Predicting Survival on the Titanic Using Gradient Boosted Trees

Overview

Understanding Gradient Boosted Trees

Use GBT to solve the Titanic problem

Understand the different parameters which can be used to control the ensemble

Find the best combination of parameters using hyper-parameter tuning

Models built using different

Training Sets

Each tree built from a different subset of the training set

Boosting

Each tree built sequentially from a different subset of the training set **Gradient Descent**

Boosting

Each tree built sequentially from a different subset of the training set Gradient Descent

In Random Forests, each tree is built independently

With boosting, each tree is built to improve upon the previous tree

Initially

Boosting

All data points have equal probability of being chosen

In each iteration

Boosting

The probabilities are modified

Data points which are classified correctly are down weighted

Data points which are classified incorrectly are up weighted

In the final result, each tree's vote is given a different weight

Tree weight depends on how accurate the tree was on training data

Boosting

Each tree built sequentially from a different subset of the training set Gradient Descent

Boosting

Each tree built sequentially from a different subset of the training set

Gradient Descent

Gradient Descent The probabilities of choosing a training data point are updated using this technique

Boosting

Each tree built sequentially from a different subset of the training set **Gradient Descent**

Demo

Use Gradient Boosted Trees to solve the Titanic problem

Demo

Find the best parameters using hyperparameter tuning

Summary

Understanding Gradient Boosted Trees

Use GBT to solve the Titanic problem

Understand the different parameters which can be used to control the ensemble

Find the best combination of parameters using hyper-parameter tuning