The lowers a canasta γ meto $\overline{\gamma}$. $\chi \sim \beta(\lambda_0, 0.7)$ (a variable χ escuantes $p(\chi=10) = 0.70$ $p(\chi=0) = 0.30$ $p(\chi=1) = \lambda_0.0.7.039$ $p(\chi=2) = \binom{0}{2}.0.7.038$ $\binom{n}{m} = \binom{n}{n-m}$ $\binom{n}{m} = \binom{n}{n-m}$

 $\binom{n}{0} = 1 / \binom{n}{1} = n$

$$P(x \ge 3) = P(x = 3) + P(x = 4) + P(x = 10)$$

 $P(x \ge 3) = 1 - [P(x = 0) + P(x = 1) + P(x = 10)]$

 $p(x=k) = \binom{n}{k} p^k q^{n-k}$