ECS 521/641: Spintronics and Nanomagnetics

Instructor: Dr. Kuntal Roy, EECS Dept, IISER Bhopal **HW #7**

Problem 1

Plot the energy dispersion relation for 1-DEG with the **numerically accurate procedure**. The nanowire is subjected to a magnetic field along the nanowire axis (x-axis). The rectangular cross-section of the nanowire is on the y-z plane with $L_y \ll L_z \ll L_x$. Also, there is a symmetry breaking electric field along the y-axis inducing the Rashba spin-orbit interaction. Assume $m^*=0.05m_0$, g=2, $v=-\frac{\gamma_D}{\hbar^2}\langle p_y^2\rangle=\gamma_D\langle \partial^2/\partial y^2\rangle$, and the following cases.

(i)
$$B = 1 T$$
 and (ii) $B = 0$

(1)
$$\eta = 10^{-11} eV - m$$
, $v = 2\eta$

(2)
$$\eta = 10^{-11} eV - m$$
, $v = \eta$

(3)
$$\eta = 10^{-11} eV - m$$
, $v = 0$

(4)
$$\eta = 0$$
, $\nu = 10^{-11} eV - m$

Problem 2

Plot the energy dispersion relation as given in the above problem using the variable separation approximation.

Problem 3

For the 0-DEG, derive all the expressions in the lecture slides when the nanowire axis is changed from x-axis to z-axis, and the magnetic field is applied along the z-axis, i.e., use σ_z instead of σ_x .