An Optimal HW-tile Allocation Algorithm for SET

We'll firstly define the concept of "Allocation Algorithm" and "Optimality" stated in the SET paper, then propose our algorithm (Alg. 1 below) and prove its optimality.

Definitions and The Allocation Algorithm

Firstly, we'll formally define the concept of a "HW-tile allocation scheme" and the meaning of "optimality" stated in the SET paper.

Suppose we want to map N children onto C HW-tiles, where each child has an NPT of $T_i, i = 1, 2, ..., N$. An allocation scheme is a function from $\{1, 2, ..., N\}$ to $\{1, 2, ..., C\}$, where f(i) is the number of HW-tiles allocated to child i, and f must satisfy $\sum_{i=1}^{N} f(i) \leq C$ to be valid. We can see that there exists a valid allocation scheme if and only if $C \geq N$.

For an allocation scheme f, the time of child i processing a batch is $\frac{T_i}{f(i)}$. Then the processing time of each batch is determined by the slowest child, which is $T_{proc}(f) = \max_{i=1,...,n} \left(\frac{T_i}{f(i)}\right)$, and minimizing unbalancement is equivalent to minimizing $T_{proc}(f)$. Thus an **optimal allocation scheme** f is a scheme which minimize $T_{proc}(f)$.

An Allocation Algorithm is an algorithm which inputs C, N and T_1, \ldots, T_N , and outputs a scheme f. Alg. 1 is the optimal Allocation Algorithm proposed by us, and the optimality of our algorithm can be stated as follows:

Theorem 1: For any input $C \geq N, \{T_1, \ldots, T_N\}$, Alg. 1 always outputs an optimize scheme f_{alg} .

In other words, for any scheme $g, T_{proc}(g) \ge T_{proc}(f_{alg})$

Both the algorithm (Alg. 1) and the proof starts at the next page.

The Allocation Algorithm

```
Algorithm 1: Optimal HW-tile Allocation Algorithm // Here T_i is the NPT of the ith child
```

```
Input: Number of HW-tiles to be Allocated C, Number of Children n, List of NPT T = \{T_i\}_{i=1}^n
   //Meaning of f: allocate f(i) HW-tiles for child i
   Output: The Allocation Scheme f:1,2,\ldots,n\to\mathbb{Z}^+
 1 sum_T = \sum_{i=1}^n T_i
 2 // Calculate the largest number of HW-tiles below the ideal allocation of each child
 \mathbf{3} \ min\_alloc = \mathrm{Dict}()
 4 for i from 1 to n do
       // This is the number of HW-tiles to be allocated ideally
       ideal\_alloc_i = C \times \frac{T_i}{sum\_T}
       min\_alloc[i] = floor(ideal\_alloc_i)
       // This is the utilization when only allocating min_alloc[i] HW-tiles
       min\_util[i] = \frac{min\_alloc[i]}{ideal\_alloc_i}
10 end
11 free\_tiles = C - \sum_{i=1}^{n} min\_alloc[i]
12 if free\_tiles == 0 then
       // The number of HW-tiles in all children are ideal, return
       return min_alloc
14
15 end
16 f = Dict()
17 while free\_tiles > 0 do
       // Satisfy the child with the smallest min_util first
       j = \arg_{i \notin f} \min(\min_{i} util[i])
19
       f[j] = min\_alloc[j] + 1
20
       free\_tiles-=1
21
22 end
23 // For the remaining children, recursively call this algorithm (Alg. 1, named ALLOC) to determine
    its allocation scheme
24 remain\_tiles = C - \sum f[j]
25 remain_n = n - f. size()
26 f' = ALLOC(remain\_tiles, remain\_n, \{T_i \mid j \ not \ in \ f\})
27 // Merging the two schemes to get the whole allocation scheme
28 f.merge(f')
29 return f
```

Proof

We'll use induction on N to prove the correctness of Theorem 1.

When N = 1, at line 6 $ideal_alloc_1$ will be set to C, then at line 11 $free_tiles = 0$ and the returned f_{alg} (at line 14) will allocate all chips to the only child, which is obviously the optimal scheme.

Now suppose Theorem 1 holds for all $N \leq N_0$, we'll prove the returned f_{alg} is also optimal when $N = N_0$. Notice that since $\sum_{i=1}^{N_0} ideal_alloc_i = C$ and $min_alloc[i] \leq ideal_alloc_i$, then at line 11 we have $free_tiles \geq 0$.

If $free_tiles = 0$, we must have $\forall i, min_alloc[i] = ideal_alloc_i$, then Algorithm 1 will return at line 14, and f_{alg} satisfies $\frac{T_i}{f_{alg}(i)} = \frac{\sum_{i=1}^{N_0} T_i}{C}$ which is a constant for different i. This means the allocation is fully balanced, and for any scheme g,

$$T_{proc}(g) = \max(\frac{T_i}{g(i)}) \ge \frac{\sum_{i=1}^{N_0} T_i}{\sum_{i=1}^{N_0} g(i)} \ge \frac{\sum_{i=1}^{N_0} T_i}{C} = T_{proc}(f_{alg})$$
, thus f_{alg} is optimal here

Now consider the case where $free_tiles > 0$ at line 11. Then line 14 will be skipped and f_{alg} is returned in line 29. f_{alg} then is merged from two parts: f before line 28 and f' returned at line 26. Now denote $S_{N_0} = \{1, 2, ..., N_0\}, S = \{i \in S_{N_0} \mid i \in f\}, S' = \{i \in S_{N_0} \mid i \in f'\}$, we have $S_{N_0} = S + S'$. Since the while loop at line 17 is executed at least once, S is not empty and $remain_n < N_0$. Thus by the induction hypotheses f' is optimal on the subproblem ($remain_tiles, remain_n, \{T_j \mid j \in S'\}$ (since f' is returned by a call to Algorithm 1).

Denote $\alpha_i = C \frac{T_i}{\sum_{i=1}^{N_0} T_i}$, $R = \frac{\sum_{i=1}^{N_0} T_i}{C}$, for a scheme g we have $T_{proc}(g) = \max(\frac{\alpha_i R}{g(i)}) = \frac{R}{\min(\frac{g(i)}{\alpha_i})}$. Notice that we have $\sum_{i=1}^{N_0} \alpha_i = C \ge \sum_{i=1}^{N_0} g(i)$, so $\min(\frac{f(i)}{\alpha_i}) \le 1$. Also α_i here is just $ideal_alloc_i$ in the algorithm. Thus we have $f_{alg}(i) = \text{floor}(\alpha_i) + 1 > \alpha_i, \forall i \in S$, so the minimal $\min(\frac{f_{alg}(i)}{\alpha_i})$ is taken in S'.

Now suppose on the contrary, there exists a scheme g that satisfies $T_{proc}(g) < T_{proc}(f_{alg})$. Firstly we can't have $\forall i \in S, g(i) \geq f_{alg}(i)$ (Statement 1). If this statement is true, then $g(i) > \alpha_i, \forall i \in S$ and the minimal $\min(\frac{g(i)}{\alpha_i})$ is also taken in S'. However, $\sum_{i \in S'} g(i) \leq remain_n$ and g restricted to S' is also a scheme on S', then by the optimality of f' we have $\min(\frac{f'(i)}{\alpha_i}) \geq \min(\frac{g(i)}{\alpha_i})$, which leads to a contradictory.

Thus there must exist $I \in S, s.t.g(i) < f_{alg}(i)$. Now construct a scheme f_1 as follows, $f_1(i) = f(i) = min_alloc[i] + 1, \forall i \in S$ and $f_1(i) = min_alloc[i], \forall i \in S'$. Notice that $free_tiles$ are decremented by one in each while loop at line 17, so $|S| = C - \sum_{i=0}^{N_0} min_alloc[i]$ and thus $\sum_{i=0}^{N_0} f_1(i) = C$. So f_1 is a valid scheme. Also, since $\forall i \in S, f_1(i) \geq f_{alg}(i)$, by Statement 1 $T_{proc}(f_1) \geq T_{proc}(f_{alg})$. Then we have $T_{proc}(f_1) > T_{proc}(g)$, which indicates $\min(\frac{f_1(i)}{\alpha_i}) < \min(\frac{g(i)}{\alpha_i}) \leq \frac{g(I)}{\alpha_I} \leq \frac{f(I)-1}{\alpha_I} = \frac{min_util[I]}{1}$. However, we also have $f_1(i) = f(i) > \alpha_i, \forall i \in S$, so $\exists j \in S', s.t. \min(\frac{f_1(i)}{\alpha_i}) = \frac{f_1(j)}{\alpha_j} = min_util[j]$, which

However, we also have $f_1(i) = f(i) > \alpha_i$, $\forall i \in S$, so $\exists j \in S', s.t. \min(\frac{f_1(i)}{\alpha_i}) = \frac{f_1(j)}{\alpha_j} = min_util[j]$, which indicates $min_util[j] < min_util[I]$ for $j \in S'$ and $I \in S$. Which **contradicts with** the "argmin" at line 19 (since $I \in S$, I is selected as the argmin and added to f at one execution of the while loop at line 17, since $j \notin f$ is not the argmin, its min_util must not be smaller).

Thus Theorem 1 also holds for $N = N_0$. By induction we can prove the correctness of Theorem 1.