TEA010 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P03A, 26 mai 2023

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Usando obrigatoriamente a regra de Leibniz, calcule

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{x}^{2x} \frac{\mathrm{sen}(t/x)}{t} \, \mathrm{d}t.$$

SOLUÇÃO DA QUESTÃO:

A regra de Leibnitz é

Prof. Nelson Luís Dias

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a(x)}^{b(x)} f(x,t) \, \mathrm{d}t = f(x,b) \frac{\mathrm{d}b}{\mathrm{d}x} - f(x,a) \frac{\mathrm{d}a}{\mathrm{d}x} + \int_{a(x)}^{b(x)} \frac{\partial f(x,t)}{\partial x} \, \mathrm{d}t.$$

Agora,

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{x}^{2x} \frac{\mathrm{sen}(\frac{t}{x})}{t} \, \mathrm{d}t = \frac{\mathrm{sen}(2x/x)}{2x} \frac{\mathrm{d}(2x)}{\mathrm{d}x} - \frac{\mathrm{sen}(x/x)}{x} \frac{\mathrm{d}(x)}{\mathrm{d}x} + \int_{x}^{2x} \frac{\partial}{\partial x} \frac{\mathrm{sen}(t/x)}{t} \, \mathrm{d}t$$

$$= \frac{\mathrm{sen}(2)}{x} - \frac{\mathrm{sen}(1)}{x} + \int_{x}^{2x} \frac{1}{t} \cos\left(\frac{t}{x}\right) \times -\frac{t}{x^{2}} \, \mathrm{d}t$$

$$= \frac{\mathrm{sen}(2)}{x} - \frac{\mathrm{sen}(1)}{x} - \frac{1}{x} \int_{x}^{2x} \cos\left(\frac{t}{x}\right) \frac{\mathrm{d}t}{x}$$

$$= \frac{\mathrm{sen}(2)}{x} - \frac{\mathrm{sen}(1)}{x} - \frac{1}{x} \int_{1}^{2} \cos(u) \, \mathrm{d}u$$

$$= \frac{\mathrm{sen}(2)}{x} - \frac{\mathrm{sen}(1)}{x} - \left[\frac{\mathrm{sen}(2)}{x} - \frac{\mathrm{sen}(1)}{x}\right] = 0 \quad \blacksquare$$

2 [25] Se

$$f(x,y) = \frac{x}{x^2 + y^2},$$

Calcule a integral

$$I = \iint_{R_{xy}} f(x, y) \, \mathrm{d}y \mathrm{d}x$$

onde R_{xy} é o semi-círculo definido por $x^2 + y^2 \le 1$ e $x \ge 0$.

SOLUÇÃO DA QUESTÃO:

É infinitamente mais fácil usar coordenadas polares. Primeiramente,

$$x = r\cos(\theta),$$

$$y = r\sin(\theta),$$

$$x^{2} + y^{2} = r^{2},$$

$$f(x,y) = \frac{x}{\sqrt{x^{2} + y^{2}}} \times \frac{1}{\sqrt{x^{2} + y^{2}}}$$

$$\frac{x}{r} \times \frac{1}{r}$$

$$= \frac{\cos(\theta)}{r} = g(r, \theta).$$

Agora,

$$\iint_{R_{xy}} f(x,y) \, \mathrm{d}y \, \mathrm{d}x = \iint_{R_{r\theta}} g(r,\theta) \left| \frac{\partial(x,y)}{\partial(r,\theta)} \right| \, \mathrm{d}\theta \mathrm{d}r;$$

Mas

$$\frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix}$$
$$= \begin{vmatrix} \cos(\theta) & -r \sin(\theta) \\ \sin(\theta) & r \cos(\theta) \end{vmatrix}$$
$$= r;$$

Logo,

$$\begin{split} I &= \iint_{R_{r\theta}} g(r,\theta) \left| \frac{\partial(x,y)}{\partial(r,\theta)} \right| \, \mathrm{d}\theta \mathrm{d}r \\ &= \int_{r=0}^{1} \int_{\theta=-\pi/2}^{+\pi/2} \frac{\cos(\theta)}{r} \, r \, \mathrm{d}r \, \mathrm{d}\theta \\ &= \int_{\theta=-\pi/2}^{+\pi/2} \cos(\theta) \, \mathrm{d}\theta \\ &= [\sin(\theta)]_{-\pi/2}^{+\pi/2} = 2 \, \blacksquare \end{split}$$

3 [25] Se

$$F = (yz^2 + y^2z)\mathbf{i} + (x^2z + xz^2)\mathbf{j} + (xy^2 + x^2y)\mathbf{k},$$

calcule o $\nabla \times F$.

SOLUÇÃO DA QUESTÃO:

$$\nabla \times F = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ (yz^2 + y^2z) & (x^2z + xz^2) & (xy^2 + x^2y)\mathbf{k}, \end{vmatrix}$$

$$= [(2xy + x^2) - (x^2 + 2xz)]\mathbf{i} + [(2yz + y^2) - (y^2 + 2xy)]\mathbf{j} + [(2xz + z^2) - (z^2 + 2yz)]\mathbf{k}$$

$$= 2(xy - xz)\mathbf{i} + 2(yz - xy)\mathbf{j} + 2(xz - yz)\mathbf{k} \blacksquare$$

4 [25] Se $F(x, y) = -y\mathbf{i} + x\mathbf{j}$, calcule o valor da integral de linha

$$I = \oint \mathbf{F} \cdot \mathrm{d}\mathbf{r}$$

ao longo do caminho fechado formado pelos lados do triângulo equilátero da figura (o tamanho dos lados é 1).

SOLUÇÃO DA QUESTÃO:

Use o Teorema de Green: se F = Pi + Qj,

$$\oint_{\mathcal{L}} P \, \mathrm{d}x + Q \, \mathrm{d}y = \iint_{\mathcal{L}} \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] \, \mathrm{d}A$$

Mas P = -y e Q = x;

$$\frac{\partial Q}{\partial x} = 1,$$

$$\frac{\partial P}{\partial y} = -1,$$

$$I = \iint_{\mathcal{S}} 2 \, dA = 2A,$$

onde A é a área do triângulo retângulo:

$$A = \frac{1}{2} \times 1 \times 1 \operatorname{sen}\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{4};$$
$$I = \frac{\sqrt{3}}{2} \blacksquare$$