## Lecture 2

\_

# **Empirical Risk Minimization** and Complexity

## **Agenda**

- Binary classification Goal and Probabilistic setup
- The Principle of Empirical Risk Minimization (ERM)
- A first go the finite case
- Concentration Bounds McDarmid's Inequality
- The Vapnik-Chervonenkis inequality
- Complexity (Combinatorial) VC Dimension

## Probabilistic setup for binary classification

- Random pair =  $(X, Y) \sim P$  unknown
- X = observation vector in  $\mathcal{X}$  (ex:  $\mathbb{R}^d$  with d >> 1)
- $Y = \text{binary label in } \mathcal{Y} = \{-1, +1\}$
- Our goal: guess the *output Y* from the *input* observation X
- Examples:
  - ▶ Diagnosis medical support: predicting the occurence of a disease X measurements (blood pressure, medical history, age, etc.)
    Y = 1 "heart attack" vs Y = 0 "no heart attack"
  - Credit risk screening: predicting bankruptcy X socio-economic profile (turnover, headcount, etc.) Y = 1 "default" vs Y = 0 "debt repayment"
  - Spam filtering: X features of the e-mail (e.g. tf-idf vector)
    Y = 1 "spam" vs Y = 0 "not spam"



## Probabilistic setup for binary classification

- Classifier:  $C: x \in \mathcal{X} \mapsto C(x) \in \{-1, 1\}$  in a class  $\mathcal{G}$
- Risk functional (unknown!) = Expected prediction error

$$L(C) = \mathbb{E}[\mathbb{I}\{Y \neq C(X)\}]$$

to minimize over  $C \in \mathcal{G}$ 

•  $\mathcal{G}$  is in 1-to-1 correspondence with the class of sets  $\{\{x\in\mathcal{X}:\ C(x)=+1\}:\ C\in\mathcal{G}\}$ 



#### **Theoretical Risk Minimization**

- Let  $\eta(x) = \mathbb{P}(Y = +1|X = x)$  regression function
- Let  $p = \mathbb{P}(Y = +1)$
- Compute  $C^* = \arg\min_{C \in \mathcal{G}} L(C)$
- Calculations yields the Naive Bayes Classifier

$$C^*(x) = 2 \cdot \mathbb{I}\{\eta(x) > 1/2\} - 1, \ x \in \mathcal{X}$$

- $\Rightarrow$  affects the likeliest label given the observation X = x
- ullet Minimum theoretical risk:  $L^* = L(C^*) = 1/2 \mathbb{E}[|\eta(X) 1/2|]$
- How close  $\eta(X)$  is to 1/2 governs the difficulty of the problem!



#### **Theoretical Risk Minimization**

• Theoretical excess of risk:

$$L(C) - L^* = \mathbb{E}[|\eta(X) - 1/2| \mathbb{I}\{X \in G^* \Delta G_C\}]$$

where  $G^*$ ,  $G_C$  denote the subsets of the input space  $\mathcal X$ 

$$G^* = \{\eta(X) > 1/2\}$$
  
 $G_C = \{C(X) = +1\}$ 

and  $A\Delta B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$  the symmetric difference.

• Insights: when a little of X's mass is concentrated around the margin  $\{\eta(x)=1/2\}$ , the problem gets simpler.



## **Empirical Risk Minimization (ERM)**

- Data =  $D_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$
- ullet Classifier candidate:  $\mathcal{C}:\mathcal{X} \to \{-1,1\}$  in a class  $\mathcal{G}$
- Empirical risk functional = Training (misclassification) error

$$L_n(C) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{Y_i \neq C(X_i)\}\$$

to minimize over  $C \in \mathcal{G}$ .

- Solution "empirical risk minimizer":  $\hat{C}_n = \arg\min_{C \in \mathcal{G}} L_n(C)$
- OK for the training data, now for **future data** (X, Y)?



## **Empirical Risk Minimization (ERM) - Heuristics**

- $L_n(C)$  must be close to L(C), uniformly over  $C \in \mathcal{G}$
- For any fixed C, this is true (SLLN, CLT, Berry-Esseen, etc.)
- This should remain true, provided that  $\mathcal{G}$  is **not too complex**, whatever (X, Y)'s distribution

## Investigating the properties of the ER Minimizer

- Don't forget that  $\hat{C}_n$  is **random** (depending on the data  $D_n$ )
- Let  $(X, Y) \sim P$  be a **new random pair**, independent from  $D_n$  Will  $\hat{C}_n$  performs well as a classifier for this novel pair?

$$\Rightarrow$$
 compute  $L(\hat{C}_n) = \mathbb{P}(Y \neq \hat{C}_n(X) \mid D_n)$ 

- $L(\hat{C}_n)$  is a **random variable**! It depends on the data  $D_n$ .
- **Deviation** between the r.v.  $L(\hat{C}_n)$  and the min. error  $L^*$  (cst)

$$\Rightarrow$$
 Study the excess of risk  $0 \le \mathcal{E}(C) = L(\hat{C}_n) - L^*$ 

• Learning Theory: compute explicit **confidence bounds**,  $\forall \epsilon > 0$ 

$$\mathbb{P}_{D_n}(L(\hat{C}_n) - L^* \geq \epsilon) \leq ?$$



## **Learning Bounds**

- Consider  $C_0 = \arg\min_{C \in \mathcal{G}} L(C)$  (theoret. minimizer over  $\mathcal{G}$ )
- Check the "bias-variance" decomposition

$$L(\hat{C}_n) - L^* \le 2 \sup_{C \in \mathcal{G}} |L(C) - \hat{L}_n(C)| + L(C_0) - L^*$$
 as  $\mathcal{G}$  "increases"

- ullet The second term depends on the model  ${\cal G}$  solely (bias)
- The 1st term (estimation) involves concentration of

$$Z = \{L(C) - \hat{L}_n(C)\}_{C \in \mathcal{G}}$$

⇒ theory of empirical processes



## **Empirical processes - Basics**

- Let  $X_1, \ldots, X_n$  be i.i.d. r.v.'s drawn as P
- Let  $P_n = n^{-1} \sum_{i=1}^n \delta_{X_i}$  the empirical df
- Let  $\mathcal F$  be a class of functions  $f:\mathbb R\to\mathbb R$
- Empirical process  $\{P_n f\}_{f \in \mathcal{F}}$ :  $P_n f = n^{-1} \sum_{i=1}^n f(X_i)$ ,  $f \in \mathcal{F}$
- ullet Investigate which conditions on  ${\mathcal F}$  allow to **control**

$$||Z|| = \sup_{f \in \mathcal{F}} |P_n f - Pf|$$

• Ex.: recall **Donsker's theorem**,  $\mathcal{F} = \{\mathbb{I}\{. \le x\}, \ x \in \mathbb{R}\}$ 

$$\sqrt{n}\sup_{\mathbf{x}\in\mathbb{R}}|n^{-1}\sum_{i\leq n}\mathbb{I}\{X_i\leq \mathbf{x}\}-P(]-\infty,\mathbf{x}])|\Rightarrow \sup_{t\in[0,1]}|B(t)|$$



## **Basics inequalities**

• Finite class:  $Card(\mathcal{F}) = N$ .

"Union's bound" combined with Chernoff's method

$$\mathbb{P}(\sup_{f \in \mathcal{F}} |P_n f - P f| \ge \epsilon) \le 2N \cdot e^{-2n\epsilon^2}$$

if  $\forall f \in \mathcal{F} : 0 \le f \le 1$ 

Cumulative distribution functions: Dvoretsky-Kiefer-Wolfowitz

$$\mathbb{P}(\sqrt{n}\sup_{x\in\mathbb{R}}|\frac{1}{n}\sum_{i\leq n}\mathbb{I}\{X_i\leq x\}-P(]-\infty,x])|\geq \epsilon)\leq 2e^{-2\epsilon^2}$$

• McDarmid (1989)



#### The finite situation

• Hoeffding inequality :  $X_1, \ldots, X_n$  independent r.v.'s such that  $-\infty < a_i \le X_i \le b_i < +\infty$  almost-surely. Let  $S_n = \sum_{i \le n} X_i$ . Then, for any  $\epsilon > 0$ ,

$$\mathbb{P}\{S_n - \mathbb{E}[S_n]\} \le \exp\left\{-\frac{2\epsilon^2}{\sum_{i=1}^n (b_i - a_i)^2}\right\}$$

• Application to the ERM paradigm: if  $\#\mathcal{G}=\mathit{N}$ , then:  $\forall \epsilon>0$ ,

$$\mathbb{P}\{\sup_{C\in\mathcal{G}}|\hat{L}_n(C)-L(C)|\geq\epsilon\}\leq 2Ne^{-2n\epsilon^2}$$

• Bound the expected maximal deviation

$$\mathbb{E}[\sup_{C\in\mathcal{G}}|\hat{L}_n(C)-L(C)|]$$

by integrating the bound: if  $Z \geq 0$  a.s.,  $\mathbb{E}[Z] = \int_{t>0} \mathbb{P}\{Z \geq t\} dt$ 



#### The finite situation

• Lemma: Let  $Z_1, \ldots, Z_n$  be r.v.'s such that:  $\forall s > 0$ ,  $\mathbb{E}[\exp sY_i] \leq \exp s^2\sigma^2/2$ . Then

$$\mathbb{E}[\max_{1 \le i \le n} Z_i] \le \sigma \sqrt{2 \log n}$$

Application:

$$\mathbb{E}[\sup_{C \in \mathcal{G}} |\hat{L}_n(C) - L(C)|] \le \sqrt{\frac{\log(2N)}{2n}}$$



## McDarmid's inequality - Bounded differences

- $g:A^n \to \mathbb{R}$  such that:  $\forall i \in \{1, \ldots, n\}, \ \forall x \in A^n, \ \forall x_i' \in A,$   $|g(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n) g(x_1, \ldots, x_{i-1}, x_i', x_{i+1}, \ldots, x_n)| \le c_i$
- If  $X_1, \ldots, X_n$  are independent and g has bounded differences, then:  $\forall t > 0$ ,

$$\mathbb{P}\{g(X_1, \ldots, X_n) - \mathbb{E}[g(X_1, \ldots, X_n)] > t\} \leq e^{-\frac{2t^2}{\sum_{i=1}^n c_i^2}}$$

• **Application:** Whatever the class G, we have:

$$\mathbb{P}\{|\sup_{C\in\mathcal{G}}|\hat{L}_n(C)-L(C)|-\mathbb{E}[|\sup_{C\in\mathcal{G}}|\hat{L}_n(C)-L(C)|]>\epsilon\}\leq 2e^{-2n\epsilon^2}$$



## Measuring Complexity - Combinatorial Approach



A. Chervonenkis & V. Vapnik

## Measuring Complexity - Combinatorial Approach

- ullet Vapnik Chervonenkis: **VC dimension** of a class  $\mathcal A$  of subsets  $\mathcal A\subset\mathbb R^d$
- Let  $x_1^n = (x_1, \dots, x_n)$  be n points in  $\mathbb{R}^d$ . Define
  - ► Trace:

$$Tr(\mathcal{A}, x_1^n) = \{A \cap x_1^n; A \in \mathcal{A}\}$$

Shattering coefficient:

$$S_{\mathcal{A}}(n) = \max_{x_1^n} CardTr(\mathcal{A}, x_1^n)$$

- ▶ Ex: half-lines of  $\mathbb{R}$ :  $S_{\mathcal{A}}(n) = n + 1$
- Other approaches: entropy metric, Rademacher chaos, etc.



## Vapnik-Chervonenkis inequality

- ullet  $\mathcal{A}$  class of borelian subsets  $\mathcal{A}\subset\mathbb{R}^d$ ,  $\mu$  probability measure on  $\mathbb{R}^d$
- $X_i \stackrel{i.i.d.}{\sim} \mu(dx)$ , empirical measure  $\hat{\mu}_n = (1/n) \sum_{i < n} \delta_{X_i}$
- Result:

$$\mathbb{E}\left[\sup_{A\in\mathcal{A}}|\hat{\mu}_n(A)-\mu(A)|\right]\leq 2\sqrt{\frac{\log(2\mathcal{S}_{\mathcal{A}}(n))}{n}}$$

• **Proof:** Ghost sample  $X_i' \overset{i.i.d.}{\sim} \mu(dx)$  independent from  $X_1, \ldots, X_n$   $\hat{\mu}_n' = (1/n) \sum_{i \leq n} \delta_{X_i'}$ 

$$\mathbb{E}\left[\sup_{A\in\mathcal{A}}|\hat{\mu}_{n}(A) - \mu(A)|\right] = \mathbb{E}\left[\sup_{A\in\mathcal{A}}|\mathbb{E}[\hat{\mu}_{n}(A) - \hat{\mu}'_{n}(A) \mid X'_{1}, \ldots, X'_{n}]|\right]$$

$$\leq \mathbb{E}\left[\sup_{A\in\mathcal{A}}\mathbb{E}[|\hat{\mu}_{n}(A) - \hat{\mu}'_{n}(A)| \mid X'_{1}, \ldots, X'_{n}]\right]$$

$$\leq \mathbb{E}\left[\sup_{A\in\mathcal{A}}|\hat{\mu}_{n}(A) - \hat{\mu}'_{n}(A)|\right] \text{ symmetrization}$$

## Vapnik-Chervonenkis inequality

randomization: consider a Rademacher chaos  $\sigma_1, \ldots, \sigma_n$ , i.i.d. and independent from the  $(X_i, X_i')'s$ ,  $\mathbb{P}\{\sigma_i = +1\} = \mathbb{P}\{\sigma_i = -1\} = 1/2$ 

$$\mathbb{E}\left[\sup_{A\in\mathcal{A}}|\hat{\mu}_{n}(A)-\mu(A)|\right] \leq \frac{1}{n} \times \\ \mathbb{E}\left[\mathbb{E}[\sup_{A\in\mathcal{A}}|\sum_{i=1}^{n}\sigma_{i}\left(\mathbb{I}\{X_{i}\in A\}-\mathbb{I}\{X_{i}'\in A\}\right)|\mid X_{1},\ldots,X_{n},\ X_{1}',\ldots,X_{n}']\right]$$

Observe that, for fixed  $(X_1,X_1'),\ldots,(X_n,X_n')$ ,  $\sup_{\mathcal{A}}=\max_{\widehat{\mathcal{A}}}$  with  $\#\widehat{\mathcal{A}}\leq \mathcal{S}_{\mathcal{A}}(2n)$  and

$$\mathbb{E}[\max_{\widehat{\mathcal{A}}} | \sum_{i=1}^{n} \sigma_{i} \left( \mathbb{I}\{x_{i} \in A\} - \mathbb{I}\{x_{i}' \in A\} \right) |] \leq \sqrt{2n \log(2S_{\mathcal{A}}(2n))}$$

Notice finally that  $S_A(2n) \leq S_A(n)^2$ 



## Vapnik-Chervonenkis dimension

- $dim_{VC}A = \max\{n \ge 1 : S_A(n) = 2^n\}$
- Application to ERM: if  $dim_{VC}\mathcal{G} = V_{\mathcal{G}}$ ,

$$\mathbb{E}[L(\hat{C}_n) - \inf_{C \in \mathcal{G}} L(C)] \leq 4\sqrt{\frac{\log(2S_{\mathcal{G}}(n))}{n}}$$

$$\leq 4\sqrt{\frac{V_{\mathcal{G}}\log(n+1) + \log 2}{n}}$$

## **Shatter coefficients - Basic properties**

- $S_{\mathcal{A}}(n+m) \leq S_{\mathcal{A}}(n) \times S_{\mathcal{A}}(m)$
- If  $C = A \cup B$ , then  $S_C(n) \leq S_A(n) + S_B(n)$
- ullet If  $\mathcal{B}=\{A^c:\ A\in\mathcal{A}\}$ , then  $S_{\mathcal{A}}(n)=S_{\mathcal{B}}(n)$
- If  $C = \{A \cap B : A \in \mathcal{A}, B \in \mathcal{B}\}$ , then  $S_{\mathcal{C}}(n) \leq S_{\mathcal{A}}(n) \times S_{\mathcal{B}}(n)$
- If  $\mathcal{C} = \{A \times B : A \in \mathcal{A}, B \in \mathcal{B}\}$ , then  $S_{\mathcal{C}}(n) \leq S_{\mathcal{A}}(n) \times S_{\mathcal{B}}(n)$
- ullet Sauer lemma If  $dim_{VC}\mathcal{A}=V<+\infty$ , then

$$S_{\mathcal{A}}(n) \leq \sum_{i=0}^{V} \binom{n}{i}$$

- If  $dim_{VC}A = V < +\infty$ , then,  $\forall n$ , we have  $S_A(n) \leq (n+1)^V$
- If  $dim_{VC}A = V < +\infty$ , then,  $\forall n \geq V$ , we have  $S_A(n) \leq (ne/V)^V$



### **Examples**

- ullet If  ${\mathcal A}$  is the class of all rectangles in  ${\mathbb R}^d$ , then V=2d
- Let  $\mathcal G$  be an m-dimensional vector space of functions  $g:\mathbb R^d \to \mathbb R$ . The class

$$\mathcal{A} = \{\{x: g(x) = 0\}: g \in \mathcal{G}\}$$

has VC dimension  $V \leq m$ 

#### Consequences:

- ▶ the class of all linear halfspaces  $\{\{x \in \mathbb{R}^d: A^t x \geq b\}: A \in \mathbb{R}^d, b \in \mathbb{R}\}$  has VC dimension  $\leq d+1$
- ▶ the class of all closed balls  $\{\{x \in \mathbb{R}^d : ||x-c|| \ge b\} : c \in \mathbb{R}^d, b \in \mathbb{R}\}$  has VC dimension  $\le d+2$
- ▶ the class of all ellipsoids  $\{\{x \in \mathbb{R}^d: x^t\Gamma^{-1}x \leq 1\}: \Gamma \text{ symmetric positive definite}\}$  has VC dimension  $\leq d(d+1)/2+1$

## **Application:**

- VC theory provides statistical guarantees (generalization ability) for application of the ERM principle based on
  - binary decision trees with perpendicular/diagonal splits
  - general partitioning techniques with hypercubes
  - linear separators
  - etc.
- VC theory is **useless** for
  - nonlinear SVM
  - ▶ boosting
  - random forest
- but VC theory will return ... for the purpose of **model selection** (structural risk minimization)