1

ELEC 341 – Graded Assignments

Assignment A4 Block Diagram Manipulation

10 Marks

Learning Objectives

Block Diagram Manipulation Model Simplification Loaded Electric Motors Motor Model with Feedback Matlab feedback() Simulink

The "MIMO Block Diagram" has 2 inputs and 2 outputs.

Assume uniform physical units, so the transfer function is pure.

Q1 4 mark(s) Block Diagram Manipulation

Use block diagram manipulation to find each G. Use minreal() to simplify each transfer function.

G11 Input = U1 Output = Y1 Input = U1 Output = Y2 G12 G21 Input = U2 Output = Y1 G22 Input = U2 Output = Y2 • Q1.G11 (pure) • Q1.G12 (pure) LTI • Q1.G21 LTI (pure) LTI • Q1.G22 (pure)

Q2 2 mark(s) MISO Systems

Compute each G that corresponds to a common input signal applied to both inputs. Use minreal() to simplify each transfer function.

MIMO Block Diagram

- G1 = 1/(s+#A)
- G2 = 10/(s+#B)
- G3 = 10/(s+#C)
- G4 = 10/(s+#D)
- G5 = 1/(s+#E)
- H1 = 100/(s+#F)
- H2 = 1000/(s+#G)

COW: Implement the "MIMO Block Diagram" in Simulink.

Simulink is a Matlab GUI. Draw the figure **EXACTLY** as shown and press "RUN".

If your Matlab solution is correct, you will get the **EXACT SAME** response in Simulink.

Even though I used Simulink to draw the "MIMO Block Diagram", I didn't use the correct blocks because it didn't look as clean. A correctly implemented system is shown here, with step inputs applied. The switches let me check **ALL** my solutions for Q1 & Q2.

Test SN = 86753099

A fan is a simple electro-mechanical system comprising a motor and a fan blade. The fan blade has inertia and damping due to air resistance, and that's it. Your motor from Assignment 3 has a fan blade attached as shown in "Fan Motor".

Q3 4 mark(s) Fan Motor

Compute the electrical Ye and mechanical Ym admittance functions shown. Then use **feedback()** to compute the transfer function G. Use **minreal()** to simplify each transfer function.

	Ye	Input = Vin	Output = Iw
	Ym	Input = τ	Output = ω
	G	Input = Vin	Output = ω
•	Q3.Ye	(A/V)	LTI
•	Q3.Ym	(rad/Nms)	LTI
•	Q3.G	(rad/Vs)	LTI

COW: Set the fan parameters to zero and compare to Assignment 3. Did the speed go up or down after attaching the fan ??? Reasonable amount ??? Why not double-check by building it in Simulink ???

