PRML の 4 章のための数学

サイボウズ・ラボ 光成滋生

2011年5月13日

1 概要

この文章は『パターン認識と機械学習』(以下 PRML) の 4 章を理解するために必要な数学の一部です. 間違い、質問などございましたら herumi@nifty.com または twitterID:herumi までご連絡ください.

2 行列の微分の復習

 $A=(a_{ij})$ とかいた.

$$(AB)_{ij} = \sum_{k} a_{ik} b_{kj}.$$
$$\operatorname{tr}(A) = \sum_{i} a_{ii}$$
$$A^{T} = (a_{ii})$$

などを思い出しておく.

さてA,Bを適当な行列として

$$\frac{\partial}{\partial A}\operatorname{tr}(AB) = B^{T}$$

なぜなら,

$$(\frac{\partial}{\partial A}\operatorname{tr}(AB))_{ij} = \frac{\partial}{\partial a_{ij}} \sum_{s,t} a_{st} b_{ts} = b_{ji}.$$

ここで $\frac{\partial}{\partial a_{ij}}a_{st}=\delta_{is}\delta_{jt}$ を使った. つまり添え字 s,t が走るときに, $s=i,\,t=j$ のときのみが生き残るというわけである.

慣れるためにもう一つやっておこう.

$$\frac{\partial}{\partial A}\operatorname{tr}(ABA^{T}) = A(B + B^{T}).$$

なぜなら,

$$\frac{\partial}{\partial a_{ij}} \operatorname{tr}(ABA^{T}) = \frac{\partial}{\partial a_{ij}} \sum_{s,t,u} a_{st} b_{tu} a_{su}$$

$$= \sum_{s,t,u} b_{tu} \frac{\partial}{\partial a_{ij}} (a_{st} a_{su})$$

$$= \sum_{s,t,u} b_{tu} (\delta_{is} \delta_{jt} a_{su} + a_{st} \delta_{is} \delta_{ju})$$

$$= \sum_{u} b_{ju} a_{iu} + \sum_{t} b_{tj} a_{it}$$

$$= \sum_{u} a_{iu} b_{ju} + \sum_{t} a_{it} b_{tj}$$

$$= (AB^{T})_{ij} + (AB)_{ij}$$

$$= (A(B + B^{T}))_{ij}.$$

3 多クラス

K 個の線形関数を使った K クラス識別を考える.

$$y_k(x) = w_k^T x + w_{k0}.$$

ここで w_k は重みベクトル, w_{k0} はバイアスパラメータでスカラー, x が分類したい入力パラメータでベクトルである.

クラス分類を次の方法で定義する: x に対して、ある k が存在し、全ての $j \neq k$ にたいして $y_k(x) > y_j(x)$ であるとき x はクラス C_k に割り当てるとする.

これは well-defined である. つまり

- ullet (一意性) x が二つの異なるクラス C_k に C_k' に属することはない. なぜならそういう k, k' があったとすると $y_k(x)>y_k'(x)>y_k(x)$ となり矛盾するから.
- (存在性) x が与えられたとき $\{y_k(x)\}$ の最大値 m を与える k_0 がその候補である. もしも $m=y_k(x)$ となる k が複数個存在 (k_1, k_2) したとすると、クラス分類はできないが、そういう x の集合は $\{x|y_{k_1}(x)=y_{k_2}(x)\}$ の部分集合となり、通常次元が落ちる. つまり無理できるぐらいしかない.

上記で分類されたクラス C_k に属する空間は凸領域となる。すなわち x, x' を C_K の点とすると,任意の $\lambda \in [0,1]$ に対して $x'' = \lambda x + (1-\lambda)x'$ も C_k に属する.

なぜなら $x,x'\in C_k$ より任意の $j\neq k$ にたいして $y_k(x)>y_j(x),\,y_k(x')>y_j(x').\,y_k(x)$ は x について線形なので $\lambda\geq 0,\,1-\lambda\geq 0$ より

$$y_k(x'') = \lambda y_k(x) + (1 - \lambda)y_k(x') > \lambda y_j(x) + (1 - \lambda)y_j(x') = y_j(x'')$$

が成り立つからである.

凸領域は単連結(simply connected)である。つまりその領域の中に空洞は無い。任意の凸領域の2点を結ぶ線分が凸領域に入ることから直感的には明らかであろう。

4 分類における最小二乗

前節では重みベクトル w_{k0} を別扱いしたが、 $\tilde{w}_k=(w_{k0},w_k^T)^T$ 、 $\tilde{x}=(1,x^T)^T$ と 1 次元増やすと $y_k(x)=\tilde{w}^T\tilde{x}$ とかける。面倒なので \tilde{x} を x と置き換えてしまおう。

さらにまとめて $y(x) = W^T x$ としよう. x, y はベクトル, W は行列である.

二乗誤差関数

$$E_D(W) = \frac{1}{2}\operatorname{tr}((XW - T)^T(XW - T))$$

を最小化するWを求めよう.

$$\frac{\partial}{\partial w_{ij}} E_D(W) = \frac{1}{2} \frac{\partial}{\partial w_{ij}} \sum_{s,t} ((XW - T)_{st})^2$$

$$= \sum_{s,t} (XW - T)_{st} \frac{\partial}{\partial w_{ij}} (XW - T)_{st}$$

$$= \sum_{s,t} (XW - T)_{st} \frac{\partial}{\partial w_{ij}} (\sum_{u} x_{su} w_{ut})$$

$$= \sum_{s,t} (XW - T)_{st} x_{su} \delta_{iu} \delta_{jt}$$

$$= \sum_{s} (XW - T)_{sj} x_{si}$$

$$= \sum_{s} (X^T)_{is} (XW - T)_{sj}$$

$$= (X^T (XW - T))_{ij}.$$

よって

$$\frac{\partial}{\partial W} E_D(W) = X^T (XW - T).$$

= 0 とおいて $X^TXW = X^TT$ より

$$W = (X^T X)^{-1} X^T T.$$