Определение деформированного состояния методом координатной сетки.

Ввод координат сетки.

```
Xlist - данные по координате X после деформации;
Zlist - данные по координате Z после деформации;
Xnlist - данные по координате X до деформации.

Xlist = Import["C:\\Users\\Денис\\Desktop\\Уч. файлы\\Диплом\\x.xlsx"]
Zlist = Import["C:\\Users\\Денис\\Desktop\\Уч. файлы\\Диплом\\z.xlsx"]
Xnlist = Import["C:\\Users\\Денис\\Desktop\\Уч. файлы\\Диплом\\Xн.xlsx"]
```

■ Вывод массива чисел в табличную форму.Определение иерархии.

```
TableForm[Xlist]
TreeForm[Xlist]
TableForm[Zlist]
TreeForm[Zlist]
TableForm[Xnlist]
TreeForm[Xnlist]
```

0. 1.76 3.938 6.05 8.162 10.23 12.43 14.19 16.346 18.194 20.13 22.	0. 1.958 3.982 6.116 8.162 10.243 14.47 16.566 18.37 20.482 22.396 24.376	6 16.72 18.502 2 20.724 6 22.55	12.782 14.938 17.05 18.81 21.01 22.77	0. 2.068 4.026 6.204 8.382 10.40 12.84 14.93 17.11 18.89 21.23 22.85 24.86	8 12. 8 14. 6 17. 8 19. 21.	7 26 6. 26 81. 538 10 958 14 982 14 314 15 0472 21	98 96 16 338 936 2.936 4.96 7.138 1.538 2.836 4.86	0. 1.782 3.85 6.16 8.338 10.296 12.826 14.96 17.16 19.14 21.45 22.858 24.618
				List				
	List [3.81111120]	List 24 13681 11 12224	List 3681:1112 224 236	List 111-112224-2468	List 1111112242	List 6 [1 1 1 1 1 2 2 2 4 . 1	List	List 24 1 3 811 1111 224.618
10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.34 10.56 10.736	8.712 8.8 8.91 8.91 8.91 8.8 8.8 8.8 9.042 9.416	6.996 7.062 7.238 7.238 7.238 7.26 7.304 7.26 7.238 7.238 7.458 7.942	5.742 5.761 5.664 5.5598 5.789 5.789 5.789 5.889 5.889 6.389 6.399 6.399 6.399	4.048 4.092 4.07 4.158 4.114 4.202 4.136 4.202 4.136 4.256 4.356 4.51 4.95	2.574 2.53 2.53 2.508 2.618 2.64 2.75 2.5904 2.75 2.75 2.86 3.3	1.342 1.342 1.298 1.298 1.3464 1.3364 1.386 1.518 1.518 1.76		
				List				
	List	List 1(8. (888 (8.88) 1996	List 7777, 77 77777775 5 5	List 55.5.556644.4	List 4444442.2	List 222,2,2,2,1	List	List 11.00000000000000000000000000000000000
0. 1.8 3.6 5.4 7.2 9. 12.6 14.4 16.2 18. 19.8 21.6	1.8 3.6 5.4 7.2	12.6 12 14.4 14 16.2 16 18. 18 19.8 19	6 3.6 4 5.4 2 7.2 9. .8 10.8 .6 12.6 .4 14.4 .2 16.2	0.8 3.6 5.4 7.2 9.0.8 12.4 16.2 18.8 21.6	0. 1.8 3.6 5.4 7.2 9. 10.8 12.6 14.4 16.2 19.8 21.6	0. 1.8 3.6 5.4 7.2 910.8 112.6 114.4 116.2 119.8 21.6		

Расчеты деформированного состояния по координатной сетке с квадратными до деформации ячейками.

■ Определение хорд.

```
Необходимые для расчетов числа строк и столбцов:
```

```
n1 = 7
n2 = 12
n3 = 6
```

Определение хорд соединяющих узлы сетки вокруг точки расчета:

```
lx = .
For [j = 2, j \le n2, j++, lx[j-1] =
   Table \left[ Sqrt \left[ \left( Zlist[[1, i, j-1]] - Zlist[[1, i, j+1]] \right)^2 + \left( Xlist[[1, i, j+1]] - Xlist[[1, i, j-1]] \right)^2 \right], \\ \left\{ i, 2, 7, 1 \right\} \right];
 lz[j-1] = Table \left[ Sqrt \left[ \left( Zlist[[1, i+1, j]] - Zlist[[1, i-1, j]] \right)^2 + \left( Xlist[[1, i+1, j]] - Xlist[[1, i-1, j]] \right)^2 \right],
    {i, 2, 7, 1}]]
```

■ Определение главных компонентов тензора деформации и интенсивность деформациий.

Габариты недеформированной стеки:

```
b = 1.8
```

Главные компоненты тензора деформаций:

■ Определение вспомогательных углов.

```
 \begin{split} & \text{For} \big[ \texttt{j} = 2,\, \texttt{j} \leq \texttt{n2},\, \texttt{j} + +, \\ & \text{kappa} [\texttt{j} - 1] = \texttt{Table} \Big[ \left( \texttt{ArcTan} \Big[ \left( \texttt{Xlist} [\texttt{1},\, \texttt{i} + 1,\, \texttt{j}] \right) - \texttt{Xlist} [\texttt{1},\, \texttt{i} - 1,\, \texttt{j}] \right) \Big/ \left( \texttt{Zlist} [\texttt{1},\, \texttt{i} + 1,\, \texttt{j}] - \texttt{Zlist} [\texttt{1},\, \texttt{i} - 1,\, \texttt{j}] \right) \Big] + \\ & \text{ArcTan} \Big[ \left( \texttt{Zlist} [\texttt{1},\, \texttt{i},\, \texttt{j} - 1] \right] - \texttt{Zlist} [\texttt{1},\, \texttt{i},\, \texttt{j} + 1] \Big] \Big/ \left( \texttt{Xlist} [\texttt{1},\, \texttt{i},\, \texttt{j} + 1] \right] - \texttt{Xlist} [\texttt{1},\, \texttt{i},\, \texttt{j} - 1] \Big] \Big) \Big/ \left( \texttt{Zlist} [\texttt{1},\, \texttt{i} + 1,\, \texttt{j}] - \texttt{Zlist} [\texttt{1},\, \texttt{i} - 1,\, \texttt{j}] \right) \Big/ \left( \texttt{Zlist} [\texttt{1},\, \texttt{i} + 1,\, \texttt{j}] - \texttt{Zlist} [\texttt{1},\, \texttt{i} - 1,\, \texttt{j}] \right) \Big] \Big) \Big/ \left( \texttt{Xlist} [\texttt{1},\, \texttt{i},\, \texttt{j} + 1] - \texttt{Xlist} [\texttt{1},\, \texttt{i},\, \texttt{j} - 1] \right) \Big] \Big) \Big\} \Big) \Big\} \Big\} \Big\}
```

Определение угла между осью симметрии и направлением главной оси.

■ Компоненты тензора деформации в системе координат XYZ. Вывод таблицы.

```
For[j = 1, j \le 11, j++, Ez[j] = Table[1/2*(-Ec[j][[i]] + (Ea[j][[i]] - Eb[j][[i]]) * Cos[alfa[j][[i]]), \{i, 1, 6, 1\}]]
 For [j = 1, j \le 11, j ++, Ex[j] = Table [1/2 * (-Ec[j][[i]] - (Ea[j][[i]] - Eb[j][[i]]) * Cos[alfa[j][[i]]]), \{i, 1, 6, 1\}]] ] 
For[j = 1, j \le 11, j++, Tbl[j] = \{lx[j], lz[j], Ea[j], Eb[j], Ec[j], Ei[j], Ex[j], Ex[j], Ez[j], gamma[j], kappa[j], alfa[j]\}\}
For[i = 1, i \le 11, i++, Print[i,
```

TableForm[Tbl[i], TableDirections → Row, TableHeadings → {{Lx, Lz, Ea, Eb, Ec, Ei, Ex, Ez, gamma, kappa, 2 alfa}, {}}]]]

Lx	Lz	Ea	Eb	Ec	Ei	
 3.98692	3.17723	0.169342	-0.253479	0.0841369	0.258209	0.1
3.98935	3.08126	0.157734	-0.264094	0.10636	0.265755	0.1!
3.98419	2.97073	0.138429	-0.266529	0.1281	0.266596	0.1
4.02606	3.19008	0.217785	-0.35658	0.138795	0.359485	0.2
4.07024	2.75141	0.0942179	-0.211507	0.117289	0.211926	0.0
3.96024	2.54155	-0.0476551 + 0.174507 i	-0.0476551 - 0.174507 i	0.0953102 + 0. i	0. + 0.177537 i	-0.0476551 + 0.173

Lx	Lz	Ea	Eb	Ec	Ei	Ex	Εz	gamma	kappa
 4.15945	2.99232	0.192544	-0.293394	0.10085	0.298132	0.191804	-0.292654	0.011744	-0.0411537
4.13974	3.3	0.257759	-0.358609	0.10085	0.369875	0.249562	-0.350412	0.0425275	-0.0425275
4.13887	3.16831	0.228252	-0.329102	0.10085	0.337222	0.221727	-0.322577	-0.0511048	0.0233289
4.13653	3.08126	0.212762	-0.324602	0.111839	0.32979	0.212762	-0.324602	-0.0126076	-0.0445198
4.20206	2.77279	0.16635	-0.289059	0.122709	0.290155	0.166312	-0.289021	0.0185695	0.0290406
4.18023	2.53955	0.0396347	-0.134945	0.0953102	0.13872	0.0394392	-0.134749	0.0762124	0.0972643

Lx	Lz	Ea	Eb	Ec	Ei	Ex	Ez	gamma	kappa
 4.18	2.99329	0.212635	-0.337144	0.124509	0.340962	0.212112	-0.336622	-0.0294033	-0.0294033
4.334	3.34465	0.32265	-0.45075	0.1281	0.464534	0.322	-0.4501	-0.0197343	-0.0197343
4.3785	3.08071	0.289384	-0.424627	0.135243	0.433852	0.287552	-0.422795	-0.0364995	-0.00635106
4.35622	3.05832	0.280958	-0.419754	0.138795	0.427703	0.280934	-0.419729	-0.00428683	-0.0244882
4.37888	2.86034	0.252431	-0.394767	0.142335	0.399851	0.251039	-0.393374	0.0354812	-0.00471439
4.37822	2.50887	0.177357	-0.309035	0.131678	0.310158	0.176981	-0.308659	0.0363596	0.0162598

4											
	l Lx	Lz	Ea	Eb	Ec	Ei	Ex	Ez	gamma	kappa	
	4.22543	2.99596	0.227658	-0.353066	0.125408	0.357967	0.221578	-0.346986	-0.077461	-0.0253894	3
	4.22406	3.37182	0.307178	-0.451279	0.1441	0.460996	0.301495	-0.445595	-0.0535475	-0.0639641	3
	4.20407	3.1247	0.257621	-0.406998	0.149377	0.411768	0.25633	-0.405707	0.0102797	-0.0525269	3
	4.20206	2.92732	0.218015	-0.370021	0.152006	0.371978	0.217822	-0.369828	-0.0248306	-0.0353017	3
	4.3129	2.77235	0.223573	-0.383421	0.159849	0.385182	0.222297	-0.382146	0.036277	-0.00453365	3
	4.20252	2.62031	0.143809	-0.290552	0.146742	0.290557	0.142631	-0.289374	0.0576976	0.0262866	3
5											
	Lx	Lz	Ea	Eb	Ec	Ei	Ex	Ez	gamma	kappa	<u>′</u>
_	4.268	2.97293	0.241149	-0.379944	0.138795	0.384513	0.240077	-0.378873	-0.0444152	-0.0444152	3
	4.3345	3.10231	0.284032	-0.424953	0.140921	0.432911	0.283843	-0.424764	0.0010438	-0.0294107	3.
	4.4255	3.08031	0.303152	-0.446193	0.143042	0.455668	0.300117	-0.443159	0.0254953	-0.0540647	3.
	4.46687	3.10582	0.31765	-0.462808	0.145158	0.473401	0.317597	-0.462755	-0.0299028	-0.0693065	3.
	4.51005	2.81634	0.285275	-0.443038	0.157763	0.449113	0.28504	-0.442803	0.0205017	0.0107457	3.
	4.59805	2.60726	0.270088	-0.411009	0.140921	0.41772	0.268369	-0.409289	0.0977364	0.0881671	3.
6											
O											
	Lx	Lz	Ea	Eb	Ec	Ei	Ex	Ez	gamma	kappa	2
	4.136	2.93426	0.193013	-0.33358	0.140567	0.334952	0.190107	-0.330674	-0.0750468	-0.0750468	3
	4.202	3.20936	0.276281	-0.434392	0.158111	0.439717	0.261732	-0.419843	-0.1099	-0.1099	3.
	4.55591	3.10831	0.343549	-0.512041	0.168492	0.52192	0.343548	-0.512039	-0.0347659	-0.0927207	3.
	4.53221	3.08502	0.336098	-0.50974	0.173642	0.518297	0.332361	-0.506003	-0.0667892	-0.0473723	3.
	4.44667	2.83936	0.280104	-0.462271	0.182167	0.465717	0.27908	-0.461247	0.00364178	-0.0656374	3
	4.59805	2.6433	0.287899	-0.468367	0.180468	0.472457	0.287142	-0.46761	0.054743	0.0451737	3
7											
	Lx	Lz	Ea	Eb	Ec	Ei	Ex	Εz	gamma	kappa	
	4.13746	2.99346	0.206338	-0.345133	0.138795	0.347329	0.189018	-0.327814	-0.151856	-0.0986771	3
	4.07054	3.00572	0.190759	-0.335615	0.144856	0.33666	0.170863	-0.315719	-0.170534	-0.138104	3
	4.26806	3.14631	0.284557	-0.454768	0.170211	0.459535	0.269576	-0.439788	-0.124306	-0.113997	3
	4.268	3.08031	0.272698	-0.442909	0.170211	0.446844	0.272525	-0.442737	-0.0142847	-0.0142847	3
	4.35622	2.75009	0.237475	-0.410628	0.173153	0.412304	0.237159	-0.410312	-0.0181005	0.00210084	3
	4.20223	2.75009	0.189344	-0.361027	0.171683	0.361171	0.18926	-0.360944	-0.00247099	0.0184707	3
8											
	Lx	Lz	Ea	Eb	Ec	Ei	Ex	Εz	gamma	kappa	
_	3.894	3.01528	0.124321	-0.264445	0.140124	0.264603	0.113271	-0.253395	-0.124355	-0.124355	3
	3.93806	3.13953	0.183442	-0.332819	0.149377	0.3334	0.159607	-0.308985	-0.149194	-0.160367	
	3.87225	3.06172	0.151209	-0.320131	0.168922	0.320294	0.138114	-0.307036	-0.118339	-0.141066	3
	3.96611	3.11321	0.197677	-0.370462	0.172785	0.370741	0.197635	-0.37042	-0.0294033	-0.1404	
	4.11688	2.88208	0.196672	-0.380959	0.184287	0.381026	0.194163	-0.378451	0.0297822	-0.0450491	3
	4.07214	2.60056	0.101474	-0.275544	0.17407	0.278714	0.0981404	-0.27221	0.0916737	0.0268315	2

0.05

0.01

-0.0713282 + 0.0968

-0.0713282 + 0.23

-0.199253

-0.218936

0.139762

0.143619

0.142656 + 0.i

0.142656 + 0.i

0.204571

0.222459

0. + 0.20248i

0. + 0.276692 i

Определение главныйх напряжений, среднего напряжения и интенсивности напряжения. Вывод графиков.

-0.0713282 - 0.214503 i

-0.0713282 - 0.269596 i

Определение напряжений.

2.96405

3.14669

2.99208

2.86008

3.8095

3.67828

3.38893

3.33247

Характеристики материала АД31. Определение интенсивности напряжений:

0.0594906

0.0753168

-0.0713282 + 0.214503 i

-0.0713282 + 0.269596 i

```
B = 140
G = 27
h = 0.12
\mu = 0.31
For [j = 1, j \le 11, j++, \sigma i[j] = Table[B * Ei[j][[i]]^h, \{i, 1, 6, 1\}]]
Определение средних напряжений:
 For [j = 1, j \le 11, j ++, \sigma cp[j] = Table [-(Ex[j][[i]] + Ez[j][[i]]) * (2 * (1 + \mu) * G) / (1 - 2 * \mu), \{i, 1, 6, 1\}]] 
Напряжение по главным осям:
For [j = 1, j \le 11, j++,
 \sigma x[j] = Table[2/3 * \sigma i[j][[i]] / E i[j][[i]] * (E x[j][[i]] - (1 - 2 \mu) / G * \sigma cp[j][[i]]) + \sigma cp[j][[i]], \{i, 1, 6, 1\}]]
For [j = 1, j \le 11, j++,
 \sigma z[j] = Table[2/3 * \sigma i[j][[i]] / E i[j][[i]] * (E z[j][[i]] - (1 - 2 \mu) / G * \sigma cp[j][[i]]) + \sigma cp[j][[i]], \{i, 1, 6, 1\}]]
```

■ Создание и вывод таблиц.

For[j = 1, j \le 11, j++, Tbl2[j] = $\{\sigma i[j], \sigma ep[j], \sigma x[j], \sigma z[j], \sigma r[j]\}$ $For[i = 1, i \le 11, i++, Print[i, TableForm[Tbl2[i], TableDirections \rightarrow Row, TableHeadings \rightarrow \{\{\sigma i, \sigma cp, \sigma x, \sigma z, \sigma r\}, \{\}\}]]]$

	σi	σср	σх	σz	σr
	119.005	15.6627	-0.0387874	-129.95	176.977
	119.417	19.7998	-17.892	-141.327	218.618
1	119.462	23.8468	-36.2999	-154.798	262.639
	123.825	25.8378	-7.74751	-139.46	224.721
	116.217	21.8343	-56.071	-167.83	289.404
	111.759 + 21.3191 i	17.7427 + 0. i	66.8508 + 138.703 i	-78.9769 + 110.885 i	65.3544 - 249.589 i
	l di dan	<i>a</i>	<i>σ</i>		

For[j = 1, j \leq 11, j++, σ r[j] = Table[3 * σ cp[j][[i]] - σ z[j][[i]] - σ x[j][[i]], {i, 1, 6, 1}]]

	01	ocp	OX	OZ	or
	121.076	18.7741	-0.834268	-131.998	189.154
	124.249	18.7741	15.4896	-118.874	159.706
2	122.879	18.7741	8.44951	-123.775	171.648
	122.551	20.8198	0.937251	-132.187	193.709
	120.682	22.8433	-20.187	-146.443	235.16
	110.455	17.7427	-93.8761	-186.34	333.444

	σί	σср	σx	σz	σr
	123.042	23.1784	-4.27202	-136.285	210.093
	127.694	23.8468	21.3506	-120.142	170.332
3	126.651	25.1765	12.1794	-126.065	189.415
	126.434	25.8378	9.53778	-128.545	196.521
	125.417	26.4968	1.0111	-133.739	212.219
	121.652	24.5129	-19.4201	-146.407	239.366
	σί	σcp	σx	σz	σr
	123.763	23.3457	-1.31486	-132.364	203.716
	127.577	26.8254	12.795	-125.039	192.72
4	125.86	27.8078	0.290784	-134.613	217.746
	124.334	28.297	-11.9094	-142.858	239.658
	124.856	29.7571	-12.7076	-143.326	245.305
	120.702	27.3172	-39.6574	-159.299	280.908
	σί	σcp	σx	σz	σr
-	124.83	25.8378	-0.905514	-134.864	213.283
	126.618	26.2335	9.5877	-128.582	197.694
5	127.399	26.6283	12.7138	-125.826	192.997
	127.984	27.0223	15.7187	-124.927	190.275
	127.178	29.3689	5.14805	-132.257	215.215
	126.077	26.2335	5.94239	-130.412	203.17
	σi	σcp	σx	σz	σr
	122.78	26.1676	-17.3741	-144.639	240.516
_	126.855	29.4336	0.0997629	-130.986	219.188
6	129.491	31.3661	15.1729	-126.344	205.27
	129.383	32.3248	11.9248	-127.596	212.646
	127.733	33.9119	-2.32817	-137.695	241.759
	127.953	33.5955	0.0702572	-136.201	236.917
	σi	σср	σх	σz	σr
	123.315	25.8378	-15.4947	-137.825	230.833
_	122.854	26.9661	-23.7968	-142.173	246.868
7	127.528	31.6862	-0.945567	-132.185	228.19
	127.1	31.6862	-1.20052	-136.833	233.092
	125.879	32.2337	-11.8325	-143.617	252.151
	123.895	31.9602	-27.6252	-153.452	276.958
	σi	σср	σx	σz	σr
	119.355	26.0852	-50.2523	-160.514	289.022
	122.711	27.8078	-29.0603	-144.04	256.524
8	122.122	31.4462	-45.944	-159.096	299.378
	124.284	32.1654	-24.8383	-151.792	273.126
	124.693	34.3065	-28.6727	-153.6	285.193
	120.101	32.4045	-70.4177	-176.81	344.441

1	σi	σср	σx	σz	σr		
	118.699	23.4015	-40.6721	-158.135	269.012		
	120.148	24.7344	-36.1583	-151.874	262.235		
9	120.711	27.8078	-41.7265	-160.67	285.82		
	123.861	28.6767	-16.8985	-146.014	248.942		
	123.722	30.617	-24.6484	-151.236	267.735		
	126.837	29.9724	0.912885	-134.4	223.404		
	σi	σср	σχ	σz	σr		
	122.999	24.0469	-9.4701	-136.851	218.462		
	122.92	26.2335	-17.4796	-143.143	239.323		
10	120.722	28.785	-47.3245	-161.997	295.676		
	124.447	30.7242	-21.1809	-145.341	258.694		
	116.603	32.8342	-126.27	-200.766	425.538		
	116.083	33.4055	-138.251	-207.779	446.246		
	İ	σί	C	тср	σx	σz	σr
		120.719	22.93	347	-20.5529	-146.267	235.624
		117.39	24.21	.04	-66.9225	-160.28	299.834
11		115.726	26.01	.78	-91.3754	-185.491	354.92
		116.896	26.73	59	-99.2569	-161.217	340.681
	113.536 +	-21.6581 i	26.5566 + 0	.i 31.02	6 + 173.289 i	-41.3908 + 159.474 i	90.0345 - 332.763 i
	117.871 +	-22.4851 i	26.5566 + 0	.i 68.553	2 + 139.016 i	-63.666 + 113.794 i	74.7826 - 252.81 i

■ Создание и вывод графиков деформаций и напряжений.

```
\sigma iTbl = Table[\sigma i[i], \{i, 1, 11, 1\}]
TableForm[\sigmaiTbl]
\sigmaiTbl3 = Flatten[\sigmaiTbl]
x1 = Import["C:\\Users\\Денис\\Desktop\\Уч. файлы\\Диплом\\x2.xlsx"]
zl = Import["C:\\Users\\Денис\\Desktop\\Уч. файлы\\Диплом\\z2.xlsx"]
x12 = Flatten[x1]
z12 = Flatten[z1]
xx2 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}
yy2 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}
zz2 = \{65, 3, 45, 6, 5, 6, 4, 76, 6, 28\}
```

```
Графики
```

График интенсивности напряжений

EiTbl = Table[Ei[i], {i, 1, 11, 1}]

ExTbl = Table[Ex[i], {i, 1, 11, 1}]

EzTbl = Table[Ez[i], {i, 1, 11, 1}]

 $\sigma x Tbl = Table[\sigma x[i], \{i, 1, 11, 1\}]$

 $\sigma z Tbl = Table[\sigma z[i], \{i, 1, 11, 1\}]$

ListContourPlot[Transpose[{xl2, zl2, Flatten[EiTbl]}],

ListContourPlot[Transpose[{xl2, zl2, Flatten[ExTbl]}],

ListContourPlot[Transpose[{xl2, zl2, Flatten[EzTbl]}],

ListContourPlot[Transpose[{xl2, zl2, Flatten[σ xTbl]}],

ListContourPlot[Transpose[{xl2, zl2, Flatten[\sigmazTbl]}],

 $\texttt{ColorFunction} \rightarrow \texttt{"Rainbow"}, \ \texttt{PlotLegends} \rightarrow \texttt{Automatic}, \ \texttt{AspectRatio} \rightarrow \texttt{1} \ / \ \texttt{2.5} \]$

ColorFunction \rightarrow "Rainbow", PlotLegends \rightarrow Automatic, AspectRatio \rightarrow 1 / 2.5

ColorFunction \rightarrow "Rainbow", PlotLegends \rightarrow Automatic, AspectRatio \rightarrow 1 / 2.5

ColorFunction \rightarrow "Rainbow", PlotLegends \rightarrow Automatic, AspectRatio \rightarrow 1 / 2.5

ColorFunction \rightarrow "Rainbow", PlotLegends \rightarrow Automatic, AspectRatio \rightarrow 1 / 2.5

 σ i

График интенсивности деформаций

График деформаций по оси Х

График деформаций по оис Z

График напряжений по оси Х

График напряжений по оси Z

