MATH 260: Ordinary Differential Equations

Public Notes for Any Ordinary Differential Equation's Class

EDITED BY
TREVOR BUSHNELL

Contents

1	First Order Differential Equations						
	1.1	Differential Equations and Their Solutions	3				
		1.1.1 Title 3	3				
	1.2	Seperable Differential Equations	3				
	1.3	Linear Equations	3				
	1.4	Exact Equations	3				
	1.5	Autonomous Equations and Stability	3				
	1.6	Euler's Method	3				
2	Sec	Second Order Differential Equations					
	2.1	Definitions and Examples	4				
	2.2	Linear, Homogeneous Second Order Equations with Constant Coefficients	4				
	2.3	Application: Harmonic Motion	4				
	$\frac{2.3}{2.4}$	Inhomogeneous Equations: Undetermined Coefficients	4				
	$\frac{2.4}{2.5}$	Variation of Parameters	4				
	$\frac{2.6}{2.6}$	Application: Forced Harmonic Motion	4				
	2.0	Tippicouloni Toroca Harmonio Havion	•				
3	Series Solutions						
	3.1	Review: Power Series	5				
	3.2	Series Solutions Near Ordinary Points	5				
4	The Laplace Transform						
	4.1	The Definition of the Laplace Transform	6				
	4.2	Basic Properties of the Laplace Transform	6				
	4.3	The Inverse Laplace Transform	6				
	4.4	Using the Laplace Transform to Solve Differential Equations	6				
	4.5	Discontinuous Forcing Terms	6				
	4.6	The Delta Function	6				
	4.7	Convolutions	6				
5	Matrix Algebra						
	5.1	Vectors and Matrices	7				
	5.2	Bases of a Subspace	7				
	5.3	Square Matrices	7				
	5.4	Determinants	7				
6	An Introduction to Systems						
	6.1	Definitions and Examples	8				
	6.2	Geometric Interpretation of Solutions	8				
	6.3	Qualitative Analysis	8				
	6.4	Linear Systems	8				
	6.5	Properties of Linear Systems	8				

7.1 Overview of the Technique		ear Systems with Constant Coefficients
7.9 Planer Customs	7.1	Overview of the Technique
7.2 I faffat Systems	7.2	Planar Systems

First Order Differential Equations

- §1.1 Differential Equations and Their Solutions
- §1.1.1 Title 3
- §1.2 Seperable Differential Equations
- §1.3 Linear Equations
- §1.4 Exact Equations
- §1.5 Autonomous Equations and Stability
- §1.6 Euler's Method

Second Order Differential Equations

- §2.1 Definitions and Examples
- §2.2 Linear, Homogeneous Second Order Equations with Constant Coefficients
- §2.3 Application: Harmonic Motion
- §2.4 Inhomogeneous Equations: Undetermined Coefficients
- §2.5 Variation of Parameters
- §2.6 Application: Forced Harmonic Motion

Series Solutions

- §3.1 Review: Power Series
- §3.2 Series Solutions Near Ordinary Points

The Laplace Transform

$\S 4.1$	The Definition of the Laplace Transform
$\S4.2$	Basic Properties of the Laplace Transform
$\S4.3$	The Inverse Laplace Transform
§4.4	Using the Laplace Transform to Solve Differential Equations
$\S4.5$	Discontinuous Forcing Terms
$\S4.6$	The Delta Function
847	Convolutions

Matrix Algebra

- $\S 5.1$ Vectors and Matrices
- §5.2 Bases of a Subspace
- §5.3 Square Matrices
- §5.4 Determinants

An Introduction to Systems

- $\S 6.1$ Definitions and Examples
- $\S 6.2$ Geometric Interpretation of Solutions
- §6.3 Qualitative Analysis
- §6.4 Linear Systems
- §6.5 Properties of Linear Systems

Linear Systems with Constant Coefficients

- §7.1 Overview of the Technique
- §7.2 Planar Systems
- §7.3 Phase Plane Portraits
- §7.4 The Trace-Determinant Plane