

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS / DEPARTAMENTO DE ESTADÍSTICA

ELM2400 Métodos Estadísticos

Intervalos de Confianza

Profesor: Alexis Peña

Ayudante: Reinaldo González S.

1. Introducción

La idea de la estimación por intervalos, es incorporar en forma explícita, la variabilidad inherente al proceso de estimación.

la idea es obtener valores $\underline{\ell}$ y $\overline{\ell}$ tales que la probabilidad (valor) del verdadero parámetro se encuentre contenido en el intervalo ($\underline{\ell}$, $\overline{\ell}$) con una alta probabilidad.

Definición: Sea $\underline{\ell} = \underline{\ell}(x)$, y $\overline{\ell} = \overline{\ell}(x)$ dos estadísticos con $\underline{\ell} \leq \overline{\ell}$. El intervalo de confianza con nivel de significancía α , esta dado por $(\underline{\ell}, \overline{\ell})$ de tal manera que la probabilidad:

$$P(\underline{\ell} \le \theta \le \overline{\ell}) = 1 - \alpha \tag{1}$$

Percentiles alpha/2 y -alpha/2

Figura 1: Percentiles $\alpha/2$ y $-\alpha/2$

Donde α es el nivel de significancía y $(1 - \alpha)$ es la confianza.

El punto es que dado un α (pequeño) debemos determinar estadísticos que satisfagan la ecuación (1).

2. Método del Pivote

El procedimiento que se describe a continuación se conoce como el "Método del Pivote".

- 1. Encontrar un estadístico t(x), por ejemplo el estadístico suficiente o el estimador de θ .
 - Ejemplo

Parámetro	Estimador
μ	\bar{X}
σ^2	S^2
proporción (p)	$\hat{p} = \bar{X}$

- 2. Construir una función $\phi(t(x), \theta)$, cuya distribución no dependa de θ y sea conocida (idealmente Tabulada).
 - Ejemplo

$$\begin{array}{lcl} \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} &=& \phi(t(x)=\bar{X},\theta=\mu) & \quad , \cos\sigma \text{ conocido} \\ \frac{\bar{X}-\mu}{S/\sqrt{n}} &=& \phi(t(x)=\bar{X},\theta=\mu) & \quad , \cos\sigma \text{ desconocido} \\ \end{array}$$

Nota: $\phi(t(x), \theta)$ se conoce como Pivote.

3. Determinar un k_1 y k_2 tales que la probabilidad:

$$P(k_1 \le \phi(t(x), \theta) \le k_2) = 1 - \alpha$$

Es decir, k_1 y k_2 corresponden a los percentiles $\alpha/2$ y $1-\alpha/2$ de una distribución \mathcal{D} , donde:

$$\phi(t(x), \theta) \sim \mathcal{D} \rightarrow \text{Distribucion cualquiera}$$

4. Despejar θ