Project Euler #124: Ordered radicals

This problem is a programming version of Problem 124 from projecteuler.net

The radical of $n\$, $\frac{rad}(n)\$, is the product of the distinct prime factors of $n\$. For example, $504 = 2^3 \times 3^2 \times 7^5$, so $\frac{rad}(504) = 2\times 3 \times 7 = 42$.

If we calculate mod(n) for \$1 \le n \le 10\$, then sort them on mod(n), and sorting on \$n\$ if the radical values are equal, we get:

Let E(k) be the kth element in the sorted n column; for example, E(4) = 8 and E(6) = 9.

Given $L\$ and $k\$, if $\text{cand}(n)\$ is sorted for $1 \le n \le L\$, find $E(k)\$.

Input Format

The first line of input contains \$T\$, the number of test cases.

Each test case consists of a single line containing two integers, \$L\$ and \$k\$.

Constraints

\$1 \le T\$ \$1 \le k \le L\$

For the first few test files worth 30% of the total points:

\$T \le 20\$

\$L \le 200000\$

For the next few test files worth 30% of the total points:

\$T \le 100000\$

\$L \le 200000\$

For the last few test files worth 40% of the total points:

\$T \le 20\$

\$L \le 10^{18}\$

\$k \le 200000\$

Output Format

For each test case, output a single line containing a single integer, the requested value \$E(k)\$.

Sample Input

12 9

8 9 12

Explanation

Sample Output

The first two cases can be answered by consulting the table in the problem statement. For the third test case, L = 12 so the new table is:

In this case, \$E(9)\$ is now \$12\$.