

Sample Paper Half Yearly

Class 9th (2025-2026)

Subject: - Mathematics

(OIN: - MATH/01/9/SARA/2025/SP)

General Instructions: -

- 1. Attempt al questions as per instructions
- 2. This sample paper consists of 5 sections.
- 3. Marking schemes are as follows; -

Section A: 20 questions of 1 mark each (1*20=20) Section B: 5 questions of 2 marks each (5*2=10)

Section C: 6 questions of β marks each (6* β =18)

Section D: 4 questions of 5 marks each (4*5=20)

Section E. 2 case based study with each of 4 marks (2*6=12)

Section [A]

- 1. The resultant of $(3 + \sqrt{3})$ $(3 \sqrt{3})$ is:
 - a) 9
 - b) 0
 - c) 6
 - d) $(3 \sqrt{3})$
- 2. The decimal expansion of $\frac{1}{3}$ is:
 - a) Terminating
 - b) Non terminating, repeating
 - c) Non terminating, non-repeating
 - d) None

- 3. The general form of a linear equation in two variable is;
 - a) ax + by + c = d
 - b) $ax^2 + by + c = 0$
 - c) ax + b + cy = 0
 - d) ax + by + c = 0
- 4. $3\sqrt{9}$ is a _____ number:
 - a) Rational
 - b) Irrational
 - c) Neither rational nor irrational
 - d) None of the above
- 5. Points (1, -2), (2, -3), (3, 4):
 - a) Lie in third quadrant
 - b) Do not lie in same quadrant
 - c) Lie in first quadrant
 - d) Do not lie in fourth axiom

- c) $\frac{1}{2}$
- d) 2
- 7. The boundaries of solids are:
 - a) Lines
 - b) Curves
 - c) Surfaces
 - d) Points
- 8. The linear equation 3x 11 = x has:
 - a) Unique Solutions
 - b) Infinitely many solutions
 - c) Two solutions
 - d) No solution

- 9. Each angle of an equilateral triangle is:
 - a) 180°
 - b) 50°
 - c) 60°
 - d) 90°
- 10. In the given figure, what is the value of x?

- a) 230 degrees
- b) 70 degrees
- c) 110 degrees
- d) 130 degrees
 - 11. There are _____ chapters of Euclid books?
 - a) 12
 - b) 11
 - c) 13
 - d) 10

- 12. A point has
 - a) Length
 - b) Breadth
 - c) Height
 - d) None of these
- 13. Signs of the ordinate of a point in second quadrant ae respectively:
 - a) -, +
 - b) +, -
 - c) +, +
 - d) -, -
- 14. "IF two angles and an excluded side of a triangle are equal to the two angles and an excluded side of the other triangle, then both are congruent" Which criteria is related to this:
 - a) SAS
 - b) AAS
 - c) ASA
 - d) RHS

- a) 3
- b) -12
- c) -6
- d) 6

Section [B]

- 21. A herd of sheep and goats contain 400 legs and sheep are twice the number of goats. Write a linear equation to express this statement.
- 22. Find the value of the polynomial $p(x)=6x^2+4x-5$ at:
- a) x=5
- b) $x = \frac{1}{2}$
- c) x = -2

- 23. Write any two numbers whose decimal expansion are non-terminating and non-recurring & any two numbers whose decimal expansion is non-terminating but recurring
- 24. Write any two axioms of Euclid
- 25. Find the zeros for following equations; -
- a) $15x 7 + 2x^2$
- b) $y^{1/2} + \sqrt{3}$

Section [C]

26. Represent $\sqrt{5}$ on number line and explain how

OR

Check whether the given are the solutions of the equation x-2y

27. In the figure $\angle PQR = \angle PRQ$, then prove that $\angle PQS = \angle PRT$

28. Prove that POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OR and OP. Prove that: -

$$\angle ROS = \frac{1}{2}(\angle QOS - \angle POS)$$

29. E and F are respectively the mid-points of equal sides AAB and Ac of triangle ABC. Show that BF = CE.

- 30. Factorise the expression: $x^3 + 13x^2 + 32x + 20$
- 31. Factorise the following; -

a)
$$(-12)^3 + (7)^3 + (5)^3$$

b)
$$(28)^3 + (-15)^3 + (-13)^3$$

<u>OR</u>

Prove that a line segment has one and only mid-point.

Section [E]

- 32. Factorise the following: -
- a) $27y^3 + 125z^3$
- b) $64m^3 343n^3$

33. In the given figure, lines AB and CD intersect at 0. If $\angle AO + \angle BOE = 70^{\circ}$ and $\angle BOD = 40^{\circ}$; Find $\angle BOE$ and $ref \times \angle COE$

- 34. ABC is a triangle in which altitudes BE and CF to sides AC and AB respectively are equal. Show that:
- a) Triangle ABE congruent to Triangle ACF
- b) AB = AC

35.

See fig , and write the following:

- (i) The coordinates of B.
- (ii) The coordinates of C.
- (iii) The point identified by the coordinates (-3, -5).
- (iv) The point identified by the coordinates (2, -4).
- (v) The abscissa of the point D.
- (vi) The ordinate of the point H.
- (vii) The coordinates of the point L.
- (viii) The coordinates of the point M.

Section [E]

36. Case Study; -

Maths teacher draws a straight-line Ab shown on the blackboard as per the following figure: -

- b) What is the value of y?
- 1. 48 degrees
- 2. 96 degrees
- 3. 24 degrees
- 4. 120 degrees
- c) What is the value of?
- 1. 48 degrees
- 2. 96 degrees
- 3. 42 degrees
- 4. 120 degrees

- d) What should be the value of (x+2z)?
 - 1. 148 degrees
 - 2. 360 degrees
 - 3. 180 degrees
 - 4. 120 degrees
- 37. On his birthday, Manoj planned that this time he celebrates his birthday in a small orphanage centre. He bought apples to give to children and adults working there. Manoj donated 2 apples to each children and 3 apples to each adult working there along with birthday cake. He distributed 60 total apples.
- a) How to represent the above situation in linear equations in two variables by taking the number of Children as x and number of adults as y?
- b) If number of children is 15, then find number of adults
- c) find the value of b if $\underline{x}=5$ and y=0 is a solution of the equation 3x+5y=b

d) if the no of adults is 16, then find the number of childrens

THANKS!!