## Gaussian Beams and Lasers

- Gaussian Beams Introduction
- Matrix Method
- Equivalent Ray tracing
- Example calculation
- Laser Basics

Solution of scalar paraxial wave equation (Helmholtz equation) is a Gaussian beam, given by:

sian beam, given by. 
$$E(\vec{r}) = A_0 \frac{w_0}{w(z)} e^{-\frac{\rho^2}{w^2(z)} - jkz - jk\frac{\rho^2}{2R(z)} + j\zeta(z)} \quad \text{where}$$

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_0}\right)^2} \qquad R(z) = z \left[1 + \left(\frac{z_0}{z}\right)^2\right] \qquad \zeta(z) = \tan^{-1}\left(\frac{z}{z_0}\right)$$

$$R(z) = z \left[ 1 + \left( \frac{z_0}{z} \right)^2 \right]$$

$$\zeta(z) = \tan^{-1} \left( \frac{z}{z_0} \right)$$

Note that R(z) does not obey ray tracing sign convention. Unfortunately there's no particularly good way to fix this.



**ECE 5616** Curtis

#### Main points



Gaussian beam can be completely described once you know two things

- 1. w<sub>o</sub> beam waist, which is the point where the field is down 1/e compared to on axis, wavelength
- 2. Z=0, location of beam waist

$$\theta_{\text{beam}} = \tan^{-1} \left( \frac{\lambda}{\pi \omega_0 n} \right) \simeq \frac{\lambda}{\pi \omega_0 n} \quad \text{for } \theta_{\text{beam}} \ll \pi$$

Half apex angle for far field of aperture w<sub>o</sub>, about 86% of beam power is contained within this cone

#### Detailed view, Rayleigh distance

Real part of E vs. radius and z



At 
$$z = z_0$$
,  

$$I(0, z_0) = I(0, 0)/2 w(z_0) = \sqrt{2}w_0 R(z_0) = 2z_0 min value$$

Measure of the convergence of the beam, smaller  $z_0$  stronger convergence. The phase on the beam axis is retarded by  $\pi/4$  relative to plane wave.

#### Detailed view, at beam center and far away

#### Real part of E vs. radius and z



#### Near beam center (z<< z<sub>o</sub>)

Beam intensity is ~ uniform across wavefront and Guay phase is zero In other words it is like a plane wave.

#### Far from beam waist $(z \gg z_0)$

Wave is ~ like a spherical wave (paraxially)

Since R(z)  $\approx$  z and w(z)  $\approx$  w<sub>o</sub>z/z<sub>o</sub>, but with extra phase of  $\zeta$ (z) = $\pi$ /2.

#### Conversion formulas

Any constant times w(z) is a ray path. Note that the rays are converging and diverging spherical wave *except* near the focus where they <u>bend</u>. Ergo rays do <u>not</u> always travel in straight lines – the region near the focus violates the slowly-varying envelope approximation.

Conversion formulas

$$w_{0} = \sqrt{\frac{\lambda}{\pi}} z_{0} = \frac{\lambda}{\pi} \frac{1}{\theta_{0}} \quad \theta_{0} = \frac{\lambda}{\pi} \frac{1}{w_{0}} = \sqrt{\frac{\lambda}{\pi}} \frac{1}{z_{0}} \qquad z_{0} = \frac{\lambda}{\pi} \theta_{0}^{-2} = \frac{\pi}{\lambda} w_{0}^{2} = \frac{w_{0}}{\theta_{0}}$$

# Gaussian Beam Parameter q(z)

The complete Gaussian beam expression normalized to intensity

transverse dimensions

=1.2

$$E(\vec{r}) = A_0 \left(\frac{1}{\sqrt{\pi w_0}}\right)^{D/2} \frac{w_0}{w(z)} e^{\frac{\rho^2}{w^2(z)}jkz - jk\frac{\rho^2}{2R(z)}j\zeta(z)}$$
D is number of

Define the complex radius of curvature

$$\frac{1}{q(z)} = \frac{1}{R(z)} - j \frac{\lambda}{\pi w^2(z)}$$

# Gaussian Beam Parameter q(z)

What is q(z)?  

$$q(z) = \frac{1}{z \left[1 + \left(\frac{z_0}{z}\right)^2\right]} - j \frac{1}{z_0 \left[1 + \left(\frac{z}{z_0}\right)^2\right]}$$

$$= \left[\frac{z - j z_0}{z^2 + z_0^2}\right]^{-1}$$

$$= z + j z_0$$

$$q(z) = \frac{1}{z_0 \left[1 + \left(\frac{z}{z_0}\right)^2\right]}$$

$$= \frac{|q|}{z_0} = \sqrt{1 + \left(\frac{z}{z_0}\right)^2} = \frac{w(z)}{w_0}$$

Can now write Gaussian above as

$$E(\vec{r}) = jA_0 \left(\frac{1}{\sqrt{\pi w_0}}\right)^{D/2} \frac{z_0}{q(z)} e^{-jk\frac{\rho^2}{2q(z)}-jkz}$$

Note that phase of j/q(z) is  $\zeta$ .

### How does q change with transfer and refraction?

Free space:

$$q_1 = z_1 + j z_0$$
 Start with expression for q(z)  
 $q_2 = z_2 + j z_0 = q_1 + (z_2 - z_1)$  so  $q_2 = q_1 + \Delta z$ 

Thin lens

$$\frac{1}{q(z)} = \frac{1}{R(z)} - j\frac{\lambda}{\pi w^2(z)}$$
 Start with expression for 1/q(z)

Thin lens equation expressed as change in 
$$\frac{1}{R'} = \frac{1}{R} - \frac{1}{f}$$
Thin lens equation expressed as change in curvature of wave NOTE HOW GAUSSIAN BEAM SIGN CONVENTION HAS CHANGED THE SIGN

$$\frac{1}{q'} = \frac{1}{q} - \frac{1}{f}$$
 Apply to 1/q
$$q' = \frac{q}{-q/f + 1}$$
 Solve for q

## **ABCD Matrix for Guassians**

Remember the ABCD matrices for thin lens refraction and freespace transfer

$$\mathsf{R}_k = \begin{bmatrix} 1 & 0 \\ -\phi_k & 1 \end{bmatrix}$$

$$\mathsf{T}_{k} = \begin{bmatrix} 1 & t_{k}' \\ 0 & 1 \end{bmatrix}$$

and define the evolution equation for q

$$q' = \frac{Aq + B}{Cq + D}$$

## **ABCD Matrix for Guassians**

Check for free space:

$$q' = \frac{1q + t_k'}{0q + 1} = q + t_k'$$

Check for thin lens:

$$q' = \frac{1q+0}{-\phi_k q+1} = \frac{q}{-q/f+1}$$

Which says, rather remarkably, that we can model the propagation of a Gaussian beam through a paraxial optical system using ray matrices.

# **Matrix Method**

Consider next the propagation of a Gaussian beam through two lenslike media that are adjacent to each other. The ray matrix describing the first one is  $(A_1, B_1, C_1, D_1)$  while that of the second one is  $(A_2, B_2, C_2, D_2)$ . Taking the input beam parameter as  $q_1$  and the output beam parameter as  $q_3$ , we have

$$q_2 = \frac{A_1 q_1 + B_1}{C_1 q_1 + D_1}$$

for the beam parameter at the output of medium 1 and

$$q_3 = \frac{A_2 q_2 + B_2}{C_2 q_2 + D_2}$$

and after combining the last two equations,

$$q_3 = \frac{A_T q_1 + B_T}{C_T q_1 + D_T}$$

where

$$\begin{vmatrix} A_T & B_T \\ C_T & D_T \end{vmatrix} = \begin{vmatrix} A_2 & B_2 \\ C_2 & D_2 \end{vmatrix} \begin{vmatrix} A_1 & B_1 \\ C_1 & D_1 \end{vmatrix}$$

So can use them like before for multiple elements

#### Gaussian beam focusing

At the input plane 1  $\omega = \omega_{01}$ ,  $R_1 = \infty$  so that

$$\frac{1}{q_1} = \frac{1}{R_1} - i \frac{\lambda}{\pi \omega_{01}^2 n} = -i \frac{\lambda}{\pi \omega_{01}^2 n}$$

$$\frac{1}{q_2} = \frac{1}{q_1} - \frac{1}{f} = -\frac{1}{f} - i\frac{\lambda}{\pi\omega_{01}^2 n}$$

$$q_2 = \frac{1}{-1/f - i(\lambda/\pi\omega_{01}^2 n)} = \frac{-a + ib}{a^2 + b^2}$$

$$a = \frac{1}{f} \qquad b = \frac{\lambda}{\pi\omega_{01}^2 n}$$



#### Gaussian beam focusing

$$q_{3} = q_{2} + l = \frac{-a}{a^{2} + b^{2}} + \frac{ib}{a^{2} + b^{2}} + l$$

$$\frac{1}{q_{3}} = \frac{1}{R_{3}} - i \frac{\lambda}{\pi \omega_{3}^{2} n}$$

$$= \frac{\left[ -a/(a^{2} + b^{2}) + l \right] - ib/(a^{2} + b^{2})}{\left[ -a/(a^{2} + b^{2}) + l \right]^{2} + b^{2}/(a^{2} + b^{2})^{2}}$$

Since plane 3 is, according to the statement of the problem, to correspond to the output beam waist,  $R_3 = \infty$ . Using this fact in the last equation leads to

$$l = \frac{a}{a^2 + b^2} = \frac{f}{1 + (f/\pi\omega_{01}^2 n/\lambda)^2} = \frac{f}{1 + (f/z_{01})^2}$$

as the location of the new waist, and to

$$\frac{\omega_3}{\omega_{01}} = \frac{f \lambda / \pi \omega_{01}^2 n}{\sqrt{1 + (f \lambda / \pi \omega_{01}^2 n)^2}} = \frac{f / z_{01}}{\sqrt{1 + (f / z_{01})^2}}$$



#### Gaussian beam in lens waveguide/resonator

$$\begin{vmatrix} A_T & B_T \\ C_T & D_T \end{vmatrix} = \begin{vmatrix} A & B \\ C & D \end{vmatrix}^S$$

where (A, B, C, D) is the matrix for propagation through a single two-lens, unit cell  $(\Delta s = 1)$  We can use a well-known formula for the sth power of a matrix with a unity determinant (unimodular) to obtain

$$A_T = \frac{A \sin(s\theta) - \sin[(s-1)\theta]}{\sin \theta}$$

$$B_T = \frac{B \sin(s\theta)}{\sin \theta}$$

$$C_T = \frac{C \sin(s\theta)}{\sin \theta}$$

$$D_T = \frac{D \sin(s\theta) - \sin[(s-1)\theta]}{\sin \theta}$$

where

$$\cos \theta = \frac{1}{2}(A+D) = \left(1 - \frac{d}{f_2} - \frac{d}{f_1} + \frac{d^2}{2f_1 f_2}\right)$$

For mirrors F=2/R

$$q_{s+1} = \frac{\{A\sin(s\theta) - \sin[(s-1)\theta]\}q_1 + B\sin(s\theta)}{C\sin(s\theta)q_1 + D\sin(s\theta) - \sin[(s-1)\theta]}$$

#### Gaussian beam in lens waveguide/resonator

For Gaussian beam confinement  $\theta$  must be real. This yields the condition below for stable beam confinement or resonance...

$$0 \le \left(1 - \frac{d}{2f_1}\right)\left(1 - \frac{d}{2f_2}\right) \le 1$$
 For mirrors F=2/R

This is the same condition as we derived for RAYS !!!

# Representation of Gaussian Beams by complex rays (1)

Define the following three rays. Note their suggestive names and relationship to the Gaussian beam.



# Representation of Gaussian Beams by complex rays (1')

Define the complex ray trajectory

$$\Gamma(z) = \Delta(z) + j\Omega(z)$$
 This is Greynolds' definition and yields the proper form of q. Arnaud's definition yields q\*.

You can then show that this ray contains q(z)

$$\begin{split} \frac{\Gamma(z)}{d\Gamma/dz} &= \frac{y_\Delta + j \ y_\Omega}{u_\Delta + j \ u_\Omega} \\ &= \frac{z \theta_0 + j w_0}{\theta_0} = z + j \ z_0 = q(z) \\ &= \frac{z \theta_0 + j w_0}{\theta_0} = z + j \ z_0 = q(z) \end{split}$$
 E.g. at z=0

A. W. Greynolds, SPIE V 560, p. 33, 1985 M&M A2.5

# Representation of Gaussian Beams by complex rays (2)

First we note:

$$(y_{\Omega}u_{\Delta} - y_{\Delta}u_{\Omega})\frac{n}{n'} = \frac{\lambda'}{\pi}$$

By brute for tracing of the rays, we can find the following Gaussian parameters based on the two rays at that point:

$$\theta_0 = \sqrt{u_\Delta^2 + u_\Omega^2}$$

Which gives all other beam parameters

$$w(z) = \sqrt{y_{\Omega}^2(z) + y_{\Delta}^2(z)}$$

1/e field radius at this z

# Representation of Gaussian Beams by complex rays (2')

We could use these two and the expressions for the Gaussian beam parameters to generate the complete Gaussian, but this would be a bit tedious. A more elegant way is to use the complex ray formalism:

$$q(z) = \frac{\Gamma(z)}{d\Gamma/dz}$$

$$= \frac{y_{\Delta} + zu_{\Delta} + j(y_{\Omega} + zu_{\Omega})}{u_{\Delta} + ju_{\Omega}}$$
 At plane  $z \neq 0$ 

Which, apart from the on-axis phase  $k_0S$  gives the full Gaussian beam at this plane z.

R. Herloski, S. Marshall, R. Antos, Applied Optics, V22, N8, p 1168, 15 Apr 1983

# Representation of Guassian Beams by complex rays (3)

#### **Notes**

- In (1), second waist is at Fourier plane, as expected.
- In (2), second waist occurs before image plane, as expected.
- In (3), as distance to lens increases, waist moves to paraxial image plane

ECE 5616 Curtis On-axis examples:







# Representation of Guassian Beams by complex rays (4)

#### Off-axis examples:

**Notes** 

• In (1), waist is centered at zero (as expected of FT geometry)



1)  $\lambda = 1 \mu m$ ,  $w_0 = 10 \lambda$ ,  $f = 500 \mu m$ , 1 f - 1 f system.

• In (2), image is at -10 μm, expected from M=-1.

• This type of problem is not possible with the ABCD formalism.





#### Do Guassian Beams Obey Paraxial Imaging? (1/3)



Answer: Yes. The image is also a Gaussian E field distribution in amplitude and any point on the object down from the peak by some value, say 1/e for the point w(z), will image to the point on the image down from the peak by the same value. Shown above only for real objects conjugate to real images (-t f).

### Do Guassian Beams Obey Paraxial Imaging? (2/3)



#### Do Guassian Beams Obey Paraxial Imaging? (3/3)



<u>Conclusion:</u> All parts of the object Gaussian image correctly to the appropriate parts of the image Gaussian including both real and virtual objects and images.

<u>Corollary:</u> If you apply paraxial imaging to the object Gaussian over all z, you generate the image Gaussian over all z. Gaussian beams obey paraxial imaging exactly.

#### **Example: Collimation Lens**



$$M = T(L)R(\phi)T(d)$$
ABCD from start to center
$$= \begin{bmatrix} 1 - L\phi & L + d(1 - L\phi) \\ -\phi & 1 - d\phi \end{bmatrix}$$

$$q(L) = \frac{L + d(1 - L\phi) + jz_0(1 - L\phi)}{1 - d\phi - j\phi z_0}$$

Re[q(L')] = 0 
$$\Rightarrow$$
 L' =  $\frac{\phi z_0^2 - d(1 - d\phi)}{\phi^2 z_0^2 + (1 - d\phi)^2}$ 

$$q(L') = j \frac{z_0}{\phi^2 z_0^2 + (1 - d\phi)^2} = j z_{0-NEW}$$

q at center starting with  $q = j z_0$ 

Where is waist?

What is new Rayleigh range?

#### **Absorption and Emission**



An atom/ion in a material, such as glass, ca absorb light,

$$h_{V} = E_{2} - E_{1}$$

v is the frequency of light (photon)

After absorption, the material does not stay in the excited state indefinitely, but it will go back to the ground state either by



#### **Spontaneous Emission and Lifetime**



There is a certain probability  $(A_{21})$  for the atom to decay radiatively



For a collection of  $N_2$  atoms in the excited state:

$$\frac{dN_2}{dt} = -A_{21}N_2$$

With solution:

$$N_2 = N_{20}e^{-A_{21}t} = N_{20}e^{-t/\tau}$$
  $\tau$  is the lifetime

Including non-radiative decay:

$$A_{tot} = A_{21} + A_{nr} \qquad \tau = 1/A_{tot}$$

#### Spontaneous and Stimulated Emission





#### Stimulated Emission versus Absorption



#### But we also have



To have net amplification of light (gain) we need  $N_2 > N_1$ We need population inversion

#### **Population Inversion**

If there are only 2 levels inversion is not possible

But if we have >3 levels inversion can be obtained



# Line Broadening:

#### Homogeneous



The finite lifetime of the excited state leads to a broadening of the emission linewidth:

$$I(v) = I_0 \frac{A_{tot}/4\pi^2}{(v - v_0)^2 + (A_{tot}/4\pi)^2}$$



The lineshape is Lorentzian and the same for all atoms

homogeneous broadening

# Line Broadening:

#### Inhomogeneous

There is also a broadening that results from the fact that not all atoms have the same surroundings (glass!)  $\longrightarrow$  different atoms have slightly different transition frequencies (gas) different velocities The spread in frequencies is characterized by  $\Delta v_{INH}$ 

$$I(v) = I_0 \frac{2(\ln 2)^{1/2}}{\pi^{1/2} \Delta v_{INH}} \exp \left\{ -\left[ \frac{4(\ln 2)(v - v_0)^2}{(\Delta v_{INH})^2} \right] \right\}$$



The resulting lineshape is Gaussian inhomogeneous broadening

#### **Amplification and Lasing**



Because of stimulated process, amplified light has direction and phase of incoming signal



laser light has the following properties:

- highly directional
- · highly monochromatic
- · highly coherent

## **Cavity Modes**



axial mode frequencies v = nc/2L axial mode separation  $\Delta v = c/2L$ 



# Single versus Multimode





Single Mode

Multimode Mode

# Spectral hole burning

Five species of atom shown. (For example, five atoms in gas with different velocities.) Black is total response. Blue lines are cavity modes.



# Spectral hole burning

Five species of atom shown. Black is total response. Blue lines are cavity modes.



This will be a single mode laser. What if broadening > free spectral range?

# Multimode/Inhomogeneous

Inhomogeneously broadened:



# Multimode Lasers



#### Examples:

HeNe: Doppler (inhomogeneous) broadened to 1.5 GHz

Free spectral range for 0.1 meters = 0.15 GHz

So ten modes oscillate.

Low pressure CO<sub>2</sub> laser doppler broadened to 100 MHz

If length of cavity is 0.1 meters, FSR = 0.15 GHz

So one mode oscillates i.e. single mode.

Nd-YAG homogeneous broadened to 140 GHz

Since it's homogeneous, it will tend to single mode, even though it's got 100s of allowed modes in its (unsaturated) gain curve.

#### 3 level vs 4 level systems





In 3-level system more than 50% of level 1 needs to be pumped, so it is harder to obtain inversion:

Pump and laser transition share a level

$$\frac{(N_{2})_{3level}}{(N_{2})_{4level}} \approx \frac{N_{o}}{2N_{t}}$$

#### Some simple laser equations

note: cw lasers!

$$e^{2g_{th}L} = \frac{1}{R^2}$$

gain =loss and v = nc/2L

 $g_{th}$  =  $\sigma \Delta N_{th}$  where  $\sigma$  is the emission cross-section (m<sup>2</sup>). R = mirror reflectivity



The lasing threshold is achieved when the pump rate (proportional to pump power) is high enough to obtain  $\Delta N_{th}$ .

If the pump rate is increased further the steady state laser intensity (power/area),  $I_{ss}$ , grows according to

$$I_{ss} = (P/P_{th} - 1)I_{sat}$$

Here P is the pump power,  $P_{th}$  the pump power needed to reach threshold and  $I_{sat}$  the saturation intensity (a fixed parameters for a given laser transition)



## Threshold Inversion

#### Minimum Power Required

#### Gain equals losses and then solve for $\Delta N$

$$N_{t} = \frac{8\pi n^{2}t_{spont}}{g(\upsilon)\lambda^{2}}(\alpha - \frac{1}{l}\ln r_{1}r_{2}) \qquad \qquad \frac{1}{g(\upsilon_{o})} \approx \Delta\upsilon \quad \begin{array}{c} \text{Linewidth} \\ \text{Also 1/lw will give} \\ \text{you minimum pulse} \\ \text{length} \end{array}$$

The cavity decay time ( $t_c$ ) assuming  $\alpha$ =0,  $r_1 \sim r_2$  is approximately

$$t_c \approx \frac{nl}{c(1-R)}$$

The threshold population is many times written using t<sub>c</sub> as

$$N_{t} = \frac{8\pi n^{3} \upsilon^{2} t_{spont}}{c^{3} t_{c} g(\upsilon)}$$

Power needed to do this is given by

$$(P_s)_{4level} = \frac{N_t h \upsilon V}{t_2}$$

#### Erbium Doped Fiber Amplifier: EDFA

Glass fibers: long interaction lengths, compact and robust

