Reguläre Ausdrücke

Aufgabe 1

Gegeben sei die Sprache $L = \{w \in \{a, b, c\}^* \mid w \text{ beginnt mit a und endet mit } b\}.$

- a) Geben sie einen Regulären Ausdruck G an, sodass L(G) = L.
- b) Geben sie einen deterministischen endlichen Automaten A an, sodass L(A) = L . (WiSe 19/20)

Aufgabe 2

Gegeben sei der Reguläre Ausdruck $R = (x \cup \epsilon) \cdot (y \cup xy)^*$.

- a) Geben sie alle Wörter der Sprache $L_3 = \{w \in L(R) \mid |w| \leq 3\}$ explizit an.
- b) Geben sie einen endlichen Automaten A an, sodass L(A) = L(R). (SoSe20)

Aufgabe 3

Gegeben sei der regulärer Ausdruck $R = ac^*b$. Konstruieren sie mit aus der Vorlesung bekannten Methoden einen endlichen Automaten A mit L(A) = L(R). Hinweiß: Kein Tupel angeben. Keine Minimierung vornehmen.

Aufgabe 4

Gegeben sei der regulärer Ausdruck $R = ((a \cup c)b)^*$. Konstruieren sie mit aus der Vorlesung bekannten Methoden einen endlichen Automaten A mit L(A) = L(R).

Hinweiß: Kein Tupel angeben. Keine Minimierung vornehmen.

start
$$\longrightarrow P_0$$
 $\xrightarrow{c} P_1$

start
$$\longrightarrow$$
 N_0 \longrightarrow N_1 (SoSe17)

Aufgabe 5

Gegeben sei folgender nichtdeterministischer endlicher Automat.

$$A = (\{x,y\}, \{N_0, N_1, N_2, N_3\}, \{N_0, N_2\}, \delta \ \textit{gem\"{a}B} \ \textit{Graph}, \{N_1, N_3\})$$

Geben sie einen regulären Ausdruck G an, sodass L(G)=L(A). (SoSe17)