

Analyse von hierarchischen Daten in R mittels Multilevel Analyse

Masterarbeit von

Noah Bosshart

Mat-Nr.: 13-747-141

Betreut durch

Prof. Dr. Carolin Strobl

14. Januar 2020

Inhaltsverzeichnis

1	Abstract			
2	Ein	leitung	5	
3	Hin	tergrund und Theorie der Multilevel Analyse	8	
	3.1	Methoden zum Umgang mit hierarchischen Daten	8	
		3.1.1 Aggregation und Disaggregation	8	
		3.1.2 Intraklassen Korrelation und Design Effect	9	
	3.2	Hierarchische Linearen Modelle	9	
		3.2.1 Random Intercept Modell	9	
		3.2.2 Random Intercept and Slope Modell	9	
	3.3	Vergleich von Hierarchischen Linearen Modellen	9	
	3.4	R Pakete für die Multilevel Analyse	10	
4	Literatur und Forschungsfrage			
	4.1	Stand der Literatur zur HLM	11	
	4.2	Herleitung der Forschungsfrage	11	
5	Design der Simulationsstudie			
	5.1	Manipulierte Faktoren	11	
	5.2	Konstante Faktoren	11	
	5.3	Untersuchte Faktoren	11	
6	Erg	Ergebnisse der Simulationsstudie		
7	Anwendung und Beschreibung der Shiny App			
8	Diskussion			
9	Lite	teraturverzeichnis 1		

10 Abbildungsverzeichnis	12
11 Anhang	12

1 Abstract

2 Einleitung

Hierarchische Daten treten häufig in den Sozialwissenschaften auf, unter anderem auch in der Psychologie (Snijders & Bosker, 2012). Von hierarchischen Daten wird gesprochen, wenn beispielsweise Daten von Schulkindern innerhalb verschiedener Schulklassen oder von Mitarbeitern aus mehreren Teams erhoben werden. Aber auch Daten aus Langzeitstudien werden als gruppiert bezeichnet, da mehrere Messzeitpunkte innerhalb einer Person gruppiert sind. Hierarchische Daten werden in Levels unterteilt, wobei Daten aus der niedrigsten Stufe als Level-1 Einheiten bezeichnet werden (Snijders & Bosker, 2012). Ein Beispiel für Level-1 Einheiten sind Schulkinder. Diese Schulkinder befinden sich wiederum in Klassen, die in der Hierarchiestufe höher sind und folglich als Level-2 Einheiten bezeichnet werden. Würde man nun in einer Studie nicht nur Schulkinder in Schulklassen, sondern auch die Schulen selbst berücksichtigen, würden die Schulen als Level-3 Einheit bezeichnet werden. Die Anzahl der Levels könnte man theoretisch beliebig hoch wählen, solange es das Studiendesign erlaubt und es aus der Perspektive der Forschungsfrage sinnvoll ist. Der Einfachheit halber beschränken wir uns im Laufe dieser Arbeit aber auf hierarchische Daten mit zwei Levels. In Tabelle 1 werden einige Beispiele für Level-1 und Level-2 Einheiten aufgeführt.

Level-1	Level-2
Schulkinder	Klasse
Studierende	Studienrichtungen
Kinder	Familien
Familien	Nachbarschaften
Mitarbeiter	Teams
Teams	Unternehmen
Patienten	Therapeuten
Therapeuten	Kliniken
Mehrere Messzeitpunkte	Person

Tabelle 1: Beispiele für Level-1 und Level-2 Einheiten

Dabei ist zu beachten, dass sich das Level der selben Einheit je nach Untersuchungsgegenstand ändern kann. Wie man in der Tabelle 1 erkennen kann, sind Familien einmal als Level-1 und einmal als Level-2 Einheit aufgeführt. Daher ist es wichtig die Level Bezeichnung nicht als starr zu betrachtet. Vielmehr sollte man sich grundsätzlich an den niedrigsten Einheiten im Datensatz orientieren. Diesen Einheiten wird dann das Level-1 zugeschrieben.

In der Forschung ist es aus Kostengründen oder aus Gründen des Studiendesigns oft nicht möglich, solche gruppierte Datenstrukturen zu vermeiden (Snijders & Bosker, 2012; Woltman et al., 2012). Als eine von vielen Ursachen, die zur Entstehung solcher Datenstrukturen führt, nennen Snijders und Bosker (2012) multistage sampling. Unter multistage sampling versteht man, dass die Forschenden in der Datenerhebung auf in der Population vorhandene Gruppen zugreifen. Beispielsweise ist es Kostengünstiger zufällig 100 Schulkassen und von diesen Schulklassen wieder jeweils 10 Kinder auszuwählen als von 1000 Schulklassen jeweils nur einen Schulkind auszuwählen. Da man sonst in 1000 verschiedenen Schulklassen eine Studie durchführen müsste, um die gleiche Stichprobengrösse zu erreichen.

Dieses Auswahlverfahren führt dazu, dass die erhobenen Daten nicht mehr voneinander unabhängig sind. Werden nun aus jeder Schulklasse 10 Schulkinder für eine Studie ausgewählt, ist es sehr wahrscheinlich, dass Schulkinder aus der selben Klasse zueinander ähnlichere Leistungen erzielen werden. Dieser Zusammenhang kann auf unterschiedliche Ursache zurückzuführen sein. Beispielsweise könnte die didaktischen Fähigkeiten der Lehrpersonen oder die Lichtverhältnisse im Klassenzimmer einen Einfluss auf die Leistungen der Kinder aus der selben Klasse haben. Das heisst, dass Einflussfaktoren aus unterschiedlichen Levels sich gegenseitig beeinflussen können.

Nach Snijders und Bosker (2012) gibt es unterschiedliche Formen, wie diese Einheiten zueinander in Beziehung stehen können. Ein Beispiel für einen Zusammenhang auf Level-1 wäre, dass die Lernmotivation eines Schulkindes sich auf seine Schulische Leistung auswirkt. Aber auch Level-2 Einheiten können sich gegenseitig beeinflussen. Das Klima der Schulklasse könnte sich beispielsweise auf das Stressempfinden der Lehrperson aus-

wirken. Hier wird von einem Zusammenhang innerhalb des Levels gesprochen, weil die unabhängige Variable (z.B. Lernmotivation, Klima der Schulklasse) auf dem gleichen Level wie die abhängige Variable (z.B. schulische Leistung, Stressempfinden) ist. Häufig ist es allerdings der Fall, dass es levelübergreifende Zusammenhänge zwischen den Einheiten gibt. So können beispielsweise die didaktischen Fähigkeiten einer Lehrperson (Level-2) und die Lernmotivation der Schulkinder (Level-1) die individuelle Leistung (Level-1) beeinflussen. Dieser Zusammenhang muss nicht zwingend direkt sein. Es kann auch vorkommen, dass die didaktischen Fähigkeiten den Zusammenhang zwischen Lernmotivation und individueller Leistung moderiert. In diesem Fall wird gemäss Snijders und Bosker (2012) von einer cross-level interaction gesprochen.

Werden diese Abhängigkeiten in der Analyse nicht berücksichtigt, kann dies zu einer erhöhten Fehler Typ-1 Rate führen (Dorman, 2008; McNeish, 2014). Das heisst, dass Forschende vermehrt zu Fehlschlüssen bezüglich des Einflusses ihrer Abhängigen Variablen gelangen und irrtümlich annehmen, einen Effekt eines Verfahren gefunden zu haben, obwohl es diesen Effekt gar nicht gibt. Das Vorhandensein von hierarchischen Daten ist allerdings kein unlösbares Problem. Mit Analyseansätzen, die diese hierarchische Struktur der Daten berücksichtigen, lassen sich solche erhöhten Fehler Typ-1 Raten vermeiden. Einer dieser Ansätze ist die Multilevel Analyse, die im Fokus dieser Arbeit steht.

Diese Arbeit kann in drei Teile unterteilt werden. Erster Teil ist Einführung und Theorie zur Multilevel Analyse, zweiter Teil ist das durchführen einer Simulationsstudie, um spezifisch aufzuzeigen, warum es ratsam ist bei hierarchischen datenstrukturen Mulitlevel Ansätze an stelle normaler lineare Regression zu verwenden. Im dritten und letzten teil wird eine in R Programmierte Web-App vorgestellt, in der die im zweiten Teil durchgeführte Simulationsstudie selbst durchgeführt werden kann und die Ergebnisse visualisiert dargestellt werden, um das Verständnis und den Nutzen von Multilevel Analyse dem Nutzer näher zu bringen.

Wie in dieser Einleutung kurz erläutert wurde, gibt es viele Situationen in denen hierarchische Daten vorhanden sind und wenn diese Strukturen nicht berücksichtigt werden, kann man zu Fehlschlüssen gelangen. Im nächsten Abschnitt wird nun etwas genauer auf die Theorie zur Multilevel Analyse eingegangen. Dabei werden zuerst mögliche Methoden besprochen, wie man hierarchische Datenstrukturen in der Analyse berücksichtigen kann und warum auch diese Methoden nicht immer völlig unproblematisch sein können.

3 Hintergrund und Theorie der Multilevel Analyse

Nach dieser kurzen Einleitung zum Thema wird in diesem Abschnitt nun etwas genauer auf die Theorie der Multilevel Analyse eingegangen. Als erstes werden

Im folgenden Abschnitt wird nun die Theorie der Multilevel Analyse genau besprochen. Zuerst wird auf das zugrundeliegende statistische Modell der Multilevel Analyse eingegangen. Dabei wird auch die erste Notation eines hierarchischen linearen Modells vorgestellt. Zuerst werden wir uns auf das Random Intercept Modell konzentrieren. Dazu werden auch noch weitere wichtige Kennwerte eingeführt, die bei einer Multilevel Analyse zu beachten sind. Am Ende dieses Kapitels werden die Random Intercept and Slope Modelle vorgestellt.

3.1 Methoden zum Umgang mit hierarchischen Daten

3.1.1 Aggregation und Disaggregation

Was passiert wenn genestete Strukturen ignoriert (aggregiert) werden Snijders & Bosker (2012).

Stichproben sollten immer zufällig gezogen werden, dies ist häufig aber nicht der Fall, da es aus Kostengründen einfacher ist bereits vorhandene Gruppen (Cluster) zu ziehen. Beispielsweise sind das Klassen, Teams, Nachbarschaften, etc. Sobald aber solche Cluster gezogen werden, bestehen Abhängigkeiten zwischen den einzelnen Datenpunkte innerhalb der Cluster. Folglich ist die Annahme der Unabhängigkeit der Varianzen von linearen Modellen verletzt.

Bei steigender Intraklassenkorrelation nimmt ebenfalls der α -Fehler (Fehler Typ-1) zu Dorman (2008).

3.1.2 Intraklassen Korrelation und Design Effect

Besprechen von ICC und Design Effekt (Vlg. Dazu Guide ML Analysis von J. Peugh 2009)

3.2 Hierarchische Linearen Modelle

Das zugrundeliegende statistische Modell, das zur Multilevel Analyse verwendet wird ist das Hierarchische lineare Modell (auch HLM). Dieses Modell ist eine Erweiterung der multiplen linearen Regression, das zusätzlich genestete zufällige Koeffizienten beinhaltet Snijders & Bosker (2012).

Aufbau erklären. Was ist das richtige Vorgehen um ein Multilevel Modell zu erstellen. Nullmodell bis hin zu Cross-Level Modellen etc. An Guides zu Multi Level Modellen Orienteieren! Snijders & Bosker (2012) (Weitere Guides / Tutorials zu MLM finden)

Die meisten Modelle erlauben nicht mehr als 2-3 Random Slopes und konvergieren nicht Snijders & Bosker (2012)

3.2.1 Random Intercept Modell

3.2.2 Random Intercept and Slope Modell

3.3 Vergleich von Hierarchischen Linearen Modellen

Modelle welche sich nur in fixen Effekten unterscheiden sollten mit ML und Modelle welche sich in zufälligen Effekten unterscheiden mit REML verglichen werden Snijders & Bosker (2012)

Tests für feste Effekte Wald-Test Snijders & Bosker (2012) Inkl. Dummy-Test

Deviance Tests ebenfalls verwendbar für feste Effekte. Bei Random Intercept an chisquare verteilung mit df = anz. veränderte variable teile (wichtig fixed effect müssen gleich bleiben, wenn mit REML, sonst ML)

Da Varianzen nicht negativ werden können, wird oft einseitig getestet. Konservativere Möglichkeit druch halbierung des testwertes (SZweiseitiges Testen").

Deviance Tests für Random Slope etwas aufwändiger, df = m1 - m0 = p + 1 (anz. covarianzen p, von denen sich das m0 zu m1 unterscheiden + 1 varianz) Prüfwert wird für df = p und für df = p+1 in einer chi-quadrat verteilung bestimmt. danach mittelwert davon ergibt den eigentlichen prüfwert.

Konfidenzintervall am besten durch profile likelihood (via lme4 Paket). Profile likelihood verhindert, dass Konfidenzintervalle den Wert 0 Unterschreiten, da Varianzen nicht negativ sein können.

Wenn diese Methode nicht vorhanden ist können andere Methoden gewählt werden, die allerdings nicht so genau/reliabel sind.

Proportionale Reduktion der Varianz und Pseude R Squared (Zitation nötig!)

3.4 R Pakete für die Multilevel Analyse

Beschreibung von lme4 und grund warum in dieser Arbeit nur mit diesem Paket gearbeitet wird. (Buch und Studie von D. Bates)

- 4 Literatur und Forschungsfrage
- 4.1 Stand der Literatur zur HLM
- 4.2 Herleitung der Forschungsfrage
- 5 Design der Simulationsstudie
- 5.1 Manipulierte Faktoren
- 5.2 Konstante Faktoren
- 5.3 Untersuchte Faktoren
- 6 Ergebnisse der Simulationsstudie
- 7 Anwendung und Beschreibung der Shiny App
- 8 Diskussion

9 Literaturverzeichnis

- Dorman, J. P. (2008). The effect of clustering on statistical tests: an illustration using classroom environment data. *Educational Psychology*, 28 (5), 583–595.
- McNeish, D. M. (2014). Analyzing clustered data with ols regression: The effect of a hierarchical data structure. *Multiple Linear Regression Viewpoints*, 40 (1), 11–16.
- Snijders, T. A. B. & Bosker, R. J. (2012). Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling (2. Aufl.). Los Angeles: SAGE.
- Woltman, H., Feldstain, A., MacKay, J. C. & Rocchi, M. (2012). An introduction to hierarchical linear modeling. *Tutorials in quantitative methods for psychology*, 8 (1), 52–69.

10 Abbildungsverzeichnis

11 Anhang