

B: Detected image

A: Original image

WHAT WE WILL LEARN TODAY

- Intro to Features
- Keypoint localization
 - Harris corner detector

Some background reading: Rick Szeliski, Chapter 4.1.1; David Lowe, IJCV 2004

COMMON REQUIREMENTS

Problem 1:

Detect the same point independently in both images

No chance to match!

We need a repeatable detector!

IMAGE MATCHING: A CHALLENGING PROBLEM

by <u>Diva Sian</u>

by swashford

HARDER CASE

EVEN HARDER ...

NASA Mars Rover images

EVEN HARDER ...

NASA Mars Rover images with SIFT feature matches (Figure by Noah Snavely)

COMMON REQUIREMENTS

Problem 1:

Detect the same point independently in both images

Problem 2:

For each point correctly recognize the corresponding one

We need a reliable and distinctive descriptor!

INVARIANCE: GEOMETRIC TRANSFORMATIONS

LEVELS OF GEOMETRIC INVARIANCE

REQUIREMENTS

- 1. Region extraction needs to be repeatable and accurate
 - Invariant to translation, rotation, scale changes
 - Robust or covariant to out-of-plane (≈affine) transformations
 - Robust to lighting variations, noise, blur, quantization
- 2.Locality: Features are local, therefore robust to occlusion and clutter.
- 3. Quantity: We need a sufficient number of regions to cover the object.
- 4. Distinctivenes: The regions should contain "interesting" structure.
- 5. Efficiency: Close to real-time performance.

MANY DETECTORS AVAILABLE

- Hessian & Harris
- Laplacian, DoG
- Harris-/Hessian-Laplace
- Harris-/Hessian-Affine
- EBR and IBR
- MSER
- Salient Regions
- Others...

[Beaudet '78], [Harris '88] [Lindeberg '98], [Lowe '99] [Mikolajczyk & Schmid '01] [Mikolajczyk & Schmid '04] [Tuytelaars & Van Gool '04] [Matas '02] [Kadir & Brady '01]

Those detectors have become a basic building block for many recent applications in Computer Vision.

KEYPOINT LOCALIZATION

Goals:

- Repeatable detection
- Precise localization
- Interesting content
- ⇒ Look for two-dimensional signal changes

FINDING CORNERS

Key property:

 In the region around a corner, image gradient has two or more dominant directions

Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference, 1988.

CORNERS AS DISTINCTIVE INTEREST POINTS

Design criteria

- We should easily recognize the point by looking through a small window (*locality*)
- Shifting the window in any direction should give a large change in intensity (good localization)

"flat" region:
no change in all
directions

"edge":
no change along
the edge direction

"corner": significant change in all directions

CORNERS VERSUS EDGES

 $\sum I_v^2$ — Small

Nothing

CORNERS VERSUS EDGES

$$\sum I_x^2 \longrightarrow ??$$

$$\sum I_y^2 \longrightarrow ??$$

Corner

HARRIS DETECTOR FORMULATION

Change of intensity for the shift [u,v]:

Window function $w(x,y) = \frac{1}{1}$ or $\frac{1}{1}$ in window, 0 outside Gaussian

HARRIS DETECTOR FORMULATION

This measure of change can be approximated by:

$$E(u,v) \approx [u \ v] \ M \begin{bmatrix} u \\ v \end{bmatrix}$$

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
 Gradient with respect to x , times gradient with respect to y

Sum over image region – the area we are checking for corner

$$M = \begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y]$$

HARRIS DETECTOR FORMULATION

Image I

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
 Gradient with respect to x , with respect to

times gradient with respect to y

Sum over image region – the area we are checking for corner

$$M = \begin{bmatrix} \sum_{I_x I_x} I_x & \sum_{I_x I_y} I_x I_y \\ \sum_{I_x I_y} \sum_{I_y I_y} I_y \end{bmatrix} = \sum_{I_x I_y} \begin{bmatrix} I_x & I_y \end{bmatrix} \begin{bmatrix} I_x & I_y \end{bmatrix}$$

WHAT DOES THIS MATRIX REVEAL?

First, let's consider an axis-aligned corner:

$$M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

WHAT DOES THIS MATRIX REVEAL?

First, let's consider an axis-aligned corner:

$$M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

This means:

- Dominant gradient directions align with x or y axis
- If either λ is close to 0, then this is not a corner, so look for locations where both are large.

What if we have a corner that is not aligned with the image axes?

GENERAL CASE

• Since M is symmetric, we have $M=R^{-1}\begin{bmatrix}\lambda_1 & 0\\ 0 & \lambda_2\end{bmatrix}R$

(Eigenvalue decomposition)

 We can visualize M as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

INTERPRETING THE EIGENVALUES

Classification of image points using eigenvalues of *M*:

$$Q = \det(M) - 2\operatorname{trace}(M)^2 = {1 \choose 1}_2 - 2({1 \choose 1} + {1 \choose 2}^2$$

"Edge" $\theta < 0$ "Corner" $\theta > 0$ "Flat" "Edge" region

Fast approximation

- Avoid computing the eigenvalues
- α: constant(0.04 to 0.06)

WINDOW FUNCTION W(X,Y)

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Option 1: uniform window

Sum over square window

$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Problem: not rotation invariant

1 in window, 0 outside

Option 2: Smooth with Gaussian

Gaussian already performs weighted sum

$$M = g(\sigma) * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Result is rotation invariant

SUMMARY: HARRIS DETECTOR

Compute second moment matrix (autocorrelation matrix)

$$M(\sigma_I, \sigma_D) = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$
 1. Image derivatives

2. Square of derivatives

3. Gaussian filter $g(\sigma_l)$

4. Cornerness function - two strong eigenvalues

$$Q = \det[M(S_I, S_D)] - a[\operatorname{trace}(M(S_I, S_D))]^2$$

= $g(I_x^2)g(I_y^2) - [g(I_xI_y)]^2 - \alpha[g(I_x^2) + g(I_y^2)]^2$

5. Perform non-maximum suppression

Slide credit: Krystian Mikolajczyk

HARRIS DETECTOR - RESPONSES

Slide credit: Krystian Mikolajczyk

HARRIS DETECTOR - RESPONSES

HARRIS DETECTOR - RESPONSES

Results are well suited for finding stereo correspondences

Slide credit: Kristen Grauman

HARRIS DETECTOR - PROPERTIES

1. Translation invariance?

Slide credit: Kristen Grauman

HARRIS DETECTOR - PROPERTIES

- 1. Translation invariance
- 2. Rotation invariance?

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response θ is invariant to image rotation

Slide credit: Kristen Grauman

HARRIS DETECTOR - PROPERTIES

- 1. Translation invariance
- 2. Rotation invariance
- 3. Scale invariance?

Not invariant to image scale!

DOES SCALE MATTER?

When detecting corners, the 'scale' of the window you use can change the corners you detect.

SCALE INVARIANT DETECTION

- 1. Consider regions (e.g. circles) of different sizes around a point
- 2. Find regions of corresponding sizes that will look the same in both images?

SCALE INVARIANT DETECTION

The problem: how do we choose corresponding circles *independently* in each image?

