EXEMPLOS - MODELOS DE ALTA FREQUÊNCIA

AMPLIFICADOR COM TRANSISTORE BIPOLAR

Exemplo 1) Determine os valores dos elementos do altas frequências para o circuito abaixo. Dados: $C_{\mu} = 4 \text{ pF}$; $f_T = 300 \text{ MHz}$

$$I_C = \frac{\frac{V_{CC} \times R_2}{R_1 + R_2} - V_{BE}}{R_E} = \frac{\frac{15 \times 11k}{64k + 11k} - 0.7}{750} = 2mA$$

b) Modelo π simplificado de altas frequências para o 2N3904 e I_C = 2 mA

Parâmetros H para o 2N3904 e $I_C = 2 \text{ mA}$

$$h_{ie} = 2 k\Omega$$
 - Impedância de Entrada

$$h_{fe} = 130$$
 - Ganho de Corrente Direto

$$h_{oe} = 13 \mu S$$
 - Admitância de Saída
 $h_{re} = 1.1 \times 10^{-4}$ - Ganho de Tensão Reverso

Transcondutância direta (g_m)

$$g_m \cong 39|I_C| = 39 \times 2 \times 10^{-3} = 78 \, mS$$

Resistência de entrada (r_{π})

$$r_{\pi} \cong \frac{h_{fe}}{g_m} = \frac{130}{78m} = 1666,67 \ \Omega$$

Resistência de espalhamento da base (r_x)

$$r_x = h_{ie} - r_\pi = 2000 - 1666,67 = 333,33 \ \Omega$$

Resistência de realimentação (r_{μ})

$$r_{\mu} >> r_{\pi};$$

$$r_{\mu} \cong \frac{r_{\pi}}{h_{re}} = \frac{1666,67}{1,1 \times 10^{-4}} = 15,2 \text{ M}\Omega$$

Resistência de saída (r_o)

$$r_o \cong \frac{1}{h_{oe} - g_m h_{re}} = \frac{1}{13 \times 10^{-6} - 78 \times 10^{-3} \times 1.1 \times 10^{-4}} = 226.2 \text{ k}\Omega$$

 C_{μ} = Capacitância entre a base e o coletor. Fornecida pelos fabricantes como C_c , C_{OB} ou outros símbolos. É medida para um determinado valor de V_{CB} , com $I_E = 0$

$$C_{\mu} = 4 \text{ pF para o } 2\text{N}3904$$

$$C_{\pi}$$
 = Capacitância entre a base e o emissor (capacitância de entrada)
$$C_{\pi} = \frac{g_m}{2\pi f_T} - C_{\mu} = \frac{0,078}{2 \times \pi \times 300 \times 10^6} - 4 \times 10^{-12} = 37,38 \text{ pF}$$

AMPLIFICADOR COM TRANSISTOR DE EFEITO DE CAMPO (FET/MOSFET)

Exemplo 2) Determine os valores dos elementos do modelo de altas frequências para o circuito abaixo.

a) Cálculo da Corrente ID

$$I_D = \frac{\frac{V_{DD} \times R_2}{R_1 + R_2} - V_{GS}}{R_S} = \frac{\frac{15 \times 75k}{300k + 75k} + 1,5}{1,13k} = 3,98 \text{ mA} \approx 4 \text{ mA}$$

b) Modelo π simplificado de altas frequências para o BF245B e I_D = 4 mA

Transcondutâcia direta

Pelas curvas de $|Y_{fs}|$ para o BF245B, com $I_D = 4$ mA, tem-se $g_m = |Y_{fs}| = 4,3$ mS;

Resistência interna de dreno (Resistência do canal de condução para um determinado valor de V_{GS}) $g_{os}=23~\mu S$ Obtido para f=10~MHz (Arbitrado) nas curvas de g_{os} $r_d=\frac{1}{g_{os}}=43478~\Omega$

Capacitâncias Porta-dreno (C_{gd})

Do gráfico de C_{rs} , para $V_{GS} = -1.5 V$, tem-se:

$$C_{rs} = C_{gd} = 1,1 \text{ pF}$$

Capacitâncias Porta-fonte (C_{gs})

$$C_{is} = C_{gd} + C_{gs}$$

Do gráfico de C_{is} , para $V_{GS} = -1.5 \text{ V}$, tem-se: $C_{is} = 3.7 \text{ pF}$

$$C_{gs} = C_{is} - C_{gd} = 3.7 \text{p} - 1.1 \text{p} = 2.6 \text{ pF}$$