

CS5340 Uncertainty Modeling in Al

Lecture 2: Fitting Probability Models

Asst. Prof. Harold Soh
AY 22/23
Semester 2

Course Schedule

Week	Date	Lecture Topic	Tutorial Topic
1	12 Jan	Introduction to Uncertainty Modeling + Probability Basics	Introduction
2	19 Jan	Simple Probabilistic Models	Probability Basics
3	26 Jan	Bayesian networks (Directed graphical models)	More Basic Probability
4	2 Feb	Markov random Fields (Undirected graphical models)	DGM modelling and d-separation
5	9 Feb	Variable elimination and belief propagation	MRF + Sum/Max Product
6	16 Feb	Factor graph and the junction tree algorithm	Quiz 1
-	-	RECESS WEEK	
7	2 Mar	Mixture Models and Expectation Maximization (EM)	Linear Gaussian Models
8	9 Mar	Hidden Markov Models (HMM)	Probabilistic PCA
9	1 6 Mar	Monte-Carlo Inference (Sampling)	Linear Gaussian Dynamical System
10	23 Mar	Variational Inference	MCMC + Sequential VAE
11	30 Mar	Inference and Decision-Making (Special Topic)	Quiz 2
12	6 Apr	Gaussian Processes (Special Topic)	Wellness Day
13	13 Apr	Project Presentations	Closing

CS5340 is about how to "represent" and "reason" with uncertainty in a computer.

CS5340 :: Harold Soh

CS5340 is about how to "represent" and "reason" with uncertainty in a computer.

Representation: The *language* is probability and probabilistic graphical models (PGM).

The language is used to model problems.

Reasoning: We use learning and inference algorithms to answer questions.

e.g., Belief-propagation/sumproduct, MCMC, and variational Bayes

CS5340 is about how to "represent" and "reason" with uncertainty in a computer.

Summary: Sum and Product Rules

• Sum rule:

$$p(x) = \int p(x,y) \, dy$$
$$p(x) = \sum_{y} p(x,y)$$

Product/Chain rule:

$$p(x,y) = p(x|y)p(y)$$

Probability: Independence

• The independence of *X* and *Y* means that every conditional distribution is the same.

• The value of Y tells us nothing about X and viceversa. p(x,y)

$$p(x|y) = p(x)$$

$$p(y|x) = p(y)$$

Probability: Bayes' Rule

Recall:

$$p(x,y) = p(x|y)p(y)$$

$$p(x,y) = p(y|x)p(x)$$

• Eliminating p(x, y), we get:

$$p(y|x)p(x) = p(x|y)p(y)$$

Thomas Bayes

• Rearranging:

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} = \frac{p(x|y)p(y)}{\int p(x,y)dy} = \frac{p(x|y)p(y)}{\int p(x|y)p(y)dy}$$

Image source: "Pattern Recognition and Machine Learning", Christopher Bishop

Probability: Expectation

• The expected or average value of some function f[x] taking into account the distribution of X.

Definition:

$$E[f[x]] = \sum_{x} f[x]p(x)$$
$$E[f[x]] = \int_{x} f[x]p(x)dx$$

CS5340 is about how to "represent" and "reason" with uncertainty in a computer.

Generative (Causal) Modeling of Relationships between Variables

Generative (Causal) Modeling of Relationships between Variables

CS5340 :: Harold Soh

Fitting Probability Models

- Focus on parametric probability distributions $p(x|\theta)$.
- How to learn the unknown parameters θ from a set of given data, i.e. instances of the random variable, $\mathcal{D} = \{x[1], ..., x[N]\}$.
- And then use those parameters to make predictions.

CS5340 :: Harold Soh 13

Learning Outcomes

- Students should be able to:
 - Use the Maximum Likelihood, Maximum a Posteriori and Bayesian approaches to learn the unknown parameters of probability distributions of a single random variable from data.
 - Apply the assumption independent and identically distributed samples to simplify the parameter learning process.
 - 3. Apply the learned parameters to make predictions.
 - 4. Describe the exponential family and its properties

Learning Parameters

• Common approaches to learn the unknown parameters θ from a set of given data $\mathcal{D} = \{x[1], ..., x[N]\}$:

Computational Cost

(In general and not to scale)

Acknowledgements

- A lot of slides and content of this lecture are adopted from:
- 1. "Pattern Recognition and Machine Learning", Christopher Bishop.
- 2. "Computer Vision: Models, Learning, and Inference", Simon Prince.
- 3. Lee Gim Hee's CS5340 slides.

Learning via MLE

Maximum Likelihood Estimation (MLE)

Building a Smart Wheelchair for Kids with Disabilities

https://youtu.be/XbyqU88jmb0

smart mobility ARTY for kids

Problem: Sensor Uncertainty

- You have a ultrasonic ranger for your robot.
- Like other sensors, there is some error.
- How can you model and estimate the uncertainty of your range readings?
- Later: can we predict the range given a noisy reading?

Image credit: https://www.parallax.com/product/910-28015a

Video:

https://youtu.be/Ea4C GAw6b M?t=683

CS5340 :: Harold Soh 21

Our Model

- (Assumed) Model:
 - Range reading = true range + error
- Formalize:

$$Y = r + X$$
$$X \sim \text{Norm}_{x}[\mu, \sigma^{2}]$$

Image credit: https://www.parallax.com /product/910-28015a

- **Problem:** Don't know parameters $\theta = \{\mu, \sigma^2\}$
- Solution: Learn from data!
 - Fix r to some distance (1m)
 - Collect range reading deviations (x[i] = y[i] r)
 - Estimate (learn) parameters $\theta = \{\mu, \sigma^2\}$

Learning Parameters

• Common approaches to learn the unknown parameters θ from a set of given data $\mathcal{D} = \{x[1], ..., x[N]\}$:

Computational Cost

(In general and not to scale)

Maximum Likelihood Estimate: Intuition

- Blue dots are the observed data $\mathcal{D} = \{x[1], ..., x[N]\}.$
- Red curves are the Normal distribution for a possible μ and σ^2 .
- The likelihood of a set of **independently** sampled data is the **product** of the individual likelihoods $p(x|\mu, \sigma^2)$ (blue vertical lines).
- The maximum likelihood should be correct μ and σ^2

Example 1: Univariate Normal Distribution

Approach 1: Maximum Likelihood Estimation (MLE)

Intuition behind MLE:

Plotted surface of likelihoods as a function of possible parameter values.

ML Solution is at the peak.

Maximum Likelihood Estimation

- Given data $\mathcal{D} = \{x[1], ..., x[N]\}$
- Assume:
 - a set of distributions $\{p_{\theta} : \theta \in \Theta\}$ where $p_{\theta} = p(x|\theta)$
 - \mathcal{D} is sample from $X_1, X_2, ..., X_N \sim p_{\theta^*}$ for some $\theta^* \in \Theta$
 - Random variables $X_1, X_2, ..., X_N$ are independent and identically distributed (iid) according to p_{θ^*}
- Goal: Estimate θ^*
- The estimate θ_{MLE} is a maximum likelihood estimate (MLE) for θ^* if

$$\theta_{MLE} = \underset{\theta \in \Theta}{\operatorname{argmax}}[p(\mathcal{D}|\theta)]$$

Independent and Identically Distributed (iid)

- Common assumption in many modeling and learning scenarios
- Allows us to decompose the likelihood into products of likelihoods (one for each datum)

$$\theta_{MLE} = \underset{\theta}{\operatorname{argmax}} [p(\mathcal{D}|\theta)]$$

$$= \underset{\theta}{\operatorname{argmax}} [\prod_{i=1}^{N} p(X = x[i]|\theta)] \quad \text{(i.i.d)}$$

Sensor Uncertainty: MLE

$$\theta_{MLE} = \underset{\theta}{\operatorname{argmax}} \left[\prod_{i=1}^{N} p(X = x[i] | \theta) \right]$$

In our case, X is Normal / Gaussian distributed.

Fit an univariate normal distribution model to a set of scalar data $\mathcal{D} = \{x[1], ... x[N]\}.$

Recall that the univariate normal distribution is given by:

$$p(x) = \text{Norm}_{x}[\mu, \sigma^{2}] = \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$$

Our goal is to find the two unknown parameters μ and σ^2 .

Example 1: Univariate Normal Distribution

Approach 1: Maximum Likelihood Estimation (MLE)

$$\theta_{MLE} = \underset{\theta}{\operatorname{argmax}} [p(x|\theta)]$$

$$= \underset{\theta}{\operatorname{argmax}} \left[\prod_{i=1}^{N} p(x[i] \mid \theta) \right]$$
 (iid)

Likelihood given by pdf

$$p(x|\mu, \sigma^2) = \text{Norm}_x[\mu, \sigma^2] = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Example 1: Univariate Normal Distribution

Approach 1: Maximum Likelihood Estimation (MLE)

Algebraically:

$$\hat{\mu}, \hat{\sigma}^2 = \underset{\mu, \sigma^2}{\operatorname{argmax}} [p(x|\mu, \sigma^2)]$$

where

$$p(x|\mu,\sigma^2) = \prod_{i=1}^N \text{Norm}_{x[i]} [\mu,\sigma^2],$$

or alternatively, we can maximize the logarithm:

$$\hat{\mu}, \hat{\sigma}^2 = \underset{\mu, \sigma^2}{\operatorname{argmax}} \sum_{i=1}^{N} \log \left[\operatorname{Norm}_{x[i]}[\mu, \sigma^2] \right]$$

$$= \underset{\mu,\sigma^2}{\operatorname{argmax}} \left[-0.5N \log \left[2\pi \right] - 0.5N \log \sigma^2 - 0.5 \sum_{i=1}^{N} \frac{(x[i] - \mu)^2}{\sigma^2} \right]$$

Why the Logarithm?

- The logarithm is a monotonic transformation.
- Hence, the position of the peak stays in the same place.
- The log likelihood is easier to work with.

Image Source: "Computer Vision: Models, Learning, and Inference", Simon Prince

31

CS5340 :: Harold Soh

Example 1: Univariate Normal Distribution

Approach 1: Maximum Likelihood Estimation (MLE)

$$\hat{\mu}, \hat{\sigma}^2 = \underset{\mu, \sigma^2}{\operatorname{argmax}} \sum_{i=1}^{N} \log \left[\operatorname{Norm}_{x[i]}[\mu, \sigma^2] \right]$$

$$= \underset{\mu, \sigma^2}{\operatorname{argmax}} \left[-0.5N \log \left[2\pi \right] - 0.5N \log \sigma^2 - 0.5 \sum_{i=1}^{N} \frac{(x[i] - \mu)^2}{\sigma^2} \right]$$

Maximization can be done in closed-form by taking derivative w.r.t. the variable and equate to zero:

$$\frac{\partial L}{\partial \mu} = \sum_{i=1}^{N} \frac{(x[i] - \mu)}{\sigma^2} = \frac{\sum_{i=1}^{N} x[i]}{\sigma^2} - \frac{N\mu}{\sigma^2} = 0, \qquad \frac{\partial L}{\partial \sigma^2} = -\frac{N}{\sigma^2} + \sum_{i=1}^{N} \frac{(x[i] - \mu)^2}{\sigma^4} = 0$$

$$\Rightarrow \quad \hat{\mu} = \frac{\sum_{i=1}^{N} x[i]}{N} = \bar{x}, \qquad \Rightarrow \quad \hat{\sigma}^2 = \frac{\sum_{i=1}^{N} (x[i] - \mu)^2}{N}$$

Least Squares Interpretation

Maximum likelihood for the mean of the normal distribution...

$$\hat{\mu} = \underset{\mu}{\operatorname{argmax}} \left[-0.5N \log \left[2\pi \right] - 0.5N \log \sigma^2 - 0.5 \sum_{i=1}^{N} \frac{(x[i] - \mu)^2}{\sigma^2} \right]$$

$$= \underset{\mu}{\operatorname{argmax}} \left[-\sum_{i=1}^{N} (x[i] - \mu)^{2} \right]$$

$$= \underset{\mu}{\operatorname{argmin}} \left[\sum_{i=1}^{N} (x[i] - \mu)^{2} \right]$$

...gives `least squares' fitting criterion.

Let's try it out.

https://github.com/crslab/CS5340-notebooks

CS5340 :: Harold Soh

MLE: Properties

- Easy and fast to compute
- Nice Asymptotic properties:
 - Consistent: if data generated from $f(\theta^*)$, MLE converges to its true value, $\hat{\theta}_{MLE} \to \theta^*$ as $n \to \infty$
 - Efficient: there is no consistent estimator that has lower mean squared error than the MLE estimate (achieves Cramer-Rao lower bound)
- Functional Invariance: if $\hat{\theta}$ is the MLE of θ^* , and $g(\theta^*)$ is a transformation of θ^* then the MLE for $\alpha = g(\theta^*)$ is $\hat{\alpha} = g(\hat{\theta})$

What is a problem?

Imagine if you had samples:

$$\{0.3, -0.1, 1.2, 0.2, -0.2\}$$

- What is your MLE estimate of the mean and variance?
- $\mu_{MLE} = 0.28$, $\sigma^2 = 0.245$
- Manual says that on average devices have zero bias $\mu=0$ and variance $\sigma^2=0.05$
- How certain are you that your estimate is correct?

Other issues

- MLE is a point estimate i.e., does not represent uncertainty over the estimate
- MLE may overfit.
- MLE does not incorporate prior information.
- Asymptotic results are for the limit and assumes model is correct.
- MLE may not exist or may not be unique

How can we model our <u>uncertainty</u> about the parameters estimates μ and σ^2 ?

Learning via Bayes

Bayesian Inference and Conjugate Models

Learning Parameters

• Common approaches to learn the unknown parameters θ from a set of given data $\mathcal{D} = \{x[1], ..., x[N]\}$:

Computational Cost

(In general and not to scale)

Bayesian Approach

• **Fitting**: Instead of a point estimate $\hat{\theta}$, compute the posterior distribution over all possible parameter values using Bayes' rule:

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

 Principle: why pick one set of parameters? There are many values that could have explained the data. Try to capture all of the possibilities.

Our Model

- Possible (Assumed) Model:
 - Range reading = true range + error
- Formalize:

$$Y = r + X$$
$$X \sim \text{Norm}_{x}[\mu, \sigma^{2}]$$

• $\theta = \{\mu, \sigma^2\}$ is now a random variable

Image credit: https://www.parallax.com/product/910-28015a

- Model uncertainty over θ using prior distribution(s).
- Then, find posterior:

$$p(\theta|D) = \frac{\prod_{i=1}^{N} p(x[i] \mid \theta) p(\theta)}{p(D)}$$

What can be a prior distribution?

Approach 3: Bayesian

Compute the posterior distribution using Bayes' rule:

$$p(\theta|x) = \frac{\prod_{i=1}^{N} p(x[i] \mid \theta) p(\theta)}{p(x)} = \frac{\prod_{i=1}^{N} p(x[i] \mid \theta) p(\theta)}{\int \prod_{i=1}^{N} p(x[i] \mid \theta) p(\theta) d\theta}$$

where:

$$\prod_{i=1}^{N} p(x[i] \mid \theta) p(\theta) = \prod_{i=1}^{N} \text{Norm}_{x[i]} [\mu, \sigma^{2}] \text{NormInvGam}_{\mu, \sigma^{2}} [\alpha, \beta, \gamma, \delta]$$
Conjugate Prior!

From Lecture 1: Appendix Normal Inverse Gamma Distribution

$$p(\mu, \sigma^{2}) = \frac{\sqrt{\gamma}}{\sigma\sqrt{2\pi}} \frac{\beta^{\alpha}}{\Gamma[\alpha]} \left(\frac{1}{\sigma^{2}}\right)^{\alpha+1} \exp\left[-\frac{2\beta + \gamma(\delta - \mu)^{2}}{2\sigma^{2}}\right]$$
$$p(\mu, \sigma^{2}) = \text{NormInvGam}_{\mu, \sigma^{2}}[\alpha, \beta, \gamma, \delta]$$

• Four hyperparameters α , β , $\gamma > 0$ and $\delta \in \mathbb{R}$.

CS5340 :: Harold Soh

Normal Inverse Gamma

- Where does it "come from"?
 - From Normal and Inverse Gamma!
 - Normal is the prior over mean μ
 - Norm_u [δ , s]
 - Inverse Gamma (IG) is the prior over variance σ^2
 - InvGam $_{\sigma^2}[\alpha, \beta]$
 - Multiply $\operatorname{Norm}_{\mu}[\delta, s]$ and $\operatorname{InvGam}_{\sigma^2}[\alpha, \beta]$ to derive $\operatorname{NormInvGam}_{\mu, \sigma^2}[\alpha, \beta, \gamma, \delta]$
 - where $\gamma = \frac{\sigma^2}{s}$

Approach 3: Bayesian

Compute the posterior distribution using Bayes' rule:

$$p(\theta|x) = \frac{\prod_{i=1}^{N} p(x[i]|\theta)p(\theta)}{p(x)} = \frac{\prod_{i=1}^{N} p(x[i]|\theta)p(\theta)}{\int \prod_{i=1}^{N} p(x[i]|\theta)p(\theta) d\theta}$$

$$\prod_{i=1}^{N} p(x[i]|\theta)p(\theta) = \prod_{i=1}^{N} \text{Norm}_{x[i]}[\mu, \sigma^{2}] \text{NormInvGam}_{\mu, \sigma^{2}}[\alpha, \beta, \gamma, \delta]$$

What distribution is $p(\theta|D)$?

Approach 3: Bayesian

Compute the posterior distribution using Bayes' rule:

$$p(\theta|x) = \frac{\prod_{i=1}^{N} p(x[i]|\theta)p(\theta)}{p(x)} = \frac{\prod_{i=1}^{N} p(x[i]|\theta)p(\theta)}{\int \prod_{i=1}^{N} p(x[i]|\theta)p(\theta) d\theta}$$

$$\prod_{i=1}^{N} p(x[i]|\theta)p(\theta) = \prod_{i=1}^{N} \operatorname{Norm}_{x[i]}[\mu, \sigma^{2}] \operatorname{NormInvGam}_{\mu, \sigma^{2}}[\alpha, \beta, \gamma, \delta]$$

$$p(\theta|D) = \text{NormInvGam}_{\mu,\sigma^2} \left[\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}, \tilde{\delta} \right]$$

NormInvGamma is Conjugate Prior for the Normal.

Posterior Form

$$p(\mu, \sigma^{2}|D) = \frac{\sqrt{\tilde{\gamma}}}{\sigma\sqrt{2\pi}} \frac{\tilde{\beta}^{\tilde{\alpha}}}{\Gamma[\tilde{\alpha}]} \left(\frac{1}{\sigma^{2}}\right)^{\tilde{\alpha}+1} \exp\left[-\frac{2\tilde{\beta} + \tilde{\gamma}(\tilde{\delta} - \mu)^{2}}{2\sigma^{2}}\right]$$

$$p(\theta|D) = \text{NormInvGam}_{\mu,\sigma^2} [\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}, \tilde{\delta}]$$

where

$$\tilde{\alpha} = \alpha + \frac{N}{2},$$

$$\tilde{\beta} = \beta + \frac{\sum_{i} (x[i] - \bar{x})^2}{2} + \frac{N\gamma}{N + \gamma} \frac{(\bar{x} - \delta)^2}{2}.$$

$$\tilde{\delta} = \frac{(\gamma \delta + N \, \bar{x})}{\gamma + N},$$

$$\tilde{\gamma} = \gamma + N$$
,

$$\bar{x} = \frac{1}{N} \sum_{i} x[i]$$

Let's try it out.

Bayesian Approach: Properties

- Models uncertainty over parameters.
- Principled way of incorporating prior information.
- Can derive quantities of interest, e.g., $p(x < 10|\mathcal{D})$
- Can perform model selection.

Problem

- "Forced" to select a prior
- What if your initial belief was not conjugate to the normal likelihood?
 - Lognormal, Uniform, Beta ...
- Can be computationally intractable

Can we still incorporate prior information into the parameter estimation?

(later in the semester, we will study *approximate* Bayesian inference where we derive an *approximate* posterior distribution)

Learning via MAP

Maximum a Posteriori Estimation(MAP)

Learning Parameters

• Common approaches to learn the unknown parameters θ from a set of given data $\mathcal{D} = \{x[1], ..., x[N]\}$:

Computational Cost

(In general and not to scale)

Maximum a Posteriori (MAP)

- Given data $\mathcal{D} = \{x[1], ..., x[N]\}$
- Assume:
 - Joint distribution $p(\mathcal{D}, \theta)$
 - Here θ is a random variable
- Goal: Choose "good" heta
- The estimate θ_{MAP} is a maximum aposteriori estimate (MAP) if

$$\theta_{MAP} = \underset{\theta}{\operatorname{argmax}}[p(\theta|\mathcal{D})]$$

Intuition: The "Peak" of the Posterior

Image Source: "Computer Vision: Models, Learning, and Inference", Simon Prince CS5340:: Harold Soh 56

Maximum a Posteriori (MAP)

• As the name suggests, we find the unknown parameters θ that maximize the posterior probability $p(\theta|D)$.

$$\begin{split} &\theta_{MAP} = \underset{\theta}{\operatorname{argmax}}[p(\theta|D)] \\ &= \underset{\theta}{\operatorname{argmax}}\left[\frac{p(D|\theta)p(\theta)}{p(D)}\right] \qquad \text{(Bayes' rule)} \\ &= \underset{\theta}{\operatorname{argmax}}\left[\frac{\prod_{i=1}^{N}p(x[i]\mid\theta)\,p(\theta)}{p(D)}\right] \qquad \text{(i.i.d)} \\ &= \underset{\theta}{\operatorname{argmax}}\left[\prod_{i=1}^{N}p(x[i]\mid\theta)\,p(\theta)\right] \qquad \text{($p(D)$ is removed since it is independent of θ)} \end{split}$$

Approach 2: Maximum a Posteriori (MAP)

$$\theta_{MAP} = \underset{\theta}{\operatorname{argmax}} \left[\prod_{i=1}^{N} p(x[i] \mid \theta) p(\theta) \right]$$
Likelihood

Prior

Likelihood: univariate Normal distribution

$$p(x|\mu,\sigma^2) = \prod_{i=1}^N \text{Norm}_{x[i]} [\mu,\sigma^2],$$

Prior: normal inverse gamma distribution

$$p(\mu, \sigma^2) = \text{NormInvGam}_{\mu, \sigma^2}[\alpha, \beta, \gamma, \delta]$$

(you can try an alternative prior, but we'll use this for now to compare against the full Bayesian approach)

Approach 2: Maximum a Posteriori (MAP)

$$\theta_{MAP} = \underset{\theta}{\operatorname{argmax}} \left[\prod_{i=1}^{N} p(x[i] \mid \theta) p(\theta) \right]$$
Likelihood

Prior

Likelihood: univariate Normal distribution

$$p(x|\mu,\sigma^2) = \prod_{i=1}^N \text{Norm}_{x[i]} [\mu,\sigma^2],$$

Prior: normal inverse gamma distribution

$$p(\mu, \sigma^{2}) = \text{NormInvGam}_{\mu, \sigma^{2}} [\alpha, \beta, \gamma, \delta]$$
$$= \frac{\sqrt{\gamma}}{\sigma \sqrt{2\pi}} \frac{\beta^{\alpha}}{\Gamma[\alpha]} \left(\frac{1}{\sigma^{2}}\right)^{\alpha+1} \exp\left[-\frac{2\beta + \gamma(\delta - \mu)^{2}}{2\sigma^{2}}\right]$$

Approach 2: Maximum a Posteriori (MAP)

$$\hat{\mu}, \hat{\sigma}^{2} = \underset{\mu, \sigma^{2}}{\operatorname{argmax}} \left[\prod_{i=1}^{N} p(x[i]|\mu, \sigma^{2}) p(\mu, \sigma^{2}) \right]$$

$$= \underset{\mu, \sigma^{2}}{\operatorname{argmax}} \left[\prod_{i=1}^{N} \operatorname{Norm}_{x[i]} [\mu, \sigma^{2}] \operatorname{NormInvGam}_{\mu, \sigma^{2}} [\alpha, \beta, \gamma, \delta] \right]$$

Image Source: "Computer Vision: Models, Learning, and Inference", Simon Prince CS5340 :: Harold Soh

60

Approach 2: Maximum a Posteriori (MAP)

$$\hat{\mu}, \hat{\sigma}^{2} = \underset{\mu, \sigma^{2}}{\operatorname{argmax}} \left[\prod_{i=1}^{N} p(x[i] \mid \mu, \sigma^{2}) p(\mu, \sigma^{2}) \right]$$

$$= \underset{\mu, \sigma^{2}}{\operatorname{argmax}} \left[\prod_{i=1}^{N} \operatorname{Norm}_{x[i]} [\mu, \sigma^{2}] \operatorname{NormInvGam}_{\mu, \sigma^{2}} [\alpha, \beta, \gamma, \delta] \right]$$

Maximize the logarithm:

$$\hat{\mu}, \hat{\sigma}^2 = \underset{\mu, \sigma^2}{\operatorname{argmax}} \left[\sum\nolimits_{i=1}^{N} \log \left[\operatorname{Norm}_{x[i]} [\mu, \sigma^2] \right] + \log \left[\operatorname{NormInvGam}_{\mu, \sigma^2} [\alpha, \beta, \gamma, \delta] \right] \right]$$

Approach 2: Maximum a Posteriori (MAP)

$$\hat{\mu}, \hat{\sigma}^2 = \underset{\mu, \sigma^2}{\operatorname{argmax}} \left[\sum\nolimits_{i=1}^N \log \left[\operatorname{Norm}_{x[i]} [\mu, \sigma^2] \right] + \log \left[\operatorname{NormInvGam}_{\mu, \sigma^2} [\alpha, \beta, \gamma, \delta] \right] \right]$$

Taking derivatives and setting to zero:

$$\frac{\partial L}{\partial \mu} = 0, \qquad \frac{\partial L}{\partial \sigma^2} = 0$$

We get:

$$\hat{\mu} = \frac{\sum_{i} x[i] + \gamma \delta}{N + \gamma}, \qquad \hat{\sigma}^{2} = \frac{\sum_{i} (x[i] - \hat{\mu})^{2} + 2\beta + \gamma (\delta - \hat{\mu})^{2}}{N + 3 + 2\alpha}$$

$$= \frac{N\bar{x} + \gamma \delta}{N + \gamma}$$

Approach 2: Maximum a Posteriori (MAP)

More data points \rightarrow MAP is closer to MLE Fewer data points \rightarrow MAP is closer to Prior

Image Source: "Computer Vision: Models, Learning, and Inference", Simon Prince

CS5340 :: Harold Soh 63

Let's try it out

Take-Home Exercise: Lognormal Prior

- Say you wanted to use a
 - normal prior for μ
 - lognormal prior for σ^2
- Derive the MAP estimates
 - You can derive a closed-form solution for the mean
 - But would need to optimize for σ^2

- Derive $\mathcal{L} = \log p(D|\theta)p(\theta) = \log p(D|\theta) + \log p(\theta)$
- Then set $\frac{\partial L}{\partial \theta_i} = 0$ for each parameter θ_i

MAP: Properties

- Easy and fast to compute
- Incorporate prior information
- Avoid overfitting ("Regularization")
- As $n \to \infty$, MAP tends to look like MLE
 - but does not have the same nice asymptotic properties.

MAP: Problems

- Point estimate (like MLE)
 - Does not capture uncertainty over estimates
 - "Poor man's Bayes"
- Still "forced" to choose prior.
- NOT Functionally Invariant: if $\hat{\theta}$ is the MAP of θ^* , and $g(\theta^*)$ is a transformation of θ^* then the MAP for $\alpha = g(\theta^*)$ is not necessarily $\hat{\alpha} = g(\hat{\theta})$

Prediction

Maximum Likelihood Estimation (MLE), Maximum a posteriori (MAP), and Bayesian posterior

Predictions for 3 Approaches

Maximum Likelihood Estimate (MLE):

Evaluate new data point x^* under probability distribution with MLE parameters $p(x^*|\theta_{MLE})$.

Maximum a Posteriori (MAP):

Evaluate new data point x^* under probability distribution with MAP parameters $p(x^*|\theta_{MAP})$.

Let's try it out

Predictions for 3 Approaches

Maximum Likelihood Estimate (MLE):

Evaluate new data point x^* under probability distribution with MLE parameters $p(x^*|\theta_{MLE})$.

Maximum a Posteriori (MAP):

Evaluate new data point x^* under probability distribution with MAP parameters $p(x^*|\theta_{MAP})$.

Bayesian:

Calculate weighted sum of predictions from all possible values of parameters

$$p(x^*|D) = \int p(x^*|\theta)p(\theta|D)d\theta$$

Bayesian Approach

Predictive Density:

$$p(x^*|\mathcal{D}) = \frac{p(x^*, D)}{p(D)} \qquad \qquad \text{(Conditional probability)}$$

$$= \frac{\int p(x^*, D, \theta) d\theta}{p(D)} \qquad \qquad \text{(Marginalization)}$$

$$= \frac{\int p(x^*, \theta|D)p(D) d\theta}{p(D)} \qquad \qquad \text{(Chain Rule)}$$

$$= \int p(x^*|D, \theta)p(\theta|D) d\theta \qquad \qquad \text{(Chain Rule)}$$

$$= \int p(x^*|\theta)p(\theta|D) d\theta \qquad \qquad \text{(Conditional Independence)}$$

Bayesian Approach

Predictive Density:

$$p(x^*|D) = \int p(x^*|\theta)p(\theta|D)d\theta$$
Weights

Prediction for each possible heta

Make a prediction that is an (infinite) weighted sum (integral) of the predictions for each parameter value, where weights are the probabilities.

Predictive Densities for 3 Approaches

How to rationalize different forms?

Consider MLE and MAP estimates as probability distributions with zero probability everywhere except at estimate (i.e. delta functions):

$$p(x^*|x) = \int p(x^*|\theta) \delta[\theta - \hat{\theta}] d\theta$$
$$= p(x^*|\hat{\theta})$$

Example 1: Univariate Normal Distribution

Approach 3: Bayesian

Predictive density

Take weighted sum of predictions from different parameter values:

 $p(x^*|D) = \int \int p(x^*|\mu, \sigma^2) p(\mu, \sigma^2|D) d\mu d\sigma^2$

Posterior: $p(\mu, \sigma^2|D)$

Samples from posterior

Image Source: "Computer Vision: Models, Learning, and Inference", Simon Prince CS5340:: Harold Soh 77

Example 1: Univariate Normal Distribution

Approach 3: Bayesian

Predictive density

Take weighted sum of predictions from different parameter values:

$$p(x^*|x) = t_{2\widetilde{\alpha}}\left(x^*|\widetilde{\delta}, \frac{\widetilde{\beta}(\widetilde{\gamma}+1)}{\widetilde{\alpha}\widetilde{\gamma}}\right)$$

Where $t_{2\widetilde{\alpha}}(x^*|\tilde{\delta},\frac{\widetilde{\beta}(\widetilde{\gamma}+1)}{\widetilde{\alpha}\widetilde{\gamma}})$ is the Generalized Student-T distribution with location $\tilde{\delta}$ and scale $\frac{\widetilde{\beta}(\widetilde{\gamma}+1)}{\widetilde{\alpha}\widetilde{\gamma}}$.

Example 1: Univariate Normal Distribution

Approach 3: Bayesian

As the training data decreases, the Bayesian prediction becomes less certain but the MAP prediction can be erroneously overconfident.

 $Image\ Source: \ \hbox{``Computer Vision:}\ \ Models,\ Learning,\ and\ Inference'',\ Simon\ Prince$

Let's try it out

Learning Parameters

• Common approaches to learn the unknown parameters θ from a set of given data $\mathcal{D} = \{x[1], ..., x[N]\}$:

Computational Cost

(In general and not to scale)

Exponential Family

What's an Exponential Family and why should we care?

Exponential Family

• An exponential family (ExpFam) is a set of probability distributions $\{p_{\theta} \colon \theta \in \Theta\}$ with the form

$$p_{\theta}(x) = \frac{h(x) \exp[\eta(\theta)^{\mathsf{T}} s(x)]}{Z(\theta)}$$

- where:
 - $\theta \in \Theta \subseteq \mathbb{R}^k, x \in \mathbb{R}^d$
 - Natural parameters: $\eta(\theta): \Theta \to \mathbb{R}^m$
 - Sufficient statistics: s(x): $\mathbb{R}^d \to \mathbb{R}^m$
 - Base Measure (Support and scaling): h(x): $\mathbb{R}^d \to [0, \infty)$
 - Partition function: $Z(\theta): \Theta \to [0, \infty)$

Natural/Canonical form

 An exponential family is in its natural (canonical) form if it is parameterized by its natural parameters:

$$p_{\eta}(x) = p(x|\eta) = \frac{h(x) \exp[\eta^{\mathsf{T}} s(x)]}{Z(\eta)}$$

(Compare against
$$p_{\theta}(x) = \frac{h(x) \exp[\eta(\theta)^{\mathsf{T}} s(x)]}{Z(\theta)}$$
)

ExpFam: So What?!

- Always has conjugate prior!
- Has fixed number of sufficient statistics that summarize iid data (of arbitrary amount!)
- Posterior predictive distribution always has closed form solution (provided $Z(\theta)$ is closed-form).

The Partition function $Z(\eta)$

$$p_{\eta}(x) = p(x|\eta) = \frac{h(x) \exp[\eta^{\mathsf{T}} s(x)]}{Z(\eta)}$$

Also called the normalizer:

$$Z(\eta) = \int h(x) \exp[\eta^{\mathsf{T}} s(x)] dx$$

Why? To get normalized distribution:

$$\int p(x|\eta)dx = 1$$

$$\int h(x) \frac{\exp[\eta^{\mathsf{T}} s(x)]}{Z(\eta)} dx = 1$$

$$Z(\eta) = \int h(x) \exp[\eta^{\mathsf{T}} s(x)] dx$$

• Aside: sometimes, people write $g(\eta) = 1/Z(\eta)$ and the canonical form becomes:

$$p(x|\eta) = h(x) g(\eta) \exp[\eta^{\mathsf{T}} s(x)]$$

The log Partition function $A(\eta)$

Alternatively, we can specify the log partition function:

$$p_{\eta}(x) = p(x|\eta) = h(x) \exp[\eta^{\mathsf{T}} s(x) - A(\eta)]$$

• Is the log of the partition function:

$$A(\eta) = \log Z(\eta) = \log[\int h(x) \exp[\eta^{\mathsf{T}} s(x)] dx]$$

• Why? To get normalized distribution for any η :

$$\int p(x|\eta)dx = \int h(x) \exp[\eta^{\mathsf{T}} s(x) - A(\eta)] = 1$$
$$\exp[-A(\eta)] \int h(x) \exp[\eta^{\mathsf{T}} s(x)] dx = 1$$
$$\exp[A(\eta)] = \int h(x) \exp[\eta^{\mathsf{T}} s(x)] dx$$
$$A(\eta) = \log[\int h(x) \exp[\eta^{\mathsf{T}} s(x)] dx]$$

Moments of Sufficient Statistics

For any exponential family distribution:

$$\mathbb{E}[s(x)] = \nabla \log Z(\eta) = \nabla A(\eta)$$

- Higher order moments of s(x) given by higher order derivatives.
- If s(x) = x (natural exponential family), we can find moments of x simply by differentiation!

MLE of Parameters of ExpFam

• In addition, the maximum likelihood estimator η_{MLE} satisfies:

$$\nabla A(\eta_{MLE}) = \frac{1}{N} \sum_{n=1}^{N} s(x_n)$$

- We can use this to solve for η_{MLE}
 - Note that A is convex. Proof in Extra Readings.
- The MLE only depends only on sufficient statistics s(x)

ExpFam: So What?!

- Always has conjugate prior!
- Has fixed number of sufficient statistics that

summarize iid data (of arbitrary amount!) Great!

• Poster But how can I find ExpFam distributions? distribution always has closed form solution (provided $Z(\theta)$ is closed-form).

Is Gaussian an ExpFam?

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
$$p(x) = \text{Norm}_x[\mu, \sigma^2]$$

Rearrange to fit the ExpFam form:

$$p_{\eta}(x) = p(x|\eta) = \frac{h(x) \exp[\eta^{\mathsf{T}} s(x)]}{Z(\eta)}$$

the idea is to match the terms into the:

Natural parameters: $\eta(\theta)$

Sufficient statistics: s(x)

Base measure: h(x)

Partition function: $Z(\eta)$

or Log Partition function: $A(\eta)$

$$p(x|\eta) = h(x) \exp[\eta^{\mathsf{T}} s(x) - A(\eta)]$$

Many Distributions are ExpFam

PMFs

PDFs

- Bernoulli
- Binomial
- Categorical/Multinoulli
- Poisson
- Multinomial
- Negative Binomial
- ...

- Normal
- Gamma & Inverse Gamma
- Wishart & Inverse Wishart
- Beta
- Dirichlet
- lognormal
- Exponential

• ...

Exercise: Find a family of distributions that is not ExpFam.

Exponential Family

• An exponential family (ExpFam) is a set of probability distributions $\{p_{\theta} : \theta \in \Theta\}$ with the form

$$p_{\theta}(x) = \frac{h(x) \exp[\eta(\theta)^{\mathsf{T}} s(x)]}{Z(\theta)}$$

- where:
 - $\theta \in \Theta \subseteq \mathbb{R}^k, x \in \mathbb{R}^d$
 - Natural parameters: $\eta(\theta): \Theta \to \mathbb{R}^m$
 - Sufficient statistics: s(x): $\mathbb{R}^d \to \mathbb{R}^m$
 - Base Measure (Support and scaling): h(x): $\mathbb{R}^d \to [0, \infty)$
 - Partition function: $Z(\theta): \Theta \to [0, \infty)$

Recap

MLE, MAP, Bayesian Inference, and Exponential Families

Learning Parameters

• Common approaches to learn the unknown parameters θ from a set of given data $\mathcal{D} = \{x[1], ..., x[N]\}$:

Computational Cost

(In general and not to scale)

Exponential Family

• An exponential family (ExpFam) is a set of probability distributions $\{p_{\theta} : \theta \in \Theta\}$ with the form

$$p_{\theta}(x) = \frac{h(x) \exp[\eta(\theta)^{\mathsf{T}} s(x)]}{Z(\theta)}$$

- where:
 - $\theta \in \Theta \subseteq \mathbb{R}^k, x \in \mathbb{R}^d$
 - Natural parameters: $\eta(\theta): \Theta \to \mathbb{R}^m$
 - Sufficient statistics: $s(x): \mathbb{R}^d \to \mathbb{R}^m$
 - Base Measure (Support and scaling): h(x): $\mathbb{R}^d \to [0, \infty)$
 - Partition function: $Z(\theta): \Theta \to [0, \infty)$

Learning Outcomes

- Students should be able to:
 - Use the Maximum Likelihood, Maximum a Posteriori and Bayesian approaches to learn the unknown parameters of probability distributions of a single random variable from data.
 - Apply the assumption independent and identically distributed samples to simplify the parameter learning process.
 - 3. Apply the learned parameters to make predictions.
 - 4. Describe the exponential family and its properties

A Discrete Example: CS5340 Meme of the Year

CS5340 student: Let me just skip solving tutorials.

screws up in the final exam

CS5340 student:

(a) Surprised Pikachu

(c) Distracted Boyfriend

(b) Two Buttons Dilemma

CS5340 Meme of the Year

Model and learn parameters

$\overline{\mathbf{ID}}$	Template Name	# Votes
1	Surprised Pikachu	25
2	Two Buttons Dilemma	12
3	Distracted Boyfriend	30
4	Left Exit 12	10

Table 1: Votes received by each template by CS5340 students

