CS3650 -- Homework #5 (20 points)

Problem 1 (5 points) Using graphical representation, show the pipeline execution of the following instructions on the 5-stage pipeline as given in the Lecture 7.

lw R20, 0x0100(R18) or R24, R18, R16 sw R22, 0x0110(R16)

Instr	CC1	CC2	CC3	CC4	CC5	CC6	CC7		
lw	IM	REG	ALU	DM	REG				
05		IM	REG	ALU	DM	REG			
(W)			IM	RFG	ALU	DM	REG		

Also answer the following questions:

- (1) How many cycles needed for the execution of these three instructions?
- (2) What is ALU doing on cycle 3, 4, 5 respectively?
- (3) What is the memory action in cycle 4, 5, 6 respectively?

Problem 2 (5 points) Using graphical representation, show the pipeline execution of the following instructions on the 5-stage pipeline with hazard detection and forwarding as implemented in Lecture 6. Clearly indicate the forwarding path(s) and stall(s). Note: highlight the forwarding path and use bubbles (or O) for stalls.

Lw R20, 0x0100(R18) Add R14, R20, R16 Sw R18, 0x0110(R16) Or R12, R14, R20 Lw R18, 0x0100(R12)

instr	CC1	CC2	CC3	ccy	CC5	cc6	CC7	CC8	CC9	cc 10	CCI		
lw	IM	REG	ALUS	DM	REG								
ndi		0	RO	0	0	0						**************************************	
add			IM	AEG	ALU	DM	REG						
SW			•	IM	REG	ALU	DM	REG					
OT					IM	AEG	ALU	DMP	REG				
1						0	0	0	0	0			
100	and the same	1	1				IM	REG	ALU	DM	REG		

Problem 3 (5 points) Consider a typical MIPS pipeline with branch penalty 1 cycle (i.e. 1 stall cycle if taken.) For the following MIPS instruction sequence, for two cases: (1) branch not taken; (2) branch taken.

BEQ R14, R12, L AND R9, R9, R1 OR R8, R12, R2 SW R12, 0x0004 (R10) ADD R10, R14, R12 LW R10, 0x0004(R12)

L:

Answer sheet for Problem 3(a) branch is not taken.

	instr	CC1	CC2	CC3	RCY	005	UG	ec7	CCS	609	((10				
	beq	IM	REG	CC3	DM	REG					,				
	AND		IM	REG	ALU	MO	REG								
	OR			IM			DM	REG							
	SM				IM	REG	ALU	DM	REG				 		
Li	ADD					IM			DM				 _		
	IW						IM	RFG	ALU	DM	REG	 			

Answer sheet for Problem 3(b) branch is taken.

	instr	CC1	CC2	CC3	CCY	CC 5	(16	007	cc 8	cc 9	Ce 10					
	beq	IM	REG			REG										
	AND		0	0	0	0	0						10			
	OR			0	0	0	0	0								
	SW				0	0	0	0	0							
L'	ADD					IM	REG	4W	DM	REG						
	LW						IM	REG	4LU	DM	REG	 				
												 ļ				
						L				L						

Problem 4 (5 points) We implemented a new 5-stage pipeline with the following features: the delay by data and control hazards are as follows: 1 cycle stall for the load by immediate use, 2 cycle stalls for branch taken.

Assume we now run 10,000 instructions on the pipeline, among them:

- (1) 35% are lw instructions. 10% of lw instructions are followed by instructions that use lw result immediately in ALU input;
- (2)15% are branch instructions with 40% possibility of branch taken;
- (3) the remaining 50% are sw and R-type instructions that don't cause any stalls.

How many cycles we need to execute the 10,000 instructions on the pipeline? You may ignore the pipeline overhead such as start-up cost.

- · Problem # 1
- 1) Each stage is one clock cycle. Each instruction will need five cycles to complete. For pipeline execution, Seven clock cycles will be needed.
- 2) For cycle 3, the ALU is adding the base and offset address.
 For cycle 4, the ALU is performing logical OR
 For cycle 5, the ALU is adding the base and offset address.
- 3) cycle 4, accessing data from memory to be written into a register. cycle 5, no operation.

 Cycle 6, accessing data from register to be written into memory.
 - · Problem #4
- 1) Stalls by ILW immediate use: $10,000(0.35 \times 0.10 \times 1) = 350$ cycles a) Stalls by branch instructions: $10,000(0.15 \times 0.40 \times 2) = 1200$ cycles
- 3) No stalls

cycles needed to execute instructions with NO stalls: 19004

cycles needed to execute instructions with stalls: