

信息安全数学基础作业#1

XXX:202XX80XXXXXXXX

2023年4月16日

第一题

$$\begin{split} A_1 &= A \cup B \cup C \\ A_2 &= A \overline{BC} \cup \overline{A} B \overline{C} \cup \overline{AB} C \\ A_3 &= A B \overline{C} \cup A \overline{B} C \cup \overline{AB} C \\ A_4 &= \overline{ABC} \cup A \overline{BC} \cup \overline{ABC} \cup \overline{ABC} \cup \overline{ABC} \\ A_6 &= ABC \\ A_6 &= \overline{ABC} \end{split}$$

第二题

设其中有黑球为事件 A

$$N(\Omega) = C_{50}^3 = \frac{50 \times 49 \times 48}{3 \times 2 \times 1} = 19600$$

$$P(A) = \frac{C_{45}^0 C_5^3 + C_{45}^1 C_5^2 + C_{45}^2 C_5^1}{N(\Omega)} = \frac{541}{1960}$$

第三题

性质 1: A,B 独立 \iff A,\overline{B} 独立 \iff \overline{A},B 独立 \iff $\overline{A},\overline{B}$ 独立 $\stackrel{\cdot}{\Longrightarrow}$

首先证明 A, \overline{B} 独立 $\rightarrow A, B$ 独立 (不妨称之为【theorem1.1】)。

$$P(AB) = P(A) - P(A\overline{B})$$

$$= P(A) - P(A)P(\overline{B})$$

$$= P(A)(1 - P(\overline{B}))$$

$$= P(A)P(B)$$

故【theorem1.1】得证。

若 A,B 独立,即 $A,\overline{\overline{B}}$ 独立,那么由【theorem1.1】,可推得 A,\overline{B} 独立。由此,可推出 A,B 独立 \Leftrightarrow $A,\overline{\overline{B}}$ 独立【theorem1.2】。

A,B 独立 \Leftrightarrow B,A 独立 $\overset{theorem1.2}{\Longleftrightarrow}$ B,\overline{A} 独立 \Leftrightarrow \overline{A},B 独立,即 A,B 独立 \Leftrightarrow \overline{A},B 独立【theorem1.3】。

A, B 独立 $\stackrel{theorem1.2}{\Longleftrightarrow} A, \overline{B}$ 独立 $\stackrel{theorem1.3}{\Longleftrightarrow} \overline{A}, \overline{B}$ 独立 【theorem1.4】。 综上 theorem1.2、1.3、1.4,性质 1 得证。