Ottimizzazione del Path Tracking con Model Predictive Control per Autonomous Racing in FITENTH

Laurea Triennale in Informatica

Vincenzo Siano

Relatore: MATTEO LUPERTO

Correlatori: NICOLA BASILICO

MICHELE ANTONAZZI

Contesto

Nuovo settore competitivo:

Autonomous Racing

- Comunità come FITENTH, con veicoli in scala 1:10
- Sfide tecnologiche: il Path Tracking

Problema

Far seguire al veicolo un certo percorso, composto da un insieme di punti (waypoint).

- Ostacoli principali:
 - 1. controllare un veicolo
 - 2. gestire velocità elevate

Diversi tipi di controllori: (1) reattivi e (2) ottimali

Obiettivi

- sviluppare un sistema funzionante di guida autonoma di un veicolo simulato FITENTH
- ottimizzazione della traiettoria calcolata mediante Model Predictive Control (MPC)
- applicabilità in circuiti di Formula 1 in scala 1:10
- analizzare i risultati e confrontare le prestazioni con Pure Pursuit

Model Predictive Control (MPC)

- Algoritmo «predittivo» che genera, per N passi futuri, input ottimali per il veicolo
- Problema di controllo ottimale convesso
 - Modello della dinamica
 - 2. Funzione Obiettivo
 - 3. Vincoli del sistema

MPC: Receding Horizon Control

- Processo iterativo:
 - 1. misura lo stato corrente
 - 2. calcola la sequenza di controllo ottimale per una **finestra limitata** nel *futuro*
 - 3. applica solo il **primo** input
 - 4. ripete per ripianificare
- Riduce la dimensione del problema

Tecnologie utilizzate

Implementazione

- organizzazione dei parametri di MPC in file appositi
- 2. impostazione del **problema** di ottimizzazione
- 3. definizione di **obiettivo** e **vincoli**
- 4. «tuning» dei *pesi* per ottimizzare le **prestazioni**
 - equilibrio tra reattività e stabilità
 - ► tre profili di guida: (1) Safe (2) Fast e (3) HP

Analisi dei risultati

- metriche specifiche per misurare il sistema
 - errore di tracking (crosstrack)
 - ▶ tempo sul giro (lap time)
 - velocità
 - ► consumi e angolo di sterzata
- confronti tra MPC e Pure Pursuit
- valutazione dei profili di guida

Errore di tracking su Spa

Errore di tracking su Monza

Tempo sul giro

Velocità

Spa-Francorchamps

Spa-Francorchamps

Metodo di controllo	Media	
	[m/s]	[km/h]
Pure Pursuit	7.56	27.2
Safe MPC	8.07	29
Fast MPC	8.34	30
HP MPC	8.6	31

Monza

Pure Pursuit	8.82	31.8
Safe MPC	9.25	33.3
Fast MPC	9.72	35
HP MPC	9.77	35.1

Conclusioni

Sistema di controllo avanzato che ottimizza il *path tracking* con **MPC**

- 1. viene **minimizzata** la **deviazione** dalla linea di riferimento e si riducono i **tempi sul giro**
- 2. rispetto al **Pure Pursuit**, ogni profilo di **MPC** ha:
 - ▶ una traiettoria più precisa
 - ► lap time inferiori
 - **▶ consumi** ridotti
- 3. «**High Performance MPC**» è il più performante in uno scenario di gara estremo

Grazie per l'attenzione

