Page 1 Au	Ф						d	, de		- The state of the		
Aug 7 1997 14:47:26 jadecn80.text.txt	TP Bank Format @ jADE Computer Note 80 12/12/84 C. Bowdery S. Yamada	Format of the Generation 8 TP Banks	This note explains the contents of the TP summary banks produced by the TP program version 8. (This version is the one that produces Generation 8 MH datasets but the program is able to process all types of events as well.) The output of earlier versions of the TP program can be found in JADE Computer Note 24A.	Changed lines are indicated by <<	This note can be listed by submitting the job 'JADEPR.TEXT(JADECN80)'	There are 3 banks to store the fully analysed results. They are	'TPEV' which contains summary information for the whole event,	'TPTR'/n a series of banks, each of which contains information about a single particle. (Neutral particles included.)	'TPVX'/n a series of banks, each of which contains information about a found vertex. 'TPVX'/1 summarises the primary vertex and subsequent 'TPVX' banks summarise other vertices found.	Usriables in each bank are described in the following, where IDATA, ADATA and HDATA are INTEGER*4, REAL and INTEGER*2 words respectively, equivalenced to the common /BCS/. The index in the brackets is counted from the BOS pointer. Notice that the index for the I*2 variables increases twice as fast as the others and that the BOS pointer for the I*2 variables must be multiplied by 2. In the following the two kinds of indices are treated separately.	IDATA, ADATA: 'NAME', NO., NEXTP, LNGTH, 1, 2, 3, 4, 5, 6, 7, 8, HDATA: 'NAME', NO., NEXTP, LNGTH, 1, 2, 3, 4, 5, 6, 7, 8,	

IDATA(1) The version number - currently 8 .

(2) The production date and time. (This is fixed at the beginning of the TP job.)

HDATA(5) # of recorded particles

(6) # of positive recorded particles

(7) # of negative recorded particles

(8) # of ambiguous charged tracks (i.e. sigma(rho) > rho)

(9) # of neutral particles (includes gammas)

(Event Summary)

'TPEV'/1 Bank

(37)	
	This is the alpha2 or major axis (for $p(t)_in$).
(38) (40)	Direction cosine x of the eigenvector corresponding to Q1 Y Z z
	This is the alpha3 or minor axis (for $p(t)$ _out).
DATA(81) (82) DATA(42) (43) (44) (45) (46) (46) (49) (49)	# of tracks used for the thrust calculation Max. # of tracks accepted by the thrust program Thrust (T : 0.5 1.0) Direction cosine y of the thrust axis (" " ") Not used "
ADATA(51) (52) (53) (53) (54)	TOF of the beam counter Hit time difference for 2-prong events Collinearity of 2-prong events Acoplanarity of 2-prong events Not used
	The following 10 I*2 words are error flags for each step. General error codes (additive):
HDATA(111) (112) (113) (114) (115)	Error flag for Jet Chamber pattern recognition " vertex fit " TOF " dE/dx " Lead Glass 100 LGCDIR was not called or ended prematurely 1 In In track-Life connection was not done.
(116) (117) (118) (119)	Muon detector Tagging detector pairs and vees jet analysis
()	'TPTR' Bank (One Particle Summary)
A 'TI of th the T PATR	A 'TPTR' bank is made for each particle. The length of the bank is different for each type, e.g. for gammas the TOF and dE/dx information is omitted. PATR tracks: 80 words, LG Photons: 50 words, Others: 40 words
HDATA(1)	The index(= the TPVX bank #) of the vertex for the track The index(= the TPVX bank #) of the secondary vertex if any Flag of the detectors where the track is seen 1000 Jet Chamber 100 Lead Glass shower counters 10 Muon Filter

1997 14:47:26 jadecn80.text.txt Page 4) The index of the track in the 'PATR' bank, if seen there,	The index of the frack in the Fair Dair, it seem. Number of is clusters connected to the track 0 not detected by the is although it is expected 1 (The extrapolated hit position is near th 2 not detected by the is although is near th 2 not detected by the is although is sepect. The index of the i-st connected is experiment of the i-st connected is although is expect. The index of the i-st connected is is experiment of the i-st connected is although in it is expect. The index of the i-st connected is although in it is experiment of the i-st connected is although in it is expect. The index of the i-st connected is although in it is expect. The index of the i-st connected is although in it is expect. The index of the i-st connected is although in it is expect.		Chi-squared of the (r-phi) Number of degrees of freedo Chi-squared of the (r-z) fi Number of degrees of freedo Electric charge (= 100 if Momentum (GeV/c) = p Sigma(p) Type of the stored track di Type of the direction of the tangent direction of the tangent direction of the direction of the direction of the direction of alpha-x) Sigma(alpha-x) Sig
Aug 7 199		HDATA (13) (14) (15) (16) (17) (18) ADATA (10) (11) (11) (12) (12) (13) (14) (15)	(19) IDATA (21) GATA (21) GATA (23) ADATA (23) (25) IDATA (27) (28) (28) (28) (31) (31) HDATA (67) (68)

" (36) Total energy = ETOT = S " (37) Shower energy = ESH " (38) Sigma(ESH) " Quality of the shower energy -2 not detected by the IG within the fiducial det -1 not detected by the IG near the detector edge. (b) Out detected by the IG near the detector edge. (c) Out detected by the IG near the detector edge. (d) Out detected by the IG the gap in the IG detect the gap in the IG detect (ESH may not be correct ESH may not be correct (ESH may not be correct the connected IG cluster (ISH may not be correct (ISH pamber of other tracks whic clusters. = 0, if the conne ADATA(40) Chi-squared deviation of ESH non-showering track (A2) Not used HDATA(85) Number of associated muon hit (86) The Muon Filter acceptance fil	energy = ETOT = SQRT(p**2 + AMASS**2) : energy = ESH (ESH) Y of the shower energy measurement not detected by the IG although IG hit is expected within the fiducial detection region. not detected by the IG although hit is expected near the detector edge. not detected and a hit is not expected due to not detected and a hit is not expected due to the gap in the IG detector or absorption in the coil, the connected IG cluster is near the detector edge. (ESH may not be correct)	(60) (62) (63) (63) (64)	Path length Beta
(42) (85) (86)	= ESH er energy measurement by the IG although IG hit is expected duoial detection region. by the IG although hit is expected ctor adge. and a hit is not expected due to e IG detector or absorption in the coil. IG cluster is near the detector edge. LG cluster is near the fiducial region. LG cluster is in the fiducial region.	(62) (63) (64) (65)	
77) (78) (40) (42) (85) (86)	er energy measurement by the IG although IG hit is expected ducial detection region. by the IG although hit is expected ctor edge. and a hit is not expected due to e IG detector or absorption in the coil. IG cluster is near the detector edge. IG cluster is near the fiducial region. IG cluster is in the fiducial region.		Sigma (beta Calculated m Sigma (mass
" (78) ATA(40) ATA(41) ATA(42) " (42) " (85)		(66) (67) (67) (69) (71) (71) IDATA (72) ADATA (73)	Chi-squared " dE/dx in the Not used " Quality of t dE/dx Sigma(dE/dx
ATA(85) " (86)	iqueness of the cluster assignment the same connected clusters. =0 , if the connection is unique. i-squared deviation of the ESH and p for a shower (ESH-p)/signaf(ESH))**2 n-showering track (ESH-Expected_ESH) / signa(Expected_ESH))**2 (ESH-(Expected_ESH) / signa(Expected_ESH))**2 t used	. (75) . (76) . (77) IDATA(79) . (80)	Chi-squared " " Particle typ Not used "TPVX'
0 track is sated 1 track is at ed 2 track is defin	Number of associated muon hits with the Jet Chamber track The Muon Filter acceptance flag O track is safely inside the Muon Filter acceptance 1 track is at edge of Muon Filter acceptance 2 track is definitely outside the Muon Filter acceptance		PVX' bank is
(87) Muon 1. 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.		HDATA(1)	
(90) (** (91) (** (92) (** (92) (** (93) (** (93) (** (95) (** (95) (** (95) (** (96	<pre> </pre> <pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <p< td=""><td>ADATA(2) (4) (4) (5) (6) (7) (7)</td><td>x coordinate y z z Sigma (xvtx Sigma (yvtx Sigma (zvtx Chi-squared</td></p<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	ADATA(2) (4) (4) (5) (6) (7) (7)	x coordinate y z z Sigma (xvtx Sigma (yvtx Sigma (zvtx Chi-squared
ADATA(49) Probability of chi- 0 of muon quality (50) Integral material to (51) Integral material to (52) Total energy loss in (53) Integral absorption (54) Energy at outermost (55) Probability of bein (55) Not used	Probability of chi-squared for the muon candidate.(0.0.1.0) 1 0 if muon quality flag is not greater than zero Integral material thickness in mm Integral material thickness in g/cm**2 Integral absorption length for a pion Energy at outermost hit assuming particle is a muon (GeV). Probability of being a muon (= 1.0 if ADATA(49) > 0) Probability of being a punchthrough pion Not used	6 ADATA(10) HDATA(21) " (22) " (23)	ing / v
IDATA(58) Quality of TOF 1 one hit and un 2 two tracks hit -1 only one hit b 10 >=2 hits and o @ ADATA(59) TOF in nsec (after	ity of TOF one hit and unique solution two tracks hit the same counter but resolved only one hit but left/right TOF does not agree >=2 hits and can not be resolved in nsec (after all corrections)	(25)	# of the neg # of ambigue # of gammas # of electro # of muons # of hadrons

Page 6

jadecn80.text.txt

100
9140
Ψ.
age
CTS
3332M
- Cal
100000000000000000000000000000000000000
1
200
100000
200000000000000000000000000000000000000
100
100000
200000000000000000000000000000000000000
4.0
Distance of the
-><
4.00
100
-
adecn80.text.tx
200
O O
Mary W
-
00
0
Sept.
6.30
633
-
10.00
\sim
(C)
100
1100000
333
14
100
3.5
9
93
56
7:26
7:26
47:26
:47:26
4:47:26
4:47:26
14:47:26
14:47:26
7 14:47:26
97 14:47:26
997 14:47:26
997 14:47:26
1997 14:47:26
1997 14:47:26
7 1997 14:47:26
7 1997 14:47:26
7 1997 14:47:26
9 7 1997 14:47:26
ig 7 1997 14:47:26
ug 7 1997 14:47:26
Aug 7 1997 14:47:26
Aug 7 1997 14:47:26
Aug 7 1997 14:47:26

(31) The bank no. of the 1-st secondary track (32) . 2-nd . 3-rd .

last

(30+mulsec) *

