Сложность алгоритмов

1. Расположите следующие функции в порядке увеличения скорости роста при больших n:

(a) $\log n$	(f) $\log \log n$	(k) n^n
(b) 1	(g) $\sqrt{2}^{logn}$	(l) $n \log n$
(c) \sqrt{n}	$(h) (log(n))^{log(n)}$	(m) n^2
(d) n	(i) 2^{2^n}	(m) m^2
(e) 1.01^n	(i) $n!$	(n) 2^n

2. Отметьте все функции, равные $\Theta(n^2)$ и все функции, равные $O(n^2)$

```
• 1000n^2 
• \frac{n^3}{1000} + 5000n^2 
• e^n 
• log(n^9 + n^5) 
• log n 
• n \log n 
• n^3/(1+n)
```

- 3. Чему равна алгоритмическая сложность следующих операций?
 - Поиск элемента в массиве размера N
 - Добавление элемента в начало массива размера N
 - Сортировка пузырьком массива размера N
 - Быстрая сортировка массива размера N
 - Добавление элемента в стек размера N
 - ullet Сложение матриц размера $N \times N$
 - Простой алгоритм умножения матриц размера $N \times N$
 - Следующий участок кода:

- 4. Алиса и Боб любят игры и соревнования. И сейчас они готовы приступить к новой игре. Всего у них есть X плиток шоколада. По правилам игры они могут есть этот шоколад по очереди(первой начинает Алиса). Известно, что Алиса съедает 7 плиток шоколада за ход, а Боб 5 плиток шоколада. Выйгрывает тот, кто съест последнюю плитку. При заданном X, определить победителя. Предложено 2 алгоритма решения этой задачи:
 - Плохой: Вычитаем сначала 7, затем 5 и так до тех пор пока не дойдём до 0 (или отрицательного числа). Чему равна сложность данного решения?
 - Хороший: Сначала находим остаток от деления X на 12. В зависимости от остатка определяем победителя. Чему равна сложность данного решения?

Сортировки

- 1. Создайте массив со следующими элементами: {163, 623, 7345, 545, 43, 73, 5, 536, 963, 1571}
- 2. Сортировка выбором: Написать функцию сортировки выбором void selection_sort(int n, int arr[]). arr массив чисел, которые нужно отсортировать, n количество чисел в этом массиве. Будем обозначать подмассивы так: arr[k:m] подмассив массива arr с элементами под номерами от k до m-1 (не включая m). Таким образом, весь массив можно обозначить как arr[0:n].

Алгоритм сортировки выбором:

- Найти минимальный элемент в массиве.
- Поменять местами минимальный элемент и первый элемент массива.
- Повторить эти операции для подмассива arr[1:n], затем для подмассива arr[2:n] и т.д.
- 3. Реккурсивная сортировка выбором: Написать реккурсивную функцию сортировки выбором void rec_selection_sort(int start, int n, int arr[]).
 - \mathtt{arr} массив чисел, которые нужно отсортировать, \mathtt{n} количество чисел в массиве \mathtt{arr} , \mathtt{start} начальный индекс подмассива в массиве \mathtt{arr} .
- 4. Быстрая сортировка: