SCC0652 - Visualização Computacional - Exercício 3

Francisco Rosa Dias de Miranda

Outubro de 2020

Análise de texto em 20NewsGroups

Objetivo

Nosso objetivo é encontrar clusters de documentos através do método de K-Means, através dos modelos de representação de documentos de Embedings e Bag of Words, e comparar os resultados dos dois métodos através da projeção dos clusters com o t-SNE.

Para tanto, utilizaremos o software open-source **Orange**, baseado em Python, que fornece um panorama de todo o pipeline de Ciência de Dados utilizado para esta análise, sem a necessidade de se escrever códigos.

Conjunto de dados

Esta base de dados, originalmente parte do pacote *Scikit-learn*, contém 11.293 posts em grupos de notícias de 20 diferentes tópicos, subdivididos em 6 assuntos, conforme ilustrado na Figura 1.

Nesta análise, utilizaremos somente os temas talk.politics.guns, comp.sys.ibm.pc.hardware, sci.space e rec.motorcycles, que tratam, respectivamente, de políticas armamentistas, hardware de PCs, espaço sideral e motocicletas.

Seleção e pré-processamento

Primeiramente, utilizamos a função Select Rows para filtrar o conjunto de dados e utilizar somente os temas acima mencionados. Utilizamos o critério "is one of", pois queremos selecionar as quatro categorias de textos simultaneamente.

Após manter somente as categorias de interesse em nosso conjunto de dados, efetuaremos o pré-processamento dos textos, em que descreveremos sucintamente cada etapa a seguir.

comp.os.ms-windows.misc comp.sys.ibm.pc.hardware	rec.motorcycles rec.sport.baseball	sci.crypt sci.electronics sci.med sci.space
misc.forsale	talk.politics.guns	talk.religion.misc alt.atheism soc.religion.christian

Figure 1: Tópicos do conjunto de dados divididos por assunto (retirado de http://qwone.com/~jason/20Newsgroups/)

Funções de pré-processamento de texto utilizadas

• Transformação: lowercase

Deixa todo o texto em minúsculas para que possa ser lido de maneira uniforme pelo algoritmo de classificação não supervisionado.

• Tokenização: Regexp

Transforma cada palavra distinta em uma chave numérica (token), fazendo que o texto seja mais facilmente lido pelo computador.

• Filtragem: remove stop words

Stop words são conectivos da língua, como preposições, artigos e conjunções, que não contribuem como fonte de informação para a análise textual, sendo portanto removidas.

• Filtragem: Regexp

Utilizamos a função de processamento de expressões regulares aqui para remover todos os símbolos de pontuação presentes nos textos, pois eles também não agregam valor para nossa análise.

Modelos de representação de documentos

Bag of Words

O bag of words é uma estratégia de representação do texto em que a sequência de palavras é desconsiderada, simplificando o texto para uma lista de palavras distintas e sua respectiva frequência.

Como principal vantagem dessa estratégia temos a simplicidade de representação computacional, sendo atrativa para a aplicação direta de algoritmos de aprendizado de máquina.

Contudo, para se obter uma melhor eficiência, é necessário aplicar outras técnicas que mitiguem a perda de informação, como a já realizada remoção de stop words.

Também podemos citar técnicas como a lematização e TF-IDF, que contribuem significativamente para este método.

Word Embeddings

Esta estratégia de representação mapeia, através de técnicas de aprendizado não-supervisionado, um vetor de n coordenadas de números reais a cada palavra do corpus.

Isso permite que palavras usadas em contextos similares tenham uma representação similar no espaço n-dimensional, conforme ilustrado na Figura 2.

Figure 2: Visualização de word embedding extraída de http://www.comp.ime.eb.br/graduacao/pfc/repositorio-pfc/2018/PFC%20-%20Ricarte.pdf

Clustering

Em nosso contexto, o processo de agrupamento (clustering) procura agrupar textos sobre o mesmo assunto e separar os de conteúdo diferente. A cada conjunto de dados resultante do processo dá-se o nome de grupo, aglomerado ou agrupamento (cluster).

Existem diversas técnicas de clustering, neste trabalho utilizaremos apenas a conhecida como **k-Means**. Aqui, a meta é particionar nossas n observações em k clusters distintos. Como parâmetro, devemos escolher k.

Devido a essa escolha impactar diretamente na eficiência do algorítimo, existem diversas técnicas e heurísticas para fazer essa escolha. Por questões de simplicidade, trabalharemos aqui com k=4, que foi o número de categorias selecionadas. A Figura 3 ilustra os scores para diferentes valores de k.

Figure 3: Silhouette Scores do Bag of Words e Document Embeddings, respectivamente, para valores distintos de k.

Junto ao k-Means, é aplicada uma técnica de TF-IDF, que é uma técnica estatística que, em nosso contexto, indica a importância de uma palavra em relação ao corpus.

Redução de dimensionalidade (t-SNE)

O \mathbf{t} -SNE é um algoritmo para visualização de dados com alta dimensionalidade. Através dele, iremos visualizar os clusters resultantes das transformações nos dados.

A Figura 4 ilustra os clusters obtidos através do document embeding para nosso conjunto de dados. Note que, apesar dos altos scores de silhueta, o modelo não foi capaz de separar adequadamente os dados para k=4.

A Figura 5 ilustra os clusters obtidos através do Bag of Words. Como podemos ver, o modelo abaixo consegue separar mais adequadamente os dados que o anterior, apesar de seu baixo score de silhueta, para k=4.

Conclusão

Como pudemos ver, a técnica do Bag of Words com TF-IDF foi a mais efetiva que o Embedding para clusterizar os dados dado o k escolhido. A Figura 6 ilustra todo o pipeline do processo descrito nesse relatório.

Figure 4: Clusterização obtida através do Embedding

Figure 5: Clusterização obtida através do Bag of Words

Figure 6: Pipeline do Orange do trabalho descrito neste relatório

Referências

Tf-idf. (2018, novembro 10). Wikipédia, a enciclopédia livre. Retrieved 17:47, novembro 10, 2018 from https://pt.wikipedia.org/w/index.php?title=Tf%E2%80%93idf&oldid=53557110.

Wikipedia contributors. (2020, September 24). T-distributed stochastic neighbor embedding. In Wikipedia, The Free Encyclopedia. Retrieved 00:51, October 7, 2020, from https://en.wikipedia.org/w/index.php?title=T-distributed_stochastic_neighbor_embedding&oldid=980150639

PEDRO IGOR DE ARAÚJO OLIVEIRA, BRUNO VIEIRA COSTA, LUCAS RICARTE ROGÉRIO TEIXEIRA. FERRAMENTA DE CLASSIFICAÇÃO DE QUESTÕES PARA AUXÍLIO AO APRENDIZADO. disponível em http://www.comp.ime.eb.br/graduacao/pfc/repositorio-pfc/2018/PFC%20-%20Ricarte.pdf

Clustering. (2020, abril 16). Wikipédia, a enciclopédia livre. Retrieved 19:50, abril 16, 2020 from https://pt.wikipedia.org/w/index.php?title=Clustering&oldid=58054039.

Wikipedia contributors. (2020, September 24). K-means clustering. In Wikipedia, The Free Encyclopedia. Retrieved 00:55, October 7, 2020, from https://en.wikipedia.org/w/index.php?title=K-means_clustering&oldid=980067381