Preparing your thesis with **ETEX**

Jack Walton October 18, 2019

Newcastle University

Introduction

Follow the leader

- These slides contain links to exercises and further reading
- You can follow along with these slides on my website

jwalton.info/teaching

A little about me...

- I am a 4th year PhD student based in the School of Maths, Stats & Physics
- I have \sim 4 years of $\mbox{ET}_{\mbox{\sc EX}}$ X experience
- I also teach the PGRDP course Introduction to git and GitHub

A little about you...

- This course is intended for those who already have some \(\mathbb{E}\mathbb{T}_{\mathbb{E}}\mathbb{X}\) experience
- If you want to brush up on the basics then SAgE offer an introduction to MEX workshop (not taught by me)

The game plan

- Angela will arrive to check attendance at 1pm
- I am more than happy informing Angela of any skivers (so don't skive)
- Exercises are included to break-up the monotony of me talking

Table of contents

- 1. Motivation
- 2. Managing large documents
- 3. Custom commands
- 4. Managing a bibliography
- 5. Packages: a few favourites
- 6. Common mistakes

Motivation

But I already know LETEX!

- Many of us learn ETEX "as we go"
- · As such, it is easy to get into bad habits
- It's even easier to miss out on useful packages and features

For inspiration...

- The Divine Liturgy of Saint John Chrysostom
- PhD thesis, Aaron Turon
- · Trees, maps, and theorems, Jean-luc Doumont
- The slides and exercises produced for this course...

Managing large documents

Modular **ETEX**

- For smaller projects it is okay to keep everything in a single .tex file
- For more involved projects (your thesis) this approach quickly becomes cumbersome
- The \include command makes it possible to break your document down into smaller chunks
- Working with smaller chunks is more manageable

Structure

An example structure for a thesis project could look like the following:

```
thesis/
   thesis.tex
   chapters/
    _chapter_1.tex
     chapter_2.tex
   __chapter_3.tex
   internal/
   __preamble.tex
   fig/
   __science.png
   references.bib
```

Example thesis.tex

```
\documentclass[12pt]{report}
\include{internal/preamble}
\begin{document}
\include{chapters/chapter_1}
\include{chapters/chapter_2}
\include{chapters/chapter_3}
\bibliography {references}
\end{document}
```

Example internal/preamble.tex

```
% Preamble, packages, commands etc.
\usepackage{microtype}
\usepackage{booktabs}
\usepackage{cleveref}
\usepackage{graphicx}
:

% Make it easier to include figures
\graphicspath{{fig/}}
```

Example chapters/chapter_1.tex

```
\chapter{Literature review}
\label{cha:lit_review}
```

Here's stuff others did which I don't really understand $\$ dots

Compile a single chapter

\includeonly allows the compilation of a single chapter, without messing up references, page numbers etc.

```
\documentclass[12pt]{report}
\include{internal/preamble}
\includeonly{chapters/chapter_2}
\begin{document}
\include{chapters/chapter_1}
\include{chapters/chapter_2}
\include{chapters/chapter_3}
```

masthesis.sty

- A thesis template for MSP students
- The template is modular and has a structure similar to the one given above
- For non-MSP students, or those who would like a different style, the 'classic thesis' style is a good option

Version control

- Version control allows you to track and manage changes in code, and collaborate with others
- I'd recommend using version control to help manage your thesis
- Plug: a colleague and I are teaching an upcoming PGRDP workshop Introduction to Git and GitHub

Spell checking

Spell checking .tex files is complicated by latex commands.

For those comfortable working at the command line I'd recommend aspell (or ispell or hunspell).

Interactive spell-check:

```
$ aspell -t -c chapters/chapter1.tex
```

Non interactive spell-check (lists mistakes):

```
$ cat chapters/chapter1.tex | aspell list -t
```

Custom dictionary and commands to ignore can be added with --add-extra-dicts and --conf respectively

Spell checking

Some IDEs have inbuilt spell checkers:

- Texmaker (checks contents of commands still)
- Texstudio (seems to have the best spellchecker)

More generally: here is a list of editors and their features

Word count

For final submission (it will creep up on you, I promise) you *need* to submit a word count.

Counting words in a .tex file is again complicated by the presence of latex commands.

For command line users I'd recommend trying detex and wc:

```
$ detex -le equation, table thesis.tex | wc -w
```

Word count

- Online tool (chapters counted one at at time)
- Texmaker's integrated pdf viewer has word count (right click pdf)
- Texstudio (tools \rightarrow analyse text; chapters one at a time)

Custom commands

Simple macros

Used to simplify repetitive and/or complex formatting.
Usually specified in the preamble

\newcommand{\name}{definition}

Simple macros: an example

```
\mbox{\ \ } \{\mbox{\ \ } \{\mbox{\ \ } \{\mbox{\ \ } \{\mbox{\ \ } \}\}
```

The set of real numbers are usually represented by a blackboard capital r: R.

The set of real numbers are usually represented by a blackboard capital r: \mathbb{R} .

Macros with parameters

Macros can also be constructed to accept parameters:

```
\newcommand{\name}[# params]{definition}
```

Macros with parameters: an example

```
\mbox{\ \ } [1] {\mathbb {4}}
```

Other numerical systems have similar notations. The complex numbers $\b C$, the rational numbers $\b Q$ and the integer numbers $\b Z$.

Other numerical systems have similar notations. The complex numbers $\mathbb C$, the rational numbers $\mathbb Q$ and the integer numbers $\mathbb Z$.

Macros with default parameters

It is also possible to define macros which take default parameters:

```
\newcommand{\name}[# params][default #1]{def.}
```

Macros with default parameters

We make a new command to save time writing expressions of the form \$\plusbinomial{x}{y}\$ and \$\plusbinomial[4]{a}{b}\$.

We make a new command to save time writing expressions of the form $(x + y)^2$ and $(a + b)^4$.

Managing a bibliography

BibTeX

BibTeX can be used to manage bibliographies. (BibLaTeX is a more sophisticated alternative.)

- BibTeX entries are stored in a .bib file
- I recommend maintaining a *single* centralised .bib file for the duration of your PhD.

BibTeX entries

A list of entry types which BibTeX understands can be found here.

```
@book{knuth84,
  title="The texbook",
  author="{Donald Ervin} Knuth and Duane Bibby",
  volume="3",
  year="1984",
  publisher="Addison-Wesley Reading"
}
```

Referencing with BibTeX

- References are included as \cite{knuth84}, where knuth84 is the title of a BibTeX entry
- Include your .bib file with \bibliography{references}, where references is the name of your file

\usepackage{natbib}

- natbib can be used to implement author-year citations.
- Introduces commands \citep and \citet, to cite in parenthesis or text.
- \citep* and \citet* print full author list
- Multiple citations can be made as \citep{paper1, paper2}

Compiling with BibTeX

BibTeX adds extra complexity to the processing of your manuscript. You will have to run 上 a number of times.

- 1. pdflatex thesis.tex
- 2. bibtex thesis.aux
- 3. pdflatex thesis.tex
- 4. pdflatex thesis.tex

A Makefile can simplify compilation. However, I'd recommend using latexmk.

Citations from Google Scholar

Google scholar can be used to export citations easily.

Citations from Google Scholar

Google scholar can be used to export citations easily.

Packages: a few favourites

\usepackage{cleveref}

cleveref formats cross-references automatically See Figure 1.

Figure 1: T_EX the Lion.

\usepackage{cleveref}

```
% Reference as Figure 1, instead of fig. 1
\usepackage[capitalise, noabbrev]{cleveref}
See \cref{fig:lion}.
\begin{figure}
\centering
 \includegraphics[width=0.4\textwidth]{Lion.png}
\caption{\TeX\ the Lion.}
\label{fig:lion}
\end{figure}
```

\usepackage{hyperref}

- · Adds hypertext links to cross-references.
- See e.g. this link to the Table of Contents, the links in the table of contents and the external hyperlinks throughout.
- hyperref takes many options to alter how links are displayed

Booktabs can be used to enhance default tabular.

Item		
Animal	Sold	Price (\$)
Gnat	per gram	13.65
	each	0.01
Gnu	stuffed	92.50
Emu	stuffed	33.33

Table 1: Default LTFX table.

```
\begin{tabular}{||1||1|r|}
\hline
\multicolumn \{2\}\{|c|\}\{Item\} \& \\cline \{1-2\}
 Animal
              & Sold & Price (\$) \\hline
              & per gram & 13.65
 Gnat
                                        //
              & each
                           & 0.01
                                        //
              & stuffed
                           & 92.50
                                        //
 Gnu
F.m 11
              & stuffed
                           & 33.33
                                        \\\hline
\end{tabular}
\caption{Default \LaTeX\ table.}
```

It	em	
Animal	Sold	Price (\$)
Gnat	per gram	13.65
	each	0.01
Gnu	stuffed	92.50
Emu	stuffed	33.33

Table 2: Booktabs table and styling.

```
\begin{tabular}{llr}
\toprule
\multicolumn{2}{c}{Item} & \\cmidrule{1-2}
            & Sold & Price (\$) \\midrule
Animal
            & per gram & 13.65
                                    //
Gnat
            & each & 0.01
                                    //
            & stuffed & 92.50
                                    //
Gnu
            & stuffed & 33.33
                                    //
Emu
\bottomrule
\end{tabular}
\caption{Booktabs improves table spacing.}
```

pgfplotstable can read data in from file (e.g. a .csv file) and automatically format the data as a table.

Consider that I have some .csv file:

Element,	Number,	Mass
Н,	1,	1.00794
He,	2,	4.00260
Li,	3,	6.94100
Be,	4,	9.01218

	Atomic		
Element	Number	Mass	
Н	1	1.00794	
He	2	4.00260	
Li	3	6.94100	
Ве	4	9.01218	

Table 3: pgfplotstable can read input files.

```
\pgfplotstabletypeset[
  col sep=comma,
  string type,
  every head row/.style={%
    before row={%
      \toprule
      & \multicolumn{2}{c}{Atomic} \\
      \cmidrule \{2-3\}
    },
    after row={\midrule}
 },
  every last row/.style={after row=\bottomrule}
  1 %
  {assets/elements.csv}
```

pgfplotstable can round numbers as desired:

	Atomic		
Element	Number	Mass	
Н	1	1.008	
He	2	4.003	
Li	3	6.941	
Ве	4	9.012	

Table 4: pgfplotstable understands precision and rounding.

```
\pgfplotstabletypeset[
  col sep=comma,
  columns/Number/.style={string type},
  columns/Element/.style={string type},
  columns/Mass/.style={fixed zerofill,
                         precision=3},
   (As in earlier example)
  \caption {pgfplotstable understands precision
           and rounding.}
```

Even *more* table generators

In addition to pgfplotstable there are various other table generators:

- pandas.DataFrame.to_latex (Python users)
- xtable (R users)
- Excel2latex (Excel users)
- matrix2latex (Matlab users)

A few more packages...

- tikz
- standalone
- fancyhdr
- multirow
- · ifdraft

- titlesec
- microtype
- natbib
- geometry
- todonotes

Exercise 3

Common mistakes

Image formats

- Do not use .jpeg files for plots (.jpeg compresses text poorly)
- If you must use a raster format use .png
- Ideally use a vector format e.g. .pdf

PNG vs JPEG SOMETIMES PNG IS SUPERTOR NOPEL ALWAYS JPEGIII FOR TILLUSTRATIONS. SCREENSHOTS. ANYTHING WITH TEXT... JPEG ONLYHI NO THINKING REQUIRED ...WEBCOMICS, GRAPHS. LOGOS... I LOVE JPEGII JPEG! JPEG!

Avoiding image scaling

- Avoid scaling your plots using the width argument of \includegraphics
- Using width will scale the font sizes in your plot, making it difficult to control font size
- Aim to create your plot with the exact dimensions you need for your document
- The logic to achieve this is the same for whatever plotting software you use. Here I outline an implementation for python.

Typesetting maths

Brackets should be large enough to completely enclose all they contain.

$$\left(\sum_{i=1}^{n-1} i\right) + n \qquad (\sum_{i=1}^{n-1} i) + n$$

$$\left(\sum_{i=1}^{n-1} i\right) + n \qquad \text{bigg}(\sum_{i=1}^{n-1} i \in \mathbb{N}^{n-1}) + n$$

Typesetting maths

```
a, b, c, d, e and f
$a, b, c, d, e \text{ and } f$
                                           a, b, c, d, e and f
$a$, $b$, $c$, $d$, $e$ and $f$
                                           i = 1, ..., 10
$i=1,...,10$
                                           i = 1, ..., 10
$i=1.\ldots.10$
                                           \sin(x)^{2} + \cos(x)^{2} = 1
\sin(x)^2 + \cos(x)^2 = 1
\sin(x)^2 + \cos(x)^2 = 1
                                           \sin(x)^2 + \cos(x)^2 = 1
```

Hyphen, en-dash and em-dash (-, -, —)

- The hyphen (-) is used to join words in a compound construction. "A long-term solution"
- An en-dash (--) appears in page ranges. "See pages 1-3"
- An em-dash (---) is typically used as a stand-in for a comma or parenthesis to separate out phrases.
 "Against all odds, Boris — the class clown — became prime minister."

Quotes

ΜΕΧ requires you to use separate markup for opening and closing quotes.

Opening quotes are ''

Closing quotes are ''

Quotes should look "like this" not "like this".

Capitalisation in BibTeX

Your BibTeX style will handle most capitalisation. For some words (names, places, ...) capitalisation must be ensured

```
@book{springer57,
   title="Introduction to {R}iemann surfaces",
   author="Springer, George",
   volume="473",
   year="1957",
   publisher="Addison-Wesley Reading"
}
```

Conclusion

Resources

- · First point of call: stack exchange
- The not so short introduction to $\Delta T_{\rm E} X \ 2 \varepsilon$
- More Math into ETEX 4th edition (hard copies available at library)
- CTAN: comprehensive T_EX Archive Network
- You should be aware of: official university guidelines

Perspective

Leslie Lamport, initial developer of 上X, was asked what three 上X mistakes people should stop making:

- 1. Worrying too much about formatting and not enough about content.
- 2. Worrying too much about formatting and not enough about content.
- 3. Worrying too much about formatting and not enough about content.

Source

Feedback and the future

- Please complete workshop evaluation
- Feedback is anonymous