Modern Statistical Methods — Example Sheet 2

Lucas Riedstra

...

Question 1. Let $Y \in \mathbb{R}^n$ be a vector of responses, $\Phi \in \mathbb{R}^{n \times p}$ a design matrix, $J : [0, \infty) \to [0, \infty)$ a strictly increasing function and $c : \mathbb{R}^n \to \mathbb{R}^n$ some cost function. Set $K = \Phi \Phi^\top$. Show, without using the representer theorem, that $\hat{\vartheta}$ minimises

$$Q_1(\vartheta) := c(Y, \Phi\vartheta) + J(\|\vartheta\|_2^2)$$

over $\vartheta \in \mathbb{R}^p$ if and only if $\Phi \hat{\vartheta} = K \hat{\alpha}$ and $\hat{\alpha}$ minimises

$$Q_2(\alpha) := c(Y, K\alpha) + J(\alpha^\top K\alpha)$$

over $\alpha \in \mathbb{R}^n$.

Proof. Let $\hat{\vartheta}$ be a minimiser of Q_1 , and write $\hat{\vartheta} = \Phi^{\top} \hat{\alpha} + \hat{\beta}$ with $\Phi^{\top} \hat{\alpha} \in \mathcal{N}(\Phi)^{\perp} = \mathcal{R}(\Phi^{\top}), \ \hat{\beta} \in \mathcal{N}(\Phi)$. Noting that $K\hat{\alpha} = \Phi\Phi^{\top}\hat{\alpha} = \Phi\hat{\vartheta}$ and $\|\Phi^{\top}\hat{\alpha}\| = \alpha^{\top}K\alpha$ we see

$$Q_1(\vartheta) = c(Y, K\hat{\alpha}) + J(\alpha^{\top} K \alpha + ||\hat{\beta}||^2),$$

and therefore it is necessary that $\hat{\beta} = 0$. The claim follows.

Question 2. Let $x, x' \in \mathbb{R}^p$ and let $\psi \in \{-1, 1\}^p$ be a random vector with independent components taking values -1, 1 each with probability 1/2. Show that $\mathbb{E}(\psi^\top x \psi^\top x') = x^\top x'$. Construct a random feature map $\hat{\varphi} \colon \mathbb{R}^p \to \mathbb{R}$ such that $\mathbb{E}\{\hat{\varphi}(x)\hat{\varphi}(x')\} = (x^\top x)^2$.

Solution. We have

$$\psi^{\top} x \psi^{\top} x' = \left(\sum_{i} \psi_{i} x_{i}\right) \left(\sum_{j} \psi_{j} x'_{j}\right) = \sum_{i} x_{i} x'_{i} + 2 \sum_{i < j} \psi_{i} \psi_{j} x_{i} x'_{j}.$$

Noting that for $i \neq j$ we have $\mathbb{E}[\psi_i \psi_j] = \mathbb{E}[\psi_i] \mathbb{E}[\psi_j] = 0$ it follows that $\mathbb{E}[\psi^\top x \psi^\top x'] = \sum_i x_i x_i' = x^\top x'$. Let ψ_* be an identical independent copy of ψ and define $\hat{\varphi}(x) = \psi^\top x \psi_*^\top x$. Then we find

$$\mathbb{E}[\hat{\varphi}(x)\hat{\varphi}(x')] = \mathbb{E}[\psi^{\top}x\psi^{\top}x']\mathbb{E}[\psi_*^{\top}x\psi_*^{\top}x'] = (x^{\top}x')^2.$$

Question 3. Let $\mathcal{X} = \mathcal{P}(\{1, ..., p\})$ and $z, z' \in \mathcal{X}$. Let k be the Jaccard similarity kernel. Let π be a random permutation of $\{1, ..., p\}$. Let $M = \min \{\pi(j) \mid j \in z\}$, $M' = \min \{\pi(j) \mid j \in z'\}$. Show that

$$\mathbb{P}(M = M') = k(z, z'),$$

when $z, z' \neq \emptyset$. Now let $\psi \in \{-1, 1\}^p$ be a random vector with i.i.d. components taking the values -1 or 1, each with probability 1/2. By considering $\mathbb{E}[\psi_M \psi_{M'}]$ show that the Jaccard similarity kernel is indeed a kernel. Explain how we can use the ideas above to approximate kernel ridge regression with Jaccard similarity, when n is very large (you may assume none of the data points are the empty set).

Proof. We have

$$\mathbb{P}(M=M') = \mathbb{P}\left(\operatorname*{arg\,min}_{j \in z \cup z'} \pi(j) \in z \cap z' \right) = \frac{|z \cap z'|}{|z \cup z'|} = k(z,z') \quad \text{since π is random}.$$

Furthermore, we have

$$\mathbb{E}[\psi_M \psi_{M'}] = \mathbb{P}(M = M') \mathbb{E}[\psi_M^2] + \mathbb{P}(M \neq M') \mathbb{E}[\psi_M \psi_{M'}] = k(z, z'),$$

since for $M \neq M'$ we have $\mathbb{E}[\psi_M \psi_M'] = \mathbb{E}[\psi_M] \mathbb{E}[\psi_{M'}] = 0$. Let $z_1, \dots, z_n \in \mathcal{X}$ with corresponding M_1, \dots, M_n , and write $\hat{\psi} = (\psi_{M_1}, \dots, \psi_{M_n})^\top$, then the kernel matrix K is given by $\mathbb{E}[\hat{\psi}\hat{\psi}^\top]$ which is positive semidefinite.

Using the random feature map $\hat{\varphi}(z) = \psi_{M_z}$ we can approximate kernel ridge regression using the random feature map method.