CS 581

Advanced Artificial Intelligence

February 14, 2024

Announcements / Reminders

- Please follow the Week 06 To Do List instructions (if you haven't already)
- Written Assignment #02: due on Monday 02/19 at 11:59PM CST
- Programming Assignment #01: due on Sunday 03/03 at 11:59 PM CST

- Midterm Exam: 02/21/2024
 - Section 02 Make arrangements with Mr. Charles Scott
 - WE WILL HAVE OUR EXAM IN A DIFFERENT ROOM (WH113)

Plan for Today

Probability refresher

Random Experiment

- The agent needs reason in an uncertain world
- Uncertainty can be due to
 - Noisy sensors (e.g., temperature, GPS, camera, etc.)
 - Imperfect data (e.g., low resolution image)
 - Missing data (e.g., lab tests)
 - Imperfect knowledge (e.g., medical diagnosis)
 - Exceptions (e.g., all birds fly except ostriches, penguins, birds with injured wings, dead birds, ...)
 - Changing data (e.g., flu seasons, traffic conditions, etc.)
 - **-** ...
- The agent still must act (e.g., step on the breaks, diagnose a patient, order a lab test, ...)

Probability In AI: Selected Application

Classification

- Naïve Bayes, logistic regression, neural networks
- Maximum likelihood estimation, Bayesian estimation, gradient optimization, backpropagation

Decision making

- Episodic decision making, Markov decision processes, multiarmed bandits
- Value of information, Bellman equations, value iteration, policy iteration, UCB1, ϵ -greedy

Reinforcement learning

 Prediction, control, Monte-Carlo methods, temporal difference learning, Sarsa, Q-learning

Random Experiment

Random Experiment is a process by which we observe something uncertain.

An outcome is a result of a random experiment.

The set of all possible outcomes is called the sample space S (frequently labeled Ω).

Outcomes / Sample Space / Event

Outcome: A result of a random experiment

Sample space S: The set of all possible outcomes

Event: A subset of the sample space S

Events: Union and Intersection

If A and B are events, then

$$A \cap B$$

and

$$A \cup B$$

are also events

- \cup union ("or")

Events: Union and Intersection

If A and B are events, then

$$A \cap B$$

and

$$A \cup B$$

are also events

Simple event: An event that cannot be decomposed

Events: Union and Intersection

We observe that event

$$A \cap B$$

occurs if event A and event B occur

We observe that event

$$A \cup B$$

occurs if either event A or event B occur

Event (Set) Union: Venn Diagram

 $A \cup B$

Event (Set) Union: Venn Diagram

$$A \cup B \neq \emptyset$$

Event (Set) Union: Probability

Events A and B are overlapping

Event (Set) Union: Venn Diagram

$$A \cup B \neq \emptyset$$

Event (Set) Union: Probability

Events A and B are disjoint / mutually exclusive

Event (Set) Intersection: Venn Diagram

Event (Set) Intersection: Venn Diagram

$$A \cap B \neq \emptyset$$

Event (Set) Intersection: Venn Diagram

$$A \cap B = \emptyset$$

Events: Complementary Event

The complement of any event A is the event A' ("not A"), i.e. the event that A does not occur.

Complement: Venn Diagram

$$A \cup A' = A \cup A^{C} = S$$

Single Die Roll: Sample Space S

The set of all simple events of an experiment is called the sample space S.

$$S = \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot\}$$

Single Die Roll: Sample Space S

The set of all simple events of an experiment is called the sample space S.

$$S = \{ \Box, \Box, \Box, \Box, \Box, \Box \}$$

Sample space S size (set cardinality): |S| = 6

Coin Toss: Sample Space S

The set of all simple events of an experiment is called the sample space S.

Coin Toss: Sample Space S

The set of all simple events of an experiment is called the sample space S.

Sample Space S

Sample space S size (set cardinality): |S| = 2

Example: Single Fair Die Roll

Random experiment: rolling a single fair die

Outcome: result of rolling a single fair die

Sample space S:

$$S = \{ \Box, \Box, \Box, \Box, \Box, \Box \}$$

Example: Single Fair Coin Toss

Random experiment: tossing a fair coin

Outcome: result of tossing a fair coin

Sample space S:

Single Die Roll: Events

Event F: "two" rolled

$$F = \{ \square \}$$

Single Die Roll: Events

Event G: even number rolled

$$G = \{\square, \square, \square\}$$

Single Die Roll: Events

Event H: number greater than 3 rolled

$$G = \{\square, \square, \square\}$$

Probability (Measure)

Probability (measure)

is a value assigned to an event A.

Probability P(A) is a value between 0 and 1 (inclusive) that shows how likely event A is.

Probability Theory

The main subject of probability theory is to develop tools and techniques to calculate probabilities of different events.

Axioms of Probability

Axiom 1:

For any event A, $P(A) \ge 0$

Axiom 2:

Probability of the sample space S is P(S) = 1

Axiom 3:

If A_1 , A_2 , ... are disjoint events, then

$$P(A_1 \cup A_2 \cup ...) = P(A_1) + P(A_2) + ...$$

Single Die Roll: Probabilities

Consider events:

$$A = \{ \boxdot \}$$

$$\mathbf{B} = \{ \mathbf{\square} \}$$

Probabilities:

$$P(A) = |A|/|S| = 1/6$$

$$P(B) = |B|/|S| = 1/6$$

Single Die Roll: Probabilities

Consider events:

$$\mathbf{C} = \mathbf{A} \cup \mathbf{B} = \{ \mathbf{\square} \} \cup \{ \mathbf{\square} \}$$

$$D = A \cap B = \{ \boxdot \} \cap \{ \boxminus \}$$

Probabilities:

$$P(C) = P(A \cup B) =$$

$$= P(A) + P(B) = 2/6$$

$$P(D) = P(A \cap B) =$$

$$= |A \cap B|/|S| = 0/6$$

Event (Set) Union: Probability

$$P(A \cup B) = P(A \text{ or } B)$$

Event (Set) Union: Probability

$$P(A \cup B) = P(A \text{ or } B)$$

Events A and B are overlapping

Events A and B are disjoint / mutually exclusive

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B)$$

Joint Probability

The probability of event A and event B occurring (or more than two events). It is the probability of the intersection of two or more events.

$$P(A \cap B) = P(A, B) = P(A \text{ and } B) = P(A \wedge B)$$

$$P(A \cap B) = P(A \text{ and } B) = P(A, B) = P(A \wedge B)$$

$$P(A \cap B) = P(A \text{ and } B) = P(A, B) = P(A \wedge B)$$

Events A and B are overlapping

Events A and B are disjoint / mutually exclusive

$$P(A \cap B) = P(A, B) > 0$$

$$P(A \cap B) = P(A, B) = P(\emptyset) = 0$$

Complementary Events: Probability

$$P(A \cup A') = P(S) = 1$$

Complementary Events: Probability

$$P(A) = 1 - P(A')$$

Probability Theory and Propositions

Assume that A and B are sentences in propositional logic.

- P(T) = 1
- $P(\bot) = 0$
- $P(A \lor B) = P(A) + P(B)$ if $\neg(A \land B)$ is a tautology
- $P(A) + P(\neg A) = 1$
- P(A) = P(B) if $(A \Leftrightarrow B)$ is a tautology (logical equivalence)
- $0 \le P(A)$ for any sentence A

Random Variable

A Random Variable is a mathematical formalization of a quantity or object which depends on random events

A Random Variable X is a function mapping events/outcomes from the sample space S to a measurable space (such as \mathbb{R}):

$$X: S \to \mathbb{R}$$

Random Variable

Random Variable Distribution

The probability distribution for a discrete random variable \boldsymbol{X} can be perceived as a frequency distributions.

It is a graph, table or formula that gives the possible values of X and the probability P(X) associated with each value of X.

Single Die Roll: Distribution

X	P(X)
·	1/6
	1/6
·.	1/6
	1/6
∷	1/6
::	1/6

Random Variable: Typical Notation

- Capital: X: a variable
- Lowercase: x: a particular value of X
- Val(X): the set of values X can take
- Bold Capital: X: a set of variables
- Bold lowercase: x: an assignment to all variables in X
- P(X = x) will be shortened as P(x)
- $P(X = x \cap Y = y)$ will be shortened as P(x, y)
- ightharpoonup P(X): probability distribution for X

Random Variable: Typical Notation

- Pick variables of interest/relevance
 - Medical diagnosis
 - Age, gender, weight, temperature, ...
 - Loan application
 - Income, savings, payment history, ...
 - other
- Every variable has a domain
 - Binary (e.g., True/False)
 - Categorical (e.g., Red/Green/Blue)
 - Real-valued (e.g., 97.8)
- Possible world
 - An assignment to all variables of interest

Joint Probability

The probability of event A and event B occurring (or more than two events). It is the probability of the intersection of two or more events.

$$P(A \cap B) = P(A, B) = P(A \text{ and } B) = P(A \wedge B)$$

For example (specific probability shown):

P(pressure = 90, temperature = 100, volume = 6) = 0.1

For any random variables: f_1, f_2, \ldots, f_n :

$$P(f_1, f_2, ..., f_n)$$

Probability Model

A fully specified probability model associates a numerical probability $P(\omega)$ with each possible world (assume there is a finite number of such worlds):

$$0 \le P(\omega) \le 1$$
, for every $\sum_{\omega \in S} P(\omega) = 1$

Joint Probability

The probability of event A and event B occurring (or more than two events). It is the probability of the intersection of two or more events.

$$P(A \cap B) = P(A, B) = P(A \text{ and } B) = P(A \wedge B)$$

For example (specific probability shown):

ONE POSSIBLE "WORLD":

P(pressure = 90, temperature = 100, volume = 6) = 0.1

For any random variables: f_1, f_2, \ldots, f_n :

$$P(f_1, f_2, ..., f_n)$$

Random Variables, Events, Logic

An **event** is the set of possible worlds where a given predicate is true

- Roll two dice
 - The possible worlds are (1,1), (1,2), ..., (6,6); 36 possible worlds
 - Predicate = two dice sum to 10
 - Event = $\{(4,6), (5,5), (6,4)\}$
- Toothache and cavity
 - Four possible worlds: (t,c), $(t,\sim c)$, $(\sim t,c)$, $(\sim t,\sim c)$
 - Some worlds are more likely than others
 - Predicate can be anything about these variables: $t \wedge c$, t, $t \vee \sim c$,

Complex Joint Probability Distribution

Consider a complex joint probability distribution involving N random variables $f_1, f_2, f_3, ..., f_{N-1}, f_N$. [values can be OTHER than true/false and non-binary]

			N Rai	ndom Variables			Joint	
	f_{I}	f_2	f_3		f_{N-1}	f_{N}	Probability	
S)	true	true	true	•••	true	true	0.0011	
del	true	true	true	•••	true	false	0.0451	
Mo	true	true	false	•••	false	true	0.1011	
Possible Worlds (Models)				•••	•••	•••		2^{N} values
SSI	false	false	true		true	false	0.0909	
	false	false	true	•••	false	true	0.0651	
2^{N}	false	false	false	•••	false	false	0.2021	

Frequentist versus Causal Perspective

Frequentist view:

Probability represents long-run frequencies of repeatable events.

Causal perspective:

Probability is a measure of belief.

Prior (Unconditional) Probabilities

Degree of belief that some event A is occurred *in* the absence of any other related information is called unconditional or prior probability (or "prior" for short) P(A).

Examples:

P(isRaining)

P(dieRoll = 5)

P(CourseFinalGrade = 'A')

P(toothache)

Conditioning

Conditioning is a process of revising beliefs based on new evidence e:

- start by taking all background information (prior probabilities) into account
- if new evidence e is acquired, a conditional probability of some proposition A given evidence e can be calculated (posterior probability): P(A | e)

Conditional Probability

If A and B are two events in sample space S, then conditional probability of A given B is defined as:

$$P(A \text{ given B}) = P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

where: P(B) > 0

Conditional Probability: Venn Diagram

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A,B)}{P(B)} = \frac{P(A \wedge B)}{P(B)}$$

Conditional Probability

If A and B are two events in sample space S, then conditional probability of A given B is defined as:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

where: P(B) > 0

←[Otherwise B is impossible]

Conditional Probability: Notation

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$$

$$P(A \mid B) = \frac{P(A, B)}{P(B)}$$

$$P(A \mid B) = \frac{P(A, B)}{P(B)}$$

$$P(A \mid B) = \frac{P(A \wedge B)}{P(B)}$$

Conditional Probability

If A and evidence are two events in sample space S, then conditional probability of A given evidence is defined as:

$$P(A \mid evidence) = \frac{P(A \cap evidence)}{P(evidence)}$$

where: P(evidence) > 0

Posterior (Conditional) Probabilities

Typically, there is going to be some information, called evidence e, that affects our degree of belief about some event A being occurring. This allows us to also consider conditional or posterior probability (or "posterior" for short) $P(A \mid e)$.

Examples (P(A given e)):

P(isRaining | cloudy)

P(CourseFinalGrade = 'A' | CoursePA1Score > 80)

P(cavity | toothache)

Evidence e

Evidence e rules out possible worlds incompatible with e.

Prior vs. Posterior Probabilities

Prior Probability

Posterior Probability

P(A) BTW: it is also $P(A \mid T)$

 $P(A \mid e)$

Conditional Probability: Notation

$$P(A \mid \text{evidence}) = \frac{P(A \cap \text{evidence})}{P(\text{evidence})}$$

$$P(A \mid \text{evidence}) = \frac{P(A \text{ and evidence})}{P(\text{evidence})}$$

$$P(A \mid \text{evidence}) = \frac{P(A, \text{evidence})}{P(\text{evidence})}$$

$$P(A \mid \text{evidence}) = \frac{P(A \land \text{evidence})}{P(\text{evidence})}$$

Conditional Probability: Notation

$$P(A, B, C, D \mid E, F, G) = \frac{P(A, B, C, D, E, F, G)}{P(E, F, G)}$$

Axioms of Conditional Probability

Axiom 1:

For any event A, $P(A \mid B) \ge 0$

Axiom 2:

Conditional probability of B given B is $P(B \mid B) = 1$

Axiom 3:

If A_1 , A_2 , ... are disjoint events, then

$$P(A_1 \cup A_2 \cup ... | B) = P(A_1 | B) + P(A_2 | B) + ...$$

$$P(H | A) = ?$$

$$P(H \mid A) = \frac{P(H \cap A)}{P(A)} = \frac{7/100}{97/100} = \frac{7}{97}$$

$$P(H | A) = ?$$

$$P(H \mid A) = \frac{P(H \cap A)}{P(A)} = \frac{7/100}{25/100} = \frac{7}{25}$$

Chain Rule

Conditional probabilities can be used to decompose joint probabilities using the chain rule. For any random variables f_1, f_2, \ldots, f_n and values x_1, x_2, \ldots, x_n :

$$P(f_{1} = x_{1}, f_{2} = x_{2}, ..., f_{n} = x_{n}) =$$

$$P(f_{1} = x_{1}) *$$

$$P(f_{2} | f_{1} = x_{1}) *$$

$$P(f_{3} | f_{1} = x_{1}, f_{2} = x_{2}) *$$
...
$$P(f_{n} = x_{n} | f_{1} = x_{1}, ..., f_{n-1} = x_{n-1}) =$$

$$= \prod_{i=1}^{n} P(f_{i} = x_{i} | f_{1} = x_{1}, ..., f_{i-1} = x_{i-1})$$

Independence

Two events are independent if one does not convey any information about the other.

Two events A and B are independent if:

$$P(A \cap B) = P(A) * P(B)$$

Independence

Two events A and B are independent if:

$$P(A \cap B) = P(A) * P(B)$$

So (from conditional probability formula):

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) * P(B)}{P(B)} = P(A)$$

Disjointment vs. Independence

Concept	Meaning	Formulas
Disjoint	Events A and B cannot occur at the same time	$A \cap B = \emptyset$ $P(A \cup B) = P(A) + P(B)$
Independent	Event A does not give any information about event ${\bf B}$	$P(A \mid B) = P(A)$ $P(B \mid A) = P(B)$ $P(A \cap B) = P(A) * P(B)$

Independence

If two events A and B are independent:

- events A and B' are independent
- events A' and B are independent
- events A' and B' are independent

Independence

If A_1 , A_2 , ..., A_N are independent events:

$$P(A_1 \cup A_2 \cup ... \cup A_N) =$$
= 1 - (1-P(A₁)) * (1-P(A₁)) * ... * (1-P(A_N))

Conditional Independence

Random variable X is conditionally independent of random variable Y given Z if for all $x \in Dx$, for all $y \in Dy$, and for all $z \in Dz$, such that

$$P(Y = y \land Z = z) > 0 \text{ and } P(Y = y' \land Z = z) > 0$$

 $P(X = x \mid Y = y \land Z = z) = P(X = x \mid Y = y' \land Z = z)$

In other words, given a value of Z, knowing Y's value DOES NOT affect your belief in value of X.

Conditional Independence

The following four statements are equivalent as long as conditional probabilities:

- 1. X is conditionally independent of Y given Z
- 2. Y is conditionally independent of X given Z
- 3. P(X | Y, Z) = P(X | Z)
- 4. P(X, Y | Z) = P(X | Z) * P(Y | Z)

Conditional Independence

Consider three random variables: P(owerful), H(appy), R(ich) with domains:

```
D_P = \{\text{powerful, powerless}\}, D_H = \{\text{happy, unhappy}\}, D_R = \{\text{rich, poor}\}
```

Now, when:

$$P(H = happy, R = rich) > 0$$
 and $P(H = unhappy, R = rich) > 0$

and:

```
P(P = powerful \mid H = happy, R = rich) = P(P = powerful \mid H = unhappy, R = rich)
```

In other words, given a value of \mathbb{R} , knowing \mathbb{Y} 's value DOES NOT affect your belief in the value of \mathbb{X} .

"Being un/happy does not make you less powerful, if you are rich."

More On Conditional Independence

Common Cause:

JohnCalls and MaryCalls are NOT independent

JohnCalls and MaryCalls are CONDITIONALLY independent given Alarm

Common Effect:

Burglary and Earthquake are independent

Burglary and Earthquake are NOT CONDITIONALLY independent given Alarm

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

$$P(cause \mid effect) = \frac{P(effect \mid cause) * P(cause)}{P(effect)}$$

P(cause | effect) diagnostic direction relation

$$P(cause \mid effect) = \frac{P(effect \mid cause) * P(cause)}{P(effect)}$$

P(effect | cause) causal direction relation

 $P(disease \mid symptoms)$ diagnostic direction relation

$$P(disease \mid symptoms) = \frac{P(symptoms \mid disease) * P(disease)}{P(symptoms)}$$

 $P(symptoms \mid disease)$ causal direction relation

Why is this useful?

 Because in practice it is easier to get probabilities for P(effect|cause) and P(cause) than for P(cause|effect)

$$P(disease \mid symptoms) = \frac{P(symptoms \mid disease) * P(disease)}{P(symptoms)}$$

It is easier to know what symptoms diseases cause. It is harder to diagnose a disease given symptoms

$$P(cause \mid effect) = \frac{P(effect \mid cause) * P(cause)}{P(effect)}$$

Problem: a single card is drawn from a standard deck of cards. What is the probability that we drew a queen if we know that a face card (J, Q, K) was drawn?

$$P(queen \mid face) = \frac{P(face \mid queen) * P(queen)}{P(face)}$$

$$P(queen \mid face) = \frac{1*4/52}{12/52} = \frac{1}{3}$$

$$P(cause \mid effect) = \frac{P(effect \mid cause) * P(cause)}{P(effect)}$$

Problem: Calculate probability that a patient has meningitis if a patient has stiff neck. Meningitis is a cause of neck stiffness in 70% of cases, probability of having meningitis is 1/50000. Stiff neck happens to 1% of patients.

$$P(m \mid s) = \frac{P(s \mid m) * P(m)}{P(s)}$$

$$P(m \mid s) = \frac{0.7 * 1/50000}{0.01} = 0.0014$$

Bayes' Rule: Another Interpretation

Another way to think about Baye's rule: it allows us to update the hypothesis \mathbf{H} in light of some new data/evidence \mathbf{e} .

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(Hypothesis \mid evidence) = \frac{P(evidence \mid Hypothesis) * P(Hypothesis)}{P(evidence)}$$

where:

- P(H) probability of the Hypothesis H being true BEFORE we see new data/evidence e (prior probability)
- P(H | e) probability of the Hypothesis H being true AFTER we see new data/evidence e (posterior probability)
- P(e | H) probability of new data/evidence e being true under the Hypothesis H (likelihood)
- P(e) probability of new data/evidence e being true under ANY hypothesis (normalizing constant)

All possible cases

Cases where Hypothesis H is true P(H)

Cases where Hypothesis H is false $P(\neg H)$

Cases where evidence e is true P(e)

Cases where evidence e is true given Hypothesis H true $P(e \mid H)$

Cases where evidence e is true given Hypothesis H false $P(e \mid \neg H)$

Bayes' Rule:

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(H) * P(e \mid H) + P(\neg H) * P(e \mid \neg H)}$$

Cases where Hypothesis H is true P(H)

Cases where Hypothesis H is false $P(\neg H)$

Cases where evidence e is true P(e)

Cases where evidence e is true given Hypothesis H true P(e | H)

Cases where evidence e is true given Hypothesis H false $P(e \mid \neg H)$

All Students

Hypothesis H: graduate student

Cases where Hypothesis H is true P(H) = P(grad = true)

Cases where Hypothesis H is false

$$P(\neg H) = P(grad = false)$$

Cases where evidence e is true

$$P(e) = P(female = true)$$

Cases where e true given H true

$$P(e \mid \neg H) = P(female = true \mid grad = false)$$

Given (made up roster data):

% of G students: P(H)

% of UG students: $P(\neg H)$

%of female students: P(e)

%of female G students: P(e | H)

%of female UG students: $P(e \mid \neg H)$

Cases where Hypothesis H is true

P(H) = 18 / 81

Cases where Hypothesis H is false

 $P(\neg H) = 63 / 81$

Cases where evidence e is true

$$P(e) = 13 / 81$$

Cases where e true given H true

$$P(e \mid H) = 6 / 18$$

$$P(e \mid \neg H) = 7 / 63$$

Bayes' Rule:

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(H) * P(e \mid H) + P(\neg H) * P(e \mid \neg H)}$$

Cases where Hypothesis H is true P(H) = 18 / 81

Cases where Hypothesis H is false

$$P(\neg H) = 63 / 81$$

Cases where evidence e is true

$$P(e) = 13 / 81$$

Cases where e true given H true

$$P(e \mid H) = 6 / 18$$

$$P(e \mid \neg H) = 7 / 63$$

Bayes' Rule:

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(H \mid e) = \frac{6 / 18 * 18 / 81}{13 / 81}$$

$$P(H \mid e) = \frac{6/18*18/81}{18/81*6/18+63/81*7/63}$$

Cases where Hypothesis H is true P(H) = 18 / 81

Cases where Hypothesis H is false

$$P(\neg H) = 63 / 81$$

Cases where evidence e is true

$$P(e) = 13 / 81$$

Cases where e true given H true

$$P(e \mid H) = 6 / 18$$

$$P(e \mid \neg H) = 7 / 63$$

Bayes' Rule:

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(H \mid e) \approx 0.462$$

Cases where Hypothesis H is true P(H) = 18 / 81

Cases where Hypothesis H is false

$$P(\neg H) = 63 / 81$$

Cases where evidence e is true

$$P(e) = 13 / 81$$

Cases where e true given H true

$$P(e \mid H) = 6 / 18$$

$$P(e \mid \neg H) = 7 / 63$$

Prior probability:

$$P(H) = 18 / 81 \approx 0.222$$

Posterior probability:

$$P(H \mid e) \approx 0.462$$

Cases where Hypothesis H is true P(H) = 18 / 81

Cases where Hypothesis H is false $P(\neg H) = 63 / 81$

Cases where evidence e is true

$$P(e) = 13 / 81$$

Cases where e true given H true

$$P(e \mid H) = 6 / 18$$

$$P(e \mid \neg H) = 7 / 63$$

Bayes' Rule: Belief/Probability Update

A student approaches the podium. Without looking I create a hypothesis H:

this is a grad student (grad = true)

My belief in H being true is based on prior probability:

$$P(H) = 18 / 81 \approx 0.222$$

I look up and see a female student, which is <u>new data /</u> <u>evidence</u> e (<u>female</u> = <u>true</u>). Bayes' Rule helps me update my <u>belief</u> in H being <u>true</u> with <u>posterior</u> probability:

$$P(H \mid e) = \frac{6/18*18/81}{18/81*6/18+63/81*7/63} \approx 0.462$$

Playing Minesweeper with Bayes' Rule

Prior probability / belief:

$$P(X = mine) = 0.5$$

Posterior probability / belief:

$$P(X = mine | evidence) = 1.0$$

Marginal Probability

Marginal probability: the probability of an event occurring P(A) .

It may be thought of as an unconditional probability.

It is not conditioned on another event.

Full Joint Probability Distribution

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$	Conditional probabilities
true	true	$P(H \mid e)*P(e)\approx 0.074$	$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)} = \frac{6 / 18 * 18 / 81}{13 / 81} \approx 0.462$
true	false	$P(H \mid \neg e) * P(\neg e) \approx 0.148$	$P(H \mid \neg e) = \frac{P(\neg e \mid H) * P(H)}{P(\neg e)} = \frac{12 / 18 * 18 / 81}{68 / 81} \approx 0.176$
false	true	$P(\neg H \mid \mathbf{e}) * P(\mathbf{e}) \approx 0.086$	$P(\neg H \mid e) = \frac{P(e \mid \neg H) * P(\neg H)}{P(e)} = \frac{7 / 63 * 63 / 81}{13 / 81} \approx 0.538$
false	false	$P(\neg H \mid \neg e) * P(\neg e) \approx 0.691$	$P(\neg H \mid \neg e) = \frac{P(\neg e \mid \neg H) * P(\neg H)}{P(\neg e)} = \frac{56 / 63 * 63 / 81}{68 / 81} \approx 0.824$
		SUM = 1	

Joint probabilities calculated using the Product Rule:

$$P(A \wedge B) = P(A \mid B) * P(B)$$

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

Joint Probability Distribution

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	$P(grad = true \land female = true) = P(H, e) = P(H \land e) = P(H \mid e) * P(e) \approx 0.074$
true	false	$P(grad = true \land female = false) = P(H, \neg e) = P(H \mid \neg e) * P(\neg e) \approx 0.148$
false	true	$P(grad = false \land female = true) = P(\neg H, e) = P(\neg H \mid e) * P(e) \approx 0.086$
false	false	$P(grad = false \land female = false) = P(\neg H, \neg e) = P(\neg H \mid \neg e) * P(e) \approx 0.691$
		SUM = 1

Joint probabilities calculated using the Product Rule:

$$P(A \wedge B) = P(A \mid B) * P(B)$$

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

Joint Probability Distribution

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

If we know the joint probability distribution, we can infer:

- marginal probabilities P(H), $P(\neg H)$, P(e), and $P(\neg e)$
- conditional probabilities $P(H \mid e)$, $P(H \mid \neg e)$, $P(\neg H \mid e)$, and $P(\neg H \mid \neg e)$

Joint Probability: Marginalization

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

Probability P(H):

$$P(H) = P(grad = true) = 0.074 + 0.148 \approx 18 / 81$$

Probability P(H): "sum of all probabilities where H true"

Joint Probability: Marginalization

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

Probability P(e):

$$P(e) = P(female = true) = 0.074 + 0.086 \approx 13 / 81$$

Probability P(e): "sum of all probabilities where e true"

Joint Probability Distribution

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

Joint probabilities calculated using the Product Rule:

$$P(A \wedge B) = P(A \mid B) * P(B)$$

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

Joint Probability: Conditionals

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

From product rule:

$$P(H \wedge e) = P(H \mid e) * P(e)$$

we can derive:

$$P(H \mid e) = \frac{P(H \land e)}{P(e)}$$

Joint Probability: Conditionals

From product rule:

$$P(H \wedge e) = P(H \mid e) * P(e)$$

we can derive:

$$P(H \mid e) = \frac{P(H \land e)}{P(e)} = \frac{0.074}{0.074 + 0.086} \approx 0.462$$

Full Joint Probability Distribution

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

Joint probabilities calculated using the Product Rule:

$$P(A \wedge B) = P(A \mid B) * P(B)$$

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

Number of Parameters

- Assuming everything is binary
- \blacksquare P(V₁) requires
 - 1 independent parameter
- \blacksquare P(V₁, V₂, ..., V_n) requires
 - 2ⁿ-1 independent parameters
- $P(V_1|V_2)$ requires
 - 2 independent parameters
- $P(V_1, V_2, ..., V_n | V_{n+1}, V_{n+2}, ..., V_{n+m})$ requires
 - 2^m × (2ⁿ-1) independent parameters

Continuous RV

We define **probability density function**, p(x), a non-negative integrable function, such that

$$P(X \le a) = \int_{-\infty}^{a} p(x)dx$$

$$P(a \le X \le b) = \int_{a}^{b} p(x)dx$$

$$\int_{Val(X)} p(x) dx = 1$$

Uniform Distribution

A variable X has a **uniform distribution** over [a,b] if it has the PDF

$$p(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & otherwise \end{cases}$$

Gaussian Distribution

A variable X has a Gaussian distribution with mean μ and variance σ^2 , if it has the PDF

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Expectation

$$E_{P}[X] = \sum_{x} xP(x)$$

$$E_{P}[X] = \int_{x} xp(x)dx$$

$$E_{P}[aX + b] = aE_{P}[X] + b$$

$$E_{P}[X + Y] = E_{P}[X] + E_{P}[Y]$$

$$E_{P}[X | y] = \sum_{x} xP(x | y)$$

Variance

$$Var_{P}[X] = E_{P}[(X - E_{P}[X])^{2}]$$

$$Var_{P}[X] = E_{P}[X^{2}] - (E_{P}[X])^{2}$$

$$Var_P[aX+b] = a^2 Var_P[X]$$