EECS 545: Machine Learning

Lecture 6. Kernel methods

Honglak Lee 1/26/2011

Outline

- Recap: Exponential Family distribution
- Recap: Probabilisitic Generative models
 - Gaussian Discriminant Analysis
 - Naive Bayes
- Kernel methods

Kernel methods: Motivation

Linear regression

- Example: 1D regression, one input x, one output y(x)
- Linear model $y(x) = w^T x$ can only produce straight lines through origin
- Not very flexible/powerful
- Can we do better?

Feature Transformations

Replace $x \rightarrow (1,x) \rightarrow$

Replace $x \rightarrow (1,x,x^2,x^3) \rightarrow$

Linear models with transformations

$$y(\mathbf{x}, \mathbf{w}) = \mathbf{w}' \boldsymbol{\phi}(\mathbf{x}) = \sum_{j=0}^{M} w_j \phi_j(\mathbf{x})$$

 Use sum of squares error function (idea from Gauss) plus regularization

Sauss) plus regularization
$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}' \phi(\mathbf{x}_n) - t_n)^2 + \frac{\lambda}{2} \mathbf{w}' \mathbf{w}$$
 on is simple
$$\mathbf{w} \in \mathbb{R}^{N}$$

Solution is simple

$$\mathbf{w} = -\frac{1}{\lambda} \sum_{n=1}^{N} (\mathbf{w}' \boldsymbol{\phi}(\mathbf{x}_n) - t_n) \boldsymbol{\phi}(\mathbf{x}_n) \to \mathbf{w} = (\lambda \mathbf{I} + \mathbf{\Phi}' \mathbf{\Phi})^{-1} \mathbf{\Phi}' \mathbf{t}$$

$$\mathbf{\phi}^{\mathsf{T}}(\mathbf{x}) (\mathbf{w})$$

This is nice, but:

- What transformations to use?
- Computational complexity increases if transformation vector gets longer (n data points of dimension d are stored row-wise in Φ, and we must invert Φ'Φ which is a d x d matrix, complexity scales with d³)

Kernel Functions

- We have been mapping each data point x through a fixed non-linear mapping to get a feature vector $\phi(\mathbf{x})$
 - The feature vector extracts important properties from the surface representation of x.
 - It may make many inferences easier.
- Unfortunately, the feature vector may be highdimensional, even infinite-dimensional.

Linear classifiers

- No linear separating plane
- Linear classifiers not very flexible/powerful
- Can we do better?

$$r = x^2 + y^2$$
or $r = \sqrt{x^2 + y^2}$

Linear classifiers

 $W^{T} \phi(x) = -1 + \sqrt{X^{2}y^{2}}$ $\geq 0 \rightarrow 1^{20} \text{ with } x$

Χ

 Add distance to origin (x²+y²)^{1/2} as a third feature $\phi(x) = \left(1, x, y, \sqrt{x^2 + y^2} \right)$ $W = \begin{bmatrix} -1 & 0 & 0 & 1 \end{bmatrix}$

 Data now lives on a parabolic surface in 3D

Linear separation in 3D = x=1x2y²

 In original feature space, boundary is an ellipse X

W=[-(,0,0,1]

1/x

Linear classifiers

- Data has been mapped to a new, higher dimensional space (where it lives on a curved manifold)
- Alternative way to think about this: data still lives in original space but the definition of distance or inner product has been changed (PRMLex6.3)
- Suddenly linear methods become nonlinear

Polynomial expansion

$$= w_0 + w_1 x_+^2 + w_2 y_-^2 = 0$$

• Replace $(x,y) \rightarrow (x^2,y^2)$ $= w_0 + w_1 x^2 + w_2 y^2 = 0$ $= w_0 + w_1 x^2 + w_2 y^2 = 0$ $\Rightarrow \frac{x^2}{w_2^2} + \frac{y^2}{w_1^2} = -\frac{w_0}{w_1^2} w_2$ 2.5 1.5 2.5

Not linearly separable

Linearly separable

So different expansions make the problem solvable with linear methods!

Classifiers on steroids

- Create polynomial combinations of the original features, up to some order
- Put these in the classifier instead of the original ones
- Problem: curse of dimensionality

Curse of dimensionality

Dimensionality n polynomials up to order d

$$n_f = \frac{(n+d-1)!}{d!(n-1)!}$$

sampling r times from n types of elements (with repetition).

$$_{n}H_{r} =_{n+r-1} C_{r}$$

Suppose we use pixel values of small images,

e.g. $28 \times 28 = 784$ pixels

- $d=1 n_f=784$
- $d=2 n_f=307 k$
- $d=3 n_f=80M$
- $d=4 n_f=16G$

Kernels to the rescue!

- 1. Embed data in a high dimensional space
- Use simple models (linear relations) in this space
- 3. Use algorithms that do not need the coordinates of the embedded points, but only pairwise inner products
- Compute these inner products efficiently using a kernel

The kernel trick

- It would be nice if we could work in a higher dimensional space without increasing computational complexity
- Solution: make mapping implicit, instead of explicit

Kernel Functions

• A kernel function k(x,x') is intended to represent the similarity between x and x'.

A popular way to express similarity is as the inner to example, product of feature vectors:

$$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}') \longrightarrow \mathbf{x} \in \mathbb{R}$$
example 1 example 2

 We define a kernel function k(x,x') as one that can be expressed as an inner product, but we may not need to compute it that way.

2D Example

Normal inner product between two vectors

$$\phi(\mathbf{x}) = \underbrace{(x_1, x_2)}_{\uparrow} \text{ and } \underbrace{(y_1, y_2)}_{\downarrow} = \phi(\mathbf{y})$$
example 1 example 2 $k(x, y) = x_1 y_1 + x_2 y_2 = \phi(\mathbf{x})_{\downarrow} \phi(\mathbf{y})$

Let's replace this by its square

$$k(x,y) = (x_1y_1 + x_2y_2)^2 = (x_1^2y_1^2 + x_2^2y_2^2) + 2x_1y_1x_2y_2 = (x_1y_1 + x_2y_2)^2 = (x_1y_1 + x_2y_2)^2 = (x_1y_1 + x_2y_2)^2 + 2x_1y_1x_2y_2 = (x_1y_1 + x_2y_2)^2 = (x_1y_1 + x_2y_2)^2 + 2x_1y_1x_2y_2 = (x_1y_1 + x_2y_2)^2 = (x_1y_1 + x_2y_2)^2 + 2x_1y_1x_2y_2 = (x_1y_1 + x_2y_2)^2 = (x_1y_1 + x_2y_2)^2 + 2x_1y_1x_2y_2 = (x_1y_1 + x_2y_2)^2 = (x_1y_1 + x_2y_2)^2 + 2x_1y_1x_2y_2 = (x_1y_1 + x_2y_2)^2 = (x_1y_1 + x_2y_1 + x_2y_2)^2 = (x_1y_1 + x_2y_2)^2 = (x_1y_1 + x_2y_2)^2 = (x_1y_1 + x_2y_2)^2 = (x_1y_1 +$$

- This is the same as the regular inner product between $(x_1, x_2, \sqrt{2}x_1x_2)$ and $(y_1, y_2, \sqrt{2}y_1y_2)$
- Or between $(x_1, x_2, x_1x_2, x_2x_1)$ and $(y_1, y_2, y_1y_2, y_2y_1)$

➤ Solution not unique!

Example

Take the pixel values and compute

$$\underline{k(\mathbf{x}, \mathbf{x}')} = (\mathbf{x}' \mathbf{x}' + 1)^d$$

and you compute the inner product in the space of all polynomials (for $dim(\mathbf{x})=784$ and d=4 a 16G dimensional space!)

Kernel trick

- So by using different definitions for inner product, we can compute inner products in a high dimensional space, with only the computational complexity of a low dimensional space
- Many algorithms can be expressed completely in terms of kernels k(x,x'), rather than other operations on x.
- In this case, you can replace one kernel with another, and get a new algorithm that works over a different domain.

Kernel trick

- The dual representation, and its solutions, are entirely written in terms of kernels.
- The elements of the Gram matrix $(\mathbf{K}) = \mathbf{\Phi} \mathbf{\Phi}^T$

- are
$$K_{nm} = \phi(\mathbf{x}_n)^T \phi(\mathbf{x}_m) = k(\mathbf{x}_n, \mathbf{x}_m)$$

- These represent the pairwise similarities among all the observed feature vectors.
 - We may be able to compute the kernels more efficiently than the feature vectors.

Kernel substitution

- To use the kernel trick, we must formulate (training and test) algorithms purely in terms of inner products between data points
- We can not access the coordinates of points in the high-dimensional feature space
- This seems a huge limitation, but it turns out that quite a lot can be done

Example: distance

Distance between samples can be expressed in inner products:
 (φ(x) - φ(ξ))^T (φ(x) - φ(ξ))

$$\begin{aligned} \left(\phi(\mathbf{x}) - \phi(\mathbf{z}) \right)^{\dagger} \left(\phi(\mathbf{x}) - \phi(\mathbf{z}) \right) \\ ||\phi(\mathbf{x}) - \phi(\mathbf{z})||^2 &= \left\langle \phi(\mathbf{x}) - \phi(\mathbf{z}), \phi(\mathbf{x}) - \phi(\mathbf{z}) \right\rangle \\ &= \left\langle \underline{\phi(\mathbf{x}), \phi(\mathbf{x})} \right\rangle - 2\left\langle \phi(\mathbf{x}), \phi(\mathbf{z}) \right\rangle + \left\langle \underline{\phi(\mathbf{z}), \phi(\mathbf{z})} \right\rangle \\ &= \kappa(\mathbf{x}, \mathbf{x}) - 2\kappa(\mathbf{x}, \mathbf{z}) + \kappa(\mathbf{z}, \mathbf{z}) \end{aligned}$$

 So nothing stops you from doing k-nearest neighbor searches in high dimensional spaces

Example: the mean

 Can you determine the mean of data in the mapped feature space through kernel operations only → no, you cannot compute any point explicitly

Example: distance to mean

- Mean of a set given by $\phi_S = \frac{1}{l} \sum_{i=1}^{l} \phi(\mathbf{x}_i)$
- Distance to mean:

$$||\phi(\mathbf{x}) - \phi_s||^2 = \langle \underline{\phi(\mathbf{x}), \phi(\mathbf{x})} \rangle + \langle \underline{\phi_S, \phi_S} \rangle - 2\langle \underline{\phi(\mathbf{x}), \phi_S} \rangle$$

$$= \kappa(\mathbf{x}, \mathbf{x}) + \frac{1}{l^2} \sum_{i,j=1}^{l} \kappa(\mathbf{x}_i, \mathbf{x}_j) - \frac{2}{l} \sum_{i=1}^{l} \kappa(\mathbf{x}, \mathbf{x}_i)$$

Matrix of all pairwise inner products **K** called the Gram matrix. This term is average of the Gram matrix

Exercise

- Create 2-class, nD data (vary n) uniformly in bands at distance r from the origin with 0<r<1 (class A) and 1<r<2 (class B). 100 points per class
- Method 1: Try the nearest mean classifier (NMC). Will it give good results?
- Method 2: Try an explicit feature transformation that results in good classification performance with NMC
- Method 3: Try an implicit feature transform (kernel trick) with a polynomial kernel and a kernel formulation of the nearest mean
- Compare performance and computational complexity of the three methods.

Dual Representations

Recall regression problems with error function

$$\underline{J(\mathbf{w})} = \frac{1}{2} \sum_{n=1}^{N} \{ \mathbf{w}^{T} \phi(x_n) - t_n \}^2 + \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}_{\text{#features}}$$

• J(w) is minimized at

$$\mathbf{w}_{ML} = (\underbrace{\lambda \mathbf{I} + \mathbf{\Phi}^T \mathbf{\Phi}}_{\mathsf{M} imes \mathsf{M}})^{-1} \mathbf{\Phi}^T \mathbf{t}$$

- $\mathbf{w}_{ML} = (\lambda \mathbf{I} + \mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t}$ $\mathbf{w}_{ML} = (\lambda \mathbf{I} + \mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t}$ \mathbf{w}_{MXM} \mathbf{w}_{MXM} Recall the N x M design matrix that is central to this solution.
- We can approach the solution a different way

The Design Matrix

- The design matrix is an NxM matrix, applying
 - the M basis functions (across)
 - to N data points (down)

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \hline \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \hline \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$
where mapping of $\chi^{(i)}$ $\Phi \mathbf{w} \approx \mathbf{t}$

The Gram Matrix

• For regression, a key term is the MxM matrix

$$\mathbf{\Phi}^T\mathbf{\Phi}$$

"Covariance"

$$\mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^T$$

- Note that $K_{nm} = \phi(\mathbf{x}_n)^T \phi(\mathbf{x}_m) = k(\mathbf{x}_n, \mathbf{x}_m)$
 - The pairwise similarities of all the data points in the training set.
- Note that kernel methods use only K, not Φ .

Dual Representations

Another way to minimize J(w) is

$$\mathbf{w} = -\frac{1}{\lambda} \sum_{n=1}^{N} \{ \mathbf{w}^{T} \phi(\mathbf{x}_{n}) - t_{n} \} \phi(\mathbf{x}_{n}) = \sum_{n=1}^{N} a_{n} \phi(\mathbf{x}_{n}) = \mathbf{\Phi}^{T} \mathbf{a}$$

where

$$a_n = -\frac{1}{\lambda} \{ \mathbf{w}^T \phi(\mathbf{x}_n) - t_n \} \qquad \forall \mathbf{w} = \mathbf{w}^T \phi(\mathbf{x}_n) - \mathbf{w}^T \phi(\mathbf{x}_n) - \mathbf{w}^T \phi(\mathbf{x}_n) = \mathbf{w}^T \phi(\mathbf{x}_n) - \mathbf{w}^T \phi(\mathbf{x}_n$$

- Let a be the parameter, instead of w.
- Transform J(w) to J(a) by substituting

$$\mathbf{w} = \mathbf{\Phi}^T \mathbf{a}$$

unknown variable that we want to solve

Dual Representations

Transform J(w) to J(a) by using

$$\mathbf{w} = \mathbf{\Phi}^T \mathbf{a}$$

• and the *Gram* matrix $(\mathbf{K} = \mathbf{\Phi}\mathbf{\Phi}^T)$

$$\mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^T$$

- Find a to minimize J(a): $\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1}\mathbf{t}$
- For predictions:

$$y(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) = \mathbf{a}^T \mathbf{\Phi} \phi(\mathbf{x}) = \mathbf{k}(\mathbf{x})^T (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{t}$$

where

$$\mathbf{k}(\mathbf{x})$$
 has elements $k_n(\mathbf{x}) = k(\mathbf{x}_n, \mathbf{x})$

Regularized linear regression

$$y(\mathbf{x}, \mathbf{w}) = \mathbf{w}' \phi(\mathbf{x}) = \sum_{j=0}^{M} w_{j} \phi_{j}(\mathbf{x})$$

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}' \phi(\mathbf{x}_{n}) - t_{n})^{2} + \frac{\lambda}{2} \mathbf{w}' \mathbf{w}$$

$$\mathbf{w} = -\frac{1}{\lambda} \sum_{n=1}^{N} (\mathbf{w}' \phi(\mathbf{x}_{n}) - t_{n}) \phi(\mathbf{x}_{n}) = \sum_{n=1}^{N} a_{n} \phi(\mathbf{x}_{n}) = \Phi' \mathbf{a}$$

$$\mathbf{w} = \Phi' \mathbf{a}$$

Testing: given test example
$$x$$
 $w^T \phi x > 0$
 $w = \overline{\Phi}^T \alpha$
 $w = \overline{\Phi}^T \alpha$

Primal versus dual

- Primal: $\mathbf{w} = (\mathbf{\Phi}'\mathbf{\Phi} + \lambda \mathbf{I}_M)^{-1}\mathbf{\Phi}'\mathbf{t}$
- Dual: $\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{t}$
- Primal: invert M by M matrix (M = dim feature space), w vector of length M
- $O(M^3)$
- Dual: invert N by N matrix (N = nr data points), a vector of length N

- Primal: cheaper because usually N > M
- Dual: can use the kernel trick!!!

Memory-Based Methods

 Store many instances x in their surface { (xti) x) } i=1,..., N tent examples representation.

• Use kernels k(x,x') to represent similarity. ||(-1/4)|| = ||-1/4|| = -|-1/4|| =

 Kernels can be defined over vectors, images, 11 dissimathr" sequences, graphs, text, etc.

Simple Types of Kernels

Inner product in Euclidean spaces

$$-k(\mathbf{x},\mathbf{x}') = \mathbf{x}^{\mathsf{T}}\mathbf{x}' \iff \mathsf{primal}$$

Stationary kernels depend only on difference

$$-k(\mathbf{x},\mathbf{x}') = k(\mathbf{x}-\mathbf{x}')$$

 Radial basis functions depend only on the magnitude of the difference

$$-k(\mathbf{x},\mathbf{x}')=k(||\mathbf{x}-\mathbf{x}'||)$$

• One can do *kernel engineering* to create kernels for particular purposes, expressing different kinds of similarity. $\times \longrightarrow \phi(\times)$

• Method 1: One way is to define the feature space mapping $\phi(\mathbf{x})$ and then define the kernel

$$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}') = \sum_{i=1}^{N} \phi_i(\mathbf{x}) \phi_i(\mathbf{x}')$$

• Define a kernel function directly, such as $k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^2$

In 2D, we can explicitly identify the feature

map
$$\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$
 $\times \to \phi(\mathbf{x}) = \begin{pmatrix} \mathbf{x}_1^2 \\ \sqrt{2}\mathbf{x}_1\mathbf{x}_2 \\ \mathbf{x}_1\mathbf{x}_2 \end{pmatrix}$ such that $k(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x})^T\phi(\mathbf{z})$ $k(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x})^T\phi(\mathbf{z})$

- But these can be very complex.
 - Kernels help us avoid that complexity.

- A simpler way to test without having to construct Φ(x):
- Use the necessary and sufficient condition that for a function k(x,x') to be a valid kernel:
 - the Gram matrix K, whose elements are given by $k(x_n, x_m)$, should be positive semidefinite for all possible choices of the set $\{x_n\}$
 - I.e., K is positive semidefinite:

$$a^T K a \equiv \sum_{ij} a_i K_{ij} a_j \ge 0, \forall a \in R^N$$

 There are a number of axioms that help us construct new, more complex kernels, from simpler known kernels. For example,

$$\underline{k(\mathbf{x}, \mathbf{x}')} = \underline{f(\mathbf{x})} \underline{k_1(\mathbf{x}, \mathbf{x}')} f(\mathbf{x}')$$

$$\underline{k(\mathbf{x}, \mathbf{x}')} = \exp(k_1(\mathbf{x}, \mathbf{x}')) \xrightarrow{\times} \varphi_1(\mathbf{x}')$$

Prove that the Gaussian kernel

$$k(\mathbf{x}, \mathbf{x}') = \exp(-||\mathbf{x} - \mathbf{x}'||^2/2\sigma^2)$$

• is a valid kernel.

$$x \mapsto f(x) \phi_1(x)$$

$$x' \mapsto f(x') \phi_1(x')$$

 $k(x, x') = \phi_1(x) \phi_1(x')$

Building kernels out of simpler kernels

Given valid kernels $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$, the following new kernels will also be valid:

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_3(\phi(\mathbf{x}), \phi(\mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = k_3(\phi(\mathbf{x}), \phi(\mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = k_3(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$$

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a)k_b(\mathbf{x}_b, \mathbf{x}'_b)$$

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a)k_b(\mathbf{x}_b, \mathbf{x}'_b)$$

$$(6.13)$$

$$(6.14)$$

$$(6.15)$$

$$(6.16)$$

$$(6.17)$$

$$(6.18)$$

$$(6.19)$$

$$(6.21)$$

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a)k_b(\mathbf{x}_b, \mathbf{x}'_b)$$

$$(6.21)$$

where c > 0 is a constant, $f(\cdot)$ is any function, $q(\cdot)$ is a polynomial with nonnegative coefficients, $\phi(\mathbf{x})$ is a function from \mathbf{x} to \mathbb{R}^M , $k_3(\cdot, \cdot)$ is a valid kernel in \mathbb{R}^M , \mathbf{A} is a symmetric positive semidefinite matrix, \mathbf{x}_a and \mathbf{x}_b are variables (not necessarily disjoint) with $\mathbf{x} = (\mathbf{x}_a, \mathbf{x}_b)$, and k_a and k_b are valid kernel functions over their respective spaces.

Most popular kernels

Simple Polynomial Kernel (terms of degree 2)

$$\kappa(\mathbf{x}, \mathbf{z}) = (\mathbf{x}'\mathbf{z})^2$$

Generalized Polynomial kernel – degree M

$$\kappa(\mathbf{x}, \mathbf{z}) = (\mathbf{x}'\mathbf{z} + c)^M, c > 0$$

Gaussian Kernels

$$\kappa(\mathbf{x}, \mathbf{z}) = \exp(-\frac{||\mathbf{x} - \mathbf{z}||^2}{2\sigma^2})$$

Sigmoidal Kernels (Gram Matrix not p.d.)

$$\kappa(\mathbf{x}, \mathbf{z}) = \tanh(a\mathbf{x}'\mathbf{z} + b)$$

Gaussian kernel

- Not related to Gaussian pdf ⟨⟨x,x'⟩ ((\ X X' |))
- Translation invariant (depends only on distance between points)
- Corresponds to an infinitely dimensional space! (PRMLex6.11)

Kernel regression

Radial Basis Functions

 Basis functions can be chosen that depend only on distance from selected centers:

$$\phi_j(\mathbf{x}) = h(||\mathbf{x} - \mu_j||)$$

 A function f(x) can be approximated as a linear combination of the basis functions

$$f(\mathbf{x}) = \sum_{n=1}^{N} w_n h(||\mathbf{x} - \mu_n||)$$

 With a basis function at each training data point, the approximation is exact on the training data.

Kernel Regression

• Using radial basis functions around the training data points, predict a value y(x) as the average of target values t_n , weighted by similarities $k(x,x_n)$:

$$y(\mathbf{x}) = \sum_{n=1}^{N} k(\mathbf{x}, \mathbf{x}_n) t_n$$

Kernel Normalization

The weighted average approach assumes

$$\sum_{n=1}^{N} k(\mathbf{x}, \mathbf{x}_n) = 1$$

From kernel density estimation:

$$p(\mathbf{x},t) = \frac{1}{N} \sum_{n=1}^{N} f(\mathbf{x} - \mathbf{x}_n, t - t_n)$$

Joint density function centered at x_n , t_n

- where f(x,t) is the component density function and there is one such component centred on each data point
- We now find an expression for the regression function y(x), corresponding to the conditional average of the target variable conditioned on the input variable

$$y(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}] = \int_{-\infty}^{\infty} t p(t|\mathbf{x}) dt$$

$$= \frac{\int t p(\mathbf{x}, t) dt}{\int p(\mathbf{x}, t) dt}$$

$$= \frac{\sum_{n} \int t f(\mathbf{x} - \mathbf{x}_{n}, t - t_{n}) dt}{\sum_{m} \int f(\mathbf{x} - \mathbf{x}_{m}, t - t_{m}) dt}.$$
(6.43)

We now assume for simplicity that the component density functions have zero mean so that

$$\int_{-\infty}^{\infty} f(\mathbf{x}, t)t \, \mathrm{d}t = 0 \tag{6.44}$$

for all values of x. Using a simple change of variable, we then obtain

$$y(\mathbf{x}) = \frac{\sum_{n} g(\mathbf{x} - \mathbf{x}_{n})t_{n}}{\sum_{m} g(\mathbf{x} - \mathbf{x}_{m})}$$
$$= \sum_{n} k(\mathbf{x}, \mathbf{x}_{n})t_{n}$$
(6.45)

Prediction function:

$$y(\mathbf{x}) = \frac{\displaystyle\sum_n g(\mathbf{x} - \mathbf{x}_n)t_n}{\displaystyle\sum_m g(\mathbf{x} - \mathbf{x}_m)}$$

$$= \displaystyle\sum_n k(\mathbf{x}, \mathbf{x}_n)t_n$$

$$- \text{ where } k(\mathbf{x}, \mathbf{x}_n) = \frac{g(\mathbf{x} - \mathbf{x}_n)}{\displaystyle\sum_m g(\mathbf{x} - \mathbf{x}_m)}$$

$$g(\mathbf{x}) = \int_{-\infty}^{\infty} f(\mathbf{x}, t) \, \mathrm{d}t.$$

- This model is also known as kernel regression.
- For a localized kernel function, it has the property of giving more weight to data points that a close to x

Kernel Regression Example

On the familiar sinusoidal data set:

