Artificial Intelligence

Sistem Penjadwalan Adaptif untuk Penempatan Peserta Didik Profesi Dokter di Wahana Pendidikan

Disusun oleh:

Andreas Teguh Santoso Kosasih - **140810230047**Muhammad Raihan Rizky Zain - **140810230049**Atharik Putra Rajendra - **140810230077**

UNIVERSITAS PADJADJARAN
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
PROGRAM STUDI S-1 TEKNIK INFORMATIKA

BAB I

PENDAHULUAN

1.1 Latar Belakang

Penempatan peserta didik profesi dokter di berbagai wahana pendidikan seperti rumah sakit dan klinik merupakan proses penting yang harus mempertimbangkan banyak faktor dinamis, seperti jumlah peserta, kapasitas wahana, dan kebutuhan layanan masing-masing tempat. Dalam kondisi nyata, perubahan situasi di lapangan sering terjadi, seperti adanya tambahan peserta mendadak, perubahan kapasitas ruang, atau kebutuhan rotasi antar wahana. Karena itu, dibutuhkan sistem penjadwalan yang tidak hanya mampu membuat rencana awal, tetapi juga dapat beradaptasi secara cepat terhadap perubahan tersebut agar proses pendidikan tetap berjalan optimal

Dengan memanfaatkan konsep Artificial Intelligence seperti planning, reasoning, dan searching, solusi penjadwalan adaptif dapat dikembangkan untuk menjawab tantangan ini. Melalui proyek ini, mahasiswa akan mensimulasikan sistem penjadwalan yang mampu menyesuaikan diri terhadap perubahan kondisi secara otomatis, serta memvisualisasikan hasil penempatan dan penyesuaiannya melalui aplikasi sederhana. Selain penerapan teknis AI, proyek ini juga bertujuan untuk melatih kemampuan berpikir kritis, analisis masalah dinamis, dan kolaborasi tim dalam mengembangkan solusi nyata yang relevan dengan dunia pendidikan profesi dokter.

1.2 Kontribusi Pengelolaan Peserta Didik

Sistem penjadwalan adaptif yang dikembangkan berkontribusi dalam pengelolaan peserta didik profesi dokter melalui beberapa aspek berikut:

- Pemerataan Penempatan Peserta Didik: Menjamin distribusi peserta secara proporsional di seluruh wahana pendidikan, menghindari penumpukan di lokasi tertentu.

- Optimalisasi Beban Wahana Pendidikan: Menyeimbangkan beban kerja antar wahana dengan mengatur jumlah peserta didik agar tidak terjadi kondisi overload (beban pasien terlalu tinggi) ataupun underutilize (kapasitas wahana tidak termanfaatkan secara optimal).
- **Penyesuaian Dinamis terhadap Perubahan Kondisi**: Memberikan respon cepat terhadap perubahan mendadak, seperti bertambahnya peserta atau perubahan jumlah pasien, dengan menyesuaikan penempatan secara real-time.
- **Stabilisasi Layanan Pendidikan dan Kesehatan**: Memastikan setiap wahana tetap dalam kondisi pelayanan yang stabil dan efektif, mendukung kelancaran proses pembelajaran dan pelayanan kepada pasien.
- Peningkatan Fleksibilitas dan Efisiensi Pengelolaan: Memudahkan pengelola dalam melakukan rotasi, redistribusi, atau rekalibrasi beban kerja berdasarkan situasi terkini.
- **Mendukung Pengalaman Belajar yang Berkualitas**: Memberikan peserta didik kesempatan untuk belajar dalam lingkungan yang tidak terlalu padat maupun terlalu kosong, sehingga proses pembelajaran menjadi lebih optimal.

BAB II PERANCANGAN DATA DAN RENCANA PENEMPATAN

2.1 Data Dummy

2.1.1 Data Peserta

ID Peserta	Nama Peserta	Preferensi Pekerjaan
P001	Emin Setiawan	Umum
P002	Cut Tania Lazuardi	Bedah
P003	Hardi Sihotang	Bedah
P004	Mursita Mandasari	Umum
P005	Drajat Hariyah	Umum
P010	Harsaya Prabowo	Umum
P011	Dartono Suwarno	Umum
P012	Qori Pratiwi	Umum
P013	Edi Hartati	Bedah
P014	Capa Prabowo	Bedah
P015	Bagya Widodo	Umum
P016	Diana Maulana	Bedah
P017	Praba Rahayu	Bedah
P018	Tugiman Sitorus	Bedah
P019	Eka Situmorang	Umum
P020	R.A. Aisyah Firgantoro	Umum
P021	Himawan Santoso	Umum
P022	Ade Najmudin	Umum
P023	Juli Kurniawan	Bedah
P024	Ega Purwanti	Bedah

P025	Olivia Wijaya	Bedah	
P026	Cecep Utami	Bedah	
P027	Gara Aryani	Umum	
P028	Maria Saragih	Umum	
P029	Salimah Usamah	Bedah	
P030	Umi Laksmiwati	Bedah	
P031	Kiandra Purwanti	Umum	
P032	Irfan Wibowo	Umum	
P033	Samiah Maryati	Umum	
P034	Zaenab Nugroho	Umum	
P035	Harsanto Andriani	Bedah	
P036	Olivia Anggriawan	Bedah	
P037	Kacung Permata	Bedah	
P038	Narji Siregar	Umum	
P039	Kawaca Mahendra	Umum	
P040	Dariati Halimah	Umum	
P041	Cut Zizi Lestari	Umum	
P042	Ismail Wastuti	Bedah	
P043	R.M. Kunthara Mahendra	Bedah	
P044	T. Nyana Pratiwi	Umum	
P045	Tgk. Ilsa Sitorus	Umum	
P046	Nurul Lestari	Umum	
P047	Irwan Habibi	Umum	
P048	Karya Napitupulu	Bedah	
P049	Usman Susanti	Bedah	

P050	Alika Santoso	Bedah
P051	Kusuma Damanik	Umum
P052	Harja Hassanah	Umum
P053	Aisyah Prastuti	Bedah
P054	Ida Pratiwi	Bedah
P055	Karimah Mahendra	Umum
P056	Eka Waskita	Umum
P057	Karimah Permata	Bedah
P058	Sutan Reza Usamah	Bedah
P059	Kunthara Farida	Bedah
P060	Nasrullah Sinaga	Bedah
P061	Yani Adriansyah	Bedah
P062	Queen Winarno	Bedah
P063	Makuta Purwanti	Umum
P064	Murti Hutasoit	Bedah
P065	Taufan Utama	Umum
P066	Daryani Hutasoit	Bedah
P067	Kasiyah Winarsih	Umum
P068	Puti Sabrina Dongoran	Umum
P069	Alika Gunawan	Umum
P070	Vega Uwais	Umum
P071	Tina Januar	Umum
P072	Tami Suwarno	Umum
P073	Cut Vivi Habibi	Umum
P074	Violet Uwais	Bedah

P075	Cawisono Rahimah	Umum
P076	Narji Prabowo	Umum
P077	Capa Simbolon	Umum
P078	Anita Najmudin	Umum
P079	Wardaya Budiyanto	Umum
P080	Qori Adriansyah	Umum
P081	R. Humaira Palastri	Umum
P082	Dariati Yolanda	Umum
P083	Hesti Maryati	Bedah
P084	Kurnia Sudiati	Bedah
P085	Ami Mardhiyah	Umum
P086	Purwanto Waluyo	Umum
P087	Hari Andriani	Umum
P088	Unggul Namaga	Umum
P089	Jayeng Rahmawati	Umum
P090	Maimunah Manullang	Bedah
P091	Gaiman Palastri	Umum
P092	Kuncara Zulaika	Umum
P093	Qori Rajata	Bedah
P094	Zizi Prastuti	Umum
P095	Puti Karen Prayoga	Bedah
P096	Dina Nurdiyanti	Bedah
P097	Puti Michelle Pudjiastuti	Umum
P098	Elvina Iswahyudi	Bedah
P099	Dian Hutagalung	Bedah

P100	Maryadi Firmansyah	Umum
P101	Ikin Winarsih	Umum
P102	Wisnu Padmasari	Umum
P103	Gaduh Permadi	Umum
P104	R. Timbul Tamba	Umum
P105	Radit Mayasari	Umum
P106	Panca Wahyudin	Bedah
P107	Gara Uyainah	Umum
P108	Kemba Lazuardi	Bedah
P109	R.A. Juli Melani	Bedah
P110	Balapati Utami	Umum
P111	Karta Farida	Bedah
P112	Kamidin Mayasari	Umum
P113	Hj. Zulfa Kusmawati	Umum
P114	Zaenab Laksmiwati	Umum
P115	Sabrina Suartini	Bedah
P116	Gabriella Andriani	Umum
P117	Puti Sudiati	Umum
P118	T. Luis Haryanto	Umum
P119	R. Vivi Uwais	Bedah
P120	Carla Nababan	Bedah
P121	Genta Haryanto	Umum
P122	Gilda Mardhiyah	Umum
P123	Lutfan Oktaviani	Umum
P124	Fitriani Widodo	Bedah

P125	Capa Usada	Bedah	
P126	Cindy Lestari	Umum	
P127	Reza Prastuti	Bedah	
P128	Gabriella Winarsih	Bedah	
P129	Warji Permata	Bedah	
P130	Prabawa Kusmawati	Bedah	
P131	Yani Rahimah	Umum	
P132	Cut Puput Lestari	Umum	
P133	Olivia Mustofa	Umum	
P134	Belinda Purwanti	Umum	
P135	Latika Kurniawan	Bedah	
P136	Zalindra Prasetyo	Umum	
P137	Bagas Usamah	Umum	
P138	Putri Hasanah	Umum	
P139	Ilyas Siregar	Umum	
P140	Bala Mayasari	Bedah	
P141	Puti Keisha Mangunsong	Umum	
P142	Lembah Fujiati	Umum	
P143	Zizi Prakasa	Umum	
P144	Rizki Mardhiyah	Bedah	
P145	Keisha Wijayanti	Umum	
P146	Nasim Firmansyah	Umum	
P147	Anastasia Dabukke	Bedah	
P148	Gamblang Wulandari	Umum	
P149	Wirda Zulkarnain	Bedah	

P150	Hafshah Nababan	Umum
P151	Heryanto Januar	Umum
P152	Atma Utami	Umum
P153	Ida Palastri	Umum
P154	Chelsea Andriani	Bedah
P155	Garda Uwais	Umum
P156	Bakiono Oktaviani	Umum
P157	Salman Nasyiah	Umum
P158	Puti Fathonah Prasetya	Bedah
P159	KH. Irwan Mandasari	Umum
P160	Wage Mustofa	Umum
P161	Nadine Situmorang	Umum
P162	Prima Kusmawati	Bedah
P163	Diah Hartati	Umum
P164	Gaduh Wulandari	Bedah
P165	Saiful Halim	Bedah
P166	Leo Padmasari	Umum
P167	Jefri Pratiwi	Bedah
P168	Jais Gunawan	Umum
P169	Dagel Siregar	Umum
P170	Latika Samosir	Umum
P171	H. Mustika Nugroho	Umum
P172	Endra Nashiruddin	Umum
P173	Leo Siregar	Umum
P174	Argono Tampubolon	Umum

P175	Pangeran Prasetya	Umum	
P176	Karimah Hutasoit	Umum	
P177	T. Nyoman Nurdiyanti	Umum	
P178	Tgk. Ilyas Jailani	Umum	
P179	Lalita Maulana	Umum	
P180	Kunthara Widiastuti	Bedah	
P181	Opan Puspasari	Bedah	
P182	Cawisono Yuliarti	Umum	
P183	Devi Kuswoyo	Bedah	
P184	Tirta Tamba	Umum	
P185	Salsabila Sirait	Bedah	
P186	Nabila Situmorang	Umum	
P187	Hilda Lazuardi	Bedah	
P188	Lembah Wibowo	Umum	
P189	Anastasia Laksmiwati	Bedah	
P190	Citra Maryadi	Bedah	
P191	Ophelia Jailani	Umum	
P192	Alika Ramadan	Umum	
P193	Suci Widiastuti	Umum	
P194	Zelda Irawan	Umum	
P195	T. Panca Lestari	Bedah	
P196	R.M. Hardi Sihombing	Bedah	
P197	Ajiono Palastri	Umum	
P198	Xanana Haryanto	Umum	
P199	Sutan Samsul Oktaviani	Bedah	

P200	Purwadi Waskita	Umum
------	-----------------	------

2.1.2 Data Wahana

Nama Wahana	Kapasitas Optimal (Peserta)	Estimasi Pasien Normal (per Hari)	Estimasi Pasien Gangguan	Status Gangguan	Kategori Pekerjaan
RS_01	11	110	52	Underutili zed	Umum
RS_02	9	90	16	Underutili zed	Umum
RS_03	5	50	33	Stabil	Umum
RS_04	5	50	52	Stabil	Bedah
RS_05	10	100	154	Stabil	Bedah
RS_06	7	70	119	Overload	Bedah
RS_07	9	90	153	Overload	Umum
RS_08	7	70	34	Underutili zed	Bedah
RS_09	12	120	204	Overload	Bedah
RS_10	11	110	32	Underutili zed	Bedah
RS_11	5	50	68	Stabil	Bedah
RS_12	6	60	144	Overload	Umum
RS_13	7	70	118	Stabil	Umum
RS_14	7	70	28	Underutili zed	Bedah
RS_15	5	50	63	Stabil	Umum
RS_16	10	100	151	Stabil	Bedah
RS_17	7	70	150	Overload	Umum
RS_18	11	110	140	Stabil	Umum
RS_19	8	80	235	Overload	Bedah
RS_20	5	50	74	Stabil	Bedah

RS_21	9	90	24	Underutili zed	Bedah
RS_22	10	100	21	Underutili zed	Bedah
RS_23	6	60	102	Overload	Umum
RS_24	10	100	292	Overload	Bedah
RS_25	8	80	31	Underutili zed	Umum

2.2 Asumsi Dasar

Pada penyusunan data dummy dan simulasi penempatan peserta didik, beberapa asumsi dasar digunakan untuk mempermudah dan mensimulasikan kondisi yang realistis. Berikut adalah asumsi dasar yang digunakan dalam proyek ini:

1) Wahana Pendidikan

- Terdapat 25 wahana pendidikan (rumah sakit) dengan nama RS_01 hingga
 RS_25
- Kapasitas optimal masing-masing wahana bervariasi antara 5 hingga 12 peserta didik
- Total kapasitas seluruh wahana = 200 peserta didik, sesuai jumlah peserta
- Rasio estimasi pasien terhadap kapasitas wahana disesuaikan agar sekitar 10 pasien per peserta didik untuk kondisi normal.

2) Kondisi Gangguan Wahana

- Stabil: Beban pasien tetap dalam rentang normal (±10 pasien/peserta didik)
- Overload: Beban pasien meningkat signifikan (>20 pasien/peserta didik).
- Underutilized: Beban pasien berkurang drastis (<5 pasien/peserta didik)
- Estimasi pasien saat terjadi gangguan sudah ditentukan per wahana, mengacu pada kriteria ini.

3) Peserta Didik

- Terdapat 200 peserta didik dengan ID dari P001 hingga P200.
- Nama peserta menggunakan nama natural Indonesia untuk keperluan simulasi realistis.
- Preferensi pekerjaan peserta:
 - a. 60% memilih Umum.
 - b. 40% memilih Bedah.

Notes: Preferensi ini akan diperhitungkan dalam penempatan awal agar sesuai dengan kategori pekerjaan rumah sakit (Umum atau Bedah).

4) Kriteria Penilaian Overload dan Underutilized

- Overload terjadi jika:
 - > Pasien per Peserta Didik > 20
- Underutilized terjadi jika:
 - > Pasien per Peserta Didik < 5
- Rentang normal di antara kedua nilai ini.

5) Penempatan Awal

- Penempatan awal peserta didik ke wahana dilakukan secara merata dan sesuai kapasitas optimal masing-masing wahana.
- Penempatan memperhatikan preferensi pekerjaan agar peserta lebih banyak ditempatkan ke wahana dengan kategori pekerjaan yang sesuai.

6) Penyesuaian saat Gangguan

- Jika terjadi gangguan (overload/underutilized), sistem akan melakukan:
- Relokasi peserta didik dari wahana overload ke wahana stabil atau underutilized.
- Menambah peserta di wahana underutilized jika memungkinkan.
- Memastikan distribusi pasien per peserta kembali ke kondisi normal (sekitar 10 pasien per peserta).

BAB III

RENCANA PENEMPATAN AWAL

Penempatan awal peserta didik dilakukan dengan mempertimbangkan preferensi pekerjaan (Umum atau Bedah) dan kapasitas optimal masing-masing wahana. Peserta didik dialokasikan secara proporsional ke wahana yang sesuai kategori pekerjaannya untuk memastikan pemerataan distribusi dan menghindari kondisi overload atau underutilized sejak awal.

Penempatan awal dilakukan dengan langkah-langkah berikut:

1. Pemetaan Kebutuhan:

- Menghitung total peserta didik per kategori (Umum atau Bedah).
- Memetakan wahana pendidikan berdasarkan kategori dan kapasitasnya.

2. Alokasi Proporsional:

 Peserta didik dialokasikan ke wahana yang sesuai preferensi, dengan memastikan tidak melebihi kapasitas optimal. Contoh: 60 peserta Bedah ditempatkan di 6 wahana Bedah dengan kapasitas 10 peserta masing-masing.

3. Pemerataan Beban Kerja:

- Memastikan estimasi pasien per peserta didik berada dalam rasio normal (5–20 pasien/peserta).

Hasil penempatan awal divisualisasikan dalam tabel dan grafik distribusi untuk memudahkan evaluasi.

BAB IV

MANAJEMEN GANGGUAN DAN SOLUSI PENEMPATAN

4.1 Skenario Gangguan dan Dampaknya

4.1.1 Skenario Gangguan

Dampak yang diakibatkan oleh skenario gangguan ini, baik itu penurunan atau peningkatan jumlah pasien secara drastis, dapat mengakibatkan beberapa hal berikut:

1) Overload (Kelebihan Beban):

- Ketidakmampuan dalam Menyediakan Pelayanan yang Memadai: Dengan jumlah pasien yang melebihi kapasitas, rumah sakit atau fasilitas layanan kesehatan mungkin tidak dapat memberikan perawatan yang optimal, yang berdampak pada kualitas layanan yang menurun.
- Beban Kerja Karyawan yang Berlebihan: Tenaga medis dan staf administrasi bisa mengalami kelelahan atau bahkan burnout karena harus menangani jumlah pasien yang sangat banyak dalam waktu yang singkat.
- **Ketidakseimbangan Penempatan Pasien**: Penempatan pasien yang tidak merata pada fasilitas yang ada, mengakibatkan beberapa ruang atau peralatan tidak terpakai maksimal, sementara ruang atau peralatan lain menjadi penuh sesak.
- Peningkatan Risiko Kesalahan Medis: Dengan banyaknya pasien yang harus ditangani dalam waktu yang terbatas, risiko kesalahan medis seperti keliru dalam pemberian obat atau prosedur bisa meningkat.

2) Undertilized (Tidak Terpakai Secara Optimal):

- **Pemborosan Sumber Daya**: Fasilitas, staf, dan peralatan yang

sudah dipersiapkan dengan kapasitas penuh tidak dapat digunakan secara maksimal, yang mengakibatkan pemborosan biaya dan sumber daya.

- **Efisiensi yang Berkurang**: Dengan sedikitnya pasien, operasional yang sudah diatur untuk menangani banyak pasien menjadi tidak efisien, termasuk waktu staf yang tidak terpakai optimal.
- Potensi Pendapatan yang Hilang: Dengan sedikitnya jumlah pasien yang datang, pendapatan yang diharapkan dari pelayanan medis berkurang, dan fasilitas bisa mengalami kerugian finansial.
- Gangguan pada Rencana Operasional: Ketidaksesuaian antara jumlah pasien dan kapasitas yang direncanakan dapat menyebabkan penyesuaian mendadak dalam alur operasional, yang berpotensi membingungkan sistem dan tim medis.

4.1.2 Dampak Skenario Gangguan

Dampak yang diakibatkan oleh skenario gangguan ini, baik itu penurunan atau peningkatan jumlah pasien secara drastis, dapat mengakibatkan beberapa hal berikut:

1) Overload (Kelebihan Beban):

- Ketidakmampuan dalam Menyediakan Pelayanan yang Memadai: Dengan jumlah pasien yang melebihi kapasitas, rumah sakit atau fasilitas layanan kesehatan mungkin tidak dapat memberikan perawatan yang optimal, yang berdampak pada kualitas layanan yang menurun.
- Beban Kerja Karyawan yang Berlebihan: Tenaga medis dan staf administrasi bisa mengalami kelelahan atau bahkan burnout karena harus menangani jumlah pasien yang sangat banyak dalam waktu yang singkat.

- **Ketidakseimbangan Penempatan Pasien**: Penempatan pasien yang tidak merata pada fasilitas yang ada, mengakibatkan beberapa ruang atau peralatan tidak terpakai maksimal, sementara ruang atau peralatan lain menjadi penuh sesak.
- Peningkatan Risiko Kesalahan Medis: Dengan banyaknya pasien yang harus ditangani dalam waktu yang terbatas, risiko kesalahan medis seperti keliru dalam pemberian obat atau prosedur bisa meningkat.

2) Undertilized (Tidak Terpakai Secara Optimal):

- **Pemborosan Sumber Daya**: Fasilitas, staf, dan peralatan yang sudah dipersiapkan dengan kapasitas penuh tidak dapat digunakan secara maksimal, yang mengakibatkan pemborosan biaya dan sumber daya.
- **Efisiensi yang Berkurang**: Dengan sedikitnya pasien, operasional yang sudah diatur untuk menangani banyak pasien menjadi tidak efisien, termasuk waktu staf yang tidak terpakai optimal.
- **Potensi Pendapatan yang Hilang**: Dengan sedikitnya jumlah pasien yang datang, pendapatan yang diharapkan dari pelayanan medis berkurang, dan fasilitas bisa mengalami kerugian finansial.
- Gangguan pada Rencana Operasional: Ketidaksesuaian antara jumlah pasien dan kapasitas yang direncanakan dapat menyebabkan penyesuaian mendadak dalam alur operasional, yang berpotensi membingungkan sistem dan tim medis.

4.2 Alternatif Solusi dan Justifikasi Pilihan

4.2.1 Alternatif Solusi

a. Relokasi Peserta:

Memindahkan sebagian peserta dari wahana overload ke wahana underutilized atau stabil.

b. Penyesuaian Kapasitas:

Sementara meningkatkan kapasitas wahana stabil dengan menambahkan peserta, jika memungkinkan.

c. Prioritas Preferensi:

Mempertahankan preferensi peserta sebisa mungkin saat redistribusi.

4.2.2 Justifikasi Pilihan

1. Penggunaan DataFrame untuk Penyimpanan Data

Justifikasi: Menggunakan pandas DataFrame untuk menyimpan data wahana dan peserta memungkinkan operasi analitik yang efisien. Dengan menggunakan struktur data tabular, kita dapat memanfaatkan fungsionalitas DataFrame untuk manipulasi data dan analisis lebih lanjut, serta mempermudah pengolahan data yang lebih besar.

2. Penjadwalan Awal dengan Algoritma Greedy

Justifikasi: Algoritma greedy digunakan untuk penjadwalan awal karena sederhana dan efisien. Dengan mengutamakan wahana dengan skor tertinggi (berdasarkan kecocokan antara peserta dan wahana), penjadwalan dapat dilakukan dengan cepat. Pendekatan ini memastikan bahwa alokasi dilakukan berdasarkan kriteria yang relevan seperti preferensi pekerjaan, beban kerja, dan kapasitas.

Keunggulan: Kompleksitas waktu yang lebih rendah (O(n^m)) membuatnya cocok untuk dataset sedang, di mana n adalah jumlah peserta dan m adalah jumlah wahana.

3. Simulasi Gangguan pada Wahana

Justifikasi: Simulasi gangguan digunakan untuk menyesuaikan status wahana yang dapat mempengaruhi penjadwalan. Pendekatan ini memungkinkan sistem untuk merespons dinamika yang terjadi pada wahana secara real-time.

Kriteria: Berdasarkan rekomendasi asosiasi pendidikan kedokteran, wahana dengan beban lebih dari 20 pasien per peserta dianggap overload, sedangkan beban di bawah 5 pasien per peserta dianggap underutilized. Ini juga membantu dalam mengelola penggunaan sumber daya secara efisien.

4. Redistribusi Adaptif

Justifikasi: Redistribusi penempatan adaptif setelah simulasi gangguan memungkinkan sistem untuk mengalihkan peserta dari wahana yang overload atau tutup ke wahana yang underutilized. Metode ini memprioritaskan menjaga preferensi peserta jika memungkinkan, namun tetap memastikan bahwa kapasitas wahana tidak terlampaui.

Keunggulan: Redistribusi berbasis skor memastikan penyesuaian dilakukan dengan mempertimbangkan kecocokan antara peserta dan wahana secara optimal, sehingga penempatan tetap relevan dengan kondisi yang ada

5. Visualisasi Hasil

Justifikasi: Menyediakan visualisasi hasil dalam bentuk tabel yang dapat dilihat oleh pengguna sangat penting untuk transparansi dan evaluasi. Pengguna dapat memeriksa penempatan awal dan akhir peserta serta memahami alasan dibalik setiap keputusan penjadwalan.

Keunggulan: Visualisasi ini tidak hanya memberikan data yang mudah dibaca, tetapi juga memperlihatkan justifikasi keputusan yang diambil dalam setiap tahap, memberikan insight yang lebih dalam tentang alasan di balik penyesuaian penempatan.

6. Penggunaan Streamlit untuk Antarmuka Pengguna

Justifikasi: Streamlit dipilih sebagai framework untuk antarmuka pengguna karena kemudahan dalam membangun aplikasi berbasis web secara interaktif. Streamlit memungkinkan pengguna untuk memasukkan data secara manual dan melihat hasil penjadwalan dengan cepat tanpa memerlukan setup atau konfigurasi yang kompleks.

Keunggulan: Antarmuka pengguna yang sederhana dan efisien membuatnya mudah untuk diintegrasikan dengan model backend penjadwalan adaptif dan memberikan feedback secara real-time.

Dengan pendekatan ini, sistem penjadwalan adaptif dapat berjalan secara efisien, responsif terhadap perubahan kondisi, dan tetap mempertahankan kualitas penempatan berdasarkan preferensi peserta dan kapasitas wahana.

BAB V

IMPLEMENTASI APLIKASI

5.1 Deskripsi Aplikasi Simulasi

Aplikasi ini dirancang untuk membantu pengelolaan penjadwalan adaptif peserta didik profesi dokter di berbagai wahana (rumah sakit/klinik). Sistem ini mampu melakukan penjadwalan awal, mensimulasikan kondisi gangguan, dan melakukan redistribusi penempatan peserta secara optimal.

1) **Input Data (**Tab 1)

→ Metode Input Data

- **Upload File Excel**: Unggah file Excel dengan dua sheet:
 - Sheet "Data Wahana" berisi informasi tentang rumah sakit/klinik
 - Sheet "Data Peserta" berisi informasi tentang peserta didik profesi dokter
- Input Manual: Masukkan data wahana dan peserta secara langsung melalui form

→ Informasi yang Ditampilkan

- **Statistik Umum Wahana**: Total wahana, kapasitas, pasien normal, pasien gangguan
- **Distribusi Kategori Wahana**: Visualisasi proporsi kategori pekerjaan (Umum/Bedah)
- Statistik Peserta: Total peserta dan rasio peserta:kapasitas
- **Distribusi Preferensi**: Visualisasi preferensi pekerjaan peserta
- **Analisis Potensi Kecocokan**: Perbandingan preferensi dengan kapasitas yang tersedia

2) Penjadwalan Awal (Tab 2)

→ Hasil Penjadwalan

- **Detail Penempatan**: Tabel penempatan peserta di setiap wahana dengan indikator kecocokan preferensi
- **Statistik per Wahana**: Informasi jumlah peserta, match preferensi, dan persentase kapasitas terisi
- Visualisasi Persentase Terisi: Grafik persentase kapasitas terisi per wahana
- **Analisis Keseimbangan**: Standar deviasi dan visualisasi keseimbangan skor kecocokan
- **Perbandingan Antar Metode**: Perbandingan standar deviasi dari berbagai metode penjadwalan

3) Simulasi Gangguan (Tab 3)

- → Simulasi Kondisi Gangguan
 - Klik tombol "Simulasikan Gangguan" untuk mensimulasikan perubahan kondisi di setiap wahana

→ Hasil Simulasi

- **Status Wahana**: Perbandingan status normal vs gangguan (Stabil, Underutilized, Overload, Tutup)
- **Perbandingan Pasien**: Perbandingan jumlah pasien kondisi normal vs gangguan
- Rasio Pasien/Peserta: Visualisasi perubahan rasio pasien per peserta

4) Hasil Akhir (Tab 4)

→ Hasil Redistribusi

- **Statistik Penjadwalan**: Metrik hasil adaptasi (jumlah peserta, match preferensi, peserta dipindahkan)
- Perbandingan Kualitas: Perbandingan skor kecocokan dan standar deviasi sebelum dan sesudah adaptasi
- **Hasil Penjadwalan Akhir**: Visualisasi dan tabel distribusi peserta setelah redistribusi
- **Detail Perubahan**: Informasi detail tentang pemindahan peserta dan peningkatan/penurunan match
- **Stabilitas Wahana**: Analisis perubahan status wahana dan rasio pasien/peserta

Fitur Tambahan

- **Download Data**: Download hasil penjadwalan dalam format CSV
- Visualisasi Interaktif: Grafik dan diagram interaktif untuk analisis mendalam
- Pesan Informatif: Petunjuk dan informasi kontekstual sepanjang alur kerja

5.2 Cara Penggunaan Aplikasi

- 1) **Tab Input Data (**Tab 1)
 - → Langkah 1: Menyiapkan Data
 - Pilih metode input data: "Upload File Excel" atau "Input Manual"
 - Jika Upload File Excel:
 - Siapkan file Excel dengan 2 sheet bernama "Data Wahana" dan "Data Peserta"
 - Upload file Excel tersebut

• Jika Input Manual:

- Tentukan jumlah wahana dan isi data wahana (nama, kapasitas, jumlah pasien, kategori)
- Tentukan jumlah peserta dan isi data peserta (ID, nama, preferensi pekerjaan)
- Klik tombol "Simpan Data Manual"

→ Langkah 2: Review Data

- Periksa statistik umum (jumlah wahana, kapasitas, jumlah peserta)
- Periksa distribusi kategori wahana dan preferensi peserta
- Periksa potensi kecocokan preferensi vs kapasitas

2) Tab Penjadwalan Awal (Tab 2)

→ Langkah 3: Lakukan Penjadwalan Awal

- Pilih tipe algoritma penjadwalan:
 - "Distribusi Merata": Mendistribusikan peserta dengan skor kecocokan yang merata
 - "Prioritas Kapasitas": Mengutamakan pengisian seluruh kapasitas wahana
 - "Prioritas Stabilitas": Mengutamakan kestabilan rasio pasien:peserta
- Klik tombol "Lakukan Penjadwalan Awal"

Langkah 4:

Analisis

Hasil Penjadwalan Awal

- Periksa detail penempatan awal (tabel dengan kesesuaian preferensi)
- Periksa statistik per wahana (jumlah peserta, match preferensi, persentase terisi)
- Analisis persentase kapasitas terisi melalui visualisasi
- Periksa keseimbangan skor kecocokan dan bandingkan dengan metode lain
- Jika perlu, ubah tipe penjadwalan dengan mengklik "Ubah Penjadwalan ke [Tipe]"

3) Tab Simulasi Gangguan (Tab 3)

- → **Langkah 5:** Simulasikan Kondisi Gangguan
 - Klik tombol "Simulasikan Gangguan"

→ Langkah 6: Analisis Dampak Gangguan

- Tab "Status Wahana": Bandingkan status wahana sebelum dan sesudah gangguan
- Tab "Perbandingan Pasien": Analisis perubahan jumlah pasien
- Tab "Rasio Pasien/Peserta": Analisis perubahan rasio pasien per peserta

4) Tab Hasil Akhir (Tab 4)

- → Langkah 7: Lakukan Penyesuaian Penempatan
 - Klik tombol "Lakukan Penyesuaian Penempatan"

→ Langkah 8: Analisis Hasil Redistribusi

- Periksa statistik penjadwalan (total peserta, match preferensi, peserta yang dipindahkan)
- Bandingkan kualitas penjadwalan sebelum dan sesudah redistribusi
- Tab "Hasil Penjadwalan Akhir": Periksa penempatan akhir dan distribusi peserta
- Tab "Detail Perubahan Penempatan": Analisis perubahan penempatan dan impact pada match preferensi
- Tab "Stabilitas Wahana": Analisis perubahan status wahana dan rasio pasien/peserta

→ Langkah 9: Ekspor Hasil (Opsional)

- Download hasil penjadwalan akhir dengan mengklik tombol "Download Jadwal Lengkap"
- Download detail perubahan atau data stabilitas jika diperlukan

Tips Penggunaan

- Pastikan untuk mengikuti urutan tab dari kiri ke kanan $(1 \rightarrow 2 \rightarrow 3 \rightarrow 4)$
- Analisis hasil di setiap tab sebelum berpindah ke tab berikutnya
- Jika ingin mengubah data input atau metode penjadwalan, ulangi proses dari tab terkait
- Bandingkan hasil dari berbagai metode penjadwalan dan strategi adaptasi untuk menemukan kombinasi optimal

BAB V

KESIMPULAN

Sistem penjadwalan adaptif yang dibangun menggunakan pendekatan berbasis algoritma greedy dan redistribusi adaptif memberikan solusi yang efisien dan responsif dalam menangani penempatan peserta didik di wahana pendidikan. Dengan menggunakan DataFrame pandas untuk menyimpan dan mengelola data, sistem ini memastikan operasi analitik yang cepat dan fleksibel.

Algoritma greedy digunakan untuk penjadwalan awal, yang mengutamakan penempatan peserta berdasarkan skor kecocokan dengan wahana, memperhitungkan preferensi pekerjaan, beban kerja, dan kapasitas wahana. Selanjutnya, simulasi gangguan pada wahana dilakukan untuk mengidentifikasi status wahana (overload, underutilized, atau stabil), yang memungkinkan sistem untuk menyesuaikan penempatan peserta dengan menggunakan redistribusi adaptif.

Dengan mengutamakan penyesuaian yang berbasis skor dan prioritas pada wahana dengan status underutilized atau stabil, sistem dapat mempertahankan efisiensi sumber daya sekaligus menjaga kualitas penempatan peserta. Visualisasi hasil melalui Streamlit memberikan antarmuka pengguna yang intuitif untuk melihat dan mengevaluasi keputusan penjadwalan, memastikan transparansi dalam proses tersebut.

Secara keseluruhan, sistem ini menawarkan pendekatan yang efektif untuk penjadwalan adaptif, dengan fleksibilitas untuk menangani perubahan kondisi dan memastikan alokasi sumber daya yang optimal dalam lingkungan yang dinamis. Pengembangan lebih lanjut dapat mencakup integrasi dengan sistem manajemen rumah sakit dan penambahan prediksi beban kerja berbasis machine learning.