

QUÍMICA A Ciência Central 9ª Edição

Capítulo 1
Introdução: matéria & medida

David P. White

O estudo da química

A perspectiva molecular da química

- A matéria é o material físico do universo.
- A matéria é constituída de relativamente poucos elementos.
- No nível microscópico, a matéria consiste de átomos e moléculas.
- Os átomos se combinam para formar moléculas.
- Como vemos, as moléculas podem consistir do mesmo tipo de átomos ou de diferentes tipos de átomos.

O estudo da química

A perspectiva molecular da química

O estudo da química

Por que estudar química

- A química é essencial para a nossa compreensão de outras ciências.
- A química também é encontrada em nossa vida diária.

Estados da matéria

- A matéria pode ser um gás, um líquido ou um sólido.
- Esses são os três estados da matéria.
- Os gases não têm forma nem volume definidos.
- Os gases podem ser comprimidos para formarem líquidos.
- Os líquidos não têm forma, mas têm volume.
- Os sólidos são rígidos e têm forma e volume definidos.

Substâncias puras e misturas

- Os átomos consistem de apenas um tipo de elemento.
- As moléculas podem consistir de mais de um tipo de elemento.
 - As moléculas podem ter apenas um tipo de átomo (um elemento).
 - As moléculas podem ter mais de um tipo de átomo (um composto).
- Se mais de um átomo, elemento ou composto são encontrados juntos, então a substância é uma mistura.

Substâncias puras e misturas

(a) Átomos de um elemento

(b) Moléculas de um elemento

(c) Moléculas de um composto

(d) Mistura de elementos e um composto

Substâncias puras e misturas

- Se a matéria não é totalmente uniforme, então ela é uma mistura heterogênea.
- Se a matéria é totalmente uniforme, ela é homogênea.
- Se a matéria homogênea pode ser separada por meios físicos, então ela é uma mistura.
- Se a matéria homogênea não pode ser separada por meios físicos, então ela é uma substância pura.
- Se uma substância pura pode ser decomposta em algo mais, então ela é um composto.

Elementos

- Se uma substância pura não pode ser decomposta em algomais, então ela é um elemento.
- Existem 114 elementos conhecidos.
- A cada elemento é dado um único símbolo químico (uma ou duas letras).
- Os elementos são a base de constituição da matéria.
- A crosta terrestre consiste de 5 elementos principais.
- O corpo humano consiste basicamente de 3 elementos principais.

Elementos

Elementos

- Os símbolos químicos com uma letra têm aquela letra maiúscula (por exemplo, H, B, C, N, etc.)
- Os símbolos químicos com duas letras têm apenas a primeira letra maiúscula (por exemplo, He, Be).

Compostos

- A maioria dos elementos se interagem para formar compostos.
- As proporções de elementos em compostos são as mesmas, independentemente de como o composto foi formado.
- Lei da Composição Constante (ou Lei das Proporções Definitivas):
 - A composição de um composto puro é sempre a mesma.

Compostos

- Quando a água é decomposta, sempre haverá duas vezes mais gás hidrogênio formado do que gás oxigênio.
- As substâncias puras que não podem ser decompostas são elementos.

Misturas

- As misturas heterogêneas não são totalmente uniformes.
- As misturas homogêneas são totalmente uniformes.
- As misturas homogêneas são chamadas de soluções.

Mudanças físicas e químicas

- Quando uma substância sofre uma mudança física, sua aparência física muda.
 - O derretimento do gelo: um sólido é convertido em um líquido.
- As mudanças físicas não resultam em uma mudança de composição.
- Quando uma substância muda sua composição, ela sofre uma alteração química:
 - Quando o hidrogênio puro e o oxigênio puro reagem completamente, eles formam água pura. No frasco contendo água não há sobra de oxigênio nem de hidrogênio.

Mudanças físicas e químicas

Alterações físicas e químicas

- As propriedades físicas intensivas não dependem da quantidade de substância presente.
 - Exemplos: densidade, temperature e ponto de fusão.
- As propriedades físicas extensivas dependem da quantidade de substância presente.
 - Exemplos: massa, volume e pressão.

- As misturas podem ser separadas se suas propriedades físicas são diferentes.
- Os sólidos podem ser separados dos líquidos através de filtração.
- O sólido é coletado em papel de filtro, e a solução, chamada de filtrado, passa pelo papel de filtro e é coletada em um frasco.

- As misturas homogêneas de líquidos podem ser separadas através de destilação.
- A destilação necessita que os diferentes líquidos tenham pontos de ebulição diferentes.
- Basicamente, cada componente da mistura é fervido e coletado.
- A fração com ponto de ebulição mais baixo é coletada primeiro.

- A cromatografia pode ser utilizada para separar misturas que têm diferentes habilidades para aderirem a superfícies sólidas.
- Quanto maior a atração do componente pela superfície (papel), mais lentamente ele se move.
- Quanto maior a atração do componente pelo líquido, mais rapidamente ele se move.
- A cromatografia pode ser utilizada para separar as diferentes cores de tinta de uma caneta.

Unidades SI

- Existem dois tipos de unidades:
 - Unidades fundamentais (ou básicas);
 - Unidades derivadas.
- Existem 7 unidades básicas no sistema SI.

Unidades SI

TABELA 1.4 Unidades SI básicas

Grandeza física	Nome da unidade	nidade Abreviatura	
Massa	Quilograma	kg	
Comprimento	Metro	m	
Tempo	Segundo	S	
Temperatura	Kelvin	K	
Quantidade de matéria	Mol	mol	
Corrente elétrica	Ampère	A	
Intensidade luminosa	Candela	cd	

[•] As potências de dez são utilizadas por conveniência com menores ou maiores unidades no sistema SI.

Unidades SI

TABELA 1.5	Alguns prefixos usados no sistema métrico		
Prefixo	Abreviatura	Significado	Exemplo
Giga	G	10 ⁹	1 gigâmetro (Gm) = 1×10^9 m
Mega	M	10^{6}	1 megâmetro (Mm) = 1×10^6 m
Quilo	k	10^{3}	1 quilômetro (km) = 1×10^3 m
Deci	d	10^{-1}	1 decímetro (dm) = 0,1 m
Centi	С	10^{-2}	1 centímetro (cm) = 0,01 m
Mili	m	10^{-3}	1 milímetro (mm) = 0,001 m
Micro	$\mu^{^{\mathrm{a}}}$	10^{-6}	1 mícron (μ m) = 1 × 10 ⁻⁶ m
Nano	n	10^{-9}	1 nanômetro (nm) = 1×10^{-9} m
Pico	p	10^{-12}	1 picômetro (pm) = 1×10^{-12} m
Femto	f	10^{-15}	1 femtômetro (fm) = 1×10^{-15} m

^a Essa é a letra grega mi.

Unidades SI

- Observe que a unidade SI para comprimento é o metro (m), enquanto a unidade SI para massa é o quilograma (kg).
 - 1 kg tem 2,2046 lb.

Temperatura

Existem três escalas de temperatura:

- Escala Kelvin
 - Usada em ciência.
 - Mesmo incremento de temperatura como escala Celsius.
 - A menor temperatura possível (zero absoluto) é o zero Kelvin.
 - Zero absoluto: 0 K = 273,15 °C.

Temperatura

- Escala Celsius
 - Também utilizada em ciência.
 - A água congela a 0 °C e entra em ebulição a 100 °C.
 - Para converter: K = °C + 273,15.
- Escala Fahrenheit
 - Geralmente não é utilizada em ciência.
 - A água congela a 32 °F e entra em ebulição a 212 °F.
 - Para converter:

$$^{\circ}$$
C = $\frac{5}{9}$ ($^{\circ}$ F - 32)

$$^{\circ}F = \frac{9}{5}(^{\circ}C) + 32$$

Volume

- As unidades de volume são dadas por (unidades de comprimento)³.
 - A unidade SI de volume é o 1 m³.
- Normalmente usamos
 1 mL = 1 cm³.
- Outras unidades de volume:
 - $1 L = 1 dm^3 = 1000 cm^3 = 1000 mL$.

$$1L = 1 dm^3 = 1000 cm^3$$

Densidade

- Usada para caracterizar as substâncias.
- Definida como massa dividida por volume:

Densidade =
$$\frac{\text{massa}}{\text{volume}}$$

- Unidades: g/cm³.
- Originalmente baseada em massa (a densidade era definida como a massa de 1,00 g de água pura).

A incerteza na medida

- Todas as medidas científicas estão sujeitas a erro.
- Esses erros são refletidos no número de algarismos informados para a medida.
- Esses erros também são refletidos na observação de que duas medidas sucessivas da mesma quantidade são diferentes.

Precisão e exatidão

- As medidas que estão próximas do valor "correto" são exatas.
- As medidas que estão próximas entre si são precisas.

Precisão e exatidão

Algarismos significativos

- O número de dígitos informado em uma medida reflete a exatidão da medida e a precisão do aparelho de medição.
- Todos os algarismos conhecidos com certeza mais um algarismo extra são chamados de algarismos significativos.
- Em qualquer cálculo, os resultados são informados com o menor número de algarismos significativos (para multiplicação e divisão) ou com o menor número de casas decimais (adição e subtração).

Algarismos significativos

- Números diferentes de zero são sempre significativos.
- Zeros entre números diferentes de zero são sempre significativos.
- Zeros antes do primeiro dígito diferente de zero não são significativos.
 (Exemplo: 0,0003 tem um algarismo significativo.)
- Zeros no final do número depois de uma casa decimal são significativos.
- Zeros no final de um um número antes de uma casa decimal são ambíguos (por exemplo, 10,300 g).

Análise dimensional

Utilizando dois ou mais fatores de conversão

- Em análise dimensional, sempre faça três perguntas:
 - Quais dados nos são fornecidos?
 - Qual a quantidade que precisamos?
 - Quais fatores de conversão estão disponíveis para nos levar a partir do que nos é fornecido ao que precisamos?

Fim do Capítulo 1 Introdução: matéria e medida