

Data Science

- Übersicht
 - Was ist "Data Science"?
- Lernziele
 - Was wollen wir in diesem Seminar erarbeiten?
- Anforderungen
 - Was ist ein "Journal Club"?
- Themen und Termine
 - Welche Artikel lesen wir?
 - Wo arbeiten wir?

Was ist Data Science?

- "Learning from data" (Donoho, 2017)
 - Methoden: Statistik
 - Umsetzung: Informatik
 - Anwendung: Fachwissenschaften (Psychologie)
- Unterschiedliche Rollen
 - Data Scientist (Fragestellung)
 - Data Engineer (Daten gewinnen)
 - Data Analyst (Daten auswerten)
- Fragestellung im Seminar:
 - Welche Informationen können wir aus neurowissenschaftlichen Daten gewinnen?
 - Was sind sinnvolle Fragestellungen?

Mathematics and Statistics

Data Analytics

Machine Learning

Data Science

Domain Knowledge Computer Science

Software Engineering

Was ist Data Science?

Christian-Albrechts-Universität zu Kiel

 Ziel: Große Datenmengen schnell und effizient verarbeiten

- Machine Learning
 - Überwachte Ansätze: (nicht-)lineare Modelle (Regression)
 - Nutzer entscheidet anhand von Kennwerten über Passung des Modells
 - Nutzer erstellt Beispiel-Label
 - Nicht-Überwachte Ansätze: Dimensions-Reduktion, Clustering
 - Algorithmus entscheidet anhand von Kennwerten über Einteilung der Daten
 - Nutzer interpretiert erstellte Klassen

Lernziele I - Explizit

- Kernkonzepte der Neurowissenschaft
 - Messmethoden
 - Anwendungsfelder
- Ansätze zur Auswertung komplexer neurowissenschaftlicher Datensätze
- Möglichkeiten und Grenzen der aktuellen Neurowissenschaft
 - Kritische Einordnung konkreter Ergebnisse
 - Kritische Einordnung aktueller Entwicklungen

Lernziele II - Implizit

Christian-Albrechts-Universität zu Kiel

- Grundlegendes Verständnis von "Data Science"
- Übersicht über die aktuelle Literatur zur Analyse komplexer Datensätze in der Neurowissenschaft
- Kenntnisse über den grundsätzlichen Aufbau von wissenschaftlichen Artikeln
- Verstehen und Diskutieren von neurowissenschaftlichen Studien

Statistician

Data Scientist

Christian-Albrechts-Universität zu Kiel

Inhaltliche Anforderungen - Referate

- Journal Club über ausgewählte Artikel
 - Benennen der zentralen Ideen
 - Beschreibung der Methoden
 - Zusammenfassen und Erklären der zentralen Ergebnisse
 - Dazu ist es nötig, dass Schwerpunkte gesetzt werden, dass sich Wiederholendes zusammengefasst und Nebensächliches weggelassen wird
- Lesen ≠ Verstehen
 - Herausarbeiten, wenn etwas unklar war
 - Gemeinsam Lücken füllen
- Regelmäßige und aktive Teilnahme an den Sitzungen
- Bearbeitung von Aufgaben in psyM1-2
 - Gemeinsame Benotung

Exkurs:

Typischer Aufbau wissenschaftlicher Artikel

Abstract

 Überblick: Idee, um was es in dem Artikel geht, was die zentrale Forschungsfrage ist und die zentralen Ergebnisse. Außerdem erfahren Sie, was für eine Art von Artikel es ist (z.B. Original-Experimentalbericht / kurzer Artikel, der wenige Original-Befunde zusammenfasst / langer Review-Artikel)

Einleitung

- Übergeordnetes Thema/ Phänomen
- Theoretische Grundlagen und Definitionen zentraler Begriffe
- Zentrale Fragestellung und Hypothesen des Artikels (findet sich meistens am Ende der Einleitung)

Methode

- Durchgeführte Experimente
- Versuchsidee: wie soll die Hypothese geprüft werden?
- Operationalisierung: Wie wurde die untersuchte Leistung oder Funktion messbar bemacht?
- wichtigste Merkmale von Versuchsaufbau und -durchführung
- ggf. Stichprobe

Ergebnisse

• Zentrale Befunde (Zusammenfassung häufig am Beginn der Diskussion)

Diskussion

- Interpretation der Ergebnisse
- Schlussfolgerungen aus den Befunden (→ Hypothesenentscheidung) und Bewertung der Theorie

Ablauf der Sitzungen

Vorab lesen:

Paper zur jeweiligen Sitzung lesen

In der Sitzung:

- 10 Minuten: Rückfragen zur letzten Sitzung
- 10 Minuten: Einleitender Vortrag zu Kernkonzepten
- 40 Minuten: Vortrag zum wissenschaftlichen Artikel
- 20 Minuten: Ergebnisse, Diskussion und Fragen
- Rückmeldung für die Referent*innen

Themen und Termine

Christian-Albrechts-Universität zu Kiel

	Termin	Thema	Literatur
1	25.10.	Einführung	
2	01.11.	Reflektion	
3	08.11.	Basics of Brain-Computer Interfaces	Vidal 1973
4	15.11.	Early application of BCI	Guger 1999
5	22.11.	P300-Speller and possible uses	Philip 2020
6	29.11.	Multivariate statistics	Haufe 2014
7	06.12.	Mental states	Haynes 2006
8	13.12.	Visual imagery during sleep	Horikawa 2013
9	20.12.	Reconstructing auditory perception	Anumanchipalli 2019
10	10.01.	Intentions and free will	Haynes 2011
11	17.01.	Simple perceptual discrimination	Bode 2012
12	24.01.	Complex and abstract intentions	Soon 2013
13	31.01.	Brain-to-brain communication	Grau 2014
14	07.02.	Zusammenfassung	10

Themenauswahl Referate

- Bis heute Abend, 18 Uhr:
 - Themenwahl
 - Angaben: Name, Vorname, Kurs (Wochentag/Uhrzeit)
 - Präferenz: Für jedes der Themen bitte Wert angeben
 - Niedrig (z.B. 1): Favorit
 - Hoch (z.B. 11): Eher ungern
 - Abgabe per Email an: keil@psychologie.uni-kiel.de
- Bis Morgen:
 - Einteilung der Referate basierend auf der Präferenz
 - Wechsel ggf. bitte untereinander klären und mir rückmelden

GitHub

- https://github.com/BioPsychKiel/datascience_in_theory
- Archiv für Folien und Referatsvideos
- Wissenschaftliche Artikel für Seminarsitzungen
- To Do:
 - Anmelden
 - Username per Email an keil@psychologie.uni-kiel.de
 - Wenn noch nicht vorhanden: GitHub Desktop installieren (https://desktop.github.com/)
 - Repository auf den lokalen Computer clonen

Literatur

- 01_papers
 - Wissenschaftliche Artikel für die jeweiligen Sitzungen
 - Buch "Data Science" von Benjamin Abdel-Karim
- To Do:
 - Paper zur jeweiligen Sitzung lesen
 - Lesen ≠ Verstehen
 - Fragen notieren
 - Unklarheiten besprechen
 - Paper kritisieren

Hilfe?

- Unspezifische Hilfe:
 - https://www.studentenwerk.sh/de/beratung/beratungsangebote/psychologischeberatung/index.html
 - https://www.studentenwerk.sh/de/beratung/beratungsangebote/index.html
 - https://www.asta.uni-kiel.de/beratung/asta-beratungsangebote/
 - https://fachschaft.psychologie.uni-kiel.de/de/eine-seite
- Spezifische Hilfe:
 - https://docs.github.com/en
 - https://stackexchange.com/
 - https://stats.stackexchange.com/
 - https://stackoverflow.com/questions

Fragen?

Christian-Albrechts-Universität zu Kiel

Dr. Julian Keil

Olshausenstr. 62

Raum: 306

Mo & Do, 16-18 Uhr

Telefon: +49 431 880-4872

keil@psychologie.uni-kiel.de

@drjuliankeil

http://www.biopsych.uni-kiel.de/

- 1. Begrüßung
- 2. Wer seid ihr?
- 3. Woher kennen wir uns?
- 4. Was ist euer Anliegen?

Nächste Woche:

Nächste Woche: Reflektion

- Gruppen-Hausaufgabe:
 - Sucht nach Beispielen zu künstlicher Intelligenz, Data Science, Machine Learning, etc.
 - Filme
 - Serien
 - Bücher
 - Musik
 - ...
 - Überlegt, wie hier Datenanalyse dargestellt wird
 - Wer sind die Akteure?
 - In welchem Kontext findet die Datenanalyse statt?
 - Was ist das Ziel der Analyse
 - Präsentiert eure Erkenntnisse
 - 15 Minuten pro Gruppe
 - Freies Format

Literatur

- Abdel-Karim, B. (2022). Data Science Best Practices mit Python. Springer. Wiesbaden.
- Donoho, D. (2017). 50 Years of Data Science. Journal of Computational and Graphical Statistics, 26(4), 745–766. http://doi.org/10.1080/10618600.2017.1384734