REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION

EXAMEN DU BACCALAUREAT SESSION DE JUIN 2011

SESSION PRINCIPALE

SECTION: MATHEMATIQUES

EPREUVE: MATHEMATIQUES DUREE: 4 heures COEFFICIENT: 4

Le sujet comporte 4 pages numérotées de 1/4 à 4/4. La page 4/4 est à rendre avec la copie.

Exercice 1 (3 points)

Dans ce qui suit, x et y désignent des entiers.

Répondre par vrai ou faux en justifiant la réponse.

a)
$$x^3 \equiv x \pmod{2}$$
.

- b) Si $x \equiv 2 \pmod{14}$ alors $x \equiv 1 \pmod{7}$.
- c) Si $4x \equiv 10y \pmod{5}$ alors $x \equiv 0 \pmod{5}$.

d) Si
$$\begin{cases} x \equiv 4 \pmod{5} \\ y \equiv 5 \pmod{8} \end{cases}$$
 alors
$$8x - 5y = 7.$$

Exercice 2 (6 points)

- I Soit g la fonction définie sur IR par $g(x) = e^{-x}$ et (Γ) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .
 - 1) Déterminer une équation de la tangente à (Γ) au point d'abscisse 0 .
 - 2) a) Montrer que pour tout $x \ge 0$, $1-x \le e^{-x} \le 1$.
 - b) En déduire que pour tout $x \ge 0$, $x \frac{x^2}{2} \le 1 e^{-x} \le x$.
- II On considère la fonction f définie sur $[0,+\infty[$ par

$$\begin{cases} f(x) = e^{-\frac{1}{x}} & \text{si } x > 0 \\ f(0) = 0 \end{cases}$$

On désigne par (\mathcal{C}) sa courbe représentative dans le repère orthonormé (O, \vec{i}, \vec{j}) .

- 1) a) Calculer la limite de f(x) lorsque x tend vers $+\infty$.
 - b) Etudier la continuité et la dérivabilité de f à droite en 0.
 - c) Dresser le tableau de variation de f.
- 2) a) Montrer que le point I $\left(\frac{1}{2}, \frac{1}{e^2}\right)$ est un point d'inflexion de la courbe (\mathcal{C}).
 - b) Donner une équation de la tangente T à la courbe (\mathcal{C}) au point I.
- 3) Dans la **figure 1** de l'annexe ci-jointe, on a représenté la courbe (Γ) dans le repère orthonormé $(O,\ \vec{i},\ \vec{j})$.
 - a) Construire I.
 - b) Construire la tangente T.
 - c) Tracer la courbe (\mathcal{C}).

- 4) Soit A_k l'aire du domaine plan limité par la courbe (\mathcal{C}), la droite d'équation y=1 et les droites d'équations x=k et x=k+1 où k est un entier naturel non nul.
 - a) En utilisant I 2) b) montrer que $\ln\left(\frac{k+1}{k}\right) \frac{1}{2} \left\lceil \frac{1}{k} \frac{1}{k+1} \right\rceil \le A_k \le \ln\left(\frac{k+1}{k}\right)$.
 - b) Calculer $\lim_{k \to +\infty} A_k$
- 5) Pour tout $n \ge 1$, on pose $S_n = \sum_{k=1}^n A_k$.
 - a) Interpréter graphiquement S_n .
 - b) Montrer que $\ln(n+1)$ $-\frac{1}{2}\left[1-\frac{1}{n+1}\right] \leq S_n \leq \ln(n+1)$.
 - c) En déduire les limites de S_n et de $\frac{S_n}{\ln(n)}$, quand n tend vers l'infini.

Exercice 3 (5 points)

Dans la figure ci-contre, ABF est un triangle rectangle isocèle tel que $(\overrightarrow{AB}, \overrightarrow{AF}) = \frac{\pi}{2} [2\pi],$

I est le milieu de [AF] . Les droites (IB) et (AE) se coupent en G et EGB est un triangle rectangle isocèle en G.

- 1) Soit f la similitude directe de centre B, d'angle $\frac{\pi}{4}$ et de rapport $\frac{\sqrt{2}}{2}$. Déterminer les images des points E et F par f.
- 2) Soit g la similitude directe qui envoie A en F et F en B.
 - a) Montrer que g est de rapport $\sqrt{2}$ et d'angle $\left(-\frac{3\pi}{4}\right)$.
 - b) Déterminer la nature de gog et préciser son rapport et son angle.
 - c) Montrer que $\tan(ABI) = \frac{1}{2}$. En déduire que GB = 2 GA.
 - d) En déduire que G est le centre de g.
- 3) Soit r = gof.
 - a) Montrer que r est la rotation de centre F et d'angle $-\frac{\pi}{2}$.
 - b) Déterminer r(E). En déduire que EFGH est un carré, où H est le milieu de [EB].

EXERCICE 4 (6 points)

Dans le plan complexe rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère le point A d'affixe (-1) et les points M, N et P d'affixes respectives z, z^2 et z^3 où z est un nombre complexe non nul différent de (-1) et de 1.

1) a) Montrer que:

(le triangle MNP est rectangle en P) si et seulement si $(\frac{1+z}{z})$ est imaginaire pur).

- b) On pose z = x + iy où x et y sont des réels. Montrer que $\frac{1+z}{z} = \frac{x^2 + y^2 + x iy}{x^2 + y^2}$.
- c) En déduire que l'ensemble des points M tels que le triangle MNP soit un triangle rectangle en P est le cercle (Γ) de diamètre [OA], privé des points O et A.
- 2) Dans la **figure 2** de l'annexe ci-jointe, on a tracé le cercle (Γ) et on a placé un point M d'affixe z sur (Γ) et son projeté orthogonal H sur l'axe (O, \vec{u}).

On se propose de construire les points N et P d'affixes respectives z^2 et z^3 tels que le triangle MNP soit rectangle en P.

- a) Montrer que $(\overrightarrow{OM}, \overrightarrow{ON}) \equiv (\overrightarrow{u}, \overrightarrow{OM})[2\pi]$ puis que $(\overrightarrow{ON}, \overrightarrow{OP}) \equiv (\overrightarrow{u}, \overrightarrow{OM})[2\pi]$.
- b) Montrer que $\overrightarrow{OH} = \overrightarrow{OM}^2$.
- c) Donner un procédé de construction des points N et P puis les construire.

EXERCICE 2 figure1

EXERCICE 4 : figure 2

