Lecture - 2

Propositional Logic

A **Proposition** or a statement or logical sentence is a declarative sentence which is either true or false.

Example1: The following statements are all propositions:

- o Jawaharlal Nehru is the first prime minister of India.
- o It rained Yesterday.
- \circ If x is an integer, then x^2 is a +ve integer.

Example2: The following statements are not propositions:

- Please report at 11 a.m. sharp
- What is your name?
- $\circ x^2 = 13$

Propositional Variables

The lower case letters starting from P onwards are used to represent propositions

Example: p: India is in Asia

q: 2 + 2 = 4

Compound Statements

Statements or propositional variables can be combined by means of logical connectives (operators) to form a single statement called compound statements.

The five logical connectives are:

Symbol	Connective	Name
~	Not	Negation
	And	Conjunction
	Or	Disjunction
	Implies or ifthen	Implication or Conditional
	If and only if	Equivalence or Biconditional

Basic Logical Operations

Negation (¬)

The negation of a proposition A (written as $\neg A$) is false when A is true and is true when A is false.

The truth table is as follows –

A	
True	False
False	True

$\overline{\mathbf{OR}(\vee)}$

The OR operation of two propositions A and B (written as $A \lor B$) is true if at least any of the propositional variable A or B is true.

The truth table is as follows –

A	В	
True	True	True
True	False	True
False	True	True
False	False	False

$\underline{\text{AND}} (\land)$

The AND operation of two propositions A and B (written as $A \land B$) is true if both the propositional variable A and B is true.

The truth table is as follows –

A	В	
True	True	True
True	False	False
False	True	False
False	False	False

Implication / if-then (\rightarrow)

An implication $A \rightarrow B$ is the proposition "if A, then B". It is false if A is true and B is false. The rest of the cases are true.

The truth table is as follows –

A	В	
True	True	True
True	False	False
False	True	True
False	False	True

If and only if (\Leftrightarrow)

 $A \Leftrightarrow B$ is bi-conditional logical connective which is true when p and q are same, i.e. both are false or both are true.

The truth table is as follows –

A	В	
True	True	True
True	False	False
False	True	False
False	False	True

Precedence of Logical Operators

Operator	Name	Precedence
	Negation	1
	Conjunction	2
	Disjunction	3
	Implication	4
	Biconditional	5