

数据科学与工程算法基础

Algorithm Foundations of Data Science and Engineering

第五章 Sketch算法

$$(1+x)^n = 1 + \frac{nx}{1!} + \frac{n(n-1)x^2}{2!} + \cdots$$

Content

1 算法引入

2 Misra-Gries算法

3 Count Sketch

4 Count-min Sketch

Content

1 算法引入

2 Misra-Gries算法

3 Count Sketch

4 Count-min Sketch

课程引入

- 面向静态数据的分析与挖掘
 - 数据量大小固定
 - 存储在磁盘上的数据可多次访问
- 越来越多的动态数据场景
 - 科学大数据: 天眼、大型强子对撞机等
 - 物联网设备感知数据: 智慧城市应用中的视频流、传感器数据
 - 网络流量: 电信交换机转发的流量包
 - 信令数据: 基站接受到的移动手机信号
 - •
- 快速产生海量的数据,而且持续不断地到达

数据流

- 流数据特征
 - 数据总量不受限制
 - 数据到达速度快
 - 数据到达次序不受约束
 - 除非刻意保存, 否则每个数据项只能"看"一次
- •数据流可以看作一个无限的元组序列 $\sigma = \langle a_1, ..., a_m, ... \rangle$
- 在某个固定的时间点,一个数据流可以被视作一个长度为 d 的固定数组 A[0,...,d-1]
- 随着后续数据的不断到达,数组 A 的长度或其中的元素都可能发生变化

数据流算法

- •目标:在有限资源约束的情形下,处理海量的实时数据流
- **限制**: 无法决定随机访问数据,只能根据数据流的顺序对数据进行 p 次扫描(在很多场景下 p = 1)

• 要求

- 实时性: 实时、连续地输出查询结果
- **低空间复杂度**:数据流规模理论上是无限的,为了保证算法高效稳定运行, 需降低算法的空间开销
- 结果准确性:数据规模大、速率快,因此对于一些复杂问题,不太可能通过数据的一次遍历就获得准确答案。实际应用中,往往不要求精准的查询结果
- 适应性: 在很多应用中,涉及多个流数据的处理,需设计具备适应性的算法

数据流算法 vs 传统算法

	传统算法	数据流算法	
数据类型	有限 & 静态	无限 & 动态 & 高速	
存储	硬盘	内存 & 空间限制	
效率	非实时	实时 & Ad-hoc	
返回值类型	精确值/近似值	近似值	

- 数据流算法对时间、空间消耗要求高
 - 空间消耗是次线性的,或者与流的大小无关
 - 时间消耗是次线性的,或者与流的大小无关

概要数据结构

- 数据流 σ 的概要数据结构记为 $C(\sigma)$
 - 表示对数据流 σ 的压缩表示
 - 与求解问题有关

近似与随机算法

- 由于存储空间和时间的限制,在数据流上做到精确计算 非常困难
- 近似算法: 寻找误差在一定范围内的近似解
 - 例如,寻找一个误差在 10% 以内的解
 - 近似解落在真实值的 $(1 \pm \epsilon)$ 范围内,其中 $\epsilon = 0.1$
- 随机算法: 比近似算法更宽松, 允许小概率失败 (解不 在误差范围内)
 - 例如, 估计值有 1/100 的概率不在误差范围内
 - 成功的概率为 1δ , 其中 $\delta = 0.01$
- 随机算法: (ϵ, δ) -近似算法

近似算法

- 给定输入的流数据 σ 和准确值 $\phi(\sigma)$,近似算法的输出结果记为 $\mathcal{A}(\sigma)$
- ϵ -近似算法(相对误差):如果该算法的输出结果满足 $|\mathscr{A}(\sigma) \phi(\sigma)| < \epsilon \phi(\sigma)$
- ϵ -近似算法(绝对误差):如果该算法的输出结果满足 $|\mathscr{A}(\sigma) \phi(\sigma)| < \epsilon$

随机算法

- 给定输入的流数据 σ 和准确值 $\phi(\sigma)$,近似算法的输出结果记为 $\mathcal{A}(\sigma)$
- (ϵ, δ) -近似算法(相对误差):如果该算法的输出结果满足 $\Pr[|\mathscr{A}(\sigma) \phi(\sigma)| < \epsilon \phi(\sigma)] > 1 \delta$
- (ϵ, δ) -近似算法(绝对误差): 如果该算法的输出结果满足 $\Pr[|\mathscr{A}(\sigma) \phi(\sigma)| < \epsilon] > 1 \delta$

数据流模型

• 衰减窗口模型

数据流分析挖掘框架

数据项频数估计

- 在数据流 $\sigma = \langle a_1, ..., a_m, ... \rangle, a_i \in [n]$ 中,定义频数向量 $f = (f_1, ..., f_n)$
- 其中 n 为 σ 中不同元素的个数, f_i 为元素 a_i 的频数且 $\sum_{i=1}^n = m$
- 大多数问题: 如果 $\exists a_j: f_j > m/2$,则输出 a_j ,否则输出 \emptyset
- •一般问题
 - 给定参数 k,输出集合 $\{a_j: f_j \geq m/k\}$
 - 或给定参数 ψ ,输出集合 $\{a_j: f_j \geq \psi m\}$
- 例如: 给定数据流 $\sigma = \langle a, b, a, c, c, a, b, d \rangle$, 4 个不同元素的频数分别为 $f_a = 3$, $f_b = 2$, $f_c = 2$, $f_d = 1$
 - σ 中不存在大多数
 - 当 k = 4, 频繁项是 a, b, c
 - 当 $\psi = 0.3$, 频繁项是 *a*

Content

1 算法引入

2 Misra-Gries算法

3 Counting Sketch

4 Count-min Sketch

来自俄罗斯方块的启发

- 《俄罗斯方块》是一款由俄罗斯人阿 列克谢·帕基特诺夫于1984年6月发 明的休闲游戏
- 游戏规则
 - 小方块组成的不同形状陆续从屏幕上方 落下来
 - 玩家通过调整对象的位置和方向,消去 部分对象腾出空间
 - 没有被消除掉的方块不断堆积起来,直 到游戏结束
- 类似于数据流

Misra-Gries 算法

```
计数器: 俄罗斯方
  输入: 数据流 \sigma = \langle a_1, a_2, \cdots, a_m \rangle, a_i \in [n], 正整数 k
  输出: 数据流 \sigma 中的频繁元素集合 F
                                                              块游戏界面宽度
1 F \leftarrow \emptyset:
2 while 数据流 \sigma 非空 do
      数据流\sigma中第i个元素到达;
      if a_i \in keys(F) then
                                                   更新已有数据项的频数
          F_i \leftarrow F_i + 1;
5
      else
6
                                                  ·行未装满(计数器未满)
          if |keys(F)| < k-1 then
                                                      新元素直接插入
              F_i \leftarrow 1;
8
          else
9
              for a_i \in keys(F) do
10
                  F_i \leftarrow F_i - 1;
11
                                                  -行装满(计数器装满),清
                  if F_j = 0 then
12
                                                           除一行
                    从F 中移除a_i;
13
```

14 return 频数估计数组 *F* ;

Misra-Gries 算法示例

• 给定输入数据流 A, B, A, C, D, E, A, D,且 k = 3

输入 操作 结果

Misra-Gries 算法分析 I

• **定理 1:** Misra–Gries 算法中的计数器减操作至多执行 $\lfloor \frac{m}{k} \rfloor$ 次,其中 m 表示数据流中数据项个数,k 表示计数器个数

• 证明

- 每进行一次减操作计数器值之和比实际到达的数据项个数减少 k 个
- 最终计数器值之和至少为 0,且数据项的个数为 m
- 所以,减操作最多进行 $\left\lfloor \frac{m}{k} \right\rfloor$ 次

Misra-Gries 算法分析 II

• **定理 2**: 当 $k = \lceil \frac{1}{\psi} \rceil$,所有的 ψ –频繁项都会被 Misra–Gries 算法输出

• 证明

- 由定理1可知,计算器减操作最多执行了 $\lfloor \frac{m}{k} \rfloor$ 次
- 因此算法结束时,数据项的计数器值为 c_i ,满足 $c_i \le f_i \le c_i + \frac{m}{k}$
- 对未被输出的数据项 i,有 $c_i = 0$,则 $f_i \le \frac{m}{k} \le \psi m$
- 所以,所有满足 $f_j > \psi m$ 的数据项 a_j ,即所有的 ψ –频繁项,都会被 Misra–Gries 算法输出

Misra-Gries 算法分析 III

- Misra-Gries 算法是一个近似频繁项挖掘算法
- 优点
 - 逻辑简单
 - 高效算法
 - ✓空间复杂度为 O(k), 与数据流规模无关
 - **✓** 处理每个数据项的复杂度为 O(k)
 - 所有频繁项一定会被输出
- 缺点
 - 可能会出现误报: 非频繁项也会被输出
 - 无法输出数据项的频数

Content

1 算法引入

2 Misra-Gries算法

3 Count Sketch

4 Count-min Sketch

问题定义

• 频数查询

- 给定数据流 $\sigma = \langle a_1, ..., a_m, ... \rangle, a_i \in [n]$,元素 i 的频数为 $f_i = |\{j: a_j = i\}|$ 。对于元素 i,查询其频数 f_i
- 简单抽样算法
 - 对每个到达的数据项,以 $p = \frac{M}{m}$ 的概率对其频数加 1,否则将 其丢弃,其中 M 表示抽样后的数据流大小

简单抽样方法分析

- 运用简单抽样方法,元素 i 频数的 (ϵ, δ) –近似估计的空间 复杂度是 $M = O(\frac{m \log(1/\delta)}{\epsilon^2})$,其中 m 为原数据流大小
- 证明:

定义随机变量
$$X_{ij} = \begin{cases} 1, & \text{if } a_j = i \text{ is sampled} \\ 0, & \text{otherwise} \end{cases}$$
,定义 $g_j = \sum_{j=1}^m X_{ij}$ 为简单 抽样后元素 i 的频数,则元素 i 的频数估计值 $\hat{f}_i = \frac{g_i}{p}$

证明续

利用Chernoff不等式,得到

$$P(|\widehat{f}_i - f_i| \ge \epsilon f_i) = P(|g_i - pf_i| \ge \epsilon p f_i)$$

$$= P(|\frac{g_i}{f_i} - p|) \ge \epsilon p$$

$$< 2 \exp(-p\epsilon^2/3) < \delta$$
将 $p = \frac{M}{m}$ 代入,即可得到: $M > \frac{3m \ln(2/\delta)}{\epsilon^2}$

- 简单抽样算法的空间复杂度为 $M = O(\frac{m \log(1/\delta)}{\epsilon^2})$
 - 时间复杂度与数据流大小有关
 - 无法确定抽样概率的大小(因为 *m* 可能未知)
 - 因此,简单抽样算法是无法应对快速到达的数据流

输入:数据流,查询元素 a

输出: 元素 a 出现的频数___

1 初始化: $C[1\cdots k] \leftarrow 0, k = O(\frac{1}{\delta \epsilon^2});$

- 2 选择哈希函数 $h:[n] \to [k]$
- 3 选择哈希函数 $g:[n] \to \{-1,1\}$
- 4 处理: (j,c), 其中c=1;
- 5 while 有数据到达 do
- 6 $C[h(j)] \leftarrow C[h(j)] + cg(j);$
- 7 return $\widehat{f}_a = g(a)C[h(a)];$

哈希表中的频数更新

- •两个元素被 hash 到同一个位置
 - 产生哈希冲突
 - 但发生碰撞的元素频率可能增加,也可能减少
 - 由于增加或减少是完全随机的,所以从期望来看是没有影响的

哈希表的大小

基本 Count Sketch 示例

- 假设输入数据流为 $\langle a, b, c, a, b, a \rangle$, 计数器个数为 2, $h(a) = h(b) \neq h(c)$, 试计算各元素的频数。
- 三个元素a,b,c, 哈希函数 g 使得 $\{a,b,c\} \to \{-1,1\}$ 有如下 8 种可能:

g(a)	g(b)	g(c)	h(a) or $h(b)$	h(c)	
+	+	+	+3 + 2 = 5	1	$f_a = \frac{(5+5+1+1) - (-5-5-1-1)}{8} = 3$
+	+	-	+3 + 2 = 5	- 1	$J_a = {8}$
+	-	+	+3 - 2 = 1	1	(5+5-1-1)-(-5-5+1+1)
+	-	-	+3 - 2 = 1	- 1	$f_b = \frac{(5+5-1-1)-(-5-5+1+1)}{8} = 2$
-	+	+	-3 + 2 = -1	1	
-	+	-	-3 + 2 = -1	- 1	$f_c = \frac{(1+1+1+1)-(-1-1-1)}{8} = 1$
-	-	+	-3 - 2 = -5	1	8
-	-	-	-3 - 2 = -5	-1	

基本 Count Sketch 分析

- 固定元素 a,对每个元素 $j \in [n]$
 - 定义随机变量 $Y_j = \begin{cases} 1, & \text{if } h(j) = h(a) \\ 0, & \text{otherwise} \end{cases}$
 - Y_j 表示元素 j 和元素 a 是否被哈希到同一位置
 - $Y_j = 1$ 表示 h(j) = h(a), 即元素 j 对计数器 C[h(a)] 有贡献
- 所有哈希到 h(a) 位置上的元素都对 a 的频数估计都起到了作用,因此

$$\widehat{f_a} = g(a)C[h(a)] = g(a)\sum_{j=1}^n f_j \cdot g(j) \cdot Y_j$$
$$= f(a) + g(a)\sum_{j \in [n] \setminus \{a\}} f_j \cdot g(j) \cdot Y_j$$

基本 Count Sketch 分析(续)

- 对频数估计取期望 $E[\widehat{f}_a] = f(a) + g(a) \sum_{j \in [n] \setminus \{a\}} f_j \cdot E[g(j) \cdot Y_j]$
- 由于哈希函数 g 和 h 是独立的,所以 $E[g(j) \cdot Y_j] = E[g(j)] \cdot E[Y_j] = 0 \cdot E[Y_j] = 0$
- 最终得到 $E[\widehat{f_a}] = f_a$
- 因此,基本 Count Sketch 算法输出结果是对实际频数 的无偏估计

基本 Count Sketch 分析(续)

- 无偏估计 ≠ 好的估计
- 算法输出值可能偏离真实值太大,所以仍需分析算法输出 结果的方差
- 下面我们计算基本 Count Sketch 输出结果的方差

$$\begin{aligned} \operatorname{Var}[\widehat{f_a}] &= \operatorname{Var}[f(a) + g(a) \sum_{j \in [n] \setminus \{a\}} f_j \cdot g(j) \cdot Y_j] = g^2(a) \operatorname{Var}\left[\sum_{j \in [n] \setminus \{a\}} f_j \cdot g(j) \cdot Y_j\right] \\ &= g^2(a) E\left[\sum_{j \in [n] \setminus \{a\}} f_j \cdot g(j) \cdot Y_j\right]^2 - g^2(a) \left(E\left[\sum_{j \in [n] \setminus \{a\}} f_j \cdot g(j) \cdot Y_j\right]\right)^2 \\ &= E\left[\sum_{j \in [n] \setminus \{a\}} f_j \cdot g(j) \cdot Y_j\right]^2 \\ &= E\left[\sum_{j \in [n] \setminus \{a\}} f_j^2 Y_j^2 + 2 \sum_{i, j \in [n] \setminus \{a\} \wedge i \neq j} f_i f_j g(i) g(j) Y_i Y_j\right] \end{aligned}$$

基本 Count Sketch 方差(续)

对 $j \in [n] \setminus \{a\}$,可以得到 $E[Y_j^2] = E[Y_j] = P[h(j) = h(a)] = \frac{1}{k}$ 对 $i \neq j \in [n] \setminus \{a\}$,可以得到 $E[g(i)g(j)Y_iY_j] = E[g(i)]E[g(j)]E[Y_iY_j] = 0$ 所以, $Var[\widehat{f}_a]$ 可以计算为

$$\operatorname{Var}[\widehat{f_a}] = E\left[\sum_{j \in [n] \setminus \{a\}} f_j^2 Y_j^2 + 2 \sum_{i,j \in [n] \setminus \{a\} \land i \neq j} f_i f_j g(i) g(j) Y_i Y_j\right]$$

$$= \sum_{j \in [n] \setminus \{a\}} \frac{f_j^2}{k} + 0 = \frac{\|f\|_2^2 - f_a^2}{k} := \frac{\|f_{-a}\|_2^2}{k}$$

因此, 随 k 值的增大, 即存储计数数组的空间增大, 方差随之减小

Count Sketch 算法

• 根据 Chebyshev 不等式,当 $k = O(\frac{1}{\delta \epsilon^2})$ 时,可以得到 f_a 的 (ϵ, δ) -近似估计

$$P[|\widehat{f_a} - f_a| \ge \epsilon ||f||_2] \le P[|\widehat{f_a} - f_a| \ge \epsilon ||f_a||_2] \le \frac{\operatorname{Var}[\widehat{f_a}]}{\epsilon^2 ||f_a||_2^2} = \frac{1}{k\epsilon^2} < \delta$$

•运用 Tug of War 技术,改进算法

True value

Count Sketch 算法

输入: 数据流, 查询元素 a

比基本 Count Sketch 中的计

输出: 元素 a 出现的频数

数器数量要少

1 初始化: $C[1\cdots k] \leftarrow 0, k = \frac{3}{\epsilon^2} t = O(\log(1/\delta));$

- 2 选择 t 个哈希函数 h_1, \dots, h_t . $[n] \rightarrow [k]$
- 3 选择 t 个哈希函数 $g_1, \dots, g_t : [n] \to \{-1, 1\}$
- 4 处理: (j,c), 其中c=1;
- 5 while 有数据到达 do

虽然单次可能不准,但是

Count Sketch 做了多次

 $\mathbf{for}\ i = 1\ to\ t\ \mathbf{do}$

 $C[i][h_i(j)] \leftarrow C[i][h_i(j)] + cg_i(j);$

s return $\widehat{f}_a = median_{1 \leq i \leq t} g_i(a) C[i][h_i(a)];$

输出多次基本 Count Sketch 输出结果的中位数

Count Sketch 算法分析

•定义
$$Y_i = \begin{cases} 1, & \text{if } |\widehat{f_a} - f_a| \ge \epsilon ||f||_2 \\ 0, & \text{otherwise} \end{cases}$$

- 适当选择 $k = O(1/\epsilon^2)$,使得 $P(Y_i = 1) < 1/3$
- •注意 $\mu = E(\sum_{i} Y_i) < t/3$,由 Chernoff 不等式可得

$$P(\sum_{i} Y_{i} > t/2)^{i} \le P(\sum_{i} Y_{i} > (1 + 1/2)\mu) \le \exp(-\frac{\mu}{12})$$

$$\exp(-\frac{t}{36}) \le \exp(-\frac{\mu^{i}}{12}) < \delta, \quad \text{If } t = O(\log(1/\delta))$$

• 最终得到一个空间消耗为 $O(\frac{\log(1/\delta)}{\epsilon^2})$ 的 (ϵ, δ) —近似估计

Content

1 算法引入

2 Misra-Gries算法

3 Counting Sketch

4 Count-min Sketch

Count-min Sketch

输入:数据流,查询元素 a

输出: 元素 a 出现的频数

数 $h_1, h_2, \cdots, h_d : [n] \rightarrow [w]$

- 2 处理: (j,c), 其中c=1;
- **3 for** i = 1 to d **do**
- $C[i][h_i(j)] \leftarrow C[i][h_i(j)] + c;$
- 5 return $f_a = min_{1 \leq i \leq d} C[i][h_i(a)];$

哈希表的大小

1 初始化: $C[1\cdots d][1\cdots w] \leftarrow 0$ $w = \frac{2}{1}$, $d \neq \lceil log(1/\delta) \rceil$; 选择d个独立的哈希函

哈希函数的个数

返回 d 个哈希表中最小的值

CM Sketch 分析

- 对元素 $j \in [n] \setminus \{a\}$,定义 $Y_{i,j} = \begin{cases} 1, & \text{if } h_i(j) = h_i(a) \\ 0, & \text{otherwise} \end{cases}$
- 当 $Y_{i,j} = 1$ 时,元素 j 在第 i 个哈希函数上与元素 a 发生了哈希冲突
- 给定元素 a 和哈希函数 h_i ,定义随机变量 X_i 为第 i 个哈希函数上其他元素对元素 a 频数估计值的贡献,大小为 $X_i = \sum_{j \in [n] \setminus \{a\}} f_j Y_{i,j}$
- 根据期望的线性性质以及 $E[Y_{i,j}] = \frac{1}{k}$,我们得到

$$E[X_i] = X_i = \sum_{j \in [n] \setminus \{a\}} \frac{f_j}{k} = \frac{\|f\|_1 - f_a}{k} := \frac{\|f_{-a}\|_1}{k}$$

CM Sketch 分析

- 因为 $f_j \ge 0$,所以 $X_j \ge 0$,根据马尔科夫不等式,选择合适的 k 值,得到不等式 $P[X_i \ge \epsilon ||f||_1] \le P[X_i \ge \epsilon ||f_{-a}||_1] \le \frac{||f_{-a}||_1}{k\epsilon ||f_{-a}||_1} = \frac{1}{2}$
- 对 d 个相互独立的哈希函数,若 $\widehat{f_a} f_a \ge x$,则 $\min\{X_1, ..., X_d\} \ge x$,即 $P[\widehat{f_a} f_a \ge \epsilon \|f_{-a}\|_1] = P[\min\{X_1, ..., X_d\} \ge \epsilon \|f_{-a}\|_1] = \prod_{i=1}^d P[X_i \ge \epsilon \|f_{-a}\|_1] \le \frac{1}{2^d}$
- 可以选择适当 d 的值,使得上式概率上界至多为 δ ,所以至少以 (1δ) 的概率下式成立: $f_a \leq \widehat{f_a} \leq f_a + \epsilon ||f_{-a}||_1$
- 该算法需要的计数器个数为 $M = O(\frac{\log(1/\delta)}{\epsilon})$

本章小结

- 频繁项挖掘
 - Misra-Gries 算法
 - Count sketch 算法
 - Count-min sketch 算法
- 数据流场景下的查询与分析
 - 数据高速达到、容量不限, 查询需要实时响应
 - 对算法空间和时间复杂度的要求很高
 - 通常设计小巧的 sketch 以达到目的
 - 而且需要深入的算法分析,保证算法精度
- 除了频繁项挖掘,还有其他的一些任务
 - 不同元素个数
 - Top-k 查询
 - 聚类
 - •