重庆理工大学考试试题卷

2008~2009 学年第二学期

班级	学号		姓名	考试	科目	5等数学 2	(机电)	A卷 闭卷	共 2 页
•••••		密•••••		••• 封 ••••		•••••	••••线•••	•••••	••••••
		题号 一	ΞΞ	四	五	总分	总分人	1	
		分数			3,475,45.4			-	
一、单项选择	¥题(本大题共 10	小题,每小题 2 分,	共 20 分)。					_	
得分	评卷人	在每小题列出的四个均无分。	~备选项中只有一	·个是符合题	目要求的	的,请将其	共代码填写 在	E题后的括号内	内。错选、多选或:
1. 微分方程	$\frac{dy}{dx} = e^{x+y}$ 的通解								
A. e^{-y}	$+e^x=C$	B, $e^y + e^{-x}$	$x^{\alpha} = C$		C, e ⁻³	$e^x - e^x = C$		D, e^y	$-e^{-x}=C$
2. 函数 u =	xy²z 在点 (1,1,2)	处沿 \vec{l} = ()的方向导数最大	t					
A. (2,4	4,1)	B. (4, 2, 1)		C. (2,-	4,1)		D. (-2,4,	.1)
3. $x+y+z$	$z = e^z$, $\mathbb{M} \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}$	= ()							
A. 2		В1			C.	0		D. 2	ll .
4. 原点到平	\overline{z} 面 $3x-2y+6z+$	-14 = 0 的距离 $d = ($)						
A. 14		B. √17			C. 7			D. 2	
5. 曲线 $\left\{x - \frac{1}{2}\right\}$	$-y^2 + z = 1$ $y = 2$ Æ xoz	面上的投影曲线为(Ď						
A. 直线	Š	B. 抛	物线		C. [別		D. 点	
6. 若级数 $\sum_{n=1}^{\alpha}$	$\sum_{n=1}^{\infty} u_n \psi \dot{\omega} (u_n \neq 0,$	<i>n</i> = 1,2,···) ,则级数	$\sum_{n=1}^{\infty} \frac{1}{u_n} ()$						
A、收敛		B、发散	C.	收敛且 $\sum_{n=1}^{\infty} \frac{1}{u}$	$\frac{1}{n} = \frac{1}{\sum_{n=1}^{\infty} i}$	ι_n		D、可能收益	敛可能发散
7. <i>L</i> 是抛物	则线 $y = x^2$ 上从点 ((0,0)到点 (1,1)的一段	弧,则曲线积分	$\int_{L} x dy$ 为()				
A、1/2		B, 3/2			C、2/3			D, 1	
8. D 为环用	肜域: $1 \le x^2 + y^2$:	$\leq 4, I_1 = \iint_D \left(x^2 + y^2\right) dt$	$\sigma, I_2 = \iint_D (x^2 + y)$	$(v^2)^2 d\sigma$,, \mathbb{Q})			
A. $I_1 <$:1/2	B. $I_2 < 1$	i	C. I_1	$> I_2$			D. $I_1 < I_2$	
9. 设∑是平	z面 $x+y+z=4$	按柱面 $x^2 + y^2 = 1$ 截出	的有限部分,则	$\iint_{\Sigma} y ds = ($)			
Α, π	в, 0	c. 4√3	D,	$\frac{4}{3}\sqrt{3}$					
10. 设 f(x))是周期为2π的周	J期函数,它在[-π,π]上的表达式为 ƒ	f(x) = x ,	則 $f(x)$	展开成傅里	L 叶级数,非	其系数 <i>b_n</i> = ()
$\frac{4}{n\pi}$	B, $\frac{2}{n\pi}$	$C, \begin{cases} 0 \\ -\frac{4}{x^2 - x^2} \end{cases}$	n为偶数 n为奇数	D.	0				

重庆理工大学考试试题卷

2008~2009 学年第二学期

班级	学号	姓名	考试科目_	高等数学2(机电)	A卷 闭卷	共_2页
	•••• 密 ••		封 ••••••	••••••线•••		

学生答题不得超过此线

二、填空题(本大题共10小题,每小题2分,共20分)

得分	评卷人	请在每小题的空格中填上正确答

11. 函数
$$z = \frac{x^2}{y}$$
 当 $x = 2$, $y = 1$ 时的全微分 $dz = _____$. 12. 极限 $\lim_{(x,y)\to(2,0)} \frac{\sin(xy)}{y} = _____.$

12. 极限
$$\lim_{(x,y)\to(2,0)} \frac{\sin(xy)}{y} =$$

13.
$$z = f(x^2 - y^2, xy)$$
, $\mathbb{Q} \frac{\partial z}{\partial x} = \underline{\hspace{1cm}}$

14. 设
$$z = y^2 \sin x$$
,则 $\frac{\partial^2 z}{\partial x \partial y} =$ _____.

15. 交換积分次序
$$\int_0^1 dy \int_{3y}^3 f(x,y) dx =$$

17.
$$\int_{(11)}^{(2,3)} xy^2 dx + x^2 y dy = \underline{\qquad}.$$

19. 幂级数
$$\sum_{n=1}^{\infty} \frac{1}{n \cdot 3^n} x^n$$
 的收敛半径是______.

20. 若过曲面 $z = 4 - x^2 - y^2$ 上点 P 处的切平面平行于平面 2x + 2y + z - 1 = 0,

则点 P 的坐标为 $_$

三、求解下列各题(本大题共6小题,每小题8分,共48分)。

评卷人

- 21. 过点 A(2,1,-1) 作平面 2x+y+3z-9=0 的垂线,求该直线的方程及垂足的坐标。.
- 22. 求函数 u = x 2y 2z 在条件 $x^2 + y^2 + z^2 = 1$ 下可能的极值点。
- 23. 计算 $\int_L (2x-y+4)dx + (5y+3x-6)dy$, 其中L 为圆周 $x^2+y^2=1$, 取逆时针方向。
- 24. 求 $\iint (x+y) dy dz + (y-z) dz dx + (x+y+z) dx dy$, 其中 Σ 是介于z=0, z=1之间的圆柱体 $x^2+y^2 \leq 9$ 的整个表面的外侧。.
- 25. 求 $\iiint \sqrt{x^2+y^2} dv$, 其中 Ω 是由z=1和 $z=x^2+y^2$ 围成的区域。
- 26. 求微分方程 y'' + 2y' 3y = 4x 的通解。

四、应用题(本题6分)

- 27. 设平面薄片所占的闭区域 D 由直线 x+y=2, y=x 和 x 轴所围成,它的面密度 $\mu=xy$,求该薄片的质量。
- 五、证明题(6分)
- 28. 用级数收敛的必要条件证明: $\lim_{n \to \infty} \frac{4^n}{n!} = 0$

高等数学 2 (机电) (A卷)参考答案与评分标准

一、单项选择题(本大题共10小题,每小题2分,共20分)。

A A C D A, B C D B D

二、填空题(本大题共10小题,每小题2分,共20分)

11.
$$4dx - 4dy$$

13.
$$2xf_1' + yf_2$$

12. 2 13.
$$2xf_1' + yf_2'$$
 14. $2y\cos x$ 15. $\int_0^3 dx \int_0^{\frac{x}{3}} f(x, y) dy$ 16. $\frac{\pi}{4}$ 17. $\frac{35}{2}$ 18.

16.
$$\frac{\pi}{4}$$

17.
$$\frac{35}{2}$$

$$\sum_{n=1}^{\infty} \frac{x^n}{4^{n+1}} \quad (-4 < x < 4) \qquad 19. \quad 3 \qquad 20. \quad (1,1,2)$$

三、求解下列各题(本大题共6小题,每小题8分,共48分)

21. 解: 直线方程为
$$\frac{x-2}{2} = \frac{y-1}{1} = \frac{z+1}{3}$$

即参数方程为
$$\begin{cases} x=2+2t\\ y=1+t\\ z=-1+3t \end{cases}$$
 代入平面方程得: $t=\frac{1}{2}$

故垂足为
$$(3,\frac{3}{2},\frac{1}{2})$$

22.解: 拉格朗日函数为
$$L = x - 2y - 2z + \lambda(x^2 + y^2 + z^2 - 1)$$

$$L_x = 1 + 2\lambda x$$

$$L_{y} = -2 + 2\lambda y \qquad (5\,\%)$$

$$L_z = -2 + 2\lambda z$$

解方程组
$$\begin{cases} 1+2\lambda x = 0 \\ -2+2\lambda y = 0 \\ -2+2\lambda z = 0 \\ x^2+y^2+z^2 = 1 \end{cases}$$
 得: $\lambda = \pm \frac{3}{2} \Rightarrow \begin{cases} x = \mp \frac{1}{3} \\ y = \pm \frac{2}{3} \\ z = \pm \frac{2}{3} \end{cases}$ (7分)

$$\lambda = \pm \frac{3}{2} \Rightarrow \begin{cases} y = \pm \frac{2}{3} \\ z = \pm \frac{2}{3} \end{cases}$$

故可能的极值点是
$$(-\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$$
 及 $(\frac{1}{3}, -\frac{2}{3}, -\frac{2}{3})$

23.
$$M: P = 2x - y + 4, Q = 5y + 3x - 6$$

原式=
$$\iint_{D} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) d\sigma = \iint_{D} 4d\sigma = 4\pi$$

24.
$$M: P = x + y, Q = y - z, R = x + y + z$$

原式=∭
$$(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z})dv = \iiint 3dv = 27\pi$$

25. **M**:
$$\[\[\] \] \int_{0}^{2} \rho^{2} d\rho d\phi dz = \int_{0}^{2\pi} d\phi \int_{0}^{1} d\rho \int_{\rho^{2}}^{1} \rho^{2} dz \]$$

$$=\frac{4\pi}{15} \tag{8}$$

26. 解:特征方程为: $r^2 + 2r - 3 = 0$

$$r_1 = -3, r_2 = 1$$

所以
$$y'' + 2y' - 3y = 0$$
 的通解为 $Y = C_1 e^{-3x} + C_2 e^{x}$

设特解为
$$y^* = ax + b$$

代入原方程求得:
$$a = -\frac{4}{3}, b = -\frac{8}{9}$$

故通解为
$$y = C_1 e^{-3x} + C_2 e^x - \frac{4}{3}x - \frac{8}{9}$$

四、应用题(本题6分)

27. 解:
$$M = \iint_{D} xyd\sigma = \int_{0}^{1} dy \int_{y}^{2-y} xydx = \frac{1}{3}$$
 (6分)
五、证明题 (6分)

28、证明:对正项级数 $\sum_{n=1}^{\infty} \frac{4^n}{n!}$

$$\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{4^{n+1}}{(n+1)!} \cdot \frac{n!}{4^n} = 0 < 1$$
 (4 分)

所以
$$\sum_{n=1}^{\infty} \frac{4^n}{n!}$$
收敛

故:
$$\lim_{n\to\infty}\frac{4^n}{n!}=0$$
 (6分)