Forest Cover Type Prediction

A Classification Problem

Group Members:

Abhishek Agrawal Nisarg Gandhi Rohit Arora Tyler Stocksdale

Forest Cover Type Prediction

The Problem Statement

Spruce/Fir Lodgepole Pine Ponderosa Pine Cottonwood/Willow Aspen Douglas-fir Krummholz

7 Cover Types

The Problem Statement

The Problem Statement

The Data Set

Spruce/Fir Lodgepole Pine Ponderosa Pine Cottonwood/Willow Aspen Douglas-fir Krummholz

7 Cover Types (Class) 54 Attributes 40 Soil Types
4 Areas of Wilderness
Elevation, Aspect
Slope
Horizontal distance to Hydrology
Vertical distance to Hydrology
Horizontal Distance to Roadways
Horizontal Distance to Fire Points
Hillshade at 9am
Hillshade at Noon
Hillshade at 3pm10

The Data Set

kaggle

The Data Set

Constraints

Big Difference in Training and Test Data Size

Forest Cover Type Prediction

Constraints

Big Difference in Training and Test Data Size 40 Soil Types
4 Areas of Wilderness
Elevation, Aspect
Slope
Horizontal distance to Hydrology
Vertical distance to Hydrology
Horizontal Distance to Roadways
Horizontal Distance to Fire Points
Hillshade at 9am
Hillshade at Noon
Hillshade at 3pm10

Different Attribute Types

Constraints

Big Difference in Training and Test Data Size 40 Soil Types
4 Areas of Wilderness
Elevation, Aspect
Slope
Horizontal distance to Hydrology
Vertical distance to Hydrology
Horizontal Distance to Roadways
Horizontal Distance to Fire Points
Hillshade at 9am
Hillshade at Noon
Hillshade at 3pm10

Different Attribute Types Only Cartographic Data

No Latitude and Longitude

Values

Missing Remote Sensed Data

Related Work

Blackard, Jock A. and Denis J. Dean, 1999

Prediction Accuracy %

70.58%

Feed-Forward Artificial Neural Network

(ANN architecture: 54-120-7, Learning Rate: 0.05, Momentum Rate: 0.5 and Learning Algorithm: Backpropagation)

Linear Discriminant Analysis

58.38%

Preprocessing

Reduction and Transformation

	1	2	3	
1	0	0	0	1
3	0	0	0	0
	1	0	0	0
	0	1	0	0

		Soil Type	Area Of Wilderness	Cover Type
	1	S40	W2	C5
	2	S26	W2	C4
:	3	S1	W4	C7
		S2	W1	C1

Asymmetric Reduction and Nominal Data

Preprocessing

Standard
Normalization:
x'=(x-μ)/σ

Min/Max
Normalization:
x'=(x-min)/(max-min)

First attempt at normalizing data

Better normalization due to differences in test and training data set

Exploratory Data Analysis

Classifiers

Classifiers we explored:

- 1. Decision Tree
- k-NN
- 4. Random Forests
- Gradient Boost Model
- 6. Naive Bayesian
- Rule Induction

Classifiers

Random Forest Parameter Tuning

Best Parameter for Random Forest, mtry = 20, ntree = 300

Classifiers

SVM Parameter Tuning

KNN Parameter Tuning

Best Parameter for RBF Kernel, Gamma = 10, Cost = 8

Best Parameter for KNN, K = 5

Results

Classifier	Tool	Accuracy	Top Recall	Top Precision	Test Data Accuracy(Kaggle)
KNN	RapidMiner, R	83.31%	4 > 7 > 5 > 6	7 > 3 > 4 > 5	69.67%
SVM	R, RapidMiner	84.80%	4 > 7 > 5 > 6	7 > 4 > 5 > 3	76.69%
Decision Tree	R, Weka	78.28%	4 > 7 > 5 > 6	7 > 4 > 5 >3	58.89%
Naive Bayesian	R	66.20%	7 > 4 > 5 > 1	7 > 4 > 5 > 3	Not Submitted
Random Forest	R	88.23%	4 > 7 > 5 > 3	7>4>5>6	75.60%
Gradient Boost Model	R	87.12%	4 > 7 > 6 > 5	7 > 3 > 4 > 5	69.82%
Rule Induction	R	76.41%	4 > 7 > 5 > 6	4 > 7 > 5 > 6	58.32%

Timeline

Future Work

- Semi Supervised Learning Methods to increase the training data size
- Using two-way classification approaches to distinguish between majority class groups with minority
- Feature Engineering using Principal Component Analysis
- Apply of advanced classifiers and boosting methods.

References

- [1] https://archive.ics.uci.edu/ml/datasets/Covertype
- [2] Comparative Accuracies of Artificial Neural Networks and Discriminant Analysis in Predicting Forest Cover Types from Cartographic Variables (2000) by J. A. Blackard and D. J. Dean. In: Computers and Electronics in Agriculture 24(3), pp. 131-151.
- [3] http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf "A Practical Guide to Support Vector Classification".
- [4] http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm "Random Forests Leo Breiman and Adele Cutler", Random Forests. Web. 16 Nov. 2014.
- [5] http://vimeo.com/71992876 "Using GBM for Classification in R".
- [6] https://en.wikipedia.org/wiki/Random forest "Random Forest" Wikipedia. Wikimedia Foundation, 14 Nov. 2014. Web. 16 Nov. 2014.

