Постановка задач линейного программирования

Общие термины

Что такое Задача логического программирования (ЗЛП) — это определение упорядоченной совокупности переменных, при которых линейная целевая функция достигает экстремального значения и при этом удовлетворяются все ограничения

Линейное программирование (ЛП) — это направление математического программирования, изучающее методы решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейным критерием.

Общая формулировка

В общей постановке задача линейного программирования (ЗЛП) формулируется следующим образом.

Имеются какие-то переменные $x = (x_1, x_2, ..., x_n)$ и линейная функция этих переменных, которая носит название целевой функции. Ставится задача: найти экстремум (максимум или минимум) целевой функции при условии, что переменные x удовлетворяют системе линейных равенств и/или неравенств. Классическими примерами практических задач, сводящихся x задаче линейного программирования, являются задача о диете, а также задача о составлении плана производства.

В задаче о диете составляется наиболее экономный (т.е. наиболее дешевый) рацион питания животных, удовлетворяющий определенным медицинским требованиям. При этом в качестве переменных x_1 , x_2 ,..., x_n выступают количества продуктов питания, используемых в рационе.

Задачу о составлении плана производства рассмотрим более подробно. Пусть некоторая производственная единица (предприятие, цех, отдел и т.д.) может производить п видов товаров G_1 , G_2 ,..., G_n , используя при этом m видов сырьевых ресурсов R_1 , R_2 ,..., R_m , запасы которых ограничены величинами b_1 , b_2 ,..., b_m .

Технологией производства товара G_j назовем набор чисел a_{ij} , показывающий, какое количество i-го ресурса необходимо для производства единицы товара G_j . 4 Это можно записать в виде технологической матрицы, которая полностью описывает технологические потребности производства и элементами которой являются числа a_{ij} .

	G ₁	G ₂		Gn
R ₁	A ₁₁	A ₁₂	•••	A _{1n}
R ₂	A ₂₁	A ₂₂		A _{2n}
	•••	•••		•••
R _n	A _{m1}	A _{m2}		A _{mn}

Предположим также, что известны цены реализации единицы каждого товара c_1 , c_2 , ..., c_n . Обозначим через x_1 , x_2 , ..., x_n планируемое производство единиц товаров G_1 , G_2 ,..., G_n . В силу имеющейся технологической матрицы для этого потребуется:

С учетом ограничений на запасы ресурсов, а также очевидных условий неотрицательности переменных x_1 , x_2 ,..., x_n получим следующую систему линейных неравенств:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \leq b_1, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \leq b_m. \end{cases}$$

Естественно предположить, что целью производственной единицы является получение максимальной выручки за произведенную продукцию, т.е. максимизация функции:

$$F=c_1x_1+c_2x_2+...+c_nx_n$$
.

Таким образом, с учетом естественного требования неотрицательности переменных получаем линейную оптимизационную задачу, которая может быть представлена в следующей формальной записи:

 $F=c_1x_1+c_2x_2+...+c_nx_n \rightarrow max$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1, \\ \dots \dots \dots \dots \dots \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m, \\ x_1 \ge 0, x_2 \ge 0, \dots, x_n \ge 0 \end{cases}$$

Таким образом получен исходный вид задачи ЛП, и поставлена математическая задача

Рассмотрим на конкретном примере

Пусть некоторая производственная единица (предприятие, цех, отдел и т.д.) может производить 4 вида товаров, используя при этом 3 вида сырьевых ресурсов, запасы которых ограничены величинами:

Проводники – 200 ед.

Текстолит 500 ед.

Микропроцессоры – 30 ед.

	Одноплатный	маршрутизатор	Смартфон	Микросхема
	компьютер			
Проводники	10	20	8	15
Текстолит	30	10	10	30
Микропроцессоры	2	3	5	1

известны цены реализации единицы каждого товара

Одноплатный компьютер – 3100 руб.

Маршрутизатор – 4200 руб.

Смартфон – 7000 руб.

Микросхема -2000 руб

Цель – заработать как можно больше с продажи товара

Где X_n – количество произведенного товара

Теперь система уравнений. Она составляется построчно:

$$\begin{cases} 10x1 + 20x2 + 8x3 + 15x4 \le 200 \\ 20x1 + 10x2 + 10x3 + 30x4 \le 500 \\ 2x1 + 3x2 + 5x3 + 1x4 \le 30 \end{cases}$$

Теперь ЗЛП поставлена:

F=(3000*x1+5000*x2+10000*x3+1500*x4) ->max
$$\begin{cases} 10x1 + 20x2 + 8x3 + 15x4 \le 200 \\ 20x1 + 10x2 + 10x3 + 30x4 \le 500 \\ 2x1 + 3x2 + 5x3 + 1x4 \le 30 \end{cases}$$

Решить такую систему можно при помощи python

Докачаем библиотеку, в которой уже реализован функционал решения таких задач pip install pulp

Теперь подключаем в нашем скрипте модуль

Для нашего примера получим следующий скрипт

```
from pulp import *
import time
x1 = pulp.LpVariable("x1", lowBound=0, cat=LpInteger)
x2 = pulp.LpVariable("x2", lowBound=0, cat=LpInteger)
x3 = pulp.LpVariable("x3", lowBound=0, cat=LpInteger)
x4 = pulp.LpVariable("x4", lowBound=0, cat=LpInteger) #определяем переменные кол-
problem = pulp.LpProblem('0', LpMaximize) #условие на максимум
problem += 3100*x1+4200*x2+7000*x3+2000*x4, "Функция цели" #переносим матрицу
problem += 10*x1+20*x2+8*x3+15*x4<=200, "1"
problem += 20*x1+10*x2+10*x3+30*x4<=500, "2"
problem += 2*x1+3*x2+5*x3+1*x4<=30, "3"
problem.solve() #запускаем расчет
print ("Результат:")
for variable in problem.variables():
    print (variable.name, "=", variable.varValue)
print ("Прибыль:")
print (value(problem.objective))
```

Запускаем скрипт через терминал командой python main.py

И получаем наше решение

```
Результат:
x1 = 6.0
x2 = 0.0
x3 = 2.0
x4 = 8.0
Прибыль:
48600.0
```

Вывод: при данных вводных параметрах выгоднее всего делать микросхемы, а на остаток материалов другого типа произвести несколько компьютеров и два телефона. Так получилось добиться прибыли около 48600 руб.

Задание на закрепление

попробовать создать такие условия, чтобы было выгодно производить

- А) только телефоны
- Б) все типы продуктов
- В) попробовать минимизировать прибыль