

5.1 Ideale Signalabtastung

Spektrum des PAM-Signals (nach Abtaster)

 $T_i \rightarrow 0$

$$s_{PAM}(t) = \frac{1}{k_M} s_m(t) \cdot A_p \cdot T_{ip} \cdot \sum_{i=-\infty}^{\infty} \delta(t-i \cdot T_p)$$

$$= \frac{A_p \cdot T_{ip}}{k_M} \cdot \sum_{i=-\infty}^{\infty} s_m(i \cdot T_p) ; \delta(t-i \cdot T_p)$$

$$S_p(f)$$

$$S_{PAM}(f) = \underbrace{\frac{A_p \cdot T_{ip}}{k_M}}_{k_p} \cdot S_m(f) * \underbrace{\frac{1}{T_p} \cdot \sum_{i=-\infty}^{\infty}}_{i=-\infty} \delta\left(f - \frac{i}{T_p}\right) = \underbrace{\frac{A_p \cdot T_{ip}}{k_M \cdot T_p}}_{k_p \cdot T_p} \cdot \sum_{i=-\infty}^{\infty} S_m\left(f - \frac{i}{T_p}\right)$$

Was bedeutet dieses Ergebnis?

Die Fouriertransformierte $S_{PAM}(f)$ des abgetasteten Signals ist das **Faltungsprodukt** des Signalspektrums $S_m(f)$ mit der Dirac-Stoßfolge im Frequenzbereich

 \Rightarrow Signalspektrum $S_m(f)$ wird periodisch mit $f_p = 1/T_p$ wiederholt.

11.05.2020 | etit | Institut für Mikrowellentechnik und Photonik | Nachrichtentechnik | Rolf Jakoby

