Week 14 Exponential and Logarithmic functions continued lecture note

Notebook: Computational Mathematics

Author: SUKHJIT MANN

URL: https://www.coursera.org/learn/uol-cm1015-computational-mathematics/home/week/13

Topic:

Cornell Notes

Exponential and Logarithmic functions continued

Course: BSc Computer Science

Class: Computational Mathematics[Lecture]

Date: July 21, 2020

Essential Question:

What are the exponential and logarithmic functions?

Questions/Cues:

- What are some definitions/properties pertaining to logarithms?
- What are the different graphs of the logarithmic function?
- What are the properties of the logarithmic function?

Notes

Definitions

if
$$x = f(y) = a^y \xrightarrow{\text{inverse}} y = f^1(x) = \log_a x$$

 $\rightarrow f(f^1(x)) = f^1(f(x)) = x \rightarrow a^{\log_a x} = x \rightarrow \log_a(a^x) = x$
Always defined if $a > 0$

Properties

$$\log_a(x \times y) = \log_a(x) + \log_a(y)$$

proof: replace identities $a^{\log_a x} = x$ $a^{\log_a y} = y$

$$\log_a(x \times y) = \log_a(a^{\log_a x} \times a^{\log_a y}) = \log_a(a^{(\log_a x + \log_a y)}) = 1$$

Properties

$$\log_a(x^b) = b \times \log_a(x)$$

proof: replace $a^{\log_a x} = x$

$$\rightarrow \log_a((a^{\log_a x})^b) = \log_a(a^{\log_a x}) = b \log_a(x)$$

$$log_a x = \frac{log_c(x)}{log_c(a)}$$

proof: replace identity $a^{\log_a x} = x$

$$\rightarrow \log_c(a^{\log_a x}) = \log_a(x) \log_c(a)$$

$$\rightarrow \frac{\log_c(x)}{\log_c(a)} = \frac{\log_a(x) \log_c(a)}{\log_c(a)} = \log_a(x) \cdot$$

Graphs
Using a table of values plot graphs of $f(x) = \log_a x$ for a = 2, 3, 3

x $f(x) = \log_2 x$	-2	0	1	2	4	8	16	$\frac{1}{2}$	$\frac{1}{4}$	1 =
$f(x) = \log_2 x$	undefined	undefined	0	1	2	3	4	-1	-2	-3

x	-3	0	1	3	9	27	$\frac{1}{3}$	$\frac{1}{9}$	1 27
$f(x) = \log_3 x$	undefined	undefined	0	1	2	3	-1	-2	-3

$log_a x$ only defined for x>0

Graphs
Using a table of values plot graphs of $f(x) = \log_a x$ for $a = 2, \frac{1}{2}$

x	-2	0	1	2	4	8	16	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$
$f(x) = \log_2 x$	undefined	undefined	0	1	2	3	4	-1	-2	-3

x	-2	0	1	2	4	8	16	$\frac{1}{2}$	$\frac{1}{4}$	1 8
$f(x) = \log_{\frac{1}{2}} x$	undefined	undefined	0	-1	-2	-3	-4	1	2	3

Summary properties

- a) $f(x)=\log_a x$ is only defined for a>0
- b) $f(x)=\log_a x$ is only defined for x>0
- For all a, f(x)=log_ax has an x-intercept of 1, that is the graph passes through (1,0)
- d) For all a, the graph of $f(x)=\log_a x$ passes through (a,1)
- e) For a>1 $f(x)=\log_a x$ is increasing
- f) For a<1 $f(x)=\log_a x$ is decreasing (and for a=1?)
- g) the y-axis is an asymptote
- h) For a>1 the bigger a is the more slowly $f(x)=\log_a x$ increases
- i) For a < 1 the smaller a is the more slowly $f(x) = \log_a x$ decreases
- j) lg(x) or Log(x) indicates $log_{10}(x)$

and
$$ln(x)$$
 or $log(x)$ denotes $log_e(x)$ $e=2.71828...$

$$\frac{\partial^{2} + 2}{\partial x^{2}} = \frac{\partial^{2} \cdot \partial^{3}}{\partial x^{2}} = \frac{\partial^$$

$$\frac{3^{x+1} = 9}{3^{x+1} = 10} \rightarrow 2 ?$$

$$\frac{3^{x+1} = 10}{3^{x+1} = 10}$$

$$\frac{3^{x+1} = 10}{3^{x} \times 3^{x} = 3^{x}}$$

$$\frac{3^{x+1} = 10}{3^{x} \times 3^{x}}$$

$$\frac{3^{x} \times 3^{x} \times 3^{x} = 10}{3^{x} \times 3^{x}}$$

$$\frac{3^{x} \times 3^{x} \times 3^{x} = 10}{3^{x} \times 3^{x}}$$

$$\frac{3^{x} \times 3^{x} \times 3^{x} = 10}{3^{x} \times 3^{x}}$$

$$\frac{3^{x} \times 3^{x} \times 3^{x} = 10}{3^{x} \times 3^{x}}$$

$$\frac{3^{x} \times 3^{x} \times 3^{x} \times 3^{x}$$

$$\frac{3^{x} \times 3^{x} \times 3^{x} \times 3^{x}$$

$$\frac{3^{x} \times 3^{x} \times 3^{x}$$

$$\frac{3^{x} \times 3^{x} \times 3^{x} \times 3^{x}$$

$$\frac{3^{x} \times 3^{x} \times 3^{x}$$

$$\frac{3^{x} \times 3^{x} \times 3^{x} \times 3^{x}$$

$$\frac{3^{x} \times 3^{x} \times 3^{x}$$

$$\frac{3^{x} \times 3^{x} \times 3^{x} \times 3^{x}$$

$$\frac{3^{x} \times 3^{x} \times 3^{x}$$

$$\frac{3^{x} \times 3^{x} \times 3^{x} \times 3^{x}$$

$$\frac{3^{x} \times 3^{x} \times 3^{x}$$

$$\frac{3^{x} \times 3^{x} \times 3^{x} \times 3^{x}$$

$$\frac{3^{x} \times 3^{x} \times 3^{x$$

Summary

In this week, we learned about some definitions/properties pertaining to logarithms, the form of a logarithmic function, the different graphs of the logarithmic function and the properties of the logarithmic function.