Learning From Data Lecture 5 Training Versus Testing

The Two Questions of Learning Theory of Generalization ($E_{\rm in} \approx E_{\rm out}$) An Effective Number of Hypotheses A Combinatorial Puzzle

> M. Magdon-Ismail CSCI 4100/6100

RECAP: The Two Questions of Learning

- 1. Can we make sure that $E_{\text{out}}(g)$ is close enough to $E_{\text{in}}(g)$?
- 2. Can we make $E_{\rm in}(g)$ small enough?

The Hoeffding generalization bound:

$$E_{\text{out}}(g) \le E_{\text{in}}(g) + \sqrt{\frac{1}{2N} \ln \frac{2|\mathcal{H}|}{\delta}}$$
generalization error bar

 $E_{\rm in}$: training (eg. the practice exam)

 E_{out} : testing (eg. the real exam)

There is a tradeoff when picking $|\mathcal{H}|$.

What Will The Theory of Generalization Achieve?

$$E_{\text{out}}(g) \le E_{\text{in}}(g) + \sqrt{\frac{1}{2N} \ln \frac{2|\mathcal{H}|}{\delta}}$$

$$E_{\text{out}}(g) \le E_{\text{in}}(g) + \sqrt{\frac{8}{N} \ln \frac{4m_{\mathcal{H}}}{\delta}}$$

The new bound will be applicable to *infinite* \mathcal{H} .

Why is $|\mathcal{H}|$ an Overkill

How did $|\mathcal{H}|$ come in?

Bad events

$$\mathcal{B}_g = \{ |E_{\text{out}}(g) - E_{\text{in}}(g)| > \epsilon \}$$

$$\mathcal{B}_m = \{ |E_{\text{out}}(h_m) - E_{\text{in}}(h_m)| > \epsilon \}$$

We do not know which g, so use a worst case union bound.

$$\mathbb{P}[\mathcal{B}_g] \leq \mathbb{P}[\text{any } \mathcal{B}_m] \leq \sum_{m=1}^{|\mathcal{H}|} \mathbb{P}[\mathcal{B}_m].$$

- \mathcal{B}_m are events (sets of outcomes); they can overlap.
- If the \mathcal{B}_m overlap, the union bound is loose.
- If many h_m are similar, the \mathcal{B}_m overlap.
- ullet There are "effectively" fewer than $|\mathcal{H}|$ hypotheses,.
- We can replace $|\mathcal{H}|$ by something smaller.

 $|\mathcal{H}|$ fails to account for similarity between hypotheses.

Measuring the Diversity (Size) of \mathcal{H}

We need a way to measure the diversity of \mathcal{H} .

A simple idea:

Fix any set of N data points.

If \mathcal{H} is diverse it should be able to implement all functions

 \dots on these N points.

A Data Set Reveals the True Colors of an ${\mathcal H}$

A Data Set Reveals the True Colors of an ${\mathcal H}$

 ${\mathcal H}$ through the eyes of the ${\mathcal D}$

A Data Set Reveals the True Colors of an \mathcal{H}

From the point of view of \mathcal{D} , the entire \mathcal{H} is just one *dichotomy*.

An Effective Number of Hypotheses

If \mathcal{H} is diverse it should be able to implement many dichotomys.

 $|\mathcal{H}|$ only captures the maximum possible diversity of \mathcal{H} .

Consider an $h \in \mathcal{H}$, and a data set $\mathbf{x}_1, \dots, \mathbf{x}_N$.

h gives us an N-tuple of ± 1 's:

$$(h(\mathbf{x}_1),\ldots,h(\mathbf{x}_N)).$$

A dichotomy of the inputs.

If \mathcal{H} is diverse, we get many different dichotomies.

If \mathcal{H} contains similar functions, we only get a few dichotomies.

dichotomy

The growth function quantifies this.

The Growth Function $m_{\mathcal{H}}(N)$

Define the restriction of \mathcal{H} to the inputs $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N$:

$$\mathcal{H}(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \{(h(\mathbf{x}_1),\ldots,h(\mathbf{x}_N)) \mid h \in \mathcal{H}\}$$

(set of dichotomies induced by \mathcal{H})

The Growth Function $m_{\mathcal{H}}(N)$

The largest set of dichotomies induced by \mathcal{H} :

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1,...,\mathbf{x}_N} |\mathcal{H}(\mathbf{x}_1,\ldots,\mathbf{x}_N)|.$$

 $m_{\mathcal{H}}(N) \leq 2^N$.

Can we replace $|\mathcal{H}|$ by $m_{\mathcal{H}}$, an effective number of hypotheses?

- Replacing $|\mathcal{H}|$ with 2^N is no help in the bound. (why?)
- We want $m_{\mathcal{H}}(N) \leq \text{poly}(N)$ to get a useful error bar.

 $\left(\text{the error bar is }\sqrt{\frac{1}{2N}\ln\frac{2|\mathcal{H}|}{\delta}}\right)$

Example: 2-D Perceptron Model

Cannot implement

Can implement all 8

Can implement at most 14

$$m_{\mathcal{H}}(3) = 8 = 2^3.$$

$$m_{\mathcal{H}}(4) = 14 < 2^4.$$

What is $m_{\mathcal{H}}(5)$?

Example: 1-D Positive Ray Model

- $\bullet h(x) = sign(x w_0)$
- \bullet Consider N points.
- There are N+1 dichotomies depending on where you put w_0 .
- $m_{\mathcal{H}}(N) = N + 1$.

Example: Positive Rectangles in 2-D

 ${\mathcal H}$ implements all dichotomies

$$m_{\mathcal{H}}(4) = 2^4$$

some point will be inside a rectangle defined by others

$$m_{\mathcal{H}}(5) < 2^5$$

We have not computed $m_{\mathcal{H}}(5)$ – not impossible, but tricky.

Example Growth Functions

	N					
	1	2	3	4	5	
2-D perceptron	2	4	8	14	• • •	
1-D pos. ray	2	3	4	5	• • •	
2-D pos. rectangles	2	4	8	16	$<2^5 \cdots$	

- $m_{\mathcal{H}}(N)$ drops below 2^N there is hope for the generalization bound.
- A break point is any n for which $m_{\mathcal{H}}(n) < 2^n$.

A set of dichotomys

Two points are *shattered*

\mathbf{x}_1	\mathbf{X}_2	\mathbf{X}_3
0	0	0
0	0	
0		0
	0	0

No pair of points is shattered

\mathbf{x}_1	\mathbf{X}_2	\mathbf{X}_3	\mathbf{x}_1	\mathbf{X}_2	X
0	0	0	0	0	(
0	0		0	0	(
0		0			•
	\circ	\circ			

4 dichotomies is max.

If N=4 how many possible dichotomys with no 2 points shattered?