Thermodynamics and Statistical Physics: A Summary of Lectures and Some Useful Formulae

Nicholas Sedlmayr*

Institute of Physics, Maria Curie-Skłodowska University,
Plac Marii Skłodowskiej-Curie 1, PL-20031 Lublin, Poland
(Dated: April 26, 2022)

CONTENTS

I.	Fundamentals of Statistical Physics	2
	A. The Microcanonical Ensemble	2
	B. The Canonical Ensemble	2
	C. The Grand Canonical Ensemble	2
	D. Free energies/Thermodynamic potentials	3
II.	Thermodynamic Laws	3

 $^{^*}$ e-mail: sedlmayr@umcs.pl

I. FUNDAMENTALS OF STATISTICAL PHYSICS

A. The Microcanonical Ensemble

- Microcanonical ensemble distribution function: $\rho = \delta(E E')/\Omega(E)$, where $\Omega(E)$ is the number of microstates with energy E.
- Entropy for the Microcanonical ensemble $S = k_B \ln \Omega(E)$.

B. The Canonical Ensemble

- Inverse temperature: $\beta = 1/k_BT$.
- Canonical ensemble: $\rho(E_n) = e^{-\beta E_n}/Z$.
- Partition function for the canonical ensemble: $Z = \sum_{n} e^{-\beta E_n}$.
- Entropy for the canonical ensemble: $S = -k_B \sum_n \rho(E_n) \ln \rho(E_n)$.
- Heat capacity: $C = \frac{\partial E}{\partial T}, \frac{C}{T} = \frac{\partial S}{\partial T}$.
- Pressure: $p = T \frac{\partial S}{\partial V}$
- (Helmholtz) Free energy $F = -k_B T \ln Z$

We can write many useful quantities in terms of the partition function:

- $S = k_B \frac{\partial}{\partial T} (T \ln Z)$.
- $\langle E \rangle = -\frac{\partial}{\partial \beta} \ln Z$.

We can also write many useful quantities in terms of the free energy:

• $C_V = -T \frac{\partial^2 S}{\partial T^2}$.

C. The Grand Canonical Ensemble

- Grand Canonical ensemble: $\rho(E_n) = e^{-\beta E_n + \beta \mu N} / \mathcal{Z}$.
- Partition function for the grand canonical ensemble: $\mathcal{Z} = \sum_n e^{-\beta E_n + \beta \mu N}$.
- Entropy for the canonical ensemble: $S = k_B \frac{\partial}{\partial T} (T \ln \mathcal{Z})$.

• (Helmholtz) Free energy $F = -k_BT \ln Z$

Some useful expressions:

•
$$\langle N \rangle = \frac{1}{\beta} \frac{\partial}{\partial \mu} \ln \mathcal{Z}$$
.

D. Free energies/Thermodynamic potentials

- (Helmholtz) Free energy F = E TS.
- *H*.
- Grand canonical potential $\Phi = F \mu N$

II. THERMODYNAMIC LAWS