Course 9

Gamma Distribution伽马分布

For $\alpha > 0$, the gamma function $\Gamma(\alpha)$ is defined by:

$$\Gamma(lpha) = \int_0^\infty x^{lpha-1} e^{-x} \mathrm{d}x$$

- For any $\alpha > 1$, $\Gamma(\alpha) = (\alpha 1)\Gamma(\alpha 1)$
- For any positive integer, $n, \Gamma(n) = (n-1)!$
- $\Gamma(\frac{1}{2}) = \sqrt{\pi}$

$$f(x;lpha,eta) = egin{cases} rac{1}{eta^{lpha}\Gamma(lpha)}x^{lpha-1}e^{-rac{x}{eta}} & x \geq 0 \ 0 & ext{otherwise} \end{cases}$$

• Let $\beta=1$, it becomes a **standard Gamma distribution**:

$$f(x;lpha) = egin{cases} rac{x^{lpha-1}e^{-x}}{\Gamma(lpha)} & x \geq 0 \ 0 & ext{otherwise} \end{cases}$$

- $\operatorname{\mathbf{cdf}}$ of standard Gamma distribution X: Refer to $\operatorname{\mathbf{Appendix}}$ $\operatorname{\mathbf{Table}}$ $\operatorname{\mathbf{A.4}}$:

$$F(x;lpha) = egin{cases} \int_0^x rac{y^{lpha-1}e^{-y}}{\Gamma(lpha)}\mathrm{d}y & x \geq 0 \ 0 & x < 0 \end{cases}$$

- β 代表伽马分布曲线在x轴上的拉升和压缩, α 代表曲线的走向
 - \circ β 越大, x轴上的范围越长
 - $\alpha \leq 1$ 时,减函数
 - 。 $\alpha > 1$ 时,先增后减
- $E(X) = \mu = \alpha \beta$
- $V(X) = \sigma^2 = \alpha \beta^2$
- For any Gamma distribution with parameter lpha and eta, its \mathbf{cdf} is $P(X \leq x) = F(x; lpha, eta) = F(\frac{x}{eta}; lpha)$ (like standard Gamma distribution)

Exponential Distribution指数分布

Let lpha=1, $eta=rac{1}{\lambda}(\lambda>0)$, Gamma distribution becomes an exponential distribution

• pdf of X:

$$f(x;\lambda) = egin{cases} \lambda e^{-\lambda x} & x \geq 0 \ 0 & ext{otherwise} \end{cases}$$

- $E(X) = \frac{1}{\lambda}$ $V(X) = \frac{1}{\lambda^2}$

$$F(x;\lambda) = egin{cases} 0 & x < 0 \ 1 - e^{-\lambda x} & x \geq 0 \end{cases}$$

Chi-Squared Distribution卡方分布

Let $\alpha = \frac{v}{2}(v>0)$, $\beta = 2$, Gamma distribution becomes an Chi-Squared distribution

Weibull Distribution韦布尔分布

A random variable X is said to have a Weibull distribution with parameters α and β ($\alpha > 0$, $\beta > 0$) if the pdf of X is:

$$f(x;lpha,eta) = egin{cases} rac{lpha}{eta^lpha} x^{lpha-1} e^{-(x/eta)^lpha} & x \geq 0 \ 0 & x < 0 \end{cases}$$

When $\alpha=1$, the pdf of Weibull distribution reduces to the exponential distribution (with $\beta=\frac{1}{\lambda}$), so the exponential distribution is a special case of both the gamma and Weibull distributions

$$\begin{split} \bullet & \text{ Mean: } \mu = \beta \Gamma (1 + \frac{1}{\alpha}) \\ \bullet & \text{ Variance: } \sigma^2 = \beta^2 \bigg\{ \Gamma \bigg(1 + \frac{2}{\alpha} \bigg) - \bigg[\Gamma \bigg(1 + \frac{1}{\alpha} \bigg) \bigg]^2 \bigg\} \end{split}$$

· cdf:

$$F(x;lpha,eta) = egin{cases} 0 & x < 0 \ 1 - e^{-(x/eta)^lpha} & x \geq 0 \end{cases}$$

Lognormal Distribution对数分布

Beta Distribution贝塔分布

Probability Plots概率绘图

Select the dot (x,y) by x=[100(i-0.5)/n]th percentile of the distribution, y=ith smallest sample observation

• 只有满足正态分布才会绘制出一条近似直线

Homework

Section 4.4 59, 67, 70 Section 4.6 87, 88