LNNA向け回路生成における swapゲート個数最小化問題

東京大学大学院 情報理工学系研究科 電子情報学専攻 長谷川研究室 修士1年 内藤壮俊

第一章 テーマ説明

量子計算のアプローチ

- ▶ 量子アニーリング型
 - ▶ 多変数二次関数の最小化問題(組み合わせ最適化)を解ける
 - ▶ それぞれの変数は 0 か 1 のどちらかを取る
 - ▶ 量子ビットの個数は数千個オーダーと, 小~中規模な問題なら実用化可能
 - ▶ Fixstars Amplifyで使っているのはこっち
- ▶ 量子ゲート型
 - ▶ 汎用計算機. 古典コンピュータも(理論的には)シミュレートできる
 - ▶ 量子ビットの個数は非常に少ない(数十個のオーダー)
 - ▶ GoogleやIBMが取り組んでいる計算機はこっち
 - ▶ 今回扱うテーマはここの話

量子回路

- ▶ ゲート通過 = ユニタリ変換 による状態の変化を利用
- ▶ 任意の回路は1入力ゲートと2入力ゲートに展開することができる
- ▶ 2入力ゲートにおけるエラー率は1入力ゲートの10倍程度

図:IBM Qにて作成した量子回路の例.

(左:回路設計段階における見た目. 右:1入力と2入力ゲートに展開した結果.)

量子回路の実機搭載

- ▶ 「設計図上のビット」と「デバイス上のビット」の対応を考える必要がある
- ▶ 2入力ゲートは隣り合う2ビットにしか作用させられない
- ▶ 離れている場合は?
 - ▶ → swapゲートを使って入れ替える必要がある

左図:

IBM「Rochester」における 量子ビットの配置.

右図:

Google「Sycamore」における 量子ビットの配置.

Linear Nearest Neighbor Architecture

- ▶ 量子ビットが1次元状に並んでいるアーキテクチャのこと
- ▶ swapゲートによる並び替えはバブルソートと非常に似ている
 - ▶ 挿入する個数 = バブルソートの交換回数 = 転倒数 となるため,扱いやすい問題に

扱う問題

- ▶ 量子ビットを共有しない2入力ゲートどうしを一つのレイヤーにまとめる
- ▶ 2入力ゲートを含むレイヤーのそれぞれに対し、量子ビットの配置を決定する
- ▶ 挿入するswapゲートの個数を最小化したい
 - ▶ swapゲート1つに, cnotゲートを3つも使ってしまう

図:レイヤーの構成.

古典的なアプローチ (動的計画法による高速化)

- \blacktriangleright 量子ビットの個数 N に対し、各レイヤーにおける配置は N! 通り
- \blacktriangleright レイヤーの枚数 M に対して、全体の取りうる状態数は $(N!)^M$ 通り
- ▶ 配置に対する暫定的なコストを持っておくことで, 空間計算量 $O(M \cdot N!)$, 時間計算量 $O(M \cdot (N!)^2)$ で解くことができる
- N=10 で $(N!)^2\approx 1.3\times 10^{13}$ なので、小規模の回路にしか適用できない。

第二章 とりあえず実装してみる

バイナリ変数を用いた定式化

- ▶ 各レイヤーにおける量子ビットは [0,1,…,N 1] の並び替えとなる
- Q_{mnv} : 「レイヤー m における n 番目は、設計図における v 番目に対応する」
 - ► MN² 個の量子ビットが必要
- ▶ one-hot 制約
 - ▶ 「設計図におけるビットは1つのビットに対応する」: $\sum_{n=0}^{N-1} Q_{mnv} = 1$
 - ▶ 「レイヤーにおけるビットは1つのビットに対応する」: $\sum_{v=0}^{N-1} Q_{mnv} = 1$
- ▶ 2入力ゲートによる制約
 - ▶ 作用させる2ビットは隣り合っていなければならない
 - ト ペナルティ関数: $\sum_{(a,b)\in[2-input-gates]} \sum_{(i,j),|i-j|\geq 2} Q_{mia} Q_{mjb}$

コスト関数の定式化

- ▶ swapゲートの個数 = バブルソートの交換回数 の総和を減らしたい
 - ► A: [3,0,4,1,2] → B: [2,1,3,4,0] の交換回数は?
- $B = [0, 1, 2, \dots, N 1]$ なら, 初期配置 A における転倒数を求めれば良い
 - ▶ 転倒数: $A_i > A_j$ and i < j となる組の総数
 - ightharpoonup 全ての組に対して足し合わせればいいので $O(N^2)$
- ▶ $B = [0, 1, 2, \dots, N 1]$ とは限らない場合, どう定式化する…?

コスト関数の定式化 (初期案)

- ▶ 置換の合成も置換なので, $(A \rightarrow B) = (C \rightarrow [0,1,2,\cdots,N-1])$ となる C を見つけてあげれば良い?
 - ▶ A: [3,0,4,1,2] → B: [2,1,3,4,0] なら, C: [2,4,3,1,0] → [0,1,2,3,4] となる
 - ▶ 「 *B* の配置を [0,1,2,3,4] とみなした時の *A* の配置」を求める問題
- $C_{ij} = 1 \leftrightarrow C[i] = j \leftrightarrow A[i] = B[j]$
 - ▶ A[i] のシンボルと B[j] のシンボルが等しいかどうか
 - ▶ ベクトルの内積で定式化できる?

コスト関数の定式化 (初期案)

- ▶ いくら待っても実行可能解が見つからない......
- 何がダメだったか
 - ▶ 制約条件 $C_{ij} = \sum_{v=0}^{N-1} A_{iv} B_{jv}$ は, 2次多項式の形をしている
 - ト ペナルティの関数は $\frac{\left(C_{ij}-\sum_{v=0}^{N-1}A_{iv}B_{jv}\right)^{2}}{2次式の2乗 = 4次式}=0$ となり, $\frac{2次以下の多項式で表せない}{2次式の2乗 = 4次式}$
- ▶ 任意の *A, B* 間の転倒数は4次多項式で定式化されるので, これの厳密な値を組み込むことがそもそも不可能だった

第三章 転倒数のフィッティング

転倒数のフィッティング

- ▶ *A,B* 間の転倒数をどうにかして2次以下で表したい
 - ▶ 厳密解は諦めて,2次以下でフィッティングを試みる
- ▶ 使える変数
 - 「同じシンボルがどこからどこへ移動したか」
 - ト つまり, $C_{ij} = \sum_{v=0}^{N-1} A_{iv} B_{jv}$ のこと
 - $ightharpoonup C_{ij}$ の線形和で転倒数を表現したい,という話になる
 - $B = [0,1,2,\cdots,N-1]$ とは限らないので、シンボル間の大小関係は使えない
 - ▶ 変数の個数は N² 個
 - ▶ 対称性の除去により, N が奇数の時は $\frac{1}{4}(N+1)^2$ 個, 偶数の時は $\frac{1}{4}(N^2+2N)$ 個に

重回帰分析によるアプローチ

- ▶ 重回帰分析なら scikit-learn でできるので, これで転倒数を推定してみる
- ▶ 係数,切片ともにすごい値になってしまった

```
coefficient
[-4.71281238e+12 -1.46172282e+12 -5.40448318e+13 -5.40448318e+13
-1.46172282e+12 -4.71281238e+12 1.78936673e+12 -5.07937422e+13
-5.07937422e+13 1.78936673e+12 -1.03376851e+14 -1.03376851e+14]
intercept
212600593697132.16
```

図:係数,切片の出力結果. 10¹⁴ オーダーの数字が見られる.

▶ でも、プロットしてみると良い感じに見える

図: N = 6 の場合の推定結果. (横軸:正解 縦軸:推定値)

期待値によるアプローチ

- ▶ ある並び替えにおいて,左からi+1番目のシンボルがj+1番目に動いた際,他のシンボルと入れ替わっている確率を求める
 - ▶ $A: [3,0,4,1,2] \rightarrow B: [2,1,3,4,0]$ なら, (i, j) = (1, 4)
 - ▶ この場合, 0 は3つのシンボル (1, 2, 4) と入れ替わっている
- ▶ 自分以外の N-1 個のシンボルに対し, $\frac{$ **左側** \rightarrow **右側**or 右側 → 左側 と動いた 確率を足し合わせ,(重複を考えて) <math>2で割ると求められる

$$\frac{1}{2}(N-1)\left\{\frac{i}{N-1} \cdot \frac{N-1-j}{N-1} + \frac{N-1-i}{N-1} \cdot \frac{j}{N-1}\right\} = \frac{i+j}{2} - \frac{ij}{N-1}$$

▶ 転倒数 $\approx \sum_{0 \le i,j < N} \left(\frac{i+j}{2} - \frac{ij}{N-1}\right) \cdot C_{ij}$ として予測を行ってみた

期待値によるアプローチ

- ▶ のっぺりした分布になってしまった...
- ▶ 一方で,分布の形状は重回帰分析による推定結果に非常に似ている
 - ▶ 両者の間に何か対応が見えるのでは…?

図:重回帰分析による推定結果

図:期待値による推定結果

予測結果の相関を調べる

- ▶ 横軸を「期待値による推定」,縦軸を「重回帰分析による推定」としてプロット
- ▶ 下図は, 左から N = 6, N = 10, N = 15, N = 20 の場合
 - ▶ $N \ge 10$ に対しては、 500000 サンプルをランダムに(復元抽出で)取り出して分析した

 $R^2 = 0.999355$ $R^2 = 0.999956$ $R^2 = 0.999978$ $R^2 = 0.999991$

$$y = 1.627x - 4.699$$
 $y = 1.800x - 17.993$ $y = 1.867x - 45.513$ $y = 1.899x - 85.390$ $R^2 = 0.999355$ $R^2 = 0.999956$ $R^2 = 0.999978$ $R^2 = 0.999991$

▶ 1次関数の関係になっていると言える $(1 - R^2)$ は縦軸の計算誤差によるものか)

転倒数の推定

- ▶ 「重回帰分析による推定結果」は、転倒数を一番良く推定できると考えられる
- ▶ 「期待値による推定結果」に1次関数を作用させると, 「重回帰分析による推定結果」に一致させられることが分かった
- ▶ → 期待値による推定結果だけから「最も良いモデル」を構成できる!
 - ▶ 例えば N = 6 (y = 1.627x 4.699) なら, 転倒数 ≈ $1.627\left\{\sum_{0 \leq i,j < N} \left(\frac{i+j}{2} \frac{ij}{N-1}\right) \cdot C_{ij}\right\} 4.699$ として表現できる

一次関数の係数についての考察

- **量子ビットの個数** N に対して,一次関数は $y = \frac{2N-2}{N} x \frac{(N-1)(N-2)}{4}$ と書けそう
 - ▶ しかし、予想の証明にはまだ至らず…
- ▶ (誤差) = (予測値) (実測値) として記録

N	3	4	5	6	7	8	9	10	15	20
傾き	1.3333	1.5000	1.5987	1.6267	1.6856	1.7425	1.7738	1.7990	1.8664	1.8992
切片	-0.500	-1.500	-2.974	-4.699	-7.196	-10.379	-13.933	-17.975	-45.490	-85.419
傾きの誤差	0	0	-0.0013	-0.0400	-0.0287	-0.0075	-0.0040	-0.0010	-0.0003	-0.0008
切片の誤差	0	0	0.026	0.301	0.304	0.121	0.067	0.025	0.010	0.081

表:Nを動かした時の,一次関数の傾きと切片の変化.

誤差は小さく, 上記の予想とおおよそ一致していると言える。

転倒数の推定モデルの実装

- ▶ 「同じシンボルがどこからどこへ移動したか」: $C_{ij} = \sum_{v=0}^{N-1} A_{iv} B_{jv}$
- ▶ 転倒数 $\approx \left\{\sum_{0 \leq i,j < N} \left(\frac{i+j}{2} \frac{ij}{N-1}\right) \cdot C_{ij}\right\}$ に $y = \frac{2N-2}{N}x \frac{(N-1)(N-2)}{4}$ を適用
- ▶ →転倒数 ≈ $\frac{2N-2}{N} \left\{ \sum_{0 \le i,j < N} \left(\frac{i+j}{2} \frac{ij}{N-1} \right) \left(\sum_{v=0}^{N-1} A_{iv} B_{jv} \right) \right\} \frac{(N-1)(N-2)}{4}$ と書ける
 - ▶ 複雑な見た目だけど、ちゃんと2次多項式で表現できている!

▶ あとは、この式をもとに目的関数を設計するだけ

コスト関数の定式化 (改良案)

- ▶ 目的関数:各レイヤー間の転倒数(の推定値)の和
- - トレイヤーm, m+1間においては, $A_{iv}=Q_{miv}$, $B_{jv}=Q_{(m+1)jv}$ となる
 - $ightharpoonup Q_{mnv}$: 「レイヤー m における n 番目は,設計図における v 番目に対応する」
- ▶ 代入すると、以下のように整理できる

$$\sum_{m=0}^{M-1} \left\{ \sum_{0 \le i,j < N} \frac{(N-1)(i+j)-2ij}{N} \left(\sum_{v=0}^{N-1} Q_{miv} Q_{(m+1)jv} \right) \right\} - \underbrace{(M-1)\frac{(N-1)(N-2)}{4}}_{4}$$

この部分を最小化したい.

定数項.

最小化においては無視される.

第四章 改良案の実装とその評価

バイナリ変数を用いた定式化(再掲)

- ▶ 各レイヤーにおける量子ビットは [0,1,…,N 1] の並び替えとなる
- Q_{mnv} : 「レイヤー m における n 番目は、設計図における v 番目に対応する」
 - MN² 個の量子ビットが必要
- ▶ one-hot 制約
 - ▶ 「設計図におけるビットは1つのビットに対応する」: $\sum_{n=0}^{N-1} Q_{mnv} = 1$
 - ▶ 「レイヤーにおけるビットは1つのビットに対応する」: $\sum_{v=0}^{N-1} Q_{mnv} = 1$
- ▶ 2入力ゲートによる制約
 - ▶ 作用させる2ビットは隣り合っていなければならない
 - ▶ ペナルティ関数: $\sum_{(a,b)\in[2-input-gates]} \sum_{(i,j),|i-j|\geq 2} Q_{mia} Q_{mjb}$

QUBO形式への変換

- $cost = \sum_{m=0}^{M-1} \left\{ \sum_{0 \le i,j < N} \frac{(N-1)(i+j)-2ij}{N} \left(\sum_{v=0}^{N-1} Q_{miv} \ Q_{(m+1)jv} \right) \right\}$
- $\begin{aligned} & \qquad \qquad constraint = \sum_{m=0}^{M} \left\{ \sum_{v=0}^{N-1} (1 \sum_{n=0}^{N-1} Q_{mnv})^2 + \sum_{n=0}^{N-1} (1 \sum_{v=0}^{N-1} Q_{mnv})^2 + \sum_{v=0}^{N-1} (1 \sum_{v=0}^{N$
- ightharpoonup model = constraint × λ + cost として構成した
 - ▶ model の項数(= モデルの規模)は O(MN³) 個
- 制約 >> コストとするために, λ = 100 と設定
 - \triangleright N, M が大きくなる = コストが大きくなるにつれて, λ も大きくするべきか

評価:用いたデータ

- **2**入力ゲートを含むレイヤーを M 枚生成した (M=5)
 - ▶ レイヤー1枚あたり, $1 \sim \left\lfloor \frac{N}{2} \right\rfloor$ 個の2入力ゲートを含むように構成
 - ▶ 2入力ゲートの個数,作用先はランダムに決定
 - ▶ 2入力ゲートどうしで量子ビットの共有は起こらない

- ▶ 古典解法 $(N \le 6)$, Amplify解法 $(N \le 26)$ を10回ずつ試してコストや実行時間を比較した
 - ▶ 実験では, timeout = 1s として実行
 - ▶ コストの比較においては, M = 20 も検討した

評価:コスト最小化の性能比較

- ▶ ランダムに生成したデータ10個に対するコストの平均値を記録した
 - ▶ 古典的解法は最適解を出力する(ので,必ず 古典的解法 ≤ Amplify解法 となる)
 - ▶ Amplify解法においては、出力した結果をもとに厳密なコストを計算した
- M = 20 での誤差が大きくなっている
 - ightharpoonup 転倒数の近似が原因? λ を調整してみる? timeout を伸ばす?

N	3	4	5	6
古典的解法 (M = 5)	0.6	1.4	2.1	4.1
Amplify解法 (M = 5)	0.6	1.4	2.1	4.5
古典的解法 (M = 20)	3.8	13.0	15.0	24.9
Amplify解法 (M = 20)	3.8	13.1	18.9	34.0

表: それぞれの解法における コストの平均値,

評価:実行時間の比較

- M=5 にて、N を動かした時の実行時間(秒)を比較した
 - ▶ 古典的な $O(M \cdot (N!)^2)$ 解法では N = 7 が限界だった

N	3	4	5	6	7	8	9	10	15	20
古典的解法	0.0007	0.0084	0.4551	8.9532	566.95	_	_	_	_	_
Amplify解法	1.8336	1.8184	1.4685	1.1751	1.2766	1.3620	1.3654	1.6483	6.1014	20.047

表: N を動かした時の実行時間の比較.

 $6 \le N$ においてAmplify解法の方が高速となっている.

▶ Nが大きくなると、Amplify解法でも時間がかかる傾向に

評価:実行時間の内訳

- ▶ Amplify解法に対して,実行時間を以下の3つに分けて測定した
 - ▶ 「準備時間」:量子ビット,制約条件,コスト関数の生成
 - ▶ 「探索時間」:"result = solver.solve(model)"でかかる時間
 - ▶ 「解析時間」:出力結果のデコード, 結果に基づく厳密なコストの計算
- ▶ 準備時間が大きく増える傾向にあった

N	5	10	15	20
準備時間(s)	0.013	0.473	3.607	25.818
	(0.004)	(0.194)	(1.232)	(13.732)
探索時間(s)	1.316	1.191	1.436	1.886
	(0.377)	(0.053)	(0.248)	(0.497)
解析時間(s)	0.001	0.003	0.005	0.006
	(0.000)	(0.000)	(0.001)	(0.000)

表 / 図:実行時間の内訳. N が大きくなるにつれて準備時間が増える傾向が見てとれる. カッコ内は(不偏)標準偏差.

評価:実行時間の見積もり

- ト 探索にかかる時間は固定だが、制約条件とコスト関数が $O(MN^3)$ 項あるため 古典計算がオーバーヘッドとなり、全体的で $O(MN^3)$ となると推測される
- ightharpoonup といっても,古典的解法は $O(M\cdot(N!)^2)$ なので飛躍的向上と言える
- N = 50 (現時点での最大級の量子ビット数) でも数分あれば計算できるはず

第五章 実問題への応用

QASMとの連携