計算理論 第14回 第7章: 文脈自由言語の性質 (3/3)

基礎工学部情報科学科中川 博之

本日の概要

- ・ 第7章: 文脈自由言語の性質
 - − テキスト: p.309~
 - 7.3 文脈自由言語の閉包性
 - 7.4 文脈自由言語の決定問題
- 重要概念
 - 閉包性, 決定可能性, CYKアルゴリズム

7.3 文脈自由言語の閉包性

閉包性

- 言語 L: 語の集合
- 言語クラス C: CFLなど
- LECに対する演算結果がCに属するか否か
- CFLに対する演算でCFLであることが保証されているものはどのようなものか?
 - 保証されていると嬉しい場面: CFL AにCFL Bを埋め込む
 - 例)JSP(JavaServer Pages): HTML内にJavaを埋め込む
 - Javaコードを<% %>間に記述可能
 - このとき、得られる言語がCFLだと嬉しい

7.3.1 代入

- ・ 言語Lの各a∈Σに対して言語Laを対応付ける
 - Σ: 言語Lのアルファベット
- ・ 各記号aに対する代入(substitution): s(a)=L_a
- 記号列に対する代入:
 s(a₁ ... a_n) = {x₁...x_n | x₁∈s(a₁), ..., x_n∈s(a_n)}
- 言語への代入: s(L) = U_{w∈I}s(w)

例7.22

- $s(0)=\{a^nb^n \mid n\geq 1\}, s(1)=\{aa, bb\}$
- ・ w=01とすると, s(w)=s(0)s(1)= {aⁿbⁿaa|n≥1} U {aⁿbⁿ⁺²|n≥1}
- L=L(0*)のとき,
 s(L) = s(0)*
 = {aⁿ¹bⁿ¹aⁿ²bⁿ² ... a^{nk}b^{nk} | k≥0∧n1, ..., nk≥1}
 -たとえば、ε, ab, aabbabab, abaabbababなど

定理7.23:代入演算の閉包性

- L:Σ上のCFL
- s:Σ上の代入
- 各a∈∑に対してs(a)がCFLであれば、s(L)はCFL

定理7.23:証明(概要)

- LØCFG G=(V, Σ, P, S)
- s(a) (a∈Σ) のCFG G_a=(V_a, Σ_a, P_a, S_a)
 GとG_aは同じ変数を使わない(置換する)
- P中の A→… a … を A→… S_a … に変更
 → aではなく、Laの語が導出されるようになる

定理7.24

- 文脈自由言語は次の演算のもとで閉じている
 - -(1)集合和
 - (2) 連接
 - (3) 閉包 (*), 正閉包 (+)
 - (4) 準同型写像
- 証明(次スライド以降)
 - 代入演算の閉包性を使うとよい

定理7.24:証明(集合和)

- L₁, L₂: CFL
- s:Σ上の代入で, s(1) = L₁, s(2) = L₂とすると
- 集合和 L₁ U L₂ = s(1) U s(2) = s({1, 2})
 - 言語 {1,2} への代入と定義できる
- よって、定理7.23
 - 各a∈Σに対してs(a)がCFLであれば, s(L)はCFLより, CFLは集合和演算のもとで閉じている

定理7.24:証明(連接)

- $L_1, L_2: CFL$
- s:Σ上の代入で, s(1) = L₁, s(2) = L₂とすると
- 連接 L₁ L₂ = s(1) s(2) = s({12})
 - 言語 {12} への代入と定義できる
- 定理7.23
 - 各a∈Σに対してs(a)がCFLであれば, s(L)はCFLより, CFLは連接演算のもとで閉じている

定理7.24:証明(閉包,正閉包)

- L₁: CFL
- s:Σ上の代入で, s(1) = L₁とすると
- 閉包 L₁* = s(1)* = s({1*})
- 正閉包 L₁+ = s(1)+ = s({1+})
 - 言語 {1*} および {1⁺} への代入と定義できる
- 定理7.23
 - 各a∈Σに対してs(a)がCFLであれば, s(L)はCFL より, CFLは閉包, 正閉包演算のもとで閉じている

定理7.24:証明(準同型写像)

- 準同型写像(homomorphism) (テキストp154)
 - 文字列中の各文字を特定の文字列で置き換えるよう な写像(関数)
 - 特定の文字列の代入
- L: CFL
- h:Σ上の準同型写像
- s:Σ上の代入で, 各a∈Σに対し, s(a) = {h(a)} とすると,

準同型写像 h(L)= U_{w∈L}h(w)=U_{w∈L}s(w)=s(L)

7.3.3:逆順

• 定理7.25: <u>LがCFLなら, L^RもCFL</u>

- 証明(一部略)
 - LのCFG G=(V, T, P, S)から G^R=(V, T, P^R, S)を作る
 - ただし、PRはPの生成規則を逆順にしたもの
 - A→α から A→α^R を作る
 - 例えば、A→BC から A→CB を作る
 - L(G^R)=L^Rは, 導出の長さに関する帰納法で示す(略)

7.3.4: CFLの共通部分

- CFLは共通部分について閉じていない
 - L₁, L₂がCFLであっても、L₁∩L₂はCFLとは限らない
- 例7.26

$$-L_1 = \{0^n 1^n 2^i \mid n \ge 1, i \ge 1\}$$
 CFL

$$-L_2 = \{0^i 1^n 2^n | n \ge 1, i \ge 1\}$$
 CFL

$$-L_1 \cap L_2 = \{0^n 1^n 2^n | n \ge 1\}$$
 CFLではない

(反復補題で証明済み)

7.3.4: 正則言語との共通部分

・ 定理7.27: LがCFLでRが正則言語ならば、L∩RはCFL

- 証明概要:
 - PDAとFAを用意する

PDAの構成

• 右図のようなPDAを作る

- 上側:Rを受理するFA

- 下側:Lを受理するPDA

- ともに受理ならば入力 を受理

- FAとPDAの状態遷移を 合成して1つのPDAを作 る
- これにより、PDAを用い て L∩R を受理できる
- → つまり、L∩RはCFL

定理7.29 (1): CFLと正則言語の差

- L: CFL, R: 正則言語
- 定理7.29(1): L-R はCFL

証明:

- Rが正則言語ならRも正則言語 (テキストP147 定理4.5)
- L R = L∩Rであり、CFLと正則言語の共通部分は CFL(定理7.27)である.

定理7.29 (2): CFLの補集合

- L: CFL
- 定理7.29(2): LはCFLとは限らない

証明:

- Lが常にCFL (補集合も閉じている)と仮定すると、
- $-L_1 \cap L_2 = \overline{L_1 \cup L_2}$ であるが,
 - 左辺: CFLとは限らない
 - ・右辺:補集合と和集合が閉じているためCFL

となり、矛盾

定理7.29 (3): CFLの差

- L₁, L₂: CFL
- 定理7.29(3): L₁ L₂はCFLとは限らない

• 証明:

- L₁ L₂がCFLと仮定
- $-L_1=Σ* とすると, L_1-L_2=\overline{L}_2$
 - Σ*はCFL (Σ*を受理するPDA, 文法を構成できる)
- $-\bar{L}_2$ はCFLとは限らない一方で、仮定より L_1 L_2 が CFLとなり、矛盾

7.3.5 逆準同型写像

- L: CFL, h: 準同型写像
- h⁻¹(L): h(w)∈Lであるような列wの集合
- 定理7.30: h⁻¹(L)はCFL
- 証明概要
 - LはCFLなので, h(h⁻¹(L))を受理するPDAが存在
 - 記号列h(a₁)h(a₂)...h(aₙ)∈Lを受理できる
 - →内部でhを適用することで、記号列a₁a₂...a_nを 受理するPDAを構成できる
 - スタック処理を待ってもらうためにバッファを導入

7.3.5 逆準同型写像: PDAの構成

- 記号列a₁a₂...a_nを受理するPDAの構成
 - Lを受理するような内部PDAを用意
 - ・ バッファから1文字ずつ読んで処理を進める
 - ・ バッファが空なら記号aiを読み、h(ai)をバッファに挿入

7.4 文脈自由言語の決定問題

7.4.1 CFGとPDAの間の変換の複雑さ

- PDAからCFGへの変換(6.3.2参照)を考える
 - n: PDA or CFGの表現の長さ(文字列長, 変数数) とすると...

 定理7.31:長さnの記述のPDA Pから、高々 O(n³)の長さのCFG Gを生成するO(n³)時間の アルゴリズムが存在

説明略(テキスト参照)

7.4.2 CNFへの変換

- (1) ε-規則の除去:
 - 素朴に実施するとO(n²), 分解して上手く実施するとO(n)
- (2) 単位規則の除去: O(n²)
- (3) 文法の到達可能性および生成的な記号の発見. つまり無用な記号の除去: O(n) (後述)
- (4)終端記号の変数への置き換え:O(n)
- (5) 長さ3以上の本体の分解: O(n)

 \rightarrow 定理7.32 長さnのCFG Gに対して、Gと等価なCNF文法を $O(n^2)$ で見つけることができ、結果の文法は $O(n^2)$

7.4.3 CFLの空集合検査

CFLの空集合検査問題

- G: CFL Lの文法
- S:Gの開始記号
- 判定問題:Sは列を少なくとも1つ生成するか 否か?
 - つまり、Sが生成的か否かを判断
 - Sが生成的でない ⇔ L=φ

CFLの空集合検査アルゴリズム

- 生成的かどうかの判定法は, 7.1.2(テキスト p.286)で 既に学んだ
 - 終端記号からはじめて、到達可能な変数を追加していく
 - 最後に開始記号が集合に含まれているかをチェック
 - 素朴に実行するとO(n²)時間
 - 各ステップですべての規則を調べるのにO(n). これがnステップ
- データ構造の工夫で、O(n)時間で検査可能に
 - 各規則について、本体部の未確定の変数数をカウント
 - 0になると頭部の変数が生成的であると判断する手段 (詳細はテキスト参照)
 - 同様の技法は、到達可能性の判定でも利用可能

7.4.4 CFLへの所属検査

CFLへの所属検査問題

- 入力: CFL L と記号列 w
 - CFL L は PDAかCFGで与えられる

• [問題] 与えられた記号列wに対し、 welかどうかを判別

CFLへの所属検査問題を解く CYKアルゴリズム

- CFL所属検査のための効率的なアルゴリズム
 - J. Cocke, D. Younger, T. Kasami (嵩忠雄先生: 元阪大教授)がそれぞれ発見したアルゴリズム
- O(n³)時間で判定可能
 - n = |w|, PDA Pの大きさは定数とみなす
- CNF Gを用いる
 - PDAからCFGをO(n³)で構成, それをCNFにO(n²)で変換

CYKアルゴリズム

- 入力 w=a₁a₂... a_n (各a_i:終端記号)
- 表を作り判定
 - 各a: wの具体的な各文字(数はn=5のとき)
 - X_{ij}はA^{*}⇒a_ia_{i+1}... a_jとなる変数Aの集合

X ₁₅				
X_{14}	X ₂₅			
X ₁₃	X_{24}	X ₃₅		
X ₁₂	X_{23}	X ₃₄	X ₄₅	
X ₁₁	X_{22}	X ₃₃	X ₄₄	X ₄₅
a_1	a ₂	a_3	a_4	a ₅

CYKアルゴリズム

- ・ 調べたいこと: w∈L ⇔ S∈X_{1n}
 - 定義より、S∈X_{1n}はS⇒*a₁a₂... a_n
- ・ 表は行ごとに下から上に埋めていく
 - 一番下は長さ1の部分列

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X_{24}	X ₃₅		
X ₁₂	X_{23}	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
a_1	a ₂	a ₃	a_4	a ₅

表の構築法

- 基礎: 表の一番下の行 X_{ii}の構築
 - A^{*}→a_i となる変数Aの集合
 - A→a_iとなるAを探せばよい
 - CNF(チョムスキー標準形)を仮定しているため

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X_{24}	X ₃₅		
X ₁₂	X_{23}	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
$\overline{a_1}$	a ₂	a ₃	a ₄	a ₅

表の構築法

- 帰納: X_{ij} (i<j) の構築
 - それより下の行はすべて計算済みと仮定
 - A^{*}⇒a_ia_{i+1}... a_jとなる変数Aすべてを求めX_{ij}とする
 - ・ 導出 A⇒a_ia_{i+1}... a_i はA→BCの形で始まる
 - あるkに対し、B ⇒ a_ia_{i+1}... a_k , C ⇒ a_{k+1}a_{k+2}... a_j

$$X_{15}$$
 X_{14} X_{25} X_{13} X_{24} X_{35} ←現在着目 X_{12} X_{23} X_{34} X_{45} X_{11} X_{22} X_{33} X_{34} X_{44} X_{55} \leftarrow 計算済み A_{11} A_{12} A_{13} A_{14} A_{15} $A_{$

表の構築法

- 帰納: X_{ij} (i<j) の構築
- X_{ii}は以下の条件を満たす変数Aの集合
 - A→BCがGの規則
 - i ≤ k < jを満たすi, j, kそれぞれに対して
 - $B \in X_{ik}$: $B \stackrel{*}{\Rightarrow} a_i a_{i+1} \dots a_k$
 - $C \in X_{k+1j} : C \stackrel{*}{\Rightarrow} a_{k+1} a_{k+2} ... a_{j}$
- つまり、Aを求めるには以下を調べればよい
 - $-(X_{ii}, X_{i+1j}), (X_{ii+1}, X_{i+2j}), ..., (X_{ij-1}, X_{jj})$
 - これらのXはいずれも計算済

例7.34

- G:CNF
 - $-S \rightarrow AB \mid BC$
 - $-A \rightarrow BA \mid a$
 - $-B \rightarrow CC \mid b$
 - $-C \rightarrow AB \mid a$
- baaba ∈ L(G)?

```
X_{14} = X_{25}\{S,A,C\}

X_{14} = X_{25}\{S,A,C\}

X_{13} = X_{24} = \{B\} = X_{35} = \{B\}

X_{12} = \{S,A\} = \{A\} = \{B\} = X_{34} = \{S,C\} = \{A\} = \{B\} = X_{45} = \{A\} = \{B\} = \{A\} = \{
```

7.4.5 決定不能なCFL問題の あらまし

決定可能性 (decidability)

- 決定可能な(decidable)問題
 - 有限時間で答(Yes/No)を出力して停止する アルゴリズムが存在する問題
- 決定不能な(undecidable)問題
 - 決定可能でない問題. すなわち,
 - 判定に要する時間が有限時間でない問題

CFLに関する決定不能な問題

- 与えられたCFGはあいまいか
- 与えられたCFLは本質的にあいまいか
- 2つのCFLの共通部分は空集合か
- 2つのCFLが等しいか
- 与えられたCFLがΣ*に等しいか

ミニレポート

ミニレポート: 14-1

- テキストp331 問7.4.3 (a):
 - 例7.34の文法GとCYKアルゴリズムを使い、ababaが L(G)に属するか決定せよ
- 文法G=({S, A, B, C}, {a, b}, P, S)
 ただしPは以下の生成規則を要素とする集合
 - $-S \rightarrow AB \mid BC$
 - $-A \rightarrow BA|a$
 - $-B\rightarrow CC|b$
 - $-C\rightarrow AB|a$