

Análise Exploratória de Dados

Ana Lídia Lisboa de Andrade

Sumário

- O que é análise de dados?
- **Objetivo**
- **Objetivos Específicos**
- **Tipos de Análise de Dados**
- Bibliotecas para análise de dados em **Python**
- O que é um dataset?
- **Atributos**

- **Etapas de Análise**
- **Engenharia de Features**
- Passo a Passo da Exploração dos **Dados**
- **Conceito de Correlação**
- **Outliers**
- Link do Colab
- Referências

O que é análise de dados?

Consiste em **RESUMIR E ORGANIZAR os dados** coletados através de tabelas, gráficos ou medidas numéricas, e a partir dos dados resumidos procurar alguma regularidade ou padrão nas observações (INTERPRETAR os dados).

Objetivo

 O objetivo da análise de dados é extrair informações significativas e úteis a partir de conjuntos de dados. Isso envolve examinar, limpar, transformar e modelar dados para descobrir padrões, tendências, relações e insights que possam orientar a tomada de decisões informadas.

Objetivos Específicos

- Tomada de Decisões Informadas
- Identificação de Padrões e Tendências
- Otimização de Processos
- Previsão e Antecipação

Descritivo

Procura resumir as medições em um único conjunto de dados sem interpretação adicional.

Exploratório

Baseia-se em uma análise descritiva, buscando descobertas, tendências, correlações ou relações entre as medições de múltiplos atributos para gerar ideias ou hipóteses.

Inferencial

Uma análise inferencial de dados vai além de uma análise exploratória, quantificando se um padrão observado provavelmente se manterá além do conjunto de dados em questão.

Preditivo

Utiliza um subconjunto de medições (as características) para prever outra medição (o resultado) numa única pessoa ou unidade.

Bibliotecas para análise de dados em Python

10

O que é um dataset?

Conjunto estruturado de informações que são organizadas e armazenadas para serem analisadas.

O que é um dataset?

	sepallength	sepalwidth	petallength	petalwidth	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica
150 rows × 5 columns					

Atributos

Quando um determinado fenômeno é estudado determinadas características são analisadas: os atributos. É através dos atributos que se torna possível descrever o fenômeno.

Atributos

Atributos

Os dados podem ser usados para responder a muitas perguntas, mas não a todas.

Seleção

Nessa etapa, um fator importante é determinar um conjunto de dados relevante que possivelmente descreverá melhor os dados para que conhecimento seja adquirido posteriormente (FAYYAD, PIATETSKY-SHAPIRO e SMYTH, 1996).

Pré-análise dos Dados

Corresponde à etapa de pré-tratamento dos dados, removendo ruídos, quando possível, ou adquirindo informações para conseguir lidar com eles.

Transformação

A transformação dos dados pode ser determinada pela redução à dados relevantes para a pesquisa, assim como a projeção desses dados numa visão futura, determinando características relevantes dos dados de acordo com o objetivo.

A engenharia de features é o que vai ensinar como ter um aprendizado de máquina eficiente.

O que são features?

Como já falamos acima, Features ou, em português, características, são fatores utilizados para definir um atributo que tenha mais importância e significado.

- Seleção de Variáveis
 - Importância das Variáveis
 - Análise Estatística
 - Regularização

- Criação de Novos Atributos
 - Engenharia de Polinômios
 - Combinação de Atributos
 - Extração de Informação Temporal

- Transformação de Variáveis
 - Normalização e Padronização
 - Transformações Logarítmicas ou Exponenciais

- Tratamento de Variáveis
 - Imputação de Dados Ausentes
 - Detecção e Lidar com Outliers

- Técnicas de Processamento
 - Redução de Dimensionalidade
 - Agrupamento de Variáveis
 - Codificação de Variáveis Categóricas

1. Compreensão dos Dados

data.head(): Exibe as primeiras linhas do conjunto de dados para entender a estrutura.

 data.info(): Fornece informações sobre tipos de dados e valores ausentes.

28

2. Limpeza dos Dados

- Lide com valores ausentes (NaN) data.dropna(): Remove linhas com valores ausentes.
- Remova duplicatas
- Converta tipos de dados

3. Análise Descritiva

data.describe(): Apresenta estatísticas descritivas para variáveis numéricas, como média, desvio padrão, mínimo e máximo.

4. Identificação de Padrões

Visualização da distribuição de uma variável

5. Análise de Anomalias

Detecção de outliers usando um boxplot.

 A força do relacionamento entre duas colunas em um dataset é chamado de correlação, representada por um valor numérico entre -1 e 1.

 Pode existir entre quaisquer tipos de dados (contínuos ou categóricos). Apesar de representar um relacionamento mútuo, correlação não é sinônimo de causalidade.

 Correlação nos diz como as variáveis mudam em conjunto, ambas para a mesma direção ou em direções opostas, e a magnitude dessa relação.

Covariância

Medida de associação entre uma variável X e Y.

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$

Conceito de Correlação

Coeficiente de Pearson

O coeficiente de pearson é um dos mais usados para cálculo da correlação. É a medida linear entre X e Y e varia entre -1 e 1.

$$\rho_{X,Y} = \frac{E[(X - E[X])(Y - E[Y])]}{\sigma_X \sigma_Y}$$

Conceito de Correlação

Scatter Plots

Outliers são valores extremos que diferem da maioria dos outros pontos de dados em um conjunto de dados.

- Maneiras de calcular outliers
 - 1. Ordenando valores quantitativos

- Maneiras de calcular outliers
 - 2. Usando o intervalo interquartil para encontrar valores discrepantes

- Maneiras de calcular outliers
 - 2.1 Classifique seus dados do menor para o maior.

Maneiras de calcular outliers

2.2 Identifique o primeiro quartil (Q1), a mediana e o terceiro quartil (Q3)

Maneiras de calcular outliers

2.3 Calcule seu IQR (Intervalo Interquartil) = Q3 - Q1.

Fórmula	Cálculo
AIQ = Q3 - Q1	Q1 = 26
	Q3 = 41
	AIQ = 41 - 26
	= 15

Maneiras de calcular outliers

2.4 Calcule seu limite superior

Fórmula	Cálculo
Cerca superior = Q3 + (1,5 * IQR)	Cerca superior = 41 + (1,5 * 15)
	= 41 + 22,5
	= 63,5

Maneiras de calcular outliers

2.5 Calcule seu limite inferior = Q1 - (1,5 * IQR)

Fórmula	Cálculo
Cerca inferior = Q1 - (1,5 * IQR)	Cerca inferior = 26 - (1,5 * IQR)
	= 26 - 22,5
	= 3,5

Maneiras de calcular outliers

2.6 Identifique os valores discrepantes

Link do Colab

https://colab.research.google.com/drive/13OvCGXnSowamgUn QhCszAO7a6fpeH6Wm?usp=sharing

Referências

- https://www.scribbr.com/statistics/outliers/
- The Elements of Data Analytic Style Jeff Leek
- https://www.inf.ufsc.br/~marcelo.menezes.reis/Caps1_e_2.pdf
- https://github.com/diasctiago/dio/blob/main/An%C3%A1lise%20de%20dados%20com%20Python% 20e%20Pandas/EDA_DIO.ipynb
- https://blog.xpeducacao.com.br/analise-de-dados-python/
- https://blog.ploomes.com/analise-de-dados/
- Python Para Análise de Dados: Tratamento de Dados com Pandas, NumPy & Jupyter Wes Mckinney https://ealexbarros.medium.com/introdu%C3%A7%C3%A3o-%C3%A0-correla%C3%A7%C3%A3o-589bdf8b2040#:~:text=%C3%89%20a%20medida%20de%20relacionamento,o%20exemplo%20cl%C3 %A1ssico%20do%20Sorvete.

