БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики

Лопатин Павел Юрьевич

Методы численного анализа

Отчёт по лабораторной работе №2

студента 2 курса 3 группы

Преподаватель: Полещук Максим Игоревич

1. Исходное уравнение

$$x^2 \arctan\left(\frac{7x}{13}\right), [-3;3]$$

2. Условие задачи

Для функции f(x), взятой в соответствии с вариантом задания (равным номеру в списке академической группы) из лабораторной

работы №1, вычислить интеграл $\int_a^b f(x)dx$ по составным формулам средних прямоугольников, трапеций и Симпсона с точностью $\frac{1}{2}10^{-3}$, $\frac{1}{2}10^{-5}$, $\frac{1}{2}10^{-7}$. Величину шага определить, исходя из апостериорной оценки погрешности численного интегрирования. Уточнить значение интеграла по Ричардсону.

3. Теория

Метод прямоугольников — метод численного интегрирования функции одной переменной, заключающийся в замене подынтегральной функции на многочлен нулевой степени, то есть константу, на каждом элементарном отрезке. Если рассмотреть график подынтегральной функции, то метод будет заключаться в приближённом вычислении площади под графиком суммированием площадей конечного числа прямоугольников, ширина которых будет определяться расстоянием между соответствующими соседними узлами интегрирования, а высота — значением подынтегральной функции в этих узлах. Алгебраический порядок точности равен 0. (Для формулы средних прямоугольников равен 1).

Составная квадратурная формула:

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n-1} f\left(\frac{x_{i} + x_{i+1}}{2}\right) (x_{i+1} - x_{i}) = \sum_{i=1}^{n} f\left(\frac{x_{i-1} + x_{i}}{2}\right) (x_{i} - x_{i-1}).$$

Составная формула для равномерных сеток:

$$\int_{a}^{b} f(x) dx \approx h(\frac{f_0}{2} + f_1 + \dots + f_{n-1} + \frac{f_n}{2}).$$

Метод трапеций — метод численного интегрирования функции одной переменной, заключающийся в замене на каждом элементарном отрезке подынтегральной функции на многочлен первой степени, то есть линейную функцию. Площадь под графиком функции аппроксимируется прямоугольными трапециями. Алгебраический порядок точности равен 1.

Если отрезок [a,b] является элементарным и не подвергается дальнейшему разбиению, значение интеграла можно найти по формуле:

$$\int_{a}^{b} f(x) dx = \frac{f(a) + f(b)}{2} (b - a) + E(f), \qquad E(f) = -\frac{f''(\xi)}{12} (b - a)^{3}.$$

Суть **метода Симпсона** заключается в приближении подынтегральной функции на отрезке [a,b] интерполяционным многочленом второй степени $p_2(x)$, то есть приближение графика функции на отрезке параболой. Метод Симпсона имеет порядок погрешности 4 и алгебраический порядок точности 3.

Формулой Симпсона называется интеграл от интерполяционного многочлена второй степени на отрезке [a,b]:

$$\int\limits_a^b f(x)dx \approx \int\limits_a^b p_2(x)dx = \frac{b-a}{6} \bigg(f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \bigg),$$
 где $f(a)$, $f((a+b)/2)$ и $f(b)$ — значения функции в

где J(a), J((a+o)/2) и J(o) — значения функции в соответствующих точках (на концах отрезка и в его середине).

4. Выполнение

Точное значение интеграла:

$$\int_{-3}^{3} x^2 \tan^{-1} \left(\frac{7x}{13} \right) dx = 0$$

Метод Симпсона

ε	h	T _n	In
$\frac{1}{2}10^{-3}$	0.27273	-3.87568765*10^(-15)	-4.220193218*10^(-15)
$\frac{1}{2}10^{-5}$	0.085714	8.120488409*10^(-16)	2.70682947*10^(-16)
$\frac{1}{2}10^{-7}$	0.027778	-2.565848768*10^(-15)	-4.390452336*10^(-15)

Метод трапеций

ε	h	T _n	In
$\frac{1}{2}10^{-3}$	0.017699	-3.458393847*10^(-16)	-1.309997669*10^(-15)
$\frac{1}{2}10^{-5}$	0.0017741	9.202179724*10^(-16)	2.762754871*10^(-15)
$\frac{1}{2}10^{-7}$	0.00017744	-2.445314312*10^(-15)	-3.273657444*10^(-15)

Метод прямоугольников

ε	h	T _n	In
$\frac{1}{2}10^{-3}$	0.025	-3.108624469*10^(-16)	2.324066865*10^(-15)
$\frac{1}{2}10^{-5}$	0.0025094	-6.891462167*10^(-15)	-5.869184036*10^(-15)
$\frac{1}{2}10^{-7}$	0.00025094	-2.512753702*10^(-15)	-1.409941451*10^(-15)