MA453 Topologia Geral - Exercícios P3

Adair Neto

26 de junho de 2023

6. Exemplos de Topologias: Ordem, Métrica, Produto e Quociente

Exercício 6.2

Questão: Seja $(M_i, \tau_i)_{i \in I}$ uma família de espaços topológicos. Mostre que cada M_i é homeomorfo a um subespaço de M.

Resolução:

- 1. Construir subespaço de M e função de projeção.
 - Fixemos $z \in M$ e definamos

$$Y_i = \{ x \in M : x_i = z_i, \ \forall \ j \in I \setminus \{i\} \}$$

- Seja $p_i = \pi_i |_{Y_i}$. Note que $p_i(y) = y_i$ para todo $y \in Y_i$. Mostraremos que p_i é homeomorfismo entre Y_i e M_i .
- 2. Mostrar que p_i é injetora.
 - Sejam $x, y \in Y_i$. Para todo $j \in I \setminus \{i\}$, temos que $x_i = z_j = y_j$.
 - Caso $p_i(x) = p_i(y)$, temos que $x_i = y_i$. Portanto, x = y.
- 3. Mostrar que p_i é sobrejetora.
 - Seja $x_i \in M_i$. Tomando $y \in Y_i$, para todo $j \in I$ temos

$$y_j = \begin{cases} z_j, & j \neq i \\ x_i, & j = i \end{cases}$$

- Portanto, $x_i = y_i = p_i(y)$ e p_i é sobrejetora.
- 4. Mostrar que p_i é contínua.
 - Como p_i é restrição de função contínua, temos que p_i é contínua.
- 5. Mostrar que p_i é mapa aberto.
 - Seja U aberto de Y_i . Como Y_i é subespaço de M, existe aberto V de M tal que $U = V \cap Y_i$.
 - Da topologia produto, temos que existe $J \subset I$ finito tal que

$$V = \bigcap_{j \in J} \pi_j^{-1}(V_j), \quad V_j \text{ aberto em } M_j$$

· Assim,

$$p_i(\mathsf{V}\cap\mathsf{Y}_i) = \bigcap_{j\in\mathsf{J}} p_i(\pi_j^{-1}(\mathsf{V}_j)\cap\mathsf{Y}_i)$$

é aberto em M_i.

Exercício 6.7

Questão: Seja \mathbb{R}^{∞} o subconjunto de \mathbb{R}^{ω} consistindo de elementos $(x_1, x_2, ...)$ em que somente um número finito de x_i 's é diferente de zero. Determine o fecho de \mathbb{R}^{∞} na topologia produto e na topologia das caixas.

Resolução:

- 1. Topologia produto.
 - Observe que um aberto de \mathbb{R}^{ω} é da forma

$$U = U_1 \times \cdots \cup U_n \times \mathbb{R} \times \mathbb{R} \times \cdots$$

em que cada U_i é aberto em \mathbb{R} .

- Seja $x \in \mathbb{R}^{\omega}$ e U um aberto (como acima) em volta de x.
- Se y é da forma $y = (x_1, x_2, ..., x_n, 0, 0, ...)$, temos que $y \in U$ e $y \in \mathbb{R}^{\infty}$.
- Isso mostra que \mathbb{R}^{∞} é denso em \mathbb{R}^{ω} . Ou seja, $\overline{\mathbb{R}^{\infty}} = \mathbb{R}^{\omega}$.
- 2. Topologia das caixas.
 - Aqui, um aberto de \mathbb{R}^{ω} é da forma

$$V = V_1 \times \cdots \times V_k \times \cdots$$

em que cada V_i é aberto em \mathbb{R} .

- Tomemos $x \notin \mathbb{R}^{\infty}$, i.e., $x_n \neq 0$, para infinitos índices n.
- · Assim, se

$$V_i = \begin{cases} (x_i - |x_i|/2, \ x_i + |x_i|/2), & x_i \neq 0 \\ (-1, 1), & x_i = 0 \end{cases}$$

então $x \in V = \prod V_i$ e $V \cap \mathbb{R}^{\infty} = \emptyset$. • Logo, \mathbb{R}^{∞} é fechado na topologia das caixas.

Exercício 6.11

Questão: Prove que as projeções canônicas em \mathbb{R}^2 não são funções fechadas.

Resolução:

Considere

$$F = \{(x, y) \in \mathbb{R}^2 : y \ge 1/x\}$$

Então F é fechado, mas $\pi_1(F) = (0, \infty)$ é aberto.

Exercício 6.13

Questão: Mostre que um espaço é Hausdorff sse. a diagonal $\Delta = \{(x,x) : x \in X\}$ é fechada em $X \times X$.

- 1. (\Rightarrow) Seja $(x,y) \in \Delta^c$. Como X é Hausdorff, existem U e V abertos com $x \in U$ e $y \in V$ tais que $U \cap V = \emptyset$. Logo, $(x,y) \in U \times V \subset \Delta^c$.
- 2. (\Leftarrow) Seja $(x,y) \in \Delta^c$ (aberto, por hipótese). Então existe $U \times V$ aberto tais que $(x,y) \in U \times V \subset \Delta^c$. Assim, $x \in U$ e $y \in V$ com $U \cap V = \emptyset$. Logo, X é Hausdorff.

Exercício 6.14

Questão: Seja $(M_i, \tau_i)_{i \in \Lambda}$ uma família de espaços topológicos. Suponha que existe $\Delta \subset \Lambda$ não vazio tal que M_i é trivial para todo $i \in \Lambda \setminus \Delta$. Mostre que $\prod_{i \in \Lambda} M_i$ é homeomorfo a $\prod_{i \in \Lambda} M_i$.

Resolução:

Fixe $x_i \in M_i$ e defina

$$\varphi: \prod_{j\in\Delta} \mathbf{M}_j \longrightarrow \prod_{j\in\Lambda} \mathbf{M}_j$$
$$(z_j) \longmapsto (y_j)$$

em que

$$y_j = \begin{cases} z_j, & j \in \Delta \\ x_j, & j \in \Lambda \setminus \Delta \end{cases}$$

Note que φ e π são inversas.

Exercício 6.15

Questão: Assuma que, para todo $i \in I$ temos que $a_i < b_i$. Mostre que $\prod_{i \in I} [a_i, b_i]$ é homeomorfo a $[0, 1]^I$.

Resolução:

• Sabemos que todo intervalo fechado [a, b] é homeomorfo a [0, 1].

- Sejam A_i e B_i espaços topológicos tais que cada h_i : $A_i \longrightarrow B_i$ é homeomorfismo, para todo $i \in I$.
- Construímos

$$h: A = \prod_{i \in I} A_i \longrightarrow B = \prod_{i \in I} B_i$$

dado por $h((x_i)) = (h_i(x_i)).$

- Verificar que *h* é bijeção.
- Como $\pi_i^B \circ h = h_i \circ \pi_i^A$ é contínua, segue da propriedade universal do produto que h é contínua. Analogamente (invertendo A e B no diagrama), temos que h^{-1} é contínua.
- Logo, h é homeomorfismo e, com isso, temos que $\prod_{i \in I} [a_i, b_i]$ é homeomorfo a $\prod_{i \in I} [0, 1] = [0, 1]^I$.

Propriedade universal do produto: Para todo espaço topológico A e toda função $h: A \longrightarrow B$, temos que h é contínua sse. para cada $i \in I$ temos que a componente $\pi_i \circ h: A \longrightarrow B_i$ é contínua.

Figura 1: Propriedade universal do produto

Exercício 6.17

Questão: Seja X um espaço de Tychonoff. Mostre que, para cada $f \in \mathscr{C}_b(X)$ existe $\tilde{f} \in \mathscr{C}_b(\beta X)$ tal que $f = \tilde{f} \circ \varphi$.

Resolução:

- 1. Tomemos $a \in \beta X$. Podemos escrever $a = (a_{\varphi})_{\varphi \in \mathscr{C}_h(X)}$.
- 2. Defina $\tilde{f}(a) = a_f$. Vejamos que \tilde{f} estende f.
- 3. Seja $x \in X$. Então $\varphi(x) = (f(x))_{f \in \mathscr{C}_h(X)}$. Assim, $\tilde{f}(\varphi(x)) = f(x)$, como queríamos.
- 4. Note que \tilde{f} é contínua pois $\tilde{f} = \pi_f$.

Outra forma: De fato, basta considerar $\tilde{f} = \pi_f : \prod_{g \in \mathscr{C}_b(X)} I_g \longrightarrow I_f$. Então $f = \pi_f \circ \varphi$.

Exercício 6.21

Questão: Mostre que:

- 1. \mathbb{N} é aberto em $\beta \mathbb{N}$.
- 2. Cada $n \in \mathbb{N}$ é ponto isolado em $\beta \mathbb{N}$, i.e., $\{n\}$ é aberto em $\beta \mathbb{N}$.
- 3. Os únicos pontos isolados em $\beta \mathbb{N}$ são os pontos de \mathbb{N} .

Resolução:

1. \mathbb{N} é aberto em $\beta \mathbb{N}$.

Pelo exercício 34 da lista de funções contínuas, $\varphi(\mathbb{N})$ é aberto em $\beta\mathbb{N}$ sse. \mathbb{N} é localmente compacto. Como \mathbb{N} é localmente compacto, temos o resultado.

2. Cada $n \in \mathbb{N}$ é ponto isolado em $\beta \mathbb{N}$, i.e., $\{n\}$ é aberto em $\beta \mathbb{N}$.

- Sabemos que a inclusão $\iota: A \hookrightarrow B$ é um mapa aberto sse. A é aberto em B.
- Como \mathbb{N} é aberto em $\beta \mathbb{N}$, temos que $\iota : \mathbb{N} \hookrightarrow \beta \mathbb{N}$ é mapa aberto.
- Assim, visto que $\{n\}$ é aberto em \mathbb{N} , segue que $\{n\}$ é aberto em $\beta\mathbb{N}$.
- 3. Os únicos pontos isolados em $\beta \mathbb{N}$ são os pontos de \mathbb{N} .

Seja $s \in \beta \mathbb{N}$ e suponha $\{s\}$ aberto. Então,

$$\{s\} \cap \varphi(\mathbb{N}) \neq \emptyset \implies s \in \varphi(\mathbb{N})$$

pois se $s \in \overline{\varphi(\mathbb{N})}$, então $U_s \cap \varphi(\mathbb{N}) \neq \emptyset$ para toda vizinhança U_s de s.

Exercício 6.22

Questão: Seja M um espaço de Tychonoff e (N, φ) uma compactificação de M com a seguinte propriedade: dados um espaço de Hausdorff compacto H e uma função contínua $f: M \longrightarrow H$, existe uma única função contínua tal que $f: N \longrightarrow H$ tal que $f \circ \varphi = f$.

Mostre que existe homeomorfismo $\tilde{\varphi}: \beta M \longrightarrow N$.

Resolução:

- Seja $\iota_1: \mathbb{M} \longrightarrow \beta \mathbb{M}$ a inclusão. Como existe $f: \beta \mathbb{M} \longrightarrow \mathbb{N}$ extensão contínua de ι_1 .
- Considere também $\iota_2: \mathbb{M} \longrightarrow \beta \mathbb{M}$ inclusão. Então existe $g: \mathbb{N} \longrightarrow \beta \mathbb{M}$ extensão contínua de ι_2 .
- Note que $f \circ g : Y \longrightarrow Y \in g \circ f : \beta M \longrightarrow \beta M$ são contínuas e $f \circ g|_X = g \circ f|_X = \mathrm{id}_X$.
- Logo, como M é denso em β M, temos que f e g são bijeções contínuas, uma a inversa da outra.

Exercício 6.24

Questão: Seja (M, d) um espaço métrico e defina

$$\tilde{d}(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

Mostre que

- 1. As funções reais $f(t) = \frac{t}{1+t}$ definida em $[0, +\infty)$ e $g(t) = \frac{t}{1-t}$ definida em [0, 1) são crescentes.
- 2. \tilde{d} é uma métrica em M que define os mesmos abertos que d.

Resolução:

1. Funções crescentes.

Sejam x_0 < x_1 ∈ $[0, +\infty)$. Basta notar que

$$f'(t) = \frac{1}{(1+t)^2} > 0$$

implica que f é crescente.

- 2. Métricas equivalentes.
 - Note que $\tilde{d}(x,y) \le d(x,y)$.
 - Dado $a \in M$ e $\varepsilon > 0$, tome $\delta = \frac{\varepsilon}{1+\varepsilon}$. Então

$$\tilde{d}(x,a) < \delta \implies \frac{d(x,a)}{1+d(x,a)} < \frac{\varepsilon}{1+\varepsilon} \implies d(x,a) < \varepsilon \implies \mathsf{B}_{\tilde{d}}(x,a) \subset \mathsf{B}_{d}(x,a)$$

• Assim, temos que $B_d \subset B_{\tilde{d}}$ e $B_{\tilde{d}} \subset B_d$. Logo, as métricas são equivalentes.

Exercício 6.25

Questão: Mostre que para cada $p \ge 1$ a função

$$d_p(x,y) = \sqrt[p]{\sum_{i=1}^n |x_i - y_i|^p}$$

define uma métrica que induz a topologia usual de \mathbb{R}^n . Como são os elementos da base da topologia para n=2 e p=1.

Resolução:

Observe que, se d é a métrica euclidiana,

$$d(x,y) \le d_p(x,y) \le \sqrt[p]{n} d(x,y)$$

Assim, temos que

$$B_{d_n}(x,\varepsilon) \subset B_d(x,\varepsilon)$$
 e $B_d(x,\varepsilon/\sqrt[p]{n}) \subset B_{d_n}(x,\varepsilon)$

Portanto, a topologia induzida por d_p é a mesma topologia induzida por d. Logo, d_p induz a topologia usual.

Os elementos básicos para n = 2 e p = 1 são losangos.

Exercício 6.26

Questão: Seja (X, d) um espaço métrico. Mostre que a topologia induzida por d é a menor topologia que faz d ser uma função contínua.

Resolução:

- 1. Seja X' um espaço topológico sobre o mesmo conjunto X, mas com outra topologia. E suponha que $d: X' \times X' \longrightarrow \mathbb{R}$ é contínua.
- 2. Assim, para todo $x \in X'$, a função f(y) = d(x,y) é contínua.
- 3. Com isso, temos que as bolas em X' dadas por

$$B_r(x) = \{ y \in X' : f(y) = d(x,y) < r \}$$

são abertas em X'.

4. Como as bolas abertas formam uma base pra topologia de X, temos que todo aberto de X é aberto em X'. Portanto, a topologia em X' é mais fina que a topologia de X.

Exercício 6.27, 6.28, 6.29

Questão: Mostre que todo espaço métrico (M, d) é T₄.

Resolução:

- 1. Mostremos que M é T₁.
 - Sejam $x, y \in M$ e r = d(x, y).
 - Tomemos

$$U = B(x, r/3), V = (y, r/3)$$

- Então $x \in U$, $x \in V^c$, $y \in V$ e $y \in U^c$.
- 2. Mostremos que M é normal.
 - Definimos para A ⊂ M fechado

$$d(x, A) = \inf_{y \in A} d(x, y) = f(x)$$

- Temos que *f* é contínua.
 - De fato, para todo $a \in A$,

$$d(x,a) \le d(x,y) + d(y,a) \implies d(x,A) \le d(x,y) + d(y,A)$$

- Analogamente,

$$d(y, A) \le d(x, y) + d(x, A)$$

- Portanto,

$$|f(x)-f(y)| \le d(x,y)$$

- O que mostra a continuidade.
- Defina, para A, B ⊂ M fechados disjuntos

$$g(x) = \frac{d(x, A)}{d(x, B) + d(x, A)}$$

- Note que, se $A^c \cap B^c = \emptyset$, então A^c e B^c são fechados e, assim, A e B são abertos que separam A e B.
- Caso $A^c \cap B^c \neq \emptyset$, observe que

$$d(x, B) + d(x, A) = 0 \implies d(x, B) = 0$$
 e $d(x, A) = 0$

- Assim, $x \in \text{ponto de aderência de A e B, o que implica que } x \in A \cap B = \emptyset$, o que é absurdo.
- Com isso, temos que g é contínua.
- Observe que $g(A) \subset \{0\}$ e $g(B) \subset \{1\}$.
- Tomando $U = g^{-1}(-\infty, 1/3)$ e $V = g^{-1}(2/3, +\infty)$, temos que $A \subset U$, $B \subset V$ e $U \cap V = \emptyset$.

Exercício 6.30

Questão: Seja

$$\rho(x,y) = \sup_{n \in \mathbb{N}} \min\{|x_n - y_n|, 1\}, \quad x = (x_n), y = (y_n)$$

a métrica uniforme em \mathbb{R}^{ω} . Dado $x=(x_1,x_2,\ldots)\in\mathbb{R}^{\omega}$ e $0<\varepsilon<1$, considere

$$U(x,\varepsilon) = \prod (x_i - \varepsilon, x_i + \varepsilon)$$

- 1. Mostre que $U(x, \varepsilon) \neq B_{\rho}(x, \varepsilon)$.
- 2. Mostre que $U(x, \varepsilon)$ não é aberto na topologia uniforme.
- 3. Mostre que

$$B_{\rho}(x,\varepsilon) = \bigcup_{\delta < \varepsilon} U(x,\delta)$$

Resolução:

- 1. $U(x, \varepsilon) \neq B_o(x, \varepsilon)$.
 - Temos que que $U(x,\varepsilon) \subset B_{\rho}(x,\varepsilon)$, mas não o contrário. Considere, por exemplo, o ponto $x' = \left(x_n + \varepsilon \frac{\varepsilon}{n}\right)_{n \in \mathbb{N}}$.
 - De fato,

$$\rho(x,x') = \sup_{n \in \mathbb{N}} \min \left\{ \left| x_n - x_n + \varepsilon - \frac{\varepsilon}{n} \right|, \ 1 \right\} = \sup_{n \in \mathbb{N}} \left| \varepsilon \left(1 - \frac{1}{n} \right) \right| = \varepsilon$$

Por outro lado,

$$\left|x_n-x_n+\varepsilon-\frac{\varepsilon}{n}\right|=\varepsilon\left(1-\frac{1}{n}\right)<\varepsilon\implies x_n+\varepsilon\left(1-\frac{1}{n}\right)\in(x_n-\varepsilon,\;x_n+\varepsilon)$$

- Logo, $x' \in U(x, \varepsilon)$, mas $x' \notin B_{\rho}(x, \varepsilon)$.
- 2. Mostre que $U(x, \varepsilon)$ não é aberto na topologia uniforme.
 - Vamos mostrar que não existe nenhuma bola aberta $B_o(x', \delta)$ contida em $U(x, \varepsilon)$.
 - Note que não importa quão pequeno seja $\delta > 0$, temos que $B_{\rho}(x', \delta) \setminus U(x, \varepsilon) \neq \emptyset$. Isso porque $x'_k + \delta/2 > x_k + \varepsilon$ para k suficientemente grande.
- 3. Mostre que

$$B_{\rho}(x,\varepsilon) = \bigcup_{\delta < \varepsilon} U(x,\delta)$$

- Tome $y \in B_{\rho}(x, \varepsilon)$.
- Então $\rho(x,x') = \delta < \varepsilon$ e $|x_n y_n| \le \delta < \frac{\delta + \varepsilon}{2} < \varepsilon$ para todo $n \in \mathbb{N}$. Portanto, $y \in \mathrm{U}\left(x,\frac{\delta + \varepsilon}{2}\right)$. Por outro lado, se $y \in \mathrm{B}_{\rho}(x,\varepsilon)$, então $y \in \mathrm{U}(x,\delta)$ para algum $\delta \in (0,\varepsilon)$. Portanto, $|x_n y_n| < \delta$ para todo $n \in \mathbb{N}$. Assim,

$$\rho(x,y) = \sup_{n \in \mathbb{N}} |x_n - y_n| \le \delta < \varepsilon \implies y \in B_{\rho}(x,\varepsilon)$$

Exercício 6.37

Questão: Sejam (M, d) espaço métrico e $A \subset M$ um conjunto fechado. Mostre que toda função contínua $f : A \longrightarrow \mathbb{R}^n$ pode ser estendida a M $\longrightarrow \mathbb{R}^n$. Veja que, em geral, não vale se A é aberto: encontre uma função contínua $f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$ que não possa ser estendida.

Resolução:

- Seja $\pi_i : \mathbb{R}^n \longrightarrow \mathbb{R}$ a projeção na i-ésima coordenada. Como todo espaço métrico é normal, pelo Teorema de Extensão de Tietze, temos que $f_i := \pi_i \circ f$ pode ser extendida de M para \mathbb{R} .
- Assim, se \tilde{f}_i é a extensão de f_i , temos que a extensão \tilde{f} de f é dada por $(\tilde{f}_1, \dots, \tilde{f}_n)$.
- Contra-exemplo: Considere f(x) = 1/x.

Exercício 6.40

Questão: Mostre que o produto enumerável de espaços metrizáveis é metrizável.

Resolução:

1. Tomar métricas limitadas.

Sejam M_1, M_2, \ldots espaços metrizáveis. Como toda métrica é equivalente a uma métrica limitada, seja d_i uma métrica sobre M_i limitada por 1 que induz a topologia de M_i .

2. Definir métrica d em $M := \prod_{i=1}^{\infty} M_i$:

$$d(x,y) = \sum_{i=1}^{\infty} \frac{d_i(x_i, y_i)}{2^i}$$

em que $x = (x_1, x_2,...)$ e $y = (y_1, y_2,...)$.

3. Verificar que *d* induz a topologia produto em M.

Um aberto básico U na topologia produto restringe apenas uma quantidade finita de coordenadas e assim pode ser escrita como

$$U = B_{d_1}(x_1, \varepsilon_1) \times B_{d_2}(x_2, \varepsilon_2) \times \cdots \times B_{d_n}(x_n, \varepsilon_n) \times \prod_{k \ge n+1} M_k$$

Tome ε tal que

$$\varepsilon = \min\left(\frac{\varepsilon_1}{2}, \frac{\varepsilon_2}{2^2}, \dots, \frac{\varepsilon_n}{2^n}\right)$$

Assim, se $d(x,y) < \varepsilon$, então $d_i(x_i,y_i) < \varepsilon_i$ para todo $i=1,2,\ldots,n$. Ou seja, $B_d(x,\varepsilon) \subset U$.

Por outro lado, dado $\varepsilon > 0$, escolha N suficientemente grande tal que

$$\sum_{i=N+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2}$$

Então,

$$B_{d_1}\left(x_1, \frac{\varepsilon}{2N}\right) \times B_{d_2}\left(x_2, \frac{\varepsilon}{2N}\right) \times \cdots \times B_{d_n}\left(x_n, \frac{\varepsilon}{2N}\right) \times \prod_{k \ge n+1} M_k \subset B_d(x, \varepsilon)$$

Logo, a métrica d induz a topologia produto em M.

Exercício 6.41

Questão: Sejam X e Y dois conjuntos ordenados na topologia da ordem. Mostre que se um mapa $f: X \longrightarrow Y$ é sobrejetor e preserva a ordem, então é um homeomorfismo.

Resolução:

- Observe que como f preserva a ordem, então f é injetora. E como f é sobrejetora por hipótese, existe inversa g: Y → X.
- Como f preserva a ordem e é bijetora, g também preserva a ordem.
- Chamemos de $L_a = \{x \in X : x <_X a\}$ e $R_a = \{x \in X : a <_X x\}$ os abertos básicos da topologia da ordem.
- Como a ordem é preservada por f, temos que $f^{-1}[L_a] = L_{g(a)}$. De fato,

$$x \in f^{-1}[\mathcal{L}_a] \iff f(x) <_{\mathcal{Y}} a \iff x = g(f(x)) <_{\mathcal{X}} g(a) \iff x \in \mathcal{L}_{g(a)}$$

• Analogamente, $f^{-1}[R_a] = R_{g(a)}$. Portanto, f ser uma bijeção que preserva a ordem implica que f é contínua. Como o mesmo é válido para g, temos que f é homeomorfismo.

Exercício 6.44

Questão: Sejam (M, τ) e (N, τ') dois espaços topológicos e $\pi: M \longrightarrow N$ uma aplicação contínua. Mostre que

- 1. Se existe uma função contínua $\sigma: \mathbb{N} \longrightarrow \mathbb{M}$ tal que $\pi \circ \sigma(x) = x$ para todo $x \in \mathbb{N}$, então π é aplicação quociente.
- 2. Se π é aplicação quociente, então π é aberta (fechada) sse. $\pi^{-1}(\pi(U))$ é aberto (fechado) em M para cada U aberto (fechado).

Resolução:

- 1. Note que π tem inversa à direita e, assim, é sobrejetora.
- 2. 1. (\Leftarrow) Como U é aberto e π é aberta, então $\pi(U)$ é aberto. Como π é contínua, $\pi^{-1}(\pi(U))$ é aberto.
 - 2. (\Rightarrow) Se $\pi^{-1}(\pi(U))$ é aberto em M, então, por definição da topologia quociente, $\pi(U)$ é aberto. Ou seja, π é mapa aberto.

Lembrar que $\tau_{\pi} = \{G \subset \mathbb{N} : \pi^{-1}(G) \text{ é aberto em M}\}.$

Exercício 6.45

Questão: Seja X = [0,1] com a topologia induzida de \mathbb{R} , $Y = \{0,1\}$ e $\pi : X \longrightarrow Y$ a função característica em A = [1/2,1]. Mostre que

- 1. A topologia quociente em Y é $\tau_{\pi} = \{\emptyset, Y, \{0\}\}$ (espaço de Sierpinski).
- 2. π não é aberta nem fechada.

Resolução:

- 1. A topologia quociente em Y é $\tau_{\pi} = \{\emptyset, Y, \{0\}\}$ (espaço de Sierpinski).
 - Definimos $x \sim y$ sse. $\pi(x) = \pi(y)$.
 - Então $\tau_{\pi} = \{G \subset Y : \pi^{-1}(G) \text{ \'e aberto em } X\} = \{\emptyset, Y, \{0\}\}.$
- 2. π não é aberta nem fechada.
 - Se $(a,b) \subset [1/2,1]$, então $\pi(a,b) = \{1\}$.
 - Se $[a,b] \subseteq [0,1/2]$, então $\pi[a,b] = \{0\}$.
 - Logo, π não é aberta nem fechada.

7. Sequências, Redes e Filtros

Exercício 1

Questão: Mostre que

- 1. Se uma rede $(x_{\lambda})_{{\lambda} \in {\Lambda}}$ converge a x, então qualquer subrede também converge a x.
- 2. Se x é ponto de acumulação de uma subrede de $(x_{\lambda})_{\lambda \in \Lambda}$, então x é ponto de acumulação de $(x_{\lambda})_{\lambda \in \Lambda}$.

Resolução:

1. Suponha que $x_{\lambda} \to x$, i.e., para todo $U \in \mathcal{U}_{x}$, existe $\lambda_{0} \in \Lambda$ tal que $\lambda \ge \lambda_{0} \implies x_{\lambda} \in U$.

Assim, se $(x_{\varphi(\theta)})_{\theta \in \Theta}$ é subrede de $(x_{\lambda})_{\lambda \in \Lambda}$, para todo $\lambda \in \Lambda$ existe $\theta_0 \in \Theta$ tal que $\varphi(\theta_0) \ge \lambda$.

Ou seja, $\theta \ge \theta_0 \implies x_{\varphi(\theta)} \in U$.

2. Seja x ponto de acumulação de $(x_{\varphi(\theta)})_{\theta \in \Theta}$ e lembre que x é ponto de acumulação de uma rede sse. existe subrede convergindo para x.

Como x é ponto de acumulação de $(x_{\varphi(\theta)})_{\theta \in \Theta}$, existe subrede de $(x_{\varphi(\theta)})_{\theta \in \Theta}$ que converge para x. Mas uma subrede de $(x_{\varphi(\theta)})_{\theta \in \Theta}$ é subrede de $(x_{\lambda})_{\lambda \in \Lambda}$. Logo, x é ponto de acumulação de $(x_{\lambda})_{\lambda \in \Lambda}$.

Exercício 9

Questão: Seja $(x_{\lambda})_{\lambda \in \Lambda}$ uma rede de M e $\mathcal{B} = \{B_{\lambda} : \lambda \in \Lambda\}$ para $B_{\lambda} = \{x_{\mu} : \lambda \leq \mu\}$. Mostre que

- 1. $x_{\lambda} \to x$ sse. $\mathscr{B} \to x$.
- 2. x é ponto de acumulação de $(x_{\lambda})_{\lambda \in \Lambda}$ sse. x é ponto de acumulação de \mathcal{B} .
- 3. $(x_{\lambda})_{{\lambda} \in {\Lambda}}$ é rede universal sse. o filtro gerado por ${\mathcal B}$ é um ultrafiltro.

Resolução:

- 1. $x_{\lambda} \to x$ sse. $\mathscr{B} \to x$.
 - 1. (\Rightarrow) Suponha que $x_{\lambda} \to x$, i.e., para todo $U \in \mathcal{U}_{x}$, existe $\lambda_{0} \in \Lambda$ tal que $\lambda_{0} \leq \lambda \Longrightarrow x_{\lambda} \in U$. Seja $U \in \mathcal{U}_{x}$ e λ_{0} como acima. Tome $B_{\lambda_{0}} \in \mathcal{B}$, $B_{\lambda_{0}} = \{x_{\lambda} : \lambda_{0} \leq \lambda\}$. Assim, $B_{\lambda_{0}} \subset U$.
 - 2. (\Leftarrow) Suponha que $\mathscr{B} \to x$, i.e., para todo $U \in \mathscr{U}_X$ existe $B \in \mathscr{B}$ tal que $B \subset U$. Ou seja, existe $B_{\lambda_0} = \{x_{\lambda} : \lambda_0 \le \lambda\} \subset U$. Isto \acute{e} , existe $\lambda_0 \in \Lambda$ tal que $\lambda_0 \le \lambda \Longrightarrow x_{\lambda} \in U$.
- 2. x é ponto de acumulação de $(x_{\lambda})_{{\lambda} \in {\Lambda}}$ sse. x é ponto de acumulação de ${\mathcal{B}}$.
 - 1. (\Rightarrow) Suponha que x é ponto de acumulação de (x_{λ}) , i.e., dados $U \in \mathcal{U}_{x}$ e $\lambda_{0} \in \Lambda$, existe $\lambda \geq \lambda_{0}$ tal que $x_{\lambda} \in U$. Dado $B_{\lambda_{0}} \in \mathcal{B}$, $B_{\lambda_{0}} = \{x_{\lambda} : \lambda_{0} \leq \lambda\}$, sabemos que existe $\lambda \geq \lambda_{0}$ tal que $x_{\lambda} \in U$. Ou seja, $U \cap B_{\lambda_{0}} \neq \emptyset$.
 - 2. (\Leftarrow) Suponha que x \acute{e} ponto de acumulação de \mathscr{B} , i.e., dados $U \in \mathscr{U}_{x}$ e $B \in \mathscr{B}$, temos que $U \cap B \neq \emptyset$. Assim, dado $\lambda_{0} \in \Lambda$, temos que $B_{\lambda_{0}} \in \mathscr{B}$ e $U \cap B_{\lambda_{0}} \neq \emptyset$. Como $B_{\lambda_{0}} = \{x_{\lambda} : \lambda_{0} \leq \lambda\}$, existe $\lambda \in \Lambda$ tal que $x_{\lambda} \in U$.
- 3. $(x_{\lambda})_{{\lambda} \in {\Lambda}}$ é rede universal sse. o filtro gerado por ${\mathcal B}$ é um ultrafiltro.
 - 1. (\Rightarrow) Seja (x_{λ}) rede universal, i.e., para todo A \subset M, existe $\lambda_0 \in \Lambda$ tal que

$$\{x_{\lambda}: \lambda \geq \lambda_0\} \subset A$$
 ou $\{x_{\lambda}: \lambda \geq \lambda_0\} \subset A^c$

Assim, dado $A \subset M$, temos que $B_{\lambda_0} \subset A$ ou $B_{\lambda_0} \subset A^c$. Pela definição de filtros, $A \in \mathcal{B}$ ou $A^c \in \mathcal{B}$. Logo, \mathcal{B} é ultrafiltro.

2. (\Leftarrow) Suponha que \mathscr{B} é ultrafiltro, i.e., para todo $A \subset M$, temos que $A \in \mathscr{B}$ ou $A^c \in \mathscr{B}$. Ou seja, $A = B_{\lambda_0}$ ou $A^c = B_{\lambda_0}$. Isto é, existe $\lambda_0 \in \Lambda$ tal que $\{x_\lambda : \lambda \ge \lambda_0\} \subset A$ ou $\{x_\lambda : \lambda \ge \lambda_0\} \subset A^c$.

Exercício 15

Questão: Seja $X = \prod X_i$. Mostre que $x_n \to x$ em X sse. $\pi_i(x_n) \to \pi_i(x)$ em X_i para todo i.

Resolução:

(⇒) Suponha que $x_n \to x$ e que U é vizinhança de $\pi_i(x)$, j fixo. Defina

$$B_i = \begin{cases} U, & i = j \\ X_i, & i \neq j \end{cases}$$

Note que $B = \prod B_i$ é vizinhança de x em X.

Como a sequência (x_n) converge para x, existe $N \in \mathbb{N}$ tal que $x_n \in B$ para todo n > N.

Assim, $\pi_i(x_n) \in B_i$ para todo i. Particularmente, $\pi_i(x_n) \in B_i = U$.

Logo, $\pi_i(x_n) \in \pi_i(x)$ para todo j.

(⇐) Suponha que $\pi_i(x_n) \to \pi_i(x)$ para todo i. E seja U uma vizinhança de x em X. Então existe um elemento básico $B = \prod U_i$ de X em que $x \in B$ e $B \subset U$.

Como X é a topologia produto, cada U_i é aberto, mas apenas um número finito deles é diferente de X_i . Seja $J \subset I$ finito tal que $U_i = X_i$ para todo $i \in I \setminus J$.

Dado $j \in J$, temos que $\pi_j(x) \in U_j$. Portanto, U_j é uma vizinhança de $\pi_j(x)$. Assim, como $(\pi_j(x_n))$ converge, existe $N_j \in \mathbb{N}$ tal que $\pi_j(x_n) \in U_j$ para todo $n > N_j$.

Seja N = $\max_{i \in J} N_i$ (o que existe porque J é finito). Considere qualquer n > N e $i \in I$.

- Se $i \in J$, então $n > N > N_i$, então $\pi_i(x_n) \in U_i$.
- Se $i \notin J$, então $\pi_i(x_n) \in X_i = U_i$.
- Em ambos os casos, $\pi_i(x_n) \in U_i$.

Ou seja, $x_n \in \prod U_i = B$. Portanto, como $B \subset U$, temos que $x_n \in U$. Logo $x_n \to x$.

Exercício 16

Questão: Seja $X = \mathbb{R}^{\mathbb{R}}$ e

$$\mathscr{F} = \{ \gamma_A : A \subset \mathbb{R}, A \text{ finito} \} \subset X$$

Considere a métrica $\bar{d}(x,y) = \inf\{1, d(x,y)\}$. Mostre que

- 1. $f_n \to f$ em X sse. $f_n(x) \to f(x)$ em \mathbb{R} para cada $x \in \mathbb{R}$.
- 2. $\chi_{\mathbb{R}} \in \overline{\mathscr{F}}$.
- 3. Não existe nenhuma sequência $(\chi_{A_n})_{n\in\mathbb{N}}\subset \mathscr{F}$ tal que $\chi_{A_n}\to \chi_{\mathbb{R}}$.

Resolução:

- 1. $f_n \to f$ em X sse. $f_n(x) \to f(x)$ em \mathbb{R} para cada $x \in \mathbb{R}$.
 - (⇒) Suponha que $f_n \to f$ em X. Então $\pi_t(f_n) \to \pi_t(f)$ para todo $t \in \mathbb{R}$, i.e., $f_n(t) \to f(t)$.
 - (⇐) Seja um aberto em X tal que $f \in U$. Da definição da topologia produto, existem $t_1, ..., t_k$ e $\varepsilon > 0$ tais que

$$f \in \bigcap_{i=1}^{k} \pi_{t_i}^{-1}(f(t_i) - \varepsilon, f(t_i) + \varepsilon) \subset U$$

Note que para cada $i=1,\ldots,k$, existe $n_i\in\mathbb{N}$ tal que $n\geq n_i \Longrightarrow |f_n(t_i)-f(t_i)|<\varepsilon$. Tome $n_0=\max_i n_i$. Assim, $n\geq n_0\Longrightarrow f_n(t_i)\in (f(t_i)-\varepsilon,f(t_i)+\varepsilon)$ para todo i. Então

$$f_n \in \bigcap_{i=1}^k \pi_{t_i}^{-1}(f(t_i) - \varepsilon, f(t_i) + \varepsilon) \subset U$$

Como U é arbitrário, temos que $f_n \rightarrow f$.

2. $\chi_{\mathbb{R}} \in \overline{\mathscr{F}}$.

Seja U um aberto de X tal que $\chi_{\mathbb{R}} \in U$. Da topologia produto temos que existem t_1, \dots, t_k e $\delta > 0$ tais que

$$f \in \bigcap_{i=1}^k \pi_{t_i}^{-1}(1-\delta, 1+\delta) \subset U$$

Se A = $\{t_1, \ldots, t_k\}$, então

$$\chi_{\mathbf{A}} \in \bigcap_{i=1}^{k} \pi_{t_i}^{-1}(1-\delta, 1+\delta) \subset \mathbf{U}$$

3. Não existe nenhuma sequência $(\chi_{A_n})_{n\in\mathbb{N}}\subset \mathscr{F}$ tal que $\chi_{A_n}\to \chi_{\mathbb{R}}$.

Como $A = \bigcup_n A_n$ é enumerável, existe $t_0 \in \mathbb{R} \setminus A$. Portanto, $\chi_{A_n}(t_0) = 0$ para todo n. Logo, $\chi_{A_n}(t_0) \not\to 1$ e $\chi_{A_n} \not\to \chi_A$. Observe que se X satisfaz o primeiro axioma de enumerabilidade, tomando uma base enumerável $\mathscr{B} = \{U_n : n \in \mathbb{N}\}$ e definindo $V_n = \bigcap_{j=1}^n U_j$, podemos encontrar $\chi_{A_n} \in V_n \cap \mathscr{F}$. Assim, podemos construir uma sequência $(\chi_{A_n})_{n \in \mathbb{N}}$ tal que $\chi_{A_n} \to \chi_{\mathbb{R}}$.