Establishment of novel IVIVC model combined with DoE for the development of extended-release formulation: from formulation composition to in vivo pharmacokinetics

성균관대학교 약학대학 신 범 수

Extended Release Formulations

Extended-release dosage formulations are dosage forms designed to release a drug at a predetermined rate in order to maintain a constant drug concentration for a specific period of time with minimum side effects.

Dissolution profiles in vitro

Plasma concentration vs. time profiles in vivo

Operation Development process of the extended release (ER) formulations

Expensive and time-consuming process

Formulation strategies of ER formulations

- Hydrophilic/inert matrix system (HPMC)
- Coated particles
- Osmotic pump
- Ion-exchange resins

What is "In Vitro-In Vivo Correlation (IVIVC)"?

US FDA definition of IVIVC

A predictive mathematical model describing the relationship between an in-vitro property of a dosage form and an in-vivo response

99

Application 1: Prediction of PK profile from dissolution pattern

In vitro property: Dissolution

In vivo response: PK profile

◄··········· **Application 2**: Design the optimal dissolution pattern for the desired PK profile

Application of IVIVC for the development of extended release (ER) formulations

Increases success rate, Saves time and cost **Optimized dissolution Target PK profile Designing drug** In vitro In vivo dissolution Formulation dissolution pharmacokinetics YES Target profile achieved NO

Expensive and time consuming process

Process of establishing in vitro-in vivo correlation (IVIVC)

Step1. Prediction of in vivo dissolution profile in the GI tract from plasma concentration-time profile

- · Wagner-Nelson
- Loo-Riegelman
- Numeric deconvolution

Step2. Correlation between in vitro dissolution and in vivo dissolution

- Mathematical conversion (in vivo dissolution $\leftarrow \rightarrow$ in vitro dissolution)
- · Optimize the in vitro dissolution condition to mimic in vivo condition in the GI tract

Limitation of the conventional IVIVC approach

Step 1. (The most critical step)

Prediction of in vivo dissolution profile in the GI tract from plasma concentration-time profile

Assuming complete absorption of the drug after dissolution without absorption process

- · Conventional methods assume all dissolved drug is completely absorbed without any limitation
 - \rightarrow thus only can be applied for BCS I and 11 drugs,
 - -> cannot describe complex physiological absorption process.
- Conventional IVIVC method cannot describe complex systemic drug disposition such as nonlinear PK or EHC which are frequent cases.
- Novel IVIVC approach may be necessary to improve predictability of in vivo drug performance and to expand application of IVIVC

Case study 1 (Loxoprofen)

- NSAID used for the treatment of pain or inflammation
- Orally administered three times a day
- The extended release, once a day formulation is not available

Composition of Loxoprofen ER tablet Formulations

substances	ER-A	ER-B	ER-C
loxoprofen	37.5 (180 mg)	37.5 (180 mg)	37.5 (180 mg)
microcrystalline cellulose	53.1	20.25	20.25
polyvinylpyrrolidone K90	3.75	3.75	3.75
HPMC-100 cps	4.65	32.5	
HPMC-4000 cps		5.0	5.0
HPMC-15000 cps			32.5
Mg stearate	1.0	1.0	1.0
total	100.0	100.0	100.0

pH-dependent in vivo dissolution

Characteristics of in vivo pharmacokinetics

Parameters	IR (n =6)	ER-A, fast $(n = 4)$	ER-B, medium $(n = 4)$	ER-C, slow $(n = 4)$
Dose (mg)	$60 \text{ mg} \times 2 \text{ (BID)}$	180	180	180
$t_{1/2}$ (h)	4.1 ± 1.0	5.5 ± 1.3	5.5 ± 3.0	5.6 ± 1.2
$T_{max}(h)$	0.4 ± 0.1	0.9 ± 0.4	1.7 ± 0.9	2.6 ± 1.3
$C_{max} (\mu g/mL)$	18.1 ± 4.1	29.8 ± 6.5	17.2 ± 3.3	12.1 ± 4.4
$AUC_{infinity} (\mu g \cdot h/mL)$	72.2 ± 17.5	99.1 ± 20.9	92.8 ± 7.9	81.9 ± 20.1
$V_z/F(L)$	9.8 ± 4.6	14.4 ± 5.4	15.5 ± 7.9	17.7 ± 7.5
CL/F (mL/min)	27.7 ± 7.3	30.3 ± 6.6	32.3 ± 2.8	36.6 ± 9.8
Relative BA (%)	-	99.2 ± 21.0	92.9 ± 7.9	82.0 ± 20.2

IVIVC model structure

pH dependent dissolution

Site dependent absorption

$$F_{abs} = 1 - \frac{Time^{\gamma}}{TW_{50}^{\gamma} + Time^{\gamma}}$$

Extraction of in vivo dissolution

SR-Tablet	V _{max} (0), in vitro	$V_{max}(0)$, in vivo
ER-A tablet (fast)	6.1839	30.2112
ER-B tablet (medium)	2.4110	8.7297
ER-C tablet (slow)	1.8277	4.9057

 $V_{\text{max}}(0)$ in vivo = 5.77· $V_{\text{max}}(0)$ in vitro - 5.42

parameter	symbol	unit	population mean (BSV)
volume of distribution of the central compartment	V_1	L	0.87 (0.457)
volume of distribution of the shallow peripheral compartment	V_2	L	21.5 (0.286)
volume of distribution of the deep peripheral compartment	V_3	L	3.49 (0.161)
systemic clearance	CL	L/h	1.69 (0.15)
distribution clearance to the shallow peripheral compartment	CLd	L/h	0.459 (0.439)
distribution clearance to the deep peripheral compartment	CLd2	L/h	3.84 (0.183)
rate constant for absorption from gut	k_{a}	1/h	10.9 (1.38)
rate constant for absorption from gut for the 2nd dose	k_{a2}	1/h	7.77 (0.61)
time for half maximal bioavailability	$T_{ m window 50}$	h	8.5 (0.242)
Hill coefficient	γ		2.44 (0.281)
time point at which $V_{ m max~in~vivo}$ changed by 50%	$T_{ m change 50~in~vivo}$	h	1.79 (0.53)
maximum fold change in $V_{ m max}$	•		, ,
maximum fold change in V_{max} amount of loxoprofen in the s initial V_{max} for IR tablets $V_{\text{max}}(t) = V_{\text{max}}(t)$	(0) [1+ E_{max} ·time]	$^{10}/(T_{chc}^{10})$	$_{inge50}$ +time 10)
initial $V_{\text{max in vivo}}$ for IR tablets $v_{\text{max}}(v) = v_{\text{max}}(v)$	(0)		
initial $V_{ m max~in~vivo}$ for ER-A tablets	$V_{\rm max}(0)_{\rm ER-A~in~vivo}/{ m dose}$	1/h	30.2 (0.435)
initial $V_{ m max~in~vivo}$ for ER-B tablets	$V_{\rm max}(0)_{\rm ER-B~in~vivo}/{\rm dose}$	1/h	8.73 (0.276)
initial $V_{ m max~in~vivo}$ for ER-C tablets	$V_{\rm max}(0)_{\rm ER-C~in~vivo}/{ m dose}$	1/h	4.91 (0.387)
lag time for ER dissolution	$T_{ m lag}$	h	0.11 (0.455)
SD of additive residual error	SD_{in}	ng/mL	0.00216 (0)
proportional residual error	SD_{sl}		0.239 (0)

Interval validation

		C _{max}			AUC _{0-24h}		
Model	Formulation	Obs. (μg/mL)	Pred. (μg/mL)	PE (%)	Obs. (µg/mL)	Pred. (μg/mL)	PE (%)
	ER-A	29.82	22.92	23.1	96.95	84.39	12.9
Model 1 (Conventional IVIVC model)	ER-B	17.17	15.07	12.2	89.35	83.80	6.2
(John Charlette Model)	ER-C	12.06	9.32	22.7	78.07	82.72	6.0
	ER-A	29.82	25.16	15.6	96.95	84.17	13.2
Model 2 (pH dependent dissolution)	ER-B	17.17	16.29	5.1	89.35	86.38	3.3
(pri dependent dissolution)	ER-C	12.06	13.85	14.8	78.07	84.07	7.7
Model 3	ER-A	29.82	27.95	6.3	96.95	88.86	8.3
(pH-dependent dissolution,	ER-B	17.17	17.32	0.9	89.35	83.56	6.5
site-dependent absorption)	ER-C	12.06	12.66	4.9	78.07	75.14	3.8

External validation and application

Parameter	Observed	Predicted	PE (%)
$C_{max} (\mu g/mL)$	18.79	17.29	8.0%
$AUC_{0\text{-}24h}(\mu g\text{-}h/mL)$	87.93	81.87	6.9%

Design of experiments (DoE)

Design of experiments (DOE) is a systematic method to determine the relationship between factors affecting a process and the responses of that process.

Optimization of formulation composition using DoE

Type of excipient	Factor	Level	Response
	Lactose		
Diluent	MCC	and/or and/or	\ \
	Starch	5~20% 10~40% 15~30%	
Disintegrant	Croscarmellose	7	Flowability
Distillegrant	Crospovidone	and/or	Dissolution 2000
	НРМС		Stability
Binder	HPC		
	Povidone	5~20% 10~20% 5~15%	
l been at	Mg stearate	TI TI	
Lubricant	Talc]' or]'	

Case study 2 (ketoprofen)

- Nonsteroidal anti-inflammatory drug (NSAID).
- Dosage: 25 mg orally 3 times a day
- BCS II Suitable for IVIVC
- Highly permeable at upper intestine

Formulation of ketoprofen ER tablets

Components	Percentage (wt%)	
Dexketoprofen trometamol	40.55%	
Lactose (X ₁)	8.5~48.5%	
HPMC2208-100 cps (X ₂)	0~30%	
HPMC2208-4000 cps (X ₃)	0~30%	
Mg stearate	0.95%	
Total	100%	

Figure. Nineteen runs in simplex mixture design.

Mixture design for ketoprofen ER tablet dissolution control

DoE for ketoprofen ER tablet

	Fac	Factor and level				
Run	X ₁ (%)	X ₂ (%)	X ₃ (%)	Y (hr)		
1	48.5	0	10	1.57		
2	18.5	17.5	22.5	5.04		
3	18.5	22.5	17.5	4.75		
4	8.5	30	20	5.28		
5	18.5	30	10	4.18		
6	38.5	7.5	12.5	2.85		
7	28.5	30	0	2.88		
8	28.5	15	15	4.17		
9	8.5	25	25	5.86		
10	38.5	0	20	3.85		
11	18.5	10	30	5.49		
12	8.5	20	30	5.79		
13	48.5	10	0	0.84		
14	28.5	22.5	7.5	3.70		
15	28.5	0	30	4.76		
16	38.5	20	0	1.75		
17	38.5	12.5	7.5	2.62		
18	28.5	7.5	22.5	4.772		
19	48.5	5	5	0.88		

Critical Material Attribute (CMA)

X₁: Lactose

X₂: HPMC2208 100cps **X₃**: HPMC2208 4000cps

Critical Quality Attributes (CQA)

Y: Rate of dissolution (1/K_{diss})

Best fit mathematical model

 $1/K_{cliss} = -0.007201X_1 + 0.104230X_2 - 0.147401X_3 + 0.010989X_1X_3 + 0.009113X_1X_3 - 0.000108X_1X_3(X_1-X_3) - 0.000205X_2X_3(X_2-X_3) - 0.000012X_1X_2X_3$

Mixture design for ketoprofen ER tablet dissolution control

External validation for DoE

	Experimentally observed
↓	

Validation	Observed 1/K _{diss}	Predicted 1/K _{diss}	PE (%)
Point 1	1.47	1.44	2.08 %
Point 2	2.07	2.05	1.34 %
Point 3	3.22	3.28	1.84 %
Point 4	3.42	3.24	5.42 %
Point 5	3.28	3.10	5.53 %
Point 6	4.96	4.85	2.16 %
Point 7	5.55	5.26	5.62 %

Contour plot for $1/K_{diss}$ presenting the effect of formulation composition. (1)~(7) indicate point of external validation

Model predicted

 $1/K_{diss} = -0.007201X_1 + 0.104230X_2 - 0.147401X_3 + 0.010989X_1X_3 + 0.009113X_1X_3 - 0.000108X_1X_3(X_1-X_3) - 0.000205X_2X_3(X_2-X_3) - 0.000012X_1X_2X_3$

Characteristics of in vivo pharmacokinetics

Group	t _{1/2} (hr)	T _{max} (hr)	C _{max} (µg/mL)	AUC _{all} (μg·hr/mL)
SR-A ①	8.66 ± 4.44	1.13 ± 0.43	20.00 ± 2.20	84.24 ± 6.89
SR-B ④	7.74 ± 3.26	2.13 ± 1.25	11.44 ± 1.92	73.68 ± 19.31
SR-C ⑦	4.27 ± 0.78	2.75 ± 0.5	8.79 ± 1.09	74.27 ± 8.06

IVIVC model structure

pH dependent dissolution

Extraction of in vivo dissolution

SR-Tablet	K _{diss} , in vitro	K _{diss} , in vivo
SR-A tablet (fast)	0.67735	1.820
SR-B tablet (medium)	0.29192	0.722
SR-C tablet (slow)	0.20159	0.409

 $TC_{50}=1.5 \text{ hr}$ K_{diss} in vivo = $2.931 \cdot K_{diss}$ in vitro = 0.1603

Model validation

Validation	Formulation	C_{max}			AUC _{0-36h}		
		Obs. (µg/mL)	Pred. (μg/mL)	PE (%)	Obs. (μg/mL)	Pred. (μg/mL)	PE (%)
Internal validation	SR-A	20.00	18.54	7.28%	84.24	76.93	8.69%
	SR-B	11.44	11.98	4.67%	73.68	75.34	2.26%
	SR-C	8.79	8.86	0.78%	74.27	76.08	2.44%
External validation	SR-D	12.40	12.12	2.28%	73.24	76.78	4.83%
	SR-E	10.35	10.11	2.30%	73.98	75.12	1.53%

X₃: HPMC2208 4000-cps

SR-D: External validation set for DoE

SR-E: External validation set for IVIVC model

Summary

