Python pour le MECEN 2021

1^{er} décembre 2021

1 Du côté du consommateur

consommateur

Fonction d'utilité. On se donne des paramètres réels a>0 et b>|d|>0. On introduit maintenant la fonction d'utilité $U:\mathbb{R}^3\mapsto\mathbb{R}$ par

$$\forall (q_0, q_1, q_2) \in \mathbb{R}^3, \quad U(q_0, q_1, q_2) := q_0 + a(q_1 + q_2) - \frac{bq_1^2 + bq_2^2 + 2dq_1q_2}{2}. \tag{1}$$

Ici q_0, q_1, q_2 sont les quantitées consommées de trois bien (de type 0, 1 et 2).

Question 1. On pourra chercher à dessiner les ensembles de niveaux de U avec des sliders pour ajuster les valeurs des paramètres.

Contrainte sur le revenu. On considère p_1 et p_2 des réels positifs correspondant au prix unitaire des biens de type 1 et 2. On se donne également un réel positif R représentant le revenu global du consommateur.

Prise de décision rationnelle. La répartition de consommation la plus avantageuse est alors la solution du programme suivant.

$$\begin{cases} \arg \max u(q_0, q_1, q_2), \\ q_0, q_1, q_2 \ge 0, \\ q_0 + p_1 q_1 + p_2 q_2 \le R. \end{cases}$$
 (2) eq:2

Question 2. On pourra reprendre la visualisation précédente pour ajouter le tétraédre de contrainte et des sliders correspondant aux nouveaux paramètres.

Question 3. Montrer que le programme précédent permet de définir génériquement $\tilde{q}_0, \tilde{q}_1, \tilde{q}_2$ des fonctions des prix unitaires p_1, p_2 .

Question 4. Faites une visualisation des graphes des trois fonctions avec des sliders représentant les paramètres.

Question 5. Déterminer des hypothèses sous lesquelles on peut transformer le système

$$\begin{cases} \tilde{q_0}(p_1, p_2) = q_0, \\ \tilde{q_1}(p_1, p_2) = q_1, \\ \tilde{q_2}(p_1, p_2) = q_2, \end{cases}$$
(3) eq:3

en

$$\begin{cases} \tilde{p_1}(q_0, q_1, q_2) = p_1, \\ \tilde{p_2}(q_0, q_1, q_2) = p_2. \end{cases}$$
(4)

$\mathbf{2}$ Concurrence en prix

rence_en_prix

Description de l'économie. Dans cette économie, il y a deux entreprises.

- L'entreprise 1 produit des produits de type 1 au cout unitaire de revient $c_1 > 0$ et le vend au prix unitaire p_1 .
- L'entreprise 2 produit des produits de type 2 au cout unitaire de revient $c_2 > 0$ et le vend au prix unitaire p_2 .

On a alors les niveaux de profits de chaque entreprise donnée par les fonctions

$$\forall (p_1, p_2) \in \mathbb{R}^2_+, \quad \Pi_1(p_1, p_2) := (p_1 - c_1)\tilde{q_1}(p_1, p_2), \tag{5}$$

et

$$\forall (p_1, p_2) \in \mathbb{R}^2_+, \quad \Pi_2(p_1, p_2) := (p_2 - c_2)\tilde{q_2}(p_1, p_2). \tag{6}$$

Décision rationnelle Chaque entreprise cherchant à maximiser son profit cherche à résoudre le programme

$$\begin{cases}
\arg \max \Pi_1(p_1), \\
p_1 \ge 0.
\end{cases}$$

$$\begin{cases}
\arg \max \Pi_2(p_2), \\
p_2 \ge 0.
\end{cases}$$
(8) eq:5

$$\begin{cases} \arg \max \Pi_2(p_2), \\ p_2 \ge 0. \end{cases} \tag{8}$$

Question 6. Montrer que les programmes précédents fournissent des fonctions de réactions r_1 au prix p_2 (resp. r_2 au prix p_1).

Question 7. Montre qu'il existe un équilibre de Nash (p_1^*, p_2^*) solution de

$$\begin{cases} r_1(p_2^*) = p_1^*, \\ r_2(p_1^*) = p_2^*. \end{cases}$$
 (9) eq:8

Question 8. Visualiser les courbes de réactions (et donc les équilibres de Nash qui sont les intersections) avec des sliders permettant de déterminer les paramètres.

3 Concurrence en quantité

e_en_quantite

Les variables de décision des entreprises sont maintenant les quantités produites q_1, q_2 . On obtient donc des problèmes

$$\begin{cases} \arg \max \tilde{p_1}(q_0, q_1, q_2)q_1 - c_1 q_1, \\ q_1 \ge 0 \end{cases}$$
 (10) eq:9

et

$$\begin{cases} \arg \max \tilde{p_2}(q_0, q_1, q_2)q_2 - c_2 q_2, \\ q_2 \ge 0 \end{cases}$$
 (11) eq:10

Question 9. Montrer que les programmes fournissent des fonctions de réactions s_1 à la quan $tit\'e produite q_2 (resp. s_2 \grave{a} q_1).$

Question 10. Montre qu'il existe un équilibre de Nash (q_1^*,q_2^*) solution de

$$\begin{cases} s_1(q_2^*) = q_1^*, \\ s_2(q_1^*) = q_2^*. \end{cases}$$
 (12) eq:11

Question 11. Visualiser les courbes de réactions (et donc les équilibres de Nash qui sont les intersections) avec des sliders permettant de déterminer les paramètres.