Fonctions de deux variables réelles

L'espace \mathbb{R}^2

$$orall u = (x,y), \quad orall u' = (x',y')$$

Produit scalaire

$$u\cdot v=xx'+yy'$$

Norme:

$$\|u\|=\sqrt{x^2+y^2}$$

Distance

$$|d(u,v) = \|v-u\| = \sqrt{(x'-x)^2 + (y'-y)^2}$$

Boule ouverte

Soit u un vecteur et r un réel positif.

Boule ouverte de centre u et rayon r : $\mathcal{B}(u,r) = \{v \in \mathbb{R}^2 rac{1}{d(u,v)} < r\}$

Ouverte

Une partie de A est un ouverte de \mathbb{R}^2 si $\exists arepsilon>0\; ;\; \mathcal{B}(u,arepsilon) < A$

Fonctions définies sur une partie de \mathbb{R}^2 , limite, continuité

Applications partielles

Fonction f de $\mathbb{R}^2, A \subset \mathbb{R}^2, a = (x_0, y_0)$ Soit $f: A \longrightarrow \mathbb{R}$

- $ullet \ arphi_{1,a}:x\longmapsto f(x,y_0)$
- $ullet \ arphi_{2,a}: x \longmapsto f(x_0,y)$
- Les courbes de $\varphi_{1,a}$ et $\varphi_{2,a}$ sont les sections de la surface z=f(x,y) par les plans $y=y_0$ et $x=x_0$.

Continuité

f continue en a si : orall arepsilon > 0 ; $orall u \in A, \ \|u - a\| \leq lpha \Rightarrow (f(u) - f(a)) \leq arepsilon$

- f continue en A si f continue en tout point de A.
- La somme, produit quotient, composé de deux fonctions continues est continue.
- f continue en $a=(x_0,y_0)\Rightarrow egin{cases} arphi_{1,a} ext{ continue en } x_0\ arphi_{2,a} ext{ continue en } y_0 \end{cases}$
 - La réciproque est fausse.

Calcul différentiel

Applications définies sur un ouverte U de $\mathbb{R}^2 \longrightarrow \mathbb{R}$

Dérivées partielles premières

(sous réserve d'existence)

$$ullet rac{\partial f}{\partial x}(x_0,y_0) = \lim_{t o 0} rac{f(x_0+t,y_0)-f(x_0,y_0)}{t}$$

$$ullet rac{\partial f}{\partial y}(x_0,y_0) = \lim_{t o 0} rac{f(x_0,y_0+t)-f(x_0,y_0)}{t}$$

L'existence des dérivées partielles 1èrs n'implique continuité en ce point.

Fonctions de Clase C^1

f de classe C^1 en a, si $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ existent et sont continues en a.

- La somme, produit, quotient des fonctions de classe C^1 est une fonction de classe C^1 .

Approximation linéaire - différentielle

L'application $(h,k)\longmapsto f(x_0+h,y_0+k)-f(x_0,y_0)$ peut être approximée par l'application linéaire : $(h,k)\longmapsto \frac{\partial f}{\partial x}(x_0,y_0)h+\frac{\partial f}{\partial y}(x_0,y_0)k$. C'est la différentielle

de f au point a.

Interprétation géométrique

Plan tangente : $z=f(x_0,y_0)+(x-x_0)rac{\partial f}{\partial x}(x_0,y_0)+(y-y_0)rac{\partial f}{\partial y}(x_0,y_0)$

Gradient

Le gradient de f (classe C^1) en a est le vecteur : $\nabla f(x_0,y_0)=(\frac{\partial f}{\partial x}(a),\frac{\partial f}{\partial y}(a))$

• Définie la direction dans laquelle *f* croît le plus vite.

Dérivées partielles et composée

Soit \overrightarrow{u} un vecteur, on appelle dérivé de f en a (s'il existe) : $\lim_{t \to 0} \frac{f(a+t \cdot \overrightarrow{u}) - f(a)}{t}$

- Si f de classe C^1 sa dérivée en a selon \overrightarrow{u} est :

$$\lim_{t o 0}rac{f(a+t\cdot\overrightarrow{u})-f(a)}{t}= \boxed{
abla f(a)\cdot\overrightarrow{u}}$$

Règle de la chaîne

Soit U un ouverte de \mathbb{R}^2 et $I\subset\mathbb{R}$

 $f:U\longrightarrow \mathbb{R}\; ;\; (x,y)\longmapsto f(x,y)$ de classe C^1

 $\gamma:I\longrightarrow U\;;\;t\longmapsto (x(t),y(t))$

$$I \xrightarrow{\gamma} U \xrightarrow{f} \mathbb{R}$$

$$f \circ \gamma = F$$

$$F'(t) = (f(x(t),y(t)))' = x'(t) rac{\partial f}{\partial x}(x(t),y(t)) + y't rac{\partial f}{\partial y}(x(t),y(t))$$

Soit U et V deux ouvertes de \mathbb{R}^2

$$f:U\longrightarrow \mathbb{R}\; ;\; (x,y)\longmapsto f(x,y)$$
 de classe C^1

$$g:V\longrightarrow U\; ;\; (u,v)\longmapsto (arphi(u,v),\psi(u,v)) \; {\sf classe}\; C^1$$

Alors $F = f \circ g$ de classe C^1

En posant
$$(\varphi(u,v),\psi(u,v))=(x(u,v),y(u,v))$$

$$F(u,v) = f(x(u,v),y(u,v)) \ \begin{cases} rac{\partial F}{\partial u} = rac{\partial f}{\partial x}rac{\partial x}{\partial u} + rac{\partial f}{\partial y}rac{\partial y}{\partial u} \ rac{\partial F}{\partial v} = rac{\partial f}{\partial x}rac{\partial x}{\partial v} + rac{\partial f}{\partial y}rac{\partial y}{\partial v} \end{cases}$$

Extremum local

Point critique

Soit f de classe C^1 sur U

Un point
$$a\in U$$
 tel que $\begin{cases} \dfrac{\partial f}{\partial x}(a)=0 \\ \dfrac{\partial f}{\partial y}(a)=0 \end{cases}$ s'appelle point critique de f .

Présence de extremum

Si
$$f$$
 présente un extremum local en $a\Rightarrow \begin{cases} \dfrac{\partial f}{\partial x}(a)=0\\ \dfrac{\partial f}{\partial y}(a)=0 \end{cases}$

• La réciproque est fausse