À rendre le lundi 26 février.

Problème. Polynômes de Legendre.

Pour $n \in \mathbb{N}$, on note

$$U_n = (X^2 - 1)^n$$
 et $L_n = \frac{1}{2^n n!} U_n^{(n)}$.

Les polynômes L_n sont appelés **polynômes de Legendre**.

Dans tout ce problème enfin, m et n désigneront des entiers naturels.

Partie A. Une famille de polynômes scindés simples sur \mathbb{R} .

- 1. Déterminer L_0 et L_1 et vérifier que $L_2 = \frac{1}{2} (3X^2 1)$.
- 2. (a) Quel est le degré de U_n ? Son coefficient dominant? Calculer $U_n^{(2n)}$. Que vaut $U_n^{(k)}$ lorsque k > 2n?
 - (b) Justifier que L_n est de degré n et préciser la valeur de son coefficient dominant.
- 3. (a) Énoncer le théorème de Rolle.
- (b) Pour $n \in \mathbb{N}^*$, déterminer les racines de U_n , en précisant leur ordre de multiplicité, puis justifier qu'il existe un réel $\alpha \in]-1,1[$ et un réel λ que l'on ne cherchera pas à déterminer, tels que :

$$U'_n = \lambda (X - 1)^{n-1} (X + 1)^{n-1} (X - \alpha).$$

(c) Dans cette question seulement, $n \geq 2$. Soit $k \in [1, n-1]$. On suppose qu'il existe des réels $\alpha_1, \ldots, \alpha_k$ deux à deux distincts dans]-1,1[et un réel μ tels que

$$U_n^{(k)} = \mu(X-1)^{n-k}(X+1)^{n-k}(X-\alpha_1)\cdots(X-\alpha_k).$$

Justifier qu'il existe des réels $\beta_1,\dots,\beta_{k+1}$ deux à deux distincts dans] -1,1[et un réel ν tels que

$$U_n^{(k+1)} = \nu(X-1)^{n-k-1}(X+1)^{n-k-1}(X-\beta_1)\cdots(X-\beta_{k+1}).$$

(d) En déduire que si n est non nul, L_n admet n racines simples, toutes dans l'intervalle]-1,1[.

Partie B. Évaluation de L_n en 1 et en -1.

1. À l'aide de la formule de Leibniz, démontrer :

$$L_n = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k}^2 (X+1)^{n-k} (X-1)^k.$$

2. Calculer $L_n(1)$ et $L_n(-1)$.

Partie C. Calcul des nombres $\langle L_n, L_m \rangle$.

Dans cette partie, pour deux polynômes P et Q de $\mathbb{R}[X]$, on notera $\langle P,Q \rangle$ l'intégrale

$$\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t)dt.$$

Ceci définit un "produit scalaire" sur l'espace vectoriel $\mathbb{R}[X]$ (fin d'année). Ci-dessous, nous allons prouver que les L_i sont des polynômes deux à deux "orthogonaux".

1. Pour $k \in [0, n]$, on note

$$\mathcal{P}(k): \langle U_n^{(n)}, U_m^{(m)} \rangle = (-1)^k \langle U_n^{(n-k)}, U_m^{(m+k)} \rangle \times$$

- (a) En supposant n non nul, à l'aide d'une intégration par parties, démontrer que pour $k \in [0, n-1]$ $\mathcal{P}(k) \Longrightarrow \mathcal{P}(k+1)$.
- (b) Justifier l'égalité

$$\langle L_n, L_m \rangle = \frac{(-1)^n}{2^{n+m} n! m!} \langle U_n, U_m^{(m+n)} \rangle.$$

2. À l'aide de ce qui précède, démontrer que

$$n \neq m \Longrightarrow \langle L_n, L_m \rangle = 0.$$

3. (a) Toujours à l'aide de la question 1 (b), démontrer que

$$\langle L_n, L_n \rangle = \frac{(2n)!}{2^{2n}n!^2} \int_{-1}^{1} (1 - t^2)^n dt.$$

- (b) Pour $k \in \mathbb{N}$, on note $J_k = \int_{-1}^{1} (1 t^2)^k dt$. Intégrer J_k par parties et obtenir une relation entre J_k et J_{k-1} lorsque $k \ge 1$.
- (c) En déduire une expression de J_n , puis que

$$\langle L_n, L_n \rangle = \frac{2}{2n+1}.$$

Exercice 1. Convergence linéaire vers le point fixe.

Soit $a \in \mathbb{R}_+^*$ On définit sur \mathbb{R}_+^* la fonction $f: x \mapsto \frac{1}{2} \left(x + \frac{a}{x} \right)$.

- 1. Démontrer que f possède un unique point fixe ℓ sur \mathbb{R}_+^* que l'on exprimera à l'aide de a.
- 2. Prouver que $[\ell, +\infty[$ est stable par f.
- 3. Démontrer que f est $\frac{1}{2}$ -lipschitzienne sur $[\ell, +\infty[$.
- 4. Soit u la suite définie par $u_0 \in [\ell, +\infty[$ et par $\forall n \in \mathbb{N} \ u_{n+1} = f(u_n)$. Démontrer qu'il existe une constante C > 0 telle que

$$\forall n \in \mathbb{N} \quad |u_n - \ell| \le C \cdot \left(\frac{1}{2}\right)^n.$$

5. Que dire lorsque $u_0 \in]0, \ell[?]$

Exercice 2. Sur la notion générale de convexité.

Pour deux nombres complexes z et z', on appelle segment [z,z'] l'ensemble

$$[z, z'] = \{(1 - \lambda)z + \lambda z' \mid \lambda \in [0, 1]\}.$$

D'une partie X de \mathbb{C} , on dit qu'elle est **convexe** si

$$\forall (z, z') \in X^2 \quad [z, z'] \subset X.$$

- 1. Démontrer qu'une intersection quelconque de parties convexes de $\mathbb C$ est convexe.
- 2. L'exemple des disques.

Soit $z_0 \in \mathbb{C}$ et r > 0. Considérons le disque de centre z_0 et de rayon r:

$$\mathcal{D}(z_0, r) = \{ z \in \mathbb{C} : |z - z_0| \le r \}.$$

- (a) Représenter $\mathcal{D}(z_0, r)$ dans le cas particulier où $z_0 = 2 + i$ et r = 1.
- (b) Démontrer (dans le cas général) que $\mathcal{D}(z_0, r)$ est une partie convexe de \mathbb{R}^2 . Indication: $z_0 = (1 - \lambda)z_0 + \lambda z_0$.
- 3. Soit X une partie convexe de \mathbb{C} . Démontrer que X est stable pour le barycentre, c'est-à-dire

$$\forall n \in \mathbb{N}^* \ \forall (z_1, \dots, z_n) \in X^n \ \forall (\lambda_1, \dots, \lambda_n) \in (\mathbb{R}_+)^n \quad \sum_{i=1}^n \lambda_i = 1 \Longrightarrow \sum_{i=1}^n \lambda_i z_i \in X.$$

On pourra raisonner par récurrence.

Pour A=(x,y) et B=(x',y') deux éléments de \mathbb{R}^2 , le segment [A,B] est l'ensemble

$$[A, B] = \{ ((1 - \lambda)x + \lambda x', (1 - \lambda)y + \lambda y') \mid \lambda \in [0, 1] \}.$$

D'une partie X de \mathbb{R}^2 , on dit qu'elle est **convexe** si

$$\forall (A,B) \in X^2 \quad [A,B] \subset X.$$

N.B. Rien de nouveau si on identifie le couple $(x,y) \in \mathbb{R}^2$ et le nombre complexe x + iy!

5. L'exemple des demi-plans.

Soient $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$ et $c \in \mathbb{R}$. On considère le demi plan

$$H = \left\{ (x, y) \in \mathbb{R}^2 \mid ax + by \ge c \right\}.$$

- (a) Représenter H dans le cas particulier où a=b=c=1.
- (b) Démontrer (dans le cas général) que H est une partie convexe de \mathbb{R}^2 .
- 6. Épigraphe d'une fonction convexe.

Soit f une fonction définie sur un intervalle I. Son **épigraphe** est l'ensemble

$$\mathcal{E}(f) = \left\{ (x, y) \in \mathbb{R}^2 \mid x \in I \text{ et } y \ge f(x) \right\}.$$

- (a) Représenter l'épigraphe de votre fonction convexe préférée.
- (b) Montrer que si f est convexe sur I, alors $\mathcal{E}(f)$ est une partie convexe de \mathbb{R}^2 .
- (c) En quoi la question 5 est-elle (sauf exception) un cas particulier de celle-ci?