

6AV6—3AV6—12AV6 DUPLEX-DIODE TRIODE

6AV6 3AV6 12AV6 ET-T924 Page 1

DESCRIPTION AND RATING=

The 6AV6 is a miniature duplex-diode, high-mu triode intended primarily for use as a combined detector, amplifier, and automatic-volume-control tube in radio receivers. The triode section incorporates a high amplification factor and is capable of providing a relatively large undistorted output voltage from a very small input signal.

The 3AV6, 6AV6, and 12AV6 are alike except for heater ratings and heater-cathode voltage ratings. The 12AV6 is particularly suited for use in a-c/d-c radio receivers. The 3AV6, as a result of its controlled heater warm-up characteristic, is especially well suited for use in television receivers which employ series-connected heaters. When the 3AV6 is used in conjunction with other 600-milliampere types which exhibit essentially the same heater warm-up characteristic, heater voltage surges across the individual tubes are minimized during the warm-up period.

GENERAL

ELECTRICAL

Cathode—Coated Unipotential	3AV6	6AV6	12AV6		
Heater Voltage, AC or DC	3.15	6.3	12.6 Volts		
Heater Current			0.15 Amperes		
Heater Warm-up Time*	11		Seconds		
Direct Interelectrode Capacitances	With Shield	† Wit	Without Shield		
Triode Grid to Plate			2.0 $\mu\mu$ f		
Triode Input	2.2		2.2 $\mu\mu f$		
Triode Output	1.2		$0.8 \mu\mu f$		
Grid to Diode-Number 2 Plate, maximum	0.04	(D.04 μμf		

Mechanical

Mounting Position—Any Envelope—T-5½, Glass Base—E7-1, Miniature Button 7-Pin

MAXIMUM RATINGS

DESIGN-CENTER VALUES

DEGICAL GENERAL TAXABLE			
Plate Voltage		300	Volts
Positive DC Grid Voltage			
Plate Dissipation		0 .5	Watts
Heater-Cathode Voltage	3AV6	6AV6	
-		12AV6	
Heater Positive with Respect to Cathode			
DC Component	100		Volts
Total DC and Peak	200	90	Volts
Heater Negative with Respect to Cathode			
Total DC and Peak	200	90	Volts
Diode Current for Continuous Operation,			
Each Diode	1.0	1.0	Milliamperes

Supersedes ET-T814, dated 6-53

BASING DIAGRAM

RETMA 7BT

TERMINAL CONNECTIONS

Pin 1-Triode Grid

Pin 2-Cathode

Pin 3—Heater

Pin 4—Heater

Pin 5-Diode Number 2 Plate

Pin 6-Diode Number 1 Plate

Pin 7-Triode Plate

PHYSICAL DIMENSIONS

RETMA 5-2

6AV6 3AV6 12AV6 ET-T924 Page 2 3-55

CHARACTERISTICS AND TYPICAL OPERATION

CLASS A1 AMPLIFIER

Plate Voltage		Volts
Grid Voltage	-2	Volts
Amplification Factor	100	
Plate Resistance, approximate80000	62500	Ohms
Transconductance 1250	1600	Micromhos
Plate Current	1.2	Milliamperes
Average Diode Current, Each Diode		
With 10 Volts DC Applied	2.0	Milliamperes

^{*} Heater warm-up time is defined as the time required in the circuit shown at the right for the voltage across the heater terminals (V) to increase from zero to the heater test voltage (V_1). For this type, E=12.5 volts (RMS or DC), $V_1=2.5$ volts (RMS or DC), and R=15.8 ohms.

† With external shield (RETMA 316) connected to pin 2.

CLASS A RESISTANCE-COUPLED AMPLIFIER

Notes: I. Eo is maximum RMS voltage output for five percent (5%) total harmonic distortion. 2. Gain measured at 2.0 volts RMS output. 3. For zero-bias data, generator impedance is negligible.

AVERAGE PLATE CHARACTERISTICS

6AV6 3AV6 12AV6 ET-T924 Page 3

AVERAGE PLATE CHARACTERISTICS

6AV6 3AV6 12AV6 ET-T924 Page 4 3-55

AVERAGE TRANSFER CHARACTERISTICS

AVERAGE CHARACTERISTICS

OPERATION CHARACTERISTICS

DC VOLTAGE DEVELOPED BY DIODE IN VOLTS