ELECTROTECNIA TEÓRICA

MEEC IST

2° Semestre 2017/18

2º TRABALHO LABORATORIAL

ESTUDO DE UM CIRCUITO MAGNÉTICO E DOS FENÓMENOS DE INDUÇÃO MAGNÉTICA ASSOCIADOS

Prof. V. Maló Machado
Prof. M. Guerreiro das Neves
Prof. Ma Eduarda Pedro

ELECTROTECNIA TEÓRICA

TRABALHO LABORATORIAL

ESTUDO DE UM CIRCUITO MAGNÉTICO E DOS FENÓMENOS DE INDUÇÃO MAGNÉTICA ASSOCIADOS

1. OBJECTIVOS

Pretende-se evidenciar o comportamento de um circuito magnético constituído por um núcleo de ferro e entreferros de ar. Em particular, pretende-se analisar e fazer medidas que esclareçam a dependência do fluxo com a corrente de excitação e com o tamanho dos entreferros.

Observar-se-á também o ciclo de histerese em regime alternado sinusoidal do fluxo, para várias situações.

O princípio do método de medida ilustra ainda a aplicação da lei da indução.

2. NOTAS SOBRE OS FENÓMENOS DE SATURAÇÃO E HISTERESE

Num circuito magnético sem derivações – desprezando a dispersão – o circuito define um tubo de fluxo, e a equação div $\mathbf{B} = 0$ obriga a que o fluxo simples resultante numa secção do circuito magnético ϕ seja o mesmo em qualquer secção deste circuito.

Tomando a aproximação de considerar o campo uniforme, o valor da indução B numa secção vem imposto pela área da secção considerada, $B = \phi/S$, e o campo magnético pela relação B = B(H) seguida pelo material, existente nessa região.

A relação B = B(H) do ferro é não-linear, havendo saturação e histerese. Com o material desmagnetizado (B = 0, H = 0) a subida de H leva à subida de B numa relação (troço 1 da Fig. 1) que tem uma zona aproximadamente linear, até atingir a saturação. A subsequente

diminuição de H faz diminuir B, mas por valores superiores (troço 2). Quando H se anula, fica uma "<u>indução remanescente</u>", B_R . Para anular o campo de indução, é necessário baixar o campo H até $-H_C$, <u>campo magnético coercivo</u>. A diminuição até $\left(-H_M, -B_M\right)$ e nova subida de H completam o ciclo; a nova subida efectua-se pelo troço 3, diferente de 1 e 2. Os valores da indução remanescente (ou residual), e do campo coercivo, dependem dos máximos H_M, B_M atingidos.

- Fig. 1 -

Uma forma de desmagnetizar o material é obrigá-lo a descrever ciclos progressivamente menores, em torno da origem. A alimentação em corrente alternada com uma tensão de amplitude decrescente é um processo cómodo de realizar a desmagnetização.

A área do ciclo, em unidades $B \times H$, mede a densidade volumétrica de energia (J/m³) dissipada ao descrever-se um ciclo completo.

A lei de Ampère relaciona *H* com a força magnetomotriz (*fmm*), ou seja, com a corrente (no caso de haver uma só bobina de excitação).

A geometria relaciona B com ϕ , e o fluxo ligado com a bobina é $\psi_1 = n_1 \phi$. Assim, o ciclo da Fig. 1, noutra escala, representará a relação ϕ (fmm), ou, ainda noutra escala, $\psi_1(i_1)$. Nesta última, a área do ciclo representa a energia dissipada no volume do núcleo de ferro da bobina ao descrever-se um ciclo completo.

Se a alimentação for feita em corrente alternada, de frequência f, o ciclo é descrito f vezes por segundo. A área, na escala $\psi_1(i_1)$, multiplicada por f, dá a potência relativa às perdas magnéticas no núcleo de ferro.

Se a secção do circuito magnético for constante B é uniforme no núcleo; não havendo heterogeneidades H será uniforme em todo a circuito (Fig. 2.a). Sendo ℓ o comprimento médio das linhas de força do campo, vem:

$$\phi = BS$$
 ; $\psi_1 = n_1 \phi$; $fmm = n_1 i_1 = H \ell$

No caso de haver dois pequenos entreferros, de espessura $\delta/2$ —ver Fig. 2.b— e se δ for muito menor que as dimensões transversais, manter-se-á $B_0=B_{fe}$, pelo que $H_0=B_{fe}/\mu_0$.

Na aplicação da lei de Ampère, virá:

$$fmm = n_1 i_1 = H_{fe} \ell + \frac{\delta}{\mu_0} B_{fe}; \qquad \phi = BS \qquad ; \qquad \psi_1 = n_1 \phi$$

o que permite passar do conhecimento do ciclo de histerese para a característica do circuito com entreferro.

A lei da indução aplicada à bobina da Fig. 2.a dá $u_1(t) = r_1 i_1(t) + d \psi_1/dt$. Desprezando a resistência, vem $u_1(t) \cong d \psi_1/dt$. Se a tensão u_1 for sinusoidal também o fluxo $\psi_1(t)$ o será (bem como o próprio campo B(t)). Porém, sendo a relação $\psi_1(i_1)$ não-linear, então $i_1(t)$ resultará não sinusoidal. As quedas de tensão resistivas terão a forma da corrente e por isso manter-se-á a resistência do circuito tão baixa quanto possível a fim de se estar próximo da condição de fluxo sinusoidal.

3. ENSAIOS EM CORRENTE ALTERNADA

3.1 Princípio do ensaio

O esquema de princípio destes ensaios é o seguinte:

Em torno do núcleo há duas bobinas, a primária com n_1 espiras e a secundária com n_2 espiras, que será deixada em vazio $(i_2 = 0)$.

A corrente na bobina primária, $i_1(t)$, provoca fluxo no núcleo, $\phi(t)$, o qual é sentido pela bobina secundária mediante, $\psi_2(t) = n_2 \phi(t)$. Com os sentidos indicados na Fig. 3, da lei da indução resulta $u_2(t) = -n_2 \, d\phi/dt$.

Esta tensão é aplicada a um bloco integrador, em cuja saída haverá

$$u_{\phi} = k \int u_2 dt = -k \, n_2 \int (d\phi/dt) dt \quad ,$$

donde se conclui:

$$u_{\phi} = -k \, n_2 \, \phi(t) + C^{te} \ .$$

Em série com a bobina de excitação do núcleo está inserida uma resistência R_a , em cujos terminais surge uma tensão $u_i = i_1 R_a$. Assim, as tensões u_i e u_{ϕ} são representantes respectivamente de i_1 e ϕ ; poderão ser observadas nos canais 1 e 2 de um osciloscópio, vendo-se imagens de $i_1(t)$ e $\phi(t)$; pondo o osciloscópio em modo "X-Y", ver-se-á o ciclo de histerese.

3.2 Esquema de ligações e lista de material

3.2.1 Análise do esquema

O esquema de ligações está representado na Fig. 4.

- Fig. 4 -

3.2.2 Lista de material

Tisol. - Transformador de isolamento 230 V: 230 V; $P_s = 630 \text{ VA}$

AT - Auto-transformador ZENITH.

CM - Circuito magnético Leybold, constituído por pacotes de chapas, com travessa superior amovível, e secção quadrada constante; as dimensões, na Fig. 5, estão expressas em cm.

L₁ - Bobina Leybold 56214, $n_1 = 500$ esp, $r_1 = 2.5 \Omega$ (I_{ef})_{max} = 2.5 A.

L₂ - Bobina Leybold 56213, $n_2 = 250$ esp, $r_2 = 0.6 \Omega$, I = 5 A. Ambas as bobinas têm 3 terminais: dois extremos (E,A) e um médio (M); usam-se os extremos.

 R_a - Resistência com 1 Ω (valor constante).

 $V_1,\,V_2$ - Voltímetros H&B, electrodinâmicos (verdadeiro valor eficaz), classe 0,5, 60-120-300-600 V.

A - Multímetro, de verdadeiro valor eficaz, FLUKE 8010A.

W - Wattímetro electrónico, analógico, SIEMENS 2GA 2990-4A.

BNC - Cabos coaxiais com uma ou duas terminações BNC.

OSC. - Osciloscópio digital TEKTRONIX TDS 200.

INT. - Bloco integrador passivo, construído no laboratório;

 $k = 1/(RC) = 1 \text{ s}^{-1}$.

IMP. - Impressora HP Deskjet 840C.

- Massas comuns, ligadas pelas blindagens dos cabos coaxiais BNC.

Observação: A Lista de Material acima descrita poderá não ser comum a todas as bancadas. Anote, no seu relatório, a lista de material efectivamente disponível na sua bancada.

4. DIMENSIONAMENTO

O dimensionamento deve ser entregue na aula de laboratório, antes da realização do trabalho, sem o que o mesmo não poderá ser realizado!

A característica do ferro do circuito magnético, não considerando a histerese, pode aproximar-se por uma zona linear, com um cotovelo de saturação definido por B = 1,25 T (Fig. 6).

4.1

a) Considere o circuito magnético da Fig. 7.a.

Por aplicação da lei do circuito magnético (lei de Ampère) determine a relação entre as correntes i_1 e i_2 e o campo magnético H na secção do núcleo. Faça uma figura com a indicação do caminho e normal utilizados na aplicação da lei do circuito magnético. Suponha que o circuito se encontra a operar na zona linear de funcionamento, isto é, $H < 330 \, \mathrm{Am}^{-1}$. Determine μ e μ_r .

- b) Com $i_2 = 0$, diga qual o valor máximo de i_1 para ter o circuito magnético a funcionar na zona linear.
- c) Determine as expressões que relacionam as correntes i_1 e i_2 com o fluxo do campo de indução magnética B na secção S, e com os fluxos ψ_1 e ψ_2 ligados com as bobinas L_1 e L_2 . Determine os coeficientes de auto-indução das bobinas, bem como o coeficiente de indução mútua.
- d) Com a bobina L_2 em vazio, sendo a tensão u_1 alternada sinusoidal com valor eficaz $U_{1ef}=220~{\rm V}$ e frequência $f=50~{\rm Hz}$, determine os valores eficazes e desfasagens de i_1 , u_2 , ϕ , ψ_1 e ψ_2 . Despreze as resistências r_1 e r_2 .
- e) Repita d) supondo que a tensão u_1 foi regulada de forma a se ter $U_{2ef} = 35 \text{ V}$.
- f) Determine as relações entre u_{ϕ} e Ψ_1 , entre u_{ϕ} e B, e entre u_i e H.
- **4.2** Considere agora o circuito magnético da Fig. 7.b que inclui dois entreferros de ar de espessura $\delta/2$ cada, sendo $\delta = 4,1$ mm. Despreze o campo magnético no interior das peças em ferro.
 - a) Repita a alínea 4.1 a) para este novo circuito.
 - b) Repita a alínea **4.1** c) para este novo circuito.
- **4.3** Preencha a tabela **R 4.3** do relatório.

5. EXECUÇÃO DO TRABALHO

CUIDADO: TENSÕES DISPONÍVEIS PERIGOSAS.

ACTUAR SEMPRE COM EXTREMA PRECAUÇÃO.

5.1 O esquema da Fig. 4 encontra-se montado. O amperímetro A deve ser ligado na escala dos 2 A. Verificar que o auto-transformador está regulado para <u>zero</u> antes de ligar a bancada.

Serão usados dois grupos de escalas no osciloscópio:

Escalas "A": u_{ϕ} : 100 mV/div u_{i} : 1 V/div t: 5 ms/div

Escalas "B": u_{ϕ} : 200 mV/div u_{i} : 500 mV/div t: 5 ms/div

5.2 Após a verificação das ligações pelo docente, ligue a bancada. No menu "MEASURE" do osciloscópio faça as regulações necessárias para medir o valor pico a pico e o valor eficaz, em ambos os canais. Regule a posição vertical nos dois canais do osciloscópio de modo a fazer coincidir o zero com a linha média do ecrã.

- **5.3** Regule a tensão u_1 de forma que $U_{1ef} = 220 \text{ V}$.
 - a) Anote na tabela **R 6.1** as leituras de V_1 , V_2 , A, W e U_{iM} (lido como metade do valor pico a pico no canal 1 do osciloscópio), $U_{\phi M}$ (lido como metade do valor pico a pico no canal 2 do osciloscópio) U_{ief} e $U_{\phi ef}$.
 - b) Observe as formas de onda de $i_1(t)$ e B(t) nos canais 1 e 2, respectivamente, do osciloscópio; obtenha cópias em papel das figuras nas escalas "B".
 - c) Passe o osciloscópio para o modo "X-Y". Observe o ciclo de histerese. Obtenha cópia, em papel, do ciclo, na escala "B".
- **5.4** Regule a tensão u_1 de forma que $U_{2ef} = 35 \text{ V}$ (verificando-se nesta situação que $U_{1ef} \approx 70 \text{ V}$). Repita o procedimento de **5.3** a) e anote as leituras na tabela **R 6.2 a**).
- **5.5** Desça lentamente a tensão u_1 até zero e desligue a bancada. Retire a travessa amovível do núcleo, coloque um calço de 2,05 mm, e reponha a travessa. Ligue o amperímetro A na escala de 10 A. Suba a tensão u_1 de forma que $U_{2ef} = 35$ V.
 - a) Repita o procedimento de **5.3** a) com $U_{2ef} = 35$ V (verificando-se nesta situação que $U_{1ef} > 70$ V) e anote as leituras na tabela **R 6.3** a).

- b) Repita os procedimentos de **5.3** b) e c), mas com o osciloscópio na escala "A".
- **5.6** Desça lentamente a tensão u_1 até zero. Desligue os aparelhos e a bancada.

6. RELATÓRIO

- **6.1** Ensaio realizado sem entreferros, com $U_{1ef} = 220 \text{ V}$ (ensaio descrito na alínea **5.3**).
 - a) Calcule os valores de B_{max} , $i_{1\text{max}}$, e preencha a tabela **R 6.1 b).**
 - b) Apresente as curvas de B(t) e $i_1(t)$, com os eixos devidamente graduados, nas escalas "B".
 - c) Apresente o ciclo de histerese obtido, com os eixos (i_1, ψ_1) devidamente graduados nas escalas "B".
 - d) Histerese e perdas magnéticas no ferro Estime a área do ciclo obtido em **5.3** c) com $U_{1ef} = 220 \text{ V}$ por exemplo, aproximando-o a um paralelogramo exprimindo-a em J (joule). Calcule a potência de Joule $P_J = r_1 (I_{1ef})^2$ na bobina, e verifique que é muito menor que a potência lida no wattímetro e apresentada na tabela **R 6.1** a). Verifique que esta é a soma das perdas de Joule com as perdas por histerese. Preencha a tabela **R 6.1** d).
- **6.2** Ensaio realizado sem entreferros, com $U_{2ef} = 35 \text{ V}$ (ensaio realizado na alínea **5.4**).
 - a) Apresente os valores lidos no ensaio e calcule B_{max} , $i_{1\text{max}}$, $\Psi_{1\text{ef}}$ e $\Psi_{2\text{ef}}$.

b) Calcule os valores de
$$L_{11} = \frac{U_{1ef}}{\omega I_{1ef}} = \frac{\Psi_{1ef}}{I_{1ef}}$$
, $L_{M} = \frac{\Psi_{2ef}}{I_{1ef}}$ e $L_{22} = \left(\frac{n_{2}}{n_{1}}\right)^{2} L_{11}$.

Preencha a tabela **R 6.2 b**).

- **6.3** Ensaio realizado com entreferros, $\delta = 4.1$ mm, e com $U_{2ef} = 35$ V (ensaio realizado na alínea **5.5**).
 - a) Apresente os valores lidos no ensaio e calcule B_{max} , $i_{1\text{max}}$, $\Psi_{1\text{ef}}$ e $\Psi_{2\text{ef}}$.
 - b) Calcule os valores de L_{11} , $L_{\rm M}$ e L_{22} .
 - c) Apresente as curvas de B(t) e $i_1(t)$, com os eixos devidamente graduados, nas escalas "A".

d) Apresente o ciclo de histerese obtido, com os eixos (i_1, ψ_1) devidamente graduados nas escalas "A".

e) Comente, comparando com as curvas apresentadas em **6.1** b) e **6.1** c).

f) Comente as discrepâncias entre os valores de L_{11} calculados pelas duas expressões

utilizadas.

O relatório tem que ser entregue no final da aula de laboratório e consiste no preenchimento da

ficha apresentada em Anexo, à qual se devem juntar as curvas impressas, devidamente

graduadas.

REFERÊNCIAS

J. A. Brandão Faria, 'Electromagnetic Foundations of Electrical Engineering', Wiley, 2008.

Cap. 4; Cap. 5.

IST, Fevereiro de 2018

- 10 -

ANEXO

RELATÓRIO DO 2º TRABALHO LABORATORIAL

R 4.3:

Cálculo das escalas de i_1 , ψ_1 e B

	i_1 [A/div]	ψ1 [Wb/div]	B [T/div]
Escalas "A"			
Escalas "B"			

R 6.1 a) e 6.1 b):

Valores medidos em 5.3 a)

V_{I} [V]	V_2 [V]	A [A]	W [W]	$U_{iM}\left[V ight]$	$U_{\phi \! M}$ [V]	U_{ief} [V]	$U_{\phi ef}$ [V]

Cálculo de B_{max} , i_{1max} .

B_{max} [T]	i_{1max} [A]

R 6.1 d):

Estime a área do ciclo W_{ciclo} (energia dissipada no núcleo de ferro num ciclo completo), calcule a potência de perdas magnéticas P_{ciclo} e a potência de perdas de Joule P_J .

W_{ciclo} [J]	P_{ciclo} [W]	P_J [W]	$P_{ciclo} + P_J$ [W]

Verificação da igualdade entre o valor lido no wattímetro (tabela 6.1 a)) e a potência total de perdas.

W [W]	$P_{ciclo}+P_{J}$ [W]

R 6.2 a) e 6.2 b):

Valores medidos em 5.4

V_1 [V]	V_2 [V]	A [A]	W [W]	U_{iM} [V]	$U_{\phi M}$ [V]	U_{ief} [V]	$U_{\phi_{ef}}$ [V]

Cálculo de B_{max} , \mathbf{i}_{Imax} , Ψ_{Ief} , Ψ_{2ef} , L_{11} , L_{M} e L_{22}

B _{max} [T]	$i_{1max}\left[\mathrm{A} ight]$	$\Psi_{lef}\left[ext{Wb} ight]$	$arPsi_{2ef}[ext{Wb}]$	$L_{11} = \frac{U_{1ef}}{\omega I_{1ef}} [H]$	$L_{11} = \frac{\Psi_{1ef}}{I_{1ef}} [H]$	$L_{M}\left[\mathrm{H}\right]$	$L_{22}\left[\mathrm{H} ight]$

R 6.3 a), 6.3 b) e 6.3 e):

Valores medidos em 5.5

V_1 [V]	V_2 [V]	A [A]	W [W]	U_{iM} [V]	$U_{\phi_{\!M}}$ [V]	U_{ief} [V]	$U_{\phi ef}$ [V]

Cálculo de B_{max} , \mathbf{i}_{1max} , Ψ_{1ef} , Ψ_{2ef} , L_{11} , L_{M} e L_{22}

B _{max} [T]	$i_{1max}\left[\mathbf{A} ight]$	$\Psi_{lef}\left[ext{Wb} ight]$	Ψ _{2ef} [Wb]	$L_{II} = \frac{U_{1ef}}{\omega I_{1ef}} [H]$	$L_{II} = \frac{\Psi_{1ef}}{I_{1ef}} [H]$	$L_{M}\left[\mathrm{H} ight]$	$L_{22}\left[\mathrm{H} ight]$

Comentários:	 	 	

Número	Nome	Auto-Aval. [%]