

Intelligent Systems for Pattern Recognition

Master Degree in Computer Science, Al Curriculum

A.Y. 2020/2021

Code snippets

```
def attack_pattern(model, pattern, label, eps, predict: bool, print_prediction: bool, show_noise=False):
def adversary_pattern(model, pattern, label, eps, show_noise=False):
                                                                                              adversary_image = adversary_pattern(model, pattern, label, eps=eps, show_noise=show_noise)
    pattern = tf.cast(np.reshape(pattern, (1, 32, 32, 3)), tf.float32)
                                                                                              if predict:
    with tf.GradientTape() as tape:
                                                                                                  out_adversary = np.argmax(model.predict(adversary_image))
         tape.watch(pattern)
                                                                                                  out_pattern = np.argmax(model.predict(pattern.reshape(1, 32, 32, 3)))
         pred = model(pattern)
                                                                                                  if print_prediction:
         loss = MSE(label, pred)
                                                                                                     print("True label: {0}, Predicted label: {1}, Predicted adversary label: {2}".
         gradient = tape.gradient(loss, pattern)
                                                                                                           format(classes[np.argmax(label)], classes[out_pattern], classes[out_adversary]))
         signed_grad = tf.sign(gradient)
         adversary = (pattern + (signed_grad * eps)).numpy()
                                                                                              adversary_image = adversary_image.reshape((32, 32, 3))
         if show_noise:
                                                                                              adversary_image = np.clip(adversary_image * 255, 0, 255)
              signed_grad = (signed_grad * eps).numpy()
                                                                                              image = np.copy(pattern) * 255
             plt.imshow(np.clip(signed_grad.reshape(32, 32, 3) \star 255, 0, 1))
                                                                                              plt.imshow(adversary_image.astype("uint8"))
             plt.show()
                                                                                              plt.show()
                                                                                              plt.imshow(image.astype("vint8"))
         return adversary
                                                                                              plt.show()
```


The network and the results

For the network's structure i took inspiration from VGG16 since a simple cnn didn't perform well.

Kernel size: (3, 3) Pooling Stride: 2

Pooling: MaxPooling (2, 2)

Dropout: 0.3

Activation: ReLU

Batch nomalization after each convolution

Convolution MaxPooling Convolution MaxPooling Softmax

Training Error: 0.3862653970718384, Training accuracy: 0.9571400284767151

Test Error: 0.7658382058143616, Test accuracy: 0.8486999869346619

Adversarial attack, FGSM

Original image

Noise

Predicted: dog

Attacked image

Test adversary eps=0.005 Error: 3.771026134490967, Test adversary eps=0.005 accuracy: 0.3700999915599823

Test adversary eps=0.01 Error: 6.874120235443115, Test adversary eps=0.01 accuracy: 0.15209999680519104

How can we defend from such attacks?

Adversarial training

- The most simple idea was augmenting the training set with adversarial patterns (each one with random noise);
- It makes the model more robust but makes the training more complex (and longer) and it doesn't always guarantee success.

Eps (noise)	No adv. Training	Adv. Training
0.001	0.7432	0.7886
0.005	0.37	0.7559
0.01	0.1520	0.7142
0.05	0.0535	0.4271
0.1	0.0891	0.2813

Test accuracy at different eps values, showing the difference beetween a network that wasn't trained on adversarial pattern and one that was.

Final considerations

- Using more filters as the we go deeper in the network gives better results in terms of accuracy;
- MaxPooling performed a little better than AvgPooling, it highlights the most important features (like edges), but the gap in terms of accuracy wasn't that much;
- Simple data augmentation is not the best solution for adversarial training, more sophisticated approaches could perform better, such as distillation, and gaussian augmentation.

Thanks for the attention