Scalability of operations

Victor Eijkhout

Fall 2019

Justification

As an alternative to Gaussian elimination, iterative methods can be an efficient way to solve the linear system from PDEs. We discuss basic iterative methods and the notion of preconditioning.

Simple model of parallel computation

- α: message latency
- β: time per word (inverse of bandwidth)
- γ: time per floating point operation

Send *n* items and do *m* operations:

$$cost = \alpha + \beta \cdot n + \gamma \cdot m$$

Pure sends: no γ term,

pure computation: no α,β terms,

sometimes mixed: reduction

Model for collectives

- One simultaneous send and receive:
- · doubling of active processors
- collectives have a α log₂ p cost component

Broadcast

	t = 0	<i>t</i> = 1	<i>t</i> = 2
p_0	$x_0\downarrow,x_1\downarrow,x_2\downarrow,x_3\downarrow$	$x_0\downarrow,x_1\downarrow,x_2\downarrow,x_3\downarrow$	x_0, x_1, x_2, x_3
<i>p</i> ₁		$x_0\downarrow,x_1\downarrow,x_2\downarrow,x_3\downarrow$	x_0, x_1, x_2, x_3
p_2			x_0, x_1, x_2, x_3
<i>p</i> ₃			x_0, x_1, x_2, x_3

On t = 0, p_0 sends to p_1 ; on t = 1 p_0 , p_1 send to p_2 , p_3 .

Optimal complexity:

$$\lceil \log_2 p \rceil \alpha + n\beta.$$

Actual complexity:

$$\lceil \log_2 p \rceil (\alpha + n\beta).$$

Good enough for short vectors.

Reduce

Optimal complexity:

$$\lceil \log_2 p \rceil \alpha + n\beta + \frac{p-1}{p} \gamma n.$$

Spanning tree algorithm:

$$\begin{array}{|c|c|c|c|c|} \hline & t=1 & t=2 & t=3 \\ \hline p_0 & x_0^{(0)}, x_1^{(0)}, x_2^{(0)}, x_3^{(0)} & x_0^{(0:1)}, x_1^{(0:1)}, x_2^{(0:1)}, x_3^{(0:1)} & x_0^{(0:3)}, x_1^{(0:3)}, x_2^{(0:3)}, x_$$

Running time

$$\lceil \log_2 p \rceil (\alpha + n\beta + \frac{p-1}{p} \gamma n).$$

Good enough for short vectors.

Long vector broadcast

Combine scatter and bucket-allgather:

	t = 0	<i>t</i> = 1		etcetera
p_0	<i>x</i> ₀ ↓	<i>x</i> ₀	<i>x</i> ₃ ↓	x_0, x_2, x_3
<i>p</i> ₁	$x_1 \downarrow$	$x_0\downarrow,x_1$		x_0, x_1, x_3
p_2	<i>x</i> ₂ ↓	$x_1\downarrow,x_2$		x_0, x_1, x_2
<i>p</i> ₃	<i>x</i> ₃ ↓	<i>X</i> ₂	\downarrow , χ_3	x_1, x_2, x_3

Complexity becomes

$$p\alpha + \beta n(p-1)/p$$

better if *n* large

Allgather

Gather n elements: each processor owns n/p; optimal running time

$$\lceil \log_2 p \rceil \alpha + \frac{p-1}{p} n \beta.$$

	t=1	<i>t</i> = 2	<i>t</i> = 3
p_0	<i>x</i> ₀ ↓	$x_0x_1\downarrow$	$x_0x_1x_2x_3$
p_1	$x_1 \uparrow$	$x_0x_1\downarrow$	$x_0x_1x_2x_3$
p_2	<i>x</i> ₂ ↓	$x_2x_3\uparrow$	$x_0x_1x_2x_3$
p_3	<i>x</i> ₃ ↑	$x_2x_3\uparrow$	$x_0 x_1 x_2 x_3$

Same time as gather, half of gather-and-broadcast.

Reduce-scatter

	t=1	t = 2	t = 3
p_0	$x_0^{(0)}, x_1^{(0)}, x_2^{(0)} \downarrow, x_3^{(0)} \downarrow$	$x_0^{(0:2:2)}, x_1^{(0:2:2)} \downarrow$	$x_0^{(0:3)}$
p_1	$x_0^{(1)}, x_1^{(1)}, x_2^{(1)} \downarrow, x_3^{(1)} \downarrow$	$x_0^{(1:3:2)} \uparrow, x_1^{(1:3:2)}$	$x_1^{(0:3)}$
p_2	$x_0^{(2)} \uparrow, x_1^{(2)} \uparrow, x_2^{(2)}, x_3^{(2)}$	$x_2^{(0:2:2)}, x_3^{(0:2:2)} \downarrow$	$x_2^{(0:3)}$
<i>p</i> ₃	$x_0^{(3)} \uparrow, x_1^{(3)} \uparrow, x_2^{(3)}, x_3^{(3)}$	$x_0^{(1:3:2)} \uparrow, x_1^{(1:3:2)}$	$x_3^{(0:3)}$

$$\lceil \log_2 p \rceil \alpha + \frac{p-1}{p} n(\beta + \gamma).$$

Efficiency and scaling

Speedup

- Single processor time T₁, on p processors T_p
- speedup is $S_p = T_1/T_p$, $S_P \le p$
- efficiency is $E_p = S_p/p$, $0 < E_p \le 1$

Many caveats

- Is T_1 based on the same algorithm? The parallel code?
- Sometimes superlinear speedup.
- Can the problem be run on a single processor?
- Can the problem be evenly divided?

Limits on speedup/efficiency

- F_s sequential fraction, F_p parallelizable fraction
- $F_s + F_p = 1$
- $T_1 = (F_s + F_p)T_1 = F_sT_1 + F_pT_1$
- Amdahl's law: $T_p = F_s T_1 + F_p T_1/p$
- $P \rightarrow \infty$: $T_P \downarrow T_1 F_s$
- Speedup is limited by S_P ≤ 1/F_s, efficiency is a decreasing function E ~ 1/P.
- loglog plot: straigth line with slope −1

Scaling

- Amdahl's law: strong scaling same problem over increasing processors
- Often more realistic: weak scaling increase problem size with number of processors, for instance keeping memory constant
- Weak scaling: $E_p > c$
- example (below): dense linear algebra

Parallel matrix-vector product; general

- Assume a division by block rows
- Every processor p has a set of row indices Ip

Mvp on processor p:

$$\forall_i \colon y_i = \sum_j a_{ij} x_j = \sum_q \sum_{i \in I_q} a_{ij} x_i$$

Local and remote operations

Local and remote parts:

$$\forall_i \colon y_i = \sum_{j \in I_p} a_{ij} x_j + \sum_{q \neq p} \sum_{j \in I_q} a_{ij} x_j$$

Local part I_p can be executed right away, I_q requires communication.

Note possible overlap communication and computation; only used in the sparse case

Dense MVP

- Separate communication and computation:
- · first allgather
- then matrix-vector product

Cost computation 1.

Algorithm:

Step	Cost (lower bound)
Allgather x_i so that x is available	
on all nodes	
Locally compute $y_i = A_i x$	$lphapprox 2rac{n^2}{P}\gamma$

Allgather

Assume that data arrives over a binary tree:

- latency α log₂ P
- transmission time, receiving n/P elements from P-1 processors

Algorithm with cost:

Step	Cost (lower bound)
Allgather x_i so that x is available	$\lceil \log_2(P) \rceil \alpha + \frac{P-1}{P} n \beta \approx$
on all nodes	$\log_2(P)\alpha + n\beta$
Locally compute $y_i = A_i x$	$pprox 2rac{n^2}{P}\gamma$

Parallel efficiency

$$E_p^{1\text{D-row}}(n) = \frac{S_p^{1\text{D-row}}(n)}{p} = \frac{1}{1 + \frac{p\log_2(p)}{2n^2}\frac{\alpha}{\gamma} + \frac{p}{2n}\frac{\beta}{\gamma}}.$$

Strong scaling, weak scaling?

Optimistic scaling

Processors fixed, problem grows:

$$E_p^{1\text{D-row}}(n) = \frac{1}{1 + \frac{p \log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{p}{2n} \frac{\beta}{\gamma}}.$$

Roughly $E_p \sim 1 - n^{-1}$

Strong scaling

Problem fixed, $p \rightarrow \infty$

$$E_p^{1\text{D-row}}(n) = \frac{1}{1 + \frac{p\log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{p}{2n} \frac{\beta}{\gamma}}.$$

Strong scaling

Problem fixed, $p \rightarrow \infty$

$$E_p^{1\text{D-row}}(n) = \frac{1}{1 + \frac{p\log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{p}{2n} \frac{\beta}{\gamma}}.$$

Roughly $E_p \sim p^{-1}$

Memory fixed:

$$\frac{M = n^2/p}{\frac{1}{1 + \frac{p \log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{p}{2n} \frac{\beta}{\gamma}}} = \frac{1}{1 + \frac{\log_2(p)}{2M} \frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2\sqrt{M}} \frac{\beta}{\gamma}}}$$

Memory fixed:

$$E_p^{1D\text{-row}}(n) = \frac{1}{1 + \frac{p \log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{p}{2n} \frac{\beta}{\gamma}} = \frac{1}{1 + \frac{\log_2(p)}{2M} \frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2\sqrt{M}} \frac{\beta}{\gamma}}$$

Does not scale: $E_p \sim 1/\sqrt{p}$

problem in $\boldsymbol{\beta}$ term: too much communication

Two-dimensional partitioning

<i>x</i> ₀				<i>x</i> ₃				х ₆				<i>X</i> 9		
<i>a</i> ₀₀	a ₀₁	a ₀₂	<i>y</i> 0	a ₀₃	a ₀₄	a ₀₅		a ₀₆	a ₀₇	a ₀₈		a ₀₉	a _{0,10}	a _{0,11}
a ₁₀	a ₁₁	a ₁₂		a ₁₃	a ₁₄	a ₁₅	<i>y</i> ₁	a ₁₆	a ₁₇	a ₁₈		a ₁₉	a _{1,10}	a _{1,11}
a ₂₀	a ₂₁	a ₂₂		a ₂₃	a ₂₄	a ₂₅		a ₂₆	a ₂₇	a ₂₈	<i>y</i> ₂	a ₂₉	a _{2,10}	a _{2,11}
a ₃₀	a ₃₁	a ₃₂		a ₃₃	a ₃₄	a ₃₅		a ₃₇	a ₃₇	a ₃₈		<i>a</i> ₃₉	a _{3,10}	a _{3,11}
	<i>x</i> ₁				<i>x</i> ₄				<i>x</i> ₇				<i>x</i> ₁₀	
a ₄₀	a ₄₁	a ₄₂	<i>y</i> ₄	a ₄₃	a ₄₄	a ₄₅		a ₄₆	a ₄₇	a ₄₈		a ₄₉	a _{4,10}	a _{4,11}
a ₅₀	a ₅₁	a ₅₂		a ₅₃	a ₅₄	a ₅₅	<i>y</i> 5	a ₅₆	a ₅₇	a ₅₈		a ₅₉	a _{5,10}	a _{5,11}
a ₆₀	a ₆₁	a ₆₂		a ₆₃	a ₆₄	a ₆₅		a ₆₆	a ₆₇	a ₆₈	<i>y</i> ₆	a ₆₉	a _{6,10}	a _{6,11}
a ₇₀	a ₇₁	a ₇₂		a ₇₃	<i>a</i> 74	a ₇₅		a ₇₇	a ₇₇	a ₇₈		a ₇₉	a _{7,10}	a _{7,11}
		<i>x</i> ₂				<i>x</i> ₅				<i>x</i> ₈				<i>X</i> ₁₁
<i>a</i> ₈₀	a ₈₁	a ₈₂	<i>y</i> 8	a ₈₃	a ₈₄	a ₈₅		a ₈₆	a ₈₇	a ₈₈		a ₈₉	a _{8,10}	a _{8,11}
a ₉₀	a ₉₁	<i>a</i> ₉₂		<i>a</i> 93	<i>a</i> 94	<i>a</i> 95	<i>y</i> 9	a ₉₆	a ₉₇	<i>a</i> 98		a 99	a _{9,10}	a _{9,11}
a _{10,0}	a _{10,1}	a _{10,2}	!	a _{10,3}	a _{10,4}	a _{10,5}		a _{10,6}	a _{10,7}	a _{10,8}	<i>y</i> ₁₀	a _{10,9}	a _{10,10}	a _{10,11}
a _{11,0}	a _{11,1}	a _{11,2}	!	a _{11,3}	a _{11,4}	a _{11,5}		a _{11,7}	a _{11,7}	a _{11,8}		a _{11,9}	a _{11,10}	a _{11,11}

Two-dimensional partitioning

<i>x</i> ₀				<i>x</i> ₃		<i>x</i> ₆		<i>X</i> 9	
a ₀₀	a ₀₁	a ₀₂	<i>y</i> ₀						
a ₁₀	a ₁₁	a ₁₂			<i>y</i> ₁				
a ₂₀	a ₂₁	a ₂₂					<i>y</i> ₂		
a ₃₀	a ₃₁	a ₃₂							<i>y</i> 3
	<i>x</i> ₁ ↑			<i>x</i> ₄		<i>x</i> ₇		<i>x</i> ₁₀	
			<i>y</i> ₄						
					<i>y</i> 5				
							<i>y</i> ₆		
									y 7
		<i>x</i> ₂ ↑		<i>x</i> ₅		<i>x</i> ₈		<i>x</i> ₁₁	
			<i>y</i> 8						
					<i>y</i> 9				
							<i>y</i> 10		
									<i>y</i> ₁₁

Key to the algorithm

- Consider block (*i*, *j*)
- it needs to multiple by the xs in column j
- it produces part of the result of row i

Algorithm

- Collecting x_j on each processor p_{ij} by an *allgather* inside the processor columns.
- Each processor p_{ij} then computes $y_{ij} = A_{ij}x_j$.
- Gathering together the pieces y_{ij} in each processor row to form y_i, distribute this over the processor row: combine to form a reduce-scatter.
- Setup for the next A or A^t product

Analysis 1.

Step	Cost (lower bound)
Allgather x_i 's within columns	$\lceil \log_2(r) \rceil \alpha + \frac{r-1}{\rho} n\beta$ $\approx \log_2(r) \alpha + \frac{n}{\rho} \beta$
Perform local matrix-vector multi-	$pprox 2 rac{n^2}{n} \gamma$
ply	۲
Reduce-scatter y_i 's within rows	

Reduce-scatter

Time:

$$\lceil \log_2 p \rceil \alpha + \frac{p-1}{p} n(\beta + \gamma).$$

Step	Cost (lower bound)
Allgather x_i 's within columns	$\lceil \log_2(r) \rceil \alpha + \frac{r-1}{p} n \beta$
	$pprox \log_2(r)\alpha + \frac{n}{c}\beta$
Perform local matrix-vector multi-	$lpha pprox 2rac{n^2}{p}\gamma$
ply	,
Reduce-scatter y_i 's within rows	$\lceil \log_2(c) \rceil \alpha + \frac{c-1}{p} n \beta + \frac{c-1}{p} n \gamma$
	$pprox \log_2(r)\alpha + \frac{n}{c}\beta + \frac{n}{c}\gamma$

Efficiency

Let
$$r = c = \sqrt{p}$$
, then

$$E_p^{\sqrt{p}\times\sqrt{p}}(n) = \frac{1}{1 + \frac{p\log_2(p)}{2n^2}\frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2n}\frac{(2\beta + \gamma)}{\gamma}}$$

Strong scaling

Same story as before for $p \to \infty$:

$$E_{p}^{\sqrt{p}\times\sqrt{p}}(n) = \frac{1}{1 + \frac{p\log_{2}(p)}{2n^{2}}\frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2n}\frac{(2\beta + \gamma)}{\gamma}} \sim p^{-1}$$

No strong scaling

Constant memory $M = n^2/p$:

$$E_p^{\sqrt{p} \times \sqrt{p}}(n) = \frac{1}{1 + \frac{p \log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2n} \frac{(2\beta + \gamma)}{\gamma}}$$

Constant memory $M = n^2/p$:

$$E_p^{\sqrt{p}\times\sqrt{p}}(n) = \frac{1}{1 + \frac{p\log_2(p)}{2n^2}\frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2n}\frac{(2\beta + \gamma)}{\gamma}} = \frac{1}{1 + \frac{\log_2(p)}{2M}\frac{\alpha}{\gamma} + \frac{1}{2\sqrt{M}}\frac{(2\beta + \gamma)}{\gamma}}$$

Constant memory $M = n^2/p$:

$$E_{p}^{\sqrt{p}\times\sqrt{p}}(n) = \frac{1}{1 + \frac{p\log_{2}(p)}{2n^{2}}\frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2n}\frac{(2\beta + \gamma)}{\gamma}} = \frac{1}{1 + \frac{\log_{2}(p)}{2M}\frac{\alpha}{\gamma} + \frac{1}{2\sqrt{M}}\frac{(2\beta + \gamma)}{\gamma}}$$

Weak scaling: for $p \to \infty$ this is $\approx 1/\log_2 P$: only slowly decreasing.

LU factorizations

- Needs a cyclic distribution
- This is very hard to program, so:
- Scalapack, 1990s product, not extendible, impossible interface
- Elemental: 2010s product, extendible, nice user interface (and it is way faster)

