Progettazione di Algoritmi

Simone Lidonnici

11 luglio 2024

Indice

T	Teo	ria dei gran
	1.1	Tipi di grafi
		1.1.1 Grafi diretti e non diretti
		1.1.2 Passeggiate e cammini
		1.1.3 Grafi connessi e fortemente connessi
		1.1.4 Grafi ciclici
	1.2	Rappresentare un grafo
		1.2.1 Matrici di adiacenza
		1.2.2 Liste di adiacenza
	1.3	Trovare il ciclo in un grafo
	1.4	DFS (Ricerca in profondità)
		1.4.1 DFS ottimizzata
		1.4.2 DFS ricorsiva
		1.4.3 DFS in grafi diretti
		1.4.4 Componenti e DFS con componenti
	1.5	Ordinare un grafo
		1.5.1 Trovare l'ordine topologico in grafi diretti
		1.5.2 Trovare l'ordine topologico in grafi non diretti
	1.6	Intervalli di visita e tipi di archi
		1.6.1 Tipi di archi
		1.6.2 Algoritmo per controllare i tipi di archi
	1.7	Alberi di visita e cicli
		1.7.1 Grafi non diretti
		1.7.2 Grafi diretti
		1.7.3 Vettore dei padri
	1.8	Ponti
		1.8.1 Algoritmo per trovare i ponti
	1.9	Componenti fortemente connessi
		1.9.1 Contrazione di un componente
		1.9.2 Algoritmo per trovare i componenti
		1.9.3 Algoritmo di Tarjan
	1.10	BFS (Ricerca in ampiezza)
		1.10.1 Algoritmo della BFS
		1.10.2 Distanza fra insiemi di nodi
		1.10.3 Grafi pesati
		1.10.4 Calcolare distanze pesate (Dijkstra)
2	Alga	oritmi Greedy

1

Teoria dei grafi

Definizione di Grafo

Un **grafo** G è una coppia (V, E) in cui V è un insieme di nodi e E un insieme di archi che collegano due nodi. Un grafo si dice **semplice** se:

- Non ha cappi, cioè nessun nodo è collegato con se stesso
- Ogni coppia di nodi è collegata da massimo un arco

1.1 Tipi di grafi

1.1.1 Grafi diretti e non diretti

I grafi possono essere di due tipologie in base a se gli archi sono **orientati**, cioè partono da un nodo e arrivano ad un altro senza essere percorribili al contrario. Se il grafo ha archi orientati si dice **diretto**.

Grafo non diretto

Grafo diretto

1.1.2 Passeggiate e cammini

Nodi adiacenti

Due nodi collegati da un arco si dicono **adiacenti** (o vicini) e l'arco che li collega viene detto incidente. Per indicare che due nodi sono adiacenti scriviamo $x \backsim y$. Si definisce il grado di un nodo $\deg(x)$ come il nomero dei suoi nodi adiacenti, uguale al numero di archi incidenti.

1. Teoria dei grafi 1.1. Tipi di grafi

Definizione di passeggiata

Una **passeggiata** su un grafo è una sequenza di archi e nodi:

$$v_0e_1v_1e_2\dots e_nv_n$$

In cui ogni arco e_i collega il nodo v_{i-1} al nodo v_i .

Un cammino è una passeggiata in cui non si ripetono i nodi.

1.1.3 Grafi connessi e fortemente connessi

Definizione di grafo connesso

Un grafo G si dice **connesso** se per qualsiasi coppia di nodi esiste un cammino che li collega:

$$\forall v_i, v_j \in V(G) \exists \text{cammino} | v_1 \to v_j \lor v_j \to v_i$$

Un grafo G si dice **fortemente connesso** se per qualsiasi coppia di nodi esiste un cammino che li collega partendo da entrambi i nodi:

$$\forall v_i, v_j \in V(G) \exists \text{cammino} | v_1 \to v_j \land v_j \to v_i$$

Nel caso di grafi non diretti ogni grafo connesso è anche fortemente connesso.

Grafo non connesso

Grafo connesso

Grafo fortemente connesso

Esiste un tipo specifico di passeggiata detta **passeggiata Euleriana** in cui si attraversano tutti i nodi una sola volta. Può esistere una passeggiata Euleriana in un grafo solo se il grafo è connesso e ci sono al massimo 2 nodi con grado dispari, che saranno inizio e fine.

1.1.4 Grafi ciclici

Definizione di grafo ciclico

Un grafo G è ciclico se esiste un sottograpo connesso in cui ogni vertice ha grado ≥ 2 . Se nel grafo tutti i vertici hanno grado ≥ 2 allora il grafo è sicuramente ciclico.

$$\forall v \in V(G)\deg(v) \geq 2 \implies G$$
ciclico

In un grafo diretto se ogni nodo ha almeno un arco uscente allora il grafo è ciclico.

1.2 Rappresentare un grafo

1.2.1 Matrici di adiacenza

I grafi possono essere rappresentati con delle matrici di adiacenza in cui se v_i è adiacente a v_j la matrice conterrà 1 nella posizione (i, j) e nella posizione (j, i):

	v_1		v_i		v_j		v_n
v_1	0						
		0					
v_i			0		1		
				0			
v_{j}			1		0		
						0	
v_n							0

Costo per controllare se x è vicino di y: O(1)

Spazio necessario per l'archiviazione: $O(n^2)$

Nel caso di grafi diretti la matrice conterrà 1 nella posizione (i, j) se l'arco parte da i e arriva a j (non sarà più simmetrica).

1.2.2 Liste di adiacenza

Per rappresentare i grafi si può anche usare una lista di adiacenza in cui ogni nodo ha una lista contenente tutti i suoi vicini:

$$v_1$$
.neighbors = $[\dots]$
 \cdots
 v_n .neighbors = $[\dots]$

Nel caso di un grafo diretto, ogni nodo avrà due liste:

- ullet v_i .neighbors_out che contiene i nodi collegati da archi uscenti da v_i
- v_i .neighbors_in che contiene i nodi collegati da archi entranti in v_i

Costo per controllare se x è vicino di y: O(n)

Spazio necessario per l'archiviazione: $O(n^2)$

Lunghezza della lista di vicini di un determinato nodo v_i : deg (v_i)

Grandezza totale delle liste:
$$O(n) + O(\sum_{i=1}^{n} \deg(v_i)) = O(n+m)$$

1.3 Trovare il ciclo in un grafo

Dato un grafo G in cui ogni vertice ha grado ≥ 2 , l'algoritmo per trovare il ciclo:

Algoritmo: Ricerca di un ciclo in un grafo G

Input:

• G: grafo

return C

Output:

• C: nodi che formano il ciclo

1.4 DFS (Ricerca in profondità)

La **DFS** (Depth first search) è un modo per visitare un grafo che consiste nel partire da un nodo e spostarsi in un vicino casuale non ancora visitato e nel caso tutti i vicini di un nodo siano già stati visitati ritornare al nodo precedente. Per implementare questo roll-back si utilizza uno Stack. L'algoritmo ritorna tutti i nodi visitabili dal nodo di partenza, quindi nel caso di grafo non connesso, ritornerà solo i vertici nel sottografo contenente il nodo di partenza.

```
Input:
        • G: grafo
        • x: nodo di partenza

def DFS(G, x):
        | Vis=set(x)
        | Stack S=[x]
        | while len(S)!=0:
        | y=S.top()
        | if ∃ z in y.neighbors | z ∉ Vis : // O(deg(y) · n)
        | Vis.add(z)
        | S.push(z)
        | else
        | S.pop()
        | return Vis
```

Dimostrazione per assurdo:

```
Supponiamo esista y|\exists \text{cammino } x \to y \text{ ma } y \notin \text{Vis e sia } i \text{ un indice per cui } v_i \in \text{Vis} \land v_{i+1} \notin \text{Vis.}
v_i \in \text{Vis} \implies \begin{cases} v_i \text{ è stato inserito in } S \\ v_i \text{ è stato tolto da } S \end{cases} \implies \text{ogni vicino di } v_i \text{ è stato inserito in Vis} \implies v_{i+1}
\text{è stato inserito in Vis}
```

DFS ottimizzata 1.4.1

L'algoritmo di base della DFS è poco ottimizzato per via del costo dell'if che richiede $O(\deg(y))$. n), per ottimizzarlo si cambia la struttura di Vis rendendolo un array lungo n in cui:

$$Vis[v] = \begin{cases} 0 & v \text{ non è stato visitato} \\ 1 & v \text{ è stato visitato} \end{cases}$$

Con questo cambiamento l'algoritmo diventa:

```
Algoritmo: DFS ottimizzata
```

```
Input:
   • G: grafo
   • x: nodo di partenza
def DFS_ott(G, x):
   Vis[x]=1
   Stack S=[x]
   while len(S)!=0:
      y=S.top()
      if Vis[y.neighbors[0]] == 1 : // O(deg(y) \cdot n)
         z=y.neighbors[0]
         Vis[z]=1
         S.push(z)
      y.neighbors.remove(0)
      if len(y.neighbors==0) :
         S.pop()
   return Vis
```

Avendo tutto costo O(1) tranne il ciclo while con costo O(n+m), l'algoritmo ha costo complessivo O(n+m).

1.4.2 DFS ricorsiva

Della DFS si può fare anche una versione ricorsiva:

Il costo di questo algoritmo è O(n+m).

1.4.3 DFS in grafi diretti

Nel caso di grafi diretti bisogna cambiare l'algoritmo per controllare solo gli archi uscenti e non quelli entranti quando si cambia nodo:

```
Algoritmo: DFS
Input:
    • G: grafo

    • x: nodo di partenza

def DFS_dir(G, x):
    | Vis[x]=1
    | Stack S=[x]
    | while len(S)!=0:
    | y=S.top()
    | if \( \frac{1}{2} \) in y.neighbors_out | Vis[z]==0:
    | Vis[z]=1
    | S.push(z)
    | else
    | S.pop()
    | return Vis
```

1.4.4 Componenti e DFS con componenti

Definizione di componente

Un **componente** è l'insieme di nodi di un sottografo connesso, però non connesso al resto del grafo.

```
Comp[x] = nodi nello stesso componente che contiene x
Comp[x] = Comp[y] \iff x, y appartengono allo stesso sottografo
```

L'algoritmo che visita tutti i componenti è una modifica della DFS ricorsiva in cui:

$$Comp[v] = \begin{cases} 0 & v \text{ non è ancora stato visitato} \\ i & v \text{è nel componente } i \end{cases}$$

Si aggiunge inoltre una funzione per cambiare componente in cui si trova il nodo corrente:

```
Algoritmo: DFS per trovare componenti
 Input:
    • G: grafo
 def CComp(G):
    comp_count=0
    for x in V:
       if Comp[x] == 0:
          comp_count+=1
          DFS_ric_comp(G, x, Comp, comp_count)
    return Comp
 def DFS_ric_comp(G, x, Comp, comp_count):
    Comp[x]=comp_count
    for y in x.neighbors:
       if Comp[y] == 0:
          DFS_ric_comp(G, y, Comp, comp_count)
    return Comp
```

1.5 Ordinare un grafo

Un grafo diretto G ha un **ordine topologico** se esiste un ordine per cui ogni nodo ha archi uscenti che vanno solo verso nodi successivi nell'ordine e archi entranti solo da nodi precedenti nell'ordine. Inoltre:

G ciclico $\iff \#$ ordine topologico

Corollario:

G non ciclico $\implies \exists v \in V | v$ non ha archi uscenti

1.5.1 Trovare l'ordine topologico in grafi diretti

Per trovare l'ordine topologico in grafi diretti si usa un'algoritmo:

```
Algoritmo: DFS per trovare l'ordine topologico in grafi diretti
 Input:
    • G: grafo
 def DFS_ord(G):
    1=[]
    while len(G)!=0: // O(n)
       x=no_archi(G)
       1.insert(x,0)
       elimina(x)
    return 1
 \operatorname{def} no_archi(G): // O(n)
    for v in V:
       if len(v.neighbors_out)==0 :
        l return v
 def elimina(x): // O(m)
    for e in E:
       if x in e:
           E.remove(e)
```

Il ciclo while esegue n
 volte le funzioni no archi e elimina, quindi il costo dell'algoritmo sarà:
 O(n(n+m))

1.5.2 Trovare l'ordine topologico in grafi non diretti

Per trovare l'ordine topologico in grafi non diretti si usa un'algoritmo:

1.6 Intervalli di visita e tipi di archi

Dato un grafo G aggiungiamo un contatore C alla DFS, che parte da 1 e viene aumentato di uno ogni volta che si visita un nodo nuovo.

Ad ogni nodo $v \in V$ associamo:

- t(v): valore di C quando v viene visitato per la prima volta
- T(v): valore di C quando v viene rimosso dallo Stack
- $\operatorname{Int}(v) = [t(v), T(v)]$

Esempio:

Una possibile tabella contenente gli intervalli usando una DFS partendo da v_1 è:

v	t(v)	T(v)
v_1	1	5
v_2	2	5
v_3	3	5
v_4	5	5
v_5	4	4

Dalla tabella e dal grafico possiamo osservare che:

- $t(v_i) \neq t(v_j) \ \forall i, j$
- $t(v_i) \leq T(v_i)$
- $t(v_i) = T(v_i) \iff v_i$ non ha archi uscenti e non è radice
- v_i radice \iff $\operatorname{Int}(v_i) = [1, n]$ con G che ha n nodi

Inoltre confrontando gli intervalli tra due nodi v_1 e v_2 ci sono 3 possibilità:

- $\operatorname{Int}(v_1) \subset \operatorname{Int}(v_2)$
- $\operatorname{Int}(v_1) \supset \operatorname{Int}(v_2)$
- $\operatorname{Int}(v_1) \cap \operatorname{Int}(v_2) = \emptyset$

1.6.1 Tipi di archi

Albero di visita

Un albero di visita è un sottografo connesso e aciclico composto solo dagli archi che sono stati usati per raggiungere i vertici visitati. Nel caso di grafi diretti viene detto arborescenza ed è un'albero con tutti gli archi orientati dalla radice verso le foglie.

Preso un'arborescenza A creata tramite una DFS su un grafo G, ogni arco $(v_i, v_j) \in E$ non in A può essere classificato in 3 categorie:

- 1. Arco all'indietro: se va da un discendente ad un antenato, cioè $\operatorname{Int}(v_i) \subset \operatorname{Int}(v_i)$
- 2. Arco in avanti: se va da un antenato a un discendente, cioè $Int(v_i) \supset Int(v_j)$
- 3. Arco di attraversamento: se i due nodi non hanno correlazioni, cioè $\mathrm{Int}(v_i) \cap \mathrm{Int}(v_j) = \emptyset$

Nei grafi non diretti non essendoci differenza tra gli archi (v_i, v_j) e (v_j, v_i) , l'unico caso possibile è che sia un arco all'indietro perché:

$$t(v_i) < t(v_j) \implies \operatorname{Int}(v_i) \subset \operatorname{Int}(v_j)$$

Esempio:

Gli archi non presenti nell'arborescenza A sono $(v_2, v_4), (v_4, v_1)$ e (v_4, v_5) . Questi archi sono classificati:

- $\bullet \ (v_2, \, v_4)$ è in avanti perchè [2,5]
⊃[4,5]
- (v_4, v_1) è indietro perchè $[5,5]\supset [1,5]$
- (v_4, v_5) è di attraversamento perchè $[5,5] \cap [4,4] = \emptyset$

1.6.2 Algoritmo per controllare i tipi di archi

return Back, Cross, Forward

Per controllare i tipi di archi usiamo un'algoritmo modificato della DFS che da in output 3 insiemi Back, Forward e Cross che contengono rispettivamente gli archi appartenenti alle tre categorie. Aggiungo un contatore C e anche due array t e T in cui segno gli intervalli dei vari nodi.

Algoritmo: DFS per classificare gli archi Input: • G: grafo • x: nodo di partenza def DFS_archi(G, x): C=0Vis[x]=1t[x]=1Stack S=[x]while len(S)!=0: y=S.top() while len(y.neighbors_out)!=0 : z=y.neighbors_out[0] y.neighbors_out.remove(0) if Vis[z] == 0: C+=1t[z]=CVis[z]=1S.push(z)break if t[z] < t[y] and T[z] == 0: Back.add((y,z))elif t[z] < t[y] and T[z]!=0: Cross.add((y,z)) else Forward.add((y,z)) if y==S.top(): S.pop() T[y]=C

1.7 Alberi di visita e cicli

1.7.1 Grafi non diretti

Dato un grafo non diretto G connesso con un albero di visita T generato da una DFS, allora:

 \exists arco all'indietro \iff G ciclico

1.7.2 Grafi diretti

Dato un grafo diretto G con un'arborescenza T generata da una DFS, definiamo che:

- un nodo u è discendente di un altro nodo v se esiste un cammino $v \to u$, cioè $\mathrm{Int}(v) \subseteq \mathrm{Int}(v)$
- un nodo v è antenato di un altro nodo u se un arco (u, v) è un arco all'indietro. Gli antenati di u sono tutti i nodi nel cammino radice $\to u$

Anche in questo caso:

 \exists arco all'indietro \iff G ciclico

Esempio:

Un pozzo universale è un nodo x per cui:

- $\nexists(x,y) \in E \ \forall y \in V(G)$
- $\exists (y, x) \in E \ \forall y \in V(G)$

Scrivere un algoritmo con costo O(n) per stabilire se esiste un pozzo universale avendo in input il grafo come matrice di adiacenza. La matrice se ci fosse un pozzo x sarebbe:

	v_1		x		v_n
v_1	0		1		
		0	1		
\boldsymbol{x}	0	0	0	0	0
			1	0	
v_n			1		0

Il codice dell'algoritmo:

Algoritmo: Ricerca di un pozzo

Input:

• M: matrice di adiacenza del grafo

1.7.3 Vettore dei padri

Un modo di salvare un albero di visita è il vettore dei padri, cioè un vettore P in cui P[v] = nodo tramite cui si è arrivati a v. Per la radice P[v] = v.

Esempio:

n questo caso partendo da v_6 il vettore dei padri sarebbe:

$$P = [6, 1, 5, 6, 1, 6, 5, 2]$$

Per trovare gli antenati di un nodo v si può usare un algoritmo con costo O(n):

1. Teoria dei grafi 1.8. Ponti

1.8 Ponti

Definizione di ponte

Dato un grafo non diretto G, si dice **ponte** un arco che se tolto fa diventare il grafo non connesso:

Per controllare se un determinato arco (u, v) è un ponte lo elimino e controllo se esiste un altro cammino $u \to v$:

- \bullet esiste $\implies (u, v)$ non ponte
- ullet non esiste $\implies (u,v)$ ponte

Se volessimo trovare tutti i ponti in un grafo controllando ogni arco il costo computazionale sarebbe O(m(n+m)).

Dato T l'albero di visita di una DFS su un grafo G:

(u,v)ponte $\iff \nexists$ arco all'indietro da T_v a fuori T_v

Dove T_v è l'insieme dei discendenti di v.

1.8.1 Algoritmo per trovare i ponti

Dato un grafo G per trovare tutti i ponti si usa un'algoritmo che tiene segnato con Back[v] il punto più indietro che si può raggiungere da un determinato nodo v:

```
Algoritmo: DFS per trovare i ponti
 def Ponti(G):
    C=0
    v=V[0]
    DFS_ponte(G, v, v, t, C, P, Ponti)
    return Ponti
 def DFS_ponte(G, u, v, t, C, P, Ponti):
    C+=1
    t[v]=C
    Back[v]=t[v]
    for u in v.neighbors_out:
       if t[u] == 0:
          P[u]=v
          DFS_ponte(G, v, u, , C, P, Ponti)
          if Back[u] < Back[v] :</pre>
             Back[v]=Back[u]
       elif u!=P[v] and t[u]<Back[v]:
        | Back[v]=t[u]
    if Back[v] == t[v]:
       P.add((u,v))
```

1.9 Componenti fortemente connessi

Definizione di componente fortemente connesso

In un grafo G un **componente fortemente connesso** è un sottografo massimale (con massimo numero di nodi) fortemente connesso. Due componenti fortemente connessi non hanno nodi in comune. Un nodo singolo non facente parte di nessun componente è anch'esso un componente perchè si può raggiungere da solo.

Esempio:

In questo caso possiamo dividere il grafo in 3 componenti fortemente connessi:

- $H_1 = \{v_1, v_2, v_3, v_5, v_6\}$
- $H_2 = \{v_4\}$
- $H_3 = \{v_7\}$

1.9.1 Contrazione di un componente

Preso un grafo diretto G e un componente fortemente connesso H, possiamo contrarre H in n solo nodo ottenendo un grafo G/V(H). Il grafo dopo questo processo di contrazione conterrà:

- Nodi: $(V(G) V(H)) + v_H$
- Archi:
 - $\{(x,y) \in E(G) | x, y \notin V(H) \}$
 - $-\{(v_i, v_H) \text{ se } \exists (v_i, x) \in E(G) | x \in V(H) \land v_i \notin V(H) \}$
 - $\{(v_H, v_i) \text{ se } \exists (x, v_i) \in E(G) | x \in V(H) \land v_i \notin V(H) \}$

Esempio:

In questo grafo se contraiamo il componente $H_1 = \{v_1, v_2, v_3, v_5, v_6\}$ il grafo $G/V(H_1)$ diventa:

1.9.2 Algoritmo per trovare i componenti

Dato un grafo G con diverse componenti H_1, \ldots, H_k , comprimendo un determinato componente H_i , nel grafo risultante G/V(H) avrò le componenti H'_1, \ldots, H'_k tali che:

$$H'_{j} = \begin{cases} H_{j} & j \neq i \\ (H_{i}/V(H_{i})) \cap v_{H_{i}} & i = j \end{cases}$$

Questo passaggio di contrazione viene applicato in un algoritmo ricorsivo per trovare tutti componenti:

Algoritmo: Trovare i componenti fortemente connessi in un grafo

```
\begin{array}{c|c} \operatorname{def} \ \operatorname{CompFort}(\mathsf{G}) \colon \\ & \text{ if } \not \equiv \operatorname{ciclo in } \mathsf{G} : \\ & | \ \operatorname{return} \ \{\{v\}|v \in V(G)\} / / \ \operatorname{insieme \ di \ insiemi} \\ & \operatorname{else} \\ & | \ C = \operatorname{ciclo} \\ & \mathsf{G} = \mathsf{G} / \mathsf{V}(\mathsf{C}) \\ & H_1, \ldots, H_k = \operatorname{CompFort}(\mathsf{G}) \\ & \text{ for i \ in \ range}(\mathsf{k}) : \\ & | \ \operatorname{if} \ v_C \notin H_i : \ / / \ v_C = \ \operatorname{nodo \ creato \ comprimendo} \ C \\ & | \ H_i' = H_i \\ & \ \operatorname{else} \\ & | \ H_i' = (H_i - \{v_C\}) \cup V(C) \end{array}
```

Il costo di questo algoritmo è O(n(n+m)).

1.9.3 Algoritmo di Tarjan

Dato un grafo G con componente fortemente connesso C, definiamo come C-radice il nodo v appartenente a C che è stato visitato per primo dalla DFS.

Preso v nodo C-radice di un componente C e definendo T(v) l'insieme dei discendenti di v nell'arborescenza T e C(v) il componente in cui si trova v allora:

- 1. $C(v) \subseteq T(v)$
- 2. Prese $v_1, ..., v_k$ tutte le C-radici in T(v) allora $T(v) = C(v_1) \cup ... \cup C(v_k)$

Tramite queste proprietà possiamo usare un'altro algoritmo per trovare i componenti fortemente connessi:

```
Algoritmo: Trovare i componenti fortemente connessi in un grafo
 def SCC(G):
    Stack C=[]
    for v in V(G)|Vis[v]==0:
       DFS_SCC(G, v, C, output)
 def DFS_SCC(G, v, C, output):
    Vis[v]=1
    C.push(v)
    for u in v.neighbors_out|Vis[u]==0 :
       DFS_SCC(G, u, C, output)
    if v è C-radice : // vedremo dopo come si fa
       X = []
       w=C.pop()
       X.append(w)
       while w!=v:
          w=C.pop()
          X.append(w)
       output.add(X)
    return output
```

Un nodo u non è C-radice se nella chiamata ricorsiva con radice u viene attraversato un arco (v, w) tale che w è stato già visitato ma il suo componente non ancora stabilito.

Esempio:

Se esiste (v, w) allora la C-radice z di C(w) deve essere un antenato di u e quindi $z, u, v, w \in C(w)$.

Per controllare se un nodo è una C-radice utilizziamo back per segnare il punto più indietro raggiungibile da un arco (v, w) in cui:

- \bullet v un nodo dentro la chiamata di u
- w è un nodo già visitato ma con componente ancora non individuato

Inotre utilizziamo un array CC in cui:

```
CC[u] = \begin{cases} 0 & \text{non visitato} \\ -t & \text{visitato al tempo } t \text{ ma con componente non identificato} \\ t & \text{componente a cui appartiene} \end{cases}
```

Date queste considerazioni possiamo riscrivere l'algoritmo precedente con costo = (n + m):

```
Algoritmo: Algritmo di Tarjan
```

Input:

- G: grafo
- u: nodo radice
- CC: array per segnare i componenti
- S: Stack
- cont_n: contatore tempi di visita
- cont_comp: contatore componenti

```
def DFS_SCC(G, u, CC, S, cont_n, cont_comp):
   cont_n+=1
   CC[u] = -cont_n
   S.push(u)
   back=cont_n
   for v in u.neighbors_out :
      if CC[v] == 0:
         b=DFS_SCC(G, v, CC, S, cont_n, cont_comp)
         back=min(b, back)
      elif C[v]<0:
         back=min(back,-CC[v])
   if back==-CC[u] :
      cont_comp+=1
      w=S.pop()
      CC[w] = cont_comp
      while w!=u:
         w=S.pop()
         CC[w] = cont_comp
   return back
```

1.10 BFS (Ricerca in ampiezza)

Dstanza fra due nodi

La distanza fra due nodi x, y è definita come il minimo numero di archi in un cammino $x \to y$ e si scrive dist(x, y).

Esempio:

In questo caso dist(x, y) = 2.

1.10.1 Algoritmo della BFS

La BFS (breadth first search) è un metodo di visita di un grafo che consiste nel partire da un nodo e controllare prima tutti i nodi con distanza 1 (i vicini), poi tutti quelli con distanza 2 e così via. Con questo algritmo siamo sicuri di sapere sempre la distanza minima di tutti i nodi dalla radice.

Viene implementato tramite un vettore dei padri inizializzato a -1 e usando un array Dist per segnare la distanza. Il costo dell'algoritmo è O(n+m).

Dato un grafo G e due nodi x, y esiste sempre un nodo z vicino di y tale che:

$$dist(x, z) = dist(x, y) - 1$$

Se dist $(x,y) = 1 \implies z = x$

Esercizio esempio:

Modificare la BFS per contare anche il numero di cammini possibili $x \to y$ di lunghezza minima:

Algoritmo: Numero di cammini possibili tra due nodi di lunghezza minima

```
def BFS(G, x):
   nCamm[x]=1
   P[x]=x
   Qeue Q
   Q.enquque(x)
   while len(Q)!=0:
      v.dequeue()
      for w in v.neighbors:
         if P[w] == -1:
            Q.enqueue(w)
            Dist[w] = Dist[v] + 1
            P[w]=v
            nCamm[w]=1
         elif Dist[v] == Dist[w] - 1 :
            nCamm[w]+=nCamm[v]
   return P, Dist, nCamm
```

1.10.2 Distanza fra insiemi di nodi

Se vogliamo trovare la distanza minima tra due insiemi di nodi X e Y dobbiamo trovare il minimo tra tutte le distanze che comprendano un nodo di X e uno di Y. Per fare ciò usiamo una versione modificata della BFS:

Algoritmo: Disanza tra insiemi di nodi

1.10.3 Grafi pesati

Definizione di peso

Un **grafo pesato** è un grafo in cui ogni arco ha associato un numero detto **peso**. Il peso è definito:

$$w: E(G) \to \mathbb{R}^+$$

Si definisce, al posto della distanza, il peso di un cammino scritto $\operatorname{dist}_w(x,y)$, cioè la somma tra i pesi di tutti gli archi percorsi in quel cammino, e la distanza diventa quindi il cammino con peso minimo.

Dato un cammino P il suo peso sarà:

$$w(P) = \sum_{e \in P} w(e)$$

Presi due nodi qualsiasi x, y vale che:

- 1. $dist_w(x, x) = 0$
- 2. $\operatorname{dist}_w(x,y) > 0 \iff x \neq y$
- 3. $\operatorname{dist}_w(x,y) \leq \operatorname{dist}_w(x,z) + \operatorname{dist}_w(z,y) \ \forall z \in V(G)$

Esempio:

In questo caso il cammino di peso minimo $\operatorname{dist}_w(x,y) = 1 + 3 + 4 = 8$.

1.10.4 Calcolare distanze pesate (Dijkstra)

Un problema con i grafi pesati è quello di non poter calcolare la distanza pesata tra due nodi, neanche se vicini perchè potrebbe esserci un cammino con più archi ma peso minore.

Peso minimo

Dato un grafo pesato G e un nodo x, scriviamo $\alpha_i = w(x, v_i)$ per ogni nodo v_i vicino di x:

$$\min(\alpha_1, \dots, \alpha_k) = \alpha_i \iff \operatorname{dist}_w(x, v_i) = \alpha_i$$

Questa regola può essere generalizzata anche per un insieme per cui è nota la distanza da x, cioè dato un insieme R di vertici per cui è nota la distanza da x e (u,v) l'arco che minimizza $\mathrm{dist}_w(x,u)+w(u,v)$ con $e\in R \wedge v\notin R$ allora:

$$\operatorname{dist}_w(x,v) = \operatorname{dist}(x,u) + w(u,v)$$

In questo modo da un insieme R di nodi di cui è nota la distanza da un nodo x, si può sempre aggiungere a R un nodo vicino ad un qualsiasi nodo di R. Questo si può fare con un algoritmo chiamato Dijkstra:

La complessità è O(n(n+m)), ma può essere ottimizzato usando un min heap H per memorizzare gli archi:

```
Algoritmo: Dijkstra ottimizzato
```

return Dist

```
def Dijkstra(G, x):
  Dist[x]=0
   R=set(x)
   P[x]=x
   for v in V(G):
      if v!=x:
        H.insert(v, key=\infty)
      else
         H.insert(v, key=0)
   while len(H)!=0:
      v=H.extract_min()
      Dist[v]=H.key(v)
      R.add(v)
      for u in v.neighbors:
         if u not in R and Dist[u]>Dist[v]+w(v,u) :
            Dist[u] = Dist[v] + w(v,u)
            H.update_key(u, Dist[u])
            P[u]=v
  return Dist
```

Il costo di questa versione ottimizzata è di $O((n+m) \cdot \log n)$.

2 Algoritmi Greedy