Order of an integer.

Primitive roots.

Definition 1. Let a, n be relatively prime positive integers.

The least positive integer x such that

$$a^x \equiv 1 \mod n$$

is called the order of a modulo n.

Notation. ord_na

Remark. In particular,

$$a^{ord_n a} \equiv 1 \mod n$$
.

1. Let a, n be relatively prime integers with n > 1Theorem 0. Then the positive integer x is a solution of the congruence

$$a^x \equiv 1 \mod n$$

if and only if

$$ord_n a | x$$
.

Proof. Suppose first that $ord_n a | x$. Then $x = k \cdot ord_n a$ for some $k \in \mathbb{Z}_{>0}$ and

$$a^x = (a^{ord_n a})^k \equiv 1 \mod n.$$

Conversely, if $a^x \equiv 1 \mod n$ and $x = q \cdot ord_n a + r$, with $0 \le r < r$ $ord_n a$, then, by the definition

$$a^x = a^{q \cdot ord_n a + r} = (a^{ord_n a})^q a^r \equiv a^r \mod n.$$

Since $a^x \equiv 1 \mod n$, $a^r \equiv 1 \mod n$. On the other hand, $0 \le r < 1$ $ord_n a$. Therefore r=0 because $ord_n a$ is the least positive integer y satisfying $a^y \equiv 1 \mod n$. This implies that $x = q \cdot ord_n a$ and $ord_n a | x$. \square

Corollary. If a, n are relatively prime integers with n > 0, then $ord_n a | \phi(n)$.

Proof. Euler's theorem implies that, since (a, n) = 1, $a^{\phi(n)} \equiv 1$ mod n. Then, by Th. 20.1, $ord_n a | \phi(n)$.

2. If $ord_n a = t$ and $m \in \mathbb{Z}_{>0}$, then Theorem

$$ord_n(a^m) = \frac{t}{(t,m)}$$

 $ord_n(a^m) = \frac{t}{(t,m)}.$ **Proof.** Set $s = ord_n(a^m)$, $t_1 = \frac{t}{(t,m)}$ and $m_1 = \frac{m}{(t,m)}$.

Since $ord_n a = t$,

$$(a^m)^{t_1} = (a^{m_1(t,m)})^{\frac{t}{(t,m)}} = (a^t)^{m_1} \equiv 1 \mod n.$$

Hence, by Th. 20.1., $s|t_1$.

Since, $a^{ms} = (a^m)^s \equiv 1 \mod n$, t|ms (again, by Th. 20.1.).

Therefore, $t_1|m_1s$ and, since $(t_1, m_1) = 1$, $t_1|s$.

Since $s|t_1$ and $t_1|s$, $s=t_1$. \square

Definition 2 Let r, n be relatively prime integers with n > 0. If $ord_n r = \phi(n)$, then r is called a primitive root modulo n.

Example. By a direct check, $ord_75 = 6$. Since $\phi(7) = 6$, 5 is a primitive root modulo 7.

On the other hand, $ord_72 = 3 \neq \phi(7)$, therefore 2 is not a primitive root modulo 7.

Lemma 1 Let a, n be relatively prime integers with n > 0. Then $a^i \equiv a^j \mod n$, $(i, j \in \mathbb{Z}_{\geq 0})$, if and only if $i \equiv j \mod ord_n a$.

Proof. If $i \equiv j \mod ord_n a$ and $0 \le j \le i$, then $i = j + k \cdot ord_n a$ for some $k \in \mathbb{Z}_{\ge 0}$. Therefore,

$$a^i = a^{j+k \cdot ord_n a} = a^j (a^{ord_n a})^k \equiv a^j \mod n$$

since $a^{ord_n a} \equiv 1 \mod n$.

Conversely, if $a^i \equiv a^j \mod m$ with $i \geq j$, then, by the cancelation of a^j in the congruence

$$a^j a^{i-j} \equiv a^j \mod n$$

we obtain $a^{i-j} \equiv 1 \mod n$. Th. 20.1. implies that $ord_n a | (i-j)$, i.e. $i \equiv j \mod ord_n a$. \square

Theorem 3. Let r, n be relatively prime integers with n > 0. If r is a primitive root modulo n, then the integers

$$r, r^2, \ldots, r^{\phi(n)}$$

form a reduced residue system modulo n.

Proof. By the definition of reduced residue systems, it is sufficient to show that all these powers are coprime to n and that no two are congruent modulo n.

- Since (r, n) = 1, $(r^j, n) = 1$ $(j = 1, ..., \phi(n))$
- If $r^i \equiv r^j \mod n$, for some $i, j \in \{1, \ldots, \phi(n)\}$, then, by Lemma 20.1, $i \equiv j \mod ord_n r$, or, since r is a primitive root modulo n, $i \equiv j \mod \phi(n)$. Since $1 \le i \le \phi(n)$ and $1 \le j \le \phi(n)$, i = j. \square

Theorem 4. Let r be a primitive root modulo n, where n is an integer > 1. Then r^m is a primitive root modulo n if and only if $(m, \phi(n)) = 1$

Proof. Theorem 2 implies

$$ord_n(r^m) = \frac{ord_nr}{(m, ord_nr)} = \frac{\phi(n)}{(m, \phi(n))}.$$

Therefore, r^m is a primitive root modulo n (i.e. $ord_n(r^m) = \phi(n)$) if and only if $(m, \phi(n)) = 1$. \square

Theorem 5. If $n \in \mathbb{Z}_{>0}$ has a primitive root, then it has exactly $\phi(\phi(n))$ incongruent primitive roots.

Proof. Let r be a primitive root of n. By Th 20.3, the only integers coprime to n are those congruent to $r, r^2, \ldots r^{\phi(n)}$. On the other hand, by Th. 20.4, r^m is a primitive root modulo n if and only if $(m, \phi(n)) = 1$. Since there are exactly $\phi(\phi(n))$ such integers $m \leq \phi(n)$, we obtain the result. \square

Existence of primitive roots.

Theorem 1 (Lagrange) Let p be a prime and let $f(x) = a_n x^n + \cdots + a_0$ be a polynomial of degree $n \ge 1$ with coefficients in \mathbb{Z} such that $p \not | a_n$. Then f(x) has at most n incongruent solutions modulo p.

Proof. D. Burton, Elementary Number Theory, McGraw Hill, 5th Ed. (2002) (Section 8.2)

Theorem 2. If p is a prime and d is a divisor of p-1, then $x^d - 1$ has exactly d incongruent roots modulo p.

Proof. If p-1=dn, $(n \in \mathbb{Z})$ then $x^{p-1}-1=(x^d-1)h(x)$, where $h(x)=x^{d(n-1)}+\cdots+x^d+1$. Let R_1,R_2,R_3 be the sets of incongruent solutions $\mod p$ of $x^{p-1}-1$, x^d-1 and h(x) respectively. Since each solution of $x^{p-1}\equiv 1 \mod p$ is is a solution either of $x^d\equiv 1 \mod p$ or of $g(x)\equiv 0 \mod p$ and vice-versa, $R_1=R_2\cup R_3$. Therefore, $|R_1|\leq |R_2|+|R_3|$.

- By Fermat's little theorem, $|R_1| = p 1$.
- By Lagrange's theorem, $|R_3| \le d(n-1) = p d 1$. Therefore,
- $|R_2| \ge |R_1| |R_3| \ge (p-1) (p-d-1) = d$. Since, by Lagrange's theorem, $|R_2| \le d$, $|R_2| = d$. \square

Theorem 3. If p is a prime and d is a divisor of p-1, then the number of incongruent integers of order d modulo p is $\phi(d)$.

Proof. Coursework

Corollary. Every prime has a primitive root.

Proof. Let p be a prime. By definition, an integer r is a primitive root modulo p if and only if $ord_p r = \phi(p) = p - 1$. Th. 21.3. implies that there are $\phi(p-1)$ incongruent integers of order p-1 modulo p. Therefore, p has $\phi(p-1) > 0$ primitive roots. \square

Theorem 4. The only positive integers having primitive roots are those of the form

$$2, 4, p^t, 2p^t$$

where p is an odd prime and $t \in \mathbb{Z}_{>0}$.

Proof. D. Burton, Elementary Number Theory, McGraw Hill, 5th Ed. (2002) (Section 8.3)

Index arithmetic

Discrete logarithms

Lemma 1. Suppose that $m \in \mathbb{Z}_{>0}$ has a primitive root r. If a is a positive integer with (a, m) = 1, then there is a unique integer x with $1 \le x \le \phi(m)$ such that

$$r^x \equiv a \mod m$$
.

Proof. By Th. 20.3., $\{r, r^2, \ldots, r^{\phi(m)}\}$ is a reduced residue system $\mod m$. Therefore, if (a, m) = 1, then there is a unique element in that set congruent to $a \mod m$. \square

Definition 1 If $m \in \mathbb{Z}_{>0}$ has a primitive root r and a is a positive integer with (a, m) = 1, then the unique integer x with $1 \le x \le \phi(m)$ and $r^x \equiv a \mod m$ is called the index (or discrete logarithm) of a to the base r modulo m.

Notation. ind_ra .

Remark. In particular,

$$r^{ind_r a} \equiv a \mod m$$
.

Theorem: 1. Let m be a positive integer with primitive root r. If a, b are positive integers coprime to m and k is a positive integer, then

- (i) $ind_r 1 \equiv 0 \mod \phi(m)$
- (ii) $ind_r(ab) \equiv ind_r a + ind_r b \mod \phi(m)$
- (iii) $ind_r a^k \equiv k \cdot ind_r a \mod \phi(m)$

Proof. (i) Euler's theorem implies that $r^{\phi(m)} \equiv 1 \mod m$. Therefore, $ind_r 1 = \phi(m) \equiv 0 \mod \phi(m)$.

(ii) By definition,

$$r^{ind_r a} \equiv a \mod m$$

 $r^{ind_r b} \equiv b \mod m$ and $r^{ind_r(ab)} \equiv ab \mod m$.

Therefore,

$$r^{ind_r(ab)} \equiv ab \equiv r^{ind_ra}r^{ind_rb} = r^{ind_ra+ind_rb} \mod m.$$

Lemma 20.1 then implies that $ind_r(ab) \equiv ind_r a + ind_r b \mod \phi(m)$.

(iii) Since, by (ii), $ind_r(a^{k-1}a) \equiv ind_ra^{k-1} + ind_ra \mod \phi(m)$, the result follows by induction on k.