COMP9313: Big Data Management

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Lecturer: Xin Cao

Course web site: http://www.cse.unsw.edu.au/~cs9313/

Chapter Assignment Project Exam Help ocessing

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

What's a Graph?

- G = (V,E), where
 - V represents the set of vertices (nodes)
 - E represents the set of edges (links)
 - Both vertices and edges may contain additional information
- Different typessignaphent Project Exam Help
 - Directed vs.
 - Presence or https://eduassistpro.github.io/
- Graphs are everywhere:

 Add WeChat edu_assist_pro

 Hyperlink structure of the Web
 - Physical structure of computers on the Internet
 - Interstate highway system
 - Social networks

Graph Data: Social Networks

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Graph Data: Technological Networks

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Seven Bridges of Königsberg

[Euler, 1735]

Return to the starting point by traveling each link of the graph once and only once.

Some Graph Problems

- Finding shortest paths
 - Routing Internet traffic and UPS trucks
- Finding minimum spanning trees
 - Telco laying down fiber
- Finding Max Froject Exam Help
 - Airline sche
- Identify "special" https://eduassistpro.github.io/
 - Breaking up terrorist cells_spre Add WeChat edu_assist_pro
- Bipartite matching
 - Monster.com, Match.com
- And of course... PageRank

Graph Analytics

- General Graph
 - Count the number of nodes whose degree is equal to 5
 - Find the diameter of the graphs
- Web Graph
 - Rank each size pragent the web of a posterior in the twitter graph using easure
- Transportation https://eduassistpro.github.io/
 - one city to another
- Return the shortest or cheapest one cit Social Network Add WeChat edu_assist_pro
 - Detect a group of users who have similar interests
- Financial Network
 - Find the path connecting two suspicious transactions;

Graphs and MapReduce

- Graph algorithms typically involve:
 - Performing computations at each node: based on node features, edge features, and local link structure
 - Propagating computations: "traversing" the graph
- Key questignsignment Project Exam Help
 - ☐ How do you duce?
 - How do you https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Representing Graphs

- Adjacency Matrices: Represent a graph as an n x n square matrix M
 - \square n = |V|
 - $M_{ij} = 1$ means a link from node *i* to *j*

Assignment Project Exam Help

Adjacency Matrices: Critique

- Advantages:
 - Amenable to mathematical manipulation
 - Iteration over rows and columns corresponds to computations on outlinks and inlinks
- Disadvantagesignment Project Exam Help
 - Lots of zero
 - Lots of wast https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Representing Graphs

Adjacency Lists: Take adjacency matrices... and throw away all the zeros

Assignment Project Exam Help

	1	2	http	os://e	eduassistpro.github.io/
1	0	1	Q Add	4	eChat edu_assist_pro
2	1	0	1	1	, 3, 4
3	1	0	0	0	3: 1 4: 1, 3
4	1	0	1	0	4. 1, 3

Adjacency Lists: Critique

- Advantages:
 - Much more compact representation
 - Easy to compute over outlinks
- Disadvantages:
 - Much Assignmento Projecte Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Assignment Project Exam Help

Singl https://eduassistpro.githupaith

Add WeChat edu_assist_pro

Single-Source Shortest Path (SSSP)

- Problem: find shortest path from a source node to one or more target nodes
 - Shortest might also mean lowest weight or cost
- Dijkstra's Algorithm:
 - For a given sowned ender the shortest path between that node and every other

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Dijkstra's Algorithm

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Finish!

Single Source Shortest Path

- Problem: find shortest path from a source node to one or more target nodes
 - Shortest might also mean lowest weight or cost
- Single processor machine: Dijkstra's Algorithm
- MapReduca: sparalle harmand the First Equation (A. 1994) MapReducation of the Map Reducation of the Map Reduction of the Map Reductio

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Finding the Shortest Path

- Consider simple case of equal edge weights
- Solution to the problem can be defined inductively
- Here's the intuition:
 - Define: b is reachable from a if b is on adjacency list of a
 - DISTAncesignment Project Exam Help
 - For all node DISTANCE https://eduassistpro.github.io/

Visualizing Parallel BFS

From Intuition to Algorithm

- Data representation:
 - Key: node n
 - □ Value: *d* (distance from start), adjacency list (list of nodes reachable from *n*)
 - □ Initialization for all epper postert to Estart no prede poster to Estart no prede poster
- Mapper:
 - □ $\forall m \in \text{adjac https://eduassistpro.github.io/}$
- Sort/Shuffle
 - Groups distances by Weach hat edu_assist_pro
- Reducer:
 - Selects minimum distance path for each reachable node
 - Additional bookkeeping needed to keep track of actual path

Multiple Iterations Needed

- Each MapReduce iteration advances the "known frontier" by one hop
 - Subsequent iterations include more and more reachable nodes as frontier expands
 - The input of Mapper is the output of Reducer in the previous Assignment Project Exam Help
 Multiple iterations are needed to explore entire graph

https://eduassistpro.github.io/

- - Preserving graph structure:

 Problem: Where did We Chat edu_assist_pro
 - Solution: mapper emits (n, adjacency list) as well

BFS Pseudo-Code

- Equal Edge Weights (how to deal with weighted edges?)
- Only distances, no paths stored (how to obtain paths?)

```
class Mapper
method Map(nid n, node N)
d ← N.Distance
Emit(nid n, N) SSignment Project Fx amh Helpre
for all nodeid m ∈ N.
Emit(nid m, d+ https://eduassistpro.gitachable.nodes
```

```
class Reducer method Reduce(nite of the count of the cou
```

Stopping Criterion

- How many iterations are needed in parallel BFS (equal edge weight case)?
- Convince yourself: when a node is first "discovered", we've found the shortest path
- Now answer the question.

 Assignment Project Exam Help

 The diameter of the graph, or the greatest distance between any pair of node https://eduassistpro.github.io/
 - - If this is indeed tweethen paedu_assistst peach on the global social network would x MapReduce iterations.

Implementation in MapReduce

- The actual checking of the termination condition must occur outside of MapReduce.
- The driver (main) checks to see if a termination condition has been met, and if not, repeats.
- Hadoop provides a lightweight API called "counters".
 ASSIGNMENT Project Exam Help
 It can be used for counting events that occur during execution,
 - It can be used for counting events that occur during execution, e.g., numbe condition is https://eduassistpro.grahuples.
 - Counters can be designed to co distances of wat the end of the edu_assist of program can access the final counter value and check to see if another iteration is necessary.

How to Find the Shortest Path?

- The parallel breadth-first search algorithm only finds the shortest distances.
- Store "back-pointers" at each node, as with Dijkstra's algorithm
 - Not efficient to respect the posts from the hadred inters
- A simpler appro https://eduassistpro.githquesion/the
 mapper, so that each node will hav ath easily accessible at all times

 Add WeChat edu_assist_pro
 - The additional space requireme

Mapper

```
public static class TheMapper extends Mapper<LongWritable, Text, LongWritable, Text> {
  public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
     Text word = new Text();
     String line = value.toString();//looks like 1 0 2:3:
     String[] sp = line.split(" ");//splits on space
     \begin{array}{l} \text{int distance} \ \text{add} = \text{Integer.parseInt} \ (\text{sp[1]}) + 1; \\ \text{String[] PointsTo} = \text{sp[2]SSItg:n:ment Project Exam Help} \end{array}
     for(int i=0; i<PointsTo.length; i++){
        word.set("VALUE "+dista
        context.write(new LongWhttps://eduassistpro.grthub.io/
        word.clear(); }
     //pass in current node's distance (if it is the lowest dis
     word.set("VALUE "+sp[1]); Add WeChat edu_assist_pro
     context.write( new LongWritable( Integer.parseInt( sp
     word.clear():
     word.set("NODES "+sp[2]);//tells me to append on the final tally
     context.write( new LongWritable( Integer.parseInt( sp[0] ) ), word );
     word.clear();
```

Reducer

```
public static class TheReducer extends Reducer<LongWritable, Text, LongWritable, Text> {
    public void reduce(LongWritable key, Iterable<Text> values, Context context) throws
IOException, InterruptedException {
       String nodes = "UNMODED";
       Text word = new Text();
       int lowest = INFINITY://start at infinity
      for (Text val : valssignment Project Exam Help //looks like NODES/VALUES 1 0 2:3:, we need to use the first as a key
         String[] sp = val.toS
         //look at first value https://eduassistpro.github.io/
         if(sp[0].equalsIgnor
            nodes = null;
                           Add WeChat edu_assist_pro
            nodes = sp[1];
         }else if(sp[0].equalsIgnoreCase("VALUE")){
            int distance = Integer.parseInt(sp[1]);
            lowest = Math.min(distance, lowest);
       word.set(lowest+" "+nodes);
       context.write(key, word);
       word.clear();
                                            https://github.com/himank/Graph-Algorithm-Map
                                            Reduce/blob/master/src/DijikstraAlgo.java
```

BFS Pseudo-Code (Weighted Edges)

- The adjacency lists, which were previously lists of node ids, must now encode the edge distances as well
 - Positive weights!
- In line 6 of the mapper code Protecting the last the value, we must now emit d + w, where w is the edge distance

https://eduassistpro.github.io/ The termination behaviour is ver

- - How many itenations wre neede edu_assist (pustive edge weight case)?
 - Convince yourself: when a node is first "discovered", we've found the shortest path not true!

Additional Complexities

Assignment Project Exam Help

- Assume that p i
 - In the curre https://eduassistpro.githdeby.frow/the very first time.
 - We've alread decomplete that edu_assist to read that the shortest distance to r s ugh p
 - □ Is s->p->r the shortest path from s to r?
- The shortest path from source s to node r may go outside the current search frontier
 - It is possible that p->q->r is shorter than p->r!
 - We will not find the shortest distance to r until the search frontier expands to cover q.

How Many Iterations Are Needed?

- In the worst case, we might need as many iterations as there are nodes in the graph minus one
 - A sample graph that elicits worst-case behaviour for parallel breadth-first search.
 - Eight iterations are required to discover shortest distances to all nodes from F.

Example (only distances)

```
Input file:

s \rightarrow 0 \mid n1: 10, n2: 5

n1 \rightarrow \infty \mid n2: 2, n3: 1

n2 \rightarrow \infty \mid n1: 3, n3: 9, n4: 2

n3 \rightarrow \infty \mid n4: 4Assignment Project Exam Help

n4 \rightarrow \infty \mid s: 7, n3: 6

https://eduassistpro.github.io/

Add WeChat edu_assist_pro
```

```
Map:
Read s --> 0 | n1: 10, n2: 5
Emit: (n1, 10), (n2, 5), and the adjacency list (s, n1: 10, n2: 5)
The other lists will also be read and emit, but they do not contribute, and
thus ignored Assignment Project Exam Help
   Reduce:
Receives: (n1, 10), https://eduassistpro.github.io/
The adjacency list of each node will als ignored in example
                  Add WeChat edu_assist_pro
Emit:
s --> 0 l n1: 10, n2: 5
n1 --> 10 l n2: 2, n3:1
n2 --> 5 \mid n1: 3, n3:9, n4:2
```

```
Map:
  Read: n1 --> 10 l n2: 2, n3:1
  Emit: (n2, 12), (n3, 11), (n1, <10, (n2: 2, n3:1)>)
  Read: n2 --> 5 l n1: 3, n3:9 , n4:2
 Emit: (n1, 8), (A3; Sign, ma, ent, Rrejes; t(r Exans: Help:2)>)
  Ignore the processi
                                                                                                          https://eduassistpro.github.io/
                   Reduce:
Receives: (n1, (8, <10, (n2:2, n3:1)>)), (n3:4, (n3:4)>), (n3:4,
 Emit:
 n1 --> 8 | n2: 2, n3:1
 n2 --> 5 \mid n1: 3, n3:9, n4:2
 n3 --> 11 | n4:4
 n4 --> 7 l s:7, n3:6
```

```
Map:
Read: n1 --> 8 l n2: 2, n3:1
Emit: (n2, 10), (n3, 9), (n1, <8, (n2: 2, n3:1)>)
Read: n2 --> 5 | n1: 3, n3:9 , n4:2 (Again!)
Emit: (n1, 8), (Assignment, Project(rExans: Help:2)>)
Read: n3 --> 11 l n
Emit: (n4, 15) , (n https://eduassistpro.github.io/
Read: n4 --> 7 l s:7, n3:6
Emit: (s, 14), (n3, 13), (n4, <7, (s:7, n3:
  Reduce:
Emit:
n1 --> 8 l n2: 2, n3:1
n2 --> 5 \ln 1: 3, n3:9, n4:2
n3 --> 9 \mid n4:4
n4 --> 7 l s:7, n3:6
```

In order to avoid duplicated

```
computations, you can use
  Map:
                                               a status value to indicate
Read: n1 --> 8 | n2: 2, n3:1 (Again!)
                                               whether the distance of the
Emit: (n2, 10), (n3, 9), (n1, <8, (n2: 2, n3:1)>)
                                               node has been modified in
Read: n2 --> 5 | n1: 3, n3:9 , n4:2 (Again!)
                                               the previous iteration.
Emit: (n1, 8), (Assignment, Project(rExans: Help:2)>)
Read: n3 --> 9 l n4:
Emit: (n4, 13) , (n https://eduassistpro.github.io/
Read: n4 --> 7 l s:7, n3:6 (Again!)
Emit: (s, 14), (n3, 13), (n4, <7, (s:7, n3:
   Reduce:
Emit:
n1 --> 8 l n2: 2, n3:1
n2 --> 5 \ln 1: 3, n3:9, n4:2
n3 --> 9 \mid n4:4
n4 --> 7 l s:7, n3:6
                             No updates. Terminate.
```

Comparison to Dijkstra

- Dijkstra's algorithm is more efficient
 - At any step it only pursues edges from the minimum-cost path inside the frontier
- MapReduce explores all paths in parallel
 - Lots of Awaste nment Project Exam Help
 - Useful work
- Why can't we dohttps://eduassistpro.github.io/

Graphs and MapReduce

- Graph algorithms typically involve:
 - Performing computations at each node: based on node features, edge features, and local link structure
 - Propagating computations: "traversing" the graph
- Generic regissignment Project Exam Help
 - Represent g
 - Perform loc https://eduassistpro.github.io/
 - Pass along partial results via ou y destination node
 - Pass along partial results via ou y destinate Perform aggregation Mechaet edu_assistodero
 - Iterate until convergence: controlled by external "driver"
 - Don't forget to pass the graph structure between iterations

Issues with MapReduce on Graph Processing

- MapReduce Does not support iterative graph computations:
 - External driver. Huge I/O incurs
 - No mechanism to support global data structures that can be accessed and updated by all mappers and reducers
 - Passing information ippolycostible with inthe pocal graph structure through adjacency list
 - Dijkstra's https://eduassistpro.giffqlobal.priority queue that guid
 - Dijkstra's algorithm in thade edu_assiste prolable. Do some "wasted" computation
- MapReduce algorithms are often impractical on large, dense graphs.
 - The amount of intermediate data generated is on the order of the number of edges.
 - For dense graphs, MapReduce running time would be dominated by copying intermediate data across the network.

Iterative MapReduce

Only a subset of data needs computation:

Iterative MapReduce

System is not optimized for iteration:

Better Partitioning

- Default: hash partitioning
 - Randomly assign nodes to partitions
- Observation: many graphs exhibit local structure
 - E.g., communities in social networks
 - Better pastigning center more opportunine Holpcal aggregation
- Unfortunately, p
 - Sometimes, https://eduassistpro.github.io/

 - But cheap heuristics sometimes

 Add WeChat edu_assist_pro

 For webgraphs: range partition

Schimmy Design Pattern

- Basic implementation contains two dataflows:
 - Messages (actual computations)
 - Graph structure ("bookkeeping")
- Schimmy: separate the two dataflows, shuffle only the messages
 - Basic ideas in the Broot of tables and the apd messages

https://eduassistpro.github.io/

Do the Schimmy!

- Schimmy = reduce side parallel merge join between graph structure and messages
 - Consistent partitioning between input and intermediate data
 - Mappers emit only messages (actual computation)
 - Reducers reach raph streatured the Elx from HRAS

Assignment Project Exam Help

In https://eduassistpro.gittelp.io/
Add WeChat edu_assist_pro

Motivation of Pregel

Many practical computing problems concern large graphs

Web graph
Transportation
routes Ssignment Project
Citation
relationshipshttp
Social networks

Add WeChat edu_assist_pro

Single computer graph library does

Graph algorithms

PageRank
Shortest path
Connected
ponents
stpro.githuehinques

- MapReduce is ill-suited for graph processing
 - Many iterations are needed for parallel graph processing
 - Materializations of intermediate results at every MapReduce iteration harm performance

Pregel

- Pregel: A System for Large-Scale Graph Processing (Google) -Malewicz et al. SIGMOD 2010.
- Scalable and Fault-tolerant platform

Assignment Project Exam Help

API with flexibilit

https://eduassistpro.github.io/

- Inspired by Valiant's Bulk Synchron odel
 - Leslie G. Valiant A McGnghat edu_assist oppotation. Commun. ACM 33 (8): 103-111 (1990)
- Vertex centric computation (Think like a vertex)

Bulk Synchronous Parallel Model (BSP)

analogous to MapReduce rounds

- Processing: a series of supersteps
- Vertex: computation is defined to run on each vertex
- ☐ Superstep S: all vertices compute in parallel; each vertex v may
 - □ receive messages sent to v from superstep S 1;
 - perform some computation of its outgoing ed
 - Send messahttps://eduassistpro.gitikudbnite next superstep)

 Add Weslagtedu_assist_pro

Vertex-centric, message passing

Pregel Computation Model

- Based on Bulk Synchronous Parallel (BSP)
 - Computational units encoded in a directed graph
 - Computation proceeds in a series of supersteps
 - Message passing architecture

Inpassignment Project Exam Help

https://eduassistpro.github.io/

Supersteps (a sequence of iterations)

Pregel Computation Model (Cont')

- Concurrent computation and Communication need not be ordered in time
- Communication through message passing

Assignment Project Exam Help

https://eduassistpro.github.io/

Pregel Computation Model (Cont')

- Superstep: the vertices compute in parallel
 - Each vertex
 - Receives messages sent in the previous superstep
 - Executeignement Project Exame Help
 - Modifies https://eduassistpro.github.io/
 - Sends messages to other v ceived in the next superstep Add WeChat edu_assist_pro
 - Votes to halt if it has no further work to do
 - Termination condition
 - All vertices are simultaneously inactive
 - A vertex can choose to deactivate itself
 - Is "woken up" if new messages received

Differences from MapReduce

Graph algorithms can be written as a series of chained MapReduce jobs

- Pregel Assignment Project Exam Help
 - Keeps vertic t performs computation https://eduassistpro.github.io/
 - Uses network transfer seem have edu_assist_pro
- MapReduce
 - Passes the entire state of the graph from one stage to the next
 - Needs to coordinate the steps of a chained MapReduce

Writing a Pregel Program (C++)

Subclassing the predefined Vertex class

Pregel: SSSP (C++)

Refer to the current node as u

```
class ShortestPathVertex : public Vertex<int, int, int>
{
  void Compute(MessageIterator* msgs) {
                                                       aggregation
     int mindist = IsSource(vertex id()) ? 0 : INF;
Assignment Project Exam Help
                                                 Messages: distances to u
     for (; !ms
       mindist https://eduassistpro.gitlaveloueothe current
       if (mind
          *Mutable Chait edu_assist_pro
OutEdgeIterator iter geIter
                                                  geIterator();
       for (; !iter.Done(); iter.Novt())
SendMessageTo(iter.Target Pass revised distance to its
          mindist + iter.GetValue() neighbors
     VoteToHalt();
```

e());

More Tools on Big Graph Processing

- Graph databases: Storage and Basic Operators http://en.wikipedia.org/wiki/Graph_database
 - Neo4j (an open source graph database)
 - InfiniteGraph
 - Vertex Pssignment Project Exam Help

https://eduassistpro.github.io/

- Distributed Graph Processing (most Add WeChat edu_assist_pro

 - Giraph (Apache)
 - GraphX (Spark)
 - GraphLab

References

- Chapter 5. Data-Intensive Text Processing with MapReduce
- Chapter 5. Mining of Massive Datasets.

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

PageRank Review

- Given page t_i with in-coming neighbors $t_1 cdots t_n$, where
 - \Box d_i is the out-degree of t_i

 - N is the total number of nodes in the graph
 Assignment Project Exam Help

Computing PageRank

- Properties of PageRank
 - Can be computed iteratively
 - Effects at each iteration are local
- Sketch of algorithm:
 - Start wArssignments Project Exam Help
 - Each page it links to
 - Each target https://eduassistpro.github.io/ compute r_j Add WeChat edu_assist_pro
 - Iterate until values converge

Simplified PageRank

- First, tackle the simple case:
 - No teleport
 - No dangling nodes (dead ends)
- Then, factor in these complexities...
 - How to Assignment Boo jecta bix m Help
 - How to deal

https://eduassistpro.github.io/

Sample PageRank Iteration (1)

Assignment Project Exam Help

https://eduassistpro.github.io/

Sample PageRank Iteration (2)

Assignment Project Exam Help

https://eduassistpro.github.io/

PageRank in MapReduce (One Iteration)

PageRank Pseudo-Code

Assignment Project Exam Help

https://eduassistpro.github.io/

PageRank vs. BFS

```
Assignment Project Exam Helps

Map https://eduassistpro.github.ip/
```

Add WeChat edu_assist_pro
Reduce sum min

PageRank in Pregel

Superstep 0: Value of each vertex is 1/NumVertices()

```
virtual void Compute(MessageIterator* msgs) {
                  if (superstep() >= 1) {
             Assignment Project Exam Help
for (; !msgs->done(); msgs->Next())
                   https://eduassistpro.githuboio * sum;
             (superstep) (We Chat edu_assist_pro const int64 n = G rator().size();
                  SendNessageToAllNeighbors(GetValue() / n);
          } else {
                  VoteToHalt();
}
```