Formale Sprachen

Dozent: Prof. Dr. Michael Eichberg

Kontakt: michael.eichberg@dhbw.de, Raum 149B

Version: 1.0

Quelle: Die Folien sind teilweise inspiriert von oder basierend auf Lehrmaterial von Prof. Dr.

Ritterbusch und Theoretische Informatik - kurzgefasst von Prof. Dr. Uwe Schöning.

Folien: https://delors.github.io/theo-algo-formale_sprachen/folien.de.rst.html

https://delors.github.io/theo-algo-formale_sprachen/folien.de.rst.html.pdf

Fehler melden: https://github.com/Delors/delors.github.io/issues

Einführung

Alphabete und Sprachen

Formale Sprachen sind ein zentraler Aspekt der theoretischen Informatik.

- Nutzungsinterface zwischen Computer und Mensch
- Grundlage für Programmiersprachen

Es gibt unterschiedliche Klassen und Modelle formaler Sprachen:

- Erkennbarkeit und Ausdruckskraft
- Anforderungen an Computermodelle zur Erkennbarkeit
- Komplexität von Verfahren zur Erkennung

Alphabete

Definition -

Ein Alphabet $\Sigma=\{lpha_1,lpha_2,\ldots,lpha_n\}$ ist eine endliche Menge von Zeichen / Symbolen.

Beispiel -

Abzählbare Mengen

$$lacksquare$$
 $\Sigma_{lat} = \{a, b, c, \dots, z\}$

$$\blacksquare \; \Sigma_{ziffer} = \{0,1,2,3,4,5,6,7,8,9\}$$

$$lacksquare$$
 $\Sigma_{unicode} = \{x | x ext{ ist ein Unicode-Zeichen}\}$

$$\blacksquare \ \Sigma_{logik} = \{0,1,(,),\land,\lor,\lnot,(,)\} \cup \Sigma_{lat}$$

/

Kartesisches Produkt

Definition –

Ein kartesisches Produkt wie $A \times B$ oder A^n für $n \in \mathbb{N}$ von Mengen oder Alphabeten bezeichnet die Menge der Tupel (a,b) oder (a_1,\ldots,a_n) von Elementen der Mengen:

$$egin{array}{lll} A imes B &:=& \{(a,b)|a\in A,b\in B\} \ A^n &:=&\underbrace{A imes\ldots imes A}_{n ext{ Faktoren}} &=& \{(a1,\ldots,an)|a1,\ldots,an\in A\} \end{array}$$

Beispiel

- lacksquare $\Sigma_{lat} imes \Sigma_{lat} = \{(a,a),(a,b),\ldots,(z,z)\}$
- $\blacksquare \ \Sigma^3_{lat} = \{(a,a,a), (a,a,b), \ldots, (z,z,z)\}$

Kleene-Abschluss

Definition –

Ein Wort ω ist ein endliches — ggf. leeres — Tupel $(w_1,w_2,\ldots,w_n)\in \Sigma^n$ von Zeichen $w_k\in \Sigma$ eines Alphabets mit Länge $|\omega|=n$ der Anzahl der Zeichen.

- lacksquare Wörter werden meist ohne Klammern geschrieben; d. h. $\omega=w_1w_2\dots w_n$.
- \blacksquare Das leere Wort (das Wort ohne Zeichen) wird mit ε bezeichnet.
- Besondere Wortmengen:

$$\square \Sigma^0 = \{\varepsilon\}$$

$$lacksquare \Sigma^* = igcup_{n=0}^\infty \Sigma^n$$

$$lacksquare \Sigma^+ = igcup_{n=1}^\infty \Sigma^n$$

Die Operationen M^* und M^+ auf einer Menge M werden als

- Kleene-*-Abschluss oder
- Kleene-+-Abschluss bezeichnet.

Beispiel

$$lacksquare$$
 $\Sigma_{lat}^* = \{arepsilon, a, b, \dots, z, aa, ab, \dots, zz, aaa, \dots\}$

$$lacksquare \Sigma_{lat}^+ = \{a, b, \dots, z, aa, ab, \dots, zz, aaa, \dots\}$$

Beispiel –

Sei $M = \{01, 2\}$, so ergeben sich u.a. diese Wortmengen:

$$M^0 = \varepsilon$$

$$M^1 = 01, 2$$

$$M^2 = 0101, 012, 201, 22$$

 $M^3 = 010101, 01012, 01201, 0122, 20101, 2012, 2201, 222$

. . .

$$M^+ = M^1 \cup M^2 \cup \ldots = 01, 2, 0101, 012, 201, 22, 010101, 01012, \ldots$$

$$M^* = M^0 \cup M^+ = arepsilon, 01, 2, 0101, 012, 201, 22, 010101, 01012, \dots$$

Beobachtung

Die Wortlänge $|\omega|$ für ein $\omega\in L^*$ hängt von der Definition des Alphabets ab. So ist in diesem Beispiel |222|=3 während |0101|=2 ist.

Produkt und Konkatenation

Definition –

Die Konkatenation von zwei Wörtern $\omega=(\omega_1,\ldots,\omega_n)$ und $v=(v_1,\ldots,v_m)$ ist definiert als das Wort, das durch ein aneinanderreihen der beiden Wörter entsteht:

$$\omega \cdot v = \omega v = (\omega_1, \ldots, \omega_n) \cdot (v_1, \ldots, v_m) = w_1 \ldots w_n v_1 \ldots v_m$$

Das leere Wort ist $\omega^0=arepsilon$ und die n-te Potenz von ω ist:

$$\omega^n = \underbrace{\omega {\cdot} \ldots {\cdot} \omega}_{n \; ext{Faktoren}} \; ext{f\"{u}r} \; n > 0$$

Beispiel -

Sei $\Sigma=a,e,n,r$, sowie $\omega=\mathrm{na}\in\Sigma^*$ und $v=\mathrm{er}\in\Sigma^*.$

 $\omega^2=\mathrm{nana}$, $v\omega=\mathrm{erna}$ und $v\omega^2v=\mathrm{ernanaer}$

Abschluss-Eigenschaften

Bemerkung -

Der Begriff Abschluss in obiger Definition bedeutet:

Auf einer Menge mit einer Verknüpfung liefert jede Anwendung der Operation mit Elementen wieder ein Element aus der Menge.

Beispiel -

- die Subtraktion ist auf den natürlichen Zahlen nicht abgeschlossen,
- der Abschluss der natürlichen Zahlen bezüglich der Subtraktion sind die ganzen Zahlen.

Die Kleene-Abschlüsse und Multiplikationen werden später in regulären Ausdrücken auf Wörtern verwendet, damit ist dann der Abschluss oder das kartesische Produkt der Menge mit genau diesem Wort gemeint.

Beispiel -

$$egin{array}{lll} (ab)^+ &=& \{ab\}^+ &=& \{ab,abab,ababab,\dots\} \ &cd^*e &=& \{c\} imes \{d\}^* imes \{e\} &=& \{ce,cde,cdde,cddde,\dots\} \end{array}$$

Übung

Alphabet Σ = {a,el,en,g,l,ste}

Gegeben sei das Alphabet $\Sigma=\{a,el,en,g,l,ste\}$. Welche der folgenden Worte liegen in Σ^4 ? ω_1 = galgen, ω_2 = stelle, ω_3 = sagen, ω_4 = lagen, ω_5 = allen, ω_6 = aalen

Alphabet Σ = {e,en,in,r,t,u}

Gegeben sei das Alphabet $\Sigma=e,en,in,r,t,u.$ Welche der folgenden Worte liegen in Σ^5 ?

 ω_1 = reiner, ω_2 = teurer, ω_3 = treuer, ω_4 = teuren, ω_5 = retten, ω_6 = teuer

Übung

Alphabet $\Sigma = \{e,g,in,l,s,ter\}$

Gegeben sei das Alphabet $\Sigma=e,g,in,l,s,ter.$ Welche der folgenden Worte liegen in Σ^* ?

 ω_1 = tester, ω_2 = seile, ω_3 = lines, ω_4 = segel, ω_5 = seinen, ω_6 = erster

Formale Sprachen

Definition

Jede Teilmenge $L\subseteq \Sigma^*$ ist eine formale Sprache über dem Alphabet Σ .

Beispiel

Sei $\Sigma=\{0,1,2\}$, dann ist Σ^* die Menge oder Sprache von Wörtern aus den Ziffern 0,1 oder 2 beliebiger Länge wie 101 oder auch 0001.

Die Menge $M \subset \Sigma^*$ der binären Zahlen ohne führende Nullen:

$$M = \{0\} \cup \{1\} \times \{0,1\}^* = \{0,1,10,11,100,101,110,111,1000,\dots\}$$

Die Menge $M\subset \Sigma^*$ von einer gleichen Anzahl von 0 und 1 in dieser Reihenfolge:

$$M = \{0^n 1^n | n \in \mathbb{N}\} = \{01, 0011, 000111, 00001111, 0000011111, \dots\}$$

Die Wörter $M \subset \Sigma^*$ mit gleicher Anzahl von 0, 1 und 2 in dieser Reihenfolge:

$$M = \{0^n 1^n 2^n | n \in \mathbb{N}\} = \{012, 001122, 000111222, 000011112222, \dots\}$$

Die Menge $M \subset \Sigma^*$ mit Wörtern der Länge von Zweierpotenzen:

$$M = \{w \in \Sigma^* | |w| = 2^n, n \in \mathbb{N}\} = \{0, 1, 2, 00, 01, \dots, 21, 22, 0000, \dots\}$$

11

1

2

3

Übung

Wörter bestimmen

Bestimmen Sie die Wörter der folgenden Sprache:

$$L = \{acx^m(zq)^n | n \in \{0,1\}, m \in \{1,2\}\}$$

Wörter bestimmen

Bestimmen Sie die Wörter der folgenden Sprache:

$$L = \{(b^m a)^l z a | m \in \{0,1\}, l \in \{1,2,3\}\}$$

Abzählbarkeit und Gödelnummern

Abzählbar und überabzählbar unendlich

Beobachtung -

Selbst mit endlichen Alphabeten können formale Sprachen unendlich groß sein.

Definition

Eine Menge M ist $abz\ddot{a}hlbar$, wenn die einzelnen Elemente abzählbar sind, es also eine bijektive Funktion $f:N\to M$ von den natürlichen Zahlen $N=\mathbb{N}$ oder einer Teilmenge der natürlichen Zahlen $N\subset\mathbb{N}$ auf M gibt.

Wenn es keine solche Funktion geben kann, so ist die Menge überabzählbar unendlich.

Satz

Jede endliche Menge ist abzählbar.

Beweis -

Eine endliche Menge M hat eine endliche Anzahl n=|M| von Elementen.

Wird nun beginnend von $M_0=M$ und k=1 in n Schritten jeweils ein Element m_k der Menge M_{k-1} entnommen mit $M_k=M_{k-1}\{m_k\}$, so ist induktiv $|M_k|=|M_{k-1}|-1=n-k$ und es ist $M_n=\emptyset$.

Die Bijektion lautet dann f:N o M mit $f(k)=m_k$ mit $N=\{1,\ldots,n\}.$

Satz

Jede Teilmenge $M\subseteq N$ einer abzählbaren Menge $N=\{n_1,n_2,\dots\}$ ist abzählbar.

Beweis

Sei $f(k)=n_k$ die Abzählung der Menge N. Sei $R=\{k\in\mathbb{N}|n_k\in M\}$; d. h. die Menge der Indizes der Elemente aus N, die in M sind. Dann ist die Einschränkung $f_{|R}:R\to M$ von f genau die Abzählung, die die Abzählbarkeit von M beweist.

Beispiel -

Eine abzählbar unendliche Menge sind — zum Beispiel:

- lacksquare die geraden Zahlen $\{2n|n\in\mathbb{N}\}$
- lacksquare die Quadratzahlen $\{n^2|n\in\mathbb{N}\}$
- lacksquare die Menge der Fakultäten $\{n!|n\in\mathbb{N}\}$
- \blacksquare die ganzen Zahlen $\mathbb Z$ mit der Funktion:

$$f(n) = egin{cases} n/2 & ext{f\"ur } n ext{ gerade} \ -(n+1)/2 & ext{f\"ur } n ext{ ungerade} \end{cases}$$

$$f(1) = 0$$
, $f(2) = 1$, $f(3) = -1$, $f(4) = 2$, $f(5) = -2$, ...

Beispiel

Die rationalen Zahlen Q sind abzählbar unendlich.

1	2	3	4
1	1	1	1
V	~		7
1	2	3	4
2	2	2	2
		7	
1	2	3	4
3	3	3	3
V	•		
1	2	3	4
4	4	4	<u> </u>
:	:	:	:

Rationale Zahlen können als Brüche dargestellt werden und mit Hilfe des Diagonalisierungsverfahren von Cantor in eine Bijektion zu den natürlichen Zahlen gebracht werden.

Die 0 und alle negativen Brüche können wie zuvor eingeschoben werden. Auch alle rationalen Vektoren \mathbb{Q}^n in beliebiger Dimension $n\in\mathbb{N}$ sind so abzählbar.

Satz

Für jede endliche Menge oder Alphabet Σ ist deren Kleene-Abschluss Σ^* abzählbar.

Reweis

Ist das Alphabet Σ leer, so ist auch Σ^* leer, und damit für $N=\emptyset$ trivial abzählbar.

Ist Σ nicht leer, dann besitzt Σ mit Größe $n=|\Sigma|$ eine Aufzählung m_k mit $k=1,\ldots,n$.

Jedes Wort $w=m_{k_1}m_{k_2}\dots m_{k_l}$ kann dann im Stellenwertsystem zur Basis n+1 dargestellt werden:

$$1 + k_1 \cdot (n+1)^{l-1} + k_2(n+1)^{l-2} + \ldots + k_l(n+1)^0$$

und somit der Zahl $1+(k_1k_2\dots k_l)_{(n+1)}$ [1] zugeordnet werden.

Die Abbildung $f:N\to \Sigma^*$ mit $N\subseteq \mathbb{N}$ ergibt sich für f(x) aus der Stellenwertdarstellung von x-1>0 zur Basis n+1 beginnend mit der höchstwertigen Ziffer k_1 bis zur letzten Stelle k_l .

Das Bild f(x) ist dann das Wort $m_{k_1}m_{k_2}\dots m_{k_l}$.

Das leere Wort arepsilon wird von 1 abgebildet und entsprechend ist f(1)=arepsilon.

Beispiel

Sei $\Sigma=\{e,i,rn,st\}$ mit Aufzählung $m_1=e$, $m_2=i$, $m_3=rn$, $m_4=st$, dann haben die folgenden Wörter diese Abzählung nach Stellenwert:

x	1	2	3	4	5
	1				

		$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
		[2]			
Wort	ϵ	е	i	rn	st
	$f(1)=\epsilon$	f(2) = e	f(3)=i	f(4)=rn	f(5)=st
f(x)					(Anm.: k ist 4 für st)

		7 = 1 + 6	8 = 1 + 7		45 = 1 + 44	
<i>x</i>	•••	$12_5 = 1_5 + 11_5$	$13_5 = 1_5 + 12_5$	•••	$140_5 = 1_5 + 134_5$	•••
		$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$		$egin{array}{cccccccccccccccccccccccccccccccccccc$	
Wort		ee	ei		ernst	

Unbesetzt bleibt, wo eine 0 in der Stellenwertdarstellung vorliegt. Zum Beispiel ist $f(6)=1+1\cdot 5^1+0\cdot 5^0=1_5+10_5.$

Satz

Jede formale Sprache is abzählbar.

Beweis

Da jede formale Sprache L über einem endlichen Alphabet Σ definiert ist, ist das eine direkte Folge aus vorherigem Satz, dass Σ^* abzählbar ist, und wie zuvor gezeigt damit auch die Teilmenge $L\subseteq \Sigma^*$ abzählbar ist.

Abzählen mit Hilfe von Gödelnummern

Definition

Sei (p_n) die Folge der Primzahlen:

$$p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7, p_5 = 11, p_6 = 13, \dots$$

Für eine abzählbare Menge $M=m_1,m_2,\ldots$ ist die Gödelnummer $c_M:M^* o\mathbb{N}$ des Tupels $w=(m_{k_1},m_{k_2},\ldots,m_{k_l})$ gegeben durch

$$c_M(w)=p_1^{k_1}\cdot p_2^{k_2}{\cdot}\ldots{\cdot}p_l^{k_l}=\prod_{i=1}^l p_i^{k_i}$$

Beispiel -

Sei $\Sigma=\{e,i,rn,st\}$ mit Aufzählung $m_1=e$, $m_2=i$, $m_3=rn$, $m_4=st$, dann haben die folgenden Wörter diese Gödelnummern:

w	e	i	rn	st	ernst
$c_M(w)$	2^1	3^1	5^2	7^3	$2^1 \cdot 3^1 \cdot 5^2 \cdot 7^3 = 2 \cdot 3 \cdot 25 \cdot 343 = 51450$

Satz

Die Menge von endlichen Folgen $P=\{p=(w_1,w_2,\ldots,w_n)|w_k\in L,n\in\mathbb{N}\}$ aus Wörtern einer formalen Sprache $L\subseteq\Sigma^*$ (also Programmen) über einem Alphabet Σ ist abzählbar.

Beweis

Jede formale Sprache $L\subseteq \Sigma^*$ ist abzählbar. Damit kann nach Definition für jede Folge $p\in P$ injektiv eine Gödelnummer $c_L(p)$ über L bestimmt werden. Auf der Menge $N=\{x=c_L(p)|p\in P\}$ kann die

Umkehrung f:N o P von c_L auf P eingeschränkten bijektiven Funktion $c_{L|P}:P o N$ bestimmt werden, und damit ist P abzählbar.

- [2] Wir haben immer $1+\ldots$, da wir noch das leere Wort ε haben.
- [1] Die Darstellung $(k_1k_2\dots k_l)_{(n+1)}$ ist die Stellenwertdarstellung zur Basis n+1 des Wortes w.