ĐẠI SỐ CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) Bài 18. Không gian vectơ Euclide

PGS TS My Vinh Quang

Ngày 10 tháng 3 năm 2006

1 Các khái niệm cơ bản

1.1 Tích vô hướng và không gian vectơ Euclide

Định nghĩa. Cho V là không gian vecto trên \mathbb{R} . Một tích vô hướng trên V là một ánh xạ

$$\langle , \rangle : V \times V \to \mathbb{R}$$

 $(\alpha, \beta) \mapsto \langle \alpha, \beta \rangle$

thỏa các điều kiện sau: với mọi $\alpha, \alpha_1, \alpha_2 \in V, \beta \in V$ với mọi $a \in \mathbb{R}$,

i)
$$\langle \alpha_1 + \alpha_2, \beta \rangle = \langle \alpha_1, \beta \rangle + \langle \alpha_2, \beta \rangle$$

ii)
$$\langle a\alpha, \beta \rangle = a \langle \alpha, \beta \rangle$$

iii)
$$\langle \alpha, \beta \rangle = \langle \beta, \alpha \rangle$$

iv)
$$\langle \alpha, \alpha \rangle \geq 0$$

$$\langle \alpha, \alpha \rangle = 0 \text{ khi và chỉ khi } \alpha = 0.$$

Chú ý rằng, do tính chất i), ii). Khi cố định vectơ $\beta \in V$, tích vô hướng là một ánh xạ tuyến tính đối với biến thứ nhất. Do tính chất đối xứng (giao hoán) iii), ta dễ dàng suy ra khi cố định $\alpha \in V$, thì tích vô hướng là một ánh xạ tuyến tính đối với biến thứ 2, tức là: $\alpha, \beta, \beta_1, \beta_2 \in V$, $a \in \mathbb{R}$ ta có:

i')
$$\langle \alpha, \beta_1 + \beta_2 \rangle = \langle \alpha, \beta_1 \rangle + \langle \alpha, \beta_2 \rangle$$

ii')
$$\langle \alpha, a\beta \rangle = a \langle \alpha, \beta \rangle$$

Định nghĩa

Không gian vectơ trên \mathbb{R} , trong đó có thêm một tích vô hướng được gọi là không gian vectơ Euclide.

Chú ý

Từ tính chất tuyến tính của tích vô hướng theo từng biến (tính chất i, ii, i', ii'), ta dễ dàng có các công thức sau:

•
$$\langle 0, \alpha \rangle = \langle \alpha, 0 \rangle = 0$$
 với mọi $\alpha \in V$.

$$\langle \alpha, \beta \rangle = \left\langle \sum_{i=1}^{m} a_i \alpha_i, \sum_{j=1}^{n} b_j \beta_j \right\rangle = a_i b_j \sum_{i=1}^{m} \sum_{j=1}^{n} \langle \alpha_i, \beta_j \rangle$$

1.2 Các ví dụ

1. Cho $V = \mathbb{R}^n$, $\forall \alpha = (x_1, \dots, x_n), \beta = (y_1, \dots, y_n) \in V$, ta định nghĩa:

$$\langle \alpha, \beta \rangle = x_1 y_1 + \dots + x_n y_n = \sum_{i=1}^n x_i y_i$$

Đây là một tích vô hướng trên \mathbb{R}^n và $(\mathbb{R}^n, \langle , \rangle)$ là một không gian vecto Euclide.

2. Cho V=C[a,b] là không gian vectơ các hàm số thực liên tục trên [a,b]. Với mọi f(x), g(x) thuộc C[a,b] ta định nghĩa:

$$\langle f(x), g(x) \rangle = \int_{a}^{b} f(x)g(x)dx$$

Đây là một tích vô hướng trên C[a,b] và $(C[a,b],\langle\,,\rangle)$ là một không gian vecto Euclide.

1.3 Độ dài và góc

1. **Định nghĩa.** Cho E là không gian vectơ Euclide. Với mỗi vectơ $\alpha \in E$, độ dài của vectơ α , ký hiệu là $\|\alpha\|$, là số thực không âm, xác định như sau:

$$||x|| = \sqrt{\langle x, x \rangle}$$

2. Các ví du

(a)
$$E = \mathbb{R}^n$$
, $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ thì $||x|| = \sqrt{x_1^2 + \dots + x_n^2}$

(b)
$$E = C[a, b], f(x) \in C[a, b]$$
 thì $||f(x)|| = \int_a^b [f(x)]^2 dx$

3. Một vài tính chất cơ bản

Trong không gian vecto Euclide E, ta có:

- $\|\alpha\| = 0 \Leftrightarrow \alpha = 0$ và $a \in \mathbb{R}$, $\|a\alpha\| = |a| . \|\alpha\|$
- Bất đẳng thức Bunhiac
ốpxki $\forall \alpha,\beta \in E,\, |\langle \alpha,\beta \rangle| \leq \|\alpha\|.\|\beta\|$

Dấu đẳng thức xảy ra khi và chỉ khi các vect
ơ $\alpha,\,\beta$ phụ thuộc tuyến tính.

Chứng minh

- Nếu $\beta = 0$, bất đẳng thức hiển nhiên đúng.
- Nếu $\beta \neq 0$ thì tam thức bậc hai: $f(t) = \langle \beta, \beta \rangle t^2 2 \langle \alpha, \beta \rangle t + \langle \alpha, \alpha \rangle = \langle \alpha t\beta, \alpha t\beta \rangle \ge 0 \text{ với mọi } t \in \mathbb{R}.$ Do đó, $\Delta_f' \le 0 \Leftrightarrow \langle \alpha, \beta \rangle^2 \langle \alpha, \alpha \rangle \langle \beta, \beta \rangle \le 0 \Leftrightarrow |\langle \alpha, \beta \rangle| \le ||\alpha||.||\beta||$

• Bất đẳng thức tam giác

$$\forall \alpha, \beta \in E, \|\alpha\| - \|\beta\| \le \|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$$

Chứng minh. Áp dụng bất đẳng thức Bunhiacốpxki, ta có:

$$\|\alpha + \beta\|^2 = \langle \alpha + \beta, \alpha + \beta \rangle$$

$$= \langle \alpha, \alpha \rangle + 2\langle \alpha, \beta \rangle + \langle \beta, \beta \rangle$$

$$\leq \|\alpha\|^2 + \|\alpha\| \|\beta\| + \|\beta\|^2 = (\|\alpha\| + \|\beta\|)^2$$

Do đó, $\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$

Do chứng minh trên, ta có:

$$\|\alpha\| = \|(\alpha + \beta) + (-\beta)\| \le \|\alpha + \beta\| + \|-\beta\| = \|\alpha + \beta\| + \|\beta\|$$

Do đó,
$$\|\alpha\| - \|\beta\| \le \|\alpha + \beta\|$$

4. Góc giữa hai vectơ

• Cho E là không gian vectơ Euclide. Ta gọi góc giữa hai vectơ khác không $\alpha, \beta \in E$ là số thực $\varphi \in [0, \pi]$ xác định bởi:

$$\cos \varphi = \frac{\langle \alpha, \beta \rangle}{\|\alpha\| . \|\beta\|}$$

Cần chú ý rằng do bất đẳng thức Bunhiacốpxki, $\left|\frac{\langle \alpha, \beta \rangle}{\|\alpha\|.\|\beta\|}\right| \leq 1$ nên góc giữa hai vetơ khác không $\alpha, \beta \in E$ xác định và duy nhất.

- Hai vecto $\alpha, \beta \in E$ gọi là trực giao, ký hiệu $\alpha \perp \beta$ nếu $\langle \alpha, \beta \rangle = 0$. Nếu $\alpha, \beta \neq 0$ thì $\alpha \perp \beta \Leftrightarrow$ góc giữa chúng là $\varphi = \frac{\pi}{2}$
- Công thức Pitago

$$\forall \alpha, \beta \in E, \alpha \perp \beta \Leftrightarrow \|\alpha + \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2$$

Thât vây, $\forall \alpha, \beta \in E$, ta có:

$$\|\alpha + \beta\|^2 = \langle \alpha + \beta, \alpha + \beta \rangle$$
$$= \langle \alpha, \alpha \rangle + 2\langle \alpha, \beta \rangle + \langle \beta, \beta \rangle$$
$$= \|\alpha\|^2 + \|\beta\|^2 + 2\langle \alpha, \beta \rangle$$

Do đó,
$$\|\alpha + \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2 \Leftrightarrow \langle \alpha, \beta \rangle = 0 \Leftrightarrow \alpha \perp \beta$$

2 Hệ trực giao, hệ trực chuẩn, cơ sở trực giao, cơ sở trực chuẩn

2.1 Các khái niệm cơ bản

Ta nhắc lại rằng hai vect
ơ α,β của không gian vectơ Euclide Egọi là trực giao, ký hiệu
 $\alpha\perp\beta$ nếu $\langle\alpha,\beta\rangle=0.$

• Hệ vectơ $\alpha_1, \ldots, \alpha_m \in E$ gọi là hệ trực giao nếu chúng đôi một trực giao, nghĩa là $\alpha_i \perp \alpha_j \quad \forall i \neq j$.

Một cơ sở của E mà là hệ trực giao, gọi là cơ sở trực giao của E.

- Vecto $\alpha \in E$ gọi là trực giao với tập con $A \subset E$ nếu α trực giao với mọi vecto của A. Khi đó ta ký hiệu $\alpha \perp A$.
- Hệ vecto $\alpha_1, \ldots, \alpha_m \in E$ gọi là hệ trực chuẩn nếu chúng là hệ trực giao và mỗi vecto α_i là vecto đơn vị (nghĩa là độ dài của α_i , $\|\alpha_i\| = 1$).

Như vậy, hệ vecto $\alpha_1, \ldots, \alpha_m \in E$ là hệ trực chuẩn khi và chỉ khi

$$\langle \alpha_i, \alpha_j \rangle = \delta_{ij} = \begin{cases} 0 \text{ n\'eu } i \neq j \\ 1 \text{ n\'eu } i = j \end{cases}$$

Một cơ sở của E mà là hệ trực chuẩn, gọi là cơ sở trực chuẩn của E.

• Nếu $\alpha_1, \ldots, \alpha_m$ là một hệ trực giao, không chứa vecto không của E thì hệ:

$$u_1 = \frac{\alpha_1}{\|\alpha_1\|}, \quad u_2 = \frac{\alpha_2}{\|\alpha_2\|}, \quad \dots, \quad u_m = \frac{\alpha_m}{\|\alpha_m\|}$$

là một hệ trực chuẩn của E.

Phép biến đổi trên ta gọi là phép trực chuẩn hóa một hệ vecto trực giao.

Nếu $\alpha_1, \ldots, \alpha_m$ là cơ sở trực giao của E thì trực chuẩn hóa cơ sở đó, ta sẽ được một cơ sở trực chuẩn của E.

Chú ý rằng, một hệ vectơ trực giao không chứa vectơ không thì độc lập tuyến tính. Chứng minh điều này khá đơn giản, xin dành cho bạn đọc.

2.2 Trực giao hóa một hệ vectơ độc lập tuyến tính (phương pháp Gram-Schmidt

• Trực giao hóa

Trong không gian Euclide E cho hệ vectơ độc lập tuyến tính $\alpha_1, \alpha_2, \ldots, \alpha_m$. Khi đó, hệ vectơ:

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1$$

:

$$\beta_m = \alpha_m - \sum_{i=1}^{m-1} \frac{\langle \alpha_m, \beta_i \rangle}{\langle \beta_i, \beta_i \rangle} \beta_i$$

là hệ vectơ trực giao, độc lập tuyến tính trong E, và $\langle \alpha_1, \ldots, \alpha_m \rangle = \langle \beta_1, \ldots, \beta_m \rangle$

Phép chuyển từ hệ vectơ $\alpha_1, \ldots, \alpha_m$ sang hệ vectơ trực giao β_1, \ldots, β_m như trên gọi là phép trực giao hóa hệ vectơ $\alpha_1, \ldots, \alpha_m$.

• Chú ý

– Nếu $\alpha_1, \ldots, \alpha_m$ là cơ sở của không gian vectơ con U của không gian vectơ Euclide $E, (U = \langle \alpha_1, \ldots, \alpha_m \rangle)$, trực giao hóa hệ vectơ $\alpha_1, \ldots, \alpha_m$ ta được hệ vectơ trực giao β_1, \ldots, β_m và $U = \langle \alpha_1, \ldots, \alpha_m \rangle = \langle \beta_1, \ldots, \beta_m \rangle$.

Do đó, β_1, \ldots, β_m chính là cơ sở trực giao của U.

– Từ chú ý trên, một không gian Euclide E luôn có cơ sở trực chuẩn. Thật vậy, để tìm cơ sở trực chuẩn của E, đầu tiên ta tìm một cơ sở $\alpha_1, \ldots, \alpha_m$ bất kỳ của E, sau đó trực giao hóa cơ sở trên ta được cơ sở trực giao β_1, \ldots, β_m của E. Cuối cùng, trực chuẩn hóa cơ sở trực giao β_1, \ldots, β_m , ta sẽ được cơ sở trực chuẩn u_1, \ldots, u_m của E.

Cũng lưu ý bạn đọc rằng, trong quá trình trực giao hóa hệ vectơ $\alpha_1, \ldots, \alpha_m$, để đơn giản cho quá trình tính toán, ta có thể thay vectơ β_i bởi một vectơ tỷ lệ với β_i . Sau đây là một ví dụ:

• Ví du

Trong không gian vetơ Euclide \mathbb{R}^4 , cho không gian vectơ con U sinh bởi các vectơ:

$$\alpha_1 = (0, 1, 0, 1)$$

$$\alpha_2 = (0, 1, 1, 0)$$

$$\alpha_3 = (1, 1, 1, 1)$$

$$\alpha_4 = (1, 2, 1, 2)$$

$$(U = \langle \alpha_1, \alpha_2, \alpha_3, \alpha_4 \rangle)$$

Tìm một cơ sở trực chuẩn của U.

Giải

Để tìm cơ sở trực chuẩn của U, đầu tiên ta tìm một cơ sở của U. Hệ con độc lập tuyến tính tối đại của $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ là một cơ sở của U. Từ đó ta có $\alpha_1, \alpha_2, \alpha_3$ là một cơ sở của U.

Tiếp theo, trực giao hóa hệ vecto $\alpha_1, \alpha_2, \alpha_3$ để được một cơ sở trực giao của U.

Ta có:

$$\beta_1 = \alpha_1 = (0, 1, 0, 1)$$

$$\beta_2 = \alpha_2 - \frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1 = (0, 1, 1, 0) - \frac{1}{2} (0, 1, 0, 1) = \left(0, \frac{1}{2}, 1, -\frac{1}{2}\right)$$

Để phép tính tiếp theo đơn giản hơn, ta có thể chọn $\beta_2 = (0, 1, 2, -1)$.

$$\beta_3 = \alpha_3 - \frac{\langle \alpha_3, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1 \frac{\langle \alpha_3, \beta_2 \rangle}{\langle \beta_2, \beta_2 \rangle} \beta_2 = (1, 1, 1, 1) - \frac{2}{2} (0, 1, 0, 1) - \frac{2}{6} (0, 1, 2, -1) = \left(1, -\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

Để đơn giản, ta có thể chọn $\beta_3 = (3, -1, 1, 1)$.

Vây cơ sở trực giao của U là:

$$\beta_1 = (0, 1, 0, 1)$$

$$\beta_2 = (0, 1, 2, -1)$$

$$\beta_3 = (3, -1, 1, 1)$$

Trực chuẩn hóa cơ sở trực giao β_1 , β_2 , β_3 , ta được cơ sở trực chuẩn của U là:

$$e_1 = \left(0, \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$

$$e_2 = \left(0, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right)$$

$$e_3 = \left(\frac{3}{2\sqrt{3}}, \frac{-1}{2\sqrt{3}}, \frac{1}{2\sqrt{3}}, \frac{1}{2\sqrt{3}}\right)$$

3 Hình chiếu trực giao và đường trực giao

3.1 Định lý - Định nghĩa

Cho E là không gian vectơ Euclide, và U là không gian vectơ con của E. Khi đó mỗi vectơ $\alpha \in E$ đều viết được duy nhất dưới dạng:

$$\alpha = \alpha' + \beta$$

trong đó $\alpha' \in U$ và $\beta \perp U$.

Vecto α' gọi là hình chiếu trực giao của vecto α lên U, còn $\beta = \alpha - \alpha'$ là đường trực giao hạ từ α xuống U.

Chứng minh

Giả sử e_1, \ldots, e_k là một cơ sở trực chuẩn của U. Vì $\alpha' \in U$ nên α' có dạng:

$$\alpha' = x_1 e_1 + \dots + x_k e_k$$

Ta cần tìm x_1, \ldots, x_k để $\beta = \alpha - \alpha' \perp U$.

$$\beta = \alpha - \alpha' \perp U \Leftrightarrow \alpha - \alpha' \perp e_j, \quad \forall j = 1, 2, \dots, k$$

$$\Leftrightarrow \langle \alpha - \alpha', e_j \rangle = 0$$

$$\Leftrightarrow \langle \alpha, e_j \rangle - \langle \alpha', e_j \rangle = 0$$

$$\Leftrightarrow \langle \alpha, e_j \rangle - \langle \sum_{i=1}^k x_i e_i, e_j \rangle = 0$$

$$\Leftrightarrow \langle \alpha, e_j \rangle - x_j = 0$$

$$\Leftrightarrow x_j = \langle \alpha, e_j \rangle$$

Vậy vecto α' xác định duy nhất bởi

$$\alpha' = \sum_{j=1}^{k} \langle \alpha, e_j \rangle . e_j$$

trong đó e_1, \ldots, e_k là một cơ sở trực chuẩn của U, còn vecto β xác định bởi $\beta = \alpha - \alpha'$.

3.2 Cách tìm hình chiếu trực giao

Cho không gian vectơ Euclide E, và U là không gian vectơ con của E. Cho vectơ $\alpha \in E$. Để tìm hình chiếu trực giao của vectơ α lên U, ta có thể tìm bằng hai cách sau:

1. Cách 1. Tìm một cơ sở trực chuẩn e_1, e_2, \ldots, e_k của U. Khi đó hình chiếu trực giao α' của vecto α xác định bởi công thức:

$$\alpha' = \langle \alpha, e_1 \rangle . e_1 + \langle \alpha, e_2 \rangle . e_2 + + \dots + \langle \alpha, e_k \rangle . e_k$$

2. Giả sử u_1, \ldots, u_k là cơ sở bất kỳ của U. Vì $\alpha' \in U$ nên $\alpha' = x_1 u_1 + \cdots + x_k u_k$. Ta cần tìm x_1, \ldots, x_k để vecto $\alpha - \alpha' \perp U$.

$$\alpha - \alpha' \perp U$$

 $\Leftrightarrow \alpha - \alpha' \perp u_j \text{ v\'oi } j = 1, 2, \dots, k$
 $\Leftrightarrow \langle \alpha', u_i \rangle = \langle \alpha, u_i \rangle$

$$\Leftrightarrow x_1 \langle u_1, u_j \rangle + x_2 \langle u_2, u_j \rangle + \dots + x_k \langle u_k, u_j \rangle = \langle \alpha, u_j \rangle$$

Lần lượt cho $j=1,2,\ldots,k$, ta có x_1,\ldots,x_k là nghiệm của hệ phương trình sau:

$$\begin{cases}
\langle u_1, u_1 \rangle x_1 + \langle u_2, u_1 \rangle x_2 + \dots + \langle u_k, u_1 \rangle x_k = \langle \alpha, u_1 \rangle \\
\langle u_1, u_2 \rangle x_1 + \langle u_2, u_2 \rangle x_2 + \dots + \langle u_k, u_2 \rangle x_k = \langle \alpha, u_2 \rangle \\
\vdots \\
\langle u_1, u_1 \rangle x_k + \langle u_2, u_k \rangle x_2 + \dots + \langle u_k, u_k \rangle x_k = \langle \alpha, u_k \rangle
\end{cases} (*)$$

Như vậy, để tìm hình chiếu α' của α lên U, ta cần tìm một cơ sở u_1, \ldots, u_k của U, sau đó lập hệ phương trình (*). Giải hệ (*) ta sẽ có nghiệm duy nhất (x_1, \ldots, x_k) . Khi đó: $\alpha' = x_1 u_1 + \cdots + x_k u_k$.

Ví du

Trong không gian Euclide \mathbb{R}^4 cho không gian vectơ con U sinh bởi các vectơ:

 $\alpha_1 = (0, 1, 0, 1)$

 $\alpha_2 = (0, 1, 1, 0)$

 $\alpha_3 = (1, 1, 1, 1)$

 $\alpha_4 = (1, 2, 1, 2)$

 $(U = \langle \alpha_1, \alpha_2, \alpha_3, \alpha_4 \rangle)$

Tìm hình chiếu trực giao của vecto x = (1, 1, 0, 0) lên U.

Giải

Cách 1:

Đầu tiên ta tìm một cơ sở trực chuẩn của U. Ở ví dụ trước ta đã tìm được một cơ sở trực chuẩn của U là:

$$e_1 = \left(0, \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$

$$e_2 = \left(0, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right)$$

$$e_3 = \left(\frac{3}{2\sqrt{3}}, \frac{-1}{2\sqrt{3}}, \frac{1}{2\sqrt{3}}, \frac{1}{2\sqrt{3}}\right)$$

Do đó, hình chiếu trực giao của x là:

$$x' = \langle x, e_1 \rangle e_1 + \langle x, e_2 \rangle e_2 + \langle x, e_3 \rangle e_3$$
$$= \frac{1}{\sqrt{2}} e_1 + \frac{1}{\sqrt{6}} e_2 + \frac{1}{\sqrt{3}} e_3$$

$$= \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$$

Cách 2:

Đầu tiên tìm một cơ sở của U. Đễ thấy $\alpha_1, \alpha_2, \alpha_3$ là một cơ sở của U. Sau đó lập hệ phương trình dạng (*).

Ta có:

$$\langle \alpha_1, \alpha_1 \rangle = 2$$

$$\langle \alpha_2, \alpha_1 \rangle = 1$$

$$\langle \alpha_3, \alpha_1 \rangle = 2$$

$$\langle x, \alpha_1 \rangle = 1$$

$$\langle \alpha_2, \alpha_2 \rangle = 2$$

$$\langle \alpha_3, \alpha_2 \rangle = 2$$

$$\langle x, \alpha_2 \rangle = 1$$

$$\langle \alpha_3, \alpha_3 \rangle = 4$$

$$\langle x, \alpha_3 \rangle = 2$$

Do đó, hệ phương trình (*) trong trường hợp này có dạng:

$$\begin{cases} 2x_1 + x_2 + 2x_3 = 1\\ x_1 + 2x_2 + 2x_3 = 1\\ 2x_1 + 2x_2 + 4x_3 = 2 \end{cases}$$

Đây là hệ Cramer, giải hệ này ta có $x_1 = 0$, $x_2 = 0$, $x_3 = \frac{1}{2}$. Do đó, hình chiếu trực giao của vecto x là:

$$x' = 0\alpha_1 + 0\alpha_2 + \frac{1}{2}\alpha_3 = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$$

3.3 Định nghĩa

Cho U là không gian vectơ con của không gian Euclide E và α là vectơ thuộc E. Khi đó góc giữa hai vectơ α và hình chiếu trực giao α' cũng được gọi là góc giữa vectơ α và không gian con U.

Độ dài của đường thẳng trực giao $\beta = \alpha - \alpha'$ từ α đến U gọi là khoảng cách từ vecto α đến U.

4 Phép biến đổi trực giao và phép biến đổi đối xứng

4.1 Hai không gian Euclide đẳng cấu

Cho hai không gian vectơ Euclide E_1 với tích vô hướng \langle , \rangle_1 và E_2 với tích vô hướng \langle , \rangle_2 . Ta nói E_1 đẳng cấu với E_2 , ký hiệu $E_1 \cong E_2$ nếu tồn tại đẳng cấu giữa hai không gian vectơ $f: E_1 \to E_2$ thỏa:

$$\forall \alpha, \beta \in E_1, \quad \langle \alpha, \beta \rangle_1 = \langle f(\alpha), f(\beta) \rangle_2$$

Quan hệ đẳng cấu là một quan hệ tương đương và ta có kết quả sau:

Định lý. Hai không gian Euclide đẳng cấu khi và chỉ khi chúng có cùng số chiều.

Chứng minh

Nếu $E_1 \cong E_2$ thì theo định nghĩa E_1 , E_2 là các không gian vectơ đẳng cấu nên dim $E_1 = \dim E_2$.

Ngược lại, giả sử dim $E_1 = \dim E_2 = n$ và $\alpha_1, \ldots, \alpha_n$ $(\alpha), \beta_1, \ldots, \beta_n$ (β) lần lượt là cơ sở trực chuẩn của E_1 và E_2 . Khi đó tồn tại ánh xạ tuyến tính $f: E_1 \to E_2$, $f(\alpha_i) = \beta_i$, $i = 1, 2, \ldots, n$. Vì f biến cơ sở thành cơ sở nên f là đẳng cấu không gian vectơ. Ta chứng minh $\langle x, y \rangle_1 = \langle f(x), f(y) \rangle_2$.

Thật vậy, $\forall x, y \in E_1$, ta có:

$$x = \sum_{i=1}^{n} x_i \alpha_i$$
$$y = \sum_{i=1}^{n} y_i \alpha_i$$

Khi đó:

$$\langle x, y \rangle_1 = \langle \sum_{i,j} x_i \alpha_i, \sum_{i} y_j \alpha_i \rangle_1$$
$$= \sum_{i,j} x_i y_j \langle \alpha_i, \alpha_j \rangle_1$$
$$= \sum_{i=1}^n x_i y_i$$

$$\langle f(x), f(y) \rangle_2 = \langle f(\sum x_i, \alpha_i), f(\sum y_j \alpha_j) \rangle_2$$

$$= \langle \sum x_i f(\alpha_i), \sum y_j f(\alpha_j) \rangle_2$$

$$= \langle \sum x_i \beta_i, \sum y_j \beta_j \rangle_2$$

$$= \sum x_i y_j \langle \beta_i, \beta_j \rangle_2$$

$$= \sum_{i=1}^n x_i y_i$$

Vậy $\langle x, y \rangle_1 = \langle f(x), f(y) \rangle_2$ và $E_1 \cong E_2$.

4.2 Phép biến đổi trực giao

4.2.1 Ma trân trưc giao

Ma trận vuông A gọi là ma trận trực giao nếu $A^{-1} = A^t$ (A^t : ma trận chuyển vị của A).

4.2.2 Đinh nghĩa

Cho E là không gian vectơ Euclide. Một phép biến đổi tuyến tính f của E gọi là phép biến đổi trực giao của E nếu f bảo toàn tích vô hướng, tức là:

$$\forall \alpha, \beta \in E, \quad \langle \alpha, \beta \rangle = \langle f(\alpha), f(\beta) \rangle$$

Dễ thấy, phép biến đổi trực giao là một song ánh vì:

$$f(\alpha) = 0 \Leftrightarrow \langle f(\alpha), f(\alpha) \rangle = 0 \Leftrightarrow \langle \alpha, \alpha \rangle = 0 \Leftrightarrow \alpha = 0$$

Tính chất cơ bản nhất của phép biến đổi trực giao được cho trong định lý sau.

4.2.3 Định lý

Cho f là phép biến đổi tuyến tính của không gian vectơ Euclide E. Khi đó các khẳng định sau tương đương:

- 1. f là phép biến đổi trực giao.
- 2. f biến cơ sở trực chuẩn của E thành cơ sở trực chuẩn của E.
- 3. Ma trận của f trong một cơ sở trực chuẩn là ma trận trực giao.

Chứng minh

1) \Rightarrow 2) Giả sử e_1, \dots, e_n là cơ sở trực chuẩn của E. Khi đó:

$$\langle e_i, e_j \rangle = \delta_{ij} = \begin{cases} 1 \text{ n\'eu } i = j \\ 0 \text{ n\'eu } i \neq j \end{cases}$$

Vì f là phép biến đổi trực giao, nên:

$$\langle f(e_i), f(e_j) \rangle = \langle e_i, e_j \rangle = \delta_{ij} = \begin{cases} 1 \text{ n\'eu } i = j \\ 0 \text{ n\'eu } i \neq j \end{cases}$$

Do đó, $f(e_1), \ldots, f(e_n)$ là cơ sở trực chuẩn.

- 2) \Rightarrow 3) Ma trận của f trong cơ sở trực chuẩn e_1, \ldots, e_n theo định nghĩa chính là ma trận đổi cơ sở từ e_1, \ldots, e_n sang cơ sở trực chuẩn $f(e_1), \ldots, f(e_n)$. Vì ma trận đổi cơ sở giữa hai cơ sở trực chuẩn là ma trận trực giao (xem bài tập 10) nên ma trận của f trong cơ sở trực chuẩn là ma trận trực giao.
- 3) \Rightarrow 1) Giả sử e_1, \dots, e_n (e) là cơ sở trực chuẩn của E và $A = A_{f/(e)}$ là ma trận trực giao $(A^t = A^{-1})$.

Với $\alpha, \beta \in E$, $\alpha = a_1e_1 + \cdots + a_ne_n$, $\beta = b_1e_1 + \cdots + b_ne_n$ Khi đó,

$$\langle \alpha, \beta \rangle = [\alpha]_{/(e)}^{t} [\beta]_{/(e)}$$

$$= [\alpha]_{/(e)}^{t} I[\beta]_{/(e)}$$

$$= [\alpha]_{/(e)}^{t} A^{-1} A[\beta]_{/(e)}$$

$$= [\alpha]_{/(e)}^{t} A^{t} A[\beta]_{/(e)}$$

$$= (A[\alpha]_{/(e)})^{t} (A[\beta]_{/(e)})$$

$$= [f(\alpha)]_{/(e)}^{t} . [f(\beta)]_{/(e)}$$

$$= \langle f(\alpha), f(\beta) \rangle$$

4.3 Phép biến đổi đối xứng

4.3.1 Định nghĩa

Cho E là không gian vectơ Euclide. Phép biến đổi tuyến tính f của E gọi là phép biến đổi đối xứng nếu $\forall \alpha, \beta \in E : \langle f(\alpha), \beta \rangle = \langle \alpha, f(\beta) \rangle$.

4.3.2 Định lý

Một phép biến đổi tuyến tính của E là phép biến đổi đối xứng khi và chỉ khi ma trận của f trong một cơ sở trực chuẩn là ma trận đối xứng.

Chứng minh

Giả sử $f:E\to E$ là phép biến đổi tuyến tính, ma trận của f trong cơ sở trực chuẩn e_1,\ldots,e_n là $A=[a_{ij}].$ Khi đó:

$$f(e_i) = \sum_{k=1}^{n} a_{ki} e_k$$

Với mọi i, j ta có:

$$\langle f(e_i), e_j \rangle = \langle \sum_{k=1}^n a_{ki} e_k, e_j \rangle = \sum_{k=1}^n a_{ki} \langle e_k, e_j \rangle = a_{ji}$$
$$\langle e_i, f(e_j) \rangle = \langle e_i, \sum_{k=1}^n a_{kj} e_k \rangle = \sum_{k=1}^n a_{kj} \langle e_i, e_k \rangle = a_{ij}$$

- Nếu f là phép biến đổi đối xứng, thì $\langle f(e_i), e_j \rangle = \langle e_i, f(e_j) \rangle$. Do đó, $a_{ji} = a_{ij}$. Vậy ma trận A là ma trận đối xứng.
- Nếu ma trận A đối xứng, tức là $a_{ji} = a_{ij}$ thì $\langle f(e_i), e_j \rangle = \langle e_i, f(e_j) \rangle \quad \forall i, j.$

Nếu
$$\alpha = \sum_{i=1}^{n} x_i e_i$$
, $\beta = \sum_{j=1}^{n} y_j e_j$ của E thì:
$$\langle f(\alpha), \beta \rangle = \langle \sum_{j=1}^{n} x_i f(e_i), \sum_{j=1}^{n} y_j e_j \rangle = \sum_{i,j} x_i y_j \langle f(e_i), e_j \rangle = \sum_{i,j} x_i y_j \langle e_i, f(e_j) \rangle$$
$$= \langle \sum_{j=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j f(e_j) \rangle$$
$$= \langle \alpha, f(\beta) \rangle$$

Vậy f là phép biến đổi đối xứng.