大数据 数据中心

服务器

存储

虚拟化

NoSQL

安全

云先锋

CSDN首页 > 云计算 订阅云计算RSS

MLlib中的Random Forests和Boosting

发表于 2015-03-11 15:49 | 1246次阅读 | 来源 Databricks | 3 条评论 | 作者 Joseph Bradley, Manish Amde

机器学习 分布式 云计算 Spark

摘要:本文介绍了Random Forests和Gradient-Boosted Trees(GBTs)算法和他们在MLlib 中的分布式实现,以及展示一些简单的例子并建议该从何处上手。

【编者按】本文来自Databricks公司网站的一篇博客文章,由Joseph Bradley和Manish Amde撰写。 此外,Databricks是由Apache Spark的创始人建立的,成立于2013年年中,目前团队人员均是开源 圈子内的重量级人物,他们都热衷于"增值开源软件":

- 任职CEO的lon Stoica是UC Berkeley计算机教授、AMPLab联合创始人,同时也是Conviva公司的 联合创始人。
- CTO Matei Zaharia是Apache Spark的创作者,同时也是麻省理工学院计算机科学系的助理教 授。
- UC Berkeley计算机科学教授Scott Shenker,同时也是知名SDN公司Nicira的联合创始人及前
- 值得一提的是联合创始人辛湜先生(英文名Reynold Xin,新浪微博为@hashjoin)还是一名中国 人。

以下为博文的译文:

在Spark 1.2中,MLlib引入了Random Forests和Gradient-Boosted Trees (GBTs)。在分类和回归 处理上,这两个算法久经验证,同时也是部署最广泛的两个方法。Random Forests和GBTs属于 ensemble learning algorithms (集成学习算法),通过组合多个决策树来建立更为强大的模型。在本 篇文章,我们将介绍这两个模型和他们在MLlib中的分布式实现。同时,我们还会展示一些简单的例 子并建议该从何处上手。

Ensemble Methods

简言之,集成学习算法(Ensemble Learning Algorithms)是对了才始显显于了算法进行组合。组合 后的模型将比原有的任意一个子模型更加的强大和精确。

在MLlib 1.2中,我们使用 Decision Trees(决策树)作为基础模型,回时还提供了两个集成方法: Random Forests与 Gradient-Boosted Trees (GBTs)。两个算法的主要区别在于各个部件树 (component tree) 的训练顺序。

在Random Forests中,各个部件树会使用数据的随机样本进行独立地训练。对比只使用单棵决策 树,这种随机性可以帮助训练出一个更健壮的模型,同时也能避免造成在训练数据上的过拟合。

GBTs一次训练一棵树,每次加入的新树用于纠正已训练的模型误差。因此,随着越来越多树被添 加,模型变得越来越有表现力。

总而言之,两种方法都是多个决策树的加权集合。集成模型基于多个树给出的结果进行结合来做出预 测。下图是建立在3个树之上的一个非常简单的例子。

CSDN官方微信

扫描二维码,向CSDN吐槽 微信号: CSDNnews

程序员移动端订阅下载

每日资讯快速浏览

微博关注

CSDN云计算 北京 朝阳区

加关注

【Spark 1.3更新概述: 176个贡献者, 1000+ patc hes】千呼万唤, 合176个贡献者之力, Spark 1.3 终于发布, 其主要更新包括: 2014年到2015年Spa rk最大的API改动DataFrame、内置支持Spark Pac kages、更好的Kafka支持,以及MLlib中的多个算 法引入。 http://t.cn/RwkDX0m

3月16日 17:15

转发(3) | 评论

相关热门文章

陈超: Spark这一年,从开源到火爆 Databricks、Intel、BAT齐聚, 2015 Spark峰会...

开源界迎来新杀手, 用互联网思维攻克企业级市场

【机器人读报】Google云服务为Docker应用提...

"互联网+"升国家层面,互联网连接器背后的腾讯...

Ensemble Model: example for regression

在上图的回归集成中,每棵树都会产生一个实数值,随后这3个值被整合以产生一个最终的结果。这里使用的是均值计算,当然你也可以根据预测任务来选择使用不同技术。

Distributed Learning of Ensembles

在MLlib,不管是Random Forests还是GBTs都通过实例(行)对数据进行分割。其实现依赖于原始 Decision Tree代码,对多个独立的树进行分布式训练,详情见之前发布的 博文。其中大量的优化方式基于Google的 PLANET项目——分布式环境中做基于树的集成学习的一个主要项目。

Random Forests: 鉴于Random Forests中每棵树都独立地进行训练,因此多个树的训练可以并行进行(同时,单个树上的训练也可以并行地执行)。MLlib就是这样做的:可变数量的子树并行地进行训练,而具体的数量则在内存限制的基础上进行迭代优化。

GBTs: 鉴于GBTs一次只能训练一棵树,只能实现单棵树级别的并行化。

在这里,我们看一下MLlib完成的两个关键优化:

- 内存: Random Forests中每棵树训练都使用了数据的不同子样本。取代显式复制数据,我们通过使用了一个TreePoint结构来节省内存,TreePoint存放了各个子样本集中每个实例的副本数量。
- 通信: Decision Trees在每个决策点上都会从所有的特征中选择进行训练,然而Random Forests 通常在每个节点采用有限的随机选择的特征子集。MLlib在实现时采用了这个二次抽样的特性来减 少通信:如果每个节点上训练的子特征集只占所有特征集的三分之一,那么通信将会减少到三分 之一。

更多详情可查看 Ensembles Section in the MLlib Programming Guide一文。

使用MLlib Ensembles

下面我们将展示如何使用MLlib做集成学习。下面这个Scala示例展示了如何读入一个数据集,将数据分割到训练和测试环境,学习一个模型,打印这个模型以及测试精确度。Java和Python实例可以参考MLlib Programming Guide(http://spark.apache.org/docs/latest/mllib-ensembles.html)。需要注意的是,GBTs当下还没有Python API,GBTs的Python API可能在Spark 1.3版本发布(通过 Github PR 3951)。

Random Forest Example

```
import org.apache.spark.mllib.tree.RandomForest
import org.apache.spark.mllib.tree.configuration.Strategy
import org.apache.spark.mllib.util.MLUtils

// Load and parse the data file.
val data =
    MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")

// Split data into training/test sets
val splits = data.randomSplit(Array(0.7, 0.3))
val (trainingData, testData) = (splits(0), splits(1))

// Train a RandomForest model.
```

【机器人读报】谷歌 百度 Facebook IBM, 人工... 为何走上OpenStack不归路? Monty Taylor、Da... Spark 1.3更新概述: 176个贡献者, 1000+ patc... MLlib中的Random Forests和Boosting 2015 Container技术峰会! 各路英豪齐聚紫禁城!

热门标签

Hadoop	AWS	移动游戏
Java	Android	iOS
Swift	智能硬件	Docker
OpenStack	VPN	Spark
ERP	IE10	Eclipse
CRM	JavaScript	数据库
Ubuntu	NFC	WAP

CSDN Share PPT下载

编写"高性能"Python 代码

流程设计与重组提纲

Concurrency Control and Recovery

How the Compute rWorks

```
val treeStrategy = Strategy.defaultStrategy("Classification")
val numTrees = 3 // Use more in practice.
val featureSubsetStrategy = "auto" // Let the algorithm choose.
val model = RandomForest.trainClassifier(trainingData,
    treeStrategy, numTrees, featureSubsetStrategy, seed = 12345)

// Evaluate model on test instances and compute test error
val testErr = testData.map { point =>
    val prediction = model.predict(point.features)
    if (point.label == prediction) 1.0 else 0.0
}.mean()
println("Test Error = " + testErr)
println("Learned Random Forest:n" + model.toDebugString)
```

Gradient-Boosted Trees Example

```
import org. apache. spark. mllib. tree. GradientBoostedTrees
import org. apache. spark. mllib. tree. configuration. BoostingStrategy
import org. apache. spark. mllib. util. MLUtils
// Load and parse the data file.
val data =
 MLUtils.loadLibSVMFile(sc, "data/mllib/sample libsvm data.txt")
// Split data into training/test sets
val splits = data.randomSplit(Array(0.7, 0.3))
val (trainingData, testData) = (splits(0), splits(1))
// Train a GradientBoostedTrees model.
val boostingStrategy =
 BoostingStrategy.defaultParams("Classification")
boostingStrategy.numIterations = 3 // Note: Use more in practice
val model =
 GradientBoostedTrees.train(trainingData, boostingStrategy)
// Evaluate model on test instances and compute test error
val testErr = testData.map { point =>
 val prediction = model.predict(point.features)
 if (point.label == prediction) 1.0 else 0.0
println("Test Error = " + testErr)
println("Learned GBT model:n" + model.toDebugString)
```

可扩展性

我们在一个二分类实验上展示了MLlib Ensembles的可扩展性。下面的每张图都对比了Gradient-Boosted Trees ("GBT") 和 Random Forests ("RF"),树根据最大深度区分。

测试的场景是一个根据音频特征集(UCI ML知识库中的YearPredictionMSD数据集)预测歌曲发布日期的回归任务,我们使用了EC2 r3.2xlarge主机。另外,除特殊说明,算法参数均选择默认。

扩展模型体积: 训练时间和测试错误

下文两张图片展示了在集成中增加树的数量时的效果。对于两个方法来说,增加树需要更多的学习时间,同样也意味着更好的结果(采用Mean Squared Error (MSE) 进行评估)。

对比两种方法,Random Forests训练的速度无疑更快,但是如果想达到同样的误差,它们往往需要深度更大的树。GBTs每次迭代都可以进一步减少误差,但是如果迭代次数太多,它很可能造成过拟合。

下图可以帮助对MSE产生一定程度的了解,最左边的点表示了使用单一决策树时产生的误差。

详情: 463715个训练模型。16个从节点。

缩放训练数据集的体积:训练时间和测试误差。

下面的两张图表示了在大型训练数据集上的效果。使用更多的数据时,两个方法的训练时间都有所增长,但是显然也都得到了一个更好的结果。

详情: 16个工作节点

强扩展性: 使用更多的节点做更快速的训练

下面这张图体现了使用更大的计算集群来处理同样的问题。显然,在使用了更多的从节点后,两种方法的训练速度都得到了显著提升。举个例子,使用GBTs时,在树深度为2的情况下,16个工作者节点的速度将是2个工作者节点速度的4.7倍。同时,数据集越大,速度的提升越明显。

Scaling with cluster size

详情: 463715个训练实例。

下一步

GBTs的Python API将在不久后实现。后续开发的重点是可插拔性:集成可以应用到几乎所有分类或者回归算法,不仅仅是决策树。对于这一点,Spark 1.2中引入的 Pipelines API 支持对集成算法进行扩展,实现真正的可插拔。

原文链接: Random Forests and Boosting in MLlib (译者/童阳 友情审校/王静, 浙江大学博士)

OpenCloud 2015将于2015年 4月16-18日在北京召开。大会包含"2015 OpenStack技术大会"、"2015 Spark技术峰会"、"2015 Container技术峰会"三大技术峰会及多场深度行业实战培训,主题聚焦技术创新与应用实践,荟萃国内外真正的云计算技术的大牛讲师。这里都是一线接地气的干货,扎实的产品、技术、服务和平台。OpenCloud 2015,懂行的人都在这里!

更多讲师和日程信息请关注OpenCloud 2015介绍和官网。

本文为CSDN编译整理,未经允许不得转载,如需转载请联系market#csdn.net(#换成@)

改变,只为更好的内容呈现 新注册用户送10个CSDN下载积分 <mark>⑥</mark>

推荐阅读相关主题: random 麻省理工学院 计算机科学 浙江大学 开源软件 博

相关文章 最新报道

【快讯】阿里开放5.7亿条脱敏数据,90后"Marvel"...

一周热点:从打造国内最大的OpenStack公有云开始

"天网"降临 机器人或将崛起?

收藏! 斯坦福Andrew Ng教授"机器学习"26篇教程全译

【机器人读报】Slack: 日活跃用户50万人、6周增...

Hadoop进军机器学习: Cloudera收购Myrrix共创"Bi...

已有3条评论

新浪微

有什么感想,你也来说说吧!

luchunminglu 欢迎您!

最新评论

最热评论

baidu_26579881 2015-03-15 00:40

ok

回复

考拉kaola 2015-03-13 12:37 说的好

回复

codemosi 2015-03-13 09:27

一线干货,赞一个,spark发展得越来越好,希望早点壮大成熟。

回复

 共1页
 首页
 上一页
 1
 下一页
 末页

请您注意

- ·自觉遵守: 爱国、守法、自律、真实、文明的原则
- ·尊重网上道德,遵守《全国人大常委会关于维护互联网安全的决定》及中华人民共和国其他各项有关法律法规
- ·严禁发表危害国家安全,破坏民族团结、国家宗教政策和社会稳定,含侮辱、诽谤、教唆、淫秽等内容的作品
- ·承担一切因您的行为而直接或间接导致的民事或刑事法律责任
- ·您在CSDN新闻评论发表的作品, CSDN有权在网站内保留、转载、引用或者删除
- ·参与本评论即表明您已经阅读并接受上述条款

热门专区

容联云通讯开发者技术专区

腾讯云技术社区

IBM新兴技术大学

高效能团队解决方案

高通开发者专区

公司简介 | 招贤纳士 | 广告服务 | 银行汇款帐号 | 联系方式 | 版权声明 | 法律顾问 | 问题报告 | 合作伙伴 | 论坛反馈

网站客服

杂志客服

微博客服

webmaster@csdn.net

400-600-2320 | 北京创新乐知信息技术有限公司 版权所有 |

江苏乐知网络技术有限公司 提供商务支持

京 ICP 证 070598 号 | Copyright © 1999-2014, CSDN.NET, All Rights Reserved