Modern Physics Experiment Report: Zeeman Effect

Your Name NTU Physics Department

April 2, 2025

Abstract

This report investigates the Zeeman Effect, a phenomenon where spectral lines are split into multiple components in the presence of a magnetic field. The experiment aims to measure the splitting and verify the theoretical predictions.

Contents

1 Introduction

The Zeeman Effect, discovered by Pieter Zeeman, is a crucial phenomenon in modern physics that demonstrates the interaction between magnetic fields and atomic energy levels. This section introduces the theoretical background and significance of the Zeeman Effect.

2 Theory

2.1 Quantum Explanation

Explain the quantum mechanical basis of the Zeeman Effect, including the role of magnetic dipole moments and energy level splitting.

2.2 Mathematical Formulation

Provide the equations governing the Zeeman Effect, such as:

$$\Delta E = m_l \mu_B B$$

where ΔE is the energy shift, m_l is the magnetic quantum number, μ_B is the Bohr magneton, and B is the magnetic field strength.

3 Experimental Setup

Describe the apparatus used, including the spectrometer, light source, and magnetic field generator. Include a diagram if possible:

Figure 1: Experimental setup for observing the Zeeman Effect.

4 Procedure

Outline the steps taken to perform the experiment, including calibration, data collection, and analysis.

5 Results

Present the observed spectral line splitting and compare it with theoretical predictions. Include tables and graphs where necessary.

6 Discussion

Analyze the results, discuss sources of error, and evaluate the agreement between experimental and theoretical values.

7 Conclusion

Summarize the findings and their implications for understanding the Zeeman Effect.

References

List all references used in the report, formatted appropriately.