HW6 Patrick Neyland Wednesday, November 9, 2022

$$H(t) = \left[-u(t)^2 + \Theta \right] u(t) - A + O + E(t) \right] \cdot M_e(E - t)$$

+ $\lambda(t) \cdot \gamma(\lambda - \zeta_{u}(t) - (1-4) \varepsilon(t)$

 $\frac{\partial H}{\partial c} = - \frac{\partial \Psi}{\partial c} \left(E - E \right) - \left(1 - \frac{\Psi}{c} \right) \times \left(\frac{1}{c} \right) = \frac{d \lambda^{(4)}}{d t}$

 $\lambda(t) = e^{\int r(1-\Psi)ds} \cdot \left\{ \xi_1 + \int \theta \Psi M_e(E-s) \cdot e^{\int r(1-\Psi)ds} ds \right\}$

 $\lambda(E) = e^{\gamma(1-\Psi)t} \cdot \{Z_1 + \int \partial \Psi M_e(E-s) \cdot e^{-\gamma(1-\Psi)s} ds\} = 0$

 $\chi(t) e^{r(1-\Psi)t} \left\{ -\int_{0}^{t} \theta \Psi M_{e}(E-s) \cdot e^{-r(1-\Psi)s} ds + \int_{0}^{t} \theta \Psi M_{e}(E-s) \cdot e^{-r(1-\Psi)s} ds \right\}$

G.S. $\chi(t) = e^{-r(1-\Psi)t} \cdot \{ Z_1 + \int_0^t \partial \Psi M_e(E-s) \cdot e^{-r(1-\Psi)s} ds \}$

 $Z_{I} = -\int_{0}^{E} \Phi \Psi M_{e}(E-S) \cdot e^{-\gamma(I-\Psi)S} dS$

P.S. $\lambda(t) = e^{r(1-\Psi)t} \int_{-\infty}^{\infty} d\Psi M_e(E-s) \cdot e^{-r(1-\Psi)s} dS$

the maximum condition

Rearrange to isolate u(t)

 $\left[-2u(t)+OS\right]\cdot M_{e}(E-t)=$ $\mathcal{M}_{e}(E-t)$

Now we can sub the Y.S. into

 $\left[-2u(t)+os\right]\cdot M_{e}(E-t)-\gamma s|\chi(t)|=0$

 $\left[-2u(t)+OS\right]\cdot M_{e}(Et)-\gamma SC^{r(1-\Psi)t}\int_{0}^{t} d\Psi M_{e}(E-s)\cdot e^{-r(1-\Psi)s}dS=0$

 $-2u(t) + 0S = \frac{rSe^{r(1-\Psi)t}}{M_e(E-t)} \cdot \int_{E} d\Psi M_e(E-s) \cdot e^{-r(1-\Psi)s} ds - 0S$

 $-2u(t) = -05 + \frac{r5e^{-r(1-r)t}}{M_{s}(E-t)} \cdot \int_{E} \Phi \Psi M_{e}(E-s) \cdot e^{-r(1-\Psi)s} ds$

 $u^*(t) = \frac{\partial S}{\partial t} \left[\left(+ \frac{\gamma \Psi e^{\gamma(1-\Psi)t}}{M_e(E-t)} \cdot \int_{E} M_e(E-s) \cdot e^{-\gamma(1-\Psi)s} ds \right) \right]$

NOW Sub in $e^{-P(E-t)}$ in for $M_e(E-t)$

 $u(t) = \frac{\partial S}{\partial t} \left[\left(+ \frac{r + e^{(1-\psi)tr - PE}}{e^{-P(E-t)} \cdot (P-(1-\psi)r)} \right) \left[e^{(1-\psi)r} \right] \left[e^{(1-\psi)r} \right] \left[e^{(1-\psi)r} \right]$

 $u(t) = \frac{\partial S}{\partial t} \left[\left(+ \frac{\gamma \Psi e^{\gamma(1-\Psi)t}}{e^{-\rho(E-t)}} \cdot \int_{e^{-\rho(E-s)}}^{e^{-\rho(E-s)}} e^{-\gamma(1-\Psi)s} ds \right]$

now evaluate the integral and Simplify

Sub back into G.S.

Partial derivative With respect to u

 $\frac{\partial H}{\partial c} = - \frac{\partial \Psi}{\partial e} (E - E) - (1 - \Psi) \chi \lambda (t) = \frac{d\lambda(t)}{dt}$

Given the adjoint Condition:

Solve like a normal ODE: