5.7 Isolators

Module:5 Microwave Passive components

Course: BECE305L – Antenna and Microwave Engineering

-Dr Richards Joe Stanislaus

Assistant Professor - SENSE

Email: richards.stanislaus@vit.ac.in

Module:5 <u>Microwave Passive components</u> 6 hours

 Microwave Networks - ABCD, 'S' parameter and its properties. E-Plane Tee, H-Plane Tee, Magic Tee and Multi-hole directional coupler. Principle of Faraday rotation, isolator, circulator and phase shifter.

Source of the contents: Pozar

- Two-port device
- Non-reciprocal device

Teolator Teolator

- Produces a minimum attenuation to wave propagation in one direction and
 - very high attenuation in the opposite direction

- Two-port device
- Non-reciprocal device

I teoristor

- Produces a minimum attenuation to wave propagation in one direction and very high attenuation in the opposite direction
- When placed between a signal source and load:
 Almost all the signal power can be transmitted to the load and any reflected power from the load is not fed back to the generator output port.
- This eliminates variations of source power output and frequency pulling due to changing loads.

 Can be constructed in a rectangular waveguide (a ×b) operating in dominant mode

 Can be constructed in a rectangular waveguide (a ×b) operating in dominant mode

- placing a ferrite slab at any of the longitudinal planes $x = x_1$ near and parallel to the narrow waveguide wall,
- where the magnetic field exhibits circular polarization.

- Can be constructed in a rectangular waveguide (a ×b) operating in dominant mode
- The non-reciprocal characteristics are obtained by establishing a steady magnetic field H_0 in the y direction and
 - placing a ferrite slab at any of the longitudinal planes $x=x_1$ near and parallel to the narrow waveguide wall,
 - where the magnetic field exhibits circular polarization.
- This occurs at x1 = a/4 or, 3a/4.

• For the propagation of waves in +z direction, direction of rotation of H in the planes at $x_1 = a/4$ and 3a/4 are opposite to each other.

• For the propagation of waves in +z direction, direction of rotation of H in the planes at $x_1 = a/4$ and 3a/4 are opposite to each other.

- Non-reciprocal characteristic: achieved by placing a ferrite slab at any one of these two planes.
- Required steady state magnetic field H_0 in the y-direction is established by placing permanent magnetic poles between the two broad walls.

• For the propagation of waves in +z direction, direction of rotation of H in the planes at $x_1 = a/4$ and 3a/4 are opposite to each other.

- Non-reciprocal characteristic: achieved by placing a ferrite slab at any one of these two planes.
- Required steady state magnetic field H_0 in the y-direction is established by placing permanent magnetic poles between the two broad walls.
- Attenuation in ferrite for negative/ clockwise circular polarization is very small
 - Attenuation in ferrite for positive/counter clockwise circular polarization is very high (near resonance frequency $f \approx f_0$).
- Ferrite slab placed to obtain negative circular polarization in reverse direction.

- Steady magnetic field set to be equal to resonant value.
- Isolation of 20-30dB in backward direction (0.1-1% reflection) and transmission loss of 0.5dB in forward direction (upto 0.89% transmission)
 VSWR of order of 1.1

- Steady magnetic field set to be equal to resonant value.
- Isolation of 20-30dB in backward direction (0.1-1% reflection) and transmission loss of 0.5dB in forward direction (upto 0.89% transmission)
 VSWR of order of 1.1
- Reverse power is absorbed in ferrite and dissipated as heat.
 Maximum power handling is limited
 To increase power handling: Use two ferrite slabs of small heights instead of one with larger height.

- Steady magnetic field set to be equal to resonant value.
- Isolation of 20-30dB in backward direction (0.1-1% reflection) and transmission loss of 0.5dB in forward direction (upto 0.89% transmission)
 VSWR of order of 1.1
- Reverse power is absorbed in ferrite and dissipated as heat.
 Maximum power handling is limited
 To increase power handling: Use two ferrite slabs of small heights instead of one with larger height.
- Higher frequencies: Drawback very high steady magnetic fields (10000 oesterds at $\lambda = 1cm$).

- Circular waveguide section axially loaded with a ferrite rod of smaller diameter:
- Ferrite rod steady axial magnetic field H_0 of strength much smaller than resonant intensity Low/negligible ferrite loss.

- Circular waveguide section axially loaded with a ferrite rod of smaller diameter:
- Ferrite rod steady axial magnetic field H_0 of strength much smaller than resonant intensity Low/negligible ferrite loss.
- Dominant mode TE_{11} in circular section: decomposed into two oppositely rotating circularly polarized waves of equal magnitude.
- Two different permeabilities μ'_+ and μ'_- for clockwise and anticlockwise directions of field rotation, and phase velocity(v_p) changes.

- Circular waveguide section axially loaded with a ferrite rod of smaller diameter:
- Ferrite rod steady axial magnetic field H_0 of strength much smaller than resonant intensity Low/negligible ferrite loss.
- Dominant mode TE_{11} in circular section: decomposed into two oppositely rotating circularly polarized waves of equal magnitude.
- Two different permeabilities μ'_+ and μ'_- for clockwise and anti-clockwise directions of field rotation, and phase velocity(v_p) changes.
- Change in plane of polarization of main mode TE_{11} (gradual rotation θ)

- Change in plane of polarization of main mode TE_{11} (gradual rotation θ)
- Rotation angle θ is proportional to length of the ferrite rod.

- Change in plane of polarization of main mode TE_{11} (gradual rotation θ)
- Rotation angle θ is proportional to length of the ferrite rod.
- Reverse wave: direction of rotation remains same confirming the non-reciprocal properties

- Change in plane of polarization of main mode TE_{11} (gradual rotation θ)
- Rotation angle θ is proportional to length of the ferrite rod.
- Reverse wave: direction of rotation remains same confirming the non-reciprocal properties
- Input is 45° twist where tapered resistive card is mounted parallel to broadwall of rectangular waveguide.

- Change in plane of polarization of main mode TE_{11} (gradual rotation θ)
- Rotation angle θ is proportional to length of the ferrite rod.
- Reverse wave: direction of rotation remains same confirming the non-reciprocal properties
- Input is 45° twist where tapered resistive card is mounted parallel to broadwall of rectangular waveguide.
- Dominant mode TE_{10} does not get attenuated while transmission Rotated at 45° at twist output and enters circular waveguide through rectangular to circular waveguide transition at TE11 mode.

- Length of ferrite rod: selected to obtain Faraday rotation of $\theta = 45^{\circ}$
- Plane of polarization of reflected wave from load is again rotated by $\theta = 45^{\circ}$

- Length of ferrite rod: selected to obtain Faraday rotation of $\theta = 45^{\circ}$
- Plane of polarization of reflected wave from load is again rotated by $\theta = 45^{\circ}$
- The signal rotates and gets aligned with surface of absorbing plate, and gets abosrbed

- Length of ferrite rod: selected to obtain Faraday rotation of $\theta = 45^{\circ}$
- Plane of polarization of reflected wave from load is again rotated by $\theta = 45^{\circ}$
- The signal rotates and gets aligned with surface of absorbing plate, and gets absorbed
- Non-reciprocal behavior.
- Isolation 20-30dB
 Insertion loss: 1dB

Ideal lossless matched isolator

•
$$|S_{21}| = 1$$

 $|S_{12}| = |S_{11}| = |S_{22}| = 0$

•
$$[S] = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

- Insertion loss = $0.5dB = -20 \log_{10} |S_{21}|$
- $S_{21} = 10^{-0.5/20} = 0.9441$

- Insertion loss = $0.5dB = -20 \log_{10} |S_{21}|$
- $S_{21} = 10^{-0.5/20} = 0.9441$
- Isolation is $=25dB = -20 \log_{10} |S_{12}|$
- $S_{12} = 10^{-25/20} = 10^{-1.2} = 0.0631$

- Insertion loss = $0.5dB = -20 \log_{10} |S_{21}|$
- $S_{21} = 10^{-0.5/20} = 0.9441$
- Isolation is $=25dB = -20 \log_{10} |S_{12}|$
- $S_{12} = 10^{-25/20} = 10^{-1.2} = 0.0631$
- No reflection: $S_{11} = S_{22} = 0$

- Insertion loss = $0.5dB = -20 \log_{10} |S_{21}|$
- $S_{21} = 10^{-0.5/20} = 0.9441$
- Isolation is $=25dB = -20 \log_{10} |S_{12}|$
- $S_{12} = 10^{-25/20} = 10^{-1.2} = 0.0631$
- No reflection: $S_{11} = S_{22} = 0$

•
$$[S] = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} = \begin{bmatrix} 0 & 0.0631 \\ 0.9441 & 0 \end{bmatrix}$$

- Formed by match terminating one port of 3 port circulator.
- Method 1: A chromium layer is deposited on ferrite initially in all circuits for adherence. A tapered Cr fi Im of 0.6" long with a surface impedance of 270-ohm termination gives VSWR < 1.2 over the frequency range 5.5–11.0 GHz.

- Formed by match terminating one port of 3 port circulator.
- Method 2: Initial Cr adherence is done as Method 1. Then the Cr film acts as a lumped 50-ohm resistor which is terminated in a quarter wavelength open circuit impedance. This arrangement provides VSWR < 1.2 over the frequency range 4.5–6.0 GHz.

- Formed by match terminating one port of 3 port circulator.
- Method 3: 50-ohm lumped resistor shunt mounted across the strip line and terminated by a short at the end.

- Formed by match terminating one port of 3 port circulator.
- Method 4: An isolator in MIC form on ferrite substrate can be designed with a triangular patch having a narrow transverse slot and corner cuts.
- The dc magnetic field is applied perpendicular to the substrate plane

