A ADDITIONAL PROOFS

A NP-hardness

PROOF. Let SK(U,S,P,W,q) be an instance of the Set Union Knapsack Problem [15], where $U=\{u_1,\ldots u_n\}$ is a set of items, $S=\{S_1,\ldots S_m\}$ is a set of subsets $(S_i\subseteq U),P:S\to\mathbb{R}_+$ is a subset profit function, $w:U\to\mathbb{R}_+$ is an item weight function, and $q\in\mathbb{R}_+$ is the budget. For a subset $\mathcal{A}\subseteq S$, the weighted union of set \mathcal{A} is $W(\mathcal{A})=\sum_{e\in \cup_{t\in\mathcal{A}}S_t}w_e$ and $P(\mathcal{A})=\sum_{t\in\mathcal{A}}p_t$. The problem is to find a subset $\mathcal{A}^*\subseteq S$ such that $W(\mathcal{A}^*)\le q$ and $P(\mathcal{A}^*)$ is maximized. SK is NP-hard to approximate within a constant factor [3]. We reduce a version of SK with equal profits and weights (also NP-hard) to the MBED problem. We define a corresponding MBED problem instance via constructing a graph Γ as follows.

For each $S_i \in S$ and $u_j \in U$ we create nodes x_i and y_j respectively. We also add a node v with a large connected component L of size l only with positive edges attached to it. The node v has negative edges with every node x_i , $\forall i \in [m]$ and every node y_j , $\forall j \in [n]$. Additionally, if $u_j \in S_i$, a negative edge (x_i, y_j) will be added to the edge set E.

In MBED, the number of edges to be removed is the budget, b=q. The candidate set, $\mathbb{C}=\{(v,y_j)|\forall j\in[n]\}$. Note that initial largest connected balanced component is $\{v\cup L\}\cup\{y_j\forall j\in[n]\}$ if l>m+1 (assuming n>m). Our claim is that, for any solution $\mathcal A$ of an instance of SK there is a corresponding solution set of edges, B (where |B|=b) in the graph Γ of the MBED version, such that $f(B)=P(\mathcal A)+n+l+1$ if $B=\{(v,y)|y\in\mathcal A\}$ are removed.

In the new balanced graph, we aim to build two partitions (W_1 and W_2) as follows. One partition W_1 consists of $\{v \cup L\}$ initially. Our goal is to delete edges from $\mathbb C$ and add the nodes y_j 's in W_1 . If $(v,y_{j'})$ for any j' does not get deleted then it would be in W_2 . If there is any node x_i that is connected with only nodes in $\mathcal A$ beside being connected with v, then removing all the edges in $\mathcal A$ would put the node x_i in W_2 . Thus removing edges in $\mathcal A$ would put $P(\mathcal A)$ nodes in W_2 . Thus, $f(\mathcal B) = P(\mathcal A) + n + l + 1$.

B Proportionally Submodular

LEMMA A.1. The objective function f is not proportionally submodular[31]. In other words, there exists $S, T \in E$ for some graph H such that $|T|f(S) + |S|f(T) < |S \cap T|f(S \cup T) + |S \cup T|f(S \cap T)$.

PROOF. Consider a balanced subgraph of H, S(H) has a partition V_1 and V_2 . A node v is outside S(H) and it is connected to V_1 with positive edges e_1 and e_2 , V_2 with another positive edge e_3 . Thus the node v cannot be the part of S(H). Consider an edge e_4 inside V_1 which can be removed without making the graph disconnected. Let us assume $S = \{e_1, e_4\}, T = \{e_2, e_4\}$. Then, $f(\{e_1, e_4\}) = 0$ and $f(\{e_2, e_4\}) = 0$, since even after removing any of these edges it is not possible to add the node v to S(H). Note that $f(S \cap T) = f(\{e_4\}) = 0$. However, $f(S \cup T) = f(\{e_1, e_2, e_4\}) = 1$ since the node v can be added. Substituting these values, we get $|T|f(S) + |S|f(T) < |S \cap T|f(S \cup T) + |S \cup T|f(S \cap T)$.

C Proof of Lemma 9

PROOF. We prove this by induction on the number of edges, b. Let us denote $B_k \subseteq B$ as $\{e_1, \cdots, e_k\}$. We construct B by only considering peripheral edges e_{k+1} such that, for all $k \le b$: $(e_{k+1}, e') \in cep(H_{B_k}, x)$, for some node x and edge e'.

Base case (b = 1): $f(\{e_1\}) \le f(\{e_1\})$. Also, $\alpha(\{e_1\}) = 0$. Inductive hypothesis (IH): Suppose the equation holds for b = k, i.e., $f(B_k) \le \sum_{i=1}^k f(\{e_i\}) + (C^* + 1)\alpha(B_k)$.

Inductive step (b = k + 1): We present different cases for e_{k+1} . Note that we have $(e_{k+1}, e') \in cep(H_{B_k}, x)$ for some x, e'.

Case 1: $(e_{k+1}, e') \in cep(H, x)$ and $|cep(H_{e_{k+1}}, x)| = 0$, i.e., after deleting e_{k+1} , x moves into the balanced subgraph. Then, we must also have $|cep(H_{B_{k+1}}, x)| = 0$. Hence, $f(B_k \cup \{e_{k+1}\}) - f(B_k) = f(\{e_{k+1}\})$ and the inequality holds.

Case 2: Either (1) $(e_{k+1}, e') \in cep(H, x)$ and $|cep(H_{e_{k+1}}, x)| > 0$ or (2) $(e_{k+1}, e') \notin cep(H, x)$.

Thus, by Observation 2, we have $f(\{e_{k+1}\}) = 0$.

Case 2a: Suppose $|cep(H_{B_{k+1}}, x)| = 0$. Then by definition of α , C^* , we have $\alpha(B_{k+1}) = \alpha(B_k) + 1$, and $f(\{B_k \cup e_{k+1}\}) - f(B_k) \le C^* + 1$. Substituting this, we get $f(B_{k+1}) \le (C^* + 1) + \sum_{i=1}^k f(\{e_i\}) + (C^* + 1)\alpha(B_k) = \sum_{i=1}^{k+1} f(\{e_i\}) + (C^* + 1)\alpha(B_{k+1})$.

Case 2b: In other cases, $f(B_k \cup \{e_{k+1}\}) - f(B_k) = f(\{e_{k+1}\}) = 0$. This exhausts our cases and the claim is true $\forall b, b > 0$.

D Construction for the tight lower bound in Thm. 2

One can construct a graph H and the sets Q,R where equality holds. In particular, let R be of an arbitrary size b. Consider H_Q to have the MBS partition as V_1,V_2 each of size $\frac{\Delta(H_Q)}{2}$. Nodes of type 1 (Obs. 2) are attached to these each with the sole connected component of size $\frac{\Delta(H_Q)-2}{2}$. Let these nodes have 3 such connections (thus, removing two will help - any two such that our "connected assumption" holds are in the set R). We have another node of type 1 such that only two such connections are connected and one of these is in R and the connected component C to it is of size 0. This completes the set R. Thus, $\sum_{e\in R} \left[f(Q \cup \{e\}) - f(Q) = 1 \text{ and } f(Q \cup R) - f(Q) = 1 + \left(\frac{\Delta(H_Q)-2}{2} + 1 \right) \frac{b-1}{2}$.