## UPPSALA UNIVERSITY Department of Mathematics Stephan Wagner

PROBABILITY AND MARTINGALES
1MS045
5 June 2023

Each problem counts 5 points. Grades are awarded according to the following scale: 0–17 grade U; 18–24 grade 3; 25–31 grade 4; 32–40 grade 5. Allowed tools: pen, paper, calculator. All solutions should be clearly explained.

Note: if not specified otherwise, all random variables are finite and real-valued, with the usual  $\sigma$ -algebra of Borel sets.

- 1. (a) State the first and the second Borel–Cantelli lemma. (2)
  - (b) Let  $X_1, X_2, ...$  be independent identically distributed random variables with density  $f(x) = (a-1)x^{-a}I_{[1,\infty)}(x)$  for some a > 1. Prove: if  $a \le 2$ , then  $X_n > n$  occurs infinitely often (a.s.). If a > 2, then  $X_n > n$  only occurs finitely often (a.s.). (3)
- 2. Let X be a non-negative random variable. Show that the family  $\{X_n; n \geq 0\}$  of random variables defined by  $X_n = \min(X, n)$  (for non-negative integers n) is uniformly integrable if and only if X is integrable. (5)
- 3. (a) State Fatou's lemma on sequences of non-negative measurable functions. (2)
  - (b) Prove the dominated convergence theorem: given a measure space  $(\Omega, \mathcal{F}, \mu)$ , let  $\{f_n; n \geq 0\}$  be a sequence of measurable functions with  $f_n \to f$ , and g an integrable function such that  $|f_n(x)| \leq g(x)$  for all n and x. Then we have  $\lim_{n\to\infty} \int f_n d\mu = \int f d\mu$ .
- 4. Let  $Y_1, Y_2, ...$  be independent random variables with  $P(Y_i = 1) = \frac{1}{2}$  and  $P(Y_i = 0) = P(Y_i = -1) = \frac{1}{4}$  for all i, and consider the sum  $X_n = \sum_{i=1}^n Y_i$ .
  - (a) Find a constant  $\theta \neq 1$  such that  $\theta^{X_n}$  is a martingale. (1)
  - (b) Find a (deterministic) function f(n) such that  $X_n f(n)$  is a martingale. (1)
  - (c) Let a and b be positive integers. Determine the probability that  $X_n$  reaches the value a before the value -b.
- 5. For each of the following statements, decide if it is true or false. If true, give a proof. If false, provide a counterexample.
  - (a) If  $\{X_n; n \geq 0\}$  is both a submartingale and a supermartingale (with respect to the same filtration), then it is a martingale. (1)
  - (b) For every martingale  $\{X_n; n \geq 0\}$  and every stopping time T with  $P(T < \infty) = 1$ , we have  $\mathbb{E}(X_T) = \mathbb{E}(X_0)$ .
  - (c) If  $\{X_n; n \ge 0\}$  is a positive martingale (i.e.,  $X_n > 0$  for all n), then  $\lim_{n \to \infty} X_n > 0$  holds almost surely. (2)

6. Prove *Doob's submartingale inequality*: for every non-negative submartingale  $\{Z_n; n \ge 0\}$  and every c > 0, we have

$$cP(\sup_{k\leq n} Z_k \geq c) \leq \mathbb{E}(Z_n).$$

- 7. (a) Define European call options and European put options, and derive the *Call-Put parity*. (2)
  - (b) Consider a simple market model with a single asset  $S_t$  and two time steps as indicated in the following diagram: (3)



The riskless bond is assumed to be  $S_t^0=1$ . Determine all equivalent martingale measures. Is this model viable? Is it complete?

8. Describe the *binomial model* (Cox–Ross–Rubinstein model) for option pricing. What conditions on the model parameters a, b, r are required for the model to be viable, and why? Explain how the Cox–Ross–Rubinstein formula for the price of a European call option is derived.