

DATE: 31 December 2009

I.T.L. (PRODUCT TESTING) LTD. FCC Radio Test Report for Runcom Technologies Ltd.

Equipment under test:

WiMAX Base Station Outdoor Pico Base Station 2.5 GHz

Written by:

D. Shidlowsky, Documentation

Approved by:

A. Sharabi, Test Engineer

Approved by:

I. Raz, EMC Laboratory Manager

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd.

This report relates only to items tested.

Measurement/Technical Report for Runcom Technologies Ltd.

WiMAX Base Station

Outdoor Pico Base Station 2.5 GHz

FCC ID: XYMPICO251WDC

This report concerns: Original Grant: X

Class II change: Class I change:

Equipment type: Licensed Non-Broadcast Transmitter

Limits used: 47CFR Part 27

Measurement procedure used is ANSI C63.4-2003.

Substitution Method used as in ANSI/TIA-603-B: 2002

Application for Certification Applicant for this device:

prepared by: (different from "prepared by")

Ishaishou Raz Ronen Greenberg

ITL (Product Testing) Ltd. Runcom Technologies Ltd.

Kfar Bin Nun 11 Moshe Levi St. D.N. Shimshon 99780 Rishon Le Zion 75658

Israel Israel

e-mail sraz@itl.co.il Tel: +972-3-952-8440

Fax: +972-3-952-8805 e-mail: roneng@runcom.co.il

TABLE OF CONTENTS

1.	GENERA	L INFORMATION	
	1.1	Administrative Information	
	1.2	List of Accreditations	
	1.3	Product Description	
	1.4	Test Methodology	
	1.5 1.6	Test Facility Measurement Uncertainty	
_		•	
2.		TEST CONFIGURATION Justification	
	2.1 2.2	EUT Exercise Software	
	2.2	Special Accessories	
	2.4	Equipment Modifications	
	2.5	Configuration of Tested System	
3.	TEST SET	T-UP PHOTOS	11
4.	CONDUC	TED EMISSION DATA	13
5.	MAXIMUN	M PEAK OUTPUT POWER 5 MHZ BANDWIDTH	19
	5.1	Test Specification	19
	5.2	Test procedure	
	5.3	Results table	
	5.4	Test Equipment Used	
6.		M PEAK OUTPUT POWER 10 MHZ BANDWIDTH	
	6.1	Test Specification	
	6.2 6.3	Test procedure Results table	
	6.4	Test Equipment Used.	
_		• •	
7.	5PECTRA 7.1	AL POWER DENSITY 5 MHZ BANDWIDTH Test Specification	
	7.1	Test procedure	
	7.2	Results table	
	7.4	Test Equipment Used	
8.	SPECTR/	AL POWER DENSITY 10 MHZ BANDWIDTH	43
٥.	8.1	Test Specification	
	8.2	Test procedure	
	8.3	Results table	
	8.4	Test Equipment Used	50
9.	OCCUPIE	ED BANDWIDTH 5 MHZ BANDWIDTH	51
	9.1	Test Specification	
	9.2	Test Procedure	
	9.3	Results Table	
	9.4	Test Equipment Used	
10.		ED BANDWIDTH 10 MHZ BANDWIDTH	
	10.1 10.2	Test Specification	
		Results Table	
	10.4		
11.	CONDUC	TED SPURIOUS EMISSIONS 5 MHZ BANDWIDTH	
•	11.1	Test Specification	
	11.2		
		Results table	
	11.4	Test Equipment Used	107

12.	CONDUC	TED SPURIOUS EMISSIONS 10 MHZ BANDWIDTH	108
	12.1	Test Specification	
	12.2	Test procedure	108
	12.3	Results table	148
	12.4	Test Equipment Used	149
13.	BAND ED	GE SPECTRUM 5 MHZ BANDWIDTH	150
	13.1	Test Specification	150
	13.2	Test procedure	150
	13.3	Results table	160
	13.4	Test Equipment Used	161
14.	BAND ED	GE SPECTRUM 10 MHZ BANDWIDTH	162
	14.1	Test Specification	162
	14.2	Test procedure	162
	14.3	Results table	172
	14.4	Test Equipment Used	173
15.	SPURIOU	S RADIATED EMISSION 5 AND 10 MHZ BANDWIDTH	174
	15.1	Test Specification	174
	15.2	Test Procedure	174
	15.3	Test Results	175
	15.4	Test Instrumentation Used, Radiated Measurements	176
16.	FREQUE	NCY STABILITY 5 AND 10 MHZ BANDWIDTH	177
	16.1	Test Specification	177
	16.2	Test Procedure	177
	16.3		
	16.4	Test Instrumentation Used, Radiated Measurements	180
17.	APPENDI	X A - CORRECTION FACTORS	181
	17.1	Correction factors for CABLE	181
	17.2	Correction factors for CABLE	182
	17.3	Correction factors for CABLE	
	17.4	Correction factors for LOG PERIODIC ANTENNA	184
	17.5	Correction factors for Double-Ridged Waveguide Horn	
	17.6	Correction factors for Horn Antenna	186
	17.7	Correction factors for Horn Antenna	187

1. General Information

1.1 Administrative Information

Manufacturer: Runcom Technologies Ltd.

Manufacturer's Address: 11 Moshe Levi St.

Reshon Le Zion 75658

Israel

Tel: +972-3-952-8440 Fax: +972-3-952-8805

Manufacturer's Representative: Ronen Greenberg

Moshe Efraim

Equipment Under Test (E.U.T): WiMAX Base Station

Equipment Model No.: Outdoor Pico Base Station 2.5 GHz

Part Number No.: PICO-O-2.5-C-1W-DC

Date of Receipt of E.U.T: 29.09.09

Start of Test: 29.09.09

End of Test: 15.11.09

Test Laboratory Location: I.T.L (Product Testing) Ltd.

Kfar Bin Nun, ISRAEL 99780

Test Specifications: FCC Part 27

1.2 List of Accreditations

The EMC laboratory of I.T.L. is accredited by the following bodies:

- 1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
- 2. The Federal Communications Commission (FCC) (U.S.A.), Registration No. 90715.
- 3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
- 4. The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) (Japan), Registration Numbers: C-1350, R-1285.
- 5. Industry Canada (Canada), IC File No.: 46405-4025; Site No. IC 4025B-1.
- 6. TUV Product Services, England, ASLLAS No. 97201.
- 7. Nemko (Norway), Authorization No. ELA 207.

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.

1.3 Product Description

Runcom's family of full outdoor Pico BSs consists of highly integrated WiMAX Base Stations that provide fast, flexible, cost-effective WiMAX network deployment solutions where increased capacity and coverage is required.

This uni-sector base station operates with omni or sectorized antennas, and provides 99.995% availability and carrier grade service.

Runcom Pico BS performs all the required capabilities of the Mobile BS next generation such as: WiMAX Modem PHY and MAC functions, SNMP based management protocol and fully supports the latest R6 interface over GRE tunneling towards the ASN-GW.

'All-in-one' architecture combined with simple, single-handed installation and fast rollout make these BSs an ideal solution for operators that want to get in on the ground floor of WiMAX deployment at significant CAPEX reductions and maximum return on their network deployment.

Based on Runcom's chip set architecture, Pico BSs provide adaptable solutions, allowing interoperability with other MSS devices as well as ASN-GW vendors.

The E.U.T. has two identical antenna ports. During the tests the secondary antenna port was terminated by 50 Ohm termination. According to the customer, only the primary RF antenna port is used in this configuration.

1.4 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4: 2003. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.5 Test Facility

The radiated emissions tests were performed at I.T.L.'s testing facility at Kfar Bin-Nun, Israel. This site is a FCC listed test laboratory (FCC Registration No. 90715, date of listing 03 September 2009).

I.T.L.'s EMC Laboratory is also accredited by A2LA, certificate No. 1152.01.

1.6 Measurement Uncertainty

Conducted Emission The uncertainty for this test is $\Box 2 dB$.

Radiated Emission

The Open Site complies with the ± 4 dB Normalized Site Attenuation requirements of ANSI C63.4-2003. In accordance with Paragraph 5.4.6.1 of this standard, this tolerance includes instrumentation calibration errors, measurement technique errors, and errors due to site anomalies.

2. System Test Configuration

2.1 Justification

The test setup was configured to closely resemble the standard installation.

2.2 EUT Exercise Software

The software is Embedded real time communication software using ThreadX Real Time Operating system. The SW application implements the 802.16e specification handling air communication, IP stack and management.

2.3 Special Accessories

No special accessories were needed in order to achieve compliance.

2.4 Equipment Modifications

No modifications were necessary in order to achieve compliance.

2.5 Configuration of Tested System

Figure 1. Conducted Emission From DC Lines and Radiated Emission Test Set-up

Figure 2. Conducted Emission From Antenna Ports Test Set-up

3. Test Set-up Photos

Figure 3. Conducted Emission From DC Lines Test

Figure 4. Conducted Emission From Antenna Port Tests

Figure 5. Radiated Emission Test

4. Conducted Emission Data

4.1 Test Specification

F.C.C., Part 15, Subpart C

4.2 Test Procedure

The E.U.T operation mode and test set-up are as described in Section 3.1. In order to minimize background noise interference, the conducted emission testing was performed inside a shielded room, with the E.U.T placed on an 0.8 meter high wooden table, 0.4 meter from the room's vertical wall.

The E.U.T was powered from 48 VDC via a 50 Ohm / 50 μ Hn Line Impedance Stabilization Network (LISN) on the phase and neutral lines. The LISN's were grounded to the shielded room ground plane (floor), and were kept at least 0.8 meters from the nearest boundary of the E.U.T

The center of the E.U.T AC cable was folded back and forth, in order to form a bundle less than 0.40 meters and a total cable length of 1 meter.

The emission voltages at the LISN's outputs were measured using a computerized receiver, complying with CISPR 16 requirements. The specification limits are loaded to the receiver via a 3.5" floppy disk and are displayed on the receiver's spectrum display.

A frequency scan between 0.15 and 30 MHz was performed at 9 kHz I.F. band width, and using peak detection.

The spectral components having the highest level on each line were measured using a quasi-peak and average detector.

4.3 Measured Data

JUDGEMENT:	Passed by	/ 11.6 dB

The margin between the emission levels and the specification limit is, in the worst case, 11.6 dB for the 48 VDC + line at 0.26 MHz and 12.4 dB at 0.26 MHz for the 48 VDC - line.

The EUT met the F.C.C. Part 15, Subpart C specification requirements.

The details of the highest emissions are given in *Figure 6* to *Figure 9*.

TEST PERSONNEL:

Tester Signature:

Typed/Printed Name: A. Sharabi

Date: 04.01.10

E.U.T Description WiMAX Base Station

Type Outdoor Pico Base Station 2.5 GHz

Part Number: PICO-O-2.5-C-1W-DC

Specification: F.C.C., Part 15, Subpart C

Lead: 48 VDC +

Detectors: Peak, Quasi-peak, Average

Signal Number	Frequency (MHz)	Peak (dBuV)	QP (dBuV)	QP Delta L 1 (dB)	Avg (dBuV)	Av Delta L 2 (dB)	Corr (dB)
1	0.201288	34.6	33.4	-30.2	32.8	-20.9	0.0
2	0.256252	43.1	42.0	-19.6	40.0	-11.6	0.0
3	0.471646	16.2	0.0	-56.5	-3.1	-49.6	0.0
4	1.708931	23.7	22.7	-33.3	21.8	-24.2	0.0
5	11.768020	29.0	27.5	-32.5	26.0	-24.0	0.0
6	20.484390	42.4	39.0	-21.0	14.0	-36.0	0.0

Figure 6. Detectors: Peak, Quasi-peak, AVERAGE.

Note: QP Delta/Av Delta refer to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

E.U.T Description WiMAX Base Station

Type Outdoor Pico Base Station 2.5 GHz

Part Number: PICO-O-2.5-C-1W-DC

Specification: F.C.C., Part 15, Subpart C

Lead: 48 VDC +

Detectors: Peak, Quasi-peak, Average

(dg

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 250 kHz 41.17 dBμV

Figure 7. Detectors: Peak, Quasi-peak, Average

E.U.T Description WiMAX Base Station

Type Outdoor Pico Base Station 2.5 GHz

Part Number: PICO-O-2.5-C-1W-DC

Specification: F.C.C., Part 15, Subpart C

Lead: 48 VDC -

Detectors: Peak, Quasi-peak, Average

Signal Number	Frequency (MHz)	Peak (dBuV)	QP (dBuV)	QP Delta L 1 (dB)		Av Delta L 2 (dB)	Corr (dB)
1	0.256292	42.6	41.5	-20.0	39.2	-12.4	0.0
2	0.767909	23.7	23.0	-33.0	21.9	-24.1	0.0
3	1.278945	22.4	21.0	-35.0	19.8	-26.2	0.0
4	11.678016	30.5	29.4	-30.6	27.9	-22.1	0.0
5	19.968807	33.7	30.3	-29.7	5.0	-45.0	0.0
6	26.840723	33.1	31.5	-28.5	24.0	-26.0	0.0

Figure 8. Detectors: Peak, Quasi-peak, AVERAGE

Note: QP Delta/Av Delta refer to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

E.U.T Description WiMAX Base Station

Type Outdoor Pico Base Station 2.5 GHz

Part Number: PICO-O-2.5-C-1W-DC

Specification: F.C.C., Part 15, Subpart C

Lead: 48 VDC -

Detectors: Peak, Quasi-peak, Average

(89

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 250 kHz 42.47 dBµV

Figure 9 Conducted Emission: NEUTRAL Detectors: Peak, Quasi-peak, Average

4.4 Test Instrumentation Used, Conducted Measurement

Instrument	Instrument Manufactur		Serial No.	Last Calibration	Period
	er			Date	
LISN	Fischer	FCC-LISN-2A	127	March 3, 2009	1 Year
LISN	Fischer	FCC-LISN-2A	128	March 3, 2009	1 Year
EMI Receiver	HP	85422E	3906A00276	November 10, 2009	1Year
RF Filter Section	HP	85420E	3705A00248	November 10, 2009	1Year
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A

5. Maximum Peak Output Power 5 MHz Bandwidth

5.1 Test Specification

FCC Part 27, Sub-part C (27.50(h)(2))

5.2 Test procedure

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator (20 dB) and an appropriate coaxial cable (1 dB). The E.U.T. RF output was OFDMA modulated with QPSK, 16QAM and 64QAM, at 5 MHz BW.

Special attention was taken to prevent Spectrum Analyzer RF input overload. Tested frequencies: 2498.5MHz, 2596.0MHz and 2687.5MHz

According to 47 CFR Part 2 section § 2.1046 and Part 27 section § 27.50(h)(1), the maximum EIRP of a base station shall not exceed 33 + 10 log (X/Y) dBW, where X is the actual channel width in MHz and Y is either 6 MHz if prior to transition or the station is in the MBS following transition or 5.5 MHz if the station is in the LBS and UBS following transition.

As to the limit, the X is 10 MHz and Y is 6 MHz for the EUT, so the limit is calculated to be $33 + 10 \log (5 \text{ MHz/6 MHz}) = 62.2 \text{ dBm}$.

ANTENNA TYPE Dipole antenna with N type connector (Antenna Gain : 15 dBi)

Figure 10.— 2498.50 MHz QPSK

Figure 11.— 2498.50 MHz 16QAM

Figure 12.— 2498.50 MHz 64QAM

Figure 13.— 2596.00 MHz QPSK

Figure 14.— 2596.00 MHz 16QAM

Figure 15.— 2596.00 MHz 64QAM

Figure 16.— 2687.50 MHz QPSK

Figure 17.— 2687.50 MHz 16QAM

Figure 18.— 2687.50 MHz 64QAM

5.3 Results table

E.U.T. Description: WiMAX Base Station Model No.: Outdoor Pico Base Station 2.5 GHz

Part Number: PICO-O-2.5-C-1W-DC

Specification: FCC Part 27, Sub-part C, Section 27.50 (h) (2)

Operation	Modulation	Reading	Antenna	Maximum	Specification*	Margin
Frequency			Gain	Peak Output		
				Power		
(MHz)		(dBm)	(dBi)	(dBm)	(dBm)	(dB)
	QPSK	35.2	15	50.2	62.2	-12.0
2498.50	16QAM	35.0	15	50.0	62.2	-12.2
	64QAM	35.1	15	50.1	62.2	-12.1
	QPSK	35.0	15	50.0	62.2	-12.2
2596.00	16QAM	35.1	15	50.1	62.2	-12.1
	64QAM	35.1	15	50.1	62.2	-12.1
	QPSK	34.2	15	49.2	62.2	-13.0
2685.00	16QAM	34.4	15	49.4	62.2	-12.8
	64QAM	34.3	15	49.3	62.2	-12.9

^{*} Limit = $33 + 10 \log (5/6) dBm$

Figure 19 Maximum Peak Power Output

JUDGEMENT: Passed by 12.0 dB

TEST PERSONNEL:

Tester Signature: Date: 04.01.10

Typed/Printed Name: A. Sharabi

5.4 Test Equipment Used.

Maximum Peak Output Power

Instrument	Manufacturer	Model	Serial Number	Calibration	l
				Last Calibr.	Period
Spectrum Analyzer	НР	8546E	3442A00275	December 15, 2008	1 year
Attenuator	Jyebao	-	FAT- AM5AF5G6G 2W20	October 19, 2009	1 year
Cable	Rhophase	KPS-5000-KPS	A1674	October 19, 2009	1 year

Figure 20 Test Equipment Used

6. Maximum Peak Output Power 10 MHz Bandwidth

6.1 Test Specification

FCC Part 27, Sub-part C (27.50(h)(2))

6.2 Test procedure

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator (20 dB) and an appropriate coaxial cable (1 dB). The E.U.T. RF output was OFDMA modulated with QPSK, 16QAM and 64QAM, at 10MHz BW.

Special attention was taken to prevent Spectrum Analyzer RF input overload. Tested frequencies: 2501.0MHz, 2596.0MHz and 2685.0MHz

According to 47 CFR Part 2 section § 2.1046 and Part 27 section § 27.50(h)(1), the maximum EIRP of a base station shall not exceed 33 + 10 log (X/Y) dBW, where X is the actual channel width in MHz and Y is either 6 MHz if prior to transition or the station is in the MBS following transition or 5.5 MHz if the station is in the LBS and UBS following transition.

As to the limit, the X is 10 MHz and Y is 6 MHz for the EUT, so the limit is calculated to be $33 + 10 \log (10 \text{ MHz}/6 \text{ MHz}) = 65.2 \text{ dBm}$.

ANTENNA TYPE Dipole antenna with N type connector (Antenna Gain : 15 dBi)

Figure 21.— 2501.00 MHz QPSK

Figure 22.— 2501.00 MHz 16QAM

Figure 23.— 2501.00 MHz 64QAM

Figure 24.— 2596.00 MHz QPSK

Figure 25.— 2596.00 MHz 16QAM

Figure 26.— 2596.00 MHz 64QAM

Figure 27.— 2685.00 MHz QPSK

Figure 28.— 2685.00 MHz 16QAM

Figure 29.— 2685.00 MHz 64QAM

6.3 Results table

E.U.T. Description: WiMAX Base Station Model No.: Outdoor Pico Base Station 2.5 GHz

Part Number: PICO-O-2.5-C-1W-DC

Specification: FCC Part 27, Sub-part C, Section 27.50 (h) (2)

Operation	Modulation	Reading	Antenna	Maximum	Specification*	Margin
Frequency			Gain	Peak Power		
				Output		
(MHz)		(dBm)			(dBm)	(dB)
	QPSK	33.2	15	48.2	65.2	-17.0
2501.00	16QAM	33.0	15	48.0	65.2	-17.2
	64QAM	32.8	15	47.8	65.2	-17.4
	QPSK	32.7	15	47.7	65.2	-17.5
2596.00	16QAM	31.9	15	46.9	65.2	-18.3
	64QAM	31.8	15	46.8	65.2	-18.4
	QPSK	31.7	15	46.7	65.2	-18.5
2685.00	16QAM	31.6	15	46.6	65.2	-18.6
	64QAM	31.2	15	46.2	65.2	-19.0

^{*} Limit = $63 + 10\log(10/6)$ dBm

Figure 30 Maximum Peak Power Output

JUDGEMENT: Passed by 17.0 dB

TEST PERSONNEL:

Tester Signature: Date: 04.01.10

Typed/Printed Name: A. Sharabi

6.4 Test Equipment Used.

Maximum Peak Output Power

Instrument	Manufacturer	Model	Serial Number	Calibration	l
				Last Calibr.	Period
Spectrum Analyzer	НР	8546E	3442A00275	December 15, 2008	1 year
Attenuator	Jyebao	-	FAT- AM5AF5G6G 2W20	October 19, 2009	1 year
Cable	Rhophase	KPS-5000-KPS	A1674	October 19, 2009	1 year

Figure 31 Test Equipment Used

7. Spectral Power Density 5 MHz Bandwidth

7.1 Test Specification

FCC Part 27, Sub-part C (27.50(h)(4))

7.2 Test procedure

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator (20 dB) and an appropriate coaxial cable (1 dB). The E.U.T. RF output was OFDMA modulated with QPSK, 16QAM and 64QAM, at 5 MHz BW. Power spectral density was measured over 100 kHz RBW.

Special attention was taken to prevent Spectrum Analyzer RF input overload. Tested frequencies: 2498.5MHz, 2596.0MHz and 2687.5MHz

ANTENNA TYPE Dipole antenna with N type connector (Antenna Gain : 15 dBi)

Figure 32.— 2498.50 MHz QPSK

Figure 33.— 2498.50 MHz 16QAM

Figure 34.— 2498.50 MHz 64QAM

Figure 35.— 2596.00 MHz QPSK

Figure 36.— 2596.00 MHz 16QAM

Figure 37.— 2596.00 MHz 64QAM

Figure 38.— 2687.50 MHz QPSK

Figure 39.— 2687.50 MHz 16QAM

Figure 40.— 2687.50 MHz 64QAM

7.3 Results table

E.U.T. Description: WiMAX Base Station Model No.: Outdoor Pico Base Station 2.5 GHz

Part Number: PICO-O-2.5-C-1W-DC

Specification: FCC Part 27, Sub-part C, Section 27.50 (h) (4)

Operation	Modulation	Reading*	Antenna	Spectral	Specification	Margin
Frequency		_	Gain	Power	_	_
				Density		
(MHz)		(dBm)	(dBi)	(dBm)	(dBm)	(dB)
	QPSK	18.2	15	33.2	47.4	-14.2
2498.50	16QAM	18.0	15	33.0	47.4	-14.4
	64QAM	18.1	15	33.1	47.4	-14.3
	QPSK	18.0	15	33.0	47.4	-14.4
2596.00	16QAM	18.1	15	33.1	47.4	-14.3
	64QAM	18.1	15	33.1	47.4	-14.3
	QPSK	17.2	15	32.2	47.4	-15.2
2685.00	16QAM	17.4	15	32.4	47.4	-15.0
	64QAM	17.3	15	32.3	47.4	-15.1

^{*-} Spectral power density, dBm/100kHz = Spectrum analyzer reading, dBm/Hz + 50 dB

Figure 41 Spectral Power Density

JUDGEMENT: Passed by 14.2 dB

TEST PERSONNEL:

Tester Signature: Date: 04.01.10

Spectral Power Density

Instrument	Manufacturer	Model	Serial Number	Calibration	l
				Last Calibr.	Period
Spectrum Analyzer	НР	8546E	3442A00275	December 15, 2008	1 year
Attenuator	Jyebao	-	FAT- AM5AF5G6G 2W20	October 19, 2009	1 year
Cable	Rhophase	KPS-5000-KPS	A1674	October 19, 2009	1 year

Figure 42 Test Equipment Used

8. Spectral Power Density 10 MHz Bandwidth

8.1 Test Specification

FCC Part 27, Sub-part C (27.50(h)(4))

8.2 Test procedure

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator (20 dB) and an appropriate coaxial cable (1 dB). The E.U.T. RF output was OFDMA modulated with QPSK, 16QAM and 64QAM, at 10MHz BW. Power spectral density was measured over 100 kHz RBW.

Special attention was taken to prevent Spectrum Analyzer RF input overload. Tested frequencies: 2501.0MHz, 2596.0MHz and 2685.0MHz

ANTENNA TYPE Dipole antenna with N type connector (Antenna Gain : 15 dBi)

Figure 43.— 2501.00 MHz QPSK

Figure 44.— 2501.00 MHz 16QAM

Figure 45.— 2501.00 MHz 64QAM

Figure 46.— 2596.00 MHz QPSK

Figure 47.— 2596.00 MHz 16QAM

Figure 48.— 2596.00 MHz 64QAM

Figure 49.— 2685.00 MHz QPSK

Figure 50.— 2685.00 MHz 16QAM

Figure 51.— 2685.00 MHz 64QAM

8.3 Results table

E.U.T. Description: WiMAX Base Station Model No.: Outdoor Pico Base Station 2.5 GHz

Part Number: PICO-O-2.5-C-1W-DC

Specification: FCC Part 27, Sub-part C, Section 27.50 (h) (4)

Operation	Modulation	Reading*	Antenna	Spectral	Specification	Margin
Frequency			Gain	Power		
				Densityt		
(MHz)		(dBm)			(dBm)	(dB)
	QPSK	13.2	15	28.2	47.4	-19.2
2501.00	16QAM	13.0	15	28.0	47.4	-19.4
	64QAM	12.8	15	27.8	47.4	-19.6
	QPSK	12.7	15	27.7	47.4	-19.7
2596.00	16QAM	11.9	15	26.9	47.4	-20.5
	64QAM	11.8	15	26.8	47.4	-20.6
	QPSK	11.7	15	26.7	47.4	-20.7
2685.00	16QAM	11.6	15	26.6	47.4	-20.8
	64QAM	11.2	15	26.2	47.4	-21.2

^{*-} Spectral power density, dBm/100kHz = Spectrum analyzer reading, dBm/Hz + 50 dB

Figure 52 Spectral Power Density

JUDGEMENT: Passed by 19.2 dB

TEST PERSONNEL:

Tester Signature: Date: 04.01.10

Spectral Power Density

Instrument	Manufacturer	Model	Serial Number	Calibration	l
				Last Calibr.	Period
Spectrum Analyzer	HP	8546E	3442A00275	December 15, 2008	1 year
Attenuator	Jyebao	-	FAT- AM5AF5G6G 2W20	October 19, 2009	1 year
Cable	Rhophase	KPS-5000-KPS	A1674	October 19, 2009	1 year

Figure 53 Test Equipment Used

9. Occupied Bandwidth 5 MHz Bandwidth

9.1 Test Specification

FCC Part 2, Section 1049

9.2 Test Procedure

The E.U.T. was set to the applicable test frequency with OFDMA modulations and 5 MHZ bandwidth in the 2498.5-2687.5MHz

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator (at the output test) and an appropriate coaxial cable. The spectrum analyzer was set to proper resolution B.W.

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limit, the mean powers radiated are each equal to 0.5% of the total mean power radiated by a given emission.

Occupied bandwidth measured was repeated in the input terminal of the E.U.T.

Figure 54.— 2498.50 MHz QPSK

Figure 55.— 2498.50 MHz 16QAM

Figure 56.— 2498.50 MHz 64 QAM

Figure 57.— 2596.00 MHz QPSK

Figure 58.— 2596.00 MHz 16QAM

Figure 59.— 2596.00 MHz 64 QAM

Figure 60.— 2687.50 MHz QPSK

Figure 61.— 2687.50 MHz 16 QAM

Figure 62.— 2687.50 MHz 64 QAM

9.3 Results Table

E.U.T. Description: WiMAX Base Station Model No.: Outdoor Pico Base Station 2.5 GHz

Part Number: PICO-O-2.5-C-1W-DC Specification: FCC Part 2, Section 1049

Operating	Modulation	Reading
Operating	iviodulation	_
Frequency		(26dBc)
(MHz)		(MHz)
	QPSK	5.25
2498.50	16QAM	5.08
	64QAM	5.20
	QPSK	5.15
2596.00	16QAM	5.33
	64QAM	5.20
	QPSK	5.35
2687.50	16QAM	5.30
	64QAM	5.25

Figure 63 Occupied Bandwidth

JUDGEMENT:	Passed
------------	--------

TEST PERSONNEL:

Tester Signature: Date: 04.01.10

Occupied Bandwidth

Instrument	Manufacturer	Model	Serial Number	Calibration	
				Last Calibr.	Period
Spectrum Analyzer	НР	8592L	3826A01204	March 17, 2009	1 year
Attenuator	Jyebao	-	FAT- AM5AF5G6G 2W20	October 19, 2009	1 year
Cable	Rhophase	KPS-5000-KPS	A1674	October 19, 2009	1 year

Figure 64 Test Equipment Used

10. Occupied Bandwidth 10 MHz Bandwidth

10.1 Test Specification

FCC Part 2, Section 1049

10.2 Test Procedure

The E.U.T. was set to the applicable test frequency with OFDMA modulations and 10MHZ bandwidth in the 2501.0-2685.0MHz

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator (at the output test) and an appropriate coaxial cable. The spectrum analyzer was set to proper resolution B.W.

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limit, the mean powers radiated are each equal to 0.5% of the total mean power radiated by a given emission.

Occupied bandwidth measured was repeated in the input terminal of the E.U.T.

Figure 65.— 2501.00 MHz QPSK

Figure 66.— 2501.00 MHz 16QAM

Figure 67.— 2501.00 MHz 64 QAM

Figure 68.— 2596.00 MHz QPSK

Figure 69.— 2596.00 MHz 16QAM

Figure 70.— 2596.00 MHz 64 QAM

Figure 71.— 2685.00 MHz QPSK

Figure 72.— 2685.00 MHz 16 QAM

Figure 73.— 2685.00 MHz 64 QAM

10.3 Results Table

E.U.T. Description: WiMAX Base Station Model No.: Outdoor Pico Base Station 2.5 GHz

Part Number: PICO-O-2.5-C-1W-DC Specification: FCC Part 2, Section 1049

Operating	Modulation	Reading
Frequency	Wiodalation	(26dBc)
(MHz)		(MHz)
	QPSK	10.70
2501.00	16QAM	10.65
	64QAM	10.35
	QPSK	10.65
2696.00	16QAM	10.70
	64QAM	10.45
	QPSK	10.55
2685.00	16QAM	10.35
	64QAM	10.65

Figure 74 Occupied Bandwidth

JUDGEMENT:	Passed

TEST PERSONNEL:

Tester Signature: Date: 04.01.10

Occupied Bandwidth

Instrument	Manufacturer	Model	Serial Number	Calibration	
				Last Calibr.	Period
Spectrum Analyzer	НР	8592L	3826A01204	March 17, 2009	1 year
Attenuator	Jyebao	-	FAT- AM5AF5G6G 2W20	October 19, 2009	1 year
Cable	Rhophase	KPS-5000-KPS	A1674	October 19, 2009	1 year

Figure 75 Test Equipment Used

11. Conducted Spurious Emissions 5 MHz Bandwidth

11.1 Test Specification

FCC Part 27, Sub-part C, Section 27.53 (m)

11.2 Test procedure

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at 43 + 10 log (P) dB. The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (21.0 dB).

Figure 76.— 2498.50 MHz QPSK

Figure 77.— 2498.50 MHz QPSK

Figure 78.— 2498.50 MHz QPSK

Figure 79.— 2498.50 MHz QPSK

Figure 80.— 2498.50 MHz QPSK

Figure 81.— 2498.50 MHz QPSK

Figure 82.— 2498.50 MHz QPSK

Figure 83.— 2498.50 MHz QPSK

Figure 84.— 2498.50 MHz QPSK

Figure 85.— 2498.50 MHz 16QAM

Figure 86.— 2498.50 MHz 16QAM

Figure 87.— 2498.50 MHz 16QAM

Figure 88.— 2498.50 MHz 16QAM

Figure 89.— 2498.50 MHz 16QAM

Figure 90.— 2498.50 MHz 16QAM

Figure 91.— 2498.50 MHz 16QAM

Figure 92.— 2498.50 MHz 16QAM

Figure 93.— 2498.50 MHz 16QAM

Figure 94.— 2498.50 MHz 64QAM

Figure 95.— 2498.50 MHz 64QAM

Figure 96.— 2498.50 MHz 64QAM

Figure 97.— 2498.50 MHz 64QAM

Figure 98.— 2498.50 MHz 64QAM

Figure 99.— 2498.50 MHz 64QAM

Figure 100.— 2498.50 MHz 64QAM

Figure 101.— 2498.50 MHz 64QAM

Figure 102.— 2498.50 MHz 64QAM

Figure 103.— 2596.00 MHz QPSK

Figure 104.— 2596.00 MHz QPSK

Figure 105.— 2596.00 MHz QPSK

Figure 106.— 2596.00 MHz QPSK

Figure 107.— 2596.00 MHz QPSK

Figure 108.— 2596.00 MHz QPSK

Figure 109.— 2596.00 MHz QPSK

Figure 110.— 2596.00 MHz QPSK

Figure 111.— 2596.00 MHz QPSK

Figure 112.— 2596.00 MHz 16QAM

Figure 113.— 2596.00 MHz 16QAM

Figure 114.— 2596.00 MHz 16QAM

Figure 115.— 2596.00 MHz 16QAM

Figure 116.— 2596.00 MHz 16QAM

Figure 117.— 2596.00 MHz 16QAM

Figure 118.— 2596.00 MHz 16QAM

Figure 119.— 2596.00 MHz 16QAM

Figure 120.— 2596.00 MHz 16QAM

Figure 121.— 2596.00 MHz 64QAM

Figure 122.— 2596.00 MHz 64QAM

Figure 123.— 2596.00 MHz 64QAM

Figure 124.— 2596.00 MHz 64QAM

Figure 125.— 2596.00 MHz 64QAM

Figure 126.— 2596.00 MHz 64QAM

Figure 127.— 2596.00 MHz 64QAM

Figure 128.— 2596.00 MHz 64QAM

Figure 129.— 2596.00 MHz 64QAM

Figure 130.— 2596.00 MHz 64QAM

Figure 131.— 2687.50 MHz QPSK

Figure 132.— 2687.50 MHz QPSK

Figure 133.— 2687.50 MHz QPSK

Figure 134.— 2687.50 MHz QPSK

Figure 135.— 2687.50 MHz QPSK

Figure 136.— 2687.50 MHz QPSK

Figure 137.— 2687.50 MHz QPSK

Figure 138.— 2687.50 MHz QPSK

Figure 139.— 2687.50 MHz QPSK

Figure 140.— 2687.50 MHz 16QAM

Figure 141.— 2687.50 MHz 16QAM

Figure 142.— 2687.50 MHz 16QAM

Figure 143.— 2687.50 MHz 16QAM

Figure 144.— 2687.50 MHz 16QAM

Figure 145.— 2687.50 MHz 16QAM

Figure 146.— 2687.50 MHz 16QAM

Figure 147.— 2687.50 MHz 16QAM

Figure 148.— 2687.50 MHz 16QAM

Figure 149.— 2687.50 MHz 64QAM

Figure 150.— 2687.50 MHz 64QAM

Figure 151.— 2687.50 MHz 64QAM

Figure 152.— 2687.50 MHz 64QAM

Figure 153.— 2687.50 MHz 64QAM

Figure 154.— 2687.50 MHz 64QAM

Figure 155.— 2687.50 MHz 64QAM

Figure 156.— 2687.50 MHz 64QAM

Figure 157.— 2687.50 MHz 64QAM

11.3 Results table

E.U.T. Description: WiMAX Base Station Model No.: Outdoor Pico Base Station 2.5 GHz

Part Number: PICO-O-2.5-C-1W-DC

Specification: FCC Part 27, Sub-part C, Section 27.53 (g)

Operation		Reading	Specification	Margin
Frequency				
(MHz)		(dBm)	(dBm)	(dB)
2498.50	QPSK	-26.53	-13.0	-13.53
	16QAM	-26.00	-13.0	-13.00
	64QAM	-19.51	-13.0	-6.51
2596.00	QPSK	-19.58	-13.0	-6.58
	16QAM	-25.41	-13.0	-12.41
	64QAM	-18.20	-13.0	-5.20
2687.50	QPSK	-19.03	-13.0	-6.03
	16QAM	-26.32	-13.0	-13.32
	64QAM	-24.60	-13.0	-11.60

Figure 158 Spurious Emissions at Antenna Terminals Results

JUDGEMENT: Passed by 5.2 dB

TEST PERSONNEL:

Tester Signature: Date: 04.01.10

Typed/Printed Name: A. Sharabi

11.4 Test Equipment Used.

Spurious Emissions at Antenna Terminals

Instrument	Manufacturer	Model	Serial Number	Calibration	
				Last Calibr.	Period
Spectrum Analyzer	НР	8592L	3826A01204	March 17, 2009	1 year
Attenuator	Jyebao	-	FAT- AM5AF5G6G 2W20	October 19, 2009	1 year
Cable	Rhophase	KPS-5000-KPS	A1674	October 19, 2009	1 year

Figure 159 Test Equipment Used

12. Conducted Spurious Emissions 10 MHz Bandwidth

12.1 Test Specification

FCC Part 27, Sub-part C, Section 27.53 (m)

12.2 Test procedure

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at 43 + 10 log (P) dB The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (21.0 dB).

Figure 160.— 2501.00 MHz QPSK

Figure 161.— 2501.00 MHz QPSK

Figure 162.— 2501.00 MHz QPSK

Figure 163.— 2501.00 MHz QPSK

Figure 164.— 2501.00 MHz QPSK

Figure 165.— 2501.00 MHz QPSK

Figure 166.— 2501.00 MHz QPSK

Figure 167.— 2501.00 MHz QPSK

Figure 168.— 2501.00 MHz 16QAM

Figure 169.— 2501.00 MHz 16QAM

Figure 170.— 2501.00 MHz 16QAM

Figure 171.— 2501.00 MHz 16QAM

Figure 172.— 2501.00 MHz 16QAM

Figure 173.— 2501.00 MHz 16QAM

Figure 174.— 2501.00 MHz 16QAM

Figure 175.— 2501.00 MHz 16QAM

Figure 176.— 2501.00 MHz 16QAM

Figure 177.— 2501.00 MHz 64QAM

Figure 178.— 2501.00 MHz 64QAM

Figure 179.— 2501.00 MHz 64QAM

Figure 180.— 2501.00 MHz 64QAM

Figure 181.— 2501.00 MHz 64QAM

Figure 182.— 2501.00 MHz 64QAM

Figure 183.— 2501.00 MHz 64QAM

Figure 184.— 2501.00 MHz 64QAM

Figure 185.— 2501.00 MHz 64QAM

Figure 186.— 2596.00 MHz QPSK

Figure 187.— 2596.00 MHz QPSK

Figure 188.— 2596.00 MHz QPSK

Figure 189.— 2596.00 MHz QPSK

Figure 190.— 2596.00 MHz QPSK

Figure 191.— 2596.00 MHz QPSK

Figure 192.— 2596.00 MHz QPSK

Figure 193.— 2596.00 MHz QPSK

Figure 194.— 2596.00 MHz QPSK

Figure 195.— 2596.00 MHz 16QAM

Figure 196.— 2596.00 MHz 16QAM

Figure 197.— 2596.00 MHz 16QAM

Figure 198.— 2596.00 MHz 16QAM

Figure 199.— 2596.00 MHz 16QAM

Figure 200.— 2596.00 MHz 16QAM

Figure 201.— 2596.00 MHz 16QAM

Figure 202.— 2596.00 MHz 16QAM

Figure 203.— 2596.00 MHz 16QAM

Figure 204.— 2596.00 MHz 64QAM

Figure 205.— 2596.00 MHz 64QAM

Figure 206.— 2596.00 MHz 64QAM

Figure 207.— 2596.00 MHz 64QAM

Figure 208.— 2596.00 MHz 64QAM

Figure 209.— 2596.00 MHz 64QAM

Figure 210.— 2596.00 MHz 64QAM

Figure 211.— 2596.00 MHz 64QAM

Figure 212.— 2596.00 MHz 64QAM

Figure 213.— 2685.00 MHz QPSK

Figure 214.— 2685.00 MHz QPSK

Figure 215.— 2685.00 MHz QPSK

Figure 216.— 2685.00 MHz QPSK

Figure 217.— 2685.00 MHz QPSK

Figure 218.— 2685.00 MHz QPSK

Figure 219.— 2685.00 MHz QPSK

Figure 220.— 2685.00 MHz QPSK

Figure 221.— 2685.00 MHz QPSK

Figure 222.— 2685.00 MHz 16QAM

Figure 223.— 2685.00 MHz 16QAM

Figure 224.— 2685.00 MHz 16QAM

Figure 225.— 2685.00 MHz 16QAM

Figure 226.— 2685.00 MHz 16QAM

Figure 227.— 2685.00 MHz 16QAM

Figure 228.— 2685.00 MHz 16QAM

Figure 229.— 2685.00 MHz 16QAM

Figure 230.— 2685.00 MHz 16QAM

Figure 231.— 2685.00 MHz 64QAM

Figure 232.— 2685.00 MHz 64QAM

Figure 233.— 2685.00 MHz 64QAM

Figure 234.— 2685.00 MHz 64QAM

Figure 235.— 2685.00 MHz 64QAM

Figure 236.— 2685.00 MHz 64QAM

Figure 237.— 2685.00 MHz 64QAM

Figure 238.— 2685.00 MHz 64QAM

Figure 239.— 2685.00 MHz 64QAM

12.3 Results table

E.U.T. Description: WiMAX Base Station Model No.: Outdoor Pico Base Station 2.5 GHz

Serial Number: PICO-O-2.5-C-1W-DC

Specification: FCC Part 27, Sub-part C, Section 27.53 (g)

Operation		Reading	Specification	Margin
Frequency				
(MHz)		(dBm)	(dBm)	(dB)
	QPSK	-15.23	-13.0	-2.23
2501.00	16QAM	-26.61	-13.0	-13.61
	64QAM	-18.59	-13.0	-5.59
	QPSK	-25.68	-13.0	-12.68
2596.00	16QAM	-26.75	-13.0	-13.75
	64QAM	-26.51	-13.0	-13.51
_	QPSK	-19.02	-13.0	-6.02
2687.50	16QAM	-27.08	-13.0	-14.08
	64QAM	-26.52	-13.0	-13.52

Figure 240 Spurious Emissions at Antenna Terminals Results

JUDGEMENT: Passed by 2.2 dB

TEST PERSONNEL:

Tester Signature: Date: 04.01.10

Typed/Printed Name: A. Sharabi

12.4 Test Equipment Used.

Spurious Emissions at Antenna Terminals

Instrument	Manufacturer	Model	Serial Number	Calibratio	on
				Last Calibr.	Period
Spectrum Analyzer	НР	8592L	3826A01204	March 17, 2009	1 year
Attenuator	Jyebao	-	FAT- AM5AF5G6G 2W20	October 19, 2009	1 year
Cable	Rhophase	KPS-5000-KPS	A1675	October 19, 2009	1 year

Figure 241 Test Equipment Used

13. Band Edge Spectrum 5 MHz Bandwidth

13.1 Test Specification

FCC Part 27, Sub-part C, Section 27.53 (m 4-6)

13.2 Test procedure

Enclosed are spectrum analyzer plots for the lowest operation frequency and the highest operation frequency in which the E.U.T. is planned to be used.

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + log (P) dB, yielding -13dBm.

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (21.0 dB).

The spectrum analyzer was set to 100kHz R.B.W (1% from 5MHz).

Figure 242.— 2498.5 MHz QPSK

Date: 2.NOV.2009 15:39:31

Figure 243.— 2498.50 MHz QPSK

Date: 2.NOV.2009 15:37:52

Figure 244.— 2498.50 16QAM

Date: 2.NOV.2009 15:39:57

Figure 245.— 2498.50 MHz 16QAM

Date: 2.NOV.2009 15:38:25

Figure 246.— 2498.50 MHz 64QAM

Date: 2.NOV.2009 15:40:22

Figure 247.— 2498.50 MHz 64QAM

Date: 2.NOV.2009 15:44:45

Figure 248.— 2596.00 MHz QPSK

Date: 2.NOV.2009 15:46:54

Figure 249.— 2596.00 MHz QPSK

Figure 250.— 2596.00 MHz 16QAM

Date: 2.NOV.2009 15:47:19

Figure 251.— 2596.00 MHz 16QAM

Date: 2.NOV.2009 15:45:40

Figure 252.— 2596.00 MHz 64QAM

Date: 2.NOV.2009 15:47:47

Figure 253.— 2596.00 MHz 64QAM

Figure 254.— 2687.50 MHz QPSK

Date: 2.NOV.2009 15:49:03

Figure 255.— 2687.50 MHz QPSK

Date: 2.NOV.2009 15:51:21

Figure 256.— 2687.50 MHz 16QAM

Date: 2.NOV.2009 15:49:28

Figure 257.— 2687.50 MHz 16QAM

Date: 2.NOV.2009 15:51:51

Figure 258.— 2687.50 MHz 64QAM

Date: 2.NOV.2009 15:49:52

Figure 259.— 2687.50 MHz 64QAM

13.3 Results table

E.U.T. Description: WiMAX Base Station Model No.: Outdoor Pico Base Station 2.5 GHz

Part Number: PICO-O-2.5-C-1W-DC

Specification: FCC Part 27, Sub-part C, Section 27.53 (m 4-6)

Operation	Modulation	Band Edge	Reading	Specification
Frequency		Frequency		
(MHz)		(MHz)	(dBm)	(dBm)
	QPSK	2495.985	-18.31	-13.0
	QPSK	2501.005	-17.71	-13.0
2498.50	16QAM	2495.997	-17.76	-13.0
2498.30	16QAM	2501.025	-19.01	-13.0
	64QAM	2495.987	-18.50	-13.0
	64QAM	2501.025	-18.19	-13.0
	QPSK	2593.477	-16.91	-13.0
	QPSK	2598.548	-18.96	-13.0
2596.00	16QAM	2593.489	-17.37	-13.0
2390.00	16QAM	2598.534	-18.91	-13.0
	64QAM	2593.495	-17.18	-13.0
	64QAM	2598.534	-18.53	-13.0
	QPSK	2684.985	-16.55	-13.0
	QPSK	2690.001	-20.00	-13.0
2687.50	16QAM	2684.987	-16.40	-13.0
2087.30	16QAM	2690.042	-18.48	-13.0
	64QAM	2684.847	-18.33	-13.0
	64QAM	2690.005	-19.39	-13.0

Figure 260 Band Edge Spectrum Results

JUDGEMENT:	Passed

TEST PERSONNEL:

Tester Signature: Date: 04.01.10

Typed/Printed Name: A. Sharabi

13.4 Test Equipment Used.

Band Edge Spectrum

Instrument	Manufacturer	Model	Serial Number	Calibration	
				Last Calibr.	Period
Spectrum Analyzer	RHODE&SCHWARTZ	FSL6	100234	December 01, 2008	1 year
Attenuator	Jyebao	-	FAT- AM5AF5G6G 2W20	October 19, 2009	1 year
Cable	Rhophase	KPS-5000- KPS	A1674	October 19, 209	1 year

Figure 261 Test Equipment Used

14. Band Edge Spectrum 10 MHz Bandwidth

14.1 Test Specification

FCC Part 27, Sub-part C, Section 27.53 (m 4-6)

14.2 Test procedure

Enclosed are spectrum analyzer plots for the lowest operation frequency and the highest operation frequency in which the E.U.T. is planned to be used.

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + log (P) dB, yielding -13dBm.

The E.U.T. antenna terminal was connected to the spectrum analyzer through an external attenuator and an appropriate coaxial cable (21.0 dB).

The spectrum analyzer was set to 100kHz R.B.W (1% from 10MHz).

Figure 262.— 2501.00 MHz QPSK

Date: 2.NOV.2009 14:49:41

Figure 263.— 2501.00 MHz QPSK

Date: 2.NOV.2009 14:50:33

Figure 264.— 2501.00 16QAM

Date: 2.NOV.2009 14:51:04

Figure 265.— 2501.00 MHz 16QAm

Date: 2.NOV.2009 14:51:46

Figure 266.— 2501.00 MHz 64QAm

Date: 2.NOV.2009 14:52:15

Figure 267.— 2501.00 MHz 64QAM

Figure 268.— 2596.00 MHz QPSK

Date: 2.NOV.2009 15:02:37

Figure 269.— 2596.00 MHz QPSK

Date: 2.NOV.2009 15:01:09

Figure 270.— 2596.00 MHz 16QAM

Date: 2.NOV.2009 15:03:09

Figure 271.— 2596.00 MHz 16QAM

Date: 2.NOV.2009 15:01:46

Figure 272.— 2596.00 MHz 64QAM

Date: 2.NOV.2009 15:04:24

Figure 273.— 2596.00 MHz 64QAM

Date: 2.NOV.2009 15:10:23

Figure 274.— 2685.00 MHz QPSK

Date: 2.NOV.2009 15:10:55

Figure 275.— 2685.00 MHz QPSK

Figure 276.— 2685.00 MHz 16QAM

Date: 2.NOV.2009 15:12:58

Figure 277.— 2685.00 MHz 16QAM

Date: 2.NOV.2009 15:11:27

Figure 278.— 2685.00 MHz 64QAM

Date: 2.NOV.2009 15:13:27

Figure 279.— 2685.00 MHz 64QAM

14.3 Results table

E.U.T. Description: WiMAX Base Station Model No.: Outdoor Pico Base Station 2.5 GHz

Part Number: PICO-O-2.5-C-1W-DC

Specification: FCC Part 27, Sub-part C, Section 27.53 (m 4-6)

Operation	Modulation	Band Edge	Reading	Specification
Frequency		Frequency		_
(MHz)		(MHz)	(dBm)	(dBm)
	QPSK	2495.985	-26.79	-13.0
	QPSK	2506.300	-28.79	-13.0
2501.00	16QAM	2495.987	-25.69	-13.0
2301.00	16QAM	2506.096	-26.15	-13.0
	64QAM	2495.977	-26.27	-13.0
	64QAM	2506.082	-25.67	-13.0
	QPSK	2590.981	-25.89	-13.0
	QPSK	2601.019	-24.86	-13.0
2596.00	16QAM	2590.999	-25.86	-13.0
2390.00	16QAM	2601.003	-25.10	-13.0
	64QAM	2590.983	-24.82	-13.0
	64QAM	2601.062	-25.72	-13.0
	QPSK	2679.993	-24.46	-13.0
	QPSK	2679.973	-25.72	-13.0
	16QAM	2690.056	-25.32	-13.0
	16QAM	2690.017	-26.93	-13.0
	64QAM	2679.977	-25.39	-13.0
	64QAM	2690.017	-25.64	-13.0

Figure 280 Band Edge Spectrum Results

ed
20

TEST PERSONNEL:

Tester Signature: Date: 04.01.10

Typed/Printed Name: A. Sharabi

14.4 Test Equipment Used.

Band Edge Spectrum

Instrument	Manufacturer	Model	Serial Number	Calibratio	on
				Last Calibr.	Period
Spectrum Analyzer	RHODE&SCH WARTZ	FSL6	100234	December 01, 2008	1 year
Attenuator	Jyebao	-	FAT- AM5AF5G6G 2W20	October 19, 2009	1 year
Cable	Rhophase	KPS-5000-KPS	A1674	October 19, 209	1 year

Figure 281 Test Equipment Used

15. Spurious Radiated Emission 5 and 10 MHz Bandwidth

15.1 Test Specification

FCC, Part 27, Sub-part C Section 27.53 (g)

15.2 Test Procedure

The test method was based on ANSI/TIA-603-B: 2002, Section 2.2.12 Unwanted Emissions: Radiated Spurious.

The power of any emission outside of the authorized operating frequency ranges (2489.50-2687.50 MHz) must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB, yielding –13dBm.

(a) The E.U.T. operation mode and test set-up are as described in Section 3. A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in Figure 1.

The frequency range 9 kHz-27 GHz was scanned, and the list of the highest emissions was verified and updated accordingly.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization. The emissions were measured at a distance of 3 meters.

(b) The E.U.T. was replaced by a substitution antenna (dipole 30MHz-1GHz, Horn Antenna above 1GHz) driven by a signal generator. The height was readjusted for maximum reading. The signal generator level was adjusted to obtain the same reading on the EMI receiver as in step (a).

The signals observed in step (a) were converted to radiated power using: $P_d(dBm) = P_g(dBm) - Cable Loss (dB) + Substitution Antenna Gain (dB)$

 P_d = Dipole equivalent power (result).

 P_g = Signal generator output level.

The E.U.T. was operated at the frequency of 2501.00, 2596.00, and 2685.00 MHz with QPSK, 16QAM, and 64QAM modulations with 5 and 10 MHz bandwidth.

The worst case results using 64QAM modulation and both 5 and 10 MHz bandwidth were recorded.

5 MHz Bandwidth

Carrier Channel	Freq.	Antenna Pol.	Maximum Peak Level	Signal Generator RF	Cable Loss	Antenna Gain	Effective Radiated	Spec.	Margin
(MHz)	(MHz)		(dBµV/m)	Output (dBm)	(dB)	(dBi)	Power Level (dBm)	(dBm)	(dB)
2498.50	4997.00	V	64.0	-33.2	10.0	10.0	-33.2	-13.0	-20.2
2498.50	4997.00	Н	57.0	-39.0	10.0	10.0	-39.0	-13.0	-26.0
2596.00	5192.00	V	66.0	-30.3	11.0	10.1	-31.2	-13.0	-18.2
2596.00	5192.00	Н	58.3	-36.0	11.0	10.1	-36.9	-13.0	-23.9
2687.5	5375.00	V	60.2	-32.5	12.0	10.2	-34.3	-13.0	-21.3
2687.50	5375.00	Н	57.1	-35.4	12.0	10.2	-37.2	-13.0	-24.2

10 MHz Bandwidth

Carrier Channel	Freq.	Antenna Pol.	Maximum Peak Level	Signal Generator RF Output	Cable Loss	Antenna Gain	Effective Radiated Power Level	Spec.	Margin
(MHz)	(MHz)		$(dB\mu V/m)$	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
2501.00	5002.00	V	63.0	-32.2	10.0	10.0	-32.2	-13.0	-19.2
2501.00	5002.00	Н	56.0	-40.0	10.0	10.0	-40.0	-13.0	-27.0
2596.00	5192.00	V	58.0	-37.3	11.0	10.1	-38.2	-13.0	-25.2
2596.00	5192.00	Н	56.3	-38.0	11.0	10.1	-38.9	-13.0	-25.9
2685.00	5370.00	V	59.0	-33.5	12.0	10.2	-35.3	-13.0	-22.3
2685.00	5370.00	Н	57.2	-35.4	12.0	10.2	-37.2	-13.0	-24.2

15.3 Test Results

JUDGEMENT: Passed by 18.2 dB (5 MHz Bandwidth)
JUDGEMENT: Passed by 19.2 dB (10 MHz Bandwidth)

The E.U.T met the requirements of the FCC, Part 27, Sub-part C, Section 27.53 (g) specifications.

TEST PERSONNEL:

Tester Signature: Date: 04.01.10

Typed/Printed Name: A. Sharabi

15.4 Test Instrumentation Used, Radiated Measurements

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	НР	85422E	3411A00102	November 17, 2008	1 year
RF Section	НР	85420E	3427A00103	November 16, 2008	1 year
Antenna Log Periodic	A.H. Systems	SAS-200/511	253	January 29, 2009	2 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	НР	ThinkJet 2225	2738508357.0	N/A	N/A
Spectrum Analyzer	НР	8592L	3826A01204	March 17, 2009	1 year
Low Noise Amplifier	DBS MICROWAVE	LNA-DBS- 0411N313	013	November 3, 2008	1 year
Low Noise Amplifier	Sophia Wireless	LNA 28-B	232	January 8, 2009	1 year
Signal Generator	НР	E4432B ESG-D	GB38450502	August 8, 2008	2 years
Double Ridged Waveguide Horn Antenna	EMCO	3115	29845	March 16, 2008	2 years
Horn Antenna	ARA	SWH-28	1008	December 23, 2008	2 years
Horn Antenna	Narda	V637	0410	December 23, 2008	2 years

16. Frequency Stability 5 and 10 MHz Bandwidth

16.1 Test Specification

Part 27 Sub-part C Section 27.53

16.2 Test Procedure

The E.U.T operation mode and test setup are as described in Section 2. The E.U.T. was operated with a CW signal in the downlink path.

The E.U.T. was placed inside a temperature chamber. The E.U.T. was operated from 36 VDC at normal temperature and the chamber temperature was set to +30°C

The spectrum analyzer was set to $10.0~\mathrm{kHz}$ span and $1.0~\mathrm{kHz}$ RBW, and $1.0~\mathrm{kHz}$ VBW.

The carrier frequency was measured and recorded (reference frequency reading).

The carrier frequency measurement was repeated for:

- (a). $+30^{\circ}$ C and 48 VDC
- (b). $+30^{\circ}$ C and 70 VDC
- (c). -30°C and 48 VDC
- (d). -20°C and 48 VDC
- (e). -10°C and 48 VDC
- (f). 0° C and 48 VDC
- (g). $+10^{\circ}$ C and 48 VDC
- (h). +20°C and 48 VDC
- (i). +40°C and 48 VDC
- (j). $+50^{\circ}$ C and 48 VDC

The carrier frequency was measured and recorded after at least 20 minutes of exposing the E.U.T. to the temperature.

The E.U.T. was operated at 2498.50 and 2687.50 MHz for 5 MHz bandwidth, and 2501.00 and 2685.00 MHz for 10 MHz bandwidth.

16.3 Test Results

The E.U.T met the requirements of Part 27 Sub-part C, Section 27.54 specification.

The details of the results are given in Figure 282.

JUDGEMENT: Passed

TEST PERSONNEL:

Tester Signature: Date: 04.01.10

Typed/Printed Name: A. Sharabi

Frequency Stability

E.U.T Description WiMAX Base Station

Type Outdoor Pico Base Station 2.5 GHz

Part Number: PICO-O-2.5-C-1W-DC

Specification: FCC Part 27 Sub-part C Section 27.54

		5 MHz Bandwidth		10 MHz B	andwidth
Temperature (°C)	Voltage (VDC)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
	36	2498.50260	2687.50270	2501.00256	2685.0273
30	48	2498.50260	2687.50270	2501.00256	2685.0275
	70	2498.50260	2687.50270	2501.00260	2685.00275
-30	48	2498.50413	2687.50415	2501.00363	2685.0385
-20	48	2498.50230	2687.50245	2501.00249	2685.0268
-10	48	2498.50288	2687.50305	2501.00280	2685.00293
0	48	2498.50270	2687.50293	2501.00258	2685.00285
+10	48	2498.50270	2687.50293	2501.00255	2685.00280
+20	48	2498.50255	2687.50275	2501.00260	2685.0285
+40	48	2498.50203	2687.50203	2501.00198	2685.00213
+50	48	2498.50178	2687.50190	2501.00178	2685.00195

Figure 282. Frequency Stability

16.4 Test Instrumentation Used, Radiated Measurements

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
Environmental Chamber	THERMOTRON CORP	SM 32C Mini Max	25-1030	March 04, 2009	1 Year
Digital Voltage Meter	Escort	EDM1111A	10313121	November 3, 2008	2 Years
Variable Voltage Transformer	Variac Voltage Co.	-	-	N/A	N/A
Spectrum Analyzer	HP	8594E	3809U03785	February 26, 2009	1 Year

17. APPENDIX A - CORRECTION FACTORS

17.1 Correction factors for CABLE

from EMI receiver to test antenna at 3 meter range.

FREQUENCY	CORRECTION FACTOR
(MHz)	(dB)
10.0	0.3
20.0	0.6
30.0	0.8
40.0	0.9
50.0	1.1
60.0	1.2
70.0	1.3
80.0	1.4
90.0	1.6
100.0	1.7
150.0	2.0
200.0	2.3
250.0	2.7
300.0	3.1
350.0	3.4
400.0	3.7
450.0	4.0
500.0	4.3
600.0	4.7
700.0	5.3
800.0	5.9
900.0	6.3
1000.0	6.7

(MHz) (dB) 1200.0 7.3 1400.0 7.8 1600.0 8.4 1800.0 9.1 2000.0 9.9 2300.0 11.2 2600.0 12.2 2900.0 13.0	FREQUENCY	CORRECTION FACTOR
1400.0 7.8 1600.0 8.4 1800.0 9.1 2000.0 9.9 2300.0 11.2 2600.0 12.2	(MHz)	(dB)
2,00.0 15.0	1400.0 1600.0 1800.0 2000.0 2300.0	7.8 8.4 9.1 9.9 11.2

- 1. The cable type is RG-214.
- 2. The overall length of the cable is 27 meters.
- 3. The above data is located in file 27MO3MO.CBL on the disk marked "Radiated Emission Tests EMI Receiver".

17.2 Correction factors for CABLE from EMI receiver

to test antenna at 3 meter range.

FREQUENCY	CORRECTION FACTOR
(GHz)	(dB)
1.0	1.2
2.0	1.6
3.0	2.0
4.0	2.4
5.0	3.0
6.0	3.4
7.0	3.8
8.0	4.2
9.0	4.6
10.0	5.0
12.0	5.8

- 1. The cable type is RG-8.
- 2. The overall length of the cable is 10 meters.

17.3 Correction factors for CABLE from spectrum analyzer to test antenna above 2.9 GHz

EDECLIENCY	CORRECTION	FREQUENCY	CORRECTION
FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	1.9	14.0	9.1
2.0	2.7	15.0	9.5
3.0	3.5	16.0	9.9
4.0	4.2	17.0	10.2
5.0	4.9	18.0	10.4
6.0	5.5	19.0	10.7
7.0	6.0	20.0	10.9
8.0	6.5	21.0	11.2
9.0	7.0	22.0	11.6
10.0	7.5	23.0	11.9
11.0	7.9	24.0	12.3
12.0	8.3	25.0	12.6
13.0	8.7	26.0	13.0

- 1. The cable type is SUCOFLEX 104 E manufactured by SUHNER.
- 2. The cable is used for measurements above 2.9 GHz.
- 3. The overall length of the cable is 10 meters.

17.4 Correction factors for

Type SAS-200/511 at 3 meter range.

FREQUENCY	ANTENNA
	FACTOR
(GHz)	(dB)
1.0	24.9
1.5	27.8
2.0	29.9
2.5	31.2
3.0	32.8
3.5	33.6
4.0	34.3
4.5	35.2
5.0	36.2
5.5	36.7
6.0	37.2
6.5	38.1

FREQUENCY	ANTENNA
	FACTOR
(GHz)	(dB)
7.0	38.6
7.5	39.2
8.0	39.9
8.5	40.4
9.0	40.8
9.5	41.1
10.0	41.7
10.5	42.4
11.0	42.5
11.5	43.1
12.0	43.4
12.5	44.4
13.0	44.6

- 1. Antenna serial number is 253.
- 2. The above lists are located in file number SAS3M0.ANT for a 3 meter range.
- 3. The files mentioned above are located on the disk marked "Antenna Factors".

17.5 Correction factors for Double-Ridged Waveguide Horn Model: 3115, S/N 29845 at 3 meter range.

FREQUENCY	ANTENNA	ANTENN	FREQUENCY	ANTENNA	ANTENNA
	FACTOR	A Gain		FACTOR	Gain
(GHz)	(dB 1/m)	(dBi)	(GHz)	(dB 1/m)	(dBi)
1.0	24.8	5.4	10.0	38.8	11.4
1.5	26.1	7.6	10.5	38.9	11.8
2.0	28.6	7.7	11.0	39.0	12.1
2.5	29.8	8.4	11.5	39.6	11.8
3.0	31.4	8.4	12.0	39.8	12.0
3.5	32.4	8.7	12.5	39.6	12.5
4.0	33.7	8.6	13.0	40.0	12.5
4.5	33.4	9.9	13.5	39.8	13.0
5.0	34.5	9.7	14.0	40.2	13.0
5.5	35.1	9.9	14.5	40.6	12.9
6.0	35.4	10.4	15.0	41.3	12.4
6.5	35.6	10.8	15.5	39.5	14.6
7.0	36.2	10.9	16.0	38.8	15.5
7.5	37.3	10.4	16.5	40.0	14.6
8.0	37.7	10.6	17.0	41.4	13.4
8.5	38.3	10.5	17.5	44.8	10.3
9.0	38.5	10.8	18.0	47.2	8.1
9.5	38.7	11.1			

17.6 Correction factors for

Horn Antenna Model: SWH-28 at 1 meter range.

EDEOLIENCY	AFE	Coin
FREQUENCY		Gain
(GHz)	(dB/m)	(dB1)
18.0	40.3	16.1
19.0	40.3	16.3
20.0	40.3	16.1
21.0	40.3	16.3
22.0	40.4	16.8
23.0	40.5	16.4
24.0	40.5	16.6
25.0	40.5	16.7
26.0	40.6	16.4

17.7 Correction factors for

Horn Antenna

Model: V637

FREQUENCY	AFE	Gain
(GHz)	(dB/m)	(dB1)
26.0	43.6	14.9
27.0	43.7	15.1
28.0	43.8	15.3
29.0	43.9	15.5
30.0	43.9	15.8
31.0	44.0	16.0
32.0	44.1	16.2
33.0	44.1	16.4
34.0	44.1	16.7
35.0	44.2	16.9
36.0	44.2	17.1
37.0	44.2	17.4
38.0	44.2	17.6
39.0	44.2	17.8
40.0	44.2	18.0