Dodatek B — Deklaracje elementów.

Poniżej zestawione zostały w kolejności alfabetycznej deklaracje elementów dostępne w programie PSpice. Każda z nich uzupełniona jest o przykład użycia i komentarz.

B TRANZYSTOR POLOWY ZŁĄCZOWY GAAS

Postać ogólna:

B...... _dren _bramka _źródło _nazwa_modelu [_area]

Przykłady:

BIN 100 1 0 GFAST B13 22 14 23 GNOM 2.0

Tranzystor polowy złączowy GaAs opisywany jest modelem matematycznym zbliżonym do modelu stosowanego dla zwykłego tranzystora polowego złączowego wykonanego w krzemie. Liczba podana w polu **_area** określa ile razy pole powierzchni zajmowane przez deklarowany przyrząd jest większe od pola powierzchni założonego w modelu.

Parametry: strona 160.

Opis modelu: strony 159, 160.

\mathbf{C}

KONDENSATOR

Postać ogólna:

C...... n+ n- [_nazwa_modelu] _pojemność [IC=_v]

Przykłady:

C1 10 0 0.1U

C2 1 2 0.2E-12 IC=1.5V

CFDBK 3 33 CMOD 10pF

Dodatni biegun kondensatora to **n**+, ujemny biegun to **n**-. Dodatni prąd płynie do bieguna dodatniego do bieguna ujemnego przez kondensator. Wartość pojemności podana w polu **_pojemność** może być dodatnia lub ujemna nie może być jednak równa zeru. Za pomocą modelu opisać można zależność pojemności od temperatury i napięcia panującego na zaciskach kondensatora. W polu **_v** podaje się wartość napięcia panującego na zaciskach deklarowanego przyrządu w chwili rozpoczęcia analizy stanu nieustalonego.

Parametry: strona 114. Opis modelu: strona 114. D DIODA

Postać ogólna:

D...... n+ n- nazwa modelu [area]

Przykłady:

DCLAMP 14 0 DMOD D13 15 17 SWITCH 1.5

Anoda diody to **n**+, katoda diody to **n**-. Dodatni prąd płynie od anody do katody przez diodę. Liczba podana w polu **_area** określa ile razy pole powierzchni zajmowane przez deklarowany przyrząd jest większe od pola powierzchni założonego w modelu.

Parametry: strona 130. Opis modelu: strona 129.

E ŹRÓDŁO PRĄDU STEROWANE NAPIĘCIEM

Postać ogólna:

E..... n+ n- nc+ nc- _wzmocnienie

E...... n+ n- POLY(_rzad) <_lista_par_wezłów> <_lista_współczynników>

Przykłady:

EBUFF 1 2 10 11 1.0 ;źródło liniowe EAMP 13 0 POLY(1) 26 0 500 ;źródło liniowe! ENONL 1 11 POLY(2) 3 0 4 0 0 3 .2 0.005 ;źródło nieliniowe

Dodatni biegun źródła to **n**+, ujemny biegun źródła to **n**-. Dodatni prąd płynie od bieguna dodatniego do ujemnego przez źródło. Napięcie sterujące to różnica potencjałów między węzłem o numerze **nc**+ i węzłem o numerze **nc**-. Wzmocnienie źródła podaje się w polu **_wzmocnienie**. W przypadku źródła nieliniowego (słowo kluczowe **POLY**) w polu **_rząd** podaje się liczbę napięć wpływających na wartość napięcia generowanego przez źródło sterowane na zaciskach **n**+,**n**-. W tym przypadku na liście węzłów sterujących **_lista_par_węzłów** trzeba umieścić liczbę par węzłów (każda para to jedno napięcie sterujące) równą liczbie podanej w polu **_rząd**. Współczynniki wielomianu opisującego związek między napięciem sterowanym i napięciami sterującymi podane są na liście **_lista_współczynników**. Współczynniki wielomianu: strona 88.

F ŹRÓDŁO PRĄDU STEROWANE PRĄDEM

Postać ogólna:

F...... n+ n- _nazwa_SEM _wzmocnienie

F..... $n+ n- POLY(_rzad)$ <_lista_nazw> <_lista_wsp>

Przykłady:

FSENSE 1 2 VSENSE 10.0 ;źródło liniowe FAMP 13 0 POLY(1) VIN 500 ;źródło liniowe! FNONL 1 11 POLY(2) V1 V2 0 13.6 0.2 .005 ;źródło nieliniowe

Dodatni biegun źródła to **n**+, ujemny biegun źródła to **n**-. Dodatni prąd płynie od bieguna dodatniego do ujemnego przez źródło. Prąd sterujący płynie przez niezależne źródło napięcia o nazwie podanej w polu **_nazwa_SEM**. Wzmocnienie źródła podaje się w polu **_wzmoc**-

nienie. W przypadku źródła nieliniowego (słowo kluczowe POLY) w polu _rząd podaje się liczbę prądów wpływających na wartość prądu źródła sterowanego. W tym przypadku na liście nazw niezależnych źródeł napięcia _lista_nazw trzeba umieścić nazwy źródeł, przez które płyną prądy sterujące — liczba nazw musi być równa liczbie podanej w polu _rząd. Współczynniki wielomianu opisującego związek między sterowanym prądem i prądami sterującymi podane są na liście _lista_wsp.

Współczynniki wielomianu: strona 88.

G ŹRÓDŁO PRĄDU STEROWANE NAPIĘCIEM

Postać ogólna:

```
G...... n+ n- nc+ nc- _transkonduktancja
G...... n+ n- POLY(_rzad) <_lista_par_wezłów> <_lista_wsp>
```

Przykłady:

```
GBUFF 1 2 10 11 1.0 ;źródło liniowe GAMP 13 0 POLY(1) 26 0 500 ;źródło liniowe! GNONL 1 11 POLY(2) 3 0 4 0 0 13 0.2 .005 ;źródło nieliniowe
```

Dodatni biegun źródła to **n**+, ujemny biegun źródła to **n**-. Dodatni prąd płynie od bieguna dodatniego do ujemnego przez źródło. Napięcie sterujące to różnica potencjałów między węzłem o numerze **nc**+ i węzłem o numerze **nc**-. Transkonduktancję źródła podaje się w polu **_transkonduktancja**. W przypadku źródła nieliniowego (słowo kluczowe **POLY**) w polu **_rząd** podaje się liczbę napięć wpływających na wartość prądu źródła sterowanego. W tym przypadku na liście węzłów sterujących **_lista_par_węzłów** trzeba umieścić liczbę par węzłów (każda para to jedno napięcie sterujące) równą liczbie podanej w polu **_rząd**. Współczynniki wielomianu opisującego związek między sterowanym prądem i napięciami sterującymi podane są na liście **_lista_wsp**.

Współczynniki wielomianu: strona 88.

H ŹRÓDŁO NAPIĘCIA STEROWANE PRĄDEM

Postać ogólna:

Przykłady:

HSENSE 1 2 VSENSE 10.0 ;źródło liniowe HAMP 13 0 POLY(1) VIN 500 ;źródło liniowe!

HNONL 1 11 POLY(2) V1 V2 0 13.6 0.2 .005 ;źródło nieliniowe Dodatni biegun źródła to **n**+, ujemny biegun źródła to **n**-. Dodatni prąd płynie od bieguna dodatniego do ujemnego przez źródło. Prąd sterujący płynie przez niezależne źródło napięcia o nazwie podanej w polu _nazwa_SEM. Transrezystancję źródła podaje się w polu _transrezystancja. W przypadku źródła nieliniowego (słowo kluczowe POLY) w polu _rząd podaje się liczbę prądów wpływających na wartość prądu źródła sterowanego. W tym przypadku na liście nazw niezależnych źródeł napięcia _lista_nazw trzeba umieścić nazwy źródeł, przez które płyną prądy sterujące — liczba nazw musi być równa liczbie podanej w polu _rząd. Współczynniki wielomianu opisującego związek między sterowanym napięciem

i prądami sterującymi podane są na liście **_lista_wsp**. Współczynniki wielomianu: strona 88.

I NIEZALEŻNE ŹRÓDŁO PRĄDU

Postać ogólna:

I...... n+ n- [DC _wdc] [AC _mod [_faz]] [_przebieg_czasowy]

Przykłady:

IBIAS 13 0 2.3mA

IAC 2 3 AC .001

IACF 2 3 AC .001 37

IPUL 2 3 PULSE(0mA 1mA)

IV1 3 2 DC 1 AC 2 90 SIN(0.2mA 1mA 1.5kHz)

Dodatni biegun źródła to **n**+, ujemny biegun źródła to **n**-. Dodatni prąd płynie od bieguna dodatniego do ujemnego przez źródło. Składową stałą prądu źródła podaje się w polu _wdc po słowie kluczowym **DC**. Po słowie kluczowym **AC** podaje się amplitudę (pole _mod) i fazę (pole _faz) składowej zmiennej źródła. Na końcy deklaracji można podać przebieg czasowy prądu źródła. Możliwe są następujące przebiegi:

EXP Ekspotencialny — opis na stronie 76.

PULSE Przebieg prostokątny — opis na stronie 74.

PWL Odcinkowo–liniowy — opis na stronie 77.

SFFM Sinusoida o częstotliwości modulowanej sinusoidą — opis na stronie 77.

SIN Sinusoidalny — opis na stronie 75.

Patrz strony: 9, 46, 73.

J TRANZYSTOR POLOWY ZŁĄCZOWY

Postać ogólna:

J...... dren bramka źródło nazwa modelu [area]

Przykłady:

JIN 100 1 0 JFAST

J23 22 14 23 JNOM 2.0

Liczba podana w polu **_area** określa ile razy pole powierzchni zajmowane przez deklarowany przyrząd jest większe od pola powierzchni założonego w modelu.

Parametry: strona 155. Opis modelu: strona 156.

K Sprzężenie cewek (nieliniowy rdzeń magnetyczny)

Postać ogólna:

K...... <_lista_nazw_IND> _wsp_sprzężenia

K...... <_lista_nazw_IND> _wsp_sprzężenia _nazwa_modelu

Przykłady:

K1 L12 LWZ 0.82

KTRAF L1 L2 0.99

KNONL L1 L2 L3 L4 0.98 F3001

Element sprzęga magnetycznie cewki, których nazwy wymieniono na liście **_lista_nazw_IND**. Bezwymiarowy współczynnik sprzężenia podaje się w polu **_wsp_sprzężenia**. Jeżeli podana zostanie nazwa modelu (pole **_nazwa_modelu**) to sprzężenie magnetyczne realizowane jest poprzez nieliniowy rdzeń magnetyczny. W tym przypadku należy pamiętać, że:

□ W deklaracjach sprzęganych cewek zamiast indukcyjności podaje się liczbę zwojów.

□ Na liście **_lista_nazw_IND** może pojawić się tylko jedna nazwa cewki. W ten sposób można modelować cewkę z nieliniowym rdzeniem magnetycznym.

☐ Materiał magnetyczny opisywany jest zmodyfikowanym modelem Jiles–a Atherton–a.

Parametry: strona 117. Opis modelu: strona 118.

L

CEWKA MAGNETYCZNA

Postać ogólna:

L...... n+ n- [_nazwa_modelu] _indukcyjność [IC=_i]

Przykłady:

LLOAD 15 0 20mH

L2 1 2 1.2E-6

LGEN 3 42 LMODE 0.03

LSENSE 5 12 2UH IC=2mA

Dodatni biegun cewki to **n**+, ujemny biegun cewki to **n**-. Dodatni prąd płynie od bieguna dodatniego do ujemnego przez cewkę. Cewka może być opisywana modelem, którego nazwę podaje się w polu _**nazwa_modelu**. Model pozwala uwzględnić zmiany indukcyjności z temperaturą oraz prostych zjawisk nieliniowych. Jednak aby dokładnie opisać zachowanie cewki z nieliniowym rdzeniem magnetycznym konieczne jest zadeklarowanie elementu typu K...... — sprzężenia cewek. Wartość indukcyjności podana w polu _**indukcyjność** może być dodatnia lub ujemna nie może być jednak równa zeru. W polu _**i** podaje się wartość prądu płynącego przez indukcyjność w chwili rozpoczęcia analizy stanów nieustalonych.

Parametry: strona 115. Opis modelu: strona 115.

M TRANZYSTOR POLOWY MOS

Postać ogólna:

M...... _dren _bramka _źródło _podłoże _nazwa_modelu +[L=_var1] [W=_var2] [AD=_var3] [AS=_var4] [PD=_var5] [PS=_var6] +[NRD=_var7] [NRS=_var8] [NRG=_var9] [NRB=_var10]

Przykłady:

M1 14 2 13 0 PNOM L=25U W=12U

MAS 15 3 0 0 PSTRONG

MA2 0 2 100 100 NWEK L=33U W=12U AD=288P AS=288P PD=60U

+PS=60U NRD=14 NRS=24 NRG=10

Parametry, które można podać w linii deklaracji tranzystora MOS mają następujące znaczenie:

L Długość kanału tranzystora. Wartość domyślna wynosi 100[µm].

W Szerokość kanału tranzystora. Wartość domyślna wynosi 100[μm].

- **AD** Pole powierzchni obszaru dyfuzji drenu. Służy do obliczania prądu nasycenia oraz pojemności złącza dren–podłoże.
- AS Pole powierzchni obszaru dyfuzji źródła. Służy do obliczania prądu nasycenia oraz pojemności złącza źródło–podłoże.
- **PD** Obwód obszaru dyfuzji drenu. Służy do obliczania pojemności części bocznej (zakrzywionej) złącza dren–podłoże.
- **PS** Obwód obszaru dyfuzji źródła. Służy do obliczania pojemności części bocznej (zakrzywionej) złącza źródło–podłoże.
- NRD Względna rezystancja obszaru drenu wyrażona liczbą kwadratów.
- NRS Względna rezystancja obszaru źródła wyrażona liczbą kwadratów.
- NRG Względna rezystancja obszaru bramki wyrażona liczba kwadratów.
- NRB Względna rezystancja obszaru podłoża wyrażona liczbą kwadratów.

Parametry: strony 165, 176, 184. Opis modelu: strony 166, 174, 184.

Q

TRANZYSTOR BIPOLARNY

Postać ogólna:

Q...... _kolektor _baza _emiter [_podłoże] _nazwa_modelu [_area]

Przykłady:

O1 14 2 13 PNOM

Q13 15 3 0 1 NPNSTRONG 1.5

Liczba podana w polu **_area** określa ile razy pole powierzchni zajmowane przez deklarowany przyrząd jest większe od pola powierzchni założonego w modelu. Parametry modelu **ISC** oraz **ISE** oznaczające prądy nasycenia dla prądów upływu złącza kolektor–baza i złącza emiter–baza mogą przyjąć wartości >1.0. W tym przypadku prądy nasycenia dla prądów upływu obliczane są jako iloczyn parametru **IS** (prąd nasycenia złączy) i odpowiednio parametru **ISC** oraz **ISE**.

Parametry: strony 141, 148. Opis modelu: strona 139.

R

OPORNIK

Postać ogólna:

R..... n+ n- [_nazwa_modelu] _oporność

Przykłady:

RLOAD 15 0 2K

R2 1 2 MOJ 2.0

Dodatni biegun opornika to **n**+, ujemny biegun to **n**-. Dodatni prąd płynie do bieguna dodatniego do bieguna ujemnego przez opornik. Wartość oporności podana w polu **_oporność** może być dodatnia lub ujemna nie może być jednak równa zeru. Za pomocą modelu można opisać zależność oporności od temperatury.

Parametry: strona 112. Opis modelu: strona 112.

S KLUCZ STEROWANY NAPIĘCIEM

Postać ogólna:

S..... n+ n- nc+ nc- nazwa modelu

Przykłady:

S12 13 17 2 0 SMOD

SRESET 5 0 15 3 RELAY

Klucz sterowany napięciem jest rodzajem nieliniowego opornika wpiętego między węzły **n**+ i **n**-. Wartość oporności zmienia się w sposób ciągły przy zmianach napięcia panującego między węzłami **nc**+ i **nc**-.

Parametry: strona 78.

T BEZSTRATNA LINIA DŁUGA

Postać ogólna:

T...... na+ na- nb+ nb- Z0=_var1 [TD=_var2] [F=_var3] [NL=_var4]

Przykłady:

T1 1 2 3 4 Z0=220OHM TD=115NS

T2 1 2 3 4 Z0=220OHM F=2.25MHz

T3 1 2 3 4 Z0=220OHM F=4.5MHz NL=0.5

Wejście linii dołączone jest do węzłów o numerach **na+** i **na-**. Wyjście linii dołączone jest do węzłów numerach **nb+** i **nb-**. Po słowie kluczowym **Z0** podaje się impedancję falową linii. Czas przelotu linii podaje się bezpośrednio po słowie kluczowym **TD** lub przez podanie częstotliwości fali (parametr **F**) i względnej długości linii **NL**. Jeżeli parametr **NL** nie zostanie podany to przyjmuje się, że **NL**=0.25, tzn. że linia jest ćwierćfalowa.

Patrz strona: 79.

V NIEZALEŻNE ŹRÓDŁO NAPIĘCIA — SEM

Postać ogólna:

V...... n+ n- [DC _war] [AC _amp [_faz]] [_przebieg_czasowy]

Przykłady:

VBIAS 12 0 2.3mV

VAC 2 3 AC 0.001

VACFAZ 2 3 AC .001 50

VPULSE 1 0 PULSE(0 1)

V3 26 77 DC 12 AC 1.2 56 SIN(1.2 12 200kHz)

Dodatni biegun źródła to **n**+, ujemny biegun źródła to **n**-. Dodatni prąd płynie od bieguna dodatniego do ujemnego przez źródło. Składową stałą napięcia źródła podaje się w polu _war po słowie kluczowym **DC**. Po słowie kluczowym **AC** podaje się amplitudę (pole _amp) i fazę (pole _faz) składowej zmiennej źródła. Na końcy deklaracji można podać przebieg czasowy prądu źródła. Możliwe są następujące przebiegi:

EXP Ekspotencialny — opis na stronie 76.

PULSE Przebieg prostokątny — opis na stronie 74.

PWL Odcinkowo–liniowy — opis na stronie 77.

SFFM Sinusoida o częstotliwości modulowanej sinusoidą — opis na stronie 77.

SIN Sinusoidalny — opis na stronie 75.

Patrz strona: 9, 46, 73.

W KLUCZ STEROWANY PRĄDEM

Postać ogólna:

W...... n+ n- _nazwa_źródła _nazwa_modelu

Przykłady:

W12 13 17 VC WMOD

WRESET 5 0 VRESET RELAY

Klucz sterowany prądem jest rodzajem nieliniowego opornika wpiętego między węzły **n**+ i **n**-. Wartość oporności zmienia się w sposób ciągły przy zmianach prądu płynącego przez niezależne źródło napięcia, którego nazwa została podana w polu **_nazwa_źródła**.

Patrz strona: 78.

X PODOBWÓD

Postać ogólna:

X...... <_lista_wezłów> _nazwa_podobwodu

Przykłady:

X12 100 101 200 201 DIFAMP

XBUFF 13 15 UNITAMP

Pseudoelement o nazwie zaczynającej się od litery "X" służy do włączenia podobwodu o nazwie podanej w polu **_nazwa_podobwodu** w strukturę obwodu. Na liście węzłów **_lista_węzłów** powinny się znaleźć numery węzłów obwodu, do których dołączone zostaną węzły podobwodu udostępniane na zewnątrz. Liczba węzłów umieszczonych na liście **_lista_węzłów** musi być taka sama jak liczba węzłów zadeklarowana w deklaracji .SUBCKT. Wywołania podobwodów mogą być zagnieżdżane.

Patrz strona: 68.