EE250: Tutorial 2 Solution Set

3rd Feb 2021

Answer 1

1. A Signal Flow Graph is shown in Figure 1. Find the transfer function between the input node and the output node, using Mason's gain formula.

Figure 1: Problem 1

3 forward paths:

$$M_1 = 1$$

$$M_2 = \frac{1}{s^2}$$

$$M_2 = \frac{1}{s^3}$$

5 loops:

$$L_{11} = \frac{-1}{s}$$

$$L_{21} = \frac{-1}{s^2}$$

$$L_{31} = \frac{-1}{s^3}$$

$$L_{41} = -1$$

$$L_{51} = -\frac{1}{s^2}$$

There are no non-touching loops.

Mason's Gain Formula

Given an SFG with N forward paths and K loops, the gain between the input node y_{in} and output node y_{out} is

$$M = \frac{y_{out}}{y_{in}} = \sum_{k=1}^{N} \frac{M_k \triangle_K}{\triangle}$$
 (19)

 $y_{in} = \text{input-node variable}$

 $y_{out} = \text{Output-node variable}$

 $M = \text{gain between } y_{in} \text{ and } y_{out}.$

$$\frac{\sqrt{18}}{\sqrt{18}} = \frac{M_1 + M_2 + M_3}{1 - (U_1 + U_{11} + U_{12} + U_{13})}$$
between u_{in} and u_{out} .

 $N = \text{total number of forward paths between } y_{in} \text{ and } y_{out}$ $M_k = \text{gain of the } k \text{th forward path between } y_{in} \text{ and } y_{out}$

$$\triangle = 1 - \sum_{i} L_{i1} + \sum_{j} L_{j2} - \sum_{k} L_{k3} + \dots$$

 $L_{mr} = \text{gain product of } m \text{th}(m=i,j,k,\ldots) \text{ possible combinations of } r \text{ nontouching loops } (1 \leq r < r)$

 $\triangle = 1$ -(sum of the gains of all individual loops)+(sum of products of gains of all possible combinations of two nontouching loops)-(sum of products of gains of all possible combinations of three nontouching loops)+ ...

 \triangle_k = the \triangle for that part of the SFG that is nontouching with the kth forward path.

$$T(s) = \frac{\frac{1}{s^3} + \frac{1}{s^2} + 1}{1 + \frac{1}{s} + \frac{1}{s^2} + \frac{1}{s^3} + 1 + \frac{1}{s^2}}$$
$$= \frac{s^3 + s + 1}{2s^3 + s^2 + 2s + 1}$$

2. A low-pass filter is shown in Figure 2. $R = 1k\Omega$, $C = 1\mu F$ Construct a signal flow graph connecting input $V_1(s)$ and output $V_2(s)$ and showing internal signals $I_1(s)$, $I_2(s)$, and $V_2(s)$. Find $T(s) = \frac{V_3(s)}{V_1(s)}$

Answer 2

Figure 2: Problem 2

$$V_3 = \frac{V_2 \cdot L_5}{R + L_5} = \frac{V_2}{1 + Rcs}$$

$$\Rightarrow V_2 = V_3(1 + Rcs)$$

$$I_{1}(s) = \frac{V_{1} - V_{2}}{R}$$

$$I_{2}(s) = \frac{V_{2} - V_{3}}{R}$$

$$V_{2}(s) = (I_{1} - I_{2})R$$

$$V_{3}(s) = \frac{I_{2}(s)}{Cs}$$

$$[since \ C\frac{dV_{s}}{dt} = i_{2}]$$

$$V_{2}(s) = V_{3}(1 + \zeta c s)$$

$$= 2R I_{1} - I_{2} R$$

The signal flow graph can be drawn as shown in Figure 3.

Only one forward path: $M = \frac{1}{CsR}$

Loops:

$$L_{11} = -1$$

$$L_{21} = -1$$

$$L_{31} = \frac{-1}{CsR}$$

$$= 2RI_{1} - I_{2}R.$$

$$= R(2I_{1} - I_{2})$$

$$= R(2(\frac{V_{1} - V_{2}}{R}) - \frac{V_{2} - V_{3}}{R}$$

$$= 2V_{1} - 2V_{2} - V_{2} + V_{3}$$

$$\Rightarrow V_{1} = 3V_{2} - V_{3}$$

$$= 3(V_{3}(1 + R(S)) - V_{3})$$

$$\Rightarrow V_{1} = V_{3}(2 + 3R(S))$$

$$\Rightarrow V_{1} = \frac{1}{2 + 3R(S)}$$

Figure 3: Signal flow graph

$$T(s) = \frac{1}{1+1+1+\frac{1}{CsR}} + L_1L_3$$

$$T(s) = \frac{1}{3CsR+1+1} = 2+3RC_5$$

$$= \frac{333.35}{s+666.7}$$

$$DCgain = \frac{333.35}{s+666.7}|_{s=0} = 0.5$$

$$T(s) = \frac{1}{1+1+1+\frac{1}{CsR}} + L_1L_3$$

$$= \frac{333.35}{s+666.7}$$

$$DCgain = \frac{333.35}{s+666.7}|_{s=0} = 0.5$$

$$T(s) = \frac{1}{1+1+1+\frac{1}{CsR}} + L_1L_3$$

Answer 3

(a) Apply the SFG formula to the block diagram to find the transfer functions

Forward path gains:

$$M_1 = G_1 G_2 G_3$$

$$M_2 = G_4$$

Loop gains:

$$L_{11} = -H_1G_1G_2$$

$$L_{21} = -G_1G_2G_3$$

$$L_{31} = -G_2G_3H_2$$

$$L_{41} = -G_4$$

$$L_{51} = G_4H_2G_2H_1$$

$$\triangle_1 = 1$$

$$\frac{Y(s)}{R(s)}\Big|_{N=0} \qquad \frac{Y(s)}{N(s)}\Big|_{R=0}$$

Express Y(s) in terms of R(s) and N(s) when both inputs are applied simultaneously.

(b) Find the desired relation among the transfer functions $G_1(s)$, $G_2(s)$, $G_3(s)$, $G_4(s)$, $H_1(s)$ and $H_2(s)$ so that the output Y(s) is not affected by the disturbance signal N(s) at all.

Figure 4: Problem 3

$$\triangle_2 = 1$$

$$\triangle = 1 + G_1 G_2 H_1 + G_1 G_2 G_3 + G_2 G_3 H_2 + G_4 - H_1 H_2 G_2 G_4$$

$$\frac{Y(s)}{R(s)}|_{N(s)=0} = \frac{M_1 \triangle_1 + M_2 \triangle_2}{\triangle} = \frac{G_1 G_2 G_3 + G_4}{1 + G_1 G_2 H_1 + G_1 G_2 G_3 + G_2 G_3 H_2 + G_4 - H_1 H_2 G_2 G_4}$$

$$For \quad \frac{Y(s)}{N(s)}|_{R(s)=0}$$

$$M_1 = 1$$

$$L_{11} = -H_1G_1G_2$$

$$L_{21} = -G_1 G_2 G_3$$

$$L_{31} = -G_2G_3H_2$$

$$L_{41} = -G_4$$

$$L_{51} = G_4 H_2 G_2 H_1$$

$$\triangle_1 = 1 + \underbrace{H_1 G_1 G_2}_{\triangle = 1 + G_1 G_2 H_1 + G_1 G_2 G_3 + G_2 G_3 H_2 + G_4 - H_1 H_2 G_2 G_4}_{\text{so,}}$$

$$\frac{Y(s)}{N(s)}|_{R(s)=0} = \frac{1 + H_1 G_1 G_2}{1 + G_1 G_2 H_1 + G_1 G_2 H_3 + G_2 G_3 H_2 + G_4 - H_1 H_2 G_2 G_4}$$

Answer 3b

For the output Y(s) not to be effected by the noise N(s)

$$\frac{Y(s)}{N(s)}|_{R(s)=0} = 0 \quad \angle \underbrace{\frac{1}{2}}_{N(s)}$$

$$\Rightarrow \quad 1 + H_1G_1G_2 = 0$$

$$\Rightarrow \quad H_1G_1G_2 = -1$$

- 4. The block diagram of the position-control system of the electronic word processor is shown in Fig. 4.
 - (a) Find the loop transfer function $\frac{\Theta_0(s)}{\Theta_e(s)}$ through <u>block diagram reduction</u> (the o<u>uter feedback path</u> is

After rearranging, the signal I_a which was passing through K_2 , is now taken from ω_m with appropriate change in the path.

Figure 6: Transfer function G_1

Transfer function G_1 can be simplified as shown in Figure 7.

Figure 7: Transfer function G_1

$$G_{2} = \frac{\frac{K_{i}}{(R_{a}+sL_{a})+(sJ_{t}+B_{t})}}{1 + \frac{K_{s}K_{i}}{(R_{a}+sL_{a})(sJ_{t}+B_{t})}}$$

$$= \frac{K_{i}}{(R_{a}+sL_{a})(sJ_{t}+B_{t}) + K_{s}K_{i}}$$

$$G_{1} = \frac{K_{1}G_{2}}{1 + \frac{K_{1}G_{2}K_{2}(J_{t}s+B_{t})}{K_{i}}}$$

$$= \frac{K_{1}K_{i}}{[(R_{a}+sL_{a})(sJ_{t}+B_{t}) + K_{3}K_{i}] + K_{1}K_{2}(J_{t}s+B_{t})}$$
(1)

Figure 8: Transfer function G_3

$$G_{3} = \frac{KG_{1}}{1 + K_{t}KG_{1}}$$

$$= \frac{KK_{1}K_{i}}{[(R_{a} + sL_{a})(sJ_{T} + B_{t}) + K_{i}K_{3}] + K_{1}K_{2}(J_{t}s + B_{t}) + K_{t}KK_{1}K_{i}}$$

Figure 9: Transfer function G_4

$$G_4 = \frac{\theta_o(s)}{\theta_r(s)}$$

$$and \qquad \frac{\theta_o(s)}{\theta_l(s)}|_{outer} \quad feedback \quad open = K_3G_3\frac{1}{s}N = answer(a)$$

$$answer(a) = \frac{K_3KK_1K_iN}{s[(R_a + sL_a)(sJ_t + B_t) + K_iK_3] + sK_1K_2(J_ts + B_t) + K_tKK_1K_is}$$

$$answer(b) = G_4$$

$$K_sG_3\frac{1}{s}N$$

$$= \frac{K_s G_3 \frac{1}{s} N}{1 + \frac{K_s G_3 N}{s}}$$

$$= \frac{\frac{K_s K K_1 K_i N}{s}}{\frac{s[(R_t + sL_t)(R_a + sL_a) + K_i K_3] + sK_1 K_2 (J_t s + B_t) + K_f K K_1 K_i s}}{1 + \frac{K_s K K_1 K_i N}{s[(R_t + sL_t)(R_a + sL_a) + K_i K_3] + sK_1 K_2 (J_t s + B_t) + K_f K K_1 K_i s}}$$

$$= \frac{K_s K K_1 K_i N}{s[(R_a + sL_a)(J_t s + B_t) + K_i K_3] + sK_1 K_2 (J_t s + B_t) + sK_t K K_1 K_i + K_s K K_i K_1 N}}$$