Estructuras algebráicas

1 Grupos

Definición 1.1 Un grupo es un conjunto no vacío G en el que se define una operación binaria $G \times G \to G$; $(a,b) \mapsto ab$ que cumple (1) **asociatividad** ((ab)c = a(bc)), (2) **existencia de elemento neutro** $u \in G$; ua = a = au y (3) **existencia de elemento inverso** $a, x \in G$; ax = u = xa. Tanto u como a son únicos. Para la suma u = 0, a = -x y para el producto u = 1, $a = x^{-1}$.

Otras propiedades inmediatas de los grupos son (1) **simplificación**: $ab = ac \iff b = c$; $ba = ca \iff b = c$; (2) **asociatividad generalizada**: $(a_1 \cdots a_k)(a_{k+1} \cdots a_n) = (a_1 \cdots a_l)(a_{l+1} \cdots a_n)$, (3) **inverso de un producto**: $(a_1 \cdots a_n)^{-1} = a_n^{-1} \cdots a_1^{-1}$.

Definición 1.2 Un **grupo simétrico** S_n es el conjunto de biyecciones de un conjunto X con n elementos. Se cumple que $card(S_n) = n!$. Otros ejemplos de grupos son $GL_n(\mathbb{R})$, el grupo de matrices no singulares para la operación producto; o D_n es el conjunto de biyecciones que conserva la distancia en un polígono de n lados.

Definición 1.3 Un grupo es **abeliano** si $ab = ba \ \forall a, b \in G$. Todo grupo con dos elementos es abeliano, pues aa = aa; uu = uu; ua = a = au; pero para $n \ge 3$, S_n no puede ser abeliano. GL_n ; $n \ge 2$, ni D_n ; $n \ge 3$ son abelianos.

Proposición 1.4 (1) Si $x^2 = 1 \ \forall x \in G$, entonces G es abeliano; (2) si $(ab)^2 = a^2b^2$ entonces G es abeliano.

Demostración. (1) Para cada x, $x \cdot x = 1 \iff x = x^{-1}$, luego si $a, b \in G$ entonces $a = a^{-1}$; $b = b^{-1}$ y si c = ab entonces $ab = c = c^{-1} = (ab)^{-1} = b^{-1}a^{-1} = ba$. (2) Dados $a, b \in G$, se tiene que $a(ba)b = (ab)^2 = a^2b^2 = a(ab)b$ y, por simplificación, ab = ba.)

Definición 1.5 Si G, G' son dos grupos con operaciones $G \times G \to G : (a,b) \mapsto ab$ $G' \times G' \to G' : (a',b') \mapsto a'b'$ el **producto cartesiano** $G'' = G \times G''$ es un grupo con operación $G'' \times G'' \to G'' : ((a,a'),(b,b')) = (ab,a'b')$. La asociatividad se mantiene, y se ve que $1_{G''} = (1_G,1_{G'})$. Además, si G, G' son abelianos, G'' también lo es.