Prova tipo A

G3 de Álgebra Linear I – 2008.1

Data: 13 de Junho de 2008.

Nome:	Matrícula:
Assinatura:	Turma:

Duração: 1 hora 50 minutos

Ques.	1	2	3.a	3.b	3.c	3.d	3.e	4.a	4.b	4.c	5	soma
Valor	2.0	1.5	1.0	1.0	1.0	0.5	0.5	0.5	0.5	1.0	1.0	10.5
Nota												
Rev.												

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- \bullet <u>Verifique, revise</u> e <u>confira</u> cuidadosamente suas respostas.
- Escreva de forma clara, ordenada e legível.
- O desenvolvimento de cada questão deve estar a seguir **Resposta** no lugar a ele destinado. Desenvolvimentos fora do lugar (p. ex. no meio dos enunciados, nas margens, etc) <u>não serão corrigidos!!</u>.
- Nas questões 3 e 4 <u>justifique cuidadosamente</u> todas as respostas de forma completa, ordenada e coerente.

Observação

justificar: Legitimar. Dar razão a. Provar a boa razão do seu procedimento.

cuidado: Atenção, cautela, desvelo, zelo. cuidadoso: Quem tem ou denota cuidado.

fonte: mini-Aurélio

Marque no quadro as respostas da primeira questão. Não é necessário justificar esta questão.

ATENÇÃO

Resposta errada vale ponto negativo! Esta questão pode ter nota negativa!

1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque **COM CANETA** sua resposta no quadro a seguir.

Itens	V	F	N
1.a			
1.b			
1.c			
1.d			
1.e			

Atenção: responda todos os itens, use "N= não sei" caso você não saiba a resposta. Cada resposta certa vale 0.4, respostas erradas têm pontuação negativa de acordo com a seguinte tabela progressiva:

Número de respostas erradas					
Pontos negativos	0	0.2	0.8	1.2	1.5

Cada resposta ${f N}$ vale 0. Respostas confusas e ou rasuradas serão consideradas erradas.

- **1.a)** Considere A e B duas matrizes 3×3 tais que existe uma base de \mathbb{R}^3 de vetores $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ que são simultaneamente autovetores de A e de B. Então as matrizes A e B são semelhantes.
- **1.b)** Considere uma transformação linear $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ inversível e denote por T^{-1} a sua inversa. Se \overrightarrow{u} é um autovetor de T então \overrightarrow{u} também é um autovetor de T^{-1} .
- **1.c)** Considere uma transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ inversível e denote por T^{-1} a sua inversa. Se λ é um autovalor de T então λ também é um autovalor de T^{-1} .
 - 1.d) Considere a matriz

$$M = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 4 & 5 \\ 1 & 6 & 7 \end{pmatrix}.$$

Existe uma base β de \mathbb{R}^3 tal que M é a matriz de mudança de base, da base canônica à base β .

1.e) Seja A uma matriz 3×3 cujo polinômio característico é $(1-\lambda)(2-\lambda)^2$. Então a matriz A é semelhante à matriz

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

2) Determine a inversa da matriz

$$A = \left(\begin{array}{ccc} 1 & 2 & 0 \\ 2 & 3 & 1 \\ 2 & 1 & 1 \end{array}\right).$$

Critério de correção: Um erro nos coeficientes da inversa **nota 1.0**, dois erros **nota 0.5**, três ou mais erros **nota zero**. O desenvolvimento da questão é necessário.

Escreva a resposta final a \underline{caneta} no retângulo

$$A^{-1} = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

 $Desenvol vimento.\ Resposta:$

3) Considere a transformação linear $T\colon\mathbb{R}^3\to\mathbb{R}^3$ cuja matriz na base canônica é

$$[T]_{\mathcal{E}} = \begin{pmatrix} -2 & -1 & 4 \\ -2 & 0 & 2 \\ -1 & -1 & 3 \end{pmatrix}.$$

- (a) Determine os autovalores de T.
- (b) Determine, se possível, uma base de autovetores de T.
- (c) Considere a matriz $N = ([T]_{\mathcal{E}})^5$. Determine o traço de N.
- (d) Determine se existe uma base γ de \mathbb{R}^3 tal que a matriz de T na base γ seja

$$[T]_{\gamma} = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{array}\right).$$

Se a base γ existir determine-a explicitamente. Caso não exista tal base explique claramente os motivos.

(e) Determine se existe uma base η de \mathbb{R}^3 tal que a matriz de T na base η seja

$$[T]_{\eta} = \left(\begin{array}{ccc} -2 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 2 \end{array}\right).$$

Se a base η existir determine-a explicitamente. Caso não exista tal base explique claramente os motivos.

Resposta:

4) Considere a base α de \mathbb{R}^3

$$\alpha = \left\{ \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right); \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}} \right); \left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0 \right) \right\}.$$

- a) Mostre que α é uma base ortonormal de \mathbb{R}^3 .
- b) Considere o vetor \overrightarrow{v} cujas coordenadas na base canônica são (2,4,1). Determine a segunda coordenada do vetor \overrightarrow{v} na base α .
- c) Determine explicitamente a matriz P de mudança de base da base canônica à base α .

Resposta:

 $\mathbf{5}$) Considere a matriz A

$$A = \left(\begin{array}{ccc} 3 & 5 & 0 \\ 0 & \mathbf{a} & \mathbf{b} \\ \mathbf{c} & 2 & 1 \end{array}\right)$$

Sabendo que 3 e 2 são autovalores da matriz A, que o vetor $\mathbf{i} = (1, 0, 0)$ é um autovetor de A e que seu traço é 6. Determine \mathbf{a} , \mathbf{b} e \mathbf{c} .

Não é necessário justificar esta questão.

Critério de correção: Cada item correto vale 0.3, todos os itens corretos 1.0.

Escreva as respostas a <u>caneta</u> no retângulo

$$\mathbf{a} = \qquad \qquad \mathbf{b} = \qquad \qquad \mathbf{c} =$$

Cálculos: