

Microprocessor

Peripherals and their interfacing with 8086 Decoding and Mapping Techniques

Sejal Chopra
Assistant Professor - Dept. of Computer Engineering
Don Bosco Institute of Technology, Mumbai

Topics to be discussed

- Decoding Techniques: Absolute and Linear
- Mapping Techniques:I/O mapped I/O and Memory mapped I/O

Absolute decoding (Full Decoding)

- The memory chip is selected only for the specified logic level on the address lines; no other logic levels can select the chip.
- First we interface the required address lines directly to the chips
- All remaining address lines are used to generate an unique chip select signal
- Normally used in large, memory systems.

Block decoding (Special Case of full decoding)

- In a microcomputer system the memory array often consists of several blocks of memory chips.
- Each block of memory requires decoding circuit.
- To avoid separate decoding for each memory block special decoder IC is used to generate chip select signal for each block.

Linear decoding (Partial decoding)

- In small systems, hardware for the decoding logic can be eliminated, by using only required number of addressing lines (not all). Other lines are simply ignored.
- Ex:The status of A₁₄ to A₁₈ does not affect the chip selection logic. This gives you multiple addresses (shadow addresses).
- Reduces the cost, but it has drawback of multiple addresses.

IMPORTANT POINTS TO REMEMBER FOR I/O DESIGNING

- Normally I/O devices are mapped using I/O mapped I/O which means I/O devices are given I/O addresses
- Here I/O addresses can be either 8-bit or 16 bit.
- If the question says direct addressing mode or fixed port addressing, then use an 8-bit address like 80H (A7-A0).
- If the question says indirect addressing or variable port addressing, then use 16-bit address like 0080H (A15-A0).
- If nothing is mentioned, use indirect addressing or variable port addressing
- If memory mapped I/O is asked (Very rare), then remember the following changes
 - 1. Give the I/O device a 20-bit unused memory address like 80000H (A19-A0)
 - 2. Connect MEMR* and MEMW* signals to the I/O device instead of the usual IOR* and IOW* signals

Mapping Techniques

I/O MAPPED I/O	MEMORY MAPPED I/O	
I/O device is treated as an I/O device	I/O device is treated like a memory	
and hence given an I/O address.	device and hence given a memory	
	address.	
I/O device has an 8 or 16 bit I/O	I/O device has a 20 bit Memory	
address.	address.	
I/O device is given IOR* and IOW*	I/O device is given MEMR* and	
control signals	MEMW* control signals	
Decoding is easier due to lesser	Decoding is more complex due to	
address lines	more address lines	

Mapping Techniques

ار	Ш	L_
3		E
=		E
7	Ш	7

I/O MAPPED I/O	MEMORY MAPPED I/O	
Decoding is cheaper	Decoding is more expensive	
Works faster due to less delays	More gates add more delays hence	
	slower	
Allows max $2^{16} = 65536 \text{ I/O devices}$	Allows many more I/O devices as I/O	
	addresses are now 20 bits.	
I/O devices can only be accessed by IN	I/O devices can now be accessed using	
and OUT instructions.	any memory instruction.	
ONLY AL/ AX registers can be	Any register can be used to transfer	
used to transfer data with the I/O	data with the I/O device.	
device.		
Popular technique in Microprocessors	Popular technique in Microcontrollers.	

You have completed this topic, you should be able to:

Explain operating modes of 8255?

References Used

- Intel Microprocessors: By Barry B. Brey (Pearson Education)
- •8086/8088 family: Design Programming and Interfacing: By John Uffenbeck (Pearson Education).
- •Microcomputer Systems: 8086/8088 family Architecture, Programming and Design: By Liu & Gibson (PHI Publication).