高等代数1期中考试试题

1.
$$(10\ \mathcal{G})$$
 设 $B = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. 试求 B 的逆。

2. (10 分) 求下列线性方程组的通解,以及相应的齐次线性方程组的一个基础解系。

$$\begin{cases} 2x_1 - 2x_2 + x_3 = 2 \\ x_1 + 2x_2 - x_3 = 1 \end{cases}$$

- 3. (10 分) 设 $\alpha_1, \alpha_2, \alpha_3$ 是一个线性无关的向量组, $\beta_1 = \alpha_1 \alpha_2, \beta_2 = \alpha_2 \alpha_3, \beta_3 = \alpha_3 \alpha_1$ 。证明:
 - (a) β_1 , β_2 , β_3 是线性相关的。
 - (b) β_1 , β_2 是一个极大线性无关组。
- 4. (10 分) 假设 $A, B \in \mathbf{M}_n(K)$ 满足 A + B = AB。证明:
 - (a) A-I, B-I 都是可逆的,且相互为逆。
 - (b) A 和 B 可交换。
- $5.(10\, f)$ 在 K^n 中,下列子集合是否是子空间?如果是子空间,请确定它的维数,并给出一组基;如果不是子空间,请写出它所生成的子空间,并给出该子空间的一组基。
 - (a) $W = \{(a_1, a_2, \dots, a_n) \in K^n : a_1 + a_2 + \dots + a_n = 0\};$
 - (b) $V = \{(a_1, a_2, \dots, a_n) \in K^n : 有某个 i, 使 a_i > 0 \}$ 。
- 6. (10 分) 设 u, v 均为 $n \times 1$ 矩阵。证明 $I_n + uv^T$ 可逆,且逆的形式为 $I + cuv^T$,这里 c 是常数。求出 c。
- 7. (15 分) 考虑多项式构成的向量空间 $V = K[X]_{\leq 2}$ 。考虑映射 $T: V \longrightarrow V; T(f(X)) = f'(X)$ (求导运算)。
 - (a) 证明 T 是一个线性映射。
 - (b) 取 V 的有序基 $A=(1,X,X^2)$, 求 T 在有序基 A 的矩阵表示。
 - (c) 取 V 的另一组有序基 $\mathcal{B} = (1, X 1, (X 1)^2)$, 求有序基 \mathcal{A} 到有序基 \mathcal{B} 的过渡矩阵。
 - (d) 求 $f(X) = 1 + X + X^2$ 分别在有序基 A 和有序基 B 下的坐标。

- 8. (15 分) 设 A 是一个 n 维矩阵, 并且满足 $rank(A) = rank(A^2)$ 。已知 $V = K^n$, $A: V \longrightarrow V$. 证明:
 - (a) A 和 A^2 的零空间相同。
 - (b) $ker(A) \oplus Im(A) = V$.
- 9. $(10 \, \mathcal{G})$ 设 $A \, \mathcal{G}_{n \times m}$ 矩阵, $B \, \mathcal{G}_{n \times k}$ 矩阵, $C \, \mathcal{G}_{n \times k}$ 矩阵。证明 $rank(AB) + rank(BC) \leq rank(ABC) + rank(B)$ 。(提示:可以考虑分块矩阵)