- f: I-> , $x_0 \in I$
 - lokale Extremstelle
 - * x_0 lokales Maxiumum
 - ♦ δ >0: f(x)≤f(x0) x $(x0 \delta, x0 + \delta)$ <==> x0 ist größtes Element in der Umgebung +/- δ
 - * x_0 lokales Maxiumum
 - ♦ δ >0: f(x)≥f(x0) x $(x0 \delta, x0 + \delta)$ <==> x0 ist kleinstes Element in der Umgebung +/- δ
 - globale Extremstelle
 - * x_0 globales Maxiumum
 - $f(x) \le f(x0)$ $x \in I \le x0$ ist größtes Element in I
 - * x_0 globales Maxiumum
 - $f(x) \ge f(x0)$ $x \in I \le x0$ ist kleinstes Element in I
 - x0 ist lokale Extremstelle ==> f'(x0)=0
 - * f'(x0) = 0 = Steigung ==> Hochpunkt/Tiefpunkt
 - * Umkehrschluss gilt nicht
 - * Gegenbeispiel: $f(x)=x^3$

*

Satz von Rolle

- f: [a,b]-> differenzierbar
- f(a)=f(b) ==> x0 (a, b): f'(x0) = 0
- Im Intervall muss mindestens ein lokales Maximum/Minimum existieren
- Wenn f'(x) = 0 x[a,b] ==> f ist konstant

Mittelwertsatz der Differentialrechnung - MWS

- Verallgemeinerung von Satz von Rolle
- f: [a,b]-> differenzierbar
- x0 (a, b): $f'(x0) = \frac{f(b) f(a)}{b a}$
- $\frac{f(b)-f(a)}{b-a}$ entspricht der Steigung einer Gerade zwischen a und b
 - es existiert mindestens eine Tangente, welche parallel zu dieser Gerade ist.

Verallgemeinerung MWS

- f,g: [a,b]-> differenzierbar
- x (a, b): $g'(x) \neq 0$

$$- = > x0$$
 (a, b): $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(x_0)}{g'(x_0)}$

[[Differentialrechnung]]