THE US INFLATION PHENOMENON

[abbreviated]

AUTHOR | Rand Sobczak Jr. **DATE** | 23 September 2021

Problem Identification

Generated Deliverables

Data Pre-Processing

Table of contents

04 05 06

Model Description

Model Findings

Next Steps

01

Problem Identification

Explain & understand US Inflation

What is Inflation?

Inflation is the **decline of purchasing power** of a given currency over time. **Deflation is the inverse**

Stabilizing Inflation is one of three objectives of the **Federal Reserve who's decisions move** the **global financials markets**

Stabilizing it is one of three objectives of the Federal Reserve who's decisions move the global financials markets

Gold, for example, saw 2 day drop of 4.67% after the Fed mentioned tapering; i.e., raising the Fed Rate in response to...

Stabilizing it is one of three objectives of the Federal Reserve who's decisions move the global financials markets

Gold, for example, saw 2 day drop of 4.67% after the Fed mentioned tapering; i.e., raising the Fed Rate in response to Inflation

Stabilizing it is one of three objectives of the Federal Reserve who's decisions move the global financials markets

Gold, for example, saw 2 day drop of 4.67% the day of & after the Fed mentioned tapering; i.e., raising the Fed Rate in response to Inflation

In Math language, that's a 2+ standard deviated move

The purpose & goal of this Data Science project is to

build a model to explain & understand the phenomenon of US Inflation

02

Generated Deliverables

The power of API's

Quandl

Quandl is a marketplace for financial, economic and alternative data

Generated Deliverables

Investing.com

A financial platform & news website; one of the top 3 financial websites in the world

FRED

Federal Reserve Economic Data (FRED) a database maintained by the Research division of the Federal Reserve Bank of St. Louis

Generated Deliverables

I **shortlisted 19 variables** to determine their influence on Inflation

Items	Reported	API	API Source Co	
Inflation	Monthly	Quandl	U.S. Bureau of Labor Statistics	The target variable
Wages CPI	Monthly	FRED	U.S. Bureau of Labor Statistics	A component of the target variable
WTI	Daily	Quandl	CME	West Texas Intermediate - One of many commodities
Heating Oil	Daily	Investpy	Investing.com	One of many commodities
Copper	Daily	Investpy	Investing.com	One of many commodities
Sugar	Daily	Investpy	Investing.com	One of many commodities
Natural Gas	Daily	Investpy	Investing.com	One of many commodities
Cattle	Daily	Investpy	Investing.com	One of many commodities
Lean Hogs	Daily	Investpy	Investing.com	One of many commodities
Soybeans	Daily	Investpy	Investing.com	One of many commodities
Lumber	Daily	Investpy	Investing.com	One of many commodities
Capacity Utilization	Monthly	FRED	Board of Governors of the Federal Reserve	The % of resources used by corporations
Corn	Daily	Investpy	Investing.com	One of many commodities
M2 Velocity	Quarterly	FRED	Federal Reserve Bank of St. Louis	Movement of money; state of the economy proxy
GDP	Quarterly	FRED	U.S. Bureau of Economic Analysis	A proxy for the state of the economy
Wheat	Daily	Investpy	Investing.com	One of many commodities
PMI	Monthly	Quandl	Institute of Supply Management	Manufacturing PMI - A proxy for the economy
USD Index	Daily	Quandl	Intercontinental Exchange Inc	(DXY) Proxy for potentially importing inflation
Unemployment Rate	Monthly	Quandl	U.S. Bureau of Labor Statistics	A proxy for the state of the economy
Initial Jobless Claims	Weekly	Quandl	U.S. Employment and Training Administration	A proxy for the state of the economy

Target Variable

Economic Data

I **Target variable** | What we seek to understand

Comments	API Source	API	Reported	Items
The target variable	U.S. Bureau of Labor Statistics	Quandl	Monthly	Inflation

Generated Deliverables

Target Variable

Commodities

Economic Dat

I **Commodities** | Where Inflation may show itself

Items	Reported	API	API Source	Comments
WTI	Daily	Quandl	CME	West Texas Intermediate - One of many commodities
Heating Oil	Daily	Investpy	Investing.com	One of many commodities
Copper	Daily	Investpy	Investing.com	One of many commodities
Sugar	Daily	Investpy	Investing.com	One of many commodities
Natural Gas	Daily	Investpy	Investing.com	One of many commodities
Cattle	Daily	Investpy	Investing.com	One of many commodities
Lean Hogs	Daily	Investpy	Investing.com	One of many commodities
Soybeans	Daily	Investpy	Investing.com	One of many commodities
Lumber	Daily	Investpy	Investing.com	One of many commodities
Corn	Daily	Investpy	Investing.com	One of many commodities
Wheat	Daily	Investpy	Investing.com	One of many commodities

Generated Deliverables

Target Variable Commodities

Economic Data

I **Economic Data** | Variables to determine the health of the economy

Items	Reported	API	API Source	Comments
Wages CPI	Monthly	FRED	U.S. Bureau of Labor Statistics	A component of the target variable

Capacity Utilization	Monthly	FRED	Board of Governors of the Federal Reserve	The % of resources used by corporations
M2 Velocity	Quarterly	FRED	Federal Reserve Bank of St. Louis	Movement of money; state of the economy proxy
GDP	Quarterly	FRED	U.S. Bureau of Economic Analysis	A proxy for the state of the economy
PMI	Monthly	Quandl	Institute of Supply Management	Manufacturing PMI - A proxy for the economy
USD Index	Daily	Quandl	Intercontinental Exchange Inc	(\ensuremath{DXY}) Proxy for potentially importing inflation
Unemployment Rate	Monthly	Quandl	U.S. Bureau of Labor Statistics	A proxy for the state of the economy
Initial Jobless Claims	Weekly	Quandl	U.S. Employment and Training Administration	A proxy for the state of the economy

Source Code

This can be found at my GitHub account referenced at the end

Generated Deliverables

Research Report

Also can be found at my GitHub account referenced at the end

Presentation Report

This one...

03

A Data Pre-Processing

Split it up...

Data Frames should talk to each other

 After pulling, the data frame was composed of variables with different lengths <class 'pandas.core.frame.DataFrame'> DatetimeIndex: 14302 entries, 1946-01-01 to 2021-09-03 Data columns (total 19 columns): Non-Null Count Dtype Column Wage CPI 14293 non-null float64 WTI 12088 non-null float64 Heating Oil 13087 non-null float64 Copper 10440 non-null float64 Sugar 13087 non-null float64 Natural Gas 9915 non-null float64 Cattle 13084 non-null float64 Lean Hogs 13089 non-null float64 Soybeans 9999 non-null float64 Lumber 13089 non-null float64 Capacity Utilization 14033 non-null float64 Corn 13086 non-null float64 M2 Velocity 14151 non-null float64 13 14295 non-null float64 14 Wheat 10001 non-null float64 15 PMI 14281 non-null float64 USD Index 11273 non-null float64 Unemployment Rate 14281 non-null float64 Initial Jobless Claims 14030 non-null float64 dtypes: float64(19)

memory usage: 2.2 MB

Data Pre-Processing Data Cleaning

Data Frames should talk to each other

- After pulling, the data frame was composed of variables with different lengths
 - Natural Gas being the constraint
 - Forward fill was used

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 9752 entries, 1991-04-18 to 2021-09-03
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	Wage CPI	9752 non-null	float64
1	WTI	9752 non-null	float64
2	Heating Oil	9752 non-null	float64
3	Copper	9752 non-null	float64
4	Sugar	9752 non-null	float64
5	Natural Gas	9752 non-null	float64
6	Cattle	9752 non-null	float64
7	Lean Hogs	9752 non-null	float64
8	Soybeans	9752 non-null	float64
9	Lumber	9752 non-null	float64
10	Capacity Utilization	9752 non-null	float64
11	Corn	9752 non-null	float64
12	M2 Velocity	9752 non-null	float64
13	GDP	9752 non-null	float64
14	Wheat	9752 non-null	float64
15	PMI	9752 non-null	float64
16	USD Index	9752 non-null	float64
17	Unemployment Rate	9752 non-null	float64
18	Initial Jobless Claims	9752 non-null	float64
1.0	C1 (C4/40)		

dtypes: float64(19) memory usage: 1.5 MB

Data Pre-Processing Data Cleaning (cont.)

Data Frames should talk to each other (cont.)

- Different lengths
- Concatenated with Inflation
 - Only 321 observations

<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 321 entries, 1991-04-30 to 2021-07-31 Data columns (total 20 columns): Column Non-Null Count Dtype Inflation float64 321 non-null Wage CPI 321 non-null float64 WTI 321 non-null float64 321 non-null float64 Heating Oil float64 Copper 321 non-null float64 Sugar 321 non-null Natural Gas 321 non-null float64 Cattle 321 non-null float64 float64 Lean Hogs 321 non-null Soybeans float64 321 non-null Lumber float64 321 non-null Capacity Utilization float64 321 non-null 12 Corn 321 non-null float64 M2 Velocity float64 321 non-null float64 GDP 14 321 non-null float64 Wheat 321 non-null 16 PMI 321 non-null float64 USD Index float64 321 non-null Unemployment Rate float64 321 non-null Initial Jobless Claims 321 non-null float64 dtypes: float64(20) memory usage: 52.7 KB

Items	Reported	API	API Source	Comments
Inflation	Monthly	Quandl	U.S. Bureau of Labor Statistics	The target variable

Data Cleaning (cont.)

Winsorization

- Winsorization is the transformation in statistics by limiting extreme values to reduce the effect of potential spurious outliers
 - The Winsorization value differed on the approaches discussed next

Investigating the Time Relationships

- Quarter on Quarter (for all)
- Month on Month (for all)
- Quarter on Quarter for Variables (past) & Inflation (forwards)
- Quarter on Quarter w/ Rolling Averages

Data Pre-Processing

Exploratory Data Analysis

Exploratory Data Analysis (cont.)

Investigating the Time Relationships

- Quarter on Quarter (for all)
- Month on Month (for all)
- Q on Q for Variables (past) & Inflation (forwards)

Quarter on Quarter w/ Rolling Averages

 Similar to # 1 albeit used a rolling average for those that were reported more often than once a Quarter as a Variable "may have had" a bad day or week when the Quarter ended

Data

Pre-Processing

Exploratory Data Analysis (cont.)

Quarter on Quarter w/ Rolling Averages

Feature Correlation Heat Maps with the Pearson correlation coefficients (cont.)

Exploratory Data Analysis (cont.)

Investigating the Time Relationships (cont.)

 We found the best of the 4 but we remembered that we Winsorized Inflation on all; let's investigate what the variables showed without Winsorizing Inflation on our "best"

Data

Pre-Processing

Exploratory Data Analysis (cont.)

Quarter on Quarter w/ Rolling Averages

Feature Correlation Heat Maps with the Pearson correlation coefficients (cont.)

Exploratory Data Analysis (cont.)

Investigating the Time Relationships (cont.)

- We found the best of the 4 but we remembered that we Winsorized Inflation on all; let's investigate what the variables showed without Winsorizing Inflation
- Although Winsorizing did not work on Inflation, it did work on 8
 variables*; this lead to an average increase in their Pearson
 correlation coefficients of 173 bps with one seeing a 460 bps increase

^{*} Only one shown here; all are found in the Report

Data

Pre-Processing

Exploratory Data Analysis (cont.)

Quarter on Quarter w/ Rolling Averages Footure Correlation Heat Mans with the

Feature Correlation Heat Maps with the Pearson correlation coefficients (cont.)

Pre-Processing

Splitting & Scaling

- Chosen data frame
 - The Quarter on Quarter w/ Rolling Averages was chosen
 - Inflation not Winsorized but 8 are
- Train, Test Split
- Scaling

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split
 - The data was then split for Training & Testing to be sent to different Scaling Approaches
- Scaling

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried to "normalize" the variables:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)

	Wages CPI_SS	WTI_SS	Wages CPI_MM	WTI_MM	Wages CPI_LG	WTI_LG
count	2.180000e+02	2.180000e+02	218.000000	218.000000	2.180000e+02	2.180000e+02
mean	-4.838128e-18	2.750094e-17	0.694134	0.579751	-2.340126e-16	-1.018553e-17
std	1.002301e+00	1.002301e+00	0.099718	0.153589	1.002301e+00	1.002301e+00
min	-6.977019e+00	-3.783391e+00	0.000000	0.000000	-4.203779e+00	-3.308051e+00
25%	-2.671202e-01	-5.665365e-01	0.667559	0.492937	-3.922100e-01	-6.014282e-01
50%	1.153214e-01	-3.959852e-02	0.705608	0.573683	2.665979e-02	-8.488108e-02
75%	4.280369e-01	6.677299e-01	0.736719	0.682071	3.947888e-01	6.501558e-01
max	3.074376e+00	2.742497e+00	1.000000	1.000000	4.675375e+00	3.071756e+00

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed

R ² results for nothing scaled below	MAE results for nothing scaled below	RMSE results for nothing scaled below
Test 0.2925 (nothing scaled)	Test 0.5214 (nothing scaled)	Test 0.7133 (nothing scaled)
R ² results for X & y scaled below	MAE results for X & y scaled below	RMSE results for X & y scaled below
SS Train 0.5055 Test 0.2962	SS Train 0.5085 Test 0.5859	SS Train 0.7032 Test 0.8086
MM Train -6.3454 Test -6.8587	MM Train 0.2581 Test 0.2538	MM Train 0.2694 Test 0.2685
LG Train 0.4983 Test 0.2781	LG Train 0.5172 Test 0.603	LG Train 0.7083 Test 0.8218
R ² results for X only scaled below	MAE results for X only scaled below	RMSE results for X only scaled below
SS Train 0.5133 Test 0.2925	SS Train 0.4461 Test 0.5214	SS Train 0.6139 Test 0.7133
MM Train 0.057 Test -0.042	MM Train 0.5971 Test 0.6354	MM Train 0.8545 Test 0.8657
LG Train 0.5005 Test 0.2732	LG Train 0.4545 Test 0.5291	LG Train 0.6219 Test 0.723

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- Some variables were chosen to be sent to a new data frame for either a SS or LG while keeping the y variable (Inflation) unscaled.

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- Some variables were chosen to be sent to a new data frame for either a SS or LG while keeping the y variable (Inflation) unscaled.
- The following were sent to LG:
 - Wage CPI
 - Capacity Utilization
 - M2 Velocity
 - GDP
 - Unemployment Rate
 - Initial Jobless Claims

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- Some variables were chosen, ""
- The results of these below

² results for nothing scaled below Test 0.2925 (nothing scaled)	MAE results for nothing scaled below Test 0.5214 (nothing scaled)	RMSE results for nothing scaled below Test 0.7133 (nothing scaled
² results for X & y scaled below	MAE results for X & y scaled below	RMSE results for X & y scaled below
S Train 0.5055 Test 0.2962	SS Train 0.5085 Test 0.5859	SS Train 0.7032 Test 0.8086
M Train 6.3454 Test 6.8587	## Train 0.2581 Test 0.2538	-NM Train 0.2694 Tost 0.2685
G Train 0.4983 Test 0.2781	LG Train 0.5172 Test 0.603	LG Train 0.7083 Test 0.8218
results for X only scaled below S Train 0.5133 Test 0.2925	MAE results for X only scaled below SS Train 0.4461 Test 0.5214	RMSE results for X only scaled below SS Train 0.6139 Test 0.7133
M Train 0.057 Test 0.042	MM Train 0.5971 Test 0.6354	MM Train 0.8545 Test 0.8657
G Train 0.5005 Test 0.2732	LG Train 0.4545 Test 0.5291	LG Train 0.6219 Test 0.723
² results for the LG & SS combination below	MAE results for the LG & SS combination below	RMSE results for the LG & SS combination below
S Train 0.5053 Test 0.2788	SS Train 0.4488 Test 0.5229	SS Train 0.6189 Test 0.7202

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed
- Some variables were chosen, "'
- The results of these below
- The resulting x5 Data frames went to a Random Forest Model

```
R<sup>2</sup> results for X & y scaled below

1 SS Train | 0.5055 Test 0.2962

2 LG Train | 0.4983 Test 0.2781

R<sup>2</sup> results for X only scaled below

3 SS Train | 0.5133 Test 0.2925

4 LG Train | 0.5005 Test 0.2732

R<sup>2</sup> results for the LG & SS combination below

5 SS Train | 0.5053 Test 0.2788
```

04

Model Description

The Random Forest

The Random Forest Model was then used

with the goal of determining what variables best explain & understand Inflation

05

Model Findings

What's moving Inflation

Where's Inflation coming from?

. The results

 Random Forest showed WTI holding a ubiquitous position as being the dominate Variable on all scaling approaches

Model Findings

(cont.)

* Only one shown here; all are found in the Report

The results

 Random Forest showed WTI holding a ubiquitous position as being the dominate Variable on all scaling approaches; Heating Oil & Wage CPI showed up in second & third place on many

Model Findings

(cont.)

The results

 Random Forest showed WTI holding a ubiquitous position as being the dominate Variable on all scaling approaches; Heating Oil & Wage CPI showed up in second & third place on many. Other variables helping varied*; the below example has 9 variables

Model Findings

(cont.)

* Only one shown here; all are found in the Report

The results

- Random Forest showed WTI holding a ubiquitous position as being the dominate Variable on all scaling approaches; Heating Oil & Wage CPI showed up in second & third place on many. Other variables helping varied*; the below example has 9 variables
- It was then decided to isolate each modeling approach to their respective variables

Model Findings

(cont.)

* Only one shown here; all are found in the Report

The results

- Random Forest showed WTI holding a ubiquitous position as being the dominate Variable on all scaling approaches; Heating Oil & Wage CPI showed up in second & third place on many. Other variables helping varied*; the below example has 9 variables
- It was then decided to isolate each to their respective variables
- Once completed, the LG approach on X only presented the best results

Model Findings

(cont.)

```
MAE results for X & v scaled below
                                                                                         RMSE results for X & v scaled below
R2 results for X & y scaled below
                                            SS Train | 0.5143 Test 0.6133
                                                                                         SS Train | 0.7128 Test 0.8232
SS Train | 0.492 Test 0.2706
                                            LG Train | 0.5261 Test 0.5955
                                                                                         LG Train | 0.7292 Test 0.8171
LG Train | 0.4682 Test 0.2862
R2 results for X only scaled below
                                            MAE results for X only scaled below
                                                                                         RMSE results for X only scaled below
SS Train | 0.492 Test 0.2734
                                            SS Train | 0.4526 Test 0.6034
                                                                                         SS Train | 0.6272
                                                                                                           Test 0.8216
LG Train | 0.7563 Test 0.6524
                                            LG Train | 0.2229 Test 0.294
                                                                                         LG Train | 0.4343 Test 0.5702
```

 R^2 results for the LG & SS combination below MAE results for the LG & SS combination below SS Train | 0.4776 Test 0.2918 SS Train | 0.4229 Test 0.294 SS Train | 0.4333 Test 0.5702

Model Findings

(cont.)

Where's Inflation coming from? (cont.)

The results

- Random Forest showed WTI holding a ubiquitous position as being the dominate Variable on all scaling approaches; Heating Oil & Wage CPI showed up in second & third place on many. Other variables helping varied*; the below example has 9 variables
- It was then decided to isolate each to their respective variables
- Once completed, the LG approach on X only presented the best results
- & showed that the process presented notable improvement from Pre-processing

Comparing final to the averages in the Pre-processing Step

37.92 bps increase in R²

A -23.52 bps decrease in MAE

A -15.28 bps decrease in RMSE

Model Findings

(cont.)

Where's Inflation coming from? (cont.)

The results

- Random Forest showed WTI holding a ubiquitous position as being the dominate Variable on all scaling approaches; Heating Oil & Wage CPI showed up in second & third place on many. Other variables helping varied*; the below example has 9 variables
- It was then decided to isolate each to their respective variables
- Once completed, the LG approach on X only presented the best results
- & showed that the process presented notable improvement from Pre-processing
- WTI held the dominate place on all of the different structures of scaling. We will borrow some words to help explain how to understand Inflation...

The wise words of Bill Clintons' advisor to his 1992 political campaign

"

11

- James Carville

Model Findings

(cont.)

Where's Inflation coming from? (cont.)

The results

- Random Forest showed WTI holding a ubiquitous position as being the dominate Variable on all scaling approaches; Heating Oil & Wage CPI showed up in second & third place on many. Other variables helping varied*; the below example has 9 variables
- It was then decided to isolate each to their respective variables
- Once completed, the LG approach on X only presented the best results
- & showed that the process presented notable improvement from Pre-processing
- WTI held the dominate place on all of the different structures of scaling. We will borrow some words to help explain how to understand Inflation...

The wise words of Bill Clintons' advisor to his 1992 political campaign

"It's the economy, stupid"

- James Carville

"It's Oil, silly"

Our Conclusion

06

☼ Next Steps

Keep going

Next Steps

More attention may be applicable to the below:

- Get more data
 - The big set back would be the size of the data frame. With only 321 observations, machine learning is limited

```
DatetimeIndex: 321 entries, 1991-04-30 to 2021-07-31
Data columns (total 20 columns):
     Column
                             Non-Null Count Dtype
     Inflation
                             321 non-null
                                             float64
                                             float64
     Wage CPI
                             321 non-null
                                             float64
     WTI
                             321 non-null
     Heating Oil
                             321 non-null
                                             float64
                             321 non-null
                                             float64
     Copper
     Sugar
                             321 non-null
                                             float64
                             321 non-null
                                             float64
     Natural Gas
     Cattle
                             321 non-null
                                             float64
     Lean Hogs
                             321 non-null
                                             float64
     Soybeans
                             321 non-null
                                             float64
     Lumber
                             321 non-null
                                             float64
                                             float64
     Capacity Utilization
                             321 non-null
                                             float64
 12 Corn
                             321 non-null
                                             float64
     M2 Velocity
                             321 non-null
     GDP
                             321 non-null
                                             float64
 14
    Wheat
                             321 non-null
                                             float64
                                             float64
 16
                             321 non-null
    USD Index
                             321 non-null
                                             float64
     Unemployment Rate
                                             float64
                             321 non-null
    Initial Jobless Claims 321 non-null
                                             float64
```

More attention may be applicable to the below:

- Get more data
- Winsorizing
 - Winsorization on Inflation & other variables may be re-examined

Next Steps (cont.)

More attention may be applicable to the below:

- Get more data
- Winsorizing
- The SS & LG Divide
 - Reassess the Variables which were chosen in the SS & LG divide; discussed in Pre-processing

Next Steps (cont.)

Next Steps (cont.)

More attention may be applicable to the below:

- Get more data
- Winsorizing
- The SS & LG Divide

Build a Better Imported / Exported USD

- The DXY doesn't correctly address the potential import of inflation to the US as it's weighting is a weighted geometric mean of the:
 - Eurozone (EUR),
 - Japan (JPY),
 - United Kingdom (GBP),
 - Canada (CAD),
 - Sweden (SEK) &
 - Switzerland (CHF)

Next Steps (cont.)

More attention may be applicable to the below:

- Get more data
- Winsorizing
- The SS & LG Divide

Build a Better Import Trade USD Index

- The DXY doesn't correctly address the potential import of inflation to the US as it's weighting is a
 weighted geometric mean of various currencies
- It takes into account less than 40% of US Import Trade

Next Steps (cont.)

More attention may be applicable to the below:

- Get more data
- Winsorizing
- The SS & LG Divide
- Build a Better Import Trade USD Index
- Random Forest was used, while Gradient Boosting may be something to explore:
 - i.e. Boosting over Bagging

Thanks

By **Rand Sobczak Jr.**rand.sobczak@gmail.com
+1 313 447 8634

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

Questions