

An Analysis of CNNs for Environmental Sound Classification

HUMAN DATA ANALYTICS PROJECT PRESENTATION

ELAHEH AHMADIESLAMLOO

GEORGE P. PRODAN

INTRODUCTION

Environmental Sound Classification

Motivation

With the rise of audio-based technologies the creation of efficient algorithms for ESC is becoming a crucial issue

Objective

Our goal is to implement CNN models to solve the ESC problem

Contributions

- Performance study of different architectures
- Model scalings
- Study of regularization techniques

INTRODUCTION 2

Why CNN?

Various new data data augmentation techniques

Extract features

Successful performance in a variety of audio classification tasks

RELATED WORK

Convolutional Neural Networks

Study	Method	Dataset	Accuracy
Lee	Multiscale CNN	DCASE2017	63.4%
Piczak	Temporal CNN + attention	ESC-10	72.2%
Abdoli	1D CNN	UrbanSound8k	89%
Zhang	CNN-Gated Recurrent Unit	ESC-10	92.3%
Zhang	CNN-Gated Recurrent Unit	ESC-50	87.43%
Zhang	CNN-Gated Recurrent Unit	UrbanSound8K	96.1%

Residual Layers — ResNet Architectures

S. R. Kaiming He, Xiangyu Zhang and J. Sun, *Deep residual learning for image recognition*, 2015.

Recurrent CNNs

J. Sang, S. Park, and J. Lee, *Convolutional* recurrent neural networks for urban sound classification using raw waveforms, 2018.

Data augmentation

Improve the performance

Learn more patterns (not in original)

Techniques:

- Speed changing
- pitch shifting
- time shifting
- Clipping
- * time masking,frequency masking,inserting Gaussian noise

Main steps

MCCXIII INC.

- 1. Data Pre-processing(mono,44100 hz)
- 2. Data Loading(subclass of tf.keras.Sequence)
- 3. Model Training (40-100 epochs)
- 4. Model Testing

AUDIO REPRESENTATIONS

Raw audio waveforms

the raw waveforms are loaded using librosa library

mono audio & 44.1 kHz

Feature extraction:

- Mel spectrogram
- Mel-frequency Cepstral Coefficients (MFCCs)

DATASET: ESC-50

ESC-50

50 classes of sounds from various environments

5 second clips, 40 clips/class → 2000 clips

Split the dataset into 80/10/10

Stratified split

class distribution in the three sets is representative of the class distribution in the whole dataset

LEARNING FRAMEWORK

F = number of filters

Residual Layers

significant advancement in deep neural networks for image processing tasks

solved the problem of "gradient vanishing" in deep networks with many stacked layers

Recurrent CNNs

RCNN/RRCNN

extra layers added here

FIRST EXPERIMENTS

performed on a CNN with 2 layers

Kernel Size

3x3	5x5	7x7			
88.5%	84.5%	87.5%			

P	0	Si	ze
	_		-

2x2	4x4	8x8			
88.5%	84%	79 %			

Width Scaling

filters	test acc, %	param. (M)	best epoch / 50
4	86.00	0.5	50
8	86.50	1.0	35
16	90.50	2.0	25
32	88.50	4.0	29
64	89.50	8.0	35
128	90.00	16.2	23
256	87.00	33.1	18

Trying Residual Layers, or GRUs

Test Accuracy (2L)

CNN	88.5%
CNN+Residual Layers	86.5%
CNN+GRU	93.0%
CNN+Residual Layers+GRU	91.5%

DEPTH SCALING

Architecture	2L	3L	4L	5L	6L	
CNN	88.5%	90.0%	91.5%	90.5%	91.0%	
CNN+Residual Layers	86.5%	91.5%	87.5%	89.0%	89.0%	
CNN+GRU	93.0%	92.0%	88.5%	92.0%	89.0%	
CNN+Residual Layers+GRU	91.5%	92.0%	93.5%	92.0%	92.0%	

REGULARIZATION TECHNIQUES

- Dropout Layers
- Data Augmentation
 - Time Masking
 - Frequency Masking
 - Gaussian Noise

Grid search results

- Using both frequency and time masks
- 4% gaussian noise
- 0.5 dropout

20

epochs

10

30

40

50

RESULTS

0.5

0.0

BEST RESULTS

Network	Input	Test Acc., %			
Our best CNN	MFCC	91.5			
Our best ResCNN	MFCC	91.5			
Our best RCNN	MFCC	93.0			
Our best RRCNN	MFCC	93.5			
SoundNet [21]	Raw	87.5			
Pre-trained transformer* [22]	Mel	95.7			

Not using BN: 79.5%

Using larger LR:

2% for 0.1

15% for 0.01

Using only one FC layer: 10.5%


```
class CNN(tf.keras.Model):
   def __init__(self, F=32, n=2, num_classes=50, p_dropout=None, residual=False):
        super().__init__()
        self.F = F
        self.n = n
        self.p_dropout = p_dropout
        self.residual = residual
        Layer = ResBlock2D if residual else ConvPool2D
        activation = 'relu'
        self.description = f'CNN_{n}layers'
        hidden units = 150
        if residual:
          self.identity 1 = Identity(F)
         if n > 2:
           self.identity_2 = Identity(F)
        # 1st block
        self.layer_1 = ConvPool2D(F)
       self.layer_2 = Layer(F*2, maxpool=True)
        if n > 2:
         if residual: hidden_units = 500
         self.layer 3 = Layer(F*2, maxpool=True)
        if n > 3:
          hidden units = 450
         self.layer 4 = Layer(F*2, maxpool=False)
        if n > 4:
         self.layer_5 = Layer(F*2, maxpool=False, padding="same")
        if n > 5:
         self.layer_6 = Layer(F*2, maxpool=False, padding="same")
        k = 10 if n == 2 else 5
       self.pool_gru = tf.keras.layers.MaxPool2D((k, 1), strides=(k, 1), padding='same')
```

DEMO

[TESTING] Test accuracy: 0.930000 --- Test cost: 0.268969


```
[3.770000 min; epoch ii+; hain cosc. 0.2025/2 - validacion cosc. 0.410520 - hain accaracy. 0.551075 - validacion accaracy. 0.655000
 [5.830000 min, epoch 115] Train Cost: 0.222256 --- Validation Cost: 0.382603 --- Train accuracy: 0.963750 --- Validation accuracy: 0.915000
 [5.880000 min, epoch 116] Train Cost: 0.240868 --- Validation Cost: 0.378268 --- Train accuracy: 0.960625 --- Validation accuracy: 0.910000
 [5.920000 min, epoch 117] Train Cost: 0.256871 --- Validation Cost: 0.363395 --- Train accuracy: 0.946875 --- Validation accuracy: 0.915000
 [5.980000 min, epoch 118] Train Cost: 0.250522 --- Validation Cost: 0.378364 --- Train accuracy: 0.951250 --- Validation accuracy: 0.920000
 [6.040000 min, epoch 119] Train Cost: 0.253783 --- Validation Cost: 0.364822 --- Train accuracy: 0.948125 --- Validation accuracy: 0.920000
 [6.090000 min, epoch 120] Train Cost: 0.260722 --- Validation Cost: 0.380681 --- Train accuracy: 0.953125 --- Validation accuracy: 0.910000
  CNN 2layers 50 E120 OAdam LR0.0001 pD0.5 A0.4 feb13 t2240
                                        training cost
   3.0
                                        validation cost
   2.5
   2.0
8
15 ⋅
   1.0
   0.5
               20
                                          100
                                                 120
```


DEMO

TIME	MODEL NAME	INPUT	BATCH	EPOCHS	F	AUGMENT PRO	DROPOUT PRO OPTIMIZER	LR	TRAIN ACC	VAL ACC		TEST ACC	BEST EPOCH	PARAMETERS	FILTERS	RESIDUAL	TIME/EPOCH
02-13 13:45	CNN_6layersG	R mfcc		50	100	0	Adam	0.0001		1	0.93	0.92	87	6267086	128	TRUE	4.3742
02-13 13:57	CNN_6layersG	R mfcc		50	100	0	Adam	0.0001		1 (0.915	0.89	69	3210702	128	FALSE	3.0054
02-13 14:12	CNN_5layersG	R mfcc		50	100	0	Adam	0.0001		1 (0.925	0.92	61	2619598	128	FALSE	2.8041
02-13 14:28	CNN_4layersG	R mfcc		50	100	0	Adam	0.0001		1 (0.905	0.885	60	2028494	128	FALSE	2.8686
02-13 14:45	CNN_3layersG	R mfcc		50	100	0	Adam	0.0001		1	0.92	0.92	79	1329940	128	FALSE	2.882
02-13 15:15	CNN_3layersG	R mfcc		50	100	0	Adam	0.0001		1	0.92	0.915	82	1329940	128	FALSE	2.754
02-13 15:21	CNN_2layersG	R mfcc		50	100	0	Adam	0.0001		1	0.93	0.93	100	738836	128	FALSE	2.4178
02-13 15:33	CNN_2layers	mfcc		50	100	0	Adam	0.0001	0.998	8 (0.915	0.865	53	3004436	128	TRUE	2.2961
02-13 15:44	CNN_2layers	mfcc		50	60	0	Adam	0.0001	0.999	4	0.92	0.885	60	2302484	128	FALSE	1.347833333
02-13 16:20	CNN_3layers	mfcc		50	60	0	Adam	0.0001		1	0.92	0.915	30	5653710	128	TRUE	1.723166667
02-13 16:25	CNN_4layers	mfcc		50	60	0	Adam	0.0001	0.995	6	0.93	0.875	28	6835918	128	TRUE	1.878833333
02-13 16:30	CNN_5layers	mfcc		50	60	0	Adam	0.0001	0.999	4	0.94	0.89	25	8018126	128	TRUE	2.098666667
02-13 16:43	CNN_6layers	mfcc		50	60	0	Adam	0.0001	0.995	6 (0.915	0.885	26	9200334	128	TRUE	2.355333333

CONCLUSIONS

- Features such as BNs and GRUs improve the performance
- It is not always helpful to have more layers
- Data Augmentation can improve the results by 1-2%
- Residual Layers without GRU are not a better choice

Thank you for your attention!

CONCLUDING REMARKS 23