Literature list Animal Movement Course SLU 4-8 September 2023

OUTDOOR PART

(There might be additional references in the presentations)

- Avgar T, Potts JR, Lewis MA, Boyce MS (2016) Integrated step selection analysis: bridging the gap between resource selection and animal movement. Methods in Ecology and Evolution 7:619–630. https://doi.org/10.1111/2041-210X.12528
- Beyer HL, Haydon DT, Morales JM, et al (2010) The interpretation of habitat preference metrics under use-availability designs. Philos Trans R Soc B Biol Sci 365:. https://doi.org/10.1098/rstb.2010.0083
- Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA (2002) Evaluating resource selection functions. Ecol Model Ecol Model 157:281–300. https://doi.org/10.1016/S0304-3800(02)00200-4
- Bunnefeld N, Börger L, van Moorter B, et al (2011) A model-driven approach to quantify migration patterns: individual, regional and yearly differences. Journal of Animal Ecology 80:466–476. https://doi.org/10.1111/j.1365-2656.2010.01776.x
- Burt WH (1943) Territoriality and Home Range Concepts as Applied to Mammals. Journal of Mammalogy 24:346–352. https://doi.org/10.2307/1374834
- Calabrese JM, Fleming CH, Gurarie E (2016) ctmm: an r package for analyzing animal relocation data as a continuous-time stochastic process. Methods in Ecology and Evolution 7:1124–1132. https://doi.org/10.1111/2041-210X.12559
- Carlo TA, García D, Martínez D, et al (2013) Where do seeds go when they go far? Distance and directionality of avian seed dispersal in heterogeneous landscapes. Ecology 94:301–307. https://doi.org/10.1890/12-0913.1
- Craighead FC, Craighead JJ (1972) Grizzly Bear Prehibernation and Denning Activities as Determined by Radiotracking. Wildlife Monographs 3–35
- Fieberg J, Signer J, Smith B, Avgar T (2021) A 'How to' guide for interpreting parameters in habitat-selection analyses. Journal of Animal Ecology 90:1027–1043. https://doi.org/10.1111/1365-2656.13441
- Forester JD, Im HK, Rathouz PJ (2009) Accounting for animal movement in estimation of resource selection functions: sampling and data analysis. Ecology 90:. https://doi.org/10.1890/08-0874.1
- Fortin D, Beyer H, Boyce M, et al (2005) Wolves influence elk movements: Behavior shapes a trophic cascade in Yellowstone National Park. ECOLOGY 86:1320–1330. https://doi.org/10.1890/04-0953
- Johnson CJ, Parker KL, Heard DC, Gillingham MP (2002) A multiscale behavioral approach to understanding the movements of woodland caribou. Ecological Applications 12:1840–1860
- Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 6:65–71
- Jonsen ID, Grecian WJ, Phillips L, et al (2023) aniMotum, an R package for animal movement data: Rapid quality control, behavioural estimation and simulation. Methods in Ecology and Evolution 14:806–816. https://doi.org/10.1111/2041-210X.14060
- López-Pérez AM, Foley J, Roy A, et al (2019) Subpopulation augmentation among habitat patches as a tool to manage an endangered Mojave Desert wetlands-dependent rodent during anthropogenic restricted water climate regimes. PLOS ONE 14:e0224246. https://doi.org/10.1371/journal.pone.0224246

- Marzluff JM, Millspaugh JJ, Hurvitz P, Handcock MS (2004) Relating resources to a probabilistic measure of space use: Forest fragments and Steller's Jays. Ecology 85:1411–1427
- Matthiopoulos J, Fieberg J, Aarts G, et al (2015) Establishing the link between habitat selection and animal population dynamics. Ecological Monographs 85:413–436. https://doi.org/10.1890/14-2244.1
- Moll RJ, McRoberts JT, Millspaugh JJ, et al (2021) A rare 300 kilometer dispersal by an adult male white-tailed deer. Ecology and Evolution 11:3685–3695. https://doi.org/10.1002/ece3.7354
- Morris LR, Proffitt KM, Blackburn JK (2016) Mapping resource selection functions in wildlife studies: Concerns and recommendations. Applied Geography 76:173–183. https://doi.org/10.1016/j.apgeog.2016.09.025
- Muff S, Signer J, Fieberg J (2020) Accounting for individual-specific variation in habitat-selection studies: Efficient estimation of mixed-effects models using Bayesian or frequentist computation. Journal of Animal Ecology 89:80–92. https://doi.org/10.1111/1365-2656.13087
- Nathan R, Getz WM, Revilla E, et al (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci U S A 105:. https://doi.org/10.1073/pnas.0800375105
- Niu M, Blackwell PG, Skarin A (2016) Modeling interdependent animal movement in continuous time. Biometrics. https://doi.org/10.1111/biom.12454
- Powell RA, Mitchell MS (2012) What is a home range? Journal of Mammalogy 93:948–958. https://doi.org/10.1644/11-MAMM-S-177.1
- Prokopenko CM, Boyce MS, Avgar T (2017) Characterizing wildlife behavioural responses to roads using integrated step selection analysis. Journal of Applied Ecology 54:470–479. https://doi.org/10.1111/1365-2664.12768
- Raposo EP, Viswanathan GandhimohanM, Stanley HE, da Luz MGE (eds) (2011) The Physics of Foraging: An Introduction to Random Searches and Biological Encounters. Cambridge University Press, Cambridge
- Rautiainen H, Alam M, Blackwell PG, Skarin A (2022) Identification of reindeer fine-scale foraging behaviour using tri-axial accelerometer data. Movement Ecology 10:40. https://doi.org/10.1186/s40462-022-00339-0
- Senft RL, Coughenour MB, Bailey DW, et al (1987) Large herbivore foraging and ecological hierarchies. BioScience 37:789–799
- Signer J, Fieberg J, Avgar T (2019) Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecology and Evolution 9:880–890. https://doi.org/10.1002/ece3.4823
- Skarin A, Åhman B (2014) Do human activity and infrastructure disturb domesticated reindeer? The need for the reindeer's perspective. Polar Biol 37:1041–1054. https://doi.org/10.1007/s00300-014-1499-5
- Skarin A, Danell O, Bergstrom R, Moen J (2008) Summer habitat preferences of GPS-collared reindeer Rangifer tarandus tarandus. Wildlife Biol 14:1–15
- Soberon J, Peterson AT (2005) Interpretation of Models of Fundamental Ecological Niches and Species' Distributional Areas. Biodiv Inf 2:. https://doi.org/10.17161/bi.v2i0.4
- Thurfjell H, Ciuti S, Boyce MS (2014) Applications of step-selection functions in ecology and conservation. Movement Ecology 2:4. https://doi.org/10.1186/2051-3933-2-4
- Van Moorter B, Kivimäki I, Noack A, et al (2023) Accelerating advances in landscape connectivity modelling with the ConScape library. Methods in Ecology and Evolution 14:133–145. https://doi.org/10.1111/2041-210X.13850

INDOOR PART

PAPERS FROM OUR PROJECT

Hansson, I., Silvera, A., Ren, K., Woudstra, S., Skarin, A., Fikse, W. F., Nielsen, P. P., & Rönnegård, L. (2023). Cow characteristics associated with the variation in number of contacts between dairy cows. Journal of Dairy Science.

Ren, K., Alam, M., Nielsen, P. P., Gussmann, M. K., & Rönnegård, L. (2022). Interpolation methods to improve data quality of indoor positioning data for dairy cattle. Frontiers in Animal Science, 53.

Ren, K., Nielsen, P. P., Alam, M., & Rönnegård, L. (2021). Where do we find missing data in a commercial real-time location system? Evidence from 2 dairy farms. JDS Communications, 2(6):345-350.

Churakov, M., Silvera, A. M., Gussmann, M., & Nielsen, P. P. (2021). Parity and days in milk affect cubicle occupancy in dairy cows. Applied Animal Behaviour Science, 105494.

SOCIAL NETWORK ANALYSIS

O'Malley, A.J., and P. V. Marsden. 2008. The Analysis of Social Networks. Health Serv. Outcomes Res. Methodol. 8:222. doi:10.1007/S10742-008-0041-Z.

Krause, J., D. Lusseau, and R. James. 2009. Animal social networks: An introduction. Behav. Ecol. Sociobiol. 63:967–973. doi:10.1007/S00265-009-0747-0/FIGURES/4.

Martínez-López, B., A.M. Perez, and J.M. Sánchez-Vizcaíno. 2009. Social Network Analysis. Review of General Concepts and Use in Preventive Veterinary Medicine. Transbound. Emerg. Dis. 109–120. doi:10.1111/j.1865-1682.2009.01073.x.

Krivitsky, P.N., and M.S. Handcock. 2010. A Separable Model for Dynamic Networks. J. R. Stat. Soc. Ser. B Stat. Methodol. 76:29–46. doi:10.1111/rssb.12014.

Magnani, M., L. Rossi, and D. Vega. 2021. Analysis of Multiplex Social Networks with R. J. Stat. Softw. 98:1–30. doi:10.18637/JSS.V098.I08.

Wey, T., D.T. Blumstein, W. Shen, and F. Jordán. 2008. Social network analysis of animal behaviour: a promising tool for the study of sociality. Anim. Behav. 75:333–344. doi:10.1016/J.ANBEHAV.2007.06.020.

Sosa, S., C. Sueur, and I. Puga-Gonzalez. 2021. Network measures in animal social network analysis: Their strengths, limits, interpretations and uses. Methods Ecol. Evol. 12:10–21. doi:10.1111/2041-210X.13366.

de Freslon, I., B. Martínez-López, J. Belkhiria, A. Strappini, and G. Monti. 2019. Use of social network analysis to improve the understanding of social behaviour in dairy cattle and its impact on disease transmission. Appl. Anim. Behav. Sci. 213:47–54. doi:10.1016/J.APPLANIM.2019.01.006.

Makagon, M.M., B. McCowan, and J.A. Mench. 2012. How can social network analysis contribute to social behavior research in applied ethology?. Appl. Anim. Behav. Sci. 138:152–161. doi:10.1016/J.APPLANIM.2012.02.003.