

Сущность объектно-ориентированного подхода

заключается в декомпозиции системы на классы, которые соответствуют однотипным объектам предметной области, и построении из них иерархии в виде ориентированного графа с использованием отношений композиции и наследования.

ОБЪЕКТНО-ОРИЕНТИРОВАННЫЙ ПОДХОД

Структурный подход

Функциональная декомпозиция (система = иерархия функций)

Данные (атрибуты) хранятся отдельно от сущности

Иерархия модулей = отношение композиции

модуль представляется в виде дерева

ООП

Объектная декомпозиция (система = набор объектов)

Объект = набор атрибутивных данных (характеристики) и поведения системы (методы)

Иерархия отношений = композиции и наследования

модуль представляется в виде ориентированного графа

Преимущества ООП проектирования:

- описание системы больше соответствует содержательному смыслу предметной области;
- сущности реального мира обладают поведением, что отражается с помощью определения методов класса;
- большая внутренняя и меньшая внешняя связности между компонентами системы;
- более легкая организация параллельных вычислений;
- большая степень автоматизации кодогенерации.

Методологии поддерживающие ООП:

 Унифицированный процесс (Unified Process, UP);

экстремальное программирование (eXtreme Programming, XP);

 гибкое моделирование (Agile Modeling, AM).

Унифицированный процесс (Unified Process)

– это процесс разработки программного обеспечения (ПО), который обеспечивает упорядоченный подход к распределению задач и обязанностей в организацииразработчике.

Унифицированный язык визуального моделирования - Unified Modeling Language (UML)

это стандартная нотация визуального моделирования программных систем, принятая консорциумом Object Managing Group (OMG) осенью 1997г., и на сегодняшний день поддерживаемая многими объектно-ориентированными CASE-продуктами.

Общая структура UML

Три режима использования UML разработчиками:

режим эскиза

- режим проектирования
 - прямая разработка (forward-engineering)
 - обратная разработка (reverse-engineering)
- режим языка программирования

MDA (Model Driven Architecture – архитектура, управляемая моделью)

- *PIM* (Platform Independent Model Model He 3agucaulag om
 - модель, не зависящая от платформы)
- **PSM** (Platform Specific Model модель, зависящая от платформы)

исполняемый UML (Executable UML)

Развертывания

Объектов

Временная

Прецедентов

Пакетов

Обзора взаимодействий

Последовательности

Конечных автоматов

6

8

9

10

11

12

13

UML 2

Комбинация диаграммы последовательности и диаграммы

	(13 официальных типов диаграмм)					
Nº	Диаграмма	Цель				
1	Деятельности	Процедурное и параллельное поведение				
2	Классов	Классы, свойства и отношения				
3	Взаимодействия	Взаимодействие между объектами; акцент на связях				
4	Компонентов	Структура и взаимосвязи между компонентами				
5	Составных структур	Декомпозиция класса во время выполнения				

деятельности

последовательности

Развертывание артефактов в узлы

Вариант конфигурации экземпляров

Иерархическая структура времени компиляции

Взаимодействие между объектами; акцент на

Как события изменяют объект в течение его жизни

Как пользователи взаимодействуют с системой

Взаимодействие между объектами; акцент на синхронизации

Классификация типов диаграмм UML

- Структурные диаграммы
 - Диаграммы классов
 - Диаграммы пакетов
 - Физические диаграммы (развертывания)
 - ...
- Диаграммы поведения
 - Диаграммы вариантов использования
 - Диаграммы последовательности
 - Диаграммы деятельности
 - Диаграммы состояний
 - ...

ДИАГРАММА			НАЗНАЧЕНИЕ	модели ис					
				По степени физической реализации	По отображению динамики	По отображаемому аспекту			
Вариантов использования (use case)			Отображает функции ИС, взаимодействие между актерами и функциями	Логическая	Статическая	Функциональная			
<u>Классов</u> (class)			Отображает набор классов, интерфейсов и отношений между ними	Логическая или физическая	Статическая	Функционально- информационная			
<u>Пакетов</u> (package)			Отображает набор пакетов и отношений между ними	Логическая или физическая	Статическая	Компонентная			
		Автоматов (state machine)	Отображает состояния сущности и переходы между ними в процессе ее жизненного цикла Отображает бизнес-процессы						
Поведения		<u>Деятельности</u> (activity)	в системе (описание алгоритмов поведения)	Логическая	Динамическая	Поведенческая			
(behavior)	Взаимс (inte	Последовательности (sequence)	Отображает последовательность передачи сообщений между объектами и актерами						
	Взаимодействия (interaction)	<u>Коммуникации</u> (communication)	Аналогична диаграмме последовательности, но основной акцент делается на структуру взаимодействия между объектами						
Реализации implementation)	<u>Компонентов</u> (component)		Отображает компоненты ИС (программы, библиотеки, таблицы и т.д.) и связи между ними	Физическая	Статическая	Компонентная			

- При разработке отдельной модели системы в Унифицированном процессе строят несколько видов диаграмм.
- При разработке модели сложной системы, как правило, строят несколько диаграмм одного и того же вида.
- Можно не создавать отдельные виды диаграмм, если в этом нет необходимости.
- Часть диаграмм после их построения требует развития и уточнения в рамках разработки следующей модели (технологического процесса).

Г.Буч, Д.Рамбо, А.Джекобсон

Язык UML Руководство пользователя

