

Proportional current operated activator for valves - has pulse width modulated mode with dither frequency voltage and control signals mapped into memory

Patent number:

DE4241121

Publication date:

1993-07-01

Inventor:

HOLWE JOERG (DE); DELVIGNE JOSEPHUS

HENRICUS GER (DE); MACIEJEWSKI BOGUSLAW

(DE)

Applicant:

ATLAS FAHRZEUGTECHNIK GMBH (DE)

Classification:

- international:

G05F5/00; H01F7/18; H03K7/08

- european:

H03K7/08

Application number: DE19924241121 19921207

Priority number(s): DE19924241121 19921207; DE19914141785 19911218

Abstract of DE4241121

The controller for a proportional mode valve has an electromagnetic drive stage with a coil (1) that is supplied with current in the form of a pulse width modulated square wave signal. The pulses are generated by a switching transistor (2) that responds to inputs (3) generated by a microprocessor.

The coil has inductance and resistance and the square wave input is converted into a different form current drive signal, such that the actual current differs from the ideal. The characteristic data for different voltages and dither frequencies are stored in memory and are accessed for control.

ADVANTAGE - Obtains linear current for proportional control.

Data supplied from the esp@cenet database - Worldwide

THIS PAGE BLANK (USPTO)

BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift ₁₀ DE 42 41 121 A 1

(5) Int. Cl.5: G 05 F 5/00

H 03 K 7/08 H 01 F 7/18

DEUTSCHES PATENTAMT (21) Aktenzeichen:

P 42 41 121.1

Anmeldetag:

7.12.92

43 Offenlegungstag:

1. 7.93

30 Innere Priorität: (2) (3) (3)

18.12.91 DE 41 41 785.2

(71) Anmelder:

AFT Atlas Fahrzeugtechnik GmbH, 5980 Werdohl, DE

② Erfinder:

Holwe, Jörg, 5870 Hemer, DE; Delvigne, Josephus Henricus Gerardus, 5882 Meinzerhagen, DE; Maciejewski, Boguslaw, 5980 Werdohl, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

- 54 Steuerschaltung für einen Proportionalstrom
- Eine Steuerschaltung für einen einer Ansteuerung proportionalen Proportionalstrom durch eine Schaltendstufe, die von einem entsprechend einem Tastverhältnis pulsweitenmodulierten Schaltstrom geschaltet ist. Das technische Problem ist eine Linearisierung des Stromes in Abhängigkeit von der Ansteuerung. Eine Speichermatrix enthält in Abhängigkeit von Ditherfrequenz, Betriebsspannung und Ansteuerung Werte für das Tastverhältnis und für die jeweiligen Zwischenwerte ist ein Interpolationsrechner vorgesehen.

Best Available Co.

Beschreibung

Die Erfindung betrifft eine Steuerschaltung für einen einer Ansteuerung proportionalen Proportionalstrom durch eine Schaltendstufe, die von einem entsprechend einem Tastverhältnis pulsweitenmodulierten Schaltstrom geschaltet ist.

Zur Einstellung des Stromes eines Proportionalventils mittels Mikrocomputer bietet sich eine pulsweitenmodulierte Ansteuerung über eine einfache Schaltendstufe an. Entsprechende Timerausgänge zur Realisierung von pwm-Impulsen sind normalerweise an einem Mikrocomputer vorhanden. Auch läßt sich eine Schaltendstufe mit geringem Hardwareauswand herstellen und mit geringen Wärmeverlusten betreiben. Allerdings zeigt der Ventilstrom einen nichtlinearen Zusammenhang mit der Ansteuerung. Der Idealwert der Ansteuerung kommt von einem Prozeßrechner, der die zu berücksichtigenden Betriebsdaten erfaßt und einen Wert für die Ansteuerung berechnet. Dies gilt besonders in der Fahrzeugtechnik, wo unterschiedliche Fahrzustände erfaßt werden müssen.

Aufgabe der Erfindung ist eine Linearisierung des Stromes in Abhängigkeit von der Ansteuerung.

Diese Aufgabe wird nach der Erfindung dadurch gelöst, daß eine Speichermatrix in Abhängigkeit von Ditherfrequenz, Betriebsspannung und Ansteuerung Werte für das Tastverhältnis enthält und daß für die jeweiligen Zwischenwerte ein Interpolationsrechner vorgesehen ist.

Die Erfindung unterscheidet sich insofern vom Stand der Technik, als aus dem vorgegebenen Idealwert der Ansteuerung ein effektiver Wert bestimmt und interpoliert wird, so daß man einen linearen Stromverlauf erhält.

Damit entspricht der Strom dem Vorgabewert unabhängig von den sonstigen Parametern.

Eine ideale Auslegung der Matrix ergibt sich dadurch, daß die Speichermatrix dreidimensional in Abhängigkeit von Eingängen für Ditherfrequenz, Betriebsspannung und Ansteuerung Werte für das Tastverhältnis

Die Interpolation erfolgt durch Verknüpfung der Matrixebenen derart, daß zur Berechnung des Tastverhältnisses der Interpolationsrechner zunächst in benachbarten Speicherebenen der Ditherfrequenz das Tastverhältnis in Abhängigkeit von der Betriebsspannung und anschließend in Abhängigkeit von der Ditherfrequenz interpoliert.

Ein Ausführungsbeispiel der Erfindung wird im folgenden unter Bezugnahme auf die Zeichnungen erläutert, in denen darstellen:

Fig. 1 ein Schaltbild einer Ventilendstufe,

Fig. 2 einen Stromplan für den pulsweitenmodulierten Strom,

Fig. 3 eine Interpolationskurvenschar für eine Ditherfrequenz und

Fig. 4 eine Interpolationskurvenschar für eine Betriebsspannung.

Fig. 1 zeigt eine Schaltendstufe für eine Spule 1 eines Proportionalventils. Der Spulenstrom wird über einen Schalter z. B. einen Transistor 2 gesteuert. Der Steuerstrom des Transistors 3 wird in Form von pulsweitenmodulierten pwm-Impulsen 3 bereitgestellt. Derartige pwm-Impulse lassen sich in einfacher Weise durch einen Mikroprozessor erzeugen. Die Dither-Frequenz dieser Impulse wird entsprechend peripheren Erfordernissen vorgegeben. Dies gilt insbesondere bei Anwendungen in der Kraftfahrzeugtechnik.

Die Spule 1 hat eine Induktivität L und einen ohmschen Widerstand R. Die Ansteuerung durch pwm-Impulse 3 führt infolgedesssen zu dem in Fig. 2 dargestellten Verlauf des Spulenstromes, der von der Rechteckform abweicht. Die Impulse haben eine Periode T und eine Ditherfrequenz f. Es ist die Berechnung des Strommittelwertes i angeben. Der Strommittelwert hängt nicht linear von dem Tastverhältnis th ab. Neben der Dither-Frequenz und der Induktivität sowie dem ohmschen Widerstand der Spule hat auch die Bordspannung des Kraftfahrzeugs einen Einfluß auf die Nichtlinearität. Da im Fahrzeugbetrieb Spannungssprünge auftreten, muß auch dieser Parameter berücksichtigt werden.

Fig. 3 zeigt für eine Dither-Frequenz von 150 Hz einerseits den linearen Verlauf der idealen Ansteuerung und des Stromes. Andererseits sind für verschiedene Parameter der Bordspannung die effektiven Werte der Ansteuerung zur Erzielung eines linearisierten Stromes angegeben. Bei Vorgabe einer idealen Ansteuerung wird für den linearen Strom als Ordinate die effektive Ansteuerung ermittelt. Fig. 4 zeigt ein entsprechendes Diagramm für eine Bordspannung von 15 V für verschiedene Dither-Frequenzen.

Anhand derartiger Diagramme oder auf andere Weise ermittelt die Erfindung die Werte für die effektive Ansteuerung und speichert diese Werte in Form einer dreidimensionalen Matrix gemäß Tabelle 1 ab. Innerhalb dieser Matrix erfolgt dann eine lineare Interpolation gemäß Tabelle 2.

Die Werte der effektiven Ansteuerung werden von einem Prozeßrechner zur Verfügung gestellt, der aufgrund der jeweiligen Betriebsbedingungen des Motors den Wert der idealen Ansteuerung ermittelt. Damit und durch die tatsächliche Bordspannung sowie die vorgegebene Dither-Frequenz wird durch Interpolation der effektive Wert der Ansteuerung ermittelt.

Best Available Copy

65

60

30

Tabelie 1

										_
Strom	0.0 A	0.25 A	0.5 A	0.75 A	1.0 A	1.25 A	1.5 A	1.175 A		5
Anst.	0	512	1024	1536	2048	2560	3072	3580	4095	_
Dither =	= 150 Hz									
6V	0	2782	3654	3932	4037	4095	4095	4095	4095	10
9 V	0	2296	3196	3607	3806	3941	4006	4095	4095	
12V	0	1991	2790	3264	3551	3722	3838	3928	4095	
15 V	0	1749	2512	2977	3290	3511	3660	3774	4095	15
18 V	0	1604	2282	2731	3055	3287	3474	3605	4095	
Dither =	= 300 Hz									
6V	0	3111	3793	3982	4095	4095	4095	4095	4095	20
9V	0	2739	3510	3786	3915	3983	4095	4095	4095	
12 V	0	2372	3166	3542	3719	3836	3899	3950	4095	
15 V	0	2139	2919	3342	3574	3712	3803	3869	4095	25
18V	0	1952	2724	3142	3396	3537	3658	3748	4095	
Dither =	= 450 Hz									
6V	0	3297	3856	4095	4095	4095	4095	4095	4095	30
9 V	0	2899	3589	3844	3944	4095	4095	4095	4095	
12V	0	2516	3298	3620	3769	3844	3895	4095	4095	
15V	0	2360	3141	3502	3671	3762	3833	3872	4095	35
18 V	0	2161	2917	3320	3525	3640	3735	3792	4095	
Dither	= 600 Hz	,								
6V	. 0	3447	3903	4095	4095	4095	4095	4095	4095	_. 40
9 V	0	2968	3658	3880	3938	4095	4095	4095	4095	
12V	0	2646	3441	3698	3813	3883	4095	4095	4095	
15 V	0	2467	3220	3557	3713	3793	3831	3879	4095	45
18V	0	2301	3074	3419	3583	3674	3736	3787	4095	
Dither	= 750 Hz									50
6V	0	3492	4095	4095	4095	4095	4095	4095	4095	50
9 V	0	3138	3717	3890	4095	4095	4095	4095	4095	
12V	0	2833	3530	3763	3841	3880	4095	4095	4095	
15 V	0	2615	3313	3602	3738	3797	3837	3884	4095	55
18V	0	2384	3136	3475	3614	3698	3746	3790	4095	

Best Available Copy

65

60

42 41 121 DE

Tabelle 2

5	Beispiel: 400Hz , 13.5V , 0.9A (Anst.=1843)										
,	Ausschnitt der Matrix:										
		0.75A(1536)	1.0A(2048)								
10	Dither=300Hz 12V	3542 - Interpolation 1 - 3719									
		Interp	olation 3								
	15 V	3342 — Interp	olation 2 3574								
15			Interpolation 7								
20	Dither=450Hz 12V	\	olation 4 —— 3769								
25		3502 — Interg	polation 5 —— 3671								

Interpolationsvorschrift: (Yo-Yu) * (X-Xu)

Patentansprüche

1. Steuerschaltung für einen einer Ansteuerung proportionalen Proportionalstrom durch eine Schaltendstufe, die von einem entsprechend einem Tastverhältnis pulsweitenmodulierten Schaltstrom geschaltet ist, dadurch gekennzeichnet, daß eine Speichermatrix in Abhängigkeit von Ditherfrequenz, Betriebsspannung und Ansteuerung Werte für das Tastverhältnis enthält und daß für die jeweiligen Zwischenwerte ein Interpolationsrechner vorgesehen ist.

2. Steuerschaltung nach Anspruch 1, dadurch gekennzeichnet, daß die Speichermatrix dreidimensional in Abhängigkeit von Eingängen für Ditherfrequenz, Betriebsspannung und Ansteuerung Werte für das Tast-

3. Steuerschaltung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zur Berechnung des Tastverhältnisses der Interpolationsrechner zunächst in benachbarten Speicherebenen der Ditherfrequenz das Tastverhältnis in Abhängigkeit von der Betriebsspannung und anschließend in Abhängigkeit von der Ditherfrequenz interpoliert.

Hierzu 3 Seite(n) Zeichnungen

Best Available Copy

30

35

40

45

50

55

60

- Leerseite -

THIS PAGE BLANK (USPTO)

$$T = t_i + t_h$$
$$T = \frac{1}{f}$$

$$A_3 = A_2 - A_1$$

$$t=0 \text{ bis } t=T-t_1 \Rightarrow i = \frac{U}{R} \left(1-e^{-\frac{t}{r}}\right)$$

$$t=T-t_1 \text{ bis } t=T \Rightarrow i = 0$$

$$\frac{1}{i} = \int_{T=0}^{t=t_h} \frac{U}{R} \left(1 - e^{-\frac{t}{\tau}} \right)$$

$$\mathcal{T} = \frac{L}{R}$$
 L= Induktivität der Spule R= ohmscher Widerstand der Ventilspule

Best Available Copy

Nummer: Int. Cl.⁵: Offenlegungstag: G 05 F 5/00 1. Juli 1993

Fig 3

Linearisierte PWM b. Proportional-Ventil I=f(Ansteuerung,UB)

Best Available Copy

308 026/350

Ditherfrequenz = 150 Hz

Linearisierte PWM b. Proportional-Ventil I=f(Ansteuerung,Ditherfrequenz)

308 026/350