MONTE CARLO RENORMALIZATION GROUP

JANE KIM
DECEMBER 18, 2020

OUTLINE

- Review of key concepts
- Swendsen's MCRG method
 - Calculate critical coupling
 - Extract critical exponents
 - Monte Carlo simulation
- Example: 2D Ising model

Landau and Binder, A Guide to Monte Carlo Simulations in Statistical Physics (2005).

Ising-type Hamiltonian:

$$\mathcal{H} = \beta H = \sum_{\alpha} K_{\alpha} S_{\alpha}$$

Recall:

$$H = -J\sum_{\langle i,j\rangle} \sigma_i \sigma_j, \ J > 0, \implies K_1 = -\beta J, \ S_1 = \sum_{\langle i,j\rangle} \sigma_i \sigma_j$$

Starting Hamiltonian:

$$\mathcal{H}^{(0)} = K_1^{(0)} S_1^{(0)}, \quad K_{\alpha} = 0 \quad \forall \quad \alpha > 1$$

Starting Hamiltonian:

$$\mathcal{H}^{(0)} = K_1^{(0)} S_1^{(0)}, \quad K_{\alpha} = 0 \quad \forall \quad \alpha > 1$$

▶ After *n* RG transformations:

$$\mathcal{H}^{(n)} = \sum_{\alpha} K_{\alpha}^{(n)} S_{\alpha}^{(n)}$$

FIG. 1. Schematic diagram for RG flows in the many-dimensional space of coupling constants, indicating the transient into the fixed point starting from the critical value K_1^c , and the instability of the fixed point to perturbations out of the critical surface.

 \blacktriangleright Choose a renormalization transformation (with scale factor b):

$$\mathcal{H}^{(n+1)} = R_b \mathcal{H}^{(n)}$$

lacktrians Linearize transformation about fixed-point Hamiltonian \mathcal{H}^* :

$$\delta K_{\alpha}^{(n+1)} = T_{\alpha\beta}^* \delta K_{\beta}^{(n)}, \text{ where } T_{\alpha\beta}^* = \frac{\partial K_{\alpha}^{(n+1)}}{\partial K_{\beta}^{(n)}} \bigg|_{\mathcal{H} = \mathcal{H}^*}$$

Goal: Calculate the eigenvalues of $T^*_{lphaeta}$.

- External magnetic field is zero at the critical point.
- $T^*_{\alpha\beta}$ decouples into a block diagonal form.

$$\lambda_1^{(e)} = \text{largest eigenvalue of } T_{\alpha\beta}^{*(e)} \implies \lambda_1^{(e)} = b^{y_t}$$
 $\lambda_1^{(o)} = \text{largest eigenvalue of } T_{\alpha\beta}^{*(o)} \implies \lambda_1^{(o)} = b^{y_h}$

Critical exponents written in terms of RG exponents y_t , y_h .

For d dimensions:

$$\alpha = 2 - \frac{d}{y_t}$$
, $\beta = \frac{d - y_h}{y_t}$, $\gamma = \frac{2y_h - d}{y_t}$, $\delta = \frac{y_h}{d - y_h}$, $\eta = d + 2 - 2y_h$, $\nu = \frac{1}{y_t}$

For 2D Ising model:

$$y_t = 1, \ y_h = \frac{15}{8} \implies \alpha = 0, \ \beta = \frac{1}{8}, \ \gamma = \frac{7}{4}, \ \delta = 15, \ \eta = \frac{1}{4}, \ \nu = 1$$

MA'S METHOD

- First MCRG approach (1976).
- Basic idea:
 - Explicitly flow towards fixed point in truncated coupling space.
 - Construct $T^*_{\alpha\beta}$ directly from renormalized Hamiltonian.
- Drawbacks:
 - Truncation errors accumulate quickly.
 - Monte Carlo simulation involves many couplings.

MA'S METHOD

Approximate K^*

Equilibrate spins at K^*

Sample configurations at K^*

Calculate $T^*_{\alpha\beta} \rightarrow \text{critical exponents}$

SWENDSEN'S METHOD

Approximate K_1^c

Equilibrate spins at $K = (K_1^c, 0)$

Sample configurations at K

Apply n RG transformations

Calculate $T^*_{\alpha\beta} \to \text{critical exponents}$

SWENDSEN'S METHOD - CALCULATING CRITICAL COUPLING

- Match correlation functions for transformed and untransformed systems.
- Cancel unknown finite size effects by comparing lattices of different sizes but the same number of lattice sites:

$$\langle S_{\alpha}^{(n+m)} \rangle_L = \langle S_{\alpha}^{(n)} \rangle_S$$

where $L = N^2$ and $S = N^2/b^{2m}$.

Most effective for large lattices and large n.

SWENDSEN'S METHOD - CALCULATING CRITICAL COUPLING

SWENDSEN'S METHOD - CALCULATING CRITICAL COUPLING

Linear approximation:

$$\left\langle S_{\alpha}^{(n+m)} \right\rangle_{L} - \left\langle S_{\alpha}^{(n)} \right\rangle_{S} = \left[\frac{\partial \left\langle S_{\alpha}^{(n)} \right\rangle_{L}}{\partial K_{1}^{(0)}} - \frac{\partial \left\langle S_{\alpha}^{(n)} \right\rangle_{S}}{\partial K_{1}^{(0)}} \right] \delta K_{1}^{(0)},$$

where

$$\frac{\partial \langle S_{\alpha}^{(n)} \rangle}{\partial K_{1}^{(0)}} = \langle S_{\alpha}^{(n)} S_{1}^{(0)} \rangle - \langle S_{\alpha}^{(n)} \rangle \langle S_{1}^{(0)} \rangle.$$

SWENDSEN'S METHOD - CALCULATING CRITICAL EXPONENTS

Chain rule and invert:

$$\frac{\partial \langle S_{\gamma}^{(n+1)} \rangle}{\partial K_{\beta}^{(n)}} = \frac{\partial \langle S_{\gamma}^{(n+1)} \rangle}{\partial K_{\alpha}^{(n+1)}} \frac{\partial K_{\alpha}^{(n+1)}}{\partial K_{\beta}^{(n)}} \implies T_{\alpha\beta}^{(n)} = \left[\frac{\partial \langle S_{\gamma}^{(n+1)} \rangle}{\partial K_{\alpha}^{(n+1)}} \right]^{-1} \frac{\partial \langle S_{\gamma}^{(n+1)} \rangle}{\partial K_{\beta}^{(n)}}$$

Calculate derivatives using MC samples:

$$\frac{\partial \langle S_{\gamma}^{(n+1)} \rangle}{\partial K_{\alpha}^{(n+1)}} = \langle S_{\gamma}^{(n+1)} S_{\alpha}^{(n+1)} \rangle - \langle S_{\gamma}^{(n+1)} \rangle \langle S_{\alpha}^{(n+1)} \rangle
\frac{\partial \langle S_{\gamma}^{(n+1)} \rangle}{\partial K_{\beta}^{(n)}} = \langle S_{\gamma}^{(n+1)} S_{\beta}^{(n)} \rangle - \langle S_{\gamma}^{(n+1)} \rangle \langle S_{\beta}^{(n)} \rangle$$

SWENDSEN'S METHOD - CALCULATING CRITICAL EXPONENTS

- Need to construct both even and odd blocks for β and γ .
- Only need even block for α and ν .
- Only need odd block δ and η .
- For 2D Ising model example, consider nearest-neighbor and next-nearest-neighbor spin interactions only.
- Again, calculation of $T_{lphaeta}^{(n)}$ most accurate for large lattices and large n.

MONTE CARLO SIMULATION

- At criticality, correlation length diverges.
- > Standard Metropolis updates are too local to efficiently simulate Ising system.
- Need cluster algorithms:
 - Swendsen-Wang algorithm
 - Wolff algorithm
- Wolff update has a larger probability of flipping a larger cluster of spins compared to a Swendsen-Wang update.

WOLFF ALGORITHM

- 1. Choose random site i to add to the initially empty cluster.
- 2. Search through nearest neighbor sites j. If $\sigma_i = \sigma_j$, add site j to the cluster with probability $P = 1 e^{2K_1}$.
- 3. Flip spin at site i and remove from the cluster.
- 4. If cluster is still empty, go back to step 1.
- 5. If cluster is not empty, repeat steps 2-5 until cluster stops growing.

EXAMPLE: 2D ISING MODEL

- Simple implementation:
 - > Sample from pure nearest-neighbor Ising Hamiltonian using Wolff algorithm.
 - lacktriangle Majority-rule block spin transformation with scale factor b.
 - Use only nearest-neighbor spin correlation functions to tune K_1^c .
 - Use nearest-neighbor and next-nearest-neighbor spin correlations to construct truncated $T_{\alpha\beta}^{(e)}$.
 - Extract largest even eigenvalue $\lambda_1^{(e)}$ and calculate $\nu = \ln b / \ln \lambda_1^{(e)}$.

EXAMPLE: 2D ISING MODEL

- ▶ 1E4 samples during equilibration.
- ▶ 1E6 samples for locating critical coupling.
- ▶ 1E7 samples for calculating critical exponent.
- Calculated ν at $K_1^c(N)$ and $K_1^c(N \to \infty)$.
- Recall Onsager's solution:

$$T_c = \frac{2J}{\ln(1+\sqrt{2})} \implies K_c \equiv K_1^c(N \to \infty) = -\frac{\ln(1+\sqrt{2})}{2} \approx -0.440687$$

RESULTS

First iteration of locating critical coupling K_1^c from starting value $K_1 = -0.44$ for various blocking levels and lattice sizes:

n	N = 16	N = 32	N = 64	N = 128
0	-0.4420811188	-0.4417429398	-0.4415445759	-0.4413292658
1	-0.4404791358	-0.4404577112	-0.4404935597	-0.4404266727
$\mid 2 \mid$	-0.4401272033	-0.4402638848	-0.4403468642	-0.4403131062
3	_	-0.4402975527	-0.4403307834	-0.4403016019
$\mid 4 \mid$	_	_	-0.4403116430	-0.4402985574
5	_	_	_	-0.4402807798

BENCHMARK

Table 9.1 Variation of the thermal eigenvalue exponent for the Ising square lattice with the number of couplings N_c , the number of iterations N_r , and for different lattice sizes. From Swendsen (1982).

$N_{ m r}$	$N_{ m c}$	L = 64	L = 32	L = 16
1	1	0.912(2)	0.904(1)	0.897(3)
1	2	0.967(3)	0.966(2)	0.964(3)
1	3	0.968(2)	0.968(2)	0.966(3)
1	4	0.969(4)	0.968(2)	0.966(3)
2	1	0.963(4)	0.953(2)	0.937(3)
2	2	0.999(4)	0.998(2)	0.993(3)
2	3	1.001(4)	1.000(2)	0.994(3)
2	4	1.002(5)	0.998(2)	0.984(4)
3	1	0.957(2)	0.936(3)	0.921(5)
3	2	0.998(2)	0.991(3)	1.013(4)
3	3	0.999(2)	0.993(3)	1.020(3)
3	4	0.997(2)	0.987(4)	

Landau and Binder, A Guide to Monte Carlo Simulations in Statistical Physics (2005).

RESULTS

• Critical exponent ν for $N=16,\ 32$ and various blocking levels at known critical coupling K_1^c and calculated critical coupling $K_1^c(N)$:

n	$N = 16 @ K_1^c(N)$	$N = 16 @ K_1^c$	$N = 32 @ K_1^c(N)$	$N = 32 @ K_1^c$
0	1.0366474702	1.0371936855	1.0359594271	1.0364461518
	1.0055084088	1.0058615220	1.0030411491	1.0024276306
2	0.9850458988	0.9832937022	1.0042751683	1.0040962187
3	_	_	0.9833658883	0.9817702370

RESULTS

• Critical exponent ν for $N=64,\ 128$ and various blocking levels at known critical coupling K_1^c and calculated critical coupling $K_1^c(N)$:

n	$N = 64 @ K_1^c(N)$	$N = 64 @ K_1^c$	$N = 128 @ K_1^c(N)$	$N = 128 @ K_1^c$
0	1.0340840722	1.0356603405	1.0343762634	1.0349921920
1	1.0013550363	1.0025377191	1.0018397044	1.0006737634
2	1.0021687106	1.0029573471	1.0019303651	1.0022232598
3	1.0029619937	1.0039006140	1.0025651221	1.0023411428
$\mid 4 \mid$	0.9820802731	0.9819506190	1.0035789853	1.0040042374
5	_	_	0.9814148379	0.9819137809

CONCLUSION

- Swendsen's MCRG method can efficiently extract critical exponents, even in an aggressively truncated coupling space.
- Truncation errors are small and systematically improvable by including higher order couplings and by simulating larger lattices.
- Computational costs are kept low by only requiring the simulations of pure nearest-neighbor Ising systems.

BIBLIOGRAPHY

- R. H. Swendsen, Phys. Rev. Lett. 42, 859 (1978).
- G.S. Pawley et al, Phys. Rev. B 29, 4030 (1984).
- S.-K. Ma, Phys. Rev. Lett. 37, 461 (1976).
- R. Gupta et al, Nuclear Phys. B 17, 323 (1990).
- D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (2005).

QUESTIONS?