STA 103 (SS2 2025): Formula Sheet 1 Instructor: Wookyeong Song Institution: UC Davis

- Summation notation: $\sum_{i=1}^{n} x_i = x_1 + x_2 + \cdots + x_n$
- Linear properties of summation:
 - 1. $\sum_{i=1}^{n} (ax_i) = a(\sum_{i=1}^{n} x_i)$
 - 2. $\sum_{i=1}^{n} (x_i + b) = (\sum_{i=1}^{n} x_i) + nb$
 - 3. $\sum_{i=1}^{n} (x_i + y_i) = (\sum_{i=1}^{n} x_i) + (\sum_{k=1}^{n} y_i)$
- Suppose $y_i = ax_i + b$ and $\frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2 = v$, then:
 - 1. $\frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2 = (\frac{1}{n} \sum_{i=1}^{n} x_i^2) (\bar{x})^2$
 - 2. $\sum_{i=1}^{n} y_i = a(\sum_{i=1}^{n} x_i) + nb$
 - 3. $\overline{y} = a\overline{x} + b$
 - 4. $\frac{1}{n} \sum_{i=1}^{n} (y_i \bar{y})^2 = a^2 v$
- PMFs (Probability Mass Functions)
 - 1. Valid PMF Requirements
 - 2. Table format
 - 3. Function format
 - Modifying PMFs for functions of a random variable.
 - 5. Modifying PMFs for conditional distributions.
- Expected value
 - 1. $E(X) = \sum_{i=1}^{n} x_i p(x_i)$
 - 2. $E(f(X)) = \sum_{i=1}^{n} f(x_i)p(x_i)$
- Variance and Standard Deviation
 - 1. $Var(X) = E[(X E(X))^2]$
 - 2. $Var(X) = E(X^2) (E(X))^2$
 - 3. $\operatorname{sd}(X) = \sqrt{\operatorname{Var}(X)}$
- Bernoulli Distribution
 - 1. $X \sim \text{Bernoulli}(p)$, Parameters: p.
 - 2. PMF:

$$p(x) = \begin{cases} p^x (1-p)^{1-x} & \text{if } x = 0 \text{ or } x = 1, \\ 0 & \text{otherwise.} \end{cases}$$

- 3. Mean E(X) = p, Variance Var(X) = p(1-p).
- Binomial Distribution
 - 1. $X \sim \text{Binomial}(n, p)$, Parameters: n, p.
 - 2. PMF:

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}.$$

- $3. \binom{n}{x} = \frac{n!}{(n-x)!x!}$
- 4. Mean E(X) = np, Variance Var(X) = np(1 - p).
- Poisson Distribution
 - 1. $X \sim \text{Poisson}(\lambda)$, Parameters: λ .
 - 2 PMF

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$
, for $x = 0, 1, 2, ...$

- 3. $\binom{n}{x} = \frac{n!}{(n-x)!x!}$
- 4. Mean $E(X) = \lambda$, Variance $Var(X) = \lambda$.
- JPMFs (Joint Probability Mass Functions)
 - 1. Valid JPMF Requirements
 - 2. Table format
 - 3. Formula format
 - 4. Computing marginal distributions from JPMFs.
 - 5. Modifying JPMFs for functions of random variables.
 - 6. Modifying JPMFs for conditional distributions.
- \bullet Expected value of a function of X and Y:
 - 1. $E(f(X,Y)) = \sum_{x,y} f(x,y)p(x,y)$.
 - 2. $E(X \mid Y = y) = \sum_{x} x p_X(x \mid Y = y)$.
 - 3. $E(Y \mid X = x) = \sum_{y} y p_Y(y \mid X = x)$.
- Independence: two random variables X and Y are independent if and only if:
 - 1. $p(x,y) = p_X(x) \cdot p_Y(y)$ for all possible x, y or
 - 2. $p_X(x|Y=y) = p_X(x)$ for all possible x, y or
 - 3. $p_Y(y|X=x) = p_Y(y)$ for all possible x, y
- \bullet Covariance of X and Y:

$$cov(X, Y) = E[(X - E(X))(Y - E(Y))]$$

= $E(XY) - E(X)E(Y)$

- Covariance Properties
 - 1. $cov(aX, bY) = a \cdot b \cdot cov(X, Y)$
 - 2. cov(X, c) = cov(c, X) = 0
 - 3. cov(X + b, Y + c) = cov(X, Y)
 - 4. cov(X, Y) = cov(Y, X)
 - 5. cov(X + Y, Z) = cov(X, Z) + cov(Y, Z)
 - 6. If X & Y are independent then cov(X,Y) = 0