Freeform Search

US Pre-Grant Publication Full-Text Database US Patents Full-Text Database US OCR Full-Text Database EPO Abstracts Database JPO Abstracts Database Derwent World Patents Index IBM Technical Disclosure Bulletins				
Term: Display: 10 Documents in Display Format: - Starting with Number Generate: O Hit List O Hit Count O Side by Side O Image	1			
Search Clear Interrupt				
Search History				

DATE: Friday, November 19, 2004 Printable Copy Create Case

side by side	Query	Hit Count	result set
DB = USP'	T,PGPB,JPAB,EPAB,DWPI; PLUR=YI	ES; OP=ADJ	
<u>L28</u>	L26 with L10	26	<u>L28</u>
<u>L27</u>	L26 with L23	1	<u>L27</u>
<u>L26</u>	L25 or L24	2649668	<u>L26</u>
<u>L25</u>	calcium	470310	<u>L25</u>
<u>L24</u>	ca	2332073	<u>L24</u>
<u>L23</u>	endosomal membrane	377	<u>L23</u>
<u>L22</u>	L10 with L2	68	<u>L22</u>
<u>L21</u>	L19 same L3	16	<u>L21</u>
<u>L20</u>	L19 same L8	7	<u>L20</u>
<u>L19</u>	L10 with L2	68	<u>L19</u>
<u>L18</u>	L16 same L10	9	<u>L18</u>
<u>L17</u>	L16 with L10	5	<u>L17</u>
<u>L16</u>	polyplex	129	<u>L16</u>
<u>L15</u>	L12 and L10	3	<u>L15</u>
<u>L14</u>	L12 same L10	3	<u>L14</u>
<u>L13</u>	L12 with L10	2	<u>L13</u>

<u>L12</u>	SPLP	48	<u>L12</u>
<u>L11</u>	L10 with L8 with L2	4	<u>L11</u>
<u>L10</u>	endosom\$	4843	<u>L10</u>
<u>L9</u>	L8 with L3 with L2	12	<u>L9</u>
<u>L8</u>	complexed or conjugated	155138	<u>L8</u>
<u>L7</u>	lipid or lipsome	106242	<u>L7</u>
<u>L6</u>	L5 same L4	20	<u>L6</u>
<u>L5</u>	polylysine	10736	<u>L5</u>
<u>L4</u>	L3 with L2 with L1	60	<u>L4</u>
<u>L3</u>	hydrophilic polymer or peg	111632	<u>L3</u>
<u>L2</u>	cationic lipid	7966	<u>L2</u>
<u>L1</u>	conjugated lipid or liposome	55897	<u>L1</u>

END OF SEARCH HISTORY

First Hit

Previous Doc

Next Doc

Go to Doc#

□ | G

Generate Collection | Print

L28: Entry 11 of 26

File: PGPB

Jan 10, 2002

DOCUMENT-IDENTIFIER: US 20020004242 A1

TITLE: Plasmids for construction of eukaryotic viral vectors

Detail Description Paragraph:

[0057] pDesired-.phi. packaged in wild type or modified phage capsids can be used to deliver transgenes to target cells. The packaged pDesired-.phi. is contacted to a eukaryotic cell. The eukaryotic cell internalizes the encapsidated pDesired-.phi.. Through this internalization process, the encapsidated DNA becomes substantially free of the capsid proteins that surround it, so that each gene of the pDesired-.phi. that is capable of being expressed in the target eukaryotic cell can be transcribed and translated and the viral vector can replicate. Preferably, the targeted pDesired-.phi. phage is internalized with an endosomolytic agent so that the endosomolytic agent ruptures the endosomes containing the agent and the pDesired-.phi.. It is known that such rupture significantly increases the efficiency of expression of the gene transfer vector. Examples of endosomolytic agents useful in the context of the present invention include chloroquine, calcium phosphate particles, adenoviral coat proteins (including adenoviral virions), and adeno-associated viral coat proteins (including AAV virions).

Previous Doc Next Doc Go to Doc#

First Hit Fwd Refs

Previous Doc Next Doc Go to Doc#

Generate Collection Print

L28: Entry 23 of 26

File: USPT

Aug 7, 2001

DOCUMENT-IDENTIFIER: US 6270761 B1 TITLE: Delivery of nucleic acid

Brief Summary Text (9):

Molecular conjugate vectors were developed to overcome some of the limitations of previous nonviral gene delivery systems. The major limitation with calcium phosphate transfection was the inefficiency with which DNA delivered as a calcium phosphate co-precipitate could escape from endosomal vesicles into the cytosol. In molecular conjugate vectors, receptor-mediated endocytosis of the DNA is achieved by complexing it to a macromolecular ligand and escape from the endosome is achieved by adding an endosomolytic agent to the complex, such as an adenovirus particle (Michael & Curiel, 1994 Gene Therapy I p223-232).

Brief Summary Text (13):

In a second aspect the invention provides a composition for delivering a nucleic acid to a target cell, comprising the nucleic acid to be delivered, an endosomolytic moiety, and a calcium salt in particulate form. Preferably the calcium salt is complexed with the other components of the composition.

Brief Summary Text (21):

One limitation of <u>calcium</u> phosphate crystals is that they do not provide, per se, any mechanism for the endocytosed DNA or RNA to escape from the <u>endosomes</u>. Therefore, based on the inventors' novel observation that they also have a high affinity for <u>endosomolytic</u> adenovirus particles, it is preferred to prepare <u>calcium</u> phosphate/nucleic acid/<u>endosomolytic</u> moiety complexes in which the <u>endosomolytic</u> moiety (typically an adenovirus) will facilitate <u>endosomal</u> escape of the nucleic acid. This will greatly enhance the efficiency with which the nucleic acid is translocated to the cell nucleus. As an alternative to the use of adenovirus, it should also be possible to incorporate purified <u>endosomolytic</u> proteins into <u>calcium</u> phosphate-nucleic acid complexes, since <u>calcium</u> phosphate also has a high affinity for proteins. Many endosomolytic proteins are known (see for example Plank et al., 1994 J. Biol. Chem. 269, 12,918-12,924).

Brief Summary Text (32):

Also, in light of the observation that the endosomolytic properties of adenovirus particles can be employed to facilitate gene transfer by retroviral vectors to cells outside of their normal host range (Adams et al 1995 J. Virol. 69 p-1894), it is proposed to prepare <u>calcium</u> phosphate-retrovirus-adenovirus complexes (e.g. coprecipitates) in which the <u>calcium</u> phosphate will facilitate contact with the target cells and carriage of the viruses into the <u>endosomal</u> compartment, and the adenovirus moiety will facilitate <u>endosomal</u> escape of the endocytosed retrovirus.

Previous Doc

Next Doc

Go to Doc#