COMP 5630/6630:Machine Learning

Lecture 7: Neural Network, Backpropagation, MLP Demo

Introduction to Neural Networks

Introduction to Neural Network

- The Perceptron algorithm for binary classification
 - How perceptron is different from logistic regression (LR)
 - Training steps a perceptron
 - Extending LR to multiclass LR
 - Extending perceptron to multilayer perceptron
- Forward Pass
 - Defining propagation equations
 - Defining loss function
- How to train
- Backward propagation

Introduction to Neural Network

- The Perceptron algorithm for binary classification
 - How perceptron is different from logistic regression (LR)
 - Training steps a perceptron
 - Extending LR to multiclass LR
 - Extending perceptron to multilayer perceptron
 - Forward Pass
 - Defining propagation equations
 - Defining loss function
 - How to train
 - Backward propagation

The Perceptron: Supervised Binary Classifier

- Task: Predict whether an input image contains a cat (1) or not cat (0)
- Consider modifying the logistic regression method to "force" it to output values that are either 0 or 1 or exactly.
 - Change the definition of g to be the threshold function of logistic regression:

$$g(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$$

• Let $h(x) = g(\theta^T x)$ as before but using this modified definition of g, and if we use the update rule

$$\theta_j := \theta_j + \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

The Perceptron Algorithm: Difference w.r.t LR

- In the 1960s, this "perceptron" was argued to be a rough model for how individual neurons in the brain work.
- Although the perceptron may be similar to the other algorithms we have seen, it is actually a very different type of algorithm than logistic regression.
 - The hypothesis in logistic regression provides a measure of uncertainty in the occurrence of a binary outcome based on a linear model.
 - The output from a *step function* can of course not be interpreted as any kind of probability.
 - Since a step function is *not differentiable*, it is not possible to train a perceptron using the same algorithms that are used for logistic regression.

Introduction to Neural Network

- The Perceptron algorithm for binary classification
 - How perceptron is different from logistic regression (LR)
 - Training steps a perceptron
 - Extending LR to multiclass LR
 - Extending perceptron to multilayer perceptron
 - Forward Pass
 - Defining propagation equations
 - Defining loss function
 - How to train
 - Backward propagation

The Perceptron Algorithm: Training Idea

- Task: Predict whether an input image contains a cat (1) or not (0)
- Image representation from Lecture 2: Linear Classifier

How many parameters are in this model?

The Perceptron Algorithm

- Task: Predict whether an input image contains a cat (1) or not cat (0)
- Image representation from Lecture 2: Linear Classifier

How many parameters are in this model?

$$W = 1x 3072, X^{T} = 3072x 1, b = 1$$

Parameters = 3072 + 1

Vocabulary of Neural Network

- Neuron = linear + activation
 - In our example
 - Linear= WX^T + b
 - Activation= sigmoid on the linear output

- Model: architecture + parameter
 - In our example
 - Model = logistic regression
 - Parameter = 3073

Vocabulary of Neural Network: Activation **Functions**

- Neuron = linear + activation (non-linear)
- The z_i is a linear component, corresponds to outputs of inputs from previous layer
 - or input layer of network
- Each activation a_i transforms z_i using differentiable nonlinear activation functions
- Three examples of activation functions:

 - 1. Logistic sigmoid 2. Hyperbolic tangent

$$\sigma(a) = \frac{1}{1 + e^{-a}}$$

$$tanh(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}}$$

$$f(x) = \max(0, x)$$

• Some functions: step, softplus $\log(1+e^x)$), leak RELU, softmax

$$\frac{\exp(a_{_k})}{\sum_{_j} \exp(a_{_j})}$$

Activation Functions: Examples

• Task: Predict the age of the animal of the image

What changes will you make in the previous network and why?

Activation Functions: Examples

- Task: Predict the age of the animal of the image
 - What changes will you make in the previous network?
 - Sigmoid activation function will not be a valid choice
 - ReLU: the age is non-negative
 - The identity or linear activation function

Introduction to Neural Network

- The Perceptron algorithm for binary classification
 - How perceptron is different from logistic regression (LR)
 - Training steps a perceptron
 - Extending LR to multiclass LR
 - Extending perceptron to multilayer perceptron
 - Forward Pass
 - Defining propagation equations
 - Defining loss function
 - How to train
 - Backward propagation

Multiclass Logistic Regression & Neural Network

Task: Predict whether an input image contains a cat/sheep/dog. *Image may contain multiple types of animals*.

Extend the previous network for three types of outputs

Assignment 1 question answer hint

How many parameters are in this model? Can this network classify if an image contains BOTH cat and dog?

Multiclass Logistic Regression & Neural Network

Task: Predict whether an input image contains a cat/sheep/dog. *Image may contain multiple types of animals*.

Extend the previous network for three types of outputs

Assignment 1 question answer hint

How many parameters are in this model? = 3 x prev. model Can this network classify if an image contains BOTH cat and dog? YES. As each neuron is independent

Activation Function Selection

- Determined by the nature of the data and the assumed distribution of the target variables
- For standard regression problems the activation function is the identity function so that $y_k = a_k$
 - (e.g. predicting the age of the animal in an input image)
- For multiple binary classification problems, each output unit activation is transformed using a logistic sigmoid function so that $y_k = \sigma(a_k)$
 - (e.g. predicting whether an input image contains a cat/sheep/dog. Image may contain multiple types of animals)
- For multiclass problems, a softmax activation function of the form:

$$\frac{\exp(a_{_k})}{\sum_{_j} \exp(a_{_j})}$$

Perceptron vs Multilayer Perceptron (MLP)

Why do we need more layers?

Multilayer Perceptron

Task: Predict whether an input image contains a cat or not

- The first layer processes the input.
- The two neuron in the hidden layer may identify two different features of a cat, such as eye color or size of the head. We don't know how the layers operate (thus called hidden layer).
- Assumption: given enough data and adding more layers, the network can accurately identify the image

Multilayer Perceptron

Task: Predict whether an input image contains a cat or not

How many parameters are in this model?

Multilayer Perceptron

Task: Predict whether an input image contains a cat or not

How many parameters are in this model?

Introduction to Neural Network

- The Perceptron algorithm for binary classification
 - How perceptron is different from logistic regression (LR)
 - Training steps a perceptron
 - Extending LR to multiclass LR
 - Extending perceptron to multilayer perceptron
 - Forward Pass
 - Defining propagation equations
 - Defining loss function
 - How to train
 - Backward propagation

Notations and Forward Pass

• Output of a layer l is given by $z^{[\ell]} = W^{[\ell]} a^{[\ell-1]} + b^{[\ell]}$

• Where W^I is the weights of the layer, b^I is the bias and a^I is the activation $a^{[\ell]}=g^{[\ell]}(z^{[\ell]})$

• Neuron = linear $(z^{[l]})$ + activation $(a^{[l]})$

Task: How to Train this MLP Network

Task: Predict whether an input image contains a cat or not

Steps: How to Train this MLP Network

- Forward Pass
 - Defining propagation equations
 - Defining loss function
- How to train
 - Gradient Descent
 - Backward propagation

Defining Propagation Equations

- X = [n x f]
- b = [n x1]

- First layer: W_1 , bias = b_1
- Second layer: W_2 , bias = b_2
- Third layer: W_3 , bias = b_3

The Forward Pass

- Output of layer 1: $z^{[1]}=W^{[1]}x+b^{[1]}$ $a^{[1]}=g(z^{[1]}); \qquad a^{[1]}=activation function$
- Output of layer 2: $z^{[2]} = W^{[2]} a^{[1]} + b^{[2]}$ $a^{[2]} = g(z^{[2]});$ $a^{[2]} = activation function$
- Output of layer 3: $z^{[3]} = W^{[3]} a^{[2]} + b^{[3]}$ $a^{[3]} = g(z^{[3]});$ $a^{[3]} = activation function$
- Output of neural network: $y^{\circ} = a^{[3]}$

Defining the Loss

Task: Binary classification

Loss: binary cross entropy or log loss

• L =
$$-[(1-y)\log(1-y^{'}) + y.\log y^{'}]$$

How to Train this MLP Network?

Gradient Descent + Backpropagation!

What is Backpropagation

 Backprop or Backpropagation is a way to train multilayer neural networks using gradients

Gradient Descent

• 1. Provide random value for weight and biases

- 2. Update weights by gradient descent of the ith layer
 - Wi = wi $\alpha \frac{\partial L}{\partial w_i}$ bi = bi $\alpha \frac{\partial L}{\partial b_i}$

Repeat until convergence

Gradient Descent

• We have three weight matrices, Wi, i = 1, 2, 3.

 We need to compute loss and update weights for each weight matrix

• Wi = wi -
$$\alpha \frac{\partial L}{\partial w_i}$$

What will be the ordering of updating the weight matrices? Justify your answer.

Gradient Descent and Backpropagation

- We have three weight matrices, Wi, i = 1, 2, 3.
- We need to compute loss and update weights for each weight matrix
- Wi = wi $\alpha \frac{\partial L}{\partial w_i}$
- What will be the ordering of updating the weight matrices? Justify your answer
 - W_3 , W_2 , W_1 . The loss, L is computed from the output and the last layer of the network, W_3 . So, it is straightforward to compute.
 - The relationship between L and W_1 is not straightforward to compute
 - This is called backpropagation, as it calculates gradients backwards through the network

dL/dW_3

•
$$\frac{\partial L}{\partial w_3} = \frac{\partial}{\partial w_3} [-[(1-y)\log(1-y^*) + y.\log y^*]]$$

dL/dW₃

dL/dW₃

•
$$\frac{\partial L}{\partial w_3} = \left[\frac{y^{\wedge}(1-y)-y(1-y^{\wedge})}{y^{\wedge}(1-y^{\wedge})}\right] \frac{\partial y^{\wedge}}{\partial w_3}$$

$$= \left[\frac{y^{\wedge}-yy^{\wedge}-y+yy^{\wedge}}{y^{\wedge}(1-y^{\wedge})}\right] \frac{\partial y^{\wedge}}{\partial w_3}$$

$$= \left[\frac{y^{\wedge}-y}{y^{\wedge}(1-y^{\wedge})}\right] \frac{\partial y^{\wedge}}{\partial w_3}$$

We will compute $\frac{\partial y}{\partial w_3}$ and then put its value to $\frac{\partial L}{\partial w_3}$

dL/dW₃

•
$$\frac{\partial y}{\partial w_3}$$
 = $\frac{\partial a_3}{\partial w_3}$ = $\frac{\partial g(z_3)}{\partial w_3}$

If g is a sigmoid function, $g'(z_3) = g(z_3)(1 - g(z_3))$

$$\frac{\partial L}{\partial w_3} = \left[\frac{(y^{\hat{}} - y)}{y^{\hat{}} (1 - y^{\hat{}})}\right] y^{\hat{}} (1 - y^{\hat{}}) a_2 \quad [\text{Replacing value of } \frac{\partial y^{\hat{}}}{\partial w_3}]$$

$$\frac{\partial L}{\partial w_3} = (y^{\hat{}} - y) a_2$$

$$\frac{\partial L}{\partial w_3} = (a^{[3]} - y) a_2^{\mathsf{T}} \text{ (vectoral solution)}$$

dL/db₃

Similar derivation

$$\frac{\partial L}{\partial b_3} = (a^{[3]} - y)$$

• We need to use the chain rule from calculus.

Why?

- We need to use the chain rule from calculus.
- Why?
 - There is no direct relationship between the weights W₂ and the loss L.
 - We cannot differentiate a variable by another if there is no direct relationship
 - Else it would be 0
 - Not true if the variable/function is composite

$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial a_3} \cdot \frac{\partial a_3}{?} \cdot \frac{?}{\partial w_2}$$

We know $a^{[3]} = g(z^{[3]})$.

Putting this value to make differentiable w.r.t. z^[3]

$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial a_3} \cdot \frac{\partial a_3}{\partial z_3} \cdot \frac{\partial z_3}{?} \cdot \frac{?}{\partial w_2}$$

- $z^{[3]} = W^{[3]} a^{[2]} + b^{[3]}$
- $z^{[3]}$ is dependent on $a^{[2]}$. So, we add $\frac{\partial z_3}{\partial a_2}$ to make the component differentiable w.r.t. $a^{[2]}$

•
$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial a_3} \cdot \frac{\partial a_3}{\partial z_3} \cdot \frac{\partial z_3}{\partial a_2} \cdot \frac{\partial a_2}{\partial a_2} \cdot \frac{?}{\partial w_2}$$

$$\mathbf{a}^{[2]} = \mathbf{g}(\mathbf{z}^{[2]});$$

$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial a_3} \cdot \frac{\partial a_3}{\partial z_3} \cdot \frac{\partial z_3}{\partial a_2} \cdot \frac{\partial a_2}{\partial z_2} \cdot \frac{\partial z_2}{\partial z_2} \cdot \frac{\partial z_2}{\partial w_2}$$

$$z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$$
. So the $\frac{\partial L}{\partial w_2}$ becomes

$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial a_3} \cdot \frac{\partial a_3}{\partial z_3} \cdot \frac{\partial z_3}{\partial a_2} \cdot \frac{\partial a_2}{\partial z_2} \cdot \frac{\partial z_2}{\partial w_2}$$

We already know this value

$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial a_3} \cdot \frac{\partial a_3}{\partial z_3} \cdot \frac{\partial z_3}{\partial a_2} \cdot \frac{\partial a_2}{\partial z_2} \cdot \frac{\partial z_2}{\partial w_2}$$

Rewrite
$$\frac{\partial L}{\partial w_3} = \frac{\partial L}{\partial a_3} \cdot \frac{\partial a_3}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_3}$$

Recap: dL/dW₃

$$\bullet \frac{\partial y^{\wedge}}{\partial w_3} = \frac{\partial a_3}{\partial w_3} = \frac{\partial g(z_3)}{\partial w_3}$$

If g is a sigmoid function, $g'(z_3) = g(z_3)(1 - g(z_3))$

$$\frac{\partial g(z_3)}{\partial w_3} = g(z_3)(1 - g(z_3)) \frac{\partial z_3}{\partial w_3}$$

$$= a_3(1 - a_3) \frac{\partial}{\partial w_3}(w_3 a_2 + b_3)$$

$$= a_3(1 - a_3) a_2$$

$$= y(1 - y^{\hat{}}) a_2$$
Thus, $\frac{\partial z_3}{\partial w_3} = a_2$

$$= y(1 - y^{\hat{}}) a_2$$

$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial a_3} \cdot \frac{\partial a_3}{\partial z_3} \cdot \frac{\partial z_3}{\partial a_2} \cdot \frac{\partial a_2}{\partial z_2} \cdot \frac{\partial z_2}{\partial w_2}$$

Rewrite
$$\frac{\partial L}{\partial w_3} = \frac{\partial L}{\partial a_3} \cdot \frac{\partial a_3}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_3}$$

We know
$$\frac{\partial L}{\partial w_3} = (a^{[3]} - y) a_2 T$$

Thus,
$$\frac{\partial L}{\partial w_3} = \frac{\partial L}{\partial a_3} \cdot \frac{\partial a_3}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_3} = (a^{[3]} - y) a_2^T$$

[See the final form of
$$\frac{\partial L}{\partial w_3}$$
]

Because
$$\frac{\partial z_3}{\partial w_3} = a_2$$
, so $\frac{\partial L}{\partial a_3} \cdot \frac{\partial a_3}{\partial z_3} = = (a^{[3]} - y)$

$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial a_3} \cdot \frac{\partial a_3}{\partial z_3} \cdot \frac{\partial z_3}{\partial a_2} \cdot \frac{\partial a_2}{\partial z_2} \cdot \frac{\partial z_2}{\partial w_2}$$

Thus,

$$\frac{\partial L}{\partial w_2} = (a_3 - y) \cdot \frac{\partial z_3}{\partial a_2} \cdot \frac{\partial a_2}{\partial z_2} \cdot \frac{\partial z_2}{\partial w_2}$$
$$= (a_3 - y) \cdot w_3 \cdot g'(z_2) \cdot a_1$$

$$z^{[2]} = W^{[2]} a^{[1]} + b^{[2]}$$

$$\frac{\partial z_2}{\partial w_2} = a_1$$

$$a^{[2]} = g(z^{[2]})$$

$$\frac{\partial a_2}{\partial z_2} = g'(z^{[2]})$$

$$z_3 = W^{[3]} a^{[2]} + b^{[3]}$$

$$\frac{\partial z_3}{\partial a_2} = W_3$$

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial a_3} \cdot \frac{\partial a_3}{\partial z_3} \cdot \frac{\partial z_3}{\partial a_2} \cdot \frac{\partial a_2}{\partial z_2} \cdot \frac{\partial a_2}{\partial a_1} \cdot \frac{\partial z_2}{\partial z_1} \cdot \frac{\partial a_1}{\partial z_1} \cdot \frac{\partial z_1}{\partial w_1}$$
[Chain rule of derivative]

=
$$(a_3 - y)$$
. $w_3 . g'(z_2)$. $w_2 . g'(z_1).x$

$$\frac{\partial L}{\partial b_1}$$
 = (a₃-y). w_{3.} g'(z₂). w₂.g'(z₁)

Improving the Neural Network

Improving the Neural Network

- Initialization
 - Normalization
 - Mitigating vanishing and exploding gradient
- Optimization

Initialization

- Normalization
- Mitigating vanishing and exploding gradient
- Optimization

Normalizing Input

 Normalizing can help improve the speed and accuracy of the machine learning model.

- Performed on input features before feeding them into a NN
- Ensures features are in same scale
- Ensure all features contribute equally
- Neural networks perform better with smaller values (0-1), easier to train

Normalizing Input

• Z-score

- For each feature type
 - convert each value into its corresponding z-score by subtracting mean from every value and dividing by standard deviation of all values (mean normalization)

Min-max normalization

- For each feature type
 - divide each entry by maximum possible value (min-max scaling)

- Initialization
 - Normalization
 - Mitigating vanishing and exploding gradient
- Optimization

Recap: The Forward Pass

- Output of layer 1: $z^{[1]} = W^{[1]}x + b^{[1]}$ $a^{[1]} = g(z^{[1]});$ $a^{[1]} = activation function$
- Output of layer 2: $z^{[2]} = W^{[2]} a^{[1]} + b^{[2]}$ $a^{[2]} = g(z^{[2]});$ $a^{[2]} = activation function$
- Output of layer 3: $z^{[3]} = W^{[3]} a^{[2]} + b^{[3]}$ $a^{[3]} = g(z^{[3]});$ $a^{[3]} = activation function$
- Output of neural network: $y^{-} = a^{[3]}$

Vanishing and Exploding Gradient

• [From forward pass equations, replace a^[l] values gradually]

•
$$y^{^{^{^{^{^{^{^{3}}}}}}} = w^{[3]} w^{[2]} w^{[1]} x + ...$$

 Weight matrices are initialized randomly and updated in the training process

How does the initialization of weight matrices impact the output?

Vanishing Gradient

•
$$y^{}$$
 = $a^{[3]}$ = $W^{[3]}W^{[2]}W^{[1]}x$

• Assume all weight matrices, W^[L] are initialized with a value little below than the identity matrix

$$\cdot \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix}^L$$

Multiplicative value of the resulting weight matrix will be very small, y^{\wedge} will be close to zero (or vanish)

Exploding Gradient

•
$$y^{}$$
 = $a^{[3]}$ = $W^{[3]}W^{[2]}W^{[1]}x$

 Assume all weight matrices, W^[L] are initialized with a value little higher than the identity matrix

$$\cdot \begin{bmatrix} 1.5 & 0 \\ 0 & 1.5 \end{bmatrix}^L$$

Multiplicative value of the resulting weight matrix will be very big, y^{\wedge} will explode

Solution to Vanishing and Exploding Gradients

- Initialize weight matrices will values ~ 1.
- In practice,

W^[l] = np.random.randn(shape)*nsqrt($\frac{1}{n^{l-1}}$)

Number of inputs, n, coming to layer l

- Initialize weight of the layer with the number of inputs coming to the layer
- Works well for sigmoid activation function
- ReLU
- W^[l] = np.random.randn(shape)*nsqrt($\frac{2}{n^{l-1}}$)

- Initialization
 - Normalization
 - Mitigating vanishing and exploding gradient
- Optimization

Optimization

- Batch Gradient descent
 - Updates gradient using the entire dataset

- Stochastic Descent
 - Updates gradient for each training example
 - As updates frequently, may stuck in local minima

- Trade-off between these two: mini-batch gradient descent
- Why do we need mini-batch gradient descent?

Optimization: Limitations

- If we have a lot of training example, say 1 million images
 - Batch gradient descent will take a long time to compute gradient once
 - Stochastic gradient descent will update frequently
- A trade-off solution
 - Update gradients, may be batches of 10,000 examples
 - That will give an approximate direction of gradient

Mini-Batch Gradient Descent: Definition, Advantages, and Disadvantages

• Mini-batch gradient descent splits the training dataset into small batches that are used to calculate ML model error and update gradients.

Advantages

- Update frequency is higher than batch gradient descent, allowing faster convergence in large dataset
- Avoids local minima.
- Gradient updates are computationally efficient than stochastic gradient descent.

Disadvantages

- Requires an additional hyperparameter tuning: "batch size" for the learning algorithm.
- Error information need to be accumulated across mini-batches of training examples like batch gradient descent.

Colab Demo: MLP

- https://proceedings.mlr.press/v133/wang21a/wang21a.pdf
- https://2025.msrconf.org/track/msr-2025-mining-challenge
- https://2024.msrconf.org/track/msr-2024-mining-challenge?#Call-for-Mining-Challenge-Papers-

Task: Digit Classification on the MNIST Dataset

