A Social Robot as a Card Game Player

Filipa Correia, Patrícia Alves-Oliveira, Tiago Ribeiro, Francisco S. Melo, Ana Paiva

Instituto Superior Técnico, Lisbon University

Gals

A social robotic player for a card game:

- Ability to play
- Perform social behaviours

The Sueca Card Game

- Portuguese trick-taking card gar
- 4 players
- Team game
 - The robot will partner a human

Social Robotic Player

Game Module Social Module

- (1) Create a benchmark for further evaluation
- (2) Apply PIMC to the Sueca
- (3) Enhancing considering our requirements

- (1) Create a benchmark for further evaluation
 - Rule-based Player (RbP)

(2) Applying PIMC to the Sueca domain

```
Possible configuration
Algorithm 1 PIMC search pseudo-code.
                                                                               Sample
 1: procedure PIMC(InfoSet I, int N)
       for all m \in Moves(I) do
 3:
           val[m] = 0
                                                               Belief
       for all i \in \{1..N\} do
 5:
           x = \text{Sample}(I)
6:
           for all m \in Moves(I) do
                                                                                             Search
              val[m] += PerfectInfoValue(x, m)
                                                                                          Accumulate
8:
       return argmax\{val[m]\}
```

- (2) Applying PIMC to the Sueca domain Sample
 - It does not consider already played cards
 - It does not assign suits that players do not have (using a Constraint Satisfaction Problem (CSP)

- (2) Applying PIMC to the Sueca domain Search
 - MinMax algorithm
 - Costly in early plays of the game
 - Cannot met the time constraint of 2 seconds!

(3) Enhancing considering our requirements

(3) Enhancing considering our requirements

(3) Enhancing considering our requirements

Should the Hybrid Player compute more often each sampled distribution?

N - number of sampled distributions

M - number of computed game trees for each sampled distribution

N x M - total number of computed game trees

Average points and winning rate of HP+RbP VS 2RbP in 1000 independent games

	N = 1	N = 5	N = 10
M = 1	$58,8 \pm 26,8$	$61,2 \pm 26,6$	$61,4 \pm 26,2$
	47,3%	52,4%	54,2%
M = 5	$59,4 \pm 26,5$	$62,8 \pm 25,8$	$62,3 \pm 25,6$
	50,3%	55,8%	54,6%
M = 10	$61,4 \pm 25,7$	$63,1 \pm 25,5$	$63,2 \pm 25,9$
	52,9%	56%	57%

$$\{M = 10, N = 5\}$$
 with $M \times N = 50$
 VS
 $\{M = 5, N = 10\}$ with $M \times N = 50$
=

Increasing M instead achieves better scores + reduces computational time!

	N = 1	N = 5	N = 10
M = 1	$58,8 \pm 26,8$	$61,2 \pm 26,6$	$61,4 \pm 26,2$
	47,3%	52,4%	54,2%
M = 5	$59,4 \pm 26,5$	$62,8 \pm 25,8$	$62,3 \pm 25,6$
	50,3%	55,8%	54,6%
M = 10	$61,4 \pm 25,7$	$63,1 \pm 25,5$	$63,2 \pm 25,9$
	52,9%	56%	57%

Winner!

	N = 1	N = 5	N = 10
M = 1	$58,8 \pm 26,8$	$61,2 \pm 26,6$	$61,4 \pm 26,2$
IVI — I	47,3%	52.4%	54,2%
M = 5	$59,4 \pm 26,5$	$62,8 \pm 25,8$	$62,3 \pm 25,6$
IVI — J	50,3%	55,8%	54,6%
M = 10	$61,4 \pm 25,7$	$63,1 \pm 25,5$	$63,2 \pm 25,9$
	52,9%	56%	57%

Social Module

- User-centred study to analyse how (and when) people behave during a game
 - Set of verbal utterances
 - Game state triggering behaviours
 - People react emotionally
 - We used FAtiMA emotional agent architecture

Social Module

- We define a set of appraisal rules according to the goal of "winning the game"
 - → Produces adequate emotions as a result of game events (e.g. gloating, resentment, happy for, pity)

Play(player, move, trick score of the agent)

Play(P2,10,21) -> Happy for P2 (partner)

Play(P3,11,14) -> Gloat over P3 (opponent)

Play(P3,10,-14) -> Resentment at P3 (opponent)

Building a social robot as a game companion in a card game

Filipa Correia, Tiago Ribeiro, Patrícia Alves-Oliveira, Nuno Maia, Francisco Melo and Ana Paiva INESC-ID & Instituto Superior Técnico Lisbon, Portugal

ACM/IEEE Human-Robot Interaction 2016 Videos March 7-10, 2016 New Zealand

- User study
 - Emys robot
 - 60 participants(10 females;Mage=24,31±3,85)

- User study
 - Winning rate (objective measure)
 - Human-Robot Trust Questionnaire towards partner before and after playing (subjective measure)

- Pre- and post-levels of trust were significantly different (Mixed ANOVA, p = 0.03)

- Pre- and post-levels of trust according to the partner type (human or robot) were not significantly different (Mixed ANOVA, p = 0.65)
- The variation of trust was not different between participants that had a human or robotic partner

 Post-levels of trust according to the partner type (human or robot) were significantly different (Welch test, p < 0.01)

- Robot team achieved a winning rate of 60%
 - The RbP and human players from the user study had similar performances

Conclusions

- High trust levels towards the robot
- However... people trust more on the human partners
- Trust is complex construct
- Accomplished the goals

Thank you!

