WHAT IS CLAIMED:

1	1.	A method for biological burden reduction, comprising a step of applying a
2	continuous st	ream of O _x to a material in a sealed biological burden reduction chamber,
3	wherein said	O _x includes oxygen and its radicals.
1	2.	The method of claim 1, wherein O_x is selected from an integer from 1 to 3.
1	3.	The method of claim 1, further comprising continuously withdrawing O _x
2	from said seal	led biological burden reduction chamber.
1	4.	The method of claim 1, further comprising creating a pressure differential
2	within said b	iological burden reduction chamber and maintaining said pressure differential
3	while continu	ously applying said stream of O _x to said material.
1	5.	The method of claim 4, further comprising agitating said O _x in said biological
2	burden reduc	tion chamber to increase permeation of said Ox into said material.
1	6.	The method of claim 5, wherein forced air is used to agitate said O _x .
1	7.	The method of claim 5, wherein said agitating distributes said O _x evenly
2	throughout sa	aid biological burden reduction chamber.
1	8.	The method of claim 5 further comprising
2		(a) creating a vacuum within said biological burden reduction chamber;
3		(b) generating O _x in an O _x generation cell;
4		(c) withdrawing a stream of O _x from said O _x generation cell into said
5	biological bu	rden reduction chamber; and
6		(d) withdrawing O _x from said biological burden reduction chamber.
1	9.	The method of claim 4, wherein said O _x generation cell comprises an O _x
2	generator cap	pable of generating O _x at a pressure of less than 20 lbs/in ² selected from one or

- more of the group consisting of corona discharge, high frequency electrical discharge,
- 2 ultraviolet light, x-ray, radioactive isotopes and electron beam.
- 1 10. The method of claim 8, wherein said O_x in said biological burden reduction
- 2 chamber is maintained at a concentration of about 0.1% to about 100%/per total volume of
- 3 gases in said biological burden reduction chamber.
- 1 11. The method of claim 10, wherein O₃ in said biological burden reduction
- 2 chamber is maintained at a concentration of about 0.1% to about 25% per total weight of
- 3 gases in said biological burden reduction chamber.
- 1 12. The method of claim 11, wherein said 0/in said biological burden reduction
- 2 chamber is maintained at a concentration of about 3% to about 16% per total weight of gases
- 3 in said biological burden reduction chamber, wherein an amount of O₃ used is dependent on
- 4 said material.
- 1 13. The method of claim 8, further comprising maintaining a pressure differential
- between a pressure within said 0_x generation chamber and a pressure within said biological
- 3 burden reduction chamber sufficient to continuously withdraw said 0, through said
- 4 biological burden reduction chamber.
- 1 14. The method of/claim 8, further comprising using a biological burden
- 2 reduction chamber of about 1/00 ft.3 to about 8000 ft.3.
- 1 15. The method of claim 8, further comprising using a biological burden
- 2 reduction chamber of about 1 ft.3 to about 100 ft.3.
- 1 16. The method of claim 13, further comprising controlling water vapor present
- 2 in said continuous stream of O_x prior to applying said continuous stream of O_x to said
- 3 material.

The method of claim 12, wherein said pressure within said biological burden 17. 1 2 reduction chamber is maintained between about 0 psia and 20 psia. The method of claim 1, wherein said 0_x is generated from ambient air or 18. 1 2 components of ambient air. The method of claim 1, wherein said 0_x is generated from other oxygen 19. 1 sources including gaseous oxygen, liquid oxygen, H₂0 and mercuri¢ oxide. 2 20. The method of claim 1, wherein the material is a food product. 1 21. The method of claim 1, wherein the material is a medical product. 1 22. The method of claim 1, wherein the material is a cosmetic ingredient. 1 23. The method of claim 1, wherein the material is a dietary supplement. The method of claim 1, wherein the material is a botanical. 24. 1 The method of claim 1, wherein the material is a nutraceutical. 25. 1 The method of claim 1, wherein/the material is a pharmaceutical ingredient. 26. 1 The method of claim 1, wherein the material is a packaging material. 27. 1 The method of claim 1, wherein the material is a nursery stock product. 28. 1 29. The method of claim 1, wherein the material is a color additive. 1 The method of claim 1, wherein the material is a seed. 30. 1 The method of claim 1, wherein the material is a personal care product. 31. 1 32. The method of claim 1, wherein the material is an animal feed. 1 The method of claim 1, wherein the material is a flavoring. 33. 1 34. An apparatus for biological burden reduction, comprising: 1 (a) a biological burden reduction chamber; 2 (b) a vacuum pump coupled to said biological burden reduction chamber; 3

4	(c) an 0_x generation cell, wherein said 0_x generation cell comprises a	
5	means for generating 0_x ;	
6	(d) a first control valve coupled to said biological burden reduction	
7	chamber and said 0x generation cell, wherein said first control valve is capable of permitting	
8	said 0_x to be withdrawn from said 0_x generation cell into said biological burden reduction	
9	chamber; and	
10	(e) a second control valve coupled to said biological burden reduction	
11	chamber, wherein said second control valve is capable of withdrawing 0x contained within	
12	said biological burden reduction chamber.	
1	35. The apparatus of claim 34, further comprising a member for creating forced	
2	air contained within said biological burden reduction chamber, wherein said forced air	
3	distributes said Ox evenly throughout said biological burden reduction chamber.	
1	36. The apparatus of claim/34, further comprising a temperature-regulating	
2	means.	
1	37. The apparatus of claim 34, further comprising a means for controlling water	
2	vapor coupled to said biological burden reduction chamber.	
1	38. The apparatus of claim 34, further comprising a controller for controlling and	
2	monitoring physical parameters within said biological burden reduction chamber.	
1	39. The method of claim 1, wherein said biological burden is selected from a	
2	group of living entities including insects, bacteria, viruses, algae, yeasts, molds, nematodes	
3	parasites and weed seed.	
. 1	40. The apparatus of claim 36, further comprising a means to convert said O _x to	
2	O ₂ prior to release into atmosphere.	

The method of claim 17, wherein a humidity of an atmosphere within said 41. 1 biological burden reduction chamber is between about 20% to about 98%. 2 The method of claim 4, wherein a temperature within said biological burden 42. 1 reduction chamber is between about 32°F and about 80%F. 2 The method of claim 1, wherein a place rate of said continuous stream of Ox 43. 1 within said biological burden reduction chamber is between about 0.1 L/min/ft³ and about 2 2 L/min/ft³. 3 The method of claim/1, further comprising applying a continuous stream of 44. 1 one or more of a gas selected from the group consisting of N2, CO2 and Ar in addition to 2 said continuous stream of Ox 3

Add>AZ