Selección de carteras con base en valor en riesgo y en déficit esperado

Juan Carlos Martínez-Ovando

Primavera 2019

ITAM, México

Agenda

Construcción de carteras

Medidas de riesgo

Reaseguro cuota-parte

Discusión

Construcción de carteras

Notación

Variables

- X_{ji} componente j de la observación i
- $S_j = \sum_i X_{ji}$ agregado del componente j
- ullet π_j prima de riesgo del componente j
- ullet α_j composición del componente j de la cartera
- $C = \sum_{j=1}^{J} \alpha_j S_j$ composición de la cartera para la observación i
- ullet $j=1\ldots,J$ componentes
- $i = 1, \dots, n$ observaciones

Objetivo

Definir $\alpha_j s$ tal que minimicen un **tipo de riesgo** particular en términos del valor de la cartera

$$C = \sum_{j=1}^{p} \alpha_j S_j.$$

Objetivo

Definir $\alpha_j s$ tal que minimicen un **tipo de riesgo** particular en términos del valor de la cartera

$$C = \sum_{j=1}^{p} \alpha_j S_j.$$

Composición de la cartera

- $\alpha_j \geq 0$ para $j=1,\ldots,p$
- $\bullet \ \sum_{j=1}^{p} \alpha_j = 1$

Enfoques

Maximización de utilidad

El enfoque tradicional para la construcción de carteras define

$$oldsymbol{lpha}^* = rg \max_{\mathcal{A}_{J-1}} \mathbb{E}_{\mathbb{P}} \left\{ U(oldsymbol{lpha}, oldsymbol{\mathcal{S}})
ight\}$$

donde

- $\alpha = (\alpha_1, \ldots, \alpha_J)$
- $S = (S_1 \dots, S_J)$
- ullet es una medida de probabilidad para $oldsymbol{\mathcal{S}}$

4

Enfoque: Media-varianza

Markowitz-de Finetti

Considerando la función de utilidad propuesta por Markowitz y de Finetti

$$oldsymbol{lpha}^{*} = rg \max_{\mathcal{A}_{J-1}} \left\{ oldsymbol{lpha}' \mathbb{E}_{\mathbb{P}}\left(oldsymbol{\mathcal{S}}
ight) - 1/2 \lambda oldsymbol{lpha}' \mathit{var}_{\mathbb{P}}\left(oldsymbol{\mathcal{S}}
ight) oldsymbol{lpha}
ight\}$$

donde

- $\alpha = (\alpha_1, \ldots, \alpha_J)$
- $S = (S_1 \dots, S_J)$
- ullet es una medida de probabilidad para $oldsymbol{S}$
- λ lagrangiano
- La optimización admite restricciones adicionales...

Enfoque: Media-varianza

Comentarios

- La construcción del portafolio está basada en un argumento de dispersión
- Inclusive, extensiones con funciones de utilidad más flexibles (más momentos) considerarán también argumentos referentes a la dispersión y sesgo de los componentes de la cartera
- Sería deseable definir la cartera considerando argumentos relativos a pérdidas (y/o ganancias), particularmente cuando éstas sean extremas

Medidas de riesgo

Valor en riesgo

Un poco más de notación

El valor en riesgo (VaR) es el valor de la cartera que caracteriza las pérdidas extremas con relación a un nivel de probabilidad 0 < q < 1 dado, i.e.

$$VaR_{lpha,q}$$
 tal que $\int_{VaR_{lpha,q}}^{\infty} \mathbb{P}_{lpha}(c) \mathrm{d}c = q$

donde

- ullet \mathbb{P}_{lpha} distribución para C inducida por \mathbb{P} y lpha
- ullet incertidumbre en los componentes de la cartera
- ullet lpha composición de la cartera

7

Déficit esperado

Definición

El deficit esperado (ES_q) se define como el valor esperado del valor de la cartera en exceso del VaR para un cierto nivel 0 < q < 1, i.e.

$$ES_{\alpha,q} = \int_{VaR_{\alpha,q}}^{\infty} c \mathbb{P}_{\alpha}(c) dc$$
 (1)

donde

- ullet \mathbb{P}_{lpha} distribución para C inducida por \mathbb{P} y lpha
- $\bullet \ \mathbb{P}$ incertidumbre en los componentes de la cartera
- ullet lpha composición de la cartera

Objetivo

Definir la composición de la cartera lpha tal que para un nivel

$$0 < q < 1$$
,

las pérdidas esperadas en exceso del VaR sean mínimas, i.e.

$$\begin{array}{rcl} \alpha^* & = & \displaystyle \arg\min_{\mathcal{A}_{J-1}} \left\{ ES_{\alpha,q} \right\} \\ \\ & = & \displaystyle \arg\min_{\mathcal{A}_{J-1}} \left\{ \int_{\mathit{VaR}_{\alpha,q}}^{\infty} c \mathbb{P}_{\alpha}(c) \mathrm{d}c \right\}. \end{array}$$

9

Observaciones

- La optimización no es trivial
- La optimización es estocástica (involucra aleatoriedad intrínseca y epistémica)

Replanteamiento

Supongamos M (relativamente grande) posibles escenarios futuros de los componentes de la cartera

$$S^M = \left\{ S_1^{(m)}, \dots, S_J^{(m)} \right\}_{m=1}^M.$$

Entonces, el valor ES puede replantearse como

$$ES_{\alpha,q} \approx \frac{1}{M_q} \sum_{m} c_{\alpha}^{(m)}$$

$$= \frac{1}{M_q} \sum_{m} \alpha' \mathbf{s}^{(m)} \mathbb{I} \left(\alpha' \mathbf{s}^{(m)} > VaR_{\alpha,q} \right)$$

$$= \widehat{ES}_{\alpha,q}$$
(2)

Replanteamiento

Considerando la aproximación anterior, definimos el problema de construcción de cartera como

$$oldsymbol{lpha}^* = rg \max_{\mathcal{A}_{J-1}} \left\{ lpha \mathbb{E}(oldsymbol{S}) - \lambda \widehat{\mathit{ES}}_{lpha,q}
ight\}$$

• Necesitamos definir un algoritmo para controlar la estimación de Monte Carlo de $ES_{\alpha,q}$

Reaseguro cuota-parte

Figure 1: Cartera de seguros de edificios en Dinamarca

Figure 2: Cartera de seguros de edificios en Dinamarca

Modelo

Especificación

Suponemos que la composición de los reclamos se describe como

$$\mathbb{P}(\boldsymbol{s}_i) = \sum_{k=1}^{\infty} w_k p(\boldsymbol{s}_i | \boldsymbol{u}_k)$$

donde

$$p(\{w_k, \boldsymbol{u}_k\}_{k=1}^{\infty}) = SB(\{w_k\}_{k=1}^{\infty}) \times \prod_{k=1}^{\infty} N(\boldsymbol{u}_k | \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$p(\boldsymbol{s}_i | \boldsymbol{u}_k) = \left\{ \prod_{j=1}^{p} a_j x_i^{a_j - 1} \right\} \exp\left\{ -\sum_{j=1}^{p} a_j u_j \right\} \mathbb{I}(\boldsymbol{s}_i < \exp\{\boldsymbol{u}_k\})$$

Modelo

Especificación

- El la distribución media de s_i es multivariada beta-log-normal
- Las distribuciones marginales de s_{ij} son beta-log-normales
- Caso límite cuando $a_k \to \infty$ se recupera la distribución log-normal
- Los parámetros de sesgo, localización y dispersión se modelan por separado

Parámetros

Distribuciones iniciales

$$p(a_1, ..., a_p) = \prod_{j=1}^{p} Ga(a_j | c_0.d_0)$$

$$p(\mu) = N(\mu | \boldsymbol{m}_0, \boldsymbol{S}_0)$$

$$p(\boldsymbol{\Sigma}) = Wilnv(\boldsymbol{\Sigma} | e_0, \boldsymbol{C}_0)$$

Inferencia

Distribuciones final objetivo

Introducimos varibales latentes y aleatorizamos lpha

$$p\left(\boldsymbol{a}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \left\{w_k, \boldsymbol{u}_k\right\}, \left\{\boldsymbol{S}_{T+1}^{(m)}\right\}_{m=1}^{M}, \alpha | \boldsymbol{S}_1, \dots, \boldsymbol{S}_T\right)$$

Datos

Figure 3: Composición de la cartera óptima de edificios en Dinamarca

Discusión

Discusión

Resumen

- El procedimiento de optimización considera la aleatoriedad intrínseca y epistémica del modelo
- La optimización descansa en un resultado de Monte Carlo anidado
- La optimizacón es estocástica

¡Gracias por su atención!

juan.martinez.ovando@itam.mx