复习题第一套

一、填空题

1.	控制的三要素为:	·	和_		0	
2.	闭环控制系统是指系统的	_对系统有控制	作用,	或者说家	系统中存在_	回路。
3.	阶跃信号的拉氏变换是	o				
4.	如果系统的运动状态能用线性微分力	7程或线性差分	方程来	表示,贝	则此系统为_	0
5.	一阶系统传递函数的一般形式为		_,其参	参数		反映了一阶系统的固有特
性	0					
6.	稳态误差不仅取决于系统自身的结构	的参数,而且与			的类型有差	关。
7.	频率特性包括和_		_两种	持性。		
8.	判别系统稳定性的出发点是系统特征	E方程的根必须	满足_			,即系统的特征根必
须	全部在复平面的,这	文也是系统稳定	的充要	条件。		
9.	系统的性能指标按照其类型分为		`		和	o
10	. PID 校正器是能够实现 P	, I	利	1 D	控制作	F用的校正器。
_	.、选择题					
1.	机械系统、生命系统及社会和经济系	系统的一个共同	的本质	特性是	()	
A	都是由元素组成的 B 通过信	言息的传递、加	工处理	!并利用』	反馈来控制	
С	都是可以控制的 D 都存在	E微分环节				
2.	开环控制系统的控制信号取决于()				
A	系统的实际输出 B 系统的	的实际输出与理	想输出	之差		
С	输入与输出之差 D 输入					
3.	已知 $F(s) = \frac{5}{s(2s+1)}$,当 $t \to \infty$ 时	f(t)的值为	()		
A	5 B 2	C 0		D	∞	
4.	以下关于系统数学模型的说法正确的	为是 ()				
A	只有线性系统才能用数学模型表示					
В	所有的系统都可用精确的数学模型表	表示				
С	建立系统数学模型只能用分析法					

D 同一系统可以用不同形式的数学模型进行表示

- 5. 已知机械系统的传递函数为 $G(s) = \frac{4}{s^2 + s + 4}$,则系统的阻尼比为()
- B 0.5

- 6. 若二阶系统的阻尼比为 $0 \prec \xi \prec 1$,则系统处于(
- 欠阻尼

B 过阻尼

无阻尼

- D 临界阻尼
- 7. 已知某机械系统的传递函数为 $G(s) = \frac{{\omega_n}^2}{s^2 + 2\xi\omega_n s + {\omega_n}^2}$,则系统的有阻尼固有频率为(
- $A \quad G(s) = \omega_n \sqrt{1 \xi^2}$
- $B \quad G(s) = \omega_n \sqrt{1 + \xi^2}$
- $C \quad G(s) = \omega_n \sqrt{1 + 2\xi^2}$
- $D \quad G(s) = \omega_n \sqrt{1 2\xi^2}$
- 8. 对于二阶系统,阻尼比越大,则系统()
- 相对稳定性越小
- B 相对稳定性越大
- 稳态误差越小
- D 稳态误差越大
- 9. 某典型环节的传递函数为 $G(s) = \frac{1}{T_s}$,则该环节为(
- A 惯性环节
- B 积分环节
 - C 微分环节

40

D 比例环节

10. 已知某环节频率特性 Bode 图如右图所示,

则该环节为()

- 比例环节
- 微分环节
- 积分环节
- 惯性环节
- 11. 增加系统的型次,系统的()
- 准确性提高, 快速性提高 B 准确性提高, 快速性降低
- 准确性降低, 快速性提高
- D 准确性降低,快速性降低
- 12. 已知系统开环传递函数为 $G_K(s) = \frac{7}{s(s+2)}$,则系统的增益和型次分别是(

A 7, I型

B 7, II型

C 3.5, I型

D 3.5, II型

13. 系统的传递函数为 $G(s) = \frac{3}{s+0.2}$,则其频率特性为()

$$A \quad G(jw) = \frac{3}{s + 0.2}$$

$$B \quad G(jw) = \frac{3}{\omega + 0.2}$$

$$C \quad G(jw) = \frac{3}{\sqrt{\varpi^2 + 0.04}}$$

D
$$G(jw) = \frac{3}{\sigma^2 + 0.04} (0.2 - j\omega)$$

14. 已知系统的传递函数为 $G(s) = \frac{s+2}{s(s-2)(s-7)}$,则该系统()

- A 稳定

- B 不稳定 C 临界稳定 D 无法判断

15. 所谓校正(又称补偿)是指()

A 加入 PID 校正器

B 在系统中增加新的环节或改变某些参数

C 使系统稳定

D 使用劳斯判据

三、计算题

1. 请说明如图 1 所示液面自动控制系统的工作原理。

图 1

2. 请写出图 2 所示系统的微分方程,并推导出系统的传递函数 $G(s) = \frac{U_O(s)}{U_I(s)}$ 。

3. 请化简图 3 所示的系统框图,并写出该系统的传递函数 $G(s) = \frac{Y(s)}{X(s)}$ 。

4. 设系统的特征方程为 $D(s) = s^5 + s^4 + 4s^3 + 4s^2 + 2s + 4 = 0$,请用 Routh 判据判定其稳定性。

5. 如图 4 所示电路中,电压源为 $u_i(t)=e^{-at}$ (t>0) ,求零状态响应电流 $\mathbf{i}(\mathbf{t})$ 。

复习题第二套

一、填空题

1.	机械工程控制论研究		及其		之间的	动态关系。
2.	对控制系统的基本要求为:			和_	0	
3.	能使系统的偏差的绝对值增大	的反	馈,称为	; 而戧	建使系统的偏差的	绝对值减小的反馈,
称	为。					
4.	单位脉冲函数的拉氏变换是		o			
5.	二阶系统的特征参数有		,典型的二阵	介系统的传递函	数形式为	o
6.	反映出稳态响	应偏	离系统希望值的	程度,它用来衡		的程度。
7.	频率特性包括和		两种特	寺性。		
8.	若某传递函数的所有零点和	极点	瓦均在复平面的	左半平面内,	则具有这种传	递函数的系统被称
为.						
9.	判别系统稳定性的出发点是系	统特	征方程的根必须	满足	,	即系统的特征根必须
全	部在复平面的,	这也	也是系统稳定的充	它要条件。		
10	. 根据校正环节在系统中的连接	方式	,校正可分为		和	o
=	、选择题					
1.	机械系统、生命系统及社会和	经济	系统的一个共同	的本质特性是(
A	都是由元素组成的	В	通过信息的传递	递、加工处理并	利用反馈来控制	
С	都是可以控制的	D	都存在微分环节	t		
2.	闭环控制系统中()反	馈作	用			
A	依输入信号的大小而存在	В	不一定存在			
С	必然存在	D	一定不存在			
3.	闭环自动控制的工作过程是()			
A	测量系统输出的过程	В	检测系统偏差的	り过程		
С	检测偏差并消除偏差的过程	D	使系统输出不变	变的过程		
4.	已知 $F(s) = \frac{5}{s(2s+1)}$, 当 $t-$	→ ∞ [时, $f(t)$ 的值为	()		
A				_	∞	
5.	系统的传递函数 $G(s) = \frac{20}{3s+1}$	$\overline{0}$,	则系统的时间常	数为()		

A	20 B 2	C 3	D 0.3
6.	关于线性系统说法正确的是()	
A	都可以用传递函数表示 B	只能用传递函数表示	
С	可以用不同的模型表示 D	都是稳定的	
7.	系统的数学模型是指 () 的数	数学表达式。	
A	输入信号 B	输出信号	
		系统的特征方程	
8.	设一个系统的传递函数为 $G(s) = \frac{1}{2s}$	<u>1</u> 	「成为由()串联而成。
A	惯性环节与延时环节 B		
С	惯性环节与导前环节 D	比例环节、惯性环节与	导前环节
9.	对于二阶系统,阻尼比越大,则系统	充()	
A	相对稳定性越小 B 相对和	急定性越大	
С	稳态误差越小 D 稳态设	吴差越大	
10	系统传递函数为 $G(s) = \frac{2}{2s^2 + 3s + 3}$	- ,则系统的放大系数为 1	()
	0.5 B 1	C 2	D 无法确定
11	. 一阶系统的传递函数 $G(s) = \frac{7}{s+2}$,	若容许误差为 2%,则其	调整时间为()
A	8 B 2	C 7	D 3.5
12	以下关于系统稳态偏差的说法正确的	内是 ()	
A	稳态偏差只取决于系统结构和参数		
В	稳态偏差只取决于系统输入和干扰		
С	稳态偏差与系统结构、参数、输入和	和干扰等有关	
D	系统稳态偏差始终为0		
13	某典型环节的传递函数为 $G(s) = \frac{1}{7}$	$\frac{1}{S}$,则该环节为()
A	惯性环节 B 积分环节	C 微分环节	D 比例环节
14	已知系统开环传递函数为 $G_{K}(s)$ =	$\frac{7}{s(s+2)}$, 则系统的增益	和型次分别是()
A	7, I型 B 7, II型	C 3.5, I型	D 3.5, II型

15. 劳斯判据用 () 来判定系统稳定性。

A 系统特征方程

- B 开环传递函数
- C 系统频率特性的 Nyquist 图
- D 系统开环频率特性的 Nyquist 图

三、简答计算题

1. 请说明如图 1 所示液面自动控制系统的工作原理。

图 1

2. 请化简图 2 所示的系统框图,并求出闭环传递函数。

图 2

3. 请写出图 3 所示系统的微分方程,并推导出系统的传递函数 $G(s) = \frac{Y(s)}{X(s)}$, 图中 x(t)、y(t) 分别表示输

入位移和输出位移,。

4. 设有如图 4 所示的反馈控制系统,请根据 Routh 判据确定传递函数中 k 值的取值范围。

5. 已知系统的传递函数方框图如图 5 所示,其中 $G(s) = \frac{5}{s+1}$, H(s) = 1 。若给定系统的输入信号 $x_i(t) = \sin 2t$,试求系统的稳态输出。

复习题第三套

一、填空题

1.	对控制系统的基本要求为:		和	o
2.	按系统有无反馈,通常可将控制	系统分为	_和	0
3.	阶跃信号的拉氏变换是	o		
4.	在控制工程基础课程中描述系统	的数学模型有		等。
5.	线性系统的一个最重要的特性就	是它满足。		
6.	一阶系统 $\frac{1}{Ts+1}$ 的单位阶跃响应的	的表达是。		
7.	在伯德图中,积分环节的对数幅	频特性是一条斜率为	的直线,	而它的相频特性是一条恒
为	的直线。			
8.	系统稳定的充要条件是系统特征	方程的根必须满足	,即系	系统的特征根必须全部在复
平	面。			
9.	系统的性能指标按照其类型分为		和	
10	. 根据校正环节在系统中的连接方	式,校正可分为	_`	_和。
=	、选择题			
1.	机械系统、生命系统及社会和经	济系统的一个共同的本质特	性是 ()	
A	都是由元素组成的	B 通过信息的传递、加工处	上理并利用反馈来	控制
С	都是可以控制的	D 都存在微分环节		
2.	关于反馈的说法正确的是()		
A	反馈实质上就是信号的并联			
В	正反馈就是输入信号与反馈信号	相加		
С	反馈都是人为加入的			
D	反馈是输出以不同的方式对系统	作用		
3.	在下列系统或过程中,不存在反	馈的是 ()		
A	抽水马桶	B 电饭煲		
С	并联的电灯	D 教学过程		
4.	已知 $F(s) = \frac{5}{s(2s+1)}$, 当 $t \to \infty$	∞ 时, $f(t)$ 的值为()	
A	5 B 2	C 0	D ∞	

5.	设一阶系统的传递函数为 $G(s)$	$=\frac{1}{2s}$	3 ,则其时间常数和增益分别是()	
	2, 3		2, 3/2	
С	2/5, 3/5	D	5/2, 3/2	
6.	系统的数学模型是指()的数	数学表达式 。	
A	输入信号	В	输出信号	
С	系统的动态特性	D	系统的特征方程	
7.	某传递函数 $G(s) = K_1 + K_2 \frac{1}{s}$	$+K_3$	s,则它是由()组成的。	
A	比例+积分环节	В	比例+微分环节	
С	比例+惯性环节	D	比例+积分+微分环节	
8.	若二阶欠阻尼系统的无阻尼固	有频率	逐为 ω_n ,则其有阻尼固有频率 ω_d ()	
A	$=\omega_n$ B $>\omega_n$		C 〈 ω_n D 与 ω_n 无关	
9.	系统传递函数为 $G(s) = \frac{2}{2s^2 + 1}$	$\frac{2}{3s+1}$	- ,则系统的放大系数为 ()	
A	0.5 B 1		C 2 D 无法确定	
10.	已知某环节频率特性的 Nyquis	t 图为	为一单位圆,则该环节的幅频特性为()
A	0.1 B 1		C 10 D 无法确定	
11.	对于传递函数为 $G_1(s) = \frac{10}{s+1}$	和 G_2	$(s) = \frac{1}{3s+1}$ 两个系统,()。	
A	系统1的带宽宽,响应速度快	В	系统1的带宽宽,响应速度慢	
С	系统2的带宽宽,响应速度快	D	系统2的带宽宽,响应速度慢	
12.	系统的输出误差为 e(t), 其稳	态误差	差为: ()	
A	$\lim_{s\to 0} sE_1(s)$	В	$\lim_{s\to 0} E(s)$	
С	$\lim_{s\to\infty}E(s)$	D	$\lim_{s\to\infty} sE_1(s)$	
13.	以下系统中属于最小相位系统	的是	()	
A	$G(s) = \frac{1}{1 - 0.01s}$	В	$G(s) = \frac{1}{1 + 0.01s}$	
С	$G(s) = \frac{1}{0.01s - 1}$	D	$G(s) = \frac{1}{s(1-0.1s)}$	

A 系统特征方程

14. 劳斯判据用 () 来判定系统稳定性。

B 开环传递函数

- C 系统频率特性的 Nyquist 图
- D 系统开环频率特性的 Nyquist 图
- 15. 以下校正方案不属于串联校正的是()
- A 增益调整

B 相位超前校正

C 相位滞后校正

D 順馈校正

三、简答计算题

1. 已知系统的单位阶跃响应为C(t)=1−1.8 e^{-4t} +0.8 e^{-9t} , t≥0;试求系统幅频特性和相频特性。

2. 请说明如图 1 所示液面自动控制系统的工作原理。

图 1

3. 请写出图 2 所示系统的微分方程,并推导出系统的传递函数,图中 f(t)、y(t) 分别表示输入外力和输出位移。

4. 已知某系统的特征方程为 s⁴+s³+4s²+6s+9=0, 试判别其系统的稳定性。

5. 已知系统的传递函数方框图如图 3 所示,其中 $G(s)=\frac{5}{s+1}$, H(s)=1 。若给定系统的输入信号 $x_i(t)=\sin 2t$,试求系统的稳态输出。

复习题第四套

一、填空题

1.	工程控制论研究的是系统及其()和()三者之间的动态关系。
2.	一个系统的输出,部分或全部地被反过来用于控制系统的输入,称为系统的()。
3.	正弦信号 sin ot 的拉氏变换是 ()。
4.	传递函数的()反映系统本身与外界无关的固有特性,而()反映系统同外界之间的关
系	0
5.	系统的时间响应按振动性质可分为自由振动和 (),按振动来源可分为零输入响应和
()。
6.	系统的性能指标可分为 ()、() 和综合性能指标。
=	、判断题
1.	物理性质不同的系统一定具有不同的传递函数。()
2.	一阶系统的时间常数 T 越小越好。()
3.	线性系统不稳定现象发生与否,取决于系统内部条件,与输入无关。()
4.	频率响应是线性定常系统对正弦输入的稳态响应。()
5.	系统的开环增益越大,系统的稳态误差越大。()
Ξ	、选择题
1.	闭环自动控制的工作过程是()
A	测量系统输出的过程 B 检测系统偏差的过程
	检测偏差并消除偏差的过程 D 使系统输出不变的过程
2.	系统的传递函数 $G(s) = \frac{20}{7s+10}$,则系统的时间常数为()
A	20 B 2 C 7 D 0.7
3.	有两个标准二阶振荡系统,其超调量 M_p 相等,则这两个系统一定具有相同的()
A	ω_n B ω_d C ξ D K
4.	微分环节的频率特性相位移 $ heta(\omega)$ =()
A	90° B -90° C 0° D -180°
5.	一阶系统的阶跃响应,()
A	当时间常数 T 较大时有振荡 B 当时间常数 T 较小时有振荡

C 无振荡

D 不确定是否有振荡

- 6. 某典型环节的传递函数为G(s)=K,则该环节为(

- A 惯性环节 B 积分环节 C 微分环节 D 比例环节
- 7. 系统传递函数为 $G(s) = \frac{2}{2s^2 + 3s + 1}$,则系统的放大系数为 ()
- A 0.5
- B 1

- 8. 若二阶欠阻尼系统的无阻尼固有频率为 ω_n ,则其有阻尼固有频率 ω_d ()
- $A = \omega_n$ $B > \omega_n$
- $\mathsf{C} < \boldsymbol{\omega}_n$ $\mathsf{D} \quad \boldsymbol{\exists} \, \boldsymbol{\omega}_n$ 无关
- 9. 劳斯判据用()来判定系统稳定性。

A 系统特征方程

- B 开环传递函数
- C 系统频率特性的 Nyquist 图 D 系统开环频率特性的 Nyquist 图
- 10. 系统稳定的充要条件是()
- A 幅值裕度大于 0 分贝 B 幅值裕度大于 0 分贝,且相位裕度大于 0
- C 相位裕度大于 0
- D 幅值裕度大于 0 分贝,或相位裕度大于 0

三、计算题(要求写出主要计算步骤及结果)

1. 系统结构如图 1 所示, 当系统的输入 r(t)= sin t 时, 测得系统的输出 c(t)=2sin(t-45°)时, 试确定该系统的 参数 ξ , ω_n (15分)

图 1

2. 已知某系统的特征方程为 $s^4+6s^3+12s^2+10s+3=0$,试用 Routh 判据判别系统的稳定性。如果系统不稳定,请问系统有几个具有正实部的特征根。 (15 分)

3. 已知系统的传递函数方框图如图 2 所示,其中 $G(s) = \frac{2}{s+1}$, H(s) = 1 。 若给定系统的输入信号 $x_i(t) = \sin(2t+15^\circ)$,试求系统的稳态输出。 (15 分)

4. 请化简图 3 所示的系统框图,并写出该系统的传递函数 $G(s) = \frac{X_0(s)}{X_i(s)}$ 。 (15 分)

复习题第五套

一、填空题

1.	一个典型的闭环控制系统通常包括给定环节、() 环节、() 环节、() 环节、放大及运算环节
和	执行环节。
2.	$F(s) = \frac{1}{s^2 + 3s + 2}$ 的拉氏反变换为()。积分环节的传递函数是()。
3.	对于线性系统,在其输入端加一个正弦信号时,输出端得到的稳态响应的()和相位发生改
变	,而()保持不变,此为线性系统的一个重要特性。
4.	传递函数分母中 S 的阶数应 () 分子中 S 的阶数。(填≤ 或 ≥二选一)
5.	常用的频率特性的图示方法有()图和()图。
6.	()是指在系统中增加新的环节,以改善系统的性能的方法。
=	、判断题
1.	若输入已经给定,则系统的输出完全取决于其传递函数。()
2.	一阶系统的时间常数 T 越大越好。()
3.	对单位负反馈系统,误差与偏差是相等的。()
4.	闭环系统稳定,则其开环系统未必是稳定的。()
5.	线性定常系统稳定的充要条件是其全部特征根均具有正实部。()
Ξ	、选择题
1.	拉氏变换将时间函数变换成(
A	正弦函数 B 单位阶跃函数 C 单位脉冲函数 D 复变函数
2.	在下列系统或过程中,不存在反馈的是()
A	抽水马桶 B 电饭煲 C 并联的电灯 D 教学过程
3.	比例环节的频率特性相位移 $ heta(\omega)$ = ()
A	90° B -90° C 0° D -180°
4.	若二阶系统的阻尼比为 $0 \prec \xi \prec 1$,则系统处于()
A	欠阻尼 B 过阻尼 C 无阻尼 D 临界阻尼
5.	设一阶系统的传递函数为 $G(s) = \frac{3}{2s+7}$,则其时间常数和增益分别是()
A	2,3 B 2,3/2 C 2/7,3/7 D 7/2,3/2

- 6. 某系统的传递函数为 $G(s) = \frac{3}{(2s+1)(s+2)}$ 的零极点为(
- 极点 S1=-1/2, S2=-2, 零点 S3=3 B 极点 S1=1/2, S2=2

极点 S1=-1/2, S2=-2

- D 极点 S1=1/2, S2=2, 零点 S3=-3
- 7. 已知系统开环传递函数为 $G_K(s) = \frac{7}{s(s+1)(s+2)}$,该系统为(
- A 0型系统
- B I型系统
- C II型系统
 - D III型系统
- 8. 有两个标准二阶振荡系统,其超调量 M_p 相等,则这两个系统一定具有相同的(
- B ω_{a}

DK

- 9. 以下系统中属于最小相位系统的是(
- A $G(s) = \frac{1}{1 0.03s}$ B $G(s) = \frac{1}{1 + 0.03s}$ C $G(s) = \frac{1}{0.03s 1}$ D $G(s) = \frac{1}{s(1 0.3s)}$
- 10. 以下校正方案不属于串联校正的是(
- A 增益调整
- B 相位超前校正 C 相位滞后校正 D 順馈校正

三、计算题(共60分)(要求写出主要计算步骤及结果)

- 1. 已知 $F(s) = \frac{10(s+2)(s+5)}{s(s+1)(s+3)}$, 求其原函数 f(t)。 (5分)
- 2. 请写出图 1 所示系统的微分方程,并推导出系统的传递函数 $G(s) = \frac{X_O(s)}{X_O(s)}$ 。 (10 分)

图 1

3. 已知系统的单位阶跃响应为 $C(t) = 1 - e^{-4t} + 2e^{-9t}$, $t \ge 0$, 试求系统的幅频特性和相频特性。(15 分)

4. 有如图 2 所示的反馈控制系统,请根据 Routh 判据确定传递函数中 k 值的取值范围。 (15 分)

图 2

5. 请化简图 3 所示的系统框图,并写出该系统的传递函数 $G(s) = \frac{C(s)}{R(s)}$ 。 (15 分)

复习题第六套

一、填空题(每空1分,共10分)

1.	对控制系统的基本要求可归纳为 ()、() 和准确性。
2.	当系统能用线性微分方程描述时,该系统称为()。
3.	阶跃信号的拉氏变换为()。
4.	系统传递函数的 ()、()和放大系数决定着系统的瞬态性能和稳态性能。
5.	微分环节的传递函数是 ()。
6.	若某传递函数的所有零点和极点均在复平面的左半平面内,则具有这种传递函数的系统被称为
()。
7. 7	根据其在系统中的连接方式,校正可分为()、()和順馈校正。
=	、判断题(每题 2 分,共 10 分)
1.	物理性质不同的系统可以具有相同类型的传递函数。()
2.	微分环节不能单独存在,必须与其他环节同时存在。()
3.	在复平面[s]的左半平面没有极点和零点的传递函数称为最小相位传递函数。()
4.	系统的稳定性不仅与系统自身结构有关,而且与初始条件、外作用的幅值有关。(×)
5.	系统的开环增益越大,系统的稳态误差越小。()
Ξ	、选择题(每题 2 分, 共 20 分)
1.	系统的数学模型是指 () 的数学表达式。
A	输入信号 B 输出信号 C 系统的动态特性 D 系统的特征方程
2.	闭环控制系统中()反馈作用
A	依输入信号的大小而存在 B 不一定存在 C 必然存在 D 一定不存在
3.	已知 $F(s) = \frac{2}{s(5s+1)}$, 当 $t \to \infty$ 时, $f(t)$ 的值为 (
A	5 B 2 C 0 D ∞
4.	二阶欠阻尼系统的性能指标:上升时间、峰值时间和调整时间,反映了系统的()
A	稳定性 B 响应的快速性 C 精度 D 相对稳定性
5.	已知机械系统的传递函数为 $G(s) = \frac{1}{s^2 + s + 1}$,则系统的阻尼比为()
A	0.25 B 0.5 C 1 D 2
6.	设一个系统的传递函数为 $G(s) = \frac{5}{3s+1} \cdot e^{-rs}$,则该系统可看成为由()串联而成。

惯性环节与延时环节

B 比例环节、惯性环节与延时环节

惯性环节与导前环节

D 比例环节、惯性环节与导前环节

7. 已知系统开环传递函数为 $G_{K}(s) = \frac{7}{s^{2}(s+2)}$,则系统的增益和型次分别是(

A 7, I型

B 7, II型 C 3.5, I型 D 3.5, II型

8. 已知系统的传递函数为 $G(s) = \frac{s+10}{s(s-1)(s-3)}$,则该系统(

A 稳定

B 不稳定 C 临界稳定 D 无法判断

9. 系统的单位脉冲响应函数为 $\omega(t)=0.1t$,则系统的传递函数是(

 $A = \frac{0.1}{s^2}$

 $B = \frac{0.1}{s} \qquad C = \frac{1}{s^2} \qquad D = \frac{1}{s}$

10. 已知某环节频率特性的 Nyquist 图为一单位圆,则该环节的幅频特性为(

A 0.1

B 1

C 10

D 无法确定

三、计算题(共60分)(要求写出主要计算步骤及结果)

1. 己知 $F(s) = \frac{10(s+5)}{s(s+1)(s+3)}$, 求其原函数 f(t)。 (5分)

2. 请写出图 1 所示系统的微分方程,并推导出系统的传递函数 $G(s) = \frac{Y(s)}{X(s)}$, 图中 x(t)、y(t) 分别表示输

入位移和输出位移。 (10分)

3. 有如图 2 所示的反馈控制系统,请根据 Routh 判据确定传递函数中 k 值的取值范围。 (15 分)

4. 已知系统的传递函数方框图如图 3 所示,其中 $G(s) = \frac{3}{s+1}$, H(s) = 2 。若给定系统的输入信号 $x_i(t) = \sin(2t+15^\circ)$,试求系统的稳态输出。 (15 分)

5. 请化简图 4 所示的系统框图,并写出该系统的传递函数 $G(s) = \frac{C(s)}{R(s)}$ 。 (15 分)

复习题第七套

一、简答题(每题 5 分, 共 20 分)

- 1. 开环控制系统和闭环控制系统的主要特点是什么?
- 2. 线性系统的稳定性的概念和系统稳定的充分必要条件?
- 3. 什么是时间响应?时间响应的瞬态响应反映哪方面的性能?而稳态响应反映哪方面的性能?
- 4. 系统的频域性能指标有哪些?

二、选择题(每题2分,共40分)

- 1. 关于反馈的说法正确的是()
- A. 反馈实质上就是信号的并联 B. 正反馈就是输入信号与反馈信号相加
- C. 反馈都是人为加入的 D. 反馈是输出以不同的方式对系统作用
- 2. 系统的单位脉冲响应函数为 $\omega(t) = 0.1t$,则系统的传递函数为()
- A. $\frac{0.1}{s^2}$ B. $\frac{0.1}{s}$ C. $\frac{1}{s^2}$ D. $\frac{1}{s}$
- 3. 线性定常系统的微分方程为 $x_o(t) + 2x_o(t) + 3x_o(t) = 4x_i(t)$,则该系统的极点为()
- A. $s_1 = -1 + j\sqrt{2}$; $s_2 = -1 j\sqrt{2}$ B. $s_1 = j + \sqrt{2}$; $s_2 = -j + \sqrt{2}$
- C. $s_1 = j + \sqrt{2}$; $s_2 = -j + \sqrt{2}$; $s_3 = 0$ D. 以上都是
- 4. 某传递函数 $G(s) = K_1 + K_2 \frac{1}{s} + K_3 s$,则它是由()组成的。
- A. 比例+积分环节 B. 比例+微分环节
- C. 比例+惯性环节 D. 比例+积分+微分环节
- 5. 系统的单位脉冲响应函数为 $\omega(t) = 3e^{-0.2t}$,则系统的传递函数为()。
- A. $G(s) = \frac{3}{s+0.2}$ B. $G(s) = \frac{0.6}{s+0.2}$ C. $G(s) = \frac{0.2}{s+3}$ D. $G(s) = \frac{0.6}{s+3}$
- 6. 若二阶欠阻尼系统的无阻尼固有频率为 ω_n ,则其有阻尼固有频率 ω_d ()。
- A. $=\omega_n$ B. $>\omega_n$ C. $<\omega_n$ D. 与 ω_n 无关
- 7. 以下关于系统稳态偏差的说法正确的是()。
- A. 稳态偏差只取决于系统结构和参数 B. 稳态偏差只取决于系统输入和干扰
- C. 稳态偏差与系统结构、参数、输入和干扰等有关 D. 系统稳态偏差始终为 0

- 8. 线性系统对输入信号的时间响应()。
- A. 只与输入信号有关 B. 只与系统本身的固有特性有关
- C. 反映系统本身的固有特性及输入作用下的行为 D. 会随干扰信号所引起的输出而变化
- 9. 已知典型二阶系统的阻尼比为 $\xi = 0.5$,则系统的单位阶跃响应应呈现为()。
- A. 等幅的振荡 B. 发散的振荡 C. 收敛的振荡 D. 恒值
- 10. 要想减少二阶欠阻尼系统的最大超调量,可以采取的措施是()。
- A. ω_n 不变,增大 ξ B. ω_n 不变,减小 ξ
- $C. \xi$ 不变,减小 ω_r D. ξ 不变,增大 ω_r
- 11. 系统开环传递函数为() 的单位反馈系统,在输入 $x_i(t) = 4t^2$ 作用下的稳态误差为最小。

A.
$$G_k(s) = \frac{7}{s(s+5)}$$
 B. $G_k(s) = \frac{7}{s^2(s+2)}$

C.
$$G_k(s) = \frac{7}{s^2(s+5)}$$
 D. $G_k(s) = \frac{7}{s^3(s+2)(s+5)}$

- 12. 系统的传递函数为 $G(s) = \frac{3}{s+0.2}$,则其频率特性为()。
- A. $G(j\omega) = \frac{3}{s + 0.2}$ B. $G(j\omega) = \frac{3}{\omega + 0.2}$

C.
$$G(j\omega) = \frac{3}{\sqrt{\omega^2 + 0.04}}$$
 D. $G(j\omega) = \frac{3}{0.04 + \omega^2}(0.2 - j\omega)$

13. 以下系统中属于最小相位系统的是()。

A.
$$G(s) = \frac{1}{1 - 0.01s}$$
 B. $G(s) = \frac{1}{1 + 0.01s}$

C.
$$G(s) = \frac{1}{0.01s - 1}$$
 D. $G(s) = \frac{1}{s(1 - 0.1s)}$

- 14. 二阶振荡环节的传递函数为 $G(s) = \frac{16}{s^2 + 4s + 16}$,则其谐振频率为()。
- A. 4 B. $2\sqrt{2}$ C. $2\sqrt{3}$ D. 不存在
- 15. 一个系统稳定的充要条件是()。
- A. 系统的全部极点都在[s]平面的右半平面内
- B. 系统的全部极点都在[s]平面的上半平面内
- C. 系统的全部极点都在[s]平面的左半平面内
- D. 系统的全部极点都在[s]平面的下半平面内

- 16. 已知系统的相位裕度为 45⁰,则 ()。
- A. 系统稳定 B. 系统不稳定 C. 当其幅值裕度大于 0 分贝时, 系统稳定
- D. 当其幅值裕度小于或等于 0 分贝时, 系统稳定
- 17. 对于一阶系统,时间常数越大,则系统()。
- A. 系统瞬态过程越长 B. 系统瞬态过程越短 C. 稳态误差越小 D. 稳态误差越大
- 18. 以下校正方案不属于串联校正的是()。
- A. 增益调整 B. 相位超前校正 C. 相位滞后校正 D. 顺馈校正
- 19. 关于相位超前校正作用和特点的说法错误的是()。
- A. 增加系统稳定性 B. 加大了带宽 C. 降低系统的稳态精度 D. 加快系统响应速度
- 20. 一个系统开环增益越大,则()。
- A. 相对稳定性越小, 稳态误差越小 B. 相对稳定性越大, 稳态误差越大
- C. 相对稳定性越小, 稳态误差越大 D. 相对稳定性越大, 稳态误差越小

三、综合题(40分)

1. 己知
$$F(s) = \frac{10(s+5)}{s(s+1)(s+3)}$$
, 求其原函数 $f(t)$ 。 (5分)

2. 求出下图所示系统的传递函数 $X_o(s)/X_i(s)$ 。 (10 分)

3. 系统特征方程为 $s^4+Ks^3+s^2+s+1=0$,应用 Routh 稳定性判据,确定系统稳定时 K 值的范围。(10 分)

- 4. 已知单位反馈系统的开环传递函数为: $G(s) = \frac{K}{s(s+10)(s+5)}$, 试求:
 - (1) 使系统稳定的K值范围; (10分)
 - (2) K=50, 输入为r(t)=t时, 系统的稳态误差。(5分)

复习题第八套

一、简答题(每题 5 分, 共 20 分)

- 1. 反馈控制系统的基本组成及各个组成部分的功能?
- 2. 什么是传递函数? 其主要特点是什么?
- 3. 线性系统的稳定性的概念和系统稳定的充分必要条件?
- 4. 系统的时域性能指标有哪些?

二、选择题(每题2分,共40分)

- 1. 控制论的中心思想是()
- A. 系统是由元素或子系统组成的
- B. 机械系统与生命系统乃至社会经济系统等都有一个共同的特点,即通过信息的传递、加工 处理,并利用反馈进行控制
- C. 有些系统可控,有些系统不可控
- D. 控制系统有两大类,即开环控制系统和闭环控制系统
- 2. 对控制系统的首要要求是()
- A. 系统的经济性 B. 系统的自动化程度
- C. 系统的稳定性 D. 系统的响应速度
- 3. 某典型环节的传递函数为 $G(s) = \frac{1}{T_s}$,则该环节为()
- A. 惯性环节 B. 积分环节 C. 微分环节 D. 比例环节
- 4. 系统的传递函数()
- A. 与外界无关 B. 反映了系统、输入、输出三者之间的关系
- C. 完全反映了系统的动态特性 D. 与系统的初始状态有关
- 5. 系统数学模型是指()的数学表达式。
- A. 输入信号 B. 输出信号 C. 系统的动态特性 D. 系统的特征方程
- 6. 系统传递函数为 $G(s) = \frac{2}{2s^2 + 3s + 1}$,则系统的放大系数为 ()。
- A. 0.5 B. 1 C. 2 D. 无法确定
- 7. 以上关于线性系统时间响应的说法正确的是()。
- A. 时间响应就是系统输出的稳态值 B. 由单位阶跃响应和单位脉冲响应组成
- C. 由强迫响应和自由响应组成 D. 与系统初始状态无关
- 8. 已知机械系统的传递函数为 $G(s) = \frac{4}{s^2 + s + 4}$,则系统的阻尼比为 ()。
- A. 0.25 B. 0.5 C. 1 D. 2
- 9. 以上二阶欠阻尼系统性能指标只与其阻尼比有关的是()。
- A. 上升时间 B. 峰值时间 C. 调整时间 D. 最大超调量
- 10. 以下系统中存在主导极点的是()。

A.
$$G(s) = \frac{4}{s^2 + s + 4}$$
 B. $G(s) = \frac{4}{(s^2 + s + 4)(s + 1)}$

C.
$$G(s) = \frac{4}{(s^2 + s + 4)(2s + 1)(s + 1)}$$
 D. $G(s) = \frac{4}{(s^2 + s + 4)(s + 10)(s + 20)}$

D.
$$G(s) = \frac{4}{(s^2 + s + 4)(s + 10)(s + 20)}$$

- 11. 线性系统的单位斜坡响应为 $x_o(t) = t T + Te^{-\frac{t}{T}}$,则该系统的单位脉冲响应为(

- A. $\omega(t) = 1 e^{-t/T}$ B. $\omega(t) = 1 Te^{-t/T}$ C. $\omega(t) = e^{-t/T}$ D. $\omega(t) = \frac{1}{T}e^{-t/T}$
- 12. 要想减少二阶欠阻尼系统的上升时间,可以采取的措施是()。)。
- A. ω_n 不变, 增大 ξ B. ξ 不变, 减小 ω_n
- $C. \omega_n 减小, 增大 \xi$ $D. \xi减小, 增大 \omega_n$
- 13. 系统开环传递函数为 () 的单位反馈系统,在输入 $x_i(t) = 1 + 4t$ 作用下的稳态误差为

0.

- A. $G_k(s) = \frac{7}{s(s+5)}$ B. $G_k(s) = \frac{7}{s(s+2)}$
- C. $G_k(s) = \frac{7}{s^2(s+2)}$ D. $G_k(s) = \frac{7}{(s+2)(s+5)}$
- 14 以下关于频率特性与传递函数的描述,错误的是()。
- A. 都是系统的数学模型 B. 都是系统的初始状态无关
- C. 与单位脉冲响应函数存在一定的数学变换关系 D. 与系统的微分方程无关
- 15. 二阶振荡系统的阻尼比 $0<\xi<0.707$,则无阻尼固有频率 ω_n 、有阻尼固有频率 ω_d 和谐振频

率 ω , 之间的关系是()。

- A. $\omega_n < \omega_d < \omega_r$ B. $\omega_n < \omega_r < \omega_d$ C. $\omega_r < \omega_d < \omega_n$ D. $\omega_d < \omega_r < \omega_r$
- 16. 已知某环节频率特性的 Nyquist 图为一单位圆,则该环节的幅频特性为()。
- A. 0.1

 - B. 1 C. 10 D. 无法确定
- 17. 一个线性系统稳定与否取决于(
- A. 系统的结构和参数 B. 系统输入
- C. 系统的干扰
- D. 系统的初始状态
- 18. 一个系统开环增益越大,则()。
- A. 相对稳定性越小, 稳态误差越小 B. 相对稳定性越大, 稳态误差越大
- C. 相对稳定性越小, 稳态误差越大 D. 相对稳定性越大, 稳态误差越小
- 19. 所谓校正(又称补偿)是指()。
- A. 加入 PID 校正器 B. 在系统中增加新的环节或改变某些参数
- C. 使系统稳定 D. 使用劳斯判据
- 20. 以下环节中可以作为相位超前校正环节的是()。

A.
$$G_c(s) = \frac{2s+1}{s+1}$$
 B. $G_c(s) = 3\frac{2s+1}{3s+1}$

C.
$$G_c(s) = \frac{s+1}{2s+1}$$
 D. $G_c(s) = 3\frac{s+1}{2s+1}$

三、综合题(40分)

1. 某仓库大门自动控制系统的原理如下图所示,试说明自动控制大门开启和关闭的工作原理,并画出系统方框图。(10分)

2. 求出下图所示系统的传递函数 $X_o(s)/X_i(s)$ 。(10 分)

3. 设单位反馈控制系统的开环传递函数为 $G_k(s) = \frac{10}{s+1}$,当系统作用输入信号 $x_i(t) = \sin(t+30^0)$ 时,试求系统的稳态输出。(10分)

4. 系统特征方程为 $s^4+Ks^3+s^2+s+1=0$,应用 Routh 稳定性判据,确定系统稳定时 K 值的范围。(10 分)

复习题第九套

一、简答题(每题 5 分, 共 20 分)

- 1、什么是反馈?为什么要进行反馈控制?
- 2、什么是最小相位传递函数以及最小相位系统?
- 3、什么是线性系统?其最重要的特性是什么?
- 4、什么是频率响应和频率特性? 频率特性与传递函数的关系?

二、选择题(每题 2 分, 共 40 分)

- 1. 学习机械工程控制基础的目的之一是学会以()的观点对待机械工程问题。
- A. 动力学 B. 静力学 C. 经济学 D. 生物学
- 2. 开环控制系统的控制信号取决于()
- A. 系统的实际输出 B. 系统的实际输出与理想输出之差 C. 输入与输出之差 D. 输入
- 3. 设一阶系统的传递函数为 $\frac{3}{2s+5}$,则其时间常数和增益分别为
- A. 2,3 B. $2,\frac{3}{2}$ C. $\frac{2}{5},\frac{3}{5}$ D. $\frac{5}{2},\frac{3}{2}$
- 4. 对于一个线性系统, ()。
- A. 不能在频域内判别其稳定性 B. 不能在时域内判别其稳定性
- C. 若有多个输入,则输出是多个输入共同作用的结果
- D. 每个输入所引起的输出不可单独计算
- 5. 传递函数 $G(s) = \frac{2s+1}{s^2+3s+2}$ 的零点、极点和比例系数分别是 ()。
- A. 零点为z = 0.5, 极点为 $p_1 = -1, p_2 = -2$, 比例系数为 1
- B. 零点为z=0.5, 极点为 $p_1=-1, p_2=-2$, 比例系数为 2
- C. 零点为z = -0.5, 极点为 $p_1 = -1, p_2 = -2$, 比例系数为 1
- D. 零点为z = -0.5, 极点为 $p_1 = -1, p_2 = -2$, 比例系数为 2
- 6. 一阶系统的传递函数为 $G(s) = \frac{7}{s+2}$,若容许误差为 2%,则其调整时间为()。
- A. 8 B. 2 C. 7 D. 3.5
- 7. 二阶欠阻尼系统的上升时间为()。
- A. 系统的阶跃响应曲线第一次达到稳态值的 98%的时间
- B. 系统的阶跃响应曲线达到稳态值的时间
- C. 系统的阶跃响应曲线第一次达到稳态值的时间
- D. 系统的阶跃响应曲线达到稳态值的 98%的时间
- 8. 单位反馈系统的开环传递函数为 $G_k(s) = \frac{500}{s(s+1)(s+5)}$,则在单位斜坡输入下的稳态误差为

().

- A. 500 B. 1/500 C. 100 D. 0.01
- 9. 一阶系统的传递函数为 $G(s) = \frac{7}{s+2}$,则其单位脉冲响应曲线在t=0时的切线斜率为()。
- A. -7 B. -3.5 C. -14 D. -1/7
- 10. 已知某机械系统的传递函数为 $G(s) = \frac{\omega_n^2}{s^2 + s\xi\omega_n s + \omega_n^2}$,则系统的有阻尼固有频率为

().

- A. $\omega_n \sqrt{1-\xi^2}$ B. $\omega_n \sqrt{1+\xi^2}$ C. $\omega_n \sqrt{1+2\xi^2}$ D. $\omega_n \sqrt{1-2\xi^2}$
- 11. 已知系统开环传递函数为 $G_k(s) = \frac{7}{s(s+2)}$,则系统的增益和型次分别为()。
- A. 7, I型 B. 7, II型 C. 3.5, I型 D. 3.5, II型
- 12. 以下说法正确的是()。
- A. 时间响应只能分析系统瞬态特性 B. 频率特性只能分析系统稳态特性
- C. 时间响应分析和频率特性分析都能揭示系统动态特性 D. 频率特性没有量纲
- 13. 一阶系统的传递函数为 $G(s) = \frac{1}{s+1}$,在输入 $x_i(t) = 4\cos(t-30^\circ)$ 作用下的稳态输出为 ()。
- A. $x_o(t) = 4\cos(t-15^\circ)$ B. $x_o(t) = 2\sqrt{2}\cos(t-75^\circ)$
- C. $x_o(t) = 2\sqrt{2}\cos(t+15^\circ)$ D. $x_o(t) = 4\cos(t+15^\circ)$
- 14. 已知单位反馈系统传递函数 $G(s) = \frac{s+2}{s(s-2)(s-7)}$, 则该系统 ()。
- A. 稳定 B. 不稳定 C. 临界稳定 D. 无法判断
- 15. 对于二阶系统,阻尼比越大,则系统()。
- A. 相对稳定性越小 B. 相对稳定性越大 C. 稳态误差越小 D. 稳态误差越大
- 16. 劳斯判据用 () 来判定系统稳定性。
- A. 系统特征方程 B. 开环传递函数
- C. 系统频率特性的 Nyquist 图 D. 系统开环频率特性的 Nyquist 图
- 17. 以下方法可以增加系统相对稳定性的是()。
- A. 增加系统的开环增益 B. 减小系统的开环增益
- C. 增加系统的型次 D. 减小系统的输入
- 18. 增大系统开环增益,可以()。
- A. 提高系统的相对稳定性 B. 降低系统的相对稳定性
- C. 降低系统的稳态精度 D. 加大系统的带宽,降低系统的响应速度

- 19. 对于传递函数为 $G_1(s) = \frac{10}{s+1}$ 和 $G_2(s) = \frac{1}{3s+1}$ 两个系统,()。
- A. 系统 1 的带宽宽,响应速度快 B. 系统 1 的带宽宽,响应速度慢
- C. 系统 2 的带宽宽,响应速度快 D. 系统 2 的带宽宽,响应速度慢
- 20. 关于相位超前校正作用和特点的说法错误的是()。
- A. 增加系统稳定性 B. 加大了带宽 C. 降低系统的稳态精度 D. 加快系统响应速度

三、综合题(40分)

1. 已知系统的单位阶跃响应为 $x_o(t) = 1 - 1.8e^{-4t} + 0.8e^{-9t} (t \ge 0)$,试求系统的幅频特性与相频特性。(7 分)

2. 写出下图所示系统的传递函数 $\frac{C(s)}{R(s)}$ 。(10分)

3. 设系统的开环传递函数为 $G_k(s) = \frac{10}{s(s+1)(0.2s+1)}$,求系统的相位裕度 γ 和幅值裕度 K_g 。(10分)

- 4. 已知单位反馈系统的开环传递函数为: $G(s) = \frac{K}{s(s+10)(s+5)}$, 试求:
 - (1) 使系统稳定的K值范围; (10分)
 - (2) K=50, 输入为r(t)=t时, 系统的稳态误差。(3分)