Hawkes processes

(updated 11th Aug 7.12am). Consider a time-inhomogenous Poisson process $(N_t)_{t\geq 0} \in \mathbb{N}$ whose intensity is itself a random process λ_t which evolves as

$$\lambda_t = \mu + \int_{[0,t]} \phi(t-s) dN_s$$

i.e. λ depends on the history of N itself, where μ is a positive constant and ϕ a positive function. For this reason we say that N is **self-exciting**, and we can view this as a special type of **Stochastic Volterra Equation** (SVE) with no Brownian motion. The meaning of the λ_t is that $\lim_{h\to 0} \frac{1}{h} \mathbb{P}(N_{t+h} - N_t > 0 | \mathcal{F}_t^{\lambda,N}) = \lambda_t$, and note we can re-write λ as

$$\lambda_t = \lambda_0 + \sum_{0 \le s_i \le t} \phi(t - s_i)$$

where $s_1, s_2, ...$ are the random **jump times** of N, which we can also take as the definition of λ .

If we let $M_t = N_t - \int_0^t \lambda_u du$, then M is a martingale and we can re-write the λ equation as

$$\lambda_t = \mu + \int_{[0,t]} \phi(t-s)(dM_t + \lambda_t dt) = \mu + (\phi * dM)_t + (\phi * \lambda)_t.$$

For any $f \in L^1(0,\infty)$, we can easily check that $\|\phi * f\| = \|\phi\| \|f\|$, where all norms will refer to the $L^1(0,\infty)$ norm, so the operator $\phi *$ is a contraction on $L^1(0,\infty)$ if $\|\phi\| = \int_0^\infty \phi(u) du < 1$, so the inverse $(I - \phi *)^{-1} = I + (\phi *) + (\phi *)^2 + ...$ is well defined. We can re-write the eq for λ_t as

$$(I - \phi *) \lambda = \mu + \phi * dM.$$

To make further sense of $(I - \phi^*)^{-1}$, we look for a function ψ such that

$$(I - \phi *)^{-1} f = (I + \psi *) f$$

for any test function $f \in L^1(0,\infty)$, so

$$f = (I - \phi *)(I + \psi *)f = (I - \phi *)(f + \psi * f)$$

= $f - \phi * f + \psi * f - \phi * \psi * f$

which we can re-write in operator form (i.e. without the f) as $\phi * \psi = \psi - \phi$. ψ is known as the **resolvent** of ϕ , note definition here is opposite way round to chap 3 in FM14. Applying this to our Hawkes process i.e. setting $f(t) = \lambda_t$, we see that

$$\lambda = (I - \phi *)^{-1} (\mu + \phi * dM) = (1 + \psi) * \mu + (I + \psi) * (\phi * dM)$$

$$= \mu + \psi * \mu + (\phi * + (\phi *)^2 + ...) * dM$$

$$= \mu + \psi * \mu + \psi * dM$$

where $\psi = \sum_{k=1}^{\infty} (\phi *)^k$, which is shorthand for

$$\lambda_t = \mu + \mu \int_{[0,t]} \psi(t-s)ds + \int_{[0,t]} \psi(t-s)dM_s$$
 (1)

The propagator model - concave price impact from Hawkes order flow

Consider two independent Hawkes processes N_t^{\pm} with associated intensities λ_t^{\pm} which evolve as with

$$\lambda_t^{\pm} = \mu + \mu \int_0^t \psi(t-s)ds + \int_0^t \psi(t-s)dM_s^{\pm}$$

where $dM_t^{\pm} = dN_t^{\pm} - \lambda_t^{\pm} dt$. Then

$$\mathbb{E}_{t}(N_{u}^{+}) = g(t) + \mathbb{E}_{t}(\int_{0}^{u} \int_{0}^{s} \psi(s-v)dM_{v}^{+}ds) = g(t) + \mathbb{E}_{t}(\int_{0}^{u} \int_{v}^{u} \psi(s-v)dsdM_{v}^{+}) \\
= g(t) + \int_{0}^{t} \int_{v}^{u} \psi(s-v)dsdM_{v}^{+}$$

for some function g(t), and note that $\int_v^\infty \psi(s-v)ds = \int_0^\infty \psi(s)ds = \|\psi\|_1$. Then if we assume the current price $P_t = \kappa \lim_{u \to \infty} \mathbb{E}(N_u^+ - N_u^- | \mathcal{F}_t)$ for some constant $\kappa > 0$, then

$$\frac{1}{\kappa}P_t = \lim_{u \to \infty} \mathbb{E}(N_u^+ - N_u^- | \mathcal{F}_t) = \int_0^t \sigma(dM_v^+ - dM_v^-)$$

where $\sigma = ||\psi||$. Then

$$\frac{1}{\sigma}P_{t} = N_{t}^{+} - N_{t}^{-} - \int_{0}^{t} \lambda_{s}^{+} ds + \int_{0}^{t} \lambda_{s}^{-} ds = N_{t}^{+} - N_{t}^{-} - \int_{0}^{t} \int_{u}^{t} \phi(s-u)ds(dN_{u}^{+} - dN_{u}^{-})$$

$$= \int_{0}^{t} (1 - \int_{0}^{t-u} \phi(s)ds)(dN_{u}^{+} - dN_{u}^{-})$$

so

$$P_t = \int_0^t \zeta(t - u)(dN_u^+ - dN_u^-)$$
 (2)

where $\zeta(t) = \kappa \sigma(1 - \int_0^t \phi(s) ds) \searrow \kappa \sigma(1 - \|\phi\|)$ as $t \to \infty$, so

$$\zeta'(t) = -\kappa\sigma\phi(t) = -\zeta(0)\phi(t)$$

and since $\zeta(\infty) > 0$ under our standing assumption that $\|\phi\| < 1$, we interpret $\zeta(\infty)$ as the (non-transient) permanent price impact component of ζ . Hence from the Volterra form in (2), we see that P is a **propagator model** (e.g. like transient price impact) but also retains the martingale property.

Impact of a metaorder executed at constant rate before and after completion

Consider the additional contribution from an additional agent who buys at a fixed rate v for duration τ . Then impact the cumulative impact time t is

$$P_{t} = \int_{0}^{t} \zeta(t-u)(dN_{u}^{+} - dN_{u}^{-}) + v \int_{0}^{t \wedge \tau} \zeta(t-s)ds$$

whose expectation is $MI(t) = v \int_0^{t \wedge \tau} \zeta(t-s) ds$, which we call the **market impact function**, see plot below where we see **concave price impact** up to τ , and then decay thereafter (which is broadly consistent with empirical findings where MI(t) is often found to be $const. \times t^{\frac{1}{2}}$ for $t < \tau$ (the so-called **square root impact law**.)

Example ϕ and ψ functions

One can easily check that $\|\phi\| = \frac{\|\psi\|}{1+\|\psi\|}$ so $\|\psi\| = \frac{\|\phi\|}{1-\|\phi\|}$. A common choice for ϕ is

$$\phi(t) = \nu t^{\alpha - 1} E_{\alpha, \alpha}(-\lambda t^{\alpha})$$

where $E_{\alpha,\alpha}$ is the **Mittag-Leffler** function (which is **heavy-tailed** since $\phi(t) \sim \frac{const.}{t^{1+\alpha}}$ as $t \to \infty$), and $\int_0^\infty \phi(t)dt = \frac{\nu}{\lambda}$ so we choose $\nu < \lambda$. For this choice of ϕ , the resolvent is

$$\psi(t) = \nu t^{\alpha - 1} E_{\alpha, \alpha}(-(\lambda - \nu)t^{\alpha})$$

and as $\nu \nearrow \lambda$, $\|\phi\| \nearrow 1$ and $\|\psi\| \nearrow \infty$ (see also table below).

	$\psi(t)$	$\phi(t)$
Constant	c	$c e^{-ct}$
Fractional	$\frac{c t^{\alpha - 1}}{\Gamma(\alpha)}$	$c t^{\alpha - 1} E_{\alpha, \alpha}(-c t^{\alpha})$
Exponential	$c e^{-\lambda t}$	$c e^{-(\lambda+c)t}$
Gamma	$\frac{c e^{-\lambda t} t^{\alpha - 1}}{\Gamma(\alpha)}$	$c e^{-\lambda t} t^{\alpha - 1} E_{\alpha, \alpha}(-c t^{\alpha})$

Figure 1: Here we we have simulated the intensity process of the form $\lambda_t = \lambda_0 + \int_0^t k(t-s)dN_s$ for $k(t) = e^{-10t}$ and $\lambda_0 = 50$.

Figure 2: Here we see a typical concave market impact function $MI(t) = \int_0^{t \wedge \tau} \zeta(t-s) ds$ with $\tau = 1$.

Interpretation of a Hawkes process in terms of population dynamics

Let us define a population model: At time zero, there are no individuals. Some individuals (migrants) arrive as a uniform Poisson process with intensity μ . If a migrant arrives at time s, the birth dates of its children form a Poisson process of intensity $\phi(t-s)$ at time t, with $\int_0^\infty \phi(t)dt < 1$. In the same way, if a child is born at s', the birth dates of its children form a Poisson process of intensity $\phi(\cdot - s')$. Let N_t be the number of individuals who were born or migrated until time t. Then N is a Poisson-type process with intensity

$$\lambda_t = \mu + \int_0^t \phi(t-s) \, dN_s \tag{3}$$

i.e. N is a Hawkes process. This captures the notion of the process being self-exciting.

References

[FL04] Lillo, F., Mike, S., and Farmer, J. D., "Theory for long-memory in supply and demand," *Physical Review E*, vol. 71, no. 6, Part 2, Art. no. 066122, 2005.

[Jai15] Jaisson, T., "Market impact as anticipation of the order flow imbalance," Quantitative Finance, vol. 15, no. 7, pp. 1123–1135, 2015.

[JR20] Jusselin, P., and Rosenbaum, M., "No-arbitrage implies power-law market impact and rough volatility," *Mathematical Finance*, vol. 30, no. 4, pp. 1309–1336, 2020.

[DRS23] Durin, B., Rosenbaum, M., and Szymanski, G., "The two square root laws of market impact and the role of sophisticated market participants," Preprint, 2023. Available at arXiv:2311.18283.