Sensibilisation à la programmation multimedia

Christophe Vestri

Plan du cours

- 17 septembre : Intro, github, Capteur/Geoloc en HTML5
- 24 septembre: carto/geo, leaflet/mapBox, rest Api
- 8 octobre: Three.js et Babylon.sj
- 15 octobre: Three.js/Babylon.js + cartographie

Objectifs du cours

- Bases de géolocalisation et de la cartographie
- Expérimenter outils multimédia/carto/geo/3D
- Evaluation:
 - 25% par rendu de TD
 - N'oubliez pas de commiter, pusher sur Github
 - Vérifiez le fonctionnement

Plan Cours 3

- Rappel dernier cours
- WebGL
- Three.js (exercice 2h)
- Babylon.js (exercice 1h30)

Géo + Html5 + LeafLet.js

- Repères Géo et carto
- Acces capteur caméra: Géolocalisation, DeviceOrientation, DeviceMotion
- <u>Leafletjs</u>, Mapbox, mapQuest
- Données géolocalisées (REST API)

Retour exercices

- Vérifiez bien la fonctionnalité de votre code avec smartphone
- Evitez de recopier, développez
 - https://francegeojson.gregoiredavid.fr/repo/departements.geojson
 - ChatGPT?
 - Pas à jour (2018)
 - Pas la consigne -> requête serveur

Graphique en HTML

- Canvas 2D
- SVG: Scalable Vector Graphics
- CSS3D: pour des effets de rendu 3D
- WebGL: pour de la 3D basique
- Three.js ou Babylon.js pour de la vrai 3D

WebGL

Qu'est-ce que WebGL

- OpenGL |
- Cross plateforme et libre de droits
- OpenGL ES (OpenGL simplifié pour l'embarqué)
 dans le Web (HTML5)
- Bonne intégration Html et mécanisme d'évènements
- DOM API pour affichage 2D et 3D
- Langage de type script (pas de compilation)
- Accélérations matérielles et GPU (GLSL)

WebGL

Computer graphics

3D Clipping

 Objects that are partially within the viewing volume need to be clipped – just like the 2D case

WebGL Pipeline

WebGL

- Low-level API
 - GLSL OpenGL Shading Langage
 - Machine d'état: OpenGL Context
 - Calcul de matrices et transformations
 - Buffers de vertex: positions, normals, color, texture
 - Depth buffer, Blending, transparency
 - Lighting, Cameras...
 - https://developer.mozilla.org/fr/docs/Web/API/WebGL_API
 - <u>https://webglfundamentals.org/webgl/lessons/fr/</u>

WebGL Exemples

- https://www.khronos.org/webgl/wiki/Tutorial
- https://webglfundamentals.org/
- https://www.shadertoy.com/

Three.js

- Qu'est-ce que Three.js
 - Couche abstraite et haut niveau de WebGL
 - Librairie javascript pour créer des scènes 3D
 - Cross-plateforme et gratuit
 - Rendus en webGL, CSS3D et SVG
 - https://threejs.org/

Fonctionalités THREE^{JS}

- Scenes, Cameras, Renderer,
- Geometry, Materials, Textures
- Lights, Shadows
- Shaders, Particles, LOD
- Loaders: Json compatible Blender, 3D max, Wavefront OBJ, Autodesk FBX
- Animation, Trackballcontrols, Math Utilities
- https://davidlyons.dev/threejs-intro/

- Debugging
- Référentiels
- Exercices

Outils de debug

- En local (besoin pour charger modèles 3D):
 - Avoir python (miniconda ou autre)
 - Se placer dans le répertoire html
 - python3 -m http.server
 - http://localhost:8000/ firefox ou chrome
- Smartphone android -> Chrome
- https://developers.google.com/web/tools/chrom e-devtools/javascript
 - Simulation de smartphone (F12)
 - Connecté à un smartphone: chrome://inspect/

Les principaux problèmes

- 1. Scene mal éclairée (éclairage directif):
 - Solution: éclairage ambiant pour commencer
- 2. Objet géométrique non visible
 - Choisissez une position de caméra, placer l'objet devant
 - Faites 1 dessin sur papier pour être sur de ce que vous faites
 - Problème de clipping?
- 3. Mon modèle 3D ne s'affiche pas:
 - Vérifiez la console de votre navigateur (les erreurs...)
 - Enlevez la texture, mettez un matériau simple
 - Vérifiez l'échelle de votre objet et les positions (voir 2)
 - Utilisez un serveur local (slide précédent)
 - Utilisez un modèle glTf des exemples de Three.js avant d'utiliser le votre
- 4. Mon objet ne bouge pas
 - Vérifiez que vous appelez bien : renderer.setAnimationLoop(animate); ou engine.runRenderLoop(renderLoop);
 - Il doit y avoir une variable (angle/position/scale) qui varie, testez avec un breakpoint

Exercice 1 – Three.js

- Exercice 2 (2h)
 - https://threejs.org/docs/index.html#manual/en/introduction/Installation
 - https://threejs.org/docs/index.html#manual/en/introduction/Creating-a-scene
- Objectif: testez les éléments de base d'une scène 3D:
 - Créez une scène + caméra + light + renderer
 - Créez un objet générique (sphère ou cube)
 - Texturez cet objet
 - Téléchargez un objet 3D
 - Animez un objet avec le smartphone, DeviceEvents, DeviceOrientation et/o DeviceMotion
 - Ajoutez ce que vous voulez: Fog/pluie ou particules
- bonus: mettre un contexte

Publiez sur votre Github pour que je puisse corriger

Babylon.js

- Qu'est-ce que Babylon.js
 - Idem Three.js: librairie javascript pour créer des scènes 3D, cross-plateforme et gratuit
 - avec d'autres fonctionalités: Gaussian Splat
 Rendering, WebXR, Apple Vision Pro...
 - https://www.babylonjs.com/

-https://doc.babylonjs.com/journey

Exercice 2 – Babylon.js

- Exercice 2 (1h30)
 - https://doc.babylonjs.com/journey
- Objectif: testez les éléments de base d'une scène 3D:
 - Créez une scène + caméra + light + renderer
 - Créez un objet générique (sphère ou cube)

même chose que Three.js

- Texturez cet objet
- Téléchargez un objet 3D
- Animez un objet avec le smartphone, DeviceEvents, DeviceOrientation et/ou DeviceMotion
- Ajoutez ce que vous voulez: Fog/pluie ou particules
- bonus: mettre un contexte