Cinematiche Dirette Robot

Alfano Emanuele Badalamenti Filippo Vitti Gabriele

1 novembre 2019

Cartesiano

	$A_z(\theta,d)$		$A_x(\alpha,a)$		
R_1	0	q_1	$-\frac{\pi}{2}$	0	
R_2	$-\frac{\pi}{2}$	q_2	$-\frac{\pi}{2}$	0	
R_3	0	q_3	0	0	

$$\begin{pmatrix} 0 & 0 & 1 & q_3 \\ 0 & -1 & 0 & q_2 \\ 1 & 0 & 0 & q_1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

RRR Planare

$$\begin{pmatrix} -\left(\cos q_{1} \sin q_{2} \sin q_{3} + \sin q_{1} \cos q_{2} \sin q_{3} + \sin q_{1} \sin q_{2} \cos q_{3} - \cos q_{1} \cos q_{2} \cos q_{3}\right) & \sin q_{1} \sin q_{2} - \left(\sin q_{1} \sin q_{2} \sin q_{3} - \cos q_{1} \cos q_{2} \sin q_{3} - \cos q_{1} \sin q_{2} \cos q_{3} - \sin q_{1} \cos q_{2} \cos q_{3}\right) & -\left(\cos q_{1} \sin q_{2} \cos q_{3} - \sin q_{1} \cos q_{2} \cos q_{3}\right) - \left(\cos q_{1} \sin q_{2} \cos q_{3} - \cos q_{3} - \cos q_{3} \cos q_{3}\right) & -\left(\cos q_{1} \sin q_{2} \cos q_{3} - \cos q_{3} - \cos q_{3} \cos q_{3}\right) & -\left(\cos q_{1} \sin q_{2} \cos q_{3} - \cos q_{3} - \cos q_{3} \cos q_{3}\right) & -\left(\cos q_{1} \sin q_{3} - \cos q_{3} - \cos q_{3} \cos q_{3}\right) & -\left(\cos q_{1} \sin q_{3} - \cos q_{3} - \cos q_{3} - \cos q_{3} - \cos q_{3}\right) & -\left(\cos q_{1} \sin q_{3} - \cos q_{3} - \cos q_{3} - \cos q_{3}\right) & -\left(\cos q_{1} \sin q_{3} - \cos q_{3} - \cos q_{3} - \cos q_{3}\right) & -\left(\cos q_{1} \sin q_{3} - \cos q_{3} - \cos q_{3} - \cos q_{3}\right) & -\left(\cos q_{1} \sin q_{3} - \cos q_{3} - \cos q_{3} - \cos q_{3}\right) & -\left(\cos q_{1} \sin q_{3} - \cos q_{3} - \cos q_{3} - \cos q_{3}\right) & -\left(\cos q_{1} \sin q_{3} - \cos q_{3} - \cos q_{3}\right) & -\left(\cos q_{1} \sin q_{3} - \cos q_{3} - \cos q_{3}\right) & -\left(\cos q_{1} \sin q_{3} - \cos q_{3} - \cos q_{3}\right) & -\left(\cos q_{1} \sin q_{3} - \cos q_{3} - \cos q_{3}\right) & -\left(\cos q_{1} \sin q_{3} - \cos q_{3} - \cos q_{3}\right) & -\left(\cos q_{1} \sin q_{3} - \cos q_{3} - \cos q_{3}\right) & -\left(\cos q_{1} \sin q_{3} - \cos q_{3} - \cos q_{3}\right) & -\left(\cos q_{1} \sin q_{3}\right) & -\left(\cos q_{1} \sin q_{3} - \cos q_{3}\right) & -\left(\cos q_{1} \sin q_{3}\right) & -\left(\cos q_{1} \cos q_{3}\right) & -\left(\cos q_{1} \cos$$

 $\begin{pmatrix} \cos q_1 \cos q_2 & \sin q_1 & \cos q_1 \sin q_2 & \cos q_1 (\sin q_2 q_3 + D_2 \cos q_2) \\ \sin q_1 \cos q_2 & -\cos q_1 & \sin q_1 \sin q_2 & \sin q_1 (\sin q_2 q_3 + D_2 \cos q_2) \\ \sin q_2 & 0 & -\cos q_2 & -(\cos q_2 q_3 - D_2 \sin q_2 - L_1) \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Sferico di Stanford

	$A_z(\theta,d)$		$A_x(\alpha,a)$	
R_1	q_1	0	0	D_1
R_2	q_2	0	0	D_2
R_3	q_3	0	0	D_3

1	$\sin q$	$q_1 \cos q_1$	$\cos q_2$ co	$\cos q_1 \sin q_2$	$\cos q_1 \sin q_2 q_3 - L_2 \sin q_1 $	١
1	$-\cos$	$\sin q_1 - \sin q_1$	$\cos q_2$ si	$n q_1 \sin q_2$	$\sin q_1 \sin q_2 q_3 + L_2 \cos q_1$	١
l	0	- s	$\sin q_2$	$\cos q_2$	$\cos q_2 q_3 + L_1$	I
1	0		0	0	1	/

Antropomorfo

	$A_z(\theta,d)$		$A_x(\alpha,a)$	
R_1	q_1	0	0	D_1
R_2	q_2	0	0	D_2
R_3	q_3	0	0	D_3

 $\begin{pmatrix}
-\cos q_1 & (\sin q_2 \sin q_3 - \cos q_2 \cos q_3) & -\cos q_1 & (\cos q_2 \sin q_3 + \sin q_2 \cos q_3) & \sin q_1 & -\cos q_1 & (D_3 - \sin q_1 & (\sin q_2 \sin q_2 - \cos q_2 \cos q_2) & -\sin q_1 & (\cos q_2 \sin q_2 + \sin q_2 \cos q_2) & -\cos q_1 & -\sin q_1 & (D_3 - \sin q_1 & (D_3 - \cos q_2 \cos q_2)) & -\cos q_1 & -\sin q_1 & (D_3 - \cos q_2 \cos q_2) & -\cos q_1 & -\sin q_1 & (D_3 - \cos q_2 \cos q_2) & -\cos q_2 & \cos q_2
\end{pmatrix}$

Polso Sferico

	$A_z(\theta,d)$		$A_x(\alpha,a)$	
R_1	q_1	0	0	D_1
R_2	q_2	0	0	D_2
R_3	q_3	0	0	D_3

 $\begin{pmatrix} \cos_{q_4} \cos_{q_5} \cos_{q_6} - \sin_{q_4} \sin_{q_6} & -\cos_{q_4} \cos_{q_5} \sin_{q_6} - \sin_{q_4} \cos_{q_6} & \cos_{q_4} \sin_{q_5} & L_6 \cos_{q_4} \sin_{q_5} \\ \cos_{q_4} \sin_{q_6} + \sin_{q_4} \cos_{q_5} \cos_{q_6} & \cos_{q_4} \cos_{q_6} - \sin_{q_4} \cos_{q_5} \sin_{q_6} & \sin_{q_4} \sin_{q_5} \\ -\sin_{q_5} \cos_{q_6} & \sin_{q_5} \sin_{q_6} & \cos_{q_5} & L_6 \cos_{q_5} \\ 0 & 0 & 1 \end{pmatrix}$

Cartesiano con Polso

	$A_z(\theta,d)$		$A_x(\alpha,a)$	
R_1	q_1	0	0	D_1
R_2	q_2	0	0	D_2
R_3	q_3	0	0	D_3

$$\begin{pmatrix} -\sin q_5 \cos q_6 & \sin q_5 \sin q_6 & \cos q_5 \\ -(\cos q_4 \sin q_6 + \sin q_4 \cos q_5 \cos q_6) & \sin q_4 \cos q_5 \sin q_6 - \cos q_4 \cos q_6 & -\sin q_4 \sin q_5 \\ -(\sin q_4 \sin q_6 - \cos q_4 \cos q_5 \cos q_6) & -(\cos q_4 \cos q_5 \sin q_6 + \sin q_4 \cos q_6) & \cos q_4 \sin q_5 \\ 0 & 14 & 0 & 0 \end{pmatrix}$$

Cilindrico con Polso

	$A_z(\theta,d)$		$A_x(\alpha,a)$	
R_1	q_1	0	0	D_1
R_2	q_2	0	0	D_2
R_3	q_3	0	0	D_3

 $\begin{pmatrix}
-(\cos q_1 \sin q_4 \sin q_6 - \sin q_1 \sin q_5 \cos q_6 - \cos q_1 \cos q_4 \cos q_5 \cos q_6) & -(\sin q_1 \sin q_5 \sin q_6 + \cos q_6 - \sin q_1 \cos q_4 \cos q_5 \cos q_6) & -(\sin q_1 \sin q_5 \sin q_6 + \cos q_6 - \sin q_1 \cos q_4 \cos q_5 \cos q_6) & \cos q_1 \sin q_5 \sin q_6 - \sin q_1 - (\cos q_4 \sin q_6 + \sin q_4 \cos q_5 \cos q_6) & \sin q_4 \cos q_6 - \sin q_6 - \cos q_$

RRR Planare con Polso

	$A_z(\theta,d)$		$A_x(\alpha,a)$	
R_1	q_1	0	0	D_1
R_2	q_2	0	0	D_2
R_3	q_3	0	0	D_3

 $f\cos q_1 \sin q_2 \sin q_3 \sin q_4 \sin q_6 + \sin q_1 \cos q_2 \sin q_3 \sin q_4 \sin q_6 + \sin q_1 \sin q_2 \cos q_3 \sin q_4 \sin q_6 - \cos q_1 \sin q_2 \sin q_3 \sin q_4 \sin q_6 - \cos q_1 \cos q_2 \sin q_3 \sin q_4 \sin q_6 - \cos q_1 \sin q_2 \cos q_3 \sin q_4 \sin q_6 - \cos q_1 \sin q_4 \sin q_6 - \cos q_6 \cos q_6$

Sferico 1 con Polso

Sferico di Stanford con Polso

Antropomorfo con Polso

 $f\cos q_1 \sin q_2 \sin q_3 \sin q_4 \sin q_6 - \cos q_1 \cos q_2 \cos q_3 \sin q_4 \sin q_6 - \cos q_1 \cos q_2 \sin q_3 \cos q_4 \sin q_6 - \cos q_1 \sin q_3 \sin q_4 \sin q_6 - \sin q_1 \cos q_2 \cos q_3 \sin q_4 \sin q_6 - \sin q_1 \cos q_2 \sin q_3 \cos q_4 \sin q_6 - \sin q_1 \cos q_2 \sin q_3 \sin q_4 \sin q_6 + \sin q_2 \cos q_3 \sin q_4 \sin q_6 + \sin q_2 \sin q_4 \sin q_6 + \sin q_2 \sin q_4 \sin q_6 + \sin q$