Exercises for Module 1: Proofs

1. Prove De Morgan's Laws for propositions: $\neg(P \land Q) = \neg P \lor \neg Q$ and $\neg(P \lor Q) = \neg P \land \neg Q$ (Hint: use truth tables).

- 2. Write the following statements and their negations using logical quantifier notation and then prove or disprove them:
- (i) Every odd integer is divisible by three

(ii) For any real number, twice its square plus twice itself plus 6 is greater than or equal to five. assume knowledge of calculus.)	(You may
(iii) Every integer can be written as a unique difference of two natural numbers.	

- 3. Prove the following statements: (i) If a|b and $a,n\in\mathbb{Z}_{>0}$ (positive integers), then $a\leq b$.

(ii) If a|b and a|c, then a|(xb+yc), where $x,y\in\mathbb{Z}$.

(iii) Let $a, b, n \in \mathbb{Z}$. If n does not divide the product ab, then n does not divide a and n does not divide b.

4.	Prove	that	for	all	integers	n	\geq	1,	$3 (2^{2n}$	— 1	L).
----	-------	------	-----	-----	----------	---	--------	----	-------------	------------	-----

5. Prove the Fundamental Theorem of Arithmetic, that every integer $n \ge 2$ has a unique prime factorization (i.e. prove that the prime factorization from the last proof is unique).

6. Let $A = \{x \in \mathbb{R} : x < 100\}$, $B = \{x \in \mathbb{Z} : |x| \ge 20\}$, and $C = \{y \in \mathbb{N} : y \text{ is prime}\}$. Find $A \cap B$, $B^c \cap C$, $B \cup C$, and $(A \cup B)^c$.