

单元1.4 无向图的连通度

第14章 图的基本概念

14.3 图的连通性

参考书目: 戴一奇等, 《图论与代数结构》, 清华大学出版社

讲义参考北京大学《离散数学》及电子科技大学《离散数学》讲义

网络鲁棒性量化分析

状态 车次 始发站 终到站 到点 开点 检票口 晚5分钟 西安北 北京西 **G670** 20:09 20:15 A4. B4 G691 太原南 武汉 20:19 20:22 A12, B12 **G525** 北京西 汉口 20:32 晚点末定 20:35 A13, B13 **G558** 武汉 北京西 20:38 20:41 A9. B9 G561 北京西 郑州 20:38 20:41 晚点末 A15, B15 G669 北京西 西安北 20:48 20:56 A5. B5 G527 北京西 武汉 21:31 21:34 A12, B12 候车

sina 新闻中心

日本地震 震断全球供应链?

原标题: 日本地震 震断全球供应链?

这是4月16日在日本熊本县益城拍摄的在地震中遭到破坏的房屋。新华

【深圳商报讯】日前,多起余震在位于日本南端的整个九州岛不断扩散。此前,一场里 氏7.3级的地震导致41人丧生,并让该地区的高科技制造业陷入停顿。

除了已确认的死亡情况外,还有逾1000人受伤,18.4万人被疏散至住房以外。长206 米、1970年通车的单孔大桥阿苏大桥崩塌,坠入了下方黑川深邃的峡谷中,此次地震的破坏 力可见一斑。

靠近震中的熊本市拥有庞大的半导体工业,索尼和本田等制造商也在该地区建有工厂。 地震令各企业慌忙确认工厂受到的损害,引发了全球供应链被打断的担忧。九州岛配件供应短 缺迫使丰田在全日本的汽车工厂启动了临时的停产措施。

上周四发生首次地震后,索尼暂停了熊本工厂的图像传感器生产,这种传感器被用于苹 果的和其他智能手机的摄像头上。上周日,位于附近长崎和大分的另外两处图像传感器工厂的 生产线已恢复运行。对于是否能通过把生产转移至其他工厂来弥补产能方面的损失,索尼拒绝 置评。

内容提要

- 点割集、点连通度
- 边割集、边连通度

如何定量比较连通性?

• 如何定义一个图比另一个图的连通性更好?

点连通度、边连通度

- 为了破坏连通性,至少需要删除多少个顶点?
- 为了破坏连通性,至少需要删除多少条边?
- "破坏"连通性:
 - p(G-V') > p(G)
 - p(G-E') > p(G)
 - 连通分支数增加

点割集

- 点割集: G=<V,E>, Ø≠V'⊂V, (1) p(G-V')>p(G);
 (2) ∀ V"⊂V', p(G-V")=p(G) (极小性条件)
- 例 G₁: {f},{a,e,c},{g,k,j}, {b,e,f,k,h}不是 G₂: {f}不是,{a,e,c},{g,k,j},{b,e,f,k,h}

割点

- v是割点 ⇔ {v}是割集
- 例: G₁中f是割点, G₂中无割点

割点的充分必要条件

• 定理:

无向连通图G中顶点v是割点

⇔ 可把V(G)-{v}划分成V₁与V₂, 使得从V₁中任意顶点 u到V₂中任意顶点w的路径都要经过v. #

割点的充分必要条件

- 推论: 无向连通图G中顶点v是割点
- ⇔存在与v不同的顶点u和w,使得从顶点u到w的路径都要经过v. #

举例

• 求下图的全部点割集,并指出其中的割点。

边割集

- 边割集: G=<V,E>, Ø≠E'⊂E, (1) p(G-E')>p(G);
 (2) ∀E"⊂E', p(G-E")=p(G) (极小性条件)
- 例: G₁: {(a,f),(e,f),(d,f)}, {(f,g),(f,k),(j,k),(j,i)}, {(c,d)}不是, {(a,f),(e,f),(d,f),(f,g),(f,k),(f,j)}不是 G₂: {(b,a),(b,e),(b,c)}

引理1

- 设E'是边割集,则p(G-E')=p(G)+1.
- 证: 如果p(G-E')>p(G)+1, 则E'不是边割集, 因为不满 足定义中的极小性. #

• 注: 点割集无此性质

割边(桥)

- (u,v)是割边 ⇔ {(u,v)}是边割集
- 例: G₁中(f,g)是桥, G₂中无桥

桥的充分必要条件

- 定理: 无向连通图G中边e是桥
- ⇔ G的任何圈都不经过e
- \leftrightarrow 可把V(G)划分成V₁与V₂, 使得从V₁中 任意顶点u到V₂中任意顶点v的路径都要经过e. #

扇形割集

- E'为扇形割集: 边割集E' \subseteq v的关联集 $I_G(v)$
- I_G(v)不一定是边割集(不一定极小)
- I_G(v)是边割集 ⇔ v不是割点

扇形割集举例

- {(a,g),(a,b)},{(g,a),(g,b),(g,c)},
- {(c,d)}, {(d,e),(d,f)}
- {(d,c),(d,e),(d,f)}不是

求下图的全部边割集,并指出其中的桥。

Open Question is only supported on Version 2.0 or newer.

Answer

点连通度

- G是无向连通非完全图,
 κ(G) = min{ | V'| | V'是G的点割集 }
- 规定: κ(K_n) = n-1
 非完全图点连通度最多n-2
 G非连通: κ(G)=0
 (平凡图N₁连通, 但κ(N₁) = κ(K₁) = 0)

点连通度举例

• $\kappa(G)=1, \kappa(H)=2, \kappa(F)=3, \kappa(K_5)=4$

边连通度

G是无向连通图,
 λ(G) = min{ | E'| | E'是G的边割集 }

• 规定: G非连通: λ(G)=0

边连通度举例

• $\lambda(G)=1, \lambda(H)=2, \lambda(F)=3, \lambda(K_5)=4$

举例

• 求下图的点连通度和边连通度。

引理2

• 设E'是非完全连通图G的最小边割集, G-E'的两个(引理1)连通分支是 G_1 , G_2 , 则存在 $u \in V(G_1)$, $v \in V(G_2)$, 使得 $(u,v) \notin E(G)$.

引理2证明

- 证: (反证) 否则
 λ(G) = |E'| = |V(G₁)|×|V(G₂)|
 - ≥ |V(G₁)|+|V(G₂)|-1=n-1, 与G非完全图相矛盾! #
- $a \ge 1 \land b \ge 1 \implies (a-1)(b-1) \ge 0$ $\Leftrightarrow ab-a-b+1 \ge 0 \iff ab \ge a+b-1.$

k-(边)连通图

• k-连通图: κ(G) ≥ k

• K-边连通图: λ(G) ≥ k

• 例: 彼得森图: κ=3, λ=3

它是1-连通图, 2-连通图, 3-连通图,

但不是4-连通图

它是1-边连通图, 2-边连通图, 3-边连通图,

但不是4-边连通图

定理

• 定理: 对3-正则图G,

$$\kappa(G) = \lambda(G)$$
.

• 彼得森图: κ=3, λ=3

https://blog.csdn.net/mygodhome/article/details/6000896

Whitney定理

定理7.10(Whitney不等式): 任意G,
 κ(G) ≤ λ(G) ≤ δ(G).

· 推论: k-连通图一定是k-边连通图. #

• 目标: $\kappa \leq \lambda \leq \delta$.

• 证明: 不妨设G是 3阶以上 连通 非完全 简单图. (否则可直接验证结论成立).

- 第一部分: λ ≤ δ
- 证明: 设 $d_G(v) = \delta$. $I_G(v) = \{ (u,v) \mid (u,v) \in E(G) \}$ 则必有扇形边割集 $S \subseteq I_G(v)$, 所以, $\lambda \leq |S| \leq |I_G(v)| = \delta$.

- 第二部分:κ≤λ
- 证明: 设边割集E'满足|E'|= λ . 根据引理1和引理2, 设G-E'的两个连通分支是 G_1 和 G_2 , 设 $u \in V(G_1), v \in V(G_2)$,使得 $(u,v) \notin E(G)$.

• 如下构造V": 对任何e∈E', 选择e的异于u,v的一个端点放入V". 则 u,v∈G-V"⊆G-E'=G₁∪G₂, 所以 V"中含有点割集V'. 故 $\kappa \leq |V'| \leq |V''| \leq |E'| = \lambda$.#

- 1) 已知无向图G是k-连通图, $k \ge 1$ 。能确定G的点连通度吗?
- 2) 已知无向图G满足 $\kappa(G) = \delta(G)$,试确定其边连通度 $\lambda(G)$ 。
- 3) 已知无向图G既有割点又有桥,试确定其点连通度及边连通度。由已知条件能确定G的最小度 $\delta(G)$ 吗?

Open Question is only supported on Version 2.0 or newer.

小结

- 点割集, 边割集, 点(边)连通度κ(λ);
- κ , λ , δ 之间关系, Whitney定理等
- 割点,桥的充要条件