Метод конечных элементов для уравнения дуффузии нейтронов в гексагональной геометрии

Аввакумов А.В., Вабищевич П.Н., Васильев А.О.

НИК Вычислительные технологии. СВФУ

16 июля 2014

Научно-исследовательский семинар по вычислительной и прикладной математике 16 июля 2014 Введение

Ядерный реактор

Конструкция:

- 1 Управляющий стержень
- 2 Радиационная защита
- 3 Теплоизоляция
- 4 Замедлитель
- 5 Ядерное топливо
- 6 Теплоноситель

По спектру нейтронов:

Реактор на тепловых нейтронах Реактор на быстрых нейтронах

Характеристика:

P — Мощность

16 июля 2014 Введение

Критичность реактора

Параметр:

 K_{eff} — эффективный коэффициент размножения

Значения:

```
K_{eff} > 1 — цепная реакция нарастает, раектор надкритичен
K_{eff} < 1 — цепная реакция затухает, реактор подкритичен
K_{eff} = 1 — реакция постоянна, раектор критичен
```

16 июля 2014 Введение

Уравнение переноса нейтронов

- Групповое диффузионное приближение
- Условно-критическая задача
- Задача на собственные значения

Двухгрупповое диффузионное приближение

$$-\nabla(D_1\nabla\Phi_1) + (\Sigma_{a1} + \Sigma_r)\Phi_1 = \frac{1}{K_{eff}}(\nu_1\Sigma_{f1}\Phi_1 + \nu_2\Sigma_{f2}\Phi_2),$$

$$-\nabla(D_2\nabla\Phi_2) + \Sigma_{a2}\Phi_2 = \Sigma_r\Phi_1.$$

Граничные условия альбедного типа:

$$D_g \frac{\partial \Phi_g}{\partial n} = -\gamma_g \Phi_g, \quad g = 1, 2.$$

 Φ_a – стационарное распределение нейтронного потока в группе g, D_q – коэффициент диффузии, Σ_{aq} – макросечение поглащения, u_q – число вторичный нейтронов, Σ_{fq} – макросечение деления, Σ_r – макросечение рассеяние, γ_q – логарифмическая производная. 16 июля 2014 мкэ

Вариационная постановка

Умножаем на тестовые функции v_1, v_2 и интегрируем по области Ω :

$$-\int_{\Omega} \nabla (D_1 \nabla \Phi_1) v_1 d\boldsymbol{x} + \int_{\Omega} (\Sigma_{a1} + \Sigma_r) \Phi_1 v_1 d\boldsymbol{x}$$

$$= \frac{1}{K_{eff}} \int_{\Omega} (\nu_1 \Sigma_{f1} \Phi_1 + \nu_2 \Sigma_{f2} \Phi_2) v_1 d\boldsymbol{x},$$

$$-\int_{\Omega} \nabla (D_2 \nabla \Phi_2) v_2 d\boldsymbol{x} + \int_{\Omega} \Sigma_{a2} \Phi_2 v_2 d\boldsymbol{x} = \int_{\Omega} \Sigma_r \Phi_1 v_2 d\boldsymbol{x}.$$

Граничные условия альбедного типа:

$$\int_{\partial\Omega} D_g \frac{\partial \Phi_g}{\partial n} \upsilon_g d\boldsymbol{s} = -\int_{\partial\Omega} \gamma_g \Phi_g \upsilon_g d\boldsymbol{s}, \quad g = 1, 2.$$

16 июля 2014 мкэ

Вариационная постановка

Далее заменяем первые интегралы с помощью интегрирования по частям и используем формулу Гаусса-Остроградского для перехода к поверхностным интегралам:

$$\begin{split} &-\int_{\Omega} \nabla (D_{1}\nabla \Phi_{1})\upsilon_{1}d\boldsymbol{x} = \int_{\Omega} (D_{1}\nabla \Phi_{1},\nabla \upsilon_{1})d\boldsymbol{x} - \int_{\partial\Omega} D_{1}\upsilon_{1}\frac{\partial \Phi_{1}}{\partial n}d\boldsymbol{s}, \\ &-\int_{\Omega} \nabla (D_{2}\nabla \Phi_{2})\upsilon_{2}d\boldsymbol{x} = \int_{\Omega} (D_{2}\nabla \Phi_{2},\nabla \upsilon_{2})d\boldsymbol{x} - \int_{\partial\Omega} D_{2}\upsilon_{2}\frac{\partial \Phi_{2}}{\partial n}d\boldsymbol{s}. \end{split}$$

16 июля 2014 МКЭ

Вариационная постановка

Найти $\Phi_g \in V$, которые удовлетворяют системе:

$$\begin{split} \int_{\Omega} (D_1 \nabla \Phi_1, \nabla v_1) d\boldsymbol{x} + \int_{\Omega} (\Sigma_{a1} + \Sigma_r) \Phi_1 v_1 d\boldsymbol{x} + \int_{\partial \Omega} \gamma_1 \Phi_1 v_1 d\boldsymbol{s} \\ &= \frac{1}{K_{eff}} \int_{\Omega} (\nu_1 \Sigma_{f1} \Phi_1 + \nu_2 \Sigma_{f2} \Phi_2) v_1 d\boldsymbol{x}, \\ \int_{\Omega} (D_2 \nabla \Phi_2, \nabla v_2) d\boldsymbol{x} + \int_{\Omega} \Sigma_{a2} \Phi_2 v_2 d\boldsymbol{x} + \int_{\partial \Omega} \gamma_2 \Phi_2 v_2 d\boldsymbol{s} \\ &= \int_{\Omega} \Sigma_r \Phi_1 v_2 d\boldsymbol{x}, \quad \forall v_g \in \hat{V}. \end{split}$$

Здесь $V=H(\Omega)$, $\hat{V}=H(\Omega)$, где $H(\Omega)$ – пространство Соболева.

16 июля 2014 МКЭ

Конечно-элементная апроксимация

Введем конечномерные пространства $V_h\subset V$, $\hat{V_h}\subset \hat{V}$ и определим дискретную задачу: найти $\Phi_{gh}\in V_h$ такие, что

$$\begin{split} \int_{\Omega} (D_1 \nabla \Phi_{1h}, \nabla v_{1h}) d\boldsymbol{x} + \int_{\Omega} (\Sigma_{a1} + \Sigma_r) \Phi_{1h} v_{1h} d\boldsymbol{x} + \int_{\partial \Omega} \gamma_1 \Phi_{1h} v_{1h} d\boldsymbol{s} \\ &= \frac{1}{K_{eff}} \int_{\Omega} (\nu_1 \Sigma_{f1} \Phi_{1h} + \nu_2 \Sigma_{f2} \Phi_{2h}) v_{1h} d\boldsymbol{x}, \\ \int_{\Omega} (D_2 \nabla \Phi_{2h}, \nabla v_{2h}) d\boldsymbol{x} + \int_{\Omega} \Sigma_{a2} \Phi_{2h} v_{2h} d\boldsymbol{x} + \int_{\partial \Omega} \gamma_2 \Phi_{2h} v_{2h} d\boldsymbol{s} \\ &= \int_{\Omega} \Sigma_r \Phi_{1h} v_{2h} d\boldsymbol{x}, \quad \forall v_{gh} \in \hat{V_h}. \end{split}$$

В качестве пространств V_h будем использовать пространства Лагранжевых полиномов.

Задача на собственные значения

$$M\Phi = \lambda F\Phi$$

Операторы M и F являются блочными:

$$M = \begin{pmatrix} M_{11} & 0 \\ -M_{21} & M_{22} \end{pmatrix}, \qquad F = \begin{pmatrix} F_{11} & F_{12} \\ 0 & 0 \end{pmatrix}.$$

Операторы M_{11} , M_{21} и M_{22} соответствуют билинейным формам a_{11} , a_{21} и a_{22} , операторы F_{11} и F_{12} соответстуют b_{11} и b_{12} соответственно:

$$a_{11} = \int_{\Omega} (D_1 \nabla \Phi_{1h}, \nabla \upsilon_{1h}) d\boldsymbol{x} + \int_{\Omega} (\Sigma_{a1} + \Sigma_r) \Phi_{1h} \upsilon_{1h} d\boldsymbol{x} + \int_{\partial \Omega} \gamma_1 \Phi_{1h} \upsilon_{1h} d\boldsymbol{s},$$

$$a_{21} = \int_{\Omega} \Sigma_r \Phi_{1h} v_{2h} d\boldsymbol{x}, a_{22} = \int_{\Omega} (D_2 \nabla \Phi_{2h}, \nabla v_{2h}) d\boldsymbol{x} + \int_{\Omega} \Sigma_{a2} \Phi_{2h} v_{2h} d\boldsymbol{x} + \int_{\partial \Omega} \gamma_2 \Phi_{2h} v_{2h} d\boldsymbol{s}.$$

16 июля 2014 Инструменты

Программная реализация

- Геометрия и сетка: Gmsh
- Вычисления и расчеты: FEniCS
- Визуализация: ParaView, Gnuplot

Параметры и неизвестные

Параметры:

- \blacksquare n число расчетных ячеек на кассету (от 6 до 1536);
- p порядок конечных элементов (от 1 до 3).

Неизвестные:

- \blacksquare эффективный коэффициент размножения K_{eff} ;
- \blacksquare распределение нейтронной мощности P по кассетам с нормировкой на среднее значение по активной зоне:

$$P = A(\Sigma_{f1}\Phi_1 + \Sigma_{f2}\Phi_2),$$

где A — коэффициент нормировки.

Оценка точности

- $\Delta K = |K_{eff} K_{ref}|$, pcm (percent-milli, τ .e. 10^{-5})
- Относительные отклонения ε_i (выраженные в %):

$$\varepsilon_i = \frac{P_i - P_{ref}}{P_{ref}}, \quad i = 1..N.$$

- По отклонениям ε_i рассчитываются интегральные отклонения:
 - среднеквадратическое отклонение RMS:

$$RMS = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \varepsilon_i^2},$$

среднее по модулю отклонение AVR:

$$AVR = \frac{1}{N} \sum_{i=1}^{N} |\varepsilon_i|,$$

максимальное по модулю отклонение МАХ:

$$MAX = \max |\varepsilon_i|$$
.

Критерий

Определим критерии «приемлемости» результатов с точки зрения достижения достаточной для практических расчетов ВВЭР точности:

- погрешность K_{eff} не выше 0.1% (100 pcm);
- максимальное по модулю отклонение в покассетных мощностях не выше 2%

Будем считать «оптимальным» вариант, удовлетворяющий этим критериям и наиболее экономичный (по времени счета).

16 июля 2014 Тестовые расчеты

Сетка

Разбиение кассеты на 6, 24 и 96 конечных элементов.

16 июля 2014 Тестовые расчеты

Модифицированный тест IAEA-2D

- Размер кассеты "под ключ" равен 20 см
- 13 стержней СУЗ (устройства систем управления и защиты реактора)
- Имеет 1/12 зеркальную симметрию
- Два варианта граничных условий:
 - $1 \gamma = 0.5$
 - $\gamma = 0.125$

16 июля 2014 Тестовые расчеты

Модифицированный тест IAEA-2D

n	p	K_{eff}	$\Delta K(pcm)$	RMS(%)	AVR(%)	MAX(%)	t(sec)
	1	0.9733476	472.94	3.80	2.94	9.04	0.03
	2	0.9775987	47.83	0.45	0.39	0.87	0.08
	3	0.9780084	6.86	0.07	0.06	0.12	0.19
	1	0.9765384	153.86	1.28	1.04	2.86	0.07
24	2	0.9779893	8.77	0.08	0.07	0.16	0.35
	3	0.9780690	0.80	0.01	0.01	0.03	0.94
	1	0.9776501	42.69	0.36	0.30	0.79	0.32
96	2	0.9780655	1.15	0.02	0.01	0.03	2.00
	3	0.9780757	0.13	0.01	0.01	0.02	5.50
	1	0.9779644	11.26	0.10	0.08	0.20	1.88
384	2	0.9780752	0.18	0.01	0.01	0.02	12.50
	3	0.9780764	0.06	0.01	0.00	0.01	34.70
	1	0.9780477	2.93	0.03	0.02	0.05	11.60
1536	2	0.9780763	0.07	0.01	0.00	0.01	82.70
	3	0.9780764	0.06	0.01	0.00	0.01	230.50
Ref.		0.9780770					

16 июля 2014 Тестовые расчеты

Распределение мощности при $\gamma = 0.5, n = 6, p = 2$

16 июля 2014 Тестовые расчеты

Распределение мощности при $\gamma = 0.5, n = 1536, p = 1$

16 июля 2014 Тестовые расчеты

ВВЭР-1000 без отражателя

- Размер кассеты "под ключ" равен 23,6 см
- Имеет 25 стержней СУЗ
- Имеет 1/6 зеркальную симметрию
- Два варианта граничных условий:
 - $1 \gamma = 0.5$
 - $\gamma = 0.125$

16 июля 2014 **Тест**овые расчеты

Распределение мощности при $\gamma = 0.5, n = 6, p = 2$

16 июля 2014 Тестовые расчеты

Распределение мощности при $\gamma = 0.5, n = 1536, p = 1$

Графики 16 июля 2014

Поргешность K_{eff}

16 июля 2014 Графики

Максимальное отклонение мощности, МАХ

16 июля 2014 Графики

Время счета, t

16 июля 2014 Графики

Выводы

- наблюдается устойчивая сходимость решения тестовых задач. при увеличении n и p;
- \blacksquare с точки зрения экономичности расчета, увеличение p намного эффективнее увеличения n;
- lacksquare расчет с использованием p=1 и с малым числом n=6 или n = 24 дает неудовлетворительные результаты;
- определены параметры «оптимального» варианта, с точки зрения достижения достаточной для практических расчетов ВВЭР точности:
 - n = 6; p = 2 для тестов IAEA-2D и модели BBЭP-1000 без отража- теля;
 - n = 6; p = 3 для тестов IAEA-2D с отражателем.

16 июля 2014 Будущее

Планы

- Трехмерные тестовые расчеты
- Параллелизация

Спасибо за внимание!