Assignment 1

MA-423: Matrix Computations September-November 2020 S. Bora

Total Marks: 20

1. Let A be any $n \times n$ matrix. For k = 1, ..., n - 1, let P_k and M_k be respectively the transposition matrix and multiplier matrix used in the k^{th} step of Gaussian Elimination with Partial Pivoting (GEPP) on A such that

$$U := M_{n-1}P_{n-1}M_{n-2}P_{n-1}\cdots M_kP_k\cdots M_2P_2M_1P_1A.$$

is upper triangular. Prove the following.

(a) Let $\mathcal{P}_k = P_{k+1} \cdots P_{n-1}, k = 1, \dots, n-2$. Then,

$$\mathcal{P}_k = \left[\begin{array}{c|c} I_k & \\ \hline & \widetilde{P}_{k+1} \cdots \widetilde{P}_{n-1} \end{array} \right]$$

where for all $j = k + 1, \ldots, n - 1$, \widetilde{P}_j are transpositions of size $n - k \times n - k$. (2 marks)

(b) Let $\widetilde{M}_k = \mathcal{P}_k^T M_k \mathcal{P}_k$, k = 1, ..., n-2. Then,

$$\widetilde{M}_k = I_n - \left[egin{array}{c} 0 \\ \vdots \\ 0 \\ \widetilde{m}_{k+1,k} \\ \vdots \\ \widetilde{m}_{nk} \end{array}
ight] e_k^T,$$

where

$$\begin{bmatrix} \widetilde{m}_{k+1,k} \\ \vdots \\ \widetilde{m}_{nk} \end{bmatrix} = \widetilde{P}_{n-1} \cdots \widetilde{P}_{k+1} \begin{bmatrix} m_{k+1,k} \\ \vdots \\ m_{nk} \end{bmatrix},$$

where $m_{k+1,k}, \ldots, m_{nk}$ are the multipliers used in step $k, 1 \le k \le n-2$. (2 marks)

(c) PA = LU where $P = P_{n-1}P_{n-2}\cdots P_1$ and

$$L = \widetilde{M}_{1}^{-1} \cdots \widetilde{M}_{n-2}^{-1} M_{n-1}^{-1}$$

$$= \begin{bmatrix} 1 & & & & & & & & \\ \widetilde{m}_{21} & 1 & & & & & & \\ \widetilde{m}_{31} & \widetilde{m}_{32} & \ddots & & & & & \\ \vdots & \vdots & & \ddots & & & & & \\ \widetilde{m}_{k1} & \widetilde{m}_{k2} & \cdots & \cdots & 1 & & & & \\ \widetilde{m}_{k+1,1} & \widetilde{m}_{k+1,2} & \cdots & \cdots & \widetilde{m}_{k+1,k} & \ddots & & & \\ \vdots & \vdots & & & \vdots & & \ddots & & \\ \widetilde{m}_{n1} & \widetilde{m}_{n2} & \cdots & \cdots & \widetilde{m}_{nk} & \cdots & m_{n,n-1} & 1 \end{bmatrix}$$

(6 marks)

- 2. Let $A = [a_{ij}]$ be an $n \times n$ positive definite matrix and $u \in \mathbb{R}^n \setminus \{0\}$ such that $u^T A^{-1} u \neq 1$.
 - (a) Prove that

$$(A - uu^T)^{-1} = A^{-1} + \frac{(A^{-1}u)u^T A^{-1}}{1 - u^T A^{-1}u}.$$

(3 marks)

- (b) Use the relation in part (a) to write a pseudocode (outline only and no for loops!) for solving the $n \times n$ system of equations $(A uu^T)x = b$ in $n^3/3 + O(n^2)$ flops. (4 marks)
- (c) Prove that the entries of A satisfy $a_{ii}a_{jj} a_{ij}^2 > 0$ for all $i \neq j$. (3 marks)