

# DEBRE BIRHAN UNIVERSITY COLLEGE OF COMPUTING

DEPARTMENT OF SOFTWARE ENGINEERING
Fundamental of Machine Learning
project

Name – <u>Tigist Ashenafi</u> ID\_Number – <u>1402532</u>

Submitted to: Derbew Felasman(MSc)

# **Spam Classifier Project Documentation**

## Overview

This project involves building a machine learning-based spam classifier to distinguish between spam and non-spam messages. The system leverages natural language processing (NLP) techniques to preprocess textual data and uses a classification algorithm to categorize messages.

# What is Spam?

Spam refers to unsolicited, irrelevant, or unwanted messages sent in bulk over digital communication platforms such as email, SMS, social media, and other online messaging services.

## **Objective:**

The goal of this project is to build a machine learning model capable of detecting spam messages in SMS data. The task involves classifying text messages as either "spam" or "ham" (non-spam). This is a binary supervised classification problem.

# Significance:

Spam detection is crucial for reducing cyber security risks, improving communication efficiency, and enhancing user experiences on email and messaging platforms.

# **Challenges:**

- Handling imbalanced datasets (more ham than spam).
- Dealing with variations in spam patterns (e.g., phishing, promotional messages).
- Effectively processing textual data using natural language processing (NLP) techniques.
- Generalization issues: Model might not handle unseen patterns well.

# **Data Acquisition**

## Dataset Description:

The dataset used for this project contains SMS messages labeled as I work on supervised machine learning spam or ham detection system and I get the csv file from.

Kaggle - Spam Text Message Classification

License and Terms: Assumed to be permissible for educational purposes.

# **Exploratory Data Analysis (EDA)**

- Data Distribution: Approximately 15% of the messages are labeled as spam.
- **Text Length**: Spam messages tend to be longer than non-spam messages.
- Frequent Words: Spam messages often contain terms like "free," "win," and "cash."

## **Visualizations**

- Bar plots showcasing class distributions.
- Word clouds highlighting frequent words in spam vs. non-spam messages.
- Box plots of message lengths by category.

# **Data Preprocessing**

- Text Cleaning: Removal of special characters, punctuation, and stopwords.
- Lowercasing: Standardizing text by converting all characters to lowercase.
- **Tokenization**: Splitting text into individual words.
- Vectorization: Converting text data into numerical format using TF-IDF.

# **Model Selection and Training**

The classifier was built using a Random Forest algorithm due to its effectiveness in text classification tasks. Hyperparameters were tuned for optimal performance.

## **Training Process**

Training set: 80% of the dataTest set: 20% of the data

Cross-validation for model evaluation.

# **Model Training**

The model was trained using the following configuration:

Algorithm: Support Vector Machine (SVM)

• Evaluation Metrics: Accuracy, Precision, Recall

## **Model Evaluation Metrics**

Accuracy: 98%Precision: 97%Recall: 96%

Confusion Matrix Analysis: Very few false positives and false

negatives.

## **Interpretation of Results**

The high accuracy and precision indicate that the model performs well in distinguishing between spam and non-spam messages. The recall score shows that the model effectively captures most spam messages without significant false positives.

# **Potential Limitations and Future Improvements**

#### • Limitations:

The model may not generalize well to new types of spam messages.

Performance could degrade with slang or informal language.

## • Future Improvements:

Experiment with advanced models like BERT or GPT for better context understanding.

Enhance preprocessing with techniques such as stemming and lemmatization.

Implement robust handling for evolving spam trends.

# **Model Deployment**

The project includes a Flask-based web application (app.py) that allows users to input messages and receive predictions on whether they are spam or non-spam.

I deploy the model using Flask on pythonanywhere website.

https://tigist.pythonanywhere.com/

## **Conclusion**

This project successfully demonstrates how machine learning can be applied to identify spam messages. With further optimizations, the classifier can be integrated into communication platforms to improve user experience.