Quelques propriétés des polynômes cyclotomiques et des entiers algébriques

6 décembre 2018

1 Généralités

Notations : Si m est un entier naturel, on note U_m le groupe des racines m-ièmes de l'unité dans $\mathbb C$ et P_m l'ensemble de ses générateurs.

1.1

On note pour m entier, $m \ge 1$,

$$\Phi_m(X) = \prod_{1 \le k \le m, k \land m = 1} (X - e^{\frac{2ik\pi}{m}})$$

le m-ième polynôme cyclotomique.

- a) Déterminer Φ_n lorsque n est un nombre premier.
- b) Montrer que, pour tout entier $n \ge 1$,

$$X^n - 1 = \prod_{d|n} \Phi_d(X)$$

c) Prouver que, pour tout $m, \Phi_m(X) \in \mathbf{Z}[X]$.

1.2

On suppose les entiers naturels m et n premiers entre eux. Comparer $\Phi_{mn}(X)$ et $\Phi_m(X)\Phi_n(X)$.

2 Une version simple du théorème de Dirichlet

2.1

Soit $P \in \mathbb{Z}[X]$ non constant.

- a) Soit $(k, n) \in \mathbb{N}^* \times \mathbb{N}^*$. Montrer qu'il existe un entier m tel que P(n + kP(n)) = P(n)(1 + kP(n)m).
- b) Montrer que l'ensemble des nombres premiers p tels que

$$\exists n \in \mathbb{N}^*, P(n) \text{ non nul et } p \mid P(n)$$

est infini. On pourra raisonner par l'absurde, noter π le produit des facteurs premiers distincts intervenant dans les entiers P(n), et envisager pour l et n grands le nombre $P(n + l\pi P(n))$

2.2

On fixe un entier $m \geq 2$. Soient p un nombre premier ne divisant pas m et a un entier naturel tels que $\Phi_m(a) \equiv 0[p]$. On note \overline{x} la classe d'un entier x dans $\mathbb{Z}/n\mathbb{Z}$.

a) Montrer que $a^m \equiv 1[p]$.

b) Soit d l'ordre de \overline{a} dans $\mathbb{Z}/p\mathbb{Z}^*$. Montrer que d divise m et que $\Phi_{\delta}(a)=0$ pour l'un des diviseurs δ de d.

c) Si d < m monter que \overline{a} annule la dérivée de $X^m - 1$ dans $\mathbb{Z}/p\mathbb{Z}$. En déduire que $p \equiv 1[m]$.

d) En déduire que l'ensemble des nombres premiers de la forme 1+km est infini.

3

Soient p un nombre premier ≥ 3 , et P un polynôme non nul de $\mathbf{Z}[X]$. On dit que P vérifie (S) lorsque le polynôme de $\mathbf{Z}/p\mathbf{Z}[X]$ obtenu par réduction de P modulo p est scindé à racines simples dans $\mathbf{Z}/p\mathbf{Z}$.

3.1

- a) Soit $m \in \mathbb{N}^*$, $\zeta \in U_m$ d'ordre m et $\eta \in U_p$. Etudier l'ordre de $\zeta \eta$.
- b) On note n=mp. Montrer que $\Phi_n(X)=\frac{\Phi_m(X^p)}{\Phi_m(X)}$ si p ne divise pas m, et $\Phi_n(X)=\Phi_m(X^p)$ sinon. En déduire que Φ_n ne vérifie pas (S).
- b) Soit $n \in \mathbb{N}^*$. On suppose que p divise n-1. Montrer que Φ_n vérifie (S).
- c) Etablir la réciproque du résultat précédent.