Теорема

Всякая сходящаяся последовательность ограничена.

Доказательство

Допустим, имеем сходящуюся последовательность $\{x_n\}$ с пределом $\lim_{n\to\infty} \{x_n\} = a$. Докажем, что она будет ограниченной. По определению предела последовательности:

$$\lim_{n\to\infty} \{x_n\} = a \Leftrightarrow \forall \varepsilon > 0 \ \exists N = N(\varepsilon) : \ \forall n > N \ |x_n - a| < \varepsilon$$

Возьмем $\varepsilon = 1$ и найдем соответствующий номер N:

$$\lim_{n \to \infty} \{x_n\} = a \Leftrightarrow \exists N : \forall n > N |x_n - a| < 1$$

Модуль суммы не превосходит суммы модулей, поэтому при всех n > N выполняется:

$$|x_n| < 1 + |a|$$

Очевидно, что $|x_n|$ не превосходит $c = \max(1 + |a|, |x_1|, |x_2|, \dots |x_{n-1}|)$

Это значит, что последовательность ограничена