Übungsblatt 2

Übungsgruppe Metcalfe

Daniel Schubert Anton Lydike

Donnerstag 07.11.2019

Aufgabe 1)

__ /1p.

- a) Nein.
- b) Nein.
- c) Nein.

Aufgabe 2)

 $_$ $/1 \mathrm{p}.$

- Das Nyquist-Shannon-Abtast theorem schreibt $f_A = 2 \times 14 \text{kHz} = 28 \text{kHz}$ vor.
 - Es tritt der Alias-Effekt auf Damit können nur informationen bis 7kHz vollständig rekonstruiert werden. Ein Signal mit einer frequenz von 14kHz wird z.B. als konstanter wert gemessen und kann nicht vernünftig rekonstruiert werden.
 - Es sind insgesamt 8 Bit zur Amplitudendiskretisierung verfügbar, dies ermöglicht theorethisch die darstellung von 2⁸ = 256 zuständen. Da es jedoch ein Vorzeichen-Bit gibt, haben wir die Werte -0 und 0, welche identisch behandelt werden. Somit erhalten wir effektiv 255 zustände.
- b) Die Coderate des (7,4)-Hamming-Codes beträgt $\frac{4}{7} \approx 0.57$
 - 0011 1111 $\mapsto \atop (7,4)$ -H 0011101 1111000
 - $p_1 = u_1 \oplus u_2 \oplus u_3$
 - $p_2 = u_2 \oplus u_3 \oplus u_4$
 - $p_3 = u_1 \oplus u_2 \oplus u_4$
 - Erkannt werden alle ein- und zwei-Bit Fehler. Korrigiert werden können nur ein-Bit Fehler.

Aufgabe 3)

__ /1p.

- a) Nein
 - Ja
 - Nein, Frequenz wäre $\frac{1}{2T}$
- b) Die Bandbreite des Übertragungskanales ist definiert als der vorgegebene Frequenzbereich
- c) AWGN wird modelliert mit r(t) = s(t) + n(t). Es soll das Thermische Rauschen in elektronischen Bauteilen repräsentieren. Die einzelnen Terme sind folgendermaßen definiert:
 - r(t) Das **empfangene** Signal
 - s(t) Das **gesendete** Signal
 - n(t) Sogenannte "Gaussian White Noise", also ein **gaußverteiltes**, allfrequentes Rauschen. Dieser Term wird einfach auf das gesendete Signal addiert, wie der Name suggeriert.

d) $Ausbreitungsverz\"{o}gerung$ (Propagation Delay) $t_{\rm p}$ wird definiert als:

$$t_{\rm p} \coloneqq \frac{d}{v \cdot c} = \frac{\text{Leitungslänge in m}}{\text{Signalgeschwindigkeit in } \frac{\rm m}{\rm s}}$$

Damit ist die phsikalisch vorgeschrieben Verzögerung die zwischen dem Senden und dem Empfangen des Signales verstreicht gemeint, da die Signalgeschwindigkeit grundsätzlich auf Lichtgeschwindigkeit begrenzt ist.

e) Das Nyquist-Shannon-Abtasttheorem besagt, dass die Abtastfrequenz f_A mindestens doppelt so hoch sein muss, wie die höchste im Signal vorkommende Frequenz f_{max} um die verlustfreie rekonstruktion aus dem zeitdiskreten Signal zu garantieren $(f_A \ge 2f_{max})$.

Falls dies nicht gegeben ist, treten Artefakte auf (der sog. Alias-Effekt).

Gesamtpunkte:

 $_/3p.$