Método de Jacobi para obtener autovalores y autovectores

Buscamos max $|A_{ij}|$, i < j. Supongamos que el máximo se encuentra en i_m, j_m . Matriz de rotación. El elemento $-\sin(\theta)$ se encuentra en la fila i_m columna j_m .

$$R = \begin{pmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cos(\theta) & \cdots & -\sin(\theta) & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \sin(\theta) & \cdots & \cos(\theta) & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{pmatrix}$$

Transformación de la matriz A

$$B = R^T A R$$

haciendo la multiplicación obtenemos:

$$B_{i_m j_m} = A_{i_m j_m} \cos(2\theta) + \frac{1}{2} (A_{j_m j_m} - A_{i_m i_m}) \sin(2\theta)$$

Para que $B_{i_m j_m} = 0$ tenemos:

$$\theta = \frac{1}{2} \operatorname{atan}\left(\frac{2A_{i_m j_m}}{A_{i_m i_m} - A_{j_m j_m}}\right) \quad A_{i_m i_m} \neq A_{j_m j_m}$$

En el caso $A_{i_m i_m} = A_{j_m j_m}$, el ángulo es $\theta = \pi/4$.

La matriz B es la nueva A para la siguiente iteración.

Si paramos el método iterativo después de M iteraciones tendremos los autovalores en la diagonal de A y la matriz de autovectores responde a la fórmula:

$$U^{(M)} = U^{(M-1)} R^{(M)}$$

El procedimiento iterativo se sigue, por ejemplo, mientras $|A_{i_m j_m}| > \epsilon$.