1. A method for treating pain, treating inflammation or providing analysis in a subject, comprising administering to a subject in need thereof an effective amount of a therapeutic compound, wherein the therapeutic compound is of the formula (Ia):

(Ia)
$$F_{1} \xrightarrow{G_{2}} F_{2}$$

$$E \xrightarrow{ONO_{2}} ONO_{2}$$

in which E, F₁, F₂, G₁, and G₂ are the same or different organic radicals which may be joined in cyclic ring systems, and which may contain inorganic counterions;

with the proviso that when E and G_{λ} are methylene groups and F_1 is H, G_2 is not a nitrate group, nor R^N - Z^N -;

wherein R^N is any aryl or heteroary group and Z^N is $(CO)_{mm}^- X^N_{nn}^- Y^N_{oo}$; wherein mm, nn, oo are 0 or 1 and X^N, Y^N are NH, NR^{NN} , O or CH_2 ; wherein R^{NN} is a short chain alkyl group $(C_1 - C_{12})$.

2. A method for treating pain, treating inflammation or providing analysis in a subject, comprising administering to a subject in need thereof an effective amount of a therapeutic compound, wherein the therapeutic compound is of the formula (Ib):

25

in which F_2 is an organic radical which may be joined in a cyclic ring system with G_2 , and which may contain inorganic counterions; E and G_1 are both methylene groups; F_1 is H; and G_2 is \mathbb{R}^N - \mathbb{Z}^N -;

wherein R^N is an organic radical possessing a heter paryl group containing P or S atoms where said P or S are positioned β , γ , or δ to a nitrate group as identified in formula I; and Z^N is W^N_{mm} - X^N_{nn} - Y^N_{oo} ;

wherein mm, nn and oo are 0 or 1; and W^N , X^N , Y^N are NH, NR^{NN} , CO, O or CH₂; wherein R^{NN} is a short chain alkyl group ($C_1 - C_{12}$).

3. A method for treating pain, treating inflammation or providing analysis in a subject, comprising administering to a subject in need thereof an effective amount of a therapeutic compound, wherein the therapeutic compound is of the formula (Ic):

10

20

25

(Ic)
$$\begin{array}{c|c}
G_1 \\
G_1 \\
F_1 - C - F_2 \\
E - ONO_2
\end{array}$$

in which E is $(R^1R^2C)_m$ and $G_2 - G_1 - CF_1F_2 - is R^{19} - (R^3R^4C)_p - (R^{17}R^{18}C)_n - ig$ wherein: m, n, p are integers from 0 to 10;

R^{3,17} are each independently hydrogen, a nitrate group, or A; and R^{1,4} are each independently hydrogen, or A;

where A is selected from a substituted or unsubstituted aliphatic group (preferably a branched or straight-chain aliphatic moiety having from 1 to 24 carbon atoms in the chain, which optionally may contain O, S, NR⁶ and unsaturations in the chain, optionally bearing from 1 to 4 hydroxy, nitrate, amino, aryl, or heterocyclic groups; an unsubstituted or substituted cyclic aliphatic moiety having from 3 to 7 carbon atoms in the aliphatic ring, which optionally may contain O, S, NR⁶ and unsaturations in the ring, optionally bearing

25

5

10

from 1 to 4 hydroxy, nitrate, amino, aryl, or heterocyclic groups; an unsubstituted or substituted aliphatic moiety constituting a linkage of from 0 to 5 carbons, between R¹ and R³ and/or between R¹ and R⁴, which optionally may contain O, S, NR6 and unsaturations in the linkage, and optionally bearing from 1 to 4 hydroxy, nitrate, amino, aryl, or heterocyclic groups); a substituted or unsubstituted aliphatic group (preferably a branched, cyclic or straight-chain aliphatic moiety having from 1 to 24 carbon atoms in the chain) containing carbonyl linkages (e.g., C=O, C=S, C=NOH), which optionally may contain O, S, NR6 and unsaturations in the chain, optionally bearing from 1 to 4 hydroxy, nitrate, amino, aryl, or heterocyclic groups; a substituted or unsubstituted aryl group; a heterocyclic group; amino (including alkylamino, dialkylamino (including cyclic amino, diamino and triamino moieties), arylamino, diarylamino, and alkylarylamino); hydroxy; alkoxy; a substituted or unsubstituted aryloxy;

wherein X is F, Br, Cl, NO₂, CH₂, CF₂, O, NH, NMe, CN, NHOH, N₂H₃, N₂H₂R¹³, N₂HR¹³R¹⁴, N₃, S, SCN, SCN₂H₂(R¹⁵)₂, SCN₂H₃(R¹⁵), SC(O)N(R¹⁵)₂, SC(O)NHR¹⁵, SO₃M, SH, SR⁷, SO₂M, S(O)₂R⁹, S(O)₂R⁹, S(O)₂OR³, PO₂HM, PO₃HM, PO₃HM, PO₃M₂, P(O)(OR¹⁵)(OR¹⁶), P(O)(OR¹⁶)(OM), P(O)(R¹⁵)(OR⁸), P(O)(OM)R¹⁵, CO₂M, CO₂H, CO₂R¹¹, C(O), C(O)R¹², C(O)(OR¹³), PO₂H, PΦ₂M, P(O)(OR¹⁴), P(O)(R¹³), SO, SO₂, C(O)(SR¹³), SR⁵, SSR⁷ or SSR⁵;

Y is F, Br, Cl, CH₃, CF₂H, CF₃, OH, NH₂, NHR⁶, NR⁶R⁷, CN, NHOH, N₂H₃, N₂H₂R¹³, N₂HR¹³R¹⁴, N₃, S, SCN, SCN₂H₂(R¹⁵)₂, SCN₂H₃(R¹⁵), SC(O)N(R¹⁵)₂, SC(O)NHR¹⁵, SO₃M, SH, SR⁷, SO₂M, S(O)R⁸, S(O)₂R⁹, S(O)OR⁸, S(O)₂OR⁹, PO₂HM, PO₃M₂, P(O)(OR¹⁵)(OR¹⁶), P(O)(OR¹⁶)(OM), P(O)(R¹⁵)(OR⁸), P(O)(OM)R¹⁵, CO₂M, CO₂H, CO₂R¹¹, C(O)(R¹², C(O)(OR¹³), C(O)(SR¹³), SR⁵, SSR⁷ or SSR⁵, or does not exist;

R², R⁵, R¹⁸, R¹⁹ are optionally hydrogen, A or X-Y;

R⁶, R⁷, R⁸, R⁹, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶ are the same or different alkyl or acyl groups containing 1-24 carbon atoms which may contain 1-4 ONO₂ substituents; or C₁ - C₆ connections to R¹ – R⁴ in cyclic derivatives which may contain 1-4 ONO₂ substituents; or are each independently hydrogen a nitrate group or A;

M is H, Na⁺, K⁺, NH₄⁺, N⁺H_kR¹¹_(4-k) where k is 0-3; or other pharmaceutically acceptable counterion;

and with the proviso that when $m = n = p \neq 1$ and R^{19} , R^2 , R^{18} , $R^1 = H$ and R^{17} , R^3 are nitrate groups, R^4 is not H.

4. The method of claim 1, wherein F_2 is a naturate group; and E, F_1 , G_1 , G_2 are the same or different organic radicals which may be joined in cyclic ring systems, and which may contain inorganic counterions;

with the proviso that when E and G_1 are methylene groups and F_1 is H, G_2 is not a nitrate group, nor \mathbb{R}^N - \mathbb{Z}^N -;

wherein R^N is any aryl or heteroaryl group and Z^N is $(CO)_{mm}^- X^N_{nn}^- Y^N_{oo}$; wherein mm, nn, oo are 0 or 1 and X^N, Y^N are NH, NR^{NN} , O or CH_2 ; wherein R^{NN} is a short chain alkyl group $(C_1 - C_{12})$.

5. The method of claim 2, wherein F_2 is a nitrate group; E and G_1 are methylene groups; F_1 is H; and G_2 is R^N - Z^N -;

wherein R^N is an organic radical possessing an heteroaryl group containing P or S atoms where said P or S are positioned β , γ , or δ to a nitrate group as identified in formula I; and Z^N is $W^N_{nm}-X^N_{nn}-Y^N_{oo}$;

wherein mm, nn, oo are 0 or 1 and W^N , X^N , Y^N are NH, NR^{NN} , CO, O or CH₂; wherein R^{NN} is a short chain alkyl group (C₁ – C₁₂).

- 6. The method of claim 3, wherein R¹⁹ is X-Y.
- 25 7. The method of claim 6, wherein:

R¹ and R³ are the same or different and selected from H and C₁-C₄, alkyl chains, which chains may include one O linking R¹ and R³ to form pentosyl, hexosyl, cyclopentyl, or cyclohexyl rings, which rings may optionally bear hydroxyl substituents;

R² and R⁴ are the same or different and selected from H, a nitrate group, C₁-C₄ alkyl chains optionally bearing 1-3 nitrate groups, and acyl groups (-C(O)R⁵);

 R^7 , R^{11} are the same or different $C_1 - C_8$ alkyl or acyl;

R⁵, R⁶, R⁸, R⁹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶ are the same or different and are alkyl groups containing 1-12 carbon atoms which may contain 1-4 ONO₂ substituents; or C₁ or C₂ connections to R¹ - R³ in cyclic derivatives; and

M is H, Na+, K+, NH₄+ or N+H_kR¹¹_(4-k), where k is 0-3.

- 8. The method of claim 7, wherein m = /1, n = 0, p = 1.
- 9. The method of claim 8, wherein:

X is CH₂, O, NH, NMe, CN, NHOH, N₂H₃, N₂H₂R¹³, N₂HR¹³R¹⁴, N₃, S, SCN, SCN₂H₂(R¹⁵)₂, SCN₂H₃(R¹⁵), SC(O)N(R¹⁵)₂, SC(O)NHR¹⁵, SO₃M, SH, SR⁷, SO₂M, S(O)R⁸, S(O)₂R⁹, S(O)OR⁸, S(O)₂OR⁹, PO₃HM, PO₃M₂, P(O)(OR¹⁵)(OR¹⁶), P(O)(OR¹⁶)(OM), P(O)(R¹⁵)(OR⁸), P(O)(OM)R¹⁵, OO₂M, CO₂H, CO₂R¹¹, C(O), C(O)R¹², C(O)(OR¹³), PO₂M, P(O)(OR¹⁴), P(O)(R¹³), SO, SO₃, C(O)(SR¹³), or SSR⁴; and

Y is CN, N₂H₂R¹³, N₂HR¹³R¹⁴, N₃, SCN, SCN₂H₂(R¹⁵)₂, SC(O)N(R¹⁵)₂, SC(O)NHR¹⁵, SO₃M, SR⁴, SO₂M, PO₃HM, PO₃M₂, P(O)(OR¹⁵)(OR¹⁶), P(O)(OR¹⁶)(OM), P(O)(R¹⁵)(OR⁸), P(O)(OM)R¹⁵, CO₂M, CO₂H, CO₂R¹¹, C(O)R¹², C(O)(SR¹³), SR⁵, or SSR⁵, or does not exist.

. . .

10. The method of flaim 8, wherein:

R⁵, R⁶, R⁸, R⁹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶ are the same or different and are alkyls containing 1-12 carbon atoms; or C₁ or C₂ connections to R¹ or R³ in cyclic derivatives;

X is CH₂, O/NH, NMe, S, SO₃M, SH, SR⁷, SO₂M, S(O)R⁸, S(O)₂R⁹, S(O)OR⁸,

25 $S(O)_2OR^9$, PO_3M_2 , $P(O)(OR^{15})(OR^{16})$, $P(O)(OR^{16})(OM)$, $P(O)(R^{15})(OR^8)$, PO_3HM or $P(O)(OM)R^{15}$; and

Y is SO₂M, SO₃M, PO₃HM, PO₃M₂, P(O)(OR¹⁵)(OR¹⁶), P(O)(OR¹⁶)(OM), SR⁵, SR⁴ or SSR⁵, or does not exist.

11. A method for providing sedation, mitigating anxiety or providing anaesthesia in a subject in need thereof, comprising administering to a subject an effective amount of a therapeutic compound, wherein the therapeutic compound is of the formula (Ia):

) 21 5

10

<u>1</u>15

===

Crement

$$\begin{array}{c|c}
G_2 \\
G_1 \\
F_1 \longrightarrow C \longrightarrow F_2 \\
E \longrightarrow ONO
\end{array}$$

in which E, F_1, F_2, G_1, G_2 are the same or different organic radicals which may be joined in cyclic ring systems, and which may contain inorganic counterions, but which do not contain an organic nitrate group;

with the proviso that when E and G_1 are methylene groups and F_1 is H, G_2 is not a nitrate group, nor R^N - Z^N -;

wherein R^N is any aryl or heteroaryl group and Z^N is $(CO)_{mm}$ - X^N_{nn} - Y^N_{oo} ; wherein mm, nn, oo are 0 or 1 and X^N , Y^N are NH, NR^{NN} , O or CH_2 ; wherein R^{NN} is a short chain alkyl group $(C_1 - C_{12})$.

្ឋា ១ 20

12. A method for providing sedation, mitigating anxiety or providing anaesthesia in a subject in need thereof, comprising administering to a subject an effective amount of a therapeutic compound, wherein the therapeutic compound is of the formula (Ib):

(Ib)
$$\begin{matrix} G_2 \\ G_1 \\ C - F_2 \\ E - ONO_2 \end{matrix}$$

25

in which F₂ is an organic radical which may be joined in a cyclic ring system with G₂,

and which may contain inorganic counterions, but is not a nitrate group; E and G_1 are methylene groups; F_1 is H; and G_2 is R^N - Z^N -;

wherein R^N is an organic radical possessing a heteroaryl group containing P or S atoms where said P or S are positioned β , γ , or δ to a nitrate group as identified in formula I; and Z^N is W^N_{mm} - X^N_{nn} - Y^N_{oo} ;

wherein mm, nn, oo are 0 or 1 and W^N , X^N , Y^N are NH, NR^{NN}, CO, O or CH₂; wherein R^{NN} is a short chain alkyl group $(C_1 - C_{12})$.

Sub B'

4 5 5

20

25

5

13. Amethod for providing sedation, mitigating anxiety or providing anaesthesia in a subject in need thereof, comprising administering to a subject an effective amount of a therapeutic compound, wherein the therapeutic compound is of the formula (Ic):

$$\begin{array}{c}
G_{2} \\
\downarrow \\
G_{1} \\
\downarrow \\
F_{1} - C - F_{2} \\
\downarrow \\
\downarrow \downarrow_{2} E - ONO_{2}
\end{array}$$

in which E is $(R^1R^2C)_m$ and $G_2-G_1-CF_1F_2-$ is $R^{19}-(R^3R^4C)_p-(R^{17}R^{18}C)_n-$; wherein: m, n,p are integers from 0 to 10;

R^{3,17} are each independently hydrogen, a nitrate group, or A; and R^{1,4} are each independently hydrogen, or A;

where A is selected from a substituted or unsubstituted aliphatic group (preferably a branched or straight-chain aliphatic moiety having from 1 to 24 carbon atoms in the chain, which optionally may contain O, S, NR⁶ and unsaturations in the chain, optionally bearing from 1 to 4 hydroxy, nitrate, amino, aryl, or heterocyclic groups; an unsubstituted or substituted cyclic aliphatic moiety having from 3 to 7 carbon atoms in the aliphatic ring, which optionally may contain O, S, NR⁶ and unsaturations in the ring, optionally bearing from 1 to 4 hydroxy, nitrate, amino, aryl, or heterocyclic groups; an unsubstituted or substituted aliphatic moiety constituting a linkage of from 0 to 5 carbons, between R¹ and R³

and/or between R¹⁷ and R⁴, which optionally may contain O, S, NR⁶ and unsaturations in the linkage, and optionally bearing from 1 to 4 hydroxy, nitrate, amino, aryl, or heterocyclic groups); a substituted or unsubstituted aliphatic group (preferably a branched, cyclic or straight-chain aliphatic moiety having from 1 to 24 carbon atoms in the chain) containing carbonyl linkages (e.g., C=O, C=S, C=NOH), which optionally may contain O, S, NR6 and unsaturations in the chain, optionally bearing from 1 to 4 hydroxy, nitrate, amino, aryl, or heterocyclic groups; a substituted or unsubstituted aryl group; a heterocyclic group; amino (including alkylamino, dialkylamino (including cyclic amino, diamino and triamino moieties), arylamino, diarylamino, and alkylarylamino); hydroxy; alkoxy; a substituted or unsubstituted aryloxy;

wherein X is F, Br, Cl, NO₂, CH₂, CF₂, O, NH, NMe, CN, NHOH, N₂H₃, N₂H₂R¹³, N₂HR¹³R¹⁴, N₃, S, SCN, SCN₂H₂(R¹⁵)₂, SCN₂H₃(R¹⁵), SC(O)N(R¹⁵)₂, SC(O)NHR¹⁵, SO₃M, SH, SR⁷, SO₂M, S(O)R⁸, S(O)₂R⁹, S(O)OR⁸, S(O)₂OR⁹, PO₂HM, PO₃HM, PO₃M₂, $P(O)(OR^{15})(OR^{16}), P(O)(OR^{16})(OM), R(O)(R^{15})(OR^8), P(O)(OM)R^{15}, CO_2M, CO_2H, CO_2R^{11},$ C(O), C(O)R¹², C(O)(OR¹³), PO₂H, PO₂M, P(O)(OR¹⁴), P(O)(R¹³), SO, SO₂, C(O)(SR¹³), SR⁵, SSR⁷ or SSR⁵;

Y is F, Br, Cl, CH₃, CF₂H, CF₃, OH, NH₂, NHR⁶, NR⁶R⁷, CN, NHOH, N₂H₃, $N_2H_2R^{13}$, $N_2HR^{13}R^{14}$, N_3 , S, SCN, SCN₂H₂(R^{15})₂, SCN₂H₃(R^{15}), SC(O)N(R^{15})₂, SC(O)NHR¹⁵, SO_3M , SH, SR^7 , SO_2M , $S(O)R^8$, $S(O)_2R^9$, $S(O)OR^8$, $S(O)_2OR^9$, PO_2HM , PO_3M_2 , $P(O)(OR^{15})(OR^{16}), P(O)(OR^{16})(OM), P(O)(R^{15})(QR^8), P(O)(OM)R^{15}, CO_2M, CO_2H, CO_2R^{11},$ C(O)R¹², C(O)(OR¹³), C(O)(SR¹³), SR⁵, SSR⁷ or SSR⁵, or does not exist;

R², R⁵, R¹⁸, R¹⁹ are optionally hydrogen, A or X-Y;

R⁶, R⁷, R⁸ R⁹, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶ are the same or different alkyl or acyl groups containing 1-24 carbon atoms which may contain 1-4 ONO2 substituents; or C1 - C6 connections to R1 - R4 in cyclic derivatives which may/contain 1-4 ONO2 substituents; or are each independently hydrogen a nitrate group or A;

M is H, Na⁺, K⁺, NH₄⁺, N⁺H_kR¹¹_(4-k) where k is $0\frac{1}{3}$; or other pharmaceutically acceptable counterion;

=

U

U

ū

20

and with the proviso that when m = n = p = 1 and R^{19} , R^2 , R^{18} , $R^1 = H$ and R^{17} , R^3 are nitrate groups, R^4 is not H.

5 Sus 5

14. The method of claim 11, wherein F_2 is a nitrate group; and E, F_1 , G_1 , G_2 are the same or different organic radicals which may be joined in cyclic ring systems, and which may contain inorganic counterions;

with the proviso that when E and G_1 are methylene groups and F_1 is H, G_2 is not a nitrate group, nor R^N - Z^N -;

wherein R^N is any aryl or heteroaryl group and Z^N is $(CO)_{mm}$ - X^N_{nn} - Y^N_{oo} ; wherein mm, nn, oo are 0 or 1 and X^N , Y^N are NH, NR^{NN} , O or CH_2 ; wherein R^{NN} is a short chain alkyl group $(C_1 - C_{12})$.

10

15. The method of claim 12, wherein F_2 is a nitrate group; E and G_1 are methylene groups; F_1 is H; and G_2 is R^N - Z^N -;

wherein R^N is an organic radical possessing an heteroaryl group containing P or S atoms where said P or S are positioned β , γ , or δ to a nitrate group as identified in formula I; and Z^N is $W^N_{mm} - X^N_{nn} - Y^N_{oo}$;

wherein mm, nn, oo are 0 or 1 and W^N , X^N , Y^N are NH, NR^{NN} , CO, O or CH₂; wherein R^{NN} is a short chain alkyl group $(C_1 - C_{12})$.

20

1

U

ū

ŭ

- 16. The method of claim 13, wherein R¹⁹ is X-Y.
- 17. The method of claim 16, wherein:

R¹ and R³ are the same or different and selected from H and C₁-C₄, alkyl chains, which chains may include one O linking R¹ and R³ to form pentosyl, hexosyl, cyclopentyl, or cyclohexyl rings, which rings may optionally bear hydroxyl substituents;

 R^2 and R^4 are the same or different and selected from H, a nitrate group, C_1 - C_4 alkyl chains optionally bearing 1-3 nitrate groups, and acyl groups (-C(O)R⁵);

 R^7 , R^{11} are the same or different $C_1 - C_8$ alkyl or acyl;

R⁵, R⁶, R⁸, R⁹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶ are the same or different and are alkyl groups containing 1-12 carbon atoms which may contain 1-4 ONO₂ substituents; or C₁ or C₂ connections to R¹ - R³ in cyclic derivatives; and

M is H, Na⁺, K⁺, NH₄⁺ or N⁺H_kR¹¹_(4-k), where k is 0-3.

18. The method of claim 17, wherein m = 1, n = 0, p=1.

19. The method of claim 18, wherein:

X is CH₂, O, NH, NMe, CN, NHOH, N₂H₃, N₂H₂R¹³, N₂HR¹³R¹⁴, N₃, S, SCN, SCN₂H₂(R¹⁵)₂, SCN₂H₃(R¹⁵), SC(O)N(R¹⁵)₂, SC(O)NHR¹⁵, SO₃M, SH, SR⁷, SO₂M, S(O)R⁸, S(O)₂R⁹, S(O)OR⁸, S(O)₂OR⁹, PO₃HM, PO₃M₂, P(O)(OR¹⁵)(OR¹⁶), P(O)(OR¹⁶)(OM), P(O)(R¹⁵)(OR⁸), P(O)(OM)R¹⁵, CO₂M, CO₂H, CO₂R¹¹, C(O), C(O)R¹², C(O)(OR¹³), PO₂M, P(O)(OR¹⁴), P(O)(R¹³), SO, SO₂, C(O)(SR¹³), or SSR⁴; and

Y is CN, N₂H₂R¹³, N₂HR¹³R¹⁴, N₃, SCN, SCN₂H₂(R¹⁵)₂, SC(O)N(R¹⁵)₂, SC(O)NHR¹⁵, SO₃M, SR⁴, SO₂M, PO₃HM, PO₃M₂, P(O)(OR¹⁵)(OR¹⁶), P(O)(OR¹⁶)(OM), P(O)(R¹⁵)(OR⁸), P(O)(OM)R¹⁵, CO₂M, CO₂H₃ CO₂R¹¹, C(O)R¹², C(O)(SR¹³), SR⁵, or SSR⁵, or does not exist.

20. The method of claim 18, wherein:

R⁵, R⁶, R⁸, R⁹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶ are the same or different and are alkyls containing 1-12 carbon atoms; or C₁ or C₂ connections to R¹ or R³ in cyclic derivatives;

X is CH₂, O, NH, NMe, S, SO₂M, SH, SR⁷, SO₂M, S(O)₂R⁹, S(O)₂R⁹, S(O)OR⁸, S(O)₂OR⁹, PO₃M₂, P(O)(OR¹⁵)(OR¹⁶), P(O)(OR¹⁶)(OM), P(O)(R¹⁵)(OR⁸), PO₃HM or P(O)(OM)R¹⁵; and

Y is SO_2M , SO_3M , PO_3HM , PO_3M_2 $P(O)(OR^{15})(OR^{16})$, $P(O)(OR^{16})(OM)$, SR^5 , SR^4 or SSR^5 , or does not exist.

21. The method of claim 3, with the proviso that when m = n = p = 1 and R^{19} , R^2 , R^{18} , $R^1 = H$ and R^{17} , R^3 are nitrate groups, R^4 is not $C_1 - C_3$ alkyl.

20

25

5

- 22. The method of claim 13, with the proviso that when m = n = p = 1 and R^{19} , R^2 , R^{18} , $R^1 = H$ and R^{17} , R^3 are nitrate groups, R^4 is not $C_1 C_3$ alkyl.
- 23. The method of any one of claims 1, 2, 3, 4 or 5, further comprising administering the therapeutic compound with a pharmaceutically acceptable vehicle.

24. The method of any one of claims 11, 12, 13, 14 or 15, further comprising administering the therapeutic compound with a pharmaceutically acceptable vehicle.

10 25. The method of any one of claims 1, 2, 3, 4 or 5, wherein the therapeutic compound modulates levels of the cyclic nucleotides cGMP and/or cAMP in said subject.

26. The method of any one of claims 11, 12, 13, 14 or 15, wherein the therapeutic compound modulates levels of the cyclic nucleotides cGMP and/or cAMP in said subject.

- 27. The method of any one of claims 1, 2, 3, 4 or 5, wherein the therapeutic compound modulates guanylyl cyclase activity in said subject.
- 28. The method of any one of claims 11, 12, 13, 14 or 15, wherein the therapeutic compound modulates guanylyl cyclase activity in said subject.
 - 29. A compound selected from the group consisting of

CO₂H O2NO//////... 5 (IIIt), O₂NO^{IIIIII} ·n_{IIII}ONO₂ 10 ONO₂ (IIIu), .SO₂H SO₂H (IIIv), ONO₂ -OH 20 OCH₂CH₃ (IIIw), `OCH₂CH₃ ·ONO₂ 25 ·CI OCH₂CH₃ `ONa (IIIx), ·ONO₂ -CI

-ONO₂ (IIIy), -CI 5 O₂NO (IIIz), ·SO₃H O₂NQ 10 Br (IIIaa), 0NO2 O₂NO ·SO₃H (IIIab), ONO₂ -SCN (IIIac), ·ONO₂ ,ONO2 (IIIad), 25

Ϋ.

(IVo), ONa -0N0/ ONO 5 (IVp), ONQ ⁄6Nφ₂ ONO₂ 10 (IVq), O₂NO ONO₂ (IVr), ONO₂ ·ONO₂ ONO₂ ·ONO₂ 20 ·SH (IVs) -ONO₂ ONO₂ 25 and (IVt). dNO2 φNΟ₂

A compound selected from the group consisting of 31.

(Vd),

(Vf),

(Vg),

10

5

25

·ONO₂ NaO₂C ONO₂ CH₃ 01/0/2 OCH₃ ONO2 ONO₂ ·ONO₂ ONO₂ NO₂ 0002 -0NO₂

(Vh),

-Br

.CO₂H

ONO₂

ONO2

I NH₂

$$(Vi), \qquad ONO_2$$

$$ONO_2$$

(Vu), -ONO₂ -ONO₂ 5 (Vv), -OH EtO₂C -ONO₂/ OCH₃ 10 (Vw), ONO₂ ONO₂ ·OMe -\$-(Vx), ONO₂ -ONO₂ (Vy), ONO₂ -ONO₂ 25 -s (Vz), -OH -OH ONO₂ -ONO₂

A pharmaceutical composition comprising a said compound of any one of claims 29, 30 32. and 31 and a pharmaceutically acceptable vehicle.

10

5