Assignment Math45-Homework-WEEK-05 due 10/03/2020 at 11:59pm PDT

1. (1 point) Which of the following DEs can be solved using the method of separable equations?

- A. y' 5y = x + 9
- B. $\frac{dS}{dt} = rS$, where r is a constant
- C. $\frac{dy}{dx} + y = e^{2x}$
- D. $\frac{dy}{dx} = e^{2x+6y}$

2. (1 point) Which of the following DEs can be solved using the method developed for linear first order DEs?

- A. $\frac{dy}{dx} + y = e^{3x}$
- B. $\frac{dS}{dt} = rS$, where r is a constant
- C. y' 3y = x + 8
- D. $\frac{dy}{dx} = e^{2x+8y}$

3. (1 point) Find the general solution of the differential equation $\frac{dS}{dt} = rS$, where r is a constant.

(Use C to denote the arbitrary constant.) S =_____help (formulas)

4. (1 point) Find the general solution of the differential equation $\frac{dy}{dx} = e^{2x-5y}$.

(Use C to denote the arbitrary constant.) y =_____help (formulas)

5. (1 point) Find the general solution of the differential equation $\frac{dy}{dx} + y = e^{5x}$.

(Use C to denote the arbitrary constant.) y =_____help (formulas)

6. (1 point) Find the general solution of the differential equation y' - 4y = x + 7.

(Use C to denote the arbitrary constant.) y =_____help (formulas)

- **7.** (1 point) Are the following differential equations exact? (You have only one attempt! Submit all answers at the same time)
- (a) [Choose/Exact/Not Exact] $\left(1 \frac{5}{y} + x\right) \frac{dy}{dx} + y = \frac{2}{x} 1$.
- (b) [Choose/Exact/Not Exact] (2y 6x)y' 5y = 0.
- (c) [Choose/Exact/Not Exact] $\left(5y\sin(x)\cos(x) y + 3y^2e^{xy^2}\right)dx = (x \sin^2(x) 5xye^{xy^2})dy$.
- **8.** (1 point) Are the following differential equations exact? (You have only one attempt! Submit all answers at the same time)
- (a) [Choose/Exact/Not Exact] $(x^8 y^8) dx + (x^8 8xy) dy = 0$.
- (b) [Choose/Exact/Not Exact] (2y-4x)y'-4y-8x=0.
- (c) [Choose/Exact/Not Exact] $\left(5y\sin^4(x)\cos(x) y + 4y^2e^{xy^2}\right)dx = (x \sin^5(x) 8xye^{xy^2})dy$.
 - **9.** (1 point)

Solve the following differential equation:

 $(8x+7y)dx + (7x-9y^3)dy = 0.$

____ = constant. help (formulas)

10. (1 point)

Solve the following differential equation:

$$(y - x^2)dx + (x + y^2)dy = 0.$$

= constant. help (formulas)

11. (1 point)

Solve the following differential equation:

$$\left(1 - \frac{3}{y} + x\right)\frac{dy}{dx} + y = \frac{3}{x} - 1.$$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

(If you need ln, use absolute value signs. For example, $\ln|\ \text{input}\ |.)$

= constant. help (formulas)