МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга

Студент гр. 3341	Бойцов В.А.
Преподаватель	Иванов Д.В.

Санкт-Петербург 2023

Цель работы

Ознакомиться с принципом работы конечных автоматов в общем и машины Тьюринга в частности, написать на языке Python программу, которая реализует принцип работы машины Тьюринга, решающий определенное задание.

Задание

Вариант 3

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита {a, b, c}.

Напишите программу, которая заменяет в исходной строке символ, предшествующий первому встретившемуся символу 'c' на символ, следующий за первым встретившимся символом 'a'. Если первый встретившийся символ 'a' в конце строки, то используйте его в качестве заменяющего.

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
 - 2. Гарантируется, что длинна строки не менее 5 символов и не более 15.
 - 3. В середине строки не могут встретиться пробелы.
- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.

Ваша программа должна вывести полученную ленту после завершения работы.

В отчет включите таблицу состояний. Отдельно кратко опишите каждое состояние, например:

q1 - начальное состояние, которое необходимо, чтобы найти первый встретившийся символ 'с'.

Основные теоретические положения

Конечные автоматы и машина Тьюринга представляют собой две важные концепции в области теории вычислений. Конечные автоматы представляют собой модель вычислительного устройства с ограниченным числом состояний, переходы между которыми происходят в ответ на входные символы. Эти устройства используются для решения задач, связанных с распознаванием и обработкой последовательностей символов. С другой стороны, Тьюринга, предложенная Аланом Тьюрингом, является более мощной моделью, способной моделировать любой алгоритмический процесс. Она состоит из бесконечной ленты, на которой могут быть записаны символы, и головки, записывать данные. Машина читать способной И Тьюринга является теоретической основой для понимания вычислимости и лежит в основе многих аспектов современной информатики.

Выполнение работы

Для выполнения поставленной задачи была написана таблица состояний (см. Таблица 1). В каждой её ячейке написаны через запятую:

- 1. Символ, на который заменят текущий символ;
- 2. Направление, куда нужно сдвинуться: R- вправо, N не двигаться, L влево;
 - 3. На какое состояние следует переместиться.

Таблица 1 – Таблица состояний машины Тьюринга

Состояние	"a"	"b"	"c"	""
"q1"	"a", N, "q2"	"b", N, "q2"	"c", N, "q2"	"", R, "q1"
"q2"	"a", R, "q3"	"b", R, "q2"	"c", R, "q2"	"", N, "qT"
"q3"	"a", L, "q4"	"b", L, "q7"	"c", L, "q10"	"", L, "q4"
"q4"	"a", L, "q4"	"b", L, "q4"	"c", L, "q4"	"", R, "q5"
"q5"	"a", R, "q5"	"b", L, "q5"	"c", L, "q6"	"", N, "qT"
"q6"	"a", N, "qT"	"a", N, "qT"	"a", N, "qT"	"a", N, "qT"
"q7"	"a", L, "q7"	"b", L, "q7"	"c", L, "q7"	"", R, "q8"
"q8"	"a", R, "q8"	"b", R, "q8"	"c", L, "q9"	"", N, "qT"
"q9"	"b", N, "qT"	"b", N, "qT"	"b", N, "qT"	"b", N, "qT"
"q10"	"a", L, "q10"	"b", L, "q10"	"c", L, "q10"	"", R, "q11"
"q11"	"a", R, "q11"	"b", R, "q11"	"c", L, "q12"	"", N, "qT"
"q12"	"c", N, "qT"	"c", N, "qT"	"c", N, "qT"	"c", N, "qT"

Опишем подробнее назначение каждого состояния:

- q1 поиск начала слова;
- q2 поиск первого символа "a". Если таких не нашлось, происходит переход в терминальное состояние;
- q3 определение, какой символ стоит после "a"; если это "a" или "
 ", происходит переход в состояние "q4", если "b" в "q7", если в "c" в "q10".

 Для каждого из этих случаев идёт свой набор из трёх идентичных состояний;
 - q4 (q7, q10) поиск начала слова;
- q5 (q8, q11) поиск первого символа "c"; если такого не находится, происходит переход в терминальное состояние;

 \bullet q6 (q9, q12) — замена символа до "c" на "a", "b" или "c" соответственно.

Приведенная выше таблица состояний реализована программно следующим образов. Создаётся список *memory*, в который считывается лента, переменные q, в которой будет храниться текущее состояние, и ind, в которой будет храниться текущий индекс. Далее в огромном цикле while(q!='qT'), который будет выполняться до тех пор, пока машина не перейдет в терминальное состояние "qT", каждое состояние реализовано следующим образом:

```
if q=='q1':
    if memory[ind]=='a':
        memory[ind]='a'
    ind+=0
    q='q2'
```

После выполнения цикла создаётся строка *ans*, в которую посимвольно записываются элементы ленты *memory*, после чего *ans* выводится на экран.

Разработанный программный код см. в приложении А.

Тестирование

Результаты тестирования представлены в табл. 2.

Таблица 2 – Результаты тестирования

No	Входные данные	Выходные данные	Комментарии
Π/Π			
1.	abcabc	abcabc	Верно
2.	abaaaaacb	abaaaabcb	Верно
3.	aaaaaa	aaaaaa	Верно

Выводы

В ходе выполнения работы были изучены принципы функционирования конечных автоматов и машины Тьюринга. Была написана программа, реализующая механизм работы машины Тьюринга на примере поставленной задачи.

приложение а

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

```
memory=list(input())
a='a1'
ind=0
while (q! = 'qT'):
    if q=='q1':
        if memory[ind] == 'a':
             memory[ind]='a'
             ind+=0
             q='q2'
        elif memory[ind] == 'b':
             memory[ind]='b'
             ind+=0
             q='q2'
        elif memory[ind] == 'c':
             memory[ind] = 'c'
             ind+=0
             q='q2'
        elif memory[ind] == ' ':
             memory[ind]=' '
             ind+=1
             q='q1'
    elif q=='q2':
        if memory[ind] == 'a':
             memory[ind]='a'
             ind+=1
             q='q3'
        elif memory[ind] == 'b':
             memory[ind] = 'b'
             ind+=1
             q='q2'
        elif memory[ind] == 'c':
             memory[ind]='c'
             ind+=1
             q='q2'
        elif memory[ind] == ' ':
             memory[ind]=' '
             ind+=0
             q='qT'
    elif q=='q3':
        if memory[ind] == 'a':
             memory[ind]='a'
             ind-=1
             q='q4'
        elif memory[ind] == 'b':
             memory[ind]='b'
             ind-=1
             q='q7'
        elif memory[ind] == 'c':
             memory[ind] = 'c'
             ind-=1
```

```
q='q10'
    elif memory[ind] == ' ':
        memory[ind]=' '
        ind-=1
        q='q4'
elif q=='q4':
    if memory[ind] == 'a':
        memory[ind]='a'
        ind-=1
        q='q4'
    elif memory[ind] == 'b':
        memory[ind]='b'
        ind-=1
        q='q4'
    elif memory[ind] == 'c':
        memory[ind]='c'
        ind-=1
        q='q4'
    elif memory[ind] == ' ':
        memory[ind]=' '
        ind+=1
        q='q5'
elif q=='q5':
    if memory[ind] == 'a':
        memory[ind] = 'a'
        ind+=1
        q='q5'
    elif memory[ind] == 'b':
        memory[ind] = 'b'
        ind+=1
        q='q5'
    elif memory[ind] == 'c':
        memory[ind]='c'
        ind-=1
        q='q6'
    elif memory[ind] == ' ':
        memory[ind]=' '
        ind+=0
        q='qT'
elif q=='q6':
    if memory[ind] == 'a':
        memory[ind]='a'
        ind+=0
        q='qT'
    elif memory[ind] == 'b':
        memory[ind] = 'a'
        ind+=0
        q='qT'
    elif memory[ind] == 'c':
        memory[ind]='a'
        ind+=0
        q='qT'
    elif memory[ind] == ' ':
        memory[ind]='a'
        ind+=0
        q='qT'
elif q=='q7':
    if memory[ind] == 'a':
```

```
memory[ind] = 'a'
        ind-=1
        q='q7'
    elif memory[ind] == 'b':
        memory[ind] = 'b'
        ind-=1
        q='q7'
    elif memory[ind] == 'c':
        memory[ind] = 'c'
        ind-=1
        q='q7'
    elif memory[ind] == ' ':
        memory[ind]=' '
        ind+=1
        q='q8'
elif q=='q8':
    if memory[ind] == 'a':
        memory[ind]='a'
        ind+=1
        q='q8'
    elif memory[ind] == 'b':
        memory[ind]='b'
        ind+=1
        q='q8'
    elif memory[ind] == 'c':
        memory[ind] = 'c'
        ind-=1
        q='q9'
    elif memory[ind] == ' ':
        memory[ind]=' '
        ind+=0
        q = 'qT'
elif q=='q9':
    if memory[ind] == 'a':
        memory[ind]='b'
        ind+=0
        q='qT'
    elif memory[ind] == 'b':
        memory[ind]='b'
        ind+=0
        q='qT'
    elif memory[ind] == 'c':
        memory[ind]='b'
        ind+=0
         q='qT'
    elif memory[ind] == ' ':
        memory[ind]='b'
         ind+=0
        q = 'qT'
elif q=='q10':
    if memory[ind] == 'a':
        memory[ind] = 'a'
        ind-=1
        q='q10'
    elif memory[ind] == 'b':
        memory[ind] = 'b'
         ind-=1
```

```
q='q10'
        elif memory[ind] == 'c':
             memory[ind] = 'c'
             ind-=1
             q='q10'
        elif memory[ind] == ' ':
             memory[ind]=' '
             ind+=1
             q='q11'
    elif q=='q11':
        if memory[ind] == 'a':
             memory[ind]='a'
             ind+=1
             q='q11'
        elif memory[ind] == 'b':
             memory[ind] = 'b'
             ind+=1
             q='q11'
        elif memory[ind] == 'c':
             memory[ind] = 'c'
             ind-=1
             q='q12'
        elif memory[ind] == ' ':
             memory[ind]=' '
             ind+=0
             q = 'qT'
    elif q=='q12':
        if memory[ind] == 'a':
             memory[ind] = 'c'
             ind+=0
             q='qT'
        elif memory[ind] == 'b':
             memory[ind]='c'
             ind+=0
             q='qT'
        elif memory[ind] == 'c':
             memory[ind] = 'c'
             ind+=0
             q='qT'
        elif memory[ind] == ' ':
             memory[ind]='c'
             ind+=0
             q='qT'
ans=''
for x in memory:
    ans=ans+x
print(ans)
```