### STAT 401: R example for sum of squares

### Zepu Zhang November 4, 2010

I found a US crime dataset on the internet (likely similar to one of the datasets mentioned in the textbook). Description is attached.

```
> data <- read.table('USCrime.txt', header = TRUE)</pre>
> print(names(data))
 [1] "R"
           "Age" "S"
                       "Ed" "Ex0" "Ex1" "LF" "M" "N" "NW" "U1" "U2"
           "X"
[13] "W"
> # 'R' is the reponse (crime rate)
> # Since we know some predictors are highly correlated,
> # and we don't deal with that problem now,
> # we'll focus on the following predictors:
> # Age: number of male aged 14--24 per 1000 population
> # Ed: mean # of years of schooling
> # Ex0: per capita expenditure on police by government
          state population
> # U1: unemployment rate of urban males
          median family goods
> # W:
>
> y <- data$R
> X <- as.matrix(data[, c('Age', 'Ed', 'Ex0', 'N', 'U1', 'W')])</pre>
> X <- cbind(1, X)
                    # Add the constant predictor.
> colnames(X)[1] <- 'Const'</pre>
> n \leftarrow length(y)
> p <- ncol(X)
> alpha <- .05
> ##### BLOCK 1 #####
> # Take a look at the data.
> pdf(file = 'part9.scm.pdf', width = 8, height = 8)
> pairs(cbind(y, X[, -1]))
> dev.off()
null device
```



```
> 
> 
> print(sstotal <- sum(y * y))
[1] 453823.4
> print(syy <- sstotal.corrected <- sum((y - mean(y))^2))
[1] 68809.28
>  # Does the assignment and printing on one line, to be lazy.
>  # 'print' applies on 'syy'.
>  # Compare sst and syy!
>
```

```
> ##### BLOCK 2 #####
> # Let's fit a model with the intercept only.
> z \leftarrow lm.fit(x = X[, 'Const', drop = FALSE], y = y)
      # Selecting a single row or col will return a simple vector
      # by default; use 'drop = FALSE' will keep it a matrix.
      # 'drop' means dropping the dimension info.
> print(coef(z))
   Const
90.50851
> # We know this estimate should equal the mean.
> # Does it?
> print(mean(y))
[1] 90.50851
> # Calc SSR and SSE.
> print(ssr.Const <- sum(fitted(z) ^2))</pre>
                                          # SSR
[1] 385014.2
> print(sse.Const <- sum(residuals(z) ^2)) # SSE.
[1] 68809.28
      # This should equal syy. Does it?
> print(syy)
[1] 68809.28
> print(ssr.Const + sse.Const)
[1] 453823.4
      # This should equal sstotal. Does it?
> print(sstotal)
[1] 453823.4
> # Let's test the significance of this 'pure-intercept' model.
> print((ssr.Const / 1) / (sse.Const / (n - 1)))
[1] 257.3875
> print(qf(1 - alpha, 1, n - 1))
[1] 4.051749
      # Is the test statistic greater than the critical value?
      # Is it surprising to you that the intercept is significant?
>
> ##### BLOCK 3 #####
> # Let's add predictor 'Age'.
```

```
> z \leftarrow lm.fit(x = X[, c('Const', 'Age')], y = y)
> print(coef(z))
      Const
                    Age
128.6645573 -0.2753469
> # Calc SSR and SSE.
> print(ssr.ConstAge <- sum(fitted(z) ^2)) # SSR</pre>
[1] 385565
> print(sse.ConstAge <- sum(residuals(z) ^2)) # SSE.
[1] 68258.44
> print(ssr.ConstAge + sse.ConstAge)
[1] 453823.4
      # This should equal sstotal. Does it?
> print(sstotal)
[1] 453823.4
> # Let's test the significance of the coef for 'Age'.
> print(((ssr.ConstAge - ssr.Const)/ 1) / (sse.ConstAge / (n - 2)))
[1] 0.3631461
> print(qf(1 - alpha, 1, n - 2))
[1] 4.056612
      # Is the test statistic greater than the critical value?
> # Turns out to be insignificant.
> # Compare the sse's:
> print(sse.Const)
[1] 68809.28
> print(sse.ConstAge)
[1] 68258.44
      # The decrease is indeed small.
> # ssr.ConstAge - ssr.Const should be equal to
> # sse.Const - sse.ConstAge.
> # Is it?
> print(ssr.ConstAge - ssr.Const)
[1] 550.8396
> print(sse.Const - sse.ConstAge)
[1] 550.8396
      # Both are SSR(Age | Const)
>
> # Out of curiosity,
> # is the extra SS of 'Age' the same as the SSR of 'Age' alone?
> z \leftarrow lm.fit(x = X[, 'Age', drop = FALSE], y = y)
> print(ssr.Age <- sum(fitted(z) ^ 2))</pre>
```

```
[1] 379351.5
> # Compare the above with SSR(Age | Const).
> # The SSR of 'Age' alone is much larger than its extra contribution
> # on top of 'Const'.
> # Now, adding 'Age' on top of 'Const' is not significant.
> # Does 'Age' alone makes a significant model?
> sse.Age <- sum(residuals(z) ^ 2)</pre>
> print( (ssr.Age / 1) / (sse.Age / (n - 1)) )
[1] 234.3188
> print(qf(1 - alpha, 1, n - 1))
[1] 4.051749
      # Is the test statistic greater than the critical value?
>
> ##### BLOCK 4 #####
> # Does 'Const' and 'Age' as a group make a significant model?
> # The answer must be 'yes', given the preceding results.
> # But let's do a test anyway.
> # The things we need are already computed.
> print( (ssr.ConstAge / 2) / (sse.ConstAge / (n - 2)) )
[1] 127.0936
> print(qf(1 - alpha, 2, n - 2))
[1] 3.204317
>
> ##### BLOCK 5 #####
> # Keeping 'Const' and 'Age' in the model,
> # let's add 'Ed' and 'Ex0' at once.
> z \leftarrow lm.fit(x = X[, c('Const', 'Age', 'Ed', 'ExO')], y = y)
> print(coef(z))
       Const
                      Age
                                     Ed
                                                 Ex0
-221.0878571
                1.2300299
                             0.4737244
                                           1.0717904
> ssr.CAEE <- sum(fitted(z) ^ 2)
> sse.CAEE <- sum(residuals(z) ^ 2)
> print(ssr.CAEE + sse.CAEE) # This should be equal to 'sstotal'.
[1] 453823.4
> print(sstotal)
[1] 453823.4
```

```
> # Let's test the group.
> print( ((ssr.CAEE - ssr.ConstAge) / 2) / (sse.CAEE / (n - 4)) )
[1] 28.65531
> print(qf(1 - alpha, 2, n - 4))
[1] 3.214480
>
```

## The Data and Story Library



**DASL** (pronounced "dazzle") is an online library of <u>datafiles</u> and <u>stories</u> that illustrate the use of basic statistics methods. We hope to provide data from a wide variety of topics so that statistics teachers can find real-world examples that will be interesting to their students. Use DASL's powerful search engine to locate the story or datafile of interest.



# Overview

Teachers use examples to illustrate statistics concepts. A good example can make a lesson on a particular statistics method vivid and relevant. DASL is designed to help teachers locate and identify datafiles for teaching. We hope that DASL will also serve as an archive for datasets from the statistics literature.

The archive contains two types of files, stories and datafiles. Each story applies a particular statistical method to a set of data. Each datafile has one or more associated stories. The data can be downloaded as a space- or tab-delimited table of text, easily read by most statistics programs.

Stories are classified according to statistical methods and major topics of interest. Power search through DASL's stories and datafiles in five different ways.

- 1. **Title Search:** Searches through all of the story titles.
- 2. **Method Search:** Statistical methods such as regression or ANOVA.
- 3. **Topic Search:** Topics such as psychology or health.
- 4. **Datafile Subject Search:** Data subjects such as finance or astronomy.
- 5. **Full-text Search:** Searches through all of the stories and datafiles.

The first four specialized searches are slightly faster than the full-text search. Use these searches if you know what you want. The full-text search is helpful if you're interested in something more general (e.g., Fisher). Help Search provides information on using the search engines and provides a few examples.

# $\mathbf{F}_{ ext{inal Comments \& Thanks}}$

DASL is part of larger effort to enhance the teaching of statistics using computers. A related project, the <u>Electronic Encyclopedia of Statistical Exercises and Examples</u> (EESEE), offers a self-study application. Another wonderful location to visit is the <u>Chance Database</u>. Chance also provides a link to several other Statistics Related internet sources such as the American Statistical Association, International Association for Statistical Computing and more.

The hard disk storage space for DASL is generously provided by StatLib.

Thank you for visiting DASL. Please send <u>us your comments and suggestions.</u>

Main Menu | Power Search
List all topics | List all methods | List all datafile subjects
DASL Help | Submit your story | Copyright

© 1996 The Data and Story Library



**Story Name:** 

**US** Crime

**Story Topics:** 

Social science

**Datafile Name:** 

**US** Crime

**Methods:** 

Collinearity, Correlation, Causation, Lurking variable, Regression

#### **Abstract:**

These data are crime-related and demographic statistics for 47 US states in 1960. The data were collected from the FBI's *Uniform Crime Report* and other government agencies to determine how the dependent variable crime rate (R) depends on the other variables measured in the study.

We encounter many problems analyzing these data by regression because some predictor variables are highly correlated. For example, Ex0 and Ex1, which measure police expenditures in consecutive years, have a correlation of .99. Wealth (W) and income inequality (X) are also highly correlated, as are U1 and U2, which measure unemployment in two different age groups. When predictor variables are highly correlated, the model is said to be nearly collinear. The result is that our estimated coefficients are unstable; removing one variable from the model may cause the results for the other variables to change dramatically.

In addition, the causal relationship between Ex0 (expenditures in 1960) and crime rate is unclear. Do increased expenditures affect the crime rate, or does the crime rate motivate an increase in expenditures?

In one possible analysis, predictors are removed from the model until only the 5% significant predictors Age, Ed, U2, X, and Ex0 remain. The results of this model are in Figure 1. This model demonstrates that it is important to look at the direction of the coefficients. From these coefficients, it appears that more education and police expenditures increase the crime rate. Perhaps there is another variable, a "lurking variable" not collected with these data, which causes both education and crime rate to increase together.

This data set is a good example of what can go wrong in a regression analysis.

#### **Image:**

Results for a possible model for these data

Dependent variable is: R
No Selector
48 total cases of which 1 is missing
R squared = 73.0% R squared (adjusted) = 69.7%
s = 21.30 with 47 - 6 = 41 degrees of freedom

| Source     | Sum of Squares | df | Mean Square | F-ratio |
|------------|----------------|----|-------------|---------|
| Regression | 50205.6        | 5  | 10041.1     | 22.1    |
| Residual   | 18603.6        | 41 | 453.747     |         |

| Variable  | Coefficient | s.e. of Coeff | t-ratio | prob          |
|-----------|-------------|---------------|---------|---------------|
| Constant  | -524.374    | 95.12         | -5.51   | ≤ 0.0001      |
| Age<br>Ed | 1.01982     | 0.3532        | 2.89    | 0.0062        |
| Eď        | 2.03077     | 0.4742        | 4.28    | 0.0001        |
| U2        | 0.913608    | 0.4341        | 2.10    | 0.0415        |
| Χ         | 0.634926    | 0.1468        | 4.32    | $\leq 0.0001$ |
| Ex0       | 1.23312     | 0.1416        | 8.71    | $\leq 0.0001$ |



#### **Datafile Name:**

US Crime

#### **Datafile Subjects:**

Social science

#### **Story Names:**

**US** Crime

#### Reference:

Vandaele, W. (1978) Participation in illegitimate activities: Erlich revisited. In *Deterrence and incapacitation*, Blumstein, A., Cohen, J. and Nagin, D., eds., Washington, D.C.: National Academy of Sciences, 270-335. Methods: A Primer, New York: Chapman & Hall, 11. Also found in: Hand, D.J., et al. (1994) A Handbook of *Small Data Sets*, London: Chapman & Hall, 101-103.

#### **Authorization:**

Contact author

#### **Description:**

These data are crime-related and demographic statistics for 47 US states in 1960. The data were collected from the FBI's *Uniform Crime Report* and other government agencies to determine how the variable crime rate depends on the other variables measured in the study.

#### **Number of cases:**

47

#### Variable Names:

- 1. R: Crime rate: # of offenses reported to police per million population
- 2. Age: The number of males of age 14-24 per 1000 population
- 3. S: Indicator variable for Southern states (0 = No, 1 = Yes)
- 4. Ed: Mean # of years of schooling x 10 for persons of age 25 or older
- 5. Ex0: 1960 per capita expenditure on police by state and local government
- 6. Ex1: 1959 per capita expenditure on police by state and local government
- 7. LF: Labor force participation rate per 1000 civilian urban males age 14-24
- 8. M: The number of males per 1000 females
- 9. N: State population size in hundred thousands
- 10. NW: The number of non-whites per 1000 population
- 11. U1: Unemployment rate of urban males per 1000 of age 14-24
- 12. U2: Unemployment rate of urban males per 1000 of age 35-39
- 13. W: Median value of transferable goods and assets or family income in tens of \$
- 14. X: The number of families per 1000 earning below 1/2 the median income

#### The Data:

| R     | Age | S | Ed  | Ex0 | Ex1 | LF  | М    | N   | NW  | U1  | U2 | W   | Χ   |
|-------|-----|---|-----|-----|-----|-----|------|-----|-----|-----|----|-----|-----|
| 79.1  | 151 | 1 | 91  | 58  | 56  | 510 | 950  | 33  | 301 | 108 | 41 | 394 | 261 |
| 163.5 | 143 | 0 | 113 | 103 | 95  | 583 | 1012 | 13  | 102 | 96  | 36 | 557 | 194 |
| 57.8  | 142 | 1 | 89  | 45  | 44  | 533 | 969  | 18  | 219 | 94  | 33 | 318 | 250 |
| 196.9 | 136 | 0 | 121 | 149 | 141 | 577 | 994  | 157 | 80  | 102 | 39 | 673 | 167 |

| 123.4 | 141 | 0 | 121 | 109 | 101 | 591 | 985  | 18  | 30  | 91  | 20 | 578 | 174 |
|-------|-----|---|-----|-----|-----|-----|------|-----|-----|-----|----|-----|-----|
| 68.2  | 121 | Θ | 110 | 118 | 115 | 547 | 964  | 25  | 44  | 84  | 29 | 689 | 126 |
| 96.3  | 127 | 1 | 111 | 82  | 79  | 519 | 982  | 4   | 139 | 97  | 38 | 620 | 168 |
| 155.5 | 131 | 1 | 109 | 115 | 109 | 542 | 969  | 50  | 179 | 79  | 35 | 472 | 206 |
| 85.6  | 157 | 1 | 90  | 65  | 62  | 553 | 955  | 39  | 286 | 81  | 28 | 421 | 239 |
| 70.5  | 140 | 0 | 118 | 71  | 68  | 632 | 1029 | 7   | 15  | 100 | 24 | 526 | 174 |
| 167.4 | 124 | Θ | 105 | 121 | 116 | 580 | 966  | 101 | 106 | 77  | 35 | 657 | 170 |
| 84.9  | 134 | Θ | 108 | 75  | 71  | 595 | 972  | 47  | 59  | 83  | 31 | 580 | 172 |
| 51.1  | 128 | 0 | 113 | 67  | 60  | 624 | 972  | 28  | 10  | 77  | 25 | 507 | 206 |
| 66.4  | 135 | Θ | 117 | 62  | 61  | 595 | 986  | 22  | 46  | 77  | 27 | 529 | 190 |
| 79.8  | 152 | 1 | 87  | 57  | 53  | 530 | 986  | 30  | 72  | 92  | 43 | 405 | 264 |
| 94.6  | 142 | 1 | 88  | 81  | 77  | 497 | 956  | 33  | 321 | 116 | 47 | 427 | 247 |
| 53.9  | 143 | 0 | 110 | 66  | 63  | 537 | 977  | 10  | 6   | 114 | 35 | 487 | 166 |
| 92.9  | 135 | 1 | 104 | 123 | 115 | 537 | 978  | 31  | 170 | 89  | 34 | 631 | 165 |
| 75.0  | 130 | 0 | 116 | 128 | 128 | 536 | 934  | 51  | 24  | 78  | 34 | 627 | 135 |
| 122.5 | 125 | 0 | 108 | 113 | 105 | 567 | 985  | 78  | 94  | 130 | 58 | 626 | 166 |
| 74.2  | 126 | 0 | 108 | 74  | 67  | 602 | 984  | 34  | 12  | 102 | 33 | 557 | 195 |
| 43.9  | 157 | 1 | 89  | 47  | 44  | 512 | 962  | 22  | 423 | 97  | 34 | 288 | 276 |
| 121.6 | 132 | 0 | 96  | 87  | 83  | 564 | 953  | 43  | 92  | 83  | 32 | 513 | 227 |
| 96.8  | 131 | 0 | 116 | 78  | 73  | 574 | 1038 | 7   | 36  | 142 | 42 | 540 | 176 |
| 52.3  | 130 | 0 | 116 | 63  | 57  | 641 | 984  | 14  | 26  | 70  | 21 | 486 | 196 |
| 199.3 | 131 | 0 | 121 | 160 | 143 | 631 | 1071 | 3   | 77  | 102 | 41 | 674 | 152 |
| 34.2  | 135 | 0 | 109 | 69  | 71  | 540 | 965  | 6   | 4   | 80  | 22 | 564 | 139 |
| 121.6 | 152 | 0 | 112 | 82  | 76  | 571 | 1018 | 10  | 79  | 103 | 28 | 537 | 215 |
| 104.3 | 119 | 0 | 107 | 166 | 157 | 521 | 938  | 168 | 89  | 92  | 36 | 637 | 154 |
| 69.6  | 166 | 1 | 89  | 58  | 54  | 521 | 973  | 46  | 254 | 72  | 26 | 396 | 237 |
| 37.3  | 140 | 0 | 93  | 55  | 54  | 535 | 1045 | 6   | 20  | 135 | 40 | 453 | 200 |
| 75.4  | 125 | 0 | 109 | 90  | 81  | 586 | 964  | 97  | 82  | 105 | 43 | 617 | 163 |
| 107.2 | 147 | 1 | 104 | 63  | 64  | 560 | 972  | 23  | 95  | 76  | 24 | 462 | 233 |
| 92.3  | 126 | 0 | 118 | 97  | 97  | 542 | 990  | 18  | 21  | 102 | 35 | 589 | 166 |
| 65.3  | 123 | 0 | 102 | 97  | 87  | 526 | 948  | 113 | 76  | 124 | 50 | 572 | 158 |
| 127.2 | 150 | Θ | 100 | 109 | 98  | 531 | 964  | 9   | 24  | 87  | 38 | 559 | 153 |
| 83.1  | 177 | 1 | 87  | 58  | 56  | 638 | 974  | 24  | 349 | 76  | 28 | 382 | 254 |
| 56.6  | 133 | 0 | 104 | 51  | 47  | 599 | 1024 | 7   | 40  | 99  | 27 | 425 | 225 |
| 82.6  | 149 | 1 | 88  | 61  | 54  | 515 | 953  | 36  | 165 | 86  | 35 | 395 | 251 |
| 115.1 | 145 | 1 | 104 | 82  | 74  | 560 | 981  | 96  | 126 | 88  | 31 | 488 | 228 |
| 88.0  | 148 | 0 | 122 | 72  | 66  | 601 | 998  | 9   | 19  | 84  | 20 | 590 | 144 |
| 54.2  | 141 | 0 | 109 | 56  | 54  | 523 | 968  | 4   | 2   | 107 | 37 | 489 | 170 |
| 82.3  | 162 | 1 | 99  | 75  | 70  | 522 | 996  | 40  | 208 | 73  | 27 | 496 | 224 |
| 103.0 | 136 | Θ | 121 | 95  | 96  | 574 | 1012 | 29  | 36  | 111 | 37 | 622 | 162 |
| 45.5  | 139 | 1 | 88  | 46  | 41  | 480 | 968  | 19  | 49  | 135 | 53 | 457 | 249 |
| 50.8  | 126 | Θ | 104 | 106 | 97  | 599 | 989  | 40  | 24  | 78  | 25 | 593 | 171 |
| 84.9  | 130 | 0 | 121 | 90  | 91  | 623 | 1049 | 3   | 22  | 113 | 40 | 588 | 160 |