Homework 1

Kevin Guillen

MATH 201 — Algebra II — Winter 2022

Problem P1 Let M be a left R—module.

- (a) Let $N_1 \subseteq N_2 \subseteq N_3 \subseteq ...$ be an ascending chan of R-submodules in M. Prove that the union $\bigcup_{i=1}^{\infty} N_i$ is an R-submodule of M.
- (b) Let $R = \mathcal{C}(\mathbb{R})$ denote the ring of (real-valued) continuous functions on \mathbb{R} , with pointwise addition and multiplication (as in class). defined

$$\mathcal{C}_{\mathbf{c}}(\mathbb{R}) = \{ f \in \mathcal{C}(\mathbb{R}) : \exists N = N(f) \in \mathbb{N} \text{ such that } f(x) = 0 \text{ for all } |x| > N \}$$

Prove that $\mathcal{C}_{\mathbb{C}}(\mathbb{R})$ is an \mathbb{R} -submodule of \mathbb{R} . Is it a subring?

(a) *Proof.* First we will define N to be the following,

$$N = \bigcup_{j=1}^{\infty} N_j.$$

Now we must show that N is a subgroup of M under addition and that it is closed under scalar operation for it to be a submodule. So we will show that it is non-empty, closed under addition, and closed under scalars. Inverses is handled through the proof of scalars since $-1_R \in R$.

We know N is non-empty since it is a union of non-empty sets (because N_j is given to be a submodule). So let $x,y\in N$ we know then there exists some $a,b\in \mathbb{N}$ such that $x\in N_a$ and $y\in N_b$. We can then let $k=\max\{a,b\}$. Which means $N_a\subseteq N_k$ and $N_b\subseteq N_k$ and therefore $x,y\in N_k$.

Now because we know N_k to be a submodule of M (since k is either equal to α or b), we have the following

$$x + y \in N_k$$

and because $N_k \subseteq N$ we have,

$$x + y \in N$$

as desired.

Now let $r \in R$ and $x \in N$. Like before this means that there exists some $a \in \mathbb{N}$ such that $x \in N_a$. Where N_a is a submodule of M. So we know the following

$$rx \in N_a$$

and because $N_{\alpha} \subseteq N$ we have,

$$rx \in N$$

as desired.

All this together then means that $\bigcup_{j=1}^{\infty} N_j$ is indeed a submodule of M.

(b) *Proof.* In order to show that $\mathcal{C}_{\mathbb{C}}(\mathbb{R})$ is an R-submodule we will show that it is non-empty, closed under addition, and closed under scalars.

First consider the zero function, which we will denote as 0, that maps everything to $0_{\mathbb{R}}$. Since we know

$$o(x) = 0, \forall x \in \mathbb{R}$$

then we know it must be in $\mathcal{C}_{\mathbb{C}}(\mathbb{R})$ since for $\mathbb{N}=1$ we have

$$o(x) = 0, \forall |x| > 1.$$

Now let $f,g\in\mathcal{C}_C(\mathbb{R})$. Then we know there exists $N_f,N_g\in\mathbb{N}$ such that the following hold,

$$f(x) = 0, \forall |x| > N_f \tag{1}$$

$$g(x) = 0, \forall |x| > N_{\alpha} \tag{2}$$

Now we want to show that $(f + g) \in \mathcal{C}_{\mathbb{C}}(\mathbb{R})$. We know addition is defined pointwise so,

$$(f+g)(x) = f(x) + g(x)$$

And we know the addition of continuous function is again continuous. Now let $N_{f+g} = \max\{N_f, N_g\}$, we know then that the following holds,

$$f(x) + g(x) = 0, \ \forall |x| > N_{f+a}.$$
 (3)

This is because,

$$f(x) = 0, \forall |x| > N_{f+g} \ge N_f$$
 by (1)

$$g(x) = 0, \ \forall |x| > N_{f+g} \geqslant N_g$$
 by (2)

and 0+0=0. Since $N_{f+g} \in \mathbb{N}$ we have then that $(f+g) \in \mathcal{C}_{\mathbb{C}}(\mathbb{R})$ as desired.

Now we will show that $\mathcal{C}_C(\mathbb{R})$ is closed under scalars. Let $r \in R = \mathcal{C}(\mathbb{R})$ and $f \in \mathcal{C}_C(\mathbb{R})$. We know then there exists $N_f \in \mathbb{N}$ such that,

$$f(x) = 0, \forall |x| > N_f$$

We know then that the following holds,

$$(rf)(x) = r(x)f(x) = 0, \forall |x| > N_f.$$

This is because r(x) will evaluate to some real number and we know f(x) = 0 for all $|x| > N_f$. Any real number times 0 will again be 0, and the product of continuous functions is again continuous, meaning $(rf) \in \mathcal{C}_C(\mathbb{R})$ as desired.

From this we can quickly see that $\mathcal{C}_{\mathbb{C}}(\mathbb{R})$ is not a subring of $\mathcal{C}(\mathbb{R})$. This is because $\mathcal{C}(\mathbb{R})$ contains a multiplicative identity which is the constant function that maps everything to 1.

This function is not in the set $\mathcal{C}_C(\mathbb{R})$ and therefore $\mathcal{C}_C(\mathbb{R})$ cannot be a subring of $\mathcal{C}(\mathbb{R})$ since it can't share the same multiplicative identity.

Problem P2 Let M be a left R—module. The *annihlator* of M in R is defined as:

$$Ann_{\mathbb{R}}(\mathbb{M}) = \{ \mathbf{r} \in \mathbb{R} : \mathbf{rm} = 0 \text{ for all } \mathbf{m} \in \mathbb{M} \}$$

- (a) Prove that $Ann_R(M)$ is a bilateral ideal of R.
- (b) If M₁ and M₂ are two left R-modules, prove that

$$Ann_{R}(M_{1} \times M_{2}) = Ann_{R}(M_{1}) \cap Ann_{R}(M_{2})$$

- (c) Compute $Ann_R(M)$ when $R = \mathbb{Z}$ and $M = (\mathbb{Z}/112\mathbb{Z})^{\times}$ is the multiplicative abelian group of units in $\mathbb{Z}/112\mathbb{Z}$
- (a) *Proof.* Let $Ann_R(M)$ be denoted as I. We know this I is non-empty since $0 \in R$ and 0m = 0 for all $m \in M$. So now let $a, b \in I$, we will show that $a + b \in I$. Let $m \in M$. Consider the following,

$$(a + b)m = am + bm$$
 by definition
= $0 + 0$ since $a, b \in I$

and since m was arbitrary we have then that (a+b)m=0 for all $m\in M$, meaning $(a+b)\in I$.

Let $r \in R$ and $a \in I$. We want to show $ra \in I$, so let $m \in M$. We see through the following,

$$(ra)m = r(am)$$
 $a \in I$
= $r0$
= 0

ra is in I. Now we want to show that $ar \in I$,

$$(ar)m = a(rm)$$
 M is closed under scalars so $rm \in M$, and $a \in I$
= 0

Now with all this together we have that $Ann_R(M)$ is a bilateral ideal of R

(b) *Proof.* Let $r \in Ann_R(M_1 \times M_2)$. That means then for all $(m_1, m_2) \in M_1 \times M_2$,

$$r(m_1, m_2) = (rm_1, rm_2) = (0, 0)$$

since scalar multiplication is done component wise when working with the cross product of R-modules, $rm_1 = 0$ and $rm_2 = 0$ for all $m_1 \in M_1$ and for all $m_2 \in M_2$ therefore, $r \in Ann_R(M_1) \cap Ann_R(M_2)$.

Because r was arbitrary, $Ann_R(M_1 \times M_2) \subseteq Ann_R(M_1) \cap Ann_R(M_2)$

Now consider $r \in Ann_R(M_1) \cap Ann_R(M_2)$. Let $(m_1, m_2) \in M_1 \times M_2$, we have the following,

$$r(m_1, m_2) = (rm_1, rm_2)$$
 $r \in Ann_R(M_1)$ and $r \in Ann_R(M_2)$
= $(0,0)$

which means $r \in Ann_R(M_1 \times M_2)$ and since r was arbitrary we have $Ann_R(M_1) \cap Ann_R(M_2) \subseteq Ann_R(M_1 \times M_2)$.

Together we then have that $Ann_R(M_1 \times M_2) = Ann_R(M_1) \cap Ann_R(M_2)$ as desired. \square

(c) Let $z \in \mathbb{Z}$ and $\overline{\mathfrak{m}} \in (\mathbb{Z}/112\mathbb{Z})^{\times}$. For z to be an element of the annihilator of M in \mathbb{Z} we must have

$$z\overline{m} = 0$$

for all $\overline{\mathfrak{m}} \in (\mathbb{Z}/112\mathbb{Z})^{\times}$. This means then that 112 | z, because $\overline{\mathfrak{m}} \neq 0$, but

$$112 \mid z \iff 7 \mid z \land 2 \mid z$$

giving us the following congruencies,

$$z \equiv 0 \bmod 7$$

$$z \equiv 0 \bmod 2$$

and by CRT the solution is $z \equiv 0 \mod 14$ which is to say $z \in 14\mathbb{Z}$. Therefore the annihilator of $(\mathbb{Z}/112\mathbb{Z})^{\times}$ in \mathbb{Z} is $14\mathbb{Z}$.