PROBLEMAS MÉTRICOS EN EL ESPACIO 2º Bachillerato

ÁNGULOS ENTRE RECTAS Y PLANOS

Ángulo entre dos vectores.

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \left| \vec{\mathbf{u}} \right| \cdot \left| \vec{\mathbf{v}} \right| \cdot \cos(\widehat{\vec{\mathbf{u}}}, \widehat{\vec{\mathbf{v}}})$$

$$\cos(\widehat{\vec{u},\vec{v}}) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|}$$

$$\cos\alpha = \frac{\left|\vec{u}\cdot\vec{v}\right|}{\left|\vec{u}\right|\cdot\left|\vec{v}\right|}$$

ÁNGULOS ENTRE RECTAS Y PLANOS

Ángulo entre dos rectas que se cortan.

$$\cos \alpha = \frac{\left| \vec{u}_r \cdot \vec{u}_s \right|}{\left| \vec{u}_r \right| \cdot \left| \vec{u}_s \right|}$$

ÁNGULOS ENTRE RECTAS Y PLANOS

Ángulo entre dos rectas que se cruzan.

Se define como el ángulo formado por las rectas secantes paralelas a las dadas.

$$\cos \alpha = \frac{\left| \vec{u}_r \cdot \vec{u}_s \right|}{\left| \vec{u}_r \right| \cdot \left| \vec{u}_s \right|}$$

ÁNGULOS ENTRE RECTAS Y PLANOS

Ejemplo: Halla el ángulo formado por las rectas de ecuaciones:

r:
$$\begin{cases} 2x - y + z = 1 \\ x + y - z = 3 \end{cases}$$
 y s: $\frac{x+3}{1} = \frac{y-2}{-3} = \frac{z+1}{4}$.

La recta r viene dada por intersección de los planos π : 2x - y + z = 1 y π' : x + y - z = 3. El vector director de r se obtiene a partir de los vectores normales a estos dos planos:

$$\vec{u}_r = \vec{n}_{\pi} \times \vec{n}_{\pi'} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = (0, 3, 3) \sim (0, 1, 1)$$

Por otra parte, de las ecuaciones continuas de s se obtiene $\vec{u}_s = (1, -3, 4)$, de donde:

$$\cos{(\widehat{r,s})} = |\cos{(\widehat{\vec{u_r}}, \widehat{\vec{u_s}})}| = \frac{|\vec{u_r} \cdot \vec{u_s}|}{|\vec{u_r}| |\vec{u_s}|} = \frac{|0 \cdot 1 + 1 \cdot (-3) + 1 \cdot 4|}{\sqrt{1^2 + 1^2} \sqrt{1^2 + 3^2 + 4^2}} = \frac{1}{\sqrt{2} \sqrt{26}} = \frac{1}{\sqrt{52}}$$

Con lo que, finalmente, se llega a $(\widehat{r,s}) = \arccos\left(\frac{1}{\sqrt{52}}\right) = 82^{\circ} 1' 43,74''$

ÁNGULOS ENTRE RECTAS Y PLANOS

Ángulo entre dos planos.

$$\cos \alpha = \frac{\left| \vec{n}_{\pi} \cdot \vec{n}_{\pi'} \right|}{\left| \vec{n}_{\pi} \right| \cdot \left| \vec{n}_{\pi'} \right|}$$

ÁNGULOS ENTRE RECTAS Y PLANOS

Ejemplo: Halla el ángulo formado por los planos de ecuaciones:

$$\pi: 3x - y + z = 2$$

$$\pi'$$
: $x + 2y + 4z = 1$

Los vectores normales de π y π' son: $\vec{n}_{\pi}=$ (3, -1, 1) y $\vec{n}_{\pi'}=$ (1, 2, 4), luego:

$$\cos\left(\widehat{\pi}, \ \widehat{\pi'}\right) = \frac{|\vec{n}_{\pi} \cdot \vec{n}_{\pi'}|}{|\vec{n}_{\pi}| \cdot |\vec{n}_{\pi'}|} = \frac{|3 \cdot 1 + (-1) \cdot 2 + 1 \cdot 4|}{\sqrt{3^2 + 1^2 + 1^2} \sqrt{1^2 + 2^2 + 4^2}} = \frac{5}{\sqrt{11}\sqrt{21}} = \frac{5}{\sqrt{231}}$$

de donde se obtiene $(\widehat{\pi}, \widehat{\pi'}) = \arccos\left(\frac{5}{\sqrt{231}}\right) = 70^{\circ} 47' 36,15''$

ÁNGULOS ENTRE RECTAS Y PLANOS

Ángulo entre una recta y un plano.

$$\cos(90^{\circ} - \alpha) = \frac{\left| \vec{d} \cdot \vec{n} \right|}{\left| \vec{d} \right| \cdot \left| \vec{n} \right|}$$

$$\operatorname{sen} \alpha = \frac{\left| \vec{d} \cdot \vec{n} \right|}{\left| \vec{d} \right| \cdot \left| \vec{n} \right|}$$

ÁNGULOS ENTRE RECTAS Y PLANOS

Ejemplo: Halla el ángulo formado por la recta y el plano de ecuaciones:

$$r:\begin{cases} x+y+z=2\\ x+z=1 \end{cases}$$
 $\pi: x+y=3$

La recta r viene dada por la intersección de los planos π' y π'' .

Primero se halla el vector director de \vec{r} : $\vec{u}_r = \vec{n}_{\pi'} \times \vec{n}_{\pi''} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = (1, 0, -1)$

Como el vector normal al plano π es \vec{n}_{π} = (1, 1, 0), entonces:

$$\widehat{\text{sen}(r, \pi)} = \frac{|\vec{u}_r \cdot \vec{n}_{\pi}|}{|\vec{u}_r| |\vec{n}_{\pi}|} = \frac{|1 \cdot 1 + 1 \cdot 0 + 0 \cdot (-1)|}{\sqrt{1^2 + 1^2} \sqrt{1^2 + 1^2}} = \frac{1}{2} \Rightarrow \widehat{(r, \alpha)} = 30^{\circ}$$

ÁNGULOS ENTRE RECTAS Y PLANOS

Ejemplo: Determina la recta r que es paralela al plano π : x - z = 3, forma 30° con el plano π ' : z = -2 y pasa por el punto A(0, 3, 5).

Los vectores normales a los planos dados son $\vec{n}_{\pi}=(1,0,-1)$ y $\vec{n}_{\pi'}=(0,0,1)$ Se calcula un vector director unitario de la recta $r: \vec{u}_r=(a,b,c)$.

- Por ser r paralela a π es: $\vec{u}_r \perp \vec{n}_z \Leftrightarrow \vec{u}_r \cdot \vec{n}_z = 0 \Leftrightarrow a c = 0 \Rightarrow a = c$
- Por formar 30° con π' : sen $\widehat{(r, \pi)} = \frac{|\vec{u}_r \cdot \vec{n}_{\pi'}|}{|\vec{u}_r| |\vec{n}_{\pi'}|} = \frac{|c|}{1 \cdot 1} = \frac{1}{2} \Rightarrow c = \pm \frac{1}{2} = a$

Como \vec{u}_r se ha elegido unitario, resulta $a^2 + b^2 + c^2 = 1 \Rightarrow b = \pm \frac{1}{\sqrt{2}}$

1.* recta:
$$\vec{u}_r = \left(\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}\right) \Rightarrow r: \frac{x}{\frac{1}{2}} = \frac{y-3}{\frac{1}{\sqrt{2}}} = \frac{z-5}{\frac{1}{2}} \Leftrightarrow 2x = \sqrt{2} \ (y-3) = 2(z-5)$$

2.° recta:
$$\vec{u}_r = \left(-\frac{1}{2}, \frac{1}{\sqrt{2}}, -\frac{1}{2}\right) \Rightarrow r: \frac{x}{-\frac{1}{2}} = \frac{y-3}{\frac{1}{\sqrt{2}}} = \frac{z-5}{-\frac{1}{2}} \Leftrightarrow -2x = \sqrt{2} \ (y-3) = -2(z-5)$$

PROYECCIÓN ORTOGONAL DE UN PUNTO

Proyección ortogonal de un punto sobre un plano.

Se llama proyección ortogonal de un punto P sobre un plano π al punto P' que se obtiene como intersección de la recta r, perpendicular a π que pasa por el punto P, con el plano π .

Proyección ortogonal de P

PROYECCIÓN ORTOGONAL DE UN PUNTO

Proyección ortogonal de un punto sobre un plano.

Ejemplo: Determina la proyección ortogonal del punto A(0, 3, 5) con el plano π : x - z = 3.

$$\vec{n}_{\pi} = (1,0,-1) \qquad A = (0,3,5) \qquad r: \begin{cases} x = \lambda \\ y = 3 \\ z = 5 - \lambda \end{cases}$$

$$\pi \to \lambda - (5 - \lambda) = 3 \to 2\lambda - 5 = 3 \to \lambda = 4$$

$$\lambda = 4 \to A' = (4,3,1)$$

PROYECCIÓN ORTOGONAL DE UN PUNTO

Provección ortogonal de una recta sobre un plano.

Se puede obtener de dos formas diferentes:

PROYECCIÓN ORTOGONAL DE UN PUNTO

Proyección ortogonal de una recta sobre un plano.

Ejemplo: Halla la provección ortogonal de la recta r sobre el plano π :

$$r: \frac{x-1}{4} = \frac{y+2}{1} = \frac{-z+3}{1}$$
 $\pi: x+y-z=4$

$$\pi: \mathbf{x} + \mathbf{y} - \mathbf{z} = 4$$

$$\vec{d}_r = (4,1,-1)$$
 $A = (1,-2,3)$ $\vec{n}_\pi = (1,1,-1)$

$$A = (1, -2, 3)$$

$$\vec{\mathbf{n}}_{\pi} = (1, 1, -1)$$

La ecuación del plano
$$\pi$$
' es:
$$\begin{vmatrix} x-1 & y+2 & z-3 \\ 4 & 1 & -1 \\ 1 & 1 & -1 \end{vmatrix} = 0 \rightarrow y+z-1=0$$

Por lo tanto r es:
$$r:\begin{cases} x+y-z-4=0\\ y+z-1=0 \end{cases}$$

DISTANCIAS ENTRE PUNTOS, RECTAS Y PLANOS

Distancia entre dos puntos.

$$P(x_1, y_1, z_1) \qquad Q(x_2, y_2, z_2)$$

$$d(P,Q) = |\overrightarrow{PQ}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Ejemplo:

$$P(5,-1,7)$$
 $Q(4,5,-11)$

$$d(P,Q) = |\overrightarrow{PQ}| = \sqrt{(4-5)^2 + (5+1)^2 + (-11-7)^2} = \sqrt{361} = 19 u$$

DISTANCIAS ENTRE PUNTOS, RECTAS Y PLANOS

Distancia entre un punto y un plano. Método constructivo.

- 1. Hallar la recta r perpendicular a π que pasa por P
- 2. La intersección de π y r es el punto P'.
- 3. La distancia entre P y P' es la distancia entre π y r.

DISTANCIAS ENTRE PUNTOS, RECTAS Y PLANOS

Distancia entre un punto y un plano. Expresión vectorial.

Si el plano viene dado por la determinación lineal $\pi(A_{\pi}, \vec{n}_{\pi})$, es decir, pasa por el punto A_{π} y su vector normal es \vec{n}_{π} , en el triángulo rectángulo $A_{\pi}QP$ de la figura se cumple:

$$\overrightarrow{A_AP} = \overrightarrow{A_AQ} + \overrightarrow{QP}$$

Multiplicando escalarmente esta igualdad por el vector normal \vec{n}_z resulta:

$$\overrightarrow{A_{\pi}P} \cdot \overrightarrow{n_{\pi}} = \overrightarrow{A_{\pi}Q} \cdot \overrightarrow{n_{\pi}} + \overrightarrow{QP} \cdot \overrightarrow{n_{\pi}} = \overrightarrow{QP} \cdot \overrightarrow{n_{\pi}}$$

ya que $\overrightarrow{A_\pi Q}$ y \overrightarrow{n}_π son ortogonales y, por tanto, su producto escalar es cero. Tomando el valor absoluto en la relación anterior y operando:

$$|\overrightarrow{A_nP} \cdot \overrightarrow{n_n}| = |\overrightarrow{QP} \cdot \overrightarrow{n_n}| = |\overrightarrow{QP}||\overrightarrow{n_n}||\cos(\widehat{\overrightarrow{QP}}, \overrightarrow{n_n})| = |\overrightarrow{QP}||\overrightarrow{n_n}|$$

Por tanto:

$$d(P, \pi) = |\overrightarrow{PQ}| = \frac{|\overrightarrow{A_{\pi}P} \cdot \overrightarrow{n}_{\pi}|}{|\overrightarrow{n}_{\pi}|}$$

DISTANCIAS ENTRE PUNTOS, RECTAS Y PLANOS

Distancia entre un punto y un plano. Expresión analítica.

Si la ecuación general del plano es π : ax + by + cz + d = 0, $A_{\pi}(x_0, y_0, z_0)$ es un punto cualquiera del mismo, $\vec{n}_z = (a, b, c)$ es su vector normal, y P es $P(x_1, y_1, z_1)$, se tiene:

$$d(P, \pi) = \frac{|(x_1 - x_0, y_1 - y_0, z_1 - z_0) \cdot (a, b, c)|}{|(a, b, c)|} = \frac{|ax_1 + by_1 + cz_1 - ax_0 - by_0 - cz_0|}{\sqrt{a^2 + b^2 + c^2}}$$

Al ser $A_{\pi} \in \pi$, se cumple que $-ax_0 - by_0 - cz_0 = d$, con lo que se llega finalmente a:

$$d(P, \pi) = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

DISTANCIAS ENTRE PUNTOS, RECTAS Y PLANOS

Distancia entre un punto y un plano. Fórmula.

$$P(x_0, y_0, z_0)$$

$$\pi : ax + by + cz + d = 0$$

$$d(P,\pi) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

DISTANCIAS ENTRE PUNTOS, RECTAS Y PLANOS

Ejemplo: Calcula la distancia de P (3, 1, 7) a $\pi : x - 3y + 5z - 1 = 0$

$$d(P,\pi) = \frac{|3 - 3 \cdot 1 + 5 \cdot 7 - 1|}{\sqrt{1^2 + 3^2 + 5^2}} = \frac{34}{\sqrt{35}} \approx 5'75 u$$

DISTANCIAS ENTRE PUNTOS, RECTAS Y PLANOS

Distancia entre un punto y una recta. Método constructivo.

- 1. Hallar el plano π perpendicular a r que pasa por P
- 2. La intersección de π y r es el punto P'.
- 3. La distancia entre P y P' es la distancia entre π y r.

DISTANCIAS ENTRE PUNTOS, RECTAS Y PLANOS

Distancia entre un punto y una recta. Método del punto genérico.

- 1. El punto R es un punto genérico de la recta y sus coordenadas depende de λ .
- 2. Se obliga a que el vector PR sea perpendicular a r y por tanto a \vec{d} .
- 3. El producto escalar es 0 y se halla λ y el punto P'.

DISTANCIAS ENTRE PUNTOS, RECTAS Y PLANOS

Distancia entre un punto y una recta. Método del producto vectorial.

$$\left| \overrightarrow{RP} \times \overrightarrow{d} \right| = \left| \overrightarrow{d} \right| \cdot h$$

$$\operatorname{dist}(P,r) = h = \frac{\left| \overrightarrow{RP} \times \overrightarrow{d} \right|}{\left| \overrightarrow{d} \right|}$$

DISTANCIAS ENTRE PUNTOS, RECTAS Y PLANOS

 $x = 1 - 2\lambda$ **Ejemplo:** Calcula la distancia del punto P (5, -1, 6) a $r: \{y = -\lambda\}$ ■ MÉTODO CONSTRUCTIVO $z = 5 + \lambda$

> • Plano π que pasa por P y es perpendicular a r: Su vector normal es el vector dirección de la recta: $\overrightarrow{n} = (-2, -1, 1)$ Pasa por P(5, -1, 6). Su ecuación es:

$$-2(x-5) - (y+1) + (z-6) = 0 \rightarrow 2x + y - z - 3 = 0$$

• Intersección de π y r. Sustituimos las coordenadas de r en la ecuación de π para hallar λ :

· Distancia pedida:

$$dist(P, r) = dist(P, P') = \sqrt{(5-3)^2 + (-1-1)^2 + (6-4)^2} = \sqrt{12}$$

DISTANCIAS ENTRE PUNTOS, RECTAS Y PLANOS

 $x = 1 - 2\lambda$ **Ejemplo:** Calcula la distancia del punto P (5, -1, 6) a r: $y = -\lambda$ ■ MÉTODO DEL PUNTO GENÉRICO $z = 5 + \lambda$

 $R(1-2\lambda, -\lambda, 5+\lambda)$ es un punto genérico de la recta r.

El vector $\overrightarrow{RP}(4+2\lambda,-1+\lambda,1-\lambda)$ es variable.

El vector que nos interesa es perpendicular a la recta. Por tanto, cumple:

$$(-2, -1, 1) \cdot \overrightarrow{RP} = 0$$

$$-2(4 + 2\lambda) - 1(-1 + \lambda) + (1 - \lambda) = 0$$

La solución es: $\lambda = -1$

Para $\lambda = -1$, se obtiene el punto buscado, P'.

es perpendicular a la recta. $P' = (3,1,4) \rightarrow d(P,r) = d(P,P') = \sqrt{(3-5)^2 + (1+1)^2 + (4-6)^2} = \sqrt{12} u$

DISTANCIAS ENTRE PUNTOS, RECTAS Y PLANOS

 $x = 1 - 2\lambda$ **Ejemplo:** Calcula la distancia del punto P (5, -1, 6) a $r: \{y = -\lambda\}$ $z = 5 + \lambda$

MÉTODO DEL PRODUCTO VECTORIAL

$$dist(P, r) = \frac{\text{Área}}{\text{Base}} = \frac{|\vec{RP} \times \vec{d}|}{|\vec{d}|}$$

$$\vec{RP} \times \vec{d} = (0, -6, -6)$$

$$|\vec{RP} \times \vec{d}| = \sqrt{0 + 6^2 + 6^2} = \sqrt{72}$$

$$|\vec{d}| = \sqrt{4 + 1 + 1} = \sqrt{6}$$

$$dist(P, r) = \frac{\sqrt{72}}{\sqrt{6}} = \sqrt{12}$$

DISTANCIAS ENTRE PUNTOS, RECTAS Y PLANOS

Distancia de una recta a un plano.

- 1. Si la recta corta al plano la distancia es 0.
- 2. Si es paralela al plano la distancia es la de cualquier punto de la recta al plano.

DISTANCIAS ENTRE PUNTOS, RECTAS Y PLANOS

Distancia entre dos planos.

- 1. Si los planos son secantes la distancia es 0.
- 2. Si son paralelos la distancia es la de cualquier punto de uno de los planos al otro.

DISTANCIAS ENTRE DOS RECTAS.

Distancia de entre dos rectas que se cortan o son paralelas.

- 1. Si las rectas se cortan la distancia es 0.
- 2. Si son paralelas la distancia es la de cualquier punto de una de las rectas a la otra.

DISTANCIAS ENTRE DOS RECTAS.

Distancia de entre dos rectas que se cruzan. Método plano paralelo.

- 1. Hallamos el plano π paralelo a s que contiene a r.
- 2. La distancia de un punto de s a π es la distancia entre las dos rectas.

$$d(r,s) = d(s,\pi)$$

DISTANCIAS ENTRE DOS RECTAS.

Distancia de entre dos rectas que se cruzan. Método vector variable.

- 1. Un punto genérico de s S. Depende de λ.
- 2. Un punto genérico de s S. Depende de μ.
- 3. Se le impone que el vector \overrightarrow{RS} sea perpendicular a r y a s. Nos da R_0 y S_0 .

$$d(r,s) = d(R_0,S_0)$$

DISTANCIAS ENTRE DOS RECTAS.

Distancia de entre dos rectas que se cruzan. Método producto mixto.

$$d(r,s) = d(Q,\pi) = h = \frac{\text{Vol. paralelepípedo}}{\text{Área de la base}} = \frac{\left[\vec{u}, \vec{v}, \overrightarrow{PQ}\right]}{\left|\vec{u} \times \vec{v}\right|}$$

DISTANCIAS ENTRE DOS RECTAS.

Ejemplo: Calcula la distancia entre las rectas:
$$r:\begin{cases} x=5+\lambda \\ y=-1 \end{cases}$$
 s: $\begin{cases} x=4+3\mu \\ y=3-\mu \\ z=8+2\lambda \end{cases}$

MÉTODO DEL PLANO PARALELO

Hallemos el plano π que contiene a r y es paralelo a s.

$$(1, 0, 2) // r$$
 Por tanto, $(1, 0, 2) \times (3, -1, 4) = (2, 2, -1)$ es perpen $(3, -1, 4) // s$ dicular a π .

El punto (5, -1, 8) es de r v, por tanto, de π .

Ecuación de
$$\pi$$
: $2(x-5) + 2(y+1) - 1(z-8) = 0 \rightarrow \pi$: $2x + 2y - z = 0$

$$dist(s, r) = dist(s, \pi) = dist[(4, 3, 5), \pi] = \frac{|2 \cdot 4 + 2 \cdot 3 - 5|}{\sqrt{4 + 4 + 1}} = \frac{9}{3} = 3$$

DISTANCIAS ENTRE DOS RECTAS.

Ejemplo: Calcula la distancia entre las rectas:

r:
$$\begin{cases} x = 5 + \lambda \\ y = -1 \\ z = 8 + 2\lambda \end{cases}$$
 s: $\begin{cases} x = 4 + 3\mu \\ y = 3 - \mu \\ z = 5 + 4\mu \end{cases}$

MÉTODO DEL VECTOR VARIABLE

Punto genérico de
$$r$$
: $R(5 + \lambda, -1, 8 + 2\lambda)$

Punto genérico de s:
$$S(4 + 3\mu, 3 - \mu, 5 + 4\mu)$$

Un vector genérico que tenga su origen en r y su extremo en s es:

$$\vec{RS} = (4 + 3\mu - 5 - \lambda, 3 - \mu + 1, 5 + 4\mu - 8 - 2\lambda) =$$

$$= (-1 + 3\mu - \lambda, 4 - \mu, -3 + 4\mu - 2\lambda)$$

De todos los posibles vectores \overrightarrow{RS} , buscamos aquel que sea perpendicular a las dos rectas:

$$\overrightarrow{RS} \cdot (1, 0, 2) = 0 \rightarrow 7 + 5\lambda - 11\mu = 0 \overrightarrow{RS} \cdot (3, -1, 4) = 0 \rightarrow 19 + 11\lambda - 26\mu = 0$$

La solución es $\lambda = 3$, $\mu = 2$. Sustituyendo en r y en s, obtenemos los puntos R_0 y S_0 :

$$\left. \begin{array}{l} R_0(8,\,-1,\,14) \\ S_0(10,\,1,\,13) \end{array} \right\}$$

$$dist(r, s) = dist(R_0, S_0) = \sqrt{(10 - 8)^2 + (1 + 1)^2 + (13 - 14)^2} = 3$$

Este método, más complejo que el anterior, es especialmente útil cuando, además de la distancia de r a s, se desea hallar la **recta perpendicular** a r v a s. Obviamente, es la recta que pasa por R_0 v S_0 .

DISTANCIAS ENTRE DOS RECTAS.

Ejemplo: Calcula la distancia entre las rectas:

$$dist(s, r) = dist(s, plano \pi) =$$

MÉTODO DEL PRODUCTO MIXTO
$$dist(s, r) = dist(s, \text{ plano } \pi) = \begin{cases} y = -1 \\ z = 8 + 2\lambda \end{cases} \begin{cases} y = 3 - \mu \\ z = 5 + 4\mu \end{cases}$$

 $x = 5 + \lambda$

_ Vol. del paralelepípedo definido por \vec{RS} , \vec{d} , $\vec{d'}$ _ $[\vec{RS}$, \vec{d} , $\vec{d'}]$ $|\vec{d} \times \vec{d}'|$ Área del paralelogramo definido por d, d'

$$[\overrightarrow{RS}, \overrightarrow{d}, \overrightarrow{d'}] = \begin{vmatrix} -1 & 4 & -3 \\ 1 & 0 & 2 \\ 3 & -1 & 4 \end{vmatrix} = 9$$

$$\overrightarrow{d} \times \overrightarrow{d'} = (2, 2, -1) \quad |\overrightarrow{d} \times \overrightarrow{d'}| = \sqrt{4 + 4 + 1} = 3$$

$$dist(s, r) = \frac{9}{3} = 3$$

PERPENDICULAR COMÚN A DOS RECTAS QUE SE CRUZAN.

PERPENDICULAR COMÚN A DOS RECTAS QUE SE CRUZAN.

Ejemplo: Calcula la perpendicular común de las rectas cruzadas:

$$r: \begin{cases} x = \lambda \\ y = 1 + \lambda \\ z = -1 - \lambda \end{cases} \qquad r: \begin{cases} x = 2 - 2\lambda \\ y = 0 \\ z = 1 + \lambda \end{cases}$$

 $A_r(0, 1, -1), \vec{u}_r = (1, 1, -1), A_s(2, 0, 1), \vec{u}_s = (-2, 0, 1), \vec{u}_r \times \vec{u}_s = (1, 1, 2)$ Se calculan los planos π : $(A_r, \vec{u}_r, \vec{u}_r \times \vec{u}_s)$ y π' : $(A_s, \vec{u}_s, \vec{u}_r \times \vec{u}_s)$:

$$\pi: \begin{vmatrix} x & y-1 & z+1 \\ 1 & 1 & -1 \\ 1 & 1 & 2 \end{vmatrix} = 0 \Rightarrow x-y = -1; \ \pi': \begin{vmatrix} x-2 & y & z-1 \\ -2 & 0 & 1 \\ 1 & 1 & 2 \end{vmatrix} = 0 \Rightarrow -x+5y-2z = -4$$

La perpendicular común es la recta t: $\begin{cases} x - y + 1 = 0 \\ -x + 5v - 2z + 4 = 0 \end{cases}$

MEDIDA DE ÁREAS Y VOLÚMENES.

Área de un paralelogramo del que se conocen los vértices.

Área paralelogramo ABCD = $\overline{AB} \times \overline{AD}$

MEDIDA DE ÁREAS Y VOLÚMENES.

Área de un triángulo del que se conocen los vértices.

Área triángulo
$$\widehat{ABC} = \frac{1}{2} \cdot \left| \overrightarrow{AB} \times \overrightarrow{AC} \right|$$

MEDIDA DE ÁREAS Y VOLÚMENES.

Ejemplo: Hallar el área del triángulo de vértices:

$$A = (-5, 2, 1)$$
 $B = (1, 7, 5)$

$$B = (1, 7, 5)$$

$$C = (-1, 0, 4)$$

$$\overrightarrow{AB} = (6,5,4)$$

$$\overrightarrow{AC} = (4,-2,3)$$

$$\rightarrow \overrightarrow{AB} \times \overrightarrow{AC} = (23,-2,-32)$$

Área triángulo =
$$\frac{1}{2} \cdot \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| = \frac{1}{2} \sqrt{23^2 + 2^2 + 32^2} = \frac{1}{2} \sqrt{1557} \approx 19,73 \text{ u}^2$$

El área del triángulo es, aproximadamente, 19,73 unidades cuadradas

MEDIDA DE ÁREAS Y VOLÚMENES.

Volumen de un paralelepípedo del que se conocen los vértices.

Volumen del paralelepípedo = $\left\| \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \right\|$

MEDIDA DE ÁREAS Y VOLÚMENES.

Volumen de un tetraedro del que se conocen los vértices.

Volumen del tetraedro = $\frac{1}{6} \cdot \left[\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \right]$

MEDIDA DE ÁREAS Y VOLÚMENES.

Ejemplo: Hallar el volumen del tetraedro de vértices:

$$A = (3, 5, 7)$$

$$\mathbf{B} = (1, 0, -1)$$

$$C = (7, -1, 4)$$

$$D = (11, 4, -6)$$

$$\overrightarrow{BA} = (2,5,8)$$

$$\overrightarrow{BC} = (6, -1, 5)$$

$$\overrightarrow{BA} = (2,5,8)$$
 $\overrightarrow{BC} = (6,-1,5)$ $\overrightarrow{BD} = (10,4,-5)$

Volumen del tetraedro =
$$\frac{1}{6} \cdot \left[\overrightarrow{BA}, \overrightarrow{BC}, \overrightarrow{BD} \right] = \frac{1}{6} \cdot \begin{vmatrix} 2 & 5 & 8 \\ 6 & -1 & 5 \\ 10 & 4 & -5 \end{vmatrix} = \frac{642}{6} = 107 \text{ u}^3$$

LUGARES GEOMÉTRICOS EN EL ESPACIO.

Plano mediador.

Es el lugar geométrico de los puntos que equidistan de los extremos del segmento AB.

$$d(X,A) = d(X,B)$$

LUGARES GEOMÉTRICOS EN EL ESPACIO.

Plano mediador.

1. Hallar el L.G. de los puntos del espacio que equidistan de A(1, -3, 4) y B(5, 1, -2).

$$dist(X, A) = dist(X, B)$$

$$\sqrt{(x-1)^2 + (y+3)^2 + (z-4)^2} = \sqrt{(x-5)^2 + (y-1)^2 + (z+2)^2}$$

Elevando al cuadrado, desarrollando y simplificando, se llega a la ecuación: 2x + 2y - 3z - 1 = 0

Se trata de un plano. Es perpendicular a $\overrightarrow{AB}(4, 4, -6)$, pues su vector normal $\overrightarrow{n}(2, 2, -3)$ es proporcional a este. Y pasa por el punto medio de AB, M(3, -1, 1). Es, por tanto, el plano mediador del segmento AB.

LUGARES GEOMÉTRICOS EN EL ESPACIO.

Plano bisector.

Es el lugar geométrico de los puntos que equidistan de los semiplanos que forman el ángulo.

$$d(X,\pi) = d(X,\pi')$$

LUGARES GEOMÉTRICOS EN EL ESPACIO.

Plano bisector.

2. Hallar el L.G. de los puntos del espacio que equidistan de los planos π y π':

$$\pi: x + y - 1 = 0$$

 $\pi': y - z - 1 = 0$

$$dist(X, \pi) = dist(X, \pi') \rightarrow \frac{|x + y - 1|}{\sqrt{2}} = \frac{|y - z - 1|}{\sqrt{2}}$$

Al suprimir los valores absolutos aparece el doble signo ±:

$$x + y - 1 = y - z - 1 \rightarrow x + z = 0$$
 (σ)

$$x + y - 1 = -(y - z - 1) \rightarrow x + 2y - z - 2 = 0$$
 (5')

El lugar geométrico está formado por dos planos σ y σ '.

σ y σ' se cortan en la recta r determinada por los puntos P(1, 0, -1) y Q(0, 1, 0), al igual que π y π'. (Compruébalo).

Además, los planos σ v σ' son perpendiculares:

$$(1, 0, 1) \cdot (1, 2, -1) = 0$$

