

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

O 008 186
A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 79301518.1

(61) Int. Cl.3: **C 07 D 241/08, A 61 K 31/495**
// **A61K31/557**

(22) Date of filing: 30.07.79

(30) Priority: 08.08.78 GB 3267878

(71) Applicant: BEECHAM GROUP LIMITED, Beecham House Great West Road, Brentford, Middlesex (GB)

(43) Date of publication of application: 20.02.80
Bulletin 80/4

(72) Inventor: Wootton, Gordon, 51 Park Way, Sawbridgeworth Hertfordshire (GB)

(84) Designated Contracting States: AT BE CH DE FR GB IT
LU NL SE

(74) Representative: Dawson, Hugh Bainforde, Dr. et al,
BEECHAM PHARMACEUTICALS Yew Tree Bottom
Road, Epsom, Surrey KT18 5XQ. (GB)

(54) Cyclic diamides, a process for their preparation and their pharmaceutical compositions.

(57) Compounds of the formula (I):

OH, C_{1-4} alkoxy, CN, halogen or NR_6R , group as defined above, or by one or two CO_2A groups in which A is hydrogen or a group containing from 1 to 12 carbon atoms; and R_5 and R_6 independently are hydrogen, C_{1-4} alkyl or together with the carbon atom to which they are joined are a C_{3-4} cycloalkyl group; and salts thereof, having activities similar to but more selective than those of natural prostaglandins, a process for their preparation and pharmaceutical compositions containing them.

A1

characterised in that

n is 1 to 5;

L is CO_2R wherein R is hydrogen or CO_2R is an ester group in which R contains from 1 to 12 carbon atoms, or CH_2COR , wherein R_1 is C_{1-4} alkyl;

Y is $-CH_2CH_2-$, $-CH=CH-$ or $-C\equiv C-$;

R_2 is hydrogen or C_{1-4} alkyl;

R_4 is hydrogen or C_{1-4} alkyl, C_{3-4} cycloalkyl, C_{3-4} cycloalkyl- C_{1-4} alkyl; or

R_5 and R_6 taken with the carbon atom to which they are joined represent a C_{3-4} cycloalkyl group;

R_5 is NR_6R , wherein R_6 and R_7 independently are hydrogen, C_{1-4} alkyl, phenyl C_{1-4} alkyl or NR_6R , is a 3 to 7 membered heterocyclic group containing only one hetero atom; hydrogen, C_{1-4} alkyl or C_{1-4} alkyl substituted by an

EP 0 008 186

EP

- 1 -

Cyclic Diamides

This invention relates to novel compounds having pharmacological activity, to a process for their preparation, to intermediates useful in that process and to pharmaceutical compositions containing them.

5 German Offenlegungsschrift No. 2552312 discloses
that compounds of the formula (I)":

wherein:

X is CO, protected CO, CROH in which R is hydrogen or C₁₋₄ alkyl and in which the OH moiety may be protected; Y is CH₂CH₂ or CH=CH; Z is CO or CH₂; n is 1 to 8; m is 1, 2 or 3; R₁ is hydrogen, CH₂OH, CH₂OH in which the OH moiety is protected, CO₂W wherein W is hydrogen or CO₂W represents an ester group in which the ester moiety contains from 1 to 12 carbon atoms, or CONH₂; R₂ is hydrogen, C₁₋₄ alkyl, or taken together with R₃ and the carbon atom to which it is attached represents a carbonyl group; R₃ is hydrogen, hydroxy or protected hydroxy; R₄ is hydrogen or C₁₋₉ alkyl; and salts thereof; have useful pharmacological activity.

20 German Offenlegungsschrift No. 2755711 discloses
that compounds of the formula (II)":

wherein:

X is O or S;

n is 1 to 8:

25 R₁ is hydrogen, or CO₂R₁ represents an ester group
in which the R₁ moiety contains from 1-12 carbon atoms:

- 2 -

- R₂ is hydrogen, C₁₋₄ alkyl, or phenyl;
R₃ is hydroxy or protected hydroxy;
R₄ is hydrogen, C₁₋₉ alkyl, C₃₋₈ cycloalkyl, C₃₋₈ 5 cycloalkyl-C₁₋₆ alkyl, phenyl, phenyl-C₁₋₆ alkyl, naphthyl, naphthyl-C₁₋₆-alkyl, any of which phenyl or naphthyl moieties may be substituted by one or more halogen, trifluoromethyl, C₁₋₆ alkyl, hydroxy, C₁₋₆ alkoxy, phenyl C₁₋₆ alkoxy or nitro groups; or
R₂ and R₄ taken with the carbon atom to which 10 they are joined represent a C₅₋₈ cycloalkyl group;
R₅ is hydrogen, C₁₋₆ alkyl, C₁₋₆ alkyl substituted by a nitro, hydroxy, C₁₋₆ alkoxy, CO₂A, (CO₂A)₂, CN or halogen group, C₅₋₈ cycloalkyl, phenyl, phenyl-C₁₋₆ 15 alkyl, phenyl-C₃₋₆ cycloalkyl, any of which phenyl moieties may be substituted by one or more halogen, trifluoromethyl, C₁₋₆ alkyl, C₁₋₆ alkoxy or nitro groups; or a group CO₂A; in R₅ when present A is hydrogen or CO₂A represents an ester group in which the A moiety contains from 1 to 12 carbon atoms; and salts thereof; 20 have similarly useful pharmacological activity.

A novel class of compounds also having useful pharmacological activity has now been discovered, which compounds are structurally distinct from the prior art referred to above.

- 3 -

Accordingly, the present invention provides a compound of the formula (I):

wherein:

- n is 1 to 5;
- 5 L is CO_2R wherein R is hydrogen or CO_2R is an ester group in which R contains from 1 to 12 carbon atoms; or CH_2COR_1 wherein R_1 is C_{1-4} alkyl;
- 10 Y is $-\text{CH}_2\text{CH}_2-$, $-\text{CH}=\text{CH}-$ or $-\text{C}\equiv\text{C}-$;
- R₂ is hydrogen or C_{1-4} alkyl;
- 15 R₄ is hydrogen or C_{1-9} alkyl, C_{3-8} cycloalkyl, C_{3-8} cycloalkyl- C_{1-6} alkyl; or R₂ and R₄ taken with the carbon atom to which they are joined represent a C_{5-8} cycloalkyl group;
- R₅ is NR_6R_7 wherein R₆ and R₇ independently are hydrogen, C_{1-4} alkyl, phenyl- C_{1-4} alkyl or NR₆R₇ is a 3 to 7 membered heterocyclic group containing only one hetero atom; hydrogen, C_{1-4} alkyl or C_{1-4} alkyl substituted by an OH, C_{1-4} alkoxy, CN, halogen or NR₆R₇ group as defined above, or by one or two CO_2A groups in which A is hydrogen or a group containing from 1 to 12 carbon atoms; and
- 20 R₈ and R₉ independently are hydrogen, C_{1-4} alkyl or together with the carbon atom to which they are joined are a C_{3-6} cycloalkyl group; and salts thereof.
- 25 n is preferably 3.
- When L is CO_2R , R is hydrogen or CO_2R is an ester

- 4 -

group in which R contains from 1 to 12 carbon atoms. Examples of R include hydrogen, methyl, ethyl, n- and iso-propyl, n-, sec- and tert-butyl, phenyl, benzyl, tolyl and the like, whilst normally hydrogen or C₁₋₆ alkyl groups are preferred.

When L is CH₂COR₁, R₁ is C₁₋₄ alkyl. Examples of R₁ include methyl, ethyl, n- and iso-propyl and n-, sec- and tert-butyl, preferably methyl and ethyl, in particular methyl.

Suitable examples of R₂ include hydrogen, methyl and ethyl, preferably methyl.

Suitable groups R₄ when R₄ is a C₁₋₉ alkyl group include C₄₋₉ alkyl groups. Such C₄₋₉ alkyl groups may be straight chain alkyl groups, such n-butyl, n-pentyl, n-hexyl and n-heptyl, or may be alkyl groups branched by one or two methyl groups (at the same or different carbon atoms). Thus for example, R₄ may be a group CH₂ M CH(CH₃)M or C(CH₃)₂ M wherein M is a straight chain alkyl group such that the carbon content of the resultant group R₄ is 4 to 9.

In general preferred groups R₄ when R₄ is a C₄₋₉ alkyl group include straight chain pentyl, hexyl and heptyl groups. Of these, straight chain hexyl is often the most useful. Other preferred groups R₄ include groups CH(CH₃)M and C(CH₃)₂ M wherein M is straight chain butyl, pentyl and hexyl.

Other suitable examples of R₄ when R₄ is an alkyl group include the lower alkyl groups, that is when R₄ is a C₁₋₄ alkyl group.

When R₄ is or contains a C₃₋₈ cycloalkyl moiety, the moiety may be cyclopropyl. The moiety is preferably a C₅₋₈ cycloalkyl moiety such as a cyclohexyl moiety.

When R₄ is thus preferably C₅₋₈ cycloalkyl or C₅₋₈ cycloalkyl-C₁₋₆ alkyl, it may be represented by a group of formula (II):

- 5 -

wherein r is 0 to 3; and

T is a bond or C₁₋₆ alkylene.

r is suitably 1.

When T is C₁₋₆ alkylene it may be straight-chain or branched. If branched it is preferably branched by one or two methyl groups at the same or different carbon atoms.

Examples of suitable T when C₁₋₆ alkylene are groups derived from substitution of the corresponding C₁₋₆ alkyl group and include those derived from methyl, ethyl, propyl, butyl and pentyl.

Often T is a group -(CH₂)_q wherein q is 0 to 4.

Also R₂ and R₄ taken with the carbon atom to which they are joined can represent a C₅₋₈ cycloalkyl group, such as a cyclohexyl group.

When R₅ is or contains an acyclic group NR₆R₇, R₆ and R₇ are suitably the same, and may advantageously be hydrogen. However, other suitable examples of such NR₆R₇ include those wherein one or both of R₆ and R₇ are methyl, ethyl and n- and iso-propyl and benzyl.

When R₅ is or contains a heterocyclic group NR₆R₇, suitable examples of such NR₆R₇ include the ring N₁—C₂—C₃—C₄—N₅—C₆—C₇—C₈—N₉—C₁₀—C₁₁—C₁₂—N₁₃—C₁₄—C₁₅—C₁₆—N₁₇—C₁₈—C₁₉—C₂₀—N₂₁—C₂₂—C₂₃—C₂₄—N₂₅—C₂₆—C₂₇—C₂₈—N₂₉—C₃₀—C₃₁—C₃₂—N₃₃—C₃₄—C₃₅—C₃₆—N₃₇—C₃₈—C₃₉—C₄₀—N₄₁—C₄₂—C₄₃—C₄₄—N₄₅—C₄₆—C₄₇—C₄₈—N₄₉—C₅₀—C₅₁—C₅₂—N₅₃—C₅₄—C₅₅—C₅₆—N₅₇—C₅₈—C₅₉—C₆₀—N₆₁—C₆₂—C₆₃—C₆₄—N₆₅—C₆₆—C₆₇—C₆₈—N₆₉—C₇₀—C₇₁—C₇₂—N₇₃—C₇₄—C₇₅—C₇₆—N₇₇—C₇₈—C₇₉—C₈₀—N₈₁—C₈₂—C₈₃—C₈₄—N₈₅—C₈₆—C₈₇—C₈₈—N₈₉—C₉₀—C₉₁—C₉₂—N₉₃—C₉₄—C₉₅—C₉₆—N₉₇—C₉₈—C₉₉—C₁₀₀—N₁₀₁—C₁₀₂—C₁₀₃—C₁₀₄—N₁₀₅—C₁₀₆—C₁₀₇—C₁₀₈—N₁₀₉—C₁₁₀—C₁₁₁—C₁₁₂—N₁₁₃—C₁₁₄—C₁₁₅—C₁₁₆—N₁₁₇—C₁₁₈—C₁₁₉—C₁₂₀—N₁₂₁—C₁₂₂—C₁₂₃—C₁₂₄—N₁₂₅—C₁₂₆—C₁₂₇—C₁₂₈—N₁₂₉—C₁₃₀—C₁₃₁—C₁₃₂—N₁₃₃—C₁₃₄—C₁₃₅—C₁₃₆—N₁₃₇—C₁₃₈—C₁₃₉—C₁₄₀—N₁₄₁—C₁₄₂—C₁₄₃—C₁₄₄—N₁₄₅—C₁₄₆—C₁₄₇—C₁₄₈—N₁₄₉—C₁₅₀—C₁₅₁—C₁₅₂—N₁₅₃—C₁₅₄—C₁₅₅—C₁₅₆—N₁₅₇—C₁₅₈—C₁₅₉—C₁₆₀—N₁₆₁—C₁₆₂—C₁₆₃—C₁₆₄—N₁₆₅—C₁₆₆—C₁₆₇—C₁₆₈—N₁₆₉—C₁₇₀—C₁₇₁—C₁₇₂—N₁₇₃—C₁₇₄—C₁₇₅—C₁₇₆—N₁₇₇—C₁₇₈—C₁₇₉—C₁₈₀—N₁₈₁—C₁₈₂—C₁₈₃—C₁₈₄—N₁₈₅—C₁₈₆—C₁₈₇—C₁₈₈—N₁₈₉—C₁₉₀—C₁₉₁—C₁₉₂—N₁₉₃—C₁₉₄—C₁₉₅—C₁₉₆—N₁₉₇—C₁₉₈—C₁₉₉—C₂₀₀—N₂₀₁—C₂₀₂—C₂₀₃—C₂₀₄—N₂₀₅—C₂₀₆—C₂₀₇—C₂₀₈—N₂₀₉—C₂₁₀—C₂₁₁—C₂₁₂—N₂₁₃—C₂₁₄—C₂₁₅—C₂₁₆—N₂₁₇—C₂₁₈—C₂₁₉—C₂₂₀—N₂₂₁—C₂₂₂—C₂₂₃—C₂₂₄—N₂₂₅—C₂₂₆—C₂₂₇—C₂₂₈—N₂₂₉—C₂₃₀—C₂₃₁—C₂₃₂—N₂₃₃—C₂₃₄—C₂₃₅—C₂₃₆—N₂₃₇—C₂₃₈—C₂₃₉—C₂₄₀—N₂₄₁—C₂₄₂—C₂₄₃—C₂₄₄—N₂₄₅—C₂₄₆—C₂₄₇—C₂₄₈—N₂₄₉—C₂₅₀—C₂₅₁—C₂₅₂—N₂₅₃—C₂₅₄—C₂₅₅—C₂₅₆—N₂₅₇—C₂₅₈—C₂₅₉—C₂₆₀—N₂₆₁—C₂₆₂—C₂₆₃—C₂₆₄—N₂₆₅—C₂₆₆—C₂₆₇—C₂₆₈—N₂₆₉—C₂₇₀—C₂₇₁—C₂₇₂—N₂₇₃—C₂₇₄—C₂₇₅—C₂₇₆—N₂₇₇—C₂₇₈—C₂₇₉—C₂₈₀—N₂₈₁—C₂₈₂—C₂₈₃—C₂₈₄—N₂₈₅—C₂₈₆—C₂₈₇—C₂₈₈—N₂₈₉—C₂₉₀—C₂₉₁—C₂₉₂—N₂₉₃—C₂₉₄—C₂₉₅—C₂₉₆—N₂₉₇—C₂₉₈—C₂₉₉—C₃₀₀—N₃₀₁—C₃₀₂—C₃₀₃—C₃₀₄—N₃₀₅—C₃₀₆—C₃₀₇—C₃₀₈—N₃₀₉—C₃₁₀—C₃₁₁—C₃₁₂—N₃₁₃—C₃₁₄—C₃₁₅—C₃₁₆—N₃₁₇—C₃₁₈—C₃₁₉—C₃₂₀—N₃₂₁—C₃₂₂—C₃₂₃—C₃₂₄—N₃₂₅—C₃₂₆—C₃₂₇—C₃₂₈—N₃₂₉—C₃₃₀—C₃₃₁—C₃₃₂—N₃₃₃—C₃₃₄—C₃₃₅—C₃₃₆—N₃₃₇—C₃₃₈—C₃₃₉—C₃₄₀—N₃₄₁—C₃₄₂—C₃₄₃—C₃₄₄—N₃₄₅—C₃₄₆—C₃₄₇—C₃₄₈—N₃₄₉—C₃₅₀—C₃₅₁—C₃₅₂—N₃₅₃—C₃₅₄—C₃₅₅—C₃₅₆—N₃₅₇—C₃₅₈—C₃₅₉—C₃₆₀—N₃₆₁—C₃₆₂—C₃₆₃—C₃₆₄—N₃₆₅—C₃₆₆—C₃₆₇—C₃₆₈—N₃₆₉—C₃₇₀—C₃₇₁—C₃₇₂—N₃₇₃—C₃₇₄—C₃₇₅—C₃₇₆—N₃₇₇—C₃₇₈—C₃₇₉—C₃₈₀—N₃₈₁—C₃₈₂—C₃₈₃—C₃₈₄—N₃₈₅—C₃₈₆—C₃₈₇—C₃₈₈—N₃₈₉—C₃₉₀—C₃₉₁—C₃₉₂—N₃₉₃—C₃₉₄—C₃₉₅—C₃₉₆—N₃₉₇—C₃₉₈—C₃₉₉—C₄₀₀—N₄₀₁—C₄₀₂—C₄₀₃—C₄₀₄—N₄₀₅—C₄₀₆—C₄₀₇—C₄₀₈—N₄₀₉—C₄₁₀—C₄₁₁—C₄₁₂—N₄₁₃—C₄₁₄—C₄₁₅—C₄₁₆—N₄₁₇—C₄₁₈—C₄₁₉—C₄₂₀—N₄₂₁—C₄₂₂—C₄₂₃—C₄₂₄—N₄₂₅—C₄₂₆—C₄₂₇—C₄₂₈—N₄₂₉—C₄₃₀—C₄₃₁—C₄₃₂—N₄₃₃—C₄₃₄—C₄₃₅—C₄₃₆—N₄₃₇—C₄₃₈—C₄₃₉—C₄₄₀—N₄₄₁—C₄₄₂—C₄₄₃—C₄₄₄—N₄₄₅—C₄₄₆—C₄₄₇—C₄₄₈—N₄₄₉—C₄₅₀—C₄₅₁—C₄₅₂—N₄₅₃—C₄₅₄—C₄₅₅—C₄₅₆—N₄₅₇—C₄₅₈—C₄₅₉—C₄₆₀—N₄₆₁—C₄₆₂—C₄₆₃—C₄₆₄—N₄₆₅—C₄₆₆—C₄₆₇—C₄₆₈—N₄₆₉—C₄₇₀—C₄₇₁—C₄₇₂—N₄₇₃—C₄₇₄—C₄₇₅—C₄₇₆—N₄₇₇—C₄₇₈—C₄₇₉—C₄₈₀—N₄₈₁—C₄₈₂—C₄₈₃—C₄₈₄—N₄₈₅—C₄₈₆—C₄₈₇—C₄₈₈—N₄₈₉—C₄₉₀—C₄₉₁—C₄₉₂—N₄₉₃—C₄₉₄—C₄₉₅—C₄₉₆—N₄₉₇—C₄₉₈—C₄₉₉—C₅₀₀—N₅₀₁—C₅₀₂—C₅₀₃—C₅₀₄—N₅₀₅—C₅₀₆—C₅₀₇—C₅₀₈—N₅₀₉—C₅₁₀—C₅₁₁—C₅₁₂—N₅₁₃—C₅₁₄—C₅₁₅—C₅₁₆—N₅₁₇—C₅₁₈—C₅₁₉—C₅₂₀—N₅₂₁—C₅₂₂—C₅₂₃—C₅₂₄—N₅₂₅—C₅₂₆—C₅₂₇—C₅₂₈—N₅₂₉—C₅₃₀—C₅₃₁—C₅₃₂—N₅₃₃—C₅₃₄—C₅₃₅—C₅₃₆—N₅₃₇—C₅₃₈—C₅₃₉—C₅₄₀—N₅₄₁—C₅₄₂—C₅₄₃—C₅₄₄—N₅₄₅—C₅₄₆—C₅₄₇—C₅₄₈—N₅₄₉—C₅₅₀—C₅₅₁—C₅₅₂—N₅₅₃—C₅₅₄—C₅₅₅—C₅₅₆—N₅₅₇—C₅₅₈—C₅₅₉—C₅₆₀—N₅₆₁—C₅₆₂—C₅₆₃—C₅₆₄—N₅₆₅—C₅₆₆—C₅₆₇—C₅₆₈—N₅₆₉—C₅₇₀—C₅₇₁—C₅₇₂—N₅₇₃—C₅₇₄—C₅₇₅—C₅₇₆—N₅₇₇—C₅₇₈—C₅₇₉—C₅₈₀—N₅₈₁—C₅₈₂—C₅₈₃—C₅₈₄—N₅₈₅—C₅₈₆—C₅₈₇—C₅₈₈—N₅₈₉—C₅₉₀—C₅₉₁—C₅₉₂—N₅₉₃—C₅₉₄—C₅₉₅—C₅₉₆—N₅₉₇—C₅₉₈—C₅₉₉—C₆₀₀—N₆₀₁—C₆₀₂—C₆₀₃—C₆₀₄—N₆₀₅—C₆₀₆—C₆₀₇—C₆₀₈—N₆₀₉—C₆₁₀—C₆₁₁—C₆₁₂—N₆₁₃—C₆₁₄—C₆₁₅—C₆₁₆—N₆₁₇—C₆₁₈—C₆₁₉—C₆₂₀—N₆₂₁—C₆₂₂—C₆₂₃—C₆₂₄—N₆₂₅—C₆₂₆—C₆₂₇—C₆₂₈—N₆₂₉—C₆₃₀—C₆₃₁—C₆₃₂—N₆₃₃—C₆₃₄—C₆₃₅—C₆₃₆—N₆₃₇—C₆₃₈—C₆₃₉—C₆₄₀—N₆₄₁—C₆₄₂—C₆₄₃—C₆₄₄—N₆₄₅—C₆₄₆—C₆₄₇—C₆₄₈—N₆₄₉—C₆₅₀—C₆₅₁—C₆₅₂—N₆₅₃—C₆₅₄—C₆₅₅—C₆₅₆—N₆₅₇—C₆₅₈—C₆₅₉—C₆₆₀—N₆₆₁—C₆₆₂—C₆₆₃—C₆₆₄—N₆₆₅—C₆₆₆—C₆₆₇—C₆₆₈—N₆₆₉—C₆₇₀—C₆₇₁—C₆₇₂—N₆₇₃—C₆₇₄—C₆₇₅—C₆₇₆—N₆₇₇—C₆₇₈—C₆₇₉—C₆₈₀—N₆₈₁—C₆₈₂—C₆₈₃—C₆₈₄—N₆₈₅—C₆₈₆—C₆₈₇—C₆₈₈—N₆₈₉—C₆₉₀—C₆₉₁—C₆₉₂—N₆₉₃—C₆₉₄—C₆₉₅—C₆₉₆—N₆₉₇—C₆₉₈—C₆₉₉—C₇₀₀—N₇₀₁—C₇₀₂—C₇₀₃—C₇₀₄—N₇₀₅—C₇₀₆—C₇₀₇—C₇₀₈—N₇₀₉—C₇₁₀—C₇₁₁—C₇₁₂—N₇₁₃—C₇₁₄—C₇₁₅—C₇₁₆—N₇₁₇—C₇₁₈—C₇₁₉—C₇₂₀—N₇₂₁—C₇₂₂—C₇₂₃—C₇₂₄—N₇₂₅—C₇₂₆—C₇₂₇—C₇₂₈—N₇₂₉—C₇₃₀—C₇₃₁—C₇₃₂—N₇₃₃—C₇₃₄—C₇₃₅—C₇₃₆—N₇₃₇—C₇₃₈—C₇₃₉—C₇₄₀—N₇₄₁—C₇₄₂—C₇₄₃—C₇₄₄—N₇₄₅—C₇₄₆—C₇₄₇—C₇₄₈—N₇₄₉—C₇₅₀—C₇₅₁—C₇₅₂—N₇₅₃—C₇₅₄—C₇₅₅—C₇₅₆—N₇₅₇—C₇₅₈—C₇₅₉—C₇₆₀—N₇₆₁—C₇₆₂—C₇₆₃—C₇₆₄—N₇₆₅—C₇₆₆—C₇₆₇—C₇₆₈—N₇₆₉—C₇₇₀—C₇₇₁—C₇₇₂—N₇₇₃—C₇₇₄—C₇₇₅—C₇₇₆—N₇₇₇—C₇₇₈—C₇₇₉—C₇₈₀—N₇₈₁—C₇₈₂—C₇₈₃—C₇₈₄—N₇₈₅—C₇₈₆—C₇₈₇—C₇₈₈—N₇₈₉—C₇₈₀—C₇₈₁—C₇₈₂—N₇₈₃—C₇₈₄—C₇₈₅—C₇₈₆—N₇₈₇—C₇₈₈—C₇₈₉—C₇₉₀—N₇₉₁—C₇₉₂—C₇₉₃—C₇₉₄—N₇₉₅—C₇₉₆—C₇₉₇—C₇₉₈—N₇₉₉—C₇₉₀—C₇₉₁—C₇₉₂—N₇₉₃—C₇₉₄—C₇₉₅—C₇₉₆—N₇₉₇—C₇₉₈—C₇₉₉—C₈₀₀—N₈₀₁—C₈₀₂—C₈₀₃—C₈₀₄—N₈₀₅—C₈₀₆—C₈₀₇—C₈₀₈—N₈₀₉—C₈₀₀—C₈₀₁—C₈₀₂—N₈₀₃—C₈₀₄—C₈₀₅—C₈₀₆—N₈₀₇—C₈₀₈—C₈₀₉—C₈₁₀—N₈₁₁—C₈₁₂—C₈₁₃—C₈₁₄—N₈₁₅—C₈₁₆—C₈₁₇—C₈₁₈—N₈₁₉—C₈₂₀—C₈₂₁—C₈₂₂—N₈₂₃—C₈₂₄—C₈₂₅—C₈₂₆—N₈₂₇—C₈₂₈—C₈₂₉—C₈₃₀—N₈₃₁—C₈₃₂—C₈₃₃—C₈₃₄—N₈₃₅—C₈₃₆—C₈₃₇—C₈₃₈—N₈₃₉—C₈₄₀—C₈₄₁—C₈₄₂—N₈₄₃—C₈₄₄—C₈₄₅—C₈₄₆—N₈₄₇—C₈₄₈—C₈₄₉—C₈₅₀—N₈₅₁—C₈₅₂—C₈₅₃—C₈₅₄—N₈₅₅—C₈₅₆—C₈₅₇—C₈₅₈—N₈₅₉—C₈₆₀—C₈₆₁—C₈₆₂—N₈₆₃—C₈₆₄—C₈₆₅—C₈₆₆—N₈₆₇—C₈₆₈—C₈₆₉—C₈₇₀—N₈₇₁—C₈₇₂—C₈₇₃—C₈₇₄—N₈₇₅—C₈₇₆—C₈₇₇—C₈₇₈—N₈₇₉—C₈₈₀—C₈₈₁—C₈₈₂—N₈₈₃—C₈₈₄—C₈₈₅—C₈₈₆—N₈₈₇—C₈₈₈—C₈₈₉—C₈₉₀—N₈₉₁—C₈₉₂—C₈₉₃—C₈₉₄—N₈₉₅—C₈₉₆—C₈₉₇—C₈₉₈—N₈₉₉—C₉₀₀—C₉₀₁—C₉₀₂—N₉₀₃—C₉₀₄—C₉₀₅—C₉₀₆—N₉₀₇—C₉₀₈—C₉₀₉—C₉₁₀—N₉₁₁—C₉₁₂—C₉₁₃—C₉₁₄—N₉₁₅—C₉₁₆—C₉₁₇—C₉₁₈—N₉₁₉—C₉₂₀—C₉₂₁—C₉₂₂—N₉₂₃—C₉₂₄—C₉₂₅—C₉₂₆—N₉₂₇—C₉₂₈—C₉₂₉—C₉₃₀—N₉₃₁—C₉₃₂—C₉₃₃—C₉₃₄—N₉₃₅—C₉₃₆—C₉₃₇—C₉

- 6 -

In such cases R_5 will often be a methyl group so substituted.

Suitable examples of C_{1-4} alkoxy in R_5 include methoxy.

5 When R_5 contains a group CO_2A , suitable examples of A include hydrogen, methyl, ethyl, n- and iso-propyl, n-, sec- and tert-butyl, phenyl, benzyl, tolyl and the like, whilst normally hydrogen or C_{1-6} alkyl are preferred.

10 When R_8 and R_9 are hydrogen or C_{1-4} alkyl, they are suitably the same, and may advantageously be hydrogen.

When one or both R_8 and R_9 are C_{1-4} alkyl, suitable examples are methyl, ethyl, n- and iso-propyl and n-butyl, more suitably methyl or ethyl.

15 R_8 and R_9 taken with the carbon atom to which they are joined can also represent a C_{3-6} cycloalkyl group, such as a cyclopropyl group.

20 The compounds of the formula (I) may form conventional salts. Such salts include those with alkali and alkaline earth metals, suitably the alkali metals, more suitably sodium or potassium, and also include ammonium and substituted ammonium salts, and acid addition salts when R_5 is or contains NR_6R_7 .

25 The group L when it is CO_2H may be salified. Salts with the alkali metals may also be formed by the displacement of R_5 when hydrogen by an alkali metal atom.

30 From the aforesaid it will be seen that one particularly suitable group of compounds within formula (I) consists of those of formula (III):

- 7 -

wherein:

Y, R, R₄ and R₅ are as defined in formula (I);

R₁² is hydrogen, methyl or ethyl;

5 R₈¹ and R₉¹ are the same and are hydrogen, C₁₋₄ alkyl or together with the carbon atom to which they are joined are a C₃₋₆ cycloalkyl group; and salts thereof.

Examples of R and preferred R are as so described under formula (I).

10 R₂¹ is more suitably hydrogen or methyl, preferably methyl.

In formula (III) when R₄ is a C₁₋₉ alkyl group it is normally a C₄₋₉ alkyl group. Preferred groups R₄ when R₄ is a C₄₋₉ alkyl group are as so described under formula 15 (I).

When R₄ is or contains a C₃₋₈ cycloalkyl moiety, the moiety is preferably C₅₋₈ cycloalkyl, so that preferred R₄ is of formula (II) in this case.

20 Suitable and preferred R₄ of formula (II) are as so described under formula (II).

Similarly, suitable and preferred R₅ are as so described under formula (I).

Suitable and preferred R₈¹, R₉¹ are as so described for R₈, R₉ under formula (I).

25 Another particularly suitable group of compounds within formula (I) consists of those of formula (IV):

- 8 -

wherein:

R_1 is C_{1-4} alkyl and the remaining variables are as defined in formula (III), and salts thereof.

In formula (IV) examples of R_1 and preferred R_1 are as so described under formula (I).

Examples of the remaining variable groups in formula (IV) and suitable and preferred of these variable groups are as so described under formula (III).

An interesting group of compounds within formula (I) consists of those of formula (V) and salts thereof:

wherein:

m is 5, 6, 7 or 8;

R_4^1 is hydrogen or C_{1-9} alkyl;

L and R_5 are as defined in formula (I); and the remaining variables are as defined in formula (III).

In formula (V) m is preferably 6.

Whilst R_4^1 may be hydrogen or a C_{1-9} alkyl, it is normally a C_{4-9} alkyl group. In such cases, suitable and preferred groups R_4^1 include those previously so described for the group R_4 when R_4 is a C_{4-9} alkyl group. Of these, straight chain hexyl is often the most useful. Other preferred groups R_4^1 include $CH(CH_3)M$ and $C(CH_3)_2M$ wherein M is straight-chain butyl, pentyl or hexyl.

Examples of the remaining variable groups in formula (V) and suitable and preferred of these variable groups are as so described under formula (III).

- 9 -

Another interesting group of compounds within formula (I) consists of those of formula (VI):

wherein:

Y¹ is -CH=CH- or -C≡C-;

5 n, L and R₅ are as defined in formula (I);

R₁⁴ is as defined in formula (V), and the remaining variables are as defined in formula (III); and salts thereof.

In formula (VI) n is preferably 3.

10 R₁⁴ is normally a C₄₋₉ alkyl group. Suitable and preferred C₄₋₉ alkyl groups R₁⁴ are as so described under formula (V). In formula (VI) straight-chain hexyl is again often the most useful.

15 Examples of the remaining variable groups in formula (VI), and suitable and preferred of these variable groups, are as so described under formula (III).

A further interesting group of compounds within formula (I) consists of those of formula (VII):

wherein R₅¹ is hydrogen or C₁₋₄ alkyl, and the remaining variables are as defined in formula (III); and salts thereof.

- 10 -

R_5^1 is suitably hydrogen, methyl or ethyl, preferably hydrogen or methyl.
 In formula (VII) n is preferably 3.

5 R_4^1 is normally a C_{4-9} alkyl group. Suitable and preferred C_{4-9} alkyl groups R_4^1 are as so described under formula (V). In formula (VII) straight chain hexyl is again often the most useful.

Examples of the remaining variable groups in formula (VII) and suitable and preferred of these variable groups are as so described under formula (III).

10 A preferred group of compounds within formula (I) is those of formula (XI):

wherein R_4^2 is C_{3-8} cycloalkyl, or C_{3-8} cycloalkyl C_{1-6} alkyl and the remaining variables are as defined in formula (VII), and salts thereof.

15 R_4^2 is preferably C_{5-8} cycloalkyl, in particular cyclohexyl.

n is preferably 3.

L is preferably a group CO_2R as defined in formula (I).

Y is preferably $-CH_2CH_2-$.

20 Suitable and preferred remaining variable groups are as so described under formula (III).

A preferred group of compounds within those of formula (XI) are of formula (XII):

- 11 -

wherein R_4^3 is a group of formula (II):

wherein r is 0 to 3; and T is a bond or C_{1-6} alkylene; and the remaining variables are as defined in formula (XI), and salts thereof.

5 R_4^2 is preferably cyclohexyl.

R_5^1 is preferably methyl.

Other suitable and preferred variable groups are as so described under formula (III).

- 12 -

This invention also provides a process for the preparation of compounds of the formula (I), which process comprises cyclising a compound of formula (VIII):

wherein:

5 R_{10} is hydrogen or CO_2R_{10} is an ester group in which R_{10} contains from 1 to 12 carbon atoms; and the remaining variables are as previously defined; with elimination of R_{10}OH ; and thereafter as desired converting R , R_5 , R_6 , R_7 and/or Y in the compound of formula (I) thus formed into other R , R_5 , R_6 , R_7 or Y .

10 The cyclisation is generally effected by warming, for instance in an inert solvent such as benzene. It should be noted that, when R_5 is a sterically hindering group, the reaction may require effecting with 15 a strong base in a dry organic solvent, such as sodium hydride or sodium ethoxide in benzene or potassium t-butoxide in toluene, benzene or hexamethylphosphoramide.

15 In general it is convenient in this reaction that when L is CO_2R as defined above, this group is an ester group as defined.

20 Often it is convenient if R and R_{10} are the same.

The conversion of a compound of the formula (I) wherein CO_2R is an ester group to one wherein R is hydrogen may be achieved by conventional de-esterification. 25 Similarly, compounds wherein R is hydrogen may be esterified conventionally.

When L is a group CO_2H in a compound of the formula (I), salts of the compound at that carboxyl group may be formed conventionally, for example by reacting the compound

- 13 -

with a relevant base.

5 In general it is convenient that R_5 is hydrogen in the compounds of formula (VIII) and R_5 in corresponding compounds of the formula (I) is converted to different R_5 by conventional substitution.

However, in the compounds of formula (VIII) R_5 may also conveniently be C_{1-4} alkyl.

10 When R_5 = hydrogen in compounds of formula (VIII) is converted to other R_5 by conventional substitution, this may be carried out by reaction with R_5Q wherein Q is a readily displaceable good leaving group. In such cases, it may often be necessary to convert the compound of the formula (I) wherein R_5 is hydrogen to an alkali metal salt at the lactam group bearing R_5 , for example 15 by reacting the compound with a relevant base in a suitable solvent. The base should be a strong base such as sodium in an alcohol such as ethanol, sodium hydride in dimethylformamide or lithium di-isopropylamide in hexamethylphosphoramide.

20 Suitable examples of Q will be well-known to the skilled man and include for example halides, such as bromide, when R_5 is C_{1-4} alkyl or substituted C_{1-4} alkyl as defined; or substituted aryloxy, such as 2,4-dinitrophenoxy, when R_5 is NR_6R_7 as defined.

25 The skilled man will realise that substituting an R_5 hydrogen sometimes also substitutes an R hydrogen.

Thus, if it is desired to form a compound of the formula (I) wherein R is hydrogen and R_5 is not by substitution of a compound of the formula (I) wherein R_5 is hydrogen, then it is preferable that CO_2R is initially an ester group which is de-esterified conventionally after the substitution of R_5 hydrogen.

30 When R_5 is NR_6R_7 or C_{1-4} alkyl substituted by NR_6R_7 , the skilled man will realise that, if a compound of the formula (I) is desired wherein R_6 and R_7 are both hydrogen,

- 14 -

then it is frequently desirable to protect the amino group so defined during reaction by means of conventional amine protecting groups R_6 and R_7 , such as benzyl groups. Such groups are readily removable by conventional methods such as hydrogenolysis.

5

then it is frequently desirable to protect the amino group so defined during reaction by means of conventional amine protecting groups R_6 and R_7 , such as benzyl groups. Such groups are readily removable by conventional methods such as hydrogenolysis.

Similarly, groups NR_6R_7 wherein R_6 and R_7 are hydrogen may be alkylated or aralkylated conventionally.

10

Similarly, groups NR_6R_7 wherein R_6 and R_7 are hydrogen may be alkylated or aralkylated conventionally.

When R_5 is or contains a group NR_6R_7 in a compound of the formula (I), acid addition salts of the compound at that group may be formed conventionally, for example by reacting the compound with a relevant acid.

15

Compounds wherein Y is $-C\equiv C-$ may be reduced to compounds wherein Y is $-CH=CH-$ in known manner, suitably by catalytic hydrogenation, for example using Lindlar catalysis.

Similarly when Y is $-\text{CH}=\text{CH}-$, it may be reduced to $-\text{CH}_2\text{CH}_2-$ in known manner, suitably by catalytic hydrogenation, for example, using transition metals.

The compounds of formula (VIII) may be prepared by reacting a compound of formula (IX):

wherein the variables are as previously defined, with a compound of formula (X):

wherein:

X is a conventional amine protecting group; and the remaining variables are as previously defined; or with

- 15 -

such a compound containing a reactive derivative of the CO₂H group thereof; and thereafter replacing X conventionally by a hydrogen atom.

Conventional amine protecting groups are those which
5 are readily removable by conventional mild methods such as mild hydrolysis or hydrogenolysis. Examples of such groups include benzyloxycarbonyl.

Suitable reactive derivatives of the CO₂H group include the corresponding halides or anhydrides.

10 Where the free acid (X) is used the reaction is preferably carried out in the presence of a condensation promoting dehydrating agent such as dicyclohexylcarbodiimide.

15 X is suitably removed from the compound so formed by mild hydrogenolysis, for example using hydrogen in the presence of a transition metal catalyst such as palladium on charcoal.

20 The compound of the formula (VIII) is often conveniently formed in situ by the above process, and cyclised directly to the corresponding compound of the formula (I) without isolation.

It is believed that the compounds of formula (VIII)
25 are novel, and thus form an important aspect of this invention as intermediates.

The compounds of formula (IX) may be prepared by
25 the method disclosed in German Offenlegungsschrift Nos:
2552312, 2647969 and 2724948 and our co-pending European Application No. 79301145.3.

30 The compounds of the formula (I) have asymmetric centres, and can thus exist in several sterisomeric forms. The invention extends to each of these forms, and to mixtures thereof (including racemates). The different stereoisomeric forms may be separated mutually by usual methods

35 Isomers having a common stereospecific feature may be obtained by stereospecific synthesis. Isomers having a common chiral centre may be obtained by asymmetric synthesis, e.g. from chiral intermediates.

- 16 -

Compounds of the formula (I) have useful pharmacological activity. For example compounds of the formula (I) have anti-gastric secretion activity e.g. anti-ulcer activity, cardiovascular activity e.g. anti-hypertensive activity, platelet aggregation inhibition activity, affect the respiratory tract e.g. bronchodilator activity, anti-fertility activity, smooth muscle activity and/or anti-arrhythmic activity.

In general it may be said that compound within the formula (I) have a range or pharmacological activities similar to those shown by the natural prostaglandins, but that their activity profiles tend to be rather more selective so that each compound tends to have a major activity readily ascertained by routine pharmacological tests. By way of example, it has been found that many of the compounds fo the formula (I) are especially useful as bronchodilator agents, such as in particular compounds of the fomulae (V) and (XI).

The invention therefore also provides a pharmaceutical composition comprising a compound of the formula (I) and a pharmaceutically acceptable carrier.

In order to utilise the selectivity of activity found with compounds of the formula (I), normally a given compound will be used in the treatment of the disorder corresponding to the compound's major activity (that is, the disorder for which the compound has the lowest active dose) and will accordingly be formulated into the corresponding pharmaceutical composition, and administered in a manner conventional for treatment of that disorder. It may also of course be possible with compounds having one or more further pronounced activities to formulate and use the compound for those further activities as well as for the major activity, provided that there is no undesirable pharmacological interaction between the different activities, or that separation of the different activities can be obtained by a difference in the formulation or in the mode of administration.

The compositions may be in the form of tablets, capsules, powders, granules, lozenges or liquid preparations, such as oral or sterile parenteral solutions or suspensions.

5 Tablets and capsules for oral administration may be in unit dose presentation form, and may contain conventional excipients such as binding agents, fillers, tabletting lubricants, disintergrants, and acceptable wetting agents and the like. The tablets may be coated
10 according to methods well known in normal pharmaceutical practice. Oral liquid preparations may be in the form of, for example, aqueous or oily suspensions, solutions, emulsions, syrups, or elixirs, or may be presented as
15 a dry product for reconstitution with water or other suitable vehicle before use. Such liquid preparations may contain conventional additives such as suspending agents, emulsifying agents, non-aqueous vehicles (which may include edible oils), preservatives, and if desired conventional flavouring or colouring agents, and the
20 like.

For parenteral administration, fluid unit dosage forms are prepared utilizing the compound of the formula (I) and a sterile vehicle. The compound, depending on the vehicle and concentration used, can be either suspended
25 or dissolved in the vehicle. In preparing solutions the compound can be dissolved for injection and filter sterilized before filling into a suitable vial or ampoule and sealing. Advantageously, adjuvants such as a local anaesthetic, preservatives and buffering agents can be
30 dissolved in the vehicle. Parenteral suspensions are prepared in substantially the same manner except that the compound is suspended in the vehicle instead of being dissolved and sterilization cannot be accomplished by

filtration. The compound can be sterilized by exposure to ethylene oxide before suspending in the sterile vehicle. Advantageously, a surfactant or wetting agent is included in the composition to facilitate uniform distribution of
5 the compound.

When appropriate, the compositions of this invention may be presented as an aerosol for oral administration, or as a microfine powder for insufflation.

As is common practice, the compositions will usually
10 be accompanied by written or printed directions for use in the medical treatment concerned.

It will of course be realised that the precise dosage used in the treatment of any of the hereinbefore described disorders will depend on the actual compound
15 of the formula (I) used, and also on other factors such as the seriousness of the disorder being treated.

The invention also provides a method of treatment and/or prophylaxis of disorders in human beings or domestic animals which comprises the administration
20 to the sufferer of an effective amount of a compound of the formula (I).

The following Example illustrates the preparation of compounds of the formula (I).

The following Description illustrates the preparation
25 of intermediates for the compounds of the formula (I).

DESCRIPTION

Dimethyl 2-[N-(3'-hydroxy-3'-methylnonyl)-N- ξ 2"--(N'-methyl-N'-benzyloxycarbonylamino)acetyl]aminoazelate.

Dicyclohexyl carbodiimide (10.65g) in dichloromethane (50ml) was added dropwise, under nitrogen, at room temperature, to a stirred mixture of N-benzyloxycarbonyl sarcosine (11.53g) and dimethyl 2-[N-(3'-hydroxy-3'-methyl)nonyl]aminoazelate (20g) in dichloromethane (200ml). The mixture was stirred at room temperature overnight then was filtered through kieselguhr. The filtrate was chromatographed on silica gel (600g) using chloroform as eluent. Dimethyl 2-[N-(3'-hydroxy-3'-methylnonyl)-N- ξ 2"--(N'-methyl-N'-benzyloxycarbonylamino) acetyl]aminoazelate(19.5g) was obtained as a colourless gum

I.r: ν_{\max} (film) cm^{-1} 3450, 1740, 1710, 1660.

The compounds shown in Table 1 were produced in a similar way, using the appropriate intermediates (A and B).

0008186

- 20 -

Table 1

C O M P O U N D	Intermediate A			Intermediate B			
	R ₅	R ₈	R ₉	R ₂	R ₄	Y	L
d2	H	H	H	CH ₃	C ₆ H ₁₃	CH ₂ CH ₂	CO ₂ CH ₃
d3	CH ₃	H	H	CH ₃	CH(CH ₃)C ₄ H ₉	CH ₂ CH ₂	CO ₂ CH ₃
d4	CH ₃	H	H	CH ₃	C ₂ H ₅	CH ₂ CH ₂	CO ₂ CH ₃
d5	CH ₃	H	H	CH ₃	○	CH ₂ CH ₂	CO ₂ CH ₃
d6	H	H	H	CH ₃	○	CH ₂ CH ₂	CO ₂ CH ₃

0008186

- 21 -

	R ₅	R ₈	R ₉	R ₂	R ₄	Y	L
d 7	H	H	H	H	C ₂ H ₅	CH ₂ CH ₂	CO ₂ CH ₃
d 8	H	H	H		CH ₂ CH ₂	CH ₂ CH ₂	CO ₂ CH ₃
d 9	CH ₃	H	H	CH ₃	(CH ₂) ₂ CH ₂	CH ₂ CH ₂	CO ₂ CH ₃
d 10	H	CH ₃	(L-isomer)	CH ₃	CH ₂ CH ₂	CH ₂ CH ₂	CO ₂ CH ₃
d 11	CH ₃	H	H	CH ₃	C ₆ H ₁₃	CH ₂ CH ₂	CH ₂ COCH ₃

EXAMPLE 1

1-(3'-hydroxy-3'-methylnonyl)-4-methyl-6-(6"-methoxycarbonylhexyl)piperazine-2,5-dione.

Dimethyl 2-[N-(3'-hydroxy-3'-methylnonyl)-N-{2''-(N-methyl-N'-benzyloxycarbonylamino)acetyl}amino]azelate (15g) was hydrogenolysed, at atmospheric pressure and room temperature, over 10% palladium on charcoal (3g) in dimethoxyethane (300ml). When hydrogen uptake was completed, the mixture was filtered through kieselguhr and the filtrate was evaporated in vacuo to give a clear gum (9.5g). This was purified via column chromatography on silica gel (100g) using chloroform as eluant to give 1-(3'-hydroxy-3'-methylnonyl)-4-methyl-6-(6"-methoxycarbonylhexyl)piperazine-2,5-dione (7.6g) as a colourless gum.

I.r. ν_{max} (film) cm^{-1} 3450, 1740, 1660 (broad)

The compounds shown in Table 2 were prepared in a similar manner.

- 23 -

Table 2

Com- ound	R ₂	R ₄	R ₅	R ₈	R ₉	Y	L
2	CH ₃	C ₆ H ₁₃	H	H	H	CH ₂ CH ₂	CO ₂ CH ₃
3	CH ₃	CH(CH ₃)C ₄ H ₉	CH ₃	H	H	CH ₂ CH ₂	CO ₂ CH ₃
4	CH ₃	○	CH ₃	H	H	CH ₂ CH ₂	CO ₂ CH ₃
5	CH ₃	○	H	H	H	CH ₂ CH ₂	CO ₂ CH ₃

- 24 -

Table 2 (continued)

Compound	R ₂	R ₄	R ₅	R ₈	R ₉	Y	L
6	H	C ₂ H ₅	H	H	H	CH ₂ CH ₂	CO ₂ CH ₃
7			H	H	H	CH ₂ CH ₂	CO ₂ CH ₃
8	CH ₃	(CH ₂) ₂ -	CH ₃	H	H	CH ₂ CH ₂	CO ₂ CH ₃
9	CH ₃		H	CH ₃	H	CH ₂ CH ₂	CO ₂ CH ₃
14	CH ₃	C ₆ H ₁₃	CH ₃	H	H	CH ₂ CH ₂	CH ₂ COCH ₃

Characterising DataCompound 4

Analysis: C₂₃H₄₀N₂O₅ requires: C, 65.06; H, 9.50; N, 6.60%

found: C, 65.11; H, 9.18; N, 6.44%

I.r. (CHCl₃)cm⁻¹: 3450, (OH); 1735, (CO₂CH₃); 1660 (CON<).

5 N.m.r.: (CDCl₃) τ : 7.8 (bs, 1H, OH);
7.7 (m, 2H, CH₂CO₂CH₃);
7.05 (s, 3H, NCH₃);
6.35 (s, 3H, CO₂CH₃);
6.2 to 5.8 (m, 3H, COCH₂N; NCH).

10 Mass spectrum: C₂₃H₄₀N₂O₅ (m*) requires: 424.2935
found: 424.2956

Compound 5

Analysis: C₂₂H₃₈N₂O₅ requires C, 64.36; H, 9.33; N, 6.82%
found: C, 64.57; H, 9.56; N, 6.45%

- 25 -

I.r. (ν_{max}) (CHCl_3) cm^{-1} : 3450 to 3200, (OH; NH);
 1735, (CO_2CH_3); 1680 and
 1645 (CONH and CON<).

Mass spectrum: $\text{C}_{22}\text{H}_{38}\text{N}_2\text{O}_5$ (m^*) requires: 410.2778
 found: 410.2787

Compound 6

5 Analysis: $\text{C}_{17}\text{H}_{30}\text{N}_2\text{O}_5$ requires: C, 59.63; H, 8.83; N,
 8.18%
 found: C, 59.13; H, 8.70; N, 7.95%

N.m.r. (CDCl_3) τ : 7.65 (t, 2H, $\text{CH}_2\text{CO}_2\text{CH}_3$);
 6.4 (centre of brm, 5H, CHOH, NCH_2 , NCH);
 10 6.3 (s, 3H, CO_2CH_3);
 5.95 (bs, 2H, NCH_2CON);
 2.65 (bs, 1H, CONH).

Mass spectrum $\text{C}_{17}\text{H}_{30}\text{N}_2\text{O}_5$ (m^*) requires: 342.2155
 found: 342.2157

Compound 7

15 Analysis: $\text{C}_{20}\text{H}_{34}\text{N}_2\text{O}_5$ requires: C, 62.80; H, 8.96; N,
 7.32%
 found: C, 62.69; H, 9.09; N, 7.29%

N.m.r. (CDCl_3) τ : 7.7 (t, 2H, $\text{CH}_2\text{CO}_2\text{CH}_3$);
 7.45 (s, 1H, OH);
 20 6.85 (bm, 2H, NCH_2);
 6.35 (s, 3H, CO_2CH_3);
 6.05 (b, 3H, NCH_2CON ; NCH);
 2.6 (bs, 1H, CONH).

0008186

- 26 -

Mass spectrum: $C_{20}H_{34}N_2O_5$ (m^*) requires: 382.2468
found: 382.2468

Compound 8

N.m.r. ($CDCl_3$) τ : 7.75 (t, 2H, $CH_2CO_2CH_3$);
5 7.72 (s, 1H, OH);
6.9 (centre of br m, 2H, NCH_2);
7.05 (s, 3H, NCH_3);
6.35 (s, 3H, CO_2CH_3);
6.1 (d, 2H, NCH_2CON);
5.95 (m, 1H, NCH).

Compound 9

10 I.r. (ν_{max}) ($CHCl_3$) cm^{-1} 3500 - 3200 (OH, NH);
1740, (CO_2CH_3);
1680 (CONH);
1640, (CON=).
15 N.m.r. ($CDCl_3$) τ : 7.7 (t, 2H, $CH_2CO_2CH_3$);
7.4 (bs, 1H, OH);
6.8 (centre of brm, 2H, NCH_2);
6.35 (s, 3H, CO_2CH_3);
6.0 (m, 2H, 2 x COCHN);
2.35 (b, 1H, CONH).

Compound 14

20 Analysis: $C_{24}H_{44}N_2O_4$ requires: C, 67.89;
H, 10.44; N, 6.60%
found C, 67.97; H, 10.77; N, 6.51

I.r. (ν_{max}) ($CHCl_3$) cm^{-1} : 3440, (OH)
25 1720, ($COCH_3$)
1660, br, (CON)

N.m.r. ($CDCl_3$) τ : 7.9 (s, 3H, $COCH_3$);
7.6 (t, 2H, CH_2COCH_3);
7.5 (s, 1H, OH);
7.0 (s, 3H, NCH_3);

0008186

- 27 -

6.6 (centre bm, 2H, CONCH₂);
6.05 (m, 3H, ring -CH₂-, ring=CH)

Mass spectrum:

5

C₂₄H₄₄N₂O₄ (m*)
requires: 424.3301
found: 424.3317

Example 2

1-(3'-hydroxy-3'-cyclohexylbutyl)-4-methyl-6-(6"-carboxyhexyl)-piperazine-2,5-dione

1-(3'-hydroxy-3'-cyclohexylbutyl)-4-methyl-6-(6"-methoxycarbonylhexyl)-piperazine-2,5-dione (4) (1.05g, 2.5 mmol) was dissolved in methanol (20ml) and 10% aqueous potassium carbonate (15 ml) was added. The mixture was
 5 stirred at room temperature for eighteen hours and partitioned between diethyl ether (3 x 50ml) and water (150 ml). The aqueous phase was acidified with 5M aqueous hydrochloric acid and extracted with diethyl ether (3 x 50 ml). The combined diethyl ether layers were washed with brine
 10 until neutral and dried over sodium sulphate. The solvent was removed under reduced pressure, and the yellow gum so obtained was recrystallised using ethyl acetate/hexane as solvent to give 1-(3'-hydroxy-3'-cyclohexylbutyl)-4-methyl-6-(6"-carboxyhexyl)-piperazine-2,5-dione (0.65g,
 15 64%) as a white powder.

I.r. (ν max) cm^{-1} : 3425 (O-H), 350-2500 (CO_2H), 1720 (CO_2HO), 1660 (amide)

N.m.r. (CDCl_3) τ : 3.89 (bs, 2H, O-H, CO_2H exch D_2O); 7.06 (s, 3H, N-CH); 7.70 (2H, t, $\text{CH}_2-\text{CO}_2\text{H}$)

20 Analysis: $\text{C}_{22}\text{H}_{38}\text{N}_2\text{O}_5$ requires : N, 6.82; C, 64.36; H, 9.33%
 found: N, 6.68; C, 64.07; H, 9.47%

Example 3

1-(3'-hydroxy-3'-methylnonyl)-4-methoxycarbonylmethyl-6-(6"-methoxycarbonylhexyl)-piperazine-2,5-dione

To a stirred slurry of sodium hydride (0.146g, 4.9 mmole) (80% dispersion in oil) in dry benzene (10ml) under a nitrogen atmosphere was added 1-(3'-hydroxy-3'-methylnonyl)-6-(6"-methoxycarbonylhexyl)-piperazine-2,5-dione (2.0g, 4.9 mmol) in dry dimethylformamide (10ml). After stirring for ten minutes, a clear colourless solution was obtained. Methyl bromoacetate (0.75g, 4.9 mmol) was added dropwise over half a minute. The solution was stirred at room temperature and then heated to reflux. A precipitate soon appeared. After three hours at reflux, the mixture was cooled, diluted with diethyl ether (200 ml) and washed with brine (3 x 40 ml). The solution was dried over sodium sulphate and the solvent was removed under reduced pressure. The oil so obtained was chromatographed on silica gel (30g) using ethyl acetate/hexane (1:1) and then ethyl acetate as eluant to give 1-(3'-hydroxy-3'-methylnonyl)-4-methoxy-carbonylmethyl-6-(6"-methoxycarbonylhexyl-piperazine-2,5-dione (1.25 g, 53%) as a low melting white solid.

I.r. (cm^{-1}) (ν max): 3425 (O-H), 1740 (ester), 1665 (amide).
 N.m.r. (CDCl_3): 5.2-6.8 (m, 13H, $\text{MeO}_2\text{C}\text{.CH}_2\text{N}-$,
 $\begin{array}{c} \text{O} \\ || \\ -\text{C}-\text{CH}_2-\text{N}-\text{C}, \text{C}-\text{CH}-\text{N}, \end{array}$, $\begin{array}{c} \text{O} \\ || \\ -\text{C}-\text{N}-\text{CH}_2, 2 \times \text{CO}_2\text{CH}_3 \end{array}$); 7.15 (s, 1H, O-H exchange D_2O), 7.70(t, 2H, $\text{CH}_2\text{CH}_2\text{CO}_2\text{Me}$)

- 30 -

H.r.m.s.: Found 484.3168, C₂₅H₄₄N₂O₇ requires 484.3147

5 1-(3'-hydroxy-3'-cyclohexylbutyl)-4-cyanomethyl-6-(6"-methoxycarbonylhexyl)-piperazine-2,5-dione (12) was similarly prepared from 1-(3'-hydroxy-3'-cyclohexylbutyl)-6-(6"-methoxycarbonylhexyl)-piperazine-2,5-dione and chloroacetonitrile in 45% yield.

I.r. (ν max) cm⁻¹ 3450 (O-H), 1735 (ester), 1665 (amide).

N.m.r. (CDCl₃) τ : 5.3-6.1 (bm, 5H, NC-CH₂-N=)

10 H.r.m.s.: Found 431.2784 (M⁺ - H₂O); C₂₄H₃₇N₃O₄ requires 431.2782.

Example 4

1-(3'-hydroxy-3'-methylnonyl)-4-pyrrolidinomethyl-6-(6"-methoxycarbonylhexyl)-piperazine-2,5-dione

A mixture of 1-(3'-hydroxy-3'-methylnonyl)-6-(6"-methoxycarbonylhexyl)-piperazine-2,5-dione (1.4g, 3.4 mmol), 40% aqueous formaldehyde (0.29 ml 3.9 mmol) and pyrrolidine (0.27g, 3.8 mmol) in ethanol (10ml) was heated to reflux
 5 for eighteen hours. The resulting yellow solution was cooled, diluted with diethyl ether (200 ml) and washed with brine (3 x 40 ml). After drying over sodium sulphate, the solvent was removed under reduced pressure, and the dark yellow oil so obtained was chromatographed on neutral alumina (25g) using
 10 chloroform as eluent. This gave 1-(3'-hydroxy-3'-methylnonyl)-4-pyrrolidinomethyl-6-(6"-methoxycarbonylhexyl)-piperazine-2,5-dione (1.1g 65%).

I.r. (ν max) cm^{-1} : 3430 (O-H), 1740 (ester), 1660 (amide).

N.m.r. (CDCl_3) τ : 5.5 - 6.1 (5H, N- CH_2 -N; $-\overset{\text{O}}{\underset{\text{C}}{\text{||}}} \text{CH}_2-\overset{\text{I}}{\underset{\text{O}}{\text{||}}} \text{C}-$;
 15 $-\overset{\text{O}}{\underset{\text{C}}{\text{||}}} \text{CH-N}$), 6.36 (s, 3H, CO_2CH_3); 7.40 (bm, 4H, 2 x CH_2N).

H.r.m.s.: Found 495.3680, $\text{C}_{27}\text{H}_{49}\text{N}_3\text{O}_5$ requires 495.3670

- 32 -

PHARMACOLOGICAL DATABronchodilation Activity

1. The compounds were examined for their ability to inhibit 5-hydroxytryptamine or histamine induced bronchoconstriction in the anaesthetised, artificially respiration guinea pig (Konzett-Rossler preparation). The compounds
5 were administered intravenously. The results are shown in Table A.

Table A

Compound number	ED ₅₀ as defined above (μ g/kg i.v.)
1	4.4
3	4.3
4	0.59

2. Compound 3 was also examined for its ability to protect conscious guinea pigs against bronchoconstriction induced by an histamine aerosol (Herxheimer test). In
10 these experiments the compound was administered by aerosol or by oral administration. The results are the mean of several experiments. Compound 3 was active at 10 mg/kg.

Anti-gastric secretory activity

The compounds were examined for their ability to inhibit pentagastrin-stimulated gastric acid secretion in the
15 anaesthetised, perfused rat stomach preparation (Ghosh and Schild preparation). The compounds were administered intravenously.

- 33 -

Compounds 3 and 9 inhibited gastric acid secretion at 0.2 and 0.25 mg/kg, i.v., respectively.

Anti-ulcer activity

Anti-ulcer activity was assessed by the inhibition of indomethacin induced gastric damage in the rat according
 5 to the method of Eleghe (1974) Israeli J. Med. Sci. 10
 1451. Rats were starved overnight given 15mg/kg indomethacin subcutaneously and sacrificed 4 hours later. Stomachs were reflated with n. saline, cut along the greater curvature pinned out and scored for gastric
 10 damage by the following system:

Score 1 - 3 - according to degree of erythema and slight haemorrhage.

Score 4 - 6 - according to degree of mucosal erosion.

Score 7 - 9 - according to depth of gastric damage.

15 Groups of 7 rats were used for each treatment and the test compound or vehicle were administered 30 minutes prior to giving the indomethacin. Dose of test compound was 50mg/kg orally and control groups receiving vehicle only were set up simultaneously. Mean values
 20 for each treatment were obtained using the above scoring system and the Mann Witney test applied for significance of difference between the values obtained with the treatments.

The results are shown in Table B

Table B

Compound number	Vehicle Mean Score \pm S.E. of Mean	Test Mean Score \pm S.E. of Mean
3	4.57 \pm 0.69	0.71 \pm 0.42 (p < 0.01)

0008186

- 34 -

Toxicity

No toxic effects were observed in any of the above tests.

- 35 -

CLAIMS

1. A compound of formula (I):

characterised in that

n is 1 to 5;

L is CO_2R wherein R is hydrogen or CO_2R is an ester group in which R contains from 1 to 12 carbon atoms, or CH_2COR_1 wherein R_1 is C_{1-4} alkyl;

5

Y is $-\text{CH}_2\text{CH}_2-$, $-\text{CH}=\text{CH}-$ or $-\text{C}\equiv\text{C}-$;

R_2 is hydrogen or C_{1-4} alkyl;

10

R_4 is hydrogen or C_{1-9} alkyl, C_{3-8} cycloalkyl, C_{3-8} cycloalkyl- C_{1-6} alkyl; or

R_2 and R_4 taken with the carbon atom to which they are joined represent a C_{5-8} cycloalkyl group;

15

R_5 is NR_6R_7 wherein R_6 and R_7 independently are hydrogen, C_{1-4} alkyl, phenyl C_{1-4} alkyl or NR_6R_7 is a 3 to 7 membered heterocyclic group containing only one hetero atom; hydrogen, C_{1-4} alkyl or C_{1-4} alkyl substituted by an OH, C_{1-4} alkoxy, CN, halogen or NR_6R_7 group as defined above, or by one or two CO_2A groups in which A is hydrogen or a group containing from 1 to 12 carbon atoms; and R_8 and R_9 independently are hydrogen, C_{1-4} alkyl or together with the carbon atom to which they are joined are a C_{3-6} cycloalkyl group; and salts thereof.

20

2. A compound according to claim 1 of formula (III):

characterised in that

Y, R, R₄ and R₅ are as defined in claim 1;

R₁² is hydrogen, methyl or ethyl;

R₈¹ and R₉¹ are the same and are hydrogen, C₁₋₄ alkyl

5

or together with the carbon atom to which they are joined are a C₃₋₆ cycloalkyl group;
and salts thereof.

3. A compound according to claim 1 of formula (IV):

characterised in that

10 R₁ is C₁₋₄ alkyl and the remaining variables are as defined in claim 2; and salts thereof.

4. A compound according to claim 1 of formula (V) and salts thereof:

characterised in that

15 m is 5, 6, 7 or 8;

R₄¹ is hydrogen or C₁₋₉ alkyl;

L and R₅ are as defined in claim 1; and the remaining variables are as defined in claim 2.

5. 1-(3'-hydroxy-3'-methylnonyl)-4-methyl-6-(6"-methoxy-carbonylhexyl)piperazine-2,5-dione.

20

- 37 -

6. A compound according to claim 1 of formula (VI):

characterised in that

 Y^1 is $-\text{CH}=\text{CH}-$ or $-\text{C}\equiv\text{C}-$;n, L and R^1_5 are as defined in claim 1;5 R^1_4 is as defined in claim 4 , and the remaining variables are as defined in claim 2 and salts thereof.

7. A compound according to claim 1 of formula (VII):

charaterised in that R^1_5 is hydrogen or C_{1-4} alkyl, and
10 the remaining variables are as defined in claim 4, and salts thereof.

8. A compound according to claim 1 of formula (XI):

characterised in that R^2_4 is C_{3-8} cycloalkyl, or C_{3-8} cycloalkyl— C_{1-6} alkyl and the remaining variables are as defined in claim 7, and salts thereof.

- 38 -

9. A compound according to claim 8 of formula (XII):

characterised in that R_4^3 is a group of formula (II):

wherein r is 0 to 3; and

5 T is a bond or C_{1-6} alkylene and the remaining variables are as defined in claim 8, and salts thereof.

- 10. 1-(3'-hydroxy-3'-cyclohexylbutyl)-4-methyl-6-(6"-methoxycarbonylhexyl)piperazine-2,5-dione.
- 11. 1-(3'-hydroxy-3'-cyclohexylbutyl)-4-methyl-6-(6"-carboxyhexyl)piperazine-2,5-dione.
- 12. The sodium salt of the compound of claim 11.
- 13. A pharmaceutical composition comprising a compound according to claim 1 together with a pharmaceutically acceptable carrier.
- 15. 14. A pharmaceutical composition comprising the compound of any one of claims 10 to 12 together with a pharmaceutically acceptable carrier.
- 15. A process for the preparation of a compound of formula (I), characterised by cyclising a compound of formula (VIII):

- 39 -

wherein:

R₁₀ is hydrogen or CO₂R₁₀ is an ester group in which R₁₀ contains from 1 to 12 carbon atoms; and the remaining variables are as previously defined; with elimination of R₁₀OH; and thereafter as desired converting R, R₅, R₆, R₇ and/or Y in the compound of formula (I) thus formed into other R, R₅, R₆, R₇ or Y.

5

16. A process according to claim 13 characterised in that
 10 the compound of formula (VIII) is formed in situ by reacting a compound of formula (IX):

wherein the variables are as previously defined, with a compound of formula (X):

wherein:

- 15 X is a conventional amine protecting group; and the remaining variables are as previously defined; or with such a compound containing a reactive derivative of the CO₂H group thereof; and thereafter replacing X conventionally by a hydrogen atom.

0008186

- 40 -

17. 1-(3'-hydroxy-3',4'-dimethyloctyl)-4-methyl-6-(6"-methoxycarbonylhexyl)piperazine-2,5-dione.

European Patent
Office

EUROPEAN SEARCH REPORT

0008186
Application number

EP 79 30 1518

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int.Cl.)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
A	<p>BE - A - 861 956 (BEECHAM)</p> <p>-----</p>		<p>C 07 D 241/08 A 61 K 31/495/ A 61 K 31/557</p>
			TECHNICAL FIELDS SEARCHED (Int.Cl.)
			<p>C 07 D 241/08 A 61 K 31/495</p>
			CATEGORY OF CITED DOCUMENTS
			<p>X: particularly relevant A: technological background O: non-written disclosure P: intermediate document T: theory or principle underlying the invention E: conflicting application D: document cited in the application L: citation for other reasons</p>
			&: member of the same patent family, corresponding document
<p>The present search report has been drawn up for all claims</p>			
Place of search	Date of completion of the search	Examiner	
The Hague	24-09-1979	BERTE.	