

ARBA MINCH UNIVERSITY INSTITUTE OF TECHNOLOGY(AMIT) FACULTY OF COMPUTING AND SOFTWARE ENGINEERING

"HUMAN COMPUTER INTERACTION"

Individual assignment

Setby-Bereket Kindie -----NSR/478/13

Submitted to: Mr. Birihanu Sisay Submission date: march 29,2025

- 1. Take a look around and select a commonplace product. Can you tell if the design is good or bad? Consider how simple it is to use and whether it successfully satisfies its intended goal.
- Let's analyze a computer mouse a commonplace product to evaluate whether its design is good or bad based on usability, functionality, and its ability to meet its intended goals.

1. Intended Goal of a Computer Mouse

The primary purpose of a mouse is to:

- Provide precise cursor control.
- Enable efficient interaction with graphical user interfaces (GUIs).
- Facilitate clicking, scrolling, and additional functions (e.g., shortcuts, gestures).

2. Evaluating the Design: Good or Bad?

A. Ergonomics (Physical Design)

Good Design

- Contoured shape fits naturally in the hand, reducing strain.
- Lightweight yet sturdy materials for comfort and durability.
- > Textured grips to prevent slipping.

Bad Design

- Overly symmetrical shapes (e.g., some ambidextrous mice) that don't fit either hand well.
- Excessively heavy or bulky, causing fatigue.
- > Cheap materials that wear out quickly.

B. Button Layout & Functionality

Good Design

- Clearly distinguishable left/right clicks with tactile feedback.
- Scroll wheel with smooth, precise movement (and optionally side-scrolling).
- Additional programmable buttons for power users (e.g., gaming mice).

Bad Design

- Stiff or mushy buttons that require excessive force.
- Poorly placed side buttons that lead to accidental clicks.
- > Scroll wheel that drifts or lacks responsiveness.

C. Connectivity & Compatibility

Good Design

- Plug-and-play functionality (USB or Bluetooth).
- Reliable wireless connectivity with minimal latency.
- Cross-platform support (Windows, macOS, Linux).

Bad Design

- Proprietary dongles that are easily lost.
- Unreliable Bluetooth pairing.
- Drivers that require constant updates or interfere with performance.

D. Aesthetics & Minimalism

Good Design

- > Clean, uncluttered look without unnecessary branding.
- RGB lighting (if present) that can be customized or turned off.

Bad Design

- Overly flashy designs that prioritize looks over comfort.
- ➤ Glossy surfaces that attract fingerprints and smudges.

3. Usability & User Experience (UX)

Good Design

- Intuitive—users don't need instructions to operate it.
- Consistent performance across different surfaces (good sensor quality).
- Long battery life (if wireless).

Bad Design

- Requires frequent recharging or battery swaps.
- Poor sensor tracking (skips or jitters).
- Unnecessary software bloat for basic functionality.

4. Example Comparison

Logitech MX Master (Good Design)

Ergonomic shape, high-precision sensor, customizable buttons, long battery life.

Cheap OEM Mouse (Bad Design)

Uncomfortable grip, inaccurate tracking, stiff buttons, short-lived switches.

5. Psychological & Behavioral Considerations

A. well-designed mouse should:

- Reduce cognitive load (users shouldn't think about how to use it).
- > Encourage efficiency(fast response, smooth scrolling).
- Prevent strain(poor design leads to repetitive stress injuries).
- 2. Choose a software product you use regularly. Evaluate its user interface (UI) based on the following principles: Shneiderman's 8 Golden Rules and Nelson's Heuristic Evaluation Principle
- ✓ Let's evaluate Microsoft Word a widely used software product using Shneiderman's 8 Golden Rules of Interface Design and Nielsen's 10 Heuristics.

Shneiderman's 8 Golden Rules Applied to Microsoft Word

1.Strive for Consistency

Good

- ✓ Consistent layout (Ribbon UI since 2007, similar across Office apps).
- ✓ Standardized icons (e.g., floppy disk for Save, folder for Open).
- ✓ Predictable keyboard shortcuts (Ctrl+S for Save, Ctrl+B for Bold).

Bad

✓ Some inconsistencies in dark/light mode (e.g., some dialog boxes don't adapt).

✓ Contextual Ribbon tabs (e.g., "Table Tools") can confuse new users.

2. Enable Frequent Users to Use Shortcuts

Good

- ✓ Extensive keyboard shortcuts (e.g., Ctrl+Shift+> to increase font size).
- ✓ Quick Access Toolbar (customizable for power users).

Bad

- ✓ Some hidden features require digging into menus (e.g., advanced formatting).
- ✓ No built-in shortcut cheat sheet (users must discover them manually).

3.Offer Informative Feedback

Good

- ✓ Auto-save status ("Saved" or "Saving..." in the top bar).
- ✓ Spell-check underlines (red for spelling, blue for grammar).

Bad

- ✓ Some actions lack feedback (e.g., no confirmation when deleting a page).
- ✓ Track Changes can be overwhelming with too many annotations.

4.Design Dialogs to Yield Closure

Good

- ✓ Clear "Save As" dialog with file location confirmation.
- ✓ Undo (Ctrl+Z) provides a sense of reversibility.

Bad

✓ Some pop-ups (e.g., "Update Office?") interrupt workflow without clear options.

5.Offer Simple Error Handling

Good

- ✓ Spell-check suggests corrections.
- ✓ Recovery mode after crashes.

Bad

✓ Some errors are vague (e.g., "Formatting error" without explanation).

6. Permit Easy Reversal of Actions

Excellent

- ✓ Undo (Ctrl+Z) and Redo (Ctrl+Y) work well.
- ✓ Version History allows reverting to older drafts.

7. Support Internal Locus of Control

Good

- ✓ Users feel in control with customizable Ribbon & Quick Access Toolbar.
- ✓ Options to disable auto-formatting (e.g., turning off "smart quotes").

Bad

✓ Auto-correction can be intrusive (e.g., changing "teh" to "the" without asking).

8. Reduce Short-Term Memory Load

Good

- ✓ Recent files list helps users resume work.
- ✓ Ribbon icons provide visual cues.

Bad

✓ Some advanced features (e.g., mail merge) require memorizing steps.

Nielsen's 10 Heuristics Applied to Microsoft Word

1. Visibility of System Status

Good

- ✓ Progress bar when saving/exporting.
- ✓ Word count at the bottom.

Bad

✓ No clear indication when syncing to OneDrive.

2.Match Between System & Real World

Good

✓ Icons like "Print" (printer symbol) and "Save" (floppy disk) are intuitive.

Bad

✓ Some icons (e.g., "Styles pane") are abstract.

3. User Control & Freedom

Good

- ✓ Undo/Redo is robust.
- ✓ Escape key cancels actions.

Bad

✓ Some modal dialogs block other actions (e.g., "Document Recovery").

4. Consistency & Standards

Good

✓ Follows Windows/macOS UI conventions.

Bad

✓ Some inconsistencies in right-click menus.

5.Error Prevention

Good

- ✓ Autosave prevents data loss.
- ✓ Warns before closing unsaved docs.

Bad

✓ No warning when overwriting files in "Save As."

6.Recognition Rather Than Recall

Good

✓ Recent files & templates reduce memory load.

Bad

✓ Advanced features (e.g., macros) require memorization.

7. Flexibility & Efficiency of Use

Good

- ✓ Customizable Ribbon & Quick Access Toolbar.
- ✓ Keyboard shortcuts for power users.

Bad

✓ Some repetitive tasks (e.g., table formatting) lack automation.

8. Aesthetic & Minimalist Design

Good

✓ Clean Ribbon layout.

Bad

✓ Some toolbars feel cluttered (e.g., "Review" tab).

9. Help Users Recognize, Diagnose, & Recover from Errors

Good

✓ Spell-check suggests fixes.

Bad

✓ Some error messages are cryptic (e.g., "Compatibility Mode issues").

10.Help & Documentation

Good

✓ F1 Help and right-click "Tell me what you want to do" are useful.

Bad

- ✓ Some help articles are overly technical.
- 3. Demonstrate the user interface prototype on question #2's chosen software.
 - ✓ I'll provide a detailed textual walkthrough of a Microsoft Word UI prototype redesign based on the usability issues identified earlier. I'll describe key screens with annotations on improvements, following Shneiderman's 8 Golden Rules and Nielsen's Heuristics.

UI Prototype: Microsoft Word Redesign

Goal: Fix inconsistencies, improve discoverability, and reduce cognitive load.

1. Home Screen

Current Problem

✓ Overwhelming template gallery; no quick resume for recent files.

Redesign

Left Panel

- ✓ "Recent Documents" (pinned + timestamped).
- ✓ "Quick Actions" (New Doc, Open, Scan Text).

Right Panel

- ✓ Simplified template categories (e.g., "Work," "Academic").
- ✓ Search bar for templates (Nielsen's #6: Recognition over recall).

Heuristics Addressed:

- ✓ #4: Consistency (uniform layout with other Office apps).
- ✓ #8: Minimalist Design (reduced clutter).

2. Ribbon UI Customization

Current Problem

✓ Hidden features (e.g., mail merge); excessive tabs.

Redesign

Dynamic Ribbon

- ✓ Default view: Core tools (Home, Insert, Review).
- ✓ "Advanced" dropdown (exposes mail merge, macros).

Right-Click Context Menu

✓ Adds "Format Painter," "Styles" for faster access (Shneiderman's #2: Shortcuts).

Visual Notes

- ✓ Icons with text labels (Nielsen's #2: Match to real world).
- ✓ Hover tooltips explain functions (Nielsen's #10: Help).

3. Track Changes & Collaboration

Current Problem

✓ Confusing color-coded edits; no summary view.

Redesign

Sidebar Panel

- ✓ "Changes Summary" (count of edits/comments).
- ✓ Filter by user/type (e.g., "Show only formatting changes").

Color Coding

✓ Tooltip explains colors (e.g., "Red: Deletions by John").

Heuristics Addressed

- ✓ #1: Visibility of System Status (clear edit tracking).
- ✓ #5: Error Prevention (avoid accidental rejections).

4. Save As Dialog

Current Problem

✓ No warning when overwriting files.

Redesign

Modal Dialog

- ✓ "A file named 'Report.docx' already exists. Overwrite?" [Yes/No/Save Copy].
- ✓ File preview (Nielsen's #9: Error recovery).

Rules Addressed:

✓ Shneiderman's #5: Error Handling (explicit confirmation).

5. Dark Mode Consistency

Current Problem

✓ Some dialogs remain light-themed.

Redesign

System-Wide Dark Mode:

- ✓ All pop-ups (e.g., "Font," "Paragraph") adapt to OS theme.
- ✓ Toggle in "Account Settings" (Shneiderman's #1: Consistency).

6. Enhanced Help System

Current Problem

✓ Help articles are technical.

Redesign

Interactive Guide

- ✓ "Walkthroughs" (e.g., "Create a Table of Contents").
- ✓ Video snippets (Nielsen's #10: Help).

Key Prototype Takeaways

- 1. Reduced Clutter → Prioritized frequent actions.
- 2. Better Feedback → Clearer save/overwrite prompts.
- 3. Adaptive UI → Dark mode + customizable ribbon.
- 4. Compare and contrast Donald Norman's 7 Principles of Design with Jakob Nielsen's 10 Usability Heuristics. How do these sets of principles overlap, differ, and collectively contribute to the creation of effective and user-centred interfaces? Provide specific examples to illustrate your points.
- ♦ Comparison of Norman's 7 Principles vs. Nielsen's 10 Heuristics Both frameworks aim to improve usability and user experience (UX), but they approach design from slightly different angles:
 - ♦ Norman's Principles focus on cognitive psychology (how users perceive and interact with designs).
 - ♦ Nielsen's Heuristics are practical guidelines for evaluating interfaces.

1. Overlapping Principles

	1. Overlapping Timespies				
Norman's Principle	Nielsen's Heuristic	Key Overlap	Example		
Visibility	Visibility of	Users should see	A download		
	System Status	system actions	progress bar		
		clearly.	(visibility) shows		
		-	completion status		
			(system status).		
Feedback	Match Between	Systems should	A "ding" sound		
	System & Real	respond to user	when clicking a		
	World	actions intuitively.	disabled button		
			(feedback) mimics		
			real-world		
			constraints		

			(Nielsen).
Constraints	Error Prevention	Limit user actions	Grayed-out
		to avoid mistakes.	"Submit" button
			until all form fields
			are filled
			(constraints prevent
			errors).

2. Unique Aspects

Norman's Exclusive Focuses

Affordances

- ♦ Definition: Visual cues hint at functionality (e.g., a button looks clickable).
- ♦ Example: A 3D-raised button design suggests it can be pressed.

Mapping

- ♦ Definition: Controls should relate logically to their effects.
- ♦ Example: A stove's knobs should align with the correct burner.

Conceptual Model

- ♦ Definition: Users form mental models of how systems work.
- ♦ Example: A trash can icon implies "delete," not "save."

Nielsen's Exclusive Focuses

User Control & Freedom

♦ Example: "Undo" functionality in Gmail.

Consistency & Standards

♦ Example: Using a floppy disk icon for "Save" across apps.

Help & Documentation

♦ Example: Tooltips in Photoshop explaining brush settings.

3. Key Differences

Aspect	Norman's Principles	Nielsen's Heuristics	
Origin	Cognitive psychology	Empirical usability	
_	(human perception).	research.	
Focus	How users understand	How to evaluate	
	interfaces.	interfaces.	
Application	Early design phase	Post-design evaluation	
	(conceptualization).	(testing).	
Example Use Case	Deciding button shapes	Auditing an app for	
_	(affordances).	consistency issues.	