# CS798L PROJECT REPORT

# Differential Privacy In Data Reduction

Shlok Mishra 218170991 Statistics and Data Science

Srishti Chandra 221088 Computer Science and Engineering

September 13, 2025

## 1 Introduction and Motivation

## 1.1 The Curse of Dimensionality

High-dimensional datasets are ubiquitous in modern data science— ranging from genomic expression profiles to sparse user-item interaction logs. Yet, as dimensionality d grows, geometric and statistical intuitions begin to fail: inter-point distances concentrate, nearest-neighbour search degrades, and sample complexity explodes—phenomena collectively dubbed the *curse of dimensionality* [6]. Figure 1 visualises how pairwise  $\ell_2$  distances become nearly indistinguishable beyond a few dozen dimensions, eroding the contrast that underpins many learning algorithms.

#### 1.2 Privacy Risks in High-Dimensional Data

The same rich feature spaces that empower expressive models also amplify privacy leakage. Simple record-linkage attacks can re-identify individuals from apparently anonymised micro-data once dimensionality is high [4]. While Differential Privacy (DP) bounds such leakage [4], naively enforcing DP on high-dimensional vectors may require noise of magnitude  $\Omega(\sqrt{d})$ , obliterating accuracy. This tension motivates transformations that *simultaneously* reduce dimension and temper sensitivity.

#### 1.3 Our Focus and Contributions

Random projections—specifically the Johnson–Lindenstrauss (JL) transform—form a promising avenue. Two seminal works crystallise the idea:

- Kenthapadi et al. show that applying a JL transform followed by Gaussian noise yields strong  $(\varepsilon, \delta)$ -DP while preserving pairwise distances up to a small bias [7].
- **Blocki et al.** go further, proving that the JL transform *alone* is sufficiently random to guarantee DP for a broad class of linear queries—most notably graph cuts and covariance estimates [3].

This survey distills and contrasts those results within the broader DP toolbox. Concretely, we:

1. **Synthesize** the privacy proofs for projection-plus-noise and "inherently private" JL schemes, highlighting common structural lemmas.



Distances to nearest and farthest points as n increases (Image by the author)

Figure 1: Illustration of distance concentration in high-dimensional spaces ("curse of dimensionality").

- 2. Compare JL-based mechanisms with classic input/output perturbation and Multiplicative Weights approaches in terms of privacy budget, utility loss, and scalability.
- 3. **Identify open problems**—e.g. optimal target dimension k under joint privacy—utility constraints and extensions to non-Euclidean metrics.

The remainder of the report is organised as follows: Section 2 reviews the JL lemma and DP preliminaries; Section 3 dissects privacy-preserving projection algorithms; Section 4 benchmarks them against alternatives; Section 5 summarises theoretical bounds; and Section 6 outlines directions for future work.

# 2 Background

## 2.1 Notation and Problem Set-up

We write a dataset as a matrix  $\mathbf{X} \in \mathbb{R}^{n \times d}$  whose *i*-th row  $\mathbf{x}_i \in \mathbb{R}^d$  represents one individual's record; n is the number of individuals and  $d \gg n$  in our motivating scenarios. Throughout the paper we use:

- $\|\cdot\|_2$  for the Euclidean norm and  $\|\cdot\|_1$  for the  $\ell_1$  norm.
- Sensitivity. For a function  $f: \mathbb{R}^{n \times d} \to \mathbb{R}^m$  its  $\ell_1$ -sensitivity is  $S_1(f) = \max_{\text{nbrs } \mathbf{X}, \mathbf{X}'} || f(\mathbf{X}) f(\mathbf{X}') ||_1$ , where "nbrs" means the two datasets differ in exactly one row.  $\ell_2$ -sensitivity  $S_2(f)$  is defined analogously with  $|| \cdot ||_2$ .
- A random projection or JL matrix  $\mathbf{P} \in \mathbb{R}^{k \times d}$ ,  $k \ll d$ , with rows drawn i.i.d. either from  $\mathcal{N}(0, (1/k)\mathbf{I}_d)$  (Gaussian JL) or from a sparse Rademacher distribution [1].

# Linear Dimensionality Reduction



Figure 2: Geometric intuition for the Johnson–Lindenstrauss transform: random projection flattens a point cloud from  $\mathbb{R}^N$  into  $\mathbb{R}^M$  while keeping pairwise distances within  $(1 \pm \varepsilon)$  multiplicative distortion.

### 2.2 Johnson-Lindenstrauss Transform

Intuitively, the Johnson–Lindenstrauss (JL) lemma asserts that a small *random* subspace is sufficient to preserve pairwise distances, making it a powerful dimensionality-reduction primitive. Figure 2 offers the geometric caricature.

[Johnson–Lindenstrauss [6]] For any  $0 < \varepsilon < 1$  and any set V of n points in  $\mathbb{R}^d$ , there exists a mapping  $f: \mathbb{R}^d \to \mathbb{R}^k$  with  $k = O(\frac{\log n}{\varepsilon^2})$  such that for all  $\mathbf{u}, \mathbf{v} \in V$ 

$$(1 - \varepsilon) \|\mathbf{u} - \mathbf{v}\|_2^2 \le \|f(\mathbf{u}) - f(\mathbf{v})\|_2^2 \le (1 + \varepsilon) \|\mathbf{u} - \mathbf{v}\|_2^2.$$

A random matrix  $\mathbf{P} \in \mathbb{R}^{k \times d}$  whose entries  $P_{ij} \sim \mathcal{N}(0, 1/k)$  satisfies the lemma with probability at least  $1 - \frac{1}{n^3}$ .

**Practical constructions.** Besides dense Gaussian projections, database-friendly variants use Rademacher or very sparse sign matrices to cut time and storage to  $O(d \log d)$  or even O(d) [1]. We shall note in Section 3 that these variants inherit essentially the same privacy properties.

#### 2.3 Differential Privacy Primer

[Differential Privacy [4]] A randomized algorithm  $\mathcal{A}$  satisfies  $(\varepsilon, \delta)$ -differential privacy (DP) if for every pair of neighboring datasets  $\mathbf{X}, \mathbf{X}'$  and for every measurable set  $S \subseteq \text{Range}(\mathcal{A})$ ,

$$\Pr[\mathcal{A}(\mathbf{X}) \in S] \leq e^{\varepsilon} \Pr[\mathcal{A}(\mathbf{X}') \in S] + \delta.$$

Canonical mechanisms. DP is usually enforced by adding noise calibrated to sensitivity:

- Laplace mechanism adds i.i.d. Lap $(S_1(f)/\varepsilon)$  noise to each coordinate of  $f(\mathbf{X})$ , achieving  $(\varepsilon, 0)$ -DP.
- Gaussian mechanism adds i.i.d. Gaussian noise  $\mathcal{N}(0, \sigma^2)$  with  $\sigma \geq S_2(f)\sqrt{2\ln(1.25/\delta)}/\varepsilon$ , providing  $(\varepsilon, \delta)$ -DP and tighter concentration around zero [5].

In high-dimensional settings, the magnitudes  $S_1(f)$ ,  $S_2(f)$  may scale with  $\sqrt{d}$ , hence direct noise addition can overwhelm signal. Sections 3–4 illustrate how a JL projection shrinks sensitivity before noise is introduced—or, in some cases, *eliminates* the need for noise entirely.

# 3 Privacy-Preserving Dimensionality Reduction

# 3.1 Projection + Noise: PrivateProjection

The method of Kenthapadi et al. [7] first applies a Johnson–Lindenstrauss (JL) projection to shrink sensitivity and then adds Gaussian noise.

## Algorithm 1 PRIVATEPROJECTION (Kenthapadi et al.)

**Require:** Dataset  $\mathbf{X} \in \mathbb{R}^{n \times d}$ , target dim. k, privacy parameters  $(\varepsilon, \delta)$ 

- 1: Draw  $\mathbf{P} \sim \mathcal{N}(0, 1/k)^{k \times d}$
- 2:  $\mathbf{Y} \leftarrow \mathbf{X} \mathbf{P}^{\top}$
- 3:  $\sigma \leftarrow w_2(\mathbf{P})\sqrt{2\ln(1.25/\delta)}/\varepsilon$
- 4:  $\tilde{\mathbf{Y}} \leftarrow \tilde{\mathbf{Y}} + \tilde{\mathcal{N}}(0, \sigma^2 I_k)^{\otimes n}$
- 5: return  $\tilde{\mathbf{Y}} = 0$

[Privacy & Utility of PrivateProjection] Algorithm 1 satisfies  $(\varepsilon, \delta)$ -DP. For any rows  $\mathbf{u}, \mathbf{v}$ ,

// JL projection

$$\left| \|\tilde{\mathbf{u}} - \tilde{\mathbf{v}}\|_2^2 - \|\mathbf{u} - \mathbf{v}\|_2^2 \right| = O\left(\frac{\|\mathbf{u} - \mathbf{v}\|_2^2}{\sqrt{k}} + k\sigma^2\right)$$
 with high probability.



Figure 3: PrivateProjection pipeline.

## 3.2 Projection-Only: JL-CutSketch

Blocki et al. [3] prove that the JL projection alone is already differentially private for rank-1 neighbouring datasets (e.g. adding or removing one edge in a graph) once the input is lightly smoothed.

## Algorithm 2 JL-CutSketch (Blocki et al.)

**Require:** Graph G = (V, E), smoothing weight w, privacy  $(\varepsilon, \delta)$ 

1: Add w/|E| to every edge weight

// smooth

- 2: Let  $\mathbf{B} \in \{0, \pm 1\}^{|E| \times |V|}$  be the incidence matrix
- 3: Draw  $\mathbf{P} \sim \mathcal{N}(0, 1/k)^{k \times |E|}$
- 4:  $\mathbf{Y} \leftarrow \mathbf{PB}$
- 5: Publish Y
- 6: **return** Function that answers any cut query via  $\mathbf{Y} = 0$

[Privacy of JL-CutSketch] With  $k = \Theta(\varepsilon^{-2}\log(1/\delta))$ , Algorithm 2 satisfies  $(\varepsilon, \delta)$ -DP. Cut queries are answered with multiplicative  $(1\pm\eta)$  and additive  $O(w\eta)$  error, where  $\eta = \tilde{O}(\sqrt{\ln(1/\delta)}/\varepsilon)$ .



Figure 4: One-time JL sketch enables unlimited private cut queries.

### Relationship to PrivateProjection.

- Common core. Both algorithms employ the same random-Gaussian projection (Lines 1 and 3).
- Noise addition vs. constraint. Kenthapadi et al. add Gaussian noise (Line 4); Blocki et al. omit this step but restrict inputs to rank-1 neighbouring changes and smooth the data to bound sensitivity.

• Fallback rule. If the spectral condition in Blocki's theorem fails, PRIVATEPROJECTION is the safer choice; otherwise Blocki's sketch enjoys dimension-independent noise.

## 3.3 Fast JL Implementations

Table 1: Run-time and storage of common JL matrices (projecting an  $n \times d$  matrix to  $k = O(\log n/\varepsilon^2)$ ).

| ( 0 , ,,,                 |                |         |              |
|---------------------------|----------------|---------|--------------|
| Variant                   | Time           | Storage | Reference    |
| Dense Gaussian            | O(ndk)         | O(dk)   | classical JL |
| Sparse Sign (1/3 density) | O(ndk)         | O(dk)   | [1]          |
| FastJL (FFT)              | $O(nd \log k)$ | O(d)    | [2]          |
| SRHT (Hadamard)           | $O(nd \log d)$ | O(d)    | [8]          |

Replacing the dense Gaussian matrix in either Algorithm 1 or 2 by one of the above saves time and memory; privacy and utility guarantees remain up to constant factors (see Section 5).

# 4 Comparative Analysis

This section benchmarks JL-based methods against classic differential-privacy mechanisms along five axes: (i) core idea and data assumptions, (ii) error for graph cuts, (iii) error in distance estimation, (iv) query-interaction model, and (v) computational complexity.

# 4.1 Core Idea & Data Assumptions

Table 2: Mechanisms and their data assumptions.

| Method                                    | Core Idea                                                             | Data Assumptions                                                            |
|-------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|
| $\overline{\mathrm{JL} + \mathrm{Noise}}$ |                                                                       |                                                                             |
| (Kenthapadi)                              | Random JL projection; add Gaussian noise calibrated to max row-norm.  | Bounded $\ell_2$ -norm vectors; no preprocessing needed.                    |
| JL-Only                                   |                                                                       |                                                                             |
| (Blocki)                                  | Single JL projection; inherent randomness suffices—no explicit noise. | Well-conditioned data (large singular values); rank-1 neighbouring changes. |
| Randomised<br>Response                    | Flip each bit/coordinate with fixed probability.                      | Binary or bounded data; privacy cost scales with dimension.                 |
| Laplace / Gaussian                        | Compute query; add noise scaled to global sensitivity.                | No structural assumptions, but sensitivity often $\Theta(d)$ .              |
| Multiplicative<br>Weights (MWEM)          | Iteratively fit synthetic data to noisy answers.                      | Fixed workload known in advance; works best for counting queries.           |

**Take-away.** JL methods gain most when data are high-dimensional but reasonably well-behaved (bounded norm or well-conditioned); classical input/output noise mechanisms work universally but

may add dimension-dependent noise.

# 4.2 Error on Graph-Cut Queries

Table 3: Error guarantees for answering all graph cuts.

| Method            | Error Bound                                                                                                           | Privacy Cost                                                            |
|-------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Laplace (per cut) | Add Lap $(1/\varepsilon)$ on each edge; worst-case error $O( E /\varepsilon)$ .                                       | $(\varepsilon,0)$ -DP per query.                                        |
| JL-Only (Blocki)  | One sketch answers every cut with $O( S \eta)$ additive error, $\eta = \tilde{O}(\sqrt{\ln(1/\delta)}/\varepsilon)$ . | Single $(\varepsilon, \delta)$ -DP budget for <i>unlimited</i> queries. |

**Observation.** The one-time JL sketch is far better when many cut queries will be issued; Laplace dominates for a single query on a tiny graph.

## 4.3 Error in Distance Estimation

Table 4: Error when releasing pairwise squared distances.

| Method                  | Error Bound                                                        | Key Limitation                             |
|-------------------------|--------------------------------------------------------------------|--------------------------------------------|
| Direct Noise            | Gaussian noise on each squared distance: variance $O(d\sigma^2)$ . | Error grows linearly with $d$ .            |
| Randomised Response     | Bit-flip induces large bias for moderate distances.                | Only binary (or heavily discretised) data. |
| JL + Noise (Kenthapadi) | After bias correction, MSE $O(k\sigma^2)$ with $k \ll d$ .         | Small residual multiplicative distortion.  |

## 4.4 Query-Interaction Model

Table 5: Interactivity, composition, and typical use-cases.

| Method                  | Interaction<br>Model     | Composition                | Typical Applications                     |
|-------------------------|--------------------------|----------------------------|------------------------------------------|
| Input Perturba-<br>tion | Non-interactive release. | One-shot privacy loss.     | Raw data sharing in federated analytics. |
| Output Perturbation     | Interactive queries.     | Budget consumed per query. | Exploratory data analysis.               |
| MWEM                    | Interactive, iterative.  | Advanced composition.      | Large fixed workload of marginals.       |
| JL + Noise              | Non-interactive release. | Single budget.             | Distance-based ML (clustering, $k$ -NN). |
| JL-Only                 | Non-interactive release. | Single budget.             | Graph analytics, PCA, covariance.        |

## 4.5 Computational Complexity

Table 6: Asymptotic complexity (dataset size  $n \times d$ ).

|                              | <i>v</i> 1 1 <i>v</i> ( | ,                |
|------------------------------|-------------------------|------------------|
| Method                       | Time Complexity         | Space Complexity |
| Laplace (full data)          | O(nd)                   | O(nd)            |
| MWEM (per iter.)             | $O(n^2d)$               | O(nd)            |
| JL + Noise (dense)           | O(ndk)                  | O(nk)            |
| JL + Noise (sparse / FastJL) | $O(ns\log d)$           | O(nk)            |

### Summary of Findings.

- Utility vs. dimensionality. JL reduces error from O(d) to O(k), a win when  $k \ll d$ .
- Query volume. Projection-based sketches shine when the analyst plans many downstream queries; per-query mechanisms lose cumulative budget.
- Compute trade-offs. Dense JL costs O(ndk) time, but sparse FastJL lowers this to  $O(ns \log d)$  while preserving privacy.
- **Assumption sensitivity.** Projection-only privacy relies on spectral conditions; when violated, projection + noise or classical mechanisms are safer.

## 5 Theoretical Guarantees

In this section we state the main privacy and utility theorems proved in our two JL-based mechanisms.

## 5.1 Privacy Guarantees

1. JL + Noise Mechanism (Kenthapadi et al. [7]) Let  $x \in \mathbb{R}^d$  be any data vector with  $||x||_2 \le 1$ . Draw  $P \in \mathbb{R}^{k \times d}$  with i.i.d. entries  $P_{ij} \sim N(0, 1/k)$ . Define the sketch

$$\tilde{y} = Px + \eta, \quad \eta \sim \mathcal{N}(0, \sigma^2 I_k).$$

Then for any target  $(\varepsilon, \delta)$ , if

$$\sigma \geq w_2(P) \frac{\sqrt{2 \ln(1.25/\delta)}}{\varepsilon}, \text{ where } w_2(P) = \max_{1 \leq i \leq k} \|P_{(i)}\|_2,$$

the mapping  $x \mapsto \tilde{y}$  satisfies  $(\varepsilon, \delta)$ -differential privacy. Standard JL constructions ensure  $w_2(P) \approx 1$ , so in practice one sets  $\sigma = O(\sqrt{\ln(1/\delta)}/\varepsilon)$  [7, Prop. 1].

2. JL-Only Mechanism (Blocki et al. [3]) Consider a data matrix  $X \in \mathbb{R}^{n \times d}$  whose singular values are all at least  $\gamma > 0$ . Let  $P \in \mathbb{R}^{k \times d}$  be drawn entrywise from N(0,1). Define the published matrix  $Y = X P^{\top}$ . Then if

$$k \geq C \frac{\ln(1/\delta)}{\varepsilon^2}$$
 and  $\gamma \geq \sqrt{\frac{2\ln(2/\delta)}{\varepsilon^2}}$ ,

for an absolute constant C, the single publication Y is  $(\varepsilon, \delta)$ -differentially private for all linear queries on X (viewing neighboring datasets as differing by a rank-1 update) [3, Thm. 2.3]. No additional noise is required—the randomness of P alone suffices.

### 5.2 Utility Guarantees

3. Distance Preservation (JL + Noise) By the Johnson-Lindenstrauss lemma, with probability at least  $1 - \beta$  a random  $k \times d$  Gaussian projection preserves all pairwise distances among n points up to  $(1 \pm \varepsilon)$  if

$$k \geq O\left(\frac{\ln(n/\beta)}{\varepsilon^2}\right).$$

After adding Gaussian noise of variance  $\sigma^2$ , the squared-distance estimator

$$\hat{D}_{ij} = \|\tilde{y}_i - \tilde{y}_j\|^2 - 2k\,\sigma^2$$

is unbiased:  $\mathbb{E}[\hat{D}_{ij}] = ||x_i - x_j||^2$ , and concentrates tightly around its mean with variance  $O(k \sigma^4 + \varepsilon^2 ||x_i - x_j||^4)$  [7, Lem. 3.2].

**4. Linear Query Accuracy (JL-Only)** Blocki et al. show that for any unit-norm linear functional  $q \in \mathbb{R}^d$ , the projected answer  $q^{\top}Y$  differs from the true  $q^{\top}X$  by at most a  $(1 \pm \varepsilon)$  factor:

$$(1 - \varepsilon) \|X^{\top}q\|_2 \le \|Y^{\top}q\|_2 \le (1 + \varepsilon) \|X^{\top}q\|_2,$$

with high probability so long as  $k = O(\ln(1/\delta)/\varepsilon^2)$  [3, Thm. 3.1]. This guarantees accurate answers for any family of linear queries—such as graph cut sizes or covariance entries—independent of n and d.

# 6 Open Problems & Future Work

Despite rapid progress, several questions remain open.

- **Beyond well-conditioned data.** Projection-only privacy (Blocki et al.) relies on a lower bound on singular values. Designing *spectral boosters* or adaptive pre-conditioning that preserve both utility and privacy is an active line of research.
- Near-neighbour accuracy. Current utility bounds degrade for very small true distances. Can variance-reduction or debiasing techniques tighten the additive error for closest-pair and clustering tasks?
- Automatic parameter tuning. Choosing k and noise scale  $\sigma$  is still heuristic in practice. A data-dependent but differentially-private procedure—for example via the *propose-test-release* paradigm—would be valuable.
- Alternative metrics. The JL lemma is Euclidean. Extending inherent privacy to cosine similarity,  $\ell_1$  distance, or earth-mover distance could unlock new domains such as NLP embeddings or computer-vision features.
- Streaming and federated settings. FastJL matrices already stream in O(1) words per update; marrying them with continual-release DP (e.g. binary trees or sliding windows) remains largely unexplored.
- Hardware-friendly projections. Sparse integer or ternary JL matrices reduce multiplication cost; quantifying their privacy parameters under rounding error is an open engineering problem.

### 7 Conclusion

High-dimensional data analysis faces a dual challenge: the statistical curse of dimensionality and the legal imperative of privacy. This report surveyed how the Johnson–Lindenstrauss transform addresses both.

- We reviewed the classic JL lemma and the differential-privacy toolbox, establishing notation and sensitivity facts.
- We presented two projection-based mechanisms: PRIVATEPROJECTION (projection + Gaussian noise) and JL-Cutsketch (projection-only with smoothing). Formal theorems show each satisfies  $(\varepsilon, \delta)$ -DP while preserving geometry up to controllable error.
- A comparative study demonstrated where JL methods out-perform input/output perturbation and multiplicative-weights schemes— especially in non-interactive, many-query, highdimensional regimes.
- Fast, sparse, and Hadamard-based projections were catalogued, showing that privacy carries over with minor parameter tweaks.

Caveats. Projection-only privacy needs well-conditioned data; projection + noise incurs additive error that can hinder very fine-grained tasks. Moreover, JL currently caters to Euclidean geometry; other metrics remain open.

Why it matters. As organisations grapple with terabyte-scale feature spaces and stricter regulations (GDPR, CCPA), JL-based differentially-private sketches offer a rare combination of *simplicity*, *scalability*, and *theoretical guarantees*. Continued progress on the open problems above will determine whether these techniques become the default privacy layer for high-dimensional machine-learning pipelines.

# **Project Links**

### Overleaf Project Report:

https://www.overleaf.com/3936579644dhpqsgztvzdb#c69b53

#### **Overleaf Presentation Slides:**

https://www.overleaf.com/3257915794qyyqvrxqkhpq#5bcda1

# References

- [1] Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins. *Journal of Computer and System Sciences*, 66(4):671–687, 2003.
- [2] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast johnson–lindenstrauss transform. In *Proc. 38th ACM Symposium on Theory of Computing (STOC)*, pages 557–563, 2006.
- [3] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The Johnson-Lindenstrauss transform itself preserves differential privacy. In 53rd IEEE Symposium on Foundations of Computer Science (FOCS), pages 410–419. IEEE, 2012.
- [4] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data analysis. In *Proc. 3rd Theory of Cryptography Conference (TCC)*, pages 265–284. Springer, 2006.
- [5] Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differential Privacy, volume 9 of Foundations and Trends in Theoretical Computer Science. Now Publishers, 2014.
- [6] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. *Contemporary Mathematics*, 26:189–206, 1984.
- [7] Kamesh Kenthapadi, Aleksandra Korolova, Ilya Mironov, and Nina Mishra. Privacy via the Johnson-Lindenstrauss transform. *Journal of Privacy and Confidentiality*, 5(1):39–71, 2013.
- [8] Joel A. Tropp. Improved analysis of the subsampled randomized hadamard transform. *Advances in Adaptive Data Analysis*, 3(1–2):115–126, 2011.