Tarea 1

Esteban Leiva

Enero 2024

1. a) Muestre que la inversa de una matriz triangular inferior también es triangular inferior.

Primero vamos a probar los siguientes resultados:

• Si $L, T \in \mathbb{R}^{n \times n}$ son matrices triangulares inferiores entonces $(LT)_{ii} = L_{ii}T_{ii}$ para i = 1, ..., n.

$$(LT)_{ii} = \sum_{k=1}^{n} l_{ik} t_{ki}$$

$$= \sum_{k=1}^{i} l_{ik} t_{ki} + \sum_{k=i+1}^{n} l_{ik} t_{ki}$$

$$= \sum_{k=1}^{i} l_{ik} t_{ki}$$

$$= \sum_{k=1}^{i-1} l_{ik} t_{ki} + l_{ii} t_{ii}$$

$$= l_{ii} t_{ii} = L_{ii} T_{ii}$$

• Si una matriz triangular inferior $L \in \mathbb{R}^{n \times n}$ es invertible entonces sus elementos diagonales no son nulos.

Sabemos que si la invertibilidad es equivalente a que para todo $b \in \mathbb{R}^n$ existe exactamente un $x \in \mathbb{R}^n$ tal que Lx = b. Entonces, tome un $b \in \mathbb{R}^n$ arbitrario. Vamos a construir el x tal que Lx = b y mostraremos que si la diagonal es nula, no es posible que para todo $b \in \mathbb{R}^n$ existe exactamente un $x \in \mathbb{R}^n$ tal que Lx = b.

$$b_i = \sum_{j=1}^n l_{ij} x_j$$

$$= \sum_{j=1}^i l_{ij} x_j + \sum_{j=i+1}^n l_{ij} x_j$$

$$= \sum_{j=1}^i l_{ij} x_j$$

Entonces, $b_1 = \sum_{j=1}^{1} l_{1j}x_j = l_{11}x_1$. Si $l_{11} = 0$ entonces $b_1 = 0$ y no se podría encontrar un b con $b_1 \neq 0$ como Lx = b; por lo tanto, $l_{11} \neq 0$. Además, x_1 está únicamente determinado pues $x_1 = \frac{b_1}{l_{11}}$.

Ahora, considere $b_2=\sum_{j=1}^2 l_{2j}x_j=l_{21}x_1+l_{22}x_2=l_{21}\frac{b_1}{l_{11}}+l_{22}x_2.$ Si $l_{22}=0$ entonces $b_2=l_{21}\frac{b_1}{l_{11}}$ y no se podría obtener para un valor diferente de b_2 contrario a lo que necesitamos; luego, $l_{22}\neq 0.$ Además, x_2 está únicamente determinado pues $x_2=\frac{b_2}{l_{22}}-\frac{l_{21}b_1}{l_{22}l_{11}}.$

Esta construcción continua hasta n y llegamos a que para i=1,...,n tenemos $l_{ii}\neq 0$ como queríamos.

• Sean $\{e_k, k = 1, ..., n\}$ la base canónica de \mathbb{R}^n , L una matriz triangular inferior invertible y x un vector de \mathbb{R}^n tal que $Lx = e_k$. entonces $x_j = 0$ para j < k.

Si $y = e_k = Lx$ y 1 < k < n (los casos en donde 1 = k y n = k son complementamente análogos al procedimiento siguiente)

$$y_i = \sum_{j=1}^n l_{ij} x_j$$

$$= \sum_{j=1}^i l_{ij} x_j + \sum_{j=i+1}^n l_{ij} x_j$$

$$= \sum_{j=1}^i l_{ij} x_j$$

Entonces,

$$y_{1} = \sum_{j=1}^{1} l_{1j}x_{j} = l_{11}x_{1}$$

$$\vdots$$

$$y_{k} = \sum_{j=1}^{k} l_{kj}x_{j} = l_{k1}x_{1} + \dots + l_{kk}x_{k}$$

$$\vdots$$

$$y_{n} = \sum_{j=1}^{n} l_{nj}x_{j} = l_{n1}x_{1} + \dots + l_{nk}x_{n}$$

Como L es invertible, su diagonal no es nula. Como $y_1 = 0$, $l_{11}x_1 = 0$ entonces $x_1 = 0$. Ahora considere $y_2 = l_{21}x_1 + l_{21}x_2 = 0 = l_{21}x_2$ entonces $x_2 = 0$. Hacemos este procedimiento hasta k-1 y obtenemos que para j < k $x_j = 0$ como queríamos.

Ahora, estamos listos para probar que si L es triangular inferior invertible entonces L^{-1} es triangular inferior.

$$LL^{-1} = I = [e_1 \cdots e_n]$$

$$LL^{-1} = L[y_1 \cdots y_n] = [Ly_1 \cdots Ly_n]$$

Entonces, $Ly_k = e_k$ y por el tercer ítem, la k-ésima columna y_k tiene entradas igual a 0 en las filas antes de la k-ésima fila. Por lo tanto, L^{-1} es triangular inferior.

b) Escriba un programa que calcule la inversa de una matriz triangular inferior. Compruebe la eficiencia de su programa con la matriz $a_{ij} = (i+j)2$ con $i \geq j$ y 0 de lo contrario. Para tamaños $n=2^k$ con k=2,...,15 haga el producto de la matriz con su inversa y reporte la diferencia con la matriz identidad. Haga una gráfica loglog del tiempo requerido contra el tamaño de la matriz.

Figure 1: Gráfica loglog.

```
Time: 0.0
Difference: 2.7755575615628914e-16
Time: 0.0009932518005371094
Difference: 7.068998164605489e-16
Time: 0.001993894577026367
Difference: 1.5629858518551032e-15
Time: 0.034906625747680664
Difference: 6.38378239159465e-15
Size: 64
Time: 0.18502092361450195
Difference: 2.1835127022445944e-14
Time: 0.6642682552337646
Difference: 6.386559304408929e-14
Size: 256
Time: 5.662587642669678
Difference: 3.187470801896148e-13
Time: 49.54169464111328
Difference: 8.170745305339551e-13
Difference: 2.533213169476541e-12
Size: 2048
Difference: 8.196455411001706e-12
```

Figure 2: Diferencia y tiempos

2. ¿Cuántas multiplicaciones y divisiones son necesarias para resolver un sistema de ecuaciones Ax=b haciendo primero la factorización LU.

Algorithm 1 Factorización LU

```
0: for k = 1, 2, ..., n do
0: l_{kk}u_{kk} = a_{kk} - \sum_{s=1}^{k-1} l_{ks}u_{sk}
0: for j = k + 1 ..., n do
0: u_{kj} \leftarrow \left(a_{kj} - \sum_{s=1}^{k-1} l_{ks}u_{sj}\right) \div l_{kk}
0: end for
0: for i = k + 1 ..., n do
0: l_{ik} \leftarrow \left(a_{ik} - \sum_{s=1}^{k-1} l_{is}u_{sk}\right) \div u_{kk}
0: end for
0: end for
0: end for
```

- (a) En $l_{kk}u_{kk} = a_{kk} \sum_{s=1}^{k-1} l_{ks}u_{sk}$ realizamos (k-1) multiplicaciones.
- (b) En $u_{kj} \leftarrow \left(a_{kj} \sum_{s=1}^{k-1} l_{ks} u_{sj}\right) \div l_{kk}$ realizamos (k-1)(n-k) multiplicaciones y (n-k) divisiones.
- (c) En $l_{ik} \leftarrow \left(a_{ik} \sum_{s=1}^{k-1} l_{is} u_{sk}\right) \div u_{kk}$ realizamos (k-1)(n-k) multiplicaciones y (n-k) divisiones.

Entonces en la factorización realizamos

$$\sum_{k=1}^{n} (k-1) + 2(k-1)(n-k) + 2(n-k) = \sum_{k=1}^{n} (k-1) + 2(n-k)[(k-1) + 1]$$

$$= \sum_{k=1}^{n} (k-1) + 2(n-k)[k] = \frac{n^2}{2} - \frac{n}{2} + \sum_{k=1}^{n} 2(n-k)[k]$$

$$= \frac{n^2}{2} - \frac{n}{2} + 2n \sum_{k=1}^{n} k - 2 \sum_{k=1}^{n} k^2$$

$$= \frac{n^2}{2} - \frac{n}{2} + \frac{2n^2(n+1)}{2} - \frac{n(n+1)(2n+1)}{6}$$

multiplicaciones y divisiones.

Si tenemos la factorización LU tenemos que primero hacer y=Ux y después Ly=b. Entonces, primero debemos hacer una multiplicación matricial en la que se deben realizar n^2 multiplicaciones. Luego, tenemos que resolver Ly=b con el algoritmo forward.

Algorithm 2 Forward

```
0: for i = 1, 2, ..., n do
0: y_i \leftarrow b_i
0: for j = 1, 2, ..., i - 1 do
0: y_i \leftarrow y_i - l_{ij} \cdot y_j
0: end for
0: y_i \leftarrow y_i \div l_{ii}
0: end for=0
```

Para cada i el algoritmo realiza (i-1) multiplicaciones. Entonces, el numero de multiplicaciones es

$$\sum_{i=1}^{n} (i-1) = \sum_{i=1}^{n} i - \sum_{i=1}^{n} 1 = \frac{n(n+1)}{2} - n = \frac{n^2}{2} - \frac{n}{2}$$

y el número de divisiones es n porque está dentro de un solo for loop de 1 a n.

Por lo tanto, el total de multiplicaciones y divisiones después de hacer la factorización LU es $\frac{3n^2}{2}+\frac{n}{2}$. Si sumamos estos dos pasos llegamos a que el total es $\frac{n^2}{2}-\frac{n}{2}+n^2(n+1)-\frac{n(n+1)(2n+1)}{6}+\frac{3n^2}{2}+\frac{n}{2}=2n^2+n^2(n+1)-\frac{n(n+1)(2n+1)}{6}$. Entonces es $O(n^3)$.