SYDNEY TECHNICAL HIGH SCHOOL

YEAR 12

HSC ASSESSMENT TASK 3

JUNE 2007

MATHEMATICS EXTENSION 1

Time Allowed:	70 minutes	Name
		Teacher

Instructions:

- All necessary working must be shown. Marks may be deducted for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.
- Start <u>each</u> question on a <u>new page</u>.
- Standard integrals can be found on the last page.

Question 1	Question 2	Question 3	Question 4	Question 5	Question 6	Total
/8	/10	/7	/8	/10	/9	/52

Question 1

a) Solve $2\cos^2 x = \cos x$ for $0 \le x \le 2\pi$

3

2

b) Simplify $\frac{\log_m \sqrt{a}}{\log_m(a^2)}$

2

- c) Solve $\log_e(x+1) \log_e x = 2$. Leave your answer in exact form.
- d) Find $\int 3xe^{4x^2+7}dx$

YN, Park Care

Question 2

a) Find $\int \frac{6x^2}{x^3 + 4} dx$

(ii)

1

2

b) Differentiate $\tan^3 x$ and hence find $\int \sec^2 x \tan^2 x \, dx$

1

c) (i) Sketch the curve $y = \log_e 2x$. Show the x intercept

3

d) (i) Use a change of base to express $\log_2 5x$ in base e.

1

2

(ii) Hence or otherwise, find $\frac{d}{dx}(\log_2 5x)$

The area between the curve above, y = 0 and y = 1 is rotated

about the y-axis. Find the generated volume in exact form.

Question 3

a) (i) Show that $\sin x - \cos^2 x \sin x = \sin^3 x$

- 1
- (ii) Hence, and using the substitution $u = \cos x$, or otherwise, find $\int \sin^3 x \, dx$

2

- b) Given the curve represented by $y = \sin^2 x$,
 - (i) Sketch the curve for $-\pi \le x \le \pi$

1 3

(ii) Find the total area between the x – axis and the curve above

Question 4

- a) The function f is defined as y = x(x-2).
 - (i) Sketch f and state the largest positive domain for which an inverse f^{-1} exists.

2

(ii) Sketch f^{-1} . Show two key points

- 1
- (iii) Find the coordinates of the point where f and f^{-1} intersect

1

b) Explain, without evaluating, why $\sin^{-1}(\sin \frac{3\pi}{4}) \neq \frac{3\pi}{4}$

1

c) (i) Write the expansion of $tan(\theta - \alpha)$

- 1
- (ii) Hence or otherwise, express $\tan \left[\cos^{-1}(-x)\right]$ in terms of x only

2

Question 5

a) Differentiate $y = \tan^{-1}(\sin 2x)$

2

- b) Consider the function $f(x) = \cos^{-1}(x^2)$
 - (i) Write the domain and range of y = f(x)

- 2
- (ii) Find the slope of the tangent where the curve crosses the y axis.
- 2

(iii) Sketch the curve y = f(x)

- 1
- Use the expansion of $\sin(A+B)$ to express $\sin^{-1}(\frac{4}{5}) + \sin^{-1}(\frac{12}{13})$ in the form
 - $\sin^{-1} M$.

Question 6

a) Find $\int \frac{dx}{\sqrt{9-4x^2}}$

2

3

3

b) (i) Find $\frac{d}{dx}(x \tan^{-1} x)$

- 1
- (ii) Hence, and using a suitable rearrangement, evaluate $\int_0^1 \tan^{-1} x \ dx$
- Using a diagram, or otherwise, evaluate $\int_0^1 \sin^{-1} x \ dx$. Give your answer in
 - exact form.

SOLUTIONS

(1) a)
$$2 \cos^{2} x - \cos x = 0$$

 $\cos x (2 \cos x - 1) = 0$
 $\cos x = 0 \cos \frac{1}{2}$ (1)
 $x = \frac{1}{2}, \frac{3}{3}, \frac{5}{3}$

b)
$$\frac{1}{2} \log_{m} \alpha = \frac{1}{4} \leftarrow \mathbb{C}$$

c)
$$\log_{2}\left(\frac{x+1}{x}\right)=2$$

$$\frac{x+1}{x} = e^2$$

$$x(1-e^2)=-1$$

$$x = \frac{-1}{1-e^2} = \frac{1}{e^2-1}$$

d)
$$\frac{3}{8} \int 8xe^{(4x^2+1)} dx$$

= $\frac{3}{8} e^{(4x^2+1)} + c$

(2) a)
$$2 \int \frac{3x^{2}}{x^{3}+4} dx$$

= $2 \log (x^{3}+4) + c$

b)
$$f(\tan^3 x) = 3 \tan^2 x \sec^2 x$$

 $\int \sec^2 x \tan^2 x dx$
 $= \frac{1}{3} \tan^3 x + c$

(ii)
$$y = \log_{2} 2x \Rightarrow 2x = e^{y}$$

 $x = \frac{1}{2}e^{y}$

:.
$$Vol = \pi \int_{0}^{1} (\frac{1}{2}e^{y})^{2} dy$$

= $\pi_{4} \int_{0}^{1} e^{2y} dy$

= $\pi_{4} \left[\frac{1}{2}e^{2y}\right]_{0}^{1}$

= $\pi_{5} \left(\frac{1}{2}e^{2y}\right)_{0}^{1}$

= $\pi_{5} \left(\frac{1}{2}e^{2y}\right)_{0}^{1}$

= $\pi_{5} \left(\frac{1}{2}e^{2y}\right)_{0}^{1}$

(ii) deriv. =
$$\frac{5}{5x}$$

$$\frac{\log_{2}^{2}}{2}$$

$$= \frac{1}{x \log_{2}^{2}}$$

a) i)
$$\sin x (1-\cos^2 x) = \sin x \sin^2 x$$

$$= \sin^3 x$$
ii) $\int \sin^3 x \, dx = \int (\sin x - \cos^2 x \sin x) \, dx$

$$\int \cos x \, dx = \int \sin x (1-\cos^2 x) \, dx$$

$$\int \cos x \, dx = \int \sin x (1-\cos^2 x) \, dx$$

$$\int \cos x \, dx = \int \sin x \, dx$$

$$= \int \sin^2 x \, dx$$

$$= \int (u^2 - 1) \, du$$

$$= \int u^3 - u + c$$

$$= \frac{\cos^3 x}{3} - \cos x + c$$

$$\int (i)$$

(iii) intersect on
$$y = x$$

$$\therefore x(x-2) = x$$

$$\therefore x^2 - 2x - x = 0$$

$$\therefore x(x-3) = 0$$

$$\therefore x = 0 \text{ or } 3$$

$$\therefore \text{ intersect at } (3,3)$$

b) Range of sin m is

$$-\frac{1}{2} \le y \le \frac{1}{2}$$

C)(i) $\tan(\theta - d) = \frac{1}{1 + \tan \theta \tan d}$

$$tan[cos^{-1}(x)] = tan(T - cos^{-1}x)$$

$$tan[cos^{-1}(x)] = tan(T - tand)$$

$$cos d = x$$

$$= tan T - tand$$

$$1 + tan T tand$$

$$= 0 - \sqrt{1-x^{2}}$$

a)
$$dy = \frac{1}{1 + (\sin 2x)^2} \times \cos 2x \times 2$$

$$= \frac{2\cos 2x}{1 + \sin^2 2x} \leftarrow 0$$

b)(i)
$$-1 \le x^2 \le 1$$

 $\therefore 0 \le x^2 \le 1$

$$\frac{(11)}{dx} = \frac{-1}{\sqrt{1-(x^2)^2}} \times 2x$$

$$= \frac{-2x}{\sqrt{1-x^4}}$$

When x = 0, slope of tangent = 0

c) (et
$$A = \sin^{-1}\frac{4}{5}$$
, $B = \sin^{-1}\frac{12}{13}$
 $\therefore \sin A = \frac{4}{5}$, $\sin B = \frac{12}{13}$
 $\sin(A + B) = \sin A \cos B + \sin B \cos A$
 $\frac{5}{13} = \frac{4}{13} \times \frac{5}{13} + \frac{12}{13} \times \frac{3}{5}$
 $\frac{13}{12} = \frac{20}{65} + \frac{36}{65}$

$$\frac{13}{5} = \frac{23}{65} + \frac{36}{65}$$

$$= \frac{56}{65}$$

$$= \frac{56}{65}$$

$$= \frac{56}{65}$$

$$= \frac{56}{65}$$

$$\left(\frac{dx}{\sqrt{9-4x^2}} = \int \frac{dx}{\sqrt{4\sqrt{3}/2-x^2}} \right) = \frac{1}{2} \int \frac{dx}{\sqrt{(\frac{3}{2})^2-x^2}} = \frac{1}{2} \int \frac{dx}{\sqrt$$

$$\frac{dx}{dx}(x \tan^{-1}x) = 1 \times \tan^{-1}x + \frac{1}{1+x^2}x$$

$$= \tan^{-1}x + \frac{2x}{1+x^2}$$
(iii)
$$\int_0^1 \tan^{-1}x = \int_0^1 \frac{dx}{dx}(x \tan^{-1}x) - \int_0^1 \frac{x}{1+x^2}$$

$$tan^{-1}i = \int_{0}^{\infty} dx (x tan x) - \int_{0}^{\infty} (+x^{2})$$

$$= \left[x tan^{-1}x\right] - \left[\frac{1}{2}log(1+x^{2})\right]_{0}^{\infty}$$

$$= tan^{-1} \left[-0 - \frac{1}{2}(log 2 - log i)\right]$$

$$= T_{4} - \frac{1}{2}log 2 \quad (approx. 0.4)$$

$$\int_{0}^{\infty} \sin^{-1}x \, dx = (T_{1} \times 1) - \int_{0}^{\infty} (\sin y) \, dy$$

$$= T_{1} - \left[-\cos y\right]_{0}^{T_{1}} \mathbb{O}$$

$$= T_{2} + (\cos T_{2} - \cos 0)$$

= Ty + 0-1