

. `						
No.	×l	×5	×3	×4	x5	у
1	0. 000	0.000	0. 350	0.600	0.600	100. 0
2	0.000	0.300	0. 100	0.000	0.600	101.0
3	0.000	0. 300	0. 000	0. 100	0.600	100. 0
4	0. 150	0. 150	0. 100	0.600	0.000	97. 3
5	0. 150	0.000	0. 150	0.600	0. 100	97. 8
6	0.000	0. 300	0. 490	0.600	0. 051	96. 7
7	0. 000	0. 300	0. 000	0. 489	0. 211	97. 0
8	0. 150	0. 127	0. 023	0. 600	0.100	97. 3
9	0. 150	0. 000	0. 311	0. 539	0.000	99. 7
10	0.000	0. 300	0. 285	0.415	0.000	99. 8
11	0.000	0. 080	0. 350	0. 570	0.000	100.0
12	0. 150	0. 150	0. 266	0. 434	0.000	99. 5
13	0. 150	0. 150	0. 082	0.018	0.600	101.9
14	0.000	0. 158	0. 142	0.100	0.600	100. 7
15	0.000	0. 000	0. 300	0. 416	0. 239	100. 9
16	0. 150	0. 034	0. 116	0. 444	0.600	101. 2
17	0. 068	0. 121	0. 175	0. 332	0. 192	98. 2
18	Ն. 067	0. 098	0. 234	0.000	0. 270	100. 5
19	0. 000	0. 300	0. 192	0. 208	0. 300	100. 6
50	0. 150	0. 150	0. 174	0. 226	0. 300	100.6
21	0. 075	0. 225	0. 276	0. 424	0.000	99. 1
55	0.075	0. 225	0.000	0. 100	0.600	100. 4
53	0.000	0. 126	0. 174	0.600	0. 100	98. 4
24	0. 075	0.000	0. 225	0. 600	0. 100	98. 2
25	0. 150	0. 150	0.000	0. 324	0.376	99. 4
26	0.000	0. 300	0. 192	0. 508	0.000	98. 6

x1 = BUTANE
x2 = ISOPENETANE
x3 = REFORMATE
x4 = CAT CRACKED
x5 = ALKYLATE
y = RESEARCH OCTANE AT 2.0 GRAMS OF LEAD/GALLON

TABLE 2: TIME-DEPENDENT SENSOR DATA PROFILES NO. t:1-5 t:6-11 t:12-17 t:18-23 t:24-29 FAULT 0.65190 0. 13019 0.31398 0.69901 0.30067 0.00000 0. 27577 0. 56790 0. 24946 0.61443 0.70156 1.00000 3 0.86528 0. 30303 0.10538 0. 56716 0.58797 0.00000 0.15642 0. 83277 0.58065 0. 37313 0.58352 1.00000 5 0.82369 0. 27834 0. 24731 0.67413 0. 90200 0.00000 0. 35353 6 0. 67116 0. 16559 0. 65920 0.82405 1.00000 7 0. 40958 0. 35241 0.41290 0. 73881 0.70601 0.00000 0.35443 0. 33782 0.55054 0.70647 8 0.71269 1.00000 9 0.54702 0. 57350 0. 59355 0.67413 0.72606 0.00000 0.34177 0. 79355 0. 79851 10 0. 607.18 0.64588 1.00000 0.65208 0.67312 11 0. 47920 0. 83582 0.74833 0.00000 12 0. 35353 0.57800 0.94409 0. 95025 0.74610 1.00000 0.47197 0. 32099 0.36559 0. 58209 0. 52561 13 0.00000 0. 36528 0. 39843 0.44731 0.61940 0.55457 1.00000 0. 29854 15 0.44123 0.34624 0.57711 0.55457 0.00000 16 0. 35805 0.35354 0. 42150 0. 59701 0.56793 1.00000 0. 49005 0. 32997 0. 41505 0. 72139 0.67929 17 0.00000 0. 43656 0. 72388 18 0. 31284 0. 43547 0.70601 1.00000 19 0. 43309 0.31874 0.39785 0.71642 0.73497 0.00000 50 0. 34991 0. 71144 0.36251 0.44946 0.,73051 1.00000 21 0.46745 0.26936 0.40860 0.69652 0.72160 0.00000 55 0. 35262 0. 37261 0. 42366 0.70398 0.70601 1.00000 53 0. 59042 0. 25253 0. 48602 0.78358 0.82628 0.00000 0. 37486 0. 79851 24 0.38427 0. 48172 0.80401 1.00000 0. 19753 25 0.38156 0.40645 0.63930 0.83296 0.00000 26 0.34810 0.52189 0.44516 0.68906 0.72160 1.00000 0. 61194 27 0.75769 0.91134 0.44301 0.51225 0.00000 1.00000 28 0.41863 1.00000 0.59453 0.49220 1.00000 29 0.50723 0.36364 0. 40645 0.68159 0.71715 0.00000 0.34991 0.47250 0. 45806 0.70149 0.70156 30 1.00000 0.54069 0. 38279 0.70647 0.73051 0.00000 31 0. 24691 0. 38710 0.38788 0.70149 0.72383 35 0. 40404 1.00000 0.41320 0. 32660 0. 41075 0.71715 0.68408 0.00000 33 0.34991 0.70379 34 0.34007 0. 49247 0.68906 1.00000 0.39873 0.35354 0. 44516 0.68906 0.69710 0.00000 35 36 0. 33906 0. 32323 0. 58065 0.70149 0.69710 1.00000 37 0. 42366 0.74378 0.85746 0.00000 0. 29747 0. 26824

0. 36129

0.21886

0.30561

0.59950

0.67038

1.00000

Fig. 12

TABLE 3: SEMICONDUCTOR CRYSTAL STRUCTURE PARAMETERS AND BAND GAPS

No.	COMPOUNDS	u	a	с	c/a	GAP
1	AgGaS2	0. 28	5. 75722	10. 3036	1. 790	2. 55
2	AgALS2	0. 3	5. 73	10. 3	1. 798	3. 13
3	AgGaSe2	0. 27	5. 755	10. 28	1. 786	1.8
4	CdSiAs2	0. 298	5. 884	10. 882	1. 849	1. 55
5	CdGeP2	0. 2839	5. 738	10. 765	1. 876	1. 72
6	AgAlTe2	0. 26	6. 296	11. 83	1. 879	2. 25
7	CdGeAs2	0. 278	5. 9432	11. 2163	1. 887	0. 6
8	AgGaTe2	0. 26	6. 3197	11. 9843	1. 896	1. 1
9	AgLnTe2	0. 25	5. 836	11. 1789	1. 916	1. 9
10	CdSnP2	0. 265	5. 9	11.518	1. 952	1.7
11	CuA1Se2	0. 26	5. 6103	10. 982	1. 957	2. 6
12	AgLnSe2	0. 25	6. 455	12.644	1. 959	0. 96
13	CdSnAs2	0. 262	6. 09	11. 94	1. 961	0. 26
14	ZnGeP2	0. 25816	5. 46	10. 71	1. 962	2. 34
15	CuA1S2	0. 27	5. 31	10. 42	1. 96c	3. 35
16	ZnGeAs2	0. 25	5. 66	11. 154	1. 971	0. 75
17	CuFeS2	0. 27	5. 289	10. 423	1. 971	0. 53
18	AgA1Se2	0. 27	5. 95	10. 75	1. 807	2. 6
19	CuAl Te2	0. 25	5. 964	11. 78	1. 975	2. 06
50	CuGaTe2	0. 25	6.013	11. 934	1. 985	1. 24
21	CuTiSe2	0. 25	5. 832	11. 63	1. 994	1. 07
55	ZnSnAs2	0. 231	5. 851	11. 702	2. 000	0. 65
53	ZnSnP2	0. 238	5. 65	11. 3	2. 000	1. 66
24	ZnLnSe2	0. 224	5. 784	11.614	2. 008	0. 95
25	CuLnS2	0. 2	5. 5228	11. 1321	2. 106	1. 54
56	CuGaS2	0. 25	5. 555	11. 0036	1. 981	1.71

Fig. 13

Fig. 14

Fig. 15

Fig. 22A

Fig. 22B