SRM OF INSTITUTE OF SCIENCE AND TECHNOLOGY FACULTY OF ENGINEERING AND TECHNOLOGY 18MAB102T- ADVANCED CALCULUS AND COMPLEX ANALYSIS PART - A: MULTIPLE CHOICE QUESTIONS

UNIT - I: MULTIPLE INTEGRALS

1.	Evaluation of $\int_{0.0}^{1} dx dy$ is
	(a) 1 (b) $\overset{0}{2}$ (c) 0 (d) 4
2.	The curve $y^2 = 4x$ is a (a) parabola (b) hyperbola (c) straight line (d) ellipse
3.	Evaluation of $\int_{0}^{\pi} \int_{0}^{\pi} d\theta d\phi$ is $a) 1$ $b) 0$ $c) \pi/2$ $d) \pi^2$
4.	The area of an ellipse is a) πr^2 b) $\pi a^2 b$ c) πab^2 d) πab
5.	$\iint_{1}^{b} \frac{dxdy}{xy}$ is equal to a) $\log a + \log b$ b) $\log a$ c) $\log b$ d) $\log a \log b$
6.	$\int_{00}^{1x} dxdy \text{ is equal to}$ a) 1 b) 1/2 c) 2 d) 3
7.	$\int_{00}^{12} dx dy \text{ is equal to}$ $a) \int_{00}^{21} dy dx \qquad b) - \int_{00}^{12} dx dy \qquad c) \int_{20}^{01} dy dx \qquad d) \int_{10}^{02} dy dx$
8.	If R is the region bounded $x = 0$, $y = 0$, $x + y = 1$ then $\iint_{R} dxdy$ is equal to

c) 1/3 d) 2/3

9. Area of the double integral in cartesian co-ordinate is equal to a) $\iint_R dy dx$ b) $\iint_R r dr d\theta$ c) $\iint_R x dx dy$ d) $\iint_R x^2 dx dy$

a) 1

b) 1/2

	a x	
10. Change the order of integration in	$\iint dxdy$	is
	0.0	

a)
$$\int_{0.0}^{a.x} dxdy$$

a)
$$\int_{0}^{a} \int_{0}^{x} dxdy$$
 b) $\int_{0}^{a} \int_{0}^{x} xdydx$ c) $\int_{0}^{a} \int_{0}^{a} dxdy$ d) $\int_{0}^{a} \int_{0}^{y} dxdy$

c)
$$\int_{0}^{a} \int_{v}^{a} dxdy$$

$$d) \int_{0.0}^{a.y} dxdy$$

11. Area of the double integral in polar co-ordinate is equal to

a)
$$\iint_{\mathbb{R}} dr d\theta$$

$$b) \iint r^2 dr d\theta$$

a)
$$\iint_R dr d\theta$$
 b) $\iint_R r^2 dr d\theta$ c) $\iint_R (r+1) dr d\theta$ d) $\iint_R r dr d\theta$

$$d) \iint_{\mathbb{R}} r dr d\theta$$

12.
$$\iiint_{000}^{123} dx dy dz$$
 is equal to

- *a*) 3
- b) 4 c) 2 d) 6

13. The name of the curve $r = a(1 + \cos \theta)$ is

- a) lemniscate
- b) cycloid
- c) cardioid
- d) hemicircle

14. The volume integral in cartesian coordinates is equal to

a)
$$\iiint\limits_V dxdydz$$
 b) $\iiint\limits_V drd\theta d\phi$ c) $\iint\limits_R drd\theta$ d) $\iint\limits_R rdrd\theta$

b)
$$\iiint dr d\theta d\phi$$

$$d) \iint_{\mathbb{R}} r dr d\theta$$

15. $\iint_{0.0}^{1.2} x^2 y dx dy$ is equal to

a)
$$\frac{2}{3}$$
 b) $\frac{1}{3}$ c) $\frac{4}{3}$ d) $\frac{8}{3}$

$$c)\frac{2}{3}$$

$$(d) \frac{8}{3}$$

16. $\int_{0}^{1} \int_{0}^{1} (x+y)dxdy$ is equal to a) 1 b) 2 c) 3 d) 4

17. After changing the double integral $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ into polar coordinates, we have a) $\int_{0}^{\pi/2} \int_{0}^{\infty} e^{-r^2} dr d\theta$ b) $\int_{0}^{\pi/4} \int_{0}^{\infty} e^{-r} dr d\theta$ c) $\int_{0}^{\pi/2} \int_{0}^{\infty} e^{-r^2} r dr d\theta$ d) $\int_{0}^{\pi/2} \int_{0}^{\infty} e^{-r} dr d\theta$

$$a)\int_{0}^{\pi/2}\int_{0}^{\infty}e^{-r^{2}}drd\theta$$

b)
$$\int_{0}^{\pi/4} \int_{0}^{\infty} e^{-r} dr d\theta$$

c)
$$\int_{0}^{\pi/2} \int_{0}^{\infty} e^{-r^2} r dr d\theta$$

$$d)\int_{0}^{\pi/2}\int_{0}^{\infty}e^{-r}drd\theta$$

18. $\int_{0}^{\infty} \int_{0}^{y} \frac{e^{-y}}{y} dxdy$ is equal to a) 1 b) 0 c) -1 d) 2

19. The value of the integral $\int_{0}^{2} \int_{0}^{1} xy dx dy$ is

- (a) 1
- (b) 2
- (c) 3 (d) 4

20. The value of the integral
$$\int_{0}^{\pi/2} \int_{0}^{\pi/2} \sin(\theta + \phi) d\theta d\phi$$

- (a) 1
- (b) 2 (c) 3
- (d) 4
- 21. The region of integration of the integral $\int_{a}^{b} \int_{a}^{a} f(x, y) dx dy$ is
 - (a) square
- (b) circle
- (c) rectangle (d) triangle
- 22. The region of integration of the integral $\int_{0}^{1} \int_{0}^{x} f(x, y) dx dy$ is

 - (a) square (b) rectangle (c) triangle
- (d) circle
- 23. The limits of integration is the double integral $\iint_R f(x, y) dx dy$, where R is in the first quadrant and bounded by x = 0, y = 0, x + y = 1 are
 - (a) $\int_{x=0}^{1} \int_{y=0}^{1-x} f(x, y) dy dx$ (b) $\int_{y=1}^{2} \int_{x=0}^{1-y} f(x, y) dx dy$ (c) $\int_{y=0}^{1} \int_{x=1}^{y} f(x, y) dx dy$ (d) $\int_{y=0}^{2} \int_{x=0}^{1-y} f(x, y) dx dy$

1	a	6	b	11	d	16	a	21	С
2	a	7	a	12	d	17	С	22	С
3	d	8	b	13	С	18	a	23	a
4	d	9	a	14	a	19	a		
5	d	10	c	15	С	20	b		

UNIT – II: VECTOR CALCULUS

1. The directional derivative of $\phi = xy + yz + zx$ at the point (1,2,3) along x - axis is

(a) 4

(b) 5

(c) 6

(d) 0

In what direction from (3, 1, -2) is the directional derivative of $\phi = x^2y^2z^4$ maximum? 2.

a) $\frac{1}{\sqrt{\log}} (i+3j-k)$ (b) 19(i+3j-3k)

(c) 96(i+3j-3k) d) $\frac{1}{\sqrt{19}}(3i+3j-k)$

If r is the position vector of the point (x, y, z) w. r. to the origin, then $\nabla \cdot r$ is 3.

(b) 3

(c) 0

 \rightarrow If r is the position vector of the point (x, y, z) w. r. to the origin, then $\nabla \times r$ is 4.

a) $\nabla \times r = 0$ b) $x \ i + y \ j + z \ k = 0$ c) $\nabla \times r \neq 0$ d) i + j + k = 0

The unit vector normal to the surface $x^2 + y^2 - z^2 = 1$ at (1, 1, 1) is 5.

a) $\frac{\rightarrow}{i+j-k}$ b) $\frac{2}{i+2}$ c) $\frac{3}{i+3}$ d) $\frac{\rightarrow}{i+j-k}$

If $\phi = xyz$, then $\nabla \phi$ is 6.

 $\overrightarrow{F} = (x+3y) \overrightarrow{i} + (y-3z) \overrightarrow{j} + (x-2z) \overrightarrow{k} \text{ then } F \text{ is}$ 7.

a) solenoidal

b) irrotational

c) constant vector

d) both solenoidal and irrotational

If $\overrightarrow{F} = \left(axy - z^3\right) \overrightarrow{i} + \left(a - 2\right)x^2 \overrightarrow{j} + \left(1 - a\right)xz^2 \overrightarrow{k}$ is irrotational then the value of a is 8.

b) 4 c) -1

If u and v are irrotational then $u \times v$ is 9.

a) solenoidal b) irrotational c) constant vector d) zero vector

The value of $\int_{-r}^{r} dr$ where C is the line y = x in the xy-plane from (1,1) to (2,2) is 18. a) 0

19. The work done by the conservative force when it moves a particle around a closed curve

a) $\nabla \cdot F = 0$ b) $\nabla \times F = 0$ c) 0 d) $\nabla \cdot (\nabla \times F) = 0$

20. The connection between a line integral and a double integral is known as a) Green's theorem b) Stoke's theorem c) Gauss Divergence theorem d) convolution theorem

21. The connection between a line integral and a surface integral is known as a) Green's theorem b) Stoke's theorem c) Gauss Divergence theorem d) Residue theorem

22. The connection between a surface integral and a volume integral is known as a) Green's theorem b) Stoke's theorem c) Gauss Divergence theorem d) Cauchy's theorem

Using Gauss divergence theorem, find the value of $\iint r \, ds$ where r is the position 23.

vector and V is the volume

a) 4V

b) 0 c) 3V d) volume of the given surface

If S is any closed surface enclosing the volume V and if $F = ax \ i + by \ j + cz \ k$ then the 24. value of $\iint_S \overrightarrow{F} \cdot n \, dS$ is

a) abcV b) (a+b+c)V c) 0 d) abc(a+b+c)V

1	b	6	a	11	С	16	С	21	b
2	С	7	a	12	С	17	b	22	С
3	b	8	b	13	a	18	d	23	С
4	a	9	b	14	a	19	С	24	b
5	a	10	a	15	d	20	a		

UNIT-III LAPLACE TRANSFORMS

1. L(1) =

(a)
$$\frac{1}{s}$$
 (b) $\frac{1}{s^2}$ (c) 1 (d) s

2. $L(e^{3t}) =$

(a)
$$\frac{1}{s+3}$$
 (b) $\frac{1}{s-3}$ (c) $\frac{3}{s+3}$ (d) $\frac{s}{s-3}$

(c)
$$\frac{3}{s+3}$$

3. $L(e^{-at}) =$

$$(a) \ \frac{1}{s+1}$$

(c)
$$\frac{1}{s+a}$$

(a) $\frac{1}{s+1}$ (b) $\frac{1}{s-1}$ (c) $\frac{1}{s+a}$ (d) $\frac{1}{s-a}$

4. $L(\cos 2t) =$

(a)
$$\frac{s}{s^2+4}$$
 (b) $\frac{s}{s^2+2}$ (c) $\frac{2}{s^2+2}$ (d) $\frac{4}{s^2+4}$

$$(c) \frac{2}{s^2 + 2}$$

5. $L(t^4) =$

(a)
$$\frac{4!}{s^5}$$
 (b) $\frac{3!}{s^4}$ (c) $\frac{4!}{s^4}$ (d) $\frac{5!}{s^4}$

6. $L(a^t) =$

(a)
$$\frac{1}{s - \log a}$$
 (b) $\frac{1}{s + \log a}$ (c) $\frac{1}{s - a}$ (d) $\frac{1}{s + a}$

$$\frac{1}{-\log a}$$
 (c) $\frac{1}{s-1}$

$$(d) \frac{1}{s+a}$$

7. $L(\sinh \omega t) =$

(a)
$$\frac{s}{s^2 + \omega^2}$$
 (b) $\frac{\omega}{s^2 + \omega^2}$ (c) $\frac{s}{s^2 - \omega^2}$ (d) $\frac{\omega}{s^2 - \omega^2}$

$$(c) \frac{s}{s^2 - \omega^2}$$

8. An example of a function for which the Laplace transforms does not exists is

$$(a) f(t) = t^2$$

(a) $f(t) = t^2$ (b) $f(t) = \tan t$ (c) $f(t) = \sin t$

$$(c) f(t) = \sin t$$

(d) $f(t) = e^{-at}$

9. If L(f(t)) = F(s), then $L(e^{-at} f(t)) =$

(a)
$$F(s+a)$$

(a) F(s+a) (b) F(s-a) (c) F(s) (d) $\frac{1}{a}F\left(\frac{s}{a}\right)$

10. $L(e^{-at}\cos bt) =$

(a)
$$\frac{s+b}{(s+b)^2+a^2}$$
 (b) $\frac{s+a}{(s+a)^2+b^2}$ (c) $\frac{a}{s^2+a^2}$ (d) $\frac{s}{s^2+b^2}$

$$(b) \frac{s+a}{(s+a)^2+b^2}$$

(c)
$$\frac{a}{s^2 + a^2}$$

$$(d) \frac{s}{s^2 + b^2}$$

11.
$$L(te^t) =$$

(a)
$$\frac{1}{(s+1)^2}$$
 (b) $\frac{1}{s+1}$ (c) $\frac{1}{s-1}$ (d) $\frac{1}{(s-1)^2}$

$$(p) \frac{1}{s+1}$$

$$(c) \frac{1}{s-1}$$

$$(d) \frac{1}{(s-1)^2}$$

12.
$$L(t \sin at) =$$

(a)
$$\frac{2as}{(s^2+a^2)^2}$$
 (b) $\frac{2s}{(s^2+a^2)^2}$ (c) $\frac{s^2-a^2}{(s^2+a^2)^2}$ (d) $\frac{1}{s^2+a^2}$

13.
$$L(\sin 3t) =$$

(a)
$$\frac{3}{s^2+3}$$
 (b) $\frac{3}{s^2+9}$ (c) $\frac{s}{s^2+3}$ (d) $\frac{s}{s^2+9}$

(b)
$$\frac{3}{s^2 + 6}$$

$$(c) \frac{s}{s^2 + 3}$$

$$(d) \frac{s}{s^2 + 9}$$

14.
$$L(\cosh t) =$$

(a)
$$\frac{s}{s^2+1}$$

$$(b) \frac{s}{s^2 - 1}$$

(c)
$$\frac{1}{s^2+1}$$

(a)
$$\frac{s}{s^2+1}$$
 (b) $\frac{s}{s^2-1}$ (c) $\frac{1}{s^2+1}$ (d) $\frac{1}{s^2-1}$

15.
$$L(t^{1/2}) =$$

(a)
$$\frac{\Gamma(3/2)}{s^{1/2}}$$
 (b) $\frac{\Gamma(1/2)}{s^{3/2}}$ (c) $\frac{\Gamma(1/2)}{s^{1/2}}$ (d) $\frac{\Gamma(3/2)}{s^{3/2}}$

(b)
$$\frac{\Gamma(1/2)}{s^{3/2}}$$

(c)
$$\frac{\Gamma(1/2)}{s^{1/2}}$$

(d)
$$\frac{\Gamma(3/2)}{s^{3/2}}$$

16.
$$L(t^{-1/2}) =$$

(a)
$$\sqrt{\frac{\pi}{s}}$$

(b)
$$\sqrt{\frac{\pi}{2s}}$$

(a)
$$\sqrt{\frac{\pi}{s}}$$
 (b) $\sqrt{\frac{\pi}{2s}}$ (c) $\sqrt{\frac{1}{s}}$ (d) $\frac{1}{s}$

17.
$$L[te^{2t}] =$$

(a)
$$\frac{1}{(s-2)^2}$$

(a)
$$\frac{1}{(s-2)^2}$$
 (b) $-\frac{1}{(s-2)^2}$ (c) $\frac{1}{(s-1)^2}$ (d) $\frac{1}{(s+1)^2}$

$$(c) \frac{1}{(s-1)^2}$$

$$(d) \frac{1}{(s+1)}$$

18. If
$$L[f(t)] = F(s)$$
 then $L\left\{f\left(\frac{t}{a}\right)\right\}$ is

(a)
$$aF(as)$$

(b)
$$\frac{1}{a}F\left(\frac{s}{a}\right)$$

(c)
$$F(s+a)$$

(a)
$$aF(as)$$
 (b) $\frac{1}{a}F\left(\frac{s}{a}\right)$ (c) $F(s+a)$ (d) $\frac{1}{a}F(as)$

19.
$$L\left(\int_{0}^{t} \sin t dt\right)$$
 is

(a)
$$\frac{1}{s^2 + 1}$$

(b)
$$\frac{s}{s^2 + 1}$$

(a)
$$\frac{1}{s^2+1}$$
 (b) $\frac{s}{s^2+1}$ (c) $\frac{1}{(s^2+1)^2}$ (d) $\frac{1}{s(s^2+1)}$

$$(d) \frac{1}{s(s^2+1)}$$

- 20. $L(\sin t \cos t)$ is
 - (a) $L(\sin t)...L(\cos t)$ (b) $L(\sin t) + L(\cos t)$ (c) $L(\sin t) L(\cos t)$ (d) $\frac{L(\sin 2t)}{2}$
- 21. If L[f(t)] = F[s] then L[tf(t)] =
 - (a) $\frac{d}{ds}F(s)$ (b) $-\frac{d}{ds}F(s)$ (c) $(-1)^n \frac{d}{ds}F(s)$ (d) $-\frac{d^2}{ds^2}F(s)$
- 22. If L[f(t)] = F[s] then $L\left|\frac{f(t)}{t}\right| =$
 - (a) $\int_{0}^{\infty} F(s) ds$ (b) $\int_{0}^{\infty} F(s) ds$ (c) $\int_{0}^{\infty} F(s) ds$ (d) $\int_{0}^{\infty} F(s) ds$
- 23. $L \left| \frac{\cos t}{t} \right| =$
 - (a) $\frac{s}{s^2 + a^2}$ (b) $\frac{1}{s^2 + a^2}$ (c) does not exist (d) $\frac{s^2 a^2}{(s^2 + a^2)^2}$
- 24. If L[f(t)] = F[s] then $L[t^n f(t)] =$
 - (a) $(-1)^n \frac{d^n}{ds^n} F(s)$ (b) $\frac{d^n}{ds^n} F(s)$ (c) $-\frac{d^n}{ds^n} F(s)$ (d) $(-1)^{n-1} \frac{d^n}{ds^n} F(s)$
- 25. $L \left| \frac{1 e^{-t}}{t} \right| =$

- (a) $\log\left(\frac{s}{s-1}\right)$ (b) $\log\left(\frac{s}{s+1}\right)$ (c) $\log\left(\frac{s+1}{s}\right)$ (d) $\log\left(\frac{s-1}{s}\right)$
- 26. $L(u_a(t))$ is
- (a) $\frac{e^{as}}{s}$ (b) $\frac{e^{-as}}{s}$ (c) $-\frac{e^{-as}}{s}$ (d) $-\frac{e^{as}}{s}$
- 27. If L[f(t)] = F[s] then L[f'(t)] =
- (a) sL[f(t)] f(0) (b) sL[f(t)] sf(0) (c) L[f(t)] f(0) (d) sL[f(t)] f'(0)
- 28. Using the initial value theorem, find the value of the function $f(t) = ae^{-bt}$
 - (a) a (b) a^2 (c) ab (d) 0
- 29. Using the initial value theorem, find the value of $f(t) = e^{-2t} \sin t$
 - (a) 0 (b) ∞ (c) 1 (d) 2

30. Using the initial value theorem, find the value of the function $f(t) = \sin^2 t$ (a) 0 (b) ∞ (c) 1 (d) 2
31. Using the initial value theorem, find the value of the function $f(t) = 1 + e^{-t} + t^2$ (a) 2 (b) 1 (c) 0 (d) ∞
32. Using the initial value theorem, find the value of the function $f(t) = 3 - 2\cos t$ (a) 3 (b) 2 (c) 1 (d) 0
33. Using the final value theorem, find the value of the function $f(t) = 1 + e^{-t}(\sin t + \cos t)$ (a) 1 (b) 0 (c) ∞ (d) -2
34. Using the final value theorem, find the value of the function $f(t) = t^2 e^{-3t}$ (a) 0 (b) ∞ (c) 1 (d) -1
35. Using the final value theorem, find the value of the function $f(t) = 1 - e^{-at}$ (a) 0 (b) 1 (c) 2 (d) ∞
36. The period of $\tan t$ is (a) π (b) $\frac{\pi}{2}$ (c) 2π (d) $\frac{\pi}{4}$
37. The period of $ \sin \omega t $ is (a) $\frac{\pi}{\omega}$ (b) $\frac{2\pi}{\omega}$ (c) 2π (d) $2\pi\omega$
38. Inverse Laplace transform of $\frac{1}{(s-1)^2}$ is (a) te^{-t} (b) te^t (c) t^2e^t (d) t
39. Inverse Laplace transform of $\frac{2}{s-b}$ is (a) $2e^{-bt}$ (b) $2e^{bt}$ (c) $2te^{bt}$ (d) $2bt$
40. If $L^{-1}[F(s)] = f(t)$ then $L^{-1}\left(\frac{F(s)}{s}\right)$ is

(a) $\int_{0}^{\infty} f(t)dt$ (b) $\int_{0}^{t} f(t)dt$ (c) $\int_{-\infty}^{\infty} f(t)dt$ (d) $\int_{-a}^{a} f(t)dt$

41. If $L^{-1}[F(s)] = f(t)$ then $L^{-1}\left(\frac{1}{s^2 + 4}\right)$ is	
(a) $\frac{\sin 2t}{2}$ (b) $\frac{\sin \sqrt{2}t}{\sqrt{2}}$ (c) $\sin 2t$ (d) $\sin \sqrt{2}t$	
42. Inverse Laplace transform of $\frac{1}{s^2-a^2}$ is	
(a) $\frac{\sin at}{a}$ (b) $\frac{\sinh at}{a}$ (c) $\sin at$ (d) $\sinh at$	
43. If $L^{-1}[F(s)] = f(t)$ then $L^{-1}\left(\frac{1}{s^2}\right)$ is	
(a) t (b) $2t$ (c) $3t$ (d) t^2	
44. Inverse Laplace transform of $\frac{s}{s^2-9}$ is	
(a) $\cos 9t$ (b) $\cos 3t$ (c) $\cosh 9t$ (d) $\cosh 3t$	
45. If $L^{-1}[F(s)] = f(t)$ then $L^{-1}(F(as))$ is	
(a) $\frac{f(t)}{a}$ (b) $\frac{1}{a}f\left(\frac{t}{a}\right)$ (c) $f\left(\frac{t}{a}\right)$ (d) $f(at)$	
46. Inverse Laplace transform of $\frac{1}{s^3}$ is	
(a) $\frac{t}{2}$ (b) t (c) $\frac{t^2}{2}$ (d) t^2	
47. Inverse Laplace transform of $\frac{s+3}{(s+3)^2+9}$ is	
(a) $e^{3t}\cos 3t$ (b) $e^{-3t}\cos 3t$ (c) $e^{-3t}\cosh 3t$ (d) $e^{-3t}\cos 9t$	
48. Inverse Laplace transform of $\frac{b}{s+a}$ is	
(a) ae^{-bt} (b) be^{-bt} (c) ae^{bt} (d) be^{at}	
49. The value of $e^{-t} * \sin t =$	
$(a)\left(\frac{\sin t - \cos t}{2}\right) \qquad (b)\left(\frac{\cos t - \sin t}{2}\right) \qquad (c)\left(\frac{e^{-t}}{2}\right) + \left(\frac{\sin t - \cos t}{2}\right) \qquad (d)\left(\frac{\sin t - \cos t}{2}\right)$	$\left(\frac{e^{-t}}{2}\right)$

50. The value of $1 * e^t$ is

(a) $e^{t} - 1$ (b) $e^{t} + 1$ (c) e^{t} (d) e^{t}

1	a	11	d	21	b	31	a	41	a
2	b	12	a	22	b	32	С	42	b
3	С	13	b	23	c	33	a	43	a
4	a	14	b	24	a	34	a	44	d
5	a	15	d	25	c	35	b	45	b
6	a	16	a	26	b	36	a	46	c
7	d	17	a	27	a	37	a	47	b
8	b	18	a	28	a	38	b	48	b
9	a	19	d	29	a	39	b	49	c
10	b	20	d	30	a	40	b	50	a

UNIT-IV: ANALYTIC FUNCTIONS

1.	Cauchy –	Riemann	equation	in	polar	co-ordinates	are

(a)
$$ru_r = v_\theta, u_\theta = -rv_r$$
 (b) $-ru_r = v_\theta, u_\theta = rv_r$

(c)
$$-ru_r = v_\theta, u_\theta = rv_r$$
 (d) $u_r = rv_\theta, ru_\theta = v_r$

2. If
$$w = f(z)$$
 is analytic function of z, then

$$(a) \frac{\partial w}{\partial z} = i \frac{\partial w}{\partial x} \quad (b) \frac{\partial w}{\partial z} = i \frac{\partial w}{\partial y} \quad (c) \frac{\partial^2 w}{\partial z \partial \overline{z}} = 0 \quad (d) \frac{\partial w}{\partial \overline{z}} = 0$$

3. The function
$$f(z) = u + iv$$
 is analytic if

(a)
$$u_x = v_y, u_y = -v_x$$
 (b) $u_x = -v_y, u_y = v_x$

(b)
$$u_{x} = -v_{y}, u_{y} = v_{y}$$

(c)
$$u_x + v_y = 0, u_y - v_x = 0$$
 (d) $u_y = v_y, u_x = v_x$

$$(d) u_y = v_y, u_x = v_x$$

4. The function $w = \sin x \cosh y + i \cos x \sinh y$ is

- (a) need not be analytic
- (b) analytic
- (c) discontinuous

(d) differentiable only at origin

5. If
$$u$$
 and v are harmonic, then $u + iv$ is

- (a) harmonic
- (b) need not be analytic
- (c) analytic
- (d) continuous

6. If a function
$$u(x, y)$$
 satisfies $u_{xx} + u_{yy} = 0$, then u is

- (a) analytic
- (b) harmonic
- (c) differentiable (d) continuous

7. If u + iv is analytic, then the curves $u = c_1$ and $v = c_2$ are

- (a) cut orthogonally
- (b) intersect each other
- (c) are parallel

(d) coincides

8. The invariant point of the transformation $w = \frac{1}{z-2i}$ is

- (a) z = i (b) z = -i (c) z = 1 (d) z = -1

9. The transformation
$$w = cz$$
 where c is real constant represents

- (a) rotation
- (b) reflection (c) magnification
- (d) magnification and rotation

10. The complex function
$$w = az$$
 where a is complex constant represents

- (a) rotation
- (b) magnification and rotation
- (c) translation
- (d) reflection

11. The values of
$$C_1 \& C_2$$
 such that the function $f(z) = C_1 xy + i[C_2 x^2 + y^2]$ is analytic are

- (a) $C_1 = 0, C_2 = 1$ (b) $C_1 = 2, C_2 = -1$
- (c) $C_1 = -2, C_2 = 1$ (d) $C_1 = -2, C_2 = 0$

12. The real part of $f(z) = e^{2z}$ is	12.	The real	part of	f(z) =	e^{2z}	is
---	-----	----------	---------	--------	----------	----

The real part of $f(z) = e^{2z}$ is (a) $e^x \cos y$ (b) $e^x \sin y$ (c) $e^{2x} \cos 2y$ (d) $e^{2x} \sin 2y$

13. If f(z) is analytic where $f(z) = r^2 \cos 2\theta + ir^2 \sin p\theta$, the value of p is

(a) p=1 (b) p=-2 (c) p=-1 (d) p=2

14. The points at which the function $f(z) = \frac{1}{z^2 + 1}$ fails to be analytic an

(a) $z = \pm 1$

(b) $z = \pm i$ (c) z = 0 (d) $z = \pm 2$

15. The critical point of transformation
$$w = z^2$$
 is

(a) z = 2

(b) z = 0 (c) z = 1 (d) z = -2

16. An analytic function with constant modulus is

(a) zero

(b) analytic

(c) constant

(d) harmonic

17. The image of the rectangular region in the z-plane bounded by the lines
$$x = 0$$
, $y = 0$, $x = 2$ and $y = 1$ under the transformation $w = 2z$.

(a) parabola

(b) circle

(c) straight line

(d) rectangle is magnified twice

18. If
$$f(z)$$
 and $\overline{f(z)}$ are analytic function of z, then $f(z)$ is

(a) analytic

(b) zero

(c) constant (d) discontinuous

19. The invariant points of the transformation $w = -\left(\frac{2z+4i}{iz+1}\right)$ are

(a) z = 4i, -i (b) z = -4i, i (c) z = 2i, i (d) z = -2i, i

20. The function $|z|^2$ is

(a) differentiable at the origin

(b) analytic (c) constant (d) differentiable everywhere

21. If f(z) is regular function of z then,

 $(a)\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = |f'(z)|^2 \qquad (b)\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$

 $(c) \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} \right) |f(z)|^2 = 4 |f'(z)|^2 \qquad (d) \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) |f(z)|^2 = 4 |f'(z)|$

22. The transformation w = z + c where c is a complex constant represents

(a) rotation

(b) magnification

(c) translation

(d) magnification & rotation

23. The mapping $w = \frac{1}{7}$ is

(a) conformal

(b) not conformal at z = 0 (c) conformal every where

(d) orthogonal

24. The function $u + iv = \frac{x - iy}{x - iy + a}$ ($a \ne 0$) is not analytic function of z where as u - iv is

(a) need not be analytic (b) analytic at all points

(c) analytic except at z = a

(d) continuous everywhere

25. If z_1, z_2, z_3, z_4 are four points in the z-plane then the cross-ratio of these point is

(a)
$$\frac{(z_1 - z_2)(z_4 - z_3)}{(z_1 - z_4)(z_2 - z_3)}$$

(b)
$$\frac{(z_1-z_2)(z_3-z_4)}{(z_1-z_4)(z_2-z_2)}$$

(c)
$$\frac{(z_1-z_2)(z_4-z_3)}{(z_1-z_4)(z_2-z_3)}$$

(a)
$$\frac{(z_1 - z_2)(z_4 - z_3)}{(z_1 - z_4)(z_2 - z_3)}$$
 (b)
$$\frac{(z_1 - z_2)(z_3 - z_4)}{(z_1 - z_4)(z_3 - z_2)}$$

(c)
$$\frac{(z_1 - z_2)(z_4 - z_3)}{(z_1 - z_4)(z - z_3)}$$
 (d)
$$\frac{(z_1 - z_2)(z_3 - z_4)}{(z_4 - z_1)(z_3 - z_2)}$$

26. The invariant points of the transformation $w = \frac{1-iz}{z-i}$

(a) 0

(b) $\pm i$ (c) ± 2

(d) ± 1

1	a	6	b	11	b	16	c	21	b	26	d
2	d	7	a	12	С	17	d	22	С		
3	a	8	a	13	d	18	С	23	b		
4	b	9	С	14	b	19	a	24	С		
5	b	10	b	15	b	20	a	25	b		

UNIT - V: COMPLEX INTEGRATION

(c) simple closed curve

(d) multiple curve

1. A curve which does not cross itself is called a

curve and a is any point within c, is

(b) $2\pi i f'(a)$

(a) f'(a)

(b) closed curve

(a) curve

2.	The value of	$\int_{c} \frac{zdz}{z-2} \text{where}$	c is the	circle	z = 1 is	
	(a) 0	(b) $\frac{\pi}{2}i$	(c) $\frac{\pi}{2}$		(d) 2	
3.	The value of	$\int_{c} \frac{z}{(z-1)^2} dz \text{w}$	here c is	s the cir	cle $ z = 2$ is	
		(b) $2\pi i$				
4.	The value of	$\int_{C} (z-2)^{n} dz; (n$	$t \neq 1$) wh	here c is	s the circle $ z $	-2 = 4 is
	a. 2 ⁿ	(b) n^2	(c) 0		(c) <i>n</i>	
5.		$\int_{c} \frac{1}{2z+1} dz \text{ wher}$				
	(a) 0	(b) <i>πi</i>	(c) $\frac{\pi}{2}i$		(d) 2	
6.	The value of	$\int_{c} \frac{1}{3z+1} dz \text{ wher}$	e c is th	ne circle	z = 1 is	
	(a) 0	(b) π <i>i</i>	(c) $\frac{2\pi}{3}$	i	(d) 2	
7.		alytic inside an		the val	ue of $\int_{c}^{c} \frac{f(z)}{z - a} dz$	where c is the simple closed
	(a) $f(a)$			(c) $\pi i f$	(a)	(d) 0
8.	If $f(z)$ is an	alytic inside an	d on c ,	the val	ue of $\int_{c} f(z)dz$, where c is the simple closed
	curve, is (a) $f(a)$	(b) $2\pi i f(a)$		(c) <i>πif</i>	(a)	(d) 0
9.	If $f(z)$ is anal	ytic inside and	on c , th	e value	of $\int \frac{f(z)}{c(z-a)^2} dz$, where c is the simple closed

(c) $\pi i f'(a)$

(d) 0

- 13. Let $C_1:|z-a|=R_1$ and $C_2:|z-a|=R_2$ be two concentric circles $(R_2 < R_1)$, the annular region is defined as (a) within C_1 (b) within C_2

 - (c) within C_2 and outside C_1 (d) within C_1 and outside C_2
- 14. The part $\sum_{n=0}^{\infty} a_n (z-a)^n$ consisting of positive integral powers of (z-a) is called as
 - (a) The analytic part of the Laurent's series
 - (b) The principal part of the Laurent's series
 - (c) The real part of the Laurent's series
 - (d) The imaginary part of the Laurent's series
- 15. The part $\sum_{n=1}^{\infty} b_n (z-a)^{-n}$ consisting of negative integral powers of (z-a) is called as
 - (a) The analytic part of the Laurent's series
 - (b) The principal part of the Laurent's series
 - (c) The real part of the Laurent's series
 - (d) The imaginary part of the Laurent's series
- 16. The annular region for the function $f(z) = \frac{1}{z(z-1)}$ is
- (a) 0 < |z| < 1 (b) 1 < |z| < 2 (c) 1 < |z| < 0
- (d) |z| < 1

- 17. The annular region for the function $f(z) = \frac{1}{(z-1)(z-2)}$ is
 - (a) 0 < |z| < 1
- (b) 1 < |z| < 2 (c) 1 < |z| < 0
- (d) |z| < 1
- 18. The annular region for the function $f(z) = \frac{1}{z^2 z 6}$ is
 - (a) 0 < |z| < 1
- (b) 1 < |z| < 2
- (d) |z| < 3
- 19. If f(z) is not analytic at $z = z_0$ and there exists a neighborhood of $z = z_0$ containing no other singularity, then
 - (a) The point $z = z_0$ is isolated singularity of f(z)
 - (b) The point $z = z_0$ is a zero point of f(z)
 - (c) The point $z = z_0$ is nonzero of f(z)
 - (d) The point $z = z_0$ is non isolated singularity of f(z)
- 20. If $f(z) = \frac{\sin z}{z}$, then
 - (a) z = 0 is a simple pole
- (b) z = 0 is a pole of order 2
- (c) z = 0 is a removable singularity (d) z = 0 is a zero of f(z)
- 21. If $f(z) = \frac{\sin z z}{z^3}$, then
 - (a) z = 0 is a simple pole
- (b) z = 0 is a pole of order 2
- (c) z = 0 is a removable singularity (d) z = 0 is a zero of f(z)
- 22. If $\lim_{z\to a} (z-a)^n f(z) \neq 0$ then
 - (a) z = a is a simple pole
- (b) z = a is a pole of order n
- (c) z = a is a removable singularity (d) z = a is a zero of f(z)
- 23. If $f(z) = \frac{1}{(z-4)^2(z-3)^3(z-1)}$, then
 - (a) 4 is a simple pole, 3 is a pole of order 3 and 1 is a pole of order 2
 - (b) 3 is a simple pole, 1 is a pole of order 3 and 4 is a pole of order 2
 - (c) 1 is a simple pole, 3 is a pole of order 3 and 4 is a pole of order 2
 - (d) 3 is a simple pole, 4 is a pole of order 1 and 4 is a pole of order 2
- 24. If $f(z) = e^{\frac{1}{z-4}}$ then
 - (a) z = 4 is removable singularity (b) z = 4 is pole of order 2
 - (c) z = 4 is an essential singularity (d) z = 4 is zero of f(z)

25. Let z = a is a simple pole for f(z) and $b = \lim_{z \to a} (z - a) f(z)$, then

(a) b is a simple pole

(b) b is a residue at a

(c) b is removable singularity

(d) b is a residue at a of order n

(d) 1

26. The residue of $f(z) = \frac{1 - e^{2z}}{z^3}$ is

(a) 0 (b) 2 (c) -2

27. The residue of $f(z) = \frac{e^{2z}}{(z+1)^2}$ is

(b) $-2e^{-2}$ (c) -1

(d) $2e^{-2}$

28. The residue of $f(z) = \cot z$ is

(a) π

(b) 1

(c) -1

(d) 0

-	ALO.											
	1	С	6	С	11	b	16	a	21	c	26	c
	2	a	7	b	12	С	17	b	22	b	27	d
	3	b	8	d	13	d	18	С	23	С	28	b
	4	С	9	b	14	a	19	a	24	С		
	5	b	10	b	15	b	20	С	25	b		