Assignment (I)

1. (Simultaneous Recursion) Let

$$h_1(x,0) = f_1(x),$$

$$h_2(x,0) = f_2(x),$$

$$h_1(x,t+1) = g_1(x,h_1(x,t),h_2(x,t)),$$

$$h_2(x,t+1) = g_2(x,h_1(x,t),h_2(x,t)).$$

Prove that if f_1, f_2, g_1, g_2 are recurisve, then h_1, h_2 are also.

- 2. Show that the *Euler's function* $\phi(x)$ is primitive recursive, where $\phi(x)$ is defined by " $\phi(x)$ = the number of positive integers less than x which are relatively prime to x".
- 3. Construct a lambda term M s.t. $\forall m, n \in \mathbb{N}.M\lceil m\rceil\lceil n\rceil = \lceil gcd(m,n)\rceil$, where "gcd(m,n) = the greatest common divisor of m,n".($\lceil n \rceil$ represents the Barendregt numeral of n.)
- 4. The class \mathcal{E} of elementary functions is the smallest class such that
 - (a) $x+1, U_i^n(x_1, \ldots, x_n), x+y, \dot{x-y}, xy$ are all in \mathcal{E} ,
 - (b) \mathcal{E} is closed under composition,
 - (c) \mathcal{E} is closed under bounded sum and bounded products (i.e. if f(x, z) is in \mathcal{E} the so are the functions $\sum_{z < y} f(\mathbf{x}, z)$ and $\prod_{z < y} f(\mathbf{x}, z)$).

Let the binary function $exp_y(x)$ defined by

$$\exp_0(x) = x$$

$$\exp_{y+1}(x) = 2^{\exp_y(x)}.$$

- (a) Show that for every elementary function $f(x_1, \ldots, x_n)$ there is a constant k such that $f(x_1, \ldots, x_n) \leq \exp_k(\max\{x_1, \ldots, x_n\})$.[Hinit: Show that for every n there is an $m \geq n$ such that $x \cdot \exp_n(x) \leq \exp_m(x)$ for all x.]
- (b) Prove that $\mathcal{E} \subsetneq \mathcal{PR}$, where \mathcal{PR} is the class of primitive functions.
- 5. Describe an algorithm that transforms a closed λ -term to a Turing Machine. The machine should meet the specification: Whenever it starts with a closed λ -term written on its input tape, it carries out the leftmost reduction, and stops if the reduction terminates.
- 6. Describe an algorithm that transforms a TM to a URM.