

Exercise

Newton's Laws of Motion & Friction (Physicsaholics)

Physicsaholics.com

Unacademy

Exercise-1

(Objective Type: Single Correct)

Level-2

EXERCISE # O-2

- Q1. A homogeneous chain of length L lies on a table. The coefficient of friction between the chain and the table is μ . The maximum length which can hang over the table in equilibrium is: (The vertical portion of table is smooth)
 - (A) $\left(\frac{\mu}{u+1}\right)$ L
- (B) $\left(\frac{1-\mu}{\mu}\right)$ L
- (C) $\left(\frac{1-\mu}{1+\mu}\right)$ L (D) $\left(\frac{2\mu}{2\mu+1}\right)$ L
- Q 2. Two monkeys of masses 10 kg and 8 kg are moving along a vertical light rope, the former climbing up with an acceleration of 2 m/s², while the latter coming down with a uniform velocity of 2 m/s. Find tension in the rope at the fixed support.

- (A) 180 N
- (B) 200 N
- (D) 216 N
- In the arrangement shown in figure $m_1 = 1 \text{kg}$, $m_2 = 2 \text{kg}$. Pulleys are massless and strings are light. For what value of M the mass m₁ moves with constant velocity (Neglect friction)

(A) 6 kg

(B) 4 kg

(C) 8 kg

(D) 10 kg

Physicsaholics

- A flexible chain of weight W hangs between two fixed points A & B which are at the Q 4. same horizontal level. The inclination of the chain with the horizontal at both the points of support is θ . What is the tension of the chain at the mid point?
 - (A) $\frac{W}{2}$. cosec θ
- (B) $\frac{W}{2}$. $\tan \theta$
- (C) $\frac{w}{2}$. cot θ
- (D) none
- Q 5. An inclined plane of weight 100 N & angle of inclination 30° is acted upon by a horizontal force of $100\sqrt{3}$ N as shown. A block of mass 2 kg was kept on the inclined plane initially. Assuming frictionless contacts. The acceleration of mass 2 kg w.r.t. ground is (take $g = 10 \text{ m/s}^2$)

- (A) 6.37 m/s^2
- (B)12 m/s^2
- $(C)10 \text{ m/s}^2$
- $(D)5.77 \text{ m/s}^2$
- Q 6. A trolley is being pulled up an incline plane by a man sitting on it (as shown in figure). He applies a force of 250 N. If the combined mass of the man and trolley is 100 kg, the acceleration of the trolley will be [sin15° = 0.26]

- (A) 2.4 m/s^2
- (B) 9.4 m/s^2
- (C) 6.9 m/s^2 (D) 4.9 m/s^2
- Q 7. If the string & all the pulleys are ideal, acceleration of mass m is :-

- (A) $\frac{g}{2}$
- (B) 0
- (C) g
- (D) dependent on

m

- **Q 8.** The rear side of a truck is open and a box of mass 20 kg is placed on the truck 4 m away from the open end, $\mu = 0.15$ and g = 10 m/s². The truck starts from rest with an acceleration of 2m/s² on a straight road. The distance moved by the truck when box starts fall down is :-
 - (A) 4 m (B) 8 m
 - (C) 16 m (D) 32 m
- Q 9. Three blocks 4 B and C of equal mass m are placed one over the other on a smooth horizontal ground as shown in figure. Coefficient of friction between any two blocks of A; B and C is 1/2. The maximum value of mass of block D so that the blocks 4 B and C move without slipping over each other is:

Q 10. In the arrangement shown in the figure, mass of the block B and A is 2m and m respectively. Surface between B and floor is smooth. The block B is connected to the block C by means of a string-pulley system. If the whole system is released, then find the minimum value of mass of block C so that A remains stationary w.r.t. B. Coefficient of friction between A and B is μ.

Q 11. A block A is placed over a long rough plank B of same mass as shown in figure. The plank is placed over a smooth horizontal surface. At time t = 0, block A is given a velocity v_0 in horizontal direction. Let v_1 and v_2 be the velocities of A and B at time t. Then choose the correct graph between v_1 or v_2 and t.

Physicsaholics

Q 12. Block A is placed on block B whose mass is greater than that of A. There is friction between blocks while the ground is smooth. A horizontal force P increasing linearly with time begins to act on A. The accelerations a_1 and a_2 of A and B respectively are plotted in a graph against time. Which of the following graphs represent the real situation?

Q 13. A block A of mass m is placed over a plank B of mass 2 m. Plank B is placed over a smooth horizontal surface. The coefficient of friction between A and B is 0.5. Block A is given a velocity v_0 towards right. Acceleration of B relative to A is :-

- (A) $\frac{g}{2}$
- (B) g
- (C) $\frac{3g}{4}$
- (D) Zero
- Q 14. A man of mass 50 kg is pulling on a plank of mass 100 kg kept on a smooth floor as shown with force of 100 N. If both man & plank move together, find force of friction acting on man.

- (A) $\frac{100}{3}$ N towards left
- (C) $\frac{250}{3}$ N towards left
- (B) $\frac{100}{3}$ N towards right
- (D) $\frac{250}{3}$ N towards right
- Q 15. In the arrangement shown in figure, coefficient of friction between the two blocks is μ = 1/2. The force of friction acting between the two blocks is:-

- (D) 4 N
- Block A of mass M in the system shown in the figure slides down the incline at a constant speed. The coefficient of friction between block A and the surface is $\frac{1}{3\sqrt{3}}$. The mass of block B is -

- (A) M/2
- (B) M/3

(C) 2M/3

(D) M $/\sqrt{3}$

Q17. A block of mass 2 kg is to be lifted with constant velocity by applying force F down the rope that passes over a pulley having coefficient of friction μ . The pull required is

(A)2g $e^{\frac{\pi\mu}{2}}$

(B)2g

(C)2g $e^{\pi\mu}$

(D)20 $e^{\frac{\pi\mu}{4}}$

Q 18. Find the least horizontal force P to start motion of any part of the system of the three blocks resting upon one another as shown in figure. The weight of blocks are A = 300N, B = 100 N and C = 200 N. Between A and B, $\mu = 0.3$, between B and C, $\mu = 0.2$ and between C and the ground $\mu = 0.1$.

Answer Key

Q.1) A	Q.2) B	Q.3) C	Q.4) C	Q.5) C
Q.6) D	Q.7) C	Q.8) C	Q.9) C	Q.10) C
Q.11) B	Q.12) C	Q.13) C	Q.14) A	Q.15) A
Q.16) B	Q.17) C	Q.18) B		