(80200) תורת הקבוצות – 10 מטלה פתרון מטלה

2024 ביולי 26

 $.\alpha \leq \omega_{\alpha}$ מתקיים מחדר שלכל נוכיח נוכיח

 $n\in\mathbb{N}$ לכל $n\leq\omega_n$ ולכן ולכן ה
 $n\in\mathbb{N}=\omega\in\omega_n$ כי מהגדרה מהגדרה הטבעיים, נתחיל בבדיקת הוכחה.

עבור שהמונה ω_{lpha} גדול מהם על־פי הגדרה. באופן דומה לחסום כל סודר באופן באופן נוכל כמובן. נוכל כמובן באופן $\omega^+ \leq \omega_{lpha}$ נקבל שהמונה $\omega^+ \leq \omega_{lpha}$

 $.\beta = \omega_\beta$ ער כך היים מודר $\beta \geq \alpha$ קיים קיים מודר שלכל נוכיח נוכיח

 $.\delta=\{lpha,\omega_lpha,\omega_{\omega_lpha},\dots\}$ נגדיר מחלקת פונקציה eta ולכן ממשפט הרקורסיה עבור lpha נקבל כי קיימת הקבוצה $\delta=\{lpha,\omega_lpha,\omega_{\omega_lpha},\dots\}$ מההגדרה של סודר גבולי נקבל ש $\delta=\bigcup_{eta\in\delta}eta=\emptyset$

נוכיח שמחלקת המונים היא מחלקה נאותה.

 $|\omega|=|\Omega|$ ונית בשלילה כי מחלקת המונים היא קבוצה ונסמנה Ω , ולכן ממשפט הסדר הטוב נסיק כי קיים מונה יחיד ω כך ש־ $|\omega|=|\omega|$. ידוע כי Ω קבוצת סודרים ולכן $\Omega=|\omega|$ הוא סודר, ו־ $\omega=|\omega|$ ולכן $\omega=|\omega|$, אבל $\omega=|\omega|$, אבל $\omega=|\omega|$ ונסיק $\omega=|\omega|$ וזו סתירה, לכן מחלקת המונים היא לא קבוצה.

נוכיח שהתנאים הבאים שקולים

- $f(a) \in a$ מתקיים $a \in A$ מתקיים $f: A \to \bigcup A$ אז קיימת $\emptyset \notin A$ מתקיים מלכל לכל קבוצה לכל מקיים.
- $f(B) \in B$ מתקיים $B \subseteq A$ כך שלכל $f: \mathcal{P}(A) \setminus \{\emptyset\} o A$ מתקיים לכל קבוצות חזקה: לכל קבוצות אקסיומת בחירה לקבוצות חזקה: לכל קבוצה א
- ע כך $y\in Y$ קיים ויחיד $x\in X$ כך שלכל אז קיימת אז קיימת אז יחס שקילות, אם נציגים: אם $E\subseteq X\times X$ אם עבוצת נציגים: אם $(y,x)\in E$ ש
 - f(g(b))=b מתקיים $b\in B$ כך שלכל g:B o A אז קיימת $B=\operatorname{rng} f$ כאשר f:A o B מתקיים $b\in B$ לכל פונקציה יש חתך: תהי
- $A=\mathcal{P}(C)$ יש עדיר עדיר אקסיומת החירה. $f:A\to\bigcup A$ הותהי פונקציית החירה עדיר שדיר עדיר עדיר עדיר עדיר הולכו החירה. $f(B)\in B$ מתקיים $A=\mathcal{P}(C)$ בקבל אם כן כי לכל $B\in A\iff B\subseteq C$ עבור קבוצה $A=\mathbb{C}$
- ידוע כי $\mathcal{P}(X)$ וידוע מוכלות השקילות השקילות, ולכן כלל מחלקות השקילות מוכלות בקבוצה ($\mathcal{P}(X)$ וידוע כי $E\subseteq X\times X$ יחס שקילות מוכלות הבחירה לקבוצות הזקה קיימת פונקציה לא יכולה להיות מחלקת שקילות ריקה, ולכן מחלקות השקילות מוכלות ב־ $\{\emptyset\}\setminus \mathcal{P}(X)\setminus \{\emptyset\}$. $f:\mathcal{P}(X)\setminus \{\emptyset\}\to X$
- תהי מחלקות שקילות f אז כמובן f אז כמובן f אנו יודעים כי צמצום של פונקציה הוא פונקציה ולכן נצמצם את f לחול רק על מחלקות ההי מחלקות שקילות, ונבחין כי f מקיימת את התנאי שרצינו להוכיח.
 - . תר, שלכל פונקציה שקילות שקבוצת הייש ונוכיח שלכל פונקציה שחתך. 3 o 4
- תהי $(a,b)\in C\iff f(a)=b\lor f(b)=a$ על־ידי $E\subseteq C\times C$ ואת יחס השקילות או על־ידי , ונגדיר $(a,b)\in C\iff f(a)=b\lor f(b)=a$ על־ידי אם $(a,b)\in C$ אות יחס השקילות ויחיד אונגדיר, ומיחידות המקור של פונקציות נסיק כי אם $(a,b)\in C$ מחלקת שקילות, אז על־ידי $(a,b)\in C$ ולכן גם קיים ויחיד אונגדים, ומיחידות המקור של פונקציות נסיק כי אם $(a,b)\in C$ מחלקת שקילות, אז על־ידי וויחיד אונגדים, ומיחידות המקור של פונקציות נסיק כי אם $(a,b)\in C$ מחלקת שקילות, אז על־ידי וויחיד אונגדיר אונגדיר של פונקציות נסיק כי אם $(a,b)\in C$ המקור של פונקציות נסיק כי אם $(a,b)\in C$ המקור של פונקציות נסיק כי אם $(a,b)\in C$ המקור של פונקציות נסיק כי אם על־ידי וויחיד וויחיד וויחיד של פונקציות נסיק כי אם על־ידי וויחיד וויחיד
- לכל f(g(b))=b כך ש'g:B o A לכן מתקיים שהיא המקורות של מחלקת השנציג מ'Y של הנציג מ'g(b)=b כך כך שg:B o A לכן מתקיים לכל $b\in\mathrm{rng}\ f=B$
 - הבחירה. בניח כי לכל פונקציה ש
 חתך ונוכיח את פונקציה לכל כי לכל נניח ל- $4 \to 1$