

. (4)	2. (1)	3. (3)	4. (1)	5. (2.00)	6. (2)	7. (1)	8. (1)
(2)nathon	go 10. (1) athong						
(4)							
Given, 2	$\left(\frac{d^2y}{dx^2}\right) + 2\left(\frac{dy}{dx}\right) = x\sin\left(\frac{dy}{dx}\right)$	$\left(\frac{d^2y}{dx^2}\right)$ mathongo					
,	ow the degree of any d	()					
defined.							
	ear that given different						
(1) Given	that						
L	$\left. \left(\frac{d^2y}{dx^2} \right)^2 \right]^3 = k^2 \left(\frac{d^2y}{dx^2} \right)^2$						
Here high	est derivative is $\frac{d^2y}{dx^2}$ and order and degree both	nd it's exponent is 2.					
	ven family of curves is		$x^{x}=k_{1}2^{k_{2}x}+k_{5}3^{x}$				
	'3' arbitrary constants						
	e order will be 'three'						
(1)	of novoholog with	na ia marallal t- V - '	ia aivon sa				
Equation $(u-k)^2$	of parabolas whose axe $=4a(x-h)$	es is parallel to X-axis	s is given as				
	is equation arbitrary co	onstants are $a.k.h$ wi	hich are 3				
	Order of the equation						
	given equation is equa						
(2.00)							
	go $\frac{W}{v}$ mathong						
	1						
	(0,r)						
m athon	0	- x///. mathongo					
	٥						
The equat	ion of the family of cir	ccles is $x^2 + (y-r)^2$	$=r^2$				
i.e. only o	ne arbitrary constant.	indinongo					
Hence, the	e order of its differentia	al equation will be '1'					
$\therefore 2k=2$	go /// mathongo						
	ve $\frac{dy}{dx} = (e^{3x} + x^2)e^{-2x}$						
	$=(e^{3x}+x^2)dx$						
	$y = \int (e^{3x} + x^2) dx + 3e^{3x}$	a mathongo					
	$\frac{e^{3x}}{3} + \frac{x^3}{3} + a$						
$\Rightarrow 3e^{2y} =$	$2(e^{3x}+x^3)+c$						

Answer Keys and Solutions

Ans	ver Keys and Solutions						J	EE Main Crash	Cours	se
7.	(1) Ithongo /// mathongo /// Given: $\frac{dy}{dx} = \frac{y-1}{x^2+x}$									
	$\Rightarrow \frac{dy}{y-1} = \frac{dx}{x(1+x)}$ Integrating, $\frac{dy}{(1+x-x)} = \frac{dy}{(1+x-x)} = \frac{dy}{(1+x-$									
	$\Rightarrow \int \frac{dy}{y-1} = \int \frac{(1+x-x) dx}{x(1+x)}$ $\Rightarrow \ln(y-1) = \int \frac{1}{x} dx - \int \frac{1}{1+x} dx$									
	$\Rightarrow \ln(y-1) = \ln x - \ln(1+x) + \ln c$ $\Rightarrow \ln\left(y-1\right) = \ln\frac{cx}{1+x}$ $\Rightarrow y-1 = \frac{cx}{1+x} \dots (1)$									
	Put $(1, 0)$ in equation (1) , we get, $\Rightarrow 0 - 1 = \frac{c}{1+1}$									
14.	$\Rightarrow c = -2$ $\therefore \text{ From equation (1), } 2x + (y-1)(x + (1)\frac{dy}{dx} + \frac{y}{x} = \frac{1}{(1 + \ln xy)^2}$	1)= 0 mathongo								
8.	Let $xy = u$ so that $\frac{du}{dx} = \frac{x}{(1+\ln u)^2}$									
	$\Rightarrow u \Big(1 + \ln u\Big)^2 - \int rac{3(1 + \ln u)}{u} \cdot u du =$	$\frac{x^2}{2} + c$								
///.	$\Rightarrow u \left(1 + 2 \ln u + 2u (\ln u)^2 \right) - 2u \ln u$ $\therefore xy \left(1 + \left(\ln(xy) \right)^2 \right) = \frac{x^2}{2} + c$									
9.//.	Given equation $\frac{dy}{dx} + \sin\left(\frac{x+y}{2}\right) = \sin\left(\frac{x-y}{2}\right)$									
	$\Rightarrow \frac{dy}{dx} = \sin\left(\frac{x-y}{2}\right) - \sin\left(\frac{x+y}{2}\right)$ $\Rightarrow \frac{dy}{dx} = -2\sin\left(\frac{y}{2}\right)\cos\left(\frac{x}{2}\right)$									
	On integrating both sides, we get									
	$\int \csc\left(\frac{y}{2}\right) dy = -\int 2\cos\left(\frac{x}{2}\right) dx$ $\Rightarrow \frac{\ln\left(\tan\frac{y}{4}\right)}{\frac{1}{2}} = -\frac{2\sin\left(\frac{x}{2}\right)}{\frac{1}{2}} + c$									
///. 10.	$\Rightarrow \ln\left(\tan\frac{y}{4}\right) = c - 2\sin\left(\frac{x}{2}\right)$ (1)									
	Given, $\log_e\left(\frac{dy}{dx}\right) = 3x + 4y \text{ nothongo } $									
	$\Rightarrow \frac{dy}{dx} = e^{3x} \cdot e^{4y}$ $\Rightarrow \int e^{-4y} dy = \int e^{3x} dx$ $\Rightarrow \frac{e^{-4y}}{-4} = \frac{e^{3x}}{3} + C$									
	Given, $y(0)=0$ So,									
	$-\frac{1}{4} - \frac{1}{3} = C \Rightarrow C = -\frac{7}{12}$ So, the particular solution is $\frac{e^{-4y}}{-4} = \frac{e^{3x}}{3} - \frac{7}{12}$									
	$\begin{array}{l} \Rightarrow e^{-4y} = \frac{4e^{3x} - 7}{-3} \\ \Rightarrow e^{4y} = \frac{3}{7 - 4e^{3x}} \Rightarrow 4y = \ln\left(\frac{3}{7 - 4e^{3x}}\right) \end{array}$									
	$4y = \ln\left(\frac{3}{6}\right) \text{ when } x = -\frac{2}{3}\ln 2$ $\Rightarrow y = \frac{1}{4}\ln\left(\frac{1}{2}\right) \text{ mathongo}$ $\Rightarrow y = -\frac{1}{4}\ln 2$									
	So, $\alpha = -\frac{1}{4}$ mathongo /// mathongo ///									