Московский государственный технический университет имени Н. Э. Баумана

Факультет «Радиоэлектроника и лазерная техника» Кафедра «Технологии приборостроения»

ДОКЛАД на тему

МОДЕЛИРОВАНИЕ ДЕГРАДАЦИИ В ГЕТЕРОСТРУКТУРАХ

Содержание

BE	ведени	e		3	
1	Teop	Теоретическая часть			
	1.1	Полу	проводники	4	
		1.1.1	Собственные полупроводники	4	
		1.1.2	Примесные полупроводники	5	
	1.2 Гетероструктура			6	
		1.2.1	Зонная диаграмма	6	
		1.2.2	Гетероструктуры на основе $Al_xGa_{1-x}As$	6	
	1.3	1.3 Деградация			
	1.4 Диффузия				
		1.4.1	Законы Фика	9	
		1.4.2	Механизмы диффузии примесей	9	
		1.4.3	Коэффициент диффузии	9	
		1.4.4	Коэффициент диффузии Al, Si в $GaAs$	10	
	1.5 Метод конечных разностей. Решение одномерного неста				
	онарного уравнения диффузии			11	
		1.5.1	Коэффициент диффузии не зависит от концентра-		
			ции (координаты)	11	
		1.5.2	Коэффициент диффузии зависит от концентрации		
			(координаты)	13	
2	Рассчетная часть			14	
	2.1	Алго	рит моделирования деградации ГС	14	
	2.2	Начальные условия			
	2.3 Моделирование старения ГС		елирование старения ГС	15	
		2.3.1	Алгоритм моделирования старения ГС	15	
		2.3.2	Результат моделирования	15	
	2.4	Моде	елирование токопереноса через ГС	17	
		2.4.1	Алгоритм моделирования токопереноса через ГС .	17	
		2.4.2	Результат моделирования	17	

Введение

Цель работы:

а) Изучение процессов деградации гетероструктур.

Задача работы:

а) Получить модель описывающую процессы деградации в гетероструктурах.

1 Теоретическая часть

1.1 Полупроводники

Полупроводники (π/π)- широкий класс веществ, в которых концентрация подвижных носителей заряда значительно ниже, чем концентрация атомов, и может изменяться под влиянием температуры. освещения или относительно малого количества примесей.

Эффективная плотность состояний в зоне проводимости (ЗП) [?]:

$$N_c = 2\left[\frac{2\pi m_e^* k_B T}{h^2}\right]^{\frac{3}{2}},\tag{1.1}$$

где m_e^* — эффективная масса электрона;

 k_{B} — константа Больцмана;

h — постоянная Планка;

T — температура.

Эффективная плотность состояний в валентной зоне (ВЗ) [?]:

$$N_v = 2 \left[\frac{2\pi m_h^* k_B T}{h^2} \right]^{\frac{3}{2}},\tag{1.2}$$

где m_h^* — эффективная масса дырки.

1.1.1 Собственные полупроводники

Собственный полупроводник (п/п і-типа) — это чистый полупроводник, содержание посторонних примесей в котором не превышает $10^{-8}\dots 10^{-9}\%$.

Концентрация собственных носителей заряда в ЗП [?]:

$$n_i = \sqrt{N_c N_v} \exp\left[-\frac{E_g}{2k_B T}\right],\tag{1.3}$$

где E_g — ширина запрещенной зоны (33) п/п.

1.1.2 Примесные полупроводники

Примесный полупроводник - это полупроводник электрофизические свойства которого определяются, в основном, примесями других химических элементов.

Концентрация электронов в ЗП примесного π/π [?]:

$$n = \frac{N_D}{2} \left(2 + \frac{1}{2} \left(\frac{2n_i}{N_D} \right)^2 \right), \tag{1.4}$$

где N_D — концентрация атомов легирующей примеси.

1.2 Гетероструктура

Γ ЕТЕРОСТРУКТУРА

Полупроводниковая структура с несколькими гетеропереходами (ГП). Возможность изменять на границах ГП ширину запрещённой зоны позволяет эффективно управлять движением носителей заряда.

ГЕТЕРОПЕРЕХОД

Контакт двух различных по химическому составу монокристаллических или аморфных полупроводников.

ГП может образоваться между полупроводниками с абсолютно одинаковыми постоянными решетки, образующими монолитный, однородный в контакте, кристалл.

- a) GaAs-AlAs;
- б) GaN-AlN;
- в) GaSb–AlSb–InAs;
- Γ) GaAs–Ge.

Чаще всего в качестве материалов для Γ С используются GaAs и твердый раствор $Al_xGa_{1-x}As$.

1.2.1 Зонная диаграмма

Наряду с плавным изменением энергий краев зоны проводимости и валентной зоны, которое, как и в обычном p-n-переходе, определяется разностью работ выхода контактирующих полупроводников и длиной экранирования объемного заряда, на переходе имеются разные скачки в изменении энергии.

Согласно модели Андерсона, скачок в изменении энергии для зоны проводимости:

$$\Delta \varepsilon_c = \chi_1 - \chi_2; \tag{1.5}$$

$$\Delta \varepsilon_v = \Delta \varepsilon_q - \Delta \varepsilon_c; \tag{1.6}$$

1.2.2 Гетероструктуры на основе $Al_xGa_{1-x}As$

Рассмотрим основные характеристики $Al_xGa_{1-x}As$.

Рисунок 1.1 — Зонная диаграмма перехода между электронными и дырочными полупроводниками с разной шириной запрещенной зоны

Таблица 1.1 — Основные параметры $Al_xGa_{1-x}As$

Параметр	$Al_xGa_{1-x}As$
Кристаллическая структура	Типа цинковой обманки
Постоянная решетки $a[nm]$	0.56533 + 0.00078x
$E_g^{\Gamma}[eV], x < 0.45$	0.56533 + 0.00078x
$E_g^{\Gamma}[eV], x > 0.45$	$1.656 + 0.215x + 0.143x^2$
$\Delta E_c^{\Gamma}[eV], x < 0.45$	0.773x
$\Delta E_c^{\Gamma}[eV], x > 0.45$	$0.232 - 0.259x + 1.147x^2$
m_e^Γ	0.067 + 0.083x
m_{lh}	0.082 + 0.071x
$N_{atoms}[1/sm^{-3}]$	$(4.42 - 0.17x)10^{22}$

1.3 Деградация

Деградация — процесс ухудшения характеристик какого-либо объекта или явления с течением времени, постепенное ухудшение, упадок, снижение качества.

Изучая деградацию ГС рассматривают следующие параметры:

- Вольт-амперная характеристика (ВАХ);
- Высота потенциального барьера (ПБ);
- Ширина потенциального барьера;
- Ширина потенциальной ямы (ПЯ);
- Т.п...

Все параметры ГС тесно связаны с друг с другом. Изменение одного влечет изменение остальных.

Один из примеров ΓC — это резонансно-туннельный диод (РТД). РТД используют в качестве преобразователя частот в смесителях, где преобразование частот зависит от формы ВАХ РТД, которая подвержена деградации.

Форма ВАХ задается ГС активной области РТД. Исследование и моделирование деградации ВАХ ГС важная задача. В зависимости от отрасли необходимо гарантировать различную $T_{\gamma=0.999}$.

Одна из причин деградации ВАХ ГС — диффузионное размытие профиля дна зоны проводимости (E_c) .

1.4 Диффузия

Диффузия — это обусловленный хаотическим тепловым движением перенос атомов, он может стать направленным под действием градиента концентрации или температуры.

Диффундировать могут как собственные атомы решетки, так и атомы растворенных в полупроводнике элементов, а также точечные дефекты структуры кристалла — междоузельные атомы и вакансии.

1.4.1 Законы Фика

Первый закон Фика

Плотность потока вещества пропорциональна коэффициенту диффузии (D) и градиенту концентрации (C). Является стационарным уравнением.

$$\overline{J} = -D\nabla C; \tag{1.7}$$

$$\overline{J}_x = -\overline{e}_x D_x \frac{\delta}{\delta x} C_x. \tag{1.8}$$

(1.9)

Второй закон Фика

Связывает пространственное и временное изменения концентрации.

$$\frac{\delta}{\delta t}C = -\nabla(D\nabla C); \tag{1.10}$$

$$\frac{\delta}{\delta t}C_x = -\frac{\delta}{\delta x}D_x \frac{\delta}{\delta x}C_x. \tag{1.11}$$

1.4.2 Механизмы диффузии примесей

Вакансионный механизм диффузии— заключается в миграции атомов по кристаллической решётке при помощи вакансий.

Межузельный механизм диффузии— заключается в переносе вещества межузельными атомами.

Прямой обмен атомов местами — заключается в том, что два соседних атома одним прыжком обмениваются местами в решетке кристалла.

1.4.3 Коэффициент диффузии

Коэффициент диффузии в терминах случайных блужданий можно записать (для простой кубической решетки):

$$D = \frac{1}{6}\lambda^2\nu,\tag{1.12}$$

где λ — расстояние между соседними кристаллографическими плоскостями; ν — частота скачков диффундирующих атомов.

Частота скачков ν зависит от температуры (T)

$$\nu = \nu_0 \exp\left[-\frac{E_a}{k_B T}\right],\tag{1.13}$$

где E_a — энергия активации;

 k_{B} — константа Больцмана;

T — температура атома;

 μ_0 — константа.

Коэффициент диффузии (D) — макроскопическая величина, которая определяется экспериментально. Коэффициент диффузии зависит от температуры(T) по закону Аррениуса:

$$D = D_0 \exp\left[-\frac{E_a}{k_B T}\right],\tag{1.14}$$

где D_0 — предэкспоненциальный множитель.

Коэффициент (D_0) и энергия активации (E_a) не зависят от температуры.

1.4.4 Коэффициент диффузии Al, Si в GaAs

Основным механизмом диффузии Al и Si в GaAs является диффузия по вакансиям галлия (V_{Ga}) . Это связано с тем, что атомы Al и Si имеют сходные массы и размеры.

С учетом эффекта уровня Ферми получено в работах [?], [?], [?], [?] получено соотношение коэффициента диффузии Al и Si в GaAs:

$$D_{Al,Si} = D_{i-GaAs} \left(\frac{n}{n_i}\right)^3 = D_0 \exp\left[-\frac{3.5}{k_B T}\right] \left(\frac{n}{n_i}\right)^3,$$
 (1.15)

где n — концентрация электронов в зоне проводимости;

 n_i — концентрация собственных носителей заряда.

1.5 Метод конечных разностей. Решение одномерного нестационарного уравнения диффузии

Суть метода конечных разностей заключается в аппроксимации дифференциальных операторов отношением конечных разностей.

1.5.1 Коэффициент диффузии не зависит от концентрации (координаты)

Одномерное нестационарное уравнение диффузии, соответствующее второму закону Фика имеет вид:

$$\frac{\delta}{\delta t}C = D\frac{\delta^2}{\delta x^2}C; \tag{1.16}$$

Аппроксимация первой производной по времени в момент времени t_i концентрации $C_j(t_i) = C_j^i$ в точке j:

$$\frac{\delta}{\delta t}C_j^i = \frac{C_j^{i+1} - C_j^i}{\Delta t};\tag{1.17}$$

Аппроксимация первой производной по координате в момент времени t_i концентрации $C_j(t_i)=C_j^i$ в точке j:

$$J_{j}^{i} = \frac{\delta}{\delta x} C_{j}^{i} = \frac{C_{j+1}^{i} - C_{j}^{i}}{\Delta x}; \tag{1.18}$$

Аппроксимация второй производной по координате в момент времени t_i концентрации $C_j(t_i) = C_j^i$ в точке j:

$$\frac{\delta^2}{\delta x^2} C_j^i = \frac{\delta}{\delta x} \left[\frac{C_{j+1}^i - C_j^i}{\Delta x} \right] = \frac{\frac{C_{j+1}^i - C_j^i}{\Delta x} - \frac{C_j^i - C_{j-1}^i}{\Delta x}}{\Delta x} =$$

$$= \frac{C_{j+1}^i - 2C_j^i + C_{j-1}^i}{\Delta x^2}; \tag{1.19}$$

Подставляя в (1.16) аппроксимацию производных (1.17), (1.19), получим связь C_j^{i+1} с C_j^i , т.е. изменение концентрации через Δt :

$$C_i^{i+1} = \lambda C_{i-1}^i + (1 - 2\lambda)C_i^i + \lambda C_{i+1}^i, \tag{1.20}$$

где $\lambda = \frac{D\Delta t}{\Delta x^2}$ — связь коэффициента диффузии и шагов по сетке времени и координаты.

Уравнение (1.20) справедливо для всех не крайних точек конечно разностной схемы, при коэффициенте диффузии не зависящем от концентрации (координаты).

Выделим два граничных приближения для концентрации:

- а) «Закрытая система» концентрация на границе не изменяется $(J_0^i=0,\,J_{N+1}^i=0);$
- б) «Открытая система» поток частиц подходящий к границе равен потоку уходящих частиц $(J_0^i=J_1^i,\,J_N^i=J_{N+1}^i).$

Для «закрытой системы» должно выполняться условие $J_0^i=0,$ $J_{N+1}^i=0.$ Рассмотрим $(1.18),\,(1.20)$ для точки j=1:

$$J_0^i = \frac{C_1^i - C_0^i}{\Delta x} = 0 \Rightarrow C_0^i = C_1^i;$$

$$C_1^{i+1} = \lambda C_0^i + (1 - 2\lambda)C_1^i + \lambda C_2^i = \lambda C_1^i + (1 - 2\lambda)C_1^i + \lambda C_2^i =$$

$$= (1 - \lambda)C_1^i + \lambda C_2^i = C_1^{i+1};$$

Рассматривая точки N-1, N, N+1 аналогичным образом получим:

$$\begin{cases}
C_1^{i+1} = (1-\lambda)C_1^i + \lambda C_2^i; \\
C_j^{i+1} = \lambda C_{j-1}^i + (1-2\lambda)C_j^i + \lambda C_{j+1}^i, j \in [2, \dots, N-1]; \\
C_N^{i+1} = (1-\lambda)C_N^i + \lambda C_{N-1}^i.
\end{cases} (1.21)$$

Для «открытой» системы должно выполняться условие $J_0^i=J_1^i,$ $J_N^i=J_{N+1}^i.$ Рассмотрим (1.18), (1.19), (1.20) для точки j=1:

$$J_0^i = J_1^i$$

$$\frac{C_1^{i+1} - C_1^i}{\Delta t} = \frac{J_1^i - J_0^i}{\Delta x} = \frac{0}{\Delta x} = 0 \Rightarrow$$

$$\Rightarrow C_1^{i+1} = C_1^i;$$

Рассматривая точки $N-1,\,N,\,N+1$ аналогичным образом получим:

$$\begin{cases}
C_1^{i+1} = C_1^i; \\
C_j^{i+1} = \lambda C_{j-1}^i + (1-2\lambda)C_j^i + \lambda C_{j+1}^i, j \in [2, \dots, N-1]; \\
C_N^{i+1} = C_N^i.
\end{cases}$$
(1.22)

1.5.2 Коэффициент диффузии зависит от концентрации (координаты)

Если коэффициенте диффузии (D) зависит от концентрации (координаты), тогда уравнение диффузии принимает вид:

$$\frac{\delta}{\delta t}C = \frac{\delta}{\delta x}D\frac{\delta}{\delta x}C; \tag{1.23}$$

Тогда уравнение конечно-разностной схемы будет [?]:

$$\frac{C_j^{i+1} - C_j^i}{\Delta t} = \frac{D_{j+1/2}^i \frac{C_{j+1}^i - C_j^i}{\Delta x} - D_{j-1/2}^i \frac{C_j^i - C_{j-1}^i}{\Delta x}}{\Delta x};$$
(1.24)

$$D_{j\pm 1/2}^{i} = \frac{D_{j}^{i} + \overline{D_{j\pm 1}^{i}}}{2}.$$
 (1.25)

2 Рассчетная часть

2.1 Алгорит моделирования деградации ГС

Рисунок 2.1- Блок схема алгорит моделирования деградации $\Gamma \mathrm{C}$

2.2 Начальные условия

2.3 Моделирование старения ГС

2.3.1 Алгоритм моделирования старения ГС

Рисунок 2.2- Блок схема алгорит моделирования старения $\Gamma \mathrm{C}$

2.3.2 Результат моделирования

Рисунок 2.3 — Результат моделирования старения

2.4 Моделирование токопереноса через ГС

2.4.1 Алгоритм моделирования токопереноса через ГС

Рисунок 2.4- Блок схема алгорит моделирования токопереноса через $\Gamma \mathrm{C}$

2.4.2 Результат моделирования

Рисунок 2.5 — Результат моделирования токопереноса через гетероструктуру