Opérations entre automates finis déterministes

Si A et A' sont des automates finis déterministes respectivement à n et p états, reconnaissant les langages L et L', nous allons voir comment construire des automates (pas toujours déterministes) reconnaissant :

- L , le langage complémentaire de L,
- la somme des langages L+L'
- l'intersection L ∩ L'
- la différence L \ L'
- le langage L+
- et enfin le langage étoile L*

Nous illustrerons ces opérations à l'aide des deux automates suivant :

Complémentaire

Si l'automate est complet, il suffit d'inverser les états acceptants et refusants :

- 1. Compléter l'automate s'il n'est pas complet
- 2. Rendre acceptant les états refusant et réciproquement

On obtient un automate déterministe à n états

Complémentaire :

Somme

Il suffit de juxtaposer les deux automates (en renommant les états) et d'autoriser les deux états initiaux.

L'automate obtenu possède n+p états et n'est pas déterministe puisqu'il possède deux états initiaux.

Somme

- En fonction de l'état initial choisi, on va reconnaître les mots finissant par « a » ou « ayant un nombre pair de « a ».
- L'automate reconnaît bien L+L'

Le mot « abba » appartient à l'intersection : L \(\cap \) L' car la lecture conjointe des deux automates conduit des états initiaux à deux états acceptants

Le mot « abba » appartient à l'intersection : L \(\cap \) L' car la lecture conjointe des deux automates conduit des états initiaux à deux états acceptants

Pour effectuer les deux lectures conjointement, il suffit de considérer l'automate des couples :

- En partant du couple des états initiaux, on effectue les transitions par couples.
- Un état est acceptant s'il est constitué d'un couple d'états acceptants.

Q\Σ	а	b
I = {1,3}		

Q\Σ	а	b
I = {1,3}	II = {2,4}	I

Q\Σ	а	b
I = {1,3}	$II = \{2,4\}$	I
II = {2,4}	$III = \{2,3\}$	IV = {1,4}

Q\Σ	а	b
I = {1,3}	$II = \{2,4\}$	I
II = {2,4}	$III = \{2,3\}$	IV = {1,4}
III = {2,3}	II	I

Q\Σ	а	b
I = {1,3}	$II = \{2,4\}$	I
$II = \{2,4\}$	III = {2,3}	IV = {1,4}
III = {2,3}	II	l
IV = {1,4}	III	IV

Partant du couple des états initiaux, on effectue les transitions par couples.

Q\Σ	а	b
I = {1,3}	$II = \{2,4\}$	
$II = \{2,4\}$	III = {2,3}	IV = {1,4}
(III)= {2,3}	II	I
IV = {1,4}	Ш	IV

L'état {2,3} est l'unique état acceptant

Différence

La différence de langages L \ L' constituée des mots de L qui n'appartiennent pas à L' est aussi égale à L ∩ L'

• On l'obtient donc à l'aide d'un calcul de complémentaire et d'une intersection.

L'automate produit est donc obtenu en juxtaposant les automates \mathcal{A} et \mathcal{A}' ...

...en rendant refusant les états acceptant de \mathcal{A} ...

... et en enlevant le caractère initial à l'état initial de \mathcal{A}' .

- On obtient un automate à n+p états
- Non déterministe à cause de la

On considère l'automate A
reconnaissant le langage L des
mots contenant au moins un
« a » mais pas « ab »

Le mot « abba » = « a.bba » est dans le langage L+. On peut le lire en enchaînant deux lectures par l'automate \mathcal{A}

Le mot « abba » = « a.bba » est dans le langage L+. On peut le lire en enchaînant deux lectures par l'automate \mathcal{A}

lecture acceptante de « a » par l'automate \mathcal{A}

Le mot « abba » = « a.bba » est dans le langage L+. On peut le lire en enchaînant deux lectures par l'automate \mathcal{A}

Retour spontané à l'état initial

Le mot « abba » = « a.bba » est dans le langage L+. On peut le lire en enchaînant deux lectures par l'automate \mathcal{A}

lecture acceptante de « bba » par l'automate \mathcal{A}

L'automate reconnaissant L+ est donc obtenu à partir de l'automate # ...

... en ajoutant une transition spontanée de tous les états acceptant vers l'état initial.

- Il possède n états
- Mais n'est pas déterministe du fait de la transition spontanée

L'automate reconnaissant L* est obtenu à partir du précédent en ajoutant un état initial acceptant pour reconnaître ɛ.

L'automate reconnaissant L* est obtenu à partir du précédent en ajoutant un état initial acceptant pour reconnaître ɛ.

ATTENTION!

Vous êtes parfois tentés de rendre l'état initial acceptant plutôt que d'ajouter un nouvel état initial acceptant.

Cela permet bien de reconnaître ε, mais aussi d'autre mots non voulus

ATTENTION!

Vous êtes parfois tentés de rendre l'état initial acceptant plutôt que d'ajouter un nouvel état initial acceptant.

Ici l'automate reconnaît « bb » qui n'appartient pas à L*