

Docker Básico

Arturo Silvelo

Try New Roads

Introducción

¿Qué es Docker?

- **Docker** es una plataforma de código abierto que automatiza el desarrollo, despliegue y ejecución de aplicaciones. Permite separar las aplicaciones desarrolladas de la infraestructura donde se desarrollan.
- Docker se ejecuta en entornos totalmente aislados llamados **contenedores**. Estos se ejecutan directamente sobre el kernel de la máquina por lo que son mucho más ligeros que las máquinas virtuales.

Virtualización

La virtualización permite crear instancias virtuales de un hardware físico, permitiendo ejecutar múltiples sistemas operativos en un solo servidor físico.

- Virtualización: Simula hardware completo (CPU, memoria, disco).
- **Docker:** Usa el sistema operativo del host, lo que hace que los contenedores sean más ligeros y rápidos.

Virtualización	Docker
Pesadas	Ligeros
Consumo Recursos	Rápidos

4

Ventajas

1. Portabilidad

- o Docker empaqueta aplicaciones junto a sus dependencias en contenedores.
- Esto asegura que las aplicaciones se ejecuten de la misma manera en cualquier entorno.
- Facilita el despliegue en entornos locales, servidores o la nube sin ajustes adicionales.

2. Consistencia entre Entornos

- Los contenedores permiten que el entorno de desarrollo sea idéntico al de producción.
- o Evita problemas de compatibilidad y errores por diferencias entre entornos.
- o Garantiza que el código funcione igual en desarrollo, pruebas y producción.

3. Escalabilidad

- Docker facilità el escalado horizontal de aplicaciones mediante la creación de múltiples contenedores.
- Permite el uso de herramientas como Kubernetes para gestionar el escalado automáticamente.
- Cada servicio puede escalarse de forma independiente en función de la demanda.

4. Eficiencia en el Uso de Recursos

- Los contenedores comparten el núcleo del sistema operativo, siendo más livianos que las máquinas virtuales.
- Se pueden ejecutar más aplicaciones en el mismo hardware, optimizando recursos.

5. Velocidad de Desarrollo y Despliegue

- Los contenedores se inician en segundos, permitiendo un desarrollo y despliegue rápido.
- Facilita el uso de CI/CD, reduciendo el tiempo de desarrollo y los ciclos de despliegue.

6. Seguridad Mejorada

- Docker aísla cada contenedor, limitando el acceso entre contenedores y al host.
- Permite ejecutar aplicaciones de distintos niveles de seguridad en un mismo servidor.

Instalación

https://docs.docker.com/get-started/get-docker/

Instalación en Windows:

- WSL: Docker se desarrolló inicialmente para Linux.
- Hyper-V: Para contenedores Windows (Licencia Pro/Enterprise)

Instalación en MAC:

Chips M1: Arquitectura ARM

Conceptos

- **Imágenes:** Las imágenes son plantillas de solo lectura que se utilizan para crear contenedores.
- **Contenedores:** Los contenedores son instancias en ejecución de estas imágenes.
- Registros: Los registros son almacenes donde se guardan las imágenes Docker.
- **Volúmenes:** Son utilizados para almacenar datos persistentes que sobreviven al ciclo de vida de un contenedor.
- **Networks:** Son utilizadas para conectar por red privadas los distintos contendores.

14