

FCC CERTIFICATION TEST REPORT

For FCC ID:2AHU2-76000635

Report Reference No.....: 16FBS03020 41

FCC 2.948 No...... 923232

Date of issue: 2016-05-16

Testing Laboratory.....: ATT Product Service Co., Ltd.

DongGuan City, GuangDong, China.

Applicant's name: ASA Electronics Shenzhen Limited.

1.S., Nanshan District, Shen Zhen, China 518057.

Manufacturer....: Harley-Davidson Motor Company.

Test specification:

Test item description.....: CRUISER AMPLIFER AND SPEAKER SYSTEM

Trade Mark: ---

Model/Type reference: 76000635

Ratings.....: I/P: 12Vdc

Tested by

(Lake Hu / Engineer)

Approved by

(Brown Lu / EMC Manger)

TABLE OF CONTENTS

1. Summary of test results	4
2. General test information	5
2.1.Description of EUT	5
2.2.Accessories of EUT	5
2.3.Assistant equipment used for test	5
2.4.Block diagram of EUT configuration for test	6
2.5.Test environment conditions	6
2.6.Measurement uncertainty	7
3. 20dB Bandwidth	8
3.1.Test equipment	8
3.2.Block diagram of test setup	8
3.3.Limits	8
3.4.Test Procedure	8
3.5.Test Result	9
3.6.Original test data	9
4. CARRIER FREQUENCY SEPARATION TEST	14
4.1.Test equipment	14
4.2.The Requirement For Section 15.247(a)(1)	14
4.3.EUT Configuration on Measurement	14
4.4.Operating Condition of EUT	14
4.5.Test Procedure	14
4.6.Test Result	15
5. NUMBER OF HOPPING FREQUENCY TEST	21
5.1.Test equipment	21
5.2.The Requirement For Section 15.247(a)(1)(iii)	21
5.3.EUT Configuration on Measurement	21
5.4.Operating Condition of EUT	21
5.5.Test Procedure	21
5.6.Test Result	22
6. DWELL TIME TEST	23
6.1.Test equipment	23
6.2.The Requirement For Section 15.247(a)(1)(iii)	23
6.3.EUT Configuration on Measurement	23
6.4.Operating Condition of EUT	23
6.5.Test Procedure	23

2 or 6/	

6.6.Test Result	24
7. Maxmum Output Power	40
7.1.Test equipment	40
7.2.Block diagram of test setup	40
7.3.Limits	40
7.4.Test Procedure	41
7.5.Test Result	41
7.6.Original test data	42
8. Spurious Emission	47
8.1.Test equipment	47
8.2.Block diagram of test setup	47
8.3.Limit	49
8.4.Test Procedure	50
8.5.Test result	52
9. Band Edge	55
9.1.Test equipment	55
9.2.Block diagram of test setup	55
9.3.Limit	56
9.4.Test Procedure	56
9.5.Test result	56
10. Conducted Spurious Emissions	58
10.1.Test Equipment	58
10.2.Limit	58
10.3.Test Procedure	58
10.4.Test result	58
11. Antenna Requirements	67
11.1.Limit	67
11.2.Result	67

TEST REPORT DECLARE

Applicant	:	ASA Electronics Shenzhen Limited
Address	:	Room 503, 5/F., Unit A, Skyworth Building, Gaoxin Avenue. 1.S., Nanshan District, Shen Zhen, China 518057
Equipment under Test	:	CRUISER AMPLIFER AND SPEAKER SYSTEM
Test Model No	:	76000635
FCC ID	:	2AHU2-76000635
Manufacturer	:	Harley-Davidson Motor Company.
Address	:	3700 W. Juneau Avenue Milwaukee, WI 53208

Test Standard Used: FCC Rules and Regulations Part 15 Subpart C: 2013. **Test procedure used:** ANSI C63.4: 2014, ANSI C63.10-2013, DA 00-705.

We Declare:

The equipment described above is tested by ATT Product Service Co., Ltd. and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and ATT Product Service Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After test and evaluation, our opinion is that the equipment provided for test compliance with the requirement of the above FCC standards.

Report No:	16FBS03020 41		
Date of Test:	2016/03/10-2016/05/16	Date of Report:	2016/05/16

Note: This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of ATT Product Service Co., Ltd.

1. SUMMARY OF TEST RESULTS

Report No.: 16FBS03020 41

The EUT have been tested according to the applicable standards as referenced below.			
Description of Test Item	Standard	Results	
20dB Bandwidth	FCC Part 15: 15.247	PASS	
Carrier Frequency Separation Test	FCC Part 15: 15.247	PASS	
Number Of Hopping Frequency	FCC Part 15: 15.247	PASS	
Dwell Time Test	FCC Part 15: 15.247	PASS	
Maximum Output Power	FCC Part 15: 15.247	PASS	
Conducted Spurious Emissions	FCC Part 15: 15.247	PASS	
Radiated Spurious Emissions	FCC Part 15.205 / 15.209	PASS	
Antenna requirement	FCC Part 15: 15.203	PASS	
Conducted Emission	FCC Part 15.207	N/A	

Remark: all test are according to ANSI C63.10-2013 and ANSI C63.4-2014.

2. GENERAL TEST INFORMATION

2.1. DESCRIPTION OF EUT

Report No.: 16FBS03020 41

EUT* Name	:	CRUISER AMPLIFER AND SPEAKER SYSTEM
Model Number	:	76000635
EUT function description	:	Please reference user manual of this device
Power supply	:	12Vdc
Radio Technology	:	V2.1+EDR
Operation frequency	:	2402-2480MHz
Modulation	:	GFSK, 8DPSK , π/4DQPSK
Antenna Type	:	PIFA antenna, maximum PK gain: 0 dBi
Date of Receipt	:	2016/03/10
Sample Type	:	Single production

Note1: EUT is the ab. of equipment under test.

2.2. ACCESSORIES OF EUT

Description of Accessories	Manufacturer	Model number or Type	Output.
1	1	/	/

2.3. ASSISTANT EQUIPMENT USED FOR TEST

Description of Assistant equipment	Manufacturer	Model number or Type	EMC Compliance	SN
Notebook	acer	Aspire E1-472G	FCC DoC	1
Battery Charge	Ao Neng	6-DZM-10	FCC VoC	/

ATT Product Service Co., Ltd (CBTL Lab of UL/Demko)
No. 3, ChangLianShan Industrial Park, ChangAn Town, DongGuan City, GuangDong, China.
Phone: 86-769-8509 8000; Fax: 86-769-8509 8777 E-mail:att@attps.cn

2.4. BLOCK DIAGRAM OF EUT CONFIGURATION FOR TEST

Report No.: 16FBS03020 41

EUT was connected to control to a special test jig provided by manufacturer which has a Micro USB connector to connect to Notebook, and the Notebook will run a special test software to control EUT work in Continuous TX mode, and select test channel, wireless mode and data rate.

Remark: GFSK,8DPSK, π /4DQPSK all these modulation all have been tested , GFSK is found as worst case and only reported for radiated emission.

Tested mode, channel, and data rate information				
Mode	data rate (Mpbs)	Channel	Frequency	
	(see Note)		(MHz)	
	1	Low :CH0	2402	
GFSK (Worst)	1	Middle: CH39	2441	
	1	High: CH78	2480	
	2	Low :CH0	2402	
π/4DQPSK	2	Middle: CH39	2441	
	2	High: CH78	2480	
	3	Low :CH0	2402	
8DPSK	3	Middle: CH39	2441	
	3	High: CH78	2480	

Note: According exploratory test, EUT will have maximum output power in those data rate, so those data rate were used for all test.

2.5. TEST ENVIRONMENT CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

Temperature range:	21-25℃
Humidity range:	40-75%
Pressure range:	86-106kPa

ATT Product Service Co., Ltd (CBTL Lab of UL/Demko)
No. 3, ChangLianShan Industrial Park, ChangAn Town, DongGuan City, GuangDong, China.

2.6. MEASUREMENT UNCERTAINTY

Report No.: 16FBS03020 41

Test Item	Uncertainty
Uncertainty for Conduction emission test	2.44dB
Uncertainty for Radiation Emission test (9KHz-30MHz)	3.21dB
Uncertainty for Radiation Emission test	3.42 dB (Polarize: V)
(30MHz-200MHz)	3.52 dB (Polarize: H)
Uncertainty for Radiation Emission test	3.52 dB (Polarize: V)
(200MHz-1GHz)	3.54 dB (Polarize: H)
Uncertainty for Radiation Emission test	4.20 dB (Polarize: V)
(1GHz to 25GHz)	4.20 dB (Polarize: H)
Uncertainty for radio frequency	1×10-9
Uncertainty for conducted RF Power	0.65dB

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

ATT Product Service Co., Ltd (CBTL Lab of UL/Demko)

No. 3, ChangLianShan Industrial Park, ChangAn Town, DongGuan City, GuangDong, China.

Phone: 86-769-8509 8000; Fax: 86-769-8509 8777 E-mail:att@attps.cn

3. 20dB BANDWIDTH

3.1. TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Due.	Cal. Interval
1	Spectrum analyzer	R&S	FSU	1166.1660.2 6	2016/12/19	1 Year
2	Attenuator	Mini-Circuits	BW-S10W2	101109	2016/12/19	1 Year
3	RF Cable	Micable	C10-01-01-1	100309	2016/12/19	1 Year

3.2. BLOCK DIAGRAM OF TEST SETUP

3.3. LIMITS

No limit requirement.

3.4. TEST PROCEDURE

- (1) Configure EUT and assistant system according clause 2.4 and 3.2.
- (2) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (3) Configure EUT work in test mode as stated in clause 2.4.
- (4) Set the spectrum analyzer as follows:

RBW:	100KHz
VBW:	300KHz
Detector Mode:	Peak
Sweep time:	auto
Trace mode:	Max hold

(5) Allow the trace to stabilize, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

3.5. TEST RESULT

Channel	Frequency (MHz)	GFSK 20dB Bandwidth (MHz)	π /4DQPSK 20dB Bandwidth (MHz)	8DPSK 20dB Bandwidth (MHz)	Result
Low	2402	1.11	1.27	1.31	Pass
Middle	2441	1.10	1.29	1.31	Pass
High	2480	1.10	1.29	1.31	Pass

3.6. ORIGINAL TEST DATA

GFSK

Date: 25.MAR.2016 07:56:00

ATT Product Service Co., Ltd (CBTL Lab of UL/Demko)
No. 3, ChangLianShan Industrial Park, ChangAn Town, DongGuan City, GuangDong, China.
Phone: 86-769-8509 8000; Fax: 86-769-8509 8777 E-mail:att@attps.cn

Report No.: 16FBS03020 41 10 of 67

ATT Product Service Co., Ltd (CBTL Lab of UL/Demko)
No. 3, ChangLianShan Industrial Park, ChangAn Town, DongGuan City, GuangDong, China.

Date: 25.MAR.2016 08:01:50

Date: 25.MAR.2016 08:04:39

Report No.: 16FBS03020 41 12 of 67

Date: 25.MAR.2016 08:05:56

8DPSK

Date: 25.MAR.2016 08:12:40

Report No.: 16FBS03020 41 13 of 67

500 kHz/

Span 5 MHz

Date: 25.MAR.2016 08:16:22

Center 2.48 GHz

4. CARRIER FREQUENCY SEPARATION TEST

4.1. TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Due.	Cal. Interval
1	Spectrum analyzer	R&S	FSU	1166.1660.2 6	2016/12/19	1 Year
2	Attenuator	Mini-Circuits	BW-S10W2	101109	2016/12/19	1 Year
3	RF Cable	Micable	C10-01-01-1	100309	2016/12/19	1 Year

4.2. THE REQUIREMENT FOR SECTION 15.247(A)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly

ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

4.3. EUT CONFIGURATION ON MEASUREMENT

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.4. OPERATING CONDITION OF EUT

- (1) Setup the EUT and simulator as shown as Section 6.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

4.5. TEST PROCEDURE

- (1) The transmitter output was connected to the spectrum analyzer through a low loss cable.
- (2) .Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz. Adjust Span to 3 MHz.
- (3) Set the adjacent channel of the EUT maxhold another trace.
- (4) Measurement the channel separation

4.6. TEST RESULT

Report No.: 16FBS03020 41

GFSK

Channel	Frequency (MHz)			Result
Low	2402	1.002	>(25KHz or 2/3*20dB Bandwidth)	PASS
Middle	2441	1.002	>(25KHz or 2/3*20dB Bandwidth)	PASS
High	2479	1.002	>(25KHz or 2/3*20dB Bandwidth)	PASS

π /4DQPSK

Channel	Frequency Channel (MHz) Separation(MHz)		Limit (MHz)	Result
Low	2402	1.002	>(25KHz or 2/3*20dB Bandwidth)	PASS
Middle	2441	1.002	>(25KHz or 2/3*20dB Bandwidth)	PASS
High	2479	1.002	>(25KHz or 2/3*20dB Bandwidth)	PASS

8DPSK

Channel	Channel Frequency Channel (MHz) Separation(MHz)		Limit (MHz)	Result
Low	2402	1.002	>(25KHz or 2/3*20dB Bandwidth)	PASS
Middle	2441	1.002	>(25KHz or 2/3*20dB Bandwidth)	PASS
High	2479	1.002	>(25KHz or 2/3*20dB Bandwidth)	PASS

The spectrum analyzer plots are attached as below.

16 of 67

Date: 25.MAR.2016 08:37:27

Date: 25.MAR.2016 08:38:58

Report No.: 16FBS03020 41 17 of 67

Date: 25.MAR.2016 08:40:10

∏/4-DQPSK

Date: 25.MAR.2016 09:08:27

18 of 67

Date: 25.MAR.2016 09:09:23

Date: 25.MAR.2016 09:11:15

Span 3 MHz

19 of 67

300 kHz/

Date: 25.MAR.2016 09:13:37

Center 2.4025 GHz

Date: 25.MAR.2016 09:25:23

Date: 25.MAR.2016 09:27:18

5. NUMBER OF HOPPING FREQUENCY TEST

5.1. TEST EQUIPMENT

Report No.: 16FBS03020 41

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Due.	Cal. Interval
1	Spectrum analyzer	R&S	FSU	1166.1660.2 6	2016/12/19	1 Year
2	Attenuator	Mini-Circuits	BW-S10W2	101109	2016/12/19	1 Year
3	RF Cable	Micable	C10-01-01-1	100309	2016/12/19	1 Year

5.2. THE REQUIREMENT FOR SECTION 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

5.3. EUT CONFIGURATION ON MEASUREMENT

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. OPERATING CONDITION OF EUT

- (1) Setup the EUT and simulator as shown as Section 7.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in TX (Hopping on) modes measure it.

5.5. TEST PROCEDURE

- (1) The transmitter output was connected to the spectrum analyzer through a low loss cable.
- (2) Set the spectrum analyzer as Span=83.5MHz, RBW=100 kHz, VBW=300 kHz.
- (3) Max hold, view and count how many channel in the band.

5.6. TEST RESULT

Report No.: 16FBS03020 41

Total number of	Measurement result(CH)	Limit(CH)	
hopping channel	79	≥15	

The spectrum analyzer plots are attached as below

Date: 25.MAR.2016 08:43:58

	Channle information								
СН	Frequency	СН	Frequency	СН	Frequency	СН	Frequency	СН	Frequency
0	2402	16	2418	32	2434	48	2450	64	2466
1	2403	17	2419	33	2435	49	2451	65	2467
2	2404	18	2420	34	2436	50	2452	66	2468
3	2405	19	2421	35	2437	51	2453	67	2469
4	2406	20	2422	36	2438	52	2454	68	2470
5	2407	21	2423	37	2439	53	2455	69	2471
6	2408	22	2424	38	2440	54	2456	70	2472
7	2409	23	2425	39	2441	55	2457	71	2473
8	2410	24	2426	40	2442	56	2458	72	2474
9	2411	25	2427	41	2443	57	2459	73	2475
10	2412	26	2428	42	2444	58	2460	74	2476
11	2413	27	2429	43	2445	59	2461	75	2477
12	2414	28	2430	44	2446	60	2462	76	2478
13	2415	29	2431	45	2447	61	2463	77	2479
14	2416	30	2432	46	2448	62	2464	78	2480
15	2417	31	2433	47	2449	63	2465	-	-

ATT Product Service Co., Ltd (CBTL Lab of UL/Demko)

No. 3, ChangLianShan Industrial Park, ChangAn Town, DongGuan City, GuangDong, China.

Phone: 86-769-8509 8000; Fax: 86-769-8509 8777 E-mail:att@attps.cn

6.DWELL TIME TEST

6.1. TEST EQUIPMENT

Report No.: 16FBS03020 41

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Due.	Cal. Interval
1	Spectrum analyzer	R&S	FSU	1166.1660.2 6	2016/12/19	1 Year
2	Attenuator	Mini-Circuits	BW-S10W2	101109	2016/12/19	1 Year
3	RF Cable	Micable	C10-01-01-1	100309	2016/12/19	1 Year

6.2. THE REQUIREMENT FOR SECTION 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

6.3. EUT CONFIGURATION ON MEASUREMENT

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. OPERATING CONDITION OF EUT

- (1) Setup the EUT and simulator as shown as Section 8.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

6.5. TEST PROCEDURE

- (1) The transmitter output was connected to the spectrum analyzer through a low loss cable.
- (2) Set center frequency of spectrum analyzer = operating frequency.
- (3) Set the spectrum analyzer as RBW=1MHz, VBW=1MHz, Span=0Hz, Adjust Sweep=5ms, 10ms, 20ms. Get the pulse time.

6.6. TEST RESULT

Report No.: 16FBS03020 41

GFSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)
	2402	0.43	137.6	400
DH1	2441	0.44	140.8	400
	2480	0.43	137.6	400
A period transmit t	ime = $0.4 \times 79 = 31.6$ Dwe	Il time = pulse time	× (1600/(2*79)) ×31.6	
	2402	1.70	272	400
DH3	2441	1.72	275.2	400
	2480	1.70	272	400
A period transmit t	ime = $0.4 \times 79 = 31.6$ Dwe	ell time = pulse time	× (1600/(4*79)) ×31.6	
	2402	3.02	322.13	400
DH5	2441	3.00	320	400
	2480	3.00	320	400
A period transmit t	ime = $0.4 \times 79 = 31.6$ Dwe	ell time = pulse time	× (1600/(6*79)) ×31.6	

Π/4-DQPSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)		
DH1	2402	0.43	137.6	400		
	2441	0.44	140.8	400		
	2480	0.44	140.8	400		
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$						
DH3	2402	1.72	275.2	400		
	2441	1.72	275.2	400		
	2480	1.70	272	400		
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$						
DH5	2402	2.97	317.87	400		
	2441	3.02	322.13	400		
	2480	2.98	317.87	400		
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$						

ATT Product Service Co., Ltd (CBTL Lab of UL/Demko)

No. 3, ChangLianShan Industrial Park, ChangAn Town, DongGuan City, GuangDong, China.

Phone: 86-769-8509 8000; Fax: 86-769-8509 8777 E-mail:att@attps.cn

8DPSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)		
DH1	2402	0.44	140.8	400		
	2441	0.44	140.8	400		
	2480	0.44	140.8	400		
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$						
DH3	2402	1.72	275.2	400		
	2441	1.70	272	400		
	2480	1.72	275.2	400		
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$						
DH5	2402	3.04	324.27	400		
	2441	3.00	320	400		
	2480	3.00	320	400		
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$						

The spectrum analyzer plots are attached as below:

26 of 67

GFSK Mode

DH1

Date: 25.MAR.2016 08:45:00

Date: 25.MAR.2016 08:45:42

Date: 25.MAR.2016 08:46:05

DH3

Date: 25.MAR.2016 08:47:20

28 of 67

Date: 25.MAR.2016 08:49:05

Date: 25.MAR.2016 08:50:06

Date: 25.MAR.2016 08:50:44

Date: 25.MAR.2016 08:51:31

Π/4-DQPSK Mode

DH1

Date: 25.MAR.2016 08:52:46

Date: 25.MAR.2016 08:53:18

Date: 25.MAR.2016 08:53:44

32 of 67

Date: 25.MAR.2016 08:55:26

Date: 25.MAR.2016 08:56:12

33 of 67

Date: 25.MAR.2016 08:56:50

DH5

Date: 25.MAR.2016 08:58:00

34 of 67

Date: 25.MAR.2016 08:58:31

Date: 25.MAR.2016 08:59:09

8DPSK Mode

35 of 67

Date: 25.MAR.2016 09:00:51

Date: 25.MAR.2016 09:01:14

Date: 25.MAR.2016 09:01:39

DH3

Date: 25.MAR.2016 09:02:30

Date: 25.MAR.2016 09:02:55

Date: 25.MAR.2016 09:03:36

Report No.: 16FBS03020 41 39 of 67

Date: 25.MAR.2016 09:06:19

7. MAXMUM OUTPUT POWER

7.1. TEST EQUIPMENT

Report No.: 16FBS03020 41

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Due.	Cal. Interval
1	Spectrum analyzer	R&S	FSU	1166.1660.2 6	2016/12/19	1 Year
2	Attenuator	Mini-Circuits	BW-S10W2	101109	2016/12/19	1 Year
. 3	RF Cable	Micable	C10-01-01-1	100309	2016/12/19	1 Year

7.2. BLOCK DIAGRAM OF TEST SETUP

Same with 3.2

7.3. LIMITS

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz bands: 0.125 Watt. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

41 of 67

7.4. TEST PROCEDURE

- Configure EUT and assistant system according clause 2.4 and 3.2 (1)
- (2)Connect EUT's antenna output to spectrum analyzer by RF cable.
- (3) Configure EUT work in test mode as stated in clause 2.4.
- (4) Set the spectrum analyzer as follows:

GFSK	RBW:	1MHz		
S. S. C.	VBW:	3MHz		
π /4DQPSK	RBW:	3MHz		
	VBW:	10MHz		
8DPSK	RBW:	3MHz		
obi ort	VBW:	10MHz		
Span		>1.5x 20dB bandwidth		
Detector Mode:		Peak		
Sweep time:		auto		
Trace mode		Max hold		

(5) Allow the trace to stabilize, Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges measure out the Average and PK output power.

7.5. TEST RESULT

EUT Set Mode	Data Rate (Mbp/s)	Frequency (MHz)	Result(dBm) Peak	
	, , ,	2402	1.43	
GFSK	1	2441	1.66	
		2480	1.85	
		2402	1.00	
π /4DQPSK	2	2441	1.33	
		2480	1.64	
		2402	0.94	
8DPSK	3	2441	1.15	
		2480	1.45	
Limit: 21dBm		Conclusion: PASS		

ATT Product Service Co., Ltd (CBTL Lab of UL/Demko)
No. 3, ChangLianShan Industrial Park, ChangAn Town, DongGuan City, GuangDong, China.

7.6. ORIGINAL TEST DATA

GFSK

Date: 16.MAY.2016 15:26:08

Date: 16.MAY.2016 15:27:22

43 of 67

Date: 16.MAY.2016 15:28:22

π /4DQPSK

Date: 16.MAY.2016 15:30:23

44 of 67

Date: 16.MAY.2016 15:31:35

Date: 16.MAY.2016 15:33:18

45 of 67

Date: 16.MAY.2016 15:35:51

Date: 16.MAY.2016 15:34:51

Date: 16.MAY.2016 15:34:01

8. SPURIOUS EMISSION

8.1. TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Due.	Cal. Interval
1	EMI Test Receiver	R&S	ESU8	100316	2016/12/19	1 Year
2	Spectrum analyzer	R&S	FSU	1166.1660.2 6	2016/12/19	1 Year
3	Loop antenna	TESEQ	HLA6120	20129	2016/12/19	1 Year
4	Trilog Broadband Antenna	Schwarzbeck	VULB9163	9163-462	2016/12/19	1 Year
5	Double Ridged Horn Antenna	Schwarzbeck	BBHA9120D	9120D 1065	2016/12/19	1 Year
6	Horn Antenna	Schwarzbeck	BBHA 9170	9170 1248	2016/12/19	1 Year
7	Pre-amplifier	A.H.	PAM-1840VH	562	2016/12/19	1 Year
8	Pre-amplifier	R&S	AFS33-18002 650-30-8P-44	SEL0080	2016/12/19	1 Year
9	Pre-Amplifier	HP	8449B	3274A06298	2016/12/19	1 Year
10	RF Cable	R&S	R01	10403	2016/12/19	1 Year
11	RF Cable	R&S	R02	10512	2016/12/19	1 Year

8.2. BLOCK DIAGRAM OF TEST SETUP

In 3m Anechoic Chamber Test Setup Diagram for 9KHz-30MHz

In 3m Anechoic Chamber Test Setup Diagram for 30MHz-1GHz

Report No.: 16FBS03020 41

In 3m Anechoic Chamber Test Setup Diagram for frequency above 1GHz

Note: For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP.

8.3. **LIMIT**

Report No.: 16FBS03020 41

8.3.1 FCC 15.205 Restricted frequency band

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)

8.3.2. FCC 15.209 Limit.

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT			
MHz	Meters	μV/m	dB(μV)/m		
0.009 ~ 0.490	300	2400/F(KHz)	67.6-20log(F)		
0.490 ~ 1.705	30	24000/F(KHz)	87.6-20log(F)		
1.705 ~ 30.0	30	30	29.54		
30 ~ 88	3	100	40.0		
88 ~ 216	3	150	43.5		
216 ~ 960	3	200	46.0		
960 ~ 1000	3	500	54.0		
Above 1000	3	74.0 dB(μV)/ι 54.0 dB(μV)/m	-		

- Note: (1) The emission limits shown in the above table are based on measurements employing a CISPR QP detector except for the frequency bands 9-90KHz, 110-490KHz and above 1000MHz.

 Radiated emissions limits in these three bands are based on measurements employing an average detector.
 - (2) At frequencies below 30MHz, measurement may be performed at a distance closer then that specified, and the limit at closer measurement distance can be extrapolated by below formula: Limit_{3m}(dBuV/m)= Limit_{30m}(dBuV/m) + 40Log(30m/3m)

8.3.3. Limit for this EUT

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 30dB below the fundamental emissions, or comply with 15.209 limits.

8.4. TEST PROCEDURE

- (1) EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber.
- (2) Setup EUT and assistant system according clause 2.4 and 7.2
- (3) Test antenna was located 3m from the EUT on an adjustable mast, and the antenna used as below table.

Test frequency range	Test antenna used
9KHz-30MHz	Active Loop antenna
30MHz-1GHz	Trilog Broadband Antenna
1GHz-18GHz	Double Ridged Horn Antenna(1GHz-18GHz)
18GHz-40GHz	Horn Antenna(18GHz-40GHz)

According ANSI C63.10:2013 clause 6.4.4.2 and 6,5.3, for measurements below 30 MHz, the loop antenna was positioned with its plane vertical from the EUT and rotated about its vertical axis for maximum response at each azimuth position around the EUT. And the loop antenna also be positioned with its plane horizontal at the specified distance from the EUT. The center of the loop is 1 m above the ground. for measurement above 30MHz, the Trilog Broadband Antenna or Horn Antenna was located 3m from EUT, Measurements were made with the antenna positioned in both the horizontal and vertical planes of Polarization, and the measurement antenna was varied from 1 m to 4 m. in height above the reference ground plane to obtain the maximum signal strength.

- (4) Below pre-scan procedure was first performed in order to find prominent frequency spectrum radiated emissions from 9KHz to 25GHz:
- (a) Scanning the peak frequency spectrum with the antenna specified in step (3), and the EUT was rotated 360 degree, the antenna height was varied from 1m to 4m(Except loop antenna, it's fixed 1m above ground.)
- (b) Change work frequency or channel of device if practicable.
- (c) Change modulation type of device if practicable.
- (d) new battery is used during testing
- (e) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions.

51 of 67

Spectrum frequency from 9KHz to 25GHz (tenth harmonic of fundamental frequency) was investigated, and no any obvious emission were detected from 18GHz to 25GHz, so below final test was performed with frequency range from 9KHz to 18GHz.

- (f) the EUT were test at X, Y, Z axis, only list the worst result(x axis) in the report.
- (5) For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10 2013 on Radiated Emission test.
- (6) The emissions from 9KHz to 1GHz were measured based on CISPR QP detector except for the frequency bands 9-90KHz, 110-490KHz, for emissions from 9KHz-90KHz,110KHz-490KHz and above 1GHz were measured based on average detector, for emissions above 1GHz, peak emissions also be measured and need comply with Peak limit.
- (7) The emissions from 9KHz to 1GHz, QP or average values were measured with EMI receiver with below RBW

Frequency band	RBW
9KHz-150KHz	200Hz
150KHz-30MHz	9KHz
30MHz-1GHz	120KHz

(8) For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz for Peak measure; RBW is set at 1MHz, VBW is set at 10Hz for Average measure(according ANSI C63.10:2013 clause 4.2.3.2.3 procedure for average measure). Peak detector is used for Peak and AV measurement both.

8.5. TEST RESULT

PASS. (See below detailed test result)

All the emissions except fundamental emission from 9KHz to 25GHz were comply with 15.209 limit.

Note1: According exploratory test no any obvious emission were detected from 9KHz to 30MHz and 18GHz to 25GHz, so the final test was performed with frequency range from 30MHz to 18GHz and recorded in below.

Note2: For below test data, when the limit tabular marked "/" means this frequency point is the fundamental emission and no need comply with this limit.

Test Result

1621 Ke2nit								
Test Site	:	3m Chamber						
EUT	и.	CRUISER AMPLIFER AND SPEAKER SYSTEM	Tested	Ву	:	Lake		
Power Supply	:	12Vdc	Model	Number	:	76000635		
Condition	:	Temp:24.5'C,Humi:55%, Press:100.1kPa	Test M	ode	:	Tx mode		
Memo	:	GFSK (worst case)	Antenr	na/Distance	:	VULB 9163 /3m		

Frequency	Rec	eiver	Rx An	tenna	Cable loss	Amplifier Gain	Corrected Amplitude	FCC 15.247	
(MHz)	Reading (dBµV)	PK/QP/AV	Polar (H/V)	Factor (dB)	(dB)	(dB)	(dBµV/m)	Limit (dBµV/m)	Margin (dB)
Low Channel (2402)									
4804	55.46	PK	Н	32.3	5.91	31.78	61.89	74	-12.11
4804	39.15	AV	Н	32.3	5.91	31.78	45.58	54	-8.42
4804	56.27	PK	V	32.3	5.91	31.78	62.7	74	-11.3
4804	40.16	AV	V	32.3	5.91	31.78	46.59	54	-7.41
7206	50.09	PK	Н	36.3	6.34	30.97	61.76	74	-12.24
7206	33.01	AV	Н	36.3	6.34	30.97	44.68	54	-9.32
7206	52.14	PK	V	36.3	6.34	30.97	63.81	74	-10.19
7206	33.56	AV	V	36.3	6.34	30.97	45.23	54	-8.77
9608	50.16	PK	Н	37.9	8.01	30.86	65.21	74	-8.79
9608	32.25	AV	Н	37.9	8.01	30.86	47.3	54	-6.7
9608	52.18	PK	V	37.9	8.01	30.86	67.23	74	-6.77
9608	34.02	AV	V	37.9	8.01	30.86	49.07	54	-4.93
651.45	47.13	QP	Н	14.2	2.74	27.6	36.47	46	-9.53
651.45	48.25	QP	V	14.2	2.74	27.6	37.59	46	-8.41
			Mid	ddle Chan	nel (2441)			
4882	51.89	PK	Н	32.9	6.34	31.78	59.35	74	-14.65
4882	34.43	AV	Н	32.9	6.34	31.78	41.89	54	-12.11
4882	52.17	PK	V	32.9	6.34	31.78	59.63	74	-14.37
4882	35.24	AV	V	32.9	6.34	31.78	42.7	54	-11.3
7323	50.07	PK	Н	37.1	6.72	30.97	62.92	74	-11.08
7323	31.72	AV	Н	37.1	6.72	30.97	44.57	54	-9.43
7323	52.46	PK	V	37.1	6.72	30.97	65.31	74	-8.69
7323	33.21	AV	V	37.1	6.72	30.97	46.06	54	-7.94
9764	45.34	PK	Н	38.6	8.43	30.86	61.51	74	-12.49
9764	27.16	AV	Н	38.6	8.43	30.86	43.33	54	-10.67
9764	46.52	PK	V	38.6	8.43	30.86	62.69	74	-11.31

ATT Product Service Co., Ltd (CBTL Lab of UL/Demko)

No. 3, ChangLianShan Industrial Park, ChangAn Town, DongGuan City, GuangDong, China.

Phone: 86-769-8509 8000; Fax: 86-769-8509 8777 E-mail:att@attps.cn

Report No.: 16FBS03020 41 54 of 67

9764	28.94	AV	V	38.6	8.43	30.86	45.11	54	-8.89
645.92	40.12	QP	Н	14.2	2.74	27.6	29.46	46	-16.54
645.92	43.76	QP	V	14.2	2.74	27.6	33.1	46	-12.9
			Hi	gh Chann	el (2480)				
4960	52.97	PK	Н	33.1	6.39	31.78	60.68	74	-13.32
4960	33.59	AV	Н	33.1	6.39	31.78	41.3	54	-12.7
4960	54.64	PK	V	33.1	6.39	31.78	62.35	74	-11.65
4960	35.16	AV	V	33.1	6.39	31.78	42.87	54	-11.13
7440	49.88	PK	Н	37.2	6.77	30.97	62.88	74	-11.12
7440	30.17	AV	Н	37.2	6.77	30.97	43.17	54	-10.83
7440	50.43	PK	V	37.2	6.77	30.97	63.43	74	-10.57
7440	32.09	AV	V	37.2	6.77	30.97	45.09	54	-8.91
9920	46.18	PK	Н	38.7	8.48	30.86	62.5	74	-11.5
9920	27.84	AV	Н	38.7	8.48	30.86	44.16	54	-9.84
9920	46.12	PK	V	38.7	8.48	30.86	62.44	74	-11.56
9920	28.33	AV	V	38.7	8.48	30.86	44.65	54	-9.35
578.39	43.68	QP	Н	14.2	2.74	27.6	33.02	46	-12.98
578.39	44.97	QP	V	14.2	2.74	27.6	34.31	46	-11.69

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss

2. If Peak Result comply with QP limit, QP Result is deemed to comply with QP limit

9. BAND EDGE

Report No.: 16FBS03020 41

9.1. TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Due.	Cal. Interval
1	EMI Test Receiver	R&S	ESU8	100316	2016/12/19	1 Year
2	Spectrum analyzer	R&S	FSU	1166.1660.2 6	2016/12/19	1 Year
3	Double Ridged Horn Antenna	Schwarzbeck	BBHA9120D	9120D 1065	2016/12/19	1 Year
4	Horn Antenna	Schwarzbeck	BBHA 9170	9170 1248	2016/12/19	1 Year
5	Pre-amplifier	A.H.	PAM0-0118	360	2016/12/19	1 Year
6	RF Cable	R&S	R01	10403	2016/12/19	1 Year
7	RF Cable	R&S	R02	10512	2016/12/19	1 Year

9.2. BLOCK DIAGRAM OF TEST SETUP

ATT Product Service Co., Ltd (CBTL Lab of UL/Demko)

No. 3, ChangLianShan Industrial Park, ChangAn Town, DongGuan City, GuangDong, China.

Phone: 86-769-8509 8000; Fax: 86-769-8509 8777 E-mail:att@attps.cn

9.3. **LIMIT**

All the lower and upper band-edges emissions appearing within 2310MHz to 2390MHz and 2483.5MHz to 2500MHz restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation frequency band 2400MHz to 2483.5MHz shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

9.4. TEST PROCEDURE

Same with clause 8.4 except change investigated frequency range from 2100MHz to 2450MHz and 2450MHz to 2500MHz.

Remark: All restriction band have been tested, and only the worse case is shown in report.

9.5. TEST RESULT

Frequency	Receiver		Rx Antenna		Cable loss	Amplifier Gain	Corrected Amplitude	FCC 15.247		
(MHz)	Reading (dBµV)	PK/QP/AV	Polar (H/V)	Factor (dB)	(dB)	(dB)	(dBµV/m)	Limit (dBµV/m)	Margin (dB)	
Lowest Channel (GFSK)										
2390	24.56	PK	Н	27.8	3.57	0	55.93	74	-18.07	
2390	10.02	AV	Н	27.8	3.57	0	41.39	54	-12.61	
2390	25.57	PK	V	27.8	3.57	0	56.94	74	-17.06	
2390	11.23	AV	V	27.8	3.57	0	42.6	54	-11.4	
2400	23.64	PK	Н	28	3.57	0	55.21	74	-18.79	
2400	11.63	AV	Н	28	3.57	0	43.2	54	-10.8	
2400	25.98	PK	V	28	3.57	0	57.55	74	-16.45	
2400	12.13	AV	V	28	3.57	0	43.7	54	-10.3	
			Н	ighest Cha	nnel (GFS	SK)				
2483.5	23.15	PK	Н	28.7	3.72	0	55.57	74	-18.43	
2483.5	10.06	AV	Н	28.7	3.72	0	42.48	54	-11.52	
2483.5	25.11	PK	V	28.7	3.72	0	57.53	74	-16.47	
2483.5	11.64	AV	V	28.7	3.72	0	44.06	54	-9.94	
			Low	est Channe	el (π/4DQ	PSK)				
2390	24.58	PK	Н	27.9	3.57	0	56.05	74	-17.95	
2390	10.23	AV	Н	27.9	3.57	0	41.7	54	-12.3	
2390	26.49	PK	V	27.9	3.57	0	57.96	74	-16.04	
2390	11.07	AV	V	27.9	3.57	0	42.54	54	-11.46	
2400	25.78	PK	Н	28	3.57	0	57.35	74	-16.65	
2400	11.03	AV	Н	28	3.57	0	42.6	54	-11.4	
2400	26.41	PK	V	28	3.57	0	57.98	74	-16.02	
2400	12.23	AV	V	28	3.57	0	43.8	54	-10.2	

Report No.: 16FBS03020 41 57 of 67

Highest Channel (π /4DQPSK)									
2483.5	22.37	PK	Н	28.7	3.72	0	54.79	74	-19.21
2483.5	10.09	AV	Н	28.7	3.72	0	42.51	54	-11.49
2483.5	24.16	PK	V	28.7	3.72	0	56.58	74	-17.42
2483.5	11.34	AV	V	28.7	3.72	0	43.76	54	-10.24

Lowest Channel (8DBSK)									
2390	25.12	PK	Н	27.9	3.57	0	56.59	74	-17.41
2390	10.61	AV	Н	27.9	3.57	0	42.08	54	-11.92
2390	27.44	PK	V	27.9	3.57	0	58.91	74	-15.09
2390	12.32	AV	V	27.9	3.57	0	43.79	54	-10.21
2400	25.76	PK	Η	28	3.57	0	57.33	74	-16.67
2400	11.73	AV	Н	28	3.57	0	43.3	54	-10.7
2400	27.19	PK	V	28	3.57	0	58.76	74	-15.24
2400	12.39	AV	V	28	3.57	0	43.96	54	-10.04
Highest Channel (8DBSK)									
2483.5	28.49	PK	Н	28.7	3.72	0	60.91	74	-13.09
2483.5	11.67	AV	Н	28.7	3.72	0	44.09	54	-9.91
2483.5	29.52	PK	V	28.7	3.72	0	61.94	74	-12.06
2483.5	12.68	AV	V	28.7	3.72	0	45.1	54	-8.9

Note: 1. Result Level = Read Level + Antenna Factor + Cable Loss- Amplifier Gain

2. After test and evaluation hopping off mode and hopping on mode, will record worst case (hopping off mode) in this report.

10. Conducted Spurious Emissions

10.1. Test Equipment

Report No.: 16FBS03020 41

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Due.	Cal. Interval
1	Spectrum analyzer	R&S	FSU	1166.1660.2 6	2016/12/19	1 Year
. 2	Attenuator	Mini-Circuits	BW-S10W2	101109	2016/12/19	1 Year
. 3	RF Cable	Micable	C10-01-01-1	100309	2016/12/19	1 Year

10.2. Limit

In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

10.3. Test Procedure

The transmitter output was connected to a spectrum analyzer, The resolution bandwidth is set to 100 kHz, The video bandwidth is set to 300 kHz and measure all the emissions detected.

10.4. Test result

PASS (See below detailed test result.)

Note: Hopping on and Hopping off mode all have been tested, only worse case hopping off mode is reported

Date: 25.MAR.2016 08:18:15

Date: 25.MAR.2016 08:20:11

60 of 67

Date: 25.MAR.2016 08:25:36

Date: 25.MAR.2016 08:26:59

8DPSK

Date: 25.MAR.2016 08:30:34

Date: 25.MAR.2016 08:32:52

62 of 67

Report No.: 16FBS03020 41 63 of 67

ATT Product Service Co., Ltd (CBTL Lab of UL/Demko)
No. 3, ChangLianShan Industrial Park, ChangAn Town, DongGuan City, GuangDong, China.
Phone: 86-769-8509 8000; Fax: 86-769-8509 8777 E-mail:att@attps.cn

Stop 26.5 GHz

Report No.: 16FBS03020 41

Start 30 MHz

π /4DQPSK 2480MHz

2.647 GHz/

65 of 67

8DPSK 2441MHz

Report No.: 16FBS03020 41 67 of 67 cnas L3098

11. ANTENNA REQUIREMENTS

11.1. Limit

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

11.2. RESULT

The antennas used for this product are dipole antenna and other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 0 dBi. The EUT has an internal antenna, the directional gain of antenna is 0 dBi, and the antenna connector is designed with permanent attachment and no consideration of replacement. Therefore the EUT is considered sufficient to comply with the provision.

END OF REPORT