

Introduction

CSE351 Computer Networks

CSE351: Computer Networks

Course Information

Instructor Information

Course Code	CSE 35101	Instructor	Youngbin Im
Course Title	Computer Networks	Office	106, 501-9
Year/Semester	2020/Spring	Telephone	2255
School	ECE	E-mail	ybim@unist.ac.kr
Course Classification		Office Hours	Wed 4:00pm – 5:00pm
Classroom/Class Time	106, T204		
	(Tue/Thu, 2:30-3:45pm)		
Grading Type	Letter		

Grading

Attendance (10 %) Midterm (30 %), Final Exam (35 %) Others (Assignment, Project, etc., 25%)

CSE351: Computer Networks

Computer Networking (7th Edition)

Jim Kurose, Keith Ross

Pearson

Attendance

- Online classes
 - BlackBoard Collaborate automatically checks the attendance
- Offline classes
 - Use UNIST Mobile Attendance System
 - Don't forget to check your attendance
 - If it doesn't work let me know after the class

First two weeks

❖ First week

 The classes including attendance are substituted with homework. The details will be announced soon.

Second week

 No classes. Make-up classes at 14:30 on April 11 and at 14:30 on May 2.

Consequences of Plagiarism & Cheating

- ☐ An official ECE regulation on the Academic Integrity
 - On the 1st violation
 - **Zero grade on the item** involved (e.g., homework, midterm, etc.).
 - Lower the final grade by at least one letter grade (e.g., A0 → B0).
 - Attain a "signed" personal letter from the student stating this will not happen again, and he/she is well aware of consequence if it does.
 - Provide a written report of the student and violation to School Head and ECE education committee.
 - On the 2nd violation
 - Give F on the course.
 - Share the identity of the student with the entire faculty.
 - Report to the University Student Scholarship Counseling Committee (학생장학지도위원회) for further disciplinary action.

ABOUT ME

Education

B.S.

Computer Science, Seoul National University, 1999.3 ~ 2006.8

Ph.D.

Computer Science, Seoul National University, 2007.3 ~ 2014.8

Advisor: Prof. Taekyoung Kwon

Professional Experiences

2003.6 ~ 2005.11 2011.6 ~ 2012.6 2014.9 ~ 2015.3 2015.3 ~ 2019.7 2019.9 ~ current **CAR 123** University **PRINCETON** ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY of Colorado UNIVERSITY Boulder Software Visiting **Postdoctoral Postdoctoral Assistant** Researcher Developer Researcher Researcher **Professor** Develop ERP, Advisor: Advisor: Advisor: Prof. Mung Chiang Prof. Taekyoung Kwon Prof. Sangtae Ha customer systems

Research Experiences by Areas

Large-Scale Network Systems

- FluidMem: Full Flexible and Fast Memory Disaggregation for the Cloud (ICDCS 2020)
- SPARCLE: Stream Processing Applications over Dispersed Computing Networks (ICDCS 2020)
- Learning the Optimal Protocol Selection (ICNP 2019)
- System Latency Tracing (EuroSys 2019)
- ECHO: Highly Available Cloud (ICDCS 2019)
- SNN-Cache: Machine Learning Based Caching (CISS 2018)
- FLARE: Fog Computing Based Streaming (ICDCS 2017)
- TUBE: Time Dependent Pricing System for Wireless

(SIGCOMM 2012)

Next Generation Wireless Networking and Sensing Systems

This is Your President Speaking: Spoofing

Alerts in 4G LTE Networks

(MobiSys 2019 Best Paper Award)

CASTLE: Distributed Scheduling for Cellular

Data Transmissions

(MobiSys 2019)

Making Wireless Motion Sensing More

Accurate

(SenSys 2017)

AMUSE: A Practical WiFi Offloading System

(INFOCOM 2013, TMC 2016)

Research Experiences by Topics

Large-Scale Network Systems

System Latency Tracing (EuroSys 2019)

- Present ELEMENT, a latency diagnosis framework that decomposes end-to-end TCP latency into endhost and network delays
- Implement a user-level library that uses ELEMENT to minimize delays

FluidMem: Full Memory Disaggregation for the Cloud (ICDCS 2020)

 Present a new approach to memory disaggregation called FluidMem that leverages the user-fault mechanism to achieve full memory disaggregation in software

Large-Scale Network Systems

ECHO: Highly Available Cloud (ICDCS 2019)

 A cloud resource management system that overbooks backup VMs by optimizing the overbooking rate tradeoff between availability and utilization

SNN-Cache: Machine Learning Based Caching (CISS 2018)

- SNN: a practical machine learning-based relation analysis system, which can be used in different areas
- SNNCache: leverage SNN to utilize the interrelationships among sequenced requests in caching decision

Large-Scale Network Systems

FLARE: Fog Computing Based Streaming (ICDCS 2017)

 A coordinated HAS solution for the fog computing that optimizes the total utility while maintaining stable video quality and supporting user-/devicespecific needs

Next Generation Wireless Networking and Sensing Systems

This is Your President Speaking: Spoofing Alerts in 4G LTE Networks (MobiSys 2019 Best Paper)

• Investigate the details of Wireless Emergency Alert (WEA) protocol and develop and demonstrate the first practical spoofing attack

CASTLE: Distributed Scheduling for Cellular Data Transmissions (MobiSys 2019)

 Presents a fully distributed scheduling framework that jointly optimizes the spectral efficiency and battery consumption

Making Wireless Motion Sensing More Accurate (SenSys 2017)

 Propose an effective phase noise calibration technique which can be broadly applicable to COTS WiFi based motion sensing

Next Generation Wireless Networking and Sensing Systems

AMUSE: A Practical WiFi Offloading System (INFOCOM 2013, TMC 2016)

 A practical, cost-aware WiFi offloading system that exploits a user's delay tolerance and offloads satisfying her throughput-delay tradeoffs and data budget constraints

TUBE: Time Dependent Pricing System for Wireless (SIGCOMM 2012)

- An end-to-end system for offering time-dependent pricing to users
- Offer lower prices in less congested periods, encouraging users to shift some traffic to less congested periods

Research Topics

Diagnosis and Management Framework for Largescale Systems

Existing logging and management systems are coarse

grained

Impact on application performance and management quality of data center companies

Research Topics

Architecting Emerging Applications and Systems

Better support the emerging applications (VR/AR/AI/IoT) in emerging systems (5G/novel data centers)

- Architect the related techniques for novel applications
- Improve the architecture, platform of data centers for new applications

Impact on application providers and ISPs, data center companies

INTRODUCTION

The Internet: a "Nuts And Bolts" View

Billions of connected computing *devices*:

- hosts = end systems
- running *network apps* at Internet's "edge"

routers, switches

Communication links

- fiber, copper, radio, satellite
- transmission rate: bandwidth

Networks

 collection of devices, routers, links: managed by an organization

"Fun" Internet-connected Devices

Pacemaker & Monitor

Tweet-a-watt: monitor energy use

Slingbox: remote

control cable TV

Web-enabled toaster + weather forecaster

sensorized, bed mattress

Others?

The Internet: a "Nuts And Bolts" View

- Internet: "network of networks"
 - Interconnected ISPs
- *protocols* are *everywhere*
 - control sending, receiving of messages
 - e.g., HTTP (Web), streaming video, Skype, TCP, IP, WiFi, 4G, Ethernet
- Internet standards
 - RFC: Request for Comments
 - IETF: Internet Engineering Task Force

The Internet: a "Service" View

- Infrastructure that provides services to applications:
 - Web, steaming video, multimedia teleconferencing, email, games, e-commerce, social media, inter-connected appliances, ...
- provides programming interface to distributed applications:
 - "hooks" allowing sending/receiving apps to "connect" to, use Internet transport service
 - provides service options, analogous to postal service

What's a Protocol?

Human protocols:

- "what's the time?"
- "I have a question"
- introductions
- ... specific messages sent
- ... specific actions taken when message received, or other events

Network protocols:

- computers (devices) rather than humans
- all communication activity in Internet governed by protocols

Protocols define the format, order of messages sent and received among network entities, and actions taken on msg transmission, receipt

What's a Protocol?

A human protocol and a computer network protocol:

Q: other human protocols?

A Closer Look at Internet Structure

Network edge:

- □hosts: clients and servers
- □servers often in data centers

A Closer Look at Internet Structure

Network edge:

- □hosts: clients and servers
- □servers often in data centers

Access networks, physical media:

wired, wirelesscommunication links

A Closer Look at Internet Structure

Network edge:

- □hosts: clients and servers
- □servers often in data centers

Access networks, physical media:

wired, wirelesscommunication links

Network core:

- interconnected routers
- network of networks

Access Networks and Physical Media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks (WiFi, 4G/5G)

What to look for:

- transmission rate (bits per second) of access network?
- shared or dedicated access among users?

Network Edge -- Access Networks

Wireless Access Networks

← Data rate vs. Range (coverage)

Data rate vs. Mobility (Speed) →

The Network Core

- mesh of interconnected routers
- packet-switching: hosts break
 application-layer messages into
 packets
 - forward packets from one router to the next, across links on path from source to destination
 - each packet transmitted at full link capacity

Network Core

Data Transmission via Packets

- takes application message
- breaks into smaller chunks, known as packets, of length L bits
- transmits packet into access network at transmission rate R
 - link transmission rate, aka link capacity, a.k.a. link bandwidth

packet time needed to transmission = transmit
$$L$$
-bit = $\frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$

Packet Switching: Store-and-Forward

- □ takes L/R seconds to transmit (push out) L-bit packet into link at R bps
- store and forward: entire packet must arrive at router before it can be transmitted on next link

one-hop numerical example:

- L = 7.5 Mbits
- R = 1.5 Mbps
- one-hop transmission delay = 5 sec
- end-end delay = 2L/R (assuming zero propagation delay)

Packet Switching: Queueing, Loss

queuing and loss:

- if arrival rate (in bits) to link exceeds transmission rate of link for a period of time:
 - packets will queue, wait to be transmitted on link
 - packets can be dropped (lost) if memory (buffer) fills up

Packet Switching: Routing, Forwarding

Circuit Switching

End-to-end resources allocated to, reserved for "call" between source and destination:

- □ in diagram, each link has four circuits.
 - call gets 2nd circuit in top link and 1st circuit in right link.
- dedicated resources: no sharing
 - circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)
- commonly used in traditional telephone networks

Circuit vs. Packet Switching

- Circuit Switching
 - (e.g. Telephone Networks)
 - Easier to guarantee service quality
 - Routing can be done over longer time durations (call arrival and departure times)
 - Resources are dedicated for the entire duration of the call
 - Inefficient but suitable for smooth traffic (e.g., voice)
 - No packet loss (within the reserved resources)

- □ Packet Switching
 - (e.g. The Internet)
 - Hard to guarantee service quality when resources are limited → "Best effort"
 - Physical routing or switching needs to be done at line speed
 - Network is used on demandHigh network efficiency
 - Efficient and suitable for bursty traffic (e.g., file transfer)
 - Packets may be dropped

