§5 Основные функции

Определение 5.1. Пусть $G \subseteq \mathbb{R}^n$ – область. Функцию $\varphi: G \to \mathbb{R}$ назовём *основной* функцией (или *пробной* функцией) из D(G), если

- а) $\varphi \in \mathcal{C}^{\infty}(G)$ (φ бесконечно дифференцируема в G),
- б) носитель $supp \varphi = \overline{\{x \in G \colon \phi(x) \neq 0\}}$ компакт (φ финитна).

П.1 Примеры основных функций.

Определение 5.2. *Шапочкой* (размера a > 0) называется функция $\omega_a : \mathbb{R}^n \to \mathbb{R}$,

$$\omega_{a}(x) = \begin{cases} C_{a} \cdot e^{-\frac{a^{2}}{a^{2} - |x|^{2}}}, & |x| < a \\ 0, & |x| \ge a \end{cases}$$
 (53)

Здесь $C_a=(J_a)^{-1}$, $J_a=\int_{\mathbb{R}^n}exp\left(\frac{-a^2}{(a^2-|x|^2)}\right)dx$. Таким $\int_{\mathbb{R}^n}\omega_a(x)dx=1$.

Далее кратко обозначим: $a(x) = -\frac{a^2}{a^2 - |x|^2} = -\frac{a^2}{a^2 - x_1^2 - \dots - x_n^2}$. (54)

Лемма 5.3. Каждая шапочка – основная функция из $D(\mathbb{R}^n)$.

Доказательство. Сразу из определения 5.2 следует, что носитель $\sup \omega_a$ — замкнутый шар радиуса a в \mathbb{R}^n , и потому компактен.

Покажем, что $\omega_a \in C^\infty(\mathbb{R}^n)$. При |x| > a это очевидно. Пусть |x| < a. Покажем по индукции по $|\alpha|$, что любая производная от «шапочки» имеет вид

$$\omega_a^{(\alpha)}(x) = q_1(x) \cdot a(x)^{p_1} \cdot e^{a(x)} + \dots + q_s(x) \cdot a(x)^{p_s} \cdot e^{a(x)}, \qquad (55)$$

где все $q_i(x)$ – одночлены (и потому ограниченны при |x| < a).

При
$$|\alpha| = 0$$
 имеем $\omega_a^{(0)}(x) = \omega_a(x) = C_a \cdot e^{a(x)}$, то есть формула (55) верна.

Предположим, что она верна для некоторого α , зафиксируем произвольное $i \leq n$ и рассмотрим производную порядка $\beta = (\alpha_1, ... \alpha_{i-1}, \alpha_i + 1, \alpha_{i+1}, ... \alpha_n)$, то есть производную от (55) по координате x_i . Заметим, что $\left(q_j(x)\right)_{x_i}$ – также одночлен, что

$$(e^{a(x)})_{x_i} = e^{a(x)} \cdot (a(x))_{x_i}$$
, а также, что $(a(x)^k)_{x_i} = k \cdot a(x)^{k-1} \cdot \frac{2x_i}{a^2} (a(x))^2 = \frac{2kx_i}{a^2} \cdot (a(x))^{k+1}$. Из этих замечаний следует, что формула (55) верна (для любого $i \leq n$).

По теореме о мат. индукции, все производные $\omega_a^{(\alpha)}(x)$ имеют вид (55).

Далее, $\omega_a^{(\alpha)}(x) \xrightarrow[|x| \to a \to 0]{} 0$, так как $a(x)^k \cdot e^{a(x)} = (-a^2)^k \cdot \frac{((a^2-|x|^2)^{-1})^k}{e^{(a^2-|x|^2)^{-1}}} \xrightarrow[|x| \to a \to 0]{} 0$ при любом натуральном k, поскольку бесконечно большая в знаменателе более высокого порядка, чем в числителе. Кроме того, $\omega_a^{(\alpha)}(x) \equiv 0 \xrightarrow[|x| \to a \to 0]{} 0$. Заключаем, что любая производная от «шапочки» непрерывна при |x| = a.

Соглашение. Вместо $\omega_1(x)$ будем писать просто $\omega(x)$.

Лемма 5.4. (О связи шапочек) $\omega_a(x) = a^{-n} \cdot \omega(a^{-1} \cdot x)$.

Доказательство — упражнение. Подсказка: сделаем в интеграле J_a замену переменных $y_i = \frac{x_i}{a}$, i=1,...n. Это даст $J_a = a^n \cdot J_1$. Поэтому $C_1 = \frac{1}{J_1} = \frac{a^n}{J_a} = a^n \cdot C_a$, откуда (при |x| < a) получаем $\omega\left(\frac{x}{a}\right) = C_1 \cdot e^{\frac{-1}{1-\left|\frac{x}{a}\right|^2}} = C_1 \cdot e^{\frac{-a^2}{a^2-|x|^2}} = a^n \cdot C_a \cdot e^{\frac{-a^2}{a^2-|x|^2}} = a^n \cdot C_a$.

Пусть $A \subset \mathbb{R}^n$. Для $\delta > 0$ ниже обозначаем $A_{\delta} = \{x \in \mathbb{R}^n : \ \rho(x,A) < \delta\}$ — « δ -раздутие» множества A.

Теорема 5.5. (О существовании «шляпы»). Пусть A — ограниченное множество в \mathbb{R}^n . Тогда для любого $\varepsilon > 0$ найдётся основная функция $\eta_{\varepsilon} \in D(\mathbb{R}^n)$ со следующими свойствами:

1)
$$\eta_{\varepsilon}|A_{\varepsilon} \equiv 1$$
, 2) $\eta_{\varepsilon}|\mathbb{R}^n \setminus A_{3\varepsilon} \equiv 0$, 3) $0 \leq \eta_{\varepsilon}(x) \leq 1$,

4) для любого мультииндекса
$$\alpha$$
, $\left|\eta_{\varepsilon}^{(\alpha)}(x)\right| \leq \frac{C(\alpha)}{\varepsilon^{|\alpha|}}$, где $C(\alpha) = \mathrm{const.}$

Доказательство. Заметим, что $A_{\delta} = \bigcup_{x \in A} U_{\delta}(x)$, где $U_{\delta}(x)$ – открытый шар радиуса δ с центром в точке x. Следовательно, A_{δ} – открытое, и потому измеримое множество. Рассмотрим множество $A_{2\epsilon}$ и его характеристическую функцию $\chi_{2\epsilon}$. Искомой функцией будет

$$\eta_{\varepsilon}(x) = \int_{\mathbb{R}^n} \chi_{2\varepsilon}(y) \cdot \omega_{\varepsilon}(x - y) dy = \int_{A_{2\varepsilon}} \omega_{\varepsilon}(x - y) dy.$$
(56)

Теперь покажем, что выполняются пункты а) и б) определения 5.1. Интеграл в правой части (56) зависит от параметра x. По теореме о дифференцировании интеграла по параметру получаем:

$$\eta_{\varepsilon}^{(\alpha)}(x) = \int_{A_{2\varepsilon}} \omega_{\varepsilon}^{(\alpha_x)}(x - y) dy. \tag{57}$$

По лемме 5.3 «шапочка» имеет любые производные $\omega_a^{(\alpha)}(x)$, поэтому интеграл (57) — от непрерывной (даже дифференцируемой) функции по ограниченному измеримому множеству. Значит он существует, следовательно функция $\eta_{\varepsilon}(x)$ имеет любые производные $\eta_{\varepsilon}^{(\alpha)}(x)$, $\eta_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$.

Если $x \notin A_{3\varepsilon}$, то $U_{\varepsilon}(x) \cap A_{2\varepsilon} = \emptyset$. Учитывая, что $\omega_{\varepsilon}(x - y) = 0$ при $y \notin U_{\varepsilon}(x)$, заключаем, что интеграл (56) равен 0. Это доказывает 2) и финитность $\eta_{\varepsilon}(x)$.

Если $x \in A_{\varepsilon}$, то $U_{\varepsilon}(x) \subset A_{2\varepsilon}$. Теперь 1) вытекает из равенства

$$\eta_\varepsilon(x) = \int_{A_{2\varepsilon}} \omega_\varepsilon(x-y) dy = \int_{\mathbb{R}^n} \omega_\varepsilon(x-y) dy = \int_{\mathbb{R}^n} \omega_\varepsilon(z) dz = 1.$$

Так как «шапочка» неотрицательна, то 3) следует из неравенств

$$0 \le \eta_{\varepsilon}(x) = \int_{A_{2\varepsilon}} \omega_{\varepsilon}(x-y) dy \le \int_{\mathbb{R}^n} \omega_{\varepsilon}(x-y) dy = 1.$$

Наконец, $\left|\eta_{\varepsilon}^{(\alpha)}(x)\right| \leq \int_{\mathbb{R}^n} \left|\omega_{\varepsilon}^{(\alpha_x)}(x-y)\right| dy = \int_{\mathbb{R}^n} \left|\omega_{\varepsilon}^{(\alpha)}(z)\right| dz =$ (по лемме 5.4) =

$$= \int_{\mathbb{R}^n} \left| \left(\varepsilon^{-n} \cdot \omega \left(\frac{z}{\varepsilon} \right) \right)^{(\alpha_z)} \right| dz = \left[z_i = \varepsilon \cdot t_i, \quad t_i = \varepsilon^{-1} \cdot z_i \right] =$$

$$= \int_{\mathbb{R}^n} \varepsilon^{-|\alpha|} \cdot \big|\omega^{(\alpha)}(t)\big| dt = \varepsilon^{-|\alpha|} \cdot \int_{\mathbb{R}^n} \big|\omega^{(\alpha)}(t)\big| dt.$$

Последний интеграл и есть константа $C(\alpha)$.

Теорема 5.6. (О разбиении единицы) Пусть $K \subset \mathbb{R}^n$ – компакт, $\{U_1, ..., U_m\}$ – его открытое минимальное покрытие ограниченными множествами. Тогда существуют бесконечно дифференцируемые функции e_0 , e_1 , ..., e_m со свойствами:

- 1) e_1 , ..., e_m основные функции из $D(\mathbb{R}^n)$ и $\mathrm{supp} e_k \subset U_k$, k=1,...m.
- 2) $e_0(x) + e_1(x) + \dots + e_m(x) \equiv 1$.
- 3) $e_1(x) + \dots + e_m(x) \equiv 1$ при $x \in K$.

Доказательство. Так как покрытие $\{U_1, ..., U_m\}$ минимальное, то $K_1 = K \setminus \bigcup \{U_i : i \neq 1\}$ — непустое компактное множество, $K_1 \subset U_1$. Следовательно,

непрерывная функция $f_1: \mathbb{R}^n \to \mathbb{R}$,

 $f_1(x)=\min\{|x-y|:y\in\mathbb{R}^n\backslash U_1\}$, достигает на компакте K_1 некоторого наименьшего значения $\varepsilon_1>0$. Положим $Q_1=\mathbb{R}^n\backslash(\mathbb{R}^n\backslash U_1)_{\varepsilon_1/2},\ V_1=\mathbb{R}^n\backslash\overline{(\mathbb{R}^n\backslash U_1)_{\varepsilon_1/2}}$. Тогда Q_1 компактное множество, V_1 — открытое, и $K_1\subset V_1\subset Q_1\subset U_1$. Включения $K_1\subset V_1\subset U_1$ означают, что $\{V_1,U_2,...,U_m\}$ — минимальное покрытие K.

Пусть уже выбраны V_1 , , ... , V_{j-1} и Q_1 , ... Q_{j-1} . Тогда построим непустой компакт $K_j = K \setminus \left(\cup \{V_i : 1 \leq i < j\} \cup \left(\cup \{U_i : i > j\} \right) \right)$, затем, аналогично первому шагу, определим число $\varepsilon_j > 0$ и положим $Q_j = \mathbb{R}^n \setminus \left(\mathbb{R}^n \setminus U_j \right)_{\varepsilon_j/2}$, $V_j = \mathbb{R}^n \setminus \overline{\left(\mathbb{R}^n \setminus U_j \right)_{\varepsilon_j/2}}$. Снова имеем включения $K_j \subset V_j \subset Q_j \subset U_j$ и $\{V_1, ... V_j, U_{j+1}, ..., U_m\}$ – покрытие K.

После m шагов получим компакты $Q_1, ... Q_m$, открытое покрытие $\{V_1, ... V_{m_{[j]}}\}$ компакта K, такие, что $K_j \subset V_j \subset Q_j \subset U_j$ для всех $j \leq m$.

Пусть теперь $\delta=(1/6)\cdot \min\{\varepsilon_j\colon 1\leq j\leq m\}$. По теореме 5.5 существуют «шляпы» $h_j=\eta^j_\delta$ для компактов Q_j . Положим теперь

$$e_j(x) = egin{cases} rac{h_j(x)}{(h_1(x) + \cdots + h_m(x))}, & x \in \cup \left\{Q_j \colon 1 \leq j \leq m
ight\}, & e_0 = 1 - (e_1 + \cdots + e_m). \ 0, & ext{иначе} \end{cases}$$

Тогда финитность e_j и пункт 2) выполнены. Так как $\left(Q_j\right)_{3\delta} \subset U_j$, то $\mathrm{supp} e_j \subset U_j$.

Бесконечная дифференцируемость e_j в точках носителя следует из того, что таковы её числитель и знаменатель и, кроме того, этот знаменатель не обращается в 0 на носителе функции h_j . Бесконечная дифференцируемость e_j на границе носителя выполняется по тем же причинам, что и для «шапочек».

Пункт 3) вытекает из того, что
$$K \subset \cup \{Q_j, j \in \{1, ..., m\}\}$$
.

Теорема 5.7. Пусть $G \subset \mathbb{R}^n$ — ограниченная область, $f: \mathbb{R}^n \to \mathbb{R}$ — интегрируемая функция с носителем из G, $\varepsilon > 0$. Тогда функция

$$f_{\varepsilon}(x) = \int_{\mathbb{R}^n} f(y) \cdot \omega_{\varepsilon}(x - y) dy$$
 (58)

– основная из $D(\mathbb{R}^n)$.

Доказательство. Бесконечная дифференцируемость функции f_{ϵ} доказывается применением теоремы о дифференцировании интеграла (58) по параметру, аналогично рассуждениям для шляпы (56).

Докажем, что f_{ε} финитна. Имеем $\operatorname{supp}\omega_{\varepsilon}(x-y)=U_{\varepsilon}(x)$, $\operatorname{supp}f(y)\subset G$. Значит, если x «далеко» от G, в смысле $\min\{|x-y|:y\in \bar{G}\}>\varepsilon$, то $U_{\varepsilon}(x)\cap G=\emptyset$ и потому подынтегральное выражение в (58) равно 0 при всех $y\in\mathbb{R}^n$, и $f_{\varepsilon}(x)=0$. Итак, $\operatorname{supp}f_{\varepsilon}(y)\subset G_{\varepsilon}=\cup\{U_{\varepsilon}(x):x\in G\}$, что и означает финитность функции f_{ε} .