Синтетические градиенты

НИУ ВШЭ Матковский Иван 14 февраля 2017

Обратное распространение ошибки

Вычислительные ограничения

- Forward Locking для вычисления выхода і слоя, необходимо вычислить выходы предыдущих слоев
- **Update Locking** для обновления коэффициентов весов на i слое, необходимо вычислить выходы всех следующих слоев
- Backwards Locking для обновления коэффициентов весов і слоя, необходимо обновить следующие слоя

Посыл

• Все эти блокировки являются проблемами при конструировании распределенных систем для обработки нейронных сетей, так как они требуют синхронной работы

Синтетические градиенты

 Модель, позволяющая строить нейронные сети, в которых отсутствует Update Locking и Backwards Locking

Описание модели

• Строится модель, которая учится предсказывать градиент по активациям слоя

Описание модели

• Обучение модели происходит следующим образом, к ней приходит либо градиент, распространенный со следующего слоя, полученный другой такой же моделью, либо реальные ошибки backpropagation

Сложность модели

• Оказывается, что для построения такой модели требуется нейросеть с 0-3 скрытыми слоями. Даже линейная модель предсказывает градиент довольно хорошо, чтобы при использовании такой архитектуры можно было обучиться.

Качество модели

• Обучили сверточную нейронную сеть для CIFAR-10 классификации изображений, где каждый слой отделен с использованием синтетических градиентов. После 500k итераций получили такую же точностью, как и с использованием обратного распространения ошибки.

Complete Unlock

 Чтобы избавиться от Forward Locking можно использовать модель синтетического входа(аналогично синтетическим градиентам)

Архитектура рекуррентной сети

$$s_t = Ux_t + Ws_{t-1}$$
$$o_t = Vs_t$$

Обучение рекуррентной сети

• Теоретически RNN, как выглядит, так и обучается обратным распространением ошибки по всей цепи(ВВТТ)

• На практике используется же лишь последнии і - шагов, это называется обучение методом усеченного обратного распространения ошибки (truncated BBTT)

Обучение рекуррентной сети

ullet Функция потерь: $E(y,o) = \sum_{i=k} ar{E}(o_i,y_i)$, где $ar{E}$ - функция потерь

k+3

для одного элемента

Обучение рекуррентной сети

• Обучение каждого сегмента сети происходит независимо с помощью метода обратного распространения ошибки, так как функционал ошибки хорошо дифференцируется по W, V, U. Например дифференциал $\bar{E}(o_i,y_i)$ по W будет равен:

$$\frac{\partial E_{k+3}}{\partial W} = \sum_{i=k}^{k+3} \frac{\partial E_{k+3}}{\partial o_{k+3}} \frac{\partial o_{k+3}}{\partial s_{k+3}} \frac{\partial s_{k+3}}{\partial s_i} \frac{\partial s_i}{\partial W}$$

Для матриц U, V выписывается аналогично

Синтетический градиент в рекуррентной сети

• Идея заключается в том, чтобы предсказывать ошибку предыдущего сегмента сети с помощью синтетического градиента

• Что позволяет не ограничиваться лишь текущим сегментом сети

Тестирование

- Датасет: Penn Treebank
- Задача: предсказать следующий символ

Тестирование

Спасибо за внимание