Contents

Preface	vii
Chapter 1. Probability Theory	1
1.1 Probability Spaces and Random Elements	1
1.1.1 σ -fields and measures	1
1.1.2 Measurable functions and distributions	6
1.2 Integration and Differentiation	9
1.2.1 Integration	9
1.2.2 Radon-Nikodym derivative	14
1.3 Distributions and Their Characteristics	17
1.3.1 Useful probability densities	17
1.3.2 Moments and generating functions	25
1.4 Conditional Expectations	30
1.4.1 Conditional expectations	30
1.4.2 Independence	34
1.4.3 Conditional distributions	36
1.5 Asymptotic Theorems	38
1.5.1 Convergence modes and stochastic orders	38
1.5.2 Convergence of transformations	42
1.5.3 The law of large numbers	45
1.5.4 The central limit theorem	47
1.6 Exercises	49
Chapter 2. Fundamentals of Statistics	61
2.1 Populations, Samples, and Models	61
2.1.1 Populations and samples	61

 ${\bf x}$ Contents

	2.1.2	Parametric and nonparametric models	64
	2.1.3	Exponential and location-scale families $\dots \dots$	66
2.2	Statist	ics and Sufficiency	70
	2.2.1	Statistics and their distributions	70
	2.2.2	Sufficiency and minimal sufficiency	73
	2.2.3	$\label{eq:complete} Complete \ statistics . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	79
2.3	Statist	ical Decision Theory	83
	2.3.1	Decision rules, loss functions, and risks $\ \ . \ \ . \ \ . \ \ .$	83
	2.3.2	Admissibility and optimality	86
2.4	Statist	ical Inference	92
	2.4.1	Point estimators	92
	2.4.2	${\bf Hypothesis\ tests\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	95
	2.4.3	Confidence sets $\dots \dots \dots \dots \dots \dots \dots$	99
2.5	Asymp	ototic Criteria and Inference	101
	2.5.1	Consistency	102
	2.5.2	Asymptotic bias, variance, and mse	105
	2.5.3	Asymptotic inference	109
2.6	Exercis	ses	112
	_		
-		Unbiased Estimation	127
3.1		MVUE	
		Sufficient and complete statistics	128
		A necessary and sufficient condition	
		Information inequality	
		Asymptotic properties of UMVUE's	138
3.2	U-Stat	tistics	140
		Some examples	140
		Variances of U-statistics	
	3.2.3	The projection method	144
3.3	The L	SE in Linear Models	148
	3.3.1	The LSE and estimability	148
	3.3.2	The UMVUE and BLUE	152
	3.3.3	Robustness of LSE's	155
	3.3.4	Asymptotic properties of LSE's	159
3.4	Unbias	sed Estimators in Survey Problems	161

Contents

	3.4.1	UMVUE's of population totals	161
	3.4.2	$Horvitz\mbox{-} Thompson \ estimators . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	165
3.5	Asymp	ototically Unbiased Estimators	170
	3.5.1	Functions of unbiased estimators	170
	3.5.2	The method of moments $\dots \dots \dots \dots \dots$	173
	3.5.3	$V\text{-statistics} \ \ldots \ \ldots$	176
	3.5.4	The weighted LSE	179
3.6	Exercis	ses	182
Chapt	er 4.]	Estimation in Parametric Models	193
4.1	Bayes	Decisions and Estimators	193
	4.1.1	Bayes actions	193
	4.1.2	Empirical and hierarchical Bayes methods	198
	4.1.3	Bayes rules and estimators	201
	4.1.4	Markov chain Monte Carlo	207
4.2	Invaria	ance	213
	4.2.1	One-parameter location families $\dots \dots \dots \dots$	213
	4.2.2	One-parameter scale families $\ .\ .\ .\ .\ .\ .\ .\ .$	217
	4.2.3	General location-scale families $\ldots \ldots \ldots \ldots$	219
4.3	Minim	axity and Admissibility	223
	4.3.1	Estimators with constant risks	223
	4.3.2	Results in one-parameter exponential families $\ \ . \ \ . \ \ .$	227
	4.3.3	Simultaneous estimation and shrinkage estimators $$. $$.	229
4.4	The M	lethod of Maximum Likelihood	235
	4.4.1	The likelihood function and MLE's $\ \ldots \ \ldots \ \ldots$	235
	4.4.2	MLE's in generalized linear models $\ \ldots \ \ldots \ \ldots$	241
	4.4.3	Quasi-likelihoods and conditional likelihoods $\ .\ .\ .\ .$.	245
4.5	Asymp	ototically Efficient Estimation	248
	4.5.1	Asymptotic optimality	248
	4.5.2	Asymptotic efficiency of MLE's and RLE's $\ \ldots \ \ldots$	252
	4.5.3	Other asymptotically efficient estimators $\ .\ .\ .\ .\ .$.	257
4.6	Exercis	ses	261
Chapt	er 5. l	Estimation in Nonparametric Models	277
5.1	Distrib	oution Estimators	277
	5.1.1	Empirical c.d.f.'s in i.i.d. cases	278

xii

	5.1.2	Empirical likelihoods	281
	5.1.3	Density estimation	288
5.2	Statist	ical Functionals	291
	5.2.1	Differentiability and asymptotic normality $\ .\ .\ .\ .$.	291
	5.2.2	L-, M-, R-estimators and rank statistics	296
5.3	Linear	Functions of Order Statistics $\ .\ .\ .\ .\ .\ .\ .\ .$	304
	5.3.1	Sample quantiles	304
	5.3.2	Robustness and efficiency	308
	5.3.3	L-estimators in linear models	311
5.4	Genera	alized Estimating Equations	312
	5.4.1	The GEE method and its relationship with others $$. $$.	313
	5.4.2	Consistency of GEE estimators	317
	5.4.3	Asymptotic normality of GEE estimators	321
5.5	Varian	ce Estimation	325
	5.5.1	The substitution method $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	326
	5.5.2	The jackknife	329
	5.5.3	The bootstrap $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	334
5.6	Exercis	ses	337
CI.			0.45
-		Hypothesis Tests	345
6.1		Tests	345
		The Neyman-Pearson lemma	346
		Monotone likelihood ratio	349
0.0		UMP tests for two-sided hypotheses	353
6.2		Unbiased Tests	356
		Unbiasedness and similarity	356
		UMPU tests in exponential families	358
C 9		UMPU tests in normal families	362
6.3		Invariant Tests	369
		Invariance and UMPI tests	
0.4		UMPI tests in normal linear models	
6.4		n Parametric Models	
		Likelihood ratio tests	
		Asymptotic tests based on likelihoods	383
	6.4.3	χ^2 -tests	387

Contents

	6.4.4	Bayes tests	392
6.5	Tests i	n Nonparametric Models	394
	6.5.1	Sign, permutation, and rank tests $\ \ldots \ \ldots \ \ldots \ \ldots$	394
	6.5.2	$\operatorname{Kolmogorov-Smirnov}$ and $\operatorname{Cram\'er-von}$ Mises tests $$	398
	6.5.3	Empirical likelihood ratio tests	401
	6.5.4	${\bf Asymptotic\ tests\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	404
6.6	Exercis	ses	406
Chapt	er 7. (Confidence Sets	421
7.1	Constr	ruction of Confidence Sets	421
	7.1.1	Pivotal quantities $\dots \dots \dots \dots \dots \dots$	421
	7.1.2	Inverting acceptance regions of tests	427
	7.1.3	The Bayesian approach $\ .\ .\ .\ .\ .\ .$	430
	7.1.4	${\bf Prediction\ sets\ }\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	432
7.2	Proper	rties of Confidence Sets	434
	7.2.1	Lengths of confidence intervals	434
	7.2.2	UMA and UMAU confidence sets $\ \ .$	438
	7.2.3	Randomized confidence sets $\ \ldots \ \ldots \ \ldots \ \ldots$	441
	7.2.4	Invariant confidence sets $\dots \dots \dots \dots$	443
7.3	Asymp	ototic Confidence Sets	445
	7.3.1	Asymptotically pivotal quantities $\dots \dots \dots$	445
	7.3.2	Confidence sets based on likelihoods	447
	7.3.3	Results for quantiles	451
7.4	Bootst	rap Confidence Sets	453
	7.4.1	Construction of bootstrap confidence intervals $\ . \ . \ .$.	453
	7.4.2	Asymptotic correctness and accuracy $\ .\ .\ .\ .\ .$	457
	7.4.3	High-order accurate bootstrap confidence sets $\ \ . \ \ . \ \ .$.	463
7.5	Simult	aneous Confidence Intervals	467
	7.5.1	Bonferroni's method	468
	7.5.2	Scheffé's method in linear models $\ \ldots \ \ldots \ \ldots$.	469
	7.5.3	Tukey's method in one-way ANOVA models $\ \ldots \ \ldots$	471
	7.5.4	Confidence bands for c.d.f.'s $\ \ \ldots \ \ \ldots \ \ \ldots \ \ \ldots$	473
7.6	Evereis	POS.	475

xiv	nts	
-----	-----	--

Appendix A. Abbreviations	489
Appendix B. Notation	491
References	493
Author Index	505
Subject Index	509