

fim:

2.º Teste de Introdução à Arquitetura de Computadores

Duração: 60 minutos

IST – LEIC-Taguspark 9 dezembro 2019

NOME NÚMERO

1. (1 + 2 + 2 valores) Considere o seguinte programa do PEPE-16.

| PLACE      | 2000H |               |
|------------|-------|---------------|
| var:       | WORD  | 5             |
|            |       | •             |
| pilha:     | TABLE | 100H          |
| fim_pilha: |       |               |
| rots_int:  | WORD  | int_0         |
|            | WORD  | 0             |
|            | WORD  | 0             |
|            | WORD  | int_3         |
|            |       |               |
| PLACE      | 0     |               |
|            | MOV   | R1, var       |
|            | MOV   | SP, fim_pilha |
|            | MOV   | BTE, rots_int |
|            | EI0   |               |
|            | EI3   |               |
|            | EI    |               |
|            |       |               |

JMP

1.º Semestre 2019/2020

R2 int 0: **PUSH** R2, 3 MOV **CALL** rotina POP R2 RFE **PUSH** R2 int 3: MOV R2, 1 **CALL** rotina POP R2 RFE **PUSH** R3 rotina: MOV R3, [R1] DΙ ADD R3, R2 MOV [R1], R3 POP R3 RET

- a) Complete os espaços em branco com o necessário para as interrupções 0 e 3 funcionarem corretamente;
- b) Suponha que os sinais X e Y ligam aos pinos de interrupção 0 e 3 do PEPE, respetivamente, e têm a evolução temporal indicada na figura seguinte. Os flancos dos sinais X e Y nos instantes t<sub>1</sub> e t<sub>2</sub> ocorrem simultaneamente.

Sabendo que o programa começa a executar em t<sub>0</sub>, que entre t<sub>1</sub> e t<sub>2</sub> decorrem cerca de 4 segundos e que a evolução temporal está aproximadamente à escala, preencha a tabela seguinte com informação sobre os acessos à variável "var" entre t<sub>0</sub> e t<sub>3</sub> (tempo aproximado em que ocorre, se é leitura ou escrita, qual o valor lido ou escrito e qual a interrupção que causou o acesso). Respeite a ordem temporal dos acessos.

fim



c) Responda novamente à mesma questão da alínea b), mas agora substituindo a instrução DI da "rotina" pela instrução EI (que faz o oposto da instrução DI).

|       | Alínea b) (DI)  |       |           |  |  |  |
|-------|-----------------|-------|-----------|--|--|--|
| Tempo | Leitura/escrita | Valor | Interrup. |  |  |  |
| t1    | Leitura         | 5     | 0         |  |  |  |
| t1    | Escrita         | 8     | 0         |  |  |  |
| t1    | Leitura         | 8     | 3         |  |  |  |
| t1    | Escrita         | 9     | 3         |  |  |  |
| t2    | Leitura         | 9     | 3         |  |  |  |
| t2    | Escrita         | AH    | 3         |  |  |  |
|       |                 |       |           |  |  |  |
|       |                 |       |           |  |  |  |

| Alínea c) (EI) |                 |       |           |  |  |
|----------------|-----------------|-------|-----------|--|--|
| Tempo          | Leitura/escrita | Valor | Interrup. |  |  |
| t1             | Leitura         | 5     | 0         |  |  |
| t1             | Leitura         | 5     | 3         |  |  |
| t1             | Escrita         | 6     | 3         |  |  |
| t1             | Escrita         | 8     | 0         |  |  |
| t2             | Leitura         | 8     | 3         |  |  |
| t2             | Escrita         | 9     | 3         |  |  |
|                |                 |       |           |  |  |
|                |                 |       |           |  |  |

2. (2 valores) Como vai ter uma boa nota neste teste, merece um portátil novo, para correr aquele jogo novo em que cada *frame* gasta 30% do seu tempo em CPU e 70% em GPU (processador gráfico). Está indeciso entre um (A) que consegue 100 *frames*/seg neste jogo e outro (B) cujo CPU é cerca de 50% (1,5 vezes) mais rápido e cujo GPU é cerca de 30% (1,3 vezes) mais lento. Assumindo que todos os restantes fatores são iguais nos dois portáteis, qual portátil escolheria, A ou B? <u>Justifique</u>, calculando quantos *frames*/seg o portátil B conseguirá neste jogo (contas aproximadas!).

```
No portátil A, cada frame demora um tempo T_A: T_A = 0,3 * T_A + 0,7 * T_A \qquad (tempo \ CPU + tempo \ GPU)
No portátil B, cada frame demorará, para o mesmo jogo: T_B = (0,3/1,5) * T_A + (0,7*1,3) * T_A = (0,2+0,91) * T_A = 1,11 * T_A
O portátil B é assim mais lento que o portátil A, conseguindo só cerca de 100/1,11 \approx 90 frames/seg. Irei escolher o portátil A.
```

3. (2 valores) Considere o seguinte sistema de descodificação de endereços utilizado por um processador de <u>bus</u> de dados de 8 bits e bus de endereços de 16 bits. Preencha a informação em falta sobre o descodificador e cada dispositivo (<u>bits de endereço</u> a que liga, <u>capacidade</u>, <u>saída do descodificador</u> a que deve ligar e o <u>endereço de fim</u> da gama de endereços em que esse dispositivo está ativo, <u>não considerando endereços de acesso repetido</u> - espelhos).



| Dispositivo | Bits de endereço | Capacidade (bytes) (decimal) | Saída do descodificador | Início<br>(hexadecimal) | Fim (hexadecimal) |
|-------------|------------------|------------------------------|-------------------------|-------------------------|-------------------|
| Periférico  | A0-A7            | 256                          | S4                      | 8000H                   | 80FFH             |
| RAM 1       | A0-A10           | 2 Ki                         | S0                      | 0000Н                   | 07FFH             |
| ROM         | A0-A11           | 4 Ki                         | S3                      | 6000H                   | 6FFFH             |
| RAM 2       | A0-A8            | 512                          | <b>S6</b>               | С000Н                   | C1FFH             |

4. (2 valores) Considere o seguinte circuito, com barramentos de 8 bits. C é o *clock* (tanto do trinco como da báscula) e S é o sinal de seleção do *multiplexer* (S=0 seleciona a entrada X). Assumindo que os sinais C e S evoluem ao longo do tempo da forma indicada na tabela seguinte, preencha os valores estáveis no resto da tabela (escreva todas as células, mesmo que o valor se mantenha). Todos os valores de 8 bits estão representados em hexadecimal (não é preciso colocar o H).



5. (2 valores) Considere a seguinte tabela de verdade, relativa a uma função de quatro entradas e uma saída. Simplifique a respetiva função, preenchendo a tabela de verdade a partir da tabela de Karnaugh e escrevendo a expressão algébrica mais simplificada que lhe é equivalente.

| A | В | C | D | Z |     |    |                              | C                   | D                   |                   |
|---|---|---|---|---|-----|----|------------------------------|---------------------|---------------------|-------------------|
| 0 | 0 | 0 | 0 | 1 |     |    | 00                           | 01                  | 11                  | 10                |
| 0 | 0 | 0 | 1 | 1 |     | 00 | 1                            | 1                   |                     | 1                 |
| 0 | 0 | 1 | 0 | 1 |     | 00 |                              | 1                   |                     |                   |
| 0 | 0 | 1 | 1 | 0 |     | 01 | 1                            | 1                   | 1                   | 1                 |
| 0 | 1 | 0 | 0 | 1 | AB  | UI | 1                            | 1)                  | 1                   | 1                 |
| 0 | 1 | 0 | 1 | 1 | AD  | 11 |                              | 1                   | 1                   |                   |
| 0 | 1 | 1 | 0 | 1 |     | 11 |                              | <u> </u>            | 1                   |                   |
| 0 | 1 | 1 | 1 | 1 |     | 10 | 1                            |                     |                     |                   |
| 1 | 0 | 0 | 0 | 1 |     | 10 | 1                            |                     |                     | 1                 |
| 1 | 0 | 0 | 1 | 0 |     | _  | <u>'</u>                     |                     |                     | _                 |
| 1 | 0 | 1 | 0 | 1 |     |    |                              |                     |                     |                   |
| 1 | 0 | 1 | 1 | 0 |     |    |                              |                     |                     |                   |
| 1 | 1 | 0 | 0 | 0 | Z = |    | $\overline{A}\overline{C}$ + | $\overline{A}B + E$ | $BD + \overline{B}$ | $\overline{m{D}}$ |
| 1 | 1 | 0 | 1 | 1 |     |    |                              |                     |                     |                   |
| 1 | 1 | 1 | 0 | 0 |     |    |                              |                     |                     |                   |
| 1 | 1 | 1 | 1 | 1 |     |    |                              |                     |                     |                   |

6. (1,5 + 0,5 valores) Pretende-se construir um circuito microprogramado que implemente a operação potência (base elevada a expoente) por multiplicações sucessivas da base. O diagrama seguinte descreve o circuito. Os registos R1 e R2 recebem a base e o expoente, respetivamente. O registo R3 vai acumulando o resultado das multiplicações. A saída da ALU pode tomar uma de quatro possibilidades, consoante o valor de OP\_ALU: soma (SOMA) e multiplicação (MUL) dos dois operandos, 0 (ZERO) e 1 (UM). O sinal nZ está ativo (vale 1) quando R2 é diferente de zero e o sinal PRONTO é ativado quando o resultado está pronto.



a) Preencha a tabela seguinte com os valores necessários para implementar a funcionalidade descrita. Indique apenas os sinais relevantes em cada ciclo de relógio e deixe em branco as restantes células.

| Endereço<br>na ROM | Microinstruções                                                          | PRONTO | LOAD_R1 | LOAD_R2 | DEC_R2 | OP_ALU | LOAD_R3 | SEL_MICRO<br>_SALTO | MICRO_<br>SALTO |
|--------------------|--------------------------------------------------------------------------|--------|---------|---------|--------|--------|---------|---------------------|-----------------|
| 0                  | R1 ← Base<br>R2 ← Expoente                                               |        | SIM     | SIM     |        |        |         |                     |                 |
| 1                  | R3 ← 1                                                                   |        |         |         |        | UM     | SIM     |                     |                 |
| 2                  | R3 ← R3 * R1                                                             |        |         |         |        | MUL    | SIM     |                     |                 |
| 3                  | R2 ← R2 - 1                                                              |        |         |         | SIM    |        |         |                     |                 |
| 4                  | $(R2 != 0): MPC \leftarrow 2$                                            |        |         |         |        |        |         | nZ                  | 2               |
| 5                  | $ \begin{array}{l} PRONTO \leftarrow 1 \\ MPC \leftarrow 5 \end{array} $ | SIM    |         |         |        |        |         | 1                   | 5               |

- b) Quantos bits de largura deve ter no mínimo a ROM de microprograma?
- 12
- 7. (1,5 + 1,5 valores) Suponha que a *cache* do PEPE (processador com 16 bits de endereço, <u>endereçamento de byte</u>) é de mapeamento direto, com uma capacidade de 512 palavras (<u>blocos de 4 palavras</u>).
  - a) Indique o número de bits de cada um dos campos em que o endereço se divide para acesso à cache.

| Etiqueta                | 6 |
|-------------------------|---|
| Índice                  | 7 |
| Palavra dentro do bloco | 2 |
| Byte dentro da palavra  | 1 |

b) Na execução de instruções do tipo MOV R1, [R2], o núcleo do PEPE verificou que nuns casos o valor de R1 demorava 3 ns a obter, noutros 20 ns, e que em média demorava 6,4 ns. Qual a taxa de sucesso (*hit rate*) da *cache* com este programa?

8. (2 valores) Considere um processador com 32 bits de endereço, endereçamento de byte e suporte para memória virtual com páginas de 4Ki bytes. Assuma que a memória física tem uma capacidade de 4 Mi bytes e que a TLB é uma *cache* totalmente associativa de 4 entradas, cujo conteúdo é numa dada altura o indicado na tabela da esquerda. Acabe de preencher as outras duas tabelas para este exemplo concreto.

| Válida | Página<br>alterada | N° de<br>página<br>virtual | Nº de<br>página<br>física |
|--------|--------------------|----------------------------|---------------------------|
| 1      | 1                  | 23BAH                      | 68H                       |
| 0      | 0                  | 7BAH                       | 3BH                       |
| 1      | 1                  | 158FCH                     | 3AH                       |
| 1      | 0                  | 2B5DH                      | 3BH                       |

| Dimensão do espaço virtual | 4 Gi bytes |
|----------------------------|------------|
| Número de páginas virtuais | 1 Mi       |
| Número de páginas físicas  | 1 Ki       |

| Endereço<br>virtual | Endereço<br>físico |
|---------------------|--------------------|
| 158FCB6CH           | 3АВ6СН             |
| 23BAE4AH            | 68E4AH             |
| 2B5D813H            | 3B813H             |
| 23BAA18H            | 68A18H             |