class09: mini-project

Chelsea (A16871799)

Today we apply machine learning methods on breast cancer biopsy data from Fine needle aspiration(Fna)

##data input The data is supplied on CSV format

```
wisc.df <- read.csv("WisconsinCancer.csv", row.names=1)
head(wisc.df)</pre>
```

842302 M 17.99 10.38 122.80 1001.0 842517 M 20.57 17.77 132.90 1326.0 84300903 M 19.69 21.25 130.00 1203.0 84348301 M 11.42 20.38 77.58 386.1 84358402 M 20.29 14.34 135.10 1297.0 843786 M 12.45 15.70 82.57 477.1 smoothness_mean compactness_mean concavity_mean concave.points_mean
84300903 M 19.69 21.25 130.00 1203.0 84348301 M 11.42 20.38 77.58 386.1 84358402 M 20.29 14.34 135.10 1297.0 843786 M 12.45 15.70 82.57 477.1
84348301 M 11.42 20.38 77.58 386.1 84358402 M 20.29 14.34 135.10 1297.0 843786 M 12.45 15.70 82.57 477.1
84358402 M 20.29 14.34 135.10 1297.0 843786 M 12.45 15.70 82.57 477.1
843786 M 12.45 15.70 82.57 477.1
smoothness_mean compactness_mean concavity_mean concave.points_mean
842302 0.11840 0.27760 0.3001 0.14710
842517 0.08474 0.07864 0.0869 0.07017
84300903 0.10960 0.15990 0.1974 0.12790
84348301 0.14250 0.28390 0.2414 0.10520
84358402 0.10030 0.13280 0.1980 0.10430
843786 0.12780 0.17000 0.1578 0.08089
symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se
842302 0.2419 0.07871 1.0950 0.9053 8.589
842517 0.1812 0.05667 0.5435 0.7339 3.398
84300903 0.2069 0.05999 0.7456 0.7869 4.585
84348301 0.2597 0.09744 0.4956 1.1560 3.445
84358402 0.1809 0.05883 0.7572 0.7813 5.438
843786 0.2087 0.07613 0.3345 0.8902 2.217
area_se smoothness_se compactness_se concavity_se concave.points_se
842302 153.40 0.006399 0.04904 0.05373 0.01587
842517 74.08 0.005225 0.01308 0.01860 0.01340

84300903	94.03 0	0.006150	0.04006	0.03832	0.02058
84348301	27.23 0	0.009110	0.07458	0.05661	0.01867
84358402	94.44 0	0.011490	0.02461	0.05688	0.01885
843786	27.19 0	0.007510	0.03345	0.03672	0.01137
	symmetry_se fr	cactal_dimens:	ion_se radi	ius_worst textur	e_worst
842302	0.03003	0.0	006193	25.38	17.33
842517	0.01389	0.0	003532	24.99	23.41
84300903	0.02250	0.0	004571	23.57	25.53
84348301	0.05963	0.0	009208	14.91	26.50
84358402	0.01756	0.0	005115	22.54	16.67
843786	0.02165	0.0	005082	15.47	23.75
	perimeter_wors	st area_worst	smoothness	s_worst compactn	ess_worst
842302	184.6	2019.0		0.1622	0.6656
842517	158.8	1956.0		0.1238	0.1866
84300903	152.5	1709.0		0.1444	0.4245
84348301	98.8	567.7		0.2098	0.8663
84358402	152.2	20 1575.0		0.1374	0.2050
843786	103.4	10 741.6		0.1791	0.5249
	concavity_wors	st concave.po:	ints_worst	symmetry_worst	
842302	0.711	.9	0.2654	0.4601	
842517	0.241	.6	0.1860	0.2750	
84300903	0.450)4	0.2430	0.3613	
84348301	0.686		0.2575	0.6638	
84358402	0.400	00	0.1625	0.2364	
843786	0.535	55	0.1741	0.3985	
	fractal_dimens	_			
842302		0.11890			
842517		0.08902			
84300903		0.08758			
84348301		0.17300			
84358402		0.07678			
843786		0.12440			

Now I will store the diagnosis column and to exclude it from the data set called wisc.data

```
# We can use -1 here to remove the first column
wisc.data <- wisc.df[,-1]
# Create diagnosis vector for later
diagnosis <- as.factor(wisc.df$diagnosis)</pre>
```

Q1. How many observations are in this dataset?

```
nrow(wisc.data)
[1] 569
Q2. How many of the observations have a malignant diagnosis?
  table(wisc.df$diagnosis)
 В
      Μ
357 212
  sum(wisc.df$diagnosis=="M")
[1] 212
Q3. How many variables/features in the data are suffixed with _mean?
  x <- colnames(wisc.df)</pre>
  grep("_mean", x)
 [1] 2 3 4 5 6 7 8 9 10 11
  length(grep("_mean",x) )
[1] 10
```

Check column means and standard deviations

```
colMeans(wisc.data)
```

perimeter_mean	texture_mean	radius_mean
9.196903e+01	1.928965e+01	1.412729e+01
compactness_mean	${\tt smoothness_mean}$	area_mean
1.043410e-01	9.636028e-02	6.548891e+02
${\tt symmetry_mean}$	concave.points_mean	concavity_mean
1.811619e-01	4.891915e-02	8.879932e-02
texture_se	radius_se	<pre>fractal_dimension_mean</pre>
1.216853e+00	4.051721e-01	6.279761e-02
${ t smoothness_se}$	area_se	perimeter_se
7.040979e-03	4.033708e+01	2.866059e+00
concave.points_se	concavity_se	compactness_se
1.179614e-02	3.189372e-02	2.547814e-02
radius_worst	${\tt fractal_dimension_se}$	symmetry_se
1.626919e+01	3.794904e-03	2.054230e-02
area_worst	perimeter_worst	texture_worst
8.805831e+02	1.072612e+02	2.567722e+01
concavity_worst	compactness_worst	${\tt smoothness_worst}$
2.721885e-01	2.542650e-01	1.323686e-01
${\tt fractal_dimension_worst}$	symmetry_worst	concave.points_worst
8.394582e-02	2.900756e-01	1.146062e-01

apply(wisc.data,2,sd)

radius_mean	texture_mean	perimeter_mean
3.524049e+00	4.301036e+00	2.429898e+01
area_mean	${\tt smoothness_mean}$	compactness_mean
3.519141e+02	1.406413e-02	5.281276e-02
concavity_mean	concave.points_mean	symmetry_mean
7.971981e-02	3.880284e-02	2.741428e-02
fractal_dimension_mean	radius_se	texture_se
7.060363e-03	2.773127e-01	5.516484e-01
perimeter_se	area_se	smoothness_se
2.021855e+00	4.549101e+01	3.002518e-03
compactness_se	concavity_se	concave.points_se
1.790818e-02	3.018606e-02	6.170285e-03
symmetry_se	fractal_dimension_se	radius_worst
8.266372e-03	2.646071e-03	4.833242e+00
texture_worst	perimeter_worst	area_worst
6.146258e+00	3.360254e+01	5.693570e+02
${\tt smoothness_worst}$	compactness_worst	concavity_worst
2.283243e-02	1.573365e-01	2.086243e-01

##Principal Component Analysis we need to scale our input data before PCA as some of the columns are measured in terms of different units with different means and different variance. The upshot here is we sescale=true argument to prcomp()

```
wisc.pr <- prcomp(wisc.data, scale=TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                                  PC4
                                                          PC5
                                                                  PC6
                                         PC3
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                 PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
Cumulative Proportion
                          PC15
                                  PC16
                                           PC17
                                                   PC18
                                                           PC19
                                                                   PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                  PC25
                                                          PC26
                                                                  PC27
                                                                          PC28
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Standard deviation
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
Cumulative Proportion
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)? #PC1 capture 0.4427 of the original variance Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data? #at least 3 principal components are required to describe at least 70% of the original variance in the data? Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data? #at least 7 Principal components are required to describe at least 90% of the original variance in the data. Generate a PCA plot

```
plot(wisc.pr$x[,1],wisc.pr$x[,2],col=diagnosis,pch=16)
```


biplot(wisc.pr)

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

This is a hot mess of a plot (difficult to understand) since. Rownames are used as the plotting character for biplots in here which make trends hard to see. # Scatter plot observations by components 1 and 2

Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots? In general, the plots indicate that principal component 1 is capturing a separation of malignant (red) from benign (black) samples. Principal component 2 explains more variance in the original data than principal component 3, so the plot w PC1 and PC2 has a cleaner cut separating the two subgroups compared with PC2 and PC3

```
# Create a data.frame for ggplot
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis

# Load the ggplot2 package
library(ggplot2)

# Make a scatter plot colored by diagnosis
ggplot(df) +
   aes(PC1, PC2, col=diagnosis) +
   geom_point()</pre>
```



```
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357

```
# Variance explained by each principal component: pve
pve <- pr.var/ sum(pr.var)

# Plot variance explained for each principal component
plot(pve, xlab = "Principal Component",
    ylab = "Proportion of Variance Explained",
    ylim = c(0, 1), type = "o")</pre>
```


in stall.packages ("factoextra")

```
library(factoextra)
```

 ${\tt Welcome!\ Want\ to\ learn\ more?\ See\ two\ factoextra-related\ books\ at\ https://goo.gl/ve3WBa}$

```
fviz_eig(wisc.pr, addlabels = TRUE)
```


Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

wisc.pr\$rotation[,1]

perimeter_mean	texture_mean	radius_mean
-0.22753729	-0.10372458	-0.21890244
${\tt compactness_mean}$	${\tt smoothness_mean}$	area_mean
-0.23928535	-0.14258969	-0.22099499
$symmetry_mean$	concave.points_mean	concavity_mean
-0.13816696	-0.26085376	-0.25840048
texture_se	radius_se	$fractal_dimension_mean$
-0.01742803	-0.20597878	-0.06436335
smoothness_se	area_se	perimeter_se
-0.01453145	-0.20286964	-0.21132592
concave.points_se	concavity_se	compactness_se
-0.18341740	-0.15358979	-0.17039345
radius_worst	fractal_dimension_se	symmetry_se
-0.22799663	-0.10256832	-0.04249842
area_worst	perimeter_worst	texture_worst
-0.22487053	-0.23663968	-0.10446933
concavity_worst	compactness_worst	smoothness_worst

```
-0.12795256 -0.21009588 -0.22876753

concave.points_worst symmetry_worst fractal_dimension_worst

-0.25088597 -0.12290456 -0.13178394
```

concave.points mean=-0.26085376

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

```
summary(wisc.pr)
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                         PC5
                                                                 PC6
                                                                         PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                        PC12
                                                                PC13
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                                                                         PC21
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                          PC19
                                                                  PC20
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                                         PC24
                                                 PC25
                          PC22
                                  PC23
                                                         PC26
                                                                 PC27
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

#at least 5 principal components are required to describe at least 80% of the original variance in the data?

```
data.dist <- dist(scale(wisc.data))
wisc.hclust <- hclust(data.dist)
plot(wisc.hclust)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "complete")

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(h=19, col="red", lty=2)
```

Cluster Dendrogram

data.dist hclust (*, "complete")

```
wisc.hclust.clusters <- cutree(wisc.hclust,k=4)
table(wisc.hclust.clusters, diagnosis)</pre>
```

diagnosis wisc.hclust.clusters B M 1 12 165 2 2 5 3 343 40 4 0 2

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

```
wisc.hclust.better <- cutree(wisc.hclust,k=2)
table(wisc.hclust.better, diagnosis)</pre>
```

```
diagnosis
wisc.hclust.better B M
1 357 210
2 0 2
```

better cluster vs diagonses match by cutting into 2 clusters. "single", "complete", "average" and (my favorite) "ward.D2".

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

```
hc_single<-hclust(data.dist, method="single")
plot(hc_single, main="single linkeage")</pre>
```

single linkeage

data.dist hclust (*, "single")

```
hc_complete<-hclust(data.dist, method="complete")
plot(hc_complete, main="complete linkeage")</pre>
```

complete linkeage

data.dist hclust (*, "complete")

hc_average<-hclust(data.dist, method="average")
plot(hc_average, main="average linkeage")</pre>

average linkeage

data.dist hclust (*, "average")

```
hc_ward.D2<-hclust(data.dist, method="ward.D2")
plot(hc_ward.D2, main="ward.D2 linkeage")</pre>
```

ward.D2 linkeage

data.dist hclust (*, "ward.D2")

My favorite result is the method="ward.D2" because it creates groups which variance is minimized within clusters. This has the effect of looking for spherical clusters with the process starting with all points in individual clusters (bottom up) and then repeatedly merging a pair of clusters such that when merged there is a minimum increase in total within-cluster variance This process continues until a single group including all points (the top of the tree) is defined.

Q14. How well does k-means separate the two diagnoses? How does it compare to your helust results?

```
wisc.km <- kmeans(data.dist, centers=2, nstart=20)
table(wisc.km$cluster,diagnosis)</pre>
```

diagnosis

B M
1 20 134
2 337 78

```
table (wisc.km$cluster, wisc.hclust.clusters)
wisc.hclust.clusters
    1    2    3    4
1    124    7    21    2
2    53    0    362    0
```

By looking at the second table, it looks like clusters 1, 2, and 4 from the hierarchical clustering model can be interpreted as the cluster 1 equivalent from the k-means algorithm, and cluster 3 can be interpreted as the cluster 2 equivalent. k-means separate the two diagnoses similarly compared to my hclust results?

Combining methods. This approach will take not original data our PCA results and work with them.

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d,method="ward.D2")
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

generate 2 cluster group from this helust object

842302	842517	84300903	84348301	84358402	843786	844359	84458202
1	1		1	1			
844981	84501001	845636	84610002	846226	846381	84667401	84799002
1	1	2	1				1
848406	84862001	849014	8510426	8510653	8510824	8511133	851509
2	1	1		2	2		
852552	852631		852781	852973	853201	853401	853612
1	1	1	1	1	2	1	1
85382601	854002	854039	854253	854268	854941	855133	855138
1	1		1	1	2		
855167	855563	855625	856106	85638502	857010	85713702	85715
2	1	1	1	2	1	2	1
857155	857156	857343	857373	857374	857392	857438	85759902
2	2	2	2	2	1		
857637	857793	857810	858477	858970	858981	858986	859196
1	1	2	2	2	2	1	2
85922302	859283	859464	859465	859471	859487	859575	859711
1	1	2	2	1	2	1	1
859717	859983		8610404				8610908
1	2	2	2	2	1	_	_
861103	8611161	8611555	8611792	8612080	8612399	86135501	86135502
2	1		1	2	1	_	_
861597	861598	861648		861853			86208
2	1	2	2	2	2		
86211	862261	862485	862548	862717	862722	862965	862980
2	2	2	1	2	2	2	2
862989	863030	863031	863270	86355	864018	864033	86408
2	1	2	2	1	2		2
86409	864292	864496	864685	864726	864729	864877	865128
1	2	2	2	2	1		2
865137	86517	865423	865432	865468	86561	866083	866203
2	1	1	2	2	2	2	1
866458	866674	866714	8670	86730502	867387	867739	868202
1	1		1	1	2		
868223			868871	868999	869104	869218	869224
2	2						2
		869691	86973701	86973702	869931	871001501	871001502
2		1					
8710441	87106	8711002	8711003	8711202	8711216	871122	871149

1	2	2	2	1	2	2	2
8711561	8711803	871201	8712064	8712289	8712291	87127	8712729
2	1	1	2	1	2	2	2
8712766	8712853	87139402	87163	87164	871641	871642	872113
1	2	2	2	1	2	2	2
872608	87281702	873357	873586	873592	873593	873701	873843
1	1	2	2	1	1	1	2
873885	874158	874217	874373	874662	874839	874858	875093
2	2	2	2	2	2	1	2
875099	875263	87556202	875878	875938	877159	877486	877500
2	1	1	2	1	1	1	1
877501	877989	878796	87880	87930	879523	879804	879830
2	1	1	1	2	2	2	2
8810158	8810436	881046502	8810528	8810703		8810955	8810987
1	2			1			1
8811523	8811779	8811842	88119002	8812816	8812818	8812844	8812877
2	2	_	1	_			1
8813129	88143502	88147101	88147102	88147202			88199202
2	2	2	2	2	1	1	2
88203002	88206102	882488	88249602	88299702	883263	883270	88330202
2	1	_	2	1	_	_	1
88350402	883539	883852	88411702	884180	884437	884448	884626
2	2			1		2	1
88466802	884689	884948	88518501	885429	8860702	886226	886452
2	2	_	2	1		_	1
88649001	886776	887181				888570	889403
1	1	-			_	1	2
889719	88995002	8910251	8910499		8910720	8910721	
1	1	_	_	_	_	_	2
8910988		8911163				8911800	
1	2	_	2	2	_	2	2
8912049	8912055				8912521		8913
1	2			2			2
8913049		89143602					
1	2						
		892214					
2		2			2		
		89344					
2	2						2
		894047					
2	2				1		2
	894618	894855					
2	1	2	1	2	2	2	2

8953902	805633	896839	206261	207122	907137	20737/	907/19901
0900902				09/132		091314	
897604	_			89813		_	898431
2		2	1			2	
89864002		898678	_		899147	_	_
09004002		2	2			099107	
899987					901028	_	_
099901		901011	9010256			9010333	
_	901041						
2		9010390		2			9011493 2
9011971							901303
9011971	_	9012315	9012566			9013005	
901315	_				901836	_	
901313 1		2	9013030 1		2		
902727	_				90312		
902121		202913		903011			
903507					90401602		
303307		2		20401001		2	
_		904689			904971	_	
1	_	2	2041			903109	
90524101					905557	_	
90324101		2	900020			903000	
	90602302				906564		
200910		2	900290			2	
907145					90769602	_	_
207140		2	2			1	
908194					909220	_	
1		2	1			2	
_	_	90944601		_	_	_	_
2			2			1	
_		9111596					
2	1	2		2		2	
9112366	_	9112594				_	911320501
2			2			2	
911320502		9113455					
2				1			2
911384		911391					911916
2			2				
		912519					913505
2				2			
		91376701					
2	2 20000						
	2	2	2	1	2	2	2

1	2	1	1	2	1	2	1
915186	915276	91544001	91544002	915452	915460	91550	915664
1	1	2	2	2	1	2	2
915691	915940	91594602	916221	916799	916838	917062	917080
1	2	2	2	1	1	2	2
917092	91762702	91789	917896	917897	91805	91813701	91813702
2	1	2	2	2	2	2	2
918192	918465	91858	91903901	91903902	91930402	919537	919555
2	2	2	2	2	1	2	1
91979701	919812	921092	921362	921385	921386	921644	922296
1	2	2	2	2	1	2	2
922297	922576	922577	922840	923169	923465	923748	923780
2	2	2	2	2	2	2	2
924084	924342	924632	924934	924964	925236	925277	925291
2	2	2	2	2	2	2	2
925292	925311	925622	926125	926424	926682	926954	927241
2	2	1	1	1	1	2	1
92751							
2							

plot(wisc.pr\$x[,1],wisc.pr\$x[,2],col=grps)


```
table(grps)
grps
  1
      2
203 366
  table(diagnosis)
diagnosis
  В
      Μ
357 212
  table(diagnosis,grps)
          grps
                 2
diagnosis
             1
           24 333
        В
        M 179 33
Q15. How well does the newly created model with four clusters separate out the two diag-
noses?
  grps4 <- cutree(wisc.pr.hclust,k=4)</pre>
  table(diagnosis,grps4)
          grps4
```

- Q17. wisc.hclust.better with k=2 resulted in a clustering model with the best specificity.
- Q18. Which of these new patients should we prioritize for follow up based on your results?

```
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)</pre>
```

diagnosis

1

0

M 111

2

68

3

24 184 149

32

```
PC1
                    PC2
                               PC3
                                          PC4
                                                     PC5
                                                                PC6
                                                                           PC7
[1,] 2.576616 -3.135913 1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
                     PC9
                               PC10
                                          PC11
                                                    PC12
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
          PC15
                    PC16
                                 PC17
                                             PC18
                                                         PC19
                                                                    PC20
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
[2,] 0.1299153 0.1448061 -0.40509706 0.06565549 0.25591230 -0.4289500
          PC21
                     PC22
                                 PC23
                                            PC24
                                                        PC25
                                                                     PC26
[1,] 0.1228233 0.09358453 0.08347651 0.1223396 0.02124121 0.078884581
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
            PC27
                        PC28
                                     PC29
[1,] 0.220199544 -0.02946023 -0.015620933 0.005269029
[2,] -0.001134152  0.09638361  0.002795349 -0.019015820
  plot(wisc.pr$x[,1:2])
  points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
  text(npc[,1], npc[,2], c(1,2), col="white")
```


prioritize cluster 1 based on your results.