

Advanced Topic in Deep Learning, Assignment 1

Amir El-Ghoussani, M.Sc.
amir.el-qhoussani@fau.de
Chair of Multimedia Communications and Signal Processing

Agenda

- 1. Background knowledge
- 2. Coding task 1: LIME
- 3. Coding task 2: SHAP

Exercise plan

- Will be updated regularly
- If assignment not uploaded in time,
 Please remind me
- If presentation is scheduled then tutorial will be held immediately after the presentation

Advanced Topics in Deep Learning	Day	Date	Time	Room	Exercise topic	Submissions
Holiday / Teaching Free	Monday	4/21/2025	12:00	(05.025 Seminarraum)		
Lecture	Wednesday	4/23/2025	8:00	H15		
Exercise	Monday	4/28/2025	12:00	(05.025 Seminarraum)	Intro	Ex. 1 Upload
Exercise	Wednesday	4/30/2025	8:00	H15	Ex. 1 presentation	
Exercise	Monday	5/5/2025	12:00	(05.025 Seminarraum)	Tutorial	
Lecture	Wednesday	5/7/2025	8:00	H15		
Lecture	Monday	5/12/2025	12:00	(05.025 Seminarraum)		Ex. 1 Deadline
Lecture	Wednesday	5/14/2025	8:00	H15		
Lecture	Monday	5/19/2025	12:00	(05.025 Seminarraum)		
Lecture	Wednesday	5/21/2025	8:00	H15		Ex. 2 Upload
Exercise	Monday	5/26/2025	12:00	(05.025 Seminarraum)	Ex. 2 presentation	
Lecture	Wednesday	5/28/2025	8:00	H15		
Exercise	Monday	6/2/2025	12:00	(05.025 Seminarraum)	Tutorial	
Lecture	Wednesday	6/4/2025	8:00	H15		
Holiday / Teaching Free	Monday	6/9/2025	12:00	-(05:025- Seminarraum)		
Lecture	Wednesday	6/11/2025	8:00	H15		Ex. 2 Deadline
Lecture	Monday	6/16/2025	12:00	(05.025 Seminarraum)		Ex. 3 Upload
Exercise	Wednesday	6/18/2025	8:00	H15	Ex. 3 presentation	
Exercise	Monday	6/23/2025	12:00	(05.025 Seminarraum)	Tutorial	
Lecture	Wednesday	25.06.2025	8:00	H15		Ex. 4 Upload
Exercise	Monday	6/30/2025	12:00	(05.025 Seminarraum)	Ex. 4 presentation	Ex. 3 Deadline
Lecture	Wednesday	7/2/2025	8:00	H15		
Exercise	Monday	7/7/2025	12:00	(05.025 Seminarraum)	Tutorial	
Lecture	Wednesday	7/9/2025	8:00	H15		Ex. 5 Upload
Exercise	Monday	7/14/2025	12:00	(05.025 Seminarraum)	Ex. 5 presentation	Ex. 4 Deadline
Lecture	Wednesday	7/16/2025	8:00	H15		
Exercise	Monday	7/21/2025	12:00	(05.025 Seminarraum)	Tutorial	
Exercise	Wednesday	7/23/2025	8:00	H15	Exam Q&A	Ex. 5 Deadline

In the first lecture, you covered the topic interpretability in supervised learning.
 Interpretable machine learning model provides information on why certain decisions have

been made.

- In the first lecture, you covered the topic interpretability in supervised learning.
 Interpretable machine learning model provides information on why certain decisions have been made.
- Categories of Interpretability Methods

Methods	Model training		Class of m	nodels	Predictions	
	Pre-hoc / intrinsic	Post-hoc	Model- specific	Model- agnostic	Local	Global
Properties	Simple structure	Trained model	Particular class of models (NN)	Any (trained) model	Individual prediction	Entire model

Interpretable Models:

- Linear Regression, Logistic Regression and Decision Trees
- Local Model-Agnostic Approaches:
 - Individual Conditional Expectation (ICE): a plot shows how the output changes when changing a feature
 - Local interpretable model-agnostic explanations
 (LIME): explain individual predictions of black box
 machine learning models.

Figure 1: ICE plot. Source: interpretable-ml-book

Interpretable Models:

- Linear Regression, Logistic Regression and Decision Trees
- Local Model-Agnostic Approaches (cont.):
 - Counterfactual Explanations: <u>smallest change</u> to the feature values that changes the prediction to a predefined output
 - Shapley value: assume that each feature value of the instance is a "player" in a game where the prediction is the payout

 fairly distribute the "payout" among the features
 - <u>SHAP:</u> explain individual predictions, based-on the game-theoretically optimal Shapley values

Image source: shap-for-image-classification

Coding task 1: Local Interpretable Model-agnostic Explanations

- LIME focuses on explaining the model's prediction for individual instances.
- Use **surrogate** model a simple interpretable model.
- Variations of the images are created by segmenting the image into "super pixels" and turning super pixels off or on.
- LIME is one of the few methods that works for tabular data, text, and images.
- LIME is implemented in Python and R and is easy to use. To fully understand the algorithm, you are NOT allowed to use the library.
- Problems of LIME: instability of the explanations → difficult to trust the explanations

How Neural Networks work? Neurons:

Coding task 1: LIME

Pipeline of LIME

- Pick a sample + a black box ML model
- 2. Perturb sample multiple times→ new dataset
- 3. Get model predictions for each perturbation
- 4. Weight the prediction: distance to the original image
- Train an interpretable model on perturbed data
- 6. Get explanation

Coding task 1: LIME – super pixels

Compute super pixels:

- Super pixels are contiguous patches of the image that share <u>color</u> and / or <u>brightness</u> similarities
- Implementation: use <u>quickshift()</u> from skimage
- Why quickshift? → quickshift is a mode-seeking algorithm that considers the pixels as samples over a 5-dimensional space (3 color dimensions and 2 space dimensions)
- Some inputs of quickshift()
 - Image: input image of shape (M, N, C)
 - Ratio: between <u>color-space</u> and <u>image-space</u> proximity. Higher → more weight for color-space
 - Kernel_size: size of Gaussian kernel for sample density smoothing. Higher
 → fewer clusters
 - Max_dist: Cut-off point for data distances. Higher means fewer clusters

Sample output

Coding task 1: LIME – perturbation

Perturbs the image

- Randomly replacing some super pixels of the image
- Perform using mean replacement: mean color of the super pixels
- Usually, black out the super pixels
- Repeat this step multiple times → new dataset
- Implementation hints: use binomial distribution to select which super pixels to be turned off

Sample output

Coding task 1: LIME – weights

- Calculate weights:
 - Compute the <u>cosine</u> distance between original image and the perturbed image using pairwise distances from sklearn.metrics
 - Compute weight by a kernel function:

$$\pi_i = \sqrt{\exp\left(-\frac{d_{\cos}^2}{v^2}\right)}$$

Where v > 0 is a bandwidth parameters, default = 0.25.

Coding task 1: LIME – surrogate model

- Surrogate model:
 - Weighted linear model: LinearRegression()
 - Remember to set the weight when using <u>fit()</u> using the previously computed weights
 - Input data is the perturbed images
 - Each coefficients in the linear model corresponds to one super pixel in the segmented image
 - → the <u>importance</u> of each super pixel for the prediction of the top class

```
array([ 0.0199833 , -0.01601374, 0.10354327, -0.04821644, 0.08925877, 0.07826848, 0.02714029, 0.07659395, 0.18122355, -0.05638588, 0.03509676, 0.00470357, 0.02208912, 0.10356663, 0.07223697, 0.0034734 , 0.08162887, 0.03907232, 0.00769051, 0.02527205, -0.0100494 , 0.02130284, -0.07029254, -0.02555164, 0.52121138, 0.0205534 , 0.0013183 , -0.17025011, -0.03082538, 0.14881233, 0.05691062, 0.1011255 , -0.01224566, -0.04081408, -0.03864275, -0.02153394, -0.05745923, 0.02746975, 0.03796638, 0.03152467, 0.03358099, 0.00733296, 0.04806797, -0.02303122, -0.0145786, 0.08431814, 0.008036 , -0.01945883, -0.09000518, 0.05641921, 0.02874261, 0.01926118, -0.03653446, 0.03901715, -0.0582456, 0.03474161, -0.102688 , 0.00780907, -0.03470868, 0.03349195, 0.66900843, -0.05142001, 0.02219387, 0.05436448, 0.01072274, -0.03208548, 0.09252425, -0.0057378 ])
```

Sample output

Coding task 1: LIME – explanation

- Explain the results of black box model
 - Sort the coefficient from the surrogate model → get the super pixel that contribute the most to the black box output
 - Visualize
- In the example, Labrador Retriever is the class with highest confidence and this is its LIME interpretation

Coding task 2: SHAP

- A method to explain individual predictions, based on Shapley Values. SHAP brought Shapley values to text and image models.
- Combination of LIME and Shapley Values.
- Satisfies properties of Efficiency, Symmetry and Additivity.
- Strengths:
 - Solid theoretical foundation
 - Connects LIME and Shapley values
 - Fast implementation for tree-based models
 - Global interpretations are consistent with the local explanations
- Limitations:
 - Possible to create intentionally misleading interpretations
 - Can be slow

Coding task 2: SHAP

SHAP value explanation after 100 evaluations:

Red: indicates positive influence, Blue: indicates negative influence

Coding task 2: SHAP

SHAP value explanation after 100 evaluations:

Red: indicates positive influence, Blue: indicates negative influence

Questions?

