A network model of the neocortex

Friedrich Schüßler

June 12, 2015

Supervisor: Prof. Stefan Rotter & Benjamin Merkt

Table of contents

Network model

Mean field model

Preliminary results

Appendix

Table of contents

Network model

Mean field model

Preliminary results

Appendix

Network parameters

Parameter specification

Total population size

Total synapse number

Neuron model

Synapse model

Rel. inh. synaptic strength

 \approx 80,000

 $\approx 0.3 \cdot 10^9$

Leaky integrate-and-fire

Exponential-shaped postsynaptic currents

q = -4.0

June 12, 2015

Network parameters

(a) Population size

(b) Synapse numbers

Table of contents

Network model

Mean field model

Preliminary results

Appendix

Neuron depolarization

Membrane potential V_i at timescale τ_m follows

$$\tau_m \dot{V}_i(t) = -V_i(t) + RI_i(t). \tag{1}$$

The model goes from a deterministic description,

$$RI_i(t) = \tau_m \sum_{j} J_{ij} \sum_{k} \delta(t - t_j^k - D)$$
 (2)

to a statistical one:

$$RI_i(t) = \mu(t) + \sigma(t)\sqrt{\tau}\eta_i(t)$$
 (3)

Here, $\eta_i(t)$ is uncorrelated gaussian white noise.

Self-consistent solution in 2D model

Firing rate ν of each neuron obeys

$$\frac{1}{\nu} = \tau_{rp} + 2\tau_m \int_{\frac{V_r - \mu}{\sigma}}^{\frac{\theta - \mu}{\sigma}} e^{u^2} \left(1 + \operatorname{erf}(u)\right) du \tag{4}$$

with average input

$$\mu = \tau_m C J (1 - \gamma g) \nu + \tau_m C J \nu_{ext}$$
 (5)

and fluctuations

$$\sigma^{2} = \underbrace{\tau_{m}C J^{2} \left(1 + \gamma g^{2}\right) \nu}_{\text{local}} + \underbrace{\tau_{m}C J^{2} \nu_{\text{ext}}}_{\text{external}}.$$
 (6)

June 12, 2015

Goals

1. Reconstruct the original model in *pynest*

Goals

1. Reconstruct the original model in pynest

2. Develop a mean field model for firing rates

Goals

1. Reconstruct the original model in pynest

2. Develop a mean field model for firing rates

3. Compare network model with mean field model

Table of contents

Network model

Mean field model

Preliminary results

Appendix

Compare SLI and pynest implementations

(a) SLI

Compare SLI and pynest implementations

Membrane potential distribution

Current state of the numerical approach

Take home

Mean field model would be great to understand the dynamics

... but ...

turns out to be quite instable in large parameter spaces.

Take home

Mean field model would be great to understand the dynamics

... but ...

turns out to be quite instable in large parameter spaces.

Take home

Mean field model would be great to understand the dynamics

... but ...

turns out to be quite instable in large parameter spaces.

Table of contents

Network mode

Mean field model

Preliminary results

Appendix

Self-consistent solution in 2D model

Firing rate ν of each neuron obeys

$$\frac{1}{\nu} = \tau_{rp} + 2\,\tau_m \int_{\frac{V_r - \mu}{\sigma}}^{\frac{\theta - \mu}{\sigma}} e^{u^2} \left(1 + \operatorname{erf}(u)\right) \,\mathrm{d}u \tag{7}$$

with average input

$$\mu = \tau C J (1 - \gamma g) \nu + \tau C J \nu_{ext}$$
 (8)

and fluctuations

$$\sigma^{2} = \underbrace{\tau C J^{2} \left(1 + \gamma g^{2} \right) \nu}_{\text{local}} + \underbrace{\tau C J^{2} \nu_{\text{ext}}}_{\text{external}}. \tag{9}$$

Extension to higher dimensions

For neuron i in population a,

$$\frac{1}{\nu_a} = \tau_{rp} + 2\,\tau_m \int_{\frac{V_r - \mu_a}{\sigma_a}}^{\frac{\theta - \mu_a}{\sigma_a}} e^{u^2} \left(1 + \text{erf}(u)\right) \, du \tag{10}$$

with average input

$$\mu_{a} = \tau_{m} \sum_{b \in \text{pop.}} C_{ab} J_{ab} \nu_{b} + \tau C_{a,\text{ext}} J_{a,\text{ext}} \nu_{\text{ext}}$$
 (11)

and fluctuation

$$\sigma_{a}^{2} = \tau_{m} \sum_{b \in \text{pop.}} C_{ab} J_{ab}^{2} \nu_{b} + \tau_{m} C_{a,\text{ext}} J_{a,\text{ext}}^{2} \nu_{\text{ext}}$$
 (12)

June 12, 2015

Extension to higher dimensions

For neuron i in population a,

$$\frac{1}{\nu_a} = \tau_{rp} + 2\,\tau_m \int_{\frac{V_r - \mu_a}{\sigma_a}}^{\frac{\theta - \mu_a}{\sigma_a}} e^{u^2} \left(1 + \text{erf}(u)\right) \, \mathrm{d}u \tag{13}$$

with average input

$$\boldsymbol{\mu} = A_l \boldsymbol{\nu} + A_{ext} \boldsymbol{\nu}_{ext} \tag{14}$$

and fluctuation

$$\sigma^2 = B_l \nu + B_{ext} \nu_{ext} \tag{15}$$