This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 15/45, A61K 39/155 G01N 33/569

A1

(11) International Publication Number:

WO 93/14207

(43) International Publication Date:

1R7 (CA).

22 July 1993 (22.07.93)

(21) International Application Number:

PCT/CA93/00001

(22) International Filing Date:

5 January 1993 (05.01.93)

(30) Priority data:

بديم

9200117.1

6 January 1992 (06.01.92)

(81) Designated States: AU, BR, CA, FI, JP, KR, NO, RU, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(74) Agent: STEWART, Michael, I.; Sim & McBurney, 330 University Avenue, Suite 701, Toronto, Ontario M5A

(71) Applicant (for all designated States except US): CONNAUGHT LABORATORIES LIMITED [CA/CA]; 1755 Steeles Avenue West, Willowdale, Ontario M2R

3T4 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KLEIN, Michel, H. [CA/CA]; 16 Monro Boulevard, Willowdale, Ontario L4Z 1M5 (CA). DU, Run-Pan [CA/CA]; 299 Chelwood Drive, Thornhill, Ontario L4J 7Y8 (CA). EWASYSHYN, Mary, E. [CA/CA]; 120 Torresdale, Apartment 1506, Willowdale, Ontario M2R 3N7 (CA).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: CHIMERIC IMMUNOGENS

(57) Abstract

Multimeric hybrid genes encoding the corresponding chimeric protein comprise a gene sequence coding for an antigenic region of a protein from a first pathogen linked to a gene sequence coding for an antigenic region of a protein from a second pathogen. The pathogens particularly are parainfluenza virus (PIV) and respiratory syncytial virus (RSV). A single recombinant immunogen is capable of protecting infants and similar susceptible individuals against diseases caused by both PIV and RSV.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT AU BB BE BF BC CF CC CH CI CM CS CZ DE ES FI	Austria Australia Barbados Belgium Burkina Faso Bulgaria Benin Brazil Canada Central African Republic Congo Switzerland Cöte d'Ivoire Cameroon Czechoslovakia Czech Republic Germany Denmark Spain Finland	FR GA GB GN GR HU IE IT JP KP KR KZ LI LK LU MC MC ML	France Gabon United Kingdom Guinea Greece Hungary Ireland Italy Japan Democratic People's Republic of Korea Republic of Korea Kazakhstan Liechtenstein Sri Lanka Luxembourg Monaco Madagascar Mali Mongolia	MR MW NL NO NZ PL PT RO RU SD SE SK SN TD TG UA US	Mauritania Malawi Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden Slovak Republic Senegal Soviet Union Chad Togo Ukraine United States of America Viet Nam
---	--	---	---	--	---

10

25

30

CHIMERIC IMMUNOGENS

FIELD OF INVENTION

The present invention relates to the engineering and expression of multimeric hybrid genes containing sequences from the gene coding for immunogenic proteins or protein fragments of numerous pathogens.

BACKGROUND TO THE INVENTION

The advantage of the approach taken by the present invention is to produce single immunogens containing protective antigens from a range of pathogens. chimeras greatly simplify the development of combination vaccines, in particular, with the view ultimately to produce single dose multivalent vaccines. Multivalent vaccines are currently made by separately producing pathogens and/or their pertinent antigens and combining them in various formulations. This is intensive, costly and complex manufacturing procedure. In contrast, the availability of a single immunogen capable of protecting against a range of diseases would solve many of the problems of multivalent vaccine Several chimeric immunogens of the type production. provided herein may be combined to decrease the number of individual antigens required in a multivalent vaccine.

Human Parainfluenza virus types 1,2,3 and Respiratory syncytial virus types A and B are the major viral pathogens responsible for causing severe respiratory tract infections in infants and young children. It is estimated that, in the United States alone, approximately 1.6 million infants under one year of age will have a clinically significant RSV infection each year and an additional 1.4 million infants will be infected with PIV-3. Approximately 4000 infants less than one year of age in the United States die each year from complications arising from severe respiratory tract disease caused by infection with RSV and PIV-3. The WHO

10

15

20

25

and NIALD vaccine advisory committees ranked RSV number two behind HIV for vaccine development while the preparation of an efficacious PIV-3 vaccine is ranked in the top ten vaccines considered a priority for vaccine development.

Safe and effective vaccines for protecting infants against these viral infections are not available and are Clinical trials have shown that urgently required. live-attenuated formaldehyde-inactivated and vaccines failed to adequately protect vaccinees against In fact, infants who received the these infections. formalin-inactivated RSV vaccine developed more serious lower respiratory tract disease during subsequent natural RSV infection than did the control group. [Am. J. Epidemiology 89, 1969, p.405-421; J. Inf. Dis. 145, 1982, p.311-319]. Furthermore, RSV glycoproteins purified by immunoaffinity chromatography using elution at acid pH induced immunopotentiation in cotton rats. [Vaccine, 10(7), 1992, p.475-484]. The development of efficacious PIV-3 and RSV vaccines which do not cause exacerbated pulmonary disease in vaccinees following injection with wild-type virus would have significant therapeutic implications. It is anticipated that the development of a single recombinant immunogen capable of simultaneously protecting infants against diseases caused by infection with both Parainfluenza and Respiratory syncytial viruses could significantly reduce the morbidity and mortality caused by these viral infections.

It has been reported that a protective response against PIV-3 and RSV is contingent on the induction of neutralizing antibodies against the major viral surface glycoproteins. For PIV, these protective immunogens are the HN protein which has a molecular weight of 72 kDa and possesses both hemagglutination and neuraminidase activities and the fusion (F) protein, which has a molecular weight of 65 kDa and which is responsible for

both fusion of the virus to the host cell membrane and cell-to-cell spread of the virus. For RSV, the two major immunogenic proteins are the 80 to 90 kDa G glycoprotein and the 70 kDa fusion (F) protein. The G and F proteins are thought to be functionally analogous to the PIV HN and F proteins, respectively. The PIV and RSV F glycoproteins are synthesized as inactive precursors (FO) which are proteolytically cleaved into N-terminal F2 and C-terminal F1 fragments which remain linked by disulphide bonds.

Recombinant surface glycoproteins from PIV and RSV have been individually expressed in insect cells using the baculovirus system [Ray et al., (1989), Research, 12: 169-180; Coelingh et al., (1987), Virology, 160: 465-472; Wathen et al., (1989), J. of Inf. 15 159: 253-263] as well as in mammalian cells infected with recombinant poxviruses [Spriggs, et al., (1987), Virol. 61: 3416-3423; Stott et al., (1987), J. Virol. 61: 3855-3861]. Recombinant antigens produced in these systems were found to protect immunized cotton rats 20 against live virus challenge. More recently, hybrid RSV F-G [Wathan et al., (1989), J. Gen Virol. 70: 2625-2635; Wathen, published International Patent application WO 89/05823] and PIV-3 F-HN [Wathen, published International Patent Application WO 89/10405], recombinant antigens 25 have been engineered and produced in mammalian and insect The RSV F-G hybrid antigen was shown to be protective in cotton rats [Wathan et al., (1989), J. Gen. Virol. 70: 2637-2644] although it elicited a poor anti-G antibody response [Connors et al., (1992), Vaccine 10: 30 The protective ability of the PIV-3 F-HN 475-4841. protein was not reported in the published patent application. These antigens were engineered with the aim to protect against only the homologous virus, that is either RSV or PIV-3. However, it would be advantageous 35 and economical to engineer and produce a

15

20

25

30

35

recombinant immunogen containing at least one protective antigen from each virus in order simultaneously to protect infants and young children against both PIV and RSV infections. The chimeric proteins provided herein for such purpose also may be administered to pregnant women or women of child bearing age to stimulate maternal antibodies to both PIV and RSV. In addition, the vaccine also may be administered to other susceptible individuals, such as the elderly.

SUMMARY OF INVENTION

In its broadest aspect, the present invention provides a multimeric hybrid gene, comprising a gene sequence coding for an antigenic region of a protein from a first pathogen linked to a gene sequence coding for an antigenic region of a protein from a second pathogen and to a chimeric protein encoded by such multimeric hybrid gene. Such chimeric protein comprises an antigenic region of a protein from a first pathogen linked to an antigenic region of a protein from a second pathogen.

first and second pathogens generally selected from bacterial and viral pathogens and, in one embodiment, may both be viral pathogens. Preferably, the first and second pathogens are selected from those causing different respiratory tract diseases, which may be upper and lower respiratory tract diseases. preferred embodiment, the first pathogen is parainfluenza virus and the second pathogen is respiratory syncytial The PIV protein particularly is selected from PIV-3 F and HN proteins and the RSV protein particularly is selected from RSV G and F proteins. Another aspect of the invention provides cells containing the multimeric hybrid gene for expression of a chimeric protein encoded Such cells may be bacterial cells, by the gene. mammalian cells, insect cells, yeast cells or fungal Further, the present invention provides a live cells. vector for antigen delivery containing the multimeric

15

25

30

35

hybrid gene, which may be a viral vector or a bacterial physiologically-acceptable and a therefor. Such live vector may form the active component of a vaccine against diseases caused by multiple pathogenic infections. Such vaccine may be formulated to be administered in an injectable form, intranasally or orally.

In an additional aspect of the present invention, there is provided a process for the preparation of a chimeric protein, which comprises isolating a gene sequence coding for an antigenic region of a protein from a first pathogen; isolating a gene sequence coding for an antigenic region of a protein from a second pathogen; linking the gene sequences to form a multimeric hybrid gene; and expressing the multimeric hybrid gene in a Such cellular expression cellular expression system. system may be provided by bacterial cells, mammalian cells, insect cells, yeast cells or fungal cells. chimeric protein product of gene expression may be separated from a culture of the cellular expression 20 system and purified.

The present invention further includes a vaccine against diseases caused by multiple pathogen infections, comprising the chimeric protein encoded by the multimeric hybrid gene and a physiologically-acceptable carrier be formulated to Such vaccine may therefor. administered in an injectable form, intranasally orally.

The vaccines provided herein may be used to immunize a host against disease caused by multiple pathogenic infections, particularly those caused by a parainfluenza virus and respiratory syncytial virus, by administering an effective amount of the vaccine to the host. As noted above, for human PIV and RSV , the host may be infants and young children, pregnant women as well as those of a

10

15

20

25

30

35

child-bearing age, and other susceptible persons, such as the elderly.

The chimeric protein provided herein also may be used as a diagnostic reagent for detecting infection by a plurality of different pathogens in a host, using a suitable assaying procedure.

It will be appreciated that, while the description of the present invention which follows focuses mainly on a chimeric molecule which is effective for immunization against diseases caused by infection by PIV and RSV, nevertheless the invention provided herein broadly extends to any chimeric protein which is effected for immunization against diseases caused by a plurality of pathogens, comprising an antigen from each of the pathogens linked in a single molecule, as well as to genes coding for such chimeric molecules.

In this application, by the term "multimeric hybrid genes" we mean genes encoding antigenic regions of proteins from different pathogens and by the term "chimeric proteins" we mean immunogens containing antigenic regions from proteins from different pathogens.

BRIEF DESCRIPTION OF DRAWINGS

Figure 1 shows the nucleotide (SEQ ID No: 1) and amino acid (SEQ ID No: 2) sequence of a PCR-amplified PIV-3 F gene and F protein, respectively;

Figure 2 shows the restriction map of the PIV-3 F gene;

Figure 3 shows the nucleotide (SEQ ID No: 3) and amino acid (SEQ ID No: 4) sequences of the PIV-3 HN gene and HN protein, respectively;

Figure 4 shows the restriction map of the PIV-3 HN gene;

Figure 5 shows the nucleotide (SEQ ID No: 5) and amino acid (SEQ ID No: 6) sequences of the RSV F gene and RSV F protein, respectively;

30

35

Figure 6 shows the restriction map of the RSV F gene;

Figure 7 shows the nucleotide (SEQ ID No: 7) and amino acid (SEQ ID No: 8) sequences of the RSV G gene and RSV G protein, respectively;

Figure 8 shows the restriction map of the RSV G gene;

Figure 9 shows the steps involved in the construction of an expression vector containing a chimeric $F_{\text{PIV-3}}$ - F_{RSV} gene;

Figure 10 shows the steps involved in the construction of an expression vector containing a F_{PIV-3} gene lacking the 5'-untranslated sequence and transmembrane anchor and cytoplasmic tail coding regions;

15 Figure 11 shows the steps involved in the construction of an expression vector containing a chimeric $F_{\text{PIV-3}}$ - F_{RSV} gene containing a truncated PIV-3 F gene devoid of 5'-untranslated region linked to a truncated RSV F1 gene;

Figure 12 shows the steps involved in construction of a modified pAC 610 baculovirus expression vector containing a chimeric $F_{\text{PIV-3}} - F_{\text{RSV}}$ gene consisting of the PIV-3 F gene lacking both the 5'-untranslated sequence as well as transmembrane and cytoplasmic tail coding region linked to the truncated RSV F1 gene;

Figure 13 shows immunoblots of cell lysates from Sf9 cells infected with recombinant baculoviruses;

Figure 14 shows the steps involved in constructing a baculovirus transfer vector (pD2);

Figure 15 shows the steps involved in construction of a chimeric F_{RSV} - $HN_{PIV\cdot 3}$ gene;

Figure 16 shows an SDS-PAGE gel and immunoblot of purified F_{RSV} - HN_{PIV-3} chimeric protein;

Figure 17 illustrates mutagenesis of a PIV-3 F gene; and

10

15

20

25

30

35

Figure 18 shows the steps involved in the construction of a chimeric $F_{\text{PIV-3}}$ - G_{RSV} gene.

GENERAL DESCRIPTION OF INVENTION

In the present invention, a chimeric molecule protective against two different major childhood diseases is provided. The present invention specifically relates to the formulation of various recombinant Parainfluenza virus (PIV)/Respiratory syncytial virus (RSV) immunogens to produce safe and efficacious vaccines capable of protecting infants and young children, as well as other susceptible individuals, against diseases caused by infection with both PIV and RSV. However, as described above, the present invention extends to the construction of multimeric hybrid genes containing genes coding for protective antigens from many pathogens. Such vaccines may be administered in any desired manner, such as a readily-injectable vaccine, intranasally or orally.

In the present invention, the inventors have specifically engineered several model PIV/RSV chimeric genes containing relevant sequences from selected genes coding for PIV-3 and RSV surface glycoproteins linked in tandem. All genes in the chimeric constructs described herein were obtained from recent clinical isolates of PIV-3 and RSV. The chimeric gene constructs may include gene sequences from either PIV-3 F or HN genes linked in tandem to either RSV F or G genes in all possible relative orientations and combinations.

The chimeric gene constructs provided herein may consist of either the entire gene sequences or gene segments coding for immunogenic and protective epitopes thereof. The natural nucleotide sequence of these genes may be modified by mutation while retaining antigenicity and such modifications may include the removal of putative pre-transcriptional terminators to optimize their expression in eukaryotic cells. The genes were

15

25

30

designed to code for hybrid PIV-RSV surface glycoproteins linked in tandem in a single construct to produce gene products which elicit protective antibodies against both parainfluenza and respiratory syncytial viruses. Such multimeric hybrid genes consist of a gene sequence coding for a human PIV-3 F or HN protein or an immunogenic epitope-containing fragment thereof linked to a gene sequence coding for a human RSV G or F protein or an immunogenic epitope-containing fragment thereof. Specific gene constructs which may be employed include $F_{\text{PIV-3}} - F_{\text{RSV}}$, $F_{\text{RSV}} - HN_{\text{PIV-3}}$ and $F_{\text{PIV-3}} - G_{\text{RSV}}$ hybrid genes.

In addition, the present invention also extends to the construction of other multimeric genes, such as trimeric genes containing PIV and RSV genes or gene segments, linked in all possible relative orientations. For example:

$$\begin{split} &F_{PIV} \ - \ HN_{PIV} \quad - \ F \ \text{or} \ G_{RSV} \\ &F_{PIV} \ - \ F_{RSV} \ - \ G_{RSV} \\ &HN_{PIV} \ - F_{RSV} \ - \ G_{RSV} \end{split}$$

The multimeric genes provided herein also may comprise at least one gene encoding at least one immunogenic and/or immunostimulating molecule.

The multimeric hybrid genes provided herein may be sub-cloned into appropriate vectors for expression in cellular expression systems. Such cellular expression systems may include bacterial, mammalian, insect and fungal, such as yeast, cells.

The chimeric proteins provided herein also may be presented to the immune system by the use of a live vector, including live viral vectors, such as recombinant poxviruses, adenoviruses, retroviruses, Semliki Forest viruses, and live bacterial vectors, such as Salmonella and mycobacteria (e.g. BCG).

Chimeric proteins, such as a PIV/RSV chimera, 35 present in either the supernatants or cell lysates of

15

20

25

30

35

transfected, transformed or infected cells then can be purified in any convenient manner.

immunogenicity and protective evaluate the ability of the chimeric proteins, suitable experimental animals are immunized with either varying doses of the purified chimeric proteins, such as the PIV/RSV chimera, and/or live recombinant vectors as described above. Such chimeric proteins may be presented to the immune system by either the use of physiologically-acceptable vehicles, such as aluminum phosphate, or by the use of delivery systems, such as ISCOMS and liposomes. The chimeras also may be formulated to be capable of eliciting a mucosal response, for example, by conjugation or association with immunotargeting vehicles, such as the cholera toxin B subunit, or by incorporation into microparticles. vaccines may further comprise means for delivering the multimeric protein specifically to cells of the immune system, such as toxin molecules or antibodies. further enhance the immunoprotective ability of the chimeric proteins, they may be supplemented with other immunogenic and/or immunostimulating molecules. chimeric PIV/RSV proteins specifically described herein may be formulated with an adjuvant, such as aluminum phosphate, to produce readily-injectable vaccines for protection against the diseases caused by both PIV-3 and The chimeric proteins also may be administered The chimeric proteins may be intranasally or orally. used in test kits for diagnosis of infection by PIV-3 and RSV.

The invention is not limited to the preparation of chimeric PIV-3 and RSV proteins, but is applicable to the production of chimeric immunogens composed of either the entire sequences or regions of the immunogenic proteins from at least two pathogens sequentially linked in a single molecule. Chimeric antigens also may be synthesized to contain the immunodominant epitopes of

several proteins from different pathogens. These chimeric antigens may be useful as vaccines or as diagnostic reagents.

SEQUENCE IDENTIFICATION

Several nucleotide and amino acid sequences are referred to in the disclosure of this application. The following table identifies the sequences and the location of the sequence:

10	SEO ID No.	<u>Identification</u>	<u>Location</u>
15	1	Nucleotide sequence for PCR-amplified PIV-3 F gene	Fig. 1, Example 1
	2	Amino acid sequence for PCR-amplified PIV-F protein	Fig. 1, Example 1
20	3	Nucleotide sequence for PIV-3 HN gene	Fig. 3, Example 1
25	4	Amino acid sequence for PIV-3 HN protein	Fig. 3, Example 1
	5	Nucleotide sequence for RSV F gene	Fig. 5, Example 1
30	6	Amino acid sequence for RSV F protein	Fig. 5, Example 1
	7	Nucleotide sequence for RSV G gene	Fig. 7, Example 1
35	8	Amino acid sequence for RSV G protein	Fig. 7, Example 1
40	9	BsrI - BamHI oligo- nucleotide cassette	Fig. 9, Example 2
	10	BspHI - BamHI oligo- nucleotide cassette	Fig. 9, Example 2
45	11	EcoRI - Ppu MI oligo- nucleotide cassette	Fig. 9, Example 2
	12	BrsI - BamHI oligo- nucleotide cassette	Fig. 10, Example 3
50			

35

40

	13	EcoRI -Bsr BI oligo- nucleotide cassette	Fig. 10, Example 3
5	14	EcoRV - EcoRI oligo- nucleotide cassette	Fig. 11, Example 5
	15	EcoRV - BamHI oligo- nucleotide cassette	Fig. 14, Example 8
10	16	BspHI - BspHI oligo- nucleotide cassette	Fig. 15, Example 9
15	17	Nucleotide sequence for PIV-3 F gene	Example 15
	18	Mutagenic oligo- nucleotide #2721	Fig. 17, Example 15
20	19	Nucleotide sequence for part of oligo-nucleotide #2721	Example 15
25	20	Oligonucleotide probe	Example 15

DEPOSIT INFORMATION

Certain plasmid DNAs described and referred to herein have been deposited with the American Type Culture Collection (ATCC) located at Rockville, Maryland, USA, pursuant to the Budapest Treaty and prior to the filing of this application. The deposited purified plasmids will become available to the public upon grant of this U.S. patent application or upon publication of its corresponding European patent application, whichever first occurs. The invention described and claimed herein is not to be limited in scope by the plasmid DNAs of the constructs deposited, since the deposited embodiment is intended only as an illustration of the invention. The following purified plasmids were deposited at the ATCC with the noted accession numbers on December 17, 1992:

5	75387
9	75388
16	75389
	9

10

15

20

25

30

35

Any equivalent plasmids that can be used to produce equivalent antigens as described in this application are within the scope of the invention.

EXAMPLES

The above disclosure generally describes the present invention. A more complete understanding can be obtained by reference to the following specific Examples. These Examples are described solely for purposes of illustration and are not intended to limit the scope of the invention. Changes in form and substitution of equivalents are contemplated as circumstances may suggest or render expedient. Although specific terms have been employed herein, such terms are intended in a descriptive sense and not for purposes of limitations.

Methods for cloning and sequencing the PIV-3 and RSV genes as well as the procedures for sub-cloning the genes into appropriate vectors and expressing the gene constructs in mammalian and insect cells are not explicitly described in this disclosure but are well within the scope of those skilled in the art.

Example 1:

This Example outlines the strategy used to clone and sequence the PIV-3 F, HN and RSV F, G genes (from a type A isolate). These genes were used in the construction of the F_{PIV-3} - F_{RSV} , F_{RSV} -HN $_{PIV-3}$, and F_{PIV-3} -G $_{RSV}$ chimeric genes detailed in Examples 2 to 4, 9 and 15, respectively.

Two PIV-3 F gene clones initially were obtained by PCR amplification of cDNA derived from viral RNA extracted from a recent clinical isolate of PIV-3. Two other PIV-3 F gene clones as well as the PIV-3 HN, RSV F and RSV G genes were cloned from a cDNA library prepared from mRNA isolated from MRC-5 cells infected with clinical isolates of either PIV-3 or RSV (type A isolate). The PIV-3 F (both PCR amplified and non-PCR amplified), PIV-3 HN, RSV F and RSV G gene clones were sequenced by the dideoxynucleotide chain termination

10

15

Sequencing of both strands of the genes was procedure. performed by a combination of manual and automated sequencing.

The nucleotide (SEQ ID No: 1) and amino acid (SEQ ID No: 2) sequences of the PCR amplified PIV-3 F gene and F protein, respectively, are presented in Figure 1 and the restriction map of the gene is shown in Figure 2. Sequence analysis of the 1844 nucleotides of two PCR amplified PIV-3 F gene clones confirmed that the clones were identical. Comparison of the coding sequence of the PCR-amplified PIV-3 F gene clone with that of the revealed 2.6% gene sequence published PIV-3 F divergence in the coding sequence between the two genes resulting in fourteen amino acid substitutions.

The nucleotide sequence of the non-PCR amplified PIV-3 F gene clone differed from the PCR amplified gene clone in the following manner: the non-PCR amplified clone had ten additional nucleotides (AGGACAAAAG) at the 5' untranslated region of the gene and differed at four positions, 8 (T in PCR-amplified gene to C in non-PCR 20 amplified gene) , 512 (C in PCR-amplified gene to T in non-PCR amplified gene) , 518 (G in PCR-amplified gene to A in non-PCR amplified gene) and 1376 (A in PCR-amplified gene to G in non-PCR amplified gene). These changes resulted in three changes in the amino acid sequence of 25 the F protein encoded by the non-PCR amplified PIV-3 F gene. Serine (position 110), glycine (position 112), and aspartic acid (position 398) in the primary amino acid sequence of the F protein encoded by the PCR amplified PIV-3 F gene was changed to phenylalanine (position 110), 30 glutamic acid (position 112) and glycine (position 398), respectively, in the primary amino acid sequence of the F protein encoded by the PCR amplified clone.

Figure 3 shows the nucleotide (SEQ ID No: 3) and amino acid (SEQ ID No: 4) sequences of the PIV-3 HN gene 35 and protein, respectively and the restriction map of the gene is presented in Figure 4. Analysis of the 1833 nucleotide sequence from two HN clones confirmed that the sequences were identical. A 4.4% divergence in the coding sequence of the PIV-3 HN gene was noted when the sequence was compared to the published PIV-3 HN coding sequence. This divergence resulted in seventeen amino acid substitutions in the amino acid sequence of the protein encoded by the PIV-3 HN gene.

The nucleotide (SEQ ID No: 5) and amino acid (SEQ ID No: 6) sequences of the RSV F gene and RSV F protein, respectively, are shown in Figure 5 and the restriction map of the gene is shown in Figure 6. Analysis of the 1887 nucleotide sequence from two RSV F clones verified complete sequence homology between the two clones.

Comparison of this nucleotide sequence with that reported for the RSV F gene revealed approximately 1.8% divergence in the coding sequence resulting in eleven amino acid substitutions.

The nucleotide (SEQ ID No: 7) and amino acid (SEQ ID No: 8) sequences of the RSV G gene and RSV G protein, respectively, are presented in Figure 7 while the restriction map of the gene is outlined in Figure 8. Comparison of the 920 nucleotide sequence of the G gene clone with the published G sequence (type A isolate) revealed a 4.2% divergence in the nucleotide sequence and a 6.7% divergence in the amino acid sequence of the gene product. This divergence resulted in twenty amino acid substitutions.

The full-length PIV-3 F (non-PCR amplified) , PIV-3

HN, RSV F and RSV G genes were cloned into λgtll and subcloned into the multiple cloning site of a Bluescript M13-SK vector, either by blunt end ligation or using appropriate linkers. The PCR-amplified PIV-3 F gene was directly cloned into the Bluescript vector. The cloning vectors containing the PIV-3 F-PCR amplified, PIV-3 F non-PCR amplified, PIV-3 HN, RSV F and RSV G genes were

15

35

pRSVG, and pRSVF pPIVHN, pPI3Fc, pPI3F, respectively.

Example 2:

This Example illustrates the construction of a Bluescript-based expression vector (pMCR20) containing This chimeric gene the chimeric F_{PIV-3} - F_{RSV} gene. construct contains the 5' untranslated region of the PIV-3 F gene but lacks the hydrophobic anchor and cytoplasmic tail coding regions of both the PIV-3 and RSV F genes. The steps involved in the construction of this plasmid are summarized in Figure 9.

To prepare the PIV-3 portion of the chimeric gene (Figure 9, step 1), the full length PIV-3 gene lacking the transmembrane region and cytoplasmic tail coding regions was retrieved from plasmid pPI3F by cutting the polylinker with BamHI, blunt-ending the linearized plasmid with Klenow polymerase and cutting the gene with BsrI. A BsrI-BamHI oligonucleotide cassette (SEQ ID No: site and three successive PpuMI 9) containing a translational stop codons were ligated to the truncated 20 1.6 Kb [BamHI]-BsrI PIV-3 F gene fragment and cloned into the EcoRV-BamHI sites of a Bluescript M13-SK expression vector containing the human methallothionen promoter and the poly A and IVS sequences of the SV40 genome (designated pMCR20), to generate plasmid pME1. 25

To engineer the RSV F gene component of the chimeric construct (Figure 9, step 2), the RSV F gene lacking the transmembrane region and cytoplasmic tail coding regions was retrieved from plasmid pRSVF by cutting the polylinker with EcoRI and the gene with BspHI. synthetic BspHI-BamHI oligonucleotide cassette (SEQ ID No: 10) containing three successive translational stop codons was ligated to the 1.6 Kb truncated RSV F gene and cloned into the EcoRI-BamHI sites of the Bluescript based expression vector, pMCR20 to produce plasmid pES13A. Plasmid pES13A then was cut with EcoRI and PpuMI to

remove the leader and F2 coding sequences from the truncated RSV F gene. The leader sequence was reconstructed using an EcoRI-PpuMI oligocassette (SEQ ID No: 11) and ligated to the RSV F1 gene segment to generate plasmid pES23A.

To prepare the chimeric $F_{PIV-3}-F_{RSV}$ gene (Figure 9, step 3) containing the 5' untranslated region of the PIV-3 F gene linked to the truncated RSV F1 gene fragment, plasmid pME1 (containing the 1.6 Kb truncated PIV-3 F gene) first was cut with PpuMI and BamHI. 10 BamHI restricted pME1 vector was dephosphorylated with intestinal alkaline phosphatase. The 1.1 Kb RSV F1 gene fragment was retrieved from plasmid pES23A by cutting the plasmid with PpuMI and BamHI. The 1.1 Kb PpuMI-BamHI RSV F1 gene fragment was cloned into the PpuMI-BamHI sites of 15 the dephosphorylated pME1 vector to generate plasmid This chimeric gene construct contains the 5' untranslated region of the PIV-3 F gene but lacks the nucleotide sequences coding for the hydrophobic anchor domains and cytoplasmic tails of both the PIV-3 and RSV 20 F proteins.

Example 3:

25

30

35

This Example illustrates the construction of a Bluescript-based expression vector containing the PIV-3 F gene lacking both the 5' untranslated and transmembrane anchor and cytoplasmic tail coding regions. The steps involved in constructing this plasmid are outlined in Figure 10.

Plasmid pPI3F containing the full length PIV-3 F gene was cut with BamHI, blunt ended with Klenow polymerase and then cut with BsrI to remove the transmembrane and cytoplasmic tail coding regions. The Bluescript-based expression vector, pMCR20, was cut with SmaI and BamHI. A synthetic BsrI-BamHI oligonucleotide cassette (SEQ ID No: 12) containing a translational stop codon was ligated with the 1.6 Kb blunt ended-BsrI PIV-3

15

20

25

30

F gene fragment to the Smal-BamHI restricted pMCR20 vector to produce plasmid pMpFB. The PIV-3 F gene of this construct lacked the DNA fragment coding for the and cytoplasmic anchor domains transmembrane contained the 5' untranslated region. To engineer a plasmid containing the PIV-3 F gene devoid of both the 5' untranslated region and the DNA fragment coding for the hydrophobic anchor domain, plasmid pMpFB was cut with EcoRI and BstBI. An EcoRI-BstBI oligocassette (SEQ ID No: 13) containing the sequences to reconstruct the signal peptide and coding sequences removed by the EcoRI-BstBI cut was ligated to the EcoRI-BstBI restricted pMpFB vector to produce plasmid pMpFA.

Example 4:

This Example illustrates the construction of the chimeric $F_{\text{PIV-3}}-F_{\text{RSV}}$ gene composed of the truncated PIV-3 F gene devoid of the 5' untranslated region linked to the truncated RSV F1 gene. The steps involved in constructing this plasmid are summarized in Figure 11.

To prepare this chimeric gene construct, plasmid pES29A (Example 2) was cut with BstBI and BamHI to release the 2.5 Kb BstBI-BamHI PI3-3 F-RSV F1 chimeric This BstBI-BamHI fragment was isolated gene fragment. from a low melting point agarose gel and cloned into the BstBI-BamHI sites of the dephosphorylated vector pMpFA to This construct contained the produce plasmid pES60A. PIV-3 F gene lacking both the 5' untranslated region and the hydrophobic anchor and cytoplasmic tail coding sequences linked to the F1 coding region of the truncated This chimeric gene was subsequently RSV F gene. subcloned into the baculovirus transfer vector (see Example 5).

Example 5:

This Example illustrates the construction of the modified pAC 610 baculovirus transfer vector containing the native polyhedrin promoter and the chimeric $F_{PIV-3}-F_{RSV}$

15

25

30

35

gene consisting of the PIV-3 F gene lacking both the 5' untranslated sequence and the nucleotide sequence coding for the hydrophobic anchor domain and cytoplasmic tail linked to the truncated RSV F1 gene. Construction of this plasmid is illustrated in Figure 12.

The pAC 610 baculovirus expression vector was modified to contain the native polyhedrin promoter in the following manner. Vector pAC 610 was cut with EcoRV and The 9.4 Kb baculovirus transfer vector lacking BamHI. the EcoRV-BamHI DNA sequence was isolated from a low melting point agarose gel and treated with intestinal alkaline phosphatase. In a 3-way ligation, an EcoRV-EcoRI oligonucleotide cassette (SEQ ID No: 14) containing the nucleotides required to restore the native polyhedrin promoter was ligated with the 1.6 Kb EcoRI-BamHI truncated RSV F gene fragment isolated from construct pES13A (Example 2, step 2) and the EcoRV-BamHI restricted pAC 610 phosphatased vector to generate plasmid pES47A. To prepare the pAC 610 based expression vector containing the chimeric $F_{\text{PIV-3}}\text{-}F_{\text{RSV}}$ gene, plasmid pES47A was first cut 20 with EcoRI and BamHI to remove the 1.6 Kb truncated RSV The 2.8 Kb $F_{PIV-3}-F_{RSV}$ chimeric gene was F gene insert. retrieved by cutting plasmid pES60A (Example 4) with EcoRI and BamHI. The 2.8 Kb EcoRI-BamHI chimeric gene was ligated to the EcoRI-BamHI restricted pES47A vector to generate plasmid pAC DR7 (ATCC 75387).

Example 6

This Example outlines the preparation of plaquebaculoviruses containing the recombinant purified chimeric F_{PIV-3} - F_{RSV} gene.

(Sf9) cells Spodoptera frugiperda were cotransfected with 1.0 μg wild-type AcMNPV DNA and 2.5 μg of $F_{PIV.3}-F_{RSV}$ plasmid DNA (plasmid pAC DR7 - Example 5). Putative recombinant baculoviruses (purified once by serial dilution) containing the $F_{\text{PIV-}3}$ - F_{RSV} chimeric gene were identified by dot-blot hybridization. Lysates of

insect cells infected with the putative recombinant baculoviruses were probed with the ^{32}P -labelled F_{PIV-3} - F_{RSV} chimeric gene insert. Recombinant baculoviruses were plaque-purified twice before being used for expression studies. All procedures were carried out according to the protocols outlined by M.D. Summers and G.E. Smith in "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures", Texas Agricultural Experiment Station, Bulletin 1555, 1987.

Example 7: 10

15

This Example illustrates the presence of $-F_{RSV}$ protein in supernatants and cell chimeric Fp[V-3 lysates of infected Sf9 cells.

Insect cells were infected with the plaque-purified recombinant baculoviruses prepared as described Example 6 at a m.o.i. of 8. Concentrated supernatants from cells infected with the recombinant viruses were positive in a PIV-3 F specific ELISA. In addition, when lysates from 35S-methioninelabelled infected cells were subjected to SDS-polyacrylamide gel electrophoresis and 20 gels were analyzed by autoradiography, a strong band with apparent molecular weight of approximately 90 kDa was present in lysates of cells infected with the recombinant viruses but was absent in the lysates from wild-type infected cells. The presence of the chimeric $F_{\text{PIV-3}}$ - F_{RSV} 25 protein in the lysates of cells infected with the recombinant baculoviruses was confirmed further by Western blot analysis using monospecific anti-PIV-3 F and anti-RSV F antisera and/or monoclonal antibodies (Mabs). from cells infected with the recombinant Lysates 30 baculoviruses reacted with both anti-PIV-3 and anti-RSV antisera in immunoblots. As shown in the immunoblot of Figure 13, lysates from cells infected with either the RSV F or F_{PIV-3} - F_{RSV} recombinant baculoviruses reacted positively with the anti-F RSV Mab. As expected, lysates from cells infected with wild type virus did not react

with this Mab. In addition, only lysates from cells infected with the chimeric $F_{\rm PIV-3}$ - $F_{\rm RSV}$ recombinant viruses reacted with the anti-PIV-3 F_1 antiserum.

Example 8

This Example illustrates modification of the baculovirus transfer vector pVL1392 (obtained from Invitrogen), wherein the polyhedrin ATG start codon was converted to ATT and the sequence CCG was present downstream of the polyhedrin gene at positions +4,5,6.

Insertion of a structural gene several base pairs downstream from the ATT codon is known to enhance translation. The steps involved in constructing this modified baculovirus transfer vector are outlined in Figure 14.

The baculovirus expression vector pVL1392 was cut with EcoRV and BamHI. The 9.5 kb restricted pVL1392 vector was ligated to an EcoRV-BamHI oligonucleotide cassette (SEQ ID No: 15) to produce the pD2 vector.

Example 9:

15

20

25

30

35

This Example illustrates the construction of the pD2 baculovirus expression vector containing the chimeric F_{RSV} -HN_{PIV-3} gene consisting of the truncated RSV F and PIV-3 HN genes linked in tandem. The steps involved in constructing this plasmid are summarized in Figure 15.

To engineer the F_{RSV}-HN_{PIV-3} gene, the RSV F gene lacking the nucleotide sequence coding for the transmembrane domain and cytoplasmic tail of the RSV F glycoprotein was retrieved from plasmid pRSVF (Example 1) by cutting the polylinker with EcoRI and the gene with BspHI. The PIV-3 HN gene devoid of the DNA fragment coding for the hydrophobic anchor domain was retrieved from plasmid pPIVHN (Example 1) by cutting the gene with BspHI and the polylinker with BamHI. The 1.6 Kb EcoRI-BspHI RSV F gene fragment and the 1.7 Kb BspHI-BamHI PIV-3 HN gene fragment were isolated from low melting point agarose gels. For cloning purposes, the two BspHI sites

15

20

25

30

in the Bluescript based mammalian cell expression vector, Mutations were introduced in the pMCR20, were mutated. BspHI sites of the pMCR20 by cutting the expression vector with BspHI, treating both the BspHI restricted vector and the 1. 1 Kb fragment released by the BspHI cut with Klenow polymerase and ligating the blunt-ended 1.1 Bluescript-based the blunt-ended fragment to expression vector to generate plasmid pM'. insertion of the 1.1 Kb blunt-end fragment in the mammalian cell expression vector in the orientation would alter the Amp gene of the Bluescriptbased expression vector, only colonies of HB101 cells transformed with the pM' plasmid DNA with the 1.1 Kb blunt-ended fragment in the proper orientation could survive in the presence of ampicillin. Plasmid DNA was purified from ampicillin-resistant colonies of HB101 cells transformed with plasmid PM' by equilibrium chloride-ethidium bromide centrifugation in cesium The 1.6 Kb EcoRI-BspHI RSV F and 1.7 Kb gradients. BspHI-BamHI PIV-3 HN gene fragments were directly cloned into the EcoRI-BamHI sites of vector pM' in a 3-way ligation to generate plasmid pM' RF-HN.

To restore specific coding sequences of the RSV F and PIV-3 HN genes removed by the BspHI cut, a BspHI-BspHI oligonucleotide cassette (SEQ ID No: 16) containing the pertinent RSV F and PIV-3 HN gene sequences was ligated via the BspHI site to the BspHI-restricted plasmid pM' RF-HN to produce plasmid pM RF-HN. Clones containing the BspHI-BspHI oligonucleotide cassette in the proper orientation were identified by sequence analysis of the oligonucleotide linker and its flanking regions.

To clone the chimeric $F_{RSV}-HN_{PIV-3}$ gene into the baculovirus expression vector pD2 (Example 8), the $F_{RSV}-3$ HN_{PIV-3} truncated gene first was retrieved from plasmid pM RF-HN by cutting the plasmid with EcoRI. The 3.3 Kb $F_{RSV}-3$

15

20

25

30

35

 ${\rm HN_{PIV-3}}$ gene then was cloned into the EcoRI site of the baculovirus transfer vector plasmid pD2 to generate plasmid pD2 RF-HN (ATCC 75388). Proper orientation of the 3.3 Kb EcoRI ${\rm F_{RSV}-HN_{PIV-3}}$ chimeric gene insert in plasmid pD2 RF-HN was confirmed by sequence analysis.

Example 10:

This Example outlines the preparation of plaque-purified recombinant baculoviruses containing the chimeric $F_{\text{PSV}}-HN_{\text{PIV}-3}$ gene.

Spodoptera frugiperda (Sf9) cells were cotransfected with 1 μ g wild-type AcNPV DNA and 2 μ g of F_{RSV} -HN_{PIV-3} plasmid DNA (plasmid pD2 RF-HN-Example 9). Putative recombinant baculoviruses (purified once by serial dilution) containing the F_{RSV} -HN_{PIV-3} chimeric gene were identified by dot-blot hybridization. Lysates of insect cells infected with the putative recombinant baculoviruses were probed with the 32 P-labelled RSV F or PTV-3 HN gene oligonucleotide probes. Recombinant baculoviruses were plaque-purified three times before being used for expression studies. All procedures were carried out according to the protocols outlined by Summers and Smith (Example 6).

Example 11:

This Example illustrates the presence of the chimeric F_{RSV} -HN $_{PIV-3}$ protein in supernatants of infected Sf9 and High 5 cells.

Insect cells (Sf9 and High 5), maintained in serum free medium EX401, were infected with the plaque purified recombinant baculoviruses of Example 10 at a m.o.i. of 5 to 10 pfu/cell. Supernatants from cells infected with the recombinant baculoviruses tested positive for expressed protein in both the RSV-F and PIV-3 HN specific ELISAS. In addition, supernatants from infected cells reacted positively with both an anti-F RSV monoclonal antibody and anti-HN peptide antisera on immunoblots. A distinct band of approximately 105 kDa was present in the

15

20

25

immunoblots. These results confirm the secretion of the chimeric $F_{RSV}-HN_{PIV-3}$ protein into the supernatant of Sf9 and High 5 cells infected with the recombinant baculoviruses.

5 Example 12:

This Example illustrates the purification of the chimeric $F_{RSV}\text{-}HN_{PIV\text{-}3}$ protein from the supernatants of infected High 5 cells.

High 5 cells, maintained in serum free medium, were recombinant plaque purified the with infected baculoviruses of Example 10 at a m.o.i of 5 pfu/cell. The supernatant from virus infected cells was harvested 2 days post-infection. The soluble F_{RSV} - HN_{PIV-3} chimeric protein was purified from the supernatants of infected cells by immunoaffinity chromatography using an anti-HN The anti-HN monoclonal PIV-3 monoclonal antibody. antibody was coupled to CNBr-activated Sepharose 4B by conventional techniques. The immunoaffinity column was washed with 10 bed volumes of washing buffer (10mM Tris-HCl pH 7.5, 150 mM NaCl, 0.02% v/v Triton-X 100) prior to use. After sample loading, the column was washed with 10 bed volumes of washing buffer followed by 3 bed volumes of high salt buffer (10mm Tris-HCl pH 7.5, 500mM NaCl, 0.02% v/v Triton-X 100) . The chimeric $F_{RSV}\text{-}HN_{PIV\text{-}3}$ protein was eluted from the immunoaffinity column with 100 MM glycine, pH 2.5, in the presence of 0.02% Triton X-100. Eluted protein was neutralized immediately with 1M Tris-HCl, pH 10.7.

Polyacrylamide gel electrophoretic analysis (Fig. 16, panel A) of the immunoaffinity-purified F_{RSV}-HN_{PIV-3} protein revealed the presence of one major protein band with an apparent molecular weight of 105 kDa. The purified protein reacted with both an anti-RSV F monoclonal antibody and anti-HN peptide antisera on immunoblots (Fig. 16, panel B, lanes 1 and 2, respectively).

Example 13:

This Example illustrates the immunogenicity of the $F_{\text{RSV}}\text{-}HN_{\text{PIV},3}$ protein in guinea pigs.

injected quinea pigs were Groups of four intramuscularly with either 1.0 or 10.0 μg of the chimeric F_{RSV} - HN_{PIV-3} protein purified as described Example 12 and adjuvanted with aluminum phosphate. Groups of control animals were immunized with either PIV-3 or RSV · (administered live or intranasally). Guinea pigs were bled 2 and 4 weeks after 10 the primary injection and boosted at 4 weeks with an equivalent dose of the antigen formulation. samples also were taken 2 and 4 weeks after the booster dose. To assess the ability of the chimeric protein to elicit PIV-3 and RSV-specific antibody responses, sera 15 samples were analyzed for the presence of PIV-3 specific hemagglutination inhibiting and neutralizing antibodies as well as RSV neutralizing antibodies. As summarized in Table 1 below (the Tables appear at the end of the disclosure), the sera of animals immunized with two 10 $\mu \mathrm{g}$ 20 doses of the chimeric protein had titres of PIV-3 specific hemagglutination inhibition (HAI) and PIV-3/RSV neutralizing antibodies at the 6 and 8 week time points which were equivalent to the levels obtained following intranasal inoculation with either live PIV-3 or RSV. In 25 addition, animals immunized with only two 1 ug doses of the chimeric protein elicited strong PIV-3 and RSV specific neutralizing antibodies. results These confirmed the immunogenicity of both the RSV and PIV-3 the chimeric protein and provided components of 30 confirmatory evidence that a single recombinant immunogen can elicit neutralizing antibodies against both RSV and PIV-3.

Example 14:

10

15

20

25

30

This Example illustrates the immunogenicity and protective ability of the $F_{RSV}-HN_{PIV-3}$ protein in cotton rats.

injected eight cotton rats were of Groups intramuscularly with either 1.0 or 10.0 ug of the chimeric F_{RSV} - HN_{PIV-3} protein (prepared as described in Example 12) adjuvanted with aluminum phosphate. Groups of control animals were immunized with either placebo (PBS + aluminum phosphate) or live PIV-3 (administered intranasally). Cotton rats were bled 4 weeks after the primary injection and boosted at 4 weeks with an equivalent dose of the antigen formulation. Serum samples were also taken 1 week after the booster As shown in Table 2 below, data from the 4-week bleed demonstrated that both a 1 and 10 μg dose of the chimeric protein was capable of inducing a strong primary Reciprocal mean log_2 PIV-3 specific HAI and response. PIV-3/RSV neutralizing titers were equivalent to the titres obtained with live PIV-3 and RSV. Thus, a single inoculation of the chimeric protein was sufficient to elicit neutralizing antibodies against both PIV-3 and RSV. Strong neutralizing PIV-3 and RSV titres also were observed following the booster dose (5 week bleed). These results provide additional evidence that both the RSV and PIV-3 components of the chimeric protein are highly immunogenic.

To assess the ability of the chimeric immunogen to simultaneously protect animals against both RSV and PIV-3, four cotton rats from each group were challenged intranasally with 100 $TCID_{50}$ units of either PIV-3 or RSV. Animals were killed 4 days after virus challenge. Virus titers were determined in lung homogenates. As shown in Table 3 below, animals immunized with either 1 or 10 μg the chimeric F_{RSV} - HN_{PIV-3} protein were completely protected against challenge with either PIV-3 or RSV. 35 These results provide evidence that the chimeric protein

10

is not only highly immunogenic but can also simultaneously protect cotton rats against disease caused by both PIV-3 and RSV infection.

Example 15:

This Example illustrates the construction of a Bluescript M13-SK vector containing the chimeric $F_{PIV.3}-G_{RSV}$ gene. This chimeric gene construct contains the 5' untranslated region of a mutated PIV-3 F gene but lacks the nucleotide sequence coding for the hydrophobic anchor and cytoplasmic tail domains of both a mutated PIV-3 F and the native RSV G genes. The steps involved in constructing this plasmid are outlined in Figures 17 and 18.

The first step (Fig. 17) involved in preparing the PIV-3 F component of the chimeric $F_{\text{PIV-3}}\text{-}G_{\text{RSV}}$ gene construct 15 was to eliminate the putative pre-termination sites sequence nucleotide long 18 the within CAAGAAAAAGGAATAAAA 3' (SEQ ID No: 17) located between positions 857 and 874 of the non PCR-amplified PIV-3 F gene and positions 847 and 864 of the PCR-amplified PIV-3 20 F gene (see Figure 1). To this end, the PIV-F cDNA of the non-PCR amplified PIV-3 F gene was cut at the BsaAI and EcoRI sites. The BsaAI-EcoRI PIV F gene fragment was cloned into the EcoRI site of a Bluescript M13-SK vector using an EcoRI-BsaAI linker. The 857-874 target region 25 of the PIV-3 F gene (non-PCR amplified) then was mutated by oligonucleotide-mediated mutagenesis using the method of Morinaga et al. [1984, Biotechnology 2: 636-639]. Plasmid pPI3Fc (Example 1) was cut with ScaI in the Amp' gene and dephosphorylated with alkaline phosphatase 30 (plasmid #1). A second sample of plasmid pPI3Fc was cut with BstEII and NsiI to produce a 3.9 Kb restricted plasmid, lacking the 0.9 Kb BstEII-NsiI fragment of the PIV-3 F gene (plasmid #2). A mutagenic 78-mer synthetic oligonucleotide (#2721 shown in Fig. 17-SEQ ID No: 18)) 35 containing the sequence 5' CAGGAGAAGGGTATCAAG 3' (SEQ ID

10

25

30

35

No: 19) was synthesized to specifically mutate the 857-874 DNA segment without changing the F protein sequence. This oligonucleotide was added to plasmid DNAs #1 and #2, denatured at 100°C for 3 min. and renatured by gradual The mixture then was incubated in the presence of DNA polymerase, dNTPs and T4 ligase and transformed into HB101 cells. Bacteria containing the 1.8 Kb mutated PIV-3 F gene were isolated on YT agar plates containing Hybridization μ g/ml ampicillin. oligonucleotide probe 5' AGGAGAAGGGTATCAAG 3' (SEQ ID No: 20) was used to confirm the presence of the mutated PIV-3 The mutated gene sequence was confirmed by DNA The plasmid containing the mutated PIV-3 sequencing. gene was designated pPI3Fm.

The second step (Fig. 18) in the engineering of the chimeric gene construct involved constructing a Bluescript based vector to contain the truncated PIV-3 Fm gene lacking the nucleotide sequence coding for the transmembrane anchor domain and cytoplasmic tail of the PIV-3 F protein linked in tandem with the RSV G gene lacking both the 5' leader sequence and the nucleotide sequence coding for the transmembrane anchor domain and cytoplasmic tail of the G glycoprotein.

To prepare this chimeric gene, the orientation of the mutated PIV-F gene in plasmid pPI3Fm first was reversed by EcoRI digestion and religation to generate plasmid pPI3Fmr. To prepare the PIV-3 F gene component of the chimeric gene, plasmid pPI3Fmr was cut with NotI and BsrI to release the 1.7 Kb truncated PIV-3 F gene. To prepare the RSV G component, the 0.95 Kb RSV-G gene lacking both the 5' leader sequence and the DNA segment encoding the G protein anchor domain and cytoplasmic tail was released from plasmid pRSVG (Example 1) by cutting the polylinker with EcoRI and the gene with BamHI. The 0.95 Kb EcoRI-BamHI RSV G gene fragment was subcloned into the EcoRI-BamHI sites of a restricted Bluescript

vector, pM13-SK, to produce plasmid pRSVGt. The 0.95 Kb EcoRI-BamHI G gene fragment and the 1.5 Kb NotI-BsrI truncated PIV-3 F gene were linked via a BsrI-BamHI oligonucleotide cassette (SEQ ID No: 9) restoring the F and G gene coding sequences and cloned into the pRSVGt vector restricted with BamHI and NotI in a 3-way ligation. The plasmid thus generated was designated pFG. Example 16:

This Example outlines the construction of the pD2 baculovirus transfer vector (described in Example 8) containing the chimeric $F_{\text{PIV},3}\text{-}G_{\text{RSV}}$ gene consisting of a mutated PIV-3 F gene lacking the hydrophobic anchor and cytoplasmic coding regions linked to the RSV G gene lacking both the 5' leader sequence and the nucleotide sequences encoding the transmembrane anchor domain and cytoplasmic tail of the G protein.

To prepare this construct, plasmid pFG (Example 15) was cut with EcoRI to release the 2.6 Kb F_{PIV-3} - G_{RSV} chimeric gene. The 2.6 Kb EcoRI restricted chimeric gene fragment then was sub-cloned into the EcoRI site of the dephosphorylated pD2 vector to generate the 12.1 Kb plasmid pD2F-G (ATCC 75389).

Example 17:

20

25

30

This Example outlines the preparation of plaque-purified recombinant baculoviruses containing the chimeric $F_{PIV,3}$ - G_{RSV} gene.

Spodoptera frugiperda (Sf9) cells were cotransfected with 2 ug of pD2F-G plasmid DNA (Example 16) and 1 ug of linear wild-type AcNPV DNA (obtained from Invitrogen). Recombinant baculoviruses containing the $F_{PIV-3}-G_{RSV}$ gene were plaque-purified twice according to the procedure outlined in Example 10.

Example 18:

This Example illustrates the presence of the chimeric $F_{PIV.3}$ - G_{RSV} protein in the supernatant of Sf9 and High 5 cells infected with the recombinant baculoviruses.

Sf9 and High 5 cells were infected with recombinant baculoviruses containing the $F_{\text{PIV-3}}\text{-}G_{\text{RSV}}$ gene (Example 16) at a m.o.i. of 5 to 10 pfu/cell. The supernatant of cells infected with the recombinant viruses tested positive for expressed protein in the PIV-3 F specific ELISA. Supernatants of infected cells reacted with both anti-F PIV-3 and anti-G RSV monoclonal antibodies in immunoblots. These results confirm the presence of the chimeric $F_{\text{PIV-3}}\text{-}G_{\text{RSV}}$ protein in the supernatants of infected Sf9 and High 5 cells.

Example 19:

This Example outlines the preparation of recombinant vaccinia viruses expressing the F_{PIV-3} - F_{RSV} and F_{RSV} - HN_{PIV-3} genes.

Vaccinia virus recombinant viruses expressing the 15 $F_{PIV-3}-F_{RSV}$ (designated vP1192) and $F_{RSV}-HN_{PIV-3}$ (designated vP1195) genes were produced at Virogenetics Corporation (Troy, NY) (an entity related to assignee hereof) using the COPAK host-range selection system. plasmids used in the COPAK host-range selection system 20 contained the vaccinia K1L host-range gene [Perkus et al., (1990) Virology 179:276-286] and the modified vaccinia H6 promoter [Perkus et al. (1989), J. Virology 63:3829-3836]. In these insertion plasmids, the K1L gene, H6 promoter and polylinker region are situated 25 between Copenhagen strain vaccinia flanking replacing the ATI region [open reading frames (ORFs) A25L, A26L; Goebel et al., (1990), Virology 179: 247-266; 517-563]. COPAK insertion plasmids are designed for use in in vivo recombination using the rescue virus NYVAC 30 (VP866) (Tartaglia et al., (1992) Virology <u>188</u>: 217-232). Selection of recombinant viruses was done on rabbit kidney cells.

Recombinant viruses, vP1192 and vP1195 were generated using insertion plasmids pES229A-6 and PSD.RN, respectively. To prepare plasmid pES229A-6 containing

15

20

25

35

the $F_{PIV.3}-F_{RSV}$ gene, the COPAK-H6 insertion plasmid pSD555 was cut with SmaI and dephosphorylated with intestinal alkaline phosphatase. The 2.6 Kb $F_{PIV.3}-F_{RSV}$ gene was retrieved from plasmid pES60A (Example 4) by cutting the plasmid with EcoRI and BamHI. The 2.6 Kb EcoRI-BamHI $F_{PIV.3}-F_{RSV}$ gene was blunt ended with Klenow polymerase, isolated from a low melting point agarose gel and cloned into the SmaI site of the COPAK-H6 insertion plasmid pSD555 to generate plasmid pES229A-6. This positioned the $F_{PIV.3}-F_{RSV}$ ORF such that the 5' end is nearest the H6 promoter.

To prepare plasmid PSD.RN, the pSD555 vector first was cut with SmaI and BamHI. Plasmid pM RF-HN (Example 9) containing the truncated $F_{RSV}-HN_{PIV-3}$ gene was cut with ClaI, blunt ended with Klenow polymerase and then cut with BamHI. The 3.3 Kb $F_{RSV}-HN_{PIV-3}$ gene was cloned into the SmaI-BamHI sites of the pSD555 vector to generate plasmid PSD.RN. This positioned the $F_{RSV}-HN_{PIV-3}$ ORF such that the H6 5' end is nearest the H6 promoter.

Plasmids pES229A-6 and PSD.RN were used in in vitro recombination experiments in vero cells with NYVAC (vP866) as the rescuing virus. Recombinant progeny virus kidney (RK) - 13rabbit on selected (ATCC #CCL37). Several plaques were passaged two times on RK-13 cells. Virus containing the chimeric genes were confirmed by standard in situ plaque hybridization [Piccini et al. (1987), Methods in Enzymology, 153:545-563] using radiolabeled probes specific for the PIV and RSV inserted DNA sequences. Plaque purified virus containing the $F_{\rm PIV-3}\text{-}F_{\rm RSV}$ and $F_{\rm RSV}\text{-}HN_{\rm PIV-3}$ chimeric genes were designated vP1192 and vP1195, respectively.

Radioimmunoprecipitation was done to confirm the expression of the chimeric genes in vP1192 and vP1195 infected cells. These assays were performed with lysates prepared from infected Vero cells [according to the procedure of Taylor et al., (1990) J. Virology <u>64</u>, 1441-

15

1450] using guinea pig monospecific PIV-3 anti-HN and anti-F antiserum and rabbit anti-RSV F antiserum. Both the anti-PIV F and anti-RSV F antisera precipitated a apparent molecular weight approximately 90 koa from vP1192 infected Vero cells. an Both anti-RSV F and guinea pig anti-PIV HN antisera precipitated a protein with an apparent molecular weight of approximately 100 kDa from vP1195 infected cells. These results confirmed the production of the $F_{\text{PIV-3}}\text{--}F_{\text{RSV}}$ and $F_{RSV}\text{-}HN_{PIV\text{-}3}$ chimeric proteins in Vero cells infected with the recombinant poxviruses.

SUMMARY OF DISCLOSURE

In summary of the disclosure, the present invention provides multimeric hybrid genes which produce chimeric eliciting protection against capable of infection by a plurality of pathogens, particularly PIV proteins and RSV. Modifications are possible within the scope of this invention.

protein Table 1 Secondary antibody response of guinea pigs immunized with the chimeric FRSV-HNP1V-3

Antigen Formulation	Dose (ug)	HA1 (109 ₂	HAI Titre ^a (log ₂ ± S.e.)		Neutralization Titre ^b (log ₂ ± s.e.)	lization Titre ^b (log ₂ ± s.e.)	
		Ы	PIV-3	P1V-3		RSV	١,
		6 wk Bleed	8 wk Bleed	6 wk Bleed	8 wk Bleed	6 wk Blend	A 40 B
Buffer	•	<1.0 ± 0.0	<1.0 ± 0.0	<1.0 ± 0.0	<1.0 ± 0.0	<1.0 ± 0.0	<1.0 ± 0.0
FRSV-HNPIV-3	10.0	9.1 ± 0.3	9.1 ± 0.3	7.1 ± 0.3	7.1 ± 0.5	5.5 ± 0.9	4.5 ± 1.2
	1.0	7.0 ± 2.0	7.3 ± 2.2	5.0 ± 1.5	4.5 ± 1.4	4.5 ± 0.5	3.0 ± 1.0
Live PIV-3		8.6 ± 0.7	7.3 ± 0.6	7.0 ± 0.4	7.3 ± 0.6	N/A	N/A
Live RSV		N/A ^C	N/A	N/A	N/A	5.5 ± 1.5	5.0 ± 1.0

^a Reciprocal mean log₂ s**eru**m dilution which inhibits erythrocyte agglutination by 4 hemagglutinating units of PIV-3

c N/A - not applicable

 $^{^{}m b}$ Reciprocal mean log_2 serum dilution which blocks hemadsorption of 100 TCI0 $_{
m 50}$ units of PIV-3 or RSV

Table 2: Serum antibody response of cotton rats immunized with the chimeric Fasy-HHmv., Protein*

Antigen	Dose (ug)	HAI	HAI Titreb (109, 2 8.d.)		Neutralization Titre (log, * s.d.)	lization Titre (log ₂ ± 3.d.)	
		الم	PIV-3	6-VI4		RSV	
		peed Mx 7	4 wk Bleed 5 uk Bleed 4 wk Bleed	4 wk Bleed	5 wk Bleed 4 wk Bleed		5 uk Bleed
Buffer		2.8 ± 0.5	<3.0 ± 0.0	<1.0 ± 1.0	<1.0 ± 0.0	1.8 ± 0.3	0.8 ± 0.7
H. H.	10.01	9.5 ± 1.3	10.5 ± 0.6	>9.0 ± 0.0	>9.0 ± 0.0«	5.2 ± 1.1	5.8 ± 0.9
PASV "MAY."	1.0		10.3 ± 0.5	0.0 ± 0.9<	>9.0 ± 0.0	5.0 ± 0.7	5.8 ± 1.2
						_	
Live PIV-3		7.0 ± 0.0	8.5 ± 0.7	>9.0 ± 0.0	9.2 ± 0.7	4/X	×
AV 0		N/A ^a	R/A	V/V	N/A	5.5 ± 0.6	8.5 ± 0.6

* Each value represents the mean titre of antisers from 6 animals.

* Reciprocal mean log, serum dilution which inhibits erythrocyte agglutination by 4 hemagglutinating units of PIV-3

 $^\circ$ Raciprocal mean \log_2 serum dilution which blocks hemadsorption of 100 TCID $_{50}$ units of PIV-3 or RSV

Table 3. Response of immunized cotton rats to PIV/RSV challenge

Antigen Formulation	Dose (ug)		irus lung titre /g lung ± s.d.
		RSV	PIV-3
Buffer	-	3.7 ± 0.3	3.4 ± 0.3
F _{RSV} -HN _{PIV-3}	10.0	≤1.5 ± 0.0	≤1.5 ± 0.0
F _{RSV} -HN _{PIV-3}	1.0	≤1.5 ± 0.0	≤1.5 ± 0.0
Live RSV		≤1.5 ± 0.0	≤1.5 ± 0.0
Live PIV-3		≤1.5 ± 0.0	≤1.5 ± 0.0

 $^{^{\}circ}$ Animals were challenged intranasally with 100 TCID $_{50}$ units of PIV-3 or RSV and killed 4 days later. Each value represents the mean virus lung titre of 4 animals.

36

CLAIMS

What we claim is:

- 1. A multimeric hybrid gene, comprising a gene sequence coding for an antigenic region of a protein from a first pathogen linked to a gene sequence coding for an antigenic region of a protein from a second pathogen.
- 2. The hybrid gene of claim 1 wherein said first and second pathogens are selected from bacterial and viral pathogens.
- 3. The hybrid gene of claim 2 wherein both said first and second pathogens are viral pathogens.
- 4. The hybrid gene of claim 1 wherein said first and second pathogens are selected from those causing different respiratory tract diseases.
- 5. The hybrid gene of claim 4 wherein said first and second pathogens causing different respiratory tract diseases are selected from the paramoxyviridae family of viruses.
- 6. The hybrid gene of claim 1 wherein at least one of said gene sequences is mutated while retaining antigenicity.
- 7. The hybrid gene of claim 6 wherein said mutation is at a putative pre-termination site.
- 8. The hybrid gene of claim 1 wherein said first pathogen is parainfluenza virus (PIV) and said second pathogen is respiratory syncytial virus (RSV).
- 9. The hybrid gene of claim 1, comprising at least one gene sequence coding for a parainfluenza virus (PIV) protein linked to at least one gene sequence coding for a respiratory syncytial virus (RSV) protein.
- 10. The hybrid gene of claim 9, wherein said parainfluenza virus protein is selected from PIV-3 F and HN proteins and said respiratory syncytial virus protein is selected from RSV G and F proteins.
- 11. The hybrid gene of claim 1 consisting of a gene sequence coding for a human PIV-3 F or HN protein or an

immunogenic epitope-containing fragment thereof linked to a gene sequence coding for a human RSV G or F protein or an immunogenic epitope-containing fragment thereof.

- 12. The hybrid gene of claim 11 which is selected from F_{PIV-3} F_{RSV} , F_{RSV} HN_{PIV-3} and F_{PIV-3} G_{RSV} hybrid genes.
- 13. The hybrid gene of claim 1 contained in an expression vector.
- 14. The hybrid gene of claim 13 in the form of plasmid pAC DR7, pD2 RF-HN or pD2 F-G.
- 15. The hybrid gene of claim 1 further comprising at least one gene encoding at least one immunogenic and/or immunostimulating molecule.
- 16. Cells containing the multimeric hybrid gene of claim 1 for expression of a chimeric protein encoded by said gene.
- 17. The cells of claim 16 which are bacterial cells, mammalian cells, insect cells, yeast cells or fungal cells.
- 18. A chimeric protein, comprising an antigenic region of a protein from a first pathogen linked to an antigenic region of a protein from a second pathogen.
- 19. The protein of claim 18, wherein said first and second pathogens are selected from bacterial and viral pathogens.
- 20. The protein of claim 19 wherein both said first and second pathogens are viral pathogens.
- 21. The protein of claim 18, wherein said first and second pathogens are selected from those causing different respiratory tract diseases.
- 22. The protein of claim 21 wherein said first and second pathogens causing different respiratory tract diseases are selected from the paramoxyviridae family of viruses.
- 23. The protein of claim 18, wherein said first pathogen is parainfluenza virus (PIV) and said second pathogen is respiratory syncytial virus (RSV).

- 24. The protein of claim 18 comprising at least one parainfluenza virus (PIV) protein linked to at least one respiratory syncytial virus (RSV) protein.
- 25. The protein of claim 24, wherein said PIV protein is selected from PIV-3 F and HN proteins and said RSV protein is selected from RSV G and F proteins.
- 26. The protein of claim 18 consisting of a human parainfluenza virus-3 (PIV-3) F or HN protein or an immunogenic epitope-containing fragment thereof linked to a human respiratory syncytial virus (RSV) G or F protein or an immunogenic epitope-containing fragment thereof.
- 27. The protein of claim 26 which is selected from F_{PIV-3} F_{RSV} , F_{RSV} HN_{PIV-3} and F_{PIV-3} G_{RSV} chimeric proteins.
- 28. A process for preparation of a chimeric protein which comprises:

isolating a gene sequence coding for an antigenic region of a protein from a first pathogen,

isolating a gene sequence coding for an antigenic region of a protein from a second pathogen,

linking said gene sequences to form a multimeric hybrid gene, and expressing the multimeric hybrid gene in a cellular expression system

- 29. The process of claim 28 wherein said multimeric hybrid gene comprises a gene sequence coding for a PIV-F or HN protein or an immunogenic epitope-containing fragment thereof linked to a gene sequence coding for a human RSV G or F protein or an epitope-containing fragment thereof.
- 30. The process of claim 29 wherein said multimeric hybrid gene is selected from F_{PIV-3} F_{RSV} , F_{RSV} HN_{PIV-3} and F_{PIV-3} G_{RSV} hybrid genes.
- 31. The process of claim 30 wherein said multimeric hybrid gene is contained in an expression vector comprising plasmid pAC QR7, pD2 RF-HN or pD2 F-G.
- 32. The process of claim 28 wherein said cellular expression system is provided by bacterial cells,

mammalian cells, insect cells, yeast cells or fungal cells.

- 33. The process of claim 32 including separating a chimeric protein from a culture of said cellular expression system and purifying the separated chimeric protein.
- 34. A live vector for antigen delivery containing the gene of claim 1.
- 35. The live vector of claim 34 which is a viral vector.
- 36. The live vector of claim 35 wherein said viral vector is selected from poxviral, adenoviral and retroviral viral vectors.
- 37. The live vector of claim 34 which is a bacterial vector.
- 38. The live vector of claim 37 wherein said bacterial vector is selected from salmonella and mycobacteria.
- 39. A vaccine against diseases caused by multiple pathogenic infections, comprising a chimeric protein comprising an antigen region of a protein from a first pathogen linked to an antigenic region of a protein from a second pathogen, and a physiologically-acceptable carrier therefor.
- 40. The vaccine of claim 39, wherein said first and second pathogens are selected from bacterial and viral pathogens.
- 41. The vaccine of claim 39, which also contains at least one other immunogenic and/or immunostimulating molecule.
- 42. The vaccine of claim 40 wherein both said first and second pathogens are viral pathogens.
- 43. The vaccine of claim 39, wherein said first and second pathogens are selected from those causing upper and lower respiratory tract diseases.
- 44. The vaccine of claim 39, wherein said first pathogen is parainfluenza virus (PIV) and said second pathogen is respiratory syncytial virus (RSV).

- 45. The vaccine of claim 39 against infection by both parainfluenza virus (PIV) and respiratory syncytial virus (RSV), comprising a recombinant multimeric protein containing at least one segment consisting of a PIV protein or an immunogenic epitope-containing fragment thereof linked to at least one segment consisting of a RSV protein or an immunogenic epitope-containing fragment thereof, and a carrier therefor.
- 46. The vaccine of claim 45 wherein said recombinant multimeric protein is a recombinant chimeric protein containing a segment consisting of a PIV-3 F or HN protein or an immunogenic epitope-containing fragment thereof linked to a segment consisting of an RSV G or F protein or an immunogenic epitope-containing fragment thereof.
- 47. The vaccine of claim 46 containing at least one additional protein of PIV or RSV or chimeric protein thereof.
- 48. The vaccine of claim 39 wherein said carrier comprises an adjuvant.
- 49. The vaccine of claim 39 wherein said carrier is an ISCOM, a liposome or a microparticle.
- 50. The vaccine of claim 46 formulated to be administered in an injectable form, intranasally or orally.
- 51. The vaccine of claim 39 further comprising means for delivering said multimeric protein specifically to cells of the immune system.
- 52. The vaccine of claim 51 wherein said delivery means comprises a toxin molecule or an antibody.
- 53. A vaccine against diseases caused by multiple pathogenic infection, comprising a live vector as claimed in claim 34, and a physiologically-acceptable carrier therefor.
- 54. A method of immunizing a host against diseases caused by multiple pathogenic infections, which comprises

administering to a host an effective amount of a vaccine as claimed in claim 28 or 53.

- 55. The method of claim 54 wherein said vaccine is against diseases caused by parainfluenza virus (PIV) and respiratory syncytial virus (RSV).
- 56. The method of claim 55 wherein said host is selected from infants, young children, pregnant women, women of child-bearing age and susceptible persons.
- 57. A diagnostic reagent for detecting infection by a plurality of different pathogens in a host, comprising the chimeric protein claimed in claim 18.
- 58. A method of detecting infection by a plurality of different pathogens in a host, which comprises using said chimeric protein claimed in claim 18.

(PCR-AMPLIFIED F GENE m PIV-. F THE 0 SEQUENCE NUCLEO TIDE

9
20
40
30
20
01

G A A C A A C A A A A T C A A A C T T G T T G T T T T A G T T T TAAATAAGAGAAATCAAAACAAAAGGTATAGAACACCC ATTTATTCTCTTTAGTTTTGTTTCCATATCTTGTGGG ATTTATTCTTTAGTTTTGTTTCCATATCTTGTGGG 70 90 100 G AAAG [TTTC [

۵. \overline{s} ပ္

1/39 ICTGCTAATTATTACAACAATGATTATGGCATCTTCTGCCAA GACGATTAATATGTTACAACAATGATTATGGCATCTTCCTGCCAA 200 230 240 MET ں ی AAT ⋖ ပ္

ILE ASPILE THR LYS LEU GLN HIS VAL GLY VAL LEU VAL ASN SER PRO LYS GLY MET LYS A TACATATCACAAAACTACAGCATGTAGGGTGTATTGGTCAACAGGGATGAAG TATGTATAGTGTTTTGATGTCGTACATCCACATAACCAGTTGTCAGGGTTTCCCTACTTC 250 250 300

ILE SER GLN ASN PHE GLU THR ARG TYR LEU ILE LEU SER LEU ILE PRO LYS ILE GLU ASP ATATCACAAAACTTCGAAACAAGATATCTAATTTTGAGCCTCATACCAAAAAAGAC TATAGTGTTTTGAAGCTTTGTTCTATAGATTAAAACTCGGAGTATGGTTTTTATCTTCTG 310 320 330

()(n -	
VAL THR ASN GLN GLU SER TAGTAACCAATCAAGAATCC ATCATTGGTTAGTTCTTAGG A70 470 480	
ILN GL CAAG GTTC	
ASN G AAT TTA 70	:
THR AACC TTG	
VAL FAGTA	31.10
AL ILE TGA: ACT/ 460	EAVAC
ASP V GATG CTAC	, rz-ri cleavade
7 × 1	7 1
U GLN ACA (1 T G T (
RG LE GATI CTA/	
LEU A ATTAA FAATT 440	
6LY T G G A A C C T	
ASF TGA ACT	
EU TY TAT ATA 430	
PRO LE CCTC GGAG	
ATC TAB	
3.18	

ASN THR ASP PRO ARG THR ARG ARG SER PHE GLY GLY VAL ILE GLY THR ILE ALA ACACTGATGCTTTGGAGGGGTAATTGGAACCATTGCT TTGTGAATTGGAACCATTGCT TTGTGACTAGGAACCATTGCT TGTGACTTGGTAATTGGTAGGAACGA TTGTGACTTGGTAGGAACCTTGGTAATTAACCTTGGTAACGA S40 520 530 GAA/ CTT AATTTA

G A C ധ വ CTG

2/39 . VAL GLN . AGTGCAG . TCACGTC . 660 ALA A G C / T C G ' SER AATC, TTAG S **√** ⊢ ALA **4** -ပ္ ပ

SER VAL GLN SER SER ILE GLY ASN LEU ILE VAL ALA ILE LYS SER VAL GLN ASP TYR VAL TCAGTTCAGAGCTCTATAGGAAATTTAATAGTAGCAATTAAATCAGTCCAAGATTATGTC AGTCAAGTCTCGAGATATCCTTTAAATTATCATCGTTAATTTAGTCAGGTTCTAATACAG 670 670 680 680

SN GLU ILE VAL PRO SER ILE ALA ARG LEU GLY CYS GLU ALA ALA GLY LEU GLN LEU CGAAATCGTGCCATCGATTGCTAGACTAGGTTGTGAAGCAGCAGGACTTCAATTA GCTTTAGCACGGTAGCTAACGATCTGATCCAACACTTCGTCGTCTGAAGTTAAT 730 ASN GLU A A C A A C

HIS TYR SER GLU LEU THR ASN ILE PHE GLY ASP ASN ILE GLY CATTACTCAGAATTAACAAACATATTTGGTGATAACATAGGA GTAATGAGTCTTAATTGTTTGTATAAACCACTATTGTATCCT 810 820 830 GLN HIS TYR ပ္ ATTGCATTAACACA TAACGTAATTGTGT LEU THR \forall \vdash ں ق ပ ပ

R ASN ILE	SAAATATC	STTTATAG	000
LEU TYR ARG THE	ATACCGCAC	TATGGCGT	890
E ALA SER LEU	\	TICCTIATITIAAIGITCCATAICGTAGTAATAIGGCGTGTTAATA	BBO
LYS GLY ILE LYS LEU GLN GLY ILE ALA	NTTACAAGGTA	TAATGTTCCAT	B70
S GLY ILE LYS	A G G A A T A A A A	TCCTTATTTI	860
R LEU GLN GLU 1	741	AGCAATGTTCTTT	9.00
16.1C.	• • • •		

ш

ATCTATTATTAC, TAGATAATAAATG 950 960 ASP LEU < ⊢

U SER ILE LYS VAL ARG VAL ILE ASP VAL ASP LEU ASN ASP TYR SER ILE THR LEU GLN ATCAATAAAGGTGAGATTATAGATGTTGATTTGAATGATTACTCAATCACCCTCCAA TAGTTTCCACTCTACAACTTACTACTAATGTTAGTGGGAGGTT AGTATTTCCACTCTACAACTTACTAATGTAGTGGGAGGTT 970 980 1010 0.19 6 A /

3/39 LYS VAL ASP SER ILE CAAAGTAGATTCCATA GTTTCATCTAAGGTAT 1070 S LEU PRO LEU LEU THR ARG LEU LEU ASN THR GLN ILE TYR CTCCCTTTATTAACTAGGCTGCTGAACACTCAGATCTA GAGGGAAATAATTGATCCGACGACTTGTGAGTCTAGAT 1030 1050 RG < ⊢ യ പ < ⊢ ပပ \vdash \triangleleft ပ ပ

ILE GLN ASN ARG GLU TRP TYR ILE PRO LEU PRO SER HIS ILE MET THR LYS A TCCAAAACAGAATGGTATATCCCTCTTCCCAGCCATATCATGACGAAA T A G G T T T T G T C T T A C C A T A T A G G G A G A G G G T C G G T A T A G T A C T G C T T T 1130 ASN II AATA TTAT $\alpha \vdash \triangleleft$ T A T SER TCA AGT/

AIA TATAT LYS GLU CYS ILE GLU ALA PHE SER SER 1YK AAGGAATGTATAGAAGCATTCAGCAGTTATAGATTCTTCGTAAGTCGTCAATA GLY GLY ALA ASP VAL GGTGGAGCAGATGTC, CCACCTCGTCTACAG 9 CTAC PKE TTT AAA A A 115 (< < + ပ ں ق ں و ہر ນ ເຄ

S PRO SER CCTTCTG GGAAGAC ഗധ 7 G (

ILE SER GLN CYS PRO ARG THR THR VAL THR SER ASPILE VAL PRO ARG TYR ALA PHE VAL TATCCCAATGTCCAAGAACCACGGTCACATCAGACATTGTTCCAAGATATGCATTCGTC ATAGGGTTACAGGTTCTTGGTGCCAGTGTAGTCTGTAACAAGGTTCTATACGTAAGCAG 1300 1290

A A T CG A CAAT ⋖ ASP <u>=</u>

ATGT GTAAAATTATAACACATAAAGAATGTAATAC. CATTTTTAATATTGTGTATTTCTTACATTATG 1410 1420 ဟ ഗ _ HIS THR <u>| E</u> IL E LYS VAL AGAATCAATCAACCACCTGATCAAGGAATCTTAGTTGGTGGACTAGTTCTTAGTTGGTGGACTAGTTCCTT

4/39 ILE GLY ILE ASN GLY MET LEU PHE ASN THR ASN LYS GLU GLY THR LEU ALA PHE TYR THR ATAGGTATCAACGGAATGCTGTTCAATACAAATAAGAAGGAACTCTTGCATTCTACACA TATCCATAGTTGCCTTACGACAAGTTATGTTTTTTTTCTTCCTTGAGACGTAAGATGTGT TATCCATAGTTGCCTTACGACAAGTTATGTTTTTTTTCTTCCTTGAGACGTAAGATGTGT 1450 1450

PRO ASN ASP ILE THR LEU ASN ASN SER VAL ALA LEU ASP PRO ILE ASP ILE SER ILE GLU CCAAATGATATAACACTAAATAATTCTGTTGCACTTGATCCAATTGACATATCAATCGAG GGTTTACTATATTGTGATTTAATAAGACAACGTGAACTAGGTTAAGTTAGGTTAGCTC IS10

1620 611 AAATCAA ⋖ GLU SER LYS GLU TRP ILE ARG ARG SER ASN GAATCAAAGAATGGATAAGAAGGTCAAA CTTAGTTTTCTTACCTATTCTTCCAGTTT 1590 1610 GLU GAAC LEU ASN LYS ALA LYS SER ASP LEU CTTAACAAAGCCAAATCAGATCTA GAATTGTTTCGGTTTAGTCTAGAT 1570

AATTAT TITTAAT LEU ⋖ ⋖ Y ASN TRP HIS GLN SER SER THR THR ILE ILE ILE ILE AAACTGGCATCAATCTAGCACTACAATCATAATTA TTTGACCGTAGTTAGATCGTGATGTTAGTAATA 1640 1670 J ASP SER ILE GLY AGATICTATIGGA ICTAAGATAACCT **GLY** Ö AAACTA6 TTTGATC

GACATATCTATAGATCATTAGATATTAAAATTATAAAAACTT CTGTATAGATATCTAGTAATCTATAATTTTAATATTTTGAA 1810 1820

ANCHOR DOMAIN ARE UNDERLINED. THE PREDICTED F2-FI CLEAVAGE SITE IS PUBLISHED PRIMARY SEQUENCE OF THE PROTEIN ENCODED BY THE PIV-3 DIRECTION. THE SIGNAL PEPTIDE (SP) AND THE TRANSMEMBRANE (TM) INDICATED BY THE ARROW (4). AMING ACIDS DIFFERING FROM THE NUCLEOTIDE SEQUENCE OF THE PIV-3 F GENE. THE CONA SEQUENCE IS SHOWN IN THE PLUS (MRNA) STRAND SENSE IN THE 5' TO 3' GENE ARE BOXED

RESTRICTION MAP OF THE PIV-3 F GENE

F16.2.

GENE. Ξ PIV-3 THE 30 SEQUENCE NUCLEOTIDE

Y R T A A T 120 > 0 U <u>0</u> A 1 CTGI CTGI GACI AAC/ TTG SP ALA GATGO CTACO ĔΤ A T \forall \vdash ASI ں ی Ç ں LYS / A A A I T T T I 50 SAH ASN LYS AATAA TTATT ⋖ ပ ASN HIS 1 THR A C L C A G သ LY A A T SN A C ပ ပ < < + ر د و د د و ഗ ധ പ RP LYS GAAC CTT(ပ် ပ **⊢** ∢ NS 3000 A S A 7 C C A D T A D THR ACT **∀** ⊢ \vdash \triangleleft LA C T G A A A T C G A ں ق ں ق - < o 2 H ر 10 ن ق SER T C A G **∀** ⊢ ပ ပ THR 1 C G G C A ധ ധ \vdash \prec ⊢ ∢ < ⊢ **6**LU **4 –** ပ ပ ပ ပ ⊢ ∢ **4 –** ∢ ⊢ < -A SN A T T A ပ ပ < -ပ ပ ပ္ **∀** ⊢ <u>.</u>

E ASN TTAA AATT 180 ∢ ⊢ **∢** ⊢ 6 C T / VAL A G T C T C A C A T ш ပ ILE A T T A ပ PHE C T T (G A A (A G C T C G 7 F 8 9 (AL 6 > **∀** ⊢ ILE A T T A **4 –** SER 1 C. A G. U VAL LEU LEU SER 1661611ATTATC ACCACAATAATAG ပ္ ပ EU 7 MET A T 6 T A 18 C C G G / 140 =∢ ⊢ ننا 1 1 9 1 ∢ ⊢ ပ ပ \forall ဖ ပ စ EU 6 1 ୍ଧ : A C C ଆ __ C 7 G A ۵. - A ഥ വ **4 -**ပ ပ ∢ ⊢ **⊣** ⊢ ∢ V H **4** – **⊢** ∢

7/39

PHE MET GTTTAT CAAATA 240 ∢ ⊢ ں ں \vdash \triangleleft ∢ ⊢ SN ASN AATAA TTTATT 230 ASN 1 A 1 ш **∢**⊢ ပ ပ C A A G A C G T T C T C 220 SP **GLN** GLU SER LEU LEU GLI TGAATCATTGCTGC ACTTAGTAACGACG 210 A T ပပ YS ALA A G G C T C T C C G A E 200 LY A A **∀** ⊢ 6 A / C T **⊢** ∢ YS SER , A A A G I T T T C 190 ပ ပ \ A \ \ ပ ဗ - X V H **د** د د ပပ ⊢ ∢ **-** 4

SER GLY TCAGG AGTCC 300 A G က el G ں ں **∀**⊢ A A T A T T A T - A ပမ ⊢ ⋖ ASP \forall T G A C THR AS ACCAA TGGTT 280 ⊢ ∢ SS \forall \vdash \forall \vdash ⋖ **⊢** ∢ SP \forall ں ق Þ ں ں SER T C A G **4** – ALA G C ں ق **⊢** ⋖ GLN MET CCAAA1 GGTTTA LE A T T A A G , ဌ \forall 6 A A 6 A A 7 C T T 50 A (THR ပ V H H 4 **V** – \forall \vdash GLI A A ں و ں ق

EU 7. T A 9 36 SER L ATCAC TAGTO AATA PRO A C C./ T G G HILAM \forall \vdash ⊢ < œ < ⊢ ⊢ ∢ ⊢ ∢ S \forall ⋖ ∢ ⊢ A 6 T C 340 **GLN** C A G T ပ 6 T C A ۸ CAT SER A G T I I C A C A F M ര പ **4 –** GL ပစ A T T A T T T A A TTACA/ AATGTT 320 LEU THR TTC RG G C G G נ פ א THR C A A G T T 310 **∀** ⊢ A T ⋖ **V** – 6 T 6, **V** -

∢

< - 4 **∀** ⊢ 35 J V-SN A A \forall ပ္ **9 ∀** ⊢ ط ک ⊢ L A F ပဗ THR TA(\vdash \triangleleft < ⊢ 4 H 0 D 4 ⊢ 6 ധ വ **⊢** ∢ പ വ പ SE A \vdash \forall W F A < ⊢ PHE TTC, AAG390 s e – \forall \vdash V F က က က യ വ ⋖⋖⊢ LEU C T T G A A 80 d-4m တ \forall ပ္ ပ **~** ∢ ⊢ S C C **-** 4 T G A C \vdash \forall **∀** ⊢ 0 とら ひり ∀ ⊢_M ပ္ ZKH \forall ပ္ \forall \vdash ى ن ∄ \forall \vdash ں ق

SP A D ∢ ⊢ ၂ ၁ ၁ PRC T C A G **V F** SNA **VV** EU T T A A LE T. J. A. 47 ر ع PRO A C T G LYS AAA TTT **□** ⊢ ∀ -- A F - 40 6 C C C 46 ပ ပ A T ں ی **⊢** ∢ SPA AS G ⊢ ∀ HIS C A G T 450 \triangleleft HR C A G T \vdash \forall \vdash < ⊢ H H \forall D A F œ ں ق ⋖ A T 6 z∢⊢→ i Α Γ 5 ی ی 0 4 -ج 0 ပ ဗ LEU T G വ ഗ 10 C \vdash \triangleleft വ $\neg \lor \vdash$ \forall \vdash ഥ ല Z < ⊢ $\checkmark \vdash$ ပ ပ

LEU 3 T T 3 A A 5 40 ဗ ပ ပ ₽×⊢ ⋖ \forall \vdash \triangleleft H A F \forall s < γ L ο PRO , C C , G G T 53 $\forall \vdash \bowtie$ \vdash \prec T A C **∀** ⊢ s < -MET L A T G A T A C T 520 **∀** ⊢ LEU T T \vdash ى ق SEF TC AC \forall PRO C C / G G 510 EU 7 T A A و د C A T 0 ں ق <u>~</u> ⊢ ∢ SEF T C σ σ σ ပပ V-മധ د و کر \vdash \prec 9 Y -ம ப **∀**⊢0 g 0 0 0 0 0 0 0 2 ധ ധ ⊢∢ PHE T T A A \vdash \triangleleft **⊢** ∢ S A A H ပ **⊢** <

8/39 PRO TCC AGG ပပ Ā H \forall ပ 0 \forall \simeq و د <u>۸</u> \vdash \triangleleft ш < ro F 46 രവസ $_{\mathsf{C}}$ **⊢** < ပ္ ر الح ပ္ ပ 5 \vdash \triangleleft V H ŝ ပ ပ ⋖ - 40 T A / AL ت ب > **⊢** ∢ ഷ വശ \forall ပ ပ THR ပ ပ \forall C A 70 PR(C C G G ပ္ \vdash \forall **V** – \vdash \forall 4 ပပ E G C \forall P → O ق∢ ← حق A HD EU T A \vdash \triangleleft GLY GA CT, ပ္ PRO C G ပ ဖစ 66 66 55(<u>ပ</u> \forall ပပ ပပ ပ္ **⊢** < V- \forall

တပ္သ 1 T A A 660 <u>ပ</u> ပ္ < ⊢ ပ 29 ARG \vdash \triangleleft ပ ဖ T A T S 0 THR - 4º \forall ∢ ⊢ \vdash \checkmark EII. ပ္ \vdash \forall \forall \vdash S \forall \vdash × C A 6 T 6 T 6 40 œ SE \vdash \triangleleft ပ ပ THR ပပ \forall **-** ≺ \prec \forall \vdash \vdash \prec \vdash \prec ALA T G C \ C G / 630 \vdash \forall \forall œ \vdash E T T A A A \forall യ വ EU C T G A 20 \vdash \forall \bullet SP \forall U و ب≻ \vdash \prec S \forall \vdash **∀ ∀**⊢ Vш \vdash \prec ΥL \vdash \triangleleft < - < ပ ပ \forall \vdash \vdash \forall \vdash \propto ပဗ ပ္ \vdash ں ق

46, CT SP ⋖ 0 α \vdash \forall $^{\circ}$ \triangleleft SN \forall \vdash \forall ⋖ \vdash \forall ں ق ⋖ ⊢ ¥ º ر م رق THR \forall < ⊢ ⊢ ∢ ш \forall \vdash **∀** ⊢ \vdash \prec \prec \vdash 0 C C C 700 **GLY** വ വ V F \vdash \forall \forall ပ္ Z \forall \vdash 5 ပ္ \forall EU **⊢** 806 - A9 ပမ ⋖ \vdash \triangleleft ပ္ \forall \vdash **∀** ⊢ 5 വ ഇ \vdash \forall \approx \forall \vdash T A B V Lg \simeq 0 - X \forall \vdash သ \forall \forall \vdash \forall ဗပ 迈 വ വ ര A FC ч - 4° \forall \vdash \vdash \triangleleft \forall ပ္ ပ ပ္ \prec \vdash ပ \vdash

V-ပ္ တ္ တ္ ပြ **& A F** $\forall \vdash \forall$ \forall \vdash S \forall O C < -SP G,C A F A C \forall \vdash SN Y ¥ ∀ ⊢ \vdash 프 < ト ပ ပ SN A A T T TTT/ TTT/ AAA <u>1</u> ⊢ ∀ THR TAC ATG S 4 F Ξ \cup \circ SER 1 T C T 1 A G A 1 750 പറമ 1L.E 7 A < ⊢ ပ ပ AR G C (∢ ⊢ ၂ ၁ ၁ PR 0 C 1 6 E A SN A T T A A \forall LEU TA AT \vdash \triangleleft SP C G ¥ ∀ ⊢ ه ب ق PR0 C T G A 73(ပ္ **-4** ∠ ⊢ **က** ပ **က** 7 0 0 M . 5 → TE \vdash \forall 000

9/39 : PHE TATT ATAA 1020 996 990 996 A A T T A A T ပ A 7 A 7 4 **⊢** ⋖ **4 × ⊢** ت و 5 1. L A A A V L LYS 3 C A A . 5 G T T . C 6 ق ت ق മവള് ပ ပ ∢ ⊢ 61, A G T C **∀** ⊢ YS A A T T A T A 7 و ب ပပ ~ 4 - \forall \vdash ⊢ ∢ V-TYR TY TAC ATG, 1000 ⊢ < A A T T 94(∢ ⊢ ⊢ ∢ _ш⊢∢ \forall \vdash ⊒ v ⊢ \triangleleft ں و ں ق , < -ں ں ح <u>6</u>L യ വ ` **∢** ⊢ **∀** ⊢ PRO C C . G G . A T 1 \forall _ ں ق ں ق <u>ი</u> ი V H VAL (6 T T (C A A (\forall ပဗ < ⊢ \vdash \prec ∀ ⊢ SER T C T A 6 / ပပ C A A (PRO C A G T A 980 9 ດ T A و ب A 1 L **4** – **⊢** ∢ \prec \vdash ∢ ⊢ Εſ **⊢** ∢ ပပ ပဗ **⊢** ∢ - 259 AL ၁၁ 9 0 ں ی വ വ $\forall \vdash \forall$ ⋖ 0 0 **∀** ⊢ ں ق ပ ပ œ \vdash \triangleleft **-**⋖ <u></u> ∀ ⊢ :|∢⊢ ⊢ ∢ \vdash \prec \vdash \triangleleft

6LY T G G A C C 1080 THR AACI TGA CAA GTT \forall \vdash ပ္ V H Z S CYS ASN C T G C A A G A C G T 1070 ⊢ ∢ ш < ⊢ ∢ ⊢ **⊢** ∢ 1 G 7 ۷A۱ ASN 6 A A 7 C T T 0 6LU T 6 A (A C T (**∀**⊢ 1 ILE ASN AATAAA TTATTT 1050 GLU HIS PRO FGAACATCCA ACTTGTAGGT 040 . LEU C T T C 3 A A C 1040 G 7 **6**L Y ں ق < ⊢ GL Y ပ္ ပပ Y R A T T A 103(\prec \vdash չ ⊢ ∢ ں ق 9 ن ق ပ ပ ပ **-** < ധ ഗ - ¢

ΥL A G A T C T 1140 V-HE SER TTTTCA AAAAGT PHE G T 1 C A A RP TG AC A 13€ PRO TCC : A G I = و د ر د و ت SEF **⊢** ∢ HIS C A G T A _ A G SER A T C T A G / 1120 و ں ب AL ں ق ں ق Z V F <u>G</u> ပပ ASN 6 AAT 1 TTA 1 ى ن ဟ ധ വ ک − د ပ္ SP < ⊢ COA . RG G A C T G A G C T C 1100 – ע ד 9 ى ق THR A C A I · G T G V H s V ⊢ 6LY L 66AA 9CTT 090 ပ္ 0 2 9 ပ္ ധ ഗ S T A <u>`</u>. 0 `. **⊢** ∢ ں ق

A A T T T T A A \forall \vdash V H c C PRO ပ ပ T T A A < ⊢ C A . G T . 1190 SEI T A ပ SNAATI < < - \vdash \prec \Rightarrow LEI C T G A ပ 6 6 1 6 6 1 1180 **∀** ⊢ SAL ۲ \forall \vdash ധ ഗ SP \forall C G ? \vdash \forall **⊢** ∢ º ₹ 0/2 \vdash \triangleleft ٦ \vdash \forall വ ⊢ ∀ ∀ ∀ ∢ ⊢ و ب \vdash \forall V ⊢ 0.0 T A T A 116 \simeq SEI CC G/ \vdash \triangleleft ASN AAC TGA A A T T VAL V G T C A C A G T و ت ق MET A T 6 F A C 115(A T ည္ ပ ں ق ۵ - ۷ 900 ပာ ပဲ <u>ن</u> < ⊢ **-- < 1**

SER VAL

/ SER ILE VAL SER S GGAGCATTGTGTCA CCTCGTAACACAGT 1490

ပေ

THR C A C / 3 T G 1 1480 و ب

LEU ASN PRO ACTCAATCCC TGAGTTAGGG 1470

PRO C C A L G T G

ASP ALA TYR P FGATGCATATC ACTACGTATAG 1460

VAL TYR THR , GIATATACTG CATATATGAC 1450

ပ ပ

ഗ ധ

V H

∀ ⊢

GLY GA CT

THR C A G T

A F C

GLΥ

			10/39
LYS VAL TRP THR ILE SER MET ARG GLN ASN TYR TRP GLY SER GLU GLY ARG LEU LEU LEU A A G G T A T G G G G A G A G A G G T A C T T C T A G G G G T A G G G T A G G T T A C T T C T T C T T C T T C C A T G A T G A G A G A T A G A T A C T C T T C T A T G A T G A C C C C C C A G T C T T C C A A G A A G A A G A A G A A G A A G A A G A T A G A T A C T C T T A A T G A C C C C C A G T C T T C C A A T G A A G A G A G A G A A G A	LEU GLY ASN LYS ILE TYR ILE TYR THR ARG SER THR SER TRP HIS SER LYS LEU GLN LEU A CTAGGTAACAAGATCTATATATATACAAGATCCACAAGTTGGCATAGCAAGTTACAATT TGATCCATTGTTCTAGATATATATATGTTCTAGGTGTTCAACCGTATCGTTCAATGTTAA 1270 1270 1280 1280	GLY ILE ILE ASPILE THRASPTYRSERASPILE ARGILE LYSTRPTHRTRPHISASN VALAGGATAATTGATAGTATGT AGGAATAATTGATATTACTGATTACAGTGATATAAGGATAAAATGGACATGGCATAATGT TCCTTATTAACTATAATGACTAATGTCACTATATTCCTATTTTACCTGTACCGTATTACA 1330 1330 1380	SER ARG PRO GLY ASN ASN GLU CYS PRO TRP GLY HIS SER CYS PRO ASP GLY CYS ILE STICA GACAGGAAACAATGTCCATGACATTCATGTCAGGATGTAT STAT STATE STACCCCTTTGTTACTTACAGGTACCCTGTACAGGTACAGGTACAGGTACAGGTACATA 1430 1410 1410
VAL T	667 A	1	J SER A
G T A T	667A		A T C A A
C A T A	CCAT		I A G T T
LYS	LEU	6LY	LEU
GAAG	ACTA	A 6 6 A	GCTA
CTTC	TGAT	T C C T	CGAT

THR THR SER CAACAAG STTGTTGTTC 1620 ALA THR A GLY TYK ...
C T G G A T A T A C A /
C G A C C T A T A T G T ∢ ⊢ SER THR [A CCTCAACA GAGTTG1 O VAL ILE THR TYR S CAGICATAACTIAC GICAGTATIGAATG 1540 VAL ASN PRO A G T G A A C C C A I C A C T T G G G T 1530 ARG A A G A T C T LYS SER A AAATCGA TTTAGC1 1520 AL/ 6 C LEU GCTG CAA/ Z 5 ASP SER (GATICAC) 0.19 A C G A (T G C T (1570 AAC (TTG) ASN 5 LEU TTAC AATC VAL 7 A 7 AAGAG TICICA 1 A T < ⊢ ပ ပ

FIG

TAAITAACCGCAATATGCATTAACCTATCTATAATACAAGTATGATAAGTAATCAGC ATTAATTGGCGTTATACGTAATTGGATAGATATTATGTTCATATACTATTCATTAGTCG 1750 1750

ATCAGACAATAGACAAAAGGGAAATATAAAAA TAGTCTGTTATCTGTTTTCCCTTTATATTTT 1810 1830

DIFFERING FROM THE PUBLISHED PRIMARY SEQUENCE OF THE PROTEIN ENCODED BY THE PIV-3 DIRECTION THE TRANSMEMBRANE (TM) ANCHOR DOMAIN IS UNDERLINED. AMINO ACIDS NUCLEDTIDE SEQUENCE OF THE PIV-3 HN GENE. THE CONA SEQUENCE IS SHOWN IN THE PLUS (MRNA) STRAND SENSE IN THE 5' TO 3'

F16.3E

SUBSTITUTE SHEET

F16.5 A.

NUCLEOTIDE SEQUENCE OF THE RSV F GENE.

SP

R PHE ATTT TAAA 60 THR ACA TGT ى ق VAL G T C A < -A U U വ വ വ **⊢** < و د ۹ ں ق ئے C A \vdash \triangleleft LEU C C T G G A $^{\mathsf{L}}$ 1 A − 6 **V** -吊りり ≐ ∢ ⊢ ပဗ THR A C T G \vdash \checkmark ¥⊢∢ A H A A T T 30 ى ن ن ر و لح SN A T T A **44** ∢ ⊢ و ر ∢ A 60 S A A T T T Z Z L ပမ LEU C T G A ပ \vdash \triangleleft **4** H PRO C C A A LEU TTG AAC ت ت ت ... A L ပ ပ V-

- < 0 ں ق < ⊢ ALA 6 C A C G J \vdash \triangleleft SER A G T C A C A G T വ വ CY A T (T A 1 THR A C **∀** ⊢ SER T C \prec \vdash Z (R GL) A T C / T A G 100 T T T A A DHE ATT TAA, 6LU 6 A , C T 6 A A C C T T = 90 C 7 G A THR \forall \vdash ധ ഗ A T A T ASN AAC, TTG GLN A A A ပ ပ $\simeq \vdash \triangleleft$ ധ വ **∀** ⊢ ≅⊢ ≺ T T C A A G Ξυ<u>ο</u> ں ق PHE T T T A A A و د ي د و ح

13/39 A A T T T 180 6L U ں ق **4** – - X \forall \vdash \triangleleft THR c C \forall VAL 1LE TTATA/ AATATT 170 > ں ی **~** ⊢ ∢ SE G C **4** H THR C T G A A - 0 R - 45 Y V ⊢ ∢ TRP G G C C ⊢ ∢ > - **4** യ വ ധ ല THR C T G A 1 \forall 9 Y F **س** ق ت ⋖ V H LEU CTA, ပ္ C T G A ں ی کآ \vdash \forall SEF \ C / ∢ ⊢ ⊢ < \vdash \forall و ں <u>~</u> ⊢ ∢ **∀** ⊢ 0 ⊥ V ™ ر ف ب ပ ပ ں ق \forall \forall **∀** ⊢ ပ SEL

LYS AAA TTT MET A T G A T A C T T G. A C **—** Ø LYS A A A I T T 1 A L ت ي < ပ တ < ⊢ LY AA 1 \vdash \prec ပပ SP AL A T G (T A C (C C A \forall \vdash THR A C T G \prec \vdash 0 0 0 0 0 0 ⊢ < º SN A L ¥ ∀ ⊢ ⊢ ⋖ വ വ _ A _ C വ വ LYS TAA ATT ASN A A T T √ ⊢ \supset \triangleleft \vdash 200 ပ ပ SAL L A T ပပ H- KO الا A 19 zh« S A - $\forall \forall \vdash$ 3ER G T , A T \forall

THR C A G T 300 \forall \vdash ص ت ں ق \forall ∢ ⊢ z \forall 0 () () ں ق ET T G A ($\Sigma A \vdash 0$ 2 0 0 EU T C A G و ب വ വ \vdash \triangleleft **⊢** < GLN 3 A G 1·LEU 6 ΤΤ 6 C A Α C 6 Τι 280 GLU A A T T ں ق <-ധ ഗ VAL TAA(ATT(270 ပ ပ **4** – **4** <u>ပ</u> Þ ں ق SN **4 –** ⋖ \forall LYS A A A / T T T 7 **~** ⊢ ∢ \prec H SAH \forall \forall \vdash 4 H VH0 25° C A A 1 1 EU T A ⊢ ∢ \forall \vdash **∀** ⊢ ں ں < ⊢ **∀** ⊢ ပ ပ

SN A C T G 60 A SI A A T T 36 EU T C. ی ں تــ \forall \vdash THR <u>ပ</u> \forall TYR TAT, ATA1 ASN AT TAT < < ⊢ MET A T G, T A C 1 G PHE G T T T C C A A A .0 .0 34 α ပ ပ ⋖ **4** – PRO C A G T പ ഗ LEU TAC ATG ပ \Rightarrow 6LU A A I T T I ں ق 조 < ⊢ د و ۲ \triangleleft G \forall \vdash CGA < ⊢ ں ں AL. C.C. G.G. 900 \forall A د د ധ ഗ NS - \forall \vdash ⋖ V-SS C G ¥ 4 ⊢ o 4 - E ∀∀⊢ ٦Y ပပ ں ق V V و ں A ں ما 0 4 -<u>a</u> 2

TTTT AAAA 420 SIT /)) - 9 9 - 7 9 \vdash \triangleleft **⊢** ⋖ **⊢** ∀ A 4 0 4 A T A <u>ج</u> ت \forall \vdash **∀** ⊢ ပ $\bar{\simeq}$ \forall (S / A A T T G A C T တ္ မ ပ α \forall ⋖ \triangleleft \vdash SAF \forall ഗ ധ SAH C A / G T / 90 SER A G I T C I < ⊢ - × \vdash \triangleleft ∢ ⊢ ပ **V** -AL T A A T 80 യവമ + 4 + 7 SR ∢ ⊢ ی ں ပ < ⊢ 7 T T T T 370

< ⊢

∀ ⊢

ပပ

A T A

∀ ⊢

7

THR ပပ

LEU [T A \ A T 480 Ø တ္က ပ V-ပ္ EU T G ! . C E \vdash \forall <u>ပ</u> ပ و ں ب 4 - 4 0 0 2 7 s o o V-**∀** ⊢ **~** ⊢ ⋖ ى ن ش **⊢** ∢ 7 A L A A T A T ပေပ ALA G C T (C G A (ILE A T T T A A **∢** ⊢ د د د د د ധ വ ER 6 T (C A (യ വ SEI **4 -**C C C 6 ں ی ک 7 C A G < ⊢ ALA G C A , C G T ⁻ 440 SER TCT GAL **⊢** ∢ \forall 66 A 6 6 A C C 1 AL TT AA 0 C 7 43' **⊢** ⋖ ں ق ည်ပည \forall LEU TT, AA ပ ပ EU T G

A T Y O ں ی S \forall AL TC. AG ပ္ **4 -** \vdash 9 ပ္ A 7 60 9 2 2 ი ე SAH \forall C C SN A A **∢**⊢ \forall \forall THR 3 A C / T G T C A G T 520 ك ي SEI \vdash \forall < ⊢ \vdash \triangleleft ပပ \forall **-** < - 4º S G **⊢** < യാ \forall \forall ∢⊢ \forall 7 C A G w A L IS ഗധ \prec \vdash < ⊢ SN C G V H ⋖ \forall \vdash /AL T G A C 6 7 C . ∢ ⊢ \neg \prec \vdash ں ق \forall വ വ ں ق \forall \vdash V-ں ق

14/39 ASP G A T C T A 600 ∢ ⊢ `⊢ **⋖** \forall \vdash \vdash \triangleleft \prec \vdash \vdash \forall و ب **∀** ⊢ 0 **∀** ⊢ 0 ⋖ < ⊢₁₀ ഗ **∀** ⊢ <u>۲</u> \forall \vdash ပ္ \vdash \forall $_{\rm G}$ SР \forall \vdash V A 6 T C 580 LEU **⊢** ∢ **⊢** ∢ ں ی AL TG AC ں ق LYS AAA TTT ر ا ا SER A G C T C G \forall ပဗ THR ပ ∢⊢ \forall T T A A VAL G T C C A G 560 **~** ⊢ ∢ SEI ں ق \forall \vdash \vdash \forall ₹ **-** 4 ں ی \forall 6 6 0 5 550 9 - A SN \forall \vdash ∢ ⊢ < ⊢ α ပပ SEI ⊢ ⋖ \prec \vdash 1 4 7

T A 99 ں ی \vdash \prec ပ V-∢ ⊢ 0.19 **∀** ⊢ ں ق \forall - 4 o A F S - 4º \forall \vdash ⋖ \triangleleft V H ပ \vdash \triangleleft \forall I E ⊢ ∢ A A T T 640 छ \simeq ں ق ⋖ \triangleleft വ വ S co Co **⊢** < വ ഗ SER ں ق **∀** ⊢ 4 ⊢ 8 9 œ فأد ق ₹ S C ں ق V H \forall \vdash \forall \forall \vdash Þ \forall \vdash VAL ပ ပ _ ∀∑ മവ \vdash \triangleleft \vdash \triangleleft \forall ⊢ ∢ R0ပ ပ ى ب \prec \vdash LEU T T A.A.A.510 ပ ပ \Rightarrow \vdash \forall ш - X \forall z \forall ပပ \prec \vdash S

T A 20 A A T T T A ⊢ ∢ \vdash \forall ⋖ ں و \vdash \triangleleft SER വ വ \forall \vdash \vdash \triangleleft \vdash \triangleleft ÷ 40 $\forall \vdash_{\mathsf{L}}$ \Rightarrow \forall ပ ں ق 9 $^{\circ}$ α \forall \vdash ⋖ ပပ ى ن. THR 7 A 7 \vdash \triangleleft \prec \vdash ں ق **019** \forall ပ \forall **⊢** ∢ ပပ A - 6 **⊢** ₹9 ى ق ∢ ⊢ G 0 ⋖ \forall ပ္ S \forall \vdash \prec \vdash ⋖ $^{\circ}$ A [SS A T 9 ⋖ ں ق ∢ ⊢ S _ \forall ပ ပ ΕIS \forall \vdash 0 \forall \vdash VH0 0 ر و ا و \vdash \forall \vdash \triangleleft ပ္ ပ \triangleleft ں ق \prec \vdash **⊢** ∀

A T T A T A A T 780 α SEI C ⊢ < ں ق LEU TTG AAC n ∢⊢ ور ∢ ⊢ ں ق $\simeq \vdash \prec$ SE G \forall THR ASN ACTAATA TGATTAT 760 EU A | L | A ⊢ ∢ MET CATG GTAC ۳ ت 5 ق 7 A 1 THR C T C C T C G A A \forall \vdash ی ں ص SEI G (VAL TAA ATT ر د د <u>0</u> ⊢ ∢ PR c O ပ ပ R A F വ ഇ \forall \vdash <u>⊬</u> ⊢ ∢ ပဖစ A A T T T 73(**⊢** < ں ق GLY G T C A တ္ပပ ပ**ာ** ပစ \forall ပ ں ق

CAATGATATGCCTATAGGTTATAGGTTATAGGTTATGGTTATAGGTTATGGTTATGGTTAGGTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTAGGTTAGGTTAGGTAG	HR ASN ASP GLN LYS LYS LEU MET SER ASN ASN VAL GLN ILE CAAATGATCAGAAAGTTAATGTCCAACAATGTTCAATA GTTTACTAGTCTTTTCAATTACAGGTTGTTACAAGTTAT 000 830 840	ER ILE MET SER ILE ILE LYS GLU GLU VAL LEU ALA TYR VAL CTATCATGICCATAATAAAGAGGAAGICTTAGCATATGTA GATAGTACAGGTATTATTTTCTCCTTCAGAATCGTATACAT 890 870 890	GLY VAL ILE ASP THR PRO CYS TRP LYS LEU HIS THR SER PRO GGTGTGATAGATACACCTTGTTGGAAATTACACACATCCCT CACACTATCTATGTGGAACAACCTTTAATGTGTAGGGGA 20 930 930 940	LYS GLU GLY SER ASN ILE CYS LEU THR ARG THR ASP ARG GLY A A A G A A G G I C A A C A I C I G T T T A A C A G A A C T G A C A G A G A G A G A G A G A G A G A	GLY SER VAL SER PHE PHE PRO GLN ALA GLU THR CYS LYS VAL GGATCAGTATCTTTCTTCCCACAGCTGAAACATGTAAAGTT CCTAGTCATAGAAGAAGGGTGTTCGACTTTGTACATTTCAA 1040 1050 1050 1060	NAV TAVA TITL GOS OGG HELL GHT HELL GIS NAV TIM GHT GAA AVE
CAATGATATGCCCAATGATATGCCGGTTACGGGTAGCCGGTTTCGAAAGATCTGTCGTTTCGTTTCGTTTCGTTTCGTTTCGTTTCGTTTCGTTACCAAGGACAAGGACAAGGACAAGGACAAGGTACAAGGACAAGGACAAGGACAAGGACAAGGACAAGGACAGGTGTGGGTGACAAGGACAGGACAGGACAGGACAGGACAGGACAGGACAGGACAGGACAGGACAGGACAGGACAGGACAGGACAGGACAGAAGGACAGAAGGACAGGAAGGACAGAAGGACAGAAGGACAGAAGGACAGAAGGACAGAAGGACAGAAGGACAGAAGGACAGAAGGACAGAAGGACAGAAGGACAGAAGGACAGAAGGACAGAAGA	1LE I A T A T A	TYR SEF TTACTC AATGAG 860	J TYR A T A T E T A T A E	THR CACA GTGT	A ALA T G C A A C G T	\ J 110
	ASN. ASP. MET PROSA A T G A T A T G C C G G T A T A C G G G T A C G G G T A C G G G T A C G G G T A C G G G T A C G G G G T A C G G G G T A C G G G G T A C G G G G T A C G G G G G G G G G G G G G G G G G G	RG GLN GLN SE GACAGCAAAG CTGTCGTTTC	AL GLN LEU PRO LE FACAATTACCACT ATGTTAATGGTGA 910	EU CYS THR THR AS TATGTACAACCAA ATACATGTTGGTT 970	RP TYR CYS ASP AS GGTACTGTGACAA CCATGACACTGTT	TYN SOY NOW NOW NOW

T A A A T A T T T A 1140 THR ACA 16T R SER LYS THE CITCAAAACSAAGESAAGITITIG ပ ပ ∢⊢ \forall ပ \vdash \forall F THR 6 A C 7 C T 6 / 1190 A A G T T C 1130 MET A T 6 T A 0 ပပ ပပ ⊢ ∢ **∀** ⊢ ILE VAT \vdash \triangleleft \vdash \triangleleft ∀ ⊢ \forall S \forall \vdash ပ LY: | A A | A T T T A A I A T T I II20 S T S C Y S T G A C \vdash \prec P + A \vdash \forall <u>S</u> ∢ ⊢ ပ္ د ی ک \forall \vdash S TYR AATATE ပ ပ \forall \vdash ∢ ⊢ 7 G 1 C 1 10 . LYS : A A / T T T \forall PRO | C C C / | G G G | \forall \vdash ပ \forall \vdash A SN A A T I ပပ ∢ ⊢ ധ ല PHE T T C , A A G , 1160 **⊢** ⋖ T G T A C A 1100 \forall \vdash H F - ∠ **⊢** ∢ ASP II GACA CTGT, \vdash \triangleleft \forall \vdash **⊢** ⋖ ں ق ASN VAL AATGTTE TTACAAC \forall ە ت 7 C A G 109(ASN \forall \vdash \forall \vdash တ ပ လ ပ CY TG AC ပ **⊢** ∢ LEU TC: A G A \forall ∢ ⊢ ပ ပ ပ ပ

SN A A T A B0 AAFE T A T ں ق \vdash \propto \leftarrow \vdash R TY A T T / T A A $A \vdash \overline{\omega}$ LEU TT, AA \forall ല വ THE A C ပ \forall \vdash A T A T A T 160 6LY 6 6 13(< - \vdash \prec > ບ ບ \vdash \forall ပပ SEF TC AF 500 VAL 6 T (C A (THR A C T I T G A SP AC TG د و ۷ ပ ပ VAL G T C A ر د و ح 6 C C C C SAH \forall \vdash **4 -**ASN A A T T T A 330 A T E SEI C VAL SI GTAT C CATA Z Y H

16/39 PRO C C A G G T 1440 <u>ပ</u> \forall C G A \vdash \prec <u>≻</u> ⊢ ∢ ں ں | PHE | T T T | | A A A | | 1430 \forall \vdash A A F \forall \vdash \vdash \triangleleft ∢ ⊢ **∀** ⊢ A T E C A A G T T / 1420 \forall \vdash \forall \vdash വ വ \vdash \forall ပ္ ည LYS A A A I T T T VAL G T A A YR A T T A ⊢ ∢ LEU C T C G A G / ER G T C A \forall \vdash LYS AAAA TTT 6LY 5 6 C / 5 C 6 1 900 6LU 6 6 A A 6 C T T 0 ZVF 61. A ی ں ഗ ല വ LY I A

ILE ASN TTAAC AATTG 1500 \triangleleft ں ق ACT LY A A ں ق C G A G C G A G G C T C SN VV-ပပ AL A >് ധ \forall \vdash NA H 900 SER 1 A T C T (T A G A (ᆛᅮᅥ ___ A ⊢ ⋖⊢ SER T C / A G C A G T 1470 د و ۲ SP. AT TA دو۷ PHE TTT AAA GLU G A A C T T / 1460 SP TAT A T دو۷ C T G A S-A PHE T T A A _,∢⊢ **∀**⊢∢ ں ی < n 4 A →E

LYS AAA TTT 1560 6 T. C A က် က C T G A ۲۷ A G VAL ASN A GTAAATE CATTTAE SN A T T A T $\forall \forall \vdash$ **⊢** ∀ J HIS A C A 7 T G T / 540 LEU TTA $\overline{\mathbf{c}}$ Σ \forall F A **-** ⊢ ∀ GLU GAA CT7 \triangleleft 30 A 30 SAL C C A SER TCC AGG s ∢ ⊢ LYS A A RG T C A 20 A ្នា ខ ន ILE TT AA \forall \vdash A I E PHE T. - X **44** AL G C C G ហ n 4 H LEI TT, AA $\alpha \vdash \triangleleft$ SEI \prec \vdash 200 ਰ ∢ ⊢ ပ ပ

SER T C A A G T 1620 \forall \neg \vdash \forall ပ ပ A TE \prec \vdash ب اب **∀** ⊢ º **∀** ⊢ 9 F ⊢ A 200 \forall 1 E A T T A \forall \vdash 6 A C T 500 A T 1 160 . 6 A C \forall \vdash ᆔᅥ \forall LE ILE ATAATTA ATATTAAT 1590 THR ACT/ TGA THR A C T < ⊢ < ⊢ ILE 1 7 A 1 A 7 $A \vdash \overline{\Omega}$ ں و ہے ⊎ ⊢ ∢ ΣA⊢ _പ വ ഗ 1-1 A \triangleleft ASN AAT TTA SAL S و ں ہ V H പ്രവ AC TG TG S **₩** < ⊢ SEI \vdash \forall

TTAATTGCTGTTGGACTGCTCCTATACTGTAAGGCCAGAGCACACCAGTCACTAAGC AATTAACGACAACCTGACGAGGATATGACATTCCGGTCTTCGTGTGGTCAGTTCG 1630 1630 1640 1650 1650 PRO VAL ALA ARG CYS LYS <u>~</u> ALA

AAGGATCAACTGAGTGGTATAATAATTTGCATTTAGTAACTGAATAAAATAGCACCT TTCCTAGTTGACTCACCATATTTATTATAACGTAAATCATTGACTTATTTTTTATCGTGGA 1700 1700 1700 SER ASN ILE ALA PHE ILE ASN ASN GLN LEU SER GLY LYS,

17/39 CATGTTCTTACAATGGTTTACTATCTGCTCATAGACAACCCATCTATCATTGGATTT GTACAAGAATGTTACCAAATGATAGACGAGTATCTGTTGGGTAGATAGTAACCTAAA 1750 1750 AATI

ANCHOR DOMAIN ARE UNDERLINED.THE PREDICTED F2-FI CLEAVAGE SITE IS INDICATED BY THE ARROW (4).AMINO ACIDS DIFFERING FROM THE PUBLISHED PRIMARY SEQUENCE OF THE PROTEIN ENCODED BY STRAND SENSE IN THE 5' TO 3' DIRECTION.THE SIGNAL PEPTIDE (SP) AND THE TRANSMEMBRANE (TM) NUCLEOTIDE SEQUENCE OF THE RSV F GENE.THE CDNA SEQUENCE IS SHOWN IN THE PLUS (MRNA) THE RSV F GENE ARE BOXED

F16.5E.

FIG.7A.

NUCLEOTIDE SEQUENCE OF THE RSV G GENE

MET SER LYS ASN LYS ASP GLN ARG

T G C A A A C A T G T C C A A A A A C A A G G A C C A A C G

A C G T T T G T A C A G G T T T T T G T T C C T G G T T G C

10 20 30

THR ALA LYS THR LEU GLU LYS THR TRP ASP CACCGCTAAGACACTAGAAAAGACCTGGGACGTGGGGAGTGGGGGATGGGGGATGTTTCTGGACCCTT

GLY LEU TYR LYS LEU ASN LEU LYS SER VAL GGGCTTATATAAGTTAAATCTTAAATCTGT CCCGAATATATTCAATTTAGAATTTAGACA 100 110 120

ALA GLN ILE THR LEU SER ILE LEU ALA MET AGCACAAATCACATTATCCATTCTGGCAAT TCGTGTTTAGTGTAATAGGTAAGACCGTTA 130

ILE ILE SER THR SER LEU ILE ILE THR ALA
GATAATCTCAACTTCACTTATAATTACAGC
CTATTAGAGTTGAAGTGAATATTAATGTCG
160 170 180

ILE ILE PHE ILE ALA SER ALA ASN HIS LYS
CATCATATTCATAGCCTCGGCAAACCACAA
GTAGTATAGCGGAGCCGTTTGGTGTT
GTAGTATAAGTATCGGAGCCGTTTGGTGTT
210

ALA THR SE GLN ILE LYS ASN THR THR PROT G C A A C A A G A T C A A G A A C A C A C C C C A C G T T G T G T T G G G G A C G T T G T G T G T G G G G 270

THR TYR LES THR GLN ASP PRO GLN LEU GLY A A C A T A C C T C A G C A T C C T C A G C T T G G T T G T A T G G A G T C C T A G G A G T C G A A C C 290 300

FIG.7B.

ILE SER PHE SER ASN LEU SER GLU ILE THR A A T C A G C T T C T C C A A T C T G T C T G A A A T T A C T T A G T C G A A G A G G T T A G A C A G A C T T T A A T G 330

THR GLN THR GLN PRO SER LYS PRO THR THR A A C C C A A A C A C A A C C C A G C A A G C C C A C T A C T T G G G T T T G G G T C G T T C G G G T G A T G 440 450

LYS GLN ARG GLN ASN LYS PRO PRO ASN LYS
A A A A C A A C G C C A A A A C A A A C C A C C A A A C A A
T T T T G T T G C G G T T T T G T T T G G T G G T T T G T T
480
480

PRO ASN ASN ASP PHE HIS PHE GLU VAL PHE A C C C A A T A A T G A T T T T C A C T T C G A A G T G T T T G G G T T A T T A C T A A A A G T G A A G C T T C A C A A 510

ASN PHE VAL PRO CYS SER ILE CYS SER ASN TAACTTTGTACCCTGCAGCATATGCAGCAAAATTGAAACATGGGACGTCGTATACGTCGTT 540

ASN PRO THR CYS TRP ALA ILE CYS LYS ARG CAATCCAACCTGCTGGGCTATCTGCAAAAGCTTAGGACGACCCGATAGACGTTTTCGTAGGCGACCCGATAGACGTTTTC550

SUBSTITUTE SHEET

FIG.7C.

THR THR LYS PRO THR LYS LYS PRO THR PHE CACCACCAAGCCTACAAAAAAACCAACCTT GTGGTGGTTGGAA 610 620 630

LYS THR THR LYS LYS ASP LEU LYS PRO GLN
CAAGACAACCAAAAAGATCTCAAACCTCA
GTTCTGTTGGTTTTTTTCTAGAGTTTTGGAGT
640 650

THR THR LYS PRO LYS GLU VAL PRO THR THR A A C C A C T A A A C C A A A G G A A G T A C C C A C C A C T T G G T G A T T T G G T T T C C T T C A T G G G T G G T G 690

THR ASN ASN THR THR GLY ASN PRO LYS LEU CACCAACACCACAGGAAATCCAAAACT GTGGTGTCCTTTAGGTTTTGA 760 780

THR SER GLN MET GLU THR PHE HIS SER THR
CACAAGTCAAATGGAAACCTTCCACTCAAC
GTGTTCAGTTTACCTTTGGAAGGTGAGTTG
790 800 810

SER SER GLU GLY ASN LEU SER PRO SER GLN C T C C T C C G A A G G C A A T C T A A G C C C T T C T C A G A G G A G G C T T C C G T T A G A T T C G G G A A G A G T 820 830 840

VAL SER THR THR SER GLU HIS PRO SER GLN
A G T C T C C A C A A C A T C C G A G C A C C C A T C A C A
T C A G A G G T G T T G T A G G C T C G T G G G T A G T G T
850 860 870

THR ARG GLN PRO ASN THR SER PRO SER PRO TCATCTCCACCCAACACACACACACACACA $\mathsf{C} \mathsf{C} \mathsf{C}$ GGGAGTAGAGGTGGGTTGTGTGC GGT 900 890 880

SUBSTITUTE SHEET

NUCLEOTIDE SEQUENCE OF THE RSV G GENE. THE cDNA SEQUENCE IS SHOWN IN THE PLUS (MRNA) STRAND SENSE IN THE 5' TO 3' DIRECTION. THE TRANSMEMBRANE (TM) ANCHOR DOMAIN IS UNDERLINED. AMINO ACIDS DIFFERING FROM THE PUBLISHED PRIMARY SEQUENCE OF THE PROTEIN ENCODED BY THE RSV G GENE ARE BOXED.

FIG.7D.

SUBSTITUTE SHEET

Construction of a Bluescript-based expression vector containing the chimeric F_{PIV-3} -F_{RSV} gene with the 5' untranslated region of the PIV-3 F gene intact but lacking the nucleotide sequences coding for the hydrophobic anchor domains and cytoplasmic tails of both the

PIV-3 and RSV F genes. Step I: Preparation of the plasmid containing the modified PIV-3 F gene T7 promoter SspI Nael Konl Konl Apal EcoRv fi ort Drall EcoRI MT promoter Accl - Bsrl pMCR20 Clal ORI 3 Hindill SV40polyA **EcoRV** EcoRI pPI3F P13 F Pstl Bglll Smal Xbal BamHI 5' BamHl Notl NotI Eagl Saci T3 promoter BstXI Sacil Cut with BamHi, blunt and and cut Sacl with Bsrl Cut with EcoRV and BamHI Retrieve 1.6 Kb EcoRV-BsrI PIV-3 F gene

Ligate: 1.6 Kb [BamHl]—Bsrl F gene fragment + EcoRV-BamHI restricted vector +

SUBSTITUTE SHEET

28/39 3 promoter the 5' untranslated sequence and transmembrane anchor and cytoplasmic tail coding regions. ECORV Hindill BamHI EcoRi Psti Construction of a Bluescript-based expression vector containing the PIV-3 F gene lacking Smal Clal T7 promoter Apal Draii Kpnl Smal and BamHl Nael Sspl LacZ MT promoter ORI PMCR20 SV40polyA BgIII 'n BamHl Cut with Ligate: 1.6 Kb [BamHi] - Bsrl PIV-3 F gene fragment + ACTGGCATCAATCTAGCACTACATGAG ... ___CGTAGTTAGATCGTGATGTACTCCTAG Eagl BstXI Sacil X bal Not Saci Smal-BamHi restricted vector Cut with BamHI, blunt end, cut with Bsri Retrieve 1.5 Kb [BamHi] - Bsrl PIV-3 F BamHi Noti Bsrl Saci . S Kpnl EcoRV P13 F EcoRI ហ gene fragment pP13F

FIG.10B.

Cut with EcoRI and BstBI

Retreive: EcoRI-BstBI restricted vector

Ligate: EcoRI-BstBI restricted vector +

PpuMI

AATTCATGCCAACTTTAATACTGCTAATTATTACAACAATGATTATGG

CATCTTCCTGCCAAATAGATATCACAAAACTACAGCAATGTAGGTGTA

TTGGTCAACAGTCCCAAAGGGATGAAGATATCACAAAACTT____ 3

___GTACGGTTGAAATTATGACGATTAATAATGTTGTTACTAATACC

GTAGAAGGACGGTTTATCTATAGTGTTTTTGATGTCGTACATCACATA
ACCAGTTGTCAGGGTTTCCCTACTTCTATAGTGTTTTTGAAGCTT

SUBSTITUTE'SHEET

FIG.13
IMMUNOBLOTS OF CELL LYSATES FROM ST9 CELLS
INFECTED WITH RECOMBINANT BACULO VIRUSES

FIG 13: Immunoblots of cell lysates from Sf9 cells infected wirth recombinant baculoviruses containing the truncated RSV F gene (Lane 1), the chimeric $F_{PIV-3}-F_{RSV}$ gene (Lane 2) or infected with wild type virus (Lane 3) reacted with anti-F RSV Mab (panel A) and anti-F1 PIV-3 antiserum (panel B)

FIG.15B.

BspHI
5' CATGACTAATTCCATCAAAAGTGAAAAGGCT 3'
TGATTAAGGTAGTTTTCACTTTTCCGAGTAC

FIG.16

SDS POLY ACRYLAMIDE GEL AND IMMUNOBLOTS OF PURIFIED FRSV-HNPIV-3 CHIMERIC PROTEIN

FIG 16 : A) Coomassie-stained SDS polyacrylamide gel of immunoaffinity- purified F_{RSV} -HNPIV-3protein.

B) Immunoblots of $F_{RSV}-HN_{PIV-3}$ protein reacted with an anti-F RSV Mab (lane 1) and anti-HN PIV-3 antiserum (lane 2)

38/39

FIG.17. MUTAGENESIS OF THE PIV-3 F GENE

5 TAACATAGGATCGTTACAGGAGAAGGGTATCAAGTTACAATTGTATCCTAGCAATGTCCTCTTCCCATAGTTCAATGT

AGGTATAGCATCATTATACCGCACAAATATCACAGAAAT TCCATATCGTAGTAATATGGCGTGTTTATAGTGTCTTTA 5'-*2721

39/39
FIG.18. CONSTRUCTION OF THE FPIV3-GRSV CHIMERIC GENE

CHICKTITHE CHEET

International Application No

I CLASSIFICATION OF	SUBJECT MATTER (if several classification sy	mbols apply, indicate all)6		
According to International	Patent Classification (IPC) or to both National Cl	assification and IPC		
Int.Cl. 5 C12N1	5/45; A61K39/155;	G01N33/569		
II. FIELDS SEARCHED			<u> </u>	
	Minimum Docume	ntation Searched		
Classification System		Classification Symbols		
Int.Cl. 5	C12N; A61K;	GO1N		
	Documentation Searched other to the Extent that such Documents a	than Minimum Documentation are Included in the Fields Searched ⁸		
III. DOCUMENTS CONS	IDERED TO BE RELEVANT ⁹			
Category ° Citatio	n of Document, 11 with indication, where appropris	ate, of the relevant passages 12	Relevant to Claim No.13	
vol. page P. (glyc sync dive	/IROL. 64, no. 8, 1990, s 4007 - 4012 COLLINS 'O glycosylation of coprotein g of human respir cytial virus is spaecifed w ergen ectodomain' the whole document	atory .	1-11,13, 16-26, 28,29, 32-35, 39-47,53	
vol. page S. \ surf the n-te	CELL. BIOL. 8, no. 4, 1988, 1709 - 1714 /IJAYA ET AL. 'Transport to face of a peptide sequence truncated C terminus of an erminally anchored integral tein' page 1713	attached to	1-4,6, 16-21, 28, 32-36, 39-43, 48-54, 56-58	
considered to be of "E" earlier document be filing date "L" document which m which is cited to ec citation or other sp document referrin other means	the general state of the art which is not f particular relevance out published on or after the international ay throw doubts on priority claim(s) or stablish the publication date of another secial reason (as specified) g to an oral disclosure, use, exhibition or set of the international filing date but	"T" later document published after the interns or priority date and not in conflict with the cited to understand the principle or theor invention "X" document of particular relevance; the cia cannot be considered novel or cannot be involve an inventive step "Y" document of particular relevance; the cia cannot be considered to involve an inventional document is combined with one or more ments, such combination being obvious to in the art. "A" document member of the same patent fair	he application but y underlying the imed invention considered to imed invention tive step when the other such docu- o a person skilled	
	sice of the International Serveh	Date of Mailing of this International Sea	rch Report	
Date of the Actual Comple	tion of the International Search 13 MAY 1993	0.8, CE, 98		
International Searching Au		Signature of Authorized Officer SKELLY J.M.		
EUI	ROPEAN PATENT OFFICE	SKELLI U.M.		

T DOCUMEN	OCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)					
	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.				
ategory °	CINIDOR OF DOCUMENT, WILL INSTANCE.					
	WO,A,8 910 405 (THE UPJOHN COMPANY) 2 November 1989 cited in the application	1-58				
	wo, A, 8 905 823 (THE UPJOHN COMPANY) 29 June 1989	1-58				
	cited in the application see the whole document					
	J. GEN. VIROL. vol. 70, 1989, pages 2637 - 2644					
	R. BRIDEAU ET AL. 'Protection of Cotton rats against human respiratory syncytial virus'					
	J. GEN. VIROL.					
	vol. 70, 1989, M. WATHEN ET AL. 'Characterisation of a novel human respiratory syncytial virus chimeric FG glycoprotein'					
	cited in the application	·				
		-				

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CA93/00001

Box 1	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 54-56 are directed to a method of treatment of (diagnostic method practised on) the human/animal body the search has been carried out and based on the alleged effects of the compound/composition.
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Into	ernational Searching Authority found multiple inventions in this international application, as follows:
·- 🔲	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

9300001 CA SA 68995

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

13/05/93

Patent document cited in search report	Publication date 02-11-89	Patent family member(s)		Publication date
		AU-B- AU-A- CA-A- EP-A- US-A-	611784 3197589 1306709 0413695 5169628	20-06-91 24-11-89 25-08-92 27-02-91 08-12-92
WO-A-8905823	29-06-89	AU-A- DE-A- EP-A,B US-A-	2785089 3878468 0396563 5194595	19-07-89 25-03-93 14-11-90 16-03-93