

# Capítulo 11: Almacenamiento y estructura de archivos

Fundamentos de Bases de datos, 5ª Edición.

©Silberschatz, Korth y Sudarshan
Consulte <a href="https://www.db-book.com">www.db-book.com</a> sobre condiciones de uso





## Capítulo 11: Almacenamiento y estructura de archivos

- Visión general de los medios físicos de almacenamiento
- Discos magnéticos
- RAID
- Almacenamiento terciario
- Acceso al almacenamiento
- Organización de archivos
- Organización de los registros en archivos
- Almacenamiento del diccionarios de datos
- Estructuras de almacenamiento para las bases de datos orientadas a objetos



# Clasificación de los medios físicos de almacenamiento

- Velocidad a la que se puede acceder a los datos
- Coste por unidad de datos
- Fiabilidad
  - pérdida de datos por fallos del suministro eléctrico o caídas del sistema
  - fallos físicos de los dispositivos de almacenamiento
- El almacenamiento se puede dividir en:
  - almacenamiento volátil; el contenido se pierde cuando se corta el suministro eléctrico
  - almacenamiento no volátil
    - El contenido se conserva cuando se corta el suministro eléctrico.
    - Incluye almacenamiento secundario y terciario, así como memoria principal con batería de salvaguarda.





### Medios físicos de almacenamiento

- Cache la forma más rápida y costosa de almacenamiento; volátil; gestionada por el hardware del sistema informático. No es gestionada por los motores de base de datos.
- Memoria principal:
  - acceso rápido (de 10 a 100 nanosegundos; 1 nanosegundo = 10<sup>-9</sup> segundos)
  - generalmente demasiado pequeña (o demasiado cara) para almacenar toda la base de datos
    - capacidades de hasta unos pocos Gigabytes, ampliamente usada en la actualidad
    - La capacidades han aumentado y los costes por byte han disminuido de forma constante y rápida (aproximadamente un factor 2 cada 2 ó 3 años)
  - Volátil los contenidos de la memoria principal generalmente se pierden si se produce un fallo en el suministro eléctrico o una caída del sistema.





#### Memoria flash

- Los datos superan los fallos del suministro eléctrico
- Se pueden escribir datos en una posición sólo una vez, pero la posición puede ser borrada y grabada de nuevo
  - Sólo puede soportar un número limitado de ciclos (10K 1M) de escritura / borrado.
  - El borrado de la memoria ha de hacerse sobre una banco entero de memoria
- Las lecturas son aproximadamente tan rápidas como en memoria principal
- Aunque las escrituras son lentas (unos pocos microsegundos), borrar es más lento
- El coste por unidad de almacenamiento es aproximadamente igual al de la memoria principal
- Usada ampliamente en dispositivos incorporados, tales como cámaras digitales
- también conocido como EEPROM (Memoria de lectura y borrado programable eléctricamente)





#### Disco magnético

- Los datos se almacenan sobre disco giratorios y son leídos / grabados magnéticamente
- Soporte primario para el almacenamiento de datos a largo plazo; generalmente almacena toda la base de datos.
- Para los accesos se deben mover los datos desde disco a memoria principal y para el almacenamiento se han de volver a escribir
  - Acceso mucho más lento que en memoria principal (más sobre ello posteriormente)
- acceso directo adecuado para las lecturas de datos en disco en cualquier orden, a diferencia de la cinta magnética
- Rango de capacidades de hasta aproximadamente 700 GB en la actualidad
  - Mucha más capacidad y mejor coste por byte que en memoria principal / memoria flash
  - Creciendo constante y rápidamente, con perfeccionamiento tecnológico (un factor de 2 a 3 cada 2 años)
- Sobrevive a los fallos de suministro eléctrico y las caídas del sistema
  - un fallo de disco puede destruir datos, pero es muy raro





#### Almacenamiento óptico

- no volátil, los datos se leen ópticamente, por medio de un láser, desde un disco giratorio
- los formatos más populares son CD-ROM (640 MB) y DVD (4.7 hasta 17 GB)
- Discos ópticos de escritura única y lectura múltiple, empleados para el almacenamiento de archivos (CD-R, DVD-R y DVD+R)
- También están disponibles versiones de escritura múltiple (CD-RW, DVD-RW, DVD+RW y DVD-RAM)
- Las lecturas y escrituras son más lentas que con discos magnéticos
- Sistemas de Juke-box, con gran número de discos removibles, unos cuantos lectores y un mecanismo para la carga/descarga automática de discos, para el almacenamiento de grandes volúmenes de datos





#### Almacenamiento en cinta

- no volátil, empleado principalmente para copias de seguridad (para la recuperación de un fallo de disco) y para datos de archivo
- acceso secuencial mucho más lento que los discos
- capacidad muy alta (cintas disponibles de 40 a 300 GB)
- El coste de almacenamiento es más barato que el disco pero las unidades de cinta son caras
- Cambiadores de cintas disponible para el almacenamiento de cantidades masivas de datos
  - desde cientos de terabytes (1 terabyte = 10<sup>9</sup> bytes) hasta incluso un petabyte (1 petabyte = 10<sup>12</sup> bytes)



## Jerarquía de almacenamiento







## Jerarquía de almacenamiento (cont.)

- almacenamiento principal: Es el medio más rápido, pero volátil (caché, memoria principal).
- almacenamiento secundario: siguiente nivel jerárquico, no volátil, tiempos de acceso moderadamente rápidos
  - también llamado almacenamiento en conexión
  - Por ejemplo, memoria flash, discos magnéticos
- almacenamiento terciario: nivel jerárquico más bajo, no volátil, tiempo de acceso lento
  - también llamado almacenamiento sin conexión
  - Por ejemplo, cintas magnéticas, almacenamiento óptico





### Mecanismos de discos rígidos magnéticos



NOTA: El diagrama es esquemático y simplifica la estructura de los controles de discos reales



## Discos magnéticos

- Cabeza de lectura y escritura
  - Colocado muy cerca de la superficie del plato (casi tocándolo)
  - Lee o escribe magnéticamente información codificada.
- La superficie del plato está dividida en pistas circulares
  - Alrededor de 50K-100Kpistas por plato en los discos rígidos típicos
- Cada pista está dividida en sectores.
  - Un sector es la unidad más pequeña de datos que puede ser leída o escrita.
  - El tamaño típico del sector es de 512 bytes
  - Sectores típicos por pista: de 500 (en pistas internas) hasta 1000 (en pistas externas)
- Para leer / escribir un sector
  - el brazo del disco gira hasta situar la cabeza sobre la pista correcta
  - el plato gira continuamente; los datos se leen / escriben según el sector pasa bajo la cabeza
- Dispositivos cabeza-disco
  - múltiples platos de discos en un solo huso (generalmente de 1 a 5)
  - una cabeza por plato, montadas sobre un brazo común.
- Cilindro i consta de i<sup>th</sup> pistas de todos los platos





## Discos magnéticos (cont.)

- Los discos de anteriores generaciones estaban expuestos a las caídas de las cabezas
  - Las superficies de los discos de anteriores generaciones tenían óxidos metálicos que se descomponían sobre la cabeza caída y dañaban todos los datos del disco
  - Los discos de las generaciones actuales están menos expuestos a tales desastres, aunque se pueden corromper sectores individuales
- Controlador de disco interfaces entre el sistema informático y el hardware de la unidad de disco.
  - acepta comandos de alto nivel para leer o escribir un sector
  - inicia acciones como mover el brazo del disco a la pista correcta y leer o escribir los datos
  - Calcula y añade comprobaciones de suma a cada sector, para verificar que los datos se vuelvan a leer correctamente
    - Si los datos está corruptos, muy probablemente la comprobación de suma almacenada no se corresponderá con la comprobación de suma recalculada
  - Asegura una escritura satisfactoria, volviendo a leer el sector después de escribirlo
  - Realiza reasignaciones de sectores defectuosos





#### Subsistema de discos



- Múltiples discos conectados a un sistema informático por medio de un controlador
  - La funcionalidad de los controladores (comprobación de suma, reasignación de sectores defectuosos) frecuentemente es llevada a cabo mediante discos individuales; reduce la carga sobre el controlador
- Familias de estándares de interfaz de discos
  - ATA (adaptador AT)
  - SATA (Serial ATA)
  - SCSI (interconexión de pequeños sistemas informáticos)
  - Diversas variantes de cada estándar (diferentes velocidades y capacidades)





### Medidas del rendimiento de discos

- Tiempo de acceso el tiempo que lleva desde que se solicita una lectura o escritura, hasta que comienza la transferencia de los datos. Consta de:
  - Tiempo de búsqueda tiempo que se tarda en reposicionar el brazo sobre la pista correcta.
    - ▶ El tiempo medio de búsqueda es 1/2 del tiempo de búsqueda en el peor de los casos.
      - Sería 1/3 si todas las pistas tuvieran el mismo número de sectores y se ignorara el tiempo de arranque y parada del movimiento del brazo
    - de 4 a 10 milisegundos en discos típicos
  - Latencia rotacional tiempo de acceso que le lleva al sector situarse debajo de la cabeza.
    - La latencia media es 1/2 de la latencia en el peor de los casos.
    - 4 a 11 milisegundos en discos típicos (5400 a 15000 r.p.m.)
- Velocidad de transferencia de datos la velocidad a la se pueden recuperar los datos del disco o grabarse en él.
  - Velocidad máxima de 25 a 100 MB por segundo, menor en las pistas internas
  - Múltiples discos pueden compartir un controlador, por lo que también es importante poder gestionar la velocidad del controlador
    - Por ejemplo, ATA-5: 66 MB/s, SATA: 150 MB/s, SCSI-3: 40 MB/s
    - Canal de fibra (FC2Gb): 256 MB/s





## Medidas de rendimiento (cont.)

- Tiempo medio entre fallos (MTTF) el tiempo medio que se espera funcione el disco continuamente, sin ningún fallo.
  - Generalmente de 3 a 5 años
  - La probabilidad de fallo de los discos nuevos es muy pequeña, de acuerdo con un "MTTF teórico" de 500.000 a 1.200.000 horas para un disco nuevo
    - Por ejemplo, un MTTF de 1.200.000 horas para un disco nuevo significa que, dados 1.000 discos relativamente nuevos, en promedio fallará uno cada 1.200 horas
  - El MTTF disminuye con la edad de los discos





## Optimización del acceso a los bloques del disco

- Bloque una secuencia contigua de sectores de una sola pista
  - el dato se transfiere en bloques entre el disco y la memoria principal
  - rango de tamaños desde 512 bytes hasta varios kilobytes
    - Bloques más pequeños: más transferencias desde disco
    - Bloques más grandes: más espacio derrochado, debido a los bloques parcialmente llenos
    - El rango de tamaños de los bloques típicos hoy, va desde 4 hasta 16 kilobytes
- Los algoritmos de planificación del brazo del disco ordenan los accesos pendientes a las pistas, de manera que el movimiento del brazo del disco sea mínimo
  - algoritmo del ascensor: se mueve el brazo del disco en una dirección (desde las pistas exteriores a las interiores o viceversa), procesando la siguiente petición en esa dirección hasta que no haya más peticiones, en cuyo caso se invierte la dirección y se repite





# Optimización del acceso a los bloques del disco (cont.)

- Organización de archivos se optimiza el tiempo de acceso a los bloques, organizándolos para que se correspondan con la forma en que se accederá a los datos
  - Por ejemplo La información relacionada se almacena en el mismo cilindro, o en cilindros próximos.
  - Los archivos pueden fragmentarse a lo largo del tiempo
    - Por ejemplo, si los datos se insertan en / borran desde el archivo
    - O se distribuyen los bloques libres sobre el disco, y el archivo creado de nuevo tiene sus bloques distribuidos sobre el disco
    - El acceso secuencial a un archivo fragmentado origina un aumento del movimiento del brazo
  - Algunos sistemas tienen utilidades para defragmentar el sistema de archivos, a la hora de acelerar el acceso a los archivos





# Optimización del acceso a los bloques del disco (cont.)

- Las memorias intermedias de escritura no volátil aceleran las escrituras en disco grabando los bloques directamente sobre una memoria intermedia RAM no volátil
  - RAM no volátil: RAM con batería de salvaguarda o memoria flash
    - Incluso si falla el suministro eléctrico, los datos están seguros y se grabarán sobre el disco cuando vuelva el suministro
  - El controlador graba sobre el disco siempre que el disco no tenga otras peticiones o hayan estado pendientes por algún tiempo
  - Las operaciones de la base de datos que requieren que los datos estén previamente almacenados en forma segura, pueden seguir adelante sin esperar a que se graben
  - Se pueden reordenar las escrituras para minimizar el movimiento del brazo del disco
- Disco de registro histórico— un disco dedicado al registro histórico secuencial de las actualizaciones sobre los bloques
  - Se usa exactamente como la RAM no volátil
    - Escribir sobre el disco de registro histórico es muy rápido, dado que no son necesarias búsquedas
    - No es necesario hardware especial (NV-RAM)
- Los sistemas de archivos generalmente reordenan las escrituras sobre el disco para mejorar el rendimiento
  - Los sistemas de archivos diarios graban datos en orden seguro sobre NV-RAM, o sobre el disco de registro histórico
  - Sin reordenación diaria: riesgo de corrupción de los datos del sistema de archivos





#### RAID

- RAID: Arrays redundantes de discos independientes
  - técnicas de organización de discos que gestionan un gran número de discos, aportando la visión de uno solo de
    - alta capacidad y alta velocidad mediante el uso de múltiples discos en paralelo y
    - alta fiabilidad por el almacenamiento redundante de datos, para que se puedan recuperar incluso si falla un disco
- La posibilidad de que falle algún disco de entre un conjunto de N discos, es mucho mayor que la posibilidad de que falle un determinado disco en solitario.
  - Por ejemplo, un sistema con 100 discos, cada uno con MTTF de 100.000 horas (aproximadamente 11 años), tendrá un MTTF del sistema de 1.000 horas (aproximadamente 41 días)
  - Técnicas del empleo de redundancia para evitar que la pérdida de datos sea crítica con gran número de discos
- Técnicas del empleo de redundancia para evitar que la pérdida de datos sea crítica con gran número de discos
  - Originariamente la I de RAID significaba "barato" (inexpensive)
  - Hoy se emplean los RAID por su alta fiabilidad y ancho de banda.
    - ▶ La "I" se interpreta como independiente





### Mejora de la fiabilidad, vía redundancia

- Redundancia información extra almacenada que se puede emplear para reconstruir la pérdida de información por el fallo de un disco
- Por ejemplo, creación de imágenes (o creación de sombras)
  - Duplicar cada disco. Un disco lógico consta de dos discos físicos.
  - Cada escritura se lleva a cabo en ambos discos.
    - Las lecturas pueden tener lugar desde cualquiera de los discos
  - Si falla uno de los discos del par, los datos todavía están disponibles en el otro
    - La pérdida de datos sólo podría tener lugar si fallaran un disco y, antes de que se reparase el sistema, su disco imagen
      - La probabilidad de sucesos combinados es muy pequeña
        - » Excepto por modos de fallos dependientes tales como un incendio, el hundimiento del edificio o una sobre tensión en el suministro eléctrico
- El tiempo medio entre pérdidas de datos depende del tiempo medio entre fallos, y del tiempo medio de reparación
  - Por ejemplo, MTTF de 100.000 horas, un tiempo medio de reparación de 10 horas da un tiempo medio entre pérdidas de datos de 500\*10<sup>6</sup> horas (ó 57.000 años) para un par de discos en imagen (ignorando modos de fallos dependientes)





### Mejoras en el rendimiento vía paralelismo

- Dos objetivos principales del paralelismo en un sistema de discos:
  - Equilibrar la carga en múltiples accesos pequeños, para incrementar la productividad
  - 2. Paralelizar los accesos grandes para reducir el tiempo de respuesta.
- Mejorar la velocidad de transferencia mediante la distribución de los datos a través de múltiples discos.
- Distribución en el nivel de bit división de los bits de cada byte a través de múltiples discos
  - En un array de ocho discos, se escribe el bit i de cada byte sobre el disco i.
  - Cada acceso puede leer datos a ocho veces la velocidad de solo disco.
  - Sin embargo, el tiempo de búsqueda/acceso es peor que para un solo disco
    - La distribución en el nivel de bit no se usa mucho más
- Distribución en el nivel de bloque con n discos, el bloque i de un archivo va al disco (i mod n) + 1
  - Se pueden ejecutar en paralelo peticiones para diferentes bloques, si los bloques residen en diferentes discos
  - Una petición para una secuencia grande de bloques puede utilizar todos los discos en paralelo





### **Niveles de RAID**

- Esquemas para aportar redundancia al menor coste, empleando distribuciones de discos combinadas con bits de paridad
  - Diferentes organizaciones RAID, o niveles de RAID, tienen costes distintos, rendimientos y fiabilidades característicos
- RAID de nivel 0: Distribución de bloques; sin redundancia.
  - Se utiliza en aplicaciones de alto rendimiento en las que no es crítica la pérdida de datos.
- RAID de nivel 1: Imágenes de discos con distribución de bloques
  - Ofrece el mejor rendimiento de escritura.
  - Es popular en aplicaciones como el almacenamiento de archivos de registros históricos en un sistema de bases de datos.







- RAID de nivel 2: Organización de códigos de corrección de errores tipo memoria (ECC) con distribución de bit.
- RAID de nivel 3: Paridad con bits entrelazados
  - un solo bit de paridad es suficiente para la corrección de errores, no sólo detección, dado que se sabe el disco que ha fallado
    - Cuando se graban datos, los bits de paridad correspondientes se deben calcular y escribir sobre un disco de bit de paridad
    - Para recuperar datos en un disco dañado, calcular XOR de bits desde otros discos (incluyendo el disco de bits de paridad)







- RAID de nivel 3 (Cont.)
  - Transferencia de datos más rápida que con un solo disco, pero menor E/S por segundo, dado que cada disco ha de participar en cada E/S.
  - Incluye el nivel 2 (aporta todas sus ventajas, a un coste menor).
- RAID de nivel 4: Paridad con bloques entrelazados; emplea distribución en el nivel de bloque y mantiene un bloque de paridad en un disco independiente para los correspondientes bloques de los otros *N* discos.
  - Cuando se graban bloques de datos, los bloques bits de paridad correspondientes se deben calcular y escribir sobre un disco de paridad
  - Para encontrar el valor de un bloque dañado, calcular XOR de bits desde los bloques correspondientes (incluyendo el bloque de paridad) de los otros discos.







- RAID de nivel 4 (Cont.)
  - Aporta velocidades más altas de E/S, para lecturas de bloques independientes, que el nivel 3
    - la lectura de bloque se hace sobre un solo disco, de modo que los bloques almacenados en discos independientes se puedan leer en paralelo
  - Aporta altas velocidades de transferencia para lecturas de múltiples bloques no distribuidos
  - Antes de escribir un bloque se deben calcular los datos de paridad
    - Se puede hacer empleando bloques de paridad antiguos, valores viejos y nuevos del boque actual (2 bloques leídos + 2 bloques grabados)
    - O recalculando el valor de paridad, por medio de los valores nuevos de los bloques correspondientes al bloque de paridad
      - Más eficientes para las escrituras de grandes cantidades de datos secuenciales
  - El bloque de paridad se convierte en un cuello de botella para las escrituras de bloques independientes, dado que cada escritura de bloque también escribe sobre el disco de paridad





- RAID de nivel 5: Paridad distribuida con bloques entrelazados; datos y paridad divididos entre *N* + 1 discos, en vez de almacenar los datos en *N* discos y la paridad en 1..
  - Por ejemplo, con 5 discos el bloque de paridad para el n-ésimo conjunto de bloques se almacena en el disco (n mod 5) + 1, con los bloques de datos almacenados sobre los otros 4 discos.



| P0 | 0  | 1  | 2  | 3  |
|----|----|----|----|----|
| 4  | P1 | 5  | 6  | 7  |
| 8  | 9  | P2 | 10 | 11 |
| 12 | 13 | 14 | P3 | 15 |
| 16 | 17 | 18 | 19 | P4 |





- RAID de nivel 5 (Cont.)
  - Velocidades de E/S más altas que en el nivel 4.
    - Las escrituras de bloques tienen lugar en paralelo si los bloques y sus bloques de paridad están en discos diferentes.
  - Incluye el nivel 4: aporta algunas ventajas, pero evita los cuellos de botella del disco de paridad.
- RAID de nivel 6: Esquema de redundancia P+Q; similar al nivel 5, pero almacena información redundante para proteger contra fallos de los múltiples discos.
  - Mayor fiabilidad que en nivel 5 a un coste superior; no se usa ampliamente.







### Elección de los niveles de RAID

- Factores a tener en cuenta al seleccionar el nivel RAID
  - Coste económico
  - Rendimiento: Número de operaciones de E/S por segundo y ancho de banda durante la operativa normal
  - Rendimiento durante los fallos
  - Rendimiento durante la reconstrucción del disco fallido
    - Incluyendo el tiempo llevado en reconstruir el disco fallido
- RAID 0 sólo se usa cuando la seguridad de los datos no es importante
  - Por ejemplo, los datos se pueden recuperar rápidamente desde otras fuentes
- Los niveles 2 y 4 no se usan nunca dado que están incluidos en los niveles 3 y 5
- El nivel 3 no se usa más, dado que la distribución del bit hace que la lectura de un solo bloque obligue a acceder a todos los discos, gastando en el movimiento del brazo, cosa que evita la distribución de bloques (nivel 5)
- El nivel 6 apenas se emplea dado que los niveles 1 y 5 ofrecen una seguridad adecuada para la mayoría de las aplicaciones
- Así, la competencia solo está entre los niveles 1 y 5





## Elección de los niveles de RAID (cont.)

- El nivel 1 aporta un rendimiento mucho mejor en escritura que el nivel 5
  - El nivel 5 requiere al menos 2 lecturas de bloques y 2 escrituras de bloques para grabar un solo bloque, mientras que el nivel 1 sólo requiere 2 escrituras de bloques
  - El nivel 1 es preferido en entornos de muchas actualizaciones, como en el disco del registro histórico
- El nivel 1 tenía un coste de almacenamiento superior que el nivel 5
  - las capacidades de las unidades de disco aumentan rápidamente (50% al año), mientras que el tiempo de acceso ha disminuido mucho menos (un factor 3 en 10 años)
  - Los requerimientos de E/S han aumentado mucho, por ejemplo, en los servidores Web
  - Cuando se han comprado discos suficientes para satisfacer la velocidad requerida de E/S, a menudo sobra capacidad de almacenamiento
    - ¡Por ello frecuentemente no hay coste monetario extra para el nivel 1!
- El nivel 5 es preferido para aplicaciones con velocidad de actualización baja grandes cantidades de datos
- El nivel 1 se prefiere para todas las otras aplicaciones





### Aspectos del hardware

- Software RAID: Las implantaciones RAID se hacen totalmente en software, sin ningún soporte hardware especial
- Hardware RAID: Implantaciones RAID con hardware especial
  - Se emplea RAM no volátil para registrar las escrituras que se están ejecutando
  - Tener cuidado con: fallos en el suministro eléctrico durante la escritura pueden originar la corrupción del disco
    - Por ejemplo, fallos después de escribir un bloque, pero antes de escribir el segundo en un sistema de imagen
    - Así, los datos corruptos deben detectarse cuando se reanuda el suministro eléctrico
      - La recuperación de la corrupción es similar a la recuperación desde discos fallidos
      - NV-RAM ayuda a detectar de manera eficiente bloques potencialmente corruptos
        - » De lo contrario, todos los bloques del disco deben leerse y compararse con los bloques espejo/paridad





## Aspectos del hardware (cont.)

- Intercambio en caliente: sustitución del disco mientras está funcionando, sin cortar el suministro eléctrico
  - Soportado por algunos sistemas de hardware RAID,
  - reduce el tiempo de recuperación y mejora enormemente la fiabilidad
- Muchos sistemas mantienen discos de recambio, que se mantienen en línea y se usan para reemplazar los discos fallidos inmediatamente que se detecta el fallo
  - Muchos sistemas mantienen discos de recambio, que se mantienen en línea y se usan para reemplazar los discos fallidos inmediatamente que se detecta el fallo
- Muchos sistemas de hardware RAID aseguran que un solo punto de fallo no detendrá el funcionamiento del sistema, empleando
  - Fuentes de alimentación redundantes con batería de salvaguarda
  - Múltiples controladores e interconexiones, como protección contra fallos de controlador/interconexión





## Discos ópticos

- Discos compactos con memoria de sólo lectura (CD-ROM)
  - Los discos pueden cargarse en, o eliminarse de una unidad
  - Elevada capacidad de almacenamiento (640 MB por disco)
  - Elevado tiempo de búsqueda de aproximadamente 100 milisegundos (la cabeza de lectura óptica es más pesada y lenta)
  - Latencia más alta (3.000 RPM) y menor velocidad de transferencia de datos (3-6 MB/s), comparada con los discos magnéticos
- Video disco digital (DVD)
  - El DVD-5 almacena 4.7 GB y el DVD-9 8.5 GB
  - DVD-10 y DVD-18 están formateados por las dos caras, con capacidades de 9.4 GB y 17 GB
  - Otras características similares al CD-ROM
- Las versiones de grabación de una sola vez (CD-R y DVD-R) se están haciendo populares
  - los datos sólo se pueden escribir una vez y no se pueden borrar.
  - alta capacidad y larga vida; se usan para el almacenamiento de archivos
  - Versiones de escritura múltiple (CD-RW, DVD-RW, DVD+RW y DVD-RAM) también están disponibles





## Cintas magnéticas

- Contienen grandes volúmenes de datos y aportan velocidades de transferencia altas
  - Unos pocos GB para el formato DAT (Cinta de audio digital), 10-40 GB con formato DLT (Cinta lineal digital), más de 100 GB con formato Ultrium y 330 GB con formato de exploración helicoidal Ampex
  - Velocidades de transferencia desde unos pocos hasta 10 MB/s
- Actualmente es el medio de almacenamiento más barato
  - Las cintas son baratas, pero el coste de las unidades es muy alto
- Tiempo de acceso muy lento, en comparación con los discos magnéticos y ópticos
  - limitado a accesos secuenciales.
  - Algunos formatos (Accelis) soportan búsquedas más rápidas (décimas de segundo) al precio de reducir la capacidad
- Usado principalmente para copias de seguridad, para el almacenamiento de información que se usa poco frecuentemente y como un medio sin conexión para la transferencia de información desde un sistema a otro.
- Los cambiadores de cintas se emplean para el almacenamiento de muy alta capacidad
  - desde terabyte (10<sup>12</sup> bytes) hasta petabyte (10<sup>15</sup> bytes)





### Acceso al almacenamiento

- Un archivo de base de datos está dividido en unidades de almacenamiento de longitud fija, denominadas bloques. Los bloques son unidades de asignación de almacenamiento y de transferencia de datos.
- El sistema de bases de datos busca minimizar el número de transferencias de bloques entre el disco y la memoria. Se puede reducir el número de accesos a disco manteniendo en memoria tantos bloques como sea posible.
- Memoria intermedia parte de la memoria principal disponible para almacenar copias de bloques del disco.
- Gestor de la memoria intermedia subsistema responsable de asignar el espacio de la memoria intermedia en la memoria principal.



### Gestor de la memoria intermedia

- Los programas llaman al gestor de memoria intermedia cuando necesitan un bloque del disco.
  - Si el bloque ya está en la memoria intermedia, a la solicitud del programa se da la dirección del bloque en la memoria principal
  - Si el bloque no está en la memoria intermedia, el gestor de memoria intermedia
    - 1. asigna espacio en la memoria intermedia para el bloque
      - 1. reemplazando (desechando) algún otro bloque, si es necesario, para hacer espacio al nuevo bloque.
      - 2. El bloque desechado se graba de nuevo a disco, sólo si se modificó desde el momento en que fue grabado a / tomado del disco.
    - lee el bloque desde el disco a la memoria intermedia y pasa la dirección del bloque en la memoria principal al solicitante.





### Políticas de sustitución de la memoria intermedia

- La mayoría de los sistemas operativos reemplazan el bloque menos recientemente utilizado (estrategia LRU)
- Idea tras LRU utilizar el último modelo de referencias del bloque como un indicador de referencias futuras
- Las consultas han de definir bien los modelos de acceso ( tales como búsquedas secuenciales) y un sistema de base de datos puede utilizar la información de una consulta de usuario para predecir referencias futuras
  - LRU puede ser una mala estrategia para ciertos modelos de accesos que implican búsquedas repetidas de datos
    - por ejemplo, al calcular la reunión de 2 relaciones r y s mediante un bucle anidado para cada tupla tr de r hacer para cada tupla ts de s hacer si las tuplas tr y ts se corresponden ...
  - Es preferible una estrategia mixta, con sugerencias sobre la estrategia de sustitución aportada por el optimizador de consultas





## Políticas de sustitución de la memoria intermedia (cont.)

- Bloque clavado bloque de memoria que no tiene permitido ser grabado de nuevo a disco.
- Estrategia de extracción inmediata libera el espacio ocupado por un bloque tan pronto como se procesa la tupla final de ese bloque
- Estrategia del utilizado más recientemente (MRU) el sistema debe clavar el bloque que se está procesando actualmente. Después de procesar la tupla final de ese bloque, se desclava y se convierte en el bloque más recientemente utilizado.
- El gestor de la memoria intermedia puede utilizar información estadística con respecto a la probabilidad de que una petición referencie una determinada relación
  - Por ejemplo, el diccionario de datos es accedido frecuentemente.
     Heurística: mantiene los bloques del diccionario de datos en la memoria intermedia de la memoria principal
- Los gestores de la memoria intermedia también soportan la salida forzada de bloques con fines de recuperación (más en el Capítulo 17)





#### Organización de archivos

- La base de datos está almacenada como un grupo de archivos. Cada archivo es una secuencia de registros. Un registro es una secuencia de campos.
- Un enfoque puede ser:
  - suponer que el tamaño del registro es fijo
  - cada archivo tiene sólo registros de un determinado tipo
  - se usan diferentes archivos para diferentes relaciones

Este caso es el más fácil de implementar; se considerarán registros de longitud variable posteriormente.





#### Registros de longitud fija

- Enfoque sencillo:
  - Almacenar el registro i empezando desde el byte n \* (i 1), donde n es el tamaño de cada registro.
  - El acceso al registro es sencillo, pero los registros pueden atravesar bloques
    - Modificación: no se permite a los registros atravesar los límites de un bloque
- Borrado del registro *l:* alternativas:
  - mover los registros i + 1, . . ., n
     a i, . . . , n 1
  - mover el registro n a i
  - no mover registros, sino enlazar todos los registros libres sobre una lista libre

| registro 0 | C-102 | Navacerrada     | 400 |
|------------|-------|-----------------|-----|
| registro 1 | C-305 | Collado Mediano | 350 |
| registro 2 | C-215 | Becerril        | 700 |
| registro 3 | C-101 | Centro          | 500 |
| registro 4 | C-222 | Moralzarzal     | 700 |
| registro 5 | C-201 | Navacerrada     | 900 |
| registro 6 | C-217 | Galapagar       | 750 |
| registro 7 | C-110 | Centro          | 600 |
| registro 8 | C-218 | Navacerrada     | 700 |





#### **Listas libres**

- Almacenar la dirección del primer registro borrado en la cabecera del archivo.
- Emplear este primer registro para almacenar la dirección del segundo registro borrado, etcétera
- Se puede pensar en estas direcciones como punteros dado que "apuntan" a la posición de un registro.
- Representación más eficiente del espacio: reutilización del espacio para atributos normales de registros libres para almacenar punteros. (No se almacena ningún puntero en los registros en uso.)

|            |       |             |     |   | 1   |
|------------|-------|-------------|-----|---|-----|
| cabecera   |       |             |     | _ |     |
| registro 0 | C-102 | Navacerrada | 400 |   |     |
| registro 1 |       |             |     | = | K   |
| registro 2 | C-215 | Becerril    | 700 |   | ] } |
| registro 3 | C-101 | Centro      | 500 |   |     |
| registro 4 |       |             |     | - |     |
| registro 5 | C-201 | Navacerrada | 900 |   | ] ) |
| registro 6 |       |             |     |   |     |
| registro 7 | C-110 | Centro      | 600 |   | _   |
| registro 8 | C-218 | Navacerrada | 700 |   |     |
|            |       |             |     |   | -   |





#### Registros de longitud variable

- Los registros de longitud variable surgen en los sistemas de bases de datos de diferentes maneras:
  - Almacenamiento en un archivo de múltiples tipos de registro.
  - Tipos de registro que permiten longitudes variables de uno más campos.
  - Tipos de registro que permiten campos repetidos (empleados en algunos de los más antiguos modelos de datos).



## Registros de longitud variable: Estructura de páginas con ranuras



- La cabecera de las páginas con ranuras contiene:
  - número de entradas del registro
  - final del espacio libre en el bloque
  - localización y tamaño de cada registro
- Los registros se pueden mover alrededor de una página para mantenerlos contiguos, sin espacio vacío entre ellos; se debe actualizar la entrada en la cabecera.
- Los punteros no deberían apuntar directamente al registro en su lugar, deberían apuntar a la entrada para el registro en la cabecera.





### Organización de registros en archivos

- Pila un registro puede estar colocado en cualquier parte del archivo donde haya espacio
- Secuencial almacena registros en orden secuencial, de acuerdo al valor de la clave de búsqueda de cada registro
- Asociación una función de asociación calculada sobre algún atributo de cada registro; el resultado determina en qué bloque del archivo se debería situar el registro
- Los registros de cada relación pueden almacenarse en un archivo independiente. En una organización de archivos en agrupaciones los registros de diferentes relaciones se pueden almacenar en el mismo archivo
  - Motivación: almacenar registros relacionados en el mismo bloque minimiza la E/S





#### Organización de archivos secuencial

- Adecuada para aplicaciones que requieren el procesamiento secuencial de todo el archivo
- Los registros del archivo están ordenados por una clave de búsqueda

| Becerril        | 700                                                                         |                                                                                                         |
|-----------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Centro          | 500                                                                         | <b>-</b>                                                                                                |
| Centro          | 600                                                                         |                                                                                                         |
| Collado Mediano | 350                                                                         | <b>-</b>                                                                                                |
| Galapagar       | 750                                                                         |                                                                                                         |
| Moralzarzal     | 700                                                                         |                                                                                                         |
| Navacerrada     | 400                                                                         | <b></b>                                                                                                 |
| Navacerrada     | 900                                                                         |                                                                                                         |
| Navacerrada     | 700                                                                         |                                                                                                         |
|                 | Centro Centro Collado Mediano Galapagar Moralzarzal Navacerrada Navacerrada | Centro 500 Centro 600 Collado Mediano 350 Galapagar 750 Moralzarzal 700 Navacerrada 400 Navacerrada 900 |



#### Organización de archivos secuencial (Cont.)

- Borrado emplear cadenas de punteros
- Inserción –localizar la posición donde se va a insertar el registro
  - si hay espacio libre insertarlo ahí
  - si no hay espacio libre, insertar el registro en un bloque de desbordamiento
  - En cualquier caso, la cadena de punteros debe actualizarse
- Necesidad de reorganizar el archivo periódicamente para restablecer el orden secuencial

| 0.0 | var- | D!              | 700 |                |
|-----|------|-----------------|-----|----------------|
| C-2 | 215  | Becerril        | 700 |                |
| C-1 | 01   | Centro          | 500 |                |
| C-1 | 10   | Centro          | 600 | <b></b>        |
| C-3 | 305  | Collado Mediano | 350 |                |
| C-2 | 217  | Galapagar       | 750 |                |
| C-2 | 222  | Moralzarzal     | 700 | <b>■</b> ★ \\  |
| C-1 | 02   | Navacerrada     | 400 | <b>□≠</b> 5 \\ |
| C-2 | 201  | Navacerrada     | 900 | <b>□≝</b> ///  |
| C-2 | 218  | Navacerrada     | 700 |                |
|     |      |                 |     | <i></i>        |
| C-8 | 88   | Leganés         | 800 |                |



# Organización de archivos en agrupaciones de varias tablas

Almacenar varias relaciones en un archivo utilizando una organización del archivo en agrupaciones de varias tablas

| nombre_cliente | número_cuenta |
|----------------|---------------|
| López          | C-102         |
| López          | C-220         |
| López          | C-503         |
| Abril          | C-305         |
|                |               |

| nombre_cliente | calle_cliente | ciudad_cliente |
|----------------|---------------|----------------|
| López          | Mayor         | Arganzuela     |
| Abril          | Preciados     | Valsaín        |





# Organización de archivos en agrupaciones de varias tablas (cont.)

Organización de archivos en agrupaciones de varias tablas de *cliente* e *impositor* 

| López | Mayor     | Arganzuela |
|-------|-----------|------------|
| López | C-102     |            |
| López | C-220     |            |
| López | C-503     |            |
| Abril | Preciados | Valsaín    |
| Abril | C-305     |            |
|       |           | -          |

- •Bueno para consultas que impliquen *impositor* ⋈ *cliente*, y para consultas que impliquen un único cliente y sus cuentas.
- Malo para consultas que impliquen a un único cliente
- Los resultados en registros de longitud variable
- Pueden añadir cadenas de punteros para enlazar registros de una determinada relación.





#### Almacenamiento del diccionario de datos

El diccionario de datos (también denominado catálogo del sistema) almacena metadatos: es decir, datos acerca de datos, como

- Información sobre relaciones
  - nombres de relaciones
  - nombres y tipos de atributos de cada relación
  - nombres y definiciones de vistas
  - restricciones de integridad
- Información del usuario y de la cuenta, incluyendo contraseñas
- Datos estadísticos y descriptivos
  - número de tuplas en cada relación
- Información de la organización del archivo físico
  - Como está almacenada la relación (secuencial/asociativa/ ....)
  - Localización física de la relación
- Información sobre índices (Capítulo 12)





## Almacenamiento del diccionario de datos (cont.)

- Estructura del catálogo:
  - Representación relacional en el disco
  - Estructuras de datos especializadas diseñadas para acceso eficiente, en memoria
- Una posible representación del catálogo:

```
Relación_metadato = (nombre_relación, número_de_atributos, organización_almacenamiento, ubicación)

Atributo_metadato = (nombre_atributo, nombre_relación, tipo_dominio, posición, longitud)

Usuario_metadato = (nombre_usuario, contraseña_cifrada, grupo)

Índice_metadato = (nombre_índice, nombre_relación, tipo_índice, atributos_índice)

Vista_metadato = (nombre_vista, definición)
```





### Fin del capítulo 11

Fundamentos de Bases de datos, 5ª Edición.

©Silberschatz, Korth y Sudarshan
Consulte <a href="https://www.db-book.com">www.db-book.com</a> sobre condiciones de uso

