Physique – Mécanique

Aucun document autorisé Durée : 1h

Exercice 1 - Equilibre statique: Pont roulant

Un pont roulant est modélisé selon le schéma ci-dessous. L'étude est plane dans le plan (A, \vec{x}, \vec{y}) . En A, la liaison est une liaison articulée, et en C un appui simple.

- 1) Quelle est la nature du système ?
- 2) Exprimez les efforts de liaison en fonction de l'action mécanique appliquée sur le système F_B et des constantes géométriques.
- 3) Procédez aux applications numériques.

<u>Exercice 2 – Cinématique :</u> Robot manipulateur

Un robot manipulateur plan est schématisé ci-dessous. Il est composé d'un socle fixe (solide S_1) et de 3 solides mobiles en rotation S_2 , S_3 et S_4). Chaque solide S_i du robot tourne autour de l'axe $(O_i, \overrightarrow{y_i})$. Les solides ont donc un mouvement dans le plan $(O_2, \overrightarrow{z_1}, \overrightarrow{x_1})$.

Dans la pince du robot un objet de masse m est positionné au point G.

Année universitaire 2021-2022

On note les longueurs : $L_2=O_2O_3$, $L_3=O_3O_4$ et $L_4=O_4G$. Les fonctions θ_{ij} sont des fonctions du temps : $\theta_{ij}(t)$.

- 1) Exprimez la vitesse du point O_3 en fonction de paramètres spatio-temporels et des constantes du problème.
- 2) Exprimez la vitesse du point O_4 en fonction de paramètres spatio-temporels et des constantes du problème.
- 3) Exprimez la vitesse du point *G* en fonction de paramètres spatio-temporels et des constantes du problème.
- 4) Exprimez l'accélération du point *G* en fonction de paramètres spatio-temporels et des constantes du problème.