A HETEROGENEOUS INFORMATION NETWORK BASED CROSS DOMAIN INSURANCE RECOMMENDATION SYSTEM FOR COLD START USERS

Ye Bi Liqiang Song Mengqiu Yao Zhenyu Wu Jianming Wang Jing Xiao Ping An Technology Shenzhen Co., Ltd

Speaker: Ye Bi

- 1 Introduction
 - Background
 - Contributions
- 2 HCDIR
 - Framework
 - Target Domain
 - Source Domain
- 3 Results
 - Dataset
 - Performance
- 4 Q&A

About the Speaker

- Senior Algorithm Engineer in Ping An Technology Shenzhen Co., Ltd
- Major Research Direction:
 Deep Learning, Recommendation System, Knowledge
 Graph

- 1 Introduction
 - Background
 - Contributions
 - Framework
 - Target Domain
 - Source Domain
 - Dataset
 - Performance

Background

Online insurance is becoming more and more popular, thought it is in its growth bottleneck. A special recommendation system for online insurance domain is in demand.

Figure 1: The Number of Insured Improvements w.r.t. 2015 on Jinguanjia App

HCDIR PING AN TECHNOLOGY July 2020 4/29

Background

Users' behaviors in nonfinancial domain have influence on their behaviors in insurance domain. Users who have shopping experiences in nonfinancial domain are more willing to trust Jinguanjia, and more likely to buy insurance products.

Figure 2: Group-buy-ratio of RCG and NCG.

HCDIR PING AN TECHNOLOGY July 2020 5/29

Background

Different agents have different influence on users, a user assigned with the top 5% agent will be more likely to buy online insurance.

Table 1: Ask-buy-ratio of different agents.

communication frequency order	T+1	T+2	T+3
top 5%	4.9784%	4.9750%	4.7591%
top 10%	2.2700%	2.3214%	2.2698%
top 15%	1.0184%	1.0635%	1.0145%

- 1 Introduction
 - Background
 - Contributions
 - Framework
 - Target Domain
 - Source Domain
 - Dataset
 - Performance

Contributions

Our contributions in this paper are as follows:

- To the best of our knowledge, this is the first work to combine cross-domain mechanism and heterogeneous information network to give personalized recommendations for cold start users in insurance domain.
- For the complexity of insurance products, we construct a heterogeneous information network, which contains four types of nodes and six types of relations. And we employ three level aggregations over IHIN to learn more effective user and item representations in insurance domain.
- We conduct experiments on real-world recommendation scenarios, and the results prove the efficacy of HCDIR over several state-of-the-art baselines.

- Background
- Contributions

- 2 HCDIR
 - Framework
 - Target Domain
 - Source Domain
 - Dataset
 - Performance

Framework

To provide recommendations to cold start users, we propose HCDIR. HCDIR contains three main parts: learning latent features of users in both insurance domain and nonfinancial domain, mapping of user latent features.

Figure 3: The Framework of HCDIR

- Background
- Contributions

2 HCDIR

- Framework
- Target Domain
- Source Domain
- Dataset
- Performance

- Aggregate one-hop heterogeneous neighbors
- Aggregate meta-paths based neighbors
- Aggregate meta-paths based neighbor sets

Attention Score:

$$\alpha_{ew} = \frac{\exp(f_r(\boldsymbol{h}_e^0, \boldsymbol{P}_r \boldsymbol{h}_w^0))}{\sum_{j \in \mathcal{N}_1(e)} \exp(f_r(\boldsymbol{h}_e^0, \boldsymbol{P}_r \boldsymbol{h}_j^0))}$$

Aggregation:

$$oldsymbol{h}_e^1 = \sigma \left(\sum_{w \in \mathcal{N}_1(e)} lpha_{ew} oldsymbol{h}_w^0
ight),$$

Figure 4: Relational Neighbor Aggregation

Meta-path based neighbors:

$$\beta_{ew}^{\rho} = \frac{\exp(f_{\rho}(\boldsymbol{h}_{e}^{0}, \boldsymbol{h}_{w}^{0}))}{\sum_{j \in \mathcal{N}_{\rho}(e)} \exp(f_{\rho}(\boldsymbol{h}_{e}^{0}, \boldsymbol{h}_{j}^{0}))}$$

$$m{h}_e^
ho = \sigma \left(\sum_{w \in \mathcal{N}_
ho(e)} eta_{ew}^
ho m{h}_w^0
ight)$$

Figure 5: Meta-path based Aggregation

Meta-path based neighbor sets:

$$w_{
ho_j} = rac{1}{|\mathcal{V}|} \sum_{e \in \mathcal{V}} oldsymbol{q}^T \cdot anh(oldsymbol{W} oldsymbol{h}_e^{
ho_j} + b),$$

$$\gamma_{\rho_j} = \frac{\exp(w_{\rho_j})}{\sum_{j=1}^N \exp(w_{\rho_j})}.$$

$$oldsymbol{h}_e^2 = \sum_{j=1}^N \gamma_{
ho_j} \cdot oldsymbol{h}_e^{
ho_j}.$$

- Background
- Contributions

- 2 HCDIR
 - Framework
 - Target Domain
 - Source Domain
 - Dataset
 - Performance

Source Domain

In Jinguanjia, each item in nonfinancial domain is associated with a description. In order to learn more effective latent features, we employ word2vec. Suppose there are n words in item's content. Then we utilize word2vec to obtain word vectors, which are represented as $\{\boldsymbol{w}_k^i\}_{k=1}^n$. Then we concatenate word vectors and apply a max pooling over it to get the final item embedding:

$$i = \text{max-pooling}(\text{concat}(\{\boldsymbol{w}_k^i\}_{k=1}^n)).$$

- Background
- Contributions
- Framework
- Target Domain
- Source Domain

- Results
 - Dataset
 - Performance

Dataset

Table 2: Statistics of Our dataset.

IS-domain (Target domain)		NF-domain (Source domain)		
#User Nodes	117,613	#Users	117,613	
#Item Nodes	42	#Items	19,266	
#Agent Nodes	90,377	#User-Item Interactions	1,995,168	
#Insurance Property Nodes	35			
#User-Iten Relations	344,206			
#User-Agent Relations	97,343			
#Item-Property Relations	275			
		<u> </u>		

- Background
- Contributions
- Framework
- Target Domain
- Source Domain

- 3 Results
 - Dataset
 - Performance

Table 3: Performance comparison.

Jinguanjia dataset		Metrics				
η	Group	Method	NDCG	Rec@1	Rec@3	Rec@5
	Single-domain	BPR	0.0719	0.0213	0.0737	0.1248
	RS	GRU4REC	0.0036	0.0017	0.0032	0.0057
		EMCDR-BPR	0.0881	0.0324	0.0689	0.1543
10%	Cross-domain	EMCDR-GRU	0.1013	0.0284	0.0961	0.2088
	RS	HCDIR-RGCN	0.2468	0.0967	0.3448	0.3849
		HCDIR-HAN	0.3206	0.1236	0.3476	0.4828
		HCDIR	0.3674	0.1366	0.4002	0.5543
	Single-domain	BPR	0.0789	0.0241	0.0864	0.1348
	RS	GRU4REC	0.0042	0.0022	0.0047	0.0061
		EMCDR-BPR	0.0984	0.0347	0.0848	0.1611
20%	Cross-domain	EMCDR-GRU	0.1112	0.0366	0.1308	0.2257
	RS	HCDIR-RGCN	0.2579	0.1003	0.3516	0.4002
		HCDIR-HAN	0.3311	0.1273	0.3656	0.4927
		HCDIR	0.3769	0.1548	0.4189	0.5683

Table 4: Performance comparison (cont.)

Jinguanjia dataset		Metrics				
	Single-domain	BPR	0.0791	0.0274	0.1205	0.1735
	RS	GRU4REC	0.0117	0.0027	0.0114	0.0213
		EMCDR-BPR	0.1125	0.0402	0.1609	0.2281
50%	Cross-domain	EMCDR-GRU	0.1289	0.0496	0.1594	0.2589
	RS	HCDIR-RGCN	0.2701	0.1166	0.3611	0.4341
		HCDIR-HAN	0.3432	0.1341	0.3946	0.5372
		HCDIR	0.3895	0.1636	0.4354	0.5827
	Single-domain	BPR	0.1009	0.0354	0.1627	0.1809
	RS	GRU4REC	0.0137	0.0054	0.0154	0.0221
		EMCDR-BPR	0.1359	0.0511	0.2059	0.2556
100%	Cross-domain	EMCDR-GRU	0.1498	0.0806	0.2124	0.2486
	RS	HCDIR-RGCN	0.3067	0.1247	0.3739	0.4974
		HCDIR-HAN	0.3703	0.1357	0.4254	0.5627
		HCDIR	0.4109	0.1873	0.4654	0.6128

Figure 6: Study of the Final Embedding Dimension S.

HCDIR

Table 5: Performance of variants of HCDIR on Jinguanjia dataset at 10% sparsity level

ingua	njia dataset	Metrics			
at 10%	sparsity level	NDCG	Rec@1	Rec@3	Rec@5
	#HCDIR only	0.1013	0.0284	0.0961	0.2088
	with interactions	-72.43%	-79.21 %	-75.99%	-62.33%
Data	#HCDIR	0.2157	0.0933	0.2287	0.3277
Ablation	without Agent	-41.29%	-31.70%	-42.85%	-40.88%
	#HCDIR	0.2313	0.1073	0.2512	0.3665
	without IP	-37.04%	-21.45%	-37.23%	-33.88%
	#HCDIR	0.2468	0.0967	0.3448	0.3849
Model	using RGCN	-32.83%	-29.21%	-13.84%	-30.56%
Ablation	#HCDIR	0.3206	0.1236	0.3476	0.4828
	using HAN	-12.74%	$\mathbf{-9.52}\%$	$ extbf{-}13.14\%$	-12.90%
Full Model	#HCDIR	0.3674	0.1366	0.4002	0.5543

Metrics	G_HCDIR without agent			
Wietrics	T+1 month	T+2 months	T+3 months	
improvement percentage of UPCR vs G_Baseline	8.79%	12.87%	18.38%	
improvement percentage of UPGR vs G_Baseline	10.97%	13.04%	15.31%	
improvement percentage of runing time vs G_Baseline		-79.94%		

Metrics	G_HCDIR			
Wetries	T+1 month	T+2 months	T+3 months	
improvement percentage of UPCR vs G_Baseline	12.94%	18.66%	23.20%	
improvement percentage of UPGR vs G_Baseline	15.25%	20.41%	25.62%	
improvement percentage of runing time vs G_Baseline		-76.59%		

If you have any questions, please email to magicyebi@163.com

Acknowledgments

Thank you for your attention!

