$\mathbf{Y21} ext{-}\mathbf{T6}-$ Керлинг

Тонкое кольцо массой m и радиусом r находится на столе с коэффициентом трения μ и гравитационным ускорением g. Кольцу сообщили линейную скорость v (в направлении x) и угловую скорость ω (против часовой стрелки). Кольцо движется по прямой, вращаясь вокруг собственной оси, и, в конце концов, останавливается. В дальнейшем мы попытаемся найти величины v(t), $\omega(t)$ и некоторую симметрию между ними. Во всех последующих пунктах предполагается, что действие реакции опоры на кольцо распределено равномерно.

Вам может понадобиться следующая формула:

$$\sqrt{\frac{1-\sin\theta}{2}} = \left| \sin\left(\frac{\theta}{2} - \frac{\pi}{4}\right) \right|$$

Уравнения движения

A1^{0.50} Покажите, что суммарная сила, действующая на кольцо, определяется выражением:

$$\vec{F}_{tot} = -\mu mg \cdot f\left(\frac{v(t)}{\omega(t) r}\right)\hat{x},$$

где

$$f(a) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{a - \sin \theta}{\sqrt{1 + a^2 - 2a \sin \theta}} d\theta$$

 ${\bf A2^{0.50}}$ Покажите, что суммарный момент, действующий на кольцо, равен:

$$\tau_{tot} = -\mu mgrf\left(\frac{\omega(t)r}{v(t)}\right)$$

А3^{0.10} Докажите, что уравнения движения имеют вид:

$$\dot{v} = -\mu g \cdot f\left(\frac{v}{\omega r}\right) \dot{\omega} r = -\mu g \cdot f\left(\frac{\omega r}{v}\right)$$

Первичное исследование

Мы получили систему дифференциальных уравнений, связывающие v(t) и $\omega(t)$. В этой части хотим найти интересные физические аспекты этой ситуации, для чего надо произвести нестандартные математические вычисления. Начнём с рассмотрения свойств функции f(a):

В1^{0.50} Докажите: а)
$$f(0) = 0$$
, $f(1) = \frac{2}{\pi}$, $f(\infty) = 1$ b) $f(a)$ строго возрастает при $a \geqslant 0$

B2^{0.30} Рассмотрим поведение параметра $a(t) = \frac{v(t)}{\omega(t)r}$. Покажите, что происходит с a(t) (рас-

тёт/уменьшается/остаётся неизменным) в каждом из следующих случаев:

- а) в некоторый момент a(t) = 1
- b) в некоторый момент a(t) < 1
- c) в некоторый момент a(t) > 1

Страница 1 из 2 ≈

B3^{0.60} Нарисуйте качественно на графике, осями которого являются v и ωr , траектории, отображающие разное движение кольца, то есть при заданных v_0 и $\omega_0 r$ нарисуйте, как они будут изменяться с течением времени.

Необходимо нарисовать хотя бы одну траекторию на каждый пункт предыдущего задания. Кроме того, нарисуйте траекторию, проходящую через точку $(v_0,0)$ и еще одну, начинающуюся в точке $(0,\omega_0 r)$

Подпишите оси графика и укажите направления движения системы для каждой нарисованной траектории

Рассмотрим мощность, которая расходуется во время движения кольца.

В4^{0.10} Вычислите мгновенную мощность, которая расходуется, когда есть только угловая скорость $\omega\ (v=0)$, и отдельно, когда присутствует только линейная $v\ (\omega=0)$.

В5^{0.60} Для заданных v и ω вычислите мгновенную мощность P, которая расходуется на трение в данный момент времени. Дайте ответ в виде интеграла с безразмерной переменной.

B6^{1.20} Предположим, что кольцу придали определённую начальную кинетическую энергию E_0 . Каково должно быть соотношение $a_0 = \frac{v_0}{\omega_0 r}$, при котором кольцо будет двигаться максимальное время?

Подсказка: Постарайтесь дать ответ на предыдущий пункт при помощи только E_0 и a_0 (и других данных из этого пункта), исключив из уравнения v и ω

 ${f B7^{0.50}}$ Каково максимальное время движения при начальной энергии E_0 ?

Неоднородная система

Система уравнений, которую мы получили в начале задачи называется однородной потому, что система, начинающая движение из точки (0,0) останется в состоянии покоя, то есть в уравнениях нет члена quot;токаquot;, создающего движение. Введем такой член в одно из уравнений рассмотрев похожую физическую задачу:

То же самое кольцо положим теперь на наклонную плоскость с углом α с тем же коэффициентом трения μ .

C1^{0.60} Напишите заново уравнения движения из пункта А3 таким образом, чтобы они подходили под новое условие.

С2^{2.00} При заданных начальных ω_0 и $v_0 = 0$ нарисуйте все возможные семейства траекторий движения кольца в координатах $(v, \omega r)$ (для каждого типа кривых нарисуйте свой график). Укажите следующие составляющие:

- а) соответствующие значения параметров;
- b) конечные точки (в которые траектории приходят за конечное или бесконечное время) в плоскости $(v,\omega r)$. Здесь достаточно написать для каждой составляющей, что она стремится к нулю/ стремится к бесконечности/ равна или стремится к какой-то положительной величине.

Подпишите оси графика и укажите направления движения системы для каждой нарисованной траектории