

ABSTRACT

The present invention includes polymeric transport systems corresponding to the formula:

wherein:

10
R₃₁ is a linear or branched polymer residue; Y₁₀ and Y₁₁ are independently O, S, or NR₄₀; X₂ is O, S or NR₄₁; R₃₂₋₃₅, R₃₇₋₄₁, R₅₀ and R₅₁ are independently selected from among hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls and substituted C₁₋₆ heteroalkyls; a, b and e are each independently selected positive integers; L is an amino acid residue or a bifunctional linker; X₃ is

20
wherein Y₁₂ and Y₁₃ are independently O, S, or NR₄₁; Z is a bond, a moiety that is actively transported into a target cell, a hydrophobic moiety or combinations thereof; D₁ and D₂ are OH, a residue of a hydroxyl, a residue of an amine-containing moiety or a leaving group; and y₁ and y₂ are independently selected positive integers.