EL3370 Mathematical Methods in Signals, Systems and Control

Topic 10: Application to H_{∞} Control Theory

Cristian R. Rojas

Division of Decision and Control Systems KTH Royal Institute of Technology

Feedback Control and Youla Parameterization

Approaches to H_{∞} Control

The Big Picture

Hardy Spaces

Hankel Matrices and Operators

Nehari's Theorem

 H_{∞} Control Example

Bonus Slides

Feedback Control and Youla Parameterization

Approaches to H_{∞} Contro

The Big Picture

Hardy Spaces

Hankel Matrices and Operators

Nehari's Theorem

 H_{∞} Control Example

Bonus Slide

Feedback Control and Youla Parameterization

Goal: Design a controller that drives the output as close to the reference as possible.

Concerns:

Reference: Output should be equal to reference.
 Disturbance: Disturbance should not affect output.
 Noise: Noise should not perturb output.

5. Input: Input should lie within prescribed limits.

6. Stability: Closed loop should be stable.

7. Robustness: Model errors should not affect performance nor stability.

Feedback Control and Youla Parameterization (cont.)

Reminder: If $x = (x[k])_{k \in \mathbb{N}_0}$ is a real sequence, its *Z-transform* is

$$X(z) := \mathcal{Z}\{x\}(z) := \sum_{k=0}^{\infty} x[k]z^{-k},$$

where z is restricted to the subset of $\mathbb C$ where the sum is convergent.

If $\mathcal{Z}\{\text{ref.}\}=:R(z), \mathcal{Z}\{\text{noise}\}=:N(z), \mathcal{Z}\{\text{disturb.}\}=:D(z), \mathcal{Z}\{\text{in.}\}=:U(z) \text{ and } \mathcal{Z}\{\text{out.}\}=:Y(z):$

$$\begin{split} \frac{Y(z)}{R(z)} \bigg|_{D,N=0} &= \frac{G(z)C(z)}{1+G(z)C(z)} =: T(z) & (complementary \, sensitivity) \\ \frac{Y(z)}{D(z)} \bigg|_{R,N=0} &= \frac{1}{1+G(z)C(z)} = 1-T(z) =: S(z) & (sensitivity) \\ \frac{Y(z)}{U(z)} \bigg|_{D,N=0} &= \frac{G(z)}{1+G(z)C(z)} =: S_i(z) & (input \, sensitivity) \\ \frac{U(z)}{R(z)} \bigg|_{D,N=0} &= \frac{C(z)}{1+G(z)C(z)} =: S_u(z) & (control \, sensitivity) \\ \end{split}$$

A control loop is *internally stable* if all these sensitivities are stable.

Feedback Control and Youla Parameterization (cont.)

Many of the concerns can be traded-off by imposing, e.g., that

- $T(e^{i\omega}) \approx 1$ for small ω ,
- $T(e^{i\omega}) \approx 0$ for large ω ,
- the closed loop is internally stable.

This can be achieved by requiring that C yields a stable closed loop and minimizes

$$\|W_1(1-T)\|_{\infty} + \|W_2T\|_{\infty} = \sup_{|z|=1} |W_1(z)[1-T(z)]| + \sup_{|z|=1} |W_2(z)T(z)|. \qquad (W_1,W_2 \colon \text{weights})$$

To parameterize all stabilizing controllers C, the following result is useful:

Theorem (Youla/affine parameterization) (see bonus slides for proof)

Assume that G is stable. Then C yields an internally stable loop iff the Youla parameter Q := C/(1+GC) is stable. Furthermore, all sensitivity functions are affine functions of Q.

Feedback Control and Youla Parameterization

Approaches to H_{∞} Control

The Big Picture

Hardy Spaces

Hankel Matrices and Operators

Nehari's Theorem

 H_{∞} Control Example

Bonus Slide

Approaches to H_{∞} Control

- (a) **Nehari problem** (H_{∞} approximation) \leftarrow we will follow this approach!
- (b) Nevanlinna-Pick problem (H_{∞} interpolation)
- (c) Polynomial methods (H. Kwakernaak)
- (d) Chain scattering (H. Kimura)
- (e) Riccati equations ("DGKF" paper)
- (f) Linear matrix inequalities (P. Gahinet & P. Apkarian, C. Scherer)
- (g) Differential games (T. Başar and P. Bernhard)
- (h) Krein space techniques

:

Feedback Control and Youla Parameterization

Approaches to H_{∞} Contro

The Big Picture

Hardy Spaces

Hankel Matrices and Operators

Nehari's Theorem

 H_{∞} Control Example

Bonus Slide

The Big Picture

Our goal is to obtain the minimizer, over all $Q \in H_{\infty}$, of $\|T - GQ\|_{\infty}$, where $T \in L_{\infty}(\mathbb{T})$ (recall from Topic 2 that $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$) and $G \in H_{\infty}$. Now,

$$\begin{split} \min_{Q \in H_{\infty}} \|T - GQ\|_{\infty} &= \min_{\bar{Q} = G_O Q \in H_{\infty}} \alpha \|G_I^{-1}T - \bar{Q}\|_{\infty} \quad (G = G_I G_O, \text{ where } G_O, G_O^{-1} \in H_{\infty}, |G_I(e^{i\omega})|^2 = \alpha^2 = \text{constant}) \\ &= \min_{\bar{Q} = G_O Q \in H_{\infty}} \alpha \left\| [G_I^{-1}T]_{\text{stable}} + [G_I^{-1}T]_{\text{unstable}} - \bar{Q} \right\|_{\infty} \\ &= \min_{Q' = \bar{Q} - [G_I^{-1}T]_{\text{stable}}} \alpha \left\| [G_I^{-1}T]_{\text{unstable}} - Q' \right\|_{\infty}, \text{ where } Q' \in H_{\infty}, [G_I^{-1}T]_{\text{unstable}} \in H_{\infty}^{\perp} \\ &= \alpha \left\| \Gamma_{[G_I^{-1}T]_{\text{unstable}}} \right\|, \text{ where } \Gamma_{[G_I^{-1}T]_{\text{unstable}}} \text{ is a $Hankel$ operator.} \quad \text{(Nehari's theorem)} \end{split}$$

In this topic, we will define the appropriate H_p spaces, the *inner-outer factorization* $(G = G_I G_O)$, Hankel operators, Nehari's theorem, and how to compute the minimizer!

Feedback Control and Youla Parameterization

Approaches to H_{∞} Contro

The Big Picture

Hardy Spaces

Hankel Matrices and Operators

Nehari's Theorem

 H_{∞} Control Example

Bonus Slide

Hardy Spaces

Definition

For $1 \le p < \infty$, the $Hardy\ space\ H_p$ is the normed space of analytic functions f on the exterior of the unit disc, $\mathbb{E} := \{z \in \mathbb{C} : |z| > 1\}$, for which the norm

$$||f||_p := \sup_{1 < r \le \infty} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(re^{i\omega})|^p d\omega \right)^{1/p}$$

is finite. H_{∞} is the space of bounded analytic functions f on \mathbb{E} , with norm

$$\|f\|_{\infty} := \sup_{z \in \mathbb{E}} |f(z)| = \sup_{\substack{-\pi \leq \omega < \pi \\ 1 < r \leq \infty}} |f(re^{i\omega})|.$$

Remark. For $1\leqslant p < q \leqslant \infty$, $H_p \supseteq H_q$: indeed, for fixed $r \in (1,\infty]$, with $f_r(\omega) := f(re^{i\omega})$, so $f_r \in L_q[-\pi,\pi]$; Hölder's inequality yields $\int_{-\pi}^{\pi} |f(re^{i\omega})|^p d\omega = \|f_r\|_p^p = \|1 \cdot f_r^p\|_1 \leqslant \|1\|_{q/(q-p)} \|f_r^p\|_{q/p} = (2\pi)^{1-p/q} \|f_r\|_q^p$, i.e., $\|f_r\|_p \leqslant (2\pi)^{1/p-1/q} \|f_r\|_q$. In particular, $H_\infty \subseteq H_2 \subseteq H_1$.

We can identify elements of H_p with functions in $L_p(\mathbb{T})!$ (recall that $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$).

Theorem. For every $f \in H_p$ $(1 \le p \le \infty)$ the $radial\ limit\ \tilde{f}(e^{i\omega}) = \lim_{r \to 1_+} f(re^{i\omega})$ exists for almost every $\omega \in [-\pi,\pi]$, and indeed $\tilde{f} \in L_p(\mathbb{T})$, with $\|\tilde{f}\|_{L_p} = \|f\|_{H_p}$. (See bonus slides for proof in the case 1)

Remark

 H_p can be identified with a closed subspace of $L_p(\mathbb{T})$, and hence it is a Banach space. Indeed, H_p can be defined as the subspace of those $f \in L_p(\mathbb{T})$ whose negative Fourier coefficients vanish, i.e., $f(e^{i\omega}) = \sum_{n=-\infty}^{\infty} a_n e^{-in\omega}$ with

$$a_n := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\omega}) e^{in\omega} d\omega = 0 \quad \text{for } n < 0.$$

Those f's can be extended to \mathbb{E} as $f(z) = \sum_{n=0}^{\infty} a_n z^{-n}$ for $z \in \mathbb{E}$.

In particular, H_2 is a Hilbert space, since it is a closed subspace of $L_2(\mathbb{T})$, and we can define the *projection* operator from $L_2(\mathbb{T})$ onto H_2 as

$$P_{H_2}$$
: $\sum_{n=-\infty}^{\infty} a_n e^{-in\omega} \mapsto \sum_{n=0}^{\infty} a_n e^{-in\omega}$.

 $H_2 \text{ can also be identified with } \ell_2, \text{ by: } \quad \omega \mapsto \sum_{n=0}^\infty a_n e^{-in\omega} \in H_2 \quad \Leftrightarrow \quad (a_0, a_1, \ldots) \in \ell_2.$

Note. H_p with $p \neq 2$ cannot be identified with ℓ_p .

 H_2^{\perp} is the orthogonal complement of H_2 in $L_2(\mathbb{T})$, *i.e.*, $f \in H_2^{\perp}$ iff it has the form $f(e^{i\omega}) = \sum_{n=-\infty}^{-1} a_n e^{-in\omega}$.

 RH_p and RL_p are those subspaces of H_p and $L_p(\mathbb{T})$ consisting of those functions which are real-rational (i.e., quotients of polynomials with real coefficients).

For some derivations, we will need the following technical lemma:

Lemma. If $f \in H_2 \setminus \{0\}$, then $f(e^{i\omega}) \neq 0$ almost everywhere, and $\int_{-\pi}^{\pi} \log |f(e^{i\omega})| d\omega > -\infty$.

Proof (Helson and Lowdenslager, 1958)

If $f(z) = \sum_{n=0}^{\infty} a_n z^{-n}$ is non-zero, by multiplying it by some z^m $(m \in \mathbb{N})$ we assume w.l.o.g. that $a_0 \neq 0$.

Consider the affine subspace $C=\{z\mapsto f(z)[1+b_1z^{-1}+\cdots+b_mz^{-m}]\colon m\in\mathbb{N}; b_1,\ldots,b_m\in\mathbb{C}\}\subseteq H_2;$ note that $0\notin \bar{C}$, since if $h\in C$, $h(\infty)=a_0\neq 0$. By the closest point property, there is a $g\in \bar{C}$ of smallest norm.

Given $\lambda \in \mathbb{C}$ and $m \in \mathbb{N}$, $\|g + \lambda z^{-m}g\|^2 = (1 + |\lambda|^2)\|g\|^2 + 2\mathrm{Re}\left[(\lambda/2\pi i)\int_{-\pi}^{\pi}|g(e^{i\omega})|^2e^{-im\omega}d\omega\right]$, but since $g + \lambda z^{-m}g \in \bar{C}$ and g has minimum norm in \bar{C} , $\int_{-\pi}^{\pi}|g(e^{i\omega})|^2e^{-im\omega}d\omega = 0$ for all $m \in \mathbb{N}$, and taking the conjugate the same holds for all $-m \in \mathbb{N}$; thus, $|g(e^{i\omega})|^2 \equiv g_0 > 0$, since $g \neq 0$.

Assume f(z)=0 on a set $E\subseteq \mathbb{T}$. Define $h:\mathbb{T}\to \mathbb{C}$ as h(z)=0 on $\mathbb{T}\setminus E$, and $h(z)=|g(z)|/\overline{g(z)}$ on E. Then, $h\in L_2(\mathbb{T})$ and (F,h)=0 for all $F\in C$ (since F also vanishes on E), and by continuity, (F,h)=0 for all $F\in \bar{C}$, so $0=(g,h)=(2\pi)^{-1}\int_E|g(e^{i\omega})|d\omega=(2\pi)^{-1}\sqrt{g_0}m(E)$ (where m is the Lebesgue measure), hence E has measure zero.

Now, for $\varepsilon > 0$, let $\lambda = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log[|f(e^{i\omega})|^2 + \varepsilon] d\omega$ and $\psi = \lambda - \log[|f|^2 + \varepsilon]$. Then, since $\int_{-\pi}^{\pi} \psi(e^{i\omega}) d\omega = 0$, e^{ψ} can be approximated arbitrarily well in $\mathbb T$ by polynomials of the form $|1 + b_1 z^{-1} + \dots + b_m z^{-m}|^2$ (recall Topic 5), so

$$\exp\left\{\frac{1}{2\pi}\int\log||f|^2+\varepsilon|\right\} = \frac{1}{2\pi}\int_{-\pi}^{\pi}\exp(\lambda)d\omega = \frac{1}{2\pi}\int e^{\psi}(|f|^2+\varepsilon) \geq \frac{1}{2\pi}\int e^{\psi}|f|^2 \geq \inf_{F\in\bar{C}}\|F\|^2 = g_0 > 0.$$

The monotone convergence theorem, for $\varepsilon \to 0$, yields $\int_{-\pi}^{\pi} \log |f(e^{i\omega})|^2 d\omega > -\infty$.

Inner-Outer Factorization

Example:
$$4\frac{(z-2)(z-3)}{(z-0.5)(z-0.6)} = \underbrace{\frac{(z-2)(z-3)}{(1-2z)(1-3z)}}_{\text{"inner function"}} \cdot \underbrace{4\frac{(1-2z)(1-3z)}{(z-0.5)(z-0.6)}}_{\text{"outer function"}}$$

Definitions

An inner function is an H_{∞} function with unit modulus almost everywhere in \mathbb{T} . An outer function is an $f \in H_1$ that can be written as

$$f(z) = \alpha \exp\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{z + e^{-i\omega}}{z - e^{-i\omega}} k(e^{i\omega}) d\omega\right), \qquad z \in \mathbb{E},$$

where $k: \mathbb{T} \to \mathbb{R}$ is an integrable function, and $|\alpha| = 1$.

Remark: An outer function cannot have zeros in E.

Inner-Outer Factorization (cont.)

Theorem (Beurling). Let $f \in H_1$ be nonzero. Then, $f = f_I \cdot f_O$, where f_I is inner and f_O is outer. This factorization is unique up to a constant of unit modulus.

Proof idea: Let $k = \log |f|$ (integrable by the lemma on slide 14) in the definition of outer function. \square

Corollary (Riesz factorization theorem)

 $f \in H_1$ iff there are $g, h \in H_2$ s.t. f = gh and $||f||_{H_1} = ||g||_{H_2} ||h||_{H_2}$.

Proof. Since $f = f_I f_O$, where f_I is inner and f_O is outer, let $g = \sqrt{f_O}$ and $h = \sqrt{f_O} f_I$.

Feedback Control and Youla Parameterization

Approaches to H_{∞} Contro

The Big Picture

Hardy Spaces

Hankel Matrices and Operators

Nehari's Theorem

 H_{∞} Control Example

Bonus Slide

Hankel Matrices and Operators

A causal discrete-time linear system G is defined by the relation

$$y_t = \sum_{k=0}^{\infty} g_k u_{t-k} = \sum_{k=-\infty}^t g_{t-k} u_k, \qquad t \in \mathbb{Z},$$

or, in matrix form,

If we constrain the input $(u_t)_{t\in\mathbb{Z}}$ so that $u_t=0$ for t>0, and project $(y_t)_{t\in\mathbb{Z}}$ onto $\ell_2(\mathbb{Z}_+)$ (*i.e.*, only focus on v_t for $t \ge 0$), we obtain

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} g_0 & g_1 & g_2 & \cdots \\ g_1 & g_2 & g_3 & \cdots \\ g_2 & g_3 & \ddots & \\ \vdots & & & \end{bmatrix} \begin{bmatrix} u_0 \\ u_{-1} \\ u_{-2} \\ \vdots \end{bmatrix} \quad \begin{array}{l} Hankel \ operator, \ \Gamma_G, \ with \ symbol \ G = \\ \sum_{k=-\infty}^{\infty} g_k z^{-k}, \ \text{relating past inputs } u \in \ell_2(\mathbb{Z}_-) \\ \text{to future outputs } y \in \ell_2(\mathbb{Z}_+). \end{array}$$

infinite Hankel matrix (constant along its anti-diagonals)

If R is the reversion operator on $L_2(\mathbb{T})$, $R\left(\sum_{k=-\infty}^\infty a_k z^{-k}\right) := \sum_{k=-\infty}^\infty a_{-k} z^{-k}$, and M_G is the multiplication operator on $L_2(\mathbb{T})$ by G, $M_G f = G f$, then Γ_G can be seen as an operator on H_2 :

$$\Gamma_G = P_{H_2} M_G R \Big|_{H_2}$$

Note that if $G(z) = g_1 z^{-1} + g_2 z^{-2} + \cdots$ is the transfer function of a system described by

$$\begin{aligned} x_{t+1} &= Ax_t + Bu_t & \text{State-space representation} \\ y_t &= Cx_t, & \text{(with state } x_t \in \mathbb{R}^n) \end{aligned}$$

then $G(z) = C(zI - A)^{-1}B$, and the Hankel matrix of zG(z) is

$$\begin{bmatrix} g_1 & g_2 & g_3 & \cdots \\ g_2 & g_3 & g_4 \\ \vdots & & & \end{bmatrix} = \begin{bmatrix} CB & CAB & CA^2B & \cdots \\ CAB & CA^2B & CA^3B \\ & & & & & \\ CA^2B & CA^3B & & & \\ & & & & & \\ \vdots & & & & & \end{bmatrix} = \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots & & & & \\ \end{bmatrix} \underbrace{\begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots & & & \\ \Psi_c \colon \ell_2 \to \mathbb{C}^n \\ \text{controllability operator} \end{bmatrix}}_{\Psi_c \colon \ell_2 \to \mathbb{C}^n}.$$

This means that the Hankel operator can be decomposed into a *controllability operator* (mapping past inputs to initial state x_0) and an *observability operator* (mapping the initial state to future outputs).

Norm of Γ_G

Assume that G is controllable and observable, i.e., that Ψ_c is surjective and Ψ_o is injective, respectively. Since $\Gamma_G = \Psi_o \Psi_c$, we have, for every $x \in \ell_2$,

$$\|\Gamma_G x\|^2 = (\Gamma_G x, \Gamma_G x) = (\Psi_o \Psi_c x, \Psi_o \Psi_c x) = (\Psi_o^* \Psi_o \Psi_c x, \Psi_c x) = (\Psi_o^* \Psi_o y, y),$$

where $y = \Psi_c x$. Hence

$$\|\Gamma_G\|^2 = \sup_{\substack{y = \Psi_c x \\ \|x\|_{\ell_2} \leqslant 1}} (\Psi_o^* \Psi_o y, y) = \sup_{\substack{y = \Psi_c x \\ \|x\|_{\ell_2} \leqslant 1}} y^T [\Psi_o^* \Psi_o] y = \sup_{y^T [\Psi_c \Psi_c^*]^{-1} y \leqslant 1} y^T [\Psi_o^* \Psi_o] y.$$

The last step is due to that $y=\Psi_c x$ for some $x\in\ell_2$ s.t. $\|x\|\leqslant 1$ iff $y^T[\Psi_c\Psi_c^*]^{-1}y\leqslant 1$, which holds since $\min_{x\in\ell_2,y=\Psi_c x}\|x\|^2=y^T[\Psi_c\Psi_c^*]^{-1}y$. This follows from a result in the bonus slides of Topic 8, which states that the minimizer x^{opt} satisfies $x^{\mathrm{opt}}=\Psi_c^*z$ for some $z\in\mathbb{C}^n$ s.t. $y=\Psi_c\Psi_c^*z$, i.e., $x^{\mathrm{opt}}=\Psi_c^*[\Psi_c\Psi_c^*]^{-1}y$, hence $\|x^{\mathrm{opt}}\|^2=y^T[\Psi_c\Psi_c^*]^{-1}y$ (note that the assumption that $\mathcal{R}(\Psi_c)=\mathbb{C}^n$ holds because G is controllable).

Norm of Γ_G (cont.)

Now,

$$\begin{split} L_c &:= \Psi_c \Psi_c^* = \sum_{k=0}^{\infty} A^k B B^T (A^T)^k \\ L_o &:= \Psi_o^* \Psi_o = \sum_{k=0}^{\infty} (A^T)^k C^T C A^k \end{split} \text{ are solutions of: } \begin{aligned} L_c - A L_c A^T &= B B^T \\ L_o - A^T L_o A &= C^T C. \end{aligned} \tag{Lyapunov equations}$$

Therefore:

$$\begin{split} \|\Gamma_G\|^2 &= \max_{y^T L_c^{-1} y \leqslant 1} y^T L_o y & (x = L_c^{-1/2} y) \\ &= \max_{x^T x \leqslant 1} x^T L_c^{1/2} L_o L_c^{1/2} x & Easy \ eigenvalue \ problem \\ &= \lambda_{\max} (L_c^{1/2} L_o L_c^{1/2}) \\ &= \lambda_{\max} (L_c L_o). \end{split}$$

Note. $\lambda_{\max}(AB) = \lambda_{\max}(BA)$, since $ABx = \lambda_{\max}x$ can be written as the set of equations $Ay = \lambda_{\max}x$, Bx = y, or equivalently, $BAy = \lambda_{\max}y$, and vice versa.

Feedback Control and Youla Parameterization

Approaches to H_{∞} Control

The Big Picture

Hardy Spaces

Hankel Matrices and Operators

Nehari's Theorem

 H_{∞} Control Example

Bonus Slide

Nehari's Theorem

Notice that if $\Gamma = P_{H_2} M_g R \Big|_{H_2}$ is a Hankel operator, then

$$\|\Gamma\| = \|P_{H_2} M_g R\| \leq \|P_{H_2}\| \, \|M_g\| \, \|R\| = \|g\|_\infty.$$

The following result establishes a deep connection between H_{∞} problems and Hankel operators:

Theorem (Nehari)

If Γ is a bounded Hankel operator on H_2 , then there is a $g \in L_\infty(\mathbb{T})$ s.t. $\Gamma = P_{H_2} M_g R \Big|_{H_2}$, and $\|g\|_\infty = \|\Gamma\|$.

Remark: Two symbols $g,h\in L_\infty(\mathbb{T})$ give the same Hankel operator iff their nonnegative Fourier coefficients coincide, *i.e.*, $g(z)=\sum_{k=-\infty}^\infty g_kz^{-k}$ and $h(z)=\sum_{k=-\infty}^\infty h_kz^{-k}$, with $g_k=h_k$ for all $k\geqslant 0$. Thus, Nehari's theorem establishes the greatest lower bound on the ∞ -norm of a $g\in L_\infty(\mathbb{T})$ whose projection onto H_2 is fixed.

Corollary

Given $g\in L_{\infty}(\mathbb{T})$, we have that $\|\Gamma_g\|=\min_{h\in H_{\infty}^{\perp}}\|g-h\|_{\infty}$, where H_{∞}^{\perp} is the space of those $f(z)=\sum_{k=-\infty}^{-1}f_kz^{-k}$ which are analytic and bounded in $\mathbb{D}=\{z\in\mathbb{C}\colon |z|<1\}$.

Given $\Gamma,$ the problem of finding a symbol for Γ of minimum norm, i.e.,

$$\|\Gamma\| = \inf \{ \|g\|_{\infty} : g \in L_{\infty}(\mathbb{T}) \text{ is a symbol for } \Gamma \},$$

is called the Nehari extension problem.

Proof of Nehari's theorem

We already know that if g is a symbol for Γ , then $\|\Gamma\| \le \|g\|_{\infty}$. Our goal then is to show that there is a symbol for which we achieve equality. As the non-positive Fourier coefficients of g are fixed, we need to determine the positive ones, which amounts to extend Γ to a Hankel operator on L_2 . We will do this by extending a related functional from H_1 to L_1 .

The entries of the matrix of Γ are $a_{n+m}:=(\Gamma z^{-n},z^{-m})=(\Gamma z^{-n-m},1).$ Therefore,

$$\left(\Gamma\sum_{n=0}^Nb_nz^{-n},\sum_{m=0}^M\overline{c_m}z^{-m}\right)=\left(\Gamma\sum_{n=0}^Nb_nz^{-n}\sum_{m=0}^Mc_mz^{-m},1\right).$$

Denote $\left(\sum_{m=0}^{M}c_{m}z^{-m}\right)^{+}:=\sum_{m=0}^{M}\overline{c_{m}}z^{-m}$. Then, for polynomials f_{1},f_{2} we can define the functional

$$\alpha(f_1f_2) = (\Gamma f_1, f_2^+) = (\Gamma f_1f_2, 1),$$

which satisfies $|\alpha(f_1f_2)| \le ||\Gamma|| ||f_1||_2 ||f_2||_2$.

Proof of Nehari's theorem (cont.)

By Riesz Factorization theorem, every $f \in H_1$ can be factorized as a product of H_2 functions f_1 , f_2 , and polynomials are dense in H_2 , so α can be extended uniquely to $\tilde{\alpha}: H_1 \to \mathbb{C}$, by $\tilde{\alpha}(f) = \tilde{\alpha}(f_1f_2) = (\Gamma f_1, f_2^+)$.

Furthermore, $|\tilde{\alpha}(f)| \le \|\Gamma\| \|f_1\|_2 \|f_2\|_2 = \|\Gamma\| \|f\|_1$, so $\|\tilde{\alpha}\| \le \|\Gamma\|$.

Since H_1 is a subspace of L_1 , by Hahn-Banach there is an extension $\bar{\alpha}$ of $\bar{\alpha}$ to L_1 s.t. $\|\bar{\alpha}\| = \|\bar{\alpha}\| \le \|\Gamma\|$.

Since the dual of $L_1(\mathbb{T})$ is $L_\infty(\mathbb{T})$, $\bar{\alpha}(f)=\int_{-\pi}^{\pi}f(e^{i\omega})h(e^{i\omega})d\omega$ for some $h\in L_\infty(\mathbb{T})$, with $\|h\|_\infty=\|\bar{\alpha}\|\leq \|\Gamma\|$. Now, for all $n,m\geqslant 0$,

$$a_{n+m}=(\Gamma z^{-n-m},1)=\bar{\alpha}(z^{-n-m})=\int_{-\pi}^{\pi}e^{-i(n+m)\omega}h(e^{i\omega})d\omega.$$

Therefore, $h(z) = \sum_{k=-\infty}^{\infty} h_k z^{-k}$ with $h_{-n} = a_n$ for all $n \ge 0$, and $\|h\|_{\infty} \le \|\Gamma\|$.

This means that by taking $g(e^{i\omega}) = h(e^{-i\omega})$, we obtain the desired symbol for Γ .

How can we compute the optimal symbol $g \in L_{\infty}(\mathbb{T})$?

Theorem (Sarason)

If Γ is a bounded Hankel operator on H_2 , and $f \in H_2$ is nonzero and s.t. $\| \Gamma f \|_2 = \| \Gamma \| \| f \|_2$, then there is a unique symbol $g \in L_\infty(\mathbb{T})$ for Γ of minimum norm, $\| g \|_\infty = \| \Gamma \|$, and it is given by $g = \Gamma f / R f$. Moreover, $|g(e^{i\omega})|$ is constant almost everywhere.

Proof. Let $g \in L_{\infty}(\mathbb{T})$ be s.t. $\|g\|_{\infty} = \|\Gamma\|$, and recall that $\Gamma f = P_{H_2}M_gRf$. Therefore,

$$\|\Gamma\|\|f\|_2 = \|\Gamma f\|_2 = \|P_{H_2}M_gRf\|_2 \leq \|M_gRf\|_2 \leq \|g\|_{\infty}\|Rf\|_2 = \|\Gamma\|\|f\|_2.$$

Since the leftmost and rightmost sides coincide, we have equality throughout. Therefore, $\|P_{H_2}M_gRf\|_2 = \|gRf\|_2, i.e., gRf \in H_2, \text{ so } \Gamma f = gRf, \text{ or } g = \Gamma f/Rf, \text{ which shows that } g \text{ is unique.}$ Moreover, since $\|gRf\|_2 = \|g\|_{\infty} \|Rf\|_2$, it follows that $|g(e^{i\omega})|$ is constant almost everywhere.

How can we find an $f \in H_2$ s.t. $\|\Gamma f\|_2 = \|\Gamma\| \|f\|_2$?

Let $y_0 \in \mathbb{R}^n$ achieve the maximum in $\|\Gamma_G\| = \max_{y^T L_c^{-1} y \leqslant 1} y^T L_o y$. (How? Let $\tilde{y} = L_c^{-1/2} y$ and solve the eigenvalue problem: $\max_{\tilde{y}^T \tilde{y} \leqslant 1} \tilde{y}^T L_c^{1/2} L_o L_c^{1/2} \tilde{y}$.)

The sought f is s.t. $y_0 = \Psi_c f$, and to achieve equality in $\|\Gamma f\|_2 = \|\Gamma\| \|f\|_2$ it must have minimum norm. From the derivation at the end of Slide 21, this implies that

$$f = \Psi_c^* L_c^{-1} y_0,$$

or: $f_k = B^T(A^T)^k L_c^{-1} y_0$ for $k \ge 0$ (and zero otherwise), i.e., $f(z) = z B^T(zI - A^T)^{-1} L_c^{-1} y_0$ Also, $\Gamma f(z) = (\Psi_o \Psi_c f)(z) = (\Psi_o y_0)(z) = \sum_{k=0}^{\infty} C A^k y_0 z^{-k} = z C (zI - A)^{-1} y_0$, so

$$g(z) = \frac{(\Gamma f)(z)}{(Rf)(z)} = \frac{(\Psi_o y_0)(z)}{f(z^{-1})} = \frac{zC(zI - A)^{-1}y_0}{z^{-1}B^T(z^{-1}I - A^T)^{-1}L_c^{-1}y_0}.$$

Feedback Control and Youla Parameterization

Approaches to H_{∞} Control

The Big Picture

Hardy Spaces

Hankel Matrices and Operators

Nehari's Theorem

 H_{∞} Control Example

Bonus Slide

H_{∞} Control Example

Consider the system:

$$G(z) = \frac{z+2}{z-0.9}.$$

We want to control it so that the transfer function T from reference to output becomes

$$T(z) = \frac{1}{6.5} \frac{z + 0.3}{z - 0.8},$$

i.e., we want the closed loop to be slightly faster than G, and with static gain $T(e^{i0})=1$.

Using the Youla parameterization, we can impose these constraints by minimizing

$$\inf_{Q\in H_\infty}\|T-GQ\|_\infty.$$

Let's compute the optimum of

$$\inf_{Q \in H_{\infty}} \underbrace{\left\| \frac{1}{6.5} \frac{z+0.3}{z-0.8} - \frac{z+2}{z-0.9} Q(z) \right\|_{\infty}}_{=:J}.$$

Step 1: Factorize poles and zeros in \mathbb{D}

$$\begin{split} \left\| \frac{1}{6.5} \frac{z + 0.3}{z - 0.8} - \frac{z + 2}{z - 0.9} Q(z) \right\|_{\infty} &= \left\| \frac{1 + 2z}{z + 2} \left(\frac{1}{6.5} \frac{z + 0.3}{z - 0.8} - \frac{z + 2}{z - 0.9} Q(z) \right) \right\|_{\infty} \\ &= \left\| \frac{1}{6.5} \frac{(z^{-1} + 0.3)(2z^{-1} + 1)}{(z^{-1} - 0.8)(z^{-1} + 2)} - \tilde{Q}(z^{-1}) \right\|_{\infty} \\ &= \left\| -\frac{3}{104} \frac{(z + 10/3)(z + 2)}{(z - 1.25)(z + 0.5)} - \tilde{Q}(z^{-1}) \right\|_{\infty}, \end{split}$$

where $\tilde{Q}(z) := \frac{1+2z}{z-0.9}Q(z)$.

Step 2: Partial fraction expansion, to remove unstable poles

$$\begin{split} -\frac{3}{104} \frac{(z+10/3)(z+2)}{(z-1.25)(z+0.5)} &\approx -0.0288 + \frac{0.0701}{z+0.5} - \frac{0.2455}{z-1.25} \\ &= \underbrace{-0.0288 + \frac{0.0701}{z+0.5} + 0.1964}_{\in H_{\infty}} + \underbrace{\frac{-0.1964z}{z-1.25}}_{\in H_{\infty}^{\perp}} \\ &= \frac{0.1676z + 0.1538}{z+0.5} - \frac{0.1964z}{z-1.25}, \end{split}$$

SO

$$J = \left\| \frac{0.1676z + 0.1538}{z + 0.5} - Q'(z^{-1}) \right\|_{\infty},$$

where
$$Q'(z) := \tilde{Q}(z) + \frac{0.1964z^{-1}}{z^{-1} - 1.25} = \tilde{Q}(z) + \frac{0.1964}{1 - 1.25z} = \tilde{Q}(z) - \frac{0.1571}{z - 0.8}$$
.

Step 3: State-space realization of the problem

$$\frac{0.1676z + 0.1538}{z + 0.5} \frac{1}{z} \quad \Rightarrow \quad \begin{array}{c} x_{k+1} = \begin{bmatrix} -0.5 & 0 \\ 1 & 0 \end{bmatrix} x_k + \begin{bmatrix} 0.5 \\ 0 \end{bmatrix} u_k \\ y_k = \begin{bmatrix} 0.3352 & 0.3077 \end{bmatrix} x_k. \end{array}$$

Step 4: Compute Gramians (by solving their Lyapunov equations)

$$L_c = \begin{bmatrix} 0.3333 & -0.1667 \\ -0.1667 & 0.3333 \end{bmatrix}, \qquad L_o = \begin{bmatrix} 0.1385 & 0.1031 \\ 0.1031 & 0.0947 \end{bmatrix}.$$

Step 5: Compute norm of Hankel matrix

$$\|\Gamma\| = 0.1947.$$

Step 6: *Compute* $f \in H_2$ *s.t.* $\|\Gamma f\|_2 = \|\Gamma\| \|f\|_2$

$$y_0 = \begin{bmatrix} -0.3824 \\ -0.1834 \end{bmatrix}, \qquad f(z) = -0.94819 \frac{z + 0.7902}{z + 0.5}.$$

Step 7: Compute optimal symbol of Hankel matrix

$$(\Psi_o y_0)(z) = zC(zI - A)^{-1}y_0 = -0.18461\frac{z + 0.7902}{z + 0.5},$$

SO

$$g(z) = 0.1750 \frac{(z + 0.7902)(z^{-1} + 0.5)}{(z^{-1} + 0.7902)(z + 0.5)}.$$

Notice that $|g(e^{i\omega})| = 0.1947$ for all ω (as we expected).

Step 8: Compute optimal Q

$$\begin{split} Q(z) &= \frac{z - 0.9}{1 + 2z} \left[\frac{0.1571}{z - 0.8} + \frac{0.1676z^{-1} + 0.1538}{z^{-1} + 0.5} - 0.1750 \frac{(z^{-1} + 0.7902)(z + 0.5)}{(z + 0.7902)(z^{-1} + 0.5)} \right] \\ &= \frac{0.096111(z - 0.9)}{(z + 0.7902)(z - 0.8)}. \end{split}$$

Last Slide

Thank you for attending the course!

Feedback Control and Youla Parameterization

Approaches to H_{∞} Control

The Big Picture

Hardy Spaces

Hankel Matrices and Operators

Nehari's Theorem

 H_{∞} Control Example

Bonus Slides

Bonus: Proof of Youla / Affine Parametrization

Notice that, in terms of the Youla parameter Q := C/[1 + GC],

$$T = \frac{GC}{1+GC} = GQ$$

$$S = \frac{1}{1+GC} = 1-GQ$$

$$S_i = \frac{G}{1+GC} = G - G^2Q$$

$$S_u = \frac{C}{1+GC} = Q,$$

hence all sensitivity functions are affine in Q. Now, if G and Q are stable, all sensitivity functions are stable as well, while conversely, if the sensitivity functions are stable, $Q = S_u$ is stable too.

Poisson representation

Consider an analytic $f: \bar{\mathbb{E}} \to \mathbb{C}$. By Cauchy's integral formula, for every analytic $h: \bar{\mathbb{E}} \to \mathbb{C}$:

$$f(z) = -\frac{1}{2\pi i} \oint_{\mathbb{T}} \frac{f(w)}{w-z} dw = -\frac{1}{2\pi i} \oint_{\mathbb{T}} f(w) \left[\frac{1}{w-z} + h(w) \right] dw = -\frac{1}{2\pi} \oint_{\mathbb{T}} f(w) \left[\frac{w}{w-z} + wh(w) \right] \frac{dw}{iw},$$

for $z \in \mathbb{E}$, since the integral of an analytic function in $\tilde{\mathbb{E}}$ around \mathbb{T} is zero. Note that if $w = e^{it}$ $(t \in [-\pi, \pi])$, dw/iw = dt. We want to choose h so the formula in brackets is real. Now,

$$\frac{w}{w-z}+wh(w)=1+\frac{z}{w-z}+wh(w)=1+\frac{z\bar{w}}{1-z\bar{w}}+wh(w), \qquad (w\in\mathbb{T})$$

so we can force $wh(w)=z\bar{w}/(1-z\bar{w})=\bar{z}w/(1-\bar{z}w),$ or $h(w)=\bar{z}/(1-\bar{z}w).$ Then, making $w=e^{it}$ and $z=re^{i\theta}$ (r>1), we obtain

$$f(re^{i\theta}) = -\frac{1}{2\pi} \int_{-\pi}^{\pi} \left[1 + 2 \operatorname{Re} \left(\frac{re^{i(\theta-t)}}{1 - re^{i(\theta-t)}} \right) \right] f(e^{it}) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \underbrace{\frac{r^2 - 1}{1 - 2r \cos(\theta - t) + r^2}}_{=:P(r,\theta-t) \text{ "Poisson kernel in } \mathbb{E}"} f(e^{it}) dt.$$

Poisson representation of H_p functions (p > 1)

Note first that, for every $\alpha \in (1, \infty)$,

$$f(\alpha r e^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P(r, \theta - t) f(\alpha e^{it}) dt \qquad (r \in (1, \infty), \theta \in [-\pi, \pi]).$$

To see this, apply the Poisson representation to $f_{\alpha}(z) = f(\alpha z)$, which is also analytic in $\bar{\mathbb{E}}$.

If $f \in H_p$ for p > 1, then $\tilde{f}_\alpha \in L_p[-\pi,\pi]$, where $\tilde{f}_\alpha(\omega) := f_\alpha(e^{i\omega})$, and $\|\tilde{f}_\alpha\|_p \le \|f\|_p$. Consider a sequence (\tilde{f}_{α_n}) where $\alpha_n \to 1_+$. Since $L_p = L_q^*$, where q is s.t. 1/p + 1/q = 1, by Banach-Alaoglu, there is a subsequence (\tilde{f}_{α_k}) s.t. $\tilde{f}_{\alpha_k} \to g \in L_p$ in a weak* sense (see bonus slides of Topic 7). Thus,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} P(r, \theta - t) g(t) dt = \frac{1}{2\pi} \langle P(r, \theta - \cdot, g) \rangle = \lim_{k \to \infty} \frac{1}{2\pi} \langle P(r, \theta - \cdot, \tilde{f}_{\alpha_k}) \rangle = \lim_{k \to \infty} f(\alpha_k r e^{i\theta}) = f(r e^{i\theta}),$$

since f is continuous in \mathbb{E} ; this yields a Poisson representation for analytic functions in \mathbb{E} .

Fatou's Theorem. Let $g \in L_1[-\pi, \pi]$, and assume that

$$f(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P(r, \theta - t) g(t) dt, \quad \text{for all } r \in (1, \infty), \theta \in [-\pi, \pi].$$

Then, the *radial limit* $\lim_{r\to 1_+} f(re^{i\theta}) = g(\theta)$ exists for almost all $\theta \in [-\pi, \pi]$.

Proof. From the Poisson representation of $f \equiv 1$, $\int_{-\pi}^{\pi} P(r, \theta - t) dt = 2\pi$ for all r, θ . Then, by integration by parts, if $G(t) := \int_{-\pi}^{t} g(\tau) d\tau$,

$$f(re^{i\theta})-g(\theta)=\frac{1}{2\pi}\int_{-\pi}^{\pi}P(r,\theta-t)[g(t)-g(0)]dt=-\frac{1}{2\pi}\int_{-\pi}^{\pi}\frac{\partial P(r,\theta-t)}{\partial t}[G(t)-g(\theta)t]dt.$$

Now, for $0 < \delta \le |\theta - t| \le \pi$,

$$\left| \frac{\partial P(r, \theta - t)}{\partial t} \right| \le \frac{2r(r^2 - 1)}{[1 - 2r\cos(\delta) + r^2]^2} \to 0 \text{ as } r \to 1_+,$$

$$\text{while} - \frac{1}{2\pi} \int_{\theta-\delta}^{\theta+\delta} \frac{\partial P(r,\theta-t)}{\partial t} [G(t) - g(\theta)t] dt = -\frac{1}{2\pi} \int_{0}^{\delta} \frac{\partial P(r,t)}{\partial t} \, t \left[\frac{G(\theta+t) - G(\theta-t)}{2t} - g(\theta) \right] dt.$$

Given $\varepsilon > 0$, let $\delta > 0$ be small enough so $|g(\theta) - [G(\theta + t) - G(\theta - t)]/2t| \le \varepsilon$ for all $t \in [0, \delta]$ (this holds for almost all θ , by the Radon-Nikodym theorem). These two estimates imply that $\lim_{r \to 1_+} f(r) = g(0)$. \square

Hardy's theorem

Let $f: \mathbb{E} \to \mathbb{C}$ be analytic, and define $M_p(f;r) := \left[(2\pi)^{-1} \int_{-\pi}^{\pi} |f(re^{it})|^p dt \right]^{1/p}$ for $r \in (1,\infty)$ and $p \in [1,\infty]$. Then, $M_p(f;r)$ is non-increasing in r.

Proof (Taylor, 1950). Let us define a function $F: \mathbb{E} \to L_p[-\pi,\pi]$ by $[F(z)](\theta) = f(ze^{i\theta})$ $(\theta \in (-\pi,\pi))$. Notice that $\|F(z)\|_p = M_p(f,|z|)$. We will show now that the maximum of $\|F(z)\|_p$ over the open region $r\mathbb{E} = \{z \in \mathbb{C}: |z| > r\}$ cannot be achieved inside $r\mathbb{E}$, unless $\|F(z)\|_p$ is constant in it. Indeed, if $\|F(z_0)\|_p = \sup_{z \in r\mathbb{E}} \|F(z)\|_p$ for some $z_0 \in r\mathbb{E}$, then since by Cauchy's integral formula (defining the integral entry-wisely)

$$[F(z_0)](\theta) = f(z_0e^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(z_0e^{i\theta} + \delta e^{i(\theta+t)})dt = \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} F(z_0 + \delta e^{it})dt\right](e^{i\theta}),$$

where $\delta>0$ is small enough so that the integration path is inside $r\mathbb{E}$, and it includes points z for which $\|F(z)\|_p<\|F(z_0)\|_p$, then $\|F(z_0)\|_p\leq \frac{1}{2\pi}\int_{-\pi}^{\pi}\|F(z_0+\delta e^{it})\|_p\,dt\leq \|F(z_0)\|_p$, which contradicts the assumption that $\|F(z)\|_p$ is not constant in the integration path. This contradiction proves that $M_p(f;r)=\sup_{z\in r\mathbb{E}}\|F(z)\|_p$ is non-decreasing in r.

The previous three results imply that every $f \in H_p$, for p > 1, has the Poisson representation

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} P(r, \theta - t) \tilde{f}(t) dt = f(re^{i\theta}),$$

where $\tilde{f}(t) = \lim_{r \to 1_+} f(re^{it})$ for all $t \in [-\pi, \pi]$. Furthermore, since $\|\tilde{f}_{\alpha}\|_p \leq \|f\|_p$, the Lebesgue dominated convergence theorem implies that $\|\tilde{f}\|_p = \|f\|_p$.

Note. Our approach to the development of a Poisson representation fails for H_1 functions because $L_1[-\pi,\pi]$ is not the dual of any normed space. In particular, for an $f \in H_1$, using the Riesz representation theorem for the dual of $C[-\pi,\pi]$, one arrives at the Poisson-Stieltjes representation

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} P(r, \theta - t) dG(t) = f(re^{i\theta}),$$

where $G \in \text{NBV}[-\pi, \pi]$, but extra effort is needed to show that it is differentiable (which leads to the *F. and M. Riesz theorem*).