Duração: 15h00-18h00

Exame Final

- [20 p.] 1. Indique, justificando, o valor lógico de cada uma das afirmações seguintes.
 - (a) O problema de valores iniciais $(y')^2 = x^2$, y(1) = 1 tem exatamente duas soluções em \mathbb{R}^+ .
 - (b) Se y = f(x) é solução da equação diferencial $xy' = 5 \operatorname{sen} x$, também y = 5f(x) é solução da mesma equação.
- [30 p.] 2. Resolva o problema de valores iniciais $y'' + 2y' + y = e^{-x}$, y(0) = 0, y'(0) = 1.
- [25 p.] 3. Determine a solução geral da equação diferencial $y' \cos x + y \sin x = 1 + \cos^2 x$.
- [25 p.] 4. Considere a equação diferencial $y' = \frac{x^2 + y^2}{x^2 + xy}$.
 - (a) Verifique que se trata de uma equação homogénea.
 - (b) Determine a sua solução geral.
- [20 p.] 5. Determine a soma da série $\sum_{n=2}^{+\infty} \left(\frac{1}{n+2} \frac{1}{n-1} \right)$.
- [30 p.] 6. Discuta a natureza das seguintes séries, indicando divergência, convergência simples ou convergência absoluta.

(a)
$$\sum_{n=1}^{+\infty} (-1)^n \sqrt[n]{n};$$
 (b) $\sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{2n^3 + \ln n + 1}};$ (c) $\sum_{n=1}^{+\infty} (-3)^n \frac{n!}{n^n}.$

- [30 p.] 7. Considere a função $f(x) = \sum_{n=1}^{+\infty} \frac{1}{n+1} (x-2)^{n+2}$.
 - (a) Determine o domínio de convergência desta série de potências.
 - (b) Determine, justificando, explicitamente a função f.
- [20 p.] 8. Considere a função $f(x) = \pi x$.
 - (a) Determine a sua série de Fourier de senos no intervalo $[0, \pi]$.
 - (b) Represente graficamente a função soma no intervalo $[-2\pi, 2\pi]$.

Formulário: Transformada de Laplace

f(t)	1	t ⁿ	e ^{at}	sen(at)	cos(at)	senh(at)	cosh(at)
$F(s) = \mathcal{L}\left\{f(t)\right\}$	1 -	$\frac{n!}{n!}, n \in \mathbb{N}$	1	<u>a</u>	<u>s</u>	<u>a</u>	<u>s</u>
$s > s_f$	s $s > 0$	$\frac{1}{s^{n+1}}, n \in \mathbb{N}$ $s > 0$	s-a s>a	$s^2 + a^2$ $s > 0$	$s^2 + a^2$ $s > 0$	$s^2 - a^2$ $s > a $	$s^2 - a^2$ $s > a $

$e^{\lambda t}f(t), \lambda \in \mathbb{R}$	$t^n f(t), n \in \mathbb{N}$	f(t-a), a > 0	f(at), a > 0	$f^{(n)}(t), n \in \mathbb{N}$
$F(s-\lambda)$	$(-1)^n F^{(n)}(s)$	$e^{-as}F(s)$ (f nula em \mathbb{R}_{-})	$\frac{1}{a}F\left(\frac{s}{a}\right)$	$s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0)$
$s > s_f + \lambda$	$s > s_f$	$s > s_f$	$s > as_f$	$s > s_f, s_{f'}, \dots, s_{f^{(n-1)}}$