Numéro d'anonymat :

Durée: 2 heures

Examen de langages formels (première session)

Seule, une feuille A4 recto-verso est autorisée Interdiction de communiquer tout document.

REMPLIR LES CADRES ET RENDRE CE DOCUMENT AINSI COMPLÉTÉ UN EXCÈS DE REPONSES FAUSSES SERA SANCTIONNÉ PAR DES POINTS NÉGATIFS

TOUTES LES PROPRIETES PRESENTEES EN COURS POURRONT ETRE UTILISEES

Exercice 1:

Construire 3 automates déterministes différents, sur l'alphabet $\Sigma = \{a\}$, ayant 2 états dont un seul terminal. L'automate devra être complet, et tous ses états devront être accessibles et co-accessibles. Pour chacun des automates construits, on précisera le langage associé.

Langage associé:

Langage associé:

 $\{a^{2\cdot n+1},n\geq 0\}$

Langage associé:

 $\{a^n, n \ge 1\}$

Exercice 2 : Soit A =(Σ , E, i, F, δ) un automate déterministe. Un état p est dit « poubelle » s'il vérifie :

$$p \notin F$$
 et $\forall \alpha \in \Sigma, \delta(p, \alpha) = p$

a) Prouver en faisant un raisonnement par induction que, pour tout mot m, $\delta^*(p,m)=p$

$$\Pi(n) = (|m| \le n \Rightarrow \delta^*(p,m) = p)$$

 $\Pi(0)$ est vrai car le seul mot de 0 lettres est ε et que $\delta^*(p,\epsilon) = p$ par définition de δ^*

Hypothèse : Π(n) vrai.

Montrons $\Pi(n+1)$: Soit m un mot de longueur n+1, avec n ≥ 0, posons m = α m₁

$$\delta^*(p,m) = \delta^*(p,\alpha m_1) = \delta^*(\delta(p,\alpha),m_1) = \delta^*(p,m_1) = p$$

b) Soit l'automate A = $(\Sigma, E, i, F, \delta)$:

Prouver, en faisant un raisonnement par contraposé, que : $m \in L_A \Rightarrow m$ ne contient pas le facteur aa Remarques : on pourra utiliser le résultat général : $\delta^*(0, m_1, m_2) = \delta^*(\delta^*(0, m_1), m_2)$

On utilisera le fait que, pour tout état e de l'automate, la fonction de transition δ vérifie $\delta^2(e,aa)=2$.

 $\delta^2(e,aa)$ =2 est vrai en regardant les trois cas possible : e=0, e=1 et e=2. Dans chacun de ces trois cas, on constate que la valeur de $\delta^2(e,aa)$ est toujours l'état 2.

Hypothèse: m contient le facteur aa

Montrons qu'alors $\delta^*(0,m)$ n'est pas un état terminal, i.e. $\delta^*(0,m) = 2$

m contient le facteur aa implique que l'on peut décomposer m = m1 aa m2

Il en découle :

 $\delta^*(0, m) = \delta^*(0, m_1 \text{ aa } m_2) = \delta^*(\delta^*(\delta^*(0, m_1), aa), m_2) = \delta^*(2, m_2) = 2.$

La dernière égalité est vrai car l'état 2 est un état poubelle.

Exercice 3:

a) Soit une grammaire G sur un alphabet Σ , d'axiome S, et de langage associé L_G . Définir le plus simplement possible une grammaire G' telle que son langage associé L_G . vérifie : $L_G = L_G \cup \{\varepsilon\}$

G' a le même alphabet que G, l'axiome S', les productions de la grammaire G plus la production :

$$S' \rightarrow S \mid \epsilon$$

b) Soit la grammaire G d'axiome S, de terminaux « a » et « b » et de productions :

$$S \rightarrow a S b \mid \epsilon$$

On admet que le langage L_G associé à cette grammaire est : $L_G = \{a^n b^n, n \ge 0\}$

Soit la grammaire G' d'axiome S', de terminaux « a » et « b » et de productions :

$$S' \rightarrow a S' b \mid a b$$

Prouver que la propriété $\Pi(n)$ suivante est vraie :

$$\Pi(n) = \left(S' \stackrel{\leq n}{\to} m \implies S \stackrel{*}{\to} m \right)$$

 $\Pi(1)$ est vrai car :

$$S' \stackrel{\leq 1}{\rightarrow} m \Rightarrow m = ab$$
 et alors $S \stackrel{1}{\rightarrow} aSb \stackrel{1}{\rightarrow} ab$

Hypothèse : $\Pi(n)$ est vrai

Montrons que $\Pi(n+1)$ est vrai avec $n \ge 1$

$$S' \stackrel{n+1}{\rightarrow} m \Rightarrow \begin{cases} S' \rightarrow aS'b \stackrel{n}{\rightarrow} m \\ \text{ou} \\ S' \rightarrow \epsilon \stackrel{n}{\rightarrow} m \end{cases}$$

Le deuxième cas est impossible. Le premier cas donne :

$$S' \rightarrow aS'b \stackrel{n}{\rightarrow} m \Rightarrow m = am'b \text{ et } S' \stackrel{\leq n}{\rightarrow} m'$$

 $\Rightarrow S \stackrel{*}{\rightarrow} m' \text{ et } m = am'b$
 $\Rightarrow S \stackrel{1}{\rightarrow} aSb \stackrel{*}{\rightarrow} am'b = m$

Il en découle la propriété à démontrer.

c) Pour prouver que la propriété $\Pi(n)$ suivante est vraie

$$\Pi(n) = \left(m \neq \epsilon \text{ et } S \stackrel{\leq n}{\rightarrow} m \implies S' \stackrel{*}{\rightarrow} m \right)$$
, on établit la preuve suivante :

 $\Pi(1)$ est vrai car :

 $m \neq \epsilon$ et $S \stackrel{\leq 1}{\rightarrow} m \Rightarrow m \neq \epsilon$ et $m = \epsilon$ est contradictoire. $\Pi(1)$ est donc vrai par vacuité.

Hypothèse : $\Pi(n)$ est vrai

Montrons que $\Pi(n+1)$ est vrai avec $n \ge 1$

$$S \stackrel{n+1}{\to} m \Rightarrow \begin{cases} S \to a S b \stackrel{n}{\to} m \\ \text{ou} \\ S \to \epsilon \stackrel{n}{\to} m \end{cases}$$

Le deuxième cas est impossible. Le premier cas donne :

Le deuxième cas est impossible. Le premier ca
$$S \rightarrow aSb \xrightarrow{n} m \qquad \Rightarrow m = am'b \text{ et } S \xrightarrow{\leq n} m'$$
$$\Rightarrow S' \xrightarrow{\rightarrow} m' \text{ et } m = am'b$$
$$\Rightarrow S' \xrightarrow{\rightarrow} aS'b \xrightarrow{\rightarrow} am'b = m$$
$$\Rightarrow S' \xrightarrow{\rightarrow} m$$

Cette preuve contient une erreur. Laquelle ? Indiquer comment la corriger.

L'hypothèse de récurrence ne s'applique pas si m'=€.

Il faut rajouter ce cas : $m' = \epsilon$ et alors m = ab et on peut construire une chaîne $S' \to aS'b \to ab = m$ qui permet d'en déduire que dans ce cas aussi on a $S' \to m$

d) Prouver que $S' \xrightarrow{*} m \Rightarrow m \neq \epsilon$. On ne fera pas de raisonnement par induction pour cela.

$$S' \stackrel{*}{\Rightarrow} m \Rightarrow \begin{pmatrix} S' \rightarrow aS'b \stackrel{*}{\Rightarrow} m \\ \text{ou} \\ S' \rightarrow ab \stackrel{*}{\Rightarrow} m \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} m = am'b \neq \epsilon \\ \text{ou} \\ m = ab \neq \epsilon \end{pmatrix}$$

$$\Rightarrow m \neq \epsilon$$

e) Pour en déduire que $L_{G'} = \{a^n b^n, n \ge 1\}$, justifier le raisonnement ci-dessous :

 $L_G,\subseteq L_G$ est vrai car résulte de la question (b) $L_G,\subseteq L_G-\{\epsilon\} \text{ est alors vrai car résulte de la question (d)}$ $L_G-\{\epsilon\}\subseteq L_G, \text{ est aussi vrai car résulte de la question (c)}$ Par conséquent, $L_G,=L_G-\{\epsilon\}=\{a^nb^n,\ n\geq 1\}$

Exercice 4:

Soit $A=(\Sigma, E, I, F, \delta)$ un automate fini indéterministe. On note L_A l'ensemble des mots reconnus par l'automate A.

a) À quelle condition nécessaire et suffisante portant sur I et F (et pas δ ni δ^*) a-t-on $\epsilon \in L_A$?

Si A est sans ε-transitions : $I \cap F \neq \emptyset$ découle de $\delta^*(I, ε) \cap F \neq \emptyset$

Si A contient éventuellement des ε-transitions : $\hat{\epsilon}(I) \cap F \neq \emptyset$ issu de $\delta^*(I, \epsilon) \cap F \neq \emptyset$

b) On suppose dorénavant que l'automate A=(Σ , E, I, F, δ) est **indéterministe, avec \varepsilon-transitions** et **standard(¹)**. Soit l'automate A' défini par : $A' = (\Sigma, E, I, F \cup I, \delta)$ Pour prouver que $L_A = L_A \cup \{\epsilon\}$, prouver d'abord que $L_A \subseteq L_A$, sans faire de preuve par induction.

 $m \in L_A \Rightarrow \delta^*(I, m) \cap F \neq \emptyset \Rightarrow \delta^*(I, m) \cap (F \cup I) \neq \emptyset \Rightarrow m \in L_A$

Alternativement, on peut montrer qu'un chemin de trace m finissant par un état dans F, sera aussi un chemin finissant par un état dans $F \cup I$

Expliquer pourquoi on a $\delta^*(I,m) \cap I \neq \emptyset \Rightarrow m = \epsilon$ en étudiant les chemins possibles de trace m.

Si $\delta^*(I,m) \cap I \neq \emptyset$ alors il existe un chemin d'un état de I jusqu'à un état de I de trace m.

Comme l'automate est standard, il n'existe pas de transition vers un état de I.

Par conséquent, les seuls chemins possibles sont réduits à un seul état et pas de transition, donc des chemins de trace vide.

Ce qui montre que $m = \varepsilon$

1 Rappel : un automate est standard s'il a un seul état initial, un seul état final, aucune transition vers l'état initial et aucune transition partant de l'état terminal.

En déduire que $L_{A'} \subseteq L_A \cup \{\epsilon\}$

$$m \in L_{A'} \implies \delta^{*}(I, m) \cap (F \cup I) \neq \emptyset$$

$$\Rightarrow \begin{pmatrix} \delta^{*}(I, m) \cap F \neq \emptyset \\ \text{ou} \\ \delta^{*}(I, m) \cap I \neq \emptyset \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} m \in L_{A} \\ \text{ou} \\ m = \epsilon \end{pmatrix}$$

$$\Rightarrow m \in L_{A} \cup \{ \epsilon \}$$

Alternativement, on peut étudier les chemins de trace m qui finissent par un état de $F \cup I$

c) L'automate A=(Σ , E, I, F, δ) est dorénavant **indéterministe sans \varepsilon-transitions** et aucune transition ne va vers un état initial (c'est-à-dire $(e, \alpha, e') \in \delta \Rightarrow e' \notin I$).

Soit l'automate A'' = $(\Sigma, E, I, F-I, \delta)$ où $F-I = \{e \in F, e \notin I\}$.

L'objectif est d'établir la propriété $L_{A''}=L_A-\{\epsilon\}$

Prouver qu'un mot non vide reconnu par l'automate A est un mot reconnu par l'automate A". On basera la preuve par une étude sur les chemins.

$$m \in L_A \implies \exists (e_0, \alpha_1, e_1, ..., e_n) \text{ dans A avec } e_0 \in I \text{ et } e_n \in F \text{ et de trace } m$$

Si e_n est dans I, alors comme l'automate A ne peut avoir une transition vers cet état, il en découle que $e_n = e_0$ et la trace du chemin est $m = \epsilon$ ce qui contredit l'hypothèse que m doit être non vide.

Par conséquent $e_n \in F - I$ et on a $\exists (e_0, \alpha_1, e_1, \dots, e_n)$ dans A avec $e_0 \in I$ et $e_n \in F - I$ et de trace m d'où $m \in L_{A^{''}}$

Inversement, s'il est évident qu'un mot reconnu par l'automate A'' est reconnu par l'automate A, il reste à prouver le résultat suivant : le mot vide ϵ n'est pas reconnu par l'automate A''

Par l'absurde, montrer que $\epsilon \in L_{A}$, implique une contradiction :

$$\epsilon \in L_{A^{\prime\prime}} \ \Rightarrow \ \delta^*(I,\epsilon) \cap (F-I) \neq \emptyset \ \Rightarrow \ I \cap (F-I) \neq \emptyset \ \Rightarrow \ \emptyset \neq \emptyset$$