Sujet 1 – corrigé

I | Loi des nœuds en terme de potentiel

On considère le circuit 1 suivant. On appelle V_A , V_B et V_C les potentiels aux points A, B et C.

Figure 4.1: Circuit 1

1. En utilisant un pont diviseur de tension, calculer V_B en fonction de V_A , V_C , R_1 et R_2 . **Réponse :**

Loi du pont diviseur de tension :

$$V_A - V_B = (V_A - V_C) \frac{R_1}{R_1 + R_2}.$$

En inversant la relation, on trouve :

$$V_B = V_A - (V_A - V_C) \frac{R_1}{R_1 + R_2} = \frac{\frac{V_A}{R_1} + \frac{V_C}{R_2}}{\frac{1}{R_1} + \frac{1}{R_2}}$$

On ajoute une nouvelle résistance au point B comme sur le circuit 2 et on appelle V_D le potentiel au point D.

Figure 4.2: Circuit 2

2. Calculer, par la méthode de votre choix, le nouveau potentiel V_B en fonction de V_A , V_C , V_D , R_1 , R_2 et R_3 .

Réponse:

On appelle i_k l'intensité qui traverse la résistance k et qui est orientée vers le point B. La loi des nœuds et la loi d'Ohm donnent alors :

$$i_1 + i_2 + i_3 = 0 = \frac{V_A - V_B}{R_1} + \frac{V_C - V_B}{R_2} + \frac{V_D - V_B}{R_3}$$

Cette équation donne :

$$\frac{V_B}{R_1} + \frac{V_B}{R_2} + \frac{V_B}{R_3} = \frac{V_A}{R_1} + \frac{V_C}{R_2} + \frac{V_D}{R_3} \qquad \Rightarrow \qquad V_B = \frac{\frac{V_A}{R_1} + \frac{V_C}{R_2} + \frac{V_D}{R_3}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}$$

On suppose maintenant que N résistances sont reliées au point O de potentiel V_0 . On appelle V_i le potentiel à l'extrémité de la résistance i comme sur le circuit O.

Figure 4.3: Circuit 3

3. Montrer la formule de la loi des nœuds en terme de potentiel (appelée aussi également théorème de Millman) :

$$V_0 = \frac{\sum_{i=1}^{N} \frac{V_i}{R_i}}{\sum_{i=1}^{N} \frac{1}{R_i}}$$

Réponse:

On généralise la question précédente : la loi des nœuds et d'Ohm donne :

$$\sum_{k=1}^{N} \frac{V_k - V_0}{R_k} = 0 \qquad \Rightarrow \qquad V_0 = \frac{\sum_{k=1}^{N} \frac{V_k}{R_k}}{\sum_{k=1}^{N} \frac{1}{R_k}}$$

4. Vérifier l'homogénéité de cette équation.

Réponse:

$$\dim\left(\sum_{k=1}^{N} \frac{1}{R_k}\right) = \dim(1/R), \dim\left(\sum_{k=1}^{N} \frac{V_k}{R_k}\right) = \dim(V/R).$$
 La formule est bien homogène.

On considère maintenant le montage du circuit 4.

Figure 4.4: Circuit 4

Dans ce circuit, l'amplificateur linéaire intégré (ALI) est symbolisé par un carré et dispose de 2 entrées et une sortie. On admet qu'ici, son unique rôle est d'imposer que :

$$V_{+} = V_{-}$$
.

5. Que vaut par convention le potentiel au point V_{+} ?

Réponse

 V_{+} est relié à la masse donc par convention $V_{+}=0$.

6. Comment appelle-t-on ce point dans un circuit électrique ?

Réponse :

On appelle ce point la masse.

7. Que vaut alors le potentiel au point V_{-} ?

Réponse:

D'après la propriété de l'ALI : $V_- = V_+ = 0$

8. Calculer le potentiel V_s en fonction de $V_e,\,R_1$ et $R_2.$

Réponse :

On applique la loi des nœuds en terme de potentiel au point V_- :

$$V_{-} = \frac{\frac{V_{e}}{R_{1}} + \frac{V_{s}}{R_{2}}}{\frac{1}{R_{1}} + \frac{1}{R_{2}}} = 0 \qquad \Rightarrow \qquad \frac{V_{e}}{R_{1}} + \frac{V_{s}}{R_{2}} = 0$$

Finalement

$$V_s = \frac{-R_2 V_e}{R_1}$$

Sujet 2 – corrigé

Pont de Wheatstone

1.

En électronique, on réalise régulièrement des ponts de mesure pour mesurer indirectement une résistance. On dispose d'un circuit comprenant un générateur de tension qui alimente un pont de Wheatstone composé des résistances R_1 et R_2 . La résistance R_i est inconnue, et la résistance R est variable (il s'agit d'un potentiomètre). On fait évoluer R jusqu'à ce que le voltmètre indique une tension Enulle. Le pont est alors équilibré.

À l'aide des lois de Kirchhoff, déterminer l'expression de la valeur de R_i en fonction des valeurs des autres résistances lorsque le pont est équilibré.

Réponse:

Schéma

 U_{BC}

Application — Résultat attenuu Si le pont est équilibré, alors $U_{AB} = U_{AD}$ et

 $U_{BC} = U_{DC}$. Or, avec le pont diviseur de On cherche tension, on a à la fois R_i , U_{DC} quand \ll le pont

équilibré ».

Outil D'après

l'énoncé,

quand

le pont est équilibré

soit quand $V_B = V_D$.

 $U_{BC} = E \frac{R_1}{R_1 + R}$ $U_{DC} = E \frac{R_i}{R_i + R_2}$

Donc

$$U_{BC} = U_{DC}$$

$$\Leftrightarrow \mathbb{Z} \frac{R_1}{R_1 + R} = \mathbb{Z} \frac{R_i}{R_i + R_2}$$

$$\Leftrightarrow R_1(\mathbb{Z}_i + R_2) = R_i(\mathbb{Z}_1 + R)$$

$$\Leftrightarrow R_i = \frac{R_1 R_2}{R}$$

Sujet 4 – corrigé

I Bilan de puissance

On donne $i=0,2\,\mathrm{A},\ i_4=-0,1\,\mathrm{A},\ i_5=-0,5\,\mathrm{A},\ V_A=-2\,\mathrm{V},\ V_C=4\,\mathrm{V},\ u_5=1\,\mathrm{V}$ et $u_4=2\,\mathrm{V}.$

1. Déterminer la puissance reçue par chaque dipôle D_i avec $i \in [1,5]$. Préciser le caractère récepteur ou générateur de chaque dipôle.

Réponse:

$$P_1 = 3.6 \,\mathrm{W}$$
 ; $P_2 = -2.8 \,\mathrm{W}$; $P_3 = -0.1 \,\mathrm{W}$

$$P_4 = -0.2 \,\mathrm{W}$$
 ; $P_5 = 0.5 \,\mathrm{W}$

2. En déduire la puissance reçue P_{AB} du dipôle AB. Préciser son caractère. **Réponse :**

$$P_{AB} = 1 \,\mathrm{W}$$

caractère récepteur, la puissance reçue étant positive.

Sujet 5 – corrigé

${f I}^{}$ Batterie tampon

On donne $e_2 = 2 \text{ V} = cte$, $r_2 = 0.2 \Omega$, $r_3 = 50 \Omega$. La tension e_1 décroît linéairement de 6 V à 5 V en 24 h. La résistance r_1 est choisie de telle sorte que la fermeture de l'interrupteur K à t = 0 ne provoque aucun courant dans r_2 .

Loi des

1. Exprimer les intensités $i_1(t)$ et $i_2(t)$. Le temps t sera exprimé en jour. En déduire la valeur de r_1 .

Réponse :

On a deux mailles indépendantes, on peut donc écrire 2 équations indépendantes par la loi des mailles (on introduit les tensions r_1i_1 , r_2i_2 et r_3i).

On a deux nœuds, on peut donc écrire 1 équation indépendante par la loi de nœuds.

En tout, on aura 3 équations indépendantes pour 3 inconnues $(i_1, i_2 \text{ et } i)$.

mailles :
$$\left\{ \begin{array}{l} e_1 - r_1 i_1 = r_3 i \\ e_2 - r_2 i_2 = r_3 i \end{array} \right.$$

Loi des nœuds : $i = i_1 + i_2$

En remplaçant $i = i_1 + i_2$ dans les 2 premières équations, on trouve :

$$r_3(i_1 + i_2) = e_1 - r_1 i_1$$

 $r_3(i_1 + i_2) = e_2 - r_2 i_2$

On a 2 équations avec 2 inconnues, on peut résoudre et on trouve :

$$i_1 = \frac{e_1(r_2 + r_3) - r_3 e_2}{r_1 r_2 + r_1 r_3 + r_2 r_3}$$

$$i_2 = \frac{e_2(r_1 + r_3) - r_3 e_1}{r_1 r_2 + r_1 r_3 + r_2 r_3}$$

Le problème est symétrique par inversion de e_1 , r_1 et e_2 , r_2 . On vérifie que l'expression de i_1 est obtenue à partir de celle de i_2 en changeant e_1 en e_2 et r_1 en r_2 .

La tension $e_1(t)$ décroit de 1 V en une journée. Avec t en jour et e_1 en volt, $e_1(t) = 6 - t$.

La résistance r_1 est telle que $i_2(t=0)=0$. Dans l'expression de $i_2(t)$, le dénominateur ne pas être nul (une résistance est forcément positive). Le numérateur doit alors être nul :

$$e_2(r_1 + r_3) - r_3 e_1(t = 0)$$
 \Leftrightarrow $r_1 = r_3 \left(\frac{e_1(t = 0)}{e_2} - 1\right) = 100 \,\Omega$

2. Déterminer la diminution relative de l'intensité i(t) qui traverse la résistance r_3 en un jour :

- \bullet si K est ouvert
- \bullet si K est fermé

En déduire le rôle du générateur de tension e_2 .

Réponse:

• si K est ouvert, on exprime $i=i_1$ (la branche contenant r_2 peut être enlevée). On applique la loi des mailles :

$$i(t) = \frac{e_1}{r_1 + r_3} = \frac{6 - t}{150}$$

On peut retrouver ce résultat à partir de l'expression de $i_1(t)$. Pour cela, il faut éteindre la source 2, donc prendre $e_2 = 0$. De plus, il faut que la branche se comporte comme un interrupteur ouvert. Pour cela, on fait tendre r_2 vers l'infini. L'expression devient :

$$i = \lim_{r_2 \to \infty} i_1(t) = \lim_{r_2 \to \infty} \frac{r_2 e_1}{r_2 r_1 + r_2 r_3} = \frac{e_1}{r_1 + r_3}$$

On exprime la diminution relative au bout d'un jour :

$$\Delta i/i = \frac{i(0) - i(1)}{i(0)} = 1/6 = 16,7\%$$

 \bullet si K est fermé

$$i(t) = i_1 + i_2 = \frac{e_1 r_2 + r_1 e_2}{r_1 r_2 + r_1 r_3 + r_2 r_3}$$

$$\Delta i/i = \frac{r_2}{6r_2 + 2r_1} \sim 1\%$$

Le générateur de tension e_2 permet de stabiliser le courant i malgré la variation importante de e_1 . Le générateur 2 s'appelle la "batterie tampon".

Sujet 6 – corrigé

I | Association de générateurs : application

- 1. Deux générateurs de tension (E_1, r_1) et (E_2, r_2) sont placés en parallèle l'un de l'autre. Ils alimentent une résistance R_4 , également placée en parallèle sur les générateurs.
 - (a) Dessiner le schéma normalisé de ce montage et flécher les courants et les tensions.
 - (b) Exprimer l'intensité du courant qui circule dans R_4 .
 - (c) Exprimer la tension aux bornes de R_4 .

Réponse:

Schéma

Résultat attendu

On cherche I_4 puis $U_4 = R_4 I_4$.

Outils

- LdM 1 : $I_4R_4 + I_1r_1 = E_1$ (1)
- LdM 2 : $I_4R_4 + I_2r_2 = E_2$ (2) ;
- LdN 1 : $I_1 + I_2 = I_4$ (3).

\bigcirc

Approche méthodique

Notre but est de trouver une équation contenant I_4 et des valeurs connues, c'est-à-dire tout sauf I_1, I_2 .

L'équation (1) peut nous aider ; on peut la transformer en remplaçant I_1 par $I_4 - I_2$ grâce à (3) pour avoir une équation (4) avec I_4 et I_2 .

Mais comme (2) nous permet d'isoler I_2 et de l'exprimer en fonction de I_4 , en injectant cette expression dans (4) on obtient une équation entre I_4 et les éléments du circuit. Question résolue

Application

Avec (3) dans (1):

$$I_4R_4 + (I_4 - I_2)r_1 = E_1$$
 (4)

En réexprimant (2) :

$$I_2 = (E_2 - I_4 R_4)/r_2$$

En injectant (2) dans (4):

$$I_4(R_4 + r_1) - (E_2 - I_4 R_4) \frac{r_1}{r_2} = E_1$$

$$\Leftrightarrow I_4(R_4 + r_1)r_2 - (E_2 - I_4 R_4)r_1 = E_1 r_2$$

$$\Leftrightarrow I_4(r_1 r_2 + r_1 R_4 + r_2 R_4) = E_1 r_2 + E_2 r_1$$

Soit

$$I_4 = \frac{E_1 r_2 + E_2 r_1}{r_1 r_2 + r_1 R_4 + r_2 R_4}$$
 et $U_{R_4} = R_4 \times I_4$