বীজগণিত,ত্রিকোণমিতি ও পরিমিতির সূত্র

বীজগনিত (ALGEBRA)

বর্গ, ঘন, শুন, উৎপাদক, অনুসিদ্ধান্ত ও মান নির্ণয়ের সূত্র

•
$$(a + b)^2 = a^2 + 2ab + b^2$$

•
$$(a - b)^2 = a^2 - 2ab + b^2$$

•
$$a^2 + b^2 = (a + b)^2 - 2ab$$

•
$$a^2 - b^2 = (a + b) - (a - b)$$

•
$$a^2 - b^2 = (a + b) - (a - b)$$

•
$$(a + b)^2 = (a - b)^2 + 4ab$$

•
$$(a - b)^2 = a^2 - 2ab + b^2$$
 • $(a - b)^2 = (a + b)^2 - 4ab$

•
$$(a-b)^2 - (a+b)^2 - 4ab$$

• $a^2 + b^2 = (a-b)^2 + 2ab$
• $2(a^2+b^2) - (a+b)^2 + b^2 + b^2$

•
$$2(a^2+b^2) = (a+b)^2 + (a-b)^2$$

•
$$(a + b + c)^2 = (a^2 + b^2 + c^2) + 2 (ab + bc + ca)$$

•
$$(a^2 + b^2 + c^2) = (a + b + c)^2 - 2(ab + bc + ca)$$

•
$$2 (ab + bc + ca) = (a + b + c)^2 - (a^2 + b^2 + c^2)$$

•
$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

•
$$(a + b)^3 = a^3 + b^3 + 3ab(a + b)$$

•
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

•
$$(a - b)^3 = a^3 - b^3 - 3ab (a - b)$$

•
$$a^3 + b^3 = (a + b) (a^2 - ab + b^2)$$

•
$$a^3 + b^3 = (a + b)^3 - 3ab (a + b)$$

•
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

•
$$a^3 - b^3 = (a - b)^3 + 3ab (a - b)$$

•
$$(a + b + c)^3 = a^3 + b^3 + c^3 + 3(a + b)(b + c)(c + a)$$

•
$$a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)$$

•
$$a^3 + b^3 + c^3 - 3abc = \frac{1}{2}(a + b + c)\{(a - b)^2 + (b - c)^2 + (c - a)^2\}$$

•
$$4ab = (a + b)^2 - (a - b)^2$$

•
$$ab = (\frac{a+b}{2})^2 - (\frac{a+b}{2})^2$$

•
$$(x + a) (x + b) = x^2 + (a + b) x + ab$$

•
$$(x + a) (x - b) = x^2 + (a - b) x - ab$$

•
$$(x-a)(x+b) = x^2 + (b-a)x - ab$$

•
$$(x-a)(x-b) = x^2 - (a+b)x + ab$$

•
$$(x + p)(x + q)(x + r) = x^3 + (p + q + r)x^2 + (pq + qr + rp)x + pqr$$

•
$$bc(b-c) + ca(c-a) + ab(a-b) = -(b-c)(c-a)(a-b)$$

•
$$a^2(b-c) + b^2(c-a) + c^2(a-b) = -(b-c)(c-a)(a-b)$$

•
$$a(b^2-c^2) + b(c^2-a^2) + c(a^2-b^2) = (b-c)(c-a)(a-b)$$

•
$$a^3(b-c) + b^3(c-a) + c^3(a-b) = -(b-c)(c-a)(a-b)(a+b+c)$$

•
$$b^2c^2(b^2-c^2) + c^2a^2(c^2-a^2) + a^2b^2(a^2-b^2) = -(b-c)(c-a)(a-b)(b+c)(c+a)(a+b)$$

•
$$(ab + bc + ca) (a + b + c) - abc = (a + b) (b + c) (c + a)$$

•
$$(b+c)(c+a)(a+b) + abc = (a+b+c)(ab+bc+ca)$$

বাস্তব সমস্যা সমাধানে বীজগাণিতিক সূত্র

- জন প্রতি দেয় বা প্রাপ্য q টাকা হলে, n জনের দেয় বা প্রাপ্য, A=qn টাকা
- ullet দৈনিক সম্পাদিত কাজের পরিমাণ q হলে, d দিনে সম্পাদিত কাজের পরিমাণ, W=qd
- গতিবেগ ঘণ্টায় q মিটার হলে, t ঘণ্টায় অতিক্রান্ত দূরত্ব , D = qt মিটার
- q % বৃদ্ধিতে বা ব্রাসে a এর বর্ধিত বা ব্রাসকৃত মান, $A = a \ (1 \pm \frac{q}{100})$ [বৃদ্ধির ক্ষেত্রে + চিহ্ন ও ব্রাসের ক্ষেত্রে – চিহ্ন প্রযোজ্য]
- ullet একক সময়ে একক মূলধনের মুনাফা r টাকা হলে, P টাকা বিনিয়োগে n সময়ান্তে মুনাফা I ও সবৃদ্ধি মূলধন A হবে যেখানে,

সরল মুনাফার ক্ষেত্রে, I=Pnr টাকা এবং $A=P\left(1+nr
ight)$ টাকা চক্রবৃদ্ধি মুনাফার ক্ষেত্রে, $A=P\ (1+r)^n$ টাকা

সূচক

 $[\ a \neq 0, b \neq 0 \$ এবং m, n সকল পূর্ণ সংখ্যার সেটের একটি উপাদান]

•
$$a^m \cdot a^n = a^{m+n}$$

•
$$\frac{a^m}{a^n} = a^{m-n}$$

•
$$(a^m)^n = a^{mn}$$

•
$$(ab)^n = a^n b^n$$

•
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{a^n}$$

•
$$a^0 = 1$$

$$\bullet \quad a^{-n} = \frac{1}{a^n}$$

•
$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

•
$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

লগারিদম

[a>0 এবং a≠1]

•
$$\log_a M^r = r \log_a M$$

•
$$\log_a(\frac{M}{N}) = \log_a M - \log_a N$$

•
$$\log_a M = \frac{\log_b M}{\log_b a}$$

•
$$\log_a 1 = 0$$

•
$$\log_a 1 = 0$$

•
$$\log_a b = \frac{1}{\log_b a}$$

•
$$\log_a a = 1$$

•
$$\log_a \sqrt[n]{M} = \frac{1}{n} \log_a M$$

•
$$a > 0$$
 এবং $a^x = a^y$ হলে, $x = y$

$$ullet$$
 $x>0$ এবং $a^x=b^x$ হলে , $a=b$

ধারা

এখানে, a= প্রথম পদ, p= শেষ পদ, d= সাধারন অন্তর, r= সাধারণ অনুপাত সমান্তর ধারার ক্ষেত্রে.

- n তম পদ = a + (n 1) d
- n সংখ্যক পদের সমষ্টি = $\frac{n}{2} \{2a + (n-1) d\}$
- পদ সংখ্যা = $\frac{(p-a)}{2} + 1$
- a ও b এর সমান্তর মধ্যক = $\frac{(a+b)}{2}$
- $1+2+3+\ldots+n=\frac{n(n+1)}{2}$

•
$$1+3+5+\ldots+n=n^2$$

•
$$2+4+6+\ldots+n=n(n+1)$$

•
$$1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

•
$$1^3 + 2^3 + 3^3 + \ldots + n^3 = \left\{\frac{n(n+1)}{2}\right\}^2$$
 গুণোত্তর ধারার ক্ষেত্রে,

• n সংখ্যক পদের সমষ্টি =
$$\frac{a(r^n-1)}{r-1}$$
 ; $r > 1$

$$\bullet$$
 n সংখ্যক পদের সমষ্টি $=rac{a(1-r^n)}{1-r}$; $r<1$

•
$$a + ar + ar^2 + ar^n = \frac{\bar{a}}{1-r}$$

ব্রিকোনমিতি (Trigonometry)

•
$$\sin \theta = \frac{$$
লম্ব অতিভূজ

•
$$\tan \theta = \frac{\overline{q}}{\overline{y}}$$

•
$$\cot \theta = \frac{9}{9}$$

•
$$\sec \theta = \frac{\sqrt{\sqrt{\sqrt{999}}}}{\sqrt{\sqrt{914}}}$$

•
$$\sin \theta = \frac{1}{\cos \theta}$$

• $\csc \theta = \frac{1}{\sin \theta}$

•
$$\cos \theta = \frac{1}{\sec \theta}$$

• $\sec \theta = \frac{1}{\cos \theta}$

•
$$\tan \theta = \frac{\overline{1}}{\cot \theta}$$

• $\cot \theta = \frac{1}{\tan \theta}$

•
$$\csc \theta = \frac{1}{\sin \theta}$$

•
$$\sec \theta = \frac{1}{\cos \theta}$$

•
$$\cot \theta = \frac{1}{\tan \theta}$$

•
$$\sin^2\theta + \cos^2\theta = 1$$

$$\bullet \quad \sin^2\theta = 1 - \cos^2\theta$$

•
$$cos^2\theta = 1 - sin^2\theta$$

• $tan^2\theta = sec^2\theta - 1$

•
$$\sec^2\theta - \tan^2\theta = 1$$

• $\csc^2\theta - \cot^2\theta = 1$

•
$$\sec^2\theta = 1 + \tan^2\theta$$

•
$$\cot^2\theta = \csc^2\theta - 1$$

CO3CC-0 -	- cor $ 1$

•
$$\csc^2\theta = \cot^2\theta + 1$$

•
$$\cot^2\theta = \csc^2\theta - 1$$

কোণ	0°	30°	45°	60°	90°
sin	0	1	1	$\sqrt{3}$	1
		$\overline{2}$	$\overline{\sqrt{2}}$	2	
cos	1	$\sqrt{3}$	1	1	0
		2	$\sqrt{2}$	$\overline{2}$	
tan	0	1	1	$\sqrt{3}$	অসংজ্ঞায়িত
		$\overline{\sqrt{3}}$			
cot	অসংজ্ঞায়িত	$\sqrt{3}$	1	1	0
				$\sqrt{3}$	
sec	1	2	$\sqrt{2}$	2	অসংজ্ঞায়িত
		$\overline{\sqrt{3}}$			
cosec	অসংজ্ঞায়িত	2	$\sqrt{2}$	2	1
				$\sqrt{3}$	

- $\bullet \quad 1^{\circ} = \left(\frac{\pi}{180}\right)^{c}$
- উন্নতি কোণ = an heta

- $1^{c} = (\frac{180}{\pi})^{\circ}$
- \bullet অবনতি কোণ = $\sin \theta$
- বৃত্তের ব্যাসার্ধ ${
 m r},$ কেন্দ্রে চাপের রেডিয়ান কোণ heta হলে চাপের দৈর্ঘ্য, ${
 m s}={
 m r} heta$ একক

- কোণ = $(n \times 90^{\circ} \pm \theta)$
- \bullet n বিজোড় হলে, $\sin\theta\leftrightarrow\cos\theta$, $\tan\theta\leftrightarrow\cot\theta$, $\sec\theta\leftrightarrow\csc\theta$
- ১ম চতুর্ভাগে প্রত্যেক কোণ ধনাত্মক (+)
- ২য় চতুর্ভাগে sin θ ও cosec θ ধনাত্মক (+) এবং বাকিগুলো ঋণাত্মক (-)
- তয় চতুর্ভাগে tan θ ও cot θ ধনাত্মক (+) এবং বাকিগুলো ঋণাত্মক (-)
- 8র্থ চতুর্ভাগে cos θ ও sec θ ধনাত্মক (+) এবং বাকিগুলো ঋণাত্মক (-)
- $\sin(-\theta) = -\sin\theta$ $\cos(-\theta) = \cos\theta$
 - $tan(-\theta) = -tan \theta$

- $\sec(-\theta) = \sec \theta$ $\cot(-\theta) = -\cot \theta$ $\csc(-\theta) = -\csc \theta$

পরিমিতি (Measurement)

আয়তক্ষেত্রের দৈর্ঘ্য a একক ও প্রস্থ b একক হলে,

ক্ষেত্ৰফল, A = ab বৰ্গএকক পরিসীমা, s = 2(a + b) একক কর্ণ, $d = \sqrt{a^2 + b^2}$ একক

বর্গক্ষেত্রের এক বাহুর দৈর্ঘ্য a একক হলে,

ক্ষেত্রফল, $A = a^2$ বর্গএকক পরিসীমা, s = 4a একক কর্ণ, $d = a\sqrt{2}$ একক

রম্বসের এক বাহুর দৈর্ঘ্য a একক ও কর্ণদ্বয় d_1, d_2 হলে,

ক্ষেত্রফল, $A = \frac{1}{2} (d_1 \times d_2)$ বর্গএকক পরিসীমা, s = 4a একক

সামান্তরিকের ভূমি a একক ও উচ্চতা h একক হলে,

ক্ষেত্রফল, A = ah বর্গএকক

সামান্তরিকের দুইটি সন্নিহিত বাহু a, b একক ও তাদের অন্তর্ভুক্ত কোণ θ হলে, ক্ষেত্রফল, $A = ab.sin\theta$ বর্গএকক

সামান্তরিকের একটি কর্ণ d ও বিপরীত শীর্ষবিন্দু হতে কর্ণের উপর লম্ব h হলে, ক্ষেত্রফল, A = dh বর্গএকক

ট্রাপিজিয়ামের সমান্তরাল বাহুদ্বয় a, b একক ও উচ্চতা বা লম্ব দূরত্ব h একক হলে,

ক্ষেত্রফল,
$$A = \frac{1}{2} h(a+b)$$
 বর্গএকক

ত্রিভুজের ভূমি a একক ও উচ্চতা h একক হলে,

ক্ষেত্রফল,
$$A = \frac{1}{2} ah$$
 বর্গএকক

• ত্রিভুজের তিন বাহু a, b, c একক ও a, b এর অন্তর্ভুক্তি কোণ θ হলে,

পরিসীমা =
$$a+b+c$$
 একক অর্ধপরিসীমা, $s=\frac{a+b+c}{2}$ একক ক্ষেত্রফল, $A=\sqrt{s\ (s-a)\ (s-b)\ (s-c)}$ বর্গএকক ক্ষেত্রফল, $A=\frac{1}{2}$ $ab\ sin\theta$ বর্গএকক

সমবাহু ত্রিভুজের একটি বাহু a একক হলে,

পরিসীমা =
$$3a$$
 একক ক্ষেত্রফল, $A=rac{\sqrt{3}}{4}a^2$ বর্গএকক

সমদ্বিবাহু ত্রিভুজের সমান বাহুদ্বয় a একক ও অপর বাহু b একক হলে.

পরিসীমা =
$$2a+b$$
 একক ক্ষেত্রফল, $A=rac{b}{4}\sqrt{4a^2-b^2}$ বর্গএকক

বৃত্তের ব্যাসার্ধ r একক, কেন্দ্রে চাপের কোণ θ হলে,

পরিধি,
$$C=2\pi r$$
 একক ক্ষেত্রফল, $A=\pi r^2$ বর্গএকক বৃত্তকলার ক্ষেত্রফল $=\frac{\theta}{360}\times\pi r^2$ বর্গএকক চাপের দৈর্ঘ্য, $s=\frac{\theta}{360}\times2\pi r$ একক $[\;\theta=$ কোণের ডিগ্রি পরিমাপ $]$ চাপের দৈর্ঘ্য, $s=r\theta$ একক $[\;\theta=$ কোণের রেডিয়ান পরিমাপ $]$

আয়তাকার ঘনবস্তুর দৈর্ঘ্য a একক, প্রস্থ b একক ও উচ্চতা c একক হলে,

কর্ণ,
$$d=\sqrt{a^2+b^2+c^2}$$
 একক
সমগ্রতলের ক্ষেত্রফল = $2(ab+bc+ca)$ বর্গএকক
আয়তন, $V=abc$ ঘনএকক

ঘনকের এক ধার a একক হলে,

কর্ণ,
$$d=a\sqrt{3}$$
 একক
পৃষ্ঠতলের কর্ণের দৈঘ্য $=a\sqrt{2}$ একক
সমগ্রতলের ক্ষেত্রফল $=6a^2$ বর্গএকক
আয়তন, $V=a^3$ ঘনএকক

ullet সমবৃত্তভূমিক কোণকের ভূমির ব্যাসার্ধ ${f r}$ একক, উচ্চতা ${f h}$ একক ও হেলান উন্নতি ℓ হলে,

হেলান উন্নতি,
$$\ell=\sqrt{h^2+r^2}$$
 একক
বক্রতলের ক্ষেত্রফল $=\pi r\ell$ বর্গএকক
সমগ্রতলের ক্ষেত্রফল $=\pi r(\ell+r)$ বর্গএকক

আয়তন,
$$V = \frac{1}{3}\pi r^2 h$$
 ঘনএকক

সমবৃত্তভূমিক বেলনের ভূমির ব্যাসার্ধ r একক ও উচ্চতা h একক হলে,

বক্রতলের ক্ষেত্রফল = $2\pi rh$ বর্গএকক সমগ্রতলের ক্ষেত্রফল = $2\pi r(h+r)$ বর্গএকক আয়তন, $V = \pi r^2 h$ ঘনএকক

গোলকের ব্যাসার্ধ r একক হলে.

তলের ক্ষেত্রফল
$$=4\pi r^2$$
 বর্গএকক
আয়তন, $V=rac{4}{3}\pi r^3$ ঘনএকক

দ্রেইর (Vector)

আদিবিন্দু A ও অন্তবিন্দু B হলে, ঐ দিকনির্দেশক রেখাংশ \overrightarrow{AB} দ্বারা সূচিত করা হয়, এর দৈর্ঘ্য

 $|\overrightarrow{AB}|$ এবং $\overrightarrow{AB} = -\overrightarrow{BA}$

ullet ভেক্টর যোগের ত্রিভুজ বিধি ঃ $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$

ভেক্টর বিয়োগের ত্রিভুজ বিধি ঃ $\overrightarrow{\mathrm{AC}}-\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{BC}}$

• ত্রিভুজের বাহুত্রয়ের একই ক্রম দ্বারা সূচিত ভেক্টরত্রয়ের যোগফল শূন্য এখানে, $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} = -(\overrightarrow{CA})$ অর্থাৎ, $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{CA} - \overrightarrow{CA} = 0$

- ভেক্টর যোগের সামান্তরিক বিধি ঃ $\overrightarrow{\mathrm{AC}} = \overrightarrow{\mathrm{AB}} + \overrightarrow{\mathrm{AD}}$
- ভেক্টর যোগের বিনিময় বিধি ঃ যেকোনো $\underline{\mathbf{u}}$, $\underline{\mathbf{v}}$ ভেক্টরের জন্য $\underline{\mathbf{u}} + \underline{\mathbf{v}} = \underline{\mathbf{v}} + \underline{\mathbf{u}}$
- ভেক্টর যোগের সংযোগ বিধি ঃ যেকোনো \underline{u} , \underline{v} , \underline{w} এর জন্য $(\underline{u}+\underline{v})+\underline{w}=\underline{u}+(\underline{v}+\underline{w})$
- ভেক্টর যোগের বর্জন বিধি ঃ যেকোনো \underline{u} , \underline{v} , \underline{w} এর জন্য $\underline{u}+\underline{v}=\underline{v}+\underline{w}$ হলে, $\underline{v}=\underline{w}$
- ভেক্টরে সাংখ্যগুণিতক সংক্রান্ত বর্ণ্টন সুত্র ঃ $m,\,n\,$ দুইটি স্কেলার ও $\underline{u},\,\underline{v}\,$ দুইটি ভেক্টর হলে $(m+n)\underline{u}=m\underline{u}+n\underline{u}$ এবং $m(\underline{u}+\underline{v})=m\underline{u}+m\underline{v}$

অন্তর্বিভক্তিকরণ সুত্র ঃ A, B বিন্দুর অবস্থান ভেক্টর যথাক্রমে <u>a</u>, <u>b</u> হলে এবং AB রেখাংশ C বিন্দুতে m:n অনুপাতে অন্তর্বিভক্ত হলে,

C বিন্দুর অবস্থান ভেক্টর, $\underline{c} = \frac{n\underline{a} + m\underline{b}}{m+n}$

