

REINFORCEMENT LEARNING

Lecture 5 : Deep Reinforcement Learning

Ibrahim Sammour

January | 2024

SARSA

- Short for (state, action, reward, state, action)
- SARSA is an on-policy algorithm, meaning it learns from the policy it is currently following.
- Suitable for scenarios where exploration is crucial, such as in online learning or when the environment is unknown.
- Performs policy updates during the learning process.

$$Q(s,a) = Q(s,a) + \alpha(r + \gamma Q(s',a') - Q(s,a))$$

Q-Learning

- Q-learning is an off-policy algorithm, meaning it learns the value of the optimal policy regardless of the policy being followed.
- Suitable for scenarios where it's essential to learn an optimal policy for later exploitation.

$$Q(s,a) = Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a') - Q(s,a)\right)$$

Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large problems

- Backgammon: 10^{20} states
- Computer Go: 10¹⁷⁰ states
- Helicopter: continuous state space

Value Function Approximation

- So far we have represented value function by a lookup table
 - Every state s has an entry V(s)
 - Every state-action pair s, a has an entry Q(s, a)
- Problem with large spaces:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
- Solution for large spaces:
 - Estimate value function with function approximation
 - $\hat{v}(s, w) \approx v_{\pi}(s)$
 - $\hat{q}(s, a, w) \approx q_{\pi}(s, a)$
 - Generalize from seen states to unseen states
 - Update parameter w using MC or TD learning

Types of Value Function Approximation

Types of Value Function Approximation

- There are many function approximators
 - Linear combinations of features
 - Neural network

Gradient Descent

- Let J(w) be a differentiable function of parameter vector w
- The gradient of J(w) with respect to w is as follows:

•
$$\nabla_{w}J(w) = \begin{bmatrix} \frac{\partial J(w)}{\partial w_{1}} \\ \vdots \\ \frac{\partial J(w)}{\partial w_{n}} \end{bmatrix}$$

- To minimize J(w)
 - We adjust w in direction of the gradient
 - $\Delta w = -\alpha \nabla_w J(w)$
 - where α is a step-size parameter

Value Function Approximation by Stochastic Gradient Descent

• Goal: find parameter vector w to minimize mean-squared error between approximate value function $\hat{v}(S, w)$ and true value function $v_{\pi}(S)$

•
$$J(w) = E_{\pi} \left[\left(v_{\pi}(S) - \hat{v}(S, w) \right)^2 \right]$$

- Gradient decent finds a minimum
- $\Delta w = -\alpha \nabla_w J(w)$
- $= 2\alpha E_{\pi} [(v_{\pi}(S) \hat{v}(S, w)) \nabla_{w} \hat{v}(S, w)]$
- Stochastic gradient descent samples the gradient
 - $\Delta w = \alpha (v_{\pi}(S) \hat{v}(S, w)) \nabla_w \hat{v}(S, w)$
- Expected update is equal to full gradient update

Feature Vectors

Represent state by a feature vector

•
$$x(S) = \begin{bmatrix} x_1(S) \\ \vdots \\ x_n(S) \end{bmatrix}$$

- For example
 - Distance of robot from landmarks

Linear Value Function Approximation

- Represent value function by a linear combination of features
 - $\hat{v}(S, w) = x(S)^T w$
- Objective function is quadratic in parameters w
 - $J(w) = E_{\pi}[(v_{\pi}(S) x(S)^{T}w)^{2}]$
- Stochastic gradient descent converges on global optimum
- Update rule is as follows:
 - $\nabla_{w} \hat{v}(s, w) = x(S)$
 - $\Delta w = -\alpha (v_{\pi}(S) \hat{v}(Sw))x(S)$
 - Update = learning rate * prediction error * feature value

Table Lookup Features

- Table lookup is a special case of linear value function approximation
- Using table lookup features

•
$$x^{table}(S) = \begin{bmatrix} l(S = s_1) \\ \vdots \\ l(S = s_n) \end{bmatrix}$$

Parameter vector w gives value of each individual state

•
$$\hat{v}(S, w) = \begin{bmatrix} l(S = S_1) \\ \vdots \\ l(S = S_n) \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix}$$

Incremental Prediction Algorithms

- Have assumed true value function $v_{\pi}(s)$ given by supervisor
- But in RL there is no supervisor, only rewards
- In practice, we substitute a target for $v_{\pi}(s)$
 - For MC, the target is the return $\bar{\mathbf{r}}_t$
 - $\Delta w = \alpha (\bar{\mathbf{r}}_t \hat{v}(s, w)) \nabla_w \hat{v}(s, w)$
 - For TD(0), the target is the TD target $r_t + \gamma \hat{v}(s_{t+1}, w)$
 - $\Delta w = \alpha (r_t + \gamma \hat{v}(s_{t+1}, w) \hat{v}(s, w)) \nabla_w \hat{v}(s, w)$

Monte-Carlo with Value Function Approximation

- Return G_t is an unbiased, noisy sample of true value $v_{\pi}(S_t)$
- Can therefore apply supervised learning to "training data"
 - $\langle S_1, G_1 \rangle, \langle S_2, G_2 \rangle, \cdots, \langle S_T, G_T \rangle$
- For example, using linear Monte-Carlo policy evaluation
 - $\Delta w = \alpha (G_t \hat{v}(S, w)) \nabla_w \hat{v}(S, w)$ = $\alpha (G_t - \hat{v}(S, w)) x(S_t)$
- When using non-linear value function approximation, Monte-Carlo evaluation converges to a local optimum

TD Learning with Value Function Approximation

- Policy Evaluation: Approximate policy evaluation, $\hat{q}(\cdot,\cdot,w) \approx q_{\pi}$
- Policy Improvement: ε -greedy policy improvement

Action-Value Function Approximation

- Approximate the action-value function
 - $\hat{q}(S,A,w) \approx q_{\pi}(S,A)$
- Minimize mean-squared error between approximate action-value function $\hat{q}(S,A,w)$ and true action-value function $q_{\pi}(S,A)$
 - $J(W) = E_{\pi} \left[\left(q_{\pi}(S, A) \hat{q}(S, A, q) \right)^{2} \right]$
- Use stochastic gradient descent to find a local minimum
 - $-\nabla_w J(w) = (q_{\pi}(S,A) \hat{q}(S,A,q))\nabla_w \hat{q}(S,A,q)$
 - $\Delta w = 2\alpha (q_{\pi}(S,A) \hat{q}(S,A,q)) \nabla_w \hat{q}(S,A,q)$

Linear Action-Value Function Approximation

Represent state and action by a feature vector

•
$$x(S,A) = \begin{bmatrix} x_1(S,A) \\ \vdots \\ x_n(S,A) \end{bmatrix}$$

- Represent action-value function by linear combination of features
 - $\hat{q}(S,A,w) = x(S,A)^T w$
- Stochastic gradient descent update

 - $\nabla_{w} \hat{q}(S, A, w) = x(S, A)$ $\Delta w = \alpha (q_{\pi}(S, A) \hat{q}(S, A, q)) x(S, A)$