Projet Tuteuré Gestion centralisée de machines virtuelles

Augustin Bocca Julien Tournois Sébastien Michaux Mathieu Lamouroux

> IUT de Nancy Charlemagne Licence Professionnelle ASRALL

Mercredi 28 Mars 2012

Plan

- Le contexte
- 2 La virtualisation
- 3 Logiciels testés
- 4 Logiciels non-testés
- Conclusion

Plan

- Le contexte
- 2 La virtualisation
- 3 Logiciels testés
- 4 Logiciels non-testés
- 6 Conclusion

Le projet tuteuré

Intitulé

Mettre en place, évaluer et comparer différents outils de gestion centralisée de machines virtuelles.

Le projet tuteuré

Intitulé

Mettre en place, évaluer et comparer différents outils de gestion centralisée de machines virtuelles.

Résultats attendus

• guide d'installation et d'utilisation synthétique

Le projet

Le projet tuteuré

Intitulé

Mettre en place, évaluer et comparer différents outils de gestion centralisée de machines virtuelles.

Résultats attendus

- guide d'installation et d'utilisation synthétique
- scripts

Le projet tuteuré

Intitulé

Mettre en place, évaluer et comparer différents outils de gestion centralisée de machines virtuelles.

Résultats attendus

- guide d'installation et d'utilisation synthétique
- scripts
- démos à grande échelle sur grid5000

Le projet tuteuré

Intitulé

Mettre en place, évaluer et comparer différents outils de gestion centralisée de machines virtuelles.

Résultats attendus

- guide d'installation et d'utilisation synthétique
- scripts
- démos à grande échelle sur grid5000
- avis critique

Vue d'ensemble

• Grille Informatique

Vue d'ensemble

- Grille Informatique
- Dix sites en France

Vue d'ensemble

- Grille Informatique
- Dix sites en France
- Réliés par RENATER

Vue d'ensemble

- Grille Informatique
- Dix sites en France
- Réliés par RENATER
- Objectif scientifique

Architecture type d'un site

Connexion à un site

Plan

- Le contexte
- 2 La virtualisation
- 3 Logiciels testés
- 4 Logiciels non-testés
- Conclusion

Il était une fois la virtualisation...

1960 : inventée par IBM pour optimiser l'utilisation du matériel sur les serveurs

Il était une fois la virtualisation...

1960 : inventée par IBM pour optimiser l'utilisation du matériel sur les serveurs

1990 : VMware porte le concept sur les plateformes x86

Il était une fois la virtualisation...

1960 : inventée par IBM pour optimiser l'utilisation du

matériel sur les serveurs

1990 : VMware porte le concept sur les plateformes x86

Aujourd'hui : VMware se positionne en tant que leader du

marché.

monitoring des machines virtuelles

- monitoring des machines virtuelles
- accès à la console des machines virtuelles

- monitoring des machines virtuelles
- accès à la console des machines virtuelles
- opérations d'administration (démarrage, arrèt, reboot, ...)

- monitoring des machines virtuelles
- accès à la console des machines virtuelles
- opérations d'administration (démarrage, arrèt, reboot, ...)
- création de machines virtuelles

Plan

- Le contexte
- 2 La virtualisation
- 3 Logiciels testés
- 4 Logiciels non-testés

• Un outil de gestion de cluster de serveur virtuel

- Un outil de gestion de cluster de serveur virtuel
- Il utilise les hyperviseurs existants (XEN hypervisor,kvm)

- Un outil de gestion de cluster de serveur virtuel
- Il utilise les hyperviseurs existants (XEN hypervisor,kvm)
- Récupération rapide et simple, après des crashs physique

- Un outil de gestion de cluster de serveur virtuel
- Il utilise les hyperviseurs existants (XEN hypervisor,kvm)
- Récupération rapide et simple, après des crashs physique
- Utilisation de peu de ressources matériel

- Un outil de gestion de cluster de serveur virtuel
- Il utilise les hyperviseurs existants (XEN hypervisor,kvm)
- Récupération rapide et simple, après des crashs physique
- Utilisation de peu de ressources matériel
- laaS privés (L'infrastructure en tant que service)

Cluster de ganeti

Historique

• Projet financé par Google

Historique

- Projet financé par Google
- Open source depuis 2007 GPLv2

Historique

- Projet financé par Google
- Open source depuis 2007 GPLv2
- Équipe Google basée en Suisse

Historique

- Projet financé par Google
- Open source depuis 2007 GPLv2
- Équipe Google basée en Suisse
- Liste de diffusion active et canal IRC

Historique

- Projet financé par Google
- Open source depuis 2007 GPLv2
- Équipe Google basée en Suisse
- Liste de diffusion active et canal IRC

Organisations utilisant ganeti:

Google (utilisé dans leur infrastructure)

Ganeti

Background du projet

Historique

- Projet financé par Google
- Open source depuis 2007 GPLv2
- Équipe Google basée en Suisse
- Liste de diffusion active et canal IRC

Organisations utilisant ganeti:

- Google (utilisé dans leur infrastructure)
- Ggrnet.gr (Greek Research & Technology Network)

Background du projet

Historique

- Projet financé par Google
- Open source depuis 2007 GPLv2
- Équipe Google basée en Suisse
- Liste de diffusion active et canal IRC

Organisations utilisant ganeti:

- Google (utilisé dans leur infrastructure)
- Ggrnet.gr (Greek Research & Technology Network)
- osuosl.org (Oregon State University Open Source Lab)

Composants

- Python et quelques modules
- Haskell
- DRBD
- LVM
- Hyperviseur

ogiciels tes Ganeti

Architechture

• machine physique

- machine physique
- La tolérance aux pannes n'est pas nécessaire

- machine physique
- La tolérance aux pannes n'est pas nécessaire
- Ajouté / supprimé à volonté à partir du cluster

- machine physique
- La tolérance aux pannes n'est pas nécessaire
- Ajouté / supprimé à volonté à partir du cluster
- Aucune perte de données avec une perte de noeud

• ganeti-noded : contrôler les ressources matérielles, qui fonctionne sur tous les noeuds

- ganeti-noded : contrôler les ressources matérielles, qui fonctionne sur tous les noeuds
- ganeti-confd : seulement fonctionnel sur le maître, et s'exécute sur tous les noeuds

- ganeti-noded : contrôler les ressources matérielles, qui fonctionne sur tous les noeuds
- ganeti-confd : seulement fonctionnel sur le maître, et s'exécute sur tous les noeuds
- ganeti-rapi : seulement sur l'API-HTTP pour le cluster, fonctionne sur le maître

- ganeti-noded : contrôler les ressources matérielles, qui fonctionne sur tous les noeuds
- ganeti-confd : seulement fonctionnel sur le maître, et s'exécute sur tous les noeuds
- ganeti-rapi : seulement sur l'API-HTTP pour le cluster, fonctionne sur le maître
- ganeti-masterd : permet un contrôle du cluster, fonctionne sur le maître

Ganeti

Instance

• Machine virtuelle qui s'exécute sur le cluster

Ganeti

Instance

- Machine virtuelle qui s'exécute sur le cluster
- tolérant aux pannes / Haute disponibilité au sein du cluster

• Debian - trés bien supporté

- Debian trés bien supporté
- Gentoo un support est apporté pour l'installation

- Debian trés bien supporté
- Gentoo un support est apporté pour l'installation
- Ubuntu devrait fonctionner

- Debian trés bien supporté
- Gentoo un support est apporté pour l'installation
- Ubuntu devrait fonctionner
- CentOS fonctionne mais quelques problèmes d'installation

Planification réseau

Ganeti supporte:

• La connexion via un bridge

Planification réseau

Ganeti supporte:

- La connexion via un bridge
- Un réseau routé

Planification réseau

Ganeti supporte:

- La connexion via un bridge
- Un réseau routé
- Noeuds sur un NAT privé

• installation minimale du système

- installation minimale du système
- Volume du système de 20 Go minimum

- installation minimale du système
- Volume du système de 20 Go minimum
- Création d'un LVM pour les instances

Ganeti

- installation minimale du système
- Volume du système de 20 Go minimum
- Création d'un LVM pour les instances
- 64bit est préférable

- installation minimale du système
- Volume du système de 20 Go minimum
- Création d'un LVM pour les instances
- 64bit est préférable
- Matériel / logiciels similaires pour la configuration des nœuds

Hyperviseur requis

Obligatoire sur tous les nœuds

 Xen 3.0 et au-dessus ou

Hyperviseur requis

Obligatoire sur tous les nœuds

- Xen 3.0 et au-dessus ou
- KVM 0,11 et au-dessus

Ganeti

Installation

• Installation et configuration de ganeti

Installation

- Installation et configuration de ganeti
- Mise en place de la haute disponibilité

Démo

<u>Pr</u>oblèmes

Configuration automatique du réseau

Problèmes

- Configuration automatique du réseau
- Très complet

Problèmes

- Configuration automatique du réseau
- Très complet

Problèmes

- Onfiguration automatique du réseau
- Très complet

Solutions

Utiliser les commandes de Ganeti

Problèmes

- Onfiguration automatique du réseau
- Très complet

Solutions

- Utiliser les commandes de Ganeti
- Plus de temps...

Virt-Manager

Fonctionnalitées

• Interface graphique

- Interface graphique
- Assistant pour la création

- Interface graphique
- Assistant pour la création
- Configuration assistée du réseau

Virt-Manager

Présentation

- Interface graphique
- Assistant pour la création
- Configuration assistée du réseau
- Migration

Virt-Manager

Présentation

- Interface graphique
- Assistant pour la création
- Configuration assistée du réseau
- Migration
- Clonage

• Disponible dans les dépôts

- Disponible dans les dépôts
- Activation des communications entre libvirt et xend

- Disponible dans les dépôts
- Activation des communications entre libvirt et xend
- Réécriture d'un fichier de configuration

```
    <stringvalue>xen+ssh://root@griffon-85/</stringvalue>
```

2

Problèmes

Ajout des différents noeuds

- Ajout des différents noeuds
- Connexions ssh

- Ajout des différents noeuds
- Connexions ssh
- Création d'une nouvelle machine

- Ajout des différents noeuds
- Connexions ssh
- Création d'une nouvelle machine

Virt-Manager

Problèmes rencontrés

Problèmes

- Ajout des différents noeuds
- Connexions ssh
- Oréation d'une nouvelle machine

Solutions

Script qui ajoute les noeuds

Problèmes

- Ajout des différents noeuds
- Connexions ssh
- Création d'une nouvelle machine

Solutions

- Script qui ajoute les noeuds
- Réplication des clefs

Problèmes

- Ajout des différents noeuds
- Connexions ssh
- Création d'une nouvelle machine

Solutions

- Script qui ajoute les noeuds
- ② Réplication des clefs
- 3 Correction d'un bug inhérent à gemu

Plan

- Le contexte
- 2 La virtualisation
- 3 Logiciels testés
- 4 Logiciels non-testés

Archipel

Jeune

- Jeune
- Qu'est-ce que c'est?

- Jeune
- Qu'est-ce que c'est?
- Agent

- Jeune
- Qu'est-ce que c'est?
- Agent
- Client

- Jeune
- Qu'est-ce que c'est?
- Agent
- Client
- XMPP

Architectures

XMPP architecture

Architecture interne

Archipel agent internal processes

Archipel

Fonctionalitées

• Un système de module qui permet d'apporter de nouvelles fonctions

- Un système de module qui permet d'apporter de nouvelles fonctions
- La plus part des opérations de bases sont disponibles : définition d'une nouvelle VM, manipulations du réseau et du stockage, accès à la console VNC, gestions des snapshots, etc... Les opérations de migration sont également prises en charge

- Un système de module qui permet d'apporter de nouvelles fonctions
- La plus part des opérations de bases sont disponibles : définition d'une nouvelle VM, manipulations du réseau et du stockage, accès à la console VNC, gestions des snapshots, etc... Les opérations de migration sont également prises en charge
- Reporting sur l'état de l'hyperviseur,VMCast, planifications de taches, gestions des droits des utilisateurs, création d'une machine avec load balancing sur les serveurs

- Un système de module qui permet d'apporter de nouvelles fonctions
- La plus part des opérations de bases sont disponibles : définition d'une nouvelle VM, manipulations du réseau et du stockage, accès à la console VNC, gestions des snapshots, etc... Les opérations de migration sont également prises en charge
- Reporting sur l'état de l'hyperviseur,VMCast, planifications de taches, gestions des droits des utilisateurs, création d'une machine avec load balancing sur les serveurs
- Haute disponibilité

OpenXenManager

• développé par XenseMaking Project

- développé par XenseMaking Project
- gérer des environnements XenServer

- développé par XenseMaking Project
- gérer des environnements XenServer
- clone de XenCenter

OpenXenManager

Installation

• Disponible dans les dépôts

- Disponible dans les dépôts
- Téléchargement depuis le site du projet

- Disponible dans les dépôts
- Téléchargement depuis le site du projet
- Répertoire subversion

Problèmes

Communications avec xend

- Communications avec xend
- Installation de XCP

- Communications avec xend
- Installation de XCP
- Mise à jour du système

Problèmes

- Communications avec xend
- Installation de XCP
- Mise à jour du système

Solutions envisagées

Configuration de xend

Problèmes

- Communications avec xend
- Installation de XCP
- Mise à jour du système

Solutions envisagées

- Configuration de xend
- Installation avec virt-manager

Plan

- Le contexte
- 2 La virtualisation
- 3 Logiciels testés
- 4 Logiciels non-testés
- 6 Conclusion

Comparaison des solutions testées

	OXM	Ganeti	Virt-Manager	Archipel
Documentation	×	*	0	✓
Communauté	0	*	0	0
Maturité	0	*	✓	0
Installation	0	0	✓	6
Réseau	•	0	✓	•
Sécurité	?	*	✓	44
Simplicité	*	0	✓	•
Flexibilité	•	V	0	3

*OXM: OpenXenManager

Conclusion

Bénéfices personnels

- Découverte de la plateforme Grid5000
- Approfondissement des languages de scripts
- Gestion du travail en groupe

Comparatif

A vous!

Questions?