Selection Sort and Insertion Sort

DEBORAH A. TRYTTEN
CS 1324

Algorithms

- There are lots of systematic ways of solving most problems
- Figuring out which way is better, or even best is important to computer science
- Chance for non-CS majors to get a real feel for how CS people think about computing
 - Computing is not just programming!

Sorting Algorithms

- Sorted data allows the use of binary search instead of linear search
- Sorting has a cost
 - ▶ The cost depends on the details of the algorithm
- Every good software engineer knows at least ten sorting algorithms by heart
 - Most use techniques beyond the scope of this class
- ▶ The algorithms we'll examine use nested loops
- Names matter

Selection sort

- Find the smallest element and put it in the first position
- Find the second smallest element and put it in the second position
- Continue this pattern until the entire array is sorted

Example

- Trace the code by showing swaps for selection sort on this data using a table
 - \blacktriangleright int[] data = {9, 4, 2, 7, 8, 1};
- Array will be partitioned into sorted and unsorted areas
- One value at a time will move from unsorted to sorted

Think Pair Share

Trace selection sort by showing swaps for this data using a table

$$int[] data = \{2, 4, 9, 6, 5, 3, 1\};$$

Instant Quiz Question 1

- Suppose an array initially contains:
- **▶** {2, 4, 6, 8, 5}
- True/false: The steps below represent selection sort

2	4	6	8	5
		5	6	
			6	8

Write Code

- Write the code for selection sort without using ancillary method
- Triangular or rectangular?
- What does the outer loop do?
- What does the inner loop do?
- Write selection sort for oversized array

Insertion Sort

- Array also partitioned into sorted and unsorted areas
- We take the next unsorted data value and place it into the proper position in the sorted data
- ▶ Technique is critical—does not use swaps
 - Next value to be sorted is placed in <u>auxiliary</u> <u>storage</u>
 - Larger values shifted to right until proper position found
 - Value shifted from auxiliary storage to proper position in the array
 - ▶ Mhàs

Example

- ▶ Trace insertion sort using a table
 - One data move at a time
 - int[] data = {9, 4, 2, 1, 7, 8, 3, 6, 5};

Think Pair Share

- Trace the code by showing moves for this data using a table and insertion sort
 - \blacktriangleright int[] data = {1, 4, 7, 9, 5, 3, 2};

Instant Quiz Question 2

- Suppose an array initially contains:
- **▶** {2, 4, 6, 8, 5}

Which sequence of steps below represents

ins	2	4	6	8	5
a)			5		6
				6	8

▶ c)	2	4	6	8	5	
				5	8	
				5	6	

2	4	6	8	5
				8
			6	
		5		

2	4	6	8	5
		5		
			6	
				8

Write Code

- Write the code for insertion sort
- Triangular or rectangular?
- What does the outer loop do?
- What does the inner loop do?
- Write insertion sort for perfect sized array

Comparison: Worst Case

- Computer scientists analyze algorithms by looking at the worst thing that can happen
- What is the worst order for insertion sort?
- What is the worst order for selection sort?
- Consider swaps versus comparisons
- Which is better if the data are partially sorted?
 - Why is this important