Red Black Tree

Red-black trees: Overview

- Red-black trees are a variation of binary search trees to ensure that the tree is *balanced*.
 - » Height is $O(\lg n)$, where n is the number of nodes.
- Operations take $O(\lg n)$ time in the worst case.

Applications

Red Black trees are used in

- Completely Fair Scheduler in Linux Kernel: completely fair scheduler, linux/rbtree.h
- Computational Geometry Data structures
- Java: java.util.TreeMap , java.util.TreeSet .
- ◆ C++ STL: map, multimap, multiset.

Red-black Tree

- Binary search tree + 1 bit per node: the attribute *color*, which is either **red** or **black**.
- All other attributes of BSTs are inherited:
 - » key, left, right, and p.
- All empty trees (leaves) are colored black.
 - » We use a single sentinel, *nil*, for all the leaves of red-black tree *T*, with *color*[*nil*] = black.
 - » The root's parent is also nil[T].

Red-black Properties

- 1. Every node is either red or black.
- 2. The root is black.
- 3. Every leaf (nil) is black.
- 4. If a node is red, then both its children are black.
- For each node, all paths from the node to descendant leaves contain the same number of black nodes.

Height of a Red-black Tree

- Height of a node:
 - » h(x) = number of edges in a longest path to a leaf.
- Black-height of a node x, bh(x):
 - » bh(x) = number of black nodes (including nil[T]) on the path from x to leaf, not counting x.
- Black-height of a red-black tree is the black-height of its root
 - » By Property 5(For each node, all paths from the node to descendant leaves contain the same number of black nodes).
 - » black height is well defined.

Operations on RB Trees

- All operations can be performed in $O(\lg n)$ time.
- The query operations, which don't modify the tree, are performed in exactly the same way as they are in BSTs.
- Insertion and Deletion are not straightforward.

Red-Black Trees: An Example * Color this tree: Red-black properties: 1. Every node is either red or black 2. Every leaf (NULL pointer) is black 3. If a node is red, both children are black 4. Every path from node to descendent leaf contains the same number of black nodes 5. The root is always black

Red-Black Trees: The Problem With Insertion Insert 8 Where does it go?

- Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. If a node is red, both children are black
- 4. Every path from node to descendent leaf contains the same number of black nodes
- The root is always black

Red-Black Trees: The Problem With Insertion Insert 8 Where does it go? What color should it be? Every node is either red or black Every leaf (NULL pointer) is black If a node is red, both children are black Every path from node to descendent leaf contains the same number of black nodes The root is always black

Red-Black Trees: The Problem With Insertion Insert 8 Where does it go? What color should it be? Every node is either red or black Every leaf (NULL pointer) is black If a node is red, both children are black Every path from node to descendent leaf contains the same number of black nodes The root is always black

Rotations Rotations are the basic tree-restructuring operation for almost all *balanced* search trees. Rotation takes a red-black-tree and a node, Changes pointers to change the local structure, and Won't violate the binary-search-tree property. Left rotation and right rotation are inverses. Left-Rotate(T, x) Right-Rotate(T, y) x γ

Rotation Example

• Rotate left about 9:

Left Rotation – Pseudo-code Left-Rotate (T, x)1. $y \leftarrow right[x]$ // Set y. 2. $right[x] \leftarrow left[y]$ //Turn y's left subtree into x's right subtree. 3. if $left[y] \neq nil[T]$ then $p[left[y]] \leftarrow x$ $p[y] \leftarrow p[x]$ //Link x's parent to y. **if** p[x] = nil[T]then $root[T] \leftarrow v$ Left-Rotate(T, x) else if x = left[p[x]]9. then $left[p[x]] \leftarrow y$ 10. else $right[p[x]] \leftarrow y$ 11. $left[y] \leftarrow x$ // Put x on y's left. 12. $p[x] \leftarrow y$

Rotation

- The pseudo-code for Left-Rotate assumes that
 - » $right[x] \neq nil[T]$, and
 - \rightarrow root's parent is nil[T].
- Left Rotation on x, makes x the left child of y, and the left subtree of y into the right subtree of x.
- Pseudocode for Right-Rotate is symmetric: exchange *left* and *right* everywhere.
- *Time:* O(1) for both Left-Rotate and Right-Rotate, since a constant number of pointers are modified.

Red-black Properties

- 1. Every node is either red or black.
- 2. The root is black.
- 3. Every leaf (nil) is black.
- 4. If a node is red, then both its children are black.
- For each node, all paths from the node to descendant leaves contain the same number of black nodes.

Insertion in RB Trees

- Insertion must preserve all red-black properties.
- Should an inserted node be colored **Red? Black?**
- Basic steps:
 - » Use Tree-Insert from BST (slightly modified) to insert a node x into T.
 - Procedure \mathbf{RB} -Insert(x).
 - » Color the node x red.
 - » Fix the modified tree by re-coloring nodes and performing rotation to preserve RB tree property.
 - Procedure **RB-Insert-Fixup**.

Insertion

```
RB-Insert(T,z)
       y \leftarrow nil[T]
       x \leftarrow root[T]
        while x \neq nil[T]
            \mathbf{do} \mathbf{v} \leftarrow \mathbf{r}
                if key[z] < key[x]
                    then x \leftarrow left[x]
6.
                     \mathbf{else} \ x \leftarrow right[x]
8.
       p[z] \leftarrow y
       if y = nil[T]
10.
         then root[T] \leftarrow z
11.
            else if key[z] < key[y]
12.
                 then left[y] \leftarrow z
13.
                 else right[y] \leftarrow z
```

RB-Insert(T,z) Contd.

```
14. left[z] \leftarrow nil[T]
15. right[z] \leftarrow nil[T]
16. color[z] \leftarrow RED
17. RB-Insert-Fixup (T, z)
```

Which of the RB properties might be violated?

Fix the violations by calling RB-Insert-Fixup.

Red-black Properties

- 1. Every node is either red or black.
- 2. The root is black.
- 3. Every leaf (nil) is black.
- 4. If a node is red, then both its children are black.
- 5. For each node, all paths from the node to descendant leaves contain the same number of black nodes.

Properties violations

- Property 1 (each node black or red): hold
- Property 3 (each leaf is black sentinel): hold.
- Property 5: same number of blacks: hold
- Property 2: (root is black), not, if z is root (and colored red).
- Property 4: (the child of a red node must be black), not, if z's parent is red.

Insertion – Fixup

- Problem: We may have one pair of consecutive reds where we did the insertion.
- Solution: Rotate the tree and then Three cases have to be handled

- Case 1, 2, 3: p[z] is the left child of p[p[z]].
- Correspondingly, there are 3 other cases,
- In which p[z] is the right child of p[p[z]]


```
Insertion – Fixup
RB-Insert-Fixup (T, z)
      while color[p[z]] = RED
2.
        do if p[z] = left[p[p[z]]]
             then y \leftarrow right[p[p[z]]]
3.
4.
                  if color[y] = RED
5.
                     then color[p[z]] \leftarrow BLACK // Case 1
6.
                           color[y] \leftarrow BLACK
                                                      // Case 1
7.
                           color[p[p[z]]] \leftarrow \text{RED} \ \ // \text{Case 1}
8.
                                                      // Case 1
                           z \leftarrow p[p[z]]
        p[p[z]]
```

```
Incartion
                                          Hiviin
RB-Insert-Fixup(T, z) (Contd.)
             else if z = right[p[z]] // color[y] \neq RED
10.
                                                 //Case 2
                 then z \leftarrow p[z]
11.
                      LEFT-ROTATE(T, z)
                                                 //Case 2
12.
                 color[p[z]] \leftarrow BLACK
                                                 //Case 3
13.
                 color[p[p[z]]] \leftarrow \text{RED}
                                                 //Case 3
                 RIGHT-ROTATE(T, p[p[z]]) // Case 3
14
15.
        else (if p[z] = right[p[p[z]]])(same as then clause
              with "right" and "left" exchanged)
16.
17. color[root[T]] \leftarrow BLACK
```

Insertion – Fixup

Termination

The loop terminates only if p[z] is black. Hence, property 4 is OK. The last line ensures property 2 always holds.

```
RB-INSERT-FIXUP(T, z)
     while color[p[z]] = RED
do if p[z] = left[p[p[z]]]
                 then y \leftarrow right[p[p[z]]]
                       if color[y] = RED
                          then color[p[z]] \leftarrow BLACK
                                                                                   > Case 1
                               color[v] \leftarrow BLACK
                                                                                   ⊳ Case 1
                                color[p[p[z]]] \leftarrow RED
                                                                                   ⊳ Case 1
                         z \leftarrow p[p[z]]
else if z = right[p[z]]
                                                                                   ⊳ Case 1
10
                                  then z \leftarrow p[z]
                                                                                   ⊳ Case 2
                                        LEFT-ROTATE (T, z)
                                                                                   ⊳ Case 2
12
                                color[p[z]] \leftarrow \texttt{BLACK}
                                                                                   ⊳ Case 3
13
                                color[p[p[z]]] \leftarrow RED
                                                                                   ⊳ Case 3
14
                                RIGHT-ROTATE(T, p[p[z]])
                                                                                   ⊳ Case 3
15
                 else (same as then clause
                               with "right" and "left" exchanged)
16 color[root[T]] \leftarrow BLACK
```


- p[p[z]] (z's grandparent) must be black, since z and p[z] are both red and there are no other violations of property 4.
- Make p[z] and y black ⇒ now z and p[z] are not both red. But property 5 might now be violated.
- Make p[p[z]] red ⇒ restores property 5.
- The next iteration has p[p[z]] as the new z (i.e., z moves up 2 levels).

- Then right rotate on p[p[z]]. Ensures **property 4 is maintained**.
- No longer have 2 reds in a row.
- p[z] is now black \Rightarrow no more iterations.

Figure 13.4 The operation of RB-I-SISERT-FIXUP. (a) A node z after insertion. Since z and its parent p[z] are both red, a violation of property 4 occurs. Since z's under by is red, case 1 in the country and the property 4 occurs. Since z's under you have zero as a pile of the since it is nowed up the tree, resulting in the tree child of p[z], case 2 can be applied. A left frontain is performed, and it is black. Since z is the right in (e). Now z is the left child of its parent, and case 3 can be applied. A right rotation yields the tree in (d), which is a legal red-black tree.

Algorithm Analysis

- $O(\lg n)$ time to get through RB-Insert up to the call of RB-Insert-Fixup.
- Within RB-Insert-Fixup:
 - » Each iteration takes O(1) time.
 - » Each iteration but the last moves z up 2 levels.
 - » $O(\lg n)$ levels $\Rightarrow O(\lg n)$ time.
 - » Thus, insertion in a red-black tree takes $O(\lg n)$ time.
 - » There are at most 2 rotations overall.

Deletion

- Deletion, like insertion, should preserve all the RB properties.
- The properties that may be violated depends on the color of the deleted node.
 - » Red OK. Why?
 - » Black?
- Steps:
 - » Do regular BST deletion.
 - » Fix any violations of RB properties that may result.

Deletion

RB-Delete(T, z)

- if left[z] = nil[T] or right[z] = nil[T]
- 2. then $y \leftarrow z$
- 3. else $y \leftarrow \text{TREE-SUCCESSOR}(z)$
- **4.** if left[y] = nil[T]
- 5. then $x \leftarrow left[y]$
- **6.** else $x \leftarrow right[y]$
- 7. $p[x] \leftarrow p[y]$ // Do this, even if x is nil[T]

Deletion

RB-Delete (T, z) (Contd.)

- **8. if** p[y] = nil[T]
- **9.** then $root[T] \leftarrow x$
- 10. else if y = left[p[y]]
- 11. then $left[p[y]] \leftarrow x$
- 12. else $right[p[y]] \leftarrow x$
- **13.** if y = z
- **14.** then $key[z] \leftarrow key[y]$
- 15. copy y's satellite data into z
- **16.** if color[y] = BLACK
- 17. then RB-Delete-Fixup(T, x)
- 18. return y

The node passed to the fixup routine is the lone child of the spliced up node, or the sentinel.

RB Properties Violation

- If y is black, we could have violations of redblack properties:
 - » Prop. 1. OK.
 - » Prop. 2. If *y* is the root and *x* is red, then the root has become red.
 - » Prop. 3. OK.
 - » Prop. 4. Violation if p[y] and x are both red.
 - » Prop. 5. Any path containing y now has 1 fewer black node.

RB Properties Violation

- Prop. 5. Any path containing y now has 1 fewer black node.
 - » Correct by giving x an "extra black."
 - » Add 1 to count of black nodes on paths containing x.
 - » Now property 5 is OK, but property 1 is not.
 - » x is either doubly black (if color[x] = BLACK) or red & black (if color[x] = RED).
 - » The attribute *color*[x] is still either RED or BLACK. No new values for *color* attribute.
 - » In other words, the extra blackness on a node is by virtue of *x* pointing to the node.
- Remove the violations by calling RB-Delete-Fixup.

Deletion – Fixup

```
RB-Delete-Fixup(T, x)
     while x \neq root[T] and color[x] = BLACK
2.
        do if x = left[p[x]]
3.
           then W \leftarrow right[p[x]]
4.
                 if color[w] = RED
5.
                   then color[w] \leftarrow BLACK
                                                         //Case 1
                         color[p[x]] \leftarrow \text{RED}
                                                        //Case 1
6
7.
                                                        //Case 1
                         LEFT-ROTATE(T, p[x])
8.
                         W \leftarrow right[p[x]]
                                                      //Case 1
```

```
RB-Delete-Fixup(T,x) (Contd.)
           /* x is still left[p[x]] */
          if color[left[w]] = BLACK and color[right[w]] = BLACK
10.
                                                        //Case 2
            then color[w] \leftarrow RED
11
                                                        // Case 2
                  x \leftarrow p[x]
12.
            else if color[right[w]] = BLACK
13.
                   then color[left[w]] \leftarrow BLACK
                                                        //Case 3
14.
                         color[w] \leftarrow RED
                                                        //Case 3
                         RIGHT-ROTATE(T,w)
15
                                                         //Case 3
16.
                                                          //Case 3
                            W \leftarrow right[p[x]]
                                                        //Case 4
                 color[w] \leftarrow color[p[x]]
18.
                 color[p[x]] \leftarrow BLACK
                                                        //Case 4
19
                 color[right[w]] \leftarrow BLACK
                                                       // Case 4
                 LEFT-ROTATE (T, p[x])
20.
                                                        // Case 4
21.
                                                       // Case 4
                 x \leftarrow root[T]
22.
       else (same as then clause with "right" and "left" exchanged)
23. color[x] \leftarrow BLACK
```

Deletion - Fixup

- * Idea: Move the extra black up the tree until x points to a red & black node ⇒ turn it into a black node,
- x points to the root \Rightarrow just remove the extra black, or
- We can do certain rotations and recolorings and finish.
- Within the **while** loop:
 - » x always points to a nonroot doubly black node.
 - w is x's sibling
 - **»** w cannot be nil[T], since that would violate property 5 at p[x].
- 8 cases in all, 4 of which are symmetric to the other.

- w must have black children.
- Make w black and p[x] red (because w is red p[x] couldn't have been red).
- Then left rotate on p[x].
- New sibling of x was a child of w before rotation ⇒ must be black.
- Go immediately to case 2, 3, or 4.

Case 2 - w is black, both w's children

- Take 1 black off $x (\Rightarrow \text{singly black})$ and off $w (\Rightarrow \text{red})$.
- Move that black to p[x].
- Do the next iteration with p[x] as the new x.
- If entered this case from case 1, then p[x] was red ⇒ new x is red & black ⇒ color attribute of new x is RED ⇒ loop terminates. Then new x is made black in the last line.

Case 3 - w is black, w's left child is red, w's right child is black

- Make w red and w's left child black.
- Then right rotate on W.
- New sibling w of x is black with a red right child \Rightarrow case 4.

Case 4 - w is black, w's right child is red

- Make w be p[x]'s color (c).
- Make p[x] black and w's right child black.
- Then left rotate on p[x].
- Remove the extra black on x (⇒ x is now singly black) without violating any red-black properties.
- All done. Setting x to root causes the loop to terminate.

Analysis

- $O(\lg n)$ time to get through RB-Delete up to the call of RB-Delete-Fixup.
- Within RB-Delete-Fixup:
 - » Case 2 is the only case in which more iterations
 - x moves up 1 level.
 - Hence, $O(\lg n)$ iterations.
 - » Each of cases 1, 3, and 4 has 1 rotation $\Rightarrow \le 3$ rotations in all.
 - » Hence, $O(\lg n)$ time.