Consider any two points μ and $\mu + \xi$ in \mathbb{R}^m_+ . By definition of u_{μ} we have

$$L(u_{\mu}, \mu) \leq L(u_{\mu+\xi}, \mu),$$

which means that

$$J(u_{\mu}) + \sum_{i=1}^{m} \mu_{i} \varphi_{i}(u_{\mu}) \leq J(u_{\mu+\xi}) + \sum_{i=1}^{m} \mu_{i} \varphi_{i}(u_{\mu+\xi}), \tag{*}_{1}$$

and since $G(\mu) = L(u_{\mu}, \mu) = J(u_{\mu}) + \sum_{i=1}^{m} \mu_{i} \varphi_{i}(u_{\mu})$ and $G(\mu + \xi) = L(u_{\mu+\xi}, \mu + \xi) = J(u_{\mu+\xi}) + \sum_{i=1}^{m} (\mu_{i} + \xi_{i}) \varphi_{i}(u_{\mu+\xi})$, we have

$$G(\mu + \xi) - G(\mu) = J(u_{\mu+\xi}) - J(u_{\mu}) + \sum_{i=1}^{m} (\mu_i + \xi_i) \varphi_i(u_{\mu+\xi}) - \sum_{i=1}^{m} \mu_i \varphi_i(u_{\mu}).$$
 (*2)

Since $(*_1)$ can be written as

$$0 \le J(u_{\mu+\xi}) - J(u_{\mu}) + \sum_{i=1}^{m} \mu_i \varphi_i(u_{\mu+\xi}) - \sum_{i=1}^{m} \mu_i \varphi_i(u_{\mu}),$$

by adding $\sum_{i=1}^{m} \xi_i \varphi_i(u_{\mu+\xi})$ to both sides of the above inequality and using $(*_2)$ we get

$$\sum_{i=1}^{m} \xi_i \varphi_i(u_{\mu+\xi}) \le G(\mu+\xi) - G(\mu). \tag{*_3}$$

By definition of $u_{\mu+\xi}$ we have

$$L(u_{\mu+\xi}, \mu+\xi) \le L(u_{\mu}, \mu+\xi),$$

which means that

$$J(u_{\mu+\xi}) + \sum_{i=1}^{m} (\mu_i + \xi_i)\varphi_i(u_{\mu+\xi}) \le J(u_{\mu}) + \sum_{i=1}^{m} (\mu_i + \xi_i)\varphi_i(u_{\mu}). \tag{*4}$$

This can be written as

$$J(u_{\mu+\xi}) - J(u_{\mu}) + \sum_{i=1}^{m} (\mu_i + \xi_i)\varphi_i(u_{\mu+\xi}) - \sum_{i=1}^{m} (\mu_i + \xi_i)\varphi_i(u_{\mu}) \le 0,$$

and by adding $\sum_{i=1}^{m} \xi_i \varphi_i(u_\mu)$ to both sides of the above inequality and using $(*_2)$ we get

$$G(\mu + \xi) - G(\mu) \le \sum_{i=1}^{m} \xi_i \varphi_i(u_\mu).$$
 (*5)