1 ДЗ 1

Задача 1.1. Докажите, что квазиаффинное многообразие $U = \{x \in \mathbb{A}^2_k \mid f(x) \neq 0\}$ аффинно, т.е. есть взаимно обратные регулярные отображения между ним и некоторым замкнутым алгебраическим множеством (каким?).

Доказательство. Рассмотрим множество U, заметим, что его можно отобразить во вложение в \mathbb{A}^3_k следующим образом: $(x,y)\mapsto \left(x,y,\frac{1}{f}\right)$ и обратно: $(x,y,z)\mapsto (x,y)$. Это отображение регулярное и нормально определено, так как f нигде не 0 (по условию).

Задача 1.2. Если k алгебраически замкнуто, докажите, что $V = \mathbb{A}^2_k - \{(0,0)\}$ не является аффинным (можно воспользоваться теоремой Гильберта о нулях).

Доказательство. Предположим, от противного, что V аффинно. Тогда существует идеал I группы k[x,y] такой, что V=Z(I). Пусть p(x,y)=x+y. Тогда p(x,y) обращается в нуль на (0,0), которого нет в V, поэтому он не обращается в нуль ни в одной точке V. Следовательно, по теореме Гильберта о нулях p(x,y) не принадлежит I. Но это означает, что существует простой идеал P, содержащий I, такой, что p(x,y) не принадлежит P. По соответствию между алгебраическими множествами и радикальными идеалами это означает, что существует неприводимое алгебраическое подмножество W в \mathbb{A}^2_k такое, что $V \subset W$ и $(0,0) \notin W$. Но это противоречит тому, что $\overline{V} = \mathbb{A}^2_k$, поскольку любое неприводимое подмножество, содержащее V, должно быть равно \overline{V} . Следовательно, наше предположение об аффинности V оказалось ложным.

Задача 1.3. Пусть S мультипликативное подмножество в A, A_S кольцо частных. Докажите, что отображение $\operatorname{Spec}(A_S) \to \operatorname{Spec}(A)$, индуцированное естественным $A \to A_S$, является гомеоморфизмом на подмножество идеалов $\operatorname{Spec}(A)$, не пересекающихся с S.

Доказательство. Пусть $\varphi:A\to A_S$ — отображение, переводящее a в a/1. Тогда мы имеем непрерывное отображение $\operatorname{Spec}\varphi:\operatorname{Spec}(A_S)\to\operatorname{Spec}A$. Для простоты обозначим $\operatorname{Spec}\varphi$ как h. Пусть \mathfrak{p}' простой идеал в A_S . Тогда $\varphi^{-1}\mathfrak{p}'$ является простым идеалом в A, таким что $\varphi^{-1}(\mathfrak{p}')\cap S=\emptyset$. Если нет, то существует $f\in\varphi^{-1}(\mathfrak{p}')\cap S$. Тогда $f\in S$ и $f/1\in\mathfrak{p}'$. Так как $f\in S, 1/f\in A_S$. Это означает, что $1/1\in\mathfrak{p}'$, то есть $A_S=\mathfrak{p}'$ что неправда так как \mathfrak{p}' - простой идеал. Так как $\operatorname{Im}h\subset\{\mathfrak{p}\in\operatorname{Spec}A:S\cap\mathfrak{p}=\emptyset\}$. И наоборот, если $\mathfrak{p}\in\{\mathfrak{p}\in\operatorname{Spec}A:S\cap\mathfrak{p}=\emptyset\}$, то $\varphi(\mathfrak{p})=S^{-1}\mathfrak{p}$ является простым идеалом в A_S . Это связано с тем, что локализация области целостности является областью целостности и, следовательно, $A_S/S^{-1}\mathfrak{p}\cong S^{-1}(A/\mathfrak{p})$ является целостной областью. Более того, $\mathfrak{p}=\varphi^{-1}\left(S^{-1}\mathfrak{p}\right)$. Поэтому $\mathfrak{p}\in\operatorname{Im}h$. мы обнаружили $\operatorname{Im}h=\{\mathfrak{p}\in\operatorname{Spec}A:S\cap\mathfrak{p}=\emptyset\}$.

Пусть $h': \operatorname{Im} h \to \operatorname{Spec}\left(S^{-1}R\right), \, \mathfrak{p} \to S^{-1}\mathfrak{p}.$ Для $\mathfrak{p} \in \operatorname{Im} h, h \circ h'(\mathfrak{p}) = h\left(S^{-1}\mathfrak{p}\right) = \varphi^{-1}\left(S^{-1}\mathfrak{p}\right) = \mathfrak{p}$ и для любого $\mathfrak{p}', h' \circ h\left(\mathfrak{p}'\right) = h'\left(\varphi^{-1}\mathfrak{p}'\right) = S^{-1}\left(\varphi^{-1}\mathfrak{p}'\right) = \mathfrak{p}'$ по определению. Следовательно h' является обратным к h. Теперь нам нужно только показать, что h — открытое отображение.

Пусть D(t/s) — стандартное открытое подмножество в $\operatorname{Spec}(A_S)$. Давайте покажем, что $h(D(t/s)) = D(t) \cap \operatorname{Im} h$. Предположим $\mathfrak{p} \in D(t) \cap \operatorname{Im} h$. Тогда $\mathfrak{p} \cap S = \emptyset$ и $t \notin \mathfrak{p}$. Тогда $t/s \notin \mathfrak{p}' = \varphi(\mathfrak{p})^1$ Это показывает, что $\mathfrak{p}' \in D(t/s)$. Другими словами, $\mathfrak{p} = h(\mathfrak{p}') \subset h(D(t/s))$ Поэтому $D(t) \cap \operatorname{Im} h \subset h(D(t/s))$. Предположим, что $\mathfrak{p} \in h(D(t/s))$. Затем $\mathfrak{p} \in \operatorname{Im} h$ и тогда $\mathfrak{p}' \in D(t/s)$ так что $\mathfrak{p} = \varphi^{-1}(\mathfrak{p}')$. Следовательно $\mathfrak{p} \in \operatorname{Im} h$, $\mathfrak{p} \cap S = \emptyset$. Так как $\mathfrak{p}' \in D(t/s)$, $t/s \notin \mathfrak{p}'$. Теперь мы хотим показать $\mathfrak{p} \in D(t)$. Предположим, противное. $t \in \mathfrak{p}$. Тогда $t/s \in \mathfrak{p}'$ что приводит к противоречию, заключающемуся в том, что $t/s \notin \mathfrak{p}'$. Следовательно, $t \notin \mathfrak{p}$ и, следовательно, $\mathfrak{p} \in D(t)$. Мы заключаем, что

$$h(D(t/s)) = D(t) \cap \operatorname{Im} h.$$

То есть h — открытое отображение.