Sobre los números normales y el espacio $^{\omega}2$

Angel Granado

angel.granado@correo.unimet.edu.ve Universidad Metropolitana.

March 13, 2023

Definición. Sea $x \in [0,1]$ y $\{a_n\}_{n<\omega} \in {}^{\omega}2$ el desarrollo binaria de x. Sea $S_n(x)$ la cantidad de 1's en la expansión binaria de x en los primeros n términos. Decimos que x es un **número simplemente** normal en base 2 si

$$\lim_{n \to \infty} \frac{S_n(x)}{n} = \frac{1}{2}$$

Denotaremos por N al conjunto de todos los números $x \in [0, 1]$ que son simplemente normales en base 2 y por $\mathcal{B}([0, 1])$ a la σ -álgebra de Borel del [0, 1] dotado de la topología usual.

Unos de los resultados más célebres del **Teorema Fuerte de los Grandes Números** fue formulado por Borel (1909) términos de los números normales en base 2:

Teorema (Borel 1909). Todos los números en [0,1] son simplemente normales en base 2, excepto en un conjunto de Borel de medida 0.

Es decir, si $m: \mathcal{L} \to [0, +\infty)$ es la medida de Lebesgue entonces m(N) = 1.

Definición. El **Espacio de Cantor** es el conjunto $^{\omega}2$ de todas las funciones $s:\omega\to 2$ cuya topología es el ω -producto del espacio $2=\{0,1\}$, donde 2 está equipado con la topología discreta.

La topología del espacio de Cantor está generada por la base conformada por los conjuntos de la forma

$$B_s = \{ t \in {}^{\omega}2 : s \subseteq t \}$$

donde ses una sucesión finita de 1's y 0's. Si d: $^\omega 2 \times \,^\omega 2 \to [0,+\infty)$ definida como

$$d(s,t) = \frac{1}{2^{\min\{n < \omega : s(n) \neq t(n)\}}}$$

para $s, t \in {}^{\omega}2$. Entonces, d es una métrica sobre el espacio de Cantor e induce la topología generada por los abiertos básicos B_s . Así que el espacio de Cantor es metrizable.

Para definir una medida sobre el espacio de Cantor, es necesario hacer uso del siguiente teorema:

Teorema 1 (Halmos, P. 38B). Si $\{(X_i, S_i, \mu_i)\}_{i < \omega}$ es una sucesión de espacios de medida tales que $\mu_i(X_i) = 1$ para $i < \omega$, entonces existe una única medida μ sobre la σ -álgebra $S = \bigotimes_{i < \omega} S_i$ con la propiedad que, para cada conjunto medible E de la forma $A \times X^{(n)}$, donde $X^{(n)} = \prod_{i > n} X_i$, se verifica

$$\mu(E) = (\mu_1 \times \cdots \times \mu_n)(A)$$

la medida μ se denomina el **producto** de las medidas μ_i , $\mu = \bigotimes_{i < \omega} \mu_i$. El espacio de medida

$$\left(\prod_{i<\omega} X_i, \bigotimes_{i<\omega} S_i, \bigotimes_{i<\omega} \mu_i\right)$$

es el **Producto Cartesiano** de los espacios de medida $\{(X_i, S_i, \mu_i)\}_{i < \omega}$.

Demostración. Halmos 1950, Teorema 38B[3].

En virtud del **Teorema 1**, existe una única medida μ definida sobre la σ -álgebra de Borel sobre ω_2 , tal que si B_s es un abierto básico donde $s \in {}^{n}2$ entonces $\mu(B_s) = \frac{1}{2^n}$. Consideremos la familia

$$G = \{ A \cup N | A \in \mathcal{B}({}^{\omega}2) \& (\exists Z \in \mathcal{B}({}^{\omega}2))(\mu(Z) = 0 \& N \subseteq Z) \}$$

Se puede probar que G es una σ -álgebra [3]. Ahora, definamos a $\overline{\mu}: G \to [0,1]$ como

$$\overline{\mu} = \{ (A \cup N, s) : \mu(A) = s \& A \in \mathcal{B}({}^{\omega}2) \& (\exists Z \in \mathcal{B}({}^{\omega}2))(\mu(Z) = 0 \& N \subseteq Z) \},$$

entonces $\overline{\mu}$ es la unica medida sobre G que extiende a μ , y se denomina la **completación** de μ . Denotaremos también por μ a la completación de la medida definida sobre el espacio de Cantor. De esta forma, los subconjuntos de $^{\omega}2$ para los cuales esta medida está definida se denominan subconjuntos medibles de $^{\omega}2$.

Teorema 2.[6]

- 1. Para cada $t \in {}^{\omega}2$, la serie $\sum_{n<\omega} \frac{t_n}{2^{n+1}}$ converge y $0 \le \sum_{n<\omega} \frac{t_n}{2^{n+1}} \le 1$.
- 2. Para cada $x \in [0,1]$ existe un $t \in {}^{\omega}2$ tal que $x = \sum_{n < \omega} \frac{t_n}{2^{n+1}}$.
- 3. Para $s, t \in {}^\omega 2\sum_{n<\omega} \frac{s_n}{2^{n+1}} < \sum_{n<\omega} \frac{t_n}{2^{n+1}}$ si y sólo si existe un $m<\omega$ tal que $s_n=t_n$ para n< m, $s_m=0$ y $t_m=1$, y existe un n>m tal que $s_n=0$ o $t_n=1$.
- 4. Para $s, t \in {}^{\omega}2$, $\sum_{n < \omega} \frac{s_n}{2^{n+1}} = \sum_{n < \omega} \frac{t_n}{2^{n+1}}$ si y sólo si s = t, o si existe un $m < \omega$ tal que $s_n = t_n$ para n < m, $s_m \neq t_m$ y para toda n > m se tiene que $s_n = t_m$ y $t_n = s_m$.

- 5. Para $x \in [0,1]$ existe un único $t \in {}^{\omega}2$ tal que $x = \sum_{n < \omega} \frac{t_n}{2^{n+1}}$, excepto en los casos donde x > 0 y tiene fracciones binarias finitas, en ese caso x tiene dos expresiones binarias.
- 6. La cardinalidad del conjunto de todos los $x \in [0,1]$ con fracciones binarias finitas es \aleph_0 .

Definición. Sea $k: {}^{\omega}2 \to [0,1]$ la función dada por $k(t) = \sum_{n < \omega} \frac{t_n}{2^{n+1}}$, k se denomina el **mapeo** estándar de ${}^{\omega}2$ sobre [0,1].

Lema 1.Sea k el mapeo estándar de $^{\omega}2$ sobre [0,1]. Si $B_s\subseteq {^{\omega}2}$ es un abierto básico, entonces

$$k[B_s] = \left[\sum_{i < n} \frac{s_i}{2^{i+1}}, \sum_{i < n} \frac{s_i}{2^{i+1}} + \frac{1}{2^n}\right]$$

Demostración. Sea $s \in {}^{n}2$ y $B_s = \{t \in {}^{\omega}2 : s \subseteq t\}$, si $x \in \left[\sum_{i < n} \frac{s_i}{2^{i+1}}, \sum_{i < n} \frac{s_i}{2^{i+1}} + \frac{1}{2^n}\right]$ entonces existe un $a \in {}^{\omega}2$ tal que

$$x = \sum_{i < \omega} \frac{t_i}{2^{i+1}} = \sum_{i < n} \frac{s_i}{2^{i+1}} + \sum_{i \ge n} \frac{t_i}{2^{i+1}}$$

Si $x \in k[B_s]$ entonces existe un $t \in B_s$ tal que

$$x = \sum_{i < \omega} \frac{t_i}{2^{i+1}} = \sum_{i < n} \frac{s_i}{2^{i+1}} + \sum_{i > n} \frac{t_i}{2^{i+1}}$$

Entonces,

$$x \le \sum_{i \le n} \frac{s_i}{2^{i+1}} + \frac{1}{2^n}$$

Además,

$$x = \sum_{i < n} \frac{s_i}{2^{i+1}} + \sum_{i \ge n} \frac{t_i}{2^{i+1}} \ge \sum_{i < n} \frac{s_i}{2^{i+1}}$$

Así que $x \in \left[\sum_{i < n} \frac{s_i}{2^{i+1}}, \sum_{i < n} \frac{s_i}{2^{i+1}} + \frac{1}{2^n}\right]$, y en consecuencia,

$$k[B_s] \subseteq \left[\sum_{i < n} \frac{s_i}{2^{i+1}}, \sum_{i < n} \frac{s_i}{2^{i+1}} + \frac{1}{2^n} \right]$$

Por otra parte, si $x \in \left[\sum_{i < n} \frac{s_i}{2^{i+1}}, \sum_{i < n} \frac{s_i}{2^{i+1}} + \frac{1}{2^n}\right]$ entonces existe $t \in {}^{\omega}2$ tal que x = k(t). Luego, por el **Teorema 2**, $t_i = s_i$ para i < n. En consecuencia, $t \in B_s$ y $x \in k[B_s]$.

Definición. Sea $t \in {}^{\omega}2$, t es **eventualmente constante** si existe un $m < \omega$ tal que $t_m = t_n$ para n > m.

Observe que si $W = \{t \in {}^{\omega}2 : t \text{ no es eventualmente constante}\}$ entonces ${}^{\omega}2 \setminus W$ es numerable y en consecuencia, W y ${}^{\omega}2 \setminus W$ son borelianos.

Proposición 1. k es una función continua y sobreyectiva. Si W es el conjunto de los miembros de $^{\omega}2$ que no son eventualmente constantes, entonces $k \upharpoonright_W$ es un homeomorfismo de W sobre el conjunto de todos los $x \in [0,1]$ que no poseen fracciones binarias finita.

Demostración. Del **Teorema 2** se deduce de inmediato que k es sobreyectiva. Mostremos que k es continua sobre ω^2 2. Sea $x \in [0,1]$ y $t \in \omega^2$ 2 tal que x = k(t). Sea U_x una vecindad abierta de x, tomemos un $m < \omega$ tal que

$$\left[x - \frac{1}{2^m}, \ x + \frac{1}{2^m}\right] \subseteq U_x$$

Consideremos el conjunto

$$B_{t|m} = \{ s \in {}^{\omega}2 : (t_0, \cdots, t_{m-1}) \subseteq s \}$$

Es claro que $B_{t|m}$ es un abierto básico. Entonces, para probar que k es continua, basta con mostrar que

$$k[B_{t|m}] \subseteq \left[x - \frac{1}{2^m}, x + \frac{1}{2^m}\right] \tag{1}$$

Si $x=\sum_{i<\omega} \frac{t_i}{2^{i+1}}$ entonces definamos a $y:=\sum_{i< m} \frac{t_i}{2^{i+1}}.$ Observe que $y\leq x,$ y

$$x = y + \sum_{i \ge m} \frac{t_i}{2^{i+1}} \le y + \sum_{m \le i < \omega} \frac{1}{2^{i+1}} \le y + \frac{1}{2^m}$$

Así que

$$y \le x \le y + \frac{1}{2^m} \tag{2}$$

Luego, si $s \in B_{t|m}$ entonces para i < m se tiene que $s_i = t_i$. En consecuencia,

$$y \le k(s) = y + \sum_{m \le i \le \omega} \frac{s_i}{2^{i+1}} \le y + \frac{1}{2^m}$$
 (3)

De (2) y (3) se obtiene:

$$x - \frac{1}{2^m} \le k(s) \le x + \frac{1}{2^m}$$

Así que se verifica (1).

Ahora mostremos que $k \upharpoonright_W : W \to k[W]$ es un homeomorfismo, es claro que $k \upharpoonright_W$ es biyectiva y por lo demostrado anteriormente, $k \upharpoonright_W$ es continua. Así que solo falta probar que $k^{-1} \upharpoonright_{k[W]}$ es continua. Sea $t \in W$ y x = k(t), y U_t una vecindad abierta de t entonces existe un $m < \omega$ tal que $B_{t \mid m} \cap W \subseteq U_t$. Definamos $y := \sum_{i < m} \frac{t_i}{2^{i+1}}$, veamos que $(y, y + \frac{1}{2^m})$ es una vecindad de x. Para ello, debemos probar que el intervalo contiene un abierto que pertenece a la topología del subespacio k[W].

Como $t \in W$, podemos tomar un $p < \omega$ tal que $t_m \neq t_p$. Si $y := \sum_{i < m} \frac{t_i}{2^{i+1}}$ entonces por el **Teorema 2**,

$$y + \frac{1}{2^{p+1}} \le x \le y + \frac{1}{2^m} - \frac{1}{2^{p+1}} \tag{4}$$

consideremos el conjunto

$$\left(x - \frac{1}{2^{p+1}}, x + \frac{1}{2^{p+1}}\right) \cap k[W]$$

observe que el conjunto es un abierto en el subespacio k[W]. Además, si z pertenece al conjunto, entonces por (4),

$$y \le x - \frac{1}{2^{p+1}} < z < x + \frac{1}{2^{p+1}} \le y + \frac{1}{2^m}$$

lo que implica que $z \in (y, y + \frac{1}{2^m})$ y en consecuencia,

$$\left(x - \frac{1}{2^{p+1}}, x + \frac{1}{2^{p+1}}\right) \cap k[W] \subseteq \left(y, y + \frac{1}{2^m}\right)$$

Lo que muestra que $(y, y + \frac{1}{2^m})$ es una vecindad de x. Luego, como $y = k((t_0, t_1, \dots, t_{m-1}, 0, \dots)),$ $y + \frac{1}{2^m} = k((t_0, t_1, \dots, t_{m-1}, 1, \dots));$ en virtud del **Teorema 2**, si $z \in (y, y + \frac{1}{2^m}) \cap k[W]$ entonces $k^{-1}(z) \in B_{t|m} \cap W$. Por lo tanto,

$$k^{-1} \upharpoonright_{k[W]} \left[\left(y, \ y + \frac{1}{2^m} \right) \cap k[W] \right] \subseteq B_{t \upharpoonright m} \cap W \subseteq U_t$$

Lo que muestra que $k^{-1} \upharpoonright_{k[W]}$ es continua.

Proposición 2. Sea $k: {}^{\omega}2 \to [0,1]$ y $B \subseteq {}^{\omega}2, B \in \mathcal{B}({}^{\omega}2)$ si y sólo si $k[B] \in \mathcal{B}([0,1])$.

Demostración. (\Rightarrow) Supongamos que $B \in \mathcal{B}({}^{\omega}2)$. Sea W el conjunto de todos los elementos de ${}^{\omega}2$ que no son *eventualmente constantes*. Como $|{}^{\omega}2 \setminus W| = \omega$, entonces ${}^{\omega}2 \setminus W \in \mathcal{B}({}^{\omega}2)$ y en consecuencia $W \in \mathcal{B}({}^{\omega}2)$. Así que $B \cap W$ y $B \cap ({}^{\omega}2 \setminus W)$ son borelianos. Luego,

$$k[B] = k[B \cap W] \cup k[B \cap (\,{}^\omega 2 \setminus W)]$$

Entonces, para probar que $k[B] \in \mathbf{B}([0,1])$, basta con mostrar que $k[B \cap W]$ y $k[B \cap ({}^{\omega}2 \setminus W)]$ son borelianos.

Como k es sobreyectiva,

$$|k[B \cap ({}^{\omega}2 \setminus W)]| \le |B \cap ({}^{\omega}2 \setminus W)| \le \omega,$$

entonces $k[B \cap ({}^{\omega}2 \setminus W)] \in \mathcal{B}([0,1])$. Por otra parte, como $k^{-1} \upharpoonright_{k[W]}: k[W] \to W$ es continua, entonces

$$(k^{-1} \upharpoonright_{k[W]})^{-1}[B \cap W] \in \mathcal{B}([0,1]) \upharpoonright k[W],$$

así que existe un $A \in \mathcal{B}([0,1])$ tal que

$$(k^{-1} \mid_{k[W]})^{-1}[B \cap W] = A \cap k[W]$$

Puesto que $k^{-1} \upharpoonright_{k[W]}$ es biyectiva,

$$(k^{-1} \upharpoonright_{k[W]})^{-1}[B \cap W] = k \upharpoonright_{W} [B \cap W] = k[B \cap W]$$

entonces $k[B \cap W] \in \mathcal{B}([0,1])$, lo que muestra que $k[B] \in \mathcal{B}([0,1])$.

(⇐) Supongamos que $k[B] \in \mathbf{B}([0,1])$ donde $B \subseteq {}^{\omega}2$, mostremos que $B \in \mathcal{B}([0,1])$. Como k es continua, $k^{-1}[k[B]] \in \mathcal{B}([0,1])$. Luego, si

$$A = \{t \in {}^{\omega}2 : t \text{ es eventualmente constante } \& t \notin B\}$$

entonces $B = k^{-1}[k[B]] \setminus A$. Como A es numerable, $A \in \mathcal{B}({}^{\omega}2)$ y en consecuencia $B \in \mathcal{B}({}^{\omega}2)$. \square

Proposición 3. Sea k el mapeo estándar de $^{\omega}2$ sobre [0,1] y $B \in \mathcal{B}(^{\omega}2)$. Entonces,

$$m(k[B]) = \mu(B)$$

Demostración. Sea $s \in {}^{n}2$, consideremos el abierto básico $B_{s} = \{t \in {}^{\omega}2 : s \subseteq t\}$, entonces $\mu(B_{s}) = \frac{1}{2^{n}}$. Luego, por el **Lema 1**

$$k[B_s] = \left[\sum_{i < n} \frac{s_i}{2^{i+1}}, \sum_{i < n} \frac{s_i}{2^{i+1}} + \frac{1}{2^n} \right]$$

En consecuencia, $\mu(B_s) = \frac{1}{2^n} = k[B_s]$. Ahora consideremos a $\overline{\mu} : \mathcal{B}({}^{\omega}2) \to [0,1]$, definida como $\overline{\mu}(B) = m(k[B])$ para $B \in \mathcal{B}({}^{\omega}2)$. Por la **Proposición 2**, $K[B] \in B([0,1])$ lo que implica que $\overline{\mu}$ está bien definida. Luego, observe que:

1. Es claro que

$$\overline{\mu}(\emptyset) = m(k[\emptyset]) = m(\emptyset) = 0$$

2. Sea $\{A_n\}_{n<\omega}$ es una sucesión de conjuntos de Borel de $^\omega 2$ disjuntos dos a dos. Sea Z el conjunto de todos los $x\in [0,1]$ que poseen un desarrollo binario finito, como Z es numerable entonces $m(Z_A)=0$. Además, puesto que Z y $k[A_n]$ son conjuntos de Borel para $n<\omega$, $\{k[A_n]\setminus Z\}_{n<\omega}$ es una sucesión de conjuntos de Borel disjunta dos a dos. En consecuencia,

$$\overline{\mu}\Big(\bigcup_{i<\omega} A_n\Big) = m\Big(k\Big[\bigcup_{i<\omega} A_n\Big]\Big) - \underline{m}(Z)$$

$$= m\Big(\bigcup_{i<\omega} (k[A_n] \setminus Z)\Big)$$

$$= \sum_{i<\omega} m(k[A_n] \setminus Z)$$

$$= \sum_{i<\omega} [\underline{m}(k[A_n]) - \underline{m}(Z)]$$

$$= \sum_{i<\omega} \overline{\mu}(A_n)$$

Así que $\overline{\mu}$ es una medida sobre $\mathcal{B}({}^{\omega}2)$.

Si $s \in {}^{n}2$ entonces, por construcción, se verifica que $\overline{\mu}(B_s) = \frac{1}{2^n} = m(k[B_s])$. En virtud del **Teorema 1**, $\overline{\mu} = \mu$. Lo que muestra que $\mu(B) = m(k[B])$ para todo subconjunto de Borel $B \subseteq {}^{\omega}2$.

Definición. Sea $A \subseteq \mathbb{N}$, la densidad asintótica superior de A se define como

$$\overline{d(A)} = \limsup_{n \to \infty} \frac{|A \cap n|}{n}$$

De forma análoga, se define la **densidad asintótica inferior** de A como

$$\underline{d(A)} = \liminf_{n \to \infty} \frac{|A \cap n|}{n}$$

Decimos que A tiene **densidad asintótica** d(A) si $\underline{d(A)} = \overline{d(A)}$, y en ese caso:

$$d(A) = \underline{d(A)} = \overline{d(A)}$$

Propiedades:

1. $\underline{d}(A)$ y $\overline{d(A)}$ siempre existen y $0 \le \underline{d}(A) \le \overline{d(A)} \le 1$.

2. Si $A \subseteq \mathbb{N}$ y d(A) existe entonces $0 \le d(A) \le 1$.

3. Si $A \subseteq \mathbb{N}$ es finito entonces d(A) = 0 y $d(\mathbb{N} \setminus A) = 1$.

Ejemplos:

1. Si $A \subseteq \mathbb{N}$ es un conjunto finito entonces d(A) = 0.

2. Si $A = \{n^2 : n < \omega\}$ entonces d(A) = 0.

3. Si $A = \{n < \omega : n \mod 2 = 0\}$ entonces $d(A) = \frac{1}{2}$ y $d(\mathbb{N} \setminus A) = \frac{1}{2}$.

4. Si P es el conjunto de todos los números primos, entonces d(P) = 0.

Lema 1. Sea $x \in [0,1]$, $a \in {}^{\omega}2$ tal que x = k(a) y $A = \{i < \omega : a_i = 1\}$. Entonces, x es simplemente normal en base 2 si y sólo si A tiene densidad asintótica igual a $\frac{1}{2}$.

Demostración. (\Rightarrow) Supongamos que $x \in [0,1]$ es un número simplemente normal en base 2. Entonces,

$$\lim_{n \to \infty} \frac{S_n(x)}{n} = \frac{1}{2} \tag{5}$$

Luego, existe un $a \in {}^{\omega}2$ tal que x = k(A). Sea $A = \{i < \omega : a_i = 1\}$, entonces

$$\frac{S_n(x)}{n} = \frac{\sum_{i < n} a_i}{n} = \frac{|A \cap n|}{n}$$

Por (5), se tiene que

$$\underline{d(A)} = \liminf_{n \to \infty} \frac{|A \cap n|}{n} = \liminf_{n \to \infty} \frac{S_n(x)}{n} = \frac{1}{2}$$

у

$$\overline{d(A)} = \limsup_{n \to \infty} \frac{|A \cap n|}{n} = \limsup_{n \to \infty} \frac{S_n(x)}{n} = \frac{1}{2}$$

Lo que implica que la densidad asintótica de A existe y es igual a $\frac{1}{2}$.

(\Leftarrow) De forma reciproca. Si $a \in {}^{\omega}2$, $A = \{i < \omega : a_i = 1\}$ y $d(A) = \frac{1}{2}$ entonces, como $\frac{S_n(x)}{n} = \frac{|A \cap n|}{n}$, tenemos que

$$\liminf_{n \to \infty} \frac{S_n(x)}{n} = \liminf_{n \to \infty} \frac{|A \cap n|}{n} = \frac{1}{2} \text{ y } \limsup_{n \to \infty} \frac{S_n(x)}{n} = \limsup_{n \to \infty} \frac{|A \cap n|}{n} = \frac{1}{2}$$
(6)

Por (6), obtenemos que

$$\lim_{n \to \infty} \frac{S_n(x)}{n} = \frac{1}{2}$$

En consecuencia, x es un número simplemente normal.

Lema 2. Sea $k: {}^{\omega}2 \to [0,1]$ el mapeo estándar de ${}^{\omega}2$ sobre el intervalo [0,1]. Si

$$N = \left\{ x \in [0, 1] : \lim_{n \to \infty} \frac{S_n(x)}{n} = \frac{1}{2} \right\} \text{ y } Char_{[0, 1]} = \left\{ \chi_A \in {}^{\omega}2 : d(A) = \frac{1}{2} \right\},$$

entonces $k[Char_{[0,1]}] = N$.

Demostración. Sea $x \in k[Char_{[0,1]}]$, entonces existe un $t \in Char_{[0,1]}$ tal que $x = \sum_{i < \omega} \frac{t_i}{2^{(i+1)}}$ y $d(\{i < \omega : t_i = 1\}) = \frac{1}{2}$. Luego, en virtud del **Lema 1**, $x = k(A) \in N$. Así que

$$Char_{[0,1]} \subseteq N \tag{7}$$

Sea $x \in N$ entonces existe un $a \in {}^{\omega}2$ tal que x = k(a). Sea $A_x = \{i < \omega : a_i = 1\}$, entonces por el **Lema 1**, $d(A_x) = \frac{1}{2}$ y en consecuencia $a \in Char_{[0,1]}$. Esto implica que $x = k(a) \in k[Char_{[0,1]}]$. Entonces,

$$N \subseteq Char_{[0,1]} \tag{8}$$

De (7) y (8) obtenemos:

$$k[Char_{[0,1]}] = N$$

Proposición 4. N es un conjunto de Borel.

Demostración. Observe que $x \in N$ si y sólo si

$$\forall k \in \mathbb{N} \,\exists N \in \mathbb{N} \,\forall n \geq N \, \left(\left| \frac{S_n(x)}{n} - \frac{1}{2} \right| < \frac{1}{k+2} \right)$$

Si definimos

$$A_{n,k} = \left\{ x \in [0,1] : \left| \frac{S_n(x)}{n} - \frac{1}{2} \right| < \frac{1}{k+2} \right\},$$

entonces

$$N = \bigcap_{k < \omega} \bigcup_{N < \omega} \bigcap_{n > N} A_{n,k} \in \mathcal{B}([0,1])$$

Así que basta con probar que $A_{n,k} \in \mathcal{B}([0,1])$. Note que

$$\left| \frac{S_n(x)}{n} - \frac{1}{2} \right| < \frac{1}{k+2} \iff \frac{nk}{2(k+2)} < S_n(x) < \frac{n(k+4)}{2(k+2)}$$
 (9)

Entonces la cantidad de valores posibles de $S_n(\cdot)$ que satisfacen (9) está dado por

$$m = \left| \left(\frac{nk}{2(k+2)}, \frac{n(k+4)}{2(k+2)} \right) \cap \mathbb{N} \right| < \omega$$

Sean v_1, \dots, v_m tales valores de $S_n(\cdot)$, entonces,

$$A_{n,k} = \bigcup_{j=1}^{m} \{x \in [0,1] : S_n(x) = v_i\}$$

Ahora, consideremos los intervalos diádicos:

$$I_1^{(n)} = \left[0, \frac{1}{2^n}\right],$$

$$I_j^{(n)} = \left(\frac{j}{2^n}, \frac{j+1}{2^n}\right], \quad para \ j = 2, \dots 2^n - 1$$

Entonces $\{I_j^{(n)}\}_{j=1}^{2^n}$ es una partición del intervalo [0,1]. Por el **Teorema 2**, si $x,y \in I_j^{(n)}$ entonces $S_n(x) = S_n(y)$. Es decir que $S_n(\cdot)$ es constante sobre los intervalos $I_j^{(n)}$.

Figura 1. Descomposición en intervalos diádicos. Si $x, y \in I_3^n$ entonces $x_i = y_i$ para $i \le n$.

Si $S_n(\cdot) = v_i$ entonces

$$\{x \in [0,1] : S_n(x) = v_i\}$$

es el conjunto de todas $x \in [0, 1]$ que tienen v_i 1's y $n - v_i$ 0's en los primeros n términos de la expansión binaria. Así que existen $C_i = \binom{n}{v_i}$ intervalos diádicos donde $S_n(\cdot) = v_i$. Esto implica que

$$\{x \in [0,1]: S_n(x) = v_i\} = \bigcup_{l=0}^{C_i} I_{j_l}^{(n)}$$

Como cada intervalo diádico $I_{j_i}^{(n)} \in \mathcal{B}([0,1]$, tenemos que cada conjunto $\{x \in [0,1]: S_n(x) = v_i\}$ es un boreliano. Así que cada $A_{n,k} \in \mathcal{B}([0,1])$ y en consecuencia

$$N = \bigcap_{k < \omega} \bigcup_{N < \omega} \bigcap_{n \ge N} A_{n,k} \in \mathcal{B}([0,1])$$

Como consecuencia inmediata del **Lema 2** y de la **Proposición 3**, el **Teorema de Borel** sobre los números simplemente normales en base 2 puede ser formulado en términos de la densidad asintótica:

Teorema 3 Sean

$$N = \left\{ x \in [0, 1] : \lim_{n \to \infty} \frac{S_n(x)}{n} = \frac{1}{2} \right\} \text{ y } Char_{[0, 1]} = \left\{ \chi_A \in {}^{\omega}2 : d(A) = \frac{1}{2} \right\}.$$

Entonces, m(N) = 1 si y sólo si $\mu(Char_{[0,1]}) = 1$.

Demostración. Por el **Lema 2**, $k[Char_{[0,1]}] = N$. Como $N \in \mathcal{B}([0,1])$, en virtud de la **Proposición 2**, $Char_{[0,1]} \in \mathcal{B}({}^{\omega}2)$. Luego, por la **Proposición 3**,

$$m(N) = \mu(Char_{[0,1]})$$

Lo que termina la demostración.

References

- [1] Patrick Billingsley. *Probability and Measure*. 3rd ed. Wiley Series in Probability and Mathematical Statistics. New York: John Wiley & Sons, 1995.
- [2] Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications. 2nd edition. New York: John Wiley & Sons, 1999.
- [3] Paul R. Halmos. Measure Theory. New York: Van Nostrand, 1950.
- [4] Alexander S. Kechris. *Classical Descriptive Set Theory*. 1st ed. Vol. 156. Graduate Texts in Mathematics. Springer-Verlag, 1995. DOI: 10.1007/978-1-4612-4190-4.
- [5] Tom Ki Haseo; Linton. "Normal numbers and subsets of N with given densities". In: Fundamenta Mathematicae 144.2 (1994), pp. 163–179. URL: http://eudml.org/doc/212021.
- [6] Azriel Levy. Basic Set Theory. 1st ed. Dover Books on Mathematics. Dover Publications, 1979.