

Olimpiada Națională de Matematică

Etapa Județeană/a Sectoarelor Municipiului București, 2024

CLASA a XI-a – soluții

Problema 1. Se consideră matricea $X \in \mathcal{M}_2(\mathbb{C})$ astfel încât $X^{2023} = X^{2022}$. Demonstrați că $X^3 = X^2$.

Gazeta Matematică

Problema 2. Fie un număr natural $p \ge 2$. Arătați că șirul $(x_n)_{n\ge 1}$, definit prin $x_1 = a > 0$ și relația de recurență $x_{n+1} = x_n + \left[\frac{p}{x_n}\right]$, $n \in \mathbb{N}^*$, este convergent și determinați limita sa în funcție de valorile parametrului a. Notație: [x] reprezintă partea întreagă a numărului real x.

Soluție. Şirul $(x_n)_{n\geq 1}$ are termenii strict pozitivi (verificare prin inducție). Există $k\in\mathbb{N}^*$ astfel încât $x_k>p$. Astfel, dacă presupunem prin absurd că $x_n\leq p,\ \forall\,n\in\mathbb{N}^*$, obținem $x_{n+1}\geq x_n+1,\ \forall\,n\in\mathbb{N}^*$, de unde $x_n\geq a+n-1,\ \forall\,n\in\mathbb{N}^*$ (inducție). În particular, $x_{p+1}\geq a+p>p$. Contradicție. Notăm $k_0=\min\{k\in\mathbb{N}^*|\ x_k>p\}$. Cum $\left[\frac{p}{x}\right]=0,\ \forall\,x>p$, deducem $x_n=x_{k_0},\ \forall\,n\geq k_0$ (inducție), deci $(x_n)_{n\geq 1}$ este convergent, cu $\lim_{n\to\infty}x_n=x_{k_0}\ldots$ 3p Determinăm în mod explicit limita şirului $(x_n)_{n\geq 1}$ în funcție de valorile parametrului a>0.

Problema 3. Fie $A \in \mathcal{M}_n(\mathbb{C})$ cu proprietatea $A^T = -A$, unde A^T este transpusa matricei A.

- a) Dacă $A \in \mathcal{M}_n(\mathbb{R})$ și $A^2 = O_n$, arătați că $A = O_n$.
- b) Dacă n este un număr natural impar și există $B \in \mathcal{M}_n(\mathbb{C})$ astfel încât matricea A este adjuncta matricei B, arătați că $A^2 = O_n$.

Soluţie.

Problema 4. Fie funcțiile $f, g : \mathbb{R} \to \mathbb{R}$, unde f este continuă. Presupunem că, pentru oricare numere reale a < b < c, există un şir $(x_n)_{n \ge 1}$ convergent la b pentru care există $\lim_{n \to \infty} g(x_n)$ şi are loc relația

$$f(a) < \lim_{n \to \infty} g(x_n) < f(c).$$

- a) Dați un exemplu de astfel de funcții, pentru care g este discontinuă în orice punct real.
- b) Arătați că, dacă g este monotonă, atunci f = g.
- a) Considerăm funcțiile $f(x)=x, \ \forall \, x\in\mathbb{R}, \,$ și $g(x)=\left\{\begin{array}{ll} x, & x\in\mathbb{Q}\\ x+1, & x\in\mathbb{R}\setminus\mathbb{Q} \end{array}\right.$. Funcția g este discontinuă în orice punct real. Fie numerele reale a< b< c. Există un șir $(x_n)_{n\geq 1}$ de numere raționale, convergent la b. Atunci $\lim_{n\to\infty}g(x_n)=\lim_{n\to\infty}x_n=b\in(a,c)=(f(a),f(c))\ldots\dots$ 2p
- b) Fie $b \in \mathbb{R}$ un punct de continuitate al funcției g. Demonstrăm g(b) = f(b) prin reducere la absurd. Dacă g(b) < f(b) atunci, pe baza continuității lui f în punctul b, există a < b astfel încât f(a) > g(b). Atunci, pentru oricare şir $(x_n)_{n \geq 1}$ convergent la b, avem $\lim_{n \to \infty} g(x_n) = g(b) < f(a)$, în contradicție cu ipoteza. Dacă g(b) > f(b) atunci, pe baza continuității lui f în punctul b, există c > b astfel încât f(c) < g(b). Rezultă că, pentru oricare şir $(x_n)_{n \geq 1}$ care converge la punctul b, avem $\lim_{n \to \infty} g(x_n) = g(b) > f(c)$, în contradicție cu ipoteza. Deci g(b) = f(b).

de continuitate ale funcției g . Atunci $\lim_{t \nearrow x} g(t) = \lim_{n \to \infty} g(u_n) = \lim_{n \to \infty} f(u_n) = f(x)$ și
$\lim_{t \searrow x} g(t) = \lim_{n \to \infty} g(v_n) = \lim_{n \to \infty} f(v_n) = f(x). \text{ Astfel, } \lim_{t \nearrow x} g(t) = \lim_{t \searrow x} g(t) = f(x), \text{ de unde, pe baza}$
monotoniei lui g , rezultă $g(x) = f(x)$
Observatie. Functia f este strict crescătoare pe \mathbb{R}