Discrete Random Variables

31 October 2011

ISTA 116: Statistical Foundations for the Information Age
Random Variables

Random Variables

- A single random sample may have more than one characteristic that we can observe (i.e., it may be bi-/multivariate data).
- We can represent each characteristic (e.g., sex, weight, cancer status, etc.) using a **random variable**

(Definition: Random Variable)

A **random variable** connects each element of the sample space to a value or quantity of interest.

- X: People \mapsto Their Sex
- $lue{Y}$: Sequences of coin flips \mapsto Number of Heads

ISTA 116: Statistical Foundations for the Information Age

Outline

- 1 Random Variables
 - Types of Random Variables
- 2 Discrete Distributions
 - Visualizing Discrete Distributions
 - The PMF and the CDF
- 3 Summarizing (Numeric) Random Variables
 - The Mean, or "Expected Value"
 - Variance of a Discrete Random Variable
- 4 Some Common Discrete Distributions
 - The Bernoulli Distribution
 - The Discrete Uniform Distribution
 - The Binomial Distribution

ISTA 116: Statistical Foundations for the Information Age

Leanndom Variables

Examples of Random Variables

ISTA 116: Statistical Foundations for the Information Age
Random Variables

Examples of Random Variables

ISTA 116: Statistical Foundations for the Information Age
Random Variables

LTypes of Random Variables

Types of Random Variables

- We can classify random variables based on the types of values they take on.
- **Discrete** random variables take on discrete values (e.g., categories or integers)
- **Continuous** random variables take on continuous values (e.g., real numbers).

ISTA 116: Statistical Foundations for the Information Age

Examples of Random Variables

ISTA 116: Statistical Foundations for the Information Age

Discrete Distributions

Discrete Distributions

- When a random variable is discrete, its **distribution** is characterized by the probabilities assigned to each distinct value.
- These probabilities are determined by the probabilities on the sample space itself
- If the sample space is a finite population and we make a simple random draw, then the probability of a value is the proportion of individual outcomes assigned to it.

ISTA 116: Statistical Foundations for the Information Age

Discrete Distributions

The Distribution of a Random Variable

The Distribution of a Random Variable

Discrete Distributions

The Distribution of a Random Variable

ISTA 116: Statistical Foundations for the Information $\ensuremath{\mathsf{Age}}$

Discrete Distributions

Properties of Discrete Distributions

■ What must be true of the set of probabilities then?

(Properties of Discrete Distributions)

1 For every x in the range of X, $P(X = x) \ge 0$.

2

$$\sum_{x \in \mathsf{Range}(X)} P(X = x) = 1$$

ISTA 116: Statistical Foundations for the Information Age

Properties of Discrete Distributions

- Note that each value of a discrete random variable corresponds to an event in the original sample space.
- The probability associated with the value is the probability associated with the event.
- Moreover, every outcome in the sample space is associated with exactly one value of the random variable.
- Therefore, the values of a discrete random variable give us a set of **disjoint** events whose **union** is the entire sample space.

ISTA 116: Statistical Foundations for the Information Age

Discrete Distributions

└Visualizing Discrete Distributions

Visualizing Discrete Distributions

- Very simple distributions can be visualized with a pie chart.
- Can imagine a spinner mechanism that lands on a slice according to its probability.
- But, like pie charts, this is limited in its ability to convey information.

Discrete Distributions

└Visualizing Discrete Distributions

The Spike Plot

- An alternative is the spike plot
- Like a bar plot, but with probabilities, instead of frequencies or proportions, on the *y*-axis.

ISTA 116: Statistical Foundations for the Information Age

Discrete Distributions

☐The PMF and the CDF

Probability Mass Function

(Definition: The Probability Mass Function)

A discrete random variable, X, can be characterized by its **probability mass function**, f_X , which takes values and returns probabilities:

$$f_X(x) = P(X = x)$$

- In the most general case, we just have to consult a table.
- However, we will see examples later of PMFs that have algebraic expressions.

STA 116: Statistical Foundations for the Information Age

Discrete Distributions

LThe PMF and the CDF

Probability Mass Function

- The **distribution** of a random variable is characterized by the set of values and their probabilities.
- For finite sets of values, can think of a table.
- One way to use such a table is to start with a value and *look up* its probability.
- This process is characterized by the **probability mass function**, which takes a value and returns its probability.

ISTA 116: Statistical Foundations for the Information Age

Discrete Distributions

L The PMF and the CDF

The Cumulative Distribution Function

- Often times we are interested in the probability of falling in some range of values.
- For this purpose, we can use the **cumulative distribution function** (or CDF), which gives the "accumulated probability" up to a particular value.

(Definition: The Cumulative Distribution Function)

A random variable, X, can be characterized by its **cumulative distribution function**, F_X , which takes values and returns *cumulative* probabilities:

$$F_X(x) = P(X \le x)$$

The Cumulative Distribution Function

- How can we calculate $F_X(x)$ from the distribution table?
- How would we calculate P(X > x)?
- How about $P(X \ge x)$?
- How would we calculate $P(a < X \le b)$?
- How about $P(a \le X \le b)$?
- $P(a \le X < b)$?

ISTA 116: Statistical Foundations for the Information Age

Summarizing (Numeric) Random Variables

Expected Value

- The mean of a random variable is also called its expected value.
- As with a sample mean, it represents an average over the possible values; but it is **weighted** by the probabilities.

ISTA 116: Statistical Foundations for the Information Age

Summarizing (Numeric) Random Variables

Summarizing Random Variables

- As with data, it is useful to characterize the center and spread of a probability distribution.
- Most of the measures we've seen can be computed; but the most common are the **mean** and **variance**.

ISTA 116: Statistical Foundations for the Information Age

Summarizing (Numeric) Random Variables

The Mean, or "Expected Value"

Example: Mean Number of Heads

■ To compute the mean number of heads in two coin tosses:

$$\mu_X = E(X) = 0 \times P(X = 0) + 1 \times P(X = 1)$$

$$+2 \times P(X = 2)$$

$$= 0 \times \frac{1}{4} + 1 \times \frac{1}{2} + 2 \times \frac{1}{4}$$

$$= \frac{1}{2} + \frac{2}{4} = 1$$

Summarizing (Numeric) Random Variables

The Mean, or "Expected Value"

Expected Value of a Discrete Random Variable

■ In general, we have:

(Definition: Expected Value of a Discrete Random Variable)

$$\mu_X = E(X) = \sum_{x \in \mathsf{Range}(X)} x P(X = x)$$

■ If X is a numeric variable with values from 0 to some number n, we have

(Expected Value of Finite, Integer-Valued Random Variable)

$$\mu_X = E(X) = \sum_{x=0}^n x P(X = x)$$

ISTA 116: Statistical Foundations for the Information Age

Summarizing (Numeric) Random Variables

└─Variance of a Discrete Random Variable

Example: Variance of Number of Heads

■ To compute the variance in the number of heads in two coin tosses:

$$\sigma_X^2 = (0 - \mu_X)^2 \times P(X = 0) + (1 - \mu_X)^2 \times P(X = 1)$$

$$+ (2 - \mu_X)^2 \times P(X = 2)$$

$$= (0 - 1)^2 \times \frac{1}{4} + (1 - 1)^2 \times \frac{1}{2}$$

$$+ (2 - 1)^2 \times \frac{1}{4}$$

$$= \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

ISTA 116: Statistical Foundations for the Information Age

Summarizing (Numeric) Random Variables

└─Variance of a Discrete Random Variable

Variance of a Discrete Random Variable

■ The variance is the expected squared deviation:

Definition: Variance of a Discrete Random Variable)

$$\sigma_X^2 = E((X - \mu_X)^2) = \sum_{x \in \mathsf{Range}(X)} (x - \mu_X)^2 P(X = x)$$

■ If X is a numeric variable with values from 0 to some number n, we have

(Variance of Finite, Integer-Valued Random Variable)

$$\sigma_X^2 = E((X - \mu_X)^2) = \sum_{x=0}^n (x - \mu_x)^2 P(X = x)$$

ISTA 116: Statistical Foundations for the Information Age

Summarizing (Numeric) Random Variables

└─Variance of a Discrete Random Variable

Standard Deviation

The standard deviation is then

Some Common Discrete Distributions

Named Distributions

- Any discrete set of values, along with associated probabilities, forms a discrete probability distribution
 - as long as _____
 - and _____
- However, some sets show up so often, they are given names.
- We will look at three of these:
 - The Bernoulli Distribution
 - The Discrete Uniform Distribution
 - The Binomial Distribution

ISTA 116: Statistical Foundations for the Information Age

Some Common Discrete Distributions

└ The Bernoulli Distribution

Example: Playing the Lottery

x	Lose	Win
P(X=x)		

ISTA 116: Statistical Foundations for the Information Age

—Some Common Discrete Distributions

L The Bernoulli Distribution

The Bernoulli Distribution

- The simplest possible probability distribution is the **Bernoulli Distribution**, named after Jakob Bernoulli, who is also credited with discovering the constant *e*.
- Any random variable with only two possible outcomes has a Bernoulli distribution with "success" probability p (where we choose one of the outcomes to call a "success").
- **Examples**:
 - Flipping a single coin
 - Playing the lottery
 - Getting or not getting cancer
 - Winning or losing a baseball game
 - Graduating or not graduating from college
 - etc. etc.

ISTA 116: Statistical Foundations for the Information Age

Some Common Discrete Distributions

☐ The Bernoulli Distribution

The Bernoulli Distribution

- If a "success" has probability p, then a failure has probability _____
- Typically, we label the success outcome as "1", and the failure outcome as "0".
- We can then compute a mean and variance.
- In terms of the **parameter** *p*, the mean of a Bernoulli distribution is _____
- The variance is _____

$$\sigma^{2} = (0-p)^{2}(1-p) + (1-p)^{2}p$$

$$= p^{2}(1-p) + (1-2p+p^{2})p$$

$$= p^{2} - p^{3} + p - 2p^{2} + p^{3}$$

$$= p - p^{2} = p(1-p)$$

Some Common Discrete Distributions

The Discrete Uniform Distribution

The Discrete Uniform Distribution

- Another common distribution is the discrete uniform distribution.
- Here, we have n possible outcomes (labeled 1 through n) which are all equally likely.
- In terms of the **parameter** n, f(k) = ? for k = 1, ..., n
- What are some examples?
- What is F(k) equal to?
- How would we find the mean and variance?

ISTA 116: Statistical Foundations for the Information Age

Some Common Discrete Distributions

The Binomial Distribution

The Binomial Distribution

- Many times we have some basic process with two outcomes (i.e., a Bernoulli process), which is repeated some number of times.
- We may be interested in the *number* of "successes".
- If both
- (a) the success probability stays constant
- (b) success events are mutually independent
- then the number of successes has a Binomial Distribution with parameters n (number of trials) and p (individual success probability)

ISTA 116: Statistical Foundations for the Information Age

Some Common Discrete Distributions

The Discrete Uniform Distribution

Example: Card Suit

ISTA 116: Statistical Foundations for the Information Age

Some Common Discrete Distributions

The Binomial Distribution

The Binomial Distribution

- We've seen an example already. What was it?
- The number of heads seen in 2 tosses is Binomial with n = ? and p = ?
- Q: How do we find the probability of seeing k heads in 2 tosses?
- A: Find all the individual sequences with *k* heads, and add their probabilities (since individual sequences are disjoint events).
- Q: What is the probability of any particular sequence?
- lacksquare A: In two independent tosses, it's $P(\mathsf{First}\ \mathsf{Outcome}) imes P(\mathsf{Second}\ \mathsf{Outcome})$

Some Common Discrete Distributions

The Binomial Distribution

The Binomial Distribution

• Q: In general, for a sequence of n **independent** trials, each with success probability p, how would we find the probability of a specific sequence of successes and failures?

$$\begin{array}{rcl} P(\mathsf{Sequence}) &=& P(\mathsf{First\ Outcome} \times P(\mathsf{Second\ Outcome}) \\ && \times \cdots \times P(\mathsf{Last\ Outcome}) \\ &=& p^{\#\ \mathsf{successes}} \times (1-p)^{\#\ \mathsf{failures}} \end{array}$$

■ If there were *k* successes, how many failures were there?

ISTA 116: Statistical Foundations for the Information Age

Some Common Discrete Distributions

The Binomial Distribution

Binomial Coefficients

- How many different sequences of length n with k successes are there?
- Equivalently: how many arrangements are there of *k* pegs in *n* holes?
- \blacksquare Consider, say, n=5 and k=2.
- The first peg can go in 5 different places...
- For each of those, the second peg can go in 4 places, for a total of 5×4 .
- But now we've counted $\{1,2\}$ and $\{2,1\}$ separately, when really, both represent the same sequence: (1,1,0,0,0).
- So, divide by 2, to get $(5 \times 4)/2$.

ISTA 116: Statistical Foundations for the Information Age

Some Common Discrete Distributions

The Binomial Distribution

■ Therefore, every sequence of n trials with k successes has probability :

 $P(\text{Each sequence with } k \text{ successes}) = p^k \times (1-p)^{n-k}$

- lacksquare So, is this the probability of k successes in n (identical, independent) tries?
- **No!** This is the probability of *each sequence*! What else do we need to know?

ISTA 116: Statistical Foundations for the Information Age

Some Common Discrete Distributions

The Binomial Distribution

Binomial Coefficients

- How about n = 5 and k = 3?
- Now we have $5 \times 4 \times 3...$
- But $\{1,2,3\}$, $\{1,3,2\}$, etc. give us the same sequence. How many times are we counting each sequence now?
- How many ways are there to order 3 things?
- Answer: $3 \times 2 \times 1$

Binomial Coefficients

 \blacksquare So, in general, the number of subsets of size k you can draw from a big set of size n is:

$$\binom{n}{k} = \frac{n \times (n-1) \times \dots \times (n-k+1)}{k \times (k-1) \times (k-2) \times \dots \times 2 \times 1}$$
$$= \frac{(n)_k}{k!}$$
$$= \frac{n!}{(n-k)!k!}$$

ISTA 116: Statistical Foundations for the Information Age

Some Common Discrete Distributions

The Binomial Distribution

Binomial PMF

Combining this with the probability of each of these sequences gives us the overall probability of k successes.

(Binomial Probability Mass Function)

For a binomial random variable X with parameters n and p, the probability of k successes is

$$f_X(k) = P(X = k) = \binom{n}{k} p^k (1-p)^{(n-k)}$$

ISTA 116: Statistical Foundations for the Information Age

—Some Common Discrete Distributions

L The Binomial Distribution

Binomial Coefficients

(Binomial Coefficients)

The **binomial coefficients** give the number of sequences of length n that contain k successes:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

This is read "n choose k"

ISTA 116: Statistical Foundations for the Information Age

Some Common Discrete Distributions ☐ The Binomial Distribution

Binomial CDF

■ Unfortunately, there's no closed form expression for the binomial CDF; we just have to take a sum:

(Binomial CDF)

For a binomial random variable X with parameters n and p, the probability of $\leq k$ successes is

$$F_X(k) = P(X \le k) = \sum_{j=0}^k f_x(k) = \sum_{j=0}^k \binom{n}{j} p^j (1-p)^{(n-j)}$$

Some Common Discrete Distributions The Binomial Distribution

Binomial Mean and Variance

■ The mean and variance of the binomial distribution follow from two general facts about sums of random variables (remember, the Binomial is the sum of n identical and independent Bernoullis)

ISTA 116: Statistical Foundations for the Information Age

Some Common Discrete Distributions

☐ The Binomial Distribution

Binomial Mean and Variance

- \blacksquare Remember that the Bernoulli mean is p, and the Bernoulli variance is p(1-p).
- The Binomial mean is then _____
- The Binomial variance is
- The Binomial standard deviation is

ISTA 116: Statistical Foundations for the Information Age

—Some Common Discrete Distributions

The Binomial Distribution

Sums of Random Variables

I If $X_1, X_2, \dots X_n$ are n random variables, and we define Y to be their sum, then

$$E(Y) = E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i)$$

2 If in addition X_1 through X_n are **independent**, then

$$Var(Y) = Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i)$$

ISTA 116: Statistical Foundations for the Information Age

Some Common Discrete Distributions

Applying the Binomial Distribution

■ 40% of the population support a particular proposition. If the entire population voted, the proposition would be defeated. What is the probability that a simple random sample of 3 people would vote to pass the proposition?