Problem Set 4 Solutions

Question 1. This problem will use the panel dataset of Texas elementary schools used in class (texas_elementary_panel.dta) to estimate the effects of student mobility on school average performance on standardized tests. (29 points)

use https://github.com/spcorcor18/LPO-8852/raw/main/data/Texas_elementary_panel_2004_2007.dta

- (a) The variable *cpemallp* is defined as the percentage of students in a school who were enrolled less than 83% of the school year (i.e., were not present 6 or more weeks at that school). Rename this variable *mobility*, report the overall mean and standard deviation for this variable, and produce a kernel density plot for this variable (use the kdensity command). The kernel density is like a smooth approximation to a histogram. Describe what this distribution looks like. (3 points)
 - . rename cpemallp mobility
 - . sum mobility avgpassing

Variable	0bs	Mean	Std. Dev.	Min	Max
mobility	16,072	20.15625	9.892888	0	100
avgpassing	16,225	75.4024	13.83064	5	99

. kdensity mobility

The mean *mobility* share is 20.2%, meaning in the average school about 1 in 5 students were enrolled less than 83% of the school year. The standard deviation is 9.9 percentage points (based on the state-by-year observations). The kernel density shows this is very right-skewed distribution, with some schools having unusually high mobility rates.

(b) Declare this dataset to be a panel using xtset. Use the same cross-sectional unit and time dimension variables used in class. Use xtsum to get a set of descriptive statistics for *mobility*. Does it appear that school mobility is primarily a between-school phenomenon, or something that varies more within schools over time? Explain how you know, and explain in words how the standard deviations (overall, within, and between) are calculated. (4 points)

```
. xtset campus year
```

panel variable: campus (unbalanced)

time variable: year, 2004 to 2007, but with gaps

delta: 1 unit

. xtsum mobility

Variable			Mean	Std. Dev.	Min	Max	 	Obser	vations
mobility	overall		20.15625	9.892888	0	100		N =	16072
	between			10.56573	0	100		n =	4302
	within	1		2.926674	-7.643754	70.18124		T-bar =	3.73594

At 10.6, the between-school standard deviation of *mobility* is considerably larger than the within-school standard deviation of 2.9. The latter is calculated using deviations from school-specific means, while the former is calculated using deviations of school-specific means from the grand mean. The "overall" standard deviation uses deviations of each data point from the grand mean. The finding that school mobility is primarily a between-school phenomenon is not surprising. Some schools likely suffer from persistently high mobility year after year. Annual deviations from this long-run average are likely to be small.

(c) Estimate a simple regression of the average TAKS exam passing rate (avgpassing) on mobility (refer to the lecture notes for the avgpassing variable). How are these variables related? Report your results and interpret your coefficient estimate in words. Is the coefficient statistically significant? Practically significant? (4 points)

Results are below. There is a strong negative relationship between school mobility and the average passing rate on state tests. The estimated coefficient is statistically (p<0.001) and practically significant. A one-standard deviation increase in school mobility rates (9.9) is associated with a 7.5 percentage point lower passing rate. When benchmarked against the standard deviation in passing rates in the data (13.8), this is a large effect.

```
. rename ca311tar avgpassing
```

[.] reg avgpassing mobility

Source	SS	df	MS		per of obs , 15829)	s = =	15,831 3341.83
Model Residual	525812.917 2490582.58	1 15,829	525812.91° 157.34301	7 Prob 5 R-sc	> F quared	=	0.0000 0.1743
Total	3016395.5	15,830	190.54930	,	R-squared	1 = =	0.1743 12.544
01	Coef.			P> t		Conf.	Interval]
mobility _cons	7570524	.0130959	-57.81 327.05	0.000	78272 89.753		731383 90.83576

(d) Should the coefficient estimated in part (c) be interpreted as the causal effect of student mobility on school performance? Briefly explain why or why not. (2 points)

For the regression in (c) to have a causal interpretation, we have to believe that the covariance between the population error term u and mobility is zero. This seems unlikely if there are omitted variables correlated with both mobility and passing rates. Chances are, schools with high mobility rates are disadvantaged in other ways that would lead us to predict lower achievement in those schools.

(e) Add the following explanatory variables to your regression in (c): percent black, white, Hispanic, Asian or Pacific Islander (API), Limited English Proficient (LEP), and economically disadvantaged. Also include year effects and a dummy variable for charter schools (*charter*, which may need to be encoded as numeric). How does the inclusion of these covariates affect your estimated coefficient on *mobility*? Is it still statistically significant? Does the change make sense to you (explain)? Finally, provide a written interpretation of the estimated coefficients for the three year dummies (2005, 2006 and 2007). (4 points)

Results shown below. Perhaps not surprisingly, the coefficient on *mobility* is much smaller in absolute value (-0.152). This was anticipated given our answer in part (d). Omitted variables were likely positively correlated with *mobility* and negatively correlated with *avgpassing*, suggesting our "short" regression coefficient was upwardly biased. That is, it likely over-stated the negative relationship between *mobility* and *avgpassing*.

- . encode charter, gen(charter2)
- . reg avgpassing mobility cpetblap cpetwhip cpethisp cpetpacp cpetecop i.year i.charter2

Source	SS	df	MS	Number of obs	=	15,831
+-				F(10, 15820)	=	1480.98
Model	1458455.37	10	145845.537	Prob > F	=	0.0000

Residual	1557940.13	15,820	98.479148	-	uared =	
Total	3016395.5	15,830	190.54930	•	R-squared = MSE =	
avgpassing	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
mobility	1524116	.0129286	-11.79	0.000	1777531	12707
cpetblap	0949501	.1328527	-0.71	0.475	3553565	.1654564
cpetwhip	.021062	.1338113	0.16	0.875	2412234	.2833475
cpethisp	0208526	.1328268	-0.16	0.875	2812084	.2395031
cpetpacp	.1701193	.1345458	1.26	0.206	0936058	.4338443
cpetecop	2318625	.0062852	-36.89	0.000	2441822	2195428
I						
year						
2005	5.127777	.2243313	22.86	0.000	4.688062	5.567492
2006	6.194567	.2246185	27.58	0.000	5.75429	6.634845
2007	8.183221	.2229574	36.70	0.000	7.746199	8.620243
1						
charter2						
Υ I	-9.452535	.5655251	-16.71	0.000	-10.56103	-8.344042
_cons	89.32539	13.3053	6.71	0.000	63.24549	115.4053

(f) Should the coefficient estimated in (e) be interpreted as the causal effect of student mobility on school performance? Briefly explain why or why not. How might a regression model with school fixed effects improve upon the model in (e)? (3 points)

Again, for the regression in (e) to have a causal interpretation, we have to believe that the covariance between the population error term u and mobility is zero, conditional on the other explanatory variables. While we have now controlled for several school characteristics that made this assumption more plausible, there may be other unobserved school characteristics that are omitted from the regression that are systematically related to mobility and avgpassing.

(g) Estimate the regression in (e) with school fixed effects. How does this approach affect the estimated coefficient on *mobility*? Is it still statistically significant? Does the change make sense to you? Provide an intuitive explanation of the finding. Were any explanatory variables dropped from the model (or are there any that you expected would fall out that didn't)? (5 points)

Results are shown below. Interestingly, the coefficient on *mobility* is now very small and statistically insignificant. This change makes sense if we believe the school fixed effect is capturing unobserved school characteristics that are systematically associated with high mobility rates and low achievement. The fixed effects model relies entirely on *within-school* variation in

mobility rates over time to estimate the slope coefficients. Note that charter status falls out of the model, since it is time-invariant.

. xtreg avgpassing mobility cpetblap cpetwhip cpethisp cpetpacp cpetecop i.year i.charter2, fe note: 2.charter2 omitted because of collinearity

Fixed-effects (Group variable:	_			of obs = of groups =	15,831 4,230		
<pre>R-sq: within = between = overall =</pre>				Obs per	<pre>group: min = avg = max =</pre>	1 3.7 4	
corr(u_i, Xb)	= -0.1838			F(9,115 Prob >		472.42 0.0000	
avgpassing	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
mobility	.0002792	.016423	0.02	0.986	0319127	.0324712	
cpetblap	.4700703	.1832306	2.57	0.010	.1109074	.8292332	
cpetwhip	.8211552	.1828463	4.49	0.000	.4627456	1.179565	
cpethisp	.5235963	.1826816	2.87	0.004	.1655095	.881683	
cpetpacp	.4689925	.1946184	2.41	0.016	.0875076	.8504774	
cpetecop	007252	.0148914	-0.49	0.626	0364416	.0219377	
year							
2005 I	5.144047	.1291655	39.83	0.000	4.89086	5.397233	
2006	6.222979	.1366713	45.53	0.000	5.955081	6.490878	
2007	8.739497	.1437972	60.78	0.000	8.457631	9.021364	
charter2							
Y I	0	(omitted)					
_cons	8.935894	18.19651	0.49	0.623	-26.73234	44.60413	
sigma_u	10.502657						
sigma_e	5.575046		_				
rho	.78016966	(fraction	of varia	nce due t	o u_i)		
F test that all u_i =0: $F(4229, 11592) = 9.32$							

(h) What statistical assumptions must hold in order to interpret the coefficient estimate in (g) as causal? (4 points)

The fixed effects assumptions should hold, as described in the Wooldridge text. These include FE1 (linear model), FE2 (cross-sectional units are a random sample), FE3 (variation in x over time, with no perfect collinearity), and FE4 (strict exogeneity). The last assumption is rather important: there can effectively be no relationship between the population error term u and

37433

the x in any time period. In this context, this assumption would be violated if, for example, unusually low achievement in one year affected the mobility rate in another year, perhaps through a changing composition of students in the school. Assumptions 5-6 in Wooldridge relate to the error variance, and thus the appropriate calculation of standard errors. It would make sense to adjust standard errors for clustering at the school level in this context.

Question 2. This problem will examine teacher effects on students' math and reading achievement using student-level data from a large urban school district. You will use methods that are closely related to those used in practice for estimating teacher "value-added." You can find the necessary data on Github under the name $LUSD4_-5.dta$. All students in this database are in grades 4 and 5, and the test results are from 2005 and 2006. (26 points)

use https://github.com/spcorcor18/LPO-8852/raw/main/data/LUSD4_5.dta

(a) First provide some descriptive information about the contents of this panel database. How many student observations are there in each grade and year? How many students appear in both grades 4 and 5 in this data? How many unique schools are in the data? How many unique teachers? The variable school is a unique school identifier, and teacher is the unique teacher identifier. Be clear in your Stata code how you answered these questions. (3 points)

See below. By using xtset with id and grade we can easily see how many students appear in both grades (N=9,728). There are other ways one can do this. There are 190 unique schools and 1,856 unique teachers.

. table grade year, row col

grade	-	yea	r (sprin	g)
level	-	2005	2006	Total
	-+			
4	-	12,116	11,556	23,672
5	-	11,919	11,570	23,489
Total	١	24,035	23,126	47,161

. xtset id grade

panel variable: id (unbalanced)
time variable: grade, 4 to 5
delta: 1 unit

. xtdescribe

```
T =
                                                                        2
   grade: 4, 5, ..., 5
          Delta(grade) = 1 unit
          Span(grade) = 2 periods
           (id*grade uniquely identifies each observation)
Distribution of T_i:
                               5%
                                      25%
                                               50%
                                                         75%
                                                                 95%
                      min
                                                                         max
                                1
                                       1
                                                           2
                                                                   2
                                                                           2
                        1
                                                1
    Freq. Percent
                      Cum. | Pattern
             37.25
                     37.25 | 1.
    13944
             36.76
                    74.01 | .1
    13761
    9728
             25.99 100.00 | 11
            100.00
    37433
                           | XX
. unique school
Number of unique values of school is 190
Number of records is 47161
. unique teacher
Number of unique values of teacher is 1856
```

(b) Estimate four separate regressions: by grade (4 and 5) and by subject (math and reading). The dependent variable will be either the standardized math score (mathz) or standardized reading score (readz). Both are z-scores with a mean of zero and standard deviation of 1 (standardized for the grade, subject, and year). Use the following explanatory variables: age, female, LEP, special ed, immigrant, economically disadvantaged, black, Hispanic, Asian, and a year effect (i.e., a dummy variable for 2006). At this point, do not include any fixed effects. Provide a brief interpretation of your regression results. (5 points)

Number of records is 47161

Results below. Across models, older students, special education, economically disadvantaged, LEP, black, and Hispanic students tend to score lower than their younger, non-special education, non-economically disadvantaged, non-LEP, white, and Asian counterparts. Girls tend to score lower in math than boys, but higher in reading. Scores tend to be higher in 2006 than in 2005. (This may seem unusual since these are standardized by year, but it may have to do with sample composition).

```
. foreach g in 4 5 {
  2. foreach s in math read {
  3.  reg 's'z age female lep speced immig econdis black hispanic asian i.year if grade=='g'
  4.  }
  5. }
```

Source | SS df MS Number of obs = 23,611

	+			- F(10	, 23600) =	460.73
Model	3292.59677	10	329.25967		> F =	
Residual	16865.7702	23,600	.71465128	1 R-sc	uared =	0.1633
	+			- Adj	R-squared =	0.1630
Total	20158.367	23,610	.85380631	1 Root	MSE =	.84537
mathz	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	2368717	.0104099	-22.75	0.000	2572758	2164675
female	0789751	.0110999	-7.11	0.000	1007316	0572187
lep	1231985	.0142853	-8.62	0.000	1511985	0951984
speced	7125033	.0255836	-27.85	0.000	7626488	6623578
immig	.0577393	.0327909	1.76	0.078	0065329	.1220115
econdis	3175577	.0181703	-17.48	0.000	3531727	2819427
black	6690733	.0238113	-28.10	0.000	7157449	6224016
hispanic	358638	.0237969	-15.07	0.000	4052814	3119945
asian	.2083883	.0362151	5.75	0.000	.1374043	.2793722
	1					
year						
2006	.0770331	.0110199	6.99	0.000	.0554333	.0986328
_cons	3.27814 	.1069792	30.64	0.000	3.068454	3.487826
Source	l SS	df	MS	Numb	er of obs =	22,963
	, +), 22952) =	
Model	3163.10178	10	316.310178) > F =	
Residual		22,952	.848999379		uared =	
	+				R-squared =	
Total	22649.3355	22,962	. 98638339	_	MSE =	
readz	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	1814648	.0116574	-15.57	0.000	204314	1586156
female		.0122513	12.19	0.000	.1252966	.1733233
lep	1918733	.015795	-12.15	0.000	2228326	1609141
speced		.0342374	-11.99	0.000	4776151	3433998
immig		.0380238	8.60	0.000	.2522958	.4013544
econdis		.0200412	-21.86	0.000	4773724	3988082
black		.026341	-24.96	0.000	7090765	6058163
hispanic		.0263343	-16.40	0.000	4836224	3803884
asian		.0398236	-0.87	0.386	1125817	.0435321
	l					
year	l					
2006	.0089465	.0121804	0.73	0.463	0149278	.0328208
	1					
_cons	2.709992	.1198535	22.61	0.000	2.475071	2.944912

Source	SS +	df	MS		per of obs , 23214)	=	23,225 599.20
Model	l 3708.88513	10	370.88851) > F	=	0.0000
Residual			.6189703			=	0.2052
	+					=	0.2048
Total	18077.6631	23,224	.77840436	_		=	.78675
		,					
mathz	 Coef.	Std. Err.	 t	P> t	 [95% Conf		 Tntorwall
	+						
age	2383004	.0089102	-26.74	0.000	2557651		2208358
female	095322	.0104105	-9.16	0.000	1157274		0749167
lep	3295649	.013557	-24.31	0.000	3561376		3029922
speced	6832481	.0236204	-28.93	0.000	7295457		6369505
immig	.0375388	.0324508	1.16	0.247	0260669		.1011444
econdis	2781333	.0167387	-16.62	0.000	3109423		2453243
black	6007952	.0224095	-26.81	0.000	6447193		5568712
hispanic	2916257	.0222087	-13.13	0.000	3351562		2480952
asian	.2373296	.0338157	7.02	0.000	.1710486		.3036106
	I						
year	I						
2006	.2088527	.0103401	20.20	0.000	.1885853		.2291201
	1						
_cons	3.474444	.1005276	34.56	0.000	3.277403		3.671485
Source	l SS	df	MS		per of obs	=	22,699
	+			- F(10), 22688)	= =	822.96
Model	+ 5973.09754	10	597.30975	- F(10 54 Prob), 22688) o > F		822.96 0.0000
	+ 5973.09754			F(10 4 Prob 89 R-sq), 22688) > F uared	=	822.96 0.0000 0.2662
Model Residual	+	10 22,688	597.30975 .72580948	F(10 4 Prob 8 R-sq - Adj), 22688) > > F quared R-squared	=	822.96 0.0000 0.2662 0.2659
Model	+	10	597.30975 .72580948	F(10 4 Prob 8 R-sq - Adj), 22688)) > F quared R-squared	= = =	822.96 0.0000 0.2662
Model Residual	+	10 22,688	597.30975 .72580948	F(10 4 Prob 8 R-sq - Adj), 22688) > > F quared R-squared	= = = =	822.96 0.0000 0.2662 0.2659
Model Residual Total	+	10 22,688 22,698	597.30975 .72580948 .98864495	F(10 64 Prob 89 R-sq - Adj 67 Root), 22688)) > F quared R-squared : MSE	= = = = =	822.96 0.0000 0.2662 0.2659 .85194
Model Residual	+	10 22,688	597.30975 .72580948 .98864495	F(10 4 Prob 8 R-sq - Adj), 22688) > > F quared R-squared	= = = = =	822.96 0.0000 0.2662 0.2659 .85194
Model Residual Total	5973.09754 16467.1657 22440.2632 Coef.	10 22,688 22,698	597.30975 .72580948 .98864495	F(10 64 Prob 89 R-sq Adj 67 Root), 22688)) > F quared R-squared : MSE	= = = = =	822.96 0.0000 0.2662 0.2659 .85194
Model Residual Total readz	5973.09754 16467.1657 22440.2632 Coef. 221383	10 22,688 22,698 Std. Err.	597.30975 .72580948 .98864495	F(10 64 Prob 89 R-sq Adj 67 Root 	0, 22688) 0 > F quared R-squared 5 MSE [95% Conf	= = = = =	822.96 0.0000 0.2662 0.2659 .85194 Interval]
Model Residual Total readz	5973.09754 16467.1657 22440.2632 Coef. 221383 .0124986	10 22,688 22,698 Std. Err.	597.30975 .72580948 .98864495	F(10 64 Prob 89 R-sq Adj 77 Root P> t 	0, 22688) 0 > F quared R-squared 5 MSE [95% Conf	= = = = = = = = = = = = = = = = = = = =	822.96 0.0000 0.2662 0.2659 .85194 Interval]
Model Residual Total readz age female	5973.09754 16467.1657 22440.2632 Coef. 221383 .0124986 7163557	10 22,688 22,698 Std. Err. .0098717 .0113864	597.30975 .72580948 .98864495 t	F(10 64 Prob 89 R-sq Adj 77 Root P> t 0.000 0.272	0, 22688) 0 > F quared R-squared 5 MSE [95% Conf24073210098195	= = = = = = = = = = = = = = = = = = = =	822.96 0.0000 0.2662 0.2659 .85194 Interval] 2020338 .0348166
Model Residual Total readz age female lep	5973.09754 16467.1657 22440.2632 Coef. 221383 .0124986 7163557 4139044	10 22,688 22,698 Std. Err. .0098717 .0113864 .0148404	597.30975 .72580948 	F(10 64 Prob 89 R-sq Adj 77 Root 	0, 22688) 0 > F quared R-squared 5 MSE [95% Conf24073210098195745444	= = = = = = = = = = = = = = = = = = = =	822.96 0.0000 0.2662 0.2659 .85194 Interval]
Model Residual Total readz age female lep speced	5973.09754 16467.1657 22440.2632 Coef. 221383 .0124986 7163557 4139044 .1305244	10 22,688 22,698 Std. Err0098717 .0113864 .0148404 .0316657	597.30975 .72580948 .98864495 t 	F(10 64 Prob 89 R-sq Adj 67 Root P> t 0.000 0.272 0.000 0.000	0, 22688) 0 > F quared R-squared : MSE	= = = = = = = = = = = = = = = = = = = =	822.96 0.0000 0.2662 0.2659 .85194
Model Residual Total readz age female lep speced immig	5973.09754 16467.1657 22440.2632 Coef. 221383 .0124986 7163557 4139044 .1305244 4631401	10 22,688 22,698 Std. Err. .0098717 .0113864 .0148404 .0316657 .0404587	597.30975 .72580948 .98864495 t -22.43 1.10 -48.27 -13.07 3.23	F(10 64 Prob 89 R-sq Adj 67 Root P> t 0.000 0.272 0.000 0.000 0.000	0, 22688) 0 > F quared R-squared 5 MSE [95% Conf240732100981957454444759713 .0512226	= = = = = = = = = = = = = = = = = = = =	822.96 0.0000 0.2662 0.2659 .85194
Model Residual Total readz age female lep speced immig econdis black	5973.09754 16467.1657 22440.2632 22440.2632 Coef. 221383 .0124986 7163557 4139044 .1305244 4631401 6213506	10 22,688 22,698 Std. Err. .0098717 .0113864 .0148404 .0316657 .0404587 .0182894 .0244451	597.30975 .72580948 .98864495 t -22.43 1.10 -48.27 -13.07 3.23 -25.32 -25.42	F(10 64 Prob 89 R-sq Adj 67 Root 	0, 22688) 0 > F quared R-squared 5 MSE [95% Conf240732100981957454444759713 .05122264989887		822.96 0.0000 0.2662 0.2659 .85194
Model Residual Total readz age female lep speced immig econdis black hispanic	5973.09754 16467.1657 22440.2632 Coef. 221383 .0124986 7163557 4139044 .1305244 4631401 6213506 4472469	10 22,688 22,698 Std. Err. .0098717 .0113864 .0148404 .0316657 .0404587 .0182894 .0244451 .0242336	597.30975 .72580948 .98864495 t 	F(10 64 Prob 89 R-sq Adj 67 Root P> t 0.000 0.272 0.000 0.000 0.000 0.000 0.000 0.000	0, 22688) 0 > F quared R-squared 5 MSE [95% Conf240732100981957454444759713 .0512226498988766926464947465		822.96 0.0000 0.2662 0.2659 .85194
Model Residual Total readz age female lep speced immig econdis black	5973.09754 16467.1657 22440.2632 Coef. 221383 .0124986 7163557 4139044 .1305244 4631401 6213506 4472469	10 22,688 22,698 Std. Err. .0098717 .0113864 .0148404 .0316657 .0404587 .0182894 .0244451	597.30975 .72580948 .98864495 t -22.43 1.10 -48.27 -13.07 3.23 -25.32 -25.42	F(10 64 Prob 89 R-sq Adj 67 Root 	0, 22688) 0 > F quared R-squared 5 MSE [95% Conf240732100981957454444759713 .051222649898876692646		822.96 0.0000 0.2662 0.2659 .85194
Model Residual Total readz age female lep speced immig econdis black hispanic	+	10 22,688 22,698 Std. Err. .0098717 .0113864 .0148404 .0316657 .0404587 .0182894 .0244451 .0242336	597.30975 .72580948 .98864495 t 	F(10 64 Prob 89 R-sq Adj 67 Root P> t 0.000 0.272 0.000 0.000 0.000 0.000 0.000 0.000	0, 22688) 0 > F quared R-squared 5 MSE [95% Conf240732100981957454444759713 .0512226498988766926464947465		822.96 0.0000 0.2662 0.2659 .85194
Model Residual Total readz age female lep speced immig econdis black hispanic asian	+	10 22,688 22,698 Std. Err. .0098717 .0113864 .0148404 .0316657 .0404587 .0182894 .0244451 .0242336	597.30975 .72580948 .98864495 t 	F(10 64 Prob 89 R-sq Adj 67 Root P> t 0.000 0.272 0.000 0.000 0.000 0.000 0.000 0.000	0, 22688) 0 > F quared R-squared 5 MSE [95% Conf240732100981957454444759713 .0512226498988766926464947465		822.96 0.0000 0.2662 0.2659 .85194
Model Residual Total readz age female lep speced immig econdis black hispanic asian	5973.09754 16467.1657 22440.2632 Coef. 221383 .0124986 7163557 4139044 .1305244 4631401 6213506 4472469 0723524	10 22,688 	597.30975 .72580948 	F(10 64 Prob 89 R-sq Adj 67 Root 	0, 22688) 0 > F quared R-squared 5 MSE [95% Conf240732100981957454444759713 .05122264989887669264649474651448002		822.96 0.0000 0.2662 0.2659 .85194
Model Residual Total readz age female lep speced immig econdis black hispanic asian	5973.09754 16467.1657 22440.2632 Coef. 221383 .0124986 7163557 4139044 .1305244 4631401 6213506 4472469 0723524 .0445679	10 22,688 	597.30975 .72580948 	F(10 64 Prob 89 R-sq Adj 67 Root 	0, 22688) 0 > F quared R-squared 5 MSE [95% Conf240732100981957454444759713 .05122264989887669264649474651448002		822.96 0.0000 0.2662 0.2659 .85194

(c) Now estimate the same regressions as in part (b), but add as an additional control the lagged math score (in the math regressions) and the lagged reading score (in the reading regressions). These variables are already in the dataset as $mathz_1$ and $readz_1$. How do the results change, and how should our interpretation of these results change, given the inclusion of lagged (prior grade) achievement? (5 points)

Results shown below. Not surprisingly, the coefficient on the lagged score is positive and highly significant. (A student's score in the prior grade is a strong predictor of their score in the current grade). The interpretation of the other slope coefficients now differs since achievement in the prior grade is being controlled for. For example, the coefficient on *econdis* is now the predicted difference between the average scores of economically disadvantaged students and non-economically disadvantaged students, holding constant the other predictor variables in the model and prior achievement. For example, 4th grade students who are economically disadvantaged do worse in math than their prior year's math score would predict. Some analysts think of this in terms of "gains," although we are not strictly modeling year-to-year gains.

```
. foreach g in 4 5 {
 2. foreach s in math read {
      reg 's'z 's'z_1 age female lep speced immig econdis black hispanic asian i.year if grade==
 4.
 5.
      }
                 SS
                            df
                                    MS
                                          Number of obs =
                                                            23,453
    Source |
                                          F(11, 23441)
_____
                                                            1752.16
     Model | 8622.61122
                         11 783.873747
                                          Prob > F
                                                             0.0000
  Residual | 10486.9181 23,441 .447375029
                                                             0.4512
                                         R-squared
                                         Adj R-squared =
                                                             0.4510
     Total | 19109.5293 23,452 .814835804
                                         Root MSE
                                                             .66886
```

mathz	1	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
mathz_1		.542333	.0047903	113.21	0.000	.5329437	.5517223
age		1578989	.00832	-18.98	0.000	1742066	1415912
female		0366597	.0088193	-4.16	0.000	053946	0193734
lep		0777164	.0113459	-6.85	0.000	0999552	0554776
speced		2977279	.0211226	-14.10	0.000	3391295	2563262
immig		.0804139	.0260006	3.09	0.002	.0294509	.1313769
econdis		1438634	.0144808	-9.93	0.000	1722466	1154801
black		3174066	.0191312	-16.59	0.000	354905	2799083
hispanic		1517818	.0189552	-8.01	0.000	1889352	1146283
asian		.1002384	.0287294	3.49	0.000	.0439268	.1565499
year							
2006	1	.092809	.0087483	10.61	0.000	.0756618	.1099561

_cons	1.992013	.0859064	23.19	0.000	1.823631	2.160395
Source	SS	df	MS	Numb	er of obs =	= 22,792
				F(11	, 22780) =	= 1508.25
Model	9446.96228	11	858.81475			= 0.0000
Residual	12971.1558	22,780	.56940982	26 R-sq	uared =	= 0.4214
				-	_	= 0.4211
Total	22418.1181	22,791	.98363907	_		75459
		,				
readz	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
+						
readz_1		.0056649	105.26	0.000	.585156	.6073632
age		.0096121	-11.88	0.000	1329893	0953085
female		.0100935	7.74	0.000	.0583668	.0979347
lep		.0129857	-12.50	0.000	1877221	1368162
speced		.0285109	-5.86	0.000	2230566	11129
immig	.2316611	.0330387	7.01	0.000	.166903	.2964193
econdis	2313162	.0165799	-13.95	0.000	2638139	1988185
black	403942	.0217743	-18.55	0.000	4466211	3612628
hispanic	2514092	.0217181	-11.58	0.000	2939782	2088403
asian	.0187075	.0328078	0.57	0.569	0455981	.0830131
I						
year						
2006	0005656	.0100142	-0.06	0.955	020194	.0190629
I						
_cons	1.609512	.0991515	16.23	0.000	1.415169	1.803856
Source	SS	df	MS		01 01 000	= 23,152
					, 20110)	= 1853.74
Model			748.91674			= 0.0000
Residual	9348.65566	23,140	.40400413	-	uui ou	0.4684
+				_		0.4682
Total	17586.7399	23,151	.75965357	73 Root	MSE =	63561
				Ds. L. L		T
mathz	Coef.	Std. Err.	t 	P> t	[95% Conf	. Interval]
mathz_1	.511132	.0047122	108.47	0.000	.5018958	.5203682
age		.0072934	-16.75	0.000	1364392	1078482
female		.0084422	-4.15	0.000	0516119	0185176
lep		.0110541	-16.15	0.000	2001544	1568209
speced		.0110041	-16.32	0.000	3604039	2831022
immig		.026243	3.44	0.000	.0389351	.1418112
econdis		.020243	-7.59	0.001	1300997	0766755
black		.0130281	-7.39 -13.48	0.000	2843211	2121428
hispanic		.0184122	-13.46 -6.76	0.000	2643211 1572741	0865946
asian		.0100299	3.83	0.000	.0511757	.1585095
asiali	.1040420	.0213001	0.00	0.000	.0011101	. 1000030

year 2006	.2150489	.0083652	25.71	0.000	. 1986525	.2314452
_cons		.0830348		0.000	1.517888	1.843396
Source	SS	df	MS		_	22,595 2078.42
Model	11231.9672	11	1021.0879		•	0.0000
Residual	11094.5981	22,583	.49128096	66 R-sq	uared =	0.5031
	- 			-	•	0.5028
Total	22326.5652	22,594	.9881634	•	<u>-</u>	.70091
readz	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
readz_1	.5459355	.0052757	103.48	0.000	.5355948	.5562762
age	123624	.0082074	-15.06	0.000	139711	107537
female	0428927	.0094032	-4.56	0.000	0613237	0244617
lep	5386067	.0123582	-43.58	0.000	5628296	5143838
speced	1946905	.0267903	-7.27	0.000	2472012	1421797
immig	061676	.0345765	-1.78	0.074	1294483	.0060963
econdis	2332101	.0152689	-15.27	0.000	2631381	203282
black		.0204038	-15.45	0.000	3551746	2751887
hispanic	2482304	.0201228	-12.34	0.000	2876726	2087882
asian	0199688	.0305672	-0.65	0.514	0798826	.039945
year						
2006	.0383332	.0093364	4.11	0.000	.0200332	.0566333
_cons	1.972282	.093289	21.14	0.000	1.789429	2.155135

(d) Next, estimate the regressions in part (c) (with the lagged score), but this time use xtreg and include a fixed effect for the classroom teacher. (Instead of using xtset, you can include the options fe and i(teacher) in the xtreg command. This is equivalent to xtset without officially setting the panel variables). How should our interpretation of these results change, given the inclusion of teacher fixed effects? Report your results. (5 points)

Results below. The interpretations of the slope coefficients do not have a fundamentally different interpretation, but it is important to keep in mind that they are estimated using *within-teacher* variation in the covariates and achievement. So, for example, the achievement of girls is effectively compared with the achievement of boys in the same class.

```
. foreach g in 4 5 {
  2. foreach s in read math {
```

```
3. xtreg 's'z 's'z_1 age female lep speced immig econdis black hispanic asian ///
> i.year if grade=='g', fe i(teacher)
  5.
        }
warning: existing panel variable is not teacher
                                                 Number of obs = 22,792
Number of groups = 1,065
                                                 Number of obs =
Fixed-effects (within) regression
Group variable: teacher
                                                 Obs per group:
R-sq:
     within = 0.3308
                                                                min =
                                                                            1
     between = 0.5839
                                                                           21.4
                                                                avg =
     overall = 0.4132
                                                                max =
                                                                            46
                                                 F(11,21716) =
                                                                        975.82
corr(u_i, Xb) = 0.1508
                                                 Prob > F
                                                                          0.0000
                 Coef. Std. Err. t P>|t|
                                                          [95% Conf. Interval]
       readz |
-----
     readz_1 | .5593767 .005819 96.13 0.000 .547971
                                                                        .5707824
      age | -.0927569 .0092881 -9.99 0.000 -.1109623 -.0745514 female | .0797181 .0096228 8.28 0.000 .0608567 .0985794
         lep | -.2897263 .0254108 -11.40 0.000 -.3395333 -.2399193

    speced | -.1660317
    .0276888
    -6.00
    0.000
    -.2203038
    -.1117597

    immig | .2069517
    .0318912
    6.49
    0.000
    .1444425
    .2694608

    econdis | -.1093277
    .0178174
    -6.14
    0.000
    -.1442511
    -.0744043

       black | -.2515821 .0247615 -10.16 0.000 -.3001164 -.2030479
    hispanic | -.1448184 .0235422 -6.15 0.000 -.1909628 -.0986741 asian | .010661 .0328858 0.32 0.746 -.0537977 .0751196
        year |
       2006 | -.0085693 .0117874 -0.73 0.467 -.0316735 .0145349
       _cons | 1.24184 .0978645 12.69 0.000 1.050019 1.433662
     sigma_u | .35924206
     sigma_e | .70436283
      rho | .20642771 (fraction of variance due to u_i)
F test that all u_i=0: F(1064, 21716) = 4.16
                                                             Prob > F = 0.0000
Fixed-effects (within) regression
                                                 Number of obs = 23,453
Group variable: teacher
                                                 Number of groups =
                                                                         1,069
R-sq:
                                                 Obs per group:
     within = 0.3763
                                                                min =
                                                                           1
                                                                avg =
                                                                          21.9
     between = 0.5623
                                                                         47
                                                                max =
     overall = 0.4478
```

F(11,22373) = 1227.36

corr(u_i, Xb)	= 0.1465			Prob > I	7 =	0.0000
mathz	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
mathz_1	.5197333	.004928	105.46	0.000	.510074	.5293926
age	1334734	.0078374	-17.03	0.000	1488352	1181116
female	0396879	.0082003	-4.84	0.000	0557612	0236146
lep	1174284	.0207741	-5.65	0.000	1581472	0767097
speced	2785083	.0200028	-13.92	0.000	3177153	2393014
immig	.0548364	.0245967	2.23	0.026	.0066251	.1030477
econdis	0509026	.0151735	-3.35	0.001	0806437	0211614
black	2164042	.0210678	-10.27	0.000	2576985	1751098
hispanic	1043176	.0199644	-5.23	0.000	1434492	0651861
asian	.063301	.0280419	2.26	0.024	.0083369	.1182651
year						
2006	.0813267	.0100288	8.11	0.000	.0616696	.1009837
_cons	1.636226	.0826756	19.79	0.000	1.474176	1.798276
sigma u	.36165127					
_	.60862724					
rho		(fraction	of variar	nce due to	u_i)	
F test that al	ll u_i=0: F(10	068, 22373)	= 5.56		Prob >	F = 0.0000
Fixed-effects	(within) regi	ression		Number o	of obs =	22,595
Group variable	_				of groups =	894
R-sq:				Obs per	group:	
within =	= 0.3515			opp bor	min =	1
between =					avg =	25.3
overall =					max =	60
				F(11,216		
corr(u_i, Xb)	= 0.3050			Prob > I	? =	0.0000
readz	 Coef.	 Std. Err.	 t	 P> t	 [95% Conf.	 Intervall
	+					
readz_1		.0055098	96.57	0.000	.5213022	.5429015
age		.0080284	-12.43	0.000	115541	0840684
female		.0090702	-5.31	0.000	0659715	0304151
lep		.0191981	-17.06	0.000	3652217	2899622
speced		.0261651	-6.85	0.000	2303956	1278247
immig		.0337926	-2.28	0.023	1433015	0108296
econdis		.0162896	-6.94	0.000	1449732	0811155
black		.0227613	-8.48	0.000	2376347	1484072
hispanic		.0216871	-6.28	0.000	1786559	0936394
asian	0317498	.0305681	-1.04	0.299	0916655	.0281659

1						
year 2006		.0109689	1.58	0.115	004211	.0387885
_cons	1.464472	.0928889	15.77	0.000	1.282403	1.646541
sigma_u sigma_e rho	.65984112	(fraction	of varia	nce due t	o u_i)	
F test that al	ll u_i=0: F(89	93, 21690) =	= 4.25		Prob >	F = 0.0000
Fixed-effects Group variable	_	ression			of obs = of groups =	23,152 898
R-sq:				Obs per	group:	
<pre>within = between = overall =</pre>	0.6437				min = avg = max =	1 25.8 59
corr(u_i, Xb)	= 0.1237			F(11,222 Prob > 1		1283.27 0.0000
mathz	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
mathz_1	.5014138	.0048905	102.53	0.000	.4918281	.5109994
age	1038846	.0069652	-14.91	0.000	117537	0902323
female	0390795	.0079636	-4.91	0.000	0546887	0234704
lep		.0163934	-7.25	0.000	1510308	0867663
speced		.01881	-15.60	0.000	3303642	2566264
immig		.0252091	3.55	0.000	.0399754	.1387988
econdis		.0142334	-4.43	0.000	0909864	0351894
black		.0200474	-10.30	0.000	2457344	1671457
hispanic asian		.0190129	-4.68 3.51	0.000	1262257 .0415501	0516923 .1465181
asian	.0940341	.0207700	3.31	0.000	.0413301	.1400101
year 2006		.00962	16.42	0.000	.1391201	.1768321
_cons	1.424638	.0807365	17.65	0.000	1.266389	1.582887
sigma_u sigma_e rho	.58513872	(fraction	of varia	nce due t	o u_i)	
F test that all u_i=0: $F(897, 22243) = 5.64$						

(e) Teacher fixed effects—systematic variation in achievement after controlling for prior student achievement and other student characteristics—are often referred to as the

teacher's "value added." How much of the variance in achievement is due to the teacher effect? (This is reported as the "rho" in the xtreg output). (3 points)

The values of rho in the above regressions are 0.206, 0.261, 0.202, and 0.231. After controlling for prior achievement and other student characteristics, roughly 20-25% of the variation in achievement is attributable to variation across teachers. This provides some indication of the "importance" of teachers to student outcomes.

(f) Save the estimated teacher fixed effects using predict, as shown in class. Keep one observation per teacher (you can use duplicates drop to do this) and create a histogram of the estimated teacher fixed effects. What is the standard deviation of these teacher fixed effects? What is the difference between a teacher at the 75th percentile of the teacher effect distribution and a teacher at the 25th percentile? (5 points)

Stata syntax and results are shown below (only one histogram is pictured, for 5th grade math). The standard deviation in teacher effects ranges from 0.32 - 0.34, depending on the grade and subject. The difference between the 25th and 75th percentiles ranges from 0.38 to 0.45, depending on the grade and subject. What do these numbers mean? Recall that the fixed effects are estimates of unique intercepts for each teacher. In the case of 4th grade reading, a standard deviation of 0.35 means the students of a teacher one standard deviation above average perform 0.35 better than average than the students of the average teacher.

```
. foreach g in 4 5 {
  2. foreach s in read math {
        qui xtreg 's'z 's'z_1 age female lep speced immig econdis black hispanic asian ///
     i.year if grade=='g', fe i(teacher)
    predict tcheff's'g', u
  5.
       preserve
  6.
           duplicates drop teacher, force
  7.
           summ tcheff's'g', detail
           tabstat tcheff's'g', stat(p25 p75 iqr)
               histogram tcheff's'g'
  9.
 10.
        restore
 11.
 12.
        }
(24,369 missing values generated)
Duplicates in terms of teacher
(45,305 observations deleted)
                         u[teacher]
```

	Percentiles	Small	est		
1%	863707	-1.925	5172		
5%	5911111	-1.28	3669		
10%	4549403	-1.102	2798	Obs	974
25%	2620801	-1.024	1002	Sum of Wgt.	974
50%	0418055			Mean	0292627
		Larg	gest	Std. Dev.	.3520821
75%	.1851209	1.11	441		
90%	.3914686	1.243	3015	Variance	.1239618
95%	.5294719	1.418	3795	Skewness	.0488429
99%	.9337133	1.566	302	Kurtosis	4.580015
	variable	p25	p75	igr	
tcl	neffread4 26	20801 .1	.851209	.447201	

(bin=29, start=-1.9251719, width=.12039566) (23,708 missing values generated)

 ${\tt Duplicates} \ {\tt in} \ {\tt terms} \ {\tt of} \ {\tt teacher}$

(45,305 observations deleted)

		u[teach	er]	
	Percentiles	Smallest		
1%	9152396	-1.986226		
5%	5875053	-1.594639		
10%	4370334	-1.163883	Obs	1,004
25%	2358474	-1.062243	Sum of Wgt.	1,004
			_	
50%	0311564		Mean	0344432
		Largest	Std. Dev.	.3442303
75%	.169738	.890529		
90%	.3790837	.9583023	Variance	.1184945
95%	.5267823	1.196018	Skewness	1834778
99%	.8022034	1.493365	Kurtosis	4.888053
	variable	p25 p	75 iqr	
tc	 heffmath4 23	58474 .1697	38 .4055854 	

(bin=30, start=-1.9862257, width=.11598635) (24,566 missing values generated)

Duplicates in terms of teacher

(45,305 observations deleted)

u[teacher]

1% 5%	Percentiles 8895572 5953411	-1.8 -1.5	allest 868376 559686		
10%	4524955	-1.5	512358	0bs	806
25%	219957	-1.3	300198	Sum of Wgt.	806
50%	0207986			Mean	0439087
		La	argest	Std. Dev.	.3286723
75%	.1577055	.84	188992		
90%	.3190411	.88	310328	Variance	.1080255
95%	.4412906	1.0	81512	Skewness	5181577
99%	.6588145	1.5	88887	Kurtosis	5.845002
	variable	p25	p75	iqr 	
tche	effread5 2	19957	.1577055	.3776625	

(bin=28, start=-1.8683757, width=.12347366) (24,009 missing values generated)

Duplicates in terms of teacher

(45,305 observations deleted)

u[teacher]							
Percentiles	Small	est					
8771342	-1.827	223					
5433015	-1.528	425					
4240153	-1.386	065	Obs	823			
2257731	-1.339	902	Sum of Wgt.	823			
0290482			Mean	0414026			
	Larg	est	Std. Dev.	.3205586			
.1641627	.8242	272					
.3249792	.8543	559	Variance	.1027578			
.4475881	.8997	599	Skewness	5513376			
. 6830953	.9163	185	Kurtosis	5.204493			
variable 	p25	p75	iqr 				
	8771342 5433015 4240153 2257731 0290482 .1641627 .3249792 .4475881 .6830953	Percentiles Small8771342 -1.8275433015 -1.5284240153 -1.3862257731 -1.339 0290482 Larg .1641627 .8242 .3249792 .8543 .4475881 .8997 .6830953 .9163	Percentiles Smallest8771342 -1.8272235433015 -1.5284254240153 -1.3860652257731 -1.339902 0290482 Largest .1641627 .8242272 .3249792 .8543559 .4475881 .8997599 .6830953 .9163185	Percentiles Smallest8771342 -1.8272235433015 -1.5284254240153 -1.386065 Obs2257731 -1.339902 Sum of Wgt. 0290482 Mean Largest Std. Dev1641627 .8242272 .3249792 .8543559 Variance .4475881 .8997599 Skewness .6830953 .9163185 Kurtosis			

tcheffmath5 | -.2257731 .1641627 .3899358

(bin=28, start=-1.8272233, width=.09798364)

Question 3. This problem will use the same student-level data from a large urban school district to estimate the impact of having a same-race teacher on achievement. (That is, how a student performs when they share the same race/ethnicity as their teacher, relative to when they don't.) For a study that tackles this very question see Dee (2004). (20 points)

use https://github.com/spcorcor18/LPO-8852/raw/main/data/LUSD4_5.dta

(a) Create a variable called $same_race$ that equals zero unless the student and teacher share the same race/ethnicity, in which case $same_race$ should be coded as one. Use the white, black, Hispanic, and Asian categories, but not the "other" race category. In what percent of cases (i.e., student-year observations) are students assigned to a teacher of the same race/ethnicity? How does this rate of same race exposure vary by student race/ethnicity? (4 points)

Results below. In about 52% of cases (student x year observations) the student had a teacher with the same race or ethnicity. This percentage was higher for black and white students (at 73-74%) and lower for Hispanic (42%) and Asian (6%) students.

```
. gen same_race = 0
. replace same_race = 1 if tch_black==1 & black==1
(8,708 real changes made)
. replace same_race = 1 if tch_white==1 & white==1
(3,295 real changes made)
. replace same_race = 1 if tch_hisp==1 & hisp==1
(12,341 real changes made)
. replace same_race = 1 if tch_asian==1 & asian==1
(87 real changes made)
. tabulate same_race
```

Cum.	Percent	Freq.	same_race
48.20 100.00	48.20 51.80	22,730 24,431	0 1
	100.00	47,161	Total

. for each j in black white hisp asian $\{$

^{3.}

same_race	Freq.	Percent	Cum.
0	3,221 8,708	27.00 73.00	27.00 100.00
Total	11,929	100.00	
same_race	Freq.	Percent	Cum.
0 1	1,182 3,295	26.40 73.60	26.40 100.00
Total	4,477	100.00	
same_race	Freq.	Percent	Cum.
0 1	16,915 12,341	57.82 42.18	57.82 100.00
Total	l 29,256	100.00	
same_race	Freq.	Percent	Cum.
0	1,391 87	94.11 5.89	94.11 100.00
Total	-+ 1,478	100.00	

(b) Estimate two regressions where the dependent variables are the math and reading z-scores, respectively, and $same_race$ is the explanatory variable. Explain why the estimated coefficient on $same_race$ should not be interpreted as causal. (4 points)

Results below, with separate models by subject and grade. In all cases, students with a same race/ethnicity teacher tend to perform worse, on average, than students who do not. For these regressions to have a causal interpretation, we have to believe that the covariance between the population error term u and $same_race$ is zero. This seems unlikely if there are omitted variables correlated with both test scores and a match with a same

^{2.} tabulate same_race if 'j'==1

race/ethnicity teachers. As the correlation matrix shows, black and LEP students are more likely to have a same race teacher. But these students also tend to have lower achievement, on average.

```
. foreach g in 4 5 {
2. foreach s in math read {
  reg 's'z same_race if grade=='g'
   }
5.
  Source | SS df MS Number of obs = 23,611
------ F(1, 23609) =
                                     40.26
   = 0.0000
 Residual | 20124.0472 23,609 .8523888 R-squared = 0.0017
------ Adj R-squared = 0.0017
   Total | 20158.367 23,610 .853806311 Root MSE
                                     .92325
         Coef. Std. Err. t P>|t|
                             [95% Conf. Interval]
______
 same_race | -.0767708 .0120988 -6.35 0.000 -.1004852 -.0530563
   _cons | .170034 .0090384 18.81 0.000 .1523181 .1877499
  Source | SS df MS Number of obs = 22,963
 ------ F(1, 22961) =
                                     23.42
   = 0.0000
 Residual | 22626.2559 22,961 .98542119 R-squared = 0.0010
                          Adj R-squared = 0.0010
   Total | 22649.3355 22,962 .986383395
                          Root MSE
                                      .99268
   readz | Coef. Std. Err. t P>|t|
                             [95% Conf. Interval]
------
 same_race | -.0638795 .0131995 -4.84 0.000 -.0897515 -.0380075
   _cons | .1045238 .0098844 10.57 0.000 .0851497 .1238979
  Source | SS df MS Number of obs = 23,225
= 0.0000
                                  = 0.0052
------ Adj R-squared = 0.0051
   Total | 18077.6631 23,224 .778404369
                          Root MSE
                                      .88
______
   mathz | Coef. Std. Err. t P>|t| [95% Conf. Interval]
same_race | -.1272158 .0115611 -11.00 0.000 -.1498764 -.1045552
   _cons | .2204888 .0079835 27.62 0.000 .2048406 .236137
```

Source	SS	df	MS		er of obs 22697)	=	22,699 159.84
Model Residual	156.923336	1 22,697	156.923336 .981774679	Prob R-sq	> F uared R-squared	= = =	0.0000 0.0070 0.0069
Total	22440.2632	22,698	.988644957	Root	MSE	=	.99085
readz				P> t 		nf.	Interval]
same_race _cons		.0131675		0.000	192280 .1260129		1406624 .1616542

. corr same_race black white hisp asian lep speced econdis (obs=47,161)

 	same_r~e	black	white	hispanic	asian	lep	speced	econdis
same_race	1.0000							
black	0.2468	1.0000						
white	0.1413	-0.1884	1.0000					
hispanic	-0.2461	-0.7438	-0.4140	1.0000				
asian	-0.1653	-0.1047	-0.0583	-0.2299	1.0000			
lep	0.2429	-0.3901	-0.2158	0.5182	-0.1054	1.0000		
speced	-0.0164	0.0115	0.0511	-0.0335	-0.0205	-0.0273	1.0000	
econdis	0.0224	0.0237	-0.5321	0.3632	-0.1759	0.2816	-0.0146	1.0000

(c) Briefly explain how a regression model with *student fixed effects* might improve upon the regressions in part (b). What problem might this solve? (2 points)

There are likely to be observable and unobservable factors correlated with achievement and assignment to a same-race teacher. Some of this may have do with geography and the local teacher labor market—that is, whether or not teachers share the same demographics as their students. Student fixed effects estimate the "same race" effect using within-student variation over time. Students would effectively be compared against themselves, in states in which they are and are not exposed to a same-race teacher. Importantly, students that experience no variation in this explanatory variable do not contribute to the coefficient estimates. This is relevant if we are concerned about generalizing to the full population of students.

(d) Use xtset to designate student as the panel variable, and year as the time dimension. Estimate the same regressions as in Question #2 part (d) (with student covariates and lagged score), and use xtreg, fe to include student fixed effects. Also include same_race among your explanatory variables. Do not run the model separately by

grade; you need multiple observations per student for this model to make sense. Describe what you find for the "same race" coefficient. Is it statistically significant? Practically significant? Can one make a strong claim for causal inference in this case? Explain why or why not. (6 points)

Results below. Interestingly, in all cases the coefficient on <code>same_race</code> is positive and statistically significant. When students share the same race/ethnicity as their teacher, they score 0.09 sd higher in reading and 0.04 sd higher in math. Both are statistically and (I would argue) practically significant. It is easier to make a casual claim in this case. One would be concerned about omitted variables bias if there were a time-varying omitted variable that is correlated with changes in both <code>same_race</code> and test scores. (This would represent a violation of the strict exogeneity assumption). If, for example, parents responded to a worse- or better-than-expected test result by purposefully moving their student into a classroom with a same-race teacher, this would be a violation of strict exogeneity. It's not clear whether this is likely to occur in practice, however.

```
. xtset id year
     panel variable: id (unbalanced)
      time variable: year, 2005 to 2006
             delta: 1 unit
 foreach s in read math {
      xtreg 's'z 's'z_1 age female lep speced immig econdis black hispanic asian i.year same_rac
Fixed-effects (within) regression
                                        Number of obs =
                                                             45,387
                                                             35,987
Group variable: id
                                        Number of groups =
R-sq:
                                        Obs per group:
    within = 0.1598
                                                    min =
                                                                 1
    between = 0.1175
                                                                1.3
                                                    avg =
    overall = 0.1082
                                                    max =
                                                                 2
                                        F(12,9388)
                                                             148.80
corr(u_i, Xb) = -0.6685
                                        Prob > F
                                                             0.0000
                                   t
                                        P>|t|
     readz |
                Coef. Std. Err.
                                                 [95% Conf. Interval]
readz_1 | -.3575557 .0087662 -40.79 0.000
                                                -.3747392 -.3403721
                                                         -.0755392
       age | -.3907786 .1608187
                                 -2.43 0.015
                                                -.7060181
                                                         .3911496
     female | -.0691433 .2348174
                                 -0.29 0.768 -.5294362
       lep | .0530388 .0259626
                                 2.04 0.041 .0021465 .1039311
     speced | -.0738881 .072518
                                 -1.02 0.308
                                                -.2160391 .0682628
```

immig | .3530726 .058952

5.99 0.000 .2375138 .4686314

econdis	0803718	.0346397	-2.32	0.020	1482732	0124704
black		.6501012	0.43	0.665	9925848	1.556094
hispanic	.1130556	.5752511	0.20	0.844	-1.014561	1.240672
asian		.5752299	1.53	0.127	2492817	2.005869
year						
2006		.1610366	2.18	0.029	.035853	.6671863
same_race	.0850675	.0148206	5.74	0.000	.056016	.114119
_cons	4.011723	1.734289	2.31	0.021	.6121403	7.411306
						
sigma_u						
sigma_e	.52496864					
rho	.84802577	(fraction	of varia	nce due t	o u_i)	
F test that al	ll u_i=0: F(38	5986, 9388)	= 2.22		Prob >	F = 0.0000
Fixed-effects	(within) rom	rossion		Numbor	of obs =	46,605
Group variable	_	ession			of groups =	37,022
Group variable	s. 1ú			Number	or groups -	31,022
R-sq:				Obs per	group:	
within =	= 0.2411			obb por	min =	1
between =					avg =	1.3
overall =					max =	2
0.01011	0.0010					_
				F(12,95	71) =	253.41
<pre>corr(u_i, Xb)</pre>	= -0.8502			Prob >		0.0000
mathz	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
						
mathz_1		.0081244	-50.95	0.000	4298872	3980361
age		.1413035	0.51	0.613	20559	.3483795
female		.2064662	0.57	0.569	2870193	.5224157
lep		.0227077	5.29	0.000	.0755924	.1646162
speced		.0523051	-3.04	0.002	2614137	0563553
immig		.0507581	0.83	0.408	0574628	.1415305
econdis		.0302013	-0.70	0.483	0804028	.0379992
black		.5839093	0.99	0.322	5659413	1.723231
hispanic		E0E7974	0.65	0.516	6625641	1.320141
asian		.5057374				
		.5058222	-0.37	0.709	-1.180012	.8030258
	188493					.8030258
year	188493	.5058222	-0.37	0.709	-1.180012	
year 2006	188493					.3539709
2006	188493 .0766177	.1414914	-0.37 0.54	0.709	-1.180012 2007355	.3539709
2006 same_race	188493 .0766177 .0414423	.5058222 .1414914 .0128886	-0.37 0.54 3.22	0.709 0.588 0.001	-1.180012 2007355 .0161779	.3539709
2006	188493 .0766177 .0414423	.1414914	-0.37 0.54	0.709	-1.180012 2007355	.3539709
2006 same_race _cons	188493 .0766177 .0414423 -1.042015	.5058222 .1414914 .0128886	-0.37 0.54 3.22	0.709 0.588 0.001	-1.180012 2007355 .0161779	.3539709
2006 same_race _conssigma_u	188493 	.5058222 .1414914 .0128886	-0.37 0.54 3.22	0.709 0.588 0.001	-1.180012 2007355 .0161779	.3539709
2006 same_race _cons	188493 .0766177 .0414423 -1.042015 	.5058222 .1414914 .0128886	-0.37 0.54 3.22 -0.68	0.709 0.588 0.001 0.494	-1.180012 2007355 .0161779 -4.031092	.3539709

F test that all $u_i=0$: F(37021, 9571) = 2.29

Prob > F = 0.0000

(e) Are there any explanatory variables that are dropped in the models in (d)? Are there any explanatory variables that should be dropped that weren't? What does the latter indicate to you? (2 points)

There are no explanatory variables dropped in the above models. One would expect time-invariant variables such as gender and student race/ethnicity to fall out of the regression, but they appear not to have done so in this case. This suggests there is unexpected variation in these variables, perhaps due to miscoding or other errors.

(f) Finally, use the command xttrans to describe the frequency of changes in exposure to a same-race teacher over time. Interpret the results of this command. (2 points)

Results below. The panel used in the above regressions is unbalanced—some students are observed in two years, but many are only observed in one. Identification of the *same_race* coefficient only comes from students observed in more than one year, who experience a change in *same_race*. The xttrans output only pertains to the students observed in more than one year.

Note the row percentages of the xttrans output sum to 100, and cell frequencies sum to 9,728, the total number of students observed in both periods. Of the 4,336 students who do not have a same race teacher in year 1, 78% again do not have a same race teacher in year 2. 22% do. Of the 5,392 students who do have a same race teacher in year 1, 67% continue to do so in year 2. 33% do not. Taken together, only 973+1,795 of the students experienced a switch in the same_race variable, or about 28% of all students. If you were concerned that these students represent an unusual population, you could look descriptively at these students and contrast them with students that did not experience such a change. For example, are they more likely to live in urban areas? Did they change schools or districts?

- . egen count=count(id),by(id)
- . table year if count==2

year	1	
(spring)	1	Freq.
	+	
2005	1	9,728
2006	1	9,728

. tabulate same_race if year==2005 & count==2

Cum.	Percent	Freq.	same_race
44.57 100.00	44.57 55.43	4,336 5,392	0 1
	100.00	9,728	Total

. xttrans same_race, freq

same_race				
same_race	0	1	Total	
0	3,363 77.56	973 22.44		
1	1,795 33.29	3,597 66.71	•	
Total	5,158 53.02	4,570 46.98		