

Demostraciones y Modelos - Macroeconomía

Agustín Sanhueza

1. Consumo

Respuesta

Restricción presupuestaria:

$$\underbrace{y_{l,t}}_{Ingreso\ laboral} + \underbrace{rA_t}_{Ingreso\ financiero} = \underbrace{C_t}_{Consumo} + \underbrace{T_t}_{Impuestos} + \underbrace{A_{t+1} - A_t}_{Acumulación\ Activos}$$

Despejamos A_{t+1} y luego iteramos hacia adelante

$$A_{t+1} = y_{l,t} + (1+r)A_t - C_t - T_t \quad (1)$$

$$A_{t+2} = y_{l,t+1} + (1+r)A_{t+1} - C_{t+1} - T_{t+1} \quad (2)$$

Reemplazamos (1) en (2)

$$A_{t+2} = y_{l,t+1} - C_{t+1} - T_{t+1} + (1+r)[y_{l,t} + (1+r)A_t - C_t - T_t]$$

$$A_{t+2} = y_{l,t+1} - C_{t+1} - T_{t+1} + (1+r)y_{l,t} + (1+r)^2A_t - (1+r)C_t - (1+r)T_t$$

$$(1+r)^2A_t = A_{t+2} - y_{l,t+1} + C_{t+1} + T_{t+1} + (1+r)[-y_{l,t} + C_t + T_t]$$

$$(1+r)A_t = \frac{A_{t+2} - y_{l,t+1} + C_{t+1} + T_{t+1}}{(1+r)} - y_{l,t} + C_t + T_t$$

Para N periodos recursivamente tendremos

$$(1+r)A_t = \sum_{i=0}^{N} \frac{C_{t+i} + T_{t+i} - y_{l,t+i}}{(1+r)^i} + \frac{A_{t+N+2}}{(1+r)^N}$$

Suponemos que las personas no dejan ningún activo luego de su muerte. Por lo que el segundo término a la derecha de la ecuación se hace 0 en el límite cuando N tiende a ∞

$$(1+r)A_t = \sum_{i=0}^{N} \frac{C_{t+i} + T_{t+i} - y_{l,t+i}}{(1+r)^i}$$
$$(1+r)A_t = \sum_{i=0}^{N} \frac{C_{t+i}}{(1+r)^i} + \sum_{i=0}^{N} \frac{T_{t+i} - y_{l,t+i}}{(1+r)^i}$$
$$\sum_{i=0}^{N} \frac{C_{t+i}}{(1+r)^i} = -\sum_{i=0}^{N} \frac{T_{t+i} - y_{l,t+i}}{(1+r)^i} + (1+r)A_t$$

$$\sum_{i=0}^{N} \frac{C_{t+i}}{(1+r)^{i}} = \sum_{i=0}^{N} \frac{y_{l,t+i} - T_{t+i}}{(1+r)^{i}} + \underbrace{(1+r)A_{t}}_{Riqueza\ F\'{isica}\ Inicial}$$

$$VP(Consumo)$$

Si el agente suaviza consumo durante su vida, entonces tendremos

$$\overline{C}\frac{(1+r)}{r} = \sum_{i=0}^{N} \frac{y_{l,t+i} - T_{t+i}}{(1+r)^{i}} + (1+r)A_{t}$$

$$\frac{\overline{C}}{r} = \sum_{i=0}^{N} \frac{y_{l,t+i} - T_{t+i}}{(1+r)^{i+1}} + A_{t}$$

$$\overline{C} = r \left[A_{t} + \sum_{i=0}^{N} \frac{y_{l,t+i} - T_{t+i}}{(1+r)^{i+1}} \right]$$

2. Deuda Sostenible

Respuesta

$$B_{t+1} - B_t = G_t + rB_t - T_t$$

$$\frac{B_{t+1}}{Y_t} - \frac{B_t}{Y_t} = \frac{G_t}{Y_t} + \frac{rB_t}{Y_t} - \frac{T_t}{Y_t}$$

$$b_{t+1} - \frac{B_t}{Y_t} = g_t + \frac{rB_t}{Y_t} - t_t$$

$$b_{t+1} - \frac{B_t}{Y_{t-1}} \frac{Y_{t-1}}{Y_t} = g_t - t_t + \frac{rB_t}{Y_{t-1}} \frac{Y_{t-1}}{Y_t}$$

$$b_{t+1} - \frac{b_t}{(1+\gamma)} = d_t + \frac{rB_t}{(1+\gamma)}$$

$$b_{t+1} = d_t + \frac{r+1}{(1+\gamma)} b_t$$

$$b_{t+1} = d_t + b_t \left(1 - \frac{1+\gamma}{1+\gamma} + \frac{r+1}{1+\gamma}\right)$$

$$b_{t+1} - b_t = d_t + b_t \left(-\frac{1+\gamma}{1+\gamma} + \frac{r+1}{1+\gamma}\right)$$

$$b_{t+1} - b_t = d_t + b_t \left(\frac{r-\gamma}{1+\gamma}\right)$$

Para que la deuda sea sostenible, la razón deuda producto converge a 0 en estado estacionario. Lo que implica $b_{t+1}-b_t=0$

$$0 = d_t + b_t \left(\frac{r - \gamma}{1 + \gamma}\right)$$

$$d_t = -b_t \left(\frac{r - \gamma}{1 + \gamma}\right)$$

Con b_t , r, y γ dados, este término nos indica hasta cuánto puede ser el déficit fiscal primario para que este sea sostenible. De aquí se concluye que el crecimiento económico paga parte de la deuda.

3. Oferta Monetaria y Multiplicador

Respuesta

Sea:

C: Circulante D: Depósitos R: Reservas

 θ : Tasa de encaje

 \overline{C} : Razón circulante depósito

M: Oferta Monetaria H: Base Monetaria

$$M = C + D$$

$$H = C + R$$

$$\overline{C} = \frac{C}{D}$$

$$\theta = \frac{R}{D}$$

$$\frac{M}{H} = \frac{C + D}{C + R}$$

$$\frac{M}{H} = \frac{\frac{C}{D} + \frac{D}{D}}{\frac{C}{D} + \frac{R}{D}}$$

$$\underbrace{M}_{Oferta\ Monetaria} = \underbrace{\left(\frac{1+\overline{C}}{\theta+\overline{C}}\right)}_{Multiplicador} \cdot \underbrace{H}_{Emisi\acute{o}n}$$

 $\frac{M}{H} = \frac{\overline{C} + 1}{\overline{C} + \theta}$

4. Condiciones Marshall-Lerner

Respuesta

$$Si |\varepsilon_x + \varepsilon_m| > 1 \Rightarrow \frac{\partial XN}{\partial q} > 0$$

Salarios de Eficiencia, Shapiro-Stiglitz

Respuesta

Modelo de Búsqueda y Emparejamiento

Respuesta