When the kth column contains a pivot, the kth stage of the procedure for converting a matrix to rref consists of the following three steps illustrated below:

$$\begin{pmatrix}
1 & \times & 0 & \times & \times & \times & \times \\
0 & 0 & 1 & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times & \times \\
0 & 0 & 0 & \frac{a_{ik}^{(k)}}{k} & \times & \times & \times & \times \\
0 & 0 & 0 & \frac{a_{ik}^{(k)}}{k} & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times & \times \\
0 & 0 & 0 & 1 & \times & \times & \times \\
0 & 0 & 0 & 1 & \times & \times & \times \\
0 & 0 & 0 & 1 & \times & \times & \times \\
0 & 0 & 0 & 1 & \times & \times & \times \\
0 & 0 & 0 & 1 & \times & \times & \times \\
0 & 0 & 0 & 1 & \times & \times & \times \\
0 & 0 & 0 & 1 & \times & \times & \times \\
0 & 0 & 0 & 1 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 &$$

If the kth column does not contain a pivot, we simply move on to the next column.

The result is that after performing such elimination steps, we obtain a matrix that has a special shape known as a reduced row echelon matrix, for short rref.

Here is an example illustrating this process: Starting from the matrix

$$A_1 = \begin{pmatrix} 1 & 0 & 2 & 1 & 5 \\ 1 & 1 & 5 & 2 & 7 \\ 1 & 2 & 8 & 4 & 12 \end{pmatrix},$$

we perform the following steps

$$A_1 \longrightarrow A_2 = \begin{pmatrix} 1 & 0 & 2 & 1 & 5 \\ 0 & 1 & 3 & 1 & 2 \\ 0 & 2 & 6 & 3 & 7 \end{pmatrix},$$

by subtracting row 1 from row 2 and row 3;

$$A_2 \longrightarrow \begin{pmatrix} 1 & 0 & 2 & 1 & 5 \\ 0 & 2 & 6 & 3 & 7 \\ 0 & 1 & 3 & 1 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 2 & 1 & 5 \\ 0 & 1 & 3 & 3/2 & 7/2 \\ 0 & 1 & 3 & 1 & 2 \end{pmatrix} \longrightarrow A_3 = \begin{pmatrix} 1 & 0 & 2 & 1 & 5 \\ 0 & 1 & 3 & 3/2 & 7/2 \\ 0 & 0 & 0 & -1/2 & -3/2 \end{pmatrix},$$

after choosing the pivot 2 and permuting row 2 and row 3, dividing row 2 by 2, and subtracting row 2 from row 3;

$$A_3 \longrightarrow \begin{pmatrix} 1 & 0 & 2 & 1 & 5 \\ 0 & 1 & 3 & 3/2 & 7/2 \\ 0 & 0 & 0 & 1 & 3 \end{pmatrix} \longrightarrow A_4 = \begin{pmatrix} 1 & 0 & 2 & 0 & 2 \\ 0 & 1 & 3 & 0 & -1 \\ 0 & 0 & 0 & 1 & 3 \end{pmatrix},$$