EECS 376: Foundations of Computer Science

Lecture 05 - Dynamic Programming 2

Dynamic Programming Review

- Step 1: Write a recursive formulation of the solution.

 Bound the number of distinct subproblems that ever appear in your formulation
- Step 2: Create a table representing distinct subproblems. Fill in the table from the **bottom-up.**
- Runtime: (#subproblem × time per subproblem)

Longest Common Subsequence

Motivation: DNA Comparison

- Your DNA is a (long) string over {A, T, C, G}.
- "Humans and chimps are 98.9% similar."
 - X: ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
 - Y: GTCGTTCGGAATGCCGTTGCTCTGTAA
- The length of the <u>longest common subsequence</u> between two genomes is a measure of <u>similarity</u>.

Longest Common Subsequence

- Given strings X[1..m] and Y[1..n]
- Goal: find the <u>length</u> of a <u>longest common subsequence</u> of X and Y
 - A **subsequence** of *X* is a string obtainable from *X* by deleting chars (may not be consecutive)
 - A common subsequence of X and Y is a subsequence of both X and Y
- Example:
 - "CT" is a common subsequence of "CGATG" and "CATGT".
 - Q: What's the longest?
- Q: What's a brute force solution?
 - Each character of X and Y is either deleted or not: Runtime: $O(2^{m+n})$

Recurrence for *LCS*: First, define the function

```
• <u>Def</u>: LCS(i, j) = length of a LCS of X[1..i] and Y[1..j].
```

- i = 0 means X is the empty string
- j = 0 means Y is the empty string
- **Goal:** LCS(m,n) (compute the length of LCS, will compute LCS itself soon)
- Example: Suppose X = "ATGCC" and Y = "TAGC".
 - **Q:** What's *LCS*(1,0)? **0**
 - Q: What's LCS(5,3)? 2 TG or AG
 - Q: What's LCS(4,4)? 3 TGC or AGC
 - Q: What's LCS(5,4)? 3 TGC or AGC

Recurrence for *LCS*

- **<u>Def</u>**: LCS(i, j) = length of a LCS of X[1..i] and Y[1..j].
 - i = 0 means X is the empty string
 - j = 0 means Y is the empty string
- Goal: return LCS(m, n)
- What is a recursion for LCS(i, j)?

$$LCS(i,j) = \begin{cases} ? \\ Pause and Think... \end{cases}$$

if
$$i = 0$$
 or $j = 0$
if $X[i] = Y[j]$
if $X[i] \neq Y[j]$

Def: LCS(i, j) =length of a LCS of X[1..i] and Y[1..j].

Recurrence for *LCS*

(所有 即 so) 中的 char 数都一样因而以故心的

• Case 1: X[i] = Y[j] (ends with the same character) Broke de left (f) is example: X[1..i] = `CTGCA'' and Y[1..j] = `TCGA'' length ++

- Claim. There exists an optimal solution OPT that matches X[i] and Y[j]. 女になる。
 Proof by contradiction
- Proof by contradiction.
 - Suppose for contradiction: all optimal sol OPT do not match X[i]=Y[j] (Say, X[i] = "A").
 - OPT + "A" is an LCS too. But OPT + "A" is longer than OPT.
 - So, OPT is not optimal, contradiction.

 $\underline{\mathbf{Def}}$: LCS(i, j) =length of a LCS of X[1..i] and Y[1..j].

LCS $(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + LCS(i-1,j-1) & X[i] = Y[j] \\ ? & X[i] \neq Y[j] \end{cases}$

- Case $2(X[i] \neq Y[i])$ end with different characters)
 - **Example:** X[1..i] = "GTCA" and Y[1..j] = "GTC"
 - So, either X[i] or Y[i] is not part of LCS
 - Q: How do we know which one?
 - Try both! And take the better one

迷飯 better one: 即到底哪个在身份和了对中何比较不起。 即:在排化门大 $LCS(i,j) = \max\{LCS(i-1,j), LCS(i,j-1)\}$ 还是在排化门大

Recurrence for *LCS*

- **<u>Def</u>**: LCS(i, j) = length of a LCS of X[1..i] and Y[1..j].
 - i = 0 means X is the empty string
 - j = 0 means Y is the empty string
- Goal: return LCS(m, n)

• We have:
$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ 1 + LCS(i-1,j-1) & \text{if } X[i] = Y[j] \\ \max \begin{cases} LCS(i,j-1) \\ LCS(i,j-1) \end{cases} & \text{if } X[i] \neq Y[j] \end{cases}$$

C(XIIY)

- Q: How many subproblems does this recurrence generate?
- Q: how much time does it take per subproblem?

Table of subproblems:

2-dimensional!

Task: compute LCS of

- "APOCRYPHAL"
- "POLYPEPTIDE"

Row: prefix of "POLYPEPTIDE"

LCS between empty strings is 0

5/14/24

		A	P	0	С	R	Y	P	Н	A	L
	0	0	0	0	0	0	0	0	0	0	0
P	0										
0	0										
L	0										
Y	0										
P	0										
E	0										
P	0										
T	0										
I	0										
D	0										
E	0					-	19				

Col: prefix of "APOCRYPHAL"

Table Filling
$$LCS(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + LCS(i-1,j-1) & X[i] = Y[j] \\ \max \{LCS(i-1,j), \\ LCS(i,j-1) \} & X[i] \neq Y[j] \end{cases}$$

• LCS(X,Y)

table = **2D-array**, indexed from 0 to |X| and 0 to |Y|table[i, j] stores LCS(X[1 ... i], Y[1 ... i])

For i = 0, ..., |X|: table [i, 0] = 0 Base Case

For j = 0, ..., |Y|: table [0, j] = 0

For i, j in which order?

Return ??

Table Filling
$$LCS(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + LCS(i-1,j-1) & X[i] = Y[j] \\ \max\{LCS(i,j-1)\} & X[i] \neq Y[j] \end{cases}$$

O(|X||Y|) operations total

• LCS(X,Y)table = 2D-array, indexed from 0 to |X| and 0 to |Y| table [i, j] stores LCS(X[1 ... i], Y[1 ... i]) For i = 0, ..., |X|: table [i, 0] = 0Base Case For i = 0, ..., |Y|: table [0, i] = 0For i = 1, ..., |X|: O(|X||Y|) rounds of loop For j = 1, ..., |Y|: if X[i] = Y[j] then $[table[i][j] \leftarrow 1 + table[i-1][j-1]$ else $table[i][j] \leftarrow \max\{table[i-1][j], table[i][i-1]\}$

Return table [|X|, |Y|]

O(1) operations/loop

Longest Common Subsequence, via Backtracking

```
Input: strings X and Y
Output: a longest common subsequence of the strings
    function LCS(X[1 ... |X|], Y[1 ... |Y|])
    table = 2D-array, indexed from 0 to |X| and 0 to |Y|
        table[i, j] stores LCS(X[1 ... i], Y[1 ...j])
                                         s = \varepsilon
    i = |X|, j = |Y|
   while i>0 and j>0 do
      if X[i] = Y[j] then
          S = X[i] + S
          i = i - 1, j = j - 1
      else if table[i][j-1] > table[i-1][j] then
          j=j-1
      else
         i=i-1
 return s
    5/14/24
```

Task: compute LCS of

- "APOCRYPHAL"
- "POLYPEPTIDE"

Task: compute LCS of

- "APOCRYPHAL"
- "POLYPEPTIDE"

		A	P	0	С	R	Y	P	Н	A	L
	0	0	0	0	0	0	0	0	0	0	0
P	0	0	1	1	1	1	1	1	1	1	1
0	0	0	7=1	to			=	=Ht		=ma	×(/,v)
L	0										
Y	0										
P	0										
E	0										
P	0										
T	0										
I	0										
D	0										
E	0										

5/14/24

考虑了X中的P和 27 每个X中的P制math 时的情况

Task: compute LCS of

- "APOCRYPHAL"
- "POLYPEPTIDE"

		A	P	0	С	R	Y	P	Н	A	L
	0	0	0	0	0	0	0	0	0	0	0
P	0	0	1	1	1	1	1	1	1	1	1
0	0	0	1	2	,						
L	0			+							
Y	0										
P	0										
E	0										
P	0										
T	0										
I	0										
D	0										
E	0										

Task: compute LCS of

- "APOCRYPHAL"
- "POLYPEPTIDE"

Q: What is the length of LCS?

A: 4

Q: What is the LCS itself?

A: POYP

Exercise: Think how to edit the program so that it can return the LCS itself.

		A	P	0	С	R	Y	P	Н	A	L
	0	0	0	0	0	0	0	0	0	0	0
P	0	0	1	1	1	1	1	1	1	1	1
0	0	0	1	2	2	2	2	2	2	2	2
L	0	0	1	2	2	2	2	2	2	2	3
Y	0	0	1	2	2	2	3	3	3	3	3
P	0	0	1	2	2	2	3	4	4	4	4
E	0	0	1	2	2	2	3	4	4	4	4
P	0	0	1	2	2	2	3	4	4	4	4
T	0	0	1	2	2	2	3	4	4	4	4
I	0	0	1	2	2	2	3	4	4	4	4
D	0	0	1	2	2	2	3	4	4	4	4
E	0	0	1	2	2	2	3	4	4	4	4

Time and Space Complexity

- How efficient is this algorithm? Computing a single table entry requires a constant number of operations.
 Since there are (N +1)·(M +1) entries, constructing the table takes O(NM) time and requires O(NM) space.
- Backtracking also does a constant number of operations per entry on the path, and the path length is at most N + M + 1, so backtracking takes O(N + M) time.
- Thus, the total complexity of this algorithm is O(N M) in both time and space.

5/14/24 32

0-1 KNAPSACK

0-1 Knapsack Problem

Input:

- n items t_1 , ... t_n : each with value v_i and weight w_i .
- W: the total capacity of the 0-1 knapsack.
- All v_i , w_i , W are integers.

Output: A set of items $S \subseteq \{1, ..., n\}$ such that

- (not too heavy) $\sum_{i \in S} w_i \leq W$
- (max value) $\sum_{i \in S} v_i$ as large as possible

$Knapsack(\{t_1, ..., t_n\}, W)$

Recursive Strategy:

Take t_n ?

Reject: $val_{rej} = Knapsack(\{t_1, ..., t_{n-1}\}, W)$

Accept: $val_{acc} = v_n + Knapsack(\{t_1, ..., t_{n-1}\}, W - w_n)$

• The recurrence:

$$Knapsack(\{t_1,\ldots,t_n\},W) = \max \begin{cases} Knapsack(\{t_1,\ldots,t_{n-1}\},W) \\ v_n + Knapsack(\{t_1,\ldots,t_{n-1}\},W-w_n) \end{cases}$$

The base cases:

- $Knapsack(\emptyset, W') = 0$ for all W'
- $Knapsack(\lbrace t_1, ..., t_i \rbrace, 0) = 0$ for all i
- What is the size of the table?
- What is time spent per cell?

Valid only when $W \ge w_n$

Accepti, 拿ti,但是零物些一点 weight,因而是fill 满W-W; 68 最优的 + 新W; 的 ti 的V;

$$t_1: V_1 = 3. W_1 = 1; t_2: V_2 = 5, W_2 = 4; t_3: V_3 = 6, W_3 = 4$$
 $W = 7$
 $V_1 = 0$
 $V_2 = 0$
 $V_3 = 0$
 $V_4 =$

Knapsack Solution

```
• Knapsack(\{t_1, ..., t_n\}, W)
                                                                O(nW) ops
    table = 2D-array, indexed from 0 to n and 0 to W
         table [i, W'] stores subproblem Knapsack (\{t_1, ..., t_i\}, W')
    For j = 0, ..., n:
    - table[j, 0] = 0
                         Base Case 1: no weight to carry → no value
    For k = 0, ..., W:
    - table[0, k] = 0
                         Base Case 2: no items to choose from \rightarrow no value
    For i = 1, ..., n:
                                       O(nW) loops
         For k = 1, ..., W:
              reject = table[i - 1, k]
              accept = (v_i + table[j - 1, k - w_i]) if k \ge w_i else - \infty
              table[i, k] = max\{reject, accept\}
                                                    O(1) operations/loop
    Return table[n, W]
```

Is this polynomial in input size?

• What is the "input size" in term of n and W?

- Is there poly(n, log W)-time algorithm?
 - No, unless P = NP.
 - You will learn about "P vs. NP" after the midterm.

Wrap Up

• We have seen more examples of dynamic programming

• Next:

- Using graphs (instead of 1D/2D tables) in dynamic programming algo.
- For: shortest path problems.

5/14/24 42

BONUS: MAXIMUM WEIGHT INDEPENDENT SET OF TREES

Max Weight Independent Set

- Input: Graph G with a weight w_v on each node v
- A set of nodes S is independent if no edges between nodes in S.
- Output: Independent set S maximizing $\sum_{s \in S} w_s$
- NP-Hard ⊗

- Input: Tree T with a weight $w_{m v}$ on each node v
- A set of nodes **S** is **independent** if no edges between nodes in **S**.
- Output: Independent set S maximizing $\sum_{s \in S} w_s$
- Admits linear-time algo!

Coming up with the recurrence

- MWIS(v): max weight independent set of subtree T_v rooted at v
- Goal: MWIS(r) where r is the root of T

Coming up with the recurrence

- MWIS(v): max independent set of subtree T_v rooted at v
- Goal: MWIS(r) where r is the root of T

Recursive Strategy:

Consider the root node r. Include r in S?

Reject root r

 $MWIS(r) = \sum_{v \text{ child of } r} MWIS(v)$ 5/14/24

Accept root *r*

$$MWIS(r) = w_r + \sum_{v \text{ grandchild of } r} MWIS(v)$$
47

MWIS(T) assume T nonempty
 Computes max possible total weight of MWIS
 (Could easily tweak algorithm to also output that independent set)
 r = root node of T
 table = array, indexed by tree nodes memo[v] stores MWIS of subtree rooted at v
 For each node v in T, in which order???

 Return table[r]

5/14/24 48

MWIS(T) assumes T is nonempty
 Computes max possible total weight of MWIS
 (Could easily tweak algorithm to also output that independent set)

```
r = root node of T
table = array, indexed by tree nodes memo[v] stores MWIS of subtree rooted at v
```

For each node v in T, in ascending tree order

process all descendants before v itself

```
reject ← \sum_{c \text{ child of } v} \text{table}[c]

accept ← w_v + \sum_{g \text{ grandchild of } v} \text{table}[g]

table[v] ← max{reject, accept}
```

don't take v_i take v_i , reject its children

Return table[r]

n loops
Ops/loop depends on # of
children/grandchildren

Tree of branching factor \mathbf{b} has $O(nb^2)$ ops total

Today:

 $-O(nb^2)$ time

Challenge:

- -O(n) time
- Hint: Same algorithm. Smarter analysis. Show that $\sum_{v \in T} |\operatorname{grandchildren}(v)| = O(n)$

Upshot: Dynamic Programming on Trees

Many hard problems usually become easy on trees via dynamic programming

Longest Palindromic Substring

(Another classic coding problem)

- Given a string X[1..n]
- Goal: Find the length of the longest palindrome in X.
 - A *palindrome* is a string that's equal to its reverse
- Example: "aba", "aca", and "ada" are the longest palindromes in X = "abacada" (Note: "aacaa" doesn't count!)
- Q: What's a brute force algorithm?
 - Try every substring X[i..j]

5/14/24 52

Recurrence for PAL

- Given a string X[1..n]
- Let PAL(i, j) be a <u>Boolean</u> (T/F) value for whether X[i..j] is a palindrome

Sometimes the problem we solve might seem quite "different"

$$PAL(i,j) = \begin{cases} X[i] = X[j] & j \le i+1 \\ X[i] = X[j] \text{ and } PAL(i+1,j-1) & j > i+1 \end{cases}$$

Q: Given this recurrence, how do we find the length of a longest palindrome?