Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники

Лабораторная работа 6 по дисциплине

«Вычислительная математика»

Вариант № 10

Выполнил:

Мамонтов Г. А.

Преподаватели:

Машина Е. А.

Малышева Т. А.

Цель работы

Решить задачу Коши для обыкновенных дифференциальных уравнений численными методами.

Описание алгоритма решения задачи

1. Цель

Решить задачу Коши:

$$y' = f(x, y)$$

$$y(x_0) = y_0$$

$$x \in [x_0; x_n]$$

численными методами: Эйлера, Рунге-Кутта 4-го порядка, Милна (предиктор-корректор), с заданным шагом h и оценкой точности решений.

2. Выбор исходных данных

- 1. Пользователь выбирает одно из предложенных дифференциальных уравнений.
- 2. Пользователь вводит:
 - о начальные условия;
 - о интервал интегрирования;
 - о шаг интегрирования;
 - ο желаемую точность ε (для оценки)

3. Метод Эйлера (одношаговый, порядок 1)

Формула:

$$y_{i+1} = y_i + h * f(x_i, y_i)$$

Алгоритм:

1. Установить x_{0} , y_{0} .

2. Повторять до $x_i \leq x_n$:

- \circ Вычислить y_{i+1} по формуле выше.
- \circ Увеличить $x_i = x_i + h$.

Оценка точности:

Используется правило Рунге:

$$R = \frac{|y_h - y_{h \setminus 2}|}{2^p - 1}, p = 1$$

4. Метод Рунге-Кутта 4-го порядка (одношаговый, порядок 4)

Формула:

$$k_{1} = hf(x_{i}, y_{i})$$

$$k_{2} = hf(x_{i} + \frac{h}{2}, y_{i} + \frac{k_{1}}{2})$$

$$k_{3} = hf(x_{i} + \frac{h}{2}, y_{i} + \frac{k_{2}}{2})$$

$$k_{4} = hf(x_{i} + h, y_{i} + k_{3})$$

$$y_{i+1} = y_{i} + \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

Оценка точности:

Используется правило Рунге:

$$R = \frac{|y_h - y_{h \setminus 2}|}{2^p - 1}, p = 4$$

5. Метод Милна (многошаговый, порядок 4)

Требует 4-х начальных точек, которые берутся из метода Рунге-Кутта.

Формулы:

Предиктор (оценка):

$$y_{i+1}^{(0)} = y_{i-3} + \frac{4h}{3} (2f_{i-2} - f_{i-1} + 2f_i)$$

Корректор(уточнение):

$$y_{i+1} = y_{i-1} + \frac{h}{3} (f_{i-1} + 4 f_i + f_{i+1}^{(0)})$$

Алгоритм:

- 1. Получить $\boldsymbol{y}_{0}, \boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \boldsymbol{y}_{3}$ методом Рунге-Кутта.
- 2. C i = 3 и далее:
 - Вычислить предсказанное значение.
 - Уточнить по формуле корректора.

Оценка точности:

Сравнение с точным решением: $\varepsilon = max \left| y_i^{\text{точн}} - y_i^{\text{числ}} \right|$

6. Вывод результатов

Выводим графики, таблицу, анализируем точность

Листинг программы (по крайней мере, коды используемых методов)

```
#Метод Эйлера
def euler method(f, x0, y0, xn, h):
   x vals = [x0]
   y \text{ vals} = [y0]
   y = y0
        y += h * f(x, y)
        x = round(x + h, 10)
       x vals.append(x)
       y_vals.append(y)
#Метод Рунге-Кутта 4-го порядка
def runge kutta method(f, x0, y0, xn, h):
   x vals = [x0]
   y vals = [y0]
   y = y0
производных
   while x < xn:
       k1 = h * f(x, y)
        k2 = h * f(x + h / 2, y + k1 / 2)
        k3 = h * f(x + h / 2, y + k2 / 2)
        k4 = h * f(x + h, y + k3)
        y += (k1 + 2*k2 + 2*k3 + k4) / 6
        x = round(x + h, 10)
        x vals.append(x)
        y_vals.append(y)
    return x vals, y vals
#Метод Милна (предиктор-корректор)
def milne method(f, x0, y0, xn, h):
    # Сначала получаем 4 стартовые точки методом Рунге-Кутта
   x_{init}, y_{init} = runge_kutta_method(f, x0, y0, x0 + 3 * h, h)
   x vals = x init.copy()
   y_vals = y_init.copy()
```

[∞] Untitled9.ipynb

Ввод и выводы

```
Введите x0: 0
Введите y0: 0.5
Введите xn: 2
Введите шаг h: 0.2
Введите точность eps: 0.001
Выберите ОДУ для решения:
1: y' = y - x^2 + 1
2: y' = x * sqrt(y)
3: y' = x + y
Введите номер уравнения (1, 2 или 3): 1
```

	метода Эйлера:		
		у (точн.)	norp
0.00000	0.50000000	0.50000000	0.00e+00
0.20000	0.80000000	0.82929862	2.93e-02
0.40000	1.15200000	1.21408765	6.21e-02
0.60000	1.55040000	1.64894060	9.85e-02
0.80000 1.00000	1.98848000	2.12722954	1.39e-01 1.83e-01
		2.64085909	
1.20000	2.94981120	3.17994154	2.30e-01
1.40000	3.45177344	3.73240002	2.81e-01
1.60000	3.95012813	4.28348379	3.33e-01
1.80000	4.42815375	4.81517627	3.87e-01
2.00000	4.86578450	5.30547195	4.40e-01
Результаты	метода Рунге-Кутта:		
	y (числ.)	у (точн.)	norp
0.00000	0.50000000	0.50000000	0.00e+00
0.20000	0.82929333	0.82929862	5.29e-86
0.40000	1,21407621	1,21408765	1.14e-05
0.60000	1.64892202	1.64894060	1.86e-05
0.80000	2.12720268	2.12722954	2.69e-85
1.00000	2.64082269	2,64085909	3,64e-05
1.20000	3.17989417	3.17994154	4.74e-05
1.40000	3.73234007	3.73240002	5.99e-05
1.60000	4.28340950	4.28348379	7.43e-05
1.80000	4.81508569	4,81517627	9.06e-05
2.00000	5.30536300	5.30547195	1.09e-04
2.00000	3.30330300	3.3034/153	1.030-04
Результаты	метода Милна:		
	у (числ.)	у (точн.)	norp
	у (числ.) 9.50000000	у (точн.) 0.50000000	
			norp 0.00e+00 5.29e-06
0.00000	0.50000000	0.50000000	0.00e+00
9.00000 9.20000	0.50000000 0.82929333	0.50000000 0.82929862	0.00e+00 5.29e-06
9.00000 9.20000 9.40000	0.50000000 0.82929333 1.21407621	0.50000000 0.82929862 1.21408765	0.00e+00 5.29e-06 1.14e-05
9.99999 9.29999 9.49999 9.69999	0.50000000 0.82929333 1.21407621 1.64892202	0.50000000 0.82929862 1.21408765 1.64894060	0.00e+00 5.29e-06 1.14e-05 1.86e-05
0.00000 0.20000 0.40000 0.60000 0.80000	0.50000000 0.82929333 1.21407621 1.64892202 2.12720268	0.50000000 0.82929862 1.21408765 1.64894060 2.12722954	0.00e+00 5.29e-06 1.14e-05 1.86e-05 2.69e-05
8.88888 8.28888 8.28888 8.48888 8.68888 8.88888 8.88888 8.88888	0.56666666 0.82929333 1.21467621 1.64892202 2.12720268 2.12721346	0.50600000 0.82929862 1.21408765 1.64894060 2.12722954 2.12722954	0.00e+00 5.29e-06 1.14e-05 1.86e-05 2.69e-05 1.61e-05
0.00000 0.20000 0.40000 0.60000 0.80000 1.80000	0.58000000 0.82929333 1.21407621 1.64892202 2.12720268 2.12721346 2.64083284	0.5000000 0.82929862 1.214087665 1.64894060 2.12722954 2.12722954 2.64085909	0.00e+00 5.29e-06 1.14e-05 1.86e-05 2.69e-05 1.61e-05 2.62e-05
0.00000 0.20000 0.40000 0.60000 0.80000 1.00000	8.50000000 9.82929333 1.21407621 1.64892202 2.1272058 2.12721346 2.64083284 3.16281275	8.56000000 9.82929862 1.21408765 1.64894060 2.12722954 2.12722954 2.64885909 2.64885909	0.00e+00 5.29e-06 1.14e-05 1.86e-05 2.69e-05 1.61e-05 2.62e-05 5.22e-01
8.00000 6.20000 6.40000 6.60000 6.80000 6.80000 1.00000 1.20000	0.50000000 0.82929333 1.21407621 1.64892202 2.12720268 2.12721346 2.64083284 3.16281275 3.21595761	0.50000000 0.82929862 1.21408765 1.64894060 2.12722954 2.64085909 2.64085909 3.17994154	8.89e+89 5.29e-86 1.14e-85 1.86e-85 2.69e-85 1.61e-85 2.62e-85 5.22e-81 3.60e-82
8.80000 9.20000 9.40000 9.60000 9.80000 1.00000 1.20000 1.20000	0.50000000 0.82929333 1.21407621 1.64892202 2.12720268 2.12721346 2.64083284 3.16281275 3.21595761 3.92672695	8.5000000 0.82929862 1.21488765 1.64894660 2.12722954 2.12722954 2.64885909 3.17994154 3.17994154 3.73240002	0.00e+00 5.29e-06 1.14e-05 1.86e-05 2.69e-05 1.61e-05 2.62e-05 5.22e-01 3.60e-02 7.47e-01 5.96e-01
2 0.00000 0.20000 0.40000 0.50000 0.50000 0.50000 0.50000 1.00000 1.20000 1.20000 1.40000 1.40000	0.5000000 0.82929333 1.21407621 1.64892282 2.12723646 2.12723646 2.12723646 3.16281275 3.21595761 3.92672695 4.32810574 4.62994855	8.5000000 0.82929852 1.21488765 1.64894060 2.12722954 2.64885909 2.64885909 3.17994154 3.17994154 3.73240002 3.73240002	8.00e+00 5.29e-06 1.14e-05 1.86e-05 2.69e-05 1.61e-05 2.62e-05 5.22e-01 3.60e-02 7.47e-01 8.98e-01
2	8.5868686 8.82939313 1.21487621 1.64892282 2.127738268 2.127721346 2.64883284 3.16281275 3.21595761 4.32816574 4.62994855 5.32866646	8.5000000 0.82929862 1.21488765 1.64894060 2.12722954 2.12722954 2.64885909 3.17994154 3.17994154 3.73240002 4.28348379	0.00e+00 5.29e-06 1.14e-05 1.86e-05 2.69e-05 1.61e-05 2.62e-05 5.22e-01 3.60e-02 7.47e-01 5.96e-01 8.98e-01 1.04e+00
2 0.00000 0.20000 0.40000 0.50000 0.50000 0.50000 0.50000 1.00000 1.20000 1.20000 1.40000 1.40000	0.5000000 0.82929333 1.21407621 1.64892282 2.12723646 2.12723646 2.12723646 3.16281275 3.21595761 3.92672695 4.32810574 4.62994855	8.5000000 0.82929852 1.21488765 1.64894060 2.12722954 2.64885909 2.64885909 3.17994154 3.17994154 3.73240002 3.73240002	8.00e+00 5.29e-06 1.14e-05 1.86e-05 2.69e-05 1.61e-05 2.62e-05 5.22e-01 3.60e-02 7.47e-01 8.98e-01
8.00000 9.20000 9.40000 9.60000 9.50000 1.00000 1.20000 1.20000 1.20000 1.40000 1.40000 1.60000	6.5800000 6.82929333 1.21407621 1.64892282 2.12729268 2.12721346 2.64083284 3.16281275 3.21595761 3.92672695 4.32818574 4.62994855 5.32066046 5.83627838	8.5000000 0.82929862 1.21488765 1.64894060 2.12722954 2.64885909 2.64885909 3.17994154 3.73240002 3.73240002 4.28348379 4.28348379	8.00e+00 5.29e-06 1.14e-05 1.86e-05 2.69e-05 1.61e-05 2.62e-05 5.22e-01 3.60e-02 7.47e-01 5.96e-01 8.98e-01 1.04e+00


```
Введите x0: 0

Введите y0: 1

Введите xn: 2

Введите шаг h: 0.5

Введите точность eps: 0.01

Выберите ОДУ для решения:

1: y' = y - x^2 + 1

2: y' = x * sqrt(y)

3: y' = x + y

Введите номер уравнения (1, 2 или 3): 2
```

Результаты х		Эйлера: у (числ.)	I	у (точн.)	ı	погр
0.00000 0.50000	į –	1.00000000		1.00000000	į į	1.29e-01
1.00000 1.50000 2.00000	į –	1.25000000 1.80901699 2.81776476		1.56250000 2.44140625 4.00000000	į į	3.12e-01 6.32e-01 1.18e+00
Результаты х		Рунге-Кутта у (числ.)		у (точн.)	ı	norp
0.00000 0.50000 1.00000 1.50000 2.00000		1.00000000 1.12888536 1.56241299 2.44117721 3.99950433		1.00000000 1.12890625 1.56250000 2.44140625 4.000000000	ļ	2.09e-05 8.70e-05 2.29e-04
Результаты х		Милна: у (числ.)	I	у (точн.)	ı	погр
0.00000 0.50000 1.00000 1.50000		1.00000000 1.12888536 1.56241299 2.44117721 3.99982306		1.00000000 1.12890625 1.56250000 2.44140625 4.00000000	İ	0.00e+00 2.09e-05 8.70e-05 2.29e-04

Погрешность метода Эйлера по правилу Рунге: 5.34e-01 Погрешность метода Рунге-Кутта по правилу Рунге: 3.08e-05 Максимальная погрешность метода Милна (сравнение с точным): 2.29e-04

```
Введите x0: 0

Введите y0: 1

Введите xn: 3

Введите шаг h: 1

Введите точность eps: 0.01

Выберите ОДУ для решения:

1: y' = y - x^2 + 1

2: y' = x * sqrt(y)

3: y' = x + y

Введите номер уравнения (1, 2 или 3): 3
```

Результаты	метода Эй	лера:				
x		(числ.)	I у	(точн.)	L	norp
0.00000	1.4	 00000000	1.6	 90000000		0.00e+00
1.00000		00000000		13656366	i i	1.44e+00
2.00000	j 5.	00000000	11.7	77811220	i i	6.78e+00
3.00000	12.	00000000	36.1	17 10 7385	i i	2.42e+01
Результаты	метода Ру	нге-Кутта	:			
х	l y	(числ.)	Iу	(точн.)	L	norp
0.00000	1.4	 00000000	1.6		ı	0.00c+00
1.00000	j 3.	41666667	j 3.4	13656366	i i	1.99e-02
2.00000	j 11.	67013889	j 11.7	7811220	i i	1.08e-01
3.00000	35.	73162616	j 36.1	17107385	İ	4.39e-01
Результаты	метода Ми	лна:				
х	l y	(числ.)	I у	(точн.)	L	norp
0.00000	1.4	 00000000	1.6	96666666		0.00e+00
1.00000	j 3.	41666667	j 3.4	13656366	i i	1.99e-02
2.00000	111.	67013889	11.7	7811220	i	1.08e-01
3.00000	35.	73162616	36.1	17107385	Ī_	4.39e-01

Погрешность метода Эйлера по правилу Рунге: 6.78e+00 Погрешность метода Рунге-Кутта по правилу Рунге: 2.65e-02 Максимальная погрешность метода Милна (сравнение с точным): 4.39e-01