Neural Network

Why 'Neural Network'?

A Biological Neuron

A biological Neuron Network

A human vision task:

'healthy' vs overweighting men

'healthy' vs overweighting men

H (cm)	181	184	172	160	170	187	184	176	190
AC (cm)	85	94	102	80	98	110	116	77	84

$$H=a_1$$
 $AC=a_2$

(signals)

$$H=a_1$$
 $AC=a_2$

$$H=a_1$$
 $AC=a_2$

INPUT

The Weights and the Bias

$$H=a_1$$
 $AC=a_2$

INPUT

The activation function

$w_1a_1 + w_2a_2$

Other function that progressively changes from 0 to 1 with no discontinuity

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Hyperbolic tangent funtion

tanh

$$H=a_1$$
 $AC=a_2$

Forward propagation

$$w_1? w_2? b?$$

The Cost Function

INPUT a_1 a_2

The Cost Function

Sigmoid
$$(a_1w_1 + a_2w_2 + b)$$

OUTPUT

INPUT

The Cost Function

 $w_1 w_2$ b

$$H=a_1$$
 $AC=a_2$

Cost Function = $(0.7-0.0)^2 = 0.49$

Cost Function = $(Predicted-Expected)^2=0.49$ Squared error cost

The Cost Function = $(P-0.0)^2$

If the slope is + we must decrease P of a fraction of the slope

If the slope is - we must increase P of a fraction of the slope

If the slope is 0 we have the solution

The Learning Rate

The Cost Function = $(P-0.0)^2$

Next P = P - LR*(Tg slope)P LR*=Learning Rate

Next P = P - LR* (slope Tg)P

Slope Tg= derivative of the Cost Function vs P= 2(P-E)

In our case

LR determines how much weights are changed every time

Too high

output wanders around the expected solutions

Too low

output fails to converge to acceptable solution

The training

Different training methods

Supervised

learning rule that trains the neural network on already known correct output

$$H=a_1$$
 $CA=a_2$

Initialization of weights (STEP 1)

Initialization of weights (STEP 1)

$$w1 = 0.0006$$

 $w2 = 0.0002$
 $b=1$

$$0.7 = Sigmoid (185x0.0006 + 85x0.0002 + 1) =$$

$$Sigmoid\ (0.111+0.281+1) = Sigmoid\ (1.281)$$

the back propagation

Computation of the error (STEP 2)

The Cost Function =
$$(0.7-0.0)^2$$
=0.49

=
$$(Sigmoid (185x0.0006 + 85x0.0002 + 1) - 0.0)^2$$

Weights and bias adjustment: the back propagation

Adjust weights and b to reduce the error (STEP 3)

$$0.0005 = 0.0006 - 0.0001$$

$$0.0001 = 0.0002 - 0.0001$$

$$0.0008 = 1 - 0.0002$$

$$w_1 = w_1 - LR*slope = w_1 - LR*derivative_{wl}$$
 of the Cost Function

$$w_2 = w_2 - LR*slope = w_2 - LR*derivative_{w2}$$
 of the Cost Function

$$b = b - LR* slope = b - LR* derivative_b of the Cost Function$$

$$w1 = w1 - LR^* \frac{\partial costo}{\partial w1}$$

$$w2 = w2 - LR^* \frac{\partial costo}{\partial w2}$$

$$b = b - LR^* \frac{\partial costo}{\partial b}$$
Esci

$$\frac{\partial costo}{\partial w1} = \frac{\partial costo}{\partial p} \times \frac{\partial p}{\partial t}$$

$$\frac{\partial}{\partial t}$$
 sigmoide(t) = sigmoide(t)(1 - sigmoide(t))

$$\frac{\partial costo}{\partial w1} = \frac{\partial costo}{\partial p} \times \frac{\partial p}{\partial t} \times \frac{\partial t}{\partial w1}$$

$$\frac{\partial costo}{\partial w1} = \frac{2(sigmoide(2w1+5w2+b) - 1) \times sigmoide(2w1+5w2+b)(1-sigmoide(2w1+5w2+b)) \times 2}{2(sigmoide(2w1+5w2+b) - 1) \times sigmoide(2w1+5w2+b)(1-sigmoide(2w1+5w2+b)) \times 5}$$

$$\frac{\partial costo}{\partial w2} = \frac{2(sigmoide(2w1+5w2+b) - 1) \times sigmoide(2w1+5w2+b)(1-sigmoide(2w1+5w2+b)) \times 5}{2(sigmoide(2w1+5w2+b) - 1) \times sigmoide(2w1+5w2+b)(1-sigmoide(2w1+5w2+b)) \times 1}$$

$$\frac{\partial costo}{\partial w1} = \frac{\partial costo}{\partial p} \times \frac{\partial p}{\partial t} \times \frac{\partial t}{\partial w1}$$

2(sigmoide(2w1+5w2+b) - 1) x sigmoide(2w1+5w2+b)(1-sigmoide(2w1+5w2+b)) x 2

$$\partial$$
w1

$$\frac{\partial costo}{\partial w^2} = \frac{\partial costo}{\partial p} \times \frac{\partial p}{\partial t} \times \frac{\partial t}{\partial w^2}$$

$$\partial$$
costo

2(sigmoide(2w1+5w2+b) - 1) x sigmoide(2w1+5w2+b)(1-sigmoide(2w1+5w2+b)) x 5

$$\partial$$
w2

$$\frac{\partial costo}{\partial wb} = \frac{\partial costo}{\partial p} \times \frac{\partial p}{\partial t} \times \frac{\partial t}{\partial b}$$

$$\partial$$
costo

2(sigmoide(2w1+5w2+b) - 1) x sigmoide(2w1+5w2+b)(1-sigmoide(2w1+5w2+b)) x 1

$$\partial$$
b

$$w_1 = 0.0006$$
 $w_2 = 0.0002$ $b = +1$

The Cost Function
$$(w_1 w_2 b) = (\text{Sigmoid-}0.0)^2 = 0.49$$

Back propagation

Weights and bias adjustment

$$w_1 = 0.0005$$
 $w_2 = 0.0001$ $b = 0.0008$

The Cost Function $(w_1 w_2 b) = (\text{Sigmoid-}0.0)^2 = 0.43$

Sigmoid
$$(185x0.0005 + 85x0.0001 + 1) = Sigmoid$$

 $(0.0925 + 0.085 + 0.008) = Sigmoid (1.178) = 0.65$

the back propagation

$$H=a_1$$
 $CA=a_2$

85

Forward propagation

Sigmoid
$$(185w_1 + 85w_2 + b)$$

$$H=a_1$$
 $CA=a_2$

Back propagation

Training set: 'healthy' vs overweighting men

Н	185	178	184	190	169	188	185	192	175	Н	168	179	170	180	169	189	188	190	178	Н	185	192	175	185	192	168	190	186	168
С	85	94	102	80	98	110	116	77	84	С	88	90	68	120	112	109	89	92	94	С	77	103	119	98	99	100	98	96	78
Н	188	190	178	169	188	185	192	190	188	Н	185	192	168	179	188	185	192	175	180	Н	169	189	188	190	169	188	185	192	188
С	90	79	68	120	98	99	102	104	89	С	87	90	102	98	96	78	90	103	110	С	90	89	90	79	68	120	96	99	79
Н	168	179	170	182	168	178	190	188	177	Н	175	188	178	169	176	168	179	170	180	Н	178	193	190	169	188	185	177	186	165
H C	168 113	179 90	170 90	182 79	168 68	178 120	190 98	188 96	177 78	H C	175 119	188	178 106		176 77	168	179 119	170 98	180 77	H C	178 90	193 79	190 68	169 120	188	185	177 89	186 92	165 78
_																													
_																												92	

Weights initialization (STEP 1)

Calculate the error (STEP 2)

Adjust weights and b to reduce the error (STEP 3)

Repeat step 2 and step 3 for all training data until the error is within acceptable level

These steps are similar to supervised machine learning

(model adjusting vs learning rules adjusting)

(model adjusting vs weights and bias adjusting)

Training set: 'healthy' vs overweighting men

Н	185	178	184	190	169	188	185	192	175	Н	168	179	170	180	169	189	188	190	178	Н	185	192	175	185	192	168	190	186	168
С	85	94	102	80	98	110	116	77	84	С	88	90	68	120	112	109	89	92	94	С	77	103	119	98	99	100	98	96	78
Н	188	190	178	169	188	185	192	190	188	Н	185	192	168	179	188	185	192	175	180	Н	169	189	188	190	169	188	185	192	188
С	90	79	68	120	98	99	102	104	89	С	87	90	102	98	96	78	90	103	110	С	90	89	90	79	68	120	96	99	79
Н	168	179	170	182	168	178	190	188	177	Н	175	188	178	169	176	168	179	170	180	Н	178	193	190	169	188	185	177	186	165
H C	168 113	179 90	170 90	182 79	168 68	178 120	190 98	188 96	177 78	H C	175 119	188	178 106		176 77	168	179 119	170 98	180 77	H C	178 90	193 79	190 68	169 120	188	185	177 89	186 92	165 78
_																													
_																												92	

Sigmoid (185x0.0006 + 85x0.0002 + 1) = 0.7Sigmoid (178x0.0004 + 94x0.0003 + 0.008) = 0.65Sigmoid (184x0.0003 + 102x0.0001 + 0.007) = 0.64Sigmoid (100x0.0005 + 80x0.0002 + 0.008) = 0.55

(Sigmoid-0.0) 2 =0.49 (Sigmoid-0.0) 2 =0.43 (Sigmoid-0.0) 2 =0.41 (Sigmoid-0.0) 2 =0.30

Generalized delta rule

SGD (Stochastic Gradient Descent) method (error is calculated for each training data, weights updated immediately)

Batch method (error is calculated for all training data, each of the weight update are calculated but the avarage of all weight updates are used only once in each epoch)

Mini-Batch method (mix)

The loss function computes the error for a single training example, the cost function is the average of the loss functions of the entire training

Mini-Batch method

Training data 1

Training data 2

Training data 3

Training using batch method

Part of the training

data is selected

Training data N

Mini-Batch method

1-10

11-20

Batch method applied

21-40

41-60

61-80

5 weight update will be performed to complete the

training process

Speed of SGD

Stability of batch

SOFTWARE CODES

Matlab: essential functions and scripts

Matlab: simple examples

```
Sigmoid.m × +
y = 1/(1+exp(-x));
 end
```

```
Sigmoid.m × SGD_method.m × +
     function Weight = SGD_method(Weight, input, correct_Output)
 2 -
       alpha = 0.9;
 3
       N = 4;
     - for k = 1:N
 6 -
          transposed Input = input(k, :)';
 7 -
           d = correct Output(k);
       weighted Sum = Weight*transposed Input;
       output = Sigmoid(weighted Sum);
10
11 -
       error = d - output;
12 -
       delta = output*(1-output)*error;
13
14 -
       dWeight = alpha*delta*transposed Input;
15
16 -
       Weight(1) = Weight(1) + dWeight(1);
17 -
      Weight(2) = Weight(2) + dWeight(2);
```

```
Sigmoid.m × SGD_method.m* × +
3
       N = 4;
      - for k = 1:N
 6 -
           transposed_Input = input(k, :)';
           d = correct Output(k);
       weighted Sum = Weight*transposed Input;
       output = Sigmoid(weighted Sum);
10
11 -
       error = d - output;
12 -
       delta = output*(1-output)*error;
13
14 -
       dWeight = alpha*delta*transposed Input;
15
16 -
       Weight(1) = Weight(1) + dWeight(1);
17 -
       Weight(2) = Weight(2) + dWeight(2);
18 -
       Weight(3) = Weight(3) + dWeight(3);
19 -
      - end
20 -
       end
21
```

```
Sigmoid.m × SGD_method.m ×
                                Training.m × +
        input = [ 0 0 1;
 2
                  0 1 1;
 3
                  1 0 1;
 4
                  1 1 1;
 5
                 ];
 6 -
        correct Output = [0
 8
 9
10
                           ];
11 -
       Weight = 2*rand(1, 3) - 1;
12 -
      for epoch = 1:10000
13 -
            Weight = SGD_method(Weight, input, correct_Output);
14 -
      - end
15
        save('Trained Network.mat')
16 -
17
```

```
Training.m X
                                             testing.m* ×
   Sigmoid.m
                SGD_method.m ×
                                                          +
        load('Trained_Network.mat');
        input = [ 0 0 1;
 3
                  0 1 1;
 4
                  1 0 1;
 5
                  1 1 1;
 6
                ];
 7 -
       N = 4;
 8 -
      - for k = 1:N
 9 -
            transposed_Input = input(k, :)';
10 -
            weighted_Sum = Weight*transposed_Input;
            output = Sigmoid(weighted_Sum)
11 -
12
       -end
```