0.1 B3 Analog Modulation

We will discuss three main modulation techniques, namely

- 1. Amplitude Modulation (AM),
- 2. Phase Modulation (PM), and
- 3. Frequency Modulation (FM)

Let us agree to define $m(t) \iff \mathbf{S}(f)$ as some real-valued, strictly bandlimited, baseband signal. And our carrier wave $A_c \cos 2\pi f_c t$ at carrier frequency $f_c \text{Hz}$.

Definition. Coherent Demodulation is when the demodulator requires a reference signal which has exactly the same frequency and phase as the carrier signal.

0.1.1 DSB-LC AM

Transmitted Signal

$$s_{LC}(t) = A_c \left(1 + km(t) \right) \cos(2\pi f_c t) \tag{1}$$

$$\mathbf{S}_{LC}(f) = \frac{A_c}{2} \left[\delta(f - f_c) + \delta(f + f_c) \right] + \frac{kA_c}{2} \left[\mathbf{M}(f - f_c) + \mathbf{M}(f + f_c) \right]$$
(2)

Modulation Considerations

- k is chosen such that $1 + km(t) \ge 0$ for all $t \ge 0$ to prevent phase reversal,
- AM Modulation index: $\phi = -km_{min} \le 1$,
- Percentage Modulation: 100ϕ ,
- Under/Over-modulation $\phi < 1$ or $\phi > 1$

Power efficiency

• The unmodulated carrier component has power

$$P_c = \frac{A_c^2}{2}$$

• The information signal power,

$$P_s = \frac{(kA_c)^2}{2} \int |m(t)|^2 dt$$

• The required power,

$$P_t = P_c + P_s$$

• It can be shown that assuming that m(t) is a sinusoid, then the information signal power is bounded above by

$$P_s \le \frac{1}{3}P_t$$

(Waste power bad!)

What to Remember (DSB-LC AM).

- 1. Simple and Robust
- 2. Envelope Detection, does not require coherent demodulation.
- 3. Bandwidth: m(t) has bandwidth W, then $s_{LC}(t)$ will require 2W bandwidth,
- 4. Low POWER efficiency, because of unmodulated carrier component
- 5. Bandwidth Overlapping: Require $W \ll f_c$.
- 6. Within AWGN channel, provides better SNR than DSB-SC, SSB-SC.

0.1.2 DSB-SC AM

Transmitted Signal

$$s_{SC}(t) = A_c k m(t) \cos(2\pi f_c t) \tag{3}$$

$$\mathbf{S}_{SC}(f) = \frac{kA_c}{2} \left[\mathbf{M}(f - f_c) + \mathbf{M}(f + f_c) \right]$$
 (4)

What to Remember (DSB-SC AM).

1. Not as simple as DSB-LC

2. Requires coherent demodulation. Complicated set up.

3. Bandwidth: 2W, same as DSB-LC

4. Power Efficiency: Higher than DSB-LC

0.1.3 SSB-SC AM

Single-sideband, suppressed carrier. We either choose Upper or Lower side bands (away and towards the origin), because of hermitian symmetry of S(f).

• Bandwidth: W, improved,

• Hard to realize the phase splitter (unit-step in frequency domain) at baseband, because of the discontinuity at f = 0.

• Demodulation is even more complex than DSB-SC

0.1.4 FM

What to Remember.

1. $s_{FM}(t) = A_c \cos(\theta(t))$, with $\theta(t)$ being the 'phase' of the transmitted signal

$$\theta(t) = 2\pi \left(f_c t + k \int_{-\infty}^t m(x) dx \right)$$

The instantaneous frequency is therefore

$$\frac{d}{dt}\theta(t) = 2\pi(f_c + km(t))$$

2. Phase proportional to integral of m(t).

3. Peak Frequency Deviation: $\Delta f = k ||m(t)||_{\infty}$,

4. FM Index: $\beta = \Delta f/W$, W is the bandwidth of m(t)

5. Carson's Rule: required bandwidth for FM $B_{FM} \approx 2(1+\beta)W$

3

- 6. FM requires much larger BW than AM,
- 7. Increasing β increases required BW, and improves $SNR_{out} = SNR_{in}[3\beta^2(1+\beta)/2]$.
- 8. AM radio systems operate at much lower BW than FM. $500-1700 \mathrm{kHz}$ compared to $88-108 \mathrm{MHz}$.

0.1.5 PM

What to Remember.

1. Transmitted Signal

$$s_{PM}(t) = A_c \cosigg(2\pi f_c t + k m(t)igg)$$

- 2. Instant Frequency is proportional to $\frac{d}{dt}m(t)$.
- 3. Phase proportional to m(t).

test