

FICTURE REPORTED IN REPORT CORN BROWN BROWN BOOK ON AN ARREST BROWN BROWN BROWN BROWN BROWN BROWN BROWN BROWN

(43) Internationales Veröffentlichungsdatum 17. Juni 2004 (17.06.2004)

(10) Internationale Veröffentlichungsnummer WO 2004/050707 A2

(51) Internationale Patentklassifikation⁷:

C07K 16/00

(21) Internationales Aktenzeichen: PCT/DE2003/003994

(22) Internationales Anmeldedatum:

1. Dezember 2003 (01.12.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

DE

(30) Angaben zur Priorität: 102 56 900.2 29. November 2002 (29.11.2002)

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): NEMOD BIOTHERAPEUTICS GMBH & CO. KG [DE/DE]; Robert-Rössle-Str. 10, 13125 Berlin (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): GOLETZ, Steffen [DE/DE]; Eichhornstrasse 24, 16548 Glienicke-Nordbahn (DE). DANIELCZYK, Antje [DE/DE]; Prieroser Strasse 10, 15752 Kolberg (DE). KARSTEN, Uwe [DE/DE]; Oderbruchstrasse 29, 10407 Berlin (DE). RAVN, Peter [DK/DE]; Robert-Rössle-Strasse 10, 13125 Berlin (DE). STAHN, Renate [DE/DE]; Eupenerstrasse 11a, 13125 Berlin (DE). CHRISTENSEN, Peter, Astrup [DK/DE]; Karower Chaussee 85, 13125 Berlin (DE).

- (74) Anwälte: LANGE, Sven usw.; Anwaltskanzlei Gulde Hengelhaupt Ziebig & Schneider, Schützenstr. 15-17, 10117 Berlin (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Bezeichnung: TUMORSPEZIFISCHE ERKENNUNGSMOLEKÜLE

(57) Abstract: The invention relates to recognition molecules, which are directed against tumors and which can be used for diagnosing and treating tumor diseases.

(57) Zusammenfassung: Die Erfindung betrifft Erkennungsmoleküle, die gegen Tumore gerichtet sind und zur Diagnose und Therapie von Tumorerkrankungen verwendet werden können.

Tumorspezifische Erkennungsmoleküle

5

10

15

20

25

Die Erfindung betrifft Erkennungsmoleküle, die gegen Tumore gerichtet sind und zur Diagnose und Therapie von Tumorerkrankungen verwendet werden können.

Tumor- oder Krebserkrankungen sind Geschwulsterkrankungen, die eine örtlich umschriebene Zunahme des Gewebevolumens beschreiben. Im weiteren Sinne ist iede lokalisierte Anschwellung durch Ödeme, akute und/oder chronische Entzündungen, eine aneurysmatische Erweiterung oder auch eine entzündlich bedingte Organschwellung ein Tumor. Sinne werden vor allem gewebliche Neubildungen wie Gewächse, Blastome und/oder Neoplasien in Form eines spontanen, verschiedenartig enthemmten, autonomen und irreversiblen Überschußwachstums von körpereigenem Gewebe, das in der Regel mit unterschiedlich ausgeprägtem Verlust spezifischer Zellen Gewebefunktionen verbunden und ist, als Tumorerkrankungen verstanden. Es ist möglich, Tumore nach ihrem biologischen Verhalten, aber auch nach einer histogenetischen Systematik nach klinischen oder pathologischen Befunden systematisieren.

Insbesondere im klinischen Bereich kann es erforderlich sein,

Tumore möglichst frühzeitig und auch selektiv zu erkennen, da
eine frühzeitige Erkennung und die dann folgende Behandlung
bzw. Entfernung sicherstellt, daß die Geschwulst erfolgreich
behandelt werden kann, ohne daß die befallenen Organstrukturen
bzw. Genabschnitte deformiert werden, wobei weiterhin

verhindert werden kann, daß sich Metastasen ausbilden. Auch bei den Folgeuntersuchungen nach einer Krebsbehandlung müssen kleinste Metastasen frühzeitig detektiert werden, um die weitere Nachbehandlung zu optimieren. Für weite Bereiche der Arbeitsmedizin ist es außerdem notwendig, zu bestimmen, ob ein Gewebe oder ein Organ eine potentielle Krebsanfälligkeit zeigt, ohne daß das Organ bzw. das Gewebe bereits selbst entartet bzw. transformiert ist.

Die älteste und zugleich einfachste und zum Teil auch noch 10 heute mit Erfolg angewendete Methode, einen Tumor zu erkennen, ist das Tasten und Schauen. So ist z.B. das Mammakarzinom bzw. Prostatakarzinom als Knoten ertastbar. Hinweise Hautkrebs sind durch auffällige Muttermale durch den Arzt oder den Patienten selbst optisch zu detektieren. Andere optische 15 Verfahren sind beispielsweise die bildgebenden Methoden. Hier werden mit Hilfe von Apparaten Bilder vom Körper aufgenommen, auf denen ein Tumor erkennbar ist. Zu diesen Methoden zählen zum Beispiel Röntgenbestrahlung wie auch die Computer-Tomographie (CT). Bei diesen Verfahren wird der Körper mit 20 energiereicher Strahlung durchleuchtet, wobei die entarteten Gewebestrukturen aufgrund der veränderten Durchlässigkeit für diese Strahlung im Vergleich zum gesunden Gewebe erkennbar sind. Häufiq werden bei diesen Methoden Kontrastmittel verwendet, die in entsprechende Regionen gespritzt werden und 25 die Absorption erhöhen. Außerdem ist die Krebsdiagnose mittels Ultraschall sowie durch die Verwendung radioaktiv markierter Antikörper möglich, wobei die tumortypischen Antigene an die zu untersuchenden Organe binden und so die Tumore innerhalb 30 bildgebenden Verfahrens erkennbar machen. Neben bildgebenden Methoden sind Laboruntersuchungen ein weiteres wichtiges Mittel zur Krebsfrüherkennung. Dabei werden Proben von Urin, Blut oder auch Gewebeproben auf Abnormitäten untersucht. Dies kann beispielsweise eine veränderte

15

20

25

30

3

Zusammensetzung dieser Proben sein, aber auch das Auftreten von Substanzen, die normalerweise nicht oder nur in geringen Diese Substanzen werden allgemein Mengen vorkommen. Tumormarker bezeichnet. Sie werden entweder vom Tumorgewebe selbst produziert oder als Reaktion des Körpers auf den Tumor gebildet. Als Tumormarker werden neben Substanzen auch zelluläre Veränderungen bezeichnet, deren qualitative oder quantitative Analyse eine Aussage über das Vorliegen, odereine Prognose von bösartigen Erkrankungen ermöglicht. Tumormarker sind meist physiologisch vorkommende bzw. modifizierte Substanzen, die gegenüber physiologischen Bedingungen oder der normalen genotypischen/phänotypischen Ausprägung im Urin, Serum oder anderen Körperflüssigkeiten in erhöhter oder erniedrigter Konzentration oder in oder auf Tumorzellen nachweisbar sind, wobei diese Substanzen Tumorgewebe synthetisiert und/oder sezerniert und folgend Tumorzerfall freigesetzt oder als Reaktion Organismus auf einen Tumor gebildet werden. Es ist eine Vielzahl von Tumormarkern beschrieben worden, deren Einsatz insbesondere beim Dickdarmkrebs, Brustkrebs, Eierstockkrebs, Prostata- und Hodenkrebs und beim kleinzelligen Lungenkarzinom als sinnvoll gilt. Zu diesen Krebsmarkern beispielsweise das CEA, CA 15-3, CA 125, Alpha-Fetoprotein, HCG, das prostataspezifische Antigen, die neuronspezifische Enolase, CA 19-9 und SCC.

Die genannten Marker zeigen durch eine Erhöhung im Serum oder in Geweben oder durch ihr Vorhandensein als modifizierte Proteine, Lipide und/oder Kohlenhydrate zum beispielsweise (i) entzündliche Erkrankungen, Darmpolypen, Virusentzündungen aber insbesondere auch (ii) Entartungen, Tumore und Metastasen an. Ein Großteil dieser Marker besteht aus Molekülen, die Proteinals auch Kohlenhydratstrukturen, ggf. Lipide umfassen. Je geringer der

4

Proteinanteil und demgemäß je größer der Kohlenhydrat- oder Lipidanteil dieser Marker ist, um so schwieriger können diese beispielsweise mit Erkennungsmolekülen, wie z.B. Antikörpern, detektiert werden. Bisher wurden durch Immunisierung von Mäusen mit Hilfe der Hybridom-Technologie verschiedene Antikörper gegen Kohlenhydratstrukturen hergestellt.

Die Krebsdiagnostik mit Erkennungsmolekülen weist mehrere auf. So können bestimmte Tumormarker auch Nachteile bei nichtkanzerogenen Krankheiten auftreten, wodurch die eingesetzten Erkennungsmoleküle eine positive Reaktion anzeigen; weiterhin bedeutet eine Nichtinteraktion der Erkennungsmoleküle nicht, daß keine Tumorkrankheit vorhanden weiterer Nachteil ist, daß die bekannten Erkennungssubstanzen in der Regel unspezifisch bedeutet, daß ein positiver Nachweis nur in seltenen Fällen auf eine bestimmte Art der Tumorerkrankung weist. weiterer, ganz entscheidender Nachteil der bekannten Erkennungsmoleküle ist außerdem, daß sie nur bedingt Verlaufskontrolle der Entwicklung von Tumoren, beispielsweise nach einer Operation, verwendet werden können. Das heißt, die bekannten Tumormarker können in der Regel \mathtt{nicht} zur Früherkennung oder zur Nachbehandlung, insbesondere nicht zur Prophylaxe eingesetzt werden.

25

30

20

5

10

15

Neben diesen allgemeinen Nachteilen treten bei Erkennungsmolekülen, die gegen Kohlenhydratstrukturen gerichtet sind, spezielle Nachteile auf. Die Immunisierung mit Kohlenhydratantigenen führt meist nur zu einer primären IgM-Antwort bzw. die Immunantwort bleibt vollständig aus, da viele Kohlenhydratstrukturen auch Autoantigene sind. Weil Kohlenhydrate T-Cell-unabhängige Antigene sind, die nicht in der Lage sind, einen Klassenswitch und die damit verbundene Reifung durch somatische Mutationen hervorzurufen, bleibt die

Antikörperantwort meist auf die IgM-Klasse beschränkt. generell schwachen Wechselwirkung Aufgrund und notwendigen Multivalenz ist es deshalb schwierig, Antikörper mit hoher Affinität herzustellen. Ein Problem bei Antikörpern gegen Kohlenhydratstrukturen sind nicht nur die Affinität, sondern auch die Spezifität. Besonders gegen kurze nichtgeladene Kohlenhydratstrukturen ist es äußerst schwierig, Antikörper herzustellen, spezifische wobei eine Spezifität in vielen Fällen auch nur dann erreicht wird, wenn Kohlenhydratstruktur auf einem bestimmten Träger lokalisiert ist. So erkennt beispielsweise der Antikörper JAA/F11, der gegen Gal β 1ightarrow3GalNAc gerichtet ist, nicht nur Antigen selbst, sondern auch dieses $GICNAc\beta1 \rightarrow 6Gal\beta1 \rightarrow 3$ $(GlcNAc\beta1\rightarrow 6)GalNAc$ sowie, wenn auch mit geringerer Avidität, ${\tt Gal}{\beta 1-3 \tt GlcNAc}$. Auch die neueren Möglichkeiten der Gewinnung von Erkennungsmolekülen durch verschiedene Formen der kombinatorischen Techniken, wie beispielsweise der Phagendisplay-Technologie, lösen die genannten Nachteile Auch hier bleibt das Problem der schwachen Erkennungsmolekül-Kohlenhydrat-Interaktion. Zu berücksichtigen hierbei insbesondere, daß die durch Immunisierung meistgewonnenen primären IgM-Antikörper für therapeutischen Einsatz zu groß sind. Ein weiterer Nachteil der bekannten Erkennungsmoleküle gegen Tumormarker ist der, dass sie den Tumor erst erkennbar machen, wenn dieser eine kritische Größe bereits erreicht hat. Das heißt, frühe Stadien des Tumorwachstums können mit den bekannten Erkennungsmolekülen, die gegen Tumormarker gerichtet sind, nicht bestimmt werden.

10

15

20

25

30

Ein weiterer Nachteil der bekannten Erkennungssubstanzen ist, daß sie nicht 'funktional' eingesetzt werden können. Funktional bedeutet, daß die Erkennungsmoleküle nicht nur so

6

die Tumormarker binden, daß diese detektiert werden, sondern daß sie somit über Marker mit der Tumorzelle wechselwirken, daß die Tumorzelle in ihrem Wachstum beeinträchtigt wird. Es ist möglich, daß Erkennungsmoleküle mit bestimmten Tumormarkern, die beispielsweise auf Tumorzelloberflächen immobilisiert sind, so spezifisch interagieren, daß der durch die Tumormarker charakterisierte Tumor therapeutisch behandelt wird. Diese funktional aktiven Erkennungsmoleküle sind zum einen in der Lage, tumorzellenassoziierten Tumormarker zu detektieren und gleichzeitig durch ihre Bindung an diese tumorspezifische Struktur die Tumorzelle an einem weiteren Wachstum oder an einer Ausbildung von Metastasen zu hindern. Die bekannten Erkennungsmoleküle sind nachteilhafterweise in nur wenigen Fällen in der Lage, das Tumorwachstum zu beeinflussen. In der Regel müssen daher zusätzlich Substanzen, die Tumorwachstum einschränken bzw. inhibieren, an den Antikörper gekoppelt werden, so daß dieser die "Fähre" dieser Substanz ist, aber nicht das Agens der Behandlung.

20

25

30

15

5

10

Aufgabe der Erfindung ist es daher, Erkennungsmoleküle bereitzustellen, mit denen zum einen Tumore einfach, sicher und effizient detektiert werden können, und die weiterhin in der Prophylaxe, Therapie und/oder Nachbehandlung von Tumoren eingesetzt werden können.

Die Erfindung löst dieses technische Problem durch die Bereitstellung von Erkennungsmolekülen umfassend Aminosäuresequenz, die die Aminosäuresequenz SEQ ID Nr. 1 und die Aminosäuresequenz SEQ ID Nr. 2 oder 3 Aminosäuresequenz SEQ ID Nr. 4, 5 oder 6 enthält, wobei die Erkennungsmoleküle das Antigen Core-1 spezifisch binden.

7

Die Definitionen der Begriffe, die im folgenden gemacht werden, treffen mutatis mutandis auf zuvor gemachte, diese und die nachfolgenden Ausführungen zu.

- Unter dem Begriff Erkennungsmolekül versteht man erfindungsgemäß ein Molekül, das, insbesondere unter stringenten Bedingungen, die Kohlenhydratstruktur Core-1 spezifisch bindet.
- Unter Core-1 versteht man erfindungsgemäß die Kohlenhydratstruktur Gal β 1-3GalNAc α) oder β -Anomer (Gal β 1-3GalNAc β) vorliegen kann. Bevorzugt ist hier die α -anomere Variante. Die erfindungsgemäßen Erkennungsmoleküle können aber auch nur das alpha-Anomer Gal β 1-3GalNAc α 0 oder beide Anomere Gal β 1-3GalNAc α 0 und Gal β 1-3GalNAc α 1 in gleicher Weise binden.

Unter einer spezifischen Bindung gegen Core-1 versteht man erfindungsgemäß eine Bindung, die nur Core-1, bevorzugt das lpha-Anomer, erkennt oder die Core-1 und Core-2 (Galβ1-3(GlcNAcβ1-20 6)GalNAcα) erkennt. Die Erkennungsmoleküle zeigen dabei keine Kreuzreaktivität mit anderen Derivaten und Anomeren dieser Kohlenhydratstrukturen wie sie in Beispiel 7 aufgeführt sind. Die erfindungsgemäßen Erkennungsmoleküle interagieren nicht mit Gal α 1-3GalNAc α , Gal α 1-3GalNAc β , GalNAc α , Neu5Ac α 2-3Gal β 1-25 3GalNAcα, Galß1-3 (Neu5Ac α 2-6) GalNAc α , GlcNAcB1-2GalB1-3GalNAcα, GlcNAcal-3Galß1-3GalNAcα, GalNAcα1-3Galß und 3'-0-Su-Galß1-3GalNAcα unter den in Beispiel 7 beschriebenen Bedingungen. Die Bestimmung erfolgt dabei insbesondere über Spezifitätstests mit definierten synthetischen Kohlenhydrat-30 strukturen.

8

In einer bevorzugten Ausführungsform umfasst ein erfindungsgemäßes Erkennungsmolekül, das das Antigen Core-1 spezifisch bindet:

a) eine erste Aminosäuresequenz, die die Aminosäuresequenz SEQ ID Nr. 1 und die Aminosäuresequenz SEQ ID Nr. 2 oder 3 und die Aminosäuresequenz SEQ ID Nr. 4 oder 5 oder 6 enthält; und

5

10

15

20

25

30

b) eine zweite Aminosäuresequenz, die die Aminosäuresequenz SEQ ID Nr. 7 oder 8 oder 9 und die Aminosäuresequenz SEQ ID Nr. 10 oder 11 und die Aminosäuresequenz SEQ ID Nr. 12 oder 13 enthält.

Die erste und zweite Aminosäuresequenz können dabei auf einem oder mehreren, dort bevorzugt zwei, Polypeptiden vorkommen.

Die erfindungsgemäßen Core-1 bindenden Erkennungsmoleküle sind dadurch charakterisiert, dass sie ein definiertes Set einzelnen Aminosäuresequenzen beinhalten. Aminosäuresequenz dieser Erkennungsmoleküle enthält ein oder zwei Tripletts definierter Sequenzen. Diese Sequenzen stellen die Bindungsdomänen dar und definieren die Spezifität des Erkennungsmoleküls. Das 1-Triplett-Erkennungsmolekül enthält die Aminosäuresequenz SEQ ID NO. 1, die Aminosäuresequenz SEQ ID NO. 2 oder 3 und die Aminosäuresequenz SEQ ID NO. 4 oder 5 oder 6. Core-1-spezifische Erkennungsmoleküle, die durch zwei Tripletts definiert sind, enthalten für das erste Triplett die Aminosäuresequenz SEQ ID NO. 1, die Aminosäuresequenz SEQ ID NO. 2 oder 3 und die Aminosäuresequenz SEQ ID NO. 4 oder 5 oder 6 und für das zweite Triplett die Aminosäuresequenz SEQ ID NO. 7 oder 8 oder 9, die Aminosäuresequenz SEQ ID NO. 10 oder 11 und die Aminosäuresequenz SEQ ID NO. 12 oder 13. Dabei können das erste und zweite Triplett entweder auf einer oder mehreren Polypeptidketten vorkommen, die im letzteren Fall gemeinsam das bindende Erkennungsmolekül bilden. Im Weiteren

25

30

9

werden diese Tripletts im Sinne der Erfindung Triplettsequenz 1 für die erste umfasste Aminosäuresequenz und Triplettsequenz 2 für die zweite umfasste Aminosäuresequenz, siehe Definition a) und b) der obigen Beschreibung, bezeichnet. Das Erkennungsmolekül erfindungsgemäß ein Antikörper sein, insbesondere ein muriner, chimärer oder humaner IgG oder IgM, eine scFv-Struktur oder eine andere.

Eine weitere Ausführungsform der Erfindung betrifft Erkennungsmoleküle, bei denen mindestens eine Aminosäuresequenz der
SEQ ID NO. 1 bis 13 durch Mutation, Deletion und/oder
Insertion verändert ist, wobei jedoch die Eigenschaft der
Bindungsspezifität gegen Core-1 weiter besteht. Dies dient
vorteilhafterweise der Verbesserung der Erkennungsmoleküle,
beispielsweise in Bezug auf Affinität, Löslichkeit und/oder
Produzierbarkeit.

In einer bevorzugten Ausführungsform erfolgt die Modifikation eines Erkennungsmoleküls durch eine oder mehrere Mutationen in einer oder mehreren Aminosäuresequenzen ausgewählt aus SEQ ID NO. 1 bis 13, wobei einzelne Aminosäuren durch Aminosäuren mit analogen physikochemischen Eigenschaften ersetzt werden, 3-dimensionale Struktur der Bindungsdomäne Erkennungsmoleküls mit Vorteil nicht grundlegend verändern, so dass die Core-1 Spezifität des Erkennungsmoleküls erhalten bleibt. Aminosäuren mit analogen physikochemischen Eigenschaften im Sinne der Erfindung können in 6 verschiedene Gruppen zusammengefaßt werden und sind in Tabelle 1 dargestellt.

Tabelle 1: Aminosäuren mit analogen physikochemischen Eigenschaften unberücksichtigt der molekularen Größe. Eigenschaft oder Aminosäure

WO 2004/050707

10

	funktionelle Gruppe		
	aliphatisch	Glycin	
		Alanin	
		Valin	
5	•	Leucin	
		Isoleucin	
	Hydroxy-Gruppe	Serin	
		Threonin	
	Carboxy-Gruppe	Asparaginsäure	
10		Glutaminsäure	
	Amid-Gruppe	Asparagin	
		Glutamin	
	Amino-Gruppe	Lysin	
		Arginin	
15	aromatisch	Phenylalanin	
		Tyrosin	
		Tryptophan	

In einer weiter bevorzugten Ausführungsform der erfindungs-20 gemäßen Erkennungsmoleküle, die Core-1 spezifisch binden, ist mindestens eine Aminosäuresequenz der Aminosäuresequenzen SEQ 1, 2, 3, 7, 8 und/oder 9 durch kanonische Strukturvarianten bzw. äquivalente Strukturen mit den Aminosäuresequenzen SEQ ID NO. 14 bis 45 ersetzt, wobei die 25 SEQ ID NO. 1 durch eine Sequenz der Sequenzen SEQ ID NO. 14 bis 17 (CDRH1), die SEQ ID NO. 2 oder 3 durch eine Sequenz der Sequenzen SEQ ID NO. 18 bis 27 (CDRH2) und die SEQ ID NO. 7 oder 8 oder 9 durch eine Sequenz der Sequenzen SEQ ID NO. 28 bis 45 (CDRL1) ersetzt ist. 30

Der generelle Zusammenhang zwischen einer Aminosäuresequenz und der Tertiärstruktur der von diesen Sequenzen gebildeten Loops ist dem Fachmann bekannt und wurde ausführlich

untersucht [Rooman et al., 1989; Martin, Thornton, 1996]. Ein spezielles Beispiel stellen die Immunglobuline dar. Durch Analyse der Loop-Konformationen der hypervariablen Regionen (complementarity determining regions, CDRs) in der leichten und der schweren Kette von Antikörpermolekülen wurden sogenannte kanonische Klassen definiert [Chothia, Lesk, 1987; Chothia et al., 1986, 1989, 1992; Wu, Cygler, 1993]. Auf dieser Grundlage wurden die kanonischen Strukturvarianten SEQ ID NO. 14 bis 45 der SEQ ID NO 1, 2, 3, 7, 8 und 9 abgeleitet.

10

15

20

25

Die Aminosäuresequenzen SEQ ID NO. 1 bis 13 oder deren Modifikationen in einem Core-1 spezifischen Erkennungsmolekül Sinne der Erfindung bilden räumliche Strukturen aus, beispielsweise so genannte Loops, die dadurch gekennzeichnet dass sie eine definierbare Tertiärstruktur und/oder Quartärstruktur besitzen. Die Bindungsregion eines Erkennungsmoleküls mit dem Core-1 Antigen wird von Aminosäureresten gebildet, die von bis zu sechs variablen Loops an der Oberfläche des Moleküls bereitgestellt werden, und die spezifisch mit Core-1 interagieren.

In einer weiteren Ausführungsform der Erfindung werden Erkennungsmoleküle, die Core-1 spezifisch binden, bereitgestellt, bei denen mindestens eine Sequenz der Tripletts des weggelassen wird, die nicht unmittelbar an der Interaktion mit dem Core-1 beteiligt ist.

In einer weiteren Ausführungsform umfassen die Erkennungsmoleküle mindestens eine der Aminosäuresequenzen der SEQ ID NO. 1 bis 13 oder deren oben beschriebene Varianten doppelt oder mehrfach, wobei diese Dopplungen auch als Varianten der gleichen Aminosäuresequenz vorkommen können. Alle die in diesem Abschnitt beschriebenen Erkennungsmoleküle

erkennen vorteilhafterweise das Antigen Core-1 spezifisch. Im folgenden werden auch diese Erkennungsmoleküle, die streng genommen aufgrund des Weglassens oder Vervielfältigen von Sequenzen keine Triplettsequenzen tragen, trotzdem als Triplettsequenz 1 oder Triplettsequenz 2 bezeichnet, um die Anschaulichkeit zu vereinfachen.

In einer weiteren Ausführungsform, umfassen die dungsgemäßen Erkennungsmoleküle, die das Core-1 Antigen spezifisch binden, Aminosäuresequenzen, die eine Homologie von mindestens 60%, vorzugsweise bevorzugt 70%, 80%, besonders bevorzugt 90% gegenüber den Sequenzen SEQ ID NO. 1 bis 13 aufweisen.

10

15

20

25

30

Die Erkennungsmoleküle im Sinne der Erfindung können weiterhin Gerüstsequenzen umfassen, die die umfassenden Aminosäure-Aminosäuresequenz SEO ID NO. 1 und die Aminosäuresequenz SEQ ID NO. 2 oder 3 und die Aminosäuresequenz SEQ ID Nr. 4 oder 5 oder 6, oder deren oben beschriebene Varianten, voneinander trennen, Gerüstsequenzen, die die Aminosäuresequenzen SEQ ID Nr. 7 oder 8 oder 9 und die Aminosäuresequenz SEQ ID Nr. 10 oder 11 und die Aminosäuresequenz SEQ ID Nr. 12 oder 13 , oder deren oben beschriebene Varianten, voneinander trennen. Die erste und zweite Aminosäuresequenz können dabei auf einem oder mehreren, bevorzugt zwei, Polypeptidketten vorkommen. Diese Gerüstsequenzen werden im Sinne der Erfindung als Spacer oder Frameworksequenzen bezeichnet und können unterschiedliche Längen und Sequenzen Dabei sind ebenfalls solche haben. Erkennungsmoleküle ausdrücklich mit eingeschlossen, bei denen nicht alle Aminosäuresequenzen der SEQ ID Nr. 1 bis 13 oder deren oben beschriebenen Varianten durch Spacer getrennt werden. Darüber hinaus haben die Erkennungsmoleküle vorzugsweise weitere flankierende Aminosäuresequenzen, die im

13

Sinne der Erfindung auch als Gerüstsequenzen bezeichnet werden.

Die Gerüstsequenzen haben insbesondere die Aufgabe, die beschriebenen Aminosäuresequenzen, die für die Core-1 spezifische Bindung der Erkennungsmoleküle verantwortlich beziehungsweise beteiligt sind, in eine geeignete Anordnung und räumliche Struktur zu bringen, damit die Bindung an das Core-1 erfolgen kann. Es kann vorgesehen sein, dass die Aminosäuresequenzen SEQ ID NO. 1 bis NO. 13 ohne mindestens eine zusätzliche Aminosäuresequenz als Gerüstsequenz das Antigen im Sinne der Erfindung nicht spezifisch binden können. Darüber hinaus können die Gerüstsequenzen den Erkennungsmolekülen z.B. die notwendige biologische und chemische Stabilität geben, damit die räumliche Struktur effektiv aufgebaut und für die Funktion und Anwendung in einer geeigneten funktionellen Form, die die Core-1 Bindung beinhaltet, erhalten werden kann.

10

15

20

25

30

In einer bevorzugten Ausführungsform werden die Triplettsequenzen in bestehende Proteine durch Austausch von Aminosäuresequenzen und/oder durch Hinzufügung eingefügt, wobei die bestehenden Proteinsequenzen als Gerüstsequenzen im Sinne der Erfindung dienen, beziehungsweise Gerüstsequenzen aus geeigneten Proteinen entnommen sind. Dabei können diese Gerüstsequenzen beispielsweise durch Mutationen, Deletionen oder Insertionen verändert werden. Hierbei bedient man sich dem Fachmann an sich bekannter Methoden der Molekularbiologie, Biochemie und Protein-Engineering. Bevorzugte Proteine hierfür sind Proteine Immunglobulin-Superfamilie, der Protease-Inhibitoren, Lektine, Helix-Bündel-Proteine und Lipocaline, wie sie z.B. offenbart sind in: Nygren und Uhlen, Nuttall SD et al., 1999 und Skerra, 2000.

14

5

10

15

20

25

30

In weiter bevorzugten Ausführungsform sind die Gerüstsequenzen Antikörpergerüstsequenzen einer aus oder verschiedenen Spezies oder Aminosäuresequenzen, die Consensussequenz der Gerüstsequenzen muriner, humaner und/oder Antikörper anderer Säuger nachahmen. Eine Consensussequenz ist idealisierte Sequenz, in der repräsentativ an jeder Position die am meisten vorkommende Aminosäure steht, wenn viele existierende Sequenzen, beispielsweise aus Antikörper-Datenbanken, miteinander verglichen werden. Dabei sind die hier bevorzugten Erkennungsmoleküle dadurch gekennzeichnet, dass die Gerüstsequenzen für die erste Triplettsequenz 1 umfassend die Aminosäuresequenz SEQ ID NO. 1, die Aminosäuresequenz SEQ ID NO. 2 oder 3 und die Aminosäuresequenz SEQ ID NO. 4 oder 5 oder 6, oder deren oben beschriebene Varianten, Antikörpergerüstsequenzen der variablen schweren Kette VH, die Literatur auch als Framework-Sequenzen bezeichnet werden, sind und die Gerüstsequenzen für die Triplettsequenz 2 umfassend die Aminosäuresequenz SEQ ID NO. 7 oder 8 oder 9, die Aminosäuresequenz SEQ ID NO. 10 oder 11 und Aminosäuresequenz SEQ ID NO. 12 oder 13 , oder deren oben beschrieben Varianten, Antikörpergerüstsequenzen der variablen leichten Kette VL sind.

weiterhin Antikörpergerüstsequenzen sind von Antikörpern aus Säugetieren, besonders bevorzugt sind Antikörpergerüstsequenzen humanen und/oder murinen Ursprungs. Die Gerüstsequenzen aus Antikörpergerüstsequenzen können dabei verschiedener Spezies kombiniert werden. Diese Antikörpergerüstsequenzen sind dem Fachmann bekannt und in verschiedenen Datenbanken zugänglich wie der Kabat-Datenbank (immuno.bme.nwu.edu) oder der Datenbank des National Center for Biotechnology Information (www.ncbi.nlm.nih.gov). Ebenfalls können diese Antikörpergerüststrukturen weitere Aminosäuren verlängert, und/oder durch eine oder

mehrere Mutationen, z.B. Deletionen und/oder Insertionen, verändert werden, wobei die spezifische Bindung an Core-1 erhalten bleibt.

- Werden in einer bevorzugten Variante der Erfindung die Triplettsequenzen mit Antikörpergerüstsequenzen kombiniert, stellt das Erkennungsmolekül eine variable Kette eines Antikörpers oder eine davon abgeleitete Struktur dar.
- 10 Besonders bevorzugte Antikörpergerüstsequenzen als Gerüstsequenzen im Sinne der Erfindung sind für die variable schwere Kette die Aminosäuresequenzen entsprechend FRH1, FRH2, FRH3 und FHR4 in Tabelle 2 und für die variable leichte Kette die Aminosäuresequenzen entsprechend FRL1, FRL2, FRL3 und FRL4 15 Tabelle 2, wobei die Aminosäuresequenzen Triplettsequenzen 1 und 2 mit den SEQ ID NO. 1 bis 13 den entsprechenden CDR-Regionen der Antikörper entsprechen. Dabei setzen sich die variable schwere (VH) bzw. leichte Antikörperkette wie folgt zusammen: die VH: FRH1-CDRH1-FRH2-CDRH2-FRH3-CDRH3-FRH4 und die VL: FRL1-CDRL1-FRL2-CDRL2-FRL3-20 CDRL3-FRL4. Tabelle 2 erläutert die Positionen im Detail. Die Positionen der einzelnen Aminosäuren bzw. Aminosäuresequenzen entsprechen der Nummerierung von Aminosäuren in Antikörpermolekülen nach Kabat.

Tabelle 2:

25

Name	Positionsbereich	Pos.	Aminosäure bzw.
			Aminosäuresequenz
FRH1	1 bis 30	1	Q oder E
		2	V
		3	Q, K oder T
		4	L
		5	K oder V

		10	
		6	E oder Q
	·	7	S
		8	G
		9	A
		10	E
		1.1	L oder V
		12	V oder K
		13	R oder K
		14	P
		15	G
		16	T oder A
		17	S
		18	V
		19	K
		20	I oder V
		21	S oder P
		22	C
		23	K
		24	A, V, S oder T
		25	S
		26	G
		27	Y, F, S oder D
		28	Т
		29	F, L oder I
		30	T
CDRH1	31 bis 35		SEQ ID NO. 1 und
			Varianten
FRH2	36 bis 49	36	W
		37	V
		38	K oder R
		39	Q
		40	R oder A
		41	P

]	17	
		42	G
		43	H oder Q
	·	44	G
		45	P
·		46	E
		47	W oder R
		48	I oder M
		49	G
CDRH2	50 bis 65, wobei		SEQ ID NO. 2 oder 3
	zusätzlich die Pos.		und Varianten
	52a eingeführt ist		
RH3	66 bis 94	66	K oder R
		67	A oder V
		68	T
		69	L oder M
		70	T
		71	A, L oder T
		72	D
		73	T
		74	S
		75	S oder T
		76	S
	-	77	T
		78	A
		79	Y
		80	M
		81	Q oder E
		82	L
		82a	S
		82b	S oder R
		82c	L
		83	T oder R
			1

		19	
		85	E
		86	D
		87	S oder T
		88	A .
		89	V
		90	Y
		91	F oder Y
		92	С
		93	A
		94	Y, K oder R
CDRH3	Table 1027 Nobel		SEQ ID NO. 4, 5 oder
	zusätzlich die Pos.		6 und Varianten
	100a und 100b		
	eingeführt sind		
FRH4	103 bis 113	103	W
		104	G
		105	Q
		106	G
		107	T
		108	T, S oder L
		109	V oder L
		110	T
		111	V
		112	S
		113	S oder A
RL1	1 bis 23	1	D
		2	I, V oder L
		3	Q oder L
		4 .	М
		5	T
		6	Q
		7	T oder S
		8	P

	17		
		9	L
		10	S .
		11	L
		12	P
		13	V
		14	S oder T
		15	L oder P
		16	G
		17	D oder E
		18	Q oder P
		19	A
		20	S
		21	I
		22	S
		23	C
CDRL1	22 bis 34, wobei		SEQ ID NO. 7, 8 oder
	zusätzlich die Pos.		9 und Varianten
	27a, 27b, 27c, 27d und		
	27e eingeführt sind		
FRL2	35 bis 49	35	W
 -		36	Y
		37	L
		38	Q
		39	K
		40	P
		41	G .
		42 ,	Q
		43	S
		44	P
		45	K oder Q
		46	L
		47	L
		48	I oder V

	20		
		49	Y
DRL2	50 bis 56		SEQ ID NO. 10 oder
			11 und Varianten
PRL3	57 bis 88	57	G
		58	V
·		59	P
		60	D
· · ·		61	R
		62	F
		63	S
		64	G
		65	S
		66	G
		67	s
		68	G
		69	T
		70	D
		71	F
		72	T
		73	L
		74	K
		75	I
		76	S
` -		77	R
		78	V .
		79	E
		80	A
*		81	E
	•	82	D
		83	L oder V
		84	G
		85	V
		86	Y

		87	Y
		88	С
CDRL3	89 bis 97		SEQ ID NO. 12 oder
			13 und Varianten
FRL4	98 bis 108	98	F
		99	G
		100	G oder Q
		101	G
		102	T
		103	K
	·	104	L
		105	E
		106	I oder L
		106a	K
		107	R
		108	A

Die Aminosäuresequenzen SEQ ID NO. 46 bis 79 entsprechen Aminosäuresequenzen mit bevorzugten Gerüstsequenzen für die variable schwere Kette. Die Aminosäuresequenzen SEQ ID NO. 80 bis 94 entsprechen Aminosäuresequenzen mit bevorzugten Gerüstsequenzen für die variable leichte Kette.

Die zu verwendenden Techniken und Methoden zur Herstellung 10 dieser Sequenzen sind dem Fachmann bekannt, ebenso ist der Fachmann in der Lage, geeignete Gerüstsequenzen und/oder Mutationen auszuwählen.

Im Sinne der Erfindung können die Core-1 spezifischen Erkennungsmoleküle in verschiedenen Formaten vorliegen. Die grundlegende Struktur des Erkennungsmoleküls sind eine oder mehrere Polypeptidketten, die oben beschriebenen

erfindungsgemäßen Triplettsequenz 1 oder Triplettsequenzen 1 und 2 und Gerüstsequenzen umfassen. Beispielsweise sind die Aminosäuresequenz der variablen schweren Kette mit Gerüstsequenzen und den Triplettsequenzen 1 und die Aminosäuresequenz variablen der leichten Kette mit den Gerüstsequenzen und den Triplettsequenzen 2 nicht-kovalent oder kovalent miteinander verknüpft, und können auf einer oder mehreren Polypeptidketten liegen. Mehrere Polypeptidketten können kovalent, beispielsweise durch Disulfidbrücken, nicht-kovalent verbunden als Erkennungsmolekül vorliegen.

10

15

20

25

30

unterschiedlichen erfindungsgemäßen Zu Formaten der Erkennungsmoleküle gehören insbesondere die Verknüpfung der Triplettsequenzen mit Aminosäuresequenzen, die über die oben beschriebenen Gerüstsequenzen hinausgehen. In einer bevorzugten Variante umfassen daher erfindungsgemäße Erkennungsmoleküle neben Triplettsequenzen den und Gerüstsequenzen weitere Zusatzsequenzen. Zusatzsequenzen sind insbesondere Aminosäuresequenzen, die primär nicht der räumlichen Anordnung der Triplettsequenzen wie in Form der Gerüstsequenzen dienen, diese jedoch vorteilhaft durch sekundäre oder tertiäre Wechselwirkungen beeinflussen können. Beispielsweise stabilisieren Zusatzsequenzen in Form von konstanten Domänen eines Antikörpers den Antikörper bewirken eine Dimerisierung, wodurch es zu einer verbesserten Bindung des Antikörpers kommt, oder beispielsweise bewirkt eine Fusion eines scFv . mit einer Domäne Bakteriophagenhüllproteins eine Aktivitätssteigerung der scFv-Bindung, wie sie z.B. in Jensen KB et al., 2002 offenbart ist.

In einer bevorzugten Ausführungsform umfassen die Erkennungsmoleküle Aminosäuresequenzen mit Gerüstsequenzen auf Antikörperbasis und neben den Triplettsequenzen weitere

23

Zusatzsequenzen. Die Zusatzsequenzen haben insbesondere mindestens eine der folgenden Aufgaben:

a) Verknüpfung einer Triplettsequenz mit ihren entsprechend geeigneten Gerüstsequenzen mit mindestens einer weiteren Triplettsequenz mit ihren entsprechend geeigneten Gerüstsequenzen, um beispielsweise eine Bindungsfähigkeit zu erzeugen oder zu verbessern;

5

- 10 b) der Stabilisierung der Domänen, beispielsweise durch einen Linker zwischen zwei Proteindomänen oder Aminosäuresequenzen, die mit anderen der gleichen oder einer zweiten Kette in Wechselwirkung treten;
- 15 c) Effektorfunktionen für immunologische Aufgaben, beispielsweise durch Fusion mit Fc-Teil von Antikörpern, Chemokinen, Cytokinen, Wachstumsfaktoren oder Teilen davon, oder Antikörpern mit einer anderen Spezifität Fragmenten davon, zur Rekrutierung von Zellen des Immunsystems, beispielsweise Makrophagen, oder Teilen des 20 Komplementsystems;
- d) Fusion mit Tags, beispielsweise Multimerisierungssequenzen
 - zum Beispiel μ-tail-Sequenz aus IgM oder Assoziationsdomäne aus p53 oder MBL zur Multimerisierung der Core-1
 bindenden Anteile für eine multivalente Bindung oder zur
 Aufreinigung der Erkennungsmoleküle, beispielsweise His-Tag
 oder zum Nachweis, beispielsweise myc-Tag oder zur
 Markierung oder Chelatisierung von Erkennungsmolekülen,
 beispielsweise durch Lysin-reiche Sequenzen.

Geeignete Strukturen sind dem Fachmann bekannt oder durch logische Schlussfolgerung aus dem Stand der Technik abzuleiten.

24

Dabei weiter bevorzugte Ausführungsformen sind erfindungsgemäße Erkennungsmoleküle, die folgende Formate umfassen: single chain Antikörperfragment (scFv), Fv-Fragment, Fab-Fragment, F(ab)₂-Fragment, Multibody (Dia-, Tria-, Tetrabody), Immunglobulin der Isotypen IgG, IgM, IgA, IgE, IgD oder deren Subklassen, beispielsweise IgG1, oder von Immunglobulinen abgeleitete Erkennungsmoleküle, die mindestens eine konstante Domäne umfassen.

10

15

20

25

30

In bevorzugten Ausführungsform sind die erfindungsgemäßen Erkennungsmoleküle aus einer schweren und leichten Polypeptidkette zusammengesetzt, wobei die Aminosäuresequenzen der schweren und leichten Kette jeweils eine der oben beschriebenen Triplettstrukturen umfassen, die Regionen des Antikörpers darstellen, die entsprechenden Antikörpergerüstsequenzen, die die Frameworksequenzen der Antikörper darstellen, Zusatzsequenzen, die mindestens eine der konstanten Domänen Antikörperisotyps umfassen. Die beiden Ketten können des miteinander kovalente Bindungen eingehen. Die konstanten Regionen und variablen Regionen können dabei Sequenzen von Antikörpern aus einer oder verschiedenen Spezies enthalten. Es können Teile von konstanten Domänen oder ganze konstante Domänen deletiert oder mutiert sein, beispielsweise um die Effektorfunktion der Zusatzsequenzen zu verändern, beispielsweise die Bindung an Fc-Rezeptoren zu verhindern oder zu verbessern. In einer bevorzugten Ausführungsform ist das Erkennungsmolekül ein muriner, chimärisierter, humanisierter, partiell humaner oder humaner Antikörper Antikörperfragment. Die Chimärisierung erfolgt beispielsweise durch Verknüpfung der variablen Antikörperdomänen konstanten Antikörperdomänen oder Fragmenten der konstanten

25

Domäne von Antikörpern verschiedener Spezies. Bevorzugt sind Sequenzen der konstanten Domänen humaner Antikörper.

Die Antikörpergerüstsequenzen können so gewählt werden, dass Sequenzen weitestgehend homolog zu Antikörpersequenzen sind. Die Wahl für den Speziesursprung der Gerüstsequenzen hängt auch von der Anwendung ab. So werden für eine therapeutische Anwendung in bestimmten Bereichen möglichst große Anteile an humanen Gerüstsequenzen bevorzugt, vor allem dann, wenn eine human anti-Maus Antikörperantwort (HAMA) vermieden werden soll. anderen therapeutischen In Bereichen ist ein Xenoanteil vorteilhaft, dа das Immunsystem in einer zusätzlichen Weise stimuliert. Kombination beider ist in einigen Fällen besonders geeignet, vor allem dann, wenn in einer Erstimmunisierung ein Kenoanteil vorteilhaft und bei späteren Anwendungen ein spezieskonformer und damit humaner Anteil vorteilhaft ist.

Bevorzugt ist eine Homologie zu humanen Consensussequenzen,
20 wobei für die variable schwere Kette die HuHI und für die
variable leichte Kette die HuKII bevorzugt wird. Besonders
bevorzugt ist eine Homologie zu humanen Keimbahnsequenzen, die
dem Fachmann bekannt sind und zum Beispiel über die V BASE
Datenbank (www.mrc-cpe.cam.ac.uk) zugänglich sind.

25

30

5

10

15

Die zu verwendenden Techniken und Methoden zur Herstellung dieser Sequenzen sind dem Fachmann bekannt, ebenso ist der Fachmann in der Lage, geeignete humane Sequenzen auszuwählen und/oder möglicherweise notwendige Mutationen der Sequenzen durchzuführen.

In einer weiteren Ausführungsform sind zusätzlich die Triplettsequenzen, die im allgemeinen den Bindungs-Loops (CDR-Regionen) entsprechen und die bevorzugt starke Homologien zu

26

den entsprechenden Sequenzbereichen in der humanen bahnsequenz haben, diesen schrittweise durch einfache Mutationen angeglichen, ohne die spezifische Bindung an Core-1 zu beeinträchtigen. Erkennungsmoleküle mit diesen Sequenzen werden hier als partiell humane Antikörper Antikörperfragmente bezeichnet. Bevorzugte humanisierte Sequenzen stellen z.B. die Sequenzen SEQ ID NO. 56 bis 79 bzw. SEQ ID NO. 85 bis 94 dar.

In einer weiteren bevorzugten Ausführungsform werden bestimmte 10 Aminosäuren der Antikörpergerüstsequenzen einer Spezies durch ausgetauscht, um normalerweise weniger Regionen zu generieren. Dies beinhaltet dem Fachmann an sich Technologien, beispielsweise bekannte Technologien der 15 Humanisierung, beispielsweise CDR-Grafting, Resurfacing, Chain-Shuffling mit Mutationen und Deimmunisierung Mutation oder Deletion von humanen MHC Epitopen.

In einer bevorzugten Ausführungsform handelt es sich um ein vom IgM abgeleitetes Erkennungsmolekül mit den entsprechenden konstanten Domänen eines IgM, bevorzugt humanen Sequenzen. Im Sinne der Erfindnung setzten sich Immunglobuline aus der schweren Kette und der leichten Kette eines Antikörpers zusammen, wobei bevorzugt 2 leichte und 2 schwere Ketten eine Einheit darstellen. Immunglobuline des IgM Typs bestehen meist aus 5 solchen Einheiten, die zusätzlich zu Disulfidbrücken durch die J-Kette miteinander verknüpft sind.

In einer besonders bevorzugten Ausführungsform ist die J-Kette 30 nicht vorhanden, wobei es ebenfalls zur Multimerisierung der Untereinheiten kommt, wobei hier hexa- und pentamere Strukturen vorliegen können. - 27

In einer bevorzugten Ausführungsform der Erkennungsmoleküle handelt es sich um Single chain Antikörperfragmente umfassend eine Triplettstruktur 1 mit entsprechenden oben beschriebenen Antikörpergerüstsequenzen, die die CDR Regionen Antikörpers und Frameworksequenzen der variablen Domäne der schweren Kette von Antikörpern darstellen, und Triplettstruktur 2 mit den entsprechenden oben beschriebenen Antikörpergerüstsequenzen, die die CDR Regionen Antikörpers und Frameworksequenzen der variablen Domäne der leichten Kette von Antikörpern darstellen, kovalent die miteinander in Form eines Fusionsproteins verknüpft Hierbei sind die Sequenzen direkt oder durch einen Linker miteinander verknüpft. Bevorzugt sind hier scFv Formate ohne Linker oder mit einem Linker von 1 bis 9 Aminosäuren Länge. scFv Antikörper bilden multimere Strukturen (beispielsweise Dia-, Tria-, Tetrabodies), die im Sinne der Erfindung auch als Multibodies bezeichnet werden und zeigen aufgrund der Multivalenz höhere Avidität zum Core-1 Antigen. Es wurden Core-1 spezifische Erkennungsmoleküle im scFv Format mit verschiedenen Linkerlängen konstruiert (SEQ ID NO. 95 bis 106) und ihre Bindungscharakteristik im ELISA untersucht. Eine schrittweise Linkerverkürzung führte zu einer Erhöhung der Bindung Asialoglykophorin, an einem Core-1 tragenden Glykoprotein, wie in Abbildung 3 dargestellt. Die besten Bindungseigenschaften zeigten hierbei die Varianten mit der SEQ ID NO. 104 und 105. Diese multivalenten Konstrukte im Dia/Triabody Format sind besonders bevorzugte Ausführungsformen der Erfindung und sind aufgrund verbesserter pharmakokinetischer Eigenschaften für die Tumortherapie von Vorteil.

30

10

15

20

In einer weiter bevorzugten Ausführungsform sind die Erkennungsmoleküle fusioniert, chemisch gekoppelt, kovalent oder nicht-kovalent assoziiert mit (i) Immunglobulindomänen verschiedener Spezies, (ii) Enzymmolekülen, (iii)

Interaktionsdomänen, (iv) Signalsequenzen, (v) Fluoreszenzfarbstoffen, (vi) Toxinen, (vii) katalytischen (viii) einem oder mehreren Antikörpern oder Antikörperfragmenten mit anderer Spezifität, (ix) zytolytischen Komponenten, (x)Immunmodulatoren, (xi) Immuneffektoren, (xii) MHC-Klasse I oder Klasse II Antigenen, (xiii) Chelatoren zur radioaktiven Markierung, Radioisotopen, (vx)Liposomen, (xvi) Transmembrandomänen, (xvii) Viren und/oder Zellen. Außerdem können die Erkennungsmoleküle insbesondere mit einem Tag fusioniert sein, 10 die die Detektion des Erkennungsmoleküls und deren Aufreinigung ermöglichen, wie zum Beispiel ein Myc-Tag oder ein His-Tag. Technologien zur Herstellung dieser Konstrukte sind dem Fachmann bekannt, ebenso ist der Fachmann in der Lage, geeignete Sequenzen und Komponenten auszuwählen und mit 15 den erfindungsgemäßen Erkennungsmolekülen in geeigneter Weise zu verbinden.

einer In weiteren bevorzugten Ausführungsform sind die beschriebenen Erkennungsmoleküle auf Antikörper- oder Anti-20 körperfragment-Basis mit Peptiden oder Proteinen, die nicht von Immunglobulinen abgeleitet sind, fusioniert. Beispielsweise wird die Multimerisierungsdomäne eines Nicht-Immunglobulinmoleküls mit einem scFv fusioniert, insbesondere das C-terminale Ende der alpha-Kette des C4 Bindungsproteins, 25 wie es bei Tonye Libyh M. et al., 1997 beschrieben ist, und somit ein multivalentes Erkennungsmolekül konstruiert.

In einer weiteren Ausführungsform wird ein scFv mit einer Transmembrandomäne eines Nicht-Immunglobulinmoleküls fusioniert, beispielsweise mit der Transmembrandomäne des c-erb B2, des h-PDGFR, des humanen Transferrinrezeptors oder des humanen Asialoglykoprotein-Rezeptors (Liao et al., 2000), und somit

29

die Expression von Bindungsmolekülen auf der Oberfläche von Zellen ermöglicht.

Eine weitere bevorzugte Ausführungsform der Erfindung umfasst erfindungsgemäße Erkennungsmoleküle, die weiterhin Aminosäuresequenzen umfassen, die spezifisch an Makrophagen oder andere Immuneffektorzellen binden. Beispielsweise umfassen erfindungsgemäßen Erkennungsmoleküle weiterhin eine Antikörperbindungsstelle gegen CD64, wodurch es in Form eines bispezifischen Antikörpers beziehungsweise Antikörperfragments (Diabodies) zur Bindung von Makrophagen an Core-1 positive Tumorzellen kommt, was zu deren Bekämpfung und/oder Zerstörung führt.

10

15

20

25

bevorzugte Ausführungsform der Erfindung betrifft radioaktiv markierte Core-1 spezifische Erkennungsmoleküle. Eine bevorzugte Form sind Erkennungsmoleküle auf der Basis von Antikörpern oder Antikörperfragmenten. Eine weitere bevorzugte Ausführungsform sind radioaktiv markierte erfindungsgemäße Erkennungsmoleküle im single chain Format (einschließlich als Dia-, Tria-, Tetrabodies). Weitere bevorzugte Formen sind radioaktiv markierte single chain Antikörperfragmente und ganze Immunglobuline, beispielsweise erfindungsgemäße chimäre oder humanisierte IgG oder IgM Antikörper oder humanisierte Antikörperfragmente. Die Erfindung ist selbstverständlich nicht auf diese Antikörper, die radioaktive Markierung und diese Formate der Antikörper beschränkt.

Antikörperfragmente wie die bevorzugten multivalenten scFv Fragmente insbesondere ohne oder mit sehr kurzem Linker bieten gegenüber intakten monoklonalen Antikörpern einen Vorteil für das Targeting von soliden Tumoren. Bei intakten Antikörpern, die in Biodistributionsstudien eine spezifische Anreicherung im Tumorareal zeigen, fällt bei genauer Untersuchung des

30

Tumors eine inhomogene Antikörperverteilung mit vornehmlicher Anreicherung im Randbereich auf. Zentral gelegene Tumoranteile werden aufgrund von Tumornekrosen, inhomogener verteilung sowie einem erhöhten interstitiellen Gewebedruck diesen Antikörperkonstrukten nicht erreicht. Antikörperfragmente zeigen dagegen eine schnelle Tumormarkierung, dringen tiefer in den Tumor ein und werden gleichzeitig relativ schnell aus der Blutbahn entfernt. Die Dissoziationskonstante von monovalenten Antikörperfragmenten wie Fabs oder scFv ist allerdings oftmals zu niedrig, was in einer kurzen Verweildauer an den Tumorzellen resultiert. Deshalb bieten multivalente Antikörperkonstrukte Multibodies (Diabodies, Tria/Tetrabodies), $F(ab^{\prime})_2$ und andere Minibodies (multivalente Antikörperkonstrukte bestehend aus Bindungsdomäne und einer Multimerisierungssequenz, beispielsweise scFv und CH3 Domäne eines IgĢ) der in Tumortherapie viele Vorteile. Multivalenten Konstrukte im Dia/Triabody Format sind bevorzugte Ausführungsformen Erfindung und sind aufgrund verbesserter pharmakokinetischer Eigenschaften für die Tumortherapie von Vorteil und wurden zur Verwendung in der Tumortherapie weiter entwickelt. Sie können als Vehikel für die spezifische Anreicherung von zum Beispiel zytotoxischen Substanzen wie Chemotherapeutika Radionuklide im Tumor verwendet werden. Durch geeignete Radionuklidwahl können Tumorzellen über eine Distanz von Zelldurchmessern abgetötet werden, wodurch auch Antigen-negative Tumorzellen in einem Tumorareal erfasst und die schlechte Penetration der Antikörper in solide Tumoren zumindest teilweise ausgeglichen werden können.

30

25

10

15

20

Eine besonders bevorzugte Ausführungsform der Erfindung sind radioaktiv-markierten Multibodies – insbesondere wie unter Beispiel 9 näher ausgeführt –, die besonders vorteilhafte pharmakokinetischen Eigenschaften vereinen mit einer in der

31

Kombination gegenüber ganzen Immunglobulinen und scFv verbesserten Tumorretention, Tumorpenetration, Serumhalbwertszeit Serum zu Tumor-Verteilungsverhältnis. Vorteile sind die hohe Avidität und die bakterielle Expression, die es erlaubt, kostengünstig diese Erkennungsmoleküle herzustellen. Damit eignet sich dieses Format der erfindungsgemäßen Erkennungsmoleküle vorteilhafterweise bevorzugt für die Behandlung von kleinen Primärtumoren, Metastasen und minimal residual Erkrankungen.

10

Eine bevorzugte Ausführungsform der Erfindung sind nicht radioaktiv markierte Erkennungsmoleküle. Eine bevorzugte Form hierbei sind Erkennungsmoleküle auf der Basis von Antikörpern oder Antikörperfragmenten.

15

Eine besonders bevorzugte Ausführungsform sind chimäre und humanisierte Immunglobuline auf der Basis von IgM Molekülen zur Inhibition der Lebermetastasierung und zur Bekämpfung residualer Tumorzellen.

20

25

30

Weitere bevorzugte Ausführungsformen sind toxin- oder Zytostatika-gekoppelte erfindungsgemäße chimärisierte oder humanisierte IgG und IgM basierte Erkennungsmoleküle und im Besonderen Multibodies (Dia- Tria-, Tetrabodies) mit besonders vorteilhaften pharmakokinetischen Eigenschaften wie oben ausgeführt.

Eine weitere bevorzugte Ausführungsform sind Liposomen, die beispielsweise mit Toxinen oder Zytostatika beladen sind, und die auf ihrer Oberfläche erfindungsgemäße Erkennungsmoleküle tragen.

32

Der Fachmann ist in der Lage, geeignete Radioisotope, Toxine und Zytostatika auszuwählen. Geeignete Techniken, Verfahren, Dosierungen und Formulierungen sind dem Fachmann bekannt.

Eine weitere bevorzugte Ausführungsform der Erfindung sind 5 Effektorzellen des Immunsystems, auf deren Oberfläche erfindungsgemäße Erkennungsmoleküle gebunden sind, die die Effektorzellen zu Core-1 tragenden Tumorzellen dirigieren/adressieren und dadurch deren Bekämpfung und/oder 10 Zerstören vermitteln. Bevorzugte Effektorzellen sind Makrophagen, dendritische Zellen und NK-Zellen, die aus dem Patienten gewonnen werden und ex vivo mit den Erkennungsmolekülen gekoppelt werden. Weiter bevorzugt sind Zelllinien dieser Zelltypen. Die Kopplung erfolgt beispielsweise durch bispezifische 15 Erkennungsmoleküle, neben den Core-1 spezifischen Anteilen weiterhin Aminosäuren umfassen, die eine Bindung an die Effektorzellen vermitteln. Beispielsweise sind dies bispezifische Antikörper. Komplementanteile oder konstante Domänen von Antikörpern.

20

25

30

weiter bevorzugte Ausführungsform sind hierbei Makrophagen aus dem Patienten, die nach Gewinnung mit einem bispezifischen Antikörper beispielsweise in Form ganzer Antikörper, bevorzugt chemisch gekoppelter Fab-Fragmente oder weiter bevorzugt Diabodies, die zum einen CD64 erkennen und anderen erfindungsgemäß Core-1 spezifisch sind. Makrophagen, die über die CD64 Spezifität die bispezifischen Erkennungsmoleküle tragen, werden dem Patienten Formulierung wieder zugeführt, um den positiven Tumor zu bekämpfen. Die hierzu verwendeten Techniken und die geeigneten Verfahren, Dosierungen und Formulierungen sind dem Fachmann bekannt. Eine weiter bevorzugte Ausführungsform sind Makrophagen aus dem Patienten, die nach Gewinnung mit einem erfindungsgemäßen Core-1 spezifischen

Antikörper oder Antiköperfragment, die den konstanten Teil eines Antikörpers umfassen, der an Makrophagen über die an bekannten Fc-Rezeptoren bindet. Dabei können Erkennungsmoleküle entweder als ganze Antikörper, bevorzugt chimäre oder humanisierte oder IqG IgM, oder Antikörperfragment, beispielsweise scFv, Fab oder Multibodies in Form eines Fusionsproteins oder chemisch gekoppelt mit dem dem Fachmann bekannten Teil der konstanten Domäne Antikörpern, die an Makrophagen binden. Diese die Erkennungsmoleküle tragenden Makrophagen werden dem Patienten in einer geeigneten Formulierung wieder zugeführt, um den Core-1 positiven Tumor zu bekämpfen. Die hierzu verwendeten Techniken und die geeigneten Verfahren, Dosierungen Formulierungen sind dem Fachmann bekannt.

15

20

25

30

10

Eine weiter bevorzugte Ausführungsform sind Zelllinien oder Zellen aus dem Körper wie die oben beschriebenen Effektorzellen, die mit Molekülen transfiziert werden, erfindungsgemäße Core-1 spezifische Erkennungsmoleküle und weiterhin Elemente umfassen, die eine Expression und eine Verankerung in der Membran bewirken, beispielsweise transmembrane Domäne, und die Aktivierung der Effektorzellen bei Kontakt mit einer Core-1 tragenden Tumorzelle vermitteln. entsprechenden Elemente sind dem Fachmann bekannt. Beispielsweise wird eine dendritische Zelllinie mit einem Vektor transfiziert, der ein Erkennungsmolekül umfasst, erfindungsgemäßes scFv oder Multibody Transmembrandomäne und eine aktivierende Domäne umfasst. einem anderen Beispiel werden dazu Makrophagen transfiziert. Diese die Erkennungsmoleküle tragenden Effektorzellen werden einem Patienten in einer geeigneten Formulierung zugeführt um den Core-1 positiven Tumor bekämpfen. Die hierzu verwendeten Techniken und die geeigneten

34

Verfahren, Dosierungen und Formulierungen sind dem Fachmann bekannt.

Die Erfindung betrifft auch Nukleinsäuremoleküle, die ein oder mehrere genetische Sequenzen umfassen, die mindestens eines oben beschriebenen erfindungsgemäßen Erkennungsmoleküle und/oder Konstrukte kodieren. Aufgrund des degenerierten genetischen Codes können diese Nukleinsäuremoleküle unterschiedliche Sequenzen haben. Die Wahl der Codons ebenfalls von der Zelle abhängig, die für die Herstellung des Erkennungsmoleküls verwendet wird, da in unterschiedlichen Zellen aus unterschiedlichen Organismen häufig unterschiedliche Codons bevorzugt werden und die Expressionsrate stark beeinflusst werden kann, beispielsweise sind die in eukaryontischen Genen bevorzugt verwendeten Codons AGA und AGG für Arginin in Bakterien nur selten vertreten. Hier treten die Codons CGC und CGU deutlich häufiger auf. Das erfindungsgemäße Nukleinsäuremolekül ist in bevorzugten Ausführungsformen eine genomische DNA, eine cDNA und/oder eine RNA. Die Kriterien zur Wahl geeigneter Codons und die Herstellung eines geeigneten Nukleinsäuremoleküls sind dem Fachmann bekannt.

10

15

20

25

30

Weiterhin betrifft die Erfindung Vektoren zur Expression der Erkennungsmoleküle insbesondere in Zellen. Unter einem Vektor versteht man im Sinne der Erfindung ein erfindungsgemäßes Nukleinsäuremolekül, das zur Expression des Erkennungsmoleküls dient und das eine Nukleinsäuresequenz, die ein oder mehrere genetische Sequenzen umfasst, die mindestens eines der oben beschriebenen Erkennungsmoleküle kodieren, und insbesondere mindestens einen Promotor umfasst, der die Expression des Erkennungsmoleküls bewirkt. Vektoren können dabei selbstverständlich weitere Elemente umfassen, die dem Fachmann bekannt sind und die beispielsweise der Vermehrung von Vektoren zur Herstellung in geeigneten Zellen und

35

5

10

15

20

25

30

Klonierung dienen. Die Nukleinsäuresequenzen können auf einem oder mehreren Vektoren vorliegen, beispielsweise wird in einer bevorzugten Ausführungsform die schwere Kette eines erfindungsgemäßen Immunglobulins durch einen und die leichte Kette einen anderen Vektor kodiert. In einer bevorzugten Ausführungsform der Erfindung sind die variable Domäne der leichten Kette und die variable Domäne der schweren dem gleichen Vektor unter einem Promotor Kette auf Fusionsprotein kodiert. Außerdem können im Sinne der Erfindung Nukleinsäuresequenzen, die Teile eines Erkennungsmoleküls kodieren, durch unterschiedliche dem Fachmann bekannte Promotoren exprimiert werden. In einer weiteren Ausführungsform können die unterschiedlichen Nukleinsäuresequenzen auf einem gemeinsamen Vektor liegen. Dabei kann Sequenz durch einen eigenen, gleichen oder unterschiedlichen, Promotor exprimiert werden oder die Sequenzen können in einem bicistronischen Vektor unter einem Promotor vorliegen. Bevorzugt werden durch die unterschiedlichen Promotoren unterschiedliche Expressionsraten der Teile der Erkennungsmoleküle erreicht, die eine Bildung des gesamten Erkennungsmoleküls gegenüber einer gleichen Expressionsrate der verschiedenen Teile verbessert. Weiterhin bevorzugt werden Promotoren verwendet, die induzierbar sind, um eine Expression Erkennungsmoleküls zu verbessern. Besonders bevorzugt umfassen die Vektoren weiterhin andere dem Fachmann bekannte regulatorische Elemente, beispielsweise Enhancer, die Expression des Erkennungsmoleküls oder Teile davon verstärken, beispielsweise der CMV Enhancer oder Immunglobulin-Enhancer-Bevorzugt umfassen die Nukleinsäuremoleküle und Vektoren zusätzlich Nukleinsäuresequenzen, als Signalsequenzen zur Sekretion des Erkennungsmoleküls Teilen davon dienen, die dem Fachmann an sich bekannt sind, beispielsweise PelB, OmpA oder MalE für prokaryontische Zellsysteme bzw. das Signalpeptid des T-Zellrezeptors,

36

Immunglobulinketten, des t-PA oder EPO für eukaryontische Zellsysteme [Boel et al., 2000; Herrera et al., 2000]. Dies erleichtert vorteilhafterweise die Reinigung und/oder verbessert die Ausbeute der Erkennungsmoleküle. Die Verfahren Herstellung der oben beschriebenen Nukleinsäuren und Vektoren, geeigneter Promotoren, Enhancer und Vektorkonstrukte sowie die Kriterien zu deren Wahl sind dem Fachmann bekannt und werden in den Beispielen näher erläutert.

5

20

25

30

In einer besonderen Ausführungsform der Erfindung umfasst der 10 erfindungsgemäße Vektor weiterhin Nukleinsäuresequenzen, die für virale Proteine kodieren. Als eine besondere Form eines wird dabei der Virus selbst bezeichnet, genetisches Material eine Nukleinsäuresequenz umfasst, die für erfindungsgemäßes Erkennungsmolekül kodiert. 15 bevorzugten Form ist das Erkennungsmolekül ein Fusionsprotein mit Virushüllprotein einem oderTeilen davon, ermöglicht, dass nicht nur das genetische Material Nukleinsäuresequenz des Erkennungsmoleküls umfasst, auch das Erkennungsmolekül selbst auf der Oberfläche des Virus bindungsaktiv vorliegt, beispielsweise ein erfindungsgemäßes Erkennungsmolekül als Fusionsprotein mit einem Hüllprotein von für gentherapeutische Anwendungen geeigneten Adenoviren, Poxviren oder Vacciniaviren. Dies vermittelt die Adressierung des Virus zu einer Core-1 exprimierenden Tumorzelle, wodurch es zur Expression des Erkennungsmoleküls Tumorzelle kommt. Dies kann zur Expression des Erkennungsmoleküls in vivo im Organismus oder in vitro in der Zellkultur verwendet werden. Bevorzugt werden dabei bekannte Systeme verwendet, die einen Helfervirus zur Replikation verwenden, um beispielsweise die Sicherheit eines diesen Vektor umfassenden gentherapeutischen Verfahrens zu gewährleisten. Die Verfahren zur Herstellung der beschriebenen

37

viralen Vektoren, zur Infektion und Expression der Erkennungsmoleküle sind dem Fachmann bekannt.

einer weiteren besonderen Ausführungsform umfasst In der erfindungsgemäße Vektor ein Fusionsprotein aus erfindungsgemäßen Erkennungsmolekül und einem Protein Peptid, das spezifisch an ein Virus bindet. Die gewonnenen Erkennungsmoleküle können so mit Vorteil zur Adressierung des Virus an eine Core-1 exprimierende Zelle verwendet werden. So kann z.B. der Transfer des genetischen Materials Infektionen vermittelt werden, wodurch es ermöglicht wird, spezifische Moleküle, die durch das genetische Material des Virus kodiert werden, in den Zellen in vivo im Organismus in Form einer Gentherapie oder in vitro in der Zellkultur zu exprimieren.

10

15

20

25

30

Weiterhin betrifft die Erfindung ein Verfahren zur Gewinnung der Erkennungsmoleküle umfassend das Einbringen von ein oder mehreren erfindungsgemäßen Vektoren, die ein oder mehrere erfindungsgemäße Nukleinsäuremoleküle enthalten, in geeignete Wirtszelle, die Kultivierung dieser Wirtszelle unter geeigneten Bedingungen und die Bereitstellung von ein oder mehreren Erkennungsmolekülen aus den Zellen oder dem Kulturmedium. Unter dem Begriff "Einbringen von Vektoren" versteht man im Sinne der Erfindung dem Fachmann an sich bekannte Technologien mit denen der Vektor in eine Wirtszelle gebracht wird, beispielsweise Elektroporation, Transfektion unter Verwendung kationischer Lipide oder Infektion und dort transient oder stabil verbleibt. Unter dem Begriff "Bereitstellung von einem oder mehreren Erkennungsmolekülen" versteht man im Sinne der Erfindung dem Fachmann an sich bekannte Technologien mit denen die während des Kultivierungsprozesses exprimierten Erkennungsmoleküle aus dem Kulturüberstand und/oder Zellen gewonnen werden, beispielsweise unterschied-

proteinchemische Reinigungsschritte beispielsweise Fraktionierung, Konzentrierung, Fällungen, und/oder Chromatographie. Die in dem Verfahren zu verwendenden Techniken und Methoden sind dem Fachmann bekannt, ebenso ist der Fachmann in der Lage, geeignete Wirtszellen und Kultivierungsbedingungen sowie Methoden zur Bereitstellung aus den Zellen und/oder dem Kulturüberstand auszuwählen. Hierbei wählt der Fachmann beispielsweise, wie bereits oben ausgeführt, Nukleinsäuresequenzen mit geeigneten Codons und Promotorsequenzen abgestimmt auf die Wirtszelle, eine möglichst starke Expression von aktiven Erkennungsmolekülen zu gewinnen. In einer bevorzugten Ausführungsform verwendet der Fachmann bespielsweise affinitätschromatographische Schritte, beispielsweise Chromatographie an Protein A oder Protein G Protein L oder beipielsweise Metallionen-Affinitätschromatographie über einen zusätzlich eingefügten In den Beispielen ist dies beispielhaft näher His-Tag. ausgeführt.

5

10

15

Der Begriff "Gewinnung" umfasst neben den zuvor explizit 20 genannten Schritten auch zusätzliche Schritte, wie Vorbehandlungen des Ausgangsstoffes oder Weiterbehandlungen des Endproduktes. Vorbehandlungsverfahren sind an sich dem Fachmann bekannt. Weiterbehandlungsverfahren umfassen neben den oben beschrieben Bereitstellungsverfahren beispielsweise 25 auch die endgültige Zusammensetzungen und/oder Formulierung mit dem Herstellungsverfahren gewonnenen Erkennungsmoleküls in geeigneten Verwendungs- und/oder Darreichungsformen. Die Art der Verwendungs- oder Darreichungsform, z.B. Lyophilisat oder Tablette, hängt hierbei von der 30 beabsichtigten Verwendung ab. Dem Fachmann ist hierbei bekannt, welche Darreichungsform sich für welchen Verwendungszweck eignet. Je nach Darreichungsform kann das durch das erfindungsgemäße Verfahren hergestellte

Erkennungsmolekül zusammen mit Hilfs-, Träger- oder weiteren Wirkstoffen vorliegen. Hilfsstoffe sind hierbei vorzugsweise Adjuvantien, weitere Wirkstoffe, vorzugsweise immunstimulatorische Moleküle, wie Interleukine. Das mit dem erfindungsgemäßen Verfahren hergestellte Erkennungsmolekül kann auch in Weiterbehandlungsschritten chemisch modifiziert werden. Vorzugsweise wird das Erkennungsmolekül hierbei mit einem oder mehreren weiteren Molekülen in geeigneter Weise, d.h. durch chemische oder physikalische Interaktion, verbunden. Als weitere Moleküle im Sinne der Erfindung dienen bevorzugt anderen Proteine oder Peptide, die mit dem durch das erfindungsgemäße Verfahren hergestellten Erkennungsmolekül kovalent oder nicht-kovalent verknüpft werden, beispielsweise um bispezifische Erkennungsmoleküle herzustellen, indem ein erfindungsgemäßes Erkennungsmolekül, das spezifisch das Core-1 Antigen erkennt, mit einem zweiten Molekül verknüpft wird, das beispielsweise eine Immuneffektorzelle (beispielsweise Makrophage, NK-Zellen, Dendritische Zellen) spezifisch bindet oder beispielsweise eine Verknüpfung mit Interleukinen (beispielsweise IL-2, IL-7, IL-12, IL-15), Chemokinen oder Wachstumsfaktoren, wodurch über die Wirkung dieser Moleküle über die Bindung des erfindungsgemäßen Erkennungsmoleküls Immuneffektoren an die Core-1 positiven Tumorzellen dirigiert werden und diese beispielsweise bekämpfen und/oder zerstören. Diese weiteren Moleküle oder Teile davon können wie bereits weiter oben beschrieben auch Teil des Erkennungsmoleküls selbst sein und werden in diesem Fall nicht über die hier beschriebenen chemischen oder physikalischen Methoden nach der Expression des Erkennungsmoleküls verknüpft. "Immuneffektoren" versteht man im Sinne der Erfindung solche Komponenten der Erfindung die direkt oder indirekt eine Bekämpfung und/oder Zerstörung von Core-1 positiven Tumorzellen bewirken können, beispielsweise Immuneffektorzellen, wie beispielsweise Makrophagen, NK-Zellen,

10

15

20

25

30

Dendritische Zellen, oder Effektormoleküle, wie beispielsweise Proteine oder Peptide des Komplementsystems. Als weitere Rahmen des erfindungsgemäßen Verfahrens Moleküle im besonders Substanzen geeignet, die eine therapeutische oder diagnostische Wirkung entfalten, beispielsweise Radioisotope oder Toxine. Diese Substanzen werden über an sich bekannte Verfahren mit den Erkennungsmolekülen verknüpft, beispielsweise werden Radioisotope entweder direkt eingelagert (beispielsweise Iod) oder über einen kovalent gekoppelten Chelator (beispielsweise Yttrium, Indium, Bismut) gebunden. Die Schritte des Weiterbehandlungsverfahrens sind dem Fachmann bekannt.

zur Expression der Erkennungsmoleküle erfindungsgemäß verwendeten Zellen können prokaryontische oder eukaryontische beispielsweise Bakterien-, Hefesein, (bevorzugt S.cerevisiae oder P.pastoris), Insekten- (D.melanogaster), Pflanzen-, Säugerzellen (bevorzugt Hamster-, Maus- oder humane Zelllinien) oder Organismen wie transgene Tiere und Pflanzen. Vorzugsweise werden zur Expression der erfindungsgemäßen Erkennungsmoleküle in einem prokaryontischen System E.coli und zur Expression in einem eukaryontischen System die Säugerzelllinien NSO, SP2/0, CHO-K1, CHOdhfr-, COS-1, COS-7, HEK293, K562, Namalwa oder Percy 6 verwendet.

25

30

20

10

15

Weiterhin betrifft die vorliegende Erfindung Wirtszellen, die durch das oben beschriebene Verfahren hergestellt wurden und mit Hilfe derer erfindungsgemäße Erkennungsmoleküle hergestellt werden können. Selbstverständlich können die Wirtszellen Teil eines Klons sein oder ihn selber darstellen. Die Erfindung betrifft auch Organismen, die erfindungsgemäße Wirtszellen umfassen. Die zu verwendenden Techniken und Methoden zur Herstellung dieser Organismen sind dem Fachmann bekannt.

15

Erfindung betrifft weiterhin Die Zusammensetzungen für therapeutische, prophylaktische oder diagnostische Zwecke umfassend mindestens ein erfindungsgemäßes Erkennungsmolekül einer geeigneten, insbesondere einer pharmazeutisch geeigneten Form oder Zusammensetzung. Die pharmazeutische Zusammensetzung umfaßt insbesondere zusätzliche Stoffe und Substanzen, beispielsweise medizinische und/oder zeutisch-technische Hilfsstoffe. Im Sinne der Erfindung gelten Arzneimittel als sowohl solche pharmazeutischen Zusammensetzungen, die für therapeutische und prophylaktische Zwecke verwendet werden, als auch solche pharmazeutischen Zusammensetzungen, die in vivo als Diagnostikum eingesetzt werden. In einer weiteren bevorzugten Ausführungsform handelt es sich um Zusammensetzungen für die ex vivo Diagnostik die zusätzliche Stoffe und Substanzen enthalten können. Diese Ausführungsform ist unter der Beschreibung für die Diagnostika ausgeführt.

"Arzneimittel oder pharmazeutische Zusammensetzungen", 20 die vorliegend synonym verwendet werden, sind erfindungsgemäß Stoffe und Zubereitungen aus Stoffen, die dazu bestimmt sind, durch Anwendung am oder im menschlichen Körper Krankheiten, Leiden, Körperschäden oder krankhafte Beschwerden zu heilen, zu lindern oder zu verhüten. Medizinische Hilfsstoffe sind 25 erfindungsgemäß solche Stoffe, die zur Produktion als aktive Ingredienzien Arzneimitteln von eingesetzt werden. Pharmazeutisch-technische Hilfsstoffe dienen der geeigneten Formulierung Arzneimittels oder der pharmazeutischen des Zusammensetzung und können sogar, sofern sie nur während des 30 Herstellungsverfahrens benötigt werden, anschließend entfernt werden oder können als pharmazeutisch verträgliche Träger Teil pharmazeutischen Zusammensetzung sein. Beispiele pharmazeutisch verträgliche Träger sind nachstehend

15

20

25

30

42

aufgeführt. Die Arzneimittelformulierung oder Formulierung der pharmazeutischen Zusammensetzung erfolgt gegebenenfalls Kombination mit einem pharmazeutisch verträglichen Verdünnungsmittel. Beispiele für pharmazeutisch verträgliche Träger sind dem Fachmann bekannt und umfassen z.B. Phosphat-gepufferte Kochsalzlösungen, Wasser, Emulsionen wie z.B. Öl/Wasser-Emulsionen, verschiedene Arten von Detergenzien, sterile Lösungen, etc. Arzneimittel oder pharmazeutische Zusammensetzungen, die solche umfassen, können mittels bekannter konventioneller Methoden formuliert werden. Diese Arzneimittel oder pharmazeutischen Zusammensetzungen können einem Individuum in einer geeigneten Dosis verabreicht werden, z.B. in einem Bereich von $1\mu g$ bis 10 g an Erkennungsmolekülen pro Tag und Patient Bevorzugt werden dabei Dosen von 1 mg bis 1 g. Die Verabreichung kann auf verschiedenen Wegen erfolgen, beispielsweise intravenös, intraperitoneal, intrarektal, intragastrointestinal, intranodal, intramuskulär, lokal, beispielsweise in den Tumor, aber auch subkutan, intradermal oder auf der Haut oder über die Schleimhäute. Die Verabreichung von Nukleinsäuren kann auch in Form von Gen-Therapie geschehen, beispielsweise über weiter oben beschriebene virale Vektoren. Die Art der Dosierung und des Verabreichungsweges kann vom behandelnden Arzt entsprechend den klinischen Faktoren bestimmt werden. Es ist dem Fachmann bekannt, dass die Art der Dosierung von verschiedenen Faktoren abhängig ist, wie z.B. der Größe, Körperoberfläche, dem Alter, dem Geschlecht oder der allgemeinen Gesundheit des Patienten, aber auch von speziellen Mittel, welches verabreicht wird, der Dauer und Art der Verabreichung und von anderen Medikamenten, die möglicherweise parallel verabreicht werden.

Die pharmazeutischen Zusammensetzungen oder das Arzneimittel umfasst insbesondere eine pharmakologische Substanz, die ein

43

oder mehrere erfindungsgemäße Erkennungsmoleküle oder/und diese kodierende Nukleinsäuremoleküle in einer geeigneten Lösung oder Verabreichungsform enthält. Diese können entweder alleine mit den entsprechenden unter Arzneimitteln pharmazeutischen Zusammensetzungen beschriebenen Hilfsstoffen oder in Kombination mit einem oder mehreren Adjuvantien, beispielsweise QS-21, GPI-0100 oder andere Saponine, Wasser-Öl Emulsionen wie beispielsweise Montanide Adjuvantien, Polylysin, Polyargininverbindungen, DNA-Verbindungen wie beispielsweise CpG, Detox, bakterielle Vakzine wie beispielsweise Thyphusvakzine oder BCG-Vakzine, und/oder einem anderen geeigneten Stoff zur Wirkungsverstärkung verabreicht vorzugsweise immunstimulatorische Moleküle, Interleukine, beispielsweise IL-2, IL-12, IL-4 und/oder Wachstumsfaktoren, beispielsweise GM-CSF. Diese werden bekannten Methoden mit den erfindungsgemäßen Erkennungsmolekülen gemischt und in einer geeigneten Formulierung und Dosierung verabreicht. Formulierungen, Dosierungen und geeignete Komponenten sind dem Fachmann bekannt.

10

15

20

25

30

Die pharmazeutische Zusammensetzung oder das Arzneimittel kann selbstverständlich auch eine Kombination von 2 oder mehreren der erfindungsgemäßen pharmazeutischen Zusammensetzungen oder Arzneimittel sein, sowie eine Kombination mit Arzneimitteln, Tumorvakzinen oder Tumorbehandlungen, wie beispielsweise Antikörpertherapien, Chemotherapien oder Radiotherapien, die auf eine geeignete Weise gemeinsam oder getrennt verabreicht beziehungsweise angewandt werden. Herstellung der Arzneimittel oder pharmazeutischen Zusammensetzungen erfolgt nach an sich bekannten Methoden.

Die Arzneimittel oder pharmazeutischen Zusammensetzungen können insbesondere zur Behandlung von Core-1 positiven

44

Tumorerkrankungen eingesetzt werden, wie beispielsweise Mammakarzinome, Zervikalkarzinome, Ovarialkarzinome, karzinome, Gastrointestinalkarzinome, Pankreaskarzinome, Lungenkarzinome, Prostatakarzinome. Zu diesen Tumorerkrankungen können auch Core-1 und/oder Core-2 positive Tumorerkrankungen gehören. Die Behandlung geht beispielsweise Primärtumoren, gegen minimal residuale Tumorerkrankungen, Relapses und/oder Metastasen. Die Behandlung der Tumoren kann auch als adjunvante Behandlung erfolgen. Die Verwendung der Arzneimittel kann auch zur Prophylaxe von Core-1 positiven Tumorerkrankungen erfolgen. Die prophylaktische Anwendung zielt beispielsweise auf eine Prophylaxe des Tumors sowie von Metastasen. Die Tumormittel werden in einer geeigneten Form nach bekannten Methoden verabreicht. Eine bevorzugte Variante die Injektion beziehungsweise Verabreichung Arzneimittel intravenös, lokal in Körperkavitäten, beispielsweise intraperitoneal, intrarektal, intragastrointestinal, lokal beispielsweise direkt in den Tumor, Organe Lymphgefäße (intranodal), oder aber subkutan. intradermal oder auf der Haut, intramuskulär. Verabreichungsarten können bevorzugterweise auch kombiniert werden, wobei sie an verschiedenen Behandlungstagen oder an einem Behandlungstag verabreicht werden können. Dabei können erfindungsgemäß auch 2 oder mehrere der erfindungsgemäßen Arzneimittel oder pharmazeutischen Zusammensetzungen kombiniert werden oder eine oder mehrere erfindungsgemäße Arzneimittel mit ein oder mehreren Arzneimitteln Tumorbehandlungen, wie beispielsweise Antikörpertherapien, Chemotherapien oder Radiotherapien, die zeitlich gemeinsam oder getrennt verabreicht beziehungsweise angewandt werden.

10

15

20

25

30

Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung eines Arzneimittels oder einer pharmazeutischen Zusammensetzung umfassend die Schritte der Herstellung von

45

Erkennungsmolekülen und weiterhin umfassend den Schritt der Formulierung der erfindungsgemäßen Erkennungsmoleküle in pharmazeutisch verträglicher Form. Die hierfür bevorzugten erfindungsgemäßen Erkennungsmoleküle sind weiter oben als Ausführungsformen zur Behandlung von Tumorerkrankungen und Prophylaxe, sowie weiter unten unter in vivo Diagnostika näher beschrieben.

erfindungsgemäßen Die Erkennungsmoleküle und durch das 10 erfindungsgemäße Verfahren hergestellten Stoffe und Zusammensetzungen können demgemäß bevorzugt zur Prophylaxe, Verlaufskontrolle und/oder Behandlung von Tumorerkrankungen verwendet werden. Die Verwendung Erkennungsmoleküle, der Vektoren und/oder des Arzneimittels 15 pharmazeutischen Zusammensetzung zur Prophylaxe und/oder Behandlung von Krebserkrankungen, einschließlich Tumoren und Metastasen ist weiterhin bevorzugt.

In einer bevorzugten Ausführungsform ist die Krebserkrankung Tumor, die/der behandelt oder verhindert der wird, ausgewählt aus der Gruppe von Krebserkrankungen oder Tumorerkrankungen des Hals-Nasen-Ohren-Bereichs, der Lunge, Mediastinums, des Gastrointestinaltraktes, Urogenitalsystems, des gynäkologischen Systems, der Brust, des endokrinen Systems, der Haut, Knochen- und Weichteilsarkomen, Mesotheliomen, Melanomen, Neoplasmen des zentralen Nervensystems, Krebserkrankungen oder Tumorerkrankungen Kindesalter, Lymphomen, Leukämien, paraneoplastischen Syndromen, Metastasen ohne bekannten Primärtumor Syndrom), peritonealen Karzinomastosen, Immunsuppressionbezogenen Malignitäten und/oder Tumor-Metastasen.

20

25

30

Insbesondere kann es sich bei den Tumoren um folgende Krebsarten handeln: Adenokarzinom der Brust, der Prostata und

des Dickdarms; alle Formen von Lungenkrebs, der von den Bronchien ausgeht; Knochenmarkkrebs, das Melanom, das Hepatom, das Neuroblastom; das Papillom; das Apudom, das Choristom, das Branchiom; das maligne Karzinoid-Syndrom; die Karzinoid-Herzerkrankung; 5 das Karzinom (z.B. Walker-Karzinom, Basalzellen-Karzinom, basosquamöses Karzinom, Brown-Pearce-Karzinom, duktales Karzinom, Ehrlich-Tumor, in situ-Karzinom, Krebs-2-Karzinom, Merkel-Zellen-Karzinom, Schleimkrebs, nichtkleinzelliges Bronchialkarzinom, Haferzellen-Karzinom, 10 papilläres Karzinom, szirrhöses Karzinom, bronchioloalveoläres Karzinom, Bronchiai-Karzinom, Plattenepithelkarzinom und Transitionalzell-Karzinom); histiocytische Funktionsstörung; Leukämie (z.B. in Zusammenhang mit B-Zellen-Leukämie, Gemischt-Zellen-Leukämie, 15 Nullzellen-Leukämie, T-Zellen-Leukämie, chronische Leukämie, HTLV-II-assoziierte Leukämie, akut lymphozytische Leukämie, chronisch-lymphozythische Leukämie, Mastzell-Leukämie und myeloische Leukämie); maligne Histiocytose, Hodgkin-Krankheit, non-Hodgkin-Lymphom, solitärer Plasmazelltumor; Reticuloendotheliose, 20 Chondroblastom; Chondrom, Chondrosarkom; Fibrom; Fibrosarkom; Riesenzell-Histiocytom; Lipom; Liposarkom; Leukosarkom; Mesotheliom; Myxom; Myxosarkom; Osteom; Osteosarkom; Ewing-Sarkom; Synoviom; Adenofribrom; Adenolymphom; Karzinosarkom, Chordom, Craniopharyngiom, Dysgerminom, Hamartom; Mesenchymom; 25 Mesonephrom, Myosarkom, Ameloblastom, Cementom: Odontom: Teratom; Thymom, Chorioblastom; Adenokarzinom, Adenom; Cholangiom; Cholesteatom; Cylindrom; Cystadenocarcinom, Cystadenom; Granulosazelltumor; Gynadroblastom; Hidradenom; 30 Inselzelltumor; Leydig-Zelltumor; Papillom; Sertoli-Zell-Tumor, Thekazelltumor, Leiomyom; Leiomyosarkom; Myoblastom; Myosarkom; Rhabdomyom; Rhabdomyosarkom; Ependynom; Ganglioneurom, Gliom; Medulloblastom, Meningiom; Neurilemmom; Neuroblastom; Neuroepitheliom, Neurofibrom, Neurom,

20

25

30

47

Paragangliom, nicht-chromaffines Paragangliom, Angiokeratom, angiolymphoide Hyperplasie mit Eosinophilie; sclerosierendes Angiomatose; Glomangiom; Hemangioendotheliom; Hemangiom; Hemangiopericytom, Hemangiosarkom; Lymphangiom, Lymphangiomyom, Lymphangiosarkom; Pinealom; Cystosarkom phyllodes; Hemangiosarkom; Lymphangiosarkom; Myxosarkom, Ovarialkarzinom; Sarkom (z.B. Ewing-Sarkom, experimentell, Kaposi-Sarkom und Mastzell-Sarkom); Neoplasmen (z.B. Knochen-Neoplasmen, Brust-Neoplasmen, Neoplasmen des Verdauungssystems, colorektale Neoplasmen, 10 Leber-Neoplasmen. Pankreas-Neoplasmen, Hirnanhang-Neoplasmen, Hoden-Neoplasmen, Orbita-Neoplasmen, Neoplasmen des Kopfes und Halses, des Zentralnervensystems, Neoplasmen des Hörorgans, des Beckens, des Atmungstrakts und des Urogenitaltrakts); Neurofibromatose und zervikale Plattenepitheldysplasie.

In einer weiter bevorzugten Ausführungsform ist die Krebserkrankung oder der Tumor, die/der behandelt oder verhindert wird, ausgewählt aus der Gruppe von Krebserkrankungen oder Tumorerkrankungen, die Zellen umfassen, die das Core-1 in der erfindungsgemäßen Definition umfassen, ausgewählt aus der Gruppe: Tumoren des Hals-Nasen-Ohren-Bereichs umfassend Tumoren der inneren Nase, der Nasennebenhöhlen, des Nasopharynx, der Lippen, der Mundhöhle, des Oropharynx, des Larynx, des Hypopharynx, des Ohres, der Speicheldrüsen und Paragangliome, Tumoren der Lunge umfassend nicht-kleinzellige Bronchialkarzinome, kleinzellige Bronchialkarzinome, Tumoren des Mediastinums, Tumoren des Gastrointestinaltraktes umfassend Tumoren des Ösophagus, des Magens, des Pankreas, der Leber, der Gallenblase und der Gallenwege, des Dünndarms, Kolon- und Rektumkarzinome und Analkarzinome, Urogenitaltumoren umfassend Tumoren der Nieren, der Harnleiter, der Blase, der Prostata, der Harnröhre, des Penis und der Hoden, gynäkologische Tumoren umfassend Tumoren

des Zervix, der Vagina, der Vulva, Korpuskarzinom, maligne Trophoblastenerkrankung, Ovarialkarzinom, Tumoren des Eileiters (Tuba Faloppii), Tumoren der Bauchhöhle, Mammakarzinome, Tumoren endokriner Organe umfassend Tumoren der Schilddrüse, der Nebenschilddrüse, der Nebennierenrinde, endokrine Pankreastumoren, Karzinoidtumoren Karzinoidsyndrom, multiple endokrine Neoplasien, Knochen- und Weichteilsarkome, Mesotheliome, Hauttumoren, Melanome umfassend kutane und intraokulare Melanome, Tumoren des zentralen Nervensystems, Tumoren im Kindesalter umfassend Retinoblastom, Wilms Tumor, Neurofibromatose, Neuroblastom, Ewing-Sarkom Tumorfamilie, Rhabdomyosarkom, Lymphome umfassend Non-Hodgkin-Lymphome, kutane T-Zell-Lymphome, primäre Lymphome zentralen Nervensystems, Morbus Hodgkin, Leukämien umfassend akute Leukämien, chronische myeloische lymphatische Leukämien, Plasmazell-Neoplasmen, myelodysplastische Syndrome, paraneoplastische Syndrome, Metastasen ohne bekannten Primärtumor (CUP-Syndrom), peritoneale Karzinomastose, Immunsuppression-bezogene Malignität umfassend AIDS-bezogene Malignitäten wie Kaposi-Sarkom, AIDS-assoziierte Lymphome, AIDS-assoziierte Lymphome des zentralen Nervensystems, AIDS-assoziierter Morbus Hodgkin und AIDS-assoziierter anogenitale Tumoren, Transplantationsbezogene Malignitäten, metastasierte Tumoren umfassend Gehirnmetastasen, Lungenmetastasen, Lebernetastasen. Knochenmetastasen, pleurale und perikardiale Metastasen und maligne Aszites.

10

15

20

25

In einer weiter bevorzugten Ausführungsform ist die Krebserkrankung oder 30 der Tumor, die/der behandelt verhindert wird, ausgewählt aus der Gruppe umfassend Krebserkrankungen oder Tumorerkrankungen der Mammakarzinome, Gastrointestinaltumore, einschließlich Kolonkarzinome, Magenkarzinome, Pankreaskarzinome, Dickdarmkrebs.

Dünndarmkrebs, der Ovarialkarzinome, der Zervikalkarzinome, Lungenkrebs, Prostatakrebs, Nierenzellkarzinome und/oder Lebermetastasen.

erfindungsgemäßen Erkennungsmoleküle 5 Die können bei der Behandlung oder Prophylaxe von Tumorerkrankungen direkt eingesetzt werden oder mit zusätzlichen Effektorstrukturen gekoppelt werden. Unter "Effektorstrukturen" versteht erfindungsgemäß solche chemischen oder biochemischen Verbindnungen, Moleküle oder Atome, die direkt oder indirekt 10 eine Abtötung oder Schädigung, einschließlich beispielsweise Wachstumsverlangsamung oder Wachstumsinhibition Tumorzellen bewirken. Hierzu gehören beispielsweise Radioisotope, Toxine, Cytostatika und andere Effektormoleküle 15 beispielsweise Cytokine und Chemokine oder andere die selbst Effektoren darstellen oder an die Effektormoleküle gekoppelt werden, beispielsweise mit Toxinen oder Cytostatika beladene Liposomen, die erfindungsgemäße Erkennungsmoleküle tragen. Beim letzteren Beispiel 20 Liposomen sind insbesondere auch solche Effektorstrukturen die neben dem Erkennungsmolekül für die Tumorspezifität auch solche Moleküle tragen, die für eine Aufnahme der Effektorstrukturen oder Teile davon in die Zellen verantwortlich sind, wie beispielsweise Antikörper Rezeptoren, die eine Rezeptor-vermittelte Endozytose bewirken. 25 Vorzugsweise umfassen die Erkennungsmoleküle in diesen Fällen eine Transmembrandomäne, die ihnen eine Insertion in die Liposomenmembran erlaubt oder in einer anderen bevorzugten Ausführungsform werden die Erkennungsmoleküle chemisch auf die 30 Liposomenoberfläche gekoppelt. Die hierfür verwendeten Techniken sind dem Fachmann bekannt, einschließlich Herstellung der Liposomen. Auch die Verbindung Erkennungsmoleküle mit den anderen Effektorstrukturen erfolgt nach an sich bekannten Methoden. Die Kopplungen können dabei

15

20

25

30

50

wie bereits oben ausgeführt beispielsweise direkt durch kovalente oder nicht-kovalente Beladung erfolgen, chemische Kopplung, wobei ein zusätzliches chemisches oder biologisches Molekül notwendig sein kann, beispielsweise ein Chelator oder ein Linker, oder in Form von Fusionsproteinen oder -peptiden durch Fusion. Eingesetzt werden Erkennungsmoleküle bei der Behandlung von Tumorerkrankungen mit Core-1 tragenden Tumoren, und/oder für eine Untergruppe an erfindungsgemäßen Erkennungsmolekülen, die weiter oben über ihre Spezifität für Core-1 und Core-2 beschrieben sind, Core-2 und/oder Core-1 tragenden Tumorzellen oder zur Prophylaxe, die beispielsweise die Ausbildung von primären Tumoren oder Metastasen verhindert. Bevorzugtes Ziel ist dabei die Behandlung der minimalen residualen Erkrankung und Metastasen. Eine weitere bevorzugte Anwendung ist dabei die Inhibition der Lebermetastasierung von Core-1 und/oder Core-2 positiven Tumorzellen. Die erfindungsgemäßen Erkennungsmoleküle dabei werden in einer geeigneten Formulierung einmalig oder wiederholt in geeigneten zeitlichen Abständen und Dosen verabreicht.

Im Folgenden und davor versteht man im Sinne der Erfindung unter dem Core-1 Antigen auch Core-1 und/oder Core-2 und unter Core-1 positiven Zellen oder Tumorzellen und/oder -geweben auch Core-1 und/oder Core-2 positive Zellen oder Tumorzellen und/oder -gewebe.

In einer bevorzugten Ausführungsform werden die erfindungsgemäßen oben beschriebenen radioaktiven Erkennungsmoleküle mit einer Applikation von nicht markierten erfindungsgemäßen Core-1 spezifischen Erkennungsmolekülen kombiniert. Dies dient der Verbesserung des Hintergrundes und einer spezifischeren Bindung an den Tumor, indem potentielle Core-1 tragende Moleküle im Blut abgesättigt

15

werden. Bevorzugt werden dabei IgM abgleitete Erkennungsmoleküle verwendet, beispielsweise der in Beispielen beschriebene cIgM oder die humanisierte Form davon, da diese vor allem an Core-1 Antigen im Blut binden und damit den Hintergrund und die Serumbelastung mit Radioaktivität erniedrigen und das relative Tumortargeting erhöhen, während aufgrund der Größe der Moleküle ein Eindringen in Gewebe und Tumoren limitiert ist. Die hierfür verwendeten Verfahren und Technologien sind dem Fachmann bekannt, ebenfalls kann der Fachmann eine geeignete Dosis, Formulierungen, Applikationsroute und Zeitpunkt der Gabe der nicht-markierten Erkennungsmoleküle erstellen.

Bevorzugt ist weiterhin die Verwendung von viralen Vektoren zur gentherapeutischen Anwendung, bei der insbesondere die Oberfläche der Viren erfindungsgemäße Erkennungsmoleküle tragen.

Die Erfindung betrifft weiterhin Verfahren unter Verwendung der erfindungsgemäßen Erkennungsmoleküle, die es erlauben, aus 20 einem großen Pool unterschiedlicher Moleküle Core-1 tragende Moleküle zu identifizieren und/oder zu gewinnen, die für eine Anwendung in der Tumorbehandlung, Tumorprophylaxe Tumordiagnose vorteilhaft verwendet werden können. Unter Core-1 tragenden Molekülen versteht man erfindungsgemäß Moleküle, 25 die Core-1 und/oder Core-2 Strukturen tragen und spezifisch von den erfindungsgemäßen Erkennungsmolekülen gebunden werden. Erfindungsgemäß sind Core-1 tragende Moleküle Glykoproteine, Glykopeptide und/oder Glykolipide sowie auch Zellen andere Trägersubstanzen, wie beispielsweise Viren, Bakterien, 30 Teile von Zellen, wie beispielsweise Exosomen oder Zelllysate, Liposomen, die ein oder mehrere Core-1 Strukturen enthalten. Die Core-1 tragenden Moleküle können aus Zellen oder Zelllinien, aus Kulturüberständen, aus Tumorqewebe,

52

Tumorzellen oder Körperflüssigkeiten, wie Blut, Blutserum, Lymphe, Urin, Spinalflüssigkeit oder Sperma angereichert oder isoliert werden.

Die zuvor eingeführten Definitionen der Begriffe sind für die Begriffe in den nachfolgend beschriebenen Verfahren mutatis mutandis anwendbar.

10

15

20

25

Core-1 tragende Moleküle werden in einem erfindungsgemäßen Verfahren durch Bindung die an oben beschriebenen erfindungsgemäßen Core-1 spezifischen Erkennungsmoleküle identifiziert und/ oder isoliert und gewonnen. Nach dem erfindungsgemäßen Verfahren können die oben beschriebenen Core-1 tragenden Moleküle aus Körperflüssigkeiten oder aus Überständen von Zellkulturen durch eine Affinitätschromatographie gewonnen werden. Dabei können weitere Reinigungs- und/oder Konzentrierungsschritte nach an sich bekannten Methoden mit einem oder mehreren Affinitätschromatographieschritten kombiniert werden. Ebenso können tumorassoziierte Core-1 tragende Moleküle aus Tumorzellen, Tumorgeweben oder Tumorzelllinien werden, indem ein geeigneter Schritt nach an sich bekannten Methoden vorgeschaltet wird, der e's erlaubt, die zellassoziierten Core-1 tragenden Moleküle für die Affinitätsreinigung zugänglich zu machen, beispielsweise durch Solubilisierung mit geeigneten Detergenzien oder Abspaltung durch Proteolyse oder durch Zelllyse.

In einem weiteren erfindungsgemäßen Verfahren werden Core-1
tragende Moleküle oder Zellen aus Geweben gewonnen. Hierzu
wird das Gewebe nach an sich bekannten Methoden
aufgeschlossen, um die Core-1 tragenden Moleküle oder Zellen
zugänglich zu machen, beispielsweise durch proteolytische oder

53

mechanische Methoden. Dem Fachmann sind diese Verfahren bekannt.

Wie oben ausgeführt werden auch Core-1 positive Zellen oder 5 Zelllinien unter Verwendung der Core-1 spezifischen Erkennungsmoleküle isoliert oder angereichert und von solchen Zellen, die keine oder geringe Mengen an Core-1 Strukturen tragen, Unter getrennt. dem Begriff "Isolierung Anreicherung der Zellen" sind alle Maßnahmen zur Separierung von Zellen zu verstehen, die durch das Tragen von Core-1 10 Strukturen einen Komplex mit den erfindungsgemäßen Erkennungsmolekülen gebildet haben. Dem Fachmann sind diese Verfahren bekannt. Vorzugsweise wird hierfür die FACS oder die MACS Methode eingesetzt. Beispielsweise erfolgt 15 Anreicherung durch Bindung von erfindungsgemäßen Erkennungsmolekülen an die Core-1 Struktur der Zelloberfläche und anschließender Selektion der so markierten Zellen durch Bindung an Trägermaterialien, die spezifisch mit dem Erkennungsmolekül interagieren, beispielsweise anti-Maus IgM Antikörper gekoppelt an Magnetbeads (MACS-Sortierung). Außerdem können die Core-1 spezifischen Erkennungsmoleküle selbst kovalent an einen Träger gekoppelt sein. Ein weiteres Beispiel ist die Gewinnung mit Hilfe eines FACS-Sorters, der die die Erkennungsmoleküle tragen, fluoreszenzmarkiert wurden, sortiert. Beide Methoden sind dem Fachmann bekannt. Diese so angereicherten Core-1 positiven Zellen können für die Herstellung von Vakzinen verwendet werden, beispielsweise zur Beladung von Dendritischen Zellen oder direkt als Tumorzelllysat in einer Vakzinen Zusammensetzung. Die vorhergehende Anreicherung von Core-1 positiven Zellen soll zu einer höheren Tumorspezifität der Vakzinierung führen. Dem Fachmann sind diese Verfahren bekannt.

20

25

30

10

15

25

30

Die vorliegende Erfindung betrifft weiterhin Verfahren zur Herstellung eines Diagnostikums umfassend die Schritte des erfindungsgemäßen Verfahrens zur Herstellung der erfindungsgemäßen Core-1 spezifischen Erkennungsmoleküle und weiterhin umfassend den Schritt der Formulierung der Erkennungsmoleküle in einer diagnostisch verwendbaren Form

Unter dem Begriff "Diagnostikum" sind erfindungsgemäß Stoffe und Zubereitungen aus Stoffen definiert, die dazu bestimmt sind, durch Anwendung am oder im menschlichen Körper oder Teilen davon Krankheiten, Leiden, Körperschäden krankhafte Beschwerden zu erkennen. Als Teile des menschlichen Körpers sind vorzugsweise Körperflüssigkeiten, wie Blut, Blutserum, Lymphe, Urin, Spinalflüssigkeit oder Sperma, oder Gewebebiopsien oder '-proben zu verstehen.

Die Formulierung des Diagnostikums umfasst vorzugsweise die Modifikation der hergestellten Erkennungsmoleküle mit Substanzen, die einen Nachweis des Antigens Core-1, in 20 bestimmten Ausführungsformen, die von der Feinspezifität des erfindungsgemäßen Erkennungsmoleküls abhängen, definitionsgemäß auch das Antigen Core-2, erlauben. Geeignete Substanzen sind im Stand der Technik bekannt. Ausgehend von der Wahl der Substanz ist der Fachmann in der Lage, geeignete Maßnahmen zur Formulierung des Diagnostikums einzusetzen.

Für die Diagnostik können erfindungsgemäß auch Substanzen nach an sich bekannten Methoden an die Erkennungsmoleküle gekoppelt werden, die einen Nachweis der Core-1 Antigene und/oder deren Trägermoleküle und/oder -zellen erleichtern, beispielsweise durch Biotinylierung, Fluoreszenzmarkierung, radioaktive Markierung oder Enzymkopplung der Erkennungsmoleküle.

In einem weiteren Verfahren zur Tumordiagnostik und Prognose

10

15

20

25

30

55

erfindungsgemäße Erkennungsmoleküle verwendet, Core-1 Antigene und/oder deren Trägermoleküle im Serum von Menschen erkennen. Die Bestimmung erfolgt bevorzugt qualitativ, quantitativ und/oder in zeitlich relativen Quantitäten nach an sich bekannten Methoden. Die gleichen Verfahren werden erfindungsgemäß auch zur Verlaufskontrolle von Tumorerkrankungen und zur Kontrolle Behandlungsverläufen einschließlich des Monitorings von Immunantworten und zur Kontrolle und Dosierung von Tumorbehandlungen eingesetzt. Die in den Verfahren verwendeten Methoden sind an sich bekannt, beispielsweise Westerblot, FACS (Fluoreszenzaktivierte Zellsortierung), MACS (Magnetvermittelte Zellsortierung), ADCC (Antikörpervermittelte Zellzytotoxizität), CDC (Komplement vermittelte Zytotoxizität), Immuncytochemie und Immunhistochemie.

In den bevorzugten erfindungsgemäßen Verfahren zur Tumordiagnostik und Prognose werden erfindungsgemäße Core-1 spezifische Erkennungsmoleküle in an sich bekannten Verfahren eingesetzt, das um Antigen Core-1 im Serum oder Gewebspräparaten nachzuweisen. Dabei wird das Antigen Core-1 auf Trägermolekülen, in Immunkomplexen auf Trägermolekülen vorliegendes Core-1 und/oder auf Zellen gebundenes Core-1 nachgewiesen und das Vorhandensein des Core-1 Antigens und/oder der Core-1 tragenden Moleküle qualitativ, quantitativ in relativen Quantitäten nach an sich bekannten und/oder Methoden bestimmt. Die gleichen Verfahren werden dungsgemäß auch zur Verlaufskontrolle von Tumorerkrankungen und zur Kontrolle von Behandlungsverläufen eingesetzt. Die in den Verfahren verwendeten Methoden sind an sich bekannt, beispielsweise ELISA, Western-Blot, FACS (Fluoreszenzaktivierte Zellsortierung), MACS (Magnetvermittelte sortierung), ADCC (Antikörpervermittelte Zellzytotoxizität), (Komplement vermittelte Zytotoxizität), Immuncytochemie CDC

56

und Immunhistochemie.

20

25

30

Eine bevorzugte Ausführungsform ist ein Gewebsschnelltest, bei dem in einem immunhistologischen Verfahren die Gewebsproben mit fluoreszenzmarkierten erfindungsgemäßen Erkennungsmolekülen gefärbt werden. In einem weiter Verfahren wird das erfindungsgemäße Erkennungsmolekül, bevorzugt ein Antikörper des Isotyps IgM, mit einem weiteren Antikörper, der spezifisch das Antigen MUC1 erkennt, bevorzugt 10 Isotyp kombiniert. IqG1, Der Vorteil dabei ist, beispielsweise die Diagnostik von gastrointestinalen für Karzinomen (z.B. Colorektale Karzinome und Magenkarzinome) diese in einem frühen Stadium erkannt und gleichzeitig eine Prognose bezüglich des Krankheitsverlaufes und/oder Lebermetastasierungsgefahr gegeben werden 15 kann, wobei höheres Niveau an Core-1 Antigen eine schlechtere Verlaufsprognose und eine um das mehrfach höhere Wahrscheinlichkeit der Lebermetastasierung bedeutet. In einer weiter bevorzugten Ausführungsform sind die Antikörper und Erkennungsmoleküle direkt mit unterschiedlichen Fluoreszenzfarbstoffen, beispielsweise Cy3 und Cy5 oder Cy3 und FITC, markiert. In einer Ausführungsform, in der eine Signalverstärkung vorteilhaft ist, werden die Antikörper und/oder Erkennungsmoleküle durch markierte sekundäre Antikörper oder das Biotin-Streptavidin verstärkt. Dabei ist es vorteilhaft, unterschiedliche Isotypen und/oder Speziessequenzen im konstanten Teil der Antikörper verwenden. Die hierbei verwendeten Technologien und Methoden, beispielsweise der Markierung und der Immunhistologie, sowohl die Wahl der geeigneten Formate der Erkennungsmoleküle sind dem Fachmann bekannt. Das beschriebene diagnostische Verfahren ist nicht auf gastrointestinale Tumoren beschränkt, sondern anwendbar für alle das Antigen Core-1 tragende Tumorerkrankungen.

10

15

20

25

30

einer weiter bevorzugten Ausführungsform wird serologischer Test durchgeführt, bei dem als Verfahren ein Sandwich-ELISA verwendet wird. Dieser besteht aus Fängerantikörper, der Trägermoleküle des Core-1 Antigens aus dem Serum an eine feste Phase bindet, und Nachweisantikörper, hierunter fallen erfindungsgemäß auch andere erfindungsgemäße Erkennungsmoleküle, die das Core-1 Antigen erkennen. Damit kann unterschieden werden, welches Trägermolekül das Core-1 trägt. In einer bevorzugten Form kann damit auf den Ursprung des Primärtumors Rückschlüsse gezogen werden. Als Fängerantikörper können verschiedene Antikörper dienen, die Glykoproteine erkennen, die O-Glykosylierungen tragen. Eine bevorzugte Ausführungsform verwendet Antikörper gegen das epitheliale Muzin MUC1 als Fängerantikörper, das häufig ein Träger des Core-1 im Tumorfall ist. weiteren Ausführungsfom werden alle Antigene im Blut bestimmt, die das Core-1 Antigen tragen. Dies ist dadurch möglich, dass das Core-1 Antigen in der Regel in mehreren Kopien pro Trägermolekül vorkommt. Hierbei wird erfindungsgemäß ein erfindungsgemäßes Core-1 spezifisches Erkennungsmolekül als Fängerantikörper verwendet und ein markiertes erfindungsgemäßes Core-1 spezifisches Erkennungsmolekül als Nachweisantikörper, wobei die Erkennungsmoleküle keine Antikörper sein müssen. In einer bevorzugten Ausführungsform wird ein IgM als Erkennungsmolekül mindestens als Fänger- oder Nachweisantikörper verwendet. In einer weiter bevorzugten Ausführungsform wird der Nachweisantikörper mit markiert und das System über Streptavidin in Kombination mit einem geeigneten Nachweisverfahren nachgewiesen. Ein geeignetes Nachweisverfahren sind beispieslweise POD Markierungen oder Fluoreszenzmarkierungen des Streptavidins.

In einer weiter bevorzugten Ausführungsform der Erfindung

58

werden für einen serologischen Tumortest die Bestimmung des Core-1 Antigens, wie zuvor beschrieben, mit der Bestimmung anderer serologischer Tumormarker kombiniert, beispielsweise PSA, CEA oder AFP. Eine hierbei bevorzugte Ausführungsform ist die Bestimmung des MUC1 und des Core-1 Antigens. In einer bevorzugten Ausführungsform wird hierbei das MUC1 mit Hilfe eines MUC1 spezifischen Antikörpers aus dem Serum an eine feste Phase immobilisiert und mit einem zweiten anti-MUC1 spezifischen Antikörper, bevorzugt solche, die die DTR-Region einer glykosylierten Form verbessert erkennen, als Nachweisantikörper nachgewiesen und das Core-1 Antigen auf dem mit Hilfe eines anti-MUC1 Fängerantikörpers immobilisierten MUC1 mit einem erfindungsgemäßen Erkennungsmolekül nachgewiesen. Dieser diagnostische Test verbindet eine Früherkennung einer prognostischen Aussage mit über den Krankheitsverlauf und/oder der Lebermetastasierungswahrscheinlichkeit. Die hierbei verwendeten Technologien, beispielsweise der Markierung und der Serologie, einschließlich Nachweismethoden, der sind dem Fachmann bekannt. Die beschriebenen diagnostischen Verfahren sind nicht auf gastrointestinale Tumoren beschränkt, sondern anwendbar für das Antigen Core-1 tragende Tumoren. Die beschriebenen serologischen Tests dienen der Diagnose, Monitorings des Verlaufs der Tumorerkrankung und der Prognose von Core-1 Antigen-positiven Tumoren.

10

15

20

25

In einemweiteren erfindungsgemäßen Verfahren werden die erfindungsgemäßen Core-1-spezifischen Erkennungsmoleküle zu vivo Diagnostik verwendet. einer in Hierfür werden die Erkennungsmoleküle mit geeigneten an sich bekannten Verfahren 30 markiert und somit für an sich bekannte bildgebende Verfahren amMenschen zugänglich gemacht, beispielsweise Radioimmundiagnostik, PET-Scan Verfahren oder Immunofluoreszenzendoskopie, beispielweise durch Kopplung und/oder

59

Beladung mit entsprechenden Molekülen, beispielsweise Isotope, beispielsweise das Indium, Fluoreszenzfarbstoffe, beispielsweise dem Cy3, Cy2, Cy5 oder FITC. einer bevorzugten Ausführungsform werden erfindungsgemäße Multibodies mit einem geeigneten Chelator (beispielsweise DOTA oder DTPA) kovalent gekoppelt und mit Indium-111 beladen und zur in vivo Diagnostik eingesetzt. Diese werden in einer bevorzugten Ausführungsform intravenös in einer für das Individuum geeigneten Dosis verabreicht und die Lokalisation des Core-1 Antigens und eines potentiellen Tumors nach an sich bekannten Verfahren gemessen. Die hierfür verwendeten Verfahren und Technologien, einschließlich der bildgebenden Verfahren, sind dem Fachmann bekannt, ebenfalls kann der Fachmann eine geeignete Dosis und Formulierungen erstellen.

5

10

15

20

In einer weiteren bevorzugten Ausführungsform Immunglobuline, bevorzugt IgM und IgG, wie oben beschrieben und in den Beispielen näher ausgeführt, radioaktiv-markiert, beispielsweise mit Indium-111, und lokal in den Tumor oder in den Tumor versorgende oder entsorgende Blutgefäße gegeben. Dies dient in einer Ausführungsform zur Bestimmung der Größe Tumors und in einer weiteren Ausführungsform Bestimmung befallener Lymphknoten. Die hierfür verwendeten 25 Verfahren und Technologien sind dem Fachmann bekannt, ebenfalls kann der Fachmann eine geeignete Dosis und Formulierungen erstellen.

In einer weiteren Ausführungsform werden die erfindungsgemäßen radioaktiv-markierten Erkennungsmoleküle 30 auch über Applikationsrouten verabreicht. Dabei bevorzugte Routen sind intraperitoneal, intranodal oder intrarectal bzw. intragastrointestinal. Intraperitoneal ist dabei besonders vorteilhaft zur Bestimmung von Tumoren, die über das

15

20

25

30

Peritoneum zugänglich sind und/oder in dieses metastasieren, beispielsweise Ovarialkarzimome und bestimmte intestinale Karzinome. Intrarectale bzw. intragastrointestinale Verabreichung ist vorteilhaft für bestimmte gastrointestinale Tumoren und Lokalisation deren Größenbestimmung. Intranodal kann in bestimmten Fällen dafür verwendet werden einzelne Lymphknoten direkt zu infiltrieren.

In einer bevorzugten Ausführungsform werden die erfindungsgemäßen oben beschriebenen radioaktiven Erkennungsmoleküle für in vivo Diagnostika mit einer Applikation von markierten erfindungsgemäßen Core-1 spezifischen Erkennungsmolekülen kombiniert. Dies dient der Verbesserung des Hintergrundes. Bevorzugt werden dabei IgM abgeleitete Erkennungsmoleküle verwendet, da diese vor allem an Core-1 Antigen im Blut binden und damit den Hintergrund deutlich erniedrigen, während aufgrund der Größe der Moleküle ein Eindringen in Gewebe und Tumoren limitiert ist. Die hierfür verwendeten Verfahren und Technologien sind dem Fachmann bekannt, ebenfalls kann der Fachmann eine geeignete Dosis, Formulierungen, Applikationsroute und Zeitpunkt der Gabe der nicht-markierten Erkennungsmoleküle erstellen.

In einer weiteren bevorzugten Ausführungsform werden erfindungsgemäße Erkennungsmoleküle, bevorzugt Immunglobuline, Multibodies oder Antikörperfragmente, weiter bevorzugt IgM, IgG und Multibodies, mit einem Fluoreszenzfarbstoff markiert und in vivo verabreicht. Bevorzugte Applikationsrouten sind hierbei intrarectal, intragastrointestinal, intraperitoneal, intravenös und in zuführende oder abführende Blutgefäße. Eine besonders bevorzugte Ausführungsform dient der Lokalisation gastrointestinaler Karzinome, die durch eine Fluoreszenzendoskopie nach Applikation der fluoreszenzmarkierten Erkennungsmoleküle durchgeführt wird. In einer weiter

bevorzugten Ausführungsform wird ein erfindungsgemäßes Erkennungsmolekül mit mindestens einem Antikörper gegen ein Tumorantigen kombiniert, bevorzugt anti-MUC1 Antikörper. Bevorzugt werden dabei unterschiedliche Fluoreszenzfarbstoffe verwendet, die eine Unterscheidung der Erkennungsmoleküle und Antikörper erlauben, womit prognostische Aussage mit einer Früherkennung und größeren Anzahl an Fällen kombiniert wird. Bevorzugte Fluoreszenzfarbstoffe sind solche mit geringer Hintergrundfluoreszenz, die dem Fachmann bekannt sind. Die hierfür verwendeten Verfahren und Technologien, einschließlich der bildgebenden Verfahren, beispielsweise der Fluoreszenzsind dem Fachmann bekannt, ebenfalls kann der Endoskopie, Fachmann eine geeignete Dosis, Formulierungen, Applikationsroute und Zeitpunkt der Gabe der nicht-markierten Erkennungsmoleküle erstellen.

5

10

15

20

25

30

Die Erfindung weist mehrere Vorteile auf: Die erfindungsgemäßen Core-1 spezifischen Erkennungsmoleküle erkennen Karzinomarten spezifisch, wodurch sie mit Vorteil bei Tumorpatienten verschiedener Indikation zu einer Diagnose und/oder Therapie verwendet werden können. Darüber binden die Erkennungsmoleküle vorteilhafterweise praktisch nicht auf normalen Geweben. Dies ist gegenüber den Tumormarkern ein besonderer bekannten Vorteil und herausragende Eigenschaft der erfindungsgemäßen Erkennungsmoleküle. Vorteilhaft ist weiterhin, daß Erkennungsmoleküle das Core-1 Antigen Träger-unabhängig erkennen. Ein besonderer Vorteil der erfindungsgemäßen Erkennungsmoleküle ist die hohe Spezifität für Tumorgewebe. Dies ist insbesondere in der hohen Spezifität für Kohlenhydrat-Antigene begründet. Bei einer unspezifischen Erkennung anderer Kohlenhydratstrukturen würde sich nämlich die Gefahr der unspezifischen Erkennung von

Nicht-Tumorgewebe erhöhen. Weiterhin weisen die erfindungsgemäßen Erkennungsmoleküle eine hohe Affinität auf. Hierdurch ist insbesondere die Möglichkeit gegeben, geringervalente Fragmente zu konstruieren, wie IqG und Multibodies. Die Möglichkeit dieser verschiedenen Formate ist vorteilhaft für die Entwicklung von Therapeutika. Die Core-1 und/oder Core-2 Struktur an der Zelloberfläche erhöht die Wahrscheinlichkeit der Ausbildung von Metastasen. beispielsweise von Lebermetastasen; durch die Blockierung der Core-1 und/oder Core-2 Struktur mit Erkennungsmolekülen wird die Metastasenbildung reduziert bzw. inhibiert.

Im folgenden soll die Erfindung anhand von Beispielen näher erläutert werden, ohne auf diese Beispiele beschränkt zu sein.

<u>Beispiele</u>

1. Herstellung von Core-1 spezifischen Multibodies mit kurzen Linkern

20

25

30

15

10

Multibodies mit den Sequenzen SEQ ID NO. 96 bis 106 wurden durch Verkürzung oder Deletion des Linkers zwischen der V_{H} und der $V_{
m L}$ des single chain Antikörpers mit der Sequenz SEQ ID NO. 95 gebildet (Abb. 1a). Hierfür wurden die $V_{\mathtt{H}}$ und die $V_{\mathtt{L}}$ mit spezifischen Primern so amplifiziert, daß 22 Nukleotide am 3'-Ende der V_{H} und am 5´-Ende der V_{L} einen komplementären Bereich ausbilden (Abb. 1b, PCR I und PCR II), und anschließend die PCR-Fragmente nach Aufreinigung in einer miteinander verknüpft (Abb. 1b, PCR III). Zum Schluß wurde das PCR-Fragment über NcoI/NotI in einen prokaryontischen Expressionsvektor kloniert. Dieser Vektor enthält den lacZ Promotor, eine Ribosomenbindungsstelle (RBS), das M13 origin, die pelB Signalsequenz zur Sekretion ins Periplasma, ein Ampicillin-Resistenzgen und eine Klonierungskassette, um an

das C-terminale Ende des scFv mit ein Hexa-Histidin-Tag zur effizienten Aufreinigung und ein c-myc-Tag zu koppeln (Abb. 2).

5 2. Bakterielle Expression und Aufreinigung der Core-1 spezifischen Multibodies

10

15

20

25

30

Die Antikörperfragmente aus Beispiel 1 wurden in Escherichia coli exprimiert und aufgereinigt. Hierfür wurde das entsprechende Plasmid durch Elektroporation in elektrokompetente E.coli transformiert und über Nacht in 2xTYMedium (10 g Hefeextrakt, 16 g Trypton, 5 g NaCl per L) mit 100 μ g/mL Ampicillin kultiviert. Diese Kultur wurde 1:100 mit 2xTY Medium, dem 100 μ g/ml Ampicillin und 0,5% Glukose zugesetzt wurde, verdünnt und bei 37°C inkubiert, bis eine $\mathrm{OD}_{600~\mathrm{nm}}$ von ca. 0,6 erreicht war. Dann wurde der Kultur zur Induktion 1 mM IPTG zugesetzt und diese bei 25°C weitere 5 h inkubiert. Die Bakterien wurden durch Zentrifugation 4000xg für 20 min geerntet, das Zellpellet in TES Puffer (30 mM Tris-HCl, pH 8.0, 20% Saccharose, 1 mM EDTA) resuspendiert und 20 min auf Eis inkubiert. Anschließend wurden 5 mM MgSO $_4$ zugefügt und die Suspension für weitere 20 min auf inkubiert. Durch Zentrifugation bei $4000 \times g$ für 60 min wurde dann die Periplasmafraktion gewonnen und über Nacht bei 4°C gegen Bindungspuffer (50 mM Phosphatpuffer, pH 8.0, 300 mM NaCl. 10 Imidazol) dialysiert. Die in der Periplasmafraktion enthaltenen Antikörperfragmente unter Verwendung des C-terminalen His-Tags durch Metallionen-Affinitäts-chromatographie (HiTrap Chelating HP, Amersham Pharmacia Biotech) aufgereinigt. Dafür wurde die dialysierte Fraktion auf die vorher mit Bindungspuffer äquilibrierte Säule gegeben und mit Waschpuffer (50 mM Phosphatpuffer, pH 8.0, 300 mM NaCl, 30 mM Imidazol) die nicht bindenden Proteine von der Säule gewaschen. Anschließend wurden die Antikörperfragmente

mit Elutionspuffer (50 mM Phosphatpuffer, pH 8.0, 300 mM NaCl, 300 mM Imidazol) eluiert. Dieses Aufreinigungsprotokoll wurde für alle Core-1 spezifischen Antikörperfragmente mit Hexa-Histidin-Tag verwendet, beispielsweise den humanisierten single chain Antikörpern aus Beispiel 6.

3. Analyse der Core-1 spezifischen Multibodies im scFv Format mit unterschiedlicher Linkerlänge im ELISA

Multibodies mit den Aminosäuresequenzen SEQ ID NO. 95, 96, 97, 10 98, 99, 100, 101, 103, 104 und 105 wurden wie oben beschrieben in E.coli exprimiert und die Periplasmafraktionen gewonnen. Antigen für den ELISA Test wurde Asialoglykophorin (Sigma), ein Core-1 tragendes Glykoprotein, eingesetzt. Aus der Stammlösungen (1mg in 1ml Bi-dest. H_2O), die portioniert 15 bei -20°C aufbewahrt werden, wurde eine Verdünnung von 5 μ g/ml in PBS hergestellt. Davon wurden $50\mu l/well$ in Mikrotiterplatte (NUNCLON-TC Microwell 96 F) pipettiert und die Testplatte über Nacht bei 4°C inkubiert. Am nächsten Tag 20 wurde die Testplatte mit PBS/0,2% Tween 3xgewaschen. Anschließend wurden mit 2왕 BSA in PBS unspezifische Bindungsstellen blockiert und 50 μ l der jeweiligen mit PBS/1% BSA in verschiedenen Verdünnungsschritten verdünnten Fraktionen aufgetragen und 2 h bei 37°C inkubiert. Nach drei Waschschritten mit PBS/0,2% Tween wurden zum Nachweis der 25 spezifisch gebundenen Antikörperkonstrukte als Zweit-Antikörper Peroxidase-gekoppelter anti-His Tag-Antikörper eingesetzt. Zum Nachweis des gebundenen sekundären Antikörpers erfolgte eine Farbreaktion mit TMB $(3,3^{\prime},5,5^{\prime}-$ Tetramethylbenzidine). Nach 15 Minuten wurde die Reaktion 30 durch Zugabe von 2,5N H_2SO_4 abgestoppt. Die Messung erfolgte mit einem Mikrotiterplattenphotometer mit Filter 450nm im Dual-mode gegen einen Referenzfilter 630nm. Das Ergebnis ist in Abbildung 3 dargestellt. Eine schrittweise Linkerverkürzung

15

20

25

30

führt zu einer Erhöhung der Bindung an Asialoglykophorin. Die besten Bindungseigenschaften zeigen die Varianten mit der SEQ ID NO. 104 und 105. Diese multivalenten Konstrukte im Dia/Triabody Format sind bevorzugte Ausführungsformen der Erfindung und sind aufgrund verbesserter pharmakokinetischer Eigenschaften für die Tumortherapie von Vorteil.

4. Klonierung der Vektoren zur Expression chimärer Core-1 spezifischer IgG und IgM Antikörper

Das NcoI/XhoI DNA Fragment aus dem scFv Vektor, das für die V_{H} kodiert (Abb. 4), wurde in den NcoI/SalI geschnittenen BS-Leader Vektor kloniert. Der BS-Leader Vektor enthält eine Klonierungskassette zur Einführung der T-Zellrezeptor Signalpeptidsequenz an das 5'-Ende sowie einer Splice-Donor-Sequenz an das 3´-Ende der Sequenzen der variablen Domänen (Abb. 4). Die V_L -Sequenz des entsprechenden Antikörpers wurde mit spezifischen Primern zur Einführung der NcoI-Schnittstelle am 5'-Ende und der Nhel-Schnittstelle am 3'-Ende in der PCR unter Verwendung der scFv Sequenz als Templat amplifiziert und nach NcoI/NheI Verdau in den gleich verdauten BS-Leader Vektor kloniert. Danach wurde jeweils das HindIII/BamHI Fragment aus dem BS-Leader Vektor in den entsprechenden eukaryontischen Expressionsvektor kloniert. Diese Vektoren $(pEFpuroCy1V_{H},$ $\texttt{pEFpuroC}\mu V_{\texttt{H}} \quad \texttt{und} \quad \texttt{pEFneoC}\kappa V_{\texttt{L}}) \quad \texttt{enthalten} \quad \texttt{den} \quad \texttt{EF-1}\alpha\text{-Promotor} \quad \texttt{und}$ HCMV-Enhancer, das SV40-origin, das BGH-Polyadenylierungssignal, das Puromycin-Resistenzgen im Vektor für die schwere Kette und das Neomycin-Resistenzgen oder das Dehydrofolatreduktase-Gen im Vektor für die leichte Kette sowie die genomischen Sequenzen der humanen konstanten γ 1 Region oder μ Region für die schwere Kette bzw. der humanen konstanten κ Region für die leichte Kette (Primer Amplifizierung aus genomischer humaner DNA und Vektorkarte

siehe Abb. 4).

5

10

15

20

25

30

5. Eukaryontische Expression Core-1 spezifischer chimärer IgG und IgM Antikörper in CHO Zellen und deren Aufreinigung

Zur Expression der chimären Antikörper cIgG-Karo4 bestehend aus den Sequenzen SEQ ID NO. 111 und 113 und cIgM-Karo4 bestehend aus den Sequenzen SEQ ID NO. 112 und 113 wurden CHOdhfr- Zellen (ATCC-Nr. CRL-9096) mit einem Gemisch der Vektoren für die schwere und die leichte Kette (1:3) durch Elektroporation (10 6 Zellen/ml, 500 V, 50 μ s) cotransfiziert Selektionsmedium (CHO-S-SFM II Medium (Life Technologies), HT Supplement (Biochrom), 400 μ g/ml G418, 5 Puromycin) 2 Wochen kultiviert. Einzelzellklonierung in einer 96-Loch-Platte wurden die Überstände im ELISA (Asialoglykophorin als Antigen, anti human Fc γ 1- POD gekoppelt bzw. anti human Fc 5μ - POD gekoppelt (Dianova) als Sekundärantikörper) getestet und der Klon mit der höchsten Antikörperproduktionsrate selektioniert (ca. 0,5 $\mu g/10^6$ Zellen/24 h).

Zur Antikörperproduktion wurden die stabil transfizierten, den chimären IqG bzw. IgM sekretierenden CHO Zellen in Spinnerflaschen in CHO-S-SFM II Medium, ergänzt durch Supplement, kultiviert, bis eine Zelldichte von ca. 1 x 10^6 Zellen/ml erreicht war. Nach Abtrennung der Zellen Zellkulturüberstand durch Zentrifugation (400xg, 15 min) wurde der chimäre Antikörper unter Verwendung einer Protein A -Säule (HiTrap rProtein A FF, Amersham Pharmacia Biotech) für den chimären IgG bzw. einer anti human Fc5 μ - Antikörper Affinitätssäule aufgereinigt. Die durch pH-Sprung eluierte gereinigte Antikörperfraktion wurde unter Verwendung von Centriprep-Zentrifugenröhrchen (cut off 50 kDa, Millipore) in PBS umgepuffert und aufkonzentriert.

10

15

. 20

6. Angleichung der Sequenz der Core-1 spezifischen Antikörpersequenzen an humane Keimbahnsequenzen

Für die Angleichung der Core-1 bindenden Antikörpersequenzen an Sequenzen wurde in der Datenbank Keimbahnsequenzen nach homologen Sequenzen gesucht und unter Verwendung der humanen Consensus-Sequenzen Erkenntnissen der kanonischen Struktur humaner Antikörper wurden humanisierte Core-1-bindende Sequenzen entwickelt. Für die variable schwere Kette diente die humane Keimbahnsequenz VH1-46 als Vorlage, für die variable leichte Kette die Sequenz A18.

Die humanisierten V_H bzw. V_L Sequenzen SEQ ID NO. 56 bis 79 bzw. 85 bis 94 wurden mit Hilfe der gene assembly PCR (single-overlap extension PCR) hergestellt. Die PCR Reaktion erfolgte nach folgendem Schema: erste Denaturierung 94°C für 2min, dann 30 Zyklen Denaturierung bei 94°C für 45 sec, Annealing bei 55°C für 45 sec und Elongation bei 73°C für 1,5 min und am Ende einen Elongationsschritt bei 73°C für 7 min.

Die so hergestellten V_{H} und V_{L} Ketten wurden mit den Enzymen NcoI und bzw. NotI XhoI und XhoI geschnitten und Sequenzierung in einen Klonierungsvektor (pLitmus 28 bzw. pBluescript KS) kloniert. Die richtigen $V_{\mathtt{H}}$ und $V_{\mathtt{L}}$ Ketten wurden 25 anschließend erneut amplifiziert, um am 3'-Ende der V_{H} und am 5´-Ende der $V_{\mathtt{L}}$ eine BbsI Schnittstelle einzufügen, um darüber die V_{H} und die V_{L} mit nur einem Alanin als Linker verknüpfen. Nach der Ligation wurden die kompletten scFv (die Ligationsprodukte) unter Verwendung der flankierenden Primer 30 amplifiziert und in einen bakteriellen Expressionsvektor kloniert.

7. Spezifitätsanalyse der Core-1 spezifischen Erkennungsmoleküle im ELISA

Als Antigene wurden verschiedene Kohlenhydrat-PAA-Konjugate (Synthesome) und Glykoproteine verwendet: Asialoglykophorin 5 (AGP), Glykophorin (GP) und Asialofetuine (Sigma); die PAA (Poly[N-(2-hydroxyethyl) Acrylamid) - Konjugate: 3GalNAcα1-OC₃H₆NH-PAA und $GalB1-3GalNAc\alpha1-p-OC_6H_4NH-PAA$ Core-1 (alpha-Anomer) Konjugate mit unterschiedlichen Linkerlängen, Galß1-3GalNAcß1-OC $_3$ H $_6$ NH-PAA als beta-Anomer des 10 Core-1, $Gal\alpha 1-3GalnAc\alpha 1-OC_3H_6NH-PAA$ und $Gal\alpha 1-3GalnAcB1-OC_3H_6NH-PAA$ PAA als weitere Stereoanomere des Core-1, die Core-2 Struktur Galß1-3 (GlcNAcß1-6) GalNAc α 1-OC₃H₆NH-PAA die und $GalnAc\alpha1-OC_3H_6nH-PAA$, Neu5Ac α 2-3Galß1-3GalNAc α 1-OC₃H₆NH-PAA, Galß1-3 (Neu5Ac α 2-6) GalNAc α 1-OC₃H₆NH-PAA, 15 GlcNAcs1-2Gals1- $3GalNAc\alpha1-OC_3H_6NH-PAA$, $GlcNAca1-3Galß1-3GalNAc\alpha1-OC_3H_6NH-PAA$, $GalNAc\alpha1-3GalB1-OC_3H_6NH-PAA$ und 3'-0-Su-GalB1 $^{\circ}3GalNAc\alpha1-OC_3H_6NH-CA1-OC_3H_6NH-CA1-OC_3H_6NH-CA1-OC_3H_6NH-CA1-OC_3H_6NH-CA1-OC_3H_6NH-CA1-OC_3H_6NH-CA1-OC_3H_6NH-CA1-OC_3H_6NH-CA1-OC_3H_6$ PAA.

Aus den jeweiligen Stammlösungen (1mg in 1ml Bi-dest.H2O), die 20 portioniert bei -20°C aufbewahrt werden, wurde eine Verdünnung von 5 μ g/ml in PBS hergestellt. Davon wurden 50 μ l/well in eine Mikrotiterplatte (NUNCLON-TC Microwell 96 F) pipettiert und die Testplatte 1 h bei 37°C und über Nacht bei 4°C inkubiert. Am nächsten Tag wurde die Testplatte mit PBS/0,2% Tween 3x 25 gewaschen. Anschließend wurden mit 2% BSA in PBS unspezifische Bindungsstellen blockiert und 50 μ l des ersten Antikörpers aufgetragen (chimärer IgG bzw. IgM: gereinigt 0,1 μ g/ml in PBS/0,1% BSA oder unverdünnter Kulturüberstand produzierender CHOdhfr- Zellen; Multibodies: 10 μ g/ml in PBS/0,1% BSA). Nach 30 drei Waschschritten mit PBS/0,2% Tween wurden zum Nachweis der spezifisch gebundenen Antikörperkonstrukte die entsprechenden Zweit-Antikörper, Peroxidase-gekoppelt, eingesetzt (ein anti-Maus bzw. anti-human Fc γ l bzw. μ -Antikörper für die ganzen

Antikörper, ein anti-His Tag-Antikörper für Multibodies). Zum Nachweis des gebundenen sekundären Antikörpers erfolgte eine Farbreaktion mit TMB (3,3,5,5,- Tetramethylbenzidine). Nach 15 Minuten wurde die Reaktion durch Zugabe von 2,5N H₂SO₄ abgestoppt. Die Messung erfolgte mit einem Mikrotiterplattenphotometer mit Filter 450nm im Dual-mode gegen einen Referenzfilter 630nm.

Repräsentative Ergebnisse sind in den Abbildungen 5 und 6 dargestellt. In Abbildung 5 sind zwei Erkennungsmoleküle mit 10 variierenden Loop-Sequenzen im IgM-Format verglichen. Antikörperkonstrukte mIgM-Karo2 (SEQ ID NO. 107 und SEQ ID NO. 109) und mIgM-Karo4 (SEQ ID NO. 108 und SEQ ID NO. 110) binden hochspezifisch an das Antigen Core-1, bevorzugt an das alpha-15 Anomer Galß1-3GalNAcα und schwächer an das beta-Anomer Galß1-3GalNAcß. Die erfindungsgemäßen Erkennungsmoleküle können auch nur das alpha-Anomer Galß1-3GalNAcα oder beide Anomere Galß1-3GalNAcα und Galß1-3GalNAcß in gleicher Weise binden. Zusätzlich bindet mIgM-Karo4 die Core-2 Struktur Galß1-20 3 (GlcNAcs1-6) GalNAca. Alle anderen getesteten Kohlenhydratstrukturen, auch strukturell stark verwandte Strukturen werden durch die hier beanspruchten Bindungsproteine nicht erkannt. Als Core-1 tragendes Glykoprotein zeigt AGP ein starkes Signal mit Varianten, wobei das ebenfalls Core-1 tragende Glykoprotein 25 Asialofetuin deutlich stärker mit der Karo2-Variante reagiert, was sehr wahrscheinlich mit der unterschiedlichen Core-1 Dichte in beiden Proteinen zusammenhängt. Abbildung 6 zeigt das Spezifitätsmuster der beispielhaft ausgewählten 30 humanisierten Erkennungsmoleküle Karoll (SEQ ID NO. 56 und SEQ ID NO. 90), Karo21 (SEQ ID NO. 59 und SEQ ID NO. 90) und Karo38 (SEQ ID NO. 69 und SEQ ID NO. 90) mit variierenden Gerüstsequenzen im scFv-Format mit einer Aminosäure Linker. Auch hier zeigt sich das gleiche Spezifitätsmuster,

wie in der Definition der Core-1 spezifischen Bindung im Sinne der Erfindung beschrieben (siehe oben).

Die spezifische Bindung der verschiedenen bevorzugten Formate und Kombinationen im ELISA, beispielhaft an AGP, GP und/oder Gal Ω 1-3Gal Ω 4-OC Ω 4-6NH-PAA, ist in den Abbildungen 7 a bis e dargestellt.

8. Immunhistologische und immunzytologische Färbungen

Für die immunhistologischen Färbungen wurden Gefrierschnitte entsprechender Gewebeproben luftgetrocknet und Formaldehyd in PBS 15 min fixiert. Zur Reduktion der endogenen Peroxidase-Aktivität wurden die Schnitte mit 3% 15 Wasserstoffperoxid in PBS behandelt und nach Blockierung unspezifischer Bindungsstellen mit präabsorbiertem Kaninchenserum an Neuraminidase-behandelten Erythrozyten mit einem Core-1 spezifischen Primärantikörper inkubiert. Anschließend wurden die Präparate mit einem entsprechenden Sekundärantikörper (anti-Maus bzw. anti-human IgG oder IgM, 20 POD gekoppelt) inkubiert. Die Farbreaktion erfolgte unter Verwendung des Peroxidase-Substrats Diaminobenzidin und die Gegenfärbung mit Hämatoxylin.

- Das beispielhafte erfindungsgemäße Erkennungsmolekül mIgM-Karo4 reagiert nur mit sehr wenigen Strukturen im Normalgewebe. Diese befinden sich aber in für einen Antikörper nicht zugänglichen Bereichen (Tabelle 3).
- 30 **Tabelle 3:** Reaktion von humanem Normalgewebe mit dem Core-1 spezifischen Antikörper mIgM-Karo4

	Gewebetyp	Reaktivität
,	Epidermis - Basalmembran	negativ
	Magen	
	Foveola Epithelium	negativ
5	Fundusdrüsen	negativ
	Korpusdrüsen	negativ
	Colon Mucosa	negativ
	Milz	
	Trabeculae lienis	negativ
10	Retikularzellen	negativ
	Lymphozyten	negativ
	Endothelium	negativ
	Prostata .	negativ
	Leber	
15	Hepatozyten	negativ
	Kupffer-Zellen	negativ
	Gallenwege	negativ
	Lymphknoten	
	Lymphozyten	negativ
20	Retikularzellen	${\tt negativ}$
	Gallenblase	negativ
	Nebenniere	
	Nebennierenrinde	${\tt negativ}$
	Nebennierenmark	${\tt negativ}$
25	Blase	${\tt negativ}$
	Herz	${\tt negativ}$
	Bauchspeicheldrüse	
	Drüsengänge	positiv
	Azini	negativ
30	Langerhans'sche Inseln	negativ

Die beanspruchten Erkennungsmoleküle reagieren positiv mit einer Vielzahl von Karzinomen. Die Daten in Tabelle 4 zeigen, dass die Core-1 spezifischen Erkennungsmoleküle einen großen

Prozentsatz an Tumorpatienten einer Indikation erkennen, der von Indikation zu Indikation unterschiedlich ist.

Tabelle 4: Reaktion von humanem Tumorgewebe mit dem Core-1 spezifischen Antikörper mIgM-Karo4

	Gewebetyp	Reaktivität
	Colonkarzinom	
	primäres Karzinom	31/52
10	Lebermetastasen	20/22
	Lungenkarzinom	
	Großzelliges	3/8
	Bronchoalveolar	1/1
	Adenokarzinom	6/6
15	Blasenkarzinom	5/9
	Magenkarzinom	
	Intestinaler Typ	8/8
	Diffuseer Typ	3/3
	Prostatakarzinom	9/9
20	Mammakarzinom	
	Intraductal/ductal	8/10
	Schwach differenziert	2/5
	Muzinöses	1/1
•	Schilddrüsenkarzinom	0/10
25	Nierenkarzinom	
	Klarzelliges	4/9
	Transitionalzelliges	2/5
	Zervikalkarzinom	1/2
	Ovarialkarzinom	
30	Adenokarzinom	2/2
	Endometrioide	2/2
	Teratom	2/2
	Glioblastom	0/3

Für die Entwicklung eines Maus-Tumormodells wurden verschiedene Xenotransplantate untersucht. Bei den Xenotransplantaten handelt es sich um humanes Kolonkarzinomgewebe, das auf Nacktmäusen mehrfach passagiert wurde. Abbildung 8 zeigt beispielhaft eine immunhistochemische eines Xenotransplantat-Praparats mit dem spezifischen Antikörper cIgG-Karo4.

Für die immunzytologischen Färbungen wurde die Immunfluoreszenz eingesetzt. Dafür wurden die entsprechenden Zellen auf Objektträger angetrocknet und mit 5% Formaldehyd 10 min fixiert. Nach Blockierung unspezifischer Bindungsstellen mit BSA (1% in PBS) wurden die Zellen mit dem Primärantikörper inkubiert. Anschließend wurde 3 mal mit PBS gewaschen und mit dem entsprechenden fluoreszenz-markierten Sekundärantikörper (anti-Maus oder anti-human IgG bzw. IgM für ganze Antikörper; anti-Myc-Tag oder anti-His-Tag Antikörper für die single chain Antikörperfragmente) inkubiert. Nach mehrmaligem Waschen mit PBS wurden die Zellen in Mowiol eingebettet.

20

10

15

Es wurden verschiedene Zelllinien mit Core-1 spezifischen Erkennungsmolekülen in der Immunfluoreszenz getestet. Eine Reihe von Tumorzelllinien und auch einigen Leukämie-Zelllinien reagieren positiv (Tab. 5 und Abb. 9).

25

Tabelle 5: Reaktivität verschiedener Zelllinien mit den Core-1 spezifischen Antikörpern mIgM-Karo1 bzw. mIgM-Karo4

10

25

30

F-1777-1	<u> </u>
Zelllinien	Reaktivität
KG-1	positiv
ZR-75-1	positiv
T47D	(positiv)
	wenige Zellen
U266	negativ
LN78	positiv
HT29	positiv
HCT116	negativ
HepG2	negativ
K562	negativ
NM-D4	positiv

Abbildung 9 zeigt beispielhaft eine Fluoreszenzmarkierung von KG-1 Zellen, einer akuten myeloischen Leukämie-Zelllinie, mit verschiedenen Antikörperkonstrukten, einem murinen IgM und zwei scFv-Antikörpern mit unterschiedlicher Linkerlänge (SEQ ID NO. 95 mit 18 Aminosäuren und SEQ ID NO. 104 mit einer Aminosäure als Linker). Alle drei Konstrukte zeigen eine spezifische Färbung der Tumorzelllinie, wobei das monovalente Antikörperfragment SEQ ID NO. 95 das schwächste Signal zeigt.

9. Chelatisierung und radioaktive Markierung von Antikörpern und Antikörperfragmenten

Durch Konjugation wurde an den Antikörper cIgG-Karo4 bzw. den Multibody mit der Sequenz SEQ ID NO. 104 ein Chelator kovalent gebunden, der die Bindung eines Radiometalls ermöglicht. Als Chelatoren kamen die kommerziellen Produkte der Macrocyclics (Dallas, USA), p-isothiocyanatobenzyldiethylenetriaminepentaacetic acid (p-SCN-Bz-DTPA) und isothiocyanatobenzyl -1,4,7,10-tetraazacyclododecane-1,4,7,10tetraacetic acid (p-SCN-Bz-DOTA) zum Einsatz. Beide Chelatoren

eignen sich zur Kopplung an Antikörper zu deren Radioaktivmarkierung [Brechbiel et al., 1986; Kozak et al., 1989; Stimmel et al., 1995].

- 5 Die Konjugation erfolgte durch Reaktion der Isothiocyanatgruppe des Chelators mit einer freien ε-Aminogruppe der Aminosäure Lysin am Antikörper. Es entsteht eine kovalente N-C-Bindung zwischen Chelator und Antikörper.
- 10 Der gereinigte Antikörper bzw. das · gereinigte Antikörperfragment muß zunächst in Kopplungspuffer pH 8,7 umgepuffert werden. Hierzu wurde eine Ultrafiltration in einer Filtrationshülse (Centriprep YM50 (Amicon)) durchgeführt. Dies erfolgte durch mehrmalige Verdünnung mit 10-fachem Volumen und Filtration durch eine Membran mit definierter Porengröße durch 15 Zentrifugation. Dadurch wurde PBS durch den alkalischen Kopplungspuffer (0,05 M Natrium-Carbonat, 0,15 M Natriumchlorid, pH 8,7) ersetzt.
- Die Chelatisierung wurde mit den bifunktionellen Chelatoren p-20 SCN-Bz-DTPAbzw. p-SCN-Bz-DOTA durchgeführt. Zur Chelatisierungsreaktion wurden Protein (1-10)mq/ml) in Kopplungspuffer und eine Lösung des Chelators von 1 mg/ml in 2% DMSO/Wasser so gemischt, dass ein molarer Überschuß des Chelators gewährleistet war. Es folgte eine Inkubation der 25 Mischung von 1h bei 37°C. Anschließend wurde nicht gebundener Chelator durch Ultrafiltration im gleichen Gefäß (Centriprep YM50 (Amicon)) abgetrennt und wie oben beschrieben in den zur Radioaktivmarkierung notwendigen Beladungspuffer auf pH 4,2 umgepuffert (0,15 M Natriumacetat, 0,15 M Natriumclorid, pH 30 4,2). Die Proteinkonzentration während und nach diesem Schritt wurde wieder auf 1-10mg/ml mit Hilfe einer UV-Messung bei 280nm eingestellt.

25

76

Es waren Bedingungen für die Chelatisierungsreaktion zu finden, die eine Radiomarkierung des Antikörpers erlauben, ohne dessen Bioaktivität wesentlich zu mindern.

5 Der chelatisierte Antikörper wurde mit einem Radiometall beladen, wodurch der Radio-Antikörper erzeugt wurde. Beladung wurden die Isotope ¹¹¹Indium und ⁹⁰Yttrium verwendet. Beide haben chemisch physikochemisch vergleichbare und Eigenschaften und werden durch den Chelator als dreiwertige 10 $^{90}Y^{3+}$). Der mit 111 Indium markierte Ionen gebunden (111In3+, Antikörper ist ein γ -Strahler und wird in der Klinik zur individuellen Dosisfindung für den Patienten verwendet, während 90 Yttrium ein β -Strahler ist, der therapeutisch zum Einsatz kommt. Die Halbwertzeiten betragen für ¹¹¹In 67 Stunden und für 90Y 64 Stunden. 15

Zur Beladung wurde ¹¹¹Indiumchlorid der Firma NEN Elmer, Belgien) verwendet. Die Lieferung des Radiometalls erfolgt in salzsaurer Lösung. Diese 111 InCl $_3$ Lösung wurde zunächst kurzzeitig auf eine HCl-Konzentration von 1M Anschließend wurde mit 0,05M HCl auf eine spezifische Aktivität von 80-320mCi/ml verdünnt und davon ein Aliquot zum Einbau in den chelatisierten Antikörper verwendet, wobei das zugegebene Volumen HCl-saurer 1111 InCl3-Lösung gleich dem Volumen der vorgelegten Antikörperlösung Kopplungspuffer pH 4,2 sein sollte, um die pH-Stabilität zu gewährleisten. Inkubationsdauer war 1h bei 37°C mit gelegentlichem vorsichtigem Mischen.

Im Anschluß daran wurde der Filtereinsatz wieder in die Filtrationshülse eingesetzt und wie oben beschrieben in Phosphatpuffer pH 7,2 mit physiologischem Gehalt an Kochsalz umgepuffert. Dabei erfolgte eine Trennung von hochmolekularem

25

30

radioaktiv markiertem Antikörper und ungebundenem ¹¹¹InCl₃. Die Quantifizierung des Einbaus von ¹¹¹In in den chelatisierten Antikörper erfolgte dünnschichtchromatographisch. Die Einbaurate des Radiometalls lag bei 70-99% der eingesetzten Radioaktivität.

10. Nachweis des Core-1 positiven, sekretorischen MUC1 im Sandwich-ELISA

Core-1 positives, sekretorisches MUC1 kann im Sandwich-ELISA nachgewiesen werden. Dabei dient ein MUC1 spezifischer Antikörper als Fänger-Antikörper von MUC1 und ein Core-1 spezifischer Antikörper zum Nachweis des Core-1 Antigens. Ein dritter Enzym- oder Fluoreszenz-gekoppelter Antikörper muss zur Detektion des Zweitantikörpers eingesetzt werden.

Als Beispiel wurden die Überstände zweier Tumorzelllinien analysiert (K562 und T47D). Die Ergebnisse sind in Tabelle 6 dargestellt. 10⁵ Zellen pro mlZellkulturmedium ausgesät, 4 Tage ohne Mediumwechsel kultiviert, anschließend ein Aliquot abgenommen und der Zellkulturüberstand durch Zentrifugation vom Zellpellet getrennt. 50 μ l Überstände wurden unverdünnt im ELISA eingesetzt. Der anti-MUC1-anti-Core-1-Sandwich-ELISA wurde durchgeführt, indem die Mikrotiterplatte mit dem Fänger-Antikörper (1 $\mu g/ml$) in PBS über Nacht bei 4°C beschichtet wurde. - Es wurden drei verschiedenen Konzentrationen des Antikörpers für Beschichtung getestet (1 μ g/ml, 2 μ g/ml und 4 μ g/ml). Die Beschichtung mit 1 μ g/ml erwies sich im Sandwich ELISA als am empfindlichsten. - Anschließend wurden die beschichteten Platten zweimal mit PBS gewaschen und 1,5 h in 5% BSA, 0,05% in 20 PBS bei Raumtemperatur blockiert. Blockierungspuffer wurde entfernt, die Platten erneut einmal mit 0,1% Tween 20 in PBS (Waschpuffer) gewaschen, die Proben

15

20

25

30

78

dazugegeben und 1,5 h bei Raumtemperatur inkubiert. Als Negativkontrollen wurden das Zellkulturmedium oder 2% BSA in Waschpuffer (Verdünnungspuffer für Zweitantikörper) verwendet. Positivkontrolle stand nicht zur Verfügung. dreimaligem Waschen erfolgte die Neuraminidase Behandlung in den dafür vorgesehenen Wells. Zu diesem Zweck wurde Neuraminidase-Lösung (DADE Behring, Deutschland) Immidazolpuffer (0,68 g Immidazol, 0,19 g CaCl2 und 0,4 g NaCl in 100 ml H_2O , pH 6,8) 1:5 verdünnt und 50 μ l/well 30 min bei 37 °C inkubiert. Als Kontrolle wurde der Imidazolpuffer ohne Neuraminidase-Lösung in einem entsprechenden Well inkubiert. Anschließend wurden die Wells dreimal gewaschen und der mIgM-Karo4 Antikörper zum Nachweis des Core-1 Antigens in einer 1:500 Verdünnung in 2% BSA in Waschpuffer dazugegeben und eine weitere Stunde bei Raumtemperatur inkubiert. Nach erneutem dreimaligen Waschen folgte die Zugabe eines Peroxidasegekoppelten anti Maus $IgM(\mu)$ Antikörpers (Dianova) verdünnt in 2% BSA in Waschpuffer und eine Inkubation von 1 h bei Raumtemperatur. Abschließend wurden die Platten zweimal in Waschpuffer und einmal in PBS gewaschen. Die Färbereaktion erfolgte in 25 mM Zitronensäure, Phosphatpuffer pH 5,0 mit 0,04% $\mathrm{H}_2\mathrm{O}_2$ und 0,4 mg/ml o-Phenylendiamin (Sigma) im Dunkeln bei Raumtemperatur. Die Farbreaktion wurde durch Zugabe von 2,5 N Schwefelsäure (Endkonzentration 0,07 N) gestoppt und im ELISA-Reader bei 492 nm mit einem Referenzfilter von 620 nm vermessen.

Tabelle 6: Analyse von Core-1 positivem MUC1 in Kulturüberständen zweier Zelllinien mit und ohne Neuraminidase Behandlung im Sandwich ELISA

Zelllinie	Signal		
	- NeuAcdase	+NeuAcdase	
K562	-	+	
T47D	+ .	+++	

15

20

25

30

79

11. Effektive Bindung von radioaktiv-markierten Core-1 spezifischen Erkennungsmolekülen an Tumorzellen

Die Core-1 positive Tumorzelllinie NM-D4 [DSMZ deposit NO. DSM ACC2605] (vergleiche Tabelle 5) wurden zur Testung Bindungsfähigkeit der radiomarkierten Erkennungsmoleküle an Core-1 positive Tumorzellen herangezogen. Dabei wurde jeweils in Dublettbestimmungen eine bestimmte Anzahl Zellen in einem 1,5 ml Gefäß vorgelegt und mit steigenden Mengen Antikörper inkubiert. Nach dem Waschen wurde anhand der Zählrate bestimmt, wieviel Antikörper gebunden hat. Pro Ansatz werden 2×10^6 Zellen benötigt. Nach Vorinkubation der Zellen für eine Stunde auf Eis wurde die benötigte Menge Zellen in Reaktionsgefäße vorgelegt, zentrifugiert 1000xg, 25°C) und der Überstand abgenommen. Dann wurde mit PBS/0,1% Tween20/1% BSA aufgefüllt bis zum Volumen 200 μ l abzüglich der nochzuzugebenen Menge Erkennungsmolekül. Anschließend wurde das entsprechende 111 In-markierte Erkennungsmolekül (siehe Beispiel 9) zum Endvolumen 200 μ l zugegeben (ca. 0,5 bis 20 μ g, je nach Erkennungsmolekül) und Ansätze für eine Stunde bei 4-8°C inkubiert. Nach Zentrifugation (4min, 1000xq, 25°C) wurde der Überstand abgenommen und das Zellpellet in 400 μ l PBST/1%BSA vorsichtig resuspendiert. Nach nochmaligem Waschen wurde das Zellpellet im Gefäß am gamma-Counter gemessen. Von den Ausgangslösungen definierter Konzentration wurden die spezifischen Zählraten bestimmt, der Wert in cpm/ng wurde der Relativierung der Messwerte von gebundenem Antikörper zugrunde gelegt. Die freie Bindung ergibt sich aus der Differenz aus Gesamtmenge und gebundener Menge Antikörper. Diese Werte wurden als Verhältnis gebunden/nichtgebunden gegen die Menge gebunden Diagramm aufgetragen und im linearen Bereich der Kurve die

Steigung ermittelt und der Abzissen-Schnittpunkt bestimmt (Scatchard Analyse). Der Abzissen-Schnittpunkt bezeichnet die

Anzahl der Bindungsplätze/Zelle. Aus der Steigung der Geraden ergibt sich die Assoziationskonstante Kass in $[M^{-1}]$.

In Abbildung 10 ist beispielhaft die Scatchard-Analyse der Bindung des radioaktiv-markierten Erkennungsmoleküls im scFv-Format mit der Sequenz SEQ ID NO. 104 mit einer Aminosäure als Linker an NM-D4 Zellen dargestellt (zwei verschiedene Präparationen).

In Tabelle 7 sind die Assoziationskonstanten und die Anzahl der Zellbindungsplätze verschiedener Core-1 spezifischer Multibodies an NM-D4 Zellen zusammengefaßt.

Tabelle 7: Zellbindungstest und Scatchard-Analyse mit ¹¹¹Inmarkierten Erkennungsmolekülen an NM-D4 Zellen.

Antikörper	Kass [M-1]	Anzahl Bindungsplätze/Zelle
SEQ ID NO. 105	1,1x10 ⁷	4,8x10 ⁶
SEQ ID NO. 104	2,1x10 ⁶	8,1x10 ⁶
SEQ ID NO. 103	1,2x10 ⁶	9,2x10 ⁶

15

20

25

10

12. Anreicherung der radioaktiv-markierten Core-1 spezifischen Erkennungsmoleküle an Core-1 positiven Tumoren in einem in vivo Tumormodell

Als Tumormodell wurden ZR-75-1 Zellen subkutan in Nacktmäuse (Ncr: nu/nu, weiblich) injiziert. Nach ca. 3-4 Wochen ist der Tumor unter der Haut tastbar. Den Tumor-tragenden Mäusen (pro Zeitpunkt n=4) wurden jeweils 5 μ g ¹¹¹In-markierter Multibody (SEQ ID NO. 104 bzw. SEQ ID NO. 105) in 200 μ l i.v. in die Schwanzvene verabreicht. Nach 24h wurden die Mäuse getötet und die Verteilung der Radioaktivität im Tumor, im Serum und den Organen ermittelt. Tabelle 8 zeigt die spezifische hohe

20

Anreicherung der Multibodies im Tumor (in %ID/g Tumor bezogen auf die injizierte Dosis und das Tumorgeweicht) im Vergleich zum Serum und den Organen.

5 **Tabelle 8:** Biodistribution ¹¹¹In-markierter Erkennungsmoleküle in Tumor-tragenden Mäusen.

	SEQ ID NO. 104	I GTO
0 == / 3 >	SEQ ID NO. 104	SEQ ID NO. 105
Serum (%ID/ml)	1,4 ± 0,16	1,0 ± 0,24
Tumor (%ID/g)	10,8 ± 2,88	8,1 ± 1,45
Leber (%ID/g)	3,7 ± 0,15	5,3 ± 0,92
Lunge (%ID/g)	1,7 ± 0,11	1,9 ± 0,19
Herz (%ID/g)	1,5 ± 0,06	1,9 ± 0,19
Milz (%ID/g)	5,4 ± 0,75	6,7 ± 1,07
Gehirn (%ID/g)	0,1 ± 0,01	0,1 ± 0,00
Knochenmark (%ID/g)	1,0 ± 0,16	1,7 ± 0,90

10 13. Therapiestudie zur Reduktion von Core-1 positiver Tumoren mit radioaktiv-markierten Core-1 spezifischen Erkennungs-molekülen in einem *in vivo* Tumormodell

Die Therapiestudien wurden unter Verwendung des gleichen etablierten ZR-75-1-Tumormodells durchgeführt, wie für die Biodistributionstudien beschrieben (siehe Beispiel 12). Die chelatisierten Erkennungsmoleküle (siehe Beispiel 9) wurden hierfür mit 90 Yttrium (ein β -Strahler zur Zerstörung der Tumorzellen) beladen (pH 4,5, 37°C, 30 min; vergleiche Einbau von 111 Indium) und in der Dünnschichtchromatographie die Stabilität kontrolliert. Den Tumor-tragenden Mäusen (ca. drei Wochen nach der subkutanen Injektion der ZR-75-1 Zellen) wurden 200 μ l i.v. in die Schwanzvene verabreicht. Die

Injektionslösung enthielt den 90Y-markierten Multibody (bis maximal 100 μ Ci pro Dosis) in Ca/Mg-PBS mit 0,2 bis 4% fötales Kälberserum zum Schutz vor Radiolyse. Kontrollgruppen erhielten die gleiche Injektion ohne radioaktiv-markiertem Erkennungsmolekül. Körpergewicht und Tumorgröße wurden zweimal wöchentlich gemessen und verglichen. Das relative Tumorwachstum wurde unter Berücksichtigung der jeweiligen Tumorgröße zu Beginn der Behandlung bestimmt. Eine Injektion wurde drei Wochen nach der ersten Behandlung injiziert. Durch geeignete Behandlung konnte das Tumorwachstum signifikant zur Kontrollgruppe reduziert werden.

15

10

5

Legende zu den Abbildungen

Abb. 1a: Sequenzen der Linker in den verschiedenen Multibody single chain Antikörperfragmenten.

20

- Abb. 1b: Klonierungsschema zur Herstellung von single chain Antikörperfragmenten mit unterschiedlicher Linkerlänge.
- 25 Abb. 2: Vektor zur Klonierung und bakteriellen Expression von single chain Antikörperfragmenten.
 - Abb. 3: Analyse von Multibodies im scFv Format mit unterschiedlicher Linkerlänge im ELISA.

30

Multibodies mit den Aminosäuresequenzen SEQ ID NO. 95, 96, 97, 98, 99, 100, 101, 103, 104 und 105 wurden wie oben beschrieben in E.coli exprimiert und die Periplasmafraktionen gewonnen. Als Antigen für den ELISA Test wurde Asialoglykophorin, ein

WO 2004/050707 PCT/DE2003/003994

83

Core-1 tragendes Glykoprotein, eingesetzt. Eine schrittweise Linkerverkürzung führt zu einer Erhöhung der Bindung an Asialoglykophorin. Die besten Bindungseigenschaften zeigen die Varianten mit der SEQ ID NO. 104 und 105. Diese multivalenten Konstrukte im Dia/Triabody Format sind bevorzugte Ausführungsformen der Erfindung.

Abb. 4: Vektorsystem zur Klonierung und eukaryontischen Expression von chimären Antikörpern im IgG1 oder IgM-Format.

Abb. 5 und 6: Spezifitätsanalyse im ELISA.

5

10

15

20

25

30

Als Antigene wurden verschiedene Glykoproteine und Kohlenhydrat-PAA-Konjugate verwendet. Asialoglykophorin [1]; Glykophorin [2]; Asialofetuine [3]; Galß1-3GalNAc α 1-OC₃H₆NH-PAA [4]; Galß1-3GalNAc α 1-p-OC₆H₄NH-PAA [5]; Gal α 1-3GalNAc α 1-OC₃H₆NH-PAA [6]; Galß1-3GalNAcß1-OC3H6NH-PAA [7]; $Gal\alpha 1-3GalNAcß1-$ [8]; Galß1-3 (GlcNAcß1-6) GalNAca1-OC3H6NH-PAA $GalNAc\alpha1-OC_3H_6NH-PAA$ [10]; $Neu5Ac\alpha2-3GalB1-3GalNAc\alpha1-OC_3H_6NH-PAA$ [11]; Galß1-3 (Neu5Ac α 2-6) GalNAc α 1-OC₃H₆NH-PAA [12]; GlcNAcß1-2Galß1-3GalNAc α 1-OC₃H₆NH-PAA [13]; GlcNAca1-3Galß1-3GalNAcα1- $OC_3H_6NH-PAA$ [14]; GalNAc α 1-3Galß1- $OC_3H_6NH-PAA$ [15]; und 3'-O-Su-Galß1-3GalNAc α 1-OC $_3$ H $_6$ NH-PAA [16]. Als Kontrolle wurde BSA [17] verwendet. In Abbildung 5 wurden zwei Antikörper im IgM-Format mit unterschiedlicher CDR-Sequenz-Zusammensetzung eingesetzt. Abbildung 6 zeigt das Spezifitätsmuster von drei humanisierten Erkennungsmolekülen im scFv-Format mit variierenden Gerüstsequnezen.

Abb. 7: Spezifische Bindung verschiedener bevorzugter Formate und Kombinationen erfindungsgemäßer Erkennungsmoleküle im ELISA, beispielhaft an den

Antigenen AGP, GP und/oder Core-1-PAA (Galß1-3GalNAc α 1-OC $_3$ H $_6$ NH-PAA).

Abb. 8: Immunhistochemische Färbung von Xenotransplantat-Präparaten.

Humanes Colonkarzinomgewebe wurde auf Nacktmäuse und nach Erreichen transplantiert einer bestimmten Größe passagiert. Das Tumorgewebe wurde eingebettet und geschnitten und für immunhistochemische Färbungen eingesetzt. In a) wurde das Gewebes mit cIgG-Karo4 als Primärantikörper und einem anti-human Fcγ Antikörper POD gekoppelt als Sekundärantikörper markiert. Die braune Färbung kennzeichnet die Core-1-positiven Strukturen.

15

10

5

Abb. 9: Fluoreszenzmarkierung von Zellen der Tumorzelllinie KG-1 mit verschiedenen Core-1 spezifischen Erkennungsmolekülen.

20

Scatchard-Diagramm zur Analyse der Zellbindung Abb. 10: radioaktiv markierter Core-1 spezifischer Erkennungsmoleküle. Beispielhaft sind hier die Bindungsdaten des Multibodies SEQ ID NO. 104 mit 25 einer Linkerlänge von einer Aminosäure dargestellt (Pr1 und Pr2 entsprechen zwei verschiedenen Präparationen). B: an die Zellen gebundener Anteil [M] F: freie Bindung als Differenz aus Gesamtmenge und gebundener Menge 30 Antikörper [M]. Oben ist die entsprechende Geradengleichung angegeben, wobei Geradenanstieg die Assoziationskonstante wiedergibt.

WO 2004/050707

Patentansprüche

- Erkennungsmolekül, dadurch gekennzeichnet, dass es eine Aminosäuresequenz umfasst, die
 - (i) die Aminosäuresequenz SEQ ID NO. 1 und
 - (ii) die Aminosäuresequenz SEQ ID NO. 2 oder 3 und
 - (iii) die Aminosäuresequenz SEQ ID NO. 4, 5 oder 6 enthält und

das Antigen Core-1 spezifisch bindet.

10

5

- Erkennungsmolekül nach Anspruch 1, dadurch gekennzeichnet, dass es weiterhin eine Aminosäuresequenz umfasst, die
 - (i) die Aminosäuresequenz SEQ ID NO. 7 oder 8 oder 9 und
 - (ii) die Aminosäuresequenz SEQ ID NO. 10 oder 11 und
- 15 (iii) die Aminosäuresequenz SEQ ID NO. 12 oder 13 enthält und

das Antigen Core-1 spezifisch bindet.

- 3. Erkennungsmolekül nach einem der Ansprüche 1 oder 2,
 dadurch gekennzeichnet, dass es durch Mutation, Deletion
 und/oder Insertion in mindestens einer der Sequenzen SEQ ID
 NO. 1 bis 13 modifiziert ist und das Antigen Core-1
 spezifisch bindet.
- 25 4. Erkennungsmolekül nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mindestens eine Aminosäure mindestens einer Sequenz gemäß SEQ ID NO. 1 bis 13 durch eine Aminosäure mit analogen physikochemischen Eigenschaften ersetzt ist und dass das Erkennungsmolekül das Antigen Core-1 spezifisch bindet.
 - 5. Erkennungsmolekül nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Sequenz SEQ ID NO. 1 durch eine äquivalente kanonische Strukturvariante gemäß SEQ ID NO. 14

bis 17 ersetzt ist und/oder mindestens eine Sequenz der Sequenzen SEQ ID NO. 2 oder 3 durch eine äquivalente kanonische Strukturvariante gemäß SEQ ID NO. 18 bis 27 ersetzt ist und/oder mindestens eine Sequenz gemäß SEQ ID NO. 7 bis 9 durch eine äquivalente kanonische Strukturvariante gemäß SEQ ID NO. 28 bis 45 ersetzt ist und das Erkennungsmolekül das Antigen Core-1 spezifisch bindet.

6. Erkennungsmolekül nach einem der Ansprüche 1 bis 5, dadurch
gekennzeichnet, dass es Aminosäuresequenzen umfasst, die
mindestens eine Homologie von mindestens 60%, vorzugsweise
70%, bevorzugt 80%, ganz besonders bevorzugt 90%, gegenüber
den Sequenzen SEQ ID NO. 1 bis 13 aufweist, wobei das
Erkennungsmolekül das Antigen Core-1 spezifisch bindet.

7. Erkennungsmolekül nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es weiterhin Gerüstsequenzen umfasst, die die Aminosäuresequenzen voneinander trennen, einschließen und/oder flankieren.

- 8. Erkennungsmolekül nach Anspruch 7, dadurch gekennzeichnet, dass die Gerüstsequenzen ausgewählt sind aus der Gruppe umfassend die Immunglobulin-Superfamilie, Protease-Inhibitoren, Lektine, Helix-Bündel-Proteine und/oder Lipocaline.
- 9. Erkennungsmolekül nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Gerüstsequenzen Antikörpergerüstsequenzen sind.
- 10. Erkennungsmolekül nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Antikörpergerüstsequenzen für das Erkennungsmolekül nach Anspruch 1 Sequenzen der variablen
 schweren Kette VH und die Antikörpergerüstsequenzen für die

15

5

20

25

15

20

25

30

zusätzlichen Sequenzen des Erkennungsmoleküls nach Anspruch 2 Sequenzen der variablen leichten Kette VL sind.

- 11. Erkennungsmolekül nach Anspruch 9 oder 10, dadurch gekenn5 zeichnet, dass die Antikörpergerüstsequenzen murinen
 Ursprungs sind.
 - 12. Erkennungsmolekül nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Antikörpergerüstsequenzen humanen
 Ursprungs sind.
 - 13. Erkennungsmolekül nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass die Antikörpergerüstsequenzen aus Gerüstsequenzen oder Kombinationen der Gerüstsequenzen gemäß den Ansprüchen 11 oder 12 abgeleitet sind.
 - 14. Erkennungsmolekül nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass die Antikörpergerüst-sequenzen
 - a) FRH1, FRH2, FRH3 und FRH4 für die variable schwere Kette VH folgende Aminosäuresequenzen sind, wobei die Aminosäureposition der Nummerierung nach Kabat entspricht:

für	FRH1	an	Position	1	Q oder E
				2	V
				3	Q, K oder T
				4	L
				5	K oder V
				6	E oder Q
				7	s
				8	G
				9	A
	•			10	E

11

12

L oder V

V oder K

			•
		13	R oder K
		14	P
	·	15	G
		16	T oder A
5		17	S
		18	v
		19	K
		20	I oder V
		21	S oder P
10		22	C
		23	K
		24	A, V, S oder T
	·	25	S
1		26	G
15		27	Y, F, S oder D
	•	28	T
		29	F, L oder I
	6.1 — — — — — — — — — — — — — — — — — — —	30	T
20	für FRH2 an Position	36	W
20		37	V
		38	K oder R
		39	Q .
		40	R oder A
25		41	P
25		42	G
	•	43	H oder Q
		44	G
		45	L
30		46	E
30		47	
		48	I oder M
	für EDUS s	49	G
	für FRH3 an Position	66	K oder R
		67	A oder V

	·	68	T
	·	69	L oder M
		70	T
		71	A, L oder T
5		72	D
		73	T
		74	s
		75	S oder T
		76	s .
10		77	T
		78	A
		79	Y
		80	M .
	·	81	Q oder E
15		82	L
		82a	s
		82b	S oder R
		82c	L
		83	T oder R
20		84	S
		85	E
		86	D
		87	S oder T
		88	A
25		89	v
		90	Y
		91	F oder Y
	•	92	С
		93	A
30		94	Y, K oder R
	für FRH4 an Position	103	W
		104	G
		105	Q
		106	G

WO 2004/050707 PCT/DE2003/003994

107 Т 108 T, S oder L 109 V oder L 110 \mathbf{T} 5 111 V 112 S 113 S oder A FRL1, FRL2, FRL3 und FRL4 für die variable leichte b) Kette VL folgende Aminosäuresequenzen sind, wobei die Aminosäureposition 10 der Nummerierung nach Kabat entspricht: für FRL1 an Position 1 D 2 I, V oder L 3 Q oder L 15 4 М 5 Т 6 Q 7 T oder S 8 P 20 9 L 10 s 11 L 12 P 13 V 25 14 S oder T 15 L oder P 16 G 17 D oder E 18 Q oder P 30 19 Α 20 S 21 I 22 S 23 C

	für	FRL2	an	Position	35	W
					36	Y
					37	L
					38	Q
· 5					39	ĸ
					40	P
					41	G
					42	Q
					43	s
10					44	P
					45	K oder Q
					46	P
					47	L
					48	I oder V
15					49	Y
	für	FRL3	an	Position	57	G
					58	v
					59	P
					60	D .
20					61	R
					62	F
					63	S
					64	G
					65	s
25 .					66	G
					67	S
					68	G
					69	T
				•	70	D
30				•	71	F.
					72	T
					73	L
					74	K
					75	I

WO 2004/050707 PCT/DE2003/003994

76 S 77 R 78 v 79 E 80 5 Α E 81 82 D 83 L oder V G 84 85 V 10 86 Y 87 Y 88 C für FRL4 an Position 98 F 15 99 G 100 G oder Q 101 G 102 T 103 K 104 L 20 105 106 I oder L 106a K 107 R 108 A 25

- 15. Erkennungsmolekül nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das Erkennungsmolekül eine Sequenz gemäß SEQ ID NO. 46 bis 94 umfasst.
- 16. Erkennungsmolekül nach Anspruch 15, dadurch gekennzeichnet, dass das Erkennungsmolekül eine Kombination der Sequenzen SEQ ID NO. 46 und 80, oder SEQ ID NO. 47 und 81, oder SEQ ID NO. 48 und 80, oder SEQ ID NO. 50 und 80, oder SEQ ID

1Ò

15

20

25

30

NO. 53 und 82, oder SEQ ID NO. 52 und 83, oder SEQ ID NO. 55 und 83, oder SEQ ID NO. 54 und 80, oder SEQ ID NO. 51 und 83, oder SEQ ID NO. 49 und 80, oder SEQ ID NO. 56 und 90, oder SEQ ID NO. 57 und 90, oder SEQ ID NO. 57 und 86, oder SEQ ID NO. 58 und 87, oder SEQ ID NO. 56 und 91, oder SEQ ID NO. 59 und 91, oder SEQ ID NO. 60 und 87, oder SEQ ID NO. 61 und 90, oder SEQ ID NO. 56 und 88, oder SEO ID NO. 56 und 85, oder SEQ ID NO. 59 und 90, oder SEQ ID NO. 62 und 90, oder SEQ ID NO. 59 und 86, oder SEQ ID NO. 74 und 92, oder SEQ ID NO. 63 und 87, oder SEQ ID NO. 74 und 87, oder SEQ ID NO. 74 und 89, oder SEQ ID NO. 74 und 85, oder SEQ ID NO. 64 und 86, oder SEQ ID NO. 74 und 86, oder SEQ ID NO. 63 und 86, oder SEQ ID NO. 65 und 85, oder SEQ ID NO. 65 und 86, oder SEQ ID NO. 66 und 85, oder SEQ ID NO. 67 und 87, oder SEQ ID NO. 68 und 86, oder SEO ID NO. 72 und 88, oder SEQ ID NO. 69 und 90, oder SEQ ID NO. 70 und 90, oder SEQ ID NO. 69 und 92, oder SEQ ID NO. 73 und 86, oder SEQ ID NO. 69 und 89, oder SEQ ID NO. 71 und 92, oder SEQ ID NO. 56 und 86, oder SEQ ID NO. 65 und 92 umfasst.

- 17. Erkennungsmolekül nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die variable schwere Kette VH und die variable leichte Kette VL auf verschiedenen Polypeptidketten liegen.
- 18. Erkennungsmolekül nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die variable schwere Kette VH und die variable leichte Kette VL miteinander in einem Fusionsprotein direkt verbunden sind.
- 19. Erkennungsmolekül nach Anspruch 18, dadurch gekennzeichnet, dass die Ketten in dem Fusionsprotein über einen Linker verbunden sind.

WO 2004/050707

20

- 20. Erkennungsmolekül nach Anspruch 19, dadurch gekennzeichnet, dass der Linker aus 1 bis 9 Aminosäuren besteht.
- 5 21. Erkennungsmolekül nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass das Erkennungsmolekül zusätzliche His-Tag, myc-Tag, Lysin-reiche Sequenzen und/oder Multimerisierungssequenzen umfasst.
- 10 22. Erkennungsmolekül nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass es von einem Immunglobulin abgeleitet ist.
- 23. Erkennungsmolekül nach Anspruch 22, dadurch gekennzeichnet,
 dass es ein single chain Antikörperfragment, ein Multibody,
 ein Fab-Fragment, ein Fusionsprotein aus einem
 Antikörperfragment mit Peptiden oder Proteinen und/oder ein
 Immunglobulin der Isotypen IgG, IgM, IgA, IgE, IgD und/oder
 deren Subklassen ist.
 - 24. Erkennungsmolekül nach Anspruch 23, dadurch gekennzeichnet, dass es ein muriner, chimärisierter, humanisierter, humaner, partiell humaner Antikörper oder Antikörperfragment ist.
 - 25. Erkennungsmolekül nach Anspruch 23, dadurch gekennzeichnet, dass es ein IgM ohne J Kette ist.
- 26. Erkennungsmolekül nach Anspruch 23, dadurch gekennzeichnet, 30 dass es eine Sequenz gemäß SEQ ID NO. 95 bis 113 umfasst.
 - 27. Konstrukt umfassend die Erkennungsmoleküle nach einem der Ansprüche 1 bis 26, dadurch gekennzeichnet, dass die Erkennungsmoleküle mit Zusatzsequenzen und/oder Strukturen

10

15

25

30

fusioniert, chemisch gekoppelt oder nicht-kovalent assoziiert sind.

- 28. Konstrukt nach Anspruch 27, dadurch gekennzeichnet, dass Erkennungsmoleküle mit (i) Immunglobulindomänen verschiedener Spezies, (ii) Enzymmolekülen, (iii) Interaktionsdomänen, (iv) Domänen zur Stabilisierung, (v) Signalsequenzen, (vi) Fluoreszenzfarbstoffen, (vii) Toxinen, (viii) katalytischen Antikörpern, (ix) einem oder mehreren Antikörpern oder Antikörperfragmenten mit anderer Spezifität, (x)zytolytischen Komponenten, (xi) Immunmodulatoren, (xii) Immuneffektoren, (xiii) MHC-Klasse Klasse II Antigenen, I oder (xiv) Chelatoren radioaktiven Markierung, (xv)Radioisotopen, (ivx) Liposomen, (xvii) Transmembrandomänen, (xviii) Viren und/oder (xix) Zellen fusioniert, chemisch gekoppelt, kovalent oder nicht-kovalent assoziiert sind.
- 29. Konstrukt nach Anspruch 28, dadurch gekennzeichnet, dass 20 die Zellen Makrophagen sind.
 - 30. Isoliertes Nukleinsäuremolekül umfassend Nukleinsäuresequenzen, die die Aminosäuresequenz von mindestens einem Erkennungsmolekül nach einem der Ansprüche 1 bis 26 oder ein Konstrukt nach einem der Ansprüche 27 bis 29 kodiert.
 - 31. Nukleinsäuremolekül nach Anspruch 30, dadurch gekennzeichnet, dass es eine genomische DNA, eine cDNA und/oder eine
 RNA ist.
 - 32. Expressionskassette oder Vektor umfassend ein Nukleinsäuremolekül nach einem der Ansprüche 30 oder 31 und einen
 Promotor, der operativ mit der Nukleinsäure verknüpft ist.

WO 2004/050707

- 33. Virus umfassend mindestens einen Vektor oder eine Expressionskassette nach Anspruch 32.
- 34. Wirtszelle umfassend mindestens einen Vektor oder eineExpressionskassette nach Anspruch 32.
 - 35. Wirtszelle nach Anspruch 34, dadurch gekennzeichnet, dass sie eine prokaryontische oder eukaryontische Zelle ist.
- 10 36. Wirtszelle nach Anspruch 35, dadurch gekennzeichnet, dass sie eine Bakterien-, Hefe-, Pflanzen-, Insekten- und/oder Säugerzelle ist.
- 37. Wirtszelle nach Anspruch 36, dadurch gekennzeichnet, dass 15 die Säugerzelle eine Hamster-, Maus- und/oder humane Zelle ist.
- 38. Wirtszelle nach einem der Ansprüche 34 bis 37, dadurch gekennzeichnet, dass die Wirtzelle E. coli, S. cerevisiae,

 P. pastoris, D. melanogaster, CHO-K1, CHOdhfr-, NSO, SP2/0, HEK 293, COS-1, COS-7, Percy 6, Namalwa oder K562 ist.
 - 39. Wirtszelle nach Anspruch 37, dadurch gekennzeichnet, dass die Wirtszelle einen Effektorzelle ist.
 - 40. Organismus umfassend mindestens eine Wirtszelle nach einem der Ansprüche 34 bis 38.
- 41. Organismus nach Anspruch 40, dadurch gekennzeichnet, dass 30 der Organismus ein pflanzlicher oder tierischer transgener Organismus ist.

WO 2004/050707

5

20

42. Zusammensetzung umfassend

- (i) mindestens ein Erkennungsmolekül nach einem der Ansprüche 1 bis 26,
- (ii) mindestens ein Konstrukt nach einem der Ansprüche 27 bis 29 und/oder
- (iii) mindestens ein Nukleinsäuremolekül nach Anspruch 30 oder 31.
- 43. Zusammensetzung nach Anspruch 42, dadurch gekennzeichnet,

 dass die Zusammensetzung eine pharmazeutische Zusammensetzung, gegebenenfalls mit einem pharmazeutisch verträglichen Träger, ist.
- 44. Zusammensetzung nach einem der Ansprüche 42 oder 43,
 15 dadurch gekennzeichnet, dass das Erkennungsmolekül:
 - (i) ein radioaktiv-markiertes Erkennungsmolekül nach einem der Ansprüche 1 bis 26 und/oder
 - (ii) ein nicht-markiertes Erkennungsmolekül nach einem der Ansprüche 1 bis 26 umfasst.
 - 45. Zusammensetzung nach Anspruch 44, dadurch gekennzeichnet, dass das Erkennungsmolekül ein Erkennungsmolekül nach Anspruch 26 umfasst.
- 25 46. Zusammensetzung nach Anspruch 42, dadurch gekennzeichnet, dass die Zusammensetzung eine Vakzinen-Zusammensetzung ist.
 - 47. Verfahren zur Herstellung von Erkennungsmolekülen nach einem der Ansprüche 1 bis 28 umfassend
- 30 (i) Einbringen eines oder mehrerer Nukleinsäuremoleküle nach einem der Ansprüche 30 oder 31 und/oder einer Expressionskassette oder eines Vektors nach Anspruch 32 in ein Virus nach Anspruch 33 oder in eine Wirtszelle nach einem der Ansprüche 34 bis 39;

WO 2004/050707 PCT/DE2003/003994

(ii) Kultivierung der Wirtszellen oder des Virus unter geeigneten Bedingungen; und

(iii) Gewinnung des Erkennungsmoleküls, der Erkennungsmolekül tragenden Effektorzelle oder des Virus, das ein Core-1 Antigen spezifisch erkennt.

5

- 48. Verfahren zur Herstellung einer Zusammensetzung nach einem der Ansprüche 42 bis 46, umfassend eine Kombination eines Erkennungsmoleküls nach einem der Ansprüche 1 bis 26, eines Konstruktes nach einem der Ansprüche 27 bis 29, einer Nukleinsäure nach Anspruch 30 oder 31 und/oder einem Vektor nach Anspruch 32 mit einem pharmazeutisch geeigneten Träger, einer Lösung und/oder einem Adjuvans.
- 15 49. Verfahren nach Anspruch 48, weiterhin umfassend den Schritt der Formulierung der Zusammensetzung in pharmazeutisch verträglicher und/oder wirksamer Form.
- 50. Verwendung eines Erkennungsmoleküls nach einem der Ansprüche 1 bis 26, eines Konstruktes nach einem der 20 Ansprüche 27 bis 29, eines Nukleinsäuremoleküls nach Anspruch 30 oder 31, eines Vektors nach Anspruch 32, eines Virus nach Anspruch 33, einer Wirtszelle nach einem der Ansprüche 34 bis 39, eines Organismus nach Anspruch 40 oder 41 und/oder einer Zusammensetzung nach einem der Ansprüche 25 42 bis 46 Prophylaxe, Prävention, zur Diagnose, Verminderung, Therapie, Verlaufskontrolle Nachbehandlung von Tumorerkrankungen und/oder Metastasen.
- 51. Verwendung nach Anspruch 50 zur Prophylaxe, Prävention, Diagnose, Verminderung, Therapie, Verlaufskontrolle und/oder Nachbehandlung von Core-1 positiven Tumorerkrankungen und/oder Metastasen.

- 52. Verwendung nach Anspruch 50 oder 51 zur Prophylaxe, Prävention, Diagnose, Verminderung, Therapie, Verlaufskontrolle und/oder Nachbehandlung von Karzinomen.
- 53. Verwendung nach Anspruch 52 zur Prophylaxe, Prävention, 5 Verlaufskontrolle Verminderung, Therapie, Diagnose, Mammakarzinomen, Nachbehandlung von und/oder Gastrointestinaltumoren, einschließlich Kolonkarzinomen, Pankreaskarzinomen, Dickdarmkrebs, Magenkarzinomen, Dünndarmkrebs, Ovarialkarzinomen, Zervikalkarzinomen, 10 Lungenkrebs, Prostatakrebs, Nierenzellkarzinomen und/oder Lebermetastasen.
- 54. Verwendung nach einem der Ansprüche 50 bis 53 zur
 15 Prophylaxe, Prävention, Diagnose, Verminderung, Therapie,
 Verlaufskontrolle und/oder Nachbehandlung der
 Metastasierung.
- 55. Verwendung nach Anspruch 54, wobei das Erkennungsmolekül
 20 ein nicht markiertes Erkennungsmolekül nach Anspruch 26
 ist, das einem IgM oder IgG entspricht oder davon
 abgeleitet wurde.
- 56. Verwendung nach einem der Ansprüche 50 bis 55, wobei das Erkennungsmolekül ein radioaktiv-markiertes Erkennungsmolekül nach einem der Ansprüche 1 bis 26 ist oder eines Konstruktes nach einem der Ansprüche 27 bis 29.
- 57. Verwendung nach Anspruch 56, wobei die Erkennungsmoleküle 30 Multibodies sind.
 - 58. Verwendung nach Anspruch 56, wobei das Erkennungsmolekül ein Erkennungsmolekül nach Anspruch 26 ist.

20

- 59. Verwendung nach einem der Ansprüche 50 bis 58, wobei das Erkennungsmolekül ein nicht markiertes Erkennungsmolekül nach einem der Ansprüche 1 bis 26 oder eines Konstruktes nach einem der Ansprüche 27 bis 29 und ein markiertes Erkennungsmolekül nach einem der Ansprüche 1 bis 26 oder eines Konstruktes nach einem der Ansprüche 27 bis 29 ist, wobei beide Erkennungsmoleküle oder Konstrukte kombiniert sind.
- 10 60. Verwendung nach Anspruch 59, wobei das nicht markierte Erkennungsmolekül ein Erkennungsmolekül nach Anspruch 26 ist.
- 61. Verwendung nach Anspruch 59, wobei das markierte Erkennungsmolekül ein Erkennungsmolekül nach Anspruch 26 ist.
 - 62. Verfahren zur Herstellung eines Diagnostikums umfassend die Schritte des Anspruchs 47 zur Herstellung von Core-1 spezifischen Erkennungsmolekülen und umfassend den Schritt der Formulierung der Erkennungsmoleküle in einer diagnostisch geeigneten Form.
 - 63. Verfahren nach Anspruch 62, dadurch gekennzeichnet, dass die Erkennungsmoleküle biotinyliert, fluoreszenz- markiert, radioaktiv markiert, durch Enzymkopplung direkt markiert sind und/oder über einen sekundären entsprechend markierten Antikörper nachgewiesen werden.
- 64. Verwendung von einem der Verfahren nach Anspruch 62 oder 30 . 63, wobei das Erkennungsmolekül zur Diagnose von Tumorerkrankungen und/oder Metastasen, zur Prognose von Tumorerkrankungen und/oder zur Verlaufskontrolle von Tumorerkrankungen eingesetzt wird.

- 65. Verwendung nach Anspruch 64, wobei die Tumorerkrankungen und/oder Metastasen die Leber betreffen.
- 66. Verwendung nach Anspruch 64 und/oder des Verfahrens nach
 5 Anspruch 63 oder 64 zur Diagnose für das Antigen Core-1
 tragende Tumoren.
- 67. Verwendung nach Anspruch 66, wobei die Tumore Mammakarzinome, Gastrointestinaltumore, einschließlich 10 Kolonkarzinome, Magenkarzinome, Pankreaskarzinome, Dickdarmkrebs, Dünndarmkrebs, Ovarialkarzinome, Zervikalkarzinome, Lungenkrebs, Prostatakrebs. Nierenzellkarzinome und/oder Lebermetastasen sind.
- 15 68. Verwendung von einem der Verfahren nach Anspruch 62 oder 63, wobei die Erkennungsmoleküle in einem Gewebsschnelltest zum immunhistologischen Nachweis eingesetzt werden.
- 69. Verwendung nach einem der Ansprüche 64 bis 67, wobei die 20 Erkennungsmoleküle in einem Gewebsschnelltest zum immunhistologischen Nachweis eingesetzt werden.
 - 70. Verwendung nach einem der Ansprüche 64 bis 69, wobei die Erkennungsmoleküle in einem serologischen Test im Sandwich-Verfahren eingesetzt werden.
 - 71. Verwendung nach einem der Ansprüche 64 bis 70, wobei die Erkennungsmoleküle in einer in vivo Diagnostik in Form einer Radioimmundiagnostik, PET-Scan Verfahren und/oder Immunfluoreszenzendoskopie eingesetzt werden.
 - 72. Verwendung nach einem der Ansprüche 64 bis 71, weiterhin umfassend mindestens einen weiteren Antikörper gegen

mindestens ein weiteres Tumorantigen und/oder gegen mindestens ein Trägermolekül des Core-1 Antigens.

73. Kit umfassend ein Erkennungsmolekül gemäß einem der Ansprüche 1 bis 26 und/oder ein Konstrukt gemäß einem der Ansprüche 27 bis 29.

Abb. 1a

acggtcaccgtctcc<u>tcagoctcgagtggctcgggctcatctgcag</u>atatccagatgacacag acggtcaccgtctcctcagcetcgagtggeggetcatctgeagatatccagatgacacag Õ acggtcaccgtctcctcagectcgagtggctcatctggagatatccagatgacacag Ø Σ acggtcaccgtctcctcagcgtcgagttgatctgggagatatccagatgacacag O H Ø Ø acggtcaccgtctcctcagcctcgagttctgcagatatccagatgacacag Σ H Ø Н Д Ø acggtcaccgtctcctcagcctcgagcgcagatatccagatgacacag Н Ø 8 A Н SSAD Σ acggtcaccgtctcctcagccttgggggggatatccagatgacacag Ø Õ G S S D Ø н acggtcaccgtctcctcaggcogatatccagatgacacag Σ Õ Ø н õ S A S S A D acggtcaccgtctcctcagdcgatatccagatgacacag Σ Q D SAD Н Ø acggtcaccgtctcctcagatatccagatgacacag Σ Ø SGG SA SAD Ø Н acggtcaccgtctccgatatccagatgacacag S S A S S S A D H Ø Σ Н SAS S A S B S-A A D S.A.D.I Ø Σ S A S Q SA S Д Ø Ŋ ൽ . വ വ മ ß വ ໝ ß T) T T > > T ΙΛ T > TVTVT H ₽ T V T H ∧ ĭ > ΙΛ T V T ΙΛ T V H

Abb. 2

WO 2004/050707

Size of linker

Abb.

5'-AGC GTC TAG ACA GGG TCA GTA GCA GG-3'

5'-ATCGGGATCC GATAGCCATGACAGTCTG-3'

FOR: REV:

-Karo2

mlgM-Karo4

က Abb. 6
0,16 8 0,14 0,12 0,08 0,1 90'0 0,04 0,02 0 E (420/630 nm)

Abb. 7a

Abb. 7b

Negativkontrolle

mIgM-Karo4

SEQ ID Nr. 104

SEQ ID Nr. 95

Abb. 10

Sequenzen

מחא	Sequenzen
	Seddenzen

5	SEQ ID NO. 1	NYWLG
	SEQ ID NO. 2	DIYPGGGYTNYNEKFKG
	SEQ ID NO. 3	
10	SEQ ID NO. 4	YDAAGPWFAY
	SEQ ID NO. 5	YDAAGPGFAY
	SEQ ID NO. 6	
	SEQ ID NO. 7	RSSQSIVHSNGNTYLE
15		RSSQSLLHSNGNTYLH
	SEQ ID NO. 9	KSSQSLLHSDGKTYLY
	SEQ ID NO. 10	KVSNRFS
	SEQ ID NO. 11	EVSSRFS
20		
	SEQ ID NO. 12	FQGSHVPYT
	SEQ ID NO. 13	SQSTHVPYT
	•	
	CDR Sequenzen	(canonical structure variants)
25		
	SEQ ID NO. 14	NAMIG
	SEQ ID NO. 15	NYWMG
	SEQ ID NO. 16	NYWWG
	SEQ ID NO. 17	NYWVĠ
30		
	SEQ ID NO. 18	DIYPGGDYTNYNEKFKG
	SEQ ID NO. 19	DIYPGGNYTNYNEKFKG
	SEQ ID NO. 20	DIYTGGGYTNYNEKFKG
	SEQ ID NO. 21	DIYTGGDYTNYNEKFKG

	SEQ ID NO.	22	DIYTGGNYTNYNEKFKG
	SEQ ID NO.	23	DIYTGGSYTNYNEKFKG
	SEQ ID NO.	24	DIYAGGGYTNYNEKFKG
	SEQ ID NO.	25	DIYAGGDYTNYNEKFKG
5	SEQ ID NO.	26	DIYAGGNYTNYNEKFKG
	SEQ ID NO.	27	DIYAGGSYTNYNEKFKG
	SEQ ID NO.	28	RPSQSIVHSNGNTYLE
	SEQ ID NO.	29 .	RSSQSLVHSNGNTYLE
10	SEQ ID NO.	30	RSSQSIVHSNGNTYFE
	SEQ ID NO.	31	RPSQSLVHSNGNTYLE
	SEQ ID NO.	32	RPSQSIVHSNGNTYFE
	SEQ ID NO.	33	RSSQSLVHSNGNTYFE
	SEQ ID NO.	34	RPSQSLLHSNGNTYLH
15	SEQ ID NO.	35	RSSQSILHSNGNTYLH
	SEQ ID NO.	36	RSSQSLLHSNGNTYFH
	SEQ ID NO.	37	RPSQSILHSNGNTYLH
	SEQ ID NO.	38	RPSQSLLHSNGNTYFH
	SEQ ID NO.	39	RSSQSILHSNGNTYFH
20	SEQ ID NO.	40	KPSQSLLHSDGKTYLY
	SEQ ID NO.	41	KSSQSILHSDGKTYLY
	SEQ ID NO.	42	KSSQSLLHSDGKTYFY
	SEQ ID NO.	43	KPSQSILHSDGKTYLY
	SEQ ID NO.	44	KPSQSLLHSDGKTYFY
25	SEQ ID NO.	45	KSSQSILHSDGKTYFY

variable schwere Ketten VH

SEQ ID NO. 46

30 QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSS

 ${\tt QVQLKQSGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGSYTNYNE}\\ KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCARYDNHYFDYWGQGTTLTVSS$

5 SEQ ID NO. 48

QVQLKQSGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTTLTVSS

SEQ ID NO. 49

10 EVKLVESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTSVTVSS

SEQ ID NO. 50

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE

15 KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTTVTVSS

SEQ ID NO. 51

 ${\tt EVKLVESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE} \\ {\tt KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTTVTVSS}$

20

SEQ ID NO. 52

 ${\tt QVQLKQSGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE}\\ {\tt KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTLVTVSA}$

25 SEQ ID NO. 53

QVQLKQSGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTTVTVSS

SEQ ID NO. 54

30 QVTLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTSVTVSS

 ${\tt QVQLKQSGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE} \\ {\tt KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTSVTVSS}$

5 SEQ ID NO. 56

 ${\tt QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE}\\ KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTLVTVSS$

SEQ ID NO. 57

10 QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYYCAYYDAAGPWFAYWGQGTLVTVSS

SEQ ID NO. 58

QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE

15 KFKGKATLTADTSSSTAYMQLSRLTSEDSAVYFCAYYDAAGPWFAYWGQGTLVTVSS

SEQ ID NO. 59

QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMELSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTLVTVSS

20

SEQ ID NO. 60

 ${\tt QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVKQRPGQGLERIGDIYPGGGYTNYNE} \\ {\tt KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTLVTVSS}$

25 SEQ ID NO. 61

 ${\tt QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVKQRPGQGLEWIGDIYPGGGYTNYNE} \\ {\tt KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTLVTVSS}$

SEQ ID NO. 62

30 QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSTSTAYMELSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTTVTVSS

 ${\tt QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE}\\ KFKGKATLTADTSTSTAYMELSSLRSEDSAVYFCAYYDAAGPWFAYWGQGTLVTVSS$

5 SEQ ID NO. 64

 ${\tt QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE}\\ {\tt KFKGKATLTADTSTSTAYMELSSLTSEDSAVYYCAYYDAAGPWFAYWGQGTLVTVSS}$

SEQ ID NO. 65

10 QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVKQRPGQGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSTSTAYMELSSLRSEDTAVYFCAYYDAAGPWFAYWGQGTLVTVSS

SEQ ID NO. 66

QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVKQRPGQGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSTSTAYMELSSLRSEDTAVYYCAYYDAAGPWFAYWGQGTTVTVSS

SEQ ID NO. 67

QVQLVQSGAEVKKPGASVKVPCKASGYTFTNYWLGWVKQRPGQGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSTSTAYMELSSLRSEDTAVYYCAYYDAAGPWFAYWGQGTLVTVSS

20

15

SEQ ID NO. 68

QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVKQRPGQGLEWIGDIYPGGGYTNYNE

KFKGKATLTADTSTSTAYMELSSLRSEDTAVYYCAYYDAAGPWFAYWGQGTLVTVSS

25 SEQ ID NO. 69

QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSTSTAYMELSSLRSEDTAVYYCAYYDAAGPWFAYWGQGTLVTVSS

SEQ ID NO. 70

30 QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSTSTAYMELSSLRSEDTAVYYCAYYDAAGPWFAYWGQGTTVTVSS

 ${\tt QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVKQRPGQGLEWIGDIYPGGGYTNYNE}\\ KFKGKATLTADTSTSTAYMELSSLTSEDSAVYYCAYYDAAGPWFAYWGQGTTVTVSS$

5 SEQ ID NO. 72

QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVKQRPGQGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSTSTAYMELSSLRSEDTAVYFCAYYDAAGPWFAYWGQGTTVTVSS

SEQ ID NO. 73

10 QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYYCAYYDAAGPWFAYWGQGTTVTVSS

SEQ ID NO. 74

QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE

15 KFKGKATLTADTSTSTAYMELSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTTVTVSS

SEQ ID NO. 75

QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVKQRPGQGLEWIGDIYPGGGYTNYNE KFKGRVTITADTSTSTAYMELSSLRSEDTAVYFCAYYDAAGPWFAYWGQGTLVTVSS

20

SEQ ID NO. 76

QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWIGDIYPGGGYTNYNE KFKGRVTITADTSTSTAYMELSSLRSEDTAVYYCAYYDAAGPWFAYWGQGTLVTVSS

25 SEQ ID NO. 77

QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVKQRPGQGLEWIGDIYPGGGYTNYNE KFKGRVTITADTSTSTAYMELSSLRSEDTAVYYCAYYDAAGPWFAYWGQGTLVTVSS

SEQ ID NO. 78

30 QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWMGDIYPGGGYTNYNE KFKGRVTITADTSTSTAYMELSSLRSEDTAVYYCAYYDAAGPWFAYWGQGTLVTVSS SEQ ID NO. 7.9

QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYWLGWVRQAPGQGLEWMGDIYPGGGYTNYNE KFKGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCAYYDAAGPWFAYWGQGTLVTVSS

5 <u>variable leichte Ketten</u>

SEQ ID NO. 80

DIQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG VPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRA

10

SEQ ID NO. 81

DIVITQTPLSLPVSLGDQASISCRSSQSLLHSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSG VPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSQSTHVPYTFGGGTKLEIKRA

15 SEQ ID NO. 82

 ${\tt DIQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG} \\ {\tt VPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLELKRA}$

SEQ ID NO. 83

20 DVLMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG VPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRA

SEQ ID NO. 84

DVLMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG VPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLELKRA

SEQ ID NO. 85

DIQMTQSPLSLPVTPGEPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGGGTKVEIKRA

30

25

SEQ ID NO. 86

DIQMTQSPLSLPVTPGEPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGQGTKVEIKRA

DIQMTQSPLSLPVTPGEPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPQLLIYKVSNRFSG VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGGGTKVEIKRA

5 SEQ ID NO. 88

DIQMTQSPLSLPVTPGEPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPQLLIYKVSNRFSG VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGQGTKVEIKRA

SEQ ID NO. 89

10 DIVMTQSPLSLPVTPGEPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGGGTKVEIKRA

SEQ ID NO. 90

DIVMTQSPLSLPVTPGEPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG

15 VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGQGTKVEIKRA

SEQ ID NO. 91

DIVMTQSPLSLPVTPGEPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPQLLIYKVSNRFSG VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGGGTKVEIKRA

20

SEQ ID NO. 92

DIVMTQSPLSLPVTPGEPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPQLLIYKVSNRFSG VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGQGTKVEIKRA

25 SEQ ID NO. 93

DIVMTQTPLSLPVTPGQPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPQLLIYKVSNRFSG VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGQGTKVEIKRA

SEQ ID NO. 94

30 DIVMTQTPLSLSVTPGQPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPQLLIYKVSNRFSG VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPYTFGQGTKVEIKRA

VH/VL Paarungen

Mausantikörper

5	Karo1	SEQ ID NO. 46
		SEQ ID NO. 80
	Karo2	SEQ ID NO. 47
10		SEQ ID NO. 81
	Karo3	SEQ ID NO. 48
		SEQ ID NO. 80
1.5	Karo4	SEQ ID NO. 50
15		SEQ ID NO. 80
	Karo5	SEQ ID NO. 53
		SEQ ID NO. 82
20	Karo6	SEQ ID NO. 52
		SEQ ID NO. 83
	Karo7	SEQ ID NO. 55
25		SEQ ID NO. 83
	Karo8	SEQ ID NO. 54
		SEQ ID NO. 80
	Karo9	SEQ ID NO. 51
30		SEQ ID NO. 83
	Karo10	SEQ ID NO. 49
		SEQ ID NO. 80

humanisierte Sequenzen

•	
Karol1	SEQ ID NO. 56
	SEQ ID NO. 90
Karo12	SEQ ID NO. 57
	SEQ ID NO. 90
Karo13	SEQ ID NO. 57
	SEQ ID NO. 86
Karo14	
RAIOI4	SEQ ID NO. 58 SEQ ID NO. 87
	SEQ ID NO. 87
Karo15	SEQ ID NO. 56
	SEQ ID NO. 91
Karo16	SEQ ID NO. 59
	SEQ ID NO. 91
Karo17	SEQ ID NO. 60
	SEQ ID NO. 87
Vome 1.0	
vgLOT8	SEQ ID NO. 61
	SEQ ID NO. 90
Karo19	SEQ ID NO. 56
	SEQ ID NO. 88
	- 2 LD NO. 00
Karo20	SEQ ID NO. 56
	SEQ ID NO. 85
Karo21	SEQ ID NO. 59
	SEQ ID NO. 90
	Karo12 Karo13 Karo14 Karo15 Karo16 Karo17 Karo18 Karo19

	•	·
	Karo22	SEQ ID NO. 62
		SEQ ID NO. 90
5	Karo23	SEQ ID NO. 59
		SEQ ID NO. 86
	Karo24	SEQ ID NO. 74
10		SEQ ID NO. 92
	Karo25	SEQ ID NO. 63
		SEQ ID NO. 87
	Karo26	SEQ ID NO. 74
15		SEQ ID NO. 87
	Karo27	SEQ ID NO. 74
		SEQ ID NO. 89
20	Karo28	SEQ ID NO. 74
		SEQ ID NO. 85
	Karo29	SEQ ID NO. 64
25		SEQ ID NO. 86
,	Karo30	SEQ ID NO. 74
		SEQ ID NO. 86
	Karo31	SEQ ID NO. 63
30		SEQ ID NO. 86
	Karo32	SEQ ID NO. 65
		SEQ ID NO. 85

		•
	Karo33	SEQ ID NO. 65
		SEQ ID NO. 86
		·
	Karo34	SEQ ID NO. 66
5		SEQ ID NO. 85
		
	Karo35	SEQ ID NO. 67
		SEQ ID NO. 87
10	Karo36	CEO TO MO
10	Maroso	SEQ ID NO. 68
		SEQ ID NO. 86
	Karo37	SEQ ID NO. 72
		SEQ ID NO. 88
15		-~ 1.01 00
	Karo38	SEQ ID NO. 69
		SEQ ID NO. 90
		·
	Karo39	SEQ ID NO. 70
20		SEQ ID NO. 90
		•
	Karo40	SEQ ID NO. 69
		SEQ ID NO. 92
25	Karo41	SEQ ID NO. 73
		SEQ ID NO. 86
	Karo42	670
	Nat 042	SEQ ID NO. 69
30		SEQ ID NO. 89
-	Karo43	SEQ ID NO. 71
		SEQ ID NO. 71 SEQ ID NO. 92
		2 10 140. 32
	Karo44	SEQ ID NO. 56

Karo45

SEQ ID NO. 65

SEQ ID NO. 92

5

10

20

25

verschiedene single chain Fv Formate

SEQ ID NO. 95

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSASSGG GGSGGGGSGGSARDIQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSP KLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEI KRAAAHHHHHHGAAEQKLISEEDLNGAA

15 SEQ ID NO. 96

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSASSGS GSSADIQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSN RFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHH HHGAAEQKLISEEDLNGAA

SEQ ID NO. 97

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSASSGG SSADIQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNR FSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHHH HGAAEQKLISEEDLNGAA

SEQ ID NO. 98

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSASSGS SADIQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRF SGVPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHHHH GAAEQKLISEEDLNGAA

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSASSSS ADIQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFS GVPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHHHHG AAEQKLISEEDLNGAA

SEQ ID NO. 100

SEQ ID NO. 101

10 QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE
KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSASSSA
DIQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG
VPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHHHHGA
AEQKLISEEDLNGAA

15

20

25

5

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSASSAD IQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSGV PDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHHHHGAA EQKLISEEDLNGAA

SEQ ID NO. 102

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSASADI QMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSGVP DRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHHHHGAAE QKLISEEDLNGAA

30 SEQ ID NO. 103

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSAADIQ MTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSGVPD ${\tt RFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHHHHGAAEQ} \\ {\tt KLISEEDLNGAA}$

15/18

SEQ ID NO. 104

5 QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSADIQM TQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSGVPDR FSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHHHHGAAEQK LISEEDLNGAA

10

15

30

SEQ ID NO. 105

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSSDIQMT QTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSGVPDRF SGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHHHHGAAEQKL ISEEDLNGAA

SEQ ID NO. 106

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE

KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPGFAYWGQGTTVTVSDIQMTQ

TPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSGVPDRFS

GSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRAAAHHHHHHGAAEQKLI

SEEDLNGAA

25 <u>Murine Antikörper</u>

SEQ ID NO. 107

DIVITQTPLSLPVSLGDQASISCRSSQSLLHSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSG VPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSQSTHVPYTFGGGTKLEIKRADAAPTVSIFP PSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTL TKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC

SEQ ID NO. 108

DIQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG

VPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRADAAPTVSIFP PSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTL TKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC

5 SEQ ID NO. 109

10

15

20

25

30

QVQLKQSGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGSYTNYNE
KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCARYDNHYFDYWGQGTTLTVSESQSFPNV
FPLVSCESPLSDKNLVAMGCLARDFLPSTISFTWNYQNNTEVIQGIRTFPTLRTGGKYLATS
QVLLSPKSILEGSDEYLVCKIHYGGKNRDLHVPIPAVAEMNPNVNVFVPPRDGFSGPAPRKS
KLICEATNFTPKPITVSWLKDGKLVESGFTTDPVTIENKGSTPQTYKVISTLTISEIDWLNL
NVYTCRVDHRGLTFLKNVSSTCAASPSTDILTFTIPPSFADIFLSKSANLTCLVSNLATYET
LNISWASQSGEPLETKIKIMESHPNGTFSAKGVASVCVEDWNNRKEFVCTVTHRDLPSPQKK
FISKPNEVHKHPPAVYLLPPAREQLNLRESATVTCLVKGFSPADISVQWLQRGQLLPQEKYV
TSAPMPEPGAPGFYFTHSILTVTEEEWNSGETYTCVVGHEALPHLVTERTVDKSTGKPTLYN
VSLIMSDTGGTCY

SEQ ID NO. 110

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE
KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTTVTVSESQSFP
NVFPLVSCESPLSDKNLVAMGCLARDFLPSTISFTWNYQNNTEVIQGIRTFPTLRTGGKYLA
TSQVLLSPKSILEGSDEYLVCKIHYGGKNRDLHVPIPAVAEMNPNVNVFVPPRDGFSGPAPR
KSKLICEATNFTPKPITVSWLKDGKLVESGFTTDPVTIENKGSTPQTYKVISTLTISEIDWL
NLNVYTCRVDHRGLTFLKNVSSTCAASPSTDILTFTIPPSFADIFLSKSANLTCLVSNLATY
ETLNISWASQSGEPLETKIKIMESHPNGTFSAKGVASVCVEDWNNRKEFVCTVTHRDLPSPQ
KKFISKPNEVHKHPPAVYLLPPAREQLNLRESATVTCLVKGFSPADISVQWLQRGQLLPQEK
YVTSAPMPEPGAPGFYFTHSILTVTEEEWNSGETYTCVVGHEALPHLVTERTVDKSTGKPTL
YNVSLIMSDTGGTCY

mIgM-Karo2 SEQ ID NO. 109

SEQ ID NO. 107

mIgM-Karo4 SEQ ID NO. 110

SEQ ID NO. 108

Chimare Antikörper (Maus/Mensch)

SEQ ID NO. 111

5

10

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE
KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTTVTVSGSTKGP
SVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV
VTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKP
KDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL
HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKG
FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH
NHYTQKSLSLSPGK

SEQ ID NO. 112

QVQLKESGAELVRPGTSVKISCKASGYTFTNYWLGWVKQRPGHGLEWIGDIYPGGGYTNYNE

KFKGKATLTADTSSSTAYMQLSSLTSEDSAVYFCAYYDAAGPWFAYWGQGTTVTVSGSASAP

TLFPLVSCENSPSDTSSVAVGCLAQDFLPDSITLSWKYKNNSDISSTRGFPSVLRGGKYAAT

SQVLLPSKDVMQGTDEHVVCKVQHPNGNKEKNVPLPVIAELPPKVSVFVPPRDGFFGNPRKS

KLICQATGFSPRQIQVSWLREGKQVGSGVTTDQVQAEAKESGPTTYKVTSTLTIKESDWLGQ

SMFTCRVDHRGLTFQQNASSMCVPDQDTAIRVFAIPPSFASIFLTKSTKLTCLVTDLTTYDS

VTISWTRQNGEAVKTHTNISESHPNATFSAVGEASICEDDWNSGERFTCTVTHTDLPSPLKQ

TISRPKGVALHRPDVYLLPPAREQLNLRESATITCLVTGFSPADVFVQWMQRGQPLSPEKYV

TSAPMPEPQAPGRYFAHSILTVSEEEWNTGETYTCVVAHEALPNRVTERTVDKSTGKPTLYN

VSLVMSDTAGTCY

25 SEQ ID NO. 113

DIQMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGQSPKLLIYKVSNRFSG VPDRFSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPYTFGGGTKLEIKRTVAAPSVFIFP PSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTL SKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC

chimäre Antikörper

cIgG-Karo4

30

SEQ ID NO. 111

SEQ ID NO. 113

cIgM-Karo4

SEQ ID NO. 112

SEQ ID NO. 113

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.