FIFE FIGHTING ROBOT

Problem Statement

- ☐ What methods ensure the safe and efficient movement of the fire-fighting robot to extinguish fires once detected?
- ☐ How can fire suppression mechanisms be optimally incorporated into the design of the robot to ensure effectiveness?
- What strategies enable the fire-fighting robot to operate autonomously while maintaining safety and adaptability?

Solution

- ☐ To reduce the cost of fire-fighting robots and enable their widespread adoption.
- where production costs are significantly lower and scalability is increased.
- So as to make fire-fighting robots more accessible and effective in addressing emergencies, saving lives and property.

Our Journey

Problem

- ☐ Inefficiency.
- ☐ Safety Concerns.
- ☐ Resource Allocation.
- ☐ Technological Progress.
- ☐ Property Protection.
- ☐ Life Saving.

Research

- ☐ Delayed response times during emergencies leading to increased property damage or risk to life.
- ☐ Limited accessibility to firefighting services, especially in rural or remote areas, due to inadequate infrastructure or resources.

Field Visit

Organization of equipment.
The training of firefighters.
The maintenance of vehicles.
Protocols for responding to emergencies.

Stakeholders

Specialized equipment.
Dignified officer and staff.
Collaboration and coordination.
Public safety campaings.

Ideation

- ☐ INDUSTRIAL FIRES.
- ☐ URBAN SEARCH.
- □ NIGHT TIME OPERATIONS.
- ☐ AIRCRAFT FIRES.

Prototype

■ We finally decided to make this prototype where three flame sensor, Arduino uno R3, L298 driver, 5v relay modle, MLX 90614, water pump, servo motor and 18650 battery are used

