数值分析第4次作业

211240021 田铭扬

§1 问题

- **1.** 使用数值积分 $\int_{0}^{1} \frac{4}{1+x^2} dx$ 来求 π 的近似值。
- 1)分别用复合梯形,复合 Simpson 求积公式计算 π 的近似值。选择不同的 h,对每种求积公式,试将误差刻画成 h 的函数,并比较两种方法的精度。是否存在某个 h 值,当低于这个值之后再继续减小 h 的值,计算结果不再有所改进?为什么?
- 2) 实现 Romberg 求积方法,并重复上面的计算。
- 3) 实现自适应积分方法,并重复上面的计算。
- **2.** 用所掌握的所有数值积分方法计算 $\int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} dx$,并比较计算精度和效率。

§2 问题分析与实现

由于各数值积分方法均在课上进行过详细的推导,可以按部就班地编程实现,故此处不再过多分析。仅有几处难点需要简要说明:

首先,Dev C++ IDE 自带的程序运行时间统计只能精确到 1ms,对于效率较高的几种算法,难以看出差距。故我使用了 chrono 头文件中的 steady_clock 方法,以在 1µs 的精度上统计程序运行时间。

其次,第2题所求积分是无穷积分,可以进行如下的变换:

$$\int_{1}^{\infty} \frac{x^{3}}{e^{x} - 1} dx = \int_{1}^{0} \frac{y^{-3}}{e^{y^{-1}} - 1} d\frac{1}{y} = \int_{0}^{1} \frac{y^{-5}}{e^{y^{-1}} - 1} dy$$

将原积分转化为有限区间[0,1]上的积分:

$$\int_{0}^{\infty} \frac{x^{3}}{e^{x} - 1} dx = \int_{0}^{1} \frac{x^{3}}{e^{x} - 1} + \frac{x^{-5}}{e^{x^{-1}} - 1} dx \quad (1)$$

特别注意到, $x\rightarrow 0$ 时被积函数极限为 0,但直接代入 x=0 没有意义。因此在计算函数值的子程序中要进行判断,若输入值小于 1e-7,则要返回 0。

§3 运行结果与分析

(一) 第1题

1.1) 复合梯形/Simpson 算法 结果如下表。

"用时"单位为毫秒(ms)

	15 12		10-4	10-5	1.0-6	10-7	10-8
	步长	10-3	10-4	10 ⁻⁵	10-6	10 ⁻⁷	10 ⁻⁸
梯形	用时	0.000	0.000	0.000	0.990	10.916	109.751
	误差	1.67×10 ⁻⁷	1.67×10 ⁻⁹	1.66×10 ⁻¹¹	4.44×10 ⁻¹⁶	-1.94×10 ⁻¹³	-4.32×10 ⁻¹³
	步长	10 ⁻³	10-4	10 ⁻⁵	10-6	10 ⁻⁷	10-8
Simpson	用时	0.000	0.000	0.000	1.010	11.001	108.679
	误差	6.67×10 ⁻⁷	6.67×10 ⁻⁹	6.67×10 ⁻¹¹	7.44×10 ⁻¹³	1.36×10 ⁻¹³	-4.35×10 ⁻¹⁴
	步长	2×10 ⁻³	2×10 ⁻⁴	2×10 ⁻⁵	2×10 ⁻⁶	2×10 ⁻⁷	2×10 ⁻⁸
Simpson	用时	0.000	0.000	0.000	2.010	20.009	204.503
	误差	1.67×10 ⁻⁷	1.67×10 ⁻⁹	1.66×10 ⁻¹¹	2.19×10 ⁻¹³	1.47×10 ⁻¹³	8.84×10 ⁻¹³

表 1 第 1 题 复合梯形公式与复合 Simpson 公式性能对比

注意到,当步长小于10⁻⁶时,步长的缩短对于数值积分精度提升已没有明显的帮助,此时的误差"阈值"在10⁻¹³数量级。甚至在使用复合梯形公式时出现了不稳定(误差增大)的现象。猜测此现象产生的原因与算法本身无关,而是由于机器精度的限制,积分区间变多时,舍入误差产生了显著的影响。

上表中的数据是使用 double 精度得到的,因而可以进一步实验:将程序中的所有 double 型变量均改为 float 型,得到了如下表的数据。我们发现,上述"阈值"现象变得极为明显,这就证实了前述猜测。

网直 死豕又时极为为业,								
	步长	/	10 ⁻³	10-4	10-5	10-6	10-7	
梯形 double 精度	用时	/	0.000	0.000	0.000	0.990	10.916	
	误差	/	1.67×10 ⁻⁷	1.67×10 ⁻⁹	1.66×10 ⁻¹¹	4.44×10 ⁻¹⁶	-1.94×10 ⁻¹³	
	步长	10-2	10 ⁻³	10-4	10 ⁻⁵	10-6	10 ⁻⁷	
梯形 float 精度	用时	0.000	0.000	0.000	0.000	0.999	10.005	
	误差	1.69×10 ⁻⁵	7.15×10 ⁻⁷	-9.53×10 ⁻⁹	6.06×10 ⁻⁵	2.44×10 ⁻⁴	0.0422	

表 2 第 1 题 复合梯形公式 float 精度与 double 精度对比

此外,根据表 1 的数据,复合 Simpson 公式相对于复合梯形公式并无性能上的优势,这与理论上不太相符,暂时还不清楚原因。

1.2) Romberg 算法 结果如下表。

TOL	10-3	10-6	10-9	10 ⁻¹²	10 ⁻¹⁵	10 ⁻¹⁸	10 ⁻²¹		
用时(ms)	4.114	4.742	4.686	3.340	3.725	4.840	5.236		
误差	5.27×10 ⁻³	8.15×10 ⁻⁵	5.09×10 ⁻⁶	7.95×10 ⁻⁷	4.97×10 ⁻⁹	1.24×10 ⁻⁹	1.24×10 ⁻⁹		
最终步长	2-2	2-5	2-7	2 ⁻¹⁰	2-12	2-13	2-13		

表 3 第 1 题 Romberg 求积方法

从表中可以看到,Romberg 求积法的表现并不好。它出现了类似于复合梯形/Simpson 公式的"阈值"现象,而且阈值时误差大得多(4个数量级)。

此外,此算法有约 4ms(且不太稳定)的与精度无关的耗时,这可能是算法本身固有的复杂度导致的,具体原因还不清楚。

1.3) 自适应梯形算法 结果如下表。

误差限	10-3	10 ⁻⁵	10 ⁻⁷	10-9	10-11	10 ⁻¹³	10 ⁻¹⁵
用时(ms)	0.000	0.000	0.000	0.000	2.012	22.099	212.940
误差	4.22×10 ⁻⁵	2.23×10 ⁻⁷	3.15×10 ⁻⁹	2.89×10 ⁻¹¹	2.50×10 ⁻¹³	3.11×10 ⁻¹⁵	1.22×10 ⁻¹⁶
最大深度	6	9	13	16	19	23	26

表 4 第 1 题 自适应梯形求积方法

可以看到,自适应梯形方法对于本题积分的表现很好。它是第1题中唯一能达到10⁻¹⁶数量级的精度——注意到10⁻¹⁶≈2⁻⁵²,即 double 型的机器精度——的算法,而且用时可以接受(200ms)。因而可以推测,对于本题中的积分,如果能够使用精度更高的数据类型,采用此方法将会得到更好的精度(不过耗时也会相应增加)。

综上, 第1题中表现最好的是自适应梯形方法。

(二) 第2题

容易得到所求积分的精确值为π⁴/15,用于计算各算法的误差。

另外,由于部分算法较为相似,或有明显的"上位替代"关系,因此我将只比较下述算法:两点 Gauss-Laguerre 算法、区间分次减半梯形/Simpson 算法、Romberg 算法、自适应梯形算法、两点复合 Gauss-Legendre 算法。

2.1) 两点 Gauss-Laguerre 算法

因为此方法只用到两个基点,所以耗时可以忽略。使用 Mathmatica 进行计算并于精确值比较,误差约为 8.02×10⁻²,在精度需求不大的场景可以接受。

```
| In[+]:= f[X_] = x^3 / (Exp[x] - 1); | 指数形式 | g[X_] = f[x] * Exp[x]; | 指数形式 | g[X_] = f[x] * Exp[x]; | 指数形式 | a = Integrate[f[x], {x, 0, Infinity}]; | 医分大 | Exp大 | Exp大 | Exp大 | Exp大 | Expt | Expt
```

图 1 第 2 题 两点 Gauss-Laguerre 算法

2, 2)	区间分次减半梯形/Simpson	算法	结果如下表。
-------	------------------	----	--------

2. 2) 区内力 火峽干你/D/Simpson 弄拉 归来知 1 秋。									
	区间	分次减半梯形	算法	区间分次减半 Simpson 算法					
TOL	用时(ms)	误差	最终步长	用时(ms)	误差	最终步长			
10-6	1.993	1.48×10 ⁻⁶	2-8	0.997	2.02×10 ⁻⁸	2 ⁻⁷			
10 ⁻⁹	1.994	1.45×10 ⁻⁹	2 ⁻¹³	1.995	3.25×10 ⁻¹²	2-9			
10 ⁻¹²	27.420	1.39×10 ⁻¹²	2 ⁻¹⁸	1.992	2.03×10 ⁻¹³	2 ⁻¹⁰			
10 ⁻¹⁵	超时	/	/	3.987	-1.24×10 ⁻¹⁴	2 ⁻¹⁵			

表 5 第 2 题 区间分次减半梯形/Simpson 算法性能比较

这里的结果与理论相符,即 Simpson 算法的表现比梯形算法好,而并没有出现 1.1)的情况。暂时不清楚这是由于"逐次减半"方法规避了事先指定步长的某种缺点,还是第 1 题的被积函数有某种特殊性。

在采集数据过程中,发现此算法的用时并不稳定,尤其是在用时较短的时候。此外,在 TOL 较大时,还出现用时并不随 TOL 减小而显著增长的情况。这有可能是因为算法固有的复杂度(与第 1 题 2)的情况类似);也可能是由于某些原因,导致此方法受到系统的"后台占用"情况的影响较大。

2.3)	Romb	erg 算法	结果如了	下表。

TOL	10-3	10-6	10-9	10 ⁻¹²	10 ⁻¹⁵	10 ⁻¹⁸			
用时(ms)	1.504	1.905	2.019	0.995	2.941	2.782			
误差	7.33×10 ⁻⁴	1.03×10 ⁻³	3.19×10 ⁻⁶	4.63×10 ⁻⁸	2.89×10 ⁻⁹	2.89×10 ⁻⁹			
最终步长	2-4	2 ⁻⁵	2 ⁻⁷	2 ⁻¹⁰	2-12	2 ⁻¹²			

表 6 第 2 题 Romberg 求积方法

出现的现象与1.2)相仿,故不再详述。

2.4) 自适应梯形算法 结果如下表。

误差限	10-3	10-5	10-7	10-9	10-11	10-13	10 ⁻¹⁵
用时(ms)	0.000	0.000	4.061	41.945	443.723	3948.781	超时
误差	-1.16×10 ⁻⁴	-1.18×10 ⁻⁶	-1.23×10 ⁻⁸	-1.15×10 ⁻¹⁰	-1.19×10 ⁻¹²	-1.24×10 ⁻¹⁴	/
最大深度	11	14	17	21	24	27	/

表 7 第 2 题 自适应梯形求积方法

在本题中,自适应梯形方法的性能表现不如区间逐次分半 Simpson 方法: 两者的绝对误差均能达到 10^{-14} 数量级,但是前者的用时是后者的 10^3 倍。事实上,前者最小步长为 2^{-27} ,而后者步长为 2^{-15} ,相差 2^{12} =4096≈4×10³ 倍。我们观察 (1) 式被积函数的图像(下图),发现它在 [0,1] 区间的多数地方都比较"陡峭"(即更有可能需要分半),这样的结果也就不难理解了。

图 2 第 2 题 变换后的被积函数图像(由"几何画板"绘制)

2.5) 两点复合 Gauss-Legendre 算法 结果如下表。

步长	10-1	10-2	10 ⁻³	10 ⁻⁵	10-7
用时(ms)	0.000	0.000	0.000	17.950	1864.918
误差	2.03×10 ⁻²	-9.84×10 ⁻¹¹	-1.60×10 ⁻¹⁴	1.33×10 ⁻¹⁴	4.65×10 ⁻¹³

表8 第2题 两点复合 Gauss-Legendre 算法

从表中的数据可以看到,作为两点复合 Gauss-Legendre 算法展现出了极快的收敛性:步长取 10^{-3} ,用时小于 5×10^{-4} ms,绝对误差就能达到 10^{-14} 数量级。

综上,两点复合 Gauss-Legendre 算法是在第 2 题中性能表现最好的算法。

附录 完整代码

由于报告长度和排版的限制,完整代码放在了github上,还请助教老师见谅。已设置超链接跳转:

- 1.1)复合梯形算法 1.1)复合 Simpson 算法 1.2)Romberg 算法 1.3)自适应梯形算法
- 2.1)两点 Gauss-Laguerre 算法 2.2)区间逐次分半梯形算法 2.2)区间逐次分半 Simpson 算法
- 2.3)Romberg 算法 2.4)自适应梯形算法 2.5)两点复合 Guass-Legendre 算法