CS 519: Scientific Visualization

What is Information Visualization?

Eric Shaffer

Some (many!) slides adapted from work by Professor Tamara Munzner University of British Columbia

A visualization is a visual representation of abstract data to aid human cognition

- Must be based on data
- The results must be readable, recognizable and useful

How many R's are there?

GLNSAGGKLDSANGNASDGN KLANSDGLKNASDGNDFVMD GJERKJVERJVJKENJLVNEKVJEN VJEAJVJNDJVNAAJBVRKLVLJKD

How many R's are there?

GLNSAGGKLDSANGNASDGN KLANSDGLKNASDGNDFVMD GJERKJVERJVJKENJLVNEKVJEN VJEAJVJNDJVNAAJBVRKLVLJKD

How Much Data Is There?

What Will We Do When The World's Data Hits 163 Zettabytes In 2025?

- A zettabyte is one trillion gigabytes
 - Zettabyte ~= 1,000,000,000,000,000,000
 - 200x all words ever spoken by humans
- Current annual data creation rate is 16.3ZB
- Most of that is not scientific data
 - It is not specifically associated with a physical domain

So...Maybe That Much Data is a Problem?

PewResearchCenter

Big Data: Experts say new forms of information analysis will help people be more nimble and adaptive, but worry over humans' capacity to understand and use these new tools well

- Visualization is a proven technique to aid human comprehension of complex data
- It can aid in many analytical activities
 - Filtering, determining provenance, identifying critical events..,etc.

Benefits of Visualization

- Adapt data to a form better processed by people
 - Maximize the use of limited perception and cognition
- Ultimate goals
 - Explore the data
 - Find patterns
 - Fit a function
 - Tell a story
 - Convince others
 - Spread information

Flooding Risk From Climate Change, Country by Country

SEPT. 23

A new analysis of sea levels and flood risk around the world offers more evidence that the brunt of climate change will not be borne equally.

FACEBOOK TWITT

Dataset Types

Tables

Items

Attributes

Networks & Trees

Items (nodes)

Links

Attributes

Geometry

Items

Positions

Clusters, Sets, Lists

Items

→ Multidimensional Table

→ Trees

Attribute Types

- ☐ Categorical also referred to as "nominal"
- What operations are possible for each type?

Definitions: Marks and Channels

Lines Points • marks Areas geometric primitives Position Color → Horizontal channels → Vertical → Both control appearance of marks → Tilt Shape → Size → Length → Area → Volume

Encoding visually with marks and channels

- analyze idiom structure
 - as combination of marks and channels

1: vertical position

2: vertical position horizontal position

3: vertical position horizontal position color hue 4:
vertical position
horizontal position
color hue
size (area)

mark:line

mark:point

mark:point

mark:point

What is an Idiom?

Channels: Rankings

- effectiveness principle
- encode most important attributes with highest ranked channels
- expressiveness principle
- match channel and data characteristics

Accuracy: Visualization Experiments

[Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. Heer and Bostock. Proc ACM Conf. Human Factors in Computing Systems (CHI) 2010, p. 203– 212.]

Discriminability: How many usable steps?

- must be sufficient for number of attribute levels to show
 - -linewidth: few bins

Separability vs. Integrality

Position

♣ Hue (Color)

Fully separable

2 groups each

Size

♣ Hue (Color)

Some interference

2 groups each

Width

Height

Some/significant interference

3 groups total: integral area

Red

♣ Green

Major interference

4 groups total: integral hue

Popout

- find the red dot
 - -how long does it take?
- parallel processing on many individual channels
 - -speed independent of distractor count
 - -speed depends on channel and amount of difference from distractors
- serial search for (almost all) combinations
 - -speed depends on number of distractors

Popout

- many channels:tilt, size, shape, proximity, shadow direction, ...
- but not all! parallel line pairs do not pop out from tilted pairs

Grouping

- containment
- connection

- proximity
 - same spatial region
- similarity
 - -same values as other categorical channels

Marks as Links

Containment

→ Connection

→ Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

Relative vs. Absolute Judgements

- perceptual system mostly operates with relative judgements, not absolute
 - -that's why accuracy increases with common frame/scale and alignment
 - -Weber's Law: ratio of increment to background is constant
 - filled rectangles differ in length by 1:9, difficult judgement
 - white rectangles differ in length by 1:2, easy judgement

after [Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Cleveland and McGill. Journ. American Statistical Association 79:387 (1984), 531-554.]

Relative vs. Absolute Judgements

• perception of luminance is contextual based on contrast with surroundings

http://persci.mit.edu/gallery/checkershadow

Principles Based on Practice

- No unjustified 3D
 - Power of the plane, dangers of depth
 - Occlusion hidesinformation
 - Perspective distortion loses information
 - Tilted text isn't legible
- No unjustified 2D
- Eyes beat memory
- Resolution over immersion
- Overview first, zoom and filter, details on demand
- Function first, form next
- (Get it right in black and white)

No Unjustified 3D

- high-ranked spatial position channels: **planar** spatial position –not depth!
 - Magnitude Channels: Ordered Attributes

Steven's Psychophysical Power Law: S= I^N

Danger of Depth

- we don't really live in 3D:we see in 2.05D
 - acquire more info on image plane quickly from eyemovements
 - -acquire more info for depth slower, from head/body motion

Thousands of points up/down and left/right

We can only see the outside shell of the world

Occlusion Hides Information

- occlusion
- interaction complexity

[DistortionViewingTechniques for 3D Data.Carpendale et al.InfoVis1996.]

Perspective Projection Loses Information

- perspective distortion
 - interferes with all size channel encodings
 - -power of the plane is lost!

[Visualizing the Results of Multimedia Web Search Engines. Mukherjea, Hirata, and Hara. InfoVis 96]

Tilted Text Is Not Legible

text legibility

- far worse when tilted from imageplane

further reading

[Exploring and Reducing the Effects of Orientation on Text Readability in Volumetric Displays.

Grossman et al. CHI 2007]

[Visualizing the World-Wide Web with the Navigational View Builder. Mukherjea and Foley. Computer Networks and ISDN Systems, 1995.]

Justified 3D: Shape Perception

- benefits outweigh costs when task is shape perception for 3D spatial data
 - interactive navigation supportssynthesis across manyviewpoints

[Image-Based Streamline Generation and Rendering.Li and Shen.IEEETrans. Visualization and Computer Graphics (TVCG) 13:3 (2007), 630–640.]

No Unjustified 3D

- 3D legitimate for true 3D spatial data
- 3D needs very careful justification for abstract data
 - enthusiasm in 1990s, but now skepticism
 - be especially careful with 3D for point clouds or networks

[WEBPATH-a three dimensionalWeb history. Frecon and Smith. Proc. InfoVis 1999]

No Unjustified 2D

- consider whether network data requires 2D spatial layout
 - especially if reading text is central totask!
 - arranging as network means lower information density and harder label lookup compared to text lists
- benefits outweigh costs when topological structure/context important for task
 - -be especially careful for search results, document collections, ontologies

- → Network Data
 - → Topology

→ Paths

Eyes Beat Memory

- principle: external cognition vs. internalmemory
 - easy to compare by moving eyes between side-by-side views
 - harder to compare visible item to memory of what you saw
- implications for animation
 - great for choreographed storytelling
 - great for transitions between two states
 - poor for many states with changes everywhere
 - consider small multiples instead

animation abstract small multiples show time with time show time with space

Eyes Beat Memory Example

• small multiples: one graph instance per experimental condition

LPSLL37_2

- same spatial layout

–color differently, by condition

LPSLL37_1

Expression color scale

[Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2008) 14:6 (2008), 1253–1260.]

Why Not Animation

- disparate frames and regions: comparison difficult
 - vs contiguousframes
 - vs small region
 - vs coherent motion ofgroup
- change blindness
 - even major changes difficult to notice if mental buffer wiped
- safe special case
 - animated transitions

Resolution Beats Immersion

- immersion typically not helpful for abstract data
 - -do not need sense of presence or stereoscopic 3D
- resolution much more important
 - pixels are the scarcest resource
 - desktop also better for workflowintegration
- virtual reality for abstract data very difficult to justify

[Development of an information visualization tool using virtual reality. Kirner and Martins. Proc. Symp Applied Computing 2000]

Overview First, Zoom and Filter, Details on Demand

• influential mantra from Shneiderman

[The Eyes Have It: ATask by DataTypeTaxonomy forInformationVisualizations. Shneiderman.Proc.IEEEVisual Languages, pp. 336–343, 1996.]

- overview = summary
 - -microcosm of full vis design problem

- nuances
 - -beyond just two levels: multi-scale structure
 - -difficult when scale huge: give up on overview and browse local neighborhoods?

[Search, Show Context, Expand on Demand: Supporting Large Graph Exploration with Degree-of-Interest. van Ham and Perer. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2009) 15:6 (2009), 953–960.]

Function First, Form Next

- start with focus on functionality
 - -straightforward to improve aesthetics later on, as refinement
 - -if no expertise in-house, find good graphic designer to work with
- dangerous to start with aesthetics
 - usually impossible to add function retroactively

HemoViz Design Study

- formative study with experts
 - -task taxonomy
- HemoViz design
- deploy attempt fails
 - -experts balk: demand 3D and rainbows
- quantitative user study
 - -med students, real data
 - 91% with 2D/divergingvs39% with 3D/rainbows
 - -experts willing to use

[Fig 1. Borkin et al. Artery Visualizations for Heart Disease Diagnosis. Proc InfoVis 2011.]]

Study Results: Error

Study Results: Time

Critique

- many strengths
 - careful and well justified design, convincing human-subjects experiment
 - bringing visualization best practices to medical domain
- limitation
 - paper does not clearly communicate why colormap is diverging not sequential
 - answer by email
 - doctors care about extremely high and extremely low ESS (scalar) values
 - high values (top of scale, dark grey): extreme blood flow patterns may relate to heart malfunctions but not imminently life threatening and don't indicate plaque locations
 - —low values (bottom of scale, dark red): very diseased regions with lots of plaque, docs care a lot!
 - much debate from doctors on where is boundary between "normal" and "low" ESS values
 - » most think below 3 Pa are indicative of disease but many argue other values in the 2-4 range.
 - » all docs agree that values below 2 Pa are increasingly dangerous disease levels.
 - » thus map has transition at 3 Pa for the diverging point and truly red below 2 Pa
 - why continuous not segmented?
 - doctors gain tremendous insight by seeing the subtle patterning of the ESS values
 - —particularly varying values in red region patterns help them understand disease progression and severity
 - » especially useful for deciding what types of interventions to prescribe for the patient

Is Your Visualization Effective?

Four levels of design problems

different threats to validity at each level

Validation

mismatch: cannot show idiom good with system timings mismatch: cannot show abstraction good with lab study

Visualization Research and Development

- ☐ In either case, visualization research benefits from a scientific approach
 - Scientific? Maybe "systematic" or "engineering" would be more apt
- ☐ Create a taxonomy of visual elements
 - ☐ Understand which elements are appropriate for a given problem