PRIMITIVES ET INTÉGRALES

1. PRIMITIVES D'UNE FONCTION

DÉFINITION

Soit f une fonction définie sur I.

On dit que F est une primitive de f sur l'intervalle I, si et seulement si F est dérivable sur I et pour tout x de I, F'(x) = f(x).

EXEMPLE

La fonction $F: x \mapsto x^2$ est une primitive de la fonction $f: x \mapsto 2x$ sur \mathbb{R} .

La fonction $G: x \mapsto x^2 + 1$ est aussi une primitive de cette même fonction f.

PROPRIÉTÉ

Si F est une primitive de f sur I, alors les autres primitives de f sur I sont les fonctions de la forme F+k où $k \in \mathbb{R}$.

REMARQUE

Une fonction continue ayant une infinité de primitives, il ne faut pas dire \mathbf{la} primitive de f mais \mathbf{une} primitive de f.

EXEMPLE

Les primitives de la fonction $f: x \mapsto 2x$ sont les fonctions $F: x \mapsto x^2 + k$ où $k \in \mathbb{R}$.

PROPRIÉTÉ

Toute fonction **continue** sur un intervalle I admet des primitives sur I.

PROPRIÉTÉS

Primitives des fonctions usuelles:

ſ	Fonction f	Primitives F	Ensemb <mark>le de</mark>	
			validi <mark>té</mark>	
	0	k	\mathbb{R}	
	а	ax + k	\mathbb{R}	
:	$x^n \ (n \in \mathbb{N})$	$\frac{x^{n+1}}{n+1} + k$	R	
	$\frac{1}{x^n} \ (n \in \mathbb{N}; \ n > 1)$	$-\frac{1}{(n-1)x^{n-1}}+k$	$\mathbb{R}-\{0\}$	
	$\frac{1}{x}$	$\ln x + k$]0;+00[
	e^x	$e^x + k$	\mathbb{R}	

PROPRIÉTÉS

Si f et g sont deux fonctions définies sur I et admettant respectivement F et G comme primitives sur I et k un réel quelconque.

- F + G est une primitive de la fonction f + g sur I.
- kF est une primitive de la fonction kf sur I.

PROPRIÉTÉS

Primitives et fonctions composées

Soit u une for	nction définie et	dérivable sur un
Fonction <i>f</i>	Primitives F	Condition
$u'u^n \ (n \in \mathbb{N})$	$\frac{u^{n+1}}{n+1} + k$	
$\frac{u'}{u}$	$\ln u + k$	$\sin u(x) > 0$
$\frac{u'}{u^n} \ (n \in \mathbb{N}; \ n > 1)$	$-\frac{1}{(n-1)u^{n-1}}+k$	$si \ u(x) \neq 0$
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}+k$	$\operatorname{si}u\left(x\right) >0$
$u'e^u$	$e^{u}+k$	

intervalle I.

EXEMPLE

La fonction $x \mapsto \frac{2x}{x^2 + 1}$ admet comme primitives les fonctions de la forme $x \mapsto \ln(x^2 + 1) + k$ sur tout intervalle de \mathbb{R} (forme $\frac{u'}{u}$).

2. INTÉGRALES

DÉFINITION

Soit f une fonction continue sur un intervalle [a;b] et F une primitive de f sur [a;b]. L'intégrale de a à b de f est le nombre réel noté $\int_a^b f(x) \, \mathrm{d}x$ défini par :

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

REMARQUES

- L'intégrale ne dépend pas de la primitive de f choisie. En effet si G est une autre primitive de f, on a G = F + k donc: G(b) - G(a) = F(b) + k - (F(a) + k) = F(b) - F(a)
- Dans l'expression $\int_a^b f(x) \, \mathrm{d}x$, x est une variable « muette ». C'est à dire que l'on ne change pas l'expression si on remplace x par une autre lettre. En pratique, on emploie souvent la lettre t notamment lorsque la lettre x est employée par ailleurs.

NOTATIONS

On note souvent : $F(b) - F(a) = [F(x)]_a^b$

On a avec cette notation:

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b}.$$

EXEMPLE

La fonction F définie par $F(x) = \frac{x^3}{3}$ est une primitive de la fonction carré.

On a donc:

$$\int_0^1 x^2 dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3} - \frac{0}{3} = \frac{1}{3}.$$

THÉORÈME (INTÉGRALE FONCTION DE SA BORNE SUPÉRIEURE)

Soit f une fonction continue sur un intervalle I et $a \in I$; la fonction définie sur I par :

$$x \mapsto \int_{a}^{x} f(t) dt$$

est la primitive de f qui s'annule pour x = a.

DÉMONSTRATION

Soit *F* une primitive (quelconque) de *f*. Posons $\Phi(x) = \int_{a}^{x} f(t) dt$

$$\Phi(x) = \int_{a}^{x} f(t) dt = F(x) - F(a)$$

donc:

$$\Phi'(x) = F'(x) = f(x).$$

Ce qui prouve que Φ est aussi une primitive de f.

De plus
$$\Phi(a) = F(a) - F(a) = 0$$
.

REMARQUE

Notez bien la position du *x* en borne supérieure de l'intégrale.

EXEMPLE

La fonction définie sur $[0; +\infty[x \mapsto \int_1^x \frac{1}{t} dt]$ (on peut aussi écrire $\int_1^x \frac{dt}{t}$) est la primitive de la fonction inverse qui s'annule pour x=1. C'est donc la fonction logarithme népérien :

$$\ln(x) = \int_1^x \frac{\mathrm{d}t}{t}.$$

PROPRIÉTÉ

Relation de Chasles

Soit f une fonction continue sur [a;b] et $c \in [a;b]$.

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

PROPRIÉTÉ

Linéarité de l'intégrale

Soit f et g deux fonctions continues sur [a; b] et $\lambda \in \mathbb{R}$.

$$\int_{a}^{b} f(x) + g(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

$$\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx.$$

PROPRIÉTÉ

Comparaison d'intégrales

Soit f et g deux fonctions continues sur [a;b] telles que $f\geqslant g$ sur [a;b].

$$\int_{a}^{b} f(x) dx \geqslant \int_{a}^{b} g(x) dx.$$

REMARQUE

En particulier, en prenant pour g la fonction nulle on obtient si $f(x) \ge 0$ sur [a;b]:

$$\int_{a}^{b} f(x) \, \mathrm{d}x \geqslant 0.$$

3. INTERPRÉTATION GRAPHIQUE

DÉFINITION

Le plan P est rapporté à un repère orthogonal (O, \vec{i}, \vec{j}) .

On appelle **unité d'aire (u.a.)** l'aire d'un rectangle (qui est un carré si le repère est orthonormé) dont les côtés mesurent $||\vec{i}||$ et $||\vec{j}||$.

Unité d'aire dans le cas d'un repère orthonormé

PROPRIÉTÉ

Si f est une fonction continue et **positive** sur [a;b], alors l'intégrale $\int_a^b f(x) \, \mathrm{d}x$ est l'aire, en unités d'aire, de la surface délimitée par :

- la courbe C_f ,
- · l'axe des abscisses,
- les droites (verticales) d'équations x = a et x = b.

EXEMPLE

L'aire colorée ci-dessus est égale (en unités d'aire) à $\int_{1}^{3} f(x) dx$.

REMARQUES

- Si f est négative sur [a;b], la propriété précédente appliquée à la fonction -f montre que $\int_a^b f(x) \, \mathrm{d}x$ est égale à l'**opposé** de l'aire délimitée par la courbe C_f , l'axe des abscisses, les droites d'équations x = a et x = b.
- Si le signe de f varie sur [a;b], on découpe [a;b] en sous-intervalles sur lesquels f garde un signe constant.

PROPRIÉTÉ

Si f et g sont des fonctions continues et telles que $f\leqslant g$ sur [a;b], alors l'aire de la surface délimitée par :

- la courbe C_f ,
- la courbe C_g ,
- les droites (verticales) d'équations x = a et x = b.

est égale (en unités d'aire) à :

$$A = \int_{a}^{b} (g(x) - f(x)) dx.$$

EXEMPLE

f et g définies par $f(x) = x^2 - x$ et $g(x) = 3x - x^2$ sont représentées par les paraboles ci-dessous :

L'aire colorée est égale (en unités d'aire) à :

$$A = \int_0^2 (g(x) - f(x)) dx = \int_0^2 (4x - 2x^2) dx = \left[2x^2 - \frac{2}{3}x^3\right]_0^2 = \frac{8}{3} \text{u.a.}$$