$E(\cdot \cdot)$ $Var(\cdot \cdot)$
two sources of randomness
- random choice of a roudour variable
X ₁ X ₂
P 1-p Quest: E(X).
_ random number of terms in a sur
S = X1+ X2+ X3+ + Xx
N-13 a random varyable Owst: E(S)
Quest: E(S)
[PY]
l- the number of questions.
02 know the answer
N- the number of questions. 3 aptions for question.
a) warm-up p(you will omswer coverectly
· 07 + 0.3 · 1
1 1 2 Lou aro luchy
= 077 + 0,3° 1 you know you grees huchy
DN=3 (NI) not random yet]
p(you know just one quest you have oursurered 3 questions correctly) =
ommerced s questions correctly =

$$P(A \cap B) = P(I \text{ answer } 3 \text{ ps correctly})$$

$$P(B) = P(I \text{ answer } 3 \text{ ps correctly})$$

$$P(I \text{ answe$$

(c) ii
$$T_1, T_2, T_3 \dots T_N$$
 $E(N) = 10$
 $Vos(N) = 10$
 $Vos(N)$

Var(W) =
$$E(\text{Vor}(W/N) + \text{Var}(E(W/N))$$

Intuition:

Vor(W/N) = $N \cdot \text{Vor}(T_1)$

Vor(W) = $t^2 \cdot \text{Vor}(N) + N$

(a) $t^2 \cdot \text{Vor}(N) + N$

(b) $t^2 \cdot \text{Vor}(N) + N$

(a) $t^2 \cdot \text{Vor}(N) + N$

(b) $t^2 \cdot \text{Vor}(N) + N$

(c) $t^2 \cdot \text{Vor}(N) + N$

(d) $t^2 \cdot \text{Vor}(N) + N$

(e) $t^2 \cdot \text{Vor}(N) + N$

(e) $t^2 \cdot \text{Vor}(N) + N$

(f) $t^2 \cdot \text{Vor}(N) + N$

(g) $t^2 \cdot$

$$E(W|N) = \frac{3.8}{51}N \quad \text{for } (W|N) = N \cdot \frac{\text{count}}{A^2} = \frac{3.0}{10}N + E(N \cdot \frac{\text{count}}{A^2}) = \frac{3.2}{51}N + E(N \cdot \frac{\text{count}}{A^2}) = \frac{3.2}{51}N \cdot 10 + 10 \cdot \frac{\text{count}}{A^2}$$

$$= \frac{3.2}{51}N$$

E(R, R2) = E(K,)·E(R2) of R, and R2
over un were lated

May (a) =
$$E(\exp(X_1, u))$$

Notice No the peals proceeding function for X,

With this fixed endowners in N = $E(\exp(X_1, u)) = \int_{0}^{\infty} \exp(-\lambda x) dx$

Why (a) = $E(\exp(X_1, u)) = \int_{0}^{\infty} \exp(-\lambda x) dx$
 $= \int_{0}^{\infty} \lambda \cdot \exp(-x(\lambda - u)) dx = \int_{0}^{\infty} \lambda \cdot \exp(-\lambda x) dx$
 $= \int_{0}^{\infty} \lambda \cdot \exp(-x(\lambda - u)) dx = \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} \int_{0}^{\infty} \frac{1}{x - u} dx$

No $E(u) = \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} \int_{0}^{\infty} \frac{1}{x - u} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-x(\lambda - u)) dx}{-(\lambda - u)} dx = \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} \int_{0}^{\infty} \frac{1}{x - u} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-x(\lambda - u)) dx}{-(\lambda - u)} dx = \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} \int_{0}^{\infty} \frac{1}{x - u} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx = \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx = \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx = \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx = \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx = \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx = \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx = \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp(-\lambda x) dx}{-(\lambda - u)} dx$
 $= \int_{0}^{\infty} \frac{\lambda \cdot \exp($

E)
$$M_{w}(u) = E(\exp(wu)) = E(\frac{1}{1-u})^{w}$$
;
 $= E(E(\exp(wu)) N) = E(\frac{1}{1-u})^{w}$;
 $= E(N) = u \quad N \sim PERS) (\tau a k = u)$
 $= P(N = 0) = \exp(-u) \cdot \frac{u}{k!}$
 $= P(N = 0) = \exp(-u) \cdot \frac{u}{k!}$
 $= P(N = 0) = \exp(-u) \cdot \frac{u^{2}}{2!}$
 $= \exp(-u) \cdot \frac{1}{1-u} + \frac{1}{1-u$

$$\begin{array}{ll}
\downarrow & \downarrow & \downarrow \\
E(z) & = E(N) \cdot E(X_1) = \mu \cdot \frac{1}{\lambda} \\
Vor(z) & = E(N^2 X_1^2) - \left(E(N \cdot X_1)\right)^2 = \\
& = E(N^2) \cdot E(X_1^2) - \left(E(N) \cdot E(X_1)\right)^2 = \\
& = \left(VorN + E(N)\right)^2 \cdot \left(VorX_1 + \left(E(X_1)\right)^2\right) - \\
& = \left(E(N) \cdot E(X_1)\right)^2 = \\
& = \left(\mu + \mu^2\right) \cdot \left(\frac{1}{\lambda^2} + \frac{1}{\lambda^2}\right) - \left(\mu \cdot \frac{1}{\lambda}\right)^2 \cdot \frac{1}{\lambda^2}
\end{array}$$