

### **Description**

The Power MOSFET is fabricated using the advanced planar VDMOS technology. The resulting device has low conduction resistance, superior switching performance and high avalanche energy.

#### **Features**

- ♦ Low R<sub>DS(on)</sub>
- ◆ Low gate charge (typ. Q<sub>g</sub> = 12.8 nC)
- ♦ 100% UIS tested
- RoHS compliant

## **Applications**

- Power factor correction.
- Switched mode power supplies.
- LED driver.



**Absolute Maximum Ratings** 

| Parameter                                            | Symbol                            | Value       | Unit |
|------------------------------------------------------|-----------------------------------|-------------|------|
| Drain-Source Voltage                                 | V <sub>DSS</sub>                  | 500         | V    |
| Continuous drain current ( T <sub>C</sub> = 25°C )   | ID                                | 5           | A    |
| ( T <sub>C</sub> = 100°C )                           |                                   | 3.1         | Α    |
| Pulsed drain current 1)                              | I <sub>DM</sub>                   | 20          | Α    |
| Gate-Source voltage                                  | V <sub>GSS</sub>                  | ±30         | V    |
| Avalanche energy, single pulse 2)                    | Eas                               | 210         | mJ   |
| Peak diode recovery dv/dt 3)                         | dv/dt                             | 5           | V/ns |
| Power Dissipation C TO-220F( T <sub>C</sub> = 25°C ) |                                   | 30          | W    |
| Derate above 25°C                                    |                                   | 0.24        | W/°C |
| Power Dissipation                                    | P <sub>D</sub>                    |             |      |
| C TO-220\TO-251\TO-252( T <sub>C</sub> = 25°C )      |                                   | 75          | W    |
| Derate above 25°C                                    |                                   | 0.6         | W/°C |
| Operating junction and storage temperature range     | T <sub>J</sub> , T <sub>STG</sub> | -55 to +150 | °C   |
| Continuous diode forward current                     | Is                                | 5           | Α    |
| Diode pulse current                                  | I <sub>S,pulse</sub>              | 20          | A    |

#### **Thermal Characteristics**

| Dozometer                               | Cumbal           |           | Value                  |      |
|-----------------------------------------|------------------|-----------|------------------------|------|
| Parameter                               | Symbol           | C TO-220F | C TO-220\TO-251\TO-252 | Unit |
| Thermal resistance, Junction-to-case    | R <sub>eJC</sub> | 4.17      | 1.67                   | °C/W |
| Thermal resistance, Junction-to-ambient | R <sub>0JA</sub> | 62.5      | 110                    | °C/W |



**Package Marking and Ordering Information** 

| Device     | Device Package | Marking    | Units/Tube | Units/Reel |
|------------|----------------|------------|------------|------------|
| VSM5N50-T1 | TO-251         | VSM5N50-T1 | 50         |            |
| VSM5N50-T2 | TO-252         | VSM5N50-T2 | 50         |            |
| VSM5N50-TF | TO-220F        | VSM5N50-TF |            | 2500       |
| VSM5N50-TC | TO-220C        | VSM5N50-TC | 72         |            |

## Electrical Characteristics T<sub>c</sub> = 25°C unless otherwise noted

| Parameter                        | Symbol               | Test Condition                                             | Min. | Тур.  | Max. | Unit |
|----------------------------------|----------------------|------------------------------------------------------------|------|-------|------|------|
| Static characteristics           | '                    |                                                            | '    |       | ,    | •    |
| Drain-source breakdown voltage   | BV <sub>DSS</sub>    | V <sub>GS</sub> =0 V, I <sub>D</sub> =0.25 mA              | 500  | -     | -    | V    |
| Gate threshold voltage           | V <sub>GS(th)</sub>  | V <sub>DS</sub> =V <sub>GS</sub> , I <sub>D</sub> =0.25 mA | 2    | -     | 4    | V    |
| Drain cut-off current            | I <sub>DSS</sub>     | V <sub>DS</sub> =500 V, V <sub>GS</sub> =0 V,              |      |       |      |      |
|                                  |                      | T <sub>j</sub> = 25°C                                      | -    | -     | 1    | μA   |
|                                  |                      | T <sub>j</sub> = 125°C                                     | -    |       | 100  |      |
| Gate leakage current, Forward    | I <sub>GSSF</sub>    | V <sub>GS</sub> =30 V, V <sub>DS</sub> =0 V                | -    | -     | 100  | nA   |
| Gate leakage current, Reverse    | I <sub>GSSR</sub>    | V <sub>GS</sub> =-30 V, V <sub>DS</sub> =0 V               | -    | -     | -100 | nA   |
| Drain-source on-state resistance | R <sub>DS(on)</sub>  | V <sub>GS</sub> =10 V, I <sub>D</sub> =2.5 A               | -    | 1.35  | 1.60 | Ω    |
| Dynamic characteristics          |                      |                                                            |      | •     |      |      |
| Input capacitance                | C <sub>iss</sub>     | V <sub>DS</sub> = 25 V, V <sub>GS</sub> = 0 V,             | -    | 537.5 | -    |      |
| Output capacitance               | Coss                 | f = 1 MHz                                                  | -    | 80.3  | -    | pF   |
| Reverse transfer capacitance     | C <sub>rss</sub>     |                                                            | -    | 4     | -    |      |
| Turn-on delay time               | t <sub>d(on)</sub>   | V <sub>DD</sub> = 250 V, I <sub>D</sub> = 5 A              | -    | 10.3  | -    |      |
| Rise time                        | t <sub>r</sub>       | R <sub>G</sub> = 10 Ω, V <sub>GS</sub> =15 V               | -    | 33.1  | -    | ns   |
| Turn-off delay time              | t <sub>d(off)</sub>  |                                                            | -    | 29.4  | -    |      |
| Fall time                        | t <sub>f</sub>       |                                                            | -    | 13.2  | -    |      |
| Gate charge characteristics      | 1                    | 1                                                          | 1    | 1     | ı    |      |
| Gate to source charge            | Q <sub>gs</sub>      | V <sub>DD</sub> =400 V, I <sub>D</sub> =5 A,               | -    | 3.9   | -    |      |
| Gate to drain charge             | Q <sub>gd</sub>      | V <sub>GS</sub> =0 to 10 V                                 | -    | 4.6   | -    | nC   |
| Gate charge total                | Qg                   |                                                            | -    | 12.8  | -    |      |
| Gate plateau voltage             | V <sub>plateau</sub> |                                                            | -    | 5     | -    | V    |
| Reverse diode characteristics    | ·                    |                                                            | '    | •     |      |      |
| Diode forward voltage            | V <sub>SD</sub>      | V <sub>GS</sub> =0 V, I <sub>F</sub> =5 A                  | -    | -     | 1.5  | V    |
| Reverse recovery time            | t <sub>rr</sub>      | V <sub>R</sub> =250 V, I <sub>F</sub> =5 A,                | -    | 319.2 | -    | ns   |
| Reverse recovery charge          | Qrr                  | dl₅/dt=100 A/µs                                            | -    | 1.6   | -    | μC   |
| Peak reverse recovery current    | I <sub>rrm</sub>     | 1                                                          | -    | 10.2  | -    | А    |

#### Notes:

- 1. Pulse width limited by maximum junction temperature.
- 2. L=10mH,  $I_{AS}$  = 6.5A, Starting  $T_j$ = 25°C.
- 3.  $I_{SD}$  = 5A, di/dt $\leq$ 100A/us,  $V_{DD}\leq$ B $V_{DS}$ , Starting  $T_{j}$ = 25°C.



#### **Electrical Characteristics Diagrams**

Figure 1. Typical Output Characteristics



Figure 3. On-Resistance Variation vs. Drain Current



Figure 5. Breakdown Voltage vs. Temperature



Figure 2. Transfer Characteristics



Figure 4. Threshold Voltage vs. Temperature



Figure 6. On-Resistance vs. Temperature



T<sub>j</sub> ,Junction temperature (°C)

Drain-Source On-Resistance

R<sub>DS(on)</sub>, (Normalized)



Figure 7. Capacitance Characteristics



Figure 9. Maximum Safe Operating Area



Figure 11. Power Dissipation vs. Temperature



Figure 8. Gate Charge Characteristics



Figure 10. Maximum Safe Operating Area C C TO-220/TO-251/TO-252



Figure 12. Power Dissipation vs. Temperature





Figure 13. Continuous Drain Current vs. Temperature



Figure 14. Body Diode Transfer Characteristics



V<sub>SD</sub> ,Source-Drain Voltage (V)

T<sub>c</sub> ,Case temperature (°C)

Figure 15 Transient Thermal Impedance, Junction to CaseC TO-220F









## **Gate Charge Test Circuit & Waveform**









# **Unclamped Inductive Switching Test Circuit & Waveforms**



