Final Project Submission

Please fill out:

- Student name: Guofa Shou
- · Student pace: self paced
- Scheduled project review date/time:
- · Instructor name:
- · Blog post URL:

Business Understanding

I firstly do the business understanding by the following questions and answers

In [157]:

```
# Q: Who are the stakeholders in this project? Who will be directly affected by the creatio
# A: The stakeholders are the house buyer or seller.
# For house buyer, they will know the price of the house based on the characteristi
# and also, what's the investment value for the house
# For house seller, they may know whether they can somehouse do something to sell t
# Q: What business problem(s) will this Data Science project solve for the organization?
# A: A linear regression model will be built based on related features, which could predict
# Q: What data sources are available to us?
# A: We have the kc_house_data.csv which includes many characteristics of the house
```

Data Understanding

Now, I import the data and examine what data are available.

In [158]:

```
# import necessary libraries
# Warning off
import warnings
warnings.filterwarnings('ignore')
# import pandas and numpy
import pandas as pd
import numpy as np
# import data visualization
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('darkgrid')
%matplotlib inline
# import linear regression related modules
from statsmodels.formula.api import ols
from statsmodels.stats.outliers_influence import variance_inflation_factor
import statsmodels.api as sm
import scipy.stats as stats
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
```

In [159]:

```
# Loading kc_house_data.csv data
df = pd.read_csv('./data/kc_house_data.csv')
df.head() # checking the head for information
```

Out[159]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterf
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	

5 rows × 21 columns

In [160]:

```
# Describe the dataset using 5-point statistics
df.describe()
# What data is available to us?
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	id	21597 non-null	int64
1	date	21597 non-null	object
2	price	21597 non-null	float64
3	bedrooms	21597 non-null	int64
4	bathrooms	21597 non-null	float64
5	sqft_living	21597 non-null	int64
6	sqft_lot	21597 non-null	int64
7	floors	21597 non-null	float64
8	waterfront	19221 non-null	float64
9	view	21534 non-null	float64
10	condition	21597 non-null	int64
11	grade	21597 non-null	int64
12	sqft_above	21597 non-null	int64
13	sqft_basement	21597 non-null	object
14	yr_built	21597 non-null	int64
15	yr_renovated	17755 non-null	float64
16	zipcode	21597 non-null	int64
17	lat	21597 non-null	float64
18	long	21597 non-null	float64
19	sqft_living15	21597 non-null	int64
20	sqft_lot15	21597 non-null	int64
dtyp	es: float64(8),	int64(11), obje	ct(2)
memo	ry usage: 3.5+1	МВ	

In [161]:

```
# We have potentially 19 predictors excluding the id and the target,i.e.,the price
# We have a total of 21597 rows, while some rows have null values in some predictors
# Several predictors' data type need to be changed
```

Data Preparation

Deal with data types and missing data

Deal with data types: sqft_basement & date

In [162]:

```
# sqft basement: Numerical Data Stored as Strings need to be reformat to float
print(df.sqft_basement.unique())
df.sqft_basement.value_counts()
# there is '?' in the sqft_basement, need to be repalce as nan before reformat to float
df.sqft_basement = df.sqft_basement.map(lambda x: float(x.replace('?', 'nan')))
df.sqft basement.unique()
['0.0' '400.0' '910.0' '1530.0' '?' '730.0' '1700.0' '300.0' '970.0'
 '760.0' '720.0' '700.0' '820.0' '780.0' '790.0' '330.0' '1620.0' '360.0'
 '588.0' '1510.0' '410.0' '990.0' '600.0' '560.0' '550.0' '1000.0'
 '1600.0' '500.0' '1040.0' '880.0' '1010.0' '240.0' '265.0' '290.0'
 '800.0' '540.0' '710.0' '840.0' '380.0' '770.0' '480.0' '570.0' '1490.0'
 '620.0' '1250.0' '1270.0' '120.0' '650.0' '180.0' '1130.0' '450.0'
 '1640.0' '1460.0' '1020.0' '1030.0' '750.0' '640.0' '1070.0' '490.0'
 '1310.0' '630.0' '2000.0' '390.0' '430.0' '850.0' '210.0' '1430.0'
 '1950.0' '440.0' '220.0' '1160.0' '860.0' '580.0' '2060.0' '1820.0'
 '1180.0' '200.0' '1150.0' '1200.0' '680.0' '530.0' '1450.0' '1170.0'
 '1080.0' '960.0' '280.0' '870.0' '1100.0' '460.0' '1400.0' '660.0'
 '1220.0' '900.0' '420.0' '1580.0' '1380.0' '475.0' '690.0' '270.0'
 '350.0' '935.0' '1370.0' '980.0' '1470.0' '160.0' '950.0' '50.0' '740.0'
 '1780.0' '1900.0' '340.0' '470.0' '370.0' '140.0' '1760.0' '130.0'
 '520.0' '890.0' '1110.0' '150.0' '1720.0' '810.0' '190.0' '1290.0'
 '670.0' '1800.0' '1120.0' '1810.0' '60.0' '1050.0' '940.0' '310.0'
 '930.0' '1390.0' '610.0' '1830.0' '1300.0' '510.0' '1330.0' '1590.0'
 '920.0' '1320.0' '1420.0' '1240.0' '1960.0' '1560.0' '2020.0' '1190.0'
 '2110.0' '1280.0' '250.0' '2390.0' '1230.0' '170.0' '830.0' '1260.0'
 '1410.0' '1340.0' '590.0' '1500.0' '1140.0' '260.0' '100.0' '320.0'
 '1480.0' '1060.0' '1284.0' '1670.0' '1350.0' '2570.0' '1090.0' '110.0'
 '2500.0' '90.0' '1940.0' '1550.0' '2350.0' '2490.0' '1481.0' '1360.0'
 '1135.0' '1520.0' '1850.0' '1660.0' '2130.0' '2600.0' '1690.0' '243.0'
 '1210.0' '1024.0' '1798.0' '1610.0' '1440.0' '1570.0' '1650.0' '704.0'
 '1910.0' '1630.0' '2360.0' '1852.0' '2090.0' '2400.0' '1790.0' '2150.0'
 '230.0' '70.0' '1680.0' '2100.0' '3000.0' '1870.0' '1710.0' '2030.0'
 '875.0' '1540.0' '2850.0' '2170.0' '506.0' '906.0' '145.0' '2040.0'
 '784.0' '1750.0' '374.0' '518.0' '2720.0' '2730.0' '1840.0' '3480.0'
 '2160.0' '1920.0' '2330.0' '1860.0' '2050.0' '4820.0' '1913.0' '80.0'
 '2010.0' '3260.0' '2200.0' '415.0' '1730.0' '652.0' '2196.0' '1930.0'
 '515.0' '40.0' '2080.0' '2580.0' '1548.0' '1740.0' '235.0' '861.0'
 '1890.0' '2220.0' '792.0' '2070.0' '4130.0' '2250.0' '2240.0' '1990.0'
 '768.0' '2550.0' '435.0' '1008.0' '2300.0' '2610.0' '666.0' '3500.0'
 '172.0' '1816.0' '2190.0' '1245.0' '1525.0' '1880.0' '862.0' '946.0'
 '1281.0' '414.0' '2180.0' '276.0' '1248.0' '602.0' '516.0' '176.0'
 '225.0' '1275.0' '266.0' '283.0' '65.0' '2310.0' '10.0' '1770.0' '2120.0'
 '295.0' '207.0' '915.0' '556.0' '417.0' '143.0' '508.0' '2810.0' '20.0'
 '274.0' '248.0']
Out[162]:
       0., 400., 910., 1530., nan, 730., 1700., 300., 970.,
array([
        760., 720., 700., 820., 780., 790., 330., 1620., 360.,
        588., 1510., 410., 990., 600., 560., 550., 1000., 1600.,
        500., 1040., 880., 1010., 240., 265., 290., 800., 540.,
       710., 840., 380., 770., 480., 570., 1490., 620., 1250.,
       1270., 120., 650., 180., 1130., 450., 1640., 1460., 1020.,
       1030., 750., 640., 1070., 490., 1310., 630., 2000., 390.,
              850., 210., 1430., 1950., 440., 220., 1160.,
        580., 2060., 1820., 1180., 200., 1150., 1200., 680., 530.,
       1450., 1170., 1080., 960., 280., 870., 1100., 460., 1400.,
```

660., 1220.,

900., 420., 1580., 1380., 475., 690., 270.,

```
350., 935., 1370., 980., 1470.,
                                   160., 950.,
                                                  50.,
                                                        740.,
                                   140., 1760., 130.,
1780., 1900.,
              340.,
                     470.,
                           370.,
 890., 1110.,
              150., 1720.,
                            810.,
                                   190., 1290.,
                                                670., 1800.,
1120., 1810.,
              60., 1050.,
                           940.,
                                   310., 930., 1390.,
1830., 1300.,
              510., 1330., 1590.,
                                   920., 1320., 1420., 1240.,
1960., 1560., 2020., 1190., 2110., 1280., 250., 2390., 1230.,
 170., 830., 1260., 1410., 1340.,
                                  590., 1500., 1140.,
100., 320., 1480., 1060., 1284., 1670., 1350., 2570., 1090.,
               90., 1940., 1550., 2350., 2490., 1481., 1360.,
110., 2500.,
1135., 1520., 1850., 1660., 2130., 2600., 1690., 243., 1210.,
1024., 1798., 1610., 1440., 1570., 1650., 704., 1910., 1630.,
2360., 1852., 2090., 2400., 1790., 2150., 230.,
                                                  70., 1680.,
2100., 3000., 1870., 1710., 2030., 875., 1540., 2850., 2170.,
              145., 2040., 784., 1750.,
                                         374.,
       906.,
                                                518., 2720.,
2730., 1840., 3480., 2160., 1920., 2330., 1860., 2050., 4820.,
        80., 2010., 3260., 2200., 415., 1730., 652., 2196.,
1930., 515.,
               40., 2080., 2580., 1548., 1740.,
                                                235., 861.,
              792., 2070., 4130., 2250., 2240., 1990.,
1890., 2220.,
2550., 435., 1008., 2300., 2610.,
                                   666., 3500.,
                                                172., 1816.,
2190., 1245., 1525., 1880., 862.,
                                   946., 1281.,
                                                 414., 2180.,
              602., 516., 176.,
                                   225., 1275.,
 276., 1248.,
                                                 266.,
                                                        283.,
 65., 2310.,
              10., 1770., 2120.,
                                   295., 207.,
                                                 915.,
                                                        556.,
417., 143., 508., 2810.,
                                   274., 248.])
                             20.,
```

In [163]:

```
# For the sold date, since day is not important for the regression model,
# I only extract year and month for the sold date, and add two columns as year_sold and mon
df['year_sold'] = pd.DatetimeIndex(df['date']).year
df['month_sold'] = pd.DatetimeIndex(df['date']).month

# Based on the yr_built and month_sold, I create another column as age_sold of the house
df['age_sold'] = df['year_sold'] - df['yr_built'] + 1
df.head()
```

Out[163]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterf
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	1
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	

5 rows × 24 columns

Deal with null values

In [164]:

```
# Get the percentage value of null data for each column
df.isnull().sum()*100/df.shape[0]
bathrooms
                0.000000
sqft_living
                0.000000
sqft_lot
                0.000000
floors
                0.000000
waterfront 11.001528
view
                0.291707
condition
                0.000000
grade
                0.000000
sqft_above
                0.000000
sqft_basement
                2.102144
yr_built
                0.000000
yr_renovated 17.789508
zipcode
               0.000000
lat
                0.000000
long
                0.000000
sqft_lot15
                0.000000
year_sold
                0.000000
month_sold
age_sold
              0.000000
age sold
                0.000000
```

In [165]:

```
# There are some null data in waterfront, view, yr_renovated, sqft_basement
# 1) since the percentage of null data in view is low, I just drop these rows
# 2) For waterfront and yr_renovated, the percentage of null data is high,I will assign and
# waterfront is a categorical variable
df.waterfront.value_counts()
# replace nan as a value:
# Originally I used 2.0 as a third category,
# but late I found the price for this missing data is similar as for waterfront == 0
# Therefore, I fill the null as 0
df.waterfront = df.waterfront.fillna(0)
df.waterfront.value_counts()
# yr_renovated has 17011/17755~96% without renovation,
 and only 4% with renovation based on the non-null data
df.yr_renovated.value_counts()
# take a look of histogram
fig, axs = plt.subplots(2,figsize=(12,8))
df['yr_renovated'].hist(ax = axs[0]);
axs[0].set_title('All non-null data')
axs[0].set_xlabel('Year')
# with renovation
df[df.yr_renovated > 0].yr_renovated.hist(ax = axs[1])
# dfwrenov['yr_renovated'].hist(ax = axs[1]);
axs[1].set_title('Renovation data')
axs[0].set_xlabel('Year')
# Based on renovated data, I create a caterogrial variable as is_renovated
ds_renovated = df['yr_renovated']
ds_renovated[ds_renovated >0] = 1
# replace nan as a value:
# Originally I used 2.0 as a third category,
# but late I found the price for this missing data is similar as for is_renovated == 0
# Therefore, I fill the null as 0
ds_renovated = ds_renovated.fillna(0)
ds renovated
df['is_renovated'] = ds_renovated
del ds_renovated
df.is_renovated.value_counts()
# assign as -1 to make sure these rows are not dropped in the following operation
df.yr_renovated = df.yr_renovated.fillna(-1)
# for view and sqft_basement, I just drop those rows with null value, since they are only a
df.dropna(inplace=True)
print(df.info())
print(df.shape)
df.is renovated.value counts()
 9
    view
                    21082 non-null float64
 10
    condition
                    21082 non-null int64
 11 grade
                    21082 non-null int64
                    21082 non-null int64
 12 sqft above
 13 sqft_basement 21082 non-null float64
                   21082 non-null int64
 14 yr built
 15 yr_renovated 21082 non-null float64
                    21082 non-null int64
 16 zipcode
 17
    lat
                    21082 non-null float64
 18
    long
                    21082 non-null float64
 19
    sqft_living15 21082 non-null
                                   int64
 20
    sqft lot15
                    21082 non-null
                                    int64
```

```
21 year_sold 21082 non-null int64
22 month_sold 21082 non-null int64
23 age_sold 21082 non-null int64
24 is_renovated 21082 non-null float64
dtypes: float64(10), int64(14), object(1)
memory usage: 4.2+ MB
None
(21082 25)
```

Deal with outliers if existed in some columns

In [166]:

In [167]:

```
Number of rows based on price : 21082 \rightarrow 19951

Number of rows based on bedrooms : 19951 \rightarrow 19502

Number of rows based on bathrooms : 19502 \rightarrow 19437

Number of rows based on sqft_living : 19437 \rightarrow 19181

Number of rows based on sqft_lot : 19181 \rightarrow 17163

Number of rows based on sqft_above : 17163 \rightarrow 16697

Number of rows based on sqft_basement : 16697 \rightarrow 16401

Number of rows based on sqft_living15 : 16401 \rightarrow 16195

Number of rows based on sqft_lot15 : 16195 \rightarrow 15831
```

In [168]:

```
# boxplot for the remaining data
fig, axs = plt.subplots(2,5, figsize = (15,6))
for colii in range(len(x_cols)):
    sns.boxplot(df[x_cols[colii]],ax = axs[colii//5, colii%5])
plt.tight_layout()
# now looks all good
```


In [169]:

```
# visualization of the final data
# with its histogram:
df.hist(figsize = (20,18));
print(df.waterfront.value_counts())
print(df.condition.value_counts())
print(df.is_renovated.value_counts())
# looks good
df.bathrooms.value_counts()
```

```
1.0
Name: waterfront, dtype: int64
3
     10263
4
      4160
5
      1283
2
       110
1
        15
Name: condition, dtype: int64
0.0
       15385
         446
1.0
Name: is_renovated, dtype: int64
```

Out[169]:

2.50 3954 3296 1.00 1.75 2464 2.00 1590 2.25 1558 1.50 1254 2.75 702 3.00 431 3.50 271 3.25 226 28 3.75 0.75 28 4.00 21 1.25 6 0.50 2

Name: bathrooms, dtype: int64

In [170]:

```
# df.zipcode.value_counts()
# I only keep the first four digits since if I only keep the first three digits,it will onl
df['zipcode4'] = df.zipcode//10 * 10
df.zipcode4.value_counts()
```

Out[170]:

98110	2051
98050	1831
98030	1767
98100	1594
98000	1488
98020	1243
98120	931
98130	689
98040	629
98140	588
98070	524
98190	465
98170	407
98160	369
98150	366
98010	337
98090	229
98060	209
98180	114
Nama.	zincodo/

Name: zipcode4, dtype: int64

In [171]:

```
# visualization of categorical variables
cat_vars = ['bedrooms','bathrooms','floors','waterfront','is_renovated','condition','view',
plt.figure(figsize=(20, 12))
for idx in range(len(cat_vars)):
    plt.subplot(3,3,idx+1)
    sns.boxplot(x = cat_vars[idx], y = 'price', data = df)
```


In [172]:

```
# For all these categorical variables, I implemented the one hot encoding .get_dummies() me
# and drop one column for redundant information
for cat_var in cat_vars:
# cat_var = cat_vars[0]
    tmp_dums = pd.get_dummies(df[cat_var], prefix=cat_var)
    print(tmp_dums.head())
    del tmp_dums[tmp_dums.columns[0]]
    print(tmp_dums.head())
    df = pd.concat([df,tmp_dums],axis = 1)
    del tmp dums
df.head()
0
                 0
                                  0
                                                    0
                                                                     0
                 0
                                                    0
                                                                     0
1
                                  0
2
                 0
                                  0
                                                    0
                                                                     0
3
                 0
                                  0
                                                    0
                                                                     0
4
                 0
                                                                     1
                                  0
                                                    0
   zipcode4_98090
                    zipcode4_98100
                                      zipcode4_98110
                                                       zipcode4_98120
0
1
                 0
                                  0
                                                    0
                                                                     1
2
                 0
                                  0
                                                    0
                                                                     0
                                  0
                                                    0
                                                                     0
3
                 0
4
                 0
                                  0
                                                    0
                                                                     0
   zipcode4_98130
                    zipcode4_98140
                                      zipcode4_98150
                                                       zipcode4_98160
0
                 0
                                  0
                                                    0
                 0
                                                    0
1
                                  0
                                                                     0
2
                 0
                                  0
                                                    0
                                                                     0
3
                                  0
                 1
                                                    0
                                                                     0
```

Modeling

After finishing the data preparation, now I start to build the regression model

In [173]:

```
# drop id, date, yr_renovated, lat, long, zipcode from df
# the id has not related to the house price
# the date has been transformed into sold_year and sold_month
# the yr_renovated has been transformed into is_renovated
# the lat and long indicate similar information as zipcode
# zipcode has been transformed into zipcode4 and dummy variables
# I keep zipcode4 try to take a look which one is better based on either zipcode4 or zipcod
drop_vars = ['id','date','yr_renovated','lat','long','zipcode']
df.drop(drop_vars, axis = 1, inplace = True)
print(df.head())
# drop all caterogical variables
df.drop(cat_vars, axis = 1, inplace = True)
df.head()
      price bedrooms
                        bathrooms sqft_living sqft_lot floors
                                                                    waterfront
\
   221900.0
                                                               1.0
                                                                            0.0
0
                     3
                             1.00
                                           1180
                                                      5650
1
   538000.0
                     3
                             2.25
                                           2570
                                                      7242
                                                               2.0
                                                                            0.0
                     2
2
  180000.0
                             1.00
                                            770
                                                     10000
                                                               1.0
                                                                            0.0
                     4
3
  604000.0
                             3.00
                                           1960
                                                      5000
                                                               1.0
                                                                            0.0
                     3
4
   510000.0
                             2.00
                                           1680
                                                      8080
                                                               1.0
                                                                            0.0
         condition grade
                            . . .
                                 zipcode4_98100
                                                  zipcode4_98110
    0.0
0
                  3
                         7
                                               0
                  3
                         7
1
    0.0
                                               0
                                                                0
2
                  3
                                               0
                                                                0
    0.0
                         6
3
    0.0
                  5
                         7
                                               0
                                                                0
                             . . .
4
    0.0
                  3
                         8
                                               0
                                                                0
                                    zipcode4_98140
   zipcode4 98120 zipcode4 98130
                                                     zipcode4 98150
0
                0
                                  0
                                                   0
1
                 1
                                  0
                                                   0
                                                                    0
2
                 0
                                  0
                                                  0
                                                                    0
3
                 0
                                  1
                                                   0
                                                                    0
4
                 0
                                  0
                                                   0
                                                                    0
                    zipcode4_98170
                                    zipcode4_98180
   zipcode4_98160
                                                      zipcode4 98190
0
                0
                                  1
                                                   0
                 0
                                  0
                                                   0
                                                                    0
1
2
                 0
                                  0
                                                   0
                                                                    0
                 0
                                                   0
3
                                  0
                                                                    0
                 0
                                                                    0
[5 rows x 77 columns]
```

Out[173]:

price	sqft_living	sqft_lot	sqft_above	sqft_basement	yr_built	sqft_living15	sqft_lot1
221900.0	1180	5650	1180	0.0	1955	1340	565
538000.0	2570	7242	2170	400.0	1951	1690	763
180000.0	770	10000	770	0.0	1933	2720	806
604000.0	1960	5000	1050	910.0	1965	1360	500
510000.0	1680	8080	1680	0.0	1987	1800	750
5	21900.0 38000.0 80000.0 04000.0	21900.0 1180 38000.0 2570 80000.0 770 04000.0 1960	21900.0 1180 5650 38000.0 2570 7242 80000.0 770 10000 04000.0 1960 5000	21900.0 1180 5650 1180 38000.0 2570 7242 2170 80000.0 770 10000 770 04000.0 1960 5000 1050	21900.0 1180 5650 1180 0.0 38000.0 2570 7242 2170 400.0 80000.0 770 10000 770 0.0 04000.0 1960 5000 1050 910.0	21900.0 1180 5650 1180 0.0 1955 38000.0 2570 7242 2170 400.0 1951 80000.0 770 10000 770 0.0 1933 04000.0 1960 5000 1050 910.0 1965	21900.0 1180 5650 1180 0.0 1955 1340 38000.0 2570 7242 2170 400.0 1951 1690 80000.0 770 10000 770 0.0 1933 2720 04000.0 1960 5000 1050 910.0 1965 1360

5 rows × 68 columns

In [174]:

```
# transform column names as string
df.columns = df.columns.astype(str)
df.head()
```

Out[174]:

	price	sqft_living	sqft_lot	sqft_above	sqft_basement	yr_built	sqft_living15	sqft_lot15
0	221900.0	1180	5650	1180	0.0	1955	1340	5650
1	538000.0	2570	7242	2170	400.0	1951	1690	7639
2	180000.0	770	10000	770	0.0	1933	2720	8062
3	604000.0	1960	5000	1050	910.0	1965	1360	5000
4	510000.0	1680	8080	1680	0.0	1987	1800	7503

5 rows × 68 columns

In [175]:

Out[175]:

	price	sqft_living	sqft_lot	sqft_above	sqft_basement	yr_built	sqft_living15	sqft_lot1
0	221900.0	0.192982	0.295865	0.257353	0.000000	0.478261	0.284585	0.35499
1	538000.0	0.599415	0.387681	0.621324	0.314961	0.443478	0.422925	0.49623
2	180000.0	0.073099	0.546744	0.106618	0.000000	0.286957	0.830040	0.52627
3	604000.0	0.421053	0.258377	0.209559	0.716535	0.565217	0.292490	0.30883
4	510000.0	0.339181	0.436011	0.441176	0.000000	0.756522	0.466403	0.48657

5 rows × 68 columns

In [176]:

```
df scl.columns
```

Out[176]:

```
Index(['price', 'sqft_living', 'sqft_lot', 'sqft_above', 'sqft_basement',
         'yr_built', 'sqft_living15', 'sqft_lot15', 'year_sold', 'month_sold',
         'age_sold', 'bedrooms_3', 'bedrooms_4', 'bedrooms_5', 'bathrooms_0.7
5',
         'bathrooms_1.0', 'bathrooms_1.25', 'bathrooms_1.5', 'bathrooms_1.75',
         'bathrooms_2.0', 'bathrooms_2.25', 'bathrooms_2.5', 'bathrooms_2.75', 'bathrooms_3.0', 'bathrooms_3.25', 'bathrooms_3.5', 'bathrooms_3.75',
         'bathrooms_4.0', 'floors_1.5', 'floors_2.0', 'floors_2.5', 'floors_3.
0',
         'floors_3.5', 'waterfront_1.0', 'is_renovated_1.0', 'condition_2',
         'condition_3', 'condition_4', 'condition_5', 'view_1.0', 'view_2.0', 'view_3.0', 'view_4.0', 'grade_5', 'grade_6', 'grade_7', 'grade_8', 'grade_9', 'grade_10', 'grade_11', 'zipcode4_98010', 'zipcode4_9802
0',
         'zipcode4_98030', 'zipcode4_98040', 'zipcode4_98050', 'zipcode4_9806
0',
         'zipcode4_98070', 'zipcode4_98090', 'zipcode4_98100', 'zipcode4_9811
0',
         'zipcode4_98120', 'zipcode4_98130', 'zipcode4_98140', 'zipcode4_9815
0',
         'zipcode4_98160', 'zipcode4_98170', 'zipcode4_98180', 'zipcode4_9819
0'],
       dtype='object')
```

In [177]:

mean = 446934.39 and std dev = 188664.37

In [178]:

it looks the target is skewed right, therefore, I used a log transformation to make it mo

In [179]:

```
#Using the log1p function applies log(1+x) to all elements of the column
df_scl['price_log1p'] = np.log1p(df_scl['price'])
#Check the new distribution after log transformation
sns.distplot(df_scl['price_log1p'] , fit=stats.norm);
# Get the fitted parameters used by the function
(mu, sigma) = stats.norm.fit(df_scl['price_log1p'])
print( '\n mean = {:.2f} and std dev = {:.2f}\n'.format(mu, sigma))
#NPlotting the distribution
plt.legend(['Normal dist. ($\mu=$ {:.2f} and $\sigma=$ {:.2f} )'.format(mu, sigma)],
            loc='best')
plt.ylabel('Frequency')
plt.title('Distribution of Log(1+price)')
#Also the QQ plot
fig = plt.figure()
res = stats.probplot(df_scl['price_log1p'], plot=plt)
plt.show()
```

mean = 12.92 and std dev = 0.42

In [180]:

```
# scale for the target variable
tar_vars = ['price','price_log1p']
df_scl[num_vars] = scaler.fit_transform(df[num_vars])
df_scl.head()
```

Out[180]:

	price	sqft_living	sqft_lot	sqft_above	sqft_basement	yr_built	sqft_living15	sqft_lot1
0	221900.0	0.192982	0.295865	0.257353	0.000000	0.478261	0.284585	0.35499
1	538000.0	0.599415	0.387681	0.621324	0.314961	0.443478	0.422925	0.49623
2	180000.0	0.073099	0.546744	0.106618	0.000000	0.286957	0.830040	0.52627
3	604000.0	0.421053	0.258377	0.209559	0.716535	0.565217	0.292490	0.30883
4	510000.0	0.339181	0.436011	0.441176	0.000000	0.756522	0.466403	0.48657

5 rows × 69 columns

In [181]:

```
# Splitting the Data into Training and Testing
df_train, df_test = train_test_split(df, train_size = 0.8, test_size = 0.2, random_state =
print(len(df_train), len(df_test))
df_train.head()
df.columns
```

12664 3167

Out[181]:

```
Index(['price', 'sqft_living', 'sqft_lot', 'sqft_above', 'sqft_basement',
                       'yr_built', 'sqft_living15', 'sqft_lot15', 'year_sold', 'month_sold',
                      'age_sold', 'bedrooms_3', 'bedrooms_4', 'bedrooms_5', 'bathrooms_0.7
5',
                      \label{lem:bathrooms_1.25', bathrooms_1.5', bathrooms_1.75', bathrooms_2.0', bathrooms_2.25', bathrooms_2.5', bathrooms_2.75', bathrooms_2.7
                      'bathrooms_3.0', 'bathrooms_3.25', 'bathrooms_3.5', 'bathrooms_3.75'
                      'bathrooms_4.0', 'floors_1.5', 'floors_2.0', 'floors_2.5', 'floors_3.
0',
                      'floors_3.5', 'waterfront_1.0', 'is_renovated_1.0', 'condition_2',
                      'condition_3', 'condition_4', 'condition_5', 'view_1.0', 'view_2.0', 'view_3.0', 'view_4.0', 'grade_5', 'grade_6', 'grade_7', 'grade_8',
                      'view_3.0', 'view_4.0', 'grade_5', 'grade_6',
                      'grade_9', 'grade_10', 'grade_11', 'zipcode4_98010', 'zipcode4_9802
0',
                      'zipcode4_98030', 'zipcode4_98040', 'zipcode4_98050', 'zipcode4_9806
0',
                      'zipcode4 98070', 'zipcode4 98090', 'zipcode4 98100', 'zipcode4 9811
0',
                      'zipcode4_98120', 'zipcode4_98130', 'zipcode4_98140', 'zipcode4_9815
0',
                      'zipcode4_98160', 'zipcode4_98170', 'zipcode4_98180', 'zipcode4_9819
0',
                      'price_log1p'],
                  dtype='object')
```

Checking for Multicollinearity

In [182]:

```
print((num_vars))
```

['sqft_living', 'sqft_lot', 'sqft_above', 'sqft_basement', 'yr_built', 'sqft _living15', 'sqft_lot15', 'year_sold', 'age_sold', 'month_sold']

In [183]:

```
# Check the correlation coefficients to see which variables are highly correlated
num_vars.append('price')
num_vars.append('price_log1p')
corr = df_train[num_vars].corr()
corr
```

Out[183]:

	sqft_living	sqft_lot	sqft_above	sqft_basement	yr_built	sqft_living15	sqft_
sqft_living	1.000000	0.171593	0.818302	0.371526	0.318520	0.695589	0.15
sqft_lot	0.171593	1.000000	0.133727	0.074555	-0.079902	0.221833	0.87
sqft_above	0.818302	0.133727	1.000000	-0.229627	0.443562	0.670615	0.11
sqft_basement	0.371526	0.074555	-0.229627	1.000000	-0.177117	0.094622	0.06
yr_built	0.318520	-0.079902	0.443562	-0.177117	1.000000	0.321349	-0.06
sqft_living15	0.695589	0.221833	0.670615	0.094622	0.321349	1.000000	0.23
sqft_lot15	0.151181	0.876250	0.116469	0.067866	-0.063158	0.235881	1.00
year_sold	-0.024536	0.003379	-0.017244	-0.013693	0.002188	-0.006656	0.00
age_sold	-0.318876	0.079948	-0.443793	0.176886	-0.999877	-0.321425	0.06
month_sold	0.006327	-0.006723	-0.000200	0.011037	-0.008915	-0.008937	-0.00
price	0.518899	-0.089302	0.399563	0.233251	-0.052032	0.442030	-0.10
price_log1p	0.517514	-0.109111	0.396783	0.235396	-0.018664	0.449107	-0.12
4							•

In [184]:

```
# Using heatmap to visualzation of the correlation coefficients
sns.set(rc = {'figure.figsize':(16,8)})
sns.heatmap(corr, center=0, annot=True);
```


In [185]:

price is correlated to sqrt_living the most.

In [186]:

```
# Fitting the actual model with all available features, zipcode with dummy values
import statsmodels.api as sm
# price vs price_log1p
outcome1 = 'price'
outcome2 = 'price_log1p'
x_cols = list(df_train.columns)
x_cols.remove(outcome1)
x_cols.remove(outcome2)
model1 = sm.OLS(df_train[outcome1],sm.add_constant(df_train[x_cols])).fit()
print(model1.summary())
model2 = sm.OLS(df_train[outcome2],sm.add_constant(df_train[x_cols])).fit()
print(model2.summary())
1 TOOL 2 _ 2 • 6
                  4.0/40704
                               7707.000
                                              J.4JJ
                                                         דסם. ס
                                                                  エ・エンヒエロサ
4.2e+04
floors 3.5
                  5.797e+04
                               6.02e+04
                                              0.963
                                                         0.336
                                                                     -6e+04
1.76e+05
waterfront 1.0
                  2.057e+05
                               4.28e+04
                                              4.801
                                                         0.000
                                                                  1.22e+05
2.9e+05
is_renovated_1.0 3.781e+04
                               6703.863
                                              5.641
                                                         0.000
                                                                  2.47e+04
5.1e+04
                   4.22e+04
                                3.7e+04
                                              1.142
                                                         0.253
                                                                 -3.02e+04
condition 2
1.15e+05
condition 3
                  9.213e+04
                               3.48e + 04
                                              2.647
                                                         0.008
                                                                  2.39e+04
1.6e+05
condition_4
                  1.164e+05
                               3.48e + 04
                                              3.345
                                                         0.001
                                                                  4.82e+04
1.85e+05
condition 5
                  1.459e+05
                                3.5e + 04
                                              4.174
                                                         0.000
                                                                  7.74e+04
2.14e+05
view_1.0
                  4.651e+04
                               9874.988
                                              4.709
                                                         0.000
                                                                  2.71e+04
6.59e+04
view 2.0
                  4.263e+04
                               6286.786
                                              6.780
                                                         0.000
                                                                  3.03e+04
5.5e+04
```

In [187]:

```
# Based on the R-squared values from two models,
# I choose to use outcome = 'price_log1p' and zipcode_dummies for regression model
# price_log1p
outcome = 'price_log1p'
x_cols = list(df_train.columns)
x_cols.remove(outcome)
x_cols.remove('price')
model0 = sm.OLS(df_train[outcome], sm.add_constant(df_train[x_cols])).fit()
print(model0.summary())
```

	OLS Regression Results								
=======================================	=======	=======	=========		=========	=			
Dep. Variable:	pri	ce_log1p	R-squared:		0.5	5			
Model:		OLS	Adj. R-squar	Adj. R-squared:		5			
95 Method:	Least	Squares	F-statistic:	F-statistic:					
2.2 Date:	Fri, 19	Fri, 19 Nov 2021 P		tistic):	0.				
00 Time:		12:39:56 L		ood:	-133				
2.8 No. Observations:		12664 A			279	9			
6. Df Residuals:		12599 E			328	3			
0. Df Model:		64							
Covariance Type:	n	onrobust							
=======						=			
0.975]	coef	std err	t	P> t	[0.025				
						-			
const	7.4111	0.082	90.876	0.000	7.251				
7.571 sqft_living	0.1990	0.012	15.974	0.000	0.175				
0.223 sqft_lot	-0.0778	0.028	-2.814	0.005	-0.132				
-0.024 sqft_above	0.2990	0.015	19.764	0.000	0.269				
0.329 sqft_basement	0.1290	0.011	12.253	0.000	0.108				
0.150 yr_built	3.4663	0.041	83.645	0.000	3.385				
3.548 sqft_living15	0.4635	0.020	23.218	0.000	0.424				
0.503 sqft_lot15	-0.0924	0.027	-3.486	0.000	-0.144				
-0.040 year_sold	0.0106	0.008	1.280	0.201	-0.006				
0.027 month_sold	0.0086	0.014	0.632	0.527	-0.018				
0.035 age_sold	3.9109	0.042	94.086	0.000	3.829				
3.992 bedrooms_3 -0.016	-0.0321	0.008	-4.033	0.000	-0.048				

bedrooms_4 -0.033	-0.0521	0.010	-5.354	0.000	-0.071
bedrooms_5 -0.042	-0.0706	0.015	-4.865	0.000	-0.099
bathrooms_0.75 0.633	0.5217	0.057	9.211	0.000	0.411
bathrooms_1.0 0.471	0.4406	0.016	28.375	0.000	0.410
bathrooms_1.25 0.616	0.3941	0.113	3.487	0.000	0.173
bathrooms_1.5 0.509	0.4780	0.016	30.355	0.000	0.447
bathrooms_1.75 0.557	0.5278	0.015	35.846	0.000	0.499
<pre>bathrooms_2.0 0.542</pre>	0.5126	0.015	33.835	0.000	0.483
<pre>bathrooms_2.25 0.570</pre>	0.5407	0.015	35.917	0.000	0.511
<pre>bathrooms_2.5 0.550</pre>	0.5223	0.014	36.528	0.000	0.494
bathrooms_2.75 0.589	0.5557	0.017	32.447	0.000	0.522
<pre>bathrooms_3.0 0.553</pre>	0.5152	0.019	26.900	0.000	0.478
<pre>bathrooms_3.25 0.590</pre>	0.5440	0.023	23.279	0.000	0.498
<pre>bathrooms_3.5 0.660</pre>	0.6175	0.022	28.266	0.000	0.575
<pre>bathrooms_3.75 0.763</pre>	0.6515	0.057	11.499	0.000	0.540
bathrooms_4.0 0.709	0.5895	0.061	9.652	0.000	0.470
floors_1.5 0.025	0.0050	0.010	0.496	0.620	-0.015
floors_2.0 0.019	0.0009	0.009	0.100	0.920	-0.017
floors_2.5 0.174	0.1053	0.035	3.000	0.003	0.036
floors_3.0 0.097	0.0625	0.018	3.563	0.000	0.028
floors_3.5 0.424	0.1584	0.136	1.168	0.243	-0.107
waterfront_1.0 0.648	0.4592	0.096	4.759	0.000	0.270
is_renovated_1.0 0.088	0.0588	0.015	3.895	0.000	0.029
condition_2 0.271	0.1079	0.083	1.296	0.195	-0.055
condition_3 0.450	0.2959	0.078	3.775	0.000	0.142
condition_4 0.502	0.3486	0.078	4.447	0.000	0.195
condition_5 0.557	0.4024	0.079	5.112	0.000	0.248
view_1.0 0.132	0.0883	0.022	3.972	0.000	0.045
view_2.0 0.099	0.0708	0.014	5.002	0.000	0.043
view_3.0 0.093	0.0474	0.023	2.027	0.043	0.002
view_4.0	0.1608	0.044	3.626	0.000	0.074

0.248						
grade_5	0.1653	0.103	1.611	0.107	-0.036	
0.366 grade_6	0.3826	0.101	3.804	0.000	0.185	
0.580 grade_7 0.791	0.5938	0.101	5.904	0.000	0.397	
grade_8 0.974	0.7762	0.101	7.694	0.000	0.578	
grade_9 1.142	0.9431	0.101	9.296	0.000	0.744	
grade_10 1.247	1.0432	0.104	10.057	0.000	0.840	
grade_11 1.430	1.1208	0.158	7.100	0.000	0.811	
zipcode4_98010 0.047	0.0102	0.019	0.553	0.580	-0.026	
zipcode4_98020 -0.075	-0.0981	0.012	-8.330	0.000	-0.121	
zipcode4_98030 -0.018	-0.0395	0.011	-3.676	0.000	-0.061	
zipcode4_98040 -0.077	-0.1049	0.014	-7.274	0.000	-0.133	
zipcode4_98050 0.020	-0.0005	0.011	-0.048	0.962	-0.021	
zipcode4_98060 0.105	0.0572	0.024	2.357	0.018	0.010	
zipcode4_98070 0.150	0.1197	0.015	7.787	0.000	0.090	
zipcode4_98090 -0.346	-0.3880	0.021	-18.110	0.000	-0.430	
zipcode4_98100 0.228	0.2025	0.013	15.688	0.000	0.177	
zipcode4_98110 0.276	0.2520	0.012	20.850	0.000	0.228	
zipcode4_98120 0.196	0.1689	0.014	12.315	0.000	0.142	
zipcode4_98130 0.131	0.1026	0.015	7.011	0.000	0.074	
zipcode4_98140 0.060	0.0298	0.016	1.912	0.056	-0.001	
zipcode4_98150 0.107	0.0728	0.018	4.116	0.000	0.038	
zipcode4_98160 -0.132	-0.1670	0.018	-9.306	0.000	-0.202	
zipcode4_98170 -0.048	-0.0816	0.017	-4.751	0.000	-0.115	
zipcode4_98180 -0.183	-0.2412	0.030	-8.131	0.000	-0.299	
zipcode4_98190 0.052	0.0203	0.016	1.238	0.216	-0.012	
==========		=======	=========	========		
== Omnibus: 27		80.580	Durbin-Wats	on:	2.0	
Prob(Omnibus): 68		0.000	Jarque-Bera	(JB):	112.4	
Skew: 25		-0.071	Prob(JB):		3.78e-	
Kurtosis: 16		3.439	Cond. No.		1.15e+	

==

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is corre ctly specified.
- [2] The smallest eigenvalue is 4.16e-28. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

In [188]:

```
# Remove the insignificant Features and rerun the model
summary = model0.summary()
p_table = summary.tables[1]
p_table = pd.DataFrame(p_table.data)
p_table.columns = p_table.iloc[0]
p_table = p_table.drop(0)
p_table = p_table.set_index(p_table.columns[0])
p_table['P>|t|'] = p_table['P>|t|'].astype(float)
x_cols = list(p_table[p_table['P>|t|'] < 0.05].index)
x_cols.remove('const')
print(len(p_table), len(x_cols))

p_table.head()
x_cols</pre>
```

68 56

```
Out[188]:
['sqft_living',
 'sqft_lot',
 'sqft_above',
 'sqft_basement',
 'yr_built',
 'sqft_living15',
 'sqft_lot15',
 'age_sold',
 'bedrooms 3',
 'bedrooms_4',
 'bedrooms_5',
 'bathrooms_0.75',
 'bathrooms_1.0',
 'bathrooms_1.25'
 'bathrooms_1.5',
 'bathrooms_1.75',
 'bathrooms_2.0',
 'bathrooms_2.25',
 'bathrooms_2.5'
 'bathrooms 2.75',
 'bathrooms 3.0',
 'bathrooms_3.25'
 'bathrooms_3.5',
 'bathrooms_3.75',
 'bathrooms_4.0',
 'floors_2.5',
 'floors 3.0',
 'waterfront_1.0',
 'is_renovated_1.0',
 'condition_3',
 'condition 4',
 'condition_5',
 'view 1.0',
 'view_2.0',
 'view 3.0',
 'view 4.0',
 'grade_6',
 'grade_7',
 'grade_8',
 'grade_9',
```

```
11/19/21, 12:42 PM
```

```
'grade_10',
'grade_11',
'zipcode4 98020',
'zipcode4_98030',
'zipcode4_98040',
'zipcode4_98060',
'zipcode4_98070',
'zipcode4_98090',
'zipcode4_98100',
'zipcode4_98110',
'zipcode4_98120',
'zipcode4_98130',
'zipcode4_98150',
'zipcode4_98160',
'zipcode4_98170',
'zincode/ 98180'l
```

In [189]:

```
model1 = sm.OLS(df_train[outcome],sm.add_constant(df_train[x_cols])).fit()
model1.summary()
```

```
zipcode4_98130
                0.0940
                          0.013
                                  7.335 0.000
                                                0.069
                                                       0.119
zipcode4_98150
                0.0661
                         0.016
                                  4.023 0.000
                                                0.034
                                                       0.098
zipcode4_98160 -0.1736
                         0.017 -10.410 0.000 -0.206 -0.141
zipcode4_98170 -0.0894
                         0.016
                                 -5.668 0.000 -0.120 -0.059
zipcode4_98180 -0.2475
                         0.029
                                 -8.544 0.000 -0.304 -0.191
```

Omnibus: 79.568 Durbin-Watson: 2.028

Prob(Omnibus): 0.000 Jarque-Bera (JB): 109.566

Skew: -0.076 **Prob(JB)**: 1.61e-24 **Kurtosis**: 3.430 **Cond. No.** 1.18e+16

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [190]:

```
#Investigate the multicollinearity
X = df_train[x_cols]
vif = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
list(zip(x_cols, vif))
Out[190]:
[('sqft_living', inf),
 ('sqft_lot', 4.4995804101299735),
 ('sqft_above', inf),
 ('sqft_basement', inf),
 ('yr_built', 4103.132983616809),
  'sqft_living15', 2.5431537832302866),
 ('sqft_lot15', 4.836025286454643),
 ('age sold', 4099.501361429564),
 ('bedrooms_3', 2.7069399668204577),
  'bedrooms_4', 3.3141080224916215),
 ('bedrooms_5', 1.7361806873495171),
 ('bathrooms_0.75', inf),
 ('bathrooms_1.0', inf),
 ('bathrooms_1.25', inf),
 ('bathrooms_1.5', inf),
 ('bathrooms_1.75', inf),
 ('bathrooms_2.0', inf),
 ('bathrooms_2.25', inf),
 ('bathrooms 2.5', inf),
 ('bathrooms_2.75', inf),
 ('bathrooms_3.0', inf),
 ('bathrooms_3.25', inf),
 ('bathrooms_3.5', inf),
 ('bathrooms_3.75', inf),
 ('bathrooms_4.0', inf),
 ('floors_2.5', 1.0246523246789685),
 ('floors_3.0', 1.3126704425082636),
 ('waterfront_1.0', 1.2795480725939763),
 ('is_renovated_1.0', 1.1253660521675157),
 ('condition_3', 29.920305515976235),
 ('condition_4', 25.607740699477684),
  'condition_5', 10.533070572233484),
 ('view_1.0', 1.0267454284677653),
 ('view_2.0', 1.0520787448834443),
 ('view_3.0', 1.0305314281174274),
 ('view_4.0', 1.2906407182338993),
 ('grade 6', 10.10594671186921),
 ('grade_7', 25.89827117911191),
  'grade_8', 23.394130817481837),
 ('grade_9', 10.366094723906771),
 ('grade_10', 2.524304330103752),
 ('grade_11', 1.0570029683571713),
 ('zipcode4_98020', 1.1819103339272004),
 ('zipcode4_98030', 1.2586787715494137),
 ('zipcode4_98040', 1.1176732237079565),
 ('zipcode4_98060', 1.0768308768310408),
 ('zipcode4_98070', 1.1459057466214961),
 ('zipcode4_98090', 1.0496299409335486),
 ('zipcode4_98100', 1.726496655559761),
```

('zipcode4_98110', 1.7619121578675512), ('zipcode4_98120', 1.3014561096137194), ('zipcode4_98130', 1.1753453970279395),

```
('zipcode4_98150', 1.0818651745323111),
('zipcode4_98160', 1.1061181260156652),
('zipcode4_98170', 1.1045760146328905),
('zipcode4_98180', 1.0318036460611795)]
```

In [191]:

```
# remove the features with vif >=5
vif_scores = list(zip(x_cols, vif))
x_cols = [x for x,vif in vif_scores if vif < 5]
print(len(vif_scores), len(x_cols))
x_cols</pre>
```

56 30

Out[191]:

```
['sqft_lot',
 'sqft_living15',
 'sqft_lot15',
 'bedrooms_3',
 'bedrooms_4',
 'bedrooms_5',
 'floors_2.5',
 'floors_3.0',
 'waterfront_1.0',
 'is_renovated_1.0',
 'view_1.0',
 'view_2.0'
 'view_3.0',
 'view 4.0',
 'grade_10',
 'grade_11',
 'zipcode4_98020',
 'zipcode4_98030',
 'zipcode4_98040',
 'zipcode4 98060',
 'zipcode4_98070',
 'zipcode4_98090',
 'zipcode4_98100',
 'zipcode4_98110',
 'zipcode4_98120',
 'zipcode4 98130',
 'zipcode4 98150',
 'zipcode4_98160',
 'zipcode4 98170',
 'zipcode4_98180']
```

In [192]:

```
# Refit model with subset features
model2 = sm.OLS(df_train[outcome],sm.add_constant(df_train[x_cols])).fit()
model2.summary()
```

Out[192]:

OLS Regression Results

Dep. Variable:	price_log1p		R-squared:		d: 0.4	0.449	
Model:	OLS		Adj. R-squared:		d: 0.4	0.447	
Method:	Least Squares		F-statistic:		: 342	2.6	
Date:	Fri, 19 N	lov 2021	Prob (F-	statistic): 0.0	00	
Time:		12:40:01	Log-Lil	kelihood	d: -3325	5.9	
No. Observations:		12664		AIC	: 671	4.	
Df Residuals:		12633		BIC	: 694	5.	
Df Model:		30					
Covariance Type:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975]	
const	12.3034	0.013	939.565	0.000	12.278	12.329	
sqft_lot	0.0019	0.032	0.061	0.951	-0.060	0.064	
sqft_living15	1.0967	0.017	62.711	0.000	1.062	1.131	
sqft_lot15	-0.1448	0.030	-4.819	0.000	-0.204	-0.086	
bedrooms_3	0.0838	0.008	9.855	0.000	0.067	0.100	
bedrooms_4	0.1500	0.010	15.497	0.000	0.131	0.169	

0.010

0.015

0.027

0.016

0.024

-8.718

-10.469

-2.061

7.933

-17.744

0.000

0.000

0.039

0.000

0.000

-0.0860

-0.1567

-0.0552

0.1285

-0.4208

zipcode4_98030

zipcode4_98040

zipcode4_98060

zipcode4_98070

zipcode4_98090

-0.105

-0.186

-0.108

0.097

-0.467

-0.067

-0.127

-0.003

0.160

-0.374

zipcode4_98100	0.3045	0.011	26.970	0.000	0.282	0.327
zipcode4_98110	0.3558	0.010	35.292	0.000	0.336	0.376
zipcode4_98120	0.2334	0.013	17.816	0.000	0.208	0.259
zipcode4_98130	0.1495	0.015	10.127	0.000	0.121	0.178
zipcode4_98150	0.0563	0.019	2.944	0.003	0.019	0.094
zipcode4_98160	-0.2256	0.019	-11.681	0.000	-0.263	-0.188
zipcode4_98170	-0.0977	0.018	-5.360	0.000	-0.133	-0.062
zipcode4_98180	-0.2792	0.034	-8.272	0.000	-0.345	-0.213

 Omnibus:
 48.135
 Durbin-Watson:
 2.022

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 59.797

 Skew:
 -0.069
 Prob(JB):
 1.04e-13

 Kurtosis:
 3.307
 Cond. No.
 70.9

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [193]:

```
# checking normality
fig = sm.graphics.qqplot(model2.resid, dist=stats.norm, line='45', fit=True)
```


In [194]:

```
#Check Homoscedasticity Assumption
plt.figure(figsize = (8,6))
plt.scatter(model2.predict(sm.add_constant(df_train[x_cols])), model2.resid)
plt.plot(model2.predict(sm.add_constant(df_train[x_cols])), [0 for i in range(len(df_train[
```

Out[194]:

[<matplotlib.lines.Line2D at 0x1d668978bb0>]

In [195]:

model2 seems pretty good in terms of normality, Homoscedasticity, and R-squared values

Evaluation

In [196]:

```
from sklearn.linear_model import LinearRegression

final_model = LinearRegression()
# Fit the model on X_train_final and y_train
final_model.fit(df_train[x_cols], df_train[outcome])

# Score the model on X_test_final and y_test
# (use the built-in .score method)
print( "Test score: ", final_model.score(df_test[x_cols], df_test[outcome]))
print( "Train score: ", final_model.score(df_train[x_cols], df_train[outcome]))
```

Test score: 0.44378007421545485 Train score: 0.44859642929281374

In [197]:

Train score: 0.44648159473484395 Validation score: 0.4500640604866031

In [198]:

train and validation scores are similar

In [199]:

MSE: 0.10077497430795615 RMSE: 0.3174507431208126 MAE: 0.251980604965677 R-Squared: 0.44378007421545485

In [200]:

```
# visualization of real and predicted values for each value
preds = final_model.predict(df_test[x_cols])
fig, axs = plt.subplots(1,2, figsize =(16,8))
perfect_line = np.arange(min(preds.min(),df_test[outcome].min())*0.99, max(preds.max(),df_t
axs[0].plot(perfect_line,perfect_line, linestyle="--", color="black", label="Perfect Fit")
axs[0].scatter(df_test[outcome], preds, alpha=0.5)
axs[0].set_xlabel("Actual Price")
axs[0].set_ylabel("Predicted Price")
axs[0].legend();
axs[0].set_xlim([min(preds.min(),df_test[outcome].min())*0.99, max(preds.max(),df_test[outc
axs[0].set_ylim([min(preds.min(),df_test[outcome].min())*0.99, max(preds.max(),df_test[outc
axs[1].scatter(df_test[outcome], np.divide((df_test[outcome] - preds),df_test[outcome]) * 1
axs[1].set_xlabel("Actual Price")
axs[1].set_ylabel("(Predicted Price - actual price)/actual price * 100")
```

Out[200]:

Text(0, 0.5, '(Predicted Price - actual price)/actual price * 100')

In [201]:

From above values and plots, the fitted regression model can predict house price very wel

Summary about the model

In [202]:

```
# the beta coefficients
print(pd.Series(final_model.coef_, index=x_cols, name="Coefficients"))
print()
print("Intercept:", final_model.intercept_)
saft lot
                                      0.001943
sqft_living15 1.096717
sqft_lot15
                                 -0.144789
                                0.083760
0.149979
bedrooms_3
bedrooms_4
bedrooms_5
                                  0.163189
view_1.0 0.137734
                                  0.148326
view_2.0

      view_2.0
      0.140320

      view_3.0
      0.117277

      view_4.0
      0.243554

      grade_10
      0.258860

      grade_11
      0.418129

      zipcode4_98020
      -0.112151

      zipcode4_98030
      -0.086005

      -0.086005
      -0.086005

zipcode4_98040
                                 -0.156698
zipcode4_98060 -0.055208
zipcode4_98070 0.128485
zipcode4_98090 -0.420847
zipcode4_98100 0.304544
zipcode4_98110 0.355810
zipcode4_98120 0.233377
zipcode4_98150 0.056281
zipcode4_98160 -0.225556
-404_98170 -0.097728
zipcode4_98180 -0.279241
```

Name: Coefficients, dtype: float64

Intercept: 12.30344679761995

From coefficients described above, I observed:

- 1) The grade and sqft living15 have the strongest relationship with the house price
- 2) It is interesting to see the sqft_lot15 has the negative relationship with the house price
- 3) Waterfront 1.0 and grade 11 also have postive relationship with the price
- 4) For some zipcode, e.g., 98100 and 98110, they have high positive relationship with the price

To address the business question:

- 1) For buyer, they will know the house price is higer for a house with high grade and sqrt_living15
- 2) For seller, if they want to sell their house with a higher price, they could add waterfront, improve the grade.

In []:			