HW₁

HW 1

5.

Suppose otherwise. Let e = [1]; then e is the identity element because for all $k \in \mathbb{Z}$ we have e * [k] = [1] * [k] = [1 * k] = [k]. Let x = [0] and $x^{-1} = [k]$ for some $k \in \mathbb{Z}$, which exists because of the existence of inverses in a group. By the uniqueness of identities in groups we have $[1] = e = x * x^{-1} = [0] * [k] = [0 * k] = [0]$, which means $0 \sim 1$, which means $0 \sim 1$, which means $0 \sim 1$, which is not true for $0 \sim 1$.

7.

Let f(l) be the fractional part of l. We have $f(l) = l - [l] \ge 0$ because $[l] \le l$ by definition. We have f(l) = l - [l] < 1 because otherwise, [l] + 1 would be an integer less than l. Hence $x * y \in G$.

Commutativity: for all $x, y \in G$ we have x * y = x + y - [x + y] = y + x - [y + x] = y * x.

Lemma: $f(l) = r \iff r \in R$ and there exists an integer t such that r + t = l. \implies follows because we can take t = [l]. \iff follows because f(l) = l - t = r where the first equality holds because t cannot be increased (since we have l - (t + 1) = r - 1 < 0).

For associativity we will show that for $a, b, c \in G$ we have a * (b * c) = f(a + b + c); the proof that (a * b) * c = a + b + c - [a + b + c] is similar, and then we have a * (b * c) = (a * b) * c.

By our lemma, $a*(b*c) = f(a+b+c) \iff$ there exists an integer t such that a+b+c=t+a*(b*c).

14.

I'll write the powers of the elements, represented as integers modulo 36.

$$1; o(1) = 1$$

$$-1, 1; o(-1) = 2$$

$$5, 25, 17, 13, 29, 1; o(5) = 6$$

$$13, 25, 1; o(13) = 3$$

$$-13, 25, -1, 13, -25, 1; o(-13) = 6$$

$$17, 1; o(17) = 1$$

22.

For all positive integers k we have $(g^{-1}xg)^k = g^{-1}xgg^{-1}xg \dots g^{-1}xg = g^{-1}x^kg$. In particular for k = n we have $(g^{-1}xg)^k = g^{-1}x^kg = g^{-1}g = 1$, hence $o(g^{-1}xg) \le 1$. Suppose $o(g^{-1}xg) = k$ with k < n; then we have $g^{-1}x^kg = 1 \implies x^kg = g \implies x^k = gg^{-1} = 1$, contradicting that n is the least positive integer such that $x^n = 1$.

31.

For every $g \in t(G)$ create an edge from g to g^{-1} ; since G does not contain elements which are their own inverses, each edge points to a different element. Since we have $(g^{-1})^{-1} = g$ this forms a set of bidirectional edges, meaning that |t(G)| is even. Hence |G - t(G)| is even, and since $e \notin t(G)$ it has at least two elements. Let x be such an element with $x \neq e$. We have $x = x^{-1} \implies x^2 = 1$. Since $x \neq e, o(x) = 2$.

32.

Suppose otherwise, and let $x^a = x^b$ with a < b be two equal elements from the list, and let t = b - a. We have $t \le n - 1$ since $b \le n, 0 \le a$. Then $x^t = x^{b-a} = x^b(x^a)^{-1} = x^b(x^b)^{-1} = 1$, contradicting the fact that n is the least positive integer such that $x^n = 1$.

Suppose t = |x| > |G|; then $x^0, x^1, \dots x^{t-1}$ are all distinct elements of G, hence $|G| \ge |\{x^0, x^1, \dots x^{t-1}\}| = t > |G|$, a contradiction.

35.

Let x^k be such an integer power, and let k = qn + r where $0 \le r < n$. We have $x^k = x^{qn+r} = (x^n)^q + x^r = 1^q x^r = x^r$ as required.