EE6133 Experiment-2

In this experiment, you will implement a 2-channel DFT-FB 05-11-20 in polyphase form. The analysis FB has the structure

$$x(e) \longrightarrow (e) \longrightarrow (e)$$

Note that $W^* = W = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.

H_o(z) and H₁(z) are the 2-polyphase components of the problype H(z).

H(z) should be designed as an equiripple Type-2 Linear-Phase LPF, with $\omega_p = 0.451T$ and $\omega_s = 0.55TT$. It is causal with support [0, N].

After designing H(Z), identify $H_0(Z)$ and $H_1(Z)$ for use in the analysis and synthesis PBs.

Assume that the input $x(\cdot)$ starts with x(-1). s(0) = x(-1)

- \Rightarrow The starting samples of S(.) and S₄(.) are S(0) and S₄(0).
- ⇒ All downstream signals t°(), t°(), v°(), v°(), start with index=0.

The synthesis FB has the structure discussed in Lecture-18:

Connect the outputs of the analysis FB to the inputs of the synthesis FB. Let K(z) and K'(z) be causal filters whose support starts at O. Then $V_a(.)$, $V_a(.)$ start with index $O \Rightarrow$ output y(.) also starts at O. You should position the synthesis commutator accordingly at the start of synthesis.

Implement the following choices for K(z) and K(z):

- (1) $K^0(z) = H_1^0(z)$ and $K^1(z) = H_0^0(z)$ (\Longrightarrow No aliasing, but not PR) Plot the resulting $T_{zp}(\omega)$ (as derived in Lecture-19) on a linear scale for $0 \le \omega \le T$.
- (2) $K'(z) = H'_0(z)$ and $K'(z) = H'_1(z)$ This is an intentionally bad choice, which results in aliasing.

Determine the FB output for each of these 2 choices, for each of the 2 given input clips. Compare (informally) the outputs for each input clip.

[End]