Leu Trp Glu Gln Gly Trp Cys Glu Ile Th 355 His Leu Leu Ala Leu Pro Gly Leu Trp Glu Gln Gln Tyr Cys Glu Ile Th 360 His Leu Leu Ala Leu Pro Gly Leu Trp Glu Gln Gln Tyr Cys Glu Ile Th 370 370 375		Val	Val	Ile	Glu		Asp	Met	Gln	Ile		Val	Arg	Leu	Ile	Asn 175	<u>:</u> -ys
Ser Phe Gly Gly Leu Gln Val Val Ile Asn Gly Leu Asn Ser The 210 215 220 20 20 20 20 20 20 20 20 20 20 20 20		Phe	Asn	Ser		Ser	Ser	Ser	Leu		Glu	Lys	Ile	Ala		Leu	Phe
210 215 220 Pro Leu Val Lys Glu Tyr Ala Ala Phe Val Leu Gly Ala Ala Phe 225 Ser Asn Pro Lys Val Gln Val Glu Ala Ile Glu Gly Gly Ala Leu 245 Lys Leu Leu Val Ile Leu Ala Thr Glu Gln Pro Leu Thr Ala Ly 260 40 Lys Val Leu Phe Ala Leu Cys Ser Leu Leu Arg His Phe Pro Ty 275 Gln Arg Gln Phe Leu Lys Leu Gly Gly Leu Gln Val Leu Arg The 290 Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val Arg Val Val The 305 Leu Tyr Asp Leu Val Thr Glu Lys Met Phe Ala Glu Glu Glu Al 325 Leu Thr Gln Glu Met Ser Pro Glu Lys Leu Gln Gln Tyr Arg Gleu Thr 340 55 His Leu Leu Pro Gly Leu Trp Glu Gln Gly Trp Cys Glu Ile The 370 His Leu Leu Ala Leu Pro Glu His Asp Ala Arg Glu Lys Val Leu 370 His Leu Leu Ala Leu Pro Glu His Asp Ala Arg Glu Lys Val Leu 370	25	Asp	Leu		Tyr	Тут	Val	His		Met	Asp	Asn	Ala		Asp	Leu	leu
Pro Leu Val Lys Glu Tyr Ala Ala Phe Val Leu Gly Ala Ala Phe 225 Ser Asn Pro Lys Val Gln Val Glu Ala Ile Glu Gly Gly Ala Leu 245 Lys Leu Leu Val Ile Leu Ala Thr Glu Gln Pro Leu Thr Ala Ly 260 Lys Val Leu Phe Ala Leu Cys Ser Leu Leu Arg His Phe Pro Ty 270 Gln Arg Gln Phe Leu Lys Leu Gly Gly Leu Gln Val Leu Arg The 290 Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val Arg Val Val The 305 Leu Tyr Asp Leu Val Thr Glu Lys Met Phe Ala Glu Glu Glu Aleu Arg 325 Leu Thr Gln Glu Met Ser Pro Glu Lys Leu Gln Gln Tyr Arg Gleu 340 55 His Leu Leu Pro Gly Leu Trp Glu Gln Gln Gly Trp Cys Glu Ile The 355 His Leu Leu Ala Leu Pro Glu His Asp Ala Arg Glu Lys Val Leu 370 His Leu Leu Ala Leu Pro Glu His Asp Ala Arg Glu Lys Val Leu 370	30	Ser		Gly	Gly	Leu	Gln		Val	Ile	Asn	Gly		Asn	Ser	Thr	Glu
35 245 250 25 Lys Leu Leu Val Ile Leu Ala Thr Glu Gln Pro Leu Thr Ala Ly 260 265 270 40 Lys Val Leu Phe Ala Leu Cys Ser Leu Leu Arg His Phe Pro Ty 275 280 285 Gln Arg Gln Phe Leu Lys Leu Gly Gly Leu Gln Val Leu Arg Th 290 295 300 45 Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val Arg Val Val Th 305 310 315 50 Leu Tyr Asp Leu Val Thr Glu Lys Met Phe Ala Glu Glu Glu Al 325 330 33 Leu Thr Gln Glu Met Ser Pro Glu Lys Leu Gln Gln Tyr Arg Gl 340 345 350 55 His Leu Leu Pro Gly Leu Trp Glu Gln Gly Trp Cys Glu Ile Th 355 360 365 His Leu Leu Ala Leu Pro Glu His Asp Ala Arg Glu Lys Val Leu 370 380			Leu	Val	Lys	Glu		Ala	Ala	Phe	Val		Gly	Ala	Ala	Phe	Ser 240
40 Lys Val Leu Phe Ala Leu Cys Ser Leu Leu Arg His Phe Pro Ty 285 Gln Arg Gln Phe Leu Lys Leu Gly Gly Leu Gln Val Leu Arg The 290 Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val Arg Val Val The 305 Leu Tyr Asp Leu Val Thr Glu Lys Met Phe Ala Glu Glu Glu Ala 325 Leu Thr Gln Glu Met Ser Pro Glu Lys Leu Gln Gln Tyr Arg Glu 340 55 His Leu Leu Pro Gly Leu Trp Glu Gln Gly Trp Cys Glu Ile The 370 His Leu Leu Ala Leu Pro Glu His Asp Ala Arg Glu Lys Val Leu 370	35	Ser	Asn	Pro	Lys		Gln	Val	Glu	Ala		Glu	Gly	Gly	Ala	1eu 255	Gln
275 280 285 Gln Arg Gln Phe Leu Lys Leu Gly Gly Leu Gln Val Leu Arg Th 290 295 300 45 Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val Arg Val Val Th 305 310 315 Leu Tyr Asp Leu Val Thr Glu Lys Met Phe Ala Glu Glu Glu Al 325 330 333 Leu Thr Gln Glu Met Ser Pro Glu Lys Leu Gln Gln Tyr Arg Gl 340 345 355 His Leu Leu Pro Gly Leu Trp Glu Gln Gly Trp Cys Glu Ile Th 355 360 365 His Leu Leu Ala Leu Pro Glu His Asp Ala Arg Glu Lys Val Leu 370 375 380		Lys	Leu	Leu		Ile	Leu	Ala	Thr		Gln	Pro	Leu	Thr ,		Lys	Lys
45 Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val Arg Val Val Th 305 Leu Tyr Asp Leu Val Thr Glu Lys Met Phe Ala Glu Glu Glu Al 325 Leu Thr Gln Glu Met Ser Pro Glu Lys Leu Gln Gln Tyr Arg Gl 340 His Leu Leu Pro Gly Leu Trp Glu Gln Gly Trp Cys Glu Ile Th 360 His Leu Leu Ala Leu Pro Glu His Asp Ala Arg Glu Lys Val Leu 370 300 300 300 300 300 300 300	40	Lys	Val		Phe	Ala	Leu	Cys		Leu	Leu	Arg	His		Pro	Tyr	Ala
Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val Arg Val Val Th 305 310 315 315 315 315 Leu Tyr Asp Leu Val Thr Glu Lys Met Phe Ala Glu Glu Glu Ala 330 33 33 Leu Thr Gln Glu Met Ser Pro Glu Lys Leu Gln Gln Tyr Arg Gl 340 345 350 55 His Leu Leu Pro Gly Leu Trp Glu Gln Gly Trp Cys Glu Ile Th 365 His Leu Leu Ala Leu Pro Glu His Asp Ala Arg Glu Lys Val Leu 370 375	45	Gln	_		Phe		_								Arg	Thr	Leu
50 325 330 33 Leu Thr Gln Glu Met Ser Pro Glu Lys Leu Gln Gln Tyr Arg Gl 340 345 350 55 His Leu Leu Pro Gly Leu Trp Glu Gln Gly Trp Cys Glu Ile Th 355 360 365 His Leu Leu Ala Leu Pro Glu His Asp Ala Arg Glu Lys Val Le 370 375 380	73		Gln	Glu	Lys	Gly		Glu	Val	Leu	Ala		Arg	Val	Val	Zinr	Leu 320
55 His Leu Leu Pro Gly Leu Trp Glu Gln Gly Trp Cys Glu Ile Tr 355 360 365 His Leu Leu Ala Leu Pro Glu His Asp Ala Arg Glu Lys Val Leu 370 375 380	50	Leu	Tyr	Asp	Leu			Glu	Lys	Met			Glu	Glu	Glu	Ala 335	Glu
355 360 365 His Leu Leu Ala Leu Pro Glu His Asp Ala Arg Glu Lys Val Le 370 375 380		Leu	Thr	Gln		Met	Ser	Pro	Glu			Gln	Gln	Tyr		Gln	Val
370 375 380	55	His	Leu		Pro	Gly	Leu	Trp			Gly	Trp	Cys		Ile	Thr	Ala
60	60	His			Ala	Leu	Pro			Asp	Ala	Arg			Val	Le:	Gl'n

•	Thr Leu Gly Val Leu Leu Thr Thr Cys Arg Asp Arg Tyr Arg Gln Asp 385 390 395 400
5	Pro Gln Leu Gly Arg Thr Leu Ala Ser Leu Glm Ala Glu Tyr Gln Val 405 410 415
	Leu Ala Ser Leu Glu Leu Gln Asp Gly Glu Asp Glu Gly Tyr Phe Gln 420 425 430
10	Glu Leu Leu Gly Ser Val Asn Ser Leu Leu Lys Glu Leu Arg Xaa 435 443 445
15	(2) INFORMATION FOR SEQ ID NC: 394:
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 394:
25	Met Val Ile Ser Tyr Val Thr Phe Thr Pro Val Ser Ala Asp Cys Phe 1 5 10 15 Phe Asn Val Leu Val Cys Phe Kaa 20
30	(2) INFORMATION FOR SEQ ID NC: 395:
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 395:
40	Glu Leu Leu Phe Leu Leu Ile Ile Ile Leu Gly Glu Ser Leu Ser Asp 1 5 10 15
	Val Ile Leu Leu Ile Cys Phe Yaa 20
45	(2) INFORMATION FOR SEQ ID NC: 396:
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 396:
55	Met Phe Tyr Trp Gly Gly Leu Ser Phe Tyr Phe Leu Leu Ser Ser Gly 1 5 10 15
60	Val Gly Phe Tyr Cys Phe Leu Phe Gly Phe Gly Met Glu Ile Trp Ile 20 25 30

Ala Ala Xaa 5 (2) INFORMATION FOR SEQ ID NO: 397: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3 amino acids 10 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 397: Gly Arg Xaa 15 (2) INFORMATION FOR SEQ ID NO: 398: 20 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 398: Met Lys Leu Ser Leu Leu Ile Leu Thr Leu Met Gln Arg Tyr Phe Arg 5 10 30 Thr Ile Thr Asn Ser Leu Cys Lys Xaa 20 35 (2) INFORMATION FOR SEQ ID NO: 399: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 79 amino acids (B) TYPE: amino acid 40 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 399: Met Pro Ala Val Ser Gly Pro Gly Pro Leu Phe Cys Leu Leu Leu 5 10 45 Leu Leu Asp Pro His Ser Pro Glu Thr Gly Cys Pro Pro Leu Arg Arg Phe Glu Tyr Lys Leu Ser Phe Lys Gly Pro Arg Leu Ala Leu Pro Gly 50 40 Ala Gly Ile Pro Phe Trp Ser His His Gly Gly Glu Gly Gln Gly Trp 55 Gly Pro Leu Cys Pro Gly Ser Leu Lys Val Leu Glu Gly Leu Xaa

60 (2) INFORMATION FOR SEQ ID NO: 400:

WO 98/54963

5			(i) S	· (2	A) LI B) T D) T	ENGT YPE: OPOLA	H: 2: ami: OGY:	l ami no ad line	ino a cid ear	acids		: 400):			
10	1		Val Glu		5	Ser	Met	Pro	Phe	Leu 10	Val	Leu	Phe	Gln	Ser 15	Leu
15	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID N	VO: 4	101:							
20			(i) 5 (xi)	(; ()	A) L B) T D) T	ENGT: YPE : OPOL	H: 2 ami OGY:	57 an no ao lin	mino cid ear	aci		: 40:	l:	-		
25	Met 1	Ala	Ala	Leu	Thr 5	Ser	His	Leu	Gln	Asn 10	Gln	Ser	Asn	Asn	Ser 15	Asn
	Trp	Asn	Leu	Arg 20	Thr	Arg	Ser	Lys	Cys 25	Lys	Lys	Asp	Val	Phe 30	Met	Pro
30	Pro	Ser	Ser 35	Ser	Ser	Glu	Leu	Gln 40	Glu	Ser	Arg	Gly	Leu 45	Ser	Asn	Phe
35	Thr	Ser 50	Thr	His	Leu	Leu	Leu 55	Lys	Glu	Asp	Glu	Gly 60	Val	Asp	Asp	Val
33	Asn 65	Phe	Arg	Lys	Val	Arg 70	Lys ·	Pro	Lys	Gly	Lys 75	Val	Thr	Ile	Leu	Lys 80
40	Gly	Ile	Pro	Ile	Lys 85	Lys	Thr	Lys	Lys	Gly 90	Cys	Arg	Lys	Ser	Cys 95	Ser
	Gly	Phe	Val	Xaa 100	Ser	Asp	Ser	Lys	Arg 105	Glu	Ser	Val	Cys	Asn 110	Lys	Ala
45	Asp	Ala	Glu 115	Ser	Glu	Pro	Val	Ala 120	Gln	Lys	Ser	Gln	Leu 125	Asp	Arg	Thr
5 0	Val	Cys 130	Ile	Ser	Asp	Ala	Gly 135	Ala	Cys	Gly	Glu	Thr 140	Leu	Ser	Val	Thr
50	Ser 145		Glu	Asn	Ser	Leu 150	Va1	Lys	Lys	Lys	Glu 155	Arg	Ser	Leu	Ser	Ser 160
55	Gly	Ser	Asn	Phe	Cys 165	Ser	G1u	Gln	Lys	Thr 170	Ser	Gly	Ile	Ile	Asn 175	Lys
	Phe	Cys	Ser	Ala 180	Lys	Asp	Ser	Glu	His 185	Asn	Glu	Lys	Tyr	Glu 190	Asp	Thr
60	Phe	Leu	Glu	Ser	Glu	Glu	Ile	Gly	Thr	Lys	Val	Glu	Val	Val	Glu	Arg

WO 98/54963 PCT/US98/11422

•			195					200					205			
5	Lys	Glu 210	His	Leu	His	Thr	Asp 215	Ile	Leu	Lys	Arg	Gly 220	Ser	Glu	Met	Asp
	Asn 225	Asn	Cys	Ser	Pro	Thr 230	Arg	Lys	Asp	Phe	Thr 235	Glu	Asp	Thr	Ile	Pro 240
10	Arg	Asn	Thr	Asp	Arg 245	Lys	Lys	Glu	Asn	Lys 250	Pro	Val	Phe	Phe	Gln 255	Gln
15	Ile															
15	(2)	INFO	ORMA!	rion	FOR	SEQ	ID N	10: 4	102 :					ŕ		
20				(A) L B) T D) T	ENGT YPE: OPOL	H: 4 ami OGY:	24 a no a lin	mino cid ear	aci		: 40:	2:			
25	Met 1	Glu	Lys	Gln	Cys 5	Cys	Ser	His	Pro	Val 10	Ile	Cys	Ser	Leu	Ser 15	Thr
30	Met	Tyr	Thr	Phe 20	Leu	Leu	Gly	Ala	Ile 25	Phe	Ile	Ala	Leu	Ser 30	Ser	Ser
	Arg	Ile	Leu 35	Leu	Val	Lys	Tyr	Ser 40	Ala	Asn	Glu	Glu	Asn 45	Lys	Tyr	Asp
35	Tyr	Leu 50	Pro	Thr	Thr	Val	Asn 55	Val	Cys	Ser	Glu	Leu 60	Val	Lys	Leu	Val
40	65	Cys				70					75					80
40		Asn			85					90					95	_
45		Ser Val		100					105					110		
		Ser	115					120					125			
50		130 Leu					135					140				
55	145					150					155					160
<i>55</i>		Val			165					170					175	
60	GIĀ	Arg	GTĀ	180	urz	1112	υzh	utq	185	FIIG	ser.	510	Ser	190	261	сys

•	Leu	Leu	Phe 195	Arg	Asn	Glu	Cys	Pro 200	Arg	Lys	Asp	Asn	Cys 205	Thr	Ala	Lys
5	Glu	Trp 210	Thr	Phe	Pro	Glu	Ala 215	Lys	Trp	Asn	Thr	Thr 220	Ala	Arg	Val	Phe
	Ser 225	His	Ile	Arg	Leu	Gly 230	Met	Gly	His	Val	Leu 235	Ile	Ile	Val	Gln	Cys 240
10	Phe	Ile	Ser	Ser	Met 245	Ala	Asn	Ile	Tyr	Asn 250	Glu	Lys	Ile	Leu	Lys 255	Glu
15	Gly	Asn	Gln	Leu 260	Thr	Glu	Xaa	Ile	Phe 265	Ile	Gln	Asn	Ser	Lys 270	Leu	Tyr
	Phe	Phe	Gly 275	Ile	Leu	Phe	Asn	Gly 280	Leu	Thr	Leu	Gly	Leu 285	Gln	Arg	Ser
20	Asn	Arg 290	Asp	Gln	Ile	Lys	Asn 295	Cys	Gly	Phe	Phe	Туr 300	Gly	His	Ser	Ala
	Phe 305	Ser	Val	Ala	Leu	Ile 310	Phe	Val	Thr	Ala	Phe 315	Gln	Gly	Leu	Ser	Val 320
25	Ala	Phe	Ile	Leu	Lys 325	Phe	Leu	Asp	Asn	Met 330	Phe	His	Val	Leu	Met 335	Ala
30	Gln	Val	Thr	Thr 340	Val	Ile	Ile	Thr	Thr 345	Val	Ser	Val	Leu	Val 350	Phe	Asp
	Phe	Arg	Pro 355	Ser	Leu	Glu	Phe	Phe 360	Leu	Glu	Ala	Pro	Ser 365	Val	Leu	Leu
35	Ser	Ile 370	Phe	Ile	Tyr	Asrı	Ala 375	Ser	Lys	Pro	Gln	Val 380	Pro	Glu	Tyr	Ala
	Pro 385	Arg	Gln	Glu	Arg	Ile 390	Arg	Asp	Leu	Ser	Gly 395	Asn	Leu	Trp	Glu	Arg 400
40	Ser	Ser	Gly	Asp	Gly 405	Glu	Glu	Leu	Glu	Arg 410	Leu	Thr	Lys	Pro	Lys 415	Ser
45	Asp	Glu	Ser	Asp 420	Glu	Asp	Thr	Phe								
50	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 4	403:							
50			(i)	(A) L B) T	ENGT YPE :	H: 3 ami	ERIS 3 am no a lin	ino cid		s					
55			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 40	3:			
	Met 1	Trp	Gly	Gln	Gly 5	Ser	Gln	Lys	Ser	His 10	Phe	Ser	Asp	Leu	Val 15	Phe
60	Gly	Val	Arg	Glu 20	Leu	Суз	Ala	Gln	Pro 25	Ser	Asp	Pro	Gly	Ser 30	Pro	His

Xaa

5

10

(2) INCOMMITTON TON DEG ID NO. 40-	(2)	INFORMATION	FOR	SEQ	ID	NO:	404
------------------------------------	-----	-------------	-----	-----	----	-----	-----

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 80 amino acids

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 404:
- Met Val Gln His Ile Gln Pro Ala Ala Leu Ser Leu Leu Ala Gln Trp 1 5 10 15

Ser Thr Leu Val Gln Glu Leu Glu Ala Ala Leu Gln Leu Ala Phe Tyr

20 25 30

Pro Asp Ala Val Glu Glu Trp Leu Glu Glu Asn Val His Pro Ser Leu $35 \hspace{1cm} 40 \hspace{1cm} 45$

Pro Leu Pro Pro Thr Ser Pro Gly Arg Asp Val Ala Gln Asp Pro Xaa 65 70 75 80

30

40

- 35 (2) INFORMATION FOR SEQ ID NO: 405:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 95 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 405:

Met Leu Asn Gln Gly Tyr Ile Arg Lys Ile Ile Leu Ile Ile Ile Leu
1 5 10 15

Gly Ser Phe Ser Ser Pro Lys Lys Ala Ile Leu Met Gly Phe Gln Asn 20 25 30

Gln Lys Lys Ala Leu Asn Glu Glu Gln Thr Thr Gly Val Pro Met Ser 50 35 40 45

Ile Ser Gly Lys Leu Arg. Pro Ser Arg Ser Leu Asp Phe Val Gln Pro $50 \hspace{1cm} 55 \hspace{1cm} 60$

Pro Arg Phe Gln Ser Gln Gln Pro Ser Ala Val Val Asp Arg Gly 65 70 75 80

Phe Xaa Xaa Lys Ala Ala Arg Gly Gln Glu Phe Ser Glu Ser Xaa 85 90 95

	12,	T141 (ויייייייייייייייייייייייייייייייייייייי	LOIV	1010	SEQ	10 1	·O	.00.							
5			(i) s	(. (:	A) L B) T	ENGT YPE:	H: 2 ami	ERIST 57 ar no ao line	mino cid		ds					
10			(xi)							EQ II	ОИС	: 40	5 :			
	Met 1	Arg	Gly	Pro	Ala 5	Gln	Ala	Lys	Leu	Leu 10	Pro	Gly	Ser	Ala	Ile 15	Gln
15	Ala	Leu	Val	Gly 20	Leu	Ala	Arg	Pro	Leu 25	Val	Leu	Ala	Leu	Leu 30	Leu	Val
	Ser	Ala	Ala 35	Leu	Ser	Ser	Val	Val 40	Ser	Arg	Thr	Asp	Ser 45	Pro	Ser	Pro
20	Thr	Val 50	Leu	Asn	Ser	His	Ile 55	Ser	Thr	Pro	Asn	Val 60	Asn	Ala	Leu	Thr
25	His 65	Glu	Asn	Gln	Thr	Lys 70	Pro	Ser	Ile	Ser	Gln 75	Ile	Ser	Thr	Thr	Leu 80
	Pro	Pro	Thr	Thr	Ser 85	Thr	Lys	Lys	Ser	Gly 90	Gly	Ala	Ser	Val	Val 95	Pro
30	His	Pro	Ser	Pro 100	Thr	Pro	Leu	Ser	Gln 105	Glu	Glu	Ala	Asp	Asn 110	Asn	Glu
	Asp	Pro	Ser 115	Ile	Glu	Glu	Glu	Asp 120	Leu	Leu	Met	Leu	Asn 125	Ser	Ser	Pro
35	Ser	Thr 130	Ala	Lys	Asp	Thr	Leu 135	Asp	Asn	Gly	Asp	Туг 140	Gly	Glu	Pro	Asp
40	Туг 145	Asp	Trp	Thr	Thr	Gly 150	Pro	Arg	Asp	Asp	Asp 155	Glu	Ser	Asp	Asp	Thr 160
.0	Leu	Glu	Glu	Asn	Arg 165	Gly	Tyr	Met	Glu	Ile 170	Glu	Gln	Ser	Val	Lys 175	Ser
45	Phe	Lys	Met	Pro 180	Ser	Ser	Asn	Ile	Glu 185	Glu	Glu	Asp	Ser	His 190	Phe	Phe
	Phe	His	Leu 195	Ile	Ile	Phe	Ala	Phe 200	Cys	Ile	Ala	Val	Val 205	Tyr	Ile	Thr
50	Tyr	His 210	Asn	Lys	Arg	Lys	Ile 215		Leu	Leu	Val	Gln 220	Ser	Arg	Lys	Trp
55	Arg 225	Asp	Gly	Leu	Cys	Ser 230	_	Thr	Val	Glu	Tyr 235	His	Arg	Leu	Asp	Gln 240
55	Asn	Val	Asn	Glu	Ala 245		Pro	Ser	Leu	Lys 250	Ile	Thr	Asn	Asp	Туг 255	Ile
60	Phe															

5	(2)	INFC	RMAT	NOI	FOR	SEQ	ID N	10: 4	07:							
J		,	(i) S	(1	A) Li 3) T	engti YPE :	H: 62 amir	23 ar no ac	mino cid		ds					
10			(xi)	SEQU				line TION		EQ II	ON C	407	7 :			
	Met 1	Phe	Met	Arg	Ile 5	Ala	Lys	Ala	Tyr	Ala 10	Ala	Leu	Thr	Asp	Glu 15	Glu
15	Ser	Arg	Lys	Asn 20	Trp	Glu	Glu	Phe	Gly 25	Asn	Pro	Asp	Gly	Pro 30	Gln	Ala
20	Thr	Ser	Phe 35	Gly	Ile	Ala	Leu	Pro 40	Ala	Trp	Ile	Val	Asp 45	Gln	Lys	Asn
	Ser	Ile 50	Leu	Val	Leu	Leu	Val 55	Tyr	Gly	Leu	Ala	Phe 60	Met	Val	Ile	Leu
25	Pro 65	Val	Val	Val	Gly	Ser 70	Trp	Trp	Tyr	Arg	Ser 75	Ile	Arg	Tyr	Ser	Gly 80
	Asp	Gln	Ile	Leu	Ile 85	Arg	Thr	Thr	Gln	Ile 90	Tyr	Thr	Tyr	Phe	Val 95	Tyr
30	Lys	Thr	Arg	Asn 100	Met	Asp	Met	Lys	Arg 105	Leu	Ile	Met	Val	Leu 110	Xaa	Gly
35	Ala	Ser	Glu 115	Phe	Asp	Pro	Gln	Tyr 120	Asn	Lys	Asp	Ala	Thr 125	Ser	Arg	Pro
	Thr	Asp 130	Asn	Ile	Leu	Ile	Pro 135		Leu	Ile	Arg	Glu 140	Ile	Gly	Ser	Ile
40	Asn 145	Leu	Lys	Lys	Asn	Glu 150	Pro	Pro	Leu	Thr	Cys 155	Pro	Tyr	Ser	Leu	Lys 160
	Ala	Arg	Val	Leu	Leu 165	Leu	Ser	His	Leu	Ala 170	Arg	Met	Lys	Ile	Pro 175	Glu
45	Thr	Leu	Glu	Glu 180	Asp	Gln	Gln	Phe	Met 185	Leu	Lys	Lys	Cys	Pro 190	Ala	Leu
50	Leu	Gln	Glu 195	Met	Val	Asn	Val	Ile 200	Cys	Gln	Leu	Ile	Val 205	Met	Ala	Arg
	Asn	Arg 210	Glu	Glu	Arg	Glu	Phe 215	Arg	Ala	Pro	Thr	Leu 220	Ala	Ser	Leu	Glu
55	Asn 225	Ċys	Met	Lys	Leu	Ser 230	Gln	Met	Ala	Val	Gln 235	Gly	Leu	Gln	Gln	Phe 240
	Lys	Ser	Pro	Leu	Leu 245	Gln	Leu	Pro	His	Ile 250		Glu	Asp	Asn	Leu 255	Arg
60	Ara	Val	Ser	Asn	His	Lvs	Lys	Tyr	Lys	Ile	Lys	Thr	Ile	Gln	Asp	Leu

•				260					265					270		
5	Val	Ser	Leu 275	Lys	Glu	Ser	Asp	Arg 280	His	Thr	Leu	Leu	His 285	Phe	Leu	Glu
	Asp	Glu 290	Lys	Tyr	Glu	Glu	Val 295	Met	Ala	Val	Leu	Gly 300	Ser	Phe	Pro	Tyr
10	Val 305	Thr	Met	Asp	Ile	Lys 310	Ser	Gln	Val	Leu	Asp 315	Asp	Glu	Asp	Ser	Asn 320
	Asn	Ile	Thr	Val	Gly 325	Ser	Leu	Val	Thr	Val 330	Leu	Val	Lys	Leu	Thr 335	Arg
15	Gln	Thr	Met	Ala 340	Glu	Val	Phe	Glu	Lys 345	Glu	Gln	Ser	Ile	Cys 350	Ala	Ala
20	Glu	Glu	Gln 355	Pro	Ala	Glu	Asp	Gly 360	Gln	Gly	Glu	Thr	Asn 365	Lys	Asn	Arg
	Thr	Lys 370	Gly	Gly	Trp	Gln	Gln 375	Lys	Ser	Lys	Gly	Pro 380	Lys	Lys	Thr	Ala
25	385		_	-	Lys	390			-	-	395					400
20					Lys 405			-		410				-	415	
30				420	Ala				425					430		
35			435		Glu			440					445			
		450		•			455.					460				Lys
40	465					470			-		475					11e 480
15			_		Arg 485					490			_		495	
45				500					505					510		Trp
50		_	515		_	_		520		•			525			Tyr
		530					535					540				Pro
55	Ala 545	Pro	Gly	Lys	Pro	Gly 550	Asn	Tyr	Gln	Tyr	Thr 555	Val	Phe	Leu	Arg	Ser 560
	Asp	Ser	Tyr	Met	Gly 565	Leu	Asp	Gln	Ile	Lys 570	Pro	Leu	Glu	Val	Xaa 575	Lys
60	Phe	Met	Arg	Leu	Lys	Pro	Val	Pro	Glu	Asn	His	Pro	Gln	Trp	Asp	Thr

•				580					585					590		
5	Ala	Ile	Glu 595	Gly	Asp	Glu	Asp	Gln 600	Glu	Asp	Ser	Glu	Gly 605	Phe	Glu	Asp
J	Ser	Phe 610	Glu	Gly	Gly	Arg	Gly 615	Arg	Glu	Glu	Gly	Arg 620	Trp	Trp	Thr	
10	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 4	108 :							
15				(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	ERIS' 90 a no a lin PTIO	mino cid ear	aci		: 40	8 :			
20	Met 1	Lys	Ala	Ser	Gln 5	Cys	Cys	Cys	Cys	Leu 10	Ser	His	Leu	Leu	Ala 15	Ser
	Val	Leu	Leu	Leu 20	Leu	Leu	Leu	Pro	Glu 25	Leu	Ser	Gly	Xaa	Leu 30	Xaa	Vạl
25	Leu	Leu	Gln 35	Ala	Ala	Glu	Ala	Ala 40	Pro	Gly	Leu	Gly	Pro 45	Pro	Asp	Pro
30	Arg	Pro 50	Arg	Thr	Leu	Pro	Pro 55	Leu	Pro	Pro	Gly	Pro 60	Thr	Pro	Ala	Gln
	Gln 65	Pro	Gly	Arg	Gly	Leu 70	Ala	Glu	Ala	Ala	Gly 75	Pro	Arg	Gly	Ser	Glu 80
35	Gly	Gly	Asn	Gly	Ser 85	Asn	Pro	Val	Ala	Gly 90	Leu	Glu	Thr	Asp	Asp 95	His
	Gly	Gly	Lys	Ala 100	Gly	Glu	Gly	Ser	Val 105	Gly	Gly	Gly	Leu	Ala 110	Val	Ser
40	Pro	Asn	Pro 115	Gly	Asp	Lys	Pro	Met 120	Thr	Gln	Arg	Ala	Leu 125	Thr	Val	Leu
45	Met	Val 130		Ser	Gly	Ala	Val 135	Leu	Val	Tyr	Phe	Val 140	Val	Arg	Thr	Val
	Arg 145	Met	Arg	Arg	Arg	Asn 150	Arg	Lys	Thr	Arg	Arg 155	Tyr	Gly	Val	Leu	Asp 160
50	Thr	Asn	Ile	Glu	Asn 165	Met	Glu	Leu	Thr	Pro 170	Leu	Glu	Gln	Asp	Asp 175	Glu
	Asp	Asp	Asp	Asn 180	Thr	Leu	Phe	Asp	Ala 185	Asn	His	Pro	Arg	Arg 190		
55																
	(2)	INF						NO:								
60			(i)	-				ERIS .79 a			ds					

			(xi)	(ם (כ	TPE: CPOL E DE:	OG::	lin	ear	50 II	C NO	: 40	9 :			
5	Met 1		Pro											Gly	Leu 15	Ile
	Leu	Pro	Thr	Arg 20	Gly	Gln	The	Leu	Lys 25	Asp	Thr	Thr	Ser	Ser 30	Ser	Ser
10	Ala	Asp	Ser 35	Th≃	īle	Met	Asp	Ile ≟0	Gln	Val	310	Thr	Æg 45	Ala	Pro	Asp
15	Ala	Val 50	Ţyr	The	Glu	Leu	Gln 55	Pro	Thr	Ser	Pro	Thr 60	Pro	Thr	فتي	Pro
	Ala 65	ązp	Glu	Thr	Pro	3 <u>ln</u> 70	Pro	GLn	Titz	Gln	Thr 75	Gln	Gln	Leu	Glu	Gly 80
20	Thr	Asp	Gly	520	Leu 85	Val	Thr	Asp	PT0	Glu 90	Thr	His	Lys	Ser	Thr 95	Lys
25	Ala	Ala	His	Pro 106	The	λsp	Asp	Thr	Thr 105	Thr	Leu	Ser	Glu	Arg 110	Pro	Ser
23	Pro	Se≚	Thr 115	qz£	Val	Gln	T:- <u>-</u> -	ಸಿತ್ತಾ 120	?≃3	Gln	Thr	Leu	L:/s 125	Pro	Ser	Gly
30	Phe	His 130	G1u	Asp	Asp	320	Phe 135	Pre	272	Asp	Glu	His 140	Thr	Leu	yrg	Lys
	Arg 145	_	Leu	Leu	Val	Ala 150	Ala	Val	leu	Phe	Ile 155	Thr	Gly	Ile	Ile	Ile 160
35	Leu	Thr	Ser	Gly	Lys 165	Cys	Arg	Gln	Leu	Ser 170	λrg	Leu	Cys	Arg	Asn 175	His
40	Cys	Arg	Kaa													
	(2)	DE	CRMA	TECN	FCF.	SEQ	ID	NC:	410:							
45			(i)	•	(A) [(B) [. CEA .EXIGN TYPE:	TH: I	id an	nino ncid		is					
50	Met 1		(xi) Lys	SEÇ	UEVO	E DE Gln	SCPI	PTIC	N: S		Phe			. Xaa		
55	(2)	INF	ORMA	TION	FOR.	. SEQ	IE	NO:	411:							
			(i)	_							ds					
60						TYPE:										

WO 98/54963 PCT/US98/11422

573

			(xi)	SEÇ	(D) I					EQ I	D NC): 41	1:			
5	Met 1		Ala	Gly	Lys 5	Leu	Ile	Pro	Val	His 10	Gln	Val	Arg	Gly	Leu 15	Lys
	Glu	Lys	Ile	Val 20		Ser	Phe	Glu	Val 25	Ser	Pro	Asp	Gly	Ser 30	Phe	Leu
10	Leu	Ile	Asn 35	Gly	Ile	Ala	Gly	Туr 40	Leu	His	Leu	Leu	Ala 45	Met	Lys	Thr
15	Lys	Glu 50	Leu	Ile	Gly	Ser	Met 55	Lys	Ile	Asn	Gly	Arg 60	Val	Ala	Ala	Ser
	Thr 65	Phe	Ser	Ser	Asp	Ser 70	Lys	Lys	Val	Tyr	Ala 75	Ser	Ser	Gly	Asp	Gly 80
20	Glu	Val	Tyr	Val	Trp 85	Asp	Val	Asn	Ser	Arg 90	Lys	Cys	Leu	Asn	Arg 95	Phe
	Val	Asp	Glu	Gly 100	Ser	Leu	Tyr	Gly	Leu 105	Ser	Ile	Ala	Thr	Ser 110	Arg	Asn
25	Gly	Gln	Tyr 115	Val	Ala	Cys	Gly	Ser 120	Asn	Cys	Gly	Val	Val 125	Asn	Ile	Tyr
30	Asn	Gln 130	Asp	Ser	Cys	Leu	Gln 135	Glu	Thr	Asn	Pro	Lys 140	Pro	Ile	Lys	Ala
	Ile 145	Met	Asn	Leu	Val	Thr 150	Gly	Val	Thr	Ser	Leu 155	Thr	Phe	Asn	Pro	Thr 160
35	Thr	Glu	Ile	Leu	Ala 165	Ile	Ala	Ser	Glu	Lys 170	Met	Lys	Glu	Ala	Val 175	Arg
	Leu	Val	His	Leu 180	Pro	Ser	Cys	Thr	Val 185	Phe	Ser	Asn	Phe	Pro 190	Val	Ile
40	Lys	Asn	Lys 195	Asn	Ile	Ser	His	Val 200	His	Thr	Met	Asp	Phe 205	Ser	Pro	Arg
15	Ser	Gly 210	Tyr	Phe	Ala	Leu	Gly 215	Asn	Glu	Lys	Gly	Lys 220	Ala	Leu	Met	Tyr
	Arg 225	Leu	His	His	Tyr	Ser 230	Asp	Phe								
50	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID N	IO: 4	12:							
55			(i) s		A) LE	NGTI	d: 54	am:	ino a		5					•
,,			(xi)		3) TY O) TO JENCE	POLO	XGY:	line	ar	Q II	NO:	412	!:			

Ile Leu Leu Cys Ser Trp Pro Thr Gly Leu Val Gly Gly Arg Asp Pro 1 5 10 15

	GIĀ	ser	Ser	Arg 20	Gly	Ser	Ser	Ala	25	Leu	Thr	Pro	ser	30	GTÀ	Arg
5	Gln	Pro	Cys 35	Ser	Arg	Arg	Arg	Gly 40	Tyr	Ser	Val	Gly	Arg 45	Arg	Ser	Ser
10	Pro	Pro 50	Asp	Gly	Ser	Xaa										
	(2)	INF	ORMAT	rion	FOR	SEQ	ID 1	NO: 4	113:							
15				()	A) L B) T D) T	ENGT: YPE: OPOL	H: 3 ami: OGY:	3 am no a lin	ino cid ear	acid			_			
20				SEQ						•						
	Met 1	Ser	Leu	Gln	Ser 5	Asn	Ala	Trp	Ser	Lys 10	Xaa	Leu	Phe	Ile	7al 15	Phe
25	Leu	Phe	Leu	Arg 20	Val	Leu	Phe	Lys	Thr 25	Gly	Val	Ser	Ser	Glu 30	Glu	Ser
	Xaa															
30																
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO: 4	114:							
35				(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	19 a no a lin	mino cid ear	aci		: 41	4 :			
40	Met 1	Ala	Val	Val	Leu 5	Leu	Ala	Asn	Leu	Ala 10	Gln	Gly	Asp	Ser	Leu 15	Ala
45	Ala	Arg	Ala	Ile 20	Ala	Val	Gln	Lys	Gly 25	Ser	Ile	Gly	Asn	Leu 30	Leu	Gly
15	Phe	Leu	Glu 35	Asp	Ser	Leu	Ala	Ala 40	Thr	Gl'n	Phe	Gln	Gln 45	Ser	Gln	Ala
50	Ser	Leu 50		His	Met	Gln	Asn 55	Pro	Pro	Phe	Glu	Pro 60	Xaa	Ser	√al	Asp
	Met 65	Met	Arg	Arg	Ala	Ala 70	Arg	Ala	Leu	Leu	Ala 75		. Ala	Lys	Val	Asp 80
55	Glu	Asn	His	Ser	Glu 85	Phe	Thr	Leu	Tyr	Glu 90	Ser	Arg	Leu	Leu	Asp 95	Ile
60	Ser	Val	Ser	Pro 100	Leu	Met	Asn	Ser	Xaa 105	Val	Ser	Gln	Val	Ile 110	Cys	Asp,

	Val	Leu	Phe 115	Leu	Xaa	Trp	Pro	Val 120	Met	Thr	Ala	Val	Gly 125		Leu	Pro
5	Pro	Pro 130	Суѕ	Val	Cys	Ala	Суs 135	Val	Glu	Asn	Leu	Glu 140	Thr	Asp	Cys	Cys
	Pro 145	Leu	Phe	Met	Gln	Asn 150	His	Leu	Arg	Ile	Gln 155	Phe	Thr	Leu	Cys	Cys 160
10	Pro	Ala	Ser	Pro	Leu 165	Gly	Lys	Ser	Leu	Ser 170	Cys	Phe	Ser	Leu	Leu 175	Leu
15	Pro	Pro	Pro	Leu 180	Pro	Pro	Ser	Pro	His 185	Ala	Phe	Leu	Phe	Leu 190	Val	Leu
	Thr	Leu	Leu 195	Pro	Ser	Gly	Pro	Tyr 200	Pro	Thr	Leu	Phe	Glu 205	Lys	Thr	Lys
20	Leu	Cys 210	Leu	His	Arg	Arg	Leu 215	Phe	Leu	Phe	Xaa					
25	(2)	INF		rion SEQUI	ENCE	CHAI		ERIS	rics		s					
30			(xi)	(B) T D) T	YPE : OPOL	ami: OGY:	no a	cid ear		_	: 41	5:			
	Met 1	Leu	Pro	Asp	Glu 5	Ser	Phe	Gly	Leu	Leu 10	Leu	Ser	Ile	Pro	Ser 15	Leu
35	Thr	Pro	Ser	Ala 20	Ala	Ala	Pro	Ser	Phe 25	Cys	Val	His	Leu	Met 30	Gln	Ala
40	Ser	Arg	Ser 35	Ser	Lys	Arg	Ala	Ser 40	His	Val	Pro	Val	His 45	Leu	Leu	Trp
	Gly	Asp 50	Xaa													
15	(2)	INFO	ORMAT	TION	FOR	SEQ	ID N	io: 4	16:							
50				(I	A) Li B) T D) T	ENGTI YPE: OPOLA	H: 50 amin DGY:	o ami no ac line	ino a cid ear	acid						
			(xi)	SEQU	JENCI	E DES	CRIE	OIT	I: SI	EQ II	ONO:	416	5:			
55	Met 1	Arg	Pro	Gly	Ser 5	Phe	Ser	Phe	Ile	Ala 10	Phe	Leu	Ala	Thr	Glu 15	Val
	Ser	Ser	Cys	Phe 20	Pro	Gly	Arg	Pro	Asp 25	Cys	Xaa	Thr	Gly	Met 30	Trp	Leu
60	Leu	Gln	Leu	Gln	Lys	Lys	Gln	Arg	Thr	Leu	Leu	Ala	Met	Ala	Pro	Arg

			35					40					45			
5	Arg	Xaa 50														
	(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	NO: 4	117:							
10				(A) L B) T D) T	ENGT YPE: OPOL	H: 7 ami OGY:	0 am no a lin	ino cid ear	acid			_			
15			(X1)	SEQ	UENC	E DE:	SCRI	PTIO	N: S	EQ I	D NO	: 41	7:			
	Asp 1	Arg	Pro	Суѕ	Pro 5	Ser	Ser	Leu	Trp	Lys 10	Val	Phe	Pro	Leu	Leu 15	Leu
20	Leu	Leu	Met	Arg 20	Leu	Phe	Pro	Leu	Pro 25	Val	Pro	Gly	Asn	Gln 30	Arg	Ala
	Xaa	Leu	Pro 35	His	Pro	Phe	Xaa	Ala 40	Pro	Arg	Leu	Pro	Cys 45	Leu	Leu	Cys
25	Leu	Суз 50	Thr	Gln	Gln	Phe	Xaa 55	Val	Cys	Ser	His	Tyr 60	Leu	Pro	Ala	Gly
30	Tyr 65	Arg	Val	Asn	Ser	Xaa 70										
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO: 4	118:							
35			(i)	(ENCE A) L B) T D) T	ENGT YPE:	H: 4 ami	0 am	ino cid		s					
40			(xi)	SEQ	UENC	E DE	SCRI	PTIO:	N: S	EQ I	D NO	: 41	8:			
	Met 1	His	Glu	Lys	Ala 5	Trp	Asn	Leu	Ile	Leu 10	Leu	Trp	Trp	Leu	Ser 15	Leu
45	Asp	Leu	Leu	Gly 20	Val	Ala	Lys	Thr	Ala 25	Met	Trp	Ala	Gln	Trp 30	Суз	Gly
	Leu	Asn	Asp 35	His	Lys	Gly	Lys	Xaa 40								
50																
	(2)	INF	ORMA	TION	FOR	SEQ	ID 1	NO:	419:							
55				(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	2 am no a lin	ino cid ear	acid		: 41	9:			
60	Met	Ala	Phe	Val	Leu	Leu	Xaa	Cys	Phe	Val	Xaa	Leu	Gln	Ser	Ser	Xaa

```
1
                                          10
                                                              15
      Gly Arg Ala Val Gln Xaa
               20
 5
      (2) INFORMATION FOR SEQ ID NO: 420:
10
             (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 33 amins acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 420:
15
      Met Phe Ser Leu Leu Trp Leu Val Cys Val Fro Ser Asn Ser Ser Val
      Ala Asn Val Thr Ala Ser Arg Gly Gly Val Fhe Lys Arg Ser Leu Gly
20
                  20
                                     25
      His Glu Gly Phe Ser Xaa
              35
25
      (2) INFORMATION FOR SEQ ID NO: 421:
             (i) SEQUENCE CHARACTERISTICS:
30
                    (A) LENGTH: 35 amino acids
                    (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID MG: 421:
35
      Lys Trp Leu Leu Phe Ile Phe Leu Leu Cys leu Glm Leu Val Asm Ala
      Leu Leu Ser Leu Phe Gln Glu Arg Phe Val His Cys Pro Ala Arg Phe
                             25
40
     Val Ser Xaa
              35
45
      (2) INFORMATION FOR SEQ ID NO: 422:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 32 amino acids
50
                    (B) TYPE: amino acii
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 422:
     Met Leu Leu Phe Leu Ser Ile Thr Asm Ser Leu Ser Phe Ile Ser Val
55
          5
     Asp Lys Pro Phe Gly Gln Ser Glu Asp Val Tys Pro Val Ile Ser Xaa
                                    25
```

3	(2)	INI	FORMA	MOIT	FOE	R SEC	DI	NO:	423:							
10					(A) : (B) ' (D) '	E CHA LENG LYPE L'OPOI CE DE	TH: : : am: LOGY	127 a ino a : 1 ir	amino acid near	o ac		D: 42	23:			
15	Met 1	: Glu	Phe	: Leu	Phe 5	Asn	Lys	Thr	Gly	Trp 10		Phe	Ala	a Alá	a Leu 15	
	Phe	· Val	. Leu	Ala 20	Met	Thr	Ser	Gly	Gln 25	Met	Trp	Asn	His	: Ile		g Gly
20	Pro	Pro	Tyr 35	Ala	His	Lys	Asn	Pro 40	His	Thr	Gly	His	Val		туг	Ile
	His	Gly 50	Ser	Ser	Gln	Ala	G1n 55	Phe	Val	Ala	Glu	Thr 60		Ile	val	Leu
25	Leu 65	Phe	Asn	Gly	Gly	Val 70	Thr	Leu	Gly	Met	Val 75	Leu	Leu	Cys	Glu	Ala 80
30	.Ala	Thr	Ser	Asp	Met 85	Asp	Ile	Gly	Lys	Arg 90	Lys	Ile	Met	Cys	Val 95	Ala
	Gly	Ile	Gly	Leu 100	Val	Val	Leu	Phe	Phe 105	Ser	Trp	Met	Leu	Ser 110		Phe
35	Arg	Ser	Lys 115	Tyr	His	Gly	Tyr	Pro 120	Tyr	Ser	Phe	Leu	Met 125	Ser	Xaa	
40	(2)		ORMAT							:						
45			(xi)	(I (I	3) T 3) T	ENGTI YPE: OPOLA E DES	amin XGY:	no ac	cid ear			: 424	1:		٠	
	Met 1	Thr	Trp	His	Ser 5	Arg	Glu	Ser	Phe	Xaa 10	Leu	Leu	Arg	Val	Val 15	Ala
50	Pro	Ser	Gln	Ala 20	Pro	Gly	Met	Gln	Va l 25	Ser	Pro	Ser	Gln	Arg 30	Ala	Trp
55	Arg	Arg	Pro 35	Leu :	His	Arg	Cys	His 40	Val .	Ala	Ala	Pro	Arg 45	Pro	His	His
	Phe	Ala 50	Phe	Phe 1	Arg	Asn	Pro	Phe	Ser '	Trp	Ser	Phe 60	Ile	Lys	Leu	Leu
60	туr 65	Arg	Tyr :	Leu I	Kaa											

5	(2) IN	FORMA	MOITA	FOR	R SE	Q ID	NO:	425	:						
		(i)		(A) : (B) '	LENG TYPE		92 a ino	mino acid	aci	ds					
10		(xi)	SEÇ						SEQ :	ID N	0: 4:	25:			
	Met Gly	y Leu	Lys	Leu 5	Asr	ı Gly	/ Arc	тул	: Ile		c Lei	ı Ile	e Leu	Ala 1	
15	Gln Ile	≘ Ala	Tyr 20	Leu	ı Val	. Gln	ı Ala	Val 25		, Alá	a Ala	Gly	/ Lys		s Asp
20	Ala Val	35					40					45	5		
	Trp Pro)				55					60	1			•
25	Val His 65				70					75	i		Ser	Pro	80
	Gly Leu	Pro	Gly	Arg 85	Gly	Glu	Arg	Tyr	Val 90	Gly	Xaa				
30															
	(2) INF	ORMA?	rion	FOR	SEQ	ID 1	NO:	426:							
35		(i) :	() ()	A) L B) T D) T	ENGT YPE : OPOL	H: 3 ami OGY:	80 a no a lin	mino cid ear	aci						
		(xi)	SEQ	JENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 42	6 :			
40	Met Ala l	Arg	Arg	Ser 5	Ala	Phe	Pro	Ala	Ala 10	Ala	Leu	Trp	Leu	Trp 15	Ser
45	Ile Leu	Leu	Cys 20	Leu	Leu	Ala	Leu	Arg 25	Ala	Glu	Ala	Gly	Pro 30	Pro	Gln
	Glu Glu	Ser 35	Leu	Tyr	Leu	Trp	Ile 40	Asp	Ala	His	Gln	Ala 45	Arg	Val	Leu
50	Ile Gly 50	Phe	Glu	Glu	Asp	Ile 55	Leu	Ile	Val	Ser	Glu 60	Gly	Lys	Met	Ala
	Pro Phe 65	Thr	His	Asp	Phe 70	Arg	Lys	Ala	Gln	Gln 75	Arg	Met	Pro	Ala	Ile 80
55	Pro Val	Asn	Ile	His 85	Ser	Met	Asn	Phe	Thr 90	Trp	Gln	Ala	Ala	Gly 95	Gln
60	Ala Glu		Phe 100	Tyr	Glu	Phe		Ser 105	Leu	Arg	Ser	Leu	Asp 110	Lys	Gly,

•	Ile	Met	Ala 115	Asp	Pro	Thr	Val	Asn 120	Val	Pro	Leu	Leu	Gly 125	Thr	Val	Pro
5	His	Lys 130	Ala	Ser	Val	Val	Gln 135	Val	Gly	Phe	Pro	Cys 140	Leu	Gly	Lys	Gln
	Asp 145	Gly	Val	Ala	Ala	Phe 150	Glu	Val	Asp	Val	Ile 155	Val	Met	Asn	Ser	Glu 160
10	Gly	Asn	Thr	Ile	Leu 165	Gln	Thr	Pro	Gln	Asn 170	Ala	Ile	Phe	Phe	Lys 175	Thr
15	Cys	Gln	Gln	Ala 180	Glu	Cys	Pro	Gly	Gly 185	Cys	Arg	Asn	Gly	Gly 190	Phe	Суѕ
	Asn	Glu	Arg 195	Arg	Ile	Cys	Glu	Cys 200	Pro	Asp	Gly	Phe	His 205	Gly	Pro	His
20	Cys	Glu 210	Lys	Ala	Leu	Cys	Thr 215	Pro	Arg	Cys	Met	Asn 220	Gly	Gly	Leu	Cys
	Val 225	Thr	Pro	Gly	Phe	Cys 230	Ile	Cys	Pro	Pro	Gly 235	Phe	Tyr	Gly	Val	Asn 240
25	Cys	Asp	Lys	Ala	Asn 245	Суѕ	Ser	Thr	Thr	Cys 250	Phe	Asn	Gly	Gly	Thr 255	Cys
30	Phe	Tyr	Pro	Gly 260	Lys	Cys	Ile	Xaa	Pro 265	Pro	Gly	Leu	Glu	Gly 270	Glu	Gln
	Cys	Gl u	Ile 275	Ser	Lys	Суѕ	Pro	Gln 280	Pro	Cys	Arg	Asn	Gly 285	Gly	Lys	Cys
35	Ile	Gly 290	Lys	Ser	Lys	Cys	Lys 295	Xaa	Ser	Lys	Gly	Туг 300	Gln	Gly	Asp	Leu
	Cys 305	Ser	Lys	Pro	Val	Cys 310	Glu	Pro	Gly	Cys	Gly 315	Ala	His	Gly	Thr	Cys 320
40	His	Glu	Pro	Asn	Lys 325	Cys	Gln	Cys	Gln	Glu 330	Gly	Trp	His	Gly	Arg 335	His
45	Cys	Asn	Lys	Arg 340	Tyr	Glu	Ala	Ser	Leu 345	Ile	His	Ala	Leu	Arg 350	Pro	Ala
	Gly	Ala	Gln 355	Leu	Arg	Gln	His	Thr 360	Pro	Ser	Leu	Lys	Lys 365	Ala	Glu	Glu
50	Arg	Arg 370	Asp	Pro	Pro	Glu	Ser 375	Asn	Tyr	Ile	Trp	Xaa 380				
55	(2)	INFO														
		,	(1) 2	() ()	ENCE A) Li B) TY	ENGTI (PE :	H: 24	am:	ino a		6					
60			(xi)		D) TO ENCE					Q II	NO:	427	7:			

```
Met Thr Ser Asn Leu Leu Leu Leu Thr Leu Leu Leu Lys Asp Thr Leu
                   5
     Xaa Leu Ala Lys Xaa Asn Xaa Xaa
                  20
10
      (2) INFORMATION FOR SEQ ID NO: 428:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 47 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
15
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 423:
      Met Arg His His Thr Gln Leu Asn Phe Ile Phe Leu Val Glu Met Val
                                          10
                       5
20
      Phe Leu His Val Gly Gln Ala Gly Leu Lys Leu Pro Thr Ser Gly Asp
      Xaa Ala Cys Phe Gly Leu Pro Lys Val Leu Gly Leu Gln Ala Xaa
25
                                  40
      (2) INFORMATION FOR SEQ ID NO: 429:
30
              (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 5 amino acids
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
35
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 429:
      Met Cys Ser Asp Xaa
40
       (2) INFORMATION FOR SEQ ID NO: 430:
              (i) SEQUENCE CHARACTERISTICS:
45
                     (A) LENGTH: 144 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 430:
       Leu Leu Ser Ile Leu Leu Cys Leu Leu Ala Ser Gly Leu Val Val Phe
 50
                        5
        1
       Phe Leu Phe Pro His Ser Val Leu Val Asp Asp Gly Ile Lys Val
                                       25
 55
       Val Lys Val Thr Phe Asn Lys Gln Asp Ser Leu Val Ile Leu Thr Ile
                                   40
       Met Ala Thr Leu Lys Ile Arg Asn Ser Asn Phe Tyr Thr Val Ala Val
 60
                               55
```

	Thr 65	Ser	Leu	Ser	Ser	Gln 70	Ile	Gln	Tyr	Met	Asn 75	Thr	Val	Val	Asn	Phe 80
5	Thr	Gly	Lys	Ala	Glu 85	Met	Gly	Gly	Pro	Phe 90	Ser	Tyr	Val	Tyr	Phe 95	Phe
10	Суѕ	Thr	Val	Pro 100	Glu	Ile	Leu	Val	His 105	Asn	Ile	Val	Ile	Phe 110	Met	Arg
10	Thr	Ser	Val 115	Lys	Ile	Ser	Tyr	Ile 120	Gly	Leu	Met	Thr	Gln 125	Ser	Ser	Leu
15	Glu	Thr 130	His	His	Tyr	Val	Asp 135		Gly	Gly	Asn	Ser 140		Ala	Ile	Xaa
20																
	(2)	INF						NO:								
25					(A) 1 (B) 1 (D) 1	LENG: TYPE TOPO!	TH: : : am: LOGY	TERIS 37 ar ino a : lir IPTIC	mino acid near	acio		o: 41	31:			
30	Met 1		e Phe	e Phe	Lev S		Val	Туг	Ser	val		ı Cys	s Gly	/ Leu	Leu 19	ı Val
35	Tyr	Pro	Ser	: Let 20		Sei	r His	s Sei	va. 25		c Le	ı Va	l Thi	r Sei		ı Val
33	Ala	Ser	Ala		ı Xaa	a										
40	(2)	IN	FORM	AT IO	N FO	R SE	Q ID	NO:	432	:						
45					(A) (B) (D)	TYPE TOPO	TH: : an LOGY	TERI 37 a nino (: li NIPTI	mino ació near	aci l		IO: 4	132:			
50		t Al 1	a Se	r Il		n Al 5	a Va	1 Ту	r Il		s Va 0	ıl Ph	e Le	eu Gl	y Va 1	l Cys 5
	Va	l Gl	n Al		r Al O	a Al	а Су	s Pr		р Су :5	s Se	er Gl	n Cy	s Ar 3	g Xa O	a Gly
55	Se	r Va	l Pr 3	o Se	r Xa	ıa										
60	(2) IN	IFORM	IATIC	N FO	OR SE	Q II	ONO:	433	3:						

5				() (I	A) LI B) T O) T	CHAR ENGTH YPE: OPOLA E DES	H: 19 amir XGY:	92 ar no ac line	nino cid ear	acio		: 433	ı:			
	Met 1													Pro	Val 15	Val
10	Gln	Ser	Pro	Pro 20	Gly	Thr	Glu	Ala	Asn 25	Phe	Ser	Ala	Ser	Arg 30	Ala	Ala
15	Cys	Asp	Pro 35	Trp	Lys	Glu	Ser	Gly 40	Asp	Ile	Ser	Asp	Ser 45	Gly	Xaa	Ser
	Thr	Thr 50	Ser	Gly	His	Trp	Ser 55	Gly	Ser	Ser	Gly	Val 60	Ser	Thr	Pro	Ser
20	Pro 65	Pro	His	Pro	Gln	Ala 70	Ser	Pro	Lys	Tyr	Leu 75	Gly	Asp	Ala	Phe	Gly 80
25	Ser	Pro	Gln	Thr	Asp 85	His	Gly	Phe	Glu	Thr 90	Asp	Pro	Asp	Pro	Phe 95	Leu
	Leu	Asp	Glu	Pro 100	Ala	Pro	Arg	Lys	Arg 105	Lys	Asn	Ser	Val	Lys 110	Val	Met
30			115					120					125	Ser		
		130					135					140				Asp
35	145					150					155					Gln 160
40					165					170					175	
	Gln	Ser	Leu	Gly 180		Pro	Pro	Pro	Ser 185		Leu	Pro	Pro	190		Xaa
45																
50	(2)	INF				SEC										
					(B) '	LENG: TYPE TOPO!	am:	ino a	acid	aci	ds					
55	Mal	- Sei				CE DI								e Ser	тул	. Leu
60		1			5	5				10)			ı Thi	19	

WO 98/54963

5	(2) INFORMATION FOR SEQ ID NO: 435:
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 101 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 435:
15	Met Gly Phe Phe Phe Val Leu Phe Phe Leu Tyr Leu Ala Leu Ser Arg 1 5 10 15
	Asp Trp Ser Ile Asn Phe Leu Lys Asp His Arg Ile Asn Phe Phe Val 20 25 30
20	Ala Thr Ser Tyr Phe Ser Val Tyr Val Arg Gly Xaa Pro Xaa Val Pro 35 40 45
	Ala Asp Thr Pro Leu Gly Pro Leu Leu Ser Leu Trp Leu His His Asn 50 55 60
25	Ala Phe Phe Ser Ile Leu Pro Lys Phe Pro Glu Asn Xaa Xaa Phe Leu 65 70 75 80
20	Ile Leu Lys Lys Leu Val Val Glu Met Gly Trp Asp Leu Phe Ile Ser 85 90 95
30	Pro Glu Asn Lys Xaa 100
35	(2) INFORMATION FOR SEQ ID NO: 436:
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 436:
45	Met Ala Arg Tyr Phe Ile Phe Phe Ile Leu Val Phe Met Lys Val Ser 1 5 10 15
	Leu Asn Thr Thr Trp Pro Ala Pro Arg Pro Ala Thr Leu Arg Thr Ala 20 25 30
50	Asn Lys Ser Lys Xaa 35
55	(2) INFORMATION FOR SEQ ID NO: 437:
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 42 amino acids(B) TYPE: amino acid
60	(D) TOPOLOGY: linear

PCT/US98/11422

WO 98/54963

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 437:
     Phe Ser Thr Ile Arg Ser Gly Leu Thr Asp Arg Ser Val Asn Phe Leu
                                          10
5
     Phe Leu Phe Leu Asp Val Pro Asp Cys Arg Leu Val Asn Ile Glu Leu
                  20
                                      25
     Met Ala Asn Ser Thr Val Thr His Ala Xaa
10
      (2) INFORMATION FOR SEQ ID NO: 438:
15
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 1 amino acids
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 438:
20
      Leu
        1
25
      (2) INFORMATION FOR SEQ ID NO: 439:
              (i) SEQUENCE CHARACTERISTICS:
30
                     (A) LENGTH: 25 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 439:
      Met Pro Trp Arg Arg Ala Gly Leu Met Met Leu Pro Ile Ile Thr Gly
35
        1
                        5
      Cys Cys Pro Cys Ser Ala Ser Ile Xaa
                   20
40
       (2) INFORMATION FOR SEQ ID NO: 440:
              (i) SEQUENCE CHARACTERISTICS:
45
                     (A) LENGTH: 54 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 440:
 50
       Met Tyr Leu Cys Lys Thr Val Lys Val Leu Ile Cys Tyr Asp Trp Ile
       Leu Gly Leu Val Ser Ser Gly Gln His Trp Val Val Ser Leu Ser Tyr
 55
                                        25
       Ser Ile Arg Val Tyr Pro Ala Met His Phe Thr Leu Cys Val His Ile
                                    40
                35
 60
       Tyr Ser Lys Glu Pro Cys
```

5	(2) INFORMATION FOR SEQ ID NO: 441:
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 441:
15	Met Thr Ala Leu Val Trp Arg Lys Gly Pro Asp Gly Gly Ser Arg Lys 1 5 10 15
13	Pro Ile Leu Leu Phe Phe Phe Leu Pro Leu Ile Leu Cys Phe His 20 25 30
20	Ser Phe Ile His Ser Ser Asn Ile Cys Xaa 35 40
25	(2) INFORMATION FOR SEQ ID NO: 442:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 66 amino acids (B) TYPE: amino acid
30	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 442:
	Met Phe Leu Thr Trp Phe Leu Leu Ser Val Ala Trp Xaa Ala 1 5 10 15
35	Leu Thr Arg Ser Gly Arg Ser Cys Leu Pro Leu Val Gly Arg Pro Arg 20 25 30
40	Glu Gln Ser Pro Arg Thr His Cys Ala Ala Ser Ser Thr Lys Glu Arg 35 40 45
40	Asn Ser Asp Pro Gln Pro Ser Pro Pro Glu Val Val Gly Pro Leu Trp 50 55 60
45	Ser Xaa 65
	(2) INFORMATION FOR SEQ ID NO: 443:
. 50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 156 amino acids
55	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 443:
JJ	Met Lys Ala Ile Gly Ile Glu Pro Ser Leu Ala Thr Tyr His His Ile
60	1 3 20
60	Ile Arg Leu Phe Asp Gln Pro Gly Asp Pro Leu Lys Arg Ser Ser Phe

		20		25		30	
_		yr Asp Il 35	e Met Asn	Glu Leu 40	Met Gly Lys	Arg Phe	Ser Pro
5	Lys Asp P	ro Asp As	Asp Lys 55		Gln Ser Ala		Ile Cys
10	Ser Ser L	eu Arg As	p Leu Glu 70	Leu Ala	Tyr Gln Va	l His Gly	Leu Leu 80
	Lys Thr G	ly Asp As 8		Phe Ile	Gly Pro Asy 90	o Gln His	Arg Asn 95
15	Phe Tyr T	yr Ser Ly 100	s Phe Phe	e Asp Leu 105	Ile Cys Le	u Met Glu 110	Gln Ile
20		Chr Leu Ly 15	s Trp Ty	Glu Asp 120	Leu Ile Pr	o Ser Ala 125	Tyr Phe
20	Pro His S	Ser Gln Th	r Met Ilo 13		Leu Gln Al		Val Ala
25	Asn Arg I 145	Leu Glu Va	l Ile Pro 150	o Lys Ile	Trp Glu Ar 155	g	
30			CE CHARAC		S:		
35	((D)	TOPOLOGY	: linear	SEQ ID NO:	444:	
	Met His :	Phe Leu P	ne Arg Ph 5	e Ile Va	l Phe Phe Ty 10	r Leu Tr	Gly Leu 15
40	Phe Thr	Ala Gln A 20	rg Gln Ly	rs Lys Gli 2!	ı Glu Ser Ti	nr Glu Glu 30	ı Val Lys)
45		Val Leu H 35 Leu Leu L	ys Cys Pı	40	n Cys Ser L	ys Thr Sei 45	c Lys Lys
50	(2) INFO	DRMATION F	OR SEQ I	D NO: 445	:		
55		(B (D	LENGTH: TYPE: a TOPOLOG	416 amir mino acio Y: lineau	no acids 1	445:	
60	Met Arg 1	Thr Leu I	he Asn L 5	eu Leu Tr	p Leu Ala I 10	eu Ala Cy	s Ser Pro 15

	Val	His	Thr	Thr 20	Leu	Ser	Lys	Ser .	Asp 25	Ala	Lys	Lys	Ala	Ala 30	Ser	Lys
5	Thr	Leu	Leu 35	Glu	Lys	Ser	Gln	Phe 40	Ser	Asp	Lys	Pro	Val 45	Gln	Asp	Arg
10	Gly	Leu 50	Val	Val	Thr	Asp	Leu 55	Lys	Ala	Glu	Ser	Val 60	Val	Leu	Glu	His
·O	Arg 65	Ser	Tyr	Cys	Ser	Ala 70	Lys	Ala	Arg	Asp	Arg 75	His	Phe	Ala	Gly	Asp 80
15	Val	Leu	Gly	Tyr	Val 85	Thr	Pro	Trp	Asn	Ser 90	His	Gly	Tyr	Asp	Val 95	Thr
	Lys	Val	Phe	Gly 100	Ser	Lys	Phe	Thr	Gln 105	Ile	Ser	Pro	Val	Trp 110	Leu	Gln
20	Leu	Lys	Arg 115	Arg	Gly	Arg	Glu	Met 120	Phe	Glu	Val	Thr	Gly 125	Leu	His	Asp
25	Val	Asp 130		Gly	Trp	Met	Arg 135	Ala	Val	Arg	Lys	His 140	Ala	Lys	Gly	Leu
- - ,	His 145		· Val	Pro	Arg	Leu 150	Leu	Phe	Glu	Asp	Trp 155	Thr	Tyr	Asp	Asp	Phe 160
30	Arg	Asn	val	. Leu	Asp 165		Glu	Asp	Glu	Ile 170		Glu	Leu	Ser	Lys 175	Thr
				180					185					190		Glu
35	Val	Tr	195		Leu	. Leu	Ser	Gln 200	Lys	Arg	Val	Gly	205		His	Met
40		210)				215	i				220)			Leu
	Leu 225		l Ile	e Pro	Pro	230		Thr	Pro	Gly	7 Thr 235		Glr	ı Lev	ı Gly	240
45					245	5				250)				259	
				260)				265	5				270)	o Asn
50			27	5				280)				28	5		o Lys
55	Se:	r Ly 29		p Ar	g Se	r Lys	29!		ı Le	u Gl	y Lei	30		е Ту:	r Gl	y Met
	As; 30		r Al	a Th	r Se	r Ly:		o Ala	a Ar	g Gl	u Pro 31		l Va	1 Gl	y Al	a Arg 320
60	Ту	r Il	e Gl	n Th	r Le		s As	p His	s Ar	g Pr 33		g Me	t Va	l Tr	p As 33	p Ser 5

	Gln	Xaa	Ser	Glu 340	His	Phe	Phe	Glu	Tyr 345	Lys	Lys	Ser	Arg	Ser 350	Gly	Arg
5	His	Val	Val 355	Phe	Tyr	Pro	Thr	Leu 360	Lys	Ser	Leu	Gln	Val 365	Arg	Leu	Glu
10	Leu	Ala 370	Arg	Glu	Leu	Gly	Val 375	Gly	Val	Ser	Ile	Trp 380	Glu	Leu	Ala	Arg
10	Ala 385		Thr	Thr	Ser	Thr 390	Thr	Cys	Ser	Arg	Trp 395	Ala	Leu	Arg	Pro	Pro 400
15	Arg	Trp	Thr	Cys	Ser 405		Leu	Ser	His	Gly 410		Ser	Glu	Gln	Val 415	
20																
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	446:							
25			(i)		JENCE (A) 1 (B) 7	LENG	rH: (54 ar	nino		ds					
			(xi)		(D) 1	ropoi	LOGY	: lir	near	SEQ :	D NO	o: 44	16:			
30		: Ala l	a Pro	Gly	Pro		sei	Ala	a Tha	Glr 10		a Val	. Val	l Ile	His 19	s Thr
35	Thi	r His	s Cys	Let 20		ı Lev	ı Pro	Va]	L Tr <u>p</u> 25		s Lev	ı Sei	. Le	ı Val		r Glu
33	Le	u Lei	1 Gly 35		g Ala	a Pro	Pr	His 40		n Ly:	s Ası	Ala	a Let		g Pro	o Ser
40	Ly	s Ly: 5		s Ly:	s Ly:	s Lys	s Le		a Gl	y Gl	y Pro	o Va 6		o Il	e Pr	o Pro
45		•														
	(2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	447	:						
50				•	(B) (D)	LENC TYPE TOPC	TH: E: ar OLOGY	206 mino 7: li	amir acio inear	no ad i		10 - 7	147.	•		
											ID N				_	_
55	Me	et Le 1	eu Gl	y Al	a Ly	s Pr 5	o Hi	s Tr	p Le		o G1 .0	y Pr	o Le	u Hi	s Se.	er Pro 15
	G.	ly Le	eu Pr		eu Va	l Le	u Va	al Le		eu Al 25	a Le	eu Gl	y Al	a Gl	.y Ti 30	op Ala
40				_	-											

Cys Glu Pro Gly Arg Ala Ala Ala Gly Gly Pro Gly Gly Arg Sol	Arg Ser Xaa 80 Gly Ala Ile 95 Asp Arg Ala 110 Phe Arg Phe Ser Leu Met Pro Asp Val 160 Asp Pro Gly
10 His His Glu Pro Ala Gly Glu Thr Gly Asn Gly Thr Xaa G 85 90 Tyr Phe Asp Gln Val Leu Val Asn Glu Gly Gly Gly Phe A 100 105 1 Ser Gly Ser Phe Val Ala Pro Val Arg Gly Val Tyr Ser P 115 120 125 His Val Val Lys Val Tyr Asn Arg Gln Thr Val Gln Val S 130 135 140 Leu Asn Thr Trp Pro Val Ile Ser Ala Phe Ala Asn Asp E 145 150 155	Sly Ala Ile 95 Asp Arg Ala 110 Phe Arg Phe Ser Leu Met Pro Asp Val 160 Asp Pro Gly
Tyr Phe Asp Gln Val Leu Val Asn Glu Gly Gly Gly Phe Asp 100 105 1 Ser Gly Ser Phe Val Ala Pro Val Arg Gly Val Tyr Ser Plus Val Val Val Lys Val Tyr Asn Arg Gln Thr Val Gln Val Ser 130 135 140 Leu Asn Thr Trp Pro Val Ile Ser Ala Phe Ala Asn Asp Eleu Arg Glu Ala Ala Thr Ser Ser Val Leu Leu Pro Leu Arg Glu Ala Ala Thr Ser Ser Val Leu Arg Glu Ala Ala Thr Ser Ser Val Leu Leu Pro Leu Arg Glu Ala Ala Ala Thr Ser Ser Val Leu Leu Pro Leu Arg Glu Ala Ala Ala Thr Ser Ser Val Leu Leu Arg Glu Ala Ala Ala Thr Ser Ser Val Leu Leu Arg Glu Ala Ala Ala Thr Ser Ser Val Leu Leu Arg Glu Ala Ala Ala Ala Thr Ser Ser Val Leu Arg Glu Ala Ala Ala Ala Thr Ser Ser Val Leu	95 Asp Arg Ala 110 Phe Arg Phe Ser Leu Met Pro Asp Val 160 Asp Pro Gly
100 105 1 Ser Gly Ser Phe Val Ala Pro Val Arg Gly Val Tyr Ser P 115 120 125 1 His Val Val Lys Val Tyr Asn Arg Gln Thr Val Gln Val S 130 135 140 Leu Asn Thr Trp Pro Val Ile Ser Ala Phe Ala Asn Asp R 145 150 155	Phe Arg Phe Ser Leu Met Pro Asp Val 160 Asp Pro Gly
Ser Gly Ser Phe Val Ala Pro Val Arg Gly Val Tyr Ser F 115 120 125 His Val Val Lys Val Tyr Asn Arg Gln Thr Val Gln Val S 130 135 140 Leu Asn Thr Trp Pro Val Ile Ser Ala Phe Ala Asn Asp F 145 150 155 Thr Arg Glu Ala Ala Thr Ser Ser Val Leu Leu Pro Leu A	Ser Leu Met Pro Asp Val 160 Asp Pro Gly
Leu Asn Thr Trp Pro Val Ile Ser Ala Phe Ala Asn Asp F 145 Thr Arg Glu Ala Ala Thr Ser Ser Val Leu Leu Pro Leu A	Pro Asp Val 160 Asp Pro Gly
145 150 155 25 Thr Arg Glu Ala Ala Thr Ser Ser Val Leu Pro Le	160 Asp Pro Gly
	Asp Pro Gly
	175
30	190
Lys Tyr Ser Ser Phe Ser Gly Phe Leu Ile Phe Pro Leu I 195 200 205	Xaa .
35 (2) INFORMATION FOR SEQ ID NO: 448:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 62 amino acids	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 448:	
Met Ser Ser Leu Leu Ser Ala Gly Leu Gln Ala Ser Leu 45 1 5 10	Cys Gly Lys 15
Xaa Leu Trp Ala Ser Thr Trp Tyr Leu Val Cys Cys Leu 20 25	Leu Pro Phe
50 Phe His Gln Gly Cys Cys Asp His Lys Ser Lys Gln Gln 35 40 45	Tyr Ile Pro
Asn Leu Lys Ser Tyr Cys Gly Leu Ser Thr Ile Glu Ile 50 55 60	Xaa
55 (a) The market FOR SEC ID NO. 449.	
(2) INFORMATION FOR SEQ ID NO: 449: 60 (i) SEQUENCE CHARACTERISTICS:	

						NGTH PE:				acio	LS						
			(vi)	(E SEQU		POLC				o ID	NO:	449	:				
5	Met 1			Lys										Leu '	Val 15	Phe	
10	Gln	Ile	Ile	Ala 20	Phe	Leu	Val	Gly	Gly 25	Leu	Ile .	Ala :	Pro	G1y 30	Pro	Thr	
	Thr	Ala	Val 35	Ser	Tyr	Met	Ser	Val 40	Lys	Cys	Val	Asp .	Ala 45	Arg	Lys	Asn	
15	His	His 50		Thr	Lys	Trp	Phe 55	Val	Pro	Trp	Gly	Pro 60	Asn	His	Cys	Asp	
20	Lys 65	Ile	Arg	Asp	Ile	Glu 70	Glu	Ala	Ile	Pro	Arg 75	Glu	Ile	Glu	Ala	Asn 80	
20	Asp	Ile	Val	Phe	Ser 85	Val	His	Ile	Pro	Leu 90	Pro	His	Met	Glu	Met 95	Ser	
25	Pro	Trp	Phe	Gln 100	Phe	Met	Xaa	Phe	Ile 105	Leu	Gln	Leu	Asp	Ile 110	Ala	Phe	
	Lys	Leu	Asn 115	Asn	Gln	Ile	Arg	Glu 120	Asn	Ala	Glu	Val	Ser 125	Met	Asp	Val	
30	Ser	Leu 130		Tyr	Arg	Asp	Asp 135	Ala	Phe	Ala	Glu	Trp 140	Thr	Glu	Met	Ala	
35	His 145		ı Arç	, Val	Pro	Arg 150		Leu	Lys	Cys	Thr 155	Phe	Thr	Ser	Pro	Lys 160	
55	Thr	Pro	Glu	ı His	Gly 165		Pro	Val	Thr	Met 170		Val	Met	Ser	Phe 175	Leu	
40	Ser	Tr	o Lys	180		Leu	Trp	Pro	Met 185		Phe	Tyr	Leu	Leu 190	Asn	ılle	
	Arg	, Le	u Pro 19		. Asr	Glu	Lys	Lys 200		: Ile	e Asn	Val	Gly 205	Ile	Gly	Glu	
45	Ile	21		p Ile	e Arg	j Leu	Val 215		⁄ Il∈	His	Gln	220	Gly	Gly	Phe	Thr	
50	Ly:		l Tr	p Phe	e Ala	230		Thr	Phe	e Lev	235		Ser	: Ile	Phe	240	
30	Ile	e Me	t Va	l Trj	24!		Arg	y Arq	g Ile	250		. Met	: Ser	Arg	25	Pro	
55	Va	l Le	eu Le	eu Gli 26		s Vai	l Ile	e Phe	e Ala 269		u Gly	/ Ile	e Sei	270	Th:	r Phe	
	Il	e As	n Il 27		o Va	l Gl	u Tr	28		r Il	e Gly	y Phe	289	o Tri	Th:	r Trp	
60	Me	t Le	eu Le	eu Ph	e Gl	y As	p Il	e Ar	g Gl	n Al	a Se	r Sei	r Me	t Xa	а Су	s Phe	:

300 290 295 Xaa Pro Ser Gly Ser Ser Ser Val Ala Ser Thr Xaa 310 5 (2) INFORMATION FOR SEQ ID NO: 450: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 450: 15 Met Leu Ala Leu Leu Gly Leu Leu Ala Gly Thr Glu His Pro Pro Gly 10 Pro Gln Gly Pro Gly Pro Ser Xaa 20 20 (2) INFORMATION FOR SEQ ID NO: 451: 25 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 451: 30 Met Pro Ser Gly Ala Cys Cys Ser Pro Xaa 5 35 (2) INFORMATION FOR SEQ IQ NO: 452: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 amino acids 40 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 452: Met Leu Pro Ala Leu Ser Thr Val Leu Leu Pro Thr Pro Ser Leu Cys 45 Ser Gly Asn Pro Arg Glu Gly Trp Ala Xaa 20 50 (2) INFORMATION FOR SEQ ID NO: 453: 55 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 172 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 453: 60

	Met 1	Tyr	Ser	Leu	His 5	Ser	Trp	Val	Gly	Leu 10	Ile	Ala	Val	Ile	Cys 15	Tyr
5	Leu	Leu	Gln	Leu 20	Leu	Ser	Gly	Phe	Ser 25	Val	Phe	Leu	Leu	Pro 30	Trp	Ala
	Pro	Leu	Ser 35	Leu	Arg	Ala	Phe	Leu 40	Met	Pro	Ile	His	Val 45	Tyr	Ser	Gly
10	Ile	Val 50	Ile	Phe	Gly	Thr	Val 55	Ile	Ala	Thr	Ala	Leu 60	Met	Gly	Leu	Thr
15	Glu 65	Lys	Leu	Ile	Phe	Ser 70	Leu	Arg	Asp	Pro	Ala 75	Tyr	Ser	Thr	Phe	Pro 80
	Pro	Glu	Gly	Val	Phe 85	Val	Asn	Thr	Leu	Gly 90	Leu	Leu	Ile	Leu	Val 95	Phe
20	Gly	Ala	Leu	Ile 100	Phe	Trp	Ile	Val	Thr 105	Arg	Pro	Gln	Trp	Lys 110	Arg	Pro
	Lys	Glu	Pro 115		Ser	Thr	Ile	Leu 120	His	Pro	Asn	Gly	Gly 125	Thr	Glu	Gln
25	Gly	Ala 130		G1y	Ser	Met	Pro 135	Ala	Tyr	Ser	Gly	Asn 140	Asn	Met	Asp	Lys
30	Ser 145		Ser	Glu	Leu	Asn 150		Glu	Val	Ala	A1a 155	Arg	Lys	Arg	Asn	Leu 160
	Ala	Leu	Asp	Glu	Ala 165	Gly	Gln	Arg	Ser	Thr 170	Met	Xaa				
35	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	454:							
40				_	(A) I (B) 7 (D) 7	ENGT TYPE TOPOI	TH: ! : am: LOGY	96 ar ino a : lir		acio): 4 5	64:			
45	Met		e His	s Val	. Leu		: Ala	Glr	val	Thr 10		. Val	Ile	e Ile	Thr	Thr
	Val	. Sei	c Val	L Let 20		Phe	e Asp) Phe	Arg 25		Ser	Leu	Glu	Phe 30		e Leu
50	Glu	ı Ala	a Xaa 39		c Val	. Xaa	a Lev	1 Se1		Phe	e Ile	туг	Asr 45		. Ser	Lys
55	Pro	Gli 50		l Pro	o Glu	і Туі	Ala 59		Arg	g Glr	ı Glu	Arg 60		e Arg	j Asp	Leu
55	Sei 6		y Ası	n Lei	ı Tr <u>p</u>	Glu 70		g Sei	r Sei	c Gly	/ Ası 79		/ Glu	ı Glv	ı Lev	Glu 80
60	Arg	g Le	u Th	r Ly:	s Pro		s Sei	r Ası	o Glu	ı Sei 90		Glı	ı Ası	7hi	c Phe	Xaa

5	
	(2) INFORMATION FOR SEQ ID NO: 455:
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 171 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 455:
15	Met Arg Gly Pro Ala Gln Ala Lys Leu Leu Pro Gly Ser Ala Ile Gln 1 5 10 15
20	Ala Leu Val Gly Leu Ala Arg Pro Leu Val Leu Ala Leu Leu Val 20 25 30
20	Ser Ala Ala Leu Ser Ser Val Val Ser Arg Thr Asp Ser Pro Ser Pro 35 40 45
25	Thr Val Leu Asn Ser His Ile Ser Thr Pro Asn Val Asn Ala Leu Thr 50 55 60
	His Glu Asn Gln Thr Lys Pro Ser Ile Ser Gln Ile Ser Thr Thr Leu 65 70 75 80
30	Pro Pro Thr Thr Ser Thr Lys Lys Ser Gly Gly Ala Ser Val Val Pro 85 90 95
35	His Pro Ser Pro Thr Pro Leu Ser Gln Glu Glu Ala Asp Asn Asn Glu 100 105 110
33	Asp Pro Ser Ile Glu Glu Glu Asp Leu Leu Met Leu Asn Ser Ser Pro 115 120 125
40	Ser Thr Ala Lys Asp Thr Leu Asp Asn Gly Asp Tyr Gly Glu Pro Asp 130 135 140
	Tyr Asp Trp Thr Thr Gly Pro Arg Asp Asp Glu Ser Asp Xaa His 145 150 155 160
45	Leu Gly Arg Lys Gln Gly Leu His Gly Asn Xaa 165 170
50	(2) INFORMATION FOR SEQ ID NO: 456:
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 92 amino acids(B) TYPE: amino acid
55	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 456:
	Met Lys Ala Ser Gln Cys Cys Cys Cys Leu Ser His Leu Leu Ala Ser 1 5 10 15

	Val	Leu	Leu	Leu 20	Leu	Leu	Leu	Pro	Glu 25	Leu	Ser	Gly	Xaa	Leu 30	Xaa	Val
5	Leu	Leu	Gln 35	Ala	Ala	Glu	Ala	Ala 40	Pro	Gly	Xaa	Gly	Pro 45	Pro	Asp	Pro
	Arg	Pro 50	Gly	His	Tyr	Arg	Arg 55	Cys	His	Arg	Ala	Leu 60	Thr	Pro	Ala	Gln
10	Gln 65	Pro	Gly	Arg	Gly	Leu 70	Ala	Glu	Ala	Ala	Gly 75	Ala	Ala	Gly	Leu	Arg 80
15	Gly	Arg	Gln	Trp	Gln 85	Gln	Pro	Cys	Gly	Arg 90	Ala	Xaa				
20	(2)	INF	(i)	(ENCE A) L B) T D) T	CHA ENGT YPE:	RACT H: 2 ami OGY:	ERIS 06 a no a lin	TICS mino cid ear	aci						
25	Ile 1	Ser		SEQ Leu										Leu	Pro 15	Glu
30	Leu	Thr	Ala	Glu 20	Ser	Leu	Glu	Ala	Gly 25	Asp	Ser	Asn	Gln	Phe 30	Cys	Trp
	Arg	Asn	Leu 35	Phe	Ser	Cys	Ile	Asn 40	Leu	Leu	Arg	Ile	Leu 45		Lys	Leu
35	Thr	Lys 50		Lys	His	Ser	Arg 55		Met	Met	Leu	Val 60	Val	. Phe	Lys	Ser
40	Ala 65		Ile	. Leu	Lys	Arg 70		Leu	Lys	Val	Lys 75		Ala	Met	Met	Gln 80
	Leu	Тут	Val	. Leu	Lys 85		Leu	Lys	Val	Gln 90		Lys	Тут	Leu	Gly 95	Arg
45	Gln	Trp	Arg	Lys 100		Asn	Met	. Lys	Thr 105		. Ser	Ala	Ile	110		Lys
	Val	. Arg	His 115		Leu	Asn	Asp	120		Ala	Тут	Gly	125		Leu	Asp
50	Ala	Arg 130		Trp	Asp	Phe	Glr 135		Glu	Glu	Cys	Ala 140		ı Arg	Ala	Asn
55	Ile 145		ı Arg	g Phe	. Asn	150		, Arg	тут	Asp	155		His	s Ser	Asn	160
<i>z</i> =	Asp	Phe	e Lei	ı Pro	Val 165) Asr	ı Cys	Leu	170		. Val	. Le	ı Gly	/ Glr 175	Arg
60	Va1	l Ası) Le	ı Pro 180		ı Asp	Phe	e Glr	185		туз	Asp) Le	190		ı Glu

	Arg (3lu	Val 195	Phe :	Ser I	Lys E		11e S 200	Ser T	rp (Glu G	lu L 2	eu L 05	eu		
5																
	(2)	INFC	RMAT	ION	FOR :	SEQ I	D N	0: 49	58:							
10				(E	A) LE 3) TY 0) TO	NGTH PE: POLO	: 31 amir GY:	.7 am no ac line	ino id ar		ls NO:	458	:			
15	Met 1	Ala	Pro	Pro	Ala 5	Pro (Gly	Pro .	Ala	Ser 10	Gly (Gly S	Ser (Sly G	lu V 15	/al
20	Asp	Glu	Leu	Phe 20	Asp	Val	Lys	Asn	Ala 25	Phe	Tyr	Ile	Gly S	Ser 7	yr (Gln
20	Gln	Cys	Ile 35		Glu	Ala	Xaa	Xaa 40	Val	Lys	Leu	Ser	Ser 1	Pro (3lu /	Arg
25	Asp	Val 50		Arg	Asp	Val	Phe 55	Leu	Tyr	Arg	Ala	Tyr 60	Leu .	Ala (Gln .	Arg
	Lys 65	Phe	: Gly	Val	Val	Leu 70	Asp	Glu	Ile	Lys	Pro 75	Ser	Ser	Ala	Pro	Glu 80
30	Leu	Gln	Ala	. Val	Arg 85	Met	Phe	Ala	Asp	Туг 90	Leu	Ala	His	Glu	Ser 95	Arg
35	Arg	Asp	Ser	1le 100		Ala	Glu	Leu	Asp 105	Arg	Glu	Met	Ser	Arg 110	Ser	Xaa
55	Asp	Va:	115		Thr	Thr	Phe	Leu 120		Met	Ala	Ala	Ser 125	Ile	Tyr	Leu
40	His	Ası 13		n Asn	Pro	Asp	Ala 135		Leu	Arg	Ala	Leu 140	His	Gln	Gly	Asp
	Ser 145		u Gl	u Cys	: Thr	Ala 150		. Thr	Val	Gln	11e 155		Leu	Lys	Leu	Asp 160
45	Arg	, Le	u As	p Let	1 Ala		Lys	Glu	. Leu	Lys 170	Arg	Met	Gln	Asp	Leu 175	Asp
50	Ģlu	ı As	p Al	a Thi		ı Thr	Glr	ı Lev	185		Ala	Trp	Val	Ser 190	Leu	Ala
50	Thi	c Gl	y Gl 19		u Lys	s Lev	ı Glı	n Asp 200		а Тул	r Tyr	Ile	Phe 205		Glu	Met
55	Ala	a As 21		rs Cy	s Se	r Pro	21		ı Lev	ı Le	u Lev	Asr 220		Gln	Ala	Ala
	Су: 22	_	ıs Me	et Al	a Gl	n Gly 230		g Trj	p Glu	ı Ala	a Ala 235		ı Gly	/ Leu	. Le	Gln 240.
60					•	_ > -	- 0-	- 01		~ D~	~ ~1.	. The	- 1-01	ı Val	Δετ	ı Len

WO 98/54963 PCT/US98/11422

					2	45					2	50					25	5	
5	Ile V	/al	Leu		er G 60	in i	His	Leu	Gly	Ly: 26!		ro l	Pro	Glu	Val	Thr 270	As	n A	rg
5	Tyr I	Leu	Ser 275		ln I	eu	Lys	Asp	Ala 280	Hi	s A	rg:	Ser	His	Pro 285	Phe	Il	e I	īÀS
10	Glu '	Tyr 290	Glr	ıΑ	la I	ys	Glu	Asn 295		Ph	e A	. qz	Arg	Leu 300	Val	Leu	Gl	n I	ſyr
	Ala 305	Pro	Ser	A	la (Glu	Ala 310	Gly	Pro	Gl	u I		Ser 315	Gly	Pro				
15																			
	(2)	INF	ORM	ATI	ON	FOR	SEQ	ID	NO:	459):								
20					(<i>P</i> (E) L 3) T 0) T	ENGT YPE : OPOI	H: : : am LOGY	TERIS 261 a ino a : li:	amiı acio nea:	no d r			: 45	9:				
25	Arg 1	Asp	Va	10	Glu	Arg 5	Asp	Val	l Phe	e Le	eu '	Tyr 10	Arg	Ala	Tyr	Leu	ı A	la 15	Gln
20	Arg	Lys	. Ph	e (Gly 20	Val	Val	. Le	ı Ası		lu 25	Ile	Lys	Pro	Ser	: Sei	c A	la	Pro
30	Glu	Lev		n 1	Ala	Val	Arg	g Me	t Ph		la	Asp	Tyr	Leu	Ala 45		s G	lu	Ser
35	Arg	Arg 50		p :	Ser	Ile	· Val	l Al	a Gl	u L	eu	Asp	Arg	Glu 60		se.	r A	rg	Ser
	Xaa 65		p Va	al '	Thr	Asn	7 Th:		r Ph	e L	eu	Leu	Met 75		a Ala	a Se	r I	le	Tyr 80
40	Leu	Hi	s As	sp	Gln	Asr 85		o As	p Al	a A	la	Leu 90		, Ala	a Le	u Hi	s C	1n 95	Gly
45	Asp	Se	r Le	eu	Glu 100		s Th	r Al	a Me		hr .05	Val	. Glr	ı Ile	e Le	u Le 11	u I .0	уs	Leu
,,,	Asp	Ar		eu 15	Asp	Let	ı Al	a Ar	g Ly 12		Glu	Leu	ı Ly:	s Ar	g Me 12	t G1 5	.n 1	Asp	Leu
50	Asp	Gl . 13		sp	Ala	Thi	r Le	u Th		ln I	Leu	Ala	a Th	r Al 14	a Tr O	p Va	al S	Ser	Leu
	Ala 145		ır G	ly	Gly	Gl	u Ly 15		eu _. G	ln 1	Asp	Ala	а Ту 15	r Ту 5	r Il	e Pl	ne (Gln	Glu 160
55						16	5					170	0					1/5	
60	Ala	a Cy	ys H	lis	Met 180		a G	ln G	ly A		Trp 185		u Al	a Al	a Gl	lu Gi	ly 90	Lev	ı Leu

	Gln	Glu	Ala 195	Leu	Asp	Lys	Asp	Ser 200	Gly	Tyr	Pro	Glu	Thr 205	Leu	Val	Asn
5	Leu	Ile 210	Val	Leu	Ser	Gln	Нis 215	Leu	Gly	Lys	Pro	Pro 220	Glu	Val	Thr	Asn
	Arg 225	Tyr	Leu	Ser	Gln	Leu 230	Lys	Asp	Ala	His	Arg 235	Ser	His	Pro	Phe	Ile 240
10	Lys	Glu	Tyr	Gln	Ala 245	Lys	Glu	Asn	Asp	Phe 250	Asp	Arg	Leu	Val	Leu 255	Gln
15	Tyr	Ala	Pro	Ser 260	Ala											
20	(2)	INF		TION SEQU						:						
20					(A) I (B) T (D) T	ENGI YPE : OPOI	H:] ami OGY:	156 a ino a : lir	mino acid near	aci						
25				SEQ	Gly	Ile					Ala			His	His	lle
30	1 Ile		Lev	Phe			Pro	Gly	Asp 25	Pro		Lys	: Arç	Ser 30	Ser	Phe
	Ile	Ile	тут 35) Ile	Met	. Asr	ı Glu 40		. Met	. Gly	/ Lys	Arg		e Ser	Pro
35	Lys	Asp 50		Asp) Asp	Asp	Lys 59		e Phe	e Glr	ser	Ala		: Sei	: Ile	e Cys
40	Ser 65		. Le	ı Arç	j Asp	Let 70		ı Le	ı Ala	а Туг	Glr 75		l His	s Gly	/ Le	Leu 80
	Lys	Thi	r Gly	y Ası	Asr 85		Ly:	s Phe	e Ile	e Gly 90		o Ası	o Gli	n Hi:	9!	g Asn 5
45	Ph€	Э Ту:	г Ту:	r Sei		s Phe	e Pho	e Ası	2 Let 10		e Cy:	s Le	u Me	t Gl		n Ile
	Ası	Va.	1 Th		u Lys	s Tr _l	о Ту	r Gl) Le	ı Il	e Pr	o Se 12	r Ala	а Ту	r Phe
50	Pro	13		r Gli	n Th	r Me	t Il 13		s Le	u Le	u Gl	n Al 14		u As	p Va	l Ala
55	As:		g Le	u Gl	u Va	1 Il-		o Ly	s Il	e Tr	ρ Gl 15		g			
	12) TN	FORM	OLTA	N FO	R SE	O ID	NO:	461	:						

(i) SEQUENCE CHARACTERISTICS:

•				()	3) T	YPE:	amir	no ac	rid	acı						
			(xi)			OPOLA E DES				EQ II	NO:	461	. :			
5	Lys 1	Asp	Ser	Lys	Glu 5	Tyr	Gly	His	Thr	Phe 10	Arg	Ser	Asp	Leu	Arg 15	Glu
10	Glu	Ile	Leu	Met 20	Leu	Met	Ala	Arg	Asp 25	Lys	His	Pro	Pro	Glu 30	Leu	Gln
	Val	Ala	Phe 35	Ala	Asp	Cys	Ala	Ala 40	Asp	Ile	Lys	Ser	Ala 45	Tyr	Glu	Ser
15	Gln	Pro 50	Ile	Arg	Gln	Thr	Ala 55	Gln	Asp	Trp	Pro	Ala 60	Thr	Ser	Leu	Asn
20	Cys 65	Ile	Ala	Ile	Leu	Phe 70	Leu	Arg	Ala	Gly	Arg 75	Thr	Gln	Glu	Ala	Trp 80
	Lys	Met	Leu	Gly	Leu 85	Phe	Arg	Lys	His	Asn 90	Lys	Ile	Pro	Arg	Ser 95	Glu
25	Leu	Leu	Asn	Glu 100	Leu	Met	Asp	Ser	Ala 105	Lys	Val	Ser	Asn	Ser 110	Pro	Ser
	Gln	Ala	11e 115	Glu	Val	Val	Glu	Leu 120	Ala	Ser	Ala	Phe	Ser 125	Leu	Pro	Ile
30	Cys	Glu 130	Gly	Leu	Thr	Gln	Arg 135		Met	Ser	Asp	Phe 140	Ala	Ile	Asn	Gln
35	145		Lys			150					155					160
	Asp	Thr	: Asp	Ser	Ser 165		Asp	Ser	Asp	Ser 170		Thr	Ser	Glu	Gly 175	Lys
40																
45	(2)	INI	FORMA	SEQU	JENCI	E CHA	ARACT	TERIS	STICS amin	S:	ids					
50			(xi)		(D)	TYPE TOPO! CE DI	LOGY	: li	near	SEQ :	ID NO	o: 40	52:			
		: Se:) Ası						ı Asp) Leu	Lys 15	Leu
55	Glı	ı Le	u Arg	g Arg		ı Arg	j Ası	Ly:	5 His		ı Lys	s Glu	ı Ile	e Glr 30		Leu
60	Glı	n Se	r Arg		n Ly:	s His	s Glu	ı Ile 40		Se:	r Le	л Тул	c Thi 49		s Lev	ı Gly.

-	Lys	Val 50	Pro	Pro	Ala	Val	Ile 55	Ile	Pro	Pro	Ala	Ala 60	Pro	Leu	Ser	Gly
5	Arg 65	Arg	Arg	Arg	Pro	Thr 70	Lys	Ser	Lys	Gly	Ser 75	Lys	Ser	Ser	Arg	Ser 80
	Ser	Ser	Leu	Gly	Asn 85	Lys	Ser	Pro	Gln	Leu 90	Ser	Gly	Asn	Leu	Ser 95	Gly
10	Gln	Ser	Ala	Ala 100	Ser	Val	Leu	His	Pro 105	Gln	Gln	Thr	Leu	His 110	Pro	Pro
15	Gly	Asn	Ile 115	Pro	Glu	Ser	Gly	Gln 120	Asn	Gln	Leu	Leu	Gln 125	Pro	Leu	Lys
13	Pro	Ser 130	Pro	Ser	Ser	Asp	Asn 135	Leu	Tyr	Ser	Ala	Phe 140	Thr	Ser	Asp	Gly
20	Ala 145	Ile	Ser	Val	Pro	Ser 150	Leu	Ser	Ala	Pro	Gly 155		Gly	Thr	Ser	Ser 160
	Thr	Asn	Thr	Val	Gly 165	Ala	Thr	Val	Asn	Ser 170		Ala	Ala	Gln	Ala 175	Gln
25	Pro	Pro	Ala	Met 180		Ser	Ser	Arg	Lys 185		Thr	Phe	Thr	Asp 190	Asp	Leu
30	His	Lys	Leu 195		Asp	Asn	Trp	Ala 200		Asp	Ala	Met	Asn 205	Leu	Ser	Gly
50	Arg	Arg 210		Ser	Lys	Gly	His 215		Asn	Туг	Glu	220		Gly	Met	Ala
35	Arg 225		Phe	e Ser	Ala	Pro 230		/ Gln	Leu	. Cys	235 235		Met	Thr	Ser	Asn 240
	Lev	Gly	/ Gly	/ Sei	245		Ile	e Ser	Ala	250		c Ala	Thr	Ser	255	Gly
40	His	s Phe	e Thi	c Lys 260		Met	. Cys	Pro	265		n Gli	туз	Gly	270		Ala
45	Thi	r Pro	27!		y Ala	Glr	Tr	280 280		y Th:	r Gl	y Gly	289		Pro	Gln
13	Pro	29		y Gli	n Phe	e Glr	29		l Gl	y Th	r Al	a Se:		ı Glr	ı Ası	n Phe
50	As:		e Se	r As	n Lei	310		s Se	r Il	e Se	r As 31		o Pro	o Gly	/ Se:	r Asn 320
	Le	u Ar	g Th	r Th	r											
55																

(2) INFORMATION FOR SEQ ID NO: 463:

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 133 amino acids

-	(B) TYPE: amino acid	
	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 463:	
5	Ile Gln Asp Leu Gln Ser Arg Gln Lys His Glu Ile Glu Ser Leu Tyr 1 5 10 15	•
	Thr Lys Leu Gly Lys Val Pro Pro Ala Val Ile Ile Pro Pro Ala Ala 20 25 30	ì
10	Pro Leu Ser Gly Arg Arg Arg Pro Thr Lys Ser Lys Gly Ser Lys 35 40 45	3
15	Ser Ser Arg Ser Ser Ser Leu Gly Asn Lys Ser Pro Gln Leu Ser Gly 50 55 60	?
	Asn Leu Ser Gly Gln Ser Ala Ala Ser Val Leu His Pro Gln Gln Th 65 .70 .75 .80	r 0
20	Leu His Pro Pro Gly Asn Ile Pro Glu Ser Gly Gln Asn Gln Leu Leu 85 90 95	u
25	Gln Pro Leu Lys Pro Ser Pro Ser Ser Asp Asn Leu Tyr Ser Ala Pho 100 105 110	e
23	Thr Ser Asp Gly Ala Ile Ser Val Pro Ser Leu Ser Ala Pro Gly Gl 115 120 125	n
30	Gly Thr Ser Ser Thr 130	
35	(2) INFORMATION FOR SEQ ID NO: 464: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 53 amino acids	
	(B) TYPE: amino acid	
40	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 464:	
	Thr Ser Asp Gly Ala Ile Ser Val Pro Ser Leu Ser Ala Pro Gly Gl 1 5 10 15	Lr
45	Gly Thr Ser Ser Thr Asn Thr Val Gly Ala Thr Val Asn Ser Gln Al 20 25 30	lá
50	Ala Gln Ala Gln Pro Pro Ala Met Thr Ser Ser Arg Lys Gly Thr Ph 35 40 45	ne
	Thr Asp Asp Leu His 50	
55	(2) INFORMATION FOR SEQ ID NO: 465:	
	(i) SEQUENCE CHARACTERISTICS:	
60	(A) LENGTH: 48 amino acids (B) TYPE: amino acid	

	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 465:
	Lys Gly His Met Asn Tyr Glu Gly Pro Gly Met Ala Arg Lys Phe Ser
5	1 5 10 15
	Ala Pro Gly Gln Leu Cys Ile Ser Met Thr Ser Asn Leu Gly Gly Ser 20 25 30
10	Ala Pro Ile Ser Ala Ala Ser Ala Thr Ser Leu Gly His Phe Thr Lys 35 40 45
15	
	(2) INFORMATION FOR SEQ ID NO: 466:
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 amino acids
	(B) TYPE: amino acid (D) TOPOLOGY: linear
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 466:
25	Gln Pro Leu Lys Pro Ser Pro Ser Ser Asp Asn Leu Tyr Ser Ala Phe 1 5 10 15
30	Thr Ser Asp Gly Ala Ile Ser Val Pro Ser Leu Ser Ala Pro Gly 20 25 30
20	
	(2) INFORMATION FOR SEQ ID NO: 467:
35	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 57 amino acids (B) TYPE: amino acid
40	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 467:
	Val Arg Val Ala Ala Ala Glu Ser Met Xaa Leu Leu Leu Glu Cys Ala
	1 5 10 15
45	Xaa Val Arg Gly Pro Glu Tyr Leu Thr Gln Met Trp His Phe Met Cys 20 25 30
	Asp Ala Leu Ile Lys Ala Ile Gly Thr Glu Pro Asp Ser Asp Val Leu
50	Ser Glu Ile Met His Ser Phe Ala Lys
	50 55
55	
	(2) INFORMATION FOR SEQ ID NO: 468:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 85 amino acids
60	(B) TYPE: amino acid

	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 468:
5	Met Glu Ile Asn Asn Gln Asn Cys Phe Ile Val Ile Asp Leu Val Arg 1 5 10 15
	Thr Val Met Glu Asn Gly Val Glu Gly Leu Leu Ile Phe Gly Ala Phe 20 25 30
10	Leu Pro Glu Ser Trp Leu Ile Gly Val Arg Cys Ser Ser Glu Pro Pro 35 40 45
15	Lys Ala Leu Leu Leu Ile Leu Ala His Ser Gln Lys Arg Arg Leu Asp 50 55 60
13	Gly Trp Ser Phe Ile Arg His Leu Arg Val His Tyr Cys Val Ser Leu 65 70 75 80
20	Thr Ile His Phe Ser 85
25	(2) INFORMATION FOR SEQ ID NO: 469: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids (B) TYPE: amino acid
30	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 469:
	Gln Asp Lys His Ala Glu Glu Val Arg Lys Asn Lys Glu Leu Lys Glu 1 5 10 15
35	Glu Ala Ser Arg 20
40	(2) INFORMATION FOR SEQ ID NO: 470:
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 92 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 470:
50	Gln Gln Asp Leu Ser Pro Trp Ala Ala Pro Val Gly Cys Pro Leu Xaa 1 5 10 15
50	Xaa Ala Ser Xaa Thr Cys His Xaa Leu Pro Leu Ser Gly Cys Leu Arg 20 25 30
55	Arg Gln Ser Xaa Ser Leu Pro Val Val Ala Xaa Leu Cys Phe Trp Phe 35 40 45
	Ser Cys Pro Leu Ala Ser Leu Phe Val Pro Gly Gln Pro Cys Val Thr 50 55 60
60	Cys Pro Phe Pro Ser Leu Pro Phe Gln Asp Lys His Ala Glu Glu Val

	5 5		70		75		80
5	Arg Lys Asn	Lys Glu Le 35	eu Lys G	lu Glu A	ala Ser A 90	rg	
5							
10	(2) TEOMAI (i) (SEÇUENCE C	HARACTE		cids		
	Xi;	(E) TYP	E: amin	o acid linear		471:	
15	Pro Thr Arg 1	Cys Cys T	hr Thr (Gln Pro (Cys Arg S 10	Ser Ser Al	la Arg Arg 15
20	Sto Cle Ltb	Val Pro M 20	et Val I	Pro Ser 1 25	Pro Glu (lu Xaa Gln 30
25	Pro Thr Cys 35	Pro Ser					
25	(2) E UFORMA	DICH FOR S	SEQ ID N	o: 472 :			
30		(3) TY	NGTH: 36 PE: amir POLOGY:	3 amino no acid linear	acids	472:	
35	Met Lys Arg						la Gly Cys 15
40	Leu Pro Val	Pro Leu : 20	Phe Asn	Gln Lys 25	Lys Arg	Asn Arg G	in Pro Leu 30
70	Thr Ser Ast		iys Asp	Asp Ser 40	Gly Ile	Ser Thr F 45	Pro Ser Asp
45	Asn Tyr Asy 50	p Phe Pro	Pro Leu 55	Pro Thr	Asp Trp	Ala Trp 0	Glu Ala Val
	Asn Pro Gl: 65	: Xaa Ala	Pro Val 70	Met Lys	Thr Val 75	Asp Thr (Gly Gln Ile 80
50	Pro His Se	r Val Ser 85	Arg Pro	Leu Arg	Ser Gln 90	Asp Ser \	Val Phe Asn 95
55	Sar Ile Gl	n Ser Asn 100	Thr Gly	Arg Ser 105	Gln Gly		Ser Tyr Arg 110
	Asp Gly As 11		Thr Ser	Leu Lys 120	Thr Trp	Xaa Lys 1 125	Asn Asp Phe
60	Lyš Pro Gl 130	n Cys Lys	Arg Thr		Val Ala	Asn Asp	Gly Lys Asn

	Ser 145	Cys	Pro	Met	Ser	Ser 150	Gly	Ala	Gln	Gln	Gln 155	Lys	Gln	Leu	Arg	Thr 160
5	Pro	Glu	Pro	Pro	Asn 165	Leu	Ser	Arg	Asn	Lys 170	Glu	Thr	Glu	Leu	Leu 175	Arg
10	Gln	Thr	His	Ser 180	Ser	Lys	Ile	Ser	Gly 185	Cys	Thr	Met	Arg	Gly 190	Leu	Asp
10	Lys	Asn	Ser 195	Ala	Leu	Gln	Thr	Leu 200	Lys	Pro	Asn	Phe	Gln 205	Gln	Asn	Gln
15	Tyr	Lys 210	Xaa	Gln	Met	Leu	Asp 215	Asp	Ile	Pro	Glu	Asp 220	Asn	Thr	Leu	Lys
	G1u 225	Thr	Ser	Leu	Tyr	Gln 230	Leu	Gln	Phẹ	Lys	Glu 235	Lys	Ala	Ser	Ser	Leu 240
20	Arg	Ile	Ile	Ser	Ala 245	Val	Ile	Glu	Ser	Met 250		Tyr	Trp	Arg	Glu 255	His
25	Ala	Gln	Lys	Thr 260		Leu	Leu	Phe	Glu 265		Leu	Ala	Val	Leu 270		Ser
23	Ala	Val	Thr 275		Gly	Pro	Тут	Tyr 280		Lys	Thr	Phe	Leu 285		Arg	Asp
30	Gly	Lys 290		Thr	Leu	Pro	Cys 295		Phe	туг	Glu	1le 300		Arg	Glu	Leu
	Pro 305		Lev	ı Ile	e Arg	Gly 310		, Val	His	Arg	315		. Gly	/ Asn	тут	320
35	Gln	Lys	Lys	s Asr	11e 329		Glr	n Cys	Val	. Sei		. Arg	Pro	Ala	335	Val
40	Ser	Glu	ı Glr	1 Lys 340		Phe	Glr	n Ala	349		l Lys	: Ile	e Ala	350		l Glu
.0	Met	Glr	ту: 35!		: Ile	e Asr	ı Va	1 Met 360		ı Glı	ı Thi	5				
45	(2)	INI	FORM	OITA	N FOI	R SE(O ID	NO:	473	:						
50					(A) (B) (D)	LENG TYPE TOPO	TH: : an LOGY	TERI: 45 a nino 7: li	mino acid near	aci l		0: 4	73:			
55		r Gl l			r Va					e Gl				r Gl	y Ar 1	g Ser 5
	Gl	n Gl	y Gl	_	p Se O	т Ту	r Ar	g As		y As 5	n Ly	s As	n Th	r Se 3		u Lys
60	Th	r Tr	рХа	a Ly	s As	n As	p Ph	e Ly	s Pr	o G1	n Cy	s Ly	s Ar	g		

5	(2) INFORMATION FOR SEQ ID NO: 474:								
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 474: 								
15	Asn Lys Glu Thr Glu Leu Leu Arg Gln Thr His Ser Ser Lys Ile Ser 1 5 10 15								
13	Gly Cys Thr Met Arg Gly Leu Asp Lys Asn Ser Ala Leu Gln Thr Leu 20 25 30								
20	Lys Pro Asn Phe 35								
25	(2) INFORMATION FOR SEQ ID NO: 475:								
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 49 amino acids (B) TYPE: amino acid									
30	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 475:								
	Ser Ser Leu Arg Ile Ile Ser Ala Val Ile Glu Ser Met Lys Tyr Trp 1 5 10 15								
35	Arg Glu His Ala Gln Lys Thr Val Leu Leu Phe Glu Val Leu Ala Val 20 25 30								
40	Leu Asp Ser Ala Val Thr Pro Gly Pro Tyr Tyr Ser Lys Thr Phe Leu 35 40 45								
40	Met								
45	(2) INFORMATION FOR SEQ ID NO: 476:								
	(i) SEQUENCE CHARACTERISTICS:								
50	(A) LENGTH: 42 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear								
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 476:								
55	Pro Arg Leu Ile Arg Gly Arg Val His Arg Cys Val Gly Asn Tyr Asp 1 5 10 15								
	Gln Lys Lys Asn Ile Phe Gln Cys Val Ser Val Arg Pro Ala Ser Val 20 25 30								

Ser Glu Gln Lys Thr Phe Gln Ala Phe Val

10	1		(xi)	(A (E (E SEQU	L) LE 3) TY 3) TC	NGTH PE: POLC	: 37 amin	0 am	ino	acid	ls							
	1	Val	Phe		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 370 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 477:													
15	Ser			Arg	Pro 5	Cys	Val	Cys (Gly	Arg 10	Pro .	Ala	Ser	Leu '	Thr (Cys		
		Pro	Leu	Asp 20	Pro	Glu	Val	Gly	Pro 25	Tyr	Cys	Asp	Thir	Pro 30	Thr	Met		
20	Arg	Thr	Leu 35	Phe	Asn	Leu	Leu	Trp 40	Leu	Ala	Leu	Ala	Cys 45	Ser	Pro	Val		
	His	Thr 50	Thr	Leu	Ser	Lys	Ser 55	Asp	Ala	Lys	Lys	Ala 60	Ala	Ser	Lys	Thr		
25	Leu 65	Leu	Glu	Lys	Ser	Gln 70	Phe	Ser	Asp	Lys	Pro 75	Val	Gln	Asp	Arg	Gly 80		
20	Leu	Val	Val	Thr	Asp 85	Leu	Lys	Ala	Glu	Ser 90	Val	Val	Leu	Glu	His 95	Arg		
30	Ser	Tyr	Cys	Ser 100	Ala	Lys	Ala	Arg	Asp 105	Arg	His	Phe	Ala	Gly 110	Asp	Val		
35	Leu	Gly	туr 115	Val	Thr	Pro	Trp	Asn 120	Ser	His	Gly	Tyr	Asp 125	Val	Thr	Lys		
	Val	Phe 130		Ser	Lys	Phe	Thr 135	Gln	Ile	Ser	Pro	Val 140	Trp	Leu	Gln	Leu		
40	Lys 145		, Arg	Gly	Arg	Glu 150	Met	Phe	Glu	Val	Thr 155	Gly	Leu	His	Asp	Val 160		
4.5	Asp	Glr	ı Gly	Trp	Met 165		Ala	Val	Arg	Lys 170		Ala	Lys	Gly	Leu 175	His		
45	Ile	va:	l Pro	Arg 180		Leu	. Phe	Glu	Asp 185		Thr	Tyr	Asp	Asp 190		Arg		
50	Asr	ı Va	l Let 199		Ser	Glu	Asp	Glu 200		Glu	Glu	Leu	Ser 205	Lys	Thr	Val		
	Va]	G1: 21		L Ala	. Lys	: Asr	Glr 215		Phe	Asr	Gly	Phe 220		. Val	Glu	Val		
55	Tr ₁		n Glı	n Lev	ı Lev	230		ı Lys	Arg	y Val	L Gly 235	Leu	ılle	e His	Met	Leu 240		
60	Th	r Hi	s Le	u Ala	a Glu 245		a Leu	ı His	Glr	250		, Lev	ı Lev	ı Ala	Let 255	Leu		

	Val	Ile	Pro	Pro 260	Ala	Ile	Thr	Pro	Gly 265	Thr	Asp	Gln	Leu	Gly 270	Met	Phe
5	Thr	His	Lys 275	Glu	Phe	Glu	Gln	Leu 280	Ala	Pro	Val	Leu	Asp 285	Gly	Phe	Ser
	Leu	Met 290	Thr	Tyr	Asp	Tyr	Ser 295	Thr	Ala	His	Gln	Pro 300	Gly	Pro	Asn	Ala
10	Pro 305	Leu	Ser	Trp	Val	Arg 310	Ala	Cys	Val	Gln	Val 315	Leu	Asp	Pro	Lys	Xaa 320
15	Lys	Trp	Arg	Thr	Lys 325	Ser	Ser	Trp	Gly	Ser 330	Thr	Ser	Met	Xaa	Trp 335	Thr
	Xaa	Arg	Xaa	Pro 340	Xaa	Asp	Ala	Arg	Xaa 345	Pro	Val	Val	Gly	Xaa 350	Arg	Xaa
20	Ile	Gln	. Xaa 355	Leu	Lys	Asp	His	Xaa 360	Pro	Arg	Met	Val	Leu 365	Asp	Ser	Lys
	Pro	Gln 370											,		•	
25	(2)	TNF	AMRO'	TION	FOR	SEO	ID	NO:	478:							
	(2)	11/1								:						
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 478:															
35	Thr 1		s Ser	Pro	Leu 5		Pro	Glu	Val	Gly 10		туг	Cys	s Asp	Thr 15	Pro
40	Thr	: Met	. Arg			Phe	Asr	ı Leu		Tr	Let	ı Ala	Le	ı Ala	a Cys	Ser
				20	,				25	•				30)	
	Pro	o Val	l His	s Thr		Leu	ı Ser	:	25	•				30)	
45			39	s Thr	Thr									30)	
45			39 FORM	s Thr	Thr	R SEG	Q ID ARAC'	NO: TERI	479:	: S:	ds			30)	
45			35 FORM	Thr S ATION SEQ	Thr FOR UENCI (A) (B) (D)	R SEG E CH LENG TYPE TOPO	Q ID ARAC' TH: : am LOGY	NO: TERI 54 a ino : li	479: STIC: mino acid near	s: S:				30)	
٠	(2) Le) INI	39 FORM (i) (xi	SEQUENT SEQUENTS	Thr FOR UENCI (A) (B) (D) QUEN	R SEC E CH LENG TYPE TOPO CE D	Q ID ARAC' TH: : am LOGY ESCR	NO: TERI 54 a ino : li IPTI	479: STIC: mino acid near ON:	s: aci SEQ	ID N r Va	O: 4	79:			s Arg 5
50	(2)) IN u Va 1	35 FORM (i) (xi 1 Va	SEQUENT OF THE SEQUEN	Thruenci (A) (B) (D) QUEN	SECH LENG TYPE TOPO CE D	Q ID ARAC' TH: : am LOGY ESCR	NO: TERI 54 a ino : li IPTI s Al	479: STIC: mino acid near ON:	S: aci SEQ u Se 1	ID N r Va 0	O: 4	79: 1 Le	u Gl	u Hi. 1	s Arg 5 p Val

WO 98/54963 PCT/US98/11422

609

40 45 35 Val Phe Gly Ser Lys Phe 50 5 (2) INFORMATION FOR SEQ ID NO: 480: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 52 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 480: 15 Arg Glu Met Phe Glu Val Thr Gly Leu His Asp Val Asp Gln Gly Trp 10 Met.Arg Ala Val Arg Lys His Ala Lys Gly Leu His Ile Val Pro Arg 20 20 Leu Leu Phe Glu Asp Trp Thr Tyr Asp Asp Phe Arg Asn Val Leu Asp 40 25 Ser Glu Asp Glu 50 (2) INFORMATION FOR SEQ ID NO: 481: 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 56 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 481: His Phe Asp Gly Phe Val Val Glu Val Trp Asn Gln Leu Leu Ser Gln 10 1 5 40 Lys Arg Val Gly Leu Ile His Met Leu Thr His Leu Ala Glu Ala Leu 25 His Gln Ala Arg Leu Leu Ala Leu Leu Val Ile Pro Pro Ala Ile Thr 45 Pro Gly Thr Asp Gln Leu Gly Met 50 50 (2) INFORMATION FOR SEQ ID NO: 482: (i) SEQUENCE CHARACTERISTICS: 55 (A) LENGTH: 47 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 482: Asp Gly Phe Ser Leu Met Thr Tyr Asp Tyr Ser Thr Ala His Gln Pro 60

	1				5					10					15	
ح	Gly P	ro i	Asn i	Ala 20	Pro	Leu	Ser	Trp	Val 25	Arg	Ala	Cys '	Val (Gln ' 30	Val	Leu
5	Asp F	Pro :	Lys 35	Xaa	Lys	Trp .	Arg	Thr 40	Lys	Ser	Ser	Trp	Gly 45	Ser'	Thr	
10	(2) I	INFO	RMAT	ION	FOR	SEQ	ID N	ю: 4	83 :							
15				() ()	A) Li B) T D) T	ENGTI YPE: OPOLA	d: 1 ami OGY:	ERIST 52 ar no ao line PTION	mino cid ear	aci		: 483	3:			
20	Glu A	Arg	Gly	Val	Ser 5	Ile	Asn	Gln	Phe	Cys 10	Lys	Glu	Phe	Asn	Glu 15	Arg
	Thr 1	Lys	Asp	Ile 20	Lys	Glu	Gly	Ile	Pro 25	Leu	Pro	Thr	Lys	Ile 30	Leu	Val
25	Lys 1	Pro	Asp 35	Arg	Thr	Phe	Glu	Ile 40	Lys	Ile	Gly	Gln	Pro 45	Thr	Val	Ser
30	Tyr	Phe 50	Leu	Lys	Ala	Ala	Ala 55	Gly	Ile	Glu	Lys	Gly 60	Ala	Arg	Gln	Thr
50	Gly 65	Lys	Glu	Val	Ala	Gly 70	Leu	Val	Thr	Leu	Lys 75	His	Val	Tyr	Glu	Ile 80
35	Ala	Arg	Ile	Lys	Ala 85		Asp	G1u	Ala	Phe 90		Leu	Gln	Asp	Val 95	
	Leu	Ser	Ser	Val 100		Arg	Ser	Ile	Ile 105		Ser	Ala	Arg	Ser 110	Leu	Gly
40	Ile	Arg	Val 115	Val	. Lys	Asp	Leu	Ser 120		Glu	Glu	Leu	Ala 125		Ph∈	Gln
45	Lys	Glu 130		Ala	ıle	Phe	135		Ala	Glr	Lys	Glu 140		Asp	Leu	Ala
43	Ala 145	Gln	Glu	Glu	ı Ala	150		: Lys	;	•						
50	(2)	INF	ORMA	TION	I FOI	R SEC) ID	NO:	484:	i						
55					(A) (B) (D)	LENG TYPE TOPO	TH: : am LOGY	TERI: 270 ino : li IPTI	amin acid near	o ac		O: 48	34:			•
60	Ala 1		. Туз	: Th		r His	s Gl	u Ly:	s Ly:	s Ly:		Thi	: Ala	a Ala	s Se	r Gly

	Tyr	Gly	Thr	Gln 20	Asn	Ile	Arg	Leu	Ser 25	Arg	Asp	Ala	Val	Lys 30	Asp	Phe
5	Asp	Cys	Cys 35	Cys	Leu	Ser	Leu	Gln 40	Pro	Cys	His	Asp	Pro 45	Val	Val	Thr
10	Pro	Asp 50	Gly	Tyr	Leu	Tyr	Glu 55	Arg	Glu	Ala	Ile	Leu 60	Glu	Tyr	Ile	Leu
10	His 65	Gln	Lys	Lys	Glu	Ile 70	Ala	Arg	Gln	Met	Lys 75	Ala	Tyr	Glu	Lys	Gln 80
15	Arg	Gly	Thr	Arg	Arg 85	Glu	Glu	Gln	Lys	Glu 90	Leu	Gln	Arg	Ala	Ala 95	Ser
	G1n	Asp	His	Val 100	Arg	Gly	Phe	Leu	Glu 105		Glu	Ser	Ala	Ile 110	Val	Ser
20	Arg	Pro	Leu 115		Pro	Phe	Thr	Ala 120		Ala	Leu	Ser	Gly 125	Thr	Ser	Pro
25	Asp	Asp 130		Gln	Pro	Gly	Pro 135	Ser	Val	Gly	Pro	Pro 140	Ser	Lys	Asp	Lys
25	Asp 145		Val	. Leu	Pro	Ser 150		? Trp	Ile	Pro	Ser 155		Thr	Pro	Glu	Ala 160
30	Lys	Ala	Thr	Lys	Leu 165		Lys	s Pro	Ser	170		Val	Thr	Cys	Pro 175	Met
	Ser	Gly	/ Lys	180		a Arg	g Me	t Sei	185		ı Thr	Pro	Val	His 190	Phe	Thr
35	Pro	Let	1 Asp		Sei	Val	l As	p Arg 200		l Gly	y Lev	ı Ile	205	Arg	Ser	Glu
40	Arç	21		l Cys	s Ala	a Vai	1 Th 21		g Ası	p Se:	r Lei	220	Asr	n Ala	Thi	r Pro
.0	Cy:		a Va	l Le	u Ar	g Pro 23		r Gl	y Al	a Va	1 Va 23		c Le	ı Glu	ı Cy:	240
45	Gl	u Ly	s Le	u Il	e Ar		s As	p Me	t Va	1 As 25	p Pr	o Va	l Thi	r Gly	25	o Lys 5
	Le	u Th	r As	p Ar 26		p Il	e Il	e Va	1 Le 26		n Ar	g G1	y Gl	y Thi 27	r 0	
50																
	(2) IN	FORM	1ATIC	N FC	R SE	Q II) NO:	485	:						
55			(i)) SE((A) (B)	LENO TYP	GTH: E: a	TERI 54 a mino Y: 1	amin aci	o ac d	ids					
			(x:	i) SI	EQUEI	NCE I	DESC	RIPT:	ION:	SEQ	ID I	10: 4	185 :			

 $60\,$ $\,$ Tyr Leu Tyr Glu Arg Glu Ala Ile Leu Glu Tyr Ile Leu His Gln Lys

	1				5					10)				1	15	
e	Lys G	lu II		la <i>P</i> 20	rg '	Gln	Met	Lys	Ala 25	Туз	c Glu	ı Lys	Glr	Arg	g G: 0	ly T	'hr
5	Arg A		.u G 35	lu (Sln	Lys	Glu	Leu 40	Gln	Arg	g Ala	a Ala	sei 49		n A	sp H	lis
10	Val A	rg G] 50	ly P	he I	Leu	Glu											
15	(2) I																
				(P (E	L) L 3) T 0) T	ENGI YPE : OPOL	H: (am: OGY	ERIS 54 ar ino a : li	mino acid near	aci							
20		(x	i) :	SEQU	ENC	E DE	SCR	PTIC	: MC	SEQ	ID N	io: 4	86:				
	Phe T	hr A	la I	Lys	Ala 5	Leu	Sei	Gly	/ Th		er Pr .0	o As	p As	p Vá	al C	ln 15	Pro
25	Gly F	Pro S	er V	Val 20	Gly	Pro	Pro	Sei	c Ly 2		p Ly	s As	p Ly	rs V	al 1 30	Leu	Pro
20	Ser I	Phe T	rp 35	Ile	Pro	Ser	Le	1 Th:		o G	lu Al	la Ly		la Ti 15	hr 1	Ĺys	Leu
30	Glu 1	Lys E 50	ro	Ser	Arg	Thr	. Va 5		т Су	s Pi	ro Me		er G	ly L	ys :	Pro	Leu
35																	
40	(2)	INFO	RMAT	CION	FOF	R SE	Q IE	NO:	487	':							
		(i) \$	(A)	LENG	TH:	TERI 56 a nino	amin	o ac	cids						
45		(xi)					Y: 1: RIPT:			, D	NO:	487:				
	Val 1	His	Phe	Thr		L e	u As	sp Se	er S	er V	al A 10	sp A	rg V	al (Gly	Leu 15	Ile
50	. Thr	Arg	Ser	Glu 20		д Ту	r Va	al Cy		la \ 25	/al T	hr A	rg A	sp :	Ser 30	Leu	Ser
55	Asn	Ala	Thr 35		су	s Al	a V		eu A 40	rg I	Pro S	Ser (Sly #	11a '	Val	Val	. Thr
55	Leu	Glu 50	Cys	Va]	Gl	u Ly		eu I 55	le								

	(2)	INFO	KWA'I'	TOM	FOR	SEQ	ID N	0: 4	00:							
5			(i) S	(<i>I</i> (I	A) LE B) T'S C) TC	NGTI PE: POLO	H: 50 amin DGY:	67 ar no ao line	mino cid	acio		488	3:			
10	Met 1		Thr	Ser	Glu 5	Asn	Arg	Pro	Glu	Asn 10	Asp	Val	Pro	Glu	Pro 15	Pro
	Met	Pro	Ile	Ala 20	Asp	Gln	Val	Ser	Asn 25	Asp	qzA	Arg	Pro	Glu 30	Gly	Ser
15	Val	Glu	Asp 35	Glu	Glu	Lys	Lys	Glu 40	Ser	Ser	Leu	Pro	Lys 45	Ser	Phe	Lys
20	Arg.	Lys 50	Ile	Ser	Val	Val	Ser 55	Ala	Thr	Lys	Gly	Val 60	Pro	Ala	Gly	Asn
20	Ser 65	Asp	Thr	Glu	Gly	Gly 70	Gln	Pro	Gly	Arg	Lys 75	Arg	Arg	Trp	Gly	Ala 80
25	Ser	Thr	Ala	Thr	Thr 85	Gln	Lys	Lys	Pro	Ser 90	Ile	Ser	Ile	Thr	Thr 95	Glu
	Ser	Leu	Lys	Ser 100	Leu	Ile	Pro	Asp	Ile 105	Lys	Pro	Leu	Ala	Gly 110	Gln	Glu
30	Ala	Val	Val 115	Asp	Leu	His	Ala	Asp 120	Asp	Ser	Arg	Ile	Ser 125	Glu	Asp	Glu
25	Thr	Glu 130		Asn	Gly	Asp	Asp 135		Thr	His	Asp	Lys 140	Gly	Leu	Lys	Ile
35	Cys 145	Arg	Thr	Val	Thr	Gln 150		Val	Pro	Ala	Glu 155	Gly	Gln	Glu	Asn	Gly 160
40	Gln	Arg	Glu	Glu	Glu 165		Glu	Glu	Lys	Glu 170		Glu	Ala	Glu	Pro 175	
	Val	Pro	Pro	Gln 180		Ser	Val	Glu	Val 185		Leu	Pro	Pro	Pro 190		Glu
45	His	Glu	Val 195		Lys	Val	Thr	200	Gly	Asp	Thr	Leu	Thr 205		Arg	Ser
50	Ile	Ser 210		Gln	Lys	Ser	Gly 215		. Ser	· Ile	Thr	11e		Asp	Pro	Val
50	Arg 225		Ala	Glr	ı Val	Pro 230		Pro	Pro	Arg	Gly 235		∶Il∈	e Ser	Asn	11e 240
55	Val	. His	s Ile	e Ser	Asn 245		ı Val	l Arq	g Pro	250		Lev	ı Gly	/ Gln	Lev 255	Lys
	Glu	ı Lev	ı Leu	Gly 260		Thi	c Gly	y Thi	Leu 265		l Glu	ı Glu	ı Ala	Ph∈	e Trp	ıle

 $60\,$ $\,$ Asp Lys Ile Lys Ser His Cys Phe Val Thr Tyr Ser Thr Val Glu Glu

			275					280					285			
_	Ala	Val 290	Ala	Thr	Arg	Thr	Ala 295	Leu	His	Gly	Val	Lys 300	Trp	Pro	Gln	Ser
5	Asn 305	Pro	Lys	Phe	Leu	Cys 310	Ala	Asp	Tyr	Ala	Glu 315	Gln	Asp	Glu	Leu	Asp 320
10	Tyr	His	Arg	Gly	Leu 325	Leu	Val	Asp	Arg	Pro 330	Ser	Glu	Thr	Lys	Thr 335	Glu
	Glu	Gln	Gly	Ile 340	Pro	Arg	Pro	Leu	His 345	Pro	Pro	Pro	Pro	Pro 350	Pro	Val
15	Gln	Pro	Pro 355		His	Pro	Arg	Ala 360		Gln	Arg	Glu	Gln 365	Glu	Arg	Ala
20	Val	Arg 370		Gln	Trp	Ala	Glu 375		Glu	Arg	, Glu	Met 380		Arg	Arg	Glu
20	Arg 385		Arg	Ser	Glu	Arg 390		Trp	Asp	Arç	395		Val	Arg	Glu	Gly 400
25	Pro	Arg	J Ser	r Arg	Ser 405		Ser	Arg	y Xaa	410		Arg	Lys	Glu	Arg 415	Ala
	Lys	Sea	c Lys	420		. Lys	Ser	Glu	1 Lys 425	Ly:	s Glu	. Lys	Ala	Gln 430	Glu	Glu
30	Pro	Pro	Ala 43!		s Lev	ı Lev	ı Ası	Ası 440		ı Ph	e Arq	J Lys	Thr 445	Lys	Ala	Ala
35	Pro	45		е Тул	r Tri	, Lev	1 Pro		u Thi	r As	p Sei	6 Gli 46	n Ile	e Val	Glr	ı Lys
33	Gl: 465		a Gl	u Ar	g Ala	a Glu 470		g Al	a Ly	s Gl	u Are 47	g Gl	u Ly:	s Arq	g Arg	480
40	Gli	ı Gl	n Gl	u Gl	u Gl [.] 48		u Gl	n Ly	s Gl	u Ar 49		u Ly	s Gl	u Ala	a Gl	u Arg 5
	Gl	u Ar	g As	n Ar 50		n Le	u Gl	u Ar	g Gl 50	u Ly 5	/s Ar	g Ar	g Gl	u Hi 51	s Se O	r Arg
45	Gl	u Ar	g As 51		g Gl	u Ar	g Gl	.u Ar 52	g G1 9	u Ar	rg Gl	u Ar	g As 52	p Ar 5	g Gl	y Asp
50	Ar		sp Ai 30	g As	sp Ar	g Gl	u A1 53		sp Ar	rg G	lu Ar	g G1 54	y Ar 10	g Gl	u Ar	g Asp
50	Ar 54		rg As	sp Tì	r Ly	/s Ar 55		is Se	er Ai	eg Se	er Ai	rg Se 55	er Ar	g Se	er Th	r Pro
55	Va	al A	rg A	sp Ai	-	ly G1 55	y A	rg								

```
(i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 51 amino acids
                  (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
5
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 489:
     Gly Cys Asp Ser Cys Pro Pro His Leu Pro Arg Glu Ala Phe Ala Gln
                 5
10
      Asp Thr Gln Ala Glu Gly Glu Cys Ser Ser Arg Ala Glu Arg Ala Asp
      Met Cys Pro Asp Ala Pro Pro Ser Gln Glu Val Pro Glu Gly Pro Gly
                       40
15
      Ala Ala Pro
          50
20
      (2) INFORMATION FOR SEQ ID NO: 490:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 50 amino acids
25
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 490:
      Pro Gln Leu Pro Ser Cys Gly Arg Pro Trp Pro Gly Thr Ala Ser Val
30
                                         10
      Phe Gln Ser His Thr Gln Gly Pro Arg Glu Asp Pro Asp Pro Cys Arg
      Ala Gln Gly Ser Ala Gly Thr His Cys Pro Ile Ser Leu Ser Pro Pro
35
                                 40
      Arg Gln
           50
40
       (2) INFORMATION FOR SEQ ID NO: 491:
              (i) SEQUENCE CHARACTERISTICS:
45
                     (A) LENGTH: 42 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 491:
 50
       Pro Gly Phe Arg Gly Pro Ser Gly Ser Leu Gly Cys Ser Phe Phe Pro
       Arg Ser Leu Gly Arg Val Leu Pro Pro Gly Cys Gln Arg Pro Gly Ala
 55
                                       25
               20
       His Ala Asp Ser Ser Pro Pro Pro Thr Pro
```

	(2)	INFC	RMAT	NOI	FOR	SEQ	ID N	ю: 4	92:							
5				(1	A) L1 3) T O) T	ENGT YPE: OPOL	H: 8 ami OGY:	4 am no a line	ino a cid ear	acids		: 492	:			
0	Glu 1	Asp	Leu	Lys	Lys 5	Pro	Asp	Pro	Ala	Ser 10	Leu	Arg	Ala	Ala	Ser 15	Cys
15	Gly	Glu	Gly	Lys 20	Lys	Arg	Lys	Ala	Cys 25	Lys	Asn	Cys	Thr	Cys 30	Gly	Leu
IJ	Ala	Glu	Glu 35	Leu	Glu	Lys	Glu	Lys 40	Ser	Arg	Glu	Gln	Met 45	Ser	Ser	Gln
20	Pro	Lys 50		Ala	Cys	Gly	Asn 55	Cys	Tyr	Leu	Gly	A sp 60	Ala	Phe	Arg	Cys
	Ala 65	Ser	Cys	Pro	Tyr	Leu 70		Met	Pro	Ala	Phe 75	Lys	Pro	Gly	Glu	Lys 80
25	Val	Leu	Leu	Ser												
30	(2)	INF	ORM	ATION	FOR	SEÇ) ID	NO:	493 :							
35					(A) 1 (B) 1 (D) 1	LENG TYPE TOPO	TH: : am LOGY	90 ai ino : : li	mino acid near	acio): 4 9	3:			
40	Glu 1		o Le	u Lys		s Pro	o Asi	p Pro	o Ala	a Sei 10		ı Arg	Ala	Ala	Ser 1	Cys
40	Gly	Gl	u Gl	y Ly: 20		s Ar	g Ly:	s Ala	a Cys		s Asr	ı Cys	Thr	Cys 30	s Gly	y Leu
45	Ala	a Gl	u Gl 3		u Gl	u Ly	s Gl	u Ly 4		r Ar	g Glu	ı Glr	n Met	Se:	r Se	r Gln
	Pro		s Se O	r Al	a Cy	s Gl		n Cy 5	s Ty:	r Le	u Gly	Ası 60	Ala	a Ph	e Ar	g Cys
50	Ala 6		r Cy	s Pr	о Ту		u Gl 0	у Ме	t Pr	o Al	a Ph	e Ly: 5	s Pro	o Gl	y Gl	u Lys 80
55	Va	l L∈	eu Le	eu Se		p Se 5	ir As	n Le	eu Hi		р 0					
	(2) IN	IFORI	4ATIC	N FC	OR SE	EQ II) NO:	494	:						
60			(i) SE(QUEN	CE CI	HARA	CTER	ISTIC	CS:						

```
(A) LENGTH: 34 amino acids
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 494:
5
     Cys Gly Asn Cys Tyr Leu Gly Asp Ala Phe Arg Cys Ala Ser Cys Pro
     Tyr Leu Gly Met Pro Ala Phe Lys Pro Gly Glu Lys Val Leu Leu Ser
      20 25
10
     Asp Ser
15
      (2) INFORMATION FOR SEQ ID NO: 495:
            (i) SEQUENCE CHARACTERISTICS:
20
                    (A) LENGTH: 25 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 495:
      Ser Cys Gly Glu Gly Lys Lys Arg Lys Ala Cys Lys Asn Cys Thr Cys
25
       1
                      5
      Gly Leu Ala Glu Glu Leu Glu Lys Glu
                  20
30
      (2) INFORMATION FOR SEQ ID NO: 496:
              (i) SEQUENCE CHARACTERISTICS:
35
                     (A) LENGTH: 21 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 496:
 40
      Ser Gln Pro Lys Ser Ala Cys Gly Asn Cys Tyr Leu Gly Asp Ala Phe
                                          10
      Arg Cys Ala Ser Cys
 45
                   20
       (2) INFORMATION FOR SEQ ID NO: 497:
 50
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 17 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 497:
 55
       Arg Glu Ala Gly Gln Asn Ser Glu Arg Gln Tyr Val Ser Leu Ser Arg
                       5
 60
       Asp
```

WO 98/54963 PCT/US98/11422

5	(2) II	NFOF	TAMS	ION	FOR	SEQ	ID N	o: 4	98:							
10				(<i>I</i> (I	A) LI B) TY O) TY	ENGTI (PE : OPOL(ACTE H: 90 amin XGY: GCRIF	ami o ac line	ino a cid ear	cids		498	3:			
	Glu S	er:	Ser	Gly	Gln 5	Ala	Arg	Thr	Leu	Ala 10	Asp	Pro	Gly	Pro (3ly 7 15	rp
15	Pro A	rg	Gln	Gln 20	Gly	Met	Cys	Phe	Gly 25	Ser	Leu	Thr	Gly	Leu S 30	Ser '	Thr
20	Thr P	ro	His 35	Gly	Phe	Leu	Thr	Val 40	Ser	Ala	Glu	Ala	Asp 45	Pro i	Arg 1	Leu
	Ile G	1u 50	Ser	Leu	Ser	Gln	Met 55	Leu	Ser	Met	Gly	Phe 60	Ser	Asp (Glu (Gly
25	Gly T 65	rp	Leu	Thr	Arg	Leu 70	Leu	Gln	Thr	Lys	Asn 75	Tyr	Asp	Ile	Gly	Ala 80
30	Ala I	Leu	Asp	Thr	Ile 85	Gln	Tyr	Ser	Lys	His 90						
35	(2)	INFO	(i)	SEQU	ENCE (A) I (B) '	E CHA LENGI LYPE L'OPOI	ID: ARACT TH: 1 : ami LOGY:	ERIS 159 a ino a : li	STICS amino acid near	o aci		D: 49	99:			
40	Gln 1	Glu				ı Pro					ı Gly			Leu	Val 15	Val
45	Cys	Glu	Pro	Gl _y		g Alá	a Alā	a Ala	a Gly 25		y Pro	Gly	y Gly	Ala 30	Ala	Leu
	Gly	Glu	Ala 35	_	o Pro	o Gly	y Arg	g Va 4	1 Ala 0	a Phe	e Xaa	a Al	a Val	Arg	Ser	His
50	His	His 50		u Pr	o Al	a Gl	y Gli 5		r Gl	y As	n Gl	y Th 6	r Sei 0	: Gly	Ala	Ile
55	Туг 65	Phe	e As	p Gl	n Va	1 L e 7		l As	n Gl	u Gl	y Gl 7	y Gl 5	y Ph	e Asp	Arg	Ala 80
در	Ser	Gl	y Se	r Ph		1 Al	a Pr	o Va	l Ar		y Va O	1 ту	r Se	r Phe	e Arg	Phe
60	His	Va	l Va	1 Ly		ıl Ty	r As	n Ar	g Gl		r Va	1 G1	n Va	l Ser 110	: Lev	Met

	115 120 125
5	Thr Arg Glu Ala Ala Thr Ser Ser Val Leu Leu Pro Leu Asp Pro Gly 130 135 140
10	Asp Arg Val Ser Leu Arg Leu Arg Gly Xaa Ser Thr Gly Trp 145 150 155
	(2) INFORMATION FOR SEQ ID NO: 500:
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 32 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 500:
20	Pro Arg Ser Arg Pro Ala Leu Arg Pro Gly Arg Gln Arg Pro Pro Ser 1 5 10 15
25	His Ser Ala Thr Ser Gly Val Leu Arg Pro Arg Lys Lys Pro Asp Pro 20 25 30
30	
	(2) INFORMATION FOR SEQ ID NO: 501:
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 501:
40	Met Thr Leu Ile Thr Pro Ser Xaa Lys Leu Thr Phe Xaa Lys Gly Asn 1 5 10 15
45	Lys Ser Trp Ser Ser Arg Ala Cys Ser Ser Thr Leu Val Asp Pro 20 25 30
	(2) INFORMATION FOR SEQ ID NO: 502:
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 51 amino acids (B) TYPE: amino acid
	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 502:
55	Gly His Pro Ser Pro Ala Leu Ser Ile Ala Pro Ser Asp Gly Ser Gln 1 5 10 15
60	Leu Pro Cys Asp Glu Val Pro Tyr Gly Glu Ala His Val Thr Arg Tyr 20 25 30

	Cys Lys Lys Pro Leu Thr Asn Ser His Leu Glu Thr Glu Ala Gln Ser 35 40 45	
5	Ser Ser Leu 50	
10	(2) INFORMATION FOR SEQ ID NO: 503:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 263 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 503:	
20	GCTTCGTGTC CAACCCTCTT GCCCTTCGCC TGTGTGCCTG GAGCCAGTCC CACCACGCTC	60
	GCGTTTCCTC CTGTAGTGCT CACAGGTCCC AGCACCGATG GCATTCCCTT TGCCCTGAGT	120
25	CTGCAGCGGG TCCCTTTTGT GCTTCCTTCC CCTCAGGTAG CCTCTCTCCC CCTGGGCCAC	180
25	TCCCGGGGGT GAGGGGGTTA CCCCTTCCCA GTGTTTTTTA TTCCTGTGGG GCTCACCCCA	240
	AAGTATTAAA AGTAGCTTTG TAA	263
30		
	(2) INFORMATION FOR SEQ ID NO: 504:	
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 263 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 504:	
	GCTTCGTGTC CAACCCTCTT GCCCTTCGCC TGTGTGCCTG GAGCCAGTCC CACCACGCTC	60
45	GCGTTTCCTC CTGTAGTGCT CACAGGTCCC AGCACCGATG GCATTCCCTT TGCCCTGAGT	120
	CTGCAGCGGG TCCCTTTTGT GCTTCCTTCC CCTCAGGTAG CCTCTCTCCC CCTGGGCCAC	180
50	TCCCGGGGGT GAGGGGGTTA CCCCTTCCCA GTGTTTTTTA TTCCTGTGGG GCTCACCCCA	240
50	AAGTATTAAA AGTAGCTTTG TAA	263
55	(2) INFORMATION FOR SEQ ID NO: 505:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 263 base pairs	
60	(B) TYPE: nucleic acid	

	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
_	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 505:	
5	GCTTCGTGTC CAACCCTCTT GCCCTTCGCC TGTGTGCCTG GAGCCAGTCC CACCACGCTC	60
	GCGTTTCCTC CTGTAGTGCT CACAGGTCCC AGCACCGATG GCATTCCCTT TGCCCTGAGT	120
10	CTGCAGCGGG TCCCTTTTGT GCTTCCTTCC CCTCAGGTAG CCTCTCTCCC CCTGGGCCAC	180
	TCCCGGGGGT GAGGGGGTTA CCCCTTCCCA GTGTTTTTTA TTCCTGTGGG GCTCACCCCA	240
15	AAGTATTAAA AGTAGCTTTG TAA	263
20	(2) INFORMATION FOR SEQ ID NO: 506: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 160 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 506:	
30	TGGCTCACTG TCTTACAATC ACTGCTGTGG AATCATGATA CCACTTTTAG CTCTTTGCAT	60
	CTTCCTTCAG TGTATTTTTG TTTTTCAAGA GGAAGTAGAT TTTAACTGGA CAACTTTGAG	120
	TACTGACATC ATTGATAAAT AAACTGGCTT GTGGTTTCAA	160
35		
40	(2) INFORMATION FOR SEQ ID NO: 507: (i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 292 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 507: Leu Asp Glu Leu Met Ala His Leu Thr Glu Met Gln Ala Lys Val Ala 1 10 15	
50	Val Arg Ala Asp Ala Gly Lys Lys His Leu Pro Asp Lys Gln Asp His 20 25 30	
	Lys Ala Ser Leu Asp Ser Met Leu Gly Gly Leu Glu Gln Glu Leu Gln 35 40 45	
55	Asp Leu Gly Ile Ala Thr Val Pro Lys Gly His Cys Ala Ser Cys Gln 50 55 60	
60	Lys Pro Ile Ala Gly Lys Val Ile His Ala Leu Gly Gln Ser Trp His 65 70 75 80	

	Pro	Glu	His	Phe	Val 85	Cys	Thr	His	Cys	Lys 90	Glu	Glu	Ile	Gly	Ser 95	Ser
5	Pro	Phe	Phe	Glu 100	Arg	Ser	Gly	Leu	Xaa 105	Tyr	Cys	Pro	Asn	Asp 110	Tyr	His
	Gln	Leu	Phe 115	Ser	Pro	Arg	Cys	Ala 120	Tyr	Cys	Ala	Ala	Pro 125	Ile	Leu	Asp
10	Lys	Val 130	Leu	Thr	Ala	Met	Asn 135	Gln	Thr	Trp	His	Pro 140	Glu	His	Phe	Phe
15	Cys 145	Ser	His	Cys	Gly	Glu 150	Val	Phe	Gly	Ala	Glu 155	Gly	Phe	His	Glu	Lys 160
15	Asp	Lys	Lys	Pro	Туг 165	Cys	Arg	Lys	Asp	Phe 170	Leu	Ala	Met	Phe	Ser 175	Pro
20	Lys	Cys	Gly	Gly 180		Asn	Arg	Pro	Val 185	Leu	Glu	Asn	Tyr	Leu 190		Ala
	Met	Asp	Thr 195		Trp	His	Pro	Glu 200		Phe	Val	Cys	Gly 205		Cys	Phe
25	Thr	Ser 210		e Ser	Thr	Gly	Ser 215		Phe	Glu	Leu	Asp 220		Arg	Pro	Phe
20	Cys 225		l Leu	ı His	Tyr	His 230		arg	Arg	Gly	7 Thr 235		Cys	His	; Gly	Cys 240
30	Gly	Glr	n Pro	o Il∈	Thr 245		Arg	g Cys	: Ile	250		Met	: Gly	тут	255	Phe
35	His	Pro	Gl:	His 260		· Val	L Cy:	s Ala	265		s Lev	ı Thi	Glr	270	ı Sei	c Lys
	Gly	/ Il	e Pho 27		g Glu	ı Glr	n Ası	n Ası 280		s Thi	г Тут	r Cys	285 285		о Су:	s Phe
40	Ası	n Ly:		u Phe	e											
4.5			٠						500							
45	(2) IN		ATIO SEQ	UENC	E CH	ARAC	TERI	STIC	:S:						
50			(100	i) SE	(B) (D)	TYPE TOPO	E: ar	43 a mino Y: li	ació inear	i :		10: S	i08:			
	Ly									y Gl				n Gl	.u Le	eu Gln .5
55	As	l p Le	eu G				ır Va	al Pr				is Cy	rs Al	a Se		rs Gln
. 60	Ly	rs Pi		le Al	:0 La Gl	y L	rs Va				la Le	eu		-		

```
(2) INFORMATION FOR SEQ ID NO: 509:
5
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 50 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 509:
10
      Cys Pro Asn Asp Tyr His Gln Leu Phe Ser Pro Arg Cys Ala Tyr Cys
                                           10
      Ala Ala Pro Ile Leu Asp Lys Val Leu Thr Ala Met Asn Gln Thr Trp
15
                                       25
                   20
      His Pro Glu His Phe Phe Cys Ser His Cys Gly Glu Val Phe Gly Ala
20
      Glu Gly
           50
25
      (2) INFORMATION FOR SEQ ID NO: 510:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 67 amino acids
                     (B) TYPE: amino acid
30
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 510:
       Asp Lys Lys Pro Tyr Cys Arg Lys Asp Phe Leu Ala Met Phe Ser Pro
35
                                            10
       Lys Cys Gly Gly Cys Asn Arg Pro Val Leu Glu Asn Tyr Leu Ser Ala
                                        25
       Met Asp Thr Val Trp His Pro Glu Cys Phe Val Cys Gly Asp Cys Phe
40
                35
       Thr Ser Phe Ser Thr Gly Ser Phe Phe Glu Leu Asp Gly Arg Pro Phe
                                55
            50
 45
       Cys Glu Leu
        65
 50
       (2) INFORMATION FOR SEQ ID NO: 511:
               (i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 46 amino acids
                      (B) TYPE: amino acid
 55
                      (D) TOPOLOGY: linear
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 511:
       Cys Gly Gln Pro Ile Thr Gly Arg Cys Ile Ser Ala Met Gly Tyr Lys
                                            10
                                                                 15
 60
```

	Pile nis	PLO	20	IJ F	iic v	u1		25		,			30		
5	Lys Gly	Ile 35	Phe A	rg G	lu G	iln A	sn A 40	sp I	ys T	hr T	yr (Cys G 45	Sln		
10	(2) INF														
15			(B) LE) TY) TO	NGTH PE: POLO	: 45 amin GY:	2 am o ac line	ino id ar	acid Q ID		512	:			
20	Met Gly 1	/ Ser	Ser (Gln :	Ser '	Val (Glu :	Ile	Pro (Gly (Gly (Gly '	Thr	Glu 15	Gly
20	Tyr His	val	Leu . 20	Arg '	Val	Gln	Glu	Asn 25	Ser	Pro (Gly	His .	Arg 30	Ala	Gly
25	Leu Glu	ı Pro 35	Phe	Phe	Asp	Phe	Ile 40	Val	Ser	Ile .	Asn	Gly 45	Ser	Arg	Leu
	Asn Ly:		Asn	Asp	Thr	Leu 55	Lys	Asp	Leu	Leu	Lys 60	Xaa	Asn	Val	Glu
30	Lys Pr	o Val	Lys	Met	Leu 70	Ile	Tyr	Ser	Ser	Lys 75	Thr	Leu	Glu	Leu	Arg 80
	Glu Th	r Ser	Val	Thr 85	Pro	Ser	Asn	Leu	Trp 90	Gly	Gly	Gln	Gly	Leu 95	Leu
35	Gly Va	l Ser	Ile 100	Arg	Phe	Cys	Ser	Phe 105	Asp	Gly	Ala	Asn	Glu 110	Asn	Val
40	Trp Hi	s Val		Glu	Val	Glu	Ser 120	Asn	Ser	Pro	Ala	Ala 125	Leu	Ala	Gly
	Leu Ar		His	Ser	Asp	Туr 135		Ile	Gly	Ala	Asp 140	Thr	Val	Met	. Asn
45	Glu Se 145	er Gl	ı Asp	Leu	Phe 150		Leu	Ile	Glu	Thr 155	His	Glu	Ala	Lys	Pro 160
50	Leu Ly	ys Le	u Tyr	Va1 165		Asn	Thr	Asp	Thr 170		Asn	Cys	Arg	Glu 175	ı Val
50	Ile I	le Th	r Pro 180		Ser	Ala	Trp	Gly 185		Glu	Gly	/ Ser	Leu 190	Gly	/ Cys
55	Gly I	le Gl 19		Gly	туг	Leu	His 200		, Ile	Pro	Thr	205	Pro	Phe	e Glu
	Glu G 2	ly L y 10	s Lys	: I1e	e Ser	Let 215		Gly	y Gln	Met	220	a Gly	/ Thi	Pro	o Ile
60	ሞኮድ P	ro le	n Isr	. Asr	5 G] v	/ Phe	e Thi	c Glu	ı Val	Glr	ı Lei	ı Sei	c Sei	. Va	1 Asr

PCT/US98/11422

	225					230					235					240
5	Pro	Pro	Ser	Leu	Ser 245	Pro	Pro	Gly	Thr	Thr 250	Gly	Ile	Glu	Gln	Ser 255	Leu
J	Thr	Gly	Leu	Ser 260	Ile	Ser	Ser	Thr	Pro 265	Pro	Ala	Val	Ser	Ser 270	Val	Leu
10	Ser	Thr	Gly 275	Val	Pro	Thr	Val	Pro 280	Leu	Leu	Pro	Pro	Gln 285	Val	Asn	Gln
	Ser	Leu 290	Thr	Ser	Val	Pro	Pro 295	Met	Asn	Pro	Ala	Thr 300	Thr	Leu	Pro	Gly
15	Leu 305	Met	Pro	Leu	Pro	Ala 310	Gly	Leu	Pro	Asn	Leu 315	Pro	Asn	Leu	Asn	Leu 320
20	Asn	Leu	Pro	Ala	Pro 325	His	Ile	Met	Pro	Gly 330	Val	Gly	Leu	Pro	Glu 335	Leu
	Val	Asn	Pro	Gly 340	Leu	Pro	Pro	Leu	Pro 345	Ser	Met	Pro	Pro	Arg 350	Asn	Leu
25	Pro	Gly	Ile 355		Pro	Leu	Pro	Leu 360	Pro	Ser	Glu	Phe	Leu 365	Pro	Ser	Phe
	Pro	Leu 370	Val	Pro	Glu	Ser	Ser 375	Ser	Ala	Ala	Ser	Ser 380	Gly	Glu	Leu	Leu
30	Ser 385		Leu	Pro	Pro	Thr 390		Asn	Ala	Pro	Ser 395	Asp	Pro	Ala	Thr	Thr 400
35	Thr	Ala	Lys	Ala	Asp 405	Ala	Ala	Ser	Ser	Leu 410		Val	Asp	Val	Thr 415	Pro
	Pro	Thr	Ala	Lys 420		Pro	Thr	Thr	Val 425		Asp	Arg	Val	Gly 430	Asp	Ser
40	Thr	Pro	Val 435		Glu	Lys	Pro	Val 440		Ala	Ala	Val	Asp 445	Ala	Asn	Ala
	Ser	Glu 450		Pro												
45	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	513:							
50					JENCE (A) I (B) I (D) I	ENG CYPE COPOI	rh: : am LOGY	109 a ino a : lir	amino acid near	ac:		o: 51	13:			
55	Ser 1		. Glu	ı Ile	Pro		Gly	/ Gly	Thr	Glu 10		туг	His	Val	Leu 15	Arg
60	Val	. Glr	ı Glu	Asr 20		Pro	Gly	/ His	Arg 25		a Gly	Leu	ı Glu	Pro 30		Phe,

	Asp	Phe	Ile 35	Val	Ser	Ile	Asn	Gly 40	Ser	Arg	Leu	Asn	Lys 45	Asp	Asn	Asp
5	Thr	Leu 50	Lys	Asp	Leu	Leu	Lys 55	Xaa	Asn	Val	Glu	Lys 60	Pro	Val	Lys	Met
	Leu 65	Ile	Tyr	Ser	Ser	Lys 70	Thr	Leu	Glu	Leu	Arg 75	Glu	Thr	Ser	Val	Thr 80
10	Pro	Ser	Asn	Leu	Trp 85	Gly	Gly	Gln	Gly	Leu 90	Leu	Gly	Val	Ser	Ile 95	Arg
15 [.]	Phe	Cys	Ser	Phe 100	Asp	Gly	Ala	Asn	Glu 105	Asn	Val	Trp	His			
	(2)	INF	ORMA(rion	FOR	SEQ	ID I	NO: !	514:							
20			(i)	(ENCE A) L B) T D) T	ENGT YPE:	H: 1 ami	45 a no a	mino cid		ds					
25			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 51	4:			
	Glu 1	Ser	Asn	Ser	Pro 5	Ala	Ala	Leu	Ala	Gly 10	Leu	Arg	Pro	His	Ser 15	Asp
30	Tyr	Ile	Ile	Gly 20	Ala	Asp	Thr	Val	Met 25	Asn	Glu	Ser	Glu	Asp 30	Leu	Phe
	Ser	Leu	Ile 35	Glu	Thr	His	Glu	Ala 40	Lys	Pro	Leu	Lys	Leu 45	_	Val	Tyr
35	Asn	Thr 50	-	Thr	Asp	Asn	Cys 55		Glu	Val	Ile	Ile 60		Pro	Asn	Ser
40	Ala 65	_	Gly	Gly	Glu	Gly 70	Ser	Leu	Gly	Cys	Gly 75	Ile	Gly	Тут	Gly	туr 80
70	Leu	His	Arg	Ile	Pro 85		Arg	Pro	Phe	Glu 90		Gly	Lys	Lys	Ile 95	
45	Leu	Pro	Gly	Gln 100		Ala	Gly	Thr	Pro 105		Thr	Pro	Leu	Lys 110		Gly
	Phe	Thr	G1u 115	Val	Gln	Leu	Ser	Ser 120		Asn	. Pro	Pro	Ser 125		Ser	Pro
50	Pro	Gly 130		Thr	Gly	Ile	Glu 135		Ser	Leu	Thr	Gly 140		. Ser	Ile	Ser
55	Ser 145															
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	515:							

(i) SEQUENCE CHARACTERISTICS:

								45 ar no ao		aci	ds					
				(D) T	OPOL	OGY:	line	ear				_			
5			(X1)	SEQ	JENCi	E DE	SCRI	PTIO	v: Si	£Q 11	ONC	: 51:	o:			
	Glu 1	Ser	Asn	Ser	Pro 5	Ala	Ala	Leu	Ala	Gly 10	Leu	Arg	Pro	His	Ser 15	Asp
10	Tyr	Ile	Ile	Gly 20	Ala	Asp	Thr	Val	Met 25	Asn	Glu	Ser	Glu	Asp 30	Leu	Phe
	Ser	Leu	Ile 35	Glu	Thr	His	Glu	Ala 40	Lys	Pro	Leu	Lys	Leu 45	Tyr	Val	Tyr
15	Asn	Thr 50	Asp	Thr	Asp	Asn	Cys 55	Arg	Glu	Val	Ile	Ile 60	Thr	Pro	Asn	Ser
20	Ala 65	Trp	Gly	Gly	Glu	Gly 70	Ser	Leu	Gly	Cys	Gly 75	Ile	Gly	Tyr	Gly	Tyr 80
	Leu	His	Arg	Ile	Pro 85	Thr	Arg	Pro	Phe	Glu 90	Glu	Gly	Lys	Lys	Ile 95	Ser
25	Leu	Pro	Gly	Gln 100	Met	Ala	Gly	Thr	Pro 105	Ile	Thr	Pro	Leu	Lys 110	Asp	Gly
	Phe	Thr	Glu 115	Val	Gln	Leu	Ser	Ser 120	Val	Asn	Pro	Pro	Ser 125	Leu	Ser	Pro
30	Pro	Gly 130	Thr	Thr	Gly	Ile	Glu 135	Gln	Ser	Leu	Thr	Gly 140	Leu	Ser	Ile	Ser
35	Ser 145															
	(2)	INF	ORMA'	TION	FOR	SEQ	ID	NO: !	516:							
40			(i)	(A) L B) T	ENGT YPE :	H: 1 ami	ERIS 51 a no a	mino cid		ds					
45			(xi)		-			lin PTIO		EQ I	D NO	: 51	6 :			
73	Arg 1	Ile	Pro	Thr	Arg 5	Pro	Phe	Glu	Glu	Gly 10	Lys	Lys	Ile	Ser	Leu 15	Pro
50	Gly	Gln	Met	Ala 20	Gly	Thr	Pro	Ile	Thr 25	Pro	Leu	Lys	Asp	Gly 30	Phe	Thr
	Glu	Val	Gln 35	Leu	Ser	Ser	Val	Asn 40	Pro	Pro	Ser	Leu	Ser 45	Pro	Pro	Gly
55	Thr	Thr 50		Ile	Glu	Gln	Ser 55	Leu	Thr	Gly	Leu	Ser 60	Ile	Ser	Ser	Thr
60	Pro 65	Pro	Ala	Val	Ser	Ser 70	Val	Leu	Ser	Thr	Gly 75	Val	Pro	Thr	Val	Pro 80

•	Leu	Leu	Pro	Pro	Gln 85	Val	Asn	Gln	Ser	Leu 90	Thr	Ser	Val	Pro	Pro 95	Met
5	Asn	Pro	Ala	Thr 100	Thr	Leu	Pro	Gly	Leu 105	Met	Pro	Leu	Pro	Ala 110	Gly	Leu
	Pro	Asn	Leu 115	Pro	Asn	Leu	Asn	Leu 120	Asn	Leu	Pro	Ala	Pro 125	His	Ile	Met
10	Pro	Gly 130	Val	Gly	Leu	Pro	Glu 135	Leu	Val	Asn	Pro	Gly 140	Leu	Pro	Pro	Leu
15	Pro 145	Ser	Met	Pro	Pro	Arg 150	Asn									
20	(2)	INF	(i)	(ENCE A) L B) T D) T	CHA ENGT YPE:	RACT H: 1 ami OGY:	ERIS .09 a .no a .lin	TICS mind cid ear	aci		. 51	7:			
25	Pro 1	_												Leu	Pro 15	Gly
30	Ile	Ala	. Pro	Leu 20		Leu	Pro	Ser	Glu 25		Leu	Pro	Ser	Phe 30	Pro	Leu
	Val	Pro	Glu 35		Ser	Ser	Ala	Ala 40		Ser	Gly	G1u	Leu 45	Leu	Ser	Ser
35		50)				55					60		Thr		
40	65	,				70					75					Thr 80
					85	•				90)				Thr 95	Pro
45	Val	. Sei	r GI	1 L ys		vai	ser	Ala	105		. ASL	Alc	i ASI			
50	(2)	in		ATION SEQU												
٠			(1)	SEQ	(A) (B)	LENG TYPE TOPO	TH: : am	93 a ino	mino acid	aci	ds					
55) SE	QUEN	CE DI	ESCR	IPTI(ON:	SEQ :					•	
		е Ту: 1	r Ly:	s Val		e Arg	g His	s Thi	r Ala	a Gly 10		ı Ly:	s Pro	o Glu	1 Val	Ser
60	~	e Dh	a Gli	1 Ac1	. T]	Arc	z Se	r Cv	s Al	a Arc	т Хаа	a Xaa	a Xa	a Xaa	Xaa	Xaa

				20					25					30		
5	Xaa	Xaa	Xaa 35	Xaa	Xaa	Xaa	Trp	Ile 40	Phe	Gly	Val	Leu	His 45	Val	Val	His
J	Ala	Ser 50	Val	Val	Thr	Ala	Туг 55	Leu	Phe	Thr	Val	Ser 60	Asn	Ala	Phe	Gln
10	Gly 65	Met	Phe	Ile	Phe	Leu 70	Phe	Leu	Cys	Val	Leu 75	Ser	Arg	Lys	Ile	Gln 80
	Glu	Glu	Tyr	Tyr	Arg 85	Leu	Phe	Lys	Asn	Val 90	Pro	Cys	Cys			
15											•					
	(2)	INF	ORMA!	NOIT	FOR	SEQ	ID I	VO : 5	519:							
20				(A) L B) T D) T	ENGT YPE: OPOL	H: 5 ami OGY:	ERIS' 5 am no a lin PTIO	ino cid ear	acid		: 51	9:			
25	Trp 1	Ile	Phe	Gly	Val 5	Leu	His	Val	Val	His 10	Ala	Ser	Val	Val	Thr 15	Ala
30	Tyr	Leu	Phe	Thr 20	Val	Ser	Asn	Ala	Phe 25	Gln	Gly	Met	Phe	Ile 30	Phe	Leu
50	Phe	Leu	Cys 35	Va1	Leu	Ser	Arg	Lys 40	Ile	Gln	Glu	Glu	Туr 45	Tyr	Arg	Leu
35	Phe	Lys 50	Asn	Val	Pro	Cys	Cys 55									
40	(2)	INF						NO:		:						
				(в) т	YPE:	ami	no an	cid	acid	s					
45			(xi)					lin PTIO		EQ I	D NO	: 52	0:			
	Ala 1	Leu	Thr	Arg	Ile 5		Pro	Gly	Asp	Trp 10	Val	Ile	Asn	Val	Thr 15	Ala
50	Val	Ser	Phe	Ala 20		Lys	Thr	Thr	Ala 25	Arg	Phe	Phe	Xaa	His 30	Ser	Ser
55	Pro	Pro	Ser 35		Gly	Asp	Gln	Ala 40		Thr	Asp	Pro	Gly 45	His	Gln	Arg
<i>JJ</i>	Arg	Asp 50														

PCT/US98/11422

	(2) INFORMATION FOR SEQ ID NO: 521:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 521: 	
10	Leu Gln Glu Val Asn Ile Thr Leu Pro Glu Asn Ser Val Trp Tyr Glu 1 5 10 15	
	Arg Tyr Lys Phe Asp Ile Pro Val Phe His Leu 20 25	
15		
	(2) INFORMATION FOR SEQ ID NO: 522:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 110 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 522: 	
25	Met Gln Gly Ser Gly Ser Gln Phe Arg Ala Cys Leu Leu Cys Leu Cys 1 5 10 15	
	Phe Ser Cys Pro Cys Ser Pro Gly Gly Pro Arg Trp Asn Ser Arg Gln 20 25 30	
30	Gly Gly Arg Arg Phe Pro Lys Thr Cys Arg Ala Ile Ser Gln Asn Leu 35 40 45	
35	Val Phe Lys Tyr Lys Thr Phe Cys Pro Val Arg Tyr Met Gln Pro His 50 55 60	
	Arg Ser Ser Leu Cys Leu His Phe Thr Ser Tyr Val Phe Ile Leu Ser 65 70 75 80	
40	Thr Trp Gly Ser Leu Arg Thr Tyr Ser Thr Asp Leu Lys Lys Lys Lys 85 90 95	
45	Lys Asn Ser Arg Gly Gly Pro Val Pro Ile Arg Pro Lys Ser 100 105 110	
73		
	(2) INFORMATION FOR SEQ ID NO: 523:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 99 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 523:	
	TAGCATGTAG CCAGTCGAAT AACNTATAAG GACAAAGTGG AGTCCACGCG TGCGGCCGTC	60
۲0	THE COURT OF THE C	Q

5	(2) INFORMATION FOR SEQ ID NO: 524:
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 51 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 524:
15	Met Gln Gly Ser Gly Ser Gln Phe Arg Ala Cys Leu Leu Cys Leu Cys 1 5 10 15
13	Phe Ser Cys Pro Cys Ser Pro Gly Gly Pro Arg Trp Asn Ser Arg Gln 20 25 30
20	Gly Gly Arg Arg Phe Pro Lys Thr Cys Arg Ala Ile Ser Gln Asn Leu 35 40 45
	Val Phe Lys 50
25	
	(2) INFORMATION FOR SEQ ID NO: 525:
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 54 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 525:
25	Pro Val Arg Tyr Met Gln Pro His Arg Ser Ser Leu Cys Leu His Phe
35	1 5 10 15
40	Thr Ser Tyr Val Phe Ile Leu Ser Thr Trp Gly Ser Leu Arg Thr Tyr 20 25 30
	Ser Thr Asp Leu Lys Lys Lys Lys Lys Asn Ser Arg Gly Gly Pro Val 35 . 40 45
45	Pro Ile Arg Pro Lys Ser 50
50	(2) INFORMATION FOR SEQ ID NO: 526:
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 38 amino acids(B) TYPE: amino acid
55	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 526:
	Gly Glu Glu Gln Arg Asp Cys Ser Leu Gly Trp Arg Gly Val Gly Met 1 5 10 15
60	Arg Ala Thr His Cys Gln Ala Ala Arg Met Phe Val Leu Phe Ser Leu

			20					25					30		
5	Pro Lys	Tyr A 35	la G	Sly I	Leu										
10	(2) INFO	ORMATI													
10		(xi)	(A (B (D	LE TY	NGTH PE: POLC	: 16 amir GY:	1 am no ac line	ino id ar			527	:			
15	Met Pro	Arg 1	Lys '	Thr 5	Ser	Lys	Cys	Arg	Gln 10	Leu	Leu	Cys	Ser	Gly 15	Ala
20	Ser Arg	Asn .	Ala . 20	Asp	Thr	Ala	Ala	Arg 25	Gln	Ser	Thr	Cys	Ser 30	Ser	His
	Arg Pro	Pro 35	Gly	Lys	Ile	Pro	Ser 40	Leu	Gly	Pro	Arg	Arg 45	Xaa	Pro	Gly
25	Cys Xaa 50		Val	Pro	Ser	Ser 55	Arg	Gly	Glu	Gln	Ser 60	Thr	Gly	Ser	Pro
30	Ala Ala 65	Pro	Arg	Cys	Gly 70	Arg	Arg	Asp	Ala	His 75	Arg	Gly	Leu	Pro	Gly 80
	Gly Ala	Ala	Met	Thr 85	Pro	Gly	Asp	Thr	Trp 90	Ala	Ser	Phe	Asn	Pro 95	Arg
35	Ala Gly	/ His	Ser 100	Lys	Ser	Gln	Gly	Glu 105	Gly	Gln	Glu	Ser	Ser 110	Gly	Ala
	Ser Arg	Gln 115	Asp	Arg	His	Pro	Val 120	Ser	His	Trp	Val	Glu 125	Arg	Gln	Arg
40	Glu Ala 130		Gly	Ala	Pro	Arg 135		Ser	Ser	Ala	Gly 140	Gly	Val	Lys	Val
45	Ala Ala 145	a Thr	Thr	Glu	Arg 150		Pro	Glu	Phe	Lys 155		Lys	Thr	Gly	Lys 160
	Ala													-	
50	(2) IN	FORMA	TION	FOR	R SEÇ) ID	NO:	528	:						
55				(A) ¹ (B) ¹ (D) ¹	LENG TYPE TOPO	TH: : am LOGY	88 a ino : li	mino acid near	aci		O: 5	28:			
60	Cys Se	er Gly	/ Ala		r Arg	y Ası	n Ala	a As	o Th		a Ala	a Ar	g Glı	n Se	r Thr

	Cys	Ser	Ser	His 20	Arg	Pro	Pro	Gly	Lys 25	Ile	Pro	Ser	Leu	Gly 30	Pro	Arg
5	Arg	Xaa	Pro 35	Gly	Cys	Xaa	Ser	Val 40	Pro	Ser	Ser	Arg	Gly 45	Glu	Gln	Ser
10	Thr	Gly 50	Ser	Pro	Ala	Ala	Pro 55	Arg	Cys	Gly	Arg	Arg 60	Asp	Ala	His	Arg
10	Gly 65	Leu	Pro	Gly	Gly	Ala 70	Ala	Met	Thr	Pro	Gly 75	Asp	Thr	Trp	Ala	Ser 80
15	Phe	Asn	Pro	Arg	Ala 85	Gly	His	Ser								
20	(2)	INF		SEQU.	ENCE A) I	CHA ENGT	RACT	NO: SERIS	TICS ino		ls					
25			(xi)					lin PTIC		EQ I	D NO	: 52	9:			
	Gln 1		Glu	Gly	Gln 5		Ser	Ser	Gly	Ala 10	Ser	Arg	Gln	Asp	Arg 15	His
30	Pro	Val	Ser	His 20	Trp	Val	Glu	Arg	Gln 25		Glu	Ala	Trp	Gly 30	Ala	Pro
35	Arg	Ser	Ser 35		Ala	Gly	Gly	Val		Val	Ala	Ala	Thr 45		Glu	Arg
33	Glu	Pro 50		Phe	Lys	Ile	Lys 55	Thr	Gly	Lys	Ala					
40	(2)	INF	ORMA	TION	FOR	SEQ) ID	NO:	530:							
45					(A) 1 (B) ' (D) '	LENG: IYPE IOPOI	TH: : am LOGY	reris 235 a ino a : lin	amino acid near	o aci		o: 53	30:			
50	Met		Pro	Arg	Tyr		Gly	/ Gly	/ Pro	Arg) Pro	Leu	ı Arg	Ile 15	Pro
	Asr	n Glr	n Ala	Leu 20		/ Gly	/ Val	l Pro	Gly 25		Glr	n Pro) Le	Leu 30		Ser
55	Gly	/ Met	Asp 35		Thi	Arg	g Glr	n Glr 40		/ His	Pro	Asr	Met		gly	Pro
60	Met	Glr 50		g Met	. Thi	r Pro	5:		g Gl	/ Met	: Val	L Pro		ı Gly	/ Pro	Gln

•	Asn 65	Tyr	Gly	Gly	Ala	70	Arg	Pro	Pro	Leu	75	АІА	Leu	GIĀ	GIY	80
5	Gly	Met	Pro	Gly	Met 85	Asn	Met	Gly	Pro	Gly 90	Gly	Gly	Arg	Pro	Trp 95	Pro
	Asn	Pro	Thr	Asn 100	Ala	Asn	Ser	Ile	Pro 105	Tyr	Ser	Ser	Ala	Ser 110	Pro	Gly
10	Asn	Tyr	Val 115	Gly	Pro	Pro	Gly	Gly 120	Gly	Gly	Pro	Pro	Gly 125	Thr	Pro	Ile
15	Met	Pro 130		Pro	Ala	Asp	Ser 135	Thr	Asn	Ser	Gly	Asp 140	Asn	Met	Tyr	Thr
13	Leu 145		Asn	Ala	Val	Pro 150		Gly	Pro	Asn	Arg 155	Pro	Asn	Phe	Pro	Met 160
20	Gly	Pro	Gly	Ser	Asp 165		Pro	Met	Gly	Gly 170		Gly	Gly	Met	Glu 175	Ser
	His	His	Met	180		Ser	Leu	Gly	Ser 185		Asp	Met	Asp	Ser 190	Ile	Ser
25			195	5				200					205			Pro
30	Arg			Gly	/ Glu	Met	: Gly 215		Asr	n Phe	e Leu	Asr 220	Pro	Ph∈	e Gln	Ser
	Glu 225		г Туі	r Sei	r Pro	230		. Thr	Met	. Sei	235					
35	(2)) IN	FORM	ATIOI	N FOI	R SE(Q ID	NO:	531	:						
			(i)	SEQ	(A)	LENG	TH:	TERI:	amin	o ac	ids:					
40			(xi	.) SE	(D)	TOPO	LOGY	ino : li IPTI	near		ID N	0: 5	31:			
45	Me	t Se 1	r Pr	o Ar				y Gl			g Pr O	o Pr	o Le	u Ar	g Il	e Pro 5
	As	n Gl	n Al		eu Gl 80	y Gl	y Va	l Pr		y Se 5	r Gl	n Pr	o Le	u Le	u Pr	o Ser
50	Gl	.у М∈		sp Pr 35	o Th	ır Ar	g Gl		n Gl 0	у Ні	s Pr	o As	n Me	et Gl .5	y Gl	y Pro
55	M∈		ln Ai 50	rg Me	et Th	r Pr		o Ar	g Gl	ly Me	et Va	ıl Pr	o Le	eu Gl	y Pr	o Gln
55		sn T 55	yr G	ly Gl	ly Al		et Aı 70	rg Pr	o Pi	co Le		sn Al 75	la Le	eu Gl	y Gl	y Pro 80
60	G]	ly M	et P	ro G		et As 35	sn Me	et Gl	ly Pi		ly G: 90	ly G	ly Ai	cg Pi	o Tr	np Pro

PCT/US98/11422

```
Asn Pro Thr Asn Ala Asn Ser Ile Pro Tyr Ser Ser Ala Ser Pro Gly
                 100
                                    105
5
     Asn Tyr
10
      (2) INFORMATION FOR SEQ ID NO: 532:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 81 amino acids
                    (B) TYPE: amino acid
15
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 532:
      Leu Asn Ala Leu Gly Gly Pro Gly Met Pro Gly Met Asn Met Gly Pro
                                          10
20
      Gly Gly Gly Arg Pro Trp Pro Asn Pro Thr Asn Ala Asn Ser Ile Pro
                  20
      Tyr Ser Ser Ala Ser Pro Gly Asn Tyr Val Gly Pro Pro Gly Gly Gly
25
                                  40
      Gly Pro Pro Gly Thr Pro Ile Met Pro Ser Pro Ala Asp Ser Thr Asn
      Ser Gly Asp Asn Met Tyr Thr Leu Met Asn Ala Val Pro Pro Gly Pro
30
                          70
      Asn
35
      (2) INFORMATION FOR SEQ ID NO: 533:
40
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 70 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 533:
45
      Gly Pro Met Gly Gly Leu Gly Gly Met Glu Ser His His Met Asn Gly
                        5
                                . 10
        1
       Ser Leu Gly Ser Gly Asp Met Asp Ser Ile Ser Lys Asn Ser Pro Asn
50
                                       25
       Asn Met Ser Leu Ser Asn Gln Pro Gly Thr Pro Arg Asp Asp Gly Glu
               35
       Met Gly Gly Asn Phe Leu Asn Pro Phe Gln Ser Glu Ser Tyr Ser Pro
 55
                               55
       Ser Met Thr Met Ser Val
 60
```

	(2) INFORMATION FOR SEQ 1D NO: 534:
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 534:
10	Thr Cys Glu His Ser Ser Glu Ala Lys Ala Phe His Asp Tyr 1 5 10
15	(2) INFORMATION FOR SEQ ID NO: 535:
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 59 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 535:
25	Gln Ala Phe Val Leu Leu Ser Asp Leu Leu Leu Ile Phe Ser Pro Gln 1 5 10 15
	Met Ile Val Gly Gly Arg Asp Phe Leu Arg Pro Leu Val Phe Pro 20 25 30
30	Glu Ala Thr Leu Gln Ser Glu Leu Ala Ser Phe Leu Met Asp His Val 35 40 45
35	Phe Ile Gln Pro Gly Asp Leu Gly Ser Gly Ala 50 55
	(2) INFORMATION FOR SEQ ID NO: 536:
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 536:
45	Ala Cys Ser Tyr Leu Leu Cys Asn Pro Glu Phe Thr Phe Phe Ser Arg 1 5 10 15
50	Ala Asp Phe Ala Arg Ser Gln Leu Val Asp Leu Leu Thr Asp Arg Phe 20 25 30
	Gln Gln Glu Leu Glu Leu Leu Gln Val Gly 35 40
55	
	(2) INFORMATION FOR SEQ ID NO: 537:
60	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 amino acids

```
(B) TYPE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 537:
     Gln Lys Gln Leu Ser Ser Leu Arg Asp Arg Met Val Ala Phe Cys Glu
5
              5
     Leu Cys Gln Ser Cys Leu Ser Asp Val Asp Thr Glu Ile Gln Glu Gln
                          . 25
10
     Val Ser Thr
15
      (2) INFORMATION FOR SEQ ID NO: 538:
            (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 27 amino acids
20
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 538:
     Gln Val Ile Leu Pro Ala Leu Thr Leu Val Tyr Phe Ser Ile Leu Trp
25
                                         10
     Thr Leu Thr His Ile Ser Lys Ser Asp Ala Ser
                                     25
                  20
30
      (2) INFORMATION FOR SEQ ID NO: 539:
             (i) SEQUENCE CHARACTERISTICS:
35
                    (A) LENGTH: 31 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 539:
      Ser Thr His Asp Leu Thr Arg Trp Glu Leu Tyr Glu Pro Cys Cys Gln
40
      Leu Leu Gln Lys Ala Val Asp Thr Gly Xaa Val Pro His Gln Val
                              25
                  20
45
      (2) INFORMATION FOR SEQ ID NO: 540:
50
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 106 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 540:
55
      Leu Ala Val Ser Thr Ser Phe Ile Cys Cys Ala Asp Ile Ser Thr Ala
                               10
      Leu Pro Leu Gly Ser Ser Arg Pro Ala Pro Ala Pro Arg His Arg Glu
60
                   20
                                 25
```

	His	Glu	His 35	Gly	His	Gln	Ala	Arg 40	Pro	Pro	Arg	Leu	Leu 45	Xaa	Thr	Ser
5	Leu	Met 50	Pro	Leu	Ser	Thr	Pro 55	Ala	Ala	Ala	Gln	Leu 60	Leu	Trp	Thr	Gln
10	Leu 65	Thr	Pro	Met	Gly	Gly 70	Arg	Pro	Gly	Gly	Arg 75	His	Ser	Pro	Pro	Thr 80
10	Leu	His	Thr	Gly	Pro 85	Arg	Ala	Leu	Pro	Pro 90	Gly	Pro	Pro	His	Pro 95	Ser
15	Leu	His	Val	Ala 100	Ala	Leu	Ser	Leu	Leu 105	Arg						
20	(2)	INF	ORMA:	SEQU.	ENCE A) L	CHAI ENGT	RACT H: 2	NO: SERIS	TICS mino		ds					·
25			(xi)	(D) T	OPOL	OGY:	lin PTIO	ear	EQ I	D NO	: 54	1:			
	Glu 1		Val	Leu	Ala 5	Leu	Leu	Trp	Pro	Arg 10	Phe	Glu	Leu	Ile	Leu 15	Glu
30	Met	Asn	. Val	Gln 20	Ser	Val	Arg	Ser	Thr 25	Asp	Pro	Gln	Arg	Leu 30	Gly	Gly
35	Leu	Asp	Thr 35		Pro	His	Tyr	Ile 40	Thr	Arg	Arg	Tyr	Ala 45	Glu	Phe	Ser
33	Ser	Ala 50	Leu	Val	Ser	Ile	Asn 55		Thr	Ile	Pro	Asn 60	Glu	Arg	Thr	Met
40	Gln 65		Leu	Gly	Gln	Leu 70	Gln	Val	Glu	Val	Glu 75	Asn	Phe	· Val	Leu	Arg 80
	Val	. Ala	Ala	Glu	Phe 85		Ser	Arg	Lys	Glu 90		Leu	Val	Phe	Leu 95	Ile
45	Asr	ı Asn						Gly								Asp
50	Asp	Ser	Lys 115		Val	Glu	Ser	Phe 120		Gln	Leu	Leu	Asn 125		Arg	Thr
50	Glr	130		: Ile	e Glu	Glu	Leu 135		Ser	Pro	Pro	Phe 140		Gly	Leu	Val
55	Ala 145		e Val	. Lys	Glu	Ala 150		ı Ala	Leu	ıl∈	Glu 155		Gly	Gln	Ala	Glu 160
	Arg	g Lev	ı Arg	, Gly	Glu 165		Ala	Arg	Val	Thr 170		Leu	Ile	Arg	Gly 175	Phe
60	Gly	/ Sei	: Ser	Trp	Lys	Ser	Ser	· Val	Glu	Ser	Leu	Ser	Glr	. Asp	Va]	Met

	180)	185	190	
5	Arg Ser Phe Th	r Asn Phe Arg	Asn Gly Thr Set 200	r Ile Ile Gln Gl 205	У
10	(2) INFORMATIO	UENCE CHARACI	TERISTICS: 110 amino acids ino acid		
15			Prion: SEQ ID N Phe Tyr Gln Ph 10	e Leu Leu Gly As	sn Glu 15
20	. 2	0	25	r Val Glu Thr Le	
	Lys Ile Tyr Le 35	eu Ser Tyr Tyr	Arg Ser Tyr Le 40	eu Gly Arg Leu M 45	et Lys
25	Val Gln Tyr G	u Glu Val Ala		sp Leu Met Gly V 60	al Glu
30	Asp Thr Ala Ly 65	ys Lys Gly Pho 70		ro Ser Leu Arg S 75	er Arg 80
30	Asn Thr Ile P	ne Thr Leu Gl	y Thr Arg Gly So	er Val Ile Ser P	ro Thr 95
35		la Pro Ile Le 00	u Val Pro His T 105	hr Ala Gln Arg 110	
40	(2) INFORMATI	QUENCE CHARAC	TTERISTICS: 97 amino acids nino acid		
45		EQUENCE DESCI	RIPTION: SEQ ID		
	Glu Gln Arg T l	yr Pro Phe Gl 5	u Ala Leu Phe A 10	rg Ser Gln His 1	Tyr Xaa 15
50	Leu Leu Asp ?	isn Ser Cys Ar 20	rg Glu Tyr Leu F 25	Phe Ile Cys Glu 1	Phe Phe
55	Val Val Ser (35	Sly Pro Xaa Al	la His Asp Leu E 40	Phe His Ala Val 1 45	Met Gly
55	Arg Thr Leu S		eu Lys His Leu <i>P</i> 55	Asp Ser Tyr Leu . 60	Ala Ası
60	Cys Tyr Asp 7 65	Ala Ile Ala Va 70	al Phe Leu Cys :	Ile His Ile Val 75	Leu Arg

Phe Arg Asn Ile Ala Ala Lys Arg Asp Val Pro Ala Leu Asp Arg Tyr 90 5 Trp 10 (2) INFORMATION FOR SEQ ID NO: 544: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 544: Gly Gly Leu Asp Thr Arg Pro His Tyr Ile Thr Arg Arg Tyr Ala Glu 10 20 Phe Ser Ser Ala Leu Val Ser Ile Asn Gln 20 25 (2) INFORMATION FOR SEQ ID NO: 545: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids 30 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 545: Ser Arg Lys Glu Gln Leu Val Phe Leu Ile Asn Asn Tyr Asp Met Met 35 10 5 Leu Gly Val Leu 40 (2) INFORMATION FOR SEQ ID NO: 546: (i) SEQUENCE CHARACTERISTICS: 45 (A) LENGTH: 411 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 546: Ala Leu Leu Lys Tyr Arg Phe Phe Tyr Gln Phe Leu Leu Gly Asn Glu 50 5 1 Arg Ala Thr Ala Lys Glu Ile Arg Asp Glu Tyr Val Glu Thr Leu Ser 25 55 Lys Ile Tyr Leu Ser Tyr Tyr Arg Ser Tyr Leu Gly Arg Leu Met Lys 40 Val Gln Tyr Glu Glu Val Ala Glu Lys Asp Asp Leu Met Gly Val Glu 60 60 55

	Asp 65	Thr	Ala	Lys	Lys	Gly 70	Phe	Xaa	Ser	Lys	Pro 75	Ser	Leu	Arg	Ser	90 Fra
5	Asn	Thr	Ile	Phe	Thr 85	Leu	Gly	Thr	Arg	Gly 90	Ser	Val	Ile	Ser	225 36	The
0	Glu	Leu	Glu	Ala 100	Pro	Ile	Leu	Val	Pro 105	His	Thr	Ala	Gl:n	Arg 110	Хаа	glu
. 0	Gln	Arg	Туг 115	Pro	Phe	Glu	Ala	Leu 120	Phe	Arg	Ser	GLn	His 125	Tyr	Хаа	Leu
15	Leu	Asp 130		Ser	Cys	Arg	Glu 135	Tyr	Leu	Phe	Ile	C72	Gl ¹	Phe	Phe	Val
	Val 145	Ser	Gly	Pro	Xaa	Ala 150	His	Asp	Leu	Phe	His 155	Ala	Val	<u>X</u> et	GŢĀ	Arg 160
20	Thr	Leu	Ser	Met	Thr 165	Leu	Lys	His	Leu	Asp 170	Ser	īVī	Leu	Ala	Asp 175	Cys
25	Tyr	Asp	Ala	lle 180		Val	Phe	Leu	Cys 185	Ile	His	ile	Val	Ն e u 190	Arg	Phe
<i>LJ</i>	Arg	Asr	11€ 195	Ala	Ala	Lys	Arg	Asp 200	Val	Pro	Ala	Leu	Asp 205		<u> </u>	ırb
30	Glu	Glr 210		. Leu	Ala	Leu	Leu 215		Pro	Arg	Phe	Glu 220	Le:	. Ile	Leu	Glu
	Met 225		ı Val	l Gln	Ser	Val 230		Ser	Thr	. Asp	235		Arg	: Leu	. Gly	Gly 240
35	Leu	ı Ası	o Thi	r Arg	245		Тут	Ile	Thr	250		: Tyr	Ala	: Glu	255 255	Ser
40	Sei	c Ala	a Lei	val 260		: Ile	Asr	Gln	Thr 265		Pro	Asn	Glu	270 270		Mel
,0	Glr	ı Le	u Lei 27!		/ Glr	n Leu	Glr	val 280		ı Val	(Glu	i Ast	285		L Let	: Arg
45	Va:	1 A1 29		a Glu	ı Phe	e Ser	295		, Lys	s Glu	ı Glr	: Lev 300		l Pho	e Lev	: Ile
	As:	_	n Ty	r Ası	o Me	310		ı Gly	/ Va	l Let	1 Me: 31:		ı Ar	g Ala	a Ali	320
50	As	p Se	r Ly	s Gl	u Va 32		ı Sei	r Phe	e Gl	n Gla 33		: Len	ı As	a Al	a Ar; 331	g Thr
55	Gl	n Gl	u Ph	e Il		u Gl	u Le	u Le	34		o Pr	o Pie	e Gl	y 31: 35		: Val
	Al	a Ph	ne Va 35		s Gl	u Al	a Gl	u Ala 360		u Il	e Gl	u Arg	g Gl 36	7 Gl 5	n A	a Glu
60	Ar		eu Ar	g Gl	y Gl	u Gl	u Al 37		g Va	l Th	r Gl	n Le 33	u Il O	e Ar	g Gl	y Phe

WO 98/54963 PCT/US98/11422

642

	Gly 385	Ser	Ser	Trp	Lys	Ser 390	Ser	Val	Glu	Ser	Leu 395	Ser	Gln	Asp	Val	Met 400
5	Arg	Ser	Phe	Thr	Asn 405	Phe	Arg	Asn	Gly	Thr 410	Ser					
10	(2)		ORMAT							_						
15				(A) L B) T D) T	ENGT YPE : OPOL	H: 3 ami OGY:	03 a no a lin	mino cid ear	aci	ds DNO	: 54	7 :			
20	Tyr 1	Glu	Gly	Lys	Glu 5	Phe	Asp	Tyr	Val	Phe 10	Ser	Ile	Asp	Val	Asn 15	Glu
20	Gly	Gly	Pro	Ser 20	Tyr	Lys	Leu	Pro	Тут 25	Asn	Thr	Ser	Asp	Asp 30	Pro	Trp
25	Leu	Thr	Ala 35	Tyr	Asn	Phe	Leu	Gln 40	Lys	Asn	Asp	Leu	Asn 45	Pro	Met	Phe
	Leu	Asp 50	Gln	Val	Ala	Lys	Phe 55	Ile	Ile	Asp	Asn	Thr 60	Lys	Gly	Gln	Met
30	Leu 65	Gly	Leu	Gly	Asn	Pro 70	Ser	Phe	Ser	Asp	Pro 75	Phe	Thr	Gly	Gly	Gly 80
35	Arg	Tyr	Val	Pro	Gly 85	Ser	Ser	Gly	Ser	Ser 90	Asn	Thr	Leu	Pro	Thr 95	Ala
23	Asp	Pro	Phe	Thr 100	Gly	Ala	Gly	Arg	Туг 105	Val	Pro	Gly	Ser	Ala 110	Ser	Met
40	Gly	Thr	Thr 115		Ala	Gly	Val	Asp 120		Phe	Thr	Gly	Asn 125	Ser	Ala	Tyr
	Arg	Ser 130		Ala	Ser	Lys	Thr 135		Asn	Ile	Tyr	Phe 140	Pro	Lys	Lys	Glu
45	Ala 145	Val	Thr	Phe	Asp	Gln 150		Asn	Pro	Thr	Gln 155	Ile	Leu	Gly	Lys	Leu 160
50	Lys	Glu	Leu	Asn	Gly 165		Ala	Pro	Glu	Glu 170		Lys	Leu	Thr	Glu 175	Asp
50	Asp	Leu	lle	Leu 180		Glu	Lys	Ile	Leu 185		Leu	Ile	Cys	Asn 190		Ser
55	Ser	Glu	Lys 195		Thr	Val	Glr	Gln 200		Glr	lle	Leu	Trp 205		Ala	Ile
	Asn	Cys		Glu	Asp	, Ile	• Val		Pro	Ala	. Leu	Asp		. Leu	Arg	Leu

 $60\,$ $\,$ Ser Ile Lys His Pro Ser Val Asn Glu Asn Phe Cys Asn Glu Lys Glu

	225	230	235		240										
	Gly Ala Gln Phe	e Ser Ser His Leu 245	Ile Asn Leu 250	Leu Asn Pro	Lys Gly 255										
5	Lys Pro Ala Asr 260	n Gln Leu Leu Ala)	Leu Arg Thr 265	Phe Cys Asn 270											
10	Val Gly Gln Ala 275	a Gly Gln Lys Leu 280	Met Met Ser	Gln Arg Glu 285	Ser Leu										
	Met Ser His Ala 290	a Ile Glu Leu Lys 295	Ser Gly Ser	Asn Lys Asn 300	ı Ile										
15															
	(2) INFORMATION FOR SEQ ID NO: 548: (i) SEQUENCE CHARACTERISTICS:														
20	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 548:														
25	His Ile Ala Le l	u Ala Thr Leu Ala 5	Leu Asn Tyr	r Ser Val Cys	s Phe His 15										
	Lys Asp														
30															
	(2) INFORMATION FOR SEQ ID NO: 549:														
35	(i) SEQ	QUENCE CHARACTERIS (A) LENGTH: 49 au (B) TYPE: amino (D) TOPOLOGY: li	mino acids acid												
40	(xi) SI	EQUENCE DESCRIPTION		0: 549:											
70	His Asn Ile Gl	u Gly Lys Ala Glr 5	n Cys Leu Se 10	r Leu Ile Se	r Thr Ile 15										
45		al Gln Asp Leu Glo 20	Ala Thr Ph 25		u Val Ala O										
	Leu Gly Thr Le	eu Ile Ser Asp As 4		a Val Gln Le 45	eu Ala Lys										
50	Ser														
55	(2) INFORMATION	ON FOR SEQ ID NO:	550:												
	(i) SE	QUENCE CHARACTERI (A) LENGTH: 30 a													
		(B) TYPE: amino			•										
		(D) TOPOLOGY: li	2024												

		(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	550):			
5	Leu (Gly	Val 1	Asp :	Ser (Gln	Ile	Lys :	Lys	Туr 10	Ser	Ser	Val	Ser	Glu 15	Pro
	Ala	Lys	Val	Ser 20	Glu	Cys	Cys .	Arg	Phe 25	Ile	Leu	Asn	Leu	Leu 30		
10	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	iO: 5	51:							
15			(i) S (xi)	(<i>I</i> (I	A) LE 3) TY O) TY	ENGTI (PE : OPOL(H: 40 amir DGY:	00 am no ac line	mino cid ear	: acio		. 55:	1 :			
20	Tyr 1	Glu	Gly	Lys	Glu 5	Phe	Asp	Tyr	Val	Phe 10	Ser	Ile	Asp	Val	Asn 15	Glu
	Gly	Gly	Pro	Ser 20	Tyr	Lys	Leu	Pro	Туг 25	Asn	Thr	Ser	Asp	Asp 30	Pro	Trp
25	Leu	Thr	Ala 35	Tyr	Asn	Phe	Leu	Gln 40	Lys	Asn	Asp	Leu	Asn 45	Pro	Met	Phe
30	Leu	Asp 50	Gln	Val	Ala	Lys	Phe 55	Ile	Ile	Asp	Asn	Thr 60	Lys	Gly	Gln	Met
50	Leu 65	Gly	Leu	Gly	Asn	Pro 70	Ser	Phe	Ser	Asp	Pro 75	Phe	Thr	Gly	Gly	Gly 80
35	Arg	Tyr	Val	Pro	Gly 85	Ser	Ser	Gly	Ser	Ser 90	Asn	Thr	Leu	Pro	Thr 95	Ala
	Asp	Pro	Phe	Thr 100	Gly	Ala	GŢĀ	Arg	тут 105	Val	Pro	Gly	Ser	Ala 110		Met
40	Gly	Thr	Thr 115	Met	Ala	Gly	Val	Asp 120	Pro	Phe	Thr	Gly	Asn 125	Ser	Ala	Tyr
45	Arg	Ser 130		Ala	Ser	Lys	Thr 135		Asn	Ile	Tyr	Phe 140		Lys	Lys	Glu
73	Ala 145		Thr	Phe	Asp	Gln 150		Asn	Pro	Thr	Gln 155		e Leu	Gly	. Lys	Leu 160
50	Lys	Glu	Leu	Asn	Gly 165		Ala	Pro	Glu	170		Lys	: Leu	Thr	Glu 175	
	Asp	Leu	Ile	Leu 180		Glu	Lys	Ile	Leu 185	Ser	Leu	Ile	cys	190		Ser
55	Ser	Glu	Lys 195		Thr	Val	Gln	Gln 200		ı Gln	ılle	. Le	205		; Ala	ılle
	Asn	Cys 210		Glu	Asp	Il∈	val 215		Pro) Ala	Leu	Asp 220		e Lev	ı Arç	, Lev

	Ser 225	Ile	Lys	His	Pro	Ser 230	Val	Asn	Glu	Asn	Phe 235	Cys	Asn	Glu	Lys	Glu 240
5	Gly	Ala	Gln	Phe	Ser 245	Ser	His	Leu	Ile	Asn 250	Leu	Leu	Asn	Pro	Lys 255	Gly
	Lys	Pro	Ala	Asn 260	Gln	Leu	Leu	Ala	Leu 265	Arg	Thr	Phe	Cys	Asn 270	Cys	Phe
10	Val	Gly	Gln 275	Ala	Gly	Gln	Lys	Leu 280	Met	Met	Ser	Gln	Arg 285	Glu	Ser	Leu
15	Met	Ser 290	His	Ala	Ile	Glu	Leu 295	Lys	Ser	Gly	Ser	Asn 300	Lys	Asn	Ile	His
	Ile 305	Ala	Leu	Ala	Thr	Leu 310	Ala	Leu	Asn	Tyr	Ser 315	Val	Cys	Phe	His	Lys 320
20	Asp	His	Asn	Ile	Glu 325	Gly	Lys	Ala	Gln	Cys 330	Leu	Ser	Leu	Ile	Ser 335	Thr
	Ile	Leu	Glu	Val 340	Val	Gln	Asp	Leu	Glu 345	Ala	Thr	Phe	Arg	Leu 350	Leu	Val
25	Ala	Leu	Gly 355		Leu	Ile	Ser	Asp 360	Asp	Ser	Asn	Ala	Val 365	Gln	Leu	Ala
30	Lys	Ser 370		Gly	Val	Asp	Ser 375	Gln	I1e	Lys	Lys	Туг 380	Ser	Ser	Val	Ser
	Glu 385	Pro	Ala	Lys	Va1	Ser 390		Cys	Cys	Arg	Phe 395	Ile	Leu	Asn	Leu	Leu 400
35																
40	(2)	INF		TION SEQU	ENCE	E CHA	RACI	ERIS	TICS	S:						
45					(B) '	TYPE TOPOI	: am:	ino a : lir	acid near	o ac		. E	:a.			
43	_				. Asp	Gly								Leu	His	Glu
50	His		e Glr	n Arg			. Lys	; Val	. Va]	Thi		. Asr	h His	Arg	, Ala	. Leu
	Glr	ı Ile		o Glu		l Туг	: Leu	ı Arg	, Glu		a Pro	Tr) Pro	Ser		Gln
55	Ser	: Glu			, Thi	c Ile	e Ser	: Ala		. Lys	s Thi	Pro	Arg) Lys	: Val
60	Glr 65	ı Cys		e Lei	ı Arç	g M et 7(. Cys		Thi	r Ile	e Met 75	. Asr		ı Lei	ı Ser	Leu 80

	Ala	Asn	Glu	Asp	Ser 85	Val	Pro	Gly	Ala	Asp 90	Asp	Phe	Val	Pro	Va1 95	Leu
5	Val	Phe	Val	Leu 100	Ile	Lys	Ala	Asn	Pro 105	Pro	Cys	Leu	Leu	Ser 110	Thr	Val
10	Gln	Tyr	Ile 115	Ser	Ser	Phe	тут	Ala 120	Ser	Cys	Leu	Ser	Gly 125	Glu	Glu	Ser
	Tyr	Trp 130	Trp	Met	Gln	Phe	Thr 135	Ala	Ala	Val	Glu					
15	(2)	INF	ORMAT	rion	FOR	SEQ	ID	NO: 5	553 :							
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 144 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 553: Tyr Pro Asn Gln Asp Gly Asp Ile Leu Arg Asp Gln Val Leu His Glu															
25	Tyr 1	Pro	Asn	Gln	Asp 5	Gly	Asp	Ile	Leu	Arg 10		Gln	Val	Leu	His 15	Glu
	His	Ile	Gln	Arg 20	Leu	Ser	Lys	Val	Val 25	Thr	Ala	Asn	His	Arg 30	Ala	Leu
30	Gln	Ile	Pro 35	Glu	Val	Tyr	Leu	Arg 40		Ala	Pro	Trp	Pro 45	Ser	Ala	Gln
35	Ser	G1u 50		Arg	Thr	Ile	Ser 55		Тух	Lys	Thr	Pro 60		Asp	Lys	Val
33	Gln 65		Ile	Leu	Arg	Met 70		Ser	Thr	Ile	Met 75		Leu	Leu	Ser	Leu 80
40	Ala	Asr	Glu	Asp	Ser 85		Pro	Gly	Ala	Asp 90		Phe	. Val	Pro	Val 95	Leu
	Val	Phe	Val	Leu 100		Lys	Ala	Asr	105		Cys	Leu	Leu	Ser 110		Val
45	Gln	туз	: Ile		Ser	Phe	э Туз	120		Cys	s Leu	sei	Gly 125		Glu	ser
50	Tyr	130) Met	: Glr	n Phe	135		a Ala	a Val	l Glu	140		. Lys	: Thi	: Ile
55	(2)	IN	FORM/					NO: TERI								
								14 -			de					

(B) TYPE: amino acid

```
(D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 554:
      Tyr Pro Asn Gln Asp Gly Asp Ile Leu Arg Asp Gln Val Leu
 5
      (2) INFORMATION FOR SEQ ID NO: 555:
10
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 11 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
15
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 555:
      Glu Ala Pro Trp Pro Ser Ala Gln Ser Glu Ile
                        5
20
      (2) INFORMATION FOR SEQ ID NO: 556:
              (i) SEQUENCE CHARACTERISTICS:
25
                     (A) LENGTH: 21 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 556:
30
      Ser Gly Glu Glu Ser Tyr Trp Trp Met Gln Phe Thr Ala Ala Val Glu
                5
                                   10
      Phe Ile Lys Thr Ile
35
       (2) INFORMATION FOR SEQ ID NO: 557:
40
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 18 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 557:
45
      Ala Asp Asp Phe Val Pro Val Leu Val Phe Val Leu Ile Lys Ala Asn
                        5
      Pro Pro
50
       (2) INFORMATION FOR SEQ ID NO: 558:
. 55
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 12 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
 60
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 558:
```

```
Tyr Lys Thr Pro Arg Asp Lys Val Gln Cys Ile Leu
                        5
                                           10
 5
      (2) INFORMATION FOR SEQ ID NO: 559:
             (i) SEQUENCE CHARACTERISTICS:
10
                     (A) LENGTH: 15 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 559:
15
      Gly Ala Asp Asp Phe Val Pro Val Leu Val Phe Val Leu Ile Lys
                        5
        1
                                           10
20
      (2) INFORMATION FOR SEQ ID NO: 560:
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 12 amino acids
                     (B) TYPE: amino acid
25
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 560:
      Pro Val Leu Val Phe Val Leu Ile Lys Ala Asn Pro
30
      (2) INFORMATION FOR SEQ ID NO: 561:
35
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 17 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 561:
40
      Ser Ala Arg Ala Ser Thr Gln Pro Pro Ala Gly Gln His Pro Cly Pro
        1
                        5
                                           10
      Cys
45
      (2) INFORMATION FOR SEQ ID NO: 562:
50
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 33 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
55
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 562:
      Met Pro Gly Arg Trp Arg Trp Gln Arg Asp Met His Pro Ala Arg Lys
                                           10
60
      Leu Leu Ser Leu Leu Phe Leu Ile Leu Met Gly Thr Glu Leu Thr Gln
```

PCT/US98/11422

649

25 30 20 Asp 5 (2) INFORMATION FOR SEQ ID NO: 563: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 19 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 563: 15 Ser Ala Ala Pro Asp Ser Leu Leu Arg Ser Ser Lys Gly Ser Thr Arg 5 10 Gly Ser Leu 20 (2) INFORMATION FOR SEQ ID NO: 564: 25 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 564: Ala Ala Ile Val Ile Trp Arg Gly Lys Ser Glu Ser Arg Ile Ala Lys 10 Thr Pro Gly Ile 35 40 (2) INFORMATION FOR SEQ ID NO: 565: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 amino acids (B) TYPE: amino acid 45 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 565: Pro Leu Gly Ile Thr Leu Pro Leu Gly Ala Pro Glu Thr Gly Gly 10 5 50 Asp 55 (2) INFORMATION FOR SEQ ID NO: 566: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids 60 (B) TYPE: amino acid

```
(D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 566:
     Cys Ala Ala Glu Thr Trp Lys Gly Ser Gln Arg Ala Gly Gln Leu Cys
5
     Ala Leu Leu Ala
10
      (2) INFORMATION FOR SEQ ID NO: 567:
             (i) SEQUENCE CHARACTERISTICS:
15
                    (A) LENGTH: 20 amino acids
                    (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 567:
      Phe Arg Gly Gly Gly Thr Leu Val Leu Pro Pro Thr His Thr Pro Glu
20
                                  10
      Trp Leu Ile Leu
25
      (2) INFORMATION FOR SEQ ID NO: 568:
30
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 22 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 568:
35
      Met Arg Ser Ala Arg Pro Ser Leu Gly Cys Leu Pro Ser Trp Ala Phe
                              10
               5
      Ser Gln Ala Leu Asn Ile
40
      (2) INFORMATION FOR SEQ ID NO: 569:
45
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 22 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
50
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 569:
      Leu Leu Gly Leu Lys Gly Leu Ala Pro Ala Glu Ile Ser Ala Val Cys
        1
                        5
 55
      Glu Lys Gly Asn Phe Asn
                   20
       (2) INFORMATION FOR SEQ ID NO: 570:
```

```
(i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 26 amino acids
                    (B) TYPE: amino acid
5
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 570:
     Val Ala His Gly Leu Ala Trp Ser Tyr Tyr Ile Gly Tyr Leu Arg Leu
                                           10
10
      Ile Leu Pro Glu Leu Gln Ala Arg Ile Arg
                   20
15
      (2) INFORMATION FOR SEQ ID NO: 571:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 18 amino acids
20
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 571:
      Thr Tyr Asn Gln His Tyr Asn Asn Leu Leu Arg Gly Ala Val Ser Gln
25
                       5
      Arg Cys
30
      (2) INFORMATION FOR SEQ ID NO: 572:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 43 amino acids
35
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 572:
       Ile Leu Leu Pro Leu Asp Cys Gly Val Pro Asp Asn Leu Ser Met Ala
40
                                            10
       Asp Pro Asn Ile Arg Phe Leu Asp Lys Leu Pro Gln Gln Thr Gly Asp
                    20
                                        25
45
       Arg Ala Gly Ile Lys Asp Arg Val Tyr Ser Asn
               35
50
       (2) INFORMATION FOR SEQ ID NO: 573:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 45 amino acids
 55
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 573:
       Ser Ile Tyr Glu Leu Leu Glu Asn Gly Gln Arg Ala Gly Thr Cys Val
 60
                        5
```

	Leu	Glu	Tyr	Ala 20	Thr	Pro	Leu	Gln	Thr 25	Leu	Phe	Ala	Met	Ser 30	Gln	Tyr
5	Ser	Gln	Ala 35	Gly	Phe	Ser	Gly	Glu 40	Asp	Arg	Leu	Glu	Gln 45			
10	(2)	INF	ORMA'	TION	FOR	SEQ	ID 1	NO: !	574:							
15				(A) L B) T D) T	ENGT YPE : OPOL	H: 9 ami OGY:	2 am no a lin	ino cid ear	acid		: 57	4:			
20	Ala 1		Leu	Phe	Cys 5	Arg	Thr	Leu	Glu	Asp 10		Leu	Ala	Asp	Ala 15	Pro
20	Glu	Ser	Gln	Asn 20		Cys	Arg	Leu	Ile 25		Tyr	Gln	Glu	Pro 30	Ala	Asp
25	Asp	Ser	Ser 35		Ser	Leu	Ser	Gln 40		Val	Leu	Arg	His 45		Arg	Gln
	Glu	Glu 50		: Glu	Glu	Val	Thr 55		Gly	Ser	Leu	Lys 60		Ser	Ala	Val
30	Pro 65		Thr	. Ser	Thr	Met 70		Glr	Glu	Pro	Glu 75		Leu	Ile	Ser	80 80
35	Met	: Glu	ı Lys	s Pro	Leu 85		Let	ı Arg	Thr	Asp 90		e Ser	:			
40	(2)) IN	(i)	ATION SEQU	UENCI (A) (B) (D)	E CHA LENG TYPE TOPO	ARAC TH: : am LOGY	TERI: 43 a ino : li	STIC: mino acid near	S: aci		O: 5	75;			
45		u Le	u Gl	y Le		s Gly 5	y Le	u Ala	a Pro	o Ala		ı Ile	e Sei	c Ala	a Va:	l Cys
50	Gl	u Ly	s Gl	y Ası 20		e Ası	n Va	l Al	a Hi: 2		y Le	u Ala	a Trj	Se:		r Tyr
55	Il	e Gl	у Ту 3	r Lei	u Ar	g Le	u Il	e Le 4		o Gl	u Le	u				
~~	(2) IN	FORM	ATIO	n Fo	R SE	Q ID	NO:	576	:						
60			(i)	SEQ		E CH		_			ids					

653

```
(B) TTPE: amino acid
                   (D) TCPOLCGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 576:
5
     Thr Met Lys Leu Lys Leu Arg Arg Asn Ile Val Lys Leu Ser Leu
      10
     Tyr Arg His Phe Thr Asn
10
     (2) DESPERIENT FOR SEQ ID NO: 577:
15
            (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 22 amino acids
                   (B) T/PE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 577:
20
     Thr Leu Ile Leu Ala Val Ala Ala Ser Ile Val Phe Ile Ile Trp Thr
      <u>1</u> . 5
     Thr Met Lys Phe Arg Ile
25
     (2) DIFOFMATION FOR SEQ ID NO: 578:
30
            (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 28 amino acids
                    E) TYPE: amino acid
                    D, TOPOLOGY: linear
35
            (xii) SEQUENCE DESCRIPTION: SEQ ID NO: 578:
     Val Thr Cys Glm Ser Asp Trp Arg Glu Leu Trp Val Asp Asp Ala Ile
40
     Trp Arg Leu Leu Phe Ser Met Ile Leu Phe Val Ile
                  20
45
    (2) DIFORMATION FOR SEQ ID NO: 579:
             (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 27 amino acids
                   (3) TYPE: amino acid
50
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 579:
     Met Val Leu Trp Arg Pro Ser Ala Asn Asn Gln Arg Phe Ala Phe Ser
55
     Pro Leu Ser Glu Glu Glu Glu Glu Asp Glu Gln
                  20
```

```
(2) INFORMATION FOR SEQ ID NO: 580:
             (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 27 amino acids
 5
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 580:
     Met Val Leu Trp Arg Pro Ser Ala Asn Asn Gln Arg Phe Ala Phe Ser
10
                       5
                               10
     Pro Leu Ser Glu Glu Glu Glu Asp Glu Gln
15
     (2) INFORMATION FOR SEQ ID NO: 581:
             (i) SEQUENCE CHARACTERISTICS:
20
                    (A) LENGTH: 35 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 581:
25
     Lys Glu Pro Met Leu Lys Glu Ser Phe Glu Gly Met Lys Met Arg Ser
      1
                       5
     Thr Lys Gln Glu Pro Asn Gly Asn Ser Lys Val Asn Lys Ala Gln Glu
                                  25
30
     Asp Asp Leu
              35
35
      (2) INFORMATION FOR SEQ ID NO: 582:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 37 amino acids
40
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 582:
     Lys Trp Val Glu Glu Asn Val Pro Ser Ser Val Thr Asp Val Ala Leu
45
       1
             5
                                        10
     Pro Ala Leu Leu Asp Ser Asp Glu Glu Arg Met Ile Thr His Phe Glu
50
     Arg Ser Lys Met Glu
              35
55
     (2) INFORMATION FOR SEQ ID NO: 583:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 20 amino acids
                    (B) TYPE: amino acid
60
                    (D) TOPOLOGY: linear
```

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: E33:
     Asp Pro Arg Val Arg Leu Ash Ser Leu Thr Cys Lys Ris Ile Phe Ile
 5
     Ser Leu Thr Gln
10
      (2) INFORMATION FOR SEQ ID NO: 534:
             (i) SEQUENCE CHRANCTERÚSTICS:
                   (A) LENGTH: 12 amino acids
15
                    (B) T/FE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPCION: SEQ ID NO: 884:
      Tyr Glu Pro Met Asp Phe Maa Met Ala Lei Ile Tyr Asp
20
                       5
      (2) INFORMATION FOR SEQ ID NO: 536:
25
             (i) SEQUENCE CHAPACTERISTICS:
                    (A) LENGTH: 16 amino acids
                    (B) TIFE: amino acid
                    (D) TOPOLOGY: limear
30
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 585:
      Ile Arg His Glu Leu Thr Val Leu Arg Asp Thr Arg Pro Ala Dys Ala
35
40
      (2) INFORMATION FOR SEQ ID NO: 586:
             (i) SEQUENCE THAFACTERISTICS:
                    (A) LENGTH: 10 amino aciás
                    (B) TiFE: amino soid
45
                    (D) TCPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: SHE:
      Met Asp Phe Xaa Met Ala Leu Ile Tyr Asp
      · 1 5
50
      (2) INFORMATION FOR SEQ ED NO: E87:
55
             (i) SEQUENCE CHAPACTERISTICS:
                    (A) LENGTA: 14 amino acids
                    (B) TiPE: amino apid
                    (D) TCPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 597:
60
```

WO 98/54963

```
Met Gln Glu Met Met Arg Asn Gln Asp Arg Ala Leu Ser Asn Leu Glu
                                         10
      Ser Ile Pro Gly Gly Tyr Asn Ala
                 20
      (2) INFORMATION FOR SEQ ID NO: 588:
10
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 25 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
15
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 588:
      Leu Arg Arg Met Tyr Thr Asp Ile Gln Glu Pro Met Leu Ser Ala Ala
       1
                       5
                                          10
20
      Gln Glu Gln Phe Gly Gly Asn Pro Phe
                   20
25
      (2) INFORMATION FOR SEQ ID NO: 589:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 32 amino acids
                    (B) TYPE: amino acid
30
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 589:
      Ala Ser Leu Val Ser Asn Thr Ser Ser Gly Glu Gly Ser Gln Pro Ser
35
      Arg Thr Glu Asn Arg Asp Pro Leu Pro Asn Pro Trp Ala Pro Gln Thr
                                     25
40
      (2) INFORMATION FOR SEQ ID NO: 590:
45
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 71 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
50
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 590:
      Ser Gln Ser Ser Ser Ala Ser Ser Gly Thr Ala Ser Thr Val Gly Gly
             5
55
      Thr Thr Gly Ser Thr Ala Ser Gly Thr Ser Gly Gln Ser Thr Thr Ala
                                      25
      Pro Asn Leu Val Pro Gly Val Gly Ala Ser Met Phe Asn Thr Pro Gly
                                  40
60
```

```
Met Gln Ser Leu Leu Gln Gln Ile Thr Glu Asn Pro Gln Leu Met Gln
         50 55
     Asn Met Leu Ser Ala Pro Tyr
5
      65
     (2) INFORMATION FOR SEQ ID NO: 591:
10
            (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 45 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 591:
15
     Met Arg Ser Met Met Gln Ser Leu Ser Gln Asn Pro Asp Leu Ala Ala
             5
       1
      Gln Met Met Leu Asn Asn Pro Leu Phe Ala Gly Asn Pro Gln Leu Gln
20
                               25
      Glu Gln Met Arg Gln Gln Leu Pro Thr Phe Leu Gln Gln
                                 40
25
      (2) INFORMATION FOR SEQ ID NO: 592:
             (i) SEQUENCE CHARACTERISTICS:
30
                    (A) LENGTH: 73 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 592:
35
      Met Gln Asn Pro Asp Thr Leu Ser Ala Met Ser Asn Pro Arg Ala Met
                                          10
                        5
      Gln Ala Leu Leu Gln Ile Gln Gln Gly Leu Gln Thr Leu Ala Thr Glu
40
      Ala Pro Gly Leu Ile Pro Gly Phe Thr Pro Gly Leu Gly Ala Leu Gly
                                 40
       Ser Thr Gly Gly Ser Ser Gly Thr Asn Gly Ser Asn Ala Thr Pro Ser
 45
       Glu Asn Thr Ser Pro Thr Ala Gly Thr
        65
                          70
 50
       (2) INFORMATION FOR SEQ ID NO: 593:
              (i) SEQUENCE CHARACTERISTICS:
 55
                     (A) LENGTH: 72 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 593:
 60
```

```
The Glu Pro Gly His Gln Gln Phe Ile Gln Gln Met Leu Gln Ala Leu
     Ala Gly Val Asn Pro Gln Leu Gln Asn Pro Glu Val Arg Phe Gln Gln
5
     Gir Leu Glu Glu Leu Ser Ala Met Gly Phe Leu Asn Arg Glu Ala Asn
                                40 . 45
     Lew Glm Ala Lew Ile Ala Thr Gly Gly Asp Ile Asn Ala Ala Ile Glu
10
     Arg Let Let Gly Ser Gln Pro Ser
15
      (2) DEFORMATION FOR SEQ ID NO: 594:
             (i) SEQUENCE CHARACTERISTICS:
20
                    (A) LENGTH: 45 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (x1) SEQUENCE DESCRIPTION: SEQ ID NO: 594:
25
      Arg Asn Pro Ala Met Met Gln Glu Met Met Arg Asn Gln Asp Arg Ala
      Leu Ser Asn Leu Glu Ser Ile Pro Gly Gly Tyr Asn Ala Leu Arg Arg
30
                                       25
      Met Tyr Thr Asp Ile Gln Glu Pro Met Leu Ser Ala Ala
               35
35
       (2) DEFORMATION FOR SEQ ID NO: 595:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 13 amino acids
 40
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 595:
       Gly Asn Pro Phe Ala Ser Leu Val Ser Asn Thr Ser Ser
 45
                         5
         1
       (2) DIFORMATION FOR SEQ ID NO: 596:
 50
               (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 11 amino acids
                      (B) TYPE: amino acid
                      (D) TOPOLOGY: linear
 55
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 596:
       Glu Asn Arg Asp Pro Leu Pro Asn Pro Trp Ala
                       5
  60
```

```
(2) INFORMATION FOR SEQ ID NO: 597:
            (i) SEQUENCE CHARACTERISTICS:
5
                   (A) LENGTH: 17 amino acids
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 597:
10
     Gly Lys Ile Leu Lys Asp Gln Asp Thr Leu Ser Gln His Gly Ile His
                              10
                       5
     Asp
15
      (2) INFORMATION FOR SEQ ID NO: 598:
20
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 14 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 598:
25
      Gly Leu Thr Val His Leu Val Ile Lys Thr Gln Asn Arg Pro
30
      (2) INFORMATION FOR SEQ ID NO: 599:
             (i) SEQUENCE CHARACTERISTICS:
35
                    (A) LENGTH: 18 amino acids
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 599:
      Ser Glu Leu Gln Ser Gln Met Gln Arg Gln Leu Leu Ser Asn Pro Glu
40
                               10
                       5
      Met Met
 45
       (2) INFORMATION FOR SEQ ID NO: 600:
              (i) SEQUENCE CHARACTERISTICS:
 50
                     (A) LENGTH: 14 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 600:
 55
       Pro Glu Ile Ser His Met Leu Asn Asn Pro Asp Ile Met Arg
               5
```

WO 98/54963

```
(2) INFORMATION FOR SEQ ID NO: 501:
            (i) SEQUENCE CHAPACTERISTICS:
                   (A) LENGTH: 18 amino acids
5
                   (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 601:
     Arg Gln Leu Ile Met Ala Asn Pro Gln Met Gln Gln Leu Ile Gln Arg
10
      1 5 10
     Asn Pro
15
      (2) INFORMATION FOR SEQ ID NO: 502:
             (i) SEQUENCE CHAPACTERISTICS:
20
                    (A) LENGTH: 27 amino acids
                    (3) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ED NO: 502:
      Asn Leu Cys His Val Asp Cys Gln Asp Leu Leu Asn Pro Asn Leu Leu
25
                      5
       1
      Ala Gly Ile His Cys Ala Lys Arg Ile Val Ser
                  20
30
      (2) INFORMATION FOR SEQ ID NO: 603:
             (i) SEQUENCE CHARACTERISTICS:
35
                    (A) LENGTH: 23 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 603:
40
      Leu Asp Gly Phe Glu Gly Tyr Ser Leu Ser Asp Trp Leu Cys Leu Ala
                                         10
      Phe Val Glu Ser Lys Phe Asn
45
                   20
       (2) INFORMATION FOR SEQ ID NO: 604:
 50
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 22 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
 55
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 604:
       Asn Glu Asn Ala Asp Gly Ser Phe Asp Tyr Gly Leu Phe Gln Ile Asn
                                  10
 60
       Ser His Tyr Trp Cys Asn
```

PCT/US98/11422

5	(2) INFORMATION FOR SEQ ID NO: 605:
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 605:
15	Asn Leu Cys His Val Asp Cys Gln Asp Leu Leu Asn Pro Asn Leu Leu 1 5 10 15 Ala Gly Ile His Cys Ala Lys Arg Ile Val Ser 20 25
20	(2) INFORMATION FOR SEQ ID NO: 606:
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 606:
30	Ile Arg Glu Val Asn Glu Val Ile Gln Asn Pro Ala Thr 1 5 10
35	(2) INFORMATION FOR SEQ ID NO: 607: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid
40	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 607:
	Ile Thr Arg Ile Leu Leu Ser His Phe Asn Trp Asp Lys Glu Lys Leu 1 5 10 15
45	Met Glu Arg Tyr Phe Asp Gly Asn Leu Glu Lys Leu Phe Ala 20 25 30
50	(2) INFORMATION FOR SEQ ID NO: 608:
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 608:
	Asn Thr Arg Ser Ser Ala Gln Asp Met Pro Cys Gln Ile Cys Tyr Leu 1 5 10 15
60	

Asn Tyr Pro Asn Ser Tyr Phe 20

5 (2) INFORMATION FOR SEQ ID NO: 609: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 amino acids 10 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 609: Cys Asp Ile Leu Val Asp Asp Asn Thr Val Met Arg Leu Ile Thr Asp 15 10 Ser Lys Val Lys Leu Lys Tyr Gln His Leu Ile Thr Asn Ser Phe Val 25 Glu Cys Asn Arg Leu Leu Lys Trp Cys Pro Ala Pro Asp Cys His His 20 Val Val Lys Val Gln Tyr Pro Asp Ala Lys Pro Val . 55 25 (2) INFORMATION FOR SEQ ID NO: 610: (i) SEQUENCE CHARACTERISTICS: 30 (A) LENGTH: 52 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 610: 35 Cys Asp Ile Leu Val Asp Asp Asn Thr Val Met Arg Leu Ile Thr Asp 10 Ser Lys Val Lys Leu Lys Tyr Gln His Leu Ile Thr Asn Ser Phe Val 40 Glu Cys Asn Arg Leu Leu Lys Trp Cys Pro Ala Pro Asp Cys His His 40 45 Val Val Lys Val 50 50 (2) INFORMATION FOR SEQ ID NO: 611: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 611:

Gly Cys Asn His Met Val Cys Arg Asn Gln Asn Cys Lys Ala Glu Phe

5

60

Cys Trp Val Cys Leu Gly Pro Trp Glu Pro His Gly Ser Ala Trp Tyr Asn Cys Asn Arg Tyr Asn Glu Asp Asp Ala Lys Ala Ala Arg Asp Ala 5 40 Gln Glu Arg Ser Arg Ala Ala Leu Gln Arg Tyr Leu 55 10 (2) INFORMATION FOR SEQ ID NO: 612: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 amino acids 15 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 612: Phe Tyr Cys Asn Arg Tyr Met Asn His Met Gln Ser Leu Arg Phe Glu 20 10 His Lys Leu Tyr Ala Gln Val Lys Gln Lys Met Glu Glu Met Gln Gln 20 25 His Asn Met Ser Trp Ile Glu Val Gln Phe Leu Lys Lys Ala Val Asp 40 Val Leu Cys Gln Cys Arg Ala Thr Leu Met Tyr Thr 30 (2) INFORMATION FOR SEQ ID NO: 613: 35 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 613: 40 Tyr Val Phe Ala Phe Tyr Leu Lys Lys Asn Asn Gln Ser Ile Ile Phe 10 5 Glu Asn Asn Gln Ala Asp Leu Glu Asn Ala Thr Glu Val Leu Ser Gly 45 Tyr Leu Glu Arg Asp Ile Ser Gln Asp Ser Leu Gln Asp Ile Lys Gln 50 Lys Val Gln Asp Lys Tyr Arg Tyr Cys Glu Ser Arg 55 55 (2) INFORMATION FOR SEQ ID NO: 614: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 amino acids (B) TYPE: amino acid 60

```
(D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 614:
     Thr Gly Leu Glu Cys Gly His Lys Phe Cys Met Gln Cys Trp Ser Glu
5
     Tyr Leu Thr Thr Lys Ile Met Glu Glu Gly Met Gly Gln Thr Ile Ser
                              25
10
     Cys Pro Ala His Gly
              35
      (2) INFORMATION FOR SEQ ID NO: 615:
15
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 21 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
20
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 615:
      Met Trp Gly Tyr Leu Phe Val Asp Ala Ala Trp Asn Phe Leu Gly Cys
                        5
                                          10
        1
25
      Leu Ile Cys Gly Trp
                   20
30
      (2) INFORMATION FOR SEQ ID NO: 616:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 46 amino acids
                     (B) TYPE: amino acid
 35
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 616:
       Met His Phe Ile Ser Ser Gly Asn Val Ser Ala Ile Arg Ser Ser Ile
 40
                                           10
       Leu Leu Arg Xaa Ser Leu Ser Tyr Leu Gly Asn Cys Leu Arg Val
                                       25
                    20
       Ser Ala Ile Phe Val Tyr Phe Leu Leu Phe Leu Leu Leu Ser
 45
                                    40
                35
        (2) INFORMATION FOR SEQ ID NO: 617:
 50
               (i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 80 amino acids
                      (B) TYPE: amino acid
  55
                      (D) TOPOLOGY: linear
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 617:
        Met Asp Gln Ala Leu Arg Gly Ser Pro Ser Glu Gly Phe Ser Thr Asp
                     5
  60
```

	Pro	Ser	Pro	Pro 20	Gln	Val	Gly	Arg	Gln 25	Ile	Pro	Ser	Phe	Pro 30	Pro	Trp
5	Arg	Arg	Leu 35	Val	Leu	Pro	Lys	Ala 40	Ser	Gly	Cys	Phe	Leu 45	Glu	Arg	Glu
	Trp	Trp 50		Cys	Val	Phe	Lys 55	Leu	Arg	Thr	Arg	Pro 60	Gly	Ala	Glu	Ala
0	His 65	Ala	Tyr	Asn	Ser	Ser 70		Leu	Gly	Gly	Arg 75	Gly	Lys	Gly	Ile	Thr 80
15									•				·			
20	(2)	INF	(i)	SEQU	JENCE (A) I (B) ' (D) '	E CHA LENG'	RACT TH: : am LOGY	TERIS 131 a ino a : li	TICS amino acid near	aci			0			
25		: Lev			QUENC	ı Ala					: Phe			Pro	Glu 15	ı Gln
30	Ala	a Ala	a Arq	g Lei 20		s Lys	s Lei	ı Glı	n Glu 25		ı Glu	. Lys	Gln	Glr 30	Lys	s Val
	Gl	u Ph	e Arg		s Arg	g Me	t Gl	ц Ly: 4		ı Va	l Sei	Asp	Phe 45	: Ile	e Glr	n Asp
35	Se	r Gl 5		n Il	e Ly:	s Ly	s Ly 5		e Glı	n Pro	o Me	Asr 60		: Ile	e Glı	ı Arg
40		r Il 5	e Le	u Hi	s As	p Va 7		1 G1	u Va	l Al	a Gl		ı Thi	Sei	r Ph	e Ser 80
70	Ph	e Gl	y Gl	u As	p As 8	_	р Су	s Ar	g Ty	r Va 9		t Ile	e Ph∈	e Ly:	s Ly 9	s Glu 5
45	Ph	e Al	la Pr	o Se		p Gl	u Gl	u Le	u As 10	p Se 5	т Ту	r Ar	g Ar	g Gl; 11	y Gl O	u Glu
	Tr	p As	sp Pr 11		n Ly	s Al	a Gl	u Gl 12		s Ar	g As	n Xa	a Ly 12	s Gl 5	u Le	u Ala
50	G]		rg Gl 30	.n												
55	(:	2) II			ON FO											
			(i) SĐ		LEN	GTH:	76	ISTI amin aci	o ac	ids					
60									inea							

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 619:
5	Glu Glu Glu Ala Ala Gln Gln Gly Pro Val Val Val Ser Pro Ala Ser 1 5 10 15
J	Asp Tyr Lys Asp Lys Tyr Ser His Leu Ile Gly Lys Gly Ala Ala Lys 20 25 30
10	Asp Ala Ala His Met Leu Gln Ala Asn Lys Thr Tyr Gly Cys Xaa Pro 35 40 45
	Val Ala Asn Lys Arg Asp Thr Arg Ser Ile Glu Glu Ala Met Asn Glu 50 55 60
15	Ile Arg Ala Lys Lys Arg Leu Arg Gln Ser Gly Glu 65 70 75
20	(2) INFORMATION FOR SEQ ID NO: 620:
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 620:
30	Pro Pro Arg Arg Pro Ala Gln Leu Pro Leu Thr Pro Gly Ala Gly Gln 1 5 10 15
	Gly Ala Gly Arg Asp Lys Ala Ala Ile Arg Ala His Pro Gly Ala 20 25 30
35	Pro Pro Leu Asn His Leu Leu Pro 35 40
40	(2) INFORMATION FOR SEQ ID NO: 621: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids (B) TYPE: amino acid
45	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 621:
	Ala Val Pro Gln Ala Gly Gly Lys Gln Val Phe Asp Leu Ser Pro Leu 1 5 15
50	Glu Leu Gly Tyr Val Arg Gly Met Cys Val Cys Val 20 25
55	(2) INFORMATION FOR SEQ ID NO: 622:
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 207 amino acids(B) TYPE: amino acid
60	(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62	(xi)	SEOUENCE	DESCRIPTION:	SEQ	ID	NO:	622:
--	------	----------	--------------	-----	----	-----	------

Met Leu Pro Ala Leu Ala Ser Cys Cys His Phe Ser Pro Pro Glu Gln
1 5 10 15

Ala Ala Arg Leu Lys Lys Leu Gln Glu Gln Glu Lys Gln Gln Lys Val 20 25 30

. Glu Phe Arg Lys Arg Met Glu Lys Glu Val Ser Asp Phe Ile Gln Asp 10 35 40 45

Ser Gly Gln Ile Lys Lys Lys Phe Gln Pro Met Asn Lys Ile Glu Arg

Ser Ile Leu His Asp Val Val Glu Val Ala Gly Leu Thr Ser Phe Ser 65 70 75 80

Phe Gly Glu Asp Asp Cys Arg Tyr Val Met Ile Phe Lys Lys Glu 85 90 95

20
Phe Ala Pro Ser Asp Glu Glu Leu Asp Ser Tyr Arg Arg Gly Glu Glu
100
105
110

Trp Asp Pro Gln Lys Ala Glu Glu Lys Arg Asn Xaa Lys Glu Leu Ala
25 115 120 125

Gln Arg Gln Glu Glu Glu Ala Ala Gln Gln Gly Pro Val Val Val Ser 130 135 140

Pro Ala Ser Asp Tyr Lys Asp Lys Tyr Ser His Leu Ile Gly Lys Gly
145 150 155 160

Ala Ala Lys Asp Ala Ala His Met Leu Gln Ala Asn Lys Thr Tyr Gly 165 170 175

Cys Xaa Pro Val Ala Asn Lys Arg Asp Thr Arg Ser Ile Glu Glu Ala 180 185 190

Met Asn Glu Ile Arg Ala Lys Lys Arg Leu Arg Gln Ser Gly Glu
40 195 200 205

(2) INFORMATION FOR SEQ ID NO: 623:

45

35

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 34 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 623:

Leu Leu Cys Pro Val Leu Asn Ser Gly Xaa Ser Trp Asn Phe Pro His 1 5 10 15

Pro Ser Gln Pro Glu Tyr Ser Phe His Gly Phe His Ser Thr Arg Leu 20 25 30

Trp Ile

	(2) INFORMATION FOR SEQ ID NO: 624:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 624: 	
.0	Pro Ser Thr Pro Trp Phe Leu Phe Leu Leu Gly Leu Thr Cys 1	Pro Phe 15
15	Ser Thr Ser His Pro Arg Trp Asp Ser Ile Pro Pro 20 25	
20	(2) INFORMATION FOR SEQ ID NO: 625: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 227 amino acids (B) TYPE: amino acid	
25	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 625:	
	Glu Leu Ser Ile Ser Ile Ser Asn Val Ala Leu Ala Asp Glu 1 5 10	Gly Glu 15
30	Tyr Thr Cys Ser Ile Phe Thr Met Pro Val Arg Thr Ala Lys 20 25 30	Ser Leu
25	Val Thr Val Leu Gly Ile Pro Gln Lys Pro Ile Ile Thr Gly 35 40 45	Tyr Lys
35	Ser Ser Leu Arg Glu Lys Asp Thr Ala Thr Leu Asn Cys Gln 50 55 60	Ser Ser
40	Gly Ser Lys Pro Ala Ala Arg Leu Thr Trp Arg Lys Gly Asp 65 70 75	Gln Glu 80
	Leu His Gly Glu Pro Thr Arg Ile Gln Glu Asp Pro Asn Gly 85 90	Lys Thr 95
45	Phe Thr Val Ser Ser Ser Val Thr Phe Gln Val Thr Arg Glu 100 105 110	ı Asp Asp)
5 0	Gly Ala Ser Ile Val Cys Ser Val Asn His Glu Ser Leu Lys 115 120 125	s Gly Ala
50	Asp Arg Ser Thr Ser Gln Arg Ile Glu Val Leu Tyr Thr Pro	o Thr Ala
55	Met Ile Arg Pro Asp Pro Pro His Pro Arg Glu Gly Gln Ly 145 150 155	s Leu Leu 160
	Leu His Cys Glu Gly Arg Gly Asn Pro Val Pro Gln Gln Ty 165 170	r Leu Trp 175
4٥	al all all sor Wal Bro Pro Leu Lvs Met Thr Gln Gl	u Ser Ala

•		180		185	190	
<u>_</u>	Leu Ile Phe 195	Pro Phe Leu	Asn Lys 200	Ser Asp Ser	Gly Thr Tyr 205	Gly Cys
5	Thr Ala Thr 210	Ser Asn Met	Gly Ser 215	Tyr Lys Ala	Tyr Tyr Thr 220	Leu Asn
10	Val Asn Asp 225					
15	(i)	(B) TYPE (D) TOPO	ARACTERIS TH: 64 am : amino a LOGY: lin	TICS: ino acids cid	o: 626:	
	Glu Leu Ser l	: Ile Ser Ile 5	e Ser Asn	Val Ala Leu 10	Ala Asp Glu	Gly Glu 15
25		s Ser Ile Ph 20	e Thr Met	Pro Val Arg 25	Thr Ala Lys	s Ser Leu)
30	3!	5	40		45 45 Asn Cys Glr	
35						
40		ATION FOR SE SEQUENCE CI (A) LEN	HARACTERI:			
45	(xi	(B) TYP (D) TOP	E: amino OLOGY: li	acid	ю: 627:	
	Cys Gln Se	er Ser Gly So	er Lys Pro	o Ala Ala Ar 10	g Leu Thr Tr	p Arg Lys 15
50	Gly Asp Gl	in Glu Leu H 20	is Gly Gl	u Pro Thr Ar 25	g Ile Gln Gl 3	u Asp Pro O
55	3	35	4	0	1 Thr Phe Gl 45	
J. V	Arg Glu As 50	sp Asp Gly A	1a Ser Il 55	e Val Cys Se	er Val Asn Hi 60	is Glu Sei
60	Leu 65					

```
(2) INFORMATION FOR SEQ ID NO: 628:
5
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 58 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
10
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 628:
      His Glu Ser Leu Lys Gly Ala Asp Arg Ser Thr Ser Gln Arg Ile Glu
      Val Leu Tyr Thr Pro Thr Ala Met Ile Arg Pro Asp Pro Pro His Pro
15
                                       25
      Arg Glu Gly Gln Lys Leu Leu His Cys Glu Gly Arg Gly Asn Pro
20
      Val Pro Gln Gln Tyr Leu Trp Glu Lys Glu
25
      (2) INFORMATION FOR SEQ ID NO: 629:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 52 amino acids
30
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 629:
      Trp Glu Lys Glu Gly Ser Val Pro Pro Leu Lys Met Thr Gln Glu Ser
35
      Ala Leu Ile Phe Pro Phe Leu Asn Lys Ser Asp Ser Gly Thr Tyr Gly
                                       25
      Cys Thr Ala Thr Ser Asn Met Gly Ser Tyr Lys Ala Tyr Tyr Thr Leu
40
                                    40
                35
      Asn Val Asn Asp
           50
 45
       (2) INFORMATION FOR SEQ ID NO: 630:
 50
              (i) SEOUENCE CHARACTERISTICS:
                     (A) LENGTH: 123 amino acids
                      (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 630:
 55
       Val Pro Glu Leu Pro Asp Arg Val His Gln Leu His Gln Ala Val Gln
        1
       Gly Cys Ala Leu Gly Arg Pro Gly Phe Pro Gly Gly Pro Thr His Ser
 60
                                        25
```

	Gly His His Lys Ser His Pro Gly Pro Ala Gly Gly Asp Tyr Asn Arg 35 40 45
5	Cys Asp Arg Pro Gly Gln Val His Leu His Asn Pro Arg Gly Thr Gly 50 55 60
10	Arg Arg Gly Gln Leu His Pro Thr Ala Gly Pro Gly Val His Arg Arg 65 70 75 80
10	Ala Cys Pro Ser Gln Gln Leu Pro His Arg Leu Gly Pro Gly Val Pro 85 90 95
15	Cys Pro Ser Pro Ser Leu Thr Pro Val Leu Pro Ser Trp Thr Gln Ser 100 105 110
	Trp Cys Gly Leu Pro Gly Tyr Thr Ser Ser Ser 115 120
20	
	(2) INFORMATION FOR SEQ ID NO: 631:
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 631:
30	Val His Gln Leu His Gln Ala Val Gln Gly Cys Ala Leu Gly Arg Pro 1 5 10 15
35	Gly Phe Pro Gly Gly Pro 20
	(2) INFORMATION FOR SEQ ID NO: 632:
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 632:
.5	Pro Thr His Ser Gly His His Lys Ser His Pro Gly Pro Ala Gly Gly 1 5 10 15
50	Asp Tyr Asn Arg Cys Asp Arg Pro Gly Gln Val His Leu His Asn Pro 20 25 30
	Arg Gly Thr Gly Arg Arg Gly Gln Leu His 35 40
55	
	(2) INFORMATION FOR SEQ ID NO: 633:
60	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 55 amino acids

(D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 633:																
5	Leu H l	is I	Pro	Thr A	Ala (Gly I	Pro (Sly V	Jal H	is A 10	rg A	rg A	la C	ys P	ro S 15	er
	Gln G	ln :	Leu	Pro E 20	His A	Arg 1	Leu (Gly I	Pro G 25	ly V	al P	ro C	ys P	ro S 30	er P	ro
0	Ser L	eu	Thr 35	Pro '	Val :	Leu	Pro :	Ser '	Trp T	Thr G	ln S	Ser I	rp C 45	ys G	ly I	eu
15	Pro G	50	Tyr	Thr	Ser	Ser	Ser 55									
20	(2)			rion SEQUE	INCE	CHAI	RACTE	RIST	rics:	:	1 _					
								76 ar no ao	mino cid	acıc	IS					
25			(xi)		D) T	OPOL	OGY:	line	ear	Q II	NO:	634	:			
	Ser :	Leu	Arg	Arg	Pro 5	Arg	Ser	Ala	Ala	Xaa 10	Gln	Thr	Leu	Thr	Thr 15	Phe
30	Leu	Ser	Ser	Val 20	Ser	Ser	Ala	Ser	Ser 25	Ser	Ala	Leu	Pro	Gly 30	Ser	Arg
	Glu	Pro	Cys 35	Asp	Pro	Arg	Ala	Pro 40	Pro	Pro	Pro	Arg	Ser 45	Gly	Ser	Ala
35	Ala	Ser 50		Cys	Ser	Cys	Cys 55		Ser	Cys	Pro	Arg 60	Arg	Arg	Ala	Pro
40	Leu 65	Arg	, Sei	r Pro	Arg	Gly 70		Lys	Arg	Arg	Ile 75	Arg	Gln	Arg	Glu	Val 80
	Val	Asp	Le	и Туг	Asn 85		Met	Cys	: Leu	Gln 90	Gly	Pro	Ala	Gly	Val 95	Pro
45	Gly	Arg	g As	p Gly 100		r Pro	Gly	/ Ala	a Asn 105	Gly	Ile	Pro	Gly	Thr 110	Pro	Gly
	Ile	Pro	o Gl 11	y Arg 5	a Yei	Gly	/ Phe	E Lys		Glu	Lys	Gly	Glu 125	Cys	Leu	Arg
50	Glu	Se:		e Glı	ı Glı	ı Se	r Tr		r Pro) Asn	Туг	Lys 140	Gln	Cys	Ser	Trp
55	Ser 145		r Le	eu Ası	n Ty	r Gl; 15		e As	p Lev	ı Gly	/ Lys 155	i Ile	e Ala	Glu	cys	Thr 160
	Phe	Th	r L)	rs Me	t Ar 16		r As	n Se	r Ala	a Leu 170	ı Arg	y Val	Leu	Phe	Ser 179	c Gly 5

60 Ser Leu Arg Leu Lys Cys Arg Asn Ala Cys Cys Gln Arg Trp Tyr Phe

and the second of the second o

				180					185					190		
_	Thr P		Asn 195	Gly	Ala	Glu	Cys	Ser 200	Gly	Pro	Leu	Pro	Ile 205	Glu	Ala	Ile
5	Ile T	yr 10	Leu	Asp	Gln	Gly	Ser 215	Pro	Glu	Met	Asn	Ser 220	Thr	Ile	Asn	Ile
10	His A 225	rg	Thr	Ser	Ser	Val 230	Glu	Gly	Leu	Cys	Glu 235	Gly	Ile	Gly	Ala	Gly 240
	Leu V	al	Asp	Val	Ala 245	Ile	Trp	Val	Gly	Thr 250	Cys	Ser	Asp	Tyr	Pro 255	Lys
15	Gly A	Asp	Ala	Ser 260	Thr	Gly	Trp	Asn	Ser 265	Val	Ser	Arg	Ile	Ile 270	Ile	Glu
20	Glu I	Leu	Pro 275	Lys												
	(2)	INF	ORMA	TION	FOR	SEQ	ID.	ю:	635 :							
25			(i)		(A) 1 (B) '	LENG: TYPE	TH: : am	TERIS 61 ar ino a : li	mino acid	S: aci	ds					
30				SE(QUEN	CE DI	ESCR:	[PTI	ON: S		ID NO					
	Ser 1	Leu	Arg	Arg	Pro		g Sei	c Ala	a Alā	a Xaa 10		1 Thr	: Le	ı Thi	Thr 15	Phe
35	Leu	Ser	Ser	7 Val		r Sei	c Ala	a Se	r Sei 25		r Ala	a Leu	ı Pro	Gl:	y Sei	r Arg
	Glu	Pro	Cys 35		Pr	o Ar	g Al	a Pro		o Pro	o Pro	o Arg	g Se: 4:	r Gl	y Se:	r Ala
40	Ala	Ser 50		з Су:	s Se	r Cy:	s Cy 5		s Se:	r Cy	s Pr	o Arg	g Ar O	g		
45	(2)	INE	ORM	ATIO	N FO	R SE	Q ID	NO:	636	:						
50			(i)	SEQ	(A) (B)	TYP!	GTH: E: ar	TERI 52 a nino	mino acio	ac:	ids					
50					QUE	ICE I	ESCI		ON:	SEQ	ID 1					
55	1					5]	LO				,	g Gln 15
55	Arg	Gl	u Va		11 As	sp Le	eu Ty	/r As		Ly Me 25	et Cy	/s Le	eu Gl	in G	Ly Pi 30	co Ala
60	Gly	Va		o G1	ly Ai	rg As	sp G		er Pi 10	ro G	ly Al	la As	sn G	ly I: 15	le Pi	ro Gly

PCT/US98/11422

```
Thr Pro Gly Ile
          50
5
     (2) INFORMATION FOR SEQ ID NO: 637:
             (i) SEQUENCE CHARACTERISTICS:
10
                    (A) LENGTH: 52 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 637:
     Thr Pro Gly Ile Pro Gly Arg Asp Gly Phe Lys Gly Glu Lys Gly Glu
15
       1
      Cys Leu Arg Glu Ser Phe Glu Glu Ser Trp Thr Pro Asn Tyr Lys Gln
                                      25
20
      Cys Ser Trp Ser Ser Leu Asn Tyr Gly Ile Asp Leu Gly Lys Ile Ala
                                  40
      Glu Cys Thr Phe
25
          50
      (2) INFORMATION FOR SEQ ID NO: 638:
30
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 66 amino acids
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 638:
35
      Phe Thr Lys Met Arg Ser Asn Ser Ala Leu Arg Val Leu Phe Ser Gly
       Ser Leu Arg Leu Lys Cys Arg Asn Ala Cys Cys Gln Arg Trp Tyr Phe
40
                              25
                   20
       Thr Phe Asn Gly Ala Glu Cys Ser Gly Pro Leu Pro Ile Glu Ala Ile
                                   40
 45
       Ile Tyr Leu Asp Gln Gly Ser Pro Glu Met Asn Ser Thr Ile Asn Ile
                              55
       His Arg
 50
       65
       (2) INFORMATION FOR SEQ ID NO: 639:
 55
              (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 51 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
```

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 639:

	Arg Thr Ser Ser Val Glu Gly Leu Cys Glu Gly Ile Gly Ala Gly Leu 1 5 10 15	
5	Val Asp Val Ala Ile Trp Val Gly Thr Cys Ser Asp Tyr Pro Lys Gly 20 25 30	
10	Asp Ala Ser Thr Gly Trp Asn Ser Val Ser Arg Ile Ile Ile Glu Glu 35 40 45	
10	Leu Pro Lys 50	
15	(2) INFORMATION FOR SEQ ID NO: 640:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 640:	
25	Thr Lys Lys Glu Asn Cys Arg Pro Ala Ser Leu Met Asn Ile Asp Thr 1 5 10 15	c
	Lys Ile Leu Asn Lys Ile Leu Met Asn Gln 20 25	
30		
	(2) INFORMATION FOR SEQ ID NO: 641: (i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 214 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 641:	
40	Met Cys Asn Leu Pro Ile Lys Val Val Cys Arg Ala Asn Ala Glu Ty 1 5 10 15	r
45	Met Ser Pro Ser Gly Lys Val Pro Xaa Xaa His Val Gly Asn Gln Va 20 25 30	ıl
43	Val Ser Glu Leu Gly Pro Ile Val Gln Phe Val Lys Ala Lys Gly Hi 35 40 45	.s
50	Ser Leu Ser Asp Gly Leu Glu Glu Val Gln Lys Ala Glu Met Lys Al 50 55 60	
	65 /0 /5	30
55	Gln Trp Cys Asp Glu Ala Thr Val Gly Xaa Ile Thr His Xaa Arg Ty 85 · 90 95	
60	Gly Ser Pro Tyr Pro Trp Pro Leu Xaa His Ile Leu Ala Tyr Gln Ly 100 105 110	YS.

	Gln Trp G 1	lu Val .15	Lys Arg	Lys	Xaa 120	Lys	Ala	Ile	Gly	Trp 125	Gly	Lys	Lys
5	Thr Leu A	Asp Gln	Val Leu	Glu 135	Asp	Val	Asp	Gln	Cys 140	Cys	Gln	Ala	Leu
	Ser Gln A	Arg Leu	Gly Thr		Pro	Tyr	Phe	Phe 155	Asn	Lys	Gln	Pro	Thr 160
10	Glu Leu A	Asp Ala	Leu Val	Phe	Gly	His	Leu 170	Tyr	Thr	Ile	Leu	Thr 175	Thr
15	Gln Leu 7	Thr Asn 180	Asp Glu	ı Leu	Ser	Glu 185	Lys	Val	Lys	Asn	Туr 190	Ser	Asn
10	Leu Leu	Ala Phe 195	Cys Arg	g Arg	Ile 200	Glu	Gln	His	Tyr	Phe 205		Asp	Arg
20	Gly Lys (210	Gly Arg	Leu Sei	:									
	(2) INFO	RMATION	FOR SE	Q ID	NO:	642:							
25	(JENCE CH (A) LENC	TH:	44 ar	nino	: acid	ds					
30	,		(B) TYPE (D) TOPO QUENCE D	LOGY	: li	near	EQ :	ID NO	o: 64	42:			
	Met Cys l	Asn Leu	ı Pro Il 5	e Ly:	s Val	l Val	Cys		g Ala	a Ası	n Ala	a Glu	ı Tyr 5
35	Met Ser	Pro Ser 20		s Va	l Pro	25 Xaa		a Hi	s Vai	l Gl	y Ası 3	n Gli	n Val
40	Val Ser	Glu Let 35	u Gly Pr	o Il	e Va:		n Phe	e Va	l Ly:	s			
40	(2) TNIC	ΩⅅⅆℷℼℾΩ	n for si	EO TE	NO:	643							
45	(Z) INF		UENCE C	HARAC	TERI	STIC	s:	ds					
		(xi) SF	(B) TYP (D) TOP EQUENCE	E: ai	mino Y: li	acid inear			10: 6	543:			
50	Phe Val		a Lys G				u Se				eu Gl	.u G]	lu Val l5
55			lu Met L	ys Ai	la Ty		t G1	.u L∈	eu Va	al As	sn As	sn Me 30	et L e u
	Leu Thr	r Ala Gl 35	lu Leu T	yr L		in Tr 10	ъ С/	/s As	sp Gl	Lu			
60		-											

```
(2) INFORMATION FOR SEQ ID NO: 644:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 51 amino acids
5
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 644:
     Leu Gln Trp Cys Asp Glu Ala Thr Val Gly Xaa Ile Thr His Xaa Arg
10
                                           10
      Tyr Gly Ser Pro Tyr Pro Trp Pro Leu Xaa His Ile Leu Ala Tyr Gln
                                       25
15
      Lys Gln Trp Glu Val Lys Arg Lys Xaa Lys Ala Ile Gly Trp Gly Lys
                                   40
      Lys Thr Leu
20
           50
       (2) INFORMATION FOR SEQ ID NO: 645:
25
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 43 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 645:
30
       Asp Gln Val Leu Glu Asp Val Asp Gln Cys Cys Gln Ala Leu Ser Gln
       Arg Leu Gly Thr Gln Pro Tyr Phe Phe Asn Lys Gln Pro Thr Glu Leu
 35
                                        25
       Asp Ala Leu Val Phe Gly His Leu Tyr Thr Ile
 40
       (2) INFORMATION FOR SEQ ID NO: 646:
               (i) SEQUENCE CHARACTERISTICS:
 45
                     (A) LENGTH: 41 amino acids
                    · (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 646:
 50
       Leu Thr Thr Gln Leu Thr Asn Asp Glu Leu Ser Glu Lys Val Lys Asn
                         5
       Tyr Ser Asn Leu Leu Ala Phe Cys Arg Arg Ile Glu Gln His Tyr Phe
  55
                    20
        Glu Asp Arg Gly Lys Gly Arg Leu Ser
                 35
```

```
(2) INFORMATION FOR SEQ ID NO: 647:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 70 amino acids
5
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 647:
     Met Xaa Xaa Xaa Asn Ser His Ile Thr Ile Fhe Thr Leu Asn Val Asn
10
      Gly Leu Asn Ala Pro Asn Glu Arg His Arg Leu Ala Asn Trp Ile Gln
                                       25
                   20
15
      Ser Gln Asp Gln Val Cys Cys Ile Gln Glu Thr His Leu Thr Gly Arg
                                   40
      Asp Thr His Arg Leu Lys Ile Lys Gly Trp Arg Lys Ile Tyr Gln Ala
20
           50
      Asn Gly Lys Gln Lys Lys
       65
25
       (2) INFORMATION FOR SEQ ID NO: 648:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 28 amino acids
30
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 648:
       Phe Thr Leu Asn Val Asn Gly Leu Asn Ala Pro Asn Glu Arg His Arg
 35
                                           10
       Leu Ala Asn Trp Ile Gln Ser Gln Asp Gln Val Cys
                    20
 40
        (2) INFORMATION FOR SEQ ID NO: 649:
               (i) SEQUENCE CHARACTERISTICS:
 45
                      (A) LENGTH: 17 amino acids
                      (B) TYPE: amino acid
                      (D) TOPOLOGY: linear
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 649:
  50
        Thr His Leu Thr Gly Arg Asp Thr His Arg Leu Lys Ile Lys Gly Trp
                                           10
        Arg
  55
        (2) INFORMATION FOR SEQ ID NO: 650:
  60
```

```
(i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 14 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
5
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 650:
     Gly Trp Arg Lys Ile Tyr Gln Ala Asn Gly Lys Gln Lys Lys
                        5
10
      (2) INFORMATION FOR SEQ ID NO: 651:
             (i) SEQUENCE CHARACTERISTICS:
15
                    (A) LENGTH: 54 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 651:
20
      Ile Tyr His Leu His Ser Trp Ile Phe Phe His Phe Lys Arg Ala Phe
      Cys Met Cys Phe Ile Thr Met Lys Val Ile His Ala His Cys Ser Lys
                                       25
25
      Leu Arg Lys Cys Xaa Asn Ala Gln Ile Ser Val Phe Cys Thr Thr Leu
                                  40
      Thr Ala Ser Tyr Pro Thr
30
          50
      (2) INFORMATION FOR SEQ ID NO: 652:
35
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 23 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
40
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 652:
      Ile Tyr His Leu His Ser Trp Ile Phe Phe His Phe Lys Arg Ala Phe
        1
                        5
                                           10
45
      Cys Met Cys Phe Ile Thr Met
                   20
50
      (2) INFORMATION FOR SEQ ID NO: 653:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 31 amino acids
                     (B) TYPE: amino acid
55
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 653:
      Lys Val Ile His Ala His Cys Ser Lys Leu Arg Lys Cys Xaa Asn Ala
                                          10
                5
60
```

WO 98/54963

```
Gln Ile Ser Val Phe Cys Thr Thr Leu Thr Ala Ser Tyr Pro Thr
                                      25
                  20
5
     (2) INFORMATION FOR SEQ ID NO: 654:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 58 amino acids
10
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 654:
     Trp Asn Leu Leu Trp Tyr Phe Gln Arg Leu Arg Leu Pro Ser Ile Leu
15
                                         10
     Pro Gly Leu Val Leu Ala Ser Cys Asp Gly Pro Ser Xaa Ser Gln Ala
                                  25
20
     Pro Ser Pro Trp Leu Thr Pro Asp Pro Ala Ser Val Gln Val Arg Leu
     Leu Trp Asp Val Leu Thr Pro Asp Pro Asn
          50
25
      (2) INFORMATION FOR SEQ ID NO: 655:
30
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 54 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 655:
35
     Gln Arg Gly Ile Tyr Arg Glu Ile Leu Phe Leu Thr Met Ala Ala Leu
                                         10
     Gly Lys Asp His Val Asp Ile Val Ala Phe Asp Lys Lys Tyr Lys Ser
40
     Ala Phe Asn Lys Leu Ala Ser Ser Met Gly Lys Glu Glu Leu Arg His
                                  40
45
      Arg Arg Ala Gln Met Pro
           50
50
      (2) INFORMATION FOR SEQ ID NO: 656:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 23 amino acids
                    (B) TYPE: amino acid
55
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 656:
      Trp Asn Leu Leu Trp Tyr Phe Gln Arg Leu Arg Leu Pro Ser Ile Leu
                                     10
              5
60
```

60

681

Pro Gly Leu Val Leu Ala Ser 20

5 (2) INFORMATION FOR SEQ ID NO: 657: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 191 amino acids 10 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 657: Glu Asp Asp Gly Phe Asn Arg Ser Ile His Glu Val Ile Leu Lys Asn 15 Ile Thr Trp Tyr Ser Glu Arg Val Leu Thr Glu Ile Ser Leu Gly Ser 25 20 Leu Leu Ile Leu Val Val Ile Arg Thr Ile Gln Tyr Asn Met Thr Arg Thr Arg Asp Lys Tyr Leu His Thr Asn Cys Leu Ala Ala Leu Ala Asn 55 25 Met Ser Ala Gln Phe Arg Ser Leu His Gln Tyr Ala Ala Gln Arg Ile Ile Ser Leu Phe Ser Leu Leu Ser Lys Lys His Asn Lys Val Leu Glu 30 Gln Ala Thr Gln Ser Leu Arg Gly Ser Leu Ser Ser Asn Asp Val Pro 100 105 35 Leu Pro Asp Tyr Ala Gln Asp Leu Asn Val Ile Glu Glu Val Ile Arg Met Met Leu Glu Ile Ile Asn Ser Cys Leu Thr Asn Ser Leu His His 135 40 Asn Pro Asn Leu Val Tyr Ala Leu Leu Tyr Lys Arg Asp Leu Phe Glu 150 Gln Phe Arg Thr His Pro Ser Phe Gln Asp Ile Met Gln Asn Ile Asp 45 165 170 Leu Val Ile Ser Phe Phe Ser Ser Arg Leu Leu Gln Ala Gly Ser 185 50 (2) INFORMATION FOR SEQ ID NO: 658: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 38 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 658:

Glu Asp Asp Gly Phe Asn Arg Ser Ile His Glu Val Ile Leu Lys Asn

PCT/US98/11422

	1		5		10	15
_	Ile Th	r Trp Tyr 20	Ser Glu	Arg Val Leu 25	Thr Glu Ile	Ser Leu Gly Ser 30
5	Leu Le	u Ile Leu 35	Val Val			
10	(2) IN	FORMATION	FOR SEQ	ID NO: 659:		
15		(A) LENGTH B) TYPE: D) TOPOLO	ACTERISTICS H: 53 amino a amino acid XGY: linear SCRIPTION: SI		9:
20	Arg Th	r Ile Gln	Tyr Asn 1	Met Thr Arg	Thr Arg Asp 10	Lys Tyr Leu His 15
•	Thr As	n Cys Leu 20	Ala Ala 1	Leu Ala Asn 25	Met Ser Ala	Gln Phe Arg Ser 30
25	Leu Hi	s Gln Tyr 35	Ala Ala (Gln Arg Ile 40	Ile Ser Leu	Phe Ser Leu Leu 45
30	_	s Lys His O	Asn			
35	(2) IN	(i) SEQU (ENCE CHAR A) LENGTH B) TYPE:	ID NO: 660: RACTERISTICS H: 56 amino amino acid XXY: linear		
40		(xi) SEQ	UENCE DES	SCRIPTION: S	EQ ID NO: 66	0:
	Ser Cy 1	s Leu Thr	Asn Ser	Leu His His	Asn Pro Asn 10	Leu Val Tyr Ala 15
45	Leu Le	eu Tyr Lys 20	Arg Asp	Leu Phe Glu 25	Gln Phe Arg	Thr His Pro Ser
	Phe Gl	n Asp Ile 35	Met Gln	Asn Ile Asp 40	Leu Val Ile	Ser Phe Phe Ser 45
50		g Leu Leu 60	Gln Ala	Gly Ser 55		
55	(2) IN	FORMATION	FOR SEQ	ID NO: 661:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 amino acids						
60				amino acid OGY: linear		

•			(xi)	SEQ	UENC	E DES	SCRI	PTIO	N: Si	EQ II	D NO	: 66	1:			
5	Lys 1	Lys	His	Asn	Lys 5	Val	Leu	Glu	Gln	Ala 10	Thr	Gln	Ser	Leu	Arg 15	Gly
3	Ser	Leu	Ser	Ser 20	Asn	Asp	Val	Pro	Leu 25	Pro	Asp	Tyr	Ala	Gln 30	Asp	
10	(2)	INFO	ORMAT	rion	FOR	SEQ	ID I	10: (562:							
15			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	25 a no a lin	mino cid ear	aci		: 66	2:			
20	Met 1	Ala	Asp	Ile	Gln 5	Thr	Glu	Arg	Ala	Туг 10	Gln	Lys	Gln	Pro	Thr 15	Ile
	Phe	Gln	Asn	Lys 20	Lys	Arg	Val	Leu	Leu 25	Gly	Glu	Thr	Gly	Lys 30	Glu	Lys
25	Leu	Pro	Arg 35	Val	Thr	Asn	Lys	Asn 40	Ile	Gly	Leu	Gly	Phe 45	Lys	Asp	Thr
30	Pro	Arg 50	Arg	Leu	Leu	Arg	Gly 55	Thr	Туг	Ile	Asp	Lys 60	Lys	Cys	Pro	Phe
30	Thr 65	Gly	Asn	Val	Ser	Ile 70	Arg	Gly	Arg	Ile	Leu 75	Ser	Gly	Val	Val	Thr 80
35	Gln	Asp	Glu	Asp	Ala 85	Glu	Asp	His	Cys	His 90	Pro	Pro	Arg	Leu	Ser 95	Ala
	Leu	His	Pro	Gln 100	Val	Gln	Pro	Leu	Arg 105	Glu	Ala	Pro	Gln	Glu 110	His	Val
40	Cys	Thr	Pro 115	Val	Pro	Leu	Leu	Gln 120	Gly	Arg	Pro	Asp	Arg 125			
45	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 6	563:							
50			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 7 ami OGY:	9 am no a lin	ino cid ear	acid		: 66:	3:			
55	Met 1	Lys	Met	Gln	Arg 5	Thr	Ile	Val	Ile	Arg 10	Arg	Asp	Tyr	Leu	His 15	Tyr
55	Ile	Arg	Lys	Туг 20	Asn	Arg	Phe	Glu	Lys 25	Arg	His	Lys	Asn	Met 30	Ser	Val
60	His	Leu	Ser 35	Pro	Cys	Phe	Arg	Asp 40	Va1	Gln	Ile	Gly	Asp 45	Ile	Val	Thr

	Val Gly Slu Cys Arg Pro Leu Sar Lys Shr Val Arg Pha Ash Val Leu 50 55 60	
5	Lys Val Thr Lys Ala Ala Gly Thr Lys Lys Glm Phe Glm Lys Phe 65 70 75	
10	(2) INTOFMATION FOR SEQ ID NO: 664:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid (C) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 664:	
20	Met Ala Asp Ile Gln Thr Glu Arg Ala Tyr Gln Lys Gln Fro Thr Ile 1 5 10 15	
	Phe Gin Asn Lys Lys Arg Val Lew Lew Gly Glu Thr Gly Lys 20 25 31	
25	(2) INGGEMATION FOR SEQ ID NO: 665:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LEMSTH: 58 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 665:	
35	Lys Let Pro Arg Wal Thr Asm Lys Asm Ile Bly Let Bly Phe Lys Asp 1 5 13 13	
	The Pro Arg Arg Leu Leu Arg Gly The Tyr Tie Asp Lys Lys Tys Fro 20 25 31	
40	Phe Thr Gly Asn Val Ser Ile Arg Gly Arg Ile Leu Ser Gly Val Val 35 45	
45	Thr Gln Asp Glu Asp Ala Glu Asp Ris Cys 50 55	
	(2) INFORMATION FOR SEQ ID NO: 665:	
50	(i) SEQUENCE CHAPACTERISTICS: (A) LENGTH: 38 amino acids (B) TYPE: amino acid (C) TOPOLOGY: linear	
	(2) 10:00001. 111001	
55	(xi) SEQUENCE DESCRIPTION: SET ID NO: 665:	
55		

```
Gln Gly Arg Pro Asp Arg
              35
 5
      (2) INFORMATION FOR SEQ ID NO: 667:
             (i) SEQUENCE CHARACTERISTICS:
10
                   (A) LENGTH: 36 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 667:
15
      Met Lys Met Gln Arg Thr Ile Val Ile Arg Arg Asp Tyr Leu His Tyr
      Ile Arg Lys Tyr Asn Arg Phe Glu Lys Arg His Lys Asn Met Ser Val
                                      25
20
      His Leu Ser Pro
25
      (2) INFORMATION FOR SEQ ID NO: 668:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 43 amino acids
30
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 668:
      Cys Phe Arg Asp Val Gln Ile Gly Asp Ile Val Thr Val Gly Glu Cys
35
      Arg Pro Leu Ser Lys Thr Val Arg Phe Asn Val Leu Lys Val Thr Lys
40
      Ala Ala Gly Thr Lys Lys Gln Phe Gln Lys Phe
              35
45
      (2) INFORMATION FOR SEQ ID NO: 669:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 33 amino acids
                    (B) TYPE: amino acid
50
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 669:
      Pro Arg Arg Leu Leu Arg Gly Thr Tyr Ile Asp Lys Lys Cys Pro Phe
                                          10
55
      Thr Gly Asn Val Ser Ile Arg Gly Arg Ile Leu Ser Gly Val Val Thr
                                     25
      Gln
60
```

WO 98/54963

5	(2)	INFO	ORMAT	'ION	FOR	SEQ	ID N	Ю: 6	70:							
J			(i) :	EQUE			RACTE				s					
10			(xi)) T	OPOL	amin OGY: SCRII	lin	ear	EQ II	ОИ С	: 670	o :			
	Ile 1	Phe	Tyr	Asp	Ser 5	Asp	Trp	Asn	Pro	Thr 10	Val	Asp	Gln	Gln	Ala 15	Met
15	Asp	Arg	Ala	His 20	Arg	Leu	Gly	Gln	Thr 25	Lys	Gln	Val	Thr	Val 30	Tyr	Arg
20	Leu	Ile	Cys 35	Lys	Gly	Thr	Ile	Glu 40	Glu	Arg	Ile	Leu	Gln 45	Arg	Ala	Lys
	Glu	Lys 50	Ser	Glu	Ile	Gln	Arg 55	Met	Val	Ile	Ser	Gly 60				
25	(2)	INF	ORMA!	rion	FOR	SEQ	ID i	10: 6	571:							
30				(A) L B) T D) T	ENGT YPE : OPOL	H: 6 ami OGY:	7 am no a lin	ino cid ear	acid		: 67	1:			
35	Thr 1	Arg	Met	Ile	Asp 5	Leu	Leu	Glu	Glu	Туг 10	Met	Val	Tyr	Arg	Lys 15	His
	Thr	Tyr	Xaa	Arg 20	Leu	Asp	GĮŊ	Ser	Ser 25	Lys	Ile	Ser	Glu	Arg 30	Arg	Asp
40	Met	Val	Ala 35	Asp	Phe	Gln	Asn	Arg 40	Asn	Asp	Ile	Phe	Val 45	Phe	Leu	Leu
45	Ser	Thr 50	Arg	Ala	Gly	Gly	Leu 55	Gly	Ile	Asn	Leu	Thr 60	Ala	Xaa	Asp	Thr
	Val 65	His	Phe													
50	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO: (672:			•				
			(i)	SEQU												
55			(xi)	(B) T D) T	YPE: OPOL	H: 3 ami OGY: SCRI	no a lin	cid ear			: 67	2:			
60				Asp	Ser					Thr				Gln		
60	1				5					10					15	

Asp Arg Ala His Arg Leu Gly Gln Thr Lys Gln Val Thr Val Tyr Arg 25 5 10 (2) INFORMATION FOR SEQ ID NO: 673: (i) SEOUENCE CHARACTERISTICS: (A) LENGTH: 31 amino acids (B) TYPE: amino acid 15 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 673: Val Tyr Arg Leu Ile Cys Lys Gly Thr Ile Glu Glu Arg Ile Leu Gln 20 Arg Ala Lys Glu Lys Ser Glu Ile Gln Arg Met Val Ile Ser Gly 20 25 25 (2) INFORMATION FOR SEQ ID NO: 674: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 amino acids 30 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 674: Thr Arg Met Ile Asp Leu Leu Glu Glu Tyr Met Val Tyr Arg Lys His 35 Thr Tyr Xaa Arg Leu Asp Gly Ser Ser Lys Ile Ser Glu Arg Arg Asp 20 25 40 Met 45 (2) INFORMATION FOR SEQ ID NO: 675: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 amino acids (B) TYPE: amino acid 50 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 675: Arg Arg Asp Met Val Ala Asp Phe Gln Asn Arg Asn Asp Ile Phe Val 10 55 Phe Leu Leu Ser Thr Arg Ala Gly Gly Leu Gly Ile Asn Leu Thr Ala 25 Xaa Asp Thr Val His Phe 60 35

5	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	ю: 6	76:							
,		•	(i) :	(в) т	ENGT YPE:	H: 3° ami	7 am. no a	ino a	: acid:	s					
10		1	(xi)		D) T					EQ II	ON C	: 67	6 :			
	Ile 1	Phe	Tyr	Asp	Ser 5	Asp	Trp	Asn	Pro	Thr 10	Val	Asp	Gln	Gln	Ala 15	Met
15	Asp	Arg	Ala	His 20	Arg	Leu	Gly	Gln	Thr 25	Lys	Gln	Val	Thr	Val 30	Tyr	Arg
20	Leu	Ile	Cys 35	Lys	Gly											
	(2)	INFO	ORMA'	rion	FOR	SEQ	ID 1	NO: 6	577:							
25			(i)	(ENCE (A) L (B) T	ENGT YPE:	H: 3 ami	7 am no a	ino cid	: acid	s					
30			(xi)							EQ I	D NO	: 67	7:			
	Ile 1	Phe	Tyr	Asp	Ser 5	Asp	Trp	Asn	Pro	Thr 10	Val	Asp	G1n	Gln	Ala 15	Met
35	Asp	Arg	Ala	His 20		Leu	Gly	Gln	Thr 25	Lys	Gln	Val	Thr	Val 30	Tyr	Arg
	Leu	Ile	Cys 35	Lys	Gly											
40																
,	(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO:	678:					,		
45					(B) I	ENGT YPE: OPOI	H: 2 ami OGY:	9 am no a lin	nino cid ear	e: acid)· 67	'8÷			
50	Arg	Leu												Gln	Arg	Ala
	1				5					10		_			15	
55	Lys	Glu	Lys	Ser 20		Ile	Gln	Arg	Met 25	Val	Ile	Ser	Gly	•		
	(2)	INF	ORMA	MOIT	FOR	SEQ	ID	NO:	679 :							•
60			/: \	CECT	TENIOT	~~~	יים א כדי	CDIO	TCC	•••						

						YPE:										
			(xi)			OPOL E DE:				EO I	D NO	: 67	9:			
5	Met 1	Ser	Leu											Glu	Ala 15	Pro
10		Thr	Val	Tyr 20	_	Met	Asn	Trp	Ser 25		Arg	Pro	Asp	Lys 30		Phe
10	Arg	Leu	Ala 35		Gly	Ser	Phe	Val		Glu	Tyr	Asn	Asn 45		Val	Gln
15	Leu	Val 50	Gly	Leu	Asp	Glu	Glu 55		Ser	Glu	Phe	Ile 60		Arg	Asn	Thr
	Phe 65	Asp	His	Pro	Tyr	Pro 70	Thr	Thr	Lys	Leu	Met 75	Trp	Ile	Pro	Asp	Thr 80
20	Lys	Gly	Val	Туr	Pro 85	Asp	Leu	Leu	Ala	Thr 90	Ser	Gly	Asp	Tyr	Leu 95	Arg
25	Val	Trp	Arg	Val 100	Gly	Glu	Thr	Glu	Thr 105	Arg	Leu	Glu	Cys	Leu 110	Leu	Asn
	Asn	Asn	Lys 115	Asn	Ser	Asp	Phe	Суs 120	Ala	Pro	Leu	Thr	Ser 125	Phe	Asp	Trp
30	Asn	Glu 130	Val	Asp	Pro	Tyr	Leu 135	Leu	Gly	Thr	Ser	Ser 140	Ile	Asp	Thr	Thr
35	Cys 145	Thr	Ile	Trp	Gly	Leu 150	Glu	Thr	Gly	Gln	Val 155	Leu	Gly	Arg	Val	Asn 160
	Leu	Val	Ser	Gly	His 165	Val	Lys	Thr	Gln	Leu 170	Ile	Ala	His	Asp	Lys 175	Glu
40	Val	Tyr	Asp	Ile 180	Ala	Phe	Ser	Arg	Ala 185	Gly	Gly	Gly	Arg	Asp 190	Met	Phe
	Ala	Ser	Val 195	Gly	Ala	Asp	Gly	Ser 200	Val	Arg	Met	Phe	Asp 205	Leu	Arg	His
45	Leu	Glu 210	His	Ser	Thr	Ile	Ile 215	Tyr	Glu	Asp	Pro	Gln 220	His	His	Pro	Leu
50	Leu 225	Arg	Leu	Суз	Trp	Asn 230	Lys	Gln	Asp	Pro	Asn 235	Tyr	Leu	Ala	Thr	Met 240
	Ala	Met	Asp	Gly	Met 245	Glu	Val	Val	Ile	Leu 250	Asp	Val	Arg	Val	Pro 255	Ala
55	His	Leu	Xaa	Pro 260	Gly	Thr	Thr	Ile	Glu 265	His	Val	Ser	Met	Ala 270	Leu	Leu
	Gly	Pro	His 275	Ile	His	Pro	Ala	Thr 280	Ser	Ala	Leu	Gln	Arg 285	Met	Thr	Thr
60	Arg	Leu	Ser	Ser	Gly	Thr	Ser	Ser	Lys	Cys	Pro	${\tt Glu}$	Pro	Leu	Arg	Thr

(A) LENGTH: 364 amino acids

		290					295					300				
5	Leu 305	Ser	Trp	Pro	Thr	Gln 310	Leu	Xaa	Gly	Glu	Ile 315	Asn	Asn	Val	Gln	Trp 320
J	Ala	Ser	Thr	Gln	Pro 325	Glu	Leu	Ser	Pro	Ser 330	Ala	Thr	Thr	Thr	Ala 335	Trp
10	Arg	туr	Ser	Glu 340	Cys	Ser	Val	Gly	Gly 345	Ala	Val	Pro	Thr	Arg 350	Gln	Gly
	Leu	Leu	Туг 355	Phe	Leu	Pro	Leu	Pro 360	His	Pro	Gln	Ser				
15										•						
	(2)	INF	ORMA!													
20				(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	36 a no a lin	ear	aci		. 60	٥.			
			(XI)	SEQ	OEINC.	e De	SCRI	PTIO	N: S	EQ I	D NO	: 00	0:			
25	Met 1	Ser	Leu	His	Gly 5	Lys	Arg	Lys	Glu	Ile 10	Tyr	Lys	Tyr	Glu	Ala 15	Pro
30	Trp	Thr	Val	Туг 20	Ala	Met	Asn	Trp	Ser 25	Val	Arg	Pro	Asp	Lys 30	Arg	Phe
	Arg	Leu	Ala 35	Leu	Gly	Ser	Phe	Val 40	Glu	Glu	Tyr	Asn	Asn 45	Lys	Val	Gln
35	Leu	Val 50		Leu	Asp	Glu	Glu 55	Ser	Ser	Glu	Phe	Ile 60	Cys	Arg	Asn	Thr
	Phe 65	Asp	His	Pro	Tyr	Pro 70	Thr	Thr	Lys	Leu	Met 75	Trp	Ile	Pro	Asp	Thr 80
40	Lys	Gly	Val	Tyr	Pro 85	Asp	Leu	Leu	Ala	Thr 90	Ser	Gly	Asp	Tyr	Leu 95	Arg
45	Val	Trp	Arg	Val 100	Gly	Glu	Thr	Glu	Thr 105	Arg	Leu	Glu	Cys	Leu 110	Leu	Asn
	Asn	Asn	Lys 115	Asn	Ser	Asp	Phe	Cys 120	Ala	Pro	Leu	Thr	Ser 125	Phe	Asp	Trp
50	Asn	Glu 130	Val	Asp	Pro	Tyr	Leu 135	Leu								•
55	(2)	INF	ORMA	SEQU	ENCE	CHA ENGI	RACT	ERIS	TICS		.ds					
60			(xi)				.OGY :		ear N: S	EQ I	D NC	: 68	1:			

PCT/US98/11422

	Ser l	Phe	Asp	Trp	Asn 5	Glu	Val	Asp	Pro	Tyr 10	Leu	Leu	Gly	Thr	Ser 15	Ser
5	Ile	Asp	Thr	Thr 20	Cys	Thr	Ile	Trp	Gly 25	Leu	Glu	Thr	Gly	Gln 30	Val	Leu
10	Gly	Arg	Val 35	Asn	Leu	Val	Ser	Gly 40	His	Val	Lys	Thr	Gln 45	Leu	Ile	Ala
	His	Asp 50	Lys	Glu	Val	Tyr	Asp 55	Ile	Ala	Phe	Ser	Arg 60	Ala	Gly	Gly	Gly
15	Arg 65	Asp	Met	Phe	Ala	Ser 70	Val	Gly	Ala	Asp	Gly 75	Ser	Val	Arg	Met	Phe 80
	Asp	Leu	Arg	His	Leu 85	Glu	His	Ser	Thr	Ile 90	Ile	Tyr	Glu	Asp	Pro 95	Gln
20	His	His	Pro	Leu 100	Leu	Arg	Leu	Cys	Trp 105	Asn	Lys	Gln	Asp	Pro 110	Asn	Tyr
25	Leu	Ala	Thr 115	Met	Ala	Met	Asp	Gly 120	Met	Glu	Val	Val	Ile 125	Leu	Asp	Val
	Arg	Val 130	Pro	Ala	His	Leu	Хаа 135	Pro	Gly	Thr	Thr	Ile 140				
30	(2)	INFO	ORMAT	rion	FOR	SEQ	ID I	10: 6	582:							
			(i)				RACT				 ساسا					
35									шпо	acı	us					
			(xi)	(D) T	OPOL	OGY:		ear	FO TI	D NO	. 68	2.			
40	Val	Gly	(xi) Ala	SEQ	D) T	OPOL E DE:	OGY:	lin PTIO	ear N: S					His	Leu	Glu
40	1	Gly	Ala	(SEQI Asp	D) T JENC Gly 5	OPOL E DE: Ser	OGY: SCRI Val	lin PTIO	ear N: Si Met	Phe 10	Asp	Leu	Arg		15	
40	1		Ala	(SEQI Asp	D) T JENC Gly 5	OPOL E DE: Ser	OGY: SCRI Val	lin PTIO	ear N: Si Met	Phe 10	Asp	Leu	Arg		15	
40	1 His	Gly	Ala Thr	(SEQUASE	D) TOUENCE Gly 5	OPOL E DE: Ser Tyr	OGY: SCRI Val Glu	lin PTION Arg Asp	ear N: Si Met Pro 25	Phe 10 Gln	Asp His	Leu His	Arg Pro	Leu 30	15 Leu	Arg
•	His Leu	Gly Ser Cys	Ala Thr Trp 35	SEQUASP Ile 20 Asn	D) T DENCI Gly 5 Ile Lys	OPOL E DE: Ser Tyr	OGY: SCRI Val Glu Asp	lin PTIO Arg Asp Pro 40	ear N: Si Met Pro 25 Asn	Phe 10 Gln Tyr	Asp His Leu	Leu His Ala	Arg Pro Thr 45	Leu 30 Met	15 Leu Ala	Arg
45	His Leu Asp	Gly Ser Cys	Ala Thr Trp 35 Met	(SEQ! Asp Ile 20 Asn Glu	D) TOUENCE Gly 5 Ile Lys Val	OPOL E DE: Ser Tyr Gln Val	OGY: SCRI Val Glu Asp Ile 55	lin PTION Arg Asp Pro 40 Leu	ear N: SI Met Pro 25 Asn	Phe 10 Gln Tyr Val	Asp His Leu Arg	Leu His Ala Val 60	Arg Pro Thr 45 Pro	Leu 30 Met	15 Leu Ala His	Arg Met Leu
45	His Leu Asp Xaa 65	Gly Ser Cys Gly 50	Ala Thr Trp 35 Met	(SEQUASEQ ASEQ ASEQ ASEQ ASEQ ASEQ ASEQ ASEQ	D) T UENC Gly 5 Ile Lys Val	OPOL E DE Ser Tyr Gln Val	OGY: SCRI Val Glu Asp Ile 55	lin PTIOI Arg Asp Pro 40 Leu	ear N: Si Met Pro 25 Asn Asp	Phe 10 Gln Tyr Val	Asp His Leu Arg Met	Leu His Ala Val 60	Arg Pro Thr 45 Pro	Leu 30 Met Ala Leu	15 Leu Ala His	Arg Met Leu Pro 80
45 50	His Leu Asp Xaa 65	Gly Cys Gly 50 Pro	Ala Thr Trp 35 Met Gly	(SEQUASEQUASEQUASEQUASEQUASEQUASEQUASEQUA	D) TUPNCI Gly 5 Ile Lys Val Thr	OPOL Ser Tyr Gln Val Ile 70	OGY: SCRI Val Glu Asp Ile 55 Glu Ser	lin PTIOI Arg Asp Pro 40 Leu His	ear N: S! Met Pro 25 Asn Asp Val	Phe 10 Gln Tyr Val Ser Gln 90	Asp His Leu Arg Met 75 Arg	Leu His Ala Val 60 Ala	Arg Pro Thr 45 Pro Leu Thr	Leu 30 Met Ala Leu	15 Leu Ala His Gly Arg 95	Arg Met Leu Pro 80

			115					120					125			
5	Thr	Gln 130	Pro	Glu	Leu	Ser	Pro 135	Ser	Ala	Thr	Thr	Thr 140	Ala	Trp	Arg	Tyr
J	Ser 145	Glu	Cys	Ser	Val	Gly 150	Gly	Ala	Val	Pro	Thr 155	Arg	Gln	Gly	Leu	Leu 160
10	Tyr	Phe	Leu	Pro	Leu 165	Pro	His	Pro	Gln	Ser 170						
	(2)	INFO	ORMA:	rion	FOR	SEQ	ID 1	NO: 6	83 :							
15				SEQU		СНА	RACT	ERIS	rics		ds					
20			(xi)		B) T D) T UENC	OPOL	OGY:	lin	ear	EQ II	ОИС	: 68	3:			
	Leu 1	Tyr	Ala	Thr	Ala 5	Thr	Val	Ile	Ser	Ser 10	Pro	Ser	Thr	Glu	Xaa 15	Leu
25	Ser	Gln	Asp	Gln 20	Gly	Asp	Arg	Ala	Ser 25	Leu	Asp	Ala	Ala	Asp 30	Ser	Gly
30	Arg	Gly	Ser 35	Trp	Thr	Ser	Cys	Ser 40	Ser	Gly	Ser	His	Asp 45	Asn	Ile	G1n
	Thr	Ile 50	Gln	His	Gln	Arg	Ser 55	Trp	Glu	Thr	Leu	Pro 60	Phe	G1y	His	Thr
35	His 65	Phe	Asp	Tyr	Ser	Gly 70	Asp	Pro	Ala	Gly	Leu 75	Trp	Ala	Ser	Ser	Ser 80
	His	Met	Asp	Gln	Ile 85	Met	Phe	Ser	Asp	His 90	Ser	Thr	Lys	Tyr	Asn 95	Arg
40	Gln	Asn	Gln	Ser 100	Arg	Glu	Ser	Leu	Glu 105	Gln	Ala	Gln	Ser	Arg 110	Ala	Ser
45	Trp	Ala	Ser 115	Ser	Thr	Gly	Tyr	Trp 120	Gly	Glu	Asp	Ser	Glu 125	Gly	Asp	Thr
		130		Lys			135					140				
50	145			Leu		150					155					160
-				His	165					170					175	
55				Glu 180					185					190		
60	Tyr	Ile	Gly 195	Ile	Pro	Ile	Thr	Asp 200	Phe	Pro	Glu	Gly	His 205	Ser	His	Pro

	Ala	Arg 210	Lys	Pro	Pro	Asp	туr 215	Asn	Val	Ala	Leu	Gln 220	Arg	Ser	Arg	Met
5	Val 225	Ala	Arg	Ser	Ser	Asp 230	Thr	Ala	Gly	Pro	Ser 235	Ser	Val	Gln	Gln	Pro 240
	His	Gly	His	Pro	Thr 245	Ser	Ser	Arg	Pro	Val 250	Asn	Lys	Pro	Gln	Trp 255	His
10	Lys	Xaa	Asn	Glu 260	Ser	Asp	Pro	Arg	Leu 265	Ala	Pro	Tyr	Gln	Ser 270	Gln	Gly
15	Phe	Ser	Thr 275	Glu	Glu	Asp	Glu	Asp 280	Glu	Gln	Val	Ser	Ala 285	Val		
	(2)	INFO	ORMA!	rion	FOR	SEQ	ID i	NO: (584:							
20				(A) L B) T D) T	ENGT YPE: OPOL	H: 4 ami OGY:	2 am no a lin	ino cid ear	acid		60				
25	Hie			SEQ										ጥኒም	Δen	Arg
	1	mec	ASD	GIII	5	Mec	FILE	Ser	nsp	10	361	1111	цуз	TYL	15	My
30	Gln	Asn	Gln	Ser 20	Arg	Glu	Ser	Leu	G1u 25	G1n	Ala	Gln	Ser	Arg 30	Ala	Ser
35	Trp	Ala	Ser 35	Ser	Thr	Gly	Tyr	Trp 40	Gly	Glu				-		
	(2)	INF	ORMA'	TION	FOR	SEQ	IQ.	NO:	685:							
40				(A) L B) T D) T	ENGI YPE : OPOL	H: 5 ami OGY:	1 am no a lin	ino cid ear	acid		: 68	5:			
45	Ser 1	Val	Thr	Thr	Glu 5	Glu	Thr	Lys	Pro	Val 10	Pro	Met	Pro	Ala	His 15	
50	Ala	Val	Ala	Ser 20	Ser	Thr	Thr	Lys	Gly 25	Leu	Ile	A1a	Arg	Lys 30	Glu	Gly
50	Arg	Tyr	Arg 35		Pro	Pro	Pro	Thr 40	Pro	Pro	Gly	Tyr	Ile 45	Gly	Ile	Pro
55	Ile	Thr 50	Asp													
٠.	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	686:						•	

			(-7 .	C	A) LI B) T	ENGI. YPE:		7 am no a	ino cid	acid	s						
5			(xi)	SEÇ						EQ I	D NO	: 68	6 :				
	Val 1	Ala	Leu	Gln	Arg S	Se≍	Arg	Met	Val	Ala 10	Arg	Ser	Ser	Asp	Thr 15	Ala	
10	Зĵй	220	Ser	Ser 20	Val	Glm	Gln	೨೮೦	His 25	Gly	His	Pro	Thr	Ser 30	Ser	Arg	
15	Pro	Val	Asn 35	Lys	3≍2	Gln	Trp	His 40	Lys	Хаа	Asn	Glu	Ser 45	Asp	Pro	Arg	
	Leu	Ala 50	Pro	Tyr	Gln	Ser	Gln 55	GŢĀ	Phe								
20	(2)	INF(ORMA!	TION	FOR	SEÇ	ID 1	vo: 6	587:								
			(i):	SEQU:													
25			(xi)	C	3) T 3) T	YPE: OPOL	ami CGY:	nc a lin	cid ear	acid EO I		: 68'	7:				
30	Cys 1	Leu	Leu	Phe	7al 5	Phe	Val	Ser	Leu	Gly 10	Met	Arg	Cys	Leu	Phe 15	Trp	
	Thr	Ile	Val	Tyr 20	Asn	Val	Leu	بترت	Leu 25	Lys	His	Lys	Cys	Asn 30	Thr	Val	
35	Leu	Fen	Суз 35	Tyr	His	Leu	Cys	5 2 2	Ile								
4 0	(2)	DF	ORMA:	NCIT	FCR	SEÇ	ID 1	NC: 6	588:								
4 5				(: (:	A) L 3) T D) T	ENGT YPE: OPCL	H: 6 ami OGY:	7 am no a lin	ino cid ear	acid		60					
	አ ነ-	<u>۰</u>		SEQ!										3 ~~~	21-	Ť.m.	
50	1	Cys	562	درد	5	110				10	nec	vai	Mec	ALG	15	цуз	
	Asp	Asn	Val	Тут 20	His	Leu	ązĄ	Cys	Phe 25	Ala	Cys	Gln -	Leu	Суs 30	Asn	Gln	
55	Arg	Xaa	Суs 35	Val	Gly	Asp	Lys	Phe 40	Phe	Leu	Lys	Asn	Asn 45	Xaa	Xaa	Leu	
	Суз	G <u>l</u> n 50	Thr	ązĄ	Tyr	Glu	Glu 55	Gly	Leu	Met	Lys	Glu 60	Gly	Tyr	Ala	Pro	
50	Zaa	۷a٦	Arm														

5	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	10: 6	89:							
10				(1	A) Li B) T O) T	ENGT YPE: OPOL	H: 4! amii OGY:	5 am: no ao line	ino a cid ear	acid		· 689	.			
			(71)	SEQU)EUVCI	s DE.	SCKI	1101	N. 3.	JQ 11	J 110	. 00.	, .			
15	Ser 1	Ala	Leu	Ser	G1u 5	Pro	Gly	Ala	Pro	Asp 10	Arg	Arg	Arg	Pro	Cys 15	Pro
	Glu	Ser	Val	Pro 20	Arg	Arg	Pro	Asp	Asp 25	Glu	Gln	Trp	Pro	Pro 30	Pro	Thr
20	Ala	Leu	Cys 35	Leu	Asp	Val	Ala	Pro 40	Leu	Pro	Pro	Ser	Ser 45			
25	(2)	INFO	ORMAT	rion	FOR	SEQ	ID N	10: 6	590:							
			(i) S	SEQUI	ENCE	CHAI	RACTI	ERIS:	rics	:						
								3 am		acid	s					
					-			no a lin								
30			(xi)	SEQ						EQ I	D NO	: 690	0:			
	Dvo	Val	Clv	Tyr	Lou	λcn	Tue	Gl n	17a1	Pro	λεη	Thr	Sor	1/al	Cln	Glu
	1	vai	GIY	ıyı	5	MSD	цуз	GIII	Vai	10	υp	1111	361	Vai	15	Giu
35	m 1			- 1 -	_		01	T	•				7 1 -	. 1	•	63
))	Thr	Asp	Arg	Ile 20	ьeu	vai	GIU	rys	25	Cys	TIP	ASP	iie	30	ren	GIÀ
	Pro	Leu	Lys	Gln	Ile	Pro	Met	Asn	Leu	Phe	Ile					
40			35					40								
10																
	(2)	INF	ORMAT	rion	FOR	SEQ	ID 1	NO: 6	591:							
45			/23	CEOLE	-NICE	CUA	D X CYTT	FDTC	TTCC	_						
+5			(1)	SEQU.)				14 a			ds					
								no a					•			
			(vi)	SEQ				lin PTTO		ΕΩ Τ	טע ע	. 69	1 -			
50			(YT)	کاتات	OLIVC.	5 00	DCINI	1110	5	DQ I	D 110	. 05	.			
	Ala 1	His	Ala	Ser	Glu 5	Ser	Gly	Glu	Arg	Trp 10	Trp	Ala	Cys	Суз	Gly 15	Val
	Arg	Phe	Gly	Leu	Arg	Ser	Ile	Glu	Ala	Ile	Gly	Arg	Ser	Суз	Cys	His
55	_			20					25					30		
	Asp	Gly	Pro 35	Gly	Gly	Leu	Val	Ala 40	Asn	Arg	Gly	Arg	Arg 45	Phe	Lys	Trp
60	Ala	Ile	Glu	Leu	Ser	Gly	Pro	Gly	Gly	Gly	Ser	Arg	Gly	Arg	Ser	Asp

	50			55		60		
5	Arg Gly 65	Ser Gly	Gln Gly 70	Asp Ser	Leu Tyr	Pro Val 75	Gly Tyr	Leu Asp 80
J	Lys Gln	Val Pro	Asp Thr 85	Ser Val	Gln Glu 90	Thr Asp	Arg Ile	Leu Val 95
10	Glu Lys	Arg Cys 100	Trp Asp	Ile Ala	Leu Gly 105	Pro Leu	Lys Gln 110	Ile Pro
	Met Asn	Leu Phe 115	Ile Met	Tyr Met 120	Ala Gly	Asn Thr	Ile Ser 125	Ile Phe
15	Pro Thr 130	Met Met	Val Cys	Met Met 135	Ala Trp	Arg Pro 140	Ile Gln	Ala Leu
20	Met Ala 145	Ile Ser	Ala Thr 150	Phe Lys		Glu Ser 155	Ser Ser	Gln Lys 160
	Phe Leu	Gln Gly	Leu Val 165	Tyr Leu	Ile Gly 170	Asn Leu	Met Gly	Leu Ala 175
25	Leu Ala	Val Tyr 180	Lys Cys	Gln Ser	Met Gly 185	Leu Leu	Pro Thr 190	His Ala
	Ser Asp	Trp Leu 195	Ala Phe	Ile Glu 200	Pro Pro	Glu Arg	Met Glu 205	Phe Ser
30	Gly Gly 210	Gly Leu	Leu Leu					
35	(2) INF	ORMATION	FOR SEQ	ID NO:	592 :			
		(ENCE CHAI (A) LENGT (B) TYPE:	H: 46 am	ino acids	5		
40		(D) TOPOL	OGY: lin	ear	NO: 692	2:	
45	Ala Thr 1	Phe Lys	Met Leu 5	Glu Ser	Ser Ser 10	Gln Lys	Phe Leu	Gln Gly 15
	Leu Val	Tyr Leu 20	Ile Gly	Asn Leu	Met Gly 25	Leu Ala	Leu Ala 30	Val Tyr
50	Lys Cys	Gln Ser 35	Met Gly	Leu Leu 40	Pro Thr	His Ala	Ser Asp 45	
55	(2) INF		FOR SEQ					
60		((A) LENGT (B) TYPE: (D) TOPOL UENCE DE	amino a OGY: lin	cid ear	-	3:	·

WO 98/54963

697

PCT/US98/11422

	Pro 1	Val	Gly	Tyr	Leu 5	Asp	Lys	Gln	Val	Pro 10	Asp	Thr	Ser	Val	Gln 15	Glu
5	Thr	Asp	Arg	Ile 20	Leu	Val	Glu	Lys	Arg 25	Cys	Trp	Asp	Ile	Ala 30	Leu	Gly
10	Pro	Leu	Lys 35	Gln	Ile	Pro	Met	Asn 40	Leu	Phe	Ile					
	(2)	INFO	ORMAT	rion	FOR	SEQ	ID i	NO: 6	594:							
15 20			(i) : (xi)	() ()	A) L B) T D) T	ENGT YPE : OPOL	H: 4 ami OGY:	8 am no a lin	ino cid ear	acid		: 69 [,]	4 :			
	Pro 1	Thr	Thr	Lys	Leu 5	Asp	Ile	Met	Glu	Lys 10	Lys	Lys	His	Ile	Gln 15	Ile
25	Arg	Phe	Pro	Ser 20	Phe	Tyr	His	Lys	Leu 25	Val	Asp	Ser	Gly	Arg 30	Met	Arg
	Ser	Lys	Arg 35	Glu	Thr	Arg	Arg	Glu 40	Asp	Ser	Asp	Thr	Lys 45	His	Asn	Leu
30 35	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: (695 :							
40				(A) L B) T D) T	ENGT YPE : OPOL	H: 1 ami OGY:	ERIS 67 a no a lin PTIO	mino cid ear	aci		: 69	5:			
45	Thr 1	Glu	His	Ile	Ile 5	Ala	Val	Met	Ile	Thr 10	Glu	Leu	Arg	Gly	Lys 15	Asp
,5	Ile	Leu	Ser	Туг 20	Leu	Glu	Lys	Asn	Ile 25	Ser	Val	Gln	Met	Thr 30	Ile	Ala
50	Val	Gly	Thr 35	Arg	Met	Pro	Pro	Lys 40	Asn	Phe	Ser	Arg	Gly 45	Ser	Leu	Val
	Phe	Va1 50	Ser	Ile	Ser	Phe	Ile 55	Val	Leu	Met	Ile	Ile 60	Ser	Ser	Ala	Trp
55	Leu 65	Ile	Phe	Tyr	Phe	Ile 70	Gln	Lys	Ile	Arg	Тут 75	Thr	Asn	Ala	Arg	Asp 80
60	Arg	Asn	Gln	Arg	Arg 85	Leu	Gly	Asp	Ala	Ala 90	Lys	Lys	Ala	Ile	Ser 95	Lys

	Leu	Thr	Thr	Arg 100	Thr	Val	Lys	Lys	G1y 105	Asp	Lys	Glu	Thr	Asp 110	Pro	Asp
5	Phe	Asp	His 115	Cys	A1a	Val	Cys	Ile 120	Glu	Ser	Tyr	Lys	Gln 125	Asn	Asp	Val
	Val	Arg 130	Ile	Leu	Pro	Cys	Lys 135	His	Val	Phe	His	Lys 140	Ser	Cys	Val	Asp
10	Pro 145	Trp	Leu	Ser	Glu	His 150	Cys	Thr	Cys	Pro	Met 155	Cys	Lys	Leu	Asn	Ile 160
15	Leu	Lys	Ala	Leu	Gly 165	Ile	Val									
20	(2)		ORMAT			_										
			(-)	(A) L B) T D) T	ENGT YPE:	H: 2 ami	76 a no a	mino cid		ds					
25			(xi)	SEQ	UENCI	E DE:	SCRI	PTIO	N: S	EQ I	D NO	: 69	6 :			
	Met 1	Thr	His	Pro	Gly 5	Thr	Glu	His	Ile	Ile 10	Ala	Va1	Met	Ile	Thr 15	Glu
30	Leu	Arg	Gly	Lys 20	Asp	Ile	Leu	Ser	Туг 25	Leu	Glu	Lys	Asn	Ile 30	Ser	Val
	Gln	Met	Thr 35	Ile	Ala	Val	Gly	Thr 40	Arg	Met	Pro	Pro	Lys 45	Asn	Phe	Ser
35	Arg	Gly 50	Ser	Leu	Val	Phe	Val 55	Ser	Ile	Ser	Phe	Ile 60	Val	Leu	Met	Ile
40	Ile 65	Ser	Ser	Ala	Trp	Leu 70	Ile	Phe	Tyr	Phe	Ile 75	Gln	Lys	Ile	Arg	Tyr 80
	Thr	Asn	Ala	Arg	Asp 85	Arg	Asn	Gln	Arg	Arg 90	Leu	Gly	Asp	Ala	Ala 95	Lys
45	Lys	Ala	Ile		Lys							_	_	_	Asp	Lys
	Glu	Thr	Asp 115	Pro	Asp	Phe	Asp	His 120	Cys	Ala	Val	Cys	Ile 125	Glu	Ser	Tyr
50	Lys	Gln 130	Asn	Asp	Val	Val	Arg 135	Ile	Leu	Pro	Cys	Lys 140	His	Val	Phe	His
55 -	Lys 145	Ser	Cys	Val	Asp	Pro 150	Trp	Leu	Ser	Glu	His 155	Cys	Thr	Cys	Pro	Met 160
55	Cys	Lys	Leu	Asn	Ile 165	Leu	Lys	Ala	Leu	Gly 170	Ile	Val	Pro	Asn	Leu 175	Pro
60	Cys	Thr	Asp	Asn	Val	Ala	Phe	Asp	Met 185	Glu	Arg	Leu	Thr	Arg	Thr	Gln

	Ala	Val	Asn 195	Arg	Arg	Ser	Ala	Leu 200	Gly	Asp	Leu	Ala	Gly 205	Asp	Asn	Ser
5	Leu	Gly 210	Leu	Glu	Pro	Leu	Arg 215	Thr	Ser	Gly	Ile	Ser 220	Pro	Leu	Pro	Gln
10	Asp 225	Gly	Glu	Leu	Thr	Pro 230	Arg	Thr	Gly	Glu	Ile 235	Asn	Ile	Ala	Val	Thr 240
	Lys	Glu	Trp	Phe	Ile 245	Ile	Ala	Ser	Phe	Gly 250	Leu	Leu	Ser	Ala	Leu 255	Thr
15	Leu	Суз	Tyr	Met 260	Ile	Ile	Arg	Ala	Thr 265	Ala	Ser	Leu	Asn	Ala 270	Asn	Glu
	Val	Glu	Trp 275	Phe												
20																
	(2)	INF	ORMA?	rion	FOR	SEQ	ID	NO:	697 :							
25				(A) L B) T D) T	ENGT YPE : OPOL	H: 6 ami OGY:	9 am no a lin	ino cid ear	acid		: 69	7:			
30	Thr	Glu	His	Ile	Ile	Ala	Val	Met	Ile	Thr	Glu	Leu	Arg	Gly	Lys	Asp
	1				5					10				_	15	_
35	Ile	Leu	Ser	Tyr 20	Leu	Glu	Lys	Asn	Ile 25	Ser	Val	Gln	Met	Thr 30	Ile	Ala
	Val	Gly	Thr 35	Arg	Met	Pro	Pro	Lys 40	Asn	Phe	Ser	Arg	Gly 45	Ser	Leu	Val
40	Phe	Val 50		Ile	Ser	Phe	Ile 55	Val	Leu	Met	Ile	Ile 60	Ser	Ser	Ala	Trp
	Leu 65	Ile	Phe	Tyr	Phe											
45																
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	698:							
50				(A) I B) T D) T	ENGT YPE : OPOL	H: 5 ami OGY:	8 an no a lir	mino ncid near	ació): 6 9	8:			·
55	Sar	Ile		•										Ψ'rr-	Ī.e.ı	Ile
55	1			2110	5					10					15	
	Phe	Tyr	Phe	Ile 20	Gln	Lys	Ile	Arg	Туr 25		Asn	Ala	Arg	Asp 30		Asn,
60																

	GIII	Arg	35	Leu	GIÀ	ASP	MIG	40	гуз	пуз	AIG	116	4 5	гус	Den	1111
5	Thr	Arg 50	Thr	Val	Lys	Lys	Gly 55	Asp	Lys	Glu						
10	(2)							NO: 6 ERIST		:						
15			(xi)	0	B) T D) T	YPE: OPOL	ami: OGY:	6 am no a line PTIO	cid ear			: 699	Э :			
	Val 1	Lys	Lys	Gly	Asp 5	Lys	Glu	Thr	Asp	Pro 10	Asp	Phe	Asp	His	Cys 15	Ala
20	Val	Cys	Ile	Glu 20	Ser	Tyr	Lys	Gln	Asn 25	Asp	Val	Val	Arg	Ile 30	Leu	Pro
25	Cys	Lys	His 35	Val	Phe	His	Lys	Ser 40	Cys	Val	Asp	Pro	Trp 45	Leu	Ser	Glu
23	His	Суs 50	Thr	Cys	Pro	Met	Cys 55	Lys	Leu	Asn	Ile	Leu 60	Lys	Ala	Leu	Gly
30	Ile 65	Val														
	(2)	TNE	חמש סר	זא∩דיז	EOB	SEO	TD I	NO: 1	700 •							
35	(2)	IIVI		SEQU)	ENCE A) L	CHA ENGT	RACT H: 1	ERIS'	TICS mino		ds					
40			(xi)	(D) T	OPOL	OGY:	no a lin PTIO	ear	EQ I	D NO	: 70	0:			
	Met 1	Thr	His	Pro	Gly 5	Thr	Glu	His	Ile	Ile 10	Ala	Val	Met	Ile	Thr 15	Glu
45	Leu	Arg	Gly	Lys 20	Asp	Ile	Leu	Ser	Тут 25	Leu	Glu	Lys	Asn	Ile 30	Ser	Val
50	Gln	Met	Thr 35	Ile	Ala	Val	Gly	Thr 40	Arg	Met	Pro	Pro	Lys 45	Asn	Phe	Ser
50	Arq	Gly	Ser	Leu	Val	Phe	Val	Ser	Ile	Ser	Phe	Ile 60	Val	Leu	Met	Ile
	,	50														
55	-			Ala	Trp	Leu 70		Phe	Tyr	Phe	Ile 75	Gln	Lys	Ile	Arg	Туr 80
55	Ile 65	Ser	Ser			70	Ile	Phe Gln			75					80

5	(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	10 : 7	701:							
10				(A) L B) T D) T	ENGT YPE: OPOL	RACTI H: 8 ami: OGY: SCRI	4 am no a lin	ino cid ear	acid		: 70	1:			
15	Ala 1	Ala	Lys	Lys	Ala 5	Ile	Ser	Lys	Leu	Thr 10	Thr	Arg	Thr	Val	Lys 15	Lys
*3	Gly	Asp	Lys	Glu 20	Thr	Asp	Pro	Asp	Phe 25	Asp	His	Cys	Ala	Val 30	Cys	Ile
20	Glu	Ser	Тут 35	Lys	Gln	Asn	Asp	Val 40	Val	Arg	Ile	Leu	Pro 45	Cys	Lys	His
	Val	Phe 50	His	Lys	Ser	Суз	Val 55	Asp	Pro	Trp	Leu	Ser 60	Glu	His	Cys	Thr
25	Cys 65	Pro	Met	Cys	Lys	Leu 70	Asn	Ile	Leu	Lys	Ala 75	Leu	Gly	Ile	Val	Pro 80
20	Asn	Leu	Pro	Cys												
30																
	(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	. vo:	702:							
35			(i)	(A) L B) T	ENGT YPE:	RACT H: 8 ami	6 am no a	ino cid		s					
40			(xi)				OGY: SCRI			EQ I	D NO	: 70	2:			
40	Thr 1	Gln	Ala	Val	Asn 5	Arg	Arg	Ser	Ala	Leu 10	Gly	Asp	Leu	Ala	Gly 15	Asp
45	Asn	Ser	Leu	Gly 20	Leu	Glu	Pro	Leu	Arg 25	Thr	Ser	Gly	Ile	Ser 30	Pro	Leu
	Pro	Gln	Asp 35	Gly	Glu	Leu	Thr	Pro 40	Arg	Thr	Gly	Glu	Ile 45	Asn	Ile	Ala
50	Val	Thr 50	Lys	Glu	Trp	Phe	Ile 55	Ile	Ala	Ser	Phe	Gly 60	Leu	Leu	Ser	Ala
55	Leu 65	Thr	Leu	Cys	Tyr	Met 70	Ile	Ile	Arg	Ala	Thr 75	Ala	Ser	Leu	Asn	Ala 80

Asn Glu Val Glu Trp Phe

	2)];	OPYAI	MOIS	FCR	ಕ್ಟಾರ	:: c:	70: 7	793:							
5	•			(A) L 2) T 2) T	engt Ype: Opol	PACTI H: 3 ami: OGY: SCPLI	41 a no a lin	mino cid ear	aci		: 70	3:			
10	Pro 1	Lau	His	Gly	7al 5	Ala	ಧಿತ್ತು	ELS	Leu	Gly 10	೮∵ಽ	A.S.p	Pro	Gln	Thr 15	Arg
	Fhe	Fhe	√a_	Pro 20	Pro	Asn	Ile	ī.\z	G <u>ln</u> 25	Ixb	Tie	λia	Leu	Leu 30	Gln	Arg
15	Эцу	Ast.	Cys 35		Phe	Lys	Glu	Lys 40	Ile	Ser	Arg	Ala	Ala 45	Phe	His	Asn
20	Нa	Wal 50	Ala	Val	Val	Ile	Tyr 55	Asn	Asn	Ľγs	Ser	Lys 50	Glu	Glu	Pro	Val
	Th <u>r</u> 65	Met	Thr	H‡s	320	G <u>Ly</u> 70	Thr	Glu	His	Ile	Ile 75	Ala	Val	Mec	Ile	Thr 80
25	Glu	Leu	Yrg	Gly	Lys 25	qzA	Ile	Leu	Ser	©7± 90	Leu	Glu	Lys	Asn	Ile 95	Ser
	Tal	31n	Met	Thr 100	Ile	Ala	Val	317	Thr 105	Arg	Χet	P20	Pro	<u>Г</u> уs 110	Asn	Phe
30	Ser	Arg	Gly 115	Ser	Leu	Val	Phe	Tal 120	Ser	īle	Ser	Phe	īle 125	Val	Leu	Met
35	Ile	Ile 130	Ser	Ser	Жa	grī	Leu 135	Ile	Phe	፻፶፰	Phe	Ile 140	Gln	Lys	Ile	Arg
	7y± 145	The	Asti	Ala	Arg	Asp 130	Arg	Asn	Glm	Arg	Arg 155	Leu	Gly	Asp	Ala	Ala 160
40	Lys	Lys	Ala	Ile	Ser 155	Lys	Leu	<u>-hr</u>	Thr	Arg 170	Thr	Val	Lys	īуs	Gly 175	Asp
	Lys	Glu	The	Asp 180	Pro	ಧಾಸ	Phe	Asp	His 185	Суз	Ala	7al	Суѕ	Ile 190	Glu	Ser
45	<u>. 7.7.2</u>	Lys	G <u>l</u> n 195	Asn	Asp	Val	Val	Arg 200	Ile	Leu	Pro	Cys	Lys 205	His	Val	Phe
50	His	ъуз 210	Ser	Суз	Val	Asp	Pro 215	מגיַ	Leu	Ser	Glu	His 220	Cys	Thr	Суз	Pro
50	Met 225	Cys	Lys	Leu	Asn	Ile 230	Leu	Lys	Ala	Leu	Gl <u>y</u> 215	Ile	Val	Pro	Asn	Leu 240
55	Pro	Cys	Thr	Asp	Asn 245	Val	Ala	?he	Asp	Met 250	Glu	Arg	Leu	Thr	Arg 255	Thr

Gln Ala Val Asn Arg Arg Ser Ala Leu Gly Asp Leu Ala Gly Asp Asn 260 265 270

Ser Leu Gly Leu Glu Pro Leu Arg Thr Ser Gly Ile Ser Pro Leu Pro

			275					280					285			
5	Gln	Asp 290	Gly	Glu	Leu	Thr	Pro 295	Arg	Thr	Gly	Glu	Ile 300	Asn	Ile	Ala	Val
J	Thr 305	Lys	Glu	Trp	Phe	Ile 310	Ile	Ala	Ser	Phe	Gly 315	Leu	Leu	Ser	Ala	Leu 320
10	Thr	Leu	Cys	Tyr	Met 325	Ile	Ile	Arg	Ala	Thr 330	Ala	Ser	Leu	Asn	Ala 335	Asn
	Glu	Val	Glu	Trp 340	Phe											
15						•										
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	W: 1	704 :							
20				(A) L B) T D) T	ENGT YPE: OPOL	H: 6 ami OGY:	0 am no a lin	ino cid ear	acid	s D NO	: 70	4 :			
25	His 1	Gly	Val	Ala	Asp 5	His	Leu	Gly	Cys	Asp 10	Pro	Gln	Thr	Arg	Phe 15	Phe
30	Val	Pro	Pro	Asn 20	Ile	Lys	Gln	Trp	Ile 25	Ala	Leu	Leu	Gln	Arg 30	Gly	Asn
50	Cys	Thr	Phe 35	Lys	Glu	Lys	Ile	Ser 40	Arg	Ala	Ala	Phe	His 45	Asn	Ala	Val
35	Ala	Val 50		Ile	Tyr	Asn	Asn 55	Lys	Ser	Lys	Glu	Glu 60				
40	(2)	INF		TION SEQU	ENCE		RACT	ERIS	TICS		ds					
				(B) T	YPE:	ami	no a	cid	, ac						
45			(xi)							EQ I	D NO	: 70	5 :			
	Met 1		Gly	Gln	Gly 5		Ala	Gly	Phe	Phe 10		Ser	Val	Ala	Met 15	Ile
50	Cys	Ala	Ile	Ala 20		Gly	Ser	Glu	Leu 25		Glu	Ser	Ala	Phe 30	Gly	Tyr
55	Phe	: Ile	Thr 35		Cys	Ala	Val	Ile 40		Leu	Thr	Ile	Ile 45	Cys	Tyr	Leu
JJ	Gly	Leu 50		Arg	Leu	Glu	Phe 5 5		Arg	туг	Tyr	Gln 60		Leu	Lýs	Leu
60	Glu 65		/ Pro	Gly	Glu	Gln 70		Thr	Lys	Leu	Asp		Ile	Ser	Lys	Gly 80

	Glu	Glu	Pro	Arg	Ala 85	Gly	Lys	Glu	Glu	Ser 90	Gly	Val	Ser	Val	Ser 95	Asn
5	Ser	Gln	Pro	Thr 100	Asn	Glu	Ser	His	Ser 105	Ile	Lys	Ala	Ile	Leu 110	Lys	Asn
10	Ile	Ser	Val 115	Leu	Ala	Phe	Ser	Val 120	Cys	Phe	Ile	Phe	Thr 125	Ile	Thr	Ile
10	Gly	Met 130	Phe	Pro	Ala	Val	Thr 135	Val	Glu	Val	Lys	Ser 140	Ser	Ile	Ala	Gly
15	Ser 145	Ser	Thr	Trp	Glu	Arg 150	Tyr	Phe	Ile	Pro	Va1 155	Ser	Cys	Phe	Leu	Thr 160
	Phe	Asn	Ile	Phe	Asp 165	Trp	Leu	Gly	Arg	Ser 170	Leu	Thr	Ala	Val	Phe 175	Met
20	Trp	Pro	Gly	Lys 180	Asp	Ser	Arg	Trp	Leu 185	Pro	Ser	Trp	Xaa	Leu 190	Ala	Arg
25	Leu	Val	Phe 195	Val	Pro	Leu	Leu	Leu 200	Leu	Cys	Asn	Ile	Lys 205	Pro	Arg	Arg
23	Tyr	Leu 210	Thr	Val	Val	Phe	Glu 215	His	Asp	Ala	Trp	Phe 220	Ile	Phe	Phe	Met
30	Ala 225	Ala	Phe	Ala	Phe	Ser 230	Asn	Gly	Tyr	Leu	Ala 235	Ser	Leu	Суз	Met	Суs 240
	Phe	Gly	Pro	Lys	Lys 245	Val	Lys	Pro	Ala	Glu 250	Ala	Glu	Thr	Ala	Glu 255	Pro
35	Ser	Trp	Pro	Ser 260	Ser	Cys	Val	Trp	Val 265	Trp	His	Trp	Gly	Leu 270	Phe	Ser
40	Pro	Ser	Cys 275	Ser	Gly	Gln	Leu	Суs 280	Asp	Lys	Gly	Trp	Thr 285	Glu	Gly	Leu
.0	Pro	Ala 290	Ser	Leu	Pro	Val	Cys 295	Leu	Leu	Pro	Leu	Pro 300	Ser	Ala	Arg	Gly
45	Asp 305	Pro	Glu	Trp	Ser	Gly 310	Gly	Phe	Phe	Phe						
	(2)	INFO	יעשמר	rtoni	EOB	SEO	י חד	viO ·	706.							
50	,_,		(i) :	SEQUI	ENCE	CHAI	RACTI	ERIS'	rics							
<i>-</i> -				(A) L B) T D) T	YPE:	ami	no a	cid	aci	ds					
55	Met	Ser	(xi) Gly	_						_				Ala	Met	Ile
60	1				5					10					15	
50	Cy5	Ala	тте	мта	ser	GTA.	ser	u⊥u	neu	ser	GIU	ser	Αια	rne	G I V	TVT

•				20					25					30			
5	Phe	Ile	Thr 35	Ala	Суз	Ala	Val	Ile 40	Ile	Leu	Thr	Ile	Ile 45	Cys	Tyr	Leu	
9	Gly	Leu 50	Pro	Arg	Leu	Glu	Phe 55	Tyr	Arg	Tyr	Tyr	Gln 60	Gln	Leu	Lys	Leu	
10	Glu 65	Gly	Pro	Gly	Glu	Gln 70	Glu	Thr	Lys	Leu	Asp 75	Leu	Ile	Ser	Lys	Gly 80	
	Glu	Glu	Pro	Arg	Ala 85	Gly	Lys	Glu	Glu	Ser 90	Gly	Val	Ser	Val	Ser 95	Asn	
15	Ser	Gln	Pro	Thr 100	Asn	Glu	Ser	His	Ser 105	Ile							
20	(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	NO: 7	707 :								
25				(A) L B) T D) T	ENGT YPE: OPOL	H: 8 ami OGY:	ERIS 1 am no a lin PTIO	ino cid ear	acid		: 70	7 :				
30	Ser 1	Gly	Val	Ser	Val 5	Ser	Asn	Ser	Gln	Pro 10	Thr	Asn	Glu	Ser	His 15	Ser	
50	Ile	Lys	Ala	Ile 20	Leu	Lys	Asn	Ile	Ser 25	Val	Leu	Ala	Phe	Ser 30	Val	Cys	
35	Phe	Ile	Phe 35	Thr	Ile	Thr	Ile	Gly 40	Met	Phe	Pro	Ala	Val 45	Thr	Val	Glu	
	Val	Lys 50	Ser	Ser	Ile	Ala	Gly 55	Ser	Ser	Thr	Trp	Glu 60	Arg	Tyr	Phe	Ile	
40	Pro 65	Val	Ser	Cys	Phe	Leu 70	Thr	Phe	Asn	Ile	Phe 75	Asp	Trp	Leu	Gly	Arg 80	
45	Ser																
۳0	(2)	INF	ORMA'			_											
50			(i)	(A) L B) T	ENGT YPE:	H: 9 ami	ERIS 2 am no a lin	ino cid		s						
55	5)	~ 1.		SEQ	UENC	E DE	SCRI	PTIO	N: S							_,	
	Thr 1		Gly	Met	Phe 5	Pro	Ala	Val	Thr	Val 10	Glu	Val	Lys	Ser	Ser 15	Ile	
60	Ala	Gly	Ser	Ser 20	Thr	Trp	G1u	Arg	Tyr 25	Phe	Ile	Pro	Val	Ser 30	Суз	Phe	

	Leu	Thr	Phe 35	Asn	Ile	Phe	Asp	Trp 40	Leu	Gly	Arg	Ser	Leu 45	Thr	Ala	Val
5	Phe	Met 50	Trp	Pro	Gly	Lys	Asp 55	Ser	Arg	Trp	Leu	Pro 60	Ser	Trp	Xaa	Leu
10	Ala 65	Arg	Leu	Val	Phe	Val 70	Pro	Leu	Leu	Leu	Leu 75	Cys	Asn	Ile	Lys	Pro 80
	Arg	Arg	Tyr	Leu	Thr 85	Val	Val	Phe	Glu	His 90	Asp	Ala				
15	(2)	INFO	ORMA!	rion	FOR	SEQ	ID 1	10: 7	709:							
20			(i)	(A) L B) T	ENGT YPE:	H: 7 ami	4 am no a	ino cid		s					
			(xi)					lin PTIO		EQ I	D NO	: 70	9:			
25	Phe 1	Gly	Pro	Lys	Lys 5	Val	Lys	Pro	Ala	Glu 10	Ala	Glu	Thr	Ala	Glu 15	Pro
	Ser	Trp	Pro	Ser 20	Ser	Cys	Val	Trp	Val 25	Trp	His	Trp	Gly	Leu 30	Phe	Ser
30	Pro	Ser	Cys 35	Ser	Gly	Gln	Leu	Cys 40	Asp	Lys	Gly	Trp	Thr 45	Glu	Gly	Leu
35	Pro	Ala 50	Ser	Leu	Pro	Val	Суs 55	Leu	Leu	Pro	Leu	Pro 60	Ser	Ala	Arg	Gly
	Asp 65	Pro	Glu	Trp	Ser	Gly 70	Cly	Phe	Phe	Phe						
40	(2)	INF	ORMA'	TION	FOR	SEQ	ID I		710:							
45				(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	ERIS 35 a no a lin PTIO	mino cid ear	aci		: 71	0:			
	Asp	asp	Asp									•		Ala	Lys	His
50	1		-	-	5					10		-			15	
	Arg	Ile	Leu	Asp 20	Pro	Glu	Gly	Leu	Ala 25	Leu	Gly	Ala	Val	Ile 30	Ala	Ser
55	Ser	Lys	Lys 35	Ala	Lys	Arg	Asp	Leu 40	Ile	Asp	Asn	Ser	Phe 45	Asn	Arg	Tyr
60	Thr	Phe 50	Asn	Glu	Asp	Glu	Gly 55	Glu	Leu	Pro	Glu	Trp 60	Phe	Val	Gln	Glu

	Glu 65	Lys	Gln	His	Arg	Ile 70	Arg	Gln	Leu	Pro	Val 75	Gly	Lys	Lys	Glu	Val 80
5	Glu	His	Tyr	Arg	Lys 85	Arg	Trp	Arg	Glu	Ile 90	Asn	Ala	Arg	Pro	Ile 95	Xaa
	Xaa	Xaa	Xaa	Xaa 100	Xaa	Xaa	Xaa	Xaa	Xaa 105	Xaa	Xaa	Xaa	Xaa	Xaa 110	Xaa	Xaa
10	Leu	Glu	Gln 115	Thr	Arg	Lys	Lys	Ala 120	G1u	Ala	Val	Val	Asn 125	Thr	Va1	Asp
15	Ile	Хаа 130	Arg	Thr	Arg	Glu	Ser 135									
	(2)	INF	ORMAT	rion	FOR	SEQ	ID i	10: 7	711:							
20				(A) L B) T D) T	ENGT YPE: OPOL	H: 5 ami OGY:	ERIS O am no a lin	ino d cid ear	acid		: 71	1:			
25	Asp 1	Asp	Asp	Gly	Phe 5	Glu	Ile	Val	Pro	Ile 10	Glu	Asp	Pro	Ala	Lys 15	His
30	Arg	Ile	Leu	Asp 20	Pro	Glu	Gly	Leu	Ala 25	Leu	Gly	Ala	Val	Ile 30	Ala	Ser
	Ser	Lys	Lys 35	Ala	Lys	Arg	Asp	Leu 40	Ile	Asp	Asn	Ser	Phe 45	Asn	Arg	Tyr
35	Thr	Phe 50														
40	(2)	INFO	ORMA:	rion	FOR	SEQ	ID 1	vo: 7	712:							
45				()	A). L B) T D) T	ENGT YPE: OPOL	H: 5 ami OGY:	ERIS 1 am no a lin PTIO	ino a cid ear	acid		: 71	2:			
-0	Lys l	Arg	Trp	Arg	Glu 5	Ile	Asn	Ala	Arg	Pro 10	Ile	Xaa	Xaa	Xaa	Xaa 15	Xaa
50	Xaa	Xaa	Xaa	Xaa 20	Xaa	Xaa	Xaa	Xaa	Xaa 25	Xaa	Xaa	Xaa	Leu	Glu 30	Gln	Thr
55	Arg	Lys	Lys 35	Ala	Glu	Ala	Val	Val 40	Asn	Thr	Val	Asp	Ile 45	Xaa	Arg	Thr
	Arg	Glu 50	Ser													
<u>د</u> م																

	(2)	INF	ORMAT	NOI	FOR	SEQ	ID 1	10: 7	13:							
5			(i) s	(ENCE A) L B) T	ENGT YPE:	H: 2	16 a no a	mino cid		ds					
			(xi)							EQ I	ON C	: 71	3:			
10	Met 1	Ile	Lys	Asp	Lys 5	Gly	Arg	Ala	Arg	Thr 10	Ala	Leu	Thr	Ser	Ser 15	Gln
15	Pro	Ala	His	Leu 20	Cys	Pro	Glu	Asn	Pro 25	Leu	Leu	His	Leu	Lys 30	Ala	Ala
	Val	Lys	Glu 35	Lys	Lys	Arg	Asn	Lys 40	Lys	Lys	Lys	Thr	Ile 45	Gly	Ser	Pro
20	Lys	Arg 50	Ile	Gln	Ser	Pro	Leu 55	Asn	Asn	Lys	Leu	Leu 60	Asn	Ser	Pro	Ala
	Lys 65	Thr	Leu	Pro	Gly	Ala 70	Cys	Gly	Ser	Pro	Gln 75	Lys	Leu	Ile	Asp	Gly 80
25			Lys		85					90					95	
30	Ser	Ala	Ser	Thr 100	Ser	Gly	Val	Pro	Gly 105	Leu	Ser	Ser	Leu	Gln 110	Ser	Asp
	Pro	Ala	Gly 115	Cys	Val	Arg	Pro	Pro 120	Ala	Pro	Asn	Leu	Ala 125	Gly	Ala	Val
35	Glu	Phe 130	Asn	Asp	Val	Lys	Thr 135	Leu	Leu	Arg	Glu	Trp 140	Ile	Thr	Thr	Ile
40	145		Pro			150	•				155					160
40			Ile		165					170					175	_
45	Tyr	Met	Lys	Arg 180	Leu	Met	Gln	Gln	Ser 185	Val	Glu	Ser	Val	Trp 190	Asn	Met
,			Asp 195					200	Val	Gln	Val	Val	Leu 205	Gln	Gln	Thr
50	Tyr	Gly 210	Ser	Thr	Leu	Lys	Val 215	Thr								
55	(2)	INF	ORMA'	SEQU (ENCE A) L B) T	CHA ENGT	RACT H: 5	ERIS 2 am no a	rics ino cid		s					
60			(xi)		D) I UENC					EQ I	D NO	: 71	4 :			

	1		_ 3	rwp	5	U.J	9		9	10		Dea		DCI	15	01.11
5	Pro	Ala	His	Leu 20	Суз	Pro	Glu	Asn	Pro 25	Leu	Leu	His	Leu	Lys 30	Ala	Ala
10	Val	Lys	Glu 35	Lys	Lys	Arg	Asn	Lys 40	Lys	Lys	Lys	Thr	Ile 45	Gly	Ser	Pro
10	Lys	Arg 50	Ile	Gln												
15	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 1	7 1 5 :							
20				(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	00 a no a lin	mino cid ear	aci		: 71	5:			
25	Lys 1	Arg	Ile	Gln	Ser 5	Pro	Leu	Asn	Asn	Lys 10	Leu	Leu	Asn	Ser	Pro 15	Ala
	Lys	Thr	Leu	Pro 20	Gly	Ala	Cys	Gly	Ser 25	Pro	Gln	Lys	Leu	Ile 30	Asp	Gly
30	Phe	Leu	Lys 35	His	Glu	Gly	Pro	Pro 40	Ala	Glu	Lys	Pro	Leu 45	Glu	Glu	Leu
35	Ser	Ala 50		Thr	Ser	Gly	Val 55		Gly	Leu	Ser	Ser 60	Leu	Gln	Ser	Asp
	Pro 65	Ala	Gly	Cys	Val	Arg 70	Pro	Pro	Ala	Pro	Asn 75	Leu	Ala	Gly	Ala	Val 80
40	Glu	Phe	Asn	Asp	Val 85	Lys	Thr	Leu	Leu	Arg 90	Glu	Trp	Ile	Thr	Thr 95	Ile
	Ser	Asp	Pro	Met 100												
45																
	(2)	INF	ORMA	TION	FOR	SEQ	ID :	NO:	716:							
50				((A) I (B) T (D) T	ENGT YPE : OPOI	TH: 7 ami OGY:	4 an ino a lir	nino ncid near	ació): 71	6:			
55 .	Thr 1		Ser	Asp	Pro 5	Met	Glu	Glu	Asp	Ile 10	Leu	Gln	Val	Val	Lys 15	Tyr
60	Cys	Thr	· Asp	Leu 20		Glu	Glu	Lys	Asp 25	Leu	Glu	Lys	Leu	Asp 30	Leu	Val

Ile Lys Tyr Met Lys Arg Leu Met Gln Gln Ser Val Glu Ser Val Trp 40 Asn Met Ala Phe Asp Phe Ile Leu Asp Asn Val Gln Val Val Leu Gln 5 55 Gln Thr Tyr Gly Ser Thr Leu Lys Val Thr 70 10 (2) INFORMATION FOR SEQ ID NO: 717: (i) SEQUENCE CHARACTERISTICS: 15 (A) LENGTH: 18 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 717: 20 Phe Cys His Asp Cys Lys Phe Pro Glu Ala Ser Pro Ala Met Asn Cys Glu Pro 25 (2) INFORMATION FOR SEQ ID NO: 718: 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 718: 35 Phe Cys His Asp Cys Lys Phe Pro Glu Ala Ser Pro Ala Met Asn Cys Glu Pro 40 (2) INFORMATION FOR SEQ ID NO: 719: 45 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 719: Pro Gln Pro Ser Asn Phe Pro Thr Thr Val Arg Asn Leu Pro Tyr Ser . 5 55 Gly Ala Gly Ala Gln Pro Pro Pro Ser Asn Cys 20

60

(2) INFORMATION FOR SEQ ID NO: 720:

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 134 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 720: Met Ala Ser Ser Val Pro Ala Gly Gly His Thr Arg Ala Gly Gly Ile															
10	Met 1	Ala	Ser	Ser	Val 5	Pro	Ala	Gly	Gly	His 10	Thr	Arg	Ala	Gly	Gly 15	Ile
10	Phe	Leu	Ile	Gly 20	Lys	Leu	Asp	Leu	Glu 25	Ala	Ser	Leu	Phe	Lys 30	Ser	Phe
15	Gln	Trp	Leu 35	Pro	Phe	Val	Leu	Arg 40	Lys	Lys	Cys	Asn	Phe 45	Phe	Cys	Trp
	Asp	Ser 50	Ser	Ala	His	Ser	Leu 55	Pro	Leu	His	Pro	Leu 60	Ser	Ala	Ser	Cys
20	Ser 65	Ala	Pro	Ala	Суѕ	His 70	Ala	Ser	Asp	Thr	His 75	Leu	Leu	Tyr	Pro	Ser 80
25	Thr	Arg	Ala	Leu	Cys 85	Pro	Ser	Ile	Phe	Ala 90	Trp	Leu	Val	Ala	Pro 95	His
	Ser	Val	Phe	Arg 100	Thr	Asn	Ala	Pro	Gly 105	Pro	Thr	Pro	Ser	Ser 110	Gln	Ser
30	Ser	Pro	Val 115	Phe	Pro	Val	Phe	Pro 120	Val	Ser	Phe	Met	Ala 125	Leu	Ile	Val
	Cys	Xaa 130	Leu	Val	Cys	Cys										
35	(2)		05141		505	850			701							
40	(2)	INF	(i)	(ENCE A) L B) I D) I	CHA ENGT YPE: OPOL	RACT H: 7 ami OGY:	ERIS 1 am no a lin	TICS ino cid ear	acid		: 72	1:			
45	Met 1	Ala	Ser	Ser	Val 5	Pro	Ala	Gly	Gly	His 10	Thr	Arg	Ala	Gly	Gly 15	Ile
50	Phe	Leu	Ile	Gly 20	Lys	Leu	Asp	Leu	Glu 25	Ala	Ser	Leu	Phe	Lys 30	Ser	Phe
50	Gln	Trp	Leu 35	Pro	Phe	Val	Leu	Arg 40	Lys	Lys	Cys	Asn	Phe 45	Phe	Cys	Trp
55	Asp	Ser 50		Ala	His	Ser	Leu 55	Pro	Leu	His	Pro	Leu 60	Ser	Ala	Ser	Cys
	Ser 65		Pro	Ala	Cys	His 70	Ala									

	(2)	TINE	JKMA'	LTON	FOR	SEQ	ID I	W:	/22:							
5				(A) L B) T D) T	ENGT YPE: OPOL	H: 4 ami OGY:	6 am no a lin	ino cid ear	acid		: 7 2:	2:			
10	Phe 1	Ala	Trp	Leu	Val 5	Ala	Pro	His	Ser	Val 10	Phe	Arg	Thr	Asn	Ala 15	Pro
15	Gly	Pro	Thr	Pro 20	Ser	Ser	Gln	Ser	Ser 25	Pro	Val	Phe	Pro	Val 30	Phe	Pro
15	Val	Ser	Phe 35	Met	Ala	Leu	Ile	Val 40	Cys	Xaa	Leu	Val	Cys 45	Cys		
20	(2)	INFO	ORMAT	NOIT	FOR	SEQ	ID 1	vo: 7	723:							
25				(A) L B) T D) T	ENGT YPE : OPOL	H: 1 ami OGY:	34 a no a lin	mino cid ear	aci		: 72	3:			
30	Met 1	Ala	Ser	Ser	Val 5	Pro	Ala	Gly	Gly	His 10	Thr	Arg	Ala	Gly	Gly 15	Ile
	Phe	Leu	Ile	Gly 20	Lys	Leu	Asp	Leu	Glu 25	Ala	Ser	Leu	Phe	Lуs 30	Ser	Ph∈
35	Gln	Trp	Leu 35	Pro	Phe	Val	Leu	Arg 40	Lys	Lys	Cys	Asn	Phe 45	Phe	Cys	Trp
40	Asp	Ser 50	Ser	Ala	His	Ser	Leu 55	Pro	Leu	His	Pro	Leu 60	Ser	Ala	Ser	Суѕ
	Ser 65	Ala	Pro	Ala	Cys	His 70	Ala	Ser	Asp	Thr	His 75	Leu	Leu	Tyr	Pro	Ser 80
45	Thr	Arg	Ala	Leu	Cys 85	Pro	Ser	Ile	Phe	Ala 90	Trp	Leu	Val	Ala	Pro 95	His
	Ser	Val	Phe	Arg 100	Thr	Asn	Ala	Pro	Gly 105	Pro	Thr	Pro	Ser	Ser 110	Gln	Ser
50	Ser	Pro	Val 115	Phe	Pro	Val	Phe	Pro 120	Val	Ser	Phe	Met	Ala 125	Leu	Ile	Val
55	Cys	Xaa 130	Leu	Val	Cys	Cys										
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	νO: ΄	724:							

(i) SEQUENCE CHARACTERISTICS:

•	(A) LENGTH: 286 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 724:															
-			(xi)							EQ II	ON C	: 72	4:			
5	Met 1	Ala	Met	Glu	Gly 5	Tyr	Trp	Arg	Phe	Leu 10	Ala	Leu	Leu	Gly	Ser 15	Ala
10	Leu	Leu	Val	Gly 20	Phe	Leu	Ser	Val	Ile 25	Phe	Ala	Leu	Val	Trp 30	Val	Leu
	His	Tyr	Arg 35	Glu	Gly	Leu	Gly	Trp 40	Asp	Gly	Ser	Ala	Leu 45	Glu	Phe	Asn
15	Trp	His 50	Pro	Val	Leu	Met	Val 55	Thr	Gly	Phe	Val	Phe 60	Ile	Gln	Gly	Ile
20	Ala 65	Ile	Ile	Val	Tyr	Arg 70	Leu	Pro	Trp	Thr	Trp 75	Lys	Cys	Ser	Lys	Leu 80
	Leu	Met	Lys	Ser	Ile 85	His	Ala	Gly	Leu	Asn 90	Ala	Val	Ala	Ala	Ile 95	Leu
25	Ala	Ile	Ile	Ser 100	Val	Val	Ala	Val	Phe 105	Glu	Asn	His	Asn	Val 110	Asn	Asn
	Ile	Ala	Asn 115	Met	Tyr	Ser	Leu	His 120	Ser	Trp	Val	Gly	Leu 125	Ile	Ala	Val
30	Ile	Cys 130	Tyr	Leu	Leu	Gln	Leu 135	Leu	Ser	Gly	Phe	Ser 140	Val	Phe	Leu	Leu
35	Pro 145	Trp	Ala	Pro	Leu	Ser 150	Leu	Arg	Ala	Phe	Leu 155	Met	Pro	Ile	His	Val 160
			Gly		165	•				170					175	
40	Gly	Leu	Thr	Glu 180	Lys	Leu	Ile	Phe	Ser 185	Leu	Arg	Asp	Pro	Ala 190	Tyr	Ser
			Pro 195					200					205			
45		210	Phe				215					220				
50	Lys 225	Arg	Pro	Lys	Glu	Pro 230	Asn	Ser	Thr	Ile	Leu 235	His	Pro	Asn	Gly	Gly 240
	Thr	Glu	Gln	Gly	Ala 245	Arg	Gly	Ser	Met	Pro 250	Ala	Tyr	Ser	Gly	Asn 255	Asn
55	Met	Asp	Lys	Ser 260	Asp	Ser	Glu	Leu	Asn 265	Ser	Glu	Val	Ala	Ala 270	Arg	Lys
	Arg	Asn	Leu 275	Ala	Leu	Asp	Glu	Ala 280	Gly	Gln	Arg	Ser	Thr 285	Met		

	(2) INFORMATION FOR SEQ ID NO: 725:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 725: 	
10	Pro Gly Arg Ala Gly Pro Ser Pro Gly Leu Ser Leu Gln Leu Pro 1 5 10 15	Ala
15	Glu Pro Gly His Pro Ala Gly Asn Leu Ala Pro Leu Thr Ser Arg 20 25 30	Pro
	Gln Pro Leu Cys Arg Ile Pro Ala Val Pro Gly 35 40	
20	(2) INFORMATION FOR SEQ ID NO: 726:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 424 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 726: 	
30	Met Lys Leu Leu Gly Glu Cys Ser Ser Ser Ile Asp Ser Val Lys 1 5 10 15	Arg
	Leu Glu His Lys Leu Lys Glu Glu Glu Glu Ser Leu Pro Gly Phe 20 25 30	Val
35	Asn Leu His Ser Thr Glu Thr Gln Thr Ala Gly Val Ile Asp Arg 35 40 45	Trp
40	Glu Leu Leu Gln Ala Gln Ala Leu Ser Lys Glu Leu Arg Met Lys 50 55 60	
	Asn Leu Gln Lys Trp Gln Gln Phe Asn Ser Asp Leu Asn Ser Ile 65 70 75	80
45	Ala Trp Leu Gly Asp Thr Glu Glu Glu Leu Glu Gln Leu Gln Arg 85 90 95	
50	Glu Leu Ser Thr Asp Ile Gln Thr Ile Glu Leu Gln Ile Lys Lys 100 105 110	
50	Lys Glu Leu Gln Lys Ala Val Asp His Arg Lys Ala Ile Ile Leu 115 120 125	
55	Ile Asn Leu Cys Ser Pro Glu Phe Thr Gln Ala Asp Ser Lys Glu 130 135 140	
	Arg Asp Leu Gln Asp Arg Leu Xaa Gln Met Asn Gly Arg Trp Asp 145 150 155	160
60	Val Cys Ser Leu Leu Glu Glu Trp Arg Gly Leu Leu Gln Asp Ala 165 170 175	Leu

	Met	Gln	Cys	Gln 180	Gly	Phe	His	Glu	Met 185	Ser	His	Gly	Leu	Leu 190	Leu	Met
5	Leu	Glu	Asn 195	Ile	Asp	Arg	Arg	Lys 200	Asn	Glu	Ile	Val	Pro 205	Ile	Asp	Ser
10	Asn	Leu 210	Asp	Ala	Glu	Ile	Leu 215	Gln	Asp	His	His	Lys 220	Gln	Leu	Met	Gln
	Ile 225	Lys	His	Glu	Leu	Leu 230	Glu	Ser	Gln	Leu	Arg 235	Val	Ala	Ser	Leu	Gln 240
15	Asp	Met	Ser	Cys	Gln 245	Leu	Leu	Val	Asn	Ala 250	Glu	Gly	Thr	Asp	Cys 255	Leu
	Glu	Ala	Lys	Glu 260	Lys	Val	His	Val	Ile 265	Gly	Asn	Arg	Leu	Lys 270	Leu	Leu
20	Leu	Lys	Glu 275	Val	Ser	Arg	His	Ile 280	Lys	Glu	Leu	Glu	Lys 285	Leu	Leu	Asp
25	Val	Ser 290	Ser	Ser	Gln	Gln	Asp 295	Leu	Ser	Ser	Trp	Ser 300	Ser	Ala	Asp	Glu
	Leu 305	Asp	Thr	Ser	Gly	Ser 310	Val	Ser	Pro	Xaa	Ser 315	Gly	Arg	Ser	Thr	Pro 320
30	Asn	Arg	Gln	Lys	Thr 325	Pro	Arg	Gly	Lys	Суs 330	Ser	Leu	Ser	Gln	Pro 335	Gly
	Pro	Ser	Val	Ser 340	Ser	Pro	His	Ser	Arg 345	Ser	Thr	Lys	Gly	Gly 350	Ser	Asp
35	Ser	Ser	Leu 355	Ser	Glu	Pro	Xaa	Pro 360	Gly	Arg	Ser	Gly	Arg 365	Gly	Phe	Leu
10	Phe	Arg 370	Val	Leu	Arg	Ala	Ala 375	Leu	Pro	Leu	Gln	Leu 380	Leu	Leu	Leu	Leu
	Leu 385	Ile	Gly	Leu	Ala	Cys 390	Leu	Val	Pro	Met	Ser 395	Glu	Glu	Asp	Tyr	Ser 400
15	Cys	Ala	Leu	Ser	Asn 405	Asn	Phe	Ala	Arg	Ser 410	Phe	His	Pro	Met	Leu 415	Arg
	Tyr	Thr	Asn	Gly 420	Pro	Pro	Pro	Leu								
50																
	(2)	INFO	ORMAT	rion	FOR	SEQ	ID N	NO: 7	727 :							
55			(i) !	() ()	A) L: B) T	engt Ype :	H: 1 ami	ERIS' 10 a no a lin	mino cid		ds					
			(xi)	SEQU	JENCI	E DES	SCRI	PTIO	1: SI	EQ II	ON C	: 72	7 :			

 $60\,$ Met Lys Leu Gly Glu Cys Ser Ser Ser Ile Asp Ser Val Lys Arg

	1				5					10					15	
5	Leu	Glu	His	Lys 20	Leu	Lys	Glu	Glu	Glu 25	Glu	Ser	Leu	Pro	Gly 30	Phe	Val
5	Asn	Leu	His 35	Ser	Thr	Glu	Thr	Gln 40	Thr	Ala	Gly	Val	Ile 45	Asp	Arg	Trp
10	Glu	Leu 50	Leu	Gln	Ala	Gln	Ala 55	Leu	Ser	Lys	Glu	Leu 60	Arg	Met	Lys	Gln
	Asn 65	Leu	Gln	Lys	Trp	Gln 70	Gln	Phe	Asn	Ser	Asp 75	Leu	Asn	Ser	Ile	Trp 80
15	Ala	Trp	Leu	Gly	Asp 85	Thr	Glu	Glu	Glu	Leu 90	Glu	Gln	Leu	Gln	Arg 95	Leu
20	Glu	Leu	Ser	Thr 100	Asp	Ile	Gln	Thr	Ile 105	Glu	Leu	Gln	Ile	Lys 110		
	(2)	TNE	ORMA?	PT ON	FOR	SEO	TD 7	vio. '	728.							
25	(2)		(i) :	SEQU (ENCE A) L B) T	CHA ENGT YPE :	RACT H: 1 ami	ERIS	TICS mino cid	: aci	ds					
30			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 72	8:			
	Lys 1	Leu	Lys	Glu	Leu 5	Gln	Lys	Ala	Val	Asp 10	His	Arg	Lys	Ala	Ile 15	Ile
35	Leu	Ser	Ile	Asn 20	Leu	Cys	Ser	Pro	Glu 25	Phe	Thr	Gln	Ala	Asp 30	Ser	Lys
	Glu	Ser	Arg 35	Asp	Leu	Gln	Asp	Arg 40	Leu	Xaa	Gln	Met	Asn 45	Gly	Arg	Trp
40	Asp	Arg 50	Val	Cys	Ser	Leu	Leu 55	Glu	Glu	Trp	Arg	Gly 60	Leu	Leu	Gln	Asp
45	Ala 65	Leu	Met	Gln	Cys	Gln 70	Gly	Phe	His	Glu	Met 75	Ser	His	Gly	Leu	Leu 80
	Leu	Met	Leu	Glu	Asn 85	Ile	Asp	Arg	Arg	Lys 90	Asn	Glu	Ile	Val	Pro 95	Ile
. 50	Asp	Ser	Asn	Leu 100	Asp	Ala	Glu	Ile	Leu 105		Asp	His	His	Lys 110	Gln	Leu
	Met	Gln	Ile 115	Lys	His	Glu	Leu	Leu 120	•	Ser	G1n	Leu	Arg 125		Ala	Ser
55	Leu	Gln 130	Asp	Met	Ser	Cys	Gln 135									

60 (2) INFORMATION FOR SEQ ID NO: 729:

5				(A) L B) T D) T	ENGT YPE : OPOL	H: 1 ami OGY:	05 a no a lin	-	aci		: 72	9:			
10	Gln 1	Asp	Met	Ser	Cys 5	Gln	Leu	Leu	Val	Asn 10	Ala	Glu	Gly	Thr	Asp 15	Cys
	Leu	Glu	Ala	Lys 20	Glu	Lys	Val	His	Val 25	Ile	Gly	Asn	Arg	Leu 30	Lys	Leu
15	Leu	Leu	Lys 35	Glu	Val	Ser	Arg	His 40	Ile	Lys	Glu	Leu	Glu 45	Lys	Leu	Leu
	Asp	Val 50	Ser	Ser	Ser	Gln	Gln 55	Asp	Leu	Ser	Ser	Trp 60	Ser	Ser	Ala	Asp
20	Glu 65	Leu	Asp	Thr	Ser	Gly 70	Ser	Val	Ser	Pro	Xaa 75	Ser	Gly	Arg	Ser	Thr 80
25	Pro	Asn	Arg	Gln	Lys 85	Thr	Pro	Arg	Gly	Lys 90	Cys	Ser	Leu	Ser	Gln 95	Pro
23	Gly	Pro	Ser	Val 100	Ser	Ser	Pro	His	Ser 105							
30	(2)	INFO	ORMA'	rion	FOR	SEQ	ID N	10: T	730:							
35				(A) L B) T D) T	ENGT YPE: OPOL	H: 7 ami: OGY:	3 am no a lin	ear	acid						
	λen								N: S						6 1	-
40	1	Ser	361	neu	5	Giu	PLO	лаа	·	10	Arg	ser	GIY	Arg	15	Pne
	Leu	Phe	Arg	Val 20	Leu	Arg	Ala	Ala	Leu 25	Pro	Leu	Gln	Leu	Leu 30	Leu	Leu
45	Leu	Leu	Ile 35	Gly	Leu	Ala	Cys	Leu 40	Val	Pro	Met	Ser	Glu 45	Glu	Asp	Tyr
50	Ser	Cys 50	Ala	Leu	Ser	Asn	Asn 55	Phe	Ala	Arg	Ser	Phe 60	His	Pro	Met	Leu
50	Arg 65	Tyr	Thr	Asn	Gly	Pro 70	Pro	Pro	Leu							
55	(2)	INFO	ORMAT	rion	FOR	SEQ	ID N	ю: 7	731:							
			(i) :						rics		_					
60						ENGT YPE:			ino a cid	aCld	S					

WO 98/54963

•			(xi)					lin PTIO		EQ I	D NO	: 73	1:			
5	Met 1	Lys	Leu	Leu	Ile 5	Cys	Gly	Asn	Tyr	Leu 10	Ala	Pro	Ser	His	Ser 15	Glu
	Ser	Ser	Arg	Arg 20	Cys	Суѕ	Leu	Leu	Cys 25	Phe	Туг	Pro	Leu	Суs 30	Leu	Glu
10	Ile	Asn	Phe 35	Gly	Met	Lys	Val	Phe 40	Leu	Ser	Met	Pro	Phe 45	Leu	Val	Leu
15	Phe	Gln 50	Ser	Leu	Ile	Gln	Glu 55	Asp								
20	(2)	INF	(i)	SEQU () (ENCE A) L B) T D) T	CHA ENGT YPE:	RACT H: 2 ami OGY:	NO: 'ERIS' 71 a no a lin PTIO	TICS mino cid ear	aci		: 73	2:			
25	Arg 1	Ile						Ser						Lys	Tyr 15	Asp
30	Tyr	Leu	Pro	Thr 20	Thr	Val	Asn	Val	Cys 25	Ser	Glu	Leu	Val	Lys 30	Leu	Val
	Phe	Cys	Val 35	Leu	Val	Ser	Phe	Cys 40	Val	Ile	Lys	Lys	Asp 45	His	Gln	Ser
35	Arg	Asn 50	Leu	Lys	Tyr	Ala	Ser 55	Trp	Lys	Glu	Phe	Ser 60	Asp	Phe	Met	Lys
40	Trp 65	Ser	Ile	Pro	Ala	Phe 70	Leu	Tyr	Phe	Leu	Asp 75	Asn	Leu	Ile	Val	Phe 80
	Tyr	Val	Leu	Ser	Тут 85	Leu	Gln	Pro	Ala	Met 90	Ala	Val	Ile	Phe	Ser 95	Asn
45				100				Leu	105					110		
			115					Ala 120					125			
50		130					135	Thr				140				
55	G1y 145	Arg	Gly	Phe	His	His 150	Asp	Ala	Phe	Phe	Ser 155	Pro	Ser	Asn	Ser	Суs 160
	Leu	Leu	Phe	Arg	Asn 165	G1u	Cys	Pro	Arg	Lys 170	Asp	Asn	Cys	Thr	Ala 175	Lys
60	Glu	Trp	Thr	Phe 180	Pro	Glu	Ala	Lys	Trp 185	Asn	Thr	Thr	Ala	Arg 190	Val	Phe

PCT/US98/11422

	Ser	His	Ile 195	Arg	Leu	Gly	Met	Gly 200	His	Val	Leu	Ile	Ile 205	Val	Gln	Cys
5	Phe	Ile 210	Ser	Ser	Met	Ala	Asn 215	Ile	Тут	Asn	Glu	Lys 220	Ile	Leu	Lys	Glu
10	Gly 225		Gln	Leu	Thr	Glu 230	Xaa	Ile	Phe	Ile	Gln 235	Asn	Ser	Lys	Leu	Tyr 240
	Phe	Phe	Gly	Ile	Leu 245	Phe	Asn	Gly	Leu	Thr 250	Leu	Gly	Leu	Gln	Arg 255	Ser
15	Asn	Arg	Asp	Gln 260	Ile	Lys	Asn	Cys	Gly 265	Phe	Phe	Tyr	Gly	His 270	Ser	
20	(2)	INF	ORMA:	SEQU	ENCE	CHA	RACT	ERIS'	rics							
25			(xi)	(B) T D) T	YPE: OPOL	ami OGY:	no a lin	cid ear	acid		: 73	3 :	,		
	Asn 1	Ser	Val	Pro	Asn 5	Leu	Gln	Thr	Leu	Ala 10	Val	Leu	Thr	Glu	Ala 15	Ile
30	Gly	Pro	Glu	Pro 20	Ala	Ile	Pro	Arg	Xaa 25	Pro	Arg	Glu	Pro	Pro 30	Val	Ala
35	Thr	Ser	Thr 35	Pro	Ala	Thr	Pro	Ser 40	Ala	Gly	Pro	Gln	Pro 45	Leu	Pro	Thr
	Gly	Thr 50	Val	Leu	Val	Pro	Gly 55	Gly	Pro	Ala	Pro	Pro 60	Cys	Leu	Gly	Glu
40	Ala 65	Trp	Ala	Leu	Leu	Leu 70	Pro	Pro	Cys	Arg	Pro 75	Ser	Leu	Thr	Ser	Cys 80
	Phe	Trp	Ser	Pro	Arg 85	Pro	Ser	Pro	Trp	Lys 90	Glu	Thr	Gly	Val		
45																
	(2)	INFO	DRMAT	NOI	FOR	SEQ	ID N	Ю: 7	34:							
50			(i) s (xi)	() (1 (1	A) Li 3) T O) T	ENGTI YPE: OPOLA	H: 40 amir DGY:	o am no ac line	ino a cid ear	acids		734	l:			
55	Ala 1	Leu	Gln	Leu	Ala 5	Phe	Tyr	Pro	Asp	Ala 10	Val	Glu	Glu	Trp	Le u 15	Glu
60	Glu	Asn	Val	His 20	Pro	Ser	Leu	Gln	Arg 25	Leu	Gln	Xaa	Leu	Leu 30	Gln	Asp

WO 98/54963 PCT/US98/11422

720

Leu Ser Glu Val Ser Ala Pro Pro 35 5 (2) INFORMATION FOR SEQ ID NO: 735: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids 10 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 735: Cys His Pro Pro Ala Leu Ala Gly Thr Leu Leu Arg Thr Pro Glu Gly 15 Arg Ala His Ala Arg Gly Leu Leu Glu Ala Gly Gly Ala 20 25 20 (2) INFORMATION FOR SEQ ID NO: 736: (i) SEQUENCE CHARACTERISTICS: 25 (A) LENGTH: 59 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 736: 30 Gly Ser Ser Ser Thr Arg Ser Trp Phe Ser Thr Ser Ser Pro Gln Arg 10 Ser Ala Ser Trp His Ser Gly Ala Pro Ser Cys Arg Ser Trp Arg Leu 20 25 35 Pro Cys Ser Trp Leu Ser Thr Arg Met Pro Trp Arg Ser Gly Trp Arg Lys Thr Cys Thr Pro Ala Cys Ser Gly Cys Lys 40 50 55 (2) INFORMATION FOR SEQ ID NO: 737: 45 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 247 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 737: Met Arg Pro Asp Trp Lys Ala Gly Ala Gly Pro Gly Gly Pro Pro Gln 1 5 10 55 Lys Pro Ala Pro Ser Ser Gln Arg Lys Pro Pro Ala Arg Pro Ser Ala 25 Ala Ala Ala Ile Ala Val Ala Ala Ala Glu Glu Glu Arg Arg Leu

WO 98/54963 PCT/US98/11422

	Arg	Gln 50	Arg	Asn	Arg	Leu	Arg 55		Glu	Glu	Asp	Lys 60		Ala	Val	Glu
5	Arg 65	Cys	Leu	Glu	Glu	Leu 70	Val	Phe	Gly	' Asp	Val 75	Glu	Asn	Asp	Glu	Asp 80
	Ala	Leu	Leu	Arg	Arg 85	Leu	Arg	Gly	Pro	Arg 90	Val	Gln	Glu	His	Glu 95	Asp
10	Ser	Gly	Asp	Ser 100	Glu	Val	Glu	Asn	Glu 105		Lys	Gly	Asn	Phe 110	Pro	Pro
15	Gln	Lys	Lys 115	Pro	Val	Trp	Val	Asp 120	Glu	Glu	Asp	Glu	Asp 125	Glu	Glu	Met
	Val	Asp 130	Met	Met	Asn	Asn	Arg 135	Phe	Arg	Lys	Asp	Met 140	Met	Lys	Asn	Ala
20	Ser 145	Glu	Ser	Lys	Leu	Ser 150	Lys	Asp	Asn	Leu	Lys 155	Lys	Arg	Leu	Lys	Glu 160
	Glu	Phe	Gln	His	Ala 165	Met	Gly	Gly	Val	Pro 170	Ala	Trp	Ala	Glu	Thr 175	Thr
25	Lys	Arg	Lys	Thr 180	Ser	Ser	Asp	Asp	Glu 185	Ser	Glu	Glu	Asp	Glu 190	Asp	Asp
30			195					200		Ser			205			
	Arg	Gly 210	Ile	Leu	Lys	Met	Lys 215	Asn	Cys	Gln	His	Ala 220	Asn	Ala	Glu	Arg
35	Pro 225	Thr	Val	Ala	Arg	Ile 230	Ser	Ile	Cys	Ala	Val 235	Pro	Ser	Arg	Cys	Thr 240
40	Asp	Cys	Asp		Суs 245	Trp	Asp									
40	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	Ю: 7	38:							
45		(i) S	EQUE (A (E (E	NCE L) LE L) TY L) TO	CHAR INGTH 'PE:	ACTE H: 18 amir XGY:	RIST 30 am no ac line	ICS: nino :id :ar	ació		739				
50	Cys :													Glu .	Asp.	Ala
<i></i>	Leu :	Leu .	Arg i	Arg 1	Leu <i>I</i>	Arg (Gly :	Pro .	Arg ' 25	Val (Gln (Glu I	His	Glu.	Asp	Ser
55	Gly A	Asp :	Ser (31u \	/a1 (Glu i	Asn (Glu 7	Ala 1	Lys (Gly A	Asn	Phe:	Pro :	Pro (Gln
60	Lys]	Lys 1	Pro V	/a1 1	rp (/al /	Asp (Glu (Glu /	Asp (Glu <i>I</i>	Asp (Glu (Glu 1	Met '	Val

	6	5	c ne	C ASI	ı Asr	70	; Phe	e Arç	, Lys	Asp	Met 75		: Lys	s Asr	n Ala	Ser 80
5	G1	u Se	r Lys	s Leu	Ser 85	Lys	: Asp) Asr	Leu	Lys 90		Arg	, Leu	ı Lys	Glu 95	Glu
10	Phe	e Gl	n His	Ala 100	Met	Gly	Gly	Val	Pro 105		Trp	Ala	Glu	Thr 110		Lys
	Arg	g Ly:	115	Ser	Ser	Asp	Asp	Glu 120	Ser	Glu	Glu	Asp	Glu 125		Asp	Leu
15	Let	130	n Arg	Thr	Gly	Asn	Phe 135	Ile	Ser	Thr	Ser	Thr 140		Leu	Pro	Arg
	Gl _y 145	/ Ile	e Leu	ı Lys	Met	Lys 150	Asn	Cys	Gln	His	Ala 155	Asn	Ala	Glu	Arg	Pro 160
20	Thr	· Val	l Ala	Arg	Ile 165	Ser	Ile	Cys	Ala	Val 170	Pro	Ser	Arg	Cys	Thr 175	Asp
25	Cys	Asp	Gly	Cys 180												
	(2)	INF	овма.	TION	FOR	SEO	TD 1		720.							
30	,_,			SEQU	ENCE	CHA	RACT	ERIS	TICS mino		a_					
										acr	as					
			(xi)	(D) T	OPOL	OGY:	1in		-0 T			•			
35	Leu 1	Lys		SEQ	D) T	OPOL E DE:	OGY: SCRI	lin PTIO						Asp		Ser
35 40	1		Glu	(SEQ Lys	D) T UENCI Ile 5	OPOL E DE: Val	OGY: SCRI Arg	lin PTIO	ear N: S1	Glu 10	Val	Ser	Pro		15	
	Phe	Leu	Glu Leu	(SEQ) Lys Ile 20	D) T UENCI Ile 5 Asn	OPOL E DE: Val Gly	OGY: SCRI Arg Ile	lin PTIO Ser Ala	ear N: SI Phe Gly	Glu 10 Tyr	Val Leu	Ser His	Pro Leu	Leu 30	15 Ala	Met
	Phe Lys	Leu	Glu Leu Lys 35	(SEQUELYS Lys Ile 20 Glu	D) TOUENCE Ile 5 Asn Leu	OPOL E DE: Val Gly Ile	OGY: SCRI Arg Ile Gly	lin PTIO Ser Ala Ser 40	ear N: SI Phe Gly 25	Glu 10 Tyr Lys	Val Leu Ile Val	Ser His Asn	Pro Leu Gly 45	Leu 30 Arg	15 Ala Val	Met Ala
40 45	Phe Lys Ala	Leu Thr Ser 50	Leu Lys 35	(SEQ) Lys Ile 20 Glu Phe	D) T UENCI Ile 5 Asn Leu Ser	OPOL E DES Val Gly Ile Ser	OGY: SCRI Arg Ile Gly Asp 55	lin PTIO Ser Ala Ser 40	ear N: SI Phe Gly 25 Met	Glu 10 Tyr Lys	Val Leu Ile Val	Ser His Asn Tyr 60	Pro Leu Gly 45 Ala	Leu 30 Arg Ser	15 Ala Val Ser	Met Ala Gly
40	Phe Lys Ala Asp 65	Leu Thr Ser 50 Gly	Glu Leu Lys 35 Thr	(SEQQ Lys Ile 20 Glu Phe Val	D) T UENCI Ile 5 Asn Leu Ser	OPOL E DE: Val Gly Ile Ser Val 70	OGY: SCRI Arg Ile Gly Asp 55 Trp	linpTIO	ear N: SI Phe Gly 25 Met	Glu 10 Tyr Lys Lys	Val Leu Ile Val Ser 75	Ser His Asn Tyr 60 Arg	Pro Leu Gly 45 Ala Lys	Leu 30 Arg Ser Cys	15 Ala Val Ser Leu	Met Ala Gly Asn 80
40 45	Phe Lys Ala Asp 65 Arg	Leu Thr Ser 50 Gly	Glu Leu Lys 35 Thr Glu Val	(SEQQ Lys Ile 20 Glu Phe Val	D) TUENCI Ile 5 Asn Leu Ser Tyr Glu 85	OPOL E DE: Val Gly Ile Ser Val 70	OGY: SCRI Arg Ile Gly Asp 55 Trp	lin PTIO Ser Ala Ser 40 Ser Asp	ear N: SI Phe Gly 25 Met Lys	Glu 10 Tyr Lys Lys Asn Gly 90	Val Leu Ile Val Ser 75	Ser His Asn Tyr 60 Arg	Pro Leu Gly 45 Ala Lys	Leu 30 Arg Ser Cys	15 Ala Val Ser Leu Thr 95	Met Ala Gly Asn 80 Ser
40 45 50	Phe Lys Ala Asp 65 Arg	Leu Thr Ser 50 Gly Phe	Glu Leu Lys 35 Thr Glu Val	(SEQUE Lys Ile 20 Glu Phe Val Asp Gln 100	D) TUENCI Ile 5 Asn Leu Ser Tyr Glu 85	OPOL E DE: Val Gly Ile Ser Val 70 Gly Val	OGY: SCRI Arg Ile Gly Asp 55 Trp Ser Ala	lin PTIO Ser Ala Ser 40 Ser Asp Leu Cys	ear N: SI Phe Gly 25 Met Lys Val Tyr	Glu 10 Tyr Lys Lys Asn Gly 90	Val Leu Ile Val Ser 75 Leu	Ser His Asn Tyr 60 Arg Ser Cys	Pro Leu Gly 45 Ala Lys Ile	Leu 30 Arg Ser Cys Ala Val	15 Ala Val Ser Leu Thr 95 Val	Met Ala Gly Asn 80 Ser Asn

	13	U				13:	•				14	0			
5	Pro Th 145	r Thr	Glu	Ile	Leu 150	ı Ala	a Ile	e Ala	a Se	r Gl 15		s Me	t Lys	s Gl	u Ala 160
	Val Ar	g Leu	Val	His 165	Leu	Pro	Se:	r Cys	Th:		l Phe	e Sei	c Asr	175	
10	Val Il	e Lys	Asn 180	Lys	Asn	ılle	e Sei	189	s Vai	l Hi	s Thi	r Met	190		e Ser
	Pro Ar	g Ser 195	Gly	Tyr	Phe	Ala	200	ı Gly	/ Ası	n Glu	ı Lys	Gl ₃ 205		Ala	a Leu
15	Met Ty: 21		Leu	His	His	Тут 215		Asp	Phe	e					
20	(2) IN	FORMA'	TION	FOR	SEQ	ID	NO:	740:							
25			(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	l67 a .no a lir	amino acid near	ac:		D: 74	0 :			
30	Lys Ile 1	e Asn	Gly	Arg 5	Val	Ala	Ala	Ser	Thr		: Ser	Ser	Asp	Ser 15	Lys
	Lys Val	. Tyr	Ala 20	Ser	Ser	Gly	Asp	Gly 25	Glu	Val	Tyr	Val	Trp 30	Asp	Val
35	Asn Ser	35					40					45			
40	Gly Leu 50					55					60				
40	Ser Asn 65				70					75					80
45	Glu Thr			85					90					95	
	Val Thr		100					105					110		
50	Ser Glu	115					120					125			
5.5	Thr Val					135					140				
55	Val His 145	Thr 1	Met <i>i</i>	Asp 1	Phe : 150	Ser	Pro	Arg	Ser	Gly 155	Tyr	Phe	Ala	Leu	Gly 160
60	Asn Glu	Lys (_	Lys <i>I</i> 165	Ala 1	Leu									

	(2)	INE	ORM	ATION	1 FOF	SEÇ	OI Q	NO:	741:							
5			(i)		(A) : (B) '	LENG IYPE	TH: :	246 a	amin acid		ids					
10			(xi		(D)					SEQ :	ID NO	D: 74	11:			
	Met 1	Arg	; Ile	e Leu	Glr 5		ıle	: Leu	. Leu	Ala 10		Ala	Thr	Gl _y	Leu 15	
15	Gly	Gly	Glu	Thr 20		ılle	Ile	: Lys	Gly 25		e Glu	Cys	Lys	Leu 30		Se
	Gln	Pro	Trp 35	Gln	Ala	Ala	Leu	Phe 40		Lys	Thr	Arg	Leu 45		ı Cys	Gl;
20	Ala	Thr 50	Leu	Ile	: Ala	Pro	Arg 55		Leu	Leu	Thr	Ala 60		His	Cys	Le
25	Lys 65	Pro	Arg	Tyr	Ile	Val 70		Leu	Gly	Gln	His 75		Leu	Gln	Lys	Gli 80
	Glu	Gly	Cys	Glu	Gln 85		Arg	Thr	Ala	Thr 90		Ser	Phe	Pro	His 95	
30	Gly	Phe	Asn	Asn 100	Ser	Leu	Pro	Asn	Lys 105		His	Arg	Asn	Asp 110		Me
	Leu	Val	Lys 115	Met	Ala	Ser	Pro	Val 120	Ser	Ile	Thr	Trp	Ala 125		Arg	Pro
35	Leu	Thr 130	Leu	Ser	Ser	Arg	Cys 135	Val	Thr	Ala	Gly	Thr 140	Ser	Суѕ	Ser	Phe
40	Pro 145	Ala	Gly	Ala	Ala	Arg 150	Pro	Asp	Pro	Ser	Тут 155	Ala	Cys	Leu	Thr	Pro 160
	Cys	Asp	Ala	Pro	Thr 165	Ser	Pro	Ser	Leu	Ser 170	Thr	Arg	Ser	Val	Arg 175	Thr
45	Pro	Thr	Pro	Ala 180	Thr	Ser	Gln	Thr	Pro 185	Trp	Cys	Val	Pro	Ala 190	Cys	Arg
	Lys	Gly	Ala 195	Arg	Thr	Pro	Ala	Arg 200	Val	Thr	Pro	Gly	Ala 205	Leu	Trp	Ser
50	Val	Thr 210	Ser	Leu	Phe	Lys	Ala 215	Leu	Ser	Pro	Gly	Ala 220	Arg	Ile	Arg	Val
55	Arg 225	Ser	Pro	Glu	Ser	Leu 230	Val	Ser	Thr	Arg	Lys 235	Ser	Ala	Asn	Met	Trp 240
	Thr	Gly	Ser	Arg	Arg	Arg										

WO 98/54963 PCT/US98/11422

725

-	(2) IN	FORM	MOITA	FOF	SEÇ) ID	NO:	742	:						
5					(A) 1 (B) 1 (D) 1	LENG IYPE IOPO	TH: : : a.m.: LOGY	228 a ino a : lir	amin acid near	o ac		D: 74	12 :			
10	Gli 1	ı Thi l	: Arg	Ile	: Ile 5	Lys	Gly	Ph∈	Glu	Cys 10		: Leu	His	Ser	Gln 15	
	Tr	Glr	n Ala	Ala 20	Leu	Phe	Glu	Lys	Thr 25		Leu	Leu	Cys	Gly 30		Thi
15	Leu	ı Ile	Ala 35	Pro	Arg	Trp	Leu	Leu 40		Ala	Ala	His	Cys 45		Lys	Pro
20	Arg	50	: Ile	Val	His	Leu	Gly 55	Gln	His	Asn	Leu	Gln 60		Glu	Glu	Gly
	Cys 65	Glu	Gln	Thr	Arg	Thr 70	Ala	Thr	Glu	Ser	Phe 75	Pro	His	Pro	Gly	Phe 80
25	Asn	Asn	Ser	Leu	Pro 85	Asn	Lys	Asp	His	Arg 90	Asn	Asp	Ile	Met	Leu 95	Val
	Lys	Met	Ala	Ser 100	Pro	Val	Ser	Ile	Thr 105	Trp	Ala	Val	Arg	Pro 110	Leu	Thr
30	Leu	Ser	Ser 115	Arg	Суѕ	Va1	Thr	Ala 120	Gly	Thr	Ser	Суѕ	Ser 125	Phe	Pro	Ala
35	Gly	Ala 130	Ala	Arg	Pro	Asp	Pro 135	Ser	Туг	Ala	Cys	Leu 140	Thr	Pro	Cys	Asp
	Ala 145	Pro	Thr	Ser	Pro	Ser 150	Leu	Ser	Thr	Arg	Ser 155	Val	Arg	Thr	Pro	Thr 160
40	Pro	Ala	Thr	Ser	Gln 165	Thr	Pro	Trp	Cys	Val 170	Pro	Ala	Cys	Arg	Lys 175	Gly
	Ala	Arg	Thr	Pro 180	A1a	Arg	Va1	Thr	Pro 185	Gly	Ala	Leu	Trp	Ser 190	Val	Thr
45	Ser	Leu	Phe 195	Lys	Ala	Leu	Ser	Pro 200	Gly	Ala	Arg	Ile	Arg 205	Val	Arg	Ser
50	Pro	Glu 210	.Ser	Leu	Val	Ser	Thr 215	Arg	Lys	Ser	Ala	Asn 220	Met	Trp	Thr	Gly
-	Ser 225	Arg	Arg	Arg												
55	(2)	INFO	RMAT	'ION	FOR	SEQ	ID N	0: 7	43:							

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 74 amino acids
(B) TYPE: amino acid

•			(xi)				.OGY: .SCRI			EQ I	D NO	: 74	3:			
5	Cys 1	Lys	Leu	His	Ser 5	Gln	Pro	Trp	Gln	Ala 10	Ala	Leu	Phe	Glu	Lys 15	Thr
	Arg	Leu	Leu	Cys 20	Gly	Ala	Thr	Leu	Ile 25	Ala	Pro	Arg	Trp	Leu 30	Leu	Thr
10	Ala	Ala	His 35	Cys	Leu	Lys	Pro	Arg 40	Tyr	Ile	Val	His	Leu 45	Gly	Gln	His
15	Asn	Leu 50	Gln	Lys	Glu	Glu	Gly 55	Cys	Glu	Gln	Thr	Arg 60	Thr	Ala	Thr	Glu
	Ser 65	Phe	Pro	His	Pro	Gly 70	Phe	Asn	Asn	Ser						
20	(2)	INFO	ORMA:	rion	FOR	SEQ	ID P	NO: 7	744:							
25			(i) :	(A) L B) T D) T	ENGT YPE: OPOL	H: 8 ami OGY:	1 am no a lin	ino cid ear	acid		: 74	4:			
30	Val 1	Leu	Gln	Gly	Arg 5	Тут	Phe	Ser	Pro	Ile 10	Leu	Glu	Met	Arg	Arg 15	Leu
	Arg	Pro	Glu	Gly 20	Xaa	Xaa	Asn	Leu	Pro 25	Gly	Gly	Ser	Arg	Ala 30	Gln	ŗvs
35	Glu	Pro	Arg 35	Gln	qzA	Leu	Thr	Leu 40	Val	Leu	Trp	Pro	His 45	Cys	Pro	His
40	Phe	Ala 50	Met	Thr	Arg	Ser	Tyr 55	Val	Pro	Thr	Lys	Gln 60	C-js	Met	Val	31r.
	Gly 65	Ser	Phe	Tyr	Cys	I1e 70	Phe	Ile	Phe	Lys	Gly 75	Pro	Val	Glm	Asn	80 TZD
45	Cys															
50	(2)	INFO	ORMAT	EQUE	ENCE	CHA	RACTE	ERIST	CICS:							
55			(xi)	(1 (1	3) T 3) T	YPE: OPOLA	amir OGY:	no ac line	id ear	acio		745	; :			
	Met 1	Pro	Ile	Ile	Asp 5	Gln	Val	Asn	Pro	Glu 10	Leu	His	Asp	Phe	Мет 15	Gln
60	Ser	Ala	Glu	Val	G1y	Thr	I1e	Phe	Ala	Leu	Ser	Trp	Leu	Ile	Thr	œrT

				20	:				25	5				30)	
5	Phe	317	/ His	7al	. Leu	Ser	: Asp	Phe 40	. Arg	, His	7al	. Уа <u>1</u>	. Arg 45		туг	As _I
	Phe	Phe 50	: Le:	: Ala	. Cys	His	970 55	Leu	Met	: Pro	Ile	€0 £7₹		: Ala	Ala	\Val
10	Ile 65	∵al	Let	Tyr	Arg	Glu 70	Glm	. Glu	Val	Leu	Asp 75		Asp	Cys	Asp	Met 80
	Ala	Ser	Val	His	His 35	Leu	Leu	Ser	Gln	Ile 90	Pro	Gln	Asp	Leu	Pro 95	
15	Glu	Thr	Leu	Ile 100	Ser	Arg	Maa	Slu	T:- <u>*</u> 105	Phe	Leu	Phe	Ser	Phe 110	Pro	His
20	Pro	Asn	Leu 115	Leu	Glγ	Arg	320	Leu 120	Pro	Asn	Ser	Lys	Leu 125	Arg	Gly	Arg
	Glm	Prs 138	Le:	Leu	Ser	Lys	Thr 135	Leu	Ser	פֿגדַ	His	Gln 140	Pro	Ser	Arg	Gly
25	Leu 145	lle	Try	Cys	Cys	Gly 130	Ser	Gly	Хаа	yrg	Gly 155	Leu	Leu	Arg	Pro	Glu 160
	Asp .	æş	<u> </u>	Lys	Asp 165	Val	Leu	Thr	Lys	?ro 170	Arg	Thr	Asn	Arg	Phe 175	Val
30	lys :	Leu	Ala	Val 120	Met	Gly	Leu	Thr	Val 135	Ala	Leu	Gly	Ala	Ala 190	Ala	Leu
35	Ala '	7al	Val 195	Lув	Ser	Ala	Leu	Glu 200	Trp	Ala	Pro	_'/s	Phe 205	Gln	Leu	Gln
	Leu :	Phe 213	Pro													
40	(2)	2೯೦	FMAI	ICII	FCR	<u>ಕಕ</u> ಾರಿ	וו כנ	io: 7	45:							
45				, (E	1) LE 3) TY 0) TO	ZIGT: PZ:)POL(i: 70 amir XGY:) ami no ac line	no a id ar	cids		746	:			
50	Cys 3	,zo	Glu	Phe :	Phe :	īle	. oze	Ala '	Thr :	Leu : 10	Pro (Cys I	Pro	Phe '	Val 15	Phe
	Ala P	he	Thr	Ser (20	Slu J	¥la:	Ser :	Ser ;	erg 1 25	Ala 1	fyr I	Leu 1	Thr (Gln <i>i</i> 30	Arg (Gly
55	Pro G	17 (Gly 1 35	Leu /	Ala (3ln 2	⊱sn l	Leu 1 40	let!	Pro I	Leu I	Pro V	/al (Gly I	Phe 1	ľrp
60	Met G	1y : 50	Ser I	Leu P	ero E	Pro I	Pro 1 55	(T)	ys T	rp A	rg I	ys 1 60	rp V	/al s	Ser (Glų

```
Ala Cys Ser Cys Phe Cys
      65
5
      (2) INFORMATION FOR SEQ ID NO: 747:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 20 amino acids
10
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 747:
      Gly Phe Gly Ser Val Ser Ala Ala Gly Arg Arg Ser Gly Gly Thr Trp
15
                                          10
      Gln Pro Val Gln
20
      (2) INFORMATION FOR SEQ ID NO: 748:
              (i) SEQUENCE CHARACTERISTICS:
25
                     (A) LENGTH: 16 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 748:
      Pro Gly Gly Leu Ala Val Gly Ser Arg Trp Trp Ser Arg Ser Leu Thr
30
                                           10
                       5
35
       (2) INFORMATION FOR SEQ ID NO: 749:
40
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 30 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 749:
45
       Leu Glu Pro Ser Arg Gln Arg Arg Pro Arg Arg Arg Gly Gly Thr Ser
                                            10
       Arg Pro Glu Thr Asp Gln Arg Ala Lys Cys Trp Arg Gln Leu
 50
                                        25
                    20
       (2) INFORMATION FOR SEQ ID NO: 750:
 55
               (i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 11 amino acids
                      (B) TYPE: amino acid
                      (D) TOPOLOGY: linear
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 750:
 60
```

	Val (Cys :	Leu i	Arg (Cys (Gln A	Asn .	Arg 1	Met (Glu 10	Asn					
5																
	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0: 7	51:							
10			•	(NCE A) LE B) TY	NGTH PE: POLC	H: 36 amir XGY:	67 am no ac line	mino cid ear	acio		751				
15) NO:			Pro	I.eu	Val
15	Met 1	Ala	Ala	Cys	Thr 5	Ala	Arg	Arg	PIO	10	Arg	GIY	GIII	FIO	15	Vai
20	Val	Pro	Val	Ala 20	Asp	Xaa	Gly	Pro	Val 25	Ala	Lys	Ala	Ala	Leu 30	Cys	Ala
20	Ala	Xaa	Ala 35	Gly	Ala	Phe	Ser	Pro 40	Ala	Ser	Thr	Thr	Thr 45	Thr	Arg	Arg
25	His	Leu 50	Ser	Ser	Arg	Asn	Arg 55	Pro	Glu	Gly	Lys	Val 60	Leu	Glu	Thr	Val
	Gly 65	Val	Phe	Glu	Val	Pro 70	Lys	Gln	Asn	Gly	Lys 75	Tyr	Glu	Thr	Gly	Gln 80
30	Leu	Phe	Leu	His	Ser 85	Ile	Phe	Gly	Tyr	Arg 90	Gly	Val	Val	Leu	Phe 95	Pro
35	Trp	Gln	Ala	Arg 100	Leu	Xaa	Asp	Arg	Asp 105	Val	Ala	Ser	Ala	Ala 110	Pro	Glu
55	Lys	Ala	Glu 115		Pro	Ala		His 120	Gly	Ser	Lys	Glu	Val 125	Lys	Gly	Lys
40	Thr	His 130		Tyr	Tyr	Gln	Val 135		Ile	Asp	Ala	Arg 140		Cys	Pro	His
	Ile 145		Gln	Arg	Ser	Gln 150		Glu	Ala	. Val	. Thr 155		Leu	Ala	Asn	His 160
45	Asp	Asp	Ser	Arg	Ala 165		Тух	Ala	Ile	170		Leu	Asp	Tyr	Val 175	Ser
50	His	Glu	Asp	180		Pro	Туг	Thr	Ser 185		Asp	Gln	Val	Pro 190		Gln
50	His	Glu	195		e Glu	Arg	Phe	Leu 200		а Туз	Asp	Gln	205		Ala	Pro
55	Pro	Phe 210		Ala	a Arg	Glu	Thi 215		a Arg	g Ala	a Try	220		Lys	: Asn	His
	Pro 225) Let	ı Glu	ı Lev	230		val	l His	s Arg	g Gli 235		Thr	Glu	ı Asr	1le 240
60	Arg	y Val	l Thi	c Val	l Ile	e Pro	Phe	э Туг	Met	Gl:	y Met	. Arg	g Glu	ı Ala	a Glr	n Asn

					245					250					255	
5	Ser	His	Val	Tyr 260	Trp	Trp	Arg	Tyr	Cys 265	Ile	Arg	Leu	Glu	Asn 270	Leu	Asp
3	Ser	Asp	Val 275	Val	Gln	Leu	Arg	Glu 280	Arg	His	Trp	Arg	Ile 285	Phe	Ser	Leu
10	Ser	Gly 290	Thr	Leu	Glu	Thr	Val 295	Arg	Gly	Arg	Gly	Val 300	Val	Gly	Arg	Glu
	Pro 305	Val	Leu	Ser	Lys	Glu 310	Gln	Pro	Ala	Phe	Gln 315	Tyr	Ser	Ser	His	Val 320
15	Ser	Leu	Gln	Ala	Ser 325	Ser	Gly	His	Met	Trp 330	Gly	Thr	Phe	Arg	Phe 335	Glu
20	Arg	Pro	Asp	Gly 340		His	Phe	Asp	Val 345	Arg	Ile	Pro	Pro	Phe 350	Ser	Leu
	Glu	Ser	Asn 355		Asp	Glu	Lys	Thr 360	Pro	Pro	Ser	Gly	Leu 365	His	Тхр	
25	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	752:							
			(i)						STICS							
30			(xi)		(B) 1 (D) 1	rype ropol	. am:	ino a : lim				o: 75	52:			
35	Met 1					Ala					, Arc			Pro	Let 19	ı Val
	Va]	l Pro	Val	L Ala		Xaa	Gly	Pro	val 25		a Lys	Ala	a Alá	1 Let 30		s Ala
40	Ala	3														
45	(2)) IN	FORM	AT IOI	n FOI	R SEG	Q ID	NO:	753	:						
			(i)	SEQ	(A)	LENG	TH:	33 a	STIC: mino acid	aci	.ds					
50			(xi) SE	(D)	TOPO	LOGY	: li	near		ID N	0: 7	53:			
55		t Al 1	a Al	a Cy		r Al 5	a Ar	g Ar	g Pr		y Ar O	g Gl	y Gl	n Pr	o Le 1	u Val 5
	Va	l Pr	o Va	1 Al 2		p Xa	a Gl	y Pr	o Va 2		a Ly	s Al	a Al		u Су 0	s Ala
60	Al	a														

```
(2) INFORMATION FOR SEQ ID NO: 754:
5
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 33 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
10
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 754:
     Met Ala Ala Cys Thr Ala Arg Arg Pro Gly Arg Gly Gln Pro Leu Val
                                          10
      Val Pro Val Ala Asp Xaa Gly Pro Val Ala Lys Ala Ala Leu Cys Ala
15
     Ala
20
      (2) INFORMATION FOR SEQ ID NO: 755:
25
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 33 amino acids
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 755:
30
      Met Ala Ala Cys Thr Ala Arg Arg Pro Gly Arg Gly Gln Pro Leu Val
      Val Pro Val Ala Asp Xaa Gly Pro Val Ala Lys Ala Ala Leu Cys Ala
35
      Ala
40
      (2) INFORMATION FOR SEQ ID NO: 756:
              (i) SEQUENCE CHARACTERISTICS:
45
                     (A) LENGTH: 33 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 756:
      Met Ala Ala Cys Thr Ala Arg Arg Pro Gly Arg Gly Gln Pro Leu Val
50
                               10
       Val Pro Val Ala Asp Xaa Gly Pro Val Ala Lys Ala Ala Leu Cys Ala
55
       Ala
```

	(2) INFORMATION FOR SEQ ID NO: 757:
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 757:
10	Val Leu Glu Thr Val Gly Val Phe Glu Val Pro Lys Gln Asn Gly Lys 1 5 10 15
	Tyr Glu Thr Gly Gln Leu Phe Leu His Ser Ile Phe Gly Tyr Arg Gly 20 25 30
15	Val Val Leu 35
20	(2) INFORMATION FOR SEQ ID NO: 758:
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 amino acids (B) TYPE: amino acid
2.5	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 758:
30	Gly Leu Asp Tyr Val Ser His Glu Asp Ile Leu Pro Tyr Thr Ser Thr 1 5 10 15
35	(2) INFORMATION FOR SEQ ID NO: 759:
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 759:
45	Asp Val His Arg Glu Thr Thr Glu Asn Ile Arg Val Thr Val Ile Pro 1 5 10 15
	Phe Tyr Met
50	
	(2) INFORMATION FOR SEQ ID NO: 760:
55	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 760:
60	Tro Tro Arg Tvr Cvs Ile Arg Leu Clu Asp Leu Asp Ser Asp Val Val

WO 98/54963 PCT/US98/11422

```
10
                                                              15
     Gln Leu Arg Glu Arg
                  20
5
      (2) INFORMATION FOR SEQ ID NO: 761:
10
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 26 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 761:
15
     Pro Ala Phe Gln Tyr Ser Ser His Val Ser Leu Gln Ala Ser Ser Gly
                      5
     His Met Trp Gly Thr Phe Arg Phe Glu Arg
20
                  20
      (2) INFORMATION FOR SEQ ID NO: 762:
25
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 11 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
30
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 762:
     Ser Leu Cys Cys Pro Glu Gly Ala Glu Gly Cys
                       5
35
      (2) INFORMATION FOR SEQ ID NO: 763:
             (i) SEQUENCE CHARACTERISTICS:
40
                    (A) LENGTH: 12 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 763:
45
      Gln Leu Lys Lys Thr His Tyr Asp Arg Pro Cys Pro
                    5
       1
50
      (2) INFORMATION FOR SEQ ID NO: 764:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 12 amino acids
                    (B) TYPE: amino acid
55
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 764:
     Gln Leu Lys Lys Thr His Tyr Asp Arg Pro Cys Pro
       1
                       5 -
60
```

	(2)	INF	ORMAT	NOI	FOR	SEQ	ID N	10: 7	765 :							
5			(i) :	(;	A) L B) T	ENGT YPE:	H: 1 ami		mino cid	: aci	ds					
10			(xi)	SEQ						EQ II	ON C	: 76	5:			
10	Ala 1	Gln	Arg	Lys	Lys 5	Glu	Met	Val	Leu	Ser 10	Glu	Lys	Val	Ser	Gln 15	Leu
15	Met	Glu	Trp	Thr 20	Asn	Lys	Arg	Pro	Val 25	Ile	Arg	Met	Asn	Gly 30	Asp	Lys
	Phe	Arg	Arg 35	Leu	Va1	Lys	Ala	Pro 40	Pro	Arg	Asn	Tyr	Ser 45	Val	Ile	Val
20	Met	Phe 50	Thr	Ala	Leu	Gln	Leu 55	His	Arg	Gln	Cys	Val 60	Val	Cys	Lys	Gln
25	Ala 65	Asp	Glu	Glu	Phe	Gln 70	Ile	Leu	Ala	Asn	Ser 75	Trp	Arg	Tyr	Ser	Ser 80
	Ala	Phe	Thr	Asn	Arg 85	Ile	Phe	Phe	Ala	Met 90	Val	Asp	Phe	Asp	Glu 95	Gly
30	Ser	Asp	Val	Phe 100	Gln	Met	Leu	Asn	Met 105	Asn	Ser	Ala	Pro	Thr 110	Phe	Ile
	Asn	Phe	Pro 115	Ala	Lys	Gly	Lys	Pro 120	Lys	Arg	Gly	Asp	Thr 125	Тут	Glu	Leu
35	Gln	Val 130	Arg	Gly	Phe	Ser	Ala 135	Glu	Gln	Ile	Ala	Arg 140	Trp	Ile	Ala	Asp
40	Arg 145		Asp	Va1	Asn	Ile 150	Arg	Val	Ile	Arg	Pro 155	Pro	Asn	Met	Ala	Ala 160
	Arg	Trp	Arg	Phe	Trp 165	Cys	Val	Ser	Val	Thr 170						
45	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	766:							
50				(A) I B) T D) T	ENGT YPE: OPOL	TH: 1 ami OGY:	.5 an .no a : lir	nino cid near	ació): 76	66:			
55	Met 1		. Va1	Ala	Leu 5		Ile	Val	Cys	Asp 10		Pro	Ser	Ala	Ser 15	

(2) Information for SEQ ID NO: 767: $60\,$

PCT/US98/11422 WO 98/54963

735

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 16 amino acids (B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 767:

Ala Gln Arg Lys Lys Glu Met Val Leu Ser Glu Lys Val Ser Gln Leu 10 5

10

5

15 (2) INFORMATION FOR SEQ ID NO: 768:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 17 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 768:

Met Glu Trp Thr Asn Lys Arg Pro Val Ile Arg Met Asn Gly Asp Lys 5 10 15

25

Phe

30

20

(2) INFORMATION FOR SEQ ID NO: 769:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 56 amino acids

35 (B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 769:

Arg Arg Leu Val Lys Ala Pro Pro Arg Asn Tyr Ser Val Ile Val Met 40

Phe Thr Ala Leu Gln Leu His Arg Gln Cys Val Val Cys Lys Gln Ala

45 Asp Glu Glu Phe Gln Ile Leu Ala Asn Ser Trp Arg Tyr Ser Ser Ala

Phe Thr Asn Arg Ile Phe Phe Ala 50

50

(2) INFORMATION FOR SEQ ID NO: 770:

(i) SEQUENCE CHARACTERISTICS: 55

(A) LENGTH: 31 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ. ID NO: 770:

```
Met Val Asp Phe Asp Glu Gly Ser Asp Val Phe Gln Met Leu Asn Met
                                          10
     Asn Ser Ala Pro Thr Phe Ile Asn Phe Pro Ala Lys Gly Lys Pro
5
      (2) INFORMATION FOR SEQ ID NO: 771:
10
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 37 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
15
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 771:
      Lys Arg Gly Asp Thr Tyr Glu Leu Gln Val Arg Gly Phe Ser Ala Glu
20
      Gln Ile Ala Arg Trp Ile Ala Asp Arg Thr Asp Val Asn Ile Arg Val
      Ile Arg Pro Pro Asn
              35
25
      (2) INFORMATION FOR SEQ ID NO: 772:
30
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 44 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 772:
35
      Tyr Ala Gly Pro Leu Met Leu Gly Leu Leu Leu Ala Val Ile Gly Gly
      Leu Val Tyr Leu Arg Arg Val Ile Trp Asn Phe Ser Leu Ile Lys Leu
40
      Asp Gly Leu Leu Gln Leu Cys Val Leu Cys Leu Leu
                                   40
45
       (2) INFORMATION FOR SEQ ID NO: 773:
              (i) SEQUENCE CHARACTERISTICS:
50
                     (A) LENGTH: 17 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 773:
       Asp Ala Val Phe Lys Gly Phe Ser Asp Cys Leu Leu Lys Leu Gly Asp
55
        1
       Ser
 60
```

	(2)	INFO	RMAT	ION I	FOR S	SEQ :	ID NO	o: 7	74:								
5				(B	LE TY	NGTH PE: POLC	: 20 amin GY:	ami o ac line	no a id ar			774	:				
.0	Cys 1	Gln	Glu	Gly .	Ala :	Lys .	Asp 1	Met '	Trp /	Asp :	Lys	Leu i	Arg	Lys	Glu 15	Ser	
15	Lys	Asn	Leu ,	Asn 20													
20	(2)			TION SEQUE											,		
				(I (I	3) TY 3) TC	PE:	amir XGY:	s ami no ac line	id ar								
25				SEQU													
- 0	Val 1		Leu	Val	Ser 5	Leu	Ser	Ala	Ala	Leu 10	Ala	Thr	Trp	Leu	Ser 15	Phe	
30 35	(2)	TNIE	OPM3'	rion	FOR	SEO	TD N	IO • 7	76.								
33	(2)	INF		SEQUI	ENCE	CHAI	RACTI		rics		s						
40			(xi)	(:	B) T	YPE: OPOL	ami OGY:	no ao line	cid ear			: 776	5 :				
45	Met		Leu	Lys	Leu 5	Asn	Gly	Arg	Tyr	Ile 10	Ser	Leu	Ile	Leu	Ala 15	Val	
-1 J	Glr	ılle	Ala	Tyr 20	Leu	Val	Gln	Ala	Val 25	Arg	Ala	Ala	G1y	Lys 30	Cys	Asp	
50	Ala	a Val	Phe 35	Lys	Gly	Phe	Ser	Asp 40	Cys	Leu	Leu	Lys	Leu 45	Gly	Asp	Ser	
55																	
	(2)	INF	ORMA	TION	FOR	SEQ	ID I	NO: '	777 :								

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 90 amino acids

			(xi)	(E) TY) TO ENCE	POLO	XGY:	line	ear	Q II	NO:	777	' :			
5	Pro A	Ala	Ala	Trp .	Asp A	Asp	Lys	Thr	Asn	Ile 10	Lys	Thr	Val	Cys	Thr 15	Tyr
10	Trp (Glu	Asp	Phe 20	His	Ser	Cys	Thr	Val 25	Thr	Ala	Leu	Thr	Asp 30	Суѕ	Gln
10	Glu	Gly	Ala 35	Lys	Asp :	Met	Trp	Asp 40	Lys	Leu	Arg	Lys	Glu 45	Ser	Lys	Asn
15	Leu .	Asn 50	Ile	Gln	Gly	Ser	Leu 55	Phe	Glu	Leu	Cys	Gly 60	Ser	Gly	Asn	Gly
	Ala . 65	Ala	Gly	Ser	Leu	Leu 70	Pro	Ala	Phe	Pro	Val 75	Leu	Leu	Val	Ser	Leu 80
20	Ser	Ala	Ala	Leu	Ala 85	Thr	Trp	Leu	Ser	Phe 90						
25	(2)	INF	ORMA:	rion SEQU						:						
30			(xi)	(A) L B) T D) T UENCI	YPE: OPOL	ami OGY:	no a lin	cid ear): 77	8:			
35	1		Leu		5					10					15	
			Ala	20			-	•	25					30		
40			Phe					40					45	•		
		50					55	i				60)			
45	65		L Cys			70)				75	5				8
50	Leu	Thi	c Asp	Cys	Gln 85		ı Gly	/ Ala	a Lys	Ası 90		Tr	Ası	Lys	Let 95	
	Lys	Glu	ı Ser	100		Le	ı Asr	ılle	e Glr 109		y Sei	c Lei	ı Ph	e Glu 110		ı Cy
55	Gly	Sei	r Gly 115		Gly	Ala	a Ala	120		c Le	ı Le	ı Pr	2 Al		e Pro	o Va
	Leu	13	u Vai	l Ser	Leu	Se:	r Ala 13		a Le	Ala	a Th	r Trj 14		u Se	r Ph	е
60																

PCT/US98/11422 WO 98/54963

```
(2) INFORMATION FOR SEQ ID NO: 779:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 34 amino acids
5
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 779:
     Met Asn Ser Ala Ala Gly Phe Ser His Leu Asp Arg Arg Glu Arg Val
10
                                          10
     Leu Lys Leu Gly Glu Ser Phe Glu Lys Gln Pro Arg Cys Ala Ser Thr
                              25
                  20
15
      Leu Cys
20
      (2) INFORMATION FOR SEQ ID NO: 780:
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 28 amino acids
25
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 780:
      Thr Ile Tyr Pro Thr Glu Glu Glu Leu Gln Ala Val Gln Lys Ile Val
30
                        5
        1
      Ser Ile Thr Glu Arg Ala Leu Lys Leu Val Ser Asp
                   20
35
       (2) INFORMATION FOR SEQ ID .NO: 781:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 30 amino acids
40
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 781:
       Arg Ala Leu Lys Gly Val Leu Arg Val Gly Val Leu Ala Lys Gly Leu
 45
       Leu Leu Arg Gly Asp Arg Asn Val Asn Leu Val Leu Cys
                                        25
                    20
 50
       (2) INFORMATION FOR SEQ ID NO: 782:
 55
               (i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 39 amino acids
                      (B) TYPE: amino acid
                      (D) TOPOLOGY: linear
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 782:
 60
```

```
Ala Leu Ala Ala Leu Arg His Ala Lys Trp Phe Gln Ala Arg Ala Asn
                                        10
     Gly Leu Gln Ser Cys Val Ile Ile Ile Arg Ile Leu Arg Asp Leu Cys
5
                                     25
                20
     Gln Arg Val Pro Thr Trp Ser
              35
10
     (2) INFORMATION FOR SEQ ID NO: 783:
             (i) SEQUENCE CHARACTERISTICS:
15
                   (A) LENGTH: 17 amino acids
                    (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 783:
     Gly Asp Ala Leu Arg Arg Val Phe Glu Cys Ile Ser Ser Gly Ile Ile
20
                                    10
                       5
      Leu
25
      (2) INFORMATION FOR SEQ ID NO: 784:
30
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 16 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 784:
35
      Leu Ala Phe Arg Gln Ile His Lys Val Leu Gly Met Asp Pro Leu Pro
              5 . . 10
40
       (2) INFORMATION FOR SEQ ID NO: 785:
 45
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 342 amino acids
                   . (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 785:
 50
       Thr Ile Tyr Pro Thr Glu Glu Glu Leu Gln Ala Val Gln Lys Ile Val
              5
        1
       Ser Ile Thr Glu Arg Ala Leu Lys Leu Val Ser Asp Ser Leu Ser Glu
 55
                                      25
       His Glu Lys Asn Lys Asn Lys Glu Gly Asp Asp Lys Lys Glu Gly Gly
                          40
                35
 60
```

	Lys	Asp 50	Arg	Ala	Leu	Lys	Gly 55	Val	Leu	Arg	Val	Gly 60	Val	Leu	Ala	Lys
5	Gly 65	Leu	Leu	Leu	Arg	Gly 70	Asp	Arg	Asn	Val	Asn 75	Leu	Val	Leu	Leu	Cys 80
	Ser	Glu	Lys	Pro	Ser 85	Lys	Thr	Leu	Leu	Ser 90	Arg	Ile	Ala	Glu	Asn 95	Leu
10	Pro	Lys	Gln	Leu 100	Ala	Val	Ile	Ser	Pro 105	Glu	Lys	Tyr	Asp	Ile 110	Lys	Cys
15	Ala	Val	Ser 115	Glu	Ala	Ala	Ile	Ile 120	Leu	Asn	Ser	Cys	Val 125	Glu	Pro	Lys
	Met	Gln 130	Val	Thr	Ile	Thr	Leu 135	Thr	Ser	Pro	Ile	Ile 140	Arg	Glu	Glu	Asn
20	Met 145	Arg	Glu	Gly	Asp	Val 150	Thr	Ser	Gly	Met	Val 155	Lys	Asp	Pro	Pro	Asp 160
	Val	Leu	Asp	Arg	Gln 165	Lys	Cys	Leu	Asp	Ala 170	Leu	Ala	Ala	Leu	Arg 175	His
25	Ala	Lys	Trp	Phe 180	Gln	Ala	Arg	Ala	Asn 185	Gly	Leu	Gln	Ser	Cys 190	Val	Ile
30	Ile	Ile	Arg 195		Leu	Arg	Asp	Leu 200	Cys	Gln	Arg	Val	Pro 205	Thr	Trp	Ser
	Asp	Phe 210		Ser	Trp	Ala	Met 215		Leu	Leu	Val	Glu 220		Ala	Ile	Ser
35	Ser 225		Ser	Ser	Pro	Gln 230		Pro	Gly	Asp	Ala 235		Arg	Arg	Val	Phe 240
	Glu	Cys	∶Il∈	Ser	Ser 245		ΙĮє	Ile	Leu	Lys 250		Ser	Pro	Gly	Leu 255	Leu
40	Asp	Pro	Cys	Glu 260		Asp	Pro	Phe	Asp 265		Leu	Ala	Thr	Met 270		Asp
45	Gln	Glr	275		Asp	Ile	Thr	Ser 280		Ala	Glr	. Phe	285		Arg	Leu
	Leu	290		e Arg	Glr	ılle	His 299		Val	Leu	ı Gly	Met 300		Pro	Leu	Pro
50	Glr 309		: Sei	Glr	a Arg	310		ı Ile	His	: Asr	Asr 315		, Lys	Ar <u>c</u>	Arg	Arg 320
	Asr	Sei	c As <u>r</u>	Gly	7 Val		Gly	y Ph∈	e Glu	330		ı Gly	/ Lys	: Lys	335	Lys
55	Lys	s Ası	э Туг	340		n Phe	•									

```
(i) SEQUENCE CHARACTERISTICS: .
                    (A) LENGTH: 24 amino acids
                    (B) TYPE: amino acid
5
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 786:
     Met Gly Ser Gln His Ser Ala Ala Ala Arg Pro Ser Ser Cys Arg Arg
                                         10
10
      Lys Gln Glu Asp Asp Arg Asp Gly
                  20
15
      (2) INFORMATION FOR SEQ ID NO: 787:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 30 amino acids
20
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 787:
      Leu Leu Ala Glu Arg Glu Gln Glu Glu Ala Ile Ala Gln Phe Pro Tyr
25
      Val Glu Phe Thr Gly Arg Asp Ser Ile Thr Cys Leu Thr Cys
                   20
                                      25
30
      (2) INFORMATION FOR SEQ ID NO: 788:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 34 amino acids
35
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 788:
40
      Gln Gly Thr Gly Tyr Ile Pro Thr Glu Gln Val Asn Glu Leu Val Ala
                        5 ·
                                           10
        1
      Leu Ile Pro His Ser Asp Gln Arg Leu Arg Pro Gln Arg Thr Lys Gln
                                       25
45
      Tyr Val
50
       (2) INFORMATION FOR SEQ ID NO: 789:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 55 amino acids
                     (B) TYPE: amino acid
 55
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 789:
       Ala Arg Leu Asn Val Gly Arg Glu Ser Leu Lys Arg Glu Met Leu Lys
 60
                         5
                                       10
```

```
Ser Gln Gly Val Lys Val Ser Glu Ser Pro Met Gly Ala Arg His Ser
                                     25
     Ser Trp Pro Glu Gly Ala Ala Phe Cys Lys Lys Val Gln Gly Ala Gln
                         40
     Met Gln Phe Pro Pro Arg Arg
          50
10
      (2) INFORMATION FOR SEQ ID NO: 790:
15
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 15 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 790:
20
      Ala Arg Leu Asn Val Gly Arg Glu Ser Leu Lys Arg Glu Met Leu
            5
       1
25
      (2) INFORMATION FOR SEQ ID NO: 791:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 20 amino acids
30
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 791:
      Leu Lys Ser Gln Gly Val Lys Val Ser Glu Ser Pro Met Gly Ala Arg
35
                                 10
      His Ser Ser Trp
40
      (2) INFORMATION FOR SEQ ID NO: 792:
              (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 17 amino acids
45
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 792:
      Ala Phe Cys Lys Lys Val Gln Gly Ala Gln Met Gln Phe Pro Pro Arg
50
        1
      Arg
55
       (2) INFORMATION FOR SEQ ID NO: 793:
60
             (i) SEQUENCE CHARACTERISTICS:
```

PCT/US98/11422

```
(A) LENGTH: 17 amino acids
                    (B) TYPE: amino acid
                   (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NC: 793:
5
     Ala Phe Cys Lys Lys Val Gln Gly Ala Gln Met Gln Phe Pro Pro Arg
                                         10
     Arg
10
      (2) INFORMATION FOR SEQ ID NO: 794:
15
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 37 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
20
             (xi) SEQUENCE DESCRIPTION: SEQ ID NC: 794:
      Val Gln Val Leu Glu Gln Leu Thr Asn Asn Ala Val Ala Glu Ser Arg
                                      10
                      5
      Phe Asn Asp Ala Ala Tyr Tyr Trp Met Leu Ser Met Gln Cys Leu
25
                                     25
      Asp Ile Ala Gln Asp
               35
30
      (2) INFORMATION FOR SEQ ID NO: 795:
              (i) SEQUENCE CHARACTERISTICS:
35
                    (A) LENGTH: 34 amino acids
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 795:
40
      Pro Ala Gln Lys Asp Thr Met Leu Gly Lys Phe Tyr His Phe Gln Arg
      Leu Ala Glu Leu Tyr His Gly Tyr His Ala Ile His Arg His Thr Glu .
45
                                       25
                   20
       Asp Pro
 50
       (2) INFORMATION FOR SEQ ID NO: 796:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 27 amino acids
 55
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 796:
       Leu Ala Lys Gln Ser Lys Ala Leu Gly Ala Tyr Arg Leu Ala Arg His
 60
```

WO 98/54963

		•			
	1	5		10	15
5	Ala Tyr As	sp Lys Leu <i>!</i> 20	Arg Gly Leu	Tyr Ile Pro 25	
	(2) INFORM	MATION FOR S	SEQ ID NO:	797:	
10		(B) TY (D) TO	NGTH: 36 am PE: amino a POLOGY: lin	ino acids cid	797:
15	Ala Arg Pl	he Gln Lys : 5	Ser Ile Glu	Leu Gly Thr	Leu Thr Ile Arg Ala 15
20	Lys Pro P	he His Asp : 20	Ser Glu Glu	Leu Val Pro 25	Leu Cys Tyr Arg Cys 30
	Ser Thr A	sn Asn 35			
25	(2) INFOR	MATION FOR	SEQ ID NO:	798:	
30		(B) TY (D) TO	ENGTH: 73 ar /PE: amino a DPOLOGY: li	nino acids acid	: 798:
35	Pro Leu L	eu Asn Asn 5	Leu Gly Asr	val Cys Ile 10	Asn Cys Arg Gln Pro
40		20		25 Glu Glu Ala	His Leu Val Glu Phe 30 Ile Ser Leu Ile Asp 45
45	Leu Glu V 50	/al Leu Arg	Pro Lys Arg	g Asp Asp Arg	Gln Leu Glu Ile Cys 60
	Lys Gln G 65	Gln Leu Pro	Asp Ser Cys	s Gly	
50					
	(2) INFOR	RMATION FOR	SEQ ID NO:	799:	
55		(B) T (D) T	ENGTH: 29 a YPE: amino OPOLOGY: li	mino acids acid	o: 799:
60	Met Pro	rvr Ala Gln	Trp Leu Ala	a Glu Asn Asp	Arg Phe Glu Glu Ala

WO 98/54963 PCT/US98/11422

746

15 Gln Lys Ala Phe His Lys Ala Gly Arg Gln Arg Glu Ala 20 5 (2) INFORMATION FOR SEQ ID NO: 800: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 800: 15 Phe Ser Val His Arg Pro Glu Thr Leu Phe Asn Ile Ser Arg Phe Leu Leu His Ser Leu Pro Lys Asp Thr Pro Ser Gly Ile Ser Lys Val Lys 25 20 20 Ile Leu Phe Thr 35

A. The indications made below relate to the microorganism referre on page 161 . line N/A	d to in the description
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Colle	ection
Address of depositary institution (including postal code and country	ν)
10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	
Date of deposit March 27, 1997	Accession Number 97979
C. ADDITIONAL INDICATIONS (leave blank if not applicable	e) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION E. SEPARATE FURNISHING OF INDICATIONS (leave to the indications listed below will be submitted to the International Bookship)	blank If not applicable)
Humber of Deposit }	
For receiving Office use only	For International Bureau use only
This sheet was received with the distinguished application with a sale of the	This sheet was received by the International Bureau on:
Authorized officer 0 4 JUN 1998	Authorized officer

A. The indications made below relate to the microorganism referr on page 162 , line N/A	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Col	llection
Address of depositary institution (including postal code and count	n)
10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	
Date of deposit April 4, 1997	Accession Number 97974
C. ADDITIONAL INDICATIONS (leave blank if not applicate	ble) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATIO	NS ARE MADE (if the indications are not for all designated States)
E CERADATE EMPAGNANCE OF ANDROLLED	
E. SEPARATE FURNISHING OF INDICATIONS (leave The indications listed below will be submitted to the International Number of Deposit")	e blank if not applicable) Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application described and the international des	This sheet was received by the International Bureau on: Authorized officer

A. The indications made below relate to the microorganism referre on page 162 . line N/A	d to in the description
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Coll	ection
Address of depositary institution (including postal code and country 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	ν)
Date of deposit May 29, 1997	Accession Number 209080
C. ADDITIONAL INDICATIONS (leave blank if not applicable) D. DESIGNATED STATES FOR WHICH INDICATION E. SEPARATE FURNISHING OF INDICATIONS (leave	IS ARE MADE (if the indications are not for all designated States)
The indications listed below will be submitted to the International E Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession

A. The indications made below relate to the microorganism referon page 164 , line No.	erred to in the description
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture C	Collection
Address of depositary institution (including postal code and cou	untry)
10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	
Date of deposit December 3, 1997	Accession Number 209511
C. ADDITIONAL INDICATIONS (leave blank if not applic	cable) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATI	ONS ARE MADE (if the indications are not for all designated States)
·	
E. SEPARATE FURNISHING OF INDICATIONS (lea	
The indications listed below will be submitted to the International Number of Deposit")	al Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application Anton Smith Personal Specialist	This sheet was received by the International Bureau on:
Authorized officer (703) 005-3747	Authorized officer
0 4 JUN 1998	

A. The indications made below relate to the microorganism referred on page 167 . line N/A	•
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Coll	lection
Address of depositary institution (including postal code and country 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	(יכ
Date of deposit April 4, 1997	Accession Number 97975
C. ADDITIONAL INDICATIONS (leave blank if not applicab	le) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	
E. SEPARATE FURNISHING OF INDICATIONS (leave The indications listed below will be submitted to the International I Number of Deposit")	blank if not applicable) Bureau later (specify the general nature of the indications. e.g "Accession
For receiving Office use only This sheet was received with the international application Authorized officer O 4 JUN 1998	For International Bureau use only This sheet was received by the International Bureau on: Authorized officer

A. The indications made below relate to the microorganism reference on page 167 , line N.	erred to in the description /A .
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture C	Collection
Address of depositary institution (including postal code and cou	untry)
10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	
Date of deposit May 29, 1997	Accession Number 209081
C. ADDITIONAL INDICATIONS (leave blank if not applic	cable) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	ONS ARE MADE (if the indications are not for all designated States)
F SEPARATE FIRMISHING OF INDICATIONS	
E. SEPARATE FURNISHING OF INDICATIONS (lea The indications listed below will be submitted to the International	ave blank if not applicable) al Bureau later (specify the general nature of the indications, e.g., "Accession
Number of Deposit")	, and a second of the second o
	:
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer 1988 CONTRACTOR STREET	Authorized officer
	11

A. The indications made below relate to the microorganism refer on page 171 , line N/A	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Co	llection
Address of depositary institution (including postal code and coun	ıry)
10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	
Date of deposit April 4, 1997	Accession Number 97976
C. ADDITIONAL INDICATIONS (leave blank if not applications)	This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	e blank if not applicable)
	Bureau later (specify the general nature of the indications. e.g "Accession
, - , ,	
For receiving Office use only	For International Bureau use only
This sheet was received with the international application Cialist	This sheet was received by the International Bureau on:
Authorized officer	Authorized officer
.0 4 JUN 1886	

A. The indications made below relate to the microorganism refer on page 172 , line N/A	1
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Co	llection
Address of depositary institution (including postal code and coun	try)
10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	
Date of deposit April 4, 1997	Accession Number 97977
C. ADDITIONAL INDICATIONS (leave blank if not applica	ble) This information is continued on an additional sheet
·	ONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave The indications listed below will be submitted to the International	e blank if not applicable) Bureau later (specify the general nature of the indications. e.g., "Accession
Number of Deposil")	
For receiving Office use only	For International Bureau use only
This sheet was received with the international application in the internation in the inter	This sheet was received by the International Bureau on:
Authorized officer 0 4 JUN 1998	Authorized officer
·	

A. The indications made below relate to the microorganism referred to in the description on page 172 . line N/A			
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet		
Name of depositary institution American Type Culture Coll	ection		
Address of depositary institution (including postal code and country	7)		
10801 University Boulevard Manassas, Virginia 20110-2209 United States of America			
Date of deposit May 29, 1997 Accession Number 209082			
C. ADDITIONAL INDICATIONS (leave blank if not applicable	This information is continued on an additional sheet		
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the Indications are not for all designated States)			
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)		
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")			
For receiving Office use only	For International Bureau use only		
Authorized officer 0 4 JUN 1998	This sheet was received by the International Bureau on: Authorized officer		

A. The indications made below relate to the microorganism referred to in the description on page 176 , line N/A	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Col	lection .
Address of depositary institution (including postal code and count	(ry)
10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	
Date of deposit April 28, 1997	Accession Number 209007
C. ADDITIONAL INDICATIONS (leave blank if not applicable	ble) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATION	
E. SEPARATE FURNISHING OF INDICATIONS (leave The indications listed below will be submitted to the international	e blank if not applicable) Bureau later (specify the general nature of the indications. e.g., "Accession"
Number of Deposit")	Duteau tater (specify the general mature of the mateurons, e.g., Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application elist Authorized officer 0 4 JUN 1998	This sheet was received by the International Bureau on: Authorized officer

A. The indications made below relate to the microorganism reference on page 176 , line N	erred to in the description //A
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture C	Collection
Address of depositary institution (including postal code and coa	untry)
10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	
Date of deposit May 29, 1997	Accession Number 209083
C. ADDITIONAL INDICATIONS (leave blank if not applied	cable) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATI	ONS ARE MADE (if the Indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (lea	Tue hlank if not applicable)
	al Bureau later (specify the general nature of the indications, e.g., "Accession
Number of Deposit)	
For receiving Office use only	For International Bureau use only
This sheet was received with the international application The ratio and Moderalist The ratio and Moderalist The ratio and Moderalist	This sheet was received by the International Bureau on:
Authorized officer 1760 000-1747	

A. The indications made below relate to the microorganism referred to in the description on page 179 . line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution American Type Culture Collection		
Address of depositary institution (including postal code and coun	וקי)	
10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	·	
Date of deposit April 28, 1997	Accession Number 209008	
C. ADDITIONAL INDICATIONS (leave blank if not applications)	ble) This information is continued on an additional sheet —	
	ONS ARE MADE (if the indications are not for all designated States)	
E. SEPARATE FURNISHING OF INDICATIONS (leave The indications listed below will be submitted to the International		
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")		
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application	This sheet was received by the International Bureau on:	
Authorized officer	Authorized officer	
398 		

A. The indications made below relate to the microorganism referred to in the description on page 179 , line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution American Type Culture Col	lection	
Address of depositary institution (including postal code and count 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	ry)	
Date of deposit May 29, 1997	Accession Number 209084	
C. ADDITIONAL INDICATIONS (leave blank if not applicable	This information is continued on an additional sheet	
D. DESIGNATED STATES FOR WHICH INDICATION		
E. SEPARATE FURNISHING OF INDICATIONS (leave		
The indications listed below will be submitted to the International Number of Deposit")	Bureau later (specify the general nature of the indications, e.g., "Accession	
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application Consciolist Consciolist Authorized officer () 4 JUN 1998	This sheet was received by the International Bureau on: Authorized officer	

A. The indications made below relate to the microorganism referred to in the description on page 180 , line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution American Type Culture C	Collection	
Address of depositary institution (including postal code and con	untry)	
10801 University Boulevard Manassas, Virginia 20110-2209 United States of America		
Date of deposit April 28, 1997	Accession Number 209010	
C. ADDITIONAL INDICATIONS (leave blank if not applied	cable) This information is continued on an additional sheet	
D. DESIGNATED STATES FOR WHICH INDICATI	ONS ARE MADE (if the indications are not for all designated States)	
E. SEPARATE FURNISHING OF INDICATIONS (led	ave blank if not applicable)	
The indications listed below will be submitted to the Internation	nal Bureau later (specify the general nature of the indications, e.g., "Accession	
Number of Deposit")	, v	
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application	This sheet was received by the International Bureau on:	
Authorized officer	Authorized officer	
7 4 000 3 98	A 2.1 A composition of	
	11	

A. The indications made below relate to the microorganism referred to in the description on page 180 , line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution American Type Culture Coll	lection	
Address of depositary institution (including postal code and country	חי)	
10801 University Boulevard Manassas, Virginia 20110-2209 United States of America		
Date of deposit May 29, 1997	Accession Number 209085	
C. ADDITIONAL INDICATIONS (leave blank if not applicable	This information is continued on an additional sheet	
D. DESIGNATED STATES FOR WHICH INDICATION	NS ARE MADE (if the indications are not for all designated States)	
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)	
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit") .		
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application descriptions Authorized officer 0 4 JUN 1998	This sheet was received by the International Bureau on: Authorized officer	

A. The indications made below relate to the microorganism referred to in the description on page 182 , line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution American Type Culture Co	ellection	
Address of depositary institution (including postal code and coun	ury)	
10801 University Boulevard Manassas, Virginia 20110-2209 United States of America		
Date of deposit April 28, 1997	Accession Number 209009	
C. ADDITIONAL INDICATIONS (leave blank if not applicate	able) This information is continued on an additional sheet	
	ONS ARE MADE (if the indications are not for all designated States)	
E. SEPARATE FURNISHING OF INDICATIONS (leave) The indications listed below will be submitted to the International	ve blank if not applicable) Bureau later (specify the general nature of the indications. e.g., "Accession"	
Number of Deposit")		
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application Authorized officer	This sheet was received by the International Bureau on: Authorized officer	
	11	

A. The indications made below relate to the microorganism referred to in the description on page 186 , line N/A		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution American Type Culture Collection		
Address of depositary institution (including postal code and country 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	y)	
Date of deposit April 28, 1997	Accession Number 209011	
C. ADDITIONAL INDICATIONS (leave blank if not applicable	(e) This information is continued on an additional sheet	
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)		
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable) The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")		
For receiving Office use only This sheet was received with the international application Specialist Section Operations Authorized officer O A JUN 1998	For International Bureau use only This sheet was received by the International Bureau on: Authorized officer	

A. The indications made below relate to the microorganism referred to in the description on page 174 , line N/A .		
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet	
Name of depositary institution American Type Culture C	Collection	
Address of depositary institution (including postal code and con	untry)	
10801 University Boulevard Manassas, Virginia 20110-2209 United States of America		
Date of deposit April 7, 1998	Accession Number 209746	
C. ADDITIONAL INDICATIONS (leave blank if not applied	cable) This information is continued on an additional sheet	
D. DESIGNATED STATES FOR MINISTER		
b. Designated states for which indicati	IONS ARE MADE (if the indications are not for all designated States)	
E. SEPARATE FURNISHING OF INDICATIONS (le	ave blank if not applicable)	
	nal Bureau later (specify the general nature of the indications, e.g., "Accession	
, and the second of the second		
For receiving Office use only	For International Bureau use only	
This sheet was received with the international application	This sheet was received by the International Bureau on:	
Authorized officer	Authorized officer	
0 4 JUN 1998		

What Is Claimed Is:

- 1. An isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:
- (a) a polynucleotide fragment of SEQ ID NO:X or a polynucleotide fragment of the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (b) a polynucleotide encoding a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (c) a polynucleotide encoding a polypeptide domain of SEQ ID NO:Y or a polypeptide domain encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (d) a polynucleotide encoding a polypeptide epitope of SEQ ID NO:Y or a polypeptide epitope encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (e) a polynucleotide encoding a polypeptide of SEQ ID NO:Y or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X, having biological activity;
 - (f) a polynucleotide which is a variant of SEQ ID NO:X;
 - (g) a polynucleotide which is an allelic variant of SEQ ID NO:X;
 - (h) a polynucleotide which encodes a species homologue of the SEQ ID NO:Y;
- (i) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h), wherein said polynucleotide does not hybridize under stringent conditions to a nucleic acid molecule having a nucleotide sequence of only A residues or of only T residues.
- 2. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding a secreted protein.
- 3. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding the sequence identified as SEQ ID NO:Y or the polypeptide encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.

- 4. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises the entire nucleotide sequence of SEQ ID NO:X or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.
- 5. The isolated nucleic acid molecule of claim 2, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.
- 6. The isolated nucleic acid molecule of claim 3, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.
- 7. A recombinant vector comprising the isolated nucleic acid molecule of claim 1.
- 8. A method of making a recombinant host cell comprising the isolated nucleic acid molecule of claim 1.
 - 9. A recombinant host cell produced by the method of claim 8.
 - 10. The recombinant host cell of claim 9 comprising vector sequences.
- 11. An isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence selected from the group consisting of:
- (a) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
- (b) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z, having biological activity;
- (c) a polypeptide domain of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
- (d) a polypeptide epitope of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
- (e) a secreted form of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
- (f) a full length protein of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;

- (g) a variant of SEQ ID NO:Y;
- (h) an allelic variant of SEQ ID NO:Y; or
- (i) a species homologue of the SEQ ID NO:Y.
- 12. The isolated polypeptide of claim 11, wherein the secreted form or the full length protein comprises sequential amino acid deletions from either the C-terminus or the N-terminus.
- 13. An isolated antibody that binds specifically to the isolated polypeptide of claim 11.
- 14. A recombinant host cell that expresses the isolated polypeptide of claim 11.
 - 15. A method of making an isolated polypeptide comprising:
- (a) culturing the recombinant host cell of claim 14 under conditions such that said polypeptide is expressed; and
 - (b) recovering said polypeptide.
 - 16. The polypeptide produced by claim 15.
- 17. A method for preventing, treating, or ameliorating a medical condition, comprising administering to a mammalian subject a therapeutically effective amount of the polypeptide of claim 11 or the polynucleotide of claim 1.
- 18. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
- (a) determining the presence or absence of a mutation in the polynucleotide of claim 1; and
- (b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or absence of said mutation.
- 19. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
- (a) determining the presence or amount of expression of the polypeptide of claim 11 in a biological sample; and
- (b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or amount of expression of the polypeptide.

- 20. A method for identifying a binding partner to the polypeptide of claim 11 comprising:
 - (a) contacting the polypeptide of claim 11 with a binding partner; and
- (b) determining whether the binding partner effects an activity of the polypeptide.
 - 21. The gene corresponding to the cDNA sequence of SEQ ID NO:Y.
- 22. A method of identifying an activity in a biological assay, wherein the method comprises:
 - (a) expressing SEQ ID NO:X in a cell;
 - (b) isolating the supernatant;
 - (c) detecting an activity in a biological assay; and
 - (d) identifying the protein in the supernatant having the activity.
 - 23. The product produced by the method of claim 22.

PATENT COOPERATION TREATY

PCT

DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT (PCT Article 17(2)(a) and Rule 39)

Applicant's or agent's file reference PZ007PCT	IMPORTANT DECLARATION	Date of mailing (day/month/year) 1 4 OCT 1998	
International application No.	International filing date (day/month/year)	(Earliest) Priority Date (day/month/year)	
PCT/US98/11422	04 JUNE 1998	06 JUNE 1997	
International Patent Classification (IPC) Please See Continuation Sheet.	International Patent Classification (IPC) or both national classification and IPC		
Applicant HUMAN GENOME SCIENCES, INC.			
This International Searching Authority hereby declares, according to Article 17(2)(a), that no international search report will be established on the international application for the reasons indicated below. 1.			
- 1.555 500 Conmination Street.		i	
Name and mailing address of the ISA/U Commissioner of Patents and Traden Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230	BRIAN R. STA	NTON 703) 308-0196	

Form PCT/ISA/203 (July 1992)*

DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/11422

The International Patent Classification (IPC) or National Classification and IPC are as listed below: IPC(6): A01N 37/18, 43/04; C12Q 1/00, 1/02, 1/68; C12N 5/00, 5/06, 15/00, 15/06, 15/09, 15/10, 15/11; G01N 33/53 US CL.: 435, 4, 7.1, 69.1, 70.1, 71.1, 172.3, 243, 320.1, 325, 410; 514/2, 44; 530/350, 387.1 4. Further Comments (Continued): Applicant has not responded to the invitation to pay additional fees mailed on 04 August 1998. Therefore, the search would be conducted on the first appearing invention whihe includes claims 1-10, 14, and 15 in so far as these claims are drawn to the first ten (10) appearing nucleotide sequences. However, no meaningful search could be carried out on these sequences because the CRF that was received for this case on 15 June 1998 was technically defective and could not be used to conduct a search of the prior art.