Ideas Básicas sobre Métodos de Medida

Mediciones Directas: el resultado se obtiene a partir de la indicación de un único instrumento.

Mediciones Indirectas: el resultado surge a partir de operaciones entre más de una medida directa, o bien a partir de la observación de los valores que toman distintos componentes de un circuito para lograr una dada condición de funcionamiento (por ejemplo, salida nula en una parte del mismo).

Ideas Básicas sobre Métodos de Medida

Mediciones Directas: el resultado se obtiene a partir de la indicación de un único instrumento.

Ideas Básicas sobre Métodos de Medida

Mediciones Indirectas:

Ejemplo de medición indirecta: Puente de Wheatstone

El detector, **d**, en esta aplicación, **no mide** la corriente en la rama correspondiente, sino que debe detectar su presencia.

(Método de cero: será intrínsecamente más exacto que uno de deflexión)

Mediciones Indirectas:

Ejemplo de medición indirecta: Puente de Wheatstone

$$X = \frac{R_1}{R_2} R_3$$

El resultado se obtiene con una operación a partir del ajuste de elementos, no de una lectura

Otra clasificación de los métodos de medida permite dividirlos en:

Métodos de comparación: el patrón y la incógnita coexisten en el mismo experimento. $X = \frac{U_X}{U_R} * R$

(doble indicación, repetibilidad de corto término)

Método de sustitución: se requiere de un patrón, de la misma naturaleza que la incógnita, y de un dispositivo que detecte las diferencias en el circuito cuando el patrón es reemplazado por la incógnita y viceversa.

El error de Inserción

$$U_{ab} = U_m = \frac{U_x *R_V}{R_i + R_V}$$

$$e_{inserción} = \frac{U_m - U_x}{U_x}$$

(Ejemplo típico)

$$\Rightarrow e_{inserción} = \frac{-R_i}{R_i + R_V} \approx -\frac{R_i}{R_V}$$

El error de Inserción (sistemático) no debe empeorar la medición.

Si no es despreciable (no se cumple

 $e_{inserción} < e_{fortuito}/10$)

Hay que desafectar o cambiar de método

El método de Oposición

Cálculo del error de insensibilidad

$$\Delta U_{x} = \Delta I_{D} (R_{i} + R_{e} + R_{D})$$

En el límite, cuando $\Delta I_D \rightarrow \Delta_0 I_D$ Entonces: $(\Delta U_X)_i = \Delta_0 I_D (R_i + R_e + R_D)$

$$e_{insensibil idad}$$
 [%] = $\frac{(\Delta U_x)_i}{U_x}$.100

Método del Voltímetro Diferencial

¿ ∆U?

Mido con la llave abierta: Um1

Mido con la llave cerrada: Um2

ΔU = Um1 – Um2, pero Um1 ≈ Um2 incrementa!!

El error se

Método del Voltímetro Diferencial

Pasos:

1.- Con L abierta, ajusto Uaux para tener "0" (V como detector)

$$e_{\Delta U} = \pm (e_{U_m} + e_{ins})$$

2.- Cierro la llave, V mide la diferencia

Método del Voltímetro y el Amperímetro

$$X = \frac{U_X}{I_X} \qquad e_X = \pm (e_{U_X} + e_{I_X})$$

El amperímetro no medirá I_X , $\sin \Phi m = Ix + Iv$

Conexión

Corta

$$X = \frac{U_X}{(I_m - I_V)} = \frac{U_m}{(I_m - \frac{U_m}{R_V})}$$

$$e_X = \pm \left(1 + \frac{X}{R_V}\right) * \left(e_{U_m} + e_{I_m}\right)$$

Conexión

Larga

El voltímetro no medirá U_X , sino $\left. U_m = U_X + U_A \right.$

$$X = \frac{U_X}{I_X} = \frac{\left(U_m - I_m * R_A\right)}{I_m}$$

$$e_X = \pm \left(1 + \frac{R_A}{X}\right) * \left(e_{U_m} + e_{I_m}\right)$$

Conexión Corta

$$e_X = \pm \left(1 + \frac{X}{R_V}\right) * \left(e_{U_m} + e_{I_m}\right)$$

Conexión Larga

$$e_X = \pm \left(1 + \frac{R_A}{X}\right) * \left(e_{U_m} + e_{I_m}\right)$$

$$\frac{X}{R_V} = \frac{R_A}{X}$$
 \Rightarrow $X_c = \sqrt{R_A * R_V}$

$$X < X_c \Rightarrow Conexión Corta \qquad \frac{U_m}{I_x} \rightarrow \frac{U_x}{I_x}$$

$$X > X_c \Rightarrow Conexión Larga \qquad \frac{U_X}{I_m} \rightarrow \frac{U_X}{I_X}$$

Observaciones generales sobre el método del Voltímetro y el Amperímetro

- ✓ No posee limitaciones en cuanto a los valores de resistencia medibles, con las precauciones propias que deben considerarse para la medición de resistencias de valores extremos.
- ✓ Permite efectuar mediciones en condiciones de servicio, esto es, tensión y/o corriente de trabajo de la incógnita.
- ✓ Su exactitud depende de la indicación de dos instrumentos.

Ejemplo: medición de un resistor de aproximadamente **10** Ω y **0,75** A de corriente admisible, empleando el método del voltímetro y el amperímetro. Expresar el resultado empleando el concepto de error límite.

- Amperimetro clase 0,5, alcance 1 A, 100 divisiones, $R_A = 0.2 \Omega$.
- Fuente de tensión continua, variable de 0 a 50 V, $I_{m\acute{a}xima}$ = 5 A, $R_s \cong 0 \ \Omega$, mínima variación estable de la tensión de salida 0,01 V.
- Voltímetro de 3½ dígitos, alcances para tensión continua 200mV, 2, 20, 200 y 1000 V, $R_V = 10 \text{ M}\Omega$, $E_U = \pm (0.1\%U_m + 2 \text{ dígitos})$.

¿Conexión Corta o Larga?

$$X_c = \sqrt{R_A * R_V} \approx 1.4 \ k\Omega > X = 10 \ \Omega \implies \text{Conexión Corta}$$

(Observar, sin embargo, que para cualquiera de las conexiones, el factor de amplificación del error fortuito es despreciable frente a la unidad)

Midiendo en las mejores condiciones:

$$I = 0.75 A \implies U_X = U_m = 7.50 V$$

Entonces, como X/R_V es despreciable frente a la unidad: $e_X \approx \pm (e_{U_m} + e_{I_m})$

El error límite en la medición de tensión será:

$$E_{U_m} = \pm \left(\frac{0.1}{100} * 7.50 + 2*0.01\right)V = \pm 0.028 V$$

$$\Rightarrow e_{U_m} = \pm \frac{0.028 V}{7.50 V} * 100 = \pm 0.37 \%$$

Y, de manera análoga, para la corriente:

$$E_{I_m} = \pm \frac{0.5}{100} * 1.00 A = \pm 0.005 A$$

 $\Rightarrow e_{I_m} = \pm \frac{0.005 A}{0.75 A} * 100 = \pm 0.67 \%$

Entonces:

$$e_X \approx \pm (e_{U_m} + e_{I_m}) = \pm (0.37 + 0.67)\% = \pm 1.04\%$$

$$\Rightarrow E_X = \pm \frac{1.04}{100} * 10 \Omega = 0.104 \Omega = 0.1 \Omega$$

Por lo que, el resultado final de la medición, empleando el concepto de error límite, puede escribirse como: $X = (10, 0 \pm 0, 1)\Omega$

