

Digital signature algorithm

Group 18:

- Nguyễn Trung Hiếu 20204877
- Nguyễn Lân Cường 20204872
- Nguyễn Văn Thanh Tùng 20190090

Hanoi, February 2023 ONE LOVE. ONE FUTURE.

HUST hust.edu.vn f fb.com/dhbkhn

Content

- 1. Introduction
- 2. Background
- 3. Algorithm
- 4. Conclusion
- 5. References

1. Introduction

- In 1991, The National Institute of Standards and Technology (NIST) has published Federal Information Processing Standard FIPS 186, known as the Digital Signature Algorithm (DSA)
- The latest versions of it incorporate RSA and elliptic-curve cryptography.
- It has become standard for digital signature by FED.

Digital signature scheme

- Main idea:
 - \triangleright A signer S creates a public key p_k and private key s_k .
 - \triangleright The signer use s_k to sign a message.
 - \triangleright Anyone knows p_k can verify that the message comes from S and not modified.
- A digital signature scheme consists of 3 probabilistic polynomial-time algorithms:
 - \triangleright A key-generation algorithm: takes input 1^n where n is a security parameters, output a public key p_k and a private key s_k .
 - \triangleright A signing algorithm: takes the private key s_k and the message m, output a signature σ .
 - \triangleright A deterministic verification algorithm: takes the public key p_k , the message m and the signature σ as the inputs. The algorithm will determine if the signature is valid or not.

Digital signature scheme

Discrete Logarithm problem

Problem: Given a finite cyclic group Z_p^* of order p-1 and a primitive element $g \in Z_p^*$ and another element $y \in Z_p^*$. The Discrete Logarithm problem of determining integer $1 \le x \le p-1$ such that

$$g^x = y \mod p$$

- With g, x, p known, it's straightforward to compute y.
- With g, y, p known, it's difficult to compute x, provides that p-1 is not multiply of small prime numbers.
- → This forms a one-way function.

Miller - Rabin test:

Miller- Rabin algorithm to check primality:

Property 1: If p is a prime number then $a^2 = 1 \mod p$ if and only if $a = 1 \mod p$ or $a = -1 \mod p$

Property 2:

Let p be a prime number greater than 2. We can then write $p-1=2^kq$ with k>0, q odd. Let a be any integer in the range 1 < a < p-1. Then one of the two following conditions is true:

- **1.** a^q is congruent to 1 modulo p. That is, $a^q \mod p = 1$, or equivalently, $a^q \equiv 1 \pmod p$.
- **2.** One of the numbers a^q , a^{2q} , a^{4q} , ..., $a^{2^{k-1}q}$ is congruent to -1 modulo p. That is, there is some number j in the range $(1 \le j \le k)$ such that $a^{2^{j-1}q} \mod p = -1 \mod p = p 1$ or equivalently, $a^{2^{j-1}q} \equiv -1 \pmod p$.

Miller - Rabin test:

```
TEST (n)
1. Find integers k, q, with k > 0, q odd, so that
      (n - 1 = 2kq);
2. Select a random integer a, 1 < a < n - 1;
3. if aq mod n = 1 then return("inconclusive");
4. for j = 0 to k - 1 do
5. if a<sup>2iq</sup>mod n = n - 1 then return("inconclusive");
6. return("composite");
```


Key generation algorithm:

Global parameters generation:

- p: a L bits prime numbers. L = 1024 in this project.
- q: a N bits prime divisor of p-1. N=160 in this project.
- $g = h^{\frac{p-1}{q}} \mod p$, where h is selected randomly from $\{2, 3, ..., p-2\}$
- \triangleright The global parameters are (p, q, g)

Key generation algorithm:

- Private key x: select randomly from $\{1, 2, ..., q 1\}$
- Public key $y = g^x \mod p$

Note: $g = h^{\frac{p-1}{q}} \mod p \Rightarrow g^q \equiv h^{p-1} \equiv 1 \mod p$ by Fermat's little theorem $\Rightarrow g$ has order q.

Signing algorithm

Verification algorithm

Comparison with RSA

4. Conclusion

- Extended from ElGamal and Schnorr signature schemes, The (NIST) Digital Signature Algorithm has become standardized method used in digital signature.
- We can attack it by solving the discrete logarithm problem.
- This framework can be easily extended by replacing the private prime numbers by points in elliptic curve to obtain ECDSA, another powerful method to ensure digital signature schemes.

5. References

- 1. William Stallings Cryptography and Network Security_ Principles and Practice, Global Edition-Pearson (2022)
- 2. Digital Signature Standard NIST 186-4 (2015)

THANK YOU!

