Numer indeksu:	

Logika dla informatyków

Egzamin końcowy (pierwsza część)

Egzamii koncowy (pierwsza część)
1 lutego 2019 czas pisania: 90 min
Zadanie 1 (2 punkty). Jeśli istnieją takie spełnialne formuły φ i ψ , że formuła $\varphi \Leftrightarrow \psi$ jest spełnialna a formuła $(\neg \varphi) \Leftrightarrow \psi$ jest sprzeczna, to w prostokąt poniżej wpisz dowolny przykład takich formuł. w przeciwnym przypadku wpisz uzasadnienie, dlaczego takie formuły nie istnieją.
Zadanie 2 (2 punkty). Nie używając spójnika " \Rightarrow " wpisz w prostokąt poniżej formułę w negacyjnej postaci normalnej równoważną formule $p \Rightarrow \neg (q \Rightarrow \neg r)$.
Zadanie 3 (2 punkty). Czy formuła $p \lor q$ jest logiczną konsekwencją zbioru formuł $\{q \Rightarrow \neg p, \neg p \Rightarrow \neg q\}$? W prostokąt poniżej wpisz odpowiedź oraz dowód jej poprawności.
Zadanie 4 (2 punkty). Jeśli istnieją niepuste i rozłączne zbiory $A, B \subseteq \mathbb{N}$ spełniające podany warunek, to w odpowiedni prostokąt wpisz dowolne takie zbiory. W przeciwnym razie wpisz słowo NIE. Symbol \subsetneq oznacza ścisłe zawieranie: $X \subsetneq Y$ jest równoważne $X \subseteq Y \land X \neq Y$.
(a) $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$
(b) $\mathcal{P}(A) \cup \mathcal{P}(B) \subsetneq \mathcal{P}(A \cup B)$
(c) $\mathcal{P}(A) \cup \mathcal{P}(B) \supsetneq \mathcal{P}(A \cup B)$
Zadanie 5 (2 punkty). Jeśli istnieje taka rodzina $\{A_i\}_{i\in\mathbb{N}}$ podzbiorów \mathbb{N} , że dla każdego $i\in\mathbb{N}$ zbiór A_i jest nieskończony, $\bigcup_{i=0}^{\infty}\bigcap_{j=i}^{\infty}A_j=\emptyset$ oraz $\bigcup_{i=0}^{\infty}A_i=\mathbb{N}$, to w prostokąt niżej wpisz przykład dowolnej takiej
rodziny. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taka rodzina nie istnieje.

Zadanie 6 (2 punkty). W podany prostokąt wpisz liczbę takich relacji równoważności R na zbiorze $\{a,b,c,d,e\},$ że $\langle a,b\rangle \in R \land \langle b,c\rangle \not\in R \land \langle c,d\rangle \not\in R \land \langle b,d\rangle \not\in R.$									
Zadanie 7 (2 punkty). $R\'oznicę$ symetryczną $$ zbiorów A i B definiujemy następująco:									
$A \doteq B = (A \setminus B) \cup (B \setminus A).$									
Nie używając słów języka naturalnego (czyli używając jedynie symboli matematycznych) uzupełnij poniższy tekst tak, aby otrzymać poprawny dowód następującego twierdzenia: Dla dowolnych zbiorów X,Y,Z zachodzi inkluzja $X \doteq Z \subseteq (X \doteq Y) \cup (Y \doteq Z)$.									
Dowód. Dowód przeprowadzimy wprost. Weźmy dowolne zbiory X,Y,Z oraz element Z de									
finicji różnicy symetrycznej mamy lub lub . Rozważmy dwa przypadki:									
(1) . Z definicji różnicy zbiorów mamy oraz . Rozważmy dwa									
przypadki. Przypadek (1a): . Z definicji różnicy zbiorów mamy , a stąd									
i z definicji różnicy symetrycznej . Zatem . Przypa-									
dek (1b): . Z definicji różnicy zbiorów mamy , a stąd i z definicji różnicy									
symetrycznej . Zatem .									
(2) . Tutaj dowód jest symetryczny do przypadku (1): wystarczy zamienić miejscami									
wszystkie wystąpienia i .									
Zadanie 8 (2 punkty). Dla zbiorów A, B i $C \subseteq A \times B$ definiujemy $A_C = \{a \in A \mid \exists b \in B \ \langle a, b \rangle \in C\}$ oraz $B_C = \{b \in B \mid \exists a \in A \ \langle a, b \rangle \in C\}$. Czy dla dowolnych takich zbiorów zachodzi równość $A_C \times B_C = C$? W prostokąt poniżej wpisz odpowiedź oraz odpowiednio dowód lub kontrprzykład.									
Zadanie 9 (2 punkty). Niech R będzie taką relacją binarną na zbiorze A , że R ; $R = R$. Czy z tego wynika, że R jest przechodnia? W prostokąt poniżej wpisz odpowiedź oraz odpowiednio dowód lub kontrprzykład.									

Numer indeksu:	
Zadanie 11 (2 punkty). Rozważmy zbiór M miast i relację $P \subseteq M \times M$ informującą o bez połączeniach kolejowych pomiędzy miastami. W prostokąt poniżej wpisz taką formułę φ w postaci normalnej, że $\{\langle m_1, m_2 \rangle \in M \times M \mid \varphi\}$ jest zapytaniem relacyjnego rachunku dziedzi jącym wykaz par miast, między którymi nie istnieje połączenie z mniej niż dwiema przesiadk	negacyjnej n oznacza-
Zadanie 12 (2 punkty). Niech V będzie niepustym zbiorem zmiennych zdaniowych, a φ formułą rachunku zdań zawierającą wyłącznie zmienne ze zbioru V . Niech ψ będzie formułą z φ przez zastąpienie każdego wystąpienia zmiennej p literałem $\neg p$, dla wszystkich zmienny Niech \mathcal{V}_{φ} będzie zbiorem wszystkich wartościowań $\sigma: V \to \{T,F\}$ spełniających formułę φ , a V wszystkich wartościowań spełniających formułę ψ . Jeśli dla wszystkich formuł φ istnieje bijekcja pomiędzy zbiorami \mathcal{V}_{φ} i \mathcal{V}_{ψ} , to w prostoł wpisz dowolną taką bijekcję. W przeciwnym przypadku wpisz odpowiedni kontrprzykład.	otrzymaną p ch $p \in V$. p zbiorem
Zadanie 13 (2 punkty). Niech $F: \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ będzie dana wzorem $(F(f,g))(n) = f$ dla $n \in \mathbb{N}$. Jeśli funkcja F ma funkcję odwrotną, to w prostokąt poniżej wpisz tę funkcję. W p przypadku wpisz uzasadnienie, dlaczego funkcja odwrotna nie istnieje.	
Zadanie 14 (2 punkty). Niech $f:A\to B$ i $g:B\to C$ będą takimi funkcjami, że złożen "na". Załóżmy dodatkowo, że zbiory A,B i C są równoliczne. Czy z tego wynika, że funkcja f W prostokąt poniżej wpisz odpowiedź oraz odpowiednio dowód lub kontrprzykład.	
Zadanie 15 (2 punkty). Niech $F_f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ dla $f: \mathbb{N} \to \mathbb{N}$ będzie funkcją zdefiniowa:	ną wzorem
$F_f(A) = f^{-1}[A]$. (a) Podaj przykład różnowartościowej funkcji f , dla której F_f jest funkcją różnowartościowa słowo "NIE", jeśli taki przykład nie istnieje.	
(b) Podaj przykład różnowartościowej funkcji f , dla której F_f nie jest funkcją różnowartowpisz słowo "NIE", jeśli taki przykład nie istnieje.	ściową lub

	Numer indeksu	:	
Oddane zadania:			

Logika dla informatyków

Egzamin końcowy (część druga)

1 lutego 2019 czas pisania: 120 min

Każde z poniższych zadań będzie oceniane w skali od −4 do 20 punktów.¹

Funkcja $f:A\to B$ jest quasi-bijekcjq, jeśli spełnia następujące dwa warunki:

- istnieje co najwyżej jeden taki element $b \in B$, że dla żadnego $a \in A$ nie zachodzi f(a) = b, oraz
- istnieje co najwyżej jeden taki dwuelementowy zbiór $\{a_1,a_2\}\subseteq A$, że $f(a_1)=f(a_2)$.

Dla ustalonego zbioru X definiujemy relację binarną \sim_q na zbiorze $\mathcal{P}(X)$ w następujący sposób:

$$A \sim_q B \stackrel{\text{df}}{\iff}$$
 istnieje quasi-bijekcja $f: A \to B$.

Ponadto zwrotne, symetryczne i przechodnie domknięcie relacji \sim_q oznaczamy $\sim_q^\#.$

Zadanie 21. Czy relacja \sim_q jest

- (a) zwrotna?
- (b) symetryczna?
- (c) przechodnia?

Czy którakolwiek z odpowiedzi zmieni się, jeśli relację \sim_q ograniczymy do zbioru $\mathcal{P}(X) \setminus \{\emptyset\}$? Wszystkie odpowiedzi należy uzasadnić, tzn. podać odpowiednie dowody lub kontrprzykłady.

Zadanie 22. Udowodnij, że jeśli A i B są skończonymi podzbiorami zbioru X, to $A \sim_q^\# B$.

Zadanie 23. Udowodnij, że jeśli A jest skończonym, a B nieskończonym podzbiorem X, to $A \not\sim_q^\# B$. Wskazówka: Przydatny może się okazać lemat z zadania 7, mówiący że dla dowolnych zbiorów X,Y,Z zachodzi inkluzja $X \doteq Z \subseteq (X \doteq Y) \cup (Y \doteq Z)$. Jeśli zdecydujesz się z niego skorzystać, nie musisz go dowodzić.

¹Algorytm oceniania oddanych zadań jest następujący: najpierw zadanie jest ocenione w skali od 0 do 24 punktów, a następnie od wyniku zostają odjęte 4 punkty. Osoba, która nie oddaje rozwiązania zadania otrzymuje za to zadanie 0 punktów.