UE: Analyse dans les Espaces Vectoriels de Dimensions Finies (MAT 226) Fiche de TD N°1(proposé par Pr E.TAKOU)

Exercice 1

- 1) Soit d: $\mathbb{R}_+^* \times \mathbb{R}_+^* \to \mathbb{R}_+$ définie par d(x, y) = $\left| \frac{1}{x} \frac{1}{y} \right|$
 - a) Montrer que d est une distance sur \mathbb{R}_+^* .
 - b) Déterminer la boule de \mathbb{R}_+^* de centre 1 et de rayon r pour la distance d.
 - c) Déterminer la boule de \mathbb{R}_+^* de centre 1 et de rayon $\frac{1}{2}$ pour la distance d.
 - d) Les parties]0, 1[et]1, +∞[sont elles bornées pour cette distance
- 2) Soit $\delta : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$ définie par $\delta(x, y) = |e^x e^y|$
 - a) Montrer que δ est une distance sur ${\mathbb R}$
 - b) Décrire la boule B(0, 1) relativement à δ .
- 3) Soit $p \in \mathbb{N}^*$. on définit de $\mathbb{R}^p x \mathbb{R}^p$ vers \mathbb{R} les applications d_{∞} , d_S et d_e par les relations $d_{\infty}(x,y) = \sup_{1 \le i \le p} |x_i y_i|$, $d_S(x,y) = \sum_{i=0}^p |x_i y_i|$ et $d_e(x,y) = \sqrt{\sum_{i=0}^p (x_i y_i)^2}$
 - a) Montrer que d_{∞} , d_S et d_e sont des distances.
 - b) Représenter les boules unités centrées en l'origine pour ces distances dans les cas p =1 et p =2.
 - c) Montrer que d∞, d₅ et de sont des distances uniformément équivalentes.
 - d) Illustrer graphiquement ces situations dans le cas p = 2.
- 4) Dire si chacune des parties suivantes de \mathbb{R}^2 est un ouvert ou non: $A = \{(x,y) \in \mathbb{R}^2, 0 < |x-2| < 1\}, B = \{(x,y) \in \mathbb{R}^2, |x| < 0, |y| \le 1\}$ et \mathbb{Q}^2
- 5) Pour $(x, y) \in \mathbb{R}^2$, on pose $||(x,y)|| = Sup_{t \in \mathbb{R}} \frac{|x+ty|}{1+t^2}$. Montrer que ||.|| est une norme sur \mathbb{R}^2 . Est-elle uniformément équivalente à la norme euclidienne ?
- 6) Soit d la distance euclidienne sur \mathbb{R}^2 . Pour x, y $\in \mathbb{R}^2$, on pose $\delta(x,y) = \begin{cases} d(x,y) & \text{si } x,y \text{ et } 0 \text{ sont alignés} \\ d(x,0) & + d(0,y) & \text{sinon} \end{cases}$
 - a) Montrer que δ est une distance.
 - b) Soit $x \in \mathbb{R}^2 \setminus (0,0)$. On pose $r = \frac{1}{2}d(x,0)$. Dessiner les boules $B_{\delta}(x,r)$ et $B_{\delta}(x,3r)$.
 - c) Quelle réalité concrète la distance δ modélise-t-elle ?
- 7) Soit (E, d) un espace métrique.
 - a) Montrer que d' définie par d'(x, y) = $\sqrt{d(x, y)}$ est une distance sur E.
 - b) Enoncer des conditions suffisantes sur $f: \mathbb{R}_+ \to \mathbb{R}_+$ pour que $(x, y) \mapsto f(d(x, y))$ soit une distance.
 - c) Montrer que d'' définie par d''(x, y) = $\frac{d(x,y)}{1+d(x,y)}$ est une distance sur E.
 - d) Les distances d et d'' sont-elles uniformément équivalentes ?

- e) Les distances d et d'' sont-elles topologiquement équivalentes ?
- f) On suppose $E = \mathbb{R}$. Construire $B_{d''}(0, r)$.
- 8) On définit l'application d de \mathbb{C} vers \mathbb{R}_+ par

$$d\left(z_{1},z_{2}\right) = \begin{cases} 0 \text{ si } z_{1} = z_{2} \\ |z_{1} - z_{2}| \text{ si les points } d'affixes \ z_{1},z_{2} \text{ et l'origine sont alignés} \\ |z_{1}| + |z_{2}| \text{ si les points } d'affixes \ z_{1},z_{2} \text{ et l'origine ne sont pas alignés} \end{cases}$$

- a) Montrer que d est une distance sur C.
- b) Représenter dans le plan complexe les boules ouvertes B(1, $\frac{1}{2}$) et B($\frac{1}{2}$, 1)
- 9) Soit E l'espace vectoriel des fonctions numériques continues sur [0, 1]. Pour f ∈ E, on pose :

$$||f||_{\infty} = \sup\{|f(x)|, x \in [0,1]\} \text{ et } ||f||_{1} = \int_{0}^{1} |f(t)| dt$$

- a) Vérifier que $||.||_{\infty}$ et $||.||_{1}$ sont deux normes sur E e
- b) Soit $f \in E$. Comparer $||f||_1$ et $||f||_{\infty}$
- c) On définit la suite (f_n) d'éléments de E par $f_n(x) = x^n$.
 - (i) Pour $n \in \mathbb{N}^*$, calculer $||f_n||_{\infty}$ et $||f_n||_1$.
 - (ii) Prouver que $||.||_{\infty}$ et $||.||_{1}$ ne sont pas deux normes uniformément équivalentes.

Exercice 2

Soient (E, d) une espace métrique, A et B deux parties de E.

- 1) Rappeler les définitions de point adhérent, point intérieur et point d'accumulation.
- 2) Montrer que $A \subset B$ entraine $\bar{A} \subset \bar{B}$ et $\overset{o}{A} \subset \overset{o}{B}$
- 3) Montrer que \bar{A} et A' sont des fermés de E, que \bar{A} est le plus petit fermé contenant A et que \bar{A} = AUA'.
- 4) Montrer que A est fermé si et seulement \bar{A} = A.
- 5) Montrer que $\bar{A} = \bar{A}$, $\overline{A \cup B} = \bar{A} \cup \bar{B}$, $\overline{A \cap B} \subset \bar{A} \cap \bar{B}$. Donner un exemple où l'inclusion est stricte.
- 6) Montrer que $\overset{\circ}{A}$ est ouvert et est le plus grand ouvert contenu dans A.
- 7) Montrer que A est ouvert si et seulement si A = A
- 8) Montrer que : $\stackrel{\circ}{A} = \stackrel{\circ}{A}, \stackrel{\circ}{A \cap B} = \stackrel{\circ}{A} \cap \stackrel{\circ}{B}, \stackrel{\circ}{A \cup B} \subset \stackrel{\circ}{A \cup B}$. Donner un exemple où l'inclusion est stricte.
- 9) Montrer que $C_E^{\bar{A}} = C_E^{o}$ et $C_E^{o} = \overline{C_E^{A}}$, $Fr(\bar{A}) \subset Fr(A)$, $Fr(A) \subset Fr(A)$, $Fr(A) = \bar{A} \cap \overline{C_E^{A}}$; $Fr(A \cup B) \subset Fr(A) \cup Fr(B)$.
- 10)On suppose que E est un espace vectoriel normé et A un sous espace vectoriel.
 - a) Montrer que \bar{A} est un sous espace vectoriel de E.
 - b) Montrer que si $\overset{o}{A} \neq \emptyset$, alors on a A = E.

Exercice 3

- 1) On rappelle que $d: \mathbb{R}_+^* \times \mathbb{R}_+^* \to \mathbb{R}_+$ définie par $d(x,y) = |\frac{1}{x} \frac{1}{y}|$ est une distance sur \mathbb{R}_+^* . On pose $x_n = \sqrt{n}$.
 - a) La suite $(x_n)_{n \in \mathbb{N}^*}$ est-elle de Cauchy pour cette distance ?
 - b) La suite $(x_n)_{n \in \mathbb{N}^*}$ est-elle convergente pour cette distance ?
- 2) On rappelle que $\delta: \mathbb{R}x \mathbb{R} \to \mathbb{R}_+$ définie par $\delta(x, y) = |e^x e^y|$ est une distance sur \mathbb{R} . On pose $y_n = -n$.
 - a) La suite $(y_n)_{n \in \mathbb{N}}$ est-elle de Cauchy pour δ ?
 - b) La suite $(y_n)_{n \in \mathbb{N}}$ est-elle convergente pour δ ?
- 3) Soit (u_n) une suite d'éléments d'un espace métrique (E, d). Pour $n \in \mathbb{N}$, on pose $A_n = \{u_p, p \ge n\}$.
 - a) Rappeler la définition d'une valeur d'adhérence de (u_n) et montrer que a est une valeur d'adhérence de (u_n) si et seulement si $a \in \bigcap_{n \in \mathbb{N}} \overline{A_n}$.
 - b) Montrer que a est valeur d'adhérence de (u_n) si et seulement si a est limite d'une soussuite de (u_n)
 - c) Montrer que si (un) converge vers a ; alors a est la seule valeur d'adhérence de (un).
 - d) Par un contre-exemple, montrer que la réciproque de c) n'est pas vraie.
- 4) Montrer que dans un espace métrique (E,d) toute suite convergente est bornée et toute suite de Cauchy est bornée.
- 5) Soit A une partie non vide d'un espace métrique (E,d) munie de la distance induite da.
 - a) Montrer que si (A, d_A) est complet, alors A est une partie fermée de (E, d).
 - b) Montrer que di (E,d) est complet et A fermée dans (E,d) ; alors (A,dA) est complet.
- 6) Soit E un ensemble non vide. Soit l'ensemble $\mathcal{B}(\mathsf{E},\mathbb{R})$ des applications définies de E vers \mathbb{R} et qui sont bornées. Pour $\mathsf{f} \in \mathcal{B}(\mathsf{E},\mathbb{R})$, on pose $||\mathsf{f}|| = Sup_{t \in E}|f(t)|$.
 - a) Vérifier que $|\cdot|$ est une norme sur $\mathcal{B}(\mathsf{E},\,\mathbb{R})$.
 - b) Montrer que ($\mathcal{B}(\mathsf{E},\mathbb{R})$, ||.||) est un espace de Banach.

Exercice 4

- 1) Soit (E,d) et (F, δ) deux espaces métriques et f : E \mapsto F une application.
 - a) Montrer que les assertions ci-dessous sont équivalentes :
 - (i) f est une application continue.
 - (ii) L'image réciproque par f d'un ouvert de (F, δ) est un ouvert de (E, d)
 - (iii) L'image réciproque par f d'un fermé de (F, δ) est un fermé de (E, d)

- Pour toute partie A de E, on a $f(\overline{A}) \subset \overline{f(A)}$ (iv)
- b) Montrer que si f est continue, le graphe $G = \{(x, f(x)), x \in E\}$ est fermé dans ExF.
- 2) Soit (E,d) un espace métrique.
 - a) Montrer que d : ExE $\rightarrow \mathbb{R}$ est une application uniformément continue.
 - b) Soit A une partie non vide de E. Montrer que Φ_A définie de E vers $\mathbb R$ par $\Phi_A(x) = Inf_{y \in A}d(x, y)$ est uniformément continue.

Exercice 5

- 1) Soit (E, d) un espace métrique. Montrer qu'une suite convergente et sa limite forment une partie compacte de E.
 - a) Montrer qu'une réunion finie de parties compactes est compacte. Est-ce le cas pour une réunion quelconque de parties compactes ?
 - b) Montrer que s'ile existe r > 0 tel que $\forall x \in E$, B'(x, r) est compact, alors (E,d) est
 - c) On suppose que E est un espace vectoriel normé. Soient A une partie compacte et B une partie fermée de A. Montrer que A + B = $\{a + b, a \in A \text{ et } b \in B\}$ est une partie fermée.
- 2) Soient E un espace vectoriel de dimension finie et $(e_1,\ ...,\ e_p)$ une base de E. Pour x = $\sum_{i=1}^{p} x_i e_i$. On pose $||x|| = \sum_{i=1}^{p} |x_i|$. Soit ϱ une norme sur E.
 - a) Montrer que ||.|| est une norme sur E.
 - b) Montrer que ϱ est une application continue.
 - c) Montrer que $S = \{x \in E, \varrho(x) = 1\}$ est une partie compacte de (E, ||.||).
 - d) Montrer que : $\exists c_1; c_2 \in \mathbb{R}^*$ telles que $c_1 | |x| | \le \varrho (x) \le c_2 | |x| |$ pour tout $x \in E$.
 - e) En déduire que deux normes quelconques ϱ_1 et ϱ_2 sur E sont équivalentes.
- 3) Soient E et F deux espaces vectoriels normés de dimensions finies. Montrer que toute application linéaire $f: E \rightarrow F$ est continue.

Exercice 6

- 1) Soit A une partie non vide d'un espace métrique (E, d). Montrer que tout chemin joignant un point de l'intérieur de A à un point de l'extérieur de A rencontre la frontière de A.(c'est le théorème de passage des douanes).
- 2) On suppose que E est un espace vectoriel normé.
 - a) Rappeler la définition d'une partie convexe et d'une partie connexe par arcs.
 - b) Montrer que toute boule est convexe.
 - c) Montrer que toute réunion croissante de parties convexes est convexe.
 - d) Montrer que toute partie convexe est connexe. La réciproque est-elle vraie ?
- 3) Soit $\Omega \subset \mathbb{R}^3$ un domaine (c.-à-d. un ouvert connexe). Une ligne brisée de \mathbb{R}^3 d'origine a et d'extrémité b est la réunion d'une suite ([a_i, b_i])_{1≤ i ≤ p} de segments tels que $a_1 = a$, $b_p = b$ et $a_{i+1} = b_i \quad \forall i = 1, ..., p-1.$
 - a) Montrer que Ω est connexe par ligne brisée. C-est à dire que deux points quelconques de Ω peuvent être joints par une ligne brisée incluse dans Ω .

b) Soit $L \subset \Omega$ une ligne brisée. Montrer qu'il existe r > 0 tel que $\{x \in \mathbb{R}^3, d(x, L) < r\} \subset \Omega$

c) Soit D une droite de \mathbb{R}^3 . Montrer que $\Omega \backslash D$ est un domaine.