On note *D* la variable aléatoire telle que : $D = X_1 - X_2.$ L'hypothèse nulle est $H_0: \mu_1 = \mu_2$.

L'hypothèse alternative est $H_1: \mu_1 \neq \mu_2$.

Le seuil de signification est fixé à 5%.

On admet que sous l'hypothèse nulle H_0 la variable aléatoire D suit la loi normale :

$$\mathcal{N}\bigg(0\;;\;\frac{25^2+20^2}{200}\bigg).$$

1. Sous l'hypothèse nulle H_0 déterminer le nombre réel positif *h* tel que :

$$P\left(-h \le D \le h\right) = 0.95.$$

2. Énoncer la règle de décision du test.

l'hypothèse H_0 ?

3. On prélève un échantillon aléatoire de 200 fiches dans chacun des fichiers. La moyenne observée

sur l'échantillon du fichier 1 est $\overline{x_1} = 133$. Celle observée sur l'échantillon du fichier 2 est $\overline{x_1} = 130$. Peut-on, au seuil de signification de 5 %, accepter

45 Pour un groupe de 300 personnes bien portantes, on a dosé le cholestérol et obtenu les résultats résumés dans le tableau suivant :

Effectif n _i
7
54
110
72
46
8
3

où x_i désigne le taux de cholestérol exprimé en cg/L.

- 1. Calculer des valeurs approchées de la moyenne $\overline{x_1}$ et de l'écart type s_1 de l'échantillon.
- **2.** Donner une estimation ponctuelle μ_1 de la moyenne et σ_1 de l'écart type du taux de cholestérol chez les gens bien portants de la région considérée.
- Les résultats seront donnés à 10^{-1} près.
- 3. Dans une autre région, un hôpital a obtenu

pour un échantillon de 250 personnes une moyenne $\overline{x_2}$ = 191,2 et un écart type s_2 = 45,2. On suppose que toutes les analyses effectuées sont indépendantes.

On désigne par X_1 la variable aléatoire qui, à chaque échantillon de 300 personnes de la première région, associe la moyenne de l'échantillon et par X_2 , la variable aléatoire qui, à chaque échantillon de 250 personnes de la deuxième région, associe la moyenne de l'échantillon.

On suppose que les variables aléatoires X_1 , X_2 , $D = X_1 - X_2$ suivent les lois normales de moyennes respectives $\mu_1, \mu_2, \mu_1 - \mu_2$ inconnues et on estime l'écart type de D par :

$$\sqrt{\frac{{\sigma_1}^2}{300} + \frac{{\sigma_2}^2}{250}}$$

où σ_1 et σ_2 sont les écart types estimés à partir des échantillons précédents. On désire construire un test permettant de déter-

miner si il y a une différence significative entre les moyennes des deux populations au seuil de 5 %.

- a) L'hypothèse H_0 est donnée par $\mu_1 = \mu_2$; énoncer l'hypothèse alternative H_1 . **b)** Déterminer l'intervalle [- a ; a] tel que, sous
- l'hypothèse H_0 , $P(-a \le D \le a) = 0.95$.
- c) Énoncer la règle de décision du test.
- d) Utiliser ce test avec les deux échantillons de l'énoncé et conclure.

Test de comparaison - Comparaison de deux proportions

Fiche l'Essentiel

46 R Les nouveaux modèles de téléviseurs que va

fabriquer une usine sont de deux types : modèle (1) et modèle (2). Une enquête préalable à la fabrication, réalisée auprès de 400 ménages de la population S des ménages des « quartiers sud » de la ville V, indique qu'entre les deux modèles de téléviseurs, 63 % préfèrent le modèle (1). La même enquête, réalisée auprès de 500 ménages de la population N des ménages des « quartiers nord » de la ville, indique que 67 % préfèrent le modèle (1). On note F_s la variable aléatoire qui, à tout échantillon de