Théorie des Langages – Feuille nº 1

Alphabets et Langages CORRECTION

CONTRECTION

Exercice 1 - On considère l'alphabet $X = \{a, b, c\}$. On rappelle que |w| représente la longueur du mot w, et ϵ représente le mot vide. Soit deux mots w = ababc et q = caba.

- 1. Calculez w^0 , w^1 et w^2
- 2. Calculez wq^2w
- 3. Calculez $|w|_{ab}$, $|(ab)^4|$ et $|(ab)^4|_{aba}$
- 4. Donnez les préfixes, les préfixes propres, les suffixes et les suffixes propres de q
- 5. Donnez le miroir du mot wq.
 - 1. $w^0 = \epsilon$, $w^1 = ababc$ et $w^2 = ababcababc$
 - 2. $wq^2w = ababccabacabaababc$
 - 3. $|w|_{ab} = |ababc|_{ab} = 2,$ $|(ab)^4| = |abababab| = 8$ $|(ab)^4|_{aba} = |abababab|_{aba} = 3$
 - 4. Préfixes : $\{\epsilon, c, ca, cab, caba\}$
 - Préfixes propres : $\{\epsilon, c, ca, cab\}$
 - Suffixes : $\{\epsilon, a, ba, aba, caba\}$
 - Préfixes propres : $\{\epsilon, a, ba, aba\}$
 - 5. $\tilde{wq} = abaccbaba$

Exercice 2 - Soit l'alphabet $X = \{a, b\}$.

1. Montrez qu'il ne peut y avoir de mot $w \in X^*$ tel que aw = wb.

On suppose qu'il existe w tel que aw = wb. On a alors $|aw|_a = |wb|_a$. Donc $|a|_a + |w|_a = |w|_a + |b|_a$. Donc $|w|_a + 1 = |w|_a$. Impossible, w tel que aw = wb n'existe donc pas.

2. Quels sont les deux langages dont la fermeture par l'étoile donne le langage uniquement composé du mot vide ϵ ?

Par définition, la fermeture par l'étoile contient le mot vide. — $L = \{\epsilon\}, L^* = \{\epsilon\}$ — $L = \emptyset, L^* = \{\epsilon\}$

3. Les mots suivants sont-ils générés par le langage $(ab)^*b^*$: ϵ , a, aa, ba, abbb, abab, baba? Même question avec le langage $(ab^*)b^*$.

 $-(ab)^*b^*: \epsilon$, abbb, ababb $-(ab^*)b^*: a$, abbb Exercice 3 - On considère l'alphabet $X = \{a, b\}$. Donner les langages correspondant aux propriétés suivantes :

- 1. Les mots qui commencent par ab;
- 2. Les mots qui terminent par bb;
- 3. les mots qui ne contiennent aucun b;
- 4. les mots qui ne contiennent pas ab;
- 5. les mots qui contiennent au moins un a;
- 6. les mots qui ne commencent pas par ba;
- 7. les mots de longueur paire

1.
$$ab(a+b)^*$$

2.
$$(a+b)*bb$$

4.
$$b^*a^*$$

5.
$$(a+b)^*a(a+b)^*$$

6.
$$a(a+b)^* + b + bb(a+b)^*$$

7.
$$((a+b)(a+b))^*$$

Exercice 4 - On considère l'alphabet $X = \{a, b, c\}$.

1. Calculez les ensembles X^0 , X^1 et X^2

$$- X^{0} = \{\epsilon\} - X^{1} = \{a, b, c\} - X^{2} = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}$$

2. Pour chacun des ensembles suivants, caractérisez L_1^* , et calculez $L_1 \cap L_2$, $L_1 \cup L_2$, $L_1.L_2$, $L_2.L_1$

$$L_1 = \{ab, bb\}$$
 et $L_2 = \{a, ab, bbc, ca\}$
 $L_1 = \{\epsilon\}$ et $L_2 = \{bbc, ca\}$
 $L_1 = \emptyset$ et $L_2 = \{bbc, ca\}$
 $L_1 = \{ab, bb\}$ et $L_2 = X^*$

- 1. $L_1 = \{ab, bb\} \text{ et } L_2 = \{a, ab, bbc, ca\}$
 - $-L_1^* = \{\epsilon, ab, bb, abab, abbb, bbab, bbbb, \ldots\}$ mots de longueur paire, formés de a et de b, les a étant sur des positions impaires
 - $L_1 \cap L_2 = \{ab\}$
 - $L_1 \cup L_2 = \{ab, bb, a, bbc, ca\}$
 - $-L_1.L_2 = \{aba, abab, abbbc, abca, bba, bbab, bbbbc, bbca\}$
 - $-L_2.L_1 = \{aab, abb, abab, abbb, bbcab, bbcbb, caab, cabb\}$
- 2. $L_1 = \{\epsilon\} \text{ et } L_2 = \{bbc, ca\}$
 - $-L_1^* = \{\epsilon\}; L_1 \cap L_2 = \emptyset$
 - $-L_1 \cup L_2 = \{\epsilon, bbc, ca\}; L_1.L_2 = L_2.L_1 = L_2$
- 3. $L_1 = \emptyset$ et $L_2 = \{bbc, ca\}$

 - $-L_1^* = \{\epsilon\}; L_1 \cap L_2 = \emptyset$ $-L_1 \cup L_2 = \{bbc, ca\}; L_1.L_2 = L_2.L_1 = L_1$
- 4. $L_1 = \{ab, bb\} \text{ et } L_2 = X^*$
 - L_1^* cf. question 1.
 - $-L_1 \cap L_2 = L_1; L_1 \cup L_2 = L_2$
 - $L_1.L_2$: ensemble de mots de longueur ≥ 2 construits sur l'alphabet $\{a,b,c\}$, qui commencent par ab ou bb
 - $L_2.L_1$: ensemble de mots de longueur ≥ 2 construits sur l'alphabet $\{a,b,c\}$, qui finissent par ab ou bb

Exercice 5 - On considère l'alphabet $X = \{a, b\}$, et les langages L_1 et L_2 suivants :

$$L_1 = \{a^n b^n | n \in \mathbb{N}\}$$

$$L_2 = \{b^n a^n | n \in \mathbb{N}\}$$

Calculez $L_1 \cup L_2$, $L_1 \cap L_2$, $L_1.L_2$, L_1^2 .

- 1. $L_1 \cup L_2 = \{a^n b^n, b^n a^n | n \in \mathbb{N}\} = \{\epsilon, ab, ba, aabb, bbaa, \ldots\}$

- 2. $L_1 \cap L_2 = \{\epsilon\}$ 3. $L_1.L_2 = \{a^n b^{n+p} a^p | n, p \in \mathbb{N}\}$ 4. $L_1^2 = L_1.L_1 = \{a^n b^n a^p b^p | n, p \in \mathbb{N}\}$

Exercice 6 - On considère des langages sur un alphabet quelconque.

- 1. Démontrez les propriétés suivantes :
 - (a) $L_1 \subseteq L_2 \Rightarrow L.L_1 \subseteq L.L_2$
 - (b) $L.(L_1 \cup L_2) = L.L_1 \cup L.L_2$

```
 -L_1 \subseteq L_2 \Rightarrow L.L_1 \subseteq L.L_2  Soit w \in L.L_1, on veut montrer que w \in L.L_2.

 \exists u \in L, v \in L_1 \text{ tels que } w = u.v. \text{ Comme } L_1 \subseteq L_2, v \in L2. \text{ Donc } w = u.v \in L.L2. 
 -L.(L_1 \cup L_2) = L.L_1 \cup L.L_2 
 - \subseteq : \text{Soit } w \in L.(L_1 \cup L_2). \text{ Donc } \exists u \in L, v \in L_1 \cup L_2 \text{ tels que } w = u.v. \text{ On a alors deux possibilités :} 
 -v \in L_1, w = u.v \in L.L_1 \text{ et donc } w \in L.L_1 \cup L.L_2 
 -v \in L_2, w = u.v \in L.L_2 \text{ et donc } w \in L.L_1 \cup L.L_2 
 -2 : \text{Soit } w \in L.L_1 \cup L.L_2. \text{ Donc, soit } w \in L.L_1, \text{ soit } w \in L.L_2. 
 -w \in L.L_1. \text{ Comme } L_1 \subseteq L_1 \cup L_2, \text{ d'après la propriété (a), } L.L_1 \subseteq L.(L_1 \cup L_2). 
 -w \in L.L_2. \text{ Comme } L_2 \subseteq L_1 \cup L_2, \text{ d'après la propriété (a), } L.L_2 \subseteq L.(L_1 \cup L_2). 
 -w \in L.L_2. \text{ Comme } L_2 \subseteq L_1 \cup L_2, \text{ d'après la propriété (a), } L.L_2 \subseteq L.(L_1 \cup L_2). 
 -w \in L.L_2. \text{ Comme } L_2 \subseteq L_1 \cup L_2, \text{ d'après la propriété (a), } L.L_2 \subseteq L.(L_1 \cup L_2). 
 -w \in L.(L_1 \cup L_2).
```

2. Montrez que $L.(L_1 \cap L_2) \subseteq L.L_1 \cap L.L_2$. A l'aide d'un contre-exemple, montrez que l'égalité n'est pas forcément atteinte.

```
Soit w \in L.(L_1 \cap L_2). Alors, \exists u \in L, v \in L_1 \cap L_2 tels que w = u.v. Comme v \in L_1, w \in L.L_1; et v \in L_2, w \in L.L_2. Donc w \in L.L_1 \cap L.L_2.

Contre-exemple: L = \{a, ab\}, L_1 = \{\epsilon\}, L_2 = \{b\}.

On a ab \in L.L_1 \cap L.L_2, mais ab \notin L.(L_1 \cap L_2)
```

Exercice 7

1. Est-ce que les éléments suivants sont des monoïdes?

(a)
$$\langle \mathbb{N}, +, 0 \rangle$$

(b)
$$\langle \mathbb{N}, -, 0 \rangle$$

- (a) $\langle \mathbb{IN}, +, 0 \rangle$ est un monoïde car :
 - IN est un ensemble (l'ensemble des entiers naturels)
 - (stabilité) $\forall a, b \in \mathbb{N}$, on a $a + b \in \mathbb{N}$
 - (associativité) $\forall a, b, c \in \mathbb{N}$, on a (a+b)+c=a+(b+c)
 - (élément neutre) $\forall a \in \mathbb{N}$, on a a+0=a=0+a
- (b) $\langle \mathbb{IN}, -, 0 \rangle$ n'est pas un monoïde car :
 - IN est un ensemble (l'ensemble des entiers naturels)
 - (pas stable) $\exists a \in \mathbb{N}, \exists b \in \mathbb{N} \text{ tel que } a b \notin \mathbb{N} \text{ (ex : tous les cas où } a < b)$
- 2. Est-ce que $(3\mathbb{N}, +, 0)$ est un sous-monoïde de $(\mathbb{N}, +, 0)$?

```
OUI, \langle 3\mathbb{N}, +, 0 \rangle est un sous-monoïde de \langle \mathbb{N}, +, 0 \rangle car :

— 3\mathbb{N} \subset \mathbb{N}

— (élément neutre) 0 = 3 \times 0 \in 3\mathbb{N}

— (stabilité)

\forall a \in 3\mathbb{N} \Rightarrow \exists k \in \mathbb{N}, a = 3k

\forall b \in 3\mathbb{N} \Rightarrow \exists k' \in \mathbb{N}, b = 3k'

\Rightarrow a + b = 3k + 3k' = 3(k + k') \in 3\mathbb{N}
```

3. Soit $B = \{n \in \mathbb{N} \mid n \text{ impair}\}$. Est-ce que $\langle B, +, 0 \rangle$ est un sous-monoïde de $\langle \mathbb{N}, +, 0 \rangle$?

```
NON, \langle B, +, 0 \rangle n'est pas un sous-monoïde de \langle \mathbb{IN}, +, 0 \rangle car :

— B \subset \mathbb{IN}

— (pas stable) ex : 1 \in B et 3 \in B mais 1 + 3 = 4 \notin B

Preuve plus formelle :

\forall a \in B \Rightarrow \exists k \in \mathbb{IN}, a = 2k + 1

\forall b \in B \Rightarrow \exists k' \in \mathbb{IN}, b = 2k' + 1

\Rightarrow a + b = 2k + 1 + 2k' + 1 = 2(k + k') + 2 \notin B
```