Image Processing

Segmentation

• Segmentation is the division of an image into discrete regions.

Segmentation

Input

Semantic

Background

Instance

Background

Nucleus 1

Nucleus 2

Nucleus 3

...

How do we get segments?

- Thresholding-based
- Interactive tools based on classic machine learning
- Deep-learning based (Stardist, Cellpose)

Thresholding

The easiest way to segment an image is often by applying a *global threshold*.

This identifies pixels that are above or below a fixed threshold value, giving a *binary image as the output*.

https://bioimagebook.github.io/chapters/2-processing/3-thresholding/thresholding.html

Thresholding

Original, 8 bit grayscale Blobs: Fiji example

Thresholded

Instance Segmented

Instance Segmentation in FIJI: keeping white (connected-) objects.

Select only a range of digital values in the image.

Select only a range of digital values in the image.

in Fiji: Image > Adjust > Threshold...

The result of the thresholding process is a **Binary Mask**.

Generate a binary mask.

Binary because the image has only two pixel values, one for the selected pixels and one for the "discarded" pixels.

In Fiji the two pixel values are 0 and 255.

Segmentation with thresholding—exercises

What can go wrong?

Usually, if you apply **thresholding** to the **"ORIGINAL" image** (the one you get out of the microscope), you won't be able to precisely **select all/only the pixels** you are interested in.

- Fluorescence label (e.g. DAPI)
- **Background** (uneven illumination, out-of-focus light, aberration, ...)
- **Noise** (detector read noise, Poisson noise, ...)

Interactive tools based on classic machine learning

Standalone: Ilastik

https://www.ilastik.org/

For histopathology

https://qupath.github.io/

As a Fiji plugin

https://imagej.net/plugins/tws/

WEKA: Waikato Environment for Knowledge Analysis: collection of free machine learning and data analysis software developed by the University of Waikato, NZ

Trainable WEKA Segmentation (in ImageJ/Fiji)

Trainable WEKA Segmentation (in ImageJ/Fiji)

Tips

Segmentation with pixel based classifier—exercises

