

"TECNOLÓGICO NACIONAL DE MEXICO"

INSTITUTO TECNOLÓGICO DE IZTAPALAPA

INTEGRANTES:

ISC-6AM

LENGUAJES Y AUTOMATAS I

M.C. ABIEL TOMÁS PARRA HERNÁNDEZ

SEP 2020 / FEB 2021

ACTIVIDAD SEMANA 7

Cuananemi Cuanalo Mario Alberto

DFA • El lenguaje de un DFA es el conjunto de todas las cadenas que el DFA acepta • Dada una cadena (e.g., s1, s2, . . . , sn) el DFA empieza en su estado inicial (e.g., q0), consulta si existe una transicion de ´ q0 con el primer s´ımbolo (s1) a otro estado (e.g., q1) y si existe (i.e., δ (q0, s1) = q1) se mueve al estado descrito en la transicion. ´ • Procesa el siguiente s´ımbolo de la cadena (i.e., s2) y as´ı continua. • Si logra procesar toda la cadena y el estado al que llega es uno de los estados finales, entonces se dice que el automata acepta esa cadena.

Ejemplo Un Automata A que acepta ´L = $\{x01y|x \land y \in \{0, 1\} *\} \bullet$ El DFA acepta cadenas que tienen 01 en alguna parte de la cadena \bullet El lenguaje del DFA es el conjunto de cadenas que acepta $\{w|w$ tiene la forma "x01y" para algunas cadenas x y y que consisten solo de 0's y 1's ´}

Diferenci	a entre	DFA y	NFA:
-----------	---------	-------	------

NO SEROR.	DFA	NFA
1	DFA son las siglas de Deterministic Finite Automata.	NFA son las siglas de Nondeterministic Finite Automata
2	Para cada representación simbólica del alfabeto, solo hay una transición de estado en DFA.	No es necesario especificar cómo reacciona la NFA según algún símbolo.
3	DFA no puede utilizar la transición de cadena vacía.	NFA puede utilizar la transición de cadena vacía:
4	DFA puede entenderse como una sola máquina.	NFA puede entenderse como múltiples pequeñas máquinas que computan al mismo tiempo.
5	En DFA, el siguiente estado posible se establece claramente.	En NFA, cada par de estado y símbolo de entrada puede tener muchos estados siguientes posibles.
6	DFA es más difícil de construir.	NFA es más fácil de construir.
7	DFA rechaza la cadena en caso de que termine en un estado diferente del estado de aceptación.	NFA rechaza la cuerda en caso de que todas las ramas mueran o rechacen la cuerda.
8	El tiempo necesario para ejecutar una cadena de entrada es menor:	El tiempo necesario para ejecutar una cadena de entrad es mayor.
9	Todos los DFA son NFA.	No todos los NFA son DFA.
10	DFA requiere más espacio.	NFA requiere menos espacio que DFA.

Teoria de Myhill-Nerode

Sea *Ent* un alfabeto finito. Según vimos anteriormente la noción de *lenguaje regular* puede presentarse mediante el reconocimiento por autómatas finitos, sean deterministas o no, o mediante la representación por expresiones regulares. Otras presentaciones equivalentes de esta noción se dan en la siguiente:

 $L \subset Ent^*$

Proposición 6.1 (Teorema de Myhill-Nerode) Sea

un lenguaje

arbitrario. Las siguientes aseveraciones son equivalentes a pares:

1.

L es regular.

2.

L es la unión de algunas clases de equivalencia de una relación de equivalencia de índice finito, congruente por la derecha con la concatenación de palabras.

3.

La relación $1. \Rightarrow 2$. tal que

$$L = L(AF)$$

Supongamos L regular. Sea

es una relación de índice finito.

1

Demostración:

 $AF = (Q, Ent, tran, q_0, F)$

un

 \equiv_K

autómata finito la función tal que

. Consideremos

y su kernel:

$$L = \bigcup_{\sigma} [\sigma]_{\equiv_K}.$$

Hemos visto que `` $\mathbf{2}$. \Rightarrow " es una relación de equivalencia de índice finito (de hecho este índice está acotado por la cardinalidad de Q), congruente por la derecha. Se tiene además

$$R \subset (Ent^*)^2$$

Así pues, se cumple 2.

 $\mathcal{F}\subset Q/H \text{ Sea } L=\bigcup_{\mathsf{f=1c}\;\mathsf{T}}[\sigma] \text{ una relación de equivalencia de índice finito, }$ congruente por

la derecha con la concatenación de palabras, tal que para un subconjunto

se tiene que $\sigma R au$. Afirmamos que $orall v \in \mathit{Ent}^*$ (47)

En efecto, si $\sigma vR\tau i$ entonces, $\sigma vR\tau i$ entonces, , al ser R congruente por la derecha, $\sigma \equiv_L \tau$

Como L es la unión de algunas clases de R , esto da que . Así pues, Q=1

relación 4.3 6 vemos que toda clase de equivalencia respecto a `` " es la unión

de clases de equivalencia respecto a R . Por tanto el índice de `` $^{\prime\prime}$ no puede exceder el de

 $Q = \frac{1}{2}$ R. Como este último es finito el de `` es también finito.

 $q_0=[nil]$, Q= , where Q= is a sum of the equivalence of the eq

 $tran: ([\sigma], (q_1, q_2 \in Q))$, y haciendo

. Es evidente que una palabra es

L = L(AF)

reconocida por AF si y sólo si esa palabra está en L. Así pues, y,consecuentemente, es regular.

$$AF = (Q, \mathit{Ent}, \mathit{tran}, q_0, F)$$
 Para un autómata finito diremos que dos estados

$$\sigma \in Ent^*$$
 son *indistinguible*s si para cualquier palabra \equiv_I

Si dos estados $\sigma \in Ent^*$ tal que

no fueran indistinguibles, entonces habría una

palabra

 $\sigma, \tau \in Ent^*$

Diremos que tal palabra distingue a los estados q_1, q_2 . La relación de indistinguibilidad es

L=L(AF) el $AFM_L=(Er$ una relación de equivalencia. La denotaremos como `` I Sea

lenguaje reconocido por el autómata AF. Para cualesquiera dos palabras rige la equivalencia siguiente

$$AFM_I = (Q^{con}/\equiv_I)^{(3. \Rightarrow 1.)}$$

Por tanto el autómata

 $AFM_I = (Q^{con}/\underset{\equiv_I}{\equiv_I})$ construído en la demostración de la

 $h: T(\sigma) \mapsto$

del teorema de Myhill-Nerode 4.6. 1 es isomorfo al autómata implicación

y, por consiguiente, es una imagen homomorfa de la parte conexa del $\stackrel{\cdot}{AFM_I}$ cociente

 $\{tran(q_1, \\ ext{es una imagen}$ es un homomorfismo. De hecho, autómata

homomorfa de cualquier autómata que reconozca a ${\it L}$. Así pues, resulta de inmediato la

Proposición 6.2 El autómata mínimo que reconoce a un lenguaje regular L es $AFM_I = (Q^{con}/\equiv_I)$

Minimización de autómatas

Construcción de un AFDt con un número de estados mínimo que sea equivalente a un AFDt dado. Definiciones previas: • Estados accesibles: q0 es accesible q accesible $\Rightarrow \forall s \in \Sigma$, $\delta(q, s)$ es accesible • Estados k-equivalentes o k-indistinguibles: $p \equiv k \ q \ \forall x \in \Sigma \leq k \ (\delta^*(p, s))$

 $x) \in F \leftrightarrow \delta^*(q, x) \in F$) • Estados equivalentes o indistinguibles: $p \equiv q \ \forall k \ \forall x \in \Sigma \le k$ ($\delta^*(p, x) \in F = 0$

$$x){\in}\mathsf{F} \leftrightarrow \delta^*(\mathsf{q},\,x) \in \mathsf{F} \), \ \text{es decir}, \ \forall \, x{\in}\Sigma^* \ (\ \delta^*(\mathsf{p},\,x){\in}\mathsf{F} \leftrightarrow \delta^*(\mathsf{q},\,x){\in}\mathsf{F} \)$$

Construcción del AFDt mínimo N a partir del AFDt M = (Q, Σ , δ , q0, F) 1) Eliminar estados inaccesibles 2) Determinar las clases de estados equivalentes: p \equiv 0 q \Leftrightarrow (p \in F \leftrightarrow q \in F) p \equiv k+1 q \Leftrightarrow (p \equiv k q \wedge \forall s \in Σ δ (p, s) \equiv k δ (q, s)) 3) Construcción del AFD N = (P, Σ , γ , p0, G) con P = Q/ \equiv siendo \equiv es la menor \equiv k tal que \equiv k coincide con \equiv k+1 p0 = [q0] γ ([p], s) = [δ (p, s)] G = {[p]: p \in F}

Minimización de un AFD

Dos pasos:

- 1. Eliminación de los estados no alcanzables
- 2. Búsqueda de estados equivalentes
- Construcción de un autómata a partir de los grupos de estados equivalentes

Ejercicio 1

Considerar el automata siguiente:

			()	1	
->	>	Α		В	A	
В		Α		С		
С		D		В		
	*	D		D	A	
Ε		D		F		
F		G		E		
G		F		G		
Н		G		D		

- 1. Dibuje la tabla de estados distinguibles para este autómata.
- 2. Construya el AFD equivalente con el número mínimo de estados.

Ejercicio 2

Mismo ejercicio con:

	L	1	0				
	Ε		В		А	>	->
	F		С		В		
		Н		D		С	*
Н		Ε		D			
I		F		Ε			
		В		G		F	*
В		Н		G			
С		Ι		Н			
Ε		Α		I			