Convergência

Quase certa $X_n \xrightarrow{q.c.} X$ se $P(\lim_{n\to\infty} X_n = X) = 1$

Em probabilidade $X_n \xrightarrow{P} X$ se $\lim_{n \to \infty} P\left(|X_n - X| > \epsilon\right) = 0$ para todo $\epsilon > 0$

Em distribuição $X_n \xrightarrow{d} X$ se $\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$ em pontos de continuidade de F_X

Borel-Cantelli I Se $\sum_{n=1}^{\infty}P(A_n)<\infty$, então $P\left(\limsup_{n\to\infty}A_n\right)=0$

Borel-Cantelli II $\mbox{ Se }(A_n)$ são independentes e $\sum_{n=1}^\infty P(A_n)=\infty,$ então $P\left(\limsup_{n\to\infty}A_n\right)=1$

Limite superior $\limsup_{n\to\infty}A_n=\bigcap_{n=1}^\infty\bigcup_{k=n}^\infty A_k=\{A_n \text{ ocorre infinitas vezes}\}$

Limite inferior $\liminf_{n\to\infty}A_n=\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k=\{A_n \text{ ocorre finitas vezes}\}$

Lei Fraca dos Grandes Números (X_n) i.i.d., $E[X_1] = \mu$, $Var(X_1) < \infty \Rightarrow \overline{X}_n \xrightarrow{P} \mu$ ou $\frac{S_n}{N} \xrightarrow{P} \mu$

 $\begin{array}{ll} \textbf{Lei Forte dos Grandes Números} & (X_n) \text{ i.i.d., } E\left[|X_1|\right] < \infty, \\ E[X_1] = \mu \Rightarrow \overline{X}_n \xrightarrow{q.c.} \mu \text{ ou } \frac{S_n}{2} \xrightarrow{q.c.} \mu \end{array}$

Designaldade de Markov $X \geq 0, E[X] < \infty \Rightarrow P\left(X \geq a\right) \leq \frac{E[X]}{a}$ para a > 0

Desigualdade de Chebyshev

$$\begin{split} E\left[(X-c)^2\right] &< \infty \Rightarrow P\left((X-c)^2 \geq \varepsilon^2\right) \leq \frac{E\left[(X-c)^2\right]}{\varepsilon^2} \text{ onde} \\ (X-c)^2 &\geq \varepsilon^2 \Leftrightarrow |X-c| \geq \varepsilon. \text{ Formas usuais: } P\left(|X-\mu| \geq \varepsilon\right) \leq \frac{\sigma^2}{\varepsilon^2} \text{ e} \\ P\left(|X-\mu| \geq k\sigma\right) \leq \frac{1}{\varepsilon^2} \end{split}$$

Relações de convergência $X_n \xrightarrow{q\cdot c\cdot} X \Rightarrow X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X$ e $X_n \xrightarrow{d} c$ (constante) $\Rightarrow X_n \xrightarrow{P} c$

 $\begin{array}{l} \textbf{M\'etodo Delta} \ \ \text{Se} \ \sqrt{n} \ (Y_n - \mu) \xrightarrow{d} N \ \left(0, \sigma^2\right) \text{e} \ g \ \'e \ \text{deriv\'avel em} \ \mu, \text{então} \\ \sqrt{n} \left(g \left(Y_n\right) - g \left(\mu\right)\right) \xrightarrow{d} N \left(0, \sigma^2 \left(g' \left(\mu\right)\right)^2\right) \end{array}$

Teorema Central do Limite

Forma assintótica (X_n) i.i.d., $E[X_1] = \mu$,

$$\operatorname{Var}(X_1) = \sigma^2 < \infty \Rightarrow \frac{S_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{d} N(0,1) \text{ onde } S_n = \sum_{i=1}^n X_i$$

Aprox. para somas Se $Y=X_1+\cdots+X_n$ com X_i i.i.d., então $Y\approx N\left(n\mu,n\sigma^2\right)$ para n grande

Aprox. para médias $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \approx N\left(\mu, \frac{\sigma^2}{n}\right)$ para n grande

 $\begin{array}{ccc} \mathbf{Padroniza} \mathbf{\tilde{q}o} & \frac{\sqrt{n} \left(\overline{X}_n - \mu\right)}{\sigma} & \xrightarrow{d} N(0,1), \sqrt{n} \left(\overline{X}_n - \mu\right) & \xrightarrow{d} N(0,\sigma^2) \end{array}$

Teorema de Slutsky

Estimadores de Baves

Na abordagem Bayesiana, os estimadores são calculados considerando a distribuição a priori dos parâmetros e a função de verossimilhança dos dados.

Cálculo da Distribuição a Posteriori

Teorema de Bayes $f\left(\theta|\mathbf{x}\right) = \frac{f(\theta)f(\mathbf{x}|\theta)}{\int_{\Theta} f(\theta)f(\mathbf{x}|\theta)d\theta} \propto f\left(\theta\right) \cdot f\left(\mathbf{x}|\theta\right)$

Passos principais (1) Identificar verossimilhança do modelo dos dados, (2) Escolher priori apropriada, (3) Multiplicar priori × verossimilhança, (4) Normalizar (ou reconhecer família de distribuições)

Prioris conjugadas Facilitam o cálculo - produzem posterioris na mesma família da priori. Basta atualizar hiperparâmetros com dados observados

Exemplo rápido $X | \theta \sim \text{Bin}(n, \theta),$ $\theta \sim \text{Beta}(a, b) \Rightarrow \theta | X = x \sim \text{Beta}(a + x, b + n - x)$

Estimação Pontual e Funções de Perda

Risco a posteriori $r_{x}(d) = \int_{\Theta} L(d, \theta) \ dP(\theta|x)$ (minimizar perda esperada a posteriori)

Perda quadrática $L\left(d,\theta\right)=(d-\theta)^2\Rightarrow\delta^*\left(m{X}\right)=E\left[\theta|m{X}\right]$ (média a posteriori)

Perda absoluta $L(d, \theta) = |d - \theta| \Rightarrow \delta^*(\mathbf{X}) = \text{Med}(\theta | \mathbf{X})$ (mediana a posteriori)

Risco de Bayes Sob perda quadrática: ρ^* $(P) = E \left[{\rm Var} \left(\theta | {m X} \right) \right]$ (variância a posteriori esperada)

Exemplo Poisson Com priori Gamma: $\delta^*(X) = \frac{b}{b+n} \cdot \frac{a}{b} + \frac{n}{b+n} \cdot \bar{X}$ (média ponderada: priori + amostra)

Famílias Conjugadas

Definição intuitiva Família de prioris $\mathcal C$ é conjugada à verossimilhança $\mathcal P$ se: priori $\in \mathcal C$ + dados de $\mathcal P\Rightarrow$ posteriori $\in \mathcal C$

Vantagens (1) Tratabilidade analítica - posteriori conhecida, (2) Computação simples - apenas atualizar hiperparâmetros, (3) Interpretação clara de como dados mudam crenças

Insight chave Conjugação é conveniência matemática, não requisito. Prioris não-conjugadas requerem métodos numéricos (MCMC). A priori conjugada "fala a mesma linguagem matemática" da verossimilhança

Estimação por Máxima Verossimilhança

Propriedades

Invariância Se $\hat{\theta}$ é um estimador de $\theta,$ então $g(\hat{\theta})$ é um estimador de $g(\theta)$ para qualquer função g.

Consistência Se $\hat{\theta}_n$ é uma sequência de estimadores de θ , então $\hat{\theta}_n \xrightarrow{p} \theta$.

Cálculo da EMV

Método Maximizar $L(\theta|\boldsymbol{x}) = f(\boldsymbol{x}|\theta) \stackrel{ind.}{=} \prod_{i=1}^n f(x_i|\theta)$ ou $\ell(\theta|\boldsymbol{x}) = \sum_{i=1}^n \log f(x_i|\theta)$

Condição I $\frac{d\ell(\theta|\mathbf{x})}{d\theta} = 0$ (função score)

Condição II $\frac{d^2\ell(\theta)}{d\theta^2} < 0$ (segunda derivada negativa) no ponto de máximo.

Notação $f(\boldsymbol{x}|\theta) = V_{\boldsymbol{x}}(\theta) \operatorname{e} \log f(\boldsymbol{x}|\theta) = \lambda(\theta, \boldsymbol{x})$

Condições de regularidade

- Podemos trocar a ordem de derivada e integração (portanto é diferenciabilidade é condição necessária).
- 2 O suporte da verossimilhança não depende do parâmetro θ .

Propriedades Assintóticas

Normalidade $\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{d} N(0, I^{-1}(\theta))$

Eficiência EMV atinge a cota de Cramér-Rao assintóticamente

Estatísticas Suficientes

Suficiência frequentista T(X) é suficiente para θ se $f(x|T(x),\theta) = f(x|T(x))$

Suficiência Bayesiana T(X) é suficiente para θ se $f(\theta|T(x)) = f(\theta|x)$

Critério da fatoração de Neyman-Pearson T(X) é suficiente $\Leftrightarrow f(\boldsymbol{x}|\theta) = q(T(\boldsymbol{x}),\theta)h(\boldsymbol{x})$

Propriedades

Minimal T é minimal suficiente se é função de qualquer outra estatística suficiente

Estimadores não viesados de variância uniformemente mínima

Teorema de Lehmann-Scheffé

Enunciado Se T(X) é completa e suficiente, então qualquer estimador não viesado baseado em T(X) é ENVVUM e é único.

Estatística Completa T(X) é completa se E[g(T(X))] = 0 para todo $\theta \Rightarrow g(T(X)) = 0$ q.c.

Teorema de Rao-Blackwell

Enunciado Se $\delta(X)$ é não viesado e T(x) é sufficiente, então $\delta^*(X) = E[\delta(X)|T(X)] = g(T(X))$ tem variância menor ou igual

Resultado $\mathrm{Var}(\delta^*({\bm{X}})) \leq \mathrm{Var}(\delta({\bm{X}}))$ com igualdade se e somente se $\delta({\bm{X}})$ é função de $T({\bm{X}})$

Rao-Blackwellização

Processo Melhorar estimador não viesado condicionando em estatística suficiente

Fórmula $\hat{\theta}^{RB} = E[\hat{\theta}|T(\boldsymbol{X})]$ onde $T(\boldsymbol{X})$ é suficiente para θ

Desigualdade de Cramér-Rao

 $\mbox{Limite inferior de Cramér-Rao} \quad \mbox{Var}(\hat{\theta}) \geq \frac{\left[g'(\theta)\right]^2}{I(\theta)} \mbox{ onde } I(\theta) \mbox{ \'e a informação da Fisher.}$

 $\begin{array}{l} \text{Informação de Fisher} \quad I(\theta) = E\left[\left(\frac{\partial}{\partial \theta} \log f(\boldsymbol{X}; \theta)\right)^2\right] = \\ -E\left[\left(\frac{\partial^2}{\partial \theta^2} \log f(\boldsymbol{X}; \theta)\right)\right] \end{array}$

Informação de Fisher para v.a. i.i.d $I(\theta) = -n \, \mathrm{E} \left[\left(\frac{\partial^2}{\partial \theta^2} \log f({m X}; \theta) \right) \right]$

Relação com ENVVUM se a variância do estimador coincide com o limite inferior de Cramér-Rao, o estimador é ENVVUM.

Intervalos de confiança

Estimador Intervalar [L(X, U(X))] onde L e U são estatisticas e v.a.

Nível de confiança $P(L(X \le \theta \le U(X))) = 1 - \alpha = \gamma$

Quantidade Pivotal $Q(\boldsymbol{X})$ é uma quantidade pivotal se $Q(\boldsymbol{X})$ tem distribuição não dependente de θ .

QP média amostral $X_i \sim \mathrm{N}(\mu,\sigma^2)$ então $\frac{\bar{X}-\mu}{\sqrt{\sigma_s^2}} \sim N(0,1)$

QP variância amostral $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$

Processo Achar uma QP envolvendo o parâmetro que se quer construir IC e isolar o parâmetro em questão respeitando a distribuição da QP. Os intervalos inferior e superior devem respeitar a assimeria da distribuição. Parâmetros extras são preenchidos com estimativas e a distribuição da QP deve levar isso em consideração.

Distribuições Amostrais

X_i	$\sum_{i=1}^{n} X_i \sim$
$Poisson(\theta)$	$Poisson(n\theta)$
$Exp(\theta)$	$\operatorname{Gama}(n,\theta) \to 2\theta \operatorname{Gama}(n,\frac{1}{2}) \sim \chi_{2n}^2$
$Normal(\mu, \sigma^2)$	$Normal(n\mu, n\sigma^2)$
$Gama(\alpha, \beta)$	Gama(n α , β)
Bernoulli(p)	Binomial(n, p)

Soma de normais padrão ao quadrado $X_i \sim N(0,1)$ então $\sum_{i=1}^n X_i^2 \sim \chi_n^2$

Desvios da média populacional $X_i \sim N(\mu, \sigma^2)$ então $\frac{\sum_{i=1}^n (X_i - \mu)^2}{\sigma^2} \sim \chi_n^2$

Desvios da média amostral $X_i \sim N(\mu,\sigma^2)$ então $\frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\sigma^2} \sim \chi^2_{n-1}$

Lista de famílias Conjugadas

```
Bernoulli/Binomial Priori: p \sim \text{Beta}(\alpha, \beta) \Rightarrow \text{Posteriori: } p | \boldsymbol{x} \sim \text{Beta}(\alpha + \sum x_i, \beta + n - \sum x_i)

Poisson Priori: \lambda \sim \text{Gama}(\alpha, \beta) \Rightarrow \text{Posteriori: } \lambda | \boldsymbol{x} \sim \text{Gama}(\alpha + \sum x_i, \beta + n)

Geométrica Priori: p \sim \text{Beta}(\alpha, \beta) \Rightarrow \text{Posteriori: } p | \boldsymbol{x} \sim \text{Beta}(\alpha + n, \beta + \sum x_i)

Normal (média desconhecida) Priori: \mu \sim \text{Normal}(\mu_0, \sigma_0^2) \Rightarrow \text{Posteriori: } \mu | \boldsymbol{x} \sim \text{Normal}\left(\frac{\sigma^2 \mu_0 + \sigma_0^2 n \bar{x}}{\sigma^2 + n \sigma_0^2}, \frac{\sigma^2 \cdot \sigma_0^2}{\sigma^2 + n \sigma_0^2}\right)

Normal (variância desconhecida) Priori: \sigma^2 \sim \text{Gama-Inversa}(\alpha, \beta) \Rightarrow \text{Posteriori: } \sigma^2 | \boldsymbol{x} \sim \text{Gama-Inversa}(\alpha + \frac{n}{2}, \beta + \frac{1}{2}\sum(x_i - \mu)^2)

Normal Multivariada Priori: \Sigma \sim \text{Wishart}(\nu, \Psi) \Rightarrow \text{Posteriori: } \Sigma | \boldsymbol{x} \sim \text{Wishart}\left(n + \nu, \Psi + \sum (\mathbf{x}_i - \mu)(\mathbf{x}_i - \mu)^T\right)

Exponencial Priori: \lambda \sim \text{Gama}(\alpha, \beta) \Rightarrow \text{Posteriori: } \lambda | \boldsymbol{x} \sim \text{Gama}(\alpha + n, \beta + \sum x_i)

Gama Priori: \beta \sim \text{Gama}(a_0, b_0) \Rightarrow \text{Posteriori: } \beta | \boldsymbol{x} \sim \text{Gama}(a_0 + n\alpha, b_0 + \sum x_i)

Teste de hipóteses
```