SPRINT 2

Classification of Arrhythmia by Using Deep Learning With 2-D ECG Spectral Image Representation

Team ID: PNT2022TMID39864

Team Members: BHAVANA, BHAVANI, JANANI, LAVANYA

Description of USN and Screenshots:

USN-3:

As a user, I want quality data to be collected for the purposes of training the model. Also, image processing methods must be employed to pre-process the dataset.

Screenshot:

Name	Date modified	Туре	Size	
Left Bundle Branch Block	14-06-2020 00:01	File folder		
Normal	13-06-2020 21:26	File folder		
Premature Atrial Contraction	14-06-2020 16:30	File folder		
Premature Ventricular Contractions	18-06-2020 18:17	File folder		
Right Bundle Branch Block	14-06-2020 00:15	File folder		
Ventricular Fibrillation	14-06-2020 00:21	File folder		

Image Split:

Left Bundle Branch Block – 504 images

Normal – 7436 images

Premature Atrial Contraction – 2054 images

Premature Ventricular Contractions – 2759 images

Right Bundle Branch Block – 2239 images

Ventricular Fibrillation – 439 images

For reducing skewness in the dataset, ImageDataGenerator class was used for both processing and handling with data imbalance.

USN-4:

As a user, I want the ML model to be as accurate as possible.

Screenshot:

Model Architecture:

Model: "sequential"

```
Output Shape
Layer (type)
                               Param #
conv2d (Conv2D)
                  (None, 62, 62, 32)
max_pooling2d (MaxPooling2D (None, 31, 31, 32))
conv2d_1 (Conv2D)
                   (None, 29, 29, 32)
max_pooling2d_1 (MaxPooling (None, 14, 14, 32) 2D)
flatten (Flatten)
                (None, 6272)
dense (Dense)
                (None, 32)
                               200736
dense_1 (Dense)
                 (None, 6)
                               198
______
```

Total params: 211,078

Trainable params: 211,078

Non-trainable params: o

