MAT 1375, Classwork17, Fall2024

ID:______Name:

1. Review: Even function and Odd function.

If
$$f(x)$$
 is an even function, then $f(-x) = \frac{f(x)}{f(x)}$. For example, $f(-x) = \frac{f(x)}{f(x)}$. If $f(x)$ is an odd function, then $f(-x) = \frac{f(x)}{f(x)}$.

2. Definition of a **Periodic Function**:

A function f is <u>periodic</u> if there is a positive number p called a <u>period</u> such that f(x+p)=f(x) for all x.

3. The graph of $y = \sin(x)$:

Characteristics:

Period: $2 \sqrt{-}$ Domain: (-)Range: [-]

Property: Odd function with symmetry where <math>sin(-x) = -sin(x).

One-to-one function?

x	0	$\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3} \frac{31}{4} \frac{5\pi}{6}$	π	$\frac{7\pi 5 \pi}{6} \frac{4\pi}{4}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$ $\frac{7\pi}{4}$ $\frac{11\pi}{6}$	2π
sin(x)	0	7 5 5	1	2 2 2	0	-{N - X - X X	-1	N N N N N N N N N N N N N N N N N N N	D
			4 6			•			_

T

4. The graph of $y = \cos(x)$:

Characteristics:

TT

 $\mathbf{\Pi}$

Period: 2 T Domain: (-\omega, \omega)
Range: [-[,]]

Property: Quel function with $\sqrt{-axis}$ symmetry where $\cos(-x) = \cos(x)$ One-to-one function? \sqrt{D}

V

x	0	$\frac{\pi}{6}$	<u>π</u> 3	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	7π	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π
cos(x)		13	7	0	-주 ,	4 3	-(-	73	ープ	0	2	3	

I

5. The graph of $y = \tan(x)$:

Characteristics:

Period:

Domain: All real numbers except

odd multiples of $\frac{\pi}{2}$

Range: $(-\infty, \infty)$ Vertical Asymptotes: $\times = -5\pi$ \times One-to-one function? _________

Property: $\underline{0dd}$ function with $\underline{0ngi}$ symmetry where $tan(-x) = \underline{-tank}$.

_											•
	x	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	
	$\tan(x)^{Si}$	(*) under	19-13	-[-53	0=0	1 - 13	- 1 - 1	(53) M 1-10	÷ undes	ha \
	6 Amplit	ude period	and pha	se shift	_		Z	2)

Let $f(x) = a \cdot \sin(b \cdot x + c) = a \cdot \sin\left(b \cdot \left(x + \frac{c}{b}\right)\right)$ or $f(x) = a \cdot \cos\left(b \cdot \left(x + \frac{c}{b}\right)\right)$.

We define

- 1) the <u>amplitude</u> A = |a|;
- 2) the <u>Period</u> $P = \left| \frac{2\pi}{b} \right|$;
- 3) the phase shift $S = -\frac{c}{h}$.

For $f(x) = 2\sin(x)$, its A is _____.

For $f(x) = \frac{1}{2}\sin(x)$, its A is $\frac{1}{2}$.

For $f(x) = \sin(2x)$, its P is $2\sqrt{1}$ For $f(x) = \sin(4x)$, its P is $\frac{2}{4} = \frac{1}{2}$