1.9, 1.10, 1.13, 1.14, 1.15, 1.21, 1.24

Exercise 1.9 Let E_1 and E_2 be subsets of a metric space (X, d). Prove that

$$\operatorname{Lim}_X(E_1 \cup E_2) = \operatorname{Lim}_X(E_1) \cup \operatorname{Lim}_X(E_2).$$

For \subset , assume $x \in \operatorname{Lim}_X(E_1 \cup E_2)$ and U is a neighborhood of x in X. So, $\emptyset \neq U \cap (E_1 \cup E_2) \setminus \{x\}$. $U \cap [(E_1 \setminus \{x\}) \cup (E_2 \setminus \{x\})] = [U \cap (E_1 \setminus \{x\}) \cup U \cap (E_2 \setminus \{x\})] = \operatorname{Lim}_X(E_1) \cup \operatorname{Lim}_X(E_2)$. For \supset , using Proposition 1.8, $E_1 \subset E_1 \cup E_2 \to \operatorname{Lim}_X(E_1) \subset \operatorname{Lim}_X(E_1 \cup E_2)$. Similarly, $E_2 \subset E_1 \cup E_2 \to \operatorname{Lim}_X(E_2) \subset \operatorname{Lim}_X(E_1 \cup E_2)$. So, $\operatorname{Lim}_X(E_1 \cup E_2) = \operatorname{Lim}_X(E_1) \cup \operatorname{Lim}_X(E_2)$.

Exercise 1.10 Let (X, d) be a metric space, and assume $E \subset Y \subset X$. Prove that

$$Lim_Y(E) = Lim_X(E) \cap Y$$
.

For \subset , $\operatorname{Lim}_Y(E) = V \cap (E \setminus \{x\}) = (U \cap Y) \cap (E \setminus \{x\})$, where V is open in Y and U is open in X (applied Theorem 2.19). So, $(U \cap Y) \cap (E \setminus \{x\}) \to [U \cap E \setminus \{x\}] \cap Y = \operatorname{Lim}_X(E) \cap Y$. For \supset , $\operatorname{Lim}_X(E) \cap Y \to [V \cap (E \setminus \{x\})] \cap Y$, where V is an open set neighborhood of X with respect to X. So, $[(V \cap Y) \cap [E \setminus \{x\} \cap Y]]$. Applying Theorem 2.19 to $V \cap Y = U$ where U is open in Y. Then, $U \cap [E \setminus \{x\} \cap Y] = U \cap [E \setminus \{x\}]$, since $E \subset Y$. So, $U \cap [E \setminus \{x\}] \to \operatorname{Lim}_Y(E)$. So, $\operatorname{Lim}_Y(E) = \operatorname{Lim}_X(E) \cap Y$.

Exercise 1.13 Let (X, d) be a metric space, and assume $Y \subset X$. Let $(x_n)_{n=1}^{\infty}$ be a sequence in Y and let X be a point of X. Prove that the following two statements are equivalent:

- 1. $x_n \to x$ in X, and $x \in Y$.
- 2. $x_n \to x$ in Y.

For \subset , if $x_n \to x$ in X, and $x \in Y$, then for some neighborhood V of x and \exists some $n \in \mathbb{N}$ s.t. $x_n \in V$. By Theorem 2.19, $U = V \cap Y \implies U$ is open in Y so $x_n \in U$. This implies that $x_n \to x$ and $x \in Y$. For \supset , \exists a neighborhood V around x with respect to Y s.t. $n \in \mathbb{N}$ that $x_n \in V$. $V \subset Y \subset X$ so $x \in Y$. If $x_n \in V$, then $V = U \cap Y$ where $x_n \in U$. So, $x_n \to x$ in X.

Exercise 1.14 Let (X, d) be a metric space, and let $(x_n)_{n=1}^{\infty}$ be a sequence in Y and let x be a point of X. Prove that the following statements are equivalent:

- 1. $x_n \to x$ in X
- 2. For every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $n \geq N$ implies $x_n \in B_X(x,\epsilon)$ (i.e. $d(x,x_n) < \epsilon$).
- 3. $d(x, x_n) \to 0$ as $n \to \infty$.

Let's consider the first two points first. For $x_n \to x$ in X, \exists a neighborhood U around x in X s.t. $n \in \mathbb{N}$ that $x_n \in U$ and $n \geq N$, where $N \in \mathbb{N}$. For \subset , set U to the ball $B_X(x,\epsilon)$ for $\epsilon > 0$ so $x_n \in B_X(x,\epsilon)$. For \supset , use the same reasoning that $n \geq N$ implies $B_X(x,\epsilon)$. $B_X(x,\epsilon)$ is a neighborhood of x which is open in X. Since $x_n \in B_X(x,\epsilon)$ for $n \geq N$, so $x_n \to x$ in X. For the last equality, let us look at points 2 and 3. To prove the direction $(2) \to (3)$, let's argue via proof by contrapositive. Assume that $d(x,x_n) \to \zeta$ as $n \to \infty$ for some $n \in \mathbb{N}$. If this is true, then \exists some $\epsilon > 0$ s.t. $\zeta > \epsilon$ so then $x_n \notin B_X(x,\epsilon)$. So, for x_n to be in the set $B_X(x,\epsilon)$, $d(x,x_n)$ must tend to 0 as $n \to \infty$. For the other inclusion \supset , for any ϵ selected, there will always be another $n \in \mathbb{N}$ such that $\epsilon > d(x,x_n)$ so $x_n \in B_X(x,\epsilon)$.

Exercise 1.15 Let $(s_n)_{n=1}^{\infty}$ and $(t_n)_{n=1}^{\infty}$ be sequences of real numbers, with $t_n > 0$ for each $n \in \mathbb{N}$. Assume that $t_n \to 0$ as $n \to \infty$.

- Prove that if $|s_n s| < t_n$ for all $n \in \mathbb{N}$, then $s_n \to s$ as $n \to \infty$.
- Prove that if $\frac{1}{n} \to 0$ as $n \to \infty$.
- Given $|s_n s| < t_n \forall n$ is true, for any $t_n > 0$, $\exists N \in \mathbb{N}$ s.t. $n \ge N$ implies $s_n \in B_X(s,t_n)$ as $d(s_n,s) < t_n \forall n \in \mathbb{N}$ so $s_n \to s$ as $n \to \infty$.
- Let $a_n = (\frac{1}{n})_{n=1}^{\infty}$. Clearly, $\forall n \in \mathbb{N}$, $a_{n+1} < a_n$ (this is the Archimedean property). If $a_N < \epsilon$ for $N \in \mathbb{N}$ for any $\epsilon > 0$, $\exists n \ge N$ s.t. $a_n < a_N < \epsilon$ so $a_n \in B_X(0, \epsilon)$.

Exercise 1.21 Let (X, d) be a metric space, and let E be a subset of X. Prove that $Lim_X(E)$ is a closed set of X.

Let $D = \operatorname{Lim}_X(E)$. To show that D is closed, we need to prove $\operatorname{Lim}_X(D) \subset D$. For all neighborhoods U centered around $x, \emptyset \neq U \cap (D \setminus \{x\}) \to \exists y \in \operatorname{Lim}_X(D), y \in U$. For all neighborhoods V centered around $y, \emptyset \neq V \cap (D \setminus \{y\}) \to \exists z \in D$.

Exercise 1.24 Let (X, d) be a metric space, and let E be a subset of X. Prove that

$$X \setminus \operatorname{Cl}_X(E) = \operatorname{Int}_X(X \setminus E)$$

•