RC NOTCH FILTERS OF THE GOLDMAN TYPE

by 1

CHIN-PANG YU

B. S., Tsiwan Provincial Taipei Institute of Technology, 1958

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1967

Approved by:

Morbert R. Malik

TABLE OF CONTENT

TERMINOLOGY	LV
INTRODUCTION	1
A GENERAL NOTCH FILTER OF THE GOLDMAN TYPE	1
EQUAL AMPLITUDES NOTCH FILTER OF THE GOLDMAN TYPE	2
The Routh Array	5
UNEQUAL AMPLITUDES NOTCH FILTER	12
EQUAL AMPLITUDES NOTCH FILTER	18
COMPARISON OF NOTCH FILTER Q'S	36
CONCLUSION	38
ACKNOWLEDGMENTS	39
REFERENCES	40
APPENDICES	41
APPENDIX A	12
Description of the IEM-1620 Computer Program	
Used for Solving Two Bivariate Polynomial Equations in Program 1	12
APPENDIX B	45
Description of the IBM-1620 Computer Program	
	45
Allendra C	46
	46
Flow Chart for Calculation of Two Bivariate Polynomial Equations in Program 1	46
Program 1. Numerical Trial and Error Method for Calculation () ynomial Equations	47
Program 2. Calculation of the Spectrum of an Equal Amplitudes Notch Filter of the Goldman Type	57

Program 3. Unequal	Calculati Amplitudes	on of the Notch Fi	neat:	rum	of	an			64
Program 4. Equal Ar	Calculati nplitudes N						,		70

TERMINGLOSS

- A notes filter's sutput frequency spectrum consists of a single minimum in its frequency response. Usually it is required that the notch amplitude be zero; this leads to zero notch filter. Two further characterizations are:
- (a) An equal amplitudes notch filter has equal amplitudes at zero frequency and infinite frequency.
- (b) An unequal amplitudes notch filter has unequal amplitudes at zero and infinite frequencies in its frequency response curve.

THERODUCTION

Notch networks are important in memnection with feedback amplifier problems. In the past, several notch networks with equal amplitudes and unequal amplitudes at zero and infinite frequencies have been considered. The purpose of this paper is to generalize networks of the Goldman (4) type and determine conditions for existence of the notch frequencies.

A GENERAL NOTCH PILTER OF THE GOLDMAN TYPE

A general notch filter resistance-capacitance network shown in Fig. 1 is bisected into half-sections, which are shown in Fig. 2 and Fig. 3.

If A is the short-circuit input impedance of the halfsection and if B is the open-circuit input impedance of the half-section, then subsequent calculations yield

$$A = \frac{RCrs^{2} + (RC + RCr + r)s + (r + 1)}{(RCr + rC)s^{2} + (RC + rC + C + r)s + 1}$$
(1)

$$B = 1 + \frac{1}{s} = \frac{s+1}{s} \tag{2}$$

Bertlett's representation theorem for symmetric networks yields the voltage transfer function T(s). Actual calculation yields

$$T(s) = \frac{B - \lambda}{B + A}$$

$$=\frac{\left[\text{rcs}^{3} + (2\text{RO} + \text{C})\text{s}^{2} + (\text{RC} + \text{rC} + \text{C})\text{s} + 1\right]}{\left[(2\text{ROr} + \text{rC})\text{s}^{3} + (2\text{ROr} + 2\text{RC} + 2\text{rC} + 2\text{r} + \text{C})\text{s}^{2}\right]}$$

$$+ (\text{RO} + \text{rC} + \text{C} + 2\text{r} + 2)\text{s} + 1$$
(3)

EQUAL AMPLITUDES NOTCH FILTER OF THE

Referring to Eq. (3) of the general motch filter with $\Re=0$, one obtains the transfer function $T_1(s)$.

$$\begin{split} \mathbb{T}_1(s) &= \frac{\mathbb{B}_1 - \mathbb{A}_1}{\mathbb{B}_1 + \mathbb{A}_1} \\ &= \frac{\text{rcs}^3 + (2\text{rc} + 0)s^2 + (\text{rc} + 0)s + 1}{\text{rcs}^3 + (2\text{rc} + 2\text{r} + 0)s^2 + (\text{rc} + 0 + 2\text{r} + 2)s + 1} \\ &= \frac{\mathbb{N}_1(s)}{\mathbb{B}_2(s)} \end{split}$$

Now, choose r and C such that the numerator polynomial $N_1(s)$ has $(s^2+\omega^2)$ as a factor. The Routh array is applied to determine values of r and C. First of all, consider

$$N_1(s) = a_1 s^3 + b_1 s^2 + c_1 s + d_1$$
 (5)

The Routh array formed from the even and odd polynomials of $\textbf{N}_{1}(\textbf{s})$ is

In order to have a common factor of the form $(s^2+\omega^2)$, a row of zeros is required. The condition that elements of the third row be zero is

$$c_1 - \frac{s_1 d_1}{b_1} = 0 \tag{6}$$

Returning to the original numerator polynomial $N_s(s) = rcs^3 + (2rC + C)s^2 + (rC + C)s + 1$, and identifying with Eq. (5), one obtains

$$rC + C - \frac{rC \cdot 1}{2rC + C} = 0$$

or

$$C = \frac{r}{2r^2 + 3r + 1} \tag{7}$$

Equation (7) is one aquation involving two unknown parameters. Another equation, of the form f(r) = 0, is obtained by requiring that the value of 0 be a maximum. It is clear, without loss of generality, that the maximum value of 0 is desirable because of the low sensitivity of these two parameters in the neighborhood of a maximum.

In order to find the maximum C, one must calculate the first derivative of Eq. (7) with respect to r.

$$\frac{d0}{dr} = \frac{2r^2 + 5r + 1 - r \cdot \mu r + 3}{(2r^2 + 3r + 1)^2}$$

Setting Eq. (8) equal to zero, one obtains

$$-2r^2+1=0$$

or

$$r = \frac{1}{\sqrt[4]{2}} \quad \text{ohm}$$
 (9)

Substitution of $r = \frac{1}{\sqrt{2}}$ into Eq. (7) obtains

$$C = 3 - 2 \cdot \sqrt{2} = 0.17158 \text{ farad}$$
 (10)

The notch frequency can be determined by

$$b_1 s^2 + 1 = 0$$
 (11)

That is,

$$(2rC + C)s^2 + 1 = 0$$

or

$$\omega^2 = \frac{1}{C(2r+1)} \tag{1}$$

Substitution of C = $\frac{r}{(r+1)(2r+1)} \text{ in Eq. (7) and}$

 $r = \frac{1}{\sqrt{2}}$ ohm in Eq. (9) into Eq. (12) yields

$$\omega^2 = \frac{r + 1}{r} = 2.4142$$

Construction of a Routh erray from numerator and denominator polynomials yields:

The Routh Array

There is no zero row, and hence there exists no common factors in the numerator and denominator polynomials.

After substituting these specific values of r and C into Eq. (μ), the voltage transfer function becomes

$$\mathtt{T_{1}(s)} = \frac{0.121315 \text{ s}^3 + 0.41421 \text{ s}^2 + 0.292895 \text{ s} + 1}{0.121315 \text{ s}^3 + 1.82842 \text{ s}^2 + 3.707105 \text{ s} + 1}$$

In order to calculate the sinusoidal spectrum, let $s=\,j\omega$ and obtain

$$\mathtt{T}_{1}(\,\mathfrak{z}\omega) \,=\, \frac{(\,\mathtt{1}\,-\,\mathtt{0}\,.\,\mathtt{41421}\omega^{2})\,\,+\,\,\mathtt{j}\,(\mathtt{0}\,.\,\mathtt{292895}\omega\,\,-\,\,\mathtt{0}\,.\,\mathtt{121315}\omega^{3})}{(\,\mathtt{1}\,-\,\mathtt{1}\,.\,\mathtt{82842}\omega^{2})\,\,+\,\,\mathtt{j}\,(\mathtt{3}\,.\,\mathtt{707105}\omega\,\,-\,\,\mathtt{0}\,.\,\mathtt{121315}\omega^{3})}$$

From this, one cotsing

$$\left|\tau_{1}(j\omega)\right|^{2}=\frac{\left(1-0.41821\omega^{2}\right)^{2}+\left(0.292695\omega-0.121315\omega3\right)^{2}}{\left(1-1.62642\omega^{2}\right)^{2}+\left(3.707105\omega-0.121315\omega3\right)^{2}}$$

By inspection, one can see that

$$\left|T_{1}(j\omega)\right|^{2} = 1$$
 st $\omega = 0$
 $\left|T_{1}(j\omega)\right|^{2} = 1$ st $\omega = \infty$

The log-log plot of $\left|\mathbb{T}_1(\underline{\omega})\right|^2$ versus ω is shown in Fig. 7. This frequency response shows that the transfer function $\mathbb{T}_1(\underline{\omega})$ represents a notch network with equal amplitudes at zero and infinite frequencies. Data for this plot are obtained with Program 2 in Absendix G.

Fig. 1. A general notch filter of the Goldman type.

Fig. 2. Short-circuited half-section of the RC network in Fig. 1.

Fig. 3. Open-circuited half-section of the RC network in Fig. 1.

Fig. 4. Goldman type resistance-capacitance notch filter.

Fig. 5. Short-circuited helf-section of the RC network in Fig. 4.

Fig. 6. Open-circuited half-section of the RC network in Fig. 4.

Fig. 7. Frequency response for the equal amplitudes notch network of the Goldman type.

UNEQUAL AMPLITUDES NOTCH FILTER

From the General Nobel Filter, using the same networks shown in Figs. 1, 2, and 3, one obtains the transfer function as shown in Eq. (1), i.e.,

$$\begin{split} \mathbb{T}_{2}(s) &= \frac{\mathbb{B}_{2} - \mathbb{A}_{2}}{\mathbb{B}_{2} + \mathbb{A}_{2}} \\ &= \frac{\left[\mathbb{C} \mathbf{c} \mathbf{s}^{3} + (2 \mathbf{r} \mathbf{c} + \mathbf{c}) \, \mathbf{s}^{2} + (\mathbf{R} \mathbf{c} + \mathbf{r} \mathbf{c} + \mathbf{c}) \, \mathbf{s} + \mathbf{1} \right]}{\left[(2 \mathbf{R} \mathbf{c} + \mathbf{r} \mathbf{c}) \, \mathbf{s}^{3} + (2 \mathbf{R} \mathbf{c} + 2 \mathbf{R} \mathbf{c} + 2 \mathbf{r} \mathbf{c} + 2 \mathbf{r} + \mathbf{c}) \, \mathbf{s}^{2} + (\mathbf{R} \mathbf{c} + \mathbf{r} \mathbf{c} + \mathbf{c}) \, \mathbf{c} + \mathbf{c} \right)} \\ &= \frac{\mathbb{R}_{2}(s)}{\mathbb{B}_{2}(s)} \end{split}$$

The Routh array of the numerator polynomial's even and odd polynomials is

In order to have the factor of $(s^2+\omega^2)\,,$ the third row should be equal to a zero row. Therefore

$$RC + rC + C - \frac{rC}{2rC + C} = 0$$

or

$$C = \frac{r}{(R + r + 1)(2r + 1)}$$
(15)

The moth frequency a can be obtained from the second row of the Routh array

$$(2m0 + 0)s^2 + 1 = 0$$

0.2

$$\omega = \frac{1}{\sqrt{c(2r+1)}}$$
(16)

Equation (16) shows that $\boldsymbol{\omega}$ is independent of R.

Rearranging Eq. (15), one obtains

$$C = \frac{r}{2r^2 + (3 + 2R)r + (1 + R)}$$
(17)

Taking the first derivative of C with respect to r in Eq. (17) yields

$$\frac{dC}{dr} = \frac{\left[2r^2 + (3 + 2R)r + (1 + R)\right] - r\left[4r + (3 + 2R)\right]}{\left[2r^2 + (3 + 2R)r + (1 + R)\right]^2}$$
(18)

For the resson described previously, the maximum value of C is desirable. This is schieved by setting Eq. (18) equal to zero, namely,

$$2r^2 - (3 + 2R)r + (1 + R) - r[4r + (3 + 2R)] = 0$$

OI

$$-2r^2 + (1 + R) = 0$$
 (19)

$$R = 2r^2 - 1 > 0$$
 (20)

Equation (20) implies that

$$r > \frac{\sqrt{2}}{2}$$
 due (21)

Substituting Eq. (90) 1870 Eq. (17) yields

$$C = \frac{\mathbf{r}}{2\mathbf{r}^2 + (3 + 4\mathbf{r}^2 - 2)\mathbf{r} + 2\mathbf{r}^2} = \frac{1}{4\mathbf{r}^2 + 4\mathbf{r} + 1}$$
 (22)

Thus substitution of Eq. (22) into Eq. (16) yields

First, assume $\omega = 1$ rad./sec. From Eq. (23) one obtains

$$r = \frac{1-1}{2} = 0 \quad \text{ohm}$$
 (24)

Equation (24) contradicts the condition of Eq. (21).

Second, assume $\omega=2$ rad./sec. Then one obtains from 6a.~(23)

$$r = \frac{4 - 1}{2} = 1.5$$
 ohms.

This value does satisfy Eq. (21).

Substitution of ${\bf r}$ = 1.5 ohms into Eq. (20) and Eq. (22) yields respectively

$$R = 2r - 1 = 3.5$$
 ohms

$$C = \frac{1}{4r^2 + 4r + 1} = 0.0625 \text{ fsrsd}$$

Returning to Eq. (114) for specific values of r, R and C, one obtains

$$\begin{split} \mathbb{T}_{2}(s) &= \frac{\left[\mathbb{P} \text{C} \, s^{3} + (2\mathbb{P} \text{C} + \mathbb{C}) \, s^{2} + (3\mathbb{R} + \mathbb{P} \text{C} + \mathbb{C}) \, s + 1\right]}{\left[(2\mathbb{R} \mathbb{C} + \mathbb{P} \text{C}) \, s^{3} + (2\mathbb{R} \mathbb{C} + 2\mathbb{R} \text{C} + 2\mathbb{P} \text{C} + 2\mathbb{P} + \mathbb{C}) \, s^{2} + (3\mathbb{C} + \mathbb{P} \text{C} + \mathbb{C} + \mathbb{C} + \mathbb{C}) \, s + 1\right]} \\ &= \frac{1.5 \, s^{3} + 4.0 \, s^{2} + 6.0 \, s + 16}{12 \, s^{3} + 69.5 \, s^{2} + 86 \, s + 16} \end{split}$$

In order to calculate the simusoidal spectrum, let $s=j\omega$ and obtain

$$T_2(j\omega) = \frac{(16 - 4.0 \omega^2) + j(6.0 \omega - 1.5 \omega^3)}{(16 - 69.5 \omega^2) + j(86 \omega - 12 \omega^3)}$$

From this, one obtains

$$\begin{split} \left|\mathbb{T}_{2}(j\omega)\right|^{2} &= \frac{(16-\mu,0~\omega^{2})^{2}+(6.0~\omega-1.5~\omega^{3})^{2}}{(16-69.5~\omega^{2})^{2}+(86~\omega-12~\omega^{3})^{2}} \\ &= \frac{2.25~\omega^{6}-2~\omega^{4}-92~\omega^{2}+256}{11\mu,~\omega^{6}+2766.25~\omega^{4}+5172~\omega^{6}+256} \end{split}$$

By inspection, one can see that

$$\left|\mathbb{T}_{2}(j\omega)\right|^{2}=1$$
 at $\omega=0$
$$\left|\mathbb{T}_{2}(j\omega)\right|^{2}=0.015625$$
 at $\omega=\infty$

A graph of $|\tau_2|$ [A] $|^2$ versus 2 on log-log paper is shown in Fig. 8. This frequency response shows that the transfer function $\tau_2(s)$ has a noted frequency and unequal amplitudes at zero and infinite frequencies. Data for this graph are obtained with Program 3 which is given in appendix 0.

Fig. 8. Frequency response for the unequal amplitudes notch network.

A general note: Filter of equal amplitudes and unequal amplitudes has been investigated in the previous section. In this section, the more complicated noteh filter resistancecapacitance retwork shown in Fig. 9 is investigated.

The mid short-circuit impedance and the mid open-circuit impedances are shown respectively in Fig. 10 and Fig. 11. Let A be the mid short-circuit input impedance; and let B be the mid open-circuit input impedance. After applying series and parallel operations to the network, one obtains

$$A = (1 + A_1) \left[\frac{1}{C_8} \right]$$
(25)

where

$$A_{1} = \frac{(2m^{2} + \mu mr)s + (8m^{2} + 8mr)}{(m^{2} + 2mr)s^{2} + (\mu mr + \mu m^{2} + 2m + 2r)s + 8m}$$
(26)

Therefore

$$A = \frac{\left[\left[m^2 + 2mr \right] s^2 + \left(6m^2 + 6mr + 2m + 2r \right) s + \left(6m^2 + 6m + 6mr \right) \right]}{\left[\left[m^2C + 2mrO \right] s^3 + \left(6m^2C + 6mrO + 2mC + 2rC + m^2 + 2mr \right) s^2 + \left(6m^2C + 6mC + 6mrC + 4mr + 4m^2 + 2m + 2r \right) s + 6m \right]}$$

$$=\frac{n_a}{p_a} \tag{27}$$

Similarly

$$B = 1 + B_1$$
 (28)

where

$$B_1 = \frac{2ms - 4m}{ms^2 + (2m + 1)\theta}$$
 (29)

Therefore

$$B = \frac{ms^2 + (\mu m + 1)s + \mu m}{ms^2 + (2m + 1)s} \equiv \frac{\lambda_b}{D_b}$$
 (30)

From Eq. (27) and Eq. (30), one obtains

$$\frac{B - A}{B + A} = \frac{N_b \cdot D_a - N_a \cdot D_b}{N_b \cdot D_a + N_a \cdot D_b}$$
(31)

where

$$\begin{split} \mathbf{N_0} & \cdot \; \mathbf{D_8} = (\mathbf{m^30} + 2\mathbf{n^2rO}) \, \mathbf{s^5} + (10\mathbf{m^30} + 16\mathbf{n^2rC} + 3\mathbf{m^2C}) \\ & + (\mathbf{h}\mathbf{mrO} + \mathbf{m^3} + 2\mathbf{n^2r}) \, \mathbf{s^4} + (36\mathbf{n^30} + 22\mathbf{n^2C} + 2\mathbf{mO}) \\ & + (46\mathbf{m^2rO} + 16\mathbf{mrO} + 2\mathbf{rO} + 6\mathbf{m^3} + 3\mathbf{m^2} + 12\mathbf{m^2r}) \\ & + (\mathbf{h}\mathbf{m^3}) \, \mathbf{s^3} + (56\mathbf{m^3C} + 46\mathbf{m^2C} + 6\mathbf{mO} + 64\mathbf{h^2rO}) \\ & + (16\mathbf{m^3C} + 20\mathbf{m^3} + 20\mathbf{m^2C} + 24\mathbf{n^2r} + 12\mathbf{m^2r} + 2\mathbf{m^2C}) \\ & + (2\mathbf{n^3}) \, \mathbf{s^2} + (32\mathbf{n^3C} + 32\mathbf{n^2C} + 32\mathbf{n^2rC} + 16\mathbf{n^3}) \\ & + (40\mathbf{m^2} + 16\mathbf{m^2r} + 6\mathbf{m^2r} + 6\mathbf{m^2r} + 6\mathbf{n^3}) \, \mathbf{s} + 32\mathbf{n^2} \end{split}$$

$$N_a + D_b = (m^3 + 2m^2r) s^{\frac{1}{4}} + (6m^3 + 3m^2 + 12m^2r + \mu mr) s^3$$

 $+ (20m^3 + 16m^2 + 2\mu m^2r + 12mr + 2m + 2r) s^2$
 $+ (16m^3 + 2\mu m^2 + 16m^2r + 6mr + 6m) s$ (33)

Bartlett's representation theorem for a symmetric network yields the transfer function

$$T(s) = \frac{B - A}{B + A} = \frac{N_{D} \cdot D_{B} - N_{B} \cdot D_{D}}{N_{D} \cdot D_{B} + N_{B} \cdot D_{D}} \equiv \frac{N(s)}{D(s)}$$
(34)

wner

(36)

$$\begin{split} N(a) &= (m^3C + 2m^2rc)a^5 + (10m^3C + 16m^2rC + 3m^2C) \\ &+ (\mu m rc)a^{44} + (36m^3C + 22m^2C + 4.6m^2rC + 16mrC) \\ &+ 2mC + 2rc)a^3 + (56m^3C + 4.6m^2C + 64\mu^2rC + 8mC) \\ &+ 16mrC + 2m^2)a^2 + (32m^3C + 32m^2C + 32m^2rC) \\ &+ 16m^2)a + 32m^2 \end{split}$$
(35)

$$D(s) = (m^{3}C + 2m^{2}rc)s^{5} + (10m^{3}C + 16m^{2}rC + 3m^{2}C + 4\mu r + 2m^{3} + 4\mu r^{2}r)s^{4} + (36m^{3}C + 22m^{2}C + 4\beta m^{2}rC + 24\mu r^{2}r + 16m^{3} + 6m^{2} + 8\mu r + 16\mu r^{2}C + 2\pi r^{2}C + 4\mu r^{2}r + 16m^{3} + 6\mu r^{2}C + 64\mu r^{2}C + 6\pi C + 2\pi C + 2\pi C + 16\mu r^{2}C + 8\mu r^{2}C$$

$$+ (32m^3C + 32m^2C + 32m^2rC + 32m^3 + 64m^2 + 32m^2r$$

In order for this transfer function T(s) to have a notch in its fraquancy response, the values of m, r, and C must be so chosen that the numerator polynomial N(s) has a factor of the form $(s^2+\omega^2)$. The values of m, r, and C can be determined by dividing N(s) into even and odd polynomials which are subjected to a Routh erray calculation. First of all, let N(s) be denoted as:

+ 16mr + 16m)s + 32m²

$$N(a) = a_5 s^5 + a_L s^L + a_3 s^3 + a_2 s^2 + a_1 s + a_0$$
 (37)

The Routh array yields

There must be a row of zeros at the end of this Routh array in order to find a common factor in these polynomials, namely,

$$Q_1 = \frac{P_1}{R_1} \cdot a_0 \tag{38}$$

Substitution of these identical representations of P1, Q1, and R1 into Eq. (38) yields

The other factor which datarmines the notch frequency ω is

$$(a_2 - \frac{Q_1}{P_2} \cdot a_{\downarrow}) s^2 + a_0 = 0$$
 (40)

or

$$\begin{bmatrix} a_{2}(a_{3}a_{||} - a_{2}a_{5}) - a_{||}(a_{1}a_{||} - a_{0}a_{5}) \end{bmatrix} a^{2} + a_{0}(a_{3}a_{||} - a_{2}a_{5}) = 0$$
 (41)

On comparing coefficients of polynomials in Eqs. (35) and (37), one identifies

In order to schieve Eq. (39), several steps are calculated separately as follows:

$$= 32m^3c (304cm^5 + 280cm^4 + 880cm^4r + 688cm^3r + 78cm^3$$

+
$$6 \mu_0 \text{cm}^3 \text{r}^2 + 6 \text{cm}^2 + 172 \text{cm}^2 \text{r} + 4 \mu_1 6 \text{cm}^2 \text{r}^2 + 1 \mu_2 \text{cm} \text{r} + 96 \text{cm}^2 + 8 \text{cr}^2 - 2 \text{m}^4 - 4 \text{m}^3 \text{r})$$
 (43)

+ $32\text{Cm}^2\text{r}^2$ + 8Cmr + 8Cmr^2 + 8m^3 + 3m^2 + $12\text{m}^2\text{r}$ + 4mr)² • $(4\text{LOCm}^3$ + $64\text{LCm}^2\text{r}$ + 12Cm^2 + 16Cmr) (44)

Multiplying Eq. (44) by $(a_3a_4 - a_2a_5)$ and expanding it, then

combining with Eq. (45), one obtains a polynomial equation H(m, r, 0) identical to Eq. (39) such that

$$H(m, r, C) \equiv \angle C^3 + \beta C^2 + \gamma' C + \delta = 0$$
 (46)

where

 $\kappa = 69120 \text{m}^{11} + 215616 \text{m}^{10} + 456192 \text{m}^{10} \text{r} + 274383 \text{m}^9$

 $+ 1274176m^9r + 1198080m^9r^2 + 185096m^8 + 1454096m^8r$

 $+2929920m^8r^2 + 1564672m^8r^3 + 70816m^7 + 882888m^7r$

 $+2932096m^7r^2 + 3246080m^7r^3 + 1051808m^7r^4 + 15216m^6$

 $+306880m^{6}r + 1559888m^{6}r^{2} + 2758144m^{6}r^{3} + 1703936m^{6}r^{4}$

+ 330m5 + 3352m5r - LLLO88m5r2 - 206208m5r3 - 133376m5r4

+ 18m4 + 830m4r - 3206m4r2 - 59808m4r3 - 69888m4r4

+ 102Lm4r5 + 48m3r + 112m3r2 - 15568m3r3 - 23872m3r4

 $+6656m^3r^5 + 1lim^2r^2 - 102lim^2r^3 - 52li8m^2r^4 + 1536m^2r^5$

- 48mr3 - 640mr4 + 128mr5 - 32r4

 $\gamma = -980m^9 - 854m^8 - 4588m^8r - 158m^7 - 4194m^7r - 7112m^7r^2$

 $+ 33m^6 - 928m^6r - 6692m^6r^2 - 36Ll0m^6r^3 + 9m^5 - 5Llm^5r$

- 2552m5r2 - 350lm5r3 + 33m4r + 68m4r2 - 832m4r3 - 6lm4r4

 $+ 40m^3r^2 + 16m^3r^3 + 16m^2r$

$$\delta = -10m^{8} - 3m^{7} - 36m^{7}r - 10m^{6}r - 32m^{6}r^{2} - 8m^{5}r^{2}$$
 (50)

Returning to Eq. (41), one identifies

$$a_2(a_3a_1 - a_2a_5)$$
= $\left[(56m^3C + 16m^2C + 61m^2PC + 16mrC + 8mC + 2m^2) \right]$
• $\left[2mC(152m^5C + 116m^4C + 146m^4C + 314m^3PC + 39m^3C + 320m^3P^2C + 3m^3C + 86m^2PC + 208m^2P^2C + 7mrC + 16m^2C + 14r^2C - m^4 - 2m^3Pc \right]$
(51)

 $= 2mC \cdot (160m^5C + 208m^4C + 416m^4rC + 48m^3C + 368m^3rC$

$$+\ 256 {\rm m}^3 {\rm r}^2 {\rm C}\ +\ 64 {\rm m}^2 {\rm r} {\rm C}\ +\ 64 {\rm m}^2 {\rm r}^2 {\rm C}\ +\ 64 {\rm m}^4\ +\ 96 {\rm m}^3 {\rm r}\ +\ 24 {\rm m}^3$$

$$+ 32m^2r$$
) $\cdot (10m^3C + 16m^2rC + 3m^2C + 4mrC)$ (52)

a0(a3a4 - a2a5)

= $\mu^2 c \cdot (2432m^6 c + 2240m^5 c + 7040m^5 c + 5504m^4 c + 624m^4 c$ $+ 5120m^4 c^2 c + <math>448m^3 c + 1376m^3 c + 3328m^3 c^2 c + 112m^2 c$

$$+ 768m^2r^2C + 64mr^2C - 16m^5 - 32m^4r$$
 (53)

Substituting Eqs. (51), (52), and (53) into Eq. (41) and expanding them term by term, one obtains ω^2 .

$$\omega^2 = \frac{p_1C + q_1}{p_2C^2 + t_2C + q_2}$$
 (54)

where

 $\begin{array}{l} {\rm p_1 = 2432m^6 + 2240m^5 + 7040m^4r + 5504m^4r + 624m^4 + 5120m^4r^2} \\ {\rm + 48m^3 + 1376m^3r + 3328m^3r^2 + 112m^2r + 768m^2r^2 + 64mr^2} \end{array}$

$$q_1 = -16m^5 - 32m^4r$$
 (56)

 $p_2 = 3456m^7 + 6288m^6 + 13824m^6r + 4508m^5 + 21440m^5r$

+ $18432m^5r^2$ + $1508m^4$ + $13120m^4r$ + $23552m^4r^2$ + $8192m^4r^3$

 $+ 228m^3 + 3852m^3r + 11776m^3r^2 + 8192m^3r^3 + 12m^2 + 536m^2r$

+
$$2880m^2r^2$$
 + $3072m^2r^3$ + $28mr$ + $34\mu mr^2$ + $512mr^3$ + $16r^2$
+ $32r^3$

$$t_2 = -196m^6 - 100m^5 - 646m^5r - m^4 - 336m^4r - 512m^4r^2 + 3m^3 - 18m^3r - 256m^3r^2 + 7m^2r - 16m^2r^2 + 4mr^2$$
 (58)

$$q_0 = -m^5 - 2m^4r$$
 (59)

By the ergument used previously, one must heve the meximum velue of C in Eq. (46). It is cleer that one can take the pertiel derivative of H(m, r, C) with respect to m and obtain

$$\frac{\partial H}{\partial \pi} = 3\omega 0^2 \frac{\partial C}{\partial \pi} + O^3 \frac{\partial^2 C}{\partial \pi} + 2\beta C \frac{\partial C}{\partial \pi} + O^2 \frac{\partial \beta}{\partial \pi} + \gamma' \frac{\partial C}{\partial \pi}$$

$$+ C \frac{\partial \gamma'}{\partial \pi} + \frac{\partial C}{\partial \pi} = 0 \qquad (66)$$

Putting $\frac{\partial C}{\partial m} = 0$ in Eq. (60) yields

$$\frac{\partial^{2}}{\partial m} C^{3} + \frac{\beta \beta}{\beta m} C^{2} + \frac{\partial \beta^{2}}{\partial m} C + \frac{\partial \delta}{\beta m} = 0$$
 (61)

In order to simplify the notetions, some symbole used in the following peges ere:

$$\begin{array}{lll} \gamma_1' &= \frac{\partial \gamma'}{\partial m} & \gamma_2' &= \frac{\partial \gamma'}{\partial r} \\ \gamma_{11} &= \frac{\partial^2 \gamma'}{\partial m^2} & \gamma_{22}' &= \frac{\partial^2 \gamma'}{\partial r^2} \\ \gamma_{12} &= \frac{\partial^2 \gamma'}{\partial m^2 r} & \gamma_{12}' &= \frac{\partial^2 \gamma'}{\partial r^2} \\ \gamma_{13} &= \frac{\partial^2 \gamma'}{\partial m^2 r} & \gamma_{12}' &= \frac{\partial^2 \gamma'}{\partial r^2} \\ \gamma_{13} &= \frac{\partial^2 \gamma}{\partial m^2 r} & \gamma_{12}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{12} &= \frac{\partial^2 \gamma}{\partial m^2 r} & \gamma_{12}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{12} &= \frac{\partial^2 \gamma}{\partial m^2 r} & \gamma_{12}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{13} &= \frac{\partial^2 \gamma}{\partial m^2 r} & \gamma_{13}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{14} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{14}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}' &= \frac{\partial^2 \gamma}{\partial r^2} \\ \gamma_{15} &= \frac{\partial^2 \gamma}{\partial r^2} & \gamma_{15}'$$

Returning to Eq. (h6), H(m, r, C) \equiv $\omega G^3 + \beta G^2 + \gamma C + \delta = 0$, one can see that this is a cubic equation of C in terms of m and r. Generally, e oubic equation can be solved using Cerden's formules (11) which ere described in the litereture. However, ell coefficients of C in Eq. (h6), obviously, ere complicated polynomiels in terms of m, r. Thus it would be difficult to solve for C in terms of m, r by the classical method. Also, eince it is desirable to use the computer for celculation, the complexity of the expression for C would lead to problems with computer storage capacity.

To evoid these problems, an optimum process besed on the gredient vector method (Ref. 9) is applied to solve for the specific velues of m, r, end C in Eq. (i_16) , in which C is emaximum velue. This method is described below.

Rearrenging Eq. (46) yields

$$c^2 = \frac{-(\sqrt[4]{C} + \delta)}{\sqrt{C} + \beta}$$
 (62)

In order to obtain the maximum value of C, one must take the first and second partial derivative of C with respect to m. Then putting $C_1 = C_{11} = 0$, yields a linear form of C in terms of m, r. Several steps are schieved as follows. First of all, taking the partial derivative of C in Eq. (62) with respect to m yields

$$2CC_{1} = \frac{((3C + \beta)(-\gamma_{1}C - \gamma_{1}C - \gamma_{1}C - \beta_{1}) + (\gamma_{1}C + \beta)((3C_{1} + \zeta_{1}C + \beta_{1}))}{((3C + \beta)^{2}}$$
(63).

For convenience in calculation, one puts $C_1=0$ in Eq. (63) before proceeding to calculate C_{11} . Therefore, Eq. (63) becomes

$$(AC + \beta)(-\gamma_{1}C - \delta_{1}) + (\gamma_{C} + \delta)(A_{1}C + \beta_{1}) = 0$$
 (64)

Rearranging Eq. (64) yields

$$c^2 = \frac{\prec_1 \delta c + \beta_1 \gamma' c - \beta \gamma_1 c - \prec \delta_1 c - \beta \delta_1 + \beta_1 \delta}{\prec \gamma'_1 - \prec_1 \gamma'}$$

$$(65)$$

Secondly, taking the partial derivative of C in Eq. (65) with respect to m yields

$$\begin{bmatrix} (A\gamma_1' - A_1\gamma')(A_{11}00 + A_100_1 + \beta_{11}\gamma'0 + \beta_1\gamma'0_1 - \beta\gamma'_{11}0 \\ - \beta\gamma'_{1}0_1 - A0_{11}0 - \beta0_{11} + \beta_{11}0) - (A_100 + \beta_1\gamma'0 \\ - \beta\gamma'_{2}0 - A0_{1}0 - \beta0_{11} + \beta_{10})(A\gamma'_{11} - A_{11}\gamma') \end{bmatrix}$$

$$200_1 = \frac{-\beta\gamma'_{2}0 - A0_{1}0 - \beta0_{11} + \beta_{10})(A\gamma'_{11} - A_{11}\gamma')}{(A\gamma'_{11} - A_1\gamma')^{2}}$$
(66)

Simplifying Eq. (66) and putting $C_1 = 0$ again, one obtains

$$c = \begin{cases} \langle 8\gamma_{11}^{\prime} \delta_{1} - \kappa \beta \gamma_{1}^{\prime} \delta_{11} + \kappa \beta_{11} \gamma_{10}^{\prime} - \kappa_{11} \beta^{\prime} \delta_{1} + \kappa_{1} \beta^{\prime} \delta_{1} \\ - \kappa \beta_{1}^{\prime} \gamma_{10}^{\prime} + \kappa_{11} \beta_{1}^{\prime} \gamma_{0}^{\prime} - \kappa_{1} \beta_{11}^{\prime} \gamma_{0}^{\prime} \\ - \kappa \beta_{1}^{\prime} \gamma_{10}^{\prime} + \kappa_{11}^{\prime} \gamma_{0}^{\prime} + \kappa_{11}^{\prime} \gamma_{0}^{\prime} - \kappa_{11}^{\prime} \gamma_{10}^{\prime} + \kappa_{11}^{\prime} \gamma_{0}^{\prime} \\ - \kappa \beta_{11}^{\prime} \gamma_{1}^{\prime} + \kappa_{1}^{\prime} \beta_{11}^{\prime} \gamma_{0}^{\prime}^{\prime} - \kappa_{11}^{\prime} \beta_{1}^{\prime} \gamma_{0}^{\prime}^{\prime} + \kappa_{1}^{\prime} \beta^{\prime} \gamma_{11}^{\prime} - \kappa_{1}^{\prime} \beta^{\prime} \gamma_{11}^{\prime} \end{bmatrix}$$

$$\equiv \frac{\Lambda + B}{2 - \gamma} \qquad (6)$$

Similarly, taking the derivative of Eq. (62) with respect to r and using the procedures described above yields

Equating Eq. (67) and Eq. (68), one obtains a polynomial equation G(m, r) in terms of m and r, i.e.,

$$G(m, r) = \frac{A + B}{D + E} - \frac{U + V}{P + Q} = 0$$
 (69)

Substitution of $C = \frac{A + B}{D + E}$ into Eq. (61) yields

$$H(m, r) \equiv \lambda_1 \left(\frac{A+B}{D+E}\right)^3 + \beta_1 \left(\frac{A+B}{D+E}\right)^2 + \gamma_1 \left(\frac{A+B}{D+E}\right) + \delta_1 = 0 \quad (70)$$

The value of c_{12} (i.e., $\frac{3^2c}{2\pi gr}$) shall be investigated to assure that C has a relative maximum. If $c_{12}=0$, then C has a saddle point. If $c_{12}\neq 0$ (greater or less than zero), then C has a relative maximum or minimum.

Returning to Eq. (63).

$$2CC_{1} = \frac{\left(\measuredangle C + \beta \right) \left(-9_{1}^{\prime}C - 9_{1}^{\prime}C_{1} - \delta_{1} \right) + \left(9_{1}^{\prime}C + \delta \right) \left(\measuredangle C_{1} + \measuredangle_{1}C + \beta_{1} \right)}{\left(\measuredangle C + \beta \right)^{2}} \tag{71}$$

Taking the partial derivative of Eq. (71) with respect to r yields

$$\begin{split} 2(\text{CC}_{12} - \text{C}_1\text{C}_2) &= \frac{\frac{\partial}{\partial \pi} \left[(\text{AC} + \beta) \left(-\gamma_1'\text{C} - \gamma_0'\text{C}_1 - \text{C}_1 \right) \right]}{\left(\text{AC} + \beta \right)^2} \\ &- \frac{\left(\text{AC} + \beta \right) \left(-\gamma_1'\text{C} - \gamma_0'\text{C}_1 - \text{C}_1 \right) \cdot \frac{\partial}{\partial \pi} \left(\text{AC} + \beta \right)^2}{\left(\text{AC} + \beta \right)^{\frac{1}{4}}} \\ &+ \frac{\frac{\partial}{\partial \pi} \left[(\text{A'C} + \beta) \left(\text{AC}_1 + \text{A}_1\text{C} + \beta_1 \right) \right]}{\left(\text{AC} + \beta \right)^2} \\ &- \frac{\left(\text{A'C} + \beta \right) \left(\text{AC}_1 + \text{A}_1\text{C} + \beta_1 \right) \cdot \frac{\partial}{\partial \pi} \left(\text{AC} + \beta \right)^2}{\left(\text{AC} + \beta \right)^{\frac{1}{4}}} \end{split}$$

Expanding and rearranging Eq. (72), one obtains

$$200_{12} - \frac{48 - \beta7}{(40 + \beta)^2} \cdot 0_{12}$$

$$\begin{split} &=\frac{1}{(\alpha C+\beta)^2}\left[C^2(\alpha_{12}\gamma'-\alpha\gamma_{12}+\alpha_{1}\gamma'_{2}+\alpha_{2}\gamma'_{1})+C(\alpha_{1}\delta_{2}+\alpha_{2}\delta_{1}\right.\\ &+\left.\beta_{2}\gamma'_{1}+\beta_{1}\gamma'_{2}+\alpha_{12}\delta-\alpha\delta_{12}+\beta_{12}\gamma'-\beta\gamma'_{12}\right)+(\beta_{1}\delta_{2}+\beta_{2}\delta_{1})\\ &+\left.\beta_{12}\delta-\beta\delta_{12}\right]-\frac{2}{(\alpha C+\beta)^3}\left(\gamma'C+\delta\right)(\alpha_{1}C+\beta_{1})(\alpha_{2}C+\beta_{2}). \end{split}$$

Thus

$$\begin{split} c_{12} &= \frac{1}{20(\omega_0 + \beta)^2 - \omega_0 + \beta \gamma'} \left\{ \left[c^2 (\omega_{12} \gamma' - \omega \gamma_{12} + \omega_1 \gamma'_2 + \omega_2 \gamma_1) \right. \right. \\ &+ c (\omega_1 \delta_2 + \omega_2 \delta_1 + \beta_2 \gamma'_1 + \beta_1 \gamma'_2 + \omega_1 \delta_0 - \omega \delta_{12} + \beta_{12} \gamma'_1 \\ &- \beta \gamma'_{12}) + (\beta_1 \delta_2 + \beta_2 \delta_1 + \beta_1 \delta_0 - \beta \delta_{12}) \right] \\ &- \left[\frac{2}{\omega_0 + \beta} (\gamma' 0 + 0) (\omega_1 0 + \beta_1) (\omega_2 0 + \beta_2) \right] \right\} \\ &\equiv \frac{WX - WY}{WZ} \end{split} \tag{74}$$

Among those solutions of C, m, r, C_{12} , in Frogrem 1, one educated guess is

C =
$$9185.78979 \times 10^{-6}$$

 $\approx 9185.79 \times 10^{-6}$ farad
m = 0.3042
r = 0.0179 ohm

 ${\rm C}_{12} = 67.431\,$ for and per ohm. For this set of solutions, ${\rm C}_{12}$ is greater than zero, so the

dependent C possesses a maximum.

Substitution of these values of C, m, and r into Eq. (34) yields

$$T(s) = \frac{N(s)}{D(s)}$$

where

$$N(s) = (0.03053742s^{5} + 0.5999928s^{4} + 3.8378482s^{3} + 28.7633236s^{2} + 165.0811871s + 322.3679696) \times C$$

$$D(s) = (0.03053742s^5 + 7.4503121s^4 + 122.3840641s^3 + 677.1501976s^2 + 1291.8172755s + 322.3679696) x 0$$

Purthermore, substituting s = jw yields

$$T(j\omega) = \begin{cases} [0.5999928\omega^4 - 28.7633238\omega^2 + 322.3679696) \\ *10.03053712\omega^5 - 3.8376162\omega^3 + 156.0611871\omega) \\ \hline [(7.4503124\omega^4 - 677.150176\omega^2 + 322.3679696) \\ *1j(0.3053742\omega^5 - 122.3640641\omega^3 + 1291.8172755\omega) \\ \hline [(0.5999928\omega^4 - 28.7633238\omega^2 + 322.3679696)^2 \\ *10.3053743\omega^5 - 328.7633238\omega^2 + 322.3679696)^2 \\ \hline (0.3053743\omega^5 - 38.7818233\omega^2 + 322.3679696)^2 \\ *10.3057343\omega^5 - 38.7818233\omega^3 + 367.081833\omega^3 + 367.081832\omega^3 + 367.08182\omega^3 + 367.0812\omega^3 + 367.0812\omega^3 + 367.0812\omega^3 + 367.0812\omega^3 + 367.0812\omega^3 + 367.0812\omega^3 + 367$$

$$\begin{split} \left| T(\Im \omega) \right|^2 &= \frac{ + (0.03053742\omega^5 - 3.8378462\omega^3 + 165.0841871\omega)^2 \right] }{ \left[(7.4503121\omega^4 - 677.1501976\omega^2 + 322.3679696)^2 \right. \\ &+ (0.03053742\omega^5 - 122.3640641\omega^3 + 1291.6172755\omega)^2 \right] \end{split}$$

By inspection, one cen see that

$$\left| T(j\omega) \right|^2 = 1$$
 et $\omega = 0$ $\left| T(j\omega) \right|^2 = 1$ et $\omega = \infty$

The log-log plot of $|T(j\omega)|^2$ versus ω is shown in Fig. 12. This frequency response shows that the transfer function T(s) represents e notch network with equal emplitudes at zero end infinite frequencies. Dete for this plot ere obtained with Program k in Appendix C.

Fig. 9. An equal amplitude notch filter resistance-capacitance network.

Fig. 10. Mid short-circuited impedance in Fig. 9.

Fig. 11. Mid open-circuited impedance in Fig. 9.

Fig. 12. Frequency response for the equal amplitudes notch network.

COMPARISON OF NOTCH FILTER Q'S

The parameter Q represents the sherpness of the circuit frequency response curve. It can be defined as

$$Q = 2\pi \ \cdot \ \frac{\text{energy stored in circuit}}{\text{energy dissipeted in circuit during one cycle}} \ .$$

Similarly, the fector Q defines the sharpness of the notch spectrum. The bendwidth of e notch filter is commonly defined as the width of the bend of frequencies over which the output power does not drop to less than one-helf, or -3 db of the output power at notch frequency. The explicit formula is

$$Q = \frac{f_0}{\left(\Delta f_0\right)_{3db}} = \frac{\omega_0}{\left(\Delta \omega_0\right)_{3db}}$$

where Γ_0 is the notch frequency end $\Delta\Gamma_0$ is the number of cycles off notch frequency et which the responses are 70.7 per cent of its peak value. In other words, this factor Q is the reciprocal of the bandwidth in units of the notch frequency.

Case 1. Equel amplitudes notch filter of the Goldmen type.

From Fig. 4, which is the response for equal amplitudes notch filter of the Goldman type, one obtains

$$Q_{1} = \frac{1.55}{19.55 - 0.192} = 0.0803$$

Case 2. Unequal amplitudes notch filter.

The bandwidth is undefined because of the unequal magnitudes of the curve (Fig. 8) at zero and infinite frequencies. Therefore Q₂ for this filter is undeterminable.

Case 3. Equal amplitudes notch filter.

$$Q_3 = \frac{6.82}{352.3 - 0.18} = 0.0193$$

 \mathbf{Q}_3 is smaller than \mathbf{Q}_1 ; the notch for the simple Goldman type network is sharper than that of the complicated one. The smaller \mathbf{Q}_3 for the complicated network indicates that a wider bandwidth is achieved; the bandwidth is increased by 76 per cent. Increased bandwidth is desirable in carrier-frequency servomechanisms subjected to wide bandwidth input signals.

CONCLUSTOR

An RC notch filter has a zero minimum frequency response curve. Three cases have been exhibited in this paper:

- 1. An equal amplitude RC network of the Goldman type.
- 2. An unequel smplitude RC network.
- 3. An equal amplitude RC network (see Fig. 9).

Determination of proper paremeters for the existence of a notch frequency in each case is emphasized. Particularly in the third case, an optimum process is applied to decide the specific values of m, r, end C for the notch frequency to occur at 6.82 redians per second. (See Progrem 1.)

The graph for the frequency response in each case shows its particular amplitude characteristic.

Generalized Goldman RC notch networks have led to a meximum problem of an unorthodox type. Specific procedures have been exhibited for reducing this meximum problem to the problem of solving two bivariate polynomials. Numerical trial and error procedures affecting numerical solutions on a digital computer are given in Appendix C.

ACKNOWLEDGMENTS

The author expresses his sincere gratitude to Dr. Charles A. Helijsk for providing the original idea for this paper and for constantly encouraging the author during its preparation. He wishes also to express his indebtedness to Dr. Norbert R. Melik for valuable suggestions in the final stage of this paper.

REFERENCES

- Jordan, D. E., R. Y. Kain, and L. C. Clapp. Symbolic Factoring of Polynomials in Several Variables. Communications of the ACM, Vol. 9, No. 6, pp. 638-643, August. 1966.
- Van der Waerden, B. L. Modern Algebra, Vol. 1, Unger Publishing Co., New York, 1953 Section 25. (Kronecker's proof that prime factoring of any polynomial can be achieved in a finite number of steps.)
- Widder, D. V. Advanced Calculus. New York: Prentice-Hall, Inc. pp. 101-107, 1947.
- Goldman, S. Transformation Calculus and Electrical Transienta. New York: Prentice-Hall, Inc. pp. 23-28, 1949.
- Linvill, J. G.
 A New RC Filter Employing Active Elements. Proc. Natl. Electrical Conference, Vol. 9, pp. 158-166, June, 1960.
- Cheng, T. W. K. Two RC Notch Networks. M. S. Report, Department of Electrical Engineering, Kensas State University, Manhattan, Kensas. 1966.
- Terman, F. E. Radio Engineering. New York: McGraw-Hill Book Company, Inc. pp. 39-96, 1947.
- Yengst, W. C. Procedures of Modern Network Synthesis. New York: The Macmillan Company. pp. 311-318, 1964.
- Ehlers, F. E.
 On Gradient Vector Methods for the Solution of Systems of Nonlinear Equations. Boeing Scientific Research Laboratories, Document No. D1-82-0028, Mathematical Note 208, November 11, 1959.
- .10. Conte, S. D.
 Elementary Numerical Analysis, an Algorithm Approach.
 New York: McGraw-Hill Book Company, Inc., pp. 43-70, 1966.
- Conkwright, N. B. Introduction to the Theory of Equations. New York: Ginn and Company. pp. 68-86, 1941.

APPENDICES

Description of the IBM-1620 Computer Program Used for Solving Two Bivariste Polynomial Equations in Program 1.

Several numerical methods are available for solving nonlinear polynomial equations. The procedure selected was the numerical trial and error method.

From Eqs. (69), (70) in this paper, one obtains

$$G(m,r) \equiv \frac{A+B}{D+E} - \frac{U+V}{P+Q} = 0 \tag{75}$$

$$E(m_r r) \equiv A_1 \left(\frac{A+B}{D+E}\right)^3 + \beta_1 \left(\frac{A+B}{D+E}\right)^2 + \gamma_1 \left(\frac{A+B}{D+E}\right) + \delta_1 = 0$$
 (76)

where all parameters in Eqs. (75) and (76) are high power polynomials in terms of m, r.

First of all, let some symbols used in Program 1 be denoted as:

$$AX = A \qquad CX = Y$$

$$AM1 = A_1 = \frac{3A}{3m} \qquad CM1 = Y_1 = \frac{3Y}{3m}$$

$$AM2 = A_{11} = \frac{3^2A}{3-2} \qquad CM2 = Y_{11} = \frac{3^2Y}{3-2}$$

Because Eqs. (75) and (76) contain high power polynomial functions of m and r, an extremely large computer capacity is required. Since the maximum storage capacity of the IBM-1620 using Fortran II is limited to 60000, the program for solving the equations was separated into two subprograms (shown in Frogram 1).

The numerical triel end error method is illustrated as follows.

Let (m_0, p_0) be en initial approximation to a root of Eqs. (75) and (76), and let Δm and Δr be the increments of m_0 , r respectively. Substitutions of m_0 , p_0 into Eqs. (75) and (76) yields

$$G(m_0, r_0) = g(m_0, r_0)$$
 (77)

$$H(m_0, r_0) = h(m_0, r_0)$$
 (78)

Theoreticelly, both function $g(\pi_0, r_0)$ end function $h(\pi_0, r_0)$ should be equal to zero if (π_0, r_0) is en exact root of $g(\pi, r)$ end $H(\pi, r)$. This is difficult to echieve because the convergent point is rether herd to find for high degree polynomial equations. Therefore the increments Δm end Δr ere edded to make $G(\pi, r)$ end $H(\pi, r)$ possibly convergent. Furthermore, other initial approximations should be tried to get all possible convergent points. Gere must be taken with the roots of $G(\pi, r)$ end $H(\pi, r)$, since there can be both real end complex ones. However, only real roots ere of interest in this work.

Referring to the flow chert (Appendix C) for Progrem 1, one should supply both initial epproximation end increments of m, r end set the iteration = N(1, 2, 3, . . . , n). Then one may compute polynomials end obtain computer results in subprogram A. These results ere then introduced into subprogram B. Computation of these polynomials in subprogram B yields the required solutions: XV, R, CX, EX, C, C12.

There will be 11 roots because G(m, r) and H(m, r) ere 11^{th} degree polynomial equations. The optimum process is applied to select the required roots.

APPENDIX B

Description of the IBM-1620 Computer Program Used for Program 2, Program 3, and Program 4.

IBM-1620 FORGO is applied to calculate the evaluation of $\left|T(j\omega)\right|^2 \mbox{ versus }\omega \mbox{ (angular frequency) for the equation such that}$

$$\left| \mathbb{T} (j\omega) \right|^2 = \frac{a_n \omega^n + a_{n-1} \omega^{n-1} + \dots + a_1 \omega + a_0}{b_n \omega^n + b_{n-1} \omega^{n-1} + \dots + b_1 \omega + b_0} \tag{79}$$

Referring to Program 2, Program 3, and Program μ_0 one can easily obtain the evaluation of $\left\|T(j\omega)\right\|^2$ for change of ω from zero to infinity. Computer results are shown respectively in those programs.

DEPOSITS OF THE

3M-1020 Computer Programs Used in This Work

Flow chart for calculation of two bivariate polynomial equations in Program 1

PRESTRAIN 1. MINISTRAL TRAINS ONLY TWO RESTRICT FOR KANGELLATION

TO CALCULATION OF THE REVARIATE PELYNONIAL FORALISMS

*1200

21 FERMATIZIE15.511

Fi FIRMAT(>(E15.5)) 62 FIRMAT([3)

51 PEAD52.N 5 ECRMAT(2E9.

PEAD 1.XM.R

PEADSC.DM.DR

X M = X M = D?" P = R - DR

XM=XM+DM

R=R+DR 11 Ax=6912 .

11 Az=6912. *X/n=*11=*21;0=16.*X/n=*11-45:512.*X/n=*11;0=Re276384.*X/n=*21-77.*
14176.**X/n=*21-71.*X/n=*21-15:0=16.*X/n=*21-71.*X/n=*21-7

14X=-224B1, #XM**10-31-644, #XM**9-138448, #XM**9*K-11780, #XM**8-210216 1. *XM**3*K-318208, *XM**3*R*R*2+1356, *XM*7-84196, *XM*7*R*7*R*17*R*17*C424928, *XM* 2**77*R*2-373584, *XM**17*R*1800, *XM**6-800, *XM**6-80-70, 7044, *XM**6

36*R**2=4u7RuH.**XM**6*R**3-12880.**Xm**6*P**4+330.**YM**6

 $\begin{array}{ll} (X = -68..*X / 1 = 87 - 65 / .*X / 1 = 87 - 65 / .*X / 1 = 87 - 61 / .*X / 1 =$

101467504.*X/M**81u+215616...*X/M**9+4561520.*X/M**9+R+2469456.*X/M**8+ 111467504.*X/M**8*R+1078272...*X/M**8*R*2+1480768.*X/M**7+11632768.*X/M

3216.*XM**6*R+20524672.*XM**6*R**2+2272256...*XM**6*R**

AMI-ANI+7.02666.*X.***6#CR**4+1.24...**()***5±126.724...*X/\\#*5*RR*95*72. 14-1.22616.*X.**7**2+16548364.*X(***5)**(14-1.22616.*X.**7**4+1572664...)** 2*5*[**5+840...*X[**4*50396...*X(**4...2500000 //...4...20100400+...

ANI=AMI+2526L.*XA**93R*+33772.*X***58[**27.20.56L.*XA**83**3+[63]
140L.*XM**95R**4465536.*XM**3*R**81.+77..*X***27.R**24166.*XA***27.R**2138...96.*XM**27.R**24166.*XA**27.R**5640.*XA**37.X**27.R**5640.*XA**37.X**27.R**5640.*XA**37.X**27.R**5640.*XA**37.X**27.R**5640.*XA**37.X**27.R**5640.*XA**37.X**

AM1=AM1+256.*R**4+256.*R**5

 $\frac{AM^2 + 44175956 + 8X^{488} + 5R(2844 + 456400 + 8X^{188} + 441759640 + 8X^{188} + 4818 + 48111886 + 8X^{188} + 4817448 + 4818 + 34111886 + 8X^{188} + 4818 + 48111886 + 8X^{188} + 4818 + 48111886 + 8X^{188} + X^{188} + X^$

35.10. #XXP#=3#(##5)#233472(0.#XXP#=3##K##4+65)56.1. #XXP##3#(R##5)#76704(0.#XXP# -AMP=AMAPE64.#XXP#=27-75860.#XXP#2#K#6131E4.#XXP#2#C##427-76704(0.#XXP# 142#[##5]#49152(0.#XXP#)#2#C#41346508.#XXP#2#G#85-11584.#XXP#2#648356.#XXP#2#648356.#XXP#2#64837610.#XXP#2#648376.#X

35+18710656,*XX***5**+5**+5**56592,*X***5***5***2**40,004,66,*XX**5**5***1892,*XX**18112,*XX***2**,*XX***4***3.307.20.**XX***2***2**2***1992***1,*XX***4****2**23.34720.**XX***4***1922**00.**XX**4***3**2**23.34720.**XX**4***3**1922**00.**XX**4***3**425**26.**

381u, *X:**39R**44792, *X:*=2+683:6, *X:**2#R+414266, *X:**82*R*2 AM1R1=AM1R1+9262Ub, *X:**82*R*2*3+6144:, *X:**2*

AR1=AR1+20480 **XNN*25R8*4+640.*Xn**2*R*+11040.*Xn**2*R**2+29184.*/
1M**1*R8*3+256.0.*XN*+2*R**4+384.*Xn**2*R**2+1324.*XN*R*8*3+1280.*XN*R*8

247664.*XM**5*R**2-2446848.*X **5*R**--7_7280.*X/**5*R*

BM1=BM1+19968.*XM**Z*R**5+26.*XM**<**2-2||48.*XM*R**3-10496.*XM*R**1+3C72.*XM*R**5-46.*R**3-640.*R**4-128.*R**5

PUNCH 1.XM.

PUNCH 2 .AX.BX.CX.DX.AXI

CONTINUE -0 TO 51 *12

OF ERRMATERIES.

FERMATIFE 15.51

3 FORMAT(2x,2HC=F15.5,5x,3HXM=512.5,5x,4HC12=E12.5,

DEAD 1 VM D

READ 2 ,AX,BX,CX,FX,AM1

READ 20.AM2.AM1R1.AK1.AR2.PM1

DDR_-2V25CU.**MM**OF221100:*AM**/-7700220.*AM**/*RT07000.*AM**/
111772076.**XM**5-353622.*XM**5-3536232.*XM**5-

 $\begin{array}{lll} & \text{DMS} = \text{DMS} = \text{DMS} = \text{CA} + \text{EMS} + \text{CA} + \text{CA}$

L-W2=RW2-14272-*XM*R**4+39936.*XM*R**5+28.*R**2-2048.*R**3-10496. 18**4+3172.*8**5

UMIR1=-124632.*XM**b-1681728.*XM**F-5:03132.*XX***7*R-589372.*XM 16-5948992.*XM**6-R-6795264.*XM**6*R**2-48540.*XM**5-2495328.*XM* 2*R-7340-34.*X.***6*R**2-249120.*X.**5*R**3-16760.*XM**4-440880.*

BM1R1=BM1R1-25646.*XXM**3*R-717696.*XXM**4*R**2-1118208.*XXM**3*R**3+
24.*XXM**3*R**4-1118208.*XXM**3*R**3+

24. *XX**2*R**3-99846. *XXX**2*R**4.456. *XX**7-6144. *XXX*R**2-41984.**XXX* 3**3+15361. *XXX*R**4-144.**R**2-2560. *R**3+640. *R**4 BR1=-138446.**XXX**4-1210.5. *XXX**8*R**4616.**XXX**8*R**4

2. *XV##6#R##2-40157. *XV*#6#R##34352.*XV*#5-88176.*XV##5#R-618624. 3*XV##5#R##2-53504.*XV##5#R##3+83..*XV##4-6-612.*XV##4#R BR1=RR1-179426.*XV##4#R#2+2-279552.*V*#4#R##4+5126.*XV*#4#R#444R

BB2=BR2+13912 .*X/***3+87**3+28.*X/***2-6144.*X/**2*R-62976.*X/M**2*R-1297727.*X/**2*R-62976.*X/M**2*R-62976.*X/***3-384.*R 2*2

(ド) = -03/L。*スが作るのつらジ/。メスやキバー30/L4。*スやキバー100。*スペキックーンジ306。*スペ 18台来ーム7758。*メンペキ6月末ミイ196。*メストキライス・スペトキックーの152。*メストキラギー人の152。*メストキラギー人の152。*メストキラギース・スペトキャース・スペトキャース・スペトキャース・スペトキャース・スペトキャース・スペトキャース・スペトキャース・スペトキャース・スペトキャース・スペトキャース・スペーキャース・スペ

CM1R1=-367@4.*XM**7-29358.*XM**6-99568.*XM**6*R-5568.*XM**5-80304. 1*XM**5*R-65664**XM**5*R**2-270**XM**4-25520**XM**4*R-52560**XM**4* 3.*XM**2*R+144.*XM**2*R**2+96.*XM*R**2

CR1=-4588.*XM**8-4194.*XM**7-14224.*XM**7*R-928.*XM**6-13384.*XM** 16*R-10944.*XM**6*R**2-54.*XM**5-51U4.*XM**5*R-10512.*XM**5*R**2+33 2.*xM**4+136.*xM**4*R-2496.*XM**4*R**2-256.*XM**4*R**3+80.*XM**3*R+

348.*XM**3*R**2+48.*XM**2*R**2 CR2=-14224.*XM**7-13384.*XM**6-21888.*XM**6*R-5104.*XM**5-21024.*X 1M##5#R+136.#XM*#4-4992.#XM#*4*R-768.*XM**4*R*2+80.*XM**3+96.*XM** 23*R+96.*XM**2*R

DM1=-8U.*XM**7-21.*XM**6-252.*XM**6*R-60.*XM**5*R-192.*XM**5*R**2-

DM2=-560.*XM**6-126.*XM**5-1512.*XM**5*R-300.*XM**4*R-960.*XM**4*R 1**2-16() ** XM**3*R**2

DM1R1=-252.*XM**6-60.*XM**5-384.*XM**5*R-80.*XM**4*R

DR1=-36.*XM**7-10.*XM**6-64.*XM**6*R-16.*XM**5*R

DR2=-64.*XM**6-16.*XM**5 A=AX*BX*(CM2*DM1-CM1*DM2)+BM2*DX*(AX*CM1-AM1*CX)

D=AX**2*(CM1*DM2-CM2*DM1)+AX*AM2*(CX*DM1-CM1*DX)+AM2*BX*CX*CM1 E=CX**2*(AM1*BM2-AM2*BM1)+CX*CM2*(AX*BM1-AM1*BX)-AX*BM2*CX*CM1

V=BX*CX*(AR1*DR2-AR2*DR1)+BR1*DX*(AR2*CX-AX*CR2)

P=AX**2*(CR1*DR2-CR2*DR1)+AX*AR2*(CX*DR1-CR1*DX)+AR2*BX*CX*CR1 Q=CX**2*(AR1*BR2-AR2*BR1)+CX*CR2*(AX*BR1-AR1*BX)-AX*BR2*CX*CR1

HX=AM1*C**3+BM1*C**2+CM1*C+DM1

WX=C**2*(AM1R1*CX-AX*CM1R1+AM1*CR1+AR1*CM1)+C*(AM1*DR1+AR1*DR1+BR1 1*CM1+BR1*CR1+AM1R1*DX-AX*DM1R1+BM1R1*CX-BX*CM1R1)+BM1*DR1+BR1*DM1+

WY=2 ** (CX *C+DX) * (AM1 *C+BM1) * (AR1 *C+BR1) / (AX *C+BX)

WZ=2.*C*(AX*C+BX)**2-AX*DX+BX*CX

C12=(WX-WY)/WZ 12 PRINT 2 . C . XM . R

PRINT 4.R.GX.HX

13 PUNCH 3 . C . XM . C 12 PUNCH 4 . R . GX . HX

END

INPUT DATA OF PROGRAM 1.

5	
*00200E-00	0.50200E-00
+.001 +.001	
5	
.01200E-00	0+50000E-00
4.01 +.01	
5	
.00100E-00	0+50200E-00
0001 -0.0001	0 - 3 0 2 0 0 L - 0 0
0001 -0.0001	
5	
.35400E-00	0.04000E-00
+.001 +.001	
5	
•37000E-00	0.02100E-00
.005 0.01	

5	
	(A3D005 00
.32450E-00	0.17900E-00
0001 +0.0	
5	
.32450E-00	0.17900E-00
+ +0 +0+01	
1	
•50200E-00	0.00100E-00
+ •0 +0•0	0.001005 00
+ +0 +0+0	
1	
•34390E-00	0.03790E-00
+ +0 +0+0	
3	
+35450E-00	0.04250E-00
005 +0.001	
3	
•33450E-00	0 • 02790E-00
005 -0.005	0 0 0 2 1 7 0 5 - 0 0
005 -0.005	
3	
.32420E-00	0.01790E-00
+ .01 +0.	

COM	MPUTER RESULTS OF	PROGRAM 1.	
C=	5614+91378E+11	XM= 2.00000E-03	C12=-3.87070E-06
R=	5020+00000E-04	GX= 7.88194E-09	HX= 2.98650E-10
C=	2001.26781E-10	XM= 3.00000E-03	C12=-2+06148E-05
R=	5030.00000E-04	GX= 2.98780E-08	HX= 1.66781E-09
C=	4998.09563E-10	XM= 4.00000E-03	C12=-6+02374E-05
R=	5040.00000E-04	GX= 7.72587E-08	HX= 5.77638E-09
C=	1026 • 148 03E-09	XM= 5+00000E-03	C12=-1.34925E-04
R=	5050.00000E-04	GX= 1.60096E-07	HX= 1.53600E-08
C=	1859.60756E-09	XM= 6.00000E-03	C12=-2.58965E-04
R≃	5060.00000E-04	GX= 2.85099E-07	HX= 3.44926E-08
C=	1946.70853E-08	XM= 1.20000E-02	C12=-3.34778E-03
R=	5000.00000E-04	GX= 8.25184E-06	HX= 7.72637E-07
C=	1462.97428E-07	XM= 2+20000E-02	C12=-3.19896E-02
R=	5100.00000E-04	GX=-3.42133E=05	HX= 1.10602E-05
C=	4810.84U67E-07	XM= 3.20000E-02	C12=-1.58675E-01
R=	5200.00000E-04	GX= 8.93279E-04	HX= 4.20783E-05
C=	1112.07029E-06	XM= 4.20000E-02	C12=-1.25363E-00
R=	5300.00000E-04	GX= 1.38002E-03	HX= 3.95923E-05
C=	2173+34047E-06	XM= 5.20000E-02	C12= 9.15740E-01
R=	5400.00000E=04	GX= 2.43379E-03	HX=-3+32558E-04
C=	6601.89946E-12	XM= 1.00000E-03	C12= 2.03680E-07
R=	5020.00000E-04	GX= 6+41334E=10	HX= 1.68023E-1
C=	4784.87552E+12	XM= 9+00000E-04	C12= 2.53433E-07
R=	5019.00000E-04	GX= 4.58203E-10	HX= 1.09037E-11

C=	1054.58622E-05	XM= 3.54000E-01	C12=-1.02713E+01
R=	4000.00000E-05	GX= 4.49330E-02	Hx=-2 • 80293E-01
C=	1062•72215E=05	XM= 3.55000E-01	C12=-9.23096E-00
R=	4100.00000E=05	GX= 4+46904E-02	HX=-2.89962E=01
C=	1070.46877E-05	XM= 3.56000E-01	C12=-8+32577E-00
R=	4200+00000E=05	GX= 4+44540E+02	HX=-2.99867E-01
C=	1077.83685E-05	XM= 3.57000E-01	C12=-7.53435E-00
R=	4300+00000E-05	GX= 4.42231E-02	HX=-3 • 10012E-01
C=	1084.83631E-05	XM= 3.58000E-01	C12=-6.83936E-00
R=	4400.00000E-05	GX= 4+39971E-02	HX=-3+20401E-01
C=	6045.59426E-06	XM= 3.70000E-01	C12=-1.50812E+01
R=	2100.0000E-05	GX= 4.49355E-02	HX=-2.40059E-01
C=	7566.30695E-06	XM= 3.75000E-01	C12=-6.99655E-00
R=	3100.00VUUE-05	GX= 4.12903E-02	HX=-3.18245E=01
C=	8743.54689E-06	XM= 3.80000E-01	C12=-3.72768E-00
R=	4106.00000E-05	GX= 3.96779E-02	HX=-4 • 11281E-01
C=	9642.64908E-06	XM= 3.85000E+01	C12=-2.19897E-00
R=	5100.00000E-05	GX= 3.86665E-02	HX=-5.20351E-01
C=	1030.70943E-05	XM= 3.90000E-01	C12=-1.42012E-00
R=	6100.00U00E-05	GX= 3.78118E-02	HX=-6.46227E-01
C=	1054.58622E-05	XM= 3.54000E-01	C12=-1.02713E+01
R=	4000.00000E-05	GX= 4+49330E-02	HX=-2+80293E-01
C=	1053.75083E-05	XM= 3.53900E-01	C12=-1.03838E+01
R=	3990.00000E-05	GX= 4.49577E-02	HX=-2.79339E-01
C=	1075.54104E-05	XM= 3.48900E-01	C12=-1+42297E+01
R=	3890.00000E-05	GX= 4.62912E-02	HX=-2.53947E-01

C=	7864 • 13244 E-06	XM= 3.24500E-01	C12= 9.33546E+01
R=	1790.00000E-05	GX= 5.84102E=02	HX=-1.05281E-01
C=	8157.52417E-06	XM= 3.24500E-01	C12= 9.58772E+01
R=	1890.00000E-05	GX= 5.78839E=02	HX=-1.08110E-01
C=	8441.94571E-06	XM= 3.24500E-01	C12= 9.89806E+01
R=	1990.00000E-05	GX= 5.74477E-02	HX=-1.10957E-01
C=	8717.59689E-06	XM= 3.24500E-01	C12= 1.02788E+02
R=	2090.00000E-05	GX= 5.70875E-02	HX=-1.13822E-01
C=	8984.67593E=06	XM= 3.24500E-01	C12= 1.07471E+02
R=	2190.00000E-05	GX= 5.67914E-02	HX=-1.16706E-01
C=	2044.28003E=06	XM= 3.24500E-00	C12=-3.81504E=03
R=	1790.00000E-05	GX= 1.25790E-02	HX=-6.70091E+05
C=	2044.29912E-06	XM= 3.24400E-00	C12=-3.81791E-03
R=	1790.00000E-05	GX= 1.25817E-02	HX=-6.68566E+05
C=	2044+31909E=06	XM= 3.24300E-00	C12=-3.82078E-03
R=	1790.00000E-05	GX= 1.25845E-02	HX=-6.67045E+05
C=	2044.33876E-06	XM= 3.24200E-00	C12=-3.82366E-03
R=	1790.00000E-U5	GX= 1.25873E-02	HX=-6.65526E+05
C=	2044.35791E-06	XM= 3+24100E-00	C12=-3.82653E-03
R=	1790.00000E-05	GX= 1.25901E-02	HX=-6.64011E+05
C=	1977.08684E-06	XM= 5.02000E-01	C12=-1.29676E-00
R≃	1000.00000E-06	GX=-9.60148E-02	HX=-1.18903E-00

C= 1096 • 18200 E=05	XM= 3.43900E-01	C12=-2.04427E+01
R= 3790.00000E=05	GX= 4.77748E-02	HX=-2.30236E-01
C= 1089.69948E-05	XM= 3.54500E-01	C12=-8.62141E-00
R= 4250.00000E-05	GX= 4+48423E-02	HX=-2.96020E-01
C= 1142.95223E-05	XM= 3.49500E-01	C12=-1.01324E+01
R= 4350.00000E=05	GX= 4.62297E-02	HX=-2.79586E-01
C= 1194.26414E-05	XM= 3.44500E-01	C12=-1.20154E+01
R= 4450.00000E-05	GX= 4.77956E-02	HX=-2.63286E-01
C= 1091.75240E-05	XM= 3.44500E-01	C12=-1.96992E+01
R= 3790.00000E+05	Gx= 4.75856E→02	HX=-2.32447E-01
C= 1038.67725E-05	XM= 3.39500E-01	C12=-4.54421E+01
R= 3290.00000E-05	GX= 4.92179E-02	HX=-1.93753E-01
C= 9726 + 00035 E=06	XM= 3.34500E-01	C12=-2.29778E+02
R= 2790.00000E-05	GX= 5+12844E-02	HX=-1.59976E-01
C= 8902 • 15514E-06	XM= 3.29500E-01	C12= 1.75740E+02
R= 2290.00000E-05	GX= 5.41146E-02	HX=-1.30648E-01
C= 7864.13244E-06	XM= 3.24500E-01	C12= 9.33546E+01
R= 1790.00000E-05	GX= 5.84102E-02	HX=-1.05281E-01
C= 7883.41285E-06	XM= 3.24200E-01	C12= 9.24051E+01
R= 1790.00000E-05	GX= 5.85658E=02	HX=-1.04715E-01
C= 8535.95669E-06	XM= 3.14200E-01	C12= 7.45334E+01
R= 1790.00000E-05	GX= 6.51697E-02	HX=-8+70843E-02
C= 9185.78979E-06	XM= 3.04200E-01	C12= 6.74310E+01
R= 1790+00000E-05	GX= 7.63863E-02	HX==7+16546E-02

PROGRAM 2. CALCULATION OF THE SPECTRUM OF AN EQUAL AMPLITUDES NOTCH FILTER OF THE GOLDMAN TYPE

- C C EQUAL AMPLITUDES NOTCH FILTER OF THE GOLDMAN TYPE

 1 READ, WI, W2, DELW
 PNOCH 4.

 4 FORMAT(11X, SHOMEGAIJX, 4HEVAL/)

 3 Y1

 4 FORMAT(11X, SHOMEGAIJX, 4HEVAL/)

 4 FORMAT(11X, SHOMEGAIJX, 4HEVAL/)

 Y4(1.0-1.02802*W**2)**2*(0.707105***-0.121315*W**3)**2

 Y4(1.0-1.02802*W**2)**2*(3.707105***-0.121315*W**3)**2

 YEAL*XY'
 PUNCH 5 , W , EVAL

 5 FORMAT (5X, F12.6 , 5X, F12.6)
 - W1 = W1 + DELW IF (W2 - W) 2,3,3 2 GC TO 1
 - 2 GC TC END

C C DATA FOR GRAPH OF VALUE VS OMEGA - EQUAL AMPLITUDES NOTCH FILTER OF THE GOLDMAN TYPE

CMEGA .000000 .050000 .901446 .800658 .581728 .300000 • 400739 .400000 .450000 .271696 .223398 •550000 .640000 .150833 .650000 .123766 .101366 .082787 .800000 .850000 .900000 .043804 .950000 .027509 1.050000 .016340 .008867 .006196 1.300000 .004106 1.400000 .001366 1.450000 .000594 1.550000 1.600000 1.650000 .000952 1.750000 .001648 1.800000 1.850000 .003485 1.900000 1.950000 .008517 .013140 .014801 .016513 2.350000 .018270

2.450000

OMEGA	EVAL
2.5-0000	•02377
2.550000	•02567
2.600000	•02761
2.650000	•02957
2.700000	•03155
2.750000	• 03356
2 . 8000000	•03558
2.850000	•03763
2.900000	•03970
2.950000	•04178
3.000000	•043891
3.050000	*04600
3.100000	• 048139
3.150000	•05028
3.200000	• 05244
3.250000	•05462
3.300000	•056808
3.350000	• 05900
3.400000	•06121
3.450000	• 063440
3.500000	• 065674
3.550000	•067918
3.600000	•070173
3.650000	+072439
3.700000	•074715
3.750000	+077000
3.800000	•079296
3.850000	•08160
3.900000	+083915
3.950000	•086239
4.000000	•088572
4.050000	.090913
4.100000	+093263
4.150000	+095622
4.200000	• 097989
4.250000	•100365
4.300000	•102748
4.350000	•105140
4.400000	•107539
4.450000	+109946
4.500000	•112361
4.550000	+114783
4.600000	+117213
4.650000	•119649
4.700000	•122093
4.750000	+124543
4.800000	•127000
4.850000	.129464
4.900000	.131934
4.950000	•134410
5.000000	•136893

CMEGA	FVA
.000000	1.000000
1.000000	•027509
2.000000	•007120
3.000000	+043890
4.000000	•088572
5.000000	•136893
6.000000	+187582
7.000000	+239365
8.000000	•290978
9.000000	•341341
10.000000	•389635
11.000000	• 435303
12.000000	•478020
13.000000	•517647
14.000000	•554178
15.000000	•587703
16.000000	•618370
17.000000	•646365
18.000000	•671889
19.000000	•695146
20.000000	•716338
21.000000	• 735654
22.000000	• 753274
23.000000	•769362
24.000000	.784066
25.000000	• 797525
26.000000	• 809859
27.000000	·821179
28.000000	•831584
29.000000	•841162
30.000000	
31.000000	.849992 .858146
32.000000	*855146 *865686
33.000000	+872668
34.000000	•879145
35.000000	•879145 •885160
36.000000	•890755
37.000000	•895966
38.000000	•900826
39.000000	• 905366
40.00000	
41.000000	•909610 •913584
42.000000	•917310
43.000000	•920806
44.000000	
45.000000	•924091 •927181
46.000000	
47.000000	•930090 •932833
48.000000	• 932833 • 935422
49.000000	•937422
50.000000	• 940178
	* 940170

CMEGA	EVAL
50.000000	•940178
60.000000	.957672
70.000000	.968544
80.000000	.975735
90.000000	•980728
100.000000	.984332
110,000000	.987015
120.000000	• 989066
130.000000	.990668
140.000000	•991943
150.000000	.992974
160.000000	.993820
170.000000	•994522
180.000000	.995110
190,000000	.995609
200.000000	•996036
210.000000	.996403
220+0000000	+996721
230.000000	• 996999
240.000000	•997244
250.000000	•997459
260.000000	•997650
270.000000	•997821
280.000000	•997973
290.000000	•998110
300.000000	• 998234
310.000000	•998346
320.000000	• 998448
330.000000	•998540
340.000000	• 998625
350.000000	•998702
360.000000	•998773
370.000000	•998838
380.000000	•998899
390.000000	• 998954
400.000000	• 999006
410.000000	• 999054
420.000000	.999098
430.000000	•999140
440.000000	•999179
450.000000	•999215
460.000000	• 999248
470.000000	•999280
480.000000	• 999310
490.000000 500.000000	• 999337 • 999364
200.000000	• 999364

OMEGA	EVAL
500.000000	•99936
600.000000	• 99955
700.000000	+99967
800.000000	• 99975
900.000000	• 99980
1000.000000	• 99984
1100.000000	+99986
1200.000000	• 99988
1300.000000	•99990
1400.000000	•99991
1500.000000	• 99992
1600.000000	•99993
1700.000000	.99994
1800.000000	+99995
1900.000000	• 99995
2000.000000	• 99996
2100.000000	• 99996
2200.000000	+99996
2300.000000	• 99997
2400.000000	. 99997
2500.0000000	• 99997
2600.000000	.99997
2700.000000	.999971
2800.000000	99998
2900.000000	• 99998
3000.0000000	.99998
3100.000000	• 99998
3200.000000	.99998
3300.000000	• 99998
3400.000000	• 99998
3500.000000	•99998
3600.000000	• 999981
3700.000000	• 999981
3800.000000	• 99998
3900,000000	• 99999
4000.000000	.99999
4100.000000	•99999
4200.000000	•99999
4300,000000	.99999
4400.000000	• 99999
4500.000000	+99999
4600+000000	• 99999
4700.000000	999999
4800.000000	•99999
4900.000000	•99999
5000.000000	99999
5100.000000	99999
5200.000000	• 99999
5300.000000	•99999
5400.000000	•99999
340000000	*79999

OMEGA	EVAL
5500.000000	. 999995
5600.0000000	.999995
5700.000000	. 999995
5800.000000	.999995
5900.000000	.999995
6000.000000	• 999996
6100.000000	.999996
6200.000000	.999996
6300.000000	•999996
6400.0000000	•999996
6500.000000	.999996
6600.000000	. 999996
6700.000000	.999996
6800.000000	•999997
6900.000000	•999997
7000.000000	.999997
7100.000000	.999997
7200.000000	.999997
7300.000000	.999997
7400.000000	.999997
7500.000000	.999997
7600.000000	.999997
7700.000000	.999997
7800.000000	.999997
7900.000000	• 999997
8000.000000	.999998
8100.000000	•999998
8200.000000	+999998
8300.000000	+999998
8400.000000	+999998
8500+000000	•999998
8600.000000	•999998
8700.000000	•999998
8800.000000	•999998
8900.000000	•999998
9000.000000	•999998
9100.000000	• 999998
9200.000000	•999998
9300.000000	• 999998
9400.000000	• 999998
9500.000000	• 999998
9600.000000	• 999998
9700.000000	•999998
9800.000000	• 999998
9900.000000	• 999998
10000.000000	• 999998
10100.000000	•999998
10200.000000	•999998
10300.000000	•999998
10400.000000	.999999
10500.000000	•999999

PROGRAM 3. CALCULATION OF THE SPECTRUM OF AN UNEQUAL AMPLITUDES NOTCH FILTER

C C UNEQUAL AMPLITUDES NOTCH FILTER

1 READ, w1: w2: DELW

2 DECK!

3 w = w1

X = 144.****6+2766.25****4+5172.****2+256.
EVAL*(2.25***6-2.2****4+5172.****2+256.)/X

PUNCH 5 w = EVAL

5 CONAT (5%. F12.6 o 5%. F12.6)

w1 = w1 + DELW

7 (w2 - w) 2.333

2 RO

C C DATA FOR GRAPH OF VALUE VS OMEGA - UNEQUAL

AMPLITUDES	NOTCH FILTER
CMEGA	EVAL
•000000	1.000000
•050000	+951004
•100000	*828190
•150000	•679369
.200000	•539929
•250000	424075
•300000	•332941
•350000	•262743
•400000	•208878
•450000	•167358
•5U0000	•135088
•550000	•109763
.600000	•089695
•650000	• 073644
.700000	•060697
•750000	•050175
.800000	•041565
.850000	.034480
.900000	.028621
•950000	•023754
1.000000	•019698
1.050000	•016309
1.100000	•013470
1.150000	•011089
1.200000	.009091
1.250000	.007414
1.300000	•006006
1.350000	.004828
1.400000	•003843
1.450000	•003022
1.550000	•002342 •001783
1.600000	•001785
1.650000	.000957
1.700000	.000664
1.750000	•000436
1.800000	•000264
1.850000	•000264
1.900000	.000059
1.950000	.000014
2.000000	0.000000
2.050000	.000013
2.100000	•000049
2.150000	.000105
2.200000	.000178
2.250000	•000267
2.300000	.000368
2.350000	•000479
2.400000	•000601
2.450000	.000730
2.450000	.000730

CMEGA	EVAL
2.500000	*000866
2.550000	.001007
2.600000	•001153
2.650000	.001304
2.700000	•001457
2.750000	+001612
2.800000	.001770
2.850000	.001929
2.900000	•002089
2.950000	•002250
3.000000	•002411
3.050000	•002572
3.100000	•002733
3.150000	+002893
3.200000	+003053
3.250000	.003212
3.300000	.003370
3.350000	+003526
3.400000	•003682
3.450000	+003836
3.500000	•003988
3.550000	.004139
3.600000	+004289
3.650000	+004437
3.700000	•004583
3.750000	•004727
3.800000	.004870
3.850000	.005010
3.900000	.005150
3.950000	•005287
4.000000	+005422
4.050000	•005556
4.100000	•005688
4.150000	•005817
4.200000	•005945
4.250000	•006072
4.300000	•006196
4.350000	•006319
4.400000	•006440
4.450000	• 006559
4.500000	•006676
4.550000	+006791
4.600000	•006905
4.650000	.007017
4.700000	.007128
4.750000	•007236
4.800000	•007343
4.850000	•007449
4.900000	•007553
4.950000	•007655
5.000000	•007755

OMEGA	EVAL
.0000000	1.000000
1.000000	.019698
2.000000	0.000000
3.000000	•002411
4.000000	•005422
5.000000	.007755
6.000000	*009469
7.000000	.010725
8.000000	•011657
9.0000000	•012360
10.000000	•012900
11.000000	•013320
12.000000	•013653
13.000000	•013921
14.000000	.014139
15.000000	•014139
	+014468
16.000000	
17.000000	•014593
18.000000	+014700
19.000000	•014791 •014869
20.000000	
21.000000	•014937
22.000000	.014996
23.000000	•015048
24.000000	.015094
25.000000	.015135
26.000000	.015171
27.000000	•015203
28.000000	•015232
29.000000	•015258
30.000000	•015282
31.0000000	•015303
32.000000	.015323
33.000000	.015341
34.000000	.015357
35.000000	+015372
36.0000000	•015386
37.0000000	*015398
38.0000000	.015410
39.000000	+015421
40.000000	.015431
41.0000000	.015440
42.000000	.015449
43.000000	•015457
44.000000	.015464
45.000000	•015471
46.000000	.015478
47.000000	.015484
48.000000	.015490
49.000000	.015495
50.0000000	•015500

CMEGA	EVAL
50.000000	•015500
60.000000	.015538
70.000000	.015561
80.000000	.015576
90.000000	•015586
100.000000	•015594
110.000000	•015599
120.000000	•015603
130.000000	•015606
140.000000	•015609
150.000000	•015611
160.000000	•015613
170.000000	•015614
180.000000	+015615
196.000000	•015616
200.000000	•015617
210.0000000	•015618
220.000000	•015619
230.000000	+015619
240,000000	•015620
250.0000000	+015620
260.000000	•015620
270.000000	•015621
280.0000000	+015621
290.000000	•015621
300.000000	•015622
310.000000	•015622
320.000000	•015622
330.000000	•015622
340.000000	•015622
350.000000	•015622
360.0000000	•015623
370.000000	•015623
380.0000000	•015623
390.000000	•015623
400.000000	•015623
410.000000	.015623
420.000000	+015623
430.000000	•015623
440.000000	•015623
450.000000	•015623
460.000000	•015624
470.000000	•015624
480.000000	•015624
490.000000	+015624
500.000000	+015624
510.000000	•015624

CMEGA	EVAL
500.000000	•01562
600.000000	•01562
700.000000	•01562
800.000000	•01562
900.000000	•01562
1000.000000	•01562
1100.000000	.01562
1200.000000	.01562
1300+000000	•01562
1400+000000	.01562
1500.000000	.01562
1600.000000	.01562
1700.000000	.01562
1800.000000	.01562
1900.000000	•01562
2000.000000	.01562
2100.000000	+01562
2200.000000	•01562
2300+000000	.01562
2400.000000	•01562
2500.000000	.01562
2600.000000	• 01562
2700.000000	.01562
2800.000000	+01562
2900.000000	•01562
3000.000000	•01562
3100.000000	• 01562
3200.000000	•01562
3300.000000	.01562
3400.000000	.01562
3500.000000	.01562
3600.000000	.01562
3700.000000	.01562
3800.000000	•01562
3900.000000	.01562
4000.000000	.01562
4100.000000	•01562
4200.000000	•01562
4300.000000	•01562
4400.000000	•01562
4500.000000	•01562
4600.000000	•01562
4700.000000	•01562
4800.000000	+01562
4900.000000	•01562
5000.000000	•01562
5100.000000 5200.000000	.01562
5300.000000	•01562
5400.000000	•01562
3400.000000	•01562

PROGRAM 4. CALCULATION OF THE SPECTRUM OF AN EQUAL AMPLITUDES NOTCH FILTER

C EQUAL AMPLITUDES NOTCH FILTER 1 READ9.W1. W2. DELW. A 9 FORMAT(3E10.4.F2.0) IF (A) 3.3.6 3 W = W1 4 FORMAT(11X, 5HOMEGA10X, 4HEVAL/) Y = 0.5999928*W**4-28.7633238*W**2+322.3679696 Z = 0.03053742*w**5-3.8378482*w**3+165.084187*w X = 7.4503121*W**4-677.1501976*W**2+322.3679696 P = 0.03053742*W**5-122.384064*W**3+1291.817275*W EVAL = (Y**2+Z**2)/(X**2+P**2) PUNCH 5 , W . EVAL 5 FORMAT (5X+ F12+6 + 5X+ E14+6) W1 = W1 + DELW IF (W2 - C) 2,3,3 2 GO TO 1

6 STOP END

```
DATA FOR GRAPH OF VALUE VS OMEGA - EQUAL AMPLILUDES NOTCH FILTER
      CMEGA
                       EVAL
                    0.971406
    .100000
                    0.790440
    .200000
                    0.484708
    .350000
                    0.408377
    #400000
    .450000
    .600000
    .650000
                    0.165226
                    0.145470
    .750000
                    0.128837
    .800000
                    0.114735
    .850000
                    0.102696
                    0.923526E-01
    .950000
                    0.834105E-01
   1.050000
                    0.688373E-01
                    0.628638E-01
                    0.575894E-01
                    0.487442E-01
                    0.450179E-01
   1.350000
                    0.416732F-01
   1.400000
                    0.386606E-01
   1.450000
                    0.359380E-01
                    0.334699E-01
                    0.312259E=01
   1.6000000
   1.650000
                    0.273098E-01
                    0.240219E-01
   1.800000
   1.850000
                    0.200001E-01
                    0.188557E-01
                    0.168069E-01
                    0.134836E-01
                    0.127832E-01
   2.350000
```

2.450000

CMEGA	EVAL
2.500000	0.103855E-0
2.550000	0.987206F-0
2.600000	0.987206E-0
2.650000	0.893103E-0
2.700000	0.849941E-0
2.750000	0.809131E=0
2.800000	0.770513E-0
2.850000	0.733939E-0
2.900000	0.699275E-0
2.950000	0.666398E-0
3.000000	0.635192E-0
3.050000	0.60555E-0
3.100000	0.577389E-0
3.150000	0.550605E-0
3.200000	0.525122E-0
3.250000	0.500863E-0
3.300000	0.477758E-0
3.350000	0.455742E-0
3.400000	0.434754E-0
3.450000	0.414737E-0
3.500000	
3.550000	0.395640E-0.377413E-0
3.600000	0.360010E-0
3.650000	0.343391E-
3.700000	0.327514E-0
3.750000	0.312343E-0
3.800000	0.297842E-0
3.850000	0.283980E-0
3.900000	0.270725E-0
3.950000	0.258049E-
4.000000	0.245926E-
4.050000	0.234329E-0
4.100000	0.223234E-
4.150000	0.212621E-
4.200000	0.202466E-
4.250000	0.192750E-
4.300000	0.183455E-0
4.350000	0.174562E-0
4.400000	0.166054E-
4.450000	0.157916E-
4.500000	0.150133E-0
4.550000	0.142689E-0
4.600000	0 • 135572E-0
4.650000	0.128769E-0
4.700000	0.122266E-0
4.750000	0.116054E-0
4.800000	0.110120E-0
4.850000	0.104454E-
4.900000	0.990459E-
4.950000	0.938864E-0
5.000000	0.889661E=

OMEGA 5.050000	EVAL 0.842765E-03
5.100000	0.798091E-03
5.150000	0.755561E-03
5.200000	0.715099E-03
5.250000	0.676633E-03
5.300000	0.640094E-03
5.350000	0.605414E-03
5.400000	0.572531E-03
5.450000	0.541385E-03
5.500000	0.511916E-03
5.550000	0.484070E-03
5.600000	0.457792E-03
5.650000	0 • 433031E-03
5.700000	0.409739E-03
5.750000	0.387867E-03
5.800000	0.367370E-03
5.850000	0.348206E-03
5.900000	0.330331E-03
5.950000	0.313705E-03
6.000000 6.050000	0.298290E-03 0.284048E-03
6.100000	0.284048E-03
6.150000	0.258941E-03
6.200000	0.248008E-03
6.250000	0.238111E-03
6.300000	0.229221E-03
6.350000	0.221307E-03
6.400000	0.214341E-03
6.450000	0.208294E-03
6.500000	0.203139E-03
6.550000	0.198852E-03
6.600000	0.195407E-03
6.650000	0.192779E-03
6.700000	0.190946E-03
6.750000	0.189885E-03
6.800000	0.189574E-03
6.850000	0.189992E-03
6.900000	0.191120E-03
6.950000	0.192936E-03
7.000000	0.195423E-03
7.050000 7.100000	0.198562E-03
7.150000	0.202336E-03 0.206726E-03
7.200000	0.211717E-03
7.250000	0+217717E-03
7.300000	0.223436E-03
7.350000	0.230133E-03
7.400000	0.237370E-03
7.450000	0.245131E-03
7.500000	0.253404E-03
7.550000	0.262175E-03
7.600000	0.271431E-03

CMEGA	EVAL
7.650000	0.281160E-03
7.700000	0.291349E-03
7.750000	
7.800000	0.301988E-03 0.313064E-03
7.850000	U.324567E-03
7.900000	0.336487E-03
7.950000	0.348812E-03
8.000000	0.361533E-03
8.050000	0.374639E-03
8.100000	0.388123E-03
8.150000	
	0.401975E-03
8.200000	0.416185E-03
8.250000	0.430745E-03
8.300000	0.445648E-03
8.350000	0.460884E-03
8.400000	0.476446E-03
8.450000	0.492327E-03
8.500000	0.508519E-03
8.550000	0.525015E-03
8.600000	0.541808E-03
8.650000	0.558892E-03
8.700000	0.576259E-03
8.750000	0.593904E-03
8.800000	0.611820E-03
8.850000	0.630002E-03
8.900000	0.648443E-03
8.950000	0.667138E-03
9.000000	0.686082E-03
9.050000	0.705270E-03
9.100000	0.724695E-03
9.150000	0.744354E-03
9.200000	0.764241E-03
9.250000	0.784352E-03
9.300000	0.804681E-03
9.350000	0.825226E-03
9.400000	0.845981E-03
9.450000	0.866942E-03
9.500000	0.888106F-03
9.550000	0.909468E-03
9.600000	0.931024E-03
9.650000	0.952771E-03
9.700000	0.974706E-03
9.750000	0.996824E-03
9.800000	0.101912E-02
9.850000	0.104160E-02
9.900000	0.106425E-02
9.950000	0.108707E-02
10.000000	0.111006E-02
10.050000	0+113321E-02

OMEGA	EVAL
10.000000	0.111006E-02
11.000000	0.160113E-02
12.000000	0.214152E-02
13.000000	0.272152E-02
14.000000	0.333604E-02
15.000000	0.398252E-02
16.000000	0.465989E~02
17.000000	0.536785E-02
18.000000	0.610650E-02
19.000000	0.687617E-02
20.000000	0.767725E-02
21.000000	0.851013E-02
22.000000	0.937520E-02
23.000000	0.102728E-01
24.000000	0.112031E-01
25.000000	0.121664E-01
26.000000	0.131629E-01
27.000000	0.141926E-01
28.000000	0.152556E-01
29.000000	0.163520E-01
30.000000	0.174816E-01
31.000000	0.186446E-01
32.000000	0.198408E-01
33.000000	0.210700E-01
34+0000000	0.223322E-01
35.000000	0.236272E-01
36.000000	0.249549E-01
37.000000	0.263150E-01
38.000000	0.277073E-01
39.000000	0.291316E-01
40.000000	0.305878E-01
41.000000	0.320754E-01
42.000000	0.335943E-01
43.000000	0.351442E-01
44.000000	U.367248E-01
45.000000	0.383359E-01
46.000000	0.399771E-01
47.000000	0.416481E-01
48.000000	0.433486E-01
49.000000	0.450782E-01
50.000000	0.468368E-01
51.000000	0.486239E-01
52.000000	0.504391E-01
54.000000	0.522822E=01
55.000000	0.541528E-01 0.560505E-01
56.000000	
57.000000	0.579750E-01 0.599259E-01
58.000000	C+619029E-01
59.000000	0.639055E-01
60.000000	0.659335E-C1
00400000	0.0077335E-01

OMEGA	EVAL
61.000000	0.679864E~C1
62.000000	0.700638E-01
63.000000	0.721654E-01
64.000000	0.742908E-01
65.000000	0.764396E-01
66.000000	0.786114E-01
67.000000	0.808059E-01
68+000000	0 • 830226E-01
69.000000	0.852610E-01
70.000000	0.875210E-01
71.000000	0.898020E-01
72.000000	0.921037E-01
73.000000	0.944256E-01
74+0000000	0.967674E-01
75.000000	0.991286E-01
76.000000	0.101509
77.000000	0.103908
78.000000	0.106325
79.000000	0.108760
80.000000	0.111213
81.000000	
	0.113683
82.000000	0.116169
83.000000	0.118672
84.000000	0.121190
85.000000	0.123725
86.000000	0.126274
87.000000	0.128838
88.000000	0.131416
89.000000	0.134008
90.000000	0.136614
91.000000	0.139233
92.000000	0.141865
93.000000	0.144509
94.000000	0.147166
95.000000	0.149834
96.000000	0.152513
97.000000	0.155203
98.000000	0.157904
99.000000	0.160615
100.000000	0.163336
101.000000	0.166066
102.000000	0.168806
103.000000	0.171554 0.174310
105.000000	0.177075
106.000000	0.179848
107.000000	0.182627
108.000000	0.185414
109.000000	0.188208
110.000000	0.191008
111.000000	0.193814
112.000000	0.196625

CMEGA	EVAL	
113.000000	0.19944	
114.000000	0.20226	
115.000000	0.20509	2
116.000000	0.20792	3
117.000000	0.21075	Q
118.000000	0.21359	
119.000000	0.21644	
120.000000	0.21928	
121.000000	0.22213	
122.000000	0.22498	
123.000000	0.22784	2
124.000000	0.23069	8
125.000000	0.23355	7
126.000000	0.23641	
127.000000	0.23927	
128.000000	0.24213	
129.000000	0.24500	
130.000000	0.24786	
131.000000	0.25072	8
132.000000	0.25359	1
133.000000	0.25645	4
134.0000000	0.25931	7
135.000000	0.26217	
136.000000	0.26503	
137.000000	0.26789	
138.000000	0.27075	
139.000000	0.27361	
140.000000	0.27646	
141.000000	0.27931	9
142.000000	0.28216	9
143.000000	0.28501	7
144.000000	0.28786	i
145.000000	0.29070	
146.000000	0.29354	
	0.29637	-
147.000000		
148.000000	0.29920	
149.000000	0.30203	
150.000000	0.30486	
151.000000	0.30768	
152.000000	0.31049	6
153.000000	0.31330	7
154.000000	0.31611	
155.000000	0.31891	
156.000000	0.32171	
157.000000	0.32450	
158.000000	0.32729	
159.000000	0.33007	
160.000000	0.33284	
161.000000	0.33561	
162.000000	0.33837	9
163.000000	0.34113	
164.000000	0.34388	
104*000000	0.34388	A

CMEGA	EVAL
165.000000	0.346634
166.000000	0.349373
167.000000	0.352106
168.000000	0.354832
169.000000	0.357551
170.000000	0.360263
171.000000	0.362968
172.000000	0.365666
173.000000	0.368357
174.000000	0.371040
175.000000	0.373716
176.000000	0.376385
177.000000	0.379046
178.000000	0.381699
179.000000	0.384344
180.0000000	0.386982
181.000000	0.389611
182.000000	0.392232
183.000000	0.394846
184.000000	0.397451
185.000000	0.400047
186.000000	0.402635
187.0000000	0.405215
188.000000	0.407786
189.000000	0.410349
190.000000	0.412903
191,000000	0.415448
192.000000	0.417985
193.000000	0.420512
194.000000	0 • 423031
195+000000	0.425541
196.000000	C. 428042
197.000000	0.430533
198.000000	0.433016
199,000000	0.435489
200.000000	0.437954
201.0000000	0.440409
202.000000	0.442854
203.0000000	0.445291
204.0000000	0.447718
205.000000	0.450136
206.000000	0.452544
207.000000	0.454943
208.0000000	0 • 457332
209.000000	0.459712
210.0000000	0.462083
211.0000000	0.464443
212.000000	0.466795
213.000000	0.469137
214.000000	0.471469
215.000000	0.473791
216.0000000	0.476104

OMEGA	EVAL
217.000000	0.478407
218.000000	C.480701
219.000000	0 • 482985
220.000000	0 • 48 52 59
221.000000	0.487523
222 • 0000000	C • 489778
223.000000	0.492023
224.000000	0.494259
225.000000	0.496484
226.000000	0.498700
227.000000	0.500906
228.000000	0.503103
229.000000	0.505290
230.000000	0.507467
231.000000	0.509634
232.000000	0.511792
233.000000	0.513940
234.000000	0.516078
235.000000	.518206
236.000000	.520325
237.000000	0.522434
238 • 000000	0.524534
239.000000	0.526624
240.000000	0.528704
241.000000	0.530774
242.000000	0.532835
243.000000	0.534887
244.000000	0.536928
245.000000	.538961
246.000000	0.540983
247.000000	0.542996
248.000000	0.545000
249.000000	0.546994
250.000000	(.548979
251.000000	0.550954
252.000000	0.552919
253.000000	0.554876
254.000000	0.556822
255.000000	0.558760
256.000000	0.560688
257.000000	0.562607
258.000000	0.564516
259.000000	0.566417
260.000000	0.568308
261.000000	0.570189
262.000000	0.572062
263.000000	0.573925
264.000000	0.575779
265.000000	0.577624
266.000000	0.579460
267.000000	0.581287
268.000000	0.583105
269.000000	0.584914

CMEGA	EVAL
270.000000	0.586714
271.000000	0.588505
272.000000	0.590287
273.000000	0.592060
274.000000	0.593824
275.000000	0.595580
276.000000	0.597326
277.000000	0.599064
278.000000	0.600793
279.000000	0.602514
280.000000	0.604226
281.000000	0.605929
282.000000	0.607623
283.000000	0.609309
284.000000	0,610987
285.000000	0.612656
286.000000	0.614316
287.000000	0.615968
288.000000	0.617612
289.000000	0.619247
290.000000	0.620874
291.000000	0.622493
292.000000	0.624103
293.000000	0.625705
294.000000	0.627299
295.000000	0.628885
296.000000	0.630463
297.000000	0.632032
298.000000	0.633594
299.000000	0.63514
300.000000	0 • 636693
301.000000	0.63823
302.000000	0.639760
303.000000	0.641282
304.000000	0.642796
305.000000	0.644302
306.000000	0.64580
307.000000	0.64729
308+000000	0.648774
309+000000	0.650250
310.000000	0.651718
311.000000	0.653178
312.000000	0+654630
313.000000	0.65607
314.000000	0.65751
315.000000	0.658943
316.000000	0.660366
317.000000	0.66178
318.000000	0.663189
319.000000	0.664590
320.000000	0.66598
321.0000000	0.667370
22222000	- 300131

CMEGA	EVAL
122.0000GU	0.66874
23.000000	0.67012
24.000000	0.67148
25.000000	0.67284
26.000000	0.67419
27.000000	0.67553
28.000000	0.67687
29.000000	0.67820
30.000000	0.67952
31.000000	0.68084
32.000000	0.68215
33.000000	0.68345
34.000000	0.68475
35.000000	0.68604
36.000000	0.68732
37.000000	0.68859
38.000000	0.68986
39.000000	0.69112
46.000000	0.69238
41.000000	0.69363
42.000000	0.69487
43.000000	0.69611
44.000000	0.69734
45.000000	0.69856
46.000000	0.69978
47.000000	0.70099
48.000000	0.70219
49.000000	0.70339
50.000000	0.70459
51.000000	0.70577
52.000000	0.70695
53.000000	0.70812
54.000000	0.70929
55.000000	0.71045
56.000000	0.71161
57.000000	0.71276
58.000000	0.71390
59.000000	0.71504
60.000000	0.71617
61.000000	
	0.71730
62.000000	0.71842
63.000000	0.71953
64.000000	0.72064
65.000000	0.72175
66.000000	0.72284
67.000000	0.72393
68.000000	0.72502
69.000000	0.72610
70.000000	0.72718
71.000000	0.72825
72.000000	0.72931
73.000000	0.73037

CMEGA	EVAL
374.000000	0.731425
375.000000	0.732473
376.0000000	0.733515
377.000000	0.734552
378.000000	0.735583
379.000000	0.736610
380.000000	0.737630
381.000000	0.738646
382.000000	0.739657
383.000000	0.740662
384.000000	0.741662
385.000000	0.742658
386.000000	0.743648
387.000000	0.744633
388.000000	0.745613
389.000000	0.746588
390.000000	0.747558
391.000000	0.748523
392.000000	0.749483
393.000000	0.750438
394.000000	0.751389
395.000000	0.752335
396.000000	0.753275
397.000000	0.754211
398.000000	0.755143
399.000000	0.756069
400.000000	0.756991
401.000000	0.757909
402.000000	0.758821
403.000000	0.759729
404.000000	0.760633
405.000000	0.761532
406.000000	0.762426
407.000000	0.763316
408.000000	0.764201
409.000000	0.765082
410.000000	0.765959
411.000000	0.766831
412.000000	0.767699
413.000000	0.768562
414.000000	0.769421
415.00000C	0.770276
416.000000	0.771126
417.000000	0.771973
418.000000	0.772815
419.000000	0.773652
420.000000	0.774486
421.000000	0.775315
422.000000	0.776141
423.000000	0.776962
424.000000	0.777779
425.000000	
	.778592

CMEGA	EVAL
426.000000	0.779402
427.0000000	0.780207
428.000000	0.781008
429.000000	0.781805
430.000000	0.782598
431.000000	0.783387
432.000000	0.784173
433.000000	0.784954
434.000000	0.785732
435.000000	0.786505
436.000000	0.787275
437.000000	0.788042
438.000000	0.788804
439.000000	0.789563
440.000000	0.790318
441.000000	0.791069
442.000000	0.791817
443.000000	0.792561
444.000000	0.793301
445.000000	0.794038
446.000000	0.794771
447.000000	0.795500
448.0000000	0.796226
449.000000	0.796949
450.000000	0.797668
451.0000000	0.798383
452.000000	0.799095
453.000000	0.799804
454.000000	0.800509
455.000000	0.801211
456+000000	0.801909
457.000000	0.802604
458.000000	0.803295
459.000000	0.803984
460.000000	0.804668
461.000000	0.805350
462.000000	0.806029
463.000000	0.806704
464.000000	0.807375
465.000000	0.808044
466.000000	0.808710
467.000000	0.809372
468.000000	0.810031
469.000000	0.810687
470.000000	0.811340
471.0000000	0.811989
473.000000	0.812636
474.000000	0.813280
475.000000	0.813920
476.000000	0.815192
477.000000	0.815823

```
OMEGA
                  0.817077
480.000000
                  0.817700
481.000000
                  0.818319
482.000000
                  0.818936
483.000000
                  0.819550
484.0000.00
                  0.820160
485.0000000
                  0.820768
486.000000
                  0.821374
                  0.821976
488.000000
                  0.822575
489.000000
                  0.823172
491.000000
                  0.824357
                  0.824945
                  0.825531
494.000000
                  0.826114
495.000000
                  0.826694
496.0000000
                  0.827271
497.000000
                  0.827846
498.000000
                  0.828418
                  0.828988
                  0.829554
                  0.830119
```

STOP END OF PROGRAM AT STATEMENT OO 6 + OO LINES

```
OMEGA
                   0.829554
 600.000000
                   0.905112
 800.000000
 900.0000000
                   0.940361
                   0.951139
                   0.959273
1300.000000
1400.000000
1500.000000
1600.000000
                   0.980328
1800.000000
1900.0000000
                   0.985969
                   0.987320
                   0.988485
2400.0000000
                   0.991160
                   0.991847
                   0.992458
2800.000000
                   0.993490
                   0.994324
                   0.995305
3400.000000
                   0.996052
                   0.996261
3800.0000000
                   0.996455
                   0.996634
4000.000000
                   0.996799
                   0.996953
                   0.997096
                   0.997229
4400.000000
                   0.997470
                   0.997680
4800.000000
                   0.997775
                   0.997865
                   0.997949
                   0.998029
STOP END OF PROGRAM AT STATEMENT OU 6 + 00 LINES
```

CMEGA	EVAL
5000.000000	0.997949
0000-0-0000	0.998575
7000.000000	0.998953
8000.000000	0.999198
9000.0000000	0.999366
10000.000000	0.999486
11000.000000	0.999576
12000.000000	0.999643
13000.000000	0.999696
14000.0000000	0.999738
15000.000000	0.999772
16000.000000	0.999799
17000.000000	0.999822
18000.0000000	0.999841
19000.000000	0.999858
20000.000000	0.999872
21000.000000	0.999884
22000.000000	0.999894
23000.000000	0.999903
24000.000000	0.999911
25000.000000	0.999918
26000.000000	0.999924
27000.000000	0.999930
28000.000000	0.999934
29000.0000000	0.999939
30000.000000	0.999943
31000.000000	0.999947
32000.000000	0.999950
33000.0000000	0.999953
34000.000000	0.999956
35000.000000	0.999958
36000.0000000	0.999960
37000.000000	0.999962
38000.000000	0.999964
39000.000000	0.999966
40000.000000	0.999968
41000.000000	0.999969
42000.000000	0.999971
43000.000000	
	0.999972
44000.000000	0.999973
45000.000000	0.999975
46000.0000000	0.999976
47000.0000000	0.999977
48000.000000	0.999978
49000.000000	0.999979
50000.000000	0.999979
51000.000000	0.999980
52000.000000	0.999981
53000.000000	0.999982
54000.000000	0.999982
55000.000000	0.999983
56000.0000000	0.999984

RC NOTCH FILTERS OF THE GOLDMAN TYPE

ъy

CHIN-PANG YU

B. S., Tsiwen Provincial Taipei Institute of Technology, 1958

AN ABSTRACT OF A MASTER'S REPORT

submitted in partiel fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY Menhetten, Kenses

1967

RC notch filters with equal amplitudes and unequal amplitudes at zero end infinite frequencies in the frequency response curve are described in the literature. Their mein applications are in feedback amplifier problems.

Three notch filters were investigated in this paper: the Goldman type RC notch filter, a more general notch filter of the Goldman type, and a still more complex RC notch filter. The parameter values for the existence of a notch frequency were found for each network by requiring that the capacitance heve a maximum value in each filter. In the third case the capacitance was a function of two variables, resulting in an interesting optimization problem.

The first and third networks were found to be equal amplitudes filters, whereas the second wes found to be an unequal amplitudes filter. The quality factor, Q, for the third network was found to be lower than that of the Goldman type filter; thus the more complex network features a wider bandwidth than the simple Goldman type notch network.