План практических занятий по математике, ч. 1 (1 семестр)

Лектор Стаценко И.В.

Занятие 1 . Предел функции

1. Вычислить предел функции:

1)
$$\lim_{x\to 0} \frac{4x+6}{3x-7}$$
; 2) $\lim_{x\to 7/3} \frac{4x+6}{3x-7}$; 3) $\lim_{x\to \infty} \frac{4x+6}{3x-7}$; 4) $\lim_{x\to 1} \frac{x^2-5x+6}{x^2-2x}$; 5) $\lim_{x\to \infty} \frac{x^2-5x+6}{x^2-2x}$

6)
$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 2x}$$
; 7) $\lim_{x \to 1} \frac{x^3 - x^2 - x + 1}{x^3 + x^2 - x - 1}$; 8) $\lim_{x \to +\infty} \frac{4^x + 6^{x+1}}{4^{x+1} - 6^x}$ 9) $\lim_{x \to +\infty} \frac{2^x + 7x^2 + 9}{2^{x+1} - x^2 + 4x}$;

10)
$$\lim_{x\to 0} \frac{\sqrt{1+x^2}-1}{x^2}$$
; 11) $\lim_{x\to 4} \frac{x-4}{\sqrt{x}-2}$; 12) $\lim_{x\to \infty} (\sqrt{x^2+x}-\sqrt{x^2+3x})$;

13)
$$\lim_{x \to \infty} (\sqrt{(x+1)(x+2)} - x^2)$$
; 14) $\lim_{x \to \infty} \frac{\sin x}{x^2 - 2}$.

2. Вычислить предел функции с помощью 2 замечательного предела:

1)
$$\lim_{x \to \infty} \left(1 + \frac{1}{2x}\right)^x$$
; 2) $\lim_{x \to \infty} \left(1 - \frac{1}{7x^2}\right)^{2x}$; 3) $\lim_{x \to +\infty} \left(\frac{x+1}{x-1}\right)^{3x}$; 4) $\lim_{x \to +\infty} \left(\frac{2x+1}{x-1}\right)^{3x}$;

5)
$$\lim_{x \to +\infty} \left(\frac{x+1}{2x-1}\right)^{3x}$$
; 6) $\lim_{x \to \infty} \left(1 + \frac{5}{x^2}\right)^{3x^3}$; 7) $\lim_{x \to \infty} \left(\frac{x^2 - 2x + 1}{x^2 + 5x - 1}\right)^{4x}$ 8) $\lim_{x \to 0} (1 - 5x^2)^{\frac{2}{x^2}}$;

9)
$$\lim_{x\to 0} (1+5x^3)^{\frac{2}{x^2}}$$
.

Д.3. 5.272-5.280; 5.288-5.299; 5.320-5.326

Занятие 2 . Первый замечательный предел. Бесконечно малые функции

1. Вычислить предел функции, используя 1 замечательный предел или эквивалентность бесконечно малых величин:

1)
$$\lim_{x\to 0} \frac{\sin 5x}{3x}$$
; 2) $\lim_{x\to 0} \frac{\sin 7x}{\sin 3x}$; 3) $\lim_{x\to 0} \frac{\sin 3x - 2x}{tq5x}$; 4) $\lim_{x\to \infty} x \cdot \sin \frac{1}{x}$;

5)
$$\lim_{x \to 3} \frac{\sin(3x-9)}{2x-6}$$
; 6) $\lim_{x \to a} \frac{\sin x - \sin a}{x-a}$; 7) $\lim_{x \to 0} \frac{\cos 3x - \cos 2x}{x^2}$; 8) $\lim_{x \to 0} \frac{x + \sin 5x}{x - \sin 7x}$;

9)
$$\lim_{x\to 0} \frac{3x-2arctg2x}{x+arcsin 3x}$$
 10) $\lim_{x\to 0} \frac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{x}$, 11) $\lim_{x\to 1} (1-x) tg \frac{\pi x}{2}$;

12)
$$\lim_{x\to 0} \frac{2x \sin x}{1-\cos x}$$
; 13) $\lim_{x\to 0} \frac{\arcsin \frac{x}{\sqrt{1-x^2}}}{\ln(1-x)}$; 14) $\lim_{x\to 0} \frac{arctg\ 2x}{\ln(e-2x)-1}$; 15) $\lim_{x\to 0} \frac{e^x-e^{-x}}{\sin 2x}$;

16)
$$\lim_{x\to 0} \frac{\sqrt{9+x}-3}{3 \lg 2x}$$
; 17) $\lim_{x\to 0} \frac{\sin x - tg x}{x^3}$; 18) $\lim_{x\to 0} \frac{arcsin^2 3x}{\cos 4x - cos 3x}$; 19) $\lim_{x\to 1} \frac{x^3-1}{\ln x}$;

20)
$$\lim_{x \to 3} \frac{\sin(x-3)}{x^2 - 4x + 3}$$
, 21) $\lim_{x \to \pi} \frac{\cos 3x - \cos x}{tg^2 2x}$; 22) $\lim_{x \to 2} \frac{\sqrt{x^2 - x - 1} - 1}{\ln(x-1)}$; 23) $\lim_{x \to 0} \frac{x^2}{\ln \cos x}$.

Д.з. 5.303-5.316; 5.366-5.370

Занятие 3. КМ-1 «Пределы»

Занятие 4 Сравнение бесконечно малых и бесконечно больших. Вычисление пределов

- 1. Доказать, что функции $\frac{2x^2}{1+x}$ и x^2 являются бесконечно малыми одного порядка при $x \to 0$.
- 2. Доказать, что порядок функции $\frac{x^3+2x^5}{3-x}$ выше, чем порядок функции x^2 при $x \to 0$.
- 3. Доказать, что бесконечно малые при $x \to 0$ функции $\frac{x}{1-x}$ и $\frac{x}{1+x^2}$ эквивалентны.
- 4. Определить порядок малости бесконечно малой при $x \to 0$ функции $\alpha(x) = 1 \cos x$ относительно функции $\beta(x) = x$.
- 5. Определить порядок роста бесконечно большой при $x \to \infty$ функции $A(x) = \sqrt[3]{x^2 x} +$ \sqrt{x} относительно функции B(x) = x .
- 6. Вычислить предел функции:

1)
$$\lim_{x\to 0} (1+\sin x)^{ctg\,x}$$
; 2) $\lim_{x\to \pi/2} (1-\cos x)^{tg\,x}$; 3) $\lim_{x\to 0} \left(\frac{3\sin x+1}{2x+1}\right)^{3/x}$

4)
$$\lim_{x\to 0} \sqrt[3]{x\left(2+arctg\frac{1}{x}\right)+8cosx}$$
; 5) $\lim_{x\to \infty}(x+\sqrt[3]{1-x^3})$ 6) $\lim_{x\to \infty}(x+\sqrt[3]{1-x^3})$

7)
$$\lim_{x \to 0} (1 - \ln(1 + 2x^3))^{3/(x \cdot \sin^2 x)}$$
 8) $\lim_{x \to 0} (\cos 3x)^{1/\arctan x}$ 9) $\lim_{x \to 0} \left(\frac{1 + x3^x}{1 + x2^x}\right)^{1/x^2}$ 10) $\lim_{x \to \pi/2} (\sin x)^{tgx}$ 11) $\lim_{x \to 0} \left(\frac{\cos x}{\cos 2x}\right)^{-1/x^2}$ 12)) $\lim_{x \to 2} \left(\frac{\sin x}{\sin 2}\right)^{1/(x-2)}$

10)
$$\lim_{x \to \pi/2} (\sin x)^{tgx}$$
 11) $\lim_{x \to 0} \left(\frac{\cos x}{\cos 2x} \right)^{-1/x^2}$ 12)) $\lim_{x \to 2} \left(\frac{\sin x}{\sin 2} \right)^{1/(x-2)}$

Д.з. 5.349-5.353; 5.372-5.374

Занятие 5-6 .Односторонние пределы. Непрерывность функций. Точки разрыва

1. Вычислить односторонний предел:

1)
$$\lim_{x \to -0} \frac{x - |x|}{2x}$$
; 2) $\lim_{x \to 1 \pm 0} \frac{2 - 2x^2 + |1 - x^2|}{3 - 3x^2 - |1 - x^2|}$; 3) $\lim_{x \to -2 \pm 0} \frac{2x + 4 - |x^2 - 4|}{|x + 2| + |x^3 + 8|}$; 4) $\lim_{x \to 2 - 0} \frac{1 - e^{\frac{1}{x - 2}}}{1 + e^{\frac{1}{x - 2}}}$.

2. Исследовать функции на непрерывность, найти точки разрыва; указать характер разрыва. В случае устранимого разрыва доопределить до непрерывной функции:

1)
$$f(x) = \frac{\sin x}{x}$$
; 2) $f(x) = \begin{cases} \frac{|x+1|}{x+1}x - 1, & x \neq 1 \\ 1, & x = 1 \end{cases}$; 3) $y = \arctan \frac{1}{x-4}$; 4) $y = e^{\frac{1}{x+1}}$; 5) $y = e^{-\frac{1}{|x+1|}}$

6)
$$f(x) = \frac{x^2 - 25}{x + 5}$$
; 7) $f(x) = \frac{1}{2^{\frac{1}{1 - x}} - 2}$; 8) $y = \frac{\sqrt{x + 15} - 3}{x^2 - 36}$; 9) $y = \begin{cases} \cos x, & -\frac{\pi}{2} \le x < -\pi/4 \\ 4/x, & x \in [-\frac{\pi}{4}; 2) \\ x^2 - 2, & 2 \le x \end{cases}$

10)
$$f(x) = \frac{1}{\sin 1/x}$$
; **11)** $y = \frac{1}{x} 3^{\frac{1}{x+3}}$; **12)** $y = \begin{cases} 3x, x > 1 \\ \frac{1}{x+3}, x < 1 \end{cases}$; **13)** $y = \frac{6}{2+3^{\frac{2}{2-x}}}$; **14)** $y = \frac{1-\sqrt{2x+5}}{x^2-4}$;

15)
$$y = \frac{\frac{1}{x} - \frac{1}{x+5}}{\frac{1}{x} - \frac{1}{x-5}}$$
; 16) $y = \frac{\cos(x+3)}{x+3}$; 17) $y = \frac{3x-5}{\log_5|x-5|}$; 18) $y = \frac{\sin(x+3)}{(x+3)\left(1-2^{\frac{1}{x}}\right)}$.

Д.з. 5.338-5.345; 5.387-5.402

Занятие 7-8. Производная функции

- 1. Вычислить производную функции $y = \cos(2x)$, используя определение производной.
- 2. Вычислить производную функции y=f(x):

1)
$$y = \sqrt[3]{x^5} \cos x - \frac{arctg \, x}{1+x^4}$$
; 2) $y = \frac{tg \, x}{arccos \, x} + \ln x \cdot 3^x - sh \, x$; 3) $y = cos^3 \, x$;

4)
$$y = \cos x^3$$
; 5) $y = \frac{1}{\sqrt{x^2 + 3x + 1}}$; 6) $y = \ln(arctg \ x)$; 7) $y = \frac{arcsin^2 x}{\sqrt{1 - x^2}}$;

8)
$$y = \sqrt{(1 + \arccos x)^3}$$
; 9) $y = 2\ln(x^2 - 5x + 3) + th 9\sqrt{x} - \cos 3$;

10)
$$y = \ln(\cos^2 x + \sqrt{1 + \cos^4 x})$$
.; 11) $y = (\arcsin(2^x))^4$; 12) $y = \sin(3^{\sqrt{tg \ln x}})$;

13)
$$y = x - \ln(1 + e^x) - \left(arctg \ e^{\frac{x^2}{2}}\right)^2$$
.; $y = \cos^2(3x) - 2\frac{4^{x^3}}{5 + 3arcctgx}$;

15)
$$y = \ln(4x^2 - 16x) + \cos 2$$
; $y = e^{x/(x+1)} \cdot \sin 3x + ctg(x^3)$

17)
$$y = \frac{3^x \sin 3x (\ln 3 + \cos 4x)}{16 + \ln^2 x}$$
.; $y = \sqrt{\cos x} \cdot 2^{\sqrt{\sin x}}$

2. Вычислить логарифмическую производную:

1)
$$y = x^x$$
; 2) $y = (ctgx)^{x^3}$; 3) $y = x^{2\sqrt{x}} + 2^{x^x}$ 4) $y = \frac{3^x tg^2 x \sqrt[5]{(2x-1)^3}}{20\sqrt{x+1} \sqrt[3]{1-x}}$.

5)
$$f(x) = arctg \left(4 \frac{\ln x}{\sqrt{x}} - e^x \sin^3 \frac{1}{3x} \right) + \ln 2 \cdot \left(\arcsin 2x \right)^{tgx}$$

Д.з. 6.9-6.12; 6.21-6.76; 6.81-6.91

Занятие 9-10. Дифференциал функции. Производные и диффернциалы высших порядков. Неявно и параметрически заданные фцнкции

- 1.. Найти производную x_y' функции $y=3x+x^3$
- 2. Найти производную неявно заданной функции:

1)
$$x^3y^2 + 5xy + 4x^4 - 3y^3 = 0$$
 2) $x^2y^2 + arctg\frac{y}{x} = 3$ 3) $x^y = y^x$

3. Найти производную параметрически заданной функции:

1)
$$\begin{cases} x = e^t \cos t \\ y = e^t \sin t \end{cases}$$
; 2)
$$\begin{cases} x = \frac{3t}{1+t^3} \\ y = \frac{3t^2}{1+t^3} \end{cases}$$
; 3)
$$\begin{cases} x = \ln^2 \sin t \\ y = 3\cos 4t - t\sin 2t \end{cases}$$
.

4. Вычислить дифференциал заданной функции:

1)
$$y = (1 + tg3x)^8$$
; 2) $y = arctg \ln sin2^x$

5. Вычислить производную функции указанного порядка:

1)
$$y = tg x$$
, $y'' = ?$; 2) $y = (x + 1)^5$, $y''' = ?$; 3) $y = x^3 e^x$, $y^{IV} = ?$

- 6. Вычислить дифференциал третьего порядка функции y = arctg x
- 7. Найти производные n-го порядка от функций:

1)
$$y = \frac{1}{1-x}$$
; 2) $y = \sin 2x$

8. Найти производную второго порядка неявно заданной функции:

1)
$$arctg y - y + xy = 0$$
; 2) $e^{2xy^2} + 4xy^2 = e^2$.

9. Найти производную третьего порядка параметрически заданной функции:

1)
$$\begin{cases} x = \ln t \\ y = \sin 2t \end{cases}$$
; 2)
$$\begin{cases} x = \sin t - t \cos t \\ y = \cos t + t \sin t \end{cases}$$

10. Найти уравнение касательной и нормали к кривой y=f(x) в указанной точке:

1)
$$y = x^3 + 2x$$
, M(1,3); 2) $y = \frac{\ln x}{x}$, $x_0 = 1$;

- 3) касательная к кривой $y = \ln x$ параллельна прямой y = 2x 3;
- 4) $y = e^{1-x^2}$ в точках пересечения с прямой y = 1.

Д.з. 6.146-6.157; 6.163-6.165; 6.168-6.179; 6.184-6.188; 6.199-6.200; 6.235-6.240

Занятие 11. КМ-3 «Дифференцирование»