Calculus

Limits and Continuity

Limits	2
Limits of a Functions and Sequences	2
Limit Laws and Theorems	3
Continuity	4
Continuity at a Point	4
Continuous Functions	4
Intermediate Value Theorem	4
Limits Involving Infinity	5
Limits at Infinity	5
Infinite Limits	5

Derivatives

Applications of Derivatives

Integrals

Applications of Integrals

Transcendental Functions

Techniques of Integration

Infinite Sequences and Series

First-Order Differential Equations

Parametric Equations and Polar Coordinates

Vectors and Vector-Valued Functions

Partial Derivatives

Multiple Integrals

Vector Calculus

Second-Order Differential Equations

Limits and Continuity

Limits

- (2.2-2.6) Limit (Wikipedia) Thomas' Calculus (2.2-2.6)
- **Limit** $\lim_{x\to c}$: the value of a function (or sequence) approaches as the input (or index) approaches some value (informal definition)
 - Limits are used to define continuity ↓, derivatives ↓, and integrals ↓

Limits of a Functions and Sequences

- S Limit of a function (Wikipedia) (Limit of a sequence (Wikipedia) (
- **Limit of a function**: a fundament concept in calculus and analysis concerning the behavior *L* of a function near a particular input *p*, i.e.,

$$\lim_{x \to p} f(x) = L$$

- Reads as "f of x tends to L as x tends to p"
- \circ \mathcal{E} , δ **Limit of function**: a formalized definition, wherein f(x) is defined on an open interval, except possibly at c itself, leading to above definition, if and only if:
 - For every real $\varepsilon > 0$, there exists a corresponding real $\delta > 0$ such that for all real x, $0 < |x p| < \delta$ implies that $|f(x) L| < \varepsilon$, i.e.,

$$f: \mathbb{R} \to \mathbb{R}, \ p, L \in \mathbb{R} \Rightarrow \lim_{x \to p} f(x) = L$$

$$\updownarrow$$

$$\forall \varepsilon > 0 \ (\exists \delta > 0 : \forall x, 0 < |x - p| < \delta \Rightarrow |f(x) - L| < \varepsilon)$$

- Functions do not have a limit when the function:
 - has a unit step, i.e., it "jumps" at a point;
 - is not bounded, i.e., it tends towards infinity;
 - or does not stay close to any single number, i.e., it oscillates too much.
- **Limit of a sequence**: the value that the terms of a sequence (x_n) "tends to" (and not to any other) as n approaches infinity (or some point), i.e.,

$$\lim_{n\to\infty} x_n = x$$

 \circ \mathcal{E} Limit of sequence: for every measure of closeness \mathcal{E} , the sequence's term eventually converge to the limit, i.e.,

$$\forall \varepsilon > 0 \ (\exists N \in \mathbb{N} \ (\forall n \in \mathbb{N} \ (n \geq N \Rightarrow |x_n - x| < \varepsilon)))$$

- · Convergent: when a limit of a sequence exists.
- Divergent: a sequence that does not converge.

Limit Laws and Theorems

0

Continuity

• Sources:

Continuity at a Point

0

Continuous Functions

0

Intermediate Value Theorem

0

Limits Involving Infinity

• Sources:

Limits at Infinity

0

Infinite Limits

0

Derivatives

Applications of Derivatives

Integrals

Applications of Integrals

Transcendental Functions

Techniques of Integration

Infinite Sequences and Series

First-Order Differential Equations

Parametric Equations and Polar Coordinates

Vectors and Vector-Valued Functions

Partial Derivatives

Multiple Integrals

Vector Calculus

Second-Order Differential Equations

