Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

$\frac{\hbox{Институт Космических и информационных технологий}}{\hbox{кафедра «Информатика»}}_{\hbox{кафедра}}$

ОТЧЕТ О ПРАКТИЧЕСКОЙ РАБОТЕ №6

Машины Тьюринга

Преподаватель		А. С. Кузнецов
-	подпись, дата	инициалы, фамилия
Студент КИ18-17/16 031830504		Е.В. Железкин
номер группы, зачетной книжки	подпись, дата	инициалы, фамилия

1 Цель работы

Исследование свойств универсальных вычислительных машин на примере абстрактной машины Тьюринга.

2 Задача работы

Необходимо с использованием системы JFLAP построить машины Тьюринга, соответственно, для распознавания заданного языка и вычисления заданной функции над целыми числами в унарной системе счисления, или формально этого. Привести доказать невозможность примеры MT функционирования созданных машин. Для второй предложить представление неположительных чисел в унарной системе счисления. Допускается использование как одно-, так и многоленточных МТ.

Вариант 15. Первая МТ предназначена для распознавания языка $L = \{a^{2n}b^{2n}: n > 0\}$. Вторая МТ предназначена для вычисления функции $f(x) = 3^{x^3}$ ($f(x) = 3^{x^3}$, где ^ – это операция возведения в степень).

3 Ход работы

Рисунок 1 – полученный МТ-распознаватель и тесты к нему (файл МТ-1.jff)

По неопределённым причинам экран распознавания показывает только последний шаг:

Рисунок 2 – ввод тестовой строки

Рисунок 3 – перехват экрана распознавания

Рисунок 4 – перехват экрана распознавания (входная строка «ааааbbbb»)

Рисунок 5 – перехват экрана распознавания (входная строка «abb»)

Рисунок 6 – перехват экрана распознавания (входная строка «ab»)

Рисунок 7 – перехват экрана распознавания (входная строка «aabba»)

Рисунок 8 – перехват экрана распознавания (входная строка «аааа»)

Рисунок 9 – полученный МТ-преобразователь и тесты к нему (файл MT-2.jff)

Для входной строки «11» правильным выводом является $3^{(2^3)} = 6561$ единица в унарной системе счисления. Уже для входной строки «111» правильным выводом является 7625597484987 унарных единиц, что будет крайне долго вычисляться на моей МТ.

Рисунок 10 – полученный МТ-преобразователь (файл МТ-2.jff)

Рисунок 11 — перехват экрана распознавания (входная строка «11», вызов возведения в степень 2^3)

Рисунок 12 — перехват экрана распознавания (входная строка «11», результат возведения)

Рисунок 13 — перехват экрана распознавания (входная строка «11», вызов возведения в степень 3⁸)

Рисунок 14 — перехват экрана распознавания (входная строка «11», результат возведения — 6561 единица)

Рисунок 15 – полученный МТ-преобразователь для возведения в степень (файл MT-POW.jff)

Для представления неположительных чисел в унарной системе счисления, как и в остальных, уместно будет использовать какой-либо префикс.

Унарная система счисления не является позиционной, а значит в ней нельзя представить числа из промежутка (0, 1; и любое другое нецелое число, разве что в виде дроби). При получении отрицательного числа в качестве входного параметра, представленного в унарной системе счисления, вычисление функции моего варианта не имеет смысла, так как результатом x^3 всегда будет отрицательное число, а результат $3^{(x^3)}$ всегда будет попадать в промежуток (0, 1).

Рисунок 16 — полученный МТ-преобразователь для возведения в степень (файл MT-POW.jff)

На рисунке 16 приведён МТ-преобразователь, который учитывает знак основания и/или показателя (знак отрицания представлен символом «@»).

Рисунок 17 – полученный МТ-преобразователь для функции (файл MT-2.jff)

Рисунок 18 – полученный МТ-преобразователь для возведения в степень (файл MT-POW.jff)

Рисунок 19 — перехват экрана распознавания (входная строка «@11»; вход в МТ возведения в степень)

Рисунок 20 — перехват экрана распознавания (входная строка «@11»; результат возведения отрицательного основания в степень)

Рисунок 21— перехват экрана распознавания (входная строка «@11»; вход в МТ возведения в степень)

Рисунок 22 — перехват экрана распознавания (входная строка «@11»; результат возведения в степень с отрицательным показателем)

Рисунок 23 — перехват экрана распознавания (входная строка «»; вход в МТ возведения в степень)

Рисунок 24 — перехват экрана распознавания (входная строка «»; результат возведения в степень)

Рисунок 25— перехват экрана распознавания (входная строка «»; вход в МТ возведения в степень)

Рисунок 26 – перехват экрана распознавания (входная строка «»; результат возведения в степень)

4 Вывод

В ходе данной лабораторной работы были исследованы свойства универсальных вычислительных машин на примере абстрактной машины Тьюринга.