



# EE 354/CE 361/MATH 310 – Introduction to Probability and Statistics

Fall 2023

**Aamir Hasan** 

# Lecture No 02 – 23<sup>rd</sup> August 2023



## Announcements!

- ➤ Lecture 01 slides posted
- ➤ PDF of text book posted
- ➤ Attendance (lecture No 1) in PSCS updated
- ➤ Quiz No 01 Wednesday August 30, 2023

## Agenda for today

· Unit 1: Probability models and axioms Lecture outline

# Unit 1: Probability models and axioms Lecture outline

- Sample space
- Probability laws
  - Axioms
  - Some properties
- Examples
  - Discrete
  - Continuous
- Interpretations of probabilities

## Sample space

- Two steps
  - Describe possible outcomes
  - > Describe beliefs about likelihood of outcomes

• List (set) of possible outcomes,  $\Omega$ 

- List must be:
  - ➤ Mutually exclusive
  - Collectively exhaustive
  - > At the "right granularity"





- H and rains
- · H and no rain
- T and rains
- · T and no rain

0

## Sample space: discrete/finite example

• Two rolls of a tetrahedral die







## Sample space: continuous example

• (x,y) such that  $0 \le x,y \le 1$ 



#### **Probabilistic Model**

Two steps



- ➤ Describe possible outcomes Sample Space
- Describe beliefs about likelihood of outcomes -

## **Probability axioms**

- Event: a subset of the sample space
  - Probability is assigned to events

- Axioms:
  - $\triangleright$  Nonnegativity:  $\mathbf{P}(A) \ge 0$
  - $\triangleright$  Normalization:  $\mathbf{P}(\Omega) = 1$
  - Finite) additivity: (to be strengthened later)

    If  $A \cap B = \emptyset$ , then  $P(A \cup B) = P(A) + P(B)$



## Some simple consequences of the axioms

#### **Axioms**

## $P(A) \ge 0$

$$P(\Omega) = 1$$

#### For disjoint events:

$$P(AUB) = P(A) + P(B)$$

#### **Consequences**

$$P(A) \leq 1$$

$$P(\emptyset) = 0$$

$$P(A) + P(A^c) = 1$$

$$P(AUBUC) = P(A) + P(B) + P(C)$$

and similarly for k disjoint events

$$P(\{s_1, s_2, ..., s_k\}) = P(\{s_1\}) + ... + P(\{s_k\})$$
  
=  $P(\{s_1\}) + ... + P(\{s_k\})$ 

## Some simple consequences of the axioms

#### **Axioms**

a) 
$$P(A) \ge 0$$

b) 
$$P(\Omega) = 1$$

#### For disjoint events:

c) 
$$P(A \cup B) = P(A) + P(B)$$



$$A \cup A^{c} = \Omega$$

$$A \cap A^{c} = \emptyset$$

## Some simple consequences of the axioms

• A, B, C disjoint: P (A U B U C) = P (A) + P (B) + P (C)



$$P(A \cup B \cup C) = P((A \cup B) \cup C) = P(A \cup B) + P(C)$$

$$\Rightarrow = P(A) + P(B) + P(C)$$

$$\rightarrow$$
 If  $A_1$ , ... $A_k$  disjoint =>  $P(A_1 \cup ... \cup A_k) = \sum_{i=1}^k P(A_i)$ 

• 
$$P(\{s_1, s_2, ..., s_k\}) = P(\{s_1\} \cup \{s_2\} \cup ... \cup \{s_k\})$$



$$= P(\{s_1\} + \{s_2\} + ... + \{s_k\})$$

= 
$$P(s_1) + P(s_2) + ... + P(s_k)$$

### More consequences of the axioms

• If  $A \subset B$ , then  $P(A) \leq P(B)$ 



$$\Rightarrow B = A \cup (B \cap A^{c})$$

$$P(B) = P(A) + P(B \cap A^{c}) \ge P(A)$$

• 
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$



• 
$$P(A \cup B) \leq P(A) + P(B)$$

$$a = P(A \cap B^{c})$$
  $b = P(A \cap B)$   $c = P(B \cap A^{c})$   
 $P(A \cup B) = a + b + c$   
 $P(A) + P(B) - P(A \cap B) = (a + b) + (b + c) - b$   
 $= a + b + c$ 

union bound

## More consequences of the axioms

•  $P(A \cup B \cup C) = P(A) + P(A^{C} \cap B) + P(A^{C} \cap B^{C} \cap C)$ 



## Probability calculation steps (sequence of 4 steps)

- 1. Specify the sample space
- 2. Specify the probability law
- 3. Identify an event of interest
- 4. Calculate...

## Probability calculation: discrete/finite example

Two rolls of a tetrahedral die



• Let every possible outcome have probability 1/16

• 
$$P(X = 1) = 4 * \frac{1}{16} = \frac{1}{4}$$

Let 
$$Z = \min (X, Y)$$
  
X=2, Y=3, Z=2

• 
$$P(Z = 4) = \frac{1}{16}$$

• 
$$P(Z = 2) = 5 * \frac{1}{16}$$

#### Discrete uniform law

## finite

- $\triangleright$  Assume  $\Omega$  consists of n equally likely elements
- > Assume A consists of k elements

$$P(A) = k * \frac{1}{n}$$

