Distributed Artificial Intelligence WiSe 19/20

Benedikt Lüken-Winkels

November 4, 2019

Contents

1	Motivation	2
2	Agents and agent interaction	2
3	Coordination mechanisms and mechanism design	3
4	Deliberative agents and knowledge representaion	3
5	Norms, trust and reputation into control intelligent distributed systems	3
6	Distributed reinforcement learning	3

1 Motivation

Where can DAI be applied?

- Smart Factory: How can processes be designed to coordinate and communicate with each other (in Webservices, IoT)?
- Autonomous Control: Switch from hierarchical, centralized structure to distributed, decentralized control of processes (Package delivery).

2 Agents and agent interaction

An agent is the basic building block fo an AI system.

Properties of an intelligent agent

A weak notion of Agency

- Autonomy: makes own decisions, env influences the decisions
- Reactivity: perceives env and adapts behaviour
- Pro-activity: has goals, takes initiative to achieve them
- Social ability: interaction (eg exchange info, ask for help,...)

Agent interactions with the environment

Perception (Sensors) \rightarrow Decision \rightarrow Action (Effectors). Reactive Agents (Decide according to inputs from env and try to match conditions). Environment $E = e_0, e_1, ...$ is a set of env states. Agent actions Ac = a, a', ... is a set of all actions that changes the Environment state . Ac_i is the set of actions the Agent i can perform. Agent Function Ag $Ag : E \rightarrow Ac$.

- R
- \bullet R^{Ac}
- \bullet R^E

Refined Ag = <see, action, next> Perception, Internal state transition, Action

- see: filter env to perception
- $\bullet\,$ next: current state and perception to new state
- action: map internal state to actions

Communication between Agents

When agents have common goals or intentions they should interact, eg transport service.

Message Passing

Speech-Act Theory (augment communication with info about how to interpret messages):

- Speaker: Wants hearer to believe in info. Chooses language. Forms message.
- Hearer: Perceives message (w/ disturbance). Analyses possible meanings. Interprets and chooses a meaning. Decides to belive the info or rejects

Three parts of a Speech-Act:

- Locutionary act: meaningful words
- Illocutionary act: intention
- Perlocutionary act: effect of the intention

Classification:

- Representatives: notification
- Directives: request, order
- Commissives: promise
- Expressives:
- Declarations: directly changes the env
- 3 Coordination mechanisms and mechanism design
- 4 Deliberative agents and knowledge representaion
- 5 Norms, trust and reputation into control intelligent distributed systems
- 6 Distributed reinforcement learning