Universidade Federal do Acre Programa de Pós-Graduação em Ciência da Computação - PPgCC

Mineração de Dados



# Algoritmos de Extração de RA's

Prof. Dr. Daricélio Soares

## Mineração de RA's

#### → Recorde que:

Se  $Sup(X \rightarrow Y) \ge SupMin$  então os itens de  $X \cup Y$  aparecem com freqüência desejada nas transações da base de dados.

#### → <u>Dizemos então que</u>:

O conjunto de itens  $Z = X \cup Y$  possui suporte mínimo e é chamado um conjunto <u>freqüente</u>.

→ Desta forma, podemos dividir o problema de minerar regras de associação em duas fases.

Fase 1: Encontrar cada conjunto frequente Z  $(Sup(Z) \ge SupMin)$ ;

Fase 2: Para cada conjunto frequente Z, identificar seus possíveis subconjuntos X e Y, de tal forma que:

 $Z = X \cup Y$  e  $Conf(X \rightarrow Y) \ge ConfMin$  (neste caso,  $X \rightarrow Y$  será uma regra de interesse).

## Mineração de RA's

- <u>Fase 1</u>: Encontrar cada conjunto frequente Z (Sup(Z)  $\geq$  SupMin);
- Fase 2: Para cada conjunto freqüente Z (de tamanho maior ou igual a 2), identificar seus possíveis subconjuntos X e Y, de tal forma que:

$$Z = X \cup Y$$
 e  $Conf(X \rightarrow Y) \ge ConfMin$ .

Fase 1: Identificação dos conjuntos frequentes.

- $\rightarrow$  É a fase computacionalmente <u>cara</u>.
- → Para um conjunto de itens de tamanho n, existem 2<sup>n</sup> possíveis subconjuntos freqüentes.
- → Dois algoritmos básicos propostos para esta fase:
  - Apriori
  - Partition

Fase 2: Identificação das regras a partir dos conjuntos freqüentes.

O algoritmo *Apriori* considera as seguintes propriedades com o objetivo de diminuir o espaço de busca, ou seja, evitar que todos os 2<sup>n</sup> subconjuntos sejam avaliados.

- → Todo subconjunto de um conjunto freqüente é freqüente. (Se {A,B,C} é freqüente, então {A,B} é freqüente.)
- → Pela contra-positiva: Todo conjunto que contém um subconjunto não freqüente também não é freqüente.
   (Se {A,B} não é freqüente, então {A,B,C} não é freqüente.)

- Calcular o suporte de todos os conjuntos de tamanho 1 e, em seguida, eliminar aqueles que não possuem o suporte mínimo.
- Formar todos os possíveis conjuntos de tamanho 2 a partir daqueles de tamanho 1 resultantes do passo anterior. Em seguida, eliminar os novos conjuntos que não possuem o suporte mínimo.
- Repetir o procedimento anterior até que, no k-ésimo passo, nenhum novo conjunto de tamanho k, obtido a partir dos conjuntos de tamanho k-1, tenha suporte mínimo.

```
TID
             Itens Comprados
                                    Considerar SupMin = 50% (2 tuplas)
      101
             leite, pão, suco
      792
           leite, suco
     1130 leite, pão, ovos
      1735
             pão, biscoito, café
Sup(\{leite\}) = 3 Sup(\{leite, pão\}) = 2
                                               Sup(\{leite, pão, suco\}) = 1
Sup(\{p\tilde{a}o\}) = 3 Sup(\{leite, suco\}) = 2
Sup(\{suco\}) = 2 Sup(\{pão, suco\}) = 1
Sup(\{ovos\}) = 1
Sup(\{biscoito\}) = 1
Sup(\{café\}) = 1
Frequentes:
                      Frequentes:
                                                Frequentes:
{leite}
                     {leite, pão}
                     {leite, suco}
{pão}
{suco}
```

- 1.  $F_1$  = conjuntos frequentes de tamanho 1;
- 2. k = 1;
- 3. enquanto  $(F_k \neq \emptyset)$  faça
- 4. k = k + 1;
- → 5. Gerar C<sub>k</sub> (todos os candidatos de tamanho k) a partir de F<sub>k-1</sub>;
  - 6. **para cada** transação t pertencente a base de dados **faça**
  - 7. Incrementar o contador associado a todo candidato C<sub>k</sub> cujos itens pertençam a t;
  - 8.  $F_k$  = todos os candidatos pertencentes a  $C_k$  com suporte maior ou igual a SupMin;
  - 9. fim-enquanto;
  - 10. Resposta = união de todos os conjuntos  $F_k$ ;

Observe que, em cada uma das k iterações, o algoritmo *Apriori* percorre toda a base de dados.

#### Gerar $C_k$ (todos os candidatos de tamanho k) a partir de $F_{k-1}$ ;

A estratégia de geração de  $C_k$  a partir de  $F_{k-1}$  também considera a propriedade de que todo subconjunto de um conjunto freqüente é freqüente. Desta forma, diminui a quantidade de candidatos gerados, eliminando alguns que são garantidamente não freqüentes.

- Considere que, dentro de cada conjunto, os itens estejam ordenados.
   Então, o conjunto {1,2,3,4} só poderá ser gerado se {1,2,3} e {1,2,4} forem frequentes.
- Se  $\{1,2,3,4\}$  for gerado em  $C_k$ , será podado se possuir algum subconjunto que não seja freqüente.

O conjunto candidato  $\{1,2,3,4\}$  será eliminado de  $C_4$  se, por exemplo,  $\{2,3,4\}$  não for um conjunto freqüente.

#### Gerar C<sub>k</sub> (todos os candidatos de tamanho k) a partir de F<sub>k-1</sub>;

A estratégia de geração de  $C_k$  a partir de  $F_{k-1}$  divide-se então em duas fases: junção e poda.

Junção: Para cada dois conjuntos 
$$\{a_1, a_2, ..., a_{k-1}\}$$
 e  $\{b_1, b_2, ..., b_{k-1}\}$  de  $F_{k-1}$ : Se  $(a_1 = b_1) \land (a_2 = b_2) \land ... \land (a_{k-2} = b_{k-2}) \land (a_{k-1} < b_{k-1})$  então gere o candidato  $\{a_1, a_2, ..., a_{k-1}, b_{k-1}\}$  em  $C_k$ .

Se  $\{1,2,3\}$  e  $\{1,2,4\}$  são conjuntos de  $F_k$ , então gerar  $\{1,2,3,4\}$  em  $C_k$ 

<u>Poda</u>: Para cada conjunto de C<sub>k</sub>, eliminar aqueles que possuem um subconjunto não freqüente.

(O conjunto candidato  $\{1,2,3,4\}$  será eliminado de  $C_k$  se, por exemplo,  $\{2,3,4\}$  não for um conjunto freqüente.)

#### Gerar $C_k$ (todos os candidatos de tamanho k) a partir de $F_{k-1}$ ;

$$\mathsf{F}_{\mathsf{k}}$$
 Junção  $\mathsf{C}_{\mathsf{k}}$  Poda  $\mathsf{C}_{\mathsf{k}}$  (podado)  $\{\mathsf{A},\mathsf{B},\mathsf{C}\}$   $\Rightarrow$   $\{\mathsf{A},\mathsf{B},\mathsf{C},\mathsf{D}\}$   $\{\mathsf{A},\mathsf{B},\mathsf{D}\}$   $\{\mathsf{B},\mathsf{C},\mathsf{D}\}$   $\{\mathsf{B},\mathsf{C},\mathsf{D}\}$   $\{\mathsf{B},\mathsf{C},\mathsf{D}\}$   $\{\mathsf{B},\mathsf{C},\mathsf{E}\}$ 

## Estratégia Partition

O algoritmo *Partition* considera a seguinte propriedade com o objetivo de diminuir o número de leituras a toda a base de dados.

→ Considere a base de dados de transações dividida em n partições. Se um conjunto F é freqüente em relação a toda a base de dados (freqüência global), então F é freqüente em relação a pelo menos uma partição (freqüência local), ou seja, possui suporte maior ou igual ao mínimo dentro desta partição.



## Estratégia Partition

A estratégia *Partition* é dividida em duas fases: na primeira, são gerados os conjuntos candidatos e, na segunda, dentre estes são identificados os freqüentes. Em cada fase é realizada (apenas) uma leitura em toda a base de dados.

#### Fase I:

- → A base de dados é dividida em partições que caibam na memória principal. Para cada partição, são gerados os conjuntos freqüentes locais, utilizando-se as idéias da estratégia *Apriori*.
- → Desta forma, em um único acesso a toda a base de dados, os conjuntos freqüentes locais de cada partição são gerados. Estes conjuntos são os candidatos a freqüentes globais.

#### Fase II:

→ Todas as transações da base de dados são percorridas para verificar quais freqüentes locais (candidatos globais) são freqüentes globais.

## Apriori x Partition

- → Na estratégia Partition, a base de dados é lida apenas duas vezes.
  Na estratégia Apriori, a base de dados é lida em cada uma das k iterações.
- → Se, por um lado, a estratégia Apriori realiza um número maior de leituras à base de dados, estas várias leituras permitem que, dentre os conjuntos candidatos, apenas os freqüentes passem à iteração seguinte.
- → Na estratégia *Partition*, passam para a última fase e devem ser processados todos os freqüentes locais (candidatos globais), identificados em cada partição. Este fato, dependendo do número de candidatos gerados que não são de fato freqüentes, pode comprometer o desempenho deste algoritmo.

## Questões?

