

SEMICONDUCTOR TECHNICAL DATA

KIA6419P/F

SILICON MONOLITHIC INTEGRATED CIRCUIT

LOW POWER AUDIO AMPLIFIER

The KIA6419P/F is a low power audio amplifier integrated circuit intended (primarily) for telephone applications, such as in speakerphones. It provides differential speaker outputs to maximize output swing at low supply voltages (2.0 volts minimum). Coupling capacitors to the speaker are not required. Open loop gain is 80dB, and the closed loop gain is set with two external resistors. A chip disable pin permits powering down and/ or muting the input signal. The KIA6419 is available in a standard 8-pin DIP or a surface mount package.

FEATURES

- Wide Operating Supply Voltage Range (2-16 volts)-Allows Telephone Line Powered Applications.
- Low Quiescent Supply Current 2.0mA Typical) for Battery Powered Applications.
- · Chip Disable Input to Power Down the IC.
- Low Power-Down Quiescent Current (65µA Typical)
- Drives a Wide Range of Speaker Loads (8 Ohms and Up)
- · Output Power Exceeds 250mW with 32 Ohm Speaker
- Low Total Harmonic Distortion (0.5% Typical)
- · Gain Adjustable from <0 dB to> 46dB for Voice Band
- · Requires Few External Components

PIN CONNECTION

BLOCK DIAGRAM AND TYPICAL APPLICATION CIRCUIT

* = Optional Differential Gain = $2 \times \frac{R_f}{R_i}$

MAXIMUM RATINGS (Ta=25℃)

PARAMETER	VALUE	UNITS
Supply Voltage	-1.0 to 18	Vdc
Maximum Output Current at VO1, VO2	±250	mA
Maximum Voltage @Vin, FC1, FC2, CD	-1.0 V _{CC} +1.0	Vdc
Applied Output Voltage to VO1, VO2 when disabled	-1.0 V _{CC} +1.0	Vdc
Operating Temperature	-20~70	°C
Junction Temperature	-55 ~ 140	°C

Devices should not be operated at these values. The "Recommended Operating Limits" provide for actual device operation.

RECOMMENDED OPERATING LIMITS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS
Supply Voltage	Vcc	+2.0	_	+16	Vdc
Load Impedance	R_{L}	8.0	-	100	Ω
Peak Load Current	$I_{\rm L}$	-	_	±200	mA
Differential Gain (5.0kHz bandwidth)	AVD	0	_	46	dB
Voltage @ CD (Pin 1)		0	_	V_{CC}	Vdc
Ambient Temperature	T_{A}	-20	_	+70	$^{\circ}$ C

KIA6419P/F

ELECTRICAL CHARACTERISTICS (Ta=25°C)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
AMPLIFIERS (AC CHARACTERISTCIS)	•				•
AC Input Resistance (@V _{IN})	r_{i}	-	>30	-	ΜΩ
Open Loop Gain (Amplifier #1, f<100Hz)	A _{VOL1}	80	_	-	dB
Closed Loop Gain (Amplifier #2) (V_{CC} =6.0V, f=1.0kHz, R_L =32 Ω)	A_{V2}	-0.35	0	+0.35	dB
Gain Bandwidth Product	GBW	-	1.5	-	MHz
Output Power, V_{CC} =3.0V, R_L =16 Ω , $THD \le 10\%$ V_{CC} =6.0V, R_L =32 Ω , $THD \le 10\%$ V_{CC} =12V, R_L =100 Ω , $THD \le 10\%$	Pout3 Pout6 Pout12	55 250 400	_ _ _	- - -	mW
Total Harmonic Distortion (f=1.0kHz) $ \begin{array}{c} (V_{\text{CC}}\text{=}6.0V,\ R_{\text{L}}\text{=}32\Omega,\ Pout\text{=}125mW) \\ (V_{\text{CC}}\text{>}3.0V,\ R_{\text{L}}\text{=}8.0\Omega,\ Pout\text{=}20mW) \\ (V_{\text{CC}}\text{>}12V,\ R_{\text{L}}\text{=}32\Omega,\ Pout\text{=}200mW) \end{array} $	THD	- -	0.5 0.5 0.6	1.0 - -	%
Power Supply Rejection (V_{CC} =6.0V, ΔV_{CC} =3.0V) ($C1=\infty$, $C2=0.01\mu F$) ($C1=0.1\mu F$, $C2=0$, $f=1.0kHz$) ($C1=1.0\mu F$, $C2=5.0\mu F$, $f=1.0kHz$)	PSRR	50 - -	12 52	- - -	dB
Muting (V _{CC} =6.0V, 1.0kHz \leq f \leq 20kHz, CD=2.0V)	GMT	-	>70	-	dB
AMPLIFIERS (DC CHARACTERISTCIS)					•
Output DC Level @VO1, VO2, V_{CC} =3.0V, R_L =16 Ω (Rf=75k) V_{CC} =6.0V V_{CC} =12V	VO(3) VO(6) VO(12)	1.0	1.15 2.65 5.65	1.25 - -	Vdc
Output High Level (I_{OUT} =-75mA, $2.0V \le V_{CC} \le 16V$)	V _{OH}	-	V _{CC} -1.0	-	Vdc
Output Low Level (I_{OUT} =75mA, $2.0V \le V_{CC} \le 16V$)	V_{OL}	-	0.16	-	Vdc
Output DC Offset Voltage (VO1-VO2) (V_{CC} =6.0V, Rf =75k Ω , R_L =32 Ω)	∠Vo	-30	0	+30	mV
Input Bias Current @ V_{IN} (V_{CC} =6.0 V)	$ m I_{IB}$	_	-100	-200	nA
Equivalent Resistance @FC1 (V _{CC} =6.0V)	R _{FC1}	100	150	220	kΩ
Equivalent Resistance @FC2 (V _{CC} =6.0V)	R _{FC2}	18	25	40	kΩ
CHIP DISABEL (Pin 1)	'		•		•
Input Voltage-Low	$V_{ m IL}$	-	_	0.8	Vdc
Input Voltage-High	$ m V_{IH}$	2.0	=	=	Vdc
Input Resistance (V _{CC} =V _{CD} =16V)	R_{CD}	50	90	175	kΩ
Power Supply					
Power Supply Current $(V_{CC}=3.0V, R_L=\infty, CD=0.8V)$ $(V_{CC}=16V, R_L=\infty, CD=0.8V)$	I _{CC3} I _{CC16}	_ _	2.0	3.0 4.0	mA
$(V_{CC}=3.0V, R_L=\infty, CD=2.0V)$	I_{CCD}	_	65	100	μA

Note: Currents into a pin are positive, currents out of a pin are negative.

KIA6419P/F

PIN DESCRIPTION

SYMBOL	PIN.	DESCRIPTION
CD	1	Chip Disable-Digital Input. A logic "0" ($< 0.8V$) sets normal operation. A Logic "1" ($\ge 2.0V$) sets the power down mode. Input impedance is nominally $90k\Omega$.
FC2	2	A capacitor at this pin increases power supply rejection, and affects turn-on time. This pin can be left open if the capacitor at FC1 is sufficient.
FC1	3	Analog Ground for the amplifiers. A $1.0\mu\text{F}$ capacitor at this pin (with a $5.0\mu\text{F}$ capacitor at Pin 2) provides (typically) 52dB of power supply rejection. Turn-on time of the circuit is affected by the capacitor on this pin. This pin can be used as an alternate input.
$ m V_{IN}$	4	Amplifier Input. The input capacitor and resistor set low frequency rolloff and input impedance. The feedback resistor is connected to this pin and VO1.
VO1	5	Amplifier Output #1. The dc level is $\approx (V_{CC}-0.7V)/2$.
$ m V_{CC}$	6	DC supply voltage (+2.0 to +16volts) is applied to this pin.
GND	7	Ground pin for the entire circuit.
VO2	8	Amplifier Output #2. This signal is equal in amplitude, but 180° out of phase with that at VO1. The dc level is $\approx (V_{CC}-0.7V)/2$.

TYPICAL TEMPERATURE PERFORMANCE (-20° <T_A<+70°C)

SYMBOL	Typical Change	Units
Input Bias Current (@V _{IN})	±40	pA/℃
Total Harmonic Distortion (V_{CC} =6.0V, R_L =32 Ω , Pout=125mW, f=1.0kHz)	+0.003	%/°C
Power Supply Current $(V_{CC}=3.0V, R_L=\infty, CD=0V)$ $(V_{CC}=3.0V, R_L=\infty, CD=2.0V)$	-2.5 -0.03	μA/°C

DESIGN GUIDELINES

GENERAL

The KIA6451P is a low power audio amplifier capable of low voltage operation (V_{CC} =2.0V minimum) such as that encountered in line-powered speakerphones. The circuit provides a differential output (VO1=VO2) to the speaker to maximize the available voltage swing at low voltages. The differential gain is set by two external resistors. Pins FC1 and FC2 allow controlling the amount of power supply and noise rejection, as well as providing alternate inputs to the amplifiers. The CD pin permits powering down the IC for muting purposes and to conserve power.

AMPLIFIERS

Referring to the block diagram. The internal configuration consists of two identical operational amplifiers. Amplifier #1 has an open loop gain of \geq 80 dB (at f \leq 100Hz), and the closed loop gain is set by external resistors Rf and Ri. The amplifier is unity gain stable, and has a unity gain frequency of approximately 1.5MHz. In order to adequately cover the telephone voice band (300–3400Hz). a maximum closed leep gain of 46dB is recommended. Amplifier #2 is internally set to a gain of -1.0 (0dB). The outputs of both amplifiers are capable of sourcing and sinking a peak current of 200mA. The outputs can typically swing to within \approx 0.4 volts above ground and to within \approx 1.3 volts below V_{CC}. at the maximum current. See Figures 18 and 19 for V_{OH} and V_{OL} curves. The output dc offset voltage (VO1–VO2) is primarily a function of the feedback resistor(Rf), and secondarily due to the amplifiers' input offset voltages. The input offset voltage of the two amplifiers will generally be similar for a particular Ic, and therefore nearly cancel each other at the outputs.

Amplifier #1's bias current, however, flows out of V_{IN} (Pin4) and through Rf, forcing VO1 to shift negative by an amount equal to $(R_f \times 1_{IB})$. VO2 is shifted positive an equal amount. The output offset voltage specified in the Electrical characteristics is measured with the feedback resistor shown in the typical application circuit, and therefore takes into account the bias current as well as internal offset voltages of the amplifiers. The bias current is constant with respect to V_{CC} .