מטלת מנחה (ממיין) 13

הקורס: 20474 – חשבון אינפיניטסימלי 1

חומר הלימוד למטלה: יחידה 3

מספר השאלות: 5 נקודות

סמסטר: ב2015 **מועד אחרון להגשה:** 2015ם

קיימות שתי חלופות להגשת מטלות:

- שליחת מטלות באמצעות מערכת המטלות המקוונת באתר הבית של הקורס
 - שליחת מטלות באמצעות הדואר או הגשה ישירה למנחה במפגשי ההנחיה

הסבר מפורט ב"נוהל הגשת מטלות מנחה"

ענו על ארבע מחמש השאלות

שאלה 1 (25 נקודות)

 $a_{n+1} = \sqrt{6a_n}$ ו- $0 < a_1 < 6$ לכל a_{n+1} לכל (a_n) ההי

. $\lim_{n \to \infty} a_n$ את וחשבו מתכנסת (a_n) הוכיחו כי

שאלה 2 (25 נקודות)

חשבו את הגבולות שלהלן אם הם קיימים. בכל מקרה שהגבול לא קיים, גם לא במובן הרחב, נמקו מדוע וחשבו את כל הגבולות החלקיים (גם גבולות חלקיים במובן הרחב).

$$\lim_{n \to \infty} \frac{(-5)^n - 2^n + 2}{3^n + (-2)^n - 2} \qquad . \aleph$$

$$\lim_{n \to \infty} \frac{3^n + (-2)^n - 2}{(-5)^n - 2^n + 2}$$

$$\lim_{n\to\infty} (\lfloor 2n\rfloor - 2\lfloor n\rfloor) \qquad .$$

$$\lim_{n\to\infty}\frac{\sqrt[n]{n!}}{n} \qquad .7$$

.2 מיחידה הדרכה: הגדירו על שאלה 15 מיחידה את חשבו את הדרכה: הגדירו (a_n) ביחידה (a_n) חשבו את הדרכה: הגדירו האדרכה: הגדירו (a_n)

שאלה 3 (25 נקודות)

יהיו (a_n) ו- (b_n) סדרות חסומות מלעיל.

$$\sup\{a_n+b_n\mid n\in N\}\leq \sup\{a_n\mid n\in N\}+\sup\{b_n\mid n\in N\}\qquad :$$
הוכיחו

- . ב. הדגימו סדרות $ig(a_nig)$ ו- $ig(b_nig)$ שעבורן מתקיים שוויון בסעיף אי
- . בסעיף אי-שוויון חזק (<) אי-שוויון חזק שעבורן שעבורן ((b_n) -ו (a_n) הדגימו גימו סדרות (

שאלה 4 (25 נקודות)

$$.(a_n) = n - \lfloor \sqrt{n} \rfloor^2$$
 תהי

- ע. הוכיחו כי הסדרה (a_n) חסומה מלרע.
- (a_n) ב. הוכיחו ש- 0 הוא גבול חלקי של
- . מצאו את $\{a_n \mid n \in \mathbb{N}\}$ וקבעו האם ל- ו $\lim_{n \to \infty} a_n$, $\inf\{a_n \mid n \in \mathbb{N}\}$ יש מינימום. נמקו את תשובתכם.
 - $n < \sqrt{n^2 + \ell} < n + 1$: יהי $n < \sqrt{n^2 + \ell} < n + 1$ מספר טבעי. הוכיחו שכמעט לכל מ
 - $oxedown(a_n)$ אם גבול הלקי הוא אבול מספר טבעי הוא די כדי להוכיח שכל היעזרו בטענת סעיף די כדי להוכיח
 - .ם חסומה תשובתכם מלעיל! נמקו את תשובתכם ו (a_n)
 - $\overline{\lim}_{n\to\infty} a_n$ ז. חשבו את

שאלה 5 (25 נקודות)

. היו $\left(b_{n}\right)$ -ו $\left(a_{n}\right)$ יהיי

- - ב. נניח ש- $\lim_{n\to\infty}(a_n+b_n)=L$ סופי).

 $.ig(b_nig)$ אז בול חלקי של הוא גבול הוא הוא ווא אז הוכיחו שלם a הוא גבול חלקי של

ג. נניח של- $\left(a_n\right)$ יש 20474 גבולות חלקיים (a_n) יש 20474 גבולות חלקיים. $\left(a_n+b_n\right)$ מתבדרת.