Generalization BoundsTheoretical Foundations of Deep Learning

Matteo Mazzarelli

December 17, 2024

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Introduction

Introduction

•00

Why Study Generalization?

► Core Question: How can models trained on limited data perform reliably on unseen scenarios?

Classical Bounds

- ► **Generalization** is a fundamental goal in machine learning: ensuring models extend their learned patterns to new, unseen data.
- ► A poorly generalized model risks:
 - Overfitting: Performing well on training data but poorly on unseen data.
 - Underfitting: Failing to capture the underlying patterns of the data.

Introduction

000

Defining Generalization

Introduction

000

- ▶ **Supervised Learning**: Learn a function $f: X \to Y$ from labeled training data.
- ► **Challenge**: The learned function must perform well *beyond* the training set.
- ▶ **Evaluation**: We assess generalization by comparing model performance on training data versus a separate *testing* dataset representing unseen scenarios. This helps us understand how well the model will perform in the real world.

Overfitting

Objective:

Introduction

► Show how increasing model complexity (polynomial degree) leads to overfitting.

Dataset

 Using the scikit-learn **Diabetes** dataset with a single feature (BMI) and a quantitative response variable indicating disease progression (Target)^[1].

Approach:

- 1. Fit polynomial regression models of varying degrees.
- 2. Visualize polynomial fits on the training data.
- **3.** Examine the fits' residuals to see how errors behave.
- 4. Plot training vs. test errors to highlight overfitting.

 Introduction
 Overfitting
 Classical Bounds
 Advanced Bounds
 Conclusions

 ○○○
 ○○○
 ○○○
 ○○○
 ○○○

Figure 1: Overfitting Phenomenon in Polynomial Regression

Introduction

Modern machine learning introduces a fascinating twist: Double Descent, where increasing model complexity can lead to improved generalization after an initial overfitting phase.

Figure 2: Double Descent phenomenon in a Residual Neural Network^[2]

Classical Bounds

- ► Goal: Predict a model's performance on unseen data.
- ► **Generalization Bounds** provide theoretical guarantees, linking:
 - ► **Generalization Error**: Error on unseen data.
 - **Empirical Risk**: Error on training data.
 - ► Model Complexity: Model's flexibility.
- ▶ Why They Matter: They help understand the trade-offs between:
 - ► **Accuracy**: How well the model fits the data.
 - **Complexity**: Ability to model intricate patterns.
 - ▶ Data Size: Amount of data needed for reliable learning.

Hoeffding's Inequality

- ► What it is: A probabilistic tool that helps estimate how well a model will generalize.
- ► Focus: Quantifies the difference between empirical risk (training error) and generalization error (true error) for a single, fixed model.

Hoeffding's Inequality: The Math

► Expression^[3]:

$$P(|R(h) - R_{\sf emp}(h)| > \varepsilon) \le 2 \exp(-2n\varepsilon^2)$$

- Breakdown:
 - ▶ R(h): The **true risk** of hypothesis h, defined as the expected loss over the data distribution: $R(h) = \mathbb{E}_{x,y \sim D}[\ell(h(x), y)]$.
 - ► $R_{\text{emp}}(h)$: The **empirical risk** of hypothesis h, defined as the average loss over the training dataset S of size n: $R_{\text{emp}}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(x_i), y_i)$.
 - \triangleright ε : Error tolerance.
 - n: Dataset size.

Hoeffding's Inequality: Convergence

- Rate of Convergence: Simulating biased coin flips to show the rate at which sample mean approaches the true probability.
- ▶ **Hoeffding's Bound**, derived from the $\exp(-2n\varepsilon^2)$ term, shows **faster convergence** as *n* increases.

Figure 3: Convergence to True Probability with Hoeffding Bounds

Hoeffding's Inequality: Interpretation

- ► The probability of a large difference between the true risk (generalization error) and the empirical risk (training error) decreases **exponentially** with:
 - Larger datasets (n).
 - ▶ Smaller error tolerance (ε) .
- Note: Hoeffding's inequality applies more generally to the difference between the sample average and the expectation of any bounded random variable. We have shown a special application of the inequality.
- ▶ Limitations: We usually pick the best model from many, not just one. Hoeffding doesn't account for how complex the model class is.

Union Bound

- ▶ What it does: Extends bounds like Hoeffding's to work when choosing from many models (a hypothesis space H).
- ▶ **Main Idea**: Considers the chance that *at least one* model in \mathcal{H} has a large difference between training and true error.

Union Bound: The Math

► Expression^[4]:

$$P\left(\sup_{h\in\mathcal{H}}|R(h)-R_{\mathsf{emp}}(h)|>\epsilon\right)\leq\sum_{h\in\mathcal{H}}P\left(|R(h)-R_{\mathsf{emp}}(h)|>\epsilon\right)$$

- Breakdown:
 - ightharpoonup R(h): True risk (expected loss).
 - $ightharpoonup R_{emp}(h)$: Empirical risk (average training loss).
 - ightharpoonup sup_{$h \in \mathcal{H}$}: Account for the worst-case scenario across all hypotheses, considering the largest deviation between true and empirical risk.
 - ▶ $\sum_{h \in \mathcal{H}}$: Sums up probabilities of large error differences for each model in the hypothesis space \mathcal{H} .

Union Bound: Interpretation

► Larger Model Space: The more models we consider, the looser the bound becomes.

Table 1: Trade-off: Hypothesis Space vs. Bound & Capacity

Hypothesis Space Size	Bound	Model Capacity
Small	Tighter	Limited
Large	Looser	Higher

Moving Forward

- ► **Challenge**: Real-world model spaces are often infinite or too large.
- ► **Solution**: We need ways to measure model complexity that go beyond counting.
- ▶ **Next**: Exploring **complexity measures** for more practical generalization bounds.

Advanced Bounds

Why Advanced Bounds?

- ► Classical Bounds give us a good starting point, but they can be loose.
- ► **Goal**: Tighter bounds that better reflect real-world performance.
- ► **How?**: By measuring model complexity in more sophisticated ways.

- ▶ **Growth Function** $(\Pi_{\mathcal{H}}(n))$: How many ways can a model class (\mathcal{H}) label n data points?
 - ► More ways = more complex.
 - For small n, $\Pi_{\mathcal{H}}(n) = 2^n$.
- ▶ **Shattering**: A model class *shatters* a dataset if it can label it in *every possible way*.

VC Dimension: Definition

- **VC Dimension** (d_{VC}) : The size of the *largest* dataset a model class can shatter.
- **Example**: Linear classifiers in 2D have $d_{VC} = 3$. They can shatter 3 points but not 4 (in all configurations).

Figure 4: VC Dimension of Linear Classifiers in 2D

VC Generalization Bound: The Math

Expression^[5]:

$$R(h) \leq R_{\mathsf{emp}}(h) + \sqrt{\frac{8d_{\mathsf{VC}}\left(\ln\left(\frac{2n}{d_{\mathsf{VC}}}\right) + 1\right) + 8\ln\left(\frac{4}{\delta}\right)}{n}}$$

Classical Bounds

- Breakdown:
 - R(h): True risk (expected loss).
 - R_{emp}(h): Empirical risk (average training loss).
 - d_{VC}: VC dimension.
 - n: Dataset size.
 - \triangleright δ : Confidence parameter.

VC Generalization Bound: Interpretation

- Higher VC Dimension:
 - More complex model, looser bound, higher risk of overfitting.
- Larger Dataset:
 - Tighter bound, better generalization.

Figure 5: Approximation of the VC Generalization Bound

- **VC** theory often considers the *worst-case* scenario.
- New Idea: Use information about the data distribution for tighter bounds.
- **Example**: Support Vector Machines (SVMs).
 - ► Margin: Distance from the decision boundary to the nearest data points.
 - ► Larger margin = better generalization.
- ▶ **Benefit**: More realistic bounds reflecting real-world performance.

More Measures of Complexity

- ▶ Why?: VC dimension can be too pessimistic.
- ► **Goal**: More nuanced measures, especially for things like neural networks.

Table 2: Further ways to measure complexity^[6]

Measure	Description	Key Idea
Covering Numbers	How many "balls" cover the hypothesis space?	Smaller = simpler = tighter bounds
Rademacher Complexity	How well can the model fit random noise?	Lower = less prone to overfitting

Conclusions

Key Takeaways I

- ▶ Generalization is crucial: We want models to work on unseen data, not just the training set.
- Overfitting is a risk: More complex models can memorize the training data but fail to generalize.
- Classical Bounds highlight the importance of:
 - Dataset size: More data leads to better generalization.
 - Model complexity: Simpler models (smaller hypothesis spaces) are safer.

Key Takeaways II

- Advanced Bounds offer a refined view:
 - ► VC Dimension: Measures a model's ability to shatter data. Higher VC dimension means more complexity.
 - Distribution-Based: Leverage data properties for tighter bounds.
- ▶ **The Goal**: Balance model expressiveness with the risk of overfitting by controlling complexity and leveraging insights from the data distribution.

References

- 1. Pedregosa F., Varoquaux G., & et al. (2011). Scikit-learn: Machine learning in python, diabetes dataset. https://scikit-learn.org/1.5/modules/generate d/sklearn.datasets.load_diabetes.html
- 2. Nakkiran P., Kaplun G., & et al. (2019). Deep double descent: Where bigger models and more data hurt. https://arxiv.org/abs/1912.02292
- 3. Mohri M., Rostamizadeh A., & Talwalkar A. (2012). Foundations of machine learning. MIT Press.
- 4. Samir M. (2016). *A gentle introduction to statistical learning theory*. https://mostafa-samir.github.io/ml-theory-pt2/.
- 5. Vapnik V. N. (1995). The nature of statistical learning theory. Springer.
- 6. Bousquet O., Boucheron S., & Lugosi G. (2003). Introduction to statistical learning theory. *Advanced Lectures on Machine Learning*.