Aula 2: Circuitos Resistivos

Professor
Patrick Marques Ciarelli
patrick.ciarelli@ufes.br

- Lei de Ohm
 - A resistência elétrica pode ser definida como o grau de oposição ou dificuldade que um material oferece à passagem da corrente elétrica;
 - A relação entre tensão e corrente em uma resistência elétrica é conhecida como lei de Ohm:

$$R = \frac{V}{I}$$
 Lei de Ohm

• R é dado em Ohm (Ω) (V/A).

- Associação de resistores
 - Os resistores podem ser conectados a outros resistores, porém é possível calcular o valor equivalente de resistência das conexões;
 - Associação em série: quando um terminal de um resistor é conectado ao terminal de outro resistor. Os componentes estão sujeitos a mesma corrente.

- Associação de resistores
 - Os resistores podem ser conectados a outros resistores, porém é possível calcular o valor equivalente de resistência das conexões;
 - Associação em paralelo: quando ambos terminais de um resistor são conectados aos terminais de outro resistor. Os componentes estão sujeitos a mesma tensão.

Se R₁=R₂=R₃=...=R_n=R:
$$R_{eq} = \frac{R}{n}$$

• Partes que compõem um circuito elétrico

Dado o circuito abaixo, podemos definir os seguintes

termos:

- Ramo: grupo de componentes sujeitos a mesma corrente (componentes conectados em série). Ex.: B-C-F-E;
- Nó: é um ponto de conexão entre 3 ou mais ramos (entre 2 ramos é chamado de junção). Ex.: B e E;
- Circuito fechado: é qualquer caminho fechado num circuito.
 Ex.: A-B-C-F-E-D-A;
- Malha: é um circuito fechado que não tem um trajeto fechado em seu interior. Ex.: B-C-F-E-B.

- Primeira Lei de Kirchhoff (Lei dos Nós):
 - Em qualquer nó, a soma das correntes que chegam no nó é igual a soma das correntes que saem do nó;

$$\sum_{l_{chegam}} I_{chegam} = \sum_{l_{saem}} I_{saem}$$

$$I_1 + I_2 + I_3 + \dots + I_n = 0$$

Do exemplo:

$$I_1 + I_5 = I_2 + I_3 + I_4$$

- Segunda Lei de Kirchhoff (Lei das Malhas):
 - Em qualquer malha, a soma das elevações de tensão é igual a soma das quedas de tensão contidas na mesma malha.

$$\sum V_{eleva\varsigma \tilde{o}es} = \sum V_{quedas}$$

$$V_1 + V_2 + V_3 + \dots + V_n = 0$$

Do exemplo:

$$V = V_1 + V_2 + V_3$$

- Potência Elétrica
 - Potência (P) é a velocidade que um dispositivo consome/fornece energia (E);
 - Intensidade: P = VI
 - Lei de Ohm: V = RI, logo:

$$P = RI^2$$
 $P = \frac{V^2}{R}$ $P = VI$

Unidade:Watt (W)

- Polaridade da potência:
 - P > 0 → potência consumida pelo dispositivo. Acontece quando a corrente entra pelo terminal de maior potencial elétrico (maior tensão) e sai pelo o de menor potencial;
 - P < 0 → potência fornecida pelo dispositivo. Acontece quando a corrente entra pelo terminal de menor potencial elétrico (menor tensão) e sai pelo o de maior potencial;
 - Resistência elétrica sempre consome potência (energia)
 em um circuito;
 - Fontes de corrente e tensão podem fornecer ou consumir potência (energia) dependendo do circuito.

- Princípio da Conservação da Energia
 - A quantidade total de energia em um sistema isolado permanece constante;
 - Para o caso de circuitos elétricos, a soma de toda a energia (potência) fornecida e consumida em um circuito elétrico será igual a zero.
 - Exemplo: Calcular a soma de todas as potências do circuito:

•
$$V_{10}I_{10} + R_5I_5^2 + V_5I_5 + V_5I_5 + R_{10}I_{10}^2 + V_3I_3 = 0$$

•
$$(-10 \times 1) + (5 \times 1^2) + (5 \times 2,5) + (-5 \times 5) + (10 \times 0,5^2) + (5 \times 3) = 0$$

- Fontes de CC
 - Responsáveis por fornecer energia para o circuito;
 - A sua saída pode ser ajustada dentro de um intervalo de valores.

- Ajuste da Fonte CC
 - I) Desligue a fonte;
 - 2) Zerar ajustes de tensão e corrente;
 - 3) Colocar os terminais da fonte em curto-circuito;
 - 4) Ligar a fonte;
 - 5) Aumentar um pouco a tensão;
 - 6) Ajustar a corrente máxima desejada;
 - 7) Desligar a fonte;
 - 8) Retirar o curto-circuito dos terminais;
 - 9) Ligar a fonte;
 - 10) Ajustar a tensão desejada.

- Multímetro
 - Usado para medir grandezas elétricas como resistência, tensão e corrente;
 - · Para cada grandezas existem várias escalas.

- Multímetro
 - O voltímetro ideal possui resistência infinita, mas o real não;
 - O amperímetro ideal possui resistência zero, mas o real não;
 - Ambos alteram ligeiramente os valores reais da corrente e tensão.

- Protoboard
 - Usado para montar os circuitos.

Experimento

- Montar os circuitos abaixo, e:
 - Calcular e medir o valor da resistência equivalente vista pela fonte;
 - Calcular e medir a tensão e corrente sobre componente;
 - Verificar que a soma das correntes no nós e das tensões nas malhas é igual a zero;
 - Calcular o valor da potência (teórico e experimental)
 sobre cada componente;
 - Perceber os resistores que mais dissipam energia.

Relatório

- Entregar na próxima aula um relatório com os seguintes itens:
 - Nome do grupo;
 - Número do experimento;
 - Descrição breve do conceito teórico relacionado ao experimento;
 - Objetivos da aula;
 - Descrição do experimento;
 - Cálculos (quando houver);
 - Medições;
 - Resultados, discussão e respostas ao questionário.
 - Referências

Relatório

Avaliação

Formatação – Apresentação:

•	No formato com todas as seções	1,0
•	Fora do formato, com todas as seções	0,5
•	Sem formatação	0,0

Descrição do conceito teórico e objetivos:

•	Bem descrito	1,0
•	Incompleto	0,5
•	Incorreto ou ausente	0,0

Descrição do experimento:

•	Bem descrito	1,0
•	Incompleto	0,5
•	Incorreto ou ausente	0,0

Relatório

Avaliação

	\boldsymbol{C}'	1	i i	1	\
0	Cálculos	ι	เมลทสด	nouver):
	Carcaros	1 ~	1441140	1104101	,.

•	Bem descrito	1,5
•	Incompleto	0,8
•	Incorreto ou ausente	0,0
•	Experimentos sem cálculos	1,5

Medições:

•	Bem realizadas e dados conforme esperado	2,0
•	Incompletas	1,0
•	Incorretas	0,0

• Resultados, discussão e respostas ao questionário:

•	Resultados corretos e respostas coerentes	3,0
•	Resultados corretos e respostas incoerentes	1,5
•	Resultados incorretos	0,8
•	Ausentes	0,0

• Referências:

•	Formatadas	0,5
•	Ausentes	0,0