Peergrade assignment 1

September 9, 2024

Exercise 1

a.
$$\frac{5}{3}x + \frac{2}{5} = 7$$

$$15 \cdot \frac{5}{3}x + 15 \cdot \frac{2}{5} = 15 \cdot 7$$

Multiply all terms by the LCM¹ of denominators

$$5 \cdot 5x + 3 \cdot 2 = 15 \cdot 7$$

Reduce fractions

$$25x + 6 = 105$$

Perform multiplications

$$(25x+6)-6=(105)-6$$

Subtract 6 from each side

$$25x = 99$$

Perform subtraction

$$\frac{25x}{25} = \frac{99}{25}$$

Divide each side by 25

$$x = \frac{99}{25}$$

Reduce fractions where possible

b.
$$\frac{4}{1+x} + \frac{15}{4} = 5$$

 $4\cdot(1+x)\cdot\frac{4}{1+x}+4\cdot(1+x)\cdot\frac{15}{4}=4\cdot(1+x)\cdot 5 \quad \text{Multiply all terms by the LCM of the denominators}$

$$4 \cdot 4 + (1+x) \cdot 15 = 4 \cdot (1+x) \cdot 5$$

Reduce fractions

$$16 + 15 + 15x = 20 + 20x$$

Perform multiplications (use distributive property)

$$31 + 15x = 20 + 20x$$

Add terms where appropriate

$$(31 + 15x) - 20 = (20 + 20x) - 20$$

Subtract 20 from each side

¹Least Common Multiple

$$(11+15x) - 15x = (20x) - 15x$$

Subtract 15x from each side

$$11 = 5x$$

Perform subtraction

$$\frac{11}{5} = \frac{5x}{5}$$

Divide each side by 5

$$\frac{11}{5} = x$$

Reduce fractions where possible

c.
$$\left| \frac{4x}{5} \right| = \left(\frac{1}{2} - \frac{1}{3} \right)^{-1}$$

$$(\frac{1}{2} - \frac{1}{3})^{-1}$$

Isolate right side

 $(\frac{3}{3} \cdot \frac{1}{2} - \frac{2}{2} \cdot \frac{1}{3})^{-1}$ Multiply each fraction with the denominator of the other (also expressed as fraction)

$$(\frac{3}{6} - \frac{2}{6})^{-1}$$

Perform multiplications

$$(\frac{1}{6})^{-1}$$

Perform subtraction

U

A negative exponent indicates the reciprocal of the base

$$\left|\frac{4x}{5}\right| = 6$$

Rewrite the initial equation

$$\frac{4x}{5} = 6$$
 or $\frac{4x}{5} = -6$

Remove absolute

$$5 \cdot \frac{4x}{5} = 5 \cdot 6$$
 or $5 \cdot \frac{4x}{5} = 5 \cdot (-6)$

Multiply each side by 5

$$4x = 30$$
 or $4x = -30$

Perform multiplications and reduce fractions

$$\frac{4x}{4} = \frac{30}{4}$$
 or $\frac{4x}{4} = -\frac{30}{4}$

Divide each side by 4

$$x = \frac{15}{2}$$
 or $x = -\frac{15}{2}$

Reduce fractions

d.
$$\frac{x-3}{3} = 2(\frac{2+x}{5} + 1)$$

$$\frac{x-3}{3} = \frac{4+2x}{5} + 2$$

$$15 \cdot \left(\frac{x-3}{3}\right) = 15 \cdot \left(\frac{4+2x}{5}\right) + 15 \cdot 2$$
 denominators

Apply distributive property on the right side

Multiply all terms by the LCM of the

$$5(x-3) = 3(4+2x) + 15 \cdot 2$$

Reduce fractions

5x - 15 = 12 + 6x + 30 Perform multiplications (apply distributive property)

$$(5x - 15) + 15 = (12 + 6x + 30) + 15$$

Add 15 to each side

$$5x = 6x + 57$$

Add terms where appropriate

$$(5x) - 5x = (6x + 57) - 5x$$

Subtract 5x from each side

$$0 = x + 57$$

Perform subtraction

$$-57 = (x+57) - 57$$

Subtract 57 from each side

$$-57 = x$$

Perform subtraction

Exercise 2

a.
$$p \vee q$$

 $\equiv \neg(\neg p) \lor q$ by the double negative law (6)

 $\equiv \neg p \rightarrow q$

by the conditional logical equivalence (12)

p	q	$ \neg p $	$p\vee q$	$\neg(\neg p)$	$\neg(\neg p)\vee q$	$\neg p \rightarrow q$
T	T	F	T	T	T	T
T	F	F	T	T	T	T
F	T	T	T	F	T	T
F	F	T	F	F	F	F

From the columns 5 and 6 of the truth table it is clear that the formula in every step is logically equivalent to the initial formula (column 3).

b. $p \wedge q$

 $\equiv \neg(\neg p \lor \neg q)$ by De Morgan's law for \lor (9)

 $\equiv \neg(p \to \neg q)$ by the conditional logical equivalence (12)

p	q	$\neg p$	$\neg q$	$p \wedge q$	$\neg p \lor \neg q$	$\neg(\neg p \lor \neg q)$	$p \rightarrow \neg q$	$\neg (p \to \neg q)$
T	T	F	F	T	F	T	F	T
T	F	F	$\mid T \mid$	F	T	F	T	F
F	T	T	F	F	T	F	T	F
F	F	T	T	F	T	F	T	F

From the columns 6 and 8 of the truth table it is clear that the formula in every step is logically equivalent to the initial formula (column 4).

c.
$$p \leftrightarrow q$$

$$\equiv (p \to q) \land (q \to p)$$
 by the biconditional logical equivalence (13)
$$\equiv \neg(\neg(p \to q) \lor \neg(q \to p))$$
 by De Morgan's law for \land (9)
$$\equiv \neg((p \to q) \to \neg(q \to p))$$
 by the conditional logical equivalence (12)

$\mid p$	q	$p \rightarrow q$	$q \rightarrow p$	$p \leftrightarrow q$	$\neg (p \to q)$	$\neg (q \to p)$	$(p \to q) \land (q \to p)$	$\neg(p \to q) \lor \neg(q \to p) \mid$
					T		F	\overline{F}
$\mid T$	F	F	T	F	F	T	F	T
f	T	T	F	F	F	F	T	T
$\mid F \mid$	F	T	T	T	T	F	F	F

	$\neg(\neg(p\to q)\vee\neg(q\to p)$	$\mid (p \to q) \to \neg (q \to p) \mid$	$\mid \neg((p \to q) \to \neg(q \to p)) \mid$
ſ	T	F	T
	F	T	F
	F	T	F
	T	F	T

From the columns 7, 9 and 11 of the truth table it is clear that the formula in every step is logically equivalent to the initial formula (column 4).

Exercise 3

a.
$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

 $(p \to r) \land (q \to r)$ rewrite left side
 $\equiv (\neg p \lor r) \land (\neg q \lor r)$ by the conditional logical equivalence (12) on $(p \to r)$

$$\equiv (r \vee \neg p) \wedge (r \vee \neg q)$$
 by the commutative law for \vee (1)

$$\equiv r \vee (\neg p \wedge \neg q)$$
 by the distributive law for \vee (3)

$$\equiv r \vee \neg (p \vee q)$$
 by De Morgan's law (9)

$$\equiv \neg (p \lor q) \lor r$$
 by the commutative law for \lor (1)

$$\equiv (p \lor q) \to r$$
 by the conditional logical equivalence (12)

b.
$$(p \land \neg q) \to r \equiv (p \land \neg r) \to q$$

$$(p \land \neg q) \to r$$
 rewrite left side

$$\equiv \neg(p \land \neg q) \lor r$$
 by the conditional logical equivalence (12)

$$\equiv r \vee \neg (p \wedge \neg q)$$
 by the commutative law for \vee (1)

$$\equiv r \vee \neg(\neg(\neg p \vee q))$$
 by De Morgan's law (9)

$$\equiv r \vee (\neg p \vee q)$$
 by the double negative law (6)

$$\equiv (r \vee \neg p) \vee q$$
 by the associative law for \vee (2)

$$\equiv \neg(\neg r \land p) \lor q$$
 by De Morgan's law (9)

$$\equiv \neg (p \wedge \neg r) \vee q \qquad \qquad \text{by the commutative law for } \wedge \ (1)$$

$$\equiv \neg(\neg(p \land \neg r)) \rightarrow q$$
 by the conditional logical equivalence (12)

$$\equiv (p \land \neg r) \rightarrow q$$
 by the double negative law (6)

c.
$$(p \land q) \rightarrow r \equiv p \rightarrow (q \rightarrow r)$$

$$(p \land q) \to r$$
 rewrite left side

$$\equiv \neg (p \wedge q) \vee r \qquad \qquad \text{by the conditional logical equivalence (12)}$$

$$\equiv \neg (\neg (\neg p \vee \neg q)) \vee r \qquad \text{by De Morgan's law for} \wedge (9)$$

$$\equiv (\neg p \vee \neg q) \vee r \qquad \text{by the double negative law (6)}$$

$$\equiv \neg p(\neg q \vee r) \qquad \text{by the associative law for } \vee (2)$$

$$\equiv \neg p \vee (q \to r) \qquad \text{by the conditional logical equivalence (12) on } (\neg q \vee r)$$

by the conditional logical equivalence (12)

 $\equiv p \to (q \to r)$

 $\equiv t \vee q$

 $\equiv t$

d.
$$\neg((p \to q) \land \neg q) \lor \neg p \equiv t$$
 $\neg((p \to q) \land \neg q) \lor \neg p$ rewrite left side

 $\equiv \neg((\neg p \lor q) \land \neg q) \lor \neg p$ by the conditional logical equivalence (12) on $(p \to q)$
 $\equiv \neg(\neg q \land (\neg p \lor q)) \lor \neg p$ by the commutative law for \land (1)

 $\equiv \neg((\neg q \land \neg p) \lor (\neg q \land q)) \lor \neg p$ by the distributive law for \land (3)

 $\equiv \neg((\neg q \land \neg p) \lor c) \lor \neg p$ by the negation law for \land (5)

 $\equiv \neg(\neg q \land \neg p) \lor \neg p$ by the identity law for \lor (4)

 $\equiv \neg(\neg (q \lor p)) \lor \neg p$ by De Morgan's law for \land (9)

 $\equiv (q \lor p) \lor \neg p$ by the double negative law (6)

 $\equiv (p \lor q) \lor \neg p$ by the commutative law for \lor (1)

 $\equiv \neg p \lor (p \lor q)$ by the associative law for \lor (2)

by the negation law for \vee (5)

by the universal bound law for \vee (8)