Complex Numbers Revision- Past HSC Questions involving Vectors

2012 Q12

(d) On the Argand diagram, the points A_1 and A_2 correspond to the distinct complex numbers u_1 and u_2 respectively. Let P be a point corresponding to a third complex number z.

Points B_1 and B_2 are positioned so that $\Delta A_1 P B_1$ and $\Delta A_2 B_2 P$, labelled in an anti-clockwise direction, are right-angled and isosceles with right angles at A_1 and A_2 , respectively. The complex numbers w_1 and w_2 correspond to B_1 and B_2 , respectively.

(i) Explain why $w_1 = u_1 + i(z - u_1)$.

1

2

(ii) Find the locus of the midpoint of B_1B_2 as P varies.

2010 Q2

(d) Let $z = \cos \theta + i \sin \theta$ where $0 < \theta < \frac{\pi}{2}$. On the Argand diagram the point A represents z, the point B represents z^2 and the point C represents $z + z^2$.

Copy or trace the diagram into your writing booklet.

- (i) Explain why the parallelogram *OACB* is a rhombus.
- (ii) Show that $\arg(z+z^2) = \frac{3\theta}{2}$.

1

- (iii) Show that $\left|z+z^2\right|=2\cos\frac{\theta}{2}$.
- (iv) By considering the real part of $z + z^2$, or otherwise, deduce that $\cos \theta + \cos 2\theta = 2\cos \frac{\theta}{2}\cos \frac{3\theta}{2}$.

Solutions

(i) $\overline{A_1}\overline{B_1} = \overline{A_1}\overline{P}$ rotate 90° anticlockwise $w_1 - u_1 = (z - u_1)i$ $w_1 = u_1 + i(z - u_1)$ as required.

(ii)
$$\overline{A_2P} = \overline{A_2B_2}$$
 rotate 90^0 anticlockwise $z - u_2 = (w_2 - u_2)i$ $z - u_2 + iu_2 = iw_2$ $-w_2 = iz - iu_2 - u_2$ $w_2 = u_2 + iu_2 - iz$ $w_2 = u_2 + i(u_2 - z)$

The midpoint of B_1B_2 as P varies is:

$$\frac{w_1 + w_2}{2} = \frac{u_1 + i(z - u_1) + u_2 + i(u_2 - z)}{2}$$
$$= \frac{u_1 + u_2}{2} + \frac{(u_2 - u_1)}{2}i$$

which is a fixed point.

(d)
$$OA = |\overrightarrow{OA}| = |z| = 1$$

 $OB = |\overrightarrow{OB}| = |z^2| = |z|^2 = 1$

So OA=OB

OACB is a parallelogram with adjacent sides equal ∴ it is a rhombus.

(ii)
$$Arg(z^2) = 2Arg(z)$$

 $= 2\theta$
 $\therefore \angle BOA = \theta$
In a rhombus, the diagonals bisect the angles so $\angle COA = \frac{\theta}{2}$.
 $Arg(z+z^2) = \theta + \frac{\theta}{2} = \frac{3\theta}{2}$.

$$\left|z+z^2\right|=OC.$$

Let *M* be the midpoint of OC. In a rhombus, the diagonals bisect each other at right angles.

In
$$\triangle OMA$$
,

$$\cos \frac{\theta}{2} = \frac{OM}{OA}$$

$$= \frac{OM}{1}$$

$$= OM$$

$$OC = 2OM$$
So $OC = 2\cos \frac{\theta}{2}$

$$\therefore |z + z^2| = 2\cos \frac{\theta}{2}$$

(iv)
$$z+z^2 = 2\cos\frac{\theta}{2}\left(cis\frac{3\theta}{2}\right)$$
 from (ii) and (iii)
 $= 2\cos\frac{\theta}{2}\cos\frac{3\theta}{2} + i \times 2\cos\frac{\theta}{2}\sin\frac{3\theta}{2}$
Re $(z+z^2) = 2\cos\frac{\theta}{2}\cos\frac{3\theta}{2}$
Alternately,
 $z+z^2 = \cos\theta + i\sin\theta + \cos2\theta + i\sin2\theta$
Re $(z+z^2) = \cos\theta + \cos2\theta$
 $\therefore \cos\theta + \cos2\theta = 2\cos\frac{\theta}{2}\cos\frac{3\theta}{2}$