Teil 2, Kapitel 9: Informationssystemebene

IS-Ebene

Definition Anwendung

Eine Anwendung (oder eine Anwendungssoftware bzw. eine Applikation) ist ein Softwaresystem, das durch die Abbildung der Geschäftslogik die fachlichen Aufgaben eines Unternehmens unterstützt. Als Teilbereich eines IS konzentriert sich die Anwendung auf eine hohe Integration der darin abgebildeten Funktionen, um einen möglichst hohen Automationsgrad zu erzielen.

Definition Anwendungslandschaft

Eine Anwendungslandschaft besteht aus der Gesamtheit aller Anwendungen eines Untersuchungsobjekts (z. B. einer Abteilung, eines Unternehmens oder eines Unternehmensnetzwerks) einschließlich der zwischen den Anwendungen bestehenden Kommunikationsbeziehungen und Schnittstellen (s. [Wittenburg 2007, S. 3]).

Anwendungslandschaft

Abb. 9-1: Generische Anwendungslandschaft [Bundesverwaltungsamt 2018]

Gestaltungsziele auf Integrationsebene

Transparenz	Dokumentation fachlicher Strukturen (Aktivitäten und Informationen) und IT-Strukturen (Softwarekomponenten und Datenstrukturen)
Konsistenz	Abstimmung der Anforderungen aus der Geschäfts- und Prozessarchitektur mit den Funktionen des IS
Vereinfachung	z.B. durch Vereinheitlichung (Standardisierung) und der Beseitigung von Redundanzen
Flexibilität	Änderungsfreundliche Gestaltung von IS-Strukturen (für bekannte/aktuelle Änderungen)
Agilität	Änderungsfreundliche Gestaltung von IS-Strukturen (für unbekannte/zukünftige Änderungen)

Definition Unternehmensarchitektur

Die Unternehmensarchitektur (Enterprise Architecture) adressiert den ganzheitlichen Aufbau eines Unternehmens unter Berücksichtigung informationstechnologischer und betriebswirtschaftlicher Elemente. Dies umfasst neben den Elementen des Unternehmens selbst (z. B. Aufbau- und Ablauforganisation, Anwendungen, Infrastrukturelemente) auch flankierende Aspekte wie Strategien und Ziele, Anforderungen, Projekte, Richtlinien und Muster sowie Kennzahlen [Wittenburg 2007, S. 4].

Inhaltliche Elemente von Unternehmensarchitekturen

Abb. 9-2: Inhaltliche Elemente von Unternehmensarchitekturen [Matthes 2015]

Architekturtypen

Architekturtyp	1-Tier	2-Tier	3-Tier	n-Tier
Anzahl Schichten	Eine	Zwei	Drei	> Drei
Beispiel	Host-zentriert, z.B. IBM CICS	2-Tier Client-/ Server (Fat- Client), z. B. SAP R/2	3-Tier Client-/ Server, z.B. SAP R/3	4-Tier Integrations- architektur, z. B. SAP NetWeaver
AS- Programm- elemente	Präsentation, Anwendungs- funktionalität, Daten sind in einem Anwen- dungssystem integriert.	Zusammen- gefasste Präsentations- und Anwendungs- funktionalität, separate Daten-Server- Ebene.	Anwendungs- funktionalität, Daten und Präsentation sind als eigene Schicht umgesetzt.	Anwendungs- funktionalität, Daten und Präsentation sind auf viele Schichten verteilt.

Tab. 9-1: Architekturtypen betrieblicher Anwendungssysteme (Alt und Puschmann 2016, S. 153)

Definition Service

Service (im Kontext Serviceorientierter Architekturen)

Ein Service ist eine abgeschlossene und plattformunabhängig einsetzbare Softwarekomponente zur Umsetzung einer fachlichen Funktionalität, die andere Anwendungen/Services über eine definierte Schnittstelle ansprechen und nutzen können. Der fachliche Teil eines Service beschreibt dessen Einbettung in den fachlichen Anwendungskontext, z. B. welche fachliche Funktion/Aufgabe der Service erfüllt oder welche Organisationseinheit(en) den Service erstellt, verantwortet und verwendet. Der technische Teil beinhaltet die zugrundeliegenden Anwendungsfunktionen und Datenstrukturen sowie die Beschreibung der technischen Schnittstellen.

Beispiele für Services

Servicetyp	Beispiel		
Prozess- orientierte Services	Realtime-Bonitäts- bzw. Kundenwertermittlung während eines automatisierten Verkaufsprozesses. Diese ist für die Bestimmung individueller Preise und Konditionen notwendig und integriert Anwendungsfunktionen und Informationen für den Preisbildungsprozess. Mehrere Geschäftsprozesse greifen auf diesen Service zurück.		
Informations- orientierte Services	Bereitstellung von Kunden- oder Produktstammdaten für mehrere Prozesse. Dadurch ist einerseits gewährleistet, dass die Prozesse einen konsistenten Datenbestand nutzen und andererseits, dass die Funktionalitäten zur Datenpflege nur an einem Ort zu realisieren bzw. weiterzuentwickeln sind.		
Funktions- orientierte Services	Berechnung und Bereitstellung eines aktuellen Kontostands, der sowohl in einer Desktop-Anwendung für Bank-Mitarbeiter als auch in Geldautomaten oder einer Web-Anwendung (E-Banking) für Kunden Anwendung findet.		

Tab. 9-2: Beispiele für Services [Winter 2011, S. 145]

Akteure in einer SOA

Abb. 9-3: Akteure in einer SOA

Serviceentwicklung und marktplatzbezogener Service-Review-Prozess

Abb. 9-4: Serviceentwicklung und marktplatzbezogener Service-Review-Prozess

Metamodell, Modell, Diagramm

Ein **Metamodell** beschreibt, wie Phänomene eines Realitätsausschnitts durch entsprechende Modellelemente abgebildet werden können.

Als **Modell** wird dann ein bestimmter, mithilfe eines Metamodells abgebildeter Realitätsausschnitt bezeichnet.

Erfolgt die Dokumentation des Modells mit grafischen Mitteln, wird das Ergebnisdokument als **Diagramm** bezeichnet.

Diagrammtypen in UML 2.5

Abb. 9-5: Diagrammtypen in UML 2.5

Klassen-, Objekt- und Paketdiagrammen

Abb. 9-6: Klassen-, Objekt- und Paketdiagrammen im Uhren-Beispiel

Darstellung von Sequenz-, Kommunikations- und Timingdiagramm

Abb. 9-7: Darstellung von Sequenz-, Kommunikations- und Timingdiagramm im Uhren-Beispiel

Darstellung von Anwendungsfall- und Aktivitätsdiagramm

Abb. 9-8: Darstellung von Anwendungsfall- und Aktivitätsdiagramm im Uhren-Beispiel

Interaktionsübersichts-, Komponenten- und Verteilungsdiagramm

Abb. 9-9: Interaktionsübersichts-, Komponenten- und Verteilungsdiagramm im Uhren-Beispiel

Zustandsautomat und Profildiagramm im Uhren-Beispiel

Abb. 9-10: Zustandsautomat und Profildiagramm im Uhren-Beispiel

Entity Relationship Modell

ER-Diagramme dokumentieren, welche Informationsobjekte mit welchen anderen Informationsobjekten in welcher Beziehung stehen.

Ein Informationsobjekt ist dabei ein individuelles und identifizierbares Exemplar von Dingen der realen Welt und wird auch als *Entität* bezeichnet.

ER-Diagramme enthalten die folgenden Elementtypen:

Entitätstyp (Entitytyp)

Attribut

Beziehungstyp (Relationshiptyp)

Kardinalitäten

Im einfachen ER-Modell:

1:1

1:n

m:n

Min-Max-Notation:

- (0,1)
- (0,*)
- (1,1)
- (1,*)

Grafische Notation von Partizipation und Kardinalität

- *Partizipation*: Der (0,...)-Aspekt eines Beziehungstyps wird grafisch durch eine unterbrochene Kante beim Ausgangspunkt dargestellt, der (1,...)-Aspekt dagegen durch eine reguläre Kante.
- *Kardinalität*: Der (...,*)-Aspekt eines Beziehungstyps wird grafisch durch einen sog. Krähenfuß beim mehrfach auftretenden Entitätstyp dargestellt, der (...,1)-Aspekt dagegen durch eine reguläre Kante.

ER-Diagramm

Abb. 9-11: ER-Diagramm des Uhren-Beispiels