Apunte único: Álgebra I - Práctica 6

Por alumnos de Álgebra I Facultad de Ciencias Exactas y Naturales UBA

Choose your destiny:

(dobleclick en los ejercicio para saltar)

- Notas teóricas
- Ejercicios de la guía:
 - 1.
 3.
 5.
 7.
 9.
 11.
 13.
 15.

 2.
 4.
 6.
 8.
 10.
 12.
 14.
- Ejercicios de Parciales
 - **1**. **2**. **3**. **4**. **5**. **?**??.

Disclaimer:

Dirigido para aquél que esté listo para leerlo, o no tanto. Va con onda.

¡Recomendación para sacarle jugo al apunte!

Estudiar con resueltos puede ser un arma de doble filo. Si estás trabado, antes de saltar a la solución que hizo otra persona:

- Mirar la solución ni bien te trabás, te condicionas pavlovianamente a no pensar. Necesitás darle tiempo al cerebro para llegar a la solución.
- 1 Intentá un ejercicio similar, pero más fácil.
- No sale el fácil? Intentá uno aún más fácil.
- Fijate si tenés un ejercicio similar hecho en clase. Y mirá ese, así no quemás el ejercicio de la guía.
- Tomate 2 minutos para formular una pregunta que realmente sea lo que **no** entendés. Decir 'no me sale' ∄+. Escribí esa pregunta, vas a dormir mejor.

Ahora sí mirá la solución.

Si no te salen los ejercicios fáciles sin ayuda, no te van a salir los ejercicios más difíciles: Sentido común.

¡Los más fáciles van a salir! Son el alimento de nuestra confiaza.

Si mirás miles de soluciones a parciales en el afán de tener un ejemplo hecho de todas las variantes, estás apelando demasiado a la suerte de que te toque uno igual, pero no estás aprendiendo nada. Hacer un parcial bien lleva entre 3 y 4 horas. Así que si vos en 4 horas "hiciste" 3 o 4 parciales, algo raro debe haber. A los parciales se va a **pensar** y eso hay que practicarlo desde el primer día.

Mirá los videos de las teóricas de Teresa que son buenísimos .

Videos de prácticas de pandemia, complemento extra: Prácticas Pandemia .

Los ejercicios que se dan en clase suelen ser similares a los parciales, a veces más difíciles, repasalos siempre Just Do IT

El repo en github \mathbf{Q} para descargar las guías con los últimos updates.

La Guía 6 se actualizó por última vez: 30/12/24 @ 19:28

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram \bigcirc .

Notas teóricas:

Raíces de un número complejo:

 \bullet Tablita de ángulos agradables:

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin(\theta)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(\theta)$	0	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	1

- Sean $z, w \in \mathbb{C} \{0\}$, $z = r_z e^{\theta_z i}$ y $w = r_w e^{\theta_w i}$ con r_z , $s_w \in \mathbb{R}_{>0}$ y θ_z , $\theta_w \in \mathbb{R}$. Entonces $z = w \iff \begin{cases} r_z = r_w \\ \theta_z = \theta_w + 2k\pi, \text{ para algún } k \in \mathbb{Z} \end{cases}$
- raíces n-esimas: $w^n=z \iff \left\{ \begin{array}{l} (r_w)^n=r_z\\ \theta_w\cdot n=\theta_z+2k\pi \end{array} \right.$ para algún $k\in\mathbb{Z}$

De donde se obtendrán n raíces distintas:

$$w_k = z_w e^{\theta_{w_k} i}$$
, donde $r_w = \sqrt[n]{r_z}$ y $\theta_{w_k} = \frac{\theta_z}{n} + \frac{2k\pi}{n} = \frac{\theta_z + 2k\pi}{n}$

Entender bien como sacar raíces n-ésimas es importantísimo para toda la guía de complejos y la próxima de polinomios.

Grupos G_n :

•
$$G_n = \{ w \in \mathbb{C} / w^n = 1 \} = \{ e^{\frac{2k\pi}{n}i} : 0 \le k \le n - 1 \}$$

$$(n=1) \ w = 1$$

$$(n=2) \ w = \pm 1$$

Notar que:

- Si n es par el grupo tiene al -1.
- Toda raíz compleja tiene a su conjugado complejo.
- Para ir de un punto a otro, se lo múltiplica por $e^{i\theta}$ eso rota al número en θ respecto al origen.
- \bullet (G_n, \cdot) es un grupo abeliano, o conmutativo.

$$- \quad \forall w, z \in G_n, wz = zw \ y \ zm \in G_n.$$

$$-1 \in G_n, \ w \cdot 1 = 1 \cdot w = w \qquad \forall w \in G_n.$$

$$- w \in G_n \Rightarrow \exists w^{-1} \in G_n, \ w \cdot w^{-1} = w^{-1} \cdot w = 1$$

$$* \overline{w} \in G_n, \ w \cdot \overline{w} = |w|^2 = 1 \Rightarrow \overline{w} = w^{-1}$$

 \bullet Propiedades: $w \in G_n$

$$-m \in \mathbb{Z} \text{ y } n \mid m \Rightarrow w^m = 1.$$

$$-m \equiv m'(n) \Rightarrow w^m = w^{m'} \quad (w^m = w^{r_n(m)})$$

$$-n \mid m \iff G_n \subseteq G_m$$

$$- G_n \cap G_m = G_{(n:m)}$$

– La suma de una raíz
$$w$$
 de G_n :
$$\sum_{k=0}^{n-1} w^k = \frac{w^n-1}{w-1} = 0 \text{ si } w \neq 1$$

Ejercicios de la guía:

1. Para los siguientes $z \in \mathbb{C}$, hallar $\operatorname{Re}(z)$, $\operatorname{Im}(z)$, |z|, $\operatorname{Re}(z^{-1})$ e $\operatorname{Im}(i \cdot z)$

i)
$$z = 5i(1+i)^4$$
 iv) $z = \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)^{10}$

ii)
$$z = (\sqrt{2} + \sqrt{3}i)^2(\overline{1-3i})$$

iii)
$$z = i^{17} + \frac{1}{2}i(1-i)^3$$
 v) $z = \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{-1}$.

Cosas para tener en cuenta sobre notación y algunos resultados:

En notación binomial:

$$z = a + ib = \operatorname{Re}(z) + i \cdot \operatorname{Im}(z) \xrightarrow{\operatorname{donde}} \begin{cases} a = \operatorname{Re}(z) \in \mathbb{R} \\ b = \operatorname{Im}(z) \in \mathbb{R} \\ z^{-1} = \frac{a - ib}{a^2 + b^2} = \frac{\overline{z}}{|z|^2} \\ \operatorname{Im}(i \cdot z) = \operatorname{Im}(i \cdot a - b) = a = \operatorname{Re}(z) \end{cases}$$

Y en notación exponencial:

$$z = r \cdot e^{i\theta} \xrightarrow[r>0]{\text{donde}} \begin{cases} r \cdot \cos(\theta) = \text{Re}(z) \in \mathbb{R} \\ r \cdot \sin(\theta) = \text{Im}(z) \in \mathbb{R} \\ z^{-1} = \frac{1}{r} \cdot e^{-i\theta} = \frac{1}{r} \cdot \frac{\overline{z}}{r} = \frac{\overline{z}}{r^2} \\ r \cdot e^{i\theta} = r \cdot (\cos(\theta) + i\sin(\theta)) \end{cases}$$

i) Cuando hay muchos productos, me gusta pasar todo a notación exponencial y jugar desde ahí:

$$z = 5 \cdot i \cdot (1+i)^4 \stackrel{\text{!!}}{=} 5 \cdot e^{i\frac{\pi}{2}} \cdot (\sqrt{2} \cdot e^{i\frac{\pi}{4}})^4 = 5 \cdot e^{i\frac{\pi}{2}} \cdot (4 \cdot e^{i\pi}) = 20 \cdot e^{i\frac{3}{2}\pi} \stackrel{\text{!}}{=} -20i$$

Por lo tanto si:

$$z \cdot z^{-1} = 1 \xrightarrow{z = -20i} z^{-1} = \frac{1}{20}i$$

Finalmente:

$$\begin{cases}
Re(z) = 0 \\
Im(z) = -20 \\
|z| = 20 \\
Re(z^{-1}) = 0 \\
Im(i \cdot z) = Re(z) = 0
\end{cases}$$

ii) A ojo, o casi, veo que los valores de los argumentos de los factores son feos. Recordar que hay muy pocos ángulos que tienen resultados agradables, los de la tablita, tablita de ángulos agradables.

Dado que el exponente más alto es 2, se puede distribuir sin morir en el intento:

$$z = (\sqrt{2} + \sqrt{3}i)^2 \cdot (\overline{1-3}i) \stackrel{!}{=} (-1 + 2\sqrt{6}i) \cdot (1+3i) \stackrel{!!}{=} -1 - 6\sqrt{6} + i(2\sqrt{6}-3)$$

Donde en !! es distribuir y luego sacar factor común en los términos con i, nada extraño.

ehm... ¿Qué es esta mierda? 3 opciones, está mal el enunciado, lo estoy haciendo mal o los profesores nos están haciendo bullying.

iii) Atento a que $i^4 \stackrel{\star}{=} 1$:

$$z = i^{17} + \frac{1}{2}i(1-i)^3 = i \cdot (i^4)^4 + \frac{1}{2} \cdot e^{i\frac{\pi}{2}} \cdot (\sqrt{2} \cdot e^{i\frac{7}{4}\pi})^3 \stackrel{\bigstar}{=} i + \sqrt{2} \cdot e^{i(\frac{1}{2} + \frac{21}{4})\pi} = i + \sqrt{2} \cdot e^{i\frac{23}{4}\pi} \stackrel{!!}{=} i + \sqrt{2} \cdot e^{i\frac{7}{4}\pi}$$

En !! usé la periodicidad de la función exponencial, con el exponente complejo es 2π -periódica.

$$z = i + \sqrt{2}(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i) = 1$$

Finalmente:

$$\begin{cases} \operatorname{Re}(z) = 1\\ \operatorname{Im}(z) = 0\\ |z| = 1\\ \operatorname{Re}(z^{-1}) = 1\\ \operatorname{Im}(i \cdot z) = \operatorname{Re}(z) = 1 \end{cases}$$

$$Re(z) = 1$$
, $Im(z) = 0$, $|z| = 1$, $Re(z^{-1}) = 1$, $Im(i \cdot z) = i$

iv) Fácil con exponenciales:

$$z = \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)^{10} \stackrel{!}{=} (e^{i\frac{\pi}{4}})^{10} = e^{i\frac{5}{2}\pi} \stackrel{!}{=} e^{i\frac{\pi}{2}} = i$$

Finalmente:

$$Re(z) = 0$$
, $Im(z) = 1$, $|z| = 1$, $Re(z^{-1}) \stackrel{!}{=} Re(-i) = 0$, $Im(i \cdot z) = -1$

v) Fácil con exponenciales:

$$z = (-\frac{1}{2} + \frac{\sqrt{3}}{2}i)^{-1} \stackrel{!}{=} (e^{i\frac{4}{3}\pi})^{-1} = e^{-i\frac{4}{3}\pi} \stackrel{!}{=} -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

Finalmente:

$$\begin{cases}
Re(z) = -\frac{1}{2} \\
Im(z) = -\frac{\sqrt{3}}{2} \\
|z| = 1 \\
Re(z^{-1}) = -\frac{1}{2} \\
Im(i \cdot z) = -\frac{1}{2}
\end{cases}$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte: 👸 Nad Garraz 🚺

2. \(\mathbb{O}\) ... hay que hacerlo! \(\mathbb{O}\)

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

Hallar todos los número complejos z tales que

i)
$$z^2 = -36$$

ii)
$$z^2 = i$$

iii)
$$z^2 = 7 + 24z$$

iii)
$$z^2 = 7 + 24i$$
 iv) $z^2 + 15 - 8i = 0$

i) A ojo se puede ver el resultado:

$$z_1 = 6i \quad y \quad z_2 = -6i$$

Si no se ve, se puede plantear la ecuación en forma exponencial, para deducir módulo y argumento. O en este caso porque la potencia es 2 también se puede atacar separando para parte real y la imaginaria así:

$$z^2 = (a+bi)^2 = a^2 - b^2 + 2abi.$$

Para que 2 números complejos sean iguales, tienen que ser sus partes reales deben ser iguales y sus partes imaginarias también:

$$z^2=-36$$

$$a^2-b^2+2abi=-36 \to \left\{ \begin{array}{ll} a^2-b^2=-36 & \text{ parte real} \\ 2ab=0 & \text{ parte imaginaria} \end{array} \right.$$

De ese sistema queda que:

$$a = 0$$
 o $b = 0$,

y dado que a y $b \in \mathbb{R}$, para que se cumpla la otra ecuación debe suceder que:

$$a = 0$$
 y $b = \pm 6$

Por lo tanto se recupera que:

$$z_1 = 0 + 6i = 6i$$
 y $z_2 = 0 - 6i = -6i$

ii) Este no me parece taan obvio. Resuelvo ecuación en forma exponencial:

$$z = re^{i\theta} \rightarrow z^2 = r^2(e^{i\theta})^2 = r^2e^{i2\theta}$$
$$i = e^{i\frac{\pi}{2}}$$

La idea es separar la ecuación compleja en 2 ecuaciones con números reales. Atento a que $r \in \mathbb{R}_{>0}$ y que el argumento θ es 2π periódico!

Ahora la ecuación queda como:

$$r^2 e^{i2\theta} = e^{i\frac{\pi}{2}} \xrightarrow{\text{m\'odulos por un lado}} \left\{ \begin{array}{l} r^2 = 1 \Leftrightarrow r = 1 \\ 2\theta = \frac{\pi}{2} + 2k\pi \Leftrightarrow \theta = \frac{\pi}{4} + k\pi \end{array} \right.$$

tengo que $k \in \{0,1\}$ de forma tal que el argumento $\theta \in [0,2\pi)$.

Los valores que nos pedían:

$$z_{k=0} = e^{\frac{\pi}{4}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i \quad \text{y} \quad z_{k=1} = e^{\frac{5}{4}\pi} = -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$$

Le comentario:

Sale más fácil por el método del item i)? Seguramente, pero pintó hacerlo con exponenciales.

iii) Ataco igual que antes:

$$z = re^{i\theta} \rightarrow z^2 = r^2(e^{i\theta})^2 = r^2e^{i2\theta}$$

7 + 24*i* $\stackrel{!}{=}$ 25*e*^{*i* arctan($\frac{24}{7}$)}

Horrible esos valores, probablemente no salga por acá. Pruebo con el método del item i):

$$z^2 = 7 + 24i$$

$$a^2 - b^2 + 2abi = 7 + 24i \rightarrow \begin{cases} a^2 - b^2 = 7 & \text{parte real} \\ 2ab = 24 & \text{parte imaginaria} \end{cases}$$

De ese sistema queda que:

$$a \cdot b = 12$$
,

meto en la otra ecuación $a = \frac{12}{b}$:

$$\frac{144}{b^2} - b^2 = 7 \iff b = \pm 3$$

En !!, bicuadrática.

Con ese resultado los valores quedarían para el sistema:

$$z_1 = -4 - 3i$$
 y $z_2 = 4 + 3i$

iv) Acomodo para que quede para resolver como el anterior:

$$z^2 + 15 - 8i = 0 \Leftrightarrow z^2 = -15 + 8i$$

$$a^2 - b^2 + 2abi = -15 + 8i \rightarrow \begin{cases} a^2 - b^2 = -15 & \text{parte real} \\ 2a \cdot b = 8 & \text{parte imaginaria} \end{cases}$$

De ese sistema queda que:

$$a \cdot b = 4$$
.

meto en la otra ecuación $a = \frac{4}{b}$:

$$\frac{16}{b^2} - b^2 = -15 \iff b = \pm 4$$

Con ese resultado los valores quedarían para el sistema:

$$z_1 = 1 + 4i$$
 y $z_2 = -1 - 4i$

Dale las gracias y un poco de amor \heartsuit a los que contribuyeron! Gracias por tu aporte:

4. 2... hay que hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc 5$.

5. 9... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

6.

- a) Determinar la formar binomial de $\left(\frac{1+\sqrt{3}i}{1-i}\right)^{17}$.
- b) Determinar la forma binomial de $(-1 + \sqrt{3}i)^n$ para cada $n \in \mathbb{N}$.

a) Multiplico y divido por el conjugado complejo para sacar la parte imaginaria del denominador:

$$z \stackrel{\star^1}{=} \left(\frac{1+\sqrt{3}i}{1-i}\right)^{17} \stackrel{!}{=} \left(\frac{1+\sqrt{3}i}{(1-i)} \cdot \frac{1+i}{1+i}\right)^{17} = \left(\frac{(1+\sqrt{3}i)\cdot(1+i)}{2}\right)^{17} = \left(\frac{1+\sqrt{3}i}{1+i}\right)^{17} = \left(\frac{1+$$

Ahora paso eso a notación exponencial y acomodo usando propiedades de exponentes:

$$\begin{cases} 1 + \sqrt{3}i = 2 \cdot e^{\frac{\pi}{3}i} \\ 1 + i = \sqrt{2} \cdot e^{\frac{1}{4}\pi i} \end{cases}$$

$$\left(\frac{(1+\sqrt{3}i)\cdot(1+i)}{2}\right)^{17} = \left(\frac{2 \cdot e^{\frac{\pi}{3}i} \cdot \sqrt{2}e^{\frac{\pi}{4}i}}{2}\right)^{17} = 2^{\frac{17}{2}} \cdot e^{\frac{119}{12}\pi i} \stackrel{!}{=} 2^{\frac{17}{2}} \cdot e^{-\frac{1}{12}\pi i}$$

$$\star^{1}z = 2^{\frac{17}{2}} \cos(\frac{1}{12}\pi) - i2^{\frac{17}{2}} \sin(\frac{1}{12}\pi)$$

Un espanto. Pero bueh, $\frac{1}{12}\pi=15^{\circ}$

b) ... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

7. Hallar todos los $n \in \mathbb{N}$ tales que

i)
$$(\sqrt{3} - i)^n = 2^{n-1}(-1 + \sqrt{3}i)$$

ii)
$$(-\sqrt{3}+i)^n \cdot \left(\frac{1}{2}+\frac{\sqrt{3}}{2}i\right)$$
 es un número real negativo.

iii)
$$\arg((-1+i)^{2n}) = \frac{\pi}{2}$$
y $\arg((1-\sqrt{3}i)^{n-1}) = \frac{2}{3}\pi$

i) Para resolver las ecuaciones en números complejos con exponentes, en general, es más fácil resolver en notación exponencial. El miembro izquierdo queda:

$$(\sqrt{3}-i)^n = (2 \cdot e^{i\frac{11}{6}\pi})^n = 2^n \cdot e^{i\frac{11}{6}\pi n}$$

El miembro derecho queda:

$$2^{n-1}(-1+\sqrt{3}i) = 2^{n-1} \cdot (2 \cdot e^{\frac{2}{3}}) = 2^n \cdot e^{i\frac{2}{3}\pi}$$

Ahora la igualdad de los números se dará cuando sus módulos y argumentos sean iguales:

$$2^{n} \cdot e^{i\frac{11}{6}\pi n} = 2^{n} \cdot e^{i\frac{2}{3}\pi} \Leftrightarrow \begin{cases} 2^{n} = 2^{n} \checkmark \\ \frac{11}{6}\pi n = \frac{2}{3}\pi + 2k\pi \Leftrightarrow 11n = 4 + 12k \checkmark \end{cases}$$

En \star^1 quedó una ecuación para despejar n que es un número entero:

$$\star^{1}11n = 4 + 12k \stackrel{\text{def}}{\Longleftrightarrow} 11n \equiv 4 \ (12) \Leftrightarrow -n \equiv 4 \ (12) \Leftrightarrow n \equiv -4 \ (12) \Leftrightarrow n \equiv 8 \ (12)$$

Finalmente los valores de n buscados para que la ecuación se cumpla son:

$$n \equiv 8 \ (12)$$

ii) Un número real z negativo tiene un $arg(z) = \pi$. Ataco el ejercicio parecido al anterior en la parte de los exponentes, donde está el argumento:

$$(-\sqrt{3} + i)^n = 2^n \cdot e^{i\frac{5}{6}\pi n}$$

$$(\frac{1}{2} + \frac{\sqrt{3}}{2}i) = e^{\frac{\pi}{3}i}$$

El enunciado queda como:

$$(-\sqrt{3}+i)^n \cdot \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 2^n \cdot e^{i(\frac{5}{6}n + \frac{1}{3})\pi}$$

Ahora, sin olvidar la periodicidad, tengo que pedir que el argumento de esa expresión sea π :

$$(\frac{5}{6}n + \frac{1}{3})\pi = \pi + \frac{2k\pi}{6} \Leftrightarrow \frac{5}{6}n + \frac{1}{3} = 1 + 2k \Leftrightarrow 5n = 4 + 12k^{-1}$$

En \star^1 quedo una ecuación para resolver para $n \in \mathbb{Z}$:

$$\star^1 5n = 4 + 12k \stackrel{\text{def}}{\Longleftrightarrow} 5n \equiv 4 \ (12) \Leftrightarrow n \equiv 8 \ (12)$$

Finalmente los valores de n buscados para que la expresión sea un número negativo:

$$n \equiv 8 (12)$$

iii) Arranco pasando las expresiones del enunciado a notación exponencial:

$$\begin{array}{rcl} (-1+i)^{2n} & = & 2^n \cdot e^{i\frac{3}{2}\pi n} \star^1 \\ (1-\sqrt{3}i)^{n-1} & = & 2^{n-1} \cdot e^{i\frac{5}{3}\pi(n-1)} \star^2 \end{array}$$

De \star^1 igualando a $\frac{\pi}{2}$, sin olvidar la *periodicidad* del argumento:

$$\frac{3}{2}\pi n = \frac{\pi}{2} + 2k\pi \Leftrightarrow 3n = 1 + 4k \stackrel{\text{def}}{\Longleftrightarrow} 3n \equiv 1 \ (4) \Leftrightarrow n \equiv 3 \ (4) \star^3$$

De \star^2 igualando a $\frac{2}{3}\pi$, nuevamente sin olvidar la periodicidad del argumento:

$$\frac{5}{3}\pi(n-1) = \frac{2}{3}\pi + 2k\pi \Leftrightarrow 5n-5 = 2+6k \Leftrightarrow 5n = 7+6k \stackrel{\text{def}}{\Longleftrightarrow} 5n \equiv 7 \ (6) \stackrel{!}{\Leftrightarrow} n \equiv 5 \ (6) \star^{4}$$

Podemos observar que con los resultados de *3 y *4 esto se convirtió en un ejercicio del TCHR:

$$\left\{\begin{array}{ll} n\equiv 3\ (4) & \underset{\longleftarrow}{!} \\ n\equiv 5\ (6) \end{array}\right. \left\{\begin{array}{ll} n\equiv 3\ (4) \\ n\equiv 2\ (3) \end{array}\right.$$

Resolviendo ese sistema, los valores de n buscados:

$$n \equiv 11 \ (12)$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 🞧

8. Hallara en cada caso las raíces n-ésimas de $z \in \mathbb{C}$:

i)
$$z = 8, n = 6$$

iii)
$$z = -1 + i$$
, $n = 7$

ii)
$$z = -4$$
, $n = 3$

iv)
$$z = (2 - 2i)^{12}$$
, $n = 6$

Ejercicio importante. La raíz n-ésima de z es el número que multiplicado por sí mismo n veces me da z:

$$w^n = z$$
,

es decir que quiero encontrar w. Siempre va a haber tantas soluciones como n.

i) Dado un número genérico $w = r \cdot e^{\theta i}$, lo visto con la info del enunciado:

$$w^6 = w = (r \cdot e^{\theta i})^6 = r^6 \cdot e^{6\theta i} \star^1$$

Ahora hago lo mismo con el otro número z = 8:

$$z = 8 \cdot e^{0i} = 8 \star^2$$

Una vez con todo escrito en forma exponencial, es igualar prestar atención a la periodicidad del argumento y listo:

$$w^{6} = z \iff^{1} r^{6} \cdot e^{6\theta i} = 8 \iff^{1} \begin{cases} r^{6} = 8 \Leftrightarrow r = \sqrt[6]{8} = \sqrt{2} \\ 6\theta \stackrel{!}{=} 0 + 2k\pi \Leftrightarrow \theta_{k} = \frac{1}{3}k\pi \end{cases}$$

Con eso concluímos que las raíces son de la forma:

$$w_k = \sqrt{2} \cdot e^{i\frac{1}{3}k\pi} \text{ con } k \in [0, 5]$$

ii) Mismo procedimiento, te tiro una pista: Los números negativos tienen argumento π , así que en notación exponencial:

$$-4 = 4 \cdot e^{\pi i}$$

iii) En notación exponencial z, que está en segundo cuadrante:

$$z = -1 + i = \sqrt{2} \cdot e^{\frac{3}{4}\pi i}$$

iv) En notación exponencial z se calcula primero con la base:

$$z = (2 - 2i)^{12} = (2\sqrt{2} \cdot e^{\frac{7}{4}\pi i})^{12} = 2^{18} \cdot e^{21\pi i} \stackrel{!}{=} 2^{18} \cdot e^{\pi i}$$

9. Hallar todos los $z \in \mathbb{C}$ tales que $3z^5 + 2|z|^5 + 32 = 0$

Para que se cumpla la igualdad entre 2 números complejos, *las partes reales y imaginarias* deben ser iguales:

$$3z^5 + 2|z|^5 + 32 = 0 \Leftrightarrow \underbrace{3z^5}_{\in \mathbb{C}} = \underbrace{-2|z|^5 - 32}_{\in \mathbb{D}} \Leftrightarrow \left\{ \begin{array}{l} \operatorname{Re}(3z^5) = -2|z|^5 - 32 \\ \operatorname{Im}(3z^5) = 0 \end{array} \right\}$$

De la ecuación de la parte imaginaria: (Es útil recordar que $z = \operatorname{Re}(z) + i\operatorname{Im}(z) \Rightarrow \operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$)

$$\operatorname{Im}(3z^5) = 3 \cdot \frac{z^5 - \overline{z}^5}{2i} = 0 \iff z^5 = \overline{z}^5 \iff |z|^5 e^{5\theta i} = |z|^5 e^{-5\theta i} \iff \begin{cases} 5\theta = -5\theta + 2k\pi \\ \Leftrightarrow \\ \frac{!}{2k\pi} \end{cases} \begin{cases} 5\theta = -5\theta + 2k\pi \\ \Leftrightarrow \\ \frac{!}{k^1} \theta_k = \frac{1}{5}k\pi \text{ con } k \in \mathbb{Z} \end{cases}$$

De la ecuación de la parte real: (Es útil recordar que si z = Re(z) + i Im(z), entonces se puede expresar $\text{Re}(z) = \frac{z + \overline{z}}{2}$)

$$\operatorname{Re}(3z^{5}) = 3 \cdot \frac{z^{5} + \overline{z}^{5}}{2} = 3 \cdot \frac{|z|^{5}e^{5\theta i} + |z|^{5}e^{-5\theta i}}{2} = 3|z|^{5}\cos(5\theta) = -2|z|^{5} - 32 \Leftrightarrow \\ \Leftrightarrow |z|^{5}(3\cos(5\theta) + 2) = -2^{5} \xrightarrow{\text{evaluando} \atop \text{en } \theta_{k} \star^{1}} |z|^{5}(3\cos(k\pi) + 2) = -2^{5} \begin{cases} \xrightarrow{k} & 0 < |z|^{5}(3+2) \neq -2^{5} & \mathbf{2} \\ \xrightarrow{\text{par}} & |z|^{5}(-3+2) = -2^{5} \Leftrightarrow |z| = 2 \end{cases}$$

Finalmente teniendo en cuenta que k tiene que ser impar, y que el $\arg(z) \in [0, 2\pi)$:

$$z_k = 2e^{\theta_k i}$$
 con $\theta_k = \frac{1}{5}k\pi$ y $k \in \{1, 3, 5, 7, 9\}$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

8 Nad Garraz

10. Hallar todos los $n \in \mathbb{N}$ para los cuales la ecuación $z^n + i\overline{z}^2 = 0$, tenga exactamente 6 soluciones y resolver en ese caso.

Pasar todo a notación exponencial:

$$z^{n} + i\overline{z}^{2} = 0 \Leftrightarrow z^{n} = -i\overline{z}^{2} \Leftrightarrow \left\{ \begin{array}{l} z^{n} = r^{n}e^{n\theta i} \\ \overline{z}^{2} = r^{2}e^{-2\theta i} \\ -i = e^{\frac{3}{2}\pi} \end{array} \right\} \Leftrightarrow r^{n}e^{n\theta i} = r^{2}e^{(\frac{3}{2}\pi - 2\theta)i}$$

Esa ecuación se resuelve como siempre igualando los módulos y los argumentos, sin olvidar la periodicidad de éste último:

$$\begin{cases} r^n = r^2 \Leftrightarrow r^2(r^{n-2} - 1) = 0 \star^1 \\ n\theta = \frac{3}{2}\pi - 2\theta + \frac{2k\pi}{2} \Leftrightarrow (n+2)\theta = (\frac{3}{2} + 2k)\pi \star^2 \end{cases}$$

La ecuación de r^{1} :

Analizo para cuales valores de r y de n se cumple la ecuación:

- $\mathbf{z} = 0$ Aporta una solución trivial para cualquier $n \in \mathbb{N}$ en la ecuación $z^n + i\overline{z}^2 = 0$. Pero solo habría una solución z = 0 necesito encontrar otras 5.
- n=2 no sirve. Si bien cumple \star^1 es un valor que daría una solución para cada $r \in \mathbb{R}_{\geq 0}$. Pero tengo que tener solo 6 soluciones.

La ecuación de $\theta \star^2$:

Por lo analizado antes, juego con r=1, eso no impone de momento ninguna condición sobre n:

$$(n+2)\theta = (\frac{3}{2} + 2k)\pi \stackrel{!!}{\underset{\forall n \in \mathbb{N}_{\neq 2}}{\longleftarrow}} \theta = \frac{1}{n+2}(\frac{3}{2} + 2k)\pi$$

Y ahora surge la pregunta: ¿Qué onda esto? Necesitamos 6 soluciones según el enunciado, pero a no olvidar que ya tenemos una solución proporcionada por el r=0. Así que ahora laburo el θ para que me de 5 soluciones y así tener 6 en total. Pido entonces n=3, para partir en 5 y obtener de esta forma 5 valores para $\theta_k \in [0, 2\pi)$:

$$\theta_k = \frac{1}{5} \cdot \frac{3+4k}{2} \pi \Leftrightarrow \theta_k = \frac{3+4k}{10} \pi \quad \text{con } k \in \{0, 1, 2, 3, 4\}$$

Finalmente para que la ecuación falopa esa tenga únicamente 6 soluciones, necesito que n=3:

$$z^{n} + i\overline{z}^{2} = 0 \xrightarrow[\text{solo 6 soluciones}]{\begin{array}{l} z = 0 & \text{con } r = 0 \\ z_{k=0} = e^{i\frac{3}{10}\pi} & \text{con } r = 1 \\ z_{k=1} = e^{i\frac{7}{10}\pi} & \text{con } r = 1 \\ z_{k=2} = e^{i\frac{11}{10}\pi} & \text{con } r = 1 \\ z_{k=3} = e^{i\frac{15}{10}\pi} & \text{con } r = 1 \\ z_{k=4} = e^{i\frac{19}{10}\pi} & \text{con } r = 1 \end{array}}$$

Dale las gracias y un poco de amor ♥ a los que contribuyeron! Gracias por tu aporte:
8 Nad Garraz •

11.

- a) Calcular $w + \overline{w} + (w + w^2)^2 w^{38}(1 w^2)$ para cada $w \in G_7$.
- b) Calcular $w^{73} + \overline{w} \cdot w^9 + 8$ para cada $w \in G_3$.
- c) Calcular $1 + w^2 + w^{-2} + w^4 + w^{-4}$ para cada $w \in G_{10}$.
- d) Calcular $w^{14} + w^{-8} + \overline{w}^4 + \overline{w^{-3}}$ para cada $w \in G_5$

Voy a estar usando las siguientes propiedades en G_n :

Si
$$w \in G_n \Rightarrow \begin{cases} w^n = 1 \Rightarrow w^k = w^{r_n(k)} \\ \overline{w}^k = w^{r_n(-k)} \end{cases}$$

$$\sum_{k=0}^{n-1} w^k = 0$$

$$m \mid n \Rightarrow G_m \subseteq G_n, \text{ lo uso para saber con cuales raices hay que tener cuidado}$$
Si $w \in G_p \text{ con } p \text{ primo}$

a) Calcular $w + \overline{w} + (w + w^2)^2 - w^{38}(1 - w^2)$ para cada $w \in G_7$.

Raíces de G_7 de interés: 7 es primo e impar $\Rightarrow w=1$ se hace a parte.

$$Si \ w = 1$$
:

$$w + \overline{w} + (w + w^2)^2 - w^{38}(1 - w^2) = 6$$

$$Si \ w \neq 1$$

$$\begin{array}{ll}
Si & w \neq 1: \\
w + \underbrace{\overline{w}}_{w^6} + (w + w^2)^2 - w^{38}(1 - w^2) = w + w^6 + w^2 + 2w^3 + w^4 - \underbrace{(w^7)^5}_{=1} w^3(1 - w^2) = \\
= -1 + \underbrace{1 + w + w^2 + w^3 + w^4 + w^5 + w^6}_{=0} = -1 \quad \checkmark
\end{array}$$

b) Calcular $w^{73} + \overline{w} \cdot w^9 + 8$ para cada $w \in G_3$.

Raíces de G_3 de interés: 3 es primo e impar $\Rightarrow w = 1$ se hace a parte.

$$Si \ w = 1$$
:

$$w^{73} + \overline{w} \cdot w^9 + 8 = 10$$

Si
$$w \neq 1$$
:

$$\underbrace{w^{73}}_{w} + \underbrace{\overline{w} \cdot w^{9}}_{w^{2},1} + 8 = -1 + \underbrace{1 + w + w^{2}}_{-0} + 8 = 7$$

c) Calcular $1 + w^2 + w^{-2} + w^4 + w^{-4}$ para cada $w \in G_{10}$.

Raíces de G_{10} de interés: $2 \mid 10$ y $5 \mid 10$. 10 es par $\Rightarrow w = \pm 1$ y raíces de G_2 y de G_5 se hacen a parte.

$$-Si \ w = \pm 1:$$

$$1 + w^{2} + w^{-2} + w^{4} + w^{-4} = 5 \quad \checkmark$$

$$-Si \ w \in G_{10} \quad y \quad w \neq \pm 1:$$

$$1 + w^{2} + w^{-2} + w^{4} + w^{-4} = 1 + w^{2} + w^{8} + w^{4} + w^{6} =$$

$$= \sum_{k=0}^{4} (w^{2})^{k} = \frac{(w^{2})^{5} - 1}{w^{2} - 1} = \underbrace{\frac{1}{w^{10}} - 1}_{w^{2} - 1} = 0$$

d) Calcular $w^{14} + w^{-8} + \overline{w}^4 + \overline{w^{-3}}$ para cada $w \in G_5$

$$Si \ w = 1$$
:

$$w^{14} + w^{-8} + \overline{w}^4 + \overline{w^{-3}} = 4$$

$$Si \ w \neq 1$$
:

$$w^{14} + w^{-8} + \overline{w}^4 + \overline{w^{-3}} = w^4 + w^2 + w + w^3 = -1 + \underbrace{1 + w + w^2 + w^3 + w^4}_{=0} = -1$$

12.

- a) Sea $w \in G_{36}$, $w^4 \neq 1$. Calcular $\sum_{k=7}^{60} w^{4k}$
- b) Sea $w \in G_{11}$, $w \neq 1$. Calcular Re $\left(\sum_{k=0}^{60} w^k\right)$.
- a) Sea $w \in G_{36}$, $w^4 \neq 1$. Calcular $\sum_{k=7}^{60} w^{4k}$

Sé que si
$$w \in G_{36} \Rightarrow \begin{cases} w^{36} = 1 \\ \sum_{k=0}^{35} w^k = 0 \end{cases}$$

Como $w^4 \neq 1$ sé que $w \neq \pm 1$. Si no tendría que considerar casos particulares para la suma.

Si
$$\sum_{k=7}^{60} w^{4k} = \underbrace{\sum_{k=7}^{60} w^{4k} + \sum_{k=0}^{6} w^{4k}}_{\text{Si}} - \underbrace{\sum_{k=0}^{60} w^{4k}}_{\text{Si}} = \underbrace{\sum_{k=0}^{60} w^{4k} - \sum_{k=0}^{6} w^{4k}}_{\text{Si}} = \underbrace{\frac{(w^4)^{61} - 1}{w^4 - 1}}_{\text{Si}} - \underbrace{\frac{(w^4)^{7} - 1}{w^4 - 1}}_{\text{Si}} = \underbrace{\frac{(w^4)^{61} - (w^4)^{7}}{w^4 - 1}}_{\text{Si}}$$

$$\frac{61 = 9 \cdot 6 + 7}{w^3 6 = 1} \xrightarrow{(w^{36})^6 \cdot (w^4)^7 - (w^4)^7 \atop w^4 - 1} \rightarrow \sum_{k=7}^{60} w^{4k} = 0$$

b) Sea $w \in G_{11}$, $w \neq 1$. Calcular Re $\left(\sum_{k=0}^{60} w^k\right)$.

Sé que si
$$w \in G_{11} \Rightarrow \begin{cases} w^{11} = 1 \\ \sum_{k=0}^{10} w^k = 0 \\ 11 \text{ es impar } \Rightarrow -1 \notin G_{11} \end{cases}$$

Como $w \neq 1$ no calculo caso particular para la suma. Me piden la parte real $\xrightarrow{\text{uso}} \text{Re}(z) = \frac{z+\overline{z}}{2}$.

Probé hacer la suma de Gauss como en el anterior, pero no llegué a nada, abro sumatoria y uso que $61 = 5 \cdot 11 + 6$, porque hay 61 sumandos.

$$\sum_{k=0}^{60} w^k = w^0 + \dots + w^{60} = 5 \cdot \underbrace{\left(w^0 + w^1 + \dots + w^9 + w^{10}\right)}_{\text{agrupé usando: } w \in G^{11} \Rightarrow w^k = w^{r_{11}(k)}} + w^{55} + w^{56} + w^{57} + w^{58} + w^{59} + w^{60} = w^0 + w^1 + w^2 + w^3 + w^4 + w^5 \star^1$$

También voy a usar que si $w \in G_{11} \Rightarrow \overline{w}^k = w^{r_{11}(-k)}$

$$\operatorname{Re}\left(\sum_{k=0}^{60} w^{k}\right) = \frac{\sum_{k=0}^{60} w^{k} + \sum_{k=0}^{60} \overline{w}^{k}}{2} \stackrel{\star^{1}}{=} \frac{w^{0} + w^{1} + w^{2} + w^{3} + w^{4} + w^{5} + \overline{w}^{0} + \overline{w}^{1} + \overline{w}^{2} + \overline{w}^{3} + \overline{w}^{4} + \overline{w}^{5}}{2} = \frac{w^{0}}{2} + \underbrace{w^{1} + w^{2} + w^{3} + w^{4} + w^{5} + w^{0} + w^{10} + w^{9} + w^{8} + w^{7} + w^{6}}_{2} = \underbrace{w^{0}}_{2} + \underbrace{w^{1} + w^{2} + w^{3} + w^{4} + w^{5} + w^{0} + w^{10} + w^{9} + w^{8} + w^{7} + w^{6}}_{2} = \underbrace{w^{0}}_{2} + \underbrace{w^{0} + w^{1} + w^{2} + w^{10} + w^{10} + w^{9} + w^{8} + w^{7} + w^{6}}_{2} = \underbrace{w^{0}}_{2} + \underbrace{w^{0} + w^{1} + w^{2} + w^{10} + w^{10} + w^{9} + w^{8} + w^{7} + w^{6}}_{2} = \underbrace{w^{0} + w^{1} + w^{2} + w^{10} + w^{10}}_{2} = \underbrace{w^{0} + w^{1} + w^{$$

Sea $w=e^{\frac{2\pi}{3}i}$ raíz cúbica de la unidad y sea $(z_n)_{n\in\mathbb{N}}$ la sucesión de números complejos definida 13. por:

$$z_1 = 1 + w$$
 y $z_{n+1} = \overline{1 + z_n^2}$, $\forall n \in \mathbb{N}$.

Probar que para todo $n \in \mathbb{N}$ vale que $z_n = \begin{cases} e^{\frac{2\pi}{6}i} & \text{si } n \text{ impar} \\ e^{-\frac{2\pi}{6}i} & \text{si } n \text{ par} \end{cases}$. Concluir que $z_n \in G_6$ para todo $n \in \mathbb{N}$.

Hay que probar por inducción. Quiero probar:
$$p(n): z_n = \left\{ \begin{array}{ll} e^{\frac{2\pi}{6}i} & \text{si } n \text{ impar} \\ e^{-\frac{2\pi}{6}i} & \text{si } n \text{ par} \end{array} \right. \forall n \in \mathbb{N}$$

$$\begin{cases} p(1): z_1 = 1 + e^{\frac{2\pi}{3}i} = 1 - \frac{1}{2} + i\frac{\sqrt{3}}{2} = \frac{1}{2} + i\frac{\sqrt{3}}{2} = e^{\frac{\pi}{3}i} & \checkmark \\ p(2): z_2 = 1 + z_1^2 = 1 + e^{\frac{2\pi}{3}i} = 1 + e^{-\frac{2\pi}{3}i} = e^{-\frac{\pi}{3}i} & \checkmark \end{cases}$$

$$\begin{cases} p(2k) : z_{2k} = e^{-\frac{\pi}{3}i} \text{ Verdadero } \Rightarrow p(2k+2) \text{ ¿Verdadero?} \\ p(2k+1) : z_{2k+1} = e^{\frac{\pi}{3}i} \text{ Verdadero } \Rightarrow p(2k+3) \text{ ¿Verdadero?} \\ z_{2k+2} = \overline{1 + z_{2k+1}^2} \overset{\text{HI}}{\Longleftrightarrow} z_{2k+2} = \overline{1 + e^{\frac{2\pi}{3}i}} = \overline{e^{\frac{\pi}{3}i}} = e^{-\frac{\pi}{3}i} \checkmark \\ z_{2k+3} = \overline{1 + z_{2k+2}^2} \overset{\text{HI}}{\Longleftrightarrow} z_{2k+3} = \overline{1 + e^{-\frac{2\pi}{3}i}} = \overline{e^{-\frac{\pi}{3}i}} = e^{\frac{\pi}{3}i} \checkmark \end{cases}$$

Dado que p(1), p(2), p(2k), p(2k+1), p(2k+2), p(2k+3) resultaron ser verdaderas, entonces por el principio de inducción se concluye que p(n) también lo es $\forall n \in$

Dado que la sucesión z_n tiene solo 2 imágenes, para cualquier $n \in \mathbb{N}$ y teniendo en cuenta que $e^{-i\frac{2\pi}{6}} = e^{i\frac{2\pi}{6} \cdot 5} \in G_6 \quad \forall n \in \mathbb{N}$

- Se define en $\mathbb{C} \{0\}$ la relación \mathcal{R} dada por $z \mathcal{R} w \iff z\overline{w} \in \mathbb{R}_{>0}$.
 - i) Probar que \mathcal{R} es una relación de equivalencia.
 - ii) Dibujar en le plano complejo la clase de equivalencia de z = 1 + i.
 - i) Dado un $z = re^{i\theta}$, tengo que $z \in \mathbb{R}_{>0} \iff \operatorname{Re}(z) > 0 \wedge \operatorname{Im}(z) = 0 \iff r > 0 \wedge \theta = 2k\pi$ con
 - Reflexividad: $z=re^{i\theta}, z \mathcal{R} z=r^2e^{2\theta i}$ por lo tanto $z \mathcal{R} z \iff 2\theta=2k\pi \iff \theta=2k\pi$

 - $-Simetria: \begin{cases} z \mathcal{R} \ w = rse^{(\theta \varphi)i} \iff \theta = 2k_1\pi + \varphi \quad \checkmark \\ w \mathcal{R} \ z = rse^{(\varphi \theta)i} \iff \theta = -2k_2\pi + \varphi = 2k_3\pi + \varphi \quad \checkmark \end{cases}$ $-Transitividad: \begin{cases} z \mathcal{R} \ w = rse^{(\theta \varphi)i} \iff \theta = 2k_1\pi + \varphi \\ w \mathcal{R} \ v = rte^{(\varphi \alpha)i} \iff \varphi = 2k_2\pi + \alpha \\ \Rightarrow z \mathcal{R} \ v \iff \theta = 2k_1\pi + \varphi = 2\pi(k_1 + k_2) + \alpha = 2k_3\pi + \alpha \end{cases}$ La relación \mathcal{R} er de equivalencia

La relación \mathcal{R} es de equivalencia

Tengo que el $\arg(1+i)=\frac{\pi}{4}$. La clase \overline{z} estará formada por los $w\in\mathbb{C}$ tal que: $w \mathcal{R} z \iff \arg(w)=\frac{1}{4}\pi$

Se define la siguiente relación \mathcal{R} en G_{20} :

$$z \mathcal{R} w \iff zw^9 \in G_2.$$

- i) Probar que \mathcal{R} es una relación de equivalencia.
- ii) Calcular la cantidad de elementos que hay en cada clase de equivalencia.
- i) Reflexividad:

$$z = e^{i\frac{1}{10}\pi k_z} \Rightarrow z \ \mathcal{R} \ z \iff e^{i\frac{1}{10}\pi k_z} \cdot e^{i\frac{9}{10}\pi k_z} = e^{ik_z\pi} = \begin{cases} 1 & k_z \text{ par} \\ -1 & k_z \text{ impar} \end{cases}$$

Simetría:

$$z = e^{i\frac{1}{10}\pi k_z}$$
 y $w = e^{i\frac{1}{10}\pi k_w} \in G_{20}$.

$$\mathcal{R} \text{ es simétrica si: } z \,\mathcal{R} \,w \iff w \,\mathcal{R} \,z \\
\begin{cases}
zw^9 = e^{i\frac{\pi}{10}(k_z + 9k_w)} \in G_2 \Leftrightarrow \frac{1}{10}(k_z + 9k_w) = k \Leftrightarrow k_z + 9k_w = 10k \Leftrightarrow k_z \equiv -9k_w \,(10) \Leftrightarrow k_z \equiv k_w \,(10) \\
\to \, z \,\mathcal{R} \,w \iff k_z \equiv k_w \,(10) \\
wz^9 = e^{i\frac{\pi}{10}(k_w + 9k_z)} = e^{i\frac{\pi}{10}(k_w + 9(10k + k_w))} = e^{i\frac{\pi}{10}(90k + 10k_w)} = e^{i(9k + k_w)\pi} = e^{ik'\pi}
\end{cases}$$

 $z \mathcal{R} w \iff w \mathcal{R} z \forall k, k_w \in \mathbb{Z} \text{ con } k_z \equiv k_w (10) \quad \checkmark$

Transitividad: $\begin{cases}
z = e^{i\frac{1}{10}\pi k_z} \\
w = e^{i\frac{1}{10}\pi k_w} \\
y = e^{i\frac{1}{10}\pi k_y}
\end{cases}$ $\in G_{20} \to \mathcal{R}$ es transitiva si: $z \mathcal{R} w y w \mathcal{R} y \Rightarrow z \mathcal{R} y$ $\begin{cases}
z \mathcal{R} w \iff k_z \equiv k_w (10) \star^1 \\
w \mathcal{R} y \iff k_w \equiv k_y (10) \star^2
\end{cases}$ $\to zy^9 = e^{i\frac{\pi}{10}(k_z + 9k_y)} \stackrel{\star^1}{=} e^{i\frac{\pi}{10}(10k + k_w + 9k_y)} \stackrel{\star^1}{=} e^{i\frac{\pi}{10}(10k + 10k' + k_y + 9k_y)} = e^{i(k + k' + k_y)\pi} = e^{ik''\pi}$ $\begin{cases}
z \mathcal{R} w \\
w \mathcal{R} z
\end{cases}
\Rightarrow z \mathcal{R} y$

ii) $\#\overline{e^{i\frac{2\pi}{20}k}} = 2$ para algún $k \in \mathbb{Z}/r_{20}(k) < 20$. Dada la condición $k_z \equiv k_w$ (10), solo hay 2 números que tienen misma cifra de unidad entre 0 y 20. En el gráfico se ve que si $z \in \mathbb{R}$ $w \Rightarrow w = -z$

Ejercicios de parciales:

Para $w \in G_6$, calcular $S = w^{71} + w^{-14} + 5\overline{w}^4 + w^{39} - 4w^{-22} + w^{2023}$

 $Si \ w = 1$:

$$S = 1 + 1 + 5 \cdot 1 + 1 - 4 \cdot 1 + 1 = 5$$

 $Si \ w \neq 1$:

$$\begin{array}{lll} S & = & w^{71} + w^{-14} + 5\overline{w}^4 + w^{39} - 4w^{-22} + w^{2023} \\ & \stackrel{!}{=} & w^5 + w^4 + 5w^2 + w^3 - 4w^2 + w^1 \\ & \stackrel{!}{=} & w^1 + w^2 + w^3 + w^4 + w^5 = -1 + \underbrace{1 + w^1 + w^2 + w^3 + w^4 + w^5}_{=0} = -1 \end{array}$$

Dale las gracias y un poco de amor 💙 a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 🞧

👸 Ale Teran 🞧

Sea $w \in G_{14}$. Hallar todos los posibles valores de $w^7 + \sum_{i=1}^{140} w^{2j}$

Voy a usar que: $\begin{cases} w \in G_n \Rightarrow \sum_{k=0}^{n-1} w^k = 0 \\ \text{Si } m \mid n \Rightarrow G_m \subseteq G_n \end{cases}$

Si w = 1:

$$\underbrace{w^7}_{=1} + \sum_{j=7}^{140} \underbrace{w^{2j}}_{=1} = 1 + (\underbrace{1 + 1 + \dots + 1}_{=134}) = 1 + 134 = 135 \quad \checkmark$$

 $\underline{\text{Si } w = -1:}$

$$\underbrace{w^7}_{=-1} + \sum_{j=7}^{140} \underbrace{(w^j)^2}_{=1} = -1 + \underbrace{(1+1+\dots+1)}_{=134} = -1 + 134 = 133 \quad \checkmark$$

Si $w \neq \pm 1$:

$$w \in G_{14} \Rightarrow w = e^{i\frac{2k\pi}{14}} \text{ con } k \in \mathbb{Z}_{[0,13]} \Rightarrow w^2 = \left(e^{i\frac{2k\pi}{14}}\right)^2 = e^{i\frac{2\pi}{7} \cdot k} \in G_7 \Rightarrow \sum_{j=0}^{6} (w^2)^j = 0$$

$$w^{7} + \sum_{j=7}^{140} w^{2j} = w^{7} + \sum_{j=0}^{140} (w^{2})^{j} - \underbrace{\sum_{j=0}^{6} (w^{2})^{j}}_{=0} = w^{7} + \underbrace{\frac{(w^{2})^{141} - 1}{w^{2} - 1}}_{=0} - 0 = w^{7} + \underbrace{\frac{w^{2}((w^{14})^{20} - 1)}{w^{2} - 1}}_{=1} = w^{7} + 1$$

Si
$$\begin{cases} w \in G_7 \Rightarrow w^7 = 1\\ w \in G_{14} - G_7 \Rightarrow w^7 = -1 \end{cases}$$

$$\begin{cases} w \in G_7 & \to 1 + 1 = 2 \checkmark \\ w \in G_{14} - G_7 & \to -1 + 1 = 0 \checkmark \end{cases}$$

3. Sea $z = \frac{\sqrt{3}}{2} - \frac{1}{2}i$. Hallar todos los $n \in \mathbb{N}$ que cumplen simultáneamente las siguientes condiciones:

$$-8 |3n + |z^3|$$

$$-\arg(z^{7n+6}) = \arg(i)$$

$$\left\{\begin{array}{l} |z|=1\\ \theta_z=\frac{11}{6}\pi \end{array}\right. \rightarrow z=|z|e^{\theta_z i}=e^{i\frac{11}{6}\pi} \Rightarrow z^3=e^{i\frac{11}{2}\pi}=-1 \Leftrightarrow |z^3|=1$$

Primera condición:

$$8 \mid 3n + |z^3| = 3n + 1 \stackrel{\text{def}}{\Longleftrightarrow} 3n + 1 = 8k \stackrel{\text{def}}{\Longleftrightarrow} 3n + 1 \equiv 0 \ (8) \Leftrightarrow 3n \equiv 7 \ (8) \stackrel{\times 3}{\Longleftrightarrow} 9n \equiv 21 \ (8) \Leftrightarrow n \equiv 5 \ (8) \quad \checkmark$$

Segunda condición:

$$\arg(z^{7n+6}) = \arg(i) \Leftrightarrow \left(e^{i\frac{11}{6}\pi}\right)^{7n+6} = e^{i\frac{\pi}{2}} \Leftrightarrow e^{i\frac{77}{6}\pi + 11\pi} = e^{i\frac{\pi}{2}} \Leftrightarrow \frac{77}{6}n\pi + 11\pi = \frac{\pi}{2} + \frac{2k\pi}{6}$$

$$\xrightarrow{\text{despejo}} \frac{77}{6}n + 11 = \frac{1}{2} + 2k \Leftrightarrow 77n = -63 + 12k \Leftrightarrow 77n \equiv -63 \text{ (12)} \Leftrightarrow 5n \equiv -3 \text{ (12)} \Leftrightarrow \frac{!}{(\Leftarrow)5 \perp 12}$$

$$n \equiv 9 \text{ (12)} \quad \checkmark$$

Ahora sí, tengo el sistema con divisores coprimos, por TCHR tengo solución.

$$\frac{\stackrel{\text{de}}{\star^{1}}}{n} = 3k \star^{3} \quad \checkmark \xrightarrow{\text{reemplazo} \atop \text{en } \star^{2}} 3k \equiv 5 \ (8) \xleftarrow{\times 3} k \equiv 7 \ (8) \Leftrightarrow k = 8j + 7 \quad \checkmark$$

$$\xrightarrow{\text{reemplazo} \atop k \text{ en } \star^{3}} n = 3(8j + 7) = 24j + 21 \Leftrightarrow \boxed{n \equiv 21 \ (24)} \quad \checkmark$$

4. Sea $w = e^{\frac{\pi}{18}i}$. Hallar todos los $n \in \mathbb{N}$ que cumplen simultáneamente:

$$\sum_{k=0}^{5n+1} w^{3k} = 0 \qquad \sum_{k=0}^{4n+6} w^{4k} = 0.$$

Expresar la solución como una única ecuación de congruencia.

Dado que:

$$w = e^{\frac{1}{18}\pi i} \Leftrightarrow \begin{cases} w^3 = e^{\frac{1}{6}\pi i} \neq 1 \\ w^4 = e^{\frac{2}{9}\pi i} \neq 1 \end{cases}$$

puedo usar la serie geométrica.

$$\sum_{k=0}^{5n+1} w^{3k} = \sum_{k=0}^{5n+1} (w^3)^k = \frac{(w^3)^{5n+2} - 1}{w^3 - 1} = 0 \Leftrightarrow (w^3)^{5n+2} = 1.$$

Queda una ecuación para encontrar w:

$$(w^3)^{5n+2} = 1 \stackrel{\text{laburo}}{\longleftrightarrow} \frac{15n+6}{18}\pi = 2k\pi \Leftrightarrow 5n+2 = 12k \stackrel{\text{def}}{\longleftrightarrow} 5n \equiv 10 \ (12)^{*1}$$

Y tenemos una ecuación. Ahora calculamos la otra sumatoria:

$$\sum_{k=0}^{4n+6} w^{4k} = \sum_{k=0}^{4n+6} (w^4)^k = \frac{(w^4)^{4n+7} - 1}{w^4 - 1} = 0 \Leftrightarrow (w^4)^{4n+7} = 1$$

Igual que antes, busco los w que satisfacen:

$$(w^4)^{4n+7} = 1 \stackrel{\text{laburo}}{\Longleftrightarrow} \frac{16n+28}{18}\pi = 2k\pi \Leftrightarrow 4n+7 = 9k \stackrel{\text{def}}{\Longleftrightarrow} 4n \equiv 2 \ (9)^{\star^2}$$

Con la segunda ecuación armo sistema y TCH:

$$\begin{array}{l}
\star^{1} \\
\star^{2}
\end{array}
\left\{\begin{array}{l}
n \equiv 2 \ (12) \\
n \equiv 5 \ (9)
\end{array}\right\} \longleftrightarrow \left\{\begin{array}{l}
n \equiv 2 \ (3) \\
n \equiv 2 \ (4) \\
n \equiv 2 \ (3)
\end{array}\right\} \xrightarrow{\text{solución por TCR}} \boxed{n \equiv 14 \ (36)}$$

Dale las gracias y un poco de amor \heartsuit a los que contribuyeron! Gracias por tu aporte:

* Nad Garraz \bigcirc * Ale Teran \bigcirc

♦5. Sea

$$z = (4\sqrt{2} + 4\sqrt{2}i)^a (8 + 8\sqrt{3}i)^b$$

se pide:

- a) Sabiendo que $\arg(z) = \arg(-i)$, hallar el resto de dividir a 3a + 4b por 24
- b) Determinar todas las parejas de números enteros (a, b) tales que cumplen lo anterior, y además

$$2^{10} < |z| < 2^{25}$$

Sugerencia: Use, sin demostrar, que $2^x < 2^y < 2^z \Leftrightarrow x < y < z$.

a) Acomodo z:

$$z = (4\sqrt{2} + 4\sqrt{2}i)^{a} (8 + 8\sqrt{3}i)^{b}$$

$$= (4\sqrt{2}(1+i))^{a} \cdot (8(1+\sqrt{3}))^{b}$$

$$= 8^{a}16^{b}e^{a \cdot \frac{\pi}{4}i} \cdot e^{b \cdot \frac{\pi}{3}i}$$

$$\stackrel{!}{=} 2^{3a+4b} \cdot e^{i(\frac{a}{4} + \frac{b}{3})\pi}$$

Entonces si arg(z) = arg(-i):

$$(\frac{a}{4} + \frac{b}{3})\pi = \frac{3}{2}\pi + 2k\pi \Leftrightarrow 3a + 4b = 18 + 24k$$

Esté resultado es literalmente la expresión de un número dividido por 24 con su resto:

$$r_{24}(3a+4b) = 18$$
 con $0 \le 18 < 24$

b) Condición sobre el |z|:

$$|z| = 2^{3a+4b} \quad \land \quad 2^{10} < |z| < 2^{25} \Leftrightarrow 10 < 3a + 4b < 25 \star^{1}$$

Por otro lado tengo:

$$3a + 4b \equiv 18 (24) \iff 3a + 4b = 24k + 18 *^{2}.$$

Reemplazo \star^2 en \star^1 :

$$10 < 24k + 18 < 25 \Leftrightarrow -8 < 24k < 7 \Leftrightarrow k = 0.$$

Por lo tanto tengo:

$$3a + 4b = 18$$

Para encontrar los pares resuelvo la diofántica (a ojo en este caso, sino usar euclides):

$$(a,b)_{particular} = (2,3)$$
 y $(a,b)_{homogeneo} = (-4,3)$

La solución general final con todos los pares queda:

$$(a,b)_{general} = k \cdot (-4,3) + (2,3)$$

= $(-4+2k,3+3k) \ \forall k \in \mathbb{Z}$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 😱