

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék

Dr. Pilászy György

Digitális technika 1 09. előadás

(Elemi sorrendi hálózatok)

Lektorálta: Dr. Horváth Tamás

Minden jog fenntartva. Jelen könyvet, illetve annak részleteit a szerzők írásbeli engedélye nélkül tilos reprodukálni, adatrögzítő rendszerben tárolni, bármilyen formában vagy eszközzel elektronikus vagy más módon közölni.

Elemi sorrendi hálózatok (flip-flopok)

Ahogyan a kombinációs hálózatoknál elemi kapuáramkörökből építettük fel a logikai rendszert, úgy a sorrendi hálózatokhoz is szükség lehet speciális építőelemekre. Az elemi sorrendi hálózatok olyan egyszerű sorrendi hálózatok, melyeknek egyetlen szekunder változójuk van, ráadásul ez egyben a kimenetük is. Az egyetlen szekunder változó miatt szokás ezeket az elemeket kétállapotú billenő elemnek, vagy flip-flopnak is hívni.

A következőkben ismertetett elemi sorrendi hálózatok esetében szót ejtünk arról is, hogy az adott építőelem képes-e aszinkron működésre, vagy csak szinkron módon működhet. Minden flip-flop esetében megadjuk a rajzjelét, a működését leíró állapottáblát, állapotgráfot, az $f_y(X,y) \Rightarrow Y$ leképezést és a flip-flop egy lehetséges belső logikai rajzát. Mivel az előbb elmondottak szerint a flip-flopok Moore-modell szerint működnek, ezért az állapottáblában külön nem tüntetjük fel a Z kimenet értékeit, hiszen az megegyezik a szekunder változóval (y).

S-R flip-flop

Az egyik leg egyszerűbb felépítésű flip-flop. A nevében szereplő S (set) és R (reset) bemenetek re adott "1" vezérlés hatására utalnak. S="1" esetén az y értékét "1"-re , míg az R="1" az y értékét "0"-ra állítja. Ha egyidejűleg mindkét bemenet "0" értékű, akkor a flip-flop kimenete változatlan, őrzi az aktuális értékét. Mindkét bemenet "1" értéke esetén a flip-flop működése nem definiált, ilyen vezérlést nem szabad az S-R flip-flop bemeneteire kapcsolni. Ez a működés nagyon hasonlít a gépműhelyek két nyomógombos hálózati főkapcsolójához. Ha a zöld (be) gombot rövid ideig működtetjük, akkor egy mágneskapcsoló a műhelyt feszültség alá helyezi. Ez a feszültség akkor is fennmarad, ha a nyomógombot elengedjük. Ha működtetjük a piros (ki) nyomógombot, akkor a mágneskapcsoló kikapcsol és a műhely feszültség mentes állapotba kerül. Ez a kikapcsolt állapot a nyomógomb felengedése után is megmarad. A két gombot egyszerre sosem szokás működtetni.

A flip-flop rajzjelét és a működését leíró állapottábláját, valamint az állapotgráfját mutatja az alábbi ábra. Figyeljük meg, hogy az SR=11 bemeneti kombinációhoz nem írtunk elő konkrét értéket, hanem közömbös bejegyzéseket írtunk. A többi oszlopban mindenütt van stabil állapot, ezért a hálózat működhet aszinkron módon is.

SR	00	01	11	10
у \				
0	0	0	-	1
1	1	0	-	1

A flip-flop belsejét megvalósító hálózatban a korábban bevezetett általános jelölések alapján $f_y(X,y) \Rightarrow Y$ leképezés jelen esetben megfeleltethető az $Y=f_y(S,R,y)$ logikai függvény kapcsolatnak. A megvalósítást úgy képzeljük el, hogy előállítjuk az Y függvényt, majd visszacsatoljuk a hálózat y jelű bemenetére. Az Y és y jelölés itt azért van megkülönböztetve, hogy egyértelműen tudjunk hivatkozni a logikai hálózat bemenetére, illetve kimenetére. A fenti állapottábla alapján felrajzoltuk az S-R flip-flop Karnaugh táblázatát és meghatároztuk a Y legegyszerűbb kétszintű hazárdmentes diszjunktív alakját. A hazárdmentességre az aszinkron működés miatt van szükség. Ezt az egyenletet szokás az S-R flip-flop karakterisztikus egyenletének is nevezni.

Az S-R flip-flopot gyakran szokás NAND kapukkal megvalósítani, ennek "szokásos" elvi logikai rajzát mutatja az alábbi ábra.

Az S-R flip-flop szinkron módon is megvalósítható, ehhez a visszacsatoló ágba be kell építenünk az órajellel vezérelhető mintavevő és tartó elemünket, amelyről a szinkron sorrendi hálózatok bevezetésekor már beszéltünk.

Szinkron S-R flip-flop megvalósítása

J-K flip-flop

A J-K flip-flopra tekinthetünk úgy, mint az S-R flip-flop továbbfejlesztett változatára. A J-K flip-flop működése mindössze annyiban különbözik az S-R flip-flop működésétől, hogy J="1" és K="1" vezérlés hatására invertálja a kimenetét. A J bemenet felel meg a set és a K bemenet a reset funkciónak. Emiatt a működés miatt a J-K flip-flop kizárólag szinkron módon működhet, mert aszinkron esetben a J="1", K="1" bemenet hatására oszcillálna. A J-K flip-flop rajzjelét, állapottábláját és állapotgráfját mutatja a következő ábra. A flip-flop középső bemenete (>) az órajel bemenet.

A flip-flop belsejét megvalósító hálózatban a korábban bevezetett általános jelölések alapján $f_y(X,y) \Rightarrow Y$ leképezés jelen esetben megfeleltethető az $Y=f_y(J,K,y)$ logikai függvény kapcsolatnak. Mivel a J-K flip-flop szinkron hálózatként működik, ezért tervezéskor elegendő a legegyszerűbb kétszintű diszjunktív alak megvalósítása, nincs szükség hazárdmentesítésre.

T flip-flop

A T-flip-flop egy bemenettel (T) rendelkező szinkron működésű flip-flop. A T="1" vezérlés hatására, órajel impulzusonként egyszer, a Z kimenetét invertálja. T="0" vezérlés hatására a kimenet őrzi aktuális értékét. A T flip-flop rajzjelét, állapottábláját és állapotgráfját mutatja a következő ábra. A flip-flop órajel bemenetét (>) szimbólummal jeleztük.

A T flip-flopot katalógus áramkörként nem találjuk meg, leginkább a J-K flip-flopból célszerű kialakítani a J és K bemenetek összekötésével. Hasonlítsuk össze a J-K és a T flip-flop állapottábláját. Ha összekötjük egy J-K flip-flop J és K bemenetét, az olyan, mintha kizárólag a 00 és az 11 oszlopát használnánk az állapottáblájának. Természetesen a T flip-flop belsejét is megtervezhetjük a tanult módon.

A flip-flop belsejét megvalósító hálózatban a korábban bevezetett általános jelölések alapján $f_y(X,y) \Rightarrow Y$ leképezés jelen esetben megfeleltethető az $Y=f_y(T,y)$ logikai függvény kapcsolatnak.

D-G flip-flop

Ez a flip-flop két bemenettel, D (data) és G (gate) rendelkezik. Működhet aszinkron és szinkron módon is. G="1" bemenet alatt a Z kimenet követi a D bemenet értékét. Ha G="0", akkor a flip-flop őrzi az aktuális értékét, ilyenkor a D bemenet változásai nincsenek hatással a Z kimenetre. A D-G flip-flop rajzjelét, állapottábláját és állapotgráfját mutatja a következő ábra.

A flip-flop belsejét megvalósító hálózatban a korábban bevezetett általános jelölések alapján $f_y(X,y) \Rightarrow Y$ leképezés jelen esetben megfeleltethető az $Y=f_y(D,G,y)$ logikai függvény kapcsolatnak. Mivel a flip-flop állapottáblája olyan, hogy sehol nem alakulhat ki oszcilláció, ezért működhet aszinkron módon is. Aszinkron megvalósítás esetén a legegyszerűbb kétszintű hazárdmentes megoldást kell meghatározni. A következő ábrán az aszinkron működésű D-G flip-flop tervezésének lépéseit ábrázoltuk.

A D-G flip-flop szinkron módon is megvalósítható, ehhez a visszacsatoló ágba be kell építenünk az órajellel vezérelhető mintavevő és tartó elemet. A szinkron működés miatt nincs szükség hazárdmentesítő hurokra, így a Y karakterisztikus függvény egyszerűbb lesz.

Szinkron D-G flip-flop megvalósítása

D flip-flop

A D flip-flop az egyik leggyakrabban használt szinkron flip-flop. A kimenete az órajel impulzus pillanatában fennálló bemenet értéke szerint változik. Az órajel impulzusok között a D bemenet változásai nincsenek hatással a kimenetre.

A flip-flop belsejét megvalósító hálózatban a korábban bevezetett általános jelölések alapján $f_y(X,y) \Rightarrow Y$ leképezés jelen esetben megfeleltethető az $Y = f_y(D,y)$ logikai függvény kapcsolatnak.

Érdemes megfigyelni, hogy a kapott eredményünk megegyezik a szinkron sorrendi hálózatok elméleti tárgyalásánál a visszacsatoló ágba bevezetett mintavevő és tartó elemmel. A D-flip-flop működését formálisan értelmezhetnénk aszinkron módon, hiszen nem tartalmaz oszcillációt, azonban a Y kimenete ebben az esetben független lenne y-tól is, így viszont kombinációs hálózatot kapnánk. Ez a kombinációs hálózat pedig nem oldaná meg az előírt sorrendi feladatot.

A flip-flopok működésének összefoglalása

Az előző pontokban bemutatott flip-flopokról összefoglalóan megállapíthatjuk, hogy mindegyik működhet szinkron módon. Aszinkron módon a bemutatott flip-flopok közül csak az S-R és D-G flip-flopok működhetnek. Megfelelő vezérléssel, szinkron sorrendi hálózatok megvalósításához a visszacsatoló ágakba építve bármelyik itt bemutatott flip-flop használható a mintavevő tartó memória elem megvalósítására. Aszinkron hálózatok tervezésekor is lehetőség van rá, hogy a visszacsatolásba valamelyik aszinkron módon működő flip-flopot építsük be a y jelű szekunder változók előállítására. Az alábbi táblázatban röviden összefoglaljuk az eddig bemutatott flip-flopok karakterisztikus egyenleteit, valamint táblázatos formában megadjuk azokat a bemeneti kombinációkat, amelyek az adott y-Y átmenet előidézéséhez szükségesek.

Elin flon	$f_{y}(X,y) \Rightarrow Y$	Szükséges bemeneti kombináció y→Y váltáshoz				Mogiogyzás
Flip-flop		0→0	0→1	1→0	1→1	Megjegyzés
S-R	$Y = S + y\overline{R}$	SR				lehet
	2 . 711	0-	10	01	-0	aszinkron
J-K	$Y = J\overline{y} + y\overline{K}$	JK				
		0-	1-	-1	-0	
T	$Y = \overline{T}y + \overline{y}T$	Т				
	y · y-	0	1	1	0	
D-G	$Y = DG + y\overline{G} + yD$	DG				lehet
		0-	11	01	1-	aszinkron
		-0			-0	
D	Y = D	D				
		0	1	0	1	

Flip-flopok átalakítása

Az előzőekben ismertetett flip-flopok bármelyikét felhasználva bármelyik másik flip-flop megvalósítható. Az átalakítás vázlatát szemlélteti az alábbi ábra. Az alapötlet abból indul ki, hogy a külvilág felől a megvalósítandó flip-flop bemeneti jeleit fogadjuk, ezt egy saját tervezésű kombinációs hálózatra vezetjük az y szekunder változóval együtt. A kombinációs hálózat kimentét vagy kimeneteit úgy kell vezérelni, hogy az építőelemként felhasznált flip-flop a megkívánt működést valósítsa meg.

Flip-flop átalakítás vázlata

Az alábbiakban egy példát részletesen bemutatunk. Tételezzük fel, hogy rendelkezésünkre áll J-K flipflop, mint építő elem. Valósítsunk meg DG flip-flopot J-K flip-floppal.A tervezéshez tekintsük át a D-G flip-flop állapottábláját és a J-K flip-flop állapotgráfját, melyet az alábbi ábrán is láthatunk.

QG	00	01	11	10
У				
	Υ			
0	0	0	1	0
1	1	0	1	1

A feladat tehát az, hogy a megvalósítandó D-G flip-flop kimenetét (Z) a J-K építőelem kimenete (y) közvetlenül szolgáltassa. Az építő elem bemeneteire két logikai függvényt kell terveznünk, hiszen a külvilágból érkező D, illetve G bemenetek, valamint az y szekunder változó ismeretében úgy kell vezérelnünk a J és K bemeneteket, hogy azok D-G működést valósítsanak meg. Ehhez készítsünk egy vezérlési táblázatot. Tekintsük az első sort (y=0). DG=00 bemenet esetén az új Y állapotban 0-ba kell menni. Ehhez az állapotgráfról leolvashatjuk, hogy a 0→0 átmenethez JK = 0- vezérlés kell, ezért ezt beírjuk a vezérlési tábla első cellájába. Ugyanígy teszünk az y=0 sor minden olyan cellájában, ahol Y=0-ba kell váltanunk. A DG=11 oszlopban y=0 esetén Y=1 állapotváltás van előírva. Ehhez a JK=1- vezérlés előírása szükséges. A vezérlési tábla utolsó sorában minden olyan cellában, ahol Y=1 érték van előírva JK=-0 vezérlést írunk, míg a DG=01 oszlopba JK=-1 vezérlés kell a Y=0 váltáshoz.

DG V	00	01	11	10
,	JK			
0	0-	0-	1-	0-
1	-0	-1	-0	-0

Vezérlési tábla JK építőelemhez

Vegyük észre, hogy ez a vezérlési tábla tulajdonképpen két Karnaugh táblának is tekinthető. Peremezésként a D, G és y bemenetek szerepelnek, a két logikai függvény pedig a J, illetve a K bemenet vezérlési egyenletét szolgáltatja.

Vezérlési egyenletek meghatározása

A kapott vezérlési egyenletek és az építőelemként választott J-K flip-flop felhasználásával felrajzolhatjuk a kész megoldást. Az alábbi ábrán szaggatott vonallal bekarikázott rész kívülről vizsgálva D-G flip-flop működést mutat, miközben a belsejében J-K flip-flop működik.

Az alábbi táblázatban a levezetések mellőzése nélkül megadjuk a különböző flip-flop átalakításokhoz tartozó vezérlési egyenleteket.

Megvalósítandó flip-flop	Vezérlési egyenletek					
S-R		J = S $K = R$	$T = S\overline{y} + Ry$	G=1	$D = S + y\overline{R}$	
	$S = J\overline{y}$	K = R		$D = S + \overline{R}y$ $G = 1$		
J-K	R = Ky		$T = J\overline{y} + Ky$	$D = J\overline{y} + \overline{K}y$	$D = J\overline{y} + \overline{K}y$	
т	$S = T\overline{y}$ $R = Ty$	J = T $K = T$	—⊤ y—	$G = 1$ $D = T\overline{y} + \overline{y}T$	$D = \overline{T}y + \overline{y}T$	
D-G	$S = DG$ $R = \overline{D}G$	$J = DG$ $K = \overline{D}G$	$T = DG\overline{y} + \overline{D}Gy$	— D — y — G	$D = DG + y\overline{G}$	
D	$S = D$ $R = \overline{D}$	$J = D$ $K = \overline{D}$	$T = \overline{y}D + y\overline{D}$	G = 1 $D = D$	— > у	
	S-R	J-K	Т	D-G	D	
	Építő elem					

Szinkron flip-flop átalakításokhoz szükséges vezérlési egyenletek

Az itt bemutatott átalakítások nem csak flip-flopok közötti átalakításra használhatók, hanem tetszőleges szinkron sorendi hálózat megvalósítására is. A következő pontban ezt ismertetjük részletesen.