Breve introducción al Aprendizaje Computacional

Aprendizaje Computacional y Minería de Datos

Aprendizaje Computacional (Machine learning)

Área de la Inteligencia Artificial cuyo objetivo es el desarrollo de algoritmos y técnicas que permitan a los computadores aprender de los datos.

Minería de datos (Data Mining)

Proceso de <u>extraer conocimiento útil y comprensible</u> de grandes volúmenes de datos.

El conocimiento extraído debe:

- No ser trivial,
- Estar implícito en los datos,
- Ser previamente desconocido
- Ser potencialmente útil

Terminología

- Objetos: casos a estudiar. Se les llama también registros, ejemplos, instancias.
- Atributos: propiedades de un objeto.
 Se le llama también variables, rasgos o características
- Datos: colección de objetos y sus atributos
- Valores del atributo: números o símbolos que pueden ser asignados a cada atributo
- Cuando el conjunto de datos incluye la clase a la que pertenece cada objeto se dice que los datos están etiquetados

Tipos de modelos (según su objetivo)

Según si se incluye la variable clase:

- Clasificación supervisada:
 - Datos etiquetados (se incluye también la variable *clase*)
- Clasificación no supervisada:
 - Datos no etiquetados (no se incluye la variable *clase*)

Según su objetivo:

- Modelos predictivos
 - El objetivo es predecir los valores de la variable de interés (clase o variable respuesta) a partir de valores de otras variables.
- Modelos descriptivos
 - El objetivo es describir el comportamiento de los datos de forma que sea interpretable

Ejemplos

Clasificación:

Predecir la nota de un estudiante según su actividad durante el curso

- Aprobado/suspenso (clasificación)
- Nota numérica (regresión)

Reglas de asociación:

Cuando un cliente compra un producto, suele comprar (o mirar) otros también

Clustering:

División en grupos (clusters) con características similares (minimizando la distancia dentro de los cluster y maximizando la distancia entre los cluster)

Aprendizaje supervisado:

- Clasificadores basados en reglas
- Clasificadores basados en árboles de decisión

Esquema general

Datos de entrenamiento con ejemplos etiquetados

Training Set

Conjunto de nuevos ejemplos

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

los nuevos ejemplos

Clasificadores basados en reglas

El clasificador en este caso es un conjunto de reglas del tipo:

• Regla: $(Condición) \rightarrow y$

donde:

- condición = conjunto de atributos
- y es la clase

Ejemplo clasificador basado en reglas

Variable clase

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
human	warm	yes	no	no	mammals
python	cold	no	no	no	reptiles
salmon	cold	no	no	yes	fishes
whale	warm	yes	no	yes	mammals
frog	cold	no	no	sometimes	amphibians
komodo	cold	no	no	no	reptiles
bat	warm	yes	yes	no	mammals
pigeon	warm	no	yes	no	birds
cat	warm	yes	no	no	mammals
leopard shark	cold	yes	no	yes	fishes
turtle	cold	no	no	sometimes	reptiles
penguin	warm	no	no	sometimes	birds
porcupine	warm	yes	no	no	mammals
eel	cold	no	no	yes	fishes
salamander	cold	no	no	sometimes	amphibians
gila monster	cold	no	no	no	reptiles
platypus	warm	no	no	no	mammals
owl	warm	no	yes	no	birds
dolphin	warm	yes	no	yes	mammals
eagle	warm	no	ves	no	birds

Modelo aprendido:

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \wedge (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) \rightarrow Amphibians

Árboles de decisión

El clasificador en este caso será un árbol de decisión

- Cada nodo de decisión contiene un test
- Cada rama descendente corresponde a un valor posible del atributo
- Cada hoja está asociada a una clase
- Cada camino en el árbol (de la raíz a la hoja) corresponde a una regla de clasificación

IF x1 < a1 and x2 < a3 THEN

Ejemplo de clasificador (árbol de decisión)

Variable clase

age	income	student	credit_rating	buys_comp.
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Nuevos ejemplos

age	income	student	credit_rating	buys comp.
<=30	fair	no	fair	?
>40	high	no	excellent	?
3140	low	no	fair	?

buys_comp.
no
no
yes

Aprendizaje no supervisado:

- Reglas de asociación
- Clustering

Reglas de asociación

Dado un conjunto de datos, el objetivo es encontrar reglas que descubran hechos/valores que ocurren simultáneamente

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Por ejemplo, las reglas

[Milk} → Bread

[Milk, Diaper} → Beer

Clustering

Dados un conjunto de datos, el objetivo es agruparlos en *clusters* de modo que haya una alta variabilidad entre los grupos y una alta similitud dentro de cada grupo

Medidas de calidad

Medidas de calidad en clasificación

Tasa de aciertos (Accuracy): % de instancias bien clasificadas Tasa de error (Error rate): % de instancias mal clasificadas Matriz de confusión:

- Cada columna de la matriz representa el número de predicciones en cada clase
- Cada fila representa a las instancias en la clase real

		Predicted class		
		Cat	Dog	Rabbit
ass	Cat	5	3	0
Actual class	Dog	2	3	1
Actı	Rabbit	0	2	11

Medidas de calidad para reglas de asociación

Dado un conjunto de N datos y una regla X -> Y, se denomina:

<u>Soporte</u> (s): proporción de ejemplos que contienen el antecedente y el consecuente de la regla con respecto al total.

$$s = \frac{frecuencia(X,Y)}{N}$$

<u>Confianza</u> (c): proporción de ejemplos que contienen el antecedente y el consecuente de la regla con respecto al total de ejemplos que contienen el antecedente.

$$c = \frac{frecuencia(X,Y)}{frecuencia(X)}$$

La confianza mide la fiabilidad de la regla, mientras que el soporte mide cuántos ejemplos permite clasificar

Medidas de calidad para reglas de asociación

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

$$s = \frac{Frq(Milk,Diaper,Beer)}{|N|} = \frac{2}{5} = 0.4$$

$$c = \frac{Frq(Milk,Diaper,Beer)}{Frq(Milk,Diaper)} = \frac{2}{3} = 0.67$$

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)

{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)

{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)

{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)

{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)

{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```