

ESCUELA POLITÉCNICA NACIONAL

ESCUELA DE FORMACIÓN DE TECNÓLOGOS

INTELIGENCIA ARTIFICIAL

ASIGNATURA: PROFESOR:

Inteligencia Artificial

PERÍODO ACADÉMICO:

Tarea - 2

TÍTULO:

APRENDIZAJE NO SUPERVISADO

No se conoce la variable target

Desarrollo de Software Inteligencia Artificial

PROPÓSITO DE LA PRÁCTICA

Familiarizar al estudiante con el aprendizaje no supervisado (cluster Kmeans).

OBJETIVO GENERAL

Analizar, procesar y clasificar la data proporcionada para distinguir vinos acorde a características de los mismos.

OBJETIVOS ESPECÍFICOS

- Uso de librerías Python para aprendizaje no supervisado.
- Analizar la data disponible
- Desarrollar el código clasificación mediante aprendizaje no supervisado.
- Visualizar y sacar conclusiones de los resultados obtenidos.

DESAROLLO

- 1. Importación de librerías necesarias:
 - import numpy as np
 - import pandas as pd
 - from matplotlib import pyplot as plt
 - from sklearn.cluster import KMeans
- 2. Cargar la data $vinos = pd.read_csv("caracteristicas_vinos.csv")$
- 3. Analizar data se la que se dispone:
 - .info()
 - .describe()
- 4. Limpiar data
 - Eliminar columna "Vino"
 - Realizar normalización de datos "vinos_norm", luego convertir la data en DataFrame.
- 5. Seleccionar la cantidad optima de clúster a formar con la técnica de "codo de jambu". Para ello, se debe tomar en cuenta que: donde deja de disminuir de forma drástica es la cantidad de clusters, es una buena opción para el número de clúster a formar.
 - Acorde a la **Figura 1.** Código codo de jambu**Figura 1**, se formaran 10 clusters, la gráfica resultante define cual es el mejor número de clúster a realizar.

Desarrollo de Software Inteligencia Artificial

```
for i in range(1,11):
    kmeans = KMeans(n_clusters=i, max_iter=300)
    kmeans.fit(vinos_norm)
    wcss.append(kmeans.inertia_)

plt.plot(range(1,11),wcss)
plt.title("Codode jambu")
plt.xlabel("# de clusters")
plt.ylabel("WCSS")
plt.show()
```

Figura 1. Código codo de jambu

6. En la **Figura 2**, se observa la creación, entrenamiento y arquitectura del modelo KMeans.

Figura 2. Creación del modelo KMeans

7. Agregando clasificación a la data original "vinos". Los resultados del clúster se guardan en *labels*_ dentro del modelo. Donde, la data a mostrar a más de las características iniciales tiene la columna clúster asignada por el algoritmo KMeans, como se muestra en **Figura 3**.

Figura 3. Agregando clarificación KMeans

8. La data tiene en total 13 características y lo que se requiere es analizar las características más importantes, las que más sobresalen y esto no es posible realizarlo en un solo gráfico, por tanto, se aplica la técnica de "Análisis de Componentes Principales" — PCA.

PCA reduce la cantidad de variables a analizar/visualizar, creando una cantidad menor de nuevas variables que representen lo mejor posible a las variables originales. En la **Figura 4**, se muestra el código de implementación de PCA.

Desarrollo de Software Inteligencia Artificial

```
from sklearn.decomposition import PCA

pca = PCA(n_components=2)# puede cambiear el # de componentes|
pca_vinos = pca.fit_transform(vinos_norm)
pca_vinos_df = pd.DataFrame(data=pca_vinos, columns=['Componente1','Componente2'])
pca_nombres_vinos = pd.concat([pca_vinos_df, vinos[['Cluster']]], axis=1)
```

Figura 4. Implementación de PCA

pca_vinos_df contiene los componentes / características principales que representan mayormente la data original, a la misma se le añade con concat la columna Cluster la cual contienen los clusters que asigno KMeans a cada uno de los vinos. En la **Figura 5**, se muestra una porción de la data resultante.

1 pca_nombres_vinos			
	Componente1	Componente2	Cluster
0	-0.706336	-0.253193	1
1	-0.484977	-0.008823	1
2	-0.521172	-0.189187	1
3	-0.821644	-0.580906	1
4	-0.202546	-0.059467	1

Figura 5. Componentes y clúster de la data.

9. En la **Figura 6**, se muestra el código utilizado para la visualización de los clusters creados, se muestran Componente1, Componente2 y los componentes principales. Donde el parámetro *S* es el tamaño de los puntos a graficar.

Figura 6. Visualización de clusters

- 10. Finalmente, se guarda la data con los clúster asignados a cada vino. *vinos.to_csv("caracteristicas_vinos_KMeans.csv")*
- 11. En este punto el archivo *caracteristicas_vinos_KMeans.csv* a más de las características de los datos tiene su etiqueta otorgada por KMeans. Pasando de ser un problema de aprendizaje no supervisado, a aprendizaje supervisado.
- 12. Aplicar 3 algoritmos de aprendizaje supervisado revisado en clases anteriores. Colocar conclusiones del mejor modelo.