Generality & Existence III

Substitution & Identity

Greg Restall

MELBOURNE LOGIC WORKSHOP · 11 DECEMBER 2015

My Aim

To analyse the quantifiers

My Aim

To analyse the quantifiers using the tools of proof theory

My Aim

To analyse the quantifiers using the tools of proof theory in order to better understand existence and identity.

Today's Plan

Sequents & Defining Rules Identity & Indistinguishability Defining Rules & Left/Right Rules Identity & Predication Free Logic & Identity

SEQUENTS & DEFINING RULES

Sequents

$$\Gamma \succ \Delta$$

Don't assert each element of Γ and deny each element of Δ .

Identity: A > A

Identity:
$$A > A$$

Weakening:
$$\frac{\Gamma \succ \Delta}{\Gamma, A \succ \Delta} \quad \frac{\Gamma \succ \Delta}{\Gamma \succ A, \Delta}$$

Identity:
$$A > A$$

Weakening:
$$\frac{\Gamma \succ \Delta}{\Gamma, A \succ \Delta} \quad \frac{\Gamma \succ \Delta}{\Gamma \succ A, \Delta}$$

Contraction:
$$\frac{\Gamma, A, A \succ \Delta}{\Gamma, A \succ \Delta} \quad \frac{\Gamma \succ A, A, \Delta}{\Gamma \succ A, \Delta}$$

Identity:
$$A > A$$

Weakening:
$$\frac{\Gamma \succ \Delta}{\Gamma, A \succ \Delta} \quad \frac{\Gamma \succ \Delta}{\Gamma \succ A, \Delta}$$

Contraction:
$$\frac{\Gamma, A, A \succ \Delta}{\Gamma, A \succ \Delta} \quad \frac{\Gamma \succ A, A, \Delta}{\Gamma \succ A, \Delta}$$

Cut:
$$\frac{\Gamma \succ A, \Delta \quad \Gamma, A \succ \Delta}{\Gamma \succ \Delta}$$

Identity:
$$A > A$$

Weakening: $\frac{\Gamma > \Delta}{\Gamma, A > \Delta}$ $\frac{\Gamma > \Delta}{\Gamma > A, \Delta}$

Contraction: $\frac{\Gamma, A, A > \Delta}{\Gamma, A > \Delta}$ $\frac{\Gamma > A, A, \Delta}{\Gamma > A, \Delta}$

Cut:
$$\frac{\Gamma \succ A, \Delta \quad \Gamma, A \succ \Delta}{\Gamma \succ \Delta}$$

Structural rules govern declarative sentences as such.

Extending a Language with Specific Vocabulary

With Left/Right rules?

$$\frac{\Gamma, A, B \succ \Delta}{\Gamma, A \land B \succ \Delta} \, [\land L] \qquad \frac{\Gamma \succ A, \Delta \quad \Gamma \succ B, \Delta}{\Gamma \succ A \land B, \Delta} \, [\land R]$$

Extending a Language with Specific Vocabulary

With Left/Right rules?

$$\frac{\Gamma, A, B \succ \Delta}{\Gamma, A \land B \succ \Delta} \, [\land L] \qquad \frac{\Gamma \succ A, \Delta \quad \Gamma \succ B, \Delta}{\Gamma \succ A \land B, \Delta} \, [\land R]$$

$$\frac{\Gamma, B \succ \Delta}{\Gamma, A tonk B \succ \Delta} [tonkL] \qquad \frac{\Gamma \succ A, \Delta}{\Gamma \succ A tonk B, \Delta} [tonkR]$$

What is involved in going from \mathcal{L} to \mathcal{L}' ?

Use
$$\succ_{\mathcal{L}}$$
 to define $\succ_{\mathcal{L}'}$.

What is involved in going from \mathcal{L} to \mathcal{L}' ?

Use
$$\succ_{\mathcal{L}}$$
 to define $\succ_{\mathcal{L}'}$.

Desideratum #1: $\succ_{\mathcal{L}'}$ is conservative: $(\succ_{\mathcal{L}'})|_{\mathcal{L}}$ is $\succ_{\mathcal{L}}$.

What is involved in going from \mathcal{L} to \mathcal{L}' ?

Use
$$\succ_{\mathcal{L}}$$
 to define $\succ_{\mathcal{L}'}$.

Desideratum #1: $\succ_{\mathcal{L}'}$ is conservative: $(\succ_{\mathcal{L}'})|_{\mathcal{L}}$ is $\succ_{\mathcal{L}}$.

Desideratum #2: Concepts are defined uniquely.

A Defining Rule

$$\frac{\Gamma, A, B \succ \Delta}{\Gamma, A \land B \succ \Delta} \ [\land Df]$$

A Defining Rule

$$\frac{\Gamma, A, B \succ \Delta}{\Gamma, A \land B \succ \Delta} \ [\land Df]$$

Fully specifies norms governing conjunctions on the *left* in terms of simpler vocabulary.

A Defining Rule

$$\frac{\Gamma, A, B \succ \Delta}{\Gamma, A \land B \succ \Delta} \ [\land Df]$$

Fully specifies norms governing conjunctions on the *left* in terms of simpler vocabulary.

Identity and *Cut* determine the behaviour of conjunctions on the *right*.

$$\frac{A \wedge B \succ A \wedge B}{A \wedge B \succ A \wedge B} \stackrel{[Id]}{[\wedge Df]} \\ \frac{\Gamma \succ A, \Delta}{\Gamma \succ A \wedge B, \Delta} \stackrel{[Cut]}{[Cut]}$$

$$\frac{ \begin{array}{c} \overline{A \wedge B \succ A \wedge B} \\ \hline A \wedge B \succ A \wedge B \end{array} \begin{array}{c} [Id] \\ \hline [\wedge Df] \\ \hline \Gamma \succ A, \Delta \end{array} \begin{array}{c} \Gamma \succ B, \Delta \end{array} \begin{array}{c} \overline{A \wedge B \succ A \wedge B} \\ \hline [Cut] \\ \hline \Gamma \succ A \wedge B, \Delta \end{array} \begin{array}{c} [Cut] \\ \hline \end{array}$$

$$\frac{\Gamma \succ B, \Delta \qquad \overline{A \land B \succ A \land B}}{A, B \succ A \land B} \stackrel{[Id]}{[\land Df]}$$

$$\frac{\Gamma \succ A, \Delta \qquad \overline{\Gamma, A \succ A \land B, \Delta}}{\Gamma \succ A \land B, \Delta} \stackrel{[Cut]}{[Cut]}$$

$$\frac{ \frac{\overline{A \wedge B \succ A \wedge B}}{A, B \succ A \wedge B}}{ \frac{[Id]}{A, B \succ A \wedge B}} \frac{[Id]}{[\wedge Df]}$$

$$\frac{\Gamma \succ A, \Delta}{\Gamma \succ A \wedge B, \Delta} \frac{[Cut]}{[Cut]}$$

$$\frac{A \wedge B - A \wedge B}{A \wedge B - A \wedge B} [Id]$$

$$\frac{\Gamma - B, \Delta}{A, B - A \wedge B} [A \cap B]$$

$$\frac{\Gamma - A, \Delta}{\Gamma, A - A \wedge B, \Delta} [Cut]$$

$$\Gamma - A \wedge B, \Delta$$

$$\frac{\Gamma \succ A, \Delta \quad \Gamma \succ B, \Delta}{\Gamma \succ A \land B, \Delta} \ [\land R]$$

And Back

$$\frac{A \succ A \quad B \succ B}{A, B \succ A \land B} \stackrel{[\land R]}{ \Gamma, A \land B \succ \Delta} \stackrel{[Cut]}{ \Gamma, A, B \succ \Delta}$$

Quantifier Rules

$$\frac{\Gamma \succ A(n), \Delta}{\Gamma \succ (\forall x) A(x), \Delta} \, [\forall \mathit{D}f] \qquad \frac{\Gamma, A(n) \succ \Delta}{\Gamma, (\exists x) A(x) \succ \Delta} \, [\exists \mathit{D}f]$$

Deductive Generality

$$\mathcal{L}[\wedge Df, Cut] = \mathcal{L}[\wedge L/R, Cut]$$

$$\mathcal{L}[\land Df, Cut] = \mathcal{L}[\land L/R, Cut] = \mathcal{L}[\land L/R]$$

$$\mathcal{L}[\land Df, Cut] = \mathcal{L}[\land L/R, Cut] = \mathcal{L}[\land L/R]$$

This *generalises*: \land , \lor , \supset , \neg work in the same way.

$$\mathcal{L}[\land Df, Cut] = \mathcal{L}[\land L/R, Cut] = \mathcal{L}[\land L/R]$$

This *generalises*: \land , \lor , \supset , \neg work in the same way.

I want to see how this works for *identity*.

IDENTITY & INDIS-TINGUISHABILITY

Identity and Harmony

Identity and harmony

STEPHEN READ

1. Harmony

The inferentialist account of logic says that the meaning of a logical operator is given by the rules for its application. Prior (1960-61) showed that a simple and straightforward interpretation of this account of logicality reduces to absurdity. For if "tonk" has the meaning given by the rules Prior proposed for it, contradiction follows. Accordingly, a more subtle interpretation of inferentialism is needed. Such a proposal was put forward initially by Gentzen (1934) and elaborated by, e.g., Pravitz (1977). The meaning of a logical expression is given by the rules for the assertion of statements containing that expression (as designated component); these are its introduction-rules. The meaning so given justifies further rules for drawing inferences from such assertions; these are its elimination-rules:

The introductions represent, as it were, the 'definitions' of the symbols concerned, and the eliminations are no more, in the final analysis, than the consequence of these definitions. (Gentzen 1934: 80)

For example, if the only ground for assertion of 'p tonk q' is given by Prior's rule:

$$\frac{p}{p \text{ tonk } q} \text{ tonk-I}$$

then Prior mis-stated the elimination-rule. It should read

$$\frac{p \operatorname{tonk} q}{r} \operatorname{tonk-E}$$

that is, given 'p tonk q', and a derivation of r from p (the ground for asserting 'p tonk q'), we can infer r, discharging the assumption p. We can state the rule more simply as follows:

Identity Axioms

t = t

Identity Axioms

$$t = t$$

$$s=t\supset t=s \qquad s=t\supset (t=u\supset s=u)$$

Identity Axioms

$$t=t$$

$$s=t\supset t=s \qquad s=t\supset (t=u\supset s=u)$$

$$s=t\supset (A(s)\equiv A(t))$$

Identity Rules in Natural Deduction

$$\begin{array}{c}
[Fs] \\
\vdots \\
Ft \\
\hline
s = t
\end{array}$$

Identity Rules in Natural Deduction

Defining Rule for Identity

$$\frac{\Gamma, Fs \succ Ft, \Delta}{\Gamma \succ s = t, \Delta} [=Df]$$

Generality in Predicate Position

$$\frac{\Gamma \succ \Delta}{\Gamma|_{A(x)}^{\mathsf{Fx}} \succ \Delta|_{A(x)}^{\mathsf{Fx}}} \ [\mathit{Spec}_{A(x)}^{\mathsf{Fx}}]$$

Generality in Predicate Position

$$\frac{\Gamma \succ \Delta}{\Gamma|_{A(x)}^{\mathsf{Fx}} \succ \Delta|_{A(x)}^{\mathsf{Fx}}} [\mathit{Spec}_{A(x)}^{\mathsf{Fx}}]$$

No norm holds of Fx that doesn't also hold of the sentence context A(x).

DEFINING RULES & LEFT/RIGHT RULES

$$\frac{\frac{s = t \succ s = t}{s = t, Fs \succ Ft}}{\frac{s = t, Fs \succ Ft}{s = t, A(s) \succ A(t)}} \underbrace{\frac{[Spec_{A(x)}^{Fx}]}{[Sut]}}_{[Cut]}$$

$$\frac{s = t, \Gamma \succ A(t), \Delta}{s = t, \Gamma \succ \Delta}$$

$$\frac{s = t, \Gamma \succ A(t) \succ \Delta}{[Cut]}$$

$$\frac{\frac{s = t \succ s = t}{s = t, Fs \succ Ft}}{\frac{s = t, Fs \succ Ft}{s = t, A(s) \succ A(t)}} \frac{[Spec_{A(x)}^{Fx}]}{[Cut]}$$

$$\frac{s = t, \Gamma \succ A(t), \Delta}{s = t, \Gamma \succ \Delta} \frac{\Gamma, A(t) \succ \Delta}{[Cut]}$$

$$\frac{\frac{s = t \succ s = t}{s = t, Fs \succ Ft}}{\frac{s = t, Fs \succ Ft}{s = t, A(s) \succ A(t)}} [Spec_{A(x)}^{Fx}]}$$

$$\frac{s = t, A(s) \succ A(t)}{s = t, \Gamma \succ A(t), \Delta} [Cut]$$

$$s = t, \Gamma \succ \Delta$$

$$[Cut]$$

$$\frac{\frac{s = t \succ s = t}{s = t, \Gamma s \succ \Gamma t} [=Df]}{\frac{\Gamma \succ A(s), \Delta}{s = t, A(s) \succ A(t)} [Spec_{A(x)}^{\Gamma x}]} \frac{s = t, \Gamma \succ A(t), \Delta}{s = t, \Gamma \succ \Delta} [Cut]}{s = t, \Gamma \succ \Delta}$$

$$\frac{\frac{s = t \succ s = t}{s = t, Fs \succ Ft} [=Df]}{\frac{\Gamma \succ A(s), \Delta}{s = t, A(s) \succ A(t)} \frac{[Spec_{A(x)}^{Fx}]}{[Cut]}}{\frac{s = t, \Gamma \succ A(t), \Delta}{s = t, \Gamma \succ \Delta}} [Cut]}$$

$$\frac{\frac{s = t \succ s = t}{s = t, Fs \succ Ft} [=Df]}{\frac{\Gamma \succ A(s), \Delta}{s = t, A(s) \succ A(t)} \frac{[Spec_{A(x)}^{Fx}]}{[Cut]}}{\frac{s = t, \Gamma \succ A(t), \Delta}{s = t, \Gamma \succ \Delta}} [Cut]}$$

$$\frac{\frac{s = t \succ s = t}{s = t, Fs \succ Ft} [=Df]}{\frac{S = t, Fs \succ Ft}{s = t, A(s) \succ A(t)} [Spec_{A(x)}^{Fx}]}$$

$$\frac{s = t, \Gamma \succ A(t), \Delta}{s = t, \Gamma \succ \Delta} [Cut]$$

$$\frac{\Gamma \succ A(s), \Delta \qquad \Gamma, A(t) \succ \Delta}{s = t, \Gamma \succ \Delta} [=L]$$

$$\frac{\Gamma \succ A(s), \Delta \qquad \Gamma, A(t) \succ \Delta}{s = t, \Gamma \succ \Delta} \ [=L]$$

$$[=L]$$

$$\frac{\Gamma \succ A(s), \Delta \qquad \Gamma, A(t) \succ \Delta}{s = t, \Gamma \succ \Delta} \ [=L]$$

This is valid, but ugly.

$$[=L]$$

$$\frac{\Gamma \succ A(s), \Delta \qquad \Gamma, A(t) \succ \Delta}{s = t, \Gamma \succ \Delta} \ [=L]$$

This is valid, but ugly.

Proof search?

$$[=L]$$

$$\frac{\Gamma \succ A(s), \Delta \qquad \Gamma, A(t) \succ \Delta}{s = t, \Gamma \succ \Delta} \, [=L]$$

This is valid, but ugly.

Proof search?
Subformula property?

Backtracking a little

$$\frac{\frac{s = t \succ s = t}{s = t, Fs \succ Ft} [=Df]}{\frac{\Gamma \succ A(s), \Delta}{s = t, A(s) \succ A(t)} \frac{[Spec_{A(x)}^{Fx}]}{[Cut]}}{\frac{s = t, \Gamma \succ A(t), \Delta}{s = t, \Gamma \succ \Delta}} [Cut]}$$

Backtracking a little

$$\frac{\frac{s = t \succ s = t}{s = t, Fs \succ Ft} [=Df]}{\frac{F \succ A(s), \Delta}{s = t, A(s) \succ A(t)} \frac{[Spec_{A(x)}^{Fx}]}{[Cut]}}{\frac{s = t, \Gamma \succ A(t), \Delta}{s = t, \Gamma \succ \Delta}} [Cut]}$$

$$\frac{\Gamma \succ A(s), \Delta}{s = t, \Gamma \succ A(t), \Delta} [=L']$$

[=L'] is Enough to recover [=Df]

$$\frac{\Gamma \succ s = t, \Delta}{\frac{\Gamma, Fs \succ s = t, Ft, \Delta}{\Gamma, Fs \succ Ft, \Delta}} \underbrace{\frac{\frac{1}{Ft \succ Ft} [Id]}{s = t, Fs \succ Ft}}_{[K]}_{[Cut]}$$

$$\frac{\Gamma \succ A(s), \Delta}{s = t, \Gamma \succ A(t), \Delta} \ [=L']$$

$$[=L']$$

$$\frac{\Gamma \succ A(s), \Delta}{s = t, \Gamma \succ A(t), \Delta} \ [=L']$$

This is better...

$$[=L']$$

$$\frac{\Gamma \succ A(s), \Delta}{s = t, \Gamma \succ A(t), \Delta} = L'$$

This is better...

But it is still strange.

$$[=L']$$

$$\frac{\Gamma \succ A(s), \Delta}{s = t, \Gamma \succ A(t), \Delta} [=L']$$

This is better...

But it is still strange.

It operates at *two places* in the concluding sequent. This puts *compositionality* in question.

IDENTITY & PREDICATION

Decomposing [=L']: conjunctions

$$\frac{\Gamma \succ A(s) \land B(s), \Delta}{\Gamma \succ A(s), \Delta} \underset{[\land E]}{[\land E]} \qquad \frac{\Gamma \succ A(s) \land B(s), \Delta}{\Gamma \succ B(s), \Delta} \underset{[\land E]}{[\land E]} \\ \frac{\Gamma \succ A(s), \Delta}{s = t, \Gamma \succ A(t), \Delta} \underset{[\land R]}{[\vdash L']}$$

(Where the $[\land E]$ is given by a Cut on $A(t) \land B(t) \succ A(t)$, or $A(t) \land B(t) \succ B(t)$.)

Decomposing [=L']: conjunctions

$$\frac{\Gamma \succ A(s) \land B(s), \Delta}{\Gamma \succ A(s), \Delta} \underset{[\land E]}{[\land E]} \qquad \frac{\Gamma \succ A(s) \land B(s), \Delta}{\Gamma \succ B(s), \Delta} \underset{[\land E]}{[\land E]} \\ \frac{S = t, \Gamma \succ A(t), \Delta}{s = t, \Gamma \succ A(t) \land B(t), \Delta} \underset{[\land R]}{[\leftarrow E]}$$

(Where the $[\land E]$ is given by a *Cut* on $A(t) \land B(t) \succ A(t)$, or $A(t) \land B(t) \succ B(t)$.)

[=L'] on conjunctions is given by [=L'] on its conjuncts.

Decomposing [=L']: disjunctions

$$\frac{\frac{\Gamma \succ A(s) \lor B(s), \Delta}{\Gamma \succ A(s), B(s), \Delta}}{\frac{\Gamma \succ A(s), B(s), \Delta}{s = t, \Gamma \succ A(t), B(s), \Delta}} \stackrel{[\sim L']}{= L']}{\frac{s = t, s = t, \Gamma \succ A(t), B(t), \Delta}{s = t, \Gamma \succ A(t), B(t), \Delta}} \stackrel{[W]}{= L'}{= L'}$$

Decomposing [=L']: disjunctions

$$\frac{\frac{\Gamma \succ A(s) \lor B(s), \Delta}{\Gamma \succ A(s), B(s), \Delta}}{\frac{\Gamma \succ A(s), B(s), \Delta}{s = t, \Gamma \succ A(t), B(s), \Delta}} \stackrel{[\sim L']}{= L']}{\frac{s = t, s = t, \Gamma \succ A(t), B(t), \Delta}{s = t, \Gamma \succ A(t), B(t), \Delta}} \stackrel{[W]}{= L'}{= L'}$$

[=L'] on disjunctions is given by [=L'] on its disjuncts.

Decomposing [=L']: universal quantifiers

$$\frac{\frac{\Gamma \succ (\forall x) A(x,s), \Delta}{\Gamma \succ A(n,s), \Delta}}{\frac{\Gamma \succ A(n,s), \Delta}{s = t, \Gamma \succ A(n,t), \Delta}} \stackrel{[\forall \textit{Df}]}{}{}_{[\forall \textit{Df}]}$$

[=L'] on a universally quantified statement is given by [=L'] on an instance.

Decomposing [=L']: existential quantifiers

$$\frac{\frac{\overline{A(n,s)} \succ A(n,s)}{\overline{s=t, A(n,s)} \succ A(n,t)}^{[Id]}}{\frac{\overline{s=t, A(n,s)} \succ A(n,t)}{\overline{s=t, A(n,s)} \succ (\exists x) A(x,t)}^{[\exists R]}}{\frac{\overline{s=t, (\exists x) A(x,s)} \succ (\exists x) A(x,t)}{\overline{s=t, \Gamma} \succ (\exists x) A(x,t)}^{[\exists Df]}} \Gamma \succ (\exists x) A(x,s), \Delta}{\overline{s=t, \Gamma} \succ (\exists x) A(x,t), \Delta}$$

[=L'] on an existentially quantified statement is given by [=L'] on an instance.

But for negation...

$$\begin{split} &\frac{\Gamma \succ \neg A(s), \Delta}{\Gamma, A(s) \succ \Delta} \, [\neg \textit{Df}] \\ &\frac{s = t, A(t), \Gamma \succ \Delta}{s = t, \Gamma \succ \neg A(t), \Delta} \, [\neg \textit{Df}] \end{split}$$

Different Identity Rules

$$\frac{\Gamma \succ A(s), \Delta \qquad \Gamma, A(t) \succ \Delta}{s = t, \Gamma \succ \Delta} \ [=L]$$

Different Identity Rules

$$\begin{split} \frac{\Gamma \succ A(s), \Delta}{s = t, \Gamma \succ \Delta} & \xrightarrow{\Gamma, A(t) \succ \Delta} \\ \frac{\Gamma \succ A(s), \Delta}{s = t, \Gamma \succ A(t), \Delta} & \stackrel{[=L]}{=} \end{split}$$

Different Identity Rules

$$\frac{\Gamma \succ A(s), \Delta \qquad \Gamma, A(t) \succ \Delta}{s = t, \Gamma \succ \Delta} [=L]$$

$$\frac{\Gamma \succ A(s), \Delta}{s = t, \Gamma \succ A(t), \Delta} [=L_r^f] \qquad \frac{\Gamma, Fa \succ Fb, \Delta}{\Gamma \succ a = b, \Delta} [=R]$$

$$\begin{split} \frac{\Gamma \succ A(s), \Delta \qquad \Gamma, A(t) \succ \Delta}{s = t, \Gamma \succ \Delta} \, [=& L] \\ \frac{\Gamma \succ A(s), \Delta}{s = t, \Gamma \succ A(t), \Delta} \, [=& L_r^f] \qquad \frac{\Gamma, F\alpha \succ Fb, \Delta}{\Gamma \succ \alpha = b, \Delta} \, [=& R] \\ \frac{\Gamma \succ Fs, \Delta}{s = t, \Gamma \succ Ft, \Delta} \, [=& L_r^p] \end{split}$$

$$\begin{split} \frac{\Gamma \succ A(s), \Delta}{s = t, \Gamma \succ \Delta} & \xrightarrow{\Gamma, A(t) \succ \Delta} [=L] \\ \frac{\Gamma \succ A(s), \Delta}{s = t, \Gamma \succ A(t), \Delta} & \xrightarrow{[=L_r^f]} & \frac{\Gamma, F\alpha \succ Fb, \Delta}{\Gamma \succ \alpha = b, \Delta} [=R] \\ \frac{\Gamma \succ Fs, \Delta}{s = t, \Gamma \succ Ft, \Delta} & \xrightarrow{[=L_r^p]} & \frac{Fs, \Gamma \succ \Delta}{s = t, Ft, \Gamma \succ \Delta} [=L_l^p] \end{split}$$

$$\begin{split} \frac{\Gamma \succ A(s), \Delta}{s = t, \Gamma \succ \Delta} & \stackrel{\Gamma, A(t) \succ \Delta}{= EL} \\ \frac{\Gamma \succ A(s), \Delta}{s = t, \Gamma \succ A(t), \Delta} & \stackrel{[=L_r^f]}{= E_r^f} & \frac{\Gamma, Fa \succ Fb, \Delta}{\Gamma \succ a = b, \Delta} & \stackrel{[=R]}{= E_L^p} \\ \frac{\Gamma \succ Fs, \Delta}{s = t, \Gamma \succ Ft, \Delta} & \stackrel{[=L_r^p]}{= E_r^p} & \frac{Fs, \Gamma \succ \Delta}{s = t, Ft, \Gamma \succ \Delta} & \stackrel{[=L_L^p]}{= E_L^p} \\ \frac{\Gamma, Fa \succ Fb, \Delta}{\Gamma \succ a = b, \Delta} & \stackrel{[=Df]}{= Df} \end{split}$$

$$\begin{split} \frac{\Gamma \succ A(s), \Delta}{s = t, \Gamma \succ \Delta} & \xrightarrow{\Gamma, A(t) \succ \Delta}_{[=L]} \\ \frac{\Gamma \succ A(s), \Delta}{s = t, \Gamma \succ A(t), \Delta} & \xrightarrow{[=L_r^f]} & \frac{\Gamma, Fa \succ Fb, \Delta}{\Gamma \succ a = b, \Delta} & \xrightarrow{[=R]} \\ \frac{\Gamma \succ Fs, \Delta}{s = t, \Gamma \succ Ft, \Delta} & \xrightarrow{[=L_r^p]} & \frac{Fs, \Gamma \succ \Delta}{s = t, Ft, \Gamma \succ \Delta} & \xrightarrow{[=L_l^p]} \\ \frac{\Gamma, Fa \succ Fb, \Delta}{\Gamma \succ a = b, \Delta} & \xrightarrow{[=Df]} & \frac{\Gamma \succ \Delta}{\Gamma|_{A(x)}^{Fx} \succ \Delta|_{A(x)}^{Fx}} & \xrightarrow{[Spec_{A(x)}^{Fx}]} \end{split}$$

$$\begin{array}{ll} \frac{\Gamma, Fa \succ Fb, \Delta}{\Gamma \succ \alpha = b, \Delta} \text{ [=Df]} & \frac{\Gamma \succ \Delta}{\Gamma|_{A(x)}^{Fx} \succ \Delta|_{A(x)}^{Fx}} \text{ [Spec}_{A(x)}^{Fx}] \\ \\ \mathcal{L} \text{ [=Df, Spec, Cut]} \end{array}$$

$$\frac{\Gamma \succ A(s), \Delta \qquad \Gamma\!, A(t) \succ \Delta}{s = t, \Gamma \succ \Delta} \, [=\! L]$$

$$\mathcal{L}[=Df, Spec, Cut] = \mathcal{L}[=L/R, Cut]$$

$$\frac{\Gamma \succ A(s), \Delta}{s = t, \Gamma \succ A(t), \Delta} = L_r^f$$

$$\begin{array}{lll} \mathcal{L}[=\!Df,Spec,Cut] & = & \mathcal{L}[=\!L/R,Cut] \\ & = & \mathcal{L}[=\!L_r^f/R,Cut] \end{array}$$

$$\begin{split} \frac{\Gamma \succ \mathsf{Fs}, \Delta}{s = \mathsf{t}, \Gamma \succ \mathsf{Ft}, \Delta} &= \mathsf{L}^{\mathsf{p}}_{\mathsf{r}}] \ \frac{\mathsf{Fs}, \Gamma \succ \Delta}{s = \mathsf{t}, \mathsf{Ft}, \Gamma \succ \Delta} &= \mathsf{L}^{\mathsf{p}}_{\mathsf{l}}] \ \frac{\Gamma, \mathsf{Fa} \succ \mathsf{Fb}, \Delta}{\Gamma \succ \alpha = \mathsf{b}, \Delta} &= \mathsf{R}] \\ \mathcal{L} &= \mathcal{L} [= \! \mathsf{Lf}, \mathsf{Spec}, \mathsf{Cut}] &= \mathcal{L} [= \! \mathsf{Lf}, \mathsf{Cut}] \\ &= \mathcal{L} [= \! \mathsf{Lf}, \mathsf{Cut}] \\ &= \mathcal{L} [= \! \mathsf{Lf}, \mathsf{Cut}] \end{split}$$

$$\begin{split} \frac{\Gamma \succ \mathsf{Fs}, \Delta}{s = \mathsf{t}, \Gamma \succ \mathsf{Ft}, \Delta} &= \mathsf{L}^{\mathsf{p}}_{\mathsf{r}}] \ \frac{\mathsf{Fs}, \Gamma \succ \Delta}{s = \mathsf{t}, \mathsf{Ft}, \Gamma \succ \Delta} &= \mathsf{L}^{\mathsf{p}}_{\mathsf{l}}] \ \frac{\Gamma, \mathsf{Fa} \succ \mathsf{Fb}, \Delta}{\Gamma \succ \mathsf{a} = \mathsf{b}, \Delta} &= \mathsf{R} \end{split}$$

$$\mathcal{L}[=\!\mathit{Df}, \mathit{Spec}, \mathit{Cut}] &= \mathcal{L}[=\!\mathit{L/R}, \mathit{Cut}]$$

$$&= \mathcal{L}[=\!\mathit{L_r^f}/R, \mathit{Cut}]$$

$$&= \mathcal{L}[=\!\mathit{L_r^p}/L_{\mathsf{l}}^p/R, \mathit{Cut}]$$

$$&= \mathcal{L}[=\!\mathit{L_r^p}/L_{\mathsf{l}}^p/R, \mathit{Cut}]$$

$$&= \mathcal{L}[=\!\mathit{L_r^p}/L_{\mathsf{l}}^p/R]$$

$$\begin{split} \frac{\Gamma \succ \mathsf{Fs}, \Delta}{s = \mathsf{t}, \Gamma \succ \mathsf{Ft}, \Delta} &= \mathsf{L}^p_r] \ \frac{\mathsf{Fs}, \Gamma \succ \Delta}{s = \mathsf{t}, \mathsf{Ft}, \Gamma \succ \Delta} &= \mathsf{L}^p_l] \ \frac{\Gamma, \mathsf{Fa} \succ \mathsf{Fb}, \Delta}{\Gamma \succ \alpha = b, \Delta} &= \mathsf{R}] \\ \mathcal{L} &= \mathcal{L} [= \! \mathsf{Df}, \mathit{Spec}, \mathit{Cut}] &= \mathcal{L} [= \! \mathsf{L/R}, \mathit{Cut}] \\ &= \mathcal{L} [= \! \mathsf{L}^f_r / R, \mathit{Cut}] \\ &= \mathcal{L} [= \! \mathsf{L}^p_r / \mathsf{L}^p_l / R, \mathit{Cut}] \\ &= \mathcal{L} [= \! \mathsf{L}^p_r / \mathsf{L}^p_l / R] \end{split}$$

Each system gives you classical first-order predicate logic with identity.

Non-Symmetric 'Identity'

$$\frac{\Gamma \succ \mathsf{Fs}, \Delta}{\mathsf{t} \ \mathit{is} \ \mathsf{s}, \Gamma \succ \mathsf{Ft}, \Delta} \ [\mathit{is} L^p_r] \qquad \frac{\Gamma, \mathsf{Fs} \succ \mathsf{Ft}, \Delta}{\Gamma \succ \mathsf{t} \ \mathit{is} \ \mathsf{s}, \Delta} \ [\mathit{is} R]$$

Non-Symmetric 'Identity'

$$\frac{\Gamma \succ \mathsf{Fs}, \Delta}{\mathsf{t} \; is \; \mathsf{s}, \; \Gamma \succ \mathsf{Ft}, \; \Delta} \; [\mathit{isL}^{\mathtt{p}}_{\mathtt{r}}] \qquad \frac{\Gamma, \; \mathsf{Fs} \succ \mathsf{Ft}, \; \Delta}{\Gamma \succ \; \mathsf{t} \; \mathit{is} \; \mathsf{s}, \; \Delta} \; [\mathit{isR}]$$

There are models of this system in which s is $t \neq t$ is s.

Non-Symmetric 'Identity'

$$\frac{\Gamma \succ \mathsf{Fs}, \Delta}{\mathsf{t} \; is \; \mathsf{s}, \Gamma \succ \mathsf{Ft}, \Delta} \; [\mathit{isL}^{\mathsf{p}}_{\mathsf{r}}] \qquad \frac{\Gamma, \mathsf{Fs} \succ \mathsf{Ft}, \Delta}{\Gamma \succ \mathsf{t} \; \mathit{is} \; \mathsf{s}, \Delta} \; [\mathit{isR}]$$

There are models of this system in which s is $t \neq t$ is s.

DOMAIN: Animal < Mammal < Human.

ATOMIC PREDICATES: closed upward under <.

Spec: holds for atomic predicates, closed under \land , \lor , \forall , \exists but not \neg or \supset .

FREE LOGIC & IDENTITY

$$\frac{\Gamma, n \succ A(n), \Delta}{\Gamma \succ (\forall x) A(x), \Delta} \, [\forall Df] \qquad \frac{\Gamma, n, A(n) \succ \Delta}{\Gamma, (\exists x) A(x) \succ \Delta} \, [\exists Df]$$

$$\frac{\Gamma, n \succ A(n), \Delta}{\Gamma \succ (\forall x) A(x), \Delta} [\forall Df] \qquad \frac{\Gamma, n, A(n) \succ \Delta}{\Gamma, (\exists x) A(x) \succ \Delta} [\exists Df]$$

$$\frac{\Gamma, t \succ \Delta}{\Gamma, t \downarrow \succ \Delta} [\downarrow Df]$$

$$\frac{\Gamma, n \succ A(n), \Delta}{\Gamma \succ (\forall x) A(x), \Delta} [\forall Df] \qquad \frac{\Gamma, n, A(n) \succ \Delta}{\Gamma, (\exists x) A(x) \succ \Delta} [\exists Df]$$

$$\frac{\Gamma, t \succ \Delta}{\Gamma, t \downarrow \succ \Delta} [\downarrow Df]$$

 $(\forall x) Fx \not \rightarrow Ft$

$$\frac{\Gamma, n \succ A(n), \Delta}{\Gamma \succ (\forall x) A(x), \Delta} [\forall Df] \qquad \frac{\Gamma, n, A(n) \succ \Delta}{\Gamma, (\exists x) A(x) \succ \Delta} [\exists Df]$$

$$\frac{\Gamma, t \succ \Delta}{\overline{\Gamma, t \downarrow \succ \Delta}} [\downarrow Df]$$

$$(\forall x) Fx \not\succ Ft \quad A(t) \not\succ (\exists x) A(x)$$

$$\frac{\Gamma, n \succ A(n), \Delta}{\Gamma \succ (\forall x) A(x), \Delta} [\forall Df] \qquad \frac{\Gamma, n, A(n) \succ \Delta}{\Gamma, (\exists x) A(x) \succ \Delta} [\exists Df]$$

$$\frac{\Gamma, t \succ \Delta}{\overline{\Gamma, t \downarrow \succ \Delta}} [\downarrow Df]$$

$$(\forall x) \mathsf{F} \mathsf{x} \not\succ \mathsf{F} \mathsf{t} \quad \mathsf{A}(\mathsf{t}) \not\succ (\exists x) \mathsf{A}(\mathsf{x}) \quad (\forall x) \mathsf{F} \mathsf{x}, \mathsf{t} \succ \mathsf{F} \mathsf{t}$$

$$\frac{\Gamma, n \succ A(n), \Delta}{\Gamma \succ (\forall x) A(x), \Delta} [\forall Df] \qquad \frac{\Gamma, n, A(n) \succ \Delta}{\Gamma, (\exists x) A(x) \succ \Delta} [\exists Df]$$

$$\frac{\Gamma, t \succ \Delta}{\Gamma, t \downarrow \succ \Delta} [\downarrow Df]$$

 $(\forall x) \mathsf{F} x \not\succ \mathsf{F} t \quad \mathsf{A}(\mathsf{t}) \not\succ (\exists x) \mathsf{A}(\mathsf{x}) \quad (\forall x) \mathsf{F} \mathsf{x}, \mathsf{t} \succ \mathsf{F} \mathsf{t} \quad \mathsf{A}(\mathsf{t}), \mathsf{t} \downarrow \succ (\exists x) \mathsf{A}(\mathsf{t})$

Is Predication Existentially Committing?

$$\frac{t_i, \Gamma \succ \Delta}{\mathsf{F}t_1 \cdots t_n, \Gamma \succ \Delta} \; [\mathsf{F} \mathsf{L}]$$

NON-COMMITAL:
$$\frac{\Gamma, Fs \succ Ft, \Delta}{\Gamma \succ s =_{n} t, \Delta} [=_{n} Df]$$

Non-commital:
$$\frac{\Gamma, Fs \succ Ft, \Delta}{\Gamma \succ s =_{n} t, \Delta} [=_{n} Df]$$

COMMITTAL:
$$\frac{\Gamma \succ s, \Delta \quad \Gamma \succ t, \Delta \quad \Gamma, Fs \succ Ft, \Delta}{\Gamma \succ s =_{c} t, \Delta} [=_{c} Df]$$

NON-COMMITAL:
$$\frac{\Gamma, Fs \succ Ft, \Delta}{\Gamma \succ s =_n t, \Delta} [=_n Df]$$

COMMITTAL:
$$\frac{\Gamma \succ s, \Delta \quad \Gamma \succ t, \Delta \quad \Gamma, Fs \succ Ft, \Delta}{\Gamma \succ s =_{c} \ t, \Delta} =_{c} Df$$

$$\succ t =_{n} t$$

NON-COMMITAL:
$$\frac{\Gamma, Fs \succ Ft, \Delta}{\Gamma \succ s =_n t, \Delta} [=_n Df]$$

COMMITTAL:
$$\frac{\Gamma \succ s, \Delta \quad \Gamma \succ t, \Delta \quad \Gamma, Fs \succ Ft, \Delta}{\Gamma \succ s =_{c} t, \Delta} [=_{c} Df]$$

$$\succ t =_n t \qquad \not =_c t$$

Non-commital:
$$\frac{\Gamma, Fs \succ Ft, \Delta}{\Gamma \succ s =_n \ t, \Delta} \ [=_n \mathit{Df}]$$

COMMITTAL:
$$\frac{\Gamma \succ s, \Delta \quad \Gamma \succ t, \Delta \quad \Gamma, Fs \succ Ft, \Delta}{\Gamma \succ s =_{c} t, \Delta} [=_{c} Df]$$

$$\rightarrow t =_n t$$
 $\forall t =_c t$ $s =_c t \rightarrow t \downarrow$ $s =_c t \rightarrow s \downarrow$

Non-committal identity clashes with committing predication

$$\frac{s \succ s, Ft}{Fs \succ s, Ft} [FL]$$

$$\frac{Fs \succ s \downarrow, Ft}{Fs \succ s \downarrow, Ft} [\neg Df]$$

$$\frac{\neg s \downarrow, Fs \succ Ft}{\neg s \downarrow \succ s =_{n} t} [=_{n}Df]$$

Non-committal identity clashes with committing predication

$$\frac{\frac{s \succ s, Ft}{Fs \succ s, Ft}}{\frac{Fs \succ s \downarrow, Ft}{\neg s \downarrow, Fs \succ Ft}} [FL]$$

$$\frac{\neg s \downarrow, Fs \succ Ft}{\neg s \downarrow \succ s =_{n} t} [\neg Df]$$

MORAL: For non-committal identity, allow F to be *negative* as well as *positive* (e.g., *nonexistence*) so FL might fail for this predicate.

The Generality of Predication Matters

$$\frac{\Gamma, Fs \succ Ft, \Delta}{\Gamma \succ s = t, \Delta} [=Df]$$

What can be substituted for the F here makes a real difference.

The Generality of Predication Matters

$$\frac{\Gamma, Fs \succ Ft, \Delta}{\Gamma \succ s = t, \Delta} [=Df]$$

What can be substituted for the F here makes a *real* difference.

I'll consider this more on this in the next talk, when I consider the interaction with modality.

THANK YOU!

http://consequently.org/presentation/2015/generality-and-existence-3-melbourne-logic-workshop

@consequently on Twitter