

EE141-Spring 2010 Digital Integrated Circuits

Lecture 11 Transistor Capacitors

EECS141

Lecture #11

1

Administrativia

- □ HW 4 due on Friday
- □ No re-grades on MT1 after next Wednesday
- □ Project to be launched in week 7 stay tuned

Gate Capacitance

□ Capacitance (per area) from gate across the oxide is W·L·C_{ox}, where $C_{ox} = \varepsilon_{ox}/t_{ox}$

Gate Fringe Capacitance

- C_{OV} not just from metallurgic overlap get fringing fields too
- Typical value: ~0.2fF·W(in µm)/edge

EECS141 Lecture #11

Diffusion Capacitance

- Bottom
 - Area cap
 - $-C_{bottom} = C_{j} \cdot L_{S} \cdot W$
- Sidewalls
 - Perimeter cap
 - $-C_{sw} = C_{jsw} \cdot (2L_S + W)$

- GateEdge
 - $-C_{ge} = C_{jgate} \cdot W$
 - Usually automatically included in the SPICE model

Junction Capacitance (2)

- Junction caps are nonlinear
 - C_J is a function of junction bias

- SPICE model equations:
 - Area C_J = area × C_{J0} / $(1+|V_{DB}|/\phi_B)^{mj}$
 - Perimeter C_J = perim × C_{JSW} / $(1 + |V_{DB}|/\phi_B)^{mjsw}$
 - Gate edge C_J = W × C_{Jqate} / (1 + $|V_{DB}|/\phi_B$)^{mjswg}
- How do we deal with nonlinear capacitance?

EECS141 Lecture #10 1

Linearizing the Junction Capacitance

Replace non-linear capacitance by large-signal equivalent linear capacitance which displaces equal charge over voltage swing of interest

$$C_{eq} = \frac{\Delta Q_j}{\Delta V_D} = \frac{Q_j(V_{high}) - Q_j(V_{low})}{V_{high} - V_{low}} = K_{eq}C_{j0}$$

$$K_{eq} = \frac{-\phi_0^m}{(V_{high} - V_{low})(1-m)} [(\phi_0 - V_{high})^{1-m} - (\phi_0 - V_{low})^{1-m}]$$

Capacitance Model Summary

□ Gate-Channel Capacitance

 $\begin{array}{ll} \bullet & C_{GC} \approx 0 & (|V_{GS}| < |V_{T}|) \\ \bullet & C_{GC} = C_{ox} \cdot W \cdot L_{eff} & (Linear) \end{array}$

- 50% G to S, 50% G to D

■ C_{GC} = (2/3)·C_{ox}·W·L_{eff} (Saturation) - 100% G to S

□ Gate Overlap Capacitance

• $C_{GSO} = C_{GDO} = C_{O} \cdot W$ (Always)

□ Junction/Diffusion Capacitance

• $C_{diff} = C_i \cdot L_S \cdot W + C_{isw} \cdot (2L_S + W) + C_{iq}W$ (Always)

EECS141 Lecture #10 1

Capacitances in 0.25 μm CMOS Process

	C_{ox} (fF/ μ m ²)	$C_{\mathcal{O}}$ (fF/ μ m)	$\frac{C_j}{(ext{fF}/ ext{ ext{m}}^2)}$	m_j	$\phi_b \ (V)$	C _{jsw} (fF/μm)	m_{jsw}	ф _{ьsw} (V)
NMOS	6	0.31	2	0.5	0.9	0.28	0.44	0.9
PMOS	6	0.27	1.9	0.48	0.9	0.22	0.32	0.9

PMOS Load Lines

EECS141 Lecture #10 17

PMOS Load Lines

- \Box For DC VTC, $I_{Dn} = I_{Dp}$
 - Graphically, looking for intersections of NMOS and PMOS IV characteristics
- □ To put IV curves on the same plot, PMOS IV is "flipped" since $|V_{DSp}| = V_{DD} V_{out}$
 - Also, $|V_{GSp}| = V_{dd} V_{in}$

MOS Transistor as a Switch

· Discharging a capacitor

• We modeled this with:

$$t_p = In (2) RC$$

EECS141 Lecture #10 29

MOS Transistor as a Switch

- □ Real transistors aren't exactly resistors
 - Look more like current sources in saturation
- □ Two questions:
 - Which region of IV curve determines delay?
 - How can that match up with the RC model?

Transistor Discharging a Capacitor

· With a step input:

• Transistor is in (velocity) saturation during entire transition from V_{DD} to $V_{DD}/2$

EECS141 Lecture #10 31

Switching Delay

• In saturation, transistor basically acts like a current source:

$$V_{OUT} = V_{DD} - (I_{DSAT}/C)t \longrightarrow t_p = C(V_{DD}/2)/I_{DSAT}$$

Defining IDSAT

EECS141 Lecture #10 3

Switching Delay (with Output Conductance)

• Including output conductance:

$$I_{DSAT}$$
 \downarrow $I/(\lambda I_{DSAT})$ \downarrow C

$$V_{OUT} = (V_{DD} + \lambda^{-1}) e^{-t/(C/\lambda I_{DSAT})} - \lambda^{-1}$$

• For "small"
$$\lambda$$
:
$$t_p \approx \frac{C(V_{DD}/2)}{(1+\lambda V_{DD})I_{DSAT}}$$

RC Model

- Transistor current not linear on V_{OUT} how is the RC model going to work?
- Look at waveforms:

· Voltage looks like a ramp for RC too

EECS141

Lecture #10

Finding Req

• Match the delay of the RC model with the actual delay:

$$t_{p} = t_{p,RC}$$

$$\frac{C(V_{DD}/2)}{(1+\lambda V_{DD})I_{DSAT}} = \ln(2)R_{eq}C \longrightarrow R_{eq} = \frac{(V_{DD}/2)}{\ln(2)(1+\lambda V_{DD})I_{DSAT}}$$

• Often just:

$$R_{eq} \approx \frac{1}{2 \cdot \ln(2)} \frac{V_{DD}}{I_{DSAT}}$$

· Note that the book uses a different method and gets $0.75 \cdot V_{DD}/I_{DSAT}$ instead of ~0.72 $\cdot V_{DD}/I_{DSAT}$

EECS141

Lecture #10

36

The Book's Method EECS141 Lecture #10 37

The Transistor as a Switch

Table 3.3 Equivalent resistance $R_{\rm eq}$ (*WIL*= 1) of NMOS and PMOS transistors in 0.25 μ m CMOS process (with $L=L_{\rm min}$). For larger devices, divide $R_{\rm eq}$ by *WIL*.

V_{DD} (V)	1	1.5	2	2.5
NMOS (kΩ)	35	19	15	13
PMOS (kΩ)	115	55	38	31