

GRASS GIS in the sky

GRASS GIS comme une boîte à outil à haute performance pour le traitement d'images

Moritz Lennert avec Markus Neteler et Markus Metz

https://grass.osgeo.org/

GRASS GIS in the Sky

- 1) Introduction à GRASS GIS et nouveautés dans la version 7.4
- 2) Revue des capacités en traitement d'images de GRASS GIS
- 3) Focus sur le à calcul en parallèle à haute performance (HPC) avec GRASS GIS

GRASS GIS Intro

Bringing advanced geospatial technologies to the world

- Geographic Resources Analysis Support System SIG libre

) ParaView

- développé depuis 1984, GNU GPL depuis 1999 Utilisable sur différents OS

• Votre moteur SIG, connectable à

r3.flow

GRASS GIS and Python

Utilisez GRASS GIS de l'"extérieur" via grass-session

```
pip install
git+https://github.com/
zarch/grass-session.git
bientôt:
pip install grass-session
```

Utilisation très facile de GRASS GIS comme machine SIG en Python

Combinable avec GDAL, OTB, ...

```
#!/usr/bin/env python
                                                   python
# filename: test session.py
from grass session import Session
from grass.script import core as gcore
# create a new location from EPSG code (can also be a GeoTIFF or SHP or ... file)
with Session(gisdb="/tmp", location="location",
            create opts="EPSG:4326"):
  # do something in permanent
  print(gcore.parse command("g.gisenv", flags="s"))
# {u'GISDBASE': u"'/tmp/';",
# u'LOCATION NAME': u"'epsa3035':".
# u'MAPSET': u"'PERMANENT':",}
# create a new mapset in an existing location
with Session(gisdb="/tmp", location="location", mapset="test",
            create opts=""):
   # do something in the test mapset.
   print(gcore.parse command("g.gisenv", flags="s"))
# {u'GISDBASE': u"'/tmp/';",
  u'LOCATION NAME': u"'epsg3035';",
 u'MAPSET': u"'test';",}
```


GRASS GIS Version 7.4

https://trac.osgeo.org/grass/wiki/Grass7/NewFeatures74

Bringing advanced geospatial technologies to the world

- Nouveau: Obtenir données démo directement au lancement
- GUI: Catalogue des données améliorié
- Retour de l'ortho-rectification
- r.in.gdal + r.external: compatibilité avec des cartes rasters sortant du cadre 90N-90S ou 360 degrés en EW
- r.out.gdal: support des aperçus raster
- v.clip
- ... (480 corrections et amélioration en comparaison avec 7.2.0)
- Sortie de la version 7.4.1 imminente

FOSS4G-FR 2018

GRASS GIS Version 7.4

Enter parameters for 'i. mcd43B2q

Télédétection dans GRASS GIS : une longue histoire

- Première boîte à outils imagerie déjà disponible pour GRASS 1.1 en 1986
- modules i.* intégrées dans la version 3.0 en 1988
- Améliorations et ajouts constants depuis
 - Du terminal text vers une GUI moderne
- Modules très efficents en utilisation de la mémoire
- Grand avantage: intégration TD avec environnement SIG complet!

Télédétection dans GRASS GIS : techniques basées pixel

- Outils basés pixels pour imagerie satellite et aérienne
- Accès à la plupart des méthodes modernes
- Chaîne de traitement complète du pretraitement à la classification
- Beaucoup d'outils spécialisés

Télédétection dans GRASS GIS : quelques highlights

Bringing advanced geospatial technologies to the world

- Sélection de quelques outils
 - Outil de création interactive de zones d'entraînement
 - Segmentation d'image avec region growing ou mean shift
 - Visualisation 3D

Télédétection dans GRASS GIS : techniques basées objet

Bringing advanced geospatial technologies to the world

- Chaîne de traitement complète de la segmentation à la classification
- Y compris
 - optimisation non-supervisée de paramètres
 - calcul haute performance des statistiques d'objets
 - parallélisation intégrée au niveau des modules
- Ajoutés récemment: superpixels SLIC

source : http://dx.doi.org/10.3390/rs9040358

Télédétection dans GRASS GIS : machine learning

- Classification par machine learning
 - r.lean.ml: basé pixels
 - v.class.mlR: basé objets (avec vote majoritaire entre classifieurs)

```
r.learn.ml group=lsat7_2000 \
trainingmap=landclass96_roi output=rf_classification \
classifier=RandomForestClassifier n_estimators=500
```

```
v.class.mlR segments_map=seg training_map=training \
train_class_column=class weighting_mode=smv,swv,qbwwv -i
```


Télédétection dans GRASS GIS : et il y en a encore!

- Boîte à outils LiDAR
- Boîte à outils pour création d'orthophotos
- Dévelopments actuels:
 - Réseaux neuronaux
 - Tuilage bords sémantiquement pertinents (i.cutlines)
 - Apprentissage actif (r.object.activelearning)
 Détection nuages Sentinel 2

 - etc, etc
- Liste d'extensions en croissance permanente
- Travail continue sur l'amélioration des performances

Télédétection dans GRASS GIS : quelques exemples d'applications

Bringing advanced geospatial technologies to the world

Travaux de l'équipe ULB ANAGEO

Image → Occupation du sol → Utilisation du sol en chaîne automatisée, utilisant métriques paysagères

Ouagadougou, résolution 50cm

GRASS GIS in the sky

Combinaison de la segmentation avec des réseaux neuronaux :

FIGURE 4: Classification maps of sample scenes for XGB-SEG, FCN and FCN-SEG PASTECA methods. BD-Building, VG- Vegetation, BS- Bare Soil, IS- Impervious surfaces, SH-

N. Mboga, S. Georganos, T. Grippa, M. Lennert, S. Vanhuysse, E. Wolff (submitted), "Fully convolutional networks for the classification of aerial VHR imagery", GEOBIA'2018 - Montpellier, 18-22 June 2018.

13/23

14/23

Bringing advanced geospatial technologies to the world

MISSION	Number of products published since the start of operations	Volume (PiB) of products published since the start of operations
S1	884,628	0.77
S2A	269,421	0.46
ALL	1,154,049	1.23

Table 2: overall number and volume of published products on each of the Data Access hubs since the start of the operations

Figure 14: total volume published since the start of operations and comparison with Y2015 published volume

- Massification d'images (ex : Sentinels)
- Amélioration constante de la résolution
- Nuages de milliards de points (LiDAR)
- Besoins d'outils de traitement de haute performance (HPC)

COPE-SERCO-RP-17-0071 - Sentinels Data Access Annual Report (01/12/2015 – 30/11/2016) Date 05-04-2017, Issue 1 Rev 1, p. 18.

Exemple: Série temporelle NDVI

0.9
0.8
0.7

Analyse harmonique de séries temporelles (module r.hants)

Exemple: MODIS Land Surface Temperature

Analyse temporelle et spatiale

Exemple: Cartographie de l'occupation et utilisation du sol en Wallonie

- Orthophotos
 à 25cm de résolution
- + MNS
- + Données auxiliaires
- > 1TB de données

r.sun r.sim.water r.sim.sediment v.vol.rst

i.segment.uspo i.segment.stats i.cutlines i.oif i.colors.enhance i.vi etc

- Solution pour atteindre durées de traitement acceptables : Parallélisation !
- A différents niveaux
 - Dans les modules C : certains existent en version OpenMP
 - Dans les modules Python avec multiprocessing ou autre
 - Par la division des données en tuiles et l'application de traitements à chaque tuile

Bringing advanced geospatial technologies to the world

Division des données en tuiles

- tuiles spatiales (attention aux effets de bords)
 - r.tiles (tuiles régulières)
 - i.cutlines (tuiles à bords sémantiques)
 - mise en place avec g.region + r.mask
- tuiles temporelles (attention aux trous) → chevauchements
 - gestion des séries temporelles dans GRASS GIS avec les modules t.*

Bringing advanced geospatial technologies to the world

Structure générale d'un système HPC

Structure d'une grappe pour traitement par tuile

- Noeud maître avec une gestionnaire de tâches / de file d'attente
- Noeuds de calcul
 - espace disque par coeur CPU
 - mémoire vive par coeur CPU
 - idéal: un SSD par noeud

script 1

commandes GRASS GIS

script 2

- 1. créer GISRC unique, jeu de cartes unique
- 2. faire tourner script 1
- 3. copier resultats
- 4. effacer GISRC & jeu de cartes

script 3

configuration du gestionnaire de tâches faire tourner *script 2*

- Trois parties nécessaires:
 - Le traitement (commandes GRASS)
 - La configuration du tuilage dans GRASS GIS
 - La configuration du gestionnaire de tâches (dépend de l'envionnement HPC)
- Configuration du tuilage:
 - Chaque tuile = un nouveau jeu de cartes
 - Faire tourner traitements dans ce jeu de carte

Le plus important:

Avoir un **bon**administrateur
système à disposition
qui répare le système
après que vous l'avez
cassé

Neteler M, Metz M, 2011 – 2018, com. pers.

GRASS GIS in the sky

Merci!

Et à bientôt sur nos listes de diffusion:

FR:

http://www.linux-nantes.org/wws/info/grass-fr

EN:

https://lists.osgeo.org/mailman/listinfo/grass-user

https://grass.osgeo.org/