MGM657 Outils Numériques pour l'Ingénieur Traitement de signal

ludovic.charleux@univ-savoie.fr

www.polytech.univ-savoie.fr

- 1 Introduction
- 2 Notations
- 3 Outils
- 4 Échantillonnage
- 5 Analyse fréquentielle

Plan

- 1 Introduction
- 2 Notations
- 3 Outils
- 4 Échantillonnage
- 5 Analyse fréquentielle

Vibration d'une poutre

Vibration d'une poutre : spectre

Plan

- 1 Introduction
- 2 Notations
- 3 Outils
- 4 Échantillonnage
- 5 Analyse fréquentielle

Notations

Un signal?

Dans ce cours on étudie le comportement d'un signal x issu de la mesure d'une grandeur physique (vitesse, température, ...). Le signal dépend d'une variable unique t qui peut représenter le temps, une position ...

Signal quelconque

D'un point de vue mathématique, le signal x(t) défini par :

$$x: t \longmapsto x(t), \ \forall x \in [0, t_{max}]$$

Signal périodique

Si x est périodique, on note T sa période et f sa fréquence avec :

$$f=rac{1}{T}$$

Plan

- 1 Introduction
- 2 Notations
- 3 Outils
- 4 Échantillonnage
- 5 Analyse fréquentielle

Python, c'est quoi?

Pourquoi Python?

- La lourdeur des calculs nécessite des outils numériques.
- Les signaux expérimentaux sont numérisés et donc aisément traités par ces outils.
- Python est un langage simple, au spectre d'applications vaste.
- Python est libre et donc gratuit, vous pouvez donc l'installer rapidement sur toute machine. Il est présent sur la majorité des distributions de Linux.
- Pour l'installer et lire les documentations : http ://www.python.org/
- Modules utilisés :
 - Graphisme : Matplotlib
 - Calcul scientifique : Scipv
 - Calcul numérique : Numpy

```
·Outils
└─ <u>Pytho</u>n: comment ça marche?
```

Python: comment ça marche?

Outils nécessaires

- Un éditeur de texte reconnaissant la syntaxe.
- Un terminal.

Exemple

On crée un fichier test.py dont le contenu est (voir dossier / listings) :

```
1 # listings/test.py
2 print "Hello world !"
```

On execute Python dans un terminal avec une des commandes suivantes :

```
1 python test.py
```

Ou:

```
python execfile(test.py)
```

La seconde solution a l'intérêt de ne pas fermer l'interpréteur après l'exécution ce qui permet de débugger ou de modifier le code plus aisément.

Plan

- 1 Introduction
- 2 Notations
- 3 Outils
- 4 Échantillonnage
- 5 Analyse fréquentielle

Les bases

Principe

Échantilloner un signal x consiste à l'évaluer sur une grille comportant N points définie par :

$$t_n = t_{min} + rac{n}{f_e}, \ n \in \ [0, N[$$

La fréquence $f_{\rm e}$ est la fréquence d'échantillonnage. La durée d'observation du signal notée D est donc obtenue par :

$$D = N/f_e$$

Le signal échantillonné est alors obtenu par :

$$x_n = x(t_n)$$

On note $[t_n]$ et $[x_n]$ les vecteurs ainsi obtenus.

Paramètres importants

- \blacksquare $\frac{D}{T}$: ajustable en modifiant la durée d'observation D
- $\frac{f_e}{f}$: ajustable en modifiant la fréquence d'échantillonnage f_e .

Choix de la durée d'observation (1/2)

Temps d'observation D trop court!

Choix de la durée d'observations (2/2)

Conclusion

- II faut que $D/T \ge 1$
- Idéalement, $D/T \in \mathbf{N}$

Une borne basse de la fréquence d'échantillonage?

Échantillonage correct.

Une borne basse de la fréquence d'échantillonage?

Échantillonage correct.

Une borne basse de la fréquence d'échantillonage?

Fréquence d'échantillonage trop basse.

Borne basse de la fréquence d'échantillonage?

Fréquence d'échantillonage f_e trop basse.

Bilan : le théorème de Shannon-Nyquist

Toute composante du signal dont la fréquence est supérieure ou égale à $f_{\rm e}/2$ sera perdue lors de l'échantillonage.

Hautes fréquences et aliasing

Hautes fréquences et aliasing

Les fréquences trop hautes vis-à-vis de la fréquence d'échantillonnage (i. e. $f \geq f_e/2$) sont non seulement perdues mais peuvent produire des artefacts sous la forme de basses fréquences. Il est donc impératif de filtrer le signal préalablement à son échantillonnage pour couper toutes les fréquences supérieures à $f_e/2$.

Hautes fréquences et aliasing

Explication mathématique

Intéressons nous aux signaux de fréquence $f^*=f+kf_e$ avec $k\in\mathbb{Z}.$ On les échantillonne :

$$x_n^* = \sin(2\pi \frac{f^*}{f_e}n)$$

$$= \sin(2\pi \frac{f + kf_e}{f_e}n)$$

$$= \sin(2\pi nk + 2\pi \frac{f}{f_e}n)$$

$$= \sin(2\pi \frac{f}{f_e}n)$$

$$= x_n$$

Ce qu'il faut comprendre

Les signaux de fréquence $f^*=f+kf_e$ avec $k\in\mathbb{Z}$ sont indiscernables par échantillonnage. Dans le cadre d'une étude expérimentale, il faut donc s'assurer qu'une seule de ces fréquences est présente dans le signal échantillonné.

Échantillonnage

Hautes fréquences et aliasing

Mises en pratique (1/2)

```
1 # listings/exemple aliasing.pv
2 from matplotlib import pyplot as plt
3 from math import sin, pi
4 from signal sinusoidal import signal sinusoidal as signal
5 from numpy import arange, floor
6 \mid \text{beaucoup} = 1000
7 f = 1. # Frequence du signal
8 D = 2./f # Duree d'observation
9 t min = 0. # Debut du calcul du signal
10 t max = t min+D # Fin du calcul du signal
11 | \overline{fe} = 2.1*\overline{f} \# Frequence d'echantillonage
12 N = int(floor(D*fe)) # Nombre de points d'evaluation
13 plt. figure (0)
14 plt. clf()
15 plt.xlabel('Temps $t$', fontsize=20)
16 plt.ylabel('Signal $x$', fontsize=20)
17 | \text{kmin.kmax} = -1. 2
18 \mid t = arange(beaucoup)/float(beaucoup)*(t max-t min)+t min
19 for k in xrange (kmin, kmax):
20
  f1 = f + k*fe
21
   x = [signal(tt.T=1./f1)] for tt in t]
22
    plt.plot(t, x, b-\gamma, linewidth =1.)
23 tn = arange(N)/(D*fe)*(t max-t min)+t min
24 \times n = [signal(tt, T=1./f)] for tt in tn]
25 plt. plot(tn.xn.'or')
26 \times [signal(tt, T=1./f)] for tt in t]
27 plt. plot (t, x, r-\gamma, linewidth = 2.)
28 plt.savefig('../figures/exemple aliasing.pdf')
```

Mises en pratique (2/2)

Plan

- 1 Introduction
- 2 Notations
- 3 Outils
- 4 Échantillonnage
- 5 Analyse fréquentielle

Décomposition des signaux périodiques

Fonctions de base

On peut projeter les signaux de fréquence f sur une base de dimension infinie constituée de fonctions de la forme :

$$f_n(t) = \sin(2\pi n f t)$$
 et $g_n(t) = \cos(2\pi n f t)$

Décomposition sur la base

Un signal périodique x(t) peut donc s'écrire sous la forme :

$$x(t) = \sum_{n=0}^{+\infty} a_n \sin(2\pi n f t) + b_n \cos(2\pi n f t)$$

Points essentiels

- Connaître $[a_n]$ et $[b_n]$, c'est connaître x(t) en tout point.
- Cette décomposition donne une interprétation fréquentielle de x(t).
- La question est donc de savoir comment calculer analytiquement et numériquement $[a_n]$ et $[b_n]$.

Développement en séries de Fourier

Les grandes lignes

- Les séries de Fourier permettent d'effectuer la projection des signaux périodiques sur la base $[f_n(t), g_n(t)]$ de manière analytique.
- **Quand** N tend vers l'infini, la somme converge vers le signal x(t).
- Pour les signaux présentant des singularités (triangle, carré), elle converge plus lentement.

Formulation

$$\sum_{n=-N}^{+N} c_n(x) e^{2j\pi nft} \underset{N \to \infty}{\longrightarrow} x(t)$$

Où les coefficients complexes $c_n(x) \in \mathbb{C}$ sont définis par :

$$c_n(x) = \frac{1}{T} \int_0^T x(t)e^{-2j\pi nft} dt$$
 avec : $T = \frac{1}{f}$

Exercices

Remarques et notations

- $\mathbf{z}(t)$, y(t) et z(t) sont des fonctions de période T du temps t.
- lacksquare α est un nombre réel.
- On pourra introduire la pulsation $\omega = 2\pi f$ pour simplifier les calculs.
- On rappelle que :

$$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b); \ \sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$$

$$cos(a) = \frac{e^{ja} + e^{-ja}}{2}$$
; $sin(a) = \frac{e^{ja} - e^{-ja}}{2j}$

Pour chaque signal x, trouver l'ensemble des coefficients $c_n(x)$

$$x(t) = \cos(2\pi ft)$$

$$x(t) = \cos^2(2\pi ft)$$

$$x(t) = \alpha y(t)$$

$$x(t) = y(t) + z(t)$$

Exercice: signal sinusoïdal

Réécriture

$$x(t) = \sin(2\pi ft)$$

$$= \frac{e^{2j\pi ft} - e^{-2j\pi ft}}{2j}$$

$$= \frac{j}{2}e^{-2i\pi ft} - \frac{j}{2}e^{2j\pi ft}$$

Coefficients

$$c_n(x) = \begin{cases} -\frac{j}{2} \operatorname{si} : n = 1 \\ \frac{j}{2} \operatorname{si} : n = -1 \\ 0 \ \forall \ n \in \mathbb{Z} - \{1, -1\} \end{cases}$$

Interprétation des coefficients c_n

Comment passer de $[c_n]$ à $[a_n, b_n]$

On note \Re la fonction partie réelle et \Im la fonction partie imaginaire. On remarque que dans le cas des signaux à valeurs réels (ce qui est majoritairement le cas en physique) :

$$c_{-n}=\Re(c_n)-j\Im(c_n)=\overline{c}_n$$

Les coefficients associés à n < 0 sont donc inutiles car conjugués de coefficients obtenus pour n >= 0. On remarque aussi que les coeffients a_n et b_n peuvent être calculés pour $n \geq 0$:

$$a_n = 2\Re(c_n)$$

$$b_n = -2\Im(c_n)$$

Calculs

$$x(t) = \begin{cases} -1 \text{ si} : t \in]0, T/2[\\ 1 \text{ si} : t \in]T/2, T[\end{cases}$$

Donc:

$$c_{n}(x) = \frac{1}{T} \int_{0}^{T} x(t)e^{-2j\pi nft} dt$$

$$= -\frac{1}{T} \int_{0}^{T/2} e^{-2j\pi nft} dt + \frac{1}{T} \int_{T/2}^{T} e^{-2j\pi nft} dt$$

$$= \frac{1}{T} \left(\left[\frac{-j}{2\pi nf} e^{-2j\pi nft} \right]_{0}^{T/2} + \left[\frac{j}{2\pi nf} e^{-2j\pi nft} \right]_{T/2}^{T} \right)$$

Coefficients

$$c_n(x) = -j\frac{2}{\pi n}$$
 avec : $n = 2k + 1$ et : $k \in \mathbb{Z}$

Mise en pratique : voyons si ça marche

```
1 # listings/serieF carre.pv
2 from cmath import exp
3 from numpy import arange, array
4 from math import pi
  from matplotlib import pyplot as plt
  from trace complexes import *
  N = 1 \# Nombre de coefficients calcules
   for N in [1,2,4,8,16,32,64,128,256,1024]: # Valeurs de N
    # Indices n impairs
9
10
     n = [2*k+1 \text{ for } k \text{ in } range(-N,0)]+[2*k+1 \text{ for } k \text{ in } range(N)]
11
     c = [-2j/(pi*nn)] for nn in n] # Coefficients c
12
     T. beaucoup= 1.. 2000
13
     t, f = arange(beaucoup)/float(beaucoup)*T, array(n[N:2*N])/T
14
     trace complexes(f,c[N:2*N],'../figures/serieF_carre_c_{0}.pdf'.format(
          \overline{N}), title='Coefficients $c_n$ pour $N = {0}$'.format(N))
15
     x = 11
     for tt in t:
16
17
       x.append(0.)
       for i in xrange(len(n)):
18
19
         x[-1] = x[-1]+c[i]*exp(2j*pi*n[i]*tt/T)
20
     x1 = [xx.real for xx in x]
21
     plt. figure (0, figsize = (10, 2))
22
     plt.clf()
23
     plt.plot(t,x1)
24
     plt.title('$N={0}$', format(N))
25
     plt.savefig('../figures/serieF carre {0}.pdf'.format(N))
```

Programme de tracé de vecteurs complexes

```
# trace complexes.py
   import matplotlib.pyplot as plt
3
   def trace complexes(x,y,fichier,xlabel='Frequence $f$', title='', style=
        'ro'):
5
     plt. figure (0, figsize = (9,5))
     plt.clf()
7
     plt.grid(True)
8
     p0 = plt.subplot(2.1.1)
9
     p0.set title(title)
10
     p0.grid()
11
     p0.plot(x,[yy.real for yy in y], style, linewidth = 2.0)
12
     pO.set vlabel('Partie reelle', fontsize=15)
13
     p1 = \overline{plt} \cdot subplot(2,1,2)
14
     p1.grid()
15
     p1.plot(x,[yy.imag for yy in y], style, linewidth = 2.0)
     p1.set xlabel(xlabel, fontsize=15)
16
17
     pl.set_ylabel('Partie imaginaire', fontsize=15)
18
     plt.savefig (fichier)
```


Transformées de Fourier

Formulation

$$x(t) \stackrel{\mathcal{F}}{\longmapsto} X(f) = \int_{-\infty}^{+\infty} x(t) e^{-2j\pi ft} dt$$

$$X(f) \stackrel{\mathcal{F}^{-1}}{\longmapsto} x(t) = \int_{-\infty}^{+\infty} X(f) e^{2j\pi f t} df$$

Points clés

- $m{\mathcal{F}}$ est la tranformée de Fourier et \mathcal{F}^{-1} la transformée de Fourier inverse.
- F s'applique à tous les signaux, même apériodiques.
- **X**(f) est le spectre de x(t).
- Un signal apériodique possède un spectre continu.
- Un signal périodique possède un spectre discret.

La Transformée de Fourier Discrète ou DFT

Formulation

On considère un signal échantilloné $[x_n]$ comportant N échantillons. Sa transformée de Fourier discrètre $[X_k]$ s'écrit :

$$[x_n] \stackrel{\mathcal{DFT}}{\longmapsto} [X_k] = \sum_{n=0}^{n=N-1} x_n e^{-2j\pi \frac{kn}{N}}$$

$$[X_k] \stackrel{\mathcal{DFT}^{-1}}{\longleftrightarrow} [x_n] = \frac{1}{N} \sum_{k=0}^{k=N-1} X_k e^{2j\pi \frac{kn}{N}}$$

Interprétation de $[X_k]$

Le vecteur X_k représente le spectre discret de $[x_n]$. Chaque coefficient X_k est associé à une fréquence f_k obtenue par :

$$f_k = k/D = kf_e/N$$

La Transformée de Fourier Discrète ou DFT

Interprétation de $[X_k]$

Dans le cas ou le signal x(t) est réel, les coefficients X_k pour k > N/2 sont les conjugués des coefficients d'indice k < N/2. On peut donc se contenter d'interprêter les N/2 premiers coefficients.

Liens entre $[X_k]$ et $[a_k, b_k]$

Les coefficients a_k et b_k peuvent être déterminés par :

$$a_k = \frac{2}{N} \Re(X_k)$$

$$b_k = -\frac{2}{N}\Im(X_k)$$

Mise en pratique : calcul de la DFT

Programme de calcul de la DFT

```
1 # listings/exemple DFT.pv
2 from signal sinusoidal import *
3 from signal carre import *
4 from trace complexes import *
5 from numpy import arange, floor
6 from cmath import exp
7 signal = signal sinusoidal #signal = signal carre
8 beaucoup, rien = 1000, 1.e-10
9 \mid f = 3.3 \# Frequence du signal
10 D = 4. # Duree d'observation
11 t min = 0. # Debut du calcul du signal
12 t max = t min+D # Fin du calcul du signal
13 fe = 16. # Frequence d'echantillonage
14 N = int(floor(D*fe)) # Nombre de points d'evaluation
15 tn = arange(N)/(D*fe)*(t max-t min)+t min # Discretisation du temps
16 xn = [signal(tt, T=1./f, k=4.) for tt in th # Discretisation du signal
17 | Xk = [] # DFT de xn
18 for k in range(N): # Boucle sur k
19
    Xk.append(0.)
20
     for n in range(N): # Boucle sur n
21
       Xk[-1] = Xk[-1] + xn[n]*exp(-2]*pi*n*k/N) # Calcul de Xk
22
    if abs(Xk[-1], real) < rien : Xk[-1] = Xk[-1] - Xk[-1], real
23
    if abs(Xk[-1].imag) < rien : Xk[-1] = Xk[-1] - 1j*Xk[-1].imag
24
    Xk[-1] = Xk[-1]*2/N
25 | fk = arange(N)/D # Discretisation des frequences
26 tit= *DFT(\sin(2\pi nf/f_e))*2/N$: N={0}, f={1}, D={2}'.format(N,f,D)
  trace complexes(fk [:N/2], Xk [:N/2], '../figures/DFT_sinus.pdf', title=tit)
```

Vérification la DFT sur un signal sinusoïdal

On retrouve donc bien la série de Fourier avec le coefficient 2/N.

Optimisation de la DFT : la Transformée de Fourier Rapide (FFT)

La FFT, pourquoi? Comment?

Pourquoi?

- Le calcul direct de la DFT demande de l'ordre de N^2 opérations alors que des algorithmes optimisés dits FFT demandent $N \times \log N$ opérations. Le gain de temps est très significatif quand N est grand.
- L'utilisation de langages rapides (C, Fortran) dans le module FFTPack disponible dans Scipy permet typiquement d'augmenter d'un facteur 400 la vitesse d'execution par rapport Python.

Comment?

- Restrictions de la FFT : N doit être une puissance de 2.
- Utilisation :

```
# listings/exemple_FFT.py
from math import pi, sin
from scipy.fftpack import fft
N = 8
xn = [sin(2*pi*n/N) for n in xrange(N)]
Xk = fft(xn)
```

Renvoie $X_n = [0, -2j, 0, 2j]$ ce qui est identique au résultat obtenu par DFT. On utilisera donc préférentiellement la FFT pour des raisons de commodité et vitesse.

FFT : effet de la fréquence f

```
1 # listings/exemple FFT frequence.pv
2 from math import pi, sin, exp
3 from scipy.fftpack import fft
4 from random import gauss
  from numpy import array, arange, floor
  from matplotlib import pyplot as plt
  import matplotlib.gridspec as gridspec
8 from signal sinusoidal import *
9 beaucoup = \overline{1000}
10 fe = 64. # Frequence d'echantillonage
11 N = 4096 # Nombre de points d'echantillonage
12 D = N/fe # Duree d'observation
13 f = 8./D \# Frequence du signal
14 t min = 0. # Debut du calcul du signal
15 t max = t min+D # Fin du calcul du signal
16 s\bar{t}ddev = 0. # Ecart type du bruit
17 nom = '../figures/FFT_frequence.pdf'
18 amort = 0.
|19| \text{ val} = [\text{fe} -2, 64./D, 16./D, 8./D] \# \text{Frequence}
20 \mid lab = 5 = \{0\} $$
21 tn = arange(N)/(D*fe)*D+t min
22 for i in xrange(N):
23
   if tn[i] \le 1./f: i t = i
24 \times n = [\sin(2*pi*f*t)] for t in tn]
25 fk = arange(N)/D \# Discretisation des frequences
  plt . figure (0 , figsize = (12,8))
27 plt.clf()
  gs = gridspec.GridSpec(4, 3) # Grille de zone de trace
```

Optimisation de la DFT : la Transformée de Fourier Rapide (FFT)

FFT : effet de la fréquence f

```
29 p0 = plt.subplot(gs[:,:2])
30 p0.set title(r'xx(t) = x1 f t) avec $f$ variable, f_e={}'.
        format (fe))
  p0.grid()
31
32 p0.set xlabel(r, $f k$, fontsize=20)
  p0.set_{vlabel(r', \frac{2}{N}|X_k|, fontsize=20)}
34
  p0.set xscale('log')
  p0.set yscale('log')
36 for z in xrange(len(val)):
37
   v = val[z]
   #stddev = v
38
39
     f = v
40
     xn = [\sin(2*pi*f*t) \text{ for t in tn}]
     v amort = array([exp(-t*amort) for t in tn])
41
     \overline{color} = ['r', 'b', 'g', 'c'][z]
42
43
     bruit = array([gauss(0, stddev) for i in xrange(N)])
44
     xxn = (xn + bruit)*v amort
     Xk = abs(fft(xxn))*2./N
45
     p0.plot(fk[0:N/2],Xk[0:N/2],'-'+color, label = lab.format(v))
46
47
     p0.legend()
48
     p1 = plt.subplot(gs[z.-1])
49
     p1.grid()
50
     p1. plot (tn [: i t], xxn [: i t], '-'+color)
   pl.set xlabel('Temps $t$')
   plt.savefig(nom)
```

FFT : effet de la fréquence f

Changer la fréquence, c'est translater horizontalement le pic.

Optimisation de la DFT : la Transformée de Fourier Rapide (FFT)

FFT : effet de la durée d'observation D

```
1 # listings/exemple FFT D.pv
2 from math import pi, sin, exp
3 from scipy fftpack import fft
4 from random import gauss
5 from numpy import array, arange, floor, hanning
6 from matplotlib import pyplot as plt
7 import matplotlib.gridspec as gridspec
8 from signal sinusoidal import *
9 beaucoup = \overline{1000}
10 fe = 128. # Frequence d'echantillonage
11 f = 1. # Frequence du signal
12 t min = 0. # Debut du calcul du signal
13 stddev = 0. # Ecart type du bruit
14 nom = '../figures/FFT_D.pdf'
15 amort = 0.
16 \mid val = 8./f*array([.8,1.,1.2,1.6])
  lab = '$D/T = {0}$;
18
19
20 plt. figure (0, figsize = (12,8))
21
   plt.clf()
   gs = gridspec GridSpec (4, 3) # Grille de zone de trace
23 p0 = plt.subplot(gs[:,:2])
  p0.set title(r'x(t) = \sin(2 \pi f t) avec D variable')
25
  p0.grid()
26 p0.set \times label(r, f_k; f_k; fontsize = 20)
27 p0.set ylabel(r'$\frac{2}{N}|X_k|$', fontsize=20)
  p0.set xscale('log')
```

FFT : effet de la durée d'observation D

```
p0.set yscale('log')
   for z in xrange(len(val)):
31
     v = val[z]
32
     D = v
33
     i t=-1
34
     N = int(D*fe)
35
     fk = arange(N)/D # Discretisation des frequences
36
     t max = t min+D # Fin du calcul du signal
37
     tn = arange(N)/float(N)*D+t min
38
     xn = [\sin(2*pi*f*t)] for t in tn]
39
     v amort = array([exp(-t*amort) for t in tn])
40
     color = ['r', 'b', 'g', 'c'][z]
     bruit = array([gauss(0, stddev) for i in xrange(N)])
41
     xxn = (xn + bruit)*v amort #*hanning(N)
43
     Xk = abs(fft(xxn))*2./N
     p0.plot(fk[0:N/2],Xk[0:N/2],'-'+color, label = lab.format(v*f))
44
     p1 = plt.subplot(gs[z.-1])
45
46
     p1.grid()
     p1. plot (tn [: i_t], xxn [: i_t], '-'+color)
47
48
   p0.legend()
   pl.set xlabel('Temps $t$')
  plt.savefig(nom)
```

FFT : effet de la durée d'observation D

Lorque D n'est pas multiple de la période \mathcal{T} , la hauteur du pic est réduite.

Optimisation de la DFT : la Transformée de Fourier Rapide (FFT)

FFT : effet de la durée d'observation D

Le fenetrage temporel de Hann permet d'augmenter la hauteur du pic.

Optimisation de la DFT : la Transformée de Fourier Rapide (FFT)

FFT: effet du bruit

```
1 # listings/exemple FFT bruit.py
2 from math import pi, sin, exp
3 from scipy.fftpack import fft
4 from random import gauss
  from numpy import array, arange, floor
6 from matplotlib import pyplot as plt
7 import matplotlib.gridspec as gridspec
8 from signal sinusoidal import *
9 beaucoup = \overline{1000}
10 fe = 64. # Frequence d'echantillonage
11 N = 4096 # Nombre de points d'echantillonage
12 D = N/fe # Duree d'observation
13 f = 8./D \# Frequence du signal
14 t min = 0. # Debut du calcul du signal
15 t max = t min+D # Fin du calcul du signal
16 stddev = 0. # Ecart type du bruit
17 nom = '.../figures/FFT_bruit.pdf'
18 amort = 0.
19 \mid val = [1., 1.e - 1, 1.e - 2, 0.] \# Bruit
20 lab = 'Ecart type bruit: {0}'
  tn = arange(N)/(D*fe)*D+t min
22 for i in xrange(N):
23
   if tn[i] \le 1./f: i t = i
24 \times n = [\sin(2*pi*f*t)] for t in tn]
25 fk = arange(N)/D \# Discretisation des frequences
  plt . figure (0 , figsize = (12,8))
26
27 plt.clf()
  gs = gridspec.GridSpec(4, 3) # Grille de zone de trace
```

Optimisation de la DFT : la Transformée de Fourier Rapide (FFT)

FFT: effet du bruit

```
29 p0 = plt.subplot(gs[:,:2])
  p0.set title(r'$x(t) = \sin(2 \pi f t) + \ bruit')
  p0.grid()
  p0.set xlabel(r'\f k\f', fontsize=20)
  p0.set ylabel(r'$\frac{2}{N}|X_k|$', fontsize=20)
  p0.set_xscale('log')
  p0.set yscale('log')
36 for z in xrange(len(val)):
     v = val[z]
37
38
     stddev = v
39
     v amort = array([exp(-t*amort) for t in tn])
     color = ['r','b','g','c'][z]
40
     bruit = array([gauss(0, stddev) for i in xrange(N)])
41
     xxn = (xn + bruit)*v amort
43
     Xk = abs(fft(xxn))*2./N
     p0.plot(fk[0:N/2],Xk[0:N/2],'-'+color, label = lab.format(v))
44
45
     p0.legend()
46
     p1 = plt.subplot(gs[z, -1])
47
     p1.grid()
     p1. plot(tn[:i t], xxn[:i t], '-'+color)
48
  pl.set xlabel('Temps $t$')
  plt.savefig(nom)
```

FFT: effet du bruit

Le bruit réduit la hauteur du pic.

Optimisation de la DFT : la Transformée de Fourier Rapide (FFT)

FFT: effet de l'amortissement

```
1 # listings/exemple FFT amortissement.pv
2 from math import pi, sin, exp
3 from scipy fftpack import fft
4 from random import gauss
5 from numpy import array, arange, floor, hanning
6 from matplotlib import pyplot as plt
7 import matplotlib.gridspec as gridspec
8 from signal sinusoidal import *
9 beaucoup = \overline{1000}
10 fe = 64. # Frequence d'echantillonage
11 N = 1024 # Nombre de points d'echantillonage
12 D = N/fe # Duree d'observation
13 f = 32./D \# Frequence du signal
14 t min = 0. # Debut du calcul du signal
15 t max = t min+D # Fin du calcul du signal
16 stddev = \overline{0}. # Ecart type du bruit
17 nom = '../figures/FFT amortissement-hann.pdf'
18 amort = 0.
19 val = [0...001..1.1.] # Amortissement
20 lab = r'$1/\tau = {0}$'
21 tn = arange(N)/(D*fe)*D+t min
22 \times n = [\sin(2*pi*f*t)] for t in tn]
23 fk = arange(N)/D \# Discretisation des frequences
24 plt. figure (0, figsize = (12,8))
25 plt.clf()
26 gs = gridspec. GridSpec(4, 3) \# Grille de zone de trace
27 \mid p0 = plt.subplot(gs[:,:2])
28 p0.set title(r'x(t) = \sin(2 \pi t)e^{t/\tau} avec \tau = \pi t
                Outils numériques pour l'ingénieur
```

FFT: effet de l'amortissement

```
p0.grid()
  p0.set xlabel(r'\frac{1}{2}k\frac{1}{2}', fontsize=20)
   p0.set ylabel(r'$\frac{2}{N}|X_k|$', fontsize=20)
32
   pO.set xscale('log')
   p0.set yscale('log')
33
34
35
   for z in xrange(len(val)):
36
     v = val[z]
37
     amort = v
38
     v = array([exp(-t*amort) for t in tn])
     color = ['r', 'b', 'g', 'c'][z]
39
     bruit = array([gauss(0, stddev) for i in xrange(N)])
40
41
     xxn = (xn + bruit)*v amort *hanning(N)
42
     Xk = abs(fft(xxn))*2./N
43
     p0.plot(\hat{f}k[0:N/2],Xk[0:N/2],'-'+color, label = lab.format(v))
44
     p0.legend()
45
     p1 = plt.subplot(gs[z, -1])
46
     p1.grid()
47
     p1. plot(tn[:], xxn[:], '-'+color)
48
   pl.set xlabel('Temps $t$')
   plt.savefig(nom)
```

Optimisation de la DFT : la Transformée de Fourier Rapide (FFT)

FFT: effet de l'amortissement

L'amortissement entraine une perte de hauteur du pic.

Optimisation de la DFT : la Transformée de Fourier Rapide (FFT)

FFT : amortissement et fenetrage de Hann

Le fenêtrage de Hann (méthode dite hanning) induit une hauteur de pic $\times 1000\,!\,!$

Optimisation de la DFT : la Transformée de Fourier Rapide (FFT)

Application à la cloche

```
1 # listings/exemple FFT cloche.pv
2 from scipy.fftpack import fft
3 from numpy import array, arange, hanning
4 from matplotlib import pyplot as plt
5 import pickle
6 | nom = '../figures/FFT_cloche-log.pdf'
7 fichier = open('cloche.pckl','r') # Ouverture du fichier
8 cloche = pickle.load(fichier) # Chargement des donnees
9 fichier.close() # Fermeture du fichier
10 | xn = cloche['x'][::32] # Redimensionnement des donnees
11 fe = float(cloche['fe']) # Definition de la frequence d'echantillonage
12 tn = arange(len(xn))/float(fe)
13 N = len(tn)
14 D = N/fe
15 plt. figure (0, figsize = (12,8))
16 plt.clf()
17 fk = arange(N)/D \# Discretisation des frequences
18 Xk = abs(fft(xn))*2./N
19 Xkh = abs(fft(xn*hanning(N)))*2./N
20 plt.plot(fk[0:N/2], Xk[0:N/2], '-', label='Signal brut')
  plt.plot(fk[0:N/2], Xkh[0:N/2], '-', label='Fenetrage Hann')
21
22 plt.xlabel(r, $f_k$, fontsize = 20)
23
  plt.ylabel(r'\frac{2}{N}|X_k|, fontsize=20)
24 plt.xscale('log')
25 plt.yscale('log')
26 plt.grid(True)
27 plt.legend(loc='upper left')
28 plt.savefig(nom)
```

Optimisation de la DFT : la Transformée de Fourier Rapide (FFT)

Application à la cloche

Application à la cloche

