Performance of Computer System Sample Data

Dr. Lina Xu lina.xu@ucd.ie

School of Computer Science, University College Dublin

October 18, 2019

Sample vs. Population

Suppose we generate a set S containing several million random numbers. We will call this set the population.

- ullet Denote population mean with μ
- ullet Denote population std deviation with ho

Draw a sample of n numbers $\{x_1, x_2, ..., x_n\}$ from S

- Denote sample mean with \bar{x}
- Denote the STD of the sample with s

No guarantee that $\bar{x} = \mu$ and $s = \rho$

 (\bar{x}, s) of the samples are estimates of the population parameters (μ, ρ)

Sample vs. Population

Conventions

- population characteristics: parameters (μ, ρ) (Greek alphabet)
- sample estimates: statistics (\bar{x} , s) (Roman alphabet)

Normal Distribution

 $N(\mu, \rho)$ most commonly used distribution in data analysis

pdf =
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}, -\infty \le x \le \infty$$
 $\mu = \text{mean}$ $\sigma = \text{std dev}$

(also known as a Gaussian distribution)

Confidence Interval for the Mean

- k samples of a population may yield k different sample means
- \bullet No sample or finite set of samples will necessarily give a perfect estimate for the population mean μ
- ullet Instead, we use probability bounds for an estimate of μ (the population mean)
 - ▶ $P(c_1 \le \mu \le c_2] = 1 \alpha$
- Confidence interval (c1,c2)

Confidence Interval Example

- Say you were interested in the mean weight of 10-year-old girls living in the United States.
- Since it would have been impractical to weigh all the 10-year-old girls in the United States, you took a sample of 16 and found that the mean weight was 90 pounds.
- This sample mean of 90 is a point estimate of the population mean.
- A point estimate by itself is of limited usefulness because it does not reveal the uncertainty associated with the estimate; you do not have a good sense of how far this sample mean may be from the population mean.
- For example, can you be confident that the population mean is within 5 pounds of 90? You simply do not know.

Confidence Interval Example

- Confidence intervals provide more information than point estimates.
- An example of a 95% confidence interval is shown below:
 - ► $72.85 < \mu < 107.15 \Rightarrow P(72.85 < \mu < 107.15) = 95\%$
- There is good reason to believe that the population mean lies between these two bounds of 72.85 and 107.15 since 95% of the time confidence intervals contain the true mean.

Confidence Interval for the Mean

- k samples of a population may yield k different sample means
- \bullet No sample or finite set of samples will necessarily give a perfect estimate for the population mean μ
- \bullet Instead, we use probability bounds for an estimate of μ (the population mean)

$$P(c_1 \le \mu \le c_2] = 1 - \alpha$$

- Confidence interval (c1,c2)
- Significance level: α
- ullet Confidence coefficient: 1- lpha
- Confidence level (a percentage): 100 (1- α)

Understanding Confidence Intervals

Why use them?

- provide a way to decide if measurements are meaningful characterise potential error in sample mean
- enable comparisons in the presence of experimental error

Understand their limitations!

 \bullet at 95% confidence, confidence intervals for 5% of sample means do not include the population mean μ

Computing (c1,c2) for Population Mean μ -The hard way

- Collect a large number of samples
- ullet To compute a 90% confidence interval for a population mean μ
 - ► Take k samples of the population (each sample is a set)
 - Compute the set of sample means (one for each sample)
 - Sort the set of sample means
 - ▶ Select the $[1 + .05(k-1)]_{th}$ element as c_1
 - ▶ Select the $[1 + .95(k-1)]_{th}$ element as c_2
 - ▶ 90% confidence interval for μ is (c_1, c_2)
- ullet 90% = 100(1- lpha) , lpha = 0.1
- $0.05 = \alpha/2$
- $0.95 = 1 \alpha/2$

Confidence Interval of a Normal Distribution

• Example: 90% confidence interval, $\alpha = 0.10$

Confidence Interval of a Normal Distribution

ullet Example: 90% confidence interval, lpha=0.10

The Central Limit Theorem

- If observations $x_1, x_2, ..., x_n$ are independent
 - ▶ from the same population
 - lacktriangle the population has mean μ
 - ightharpoonup the population has STD ho
- Then sample mean \bar{x} for large samples is approximately normally distributed
 - $ightharpoonup ar{x} = \sim N(\mu, \frac{
 ho}{\sqrt{n}})$
- If we define: STD error = STD of sample mean
- If population std deviation is ρ , STD error is $\frac{\rho}{\sqrt{n}}$
- From this expression, it is easy to see that as the sample size *n* increases, the standard error decreases.

The Central Limit Theorem-Large Sample

How large is "large enough"? The answer depends on two factors.

- Requirements for accuracy. The more closely the sampling distribution needs to resemble a normal distribution, the more sample points will be required.
- The shape of the underlying population. The more closely the original population resembles a normal distribution, the fewer sample points will be required.

The Central Limit Theorem – Example I

n = 1

p(k)

0.18

- One of the simplest types of test: rolling a fair die.
- The more times you roll the die, the more likely the shape of the distribution of the means tends to look like a normal distribution graph.

p(k)

0.18

n = 4

The Central Limit Theorem – Example II

- Success of a medical procedure: yes or no with 30% of the population classified as a success as shown below.
- The distribution of sample means based on samples of size n=20.

The Central Limit Theorem – Example III

Computing (c1,c2) for Population Mean μ -Normally used

- Fortunately, it is not necessary to gather too many samples. It is
 possible to determine the confidence interval from just one sample
 because of the central limit theorem.
- When you compute a confidence interval on the mean, you compute the mean of a sample in order to estimate the mean of the population.
- Clearly, if you already knew the population mean, there would be no need for a confidence interval.
- However, to explain how confidence intervals are constructed, we are going to work backwards and begin by assuming characteristics of the population.

Confidence Interval Example

- Assume that the weights of 10-year-old children are normally distributed with a mean of $\mu=$ 90 and a standard deviation of $\rho=$ 36.
- Then the sample distribution will be normally distribution with a mean of μ and a standard deviation of $\frac{\rho}{\sqrt{n}}$, where n is the size of the sample.
 - ► Supposedly n=9
 - ► Then $\frac{\rho}{\sqrt{n}} = 12$
- The shaded area represents the middle 95% of the distribution and stretches from 66.48 to 113.52.
 - **▶** 90 1.96*12= 66.48
 - ightharpoonup 90 + 1.96*12 = 113.52
- The value of 1.96 is based on the fact that 95% of the area of a normal distribution is within 1.96 standard deviations of the mean;

Confidence Interval Example

- Now let's work from the sample data! Consider the probability that a sample mean computed from a random sample is within 23.52 (= 1.96*12)) units of the population mean of 90.
- Since 95% of the distribution is within 23.52 of 90, the probability that the mean from any given sample will be within 23.52 of 90 is 0.95.
- \bullet This means that if we repeatedly compute the mean (M) from a sample, and create an interval ranging from M 23.52 to M + 23.52, this interval will contain the population mean 95% of the time.

Computing (c_1,c_2) for Population Mean μ

The easy way (for a large sample, n > 30)

- ullet By the central limit theorem, a 100(1-lpha)% confidence interval for μ
- $(\bar{x} z_{1-\alpha/2} \frac{s}{\sqrt{n}}, \bar{x} + z_{1-\alpha/2} \frac{s}{\sqrt{n}})$
 - Where \bar{x} is the sample mean!
 - ► s is the sample std deviation
 - n is the sample size
 - α is the significance level, $100(1-\alpha)\%$ is the confidence level
 - $z_{1-\alpha/2}$ is the $(1-\alpha/2)$ quantile of the unit normal variate
 - Normal distribution table (Z-values)

Confidence Interval Example

- Given a (large) sample with the following characteristics
 - ▶ 32 elements (n = 32)
 - ► sample mean x = 3.90
 - ▶ sample std deviation s = 0.71
- A 90% confidence interval for the mean can be computed as

$$\qquad \qquad \bullet \quad \left(\bar{x} - z_{1-\alpha/2} \frac{s}{\sqrt{n}}, \bar{x} + z_{1-\alpha/2} \frac{s}{\sqrt{n}} \right)$$

•
$$(\bar{x} - z_{0.95} \frac{s}{\sqrt{n}}, \bar{x} + z_{0.95} \frac{s}{\sqrt{n}})$$

ullet Recall $z_{1-lpha/2}$ is approximately 1.645

Computing (c1,c2) for Population Mean μ

The easy way (for a small sample, n < 30)

- For large set
 - $\qquad \qquad \bullet \quad (\bar{x} z_{1-\alpha/2} \frac{s}{\sqrt{n}}, \bar{x} + z_{1-\alpha/2} \frac{s}{\sqrt{n}})$
- For small set
 - $(\bar{x} t_{[1-\alpha/2;n-1]} \frac{s}{\sqrt{n}}, \bar{x} + t_{[1-\alpha/2;n-1]} \frac{s}{\sqrt{n}})$
 - Using t-distribution table
 - For instance, if our sample size were n, then the number of degrees of freedom to be used in calculations would be n - 1.
 - ► To calculate the degrees of freedom (df) for a sample size of n=8 we would subtract 1 from 8 (df=8-1=7).
 - ► For the previous example, a 90% confidence interval is 1.895

When to use t distribution table rather than normal distribution table

- You must use the t-distribution table when working problems when the population standard deviation (ρ) is not known and the sample size is small (n<30).
- If ρ known, then use normal.
- If ρ not known:
 - ▶ If n is large, then use normal.
 - If n is small, then use t-distribution.

Small vs. Large Samples

- Why the difference when computing confidence for small vs. large samples?
- As n increases, t-distribution approaches normal distribution

Testing for a Zero Mean

- Is a measured value significantly different from zero?
 - common use of confidence intervals
- When comparing random measurement with zero, must do so probabilistically
- If value different from zero with probability $100(1-\alpha)\%$, then value is significantly different from zero

Example: Testing for a Zero Mean

- Difference in running time of two sorting algorithms A and B was measured on several different input sequences
- Differences are 1.5, 2.6, -1.8, 1.3, -.5, 1.7, 2.4
- Can we say with 99% confidence that 1 algorithm is superior?

Example: Testing for a Zero Mean

Example properties

- n = 7, \bar{x} = 1.03, STD = 1.6
- $\alpha = .01$, $\alpha/2 = .005$
- confidence interval

Example: Testing for a Zero Mean

Confidence interval includes 0; thus, cannot say with 99% confidence that the mean difference between A & B is significantly different from 0

$$(1.03 - t_{[1-.005;6]} *1.60/\sqrt{7}, 1.03 + t_{[1-.005;6]} *1.60/\sqrt{7})$$

$$(1.03 - (3.707) *1.60/\sqrt{7}, 1.03 + (3.707) *1.60/\sqrt{7})$$

$$= (-1.21, 3.27)$$

Paired Observations

- Conduct n experiments on each of 2 systems
 - system a: {a₁, a₂, ..., a_n}
 system b: {b₁, b₂, ..., b_n}
- If one-one correspondence between tests on both systems observations are said to be "paired"
- Treat the samples for 2 systems as one sample of n pairs
- For each pair, compute difference in performance
 - $\triangleright a_1 b_1, a_2 b_2, ..., a_n b_n$
- Construct a confidence interval for the mean difference
- Is the confidence interval includes 0, systems not significantly different

Unpaired Observations (t-test)

- Two samples, one size n_a , the other size n_b
- Compute mean of each sample: $\bar{x_a}$, $\bar{x_b}$
- Compute STD of each sample: s_a , s_b
- ullet Compute mean difference $ar{x_a} ar{x_b}$
- Compute std deviation of mean difference $\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}$
- Effective number of degrees of freedom

$$\qquad \quad \nu = \frac{(s_a^2/n_a + s_b^2/n_b)^2}{\frac{1}{n_a + 1}(\frac{s_a^2}{n_a})^2 + \frac{1}{n_b + 1}(\frac{s_b^2}{n_b})^2} - 2$$

Confidence interval for mean difference

$$\qquad \qquad \bullet \ \, \left(\bar{x_a} - \bar{x_b}\right) \pm t_{[1-\alpha/2;v]} s$$

Notes on Unpaired Observations

- Preceding slide made following assumptions
 - two samples of unequal size
 - standard deviations not assumed equal
 - small sample sizes
 - normal populations

Approximate Visual Test

- Simple visual test to compare unpaired samples
 - ▶ CI no overlap A > B
 - CI overlap; means in CI of other; alternatives not different
 - ► CI overlap; mean A not in CI B; need t-test

What Confidence Level to Use?

- Typically use confidence of 90% or 95%
- Need not always be that high
- Choice of confidence level is based on cost of loss if wrong!
- If loss is high compared to gain, use high confidence
- If loss is negligible compared to gain, low confidence OK

Consider, for example, a lottery in which a ticket costs one dollar but pays five million dollars to the winner. Suppose the probability of winning is 10-7 or one in ten million. To win the lottery with 90% confidence would require one to buy nine million tickets. It is clear that no one would be willing to spend that much for winning just five million.

One-sided Confidence Intervals

- Sometimes only a one-sided confidence interval is needed
- ullet Example: want to test if mean $> \mu_0$
- \bullet In this case, one-sided lower confidence interval for μ needed

$$\qquad \qquad \bullet \ \ (\bar{x} - t_{[1-\alpha;n-1]} s / \sqrt{n}, \bar{x})$$

 For large samples, use z-values (unit normal distribution) rather than t-distribution

Determining Sample Size

- Confidence level from a sample depends on sample size
- The larger the sample, the higher the confidence
- Goal: determine smallest sample yielding desired accuracy

Sample Size for Determining Mean

- For a sample size n, the $100(1-\alpha)\%$ confidence interval of μ is $\bar{x}\pm z_{1-\alpha/2}\frac{s}{\sqrt{n}}$
- ullet For a desired accuracy of r%, the confidence interval must be $ar{x}\pmar{x}rac{r}{100}$
- Thus, $z_{1-\alpha/2} \frac{s}{\sqrt{n}} = \bar{x} \frac{r}{100}$ and $n = \left[\left(\frac{100z_{1-\alpha/2}s}{r\bar{x}} \right)^2 \right]$
- \bullet In a preliminary test, sample mean of response time is 20 seconds and std dev. =5 seconds. How many repetitions are needed to estimate the mean response time within 2s at 95% confidence Required accuracy r =2 in 20 =10%