BWD AGWB

Generated by Doxygen 1.10.0

1	Namespace Index	1
	1.1 Package List	1
2	Class Index	3
	2.1 Class List	3
2	File Index	5
J	3.1 File List	5
4	Namespace Documentation	7
	4.1 add_birth Namespace Reference	7
	4.1.1 Function Documentation	7
	4.1.1.1 add_birth()	7
	4.2 add_bulk Namespace Reference	8
	4.2.1 Function Documentation	8
	4.2.1.1 add_bulk()	8
	4.3 add_merge Namespace Reference	8
	4.3.1 Function Documentation	8
	4.3.1.1 add_merge()	8
	4.4 auxiliary Namespace Reference	9
	4.4.1 Function Documentation	10
	4.4.1.1 calc_parabola_vertex()	10
	4.4.1.2 determine_upper_freq()	11
	4.4.1.3 get_bin_factors()	11
	4.4.1.4 get_width_z_shell_from_z()	12
	4.4.1.5 make_Omega_plot_unnorm()	12
	4.4.1.6 Omega()	12
	4.4.1.7 parabola()	13
	4.4.1.8 tau_syst()	13
	4.4.2 Variable Documentation	14
	4.4.2.1 s_in_Myr	14
	4.5 GWB Namespace Reference	14
	4.5.1 Function Documentation	14
	4.5.1.1 main()	14
	4.5.2 Variable Documentation	14
	4.5.2.1 action	14
	4.5.2.2 category	14
	4.5.2.3 fontsize	15
	4.5.2.4 labelsize	15
	4.5.2.5 s_in_Myr	15
	4.5.2.6 size	15
	4.5.2.7 titlesize	15
	4.6 num_syst Namespace Reference	15

4.6.1 Function Documentation	 16
4.6.1.1 determine_upper_freq()	 16
4.6.1.2 get_width_z_shell_from_z()	 16
4.6.1.3 get_z_fast()	 16
4.6.1.4 main()	 16
4.6.1.5 num_merge_bins()	 17
4.6.1.6 representative_SFH()	 17
4.6.1.7 SFH()	 17
4.6.1.8 tau_syst()	 17
4.6.2 Variable Documentation	 17
4.6.2.1 fontsize	 17
4.6.2.2 interp_age	 17
4.6.2.3 interp_z	 18
4.6.2.4 labelsize	 18
4.6.2.5 s_in_Myr	 18
4.6.2.6 size	 18
4.6.2.7 titlesize	 18
4.6.2.8 z_at_val_data	 18
4.7 RedshiftInterpolator Namespace Reference	 18
4.7.1 Detailed Description	 18
4.8 SFH Namespace Reference	 19
4.8.1 Function Documentation	 19
4.8.1.1 representative_SFH()	 19
4.8.1.2 SFH2()	19
4.8.1.3 SFH3()	 21
4.8.1.4 SFH4()	 21
4.8.1.5 SFH_MD()	 21
4.9 SimModel Namespace Reference	 22
4.9.1 Detailed Description	 22
5 Class Documentation	23
5.1 RedshiftInterpolator.RedshiftInterpolator Class Reference	 23
5.1.1 Detailed Description	23
5.1.2 Constructor & Destructor Documentation	23
5.1.2.1 <u>init</u> ()	23
5.1.3 Member Function Documentation	24
5.1.3.1 get_z_fast()	24
5.1.4 Member Data Documentation	24
5.1.4.1 interp_age	24
5.1.4.2 interp_z	24
5.2 num_syst.sim_model Class Reference	24
5.2.1 Detailed Description	25
\cdot	

5.2.2 Constructor & Destructor Documentation	25
5.2.2.1init()	25
5.2.3 Member Function Documentation	25
5.2.3.1 calculate_cosmology()	25
5.2.3.2 calculate_f_bins()	26
5.2.3.3 calculate_z_bins()	26
5.2.4 Member Data Documentation	26
5.2.4.1 ages	26
5.2.4.2 f_bins	26
5.2.4.3 f_plot	26
5.2.4.4 log_f_high	26
5.2.4.5 log_f_low	26
5.2.4.6 max_z	26
5.2.4.7 N	26
5.2.4.8 N_z	27
5.2.4.9 SFH_num	27
5.2.4.10 z_bins	27
5.2.4.11 z_list	27
5.2.4.12 z_time_since_max_z	27
5.2.4.13 z_widths	27
5.3 SimModel.SimModel Class Reference	27
5.3.1 Detailed Description	28
5.3.2 Constructor & Destructor Documentation	29
5.3.2.1init()	29
5.3.3 Member Function Documentation	29
5.3.3.1 calculate_cosmology_from_T()	29
5.3.3.2 calculate_cosmology_from_z()	29
5.3.3.3 calculate_f_bins()	30
5.3.3.4 calculate_T_bins()	30
5.3.3.5 calculate_z_bins()	30
5.3.3.6 set_mode()	30
5.3.4 Member Data Documentation	30
5.3.4.1 ages	30
5.3.4.2 DEBUG	31
5.3.4.3 dT	31
5.3.4.4 f_bin_factors	31
5.3.4.5 f_bins	31
5.3.4.6 f_plot	31
5.3.4.7 INTEG_MODE	31
5.3.4.8 light_speed	31
5.3.4.9 log_f_high	31
5.3.4.10 log_f_low	31

Index

	5.3.4.11 max_z	32
	5.3.4.12 N_freq	32
	5.3.4.13 N_int	32
	5.3.4.14 SAVE_FIG	32
	5.3.4.15 SFH_num	32
	5.3.4.16 T0	32
	5.3.4.17 T_bins	32
	5.3.4.18 T_list	32
	5.3.4.19 T_range	32
	5.3.4.20 TEST_FOR_ONE	32
	5.3.4.21 z_bins	33
	5.3.4.22 z_list	33
	5.3.4.23 z_time_since_max_z	33
	5.3.4.24 z_widths	33
6	e Documentation	35
	.1 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/GWB.py Fi	
	Reference	
	6.1.1 Detailed Description	
	.2 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/add- _birth.py File Reference	
	6.2.1 Detailed Description	36
	.3 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/add_bulk.py File Reference	
	6.3.1 Detailed Description	
	.4 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/add	\leftarrow
	_merge.py File Reference	
	6.4.1 Detailed Description	
	.5 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/auxil File Reference	
	6.5.1 Detailed Description	38
	.6 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/-RedshiftInterpolator.py File Reference	
	.7 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/-SFH.py File Reference	
	6.7.1 Detailed Description	
	.8 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/Sim-	\leftarrow
	Model.py File Reference	
	.9 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/num_syst.prile Reference	

41

Chapter 1

Namespace Index

1.1 Package List

Here are the packages with brief descriptions (if available):

add_birth	
add_bulk	
add_merge	
auxiliary	
GWB	
num_syst	
RedshiftInterpolator	
This module contains the class RedshiftInterpolator	
SFH	
SimModel	
This module contains the class SimModel	

2 Namespace Index

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

RedshiftInterpolator.RedshiftInterpolator	
This class is used to guickly determine the redshift at a given age of the Universe	23
num syst.sim model	
MODEL CLASS ###################################	24
	24
SimModel.SimModel	
! This class contains information about the run that needs to be shared over the different sub-	
routines	27

4 Class Index

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/GWB.py	
This program calculates the GWB based on the method described in my thesis, using uniform	
redshift bins	35
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/num_syst.py	40
$/home/seppe/Documents/data/Papers/AnA.683.A139 (2024)/White_Dwarf_AGWB/src/modules/add_birth.py$	
This file contains a routine that adds the contribution of the 'birth bins' to the bulk GWB	36
$/home/seppe/Documents/data/Papers/AnA.683.A139 (2024)/White_Dwarf_AGWB/src/modules/add_bulk.py\\$	
This file contains a routine that calculates the majority of the GWB, what is referred to in my	
thesis as the 'generic case'	36
$/home/seppe/Documents/data/Papers/AnA.683.A139 (2024)/White_Dwarf_AGWB/src/modules/add_merge.pdf. (2024)/White_Dwarf_AGWB/src/modules/add_merge.pdf. (2024)/W$	у
This file contains a routine that adds the contribution of the 'merger bins' due to Kepler max to	
the bulk+birth GWB	37
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/auxiliary.py	
This module contains auxiliary functions that are used in the main code	37
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/RedshiftInter	polator.py
38	
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/SFH.py	
This file contains the functions to determine the star formation rate	39
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/SimModel.py	
40	

6 File Index

Chapter 4

Namespace Documentation

4.1 add_birth Namespace Reference

Functions

• None add_birth (sm.SimModel model, ri.RedshiftInterpolator z_interp, pd.DataFrame data, str tag)

This routine adds the contribution of the 'birth bins' to the bulk GWB.

4.1.1 Function Documentation

4.1.1.1 add_birth()

This routine adds the contribution of the 'birth bins' to the bulk GWB.

Parameters

model	instance of SimModel, containing the necessary information for the run.
z_interp	instance of RedshiftInterpolator, used in the SFH calculations.
data	dataframe containing the binary population data.
tag	tag to add to the output files.

Returns

Saves a dataframe with all the essential information.

4.2 add bulk Namespace Reference

Functions

• None add_bulk (sm.SimModel model, ri.RedshiftInterpolator z_interp, pd.DataFrame data, str tag)

This routine calculates the majority of the GWB, what is referred to in my thesis as the 'generic case'.

4.2.1 Function Documentation

4.2.1.1 add_bulk()

This routine calculates the majority of the GWB, what is referred to in my thesis as the 'generic case'.

Parameters

model	instance of SimModel, containing the necessary information for the run.
z_interp	instance of RedshiftInterpolator, used in the SFH calculations.
data	dataframe containing the binary population data.
tag	tag to add to the output files.

Returns

Saves a dataframe with all the essential information.

4.3 add_merge Namespace Reference

Functions

• None add_merge (sm.SimModel model, ri.RedshiftInterpolator z_interp, pd.DataFrame data, str tag)

This routine adds the contribution of the 'merger bins' due to Kepler max to the bulk+birth GWB.

4.3.1 Function Documentation

4.3.1.1 add_merge()

```
None add_merge.add_merge ( sm.SimModel model,
```

```
ri.RedshiftInterpolator z_interp,
pd.DataFrame data,
str tag )
```

This routine adds the contribution of the 'merger bins' due to Kepler max to the bulk+birth GWB.

Parameters

model	instance of SimModel, containing the necessary information for the run.
z_interp	instance of RedshiftInterpolator, used in the SFH calculations.
data	dataframe containing the binary population data.
tag	tag to add to the output files.

Returns

Saves a dataframe with all the essential information.

4.4 auxiliary Namespace Reference

Functions

- tuple calc_parabola_vertex (float x1, float y1, float x2, float y2, float x3, float y3)
 - Calculate the coefficients of a parabola given three points.
- float parabola (float x, float a, float b, float c)

Calculate the value of a parabola given the coefficients.

• np.array get_bin_factors (np.array freqs, np.array bins)

Determine bin factors that often recur in the calculation to store them.

• np.array get_width_z_shell_from_z (np.array z_vals)

Returns the widths of the redshift shells in Mpc.

• np.array Omega (float Omega_ref, float f_ref, np.array freq)

Create a $f^{(2)}$ spectrum line.

 None make_Omega_plot_unnorm (np.array f, np.array Omega_sim, bool save=False, str save_name="void", bool show=False)

Make a plot showing Omega for BWD.

• float tau_syst (float f_0, float f_1, float K, float s_in_Myr)

Calculates tau, the time it takes a binary with K to evolve from f_0 to f_1 (GW frequencies).

• float determine_upper_freq (float nu_low, float evolve_time, float K, bool DEBUG=False)

Variables

• tuple s_in_Myr = (u.Myr).to(u.s)

4.4.1 Function Documentation

4.4.1.1 calc_parabola_vertex()

```
tuple auxiliary.calc_parabola_vertex ( float x1, float y1, float x2, float y2, float x3, float x3, float y3)
```

Calculate the coefficients of a parabola given three points.

Parameters

x1,y1	x and y coordinates of the first point.
x2,y2	x and y coordinates of the second point.
x3,y3	x and y coordinates of the third point.

Returns

A, B, C: coefficients of the parabola.

4.4.1.2 determine_upper_freq()

Determines upper ORBITAL frequency for a binary with K, starting from nu_0, evolving over evolve_time.

Parameters

nu_low	initial orbital frequency.
evolve_time	time it takes to evolve in Myr.
K	constant depending on the binary.

Returns

nu_upp: upper orbital frequency.

4.4.1.3 get_bin_factors()

Determine bin factors that often recur in the calculation to store them.

Parameters

freqs	central frequencies.
bins	frequency bin edges.

Returns

factors: factors to multiply the contributions with.

4.4.1.4 get_width_z_shell_from_z()

```
np.array auxiliary.get_width_z_shell_from_z ( \label{eq:continuous} \text{np.array } z\_vals \ )
```

Returns the widths of the redshift shells in Mpc.

Parameters

Returns

shells: shell widths in Mpc.

4.4.1.5 make_Omega_plot_unnorm()

Make a plot showing Omega for BWD.

Parameters

f	frequency array.
Omega_sim	Omega array.
save	save the figure.
save_name	name of the saved figure.
show	show the figure.

4.4.1.6 Omega()

Create a $f^{(2)}$ spectrum line.

Parameters

Omega_ref	reference Omega value.
f_ref	reference frequency.
freq	frequency array.

Returns

Omega: Omega array.

4.4.1.7 parabola()

Calculate the value of a parabola given the coefficients.

Parameters

X	x value.
a,b,c	coefficients of the parabola.

Returns

y: y value.

4.4.1.8 tau_syst()

Calculates tau, the time it takes a binary with K to evolve from f_0 to f_1 (GW frequencies).

Parameters

f⇔	initial frequency.
_←	
f⇔	final frequency.
<i>i</i> ←	illai liequelley.
1	
,	

Returns

tau: time in Myr.

4.4.2 Variable Documentation

4.4.2.1 s_in_Myr

```
tuple auxiliary.s_in_Myr = (u.Myr).to(u.s)
```

4.5 GWB Namespace Reference

Functions

• main ()

Main function.

Variables

- size
- titlesize
- labelsize
- fontsize
- action
- category
- tuple s_in_Myr = (u.Myr).to(u.s)

4.5.1 Function Documentation

4.5.1.1 main()

```
GWB.main ( )
```

Main function.

The main functions sets the details of the simulation and runs the three main parts of the program.

4.5.2 Variable Documentation

4.5.2.1 action

GWB.action

4.5.2.2 category

GWB.category

4.5.2.3 fontsize

GWB.fontsize

4.5.2.4 labelsize

GWB.labelsize

4.5.2.5 s_in_Myr

```
tuple GWB.s_in_Myr = (u.Myr).to(u.s)
```

4.5.2.6 size

GWB.size

4.5.2.7 titlesize

GWB.titlesize

4.6 num_syst Namespace Reference

Classes

• class sim model

MODEL CLASS ##########.

Functions

- get_width_z_shell_from_z (z_vals)
 - **AUXILIARY FUNCTIONS ###########**
- SFH (z)

Star formation history from [Madau, Dickinson 2014].

tau_syst (f_0, f_1, K)

Calculates tau, the time it takes a binary with K to evolve from f_0 to f_1 (GW frequencies).

representative_SFH (age, Delta_t, SFH_num, max_z)

Looks for a representative value of the SFH given the age of the system, and an additional time delay in reaching the bin.

- get_z_fast (age)
- determine_upper_freq (nu_low, evolve_time, K)

Determines upper ORBITAL frequency for a binary with K, starting from nu_0, evolving over evolve_time.

- num_merge_bins (model1, model2, data, tag)
- main ()

ACTUAL MAIN FUNCTION #############

Variables

- size
- titlesize
- labelsize
- fontsize
- tuple s_in_Myr = (u.Myr).to(u.s)
- z_at_val_data = pd.read_csv("../Data/z_at_age.txt", names=["age", "z"], header=1)
 LOAD Z_AT_VALUE FILE ###############.
- interp_age
- interp_z

4.6.1 Function Documentation

4.6.1.1 determine_upper_freq()

Determines upper ORBITAL frequency for a binary with K, starting from nu_0, evolving over evolve_time.

Takes evolve_time in Myr, so needs to be converted.

4.6.1.2 get_width_z_shell_from_z()

```
\label{eq:condition} \begin{split} \text{num\_syst.get\_width\_z\_shell\_from\_z} & \text{ (} \\ & z\_vals \text{ )} \end{split}
```

AUXILIARY FUNCTIONS ###########.

Returns the widths of the z_shells in Mpc.

4.6.1.3 get_z_fast()

4.6.1.4 main()

```
num_syst.main ( )
```

ACTUAL MAIN FUNCTION ###########.

The actual main function. Combines the three different components

4.6.1.5 num_merge_bins()

4.6.1.6 representative SFH()

Looks for a representative value of the SFH given the age of the system, and an additional time delay in reaching the bin.

age and Delta_t should be given in Myr.

4.6.1.7 SFH()

```
num_syst.SFH ( z )
```

Star formation history from [Madau, Dickinson 2014].

Units: solar mass / yr / Mpc^3

4.6.1.8 tau_syst()

Calculates tau, the time it takes a binary with K to evolve from f_0 to f_1 (GW frequencies).

Returns tau in Myr.

4.6.2 Variable Documentation

4.6.2.1 fontsize

```
num_syst.fontsize
```

4.6.2.2 interp_age

```
num_syst.interp_age
```

4.6.2.3 interp_z

num_syst.interp_z

4.6.2.4 labelsize

num_syst.labelsize

4.6.2.5 s in Myr

```
tuple num_syst.s_in_Myr = (u.Myr).to(u.s)
```

4.6.2.6 size

num_syst.size

4.6.2.7 titlesize

num_syst.titlesize

4.6.2.8 z_at_val_data

```
num_syst.z_at_val_data = pd.read_csv("../Data/z_at_age.txt", names=["age", "z"], header=1)
LOAD Z_AT_VALUE FILE ##############.
```

4.7 RedshiftInterpolator Namespace Reference

This module contains the class RedshiftInterpolator.

Classes

· class RedshiftInterpolator

This class is used to quickly determine the redshift at a given age of the Universe.

4.7.1 Detailed Description

This module contains the class RedshiftInterpolator.

The class RedshiftInterpolator is used to quickly determine the redshift at a given age of the Universe.

Author

Seppe Staelens

Date

2024-07-24

4.8 SFH Namespace Reference

Functions

• representative_SFH (float age, ri.RedshiftInterpolator redshift_interpolator, float Delta_t=0., int SFH_num=1, float max z=8.)

Determines an appropriate value for the star formation rate at a given age.

float SFH_MD (float z)

Star formation history from [Madau, Dickinson 2014].

• float SFH2 (float z)

Made up star formation history.

• float SFH3 (float z)

Made up star formation history.

• float SFH4 (float z)

Made up star formation history.

4.8.1 Function Documentation

4.8.1.1 representative SFH()

Determines an appropriate value for the star formation rate at a given age.

The function looks for a representative value of the star formation rate given the age of the system, and takes into account an optional additional time delay.

Parameters

age	age of the system in Myr.
redshift_interpolator	RedshiftInterpolator object that interpolates the redshift at a given age.
Delta_t	time delay due to formation of binary or time required to reach the correct frequency bin, in Myr.
SFH_num	which star formation history to select. 1: Madau & Dickinson 2014, 2-4: made up, 5: constant 0.01.
max_z	maximum redshift.

Returns

SFR: star formation rate. Units: solar mass / yr / Mpc^3.

4.8.1.2 SFH2()

```
float SFH.SFH2 ( {\tt float}\ {\tt z}\ )
```

Made up star formation history.

Parameters

```
z redshift.
```

Returns

SFR: star formation rate. Units: solar mass / yr / Mpc^3.

4.8.1.3 SFH3()

```
float SFH.SFH3 ( \label{eq:float} \texttt{float} \ z \ )
```

Made up star formation history.

Parameters

```
z redshift.
```

Returns

SFR: star formation rate. Units: solar mass / yr / Mpc $^{\wedge}$ 3.

4.8.1.4 SFH4()

```
float SFH.SFH4 ( float z )
```

Made up star formation history.

Parameters

```
z redshift.
```

Returns

SFR: star formation rate. Units: solar mass / yr / Mpc $^{\wedge}$ 3.

4.8.1.5 SFH_MD()

```
float SFH.SFH_MD ( \label{eq:float_z} \texttt{float} \ z \ )
```

Star formation history from [Madau, Dickinson 2014].

Parameters

z redshift.

Returns

SFR: star formation rate. Units: solar mass / yr / Mpc^3.

4.9 SimModel Namespace Reference

This module contains the class SimModel.

Classes

• class SimModel

! This class contains information about the run that needs to be shared over the different subroutines.

4.9.1 Detailed Description

This module contains the class SimModel.

The class SimModel contains information about the run that needs to be shared over the different subroutines.

Author

Seppe Staelens

Date

2024-07-24

Chapter 5

Class Documentation

5.1 RedshiftInterpolator.RedshiftInterpolator Class Reference

This class is used to quickly determine the redshift at a given age of the Universe.

Public Member Functions

```
    None __init__ (self, str z_at_age_file)
    Initializes the RedshiftInterpolator object.
```

float get_z_fast (self, float age)

Quickly determine the redshift at a given age of the Universe.

Public Attributes

• interp_age

The age of the Universe at which the redshift is determined.

• interp z

The redshift at the given age of the Universe.

5.1.1 Detailed Description

This class is used to quickly determine the redshift at a given age of the Universe.

5.1.2 Constructor & Destructor Documentation

```
5.1.2.1 __init__()
```

```
None RedshiftInterpolator.RedshiftInterpolator.__init__ ( self, \\ str \ z\_at\_age\_file \ )
```

Initializes the RedshiftInterpolator object.

24 Class Documentation

Parameters

z_at_age_file file containing the redshift at a given age of the Univers
--

5.1.3 Member Function Documentation

5.1.3.1 get_z_fast()

```
float RedshiftInterpolator.RedshiftInterpolator.get_z_fast ( self, \\ float \ age \ )
```

Quickly determine the redshift at a given age of the Universe.

Parameters

```
age age of the Universe in Myr.
```

Returns

redshift at the given age of the Universe.

5.1.4 Member Data Documentation

5.1.4.1 interp_age

```
RedshiftInterpolator.RedshiftInterpolator.interp_age
```

The age of the Universe at which the redshift is determined.

5.1.4.2 interp z

```
{\tt RedshiftInterpolator.RedshiftInterpolator.interp\_z}
```

The redshift at the given age of the Universe.

The documentation for this class was generated from the following file:

/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_Dwarf_AGWB/src/modules/RedshiftInterpolator.py

5.2 num_syst.sim_model Class Reference

MODEL CLASS ##########.

Public Member Functions

```
• None __init__ (self, N=50, N_z=20, max_z=8, SFH_num=1, log_f_low=-5, log_f_high=0)
```

calculate_f_bins (self)

Calculates the f bins and the bin factors.

• calculate z bins (self)

Calculates the z bins.

· calculate_cosmology (self)

Public Attributes

- N
- N z
- max_z
- SFH_num
- log_f_low
- log_f_high
- f_plot
- f_bins
- z_list
- z_bins
- z_widths
- z_time_since_max_z
- ages

5.2.1 Detailed Description

MODEL CLASS ##########.

This class contains information about the run that needs to be shared over the different subroutines.

5.2.2 Constructor & Destructor Documentation

5.2.2.1 __init__()

5.2.3 Member Function Documentation

5.2.3.1 calculate_cosmology()

```
\label{eq:num_syst.sim_model.calculate_cosmology} \mbox{ (} \\ self \mbox{ )}
```

26 Class Documentation

5.2.3.2 calculate_f_bins()

```
\label{eq:condition} \begin{split} & \text{num\_syst.sim\_model.calculate\_f\_bins (} \\ & self \ ) \end{split}
```

Calculates the f bins and the bin factors.

5.2.3.3 calculate_z_bins()

```
\label{eq:condition} \begin{split} & \text{num\_syst.sim\_model.calculate\_z\_bins (} \\ & self ) \end{split}
```

Calculates the z bins.

5.2.4 Member Data Documentation

5.2.4.1 ages

```
{\tt num\_syst.sim\_model.ages}
```

5.2.4.2 f bins

```
num_syst.sim_model.f_bins
```

5.2.4.3 f_plot

```
num_syst.sim_model.f_plot
```

5.2.4.4 log_f_high

```
{\tt num\_syst.sim\_model.log\_f\_high}
```

5.2.4.5 log_f_low

```
num_syst.sim_model.log_f_low
```

5.2.4.6 max_z

```
num_syst.sim_model.max_z
```

5.2.4.7 N

num_syst.sim_model.N

5.2.4.8 N_z

```
num_syst.sim_model.N_z
```

5.2.4.9 SFH num

num_syst.sim_model.SFH_num

5.2.4.10 z_bins

num_syst.sim_model.z_bins

5.2.4.11 z list

num_syst.sim_model.z_list

5.2.4.12 z_time_since_max_z

num_syst.sim_model.z_time_since_max_z

5.2.4.13 z_widths

num_syst.sim_model.z_widths

The documentation for this class was generated from the following file:

/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White Dwarf AGWB/src/num syst.py

5.3 SimModel.SimModel Class Reference

! This class contains information about the run that needs to be shared over the different subroutines.

Public Member Functions

• None __init__ (self, str INTEG_MODE, int z_interp, int N_freq=50, int N_int=20, float max_z=8, int SFH_num=1, float log_f_low=-5, float log_f_high=0)

Initializes the SimModel object.

• None calculate f bins (self)

Calculates the f bins and the bin factors.

None calculate_z_bins (self)

Calculates the z bins.

• None calculate_T_bins (self)

Calculates the T bins.

None calculate_cosmology_from_z (self)

Calculations depending on the cosmology, starting from redshift bins.

• None calculate_cosmology_from_T (self, ri.RedshiftInterpolator z_interpolator)

Calculations depending on the cosmology, starting from cosmic time bins.

• None set_mode (self, bool SAVE_FIG, bool DEBUG, bool TEST_FOR_ONE)

Sets the mode of the simulation.

28 Class Documentation

Public Attributes

- N_freq
- N_int
- max z
- SFH_num
- log_f_low
- log_f_high
- INTEG_MODE
- f plot

The frequencies at which we will plot.

• f_bins

The frequency bins.

• f bin factors

The frequency bin factors that appear in the calculation.

z_list

The central values of the redshift bins.

• z bins

The redshift bins.

- T0
- T_range
- T list
- T_bins
- dT
- z_widths

The width of the redshift bins in Mpc.

• z_time_since_max_z

The time since the maximum redshift

• ages

The age of the universe at each redshift.

- SAVE_FIG
- DEBUG
- TEST_FOR_ONE

Static Public Attributes

• float light_speed = 0.30660139

The speed of light in units of Mpc/Myr.

5.3.1 Detailed Description

! This class contains information about the run that needs to be shared over the different subroutines.

5.3.2 Constructor & Destructor Documentation

5.3.2.1 __init__()

Initializes the SimModel object.

Parameters

N_freq	number of frequency bins.
N_int	number of integration bins (z or T).
max_z	maximum redshift.
SFH_num	which star formation history to select. 1: Madau & Dickinson 2014, 2-4: made up, 5: constant 0.01.
log_f_low	lower bound of the frequency bins in log10 space.
log_f_high	upper bound of the frequency bins in log10 space.

Returns

instance of SimModel, with frequency and redshift bins calculated, and cosmology set.

5.3.3 Member Function Documentation

5.3.3.1 calculate_cosmology_from_T()

```
None SimModel.SimModel.calculate_cosmology_from_T ( self, {\tt ri.RedshiftInterpolator}\ z\_interpolator\ )
```

Calculations depending on the cosmology, starting from cosmic time bins.

Calculates the redshifts, the time since the maximum redshift, and the ages of the universe at each time.

5.3.3.2 calculate_cosmology_from_z()

```
None SimModel.SimModel.calculate_cosmology_from_z ( self \ )
```

Calculations depending on the cosmology, starting from redshift bins.

Sets the widths of the z bins and the time since max z, as well as the age of the universe at each redshift.

30 Class Documentation

5.3.3.3 calculate_f_bins()

```
None SimModel.SimModel.calculate_f_bins ( self \ )
```

Calculates the f bins and the bin factors.

5.3.3.4 calculate_T_bins()

```
None SimModel.SimModel.calculate_T_bins ( self )
```

Calculates the T bins.

5.3.3.5 calculate_z_bins()

```
None SimModel.SimModel.calculate_z_bins ( self \ )
```

Calculates the z bins.

5.3.3.6 set_mode()

```
None SimModel.SimModel.set_mode ( self, bool SAVE_FIG, bool DEBUG, bool TEST_FOR_ONE )
```

Sets the mode of the simulation.

Parameters

SAVE_FIG	whether to save the figures.
DEBUG	whether to print more output.
TEST_FOR_ONE	whether to test for only one system.
INT_MODE	whether to integrate over redshift or time.

5.3.4 Member Data Documentation

5.3.4.1 ages

```
SimModel.SimModel.ages
```

The age of the universe at each redshift.

5.3.4.2 **DEBUG**

SimModel.SimModel.DEBUG

5.3.4.3 dT

SimModel.SimModel.dT

5.3.4.4 f_bin_factors

SimModel.SimModel.f_bin_factors

The frequency bin factors that appear in the calculation.

5.3.4.5 f_bins

SimModel.SimModel.f_bins

The frequency bins.

5.3.4.6 f_plot

SimModel.SimModel.f_plot

The frequencies at which we will plot.

5.3.4.7 INTEG_MODE

SimModel.SimModel.INTEG_MODE

5.3.4.8 light_speed

float SimModel.SimModel.light_speed = 0.30660139 [static]

The speed of light in units of Mpc/Myr.

5.3.4.9 log_f_high

SimModel.SimModel.log_f_high

5.3.4.10 log_f_low

 ${\tt SimModel.SimModel.log_f_low}$

32 Class Documentation

5.3.4.11 max_z

SimModel.SimModel.max_z

5.3.4.12 N_freq

SimModel.SimModel.N_freq

5.3.4.13 N_int

SimModel.SimModel.N_int

5.3.4.14 SAVE_FIG

SimModel.SimModel.SAVE_FIG

5.3.4.15 SFH_num

SimModel.SFH_num

5.3.4.16 T0

SimModel.SimModel.T0

5.3.4.17 T_bins

SimModel.SimModel.T_bins

5.3.4.18 T_list

 ${\tt SimModel.SimModel.T_list}$

5.3.4.19 T_range

SimModel.SimModel.T_range

5.3.4.20 TEST_FOR_ONE

SimModel.SimModel.TEST_FOR_ONE

5.3.4.21 z_bins

SimModel.SimModel.z_bins

The redshift bins.

5.3.4.22 z_list

SimModel.SimModel.z_list

The central values of the redshift bins.

5.3.4.23 z_time_since_max_z

SimModel.SimModel.z_time_since_max_z

The time since the maximum redshift

5.3.4.24 z_widths

SimModel.SimModel.z_widths

The width of the redshift bins in Mpc.

The documentation for this class was generated from the following file:

 $\bullet \ / home/seppe/Documents/data/Papers/AnA.683.A139 (2024)/White_Dwarf_AGWB/src/modules/SimModel.py$

34 Class Documentation

Chapter 6

File Documentation

6.1 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_← Dwarf_AGWB/src/GWB.py File Reference

This program calculates the GWB based on the method described in my thesis, using uniform redshift bins.

Namespaces

namespace GWB

Functions

• GWB.main ()

Main function.

Variables

- GWB.size
- GWB.titlesize
- GWB.labelsize
- GWB.fontsize
- GWB.action
- GWB.category
- tuple GWB.s_in_Myr = (u.Myr).to(u.s)

6.1.1 Detailed Description

This program calculates the GWB based on the method described in my thesis, using uniform redshift bins.

Date

2024-07-26

The program calculates the GWB based on the method described in my thesis, using uniform redshift bins. It is divided into three main parts: the bulk part, the birth part, and the merger part. The bulk part calculates the majority of the GWB, what is referred to in my thesis as the 'generic case'. The birth part adds the contribution of the 'birth bins' to the bulk GWB. The merger part adds the contribution of the 'merger bins' due to Kepler max to the bulk GWB. The program saves a dataframe with all the essential information.

Author

Seppe Staelens

36 File Documentation

6.2 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_← Dwarf AGWB/src/modules/add birth.py File Reference

This file contains a routine that adds the contribution of the 'birth bins' to the bulk GWB.

Namespaces

· namespace add birth

Functions

• None add_birth.add_birth (sm.SimModel model, ri.RedshiftInterpolator z_interp, pd.DataFrame data, str tag)

This routine adds the contribution of the 'birth bins' to the bulk GWB.

6.2.1 Detailed Description

This file contains a routine that adds the contribution of the 'birth bins' to the bulk GWB.

Author

Seppe Staelens

Date

2024-07-24

6.3 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_← Dwarf_AGWB/src/modules/add_bulk.py File Reference

This file contains a routine that calculates the majority of the GWB, what is referred to in my thesis as the 'generic case'.

Namespaces

• namespace add_bulk

Functions

• None add_bulk.add_bulk (sm.SimModel model, ri.RedshiftInterpolator z_interp, pd.DataFrame data, str tag)

This routine calculates the majority of the GWB, what is referred to in my thesis as the 'generic case'.

6.3.1 Detailed Description

This file contains a routine that calculates the majority of the GWB, what is referred to in my thesis as the 'generic case'.

Author

Seppe Staelens

Date

2024-07-24

6.4 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_ Dwarf_AGWB/src/modules/add_merge.py File Reference

This file contains a routine that adds the contribution of the 'merger bins' due to Kepler max to the bulk+birth GWB.

Namespaces

• namespace add_merge

Functions

 None add_merge.add_merge (sm.SimModel model, ri.RedshiftInterpolator z_interp, pd.DataFrame data, str tag)

This routine adds the contribution of the 'merger bins' due to Kepler max to the bulk+birth GWB.

6.4.1 Detailed Description

This file contains a routine that adds the contribution of the 'merger bins' due to Kepler max to the bulk+birth GWB.

Author

Seppe Staelens

Date

2024-07-24

6.5 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_← Dwarf_AGWB/src/modules/auxiliary.py File Reference

This module contains auxiliary functions that are used in the main code.

38 File Documentation

Namespaces

· namespace auxiliary

Functions

• tuple auxiliary.calc parabola vertex (float x1, float y1, float x2, float y2, float x3, float y3)

Calculate the coefficients of a parabola given three points.

float auxiliary.parabola (float x, float a, float b, float c)

Calculate the value of a parabola given the coefficients.

np.array auxiliary.get_bin_factors (np.array freqs, np.array bins)

Determine bin factors that often recur in the calculation to store them.

np.array auxiliary.get_width_z_shell_from_z (np.array z_vals)

Returns the widths of the redshift shells in Mpc.

np.array auxiliary.Omega (float Omega_ref, float f_ref, np.array freq)

Create a $f^{\setminus}\{2/3\}$ spectrum line.

None auxiliary.make_Omega_plot_unnorm (np.array f, np.array Omega_sim, bool save=False, str save_
 —
 name="void", bool show=False)

Make a plot showing Omega for BWD.

• float auxiliary.tau_syst (float f_0, float f_1, float K, float s_in_Myr)

Calculates tau, the time it takes a binary with K to evolve from f_0 to f_1 (GW frequencies).

• float auxiliary.determine_upper_freq (float nu_low, float evolve_time, float K, bool DEBUG=False)

Determines upper ORBITAL frequency for a binary with K, starting from nu_0, evolving over evolve_time.

Variables

• tuple auxiliary.s_in_Myr = (u.Myr).to(u.s)

6.5.1 Detailed Description

This module contains auxiliary functions that are used in the main code.

Author

Seppe Staelens

Date

2024-07-24

6.6 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_ Dwarf_AGWB/src/modules/RedshiftInterpolator.py File Reference

Classes

· class RedshiftInterpolator.RedshiftInterpolator

This class is used to quickly determine the redshift at a given age of the Universe.

Namespaces

· namespace RedshiftInterpolator

This module contains the class RedshiftInterpolator.

6.7 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_← Dwarf AGWB/src/modules/SFH.py File Reference

This file contains the functions to determine the star formation rate.

Namespaces

namespace SFH

Functions

• SFH.representative_SFH (float age, ri.RedshiftInterpolator redshift_interpolator, float Delta_t=0., int SFH_← num=1, float max_z=8.)

Determines an appropriate value for the star formation rate at a given age.

• float SFH.SFH_MD (float z)

Star formation history from [Madau, Dickinson 2014].

• float SFH.SFH2 (float z)

Made up star formation history.

• float SFH.SFH3 (float z)

Made up star formation history.

• float SFH.SFH4 (float z)

Made up star formation history.

6.7.1 Detailed Description

This file contains the functions to determine the star formation rate.

Date

2024-07-24

The file contains the functions to determine the star formation rate. The function representative_SFH determines an appropriate value for the star formation rate at a given age. It allows for an optional additional time delay, due to a delay in formation of the binary, or if time is required to move to the correct frequency bin. The functions SFH_MD, SFH2, SFH3, and SFH4 are star formation histories that can be selected.

Author

Seppe Staelens

40 File Documentation

6.8 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_← Dwarf AGWB/src/modules/SimModel.py File Reference

Classes

class SimModel.SimModel

! This class contains information about the run that needs to be shared over the different subroutines.

Namespaces

namespace SimModel

This module contains the class SimModel.

6.9 /home/seppe/Documents/data/Papers/AnA.683.A139(2024)/White_← Dwarf AGWB/src/num syst.py File Reference

Classes

class num_syst.sim_model

MODEL CLASS ###########.

Namespaces

· namespace num syst

Functions

num_syst.get_width_z_shell_from_z (z_vals)

AUXILIARY FUNCTIONS #############.

• num_syst.SFH (z)

Star formation history from [Madau, Dickinson 2014].

num_syst.tau_syst (f_0, f_1, K)

Calculates tau, the time it takes a binary with K to evolve from f_0 to f_1 (GW frequencies).

num_syst.representative_SFH (age, Delta_t, SFH_num, max_z)

Looks for a representative value of the SFH given the age of the system, and an additional time delay in reaching the bin.

- num syst.get z fast (age)
- num_syst.determine_upper_freq (nu_low, evolve_time, K)

Determines upper ORBITAL frequency for a binary with K, starting from nu_0, evolving over evolve_time.

- num_syst.num_merge_bins (model1, model2, data, tag)
- num_syst.main ()

ACTUAL MAIN FUNCTION ############.

Variables

- num_syst.size
- · num syst.titlesize
- · num syst.labelsize
- num_syst.fontsize
- tuple num_syst.s_in_Myr = (u.Myr).to(u.s)
- num_syst.interp_age
- num_syst.interp_z

Index

```
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/Wh&m_Dlodefl_&iGNB.bert/@WB.py,
                                                      calculate cosmology from z
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/Wh&mDwdefl.&i@hMB&cbc/@odules/RedshiftInterpolator.py,
                                                      calculate f bins
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/WhitemDwyst.sAc@WfB/det/n26dules/SFH.py,
                                                           SimModel.SimModel, 29
/home/seppe/Documents/data/Papers/AnA.683.A139(2024) A White D Washing GWB/src/modules/SimModel.py,
                                                           SimModel.SimModel, 30
/home/seppe/Documents/data/Papers/AnA.683.A139(2024) And bitate Davabing AGWB/src/modules/add_birth.py,
                                                          num syst.sim model, 26
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/Wh&mDwdefl.&i@hMBdwch/@odules/add bulk.py,
                                                      category
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)/Wh@AMDwaff_AGWB/src/modules/add_merge.py,
/home/seppe/Documents/data/Papers/AnA.683.A139(2024) White Dwarf AGWB/src/modules/auxiliary.py,
                                                          SimModel, SimModel, 30
/home/seppe/Documents/data/Papers/AnA.683.A139(2024)AMMITE DWANPACINWB/src/num_syst.py,
                                                          auxiliary, 11
         40
                                                          num_syst, 16
 init
                                                      dT
    num_syst.sim_model, 25
                                                          SimModel, SimModel, 31
    RedshiftInterpolator.RedshiftInterpolator, 23
    SimModel, SimModel, 29
                                                      f bin factors
                                                          SimModel.SimModel, 31
action
    GWB, 14
                                                          num_syst.sim_model, 26
add birth. 7
                                                          SimModel, 31
    add birth, 7
add bulk, 8
                                                          num syst.sim model, 26
    add bulk, 8
                                                          SimModel.SimModel, 31
add merge, 8
                                                      fontsize
    add_merge, 8
                                                          GWB, 14
ages
                                                          num_syst, 17
    num syst.sim model, 26
    SimModel.SimModel, 30
                                                      get_bin_factors
auxiliary, 9
                                                          auxiliary, 11
    calc parabola vertex, 10
                                                      get_width_z_shell_from_z
    determine upper freq, 11
                                                          auxiliary, 11
    get_bin_factors, 11
                                                          num syst, 16
    get_width_z_shell_from_z, 11
                                                      get_z_fast
    make_Omega_plot_unnorm, 12
                                                          num_syst, 16
    Omega, 12
                                                          RedshiftInterpolator, RedshiftInterpolator, 24
    parabola, 13
                                                      GWB, 14
    s_in_Myr, 14
                                                          action, 14
    tau syst, 13
                                                          category, 14
                                                          fontsize, 14
calc parabola vertex
                                                          labelsize, 15
    auxiliary, 10
                                                          main, 14
calculate cosmology
                                                          s in Myr, 15
    num_syst.sim_model, 25
                                                          size, 15
calculate_cosmology_from_T
```

42 INDEX

titlesize, 15	num_syst.sim_model, 24
	init, 25
INTEG_MODE	ages, 26
SimModel.SimModel, 31	calculate_cosmology, 25
interp_age	calculate_f_bins, 25
num_syst, 17	calculate_z_bins, 26
RedshiftInterpolator.RedshiftInterpolator, 24	f_bins, 26
interp_z	f_plot, 26
num_syst, 17	log_f_high, 26
RedshiftInterpolator.RedshiftInterpolator, 24	log_f_low, 26
	max_z, <mark>26</mark>
labelsize	N, 26
GWB, 15	N_z, 26
num_syst, 18	SFH_num, 27
light_speed	z_bins, 27
SimModel.SimModel, 31	z_list, 27
log_f_high	z_time_since_max_z, 27
num_syst.sim_model, 26	z_widths, 27
SimModel.SimModel, 31	
log_f_low	Omega
num_syst.sim_model, 26	auxiliary, 12
SimModel.SimModel, 31	
	parabola
main	auxiliary, 13
GWB, 14	Dadalithatamalatan 40
num_syst, 16	RedshiftInterpolator, 18
make_Omega_plot_unnorm	RedshiftInterpolator.RedshiftInterpolator, 23
auxiliary, 12	init, 23
max_z	get_z_fast, 24
num_syst.sim_model, 26	interp_age, 24
SimModel.SimModel, 31	interp_z, 24
N	representative_SFH
N num quat aim madal 26	num_syst, 17
num_syst.sim_model, 26	SFH, 19
N_freq	o in Mur
SimModel.SimModel, 32	s_in_Myr
N_int	auxiliary, 14
SimModel.SimModel, 32	GWB, 15
N_z	num_syst, 18 SAVE_FIG
num_syst.sim_model, 26	_
num_merge_bins	SimModel.SimModel, 32
num_syst, 16	set_mode
num_syst, 15	SimModel.SimModel, 30
determine_upper_freq, 16	SFH, 19
fontsize, 17	num_syst, 17
get_width_z_shell_from_z, 16	representative_SFH, 19
get_z_fast, 16	SFH2, 19
interp_age, 17	SFH3, 21
interp_z, 17	SFH4, 21
labelsize, 18	SFH_MD, 21
main, 16	SFH2
num_merge_bins, 16	SFH, 19
representative_SFH, 17	SFH3
s_in_Myr, 18	SFH, 21
SFH, 17	SFH4
size, 18	SFH, 21
tau_syst, 17	SFH_MD
titlesize, 18	SFH, 21
z_at_val_data, 18	SFH_num

INDEX 43

num_syst.sim_model, 27 SimModel.SimModel, 32 SimModel, 22 SimModel.SimModel, 27init, 29 ages, 30 calculate_cosmology_from_T, 29 calculate_cosmology_from_z, 29 calculate_f_bins, 29 calculate_T_bins, 30 calculate_z_bins, 30 DEBUG, 30 dT, 31 f_bin_factors, 31 f_bins, 31 f_blot, 31 INTEG_MODE, 31 light_speed, 31 log_f_high, 31 log_f_low, 31 max_z, 31 N_freq, 32 N_int, 32 SAVE_FIG, 32 set_mode, 30 SFH_num, 32 T0, 32 T_bins, 32 T_list, 32 T_range, 32 T_sist, 32 T_range, 32 z_bins, 32 z_list, 33 z time since max z, 33	num_syst.sim_model, 27 SimModel.SimModel, 32 z_list num_syst.sim_model, 27 SimModel.SimModel, 33 z_time_since_max_z num_syst.sim_model, 27 SimModel.SimModel, 33 z_widths num_syst.sim_model, 27 SimModel.SimModel, 33
z_widths, 33 size	
GWB, 15	
num_syst, 18	
ТО	
SimModel.SimModel, 32	
T_bins	
SimModel.SimModel, 32 T_list SimModel.SimModel, 32	
T_range SimModel.SimModel, 32	
tau_syst auxiliary, 13	
num_syst, 17 TEST_FOR_ONE	
SimModel.SimModel, 32 titlesize GWB, 15 num_syst, 18	
z_at_val_data	
num_syst, 18	
z_bins	