

FUNCTION APPROXIMATION [TUTORIAL]

Cartpole: from discretized (tabular) to continuous state

Debabrota Basu (Inria Lille) Guillaume Pourcel (Inria Lille, University of Groningen)

03/18/2025 1

Summary

1. Introduction to GYM

Continuous vs Discrete

2. Exercises: implementing FQI in tabular mode (notebook 1a)

- 1. Recap FQI
- 2. Different exercises
- 3. Improving the discretization

3. Continuous states function approximation (notebook 1b)

- 1. Linear Regression
- 2. Improvement on Linear Regression

4. Policy Gradient (notebook 2)

- 1. Just run the system (nothing to fill)
- 2. Improvements (cf. slides: Natural Policy Gradient (NPG) covariance correction)

1. Introduction to GYM

Discrete vs Continuous

Tabular setting
(discrete state)

Discretized then tabular (continuous state)

Function approximation (continuous state)

1. Introduction to GYM

Discrete vs Continuous

Discretized then tabular (continuous state)

Function approximation (continuous state)

Recap FQI: Fitted Q-iteration (Q-learning as regression)

$$Q_{ heta}(s_t,a_t) = r_t + \gamma \cdot \max_{a' \in A}(Q_{ heta}(s_{t+1},a'))$$
 $f_{ heta}(x) = y$ $heta$: parameters of the estimator

- 1. Create the training set based on the previous iteration $Q_{ heta}^{n-1}(s,a)$ and the transitions:

 - ullet input: $x=(s_t,a_t)$ ullet if s_{t+1} is **non** terminal: $y=r_t+\gamma\cdot \max_{a'\in A}(Q^{n-1}_{ heta}(s_{t+1},a'))$
 - if s_{t+1} is terminal: $y=r_t$
- 2. Fit a model using a regression algorithm to obtain $Q^n_ heta(s,a)$

$$f_{ heta}(x) = oldsymbol{y}$$

3. Repeat, n=n+1

F.

2. Exercises: implementing FQI in tabular mode

Recap FQI: Fitted Q-iteration with tabular state and linear regression

$$Q_{ heta}(s_t,a_t) = r_t + \gamma \cdot \max_{a' \in A}(Q_{ heta}(s_{t+1},a'))$$
 $f_{ heta}(x) = y$ $heta$: parameters of the estimator

Liner Regression model:

$$f_{\theta}(x) = \theta x$$

Tabular state/action:

$$f_{\theta}(g(s,a)) = \theta \cdot g(s,a)$$

g(s, a) = OneHotEncoder(Discretized(s, a))

Recap FQI: Fitted Q-iteration with tabular state and linear regression

$$Q_{ heta}(s_t,a_t) = r_t + \gamma \cdot \max_{a' \in A}(Q_{ heta}(s_{t+1},a'))$$
 $f_{ heta}(x) = y$ $heta$: parameters of the estimator

Liner Regression model:

$$f_{\theta}(x) = \theta x$$

Tabular state/action:

$$f_{\theta}(g(s,a)) = \theta \cdot g(s,a)$$

g(s, a) = OneHotEncoder(Discretized(s, a))

Recap FQI: Fitted Q-iteration (Q-learning as regression)

Notebook plan (1.a, 1.b)

- Introduction to Gym
- Exercise 1: Collecting data with random policy
- Exercise 2: Generate the targets for the FQI regression
- Exercise 3: Evaluate the greedy policy defined by the Q-values
- Exercise 4: Run FQI

1.a: Discrete state (linear regression) (40min)

- Complete the Exercise
- Improve on the initial Discretization

1.b: Continuous state (linear regression) (30min)

- Adapt the code for continuous state
- Improve (better features, other models (KNN...))

2. Policy Gradient (20min)

- Run Reinforce
- Improve on Reinforce (for instance: Natural Gradient correction, slides 28 of the lecture)

Bonus: DQN (3., 4.)

Improving the discretization

Too fine-grained:

- Weak generalization (need a lot of data)
- High computational cost

Too coarse-grained:

• Weak expressivity: cannot represent fined-grained control policies

Improving the discretization

Too fine-grained:

- Weak generalization (need a lot of data)
- High computational cost

Too coarse-grained:

Weak expressivity: cannot represent fined-grained control policies

Automatic discretization

Improving the discretization

Automatic discretization

- 1. (optional?) have access to a trained policy (after training with KNN)
- 2. Collect states with the policy (+ noise, epsilon-greedy =0.1)
- 3. Use K-means (K=81) to cluster the observation (replace the grid-discretization) after normalization
- 4. FQI with the custom-linear regression

Thank's to Radji Waris for the good results

Discretization into 81 bins

```
Iter 2
Score: 0.33
()
Total reward = 11.10 +/- 1.37
Iter 4
Score: 0.47
()
Total reward = 10.90 +/- 1.04
Iter 6
Score: 0.57
()
Total reward = 14.00 +/- 8.37
Iter 8
Score: 0.63
()
Total reward = 10.70 +/- 1.00
Iter 10
Score: 0.67
()
Total reward = 10.70 +/- 1.20
```


K-means discretization (K-81)

Improving the discretization

Automatic discretization

- 1. (optional?) have access to a trained policy (after training with KNN)
- Collect states with the policy (+ noise, epsilon-greedy =0.1)
- 3. Use K-means (K=81) to cluster the observation (replace the grid-discretization) after normalization
- 4. FQI with the custom-linear regression

Discretization into 81 bins

K-means discretization (K-81)

Improving the discretization

Thank you.