In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [169]: s=pd.read_csv(r"C:\Users\user\Downloads\22_countries - 22_countries.csv")
s

Out[169]:

	id	name	iso3	iso2	numeric_code	phone_code	capital	currency	currency_nai
0	1	Afghanistan	AFG	AF	4	93	Kabul	AFN	Afghan afgha
1	2	Aland Islands	ALA	AX	248	+358-18	Mariehamn	EUR	Ει
2	3	Albania	ALB	AL	8	355	Tirana	ALL	Albanian
3	4	Algeria	DZA	DZ	12	213	Algiers	DZD	Algerian dir
4	5	American Samoa	ASM	AS	16	+1-684	Pago Pago	USD	US Do
245	243	Wallis And Futuna Islands	WLF	WF	876	681	Mata Utu	XPF	CFP fre
246	244	Western Sahara	ESH	EH	732	212	El-Aaiun	MAD	Morocc Dirha
247	245	Yemen	YEM	ΥE	887	967	Sanaa	YER	Yemeni ı
248	246	Zambia	ZMB	ZM	894	260	Lusaka	ZMW	Zambi kwac
249	247	Zimbabwe	ZWE	ZW	716	263	Harare	ZWL	Zimbab Dol
250 rouge v 10 columns									

250 rows × 19 columns

```
In [170]:
             s=s.head(50)
             S
                                                                                                        Centra ^
                                           СМ
                                                           120
                                                                        237
                                                                                                XAF
              37
                   38
                         Cameroon CMR
                                                                                  Yaounde
                                                                                                            С
              38
                   39
                           Canada
                                    CAN
                                            CA
                                                           124
                                                                           1
                                                                                    Ottawa
                                                                                                CAD
                                                                                                       Canadia
                                                                                                        Cape
                   40
                        Cape Verde
                                     CPV
                                                                        238
                                                                                     Praia
                                                                                                CVE
              39
                                            \mathsf{CV}
                                                           132
                           Cayman
                                                                                                       Caymar
                                    CYM
                                                                                                KYD
                                                                     +1-345
                                                                              George Town
              40
                   41
                                            KY
                                                           136
                            Isĺands
                            Central
                                                                                                        Centra
                                                                                                XAF
              41
                   42
                            African
                                     CAF
                                            CF
                                                           140
                                                                        236
                                                                                    Bangui
                                                                                                            С
                           Republic
                                                                                                        Centra
              42
                   43
                              Chad
                                     TCD
                                            TD
                                                           148
                                                                        235
                                                                                N'Djamena
                                                                                                XAF
                                                                                                            С
              43
                              Chile
                                     CHL
                                            CL
                                                           152
                                                                         56
                                                                                  Santiago
                                                                                                CLP
                                                                                                         Chile
                   44
              44
                   45
                             China
                                    CHN
                                            CN
                                                           156
                                                                         86
                                                                                    Beijing
                                                                                                CNY
                                                                                                         Chin€
```

In [171]: s.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype		
0	id	50 non-null	int64		
1	name	50 non-null	object		
2	iso3	50 non-null	object		
3	iso2	50 non-null	object		
4	numeric_code	50 non-null	int64		
5	phone_code	50 non-null	object		
6	capital	48 non-null	object		
7	currency	50 non-null	object		
8	currency_name	50 non-null	object		
9	currency_symbol	50 non-null	object		
10	tld	50 non-null	object		
11	native	50 non-null	object		
12	region	49 non-null	object		
13	subregion	48 non-null	object		
14	timezones	50 non-null	object		
15	latitude	50 non-null	float64		
16	longitude	50 non-null	float64		
17	emoji	50 non-null	object		
18	emojiU	50 non-null	object		
<pre>dtypes: float64(2), int64(2), object(15)</pre>					

memory usage: 7.5+ KB

```
In [172]: s.describe()
```

Out[172]:

	id	numeric_code	latitude	longitude
count	50.000000	50.000000	50.000000	50.000000
mean	28.260000	133.920000	11.688000	5.441933
std	23.355994	166.988676	28.752855	65.724453
min	1.000000	4.000000	-74.650000	-170.000000
25%	13.250000	48.500000	-9.000000	-61.233333
50%	26.500000	85.000000	13.083333	14.166667
75%	38.750000	151.000000	32.833333	44.812500
max	155.000000	854.000000	60.116667	133.000000

```
In [173]: s.columns
```

In [174]: sns.pairplot(s)

Out[174]: <seaborn.axisgrid.PairGrid at 0x23cfadd1af0>

In [175]: sns.distplot(s['id'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[175]: <AxesSubplot:xlabel='id', ylabel='Density'>


```
In [177]: s1=s[['id','latitude', 'longitude','numeric_code','phone_code']]
s1
```

Out[177]:

	id	latitude	longitude	numeric_code	phone_code
0	1	33.000000	65.000000	4	93
1	2	60.116667	19.900000	248	+358-18
2	3	41.000000	20.000000	8	355
3	4	28.000000	3.000000	12	213
4	5	-14.333333	-170.000000	16	+1-684
5	6	42.500000	1.500000	20	376
6	7	-12.500000	18.500000	24	244
7	8	18.250000	-63.166667	660	+1-264
8	9	- 74.650000	4.480000	10	672
9	10	17.050000	-61.800000	28	+1-268
10	11	-34.000000	-64.000000	32	54
11	12	40.000000	45.000000	51	374
12	13	12.500000	-69.966667	533	297
13	14	-27.000000	133.000000	36	61
14	15	47.333333	13.333333	40	43
15	16	40.500000	47.500000	31	994
16	18	26.000000	50.550000	48	973
17	19	24.000000	90.000000	50	880
18	20	13.166667	-59.533333	52	+1-246
19	21	53.000000	28.000000	112	375
20	22	50.833333	4.000000	56	32
21	23	17.250000	-88.750000	84	501
22	24	9.500000	2.250000	204	229
23	25	32.333333	-64.750000	60	+1-441
24	26	27.500000	90.500000	64	975
25	27	-17.000000	-65.000000	68	591
26	155	12.150000	-68.266667	535	599
27	28	44.000000	18.000000	70	387
28	29	-22.000000	24.000000	72	267
29	30	-54.433333	3.400000	74	55
30	31	-10.000000	-55.000000	76	55
31	32	-6.000000	71.500000	86	246
32	33	4.500000	114.666667	96	673
33	34	43.000000	25.000000	100	359
34	35	13.000000	- 2.000000	854	226

	id	latitude	longitude	numeric_code	phone_code
35	36	-3.500000	30.000000	108	257
36	37	13.000000	105.000000	116	855
37	38	6.000000	12.000000	120	237
38	39	60.000000	-95.000000	124	1
39	40	16.000000	-24.000000	132	238
40	41	19.500000	-80.500000	136	+1-345
41	42	7.000000	21.000000	140	236
42	43	15.000000	19.000000	148	235
43	44	-30.000000	-71.000000	152	56
44	45	35.000000	105.000000	156	86
45	46	-10.500000	105.666667	162	61
46	47	-12.500000	96.833333	166	61
47	48	4.000000	-72.000000	170	57
48	49	-12.166667	44.250000	174	269
49	50	-1.000000	15.000000	178	242

In [178]: sns.heatmap(s1.corr())

Out[178]: <AxesSubplot:>


```
In [191]: x=s1[['id','latitude', 'longitude','numeric_code']]
y=s1['longitude']
```

```
In [192]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

```
In [193]:
          from sklearn.linear_model import LinearRegression
           lr=LinearRegression()
           lr.fit(x_train,y_train)
Out[193]: LinearRegression()
In [194]:
          lr.intercept_
Out[194]: -4.085620730620576e-14
          coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
           coeff
Out[195]:
                          Co-efficient
                     id
                        5.331691e-17
                 latitude
                         5.677978e-16
               longitude 1.000000e+00
           numeric_code 2.242329e-16
          prediction=lr.predict(x test)
In [196]:
           plt.scatter(y test,prediction)
Out[196]: <matplotlib.collections.PathCollection at 0x23cfbab5be0>
             100
              50
               0
             -50
            -100
                                               50
                          -50
                                                        100
In [197]:
          print(lr.score(x_test,y_test))
           1.0
In [198]:
          from sklearn.linear_model import Ridge,Lasso
           from sklearn.linear_model import Ridge,Lasso
```

```
In [199]: | rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
          rr.score(x_test,y_test)
Out[199]: 0.99999991552783
          la=Lasso(alpha=10)
In [200]:
          la.fit(x_train,y_train)
          la.score(x_test,y_test)
Out[200]: 0.9999913569026688
In [201]: from sklearn.linear_model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[201]: ElasticNet()
In [202]: |print(en.coef_)
          [-0.00000000e+00 0.00000000e+00 9.99734891e-01 -5.02329370e-06]
In [203]: |print(en.intercept_)
          -0.000417771470554662
          print(en.predict(x_test))
In [204]:
          [-94.97585527 -88.72731128
                                      29.99108643 -64.98352725
                                                                 64.98233003
            96.80641027 14.99471144
                                      90.47526834 105.63742194
                                                                  1.4990841
           114.63536749 104.97096212
                                      18.9938017
                                                  11.99579812 17.99445863
In [205]: |print(en.score(x_test,y_test))
          0.9999999136285275
          from sklearn import metrics
In [206]:
In [207]:
          print("Mean Absolute Error", metrics.mean_absolute_error(y_test, prediction))
          Mean Absolute Error 1.5380289634473835e-14
          print("Mean squared Error", metrics.mean_squared_error(y_test, prediction))
In [208]:
          Mean squared Error 3.5767282134764515e-28
In [209]: import pickle
```

```
In [210]: filename="prediction"
    pickle.dump(lr,open(filename,'wb'))

In [211]: import pandas as pd
    import pickle

In [212]: filename='prediction'
    model=pickle.load(open(filename,'rb'))

In [213]: real=[[55,200,50,40],[80,55,66,88]]
    result=model.predict(real)

In [214]: result

Out[214]: array([50., 66.])

In []:

In []:
```