Mini-Test 1

Name: MANSI SHARMA	Email: Mani. Sharma Ool @umb. edu
1. (50 points) Check the correct answer.	
(a) (10 points) The type nat has a finite number of	elements
O True	olements.
False	
 (b) (10 points) Suppose we have assumption H: P we do apply H, then the goal will change to P True 	\rightarrow Q \rightarrow R \rightarrow S and the current goal is S. If \rightarrow Q \rightarrow R.
(c) (10 points) In Coq, the proposition True and the can prove True ←→ true.	ne boolean true are logically equivalent, $i.e.$, one
○ True False	
(d) (10 points) If H : x1 :: y1 = x2 :: y2 is equal to x2.	a current assumption, then we know that x1 is
○ False	
(e) (10 points) All types defined in Coq must be no some Coq expression that has type A.	onempty. In other words, for any type A, there is
O True	e and keepings
False	
(10 points) Give the type of each of the following Co does not have a type.	oq expressions, or write "ill typed" if an expression
(a) (5 points) fun (b : bool) \Rightarrow if true then 56 else b	
ill typed	-y. Ak.
(b) (5 points) fun (x y : nat) \Rightarrow x + 56 = y	
nat → nat → Prop	
Induction Not Provable	I II IS Drovable only weight: 1
(b) (4 points) forall n, n = S n ○ Easy	

```
○ Induction
          Not Provable
   (c) (4 points) forall {A:Type}, length l = 0 \rightarrow l = []
            O Easy
           Induction
            O Not Provable
   (d) (4 points) In 3 [1;2;3;4;5]
          Easy
            ○ Induction
            O Not Provable
   (e) (4 points) forall P : Prop, P \/ ~P
           O Easy

    Induction

           Not Provable
4. (20 points) Complete each proof. Your proof cannot use auto nor intuition.
   (a) P, Q: Prop
      H : P \setminus / Q
      H0 : ~ Q
                               ____(1/1)
       destruct H. &
       apply H. y unland not in Ho.
       destruct HO.
  (b) P : Prop
      H : P
                                                  (1/1)
      unfold not.
Contradiction.
  (c) forall n : nat, True
```

Proof.
intras.
apply I.

Red.

(d) forall (A:Type) (x:A), [x] = [x].

Proof.
intros.
assumption.
Qed.