Cheatography

Calculus 2 Cheat Sheet

by ejj1999 via cheatography.com/66363/cs/16562/

Taylor Series		
1/1-x	1+x+x ² +x ³ +	Σx ⁿ
sin(x)	x ¹ -x ³ /3!+x ⁵ /5!- +	$\sum (-1)^n x^{2n+1}/-$ (2n+1)!
e ^X	$1+x+x^2/2!+-$ $x^3/3!+$	∑ x ⁿ /n!
cos(x)	1-x ² /2!+x ⁴ /4!- +	$\sum (-1)^n x^{2n}/(2n)!$

centered around 0 (1/1-x only valid for -1<x<1.)

Trig Sub's	
$\sqrt{(x^2+a^2)}$	$x=atan(\theta)$
$\sqrt{(a^2-x^2)}$	x -asin(θ)
$\sqrt{(x^2-a^2)}$	$x=asec(\theta)$
b-ax ²	$x = \sqrt{b} / \sqrt{a} \sin(\theta)$
ax ² +b	$x = \sqrt{b} / \sqrt{a} \tan(\theta)$
ax ² -b	$x = \sqrt{b} / \sqrt{a} \sec(\theta)$

Convergence Divergence test		
N th term test for divergence	lim(n>∞) an	≠0 ∑an diverges
P-Test	converge p>1	diverge p≤1
Limit Comparison	L= lim(n>∞) (an/bn)	L≠0 series both diverge c- onverge
Ratio test	r= lim(n>∞) an+1/an	r<1 converge r>1 diverge
Alternating series test	lim(n>∞) an	=0 $\sum (-1)^n$ an converges

Common Integrals		
∫sin(x)dx	-cos(x)+C	
∫cos(x)dx	sin(x)+C	
∫tan(x)dx	-ln(cos(x))+C	
∫sec(x)dx	ln(sec(x)+tan(x))+C	
∫csc(x)dx	-ln(csc(x)+cot(x))+C	
fcot(x)dx	ln(sin(x))+C	
∫sec ² (x)dx	tan(x)+C	
$\int e^{f(x)} dx$	$e^{f(x)}/f'(x)+C$	
$\int (1/x)dx$	In(x)+C	
$\int (1/x^n)dx$	$(x^{n+1}/n+1)+C$	
$\int dx/\sqrt{(a-x^2)}$	$arcsin(x/\sqrt{(a)})+C$	
$\int dx/x^2+a$	(1/√a)arctan(x/√a)+C	

Important Derivatives	
d/dx arctan f(x)	$f'(x)/x^2+1$
d/dx sec(θ)	$sec(\theta)tan(\theta)$

Power Series		
general form	∑ an(x-a) ⁿ	
an = sequence of c	oeff.	
center	x=a	
radius of conver- gence	R=lim(n>∞) an/an+1	
endpoints	x=a+R and x=a-R in series	

Parametric Curves	
Horizontal Tangents	when dy/dx=0 t=?
(x)	

Equations for Parabola	
$y=a(x-h)^2+k$	
Directrix	y=k-(1/4a)
Focus	(h,k+1/4a)
$x=a(y-k)^2+h$	
Directrix	x=h-(1/4a)
Focus	(h+1/4a,k)

Equations for Ellipses		
$(x-h)^2/a^2 + (y-k)^{-1}$ $^2/b^2 = 1$	$c=\sqrt{(a^2-b^2)}$	
eccentricity	c/(max a b)	
foci (on major axis)	when x= center and y= center	
y= horizontal axis x= vertical axis		

Trig Identities	
$sec^2(\theta)$	tan ² (θ)+1
$\sin^2(\theta)$	$1-\cos^2(\theta)$
$tan^2(\theta)$	$sec^2(\theta)$ -1
$\cos^2(\theta)$	$[1+\cos(2\theta)]/2$
$\sin^2(\theta)$	[1-cos(2θ)]/2
double angle $\cos^2(\theta)$	$(1+\cos(2\theta)/2$
double angle $\sin^2(\theta)$	(1-cos(2θ)/2

Polar Coordinates & Area		
Area	$\int 1/2 (f(x))^2 dx$	
One petal of $r=sin(n\theta)$	interval $[0,\pi/n]$	
One petal of $r=cos(n\theta)$	[-π/2n,π/2n]	
Polar > Cartesian	$x=rcos(\theta) y=rsin(\theta)$	
Cartesian > Polar	$tan(\theta)=y/x x^2+y^2-$ $=r^2$	

C

By ejj1999 cheatography.com/ejj1999/ Published 14th May, 2019. Last updated 5th August, 2018. Page 1 of 1. Sponsored by **CrosswordCheats.com**Learn to solve cryptic crosswords!
http://crosswordcheats.com