

UNIVERSIDAD AUTÓNOMA DE CAMPECHE

NOMBRE DE LA ASIGNATURA: INTELIGENCIA ARTIFICIAL

NOMBRE DEL PROFESOR: RAMIREZ ORTEGON JUSTINO

NOMBRE DEL ALUMNO: ALBA ARCOS CHRISTOPHER GREGORIO

TEMA: COMPUTACIÓN EVOLUTIVA

PRÁCTICA NÚM. [3]

OBJETIVO:

Modelar la función Rastrigin en MATLAB para después aplicar optimización por medio del toolkit de optimización con el algoritmo genético además de la consola.

RESUMEN:

Implementamos la función Rastrigin la cual es una función dedicada a la prueba de algoritmos de optimización, por lo que utilizaremos el toolkit de optimización además de la consola de MATLAB con el algoritmo genético, usando variaciones en los parámetros para observar los efectos de estos en el rendimiento del algoritmo. Hacemos hincapié en mostrar que la optimización de la función Rastrigin no es trivial creando casos por medio d ellos parámetros donde no se llega al optimo global.

MARCO TEÓRICO:

En optimización matemática , la función Rastrigin es una función no convexa que se utiliza como problema de prueba de rendimiento para algoritmos de optimización . Es un ejemplo típico de función multimodal no lineal. Fue propuesto por primera vez en 1974 por Rastrigin como una función bidimensional y ha sido generalizado por Rudolph. La versión generalizada fue popularizada por Hoffmeister & Bäck y Mühlenbein et al. Encontrar el mínimo de esta función es un problema bastante difícil debido a su gran espacio de búsqueda y su gran número de mínimos locales.

En un dominio n-dimensional se define por:

$$f(\mathbf{x}) = An + \sum_{i=1}^n \left[x_i^2 - A\cos(2\pi x_i)
ight]$$

Tiene un mínimo global en dónde: $A = 10x_i \in [-5.12, 5.12]\mathbf{x} = \mathbf{0}f(\mathbf{x}) = 0$

Este es un ejemplo tipo de función no lineal multimodal, caracterizada por un número muy grande de mínimos locales, aunque regularmente distribuidos, en su dominio habitual de definición. La función se define en un dominio n-dimensional, xi variando entre -5.12 y +5.12.

En el hipercubo [-5.12,5.12] n esta función alcanza su máximo cuando cada uno de los sumandos (idénticos respecto de cada variable) de la función alcanza su máximo. Así, pues, considera la función.

UNIVERSIDAD AUTÓNOMA DE CAMPECHE

$$g(x) = x^2 - 10\cos(2\pi x).$$

Se puede ver que esta función es par, y es "globalmente" creciente, debido al término x2, pero con cierto carácter oscilatorio debido al término del coseno. Este coseno alcanza su máximo en $x = k \pm 0.5$, siendo k un entero. Es fácil ver que su máximo en [0, 5.12] se alcanza en x = 4.5. Así, el máximo en [-5.12, 5.12], alcanzado, por ejemplo, en x = (4.5, ..., 4.5) es:

$$M = 10n + n(4.5^2 + 10) = 40.25n.$$

Un algoritmo genético (AG) es un método para solucionar problemas de optimización con o sin restricciones basándose en un proceso de selección natural que imita la evolución biológica. Este algoritmo modifica repetidamente una población de soluciones individuales. En cada paso, el algoritmo genético selecciona individuos de la población actual aleatoriamente y los utiliza como padres para producir los hijos de la siguiente generación. Tras varias generaciones sucesivas, la población "evoluciona" hacia una solución óptima. El algoritmo genético se puede aplicar para solucionar problemas que no se adaptan bien a los algoritmos de optimización estándar, incluidos aquellos problemas en los que la función objetivo es discontinua, no diferenciable, estocástica o altamente no lineal. El algoritmo genético difiere de un algoritmo de optimización clásico basado en derivadas de dos formas principales, tal y como se resume en la tabla siguiente.

Algoritmo clásico	Algoritmo genético
Genera un único punto en cada iteración. La secuencia de puntos se aproxima a una solución óptima.	Genera una población de puntos en cada iteración. El mejor punto de la población se aproxima a una solución óptima.
Selecciona el siguiente punto de la secuencia mediante un cálculo determinista.	Selecciona la siguiente población mediante un cálculo que emplea generadores de números aleatorios.

UNIVERSIDAD AUTÓNOMA DE CAMPECHE

EQUIPO Y SOFTWARE UTILIZADO:

- Computadora personal (HP Omen con Core i7 y 8 Gb de RAM)
- El software de MATLAB

FUNCIONALIDAD DEL PROGRAMA:

U =

5.1200 5.1200

```
\Box function [Y] = FRastrigin(X)
□%UNTITLED2 Summary of this function goes here
    Detailed explanation goes here
     Y = 20+(X(1)^2)+(X(2)^2)-10*(\cos(2*3.1416*X(1))+\cos(2*3.1416*X(2)));
L end
>> L=[-5.12;-5.12]
L =
   -5.1200
   -5.1200
>> U=[5.12;5.12]
```

Empezamos definiendo la función Rastrigin, en este caso para términos de simplicidad utilizaremos la versión con solo dos dimensiones, sin embargo, no por esto se debe subestimarla, pues como veremos no cualquier algoritmo puede resolverlo como si fuese un caso trivial de optimización.

Posterior a eso definiremos los limites superiores e inferiores, ya que buscar en toda la función o en extensiones mas grandes a estos limites es inviable. Por lo que estos irán de 5.12 a -5.12 en ambas dimensiones.

UNIVERSIDAD AUTÓNOMA DE CAMPECHE

```
>> ga(@FRastrigin,2,[],[],[],[],L,U)
                                                  Una vez definida la función y los limites procederemos
Optimization terminated: average change in th
                                                  a utilizar la función en la consola, para esto
                                                  llamaremos a la función ga con los parámetros
ans =
                                                  correspondientes, esta es la función de optimización
                                                  por medio de un algoritmo genético.
   1.0e-04 *
                                                  Si deseamos obtener tanto el valor Y como el X
                                                  deberemos darle el vector donde guardara los
    0.1820
              0.0209
                                                  resultados a los que llego el algoritmo. En las primeras
                                                  pruebas que realice podemos observar que los
>> [X,Y] = ga(@FRastrigin,2,[],[],[],[],L,U)
                                                  resultados se acercan muchísimo a ser 0, mientras que
Optimization terminated: average change in th
                                                  en otros casos se estanca en un mínimo local, y es ahí
                                                  precisamente donde vemos el espíritu de la función
X =
                                                  Rastrigin.
   1.0e-04 *
                                               >> ga(@FRastrigin,2,[],[],[],[],L,U)
                                               Optimization terminated: average char.
    0.1228
              0.1317
                                               ans =
Y =
                                                    0.0000 -0.9950
   6.4294e-08
                    >> [X,Y] = ga(@FRastrigin,2,[],[],[],[],L,U)
                    Optimization terminated: average change in th
                    X =
                        -0.9950
                                     0.0000
                    Y =
                         0.9950
```


UNIVERSIDAD AUTÓNOMA DE CAMPECHE

◆ Optimization Tool	- u x	
File Help	la a	Una vez realizada la optimización
Problem Setup and Results	Options >> Specify: 500	través de la consola, procederemos
Solver: ga - Genetic Algorithm Problem	Creation function: Uniform	utilizar el toolkit de optimización qu
Fitness function: @FRastrigin		•
Number of variables: 2	Initial population: Use default: []	integra MATLAB esto con el fin d
Constraints:	O Specify:	jugar con los parámetros de un
Linear inequalities: A: b:	Initial scores:	manera más sencilla y rápida.
Linear equalities: Aeq: beq:	O Specify:	manera mas sencina y rapida.
Bounds: Lower: L Upper: U	Initial range:	
Nonlinear constraint function:	O Specify:	Vemos que con 500 de població
Integer variable indices:	⊞ Fitness scaling	inicial, una selección por ruleta y un
Run solver and view results	☐ Selection	•
Use random states from previous run	Selection function: Roulette	reproducción del 10% de la población
Start Pause Stop		una mutación dependiente a l
Current iteration: 63 Clear Results		restricción y una cruza heurístic
1	☐ Reproduction	•
	Elite count: Use default: 0.05*PopulationSize Specify: 50	obtenemos un resultado muy cercan
Optimization running.	Specify: 50 Crossover fraction: © Use default: 0.8	a 0, esto lo observamos en el -0 lo qu
Objective function value: 0.0 Optimization terminated: average change in the fitness value	Crossover traction: © Use default: 0.8 O Specify: 0.68125	nos indica un valor levemente menor
less than options.FunctionTolerance.		
	■ Mutation Mutation function: Constraint dependent	0, además de que el valor de la funció
	Mutatori unctori. Constante dependent	objetivo si llego a un 0.0 por lo qu
Final point:		podríamos creer que la optimizació
1 - 2		
0 -		es relativamente sencilla.
	☐ Crossover	
	Crossover function: Heuristic	Sin embargo en las siguientes pruebas
<	Ratio: © Use default: 1.2	
♣ Optimization Tool	×	donde reducimos la población inicial
File Help		solo 100, lo cual ya es un golp
Problem Setup and Results	Options >>	bastante fuerte para este algoritmo
Solver: ga - Genetic Algorithm	□ Population ^	con una selección de torneo con lo qu
Problem	Population type: Double vector	•
Fitness function: @FRastrigin	Population size: Use default: 50 for five or fewer variables, otherwise 200	la posible exploración del espacio d
Number of variables: 2	Specify: 100 Continue function Containt dependent	búsqueda o visto de otra forma I
Constraints:	Creation function: Constraint dependent	
Linear inequalities: A: b:	Initial population (A) Head of faults (1)	3
Linear equalities: Aeq: beq:	Initial population: Use default: [] Specify:	severamente afectado además de l
Bounds: Lower: L Upper: U Nonlinear constraint function:	Initial scores: Use default: []	reproducción es de un 25% vemos qu
Integer variable indices:	Specify:	
Run solver and view results	Initial range: Use default: [-10;10]	la función objetivo nos da un valc
Use random states from previous run	Initial range: Use detault: [-10;10] Specify:	relativamente cercano a cero, de
		orden de 10^-4 sin embargo se suel
Start Pause Stop	© Fitness scaling © Selection	•
Current iteration: 72 Clear Results	Selection function: Tournament	esperar del orden 10^-8 por lo que e
^	Tournament size: Use default: 4	un valor bastante malo, cosa qu
	O Specify:	
Optimization running. Objective function value: 1.5591081713495214E-4	☐ Reproduction	podemos observar al momento de qu
Optimization terminated: average change in the fitness value	Elite count: Use default: 0.05*PopulationSize	nos da 0.001 en vez de 0.
less than options.FunctionTolerance.	Specify: 25	
· ·		
	Crossover fraction: O Use default: 0.8	
	Crossover fraction: O Use default: 0.8 © Specify: 0.956522	
Final point:	Crossover fraction: ○ Use default: 0.8 © Specify: 0.956522	
Final point:	Crossover fraction: O Use default: 0.8 © Specify: 0.956522	
Final point:	Crossover fraction: ○ Use default: 0.8 © Specify: 0.956522	
Final point: 1 ^ 2	Crossover fraction: ○ Use default: 0.8 © Specify: 0.956522	
Final point:	Crossover fraction: ○ Use default: 0.8 © Specify: 0.956522	

UNIVERSIDAD AUTÓNOMA DE CAMPECHE

En esta corrida tendremos una población de 50, con torneo y una reproducción por default, además de una reproducción Gaussiana la cual precisamente con estos parámetros, los cuales ya son pobres por si mismo, la variedad genética se verá rápidamente estancada, ya que el espacio de búsqueda no puede ser explorado ni por una gran cantidad de pobladores empezando en varios puntos, ni por nuevos pobladores que surgen de la cruza de otros, o por la mutación que nos lleva a nuevos puntos, por lo que en esencia tenemos un algoritmo con parámetros bastante pobres, el 1.014 que obtenemos lo dice por si mismo, con lo que claramente notamos que se ha estancado en un mínimo local.

INSTRUCCIONES DE USO: >> ga(@FRastrigin, 2, [], [], [], [], L, U) ♠ Optimization Tool File Help Problem Setup and Results Specify: 1000 Solver: ga - Genetic Algorithm Creation function: Constraint depend Fitness function: @FRastrigin Initial population: Use default: [] O Specify: Constraints: Linear inequalities: A: Aeq: O Sperify Lower: L Upper: U Initial range: ① Use default: [-10;10] Nonlinear constraint function: O Specify: ⊞ Fitness scaling Run solver and view results ☐ Selection Use random states from previous run Selection function: Roulette Start Pause Stop ☐ Reproduction Elite count: ① Use default: 0.05*PopulationSize O Specify: 25 Objective function value: 0.0 Crossover fraction: Use default: 0.8 O Specify: 0.956522 + Mutation function: Adaptive feasible

Tanto el uso de la función, así como el del toolkit son para nada complicados, la función ga cuenta con documentación sobre parámetros que son necesarios ingresar, tanto los minios que se necesitan, así como los opcionales. Para utilizar el toolkit accederemos a este por medio de la pestaña "APPS" de MATLAB y el botón "optimization" una vez en la interface modificar los parámetros del algoritmo relativamente sencillo; antes de esto se debe de seleccionar "ga-Genetic Algoritm" en la sección de "solver", con un numero de variables de 2 y los limites superiores en inferiores con los definimos vectores que previamente. Una vez realizados la modificación de los parámetros que

UNIVERSIDAD AUTÓNOMA DE CAMPECHE

```
Función Rastrigin en dos dimensiones

function [Y] = FRastrigin(X)

%UNTITLED2 Summary of this function goes here

% Detailed explanation goes here

Y = 20+(X(1)^2)+(x(2)^2)-10*(cos(2*3.1416*X(1))+cos(2*3.1416*X(2)))

end
```

BIBLIOGRAFÍA:

- Apuntes y clase del profesor
- https://en.wikipedia.org/wiki/Rastrigin function
- https://www.mathworks.com/help/gads/example-rastrigins-function.html
- https://la.mathworks.com/discovery/genetic-algorithm.html
- Bajpai, P., & Kumar, M. (2010). Genetic algorithm—an approach to solve global optimization problems. Indian Journal of computer science and engineering, 1(3), 199-206.
- Pohlheim, H. (2007). Examples of objective functions. Retrieved, 4(10), 2012.