Zusammenfassung Petrinetze

© Tim Baumann, http://timbaumann.info/uni-spicker

Def. Ein Netzgraph ist ein Tripel (S,T,W), wobei S und T disjunkte, endliche Mengen sind und $W:S\times T\cup T\times S\to \mathbb{N}$. Dadurch ist ein gerichteter, gewichteter, bipartiter Graph mit Kantenmenge $F=\{(x,y)\,|\,W(x,y)\neq 0\}$ gegeben.

Notation Bezeichnung Symbol

$t \in T$	Transition	
$s \in S$	Stelle, Platz	\circ
$(x,y) \in F$	Kante	\rightarrow falls $W(x,y)=1$
		\xrightarrow{w} falls $w := W(x, y) > 1$

Def. Sei $x \in S \cup T$.

- $x := \{y \mid (y, x) \in F\}$ heißt Vorbereich von x und
- $x^{\bullet} := \{y \mid (x, y) \in F\}$ heißt Nachbereich von x.
- x heißt **isoliert**, falls • $x \cup x$ = \emptyset .
- x heißt vorwärts-verzweigt, falls $|x^{\bullet}| \geq 2$
- x heißt rückwärts-verzweigt, falls $| {}^{\bullet}x | \ge 2$

Def. $(x,y) \in S \times T \cup T \times S$ bilden eine **Schlinge** falls $(x,y) \in F$ und $(y,x) \in F$.

Def. Eine Markierung ist eine Abbildung $M: S \to \mathbb{N}$. Eine Teilmenge $S' \subseteq S$ heißt markiert unter M, falls $\exists s \in S': M(s') > 0$, andernfalls unmarkiert. Ein Element $s \in S$ heißt (un-)markiert, falls $\{s\} \subseteq S$ es ist.

Notation. $\mathfrak{M}(S) := \{M : S \to \mathbb{N}\}\$

Def. Ein **Petrinetz** $N = (S, T, W, M_N)$ besteht aus

- \bullet einem Netzgraphen (S, T, W) und
- einer Anfangsmarkierung $M_N: S \to \mathbb{N}$.

Notation. Für eine feste Transition $t \in T$ ist

$$t^-: S \to \mathbb{N}, \ s \mapsto W(s,t), \qquad t^+: S \to \mathbb{N}, \ s \mapsto W(t,s)$$

Def. Eine Transition $t \in T$ heißt **aktiviert** unter einer Markierung M, notiert M[t), falls

$$\forall s \in S : W(s,t) < M(s) \iff t^- < M.$$

Ist t aktiviert, so kann t schalten und es entsteht die Folgemarkierung $M' := M + \Delta t$, wobei

$$\Delta t: S \to \mathbb{Z}, \ s \mapsto W(t,s) - W(s,t).$$

Notation. M[t]M'

Def. Für $w=t_1\cdots t_n\in T^*$ und Markierungen M und M' gilt

$$M[w\rangle M':\iff M[t_1\rangle M_1[t_2\rangle \cdots [t_{n-1}\rangle M_{n-1}[t_n\rangle M')$$

für (eindeutig bestimmte) Markierungen M_1,\ldots,M_{n-1} . Ein Wort $w\in T^*$ heißt **Schaltfolge** (firing sequence) von N, notiert $M_N[w\rangle$, falls $\exists\,M':M_N[w\rangle M'$. $\begin{array}{l} \textbf{Notation.} \ \ [M\rangle \coloneqq \{M' \,|\, \exists \, w \in T^* : M[w\rangle M'\} \\ \text{FS}(N) \coloneqq \{w \in T^* \,|\, M_N[w\rangle\} \quad \text{für ein Petrinetz } N \end{array}$

Def. M' heißt **erreichbar** von M, falls $M' \in [M)$.

Def. $w \in T^{\omega}$ heißt unendliche Schaltfolge von N, falls alle endlichen Präfixe von w Schaltfolgen von N sind.

Def. Der Erreichbarkeitsgraph $\mathfrak{R}(N)$ zu N besitzt die Knoten $[M_N)$ und die Kanten $\{(M,M') | \exists t : M[t\rangle M'\}$.

Def. Für $w = a_1 \cdots a_n \in A^*$ ist $Parikh(w) : A \to \mathbb{N}, \ a \mapsto |i|a_i = a.$

Lem. In M[w]M' hängt M' nur von M und Parikh(w) ab, genauer

$$M' = M + \sum_{t \in T} \text{Parikh}(w)(t) \cdot \Delta t.$$

Lem. $M_1[w\rangle M_2 \implies M + M_1[w\rangle M + M_2$

TODO: Satz 2.8

Lem. Sei N ein Petri-Netz. Dann gilt:

- FS(N) ist $pr\ddot{a}fix-abq$, d. h. $w = vu \in FS(N) \implies v \in FS(N)$.
- Ist $|M_N\rangle$ endlich, so ist FS(N) regulär.

Def. Ein beschriftetes Petrinetz $N = (S, T, W, M_N, \ell)$ best. aus

- einem Petrinetz (S, T, W, M_N) und
- einer Transitionsbeschriftung (labelling) $\ell: T \to \Sigma \cup \{\lambda\}$, wobei Σ eine Menge von Aktionen ist.

Sprechweise. $t \in T$ mit $\ell(t) = \lambda$ heißt intern oder unsichtbar.

Notation. Für $t \in T^*$ ist $\ell(w) := \ell(t_1) \cdots \ell(t_n) \in \Sigma^*$. Dabei wird λ als das leere Wort in Σ^* aufgefasst.

Def. Mit $t \in T$, $w \in T^*$ und Markierungen M, M' ist definiert:

$$\frac{M[t\rangle M'}{M[\ell(t)\rangle M'} \quad \frac{M[t\rangle}{M[\ell(t)\rangle} \quad \frac{M[w\rangle M'}{M[\ell(w)\rangle M'} \quad \frac{M[w\rangle}{M[\ell(w)\rangle}$$

Def. Die Sprache eines beschrifteten Netzes N ist

$$L(N) := \{ v \in \Sigma^* \mid M_n[v] \}.$$

Def. Ein beschriftetes Netz mit Endmarkierung ist ein Tupel $N = (S, T, W, M_N, \ell, \text{Fin})$ wobei

- (S, T, W, M_N, ℓ) ein beschriftetes Netz und
- Fin $\subseteq \mathfrak{M}(S)$ eine endliche Menge ist.

Die entspr. Sprache ist $L_{\text{fin}}(N) := \{ v \in \Sigma^* \mid \exists M \in \text{Fin} : M_N[v \rangle M \}$.

Notation. $\mathfrak{L}^{\lambda} := \{L_{\text{fin}}(N) \mid N \text{ beschr. Netz mit Endmarkierung}\}$ $\mathfrak{L} := \{L_{\text{fin}}(N) \mid N \text{ beschr. Netz mit Endmark. ohne interne Trans.}\}$

Satz. { reguläre Sprachen } $\subseteq \mathfrak{L}$

Nebenläufigkeit I

Def. Eine Multimenge über X ist eine Funktion $\mu: X \to \mathbb{N}$.

$$\begin{array}{l} \textbf{Notation.} \ \ \mathfrak{M}(X) \coloneqq \{\mu : X \to \mathbb{N}\} \\ \mu_Y \in \mathfrak{M}(X), x \mapsto |\{\star \mid x \in Y\}| \ \text{für} \ Y \subset X, \\ \emptyset \coloneqq \mu_\emptyset \in \mathfrak{M}(X), \ \ \mu_x \coloneqq \mu_{\{x\}} \in \mathfrak{M}(X) \ \text{für} \ x \in X \\ \end{array}$$

Def. Ein Schritt μ ist eine Multimenge $\mu \neq \emptyset \in \mathfrak{M}(T)$. Der Schritt μ ist aktiviert unter M, notiert $M[\mu]$, falls

$$\forall s \in S : \mu^{-}(s) := \sum_{t \in T} \mu(t) W(s, t) \leq M(s).$$

Durch Schalten von μ entsteht die Folgemarkierung $M' \in \mathfrak{M}(S)$ mit

$$M'(s) = M(s) + \sum_{t \in T} \mu(t) \cdot (W(t, s) - W(s, t)).$$

Bem. Analog wird verallgemeinert: $M[\mu\rangle M', M[w\rangle, M[w\rangle M'$ für $\mu\in\mathfrak{M}(T)\setminus\{\emptyset\}$ bzw. $w\in(\mathfrak{M}(T)\setminus\{\emptyset\})^*$.

Def. $SS(N) := \{w \in (\mathfrak{M}(T) \setminus \{\emptyset\})^* \mid M_N[w\}\}$ heißen **Schrittfolgen** (step sequences).

Def. Zwei Transitionen $t, t' \in T$ sind

- nebenläufig unter M, falls M[t+t'),
- in Konflikt unter M, falls $\neg M[t+t']$.

Notation. Für $\mu \in \mathfrak{M}(T)$ ist $\ell(\mu)$ die Multimenge mit

$$\ell(\mu): \Sigma \to \mathbb{N}, x \mapsto \sum_{t \in T, \ell(t) = x} \mu(t)$$

(falls die rechte Zahl endlich ist für alle $x \in \Sigma$). Für $w = \mu_1 \cdots \mu_n \in \mathfrak{M}(T)^*$ ist $\ell(w) := \ell(\mu_1) \cdots \ell(\mu_n)$.

Def. Mit $\mu \in \mathfrak{M}(T) \setminus \{0\}$, $w \in (\mathfrak{M}(T) \setminus \{0\})^*$ und M, M' ist defin.:

$$\frac{M[\mu\rangle M'}{M[\ell(\mu)\rangle M'} \quad \frac{M[\mu\rangle}{M[\ell(\mu)\rangle} \quad \frac{M[w\rangle M'}{M[\ell(w)\rangle M'} \quad \frac{M[w\rangle}{M[\ell(w)\rangle}$$

Lem. $M[t_1\rangle,\ldots,M[t_n\rangle \land \forall i \neq j: {}^{\bullet}t_i \cap {}^{\bullet}t_j = \emptyset \implies M[t_1+\ldots t_n\rangle$

Lem. $M[\mu]M' \wedge \text{Parikh}(w) = \mu \implies M[w]M'$

Bem. Über Schrittfolgen werden somit dieselben Markierungen erreicht wie über Schaltfolgen.

Def. Der schrittweise Erreichbarkeitsgraph $\mathfrak{SR}(N)$ besitzt die Knoten [M) und die Kanten $\{(M,M') \mid \exists \mu \in \mathfrak{M}(T) \setminus \{\emptyset\} : M[\mu)M'\}$.

Lem. Sei N schlingenfrei. Dann gilt:

$$(\forall w \in T^*, \text{Parikh}(w) = \mu : M[w]) \iff M[\mu]$$

Problem (Erreichbarkeit). Gegeben seien ein Netz N und eine Markierung M. Frage: Ist M erreichbar in N?

Problem (0-Erreichbarkeit). Gegeben seien ein Netz N. Frage: Ist die Nullmarkierung erreichbar?

 $Bem.\ {\it Diese}$ Probleme sind lösbar, falls der Erreichbarkeitsgraph endlich ist.

 $\textbf{Def.}\,$ Eine Stelle $s\in S$ heißt
 n-beschränkt / beschränkt, falls

$$\sup\{M(s) \mid M \in [M_N\rangle\} \le n \quad / \quad \sup\{M(s) \mid M \in [M_N\rangle\} < \infty.$$

Ein Netz heißt (n-) beschränkt, wenn alle Stellen $s \in S$ (n-) beschränkt sind. Ein Netz heißt **sicher**, wenn es 1-beschränkt ist. Ein Netz heißt **strukturell beschränkt**, wenn es bei beliebig geänderter Anfangsmarkierung beschränkt ist.

Prop. $[M_N]$ endlich $\iff N$ beschränkt

Def. Eine Transition $t \in T$ heißt **tot** unter M, falls $\forall M' \in [M] : \neg M'[t]$.

- M heißt tot, falls alle Transitionen unter M tot sind.
- N heißt tot, falls M_N tot ist.
- N heißt verklemmungsfrei, falls $\forall M \in [M_N] : \neg(M \text{ tot})$
- t heißt lebendig $unter\ M$, falls $\forall\ M' \in [M\rangle : \neg(t \text{ ist tot unter } M)$
- t heißt lebendig, falls t lebendig unter M_N ist.
- M heißt lebendig, wenn alle $t \in T$ unter M lebendig sind.
- N heißt lebendig, wenn M_N lebendig ist.

Problem (Lebendigkeit). Gegeben N. Frage: Ist N lebendig?

Problem (Einzellebendigkeit). Gegeben seien N und $t \in T$. Frage: Ist t lebendig?

S- und T-Invarianten

Def. Die Inzidenzmatrix eines Netzes N ist die Matrix $C(N) \in \mathbb{Z}^{|T| \times |S|}$ mit $C(N)_{st} = \Delta t(s)$ für $s \in S$ und $t \in T$.

Bem. Folglich ist $\Delta t = C(N) \cdot t$ (wenn man t als One-Hot-Vektor auffasst) und für $M[w\rangle M'$ ist $M' = M + C(N) \cdot \text{Parikh}(w)$.

Def. Eine S-Invariante $y: S \to \mathbb{Z}$ ist eine Lsg von $C(N)^T \cdot y = 0$. Der Träger supp(y) einer S-Invarianten y ist $\{s \in S \mid y(s) \neq 0\}$.

Notation. S-Inv(N) := { S-Invarianten von N } = ker(C(N)^T)

Lem/Def. Das Netz N heißt von S-Invarianten überdeckt, falls folgende äquivalente Bedingungen gelten:

- N besitzt eine positive (d. h. $\forall s \in S : y(s) > 0$) S-Invariante.
- Für alle $s \in S$ gibt es eine nichtnegative (d. h. $\forall s \in S : y(s) \ge 0$) S-Invariante mit $s \in \text{supp}(y)$.

Lem.
$$y \in S\text{-Inv}(N) \implies \forall M \in [M_N] : y^T \cdot M = y^T \cdot M_N$$

 $Bem.\$ Das Lemma kann verwendet werden um zu zeigen, dass ein Mnicht erreichbar ist.

Lem. Sei keine Transition in N tot. Dann gilt für $y \in \mathbb{Z}^S$:

$$\forall M \in [M_N] : y^T \cdot M = y^T \cdot M_N \implies y \in S\text{-Inv}(N)$$

Lem. Sei $s \in S$ und $y \in S$ -Inv(N) nichtnegativ mit y(s) > 0. Dann ist s beschränkt, genauer $(y^T \cdot M_N/y(s))$ -beschränkt.

Lem. Ist N von S-Invarianten überdeckt, so ist N strukturell beschränkt.

TODO: Umkehrung, siehe Buch von Starke

Def. Ein home state ist eine Markierung M mit

$$\forall M' \in [M] : M \in [M'].$$

Ein Netz N heißt reversibel, wenn M_N ein home state ist.

Lem. Angenommen, N ist reversibel und keine Transitionen sind tot unter M_N . Dann ist N lebendig.

 $Bem.\ \,$ Es gibt lebendige, sichere Netze, die nicht von $S\mbox{-Invarianten}$ überdeckt sind.

Def. Eine T-Invariante $x: T \to \mathbb{Z}$ ist eine Lsg von $C(N) \cdot x = 0$. Das Netz N heißt von T-Invarianten überdeckt, wenn es eine positive T-Invariante gibt.

Notation. T-Inv $(N) := \{ T$ -Invarianten von $N \} = \ker(C(N))$

Lem. Sei $w \in T^*$ mit M[w]M'. Dann gilt:

$$\operatorname{Parikh}(w) \in T\operatorname{-Inv}(N) \iff M = M'$$

 ${\bf Satz.}$ Ist Nlebendig und beschränkt, so ist N von T-Invariantenüberdeckt.