Cryo-EM Reconstruction of Continuous Heterogeneity by Laplacian Spectral Volumes

Group Meeting

Yu-Hsiang Lien 連昱翔

References

IOP Publishing Inverse Problems

Inverse Problems 36 (2020) 024003 (31pp)

https://doi.org/10.1088/1361-6420/ab4f55

Cryo-EM reconstruction of continuous heterogeneity by Laplacian spectral volumes

Amit Moscovich^{1,4}, Amit Halevi^{1,4}, Joakim Andén² and Amit Singer^{1,3}

- ¹ Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, United States of America
- ² Center for Computational Mathematics, Flatiron Institute, New York, NY, United States of America
- ³ Department of Mathematics, Princeton University, Princeton, NJ, United States of America

E-mail: amit@moscovich.org, ahalevi@princeton.edu, janden@flatironinstitute.org and amits@math.princeton.edu

Received 30 June 2019, revised 14 October 2019 Accepted for publication 18 October 2019 Published 28 January 2020

Reconstruction of Non-rigid Molecules

Homogeneous Reconstruction → Recover mean molecular volume 3D ab-initio model **3D Molecule Reconstruction Heterogeneous Reconstruction** → Recover multiple molecular volumes **Discrete Heterogeneity Continuous Heterogeneity** (a.k.a. 3D Classification)

→ Recover K distinct molecular volumes

RELION, cryoSPARC, EMAN2, ...

→ Recover the manifold of molecular volumes

This manifold is the range of a smooth function that maps a set of conformation parameters to a volume

- PCA -> Eigenvolumes -> low-resolution reconstruction
- RELION -> multi-body refinement
- Normal Mode Analysis (NMA) -> harmonic oscillator model
- Manifold learning

Problem Formulation — Forward Model

• The individual particle images are formed by:

$$\mathbf{y}_{s} = P_{s} \mathbf{x}_{s} + \epsilon_{s} \qquad \forall s = 1, 2, \dots, n$$

Volume rotation operator $R_{\scriptscriptstyle S}$ convolution with a point spread function ${f h}_{\scriptscriptstyle S}$

- Molecular volumes: $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^{N^3}$
- Particle images: $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^{N^2}$
- Noise: $\epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_{N \times N})$
- Linear imaging operators: $P_1, \dots, P_n \in \mathbb{R}^{N^2 \times N^3}$

To define the imaging operator, one must incorporate an **interpolation** scheme since the volumes lie on a discrete grid → express tomographic projection in the **Fourier domain**

• Discrete Fourier transform is given by:

$$\left(\mathcal{F}_{d}\mathbf{s}\right)(\mathbf{k}) := \sum_{\mathbf{u} \in M_{N}^{d}} e^{-2\pi i \langle \mathbf{k}, \mathbf{u} \rangle} \mathbf{s}[\mathbf{u}] \quad \forall \mathbf{k} \in \mathbb{R}^{d}$$

- k : wave vector
- **u**: voxel index
- s : d-dimensional signal

• Using the Fourier slice theorem to express the projection image in the Fourier domain as follows:

$$\left(\mathscr{F}_{2}P_{s}\mathbf{x}_{s}\right)\left([k_{1},k_{2}]^{\mathrm{T}}\right)=\left(\mathscr{F}_{3}\mathbf{x}_{s}\right)\left(R_{s}^{-1}[k_{1},k_{2},0]^{\mathrm{T}}\right)\cdot\left(\mathscr{F}_{2}\mathbf{h}_{s}\right)\left([k_{1},k_{2}]^{\mathrm{T}}\right)$$
Contrast transfer function (CTF)

Problem Formulation — Inverse Problem

ullet Homogeneous case (consider mean volume $\mu \in \mathbb{R}^{N^3}$):

$$\mathbf{y}_s = P_s \boldsymbol{\mu} + \epsilon_s \qquad \forall s = 1, 2, \dots, n$$

$$\hat{\boldsymbol{\mu}} = \arg\min_{\boldsymbol{\mu}} \sum_{s=1}^{n} \| \mathbf{y}_{s} - P_{s}\boldsymbol{\mu} \|^{2}$$

Continuous heterogeneity:

$$\mathbf{y}_s = P_s \mathbf{x}_s + \epsilon_s \qquad \forall s = 1, 2, \dots, n$$

$$\hat{\mathbf{x}}_{s} = ?$$

- Two main assumptions made in this paper:
 - The molecular volumes in the sample lie near a low-dimensional manifold.
 - The imaging operators can be **accurately estimated** using standard cryo-EM reconstruction tools.

Pipeline of Method from this Paper

Molecular volumes sampled on a 3D voxel grid of dimension N^3

Continuous heterogeneity model — Volumes embedding on manifold of \mathbb{R}^{N^3}

Manifold Learning — Series expansion in Laplacian eigenfunctions

Estimation of Laplacian eigenfunctions (*requires the distribution of 3D volumes)

$$\hat{\phi}^{(0)}, \dots, \hat{\phi}^{(r-1)} \in \mathbb{R}^n$$

Estimation of expansion coefficient vectors (spectral volumes)

$$\hat{\boldsymbol{\alpha}}^{(0)}, \dots, \hat{\boldsymbol{\alpha}}^{(r-1)} \in \mathbb{R}^{N^3}$$

Define a high-resolution 3D reconstruction $\hat{\mathbf{x}}_s$ for each projection image

$$\hat{\mathbf{x}}_{\scriptscriptstyle S} := \sum_{\ell=0}^{r-1} \hat{\boldsymbol{\alpha}}^{(\ell)} \hat{\boldsymbol{\phi}}_{\scriptscriptstyle S}^{(\ell)}$$

Low-Resolution Reconstruction

© Covariance estimation: each reconstructed volume is a linear combination of q PCA eigenvolumes $\Rightarrow \hat{\mu} + \hat{V}_q \hat{\beta}_s$

• Defines some mapping $(\mathbf{y}_s, P_s) \mapsto \boldsymbol{\beta}_s$ where $\boldsymbol{\beta}_s \in \mathbb{R}^q$ is the vector of eigenvolume coefficients corresponding to a low-dimensional representation of \mathbf{x}_s

• Ignore potential ambiguities due to the projection and consider the low-resolution reconstruction as a linear dimensionality reduction of the underlying volume $\mathbf{x}_s \mapsto \boldsymbol{\beta}_s$

Manifold Spectral Representation

Approximation of molecular volumes using an orthogonal basis expansion of first r Laplacian eigenfunctions:

- Spectral volumes: $\boldsymbol{\alpha}^{(0)}, \cdots, \boldsymbol{\alpha}^{(r-1)} \in \mathbb{R}^{N^3}$
- Image of x in PCA coordinates: $\beta(x) \in B$

Employ Laplacian eigenmap from the field of manifold learning to obtain estimates:

$$\hat{\boldsymbol{\phi}}^{(0)}, \dots, \hat{\boldsymbol{\phi}}^{(r-1)} \in \mathbb{R}^n$$

 \rightarrow Build a weighted undirected graph, where the vertices correspond to the projection images y_1, \dots, y_n and the edge weights W_{ii} are estimates of the affinity between the underlying molecular conformations.

Gaussian kernel weight:
$$W_{ij} = e^{-\left\|\hat{eta}_i - \hat{eta}_j \right\|^2}$$

A data-driven variant of the spectral expansion:

$$\mathbf{x}_{s} \approx \sqrt{n} \sum_{\ell=0}^{r-1} \boldsymbol{\alpha}^{(\ell)} \hat{\boldsymbol{\phi}}_{s}^{(\ell)} \qquad \forall s = 1, 2, \dots, n$$

$$\mathbf{x}_s pprox \sqrt{n} \sum_{\ell=0}^{r-1} \pmb{\alpha}^{(\ell)} \hat{\pmb{\phi}}_s^{(\ell)}$$
 $\forall s=1,2,\cdots,n$ \sqrt{n} factor is needed for normalization: $\sum_{s=1}^n \left(\hat{\pmb{\phi}}_s^{(\ell)}\right)^2 = 1$

Generalized Tomographic Reconstruction

 \bullet Applying the imaging matrix P_s for the spectral expansion and plugging in the forward model:

$$\mathbf{y}_{s} \approx \sqrt{n} \sum_{\ell=0}^{r-1} \left(P_{s} \boldsymbol{\alpha}^{(\ell)} \right) \hat{\phi}_{s}^{(\ell)}, \quad \forall s = 1, 2, \dots, n$$

 \bullet Seek spectral volumes $\hat{\boldsymbol{\alpha}}^{(0)}, \dots, \hat{\boldsymbol{\alpha}}^{(r-1)}$ that minimize the squared error:

$$\left(\hat{\boldsymbol{\alpha}}^{(0)}, \dots, \hat{\boldsymbol{\alpha}}^{(r-1)}\right) := \arg\min_{\boldsymbol{\alpha}} \sum_{s=1}^{n} \left\| \mathbf{y}_{s} - \sqrt{n} \sum_{\ell=0}^{r-1} \left(P_{s} \boldsymbol{\alpha}^{(\ell)} \right) \hat{\boldsymbol{\phi}}_{s}^{(\ell)} \right\|^{2}$$

• The high-resolution reconstructions of the molecular volumes are now given by:

$$\hat{\mathbf{x}}_{s} = \sqrt{n} \sum_{\ell=0}^{r-1} \hat{\boldsymbol{\alpha}}^{(\ell)} \hat{\boldsymbol{\phi}}_{s}^{(\ell)} , \quad \forall s = 1, 2, \dots, n$$

This estimator generalizes the least-squares estimator form a single mean volume $\hat{\mu}$ to multiple volumes $\hat{\alpha}^{(0)}, \dots, \hat{\alpha}^{(r-1)}$ whose contribution to the reconstructed volumes is given by the Laplacian eigenvectors $\hat{\phi}^{(0)}, \dots, \hat{\phi}^{(r-1)}$

Result — 2D/3D Clock Face Dataset

Spectral volumes

- Clock image: $\mathbf{z}_1, \dots, \mathbf{z}_n \in \mathbb{R}^{N \times N}$
- Affinity matrix: $W_{ij} = e^{\frac{-\parallel \mathbf{z}_i \mathbf{z}_j \parallel^2}{N^2 \sigma^2}}$

Input model

Reconstruction (Using 15 spectral volumes)

Red and blue represent negative and positive values of the higher-order spectral volume, respectively.

Result — Simulated Ion Channel

- Dataset 1 ChannelSpin: a rotational motion of the top part about the z axis
- Dataset 2 ChannelScretch: a nonrigid stretching of the bottom part along the x y plane
- Test conditions:
 - Total energy of the noise was 30 times that of the total energy of each clean image.
 - No in-plane shift was applied.
 - Reconstructed the volumes using $r = 1, \dots, 15$ spectral volumes.
 - Used the true orientations of the projection images for both the covariance and spectral volume estimation procedures.

- Special resolution N = 108
- #volumes n = 10000 per dataset

14 Feb 2023 1 11 / 14

Examining the Laplacian Eigenmaps Embedding

ChannelScretch

- Random displacement: $\delta_{\mathbf{x}}, \delta_{\mathbf{y}} \in \{-16, -15, \cdots, 16\}$
- Original ion channel: $\mathbf{v} \in \mathbb{R}^{N \times N \times N}$
- The stretched ion channel \mathbf{v}' is defined for every $0 \le z \le N/2$ by:

$$\mathbf{v}'[x, y, z] = \mathbf{v}[x + \delta_x s_z, y + \delta_y s_z, z]$$
 where $s_z = \left(\frac{N/2 - z}{N/2 - z_0}\right)^2$

- The embedding of ChannelSpin clearly shows a circle.
- The embedding of the **ChannelScretch** dataset shows a 2-dimensional square in the $\hat{\phi}_s^{(1)} \hat{\phi}_s^{(2)}$ plane that is shaped like a saddle.
- Both of these results are in accordance with the underlying motion manifold.

14 Feb 2023 1 12 / 14

Examining the Spectral Volumes

Captures the fixed part of the molecule with high resolution and shows a 'smeared' bottom portion

The first and second spectral volumes each have a low spatial frequency along the *x* and *y* axes Higher spectral volumes show higher spatial frequencies

14 Feb 2023 1 13 / 14

Reconstruction Accuracy and Runtime

Table 2. Runtimes for the main steps of our method on the ChannelSpin dataset, with $n = 10\,000$ images of 108×108 pixels.

Procedure	Running time (s)
Calculation of $\hat{\boldsymbol{\mu}}$	624.6
Calculation of $\hat{\Sigma}$	5044.7
Calculation \hat{V}_q	0.8
Calculation of $\{\hat{\boldsymbol{\beta}}_s\}$	2084.8
Calculation of $\{\hat{\phi}_s\}$	531.5
Calculation of K	12378.0
Calculation of b	4014.1
Estimation of $\{\hat{\boldsymbol{\alpha}}^{(\ell)}\}_{\ell=0}^{15}$	1769.9

Back Up

Name	Domain	Description
n	N	Number of images and underlying molecular volumes
S	$1,\ldots,n$	Index to molecular image/volume
N	\mathbb{N}	Image/volume size
Ň	\mathbb{N}	Downsampled image/volume size
$\mathbf{X}, \mathbf{X}_{S}$	\mathbb{R}^{N^3}	Molecular volume
$\hat{\mathbf{X}}_{\mathcal{S}}$	\mathbb{R}^{N^3}	Our high-resolution molecular volume estimate
u	$\{1,\ldots,N\}^3$	Voxel index
$\mathbf{y},\mathbf{y}_{s}$	\mathbb{R}^{N^2}	Molecular image
\mathbf{h}, \mathbf{h}_s	\mathbb{R}^{N^2}	Contrast transfer function (CTF)
R, R_s	SO(3)	3D viewing orientation
P, P_s	$\mathbb{R}^{N^2 \times N^3}$	Imaging matrix (rotation, projection, and CTF)
\mathcal{F}_d		The d-dimensional discrete Fourier transform (DFT)
M_N	\mathbb{R}^N	Sampling grid in $[-1, +1)$ used to define the DFT
μ	\mathbb{R}^{N^3} or $\mathbb{R}^{\check{N}^3}$	Mean volume (high-res or low-res)
Σ	$\mathbb{R}^{\check{N}^3 imes\check{N}^3}$	Covariance matrix of downsampled molecular volumes
q	\mathbb{N}	Number of PCA eigenvolumes
\hat{V}_q	$\mathbb{R}^{\check{N}^3 \times q}$	Eigenvolumes of the estimated covariance matrix
$\boldsymbol{\beta}(\mathbf{x}), \boldsymbol{\beta}_s$	\mathbb{R}^q	PCA coordinates of a molecular volume
В	$\subseteq \mathbb{R}^q$	The domain of PCA coordinates
$\nu(\mathbf{B})$		Measure of volumes in PCA coordinate representation
W	$\mathbb{R}^{n \times n}$	Edge weights matrix
L	$\mathbb{R}^{n \times n}$	Graph Laplacian matrix
\mathcal{M}	$\subset \mathbb{R}^{N^3}$	Riemannian submanifold of molecular volumes
$\phi^{(\ell)}$	$\mathbf{B} \to \mathbb{R}$	Laplace–Beltrami eigenfunction of the ℓth smallest eigenvalue
$\hat{oldsymbol{\phi}}^{(\ell)}$	\mathbb{R}^n	Laplacian eigenvector of the lth smallest eigenvalue
r	\mathbb{N}	Number of spectral volumes
K	$\mathbb{R}^{rN^3 \times rN^3}$	Matrix of weighted projection-backprojections
b	\mathbb{R}^{rN^3}	Concatenation of weighted back-projection images
$oldsymbol{lpha}^{(\ell)}$	\mathbb{R}^{N^3}	Spectral volumes