Introducción al momento angular (rotaciones)

El operador \hat{L} será el encargado de realizar las rotaciones. Por el álgebra visto en la mecánica clásica sabemos que, dado un vector ${\bf v}$ y una matriz ortogonal R se tiene

$$\mathbf{v}' = R\mathbf{v}$$
 con $|\mathbf{v}'| = |\mathbf{v}|$

y

$$|\mathbf{v}|^2 = V^t V = (V^t R^t)(RV) \qquad \text{pues} \quad R^t R = RR^t = \mathbb{1}$$

puesto que es una matriz ortogonal. Luego se cumplen

clausura

el producto de dos matrices ortogonales es otra matriz ortogonal

asociatividad

Eidentidad

Einversa

1.0.1 No conmutatividad de las rotaciones clásicas

Las rotaciones finitas no conmutan. Luego, el grupo de las rotaciones será un grupo abeliano

$$R_{z}(\varphi) = ()$$

$$R_x(\varphi)=\big(\big)$$

Figura 0.1

$$R_{\boldsymbol{y}}(\varphi) = \big(\big)$$

Si reemplazamos $\cos(\epsilon) \approx 1 - \epsilon^2/2$ y $\sin(\epsilon) \approx \epsilon$ hasta orden dos. Se puede ver que las rotaciones, en torno a ejes diferentes, sólo conmutan a orden uno (ϵ) de manera que una rotación infinitesimal $d\varphi$ conmuta pero una rotación finita φ no lo hace.

1.1 Rotaciones cuánticas

Para las rotaciones cuánticas se pedirá

D,

rotación infinitesimal o bien

D,

para rotación finita. Donde \hat{D} es el operador de las rotaciones y \hat{J} es un momento angular general. Se postula de esta forma para que \hat{D} cumpla las mismas propiedades que R y la relación de conmutación

$$R_x R_y - R_y R_x = R_z(\epsilon^2) - \mathbb{1}$$

$$D$$

de modo que la cuenta lleva a

 J_x

la cual generalizando se llega a

$$[J_i,J_j]=i\hbar\epsilon_{ijk}J_k$$

que son las relaciones de conmutación generales para momento angular $\hat{J}.$ Para sistemas de spín 1/2 es

$$D(\hat{n}, \phi) \equiv e^{-i/\hbar \mathbf{S} \cdot \hat{n}}$$

Se puede ver que ante rotaciones cuánticas $D(\hat{n},\phi)$ los valores de expectación transforman como vectores

=

En general ${\bf J}=(J_x,J_y,J_z)$ se transforma como vector y entonces $\hat J$ es un operador vectorial. Para spín 1/2 es

$$|alpha\rangle =$$

D

D

Si $\phi = 2\pi$ (cosa que debiera dejar al ket incólume) se tiene

D

Luego, esto es una muestra del carácter no-clásico del spin; una vuelta completa le cambia el signo al ket pero notemos cuidadosamente que el valor de expectación – que es algo físico – no varía. Esto muestra que el ket no puede tener sentido físico.

1.1.1 Angulos de Euler

Se define una serie de rotaciones

123

lo cual equivale a

$$R() = e$$

Pero desconozco cómo operar en los ejes móviles z', y'

$$R_{y'}(\beta) =$$

$$R_{z'}(\gamma) =$$

$$R() =$$

Rotación equivalente a [1] pero para ejes fijos, puesto que en mecánica cuántica sabemos rotar en torno a ejes fijos.

Los ángulos de Euler son la caracterización de una rotación general en 3D. Entonces nuestra rotación en 3D cuántica será:

$$D() =$$

1.1.2 Autoestados y autovalores de J

Partimos de

[] =

y

$$J^2 = [J^2, J] = 0$$

siendo la última muy importante y probándose por evaluación directa. Lleva a

$$[J^2, J_i^n] = 0 \qquad \text{con } i = x, y, z \ n \in \mathbb{N}$$

Se eligen J^2, J_z como observables que conmutan

$$J^2$$

Definiremos los operadores de subida y de bajada

$$J_{\pm} \equiv J_x \pm J_y$$

que verifican

Entonces se tiene

$$J^2() \longrightarrow (J_z) \longrightarrow$$

$$J_{\pm}\left|a,b\right\rangle = C_{\pm}\left|a,b\pm\hbar\right\rangle$$

$$J_{\pm}$$

sube el J_z en una unidad de \hbar o bien baja el J_z en una unidad de $\hbar.$

$$\begin{split} J_{+}J_{-} &=, \\ J^{2} &=, \\ \left\langle a,b \left| J^{2} - J_{z}^{2} \right| a,b \right\rangle &= \\ \left(a-b^{2}\right) \left\langle a,b \left| a,b \right\rangle =, a \geq b^{2} \end{split}$$

hay cota para b. Como no puede seguir subiendo debe dar el ket nulo

$$= 0$$
 $= 0$

pero

$$\begin{split} J_-J_+\\ &=0 \qquad a=b_m(b_m-\hbar) \end{split}$$

tiene solución

$$b_M - B_m = -\hbar$$

pero esto es absurdo.

Luego,

$$|a,b_m\rangle \longrightarrow |a,b_M\rangle$$

y como J_+ sube de a un \hbar será

$$b_M = b_m + n\hbar$$

y entonces

$$b_M = \frac{n\hbar}{2} = \frac{n}{2}\hbar = j\hbar$$

y se da que j es entero o semientero.

Definiremos

$$b_M \equiv j\hbar \qquad a \equiv j(j+1)\hbar^2 \qquad -j\hbar \leq b \leq j\hbar$$

pero como $b/\hbar = m$

$$\begin{split} b_M \equiv j\hbar & a \equiv j(j+1)\hbar^2 & -j \leq m \leq j \\ m = (-j, -j+1, -j+2, ..., j-1, j) & 2j+1 \text{valores de } m \\ J^2 \left| j, m \right\rangle = j(j+1)\hbar^2 \left| j, m \right\rangle & J_z \left| j, m \right\rangle = m\hbar \left| j, m \right\rangle \end{split}$$

1.1.3 La normalización de J_+

$$\begin{split} J_{+} \\ \langle j,m \,|\, J_{-}J_{+} \,|\, j,m \rangle = \\ c_{+} = \\ \langle j,m \,|\, J_{+}J_{-} \,|\, j,m \rangle = \\ c_{-} = \\ J_{+} \end{split}$$

1.1.4 Elementos de matriz de J^2, J_z, J_+

Asumiendo normalización de $|j,m\rangle$ se tiene

$$\langle \rangle =$$

=

1.1.5 Elementos de matriz de $\mathcal{D}(R)$

Ahora queremos ver cual es la forma de los elementos de matriz de $\mathcal{D}(R)$

$$\mathcal{D}(R) =$$

siendo que $\mathcal{D}(R)$ tiene por efecto rotar el sistema físico. Lo primero que hay que notar es que

$$\propto \delta_{jj'}$$

porque $[J^2, J_i] = 0$ y entonces $[J^2, J_i^n] = 0$ y

D

y

D

es una matriz para cada jfijo con $\{(2j+1)\times(2j+1)=\text{dimensión}\}$

D

pero las rotaciones no cambian el $j,\,\mathcal{D}(R)$ conecta estados con la misma j y $\mathcal{D}(R)\in(2j+1)\times(2j+1)$

D

La matriz de $\mathcal{D}(R)$ (no caracterizada por un único j) puede ponerse en forma diagonal por bloques:

con cada bloque de $(2j+1)\times(2j+1)$, pero siendo cada bloque irreducible. Las matrices de rotación con j fijo forman un grupo. $\mathcal{D}_{m'm}^{(j)}(R)$ son los elementillos de la matriz.

$$|j,m\rangle \longrightarrow$$

1.1.6 Forma explícita del operador $\mathcal{D}(R)$

Los ángulos de Euler permitieron caracterizar la rotación más general. Entonces

D

D

En los $d_{m'm}^{(j)}$ está la dificultad de la cuenta.

1.2 Formalismo de spinores de Pauli

Apropiado para trabajar con sistemas de spín 1/2. Estos sistemas son casos particulares de momento angular,

$$j = 1/2$$
 $m = -\frac{1}{2}, +\frac{1}{2}$

y se definen los spinores χ_{\pm} como

$$|+\rangle \equiv \begin{pmatrix} 1 \\ 0 \end{pmatrix} \equiv \chi_{+} \qquad |-\rangle \equiv \begin{pmatrix} 0 \\ 1 \end{pmatrix} \equiv \chi_{-}$$
$$|\alpha\rangle = \begin{pmatrix} \langle + \mid \alpha \rangle \\ \langle - \mid \alpha \rangle \end{pmatrix}$$
$$\langle \alpha | = (\langle + \mid \alpha \rangle \quad \langle - \mid \alpha \rangle)$$

Para spín 1/2 podemos tomar $\mathbf{J}=\mathbf{S}$ por la analogía de las relaciones de conmutación. A su vez

$$\mathbf{S} = \frac{\hbar}{2} \vec{\sigma} \qquad \text{con} \qquad \vec{\sigma} \equiv \left(\ \boldsymbol{\sigma}_x, \boldsymbol{\sigma}_y, \boldsymbol{\sigma}_z \ \right)$$

que es una especie de vector

$$\vec{\sigma} = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{bmatrix}$$

Luego esta equivalencia provee expresión de los operadores S_i en términos de matrices de 2×2 , así:

$$\frac{i}{2}[J_--J_+]=J_y=S_y=\frac{\hbar}{2}\sigma_y$$

siendo que los J_y y S_y actúan sobre kets y el σ sobre spinores.

Las matrices de Pauli cumplen las propiedades básicas siguientes

$$\begin{split} \sigma_i^2 &= \mathbb{1} \qquad \sigma_i^\dagger = \sigma_i \\ [\sigma,\sigma_j] &= i2\varepsilon_{ijR}\sigma_R \qquad \{\sigma,\sigma_j\} = \delta_{ij} \\ \sigma_i^n &= \begin{cases} \mathbb{1} & n \text{ par} \\ \sigma_i & n \text{ impar} \end{cases} \\ |+\rangle &\equiv |j=1/2, m=1/2\rangle \qquad |-\rangle \equiv |j=1/2, m=-1/2\rangle \\ (\vec{\sigma} \cdot \mathbf{a})(\vec{\sigma} \cdot \mathbf{b}) &= (\mathbf{a} \cdot \mathbf{b}) + i\vec{\sigma} \cdot (\mathbf{a} \times \mathbf{b}) \end{split}$$

1.2.1 Aplicación a las rotaciones

$$\mathcal{D}(\hat{n}, \phi) = e^{-i\mathbf{J}\cdot\hat{n}\phi/\hbar} = e^{-i\vec{\sigma}\cdot\hat{n}\phi/2}$$

pero

$$\begin{split} (\vec{\sigma}\cdot\hat{n})^n &= \begin{cases} \vec{\sigma}\cdot\hat{n} & n \text{ impar} \\ \mathbbm{1} & n \text{ par} \end{cases} \\ \mathrm{e}^{-i\vec{\sigma}\cdot\hat{n}\phi/2} &= 1 - i\vec{\sigma}\cdot\hat{n}\,\frac{\phi}{2} - \frac{1}{2!}(\vec{\sigma}\cdot\hat{n})^2\left(\frac{\phi}{2}\right)^2 + \frac{i}{3!}(\vec{\sigma}\cdot\hat{n})^3\left(\frac{\phi}{2}\right)^3 - \dots \\ \mathcal{D}(\hat{n},\phi) &= \mathrm{e}^{-i\vec{\sigma}\cdot\hat{n}\phi/2} = \mathbbm{1}\cos\left(\frac{\phi}{2}\right) - i\vec{\sigma}\cdot\hat{n}\sin\left(\frac{\phi}{2}\right) \end{split}$$

es el operador de rotación para sistemas de spin 1/2 (donde $\mathbb{1}\in 2\times 2$). Con esta expresión podemos evaluar $d_{m'm}^{j=1/2}(\beta)$

$$d^{1/2}(\beta) = \begin{pmatrix} \cos(\beta/2) & -\sin(\beta/2) \\ \sin(\beta/2) & \cos(\beta/2) \end{pmatrix}$$

donde hemos usado los resultados

$$\cos(x) = \sum_{n=0}^{\infty} \frac{(x)^{2n+1}}{(2n+1)!} (-1)^n \qquad \sin(x) = \sum_{n=0}^{\infty} \frac{(x)^{2n}}{(2n)!} (-1)^n$$

En el caso general el operador de rotación para sistemas de spin 1/2 lucirá:

$$\begin{aligned} |+\rangle & |-\rangle \\ \mathcal{D}^{j=1/2}(\alpha,\beta,\gamma) &= \begin{pmatrix} \mathrm{e}^{-\frac{i}{2}(\alpha+\gamma)}\cos\left(\frac{\beta}{2}\right) & -\mathrm{e}^{-\frac{i}{2}(\alpha-\gamma)}\sin\left(\frac{\beta}{2}\right) \\ \mathrm{e}^{-\frac{i}{2}(\gamma-\alpha)}\sin\left(\frac{\beta}{2}\right) & \mathrm{e}^{\frac{i}{2}(\alpha+\gamma)}\cos\left(\frac{\beta}{2}\right) \\ \end{vmatrix} |-\rangle \end{aligned}$$

1.2.2 Ejemplo

$$d^{1/2}(\pi/2) = \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix}$$

de manera que

$$\begin{split} d^{1/2}(\pi/2)\chi_+ &= \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ d^{1/2}(\pi/2)\chi_+ &= \frac{\sqrt{2}}{2} (\chi_+ + \chi_-) = \frac{1}{2} \left(|+\rangle + |-\rangle \right) \\ d^{1/2}(\pi/2)\chi_+ &= |S_T; +\rangle \end{split}$$

Este resultado es intuitivamente lógico.

1.2.3 Rotaciones en sistemas con j = 1

Ahora tenemos

$$j = 1$$
 $m = -1, 0, 1$

recordando J_y en términos de escaleras

$$J_y = \frac{J_+ - J_i}{2i}$$

de modo que

$$\begin{split} |1 \ 1\rangle & |1 \ 0\rangle & |1 \ -1\rangle \\ J_y &= \frac{i\hbar}{\sqrt{2}} \left(\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{array} \right) \begin{vmatrix} 1 \ 1\rangle \\ |1 \ 0\rangle \\ |1 \ -1\rangle \\ \\ \mathrm{e}^{-i \frac{J_y}{\hbar} \beta} &= 1 + -\frac{J_y}{\hbar} \beta + (-i)^2 \left(\frac{J_y}{\hbar} \beta \right)^2 \frac{1}{2!} + (-i)^3 \left(\frac{J_y}{\hbar} \beta \right)^3 \frac{1}{3!} + \dots \end{split}$$

$$\begin{split} \mathrm{e}^{-i\frac{J_y}{\hbar}\beta} &= 1 - \frac{J_y}{\hbar}\beta - \frac{1}{2!} \left(\frac{J_y}{\hbar}\beta\right)^2 - \frac{i}{3!} \left(\frac{J_y}{\hbar}\beta\right)^3 + \dots \\ & \left(\frac{J_y}{\hbar}\right)^n = \begin{cases} \left(\frac{J_y}{\hbar}\right) & n \text{ impar} \\ \left(\frac{J_y}{\hbar}\right)^2 & n \text{ par} \end{cases} \\ \mathrm{e}^{-i\frac{J_y}{\hbar}\beta} &= 1 - \left(\frac{J_y}{\hbar}\right)^2 (1 - \cos(\beta)) - i \left(\frac{J_y}{\hbar}\right) \sin(\beta) = d^{j+1}(\beta) \end{split}$$

acá lo vemos como operador (es notación), $d_{m'm}^{j=1}(\beta)$ simboliza la matriz

$$d^{j=1}(\beta) = \begin{pmatrix} \frac{1}{2}(1+\cos(\beta)) & -\frac{1}{\sqrt{2}}\sin(\beta) & \frac{1}{2}(1-\cos(\beta)) \\ \frac{1}{\sqrt{2}}\sin(\beta) & \cos(\beta) & -\frac{1}{\sqrt{2}}\sin(\beta) \\ \frac{1}{2}(1-\cos(\beta)) & \frac{1}{\sqrt{2}}\sin(\beta) & \frac{1}{2}(1+\cos(\beta)) \end{pmatrix} \begin{vmatrix} 1 & 1 \rangle \\ |1 & 0 \rangle \\ |1 & -1 \rangle \end{vmatrix}$$

1.3 Momento angular orbital

L =

verifica el álgebra de J,

Consideremos ahora una rotación en torno a z, en un $\delta\phi$,

() =

() =

esto es una traslación en \hat{x}, \hat{y} ,

$$(1 - i\frac{L_z}{\hbar}\delta\phi) |x', y', z'\rangle = |\rangle$$

Esta traslación es debida a una rotación infinitesimal en $\delta\phi$ torno a z entonces genera las rotaciones clásicas en torno a z.

Ψ

Podemos hallar una expresión para ${\cal L}_z$ en esféricas:

$$\langle r, \theta, \varphi \parallel \alpha \rangle$$

identificamos

=

operador L_z en esféricas

Usando

$$L^{2} =$$

$$\langle L^{2} \rangle$$

$$L^{2} = -\hbar^{2} r^{2} \nabla_{\theta,\varphi}^{2}$$

donde $\nabla^2_{\theta,\varphi}$ es la parte angular del laplaciano en coordenadas esféricas. Esto puede obtenerse también partiendo de

$$L^2 = \mathbf{x}^2 \mathbf{p}^2 - (\mathbf{x} \cdot \mathbf{p})^2 + i\hbar \mathbf{x} \cdot \mathbf{p}$$

Sea un H de partícula, sin spín, sujeta a potencial simétricamente esférico. Sabemos que la función de onda $\Psi_{\alpha}(\mathbf{r}')$ es separable en coordenadas esféricas, entonces:

$$\langle \, | \, \rangle =$$

$$\langle \, | \, \rangle =$$

Cuando el H es esféricamente simétrico (como en un potencial central) se tiene

$$[] = [] = 0$$

Trabajaremos solamente en la parte angular $|\theta, \varphi\rangle \equiv |\hat{n}\rangle$

$$\langle \hat{n} | \ell, m \rangle =$$

que es la amplitud de hallar $|\ell,m\rangle$ en la dirección $\hat{n}.$

Podemos vincular ahora los armónicos esféricos con los autoestados de ${\cal L}_z, {\cal L}^2$

$$L_z$$

$$L^2$$

=

Entonces, con la ortogonalidad

y con la completitud

_

de manera que llegamos a

Podemos hallar una expresión para

$$= 0$$

 \Rightarrow

Luego usamos L_- para hallar sucesivamente los demás Y_ℓ^m

=

y por este camino se llega a

Y

con

En el caso de momento angular orbital ℓ no puede ser semientero porque entonces m sería semientero y en una vuelta de 2π

$$e^{i m 2\pi} = -1$$

Además,

(no hay signo menos)