DRL Model

Definition Phase

Problem: DRL model lets the agent follows a pre-defined trajectory

	Stand-alone	Optima	
Pre-defined Trajectory	Straight line (Updated by time)	PSO	

Domains

STATE

REWARD

Discarded

agent - guide line Angle

*r is normalized [-1, 1]

Distance to the goal

$$r = rac{max.\,distance\,-\,current\,distance}{max.\,distance}$$

Reward value [-1, 1]

State goes from 1 to 0

STATE

Distance to the guide line

Notes

- 1. Include penalty for collision
- 2. Share weights between actor and critic models

End

For triangles labeled as in the figure on the right, the Law of Cosines is given as three equations.

$$a^{2} = b^{2} + c^{2} - 2bc \cos \alpha$$

 $b^{2} = a^{2} + c^{2} - 2ac \cos \beta$
 $c^{2} = a^{2} + b^{2} - 2ab \cos \gamma$

To solve for a missing side measurement, the corresponding opposite angle measure is needed.

When solving for an angle, the corresponding opposite side measure is needed. We can use another version of the Law of Cosines to solve for an angle.

$$\cos \alpha = rac{b^2 + c^2 - a^2}{2bc}$$
 $\cos \beta = rac{a^2 + c^2 - b^2}{2ac}$ $\cos \gamma = rac{a^2 + b^2 - c^2}{2ab}$

$$\cos \beta = \frac{a^2 + c^2 - b^2}{2ac}$$

$$\cos \gamma = \frac{a^2 + b^2 - c^2}{2ab}$$

