DD2421 Introduction to Artificial Neuronal Networks

Jörg Conradt

NeuroComputing Systems

Computational Science and Technology School of Electrical Engineering and Computer Science KTH Stockholm, Sweden

http://neurocomputing.systems

Overview

- Biological Neurons
- Artificial Neurons
- What can a single Neuron do?
- From Neurons to Networks
- How to Train a Neuronal Network
- Tricks of the Trade ... how to get your Network working
- Software Example
- Other classes of Neuronal Network

Biological Neurons

Biological Neurons

A large variety of cell types, but similar function:

(leaky) Integrate and Fire

Biological Details

More details on neuroscience? KTH CST course in P4

https://www.kth.se/social/course/DD2401/

Artificial Neuron

From Biology to Technology

- Analog Leaky Integration
- Asynchronous Operation
- Spiking Communication
- Energy Efficient Implementation

Artificial Neuron

- Discrete Summation of Weighted Input
- Centrally Clocked System
- Continuous Values Communication (events → rates)
- Von Neumann Computing Architectures

We transition to a technical abstraction, the *Perceptron*, which can get implemented on computers (time: 1970s)

A one-slide history of Neurons and Neuronal Networks

- 1940's McCulloch and Pitts Neuronal Description Donald Hebb "The Organization of Behaviour"
- late 1960's Rosenblatt's Perceptron
- 1970's Minsky and Papert's criticism (1969), first AI winter.
 Concerns and unsolved obstacles led to lower interest and poor funding
- 1980's Hopfield's impact (self-learning)
- 1990's training through error-backpropagation (1986)
- 2000's more mathematically rigorous statistical learning theory
- 2000's more computing power → deep neural networks

Applications today: Pattern recognition: classification and clustering; General interpolation problems; Data representations, coding and compression; Signal processing; Time series prediction; System identification; Decision support (e.g. medical or industrial diagnostics); Memory storage, modelling; Optimization, combinatorial problems

What can a Single Neuron do?

The **net input** of the neuron is given by

$$net = \sum_{i=1}^{n} p_i w_i = p_1 w_1 + p_2 w_2 + \dots + p_n w_n$$

whereas the output of the neuron is computed as

$$out = f(net - \theta)$$

... anything ... depending on the activation function $f(\cdot)$

Typical Activation Functions $f(\cdot)$

By hand-selecting the activation function, we can allow arbitrary functionality. **But we can't know a-priory!**

Hence, we require a generic system that works independent of activation function.

What can a Single Neuron do?

Assume a LINEAR activation function. "Boolean Logic" Classification on 2-dimensional input, decision based on out ≥ 0 or <0

Training Neurons Networks

SUPERVISED LEARNING (labeled training data exists)

Idea: use the error produced by a neuron to adjust its weights

Error metric of a neuron

$$E(t) = \sum_{p=1}^{P_T} \left(t_p(t) - out_p(t) \right)^2$$

t_p target output out_p(t) current output

Weight update for a neuron i $w_i(t) = w_i(t-1) + \Delta w_i(t)$

$$w_i(t) = w_i(t-1) + \Delta w_i(t)$$

$$\Delta w_i(t) = \eta \left(\frac{-\partial E(t)}{\partial w_i(t)} \right)$$

This updates all neuronal input weights w_i for a all data point p_i subject to the current weights.

Training a single neuron, real-world example

Bias offset (= const 1)

Every new data point will adjust SL and IC such that ultimately the best matching linear approximation is encoded in w₁, w₂

Training a single neuron, real-world example

How do we achieve this? In order to guide the search for the suitable parameters Gradient Descent is used:

- `
- 1. Pick random initial values for IC/SL (e.g. x₀)
- Calculate the gradient with respect to each model parameter (i.e. IC,SL)
- Update the parameters in the direction of the negative gradient
- 4. Repeat 2 and 3 until convergence (e.g. x_{1...4})

From Neurons to Networks

Single neuron "node"

Neuronal Networks

Neuronal Networks

Main Challenges

- Which structure to use?
- How to train (adjust weights) given a particular problem?
 We learned how to do for one neuron, but for networks?
- (How to provide sufficient computing power?)

How to train Neuronal Networks

- We can not simply train neurons in a network, as the "desired output" (tp) is unknown for neurons in middle layers
- Instead, ERROR BACKPROGATION through the network

$$\Delta w_{ik}(t) = f'(net_i(t)) \cdot \sum_{j \in P} \delta_j(t) \cdot w_{ji}(t) \cdot f(net_k(t))$$

$$\delta_i(t) = f' \big(net_i(t) \big) \cdot \sum_{j \in P} \delta_j(t) \cdot w_{ji}(t)$$

Tricks of the Trade – how to get your network working

Weight Initialization initialize all weights to small random numbers

Input / Output Normalization
 output: use linear output neuron
 input: try to normalize to [-1 .. +1] or close to that

- 3. Use Small Weight Update η Constant or time dependent $\eta(t)$.
- 4. Avoid local minima in weight space
 Simulated Annealing, multiple independent runs

Tricks of the Trade – how to get your network working

- Network sizeComplete mystery; rules of thumb, fan-in / fan-out (projections)
- 6. Vanishing Gradient multiple layers significantly reduce the available gradient
- 7. Overtraining / Overfitting

Overtraining / Overfitting

Split available data in two sets

- -) 70% Training Data
- -) 30% Validation

Train on training data only, evaluate on Validation data, STOP training as performance drops

Software Example Neuronal Nets

- Google for "Neuronal Network Online Software Simulation" or similar
- http://www.sharktime.com/en SharkyNeuralNetwork.html

 https://grey.colorado.edu/emergent/index.php/Comparison_of_Neural Network Simulators

Other Forms of Neuronal Networks

- Recurrent Neuronal Networks
 - Liquid State Machine
- Unsupervised Learning
 - Hebbian Networks
 - Kohonan Self-Organizing Maps
- Deep Neuronal Networks
 - Deeeeeep

more interest in this topic?

KTH DD2437 – Artificial Neural Networks and Deep Architectures

A Brief Introduction to Our Own Research

Computation in Brains

Getting to know your Brain

- 1.3 Kg, about 2% of body weight
- 10¹¹ neurons
- Neuron growth
 250.000 / min (early pregnancy)
 ... but also loss, 1 neuron/second

"Operating Mode" of Neurons

- Analog leaky integration in soma
- Digital pulses (spikes) along neurites
- 10¹⁴ stochastic synapses
- Typical operating "frequency"
 ≤100Hz, typically ~10Hz, asynchronous

... and in Machines

Getting to know your Computer's CPU

- 50g, largely irrelevant
- 10¹⁰ transistors (SPARC M7, 2015)
- ideally no modification over lifetime

"Operating Mode" of CPUs

- Digital Boolean logic processing
- Digital signal propagation
- Reliable remote storage of data
- Typical operating frequency Several GHz, synchronous

Real-Time Neuronal Information Processing in Closed-Loop Systems

- Event-Based Neuromorphic Vision
- Information Processing in Distributed Neuronal Circuits
- Neuromorphic Real-Time Computing and Control
- Self-Construction and Organization of Neuronal Circuits

Neuromorphic Real-Time Computing and Control

Information Processing in Distributed Neuronal Circuits

Self-Construction and Organization of Neuronal Circuits

Neuro Computing Hardware Systems

CPU/GPU

- Software Neuronal Net Simulation
- High Energy
- Central Code and Data Memory
- Limited Communication Bandwidth
- Limited Parallelism
- High System Clock

SpiNNaker

- Software Neuronal Net Simulation
- Reduced Energy
- Distributed Code and Data Memory
- Optimized for Spiking Communication
- Massive Parallelism
- Reduced System Clock

TrueNorth

- Neuronal Circuits in Digital Hardware
- Low Energy
- Function given by Synaptic Connectivity
- Limited Local Spiking Communication
- Expandable Parallelism
- Low System Clock

Spikey

- Neuronal Circuits in Analog Hardware
- Minimal Energy
- Function given by Synaptic Connectivity
- (Limited Local Spiking Communication)
- (Limited Parallelism)
- Real-time Accelerated System Clock

