معسكر النماذج اللّغويّة الكبيرة

التعلم العميق و الانتشار العكسي Deep Learning & Backpropagation

- مقدمة عن التعلم العميق
 - تطبيقات التعلم العميق
 الشبكات العصبية

 - دوال التنشيط
- شبكة عصبية ذات تغذية أمامية
- معاملات ضبط الشبكة العصبية
- كيف تتعلم الشبكات العصبية؟

المحتوى

مقدمة عن التعلم العميق

تعلم الآلة

تعلم الآلة هو نوع من الذكاء اللصطناعي يزود أجهزة الكمبيوتر بالقدرة على التعلم دون أن تتم برمجتها بشكل صريح.

التعلم العميق

- جزء من مجال تعلم الآلة.
- فعال بشكل استثنائي في تحديد وتعلم الأنماط.
- يستخدم خوارزميات التعلم التي تستمد المعنى من البيانات باستخدام تسلسل هرمي من طبقات متعددة تحاكي الشبكات العصبية في الدماغ البشري.

مقارنة

تطبيقات التعلم العميق

تطبيقات التعلم العميق

- رؤیة الحاسوب: معالجة الصور ، والتعرف على الوجوه، واكتشاف الكائنات ، وتحلیلات الفیدیو.
 - التعلم التعزيزي العميق
- معالجة اللغة الطبيعية: تحليل المشاعر ، التعرف على الكلام ، تحويل النص إلى كلام ، الذكاء الاصطناعي للمحادثة.

Optical Character Recognition التعرف الآلي على الحروف

التعرف على الوجوه

المساعد الدفتراضي

التحليل الدنحداري للسلاسل الزمنية

تنظيف الصور من التشويش

الشبكات العصبية Neural Networks

تشبيه

يمتلك دماغنا الكثير من الخلايا العصبية المتصلة ببعضها البعض وتمثل قوة الروابط بين الخلايا العصبية معرفة طويلة المدى.

تشبيه

هيكل الشبكة العصبية

يتكون الجزء الداخلي من الخلايا العصبية الاصطناعية من جزأين أساسيين:

- الجزء الأول يحتسب المجموع المرجح للمدخلات أي الناتج الصافي
 - الجزء الثاني يتلقى المجموع المرجح ويعطي الناتج النهائي.

دوال التنشيط Activation Functions

دوال التنشيط الأكثر استخداماً

فيما يلي أشهر دوال التنشيط:

♦ وحدة خطبة مصححة ReLU

♦ سيجمويد Sigmoid

♦ ظل زائدی Tanh

الإدخال

خطوة ثنائية (Binary Step)

تخبر ما إذا كانت قيمة الإدخال أعلى أو أقل من 0

وحدة خطية مصححة (ReLU)

سيجمويد (Sigmoid)

الظل الزائدي (tanh)

شبكة عصبية ذات تغذية أمامية

بیرسبترون

- خلية عصبية ذات ناتج واحد
 دالة التنشيط :خطوة ثنائية (Binary Step)
- تستخدم للتصنيف بين الفئات القابلة للفصل خطيًا.

$$y = sign\left(\sum_{i=1}^{n} w_i x_i + b\right)$$

المعاملات الخاضعة للتدريب

شبكة ذات طبقة مخفية واحدة

• لدينا طبقة واحدة تسمى "مخفية "بين طبقات الإدخال والإخراج.

- يحسب المجموع المرجح لمخرجات الطبقة السابقة.
- يتم تمرير المجموع إلى دالة التنشيط للحصول على الناتج النهائي.

- يحسب المجموع المرجح للمدخلات. يمرر المجموع إلى وظيفة التنشيط للحصول على الإخراج ليتم تمريره كمدخل للطبقة التالية.

الشبكات العصبية العميقة

معاملات ضبط الشبكات العصبية Neural Network Hyperparameters

أنواع الدوال التنشيطية

- لا توجد قاعدة أساسية
- يميل المطورون إلى استخدام ReLU في طبقاتهم المخفية.
- يجب أن يكون تنشيط طبقة الإخراج متسقًا مع نوع المشكلة.
- لا يتم استخدام الخطوة الثنائية كثيرًا لأنها تحتوي على
 انقطاع عند القيمة 0وهذا يؤدي إلى مشاكل في
 المشتقات المحتسبة أثناء مرحلة التعلم.

معدل التعلم

• يعد اختيار معدل التعلم الصحيح خطوة أساسية للوصول إلى التقارب.

$$w := w - \alpha \, \frac{\partial J}{\partial w}$$

حجم الحزمة

كمية البيانات التي تغذيها للشبكة قبل إجراء تحديث في الأوزان.

الدورات

عدد المرات التي نغذي فيها جميع أمثلة مجموعة التدريب لشبكتنا.

حجم الحزمة مقابل الدورات

حجم الحزمة مقابل الدورات

حجم الحزمة مقابل الدورات

حجم الحزمة مقابل الدورات

التدريب العملي: بناء شبكتك العصبية الأولى Hands-on: Build your first NN

كيف تتعلم الشبكات العصبية؟

هيكل البيانات

نأخذ حالة عامة حيث تتكون بيانات الإدخال من:

- کل منهم یحتوي علی nمن الخصائص
 ناتج واحد فقط

هيكل الشبكة

في الحالة العامة التي اتخذناها ، تتألف الشبكة العصبية من:

طبقات مخفیة

• طبقة إخراج (من خلية عصبية

واحدة)

الأوزان

:الوزن $W^l_{(i,j)}$ يتم تعريفه بثلاث خصائص

- لفهرس طبقة الوجهة (المتجه إليها)
 - / فهرس الخلية العصبية بالطبقة
- (خلية المصدر) j فهرس الخلية العصبية بالطبقة f

الأوزان

- /فهرس طبقة الوجهة (المتجه إليها)
 - /فهرس الخلية العصبية بالطبقة
- /فهرس الخلية العصبية بالطبقة) 1-/خلية المصدر)

طبقة 3 طبقة 1 طبقة 0

عادة ما يتم تهيئة قيم الأوزان الأولية بشكل عشوائي

التحيز

طبقة 0	طبقة 1	طبقة 2	طبقة 3

عادة ما يتم تهيئة قيم التحيز الأولية بشكل عشوائي

- التحيز هو سمة من سمات الخلية العصبية.
 - : b_i^l يتم تمثيل التحيز بالرمز ullet
- هُ أَ هُو فهرس الخلية الوجهة. أ
- / هو فهرس الطبقة الوجهة.

الانتشار الأمامي Feed Forward

الانتشار الأمامي

تذكر الدالة التي تعمل عليها خلية عصبية واحدة لها مدخلات متعددة.

الانتشار الأمامي

سيتم الآن تنفيذ هذه الدالة لكل خلية عصبية في كل طبقة من طبقات الشبكة على النحو التالي:

- تعمل الخلايا العصبية في كل طبقة في وقت واحد.
 - دوال التنشيط هي نفسها في كل طبقة.

دالة التكلفة Cost Function

دالة الخسارة Loss Function

- بعد اكتمال الانتشار الأمامي ، نحصل على القيمة المتوقعة 'yالمقابلة للمدخلات التي قدمناها.
- نحدد دالة الخسارة على أنها **مقياس الخطأ** بين القيمة المتوقعة ('y)والقيمة الصحيحة (y) لمدخل معين.

دالة التكلفة Cost Function

تخبرك دالة التكلفة بنسبة "ارتكاب الأخطاء "من خلال احتساب متوسط دوال الخسارة المحسوبة على جميع أمثلة التدريب الفردية للنموذج.

الانتشار العكسي

تحاول هذه الخوارزمية تقليل دالة التكلفة لعن طريق ضبط الأوزان. المعطيات:

• دالة التكلفة :

$$J = f(w)$$

• مشتقة دالة التكلفة بالنسبة للأوزان:

$$\frac{dJ}{dw} = \frac{df(w)}{dw}$$

 α معدل التعلم \bullet

النزول الاشتقاقي

سنستخدم خوارزمية النزول الاشتقاقي لإيجاد الحد الأدني:

عدل قيمة ٧٧ وفقا للمعادلة:

$$w_0 \coloneqq w_0 - \alpha \frac{dJ}{dw} \bigg|_{w = w_0}$$

• كرر من الخطوة رقم 2

مختلفات النزول الاشتقاقي

مسألة التحسين	عدد الأمثلة في الخطوة الواحدة لتحديث الأوزان	عدد التحديثات في الدورة الكاملة
نزول اشتقاقي بحزمة كاملة Batch Gradient Descent	مجموعة البيانات كاملة	1
نزول اشتقاقي بحزم صغيرة Mini-batch Gradient Descent	مجموعة فرعية من البيانات	الحجم الكلي مقسّماً على حجم الحزمة الصغيرة
نزول اشتقاقي عشوائي Stochastic Gradient Descent	مثال واحد فقط	عدد الأمثلة في المجموعة كاملة

أنواع النزول الاشتقاقي

Batch gradient descent

Mini-batch gradient Descent

— Stochastic gradient descent

نزول اشتقاقي بحزمة كاملة نزول اشتقاقي بحزم صغيرة نزول اشتقاقي عشوائي (بمثال واحد)

الدنتشار العكسي Backward Pass

الانتشار العكسي

ينطبق مبدأ النزول الاشتقاقي نفسه عندما تتعامل مع دالة (J)لمتغيرات متعددة (أوزان وتحيز)

$$\frac{\partial J}{\partial W^3} = \begin{bmatrix} \frac{\partial J}{\partial W_{00}^3} & \frac{\partial J}{\partial W_{01}^3} \end{bmatrix} \quad \frac{\partial J}{\partial b^3} = \begin{bmatrix} \frac{\partial J}{\partial b_0^3} \end{bmatrix}$$

$$\frac{\partial J}{\partial W^2} = \begin{bmatrix} \frac{\partial J}{\partial W_{00}^2} & \frac{\partial J}{\partial W_{01}^2} & \frac{\partial J}{\partial W_{02}^2} \\ \frac{\partial J}{\partial W_{10}^2} & \frac{\partial J}{\partial W_{11}^2} & \frac{\partial J}{\partial W_{12}^2} \end{bmatrix} \quad \frac{\partial J}{\partial b^2} = \begin{bmatrix} \frac{\partial J}{\partial b_0^2} \\ \frac{\partial J}{\partial b_1^2} \end{bmatrix}$$

$$\frac{\partial J}{\partial W^3} = \begin{bmatrix} \frac{\partial J}{\partial W_{00}^3} & \frac{\partial J}{\partial W_{01}^3} \end{bmatrix} \quad \frac{\partial J}{\partial b^3} = \begin{bmatrix} \frac{\partial J}{\partial b_0^3} \end{bmatrix} \qquad \frac{\partial J}{\partial W^2} = \begin{bmatrix} \frac{\partial J}{\partial W_{00}^2} & \frac{\partial J}{\partial W_{01}^2} & \frac{\partial J}{\partial W_{02}^2} \\ \frac{\partial J}{\partial W_{10}^2} & \frac{\partial J}{\partial W_{12}^2} \end{bmatrix} \qquad \frac{\partial J}{\partial b^2} = \begin{bmatrix} \frac{\partial J}{\partial b_0^2} \\ \frac{\partial J}{\partial b_1^2} \end{bmatrix} \qquad \frac{\partial J}{\partial W^1} = \begin{bmatrix} \frac{\partial J}{\partial W_{00}^1} & \frac{\partial J}{\partial W_{01}^1} \\ \frac{\partial J}{\partial W_{10}^1} & \frac{\partial J}{\partial W_{11}^1} \\ \frac{\partial J}{\partial W_{20}^1} & \frac{\partial J}{\partial W_{21}^1} \end{bmatrix} \qquad \frac{\partial J}{\partial b^1} = \begin{bmatrix} \frac{\partial J}{\partial b_0^1} \\ \frac{\partial J}{\partial b_1^2} \\ \frac{\partial J}{\partial b_2^1} \end{bmatrix}$$

الطبقة الثالثة Laver 3

الطبقة الثانية 2 Layer

الطبقة الأولى Layer 1

عملية الانتشار العكسي

- نبدأ عند طبقة الإخراج. - نحتسب مشتقات دالة الخسارة بالنسبة للأوزان.
 - يتم تحديث الأوزان.
 - ننتقل عكسيّاً للخلف إلى الطبقات المخفية.

تحديث الوزن والتحيز Weight & Bias Update

تحديث الوزن

بعد احتساب المشتقات ، نحتسب الأوزان باستخدام النزول الاشتقاقي (حيث α :هو معدل التعلم)

$$W^1 \coloneqq W^1 - \alpha \frac{\partial J}{\partial W^1}$$

$$b^1 \coloneqq b^1 - \alpha \frac{\partial J}{\partial b^1}$$

$$W^2 := W^2 - \alpha \frac{\partial J}{\partial W^2}$$

$$b^2 \coloneqq b^2 - \alpha \frac{\partial J}{\partial b^2}$$

$$W^3 := W^3 - \alpha \frac{\partial J}{\partial W^3}$$

$$b^3 := b^3 - \alpha \frac{\partial J}{\partial h^3}$$

كرر العملية مرة أخرى

الآن وبعد أن قمنا باحتساب الأوزان الجديدة ، نكرر عمليتي الانتشار الأمامي –العكسي تباعاً عدة مرات.

- نتوقف في حالتين:
- نصل إلى أقصى عدد من التكرارات.
 - c نصل إلى القيمة المثلى للأوزان.

الخلاصة

شكراً لكم

Thank you

