INPUTS and CONSTANTS

American Tunnel #1 Bulkhead design check: 2/8/2015

Tamer in Dankieda design eneski. 270/2019	
Tunnel Height (h _t)	13 ft
Tunnel Width (w _t)	13 ft
Bulkhead Height (h _b)	13 ft
Bulkhead Width (w _b)	13 ft
Design water head (H)	1550 ft
Bulkhead Trial Thickness (L_{T})	25 ft
Water density(γ_w)	62.4 pcf
Overburden rock density (γ_r)	165 pcf
Concrete Density (γ _c)	151 pcf
Concrete Compressive Strength (f _c)	3,000 psi
Acceptable bulkhead pressure gradient (pag)	41 psi/ft
Bulkhead depth below surface (Bw)	2130ft
Slope Angle of Topography (β)	15.5
Accoustical velocity of water (c')	4,748 ft/s @50°F
Peak Ground Acceleration (PGA)	0.087g
Gravity Acceleration (g)	32.2 ft/sec ²
Seed & Idriss Constant (SI)	1.8044 (ft/sec)/g From Seed and Idriss
Seismic Design Handbook Constant (SDH)	2(ft/sec)/g From Seismic Design
Beam Unit Width (b)	1ft
Inby Line-of-Site Water Distance (S_{ls})	2486 ft
Rebar Yield Strength (f_y)	60,000 psi
Minimum Rebar Cover (m _c)	3.5 in
Rock Cover Factor of Safety (F_{RC})	1.1 Range 1.1-1.3 (Based on Bergh-C
Fluid Static Load Factor (ϕ_{fs})	1.4
Concrete Flexural Strength Reduction Factor $(\phi_{\mbox{\tiny pc}})$	0.55
Earthquake Static Fluid Load Acceleration Factor (φ_{fe})	1.05
Earthquake Impounded Fluid Load Acceleration Factor (φ_{ea})	1.40
Reinforced Concrete Flexural Strength Reduction Factor (φ_{rc})	0.90
Rebar Flexural Strenth Reduction Factor (ϕ_{rt})	0.90

1983 Handbook (pg55)

hriestensen and Dannevig, 1971)

Hydrofrac

Inputs:

Design water head (H) 1550ft

Water density(γ_w) 62.4pcf

Overburden rock density (γ_r) 165pcf

Acceptable bulkhead pressure gradient (p_{ag}) 41psi/ft

Bulkhead depth below surface (B_w) 2130ft

Rock Cover Factor of Safety (F_{RC}) 1.1

Slope Angle of Topography (β) 15.5 degrees

Calculations:

alculations:		
Maximum Hydraulic Pressure Head (p)	$p = H\gamma_w/144 =$	671.7psi
Minimum Rock Cover Required (Z) (Able Method)	$Z = 144p/2\gamma_r =$	293.1ft
Minimum Rock Cover Required (Z) (Norwegian Tunnel Method)	$Z = H\gamma_w F/\gamma_r \cos\beta =$	669.1ft
Minimum contact grout pressure (σ_{mingp})	$\sigma_{\text{mingp}} = B_w \gamma_w / 144 =$	923.0 psi
Maximum contact grout pressure (σ_{mingp})	$\sigma_{maxgp} = 2B_w \gamma_r/144 =$	4881.3 psi
Maximum contact grout pressure (σ_{mingp})	$\sigma_{\text{maxgp}} = 2B_w \gamma_r \cos\beta/144F_{RC} =$	2138.1 psi
Required bulkhead thickness for pressure gradient (L_{hp})	$L_{hp} = p/p_{ag} =$	16.4ft

From Seed and Idriss 1983

Water Hammer

Change values on Input Tab

Inputs:

Accoustical velocity of water (c') 4,748ft/s @50°F

Peak Ground Acceleration (PGA) 0.087g

Water Density (γ_w) 62.4 pcf

Gravity Acceleration (g) 32.2ft/sec²

Earthquake Static Fluid Load Acceleration Factor (ϕ_{fe}) 1.05

Seed & Idriss Constant (SI) 1.8044(ft/sec)/g

Seismic Design Handbook Constant (SDH) 2(ft/sec)/g From Seismic Design Handbo

Calculation:

Max Earthquake Acceleration (α) $\alpha = PGA*g = 2.8014 ft/sec^2$

Max Velocity SI (v_{max}) $v_{max} = SI*PGA = 0.15698 \text{ ft/s}$ Seed and Idriss

Max Velocity SI (v_{max}) $v_{max} = SDH*PGA = 0.174 ft/s$ Seismic Design Ha

Water Hammer Pressure (P_H) $P_H = c'*v_{max}*\gamma_w = 51,552 lb$ Used SDH

Factored Water Hammer Pressure (P'_H) $P'_{H} = P_{H} * \varphi_{fe} = 54,129 \text{ lb}$

•	ings or Acid Rock Drainage", Lang, 1999.				
c	ok (pg55)				
r	ndbook				
•					

Punching Shear Design

Inputs: *Change values on Input Tab*

 $\begin{array}{ccc} \text{Concrete Compressive Strength (f}_c) & 3,000\,\text{psi} \\ & \text{Bulkhead Height (h}_b) & 13\,\text{ft} \\ & \text{Bulkhead Width (w}_b) & 13\,\text{ft} \\ & \text{Design Head (H)} & 1550\,\text{ft} \\ & \text{Water Density (}\gamma_w) & 62.4\,\text{pcf} \end{array}$

Fluid Static Load Factor (ϕ_{fs}) 1.4

Factored Water Hammer Pressure (P'_H) 54,129 lb (Calculated from Water Hammer Tab)

Calculations:

Concrete Shear Strength (f_{cs}) $f_{cs} = 2*f_c^{-1/2} = 109.5 \, psi$ Static Fluid Load on Bulkhead Face (F_s) $F_s = H*\gamma_w*h_b*w_b = 16,345,680 \, lb$ Factored Static Fluid Load on Bulkhead (F_s ') $F_s' = F_s*\varphi_{fs} = 22,883,952 \, lb$ Length of Bulkhead Required for Shear (L_s) $L_s = F_s'/(2*(h_b+w_b)*f_{cs}*144)$ 27.90 ft

Earthquake Consideration (Water Hammer):

Length of Bulkhead Required (L_s) $L_s = (F_s' + P'_{H)}/(2*(h_b + w_b)*f_{cs}*144)$ 27.96 ft

Plain Concrete Deep Beam Bending Stress

			hange values
	Change values on Input Tab*	***************************************	Input Tab*
Concrete Compressive Strength (f _c)	3,000 psi	Peak Ground Acceleration (PGA)	0.087g
Bulkhead Height (h _b)	13 ft	Fluid Static Load Factor (φ _{fs})	1.4
Bulkhead Width (w _b)	13 ft	Concrete Flexural Strength Reduction Factor (φ _{pc})	0.55
Tunnel Height (h,	13 ft	Earthquake Static Fluid Load Acceleration Factor (φ _{fe})	1.05
Tunnel Width (w _t) Design Head (H)	13 ft 1550 ft	Earthquake Impounded Fluid Load Acceleration Factor $(\phi_{\circ s})$ Beam Unit Width (b)	1.40 1ft
Inby Line-of-Site Water Distance (S _k)	2486 ft	Static Fluid Load on Bulkhead Face (F.)	16,345,680 lb (Calculated from Punching Shea
Water Density (y _w)	62.4 pcf	Factored Static Fluid Load On Bulkhead Face (F _s ')	22,883,952 lb (Calculated from Punching Shea
Concrete Density (γ _c)	151 pcf	Factored Water Hammer Pressure (P' _H)	54,129 lb (Calculated from Water Hamme
Bulkhead Trial Thickness (L _T)	25 ft		- , (
· ·			
<u>Calculations:</u> Deep Beam Verification	$w_b/L_t =$	0.5 Deep Beam	
Uniform Static Fluid Load on Face (f',)	$W_b/L_t = F'_s/(h_b*W_b) =$	135,408 psf	
Maximum Nominal Bending Moment (M _n)	$M_n = f'_s * w_b^2 / 8 =$	2,860,494ft-lb (f's load per unit length w/ 1ft beam width)	
Factored Nominal Bending Moment (M' _u)	$M'_u = M_n/\phi_{uc} =$	5,200,898 ft-lb	
Concrete Flexural (tensile) Design Stress (f _{cl})	$f_{ci} = 3*f_c^{-1/2} =$	164.3 psi	
Concrete Flexible (tensile) Design Stress (rd)	18-3 16 -	104.053	
Plain Concrete Beam Buikhead Length (L_π)	$L_{st} = (6*M'_u/b*f_{cl})^{1/2} =$	36.3ft	
Considering Earthquake (Water Hammer):			
Factored Earthquake Load on Face (U'_{α})	$U'_{xx} = F'_{x} + P'_{H} =$	22,938,081fb	
Uniform Static Fluid Load on Face (u's)	$u'_s = U'_s/(h_b*w_b) =$	135,728psf	
Maximum Nominal Bending Moment (Mn)	$M_n = u'_s * w_b^2 / 8 =$	2,867,260ft-lb (u', load per unit length w/ 1ft beam width)	
Factored Nominal Bending Moment (M'u)	$M'_u = M_n/\phi_{pc} =$	5,213,200ft-lb	
Concrete Flexural (tensile) Design Stress (fc)	$f_{cl} = 3*f_{c}^{-1/2} =$	164.3 psi	
Plain Concrete Beam Bulkhead Length $\left(L_{g}\right)$	$L_{st} = (6*M_u/b*f_{cl})^{1/2} =$	36.4ft	
Considering Earthquake (Abel Method):			
Factored Earthquake Accelerated Static Fluid Load (E _{fe})	$E_{fe} = F_s * \varphi_{fe} =$	17,162,964lb	
Factored Earthquake Accelerated Line-of-Sight Fluid Load (E _{fm})	$E_{fm} = S_{1s} * \gamma_w * h_t * w_t * PGA * \varphi_{ea} =$	3,193,153ib	
Factored Earthquake Bulkhead Load (E _{bm})	$E_{bm}=L_{st}*\gamma_c*h_b*w_b*PGA*\varphi_{ea}=$	77,705.36lb	
Factored Earthquake Load on Face (U' $_{\alpha}$)	$U'_{\alpha} = E_{fe} + E_{fm} + E_{bm} =$	20,433,822lb	
Uniform Static Fluid Load on Face (u's)	$u'_{s} = U'_{s}/(h_{b}*w_{b}) =$	120,910 psf	
Maximum Nominal Bending Moment (M _n)	$M_n = u_s^* w_b^2 / 8 =$	2,554,228ft-lb (u's load per unit length w/ 1ft beam width)	
Factored Nominal Bending Moment (M'u)	$M'_u = M_n/\phi_{pc} =$	4,644,050 ft-lib	
Concrete Flexural (tensile) Design Stress $(f_{\rm cl})$	$f_{cl} = 3 * f_c^{1/2} =$	164.3 psi	
Plain Concrete Beam Bulkhead Length ($L_{\mathbb{R}}$)	$L_{st} = (6*M_u/b*f_{cl})^{3/2} =$	34.3ft	

r Tab)

r Tab) r Tab)

Reinforced Concrete Deep Beam Bending Design:

Inputs:	*Change values on Input Tab*
Reinforced Concrete Flexural Strength Reduction Factor (φ_{rc})	0.90
Rebar Flexural Strenth Reduction Factor (φ_{rt})	0.90
Concrete Compressive Strength (f _c)	3,000 psi
Beam Unit Width (b)	1ft
Rebar Yield Strength (f_y)	60,000 psi
Maximum Nominal Bending Moment (M _n)	2,867,260ft-lb (Plain Concrete Deep Be
Bulkhead Trial Thickness (L_T)	25 ft
Minimum Rebar Cover (m _c)	3.5 in

Calculations:

Compressive Force (C)	$C = \varphi_{rc} * f_c * b * a =$	32,400 a (psi)
Tensile Force (T)	$T = A_s * f_y =$	60,000 A _s (psi)
Minimum Concrete Depth to Balance Rebar (a)	a =	1.852 A _s (psi)
Factored Bending Moment (M'u)	$M'_{u} = M_{n}/\Phi_{rt} =$	3,185,845 ft-lb
Factored Bending Moment (M'u)	$M'_u = M_n/\Phi_{rt} =$	38,230,136 in-lb
Maximum Rebar Cover (d)	$d = 12*L_{T}-m_{c} =$	296.5 in
$C_1A_s^2-C_2A_sd+M'_u=0$		
	$C_1 = f_y^* a/2 =$	55,556
	$C_2 = f_y^* d =$	-17,790,000
	$C_3 = M'_u = $	38,230,136
Area of Steel Required (As)	$A_s = (-C_2 - (C_2^2 - 4 * C_1 * C_3)^{1/2})/2 * C_1 =$	2.164 in²/ft
Bar Size (#)	10(enter value)
Spacing (C-C)	7ir	n (enter value)
Area of Steel (A _s)	2.10 ir	n²/ft

am Considering Water Hammer)