Solutions to Exercises 23

matrices is
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix}$$
. This "alternating sign Pascal matrix" is on page 91.

30 (a)
$$E = A^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$
 will reduce row 2 of EM to [2 3].

- (b) Then $F = B^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ will reduce row 1 of FEM to $\begin{bmatrix} 1 & 1 \end{bmatrix}$.
- (c) Then $E = A^{-1}$ twice will reduce row 2 of EEFEM to $\begin{bmatrix} 0 & 1 \end{bmatrix}$
- (d) Now EEFEM = B. Move E's and F's to get M = ABAAB. This question focuses on positive integer matrices M with ad bc = 1. The same steps make the entries smaller and smaller until M is a product of A's and B's.

$$\mathbf{31} \ E_{21} = \begin{bmatrix} 1 \\ a & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ E_{32} = \begin{bmatrix} 1 \\ 0 & 1 \\ 0 & b & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ E_{43} = \begin{bmatrix} 1 \\ 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & c & 1 \end{bmatrix},$$

$$E_{43} \, E_{32} \, E_{21} = \left[egin{array}{cccc} 1 & & & & \\ a & 1 & & & \\ ab & b & 1 & & \\ abc & bc & c & 1 \end{array}
ight]$$

Problem Set 2.4, page 77

- **1** If all entries of A, B, C, D are 1, then BA = 3 ones(5) is 5 by 5; AB = 5 ones(3) is 3 by 3; ABD = 15 ones(3, 1) is 3 by 1. DC and A(B + C) are not defined.
- (a) A (column 2 of B)
 (b) (Row 1 of A) B
 (c) (Row 3 of A)(column 5 of B)
 (d) (Row 1 of C)D(column 1 of E).
 (Part (c) assumed 5 columns in B)

- **3** AB + AC is the same as $A(B + C) = \begin{bmatrix} 3 & 8 \\ 6 & 9 \end{bmatrix}$. (*Distributive law*).
- **4** A(BC) = (AB)C by the *associative law*. In this example both answers are $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Column 1 of AB and row 2 of C are zero (then multiply columns times rows).
- $\mathbf{5} \ \text{(a)} \ A^2 = \begin{bmatrix} 1 & 2b \\ 0 & 1 \end{bmatrix} \text{ and } A^n = \begin{bmatrix} 1 & nb \\ 0 & 1 \end{bmatrix}. \quad \text{(b)} \ A^2 = \begin{bmatrix} 4 & 4 \\ 0 & 0 \end{bmatrix} \text{ and } A^n = \begin{bmatrix} 2^n & 2^n \\ 0 & 0 \end{bmatrix}.$
- **6** $(A+B)^2 = \begin{bmatrix} 10 & 4 \\ 6 & 6 \end{bmatrix} = A^2 + AB + BA + B^2$. But $A^2 + 2AB + B^2 = \begin{bmatrix} 16 & 2 \\ 3 & 0 \end{bmatrix}$.
- **7** (a) True (b) False (c) True (d) False: usually $(AB)^2 = ABAB \neq A^2B^2$.
- **8** The rows of DA are 3 (row 1 of A) and 5 (row 2 of A). Both rows of EA are row 2 of A. The columns of AD are 3 (column 1 of A) and 5 (column 2 of A). The first column of AE is zero, the second is column 1 of A + column 2 of A.
- **9** $AF = \begin{bmatrix} a & a+b \\ c & c+d \end{bmatrix}$ and E(AF) equals (EA)F because matrix multiplication is associative.
- **10** $FA=\begin{bmatrix}a+c&b+d\\c&d\end{bmatrix}$ and then $E(FA)=\begin{bmatrix}a+c&b+d\\a+2c&b+2d\end{bmatrix}$. E(FA) is not the same as F(EA) because multiplication is not commutative: $EF\neq FE$.
- 11 Suppose EA does the row operation and then (EA)F does the column operation (because F is multiplying from the right). The associative law says that (EA)F = E(AF) so the column operation can be done first!
- **12** (a) B = 4I (b) B = 0 (c) $B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (d) Every row of B is 1, 0, 0.

13
$$AB = \begin{bmatrix} a & 0 \\ c & 0 \end{bmatrix} = BA = \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$$
 gives $\mathbf{b} = \mathbf{c} = \mathbf{0}$. Then $AC = CA$ gives

a = d. The only matrices that commute with B and C (and all other matrices) are multiples of I: A = aI.

- **14** $(A B)^2 = (B A)^2 = A(A B) B(A B) = A^2 AB BA + B^2$. In a typical case (when $AB \neq BA$) the matrix $A^2 2AB + B^2$ is different from $(A B)^2$.
- **15** (a) True (A^2 is only defined when A is square).
 - (b) False (if A is m by n and B is n by m, then AB is m by m and BA is n by n).
 - (c) True by part (b).
 - (d) False (take B = 0).
- **16** (a) mn (use every entry of A) (b) $mnp = p \times part$ (a) (c) n^3 (n^2 dot products).
- 17 (a) Use only column 2 of B (b) Use only row 2 of A (c)–(d) Use row 2 of first A.

$$\label{eq:column2} \begin{array}{ll} \operatorname{Column} 2\operatorname{of} AB = \left[\begin{array}{c} 0 \\ 0 \end{array}\right] & \operatorname{Row} 2\operatorname{of} AB = \left[\begin{array}{cc} 1 & 0 & 0 \end{array}\right] & \operatorname{Row} 2\operatorname{of} A^2 = \left[\begin{array}{cc} 0 & 1 \end{array}\right] \\ \operatorname{Row} 2\operatorname{of} A^3 = \left[\begin{array}{cc} 3 & -2 \end{array}\right] \end{array}$$

$$\mathbf{18} \ A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{array} \right] \text{has } a_{ij} = \min(i,j). \ A = \left[\begin{array}{ccc} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{array} \right] \text{has } a_{ij} = (-1)^{i+j} = \left[\begin{array}{ccc} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{array} \right]$$

"alternating sign matrix".
$$A=\left[\begin{array}{ccc}1/1&1/2&1/3\\2/1&2/2&2/3\\3/1&3/2&3/3\end{array}\right]$$
 has $a_{ij}=i/j.$ This will be an

example of a rank one matrix: 1 column $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T$ multiplies 1 row $\begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \end{bmatrix}$.

- 19 Diagonal matrix, lower triangular, symmetric, all rows equal. Zero matrix fits all four.
- **20** (a) a_{11} (b) $\ell_{31} = a_{31}/a_{11}$ (c) $a_{32} \left(\frac{a_{31}}{a_{11}}\right) a_{12}$ (d) $a_{22} \left(\frac{a_{21}}{a_{11}}\right) a_{12}$.

Then
$$A\mathbf{v} = A \begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} = \begin{bmatrix} 2y \\ 2z \\ 2t \\ 0 \end{bmatrix}, A^2\mathbf{v} = \begin{bmatrix} 4z \\ 4t \\ 0 \\ 0 \end{bmatrix}, A^3\mathbf{v} = \begin{bmatrix} 8t \\ 0 \\ 0 \\ 0 \end{bmatrix}, A^4\mathbf{v} = \mathbf{0}.$$

$$\mathbf{22} \ A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \text{ has } A^2 = -I; BC = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix};$$

$$DE = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = -ED$$
. You can find more examples.

23
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 has $A^2 = 0$. Note: Any matrix $A = \text{column times row} = \boldsymbol{u}\boldsymbol{v}^{\text{T}}$ will

have
$$A^2 = \boldsymbol{u}\boldsymbol{v}^{\mathrm{T}}\boldsymbol{u}\boldsymbol{v}^{\mathrm{T}} = 0$$
 if $\boldsymbol{v}^{\mathrm{T}}\boldsymbol{u} = 0$. $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ has $A^2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

but $A^3 = 0$; strictly triangular as in Problem 21.

24
$$(A_1)^n = \begin{bmatrix} 2^n & 2^n - 1 \\ 0 & 1 \end{bmatrix}$$
, $(A_2)^n = 2^{n-1} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $(A_3)^n = \begin{bmatrix} a^n & a^{n-1}b \\ 0 & 0 \end{bmatrix}$.

$$25 \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} a \\ d \\ g \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} d \\ e \\ h \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} + \begin{bmatrix} c \\ f \\ i \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} .$$

26 Columns of A times rows of B
$$\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 & 3 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 4 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 0 \\ 6 & 6 & 0 \\ 6 & 6 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 4 & 8 & 4 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 0 \\ 10 & 14 & 4 \\ 7 & 8 & 1 \end{bmatrix} = AB.$$

27 (a) (row 3 of A) \cdot (column 1 or 2 of B) and (row 3 of A) \cdot (column 2 of B) are all zero.

(b)
$$\begin{bmatrix} x \\ x \\ 0 \end{bmatrix} \begin{bmatrix} 0 & x & x \end{bmatrix} = \begin{bmatrix} 0 & x & x \\ 0 & x & x \\ 0 & 0 & 0 \end{bmatrix}$$
 and $\begin{bmatrix} x \\ x \\ x \end{bmatrix} \begin{bmatrix} 0 & 0 & x \end{bmatrix} = \begin{bmatrix} 0 & 0 & x \\ 0 & 0 & x \\ 0 & 0 & x \end{bmatrix}$: both upper.

29
$$E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $E_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ produce zeros in the 2, 1 and 3, 1 entries.

Multiply
$$E$$
's to get $E=E_{31}E_{21}=\begin{bmatrix}1&0&0\\1&1&0\\-4&0&1\end{bmatrix}$. Then $EA=\begin{bmatrix}2&1&0\\0&1&1\\0&1&3\end{bmatrix}$ is the

result of both E's since $(E_{31}E_{21})A = E_{31}(E_{21}A)$.

30 In **29**,
$$c = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$$
, $D = \begin{bmatrix} 0 & 1 \\ 5 & 3 \end{bmatrix}$, $D - cb/a = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$ in the lower corner of EA .

31
$$\begin{bmatrix} A & -B \\ B & A \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} Ax - By \\ Bx + Ay \end{bmatrix}$$
 real part Complex matrix times complex vector imaginary part. needs 4 real times real multiplications.

32 A times $X = [x_1 \ x_2 \ x_3]$ will be the identity matrix $I = [Ax_1 \ Ax_2 \ Ax_3]$.

28 Solutions to Exercises

33
$$\boldsymbol{b} = \begin{bmatrix} 3 \\ 5 \\ 8 \end{bmatrix}$$
 gives $\boldsymbol{x} = 3\boldsymbol{x}_1 + 5\boldsymbol{x}_2 + 8\boldsymbol{x}_3 = \begin{bmatrix} 3 \\ 8 \\ 16 \end{bmatrix}$; $A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$ will have

those $x_1 = (1, 1, 1), x_2 = (0, 1, 1), x_3 = (0, 0, 1)$ as columns of its "inverse" A^{-1} .

34
$$A*$$
 ones $=$ $\begin{bmatrix} a+b & a+b \\ c+d & c+d \end{bmatrix}$ agrees with **ones** $*A = \begin{bmatrix} a+c & b+b \\ a+c & b+d \end{bmatrix}$ when $b=c$ and $a=d$

Then $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$. These are the matrices that commute with $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

$$\mathbf{35} \ S = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}, \ S^2 = \begin{bmatrix} 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 \\ 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 \end{bmatrix}, \ \mathbf{aba, ada} \ \mathbf{cba, cda} \ \mathbf{These \ show}$$

$$\mathbf{bab, bcb} \ \mathbf{dab, dcb} \ \mathbf{16} \ 2\text{-step}$$

$$\mathbf{abc, adc} \ \mathbf{cbc, cdc} \ \mathbf{paths \ in}$$

$$\mathbf{bad, bcd} \ \mathbf{dad, dcd} \ \mathbf{the \ graph}$$

- **36** Multiplying AB = (m by n)(n by p) needs mnp multiplications. Then (AB)C needs mpq more. Multiply BC = (n by p)(p by q) needs npq and then A(BC) needs mnq.
 - (a) If m, n, p, q are 2, 4, 7, 10 we compare (2)(4)(7) + (2)(7)(10) = 196 with the larger number (2)(4)(10) + (4)(7)(10) = 360. So AB first is better, we want to multiply that 7 by 10 matrix by as few rows as possible.
 - (b) If u, v, w are N by 1, then $(u^{\mathrm{T}}v)w^{\mathrm{T}}$ needs 2N multiplications but $u^{\mathrm{T}}(vw^{\mathrm{T}})$ needs N^2 to find vw^{T} and N^2 more to multiply by the row vector u^{T} . Apologies to use the transpose symbol so early.
 - (c) We are comparing mnp + mpq with mnq + npq. Divide all terms by mnpq: Now we are comparing $q^{-1} + n^{-1}$ with $p^{-1} + m^{-1}$. This yields a simple important rule. If matrices A and B are multiplying v for ABv, don't multiply the matrices first. Better to multiply Bv and then A(Bv).

Solutions to Exercises 29

- **37** The proof of (AB)c = A(Bc) used the column rule for matrix multiplication. "The same is true for all other *columns* of C."
 - Even for nonlinear transformations, A(B(c)) would be the "composition" of A with B (applying B then A). This composition $A \circ B$ is just written as AB for matrices.
 - One of many uses for the associative law: The left-inverse B = the right-inverse C because B = B(AC) = (BA)C = C.
- **38** (a) Multiply the columns a_1, \ldots, a_m by the rows a_1^T, \ldots, a_m^T and add the resulting matrices.
 - (b) $A^{\mathrm{T}}CA = c_1 a_1 a_1^{\mathrm{T}} + \cdots + c_m a_m a_m^{\mathrm{T}}$. Diagonal C makes it neat.

Problem Set 2.5, page 92

1
$$A^{-1} = \begin{bmatrix} 0 & \frac{1}{4} \\ \frac{1}{3} & 0 \end{bmatrix}$$
 and $B^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ -1 & \frac{1}{2} \end{bmatrix}$ and $C^{-1} = \begin{bmatrix} 7 & -4 \\ -5 & 3 \end{bmatrix}$.

2 For the first, a simple row exchange has $P^2 = I$ so $P^{-1} = P$. For the second,

$$P^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
. Always P^{-1} = "transpose" of P , coming in Section 2.7.

$$\mathbf{3} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} .5 \\ -.2 \end{bmatrix} \text{ and } \begin{bmatrix} t \\ z \end{bmatrix} = \begin{bmatrix} -.2 \\ .1 \end{bmatrix} \text{ so } A^{-1} = \frac{1}{10} \begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix}. \text{ This question}$$

solved $AA^{-1}=I$ column by column, the main idea of Gauss-Jordan elimination. For a different matrix $A=\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, you could find a first column for A^{-1} but not a

- second column—so A would be singular (no inverse).
- **4** The equations are x + 2y = 1 and 3x + 6y = 0. No solution because 3 times equation 1 gives 3x + 6y = 3.