Homework #3 Solution

1. a.

Decision variables: $x_j = 1$ if invest in startup i; 0 otherwise for all companies i = 1, ..., 20. $y_j = 1$ if additional industry risk considered for j; 0 otherwise for all industry $j = \{1, 2, 3, 4, 5\} = \{\text{Health, Tech, Food, Nonprofit, SocialMedia}\}$.

We also define I_i , E_i , R_i to be investment level, expected return, and risk assessment value for each startup i; specific values are given in the table.

Formulation:

$$\begin{array}{lll} \textit{Minimize} & \sum_{i=1}^{20} R_i x_i + \sum_{j=1}^{5} 4y_j \\ \\ \textit{Subject to} & \sum_{i=1}^{20} I_i x_i \geq 65,000,000 & \textit{(bounds on budget)} \\ & \sum_{i=1}^{20} I_i x_i \leq 85,000,000 & \\ & \sum_{i=1}^{20} (E_i - I_i) \, x_i \geq 0.33 \, \sum_{i=1}^{20} I_i \, x_i & \textit{(minimum investment gain)} \\ & \sum_{i=1}^{4} I_i x_i \leq 0.4 \, \sum_{i=1}^{20} I_i \, x_i & \textit{(40\% cap on single industry)} \\ & \sum_{i=5}^{8} I_i x_i \leq 0.4 \, \sum_{i=1}^{20} I_i \, x_i & \\ & \sum_{i=9}^{12} I_i x_i \leq 0.4 \, \sum_{i=1}^{20} I_i \, x_i & \\ & \sum_{i=13}^{16} I_i x_i \leq 0.4 \, \sum_{i=1}^{20} I_i \, x_i & \\ & \sum_{i=17}^{20} I_i x_i \leq 0.4 \, \sum_{i=1}^{20} I_i \, x_i & \\ & \sum_{i=5}^{4} x_i \leq 1 + 3 \, y_j & \textit{(added risk factor)} \\ & \sum_{i=5}^{8} x_i \leq 1 + 3 \, y_j & \\ & \sum_{i=17}^{16} x_i \leq 1 + 3 \, y_j & \\ & \sum_{i=17}^{20} x_i \leq 1 + 3 \, y_i & \\ & \sum_{i=17}^{20} x_i \leq 1 + 3 \, y_i & \\ & \sum_{i=17}^{20} x_i \leq 1 + 3 \, y_i & \\ & \sum_{i=17}^{20} x_i \leq 1 + 3 \, y_i & \\ & \sum_{i=17}^{20} x$$

h

The optimal solution invests in startups 1–3, 5–6, 8–10, 12, 14, and 17–20. This means we incur the additional health, tech, food, and social media industry risks. The total risk is 67.

Input (Data)									
Startup ID	1	2	3	4	5	6	7	8	9
Industry	Health	Health	Health	Health	Tech	Tech	Tech	Tech	Foo
Investment	\$3,330,105.00	\$6,117,680.23	\$4,050,126.00	\$5,280,131.00	\$4,650,072.00	\$4,526,987.16	\$3,420,068.00	\$3,900,129.00	\$5,147,7
Expected Return	\$6,560,498.80	\$6,780,075.00	\$6,319,693.93	\$9,865,219.86	\$5,886,612.77	\$4,650,092.00	\$10,641,062.95	\$6,748,642.23	\$5,550,0
Risk	1	6	6	10	4	5	7	5	3
Expected gain	\$3,230,393.80	\$662,394.77	\$2,269,567.93	\$4,585,088.86	\$1,236,540.77	\$123,104.84	\$7,220,994.95	\$2,848,513.23	\$402,2
Decision Variables									
	1	2	3	4	5	6	7	8	9
invest	1	1	1	0	1	1	0	1	1
	1	2	3	4	5				
additional risk indicator	1	1	1	0	1				
Objective Function									
total risk	67								
Constraints									
investment bounds	65413778.15	>=	65000000						
	65413778.15	<=	85000000						
investment gains	30394076.57	>=	21586546.79						
40% cap	6162356.5	<=	26165511.26						
	4208158.84	<=	26165511.26						
	10326658.48	<=	26165511.26						
	4502007.9	<=	26165511.26						
	5194894.85	<=	26165511.26						
added risk	3	<=	4						
	3	<=	4						
	3	<=	4						
	1	<=	1						
	4	<=	4						

2. a.

distance	Α	В	С	D	E	F	G
Α	0	7	4	5	12	7	14
В	7	0	11	12	5	14	12
С	4	11	0	7	16	3	11
D	5	12	7	0	16	5	9
E	12	5	16	16	0	14	7
F	7	14	3	5	14	0	8
G	14	12	11	9	7	8	0

b. Decision variables:

 X_j =1 if a store is opened at node $j \in \{A, B, ..., G\}$; 0 otherwise. Thus, we defined 7 binary decision variables of X_A , X_B , X_C , X_D , X_E , X_F , X_G .

Formulation:

Define a matrix a_{ij} which indicates whether a demand at node i can be covered by a facility located at node j or not. That is, a_{ij} is set to 1 if the distance between the nodes i and j, d_{ij} , is less than or equal to 8. Otherwise, it is set to 0.

$$\begin{array}{ll} \textit{Minimize} & \sum_{j \in \{A, \dots, G\}} X_j \\ \\ \textit{Subject to} & \sum_j \ a_{ij} X_j \ \geq \ 1 \ \ \textit{for all } i,j \in \{A,B,\dots,G\} \ \ \ \textit{(coverage)} \\ \\ X_j = \{0,1\} & \textit{for all } j \in \{A,B,\dots,G\}. \ \ \ \textit{(binary)} \end{array}$$

Equivalently, one may express the formulation as follows:

Minimize
$$X_A + X_B + X_C + X_D + X_E + X_F + X_G$$

Subject to $X_A + X_B + X_C + X_D + X_F >= 1$
 $X_A + X_B + X_E >= 1$

$$X_A + X_C + X_D + X_F >= 1$$

 $X_A + X_C + X_D + X_F >= 1$
 $X_B + X_E + X_G >= 1$
 $X_A + X_C + X_D + X_F + X_G >= 1$
 $X_E + X_F + X_G >= 1$
 $X_A, X_B, X_C, X_D, X_E, X_E, X_G = \{1, 0\}.$

c. The following is the coverage matrix based on the distance matrix:

coverage	Α	В	С	D	Е	F	G
Α	1	1	1	1	0	1	0
В	1	1	0	0	1	0	0
С	1	0	1	1	0	1	0
D	1	0	1	1	0	1	0
E	0	1	0	0	1	0	1
F	1	0	1	1	0	1	1
G	0	0	0	0	1	1	1

Decision Varia	bles						
	Α	В	С	D	E	F	G
Locations	1	0	0	0	1	0	0

The minimum number of facility to open is 2.

*Note that the above solution is not the only optimal solution. There are some alternative optimal solutions for this problem; for example, one can open two facilities at B and F and still cover all the markets.

d. We can modify the formulation accordingly as follows. First, we define another decision variable which indicates whether a demand node is covered or not. Specifically, we have:

 $Y_i = 1$ if a demand at node $i \in \{A, B, ..., G\}$ is covered; 0 otherwise. Thus, we define 7 additional binary decision variables of Y_A , Y_B , Y_C , Y_D , Y_E , Y_F , Y_G .

In addition, we use h_i to indicate the corresponding demand at node i. Using these, the formulation for the problem can be expressed as follows:

$$\begin{array}{ll} \textit{Maximize} & \sum_{i \in \{A, \dots, G\}} h_i Y_i \\ \textit{Subject to} & \sum_{j \in \{A, \dots, G\}} a_{ij} X_j \geq Y_i \quad \textit{for all } i, j \in \{A, B, \dots, G\} \quad \textit{(coverage)} \\ & \sum_j X_j \leq 2 \quad \textit{for all } i, j \in \{A, B, \dots, G\} \quad \textit{(budget)} \\ & X_j = \{0,1\} \quad \textit{for all } j \in \{A, B, \dots, G\} \quad \textit{(binary)} \\ & Y_i = \{0,1\} \quad \textit{for all } j \in \{A, B, \dots, G\}. \quad \textit{(binary)} \end{array}$$

Input (Data)							
distance	Α	В	С	D	Е	F	G
A	0	7	4	5	12	7	14
В	7	0	11	12	5	14	12
C	4	11	0	7	16	3	11
D	5	12	7	0	16	5	9
E	12	5	16	16	0	14	7
F	7	14	3	5	14	0	8
G	14	12	11	9	7	8	0
G	14	12	11	9	1	0	U
demand	Α	В	С	D	E	F	G
demand	100	200	120	45	250		75
	100	200	120	43	230	80	75
Cover distance	6		Dudget	_			
Cover distance	6		Budget	2			
001/6**	Λ	D	-	Р	Г	Г	
coverage	A	<u>B</u>	C	D	E	F	G
A	1	0	1	1	0	0	0
В	0	1	0	0	1	0	0
С	1	0	1	0	0	1	0
D	1	0	0	1	0	1	0
E	0	1	0	0	1	0	0
F	0	0	1	1	0	1	0
G	0	0	0	0	0	0	1
Decision Variables							
	Α	В	С	D	Е	F	G
X	0	1	1	0	0	0	0
Υ	1	1	1	0	1	1	0
Objective Function							
- Lijoutive i anotion	Total						
	Demand	750					
1							
Constraints			_				
	total		Cover				
	coverage		or not?				
	1	>=	1				
	1	>=	1				
	1	>=	1				
	0	>=	0				
	1	>=	1				
	1	>=	1				
	0	>=	0				
	# of facility		budget				
	2	<=	2				

3. a. This is an unconstrained optimization problem. The objective is to maximize the profit which is given by: p*(500-25p)-2*(500-25p)-20.

One can use the solver to obtain the optimal pricing for the problem. The optimal solution is $p^*=$11$ with a resulting profit of \$2005. The resulting optimal profit is illustrated in the figure below.

b. We can simply add a constraint stipulating that $p \ge 8 . Hence, the formulation is given as follows:

maximize
$$p*(500-25p)-2*(500-25p)-20$$

subject to: $p \le 8$, $p \ge 0$.

The optimal solution is $p^*=\$8$ with a resulting profit of \$1780. The resulting optimal profit is illustrated in the figure below.

c. We note that the objective function is concave and it peaks at \$11 (as shown in part a). Hence, the new constraint $p \le 14 does not bind, and therefore the optimal solution is identical to part a; p*=\$11 with a resulting profit of \$2005.

4.PGT has four decision strategies: no bid, bid 115, bid 120, or bid 125.a. Decision Tree for Pangyo Tech's bidding strategy:

$b.\ Optimal\ strategy\ is\ to\ bid\ KRW\ 115\ million,\ and\ the\ corresponding\ expected\ payoff\ is\ KRW\ 12\ million.$

		Decision								
			Competitors' Lowest Bid Scenarios							
Payoff Table		No Bid	<115	115 <= x <120	120 <= x < 125	>= 125	Expected Result			
	No Bid	₩0	₩0	₩0	₩0	₩0	₩0			
Decision	Bid 115	₩ 15	(₩5)	₩ 15	₩ 15	₩15	₩12			
	Bid 120	₩20	(₩5)	(₩5)	₩ 20	₩ 20	₩10			
	Bid 125	₩25	(₩5)	(₩5)	(₩5)	₩25	₩6			
	Probability	0.3	0.14	0.28	0.21	0.07				
				Maximum Exp	pected Payoff		₩12			
				Optimal decis	sion		Bid 115			