

★ 一、 卷积 + 池化的回顾

了解通道之前必须搞懂卷积和池化到底在干啥。

◆ 巻积 (Convolution)

- 提取特征(边缘、纹理、形状等)
- ・ 増加通道数 (特征维度)

✅ 怎么做:

- 使用一个小卷积核 (比如 3×3) 在图像上滑动
- 每次滑动都对局部区域计算"加权和"
- 卷积核就像是一个"特征提取器"

貸 举个例子:

原图像 (640×640×3)

↓经过一个 3×3 卷积 + BN + 激活函数

输出 (320×320×64): 尺寸减半, **通道数从 3 → 64**

● 池化 (Pooling)

√ 作用:

- · 降低特征图尺寸(减小计算量)
- **保留主要特征** (忽略细节)

类型	方式	
MaxPool	每个区域取最大值 (突出显著特征)	

类型	方式	
AvgPool	每个区域取平均值(平滑化)	

⑥ 举个例子:

输入特征图 (320×320×64)

↓经过 2×2 MaxPooling, stride=2

输出变为 (160×160×64): 尺寸减半, 通道数不变

◇ 问题:卷积为什么会让图像尺寸变小?因为下采样设置!

关键影响尺寸的三个因素:

参数	含义
Kernel size	卷积核大小(例如 3×3)
Stride	步长,卷积核每次滑动的距离
Padding	边缘填充,是否在输入图像周围补零

◇ 卷积输出尺寸公式 (2D 情况):

对输入尺寸为 H_in × W_in , 输出尺寸为:

```
H_out = [(H_in + 2P - K) / S] + 1
W_out = [(W_in + 2P - K) / S] + 1
```

其中:

• K = 卷积核大小 (如 3)

- S = 步长 (stride)
- P = Padding (填充)

Q 举例分析:

♦ 情况 1: Stride=1, Padding=0, Kernel=3

输入图像: 5×5卷积核大小: 3×3

步长: 1无填充

输出尺寸:

$$= [(5 + 0 - 3) / 1] + 1 = 3$$

✔ 输出变为 3×3 , 每边少了 2 个像素 (总共少 2, 因卷积核要"贴住中心")

• 输入图像: 5×5

• 填充: 每边补一圈0

• 输出尺寸:

$$= [(5 + 2 - 3) / 1] + 1 = 5$$

✔ 尺寸保持不变

所以只要 padding 设置得当 (P = (K - 1)/2) , stride=1 时尺寸是不会变化的!

• 输入图像: 6×6

• 输出尺寸:

= [(6 + 2 - 3) / 2] + 1 = (5/2)+1 = 3.5 → 向下取整 = 3

✔ 输出变为 3×3

也就是说:

Stride	Padding	尺寸变化
1	足够填充	尺寸不变
2	常规填充	尺寸减半!

✅ 回答你的问题:

"卷积为什么尺寸减半? stride=1 不应该只减一点点吗?"

答:

- ・ 如果 stride=1 且 padding 合理,尺寸不会减半
- 尺寸减半通常是因为用了 stride=2, 这是故意设计的, 为了"下采样", 即:

通过步长=2的卷积替代池化 (MaxPool) 来降低分辨率 + 增加语义层次

ôô YOLOv7 是怎么设置的?

在 YOLOv7 的结构中,通常卷积层配的是:

- kernel=3
- stride=2

- padding=1
- **⇒** 这是 **常见的下采样卷积设置**,它会让图像尺寸直接减半!

★ 小总结

场景	会不会改变尺寸?	说明
stride=1, padding=(k-1)/2	×不变	常见做法,保持尺寸
stride=1, no padding	≪ 变小	每层减少一点
stride=2, padding=1	≪ 减半	下采样,特意设计

◇ 二、什么是通道数 (Channel) ?

在卷积神经网络中,通道数可以理解为特征图的"深度"维度。

类比理解:

- 一张彩色图像是 640×640×3:
 - 。 3 个通道对应 **RGB** 三原色
- 在神经网络中, 经过卷积处理后图像变成了"多通道"形式:
 - 。比如 160×160×128 , 意思是:

• 高度: 160 • 宽度: 160

■ 通道数: 128 (也可以理解为 128 张不同的特征图)

★ 每个通道都学会检测不同的东西:

- 第一个通道可能"关注边缘"
- 第二个通道可能"检测纹理"
- 第十个通道可能"检测眼睛形状"

. . .

◊ 为什么通道数会随着层级增加?

这是深度 CNN 网络设计中的一个通用原则,背后逻辑非常重要:

层级	特征图大小	通道数	原因
浅层	大	少 (如 32)	捕捉简单的细节 (边缘、纹理)
中层	中	多 (如 128)	抽象出形状、局部结构
深层	小	更多 (如 512~1024)	高度抽象的语义 (比如:人脸、动物)

通道数增加的 3 个核心原因:

1. 空间信息减少了,需要用"深度"补回来

- 卷积 + 池化会让特征图"变小" (空间分辨率下降)
- 为了不丢信息,我们让每个位置保存更多维度的表示 → 增加通道

2. 抽象语义更复杂,表示能力要增强

- 深层网络提取的是"人脸"、"汽车"、"猫的耳朵"等高级语义
- 需要更多通道来表示更多维度的语义信息

3. 现代网络的设计经验

• 很多经典网络 (ResNet、VGG、YOLO) 都遵循:

"分辨率越小 → 通道越多"

MYOLOv7 中通道变化举例

层级	特征图尺寸	通道数
输入图像	640×640	3

层级	特征图尺寸	通道数
第一层 CBS	320×320	64
第二层 ELAN	160×160	128
第三层 ELAN	80×80	256
第四层 ELAN	40×40	512
第五层 ELAN	20×20	1024

你会发现:特征图越"小",通道越"多"。

★ 总结一句话:

通道数 = 模型对"信息维度"的表达能力。

随着网络层数加深,图像的空间分辨率减小,但语义表达需求增加,所以我们用更多通道数来"丰富表示"。

加三、通道可视化示意

我们来做一个小图示,用于帮助你"看见"什么是通道数增加。

≫ 通道直观理解图 (简化版):

```
| 输入图像 | 尺寸: 640×640×3 (R,G,B)
    ↓ 卷积(提取边缘、颜色等)
| - 边缘1 |
| - 纹理1 |
- 曲线检测
- ... 共64种特征
 ↓ 卷积 + 下采样
| 特征图-2 | 尺寸: 160×160×128
- 更深层次的图形特征
| 特征图-3 | 尺寸: 80×80×256
- 区域、局部形状、轮廓
| 特征图-4 | 尺寸: 40×40×512
| - 对象语义(例如"这像个眼睛")
| 特征图-5 | 尺寸: 20×20×1024
- 高层语义 (例如"这是个猫")
```

Q 每一层的"通道"就像是不同的滤镜:

通道1: 检测水平边缘通道2: 检测垂直边缘通道10: 检测圆形区域

• 通道50: 检测颜色块

• 通道100: 检测类似"猫脸"的结构

◇ 总结

概念	意义
卷积	提取局部特征,增强语义, 增加通道数
池化	缩小尺寸,保留主要信息, 保持通道数不变
通道	表示每个空间位置的特征维度, 越深表示能力越强

如果你想,我还可以做一张图展示"卷积+池化+通道可视化"的一整套流程图,像是一个从图像→特征→语义→检测结果的流水线。要不要? ☺