

H2GLOBAL MEETS AFRICA

ANTON ACHHAMMER, M.SC, OTH REGENSBURG

Projektübersicht

• Projektlaufzeit: 01.01.2023 - 31.12.2025

• Budget: 4.2 Millionen €

Gefördert vom Bundesministerium für Bildung und Forschung

Projektpartner

Assoziierte Partner

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

Motivation

Bundesministeriur für Bildung und Forschung

GEFÖRDERT VOM

1:4B

Motivation

Bundesministerium für Bildung und Forschung REGENSBURG

Methodik

GEFÖRDERT VOM

Modellierung von Transformationspfaden für die Energiewende

Die wichtigsten Modelle:

- PyPSA-EarthPyPSA-Earth-SecPyPSA-Eur

Applied Energy 341 (2023) 121096

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

PyPSA-Earth. A new global open energy system optimization model demonstrated in Africa

Maximilian Parzen a,*, Hazem Abdel-Khalek b, Ekaterina Fedotova c, Matin Mahmood a, Martha Maria Frysztacki e, Johannes Hampp d, Lukas Franken a, Leon Schumm h,g, Fabian Neumann 8, Davide Poli 1, Aristides Kiprakis a, Davide Fioriti 1,4

- * University of Edinburgh, Institute for Burry Systems, EH9 3DW Edinburgh, United Kingdom
- ³ Praurhofer Research Institution for Brary Inframeureurs and Gosthamid Systems EG, Coethus, Germany Fixantowskops 22 503, 180065, Oktoboro, Moscow region, Bussla
 ⁴ Justus-Liebig University Giefen, Comer for international Development and Environmental Research, Gieffen, Germany
- *Karlanke Institute of Technology, Institute for Automation and Applied Informatics, 76344 Egyentein-Leopoldbufen, Germany University of Plas, Department of Energy, Systems, Territery and Construction Inferencing, Long Lucio Lonarrino, 56122 Plas, Italy Department of Epital Transformation in Energy Systems, Institute of Energy Technology, Technicles Università Berlin, Fabuluit III, Anteiniofer 25 (TA
- Research Center on Regrey Transmission and Storage (PENES). Regular of Rectrical and Information Technology, University of Applied Sciences (OTH)

GRAPHICAL ABSTRACT

ARTICLE INFO

ABSTRACT

Macro-energy system modelling is used by decision-makers to steer the global energy transition towards a affordable, sustainable and reliable future. Closed-source models are the current standard for most policy and industry decisions. However, open models have proven to be competitive alternatives that promote science, robust technical analysis, collaboration and transparent policy decision-making. Yet, two issues slow the adoption: open models are often designed with particular geographic scope in mind, thus hindering synergies from collaborating, or are based on low spatially resolved data, limiting their use. Here we introduce PyPSA-Earth, an open-source global energy system model with data in high spatial and temporal resolution. It enables large-scale collaboration by providing a tool that can model the world's energy system or any subset of it. The model is suitable for operational as well as combined generation, storage and transmission expansion studies. In this study, the novel power system capabilities of PyPSA-Earth are highlighted and demonstrated. The model provides two main features: (1) customizable data extraction and preparation with global coverage and (2) a PvPSA energy modelling framework integration. The data includes electricity demand, generation

Check out PyPSA-Earth here:

Check out PyPSA-Earth-Sec here:

GEFÖRDERT VOM

Weitere Möglichkeiten - Modellierung Afrika/Europa

Gemeinsame Optimierung

Quelle: Neumann, Fabian; Zeyen, Elisabeth; Victoria, Marta; Brown, Tom (2022): Benefits of a Hydrogen Network in Europe

Quelle: Erstellt mit PyPSA-Earth und https://github.com/pypsa-meetsearth/documentation/blob/main/notebooks/viz/regional_transm_system_viz.ipynb

Bundesministerium für Bildung und Forschung REGENSBURG

Following the Idea of Open Energy Modelling

Die gesamte Kette von den Rohdaten bis zu den Modellierungsergebnissen sollte offen sein:

Offene Daten + freie Software → Transparenz + Reproduzierbarkeit

Bundesministerium für Bildung und Forschung

Ergebnisse

Contact us!

Anton Achhammer + 49 - (0) 941 - 943 9344 anton. a chhammer @ oth-regens burg. deachhammer.me

Leon Schumm + 49 - (0) 941 - 943 9344 leon1.schumm@oth-regensburg.de

in/leon-schumm-253b22201

Prof. Dr.-Ing. Michael Sterner + 49 - (0) 941 - 943 9888 michael.sterner@oth-regensburg.de

in/michael-sterner-b03125258

www.fenes.net

www.linkedin.com/company/fenesoth/

Bundesministerium für Bildung und Forschung

Backup - Ergebnisse

Onshore Wind Potential Density [MW/km2]

Solar Photovoltaic Potential Density [MW/km2]

Backup - Ergebnisse

