University of Victoria

CENG 241

DIGITAL DESIGN I

Lab 4 - 4-bit Binary Adder / Subtractor

Instructor:

Dr. Amirali Baniasadi

 $Teaching\ Assistant:$

Grace Hui

Yves Senechal V00213837 Tyler Stephen V00812021 A01 - B03

June 22, 2015

1 Introduction

Combinational logic circuits can be implemented to add and subtract binary numbers. In this lab, a 4-bit binary adder/subtractor was designed, implemented and tested through the Xilinx ISE and Verilog HDL.

2 Discussion

2.1 Binary addition and subtraction using ones complement representation

Addition of two 1-bit binary numbers (i.e. A + B) is achieved simply by adding A + B where a sum (S) and carry (C) are the outputs. Subtraction of two 1-bit binary numbers (i.e. A - B) can be achieved by taking the 2's complement of B and adding it to A. The 2's complement of B is the 1's complement of B, which is simply B' with the value 1 added to it. XOR gates have characteristic functions $X \oplus 0 = X$, and $X \oplus 1 = X$ '.

For addition, CONTROL is set to 0, so the XOR gate provides no change to B; B is added to A. For subtraction, CONTROL is set to 1 which inverts B through the XOR gate, CONTROL is then inputed as CIN which effectively adds 1 to the inverted B to become its 2's complement. This process can be expanded from the 1-bit system explained here, to the 4-bit system explored in the lab.

2.2 Building the hierarchical adder / subtractor

To construct the complex 4-bit adder/subtractor, a hierarchical design was implemented to build the circuit in stages which greatly simplified it. The adder/subtractor shown in figure 5, required four full-adders (FA) and four XOR gates. The FAs were constructed from two half-adders (HA) and an OR gate shown in figure 3. Each HAs were constructed using only logic gates illustrated in figure 1.

2.2.1 Half adder

First, the HA was designed on the Xilinx ISE (figure 1). To ensure a properly functioning circuit, a simulation was performed to ensure proper outputs from any inputs; the results appear in figure 2.

2.2.2 Full adder

Second, the FA, shown in figure 3, was designed on the schematic editor. The circuit was similarly tested as the HA to ensure proper functionality; its results appear in figure 4.

2.2.3 Adder / subtractor

Next, the adder/subtractor was laid out as indicated in figure 5. Notice, there are two 4-bit binary numbers plus a single bit CONTROL that comprise the inputs, while the outputs are a 4-bit sum with a single bit carry. As indicated earlier, the CONTROL bit is responsible for the equation's operation: either 0 for addition, or 1 for subtraction.

Figure 1: Schematic of the half adder

						42	6.8 ns
Current Simulation Time: 1000 ns		0 ns	100 ns	200 ns	300 ns	400 n	s 500 ns
‰ COUT	1						
ઢ ∏ SOUT	0						
₹ ∏ XIN	1						
NIY 🛴	1						

Figure 2: Test results of the half adder

Figure 3: Schematic of the full adder

																															840	1.2 ns	
Current Simulation Time: 900 ns		0 ns III	100	ns l	1 1	200 I	ns	ı	ı	300	ns	ı	ı	400 I	ns I	ı	ı	500	ns	1	ı	600 I	ns I	1	ı	701 	0 ns	; 		80 I	0 ns	900 I I	ns
MIA 📆	1																										L						
∛ ∬ BIN	1																																
∳ ∬ CIN_IN	1																																
∛ ∏ SOUT	1																																
COUT_OUT	1																																

Figure 4: Test results of the full adder

The adder/subtractor was tested with various inputs that can be observed in figure 6. The results are also included in table 1.

Figure 5: Schematic of the adder / subtractor

CTRL	A	В	S	С
0	1	4	5	0
0	-3	2	-1	0
0	-5	-1	-6	1
0	7	6	-3	0
0	-5	-5	7	1
1	4	2	2	1
1	4	-1	5	0
1	-2	3	-5	1
1	-3	-4	1	1
1	4	-6	-6	0
1	-5	4	7	1

Table 1: Output of the adder / subtractor for several test cases, in decimal

2.3 Verilog hierarchical adder / subtractor

Similar to the schematic method, a hierarchical design for the adder/subtractor was implemented with the Verilog HDL. The FA, displayed in FA.v, included the HA design from Lab 2. The code forming the adder/subtractor is laid out in AddSub.v.

2.3.1 Listings

```
module FA(A, B, CIN, S, COUT)
input A, B, CIN;
output S, COUT;
```


Figure 6: Test results of the adder / subtractor

```
HA U0(A, B, S0, C0);
HA U1(S0, CIN, S, C1);
assign COUT = C0 | C1;
```

FA.v

```
module AddSub(A0, A1, A2, A3, B0, B1, B2, B3, CTRL, S0, S1, S2, S3, C)
input A0, A1, A2, A3, B0, B1, B2, B3, CTRL;
output S0, S1, S2, S3, C;

FA U0(A0, B0 ^ CTRL, CTRL, S0, COUT0);
FA U1(A1, B1 ^ CTRL, COUT0, S1, COUT1);
FA U2(A2, B2 ^ CTRL, COUT1, S2, COUT2);
FA U3(A3, B3 ^ CTRL, COUT2, S3, C);
```

AddSub.v

2.3.2 Simulation results and delay times

To ensure the functionality of the FA, a functional simulation was performed which can be viewed in figure 7(a). Post place simulation indicated a circuit delay of 7.3 ns which can be viewed in figures 7(b)&(c).

The adder/subtractor was then tested for functionality, and the summations and deductions can be observed in figure 8. Many attempts of observing a propagation delay of the adder/subtractor verilog through post place simulation were ultimately unsuccessful.

Figure 7: Simulation results for the full adder written in verilog

													725	i.2 ns
Current Simulation Time: 800 ns		0 ns 50 n	s 100 n	s 150 ns	200 ns	250 ns 30	0 ns 350 ns	400 ns	450 ns 5	500 ns 55	0 ns 600	ns 650 ns	700 ns	750 n 8 00 ns
≩ ∏ A0	1													
ઢ ∏ A1	1													
ढे ∏ A2	0													
3 ∏ A3	1													
ઢ ∭ B0	0													
ઢ ∏ B1	0													
ढे ∏ B2	1													
ò ∏ B3	0													
3 ∏ CTRL	1													
3 ,∏ S0	1													
ઢ ∏ S1	1													
ઢ ∏ S2	1													
3 € S3	0													
∂ ∬ C	1													

Figure 8: Functional simulation results for adder / subtractor written in verilog

3 Conclusion

This lab proved the possibility of creating a hierarchic 4-bit adder/subtractor from a single control bit, XOR gates, and FAs on two separate platforms. The schematic method worked flawlessly, while the verilog method, possibly due to a glitch, would not propagate the delay.