Instrumented Principal Component Analysis Kelly, Pruitt, Su (2018)

Nhi Truong, Yu Wang

September 30, 2019

Arbitrage Pricing Theory

- Let $r_{i,t}$ denote the excess return of some stock i at time t.
- Ross (1976): Arbitrage Pricing Theory: there exists SDF m_t such that

$$\mathbb{E}_{t}[r_{i,t+1}] = \underbrace{\frac{\operatorname{Cov}(m_{t+1}, r_{i,t+1})}{\operatorname{Var}_{t}(m_{t+1})}}_{\beta_{i,t}} \underbrace{\left(-\frac{\operatorname{Var}_{t}(m_{t+1})}{\mathbb{E}_{t}[m_{t+1}]}\right)}_{\lambda_{t}}.$$

- $\beta_{i,t}$: exposure to systematic risk
- λ_t : risk premium

Recall from homework 3:

$$\underbrace{R}_{N\times T} = \underbrace{\Lambda}_{N\times K} \underbrace{F}_{K\times T} + \underbrace{e}_{N\times T}.$$

- Previous presentation on projected PCA: Λ is a function of observable characteristics (written in terms of basis functions).
- Projected RP-PCA: Λ is a function of observable characteristics, with basis functions being indicators of characteristics by deciles.
- IPCA: Λ is a linear function of characteristics.

- N stocks, L characteristics, K factors
- Model:

$$r_{t+1} = \alpha_t + \beta_t \underbrace{f_{t+1}}_{K \times 1} + \epsilon_{t+1}$$

$$\alpha_t = \underbrace{Z_t}_{N \times L} \underbrace{\Gamma_{\alpha}}_{L \times 1} + \nu_{\alpha,t}, \quad \beta_{i,t} = Z_t \underbrace{\Gamma_{\beta}}_{L \times K} + \nu_{\beta,t}$$

- Z_t is matrix of stacked observable characteristics.
- Γ_{β} : linear map from characteristics to loading.
- Γ_{α} : linear map from chracteristics to stock's alphas.

Managed Portfolios

- Z_t is stock's characteristics ranked and normalized to be in [-0.5, 0.5].
- Let $X_t = Z'_t r_{t+1}$, get L portfolios
- Suppose $\Gamma_{\alpha} = 0$. Model becomes:

$$X_t = Z_t' Z_t \Gamma_{\beta} f_{t+1} + \epsilon_{t+1}^*.$$

• If $Z_t'Z_t \approx$ constant, then minimizing squared residual is the same as doing PCA.

• Restricted case ($\Gamma_{\alpha} = 0$):

$$\Gamma'_{eta}\Gamma_{eta} = I_{K imes K}$$
 $Cov(f_t) = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_K \end{pmatrix}$
 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_K$

• Unrestricted Case ($\Gamma_{\alpha} \neq 0$):

$$\Gamma'_{\alpha}\Gamma_{\beta}=0_{1\times K}.$$

• Recall model:

$$r_{t+1} = Z_t \Gamma_{\beta} f_{t+1} + \epsilon_{t+1}^*.$$

• Objective: minimize sum of squared errors:

$$\min_{\Gamma_{\beta}, f_{t}} \quad \sum_{t=1}^{I-1} (r_{t+1} - Z_{t} \Gamma_{\beta} f_{t+1})' (r_{t+1} - Z_{t} \Gamma_{\beta} f_{t+1})$$

• Search strategy: alternating least square

Unrestricted Model: $\Gamma_{\alpha} \neq 0$

• Recall model:

Introduction

$$r_{t+1} = Z_t \Gamma_{\alpha} + Z_t \Gamma_{\beta} f_{t+1} + \epsilon_{t+1}^*.$$

• Let $\tilde{\Gamma} = [\Gamma_{\alpha}, \Gamma_{\beta}]$, and $\tilde{f}_t = [1, f_t]^T$,

$$r_{t+1} = Z_t \tilde{\Gamma} \tilde{f}_{t+1} + \tilde{\epsilon}_{t+1}.$$

• Use the same search strategy as before, then back out Γ_{α} , Γ_{β} from $\tilde{\Gamma}$, and f_{t+1} from \tilde{f}_{t+1} .

Introduction

Alternating Least Squares

while not convergent do

Algorithm 1: Alternating Least Square

initialization: $\hat{\Gamma}_{\beta}$ as eigenvectors corresponding to K largest eigenvalues of $\sum_{t=1}^{T} X_t X_t'$.

$$\begin{split} \hat{f}_{t+1} &= (\hat{\Gamma}_{\beta}' Z_t' Z_t \hat{\Gamma}_{\beta})^{-1} \hat{\Gamma}_{\beta}' Z_t' r_{t+1} \text{ for all } t \\ \text{vec}(\hat{\Gamma}_{\beta}) &= \left(\sum_{t=1}^{T-1} Z_t' Z_t \otimes \hat{f}_{t+1} \hat{f}_{t+1}'\right) \left(\sum_{t=1}^{T-1} [Z_t \otimes \hat{f}_{t+1}']' r_{t+1}\right) \end{split}$$

end

Rotate Γ_{β} and F

Data

- From Freyberger, Neuhierl, Weber (2017). Original: CRSP.
- Monthly observations of $\it N=7593$ stocks from 01/71 to 05/14. T = 521
- Average of 2000 stocks/month.
- L=36 characteristics.

Number of Stocks over Time

Dependence of Loadings on Characteristics

Performance Measurement

Total R²:

$$1 - \frac{\sum_{i,t} (r_{i,t+1} - z'_{i,t} (\hat{\Gamma}_{\alpha} + \hat{\Gamma}_{\beta} \hat{f}_{t+1}))^2}{\sum_{i,t} r_{i,t+1}^2}$$

• Predictive R²:

$$1 - \frac{\sum_{i,t} (r_{i,t+1} - z_{i,t}'(\hat{\Gamma}_{\alpha} + \hat{\Gamma}_{\beta}\hat{\lambda}))^2}{\sum_{i,t} r_{i,t+1}^2},$$

where $\hat{\lambda}$ is the average of \hat{f}_{t+1} .

In-sample R^2

		K=1				
Total	$\Gamma_{\alpha} = 0$	0.00105 0.00109	0.00181	0.00251	0.00316	0.00379
	$\Gamma_{lpha} eq 0$	0.00109	0.00186	0.00254	0.00320	0.00382
		-9e-6				-1e-5
	$\Gamma_{lpha} eq 0$	4e-5	4e-5	3e-5	4e-5	2e-5

Out-of-sample
$$R^2$$
: $\Gamma_{\alpha} = 0$

	K=1				
Total R ²					
Pred. R^2	-0.0002	-0.0004	-0.0007	-0.0009	-0.0015

Sharpe Ratio Comparison

	K=1				
IPCA	0.223	0.185	0.265	0.291	0.316
PCA	0.131	0.141	0.252	0.279	0.328

Convergence Plot

Singular Values of $Z'_t Z_t$

Heatmap of $Z'_t Z_t$

Conclusion

- There are many discrepancies in replication and paper's original report.
- Long run time impedes hypothesis testing.
- There is need to understand $Z'_t Z_t$.