HW7

Wednesday, March 10, 2021 6:12 PM

1.
$$\forall (n, P) \ \ \ \ \ \frac{T_s}{T_P(P)}$$

sequential time
$$\frac{2}{5}$$
 s cn) + f (n) parallel time $\frac{2}{5}$ s (n) + $\frac{4}{5}$ n)

To (p) $\frac{1}{5}$ + $\frac{1}{5}$ r (n, p)

S (h) denotes the sequential time that cannot be parallelized f (h) denotes the portion of the program that can be parallelized (Con, p) denoted the communication cost and parallel overhead

Let
$$K(n,f) = 0$$

 $S(n) = 0.85$ fon = 0.15
Then,

$$y cn, p) \leq \frac{0.15 + 0.85}{0.15 + 0.85 + 0} = \frac{p}{0.15 + 0.85}$$

2.
$$E(n,p)$$
 $\frac{1}{2} = \frac{1}{2} = \frac{$

_	Р	2	4	8	16	Inf
1)	Speed up	1.7391	2.7586	3.9024	4.9231	6.6667
عُرُ)،	Efficiency	0.8697	0.6896	0.4878	0.3080	0.0000

3)
$$S = 0.15$$

4) $Y(n,p) \leq p + (i-p) S$ $E(n,p) \leq \frac{p + (i-p) S}{p}$

Р	2	4	8	16
Speed up	1.85	3.55	6.95	13.75
Efficiency	0.925	0.8875	0.8686	0.8594

6) Program 1

Speedup has doubled everytime the # of processess in doubled and it seems it is not bounded by the serial portion of the initial program. This is in a coordance with Gustafron-Barsis Scaling is good because the serial portion of a parallel execution is constant.

Program 2 Speedup is being flattened towards the end of the table. It seems like close to 1/6 th of the program & serial Therefore the maximum speedup that ran be achieved is limited by the serial portion of the program, according to the Amdhal's law-