Halting Problem

P1:

 $HALT_{TM} = \{ < M, w > | M \text{ is a Turing machine and M halts on input w} \}$

P2:

 $\begin{array}{ll} A_{TM} &= \{<\!\!\mathrm{M},\!\!\mathrm{w}\!\!>\!\!\mid M \text{ is a Turing machine and } M \text{ accepts} \\ & \text{input } \mathbf{w}\} & \text{Undecidable} \end{array}$

P2

- Input <M,w>
- If M does not stop on w, reject it
- If M stops, simulate M.
 If M acceps, accepts
 Otherwise

Halting Problem

 $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a Turing machine and M halts on input w} \}$

Theorem: $HALT_{TM}$ is an undecidable language.

Proof by contraction. Assume it is decidable.

 $A_{TM} = \{ \langle M, w \rangle | M \text{ is a Turing machine and } M \text{ accepts } w \}$

Undecidable Problem

Theorem: A_{TM} is an undecidable language.

Proof by contraction. Assume it is decidable.

4

6

3

Proof

Assume the Turing machine R decides $HALT_{TM}$

We can call R to decide A_{TM}

For input <M, w>

5

Run R on \leq M,w>

if R rejects, "reject"

if R accepts, simulate M until it stops

if M accepts, "accept"

else "reject"

Empty Problem

 $E_{TM} = \{ \langle M \rangle | M \text{ is a Turing machine and } L(M) = \emptyset \}$

Theorem: E_{TM} is an undecidable language.

Proof by contraction. Assume it is decidable.

1

Proof $E_{\scriptscriptstyle TM}$

Assume the Turing machine R decides

 M_1 For input <M,w>, design another TM If $x \neq w$, reject

simulate M on input w, accepts if M accepts w

Proof

Use R to decide A_{TM}

Input <M,w>

Make M_1 from M,w>

Run R on the input M_1

If R rejects (it means $L(M_1)$ is not empty), accepts I R accepts (it means $L(M_1)$ is empty), rejects

Problem

Let

= $\{M | M \text{ is a Turing machine and } L(M) = \{1\}\}$

Show that L is undecidable.

9