

كلية العلوم _ قسم الفيزياء

جامعة أسبوط

امتحان أعمال منتصف الفصل الدراسي الثاني لطلاب كلية الهندسة في الفيزياء

الدرجة الكلية: 30 الزمن ساعة تاريخ الامتحان: 26 - 2016

 $\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \quad V \cdot m / C$

 $q = 1.6 \times 10^{-19} C$

المعطيات:

أولاً: الكهربية الساكنة والتيارية (15 درجة)

السؤال الأول: (5 درجات) اختار الإجابات الصحيحة ورتبها في جدول كالآتي:

5	4	3	2	1	السؤال
Í	ب	ح	ĺ	ŗ	الإجابة

1- وحدة شدة المجال الكهربائي هي:

 $V.m^2$ - τ

V/m - ़

V.m -

q فان الفيض الكهربي خلال السطح سوف يزداد وداد يرداد وداد الفيض الكهربي خلال السطح سوف يزداد وداد q

ج- بتغير موضع الشحنة داخل السطح

ب- بزيادة الحجم

أ- بزيادة الشحنة

3- القوة المؤثرة على شحنة سالبة في مجال كهربائي يكون اتجاهها:

ب- عمودية على اتجاه المجال ج- <u>عكس اتجاه المجال</u>

أ- في اتجاه المجال

4- الجهد الناتج عن شحنة مقدار ها $(5x10^{-8} \text{ C})$ عند نقطة تبعد (10 cm) من مركز الشحنة يساوي:

4.5 V -ج

4500 V -↓

450 V -1

5- إذا كان الشغل اللازم لنقل شحنة (20 C) من نقطة لأخرى هو (300 J) فإن فرق الجهد بين النقطتين يساوي:

7- 0.166 V

6000 V -ب

15 V -1

السؤال الثاني: (10 درجات)

و مستطیل $Q_3 = 3x10^{-9} \, \mathrm{C}$ و $Q_2 = 5x10^{-9} \, \mathrm{C}$ علی رؤوس مستطیل $Q_3 = 3x10^{-9} \, \mathrm{C}$

كما في الشكل التالي.

احسب المجال الكهربي والجهد عند النقطة A.

(a)

$$E_1 = 9 \times 10^9 \frac{10^{-9}}{(0.4)^2} = 56.25$$
 N/C

$$\underline{E}_2 = 9 \times 10^9 \frac{5 \times 10^{-9}}{(0.5)^2} = 180 \text{ N / C}$$

$$\underline{E}_2 = 9 \times 10^9 \frac{3 \times 10^{-9}}{(0.3)^2} = 300 \text{ N / C}$$

$$\underline{\mathbf{E}}_{y} = E_{3} + E_{2} \cos 53 = 408.3 \text{ N} / \text{C}$$

$$\underline{\mathbf{E}}_{x} = E_{1} + E_{2} \sin 53 = 200 \text{ N / C}$$

$$E = \sqrt{(200)^2 + (408.3)^2} = 454.7 \text{ N / C}$$

$$\theta = \tan^{-1} \frac{408.3}{200} = 63.9^{\circ}$$

(b)

$$V_A = 9 \times 10^9 \left(\frac{10^{-9}}{(0.4)} + \frac{5 \times 10^{-9}}{(0.5)} + \frac{3 \times 10^{-9}}{(0.3)} \right) = 202.5 V$$

ثانياً: المغناطيسية والألياف الضوئية (15 درجة)

1- اكمل العبارات الاتية: (5 درجات)

معت شحنة ساكنة داخل مجال مغناطيسي تكون القوة المعناطيسية عليها مساوية	1- اذا وض
محدد السرعة يستخدم ل بينما مطياف الكتلة يستخدم ل	2- جهاز ،
الجهازين في استخدام	ويتفقوا
المواد التى لها معامل نفاذية وتاثيرية موجبة باسم بينما المواد التى لها قابلية	3- تسمى
سية سالبة باسم	مغناطي
التى تحتفظ ببعض المغناطيسية داخلها حتى بعد زوال المجال المطبق تسمى	4- المواد
و هذا السلوك يسمى باسم	
لمعناطيسية المؤثرة على حلقة متصلة يمر بها تيار موضوعة في مجال مغناطيسي تكون مساوية	5- القوة ا

X الكترون لة شحنة ($e=-1.6\times10^{-19}$ C) يتحرك بسرعة m/s في اتجاة الموجب من محور $e=1.6\times10^{-19}$ و كان شدة المجال المغناطيسي E=0.8 في اتجاة الموجب من محور E=0.8 اوجد قيمة قوة المجال المغناطيسي و كذلك اتجاهها؟ (E=0.8 درجات)

0	.1
(z) الاتجاة الموجب من محور (z)	.2
$^{-14}$ N (الاتجاة الموجب من محور Y)	.3
(z) الاتجاة السالب من محور (z)	.4

3- سلك طولة 70 cm يمر بية تيار شدتة 500A يصنع السلك زاوية 60° مع مجال مغناطيسي منتظم. اذا كانت القوة المؤثرة على السلك 10N ما قيمة المجال المغناطيسي ?(5 درجات)

41 mT	.1
33 mT	.2
55 mT	.3
87 mT	.4