Introduction to Unsupervised Learning

1 Unsupervised Learning Overview

Unsupervised learning is a class of machine learning techniques aimed at finding patterns or structure in data without relying on labelled examples. The primary tasks in unsupervised learning include:

- Clustering: Grouping similar data points together.
- Dimensionality Reduction: Reducing the number of features while preserving as much variance as possible.

In this document, we introduce clustering methods with a focus on the k-means algorithm, and discuss Principal Component Analysis (PCA) using Singular Value Decomposition (SVD) for dimensionality reduction.

2 Clustering

Clustering is the task of dividing a dataset into groups, or clusters, such that data points within a cluster are more similar to each other than to those in other clusters. It aims to partition N data points in D dimensional space into k clusters by minimizing the within-cluster sum of squared distances. The input is an unlabelled data set $\langle \mathbf{x}_i \rangle_{i=1}^N$, the goal is to output a partition $C_1, \ldots C_k$ of the data set $\{\mathbf{x}_1, \ldots \mathbf{x}_N\}$, where C_i are non-empty, pairwise disjoint (share no common elements) and their union covers the entire data set.

2.1 The k-means Algorithm

The k-means algorithm is one of the most widely used and simplest clustering techniques. First we assign k-means $\mu_1, \mu_2, \ldots, \mu_k$ which are simply points in the euclidean space \mathbb{R}^D , each μ_i representing the centre of one cluster. Each data point is then assigned to a cluster based on which mean μ_i is is closest to in the euclidean space. The cluster means μ_i are then update based on the new partition $C_1, \ldots C_k$.

The steps of the algorithm are as follows:

- 1. Initialization: Randomly initialize k cluster centroids, $\mu_1, \mu_2, \dots, \mu_k$.
- 2. Assignment Step: Assign each data point \mathbf{x}_i to the nearest cluster centroid:

$$C_j = \{\mathbf{x}_i : \|\mathbf{x}_i - \boldsymbol{\mu}_j\|^2 \le \|\mathbf{x}_i - \boldsymbol{\mu}_l\|^2, \forall l = 1, \dots, k\}.$$

3. **Update Step:** Update the centroids by computing the mean of the points assigned to each cluster:

$$\mu_j = \frac{1}{|C_j|} \sum_{\mathbf{x}_i \in C_j} \mathbf{x}_i.$$

4. Repeat the assignment and update steps until convergence (e.g., when cluster assignments no longer change).

The k-means algorithm assumes that clusters are spherical and separable, making it well-suited for simple, low-dimensional data.

2.2 Advanced Clustering Methods

For more complex data, advanced clustering methods may be more appropriate. These include:

- **Hierarchical Clustering:** Builds a hierarchy of clusters and is suitable for data with a nested structure.
- DBSCAN (Density-Based Spatial Clustering of Applications with Noise): Identifies clusters of arbitrary shape and is robust to noise in spatial data.
- Gaussian Mixture Models (GMM): Assumes data is generated from a mixture of Gaussian distributions, making it suitable for probabilistic modelling of data.
- **Spectral Clustering:** Uses the eigenvalues of a similarity matrix to perform clustering, ideal for data with non-convex structures.

3 Principal Component Analysis (PCA) Using SVD

Principal Component Analysis (PCA) is a technique for dimensionality reduction that identifies the directions (principal components) in which the data varies the most. PCA transforms data into a lower-dimensional space while preserving as much variance as possible. Here is a great video explaining this concept https://www.youtube.com/watch?v=FD4DeN810DY

3.1 Problem Setting

Given a dataset $\mathbf{X} \in \mathbb{R}^{N \times D}$ (where N is the number of data points and D is the number of features), PCA seeks a set of orthonormal vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ ($k \leq D$) such that the projections of \mathbf{X} onto these vectors maximize the variance. Mathematically, this involves solving:

$$\max_{\mathbf{v} \in \mathbb{R}^D, \|\mathbf{v}\| = 1} \mathrm{Var}(\mathbf{X}\mathbf{v}),$$

where $Var(\mathbf{X}\mathbf{v})$ represents the variance of the data along direction \mathbf{v} .

3.2 Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) provides a computationally efficient way to solve PCA. For a centred dataset \mathbf{X} (i.e., mean subtracted), SVD decomposes \mathbf{X} as:

$$\mathbf{X} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T,$$

where:

- $\mathbf{U} \in \mathbb{R}^{N \times N}$ is an orthogonal matrix whose columns are the left singular vectors.
- $\Sigma \in \mathbb{R}^{N \times D}$ is a diagonal matrix containing the singular values $\sigma_1, \sigma_2, \dots, \sigma_r$ $(r = \min(N, D))$ in descending order.
- $\mathbf{V} \in \mathbb{R}^{D \times D}$ is an orthogonal matrix whose columns are the right singular vectors.

The principal components are the first k columns of \mathbf{V} , and the corresponding explained variance is proportional to the square of the singular values (σ_i^2) .

3.3 Steps in PCA using SVD

- 1. Center the data matrix **X** by subtracting the mean of each feature.
- 2. Compute the SVD of X: $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$.
- 3. Select the first k columns of \mathbf{V} (right singular vectors) as the principal components.
- 4. Project X onto the selected principal components to obtain the reduced dataset.

The mathematical details for why this works, and what a good choice of k might be are quite technical. The key takeaway is to understand that SVD is the most common way of performing PCA, which is a linear dimensionality reduction technique.