Mobile Robots and Autonomous Vehicles

Week 5: Behavior Modeling and Learning

Introduction

Robots in human environments

Intelligent Cars

Predicting human motion

- Input: sensor readings
- Output: Future people states (i.e. position, velocity)

Predicting human motion

- Input: sensor readings
- Output: Future people states (i.e. position, velocity)

What about perception, goals and internal state?

"Ideal" approaches

Physical Stance

- State: position and velocity
- Model: Kinematic & dynamic equations

Intentional Stance

- State: intentions, activity, mood
- Model: finite automata

"Ideal" approaches

Physical Stance

- State: position and velocity
- Model: Kinematic & dynamic equations

Precise but does not work In the long term

Intentional Stance

- State: intentions, activity, mood
- Model: finite automata

"Ideal" approaches

Physical Stance

- State: position and velocity
- Model: Kinematic & dynamic equations

Precise but does not work In the long term

Intentional Stance

- State: intentions, activity, mood
- Model: finite automata

Works in the long term but no physical interpretation

Typical motion patterns

- State: discretized position and velocity
- Model: typical trajectories

Course structure

- EM Clustering
- Learning typical trajectories
- Bayesian filter inference
- From trajectories to discrete time-state models
- Predicting Human Motion
- Typical Trajectories: drawbacks
- Other approaches: Social Forces
- Other approaches: Planning-based approaches