

Antônio H. Ribeiro¹ and Luis A. Aguirre²

 1 Graduate Program in Electrical Engineering UFMG; 2 Department of Electronic Engineering UFMG

System Identification

Figure 1: System identification problem.

Prediction Error Methods

Figure 2: Prediction error methods.

NARX

Figure 3: Nonlinear autoregressive with exogenous input (NARX) model.

NOE

Figure 4: Nonlinear output error (NOE) model.

Possible Advantages of NOE models

Figure 5: Expected values (dots) and standard deviation $\pm \sigma_{\hat{\Theta}}$ (bars) of parameter. Estimated using an NOE model (in blue) and an NARX model (in green). The true value is represented as the horizontal line.

Multiple Shooting

Figure 6: Three consecutive simulations $\hat{y}^{(i)}$, i=1,2,3 are indicated with different colors. The initial conditions are represented with circles $_{\bigcirc}$ and subsequent simulated values with diamonds $_{\Diamond}$.

Multiple Minima Problem

Figure 7: Shows $\|\mathbf{e}_{\mathrm{ms}}\|^2$ as a function of $\hat{\theta}$ for fixed initial conditions. The vertical dashed line (--) represents the true parameter value.

Acknowledges

This work has been supported by the Brazilian agencies CAPES, CNPq and FAPEMIG.

Antônio H. Ribeiro¹ and Luis A. Aguirre²

 1 Graduate Program in Electrical Engineering UFMG; 2 Department of Electronic Engineering UFMG

Difference Equation Models **Prediction Error Methods**

Difference equations:

$$y[k] = F(y[k-1], y[k-2], y[k-3], u[k-1], u[k-1], u[k-2], u[k-3]; \Theta).$$

One-step-ahead Prediction

Figure 9: One-step-ahead prediction.

Figure 10: Free-run simulation.

Figure 8: Prediction error methods. These methods estimate the parameters by minimizing the error between the optimal output prediction and the measured value

Antônio H. Ribeiro¹ and Luis A. Aguirre²

 1 Graduate Program in Electrical Engineering UFMG; 2 Department of Electronic Engineering UFMG

Prediction Error Methods

Figure 8: Prediction error methods. These methods estimate the parameters by minimizing the error between the optimal output prediction and the measured value

Difference Equation Models

Difference equations:

$$y[k] = F(y[k-1], y[k-2], y[k-3], u[k-1], u[k-1], u[k-2], u[k-3]; \Theta).$$

One-step-ahead Prediction

Figure 9: One-step-ahead prediction.

Figure 10: Free-run simulation.

Antônio H. Ribeiro¹ and Luis A. Aguirre²

 1 Graduate Program in Electrical Engineering UFMG; 2 Department of Electronic Engineering UFMG

Prediction Error Methods

Figure 8: Prediction error methods. These methods estimate the parameters by minimizing the error between the optimal output prediction and the measured value

Difference Equation Models

Difference equations:

$$y[k] = F(y[k-1], y[k-2], y[k-3], u[k-1], u[k-1], u[k-2], u[k-3]; \Theta).$$

One-step-ahead Prediction

Figure 9: One-step-ahead prediction.

Figure 10: Free-run simulation.

Antônio H. Ribeiro¹ and Luis A. Aguirre²

 1 Graduate Program in Electrical Engineering UFMG; 2 Department of Electronic Engineering UFMG

Figure 8: Prediction error methods. These methods estimate the parameters by minimizing the error between the optimal output prediction and the measured value

Difference Equation Models

Difference equations:

$$y[k] = F(y[k-1], y[k-2], y[k-3], u[k-1], u[k-1], u[k-2], u[k-3]; \Theta).$$

One-step-ahead Prediction

Figure 9: One-step-ahead prediction.

Figure 10: Free-run simulation.

Antônio H. Ribeiro¹ and Luis A. Aguirre²

 1 Graduate Program in Electrical Engineering UFMG; 2 Department of Electronic Engineering UFMG

Difference Equation Models

Difference equations:

$$y[k] = F(y[k-1], y[k-2], y[k-3], u[k-1], u[k-1], u[k-2], u[k-3]; \Theta).$$

One-step-ahead Prediction

Figure 9: One-step-ahead prediction.

Free-run Simulation

Figure 10: Free-run simulation.

Prediction Error Methods

Figure 8: Prediction error methods. These methods estimate the parameters by minimizing the error between the optimal output prediction and the measured value

Antônio H. Ribeiro¹ and Luis A. Aguirre²

 1 Graduate Program in Electrical Engineering UFMG; 2 Department of Electronic Engineering UFMG

Prediction Error Methods

Figure 8: Prediction error methods. These methods estimate the parameters by minimizing the error between the optimal output prediction and the measured value

Difference Equation Models

Difference equations:

$$y[k] = F(y[k-1], y[k-2], y[k-3], u[k-1], u[k-1], u[k-2], u[k-3]; \Theta).$$

One-step-ahead Prediction

Figure 9: One-step-ahead prediction.

Figure 10: Free-run simulation.

Antônio H. Ribeiro¹ and Luis A. Aguirre²

UNIVERSIDADE FEDERAL DE MINAS GERAIS

¹Graduate Program in Electrical Engineering UFMG; ² Department of Electronic Engineering UFMG

Prediction Error Methods

Figure 11: Prediction error methods. These methods estimate the parameters by minimizing the error between the optimal output prediction and the measured value

Difference Equation with Noise

$$y^*[k] = F(y[k-1], y[k-2], y[k-3], u[k-1], u[k-2], u[k-3]; \Theta^*) + v[k],$$

 $y[k] = y^*[k] + w[k].$

NARX model

NARX (nonlinear autoregressive with exogenous input) models follows from considering w[k] = 0 and v[k] as white noise:

$$y^*[k] = F(\underline{y}_{[k]}, \underline{u}_{[k]}; \Theta^*) + v[k]$$
$$y[k] = y^*[k]. \tag{1}$$

- The optimal predictor for this situation is the one-step-ahead prediction.
- Parameters are estimated minimizing the sum of square errors between the **one-step-ahead prediction** and the measured values.

NOE model

NOE (nonlinear output error) models follows from considering v[k]=0 and w[k] as white noise:

$$y^*[k] = F(\underline{\mathbf{y}}_{[k]}, \underline{\mathbf{u}}_{[k]}; \Theta^*)$$

$$y[k] = y^*[k] + w[k].$$

- The optimal predictor for this situation is the **free-run simulation**.
- ➤ Parameters are estimated minimizing the sum of square errors between the **free-run simulation** and the measured values.

Antônio H. Ribeiro¹ and Luis A. Aguirre²

 1 Graduate Program in Electrical Engineering UFMG; 2 Department of Electronic Engineering UFMG

Problem Statement

Consider the nonlinear system:

$$y^*[k] = \Theta_1 y^*[k-1] + \Theta_2 u[k-2] + \Theta_3 u^2[k-1] + \Theta_4 (y^*)^2[k-2] + \Theta_5$$
$$y[k] = y^*[k] + w[k]. \tag{3}$$

for which $\Theta = \begin{bmatrix} 0.5,\ 0.8,\ 1,\ -0.05,\ 0.5 \end{bmatrix}^T$ and w[k] is a white Gaussian output error.

Simulation Results

Figure 12: Expected values (dots) and standard deviation $\pm \sigma_{\hat{\Theta}}$ (bars) of parameter. Estimated using an NOE model (in blue) and an NARX model (in green). The true value, Θ_1 , is represented as the horizontal line.

Generated Input and Output

Figure 13: (a) Input; (b) Output.

Antônio H. Ribeiro¹ and Luis A. Aguirre²

 1 Graduate Program in Electrical Engineering UFMG; 2 Department of Electronic Engineering UFMG

Single Shooting

Minimize free-run simulation error:

$$\min_{\Theta} \frac{1}{2} \|\mathbf{e}_{\mathbf{s}}\|^2.$$

Multiple Shooting

- ightharpoonup Suppose the dataset is subdivided into m_s smaller datasets;
- lacksquare Let $\mathbf{e}_s^{(i)}$ be the error between the free-run simulation $\hat{y}^{(i)}$ and the correspondent measured output;
- $\mathbf{e}_{\mathrm{ms}} = [(\mathbf{e}_s^{(1)})^T, \cdots, (\mathbf{e}_s^{(m_s)})^T]^T;$
- \triangleright When the initial conditions of one simulation coincide with the end of the previous, we have: $e_{ms} = e_s$;
- ▶ Estimate NOE model parameters by solving the following constrained optimization problem:

$$\min_{\Phi} rac{1}{2} \|\mathbf{e}_{\mathrm{ms}}\|^2$$
subject to: $\hat{\underline{\mathbf{y}}}^{(i)}[\mathrm{end}] = \underline{\mathbf{y}}_0^{(i+1)}, \; i=1,\cdots,m_s-1.$

The variables for the optimization problem are both the parameter vector and the initial conditions:

$$\Phi = \left[\Theta^T \underline{\mathbf{y}}_0^{(1)^T} \cdots \underline{\mathbf{y}}_0^{(m_s)^T} \right]^T.$$

► Name is an analogy with ODE parameter estimation methods.

llustrative example

Figure 14: Three consecutive simulations $\hat{y}^{(i)},\ i=1,2,3$ are indicated with different colors. The initial conditions are represented with circles $_{\circ}$ and subsequent simulated values with diamonds $_{\diamond}$.

Antônio H. Ribeiro¹ and Luis A. Aguirre²

 1 Graduate Program in Electrical Engineering UFMG; 2 Department of Electronic Engineering UFMG

Problem Statement

A dataset with 300 samples for $\theta=3.78$ were generated using the logistic map:

$$y[k] = \theta y[k-1](1-y[k-1]).$$

A twofold approach is adopted to illustrate the limitations of single shooting method for this example: i) For the generated dataset, a slice of the optimization objective function is obtained by varying $\hat{\theta}$; and, ii) for 100 initial guesses θ^0 chosen randomly (uniform) between 0 and 4 the parameter θ parameter was estimated and the results displayed on a histogram.

Figure 15: Shows $\|\mathbf{e}_{\mathrm{ms}}\|^2$ as a function of $\hat{\theta}$ for fixed initial conditions. The vertical dashed line (--) represents the true parameter value.

Figure 16: Histograms (in log scale) of the estimated parameter values to which the algorithm converged. The vertical dashed line (--) represents the true parameter value.