Compact Intervals
- A set $S \subseteq \mathbb{R}$ is said to be sequentially compact if every sequence of points in S has a subsequence converging to
a point in S
Sequential Compactness Theorem:
- A compact interval [a,b] is sequentially compact
Bounded Continuous Functions
Boundedness Theorem:
- If $f(x)$ is confinuous on a compact interval I , then $f(x)$ is bounded on I
External Points of Continuous Functions
Maximum Theorem:
- Let f(x) be confinuous on the compact interval I. Then f(x) has a maximum and minimum on I, that is, there
exist points \overline{x} , $x \in I$ such that $f(\overline{x}) = \sup_{x \in I} f(x)$, $f(\underline{x}) = \inf_{x \in I} f(x)$
The Mapping Viewpoint
Continuous Mapping Theorem:
- If $f(x)$ is defined and continuous on the compact interval I , then $f(I)$ is a compact interval.
Uniform Continuity
- We say $f(x)$ is uniformly continuous on the interval I if, given $\varepsilon>0$, there is a $\delta>0$ such that
$f(x') \approx f(x'')$ if $x' \approx x''$, $x', x'' \in I$
Uniform continuity on I Given $\epsilon > 0$, there is a $\delta > 0$ (depending only on ϵ) such that $f(\pi) \approx f(\alpha) \text{for } \pi \approx \alpha \pi \in I$
$f(x) \underset{\epsilon}{\approx} f(a) \text{for } x \underset{\delta}{\approx} a, x, a \in I \ .$ Ordinary continuity on I
Given $\epsilon > 0$, there is a $\delta > 0$ (depending on ϵ and a) such that $f(x) \underset{\epsilon}{\approx} f(a) \text{for} x \underset{\delta}{\approx} a, x, a \in I \ .$
Uniform Continuity Theorem:
- If I is a compact interval, $f(x)$ continuous on $I \Rightarrow f(x)$ uniformly confinuous on I