Assignment submission due date: साउन १८, २०८१ (2nd August, 2024), Friday

- 1. In a series RC circuit with $R = 1\Omega$ and C = 1F, the voltage source follows the law $v(t) = V e^{-\alpha t}$, where α is a constant. The switch is closed at t = 0.
 - i. Solve for the current assuming that $\alpha \neq 1/RC$ and
 - ii. Solve for the current when $\alpha = 1/RC$
- 2. A sinusoidal voltage $v(t) = 40 \sin(10^6 t + \pi/4)$ is suddenly applied at time t = 0 to a series RC circuit comprising of resistor $R = 2\Omega$ and capacitor C = 1/4 F. Obtain the complete particular solution for current through the circuit. Assume 3C charge across the capacitor before switching.
- 3. In the network shown, the switch is closed at t = 0, with the network previously unenergized. For the element values shown on the diagram, find $i_1(t)$ and $i_2(t)$ for t > 0.

4. In the network given below, the switch K is open and the network reaches a steady state. At t = 0, switch K is closed. Find the current in the inductor for t > 0.

5. In the given network, before the application of current source, the inductor and capacitor are initially energized. The switch K_1 is opened and K_2 is closed at t = 0. Find complete expression for voltage v(t) across the network, for t > 0.

6. Find the current through the inductor in the network shown in figure below.

