

Utilizar R como un Sistema de Información Geográfica y hacer análisis reproducible.

Stephanie Orellana Bello sporella@uc.cl

Análisis Reproducible

Reproducibilidad

 Se entiende que un estudio es reproducible si es posible recrear exactamente todos los resultados a partir de los datos originales y el código informático empleado para los análisis.

Repetibilidad

 Se refiere a la posibilidad de obtener resultados consistentes al replicar un estudio con un conjunto distinto de datos, pero obtenidos siguiendo el mismo diseño experimental.

Datos espaciales

Vectoriales

- Mediciones puntuales en campo
- Estaciones meteorológicas
- Rutas GPS
- Caminos
- Regiones
- Comunas

Ráster

- Imágenes satelitales
- Modelos de elevación digital
- Mapas base

¿Qué hace un sistema de información geográfica?

¿Qué hace un sistema de información geográfica?

Análisis de datos espaciales: flujo típico.

¿Cómo puedo tener control del proceso?

- Tanto ArcGis como Qgis tienen la posibilidad de escribir código en Python.
 - Herramienta para usuarios más avanzados
 - Interfaz de código poco amigable
- Usar librerías de #rspatial

Análisis reproducible de datos espaciales con R

Aplicaciones: Nicho ecológico

Conocer hábitat de una especie con base a observaciones puntuales y variables climáticas o topográficas.

- Paquete "dismo"
- ¿Qué tipo de datos utiliza?
 - Vectores: puntos (observaciones presencia/ausencia), polígonos (para acotar zona de estudio)
 - Rásters: variables climáticas o topográficas.
- Utilidad:
 - Planificación de muestreos en terreno
 - Validación de reconocimiento de especies

Gbif


```
# Descarga datos desde https://www.gbif.org/ para especies del género lama lg <- dismo::gbif( genus = "Lama", species = "*", geo = T )
```

Predictores

- Rásters o polígonos rasterizados
 - Imágenes satelitales (Temperatura, Precipitación, Índices de Vegetación, etc.)
 - Worldclim (https://www.worldclim.org/)
 - Nasa (https://search.earthdata.nasa.gov/)
 - Google Earth Engine (https://earthengine.google.com/)
 - Variables topográficas (Modelo de elevación digital)
 - ASTER
 - AlosPalsar
 - Bioclimas
 - Uso de suelo
 - etc.

Nicho ecológico

Comunicación de resultados

Comunicación de resultados

Aplicaciones: Análisis de imágenes satelitales

- Análisis de imágenes satelitales (sensor MODIS)
- Temperatura superficial diaria (día y noche) entre 2002 y 2016.
- Odisea: incluso usando R.

Solución: paquete "gdalcubes"

Conclusión

¡Es mejor hacerlo en R!

No es necesario tener que publicar algo para hacerlo reproducible.

Hacer códigos reproducibles ayuda a hacer más eficiente labores repetitivas. Es más fácil a la hora de compartir nuestros códigos con compañeros de trabajo.

También permite generar productos más fáciles de entender para los clientes.

La gran mayoría de las investigaciones tienen un componente espacial.

Agradecimientos

Cienciambiental
Consultores

R-Ladies Santiago

https://github.com/sporella/latinR2019 https://sporella.netlify.com/