Національний технічний університет України «КПІ ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра інформаційних систем та технологій

Спеціальні розділи математики-2. Чисельні методи

Лабораторна робота № 4 Обчислення власних значень та власних векторів матриць

3міст

1 Теоретичні відомості	2
2 Завдання	
3 Варіанти завдань	
4 Вимоги до звіту	
· 2 As 32,	••••

1 Теоретичні відомості

Велика кількість задач математики та фізики потребує знаходження власних значень та власних векторів матриць, тобто знаходження таких значень λ , для яких існують нетривіальні розв'язки однорідної системи рівнянь

$$Ax = \lambda x,\tag{1}$$

та знаходження цих нетривіальних розв'язків. Тут A — квадратна матриця порядку m, x — невідомий вектор-стовпець.

Такий розв'язок системи (1) існує тоді і тільки тоді, коли

$$D(\lambda) = |A - \lambda E| = 0, \tag{2}$$

де E — одинична матриця.

Визначник $D(\lambda)$ називається характеристичним або віковим визначником, а рівняння (2) – характеристичним або віковим рівнянням.

Метод Данилевського

Квадратну матрицю P порядку m називають подібною до матриці A, якщо її можна подати у вигляді

$$P = S^{-1}AS$$
,

де S — невироджена матриця порядку m.

Виконується наступна теорема: характеристичні визначники вихідної та подібної матриці збігаються.

Ідея методу Данилевського полягає у тому, що матрицю A подібним перетворенням зводять до так званої нормальної форми Фробеніуса.

$$P = \begin{pmatrix} p_1 & p_2 & \dots & p_{m-1} & p_m \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$

Можна перевірити, що характеристичне рівняння для матриці P набуває простого вигляду:

$$D(\lambda) = \begin{pmatrix} p_1 - \lambda & p_2 & \dots & p_{m-1} & p_m \\ 1 & -\lambda & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -\lambda \end{pmatrix} = \\ = (-1)^m (\lambda^m - p_1 \lambda^{m-1} - p_2 \lambda^{m-2} - \dots - p_{m-1} \lambda - p_m) = 0$$

тобто коефіцієнти при степенях λ характеристичного поліному безпосередньо виражаються через елементи першого рядка матриці P.

Зведення матриці A до нормальної форми Фробеніуса P здійснюється послідовно по рядках, починаючи з останнього рядка. Це робиться за допомогою ітеративного процесу, який виражається у вигляді:

$$A^{(i+1)} = M_{m-i}^{-1} A^{(i)} M_{m-i}, (3)$$

де

$$M_{m-i} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ \mu_1 & \mu_2 & \dots & \mu_{m-1} & \mu_m \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}, \mu_j = \begin{cases} \frac{-a_{m-i+1,j}^{(i)}}{a_{m-i+1,m-i}^{(i)}}, \ j \neq m-i \\ \frac{1}{a_{m-i+1,m-i}^{(i)}}, \ j = m-i \end{cases},$$

$$M_{m-i}^{-1} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ a_{m-i+1,1}^{(i)} & a_{m-i+1,2}^{(i)} & \dots & a_{m-i+1,m-1}^{(i)} & a_{m-i+1,m}^{(i)} \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}.$$
Signification for the property matrix $\mathbf{M}_{m-i+1,2}^{(i)}$ in the property matrix $\mathbf{M}_{m-i+1,2}^{(i)}$ is the property $\mathbf{M}_{m-i+1,2}^{(i)}$ is $\mathbf{M}_{m-i+1,2}^{(i)}$ in $\mathbf{M}_{m-i+1,2}^{(i)}$ is $\mathbf{M}_{m-i+1,2}^{(i)}$ in $\mathbf{M}_{m-i+1,2}^{(i)}$ in $\mathbf{M}_{m-i+1,2}^{(i)}$ is $\mathbf{M}_{m-i+1,2}^{(i)}$ and $\mathbf{M}_{m-i+1,2}^{(i)}$ is $\mathbf{M}_{m-i+1,2}^{(i)}$ and $\mathbf{M}_{m-i+1,2}^{(i)}$ and

Тут $a_{f,i}^{(i)}$ – відповідні елементи матриці $A^{(i)}$, індекс i=1...m-1, $A^{(1)}=A$, елемент $a_{m-i+1,m-i}^{(i)}\neq 0$.

Таким чином, нормальну форму Фробеніюса буде одержано за (m-1) крок і вона набуде вигляду

$$P = M_1^{-1} M_2^{-1} ... M_{m-2}^{-1} M_{m-1}^{1} A M_{m-1} M_{m-2} ... M_2 M_1$$
.

Якщо ж умова $a_{m-i+1,m-i}^{(i)} \neq 0$ не виконується на якомусь кроці i=k, то можливі два випадки. У першому випадку у (m-k+1)-рядку лівіше елемента $a_{m-k+1,m-k}^{(k)}$ є елемент $a_{m-k+1,l}^{(k)}$, де l < m-k. Тоді ми можемо переставити місцями (m-k)- та l-рядки та стовпці одночасно. Отже, на потрібному нам місці одержуємо ненульовий елемент $a_{m-k+1,l}^{(k)}$, вже перетворена частина матриці не змінюється і можна застосовувати звичайний крок методу Данилевського.

Розглянемо другий випадок, коли $a_{m-k+1,m-k}^{(k)}=0$ і всі елементи цього рядка лівіше нього теж дорівнюють нулю. У цьому разі характеристичний визначник матриці $A^{(k)}$ можна подати у вигляді

$$\left|A^{(k)} - \lambda E\right| = \left|B^{(k)} - \lambda E_{m-k}\right| \left|C^{(k)} - \lambda E_{k}\right|,\,$$

де E_{m-k} та E_k — одиничні матриці відповідної вимірності, а квадратні матриці $B^{(k)}$ та $C^{(k)}$ мають виглял:

$$B^{(k)} = \begin{pmatrix} a_{1,1}^{(k)} & \dots & a_{1,m-k}^{(k)} \\ \vdots & \dots & \vdots \\ a_{m-k,1}^{(k)} & \dots & a_{m-k,m-k}^{(k)} \end{pmatrix}, C^{(k)} = \begin{pmatrix} a_{m-k+1,m-k+1}^{(k)} & \dots & a_{m-k+1,m-1}^{(k)} & a_{m-k+1,m}^{(k)} \\ 1 & \dots & 0 & 0 \\ \vdots & \dots & \vdots & \vdots \\ 0 & \dots & 1 & 0 \end{pmatrix}.$$

Звернімо увагу на те, що матриця $C^{(k)}$ вже має нормальну форму Фробеніуса, і тому співмножник $\left|C^{(k)}-\lambda E_k\right|$ просто розгортаємо у вигляді багаточлена з коефіцієнтами, що дорівнюють елементам першого рядка.

Співмножник $\left|B^{(k)} - \lambda E_{m-k}\right|$ є характеристичним визначником матриці $B^{(k)}$. Для його розгортання можна знову застосувати метод Данилевського, зводячи матрицю $B^{(k)}$ подібними перетвореннями до нормальної форми Фробеніуса.

Припустимо тепер, що матрицю A подібними перетвореннями $P = S^{-1}AS$ вже зведено до нормальної форми Фробеніуса. Розв'язуючи характеристичне рівняння

$$\lambda^{m} - p_{1}\lambda^{m-1} - p_{2}\lambda^{m-2} - \dots - p_{m-1}\lambda - p_{m} = 0,$$

знаходимо одним з відомих методів його корені λ_i , i=1,...,m, які є власними значеннями матриць P та A.

Тепер маємо задачу знайти власні вектори, які відповідають цим власним значенням, тобто вектори $x^{(i)}, i=1,...,m$, такі що

$$Ax^{(i)} = \lambda_i x^{(i)}, i = 1,...,m$$
.

Для цього спочатку знайдемо власні вектори для матриці P. Нехай це будуть вектори $y^{(i)}$. Тоді $x^{(i)} = Sy^{(i)}$, де $S = M_{m-1}M_{m-2}...M_2M_1$.

Для знаходження власних векторів P, запишемо рівність $Py^{(i)} = \lambda_i y^{(i)}$ у розгорнутій формі

$$\begin{pmatrix} p_1 & p_2 & \dots & p_{m-1} & p_m \\ 1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix} \begin{pmatrix} y_1^{(i)} \\ y_2^{(i)} \\ \vdots \\ y_m^{(i)} \end{pmatrix} = \begin{pmatrix} \lambda_1 y_1^{(i)} \\ \lambda_2 y_2^{(i)} \\ \vdots \\ \lambda_m y_m^{(i)} \end{pmatrix}, \text{ afoo } \begin{cases} p_1 y_1^{(i)} + \dots + p_m y_m^{(i)} = \lambda_i y_1^{(i)}, \\ y_1^{(i)} = \lambda_i y_2^{(i)}, \\ \vdots \\ y_{m-1}^{(i)} = \lambda_i y_m^{(i)}. \end{cases}$$

У цій системі одна із змінних може бути вільною і може набути довільного значення. Як таку візьмемо $y_m^{(i)}$ і покладемо $y_m^{(i)} = 1$. Тоді послідовно отримуємо:

$$y_m^{(i)} = 1, \ y_{m-1}^{(i)} = \lambda, \ y_{m-2}^{(i)} = \lambda^2, ..., y_1^{(i)} = \lambda^{m-1}$$

 $y_m^{(i)}=1,\ y_{m-1}^{(i)}=\lambda,\ y_{m-2}^{(i)}=\lambda^2,...,y_1^{(i)}=\lambda^{m-1}$. А звідси вже отримуємо за виразом $x^{(i)}=Sy^{(i)}$ значення власного вектору $x^{(i)}$ для матриці A.

2 Завдання

Створити програму, для зведення матриці A до нормальної форми Фробеніуса P.

Отримане характеристичне рівняння розв'язати довільним способом у Mathcad і отримати всі власні числа λ_i , i = 1, ..., m з точністю 5 знаків після коми.

Для кожного власного числа знайти по одному власному вектору через власні вектори

Перевірити точність знайдених результатів, підставляючи у рівняння (1) знайдені власні числа та власні вектори.

Знайти власні числа матриці A виключно за допомогою Mathcad і порівняти з отриманими раніше результатами.

3 Варіанти завдань

Матриця A обчислюється за формулою

$$A = \begin{pmatrix} 6,26+a & 1,10-b & 0,97+g & 1,24-d \\ 1,10-b & 4,16-a & 1,30 & 0,16 \\ 0,97+g & 1,30 & 5,44+a & 2,10 \\ 1,24-d & 0,16 & 2,10 & 6,10-a \end{pmatrix}$$

де $a = 0.11 \times t$; $b = 0.02 \times k$; $g = 0.02 \times k$; $d = 0.015 \times t$; t =остання цифра № у списку групі; k = 3× (молодша цифра № групи – 4) + перша цифра № у списку групи (наприклад, для номеру 15 у списку IC-62 t=5, $k=3\times(2-4)+1=-5$).

4 Вимоги до звіту

Звіт має містити:

- постановку задачі;
- \bullet проміжні матриці \boldsymbol{M}_i^{-1} та \boldsymbol{M}_i , результуючу матрицю \boldsymbol{P} у нормальній формі Фробеніуса;
- отримане характеристичне рівняння;
- власні числа корені характеристичного рівняння;
- власний вектор для кожного власного числа;
- оцінка точності обчислень (підстановка результатів у вихідне рівняння (1));

- копія розв'язку задачі у Mathcad;порівняння власного розв'язку та розв'язку, отриманого у Mathcad;
- лістинг програми.