MÉTODOS ESTATÍSTICOS DE PREVISÃO

2° SEM./2020

PROF.: THIAGO REZENDE

DEPTO. ESTATÍSTICA – UFMG DATA DE ENTREGA: 15/03/2021 INSTRUÇÕES:

- 1) ENTREGAR, SOMENTE, OS EXERCÍCIOS 1, 10 e 14.
- 2) O trabalho pode ser em grupo de, no máximo, 4 alunos.
- 3) Trabalhos em atraso não serão aceitos.
- 4) É necessária a resolução de cada questão. Quando for pedido o software R, coloque um output dele e a análise dos resultados obtidos nele.
- 5) A lista de exercícios deve ser enviada em formato eletrônico para o e-mail: lst.ufmg@gmail.com até o dia 15/03/2021 às 23:59. Coloque no assunto do e-mail "Lista III EST038".

Terceira Lista de Exercícios:

Exercício 1: Para um modelo AR(1) com $Z_t = 12, 2$, $\phi = -0,50$ e $\mu = 10,80$, encontrar $\hat{Z}_t(1)$.

Exercício 2: Calcule as previsões e seus EQM's para um modelo AR(2) com $\phi_1 = 0.50$, $\phi_2 = -0.20$ e $\sigma^2 = 3$, para $l_1 = 1.2.3$, se $Y_T = 2$ e $Y_{T-1} = 1$.

Exercício 3: Se $u_T = 1,5$, calcule as previsões 1 e 2 passos à frente para o modelo:

$$Y_{t} = 100 + 0, 5u_{t-1} + u_{t}.$$

Exercício 4: Dado que $Y_T = 2$, $Y_{T-1} = 1$ e $u_T = 0.3$, calcule as previsões 1, 2 e 3 passos à frente para o modelo:

$$Y_t = 0,6Y_{t-1} + 0,2Y_{t-2} + 0,6u_{t-1} + u_t$$
.

Exercício 5: A partir de 110 observações da série temporal Y_t estimou-se o seguinte modelo:

$$Y_t = 18 + 0, 4u_{t-2} + 0, 5u_{t-1} + u_t \text{ com } \sigma^2 = 4,$$

Sabendo-se que $u_{109} = 1,9$ e $u_{110} = 1,7$, pede-se:

- (i) As previsões para os instantes 111, 112 e 113 feitas na origem t = 110;
- (ii) Calcule o EQM das previsões calculadas em (i);
- (iii) Sabendo que $u_{111} = 1,8$, atualize as previsões para o instante 112.

Exercício 6: Para uma série temporal ajustou-se o seguinte modelo ARIMA(0,1,1)

$$\nabla Y_t = (1 + 0.8B)u_t$$

Escrever Y_{T+l} através da forma da equação de diferenças.

Exercício 7: Suponha que as vendas anuais (em milhões de reais) de uma empresa, segue o modelo AR(2):

$$Y_t = 5 + 1,1Y_{t-1} - 0,5Y_{t-2} + u_t$$
.

Se as vendas para 1985, 1984, e 1983 foram R\$ 10 milhões, R\$ 11 milhões, e R\$ 9 milhões, respectivamente, obter a previsão para as vendas em 1986. Se as vendas em 1986 são de R\$ 12 milhões, qual será a previsão para 1987. Calcule um intervalo de previsão de 95% para os anos de 1986 e 1987.

Exercício 8: Considere o modelo $Y_t - \mu = 0.8(Y_{t-1} - \mu) + u_t$, $u_t \sim N(0,1)$, onde $Z_t = Y_t - \mu$. Suponha os seguintes dados:

Obtenha:

- a) $\tilde{Z}_t(h)$ para h = 1, 2, 3 e 25.
- b) A $Var[e_t(h)]$ para h = 1, 2, 3 e 25.
- c) Os intervalos de previsão de 95% para Z_8 , Z_9 , e Z_{10} .

Exercício 9: As seguintes observações Y_{91} , Y_{92} , ..., Y_{100} representam os valores de uma série temporal ajustada ao modelo:

$$Y_t - Y_{t-1} = -1, 1u_{t-1} + 0, 3u_{t-2} + u_t$$
, onde os valores são

$$Y = [166,172,169,164,168,171,167,168,172].$$

- a) Calcule as previsões $\hat{Y}_{100}(h)$, h = 1, 2, ..., 10 (use $u_{99} = u_{100} = 0$).
- b) Sabendo que $\sigma^2 = 1,1$, calcule $Var[e_t(h)]$, h = 1, 2, ..., 10 e construa intervalos de previsão para os valores Y_{t+h} .

Exercício 10: Considere o modelo $Y_t = 0.8Y_{t-1} + u_t$, com $u_t \sim N(0,1)$.

- a) Obtenha $\hat{Y}_t(h)$ para h = 1, 2, 3 e 4.
- b) Obtenha a $Var[e_t(h)]$ para h = 1, 2, 3 e 4.
- c) Suponha os seguintes dados:

- c.1) Calcule $\hat{Y}_{t}(h)$ para h = 1, 2, 3 e 4.
- c.2) Obtenha um intervalo de previsão de 95% para Y_8 , Y_9 .

Exercício 11: Encontre a função de previsão e a variância da função de previsão para os seguintes processos:

- (a) ARIMA(0,1,1);
- (b) ARIMA(1,1,0);
- (c) MA(1): $Y_t = \mu \theta_1 u_{t-1} + u_t$, $u_t \sim N(0, \sigma_u^2)$, para t = 1, ..., n.
- (d) AR(1): $Y_t = \mu + \phi_1 Y_{t-1} + u_t$, $u_t \sim N(0, \sigma_u^2)$, para t = 1, ..., n.
- (e) MA(2): $Y_t = \mu \theta_1 u_{t-1} \theta_2 u_{t-2} + u_t$, $u_t \sim N(0, \sigma_u^2)$, para t = 1, ..., n.

Exercício 12 (Exercício Prático): Obtenha os dados da Produção industrial da indústria geral: índice mensal de quantum (média 2002 = 100) no site <www.ipeadata.gov.br>. A fonte desses dados é o Instituto Brasileiro de Geografia e Estatística, Pesquisa Industrial Mensal - Produção Física (IBGE/PIM-PF). Analise os dados da produção industrial de jan/2002 até o último mês disponível. Para ajustar modelos considere os dados de jan/2002 a ago/2015 para utilizar os dados do último ano da série para avaliar a previsão.

- (a) Faça uma análise descritiva dos dados a partir de jan/2002. Podem usar o método STL do Cleveland.
- (b) Proponha um modelo SARIMA para os dados da produção industrial mensal de jan/2002 a ago/2015.
- (c) Verifique se o modelo proposto está bem ajustado e satisfaz as suposiçoes do modelo.
- (d) Teste se os parâmetros do modelo proposto são diferentes de zero.
- (e) Encontre as previsões para a produção industrial para os últimos 12 meses usando o modelo proposto e apresente seus correspondentes intervalos de confiança.
- (f) Também use o método Holt-Winters e obtenha previsões.
- (g) Compare os resultados dos 2 métodos.

Nesse exercício, podem propor outro modelo incluindo variáveis explicativas também.

Exercício 13 (**Exercício Prático**): A série temporal mensal $\{Y_t\}$ abaixo refere-se ao consumo de energia elétrica da CEP Centrais Elétricas do Paraná (CEP) no período de jan/80 a dez/94. Faça a análise completa dessa série temporal, incluindo o ajuste de um modelo SARIMA mais adequado à mesma, a adequação do modelo e previsão. A série está nos arquivos "cep.txt" e "CEP.xls".

OBS.:

- 1) Some a série $\{Y_t\}$ uma constante c, que é igual ao último algarismo do seu número de matrícula. Ex.: número de matrícula: 2014435557, a série temporal é $Y_t^* = Y_t + c = Y_t + 7$.
- Omita as 12 últimas observações da série para avaliar a capacidade preditiva do modelo em termos das estatísticas de erro de previsão, tais como MSE, MAE e MAPE.

	-						- 1		. ~			
	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
1980	256	261	275	283	293	290	281	292	289	291	296	286
1981	270	283	285	297	303	302	298	301	302	301	290	288
1982	279	295	293	306	313	314	307	311	313	310	311	313
1983	289	305	318	325	332	324	322	334	335	330	320	306
1984	284	304	331	351	365	353	352	354	346	343	321	318
1985	304	337	343	358	364	363	357	361	358	359	329	337
1986	314	356	357	371	383	375	367	368	378	372	338	340
1987	316	361	366	388	395	403	391	394	403	389	369	365
1988	345	383	400	406	428	424	422	426	423	420	392	396
1989	373	407	413	430	443	446	444	450	448	447	417	411
1990	387	422	429	444	450	451	456	455	452	443	420	423
1991	408	438	464	470	478	482	469	471	474	476	452	451
1992	425	465	474	485	506	499	481	492	514	515	483	481
1993	458	499	510	536	544	540	535	545	556	554	524	517
1994	508	552	551	575	595	585	582	587	591	593	571	565

Exercício 14 (Exercício Prático): Proponham, ajustem modelos $SARIMA(p,d,q) \times (P,D,Q)_s$ e façam as previsões para as 12 últimas observações das séries disponibilizadas no arquivo "series.csv". Faça a análise completa das séries temporais. Compare os resultados com o modelo ARIMA(p,d,q) ajustado na lista anterior. Além disso, ajuste um modelo de alisamento/suavização exponencial de Holt-Winters.

OBS.: Mais exercícios podem ser encontrados nos capítulos 4 (alisamento exponencial), 9 (previsão) e 10 (modelos com sazonalidade) de Morettin e Toloi (2006) e nas seções 2.4 4 (alisamento exponencial), 3.5 (previsão) e 3.9 (modelos com sazonalidade) do livro de Shumway e Stoffer (2010).